Key Ideas:

* What does it mean for a point/number to be constructible?

* The set of constructible numbers is an extension field of the rationals.

constructible <=> lies in that extension field

* A point is constructible if it is constructible from the set
$$P_0 = \{(0,0), (1,0)\} \subseteq \mathbb{R}^2$$

* $z = a + bi \in \mathbb{C}$ is constructible if $(a,b) \in \mathbb{R}^2$ is constructible

bisecting an angle => constructing rei8/2 from rei8

* Let K ⊆ C be the set of constructible numbers, K is a subfield of \mathbb{C} , so K/\mathbb{Q} and $\mathbb{Q}\subseteq K\subseteq \mathbb{C}$ * Let F = K be a field generated by r&c construction, and suppose & is constructible from F in 1 step: what about [F(d):F]? 3 mays new points are constructed: ① 2 lines interacting $\begin{cases} a_1x + b_1y = C_1 \\ a_2x + b_2y = C_2 \end{cases} [F(d):F] = 1$ ② | line intersecting | circle $\begin{cases} ax+by=c & [F(d):F] \leq 2\\ (x-d)^2+(y-e)^2=r^2 \end{cases}$ (3) 2 circles intersecting $\{(x-d_1)^2 + (y-e_1)^2 = r_1^2 [F(d):F] \le 2$ $\{(x-d_2)^2 + (y-e_2)^2 = r_2^2 [F(d):F] \le 2$ reduced to case 2 Theorem: [F(a):F]=2can ignore times when $[F(\alpha):F]=1$, because α is in the original field, α does not generate α field extension Corollary: if d is constructible, $[Q(d):Q]=2^n$, $n \in \mathbb{N}$ Q is the smallest field containing 1,0