

CAMPUS COLATINA

Grafos

Prof. Victorio Albani de Carvalho

Definição

Grafo – Um grafo G é definido por G = (V,E), sendo que V representa o conjunto de nós e E, o conjunto de arestas (i, j), onde i, j ϵ V .

A Figura mostra dois exemplos de grafos:

- O grafo G1 consiste dos conjuntos V = {a, b, c, d, e} e E
 = {e1, e2, e3, e4, e5, e6};
- O grafo G2 possui 1 nó que não é conectado com nenhum outro nó do grafo.

Dois nós i, j são **vizinhos (ou adjacentes)**, denotado por i j, se eles estão conectados por uma aresta.

Ordem: número de vértices do grafo

Grau de um vértice: Número de arestas incidentes no vértice.

Grau de emissão e de recepção

Sumidouro: vértice de grau zero

Laço: aresta que relaciona um vértice a ele próprio

Grafo Orientado

Um grafo é dito orientado, ou dígrafro, quando é estabelecido um sentido (orientação) para as arestas.

Complemento Grafo

O complemento de um grafo G, representado por G, é o grafo com o mesmo conjunto de vértices de G e tal que i j em G se eles não forem vizinhos em G.

Grafo Completo

Se todos os vértices de G são mutuamente adjacentes, o grafo é dito completo

Grafo Regular

Grafo Regular: onde todos os vértices possuem mesmo grau (grau = número de arestas incidentes no vértice)

Cadeia: Sequência qualquer de arestas ligando dois vértices (independente do sentido).

Cadeia Simples: Cadeia que não passa duas vezes pela mesma aresta.

Cadeia elementar: Cadeia que não passa duas vezes pelo mesmo vértice.

Cadeia fechada: Cadeia na qual o vértice inicial é também o vértice final.

Ciclo: Cadeia simples e fechada.

Caminho: Cadeia na qual todos as arestas tem mesma orientação (só para grafos onrientados).

Circuito: Caminho simples e fechado

Grafo Conexo: Existe ao menos uma cadeia ligando cada par de vértices

Grafo Desconexo: Há ao menos um par de vértices não ligados por nenhuma cadeia

Grafo Euleriano: Possui um ciclo que visita cada aresta apenas 1 vez. Esse ciclo é chamado ciclo Euleriano.

Teorema: Um grafo é Euleriano se e somente se é conexo e cada vértice tem grau par.

Grafo Hamiltoniano: Grafo que possui um ciclo que visita cada vértice apenas uma vez (ciclo Hamiltoniano)

Problema do Caixeiro Viajante

Grafo Ponderado

Em um grafo ponderado, um peso ou conjunto de pesos é associado a cada aresta, representado da forma w(i, j).

Grafo Simples: Sem direcionamento, sem laços e sem arestas paralelas

Não Simples

Simples

Representação Computacional de Grafos

Uma das formas mais utilizadas para representar grafos.

 Seja A = [a_{ij}] uma matriz n × n, onde n é o numero de nós de um grafo G = (V,E) qualquer. A matriz de adjacência A é construída da seguinte forma

CAMPUS COLATINA

$$A(i,j) = \begin{cases} 1 & \text{se } i \sim j \\ 0 & \text{caso contrário} \end{cases}$$

- CAMPUS COLATINA
 - Quando o grafo é ponderado, a representação só fica completa quando também se indica a sua matriz de pesos, construída de maneira semelhante á matriz de adjacência (troca-se os uns pelos pesos).
 - Em grafos não orientados serão geradas matrizes iguais a suas transpostas (os elementos abaixo da diagonal principal são desncessários).

CAMPUS COLATINA

 Para dígrafos (grafos dirigidos), é preciso observar o sentido do caminho entre os nós

CAMPUS COLATINA

A matriz de incidência $B = [b_{ij}]$ de um grafo G = (V,E), com $V = (v_1, v_2, ..., v_n)$ e $E = (e_1, e_2, ..., e_m)$, é definida da seguinte forma:

$$B(i,j) = \begin{cases} 1 & \text{se } v_i \in e_j \\ 0 & \text{caso contrário} \end{cases}$$

Não direcionada

(e1	e2	e3	e4	e5	еб	e7	e8 \
	V1	2	1	1	0	0	0	0	0
	V2	0	1	1	1	0	1	1	0
	V3	0	0	0	1	1	0	0	0
	V4	0	0	0	0	0	0	1	2
	V5	0	0	0	0	1	1	0	0

- Se G é um dígrafo, então b_{ij} = +1 se v_i está no início da seta e b_{ij} = −1, caso v_i esteja na cabeça da seta.
- Para grafos ponderados, vale também a mesma observação no que diz respeito á escolha de sinais para representar os arcos e seus pesos.

Direcionada

Representação Computacional de Grafos Listas de adjacência

CAMPUS COLATINA

 Tanto a matriz de adjacência como a matriz de incidência são representações que consomem muito espaço de memória, principalmente se o grafo representado é um grafo relativamente esparso. Uma estrutura mais conveniente e econômica é a lista de adjacência.

Representação Computacional de Grafos Listas de adjacência

CAMPUS COLATINA

 No caso direcionado, a representação mediante listas de adjacência pode ser realizada considerando o nós sucessores ou antecessores. No primeiro caso, a estrutura é denominada de "lista forward". No outro caso a estrutura é denominada de "lista backward".

Representação Computacional de Grafos Listas de adjacência

CAMPUS COLATINA

Representação Computacional de Grafos Listas de Arestas (Arcos)

CAMPUS COLATINA

 Outra representação útil no caso de grafos esparsos é aquela denominada listas de arestas (arcos).

Representação Computacional de Grafos Estrela

- A estrela é uma estrutura com dois componentes:
 - i) na primeira componente temos uma entrada para cada vértice e um ponteiro para uma posição na segunda componente que contém a lista de adjacências;
 - ii) a segunda componente compreende as listas de adjacências de todos os vértices.
- A estrutura é mais difícil de atualizar que as listas de adjacência simples.
- Explora melhor a "esparsidade" do grafo e ocupa menos espaço que outras estruturas de dados.
- Bastante útil em algoritmos que buscam arcos específicos a partir de um nó.

Representação Computacional de Grafos Estrela

CAMPUS COLATINA

Próximos Passos

- Responder ao questionário no AVA
- Começar a tentar implementar uma estrutura de armazenamento de grafos