ML Assignment 2 Write Up. IIT2018179 - Mohammed Aadil

1) a)
$$Y = 3.28X - 6520.32$$

A = sum(xi)	B = sum(yi)	C = sum(xi*xi)	D = sum(xi*yi)
22129	859.6	44517661	1729766.8

w0	w1
-6520.32	3.28

- b) H(2019) = 102
- c) RMSE = 5.247

2) X = ML, Y = HUR

a)
$$\mathbf{Y} = \mathbf{w}1\mathbf{X} + \mathbf{w}0$$

A = sum(xi)	B = sum(yi)	C = sum(xi*xi)	D = sum(xi*yi)
798	819	64722	66045

w0	w1	
29.12903226	0.6612903226	

b)
$$\mathbf{X} = \mathbf{w}3\mathbf{Y} + \mathbf{w}2$$

A' = sum(yi)	B' = sum(xi)	C' = sum(yi*yi)	D' = sum(xi*yi)
819	798	67675	66045

w2	w3
-14.3938888	1.150108532

c) Plugging
$$X = 96$$
 into $Y = w1X + w0$
=> $Y = 92.613$

d) Plugging
$$Y = 95$$
 into $X = w3Y + w2$
=> $X = 94.866$

e) As we can see they are different lines and have different purposes. Like Y = w1X + w0 line should be used only to calculate the Y value for the corresponding X value and vice versa.

The green line is for part (a) ie Y = w1X + w0The purple line is for part (b) ie X = w3Y + w2

In (a) Y depends on X whereas in (b) it's the other way around.

$$3)$$

$$PV^{n} = c$$

$$ln(\mathbf{PV}^n) = ln(\mathbf{c})$$

$$ln(\mathbf{P}) + n.ln(\mathbf{V}) = ln(\mathbf{c})$$

$$ln(\mathbf{P}) = ln(\mathbf{c}) - n.ln(\mathbf{V})$$

$$ln(\mathbf{P}) = ln(\mathbf{c}) + n.ln(1/\mathbf{V})$$

This equation is similar to the linear equation. Y = b + n.X

Where
$$X = ln(1/V)$$
, $Y = ln(P)$ and $b = ln(c)$

A = sum(ln(1/V))	B = sum(ln(P))	$C = sum(ln^2(1/V))$	D = sum(ln(1/V)*ln(P))	
-26.92950843	20.25429564	121.9758294	-89.34905996	

a) n and c are mentioned in the table

n	b = Ii	n(c) c	
1.40370940	9.6759	16646 15929.3	3189

b) The Equation becomes:

$$ln(P) = ln(c) + n \cdot ln(1/V)$$

c) **24.819** units

4)

A = 8	sum(xi)	$B = sum(xi^2)$	C = sum(yi)	$D = sum(xi^3)$	E = sum(yi*xi)	$F = sum(xi^4)$	$G = sum(xi^2*yi)$
2	21	91	59.1	441	266.9	2275	1367.5

All the calculations are attached in the excel sheet attached. As we can see this curve completely covers all the points.

$$\mathbf{Y} = 2.50952 - 1.2\mathbf{X} + 0.7333333\mathbf{X}^2$$

$$\begin{bmatrix} n & A & B \\ A & B & D \\ B & D & F \end{bmatrix} \begin{bmatrix} w0 \\ w1 \\ w2 \end{bmatrix} = \begin{bmatrix} C \\ E \\ G \end{bmatrix}$$

Plugging all the values and solving for w0, w1 and w2.

w0	w1	w2
2.50952	-1.2	0.733333

