Machine extraction

Simon Thompson

Göteborg, August 2011

1 Overview

- Formalise process of traces to QSM state machine
- Formalise processes from QSM state machine to QuickCheck FSM.

2 Traces to QSM state machine

2.1 Basic QSM

Definition of concrete traces:

```
item ::= {module, function, arguments, result}
trace ::= {pos, item*} | {neg, item*}
```

If T is a set of traces then t is a positive trace if $\{pos, t\} \in T$; similarly for negative traces.

An abstraction function is a function

```
\alpha :: {module, function, arguments, result} -> \mathcal{A}
```

for some type A.. The abstract traces are given by {pos, map(abs,t)} and {neq, map(abs,t)}.

A set T of traces is *consistent* iff for all $\{neg, t\} \in T$ and for all $\{pos, t'\} \in T$, t is not an initial segment of t'.

The QSM algorithm builds a deterministic state machine from a consistent set of traces. The construction fails if applied to an inconsistent set. The machine built, $\mathcal{M}_T = \langle \mathcal{S}, s_0, \mathcal{F}, \mathcal{T} \rangle$, has the form

- S is a non-empty finite set of states,
- $s_0 \in \mathcal{S}$ is the initial state of the system,
- $\mathcal{F} \subseteq \mathcal{S}$ is a set of failing states, and
- T is a set of transitions of the form (s_1, a, s_2) where $s_i \in \mathcal{S}$ and $a \in \mathcal{A}$.

For states s_1 and s_{k+1} and a trace $t = a_1 a_2 \dots a_k$ we write $s_1 \xrightarrow{t} s_{k+1}$ if for each $i = 1 \dots k$ there is some a_i so that $(s_i, a_i, s_{i+1}) \in \mathcal{T}$.

We say that the machine \mathcal{M}_T accepts t if $s_0 \xrightarrow{t} s$ with $s \notin \mathcal{F}$; the machine rejects t if $s_0 \xrightarrow{t} s$ with $s \in \mathcal{F}$, or there is no path through the machine \mathcal{M}_T labelled by t. Since the machine is deterministic, each trace will either be accepted or rejected by the machine, but not both.

The crucial property of the machine \mathcal{M}_T is that for all positive traces t in T, \mathcal{M}_T accepts t, and for all negative traces t in T, \mathcal{M}_T rejects t. This is true by construction.

2.2 Abstractions and QSM

We have written \mathcal{M}_T for the machine inferred from a set of traces T, which might be concrete or might arise from an abstraction of a concrete set. In this section we'll work with a fixed set of concrete traces, and use T_{α} for the set of traces after abstraction and \mathcal{M}_{α} for the machine generated from T_{α} .

It would be nice to relate machines produced for related abstractions, e.g. in the case where an abstraction is a composition of two others, with $\alpha = \beta \circ \gamma$. However, even in the case of relating machines for concrete and abstract sets of traces, \mathcal{M}_{id} and \mathcal{M}_{α} , this is not possible in general since the machines generated by the QSM algorithm are not canonical: depending on the order in which states are handled by the algorithm, different machines result.

2.3 SM: state machines

A state machine of type \mathcal{D} has the form $\mathcal{M} = \langle \mathcal{S}, s_0, \mathcal{T}, d_0, \eta, \phi, \psi \rangle$

- S is a non-empty finite set of states,
- $s_0 \in \mathcal{S}$ is the initial state of the system,

- \mathcal{T} is a set of transitions of the form (s_1, a, s_2) where $s_i \in \mathcal{S}$ and $a \in \mathcal{A}$.
- $d_0 \in \mathcal{D}$ is the initial value of the state data,
- η is a partial function

$$\eta:: \{\mathcal{S}, \mathcal{A}, \mathcal{D}\} \to \mathcal{D}$$

taking a state, an action and the value of the state data before the transition to the value after,

• ϕ, ψ are partial functions

$$\phi, \psi :: \{\mathcal{S}, \mathcal{A}, \mathcal{D}\} \to \mathcal{B}$$

where \mathcal{B} is the Boolean type. These are the pre- and post-conditions of the transition from the given state, action and value of the state data.