

Propósito

Compreender os conceitos de probabilidade, proporcionando desde a resolução de problemas simples até o embasamento teórico para realizações de inferências estatísticas sobre determinada população.

Preparação

Antes de iniciar o conteúdo deste tema, tenha em mãos uma calculadora científica ou use a de seu smartphone/computador.

Objetivos

- Definir os conceitos básicos de probabilidade.
- Aplicar cálculos para resolução de problemas simples de probabilidade.
- Reconhecer as principais regras da teoria das probabilidades.
- Identificar eventos condicionais com base na resolução de problemas associados a eles.

Introdução

Bem-vindo ao estudo das probabilidades

No vídeo a seguir, apresentamos alguns detalhes sobre o que será abordado no tema. Assista:

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Introdução

Neste módulo, abordaremos os fundamentos necessários para que possamos definir e compreender o conceito de probabilidade. Iniciaremos com a definição de experimentos aleatórios, passando pelas definições de espaço amostral, evento, eventos mutuamente exclusivos e partição de espaço amostral, até chegarmos à definição de probabilidade.

A partir desses conceitos fundamentais, veremos duas definições de probabilidade:

- Relacionada ao conceito de frequência relativa.
- Embasada nos axiomas básicos de probabilidade.

Experimentos aleatórios

São experimentos que, mesmo repetidos sob as mesmas condições, podem apresentar diferentes resultados.

Exemplo

1. Lançamento de uma moeda. 2. Lançamento de dois dados. 3. Medição do comprimento de uma peça em um lote de produção. 4. Medição da temperatura em determinado lugar e horário.

Espaço amostral (S)

É o conjunto dos possíveis resultados de um experimento aleatório.

Considerando os exemplos listados anteriormente, temos:

Lançamento de uma moeda

a) $S = \{(c, c), (c, k), (k, c), (k, k)\}$, em que c representa cara, e k representa coroa.

Lançamento de dois dados

$$\mathbf{b}) \ S = \left\{ \begin{array}{l} (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), \\ (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), \\ (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) \end{array} \right\}$$

Medição do comprimento de uma peça em um lote de produção

c)
$$S = \{R^+\}$$

Medição da temperatura em determinado lugar e horário

d)
$$S = \{R\}$$

Evento

Vejamos algumas definições:

- É um subconjunto do espaço amostral.
- Seja S o espaço amostral de um experimento. Todo subconjunto $A \subseteq S$ chamado evento. Nesse caso, S é denotado como o evento certo, e \emptyset como o evento impossivel.

Exemplos:

- I. Considere o experimento de dois lançamentos de uma moeda:
- a) Seja o evento A₁: "o primeiro resultado é cara".

$$A_1: \{(c,c),(c,k)\}$$

II. Considere o experimento do lançamento de dois dados:

a)
$$A_2:\{(x,y)\mid x=\sqrt{y}\}\Rightarrow A_2=\{(1,1),(2,4)\}$$
 b) A_3 "a soma dos resultados é 7 ". $A_3=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$

Operações com eventos

Consideremos o espaço amostral s finito. Sejam A e B dois eventos de s. Assim, usando operações com esses eventos, podemos formar novos eventos, tais como:

I. $A \cup B$ II. $A \cap B$ III. A^C ou \bar{A} , representa o complemento do evento A .

Propriedades das operações

A seguir, conheça as propriedades das operações:

Idempotentes

$$A \cup A = A \in A \cap A = A$$

Comutativa

$$A \cap B = B \cap A \in A \cup B = B \cup A$$

Associativa

$$A \cap (B \cap C) = (A \cap B) \cap C \in A \cup (B \cup C) = (A \cup B) \cup C$$

Distributiva

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 e $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Leis de Morgan

$$(A \cup B)^C = A^C \cap B^C e(A \cap B)^C = A^C \cup B^C$$

Fique atento! Dizemos que dois eventos, digamos $A \in B$, serão **eventos mutuamente excludentes** se eles não puderem ocorrer simultaneamente, ou seja, $A \cap B = \emptyset$

Partição de um espaço amostral

Dizemos que os eventos A_1, A_2, \ldots, A_n formam uma partição do espaço amostral, se:

I.
$$A_i \neq \emptyset, i = 1, 2, \dots, n$$
 II. $A_i \cap A_j = \emptyset, \forall i \neq j$ III. $\bigcup_{i=1}^n A_i = S$

A figura, a seguir, mostra a representação de uma partição do espaço amostral:

Probabilidade frequentista

A frequência relativa de um evento qualquer A é definida por:

$$f_A = \frac{\text{número de elementos de } A}{\text{número total de elementos}} = \frac{n_A}{n}$$

Baseado nessa ideia, define-se probabilidade de um evento A como:

$$P(A) = \frac{n(A)}{n(S)} = \frac{\text{nmero de elementos favorá veis ao evento } A}{\text{número de elementos possiveis}}$$

Na qual S é o espaço amostral.

Exemplos:

a) Considere novamente o experimento de dois lançamentos de uma moeda e o evento A_1 : "O primeiro resultado é cara". A probabilidade desse evento A_1 é dada por:

$$P(A_1) = \frac{n(A_1)}{n(S)} = \frac{2}{4} = \frac{1}{2}$$

Afinal, vimos que tínhamos 2 elementos favoráveis ao evento A_1 de 4 possíveis.

b) Considere o experimento do lançamento de dois dados e o evento A_3 : "A soma dos resultados é 7". Dessa forma, a probabilidade desse evento A_3 é dada por:

$$P(A_3) = \frac{n(A_3)}{n(S)} = \frac{6}{36} = \frac{1}{6}$$

Afinal, vimos que tínhamos 6 elementos favoráveis ao evento A_1 de 36 possíveis.

Probabilidade clássica

Considere um experimento aleatório E e um espaço amostral S associado a esse experimento. Define-se probabilidade de um evento A (P(A)) como uma função definida em S que associa a cada evento de S um número real, devendo satisfazer os seguintes axiomas de probabilidade:

- a) $0 \le P(A) \le 1$
- b) P(S) = 1
- c) $P(A \cup B) = P(A) + P(B)$, se A e B forem mutuamente excludentes.

Generalizando o item C, temos:

• Se os A_i 's $(1 \le i \le n)$ são mutuamente excludentes

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P\left(A_{i}\right)$$

Se os A_i 's $(1 \leq i)$ são mutuamente excludentes.

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P\left(A_i\right)$$

Teoremas de probabilidade

Teorema 1

Sejam os A_i 's $(1 \leq i \leq n)$ partições de um espaço amostral:

$$\sum_{i=1}^{n} P(A_i) = 1$$

Prova:

$$\bigcup_{i=1}^n A_i = S \Rightarrow P\left(\bigcup_{i=1}^n A_i\right) = P(S) = 1$$

Teorema 2

Se Ø é o conjunto vazio, então

$$P(\emptyset) = 0$$

Prova: Sabemos que

$$S \cup \emptyset = S \Rightarrow P(S \cup \emptyset) = P(S) + P(\emptyset) = P(S) \Rightarrow P(\emptyset) = 0$$

Teorema 3

Se A^C é o complemento do evento A, logo

$$P(A^C) = 1 - P(A)$$

Prova: Temos que

$$A^C \cup A = S \Rightarrow P\left(A^C\right) + P(A) = P(S) = 1 \Rightarrow P\left(A^C\right) = 1 - P(A)$$

Teorema 4

Se $A\subset B$, então

$$P(A) \le P(B)$$

A Prova: Note que podemos escrever B como:

$$B = A \cup (A^c \cap B)$$

Assim:

$$P(B)=P(A)+P\left(A^{c}\cap B\right)$$
 , pois A e $\begin{tabular}{l} (A^{c}\cap B) \\ \end{tabular}$ são disjuntos.

Como uma probabilidade é sempre maior ou igual a 0 (zero), temos que

$$P(A) \le P(B)$$

Mão na massa

Questão 1

Suponha P(A) = 1/3 e P(B) = 1/2. Se A e B são mutuamente excludentes, determine $P(A \cup B)$:

1/6

1/3

1/2

D
3/4
E
5/6
A alternativa E está correta.
No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:
Conteúdo interativo Acesse a versão digital para assistir ao vídeo.
Questão 2
Sabemos que genótipos de certa característica humana são formados pelos elementos AA, Aa, aA e aa, sendo "AA" o gene dominante e "aa" o gene recessivo. Qual é a probabilidade de um casal, cujo homem é dominante, e a mulher tem gene Aa, ter um filho com gene dominante?
A
1/3
В
1/2
C
2/3
D
3/4
E
5/6
A alternativa B está correta.

Observe que o espaço amostral, que é o conjunto de todos os possíveis resultados, é formado pelos seguintes elementos quando fazemos as combinações dos pares AA e Aa: S = {(AA), (AA), (AA), (AA)}

Assim, considere o evento A: "Ter um filho com gene dominante". Dessa maneira, segundo o conceito de probabilidade frequentista:

$$P(A) = \frac{n(A)}{n(S)} = \frac{2}{4} = \frac{1}{2}$$

Questão 3

Suponha que um casal quer ter 3 filhos: 1 menino e 2 meninas. Qual é a probabilidade de que isso ocorra?

Α

3/8

1/2

5/8

3/4

7/8

A alternativa A está correta.

No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Questão 4

Um número é escolhido aleatoriamente entre os números 1, 2, 3, ..., 100. Qual é a probabilidade de que esse número seja divisível por 7?

Α	

1/4

1/2

3/20

7/50

9/20

A alternativa D está correta.

Já sabemos que nosso espaço amostral é composto por esses 100 números. Portanto, n(S) = 100. Agora, vejamos o evento de interesse.

Seja A: "O número escolhido é divisível por 7", então:

$$n(A) = \{7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98\}$$

Logo

$$P(A) = \frac{n(A)}{n(S)} = \frac{14}{100} = \frac{7}{50}$$

Assim, para cada 50 números escolhidos, 7 são divisíveis por 7.

Questão 5

Considerando o enunciado da questão anterior, qual é a probabilidade de esse número ser primo?

6/25

В

1/4

3/5

3/4

4/5

A alternativa B está correta.

Solução

Seja P: "O número escolhido é primo", logo:

 $n(A) = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 e 97\}$

Então:

$$P(A) = \frac{n(A)}{n(S)} = \frac{25}{100} = \frac{1}{4}$$

Assim, para cada 4 números escolhidos, 1 é número primo.

Questão 6

O estudo antropométrico em uma amostra de 100 funcionários de determinada empresa resultou na seguinte tabela, que relaciona os pesos com as alturas:

	Abaixo de 1,70m	Acima de 1,70m
Abaixo de 80kg	30	15
Acima de 80kg	10	45

Tabela: Estudo antropométrico.

Paulo H. C. Maranhão

Considerando que um funcionário foi escolhido aleatoriamente, qual é a probabilidade de que ele tenha peso abaixo de 80kg e altura abaixo de 1,70m?

Α

1/10

1/5

3/10

4/10

1/2

A alternativa C está correta.

Solução

Seja o evento A: "Ter peso abaixo de 80kg", portanto:

$$P(A) = \frac{n(A)}{n(S)} = \frac{30}{100} = \frac{3}{10}$$

Portanto, a cada 10 funcionários, 3 têm peso abaixo de 80kg.

Teoria na prática

Um professor usa dois dados não viciados para um experimento. Um dos dados tem o formato de um octaedro, com faces numeradas de 2 a 9; o outro, um dado comum, cúbico, possui as faces numeradas de 5 a 10.

Modele um espaço amostral para determinar a probabilidade de, em uma jogada simultânea dos dois dados, se obter:

- 1) O mesmo número nos dois dados.
- 2) A soma das faces igual a 7.

Chave de resposta

No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Verificando o aprendizado

Questão 1

Uma fábrica têxtil produz lotes de 100 camisas. Sabemos que, em geral, cada lote apresenta 5 camisas com defeitos no tamanho, e 7 delas têm defeito no fio. Uma camisa é escolhida ao acaso. Qual é a probabilidade de que ela tenha defeitos?

1/20

7/100

3/25

3/20

8/25

A alternativa C está correta.

Sejam os eventos A: "camisas com defeitos no tamanho" e B: "camisas com defeitos no fio". Observe que não temos camisas com os dois tipos de defeito. Assim, podemos afirmar que os eventos são disjuntos:

$$P(A \cup B) = P(A) + P(B) = \frac{5}{100} + \frac{7}{100} = \frac{12}{100} = \frac{3}{25}$$

Questão 2

Vamos retomar o enunciado de um exercício feito ao longo do conteúdo.

O estudo antropométrico em uma amostra de 100 funcionários de determinada empresa resultou na seguinte tabela, que relaciona os pesos com as alturas:

	Abaixo de 1,70m	Acima de 1,70m
Abaixo de 80kg	30	15
Acima de 80kg	10	45

Tabela: Estudo antropométrico. Paulo H. C. Maranhão

Considerando que um funcionário foi escolhido aleatoriamente, qual é a probabilidade de que ele tenha altura acima de 1,70m?

Α

0,40

В

0,45

С

0,55

D

0,60

Ε

0,65

A alternativa D está correta.

Seja o evento B: "Ter altura acima de 1,70m", então:

$$P(B) = \frac{n(B)}{n(S)} = \frac{60}{100} = 0,60$$

Introdução

No cálculo de probabilidade, há diversas formas de resolver os problemas, que vão desde a utilização de técnicas elementares, conforme vimos no módulo anterior, até o uso de técnicas mais sofisticadas.

Entre as diversas técnicas empregadas para a resolução de problemas simples de probabilidade, podemos citar:

- Princípios de contagem.
- Análise combinatória (combinação, arranjo e permutação).
- Diagrama de árvore.
- Teoria dos conjuntos.

A escolha da técnica correta pode facilitar muito a solução do problema. Portanto, a seguir, faremos uma revisão dos princípios de contagem e de análise combinatória a fim de facilitar a compreensão de algumas questões resolvidas.

Princípios de contagem

Princípio da adição

Se um elemento pode ser escolhido de m formas, e outro elemento pode ser escolhido de n formas, então a escolha de um ou outro elemento se realizará de m + n formas, desde que tais opções sejam independentes, isto é, nenhuma das escolhas de um elemento pode coincidir com a do outro.

Exemplo:

Em uma sala, há 2 homens e 3 mulheres. De quantas formas é possível selecionar uma pessoa?

Solução

2 + 3 = 5 formas

Princípio da multiplicação

Se um elemento H pode ser escolhido de m formas diferentes, e, se depois de cada uma dessas escolhas, outro elemento M pode ser escolhido de n formas diferentes, a escolha do par (H,M), nesta ordem, poderá ser realizada de $m \times n$ formas.

Exemplo:

Em uma sala, há 2 homens e 3 mulheres. De quantas formas é possível selecionar um casal?

Solução

Veja que temos $2 \times 3 = 6$ formas de selecionar um casal, que equivale aos pares (H1,M1), (H1,M2), (H1,M3), (H2,M1), (H2,M2), (H2,M3).

Análise combinatória

Arranjos

São agrupamentos formados com k elementos, de um total de n elementos, de forma que os k elementos sejam distintos entre si, pela ordem ou pela espécie. Os arranjos podem ser **simples** ou **com repetição**.

Arranjos simples

Não ocorre a repetição de qualquer elemento em cada grupo de k elementos. Logo:

$$A(n, k) =$$

Exemplo:

Se A = $\{A_1, A_2, A_3, A_4\}$. Quantos grupos de 2 elementos podem ser formados, de modo que não possam apresentar a repetição de qualquer elemento, mas possam aparecer na ordem trocada?

Solução

$$A(4,2) = \frac{4!}{(4-2)!} = \frac{4x3xx2!}{2!} = 12$$

Arranjos com repetição

Todos os elementos podem aparecer repetidos em cada grupo de k elementos, então:

$$A_r(n, k) = A_{n,k}^r = n^k$$

Exemplo:

Se A = {A1, A2, A3, A4}. Quantos grupos com repetição de 2 elementos podem ser formados, de modo que possam apresentar a repetição de qualquer elemento e aparecer na ordem trocada?

Solução

$$A_2(4,2) = 4^2 = 16$$

Permutações

Quando formamos agrupamentos com n elementos, de forma que sejam distintos entre si pela ordem. As permutações podem ser **simples, com repetição** ou **circulares**.

Permutação simples

 $\acute{\text{E}}$ a ordenação de n elementos distintos. Dessa forma, o número de modos de ordenar n elementos distintos $\acute{\text{e}}$ dado por:

$$n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 1 = n!$$

$$n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 1 = n!$$

Ou simplesmente:

$$P(n) = P_n = n!$$

Exemplo:

De quantos modos 4 administradores, 3 economistas e 2 engenheiros podem ser dispostos em uma fila, de maneira que os de mesma profissão fiquem juntos?

Solução

Como queremos que os indivíduos de mesma profissão fiquem juntos, consideraremos cada profissão como um bloco. Assim, o número de maneiras para que as três profissões fiquem juntas na fila será: 3! = 6 maneiras. Logo, como os profissionais podem ser "permutados entre si", teremos 3!.4!3!.2! = 1.728 formas.

Permutação com repetição

O número de permutações de n elementos dos quais n_1 são iguais, n_2 são iguais, ..., n_k são iguais é:

$$\frac{n!}{n_1!n_2!...n_k!}$$

Exemplo:

Quantos anagramas podemos formar com a palavra Arara?

Solução

$$\frac{n!}{n_1!n_2!...n_k!} = \frac{5!}{3!2!} = \frac{5\times4\times3!}{3!2!} = 10$$

Permutação circular

Situação que ocorre quando temos grupos com m elementos distintos formando um círculo:

$$P_c(n) = (n-1)!$$

Exemplo:

De quantos modos podemos formar uma roda com 4 crianças?

Solução

 $(4-1)! = 3! = 3 \times 2 \times 1 = 6 \mod s$

Combinações

As combinações podem ser de dois tipos: simples ou com repetição.

Combinação simples

Não ocorre a repetição de qualquer elemento em cada grupo de k elementos:

C(n,k)=Cn,k=nk=n!k!(n-k)!

$$C(n,k) = C_{n,k} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Exemplo:

Seja A = $\{A_1, A_2, A_3, A_4\}$. Quantas combinações de 2 elementos podem ser formadas?

Solução

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \binom{4}{2} = \frac{4!}{2!(4-2)!} = \frac{4 \times 3 \times 2!}{2!2!} = 6$$

Veja que, o caso da combinação (A_1 , A_2) não é distinto de (A_2 , A_1).

Combinação com repetição

Todos os elementos podem aparecer repetidos em cada grupo até k vezes:

$$C_r(n,k) = C(n+k-1,k) = {n+k-1 \choose k} = \frac{(n+k-1)!}{k!(n-1)!}$$

Exemplo:

Seja A = $\{A_1, A_2, A_3, A_4\}$. Quantas combinações com repetição de 2 elementos podem ser formadas?

Solução

$${\binom{n+k-1}{k}} = \frac{(n+k-1)!}{k!(n-1)!} = \frac{(4+2-1)!}{2!(4-1)!} = \frac{5!}{2!3!} = \frac{5\times 4\times 3!}{2!3!} = 10$$

Mão na massa

Questão 1

Qual é a probabilidade de formarmos um código que contenha 2 números e 3 letras, de modo que não tenha nem números nem letras repetidas?

Α

29/323

В

71/323

С

111/169

D

135/169

149/169

A alternativa D está correta.

Solução

Apesar de a ideia de probabilidade frequentista estar sempre presente nas soluções de problemas que envolvem probabilidade, para encontrarmos o número de eventos no qual estamos interessados, poderemos recorrer a técnicas de contagem, como no caso desta questão.

Assim, definimos o evento A como "Formar um código que contenha 2 números e 3 letras, de modo que não tenha nem números nem letras repetidas".

Dessa forma, considerando que podemos atribuir 10 números e 26 letras para o código, temos:

$$\begin{split} n(A) &= 10x9x26x25x24 \text{ en } (S) = 10^2x26^3 \Rightarrow P(A) = \frac{n(A)}{n(S)} = \\ &\frac{10\times9\times26\times25\times24}{10\times10\times26\times26\times26\times26} = \frac{135}{169} \cong 0,7988 \end{split}$$

Questão 2

Suponha que, em um congresso, tenhamos 20 engenheiros e 10 matemáticos. Desejamos formar uma comissão com 5 congressistas para compor a organização do próximo congresso. Qual é a probabilidade de que essa comissão seja formada por 3 engenheiros e 2 matemáticos?

0,19

0,36

0,52

0,67

A alternativa B está correta.

Solução

Para resolver este problema, podemos utilizar os conceitos de combinação – tópico inerente à análise combinatória.

Primeiro, vamos fazer o cálculo do total de comissões satisfatórias.

Seja o evento A: "Formar co

missão com 3 engenheiros e 2 matemáticos". Veja que, para escolher 3 engenheiros, escolheremos dos 20 existentes. Portanto, combinação de 20 escolhe 3.

O mesmo raciocínio vale para a escolha dos 2 matemáticos: combinação de 10 escolhe 2, portanto:

$$\underbrace{\begin{pmatrix} 20 \\ 3 \end{pmatrix}}_{\text{Engenheiros}} \times \underbrace{\begin{pmatrix} 10 \\ 2 \end{pmatrix}}_{\text{Matemáticos}} = \frac{20!}{3117!} \times \frac{100}{2!8!} = 1140 \times 45 = 51300$$

Por isso: n(A) = 51300.

Agora, vamos fazer o cálculo do total de comissões possíveis:

$$\underbrace{\begin{pmatrix} 20+10\\5\\ \end{pmatrix}}_{\text{Engenheiros+Matemáticos}} = \begin{pmatrix} 30\\5\\ \end{pmatrix} = \frac{30!}{5!25!} = 142506$$

Logo: n(S) = 142506.

Por fim, vamos fazer o cálculo da probabilidade:

$$P(A) = \frac{51300}{142506} = 0,359984842$$

Assim sendo, a chance de termos uma comissão formada por 3 engenheiros e 2 matemáticos é de, aproximadamente, 36%.

Questão 3

Em uma classe, existem 3 alunos com média geral acima de 9, 7 alunos com média geral entre 7 e 9, e mais 5 alunos com média geral abaixo de 7. Qual é a probabilidade de que, se selecionarmos 5 alunos, 2 tenham média geral entre 7 e 9, 2 tenham média geral abaixo de 7, e 1 tenha média geral acima de 9?

Α

0,210

В

0,191

С

0,330

D

0.505

Е

0,555

A alternativa A está correta.

Solução

Este problema segue a mesma ideia do exercício anterior. Dessa forma, seja o evento A: "Selecionar 5 alunos, sendo que 2 têm média geral entre 7 e 9, 2 têm média geral abaixo de 7, e 1 tem média geral acima de 9", então:

$$P(A) = \frac{\binom{7}{2}\binom{5}{2}\binom{3}{1}}{\binom{15}{5}} = \frac{30}{143} = 0,2097 \cong 0,210$$

Por isso, a chance de esse evento ocorrer é de, aproximadamente, 21%.

Uma urna contém 6 bolas gravadas com as letras D, L, N, N, O, O. Extraindo as bolas uma por uma, sem reposição, a probabilidade de obtermos a palavra LONDON é:
A
1/60
В
1/90
С
1/180
D
1/270
E
1/360
A alternativa C está correta.
Solução
No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:
Conteúdo interativo Acesse a versão digital para assistir ao vídeo.

Questão 5

Um jogo consiste em lançar uma moeda honesta até obter 3 caras consecutivas. Na primeira situação, quando obtemos 3 caras consecutivas, ganhamos o jogo. Qual é a probabilidade de que o jogo termine no terceiro lance?

1/2

5/8

7/8

A alternativa A está correta.

Solução

Este é o típico caso em que podemos utilizar o diagrama de árvore para resolver a questão:

Observe que a sequência em vermelho é aquela em que o jogo termina no terceiro lance. Como em cada lançamento as probabilidades são as mesmas, ou seja, 1/2, temos que, para terminar no terceiro lançamento, a probabilidade será (1/2)³, que é igual a 1/8.

Questão 6

Teoria na prática

Estatísticas apontam que 5 entre 6 brasileiros sonham em ganhar na Mega-Sena. Usando probabilidade, mostre por que a Mega-Sena é considerada um jogo de azar.

Chave de resposta

No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Verificando o aprendizado

Questão 1

Dos 10 professores de uma universidade que se candidataram a uma promoção, 7 têm pósdoutorado e os demais não. Selecionando aleatoriamente 3 desses candidatos para determinada avaliação, a probabilidade de que exatamente 2 tenham pós-doutorado é:

0,667

A alternativa B está correta.

Seja o evento A: "Selecionar 3 candidatos dos quais exatamente dois tenham pós-doutorado", assim:

$$P(A) = \frac{\binom{7}{2}\binom{3}{1}}{\binom{10}{3}} = \frac{21}{40} = 0,525$$

Questão 2

Os estágios foram classificados em 3 grupos, dependendo do tempo de duração. São eles:

- Estágios de curta duração Tempo de duração inferior a 80 horas.
- Estágios de média duração Tempo de duração com mais de 80 horas e menos de 300 horas.
- Estágios de longa duração Demais estágios.

Experiências anteriores estimam que as probabilidades de se conseguir um estágio de curta, média e longa duração são, respectivamente, 0,5, 0,3 e 0,2.

Selecionando k estagiários, a probabilidade de haver x estagiários de curta duração, y estagiários de média duração e zestagiários de longa duração, sendo x+y+z=n e xgt;0,ygt;0 e zgt;0, é:

 $\frac{k!}{x|yzz!}(0,5)^x(0,3)^y(0,2)^z$

В

 $\frac{kt}{xUz!}(0,5)x(0,3)y(0,2)z$

С

 $(0,5)^x(0,3)^y(0,2)^z$

D

 $n!x!y!z!(0,5)^x(0,3)^y(0,2)^z$

 $x!y!z!(0,5)^x(0,3)^y(0,2)^z$

A alternativa A está correta.

Para resolver esta questão, lembre-se da permutação com repetição, a fim de determinar o número de maneiras para escolher *n* elementos, dos quais x são iguais, y são iguais e z são iguais, que é dada por:

Agora, multiplique por suas respectivas probabilidades elevadas ao número de elementos de cada estágio ou repetição. Assim, essa probabilidade é:

$$\frac{k!}{x!y!z!}(0,5)^x(0,3)^y(0,2)^x$$

Introdução

Neste módulo, adicionaremos duas regras que complementam o desenvolvimento do conceito de probabilidade visto no primeiro módulo.

Regra 1

A primeira regra, trata do cálculo da probabilidade da união de quaisquer eventos.

Regra 2

A segunda regra, chamada de regra da multiplicação por alguns autores, mas também conhecida como independência estatística, trata do cálculo da interseção de eventos quando estes são independentes.

Regra da adição

Esta regra permite calcular a probabilidade de ocorrência de um evento A ou de um evento B, ou, ainda, de ambos.

Na teoria dos conjuntos, a conjunção "ou" está relacionada à união de eventos. Consequentemente, na regra da adição, interessados em determinar $P(A \cup B)$

Dois eventos

Considere dois eventos quaisquer, digamos A e B:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Prova

Note que, no evento A (em cinza) e no evento B (em azul), a interseção é contada duas vezes. Portanto, para calcular $P(A \cup B)$, subtraímos uma vez $P(A \cap B)$.

n eventos

Generalizando o caso para dois eventos, temos que, para n eventos, essa probabilidade é dada por:

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = \sum_{i=1}^n P(A_1) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k) - \dots + (-1)^{n-1} \sum_{i < j < k < \dots < n} (A_i \cap A_j \cap A_k \cap \dots \cap A_n)$$

Regra da multiplicação (independência estatística)

Diferente da regra da adição, na regra da multiplicação, o interesse é calcular a probabilidade de que os eventos ocorram simultaneamente, isto é, desejamos determinar a ocorrência do evento A e do evento B.

Saiba mais

Nesse caso, a conjunção "e" está associada à interseção.

Desse modo, queremos determinar $P(A \cap B)$. Logo, se a ocorrência do evento A não interfere na ocorrência do evento B , temos:

$$P(A \cap B) = P(A) \cdot P(B)$$

Como consequência, surge o conceito de **independência estatística**. Assim, dizemos que dois eventos são independentes se a probabilidade da interseção é igual ao produto das probabilidades individuais, conforme a igualdade anterior.

Podemos, ainda, estender esse conceito para n eventos, digamos A₁, A₂, ..., A_n, então:

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1) \cdot P(A_2) \cdot \cdots \cdot P(A_n)$$

No entanto, para que os n eventos sejam, de fato, independentes, essa igualdade tem de valer para todos os subconjuntos desses n eventos, ou seja, a igualdade tem de ser satisfeita para n-1 eventos, $P\left(A_1\cap A_2\cap\cdots\cap A_{n-1}\right)$, para n-2 eventos, $P\left(A_1\cap A_2\cap\cdots\cap A_{n-2}\right)$, inclusive para apenas dois eventos, $P\left(A_1\cap A_2\right)$.

Exemplo:

Uma urna contém 5 bolas azuis e 3 bolas brancas. Retiramos dessa urna 2 bolas de forma sucessiva e com reposição. Qual é a probabilidade de que a primeira bola seja azul, e a segunda seja branca?

Solução

Considere os eventos A_i: "a bola na i-ésima retirada é azul" e B_i: "a bola na i-ésima retirada é branca".

Observe que, como a retirada é sem reposição, a retirada da primeira bola não afeta a probabilidade da segunda bola. Portanto:

$$P(A_1 \cap B_2) = P(A_1) \cdot P(B_2) = \frac{5}{8} \times \frac{3}{8} = \frac{15}{64}$$

O caso em que a ocorrência de um evento afeta a do outro será tratado no próximo módulo de eventos condicionais.

Mão na massa

Questão 1

A probabilidade de um físico resolver uma questão de cálculo é de 3/4, e a de um engenheiro resolver a mesma questão é de 5/7. Qual é a probabilidade de a questão ser resolvida?

Α

1/7

В

2/7

9/14

11/14

13/14

A alternativa E está correta.

Solução

Sejam os eventos A: "O físico resolve a questão" e B: "O engenheiro resolve a questão".

Veja que os eventos A e B são independentes, pois o fato de o físico resolver a questão não interfere no fato de o engenheiro resolver a questão. Logo:

$$\begin{split} P(A \cup B) &= P(A) + P(B) - P(A \cap B) = P(A) + P(B) - P(A) \cdot P(B) = \\ \frac{3}{4} + \frac{5}{7} - \frac{15}{28} &= \frac{26}{28} = \frac{13}{14} \end{split}$$

Questão 2

Considere as informações da tabela a seguir, que trata da preferência de duas marcas de um produto de beleza por sexo:

Drofovâncio	Se	exo
Preferência	Homens	Mulheres
Marca A	7	3
Marca B	8	12

Tabela: Preferências. Paulo H. C. Maranhão

Houve a seleção de uma pessoa ao acaso. Qual é a probabilidade de essa pessoa ser mulher ou preferir a marca A?

2/15

7/15

11/15

13/15

A alternativa C está correta.

No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Questão 3

Considerando os dados da questão anterior, os eventos "preferir a marca A" e "ser mulher" são independentes?

Sim

Não

Sim, mas somente se P(A) = 0.

Sim, mas somente se P(B) = 0.

Podem ser.

A alternativa B está correta.

Considere novamente os eventos A: "Preferir a marca A" e M: "Ser mulher". Para que os eventos sejam independentes, devemos saber que:

$$P(A \cap B) = P(A) \cdot P(B)$$

Mas vimos que

$$P(A\cap B)=\frac{3}{30}=\frac{1}{10}$$
e $P(A)\cdot P(B)=\frac{10}{30}\times\frac{15}{30}=\frac{1}{6}$

Logo:

$$P(A \cap B) \neq P(A) \cdot P(B)$$

Portanto, A e B não são independentes.

Questão 4

Considerando novamente os dados da questão 2, qual é a probabilidade de a pessoa selecionada preferir a marca B e ser homem?

Α

4/15

В

7/15

С

11/15

13/15

14/15

A alternativa A está correta.

Sejam os eventos B: "Preferir a marca B" e H: "Ser homem", assim:

$$P(A \cap B) = \frac{8}{30} = \frac{4}{15}$$

Questão 5

Uma gaveta contém 3 moedas de 1 real e 2 moedas de cinquenta centavos. Retiramos de uma caixa duas moedas de forma sucessiva e com reposição. Qual é a probabilidade de a primeira moeda ser de 1 real, e a segunda ser de cinquenta centavos?

1/5

2/5

6/25

12/25

14/25

A alternativa C está correta.

Solução

Considere os eventos Ai: "A moeda na i-ésima retirada é de 1 real" e Bi: "A moeda na i-ésima retirada é de cinquenta centavos".

Observe que, como a retirada é sem reposição, a retirada da primeira moeda não afeta a probabilidade da segunda. Por isso:

$$P\left(A_{1}\cap B_{2}\right)=P\left(A_{1}\right)\cdot P\left(B_{2}\right)=\tfrac{3}{5}\times \tfrac{2}{5}=\tfrac{6}{25}$$

Questão 6

As probabilidades de dois times cariocas, A e B, jogando contra times paulistas, vencerem suas partidas, é de 1/3 e 2/5, respectivamente. Sabemos, ainda, que a probabilidade de os dois times empatarem seus jogos com times paulistas é igual a 1/3.

Se A e B jogam uma partida no mesmo dia contra adversários paulistas diferentes, qual a probabilidade de que ambos vençam suas respectivas partidas?

A

1/15

B

2/15

C

4/15

D

7/15

E

11/15

A alternativa B está correta.

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:

Teoria na prática

Uma pesquisa eleitoral apresenta o resultado da preferência para presidente segundo a classe social. Os dados estão apresentados na tabela a seguir:

CLASSE SOCIAL	PREFERÊNCIA	
	Candidato X	Candidato Y
Classe A	150	50
Classe B	170	130
Classe C	220	280

Houve a seleção de um eleitor ao acaso. Qual é a probabilidade de esse eleitor ser da classe C ou preferir o candidato X?

Chave de resposta

No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Verificando o aprendizado

Questão 1

Se P(A)=1/2 e P(B)=1/4 , e A e B são independentes, determine $P\left[(A\cup B)^c\right]$, em que $(A\cup B)^c$ é o complemento do evento $A\cup B$

5/8

3/8

1/4

1/2

A alternativa B está correta.

Vamos ao raciocínio:

$$P\left[(A \cup B)^c \right] = 1 - P(A \cup B) = 1 - \left[P(A) + P(B) - P(A \cap B) \right]$$

Mas como A e B são independentes, temos que: $P(A \cap B) = P(A) \cdot P(B)$. Logo:

$$\begin{split} P(A \cup B) &= P(A) + P(B) - P(A \cap B) = P(A) + P(B) - P(A) \cdot P(B) = \\ \frac{1}{2} + \frac{1}{4} - \frac{1}{2} \times \frac{1}{4} = \frac{3}{4} - \frac{1}{8} = \frac{5}{8} \end{split}$$

Portanto:

$$< br > P\left[(A \cup B)^c \right] = 1 - P(A \cup B) = 1 - \tfrac{5}{8} = \tfrac{3}{8} < br >$$

Questão 2

Considerando a questão anterior, qual é a $P(A \cap B)$.

Α

3/4

1/2

1/4

1/8

A alternativa D está correta.

Como A e B são independentes, temos que: $P(A\cap B)=P(A)\cdot P(B)$, então:

$$P(A\cap B) = P(A)\cdot P(B) = \tfrac{1}{2}\times \tfrac{1}{4} = \tfrac{1}{8}$$

Introdução

Neste módulo, serão vistos todos os conceitos relacionados a eventos condicionais. Iniciaremos com a definição clássica de probabilidade condicional utilizada quando a probabilidade de um evento é afetada por outros eventos que aconteceram anteriormente.

Em seguida, passaremos pelos teoremas do produto (multiplicação) e da probabilidade total. Esses dois tópicos são importantes para o entendimento do Teorema de Bayes – principal teorema associado a eventos condicionais.

Probabilidade condicional

Dados dois eventos, digamos A e B, denota-se $P(A \mid B)$ a probabilidade condicional do evento A, quando B já tiver ocorrido, e é dada por:

$$P(A\mid B)=\frac{P(A\cap B)}{P(B)},\ \mathrm{com}\ P(B)\neq 0,\ \mathrm{pois}\ \mathrm{B}$$
já ocorreu.

Teorema do produto

Este teorema, também conhecido como **regra da multiplicação**, serve para determinar a probabilidade da interseção entre dois eventos usando o conceito de probabilidade condicional. Dessa forma, temos:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \Rightarrow P(A \cap B) = P(B) \cdot P(A \mid B)$$
ou
$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} \Rightarrow P(A \cap B) = P(A) \cdot P(B \mid A)$$

Teorema da probabilidade total

Este teorema utiliza o teorema do produto para obter a probabilidade de um evento que permeia todos os outros eventos da partição do espaço amostral.

Para dois eventos

Observe a imagem, a seguir:

Note que podemos escrever B da seguinte forma:

$$B = (A \cap B) \cup (A^C \cap B)$$

$$P(B) = P(A \cap B) + P(A^C \cap B)$$

$$P(B) = P(A) \cdot P(B \mid A) + P(A^c) P(B \mid A^c)$$

Múltiplos eventos

$$B = (A_1 \cap B) \cup \ldots \cup (A_n \cap B)$$

$$P(B) = P(A_1 \cap B) + \ldots + P(A_n \cap B)$$

$$P(B) = P(B \mid A_1) \cdot P(A_1) + \ldots + P(B \mid A_n) \cdot P(A_n)$$

Teorema de Bayes

Sejam A_1,A_2,A_3,\ldots,A_n neventos mutuamente excludentes, em que a probabilidade de cada A_i é conhecida, tal que $A_1\cup A_2\cup\ldots\cup A_n=S$.

Seja B um evento qualquer de S , e considere que as probabilidades condicionais $P\left(B\mid A_{i}\right)$ também sejam conhecidas:

$$P(A_i \mid B) = \frac{P(A_i) \cdot P(B \mid A_i)}{\sum_{i=1}^n P(A_i) P(B \mid A_i)}$$

Prova

$$P\left(A_i \mid B\right) = \frac{\overbrace{P\left(A_i \cap B\right)}^{\text{Teerema do Produto}}}{\underbrace{P(B)}_{\text{Teorema da Probabilidade Total}}} = \frac{P(A_i) \cdot P(B \mid A_i)}{\sum_{i=1}^{P} P(A_i) P(B \mid A_i)}$$

Mão na massa

Questão 1

50 amostras de um material foram analisadas quanto à resistência ao choque e resistência ao arranhão. Os resultados obtidos estão dispostos na tabela a seguir:

Resistência ao arranhão	Resistência ao choque		
	Baixa	Total	
Alta	40	5	45
Baixa	2	3	5
Total	42	8	50

Tabela: Resultados obtidos. Paulo H. C. Maranhão

Determine a probabilidade de termos uma resistência ao arranhão alta, dado que a resistência ao choque é baixa:

Α

1/8

В

3/8

С

5/8

D
3/4
E
7/8
A alternativa C está correta.
No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:
Conteúdo interativo Acesse a versão digital para assistir ao vídeo.
Questão 2
Considerando os dados da questão anterior, calcule a probabilidade de termos uma resistência ao choque alta, dado que a resistência ao arranhão é baixa:
A
1/5
В
2/5
C
3/5
D
4/5
E
9/10
A alternativa B está correta.

$$\begin{split} P\left(B^C\mid A^C\right) &= \frac{P\left(B^C\cap A^C\right)}{P\left(A^C\right)} \\ P(\text{ choque alta }\cap \text{ arranhão baixa }) &= \frac{2}{50} = \frac{1}{25} \\ P(\text{ arranhão baixa }) &= \frac{5}{50} = \frac{1}{10} \\ P(\text{ choque alta }\mid \text{ arranhão o baixxa }) &= \frac{1/25}{1/10} = \frac{10}{25} = \frac{2}{5} \end{split}$$

Questão 3

Em um lote com 50 parafusos, 5 são considerados defeituosos. Se retirarmos 2 parafusos, um após o outro, sem reposição, qual será a probabilidade de que ambos sejam defeituosos?

Α

2/245

7/245

11/245

19/245

21/245

A alternativa A está correta.

Seja o evento D: "O parafuso é defeituoso". Desse modo, o que queremos determinar é $P(D_1 \cap D_2)$. Então, usando o teorema do produto, temos:

$$P(D_1 \cap D_2) = P(D_1) \times P(D_2 \mid D_1) = \frac{5}{50} \times \frac{4}{49} = \frac{2}{245}$$

Uma caixa contém bolas, das quais 4 são azuis e 3 são verdes. Retiramos 2 bolas, sem reposição. Qual é a probabilidade da segunda bola retirada ser azul?

Questão 5

A fábrica A produziu 500 componentes eletrônicos, e a fábrica B produziu 1000 desses componentes. Sabemos que, de um lote de 100 componentes retirados da fábrica A, 5 estavam com defeito, e que de um lote de 100 componentes retirados da fábrica B, 8 estavam defeituosos.

Escolhemos ao acaso um componente dos 1500 produzidos pelas fábricas A e B. Qual a probabilidade de o componente ter sido fabricado por A sabendo-se que o componente é defeituoso?

5/21

8/21		
С		
11/21		
D		
13/21		
Г		

17/21

A alternativa A está correta.

Sejam os eventos A: "O componente foi produzido pela fábrica A", B: "O componente foi produzido pela fábrica B" e D: "O componente é defeituoso".

Empregando o teorema de Bayes, temos:

$$P(A \mid D) = \frac{P(A) \times P(D|A)}{P(A) \times P(D|A) + P(B) \times P(D|B)} = \frac{\frac{500}{500} \cdot \frac{5}{100}}{\frac{5000}{1500} \cdot \frac{5}{100} + \frac{10000}{1500} \cdot \frac{8}{100}} = \frac{5}{21}$$

Questão 6

A probabilidade de um indivíduo da classe A comprar um notebook é 3/4, da classe B, é 1/5, e da classe C, é 1/20. As probabilidades de os indivíduos de cada classe comprarem um notebook da marca Y são 1/10, 3/5 e 3/10, respectivamente.

Certa loja vendeu um notebook da marca Y. Qual é a probabilidade de que o indivíduo que comprou o notebook seja da classe B?

C 1/2 D 6/7

A alternativa D está correta.

Sejam os eventos Y: "Comprar um notebook da marca Y", A: "Classe A", B: "Classe B" e C: "Classe C". Usando o teorema de Bayes, temos:

$$\begin{split} P(B \mid Y) &= \frac{P(B \cap Y)}{P(Y)} \\ P(B \mid Y) &= \frac{P(B) \cdot P(Y \mid B)}{P(A) \cdot P(Y \mid A) + P(B) \cdot P(Y \mid B) + P(C) \cdot P(Y \mid C)} \\ P(B \mid Y) &= \frac{\frac{1}{5} \cdot \frac{3}{5}}{\frac{3}{4} \cdot \frac{1}{10} + \frac{1}{5} \cdot \frac{3}{5} + \frac{1}{20} \cdot \frac{3}{10}} = \frac{4}{7} \end{split}$$

Teoria na prática

Sabemos que 60% da população de certa cidade do interior do Brasil é formada por mulheres. Sabemos, ainda, que a taxa de desemprego, se o indivíduo for homem, é de 25%, e, se for mulher, é de 20%. Sabendo que o indivíduo está desempregado, qual é a probabilidade de ele ser homem?

Chave de resposta

No vídeo a seguir, o professor vai apresentar a resolução da questão. Assista:

Conteúdo interativo

Acesse a versão digital para assistir ao vídeo.

Verificando o aprendizado

Questão 1

Em certa empresa, 10% dos homens e 5% das mulheres ganham mais de 10 salários mínimos. Além disso, 60% dos empregados são homens. Se estivéssemos interessados em determinar a probabilidade de que o empregado seja mulher, dado que ganha mais de 10 salários mínimos, que teorema de probabilidade seria usado para resolver a questão?

Probabilidade da soma.

Teorema do produto.

Teorema da probabilidade total.

Teorema de Bayes.

Regra da adição

A alternativa D está correta.

Observe que queremos determinar a probabilidade de que o empregado seja mulher, dado que ganha mais de 10 salários mínimos. Como conhecemos as probabilidades individuais do sexo dos empregados e as probabilidades condicionais dos empregados que ganham mais de 10 salários mínimos dado o sexo, o teorema mais apropriado para resolver a questão seria o teorema de Bayes.

Questão 2

Um grupo de 100 clientes de uma empresa de telefonia está dividido por sexo e pelo plano (pré-pago e pós-pago), de acordo com a tabela a seguir:

	Pré-pago	Pós-pago
Homens	15	33
Mulheres	17	35

Tabela: Divisão de clientes. Paulo H. C. Maranhão

Um cliente foi sorteado ao acaso. Qual é a probabilidade de esse cliente ser homem, dado que pertence ao plano pré-pago?

3/20

8/25

15/32

8/17

23/32

A alternativa C está correta.

Considere os eventos H: "O cliente é homem" e P: "O cliente pertence ao plano pré-pago", logo:

$$P(H \mid P) = \frac{P(H \cap P)}{P(P)} = \frac{15/100}{32/100} = \frac{15}{32}$$

Considerações finais

Aqui, abordamos os conceitos fundamentais para o bom entendimento da definição clássica de probabilidade.

Apresentamos as principais técnicas usadas na resolução de problemas simples de probabilidade e as regras que complementam os conceitos abordados. Por fim, introduzimos todas as definições referentes a eventos condicionais.

Temos certeza de que, através de todos os conceitos essenciais adquiridos neste tema, você está apto para o estudo mais avançado da teoria das probabilidades.

Explore +

Para saber mais sobre os assuntos tratados neste tema, pesquise:

Instituto de Matemática Pura e Aplicada (IMPA), no Youtube.

Referências

FONSECA, J. S.; MARTINS, G. A. Curso de Estatística. 6. ed. São Paulo: Atlas, 1996.

MORETTIM, P. A.; BUSSAB, W. O. Estatística básica. 9. ed. São Paulo: Saraiva, 2017.

OVALLE, I. I.; TOLEDO, G. L. Estatística básica. 2. ed. São Paulo: Atlas, 2010.