Линейная алгерба 1 из 11

1 Линейные операторы

1.1 Линейные операторы и их матричная запись, примеры.

$$\sphericalangle \varphi: X \to Y, X, Y - \Pi\Pi, \dim X = n, \dim Y = m$$

Определение. Отображение φ называется линейным, если

$$\forall x_1, x_2 \in X \quad \varphi(x_1 + x_2) = \varphi(x_1) + \varphi(x_2)$$

 $\forall \alpha \in K \quad \varphi(\alpha x) = \alpha \varphi(x)$

Определение. Отображение φ , обладающее свойством линейности называется линейным оператором (ЛОп)

Пример. • $\Theta: \Theta x = 0_Y$ — нулевой оператор

- $\mathcal{I}: \mathcal{I}x = x$ единичный (тождественный) оператор
- $X = L_1 \dotplus L_2 \stackrel{def}{\Leftrightarrow} \forall x \in X \ \exists ! x_1 \in L_1, x_2 \in L_2 : x = x_1 + x_2$ Проектор:

$$\mathcal{P}_{L_1}^{\parallel L_2}: X \to L_1 \quad \mathcal{P}_{L_1}^{\parallel L_2} x = x_1$$

$$\mathcal{P}_{L_2}^{\parallel L_1}: X \to L_2 \quad \mathcal{P}_{L_2}^{\parallel L_1} x = x_2$$

• $X = C^1[-1,1]$ — первая производная \exists и непрерывна

$$\forall f \in X \quad (\varphi f)(x) = \int_{-1}^{1} f(t)K(x,t)dt$$

K(x,t) — интегральное ядро, например x^2+tx

$$\{e_j\}_{j=1}^n$$
 — базис $X,\{h_k\}_{k=1}^m$ — базис $Y, \varphi(e_j) = \sum\limits_{k=1}^m a_j^k h_k$

Определение. Набор коэффициентов $||a_j^k||$ образует матрицу $m \times n$, которая называется матрицей ЛОп в паре базисов $\{e_j\}$ и $\{h_k\}$

1.2 Пространство линейных операторов.

$$\dim \mathcal{L}(X,Y) = \dim X \cdot \dim Y = m \cdot n$$

Линейная алгерба 2 из 11

1.3 Алгебра. Примеры. Изоморфизм алгебр.

Алгебра — модуль над коммутативным кольцом с единицей, являющийся кольцом. **Кольцо** — множество, на котором заданы бинарные операции + и \cdot с следующими свойствами:

1.
$$a + b = b + a$$

2.
$$a + (b + c) = (a + b) + c$$

3.
$$\exists 0 \in R : \forall x \in R : x + 0 = 0 + x = x$$

4.
$$\forall x \in R : \exists (-x) \in R : x + (-x) = (-x) + x = 0$$

5.
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

6.
$$a \cdot (b+c) = a \cdot b + a \cdot c$$

7.
$$(b+c) \cdot a = b \cdot a + c \cdot a$$

Коммутативное кольцо — кольцо с коммутативным умножением: $a\cdot b=b\cdot a$ Кольцо с единицей — кольцо с нейтральным элементом по умножению: $\exists 1\in R: a\cdot 1=a$ Модуль над кольцом (коммутативным, с единицей) R — множество M с операциями:

1.
$$+: M \times M \to M$$

(a)
$$a + b = b + a$$

(b)
$$a + (b+c) = (a+b) + c$$

(c)
$$\exists 0 \in R : \forall x \in R : x + 0 = 0 + x = x$$

(d)
$$\forall x \in R : \exists (-x) \in R : x + (-x) = (-x) + x = 0$$

$$2. \cdot : M \times R \to M$$

(a)
$$(r_1r_2)m = r_1(r_2m)$$

(b)
$$1m = m$$

(c)
$$r(m_1 + m_2) = rm_1 + rm_2$$

(d)
$$(r_1 + r_2)m = r_1m + r_2m$$

Примеры:

- 1. \mathbb{R}^3 с векторным произведением алгебра над \mathbb{R}
- 2. \mathbb{C} алгебра над \mathbb{R}
- 3. ℍ (кватернионы)
- 4. Многочлены

Изоморфизм алгебр — биекция $F:A\to B$, где A и B — алгебры, сохраняющая "+" и "·":

1.
$$F(kx) = kF(x)$$

2.
$$F(x+y) = F(x) + F(y)$$

3.
$$F(xy) = F(x)F(y)$$

Из этого следует, что $F(0_X) = 0_Y$

Линейная алгерба 3 из 11

1.4 Алгебра операторов и матриц.

Умножение ЛОП: $(\mathcal{B}\cdot\mathcal{A})x=\mathcal{B}(\mathcal{A}x)$ Умножение матриц: $(A\cdot B)_{ik}=\sum_i a_{ij}b_{jk}$

Теорема 1.

$$\underbrace{\mathcal{C}}_{C} = \underbrace{\mathcal{B}}_{B} \underbrace{\mathcal{A}}_{A} \Leftrightarrow C = BA$$

Доказательство.

$$Ce_i = \mathcal{B}(\mathcal{A}e_i) = \mathcal{B}\left(\sum_j a_{ji}e_j\right) = \sum_j a_{ji}\mathcal{B}e_j = \sum_j a_{ji}\sum_k b_{kj}e_k$$
$$c_{il} = (Ce_i)_l = \sum_j a_{ji}b_{lj} \Rightarrow C = BA$$

Пространство ЛОП $\mathcal{F}: X \to X$ — алгебра, пространство квадратных матриц \mathbb{R}^n_n — алгебра.

1.5 Обратная матрица: критерий обратимости, метод Гаусса вычисления обратной матрицы.

В алгебре A выполняется $a_1 \cdot a_2 = e$, где e — единичный элемент матрицы. Тогда:

- 1. a_1 **левый обратный** элемент для a_2
- 2. a_2 правый обратный элемент для a_1

Если a_1 — и левый, и правый обратный к a_2 , то он называется **обратным** элементом к a_2 .

Теорема 2. $\exists A^{-1} \Leftrightarrow \det A \neq 0$

Доказательство. "⇐"

$$\det A \neq 0 \stackrel{?}{\Rightarrow} \exists A^{-1} : AA^{-1} = E, A^{-1}A = E$$

$$\sum_{j} a_{ij} a_{jk}^{-1} = \delta_{ik}$$

Это система Крамера, т.к. $\det A=0 \stackrel{def}{\Longrightarrow}$ вектора $\in A$ ЛНЗ \Rightarrow единственное решение.

$$\left[\begin{array}{c|c}A & E\end{array}\right] \sim \left[\begin{array}{c|c}E & A^{-1}\end{array}\right]$$

Доказательство.

Здесь T_i — матрица элементарного преобразования.

1.6 Обратная матрица: критерий обратимости, вычисление обратной матрицы методом присоединенной матрицы.

Критерий обратимости: Дано выше. (1.5, стр. 3)

Теорема 3.

$$A^{-1} = \frac{1}{\det A} \tilde{A}^T$$

Доказательство. $AB=E\Rightarrow B=\frac{1}{\det A}\tilde{A}^T$ — надо доказать.

$$\sum_{j=1}^{n} \alpha_{j}^{i} \beta_{k}^{j} = \delta_{k}^{i}$$

$$]\delta_{k_{0}}^{i} = \begin{pmatrix} 0 & 0 & \dots & 0 & 1_{k_{0}} & 0 & \dots & 0 \end{pmatrix}^{T} = b$$

$$\beta_{k_{0}}^{j} = \xi^{j} \quad \alpha_{j}^{i} = a_{j}$$

$$\sum_{j=1}^{n} a_{j} \xi^{j} = b \quad \xi^{j} = \frac{\Delta_{j}}{\Delta}$$

$$\Delta_{j} = \det A(a_{j} \to b)$$

 $A(a_j \to b)$ — матрица A, где заменили j-тый вектор на b

$$\det A(a_j \to b) = 0 \cdot M_j^1 + \ldots + 1 \cdot M_j^k + \ldots + 0 = M_j^k$$
$$b_{jk} = \frac{(\tilde{A}^T)_k^j}{\det A} \Rightarrow B = \frac{\tilde{A}_k^j}{\det A}$$

1.7 Ядро и образ линейного оператора. Теорема о ядре и образе. Функции матриц и операторов.

$$\triangleleft \varphi: X \to Y$$

Определение. Ядро φ :

$$Ker \varphi = \{x \in X : \varphi x = 0\}$$

Примечание. $\operatorname{Ker} \varphi \subset X$

Лемма 1. $Ker \varphi - ЛП$

Определение. Образ φ :

$$\operatorname{Im} \varphi = \{ y \in Y : \exists x : \varphi(x) = y \}$$

Примечание.

$$\operatorname{Im} \varphi \subset Y$$

Лемма 2. $Im \varphi - Л\Pi$

Теорема 4. О ядре и образе

$$]\varphi:X\to X\Rightarrow \dim \operatorname{Ker}\varphi+\dim\operatorname{Im}\varphi=\dim X$$

Линейная алгерба 5 из 11

Доказательство.]
$$\dim \operatorname{Ker} \varphi = K$$
] $\{e_1 \dots e_k\}$ — базис $\operatorname{Ker} \varphi \Rightarrow \varphi(e_j) = 0 \ \forall j = 1...k$ $\sphericalangle \{e_1 \dots e_k; e_{k+1} \dots e_n\}$ — базис X $\sphericalangle x = \sum\limits_{j=1}^n \xi^j e_j \ \sphericalangle \varphi(x) = \sum\limits_{j=1}^n \xi^j \varphi(e_j) = \sum\limits_{j=k+1}^n \xi^j \varphi(e_j)$

 $\{\varphi(e_{k+1})\dots \varphi(e_n)\}$ — полный для Im , т.к. любой $x\in {\rm Im}\,$ можно по нему разложить. Докажем ЛНЗ от обратного:

$$]\{\varphi(e_j)\}_{j=k+1}^n - \text{II}3 \Rightarrow \exists \alpha^j : \sum_{j=k+1}^n \alpha^j \varphi(e_j) = 0 \Rightarrow \varphi\left(\sum_{j=k+1}^n \alpha^j e_j\right) = 0 \Rightarrow \emptyset$$

$$\begin{cases} \text{или } \sum_{j=k+1}^n \alpha^j e_j \in \operatorname{Ker} \varphi \Rightarrow \operatorname{ЛК} e_{k+1} \dots e_n \text{ разложима по } e_1 \dots e_k - \operatorname{противоречиe} \\ \text{или } \sum_{j=k+1}^n \alpha^j e_j = 0 \Rightarrow \alpha^j = 0 \Rightarrow \operatorname{ЛH3} \end{cases}$$

$$\Rightarrow \{ \varphi(e_j) \}_{j=k+1}^n$$
 — базис Іт φ .

1.8 Обратный оператор. Критерий существования обратного оператора.

Определение. Обратным к оператору φ называется оператор φ^{-1} :

$$\varphi^{-1}\varphi = \varphi\varphi^{-1} = \mathcal{I}$$

Теорема 5. Оператор φ обратим, если \exists базис, в котором его матрица невырождена

Теорема 6.
$$\lhd \varphi: X \to X$$
 $\exists \varphi^{-1} \Leftrightarrow \dim \operatorname{Im} \varphi = \dim X$ или $\dim \operatorname{Ker} \varphi = 0$

Доказательство. $\dim \operatorname{Im} \varphi = \dim X \Leftrightarrow \operatorname{Im} \varphi \simeq X \Rightarrow \varphi - \operatorname{сюръекция}, \dim \operatorname{Ker} \varphi = 0 \Rightarrow \forall y \;\; \exists x : \varphi x = y \Rightarrow \varphi -$ инъекция

2 Тензорная алгебра

2.1 Преобразование координат векторов X и X^* при замене базиса.

$$\sphericalangle\{e_j\}$$
 — базис X $\sphericalangle\{\tilde{e}_k\}$ — базис X^* $\Rightarrow \forall k \ \tilde{e}_k = \sum_{j=1}^n t_k^j e_j$

Определение. Набор $T=||t_j^i||$ образует матрицу, которая называется матрицей перехода от базиса $\{e_j\}$ к базису $\{\tilde{e}_k\}$

Примечание.
$$\triangleleft E = \begin{bmatrix} e_1 & e_2 & \dots & e_n \end{bmatrix}, \tilde{E} = \begin{bmatrix} \tilde{e}_1 & \tilde{e}_2 & \dots & \tilde{e}_n \end{bmatrix} \Rightarrow \tilde{E} = ET$$

Пемма 3. $]\xi$ — координаты вектора x в базисе $\{e_j\}$ $] ilde{\xi}$ — координаты вектора x в базисе $\{ ilde{e}_k\}$ Тогда $\xi=T ilde{\xi}$ или $ilde{\xi}=S\xi, S=T^{-1}$

Доказательство.
$$x = \sum_{k=1}^n \tilde{\xi}^k \tilde{e}_k = \sum_{k=1}^n \tilde{x}^k \sum_{j=1}^n t_k^j e_j = \sum_{j=1}^n (\sum_{k=1}^n \tilde{\xi}^k t_k^j) e_j = \sum_{j=1}^n \xi^j e_j \Rightarrow \xi = T\tilde{\xi}$$

Линейная алгерба 6 из 11

Пемма 4.]
$$\{f^l\}$$
 — базис X^* , сопряженный $\{e_j\}$, m.e. $f^l(e_j) = \delta^l_j$] $\{\tilde{f}^m\}$ — базис X^* , сопряженный $\{\tilde{e}_k\}$, m.e. $\tilde{f}^m(\tilde{e}_k) = \delta^k_m$] $F = \begin{bmatrix} f^1 & f^2 & \dots & f^n \end{bmatrix}^T$, $\tilde{F} = \begin{bmatrix} \tilde{f}^1 & \tilde{f}^2 & \dots & \tilde{f}^n \end{bmatrix}^T$ Тогда $F = T\tilde{F}$ или $f^l = \sum_{m=1}^n t^l_m \tilde{f}^m$

Доказательство.
$$\sphericalangle(\tilde{f}^m, \tilde{e}_k) = \delta_k^m = (\tilde{f}^m, \sum_{j=1}^n t_k^j e_j) = \sum_{j=1}^n t_k^j (\tilde{f}^m, e_j) = \sum_{j=1}^n t_k^j \sum_{l=1}^n a_l^m (f^l, e_j) = \sum_{j=1}^n t_k^j a_j^m$$
 $\Rightarrow \sum_{j=1}^n a_j^m t_k^j = \delta_k^m$ или $AT = I$ — единичная матрица $\Rightarrow A = T^{-1}$

Пемма 5.]
$$\varphi$$
 — коэфф. Л Φ в $\{e_j\}$] $\tilde{\varphi}$ — коэфф. Л Φ в $\{\tilde{e}_k\}$ \Rightarrow $\tilde{\varphi}=\varphi T$

Доказательство. $]g- \mathrm{Л}\Phi,\, \varphi_j=g(e_j)\quad \tilde{\varphi}_k=g(\tilde{e}_k)$

$$\varphi_k = g(\tilde{e}_k) = g\left(\sum_{j=1}^n t_k^j e_j\right) = \sum_{j=1}^n t_k^j g(e_j) = \sum_{j=1}^n t_k^j \varphi_j$$

$$\Rightarrow \tilde{\varphi} = \varphi T$$

Итого:

$$\tilde{E} = ET \quad \tilde{F} = T^{-1}F \quad \tilde{\xi} = T^{-1}\xi \quad \tilde{\varphi} = \varphi T$$

2.2 Преобразование матрицы линейного оператора при замене базиса. Преобразование подобия.

$$\overline{A}\overline{x} = \overline{y} \Rightarrow Ax = y = \mathcal{Y}^{-1}\overline{y} = \mathcal{Y}^{-1}\overline{A}\overline{x} = \mathcal{Y}^{-1}\overline{A}\mathcal{X}x$$

$$\forall x \quad Ax = \mathcal{Y}^{-1}\overline{A}\mathcal{X}x \Leftrightarrow A = \mathcal{Y}^{-1}\overline{A}\mathcal{X}$$

2.3 Тензоры *(ковариантность, независимое от ПЛФ определение).* Пространство тензоров.

Определение. Величины, которые преобразуются при замене базиса так же, как базисные векторы, называются ковариантными величинами.

Величины, которые преобразуются при замене базиса противоположным базисным векторам образом, называются контравариантными величинами.

Примечание. ξ — контрвариантная величина. Верхний индекс называется контравариантным, нижний — ковариантным.

Линейная алгерба 7 из 11

$$\{e_j\} \xrightarrow{T} \{\tilde{e}_k\} \quad \{f^l\} \xrightarrow{T^{-1}} \{\tilde{f}^m\}$$

Пусть в паре базисов $\{\tilde{e}_k\}$ и $\{\tilde{f}^m\}$ ПЛФ W имеет тензор $\tilde{w}_{s_1\dots s_p}^{t_1\dots t_q}=W(\tilde{e}_{s_1}\dots \tilde{e}_{s_p},\tilde{f}^{t_1}\dots \tilde{f}^{t_q})=0$

Определение. 1. Вектором называется величина, преобразующаяся по контравариантному закону

- 2. Линейной формой называется величина, преобразующаяся по ковариантному закону
- 3. **Тензором** типа (p,q) называется величина, преобразующаяся p раз по ковариантному закону и q раз по контравариантному.
- Сложение тензоров и умножение тензора на скаляр поэлементное
- Нулевой элемент по сложению тензор, принимающий значение 0 на любом входе
- Очевидно $w + \alpha v$ тензор того же типа, что и $w \Rightarrow$ тензоры образуют линейное пространство $T_q^p, \dim T_q^p = p + q$

Свертка тензора. 2.4

Свертка:

$$\omega_{i_1...i_n}^{k \wedge s^{j_1...j_n}} = \sum_{m=1}^n \omega_{i_1...n,m...i_p}^{j_1...n}$$

Примечание. Операцию свертки можно выполнять только по индексам разных типов

Лемма 6. Свертка сохраняет тензорную природу

Лемма 7.

$$\overset{l \wedge m}{k \wedge s} \overset{k \wedge s}{\underset{\omega}{| \wedge m}}$$

Доказательство. От перестановки мест слагаемых конечная сумма не меняется.

2.5 Транспонирование тензора.

Транспонирование
$$t^{(st)}:\omega_{i_1\dots i_p}^{j_1\dots j_s\dots j_t\dots j_q}\mapsto\omega_{i_1\dots i_p}^{j_1\dots j_s\dots j_q}$$

Примечание. Транспонировать можно только по индексам одного типа

Лемма 8. Транспонирование сохраняет тензорную природу величины.

Линейная алгерба 8 из 11

2.6 Определитель линейного оператора. Внешняя степень оператора.

$$\sphericalangle \Lambda^p \quad \{^{i_1...i_p}F\}_{1 \leq i_1 < i_2 < ... < i_p \leq n}$$
 — базис Λ^p

$$^{i_1...i_p}F = f^{i_1} \wedge f^{i_2} \wedge \ldots \wedge f^{i_p} \quad \dim \Lambda^p = C_n^p$$

 $]\{x_i\}_{i=1}^n$ — набор векторов

$$\det\{x_1 \dots x_n\} := {}^{1 \dots n} F(x_1 \dots x_n)$$

$$\sphericalangle \Lambda_p \quad \{_{i_1...i_p}F\})_{1 \leq i_1 < i_2 < ... < i_p \leq n}$$
 — базис Λ_p

$$\dim \Lambda_p = C_n^p \quad _{i_1 \dots i_p} F = \hat{x}_{i_1} \wedge \hat{x}_{i_2} \wedge \dots \wedge \hat{x}_{i_p} \simeq x_1 \wedge x_2 \wedge \dots \wedge x_n$$

$$]\{e_j\}_{j=1}^n$$
 — базис $X\Rightarrow x_i=\xi_i^{j_i}e_{j_i}$

$${}_{1\dots n}F = \xi_1^{j_1}\xi_2^{j_2}\dots\xi_n^{j_n}(e_{j_1}\wedge e_{j_2}\wedge\dots\wedge e_{j_n}) = \sum_{(j_1\dots j_n)} (-1)^{[j_1\dots j_n]}\xi_{j_1}^1\dots\xi_{j_n}^n(e_1\wedge e_2\wedge\dots\wedge e_n) =$$

$$= \det[\xi_{j_1}^1 \dots \xi_{j_n}^n] (e_1 \wedge e_2 \wedge \dots \wedge e_n)$$

Определение. Определителем набора векторов $\{x_i\}_{i=1}^n$ называется число $\det[x_1 \dots x_n]$, такое, что:

$$x_1 \wedge x_2 \wedge \ldots \wedge x_n = \det[x_1 \ldots x_n] e_1 \wedge e_2 \wedge \ldots \wedge e_n$$

Лемма 9.

om
$$\Lambda^p \det\{x_1 \dots x_n\} = \det[x_1 \dots x_n]$$
 om Λ_p

Доказательство.

$$\det\{x_1 \dots x_n\} = {}^{1 \dots n} F(x_1 \dots x_n) = \sum_{(j_1 \dots j_n)} (-1)^{[j_1 \dots j_n]} \xi_1^{j_1} \xi_2^{j_2} \dots \xi_n^{j_n} e_1 \wedge e_2 \wedge \dots \wedge e_n =$$

$$= \det\{x_1 \dots x_n\} e_1 \wedge e_2 \wedge \dots \wedge e_n$$

$$= \det[x_1 \dots x_n] e_1 \wedge e_2 \wedge \dots \wedge e_n$$

Определение. $\sphericalangle \varphi: X \to X$

Внешней степенью φ^{Λ_p} оператора φ называется отображение:

$$\varphi^{\Lambda_p}(x_1 \wedge x_2 \wedge \ldots \wedge x_n) = \varphi(x_1) \wedge \ldots \wedge \varphi(x_p)$$

Примечание.

$$\varphi^{\Lambda_p}:\Lambda_p\to\Lambda_p$$

 $\triangleleft p = n$

$$\varphi^{\Lambda_n}(e_1 \wedge e_2 \wedge \ldots \wedge e_n) = \varphi(e_1) \wedge \varphi(e_2) \wedge \ldots \wedge \varphi(e_n) = a_1^{j_1} e_{j_1} \wedge \ldots \wedge a_1^{j_n} e_{j_n} =$$

$$= a_1^{j_1} \dots a_n^{j_n}(e_{j_1} \wedge \ldots \wedge e_{j_n}) = \sum_{(j_1 \dots j_n)} (-1)^{[j_1 \dots j_n]} a_{j_1}^1 a_{j_2}^2 \dots a_{j_n}^n e_1 \wedge \ldots \wedge e_n = \det A_{\varphi} e_1 \wedge \ldots \wedge e_n$$

Определение. **Определителем** линейного оператора φ называется число, такое что:

$$\det \varphi = \det[\varphi(e_1) \wedge \ldots \wedge \varphi(e_n)] = \det A_{\varphi} e_1 \wedge \ldots \wedge e_n$$

Примечание.

$$\forall \omega \in \Lambda_n \quad \varphi^{\Lambda_n} \omega = \det \varphi \cdot \omega$$

$$\omega \in \Lambda_n \Rightarrow \omega = \alpha e_1 \wedge \ldots \wedge e_n$$

$$\varphi^{\Lambda_n} \omega = \alpha \varphi^{\Lambda_n} (e_1 \wedge \ldots \wedge e_n) = \alpha \det \varphi e_1 \wedge \ldots \wedge e_n = \det \varphi \cdot \omega$$

M3137y2019

Линейная алгерба 9 из 11

2.7 Независимость определителя оператора от базиса. Теорема умножения определителей.

Пример. $\det \varphi$ — инвариант

$$\varphi^{\Lambda_n}z=\det\varphi\cdot z\quad\forall z\in\Lambda_n$$

$$\det\varphi=\det A_\varphi-\text{ в некотором фиксированном базисе}$$

$$\tilde{A}_\varphi=T^{-1}A_\varphi T\quad\det\tilde{A}_\varphi=\det T^{-1}\det A_\varphi\det T=\det A_\varphi$$

Теорема 7.

$$\det(\varphi\psi) = \det\varphi\det\psi$$

Доказательство.

3 Спектральный анализ линейных операторов в конечномерных пространствах

3.1 Инварианты линейного оператора. Инвариантные подпространства.

Определение. **Инвариантном** линейного оператора φ называется его числовая функция значений, которая не зависит от выбора базиса

$$\sphericalangle \varphi: X \to X$$
 — автоморфизм

Определение. Подпространство L линейного пространства X называется инвариантным подпространством φ , если

$$\forall x \in L \quad \varphi x \in L$$

Пример. 1. $\varphi:X \to X$, тогда инвариантные подпрострнаства:

- X
- {0}
- 2. $\varphi = \Im$, $\forall x \ \Im x = x \Rightarrow$ любое подпространство X инвариантное
- 3. $\varphi = \Theta$, $\forall x \; \Theta x = 0 \Rightarrow$ любое подпространство X инвариантное

4.
$$\varphi: \mathbb{R}^n \to \mathbb{R}^n \Leftrightarrow A_{\varphi} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & \lambda_n \end{bmatrix} \stackrel{\triangle}{=} diag\{\lambda_1 \dots \lambda_n\}$$

$$\sphericalangle\{e_j\}$$
 — базис $X\Rightarrow \forall j\quad A_{\varphi}e_j=\lambda_je_j\quad e_j o \mathcal{L}\{e_j\}$ — инв.

Всего 2^n инвариантных подпространств

5.
$$]X = L_1 \dot{+} L_2$$

$$\forall x! = x_1 + x_2 \quad \varphi x = \mathcal{P}_{L_1}^{\parallel L_2} x = x_1 \in L_1$$

 L_1 — инв., $\forall x \in L_1 \quad \mathcal{P}_{L_1}^{\parallel L_2} x = x \quad orall$ подпространство L_1 инвариантно

 L_2- инв., $\forall x\in L_2\quad \mathcal{P}_{L_1}^{\parallel L_2}x=0\quad orall$ подпространство L_2 инвариантно

Линейная алгерба 10 из 11

3.2 Собственные векторы и собственные значения линейного оператора: основные определения и свойства.

$$\varphi: X \to X$$

Определение. $x \in X$ — собственный вектор φ , если

$$x \neq 0 \quad \varphi x = \lambda x, \quad \lambda \in K$$

 λ — собственное значение φ , соответствующее x

Определение. Спектр $\sigma_{\varphi} = \{\lambda_1 \dots \lambda_n\}$ — множество всех собственных значений вектора

Определение. $x \in X$ — собственный вектор φ , если этот вектор ненулевой и принадлежит одномерному инвариантному подпространству: $x \neq 0, x \in L^{(1)}$

Пемма 10. Эти определения собственного вектора эквивалентны.

Доказательство. Опр. $1 \Rightarrow \text{Опр. } 2$:

$$\triangleleft x : \varphi x = \lambda x, L^{(1)} = \mathcal{L}(x)$$

$$\forall y \in L^{(1)} \quad y = \beta x \Rightarrow \varphi y = \varphi \beta x = \beta \varphi x = \beta \lambda x$$

Опр. $2 \Rightarrow$ Опр. 1:

$$\sphericalangle x \in L^{(1)} = \mathcal{L}v \xrightarrow{def} \varphi x \in L^{(1)}$$

$$\forall y \in L^{(1)} \quad y = \alpha v \quad \varphi y = \alpha \varphi v = \beta v$$

Пемма 11. Собственные векторы, отвечающие различным собственным значениям линейно независимы:

$$\lambda_i \to x_i, \lambda_i \neq \lambda_{j \neq i} \Rightarrow \{x_i\}$$
 ЛНЗ

Доказательство. По индукции:

База: $m=1\Rightarrow \{x_1\}$ ЛНЗ, т.к. $x_1\neq 0$

Переход: $\{x_i\}_{i=1}^m$ — ЛНЗ, тогда $\sum \alpha_i x_i = 0 \Rightarrow \alpha_i = 0 \ \forall i$

$$\triangleleft \{\alpha_i\} : \sum_{i=1}^{n+1} \alpha_i x_i = 0$$

$$0 = A0 = A\left(\sum_{i=1}^{n+1} \alpha_i x_i\right) = \sum_{i=1}^{n+1} \alpha_i x_i$$
$$0 = \lambda_{n+1} \left(\sum_{i=1}^{n+1} \alpha_i x_i\right)$$

Вычтем второе выражение из первого:

$$0 = \sum_{i=1}^{n+1} \alpha_i x_i (\lambda_{n+1} - \lambda_i) = \sum_{i=1}^{n} \alpha_i x_i (\lambda_{n+1} - \lambda_i) + 0$$

Т.к. $\{x_i\}_{i=1}^n$ ЛНЗ, $\forall i \in [1, n] \ \alpha_i = 0$

$$0 = \alpha_{n+1} x_{n+1}, x_{n+1} \neq 0 \Rightarrow \alpha_{n+1} = 0$$

Пемма 12. Линейный оператор в конечномерном пространстве не может иметь более n различных собственных значений.

Доказательство. Тривиально в силу ЛНЗ соответствующих векторов.

M3137y2019

Линейная алгерба 11 из 11

3.3 Собственные векторы и собственные значения линейного оператора: существование, вычисление.

Вычислим СВ и СЗ.

$$x = \sum \xi^{i} e_{i} \quad \xi = (\xi^{1} \quad \dots \quad \xi^{n})^{T} \quad \mathcal{A} \leftrightarrow A = ||a_{j}^{i}||$$
$$\mathcal{A}x = \lambda x \Leftrightarrow A\xi = \lambda \xi \Leftrightarrow A\xi - \lambda E\xi = 0$$

Таким образом, задача нахождения СЗ сводится к нахождению λ , для которых существуют нетривиальные решения СЛАУ $A-\lambda E$, что эквивалентно нахождению корней характеристического полинома $\chi_{\mathcal{A}}(\lambda)=\det(A-\lambda E)$

Нахождение CB \Leftrightarrow нахождение нетривиальных решений СЛАУ $A-\lambda E$ для каждого C3 λ

Пемма 13. $\triangleleft A: X \to X, X - III$ над \mathbb{C} , тогда у A существует по крайней мере один собственный вектор и одно собственное значение.

Доказательство. У любого многочлена есть хотя бы один корень $\in \mathbb{C}$.

- 3.4 Спектральный анализ линейного оператора с простым спектром: спектр, диагональный вид матрицы, спектральные проекторы, спектральная теорема.
- 3.5 Спектральный анализ скалярного оператора: спектр, диагональный вид матрицы, спектральные проекторы, спектральная теорема.
- 3.6 Спектральная теорема и функциональное исчисление для скалярного оператора.
- 3.7 Спектральная теорема и инварианты скалярного оператора. Тождество Кэли.
- 4 Спектральный анализ линейных операторов в конечномерном пространстве: операторы общего вида