

-1-

SEQUENCE LISTING

<110> Chesnut, Jonathan D.
Carrino, John
Leong, Louis
Madden, Knut
Gleeson, Martin
Fan, James
Brasch, Michael A.
Cheo, David
Hartley, James L.
Byrd, Devon R.N.
Temple, Gary F.

<120> Methods and Compositions for Synthesis of Nucleic Acid Molecules Using Multiple Recognition Sites

<130> 0942.5340005

<140> 10/792,035

<141> 2004-03-04

<150> US 10/454,793
<151> 2003-06-05

<150> US 60/385,613
<151> 2002-06-05

<150> US 10/014,128
<151> 2001-12-07

<150> US 10/005,876
<151> 2001-12-07

<150> US 60/333,124
<151> 2001-11-27

<150> US 60/318,902
<151> 2001-09-14

<160> 148

<170> PatentIn version 3.1

<210> 1
<211> 27
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide primer

<400> 1
tatgtatcat acacatacga tttaggt

27

<210> 2
<211> 20
<212> DNA
<213> artificial sequence

```
<220>
<223> oligonucleotide primer

<400> 2
accgcctctc cccgcgcgtt                                20

<210> 3
<211> 34
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide primer

<400> 3
gttccgaagg gggcgataca gtcaactgtc tttg                34

<210> 4
<211> 36
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide primer

<400> 4
ttggccaagg gtagatcttagaa gcttctgcag acgcgt          36

<210> 5
<211> 34
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide primer

<400> 5
gttccgaagg gccaccgtac tcgtcaattc caag                34

<210> 6
<211> 36
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide primer

<400> 6
ggccaaaagg gaaccttgttt attgcagctt ataatg            36

<210> 7
<211> 22
<212> DNA
<213> artificial sequence

<220>
```

<223> oligonucleotide primer

<400> 7
ctctgacttg agcgtcgatt tt 22

<210> 8
<211> 32
<212> DNA
<213> artificial sequence

<220>

<223> oligonucleotide primer

<400> 8
cggaaacaagg ggaattccct gtcaccgaga cc 32

<210> 9
<211> 34
<212> DNA
<213> artificial sequence

<220>

<223> oligonucleotide primer

<400> 9
cggaaacaagg ggaattcccg gggatctgga attc 34

<210> 10
<211> 29
<212> DNA
<213> artificial sequence

<220>

<223> oligonucleotide primer

<400> 10
tcgaaaagggt cgaggtcgac ctgcagctg 29

<210> 11
<211> 26
<212> DNA
<213> artificial sequence

<220>

<223> oligonucleotide primer

<400> 11
aattcacatt gattattgag tagtta 26

<210> 12
<211> 30
<212> DNA
<213> artificial sequence

<220>

<223> oligonucleotide primer

<400> 12	tcgaaagggt aatggccagc aaaggagaag	30
<210> 13		
<211> 27		
<212> DNA		
<213> artificial sequence		
<220>		
<223> oligonucleotide primer		
<400> 13	ggccaagggt ttgttagagct catccat	27
<210> 14		
<211> 29		
<212> DNA		
<213> artificial sequence		
<220>		
<223> oligonucleotide primer		
<400> 14	ggccaagggt ctgaatgggg ccgcatacg	29
<210> 15		
<211> 20		
<212> DNA		
<213> artificial sequence		
<220>		
<223> oligonucleotide primer		
<400> 15	aagccataga gcccgggcca	20
<210> 16		
<211> 31		
<212> DNA		
<213> artificial sequence		
<220>		
<223> oligonucleotide primer		
<400> 16	gttccgaagg gtcgaggtcg acctgcagct g	31
<210> 17		
<211> 30		
<212> DNA		
<213> artificial sequence		
<220>		
<223> oligonucleotide primer		
<400> 17	cggacaagg gatggccagc aaaggagaag	30

<210> 18
<211> 31
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide primer

<400> 18
taggccaaagg gttttagat ctcatccatg c 31

<210> 19
<211> 29
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide primer

<400> 19
ggcctaaagg gtgaatgggg ccgcatagt 29

<210> 20
<211> 50
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide primer

<400> 20
gaaggagtaa tacgactcac tatagggagc caccatgggc cttcggaac 50

<210> 21
<211> 50
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide primer

<400> 21
gttccgaagg gcccatggtg gctccctata gtgagtcgta ttactccttc 50

<210> 22
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide primer

<400> 22
gaaggagtaa tacgactcac t 21

<210> 23

<211> 38	
<212> DNA	
<213> artificial sequence	
<220>	
<223> oligonucleotide primer	
<400> 23	
ggcctaaagg gtcccttag tgagggttaa ttgcgcgc	38
<210> 24	
<211> 38	
<212> DNA	
<213> artificial sequence	
<220>	
<223> oligonucleotide primer	
<400> 24	
gctcgcaatt aaccctcact aaagggaccc tttaggcc	38
<210> 25	
<211> 34	
<212> DNA	
<213> artificial sequence	
<220>	
<223> oligonucleotide primer	
<400> 25	
cggacaagg gatgatagat cccgtcgaaa taca	34
<210> 26	
<211> 32	
<212> DNA	
<213> artificial sequence	
<220>	
<223> oligonucleotide primer	
<400> 26	
taggccaagg ggaccatttt caatccgcac ct	32
<210> 27	
<211> 32	
<212> DNA	
<213> artificial sequence	
<220>	
<223> oligonucleotide primer	
<400> 27	
taggccaagg ggaggcactt caccgcttgc ca	32
<210> 28	
<211> 33	
<212> DNA	

<213> artificial sequence

<220>

<223> oligonucleotide primer

<400> 28
taggccagg gtttgacacc agaccaactg gta 33

<210> 29

<211> 12

<212> DNA

<213> artificial sequence

<220>

<223> Vaccinia topoisomerase cleavable sequence

<400> 29
gccttattc cc 12

<210> 30

<211> 12

<212> DNA

<213> artificial sequence

<220>

<223> Vaccinia topoisomerase cleavable sequence

<400> 30
tcggccattc tc 12

<210> 31

<211> 12

<212> DNA

<213> artificial sequence

<220>

<223> Vaccinia topoisomerase cleavable sequence

<400> 31
tgtcgccattc at 12

<210> 32

<211> 12

<212> DNA

<213> artificial sequence

<220>

<223> Vaccinia topoisomerase cleavable sequence

<400> 32
gtgtcgccattc ta 12

<210> 33

<211> 28

<212> DNA

<213> artificial sequence

<220>
<223> adapter oligonucleotide, TOPO D1

<400> 33
aattgatccc ttcaccgaca tagtacag 28

<210> 34
<211> 12
<212> DNA
<213> artificial sequence

<220>
<223> adapter oligonucleotide, TOPO D2

<400> 34
ggtgaaggga tc 12

<210> 35
<211> 11
<212> DNA
<213> artificial sequence

<220>
<223> adápter oligonucleotide, TOPO D5

<400> 35
aagggcgagc t 11

<210> 36
<211> 19
<212> DNA
<213> artificial sequence

<220>
<223> adapter oligonucleotide, TOPO D4

<400> 36
cgcccttgac atagtacag 19

<210> 37
<211> 12
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide overhang sequence of TOPO D1 and TOPO D4

<400> 37
gacatagtagc ag 12

<210> 38
<211> 15
<212> DNA
<213> artificial sequence

<220>
<223> annealing oligonucleotide sequence, TOPO D3

<400> 38
caactgtact atgtc 15

<210> 39
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> adapter oligonucleotide, TOPO H

<400> 39
agctcgccct tattccgata gtg 23

<210> 40
<211> 11
<212> DNA
<213> artificial sequence

<220>
<223> adapter oligonucleotide, TOPO 16

<400> 40
gaataagggc g 11

<210> 41
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> adapter oligonucleotide, TOPO 1

<400> 41
aattcgccct tattccgata gtg 23

<210> 42
<211> 12
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide overhang sequence of TOPO 1

<400> 42
attccgatag tg 12

<210> 43
<211> 15
<212> DNA
<213> artificial sequence

<220>
<223> annealing oligonucleotide, TOPO 3

<400> 43

caacactatc ggaat	15
<210> 44	
<211> 14	
<212> DNA	
<213> artificial sequence	
<220>	
<223> DNA sequence of the N-terminus of a theoretical protein	
<400> 44	
atggatctga taaa	14
<210> 45	
<211> 14	
<212> DNA	
<213> artificial sequence	
<220>	
<223> PCR primer	
<400> 45	
accgatctga taaa	14
<210> 46	
<211> 27	
<212> DNA	
<213> artificial sequence	
<220>	
<223> DNA sequence of the C-terminus of a theoretical protein	
<400> 46	
aagtccggagc actcgacgac ggtgtag	27
<210> 47	
<211> 17	
<212> DNA	
<213> artificial sequence	
<220>	
<223> reverse PCR primer sequence	
<400> 47	
aaacaccgtc gtcgagt	17
<210> 48	
<211> 33	
<212> DNA	
<213> artificial sequence	
<220>	
<223> DNA sequence of the C-terminus of a theoretical protein	
<400> 48	
gcgggttaagt cggaggactc gacgactgca tag	33

<210> 49
<211> 24
<212> DNA
<213> artificial sequence

<220>
<223> sequence of reverse primer without stop codon

<400> 49
tgcagtcgtc gagtgctccg actt 24

<210> 50
<211> 27
<212> DNA
<213> artificial sequence

<220>
<223> sequence of reverse primer with stop codon

<400> 50
ctatgcagtc gtcgagtgct ccgactt 27

<210> 51
<211> 22
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide primer

<400> 51
gttgacattg attattgact ag 22

<210> 52
<211> 32
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide primer

<400> 52
gttccgaagg gttaacgcta gagtccggag gc 32

<210> 53
<211> 32
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide primer

<400> 53
gactcaaagg gaaggtaagc ctatccctaa gg 32

<210> 54

<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide primer

<400> 54
gcmcagatct gctatggcag 20

<210> 55
<211> 37
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide primer

<400> 55
cggaacaagg gaccatggag aaaaaaatca ctggata 37

<210> 56
<211> 36
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide primer

<400> 56
tgagtcaagg ggcggccggcc ctgctgccac tcatcg 36

<210> 57
<211> 41
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide sequence

<400> 57
ggggacaagt ttgtacaaaa aagcaggctt cccttcggaa c 41

<210> 58
<211> 41
<212> DNA
<213> artificial sequence

<220>
<223> oligonucleotide primer

<400> 58
gttccgaagg gaagcctgct ttttgtaca aacttgcggcc c 41

<210> 59
<211> 40
<212> DNA

<213> artificial sequence

<220>

<223> oligonucleotide primer

<400> 59
gactcaaagg gaccagctt tcttgtacaa agtggtcccc 40

<210> 60
<211> 40
<212> DNA
<213> artificial sequence

<220>

<223> oligonucleotide primer

<400> 60
ggggaccact ttgtacaaga aagctgggtc cctttgagtc 40

<210> 61
<211> 20
<212> DNA
<213> artificial sequence

<220>

<223> oligonucleotide primer

<400> 61
cacgacgttg taaaacgacg 20

<210> 62
<211> 22
<212> DNA
<213> artificial sequence

<220>

<223> oligonucleotide primer

<400> 62
atgtaatacg actcactata gg 22

<210> 63
<211> 11
<212> DNA
<213> artificial sequence

<220>

<223> nucleotide primer

<400> 63
cggaacaagg g 11

<210> 64
<211> 11
<212> DNA
<213> artificial sequence

<220>
<223> nucleotide primer

<400> 64
tagggccaagg g 11

<210> 65
<211> 16
<212> DNA
<213> artificial sequence

<220>
<223> amplified end of PCR product

<400> 65
cccttcggaa caaggg 16

<210> 66
<211> 16
<212> DNA
<213> artificial sequence

<220>
<223> amplified end of PCR product

<400> 66
cccttggcca taaggg 16

<210> 67
<211> 75
<212> DNA
<213> artificial sequence

<220>
<223> map of multiple cloning sites in plasmids
pcDNAGW-DT9(sc) and pENTR-DT(sc)

<400> 67
ttgtacaaaa aagcaggctc cgcgccgccc gtactcgaga aagggcgccgc cgacccagct 60
ttcttgtaca aagtg 75

<210> 68
<211> 10
<212> PRT
<213> artificial sequence

<220>
<223> Amino acid sequence for pcDNAGW-DT9(sc) and pENTR-DT(sc)

<400> 68

Leu Tyr Lys Lys Ala Gly Ser Ala Ala Ala
1 5 10

<210> 69
<211> 11
<212> PRT

<213> artificial sequence

<220>

<223> Amino acid sequence for pcDNAGW-DT9(sc) and pENTR-DT(sc)

<400> 69

Gly Arg Ala Asp Pro Ala Phe Leu Tyr Lys Val
1 5 10

<210> 70

<211> 2591

<212> DNA

<213> artificial sequence

<220>

<223> Nucleotide sequence of plasmid pENTR/D-TOPO

<220>

<221> unsure

<222> (691)..(699)

<223> N can be any nucleotide: a, t, c, g

<400> 70

cttcctcg	ttatcccc	tgttgc	taaccgtatt	accgcctt	tg agtgagctga	60		
tac	cgc	cgccgaa	cgaccgagc	cagcgagtca	gtgagcgagg	aagcggaaga	120	
gcgc	ccaaata	cgcaaacgc	ctctcccc	gcgttggcc	attcattaat	gcagctggca	180	
cgac	agg	tttccc	actggaa	aagcgccc	tgagcgcaac	gcaattaata	240	
tag	cccg	tttttt	tttttttt	tttttttt	tcaggatggc	cttctgctta	300	
gttt	gtat	tttttttt	tttttttt	tttttttt	tttttttt	tttttttt	360	
aca	acgttca	aatccgctcc	cgccggattt	gtcctactca	ggagagcg	taccgacaaa	420	
ca	acgataa	aacgaaaggc	ccagtcttcc	gactgac	tttcgtttat	tttgcctgtt	480	
gc	agttcc	actctcg	taacgct	atggatgtt	tcccagtac	gacgttgtaa	540	
aac	cgacggcc	gtttaa	acttaa	tttgcgtt	tttgcgtt	tttgcgtt	600	
ct	gttccgtt	caacaaattt	atgagcaat	ttttttata	atgccaactt	tgtacaaaaa	660	
agc	aggctcc	gcggccgccc	cttcaccat	nnnnnnnnna	agggtggcg	cgccgaccca	720	
gc	tttctt	acaaagg	ttgg	cattataaga	aagcattgt	tatcaatttgc	780	
gag	tgtt	tttttttt	tttttttt	tttttttt	tttttttt	tttttttt	840	
tc	gttaca	tcacta	tcacta	tttttttt	tttttttt	tttttttt	900	
at	aaacag	atacaagg	tttttttt	tttttttt	tttttttt	tttttttt	960	
ta	aaatcc	atacaagg	tttttttt	tttttttt	tttttttt	tttttttt	1020	
tt	aaattcca	acatggat	gc	tgat	tttttat	gggtataat	ttatgtcg	1080

caatcaggtg cgacaatcta tcgcttgcata gggaaagcccg atgcgccaga gttgtttctg	1140
aaacatggca aaggtagcgt tgccaatgat gttacagatg agatggtcag actaaactgg	1200
ctgacggaat ttatgcctct tccgaccatc aagcattta tccgtactcc tgatgatgca	1260
tggttactca ccactgcgtat ccccgaaaaa acagcattcc aggtattaga agaatatcct	1320
gattcaggtg aaaatattgt tgatgcgtg gcagtgttcc tgcgcgggtt gcattcgatt	1380
cctgtttgta attgtccctt taacagcgat cgctgttcc gtctcgctca ggcgcaatca	1440
cgaatgaata acgggttggt tgatgcgtg gattttgatg acgagcgtaa tggctggcct	1500
gttgaacaag tctggaaaga aatgcataaa ctttgccat tctcaccgga ttcagtcgtc	1560
actcatggtg atttctcaact tgataacctt atttttgacg agggggaaatt aatagggttg	1620
attgatgttg gacgagtcgg aatgcagac cgataccagg atcttgcctt cctatggaac	1680
tgccctcggtg agtttctcc ttcattacag aaacggcttt ttcaaaaata tggattgtat	1740
aatcctgata tgaataaaattt gcagtttcat ttgatgctcg atgagttttt ctaatcagaa	1800
ttggtaatt gggttaaca ctggcagagc attacgctga cttgacggga cggcgcaagc	1860
tcatgaccaa aatcccttaa cgtgagttac gcgtcggtcc actgaggcgta agaccccgta	1920
gaaaagatca aaggatcttc ttgagatcct tttttctgc gcgtaatctg ctgcttgcaa	1980
acaaaaaaaaac caccgctacc agcggtgggt tggttgcggg atcaagagct accaactctt	2040
tttccgaagg taactggctt cagcagagcg cagataccaa atactgtcct tctagtgttag	2100
ccgtagttag gccaccactt caagaactct gtgcaccgc ctacataacct cgctctgcta	2160
atcctgttac cagtggctgc tgccagtggc gataagtcgt gtcttaccgg gttggactca	2220
agacgatagt taccggataa ggcgcagcgg tcgggctgaa cgggggggttc gtgcacacag	2280
cccagcttgg agcgaacgac ctacaccgaa ctgagatacc tacagcgtga gcattgagaa	2340
agcgccacgc ttcccgagg gagaaggcg gacaggtatc cggtaagcgg cagggtcgga	2400
acaggagagc gcacgaggga gttccagggg ggaaacgcct ggtatctta tagtcctgtc	2460
gggttgcaccc acctctgact tgagcgtcga tttttgtat gtcgtcagg ggggcggagc	2520
ctatggaaaaa acgccagcaa cgcggctttt ttacgggttcc tggcctttt gtcgcctttt	2580
gctcacatgt t	2591

<210> 71
<211> 2607
<212> DNA
<213> artificial sequence

<220>
<223> Nucleotide sequence of plasmid pENTR/SD/D-TOPO

<220>

<221> unsure
<222> (710)..(715)
<223> N can be any nucleotide: a, t, c, g

<400> 71
cttcctgcg ttatccctg attctgtgga taaccgtatt accgccttg agtgagctga 60
taccgctcgc cgccggaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaga 120
gcgcccata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca 180
cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaata cgcttaccgc 240
tagccaggaa gagttttag aaacgcaaaa agggcatccg tcaggatggc cttctgctta 300
gtttatgcc tggcagttt tggcggcggt cctgcccgc accctccggg ccgttgcttc 360
acaacgttca aatccgttcc cggcggattt gtcctactca ggagagcggtt caccgacaaa 420
caacagataaa aacgaaaggc ccagtcttcc gactgagcct ttcggtttat ttgatgcctg 480
gcagttccct actctcgctgtaacgcttagc atggatgttt tcccgatcac gacgttgtaa 540
aacgacggcc agtcttaagc tcgggccccca aataatgatt ttatggac tgatagtgac 600
ctgttcgttg caacaaattt atgagcaatg ctttttata atgccaactt tgtacaaaaaa 660
agcaggctcc gcggccgcct tggtaactt taagaaggag cccttcacn nnnnnnaaggg 720
tggcgcgcgc gaccagctt tcttgtacaa agttggcatt ataagaaagc attgcttatac 780
aatttggc aacgaacagg tcactatcag tcaaaataaa atcattatggc gccatccagc 840
tgatatcccc tatagtgagt cgtattacat ggtcatagct gttcctggc agctctggcc 900
cgtgtctcaa aatctctgat gttacattgc acaagataaa aatatatcat catgaacaat 960
aaaactgtct gtttacataa acagtaatac aagggtgtt atgagccata ttcaacggg 1020
aacgtcgagg ccgcgattaa attccaacat ggtgtgtat ttatgggt ataaatggc 1080
tcgcgataat gtcggcaat caggtgcgc aatctatcgc ttgtatggc agcccgatgc 1140
gccagagttt tttctgaaac atggcaaaagg tagcgttgcc aatgtatgtt cagatgagat 1200
ggtcagacta aactggctga cggaaatttgcgc accatcaagc attttatccg 1260
tactcctgat gatgcattttt tactcaccac tgcgtatcccc ggaaaaacag cattccaggt 1320
attagaagaa tatcctgatt caggtgaaaa tattgttgc ggcgtggcag tgccatcg 1380
ccgggttgcatttcgatttgcgc tttgttgcatttgcgc tttgttgcatttgcgc 1440
cgctcaggcg caatcacgaa tgaataacgg tttgggttgc ggcgtggcag tgccatcg 1500
gcgtaatggc tggcctgttgc aacaagtctg gaaagaaatg cataaacttt tgccatttc 1560
accggattca gtcgtcactc atggtgattt ctcacttgc aaccttattt ttgacgagg 1620
gaaattaata ggttgtatttgc gtttggacg agtcggaaatc gcagacccat accaggatct 1680
tgccatccta tggaaactgccc tgggttgcatttgcgc ttacagaaac ggcttttca 1740

aaaatatggt attgataatc ctgatatgaa taaattgcag tttcatttga tgctcgatga	1800
gttttctaa tcagaattgg ttaattggtt gtaacactgg cagagcatta cgctgacttg	1860
acgggacggc gcaagctcat gaccaaaatc ccttaacgtg agttacgcgt cgttccactg	1920
agcgtcagac cccgtagaaa agatcaaagg atcttcttga gatcctttt ttctgcgcgt	1980
aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg gtggttgtt tgccggatca	2040
agagctacca actcttttc cgaaggtaac tggcttcagc agagcgcaga taccaaatac	2100
tgtccttcta gtgtagccgt agttaggccca ccacttcaag aactctgttag caccgcctac	2160
atacctcgct ctgctaattcc tgttaccagt ggctgctgcc agtggcgata agtcgtgtct	2220
tacccggttg gactcaagac gatagttacc ggataaggcg cagcggtcgg gctgaacggg	2280
gggttcgtgc acacagccca gcttggagcg aacgacctac accgaactga gatacctaca	2340
gcgtgagcat tgagaaaagcg ccacgcttcc cgaagggaga aaggcggaca ggtatccgg	2400
aagcggcagg gtcggAACAG gagagcgcac gagggagctt ccagggggaa acgcctggta	2460
tctttatagt cctgtcggtt ttcgcccacct ctgacttgag cgtcgatTTT tgtgatgctc	2520
gtcaggggggg cggagcctat ggaaaaacgc cagcaacgcg gccttttac gttcctggc	2580
cttttgcgg cctttgctc acatgtt	2607

<210> 72
<211> 5543
<212> DNA
<213> artificial sequence

<220>
<223> Nucleotide sequence of plasmid pcDNA3.2/v5/GWD-TOPO

<220>
<221> unsure
<222> (958)..(966)
<223> N can be any nucleotide: a, t, c, g

<400> 72

gacggatcg gagatctccc gatcccstat ggtcgactct cagtacaatc tgctctgatg	60
ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg	120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatt aagaatctgc	180
ttagggtagt gcgtttgcg ctgcttcgcg atgtacgggc cagatatacg cggtgacatt	240
gattattgac tagttattaa tagtaatcaa ttacgggttc attagttcat agccccatata	300
tggagttccg cgttacataa cttacggtaa atggccgc tggctgaccg cccaacgacc	360
cccgccccatt gacgtcaata atgacgtatg ttccatagt aacgccaata gggactttcc	420
attgacgtca atgggtggac tatTTACGGT aaactgcccc aCTGGCAGTA catcaagtgt	480

atcatatgcc	aagtacgccc	cctattgacg	tcaatgacgg	taaatggccc	gcctggcatt	540
atgcccagta	catgacctta	tgggacttcc	ctacttggca	gtacatctac	gtattagtca	600
tcgctattac	catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga	tagcggtttg	660
actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	tgggagtttg	tttggcacc	720
aaaatcaacg	ggactttcca	aatgtcgta	acaactccgc	cccattgacg	caaatggcg	780
gtaggcgtgt	acgggtggag	gtctatataa	gcagagctct	ctggctaact	agagaaccca	840
ctgcttactg	gcttatcgaa	attaatacga	ctcactatag	ggagacccaa	gctggctagt	900
taagctatca	acaagttgt	acaaaaaaagc	aggctccgcg	gccgccccctt	caccatgnnn	960
NNNNNAAGG	gtgggcgcgc	cgaccaggct	ttcttgtaca	aagtgggtga	tctagagggc	1020
ccgcggttcg	aaggtaagcc	tatccctaac	cctctcctcg	gtctcgattc	tacgcgtacc	1080
ggtagtaat	gagtttaaac	gggggaggct	aactgaaaca	cggaaggaga	caataccgga	1140
aggaacccgc	gctatgacgg	caataaaaag	acagaataaa	acgcacgggt	gttgggtcgt	1200
ttgttcataa	acgcggggtt	cggtcccagg	gctggcactc	tgtcgatacc	ccaccgagac	1260
cccattgggg	ccaatacgcc	cgcgttctt	cctttcccc	accccacccc	ccaagttcgg	1320
gtgaaggccc	agggctcgca	gccaacgtcg	gggcggcagg	ccctgccata	gcagatctgc	1380
gcagctgggg	ctctaggggg	tatccccacg	cgcctgttag	cggcgcatta	agcgcggcgg	1440
gtgtgggtgt	tacgcgcagc	gtgaccgcta	cacttgccag	cgcctagcg	cccgtcctt	1500
tcgcttctt	cccttcctt	ctcgccacgt	tcgcccgtt	tccccgtcaa	gctctaaatc	1560
ggggcatccc	tttagggttc	cgattttagtgc	cttacggca	cctcgacccc	aaaaaaacttg	1620
attagggtga	tggttcacgt	agtggccat	cgcctgata	gacggtttt	cgcctttga	1680
cgttggagtc	cacgttctt	aatagtggac	tcttgttcca	aactggaaca	acactcaacc	1740
ctatctcggt	ctattcttt	gatttataag	ggattttggg	gatttcggcc	tattggttaa	1800
aaaatgagct	gatttaacaa	aaatttaacg	cgaattaatt	ctgtggaatg	tgtgtcagtt	1860
agggtgtgga	aagtccccag	gctccccagc	aggcagaagt	atgcaaagca	tgcacatctcaa	1920
ttagtcagca	accaggtgtg	gaaagtcccc	aggctcccc	gcaggcagaa	gtatgcaaag	1980
catgcacatc	aattagtca	caaccatagt	cccgccccata	actccgcccc	tcccgccccct	2040
aactccgccc	agttccgccc	attctccgccc	ccatggctga	ctaattttt	ttatttatgc	2100
agaggccgag	gccgcctctg	cctctgagct	attccagaag	tagtgaggag	gcttttttgg	2160
aggccttaggc	tttgcaaaa	agctcccggg	agcttgtata	tccattttcg	gatctgatca	2220
agagacagga	tgaggatcgt	ttcgcatgat	tgaacaagat	ggattgcacg	caggttctcc	2280
ggccgcttgg	gtggagaggc	tattcggcta	tgactggca	caacagacaa	tcggctgctc	2340

tgatgccgccc	gtgttccggc	tgtcagcgca	ggggcgccccg	gttcttttg	tcaagaccga	2400
cctgtccgggt	gccctgaatg	aactgcagga	cgaggcagcg	cggctatcgt	ggctggccac	2460
gacgggcgtt	ccttgcgcag	ctgtgctcga	cgttgtcact	gaagcggaa	gggactggct	2520
gctattgggc	gaagtgcggg	ggcaggatct	cctgtcatct	caccttgctc	ctgcccagaa	2580
agtatccatc	atggctgatg	aatgcggcg	gctgcatacg	cttgatccgg	ctacctgccc	2640
attcgaccac	caagcgaaac	atcgcatcga	gcgagcacgt	actcggatgg	aagccggtct	2700
tgtcgatcag	gatgatctgg	acgaagagca	tcaggggctc	gcgcagccg	aactgttcgc	2760
caggctcaag	gcgcgcatgc	ccgacggcga	ggatctcgctc	gtgaccatg	gcgcgcctg	2820
cttgccgaat	atcatggtgg	aaaatggccg	ctttctgga	ttcatcgact	gtggccggct	2880
gggtgtggcg	gaccgctatc	aggacatagc	gttggctacc	cgtgatattg	ctgaagagct	2940
tggcggcga	tgggctgacc	gcttcctcgt	gctttacggt	atcgccgctc	ccgattcgca	3000
gcgcatcgcc	ttctatcgcc	ttcttgacga	gttcttctga	gcgggactct	ggggttcgcg	3060
aaatgaccga	ccaagcgacg	cccaacctgc	catcacgaga	tttcgattcc	accgcgcct	3120
tctatgaaag	gttgggcttc	ggaatcgttt	tccgggacgc	cggctggatg	atcctccagc	3180
gcggggatct	catgctggag	ttcttcgccc	accccaactt	gtttattgca	gcttataatg	3240
gttacaataa	aagcaatagc	atcacaaatt	tcacaaataa	agcattttt	tcactgcatt	3300
ctagttgtgg	tttgtccaaa	ctcatcaatg	tattttatca	tgtctgtata	ccgtcgacct	3360
ctagctagag	cttggcgtaa	tcatggtcat	agctgttcc	tgtgtgaaat	tgttatccgc	3420
tcacaattcc	acacaacata	cgagccggaa	gcataaaagtg	taaagcctgg	ggtcctaat	3480
gagtgagcta	actcacatta	attgcgttgc	gctcaactgcc	cgctttccag	tcgggaaacc	3540
tgtcgtgcca	gctgcattaa	tgaatcgccc	aacgcgcggg	gagaggcggt	ttgcgtattg	3600
ggcgctcttc	cgcttcctcg	ctcactgact	cgctgcgcctc	ggtcgttcgg	ctgcggcgag	3660
cggtatcagc	tcactcaaag	gcggtaataac	ggttatccac	agaatcaggg	gataacgcag	3720
gaaagaacat	gtgagcaaaa	ggccagcaaa	aggccaggaa	ccgtaaaaag	gccgcgttgc	3780
tggcgaaaa	ccataggctc	cgccccctg	acgagcatca	aaaaatcga	cgctcaagtc	3840
agaggtggcg	aaacccgaca	ggactataaa	gataccaggc	gtttccccct	ggaagctccc	3900
tcgtgcgcctc	tcctgttccg	accctgccgc	ttaccggata	cctgtccgccc	tttctccctt	3960
cgggaagcgt	ggcgcttct	caatgctcac	gctgttaggta	tctcagttcg	gtgttaggtcg	4020
ttcgctccaa	gctgggctgt	gtgcacgaac	ccccgttca	gcccgcaccgc	tgcgccttat	4080
ccggtaacta	tcgtcttgag	tccaacccgg	taagacacga	cttacgcaca	ctggcagcag	4140
ccactggtaa	caggattagc	agagcgaggt	atgtaggcgg	tgctacagag	ttcttgaagt	4200

ggtggcctaa ctacggctac actagaagga cagtatttg tatctgcgct ctgctgaagc	4260
cagttacctt cgaaaaaaga gttggtagct cttgatccgg caaacaaacc accgctggta	4320
gcgggtggtt ttttgttgc aagcagcaga ttacgcgcag aaaaaaaagga tctcaagaag	4380
atcctttgat cttttctacg gggctgacg ctcagtggaa cgaaaactca cgtaaggga	4440
ttttggtcat gagattatca aaaaggatct tcacctagat cttttaaat taaaaatgaa	4500
gttttaaatc aatctaaagt atatatgagt aaacttggtc tgacagttac caatgcttaa	4560
tcagtgaggc acctatctca gcgatctgtc tatttcgttc atccatagtt gcctgactcc	4620
ccgtcgtgta gataactacg atacgggagg gcttaccatc tggccccagt gctgcaatga	4680
taccgcgaga cccacgctca ccggctccag atttacgc aataaaccag ccagccggaa	4740
gggccgagcg cagaagtggt cctgcaacctt tatccgcctc catccagtct attaattgtt	4800
gcccggaaagc tagagtaagt agtcgcccag ttaatagtt ggcacacgtt gttgccattg	4860
ctacaggcat cgtggtgtca cgctcgtcgt ttgttatggc ttcattcagc tccggttccc	4920
aacgatcaag gcgagttaca tgatccccca tgggtgcaa aaaagcggtt agtccttcg	4980
gtcctccgat cggtgtcaga agtaagtgg ccgcagtgtt atcactcatg gttatggcag	5040
cactgcataa ttctcttact gtcatgccat ccgtaagatg ctttctgtg actggtgagt	5100
actcaaccaa gtcattctga gaatagtgtt tgccgcacc gagttgtct tgccggcgt	5160
caatacggga taataccgcg ccacatagca gaactttaaa agtgcctatc attggaaaac	5220
gttcttcggg gcgaaaactc tcaaggatct taccgctgtt gagatccagt tcgatgtaac	5280
ccactcgtgc acccaactga tcttcagcat ctttacttt caccagcggt tctgggtgag	5340
caaaaacagg aaggcaaaat gccgaaaaa agggataaag ggacacacgg aaatgttcaa	5400
tactcatact ttccctttt caatattatt gaagcattt tcagggttat tgtctcatga	5460
gcggatacat atttgaatgt atttagaaaa ataaacaaat aggggttccg cgcacatttc	5520
cccgaaaaagt gccacctgac gtc	5543

<210> 73
<211> 5173
<212> DNA
<213> artificial sequence

<220>
<223> Nucleotide sequence of plasmid pcDNA6.2/V5/GWD-TOPO

<220>
<221> unsure
<222> (958) .. (966)
<223> N can be any nucleotide: a, t, c, g

<400> 73
gacggatcg gagatctccc gatcccattt ggtgcactct cagtaaatc tgctctgatg 60

ccgcatagtt aagccagtat ctgctccctg cttgtgttt ggaggtcgct gagtagtgcg	120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc	180
ttagggtag gcgtttcg cgcttcgcg atgtacgggc cagatatacg cggtgacatt	240
gattattgac tagttattaa tagtaatcaa ttacgggtc attagttcat agcccatata	300
tggagttccg cgttacataa cttacggtaa atggccgc tggctgaccg cccaacgacc	360
cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc	420
attgacgtca atgggtggag tatttacggt aaactgccc cttggcagta catcaagtgt	480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt	540
atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca	600
tcgctattac catggtgatg cggtttggc agtacatcaa tggcgtgga tagcggtttgc	660
actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttgc tttggcacc	720
aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatggcgc	780
gtaggcgtgt acgggtggag gtctatataa gcagagctct ctggctaact agagaacccca	840
ctgcttactg gcttatcgaa attaatacga ctcaactatag ggagacccaa gctggctagt	900
taagctatca acaagtttgt acaaaaaagc aggctccgcg gccgcctt caccatgnnn	960
nnnnnnnaagg gtggcgcgc cgacccagct ttcttgcata aagtgggtga tctagagggc	1020
ccgcggttcg aaggttaagcc tatccctaac cctctcctcg gtctcgattc tacgcgtacc	1080
ggtagtaat gagtttaaac gggggaggct aactgaaaca cggaggaga caataccgga	1140
aggaacccgc gctatgacgg caataaaaag acagaataaa acgcacgggt gttgggtcg	1200
ttgttcataa acgcggggtt cggtcccagg gctggcactc tgtcgataacc ccacccgagac	1260
cccatgggg ccaatacgcc cgcgttctt cctttcccc accccacccca ccaagttcg	1320
gtgaaggccc agggctcgca gccaacgtcg gggcggcagg ccctgcccata gcagatctgc	1380
gcagctgggg ctctaggggg tatccccacg cgcctgttag cggcgcatta agcgcggcgg	1440
gtgtgggt tacgcgcagc gtgaccgcta cacttgcag cgcctagcg cccgctcctt	1500
tcgcttctt ccctcctt ctcgcacgt tcgcaggctt tccccgtcaa gctctaaatc	1560
ggggcatccc tttagggttc cgattnagtg cttacggca cctcgacccca aaaaaacttg	1620
attagggtga tggttcacgt agtggccat cgcctgata gacggttttt cgccctttga	1680
cgttggagtc cacgttcttt aatagtggac tcttgcata aactgaaaca acactcaacc	1740
ctatctcggt ctattcttt gatttataag ggattttggg gatttcggcc tattggtaa	1800
aaaatgagct gatthaacaa aaatthaacg cgaattaatt ctgtgaaatg tgtgtcagtt	1860
agggtgtgga aagtccccag gctccccagc aggcaagaatg atgcaagca tgcatactcaa	1920

ttagtcagca accaggtgtg gaaagtcccc aggctccca gcaggcagaa gtatgcaaag	1980
catgcacatctc aatttagtcag caaccatagt cccgccccata actccgcccc tcccggccct	2040
aactccgcccc agttccgcccc attctccgcc ccatggctga ctaattttt ttatTTatgc	2100
agaggccgag gcccgcctcg cctctgagct attccagaag tagtgaggag gctttttgg	2160
aggcctaggc ttttgcaaaa agctcccggg agcttgcata tccatTTcg gatctgatca	2220
gcacgtgttg acaattaatc atcggcatacg tatatcgca tagtataata cgacaagggtg	2280
aggaactaaa ccatggccaa gcctttgtct caagaagaat ccaccctcat tgaaagagca	2340
acggctacaa tcaacacgcat ccccatctct gaagactaca gcgtcgccag cgcaagctctc	2400
tctagcgacg gccgcacatctt cactggtgtc aatgtatatc attttactgg gggaccttgc	2460
gcagaactcg tggtgctggg cactgctgct gctgcggcag ctggcaacct gacttgtatc	2520
gtcgcgatcg gaaatgagaa caggggcatac ttgagccct gcggacggtg ccgacagggtg	2580
cttctcgatc tgcacatctgg gatcaaagcc atagtgaagg acagtgtatgg acagccgacg	2640
gcagttggga ttcgtgaatt gctgcctct ggttatgtgt gggagggcta agcacttcgt	2700
ggccgaggag caggactgac acgtgctacg agatttcgat tccaccgcg ccttctatga	2760
aagggttgggc ttccgaatcg ttttccggga cgccggctgg atgatcctcc agcgcgggg	2820
tctcatgctg gagttcttcg cccacccaa cttgtttatt gcagcttata atggttacaa	2880
ataaaagcaat agcatcacaa atttcacaaa taaagcattt ttttactgc attctagttt	2940
tggtttgcctt aaactcatca atgtatctta tcacgtctgt ataccgtcga cctctagcta	3000
gagcttggcg taatcatggt catagctgtt tcctgtgtga aattgttata cgctcacaat	3060
tccacacaac atacgagccg gaagcataaa gtgtaaagcc tgggggtgcct aatgagttag	3120
ctaactcaca ttaattgcgt tgcgctcaact gcccgtttc cagtcggaa acctgtcg	3180
ccagctgcat taatgaatcg gccaacgcgc ggggagaggc ggtttgcgtta ttgggcgtc	3240
ttccgcttcc tcgctcaactg actcgctgcg ctgggtcgat cggctgcggc gagcggat	3300
agctcactca aaggcggtaa tacggttatc cacagaatca ggggataacg caggaaagaa	3360
catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcg	3420
tttccatagg ctccgccccct ctgacgagca tcacaaaaat cgacgctcaa gtcagagg	3480
gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaaagct ccctcg	3540
ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gccttctcc ctgcggaa	3600
cgtggcgctt tctcatagct cacgctgttag gtatctcagt tcgggttagg tcgttcgtc	3660
caagctgggc tgtgtgcacg aaccccccgt tcagccgcac cgctgcgcct tatccggtaa	3720
ctatcgctt gagtccaaacc cggtaaagaca cgacttatcg ccactggcag cagccactgg	3780

taacaggatt	agcagagcga	ggtatgttagg	cggtgctaca	gagttcttga	agtggtggcc	3840
taactacggc	tacactagaa	gaacagtatt	tggtatctgc	gctctgctga	agccagttac	3900
cttcggaaaa	agagttggta	gctcttgatc	cggcaaacaa	accaccgctg	gtagcggttt	3960
ttttgtttgc	aagcagcaga	ttacgcgcag	aaaaaaaagga	tctcaagaag	atcctttgat	4020
cttttctacg	gggtctgacg	ctcagtggaa	cgaaaactca	cgttaaggga	ttttggtcat	4080
gagattatca	aaaaggatct	tcacctagat	ccttttaaat	taaaaatgaa	gttttaaatac	4140
aatctaaagt	atatatgagt	aaacttggtc	tgacagttac	caatgctaa	tcagtgaggc	4200
acctatctca	gcgatctgtc	tatTCGTTC	atccatagtt	gcctgactcc	ccgtcgtgt	4260
gataactacg	atacgggagg	gcttaccatc	tggccccagt	gctgcaatga	taccgcgaga	4320
cccacgctca	ccggctccag	atttatcagc	aataaaccag	ccagccggaa	gggcccggcg	4380
cagaagtgg	cctgcaactt	tatCCGCTC	catccagtct	attaattgtt	gccgggaagc	4440
tagagtaagt	agttcgcag	ttaatagttt	gcgcaacgtt	gttgccattg	ctacaggcat	4500
cgtggtgtca	cgctcgctgt	ttggtatggc	ttcattcagc	tccggttccc	aacgatcaag	4560
gcgagttaca	tgatccccca	tggtgtgcaa	aaaagcggtt	agctccttcg	gtcctccgat	4620
cgttgcaga	agtaagttgg	ccgcagtgtt	atcactcatg	gttatggcag	cactgcataa	4680
ttctcttact	gtcatgccat	ccgtaagatg	cttttctgtg	actggtgagt	actcaaccaa	4740
gtcattctga	gaatagtgt	tgccggcacc	gagttgctct	tgcccgccgt	caatacggg	4800
taataccgcg	ccacatagca	gaactttaaa	agtgctcatc	attggaaaac	gttcttcggg	4860
gcgaaaactc	tcaaggatct	taccgctgtt	gagatccagt	tcgatgtaac	ccactcggtc	4920
acccaactga	tcttcagcat	cttttacttt	caccagcggt	tctgggtgag	caaaaacagg	4980
aaggcaaaat	gccgcaaaaa	aggaaataag	ggcgacacgg	aaatgttcaa	tactcatact	5040
cttccttttt	caatattatt	gaagcattt	tcagggttat	tgtctcatga	gcggatacat	5100
atttgaatgt	attttagaaaa	ataaacaat	aggggttccg	cgcacatttc	cccgaaaagt	5160
gccacacgtac	gtc					5173

<210> 74
<211> 69
<212> DNA
<213> artificial sequence

<220>
<223> Partial sequence of pENTR/SD-dTOPO

<220>
<221> unsure
<222> (64)..(69)
<223> N can be any nucleotide: a, t, c, g

<400> 74
ttgtacaaaa aaggcaggctc cgccggccgccc ttgtttaact ttaagaagga gcccttcacc 60
atgnnnnnn 69

<210> 75
<211> 52
<212> DNA
<213> artificial sequence

<220>
<223> Nucleotide sequence of TOPO-D71

<400> 75
ggccgccttg tttaacttta agaaggagcc cttcaccgac tatgtacagtt g 52

<210> 76
<211> 31
<212> DNA
<213> artificial sequence

<220>
<223> Nucleotide sequence of TOPO-D73

<400> 76
ggccgcggccccc ttcaccgact atgtacagtt g 31

<210> 77
<211> 28
<212> DNA
<213> artificial sequence

<220>
<223> Nucleotide sequence of TOPO-D75

<400> 77
cgcgccccacc cttgacatag tacagttg 28

<210> 78
<211> 14
<212> PRT
<213> artificial sequence

<220>
<223> Partial amino acid sequence of pENTR-dTOPO and
pcDNAGW-dTOPO

<400> 78

Leu Tyr Lys Lys Ala Gly Ser Ala Ala Ala Pro Phe Thr Met
1 5 10

<210> 79
<211> 13
<212> PRT
<213> artificial sequence

<220>
<223> Partial amino acid sequence of pENTR/SD-dTOPO,
pENTR-dTOPO, and pcDNAGW-dTOPO

<400> 79

Lys Gly Gly Arg Ala Asp Pro Ala Phe Leu Tyr Lys Val
1 5 10

<210> 80
<211> 15
<212> DNA
<213> artificial sequence

<220>
<223> Product of binding a topoisomerase to part of a nucleic
acid molecule

<220>
<221> unsure
<222> (13)..(15)
<223> N can be any nucleotide: a, t, c, g

<400> 80
cccttcacca tgnnn 15

<210> 81
<211> 15
<212> DNA
<213> Unknown

<220>
<223> 15 bp core region of the wildtype att site

<400> 81
gcttttttat actaa 15

<210> 82
<211> 21
<212> DNA
<213> Unknown

<220>
<223> att site

<400> 82
caactttttt atacaaaagtt g 21

<210> 83
<211> 25
<212> DNA
<213> Unknown

<220>
<223> attB1 site

<400> 83
agcctgcttt tttgtacaaa cttgt 25

<210> 84
<211> 233
<212> DNA
<213> Unknown

<220>
<223> attP1 site

<400> 84
tacaggtcac taataccatc taagtagttg attcatagtg actggatatg ttgtgtttta 60
cagtattatg tagtctgttt tttatgc当地 atctaattta atatattgtat atttatatca 120
ttttacgttt ctcgttcagc tttttgtac aaagttggca ttataaaaaaa gcattgctca 180
tcaatttgtt gcaacgaaca ggtcaactatc agtcaaaaata aaatcattat ttg 233

<210> 85
<211> 100
<212> DNA
<213> Unknown

<220>
<223> attL1 site

<400> 85
caaataatga ttttattttg actgatagtg acctgttcgt tgcaacaaat tgataagcaa 60
tgcttttta taatgccaac tttgtacaaa aaagcaggct 100

<210> 86
<211> 125
<212> DNA
<213> Unknown

<220>
<223> attR1 site

<400> 86
acaagttgt acaaaaaagc tgaacgagaa acgtaaaatg atataaatat caatatatta 60
aatttagattt tgcataaaaa acagactaca taatactgta aaacacaaca tatccagtca 120
ctatg 125

<210> 87
<211> 27
<212> DNA
<213> Unknown

<220>
<223> attB0 site

<400> 87
aggctgcttt tttatactaa cttgagc 27

<210> 88
<211> 27

<212> DNA
<213> Unknown

<220>
<223> attP0 site site

<400> 88
gttcagctt tttatactaa gttggca

27

<210> 89
<211> 27
<212> DNA
<213> Unknown

<220>
<223> attL0 site

<400> 89
agcctgctt tttatactaa gttggca

27

<210> 90
<211> 27
<212> DNA
<213> Unknown

<220>
<223> attR0 site

<400> 90
gttcagctt tttatactaa cttgagc

27

<210> 91
<211> 27
<212> DNA
<213> Unknown

<220>
<223> attP1 site

<400> 91
gttcagctt tttgtacaaa gttggca

27

<210> 92
<211> 27
<212> DNA
<213> Unknown

<220>
<223> attL1 site

<400> 92
agcctgctt tttgtacaaa gttggca

27

<210> 93
<211> 25
<212> DNA
<213> Unknown

<220>
<223> attR1 site

<400> 93
gttcagcttt tttgtacaaa cttgt 25

<210> 94
<211> 25
<212> DNA
<213> Unknown

<220>
<223> attB2 site

<400> 94
acccagcttt cttgtacaaa gtggc 25

<210> 95
<211> 27
<212> DNA
<213> Unknown

<220>
<223> attP2 site

<400> 95
gttcagcttt cttgtacaaa gttggca 27

<210> 96
<211> 27
<212> DNA
<213> Unknown

<220>
<223> attL2 site

<400> 96
acccagcttt cttgtacaaa gttggca 27

<210> 97
<211> 25
<212> DNA
<213> Unknown

<220>
<223> attR2 site

<400> 97
gttcagcttt cttgtacaaa gtggc 25

<210> 98
<211> 22
<212> DNA
<213> Unknown

<220>
<223> attB5 site

<400> 98	
caactttatt atacaaaagtt gt	22
<210> 99	
<211> 27	
<212> DNA	
<213> Unknown	
<220>	
<223> attP5 site	
<400> 99	
gttcaacttt attataaaaa gttggca	27
<210> 100	
<211> 24	
<212> DNA	
<213> Unknown	
<220>	
<223> attL5 site	
<400> 100	
caactttatt atacaaaagtt ggca	24
<210> 101	
<211> 25	
<212> DNA	
<213> Unknown	
<220>	
<223> attR5 site	
<400> 101	
gttcaacttt attataaaaa gttgt	25
<210> 102	
<211> 22	
<212> DNA	
<213> Unknown	
<220>	
<223> attB11 site	
<400> 102	
caactttctt atacaaaagtt gt	22
<210> 103	
<211> 27	
<212> DNA	
<213> Unknown	
<220>	
<223> attP11 site	
<400> 103	
gttcaacttt tctataaaaa gttggca	27

<210> 104
<211> 24
<212> DNA
<213> Unknown

<220>
<223> attL11 site

<400> 104
caacttttct atacaaaagtt ggca

24

<210> 105
<211> 25
<212> DNA
<213> Unknown

<220>
<223> attR11 site

<400> 105
gttcaacttt tctataaaaa gttgt

25

<210> 106
<211> 22
<212> DNA
<213> Unknown

<220>
<223> attB17 site

<400> 106
caacttttgt atacaaaagtt gt

22

<210> 107
<211> 27
<212> DNA
<213> Unknown

<220>
<223> attP17 site

<400> 107
gttcaacttt tgtataaaaa gttggca

27

<210> 108
<211> 24
<212> DNA
<213> Unknown

<220>
<223> attL17 site

<400> 108
caacttttgt atacaaaagtt ggca

24

<210> 109

<211> 25
<212> DNA
<213> Unknown

<220>
<223> attR17 site

<400> 109
gttcaacttt tgtatacaaaa gttgt 25

<210> 110
<211> 22
<212> DNA
<213> Unknown

<220>
<223> attB19 site

<400> 110
caactttttc gtacaaagtt gt 22

<210> 111
<211> 27
<212> DNA
<213> Unknown

<220>
<223> attP19 site

<400> 111
gttcaacttt ttcgtacaaa gttggca 27

<210> 112
<211> 24
<212> DNA
<213> Unknown

<220>
<223> attL19 site

<400> 112
caactttttc gtacaaagtt ggca 24

<210> 113
<211> 25
<212> DNA
<213> Unknown

<220>
<223> attR19 site

<400> 113
gttcaacttt ttcgtacaaa gttgt 25

<210> 114
<211> 22
<212> DNA

<213> Unknown

<220>

<223> attB20 site

<400> 114
caacttttg gtacaaagtt gt 22

<210> 115

<211> 27

<212> DNA

<213> Unknown

<220>

<223> attP20 site

<400> 115
gttcaacttt ttggcacaaa gttggca 27

<210> 116

<211> 24

<212> DNA

<213> Unknown

<220>

<223> attL20 site

<400> 116
caacttttg gtacaaagtt ggca 24

<210> 117

<211> 25

<212> DNA

<213> Unknown

<220>

<223> attR20 site

<400> 117
gttcaacttt ttggcacaaa gttgt 25

<210> 118

<211> 22

<212> DNA

<213> Unknown

<220>

<223> attB21 site

<400> 118
caactttta atacaaagtt gt 22

<210> 119

<211> 27

<212> DNA

<213> Unknown

<220>		
<223>	attP21 site	
<400>	119	
	gttcaacttt ttaatacataaa gttggca	27
<210>	120	
<211>	24	
<212>	DNA	
<213>	Unknown	
<220>		
<223>	attL21 site	
<400>	120	
	caactttta atacaaaagtt ggca	24
<210>	121	
<211>	25	
<212>	DNA	
<213>	Unknown	
<220>		
<223>	attR21 site	
<400>	121	
	gttcaacttt ttaatacataaa gttgt	25
<210>	122	
<211>	15	
<212>	DNA	
<213>	Unknown	
<220>		
<223>	Theoretical protein N-terminus DNA sequence	
<400>	122	
	atgggatctg ataaa	15
<210>	123	
<211>	19	
<212>	DNA	
<213>	Unknown	
<220>		
<223>	Theoretical PCR primer	
<400>	123	
	caccatggga tctgataaaa	19
<210>	124	
<211>	43	
<212>	DNA	
<213>	Unknown	
<220>		
<223>	Oligonucleotide linker	

<400> 124
gactcgtaat acgactcact atagggccct tattccgata gtg 43

<210> 125
<211> 42
<212> DNA
<213> Unknown

<220>
<223> Oligonucleotide linker

<400> 125
agggccctat agtgagtcgt attacgagtc aaaaaaaaaaa aa 42

<210> 126
<211> 16
<212> DNA
<213> Unknown

<220>
<223> Oligonucleotide linker

<400> 126
caacactatc ggaata 16

<210> 127
<211> 24
<212> DNA
<213> Unknown

<220>
<223> PCR Primer

<400> 127
gctcaccatg gatgatgata tcgc 24

<210> 128
<211> 24
<212> DNA
<213> Unknown

<220>
<223> PCR Primer

<400> 128
ggaggagcaa tgatottgat cttc 24

<210> 129
<211> 33
<212> DNA
<213> Unknown

<220>
<223> PCR Primer

<400> 129
cacggatccg ctcaccatgg atgatgatat cg 33

<210> 130
<211> 33
<212> DNA
<213> Unknown

<220>
<223> PCR Primer

<400> 130
cacaagcttg gaggagcaat gatcttgatc ttc 33

<210> 131
<211> 25
<212> DNA
<213> Unknown

<220>
<223> PCR Primer

<400> 131
atggcttagca aaggagaaga acttt 25

<210> 132
<211> 25
<212> DNA
<213> Unknown

<220>
<223> PCR Primer

<400> 132
ttattttag agctcatcca tgcca 25

<210> 133
<211> 29
<212> DNA
<213> Unknown

<220>
<223> PCR Primer

<400> 133
gatgactcgtaatacgactc actataggg 29

<210> 134
<211> 24
<212> DNA
<213> Unknown

<220>
<223> PCR Primer

<400> 134
gatgactcgtaatacgactc acta 24

<210> 135

<211> 11
<212> DNA
<213> Unknown

<220>
<223> 5' end of Element 2

<400> 135
ggccataagg g 11

<210> 136
<211> 11
<212> DNA
<213> Unknown

<220>
<223> 3' end of Element 1

<400> 136
gttccgaagg g 11

<210> 137
<211> 11
<212> DNA
<213> Unknown

<220>
<223> oligonucleotide

<400> 137
ggcctaaagg g 11

<210> 138
<211> 33
<212> DNA
<213> Unknown

<220>
<223> TOPO-D71 5' end

<400> 138
cgaaacaaat tgaaattctt cctcgaaaag tgg 33

<210> 139
<211> 12
<212> DNA
<213> Unknown

<220>
<223> TOPO-D70 5' end

<400> 139
ctgatacatg tc 12

<210> 140
<211> 48
<212> DNA

<213> Unknown

<220>

<223> pENTR-dTOPO and pcDNAGW-dTOPO 5' end

<220>

<221> misc_feature

<222> (43)..(48)

<223> n is a, c, g, or t

<400> 140
ttgtacaaaa aagacggctc cgcgccgccc cccttcacca tgnnnnnnn 48

<210> 141

<211> 12

<212> DNA

<213> Unknown

<220>

<223> TOPO-D74 5' end

<400> 141
cgggggaagt gg 12

<210> 142

<211> 45

<212> DNA

<213> Unknown

<220>

<223> pENTR/SD-dTOPO, pENTR-dTOPO, and pcDNAGW-dTOPO 3' end

<220>

<221> misc_feature

<222> (1)..(6)

<223> n is a, c, g, or t

<400> 142
nnnnnaagg gtggcgcbc cgaccagct ttcttgtaca aagtg 45

<210> 143

<211> 14

<212> DNA

<213> Unknown

<220>

<223> F7220 Primer

<400> 143
tcgaaaaggcc cctt 14

<210> 144

<211> 14

<212> DNA

<213> Unknown

<220>
<223> F6682 Primer

<400> 144
ggccaagggc cctt

14

<210> 145
<211> 11
<212> DNA
<213> Unknown

<220>
<223> F8417 Primer

<400> 145
gttccgaagg g

11

<210> 146
<211> 16
<212> DNA
<213> Unknown

<220>
<223> F8418 Primer

<400> 146
cggaacaagg gccctt

16

<210> 147
<211> 16
<212> DNA
<213> Unknown

<220>
<223> F8420 Primer

<400> 147
taggccaagg gccctt

16

<210> 148
<211> 11
<212> DNA
<213> Unknown

<220>
<223> F8419 Primer

<400> 148
ggcctaaagg g

11