Day 14 - Properties of the Entropy (cont.)

Elements of Information Theory

Important inequalities for entropy

1. For a random variable X which takes only k values we always have

$$H(X) \leq \log_2(k)$$

Here,
$$\log_2(\cdot)$$
 is a concave for.

$$H(X) = \sum_{\substack{\text{all ordeones} \\ \text{a}}} P(X=\alpha) \cdot \log_2\left(\frac{1}{P(X=\alpha)}\right)$$

$$\leq \log_2\left(\sum_{\substack{\text{a} \\ \text{a}}} P(X=\alpha) \cdot \frac{1}{P(X=\alpha)}\right) = \log_2\left(\frac{1}{R}\right)$$
total # of automes for X

2. For any two random variables X and Y we always have

$$H(X|Y) \le H(X)$$

and equality holds if and only if X and Y are independent

Meaning the info we gain from learning
$$X$$
 after we know Y is less than the amount of information we would gain from learning X if we did not know Y

$$H(X|Y) = \sum_{b} P(Y=b) H(X|Y=b) = \sum_{b} P(X=b) \sum_{a} P(X=b) \sum_{a} P(X=a|Y=b)$$

$$= \sum_{b} P(X=a) \sum_{a} P(X=a \cap Y=b) \cdot \log_2 \left(\frac{1}{P(X=a|Y=b)}\right) = \frac{P(Y=b)}{P(X=a)} = \frac{P(Y=$$

Here,
$$\frac{P(Y=b|X=a)}{P(X=a|Y=b)}$$

$$= \frac{P(Y=b|X=a)}{P(X=a)} \cdot \frac{P(Y=b)}{P(X=a|Y=b)}$$

$$= \frac{P(Y=b)}{P(X=a)}$$
So
$$= \frac{P(Y=b|X=a)}{P(X=a|Y=b)} = \sum_{b} \frac{P(Y=b)}{P(X=a)}$$

$$= \frac{P(X=a|Y=b)}{P(X=a)} = \sum_{b} \frac{P(X=b)}{P(X=a)}$$

3. For any two random variables X and Y we always have

$$H(X,Y) \le H(X) + H(Y)$$

$$H(x,y) = H(x) + H(y|x) \leqslant H(x) + H(y)$$

1

2nd inequality

3

Entropy of English

Below is the frequency table for the letters in a sample writing of about 1000 English letters (the Emancipation Proclamation):

$ \frac{\text{frequency:} 73 9 30 44 130 28 16 35 74 2 3 35 25 }{ \frac{\text{n}}{78} 74 27 3 77 63 93 27 13 16 5 19 1 } $	I	letter:	:	a	ь	С	d	е		f	g	h	i	T	j l		1	m	Here	٠,	
78 74 27 3 77 63 93 27 13 16 5 19 1		frequenc	cy:	73	9	30	44	13	0 2	8	16	35	74		2 3	3 3	35	25	Prob	_	greq.
		7	n 78	o 74	p 27	q 3	ı,	8 63	93	27	1 1		-	^	1/	z 1	}		1.50	_	total # of

The entropy of English is given by

of English is given by
$$H(X) = \sum_{\alpha=A}^{Z} \mathbb{P}[X = \alpha] \cdot \log_{2} \left(\frac{1}{\mathbb{P}[X = \alpha]}\right) = \frac{73}{1000}$$

$$= \mathbb{P}(A) \cdot \log_{2} \left(\frac{1}{\mathbb{P}(A)}\right) + \mathbb{P}(B) \cdot \log_{2} \left(\frac{1}{\mathbb{P}(B)}\right) + \dots + \mathbb{P}(2) \cdot \log_{2} \left(\frac{1}{\mathbb{P}(2)}\right)$$

$$= 0.073 \cdot \log_{2} \left(\frac{1}{0.073}\right) + 0.009 \cdot \log_{2} \left(\frac{1}{0.003}\right)$$

$$+ \dots + 0.001 \cdot \log_{2} \left(\frac{1}{0.001}\right)$$

Entropy of English = 4.1621 bils to stone a letter in English, on average

Morse code is not a comme- pree code!

$$A = 000$$
 $E = 1100$ $B = 001$ $F = 1101$ $C = 01$ $G = 111$ $D = 10$

 $\underline{\text{Question:}}$ Given the letter frequencies of a file, which tree will require the ast amount of bits? \Rightarrow The Huffman code.
The following algorithm gives the optimal tree:

- Replace each letter by a node/vertex and label these nodes based on the frequency of each letter. Then sort the nodes by their values in increasing order when reading from left to right
- 2. Starting from left to right, group the two smallest numbers together and replace them by their sum.
- 3. Sort the resulting nodes by their values again. Then repeat these steps until all the nodes are connected.
- 4. Once we obtain the binary tree, replace the vertex numbers with corresponding letters. Then we label the branches with 0 to the left and 1 to the right.
- 5. Lastly, we trace along the paths to obtain the code for each letter.

To decrypt: . Start from the root and trace through the branches according to the bits in the code word. If we his a leap, remove
the segment, replace w/
the leap label.
Restart from the root

