```
grandfather(X,mary).
X = john1
X = peter
false
 grandparent(X,jay).
X = john1
X = sue
X = peter
X = ida
false
 ancestor(X,estelle).
X = john1
\mathbf{X} = \mathbf{sue}
false
 ancestor(X,john2).
X = estelle
X = george
X = john1
\mathbf{X} = \mathbf{sue}
X = peter
X = ida
false
 __uncle(X,mary).
X = rob
false
 brother(X, mary).
X = john2
X = jay
false
 a_pair_of_brother(X,Y).
X = john2,
Y = jay
X = jay,
Y = john2
false
 mother_in_law(X,Y).
X = sue,
Y = george
X = ida
Y = estelle
false
```

```
%QUESTION 2
city(chicago).
city(toronto).
city(detroit).
city(orlando).
city(vancouver).
city(new york).
american(chicago).
american(detroit).
american(orlando).
american(new york).
canadian(toronto).
canadian (vancouver).
airport(chicago, ohare).
airport(chicago, midway).
airport (toronto, pearson).
airport (toronto, bishop).
airport(detroit, wayne).
airport(detroit, city).
airport(orlando, international).
airport(orlando, sanford).
airport(vancouver, international2).
airport(vancouver, coal_harbour).
airport(new_york, la_guardia).
airport(new_york, jfk).
airport(new_york, newark).
hero(ohare).
hero(ohata).
hero(okubo).
hero(mccarter).
hero(hawkins).
hero(harris).
battle(midway).
battle(stalingrad).
battle(berlin).
battle(iwo_jima).
query(C) :-
   airport(C, A), hero(A),
   airport(C, B), battle(B), A -B, american(C).
```


∰ fib(X	(,0).	\oplus $=$ \otimes
X = 1		
∰ fib(>	(,1).	③ - ⊗
X = 1		
∰ fib(>	(,2).	③ - ⊗
X = 3		
∰ fib(>	(,3).	\oplus = \otimes
X = 5		
∰ fib(>	(,5).	④ = ⊗
X = 8		
∰ fib(>	(,8).	⊕ = ⊗
X = 13		
∰ fib(>	(,13).	\oplus = \otimes
X = 21		
∰ fib(>	(,21).	\oplus = \otimes
X = 34		
∰ fib(>	(,34).	$\oplus = \otimes$
X = 55		
∰ fib(X	(,55).	$\oplus = \otimes$
X = 89		
∰ fib(X	(,89).	\oplus = \otimes
X = 144		
∰ fib(>	K,144).	$\oplus = \otimes$
X = 233		
∰ fib(>	(,233).	$\oplus = \otimes$
X = 377		
∰ fib(>	(,1597).	$\oplus = \otimes$
X = 2584	4	

?- max([1,1000,2,3,4,5], 1000).