The TOP-SCOPE survey of PGCCs: PMO and SCUBA-2 observations of 64 PGCCs in the 2nd Galactic Quadrant

Chuan-Peng Zhang^{1,2,*}, Tie Liu^{3,4}, Jinghua Yuan¹, Patricio Sanhueza⁵, Alessio Traficante⁶, Guang-Xing Li⁷, Di Li¹, Ken'ichi Tatematsu⁵, Ke Wang⁸, Chang Won Lee^{9,10}, Manash R. Samal¹¹, David Eden¹², Anthony Marston¹³, Xiao-Lan Liu¹, Jian-Jun Zhou¹⁴, Pak Shing Li¹⁵, Patrick M. Koch¹⁶, Jin-Long Xu¹, Yuefang Wu¹⁷, Mika Juvela¹⁸, Tianwei Zhang¹⁷, Dana Alina¹⁹, Paul F. Goldsmith²⁰, L. V. Tóth²¹, Jun-Jie Wang¹, Kee-Tae Kim³

ABSTRACT

In order to understand the initial conditions and early evolution of star formation in a wide range of Galactic environments, we carried out an investigation of 64 Planck Galactic Cold Clumps (PGCCs) in the second quadrant of the Milky Way. Using the 13 CO and 18 O $_{2}$ = 1 – 0 lines, and 850 μ m continuum observations, we investigated cloud fragmentation and evolution associated with star formation. We extracted 468 clumps and 117 cores from the 13 CO line and 850 μ m continuum maps, respectively. We make use of the Bayesian Distance Calculator and derived the distances of all 64 PGCCs. We found that in general, the mass-size plane follows a relation of $m \sim r^{1.67}$. At a given scale, the masses of our objects are around 1/10 of that of typical Galactic massive star-forming regions. Analysis of the clump and core masses, virial parameters, densities, and mass-size relation suggests that the PGCCs in our sample have a low core formation efficiency (\sim 3.0%), and most PGCCs are likely low-mass star-forming candidates.

^{*}Email: cpzhang@nao.cas.cn

 $^{^1}$ National Astronomical Observatories, Chinese Academy of Sciences, 100012 Beijing, PR China

²Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany

³Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Korea

 $^{^4\}mathrm{East}$ Asian Observatory, 660 N. A'ohōkū Place, Hilo, Hawaii 96720-2700, USA

 $^{^5 \}rm National$ Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

⁶IAPS - INAF, via Fosso del Cavaliere, 100, I-00133 Roma, Italy

⁷University Observatory Munich, Scheinerstrasse 1, D-81679 Munich, Germany

 $^{^8\}mathrm{European}$ Southern Observatory, Karl-Schwarzschild-Str.2, D-85748 Garching bei München, Germany

 $^{^9}$ Korea Astronomy & Space Science Institute (KASI), 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348, Republic of Korea

 $^{^{10} \}rm University$ of Science & Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea

 $^{^{11}}$ Graduate Institute of Astronomy, National Central University 300, Jhongli City, Taoyuan County 32001, Taiwan

 $^{^{12} \}mathrm{Astrophysics}$ Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, UK

¹³ESA/STScI, 3700 San Martin Dr, Baltimore, MD 21218, USA

¹⁴Xinjiang Astronomical Observatory, CAS, 150, Science 1-street, 830011 Urumqi, PR China

¹⁵Astronomy Department, University of California, Berkeley, CA 94720, USA

¹⁶ Academia Sinica, Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan

¹⁷Department of Astronomy, Peking University, 100871 Beijing, PR China

 $^{^{18}\}mbox{Department}$ of Physics, P.O.Box 64, FI-00014, University of Helsinki, Finland

¹⁹Physics Department, Nazarbayev University, Kabanbay batyr avenue 53, 010000 Astana, Kazakhstan

²⁰ Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

²¹Loránd Eötvös University, Department of Astronomy, Pázmány P.s. 1/a, H-1117 Budapest, Hungary

Statistical study indicates that the $850\,\mu\mathrm{m}$ cores are more turbulent, more optically thick, and denser than the $^{13}\mathrm{CO}$ clumps for star formation candidates, suggesting that the $850\,\mu\mathrm{m}$ cores are likely more appropriate future star-formation candidates than the $^{13}\mathrm{CO}$ clumps.

Subject headings: ISM: clouds - ISM: dust - ISM: structure - stars: formation

1. Introduction

Stars form in the dense, cold regions within molecular clouds. However, the physical and chemical properties of the cold compact objects that breed stars are still poorly understood. Stars could form out of gravitationally bound substructures within a molecular cloud, but how the substructures themselves form is strongly debated (e.g., Johnstone et al. 2004). Investigating the cloud fragmentation from large scale to small scale may be one way to determine this. An important approach to improve our understanding is to perform a statistical study towards the cold dense clumps from unbiased large surveys in the Milky Way.

Fortunately, the *Planck* satellite has allowed for a systematically extracted inventory of Galactic cold clumps (Planck Collaboration et al. 2011a) using multiple bands from submillimeter to millimeter wavelengths. The Cold Core Catalogue of Planck Objects (C3PO) consisting of 10,783 cold cores (Planck Collaboration et al. 2011d), and the *Planck* Early Release Cold Cores Catalog (ECC), the sub-catalog, containing 915 of the most reliable detections were released in 2011 (Planck Collaboration et al. 2011b). The C3PO was the first unbiased, all-sky catalogue of cold objects, and gives an unprecedented statistical view to the properties of these potential pre-stellar clumps and offers a unique possibility for their classification in terms of their intrinsic properties and environment (Planck Collaboration et al. 2011d). The cores in C3PO have relatively high column densities $(0.1 \sim 1.6 \times 10^{22} \text{ cm}^{-2})$ and low dust temperatures (~10 - 15 K, Planck Collaboration et a This was followed by the *Planck* 2011c,d). Catalogue of Galactic Cold Clumps (PGCCs: Planck Collaboration et al. 2016), an all-sky catalogue of Galactic cold clump candidates, containing 13,188 Galactic sources, detected by *Planck*. This catalogue is the full version of the ECC catalogue. The *Herschel* key programme "Galactic Cold Cores" was a follow-up to study the substructure and physics of selected C3PO sources

(selection being performed on their intrinsic properties and their Galactic location). This study commenced during the *Herschel* Science Demonstration Phase Data (Juvela et al. 2010).

Further follow-up studies of PGCC objects have been carried out with ground-based telescopes to study the evolutionary conditions of PGCCs. These facilities include: the James Clerk Maxwell Telescope (JCMT), the Purple Mountain Observatory (PMO), the Nobeyama Radio Observatory, the Taeduk Radio Astronomy Observatory (TRAO), the Korean VLBI Network (KVN), the Caltech Submillimeter Observatory (CSO), the Submillimeter Array (SMA), and the Institut de radioastronomie millimétrique (IRAM) (Wu et al. 2012; Meng et al. 2013; Liu et al. 2012, 2013, 2015, 2016; Yuan et al. 2016; Zhang et al. 2016b; Kim et al. 2017; Tatematsu et al. 2017; Tang et al. 2018). These ground-based studies allow us to improve our understanding of dense cores and star formation in widely different environments at higher spatial resolution than the Planck observations, using different tracers from the continuum to spectral lines (e.g., CO, N_2H^+ , HCO $^+$). For example, Wu et al. (2012) and Meng et al. (2013) carried out a survey towards 745 PGCCs in ^{12}CO , ^{13}CO , $C^{18}O$ J = 1 - 0 using the PMO 13.7-m telescope. They found a variety of morphologies from extended diffuse to dense, isolated, cometary, and filamentary structures. They also found that the PGCCs are the most quiescent among the sample of weak-red IRAS, infrared dark clouds, UC H II candidates, extended green objects, and methanol maser sources. Liu et al. (2016) performed a series of observations with ground-based telescopes towards one PGCC in the λ Orionis complex to systematically investigate the effects of stellar feedback. Particularly they discovered an extremely young Class 0 protostellar object (G192N) and a proto-brown dwarf candidate (G192S), located in a gravitationally bound bright-rimmed clump. This provides a sample to study the earliest stage of star formation. Yuan et al. (2016) conducted the first large survey

of dense gas toward PGCCs in the J=1-0 transitions of HCO⁺ and HCN toward 621 molecular cores. On the basis of an inspection of the derived density information given in their PGCC catalog, Yuan et al. (2016) suggested that about 1000 out of 13,188 PGCCs show a sufficient reservoir of dense gas to form stars.

Based on the studies mentioned above, PGCCs are cold ($\sim 10\text{-}15\,\mathrm{K}$), turbulence-dominated, and have relatively low column densities compared to other star-forming regions (Wu et al. 2012; Planck Collaboration et al. 2011c,d). Additionally, most clumps are quiescent and lack signs of star formation, indicating that the PGCCs are most likely in the very initial evolutionary stages of star formation (Wu et al. 2012; Yuan et al. 2016). Furthermore, previous studies indicate that gaseous CO abundance (or depletion) can be used as a tracer for the evolution of molecular clouds (Liu et al. 2013; Zhang et al. 2017a).

The work described here is part of the TOP-SCOPE¹ survey of PGCCs, which combines the TRAO 13.7-m telescope and the Submillimetre Common-User Bolometer Array 2 (SCUBA-2; Holland et al. 2013) instrument on board of the JCMT to observe around 1000 PGCCs (Eden et al., in prep.; Liu et al. 2018a). It is a follow-up study of Zhang et al. (2016b), who mainly used 12 CO and 13 CO J = 1 - 0 emission lines to investigate the gas content of 96 PGCCs from $98^{\circ} < l < 180^{\circ}$ and $-4^{\circ} < b < 10^{\circ}$ in the second quadrant of the Milky Way. The survey has covered most of the densest ECCs in the regions of the 2nd quadrant (see more details in Zhang et al. 2016b). Zhang et al. (2016b) discussed the properties and morphologies of these clumps combining the distributions of excitation temperature, velocity dispersion, and column density. The second quadrant is home to many wellknown star formation regions, such as W3, W4, W5, NGC 7129, NGC 7538, and S235 (Dame et al. 1987, 2001; Heyer & Terebey 1998). A systematic cold core analysis of the second quadrant could thus be essential for understanding the properties of the initial star-forming conditions in the Outer Galaxy.

Fig. 1.— Distribution of the clumps (red-filled triangles) on the background of an artists conception of the Milky Way (R. Hurt: NASA/JPL-Caltech/SSC). All sources are located in the second quadrant of the Galaxy.

In the 96 Zhang et al. (2016b) PGCCs, there are 64 sources that have been covered by both the SCUBA-2 850 μ m continuum and PMO ¹³CO, $C^{18}O J = 1 - 0$ line observations. In this work, we study the 64 PGCCs mainly combining the continuum and line data mentioned above. The ¹³CO are C¹⁸O are more suitable tracers to study dense conditions of the PGCCs than the ¹²CO and ¹³CO investigation in Zhang et al. (2016b). These data are also compared with the WISE 12 and $22 \,\mu\mathrm{m}$ emission. The full sample is presented in Table 1 and Fig. 1. Section 2 presents the observations and data reduction. Section 3 shows the results of observations and the data analysis. In Section 4, we discuss the fragmentation and evolution associated with star formation, and present a statistical analysis of the morphology, velocity dispersion, virial parameter, surface density, optical depth, and excitation temperature for the ¹³CO clumps and $850 \,\mu\mathrm{m}$ cores. Finally, a summary is presented in Section 5.

¹TOP: TRAO observations of *Planck* cold clumps; SCOPE: SCUBA-2 Continuum Observations of Pre-protostellar Evolution

2.— Integrated-intensity maps of C¹⁸O emission of each source with overlaid contours of the ¹³CO line. The integrated velocity ranges used are indicated within the red window in the corresponding spectrum of Fig. 3. The contour levels of the ¹³CO lines are drawn at 10% steps, starting with 30% of the peak value. The white ellipses indicate the extracted ¹³CO clumps. The beam size of the ¹³CO data is indicated in the bottom-left corner. Supplementary figures can be downloaded in https://zcp521.github.io/pub/Figs.zip.

2. Observations

The CO data of the PMO 13.7-m tele-2.1.

The CO observations were made during April – May 2011, and December 2011 - January 2012 using the 13.7-m millimeter telescope of Qinghai Station at the PMO². The 9-beam SIS superconducting receiver with beams separated by around 180". was used as the front end. The receiver was operated in the sideband separation of single sideband mode, allowing for simultaneous observations of three CO J = 1 - 0 isotopologues, with ¹²CO in the upper sideband (USB) and ¹³CO and C¹⁸O in the lower sideband (LSB). The half-power beam width (HPBW) is $52'' \pm 3''$, with a main beam efficiency of $\sim 50\%$ for ^{13}CO and $C^{18}O$ observations. The $^{13}\mathrm{CO}$ and $\mathrm{C^{18}O}$ data are used here. The pointing and tracking accuracies are better than 5". The typical system temperatures during the runs are ~ 120 K at 110.2 GHz, and varied by $\sim 10\%$ between beams. A fast Fourier transform (FFT) spectrometer was used as the back end with a total bandwidth of 1 GHz and 16,384 channels, giving a velocity resolution of $\sim 0.16 \,\mathrm{km \, s^{-1}}$ for the 13 CO and 18 O lines.

An on-the-fly (OTF) observing mode was used for the mapping observations at a scan speed of $50'' \text{ s}^{-1}$. The off position for each "off" source was

2.2. The $850 \,\mu\mathrm{m}$ data of the JCMT 15-m telescope

The majority of the SCUBA-2 $850 \,\mu\mathrm{m}$ observations were conducted as part of the SCOPE project (Liu et al. 2018a). The rest of the data were collected from the JCMT data archive of the Canadian Astronomy Data Centre (CADC). SCUBA-2 is a bolometer detector at the JCMT 15-m telescope with \sim 10,000 pixels over eight science arrays which simultaneously observe 450 and $850 \,\mu\mathrm{m}$ with a field-of-view of 8', and the effective beam size is around 10'' at $450 \,\mu m$ and 14''

carefully chosen from an area within a 3° radius of each "on" source, where there is extremely weak or no CO emission (Dame et al. 1987, 2001). The antenna continuously scanned a region of $22' \times$ 22' centered on each clump, while only the central $14' \times 14'$ region is used due to the noisy edges of the OTF maps. The rms noise level was 0.1 K in the main beam antenna temperature $T_{\rm A}^*$ for ¹³CO and $C^{18}O\ J = 1 - 0$. The OTF data were resampled in a three-dimensional (3D) cube with a grid spacing of 30". The IRAM software package GILDAS³ was used for the data reduction. The reduced images are presented in Figs. 2 and 3. The integratedintensity maps of ¹³CO line are also overlaid on the WISE 12 and 22 μ m emission maps in Figs. 4 and 5.

²http://www.dlh.pmo.cas.cn/

³http://iram.fr/IRAMFR/GILDAS/

Fig. 3.— Averaged ¹³CO (black line) and C¹⁸O (blue lines) lines within the size of each extracted ¹³CO clump (see Fig. 2). The green lines show the Gaussian fits in each spectrum. The red window indicates the velocity range corresponding to the ¹³CO and C¹⁸O integrated intensity maps (see Fig. 2). Supplementary figures can be downloaded in https://zcp521.github.io/pub/Figs.zip.

at $850\,\mu\mathrm{m}$ (Holland et al. 2013). The observations used the constant velocity (CV) Daisy mode (Bintley et al. 2014), which is more sensitive in the central 3' radii, and designed for small and compact sources. The 225 GHz opacity during the observations was in the range of 0.09 to 0.11, therefore we only use the $850\,\mu\mathrm{m}$ data as the $450\,\mu\mathrm{m}$ data isn't photometric. The data were reduced using SMURF in the STARLINK package (Chapin et al. 2013; Dempsey et al. 2013). The mapped areas were about $12' \times 12'$. The rms level in the central 3' area of the maps was typically 6 – 10 mJy beam $^{-1}$. The images are presented in Fig. 6.

SCUBA-2 continuum observations at $850\,\mu\mathrm{m}$ are known to be affected by contamination from spectral lines (Johnstone et al. 2003; Parsons et al. 2018), especially the $^{12}\mathrm{CO}~J=3-2$ line at 345.796 GHz (Drabek et al. 2012). A typical level of the CO contamination is <20% (Nutter & Ward-Thompson 2007; Buckle et al. 2015; Rumble et al. 2015; Moore et al. 2015), which is not significant. In a study of 90 PGCCs, Juvela et al. (2017) found that the CO contamination levels in SCUBA-2 images are \$5%. Therefore we don't correct for it here.

The observatory produced Flux Conversion Factor (FCF) was calculated using a 60'' aperture. If we have a clump that is bigger or smaller than this nominal FCF, we will need to adjust the flux values accordingly. The integrated flux density $S_{850\,\mu\mathrm{m}}$ of each extracted core (see Section 3.2) has been corrected using aperture correction factor provided by Dempsey et al. (2013).

2.3. Archival WISE data

NASA's Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010) mapped the sky at 3.4, 4.6, 12, and 22 μ m (W1, W2, W3, and W4) with an angular resolution of 6.1'', 6.4'', 6.5'', and 12.0''in the four bands, respectively. WISE achieved 5σ point source sensitivities better than 0.08, 0.11, 1, and 6 mJy in unconfused regions on the ecliptic in the four bands. The sensitivity was better toward the ecliptic poles due to denser coverage and lower zodiacal background. In this work, WISE 12 and $22 \,\mu \text{m}$ image data are used. Additionally, the AllWISE Data in VizieR Online Data Catalog (Cutri et al. 2013, 2014) are used for point source cross identification (within 10" radii of the peak position of each $850 \,\mu\mathrm{m}$ core) with our $850 \,\mu\mathrm{m}$ catalog (using Gaussclumps procedure; see Section 3.2) listed in Table 5. The WISE images are presented in Figs. 4 and 5.

3. Results and Analysis

3.1. Distance Determination

The distances to the PGCCs are estimated using the Bayesian Distance Calculator⁴ (Reid et al. 2016), which uses trigonometric parallaxes from the BeSSeL (Bar and Spiral Structure Legacy Survey⁵) and VERA (Japanese VLBI Exploration of Radio Astrometry⁶) projects, to significantly im-

⁴http://bessel.vlbi-astrometry.org/bayesian

⁵http://bessel.vlbi-astrometry.org/home

⁶http://veraserver.mtk.nao.ac.jp/

Fig. 4.— WISE $12\,\mu\mathrm{m}$ emission for each PGCC with overlaid $^{13}\mathrm{CO}$ contours. The contour levels of the $^{13}\mathrm{CO}$ lines are drawn at 10% steps, starting with 30% of the peak value. The beam size of $^{13}\mathrm{CO}$ data is indicated in the bottom-left corner. Supplementary figures can be downloaded in https://zcp521.github.io/pub/Figs.zip.

prove the accuracy and reliability of kinematic distance estimates to other sources that are known to follow the Milky Way spiral structure. Based on the 13 CO centroid velocity of each $850 \,\mu m$ core No. 1 within each PGCC (see Table 4), the corresponding distance parameters (distributed between 0.42 and 5.0 kpc) are derived and listed in Table 1. The probabilities of the adopted distances are also listed in Table 1. In Fig. 1, we present the distribution of the PGCCs on an artist's conception of the Milky Way (Yuan et al. 2017). We find that most PGCCs are located in the Local and Perseus arms with a significant population in the corresponding interarm region, while only four PGCCs (G176.17-02.10, G177.09+02.85, G177.14-01.21, and G177.86+01.04) are located in the Outer arm. We note that some derived distances are different from those in Zhang et al. (2016b), who used only the Galactic rotation curve to acquire the kinematic distances (distribution between 0.1 and 28.7 kpc) following the method of Sofue (2011).

3.2. Fragment extraction and definition

The potential cloud fragments are extracted from the 13 CO integrated line intensity and $850\,\mu\text{m}$ continuum maps with the *Gaussclumps* procedure (Kramer et al. 1998; Stutzki & Guesten 1990; Zhang et al. 2017b) in the GILDAS software package. *Gaussclumps* fits a 2-dimensional fragment to the local maximum of the input cube, subtracts this fragment from the cube, creating a residual map, and then continues with the max-

imum of this residual map (Gómez et al. 2014). This procedure is then repeated until a stop criterion is met. We only consider fragments with peak $^{13}\mathrm{CO}$ and $850\,\mu\mathrm{m}$ intensities of above 5σ with the initial FWHM set at 1.1 times the beam size. The initial aperture FWHM and aperture cutoff are set as 2.0 and 8.0 times the beam size, respectively (see also detailed example of configurations in Belloche et al. 2011). Considering that some extracted sources are in filamentary structures, we have rejected sources with aspect ratios larger than 5 as the study of filaments in the SCOPE PGCCs will be the subject of a further study. The measured parameters are listed in Tables 2, 3, 4, and 5, and indicated with ellipses in Figs. 2 and 7.

In this work, we adopt "fragment" as the general name for both extracted clumps and cores. We consider a clump to have a typical size of 0.3 – $3 \,\mathrm{pc}$ with a mass of 50 – $500 \,M_{\odot}$ and cores are an order of magnitude lower with sizes of 0.03 – $0.2 \,\mathrm{pc}$ with masses of 0.5 – $5 \,M_{\odot}$ (e.g., Bergin & Tafalla 2007; Motte et al. 2017). Based on the effective radii in Tables 2 and 4, we thus refer to the $^{13}\mathrm{CO}$ objects as clumps and the $850 \,\mu\mathrm{m}$ objects as cores. Massive clouds tend to fragment into clusters of clumps and cores (Pokhrel et al. 2018), in which young stars form. Therefore, we can explore the habitats of clumps at larger scales and the cores at smaller scales, studying the fragmentation process⁷.

⁷A caveat here is that the clumps and cores could just be dis-

Fig. 5.— WISE $22\,\mu\mathrm{m}$ emission for each PGCC with overlaid $^{13}\mathrm{CO}$ contours. The contour levels of the $^{13}\mathrm{CO}$ lines are drawn at 10% steps, starting with 30% of the peak value. The beam size of $^{13}\mathrm{CO}$ data is indicated in the bottom-left corner. Supplementary figures can be downloaded in https://zcp521.github.io/pub/Figs.zip.

3.3. ¹³CO clumps

In total, we have extracted 468 ¹³CO clumps having an effective radius range of 0.1 - 3.3 pc with a median value of 0.4 pc and a detected mass range of 1 - 6132 M_{\odot} with a median value of $66 M_{\odot}$ for the clumps. Figure 2 shows the $C^{18}O$ emission with ¹³CO contours overlaid. Some ¹³CO clumps have weak or no corresponding C¹⁸O emission. In Table 2, therefore, we only consider the sources that are detected in both the lines with main beam brightness temperatures $T_{^{13}\text{CO}} > 3\sigma$ and $T_{\rm C^{18}O} > 3\sigma$. The white ellipses with numbers show the extracted ¹³CO clumps. The average ¹³CO and C¹⁸O lines within each extracted ¹³CO clump are presented in Fig. 3. We also display the Gaussian fitted lines with green curves. Most of the ¹³CO and C¹⁸O lines can be fitted with a single-velocity Gaussian component. For the multi-velocity components, we only consider the strongest peak or the velocity components with infrared emission.

In Fig. 2, morphologically we observed that some PGCCs show clearly filamentary structure (e.g. G108.85-00.80, G116.12+08.98) and spherical structure (e.g. G115.92+09.46, G133.48+09.02), and the others are morphologically complicated and don't belong to the both cases above. The filamentary structures are ubiquitous in the Milky Way (Rathborne et al. 2006; Csengeri et al. 2014; Motte et al. 2017; Zhang et al. 2017a). They are

crete self-gravitating structures in a large-scale cloud (see also Section 3.6).

much elongated along the long axis of filament with aspect ratios \gtrsim 5 (Wang et al. 2011, 2014). For the spherical structure, the most massive fragments are often located at the center position of their parent clusters, with several low-mass fragments surrounding the most massive one. We find that the filamentary structures make up 23 (35.9%) sources in the 64 PGCCs, respectively. Dense clumps elongate along their parental filament axis. The clumps in filamentary structure seem to be more compact than the others in our sample. Könyves et al. (2015) suggested that the filamentary environment is more suitable for star formation than spherical structures. Lane et al. (2016) suggested that the dense core clusters tend to be elongated, perhaps indicating a formation mechanism linked to the filamentary structure within molecular clouds.

Figure 3 shows that only 56 (12.0%) of the ¹³CO clumps show multi-velocity components in both ¹³CO and C¹⁸O emission, and the others have single velocity components. In the direction of the second quadrant of the Milky Way, there are at most three spiral arms in line of sight, and they are located at relatively near distances without kinematic distance ambiguity. The relatively optically thick ¹³CO line has similar profiles to the optically thin C¹⁸O line for most clumps, but shows a slightly broader width. Comparing the ¹²CO line as a dynamical tracer with the ¹³CO line, Zhang et al. (2016b) also found that clumps are mostly dynamically quiescent and lack star forming activity, further indicating that the PGCCs are

Fig. 6.— SCUBA-2 $850\,\mu\text{m}$ emission for each PGCC with overlaid ^{13}CO contours. The contour levels of the ^{13}CO lines are drawn at 10% steps, starting with 30% of the peak value. The beam size of ^{13}CO data is indicated in the bottom-left corner. Supplementary figures can be downloaded in https://zcp521.github.io/pub/Figs.zip.

most likely in a very early evolutionary stage of star formation (Wu et al. 2012; Yuan et al. 2016).

In Figs. 4 and 5, 13 CO emission is plotted on maps of WISE 12 and $^{22}\mu m$ emission. This is helpful for understanding the related infrared emission distribution in the background, and to predict the interaction relationship between the ionized gas and molecular clouds (see details in Section 4.2).

3.4. $850 \,\mu\mathrm{m}$ cores

All 64 PGCCs have been observed at $850 \,\mu m$ with SCUBA-2, but only 28 (43.8%) are detected above 5σ (σ is the rms noise of the image). The PGCCs G142.49+07.48 and G150.44+03.95 are not adequately covered by the $850\,\mu\mathrm{m}$ observations, which may reduce the detection number of $850 \,\mu\mathrm{m}$ cores, but have no significantly affect on the detection statistics. The low detection rate suggests that the PGCCs have a relatively low core formation efficiency (CFE; see Section 4.7). In total, we extracted 117 850μ m cores having an effective radius range of $0.03 - 0.48 \,\mathrm{pc}$ with a median value of 0.07 pc and a detected mass range of $0.4-311\,M_{\odot}$ with a median value of $8\,M_{\odot}$ for the cores. Figure 6 shows the $850 \,\mu\mathrm{m}$ emission map (color scale) with ¹³CO contours overlaid. About 26 (22.2%) of the 117 cores have weak ($< 3\sigma$) or no corresponding C¹⁸O emission (see Fig. 8 and Table 4). The $850\,\mu\mathrm{m}$ cores are strongly associated with the peak positions of $C^{18}O$ emission.

In Table 5, we list the positional associations

between our extracted $850\,\mu\mathrm{m}$ cores and the All-WISE Data (Cutri et al. 2013, 2014). We only search for WISE point sources within 10'' radii of the peak position of each $850\,\mu\mathrm{m}$ core. In Fig. 7, we show the distribution of the extracted $850\,\mu\mathrm{m}$ cores. We find that 74~(63.2%) of the $117~850\,\mu\mathrm{m}$ cores have corresponding WISE infrared point sources, some of which may happen to be the sources in line of sight.

In Fig. 8, we present the $^{13}\mathrm{CO}$ and $\mathrm{C}^{18}\mathrm{O}$ lines extracted from the 117 850 $\mu\mathrm{m}$ cores. We find that only 26 (22.2%) of the 850 $\mu\mathrm{m}$ cores show multivelocity components in $^{13}\mathrm{CO}$ and $\mathrm{C}^{18}\mathrm{O}$ lines, suggesting that most detections correspond to a single object along the line of sight. Compared with $^{13}\mathrm{CO}$ clumps, the 850 $\mu\mathrm{m}$ cores have few multi-peak spectra, indicating that majority $^{13}\mathrm{CO}$ clumps at large scale are relatively more dynamically complex than the 850 $\mu\mathrm{m}$ cores at small scale (see the error analysis in Section 4.1).

3.5. Opacity, excitation temperature, column density, and mass

We use the approach of Wong et al. (2008) to derive the opacity, excitation temperature, and column density of each clump combining ¹³CO and C¹⁸O J=1-0. The integrated velocity ranges for each clump are shown in Figs. 3 and 8. The relationship between opacities (τ) and main-beam brightness temperatures ($T_{\rm MB}$) for ¹³CO and C¹⁸O (Myers et al. 1983; Zhang & Wang 2012)

Fig. 7.— The extracted $850\,\mu\mathrm{m}$ cores (black ellipse) superimposed on $850\,\mu\mathrm{m}$ emission. The beam size of $850\,\mu\mathrm{m}$ data is indicated in the bottom-left corner. Supplementary figures can be downloaded in https://zcp521.github.io/pub/Figs.zip.

is

$$\frac{T_{\rm MB}(^{13}{\rm CO})}{T_{\rm MB}({\rm C}^{18}{\rm O})} = \frac{1 - \exp(-\tau_{13})}{1 - \exp(-\tau_{18})} = \frac{1 - \exp(-\lambda\tau_{18})}{1 - \exp(-\tau_{18})}.$$
(1)

Equation (1) assumes a single excitation temperature for both molecules and throughout the line of sight, and assumes $\tau_{13} = \lambda \tau_{18}$, where λ is the abundance ratio between ¹³C¹⁶O and ¹²C¹⁸O. λ can be derived from relation in Wilson & Rood (1994) and Pineda et al. (2013) to be as

$$\lambda = \frac{[^{13}\mathrm{C}^{16}\mathrm{O}]}{[^{12}\mathrm{C}^{18}\mathrm{O}]} = \frac{58.8R_{\mathrm{GC}} + 37.1}{4.7R_{\mathrm{GC}} + 25.05}, \qquad (2)$$

where $R_{\rm GC}$ is the Galactocentric distance. We only consider the sources detected with main beam brightness temperatures $T_{^{13}\rm{CO}} > 3\sigma$ and $T_{\rm C^{18}\rm O} > 3\sigma$ (see Table 3). Furthermore, the excitation temperature $T_{\rm ex}$ is derived from the radiative transfer equation:

$$J(T) = T_0/[\exp(T_0/T) - 1]$$
 (3)

$$T_{\rm MB} = f[J(T_{\rm ex}) - J(T_{\rm bg})][1 - \exp(-\tau)]$$
 (4)

where f is the beam filling factor which we assume as f = 1, $T_{bg} = 2.73 \,\mathrm{K}$ is the cosmic microwave background temperature and $T_0 = h\nu/k = 5.29 \,\mathrm{K}$ for the J = 1 - 0 transition of ¹³CO (Wong et al. 2008). We then obtain the molecular ¹³CO column density $N(^{13}\mathrm{CO})$ from the relation (Bourke et al. 1997):

$$N(^{13}\text{CO})_{\text{thin}} = \frac{T_{\text{ex}} + 0.88}{1 - \exp(-5.29/T_{\text{ex}})} \times \frac{2.42 \times 10^{14}}{J(T_{\text{ex}}) - J(T_{\text{bg}})} \int T_{\text{MB}}(^{13}\text{CO})dv,$$
 (5)

where $N(^{13}\text{CO})_{\text{thin}}$ and v are in units of cm⁻² and km s⁻¹, respectively. We then apply a correction factor $\tau/(1-\exp(-\tau))$ to the ¹³CO column density (Pineda et al. 2010; Liu et al. 2013):

$$N'(^{13}\text{CO})_{\text{corrected}} = N(^{13}\text{CO})_{\text{thin}} \times \frac{\tau_{13}}{1 - \exp(-\tau_{13})}$$
(6)

Finally, the molecular hydrogen column $N_{\rm H_2}$ was calculated, assuming that the $[{\rm H_2}/^{13}{\rm CO}]$ abundance ratio is 7×10^5 (Frerking et al. 1982).

The ¹³CO clump mass is given by the integral of the column density across the source via formula (Kauffmann et al. 2008):

$$M_{\rm H_2}^{13\,\rm CO} = \mu_{\rm H_2} m_{\rm H} D^2 \int N_{\rm H_2} d\Omega,$$
 (7)

where $\mu_{\rm H_2}=2.8,\ m_{\rm H}=1.008\,\rm u,\ D,$ and Ω are the mean molecular weight, the mass of a hydrogen atom, the distance, and the solid angle of the source, respectively. The masses of all extracted $^{13}{\rm CO}$ clumps are listed in Table 3.

3.6. Virial analysis

The virial theorem can be used to test whether fragments are in a stable state. Under the assumption of a simple spherical fragment with a density distribution of $\rho = r^{-2}$, ignoring magnetic fields and bulk motions of the gas, the virial mass of a fragment can be estimated from the formula (MacLaren et al. 1988; Evans 1999):

$$M_{\rm vir} \simeq 126 \, R_{\rm eff} \, \Delta V_{\rm C^{18}O}^2 \, (M_{\odot}),$$
 (8)

where $R_{\rm eff} = {\rm FWHM}/(2\sqrt{\ln 2})$ is the effective radius of the fragment in pc, and $\Delta V_{\rm C^{18}O}$ (listed in

Fig. 8.— 13 CO (black line) and C18 O (blue line) lines within each extracted 850 μ m core (see Fig. 7). The green lines show the Gaussian fits in each spectrum. The red window indicates the velocity range of corresponding 13 CO and C18 O integrated intensity maps (see Fig. 2). Supplementary figures can be downloaded in https://zcp521.github.io/pub/Figs.zip.

Tables 2 and 4) is the FWHM of the line profile in km s⁻¹. $\Delta V_{\rm C^{18}O}$ is the measured C¹⁸O linewidth using Gaussian line fitting. For a typical cold cloud (< 20 K), the thermal width is only a few tenths narrower than the observed linewidth, thus the observed linewidth is presumed to be representative of the turbulent velocity structure. The spatial resolution of the C¹⁸O data is somewhat larger than the sizes of individual cores, hence we just consider the C¹⁸O spectrum within one pixel corresponding to the peak position of each core (see error analysis in Section 4.1). The virial parameter $\alpha_{\rm vir}$ is defined by $\alpha_{\rm vir} = M_{\rm vir}/M$. The virial masses and virial parameters are listed in Tables 3 and 5.

3.7. Dust mass and surface density

We assume that the dust emission is optically thin and the gas-to-dust ratio is 100. The fragment masses are calculated using dust opacity $\kappa_{\nu} = 0.0182~{\rm cm^2\,g^{-1}}$ at 850 $\mu{\rm m}$ (Kauffmann et al. 2008) assuming a gas to dust mass ratio of 100 for a model of dust grains with thin ice mantles at a gas density of $10^6~{\rm cm^{-3}}({\rm Ossenkopf~\&~Henning}$ 1994). The total mass, $M_{\rm H_2}^{850\mu{\rm m}}$, of the 850 $\mu{\rm m}$ sources can therefore be calculated via the formula (Kauffmann et al. 2008):

$$\left(\frac{M_{\rm H_2}^{850\mu\rm m}}{M_{\odot}}\right) = 0.12 \left(e^{14.39\left(\frac{\lambda}{\rm mm}\right)^{-1}\left(\frac{T_{\rm dust}}{\rm K}\right)^{-1}} - 1\right) \times \left(\frac{\kappa_{\nu}}{\rm cm^2 g^{-1}}\right)^{-1} \left(\frac{S_{\nu}}{\rm Jy}\right) \left(\frac{D}{\rm kpc}\right)^2 \left(\frac{\lambda}{\rm mm}\right)^3, \quad (9)$$

where λ is the observed wavelength in mm, $T_{\rm dust}$ is the dust temperature in K, S_{ν} is the integrated flux in Jy, and D is the distance to the source in kpc. For all fragments, we adopt the associated excitation temperature of ¹³CO J=1-0 as an approximated dust temperature (Liu et al. 2013). The surface density (Σ) can be derived from $\Sigma=M/(\pi R_{\rm eff}^2)$ in units of g cm⁻², and here $R_{\rm eff}$ is the effective radius of the fragment, and FWHM is the source size. These corresponding parameters are also listed in Tables 4 and 5.

4. Discussion

We have surveyed 64 PGCCs with CO and in the $850 \,\mu\mathrm{m}$ continuum in the second quadrant of the Milky Way. The CO observations have low spatial resolution, and therefore trace relatively extended molecular clouds and clumps at larger scales, whilst the $850 \,\mu\text{m}$ -continuum observations have relatively high spatial resolution and are used to trace the dense cores at smaller scales, embedded within the molecular clouds. Investigating the fragments at different scales, and comparing their differences will help us to improve our understanding of the early stages of the star-formation process. By combining CO isotopologues (¹³CO and C¹⁸O), important physical parameters can be quantitatively estimated to characterize and increase our knowledge of the clump properties. 5 of the PGCCs, G108.85-00.80, G112.52+08.38, G120.67+02.66, G120.98+02.66, and G121.92-01.71, are distributed over larger regions than the scan map size $(14' \times 14')$ and further

observations over a larger region are needed for a complete analysis.

4.1. Error analysis of different beam sizes

The CO and $850 \,\mu\mathrm{m}$ observations have beam sizes of around 52" and 14", respectively. To derive some parameters of $850 \,\mu\mathrm{m}$ cores, such as velocity dispersion and temperature, we have to use the CO line data observations for estimation. However, there is no simple way of assigning CO emission to each $850 \,\mu\mathrm{m}$ core when they form a tight cluster, for example, in G172.85+02.27. That is, the CO emission toward each one of these six $850 \,\mu\mathrm{m}$ cores is contaminated by emission from nearby cores. If the 850 μ m cores are not located in a tight cluster, it seems that we can use a reasonable filling factor, $f = (14/52)^2$, to estimate the excitation temperature assuming all integratedintensity of ¹³CO clump emits from the dense and isolated 850 μm core. However, the large 52" beam means that the velocity gradients from, e.g., accretion along filaments, rotation, and even molecular outflows, will overestimate the velocity dispersion of each $850 \,\mu\mathrm{m}$ core. Therefore, this will lead to high uncertainties for our estimation. The velocity dispersion, virial mass and virial parameter of the $850 \,\mu\mathrm{m}$ cores will be overestimated, and the excitation temperature at the position of each 850 μm core will be underestimated.

4.2. Infrared emission

The extended $12\,\mu\mathrm{m}$ emission originates mainly from polycyclic aromatic hydrocarbons (Watson et al. 2008), which are excited by UV radiation at the interface between the expanding H II region and the ambient interstellar medium (Zhang et al. 2016a). The extended $22\,\mu\mathrm{m}$ emission is mostly produced by relatively hot dust (Anderson et al. 2012; Faimali et al. 2012), and is a good tracer of early star formation activity.

Figures 4 and 5 compare infrared emission of WISE 12 and 22 μm with the ^{13}CO emission contours. The morphological distribution of the ^{13}CO emission is correlated or uncorrelated with the 12 and 22 μm emission, which correspond to infrared-bright and infrared-dark PGCCs, respectively. We find that $\sim 30\%$ of PGCCs are infrared bright after visually inspecting the image, whilst $\sim 70\%$ sources are infrared dark. We also note that $\sim 15\%$

of the infrared dark PGCCs have more than one infrared bright core, which are also correlated with a peak in the $^{13}{\rm CO}$ emission. Positionally matching the AllWISE Catalog (Cutri et al. 2013, 2014) with the extracted 850 $\mu{\rm m}$ sources (see Table 5), we find that 74 of the 117 850 $\mu{\rm m}$ cores have corresponding WISE infrared point sources. Those with or without infrared point sources may be protostellar or infrared quiet/starless cores, respectively (Yuan et al. 2017). This suggests that the infrared dark PGCCs with infrared bright cores are more evolved, but are younger than the infrared bright PGCCs.

We find no infrared dust bubbles (Churchwell et al. 2006, 2007), which would show strong $22 \,\mu\mathrm{m}$ emission surrounded by a ringlike $12 \,\mu\mathrm{m}$ emission shell. The 12 and $22 \,\mu\mathrm{m}$ emission have no significant morphological differences. Compact H II regions or bright infrared cores may have an effect on the evolution of early star formation (Zhang et al. 2017b). The integrated-intensity maps of some PGCCs show steep gradients, e.g. G098.50-03.24, G127.88+02.66, G151.08+04.46 (see Fig. 2). This suggests that the molecular clouds have been compressed by nearby warm clouds, such as G035.39-00.33 (Liu et al. 2018b), possibly indicating cloud-cloud collisions, such as in the case of G178.28-00.61 (Zhang et al., in prep.).

4.3. Fragmentation

In Fig. 3, we present the 13 CO and C18 O line spectra extracted from the identified 468 13 CO clumps in our sample of 64 PGCCs. They typically have sizes of ~ 0.2 – 2 pc. This shows that each of the PGCCs fragments into an average of ~ 7.3 13 CO clumps. The G144.84+00.76 PGCC fragments into 14 clumps. We suggest that the fragmentation is ubiquitous and a necessary process of the early stage of star formation. Analysis shows that most of the clumps are associated with CO structures. Only 68 sources of the 13 CO clumps were not detected with C18 O lines, suggesting that most of the clumps are relatively dense.

Figure 7 shows examples of $850\,\mu\mathrm{m}$ emission maps with extracted cores overlaid. In total, 117 cores are extracted at $850\,\mu\mathrm{m}$. Less than half (28) of the 64 PGCCs have been detected with $850\,\mu\mathrm{m}$ continuum, indicating that each PGCC fragments into 4.2 cores on average with an effective radius

of 0.03 - 0.48 pc. We suggest that the number of the fragments is strongly associated with the fragment size, and the results might also be dependent on the sensitivity (Pokhrel et al. 2018).

4.4. Mass-size relation

9.— Mass-Radius distributions of Gaussian $850 \,\mu\mathrm{m}$ cores (blue triangles), $^{13}\mathrm{CO}$ clumps with (black dots) and without (green crosses) $850 \,\mu\mathrm{m}$ emission. Their masses and effective radii are listed in Tables 3 and 5, respectively. The purple line delineates the threshold introduced by Kauffmann & Pillai (2010), separating the regimes into high-mass and low-mass star forming candidates. The red line shows a powerlaw fit using least-squares fitting in log-space with a fixed exponent 1.67 to the mass-size relation for clumps that undergo quasi-isolated gravitational collapse in a turbulent medium (Li 2017; Zhang & Li 2017). The cyan line presents a power-law fit of all the data point using leastsquares fitting. The corresponding formulas are also shown nearby the lines.

Li (2017) derived a scaling relation of $m \sim r^{5/3}$ to describe the properties of the gravitationally bound structures, where the multiplication factor of the relationship is determined by the level of ambient turbulence. A higher level of turbulence leads to a higher mass at a given scale. It has been found that the scaling provides a good description to the fragments observed from sub-pc scales to those of a few pc (Zhang et al. 2017a). In Fig. 9, the red dashed line shows the mass-size relation derived assuming $m \sim r^{5/3}$ from Li (2017)

and Zhang et al. (2017a). Figure 9 also displays the mass-size relation derived from a linear fit to the data. In general, the results obtained from these fits are very similar. This clearly demonstrates that these clumps do not obey "Larson's third law", where the power-law exponent is ~ 1.9 (Larson 1981; Solomon et al. 1987), but is consistent with the prediction made in Li (2017).

Having established the relation, it is possible to use the properties of the observed clumps to estimate the turbulence in the ambient medium. In our sample, we found that our structures satisfy the relationship, $m(r) = (368.3 \pm 0.1) M_{\odot} (r/\text{pc})^{1.67}$ (see Figure 9). The multiplication factor is small compared to that found in high-mass star-forming regions by Urguhart et al. (2014), who had a relationship of $m(r) = 2630 M_{\odot} (r/\text{pc})^{1.67}$, and Zhang et al. (2017a), $m(r) = 7079 M_{\odot} (r/\text{pc})^{1.67}$. The sample in Zhang et al. (2017a) are more massive and denser than those in Urguhart et al. (2014). At a given scale, the masses of gas condensation in our PGCC sample are around 1/10 of that of typical Galactic high-mass star-forming regions (Urquhart et al. 2014). Using the scaling relation presented in Li (2017), this implies that the energy dissipation rate of the ambient turbulence should be 1/30 of that of the Galactic massive star-forming regions, where we expect the observed velocity dispersion of the molecular gas in our PGCC sample to be 1/3 times of the averaged Galactic value on a given scale⁸. In general, the level of turbulence in PGCC sample is significantly lower than the Galactic average. This is consistent with our previous findings in Zhang et al. (2016b).

4.5. Low-mass star formation

In Fig. 9, we present the mass-size plane for the extracted ^{13}CO clumps and $850\,\mu\text{m}$ cores. Comparison with the high-mass star formation threshold of $m(r) > 870M_{\odot}(r/\text{pc})^{1.33}$ empirically proposed by Kauffmann & Pillai (2010) allows us to determine whether these fragments are capable of giving birth to massive stars. The data points are

⁸These numbers are obtained using the scaling relations presented in Li (2017), where the mass-size relation is determined by $m \approx \epsilon_{\rm cascade}^{2/3} \eta^{-2/3} G^{-1} r^{5/3}$ (where m is the critical mass, r is the source size, and $\epsilon_{\rm cascade} \approx \eta \sigma_{\rm v}^3 / l$ is the turbulence energy dissipation rate of the ambient medium).

Fig. 10.— $Mass_{vir}$ -Mass distributions of Gaussian 850 μ m cores (blue triangles), ¹³CO clumps with (black dots) and without (green crosses) 850 μ m emission. The parameters are listed in Tables 3 and 5. Two dashed lines delineate the thresholds of $\alpha_{vir} = 1$ and $\alpha_{vir} = 2$.

mostly distributed below the threshold, given by the purple dashed line. Therefore, it appears that the majority of 13 CO clumps and $850\,\mu\mathrm{m}$ cores are low-mass star-forming region candidates.

In Fig. 10, we present virial mass vs. fragment mass distributions for the ¹³CO clumps and $850\,\mu\mathrm{m}$ cores. Two dashed lines show the thresholds with virial parameters $\alpha_{\rm vir}=1$ and $\alpha_{\rm vir} = 2$. We find that $\sim 26\%$ of ¹³CO clumps have $\alpha_{\rm vir} > 1$, and $\sim 5\%$ have $\alpha_{\rm vir} > 2$, whilst $\sim 71\%$ of the $850\,\mu\mathrm{m}$ cores have $\alpha_{\mathrm{vir}} > 1$, with $\sim 37\%$ having $\alpha_{\rm vir} > 2$. This indicates that most of the $850 \,\mu\mathrm{m}$ cores are gravitationally unbound and are either stable or expanding (Hindson et al. 2013), relatively to the ¹³CO clumps. also likely that kinetic energy is larger than the gravitational energy, suggesting that such cores have to be confined by some external pressure (Bertoldi & McKee 1992; Pattle et al. 2015). Therefore, a long timescale for star formation is required for most of our local PGCCs, or they will never form stars.

Mass surface density, Σ , is a commonly used parameter to assess the high-mass star formation potential. Urquhart et al. (2014) suggested that the surface density of 0.05 g cm⁻² might represent a minimum threshold of efficient massive star for-

mation, as is suitable for pc-scale clumps. According to this threshold, parts of the ¹³CO clumps are potential candidates of massive star formation. However, we note that most of the candidates have a typical size less than 1.0 pc. Traficante et al. (2018) argued that $\Sigma = 0.12 \,\mathrm{g\,cm^{-2}}$ may represent the minimum surface density at clump scales for high-mass star formation to occur, based on the analysis of dynamic activity associated with their parent clump. Krumholz & McKee (2008) suggest that a minimum mass surface density of $1\,\mathrm{g\,cm^{-2}}$ is required to prevent fragmentation into low-mass cores through radiative feedback, thus allowing high-mass star formation. For the ${}^{13}\mathrm{CO}$ clumps and 850 μ m cores in this work, we find that the mean values of surface densities are 0.13 and $0.39\,\mathrm{g\,cm^{-2}}$, respectively (see Figure 12). Therefore, the surface densities further prove that some of $^{13}\mathrm{CO}$ clumps and $850\,\mu\mathrm{m}$ cores have potential to form high-mass stars but the majority would form low-mass stars.

4.6. Core mass function

Fig. 11.— Mass distribution for 13 CO clumps (blue) and $850\,\mu\mathrm{m}$ cores (black). The parameters are listed in Tables 3 and 5. The slopes of the fitted power law index are shown in the histogram. The error bars represent the standard deviation of a Poisson distribution $\sqrt{\Delta N/\Delta \log M}$.

The core mass function (CMF) generally has a comparable slope with the stellar initial mass function and, consequently, the Salpeter power-law with a logarithmic slope of -1.35 (Zinnecker & Yorke

2007; Salpeter 1955). Previous observations show that massive stars usually form in dense clusters, so competitive accretion of protostars from their common gas reservoir was used to explain the observed Salpeter stellar mass distribution for massive stars (Bonnell et al. 2001; Klessen & Burkert 2001). To investigate the intermediate- and highmass star formation, in Fig. 11, we simply fit the mass spectra in the mass ranges between 400 and $8000\,M_{\odot}$ for ¹³CO clumps and between 7 and $800 M_{\odot}$ for $850 \,\mu\mathrm{m}$ cores with a linear least square method using the obtained clump and core masses in our observations, respectively. The lower mass limit used to define the power law tail is derived from the peak positions (at $\sim 400 \, M_{\odot}$ for the clumps, and $\sim 7 M_{\odot}$ for the cores) from lowmass to high-mass end of the mass spectra distributions in Figure 11. The derived two slopes of the mass spectrum are similar to each other with clump scope $k_{\rm clump} = -0.60 \pm 0.23$ and core slope $k_{\rm core} = -0.64 \pm 0.29$, which are much flatter than the Salpeter stellar initial mass function and the CMFs of massive star-forming candidates (e.g., Beuther & Schilke 2004; Bontemps et al. 2010; Ohashi et al. 2016; Csengeri et al. 2017b). For low-mass star-forming objects, Marsh et al. (2016) obtained a slope of -0.55 ± 0.07 in the Taurus L1495 cloud, Elia et al. (2013) derived a slope of -0.7 ± 0.3 for the gas clump distribution in the third Galaxy quadrant, and Kim et al. (2004) also derived a shallower mass function slope of -0.59 ± 0.32 for their clump sample named CMa OB1 and G220.8-1.7. The three cases above are consistent with our results. The similar slopes may be resulted from their similar initial conditions. We also have to note that the sample distribution at different distances and the contamination from large scale structure may lead to uncertain slopes (Moore et al. 2007; Reid et al. 2010).

4.7. Core formation efficiency

The core formation efficiency (CFE) describes the fraction of clump mass that has converted into denser cores (Elia et al. 2013; Veneziani et al. 2017). Hence the CFE is defined as:

$$CFE = \frac{M_{core}}{M_{core} + M_{clump}},$$
 (10)

where $M_{\rm core}$ is the mass of $850\,\mu{\rm m}$ cores, and M_{clump} is mass of the ¹³CO clump that hosts those associated 850 μ m cores. Considering that $M_{\rm clump}$ is estimated from the extracted Gaussian clumps, the diffuse gas component of the cloud will be missing. Additionally, the clump masses are estimated by ¹³CO which will be depleted in low temperatures (< 18 K) (Pillai et al. 2007, 2011), hence, M_{clump} will be underestimated. The cores in our sample are considered to be gravitationally bound objects. Using the core and clump masses of the entire sample to estimate the CFE, we get a CFE of 3.0%⁹. Of all 64 PGCCs, only 28 (43.8%) are detected at $850 \,\mu\mathrm{m}$ with emission above 5σ , indicating a low CFE. Our estimated CFE is much lower than those estimated from the conversion of molecular clouds to clumps across the first quadrant (5-8%; Eden et al. 2012,2013); the first and second quadrants (5 - 23%); Battisti & Heyer 2014); the fourth quadrant (8 -39%; Veneziani et al. 2017), and the Galactic Centre (10 - 13%; Csengeri et al. 2016).

4.8. Statistics

4.8.1. ¹³CO clumps and 850 µm cores

Figure 12 presents histograms of the velocity dispersions, optical depths, excitation temperatures, surface densities, and virial parameters for the 13 CO clumps and the $850\,\mu\mathrm{m}$ cores.

The velocity dispersion $(\sigma_{\rm v})$ histogram in Fig. 12 shows that the median value is $0.40\pm0.15\,{\rm km\,s^{-1}}$ for $^{13}{\rm CO}$ clumps, smaller than that $(0.57\pm0.19\,{\rm km\,s^{-1}})$ of $850\,\mu{\rm m}$ cores, indicating that the $850\,\mu{\rm m}$ cores are more dynamically active at a small scale, and being consistent with the fact that $850\,\mu{\rm m}$ cores are mainly located at the peak positions of $^{13}{\rm CO}$ clumps (see Fig. 6), or that some cores with IR emission are forming stars. It seems that the $850\,\mu{\rm m}$ cores are generally more turbulent than $^{13}{\rm CO}$ clumps. Another possibility is that there is active star formation injecting turbulence in the $850\,\mu{\rm m}$ cores.

From the optical depth ($\tau_{^{13}\text{CO}}$) distribution in Fig. 12, we find that the median values are 0.89 ± 0.65 for the ^{13}CO clumps and 1.75 ± 0.46 for the $850\,\mu\text{m}$ cores. Most of the ^{13}CO clumps have optical depths < 1.0. This indicates that most of

⁹Here we consider all the extracted clumps and cores.

Fig. 12.— Histograms of velocity dispersion, optical depth, excitation temperature, surface density, and virial parameter for 13 CO clumps (blue) and $850\,\mu\mathrm{m}$ cores (black). The parameters are listed in Tables 2, 3, 4, and 5. The corresponding median value is presented in each frame. The uncertainty on each median calculated represents median absolute deviation.

the $^{13}{\rm CO}$ clumps are more optically thin than the $850\,\mu{\rm m}$ cores.

The excitation temperature $(T_{\rm ex})$ histogram in Fig. 12 shows that the median value is $14.1\pm5.0\,\rm K$ for $^{13}\rm CO$ clumps, and it is $15.3\pm2.6\,\rm K$ for $850\,\mu\rm m$ cores. Considering the $850\,\mu\rm m$ cores are smaller than the $^{13}\rm CO$ beam, the filling factors should be f<1. However, we adopt f=1 to estimate excitation temperature, which will lead to underestimate the excitation temperature for $850\,\mu\rm m$ cores (see also error analysis in Section 4.1). It suggests that the internal parts of the clumps have higher temperatures than the outer parts, probably indicating an internal heating mechanism.

The surface density (Σ) histogram in Fig. 12 shows that the median value is $0.10\pm0.04\,\mathrm{g\,cm^{-2}}$ for the $^{13}\mathrm{CO}$ clumps, while it is $0.33\pm0.15\,\mathrm{g\,cm^{-2}}$ for the $850\,\mu\mathrm{m}$ cores. The median value of surface densities of $850\,\mu\mathrm{m}$ cores is much larger than that of $^{13}\mathrm{CO}$ clumps, indicating that some $850\,\mu\mathrm{m}$ cores that are gravitationally bound are denser and represent the precise locations where the stars would form inside the clumps.

The virial parameter ($\alpha_{\rm vir}$) histogram in Fig. 12 shows that the median value is 0.6 ± 0.3 for the $^{13}\mathrm{CO}$ clumps, while it is 1.6 ± 0.7 for the $850\,\mu\mathrm{m}$ cores. The virial parameters above 2.0 may indicate that the fragments have difficulty in forming stars (Kauffmann et al. 2008), without the help of external pressure. Based on the virial parameters in this work, most of the ¹³CO clumps are candidates to form dense cores. Further checking their embedded cores at 850 μ m, the median value of their virial parameters is around 1.6. Therefore, our cores are mostly gravitationally unbound, and may be dispersing at the core scale, or estimates based on ¹³CO overestimate the in-core turbulence. We also note that 76 out of 117 cores at $850 \,\mu\mathrm{m}$ have WISE counterparts (see Section 4.2). It is likely that many cores have already formed stars and may be in the process of expansion.

4.8.2. PGCCs with and without $850 \,\mu m$ emission

Figure 13 presents histograms of the velocity dispersions, optical depths, excitation tempera-

Fig. 13.— Histograms of velocity dispersion, optical depth, excitation temperature, surface density, and virial parameter for the 13 CO clumps in the 64 PGCCs with (*blue*) and without (*black*) 850 μ m extracted emission. The parameters are listed in Tables 2, 3, 4, and 5. The corresponding median value is presented in each sub-histogram. The uncertainty on each median calculated represents median absolute deviation.

tures, surface densities, and virial parameters for the detected $^{13}{\rm CO}$ clumps associated with and without $850\,\mu{\rm m}$ emission.

The velocity dispersion $(\sigma_{\rm v})$ histogram in Fig. 13 shows that for PGCCs with and without $850\,\mu{\rm m}$ emission the median values are 0.49 ± 0.20 and $0.35\pm0.13\,{\rm km\,s^{-1}}$, respectively. This indicates that the PGCCs with $850\,\mu{\rm m}$ emission are more dynamically active and turbulent than those without $850\,\mu{\rm m}$ emission.

The optical depth $(\tau_{\rm ^{13}CO})$ histogram (using ^{13}CO as the tracer) in Fig. 13 shows that the median values are the same (0.89 ± 0.65) , for PGCCs with and without $850\,\mu{\rm m}$ emission.

The excitation temperature $(T_{\rm ex})$ histogram in Fig. 13 shows that for PGCCs with and without 850 $\mu \rm m$ emission, the median values are 13.9 \pm 4.7 and 14.3 \pm 5.4 K, respectively. Therefore, the two groups are practically are at the same temperature.

The surface density (Σ) histogram in Fig. 13 shows that for PGCCs with and without 850 μ m

emission, the median values are 0.12 ± 0.05 and $0.09\pm0.05\,\mathrm{g\,cm^{-2}}$. This indicates that the densities are similar for the both.

The virial parameter $(\alpha_{\rm vir})$ histogram in Fig. 13 shows that for PGCCs with and without $850\,\mu{\rm m}$ emission the median values are 0.5 ± 0.3 and 0.7 ± 0.3 , respectively. Based on the virial parameters in this work, the PGCCs with $850\,\mu{\rm m}$ emission probably have a slightly greater potential to form stars than those without $850\,\mu{\rm m}$ emission.

4.8.3. Comparison with other studies

Other studies such as those of IRDCs (e.g. Zhang et al. 2017a) found that the linewidth of the C¹⁸O J=1-0 line ranges from around 2.0 to $6.0\,\mathrm{km\,s^{-1}}$ and the volume density from 870 $\mu\mathrm{m}$ continuum measurements is greater than $5.0\times10^4\,\mathrm{cm^{-3}}$, and most cores have virial parameters $\alpha_{\mathrm{vir}}<1.0$. Most ATLASGAL clumps and cores (e.g., Csengeri et al. 2014, 2017a; Wienen et al. 2015, 2018; König et al. 2017; Urquhart et al. 2018) are also dynamically active, dense, and

gravitationally bound, and are high-mass star formation candidates. In this work, however, we find that the 64 PGCCs are dynamically quiescent, optically thin, non-dense, and gravitationally unbound, the typical values of which are $\sigma_{\rm v} < 1.5\,{\rm km\,s^{-1}},\,\tau_{\rm ^{13}CO} < 1.0,\,\Sigma < 0.3\,{\rm cm^{-2}},\,{\rm and}$ $\alpha_{\rm vir} \gtrsim 1.0.$ Wu et al. (2012), Liu et al. (2013), and Meng et al. (2013) detected relatively low column densities, velocity dispersions, and high virial parameters $(\alpha_{\rm vir} > 1.0)$ towards other PGCCs with star formation activities. The consistent results further confirm that the PGCCs are mostly quiescent and lack star forming activities, or are most likely at the very initial evolutionary stages of star formation.

5. Summary

To make progress in understanding the early evolution of molecular clouds and dense cores in a wide range of Galactic environments, we carry out an investigation of 64 PGCCs in the second quadrant of the Milky Way, using $^{13}{\rm CO},~{\rm C}^{18}{\rm O},$ and $850\,\mu{\rm m}$ observations. Through the survey, we study their fragmentation and evolution associated with star formation, and show statistical analysis of the extracted $^{13}{\rm CO}$ clumps and $850\,\mu{\rm m}$ cores.

We present the maps of all 13 CO, C^{18} O, and $850\,\mu\mathrm{m}$ observations. Using the Gaussclumps procedure in GILDAS, we extracted 468 clumps from the 13 CO integrated line intensity maps and 117 cores from the $850\,\mu\mathrm{m}$ continuum images. We present all the observational spectra and the derived integrated-intensity maps of 13 CO and C^{18} O, compute and list the physical parameters of the lines and the extracted fragments.

Using the Bayesian Distance Calculator (Reid et al. 2016), we derived the distances of all 64 PGCCs in our samples, which are distributed between 0.42 and 5.0 kpc in the second quadrant of the Milky Way. We find that 60 PGCCs are located in the Local and Perseus arms or the associated interarm region, with 4 PGCCs in the Outer arm.

Fragmentation analysis show that each PGCC fragments into 7.3 clumps on average in $^{13}{\rm CO}$ emission with sizes of around 0.1 – 3.2 pc, and each PGCC detected at 850 $\mu{\rm m}$ fragments into 4.2 cores at 850 $\mu{\rm m}$ with effective radii of 0.03 – 0.48 pc. We suggest that the fragmentation number may

be associated with the fragment size, and the relationship between fragmentation number and the fragment size may reflect the nature of clump and core formation efficiency.

We further studied the the properties of the fragments in mass-size plane. We found that in general, the structure follows a relation that is close to $m \sim r^{1.67}$, which is much shallower than what is predicted by Larson (1981), but is consistent if these objects undergo quasi-isolated gravitational collapse in a turbulent medium (Li 2017; Zhang et al. 2017a). At a given scale, the masses of our PGCCs are around 1/10 of that of the typical Galactic massive star-forming regions. This reflects the uniqueness of the PGCC sample: according to (Li 2017), the normalization of mass-size relation is determined by the energy dissipation rate of the ambient turbulence. In our sample the mass-size relation can be explained if the turbulence observed in these clumps is 1/3 times (measured in velocity dispersion) the averaged Galactic value.

Statistics indicate that the 850 μm cores are more turbulent, more optically thick, and denser than the $^{13}{\rm CO}$ clumps, suggesting that most 850 μm cores are better star-forming candidates than the $^{13}{\rm CO}$ clumps. The excitation temperature histogram may suggest that the inner parts of the clumps have higher temperatures than the outer parts, probably indicating an internal heating mechanism. The PGCCs with 850 μm emission are more dynamically active, and have more potential to form stars than those without 850 μm emission.

Analysis of the clump and core masses, virial parameter, surface density, and mass-size relation suggests that the PGCCs in the second quadrant of the Milky Way have a low core formation efficiency of $\sim 3.0\%$, and most are candidates of low-mass star formation. Comparison with previous studies suggests that the PGCCs are mostly quiescent and lack star forming activities, or are most likely at the very initial evolutionary stages of star formation. As evident from the physical parameters, it seems clear that the clumps/cores in this PGCC sample are not able to form high-mass stars.

We firstly thank the anonymous referee for prompting many clarifications of this paper. This work is supported by the National Key Basic Research Program of China (973 Program) 2015CB857100, and the National Natural Science Foundation of China through grants 11703040, 11503035 and 11573036. C.-P. Zhang acknowledges support by the China Scholarship Council in Germany as a postdoctoral researcher (No. 201704910137). Tie Liu is supported by EA-COA fellowship. C.W. L. was supported by Basic Science Research Program though the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (NRF-2016R1A2B4012593). M.J. acknowledges the support of the Academy of Finland Grant No. 285769. G.-X. Li is supported by the DFG Cluster of Excellence "Origin and Structure of the Universe". K.W. is supported by grant WA3628-1/1 of the German Research Foundation (DFG) through the priority program 1573 ("Physics of the Interstellar Medium"). Toth acknowledges the support of the OTKA grant NN-111016. We are grateful to the staff at the Qinghai Station of PMO for their assistance during the observations. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. The JCMT is operated by the East Asian Observatory on behalf of The National Astronomical Observatory of Japan, Academia Sinica Institute of Astronomy and Astrophysics, the Korea Astronomy and Space Science Institute, the National Astronomical Observatories of China and the Chinese Academy of Sciences (Grant No. XDB09000000), with additional funding support from the Science and Technology Facilities Council of the United Kingdom and participating universities in the United Kingdom and Canada. The SCUBA-2 data mainly taken in this paper were observed under project code M16AL002.

Facilities: PMO, JCMT, WISE.

REFERENCES

- Anderson, L. D., Zavagno, A., Deharveng, L., et al. 2012, A&A, 542, A10
- Battisti, A. J. & Heyer, M. H. 2014, ApJ, 780, 173

- Belloche, A., Schuller, F., Parise, B., et al. 2011, A&A, 527, A145
- Bergin, E. A. & Tafalla, M. 2007, ARA&A, 45, 339
- Bertoldi, F. & McKee, C. F. 1992, ApJ, 395, 140
- Beuther, H. & Schilke, P. 2004, Science, 303, 1167
- Bintley, D., Holland, W. S., MacIntosh, M. J., et al. 2014, in Proc. SPIE, Vol. 9153, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, 915303
- Bonnell, I. A., Bate, M. R., Clarke, C. J., & Pringle, J. E. 2001, MNRAS, 323, 785
- Bontemps, S., Motte, F., Csengeri, T., & Schneider, N. 2010, A&A, 524, A18
- Bourke, T. L., Garay, G., Lehtinen, K. K., et al. 1997, ApJ, 476, 781
- Buckle, J. V., Drabek-Maunder, E., Greaves, J., et al. 2015, MNRAS, 449, 2472
- Chapin, E. L., Berry, D. S., Gibb, A. G., et al. 2013, MNRAS, 430, 2545
- Churchwell, E., Povich, M. S., Allen, D., et al. 2006, ApJ, 649, 759
- Churchwell, E., Watson, D. F., Povich, M. S., et al. 2007, ApJ, 670, 428
- Csengeri, T., Bontemps, S., Wyrowski, F., et al. 2017a, A&A, 601, A60
- Csengeri, T., Bontemps, S., Wyrowski, F., et al. 2017b, A&A, 600, L10
- Csengeri, T., Urquhart, J. S., Schuller, F., et al. 2014, A&A, 565, A75
- Csengeri, T., Weiss, A., Wyrowski, F., et al. 2016, A&A, 585, A104
- Cutri, R. M., Wright, E. L., Conrow, T., et al. 2013, VizieR Online Data Catalog, 2328
- Cutri, R. M., Wright, E. L., Conrow, T., et al. 2014, VizieR Online Data Catalog, 2328
- Dame, T. M., Hartmann, D., & Thaddeus, P. 2001, ApJ, 547, 792

- Dame, T. M., Ungerechts, H., Cohen, R. S., et al. 1987, ApJ, 322, 706
- Dempsey, J. T., Friberg, P., Jenness, T., et al. 2013, MNRAS, 430, 2534
- Drabek, E., Hatchell, J., Friberg, P., et al. 2012, MNRAS, 426, 23
- Eden, D. J., Moore, T. J. T., Morgan, L. K., Thompson, M. A., & Urquhart, J. S. 2013, MN-RAS, 431, 1587
- Eden, D. J., Moore, T. J. T., Plume, R., & Morgan, L. K. 2012, MNRAS, 422, 3178
- Elia, D., Molinari, S., Fukui, Y., et al. 2013, ApJ, 772, 45
- Evans, II, N. J. 1999, ARA&A, 37, 311
- Faimali, A., Thompson, M. A., Hindson, L., et al. 2012, MNRAS, 426, 402
- Frerking, M. A., Langer, W. D., & Wilson, R. W. 1982, ApJ, 262, 590
- Gómez, L., Wyrowski, F., Schuller, F., Menten, K. M., & Ballesteros-Paredes, J. 2014, A&A, 561, A148
- Heyer, M. H. & Terebey, S. 1998, ApJ, 502, 265
- Hindson, L., Thompson, M. A., Urquhart, J. S., et al. 2013, MNRAS, 435, 2003
- Holland, W. S., Bintley, D., Chapin, E. L., et al. 2013, MNRAS, 430, 2513
- Johnstone, D., Boonman, A. M. S., & van Dishoeck, E. F. 2003, A&A, 412, 157
- Johnstone, D., Di Francesco, J., & Kirk, H. 2004, ApJ, 611, L45
- Juvela, M., He, J., Pattle, K., et al. 2017, ArXiv e-prints: 1711.09425
- Juvela, M., Ristorcelli, I., Montier, L. A., et al. 2010, A&A, 518, L93
- Kauffmann, J., Bertoldi, F., Bourke, T. L., Evans, II, N. J., & Lee, C. W. 2008, A&A, 487, 993
- Kauffmann, J. & Pillai, T. 2010, ApJ, 723, L7
- Kim, B. G., Kawamura, A., Yonekura, Y., & Fukui, Y. 2004, PASJ, 56, 313

- Kim, J., Lee, J.-E., Liu, T., et al. 2017, ApJS, 231, 9
- Klessen, R. S. & Burkert, A. 2001, ApJ, 549, 386
- König, C., Urquhart, J. S., Csengeri, T., et al. 2017, A&A, 599, A139
- Könyves, V., André, P., Men'shchikov, A., et al. 2015, A&A, 584, A91
- Kramer, C., Stutzki, J., Rohrig, R., & Corneliussen, U. 1998, A&A, 329, 249
- Krumholz, M. R. & McKee, C. F. 2008, Nature, 451, 1082
- Lane, J., Kirk, H., Johnstone, D., et al. 2016, ApJ, 833, 44
- Larson, R. B. 1981, MNRAS, 194, 809
- Li, G.-X. 2017, MNRAS, 465, 667
- Liu, T., Kim, K.-T., Juvela, M., et al. 2018a, ApJS, 234, 28
- Liu, T., Li, P. S., Juvela, M., et al. 2018b, ArXiv e-prints: 1803.09457
- Liu, T., Wu, Y., Mardones, D., et al. 2015, Publication of Korean Astronomical Society, 30, 79
- Liu, T., Wu, Y., & Zhang, H. 2012, ApJS, 202, 4
- Liu, T., Wu, Y., & Zhang, H. 2013, ApJ, 775, L2
- Liu, T., Zhang, Q., Kim, K.-T., et al. 2016, ApJS, 222, 7
- MacLaren, I., Richardson, K. M., & Wolfendale, A. W. 1988, ApJ, 333, 821
- Marsh, K. A., Kirk, J. M., André, P., et al. 2016, MNRAS, 459, 342
- Meng, F., Wu, Y., & Liu, T. 2013, ApJS, 209, 37
- Moore, T. J. T., Bretherton, D. E., Fujiyoshi, T., et al. 2007, MNRAS, 379, 663
- Moore, T. J. T., Plume, R., Thompson, M. A., et al. 2015, MNRAS, 453, 4264
- Motte, F., Bontemps, S., & Louvet, F. 2017, ArXiv e-prints: 1706.00118

- Myers, P. C., Linke, R. A., & Benson, P. J. 1983, ApJ, 264, 517
- Nutter, D. & Ward-Thompson, D. 2007, MNRAS, 374, 1413
- Ohashi, S., Sanhueza, P., Chen, H.-R. V., et al. 2016, ApJ, 833, 209
- Ossenkopf, V. & Henning, T. 1994, A&A, 291, 943
- Parsons, H., Dempsey, J. T., Thomas, H. S., et al. 2018, ApJS, 234, 22
- Pattle, K., Ward-Thompson, D., Kirk, J. M., et al. 2015, MNRAS, 450, 1094
- Pillai, T., Kauffmann, J., Wyrowski, F., et al. 2011, A&A, 530, A118
- Pillai, T., Wyrowski, F., Hatchell, J., Gibb, A. G., & Thompson, M. A. 2007, A&A, 467, 207
- Pineda, J. L., Goldsmith, P. F., Chapman, N., et al. 2010, ApJ, 721, 686
- Pineda, J. L., Langer, W. D., Velusamy, T., & Goldsmith, P. F. 2013, A&A, 554, A103
- Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2011a, A&A, 536, A1
- Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2011b, A&A, 536, A7
- Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2011c, A&A, 536, A22
- Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2011d, A&A, 536, A23
- Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, A&A, 594, A28
- Pokhrel, R., Myers, P. C., Dunham, M. M., et al. 2018, ApJ, 853, 5
- Rathborne, J. M., Jackson, J. M., & Simon, R. 2006, ApJ, 641, 389
- Reid, M. A., Wadsley, J., Petitclerc, N., & Sills, A. 2010, ApJ, 719, 561
- Reid, M. J., Dame, T. M., Menten, K. M., & Brunthaler, A. 2016, ApJ, 823, 77
- Rumble, D., Hatchell, J., Gutermuth, R. A., et al. 2015, MNRAS, 448, 1551

- Salpeter, E. E. 1955, ApJ, 121, 161
- Sofue, Y. 2011, PASJ, 63, 813
- Solomon, P. M., Rivolo, A. R., Barrett, J., & Yahil, A. 1987, ApJ, 319, 730
- Stutzki, J. & Guesten, R. 1990, ApJ, 356, 513
- Tang, M., Liu, T., Qin, S.-L., et al. 2018, ApJ, 856, 141
- Tatematsu, K., Liu, T., Ohashi, S., et al. 2017, ApJS, 228, 12
- Traficante, A., Fuller, G. A., Smith, R. J., et al. 2018, MNRAS, 473, 4975
- Urquhart, J. S., König, C., Giannetti, A., et al. 2018, MNRAS, 473, 1059
- Urquhart, J. S., Moore, T. J. T., Csengeri, T., et al. 2014, MNRAS, 443, 1555
- Veneziani, M., Schisano, E., Elia, D., et al. 2017, A&A, 599, A7
- Wang, K., Zhang, Q., Testi, L., et al. 2014, MN-RAS, 439, 3275
- Wang, K., Zhang, Q., Wu, Y., & Zhang, H. 2011, ApJ, 735, 64
- Watson, C., Povich, M. S., Churchwell, E. B., et al. 2008, ApJ, 681, 1341
- Wienen, M., Wyrowski, F., Menten, K. M., et al. 2015, A&A, 579, A91
- Wienen, M., Wyrowski, F., Menten, K. M., et al. 2018, A&A, 609, A125
- Wilson, T. L. & Rood, R. 1994, ARA&A, 32, 191
- Wong, T., Ladd, E. F., Brisbin, D., et al. 2008, MNRAS, 386, 1069
- Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868
- Wu, Y., Liu, T., Meng, F., et al. 2012, ApJ, 756, 76
- Yuan, J., Wu, Y., Ellingsen, S. P., et al. 2017, ApJS, 231, 11
- Yuan, J., Wu, Y., Liu, T., et al. 2016, ApJ, 820, 37

- Zhang, C.-P. & Li, G.-X. 2017, MNRAS, 469, 2286
- Zhang, C.-P., Li, G.-X., Wyrowski, F., et al. 2016a, A&A, 585, A117
- Zhang, C. P. & Wang, J. J. 2012, A&A, 544, A11
- Zhang, C.-P., Yuan, J.-H., Li, G.-X., Zhou, J.-J., & Wang, J.-J. 2017a, A&A, 598, A76
- Zhang, C.-P., Yuan, J.-H., Xu, J.-L., et al. 2017b, Research in Astronomy and Astrophysics, 17, 057
- Zhang, T., Wu, Y., Liu, T., & Meng, F. 2016b, ApJS, 224, 43
- Zinnecker, H. & Yorke, H. W. 2007, ARA&A, 45, 481

This 2-column preprint was prepared with the AAS IATEX macros v5.2.

 ${\it TABLE~1}$ ${\it 64~Planck~Cold~Clumps~in~the~Second~Quadrant}$

Name	R.A.(J2000) hh:mm:ss	DEC.(J2000) dd:mm:ss	Distance kpc	Prob. ^a
G098.50-03.24	22:05:00.08	+51:33:11.69	1.59(0.25)	0.76
G108.85-00.80	22:58:51.53	+58:57:27.09	3.21(0.38)	0.56
G110.65+09.65	22:28:00.22	+69:01:48.10	0.82(0.11)	1.00
G112.52+08.38	22:52:47.62	+68:49:28.31	0.78(0.10)	1.00
G112.60+08.53	22:52:54.76	+68:59:53.90	0.78(0.10)	1.00
G115.92+09.46	23:24:04.62	+71:08:08.69	0.73(0.08)	1.00
G116.08-02.38	23:56:41.79	+59:45:13.19	0.72(0.09)	1.00
G116.12+08.98	23:28:14.03	+70:45:12.38	0.73(0.08)	1.00
G120.16+03.09	00:24:26.01	+65:49:27.59	1.28(0.65)	0.88
G120.67+02.66	00:29:41.95	+65:26:39.99	0.90(0.29)	0.97
G120.98+02.66	00:32:38.94	+65:28:07.08	0.92(0.04)	1.00
G121.35+03.39	00:35:48.66	+66:13:13.29	0.70(0.08)	1.00
G121.90-01.54	00:42:52.64	+61:18:23.20	0.59(0.20)	0.91
G121.92-01.71	00:43:06.34	+61:08:21.59	0.58(0.20)	0.91
G125.66-00.55	01:14:52.20	+62:11:16.60	0.61(0.16)	0.53
G126.49-01.30	01:21:14.55	+61:21:34.60	0.93(0.15)	0.57
G126.95-01.06	01:25:19.48	+61:32:36.19	0.60(0.17)	0.52
G127.22-02.25	01:26:10.18	+60:19:29.30	0.88(0.19)	1.00
G127.88+02.66	01:38:39.10	+65:05:06.49	0.89(0.11)	1.00
G128.95-00.18	01:43:15.17	+62:04:39.09	0.92(0.18)	0.59
G131.72+09.70	02:39:57.51	+70:42:11.60	0.57(0.16)	1.00
G132.07+08.80	02:39:18.17	+69:44:01.11	0.59(0.15)	1.00
G132.03+08.95	02:39:33.56	+69:53:21.08	0.59(0.15)	1.00
G133.28+08.81	02:51:42.22	+69:14:13.39	0.58(0.15)	1.00
G133.48+09.02	02:54:44.50	+69:19:57.59	0.61(0.14)	0.62
G136.31-01.77	02:36:07.02	+58:21:09.09	0.51(0.17)	1.00
G140.49+06.07	03:37:46.12	+63:07:27.29	1.23(0.49)	0.63
G140.77+05.00	03:34:18.18	+62:05:35.89	0.56(0.14)	0.74
G142.49+07.48	03:59:13.56	+62:58:52.40	0.55(0.14)	0.79
G142.62+07.29	03:59:00.66	+62:45:12.60	0.54(0.14)	1.00
G144.84+00.76	03:40:20.80	+56:16:28.09	2.20(0.28)	1.00
G146.11+07.80	04:23:14.52	+60:44:31.20	0.52(0.14)	1.00
G146.71 + 02.05	03:56:37.16	+56:07:23.10	0.47(0.15)	1.00
G147.01+03.39	04:04:41.36	+56:56:16.79	0.50(0.14)	1.00
G148.00+00.09	03:54:48.04	+53:47:19.89	2.15(0.28)	0.83
G148.24+00.41	03:57:26.18	+53:52:36.30	2.17(0.29)	0.77
G149.23+03.07	04:14:48.52	+55:12:03.29	0.47(0.15)	1.00
G149.41+03.37	04:17:09.06	+55:17:39.39	0.47(0.15)	1.00
G149.52-01.23	03:56:52.61	+51:48:01.70	0.51(0.14)	0.87
G149.58+03.45	04:18:23.93	+55:13:30.59	0.47(0.15)	1.00
G149.65 + 03.54	04:19:11.24	+55:14:44.39	0.47(0.15)	1.00
G150.22+03.91	04:23:51.69	+55:06:22.50	0.46(0.14)	1.00
G150.44+03.95	04:25:07.08	+54:58:32.39	0.46(0.14)	1.00
G151.08+04.46	04:30:42.87	+54:51:53.89	0.46(0.14)	1.00
G151.45 + 03.95	04:29:56.25	+54:14:51.70	0.46(0.14)	1.00
G154.90+04.61	04:48:27.03	+52:06:30.39	0.45(0.14)	1.00
G156.04+06.03	05:00:19.24	+52:06:45.60	0.42(0.13)	1.00
G156.20+05.26	04:57:00.65	+51:31:08.89	0.44(0.14)	1.00
G157.25-01.00	04:32:09.45	+46:37:25.00	0.46(0.14)	1.00
G159.52+03.26	04:59:55.05	+47:40:52.20	1.97(0.35)	0.82

Table 1—Continued

Name	R.A.(J2000) hh:mm:ss	DEC.(J2000) dd:mm:ss	Distance kpc	Prob. ^a
G162.79+01.34 G169.14-01.13 G171.03+02.66 G171.34+02.59 G172.85+02.27 G175.20+01.28 G175.53+01.34 G176.17-02.10 G176.35+01.92	05:02:42.87 05:12:20.07 05:33:35.43 05:34:06.95 05:36:51.80 05:38:55.10 05:39:59.24 05:27:55.18 05:44:23.17	+43:55:05.70 +37:20:57.09 +37:56:42.69 +37:38:47.30 +36:11:58.29 +33:41:05.89 +33:26:08.80 +31:01:34.99 +33:02:58.99	0.45(0.14) 1.87(0.23) 1.82(0.22) 1.78(0.20) 1.71(0.13) 1.69(0.12) 4.96(0.44) 1.70(0.13)	0.83 0.92 0.81 0.80 0.77 0.78 0.75 0.39
G176.94+04.63 G177.09+02.85 G177.14-01.21 G177.86+01.04 G178.28-00.61	05:57:00.77 05:50:02.12 05:33:52.82 05:44:35.76 05:39:03.83	+33:55:16.30 +32:53:35.90 +30:42:36.29 +31:17:57.40 +30:04:05.90	1.78(0.22) 4.97(0.57) 5.00(0.48) 4.99(0.64) 0.96(0.02)	0.53 0.49 0.46 0.53 0.36

^aThe distance probabilities derived by the Bayesian Distance Calculator.

Table 2
Observed parameters of extracted CO clumps

Name	Offset(R.A. DEC.) ^a (" ")	$V_{^{13}\mathrm{CO}}$ kms^{-1}	$\frac{\Delta V_{^{13}\text{CO}}}{\text{km s}^{-1}}$	${^{T_{ m ^{13}CO}}_{ m K}}$	$V_{\rm C^{18}O} \atop {\rm kms}^{-1}$	$\begin{array}{c} \Delta V_{\mathrm{C}^{18}\mathrm{O}}^{\mathrm{b}} \\ \mathrm{kms}^{-1} \end{array}$	${^{T_{\mathrm{C}^{18}\mathrm{O}}}_{\mathrm{K}}}$	${ au_{13}}_{\mathrm{CO}}{}^{\mathrm{c}}$	$T_{\rm ex}(^{13}{ m CO})^{ m d}$ K
G098.50-03.24_1	-42.41, -118.79	-6.12 ± 0.01	1.33 ± 0.03	3.09 ± 0.11	-5.80 ± 0.07	0.93 ± 0.18	0.54 ± 0.10	0.93 ± 0.50	10.11 ± 1.80
$G098.50-03.24_2$	103.25, 56.95	-5.95 ± 0.01	0.81 ± 0.02	3.67 ± 0.12	-5.91 ± 0.04	0.59 ± 0.12	0.70 ± 0.09	1.19 ± 0.40	11.10 ± 1.07
$G108.85-00.80_{-1}$	21.64, 16.41	-49.53 ± 0.01	2.94 ± 0.03	5.44 ± 0.15	-49.59 ± 0.08	2.00 ± 0.19	0.91 ± 0.12	0.93 ± 0.38	16.93 ± 2.35
$G108.85-00.80_{-2}$	364.31, 146.82	-49.78 ± 0.02	2.68 ± 0.04	6.02 ± 0.24	-49.75 ± 0.07	1.52 ± 0.15	1.42 ± 0.20	1.97 ± 0.50	15.46 ± 0.85
$G108.85-00.80_{-3}$	-160.17, -58.88	-50.51 ± 0.02	2.92 ± 0.05	4.16 ± 0.19	-50.49 ± 0.14	2.45 ± 0.31	0.66 ± 0.15	0.79 ± 0.60	14.10 ± 3.94
G108.85-00.80_4	241.50, 186.31	-49.55 ± 0.02	2.31 ± 0.04	4.68 ± 0.16	-49.74 ± 0.11	1.55 ± 0.20	0.64 ± 0.14	0.41 ± 0.14	21.10 ± 7.03
G110.65+09.65 ₋ 1	70.87, -26.19	-4.28 ± 0.01	1.55 ± 0.01	5.69 ± 0.09	-4.33 ± 0.02	1.03 ± 0.04	1.50 ± 0.07	2.25 ± 0.17	14.52 ± 0.25
$G110.65+09.65_2$	65.76, 290.64	-4.62 ± 0.01	1.68 ± 0.02	4.16 ± 0.10	-4.57 ± 0.06	1.15 ± 0.15	0.59 ± 0.08	0.41 ± 0.35	18.83 ± 6.28
G110.65+09.65 ₋ 3	-126.92, 102.11	-4.33 ± 0.01	1.42 ± 0.02	4.56 ± 0.11	-4.44 ± 0.03	1.12 ± 0.08	1.00 ± 0.08	1.61 ± 0.26	12.66 ± 0.53
$G110.65+09.65_4$	219.56, 117.51	-4.20 ± 0.01	1.36 ± 0.01	5.19 ± 0.08	-4.22 ± 0.03	1.01 ± 0.07	1.10 ± 0.08	1.51 ± 0.22	14.34 ± 0.51
G112.52+08.38 ₋ 1	225.49, 286.31	-5.37 ± 0.01	1.90 ± 0.03	3.56 ± 0.12	-5.63 ± 0.10	1.17 ± 0.35	0.55 ± 0.12	0.61 ± 0.57	13.55 ± 5.48
$G112.52+08.38_{-2}$	62.60, 120.64	-5.26 ± 0.01	1.19 ± 0.01	4.31 ± 0.08	_	_	_	_	_
G112.52+08.38 ₋ 3	-11.56, 379.79	-4.89 ± 0.02	1.69 ± 0.04	3.37 ± 0.17	_	_	_	_	_
$G112.52+08.38_4$	-154.70, 296.51	-5.13 ± 0.02	1.45 ± 0.04	2.52 ± 0.15	-5.53 ± 0.07	0.33 ± 0.07	0.31 ± 0.10	0.20 ± 0.05	50.00 ± 5.00
G112.52+08.38 ₋ 5	297.07, 27.03	-5.16 ± 0.01	1.07 ± 0.02	3.06 ± 0.09	_	_	_	_	_
G112.60+08.53 ₋ 1	88.57, -83.18	-5.03 ± 0.01	1.87 ± 0.01	3.60 ± 0.07	-5.08 ± 0.07	1.81 ± 0.15	0.34 ± 0.04	0.20 ± 0.05	25.84 ± 8.61
$G112.60+08.53_2$	168.07, -346.67	-5.46 ± 0.02	1.82 ± 0.04	3.70 ± 0.17	-5.60 ± 0.19	2.19 ± 0.52	0.43 ± 0.13	0.25 ± 0.06	22.60 ± 7.53
G112.60+08.53 ₋ 3	-150.67, 222.54	-4.77 ± 0.01	1.85 ± 0.03	2.72 ± 0.09	-4.97 ± 0.15	1.85 ± 0.29	0.24 ± 0.07	0.20 ± 0.05	20.72 ± 6.91
G112.60+08.53_4	-29.65, -305.67	-5.08 ± 0.01	1.64 ± 0.03	3.30 ± 0.12	-5.26 ± 0.18	1.98 ± 0.36	0.23 ± 0.07	0.20 ± 0.05	29.34 ± 9.78
G112.60+08.53 ₋ 5	224.69, 126.61	-5.02 ± 0.01	1.50 ± 0.02	3.64 ± 0.07	-5.09 ± 0.08	1.48 ± 0.17	0.36 ± 0.06	0.21 ± 0.05	25.23 ± 8.41
G112.60+08.53_6	368.93, 169.82	-5.01 ± 0.03	1.82 ± 0.06	2.77 ± 0.19	-4.84 ± 0.04	0.33 ± 0.07	0.66 ± 0.18	1.88 ± 0.95	7.74 ± 0.87
G112.60+08.53 ₋ 7	-340.99, 84.70	-4.49 ± 0.03	1.86 ± 0.07	2.14 ± 0.17	_	_	_	_	_
G112.60+08.53 ₋₈	40.39, 332.32	-4.70 ± 0.01	1.50 ± 0.03	2.57 ± 0.09	_	_	_	_	_
G115.92+09.46_1	-40.18, 29.56	-3.35 ± 0.01	1.58 ± 0.03	3.59 ± 0.10	-3.50 ± 0.09	1.04 ± 0.22	0.34 ± 0.07	0.20 ± 0.05	25.27 ± 8.42
G115.92+09.46 ₂	42.52, 209.09	-3.92 ± 0.01	0.63 ± 0.03	4.04 ± 0.20	-3.91 ± 0.07	0.37 ± 0.10	0.71 ± 0.10	0.96 ± 0.40	12.89 ± 1.93
G115.92+09.46_3	-38.44, -185.70	-3.10 ± 0.02	1.15 ± 0.04	2.28 ± 0.13	-3.56 ± 0.10	0.33 ± 0.07	0.23 ± 0.07	0.22 ± 0.05	15.65 ± 5.22
G115.92+09.46_4	237.75, -208.00	-3.38 ± 0.03	1.01 ± 0.09	2.01 ± 0.20	_	_	_	_	_
G115.92+09.46 ₋ 5	-197.65, 243.71	-2.29 ± 0.05	1.69 ± 0.12	1.43 ± 0.19	_	_	_	_	_
G115.92+09.46_6	84.44, -58.39	-2.95 ± 0.02	1.71 ± 0.04	2.40 ± 0.12	_	_	_	_	_
G115.92+09.46 ₋ 7	177.70, 179.51	-4.06 ± 0.01	0.58 ± 0.03	2.80 ± 0.17	-2.62 ± 0.15	0.33 ± 0.07	0.31 ± 0.09	0.24 ± 0.06	17.93 ± 5.98
G116.08-02.38 ₋ 1	13.48, 29.31	-1.03 ± 0.01	1.66 ± 0.03	3.35 ± 0.11	-0.97 ± 0.07	1.51 ± 0.15	0.59 ± 0.09	0.99 ± 0.42	10.73 ± 1.46
G116.08-02.38 ₂	273.23, -229.61	-0.64 ± 0.02	1.33 ± 0.04	3.19 ± 0.18	-0.72 ± 0.08	0.73 ± 0.18	0.63 ± 0.14	1.31 ± 0.69	9.50 ± 1.36
G116.08-02.38 ₋ 3	-343.22, 89.77	-1.69 ± 0.02	1.24 ± 0.05	2.84 ± 0.21	_	_	_	_	_
G116.08-02.38 ₋ 4	-24.68, -218.51	-0.78 ± 0.02	1.56 ± 0.03	2.94 ± 0.13	-0.81 ± 0.08	0.87 ± 0.34	0.53 ± 0.11	1.05 ± 0.58	9.31 ± 1.59
G116.08-02.38 ₋ 5	-179.22, 0.06	-1.46 ± 0.02	1.58 ± 0.04	2.87 ± 0.13	-1.49 ± 0.11	1.08 ± 0.27	0.43 ± 0.11	0.53 ± 0.18	11.72 ± 6.80
$G116.08-02.38_6$	-160.83, 177.51	-1.38 ± 0.02	1.68 ± 0.05	2.85 ± 0.16	-1.50 ± 0.11	0.98 ± 0.26	0.47 ± 0.14	0.79 ± 0.78	9.89 ± 3.65
$G116.08-02.38_7$	245.32, 27.51	-0.59 ± 0.02	1.57 ± 0.05	2.24 ± 0.15	_	_	_	_	_
G116.12+08.98 ₋ 1	33.51, 15.77	-1.68 ± 0.02	1.47 ± 0.04	2.23 ± 0.10	-1.36 ± 0.09	0.58 ± 0.19	0.27 ± 0.08	0.20 ± 0.05	50.00 ± 5.00
G116.12+08.98 ₋ 2	-135.37, 89.61	-1.59 ± 0.02	1.65 ± 0.06	1.98 ± 0.12	_	_	_	_	_
G116.12+08.98 ₋ 3	133.67, -156.31	-2.00 ± 0.01	1.11 ± 0.03	2.76 ± 0.12	_	_	_	_	_
G116.12+08.98_4	44.63, -386.87	-2.45 ± 0.02	1.06 ± 0.06	2.48 ± 0.20	_	_	_	_	_
G116.12+08.98 ₋ 5	218.49, -318.66	-1.96 ± 0.02	0.86 ± 0.05	2.71 ± 0.18	_	_	_	_	_
G120.16+03.09 ₋ 1	-22.48, 33.58	-19.53 ± 0.01	2.79 ± 0.01	5.65 ± 0.08	-19.58 ± 0.03	2.24 ± 0.07	1.12 ± 0.06	1.34 ± 0.17	15.79 ± 0.53
G120.16+03.09 ₋ 2	378.42, -81.46	-18.94 ± 0.02	2.52 ± 0.04	5.56 ± 0.20	-18.85 ± 0.05	1.67 ± 0.15	1.23 ± 0.13	1.66 ± 0.35	14.91 ± 0.83

Table 2—Continued

Name	Offset(R.A. DEC.) ^a ('' '')	$V_{^{13}\text{CO}}$ km s ⁻¹	$\frac{\Delta V_{^{13}\text{CO}}}{\text{km s}^{-1}}$	${^{T_{\rm ^{13}CO}}_{\rm K}}$	$\begin{array}{c} V_{\mathrm{C}^{18}\mathrm{O}} \\ \mathrm{kms}^{-1} \end{array}$	$\frac{\Delta V_{\mathrm{C}^{18}\mathrm{O}}}{\mathrm{km}\mathrm{s}^{-1}}^{\mathrm{b}}$	${^{T_{\mathrm{C}^{18}\mathrm{O}}}_{\mathrm{K}}}$	${ au_{13}}_{\mathrm{CO}}{}^{\mathrm{c}}$	$T_{\rm ex}(^{13}{ m CO})^{ m d}$ K
G120.16+03.09_3	227.97, -125.30	-19.10 ± 0.01	2.65 ± 0.02	4.96 ± 0.10	-19.12 ± 0.05	2.12 ± 0.12	0.85 ± 0.07	0.90 ± 0.23	15.79 ± 1.40
$G120.16+03.09_{-4}$	-339.30, -79.48	-19.18 ± 0.02	2.69 ± 0.03	4.54 ± 0.15	-19.47 ± 0.13	2.52 ± 0.28	0.49 ± 0.10	0.23 ± 0.06	28.76 ± 9.59
$G120.16+03.09_{-5}$	-95.33, -182.45	-19.65 ± 0.01	2.38 ± 0.02	5.09 ± 0.10	-19.71 ± 0.03	1.94 ± 0.07	1.06 ± 0.06	1.49 ± 0.19	14.14 ± 0.50
G120.16+03.09_6	-82.44, -385.11	-19.74 ± 0.02	1.61 ± 0.04	4.92 ± 0.23	-19.79 ± 0.07	1.23 ± 0.21	0.90 ± 0.14	1.11 ± 0.47	14.73 ± 1.97
$G120.67+02.66_{-1}$	-268.36, 38.59	-17.42 ± 0.01	1.83 ± 0.03	5.32 ± 0.14	-17.40 ± 0.06	1.45 ± 0.16	0.68 ± 0.09	0.20 ± 0.05	43.44 ± 14.48
G120.67+02.66_2	39.59, -23.71	-17.66 ± 0.01	2.23 ± 0.02	4.39 ± 0.07	-17.78 ± 0.08	2.19 ± 0.18	0.49 ± 0.06	0.24 ± 0.06	27.44 ± 9.15
G120.67+02.66_3	308.68, -202.02	-17.31 ± 0.01	1.64 ± 0.03	4.48 ± 0.13	-17.53 ± 0.11	2.11 ± 0.28	0.47 ± 0.09	0.23 ± 0.06	29.16 ± 9.72
G120.67+02.66_4	214.22, 240.74	-16.72 ± 0.01	1.77 ± 0.04	2.91 ± 0.11	_	_	_	_	_
G120.67+02.66_5	-301.58, 264.36	-17.31 ± 0.03	1.63 ± 0.08	3.85 ± 0.34	-	_	-	-	-
G120.67+02.66_6	223.27, -94.80	-17.77 ± 0.01	1.86 ± 0.02	4.29 ± 0.10	-18.03 ± 0.07	1.54 ± 0.16	0.62 ± 0.08	0.45 ± 0.34	18.48 ± 7.19
G120.67+02.66_7	-43.70, 201.96	-16.92 ± 0.01	1.64 ± 0.02	3.80 ± 0.09	-17.08 ± 0.12	1.57 ± 0.46	0.36 ± 0.08	0.20 ± 0.05	27.15 ± 9.05
G120.67+02.66_8	97.40, -222.10	-17.70 ± 0.01	1.29 ± 0.02	4.51 ± 0.11 4.88 ± 0.09	-17.18 ± 0.04	-1.32 ± 0.10	-0.74 ± 0.07	0.57 ± 0.24	$-$ 18.62 \pm 3.56
G120.98+02.66_1 G120.98+02.66_2	-81.42, -14.81 36.17, 366.70	-17.15 ± 0.01 -16.32 ± 0.05	1.62 ± 0.02 2.65 ± 0.15	2.40 ± 0.23	-17.18 ± 0.04 -15.97 ± 0.06	0.69 ± 0.12	0.74 ± 0.07 0.74 ± 0.13	0.57 ± 0.24 2.92 ± 0.89	6.41 ± 0.69
G120.98+02.66_3 G120.98+02.66_3	128.44, 79.31	-16.52 ± 0.05 -16.53 ± 0.02	2.03 ± 0.13 2.13 ± 0.04	2.40 ± 0.23 2.46 ± 0.10	-15.97 ± 0.06 -	0.09 ± 0.12 -	0.74 ± 0.13 -	2.92 ± 0.89 -	0.41 ± 0.09 -
G120.98+02.66_4	-177.09, 350.49	-16.87 ± 0.02 -16.87 ± 0.04	1.32 ± 0.04	2.36 ± 0.10 2.36 ± 0.29	_	_	_	_	
G120.98+02.66_5	241.17, 259.50	-15.62 ± 0.02	1.52 ± 0.05 1.53 ± 0.05	2.83 ± 0.23 2.83 ± 0.17	_	_	_	_	_
G120.98+02.66_6	111.75, -136.49	-16.27 ± 0.02	1.61 ± 0.03	2.66 ± 0.11	_	_	_	_	_
G120.98+02.66_7	-286.73, -286.12	-16.76 ± 0.02	0.94 ± 0.05	3.34 ± 0.25	_	_	_	_	_
G120.98+02.66_8	-135.92, -379.72	-16.43 ± 0.03	1.08 ± 0.07	2.83 ± 0.27	_	_	_	_	_
G120.98+02.66_9	332.14, -111.82	-15.27 ± 0.02	1.14 ± 0.06	2.12 ± 0.16	_	_	_	_	_
G120.98+02.66_10	-26.32, -326.39	-16.09 ± 0.02	1.14 ± 0.04	2.29 ± 0.14	_	_	_	_	_
G121.35+03.39_1	-50.68, 70.57	-5.43 ± 0.01	1.51 ± 0.02	3.44 ± 0.10	-5.34 ± 0.03	0.96 ± 0.06	1.06 ± 0.07	2.88 ± 0.31	9.13 ± 0.28
G121.35+03.39_2	290.02, -15.02	-5.77 ± 0.02	1.84 ± 0.04	2.44 ± 0.13	-5.69 ± 0.13	1.57 ± 0.24	0.42 ± 0.11	0.91 ± 0.72	8.10 ± 2.18
G121.35+03.39 ₋ 3	-214.68, 330.09	-5.20 ± 0.03	1.85 ± 0.06	2.98 ± 0.20	-5.21 ± 0.11	1.69 ± 0.27	0.78 ± 0.15	2.24 ± 0.76	8.13 ± 0.71
G121.35+03.39_4	208.90, 327.68	-6.13 ± 0.03	1.69 ± 0.08	2.44 ± 0.20	-6.18 ± 0.10	1.06 ± 0.24	0.69 ± 0.15	2.50 ± 0.91	6.60 ± 0.66
G121.35+03.39 ₋ 5	136.58, 205.61	-5.37 ± 0.01	1.24 ± 0.03	3.84 ± 0.12	-5.34 ± 0.04	0.89 ± 0.10	0.89 ± 0.10	1.81 ± 0.39	10.65 ± 0.54
$G121.35+03.39_6$	259.22, -291.72	-5.70 ± 0.03	1.55 ± 0.07	2.70 ± 0.23	_	_	_	_	_
G121.35+03.39 ₋ 7	-138.51, -197.58	-5.34 ± 0.03	1.90 ± 0.07	1.87 ± 0.12	-5.13 ± 0.14	1.24 ± 0.44	0.25 ± 0.08	0.30 ± 0.10	10.46 ± 3.49
G121.35+03.39 ₋₈	-314.28, 75.58	-5.30 ± 0.03	1.40 ± 0.08	2.42 ± 0.23	-	_	_	-	_
G121.90-01.54_1	102.50, -22.74	-14.08 ± 0.01	1.60 ± 0.03	3.45 ± 0.10	-13.95 ± 0.09	0.99 ± 0.17	0.39 ± 0.09	0.24 ± 0.06	21.66 ± 7.22
G121.90-01.54_2	62.89, 367.78	-13.34 ± 0.01	1.43 ± 0.03	3.81 ± 0.16	-13.25 ± 0.08	0.81 ± 0.17	0.58 ± 0.13	0.62 ± 0.57	14.35 ± 5.70
G121.90-01.54 ₋ 3	69.11, -375.24	-13.94 ± 0.01	0.99 ± 0.03	3.91 ± 0.17	-14.33 ± 0.10	0.55 ± 0.27	0.56 ± 0.15	0.40 ± 0.13	18.03 ± 6.01
G121.90-01.54_4	168.66, 227.79	-14.08 ± 0.01	1.33 ± 0.03	3.18 ± 0.13	-	_	_	_	_
G121.90-01.54_5	-115.22, -92.25	-13.91 ± 0.01	0.92 ± 0.02	4.31 ± 0.10	-14.01 ± 0.05	0.69 ± 0.09	0.67 ± 0.09	0.63 ± 0.36	15.97 ± 3.94
G121.90-01.54_6	315.70, 80.41	-14.43 ± 0.02	1.34 ± 0.04	3.05 ± 0.16	-14.51 ± 0.04	0.33 ± 0.07	0.70 ± 0.13	1.77 ± 0.65	8.59 ± 0.74
G121.90-01.54_7	235.59, -314.20	-14.03 ± 0.02	1.17 ± 0.05	3.52 ± 0.25 3.82 ± 0.13	-14.19 ± 0.07	-0.69 ± 0.16	-0.59 ± 0.11	-0.62 ± 0.47	$-$ 14.31 \pm 4.60
G121.90-01.54_8 G121.92-01.71_1	58.28, -211.62 29.74, 29.56	-14.06 ± 0.01 -14.03 ± 0.01	1.08 ± 0.02 1.43 ± 0.02	3.82 ± 0.13 3.69 ± 0.08	-14.19 ± 0.07 -14.02 ± 0.06	0.69 ± 0.16 1.41 ± 0.17	0.59 ± 0.11 0.48 ± 0.06	0.62 ± 0.47 0.20 ± 0.05	14.31 ± 4.60 26.52 ± 8.84
G121.92-01.71_1 G121.92-01.71_2	-54.04, 399.89	-14.03 ± 0.01 -13.93 ± 0.02	1.43 ± 0.02 1.03 ± 0.05	4.70 ± 0.08	-14.02 ± 0.06 -13.93 ± 0.08	0.43 ± 0.17	0.48 ± 0.06 1.14 ± 0.24	0.20 ± 0.05 1.95 ± 0.77	12.61 ± 1.14
G121.92-01.71_3	-54.04, 599.69 198.58, -335.67	-13.93 ± 0.02 -13.28 ± 0.02	1.03 ± 0.03 1.14 ± 0.03	3.90 ± 0.20	-13.93 ± 0.08 -13.48 ± 0.08	0.43 ± 0.12 1.14 ± 0.16	0.70 ± 0.12	1.95 ± 0.77 1.05 ± 0.51	12.01 ± 1.14 12.14 ± 1.91
G121.92-01.71_3 G121.92-01.71_4	51.66, -193.85	-13.28 ± 0.02 -13.96 ± 0.01	1.14 ± 0.03 1.47 ± 0.02	3.80 ± 0.20 3.82 ± 0.12	-13.48 ± 0.08 -14.06 ± 0.05	1.14 ± 0.16 1.17 ± 0.14	0.70 ± 0.12 0.79 ± 0.09	1.03 ± 0.31 1.43 ± 0.36	12.14 ± 1.91 11.05 ± 0.74
G121.92-01.71_4 G121.92-01.71_5	171.84, 361.30	-13.90 ± 0.01 -14.17 ± 0.04	1.47 ± 0.02 1.43 ± 0.09	2.53 ± 0.12	-14.00 ± 0.05	1.11 ± U.14	0.79 ± 0.09 -	1.45 ± 0.50 -	11.00 ± 0.74
G121.92-01.71_6	141.39, 268.56	-13.81 ± 0.04 -13.81 ± 0.01	1.43 ± 0.09 1.18 ± 0.03	3.29 ± 0.15	-13.54 ± 0.12	$-$ 1.05 \pm 0.31	0.34 ± 0.10	0.22 ± 0.06	-21.75 ± 7.25
3121.02-01.11_0	141.00, 200.00	10.01 _ 0.01	1.10 ± 0.00	5.25 ± 0.10	10.04 _ 0.12	1.00 ± 0.01	0.04 ± 0.10	0.22 ± 0.00	21.10 ± 1.20

Table 2—Continued

Name	Offset(R.A. DEC.) ^a (" ")	$V_{^{13}\text{CO}}$ km s ⁻¹	$\frac{\Delta V_{^{13}\text{CO}}}{\text{km s}^{-1}}$	${^{T_{ m ^{13}CO}}_{ m K}}$	$V_{\rm C^{18}O} \atop {\rm km s}^{-1}$	$\frac{\Delta V_{\mathrm{C}^{18}\mathrm{O}}}{\mathrm{km}\mathrm{s}^{-1}}^{\mathrm{b}}$	${^{T_{\mathrm{C}^{18}\mathrm{O}}}_{\mathrm{K}}}$	${ au_{13}}_{\mathrm{CO}}{}^{\mathrm{c}}$	$T_{\rm ex}(^{13}{ m CO})^{ m d}$ K
G121.92-01.71_7	-342.04, 230.79	-13.60 ± 0.04	0.82 ± 0.09	2.91 ± 0.46	_	_	_	_	_
G121.92-01.71_8	-34.69, 276.71	-13.86 ± 0.01	1.09 ± 0.03	3.62 ± 0.16	-13.81 ± 0.12	1.09 ± 0.26	0.44 ± 0.13	0.20 ± 0.05	50.00 ± 5.00
G121.92-01.71_9	-239.73, -2.71	-14.23 ± 0.02	1.08 ± 0.05	2.50 ± 0.17	_	_	_	_	_
G121.92-01.71 ₋ 10	304.44, -98.21	-13.18 ± 0.03	1.38 ± 0.08	1.49 ± 0.15	-15.31 ± 0.09	0.45 ± 0.14	0.41 ± 0.11	2.46 ± 1.12	4.14 ± 0.45
G125.66-00.55 ₋ 1	-1.87, -3.71	-12.59 ± 0.04	0.55 ± 0.12	1.95 ± 0.10	_	_	_	_	_
$G125.66-00.55_{-2}$	-201.48, -328.04	-11.69 ± 0.07	5.30 ± 0.12	2.09 ± 0.22	_	_	_	_	_
G125.66-00.55 ₋ 3	184.22, 71.68	-13.73 ± 0.04	5.88 ± 0.08	2.15 ± 0.12	-15.61 ± 0.11	1.63 ± 0.26	0.50 ± 0.10	1.85 ± 0.73	6.04 ± 0.55
G125.66-00.55_4	-169.21, -194.67	-10.65 ± 0.04	4.25 ± 0.09	2.06 ± 0.12	-9.68 ± 0.14	1.53 ± 0.35	0.49 ± 0.10	1.88 ± 0.72	5.78 ± 0.53
G125.66-00.55_5	373.43, 70.57	-13.71 ± 0.10	3.86 ± 0.22	1.23 ± 0.18		-	-	-	-
G125.66-00.55_6	-282.12, 24.55	-12.75 ± 0.06	4.98 ± 0.12	1.51 ± 0.15	-11.34 ± 0.13	0.97 ± 0.23	0.35 ± 0.11	1.78 ± 1.10	4.37 ± 0.67
G125.66-00.55_7	-150.35, 334.33	-12.38 ± 0.14	0.54 ± 0.11	0.79 ± 0.15	_	_	_	_	_
G125.66-00.55_8	12.71, 239.14	-14.71 ± 0.05	1.99 ± 0.12	1.89 ± 0.21	_	_	_	_	_
G125.66-00.55_9	-90.17, -408.37	-11.47 ± 0.18	4.41 ± 0.47	1.80 ± 0.40	_	_	_	_	_
G125.66-00.55_10	-344.86, 207.32	-13.09 ± 0.14	3.44 ± 0.47	1.12 ± 0.27	-	_	-	_	-
G126.49-01.30_1	-105.00, 368.78	-12.80 ± 0.03	2.49 ± 0.06	3.65 ± 0.25	-12.50 ± 0.12	1.51 ± 0.32	0.72 ± 0.16	1.31 ± 0.70	10.81 ± 1.65
G126.49-01.30_2	-307.13, 200.24	-12.31 ± 0.03	2.47 ± 0.06	3.28 ± 0.20	-12.20 ± 0.09	1.45 ± 0.31	0.71 ± 0.14	1.56 ± 0.64	9.41 ± 1.03
G126.49-01.30_3	-37.05, -61.98	-11.85 ± 0.01	2.04 ± 0.02	3.68 ± 0.09	-11.79 ± 0.04	1.43 ± 0.09	0.73 ± 0.06	1.29 ± 0.24	10.92 ± 0.58
G126.49-01.30_4	129.49, 379.21	-12.54 ± 0.04	1.85 ± 0.09	3.39 ± 0.32	-12.57 ± 0.06	0.62 ± 0.13	1.11 ± 0.22	3.15 ± 1.00	8.95 ± 0.89
G126.49-01.30_5	315.68, 224.10	-11.94 ± 0.05	1.95 ± 0.12	2.34 ± 0.29	-12.47 ± 0.06	0.33 ± 0.07	0.76 ± 0.22	3.13 ± 1.45	6.22 ± 0.86
G126.49-01.30_6	104.09, 231.96	-12.06 ± 0.02	1.97 ± 0.04	2.70 ± 0.13	-12.26 ± 0.22	1.59 ± 0.60	0.30 ± 0.08	0.24 ± 0.06	17.18 ± 5.73
G126.49-01.30_7	-170.02, -368.87	-11.38 ± 0.03	1.43 ± 0.06	3.37 ± 0.28	-11.19 ± 0.04	0.47 ± 0.20	1.31 ± 0.20	4.03 ± 1.00	8.81 ± 0.72
G126.49-01.30_8	-153.57, 227.44 -270.00, 24.81	-12.18 ± 0.02 -11.71 ± 0.02	2.38 ± 0.05 1.95 ± 0.04	2.95 ± 0.15 2.70 ± 0.12	-11.92 ± 0.11 -11.68 ± 0.13	1.74 ± 0.24 2.03 ± 0.27	0.51 ± 0.10 0.33 ± 0.07	0.91 ± 0.57 0.20 ± 0.05	9.73 ± 2.12 50.00 ± 5.00
G126.49-01.30_9 G126.49-01.30_10	218.65, 1.24	-11.71 ± 0.02 -11.36 ± 0.01	1.95 ± 0.04 1.37 ± 0.03	2.70 ± 0.12 2.86 ± 0.12	-11.08 ± 0.13 -11.44 ± 0.04	0.71 ± 0.10	0.53 ± 0.07 0.53 ± 0.07	0.20 ± 0.03 1.10 ± 0.38	8.93 ± 1.00
G126.49-01.30_10 G126.95-01.06_1	-13.45, 59.83		1.37 ± 0.03 2.28 ± 0.03	2.59 ± 0.12 2.59 ± 0.08		0.71 ± 0.10 1.24 ± 0.21	0.33 ± 0.07 0.40 ± 0.06	0.64 ± 0.37	
G126.95-01.06_1 G126.95-01.06_2	275.72, -223.07	-11.61 ± 0.01 -11.92 ± 0.03	2.42 ± 0.03 2.42 ± 0.06	2.46 ± 0.08 2.46 ± 0.15	-11.91 ± 0.06	1.24 ± 0.21 -	0.40 ± 0.06 -		9.72 ± 2.37
G126.95-01.06_2 G126.95-01.06_3	-310.76, 123.36	-11.78 ± 0.05 -11.78 ± 0.05	3.09 ± 0.11	1.78 ± 0.17	_	_	_	_	_
G126.95-01.06_4	-76.87, -348.44	-12.72 ± 0.03 -12.72 ± 0.02	1.81 ± 0.06	2.45 ± 0.17	-12.76 ± 0.09	0.68 ± 0.20	0.41 ± 0.11	0.86 ± 0.74	8.27 ± 2.54
G126.95-01.06_5	-224.27, -128.38	-12.72 ± 0.02 -10.65 ± 0.04	3.08 ± 0.08	1.94 ± 0.15	-12.70 ± 0.09 -	0.08 ± 0.20	0.41 ± 0.11 -	0.80 ± 0.74	0.27 ± 2.04
G126.95-01.06_6	48.67, 294.37	-10.03 ± 0.04 -11.28 ± 0.03	2.09 ± 0.08	2.27 ± 0.17		_	_	_	
G127.22-02.25_1	48.35, 116.47	-10.86 ± 0.03	2.54 ± 0.06	1.64 ± 0.10	_	_	_	_	_
G127.22-02.25_2	-90.12, -70.73	-10.60 ± 0.03	2.38 ± 0.06	1.60 ± 0.10 1.60 ± 0.10	_	_	_	_	_
G127.22-02.25_3	142.83, -236.72	-11.21 ± 0.04	1.60 ± 0.09	1.45 ± 0.15	_	_	_	_	_
G127.22-02.25_4	-64.77, -224.45	-11.05 ± 0.03	2.27 ± 0.08	1.68 ± 0.13	_	_	_	_	_
G127.22-02.25_5	-241.16, 232.55	-9.56 ± 0.06	1.90 ± 0.14	1.27 ± 0.17	_	_	_	_	_
G127.22-02.25_6	-33.61, -328.85	-10.88 ± 0.04	1.42 ± 0.09	1.85 ± 0.19	_	_	_	_	_
G127.22-02.25_7	-238.38, -155.87	-10.40 ± 0.06	1.93 ± 0.15	1.29 ± 0.18	_	_	_	_	_
G127.22-02.25_8	176.83, -97.86	-11.21 ± 0.05	1.76 ± 0.12	1.48 ± 0.18	_	_	_	_	_
G127.22-02.25_9	-236.84, 93.95	-9.87 ± 0.16	3.47 ± 0.31	0.73 ± 0.22	_	_	_	_	_
G127.22-02.25_10	-95.72, 182.15	-10.98 ± 0.10	2.35 ± 0.30	1.32 ± 0.26	_	_	_	_	_
G127.22-02.25_11	-330.43, -80.73	-10.80 ± 0.07	1.92 ± 0.19	0.87 ± 0.16	_	_	_	_	_
G127.88+02.66_1	-8.77, -131.31	-11.31 ± 0.01	1.47 ± 0.01	4.88 ± 0.08	-11.28 ± 0.05	1.08 ± 0.12	0.53 ± 0.06	0.24 ± 0.06	30.73 ± 10.24
G127.88+02.66_2	15.45, 142.74	-11.77 ± 0.01	1.45 ± 0.02	4.86 ± 0.11	-11.81 ± 0.04	1.11 ± 0.10	0.77 ± 0.07	0.71 ± 0.25	16.95 ± 2.50
G127.88+02.66_3	190.01, -6.47	-11.73 ± 0.01	1.27 ± 0.02	5.47 ± 0.11	-11.89 ± 0.04	0.79 ± 0.09	0.83 ± 0.08	0.60 ± 0.26	20.16 ± 3.96

Table 2—Continued

Name	Offset(R.A. DEC.) ^a (" ")	$V_{^{13}\mathrm{CO}}$ kms^{-1}	$\frac{\Delta V_{^{13}\text{CO}}}{\text{km s}^{-1}}$	$_{ m K}^{T_{ m ^{13}CO}}$	$V_{ m C^{18}O} \ { m km s^{-1}}$	$\frac{\Delta V_{\mathrm{C}^{18}\mathrm{O}}}{\mathrm{km}\mathrm{s}^{-1}}^{\mathrm{b}}$	${^{T_{\mathrm{C}^{18}\mathrm{O}}}_{\mathrm{K}}}$	${ au_{13}}_{\mathrm{CO}}{}^{\mathrm{c}}$	$T_{\rm ex}(^{13}{ m CO})^{ m d}$ K
G127.88+02.66_4	-202.75, 220.07	-11.41 ± 0.02	1.43 ± 0.04	3.30 ± 0.16	_	_	_	_	_
G128.95-00.18 ₋ 1	-231.47, 0.76	-14.75 ± 0.01	1.28 ± 0.03	3.55 ± 0.11	-14.75 ± 0.05	0.84 ± 0.19	0.62 ± 0.09	0.95 ± 0.41	11.48 ± 1.63
G128.95-00.18 ₋ 2	171.86, -167.56	-14.14 ± 0.03	1.40 ± 0.06	3.16 ± 0.25	-14.02 ± 0.07	0.78 ± 0.15	0.54 ± 0.10	0.91 ± 0.56	10.42 ± 2.47
G128.95-00.18 ₋ 3	65.91, 146.24	-14.57 ± 0.01	1.07 ± 0.02	3.95 ± 0.12	-14.59 ± 0.04	0.68 ± 0.11	0.81 ± 0.09	1.41 ± 0.35	11.43 ± 0.74
G128.95-00.18 ₋ 4	403.40, -23.36	-14.16 ± 0.01	0.86 ± 0.03	4.89 ± 0.25	_	_	_	_	_
G128.95-00.18 ₋ 5	329.22, 87.12	-14.18 ± 0.01	0.80 ± 0.03	4.34 ± 0.18	-14.16 ± 0.05	0.59 ± 0.12	0.83 ± 0.14	1.22 ± 0.50	12.86 ± 1.50
G128.95-00.18 ₋ 6	237.94, 172.73	-14.03 ± 0.01	1.08 ± 0.04	3.75 ± 0.17	-13.95 ± 0.06	0.78 ± 0.14	0.76 ± 0.13	1.41 ± 0.54	10.90 ± 1.11
G128.95-00.18 ₋ 7	-113.55, -342.17	-14.68 ± 0.03	1.27 ± 0.07	2.10 ± 0.19	-	-	_	-	-
G128.95-00.18_8	0.18, -117.19	-14.55 ± 0.00	1.25 ± 0.03	3.67 ± 0.14	-14.43 ± 0.05	0.81 ± 0.13	0.58 ± 0.08	0.72 ± 0.37	13.04 ± 2.73
G128.95-00.18 ₋ 9	-272.52, -233.46	-14.99 ± 0.02	1.07 ± 0.05	2.57 ± 0.18		<u> </u>	.	-	<u> </u>
G131.72+09.70_1	64.10, 5.50	-8.38 ± 0.01	1.54 ± 0.02	3.42 ± 0.10	-8.51 ± 0.07	0.89 ± 0.14	0.48 ± 0.09	0.37 ± 0.12	16.61 ± 5.54
G131.72+09.70_2	77.45, -330.62	-8.46 ± 0.01	1.11 ± 0.03	3.36 ± 0.15	-8.53 ± 0.05	0.33 ± 0.07	0.80 ± 0.14	1.90 ± 0.61	9.33 ± 0.65
G131.72+09.70_3	-31.44, -199.94	-8.30 ± 0.01	1.03 ± 0.02	4.41 ± 0.12	-8.40 ± 0.06	0.67 ± 0.11	0.57 ± 0.11	0.20 ± 0.05	34.37 ± 11.46
G131.72+09.70_4	-5.37, 376.52	-7.91 ± 0.10	4.31 ± 0.22	1.15 ± 0.19	-	- 0.00 0.11			10.00 1.17
G131.72+09.70_5	-131.35, -51.09	-8.44 ± 0.01	1.17 ± 0.02	4.13 ± 0.11	-8.57 ± 0.04	0.62 ± 0.11	0.79 ± 0.11	1.19 ± 0.41	12.38 ± 1.17
G131.72+09.70_6	385.19, -7.17	-9.45 ± 0.04	1.42 ± 0.09 1.62 ± 0.28	1.97 ± 0.23 1.32 ± 0.43	_	_	_	_	_
G131.72+09.70_7	216.00, 350.27 -171.55, 211.65	-8.95 ± 0.13	1.62 ± 0.28 2.25 ± 0.13	1.32 ± 0.43 1.15 ± 0.15	_	_	_	_	_
G131.72+09.70 ₋₈ G131.72+09.70 ₋₉	-171.55, 211.65 213.94, 117.56	-8.49 ± 0.06 -8.92 ± 0.04	2.25 ± 0.13 1.95 ± 0.10	1.15 ± 0.15 1.83 ± 0.18	_	_	_	_	_
G131.72+09.70_9 G131.72+09.70_10	210.85, -197.48	-8.49 ± 0.04 -8.49 ± 0.02	0.95 ± 0.10	2.91 ± 0.18	_	_	_	_	_
G131.72+09.70_10 G131.72+09.70_11	118.46, 293.90	-8.85 ± 0.02 -8.85 ± 0.04	1.71 ± 0.11	1.58 ± 0.18	_	_	_	_	_
G131.72+09.70_11 G131.72+09.70_12	-219.30, 41.73	-8.61 ± 0.02	1.71 ± 0.11 1.23 ± 0.04	2.76 ± 0.16	_	_	_	_	_
G132.07+08.80_1	32.70, -30.88	-12.15 ± 0.01	1.70 ± 0.04	3.30 ± 0.10	-12.12 ± 0.07	0.82 ± 0.15	0.36 ± 0.07	0.24 ± 0.06	21.16 ± 7.05
G132.07+08.80_2	48.73, 366.57	-11.51 ± 0.02	1.65 ± 0.06	3.07 ± 0.10	-11.44 ± 0.12	0.83 ± 0.31	0.50 ± 0.07 0.52 ± 0.15	0.85 ± 0.80	10.35 ± 3.48
G132.07+08.80_3	-43.98, -300.43	-12.73 ± 0.02	1.65 ± 0.04	2.94 ± 0.14	_	-	-	-	_
G132.07+08.80_4	-76.89, 176.42	-11.98 ± 0.02	1.75 ± 0.04	2.67 ± 0.13	_	_	_	_	_
G132.07+08.80 ₋ 5	313.65, 205.27	-12.35 ± 0.04	1.81 ± 0.09	2.06 ± 0.21	_	_	_	_	_
G132.07+08.80_6	-115.93, -399.93	-13.09 ± 0.02	1.09 ± 0.06	3.88 ± 0.31	_	_	_	_	_
G132.03+08.95 ₋ 1	42.67, 18.01	-12.30 ± 0.02	2.32 ± 0.05	2.41 ± 0.12	_	_	_	_	_
G132.03+08.95 ₋₂	375.03, -95.57	-12.88 ± 0.03	1.16 ± 0.06	3.80 ± 0.32	-13.04 ± 0.10	0.88 ± 0.20	0.85 ± 0.21	1.71 ± 0.86	10.64 ± 1.39
G132.03+08.95_3	-8.86, -406.84	-11.98 ± 0.04	1.76 ± 0.10	3.13 ± 0.35	_	_	_	_	_
G132.03+08.95_4	236.83, 233.85	-11.60 ± 0.04	2.26 ± 0.08	2.09 ± 0.18	_	_	_	_	_
G132.03+08.95 ₋ 5	-96.88, -275.79	-11.72 ± 0.02	1.75 ± 0.05	2.57 ± 0.16	_	_	_	_	_
G132.03+08.95_6	139.31, -374.38	-12.14 ± 0.07	1.94 ± 0.15	2.26 ± 0.43	_	_	_	_	_
G132.03+08.95 ₋ 7	269.04, -165.02	-12.79 ± 0.02	0.92 ± 0.06	3.67 ± 0.30	-12.93 ± 0.13	1.04 ± 0.28	0.68 ± 0.20	1.13 ± 0.89	11.27 ± 2.71
$G133.28+08.81_{-1}$	63.92, -24.09	-11.06 ± 0.05	2.02 ± 0.12	1.95 ± 0.23	-10.81 ± 0.16	1.55 ± 0.32	0.59 ± 0.18	2.80 ± 1.40	5.24 ± 0.69
$G133.28+08.81_{-2}$	-161.66, -115.49	-10.63 ± 0.07	1.88 ± 0.18	1.44 ± 0.26	-10.39 ± 0.12	0.99 ± 0.32	0.35 ± 0.11	1.94 ± 1.22	4.15 ± 0.88
G133.28+08.81_3	195.98, 292.97	-11.39 ± 0.23	0.45 ± 0.13	0.53 ± 0.14		-	-		-
G133.28+08.81_4	-28.19, 104.83	-10.98 ± 0.06	2.07 ± 0.16	1.89 ± 0.28	-10.73 ± 0.09	0.53 ± 0.22	0.92 ± 0.28	5.54 ± 2.77	4.96 ± 0.72
G133.28+08.81_5	-179.85, 164.58	-11.15 ± 0.15	2.40 ± 0.66	0.92 ± 0.30	_	_	_	_	_
G133.28+08.81_6	-42.69, 393.91	-10.40 ± 0.18	2.77 ± 0.56	0.98 ± 0.30	-	-	_		-
G133.28+08.81_7	199.91, -201.01	-11.31 ± 0.07	2.00 ± 0.17	1.28 ± 0.21	-11.26 ± 0.22	0.34 ± 0.07	0.50 ± 0.13	4.11 ± 1.78	3.54 ± 0.47
G133.28+08.81_8	-39.82, 194.61	-11.22 ± 0.08	1.81 ± 0.26	1.12 ± 0.24	_	_	_	_	
$G133.28+08.81_{-9}$	-353.68, -38.86	-11.02 ± 0.06	1.39 ± 0.15	1.16 ± 0.20	_	_	_	_	_

Table 2—Continued

Name	Offset(R.A. DEC.) ^a (" ")	$V_{^{13}\mathrm{CO}}$ kms^{-1}	$\frac{\Delta V_{^{13}\text{CO}}}{\text{km s}^{-1}}$	${^{T_{ m ^{13}CO}}_{ m K}}$	$V_{ m C^{18}O} \ { m km s^{-1}}$	$\frac{\Delta V_{\mathrm{C}^{18}\mathrm{O}}}{\mathrm{km}\mathrm{s}^{-1}}^{\mathrm{b}}$	${^{T_{\mathrm{C}^{18}\mathrm{O}}}_{\mathrm{K}}}$	${ au_{13}}_{\mathrm{CO}}{}^{\mathrm{c}}$	$T_{\rm ex}(^{13}{ m CO})^{ m d}$ K
G133.48+09.02_1	-68.03, 41.28	-16.22 ± 0.03	2.99 ± 0.06	6.22 ± 0.36	-16.19 ± 0.05	2.62 ± 0.12	1.32 ± 0.11	1.52 ± 0.31	16.61 ± 1.31
G133.48+09.02 ₋ 2	94.14, 270.16	-16.35 ± 0.07	3.12 ± 0.15	3.62 ± 0.48	-16.31 ± 0.16	3.72 ± 0.39	0.61 ± 0.13	0.88 ± 0.66	11.99 ± 4.01
G133.48+09.02_3	125.04, -228.34	-14.72 ± 0.06	2.29 ± 0.15	3.57 ± 0.51	-14.63 ± 0.09	1.66 ± 0.29	0.84 ± 0.13	1.87 ± 0.71	9.90 ± 1.75
G133.48+09.02_4	-265.02, 248.58	-14.99 ± 0.15	3.77 ± 0.55	2.27 ± 0.41	_	_	_	_	_
$G133.48+09.02_5$	-264.64, -21.07	-15.38 ± 0.04	2.32 ± 0.10	3.51 ± 0.32	-15.92 ± 0.16	2.47 ± 0.38	0.53 ± 0.13	0.57 ± 0.19	13.78 ± 7.69
G136.31-01.77 ₋ 1	-6.76, -40.87	-8.73 ± 0.02	1.58 ± 0.04	2.95 ± 0.13	-8.60 ± 0.08	1.21 ± 0.16	0.51 ± 0.09	0.93 ± 0.50	9.67 ± 1.78
G136.31-01.77 ₋₂	$156.05,\ 377.85$	-9.41 ± 0.04	1.43 ± 0.12	2.28 ± 0.29	_	_	_	_	_
G136.31-01.77 ₋ 3	333.11, 188.10	-9.90 ± 0.06	2.34 ± 0.16	1.46 ± 0.21	_	_	_	_	_
G136.31-01.77_4	63.17, -367.20	-8.75 ± 0.04	1.39 ± 0.09	2.20 ± 0.21	_	_	_	_	_
G136.31-01.77 ₋ 5	105.15, 168.31	-9.37 ± 0.02	1.64 ± 0.06	1.77 ± 0.10	_	_	_	_	_
G136.31-01.77_6	396.39, -68.64	-10.21 ± 0.05	1.37 ± 0.13	1.85 ± 0.28	_	_	_	_	_
G136.31-01.77_7	-71.74, -310.33	-9.19 ± 0.04	1.50 ± 0.12	1.33 ± 0.17	-		_	-	-
G140.49+06.07_1	-63.35, 3.28	-17.20 ± 0.01	2.18 ± 0.03	3.07 ± 0.10	-17.37 ± 0.13	1.97 ± 0.29	0.28 ± 0.06	0.20 ± 0.05	22.53 ± 7.51
G140.49+06.07_2	-183.43, 343.69	-18.25 ± 0.03	1.53 ± 0.07	3.78 ± 0.30	-18.15 ± 0.09	0.54 ± 0.11	0.64 ± 0.21	0.93 ± 0.91	12.23 ± 4.05
G140.49+06.07_3	-159.30, -311.64	-16.28 ± 0.03	1.67 ± 0.06	3.23 ± 0.23	-15.68 ± 0.10	0.70 ± 0.23	0.50 ± 0.15	0.65 ± 0.22	12.00 ± 6.13
G140.49+06.07_4	207.65, 63.38	-17.58 ± 0.01	1.21 ± 0.02	3.99 ± 0.12	-17.59 ± 0.12	1.15 ± 0.29	0.38 ± 0.09	0.20 ± 0.05	28.26 ± 9.42
G140.49+06.07_5	-28.86, -222.00 -87.96, 215.14	-16.57 ± 0.02	1.63 ± 0.05 1.99 ± 0.05	3.04 ± 0.19 2.68 ± 0.13	-16.64 ± 0.15	1.15 ± 0.37	0.34 ± 0.11	0.24 ± 0.06	19.24 ± 6.41
G140.49+06.07_6 G140.77+05.00_1	-87.96, 215.14 74.56, -45.41	-17.39 ± 0.02 -13.61 ± 0.01	1.36 ± 0.05 1.36 ± 0.01	4.22 ± 0.13	-13.54 ± 0.04	-1.17 ± 0.08	-0.59 ± 0.05	-0.38 ± 0.23	$-$ 19.87 \pm 6.50
G140.77+05.00_1 G140.77+05.00_2	54.93, -384.27	-13.81 ± 0.01 -13.88 ± 0.01	1.30 ± 0.01 1.34 ± 0.02	5.39 ± 0.07	-13.89 ± 0.04 -13.89 ± 0.11	1.17 ± 0.08 1.22 ± 0.33	0.59 ± 0.03 0.56 ± 0.14	0.38 ± 0.23 0.22 ± 0.06	35.05 ± 11.68
G140.77+05.00_2 G140.77+05.00_3	-271.93, 145.07	-13.88 ± 0.01 -13.88 ± 0.02	1.54 ± 0.02 1.50 ± 0.04	2.72 ± 0.14	-13.89 ± 0.11 -13.93 ± 0.11	0.78 ± 0.22	0.36 ± 0.14 0.36 ± 0.11	0.22 ± 0.06 0.26 ± 0.06	16.57 ± 5.52
G140.77+05.00_4	49.69, -259.11	-13.78 ± 0.02 -13.78 ± 0.01	1.49 ± 0.02	3.45 ± 0.19	-13.86 ± 0.08	1.09 ± 0.18	0.36 ± 0.11 0.36 ± 0.07	0.23 ± 0.06 0.23 ± 0.06	22.63 ± 7.54
G140.77+05.00_5	-371.83, 4.89	-13.78 ± 0.01 -13.80 ± 0.04	1.43 ± 0.02 1.43 ± 0.11	2.12 ± 0.03	-13.00 ± 0.00	1.03 ± 0.16	-	0.25 ± 0.00 -	22.03 ± 1.34 -
G140.77+05.00_6	-108.78, 48.41	-14.02 ± 0.01	1.06 ± 0.03	2.92 ± 0.10	-14.20 ± 0.12	0.92 ± 0.31	0.24 ± 0.08	0.20 ± 0.05	23.06 ± 7.69
G140.77+05.00_7	176.04, -273.09	-14.06 ± 0.02	1.50 ± 0.03 1.50 ± 0.04	2.59 ± 0.12	-14.22 ± 0.12	0.40 ± 0.08	0.21 ± 0.00 0.29 ± 0.09	0.20 ± 0.06 0.24 ± 0.06	16.57 ± 5.52
G142.49+07.48_1	-46.91, -80.24	-13.51 ± 0.02	1.72 ± 0.05	1.92 ± 0.11	-13.36 ± 0.12	0.97 ± 0.33	0.33 ± 0.09	0.21 ± 0.00 0.91 ± 0.76	6.42 ± 1.85
G142.49+07.48_2	228.36, 131.68	-13.73 ± 0.02	1.14 ± 0.04	2.32 ± 0.13	-	-	-	_	-
G142.49+07.48_3	127.48, 386.95	-13.65 ± 0.02	0.60 ± 0.05	3.84 ± 0.29	_	_	_	_	_
G142.49+07.48-4	-366.16, -63.49	-13.22 ± 0.02	0.93 ± 0.04	2.67 ± 0.18	-13.31 ± 0.07	0.44 ± 0.18	0.74 ± 0.14	2.48 ± 0.79	7.22 ± 0.61
G142.49+07.48 ₋ 5	392.32, 11.18	-13.66 ± 0.03	1.26 ± 0.07	2.12 ± 0.21	-11.85 ± 0.05	0.33 ± 0.07	0.67 ± 0.18	3.02 ± 1.28	5.65 ± 0.62
G142.49+07.48_6	-99.68, 386.49	-13.52 ± 0.03	0.87 ± 0.07	2.52 ± 0.27	_	_	_	_	_
G142.49+07.48 ₋ 7	-227.92, -157.23	-13.25 ± 0.02	1.26 ± 0.05	2.31 ± 0.16	_	_	_	_	_
G142.49+07.48 ₋₈	73.99, 330.61	-13.67 ± 0.02	0.79 ± 0.05	2.98 ± 0.25	_	_	_	_	_
G142.49+07.48_9	102.41, 14.94	-13.38 ± 0.02	1.60 ± 0.05	2.23 ± 0.14	_	_	_	_	-
$G142.49+07.48_{-}10$	224.03, -131.91	-13.34 ± 0.07	2.09 ± 0.17	0.96 ± 0.17	_	_	_	_	_
$G142.49+07.48_{-}11$	-21.14, -427.92	_	_	_	_	_	_	_	_
$G142.49+07.48_{-}12$	74.85, -229.61	-14.01 ± 0.03	1.14 ± 0.07	1.85 ± 0.17	-13.59 ± 0.06	0.33 ± 0.07	0.45 ± 0.14	2.00 ± 1.11	5.16 ± 0.70
$G142.62+07.29_{-1}$	-3.79, -74.43	-11.43 ± 0.01	1.00 ± 0.02	2.94 ± 0.10	-11.37 ± 0.05	0.50 ± 0.10	0.46 ± 0.08	0.67 ± 0.44	10.83 ± 2.95
G142.62+07.29_2	-408.10, -75.40	-11.39 ± 0.04	1.21 ± 0.10	2.44 ± 0.33		-	-	-	-
G142.62+07.29_3	-29.94, 98.29	-12.24 ± 0.01	1.05 ± 0.03	2.44 ± 0.11	-12.27 ± 0.11	0.68 ± 0.20	0.26 ± 0.08	0.23 ± 0.06	16.12 ± 5.37
G142.62+07.29_4	-321.77, -51.78	-11.32 ± 0.03	1.31 ± 0.07	1.89 ± 0.17	_	_	_	_	_
G142.62+07.29_5	-132.01, -207.83	-12.67 ± 0.04	1.82 ± 0.08	1.35 ± 0.14	_	_	_	_	_
G142.62+07.29_6	-0.84, 244.23	-12.57 ± 0.02	0.98 ± 0.04	2.08 ± 0.13	_	_	_	_	
G142.62+07.29 ₋ 7	-162.20, 122.77	-12.61 ± 0.05	1.21 ± 0.20	1.37 ± 0.19	_	_	_	_	_

Table 2—Continued

Name	Offset(R.A. DEC.) ^a ("' ")	$V_{^{13}\mathrm{CO}}$ kms^{-1}	$\frac{\Delta V_{^{13}\text{CO}}}{\text{km s}^{-1}}$	${^{T_{ m ^{13}CO}}_{ m K}}$	$V_{\rm C^{18}O} \atop {\rm kms}^{-1}$	$\frac{\Delta V_{\mathrm{C}^{18}\mathrm{O}}}{\mathrm{km}\mathrm{s}^{-1}}^{\mathrm{b}}$	${^{T_{\mathrm{C}^{18}\mathrm{O}}}_{\mathrm{K}}}$	${{ au_{13}}_{\mathrm{CO}}}^{\mathrm{c}}$	$T_{\rm ex}(^{13}{ m CO})^{ m d}$ K
G142.62+07.29_8	-353.36, -208.13	_	_	_	_	_	_	_	_
G144.84+00.76_1	-92.04, 17.23	-30.34 ± 0.08	3.45 ± 0.18	2.13 ± 0.30	_	_	_	_	_
G144.84+00.76_2	216.26, -27.80	-30.12 ± 0.05	2.22 ± 0.12	2.62 ± 0.31	_	_	_	_	_
G144.84+00.76_3	33.66, -188.76	-29.48 ± 0.06	2.66 ± 0.14	2.11 ± 0.26	_	_	_	_	_
G144.84+00.76_4	337.97, -203.89	-30.25 ± 0.05	1.49 ± 0.10	2.51 ± 0.35	_	_	_	_	_
G144.84+00.76_5	407.64, -37.77	-30.81 ± 0.05	1.36 ± 0.12	3.17 ± 0.45	_	_	_	_	_
G144.84+00.76_6	-358.29, -183.75	-29.93 ± 0.10	2.27 ± 0.24	1.39 ± 0.33	_	_	_	_	_
G144.84+00.76_7	14.46, -410.93	_	_	_	_	_	_	_	_
G144.84+00.76_8	-240.48, 330.61	-32.16 ± 0.04	0.35 ± 0.16	3.20 ± 0.71	_	_	_	_	_
G144.84+00.76_9	-363.35, 42.35	_	_	_	_	_	_	_	_
G144.84+00.76_10	-58.47, 213.76	-30.73 ± 0.08	2.03 ± 0.23	1.87 ± 0.37	_	_	_	_	_
$G144.84+00.76_{-}11$	106.33, -344.41	-28.91 ± 0.12	2.20 ± 0.26	1.65 ± 0.48	_	_	_	_	_
$G144.84+00.76_{-12}$	-250.11, -284.31	_	_	_	_	_	_	_	_
G144.84+00.76 ₋ 13	282.01, 105.46	-31.22 ± 0.17	2.94 ± 0.51	1.24 ± 0.40	_	_	_	_	_
$G144.84 + 00.76_{-}14$	-164.50, -191.40	-29.26 ± 0.09	2.73 ± 0.24	1.48 ± 0.28	_	_	_	_	_
$G146.11+07.80_{-1}$	15.88, -21.69	-11.83 ± 0.01	1.31 ± 0.02	3.18 ± 0.08	-11.77 ± 0.04	0.95 ± 0.09	0.60 ± 0.06	1.17 ± 0.29	9.74 ± 0.72
$G146.11+07.80_2$	160.33, 157.17	-12.17 ± 0.02	1.39 ± 0.04	2.26 ± 0.11	_	_	_	_	_
G146.11+07.80 ₋ 3	39.73, -215.09	-11.84 ± 0.01	1.28 ± 0.03	2.92 ± 0.13	-11.90 ± 0.05	0.74 ± 0.12	0.62 ± 0.08	1.54 ± 0.44	8.44 ± 0.67
$G146.11+07.80_{-4}$	-17.55, 324.27	-11.52 ± 0.03	1.36 ± 0.07	1.49 ± 0.13	_	_	_	_	_
$G146.11+07.80_{-5}$	230.86, -56.99	-12.15 ± 0.01	0.75 ± 0.02	3.08 ± 0.13	-12.08 ± 0.08	0.70 ± 0.15	0.33 ± 0.08	0.23 ± 0.06	20.00 ± 6.67
$G146.11+07.80_6$	-37.70, -357.81	-11.88 ± 0.04	1.10 ± 0.09	1.52 ± 0.20	_	_	_	_	_
$G146.71+02.05_{-1}$	34.98, 15.55	2.36 ± 0.01	0.97 ± 0.04	3.88 ± 0.21	2.35 ± 0.07	0.78 ± 0.15	0.52 ± 0.09	0.28 ± 0.07	22.15 ± 7.38
$G146.71+02.05_2$	-225.82, -58.60	2.25 ± 0.01	0.84 ± 0.03	3.52 ± 0.19	2.33 ± 0.11	0.80 ± 0.32	0.41 ± 0.11	0.25 ± 0.06	21.73 ± 7.24
$G146.71+02.05_3$	171.63, -193.06	1.45 ± 0.04	2.04 ± 0.08	1.76 ± 0.15	_	_	_	_	_
$G146.71+02.05_{-4}$	363.97, -102.25	1.43 ± 0.07	2.70 ± 0.14	1.27 ± 0.19	_	_	_	_	_
$G146.71+02.05_{-5}$	-352.29, -208.03	2.40 ± 0.02	0.78 ± 0.04	3.65 ± 0.30	_	_	_	_	_
$G146.71+02.05_{-6}$	235.44, -11.45	2.39 ± 0.02	0.75 ± 0.05	3.15 ± 0.22	_	_	_	_	_
$G146.71+02.05_{-7}$	-133.28, -251.97	2.44 ± 0.02	0.83 ± 0.05	2.23 ± 0.17		.	-	.	-
G146.71+02.05 ₋₈	-224.57, 167.84	1.94 ± 0.02	0.75 ± 0.06	1.93 ± 0.17	1.07 ± 0.06	0.33 ± 0.07	0.54 ± 0.13	2.49 ± 0.99	5.24 ± 0.55
G147.01+03.39_1	-9.23, 9.90	-4.70 ± 0.01	0.74 ± 0.02	3.33 ± 0.13	-4.67 ± 0.08	0.68 ± 0.17	0.41 ± 0.10	0.20 ± 0.05	50.00 ± 5.00
G148.00+00.09_1	387.97, -71.98	-32.49 ± 0.02	2.53 ± 0.05	3.93 ± 0.19	-32.66 ± 0.14	1.82 ± 0.52	0.65 ± 0.16	0.90 ± 0.70	12.85 ± 3.39
G148.00+00.09_2	188.20, -15.39	-33.34 ± 0.01	2.52 ± 0.03	3.01 ± 0.10	-33.31 ± 0.12	2.13 ± 0.21	0.39 ± 0.08	0.28 ± 0.07	17.38 ± 5.79
G148.00+00.09_3	389.81, 118.97	-33.42 ± 0.03	1.27 ± 0.09	4.83 ± 0.45	-	_	-		_
G148.00+00.09_4	19.59, -150.16	-33.95 ± 0.01	1.85 ± 0.03	3.49 ± 0.10	-33.86 ± 0.05	1.17 ± 0.13	0.61 ± 0.07	1.07 ± 0.31	10.90 ± 0.99
G148.00+00.09_5	297.62, -237.61	-33.20 ± 0.01	1.42 ± 0.04	3.93 ± 0.17	-33.14 ± 0.07	0.76 ± 0.20	0.75 ± 0.15	1.32 ± 0.60	11.55 ± 1.38
G148.00+00.09_6	170.56, 232.03	-34.31 ± 0.01	1.52 ± 0.03	2.93 ± 0.12	-34.33 ± 0.13	1.02 ± 0.23	0.30 ± 0.09	0.22 ± 0.06	19.54 ± 6.51
G148.00+00.09-7	-27.64, -356.72	-33.48 ± 0.03	2.12 ± 0.07	2.08 ± 0.17	_	_	_	_	_
G148.00+00.09_8	-73.40, 124.98	-34.06 ± 0.02	1.44 ± 0.04	2.88 ± 0.14	_	_	_	_	_
G148.00+00.09_9	-55.45, 359.08	-33.93 ± 0.02	1.19 ± 0.05	3.42 ± 0.23	20.69 0.05	0.60 0.10	0.02 0.15	2 12 0 50	10.24 0.61
G148.00+00.09_10	334.72, 20.50	-33.17 ± 0.02	2.23 ± 0.04	3.81 ± 0.16	-32.68 ± 0.05	0.62 ± 0.12	0.93 ± 0.15	2.12 ± 0.59	10.34 ± 0.61
G148.00+00.09_11	-293.87, -150.48	-33.92 ± 0.04	1.31 ± 0.10	2.08 ± 0.26	-32.81 ± 0.12	1 49 1 0 05	-0.95 ± 0.24	1 01 0 00	$-$ 11.69 \pm 1.23
G148.00+00.09_12	416.96, -96.60	-32.53 ± 0.03	2.43 ± 0.06	4.26 ± 0.28 2.63 ± 0.17	-32.81 ± 0.12	1.43 ± 0.25	0.95 ± 0.24	1.81 ± 0.86	11.09 ± 1.23
G148.00+00.09_13	-143.90, -238.07	-33.79 ± 0.02	1.65 ± 0.05		-34.07 ± 0.05	-0.76 ± 0.15	$-$ 1.02 \pm 0.16	$-$ 1.99 \pm 0.55	$-$ 11.72 \pm 0.71
$G148.24+00.41_{-1}$	-348.83, 124.41	-33.50 ± 0.02	2.13 ± 0.04	4.34 ± 0.19	-34.07 ± 0.05	0.70 ± 0.15	1.02 ± 0.10	1.99 ± 0.55	11.12 ± 0.11

Table 2—Continued

Name	Offset(R.A. DEC.) ^a (" ")	$V_{^{13}\mathrm{CO}}$ kms^{-1}	$\frac{\Delta V_{^{13}\text{CO}}}{\text{km s}^{-1}}$	${^{T_{\rm{^{13}CO}}}_{\rm{K}}}$	$V_{\mathrm{C}^{18}\mathrm{O}} \atop \mathrm{kms}^{-1}$	$\frac{\Delta V_{\rm C^{18}O}}{{\rm kms}^{-1}}^{\rm b}$	${^{T_{\mathrm{C}^{18}\mathrm{O}}}_{\mathrm{K}}}$	${ au_{13}}_{\mathrm{CO}}{}^{\mathrm{c}}$	$T_{\rm ex}(^{13}{ m CO})^{ m d}$ K
G148.24+00.41_2	-214.68, 79.88	-33.73 ± 0.01	2.05 ± 0.03	4.09 ± 0.13	-33.79 ± 0.06	1.75 ± 0.13	0.80 ± 0.09	1.40 ± 0.34	11.83 ± 0.78
G148.24+00.41 ₋ 3	-321.90, -176.71	-33.52 ± 0.03	2.49 ± 0.08	2.56 ± 0.18	-33.25 ± 0.19	1.82 ± 0.40	0.40 ± 0.13	0.75 ± 0.25	9.08 ± 4.19
G148.24+00.41_4	29.19, 46.36	-34.80 ± 0.01	1.59 ± 0.02	3.14 ± 0.09	-34.78 ± 0.05	1.17 ± 0.12	0.61 ± 0.07	1.39 ± 0.33	9.25 ± 0.59
$G148.24+00.41_{-5}$	-24.59, -376.60	-33.95 ± 0.04	3.05 ± 0.09	1.53 ± 0.12	_	_	_	_	_
$G148.24+00.41_{-6}$	-148.60, -47.74	-33.80 ± 0.02	2.20 ± 0.04	2.76 ± 0.12	-33.82 ± 0.09	1.50 ± 0.20	0.51 ± 0.09	1.24 ± 0.54	8.38 ± 1.05
$G148.24+00.41_{-7}$	-95.95, -238.17	-33.93 ± 0.03	2.77 ± 0.09	1.47 ± 0.10	_	_	_	_	_
$G149.23+03.07_{-1}$	7.11, -188.49	2.83 ± 0.01	1.30 ± 0.02	4.45 ± 0.14	2.65 ± 0.12	1.00 ± 0.37	0.34 ± 0.09	0.20 ± 0.05	37.09 ± 12.36
G149.23+03.07 ₋ 2	-158.24, -371.10	2.57 ± 0.02	1.04 ± 0.04	5.76 ± 0.36	-	-	-	-	
G149.23+03.07_3	-44.41, 96.78	3.21 ± 0.01	1.19 ± 0.02	4.20 ± 0.13	3.23 ± 0.10	1.07 ± 0.19	0.42 ± 0.09	0.22 ± 0.05	28.31 ± 9.44
G149.23+03.07 ₋ 4	-311.82, -133.32	2.87 ± 0.01	1.24 ± 0.03	3.97 ± 0.19	2.88 ± 0.12	0.90 ± 0.28	0.43 ± 0.13	0.24 ± 0.06	25.29 ± 8.43
G149.23+03.07 ₋ 5	252.25, -14.61	3.06 ± 0.01	1.07 ± 0.02	4.29 ± 0.13	2.98 ± 0.15	1.10 ± 0.26	0.32 ± 0.10	0.20 ± 0.05	35.98 ± 11.99
G149.41+03.37_1	15.73, 42.72	3.28 ± 0.01	1.25 ± 0.02	4.27 ± 0.10	3.23 ± 0.06	1.11 ± 0.15	0.58 ± 0.08	0.30 ± 0.10	23.05 ± 7.68
G149.41+03.37_2	360.24, -134.24	3.36 ± 0.01	1.16 ± 0.03	4.48 ± 0.18	3.28 ± 0.09	1.00 ± 0.18	0.66 ± 0.14	0.49 ± 0.16	18.41 ± 6.14
G149.41+03.37_3	-375.32, 123.84	3.39 ± 0.02	1.28 ± 0.05	3.62 ± 0.25	_	-	_	-	-
G149.41+03.37_4	-139.98, -137.79	3.28 ± 0.01	1.02 ± 0.02	4.17 ± 0.12	3.04 ± 0.09	0.64 ± 0.31	0.33 ± 0.09	0.20 ± 0.05	33.91 ± 11.30
G149.41+03.37_5	-152.36, -373.20	3.12 ± 0.03	1.28 ± 0.09	2.82 ± 0.30					
G149.41+03.37_6	282.50, 219.08	3.30 ± 0.02	1.13 ± 0.03	2.96 ± 0.15	3.15 ± 0.05	0.40 ± 0.08	0.87 ± 0.11	2.69 ± 0.56	7.94 ± 0.46
G149.41+03.37-7	263.32, -304.05	3.19 ± 0.02	1.20 ± 0.05	3.59 ± 0.27	_	_	_	_	_
G149.41+03.37 ₋₈	-267.72, 164.15	3.47 ± 0.02	1.15 ± 0.03	3.90 ± 0.20	_	_	_	_	_
G149.41+03.37_9	99.66, -365.07	3.09 ± 0.02 3.33 ± 0.01	1.20 ± 0.04 1.17 ± 0.02	2.97 ± 0.19 4.44 ± 0.15	3.22 ± 0.10	-0.94 ± 0.20	-0.52 ± 0.12	-0.25 ± 0.06	-26.84 ± 8.95
G149.41+03.37_10 G149.52-01.23_1	244.83, -131.34 -27.96, 8.55	-7.97 ± 0.01	2.34 ± 0.03	4.44 ± 0.15 4.10 ± 0.11	-7.77 ± 0.06	0.94 ± 0.20 1.60 ± 0.14	0.52 ± 0.12 0.54 ± 0.06	0.25 ± 0.06 0.25 ± 0.06	26.84 ± 8.95 25.34 ± 8.45
G149.52-01.23_1 G149.52-01.23_2	-27.90, 8.55 -13.74, 317.80	-8.01 ± 0.01	2.54 ± 0.03 2.55 ± 0.06	2.57 ± 0.14	-7.67 ± 0.00 -7.67 ± 0.11	0.76 ± 0.14	0.34 ± 0.00 0.38 ± 0.10	0.25 ± 0.06 0.49 ± 0.16	10.85 ± 7.38
G149.52-01.23_3 G149.52-01.23_3	-183.03, 368.15	-8.01 ± 0.03 -7.71 ± 0.03	1.53 ± 0.06 1.53 ± 0.07	4.52 ± 0.14	-7.67 ± 0.11 -	0.70 ± 0.38	0.38 ± 0.10	0.49 ± 0.16 -	10.65 ± 7.56
G149.52-01.23_4 G149.52-01.23_4	104.09, -390.24	-7.71 ± 0.03 -7.77 ± 0.04	1.44 ± 0.11	3.42 ± 0.33	_	_	_	_	_
G149.52-01.23_4 G149.52-01.23_5	29.95, -206.06	-7.63 ± 0.04 -7.63 ± 0.01	1.73 ± 0.03	3.42 ± 0.33 3.43 ± 0.12	-7.38 ± 0.11	-1.54 ± 0.27	0.41 ± 0.09	0.26 ± 0.06	-20.78 ± 6.93
G149.52-01.23_6	-134.43, -187.85	-8.21 ± 0.02	1.73 ± 0.03 1.80 ± 0.05	3.43 ± 0.12 3.10 ± 0.15	-7.36 ± 0.11 -	1.54 ± 0.27	0.41 ± 0.09	0.20 ± 0.00	20.78 ± 0.93
G149.52-01.23_7	179.51, -141.67	-8.19 ± 0.02 -8.19 ± 0.03	1.50 ± 0.03 1.57 ± 0.11	1.98 ± 0.17	_	_	_	_	_
G149.58+03.45_1	-69.81, -9.11	3.44 ± 0.01	1.29 ± 0.02	4.26 ± 0.10	3.59 ± 0.04	0.92 ± 0.10	0.77 ± 0.08	1.05 ± 0.30	13.17 ± 1.17
G149.58+03.45_2	339.78, 68.55	3.36 ± 0.01	1.41 ± 0.03	3.94 ± 0.15	3.44 ± 0.06	1.14 ± 0.15	0.71 ± 0.00 0.71 ± 0.10	1.03 ± 0.30 1.03 ± 0.42	12.35 ± 1.62
G149.58+03.45_3	-405.46, 35.76	3.30 ± 0.03	1.57 ± 0.06	3.34 ± 0.13	2.86 ± 0.05	0.33 ± 0.07	0.78 ± 0.23	1.81 ± 1.04	9.34 ± 1.23
G149.58+03.45_4	-360.28, -132.96	3.16 ± 0.02	1.04 ± 0.04	3.67 ± 0.21	2.00 ± 0.00	-	-	-	-
G149.58+03.45 ₋ 5	126.13, 218.58	3.71 ± 0.02	1.54 ± 0.08	2.14 ± 0.13	3.66 ± 0.10	0.73 ± 0.23	0.38 ± 0.10	0.98 ± 0.79	6.95 ± 1.83
G149.58+03.45_6	-138.35, -256.72	3.05 ± 0.01	0.99 ± 0.03	3.16 ± 0.14	-	-	-	_	-
G149.65+03.54_1	-384.78, -105.36	3.48 ± 0.02	1.24 ± 0.04	5.24 ± 0.30	3.71 ± 0.05	0.58 ± 0.09	1.24 ± 0.20	1.87 ± 0.59	13.91 ± 1.09
G149.65+03.54_2	320.96, -110.65	3.16 ± 0.02	1.70 ± 0.02	3.51 ± 0.11	3.73 ± 0.04	0.46 ± 0.06	0.73 ± 0.08	1.46 ± 0.34	10.17 ± 0.63
G149.65+03.54_3	-115.54, -55.16	3.47 ± 0.01	1.31 ± 0.02	4.09 ± 0.10	3.61 ± 0.04	0.91 ± 0.17	0.58 ± 0.06	0.42 ± 0.25	18.48 ± 6.00
G149.65+03.54_4	57.01, -395.13	3.13 ± 0.02	1.49 ± 0.04	3.57 ± 0.19	_	_	_		_
G149.65+03.54_5	202.97, -273.05	3.37 ± 0.01	1.41 ± 0.03	3.64 ± 0.13	3.67 ± 0.04	0.33 ± 0.07	0.61 ± 0.06	0.85 ± 0.29	12.15 ± 1.57
$G149.65+03.54_{-}6$	-391.16, 111.47	3.52 ± 0.05	1.26 ± 0.12	3.19 ± 0.46	_	_	_	_	_
G149.65+03.54 ₋ 7	-199.86, -322.24	2.97 ± 0.01	0.99 ± 0.04	3.82 ± 0.20	_	_	_	_	_
G149.65+03.54_8	90.06, 87.63	3.46 ± 0.01	1.82 ± 0.03	2.56 ± 0.09	3.63 ± 0.11	1.72 ± 0.29	0.26 ± 0.05	0.22 ± 0.06	17.24 ± 5.75
G150.22+03.91_1	-23.00, 6.73	3.06 ± 0.01	1.47 ± 0.02	4.51 ± 0.10	3.31 ± 0.04	1.12 ± 0.11	0.92 ± 0.09	1.41 ± 0.32	12.89 ± 0.72
G150.22+03.91_2	-13.22, -401.13	3.04 ± 0.01	0.84 ± 0.03	6.85 ± 0.30	2.91 ± 0.03	0.33 ± 0.07	1.37 ± 0.25	1.34 ± 0.55	18.45 ± 2.09

Table 2—Continued

Name	Offset(R.A. DEC.) ^a (" ")	$V_{^{13}\text{CO}}$ km s ⁻¹	$\frac{\Delta V_{^{13}\text{CO}}}{\text{km s}^{-1}}$	${^{T_{ m ^{13}CO}}_{ m K}}$	$^{V_{\rm C^{18}O}}_{\rm kms^{-1}}$	$\frac{\Delta V_{\mathrm{C}^{18}\mathrm{O}}}{\mathrm{km}\mathrm{s}^{-1}}^{\mathrm{b}}$	${^{T_{\mathrm{C}^{18}\mathrm{O}}}_{\mathrm{K}}}$	${\tau_{13}}_{\mathrm{CO}}^{}\mathrm{c}}$	$T_{\rm ex}(^{13}{ m CO})^{ m d}$
G150.22+03.91_3	-377.18, -69.15	3.15 ± 0.02	1.27 ± 0.03	4.97 ± 0.24	3.33 ± 0.10	0.84 ± 0.18	0.71 ± 0.19	0.44 ± 0.15	21.56 ± 7.19
G150.22+03.91_4	184.92, -324.73	2.88 ± 0.01	1.01 ± 0.02	6.25 ± 0.18	2.83 ± 0.04	0.48 ± 0.10	1.31 ± 0.15	1.48 ± 0.36	16.77 ± 1.02
G150.22+03.91 ₋ 5	377.23, -121.92	3.02 ± 0.01	1.10 ± 0.03	5.25 ± 0.25	3.14 ± 0.06	0.71 ± 0.13	1.13 ± 0.21	1.56 ± 0.61	14.37 ± 1.34
G150.22+03.91_6	-161.45, -234.68	2.96 ± 0.01	1.03 ± 0.02	5.21 ± 0.17	3.01 ± 0.08	0.90 ± 0.26	0.55 ± 0.11	0.22 ± 0.06	33.71 ± 11.24
G150.22+03.91 ₋ 7	310.39, 77.93	3.24 ± 0.01	1.14 ± 0.02	4.03 ± 0.13	3.37 ± 0.11	1.00 ± 0.21	0.43 ± 0.12	0.23 ± 0.06	26.01 ± 8.67
$G150.44+03.95_{-1}$	138.86, 228.10	3.00 ± 0.01	1.51 ± 0.03	4.56 ± 0.16	2.98 ± 0.12	1.09 ± 0.26	0.51 ± 0.12	0.24 ± 0.06	28.28 ± 9.43
$G150.44+03.95_{-2}$	-133.88, -19.91	3.17 ± 0.01	1.10 ± 0.02	4.82 ± 0.14	3.17 ± 0.04	0.51 ± 0.09	1.09 ± 0.13	1.72 ± 0.39	13.14 ± 0.67
$G150.44+03.95_{-3}$	-347.07, -208.30	3.37 ± 0.02	1.02 ± 0.03	5.45 ± 0.28	3.47 ± 0.02	0.33 ± 0.07	2.04 ± 0.23	3.82 ± 0.66	13.49 ± 0.61
G150.44 + 03.95 4	-345.49, 207.63	2.95 ± 0.02	0.95 ± 0.04	6.00 ± 0.36	2.94 ± 0.05	0.71 ± 0.12	1.99 ± 0.29	3.21 ± 0.75	14.69 ± 0.79
G150.44+03.95 ₋ 5	-182.49, -302.29	3.31 ± 0.01	0.92 ± 0.03	5.64 ± 0.27	3.26 ± 0.07	0.55 ± 0.11	0.88 ± 0.20	0.65 ± 0.59	19.95 ± 7.84
G150.44+03.95_6	-217.43, 253.27	3.05 ± 0.02	1.26 ± 0.04	5.16 ± 0.24	3.17 ± 0.05	0.44 ± 0.16	1.52 ± 0.20	2.69 ± 0.57	13.16 ± 0.63
G150.44+03.95 ₋ 7	134.82, -164.94	3.19 ± 0.01	1.11 ± 0.03	4.52 ± 0.17	3.18 ± 0.04	0.65 ± 0.10	0.86 ± 0.11	1.20 ± 0.40	13.40 ± 1.33
G151.08+04.46_1	-92.21, -144.30	3.18 ± 0.00	0.87 ± 0.01	5.92 ± 0.09	3.25 ± 0.02	0.69 ± 0.05	0.86 ± 0.06	0.48 ± 0.18	23.99 ± 4.54
G151.08+04.46_2	-246.08, 287.15	3.22 ± 0.01	1.02 ± 0.02	4.81 ± 0.16	3.25 ± 0.05	0.89 ± 0.11	0.83 ± 0.12	0.91 ± 0.40	15.32 ± 2.31
G151.08+04.46_3	-287.72, -274.61	3.28 ± 0.01	1.05 ± 0.03	5.56 ± 0.28	3.25 ± 0.07	0.85 ± 0.15	1.04 ± 0.19	1.14 ± 0.55	16.23 ± 2.42
G151.08+04.46_4	-83.33, 261.04	3.05 ± 0.01	0.92 ± 0.01	5.13 ± 0.11	3.05 ± 0.02	0.74 ± 0.06	0.99 ± 0.07	1.24 ± 0.22	14.83 ± 0.77
G151.08+04.46_5	-357.86, -72.17	3.27 ± 0.01	0.83 ± 0.02	5.73 ± 0.16	3.30 ± 0.03	0.53 ± 0.06	1.06 ± 0.11	1.11 ± 0.30	16.77 ± 1.41
G151.08+04.46_6	-397.47, 85.81 -114.45, 31.17	3.25 ± 0.01 3.32 ± 0.00	0.70 ± 0.03 0.71 ± 0.01	5.74 ± 0.28 6.06 ± 0.10	3.16 ± 0.08 3.27 ± 0.01	0.50 ± 0.10 0.53 ± 0.02	1.01 ± 0.22 1.45 ± 0.06	0.97 ± 0.61 1.91 ± 0.16	17.48 ± 3.69 15.62 ± 0.33
G151.08+04.46 ₋ 7 G151.08+04.46 ₋ 8	130.31, 233.01	3.00 ± 0.00	0.71 ± 0.01 0.68 ± 0.01	4.62 ± 0.12	3.27 ± 0.01 3.04 ± 0.04	0.56 ± 0.02 0.56 ± 0.11	0.57 ± 0.08	0.20 ± 0.05	50.00 ± 5.00
G151.45+03.95_1	-34.86, -19.97	1.64 ± 0.01	2.16 ± 0.02	4.87 ± 0.12 4.87 ± 0.09	1.57 ± 0.04	2.04 ± 0.11	0.51 ± 0.08 0.51 ± 0.06	0.20 ± 0.05 0.22 ± 0.06	31.81 ± 10.60
G151.45+03.95_1 G151.45+03.95_2	-302.13, -104.53	1.70 ± 0.01	1.86 ± 0.02	4.76 ± 0.09 4.76 ± 0.10	1.71 ± 0.07 1.71 ± 0.06	1.30 ± 0.14	0.60 ± 0.08	0.22 ± 0.00 0.20 ± 0.05	44.25 ± 14.75
G151.45+03.95_3	295.10, -9.87	1.70 ± 0.01 1.08 ± 0.01	1.35 ± 0.02 1.35 ± 0.02	4.76 ± 0.10 4.56 ± 0.12	1.07 ± 0.00 1.07 ± 0.12	0.85 ± 0.20	0.30 ± 0.03	0.20 ± 0.05 0.20 ± 0.05	42.14 ± 14.05
G151.45+03.95_4	-284.99, 269.69	1.86 ± 0.01	1.88 ± 0.02	3.42 ± 0.27	-	-	-	0.20 ± 0.00 -	-
G151.45+03.95 ₋ 5	229.72, 320.75	1.94 ± 0.04	2.13 ± 0.09	2.79 ± 0.23	_	_	_	_	_
G151.45+03.95_6	194.37, 204.64	1.67 ± 0.01	1.88 ± 0.03	3.65 ± 0.11	_	_	_	_	_
G151.45+03.95 ₋ 7	-402.90, 62.08	1.72 ± 0.03	1.58 ± 0.09	3.86 ± 0.36	_	_	_	_	_
G151.45+03.95_8	-31.57, 379.26	1.72 ± 0.02	1.68 ± 0.05	3.32 ± 0.20	_	_	_	_	_
G151.45+03.95-9	193.28, -188.74	1.12 ± 0.01	1.28 ± 0.02	5.30 ± 0.12	0.92 ± 0.13	0.98 ± 0.26	0.30 ± 0.10	0.20 ± 0.05	50.00 ± 5.00
G154.90+04.61_1	18.75, -112.68	3.52 ± 0.01	1.67 ± 0.01	4.77 ± 0.08	3.40 ± 0.08	1.21 ± 0.17	0.38 ± 0.07	0.20 ± 0.05	38.17 ± 12.72
G154.90+04.61_2	-146.87, 181.31	3.89 ± 0.01	1.43 ± 0.02	4.03 ± 0.08	3.61 ± 0.06	0.84 ± 0.17	0.40 ± 0.07	0.21 ± 0.05	27.46 ± 9.15
G154.90+04.61_3	361.89, 146.84	4.22 ± 0.03	1.06 ± 0.11	3.77 ± 0.32	4.36 ± 0.06	0.33 ± 0.07	1.00 ± 0.22	2.27 ± 0.89	10.15 ± 1.05
G154.90+04.61_4	353.02, -169.73	3.54 ± 0.03	1.73 ± 0.06	3.46 ± 0.26	3.41 ± 0.05	0.33 ± 0.07	0.77 ± 0.18	1.67 ± 0.81	9.79 ± 1.23
G154.90+04.61_5	211.89, -109.44	3.35 ± 0.01	1.45 ± 0.02	3.83 ± 0.12	3.36 ± 0.09	0.82 ± 0.20	0.34 ± 0.09	0.20 ± 0.05	28.17 ± 9.39
G154.90+04.61_6	140.98, 67.66	3.64 ± 0.01	1.71 ± 0.03	2.82 ± 0.10	_		_	_	-
G154.90+04.61 ₋ 7	222.40, 291.67	4.25 ± 0.04	1.79 ± 0.09	1.99 ± 0.19	_	_	_	_	_
$G156.04+06.03_{-1}$	-51.14, -40.45	5.66 ± 0.01	0.91 ± 0.03	3.31 ± 0.15	5.79 ± 0.03	0.33 ± 0.07	0.65 ± 0.09	1.26 ± 0.44	9.94 ± 1.02
$G156.04+06.03_{-2}$	275.68, 72.82	4.58 ± 0.04	1.71 ± 0.19	1.63 ± 0.19	_	_	_	_	_
G156.04+06.03 ₋ 3	-227.01, -78.60	5.36 ± 0.02	1.10 ± 0.03	3.39 ± 0.18	_	-	_	_	-
$G156.20+05.26_{-1}$	11.86, -69.05	5.40 ± 0.01	0.77 ± 0.02	4.82 ± 0.17	5.36 ± 0.05	0.63 ± 0.12	0.51 ± 0.08	0.23 ± 0.06	31.18 ± 10.39
G156.20+05.26-2	-11.22, 162.33	5.31 ± 0.02	0.86 ± 0.05	3.70 ± 0.27	5.31 ± 0.09	0.54 ± 0.20	0.30 ± 0.09	0.20 ± 0.05	29.83 ± 9.94
G156.20+05.26 ₋ 3	256.71, 223.02	5.69 ± 0.03	1.28 ± 0.07	1.90 ± 0.19	-	- -	- -		
G157.25-01.00_1	-34.82, 90.25	5.20 ± 0.00	0.63 ± 0.01	7.17 ± 0.10	5.27 ± 0.01	0.43 ± 0.03	1.98 ± 0.05	2.43 ± 0.11	17.24 ± 0.23
$G157.25-01.00_2$	-59.65, -374.48	5.11 ± 0.01	0.52 ± 0.01	8.24 ± 0.24	5.11 ± 0.04	0.47 ± 0.08	1.20 ± 0.13	0.48 ± 0.27	31.93 ± 10.64

Table 2—Continued

Name	Offset(R.A. DEC.) ^a (" ")	$V_{^{13}\mathrm{CO}}$ kms^{-1}	$\frac{\Delta V_{^{13}\text{CO}}}{\text{km s}^{-1}}$	$_{ m K}^{T_{ m ^{13}CO}}$	$V_{\mathrm{C}^{18}\mathrm{O}} \atop \mathrm{kms}^{-1}$	$\frac{\Delta V_{\mathrm{C}^{18}\mathrm{O}}}{\mathrm{km}\mathrm{s}^{-1}}^{\mathrm{b}}$	${^{T_{\mathrm{C}^{18}\mathrm{O}}}_{\mathrm{K}}}$	${ au_{13}}_{\mathrm{CO}}{}^{\mathrm{c}}$	$T_{\rm ex}(^{13}{ m CO})^{ m d}$ K
G157.25-01.00_3	-221.31, 330.33	5.33 ± 0.01	0.64 ± 0.02	6.96 ± 0.24	5.30 ± 0.04	0.41 ± 0.09	2.22 ± 0.18	3.04 ± 0.39	16.54 ± 0.50
G157.25-01.00 ₋ 4	-389.39, 107.18	5.36 ± 0.01	0.47 ± 0.02	7.13 ± 0.24	_	_	_	_	_
G157.25-01.00 ₋ 5	-89.22, -209.73	5.15 ± 0.00	0.54 ± 0.01	8.02 ± 0.12	5.15 ± 0.01	0.51 ± 0.04	1.60 ± 0.07	1.33 ± 0.13	20.86 ± 0.65
G157.25-01.00_6	-229.96, 224.53	5.33 ± 0.00	0.58 ± 0.01	7.46 ± 0.14	5.37 ± 0.02	0.41 ± 0.03	1.87 ± 0.10	2.08 ± 0.19	18.12 ± 0.40
G159.52+03.26_1	-38.49, -59.14	-15.09 ± 0.02	3.71 ± 0.05	2.26 ± 0.09	-14.89 ± 0.25	4.12 ± 0.69	0.28 ± 0.08	0.20 ± 0.05	17.53 ± 5.84
G159.52+03.26 ₋ 2	-254.52, 263.96	-15.76 ± 0.04	2.92 ± 0.11	2.06 ± 0.18	_	_	_	_	_
G159.52+03.26 ₋ 3	-144.78, 164.50	-15.67 ± 0.06	3.40 ± 0.13	1.39 ± 0.15	_	_	_	_	_
$G159.52+03.26_{-4}$	47.42, -237.04	-15.71 ± 0.05	3.49 ± 0.12	1.32 ± 0.13	_	_	_	_	_
G159.52+03.26 ₋ 5	-10.58, 245.45	-17.58 ± 0.03	2.44 ± 0.09	1.72 ± 0.13	-17.46 ± 0.19	1.19 ± 0.49	0.36 ± 0.10	1.59 ± 0.91	5.01 ± 0.72
G159.52+03.26 ₋ 6	122.98, -26.10	-17.85 ± 0.05	3.33 ± 0.13	1.15 ± 0.12	_	_	_	_	_
G159.52+03.26 ₋ 7	-236.46, 350.21	-16.31 ± 0.10	2.69 ± 0.24	2.01 ± 0.42	-	_	-	-	-
G159.52+03.26_8	-80.66, -208.37	-15.24 ± 0.04	2.24 ± 0.12	1.47 ± 0.15	-15.06 ± 0.09	0.44 ± 0.15	0.41 ± 0.11	2.66 ± 1.15	4.06 ± 0.44
G159.52+03.26 ₋ 9	57.06, 114.38	-18.02 ± 0.05	2.85 ± 0.11	1.26 ± 0.13	_	_	_	_	_
G159.52+03.26_10	-146.82, 35.86	-15.09 ± 0.05	3.04 ± 0.17	1.45 ± 0.15	_	_	_	_	_
$G162.79+01.34_{-1}$	-41.62, -156.53	0.55 ± 0.02	1.57 ± 0.04	3.14 ± 0.15	_	_	_	_	_
G162.79+01.34_2	-253.23, 243.72	0.45 ± 0.03	2.37 ± 0.09	2.27 ± 0.18				-	_
G162.79+01.34_3	-21.59, 195.16	1.06 ± 0.02	1.92 ± 0.05	2.58 ± 0.14	1.17 ± 0.08	0.82 ± 0.18	0.44 ± 0.09	0.89 ± 0.60	8.60 ± 2.06
G162.79+01.34_4	-240.65, 42.39	0.23 ± 0.02	1.59 ± 0.06	2.92 ± 0.17	_	_	_	_	_
G162.79+01.34_5	170.62, -167.84	0.45 ± 0.02	1.57 ± 0.05	2.80 ± 0.17	-	_	-	-	-
G169.14-01.13_1	-22.93, -72.14	-9.21 ± 0.01	2.29 ± 0.03	2.52 ± 0.09	-9.01 ± 0.14	2.27 ± 0.37	0.30 ± 0.07	0.20 ± 0.05	28.34 ± 9.45
G169.14-01.13_2	92.64, 114.74	-9.37 ± 0.02	2.28 ± 0.05	1.94 ± 0.10	_	_	_	_	_
G169.14-01.13_3	321.14, 247.88	-9.33 ± 0.06	2.27 ± 0.14	1.94 ± 0.24	_	_	_	_	_
G169.14-01.13_4	-254.76, -50.22	-9.41 ± 0.02	1.70 ± 0.06	2.02 ± 0.13	_	_	_	_	_
G169.14-01.13_5	369.46, 161.20	-9.79 ± 0.04	1.67 ± 0.11	1.92 ± 0.21	_	_	_	_	_
G169.14-01.13_6	-402.36, -113.17	-9.69 ± 0.11	1.80 ± 0.23	0.99 ± 0.28	_		_	_	_
G169.14-01.13_7	240.73, 6.62	-9.85 ± 0.02	1.33 ± 0.07	1.67 ± 0.12	_	_	_	_	_
G169.14-01.13_8	267.36, 201.66 -206.07, -204.61	-9.60 ± 0.03 -9.27 ± 0.03	1.84 ± 0.08 0.92 ± 0.09	2.18 ± 0.17 1.90 ± 0.23	_	_	_	_	_
G169.14-01.13_9					_	_	_	_	_
G169.14-01.13_10 G169.14-01.13_11	-325.27, -150.34 358.17, 233.01	-9.27 ± 0.04 -9.60 ± 0.07	0.65 ± 0.10 2.58 ± 0.19	2.17 ± 0.35 2.01 ± 0.33	_	_	_	_	_
G169.14-01.13_11 G169.14-01.13_12	116.21, -172.91	-9.00 ± 0.07 -7.96 ± 0.03	1.21 ± 0.09	1.80 ± 0.18	_	_	_	_	_
G171.03+02.66_1	60.74, -97.74	-20.53 ± 0.03	3.26 ± 0.05	2.21 ± 0.10	-20.77 ± 0.17	2.59 ± 0.30	0.29 ± 0.08	0.33 ± 0.11	11.62 ± 3.87
G171.03+02.66-2	-114.61, 78.99	-20.68 ± 0.02 -20.68 ± 0.03	3.20 ± 0.05 3.38 ± 0.06	1.82 ± 0.11	-20.77 ± 0.17 -21.53 ± 0.15	1.57 ± 0.36	0.29 ± 0.08 0.34 ± 0.09	1.27 ± 0.82	5.55 ± 1.00
G171.03+02.66 ₋ 3	107.90, -341.83	-20.08 ± 0.03 -19.57 ± 0.03	1.56 ± 0.09	2.46 ± 0.17	-21.63 ± 0.13 -19.63 ± 0.07	0.58 ± 0.13	0.54 ± 0.09 0.55 ± 0.12	1.27 ± 0.62 1.82 ± 0.79	6.92 ± 0.77
G171.03+02.66_4	-126.96, 376.55	-20.67 ± 0.06	1.95 ± 0.03 1.95 ± 0.12	1.96 ± 0.27	-20.83 ± 0.08	0.83 ± 0.13 0.83 ± 0.17	0.78 ± 0.12	4.34 ± 1.58	5.15 ± 0.73
G171.03+02.66_5	-136.02, -225.22	-20.26 ± 0.05	2.89 ± 0.12	1.36 ± 0.27 1.36 ± 0.13	20.05 ± 0.00	0.00 ± 0.17	0.70 ± 0.17	- 1.00	0.10 ± 0.70
G171.03+02.66_6	-42.06, 302.53	-20.94 ± 0.04	2.20 ± 0.11 2.20 ± 0.09	1.56 ± 0.16 1.56 ± 0.16	-21.11 ± 0.12	0.88 ± 0.29	0.42 ± 0.13	2.48 ± 1.28	4.30 ± 0.50
G171.03+02.66 ₋ 7	363.50, -159.41	-19.96 ± 0.06	2.20 ± 0.03 2.03 ± 0.17	1.35 ± 0.10 1.35 ± 0.20		0.00 ± 0.25 -	- 0.12		- 0.00
G171.03+02.66_8	-260.40, 168.75	-19.49 ± 0.02	0.91 ± 0.06	2.22 ± 0.20	-19.61 ± 0.11	0.38 ± 0.13	0.63 ± 0.14	2.67 ± 1.00	5.97 ± 0.64
G171.34+02.59_1	-48.97, -284.73	-19.38 ± 0.02	2.14 ± 0.03	3.33 ± 0.12	-19.60 ± 0.17	2.18 ± 0.49	0.32 ± 0.09	0.21 ± 0.05	23.34 ± 7.78
G171.34+02.59_2	5.41, 43.14	-19.36 ± 0.01	2.54 ± 0.03	2.89 ± 0.09	-19.34 ± 0.14	2.35 ± 0.32	0.38 ± 0.08	0.32 ± 0.11	15.41 ± 5.14
G171.34+02.59_3	-9.28, 412.73	-19.08 ± 0.03	1.82 ± 0.09	2.34 ± 0.21	-	_	_	_	_
G171.34+02.59_4	-160.03, 316.04	-19.25 ± 0.04	2.26 ± 0.09	1.72 ± 0.14	_	_	_	_	_
G171.34+02.59 ₋ 5	103.67, -387.54	-19.25 ± 0.03	1.96 ± 0.08	3.03 ± 0.25	-19.59 ± 0.11	0.67 ± 0.22	0.68 ± 0.20	1.84 ± 1.03	8.49 ± 1.13

Table 2—Continued

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Name	Offset(R.A. DEC.) ^a (" ")	$V_{^{13}\mathrm{CO}}$ kms^{-1}	$\frac{\Delta V_{^{13}\text{CO}}}{\text{km s}^{-1}}$	${^{T_{ m ^{13}CO}}_{ m K}}$	$V_{ m C^{18}O} \atop { m km s^{-1}}$	$\frac{\Delta V_{\mathrm{C}^{18}\mathrm{O}}}{\mathrm{km}\mathrm{s}^{-1}}^{\mathrm{b}}$	${^{T_{\mathrm{C}^{18}\mathrm{O}}}_{\mathrm{K}}}$	${ au_{13}}_{\mathrm{CO}}{}^{\mathrm{c}}$	$T_{\rm ex}(^{13}{ m CO})^{ m d}$ K
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	G171.34+02.59_6	191.60, 313.73	-18.86 ± 0.08	3.88 ± 0.16	1.02 ± 0.14	_	_	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					2.51 ± 0.27	_	_	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$G172.85+02.27_{-1}$	26.84, -84.80	-17.12 ± 0.01	3.49 ± 0.03	4.86 ± 0.11	-17.24 ± 0.06	2.30 ± 0.15	0.80 ± 0.08	0.88 ± 0.27	15.62 ± 1.70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$G172.85+02.27_{-2}$	310.61, -47.49	-16.98 ± 0.02	3.49 ± 0.04	4.08 ± 0.12	-17.22 ± 0.16	3.09 ± 0.32	0.37 ± 0.08	0.20 ± 0.05	29.66 ± 9.89
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$G172.85+02.27_{-3}$	-215.17, 232.74	-16.70 ± 0.02	3.68 ± 0.05	3.50 ± 0.14	-16.67 ± 0.17	2.76 ± 0.42	0.42 ± 0.11	0.20 ± 0.05	39.32 ± 13.11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	G172.85+02.27 ₋ 4	115.71, 289.66	-17.01 ± 0.04	4.05 ± 0.09	2.47 ± 0.16	_	_	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	G172.85 + 02.27 - 5		-16.68 ± 0.05	4.08 ± 0.12		_	_	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$G172.85 + 02.27_6$		-17.00 ± 0.03		2.96 ± 0.18	_	_	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$G172.85+02.27_{-}7$						_			_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						-5.92 ± 0.11	1.24 ± 0.21	0.38 ± 0.09	0.20 ± 0.05	23.30 ± 7.77
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$G175.20+01.28_2$					_	_	_	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							_		-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-5.96 ± 0.11	0.78 ± 0.21	0.69 ± 0.21	2.07 ± 1.14	7.92 ± 1.09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						_	_	_		_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				_	_		_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·					_	_		_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						_	_	_	_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						_	_	_	_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						_	_	_	_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-20.47 ± 0.09	0.69 ± 0.18		0.61 ± 0.20	11.62 ± 5.46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						_	_		_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						_	_	_	_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-	-	-	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-20.74 ± 0.10	0.61 ± 0.16	0.25 ± 0.07	0.20 ± 0.05	21.44 ± 7.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						_	_	_	_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						_	_	_	_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						- 0 41 0 10	1 00 1 0 00			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·						1.30 ± 0.22		0.71 ± 0.67	9.79 ± 3.09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							_		_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							_		_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						_	_		_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-17.63 ± 0.12	$-$ 1 77 \pm 0 24		$-$ 0.48 \pm 0.16	$-$ 13 64 \pm 7 74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· ·				-17.03 ± 0.12	1.77 ± 0.24	0.45 ± 0.10	0.40 ± 0.10	13.04 1.14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				_	_	_	_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				_	_	_	_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						_	_	_	_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				-15.96 ± 0.05	0.33 ± 0.07	0.58 ± 0.17	5.07 ± 2.34	3.59 ± 0.45
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·	,						- 0.00		J.00 ± 0.40
	· · · · · · · · · · · · · · · · · · ·	,				_	_	_	_	_
						_	_	_	_	_

Table 2—Continued

Name	Offset(R.A. DEC.) ^a (" ")	$V_{^{13}\mathrm{CO}}$ km s ⁻¹	$\frac{\Delta V_{^{13}\text{CO}}}{\text{km s}^{-1}}$	$T_{^{13}\mathrm{CO}}$ K	$V_{ m C^{18}O} \ { m km s^{-1}}$	$\frac{\Delta V_{\rm C^{18}O}}{{\rm kms}^{-1}}^{\rm b}$	${T_{\rm C^{18}O}\atop\rm K}$	${ au_{13}}_{\mathrm{CO}}{}^{\mathrm{c}}$	$T_{\rm ex}(^{13}{ m CO})^{ m d}$ K
G176.94+04.63_10	34.81, -361.74	-19.35 ± 0.06	1.45 ± 0.17	1.60 ± 0.27	_	_	_	_	_
G176.94+04.63_11	5.03, -45.19	-18.07 ± 0.02	2.01 ± 0.05	2.60 ± 0.14	-18.26 ± 0.31	1.61 ± 0.32	0.43 ± 0.12	0.93 ± 0.79	8.55 ± 2.42
G176.94+04.63_12	-195.85, -359.94	-10.07 ± 0.02	2.01 ± 0.05	2.00 ± 0.14	-10.20 ± 0.31	1.01 ± 0.32	0.45 ± 0.12	0.93 ± 0.19	0.00 ± 2.42
G176.94+04.63_13	101.24, 265.44	-16.86 ± 0.08	2.69 ± 0.18	1.02 ± 0.17					
G177.09+02.85_1	16.63, -15.01	-10.68 ± 0.03	2.12 ± 0.06	1.59 ± 0.11	_	_	_	_	_
G177.09+02.85_2	-224.74, -2.96	-9.49 ± 0.04	2.12 ± 0.00 2.16 ± 0.10	1.30 ± 0.11 1.30 ± 0.14	_	_	_	_	_
G177.09+02.85_3	-5.52, 370.03	-9.49 ± 0.04 -9.49 ± 0.05	1.66 ± 0.11	1.30 ± 0.14 1.28 ± 0.15	-9.85 ± 0.15	0.37 ± 0.07	0.47 ± 0.12	4.28 ± 1.69	3.54 ± 0.34
G177.09+02.85_4	13.07, 168.95	-10.03 ± 0.05	2.37 ± 0.12	1.05 ± 0.13 1.05 ± 0.12	J.00 ± 0.10	0.57 ± 0.07	0.47 ± 0.12	4.20 ± 1.00	J.04 ± 0.54
G177.09+02.85_5	-274.40, 300.94	-9.56 ± 0.12	1.53 ± 0.12	1.40 ± 0.12 1.40 ± 0.41	_	_	_	_	_
G177.09+02.85_6	-422.75, -9.48	-9.31 ± 0.11	1.65 ± 0.25 1.65 ± 0.27	1.26 ± 0.38	_	_	_	_	_
G177.09+02.85_7	-254.17, 190.38	-9.18 ± 0.07	1.79 ± 0.17	0.92 ± 0.16	_	_	_	_	_
G177.14-01.21_1	9.64, 10.99	-17.10 ± 0.01	2.12 ± 0.02	4.10 ± 0.10	-17.08 ± 0.04	1.53 ± 0.09	0.81 ± 0.06	1.63 ± 0.24	11.50 ± 0.45
G177.14-01.21_2	-21.89, -390.28	-16.85 ± 0.02	1.51 ± 0.04	4.89 ± 0.22	_	_	-	_	-
G177.14-01.21_3	-30.93, 184.63	-17.48 ± 0.01	1.56 ± 0.03	3.44 ± 0.12	-17.42 ± 0.07	0.99 ± 0.17	0.50 ± 0.09	0.76 ± 0.45	11.99 ± 2.69
G177.14-01.21_4	-37.98, -282.83	-16.65 ± 0.01	1.55 ± 0.03	3.49 ± 0.15	-16.68 ± 0.17	2.00 ± 0.41	0.35 ± 0.10	0.22 ± 0.05	23.69 ± 7.90
G177.14-01.21_5	-100.97, -174.86	-16.46 ± 0.02	1.75 ± 0.05	2.25 ± 0.14	_		_	_	_
G177.14-01.21_6	-157.09, -56.37	-16.82 ± 0.02	1.42 ± 0.04	2.58 ± 0.14	-17.17 ± 0.08	0.72 ± 0.20	0.39 ± 0.08	0.84 ± 0.59	8.79 ± 2.28
G177.14-01.21_7	149.99, -90.78	-16.63 ± 0.02	1.44 ± 0.04	2.52 ± 0.11	_	_	_	_	_
G177.86+01.04_1	-44.31, -7.43	-18.29 ± 0.02	2.23 ± 0.04	2.26 ± 0.10	-18.15 ± 0.12	2.22 ± 0.24	0.35 ± 0.07	0.89 ± 0.54	7.56 ± 1.59
$G177.86 + 01.04_2$	-189.83, 191.81	-17.44 ± 0.02	1.74 ± 0.05	2.41 ± 0.12	-17.46 ± 0.12	1.06 ± 0.19	0.30 ± 0.09	0.40 ± 0.13	11.35 ± 3.78
G177.86+01.04_3	-387.22, 52.55	-18.20 ± 0.05	1.69 ± 0.11	2.20 ± 0.29	-18.59 ± 0.04	0.33 ± 0.07	0.82 ± 0.18	4.27 ± 1.54	5.78 ± 0.78
G177.86+01.04_4	162.92, -119.18	-19.76 ± 0.11	3.17 ± 0.30	0.60 ± 0.13	-16.71 ± 0.11	0.78 ± 0.23	0.26 ± 0.08	5.27 ± 2.83	2.33 ± 0.21
G178.28-00.61_1	208.29, 338.14	-0.48 ± 0.02	2.25 ± 0.04	4.64 ± 0.18	-0.49 ± 0.13	1.68 ± 0.26	0.71 ± 0.17	0.66 ± 0.64	16.69 ± 6.66
G178.28-00.61 ₋ 2	42.10, 47.53	-0.53 ± 0.01	2.38 ± 0.02	3.57 ± 0.09	-0.85 ± 0.11	1.69 ± 0.26	0.51 ± 0.09	0.47 ± 0.44	15.28 ± 7.16
G178.28-00.61 ₋ 3	191.12, 236.39	-0.74 ± 0.01	2.25 ± 0.03	4.30 ± 0.14	-0.93 ± 0.14	2.14 ± 0.28	0.57 ± 0.13	0.30 ± 0.10	23.13 ± 7.71
G178.28-00.61_4	218.57, 368.92	-0.30 ± 0.02	2.05 ± 0.04	5.53 ± 0.26	_	_	_	_	_
G178.28-00.61_5	52.71, -343.57	-0.50 ± 0.02	1.41 ± 0.05	2.42 ± 0.14	_	_	_	_	_
$G178.28-00.61_{-6}$	-163.19, -135.99	-0.12 ± 0.02	1.71 ± 0.05	2.09 ± 0.13	_	_	_	_	_

^aThe absolute coordinate of each source is listed in Table 1.

 $^{^{}b}$ If the linewidth of $C^{18}O$ is less than two velocity channels (or two times velocity resolution), the Gaussian fitting will produce a linewidth of $0.33 \pm 0.07 \, \mathrm{km \, s^{-1}}$.

 $^{^{\}rm c}$ The optical depth with $\tau_{\rm ^{13}CO} < 0.20$ is unreliable, therefore we set them as $\tau_{\rm ^{13}CO} = 0.20 \pm 0.05$.

 $^{^{}m d}$ The excitation temperature with $T_{
m ex}(^{13}{
m CO}) > 50.00\,{
m K}$ is unreliable, therefore we set them as $T_{
m ex}(^{13}{
m CO}) = 50.00\pm5.00\,{
m K}$.

Table 3
Derived parameters of extracted CO clumps

		- h		13CO	13 _{CO}	Σ^{13} CO	13CO	3.6	
Name	FWHM ^a	$R_{\rm eff}^{\rm \ b}$	$\sigma_{\mathrm{C}^{18}\mathrm{O}}$	$N_{\rm H_2}^{13}{}_{\rm CO}$	$n_{\rm H_2}$ $10^3 {\rm cm}^{-3}$	_	$M_{ m H_2}^{ m 13CO}$	$M_{ m vir}$	$lpha_{ m vir}$
		pc	$\mathrm{km}\mathrm{s}^{-1}$	10^{21}cm^{-2}	10^{3}cm^{-3}	$\mathrm{gcm^{-2}}$	M_{\odot}	M_{\odot}	
G098.50-03.24 ₋ 1	162.0	0.75	0.39 ± 0.08	7.7 ± 2.0	4.2 ± 1.1	0.089 ± 0.023	240.8 ± 61.4	87.8 ± 17.5	0.36 ± 0.12
$G098.50-03.24_2$	128.4	0.59	0.25 ± 0.05	7.0 ± 1.3	4.0 ± 0.8	0.068 ± 0.013	114.4 ± 21.7	44.5 ± 9.1	0.39 ± 0.11
$G108.85-00.80_{-1}$	166.3	1.55	0.85 ± 0.08	41.5 ± 7.0	10.9 ± 1.8	0.488 ± 0.082	5630.1 ± 945.5	392.1 ± 36.8	0.07 ± 0.01
$G108.85-00.80_{-2}$	106.8	1.00	0.64 ± 0.06	68.3 ± 12.6	27.5 ± 5.1	0.788 ± 0.145	3749.7 ± 690.7	190.6 ± 18.8	0.05 ± 0.01
G108.85-00.80 ₋ 3	164.5	1.53	1.04 ± 0.13	25.5 ± 7.0	4.9 ± 1.4	0.217 ± 0.060	2440.1 ± 671.5	474.2 ± 59.7	0.19 ± 0.06
$G108.85-00.80_4$	170.7	1.59	0.66 ± 0.09	21.5 ± 4.3	4.3 ± 0.9	0.196 ± 0.039	2379.7 ± 475.9	311.5 ± 40.8	0.13 ± 0.03
G110.65+09.65_1	240.7	0.58	0.44 ± 0.02	40.3 ± 2.4	18.4 ± 1.1	0.303 ± 0.018	479.9 ± 28.1	74.9 ± 3.2	0.16 ± 0.01
G110.65+09.65 ₋₂	218.2	0.52	0.49 ± 0.06	12.8 ± 2.6	8.2 ± 1.6	0.122 ± 0.024	159.7 ± 31.9	75.6 ± 9.8	0.47 ± 0.11
G110.65+09.65 ₋ 3	217.4	0.52	0.47 ± 0.04	20.8 ± 2.2	10.5 ± 1.1	0.156 ± 0.017	201.4 ± 21.7	73.1 ± 5.4	0.36 ± 0.05
G110.65+09.65_4	237.2	0.57	0.43 ± 0.03	23.2 ± 2.2	10.7 ± 1.0	0.173 ± 0.016	266.1 ± 25.0	72.4 ± 4.9	0.27 ± 0.03
$G112.52+08.38_{-1}$	176.1	0.40	0.49 ± 0.15	11.8 ± 2.8	10.2 ± 2.4	0.116 ± 0.027	88.6 ± 20.8	58.6 ± 17.7	0.66 ± 0.25
G112.52+08.38-2	319.1	0.72	_	_	_	_	_	_	_
G112.52+08.38 ₋ 3	124.7	0.28	_	_	-	_	_	_	-
$G112.52+08.38_4$	193.4	0.44	0.14 ± 0.03	8.8 ± 1.8	5.8 ± 1.2	0.073 ± 0.015	66.7 ± 13.3	18.4 ± 3.7	0.28 ± 0.08
$G112.52+08.38_5$	206.2	0.47	_	_	-	_	_	_	_
G112.60+08.53 ₋ 1	312.3	0.71	0.77 ± 0.06	12.3 ± 2.5	4.7 ± 0.9	0.095 ± 0.019	226.9 ± 45.4	161.5 ± 13.5	0.71 ± 0.15
$G112.60+08.53_2$	120.1	0.27	0.93 ± 0.22	11.8 ± 2.4	22.2 ± 4.4	0.173 ± 0.035	61.4 ± 12.3	75.0 ± 17.9	1.22 ± 0.38
$G112.60+08.53_3$	230.0	0.52	0.78 ± 0.12	7.6 ± 1.5	3.7 ± 0.7	0.056 ± 0.011	72.1 ± 14.4	121.0 ± 19.2	1.68 ± 0.43
G112.60+08.53_4	210.6	0.48	0.84 ± 0.16	10.5 ± 2.1	5.9 ± 1.2	0.081 ± 0.016	87.7 ± 17.5	119.0 ± 21.9	1.36 ± 0.37
G112.60+08.53-5	228.7	0.52	0.63 ± 0.07	9.9 ± 2.0	5.2 ± 1.0	0.077 ± 0.015	98.5 ± 19.7	96.3 ± 11.1	0.98 ± 0.23
G112.60+08.53_6	72.1	0.16	0.14 ± 0.03	13.7 ± 2.7	54.8 ± 11.0	0.256 ± 0.051	32.5 ± 6.5	6.8 ± 1.4	0.21 ± 0.06
G112.60+08.53 ₋ 7	160.5	0.36	_	_	_	_	_	_	_
G112.60+08.53_8	202.0	0.46	_	_	_	_	_	_	_
G115.92+09.46 ₋ 1	196.8	0.42	0.44 ± 0.09	10.3 ± 2.1	6.4 ± 1.3	0.078 ± 0.016	65.8 ± 13.2	55.3 ± 11.7	0.84 ± 0.24
G115.92+09.46 ₋ 2	158.5	0.34	0.16 ± 0.04	5.6 ± 1.1	4.6 ± 0.9	0.045 ± 0.008	24.6 ± 4.6	15.9 ± 4.1	0.64 ± 0.21
G115.92+09.46 ₋ 3	165.5	0.35	0.14 ± 0.03	3.3 ± 0.7	2.4 ± 0.5	0.025 ± 0.005	14.7 ± 2.9	14.9 ± 3.0	1.01 ± 0.29
G115.92+09.46_4	131.0	0.28	_	_	_	_	_	_	_
G115.92+09.46 ₋ 5	128.7	0.28	_	_	_	_	_	_	_
G115.92+09.46_6	112.2	0.24	-	-	-	-			
G115.92+09.46 ₋ 7	132.8	0.28	0.14 ± 0.03	2.3 ± 0.5	2.1 ± 0.4	0.017 ± 0.003	6.7 ± 1.3	11.9 ± 2.4	1.78 ± 0.50
G116.08-02.38 ₋ 1	312.4	0.66	0.64 ± 0.07	11.2 ± 2.3	4.7 ± 1.0	0.088 ± 0.018	183.8 ± 38.0	125.7 ± 12.9	0.68 ± 0.16
G116.08-02.38-2	195.2	0.41	0.31 ± 0.08	9.8 ± 3.1	6.1 ± 2.0	0.072 ± 0.023	58.8 ± 19.0	38.1 ± 9.4	0.65 ± 0.26
G116.08-02.38_3	182.7	0.38	_	_			_	_	
G116.08-02.38_4	216.2	0.46	0.37 ± 0.15	8.8 ± 2.6	5.3 ± 1.6	0.070 ± 0.020	69.4 ± 20.2	50.2 ± 19.7	0.72 ± 0.35
G116.08-02.38_5	153.5	0.32	0.46 ± 0.12	6.6 ± 0.7	5.6 ± 0.6	0.052 ± 0.005	25.9 ± 2.6	43.8 ± 11.1	1.69 ± 0.46
G116.08-02.38_6	132.9	0.28	0.42 ± 0.11	7.9 ± 1.6	7.3 ± 1.5	0.059 ± 0.012	21.9 ± 4.4	34.6 ± 9.3	1.58 ± 0.53
G116.08-02.38_7	142.8	0.30					_		_
G116.12+08.98_1	166.5	0.36	0.25 ± 0.08	6.9 ± 1.4	5.0 ± 1.0	0.051 ± 0.010	30.9 ± 6.2	26.1 ± 8.7	0.84 ± 0.33
G116.12+08.98 ₋₂	152.8	0.33	_	_	_	_	_	_	_
G116.12+08.98 ₋ 3	166.6	0.36	_	_	_	_	_	_	_
G116.12+08.98-4	116.0	0.25	_	_	_	_	_	_	_
G116.12+08.98 ₋ 5	103.4	0.22			_	_	_		_
G120.16+03.09_1	254.7	0.95	0.95 ± 0.03	50.2 ± 3.6	14.6 ± 1.0	0.396 ± 0.028	1701.0 ± 121.0	266.9 ± 8.6	0.16 ± 0.01
$G120.16+03.09_{-2}$	120.1	0.32	0.71 ± 0.06	50.7 ± 7.1	55.2 ± 7.8	0.509 ± 0.072	252.8 ± 35.6	67.9 ± 6.1	0.27 ± 0.04

Table 3—Continued

Name	$FWHM^a$	$R_{\rm eff}^{\ \ b}$	$\sigma_{ m C^{18}O}$	N _{H2}	$n_{\mathrm{H}_2}^{\mathrm{13}_{\mathrm{CO}}}$	Σ^{13} CO	$M_{\mathrm{H}_2}^{\mathrm{13}_{\mathrm{CO}}}$	$M_{ m vir}$	$lpha_{ m vir}$
	//	pc	$km s^{-1}$	10^{21}cm^{-2}	10^{3}cm^{-3}	$\mathrm{gcm^{-2}}$	M_{\odot}	M_{\odot}	
		рс	KIII S	10 CIII	10 CIII	gem	171.0	1/1 (.)	
G120.16+03.09 ₋ 3	217.2	0.58	0.90 ± 0.05	32.0 ± 3.3	14.3 ± 1.5	0.239 ± 0.024	391.1 ± 39.9	156.4 ± 8.8	0.40 ± 0.05
G120.16+03.09_4	196.2	0.53	1.07 ± 0.12	25.5 ± 5.1	12.3 ± 2.5	0.187 ± 0.037	250.2 ± 50.0	168.4 ± 18.7	0.67 ± 0.15
G120.16+03.09 ₋ 5	238.5	0.90	0.82 ± 0.03	39.1 ± 3.1	12.6 ± 1.0	0.326 ± 0.026	1273.0 ± 101.5	220.0 ± 8.2	0.17 ± 0.02
G120.16+03.09_6	112.6	0.43	0.52 ± 0.09	21.2 ± 4.5	22.5 ± 4.8	0.278 ± 0.060	248.6 ± 53.2	66.9 ± 11.3	0.27 ± 0.07
G120.67+02.66_1	252.5	0.66	0.61 ± 0.07	26.8 ± 5.4	11.0 ± 2.2	0.208 ± 0.042	436.8 ± 87.4	120.8 ± 13.0	0.28 ± 0.06
G120.67+02.66 ₋ 2	241.2	0.63	0.93 ± 0.08	19.8 ± 4.0	8.0 ± 1.6	0.145 ± 0.029	278.7 ± 55.7	174.6 ± 14.7	0.63 ± 0.14
G120.67+02.66 ₋ 3	164.0	0.43	0.90 ± 0.12	15.3 ± 3.1	11.7 ± 2.3	0.144 ± 0.029	126.5 ± 25.3	114.1 ± 15.0	0.90 ± 0.22
G120.67+02.66 ₋ 4	175.7	0.47	_	_	_	_	_	_	_
G120.67+02.66 ₋ 5	75.9	0.20	_	_	_	_	_	_	_
G120.67+02.66_6	146.2	0.41	0.66 ± 0.07	15.0 ± 0.9	10.0 ± 0.6	0.118 ± 0.007	97.3 ± 5.8	80.6 ± 8.6	0.83 ± 0.10
G120.67+02.66-7	181.2	0.49	0.67 ± 0.20	11.8 ± 2.4	6.2 ± 1.2	0.087 ± 0.017	98.9 ± 19.8	96.4 ± 28.3	0.97 ± 0.35
G120.67+02.66_8	138.0	0.36	_	_		_	_		_
G120.98+02.66_1	230.2	0.62	0.56 ± 0.04	16.7 ± 1.2	7.5 ± 0.6	0.132 ± 0.010	239.0 ± 17.6	102.6 ± 8.1	0.43 ± 0.05
G120.98+02.66 ₂	159.6	0.43	0.29 ± 0.05	23.0 ± 5.9	16.7 ± 4.3	0.205 ± 0.053	180.0 ± 46.1	37.3 ± 6.4	0.21 ± 0.06
G120.98+02.66_3	228.9	0.61		_	_	_	_	_	_
G120.98+02.66-4	87.6	0.23	_	_	_	_	_	_	_
G120.98+02.66 ₋ 5	147.0	0.39	_	_	_	_	_	_	_
G120.98+02.66_6	139.2	0.37	_	_	_	_	_	_	_
G120.98+02.66 ₋ 7	82.2	0.22	_	_	_	_	_	_	_
G120.98+02.66 ₋ 8	81.9	0.22	_	_	_	_	_	_	_
G120.98+02.66_9	144.0	0.38	_	_	_	_	_	_	_
G120.98+02.66_10	140.2	0.37	_	_	_	_	_	_	_
G121.35+03.39 ₋ 1	302.1	0.62	0.41 ± 0.03	22.7 ± 2.1	9.9 ± 0.9	0.176 ± 0.016	323.2 ± 29.6	75.1 ± 4.9	0.23 ± 0.03
G121.35+03.39 ₋ 2	278.7	0.57	0.67 ± 0.10	7.1 ± 1.4	3.2 ± 0.6	0.053 ± 0.011	82.8 ± 16.6	113.0 ± 17.4	1.36 ± 0.34
G121.35+03.39 ₋ 3	110.2	0.23	0.72 ± 0.11	18.0 ± 4.8	34.0 ± 9.1	0.220 ± 0.059	53.4 ± 14.4	48.0 ± 7.6	0.90 ± 0.28
G121.35+03.39_4	127.6	0.27	0.45 ± 0.10	13.1 ± 3.9	16.5 ± 5.0	0.128 ± 0.039	45.1 ± 13.6	36.3 ± 8.3	0.81 ± 0.30
G121.35+03.39 ₋ 5	197.9	0.41	0.38 ± 0.04	15.2 ± 2.3	10.1 ± 1.6	0.117 ± 0.018	92.3 ± 14.2	45.6 ± 5.4	0.49 ± 0.10
G121.35+03.39_6	102.8	0.21	_	_	_	_	_	_	_
G121.35+03.39 ₋ 7	245.5	0.50	0.53 ± 0.19	3.8 ± 0.8	1.9 ± 0.4	0.027 ± 0.005	33.2 ± 6.6	78.6 ± 27.6	2.37 ± 0.96
G121.35+03.39 ₋₈	211.8	0.43	_	_	_	_	_	_	_
G121.90-01.54_1	226.2	0.39	0.42 ± 0.07	9.3 ± 1.9	7.3 ± 1.5	0.081 ± 0.016	57.9 ± 11.6	48.1 ± 8.4	0.83 ± 0.22
G121.90-01.54_2	154.0	0.41	0.34 ± 0.07	10.0 ± 2.3	6.9 ± 1.6	0.082 ± 0.019	66.1 ± 15.2	41.7 ± 8.6	0.63 ± 0.20
G121.90-01.54_3	137.7	0.23	0.24 ± 0.11	6.8 ± 1.4	8.4 ± 1.7	0.055 ± 0.011	13.9 ± 2.8	16.0 ± 7.8	1.15 ± 0.60
G121.90-01.54_4	177.4	0.30	_	_	_	_	_	_	_
G121.90-01.54_5	227.5	0.38	0.29 ± 0.04	7.9 ± 1.1	6.7 ± 0.9	0.073 ± 0.010	49.3 ± 6.9	32.5 ± 4.0	0.66 ± 0.12
G121.90-01.54_6	152.1	0.27	0.14 ± 0.03	11.2 ± 3.0	10.6 ± 2.8	0.082 ± 0.022	28.1 ± 7.4	11.3 ± 2.3	0.40 ± 0.13
G121.90-01.54_7	94.8	0.16	_	_	_	_	_	_	_
G121.90-01.54_8	134.7	0.23	0.30 ± 0.07	7.6 ± 1.5	8.8 ± 1.7	0.058 ± 0.011	14.6 ± 2.8	20.1 ± 4.6	1.38 ± 0.41
G121.92-01.71 ₋ 1	287.1	0.49	0.60 ± 0.07	9.8 ± 2.0	5.3 ± 1.1	0.074 ± 0.015	84.5 ± 16.9	86.8 ± 10.2	1.03 ± 0.24
G121.92-01.71_2	84.5	0.14	0.18 ± 0.05	18.2 ± 5.3	58.3 ± 17.0	0.235 ± 0.069	22.4 ± 6.5	7.6 ± 2.1	0.34 ± 0.14
G121.92-01.71_3	102.5	0.27	0.48 ± 0.07	10.1 ± 2.5	11.1 ± 2.7	0.087 ± 0.021	31.2 ± 7.6	39.4 ± 5.4	1.26 ± 0.35
$G121.92\text{-}01.71_4$	167.2	0.28	0.50 ± 0.06	15.1 ± 2.4	16.4 ± 2.6	0.133 ± 0.021	50.3 ± 8.0	41.5 ± 5.1	0.82 ± 0.17
G121.92-01.71 ₋ 5	86.5	0.15	_	_	_	_	_	_	_
$G121.92-01.71_6$	152.5	0.24	0.45 ± 0.13	6.4 ± 1.3	7.6 ± 1.5	0.053 ± 0.011	15.0 ± 3.0	32.1 ± 9.4	2.14 ± 0.76

Table 3—Continued

Name	$_{^{\prime\prime}}^{\rm FWHM^a}$	$R_{ m eff}^{\ m b}$ pc	$\begin{array}{c} \sigma_{\rm C^{18}O} \\ \rm kms^{-1} \end{array}$	$N_{\rm H_2}^{13}$ CO 10^{21} cm $^{-2}$	$n_{\rm H_2}^{13}$ CO $10^3 { m cm}^{-3}$	Σ^{13} CO g cm ⁻²	$M_{\rm H_2}^{\rm ^{13}CO}$ M_{\odot}	$M_{ m vir} \ M_{\odot}$	$lpha_{ m vir}$
G121.92-01.71_7	69.7	0.19		_	_				_
G121.92-01.71_8	111.3	0.18	0.46 ± 0.11	7.6 ± 1.5	11.4 ± 2.3	0.060 ± 0.012	9.4 ± 1.9	25.0 ± 5.8	2.65 ± 0.82
G121.92-01.71_9	138.1	0.24	_	_	_	_			_
G121.92-01.71_10	131.7	0.35	0.19 ± 0.06	5.4 ± 1.1	4.3 ± 0.9	0.043 ± 0.009	25.6 ± 5.1	19.9 ± 6.3	0.78 ± 0.29
G125.66-00.55_1	269.7	0.48	_	_	_	_	_	_	
G125.66-00.55_2	115.6	0.20	_	_		_	_	_	_
G125.66-00.55_3	181.8	0.48	0.69 ± 0.11	29.7 ± 8.8	16.2 ± 4.8	0.224 ± 0.067	251.0 ± 74.4	99.4 ± 15.8	0.40 ± 0.13
G125.66-00.55_4	221.2	0.38	0.65 ± 0.15	20.4 ± 5.9	17.0 ± 5.0	0.187 ± 0.054	130.7 ± 38.2	74.0 ± 17.1	0.57 ± 0.21
G125.66-00.55_5	127.3	0.34			_		_	_	
G125.66-00.55_6	137.8	0.37	0.41 ± 0.10	15.3 ± 3.1	10.7 ± 2.1	0.114 ± 0.023	75.3 ± 15.1	45.5 ± 10.8	0.60 ± 0.19
G125.66-00.55_7	156.6	0.42	_	_	_	_	_	_	
G125.66-00.55_8	145.0	0.52	_	_	_	_	_	_	_
G125.66-00.55_9	57.7	0.10	_	_	_	_	_	_	_
G125.66-00.55_10	71.2	0.19	_	_	_	_	_	_	_
G126.49-01.30_1	132.8	0.36	0.64 ± 0.13	22.6 ± 7.2	23.2 ± 7.4	0.239 ± 0.076	148.4 ± 47.3	68.5 ± 14.3	0.46 ± 0.18
G126.49-01.30_2	156.5	0.27	0.61 ± 0.13	21.2 ± 5.8	25.4 ± 7.0	0.200 ± 0.055	72.6 ± 19.9	50.1 ± 10.9	0.69 ± 0.24
G126.49-01.30_3	288.6	0.50	0.61 ± 0.04	18.6 ± 2.0	11.7 ± 1.3	0.168 ± 0.018	201.7 ± 21.7	90.0 ± 5.5	0.45 ± 0.06
G126.49-01.30_4	84.7	0.15	0.26 ± 0.05	29.5 ± 8.0	66.9 ± 18.1	0.287 ± 0.078	30.8 ± 8.4	11.7 ± 2.4	0.38 ± 0.13
G126.49-01.30 ₋ 5	116.4	0.20	0.14 ± 0.03	17.3 ± 3.5	37.3 ± 7.5	0.217 ± 0.043	42.6 ± 8.5	8.5 ± 1.7	0.20 ± 0.06
G126.49-01.30_6	201.1	0.35	0.67 ± 0.25	7.4 ± 1.5	5.9 ± 1.2	0.060 ± 0.012	35.2 ± 7.0	70.3 ± 26.5	2.00 ± 0.85
G126.49-01.30_7	71.8	0.13	0.20 ± 0.08	28.4 ± 6.3	116.2 ± 25.8	0.421 ± 0.094	32.2 ± 7.2	7.5 ± 3.1	0.23 ± 0.11
G126.49-01.30_8	149.8	0.26	0.74 ± 0.10	12.6 ± 3.7	12.7 ± 3.7	0.096 ± 0.028	31.5 ± 9.1	57.6 ± 7.8	1.83 ± 0.58
G126.49-01.30_9	220.3	0.38	0.86 ± 0.12	11.0 ± 2.2	8.2 ± 1.6	0.090 ± 0.018	62.3 ± 12.5	97.5 ± 13.0	1.57 ± 0.38
G126.49-01.30_10	200.6	0.35	0.30 ± 0.04	7.6 ± 1.4	5.6 ± 1.0	0.056 ± 0.010	33.4 ± 6.2	31.6 ± 4.3	0.94 ± 0.22
G126.95-01.06_1	384.9	0.67	0.53 ± 0.09	8.5 ± 1.5	3.2 ± 0.6	0.062 ± 0.011	135.4 ± 24.3	105.2 ± 17.7	0.78 ± 0.19
G126.95-01.06_2	176.5	0.31	-	-	-	-	_	_	-
G126.95-01.06 ₋ 3	205.6	0.36	_	_	_	_	_	_	_
G126.95-01.06_4	199.7	0.54	0.29 ± 0.09	6.9 ± 1.4	4.5 ± 0.9	0.070 ± 0.014	98.1 ± 19.6	46.1 ± 13.9	0.47 ± 0.17
G126.95-01.06_5	151.2	0.26	_	-	_	-	_	_	-
G126.95-01.06_6	162.7	0.30	_	_	_	_	_	_	_
G127.22-02.25 ₋ 1	205.1	0.52	_	_	_	_	_	_	_
G127.22-02.25_2	196.3	0.53	_	_	_	_	_	_	_
G127.22-02.25_3	137.2	0.15	_	_	_	_	_	_	_
G127.22-02.25_4	142.0	0.37	_	_	_	_	_	_	_
G127.22-02.25_5	139.0	0.21	_	_	_	_	_	_	_
G127.22-02.25_6	91.2	0.23	_	_	_	_	_	_	_
G127.22-02.25_7	88.0	0.24	_	_	_	_	_	_	_
G127.22-02.25_8	90.0	0.10	_	_	_	_	_	_	_
G127.22-02.25_9	77.2	0.12	_	_	_	_	_	_	_
G127.22-02.25_10	65.2	0.17	_	_	_	_	_	_	_
G127.22-02.25_11	76.7	0.21	_	_	_	_	_	_	_
G127.88+02.66_1	283.1	0.73	0.46 ± 0.05	15.8 ± 3.2	5.5 ± 1.1	0.116 ± 0.023	298.4 ± 59.7	100.1 ± 11.6	0.34 ± 0.08
G127.88+02.66_2	229.3	0.60	0.47 ± 0.04	15.6 ± 1.6	7.0 ± 0.7	0.120 ± 0.028 0.120 ± 0.012	204.5 ± 21.1	83.5 ± 7.3	0.41 ± 0.06
G127.88+02.66_3	162.3	0.42	0.34 ± 0.04	15.8 ± 1.3	9.6 ± 0.8	0.116 ± 0.009	99.3 ± 7.9	42.1 ± 4.6	0.42 ± 0.06

Table 3—Continued

Name	FWHM ^a	$R_{\rm eff}{}^{\rm b}$	$\sigma_{\mathrm{C}^{18}\mathrm{O}}$	N _{H2} ¹³ CO	$n_{\rm H_2}^{13}$ CO	Σ^{13} CO	$M_{\mathrm{H}_2}^{\mathrm{13}_{\mathrm{CO}}}$	$M_{ m vir}$	$lpha_{ m vir}$
	,,	pc	${\rm kms^{-1}}$	10^{21}cm^{-2}	10^{3}cm^{-3}	${\rm gcm^{-2}}$	M_{\odot}^{2}	M_{\odot}	
G127.88+02.66_4	188.3	0.49	_	_	_	_	_	_	_
G128.95-00.18 ₋ 1	269.9	0.72	0.36 ± 0.08	9.3 ± 1.9	3.3 ± 0.7	0.069 ± 0.014	172.6 ± 34.9	76.2 ± 17.4	0.44 ± 0.13
G128.95-00.18 ₋ 2	258.9	0.69	0.33 ± 0.06	8.2 ± 2.2	3.2 ± 0.9	0.064 ± 0.017	146.1 ± 39.6	67.4 ± 13.1	0.46 ± 0.15
G128.95-00.18 ₋ 3	218.0	0.58	0.29 ± 0.05	11.5 ± 1.8	7.7 ± 1.2	0.128 ± 0.020	208.4 ± 31.9	49.6 ± 8.0	0.24 ± 0.05
G128.95-00.18 ₋ 4	73.7	0.20	_	_	_	_	_	_	_
G128.95-00.18 ₋ 5	114.1	0.30	0.25 ± 0.05	9.1 ± 2.1	8.2 ± 1.9	0.072 ± 0.017	31.9 ± 7.3	22.5 ± 4.6	0.71 ± 0.22
G128.95-00.18 ₋ 6	109.0	0.29	0.33 ± 0.06	10.7 ± 2.6	9.4 ± 2.3	0.078 ± 0.019	31.5 ± 7.7	28.4 ± 5.2	0.90 ± 0.27
G128.95-00.18 ₋ 7	124.8	0.33	_	_	_	_	_	_	_
G128.95-00.18 ₋₈	149.8	0.40	0.34 ± 0.05	8.5 ± 1.4	5.5 ± 0.9	0.063 ± 0.011	48.3 ± 8.2	40.6 ± 6.4	0.84 ± 0.19
G128.95-00.18_9	115.7	0.31	_	_	_	_	_	_	_
G131.72+09.70 ₋ 1	262.4	0.43	0.38 ± 0.06	8.4 ± 1.7	4.9 ± 1.0	0.061 ± 0.012	55.3 ± 11.1	48.4 ± 7.5	0.87 ± 0.22
G131.72+09.70_2	150.8	0.25	0.14 ± 0.03	11.4 ± 2.8	11.9 ± 2.9	0.085 ± 0.021	25.4 ± 6.1	10.5 ± 2.1	0.41 ± 0.13
G131.72+09.70 ₋ 3	149.0	0.25	0.29 ± 0.05	10.3 ± 2.1	11.5 ± 2.3	0.081 ± 0.016	23.5 ± 4.7	20.8 ± 3.5	0.89 ± 0.23
G131.72+09.70_4	138.2	0.23		_	_				
G131.72+09.70 ₋ 5	135.7	0.22	0.26 ± 0.05	12.2 ± 2.3	15.0 ± 2.9	0.097 ± 0.018	23.3 ± 4.4	17.6 ± 3.2	0.76 ± 0.20
G131.72+09.70_6	112.2	0.19		_	_	_			_
G131.72+09.70 ₋ 7	60.5	0.10	_	_	_	_	_	_	_
G131.72+09.70_8	179.9	0.30		_	_	_	_	_	_
G131.72+09.70 ₋ 9	152.9	0.25	_	_	_	_	_	_	_
G131.72+09.70 ₋ 10	118.2	0.20	_	_	_	_	_	_	_
G131.72+09.70_11	101.9	0.17		_	_	_	_	_	_
G131.72+09.70 ₋ 12	113.4	0.19	_	_	_	_	_	_	_
G132.07+08.80 ₋ 1	280.4	0.48	0.35 ± 0.06	9.1 ± 1.8	5.3 ± 1.1	0.073 ± 0.015	80.6 ± 16.1	49.4 ± 9.0	0.61 ± 0.17
G132.07+08.80_2	162.5	0.28	0.35 ± 0.13	9.0 ± 1.8	10.8 ± 2.2	0.086 ± 0.017	31.5 ± 6.3	29.1 ± 10.9	0.92 ± 0.39
G132.07+08.80 ₋ 3	170.2	0.29	_	_	_	_	_		_
G132.07+08.80_4	185.2	0.32	_	_	_	_	_	_	_
G132.07+08.80 ₋ 5	128.3	0.22	_	_	_	_	_	_	_
G132.07+08.80_6	63.9	0.11	_	_	_	_	_	_	_
G132.03+08.95_1	239.6	0.41	_	_	_	_	_	_	_
G132.03+08.95_2	116.9	0.20	0.37 ± 0.08	13.4 ± 2.7	43.7 ± 8.7	0.253 ± 0.051	49.4 ± 9.9	22.3 ± 5.0	0.45 ± 0.14
G132.03+08.95_3	98.2	0.17	_	_	_	_		_	
G132.03+08.95_4	203.5	0.35	_	_	_	_	_	_	_
G132.03+08.95_5	222.8	0.38	_	_	_	_	_	_	_
G132.03+08.95_6	88.1	0.15	_	_	_	_	_	_	_
G132.03+08.95 ₋ 7	122.6	0.21	0.44 ± 0.12	7.7 ± 1.5	19.8 ± 4.0	0.120 ± 0.024	25.7 ± 5.1	27.7 ± 7.5	1.08 ± 0.36
G133.28+08.81_1	208.3	0.35	0.66 ± 0.14	12.5 ± 2.5	9.8 ± 2.0	0.098 ± 0.020	58.1 ± 11.6	68.5 ± 14.3	1.18 ± 0.34
G133.28+08.81_2	293.5	0.49	0.42 ± 0.14	5.8 ± 1.2	3.0 ± 0.6	0.043 ± 0.009	49.6 ± 9.9	61.4 ± 19.8	1.24 ± 0.4
G133.28+08.81_3	170.9	0.29	_			_	_	_	
G133.28+08.81_4	92.5	0.16	0.23 ± 0.09	23.5 ± 4.7	40.6 ± 8.1	0.182 ± 0.036	21.1 ± 4.2	10.5 ± 4.2	0.50 ± 0.22
G133.28+08.81 ₋ 5	116.1	0.20	-	_	_	_			
G133.28+08.81_6	95.4	0.16	_	_	_	_	_	_	_
G133.28+08.81 ₋ 7	161.0	0.27	0.14 ± 0.03	10.7 ± 2.1	11.6 ± 2.3	0.090 ± 0.018	32.0 ± 6.4	11.7 ± 2.3	0.36 ± 0.10
G133.28+08.81_8	97.2	0.16	-	_		_	_		_
G133.28+08.81_9	141.4	0.24	_						

Table 3—Continued

Name	FWHM ^a	$R_{\mathrm{eff}}{}^{\mathrm{b}}$	$\sigma_{\mathrm{C}^{18}\mathrm{O}}$	$N_{\rm H_2}^{13}{}_{\rm CO}$ $10^{21}{ m cm}^{-2}$	$n_{\rm H_2}^{13}$ CO 10^3 cm $^{-3}$	Σ^{13} CO	$M_{\mathrm{H}_2}^{\mathrm{13}_{\mathrm{CO}}}$	$M_{ m vir}$	$lpha_{ m vir}$
		pc	${\rm kms^{-1}}$	10 ²¹ cm ²	10°cm	$\mathrm{gcm^{-2}}$	$ar{M_{\odot}}$	M_{\odot}	
G133.48+09.02_1	248.5	0.44	1.11 ± 0.05	66.8 ± 7.9	47.3 ± 5.6	0.596 ± 0.070	550.7 ± 64.7	144.7 ± 6.6	0.26 ± 0.03
G133.48+09.02_2	201.3	0.36	1.58 ± 0.17	22.6 ± 6.7	17.7 ± 5.2	0.181 ± 0.053	109.8 ± 32.4	166.8 ± 17.5	1.52 ± 0.48
G133.48+09.02_3	210.1	0.37	0.70 ± 0.12	25.6 ± 6.3	18.0 ± 4.4	0.191 ± 0.047	124.3 ± 30.5	77.1 ± 13.7	0.62 ± 0.19
G133.48+09.02_4	156.8	0.28	_	_	_	_	_	_	_
G133.48+09.02_5	194.2	0.34	1.05 ± 0.16	13.9 ± 1.8	10.8 ± 1.4	0.106 ± 0.013	58.9 ± 7.4	106.1 ± 16.2	1.80 ± 0.36
G136.31-01.77_1	237.3	0.35	0.51 ± 0.07	8.4 ± 2.1	7.8 ± 2.0	0.079 ± 0.020	47.7 ± 12.1	54.2 ± 7.2	1.14 ± 0.33
G136.31-01.77 ₋ 2	82.0	0.12	_	_	_	_	_	_	_
G136.31-01.77_3	145.8	0.22	_	_	_	_	_	_	_
G136.31-01.77_4	134.4	0.20	_	_	_	_	_	_	_
G136.31-01.77_5	274.5	0.42	_	_	_	_	_	_	_
G136.31-01.77_6	74.9	0.12	_	_	_	_	_	_	_
G136.31-01.77 ₋ 7	141.5	0.21	_	_	_	_	_	_	_
G140.49+06.07_1	306.7	1.10	0.84 ± 0.12	10.9 ± 2.2	2.5 ± 0.5	0.080 ± 0.016	461.6 ± 92.3	273.2 ± 39.9	0.59 ± 0.15
G140.49+06.07_2	108.6	0.41	0.23 ± 0.05	12.2 ± 2.4	10.0 ± 2.0	0.116 ± 0.023	91.5 ± 18.3	27.5 ± 5.5	0.30 ± 0.09
G140.49+06.07 ₋ 3	146.7	0.50	0.30 ± 0.10	9.0 ± 1.0	5.2 ± 0.6	0.075 ± 0.008	91.5 ± 10.2	44.3 ± 14.5	0.48 ± 0.17
G140.49+06.07_4	190.1	0.69	0.49 ± 0.12	9.5 ± 1.9	3.6 ± 0.7	0.070 ± 0.000 0.071 ± 0.014	161.7 ± 32.3	100.3 ± 25.0	0.62 ± 0.20
G140.49+06.07_5	131.8	0.46	0.49 ± 0.12	7.5 ± 1.5	4.5 ± 0.9	0.059 ± 0.012	60.2 ± 12.0	66.9 ± 21.3	1.11 ± 0.42
G140.49+06.07_6	193.1	0.70	0.45 ± 0.10	7.0 ± 1.0	4.0 ± 0.5	0.003 ± 0.012 -	-	00.5 ± 21.5	-
G140.77+05.00-1	188.4	0.31	0.50 ± 0.04	10.6 ± 0.2	9.4 ± 0.1	0.083 ± 0.001	37.3 ± 0.5	45.1 ± 3.2	1.21 ± 0.09
G140.77+05.00-1	114.1	0.19	0.50 ± 0.04 0.52 ± 0.14	17.5 ± 3.5	31.2 ± 6.2	0.166 ± 0.033	27.4 ± 5.5	28.6 ± 7.7	1.04 ± 0.35
G140.77+05.00_2	162.5	0.26	0.32 ± 0.14 0.33 ± 0.09	5.6 ± 1.1	5.7 ± 1.1	0.044 ± 0.009	14.6 ± 2.9	26.0 ± 7.7 26.0 ± 7.4	1.78 ± 0.62
G140.77+05.00_4	164.3	0.27	0.46 ± 0.08	8.8 ± 1.8	8.6 ± 1.7	0.066 ± 0.013	22.5 ± 4.5	36.8 ± 6.1	1.63 ± 0.02 1.63 ± 0.42
G140.77+05.00_5	114.3	0.19	0.40 ± 0.00	0.0 ± 1.0	0.0 ± 1.7	0.000 ± 0.013	22.0 1 4.0	30.0 ± 0.1	1.00 ± 0.42
G140.77+05.00_6	148.9	0.13	0.39 ± 0.13	5.0 ± 1.0	5.6 ± 1.1	0.039 ± 0.008	11.1 ± 2.2	28.1 ± 9.5	2.53 ± 0.99
G140.77+05.00_7	115.6	0.24	0.39 ± 0.13 0.17 ± 0.03	5.0 ± 1.0 5.2 ± 1.0	7.4 ± 1.5	0.039 ± 0.008 0.040 ± 0.008	6.8 ± 1.4	9.6 ± 1.9	1.40 ± 0.40
G140.77+05.00_7 G142.49+07.48_1	226.4	0.19	0.17 ± 0.03 0.41 ± 0.14	4.7 ± 0.9	3.4 ± 0.7	0.040 ± 0.008 0.035 ± 0.007	22.4 ± 4.5	44.4 ± 15.0	1.40 ± 0.40 1.98 ± 0.78
G142.49+07.48_1 G142.49+07.48_2	232.7	0.37	0.41 ± 0.14 -	4.7 ± 0.9 —	3.4 ± 0.7 -	0.033 ± 0.007 -	22.4 ± 4.5 -		
G142.49+07.48_3 G142.49+07.48_3	81.0	0.37	_	_	_	_	_	_	_
G142.49+07.48_4	138.1	0.13 0.22	-0.18 ± 0.08	8.3 ± 2.2	-10.4 ± 2.7	-0.066 ± 0.017	$^{-}$ 15.5 \pm 4.1	$-$ 12.1 \pm 4.9	-0.78 ± 0.38
G142.49+07.48_5	111.5	0.22	0.18 ± 0.08 0.14 ± 0.03	9.3 ± 1.9	10.4 ± 2.7 13.4 ± 2.7	0.060 ± 0.017 0.069 ± 0.014	10.6 ± 2.1	7.5 ± 1.5	0.78 ± 0.38 0.71 ± 0.20
								7.0 ± 1.0	
G142.49+07.48_6	96.5	$0.16 \\ 0.22$	_	_	_	_	_	_	_
G142.49+07.48_7	136.9		_	_	_	_	_	_	_
G142.49+07.48_8	80.7	0.13	_		_	_	_	_	_
G142.49+07.48_9	113.2	0.18		_	_	_	_	_	_
G142.49+07.48_10	127.3	0.20	_	_	_	_	_	_	_
G142.49+07.48_11	56.8	0.09	-		-		_	-	1 04 1 0 05
G142.49+07.48_12	102.5	0.17	0.14 ± 0.03	4.9 ± 1.0	9.0 ± 1.8	0.043 ± 0.009	5.6 ± 1.1	6.9 ± 1.4	1.24 ± 0.35
G142.62+07.29_1	173.8	0.28	0.21 ± 0.04	4.7 ± 1.0	6.7 ± 1.4	0.053 ± 0.011	19.1 ± 4.0	17.3 ± 3.5	0.91 ± 0.27
G142.62+07.29_2	67.7	0.11							
G142.62+07.29_3	143.8	0.23	0.29 ± 0.09	3.3 ± 0.7	4.5 ± 0.9	0.029 ± 0.006	7.4 ± 1.5	19.5 ± 5.9	2.65 ± 0.96
G142.62+07.29_4	127.5	0.20	_	_	_	_	_	_	_
G142.62+07.29 ₋ 5	117.6	0.19	_	_	_	_	_	_	_
G142.62+07.29_6	104.4	0.17	_	_	_	_	_	_	_
G142.62+07.29 ₋ 7	98.6	0.16	_	_	_	_	_	_	_

Table 3—Continued

Name	FWHMa	$R_{\rm eff}{}^{\rm b}$	$\sigma_{\mathrm{C}^{18}\mathrm{O}}$	N _{H2} ¹³ CO	$n_{\mathrm{H}_2}^{\mathrm{13}_{\mathrm{CO}}}$	Σ^{13} CO	$M_{ m H_2}^{ m 13CO}$	$M_{ m vir}$	$lpha_{ m vir}$
	//	$_{\rm pc}$	${\rm kms^{-1}}$	10^{21}cm^{-2}	10^{3}cm^{-3}	$\rm gcm^{-2}$	M_{\odot}	M_{\odot}	
G142.62+07.29_8	63.7	0.10	_	_	_	_	_	_	_
G144.84+00.76_1	237.6	1.52	_	_	_	_	_	_	_
G144.84+00.76-2	189.3	1.21	_	_	_	_	_	_	_
G144.84+00.76_3	212.6	1.35	_	_	_	_	_	_	_
G144.84+00.76_4	105.2	0.67	_	_	_	_	_	_	_
G144.84+00.76_5	75.1	0.48	_	_	_	_	_	_	_
G144.84+00.76_6	94.7	0.60	_	_	_	_	_	_	_
G144.84+00.76_7	88.5	0.56	_	_	_	_	_	_	_
G144.84+00.76_8	76.7	0.49	_	_	_	_	_	_	_
G144.84+00.76_9	146.4	0.94	_	_	_	_	_	_	_
G144.84+00.76-10	105.8	0.68	_	_	_	_	_	_	_
G144.84+00.76_11	102.5	0.65	_	_	_	_	_	_	_
G144.84+00.76_12	83.2	0.53	_	_	_	_	_	_	_
G144.84+00.76_13	119.5	0.77	_	_	_	_	_	_	_
G144.84+00.76-14	115.1	0.73	_	_	_	_	_	_	_
G146.11+07.80_1	247.2	0.38	0.40 ± 0.04	8.9 ± 1.2	6.5 ± 0.9	0.070 ± 0.010	47.3 ± 6.5	44.9 ± 4.5	0.95 ± 0.16
G146.11+07.80_2	165.7	0.25		_	_	_	_	_	
G146.11+07.80_3	128.4	0.20	0.32 ± 0.05	9.0 ± 1.7	13.2 ± 2.5	0.074 ± 0.014	13.5 ± 2.6	18.3 ± 2.8	1.36 ± 0.34
G146.11+07.80 ₋ 4	202.0	0.31	_	_	_	_	_	_	_
G146.11+07.80 ₋ 5	135.6	0.21	0.30 ± 0.06	3.6 ± 0.7	5.0 ± 1.0	0.029 ± 0.006	6.0 ± 1.2	18.1 ± 3.9	3.02 ± 0.89
G146.11+07.80_6	91.8	0.14	_	_	_	_	_	_	_
G146.71+02.05_1	277.7	0.38	0.33 ± 0.06	6.7 ± 1.3	4.6 ± 0.9	0.050 ± 0.010	34.0 ± 6.8	37.3 ± 7.2	1.10 ± 0.30
G146.71+02.05-2	222.4	0.30	0.34 ± 0.14	5.0 ± 1.0	4.5 ± 0.9	0.039 ± 0.008	17.3 ± 3.5	30.5 ± 12.3	1.77 ± 0.80
G146.71+02.05_3	189.2	0.26	_	_	_	_	_	_	_
G146.71+02.05_4	144.8	0.20	_	_	_	_	_	_	_
G146.71+02.05_5	81.1	0.11	_	_	_	_	_	_	_
G146.71+02.05_6	140.2	0.19	_	_	_	_	_	_	_
G146.71+02.05_7	223.9	0.30	_	_	_	_	_	_	_
G146.71+02.05_8	191.3	0.26	0.14 ± 0.03	4.1 ± 0.8	4.1 ± 0.8	0.031 ± 0.006	10.0 ± 2.0	11.0 ± 2.2	1.10 ± 0.31
G147.01+03.39_1	155.8	0.23	0.29 ± 0.07	4.7 ± 0.9	5.3 ± 1.1	0.034 ± 0.007	8.3 ± 1.7	19.4 ± 4.7	2.33 ± 0.73
G148.00+00.09_1	106.3	0.67	0.77 ± 0.22	21.2 ± 4.2	11.8 ± 2.4	0.224 ± 0.045	474.8 ± 95.0	152.9 ± 43.9	0.32 ± 0.11
G148.00+00.09_2	207.1	1.30	0.91 ± 0.09	11.2 ± 2.2	2.3 ± 0.5	0.084 ± 0.017	679.5 ± 135.9	348.5 ± 34.0	0.51 ± 0.11
G148.00+00.09_3	74.3	0.47		_		_	_	_	_
G148.00+00.09_4	224.2	1.41	0.50 ± 0.05	13.9 ± 2.1	2.5 ± 0.4	0.103 ± 0.015	972.1 ± 146.4	207.0 ± 22.7	0.21 ± 0.04
G148.00+00.09 ₋ 5	112.1	0.70	0.32 ± 0.08	14.5 ± 4.0	6.0 ± 1.7	0.121 ± 0.033	285.4 ± 78.6	67.1 ± 17.3	0.24 ± 0.09
G148.00+00.09_6	211.6	1.33	0.43 ± 0.10	6.7 ± 1.3	1.3 ± 0.3	0.051 ± 0.010	428.6 ± 85.7	170.9 ± 38.8	0.40 ± 0.12
G148.00+00.09 ₋ 7	155.5	0.97		_		_	_		_
G148.00+00.09_8	157.6	0.99	_	_	_	_	_	_	_
G148.00+00.09_9	122.9	0.77	_	_	_	_	_	_	_
G148.00+00.09_10	94.3	0.59	0.26 ± 0.05	30.4 ± 6.6	16.8 ± 3.6	0.285 ± 0.062	475.3 ± 102.9	46.0 ± 9.3	0.10 ± 0.03
G148.00+00.09_11	120.9	0.76	_	_	_	_	_	_	_
G148.00+00.09_12	52.3	0.33	0.61 ± 0.10	34.9 ± 7.0	27.2 ± 5.4	0.255 ± 0.051	130.5 ± 26.1	58.7 ± 10.2	0.45 ± 0.12
G148.00+00.09_13	148.6	0.93			_		_		
G148.24+00.41_1	152.3	0.96	0.32 ± 0.06	33.8 ± 7.0	11.3 ± 2.4	0.312 ± 0.065	1379.4 ± 286.4	91.7 ± 18.2	0.07 ± 0.02

Table 3—Continued

Name	FWHM ^a	$R_{\rm eff}{}^{\rm b}$ pc	$\begin{array}{c} \sigma_{\mathrm{C}^{18}\mathrm{O}} \\ \mathrm{km}\mathrm{s}^{-1} \end{array}$	$N_{\rm H_2}^{\rm ^{13}CO} \\ 10^{\rm ^{21}cm^{-2}}$	$n_{\rm H_2}^{13}$ CO $10^3 {\rm cm}^{-3}$	Σ^{13} CO g cm $^{-2}$	$M_{\rm H_2}^{\rm ^{13}CO}$ M_{\odot}	$M_{ m vir} \ M_{\odot}$	$lpha_{ m vir}$
G148.24+00.41_2	180.7	1.14	0.74 ± 0.06	23.1 ± 3.5	6.4 ± 1.0	0.209 ± 0.031	1302.9 ± 194.6	250.8 ± 19.0	0.19 ± 0.03
$G148.24+00.41_{-3}$	169.0	1.07	0.78 ± 0.17	9.6 ± 1.3	3.5 ± 0.5	0.107 ± 0.015	584.4 ± 79.5	245.1 ± 53.2	0.42 ± 0.11
$G148.24+00.41_{-4}$	247.8	1.57	0.50 ± 0.05	11.8 ± 1.8	2.0 ± 0.3	0.088 ± 0.013	1035.0 ± 157.4	230.1 ± 24.1	0.22 ± 0.04
$G148.24+00.41_{-5}$	132.1	0.83	_	_	_	_	_	_	_
$G148.24+00.41_{-6}$	136.4	0.86	0.64 ± 0.08	12.3 ± 3.2	4.0 ± 1.1	0.099 ± 0.026	352.3 ± 92.1	162.7 ± 21.5	0.46 ± 0.14
$G148.24+00.41_{-7}$	185.3	1.17	_	_	_	_	_	_	_
G149.23+03.07 ₋ 1	266.7	0.36	0.42 ± 0.16	13.9 ± 2.8	9.9 ± 2.0	0.103 ± 0.021	65.4 ± 13.1	45.6 ± 17.0	0.70 ± 0.30
$G149.23+03.07_{-2}$	90.6	0.12	_	_	_	_	_	_	_
G149.23+03.07 ₋ 3	287.0	0.39	0.45 ± 0.08	10.0 ± 2.0	7.3 ± 1.5	0.082 ± 0.016	59.8 ± 12.0	52.5 ± 9.2	0.88 ± 0.23
G149.23+03.07 ₋ 4	349.7	0.48	0.38 ± 0.12	9.3 ± 1.9	6.0 ± 1.2	0.082 ± 0.016	88.7 ± 17.7	54.1 ± 16.6	0.61 ± 0.22
G149.23+03.07 ₋ 5	234.9	0.32	0.47 ± 0.11	10.7 ± 2.1	8.8 ± 1.8	0.080 ± 0.016	39.4 ± 7.9	44.5 ± 10.5	1.13 ± 0.35
$G149.41+03.37_{-1}$	340.2	0.46	0.47 ± 0.06	10.1 ± 2.0	6.9 ± 1.4	0.091 ± 0.018	93.3 ± 18.7	64.5 ± 8.7	0.69 ± 0.17
$G149.41+03.37_{-2}$	133.6	0.18	0.42 ± 0.07	10.2 ± 2.0	17.9 ± 3.6	0.093 ± 0.019	14.7 ± 2.9	22.9 ± 4.0	1.55 ± 0.41
$G149.41+03.37_{-3}$	105.9	0.14	_	_	_	_	_	_	_
G149.41+03.37-4	224.8	0.31	0.27 ± 0.13	9.5 ± 1.9	9.4 ± 1.9	0.082 ± 0.016	36.7 ± 7.3	24.8 ± 11.9	0.68 ± 0.35
G149.41+03.37 ₋ 5	94.4	0.13	_	_	_	_	_	_	_
$G149.41+03.37_6$	186.5	0.25	0.17 ± 0.03	12.6 ± 2.2	14.1 ± 2.4	0.103 ± 0.018	31.6 ± 5.5	12.8 ± 2.6	0.41 ± 0.11
G149.41+03.37 ₋ 7	68.9	0.09	_	_	_	_	_	_	_
G149.41+03.37 ₋₈	145.3	0.20	_	_	_	_	_	_	_
$G149.41+03.37_{-9}$	139.1	0.19	_	_	_	_	_	_	_
$G149.41+03.37_{-}10$	152.5	0.21	0.40 ± 0.08	10.5 ± 2.1	19.6 ± 3.9	0.117 ± 0.023	24.0 ± 4.8	24.7 ± 5.2	1.03 ± 0.30
G149.52-01.23_1	244.2	0.36	0.68 ± 0.06	18.3 ± 3.7	13.1 ± 2.6	0.136 ± 0.027	86.0 ± 17.2	73.3 ± 6.4	0.85 ± 0.19
G149.52-01.23 ₋ 2	206.4	0.31	0.32 ± 0.16	8.8 ± 0.9	7.4 ± 0.8	0.065 ± 0.007	29.3 ± 3.1	29.4 ± 14.6	1.01 ± 0.51
G149.52-01.23 ₋ 3	68.4	0.10	_	_	_	_	_	_	_
G149.52-01.23_4	79.6	0.12	_	_	_	_	_	_	_
G149.52-01.23 ₋ 5	166.0	0.25	0.66 ± 0.11	9.8 ± 2.0	10.3 ± 2.1	0.073 ± 0.015	21.2 ± 4.2	47.9 ± 8.4	2.26 ± 0.60
G149.52-01.23_6	151.0	0.23	_	_	_	_	_	_	_
G149.52-01.23 ₋ 7	124.2	0.19	_	_	_	_	_	_	_
$G149.58+03.45_{-1}$	338.0	0.46	0.39 ± 0.04	13.2 ± 1.9	9.9 ± 1.4	0.130 ± 0.019	130.9 ± 18.8	53.2 ± 5.7	0.41 ± 0.07
$G149.58+03.45_2$	253.8	0.34	0.48 ± 0.06	12.6 ± 2.5	10.5 ± 2.1	0.104 ± 0.021	59.2 ± 11.9	49.5 ± 6.6	0.84 ± 0.20
$G149.58+03.45_{-3}$	78.0	0.11	0.14 ± 0.03	15.4 ± 3.1	99.9 ± 20.0	0.304 ± 0.061	16.3 ± 3.3	4.4 ± 0.9	0.27 ± 0.08
$G149.58+03.45_4$	119.3	0.16	_	_	_	_	_	_	_
$G149.58+03.45_5$	222.7	0.30	0.31 ± 0.10	5.1 ± 1.0	4.6 ± 0.9	0.040 ± 0.008	17.4 ± 3.5	27.8 ± 8.7	1.60 ± 0.59
$G149.58+03.45_{-6}$	221.9	0.30	_	_	_	_	_	_	_
$G149.65+03.54_{-1}$	99.6	0.14	0.24 ± 0.04	24.9 ± 5.6	84.3 ± 19.0	0.327 ± 0.074	28.6 ± 6.5	9.8 ± 1.6	0.34 ± 0.09
$G149.65+03.54_2$	218.4	0.30	0.19 ± 0.02	15.5 ± 2.3	14.1 ± 2.1	0.120 ± 0.018	50.5 ± 7.5	17.1 ± 2.1	0.34 ± 0.07
$G149.65+03.54_{-}3$	308.3	0.42	0.39 ± 0.07	9.7 ± 0.3	6.0 ± 0.2	0.072 ± 0.002	60.7 ± 1.8	48.2 ± 9.0	0.79 ± 0.15
$G149.65 + 03.54_4$	97.9	0.13	_	_	_	_	_	_	_
G149.65 + 03.54 - 5	219.6	0.30	0.14 ± 0.03	10.2 ± 1.4	8.8 ± 1.2	0.075 ± 0.010	32.0 ± 4.4	12.5 ± 2.5	0.39 ± 0.10
$G149.65+03.54_6$	73.0	0.10	_	_	_	_	_	_	_
$G149.65+03.54_{-7}$	134.5	0.18	_	_	_	_	_	_	_
$G149.65+03.54_8$	246.2	0.33	0.73 ± 0.12	6.3 ± 1.3	5.0 ± 1.0	0.048 ± 0.010	25.6 ± 5.1	72.5 ± 12.3	2.83 ± 0.74
$G150.22+03.91_{-1}$	343.6	0.46	0.48 ± 0.05	19.4 ± 2.7	11.9 ± 1.6	0.156 ± 0.022	158.4 ± 21.9	65.1 ± 6.3	0.41 ± 0.07
G150.22+03.91 ₋ 2	106.3	0.14	0.14 ± 0.03	20.0 ± 4.6	48.7 ± 11.2	0.199 ± 0.046	19.3 ± 4.4	6.0 ± 1.2	0.31 ± 0.09

Table 3—Continued

Name FWHM ^a	$R_{\rm eff}{}^{\rm b}$	σ10 -						
//		$\sigma_{\mathrm{C}^{18}\mathrm{O}}$	N _{H2} ¹³ CO	$n_{\rm H_2}^{13}$ CO	Σ^{13} CO	$M_{\mathrm{H}_2}^{\mathrm{13}_{\mathrm{CO}}}$	$M_{ m vir}$	$lpha_{ m vir}$
	pc	$\mathrm{km}\mathrm{s}^{-1}$	10^{21}cm^{-2}	10^{3}cm^{-3}	$\mathrm{gcm^{-2}}$	M_{\odot}	M_{\odot}	
G150.22+03.91_3 130.5	0.17	0.36 ± 0.08	13.1 ± 2.6	13.3 ± 2.7	0.066 ± 0.013	9.7 ± 1.9	18.6 ± 3.9	1.92 ± 0.56
G150.22+03.91_4 162.5	0.22	0.20 ± 0.04	22.4 ± 3.3	36.5 ± 5.4	0.228 ± 0.034	51.7 ± 7.6	13.2 ± 2.7	0.25 ± 0.06
G150.22+03.91 ₋ 5 96.8	0.13	0.30 ± 0.06	19.5 ± 4.9	80.1 ± 20.2	0.298 ± 0.075	23.9 ± 6.0	11.6 ± 2.2	0.48 ± 0.15
G150.22+03.91_6 315.6	0.42	0.38 ± 0.11	12.6 ± 2.5	8.1 ± 1.6	0.099 ± 0.020	84.3 ± 16.9	47.8 ± 14.1	0.57 ± 0.20
G150.22+03.91 ₋ 7 237.3	0.32	0.42 ± 0.09	8.8 ± 1.8	7.6 ± 1.5	0.069 ± 0.014	33.4 ± 6.7	39.9 ± 8.5	1.20 ± 0.35
G150.44+03.95_1 370.1	0.50	0.46 ± 0.11	14.4 ± 2.9	8.8 ± 1.8	0.126 ± 0.025	147.6 ± 29.5	68.0 ± 16.2	0.46 ± 0.14
G150.44+03.95_2 304.8	0.41	0.21 ± 0.04	18.3 ± 2.9	11.9 ± 1.9	0.139 ± 0.022	111.0 ± 17.6	26.0 ± 4.5	0.23 ± 0.06
G150.44+03.95_3 88.3	0.12	0.14 ± 0.03	39.5 ± 6.2	114.9 ± 18.1	0.389 ± 0.061	25.9 ± 4.1	5.0 ± 1.0	0.19 ± 0.05
G150.44+03.95_4 88.9	0.12	0.30 ± 0.05	35.8 ± 7.3	74.7 ± 15.2	0.255 ± 0.052	17.3 ± 3.5	10.6 ± 1.8	0.61 ± 0.16
G150.44+03.95_5 164.3	0.22	0.23 ± 0.05	12.3 ± 2.5	16.6 ± 3.4	0.104 ± 0.021	24.1 ± 4.9	15.3 ± 3.0	0.63 ± 0.18
G150.44+03.95_6 153.9	0.21	0.19 ± 0.07	32.9 ± 5.8	58.9 ± 10.5	0.348 ± 0.062	70.6 ± 12.5	11.5 ± 4.1	0.16 ± 0.06
G150.44+03.95_7 384.9	0.51	0.28 ± 0.04	13.3 ± 2.4	6.8 ± 1.2	0.101 ± 0.018	127.9 ± 23.3	42.2 ± 6.4	0.33 ± 0.08
G151.08+04.46_1 228.4	0.30	0.29 ± 0.02	12.0 ± 0.3	12.8 ± 0.3	0.112 ± 0.003	49.8 ± 1.1	26.3 ± 1.9	0.53 ± 0.04
G151.08+04.46_2 133.5	0.18	0.38 ± 0.05	11.9 ± 2.2	22.2 ± 4.0	0.113 ± 0.021	17.2 ± 3.1	19.9 ± 2.6	1.16 ± 0.26
G151.08+04.46_3 85.4	0.11	0.36 ± 0.06	16.9 ± 4.1	65.9 ± 16.1	0.215 ± 0.052	13.3 ± 3.2	12.2 ± 2.2	0.92 ± 0.28
G151.08+04.46_4 258.8	0.35	0.32 ± 0.02	13.7 ± 1.3	11.8 ± 1.2	0.117 ± 0.011	66.9 ± 6.5	32.4 ± 2.5	0.48 ± 0.06
G151.08+04.46_5 160.6	0.21	0.22 ± 0.03	13.8 ± 1.8	16.5 ± 2.2	0.101 ± 0.013	22.3 ± 2.9	14.3 ± 1.7	0.64 ± 0.11
G151.08+04.46_6 81.9	0.11	0.21 ± 0.04	11.0 ± 2.9	31.1 ± 8.3	0.097 ± 0.026	5.6 ± 1.5	6.9 ± 1.4	1.25 ± 0.42
G151.08+04.46_7 172.1	0.23	0.22 ± 0.01	17.8 ± 1.1	24.1 ± 1.4	0.158 ± 0.009	39.8 ± 2.4	15.2 ± 0.7	0.38 ± 0.03
G151.08+04.46_8 197.7	0.26	0.24 ± 0.05	7.0 ± 1.4	7.9 ± 1.6	0.059 ± 0.012	19.8 ± 4.0	18.6 ± 3.8	0.94 ± 0.27
G151.45+03.95_1 335.9	0.45	0.87 ± 0.06	23.6 ± 4.7	15.4 ± 3.1	0.199 ± 0.040	194.7 ± 38.9	116.2 ± 7.8	0.60 ± 0.13
G151.45+03.95_2 247.9	0.33	0.55 ± 0.08	24.3 ± 4.9	19.3 ± 3.9	0.185 ± 0.037	98.5 ± 19.7	54.8 ± 7.6	0.56 ± 0.14
G151.45+03.95_3 244.4	0.33	0.36 ± 0.08	16.2 ± 3.2	12.8 ± 2.6	0.121 ± 0.024	63.1 ± 12.6	35.4 ± 8.2	0.56 ± 0.17
G151.45+03.95_4 98.0	0.13	_	_	_	_	_	_	_
G151.45+03.95_5 98.1	0.13	_	_	_	_	_	_	_
G151.45+03.95_6 196.4	0.26	_	_	_	_	_	_	_
G151.45+03.95_7 69.9	0.09	_	_	_	_	_	_	_
G151.45+03.95_8 121.2	0.16	_	_	_	_	_	_	_
G151.45+03.95_9 197.2	0.27	0.42 ± 0.11	18.1 ± 3.6	17.5 ± 3.5	0.134 ± 0.027	45.3 ± 9.1	33.0 ± 8.7	0.73 ± 0.24
G154.90+04.61_1 210.4	0.28	0.51 ± 0.07	19.7 ± 3.9	21.4 ± 4.3	0.170 ± 0.034	62.5 ± 12.5	42.2 ± 5.8	0.67 ± 0.16
G154.90+04.61_2 219.2	0.29	0.36 ± 0.07	11.3 ± 2.3	10.8 ± 2.2	0.090 ± 0.018	35.8 ± 7.2	30.5 ± 6.3	0.85 ± 0.25
G154.90+04.61_3 111.2	0.15	0.14 ± 0.03	15.0 ± 4.7	48.3 ± 15.1	0.203 ± 0.063	20.8 ± 6.5	6.1 ± 1.2	0.30 ± 0.11
G154.90+04.61_4 102.1	0.13	0.14 ± 0.03	16.9 ± 3.4	48.3 ± 9.7	0.186 ± 0.037	16.2 ± 3.2	5.7 ± 1.1	0.35 ± 0.10
G154.90+04.61_5 230.4	0.30	0.35 ± 0.09	10.8 ± 2.2	9.1 ± 1.8	0.079 ± 0.016	34.9 ± 7.0	31.6 ± 7.8	0.90 ± 0.29
G154.90+04.61_6 186.2	0.25	_	_	_	_	_	_	_
G154.90+04.61_7 118.0	0.16	_	_	_	_	_	_	_
G156.04+06.03_1 224.4	0.27	0.14 ± 0.03	6.9 ± 1.4	6.5 ± 1.3	0.051 ± 0.010	18.2 ± 3.7	11.5 ± 2.3	0.63 ± 0.18
G156.04+06.03_2 170.9	0.21	_	_	_	_	_	_	_
G156.04+06.03_3 150.9	0.18	_	_	_	_	_	_	_
G156.20+05.26_1 262.0	0.33	0.27 ± 0.05	8.2 ± 1.6	7.0 ± 1.4	0.067 ± 0.013	35.3 ± 7.1	26.4 ± 4.9	0.75 ± 0.20
G156.20+05.26_2 232.6	0.30	0.23 ± 0.08	6.4 ± 1.3	5.7 ± 1.1	0.048 ± 0.010	20.1 ± 4.0	20.2 ± 7.4	1.00 ± 0.42
G156.20+05.26_3 208.4	0.26	_			_	_	_	_
G157.25-01.00 ₋ 1 331.9	0.44	0.18 ± 0.01	24.1 ± 0.9	15.0 ± 0.5	0.191 ± 0.007	180.3 ± 6.6	23.9 ± 1.8	0.13 ± 0.01
G157.25-01.00 ₋₂ 154.2	0.21	0.20 ± 0.03	12.1 ± 2.4	25.8 ± 5.2	0.153 ± 0.031	31.2 ± 6.2	12.1 ± 2.1	0.39 ± 0.10

Table 3—Continued

Name	$FWHM^a$	$R_{\rm eff}^{\ \rm b}$	$\sigma_{\mathrm{C}^{18}\mathrm{O}}$	$N_{\rm H_2}^{13}$ CO	$n_{\mathrm{H}_2}^{\mathrm{13}_{\mathrm{CO}}}$	Σ^{13} CO	$M_{ m H_2}^{ m 13CO}$	$M_{ m vir}$	$lpha_{ m vir}$
	//	рс	$\mathrm{km}\mathrm{s}^{-1}$	10^{21}cm^{-2}	10^{3}cm^{-3}	${ m gcm^{-2}}$	$\stackrel{\mathbf{n}_2}{M_{\odot}}$	M_{\odot}	***
<u> </u>		рс	KIII S	10 CIII	10 CIII	g cm	1/1 🕙	1VI (·)	
G157.25-01.00_3	94.0	0.13	0.17 ± 0.04	28.5 ± 3.1	71.9 ± 7.9	0.259 ± 0.029	19.7 ± 2.2	6.5 ± 1.4	0.33 ± 0.08
G157.25-01.00_4	83.7	0.11	_	_	_	_	_	_	_
G157.25-01.00 ₋ 5	266.8	0.36	0.22 ± 0.01	16.0 ± 0.8	13.4 ± 0.7	0.137 ± 0.007	83.9 ± 4.4	22.9 ± 1.6	0.27 ± 0.02
G157.25-01.00_6	139.3	0.19	0.18 ± 0.01	20.8 ± 1.4	46.6 ± 3.2	0.249 ± 0.017	41.5 ± 2.8	9.7 ± 0.6	0.23 ± 0.02
G159.52+03.26 ₋ 1	149.9	0.86	1.75 ± 0.30	11.0 ± 2.2	3.5 ± 0.7	0.086 ± 0.017	304.2 ± 60.8	446.5 ± 75.3	1.47 ± 0.38
G159.52+03.26 ₋ 2	150.9	0.87	_	_	_	_	_	_	_
G159.52+03.26 ₋ 3	147.2	0.85	_	_	_	_	_	_	_
G159.52+03.26_4	134.5	0.77	_	_	_	_	_	_	_
G159.52+03.26 ₋ 5	128.2	0.75	0.50 ± 0.21	8.0 ± 1.6	3.1 ± 0.6	0.067 ± 0.013	180.4 ± 36.1	112.2 ± 46.0	0.62 ± 0.28
G159.52+03.26_6	134.9	0.79	_	_	_	_	_	_	_
G159.52+03.26 ₋ 7	52.3	0.30	_	_	_	_	_	_	_
G159.52+03.26 ₋ 8	101.0	0.58	0.19 ± 0.06	9.3 ± 1.9	5.2 ± 1.0	0.086 ± 0.017	138.9 ± 27.8	32.3 ± 10.8	0.23 ± 0.09
G159.52+03.26_9	104.6	0.61	_			_	_	_	_
G159.52+03.26_10	108.3	0.62	_			_	_	_	_
$G162.79+01.34_{-1}$	268.5	0.35	_	_	_	_	_	_	_
$G162.79+01.34_{-2}$	215.8	0.28	_	_	_	_	_	_	_
G162.79+01.34_3	262.5	0.34	0.35 ± 0.08	8.1 ± 2.5	6.8 ± 2.1	0.067 ± 0.021	37.9 ± 11.8	35.3 ± 7.7	0.93 ± 0.36
$G162.79+01.34_4$	174.0	0.23	_	_	_	_	_	_	_
$G162.79+01.34_{-5}$	221.4	0.29	_	_	_	_	_	_	_
G169.14-01.13_1	178.4	0.97	0.97 ± 0.16	10.4 ± 2.1	2.9 ± 0.6	0.080 ± 0.016	363.4 ± 72.7	278.6 ± 45.3	0.77 ± 0.20
G169.14-01.13 ₋ 2	200.6	1.09	_	_	_	_	_	_	_
G169.14-01.13 ₋ 3	73.1	0.40	_	_	_	_	_	_	_
G169.14-01.13_4	127.2	0.69	_	_	_	_	_	_	_
G169.14-01.13 ₋ 5	64.4	0.35	_	_	_	_	_	_	_
G169.14-01.13_6	66.7	0.36	_	_	_	_	_	_	_
G169.14-01.13_7	134.3	0.73	_	_	_	_	_	_	_
G169.14-01.13 ₋₈	87.7	0.48	_	_	_	_	_	_	_
G169.14-01.13_9	72.0	0.39	_	_	_	_	_	_	_
G169.14-01.13_10	73.3	0.40	_	_	_	_	_	_	_
G169.14-01.13_11	52.3	0.28	_	_	_	_	_	_	_
G169.14-01.13_12	73.6	0.40	_	_	_	_	_	_	_
G171.03+02.66_1	249.6	1.32	1.10 ± 0.13	8.4 ± 1.7	1.6 ± 0.3	0.062 ± 0.012	515.5 ± 103.1	432.3 ± 49.7	0.84 ± 0.19
G171.03+02.66 ₋ 2	225.0	1.19	0.67 ± 0.15	10.3 ± 2.1	2.2 ± 0.4	0.077 ± 0.015	522.3 ± 104.5	236.8 ± 54.6	0.45 ± 0.14
G171.03+02.66 ₋ 3	190.5	1.00	0.25 ± 0.06	9.5 ± 3.0	2.8 ± 0.9	0.081 ± 0.026	388.9 ± 125.0	73.4 ± 16.5	0.19 ± 0.07
G171.03+02.66_4	101.7	0.54	0.35 ± 0.07	18.2 ± 6.0	7.9 ± 2.6	0.123 ± 0.040	170.9 ± 56.3	56.1 ± 11.9	0.33 ± 0.13
G171.03+02.66 ₋ 5	197.5	1.04	_	_	_	_	_	_	_
G171.03+02.66_6	151.1	0.80	0.38 ± 0.12	9.2 ± 1.8	4.2 ± 0.8	0.096 ± 0.019	296.4 ± 59.3	89.4 ± 29.7	0.30 ± 0.12
G171.03+02.66 ₋ 7	113.7	0.60	_	_	_	_	_	_	_
G171.03+02.66 ₋₈	164.2	0.86	0.16 ± 0.06	6.5 ± 2.1	2.0 ± 0.6	0.050 ± 0.016	177.4 ± 56.5	41.1 ± 14.6	0.23 ± 0.11
$G171.34+02.59_{-1}$	265.6	1.38	0.93 ± 0.21	12.1 ± 2.4	2.3 ± 0.5	0.092 ± 0.018	833.8 ± 166.8	378.8 ± 84.6	0.45 ± 0.14
$G171.34+02.59_2$	264.6	1.37	1.00 ± 0.14	10.4 ± 2.1	2.1 ± 0.4	0.082 ± 0.016	739.2 ± 147.8	406.9 ± 55.7	0.55 ± 0.13
G171.34+02.59_3	86.7	0.45	_	_	_	_	_	_	_
G171.34 + 02.59 - 4	205.8	1.07	_	_	_	_	_	_	_
$G171.34+02.59_5$	71.3	0.37	0.28 ± 0.10	16.7 ± 3.3	21.5 ± 4.3	0.228 ± 0.046	149.7 ± 29.9	31.0 ± 10.4	0.21 ± 0.08

Table 3—Continued

Name	FWHM ^a	$R_{\rm eff}{}^{\rm b}$ pc	$\begin{array}{c} \sigma_{\rm C^{18}O} \\ \rm kms^{-1} \end{array}$	$N_{\rm H_2}^{\rm ^{13}CO} \\ 10^{21} \rm cm^{-2}$	$n_{\rm H_2}^{13}$ CO $10^3 {\rm cm}^{-3}$	Σ^{13} CO g cm ⁻²	$M_{\rm H_2}^{\rm ^{13}CO}$ M_{\odot}	$M_{ m vir} \ M_{\odot}$	$lpha_{ m vir}$
G171.34+02.59_6	184.9	0.96	_	_	_	_	_	_	_
G171.34+02.59 ₋ 7	153.8	0.81	_	_	_	_	_	_	_
$G172.85+02.27_{-1}$	224.9	1.12	0.98 ± 0.07	40.7 ± 5.0	10.0 ± 1.2	0.320 ± 0.039	1920.6 ± 236.8	324.6 ± 21.7	0.17 ± 0.02
$G172.85+02.27_{-2}$	250.9	1.25	1.31 ± 0.14	29.1 ± 5.8	6.0 ± 1.2	0.213 ± 0.043	1592.1 ± 318.4	485.6 ± 50.6	0.30 ± 0.07
$G172.85+02.27_{-3}$	252.6	1.26	1.17 ± 0.18	31.0 ± 6.2	6.3 ± 1.3	0.227 ± 0.045	1716.7 ± 343.3	436.5 ± 66.5	0.25 ± 0.06
G172.85+02.27 ₋ 4	194.4	0.97	_	_	_	_	_	_	_
G172.85+02.27 ₋ 5	96.3	0.48	_	_	_	_	_	_	_
$G172.85 + 02.27_{-6}$	166.6	0.83	_	_	_	_	_	_	_
G172.85+02.27 ₋ 7	136.4	0.68	_	_	_	_	_	_	_
G175.20+01.28 ₋ 1	135.9	0.67	0.53 ± 0.09	9.4 ± 1.9	3.7 ± 0.7	0.071 ± 0.014	152.6 ± 30.5	104.5 ± 17.8	0.68 ± 0.18
G175.20+01.28 ₋ 2	177.5	0.87	_	_	_	_	_	_	_
G175.20+01.28 ₋ 3	131.6	0.65	_	_	_	_	_	_	_
G175.20+01.28 ₋ 4	62.5	0.31	0.33 ± 0.09	14.3 ± 2.9	13.3 ± 2.7	0.117 ± 0.023	52.7 ± 10.5	30.0 ± 8.2	0.57 ± 0.19
G175.20+01.28 ₋ 5	188.0	0.92	_	_	_	_	_	_	_
G175.53+01.34 ₋ 1	141.2	0.69	_	_	_	_	_	_	_
$G175.53+01.34_2$	156.0	0.77	_	_	_	_	_	_	_
G175.53+01.34_3	129.0	0.63	_	_	_	_	_	_	_
G175.53+01.34_4	91.3	0.45	_	_	_	_	_	_	_
G175.53+01.34 ₋ 5	165.0	0.81	_	_	_	_	_	_	_
G175.53+01.34_6	150.0	0.74	_	_	_	_	_	_	_
G176.17-02.10 ₋ 1	173.9	2.51	0.29 ± 0.03	12.8 ± 1.5	1.4 ± 0.2	0.098 ± 0.012	2969.4 ± 349.9	217.2 ± 20.0	0.07 ± 0.01
G176.17-02.10 ₋ 2	181.4	2.62	0.29 ± 0.08	5.6 ± 0.6	0.7 ± 0.1	0.054 ± 0.005	1766.7 ± 174.1	228.6 ± 60.8	0.13 ± 0.04
G176.17-02.10 ₋ 3	63.1	0.91	_	_	_	_	_	_	_
G176.17-02.10_4	170.2	2.46	_	_	_	_	_	_	_
G176.17-02.10 ₋ 5	108.7	1.57	_	_	_	_	_	_	_
G176.17-02.10_6	172.9	2.50	0.26 ± 0.07	4.3 ± 0.9	0.5 ± 0.1	0.033 ± 0.007	980.1 ± 196.0	193.3 ± 50.4	0.20 ± 0.06
G176.17-02.10 ₋ 7	67.0	0.97	_	_	_	_	_	_	_
G176.17-02.10 ₋₈	111.9	1.62	_	_	_	_	_	_	_
G176.17-02.10 ₋ 9	112.6	1.63	_	_	_	_	_	_	_
$G176.35+01.92_{-1}$	114.1	0.56	0.72 ± 0.08	6.4 ± 1.5	2.9 ± 0.7	0.047 ± 0.011	71.0 ± 16.3	120.4 ± 14.2	1.69 ± 0.44
G176.35+01.92-2	128.0	0.63	0.58 ± 0.09	6.7 ± 1.3	3.1 ± 0.6	0.056 ± 0.011	107.3 ± 21.5	108.4 ± 17.6	1.01 ± 0.26
G176.35+01.92 ₋ 3	76.6	0.38	_	_	_	_	_	_	_
G176.35+01.92_4	99.7	0.49	_	_	_	_	_	_	_
G176.35+01.92_5	67.7	0.33	_	_	_	_	_	_	_
G176.35 + 01.92 - 6	120.5	0.60	_	_	_	_	_	_	_
G176.94+04.63_1	164.4	0.85	0.75 ± 0.10	10.6 ± 1.3	4.0 ± 0.5	0.097 ± 0.012	337.6 ± 40.3	189.7 ± 26.1	0.56 ± 0.10
G176.94+04.63 ₋ 2	124.7	0.65	_	_	_	_	_	_	_
G176.94+04.63 ₋ 3	176.4	0.92	_	_	_	_	_	_	_
G176.94+04.63 ₋ 4	133.6	0.69	_	_	_	_	_	_	_
G176.94+04.63 ₋ 5	135.7	0.70	_	_	_	_	_	_	_
G176.94+04.63_6	86.8	0.46	0.14 ± 0.03	14.2 ± 2.8	8.2 ± 1.6	0.107 ± 0.021	105.8 ± 21.2	19.1 ± 3.8	0.18 ± 0.05
G176.94+04.63_7	118.5	0.61	_	_	_	_	_	_	_
G176.94+04.63_8	130.9	0.68	_	_	_	_	_	_	_
G176.94+04.63_9	72.2	0.37	_	_	_	_	_	_	_

Table 3—Continued

Name	FWHM ^a	$R_{\rm eff}^{\ m b}$ pc	$\begin{array}{c} \sigma_{\rm C^{18}O} \\ \rm kms^{-1} \end{array}$	$N_{\rm H_2}^{\rm ^{13}CO} \\ 10^{21} \rm cm^{-2}$	$n_{\rm H_2}^{13}$ CO $10^3 {\rm cm}^{-3}$	Σ^{13} CO g cm ⁻²	$M_{\mathrm{H}_2}^{\mathrm{^{13}CO}}$ M_{\odot}	$M_{ m vir} \ M_{\odot}$	$lpha_{ m vir}$
G176.94+04.63_10	113.0	0.60	_	_	_	_	_	_	_
G176.94+04.63_11	76.8	0.40	0.68 ± 0.14	8.7 ± 1.7	5.7 ± 1.1	0.065 ± 0.013	49.9 ± 10.0	81.0 ± 16.2	1.62 ± 0.46
G176.94+04.63 ₋ 12	52.3	0.27	_	_	_	_	_	_	_
G176.94+04.63 ₋ 13	115.0	0.59	_	_	_	_	_	_	_
G177.09+02.85 ₋ 1	167.6	2.43	_	_	_	_	_	_	_
G177.09+02.85_2	162.1	2.35	_	_	_	_	_	_	_
G177.09+02.85 ₋ 3	157.7	2.28	0.16 ± 0.03	9.2 ± 1.8	1.0 ± 0.2	0.069 ± 0.014	1717.1 ± 343.4	107.5 ± 21.5	0.06 ± 0.02
G177.09+02.85_4	143.7	2.08	_	_	_	_	_	_	_
G177.09+02.85 ₋ 5	70.7	1.02	_	_	_	_	_	_	_
G177.09+02.85_6	66.3	0.96	_	_	_	_	_	_	_
G177.09+02.85_7	137.2	0.68	_	_	_	_	_	_	_
G177.14-01.21 ₋ 1	175.9	2.56	0.65 ± 0.04	26.7 ± 2.7	2.7 ± 0.3	0.195 ± 0.020	6132.0 ± 612.9	494.5 ± 30.3	0.08 ± 0.01
G177.14-01.21_2	106.7	1.55	_	_	_	_	_	_	_
G177.14-01.21_3	136.5	1.99	0.42 ± 0.07	9.9 ± 2.1	1.3 ± 0.3	0.073 ± 0.016	1380.8 ± 297.9	248.3 ± 41.8	0.18 ± 0.05
G177.14-01.21_4	152.0	2.21	0.85 ± 0.18	9.4 ± 1.9	1.2 ± 0.2	0.073 ± 0.015	1712.2 ± 342.4	557.6 ± 115.4	0.33 ± 0.09
G177.14-01.21 ₋ 5	126.6	1.84	_	_	_	_	_	_	_
G177.14-01.21_6	144.0	2.10	0.31 ± 0.08	5.8 ± 1.8	0.7 ± 0.2	0.045 ± 0.014	941.7 ± 289.5	190.6 ± 51.5	0.20 ± 0.08
G177.14-01.21_7	168.4	2.45	_	_	_	_	_	_	_
G177.86+01.04_1	221.4	3.21	0.94 ± 0.10	7.6 ± 2.2	0.7 ± 0.2	0.068 ± 0.019	3344.8 ± 960.5	899.0 ± 96.0	0.27 ± 0.08
$G177.86+01.04_2$	225.2	3.27	0.45 ± 0.08	5.2 ± 1.0	0.5 ± 0.1	0.044 ± 0.009	2274.1 ± 454.8	435.5 ± 79.9	0.19 ± 0.05
G177.86+01.04_3	87.3	1.27	0.14 ± 0.03	18.4 ± 6.0	4.3 ± 1.4	0.156 ± 0.051	1197.5 ± 389.0	53.3 ± 10.7	0.04 ± 0.02
$G177.86+01.04_4$	141.1	2.05	0.33 ± 0.10	13.7 ± 2.7	1.7 ± 0.3	0.101 ± 0.020	2032.1 ± 406.4	200.9 ± 58.3	0.10 ± 0.03
G178.28-00.61 ₋ 1	100.8	0.28	0.71 ± 0.11	22.1 ± 5.6	24.5 ± 6.2	0.198 ± 0.050	75.7 ± 19.1	59.7 ± 9.2	0.79 ± 0.23
G178.28-00.61 ₋ 2	293.2	0.82	0.72 ± 0.11	14.2 ± 1.6	4.9 ± 0.6	0.116 ± 0.013	374.0 ± 42.5	174.7 ± 26.5	0.47 ± 0.09
G178.28-00.61_3	117.4	0.33	0.91 ± 0.12	18.4 ± 3.7	16.1 ± 3.2	0.152 ± 0.030	78.8 ± 15.8	88.8 ± 11.4	1.13 ± 0.27
G178.28-00.61_4	52.3	0.15	_	_	_	_	-	_	_
G178.28-00.61 ₋ 5	172.1	0.48	_	_	_	_	-	_	_
$G178.28-00.61_{-6}$	158.1	0.44	_	_	_	_	_	_	_

^aThe extracted clump sizes with *Gaussclumps* procedure (see Section 3.2).

^bThe clump effective radius $R_{\rm eff}={\rm FWHM}/(2\sqrt{\ln 2})$. The uncertainties of $R_{\rm eff}$ are $\sim 10\%$, which will cause additional uncertainty of around 21% in the derived masses.

Table 4 Observed parameters of extracted $850\,\mu\mathrm{m}$ cores

Name	Offset(R.A. DEC.) ^a ("'")	$V_{^{13}\text{CO}}$ km s ⁻¹	$\frac{\Delta V_{^{13}\text{CO}}}{\text{km s}^{-1}}$	${^{T_{ m ^{13}CO}}_{ m K}}$	$V_{\rm C^{18}O} \atop {\rm kms^{-1}}$	$\frac{\Delta V_{\rm C^{18}O}}{\rm kms^{-1}}$	${^{T_{\mathrm{C}^{18}\mathrm{O}}}_{\mathrm{K}}}$	$ au_{ m ^{13}CO}$	$T_{\rm ex}(^{13}{ m CO})$ K
G108.85-00.80 ₋ 1	78.42, 89.09	-49.46 ± 0.02	3.06 ± 0.05	6.26 ± 0.29	-49.53 ± 0.10	2.01 ± 0.23	1.22 ± 0.23	1.36 ± 0.57	17.12 ± 1.95
G108.85-00.80 ₋ 2	-49.32, -80.21	-49.99 ± 0.03	3.17 ± 0.07	4.95 ± 0.32	-49.84 ± 0.16	2.84 ± 0.34	0.94 ± 0.22	1.29 ± 0.70	14.25 ± 2.19
G108.85-00.80 ₋ 3	64.49, 46.21	-49.43 ± 0.02	2.76 ± 0.05	6.44 ± 0.30	-49.50 ± 0.08	1.79 ± 0.18	1.41 ± 0.21	1.72 ± 0.51	16.68 ± 1.22
G108.85-00.80_4	107.96, 184.14	-49.51 ± 0.03	3.14 ± 0.08	4.07 ± 0.29	_	_	_	_	_
G108.85-00.80 ₋ 5	-49.38, -113.27	-49.76 ± 0.04	3.22 ± 0.09	3.76 ± 0.32	-48.72 ± 0.13	1.19 ± 0.33	1.08 ± 0.26	2.71 ± 1.03	9.96 ± 0.92
$G108.85-00.80_{-6}$	-102.54, -65.87	-51.07 ± 0.03	2.37 ± 0.07	5.57 ± 0.36	-	-	_	_	_
G108.85-00.80 ₋ 7	-68.94, -67.74	-50.71 ± 0.03	2.80 ± 0.06	5.46 ± 0.28	-50.72 ± 0.14	2.52 ± 0.27	1.07 ± 0.22	1.37 ± 0.65	15.26 ± 1.89
G108.85-00.80_8	49.32, 93.62	-49.48 ± 0.03	3.14 ± 0.07	4.72 ± 0.31	_	_	_	_	_
G108.85-00.80_9	99.78, 144.00	-49.39 ± 0.03	3.00 ± 0.06	4.70 ± 0.26	_				
G110.65+09.65_1	-52.08, -54.56	-4.27 ± 0.02	1.59 ± 0.04	6.07 ± 0.27	-4.34 ± 0.04	0.95 ± 0.09	2.16 ± 0.19	3.54 ± 0.51	14.75 ± 0.56
G110.65+09.65_2	-80.41, -12.92	-4.11 ± 0.02	1.57 ± 0.04	5.82 ± 0.25	-4.21 ± 0.04	1.00 ± 0.09	1.83 ± 0.17	2.96 ± 0.45	14.42 ± 0.57
G110.65+09.65_3	-20.50, -54.79	-4.32 ± 0.01	1.58 ± 0.03	6.93 ± 0.26	-4.31 ± 0.04	1.22 ± 0.12	1.92 ± 0.17	2.44 ± 0.38	16.80 ± 0.63
G110.65+09.65-4	-97.79, -38.93	-4.12 ± 0.02	1.58 ± 0.04	5.46 ± 0.27	-4.23 ± 0.04	0.97 ± 0.10	1.88 ± 0.19	3.38 ± 0.54	13.58 ± 0.60
G110.65+09.65_5	-101.10, 1.14	-4.18 ± 0.02	1.69 ± 0.04	5.70 ± 0.27	-4.34 ± 0.05	1.03 ± 0.14	1.40 ± 0.19	1.99 ± 0.49	14.77 ± 0.88
G120.16+03.09_1	-94.01, -156.23	-19.72 ± 0.02	2.53 ± 0.05	5.89 ± 0.29	-19.61 ± 0.08	2.04 ± 0.16	1.38 ± 0.19	1.87 ± 0.49	15.31 ± 1.01
G120.16+03.09_2	98.68, -37.56	-19.35 ± 0.02	2.47 ± 0.04	6.67 ± 0.26	-19.57 ± 0.09	2.45 ± 0.20	1.26 ± 0.18	1.20 ± 0.44	18.59 ± 2.05
G120.16+03.09_3	56.72, -19.18	-19.33 ± 0.01	2.36 ± 0.03	7.55 ± 0.23	-19.31 ± 0.05	1.62 ± 0.10	1.85 ± 0.17	2.02 ± 0.34	18.36 ± 0.71
G120.16+03.09_4	-30.74, 37.40	-19.61 ± 0.01	2.77 ± 0.03	7.09 ± 0.22	-19.81 ± 0.06	1.98 ± 0.13	1.76 ± 0.17	2.07 ± 0.37	17.44 ± 0.68
G120.16+03.09_5	-136.23, -95.98	-19.40 ± 0.02	2.68 ± 0.05	5.84 ± 0.29	-19.61 ± 0.09	2.31 ± 0.20	1.34 ± 0.20	1.80 ± 0.51	15.30 ± 1.09
G120.16+03.09_6	-13.81, -40.29	-19.55 ± 0.02	2.73 ± 0.04	6.29 ± 0.23	-19.55 ± 0.07	2.21 ± 0.15	1.42 ± 0.17	1.75 ± 0.41	16.32 ± 0.92
G120.16+03.09_7	-114.20, -144.07	-19.70 ± 0.02	2.47 ± 0.04	6.28 ± 0.29	-19.81 ± 0.08	1.99 ± 0.16	1.57 ± 0.21	2.10 ± 0.50	15.85 ± 0.88
G120.16+03.09_8	2.85, 20.11	-19.53 ± 0.02	2.60 ± 0.03	7.36 ± 0.25	-19.56 ± 0.05	1.96 ± 0.10	2.12 ± 0.18	2.63 ± 0.38	17.45 ± 0.57
G120.67+02.66_1	-41.96, 40.25	-18.17 ± 0.02	2.13 ± 0.05	4.79 ± 0.24	-18.36 ± 0.12	1.36 ± 0.26	0.78 ± 0.19	0.76 ± 0.65	16.28 ± 5.41
G120.67+02.66_2	50.42, -37.75	-18.09 ± 0.01	1.91 ± 0.03	6.53 ± 0.22	-18.10 ± 0.10	1.42 ± 0.21	0.99 ± 0.18	0.59 ± 0.47	23.57 ± 7.86
G120.67+02.66_3	5.12, 89.33	-16.95 ± 0.02	1.66 ± 0.04	6.16 ± 0.26	-16.92 ± 0.05	0.64 ± 0.12	1.32 ± 0.21	1.56 ± 0.51	16.40 ± 1.33
G120.67+02.66_4	22.35, 71.66	-16.97 ± 0.02	1.81 ± 0.04	6.24 ± 0.25	-16.89 ± 0.06	0.82 ± 0.39	1.13 ± 0.19	1.06 ± 0.49	18.23 ± 2.71
G120.67+02.66_5	-282.20, 15.44	-17.31 ± 0.03	1.71 ± 0.07	6.26 ± 0.43	_	_	_	_	_
G120.67+02.66_6	-44.65, 68.48	-17.67 ± 0.02	2.47 ± 0.05	4.53 ± 0.25	-	-	-	-	
G120.67+02.66-7	-24.19, -88.27	-17.89 ± 0.02	1.77 ± 0.06	4.54 ± 0.25	-17.89 ± 0.10	0.74 ± 0.24	0.80 ± 0.22	0.98 ± 0.78	14.25 ± 3.67
G120.67+02.66_8	240.16, -98.69	-17.96 ± 0.02	1.93 ± 0.05	4.53 ± 0.24	-18.12 ± 0.11	1.15 ± 0.24	1.03 ± 0.24	1.75 ± 0.78	12.41 ± 1.19
G120.67+02.66_9	-144.25, 122.45	-17.36 ± 0.02	1.72 ± 0.05	5.40 ± 0.30	-17.09 ± 0.12	1.08 ± 0.29	0.85 ± 0.22	0.67 ± 0.22	18.95 ± 6.32
G120.67+02.66_10	-6.00, 67.61	-17.13 ± 0.02	1.96 ± 0.04	6.05 ± 0.22	-17.04 ± 0.07	1.12 ± 0.24	1.13 ± 0.18	1.15 ± 0.46	17.38 ± 2.10
G120.67+02.66_11	211.56, -81.82	-17.89 ± 0.02	1.84 ± 0.04	4.89 ± 0.25	-18.17 ± 0.12	1.60 ± 0.23	0.84 ± 0.19	0.92 ± 0.64	15.49 ± 3.66
G120.67+02.66_12	-326.07, 54.02	-17.23 ± 0.03	1.77 ± 0.09	5.97 ± 0.53	- 17 12 0.00	- 0.00 0.00	- 0.07 0.10	0.61 0.52	20.60 6.00
G120.67+02.66_13	88.02, 40.50	-17.29 ± 0.01	1.80 ± 0.04	5.70 ± 0.22	-17.13 ± 0.08	0.98 ± 0.20	0.87 ± 0.18	0.61 ± 0.53	20.69 ± 6.90
G120.67+02.66-14	-256.25, -6.76	-17.36 ± 0.02 -17.26 ± 0.02	1.61 ± 0.06 1.48 ± 0.04	6.43 ± 0.44 6.15 ± 0.33	-17.43 ± 0.09 -17.24 ± 0.07	0.70 ± 0.18 0.86 ± 0.20	1.19 ± 0.28 1.46 ± 0.21	1.12 ± 0.69 1.89 ± 0.51	18.38 ± 3.64 15.82 ± 1.10
G120.98+02.66_1	-43.04, -31.36 -1.94, 17.24	-17.26 ± 0.02 -17.28 ± 0.02	1.48 ± 0.04 1.56 ± 0.03	6.15 ± 0.33 6.36 ± 0.28	-17.24 ± 0.07 -17.28 ± 0.08	0.86 ± 0.20 1.59 ± 0.22	1.46 ± 0.21 1.27 ± 0.20	1.89 ± 0.51 1.34 ± 0.49	15.82 ± 1.10 17.38 ± 1.76
G120.98+02.66_2 G120.98+02.66_3	-1.94, 17.24 30.68, 18.80	-17.28 ± 0.02 -17.25 ± 0.02	1.50 ± 0.03 1.61 ± 0.04	6.36 ± 0.28 6.00 ± 0.28	-17.28 ± 0.08 -17.29 ± 0.07	1.59 ± 0.22 1.43 ± 0.17	1.27 ± 0.20 1.35 ± 0.20	1.34 ± 0.49 1.72 ± 0.50	17.38 ± 1.76 15.77 ± 1.13
G120.98+02.66_4	-11.20, -16.42	-17.23 ± 0.02 -17.13 ± 0.02	1.61 ± 0.04 1.57 ± 0.04	6.00 ± 0.28 6.04 ± 0.28	-17.29 ± 0.07 -17.05 ± 0.10	1.45 ± 0.17 1.46 ± 0.23	1.05 ± 0.20 1.05 ± 0.21	0.94 ± 0.56	18.39 ± 3.79
·	83.86, 127.76	-17.13 ± 0.02 -17.31 ± 0.02	1.68 ± 0.04 1.68 ± 0.06	6.04 ± 0.28 4.31 ± 0.28	-17.00 ± 0.10	1.40 ± 0.23 -	1.05 ± 0.21 -	0.94 ± 0.56 -	18.39 ± 3.79
G120.98+02.66_5 G121.35+03.39_1	103.71, -12.44	-17.31 ± 0.02 -5.47 ± 0.02	1.08 ± 0.06 1.26 ± 0.05	4.31 ± 0.28 3.95 ± 0.26	-5.46 ± 0.05	-0.74 ± 0.12	$-$ 1.60 \pm 0.21	-4.27 ± 0.88	$-$ 10.19 \pm 0.63
G121.35+03.39_1 G121.35+03.39_2	138.21, 9.95	-5.47 ± 0.02 -5.31 ± 0.02	1.26 ± 0.05 1.23 ± 0.05	3.95 ± 0.26 3.56 ± 0.25	-5.40 ± 0.05 -5.42 ± 0.07	0.74 ± 0.12 0.90 ± 0.14	1.60 ± 0.21 1.25 ± 0.23	4.27 ± 0.88 3.48 ± 1.00	9.32 ± 0.67
	,								
$G121.35+03.39_{-3}$	-218.01, 197.83	-5.17 ± 0.04	1.27 ± 0.11	3.17 ± 0.42	-4.89 ± 0.06	0.62 ± 0.17	1.52 ± 0.28	5.44 ± 1.79	8.26 ± 1.07

Table 4—Continued

Name	Offset(R.A. DEC.) ^a (" ")	$V_{^{13}\mathrm{CO}}$ kms^{-1}	$\frac{\Delta V_{^{13}\text{CO}}}{\text{km s}^{-1}}$	${^{T_{ m ^{13}CO}}_{ m K}}$	$V_{\mathrm{C}^{18}\mathrm{O}} \atop \mathrm{kms}^{-1}$	$\frac{\Delta V_{\mathrm{C}^{18}\mathrm{O}}}{\mathrm{kms}^{-1}}$	${^{T_{\rm C^{18}O}}_{\rm K}}$	$ au_{ m 13CO}$	$T_{\rm ex}(^{13}{ m CO})$ K
G121.35+03.39_4	210.50, -68.00	-5.49 ± 0.04	1.61 ± 0.09	2.66 ± 0.30	-5.51 ± 0.12	1.12 ± 0.26	0.83 ± 0.24	2.94 ± 1.35	7.10 ± 0.89
G125.66-00.55_1	-39.93, -51.55	-12.18 ± 0.04	5.14 ± 0.11	5.53 ± 0.27	-9.50 ± 0.07	1.09 ± 0.18	1.21 ± 0.20	1.61 ± 0.55	14.92 ± 1.27
$G127.88+02.66_{-1}$	5.46, -194.55	-11.39 ± 0.01	1.52 ± 0.03	6.08 ± 0.23	-11.30 ± 0.10	1.35 ± 0.24	0.79 ± 0.17	0.22 ± 0.05	39.83 ± 13.28
G127.88 + 02.66 - 2	-58.05, -41.68	-11.18 ± 0.01	1.43 ± 0.03	5.77 ± 0.21	-11.11 ± 0.09	1.47 ± 0.24	0.78 ± 0.15	0.31 ± 0.10	29.71 ± 9.90
$G128.95-00.18_{-1}$	148.40, 32.49	-14.30 ± 0.06	1.03 ± 0.15	2.81 ± 0.61	_	_	_	_	_
$G128.95-00.18_2$	218.98, -137.36	-14.02 ± 0.06	1.72 ± 0.13	2.96 ± 0.48	-13.82 ± 0.16	0.39 ± 0.08	1.13 ± 0.33	3.96 ± 1.89	7.77 ± 1.31
G128.95-00.18 ₋ 3	-59.94, 29.72	-14.74 ± 0.02	1.19 ± 0.04	4.21 ± 0.24	_	_	_	_	_
G128.95-00.18-4	-181.56, 140.20	-14.75 ± 0.02	0.95 ± 0.05	4.58 ± 0.34		_	_	_	-
G128.95-00.18 ₋ 5	-207.77, 143.75	-14.74 ± 0.02	0.98 ± 0.04	4.46 ± 0.29	-14.81 ± 0.06	0.45 ± 0.14	1.60 ± 0.25	3.62 ± 0.87	11.42 ± 0.70
G128.95-00.18_6	196.46, -126.91	-14.07 ± 0.04	1.34 ± 0.12	4.21 ± 0.52	-13.78 ± 0.10	0.80 ± 0.21	1.20 ± 0.32	2.58 ± 1.18	11.08 ± 1.47
G131.72+09.70 ₋ 1	3.93, 4.10	-8.25 ± 0.02	1.21 ± 0.04	4.78 ± 0.30	-8.30 ± 0.10	0.71 ± 0.20	0.87 ± 0.23	1.05 ± 0.78	14.60 ± 3.39
G133.28+08.81 ₋ 1	133.54, 62.77	-10.99 ± 0.03	1.81 ± 0.08	3.15 ± 0.26	-11.02 ± 0.05	1.04 ± 0.13	1.81 ± 0.22	7.16 ± 1.70	8.20 ± 0.67
G133.48+09.02_1	-15.21, 7.76	-16.10 ± 0.03	2.81 ± 0.07	7.86 ± 0.52	-16.15 ± 0.08	2.15 ± 0.19	1.97 ± 0.27	2.08 ± 0.53	18.85 ± 1.38
G133.48+09.02_2	-36.17, -43.86	-16.02 ± 0.03	2.82 ± 0.06	7.76 ± 0.43	-15.92 ± 0.11	2.43 ± 0.28	1.59 ± 0.27	1.41 ± 0.54	20.06 ± 2.22
G133.48+09.02_3	6.96, 80.12	-16.28 ± 0.03	2.79 ± 0.07	7.32 ± 0.44	-15.93 ± 0.18	3.44 ± 0.38	1.23 ± 0.29	0.85 ± 0.67	22.35 ± 6.80
G133.48+09.02-4	57.56, 167.15	-16.02 ± 0.05	2.98 ± 0.12	5.26 ± 0.55		_	_	_	
G133.48+09.02_5	-2.64, 188.38	-15.74 ± 0.05	2.91 ± 0.10 2.25 ± 0.07	4.84 ± 0.47 6.87 ± 0.51	-15.67 ± 0.11	-2.20 ± 0.23	$^{-}$ 1.47 \pm 0.28	$-$ 1.55 \pm 0.64	$-$ 17.90 \pm 2.12
G133.48+09.02_6 G133.48+09.02_7	-76.99, -64.32 -41.23, -107.16	-15.62 ± 0.03 -15.68 ± 0.04	3.05 ± 0.07	6.05 ± 0.47	-15.67 ± 0.11 -15.42 ± 0.15	2.20 ± 0.23 2.91 ± 0.33	1.47 ± 0.28 1.42 ± 0.30	1.85 ± 0.04 1.85 ± 0.76	17.90 ± 2.12 15.68 ± 1.64
G133.48+09.02_8	-39.78, 3.63	-16.10 ± 0.04 -16.10 ± 0.03	2.81 ± 0.07	7.86 ± 0.52	-16.15 ± 0.08	2.91 ± 0.33 2.15 ± 0.19	1.42 ± 0.30 1.97 ± 0.27	2.08 ± 0.70	18.85 ± 1.38
G133.48+09.02_9	3.63, -35.19	-16.10 ± 0.03 -16.19 ± 0.03	3.05 ± 0.07	7.35 ± 0.32 7.35 ± 0.47	-16.13 ± 0.08 -16.22 ± 0.10	2.13 ± 0.19 2.51 ± 0.23	1.78 ± 0.27	1.95 ± 0.57	18.08 ± 1.40
G133.48+09.02_10	23.43, 42.34	-16.19 ± 0.03 -16.45 ± 0.04	2.85 ± 0.07	6.89 ± 0.47	-16.22 ± 0.10 -16.50 ± 0.14	2.01 ± 0.23 2.03 ± 0.50	1.45 ± 0.27 1.45 ± 0.29	1.50 ± 0.57 1.50 ± 0.66	18.08 ± 1.40 18.07 ± 2.21
G133.48+09.02_11	30.49, -76.31	-16.20 ± 0.04	3.21 ± 0.08	6.54 ± 0.49	-15.96 ± 0.14	2.92 ± 0.28	1.40 ± 0.20 1.41 ± 0.30	1.50 ± 0.00 1.57 ± 0.70	17.17 ± 2.11
G133.48+09.02_12	-44.38, -186.60	-15.56 ± 0.08	3.36 ± 0.22	3.94 ± 0.60	-		-	-	-
G133.48+09.02_13	-14.52, -163.97	-15.34 ± 0.05	3.23 ± 0.11	4.69 ± 0.48	-15.07 ± 0.17	2.50 ± 0.52	1.00 ± 0.27	1.54 ± 0.89	13.10 ± 2.18
G133.48+09.02_14	-30.17, 53.49	-16.34 ± 0.03	3.11 ± 0.07	7.54 ± 0.46	-16.17 ± 0.12	2.92 ± 0.25	1.49 ± 0.27	1.30 ± 0.57	20.01 ± 2.67
G133.48+09.02_15	-42.99, -69.29	-15.76 ± 0.03	2.47 ± 0.07	6.89 ± 0.48	-15.75 ± 0.08	1.72 ± 0.18	1.97 ± 0.29	2.57 ± 0.66	16.64 ± 1.13
G133.48+09.02_16	78.95, -120.55	-15.35 ± 0.05	3.01 ± 0.13	4.71 ± 0.48	-14.91 ± 0.08	1.09 ± 0.15	1.59 ± 0.28	3.30 ± 0.98	12.02 ± 1.16
G133.48+09.02_17	-0.87, 228.32	-15.25 ± 0.07	2.91 ± 0.17	3.45 ± 0.50	_			_	_
G133.48+09.02 ₋ 18	75.47, 10.28	-16.58 ± 0.04	3.02 ± 0.10	5.66 ± 0.51	-16.87 ± 0.15	2.16 ± 0.37	1.31 ± 0.28	1.80 ± 0.76	14.92 ± 1.77
$G140.49+06.07_{-1}$	-10.57, -29.18	-16.44 ± 0.02	1.55 ± 0.06	4.93 ± 0.31	_	_	_	_	_
$G146.11+07.80_{-1}$	22.23, 162.29	-12.00 ± 0.02	1.33 ± 0.03	3.98 ± 0.19	-11.90 ± 0.06	1.02 ± 0.13	0.96 ± 0.14	1.94 ± 0.53	10.88 ± 0.72
$G146.11+07.80_{-2}$	-287.12, 163.10	_	_	_	_	_	_	_	-
$G147.01+03.39_{-1}$	-18.45, -7.03	-4.78 ± 0.01	0.64 ± 0.03	4.54 ± 0.29	-4.79 ± 0.06	0.59 ± 0.11	1.12 ± 0.21	2.02 ± 0.70	12.17 ± 1.03
$G148.00+00.09_{-1}$	328.39, 11.29	-33.20 ± 0.03	2.16 ± 0.07	4.26 ± 0.29	_	_	_	_	_
$G148.00+00.09_{-2}$	308.72, 25.02	-33.68 ± 0.03	1.88 ± 0.08	4.06 ± 0.33	_	_	_	_	_
G148.00+00.09 ₋ 3	109.39, 15.81	-33.87 ± 0.02	1.66 ± 0.08	4.55 ± 0.29	-34.02 ± 0.10	0.81 ± 0.20	0.94 ± 0.24	1.55 ± 0.83	12.73 ± 1.64
G148.00+00.09_4	311.01, -123.54	-32.88 ± 0.05	2.24 ± 0.12	3.47 ± 0.37	-	-	-	-	-
G148.00+00.09_5	-43.82, -104.35	-34.34 ± 0.02	1.75 ± 0.05	4.15 ± 0.27	-34.33 ± 0.13	1.48 ± 0.24	0.84 ± 0.21	1.50 ± 0.80	11.80 ± 1.56
G149.52-01.23_1	38.82, 40.64	-7.71 ± 0.02	2.07 ± 0.04	5.40 ± 0.24	-7.41 ± 0.08	1.12 ± 0.19	0.83 ± 0.14	0.61 ± 0.45	19.71 ± 6.53
G149.52-01.23_2	-26.98, -72.05	-7.81 ± 0.01	1.81 ± 0.03	6.12 ± 0.23	-7.65 ± 0.05	1.10 ± 0.13	1.41 ± 0.15	1.79 ± 0.39	15.91 ± 0.87
G156.04+06.03_1	-169.13, -12.63	5.53 ± 0.04	0.90 ± 0.08	3.16 ± 0.47	_	_	_	_	_
G156.20+05.26_1	-11.33, 24.10	5.31 ± 0.01	0.66 ± 0.03	5.70 ± 0.36	_	_	_	_	_
G156.20+05.26-2	-239.84, 223.72	_	_	_	_	_	_	_	_

Table 4—Continued

Name	Offset(R.A. DEC.) ^a	V_{13}_{CQ}	$\Delta V_{^{13}\mathrm{CO}}$	T_{13}_{CO}	$V_{\mathrm{C}^{18}\mathrm{O}}$	$\Delta V_{\rm C^{18}O}$	$T_{\mathrm{C}^{18}\mathrm{O}}$	$\tau_{ m ^{13}CO}$	$T_{\rm ex}(^{13}{\rm CO})$
	(" ")	kms^{-1}	$\mathrm{km}\mathrm{s}^{-1}$	K	$\mathrm{km}\mathrm{s}^{-1}$	$\mathrm{km}\mathrm{s}^{-1}$	K		K
G159.52+03.26_1	8.45, 0.25	-14.93 ± 0.05	3.81 ± 0.10	3.06 ± 0.26	-14.46 ± 0.21	3.62 ± 0.54	0.72 ± 0.20	1.98 ± 1.00	8.48 ± 1.04
G159.52+03.26_2	14.94, -28.95	-14.83 ± 0.05	3.56 ± 0.12	2.98 ± 0.29	-14.64 ± 0.20	2.70 ± 0.63	0.64 ± 0.19	1.67 ± 1.00	8.48 ± 1.36
G169.14-01.13 ₋ 1	-223.23, 15.61	-9.29 ± 0.03	1.58 ± 0.08	3.13 ± 0.30	-9.29 ± 0.10	1.04 ± 0.23	0.75 ± 0.19	2.05 ± 0.95	8.62 ± 1.11
G171.34+02.59 ₋ 1	-44.85, -140.46	-19.31 ± 0.02	2.00 ± 0.04	3.85 ± 0.18	-19.39 ± 0.12	1.26 ± 0.24	0.66 ± 0.17	0.99 ± 0.72	12.24 ± 2.82
G171.34+02.59 ₋ 2	-51.01, 68.72	-19.08 ± 0.02	1.75 ± 0.06	3.37 ± 0.21	-18.90 ± 0.09	0.95 ± 0.22	0.79 ± 0.18	1.96 ± 0.80	9.31 ± 0.87
$G172.85 + 02.27_{-1}$	-8.94, 2.00	-17.35 ± 0.02	3.35 ± 0.06	6.79 ± 0.31	-17.27 ± 0.11	2.34 ± 0.31	1.30 ± 0.23	1.32 ± 0.53	18.39 ± 2.08
G172.85+02.27 ₋ 2	-36.58, 9.24	-17.21 ± 0.03	3.28 ± 0.07	6.69 ± 0.32	-17.24 ± 0.09	2.17 ± 0.23	1.42 ± 0.22	1.64 ± 0.53	17.34 ± 1.41
G172.85+02.27 ₋ 3	7.84, -31.33	-17.15 ± 0.03	3.34 ± 0.06	6.56 ± 0.33	-17.25 ± 0.10	1.95 ± 0.23	1.22 ± 0.22	1.23 ± 0.55	18.19 ± 2.40
G172.85+02.27_4	-18.96, 30.70	-17.39 ± 0.02	3.25 ± 0.06	6.66 ± 0.29	-17.48 ± 0.07	1.92 ± 0.15	1.58 ± 0.20	2.01 ± 0.46	16.70 ± 0.91
$G172.85 + 02.27 \pm 5$	24.01, -52.54	-16.99 ± 0.03	3.35 ± 0.07	5.68 ± 0.35	-16.71 ± 0.17	2.59 ± 0.38	0.88 ± 0.23	0.72 ± 0.69	19.27 ± 7.65
G172.85+02.27_6	267.97, 59.03	-17.58 ± 0.04	3.29 ± 0.08	5.57 ± 0.41	_	_	_	_	_
G172.85+02.27 ₋ 7	-25.62, -25.13	-17.15 ± 0.03	3.12 ± 0.06	6.15 ± 0.33	-17.06 ± 0.07	1.49 ± 0.17	1.58 ± 0.24	2.29 ± 0.59	15.42 ± 0.91
$G175.20+01.28_{-1}$	-1.87, -8.20	-6.12 ± 0.03	2.05 ± 0.07	3.97 ± 0.31	_	_	_	_	_
$G176.17-02.10_{-1}$	23.54, 4.78	-20.37 ± 0.02	1.18 ± 0.04	4.30 ± 0.26	-20.32 ± 0.04	0.50 ± 0.07	1.76 ± 0.19	4.89 ± 0.85	10.97 ± 0.61
$G176.94 + 04.63_{-1}$	110.26, 108.72	-17.61 ± 0.02	1.97 ± 0.05	4.49 ± 0.22	-17.60 ± 0.18	1.41 ± 0.41	0.73 ± 0.20	0.87 ± 0.76	14.64 ± 4.44
$G176.94 + 04.63_2$	80.64, 79.53	-17.53 ± 0.02	2.06 ± 0.04	4.71 ± 0.20	-17.78 ± 0.11	1.46 ± 0.23	0.79 ± 0.18	0.95 ± 0.64	14.86 ± 3.32
G177.14-01.21 ₋ 1	-5.41, 26.68	-17.45 ± 0.02	2.29 ± 0.05	5.58 ± 0.26	-17.34 ± 0.05	1.28 ± 0.12	1.69 ± 0.19	3.23 ± 0.55	13.86 ± 0.59
$G177.14-01.21_2$	-8.46, 67.26	-17.36 ± 0.02	2.23 ± 0.05	5.14 ± 0.27	-17.30 ± 0.06	1.23 ± 0.17	1.40 ± 0.20	2.77 ± 0.61	13.09 ± 0.69
G177.14-01.21 ₋ 3	7.97, -4.93	-17.23 ± 0.02	2.39 ± 0.05	5.58 ± 0.27	-17.31 ± 0.09	1.72 ± 0.30	1.14 ± 0.19	1.73 ± 0.56	14.85 ± 1.15
$G178.28-00.61_{-1}$	-7.66, 35.90	-0.52 ± 0.02	2.05 ± 0.05	5.23 ± 0.27	-0.62 ± 0.09	1.53 ± 0.21	1.13 ± 0.21	1.63 ± 0.62	14.22 ± 1.30
G178.28-00.61 ₋ 2	6.42, -3.54	-0.80 ± 0.02	1.95 ± 0.06	4.95 ± 0.26	-1.11 ± 0.07	0.82 ± 0.19	1.20 ± 0.23	2.01 ± 0.70	13.12 ± 0.97
G178.28-00.61 ₋ 3	14.82, -60.69	-0.89 ± 0.02	1.83 ± 0.05	4.65 ± 0.23	-1.12 ± 0.05	1.02 ± 0.11	1.68 ± 0.21	3.71 ± 0.70	11.82 ± 0.55
$G178.28-00.61_4$	7.58, 128.09	-0.30 ± 0.02	1.96 ± 0.05	4.57 ± 0.26	-0.47 ± 0.09	0.91 ± 0.24	1.06 ± 0.24	1.86 ± 0.77	12.39 ± 1.10
G178.28-00.61 ₋ 5	143.47, 216.17	-0.84 ± 0.03	2.30 ± 0.07	4.74 ± 0.35	_	_	_	_	_
G178.28-00.61_6	96.32, -84.03	-1.02 ± 0.02	1.72 ± 0.05	4.69 ± 0.28	-1.17 ± 0.12	1.09 ± 0.31	0.71 ± 0.20	0.62 ± 0.21	17.28 ± 5.76
G178.28-00.61 ₋ 7	-3.90, -97.24	-0.68 ± 0.03	2.62 ± 0.07	3.72 ± 0.24	-1.19 ± 0.08	1.29 ± 0.22	1.39 ± 0.22	3.89 ± 0.95	9.67 ± 0.61
G178.28-00.61_8	31.89, -7.08	-0.87 ± 0.02	1.72 ± 0.04	5.79 ± 0.24	-0.98 ± 0.07	1.02 ± 0.13	1.34 ± 0.22	1.85 ± 0.57	15.12 ± 0.98
G178.28-00.61 ₋ 9	32.82, -57.09	-0.90 ± 0.02	1.74 ± 0.05	5.20 ± 0.25	-1.10 ± 0.08	1.28 ± 0.20	1.08 ± 0.20	1.50 ± 0.60	14.37 ± 1.42
G178.28-00.61 ₋ 10	-15.63, 102.99	-0.24 ± 0.02	1.91 ± 0.05	5.02 ± 0.28	-0.35 ± 0.15	1.29 ± 0.36	0.81 ± 0.25	0.77 ± 0.26	16.88 ± 7.07

^aThe absolute coordinate of each source is listed in Table 1.

Table 5 Derived parameters of extracted $850\,\mu\mathrm{m}$ cores

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\alpha_{ m vir}$ I	$lpha_{ m vir}$	$M_{ m H_2}^{850\mu m} \ M_{\odot}$	$\frac{\Sigma^{850\mu\mathrm{m}}}{\mathrm{g cm}^{-2}}$	$^{n_{\rm H_2}^{850\mu\rm m}}{10^4{\rm cm}^{-3}}$	$N_{ m H_2}^{850\mu m}$ $10^{22} { m cm}^{-2}$	S_{850} Jy	$\begin{array}{c} \sigma_{\mathrm{C}^{18}\mathrm{O}} \\ \mathrm{km}\mathrm{s}^{-1} \end{array}$	$R_{ m eff}^{ m b}$ pc	FWHM ^a	Name
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$.46 \pm 0.10$	0.46 ± 0.10	154.0 ± 27.6	0.403 ± 0.072	5.0 ± 0.9	6.4 ± 1.5	2.19	0.85 ± 0.10	0.28	30.2	G108.85-00.80_1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$.65 \pm 0.19$	0.65 ± 0.19	135.9 ± 35.7	0.464 ± 0.122	6.5 ± 1.7	4.6 ± 1.4	1.43	1.21 ± 0.14	0.25	26.5	G108.85-00.80 ₋₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$.57 \pm 0.09$	0.57 ± 0.09		0.289 ± 0.034			1.55		0.29	30.7	G108.85-00.80_3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	_		0.621 ± 0.081			0.53		0.17	18.7	G108.85-00.80_4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$.33 \pm 0.11$	0.33 ± 0.11					0.37	0.51 ± 0.14	0.15	16.3	G108.85-00.80_5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	_							0.19		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.60 ± 0.37	1.60 ± 0.37						1.07 ± 0.11			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	_									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	_	52.2 ± 4.7				0.39	_	0.17	17.8	G108.85-00.80_9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$.53 \pm 0.06$	0.53 ± 0.06						0.40 ± 0.04	0.06		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											· ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											· ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											· ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											· ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											· ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											· ·
$G121.35 + 03.39 - 1 \qquad 25.4 \qquad 0.05 \qquad 0.31 \pm 0.05 \qquad 1.20 \qquad 3.4 \pm 0.6 \qquad 53.2 \pm 6.7 \qquad 0.793 \pm 0.100 \qquad 10.3 \pm 1.3 \qquad 0.47 \pm 0.10 \qquad 0$											
											· ·
$\Box \Box $											
		0.60 ± 0.15 0.53 ± 0.22									

Table 5—Continued

Name	FWHM ^a	$R_{\rm eff}^{\rm b}$	$\sigma_{\mathrm{C}^{18}\mathrm{O}}$	S_{850}	$N_{\rm H_2}^{850\mu{ m m}}$	$n_{\rm H_2}^{850\mu \rm m}$	$\Sigma^{850\mu\mathrm{m}}$	$M_{ m H_2}^{850\mu m}$	$\alpha_{ m vir}$	Infrared ^c
		pc	${\rm kms^{-1}}$	Jу	10^{22} cm ⁻²	10^{4}cm^{-3}	$\mathrm{gcm^{-2}}$	$ar{M_{\odot}}$		WISE
G121.35+03.39_4	19.5	0.04	0.48 ± 0.11	0.33	1.6 ± 0.3	73.9 ± 24.5	0.848 ± 0.281	6.5 ± 2.1	0.87 ± 0.35	no
G125.66-00.55_1	18.0	0.03	0.46 ± 0.08	0.26	10.1 ± 2.3	18.5 ± 2.6	0.170 ± 0.024	0.8 ± 0.1	5.28 ± 1.16	no
$G127.88+02.66_{-1}$	14.1	0.04	0.57 ± 0.10	0.21	2.5 ± 0.5	5.5 ± 2.2	0.057 ± 0.023	0.4 ± 0.1	16.99 ± 7.58	no
$G127.88 + 02.66_2$	17.2	0.04	0.62 ± 0.10	0.32	1.9 ± 0.4	6.5 ± 2.8	0.083 ± 0.036	0.8 ± 0.3	10.54 ± 4.91	yes
G128.95-00.18 ₋ 1	22.2	0.06	_	0.69	3.5 ± 0.6	74.6 ± 41.4	1.269 ± 0.703	21.4 ± 11.8	_	no
G128.95-00.18 ₋ 2	14.1	0.04	0.17 ± 0.03	0.19	2.7 ± 0.5	70.0 ± 28.9	0.751 ± 0.310	5.0 ± 2.1	0.37 ± 0.17	yes
G128.95-00.18 ₋ 3	19.5	0.05	_	0.39	7.5 ± 0.3	26.1 ± 2.7	0.392 ± 0.040	5.1 ± 0.5	_	yes
G128.95-00.18_4	18.6	0.05	_	0.36	6.8 ± 0.4	24.3 ± 3.0	0.347 ± 0.043	4.1 ± 0.5	_	no
G128.95-00.18 ₋ 5	17.0	0.05	0.19 ± 0.06	0.28	2.7 ± 0.6	25.0 ± 2.9	0.327 ± 0.038	3.3 ± 0.4	0.80 ± 0.26	no
G128.95-00.18 ₋ 6	14.1	0.04	0.34 ± 0.09	0.17	2.5 ± 0.5	28.0 ± 7.2	0.301 ± 0.078	2.0 ± 0.5	1.86 ± 0.69	no
G131.72+09.70 ₋ 1	15.4	0.03	0.30 ± 0.09	0.40	1.5 ± 0.3	49.8 ± 19.5	0.363 ± 0.142	1.1 ± 0.4	2.03 ± 0.98	yes
$G133.28+08.81_{-1}$	25.4	0.04	0.44 ± 0.06	0.76	5.7 ± 1.2	65.7 ± 12.6	0.808 ± 0.155	7.1 ± 1.4	0.79 ± 0.18	yes
$G133.48+09.02_{-1}$	37.8	0.07	0.91 ± 0.08	10.43	10.8 ± 2.0	55.5 ± 6.2	1.062 ± 0.118	22.6 ± 2.5	0.80 ± 0.11	yes
$G133.48+09.02_{-2}$	27.4	0.05	1.03 ± 0.12	4.00	8.3 ± 1.8	51.0 ± 8.3	0.706 ± 0.116	7.9 ± 1.3	1.88 ± 0.37	yes
$G133.48+09.02_{-3}$	29.4	0.05	1.46 ± 0.16	4.53	6.0 ± 1.5	39.7 ± 17.2	0.592 ± 0.257	7.7 ± 3.3	2.94 ± 1.32	no
$G133.48+09.02_4$	18.7	0.03	_	1.74	26.1 ± 1.5	140.1 ± 21.7	1.327 ± 0.206	6.9 ± 1.1	_	yes
$G133.48+09.02_{-5}$	22.8	0.04	_	1.68	22.6 ± 1.3	86.0 ± 13.3	0.988 ± 0.153	7.6 ± 1.2	_	yes
$G133.48+09.02_{-6}$	23.0	0.04	0.93 ± 0.10	1.44	5.9 ± 1.5	36.7 ± 6.7	0.427 ± 0.078	3.3 ± 0.6	3.35 ± 0.70	no
$G133.48+09.02_{-7}$	27.3	0.05	1.23 ± 0.14	2.66	7.5 ± 2.1	50.4 ± 8.6	0.695 ± 0.119	7.7 ± 1.3	2.29 ± 0.47	no
G133.48+09.02_8	20.6	0.04	0.91 ± 0.08	1.19	10.8 ± 2.0	38.8 ± 4.3	0.405 ± 0.045	2.6 ± 0.3	3.83 ± 0.54	no
G133.48+09.02 ₋ 9	39.2	0.07	1.07 ± 0.10	3.59	10.2 ± 2.1	18.2 ± 2.2	0.361 ± 0.043	8.3 ± 1.0	2.64 ± 0.40	no
G133.48+09.02 ₋ 10	34.2	0.06	0.86 ± 0.21	2.89	7.3 ± 1.9	22.0 ± 4.1	0.382 ± 0.072	6.7 ± 1.3	2.31 ± 0.71	yes
$G133.48+09.02_{-}11$	38.9	0.07	1.24 ± 0.12	3.15	7.9 ± 2.2	17.6 ± 3.4	0.348 ± 0.067	7.9 ± 1.5	3.20 ± 0.69	yes
$G133.48+09.02_{-}12$	19.3	0.03	_	0.73	19.2 ± 1.8	87.2 ± 24.8	0.848 ± 0.241	4.7 ± 1.3	_	yes
G133.48+09.02 ₋ 13	18.4	0.03	1.06 ± 0.22	0.59	4.8 ± 1.0	48.8 ± 14.5	0.455 ± 0.135	2.3 ± 0.7	4.44 ± 1.61	yes
$G133.48+09.02_{-}14$	32.3	0.06	1.24 ± 0.11	1.87	8.4 ± 1.9	14.6 ± 2.9	0.239 ± 0.047	3.7 ± 0.7	5.65 ± 1.22	yes
$G133.48+09.02_{-}15$	22.9	0.04	0.73 ± 0.08	0.95	9.4 ± 1.9	27.6 ± 3.0	0.319 ± 0.035	2.5 ± 0.3	3.52 ± 0.53	yes
$G133.48+09.02_{-}16$	24.9	0.04	0.46 ± 0.07	1.02	8.3 ± 2.1	40.6 ± 7.3	0.510 ± 0.092	4.7 ± 0.8	1.28 ± 0.29	no
G133.48+09.02 ₋ 17	26.6	0.05	_	1.03	13.5 ± 1.3	61.0 ± 18.6	0.820 ± 0.250	8.6 ± 2.6	_	no
$G133.48+09.02_{-}18$	18.1	0.03	0.92 ± 0.16	0.43	6.6 ± 1.9	30.5 ± 6.1	0.280 ± 0.056	1.4 ± 0.3	6.34 ± 1.67	yes
$G140.49+06.07_{-1}$	19.7	0.07	_	1.19	12.3 ± 0.5	46.5 ± 4.5	0.911 ± 0.089	20.4 ± 2.0	_	yes
$G146.11+07.80_{-1}$	19.2	0.03	0.43 ± 0.05	0.61	1.8 ± 0.4	73.8 ± 9.7	0.619 ± 0.081	2.5 ± 0.3	1.49 ± 0.27	no
G146.11+07.80 ₋₂	14.1	0.02	_	0.17	0.1 ± 0.0	5.6 ± 0.7	0.034 ± 0.004	0.1 ± 0.0	_	yes
$G147.01+03.39_{-1}$	38.7	0.06	0.25 ± 0.05	1.85	1.1 ± 0.3	23.1 ± 3.6	0.372 ± 0.058	5.6 ± 0.9	0.75 ± 0.18	no
$G148.00+00.09_{-1}$	14.6	0.09	_	0.24	13.8 ± 0.6	16.0 ± 1.9	0.419 ± 0.050	16.6 ± 2.0	_	yes
$G148.00+00.09_2$	15.1	0.09	_	0.21	11.2 ± 0.6	14.0 ± 2.0	0.379 ± 0.056	16.3 ± 2.4	_	yes
$G148.00+00.09_{-3}$	22.5	0.14	0.34 ± 0.09	0.47	2.4 ± 0.5	6.3 ± 1.5	0.257 ± 0.060	24.5 ± 5.7	0.59 ± 0.20	yes
$G148.00+00.09_4$	14.1	0.09	_	0.17	10.5 ± 0.8	18.7 ± 4.2	0.471 ± 0.105	17.5 ± 3.9	_	yes
$G148.00+00.09_{-5}$	20.3	0.13	0.63 ± 0.10	0.40	2.1 ± 0.4	8.5 ± 2.1	0.311 ± 0.077	24.2 ± 6.0	0.98 ± 0.29	yes
G149.52-01.23 ₋ 1	17.7	0.03	0.48 ± 0.08	0.35	2.5 ± 0.4	20.5 ± 10.1	0.154 ± 0.076	0.5 ± 0.3	7.30 ± 3.82	no
G149.52-01.23 ₋ 2	23.3	0.03	0.47 ± 0.06	0.41	4.4 ± 0.6	14.2 ± 1.3	0.141 ± 0.012	0.8 ± 0.1	5.94 ± 0.89	no
G156.04+06.03_1	15.8	0.02	_	0.82	3.7 ± 0.4	408.2 ± 137.0	2.251 ± 0.755	4.0 ± 1.3	-	yes
$G156.20+05.26_{-1}$	14.1	0.02	_	0.87	6.5 ± 0.3	205.0 ± 18.0	1.050 ± 0.092	1.6 ± 0.1	_	yes
G156.20+05.26-2	14.1	0.02	_	0.17	0.1 ± 0.0	6.8 ± 0.8	0.035 ± 0.004	0.1 ± 0.0	_	yes

Table 5—Continued

Name	FWHM ^a	R _{eff} b pc	$\begin{array}{c} \sigma_{\rm C^{18}O} \\ \rm kms^{-1} \end{array}$	S_{850} Jy	$N_{\rm H_2}^{850\mu \rm m}$ $10^{22} {\rm cm}^{-2}$	$n_{\rm H_2}^{850\mu\rm m}$ $10^4{ m cm}^{-3}$	$\frac{\Sigma^{850\mu\mathrm{m}}}{\mathrm{g cm}^{-2}}$	$M_{ m H_{2}}^{850\mu{ m m}} \ M_{\odot}$	$lpha_{ m vir}$	Infrared ^c WISE
G159.52+03.26_1	29.0	0.17	1.54 ± 0.23	0.90	3.5 ± 0.7	14.3 ± 4.0	0.681 ± 0.192	90.0 ± 25.4	0.84 ± 0.27	yes
$G159.52+03.26_{-2}$	23.8	0.14	1.15 ± 0.27	0.40	2.7 ± 0.5	11.4 ± 4.2	0.446 ± 0.165	39.7 ± 14.7	1.17 ± 0.51	yes
G169.14-01.13 ₋ 1	17.4	0.09	0.44 ± 0.10	0.24	1.5 ± 0.3	18.1 ± 5.3	0.493 ± 0.145	21.2 ± 6.2	0.58 ± 0.22	yes
$G171.34+02.59_{-1}$	15.4	0.08	0.54 ± 0.10	0.23	1.7 ± 0.3	12.9 ± 5.5	0.296 ± 0.126	9.0 ± 3.8	1.41 ± 0.65	yes
$G171.34+02.59_{-2}$	17.7	0.09	0.40 ± 0.09	0.29	1.8 ± 0.6	18.0 ± 3.7	0.475 ± 0.097	19.2 ± 3.9	0.57 ± 0.17	no
$G172.85+02.27_{-1}$	37.5	0.19	0.99 ± 0.13	7.20	7.8 ± 1.7	14.3 ± 2.5	0.770 ± 0.133	129.3 ± 22.4	0.43 ± 0.09	yes
$G172.85+02.27_2$	26.8	0.13	0.92 ± 0.10	2.82	8.5 ± 1.8	16.8 ± 2.1	0.645 ± 0.082	55.4 ± 7.0	0.66 ± 0.11	yes
$G172.85+02.27_{-3}$	27.8	0.14	0.83 ± 0.10	1.32	7.1 ± 1.6	6.6 ± 1.3	0.262 ± 0.053	24.1 ± 4.9	1.41 ± 0.33	yes
G172.85 + 02.27 - 4	16.9	0.08	0.81 ± 0.06	0.41	9.7 ± 1.6	10.5 ± 0.9	0.253 ± 0.022	8.6 ± 0.7	2.36 ± 0.27	yes
G172.85+02.27 ₋ 5	25.9	0.13	1.10 ± 0.16	0.79	4.6 ± 1.2	4.5 ± 2.7	0.166 ± 0.099	13.3 ± 7.9	3.18 ± 1.95	yes
G172.85+02.27_6	26.5	0.13	_	0.71	31.3 ± 1.2	6.6 ± 0.7	0.251 ± 0.026	20.9 ± 2.2	_	no
G172.85+02.27_7	24.0	0.12	0.63 ± 0.07	0.57	9.2 ± 1.8	5.8 ± 0.6	0.198 ± 0.019	13.6 ± 1.3	1.66 ± 0.24	yes
$G175.20+01.28_{-1}$	23.7	0.12	_	0.80	11.8 ± 0.6	18.2 ± 2.7	0.607 ± 0.089	39.3 ± 5.7	_	yes
G176.17-02.10 ₋ 1	25.3	0.37	0.21 ± 0.03	0.40	4.1 ± 0.7	2.2 ± 0.2	0.228 ± 0.025	145.4 ± 15.8	0.16 ± 0.03	no
G176.94+04.63_1	27.6	0.14	0.60 ± 0.17	0.98	2.0 ± 0.4	6.9 ± 3.5	0.282 ± 0.144	27.5 ± 14.1	0.92 ± 0.54	yes
$G176.94+04.63_2$	23.2	0.12	0.62 ± 0.10	0.52	2.3 ± 0.7	5.9 ± 2.2	0.204 ± 0.077	14.2 ± 5.3	1.56 ± 0.63	yes
G177.14-01.21 ₋ 1	25.1	0.37	0.55 ± 0.05	1.28	7.9 ± 1.2	4.6 ± 0.3	0.486 ± 0.036	310.7 ± 22.8	0.19 ± 0.02	yes
G177.14-01.21_2	25.9	0.38	0.52 ± 0.07	0.82	6.0 ± 1.1	3.0 ± 0.3	0.320 ± 0.030	218.2 ± 20.4	0.27 ± 0.05	yes
G177.14-01.21 ₋ 3	32.6	0.48	0.73 ± 0.13	1.20	5.0 ± 1.1	1.8 ± 0.2	0.240 ± 0.031	259.1 ± 33.5	0.40 ± 0.09	yes
G178.28-00.61_1	25.7	0.07	0.65 ± 0.09	1.34	3.7 ± 0.9	22.3 ± 3.5	0.462 ± 0.072	11.5 ± 1.8	1.21 ± 0.25	yes
G178.28-00.61 ₋₂	23.8	0.07	0.35 ± 0.08	0.88	3.8 ± 1.0	21.3 ± 2.8	0.408 ± 0.054	8.7 ± 1.1	0.79 ± 0.21	yes
G178.28-00.61 ₋ 3	24.7	0.07	0.43 ± 0.05	0.86	5.5 ± 0.9	22.3 ± 1.9	0.444 ± 0.039	10.2 ± 0.9	0.87 ± 0.12	yes
G178.28-00.61_4	18.9	0.05	0.39 ± 0.10	0.60	3.2 ± 1.0	32.1 ± 5.2	0.489 ± 0.079	6.6 ± 1.1	0.92 ± 0.29	no
G178.28-00.61_5	17.0	0.05	_	0.36	17.3 ± 0.8	28.5 ± 3.4	0.390 ± 0.047	4.2 ± 0.5	_	no
G178.28-00.61_6	18.9	0.05	0.46 ± 0.13	0.42	1.7 ± 0.3	12.8 ± 6.7	0.195 ± 0.102	2.6 ± 1.4	2.77 ± 1.64	yes
G178.28-00.61 ₋ 7	28.8	0.08	0.55 ± 0.09	0.82	5.9 ± 1.3	20.3 ± 2.7	0.471 ± 0.062	14.7 ± 1.9	0.89 ± 0.19	yes
G178.28-00.61_8	21.1	0.06	0.43 ± 0.05	0.39	3.9 ± 0.9	10.8 ± 1.2	0.182 ± 0.020	3.0 ± 0.3	2.49 ± 0.41	no
G178.28-00.61_9	17.6	0.05	0.55 ± 0.08	0.30	3.0 ± 0.7	15.2 ± 2.5	0.215 ± 0.036	2.5 ± 0.4	3.18 ± 0.72	yes
$G178.28-00.61_{-}10$	26.2	0.07	0.55 ± 0.15	0.58	2.2 ± 0.3	6.9 ± 4.6	0.145 ± 0.096	3.7 ± 2.5	3.19 ± 2.30	yes

^aThe extracted clump sizes with *Gaussclumps* procedure (see Section 3.2).

^bThe clump effective radius $R_{\rm eff}={\rm FWHM}/(2\sqrt{\ln 2})$. The uncertainties of $R_{\rm eff}$ are $\sim 10\%$, which will cause additional uncertainty of around 21% in the derived masses.

^cThe point source cross identification using the AllWISE Data in VizieR Online Data Catalog (see Section 2.3).