RESEARCH

Substructure-based Neural Machine Translation for Retrosynthetic Prediction

Umit V. Ucak¹, Taek Kang², Junsu Ko^{3*} and Juyong Lee^{1*}

*Correspondence: junsuko@arontier.co; juyong.lee@kangwon.ac.kr ³Arontier co., Seoul, South Korea ¹Division of Chemistry and Biochemistry, Department of Chemistry, Kangwon National University, Chuncheon, South Korea Full list of author information is

available at the end of the article

Abstract

Keywords: retrosynthesis planning; machine neural translation; seq-to-seq; attention

Additional Files as Figures.

Please find the supporting materials as **figures** within the "Additional Files" section of the BMC article.

Ucak et al. Page 2 of 2

Author details

 1 Division of Chemistry and Biochemistry, Department of Chemistry, Kangwon National University, Chuncheon, South Korea. 2 Center for Neuro-Medicine, Korea Institute of Science and Technology, Seoul, South Korea. 3 Arontier co., Seoul, South Korea.

References

Additional Files

Additional File 3 : Figure S2

 $\textbf{File name}: \mathsf{Supplementary} \ \mathsf{Figure} \ \mathsf{S2}$

Title of data: 1-bit keys

 $\begin{tabular}{ll} \textbf{File format:} Standard \begin{tabular}{ll} Latex figure, formatted as PNG. \end{tabular}$

Description of data: Examples to molecules that are represented with only one bit.

Lettered : MACCS : SMARTS Key Key Pattern	SMARTS Visual	Corresponding Molecules (SMILES)
'Wz': '17': '[#6]#[#6]'	c === c	'C#C', '[C-]#[C-]', 'C#CBr'
'Mx' : '88' : '[#16]'	S	'S', '[S-2]', '[SH-]'
'dz' : '99' : '[#6] = [#6]'	c — c	'FC=C[SnH3]', 'BrC=CBr', 'Cl/C=C\\Cl'
'ox' : '106' : '[!#6;!#1] $\sim *(\sim [!\#6;!\#1]) \sim [!\#6;!\#1]$ '	0	'ClC(Cl)Cl', 'BrC(Br)Br', 'FC(F)Cl', 'FC(Cl)Cl', '[SiH3]C(Cl)Cl', 'IC(I)I'
$"ix":"124":"[!\#6;!\#1] \sim [!\#6;!\#1]"$	()	'ClCl', 'BrBr', 'II', 'FF', '[Se-][Se-]', 'ClI', 'BrI', 'ClBr'
's' : '160' : '[C;H3,H4]'	C — H 3,4	'C', 'CC(Cl)Cl', 'CC(Br)Br', 'CC(F)Br', 'CC(Cl)Br'
't':'164':'[#8]'	0	'[O-2]'

Figure S2: Molecules that are represented with only one bit in the double reactant dataset are given as SMILES strings.