CSE4001- PARALLEL AND DISTRIBUTED COMPUTING LAB

Name: Arya Adarsh

Reg. No: 19BCE1556

Programming Environment: OpenMP

Problem: Prefix sum problem, Calculation of PI using critical construct,

single construct

Date: 22-09-2021

Hardware Configuration:

\$ lscpu

```
Architecture:
                                  x86 64
CPU op-mode(s):
                                  32-bit, 64-bit
                                  Little Endian
Byte Order:
Address sizes:
                                  39 bits physical, 48 bits virtual
CPU(s):
On-line CPU(s) list:
                                  0
Thread(s) per core:
Core(s) per socket:
Socket(s):
NUMA node(s):
                                  GenuineIntel
Vendor ID:
CPU family:
Model:
                                  Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz
Model name:
Stepping:
                                  10
CPU MHz:
                                  1800.002
                                  3600.00
BogoMIPS:
Hypervisor vendor:
                                  KVM
Virtualization type:
                                  full
L1d cache:
                                  32 KiB
L1i cache:
                                 32 KiB
                                  256 KiB
L2 cache:
L3 cache:
                                  6 MiB
NUMA node@ CPU(s):
Vulnerability Itlb multihit:
                                  KVM: Mitigation: VMX unsupported
Vulnerability L1tf:
                                  Mitigation; PTE Inversion
Vulnerability Mds:
                                  Mitigation; Clear CPU buffers; SMT Host state
```

Task 1: Prefix Sum Problem:

```
CODE:
#include <stdio.h>
#include <omp.h>
#define N 10000
int main() {
  int array[N],CHUNK=10000;
  int t[16] = \{1,2,3,4,5,6,7,8,9,16,32,64,128,256,512,1024\};
  // Initalize the array
for (int i = 0; i < N; i++)
  {
     array[i] = i + 1;
  for (int k = 0; k < 16; k++)
     omp_set_num_threads(t[k]);
     int prefix_array[N] = \{0\};
     int i, j;
     float startT = omp_get_wtime();
#pragma omp parallel for shared(prefix_array, array) private(i, j) schedule(dynamic, CHUNK)
for (int i = 0; i < N; i++)
       for (int i = 0; i <= i; i++)
          prefix_array[i] += array[j];
     float endT = omp get wtime();
float exectime = endT - startT;
    printf("Number Of Threads=%d, Executive Time = %f\n",t[k],exectime);
  for (int k = 0; k < 16; k++)
     omp_set_num_threads(t[k]);
int prefix_array[N] = \{0\};
     int i, j;
     float startT = omp_get_wtime();
#pragma omp parallel for shared(prefix_array, array) private(i, j) schedule(static, CHUNK)
for (int i = 0; i < N; i++)
                                for (int j = 0; j \le i; j++)
          prefix_array[i] += array[j];
     float endT = omp_get_wtime();
float exectime = endT - startT;
    printf("Number Of Threads=%d, Executive Time = %f\n",t[k],exectime);
  for (int k = 0; k < 16; k++)
     omp_set_num_threads(t[k]);
     int prefix_array[N] = \{0\};
```

```
int \ i, j; \\ float \ startT = omp\_get\_wtime(); \\ for \ (int \ i = 0; \ i < N; \ i++) \\ for \ (int \ j = 0; \ j <= i; \ j++) \\ \{ \\ prefix\_array[i] += array[j]; \\ \} \\ float \ endT = omp\_get\_wtime(); \\ float \ exectime = endT - startT; \\ printf("Number \ Of \ Threads=\%d, \ Executive \ Time = \%f\n",t[k],exectime); \\ \} \\ return \ 0; \ \}
```

OUTPUT:

For N=10,000

```
Time = 0.230713
Time = 0.238159
Time = 0.255981
                                                                                                                                                                                                        Executive
Number Of Threads=3, Executive Time = 0.238159
Number Of Threads=4, Executive Time = 0.255981
Number Of Threads=5, Executive Time = 0.202393
Number Of Threads=6, Executive Time = 0.221802
Number Of Threads=7, Executive Time = 0.199829
Number Of Threads=8, Executive Time = 0.230835
Number Of Threads=8, Executive Time = 0.181152
Number Of Threads=16, Executive Time = 0.185425
Number Of Threads=16, Executive Time = 0.185425
Number Of Threads=32, Executive Time = 0.225220
Number Of Threads=128, Executive Time = 0.225210
Number Of Threads=128, Executive Time = 0.227417
Number Of Threads=128, Executive Time = 0.227417
Number Of Threads=512, Executive Time = 0.276245
Number Of Threads=1024, Executive Time = 0.288208
Number Of Threads=1, Executive Time = 0.288208
Number Of Threads=1, Executive Time = 0.212524
Number Of Threads=2, Executive Time = 0.212524
Number Of Threads=3, Executive Time = 0.212524
Number Of Threads=4, Executive Time = 0.212524
Number Of Threads=6, Executive Time = 0.234253
Number Of Threads=6, Executive Time = 0.234253
Number Of Threads=7, Executive Time = 0.203493
Number Of Threads=8, Executive Time = 0.203293
Number Of Threads=16, Executive Time = 0.203293
Number Of Threads=3, Executive Time = 0.203293
Number Of Threads=16, Executive Time = 0.203293
Number Of Threads=128, Executive Time = 0.198730
Number Of Threads=512, Executive Time = 0.173828
Number Of Threads=512, Executive Time = 0.173828
Number Of Threads=512, Executive Time = 0.173828
Number Of Threads=512, Executive Time = 0.193359
Number Of Threads=128, Executive Time = 0.193359
Number Of Threads=512, Executive Time = 0.193359
Number Of Threads=512, Executive Time = 0.133545
Number Of Threads=2, Executive Time = 0.144456
Number Of Threads=3, Executive Time = 0.144456
Number Of Threads=5, Executive Time = 0.144456
Number Of Threads=5, Executive Time = 0.144456
Number Of Threads=5, Executive Time = 0.1337085
      Number Of
Number Of
                                                                                                 Threads=3,
Threads=4,
                                                                                                                                                                                                     Executive
                                                                                                                                                                                                     Executive
                                                                                               Threads=4, Executive
Threads=5, Executive
Threads=6, Executive
                                                                                                                                                                                                                                                                                                  Time = 0.137085
Time = 0.137939
Time = 0.154785
Time = 0.141846
      Number Of
Number Of
       Number Of
                                                                                                 Threads=7, Executive
Threads=8, Executive
       Number Of
      Number Of
Number Of
Number Of
                                                                                           Threads=9, Executive Threads=16, Executive Threads=32, Executive Threads=64. Executive
                                                                                                                                                                                                                                                                                               Time = 0.146973
e Time = 0.151978
       Number Of
Number Of
```

```
Number Of Threads=128, Executive Time = 0.151123

Number Of Threads=256, Executive Time = 0.152588

Number Of Threads=512, Executive Time = 0.135986

Number Of Threads=1024, Executive Time = 0.147461
```

Execution Time:

Static	Static	Static	Dynamic	Dynamic	Dynamic	Default	Default	Default N=100
N=10000	N=1000	N=100	N=10000	N=1000	N=100	N=10000	N=1000	
0.186646	0.001221	0.000000	0.169922	0.002441	0.000000	0.133545	0.001221	0.000000
0.225464	0.084473	0.013428	0.230713	0.001465	0.000000	0.144897	0.000977	0.000244
0.212524	0.003418	0.067871	0.238159	0.001465	0.000244	0.142456	0.002686	0.000000
0.225464	0.001709	0.000244	0.255981	0.001709	0.000244	0.137085	0.001221	0.000000
0.199463	0.001953	0.000000	0.202393	0.001709	0.000000	0.137939	0.000977	0.000000
0.234253	0.002441	0.000244	0.221802	0.007324	0.000000	0.154785	0.001221	0.000244
0.239990	0.002441	0.000244	0.199829	0.001709	0.000000	0.141846	0.008545	0.000000
0.202393	0.003174	0.000244	0.230835	0.002197	0.000244	0.142700	0.001221	0.000000
0.208252	0.003418	0.000244	0.181152	0.003686	0.000244	0.146973	0.001221	0.000000
0.201416	0.001953	0.000488	0.185425	0.001953	0.000488	0.151978	0.001221	0.000000
0.209595	0.003174	0.000977	0.225220	0.009033	0.000977	0.138794	0.001221	0.000000
0.198730	0.013428	0.001709	0.188477	0.013916	0.001953	0.138428	0.001221	0.000000
0.173828	0.013916	0.008789	0.224121	0.012451	0.003906	0.151123	0.001221	0.000000
0.172241	0.031250	0.022949	0.227417	0.026123	0.017090	0.152588	0.001221	0.000000
0.193359	0.072998	0.046631	0.276245	0.049316	0.056152	0.135986	0.002197	0.000000
0.209351	0.107178	0.099365	0.288208	0.102539	0.089111	0.147461	0.001221	0.000000

Execution Time vs No. of threads: For Dynamic:

Execution time vs No. of Threads

Task2: Pi calculation using Critical Construct:

CODE:

```
#include<stdio.h>
#include<omp.h>
#include <math.h> #include <stdlib.h>
#define PI 3.1415926538837211
int main()
{
        int
                  N, i,CHUNK=10000,k;
        float
                   sum, x, tsum, h, psum, sumt, starttime, endtime, exectime;
        printf("Enter number of intervals\n");
scanf("%d", &N);
        if (N \le 0) {
                printf("Number of intervals should be positive integer\n");
                exit(1);
        }
        sum = 0.0;
        h = 1.0 / N;
        int t[16] = \{1,2,3,4,5,6,7,8,9,16,32,64,128,256,512,1024\};
for(k=0;k<16;k++)
        {
        starttime=omp_get_wtime();
#pragma omp parallel for private(x) shared(sumt) schedule(static,CHUNK)
for (i = 1; i < N + 1; i = i + 1)
{
                x = h * (i - 0.5);
                sumt = sumt + 4.0 / (1 + x * x);
        #pragma omp critical
        psum = sumt * h;
#pragma omp critical
        sum = sum + psum;
endtime=omp_get_wtime();
                                exectime =
endtime - starttime;
        printf("Number Of Threads=%d, Executive Time = %f\n",t[k],exectime);
}
}
```

OUTPUT:

FOR STATIC N=10,000

```
Enter number of intervals
 10000
 The value of PI is
                                                 3.141591
error is 0.0000018202197807
Number Of Threads=1, Executive Time = 0.000366
The value of PI is 9.424780
error is 6.2831872380840519
Number Of Threads=2, Executive Time = 0.000244
The value of PI is 18.849567
error is 15.7079747594463566
Number Of Threads=3, Executive Time = 0.000244
The value of PI is 31.415968 error is 28.2743752874004599
 Number Of Threads=4, Executive Time = 0.000366
The value of PI is 47.123962
error is 43.9823697484600302
Number Of Threads=5, Executive Time = 0.000244
The value of PI is 65.973595
error is 62.8320020116436240
Number Of Threads=6, Executive Time = 0.000732
Number Of Threads=6, Executive Time = 0.000732
The value of PI is 87.964867
error is 84.8232739842998740
Number Of Threads=7, Executive Time = 0.000366
The value of PI is 113.097778
error is 109.9561856664287802
Number Of Threads=8, Executive Time = 0.000244
The value of PI is 141.372330
error is 138.2307370580303427
Number Of Threads=9, Executive Time = 0.000244
The value of PI is 172.788620 error is 169.6470273412334677
 Number Of Threads=16, Executive Time = 0.000488
The value of PI is 207.346649
error is 204.2050565160381552
Number Of Threads=32, Executive Time = 0.000488
 The value of PI is 245.046417
 Percor is 241.9048245824444052

Number Of Threads=64, Executive Time = 0.000244
The value of PI is 285.887909
error is 282.7463162816631552
Number Of Threads=128, Executive Time = 0.000366
The value of PI is 329.871155
```

Execution Time:

Static	Static	Static	Dynamic	Dynamic	Dynamic	Default	Default	Default
N=10000	N=100000	N=1000000	N=10000	N=100000	N=1000000	N=10000	N=100000	N=1000000
0.000366	0.003174	0.059570	0.000244	0.003906	0.047852	0.000000	0.001709	0.026123
0.000244	0.008423	0.052246	0.000244	0.002930	0.060303	0.000000	0.001709	0.037598
0.000244	0.019897	0.066162	0.000244	0.002441	0.050781	0.000244	0.001953	0.043945
0.000366	0.003540	0.062744	0.000244	0.002686	0.052979	0.000244	0.001709	0.034424
0.000244	0.007324	0.063232	0.000244	0.006836	0.050537	0.000000	0.001709	0.039062
0.000732	0.003174	0.068115	0.000488	0.002686	0.059814	0.000244	0.001953	0.044434
0.000366	0.006958	0.058838	0.000244	0.002930	0.059082	0.000244	0.001709	0.042236
0.000244	0.010986	0.058838	0.000244	0.014404	0.054199	0.000244	0.004883	0.032715
0.000244	0.006714	0.059570	0.000244	0.002686	0.060791	0.000000	0.001709	0.038330
0.000488	0.005371	0.060547	0.000244	0.006104	0.062988	0.000244	0.001953	0.036865
0.000488	0.002808	0.060059	0.000244	0.002930	0.063477	0.000244	0.009277	0.031982
0.000244	0.002930	0.047852	0.000244	0.002686	0.060791	0.000000	0.001709	0.031494
0.000366	0.009399	0.058105	0.000244	0.002930	0.059082	0.000000	0.001709	0.032715
0.000244	0.007324	0.066650	0.000244	0.002686	0.056396	0.000244	0.001709	0.038330
0.005249	0.002808	0.058105	0.000488	0.012451	0.063232	0.000244	0.001709	0.038818
0.000366	0.013184	0.051758	0.005127	0.005371	0.061035	0.000244	0.001709	0.037842

Execution Time vs No. of threads: For dynamic:

-**□**- N=100000

--- N=1000000

-- N=10000

0.010

Number of threads

Execution time vs No. of threads

Task3: Pi calculation using single construct

CODE:

```
#include<stdio.h>
#include<omp.h>
#include <math.h> #include <stdlib.h>
#define PI 3.1415926538837211
int main()
{
        int
                  N, i,CHUNK=10000,k;
                   sum, x, tsum, h, psum, sumt, starttime, endtime, exectime;
        float
        printf("Enter number of intervals\n");
scanf("%d", &N);
        if (N \le 0) {
                printf("Number of intervals should be positive integer\n");
                exit(1);
        }
        sum = 0.0;
        h = 1.0 / N;
        int t[16] = \{1,2,3,4,5,6,7,8,9,16,32,64,128,256,512,1024\};
for(k=0;k<16;k++)
        {
        starttime=omp_get_wtime();
#pragma omp parallel for private(x) shared(sumt) schedule(static,CHUNK)
for (i = 1; i < N + 1; i = i + 1)
{
                x = h * (i - 0.5);
                sumt = sumt + 4.0 / (1 + x * x);
        #pragma omp single
        psum = sumt * h;
#pragma omp single
        sum = sum + psum;
endtime=omp_get_wtime();
                               exectime =
endtime - starttime;
        printf("Number Of Threads=%d, Executive Time = %f\n",t[k],exectime);
}
}
```

OUTPUT:

FOR DYNAMIC N = 10,000

```
Enter number of intervals

10000

Number Of Threads=1, Executive Time = 0.000244

Number Of Threads=2, Executive Time = 0.000000

Number Of Threads=3, Executive Time = 0.000000

Number Of Threads=4, Executive Time = 0.000244

Number Of Threads=5, Executive Time = 0.000244

Number Of Threads=6, Executive Time = 0.000244

Number Of Threads=7, Executive Time = 0.000000

Number Of Threads=8, Executive Time = 0.000244

Number Of Threads=9, Executive Time = 0.000244

Number Of Threads=16, Executive Time = 0.000000

Number Of Threads=32, Executive Time = 0.000244

Number Of Threads=64, Executive Time = 0.000244

Number Of Threads=128, Executive Time = 0.000244

Number Of Threads=128, Executive Time = 0.000244

Number Of Threads=512, Executive Time = 0.000000

Number Of Threads=512, Executive Time = 0.000244

Number Of Threads=512, Executive Time = 0.000244

Number Of Threads=512, Executive Time = 0.000244
```

Execution Time:

	Static	Static	Static	Dynamic	Dynamic	Dynamic	Default	Default	Default
	N=10000	N=100000	N=1000000	N=10000	N=100000	N=1000000	N=10000	N=100000	N=1000000
1	0.000244	0.001709	0.021240	0.000244	0.001709	0.026123	0.00000	0.001709	0.026123
2	0.000000	0.001953	0.053711	0.000244	0.001709	0.041748	0.00000	0.001709	0.037598
3	0.000244	0.001709	0.038574	0.000000	0.001709	0.043701	0.000244	0.001953	0.043945
4	0.000244	0.001709	0.042725	0.000244	0.001709	0.043945	0.000244	0.001709	0.034424
5	0.000244	0.001953	0.037354	0.000244	0.001709	0.042480	0.000000	0.001709	0.039062
6	0.000000	0.001953	0.037842	0.000244	0.001953	0.039062	0.000244	0.001953	0.044434
8	0.000244	0.007080	0.049316	0.000000	0.013428	0.042236	0.000244	0.001709	0.042236
9	0.000244	0.001709	0.044189	0.000244	0.001953	0.044678	0.000244	0.004883	0.032715
16	0.000244	0.001709	0.044922	0.000244	0.002930	0.035156	0.000000	0.001709	0.038330
32	0.000000	0.001953	0.028564	0.000000	0.001709	0.036865	0.000244	0.001953	0.036865
64	0.000244	0.001953	0.042969	0.000244	0.001953	0.031250	0.000244	0.009277	0.031982
128	0.000244	0.020508	0.039551	0.000244	0.001709	0.037598	0.000000	0.001709	0.031494
256	0.000000	0.001953	0.035889	0.000244	0.001953	0.037109	0.000000	0.001709	0.032715
512	0.000244	0.001709	0.037598	0.000000	0.001709	0.036133	0.000244	0.001709	0.038330
1024	0.000244	0.001709	0.036621	0.000244	0.001709	0.038574	0.000244	0.001709	0.038818
	0.000244	0.001709	0.039307	0.000244	0.001709	0.034912	0.000244	0.001709	0.037842

Execution time vs No. of threads

