MAD471 - Lista de Exercícios

Parte 1

01. Uma fonte de alimentação de alta tensão deve ter uma tensão de saída nominal de 350 V. Uma amostra de quatro unidades é selecionada a cada dia e testada para fins de controle de processo. Os dados mostrados na abaixo dão o diferenciamento entre a leitura observada em cada unidade e os tempos da tensão nominal multiplicado por 10, isto é, x_i = (voltagem observada na unidade i -350) \times 10

Amostra	x_1	x_2	x_3	x_4
1	6	9	10	15
2	10	4	6	11
3	7	8	10	5
4	8	9	6	13
5	9	10	7	13
6	12	11	10	10
7	16	10	8	9
8	7	5	10	4
9	9	7	8	12
10	15	16	10	13
11	8	12	14	16
12	6	13	9	11
13	16	9	13	15
14	7	13	10	12
15	11	7	10	16
16	15	10	11	14
17	9	8	12	10
18	15	7	10	11
19	8	6	9	12
20	13	14	11	15

- (a) Construa os gráficos de controle de \bar{X} e R de Shewart. O processo está em controle?
- (b) Determine o número esperado de amostras até um alarme falso (NMAF) com base na letra (a).
- (c) Para $\alpha = 0,0015$ predeterminado, quais serão os limites de controle? Qual o novo NMAF?
- (d) Calcule os poderes do gráfico de \bar{X} , Pd, para um deslocamento de 1,3 desvios-padrão da média em controle e o número médio de amostras até um sinal (NMA) com base nas letras (a) e (c).
- (e) Construa o gráfico de controle de S com os limites "de 3-sigma" e com o α predeterminado dado em (c).
- 02. Os dados da tabela a seguir correspondem a um mês de amostras, cada uma com n=6, de um processo de produção de anéis de vedação. As medidas correspondem aos últimos três dígitos. Por exemplo, $\bar{X}=297$ significa 1, 4297cm, e R=16 significa 0, 0016cm.

Amostra	\bar{X}	R	Amostra	\bar{X}	R
1	259	16	12	262	11
2	270	21	13	266	32
3	249	17	14	247	19
4	250	31	15	269	24
5	273	23	16	270	27
6	265	37	17	255	37
7	260	27	18	256	30
8	248	24	19	259	22
9	251	27	20	261	27
10	252	26	21	260	35
11	259	28	22	270	25

Foram calculados \bar{R} e $\bar{\bar{X}}$, obtendo-se $\bar{R}=25,73$ e $\bar{\bar{X}}=259,59$

- (a) Calcule os limites de controle para os gráficos de \bar{X} e R que você passará a usar para monitorar o processo.
- (b) É retirada uma amostra por dia. Suponha que ocorra alteração da média do processo para 1,4268cm. Qual a probabilidade de que se passem quatro dias seguidos sem que o gráfico sinalize essa alteração ocorrido? (Suponha que o desvio padrão não se altere; apenas a média.)
- (c) Para melhorar o desempenho dos gráficos, o supervisor decidiu que, daqui para a frente, as amostras passarão a ser de 12 unidades. Quais devem ser os novos limites para os gráficos?
- (d) Algumas pessoas criticam a decisão do supervisor, dizendo que seria melhor manter as amostras de 6 unidades cada uma, passando porém a retirar 2 amostras por dia, em vez de apenas uma. Qual das duas alternativas (uma amostra de 12 unidades por dia, ou 2 amostras de 6 unidades por dia) leva ao menor tempo médio de detecção (TES), pelo gráfico de \bar{X} , de eventuais alterações da média do processo para 1,4268 cm?
- 03. Amostras de tamanho n=5 são coletadas do processo de um processo a cada meia hora. Depois de 50 amostras coletadas, calculo-se $\bar{x}=20,0$ e $\bar{S}=1,5$. Assuma que o processo estava em controle na coleta dessas amostras e que a característica de interesse seja normalmente distribuída.
 - (a) Estime o desvio-padrão do processo.
 - (b) Encontre os limites de controle para os gráficos de \bar{X} e S.
 - (c) Se a média do processo muda para 22, qual é a probabilidade de concluir que o processo ainda está no controle?
- 04. Determine o número médio de amostras até o sinal os seguintes casos:

Caso	Gráficos em uso	n	δ	λ	$\alpha_{\bar{X}}$	α_R	α_S
A	$ar{X}$	4	0.75	1	$0,\!2\%$		
В	\bar{X}	5	0.75	2	0,2%		
С	\bar{X} e R	5	0.75	2	0,1%	0,1%	
D	$\bar{X} \in S^2$	4	0.75	2	0,1%		0,1%

0.5 Em um processo metalúrgico, deseja-se avaliar a capacidade de medição de um durômetro para monitorar a dureza do material fabricado. Para isso, dez peças extraídas do processo e representativas da variabilidade dos resultados são medidas três vezes por um mesmo operador. Os dados são apresentados na tabela a seguir. Estime a variância devida ao instrumento de medição e a variância devida ao processo. Calcule qual porcentagem da variabilidade total dos dados é devida ao instrumento.

Peça	Medidas				
1 030	1	2	3		
1	227	225	210		
2	235	237	240		
3	281	302	294		
4	306	282	292		
5	219	244	232		
6	302	285	287		
7	299	302	282		
8	265	280	260		
9	301	300	275		
10	255	235	242		

0.6 Para analisar a capacidade de um instrumento de medida, 25 peças foram medidas por dois operadores; cada peça foi medida três vezes por operador. Obtiveram-se os seguintes resultados:

	Operador 1	Operador 2
$\bar{\bar{x}}$	35,014	34,993
\bar{R}	0,19	0,17

- (a) Estime a repetitividade e a reprodutibilidade desse método/instrumento de medida (isto é, os desviospadrão associados a cada uma dessas propriedades). E qual é o desvio-padrão do erro de medição?
- (b) O desvio-padrão total dos dados foi calculado, e é igual a 0,47. A capacidade do sistema de medição é adequada em relação à variabilidade dos dados? Justifique.
- (c) As especificações para a dimensão da peça são 35 ± 6 . A capacidade do sistema de medição é adequado em relação às especificações? Justifique.
- 07. Trinta observações do peso de um produto são mostradas na tabela abaixo.

Camada	Peso	Camada	Peso	Camada	Peso
1	42,1	11	50,6	21	57,3
2	45,3	12	46,5	22	47,7
3	46,2	13	43,6	23	49,7
4	40,7	14	46,5	24	52,7
5	47,6	15	41,8	25	43,9
6	51,9	16	55,1	26	44,7
7	42,2	17	47,7	27	52,6
8	49,5	18	37,9	28	46,7
9	42,0	19	43,8	29	44,6
10	43,0	20	$42,\!4$	30	50,1

- a. Use esses dados para construir um gráfico das observações individuais e um gráfico de amplitude móvel. O processo exibe controle estatístico?
- b. Estime a média e o desvio-padrão do processo.
- c. Quais hipóteses foram necessárias para construir os gráficos do item a?
- 08. Os dados da tabela abaixo representam observações individuais do peso molecular tomadas de hora em hora de um processo químico. O valor-alvo do peso molecular é de 1050 e o desvio padrão do processo é 25.

Obs.	x	Obs.	x
1	1045	11	1139
2	1055	12	1169
3	1037	13	1151
4	1064	14	1128
5	1095	15	1238
6	1008	16	1125
7	1050	17	1163
8	1087	18	1188
9	1125	19	1146
10	1146	20	1167

- a. Construa o gráfico de controle CUSUM.
- b. Estime quando o processo alterou a média, construa o algoritmo CUSUM para detectar um deslocamento de $1,0\sigma$ da média.
- c. Estime o desvio da média.

09. Uma característica de qualidade de um processo, com $\mu_0=20,0$ e $\sigma_0=1,0$, começará a ser controlada pelo esquema EWMA, com $\lambda=0,2$ e k=2,8. As observações são individuais. As 15 primeiras observações estão na tabela a seguir.

Observação	X	Observação	Х	Observação	Х
1	18,7	6	20,8	11	18,6
2	20,0	7	18,4	12	17,4
3	21,0	8	19,4	13	18,2
4	21,6	9	16,6	14	17,5
5	18,1	10	19,1	15	19,0

- a. Calcule os valores para a estatística EWMA, bem como os limites de controle.
- b. Há sinal de descontrole? (Se houver, pode parar os cálculos assim que o encontrar.)
- 10. Uma máquina é usada para encher latas com aditivo de óleo de motor. Uma única lata de amostra é selecionada a cada hora, e o peso da lata é obtido. Como o processo de enchimento é automatizado, ele tem uma variabilidade muito estável e a longa experiência indica que s=0,05 onças. As observações individuais para 24 horas de operação são apresentadas na tabela a abaixo.

i	X_i	i	X_i
1	8,00	13	8,05
2	8,01	14	8,04
3	8,02	15	8,03
4	8,01	16	8,05
5	8,00	17	8,06
6	8,01	18	8,04
7	8,06	19	8,05
8	8,07	20	8,06
9	8,01	21	8,04
10	8,04	22	8,02
11	8,02	23	8,03
12	8,01	24	8,05

- a. Supondo que o destino do processo seja 8,02 onças, configure um algoritmo de CUSUM para este processo. Projete o CUSUM usando os valores padronizados h=4,77 e $k=\frac{1}{2}$.
- b. O valor de $\sigma = 0,05$ parece razoável para este processo?
- 11 A tabela abaixo exibe um experimento de sistemas de medição envolvendo 10 partes, três operadores e duas medições por peça.

	Med	lidas	Me	Medidas		edidas
Parte	1	2	1	2	1	2
1	21	20	20	20	19	21
2	24	23	24	24	23	24
3	20	21	19	21	20	22
4	27	27	28	26	27	28
5	19	18	19	18	18	21
6	23	21	24	21	23	22
7	22	21	22	24	22	20
8	19	17	18	20	19	18
9	24	23	25	23	24	24
10	25	23	26	25	24	25

Determine se o sistema de medição é adequado.

12 As concentrações (em ppm) de um processo químico são medidas de hora em hora. As últimas 12 horas são apresentadas na tabela a seguir:

Amostra	Concentração	Amostra	Concentração
1	160	7	158
2	158	8	162
3	150	9	186
4	151	10	195
5	153	11	179
6	154	12	184

- (a) Estime o valor do desvio padrão, σ , do processo. Justifique a escolha do estimador de σ .
- (b) Determine, através do algoritmo das somas acumuladas, se a média do processo está em controle. Estime quando o processo saiu do controle e o deslocamento sofrido pela média ($\mu_0 = 175, \mu_1 = \mu_0 + \sigma_0$).
- 13. A Tabela abaixo apresenta dados sobre o tempo de ciclo (em horas) para processar pedidos de pequenos empréstimos.

16,3	16,3	19.3	15,1	22,2
19,1	18,5	18,3	18,7	20,2
22,0	14,7	18,0	18,9	19,1
10,6	18,1	19,6	20,8	16,5
19,3	14,6	17,8	15,6	22,5
17,6	17,2	20,9	14,8	18,2
16,4	18,2	19,4	14,1	16,4
19,6	17,5	17,1	21,7	20,8

Faça o gráfico CUSUM e o EWMA com $\lambda = 0.1$. O processo está em controle?

14. O volume de enchimento das garrafas de refrigerantes é uma característica de qualidade importante. O volume é medido (aproximadamente) colocando um medidor sobre a coroa e comparando a altura do líquido no gargalo da garrafa com uma escala codificada. Nesta escala, uma leitura de zero corresponde à altura de enchimento correta. Quinze amostras de tamanho n=10 foram analisadas e as alturas de preenchimento são apresentadas a seguir.

Amostra	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}
1	2.5	0.5	2.0	-1.0	1.0	-1.0	0.5	1.5	0.5	-1.5
2	0.0	0.0	0.5	1.0	1.5	1.0	-1.0	1.0	1.5	-1.0
3	1.5	1.0	1.0	-1.0	0.0	-1.5	-1.0	-1.0	1.0	-1.0
4	0.0	0.5	-2.0	0.0	-1.0	1.5	-1.5	0.0	-2.0	-1.5
5	0.0	0.0	0.0	-0.5	0.5	1.0	-0.5	-0.5	0.0	0.0
6	1.0	-0.5	0.0	0.0	0.0	0.5	-1.0	1.0	-2.0	1.0
7	1.0	-1.0	-1.0	-1.0	0.0	1.5	0.0	1.0	0.0	0.0
8	0.0	-1.5	-0.5	1.5	0.0	0.0	0.0	-1.0	0.5	-0.5
9	-2.0	-1.5	1.5	1.5	0.0	0.0	0.5	1.0	0.0	1.0
10	-0.5	3.5	0.0	-1.0	-1.5	-1.5	-1.0	-1.0	1.0	0.5
11	0.0	1.5	0.0	0.0	2.0	-1.5	0.5	-0.5	2.0	-1.0
12	0.0	-2.0	-0.5	0.0	-0.5	2.0	1.5	0.0	0.5	-1.0
13	-1.0	-0.5	-0.5	-1.0	0.0	0.5	0.5	-1.5	-1.0	-1.0
14	0.5	1.0	-1.0	-0.5	-2.0	-1.0	-1.5	0.0	1.5	1.5
15	1.0	0.0	1.5	1.5	1.0	-1.0	0.0	1.0	-2.0	-1.5

- a. Faça os gráficos de controle de \bar{X} e R.
- b. Faça o gráfico de S e compare com o gráfico de R.

- c. Faça o gráfico de S^2 e compare com o gráfico de S.
- 15. O peso de um produto tem distribuição normal com média 250,00 gramas e desvio-padrão 4,00 gramas.
 - (a) gere o peso de unidades do produto e suponha que cada observação foi obtida a cada 3 minutos;
 - (b) correlacione os pesos através da seguinte expressão recursiva: $Y_1 = X_1$; $Y_i = 0, 5X_{i-1} + 0, 5X_i$ e $i = 2, 3, 4, 5, \ldots$;
 - (c) para controlar o processo por meio de gráficos de observações individuais e de amplitude móvel, determine o intervalo de tempo mínimo necessário entre observações de Y; e
 - (d) construa gráficos de observações individuais Y e de amplitude móvel.
- 16. Analise em termos do TES, da frequência de alarmes falsos e da taxa de amostragem, qual a melhor opção (explique por que) (suponha $\delta = 0,75$):

Opção a: gráfico \bar{X} com n=3, h=30 minutos e k=3,20.

Opção b: gráfico \bar{X} com n=6, h=60 minutos e k=3,00.

17. Acaba de ser instalado um novo forno industrial na Padaria Piatt. Para desenvolver experiência em relação à temperatura do forno, um inspetor faz a leitura da temperatura em quatro locais diferentes dentro do forno a cada meia hora. A primeira leitura, feita às 8:00 AM, era de 340 graus Fahrenheit. (Apenas os dois últimos dígitos são fornecidos na tabela a seguir para tornar os cálculos mais fáceis.)

	Leitura			
Hora	1	2	3	4
8:00 A.M.	40	50	55	39
8:30 A.M.	44	42	38	38
9:00 A.M.	41	45	47	43
9:30 A.M.	39	39	41	41
10:00 A.M.	37	42	46	41
10:30 A.M.	39	40	39	40

Com base nessa experiência inicial, determine os limites de controle para a temperatura média. Interprete o gráfico. Parece que chega um momento em que a temperatura está fora de controle?

- 18. Determine o menor valor de n e o LSC para um gráfico de S^2 que tenha risco α de 0, 3% e risco β máximo de 72% para um desvio-padrão de 3, 03. Em condições de controle, o desvio-padrão é igual a 2, 00.
- 19. Para um gráfico de controle de \bar{X} com n=4 e as seguintes regras de controle: (i) um ponto além dos limites de 3 desvios-padrão amostrais; (ii) dois de três pontos consecutivos além dos limites de 2, 2 desvios-padrão amostrais, determine:
 - (a) a frequência de alarmes falsos;
 - (b) o NMA para um deslocamento da média de 0.75 desvios-padrão.
- 20. Os gráficos de controle em \bar{X} e R para amostras de tamanho n=5 devem ser mantidos na resistência à tração em libras de um fio. Para iniciar os gráficos, 30 amostras foram selecionadas, e a média e o intervalo de cada uma foram calculados. Isso produz

$$\sum_{i=1}^{30} \bar{x}_i = 607, 8 \text{ e } \sum_{i=1}^{30} R_i = 144$$

- (a) Calcule os limites de controle.
- (b) Suponha que ambos os gráficos exibam controle. Existe um único limite inferior de especificação de 16lb. Se a resistência for normalmente distribuída, que fração do fio deixaria de atender às especificações?

6

Parte 2

01. Amostras de tamanho 6 são regularmente retiradas de uma linha de produção em intervalos de tempo regulares. Para cada amostra, são calculados os valores das estatísticas \bar{X} e S. Após 30 amostras analisadas, obteve-se:

$$\sum_{i=1}^{30} \bar{X}_i = 600 \qquad \sum_{i=1}^{30} S_i = 71, 4$$

- a) Se os limites de especificação são estabelecidos a $18 \pm 7, 5$, qual a porcentagem esperada de itens não conformes? Obtenha e interprete os valores de Cp e Cpm. Qual deles é mais confiável? Por quê?
- b) Em que ponto deve-se ajustar a média do processo para que se tenha um mínimo de itens não conformes? (Suponha que o desvio-padrão permaneça inalterado.)
- c) De quanto se deve reduzir a variabilidade do processo para que mais de 99% dos itens atendam às especificações? (Suponha que a média do processo não pode ser alterada.)
- 02. Para n=4, os limites de um gráfico de \bar{X} são: LIC=96,16 e LSC=107,84. X tem distribuição normal com desvio-padrão 4,00. As especificações de X são: LIE=91,00, LSE=115,00. Com o processo ajustado, determine o risco α , a PFE e o Cpm. Com o processo desajustado (amédia do processo desloca-se para 104,00), determine o risco β , a PFE e o Cpm.
- 03. Os dados da tabela abaixo representam os resultados da inspeção de todas as unidades de um computador pessoal produzidas nos últimos dez dias. O processo está em controle?

Dia	Unidades inspecionadas	Unidades não conformes	Fração não conforme
1	80	4	0,050
2	110	7	0,064
3	90	5	$0,\!056$
4	75	8	$0,\!107$
5	130	6	0,046
6	120	6	0,050
7	70	4	0,057
8	125	5	0,040
9	105	8	$0,\!076$
10	95	7	0,074

- 04. Considere o gráfico de controle de C ($u_0 = 0,08$). Determine o tamanho mínimo da amostra n e o limite superior de controle de tal sorte que, se a frequência de defeitos passar para $u_1 = 0,225$, o risco β seja inferior a 46%. (Adote LIC = 0,00 e risco α de 0,6%).
- 05 Do ponto de vista do consumidor, qual dos dois planos de amostragem a seguir é melhor? Por que?

Plano (1):
$$n = 200$$
; $Ac = 4$; $NQI = 3,00$

Plano (2):
$$n = 300$$
; $Ac = 5$; $NQI = 3,00$

- 06 Um produto é apresentado para a inspeção de recebimento em lotes de 1.000 peças. A inspeção é realizada de acordo com a norma NBR 5426, por amostragem simples, inspeção normal, com NQA = 1%.
 - a) Escolha o plano adequado para essa inspeção.
 - b) Qual é a probabilidade de aceitação de um lote se o processo produz 1,38% de peças defeituosas?
 - c) Qual a qualidade limite (observação: QL = NQI) para um risco do consumidor de 5%?
 - d) Do ponto de vista do consumidor, é mais interessante o plano de amostragem sem inspeção retificadora, com a fração defeituosa do processo produtivo igual a 1,38% (Caso A), ou com inspeção retificadora, porém com fração defeituosa do processo igual a 3,33% (Caso B)?
 - e) Qual o tamanho médio da amostra caso a fração defeituosa do processo seja igual a 2,00% e se adote o plano de amostragem duplo (lote de 1.000 peças e NQA=1%) em substituição ao plano de amostragem simples?

7