1η ENOTHTA

1. ΡΙΖΕΣ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ

Κλασικό πρόβλημα των στοιχειωδών μαθηματικών είναι η εύρεση μιας τιμής ρ τέτοιας, ώστε για μια συνάρτηση $f\left(x\right),\,x\in\left(a,b\right)$ να ισχύει:

$$f(\rho) = 0 \tag{1.1}$$

1η ENOTHTA

1. ΡΙΖΕΣ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ

Κλασικό πρόβλημα των στοιχειωδών μαθηματικών είναι η εύρεση μιας τιμής ρ τέτοιας, ώστε για μια συνάρτηση f(x), $x \in (a,b)$ να ισχύει:

$$f(\rho) = 0 \tag{1.1}$$

Αναδρομική σχέση:

$$x_{n+1} = \sigma\left(x_n\right) \tag{1.2}$$

που θα δίνει μια ακολουθία τιμών $x_0, x_1, \ldots, x_{\kappa}, \ldots$ και στο όριο $\kappa \to \infty$ να δίνει τη ρίζα της εξίσωσης (1.1).

1η ΕΝΟΤΗΤΑ

$$(x-2)\cos(x) + \frac{\sin(x)}{x-5} = 0$$

1η ENOTHTA

$$(x-2)\cos(x) + \frac{\sin(x)}{x-5} = 0$$

1.1 ΜΕΘΟΔΟΣ ΔΙΧΟΤΟΜΗΣΗΣ

1.1 ΜΕΘΟΔΟΣ ΔΙΧΟΤΟΜΗΣΗΣ

Έστω ότι μια ρίζα βρίσκεται στο διάστημα $[a_0,b_0]$, τότε $f(a_0)\cdot f(b_0)<0$. Αν $\mu_0=(a_0+b_0)/2$, τότε:

- (I) είτε $f(\mu_0) \cdot f(a_0) < 0$
- (II) είτε f(μ₀) · f(b₀) < 0
- (III) είτε $f(\mu_0) = 0$.

1.1 ΜΕΘΟΔΟΣ ΔΙΧΟΤΟΜΗΣΗΣ

Έστω ότι μια ρίζα βρίσκεται στο διάστημα $[a_0,b_0]$, τότε $f(a_0)\cdot f(b_0)<0$. Αν $\mu_0=(a_0+b_0)/2$, τότε:

- (I) είτε $f(\mu_0) \cdot f(a_0) < 0$
- (II) είτε f(μ₀) · f(b₀) < 0
- (III) είτε $f(\mu_0) = 0$.

Αν ισχύει η (ΙΙΙ), τότε έχει υπολογισθεί η ρίζα και σταματά η διαδικασία, αλλιώς ορίζω νέο διάστημα

$$[a_1, b_1] = \begin{cases} [\mu_0, b_0] & \text{av} \quad (II) \\ [a_0, \mu_0] & \text{av} \quad (I) \end{cases}$$

$$(1.7)$$

KPITIKH

Δύο στοιχεία κάνουν την μέθοδο ελάχιστα ελκυστική:

- Η αργή σύγκλιση
- Επικίνδυνη, όταν υπάρχουν ασυνέχειες

KPITIKH

Δύο στοιχεία κάνουν την μέθοδο ελάχιστα ελκυστική:

- Η αργή σύγκλιση
- Επικίνδυνη, όταν υπάρχουν ασυνέχειες

ΣΦΑΛΜΑ

 $\Omega_{\rm S}$ σφάλμα ορίζουμε την " απόσταση" $\varepsilon_n = |\rho - x_n|$ της τιμής x_n από τη ρίζα ρ της εξίσωσης. Για τη μέθοδο διχοτόμησης το σφάλμα είναι μικρότερο απο το μισό του διαστήματος στο οποίο περικλείεται η ρίζα

$$\varepsilon_n \le \frac{1}{2} \left| a_n - b_n \right| \tag{1.8}$$

Σε κάθε βήμα το σφάλμα μειώνεται στο μισό του προηγουμένου

$$\varepsilon_{n+1} = \frac{\varepsilon_n}{2} = \frac{\varepsilon_{n-1}}{2^2} = \dots = \frac{\varepsilon_0}{2^n}$$
 (1.9)

1.2 ΜΕΘΟΔΟΣ ΓΡΑΜΜΙΚΗΣ ΠΑΡΕΜΒΟΛΗΣ

1.2 ΜΕΘΟΔΟΣ ΓΡΑΜΜΙΚΗΣ ΠΑΡΕΜΒΟΛΗΣ

Στηρίζεται στην εξής λογική: Αν στο διάστημα $[x_1,x_2]$ υπάρχει μία ρίζα της f(x), δηλαδή $f(x_1)\cdot f(x_2)<0$, τότε φέρνω την ευθεία που διέρχεται από τα σημεία $(x_1,f(x_1))$ και $(x_2,f(x_2))$ με εξίσωση:

$$y(x) = f(x_1) + \frac{f(x_1) - f(x_2)}{x_1 - x_2} (x - x_1)$$
(1.11)

1.2 ΜΕΘΟΔΟΣ ΓΡΑΜΜΙΚΗΣ ΠΑΡΕΜΒΟΛΗΣ

Στηρίζεται στην εξής λογική: Αν στο διάστημα $[x_1,x_2]$ υπάρχει μία ρίζα της f(x), δηλαδή $f(x_1)\cdot f(x_2)<0$, τότε φέρνω την ευθεία που διέρχεται από τα σημεία $(x_1,f(x_1))$ και $(x_2,f(x_2))$ με εξίσωση:

$$y(x) = f(x_1) + \frac{f(x_1) - f(x_2)}{x_1 - x_2} (x - x_1)$$
(1.11)

η οποία τέμνει τον άξονα Ox έστω στο σημείο x_3 που υπολογίζεται απο την παρακάτω σχέση:

$$x_3 = \frac{x_2 f(x_1) - x_1 f(x_2)}{f(x_1) - f(x_2)}$$

$$= x_2 - \frac{f(x_2)}{f(x_2) - f(x_1)} (x_2 - x_1)$$
(1.12)

Η σχέση (1.12) με κατάλληλους δείκτες είναι η ζητούμενη αναδρομική σχέση:

$$x_{n+2} = x_{n+1} - \frac{f(x_{n+1})}{f(x_{n+1}) - f(x_n)} (x_{n+1} - x_n)$$
(1.13)

Δηλαδή αν δοθούν δύο αρχικές τιμες x_n και x_{n+1} με την παραπάνω σχέση μπορούμε να υπολογίσουμε μια νές τιμή x_{n+2} που βρίσκεται πλησιέστερα στη ρίζα ρ της μη-γραμμικής εξίσωσης.

Η σχέση (1.12) με κατάλληλους δείκτες είναι η ζητούμενη αναδρομική σχέση:

$$x_{n+2} = x_{n+1} - \frac{f(x_{n+1})}{f(x_{n+1}) - f(x_n)} (x_{n+1} - x_n)$$
(1.13)

Δηλαδή αν δοθούν δύο αρχικές τιμες x_n και x_{n+1} με την παραπάνω σχέση μπορούμε να υπολογίσουμε μια νές τιμή x_{n+2} που βρίσκεται πλησιέστερα στη ρίζα ρ της μη-γραμμικής εξίσωσης.

Η μέθοδος της γραμμικής παρεμβολής :

- Συγκλίνει ταχύτερα από τη μέθοδο διχοτόμησης
- Δεν είναι υποχρεωτικό η ρίζα να εσωκλείεται μεταξύ των δύο αρχικών τιμών.

ΣΥΓΚΛΙΣΗ

Έστω ξ η ακριβής ρίζα της εξίσωσης. Αν θεωρήσουμε ότι $\varepsilon_n = |\xi - x_n|$ είναι το σφάλμα στην εύρεση της ρίζας της f(x) = 0 για $x = x_n$, τότε η μέθοδος της γραμμικής παρεμβολής συγκλίνει με βάση τη σχέση

$$\varepsilon_{n+1} = k \cdot \varepsilon_n^{1.618} \tag{1.14}$$

1.3 ΜΕΘΟΔΟΣ MULLER

Αν δοθούν τρεις αρχικές τιμές x_{i-2}, x_{i-1}, x_i , υποθέτουμε ότι η f(x) προσεγγίζεται από ένα 2ο-βάθμιο πολυώνυμο P(x) του οποίου εύκολα υπολογίζουμε τις ρίζες. Για τις τρεις αρχικές τιμές του x_i λαμβάνουμε τρεις εξισώσεις της μορφής:

$$f(x_i) \approx P(x_i) = Ax_i^2 + Bx_i + \Gamma \tag{1.20}$$

1.3 ΜΕΘΟΔΟΣ MULLER

Αν δοθούν τρεις αρχικές τιμές x_{i-2}, x_{i-1}, x_i , υποθέτουμε ότι η f(x) προσεγγίζεται από ένα 2ο-βάθμιο πολυώνυμο P(x) του οποίου εύκολα υπολογίζουμε τις ρίζες. Για τις τρεις αρχικές τιμές του x_i λαμβάνουμε τρεις εξισώσεις της μορφής:

$$f(x_i) \approx P(x_i) = Ax_i^2 + Bx_i + \Gamma \tag{1.20}$$

από τις οποίες υπολογίζουμε τους 3 συντελεστές του τριωνύμου μέσω των σχέσεων

$$A = qP(x_i) - q(1+q)P(x_{i-1}) + q^2P(x_{i-2})$$

$$B = (2q+1)P(x_i) - (1+q)^2P(x_{i-1}) + q^2P(x_{i-2})$$

$$\Gamma = (1+q)P(x_i)$$
(1.21)

όπου

$$q = \frac{x_i - x_{i-1}}{x_{i-1} - x_{i-2}}. (1.22)$$

1.3 ΜΕΘΟΔΟΣ MULLER

Αν δοθούν τρεις αρχικές τιμές x_{i-2}, x_{i-1}, x_i , υποθέτουμε ότι η f(x) προσεγγίζεται από ένα 2ο-βάθμιο πολυώνυμο P(x) του οποίου εύκολα υπολογίζουμε τις ρίζες. Για τις τρεις αρχικές τιμές του x_i λαμβάνουμε τρεις εξισώσεις της μορφής:

$$f(x_i) \approx P(x_i) = Ax_i^2 + Bx_i + \Gamma \tag{1.20}$$

από τις οποίες υπολογίζουμε τους 3 συντελεστές του τριωνύμου μέσω των σχέσεων

$$A = qP(x_i) - q(1+q)P(x_{i-1}) + q^2P(x_{i-2})$$

$$B = (2q+1)P(x_i) - (1+q)^2P(x_{i-1}) + q^2P(x_{i-2})$$

$$\Gamma = (1+q)P(x_i)$$
(1.21)

όπου

$$q = \frac{x_i - x_{i-1}}{x_{i-1} - x_{i-2}}. (1.22)$$

Οπότε η επόμενη προσεγγιστική τιμή x_{i+1} βρίσκεται ως η ρίζα της παραβολής

$$Ax^2 + Bx + \Gamma = 0. {(1.23)}$$

Η παρακάτω σχέση μπορεί να χρησιμοποιηθεί αναδρομικά για την εύρεση της ρίζας

$$x_{i+1} = x_i - (x_i - x_{i-1}) \left[\frac{2\Gamma}{B \pm \sqrt{B^2 - 4A\Gamma}} \right]$$
 (1.24)

Το σημείο του παρονομαστή επιλέγεται ούτως ώστε να γίνεται το κλάσμα μικρότερο απολύτως.

Η παρακάτω σχέση μπορεί να χρησιμοποιηθεί αναδρομικά για την εύρεση της ρίζας

$$x_{i+1} = x_i - (x_i - x_{i-1}) \left[\frac{2\Gamma}{B \pm \sqrt{B^2 - 4A\Gamma}} \right]$$
 (1.24)

Το σημείο του παρονομαστή επιλέγεται ούτως ώστε να γίνεται το κλάσμα μικρότερο απολύτως.

ΣΦΑΛΜΑ

Αποδεικνύεται ότι το σφάλμα της μεθόδου είναι:

$$\varepsilon_{n+1} = k\varepsilon_n^{1.84} \tag{1.25}$$

δηλαδή η συγκλιση είναι σημαντικά καλύτερη από τη μέθοδο της γραμμικής παρεμβολής.

Η παρακάτω σχέση μπορεί να χρησιμοποιηθεί αναδρομικά για την εύρεση της ρίζας

$$x_{i+1} = x_i - (x_i - x_{i-1}) \left[\frac{2\Gamma}{B \pm \sqrt{B^2 - 4A\Gamma}} \right]$$
 (1.24)

Το σημείο του παρονομαστή επιλέγεται ούτως ώστε να γίνεται το κλάσμα μικρότερο απολύτως.

ΣΦΑΛΜΑ

Αποδεικνύεται ότι το σφάλμα της μεθόδου είναι:

$$\varepsilon_{n+1} = k\varepsilon_n^{1.84} \tag{1.25}$$

δηλαδή η συγκλιση είναι σημαντικά καλύτερη από τη μέθοδο της γραμμικής παρεμβολής.

1.4 ME $\Theta O \Delta O \Sigma x = g(x)$

Επομένως, προσπαθούμε να βρούμε μια σχέση της μορφής

$$x_{n+1} = g\left(x_n\right) \tag{1.26}$$

ούτως ώστε

$$\lim_{n \to \infty} x_n = \rho. \tag{1.27}$$

1.4 ME Θ O Δ O Σ x=g(x)

Επομένως, προσπαθούμε να βρούμε μια σχέση της μορφής

$$x_{n+1} = g\left(x_n\right) \tag{1.26}$$

ούτως ώστε

$$\lim_{n \to \infty} x_n = \rho \,. \tag{1.27}$$

Παράδειγμα:

Να λυθεί η εξίσωση

$$f(x) = x - \cos x$$

Να λυθεί η εξίσωση
$$f(x) = x - \cos x$$

Να λυθεί η εξίσωση
$$f(x) = x - \cos x \qquad \Rightarrow x = \cos x$$

Να λυθεί η εξίσωση
$$f(x) = x - \cos x \qquad \Rightarrow x = \cos x$$

Η μέθοδος του Picard δεν θα μας δώσει τη λύση της εξίσωσης

$$g(x) = 4x - 12 = x$$
.

Σύγκλιση όταν |g'(x)|<1

Απόκλιση όταν |g'(x)|>1

Απόκλιση όταν |g'(x)|>1

ΣΦΑΛΜΑ

$$\varepsilon_{n+1} = g'(r)\varepsilon_n$$

Να εφαρμοσδεί η μέδοδος για την εύρεση μιας ρίζας της εξίσωσης $f(x) = x + \ln(x)$ στο διάστημα [0.1, 1].

Να εφαρμοσθεί η μέθοδος για την εύρεση μιας ρίζας της εξίσωσης $f(x) = x + \ln(x)$ στο διάστημα [0.1, 1].

Δοκιμάζουμε διάφορες γραφές της εξίσωσης:

• $x_{n+1}=-\ln(x_n)$ aββά $|g'(x)|=\left|\frac{1}{x}\right|\geq 1$ στο διάστημα [0.1,1] οπότε δεν συγκβίνει.

Να εφαρμοσθεί η μέθοδος για την εύρεση μιας ρίζας της εξίσωσης $f(x) = x + \ln(x)$ στο διάστημα [0.1, 1].

Δοκιμάζουμε διάφορες γραφές της εξίσωσης:

- $x_{n+1}=-\ln(x_n)$ aββά $|g'(x)|=\left|\frac{1}{x}\right|\geq 1$ στο διάστημα [0.1,1] οπότε δεν συγκβίνει.
- $x_{n+1}=e^{-x_n}$ $οπότε |y'(x)|=|e^{-x}| \le e^{-0.1} \approx 0.9 < 1$ άρα συγκβίνει.

Να εφαρμοσθεί η μέθοδος για την εύρεση μιας ρίζας της εξίσωσης $f(x) = x + \ln(x)$ στο διάστημα [0.1, 1].

Δοκιμάζουμε διάφορες γραφές της εξίσωσης:

- $x_{n+1}=-\ln(x_n)$ aββά $|g'(x)|=\left|\frac{1}{x}\right|\geq 1$ στο διάστημα [0.1,1] οπότε δεν συγκβίνει.
- $x_{n+1} = e^{-x_n}$ $οπότε |y'(x)| = |e^{-x}| \le e^{-0.1} \approx 0.9 < 1$ άρα συγκβίνει.
- Μια άβλη γραφή είναι η εξής : $x=(x+e^{-x})/2$ οπότε $|g'(x)|=\frac{1}{2}|1-e^{-x}|\leq \frac{1}{2}|1-e^{-1}|=0.316$ άρα συγκβίνει.

Να εφαρμοσδεί η μέδοδος για την εύρεση μιας ρίζας της εξίσωσης $f(x) = x + \ln(x)$ στο διάστημα [0.1, 1].

Δοκιμάζουμε διάφορες γραφές της εξίσωσης:

- $x_{n+1}=-\ln(x_n)$ aββά $|g'(x)|=\left|\frac{1}{x}\right|\geq 1$ στο διάστημα [0.1,1] οπότε δεν συγκβίνει.
- $x_{n+1} = e^{-x_n}$ $οπότε |y'(x)| = |e^{-x}| \le e^{-0.1} \approx 0.9 < 1$ άρα συγκβίνει.
- Μια άλλη γραφή είναι η εξής : $x=(x+e^{-x})/2$ οπότε $|g'(x)|=\frac{1}{2}|1-e^{-x}|\leq \frac{1}{2}|1-e^{-1}|=0.316$ άρα συγκλίνει.
- $x = \frac{x+2e^{-x}}{3}$ οπότε $|g'(x)| = \frac{1}{3}|1-2e^{-x}| \le \frac{1}{3}|1-2e^{-1}| = 0.03$ άρα συγκβίνει.

Προφανώς θα επιβέξουμε την τεβευταία γραφή και η ζητούμενη αναδρομική σχέση θα είναι:

$$x_{n+1} = \frac{x_n + 2e^{-x_n}}{3} \ .$$

1.4.1 Βελτίωση Aitken

Όταν η σύγκλιση μιας μεθόδου είναι γραμμική, όπως στην προηγούμενη μέθοδο, όπου είχαμε $e_{n+1}=g'(\rho)e_n$, τότε, για $n\to\infty$, η μέθοδος είναι δυνατόν να επεκταθεί, για να επιτύχουμε ακριβέστερο αποτέλεσμα χωρίς επιπλέον πράξεις.

Το σφάλμα μετά από n εφαρμογές της σχέσης $x_{n+1} = g'(x_n)$ είναι:

$$\rho - x_{n+1} \approx g'(\rho)(\rho - x_n)$$

και μετά από n+1 εφαρμογές είναι:

$$\rho - x_{n+2} = g'(\rho)(\rho - x_{n+1})$$

1.4.1 Βελτίωση Aitken

Όταν η σύγκλιση μιας μεθόδου είναι γραμμική, όπως στην προηγούμενη μέθοδο, όπου είχαμε $e_{n+1}=g'(\rho)e_n$, τότε, για $n\to\infty$, η μέθοδος είναι δυνατόν να επεκταθεί, για να επιτύχουμε ακριβέστερο αποτέλεσμα χωρίς επιπλέον πράξεις.

Το σφάλμα μετά από n εφαρμογές της σχέσης $x_{n+1} = g'(x_n)$ είναι:

$$\rho - x_{n+1} \approx g'(\rho)(\rho - x_n)$$

και μετά από n+1 εφαρμογές είναι:

$$\rho - x_{n+2} = g'(\rho)(\rho - x_{n+1})$$

οπότε διαιρώντας κατά μέλη βρίσκουμε ότι

$$\frac{\rho - x_{n+1}}{\rho - x_{n+2}} = \frac{g'(\rho)(\rho - x_n)}{g'(\rho)(\rho - x_{n+1})}$$

1.4.1 Βελτίωση Aitken

Όταν η σύγκλιση μιας μεθόδου είναι γραμμική, όπως στην προηγούμενη μέθοδο, όπου είχαμε $e_{n+1}=g'(\rho)e_n$, τότε, για $n\to\infty$, η μέθοδος είναι δυνατόν να επεκταθεί, για να επιτύχουμε ακριβέστερο αποτέλεσμα χωρίς επιπλέον πράξεις.

Το σφάλμα μετά από n εφαρμογές της σχέσης $x_{n+1} = g'(x_n)$ είναι:

$$\rho - x_{n+1} \approx g'(\rho)(\rho - x_n)$$

και μετά από n+1 εφαρμογές είναι:

$$\rho - x_{n+2} = g'(\rho)(\rho - x_{n+1})$$

οπότε διαιρώντας κατά μέλη βρίσκουμε ότι

$$\frac{\rho - x_{n+1}}{\rho - x_{n+2}} = \frac{g'(\rho)(\rho - x_n)}{g'(\rho)(\rho - x_{n+1})}$$

και λύνοντας ως προς ρ βρίσκουμε:

$$\rho = x_n - \frac{(x_n - x_{n-1})^2}{x_n - 2x_{n-1} + x_{n-2}}$$
 (1.2)

Η μέθοδος αυτή είναι γνωστή ως βεβτίωση του Aitken.

1.5 ΜΕΘΟΔΟΣ NEWTON-RAPHSON

Ας προσπαθήσουμε τώρα να δημιουργήσουμε τη σχέση (1.31) με πιο αυστηρό τρόπο. Αν υποθέσουμε ότι x_{n+1} είναι η ακριβής λύση της εξίσωσης και μια τιμή x_n βρίσκεται σχετικά κοντά στην x_{n+1} και έστω $x_{n+1} = x_n + \varepsilon_n$. Τότε:

$$f(x_{n+1}) = f(x_n + \varepsilon_n) = f(x_n) + \varepsilon_n f'(x_n) + \frac{\varepsilon_n^2}{2} f''(x_n) + \cdots$$

Ας προσπαθήσουμε τώρα να δημιουργήσουμε τη σχέση (1.31) με πιο αυστηρό τρόπο. Αν υποθέσουμε ότι x_{n+1} είναι η ακριβής λύση της εξίσωσης και μια τιμή x_n βρίσκεται σχετικά κοντά στην x_{n+1} και έστω $x_{n+1} = x_n + \varepsilon_n$. Τότε:

$$f(x_{n+1}) = f(x_n + \varepsilon_n) = f(x_n) + \varepsilon_n f'(x_n) + \frac{\varepsilon_n^2}{2} f''(x_n) + \cdots$$

Αλλά, επειδή υποθέσαμε ότι η x_{n+1} είναι ρίζα της f(x), θα ισχύει $f(x_{n+1}) = 0$, και έτσι αναγόμαστε στη σχέση

$$0 = f(x_n) + \varepsilon_n f'(x_n)$$

Ας προσπαθήσουμε τώρα να δημιουργήσουμε τη σχέση (1.31) με πιο αυστηρό τρόπο. Αν υποθέσουμε ότι x_{n+1} είναι η ακριβής λύση της εξίσωσης και μια τιμή x_n βρίσκεται σχετικά κοντά στην x_{n+1} και έστω $x_{n+1} = x_n + \varepsilon_n$. Τότε:

$$f(x_{n+1}) = f(x_n + \varepsilon_n) = f(x_n) + \varepsilon_n f'(x_n) + \frac{\varepsilon_n^2}{2} f''(x_n) + \cdots$$

Αλλά, επειδή υποθέσαμε ότι η x_{n+1} είναι ρίζα της f(x), θα ισχύει $f(x_{n+1}) = 0$, και έτσι αναγόμαστε στη σχέση

$$0 = f(x_n) + \varepsilon_n f'(x_n)$$

δηλαδή

$$\varepsilon_n = -\frac{f(x_n)}{f'(x_n)} \tag{1.32}$$

οπότε καταλήγουμε στην αναδρομική σχέση:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \tag{1.33}$$

ΥΠΟΛΟΓΙΣΜΟΣ ΣΦΑΛΜΑΤΟΣ

Έστω ξ η ρίζα της εξίσωσης f(x)=0. Τότε $x_n=\xi+\varepsilon_n$ και $x_{n+1}=\xi+\varepsilon_{n+1}$, οπότε:

$$\xi + \varepsilon_{n+1} = \xi + \varepsilon_n - \frac{f(\xi + \varepsilon_n)}{f'(\xi + \varepsilon_n)} = \xi + \varepsilon_n - \frac{f(\xi) + \varepsilon_n f'(\xi) + \frac{1}{2} \varepsilon_n^2 f''(\xi)}{f'(\xi) + \varepsilon_n f''(\xi)}$$

ΥΠΟΛΟΓΙΣΜΟΣ ΣΦΑΛΜΑΤΟΣ

Έστω ξ η ρίζα της εξίσωσης f(x) = 0. Τότε $x_n = \xi + \varepsilon_n$ και $x_{n+1} = \xi + \varepsilon_{n+1}$, οπότε:

$$\xi + \varepsilon_{n+1} = \xi + \varepsilon_n - \frac{f(\xi + \varepsilon_n)}{f'(\xi + \varepsilon_n)} = \xi + \varepsilon_n - \frac{f(\xi) + \varepsilon_n f'(\xi) + \frac{1}{2} \varepsilon_n^2 f''(\xi)}{f'(\xi) + \varepsilon_n f''(\xi)}$$

Επειδή όμως $f(\xi) = 0$ και

$$\frac{1}{1 + \varepsilon f''(\xi)/f'(\xi)} \approx 1 - \varepsilon_n \frac{f''(\xi)}{f'(\xi)}$$

καταλήγουμε στη σχέση

$$\varepsilon_{n+1} = -\frac{f''(\xi)}{2f'(\xi)} \cdot \varepsilon_n^2 \tag{1.34}$$

Όπως παρατηρείτε, η σύγκλιση της μεθόδου είναι « τετραγωνική», δηλαδή καλύτερη από κάθε άλλη μέθοδο που χρησιμοποιήσαμε ως τώρα.

- Έχει ταχύτατη συγκλιση
- Απαιτεί γνώση της 1ης παραγώγου της συνάρτησης

1.5.1 Δεύτερης τάξης Newton-Raphson (Halley)

$$x_{n+1} = x_n - \frac{2f(x_n) f'(x_n)}{2f'^2(x_n) - f''(x_n) f(x_n)}$$

ΣΥΓΚΛΙΣΗ

$$\varepsilon_{n+1} = -\left[\frac{1}{6} \frac{f'''(\xi)}{f'(\xi)} - \frac{1}{4} \left(\frac{f''(\xi)}{f'(\xi)}\right)^2\right] \cdot \varepsilon_n^3$$

1.5.2 Πολλαπλές ρίζες

$$f(x) = (x - \rho)^m q(x)$$

όπου m είναι η πολλαπλότητα της ρίζας ρ

1.5.2 Πολλαπλές ρίζες

$$f(x) = (x - \rho)^m q(x)$$

όπου m είναι η πολλαπλότητα της ρίζας ρ

Επομένως, $f'(x)=(x-\rho)^{m-1}\left[mq(x)+(x-\rho)q'(x)\right]$ άρα οι f(x) και f'(x) μηδενίζονται συγχρόνως για $x=\rho$ οπότε ο λόγος f(x)/f'(x) θα υπολογίζεται με μεγάλο σφάλμα

1.5.2 Πολλαπλές ρίζες

$$f(x) = (x - \rho)^m q(x)$$

όπου m είναι η πολλαπλότητα της ρίζας ρ

Επομένως, $f'(x)=(x-\rho)^{m-1}\left[mq(x)+(x-\rho)q'(x)\right]$ άρα οι f(x) και f'(x) μηδενίζονται συγχρόνως για $x=\rho$ οπότε ο λόγος f(x)/f'(x) θα υπολογίζεται με μεγάλο σφάλμα

Για να ξεπερασθεί το πρόβλημα δημιουργούμε μια νέα συνάρτηση

$$\phi(x) = \frac{f(x)}{f'(x)} = \frac{(x - \rho)q(x)}{mq(x) + (x - \rho)q'(x)}$$

η οποία έχει τη ρ ως ρίζα με πολλαπλότητα m=1 και η αναδρομική σχέση είναι:

$$x_{n+1} = x_n - \frac{f(x_n) f'(x_n)}{[f'(x_n)]^2 - f(x_n) f''(x_n)}$$

1.6 ΣΥΣΤΗΜΑΤΑ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ

Ένα παράδειγμα συστήματος μη-γραμμικών εξισώσεων είναι το εξής. Έστω δύο συναρτήσεις :

$$f(x,y) = e^x - 3y - 1$$

$$g(x,y) = x^2 + y^2 - 4$$
(1.42)

Ζητούμε τα πιθανά σημεία για τα οποία ταυτοχρόνως ικανοποιούνται οι σχέσεις

$$f(x,y) = 0$$
$$g(x,y) = 0$$

1.6.1 Η Μέθοδος Newton

ΣΥΣΤΗΜΑΤΑ ΔΥΟ ΕΞΙΣΩΣΕΩΝ

Έστω το σύστημα

$$f(x,y) = 0$$
$$g(x,y) = 0$$

αναπτύσσοντας σε σειρά Taylor γύρω από τη λύση, βρίσκουμε:

$$0 \cong f(x_{n+1}, y_{n+1}) = f(x_n + \varepsilon_n, y_n + \delta_n) \cong f(x_n, y_n) + \varepsilon_n \frac{\partial f}{\partial x} + \delta_n \frac{\partial f}{\partial y}$$
$$0 \cong g(x_{n+1}, y_{n+1}) = g(x_n + \varepsilon_n, y_n + \delta_n) \cong g(x_n, y_n) + \varepsilon_n \frac{\partial g}{\partial x} + \delta_n \frac{\partial g}{\partial y}$$

1.6.1 Η Μέθοδος Newton

ΣΥΣΤΗΜΑΤΑ ΔΥΟ ΕΞΙΣΩΣΕΩΝ

Έστω το σύστημα

$$f(x,y) = 0$$
$$g(x,y) = 0$$

αναπτύσσοντας σε σειρά Taylor γύρω από τη λύση, βρίσκουμε:

$$0 \cong f(x_{n+1}, y_{n+1}) = f(x_n + \varepsilon_n, y_n + \delta_n) \cong f(x_n, y_n) + \varepsilon_n \frac{\partial f}{\partial x} + \delta_n \frac{\partial f}{\partial y}$$
$$0 \cong g(x_{n+1}, y_{n+1}) = g(x_n + \varepsilon_n, y_n + \delta_n) \cong g(x_n, y_n) + \varepsilon_n \frac{\partial g}{\partial x} + \delta_n \frac{\partial g}{\partial y}$$

$$x_{n+1} = x_n - \frac{f \cdot g_y - g \cdot f_y}{f_x \cdot g_y - g_x \cdot f_y}$$
$$y_{n+1} = y_n - \frac{g \cdot f_x - f \cdot g_x}{f_x \cdot g_y - g_x \cdot f_y}$$

όπου έχουμε χρησιμοποιήσει το συμβολισμό $f_x = \partial f/\partial x$.

1.6.2 Μέθοδος τύπου x = g(x)

Έστω το σύστημα των N εξισώσεων

$$f_1(x_1, x_2, \dots, x_N) = 0$$

 $\vdots \quad \vdots \quad (1.50)$
 $f_N(x_1, x_2, \dots, x_N) = 0$

Εάν είναι δυνατόν το σύστημα να γραφεί στη μορφή:

$$x_1 = F_1(x_1, x_2, \dots, x_N)$$
...
$$x_N = F_N(x_1, x_2, \dots, x_N)$$
(1.51)

τότε μπορούμε να εφαρμόσουμε την μεθοδολογία που αναπτύχθηκε για τη μέθοδο x=g(x).

ΚΡΙΤΗΡΙΟ ΣΥΓΚΛΙΣΗΣ

$$\left| \frac{\partial f_1}{\partial x_1} \right| + \left| \frac{\partial f_1}{\partial x_2} \right| + \dots + \left| \frac{\partial f_1}{\partial x_N} \right| < 1$$

$$\vdots$$

$$\left| \frac{\partial f_N}{\partial x_1} \right| + \left| \frac{\partial f_N}{\partial x_2} \right| + \dots + \left| \frac{\partial f_N}{\partial x_N} \right| < 1$$

Εστω το σύστημα

$$x^2 + y^2 = 4$$
$$e^x - 3y = 1$$

Εστω το σύστημα

$$x^2 + y^2 = 4$$
$$e^x - 3y = 1$$

Το σύστημα μπορεί να γραφεί στη μορφή

$$x_{n+1} = -\sqrt{4 - y_n^2}$$
$$y_{n+1} = \frac{1}{3}(e^{x_n} - 1)$$

Εστω το σύστημα

$$x^2 + y^2 = 4$$
$$e^x - 3y = 1$$

Το σύστημα μπορεί να γραφεί στη μορφή

$$x_{n+1} = -\sqrt{4 - y_n^2}$$
$$y_{n+1} = \frac{1}{3}(e^{x_n} - 1)$$

1η μέθοδος

n	0	1	2	3	4	5
x	-1	-2	-1.9884	-1.9791	-1.9792	-1.9793
y	0	-0.2107	-0.2882	-0.2877	-0.2873	-0.2873

Εστω το σύστημα

$$x^2 + y^2 = 4$$
$$e^x - 3y = 1$$

Το σύστημα μπορεί να γραφεί στη μορφή

$$x_{n+1} = -\sqrt{4 - y_n^2}$$
$$y_{n+1} = \frac{1}{3}(e^{x_n} - 1)$$

1η μέθοδος

n	0	1	2	3	4	5
x	-1	-2	-1.9884	-1.9791	-1.9792	-1.9793
y	0	-0.2107	-0.2882	-0.2877	-0.2873	-0.2873

2η μέθοδος

n	0	1	2	3
\boldsymbol{x}	-1	-2	-1.9791	-1.9793
y	0	-0.2882	-0.2873	-0.2873