New York City Taxi

Yellow Taxis trip

T5 BootCamp Data Science Project

Done by:

Arwa Alolyani

Maitha Alqahtani

Submit to: Mr.Ali El-kassas

Contents

Abstract

New York City has a huge population that moves from place to place, which means taxi rides are a major part of the traffic. Almost half of the people of New York rely on public transportation, and it is estimated that 54 percent don't own a car or personal vehicle. As a matter of fact, 200 million taxi trips are made annually. The amount of taxi we will need to pay will only be known after we arrive at our destination, and our awkwardness makes us curious about how we can predict this amount, and an accurate estimation will help us control our budget.

Project goal

Data

01

New York City Taxi and Limousine Commission (TLC)

- Pick-up and Drop-of times
- Pick-up and drop-o locations
- Journey distances
- Detailed fares
- Fares types
- Payment types
- Number of passengers

02

NYC Taxi Zones data from NYC OpenData

- shape area
- shape length
- location id
- zone
- borough
- geometry

03

Central Park weather data from the National Climatic Data Center.

- STATION
- NAME
- DATE
- AWND
- PRCP
- SNOW
- SNWD
- TMAX
- TMIN

1 Download and read data

Choosing 1,000,000 as a random sample Divide the data into 3 sections: Training, Verification and Test

f_samp	le= df.	sample(n = 100000	0)						
df_sample									
	VendorID	tpep_pickup_datetime	tpep_dropoff_datetime	passenger_count	trip_distance	RatecodeID	store_and_fwd_flag	PULocationID	DOLocation
3300732	2.0	2020-01-17 16:38:50	2020-01-17 16:46:36	2.0	1.08	1.0	N	230	16
1247601	2.0	2020-01-08 07:25:57	2020-01-08 07:42:03	1.0	2.84	1.0	N	186	12
2157529	2.0	2020-01-12 09:37:04	2020-01-12 09:45:56	1.0	1.48	1.0	N	230	24
3255624	2.0	2020-01-17 12:30:27	2020-01-17 12:43:02	1.0	1.72	1.0	N	48	14
4768513	1.0	2020-01-24 19:16:02	2020-01-24 19:29:52	1.0	2.00	1.0	N	211	18
445670	2.0	2020-01-03 17:24:24	2020-01-03 17:34:03	1.0	1.06	1.0	N	186	24
4549219	2.0	2020-01-23 20:11:39	2020-01-23 20:15:11	5.0	1.00	1.0	N	230	4
1552365	1.0	2020-01-09 15:15:40	2020-01-09 15:18:14	1.0	0.40	1.0	N	246	24
587533	1.0	2020-01-04 14:46:27	2020-01-04 14:50:28	3.0	0.70	1.0	N	90	10
4715955	1.0	2020-01-24 15:37:40	2020-01-24 15:50:07	1.0	1.70	1.0	N	236	14

2

Quick Look at the Data Structure

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000000 entries, 3300732 to 4715955
Data columns (total 18 columns):

-	#	Column	Non Null Count	Dtype			
+	+	Cotulin	Non-Null Count	Dtype			
	 ð	VendorID	989893 non-null	float64			
	1	tpep_pickup_datetime	1000000 non-null	object			
	2	tpep_dropoff_datetime	1000000 non-null	object			
3	3	passenger_count	989893 non-null	float64			
4	4	trip_distance	1000000 non-null	float64			
	5	RatecodeID	989893 non-null	float64			
6	5	store_and_fwd_flag	989893 non-null	object			
7	7	PULocationID	1000000 non-null	int64			
8	3	DOLocationID	1000000 non-null	int64			
ç	9	payment_type	989893 non-null	float64			
1	10	fare_amount	1000000 non-null	float64			
	11	extra	1000000 non-null	float64			
:	12	mta_tax	1000000 non-null	float64			
:	13	tip_amount	1000000 non-null	float64			
:	14	tolls_amount	1000000 non-null	float64			
:	15	<pre>improvement_surcharge</pre>	1000000 non-null	float64			
:	16	total_amount	1000000 non-null	float64			
1	17	congestion_surcharge	1000000 non-null	float64			
dtypes: float64(13), int64(2), object(3)							
memory usage: 145.0+ MB							

		VendorID	passenger_count	trip_distance	RatecodeID	PULocationID	DOLocationID	payment_type	fare_amount	extra	
	count	587683.000000	587683.000000	587683.000000	587683.000000	587683.000000	587683.000000	587683.00000	587683.000000	587683.000000	5
	mean	1.669722	1.514221	2.821691	1.046430	164.294567	162.137365	1.26953	12.283715	1.104000	
	std	0.470314	1.149875	3.642314	0.655004	65.158177	69.441014	0.47296	10.883605	1.258006	
	min	1.000000	0.000000	0.000000	1.000000	1.000000	1.000000	1.00000	-175.000000	-27.000000	
	25%	1.000000	1.000000	0.960000	1.000000	132.000000	113.000000	1.00000	6.500000	0.000000	
	50%	2.000000	1.000000	1.600000	1.000000	162.000000	162.000000	1.00000	9.000000	0.500000	
	75%	2.000000	2.000000	2.880000	1.000000	233.000000	234.000000	2.00000	13.500000	2.500000	
	max	2.000000	6.000000	60.410000	99.000000	263.000000	263.000000	4.00000	730.000000	87.560000	

8 rows × 23 columns

Prepare the Data for Machine Learning Algorithms

Deleted null values

Deleted all values with less than 0 passengers

Deleted all values less than 2.5 in the fare amount

Deleted all points outside of New York

Deleted all values less than 0 in the distances

4 Feature Engineering

Extract longitude and latitude from geometry columns using geopandas

Calculation of actual distance by latitude and longitude

Change date columns type to date type

Extract the day, hour and time from the date columns

Merging weather data for New York on January 1, 2020

5 Models

Looking for Correlations

Create linear regression model for predict fare amount

Training and Evaluating on the Training Set

Evaluate the Test Set

Visualizations and Results

Histogram of Fare Amount

Histogram of Distance

Distances Histogram difference

Scatter Plot distance vs Fare amount

Fare amount for trips in every hour

the most visited Area

The most requested day for trips

Number of pickups for every Days of the week

number of trips per hour

most payment method used

number of pickups for every type of passenger count

Correlations

Thanks..

