

Distributing Candies

Aunty Khong đang chuẩn bị n hộp kẹo cho các sinh viên đến từ một ngôi trường gần nhà. Các hộp được đánh số từ 0 đến n-1 và ban đầu các hộp đều rỗng. Hộp i ($0 \le i \le n-1$) có sức chứa c[i] cái kẹo.

Aunty Khong dành q ngày để chuẩn bị các hộp kẹo này. Vào ngày j ($0 \le j \le q-1$), cô thực hiện một thao tác được đặc trưng bởi ba số nguyên l[j], r[j] và v[j] với $0 \le l[j] \le r[j] \le n-1$ và $v[j] \ne 0$. Với mỗi hộp kẹo k thỏa mãn $l[j] \le k \le r[j]$:

- Nếu v[j]>0, Aunty Khong sẽ thêm lần lượt từng cái kẹo vào hộp k, cho đến khi thêm đúng v[j] cái kẹo hoặc khi hộp đã đầy. Có nghĩa là, nếu hộp đang có p cái kẹo trước khi cô thực hiện thêm kẹo, thì số kẹo trong hộp sẽ là $\min(c[k], p+v[j])$ sau khi thực hiện xong.
- Nếu v[j] < 0, Aunty Khong sẽ lấy lần lượt từng cái kẹo ra khỏi hộp k, cho đến khi lấy ra đúng -v[j] cái kẹo hoặc khi hộp đã rỗng. Có nghĩa là, nếu hộp đang có p cái kẹo trước khi cô thực hiện lấy kẹo ra, thì số kẹo trong hộp sẽ là $\max(0, p + v[j])$ sau khi thực hiện xong.

Nhiệm vụ của bạn là xác định số kẹo có trong mỗi hộp sau q ngày.

Chi tiết cài đặt

Ban cần cài đặt hàm sau:

```
int[] distribute_candies(int[] c, int[] l, int[] r, int[] v)
```

- c: một mảng độ dài n. Với $0 \le i \le n-1$, c[i] là sức chứa của hộp i.
- $l,\ r$ và v: ba mảng độ dài q. Vào ngày j, với $0 \le j \le q-1$, Aunty Khong thực hiện một thao tác được đặc trưng bởi các số nguyên $l[j],\ r[j]$ và v[j], như mô tả phía trên.
- Hàm này cần trả về một mảng độ dài n. Kí hiệu mảng này bởi s. Với $0 \le i \le n-1$, s[i] là số keo có trong hộp i sau q ngày.

Các ví dụ

Ví du 1

Xét lời gọi hàm sau:

```
distribute_candies([10, 15, 13], [0, 0], [2, 1], [20, -11])
```

Có nghĩa là hộp 0 có sức chứa 10 cái kẹo, hộp 1 có sức chứa 15 cái kẹo, và hộp 2 có sức chứa 13 cái keo.

Kết thúc ngày 0, hộp 0 có $\min(c[0], 0+v[0])=10$ cái kẹo, hộp 1 có $\min(c[1], 0+v[0])=15$ cái kẹo và hộp 2 có $\min(c[2], 0+v[0])=13$ cái kẹo.

Kết thúc ngày 1, hộp 0 có $\max(0,10+v[1])=0$ cái kẹo, hộp 1 có $\max(0,15+v[1])=4$ cái kẹo. Vì 2>r[1], không có sự thay đổi về số lượng kẹo trong hộp 2. Số lượng kẹo khi kết thúc mỗi ngày được tổng kết như sau:

Ngày	Hộp 0	Hộp 1	Hộp 2
0	10	15	13
1	0	4	13

Do đó, hàm trả về [0,4,13].

Các ràng buộc

- $1 \le n \le 200\,000$
- $1 \le q \le 200\,000$
- $1 \leq \overset{ ext{-}}{c}[i] \leq 10^9$ (với mọi $0 \leq i \leq n-1$)
- $0 \leq l[j] \leq r[j] \leq n-1$ (với mọi $0 \leq j \leq q-1$)
- ullet $-10^9 \le v[j] \le 10^9, v[j]
 eq 0$ (với mọi $0 \le j \le q-1$)

Các subtask

- 1. (3 điểm) $n,q \leq 2000$
- 2. (8 điểm) v[j]>0 (với mọi $0\leq j\leq q-1$)
- 3. (27 điểm) $c[0] = c[1] = \ldots = c[n-1]$
- 4. (29 điểm) l[j]=0 và r[j]=n-1 (với mọi $0\leq j\leq q-1$)
- 5. (33 điểm) Không có ràng buộc nào thêm.

Trình chấm mẫu

Trình chấm mẫu đọc dữ liệu vào theo định dạng như sau:

- dòng 1: n
- dòng 2: c[0] c[1] \dots c[n-1]
- dòng 3: q
- dòng 4+j ($0 \leq j \leq q-1$): $l[j] \; r[j] \; v[j]$

Trình chấm mẫu in câu trả lời của bạn theo định dạng như sau:

• dòng 1: s[0] s[1] \dots s[n-1]