Lecture 23: Eigenvalues and Eigenvectors MAT2040 Linear Algebra

Recall: We want to find decomposition $A = PDP^{-1}$ where D is diagonal.

Alexander Yakovlev / Fotolia

We want to know what vectors are just **scaled** by a linear transformation Ax (and the scaling factor).

How to find eigenvalues and eigenvectors Diagonalizable and Defective Matrices

Definition 22.1

Let A be an $n \times n$ (square!) matrix.

A scalar λ is called an **eigenvalue** of A if there exists a nonzero vector \mathbf{x} so that $A\mathbf{x} = \lambda \mathbf{x}$. The vector \mathbf{x} is called an **eigenvector** corresponding to eigenvalue λ .

Finding eigenvalues of A is equivalent to finding roots of the characteristic equation $det(A - \lambda I) = 0$ for matrix A.

- Finding eigenvalues of A is equivalent to finding roots of the characteristic equation $det(A \lambda I) = 0$ for matrix A.
- Finding all eigenvectors belonging to a particular eigenvalue $\bar{\lambda}$ is equivalent to finding Null $(A \bar{\lambda}I)$ (except that $\bf 0$ is never an eigenvector).

Null $(A - \bar{\lambda}I)$ is known as the **eigenspace** belonging to eigenvalue $\bar{\lambda}$.

When can we find the decomposition $A = PDP^{-1}$ where D is a diagonal matrix?

When can we find the decomposition $A = PDP^{-1}$ where D is a diagonal matrix?

Theorem 23.1

Let A be an $n \times n$ matrix. The matrix A has a decomposition $A = PDP^{-1}$ for some diagonal matrix D if and only if A has n linearly independent eigenvectors.

When can we find the decomposition $A = PDP^{-1}$ where D is a diagonal matrix?

Theorem 23.1

Let A be an $n \times n$ matrix. The matrix A has a decomposition $A = PDP^{-1}$ for some diagonal matrix D if and only if A has n linearly independent eigenvectors.

We will call matrices with such decomposition diagonalizable.

Remarks

- 1. If A is diagonalizable, then the column vectors of the diagonalizing matrix P are eigenvectors of A and the diagonal elements of D are the corresponding eigenvalues of A.
- 2. The diagonalizing matrix *P* is not unique. Reordering the columns of a given diagonalizing matrix *P* or multiplying them by nonzero scalars will produce a new diagonalizing matrix.

Decomposition $A = PDP^{-1}$ useful for computing **powers** of A.

Decomposition $A = PDP^{-1}$ useful for computing **powers** of A.

For instance when thinking about repeating the same linear transformation.

Example 23.2

Recall the Fibonacci numbers: $f_0 = 0$, $f_1 = 1$, $f_k = f_{k-1} + f_{k-2}$ for $k = 2, 3, \ldots$

Decomposition $A = PDP^{-1}$ useful for computing **powers** of A.

For instance when thinking about repeating the same linear transformation.

Example 23.2

Recall the Fibonacci numbers: $f_0 = 0$, $f_1 = 1$, $f_k = f_{k-1} + f_{k-2}$ for $k = 2, 3, \ldots$

Write the recursive relation in matrix-vector form, and find an expression for f_k as $k \to \infty$.

Theorem 23.3

If A is $n \times n$ and A has n distinct eigenvalues, then A is diagonalizable.

Theorem 23.3

If A is $n \times n$ and A has n distinct eigenvalues, then A is diagonalizable.

Remark

Statement in theorem is **not** an equivalence: if the eigenvalues are not distinct, then A may or may not be diagonalizable depending on whether A has n linearly independent eigenvectors.

Example 23.4 Is $\begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}$ diagonalizable?

Is
$$\begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}$$
 diagonalizable?

Is I diagonalizable?

Let $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Recall that $\mathbf{x} \mapsto A\mathbf{x}$ is the linear transformation rotating every vector 90° about the origin.

Let $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Recall that $\mathbf{x} \mapsto A\mathbf{x}$ is the linear transformation rotating every vector 90° about the origin.

(picture from David Lay, Linear Algebra.)

What can the eigenvectors of A be?

Let $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Recall that $\mathbf{x} \mapsto A\mathbf{x}$ is the linear transformation rotating every vector 90° about the origin.

(picture from David Lay, Linear Algebra.)

What can the eigenvectors of A be? Find the eigenvalues of the matrix A.

Example 23.6
Let
$$A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$$
.

Find the eigenvalues and eigenvectors of A.

A matrix that is not diagonalizable, is said to be **defective**.

Note that the characteristic equation of an $n \times n$ matrix A is a polynomial of degree n, and has therefore n roots, provided complex roots are allowed.

In other words, we can write

$$\det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda)$$

where $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of A.

We can write the characteristic polynomial of A as

$$\det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda)$$

where $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of A.

For $\lambda = 0$:

We can write the characteristic polynomial of A as

$$\det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda)$$

where $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of A.

For
$$\lambda = 0$$
: det $A = \lambda_1 \lambda_2 \cdots \lambda_n$.

Lemma 23.7

For a square matrix A, the product of the eigenvalues of A is equal to det A.

Lemma 23.7

For a square matrix A, the product of the eigenvalues of A is equal to det A.

Corollary 23.8

A square matrix A is not invertible if and only if it has an eigenvalue of 0.

Grouping the eigenvalues by value, we can write

$$\det(A - \lambda I) = (\lambda_1 - \lambda)^{m_1} (\lambda_2 - \lambda)^{m_2} \cdots (\lambda_p - \lambda)^{m_p}$$

where $\lambda_1, \lambda_2, \dots, \lambda_p$ are the **distinct** eigenvalues of A and m_i is called the **algebraic** multiplicity of eigenvalue λ_i .

Grouping the eigenvalues by value, we can write

$$\det(A - \lambda I) = (\lambda_1 - \lambda)^{m_1} (\lambda_2 - \lambda)^{m_2} \cdots (\lambda_p - \lambda)^{m_p}$$

where $\lambda_1, \lambda_2, \dots, \lambda_p$ are the **distinct** eigenvalues of A and m_i is called the **algebraic** multiplicity of eigenvalue λ_i .

The dimension of the eigenspace corresponding to an eigenvalue is called the **geometric** multiplicity of an eigenvalue.

Grouping the eigenvalues by value, we can write

$$\det(A - \lambda I) = (\lambda_1 - \lambda)^{m_1} (\lambda_2 - \lambda)^{m_2} \cdots (\lambda_p - \lambda)^{m_p}$$

where $\lambda_1, \lambda_2, \dots, \lambda_p$ are the **distinct** eigenvalues of A and m_i is called the **algebraic** multiplicity of eigenvalue λ_i .

The dimension of the eigenspace corresponding to an eigenvalue is called the **geometric** multiplicity of an eigenvalue.

Theorem 23.9

A matrix is diagonalizable if and only if the algebraic multiplicity of every eigenvalue is equal to the geometric multiplicity.

(No proof.)

The **trace** of a matrix A is the sum of the diagonal elements of A.

The **trace** of a matrix A is the sum of the diagonal elements of A.

Lemma 23.11

The sum of the eigenvalues of a square matrix A is equal to the trace of A.

The **trace** of a matrix A is the sum of the diagonal elements of A.

Lemma 23.11

The sum of the eigenvalues of a square matrix A is equal to the trace of A.

Lemma 23.12

If A and B are similar matrices, then the trace of A and the trace of B are equal.

The **trace** of a matrix A is the sum of the diagonal elements of A.

Lemma 23.11

The sum of the eigenvalues of a square matrix A is equal to the trace of A.

Lemma 23.12

If A and B are similar matrices, then the trace of A and the trace of B are equal.

Lemma 23.13

Let A and B be $n \times n$ matrices. The trace of AB and the trace of BA are equal.

Suppose the trace of A is 6, and det A = 8. What are the eigenvalues of A?

Main points of this lecture

- ► $A = PDP^{-1}$ exists if A has n linearly independent eigenvectors (we say A is "diagonalizable")
- Eigenvalues may be complex, even if A has only real entries (Note that complex eigenvalues come in pairs if A has only real entries!)
- Sum of eigenvalues of A is equal to the trace of A
- ▶ Product of eigenvalues of *A* is equal to the determinant.

Theorem 23.15 (Spectral Theorem)

If A is a symmetric (real) matrix, then A is diagonalizable, all of A's eigenvalues are real, and the eigenvectors of A are mutually orthogonal.

Theorem 23.15 (Spectral Theorem)

If A is a symmetric (real) matrix, then A is diagonalizable, all of A's eigenvalues are real, and the eigenvectors of A are mutually orthogonal.

Proof of orthogonality of eigenvectors for special case where all eigenvalues of *A* are distinct.

The eigenvectors of a symmetric (real) matrix A are orthogonal, so we can scale these so that they form an orthonormal basis for \mathbb{R}^n , say $\mathbf{q}_1, \mathbf{q}_2, \ldots, \mathbf{q}_n$.

By the Spectral Theorem we now know that a symmetric (real) matrix A can be written as

$$A = Q \Lambda Q^T$$

where the columns of Q are the orthonormal basis for \mathbb{R}^n and Λ is a diagonal matrix with the eigenvalues of A on the diagonal.

This decomposition is known as the **eigendecomposition** of A.