Introduction to Logical Database Design

Logical database design translates the conceptual model into a schema. This process ensures data integrity and efficiency. It also meets business needs through model translation. Normalization and constraint definition are key steps.

Conceptual vs. Logical Models

Conceptual

High-level overview using ER diagrams.

The focus shifts from concepts to structured implementation.

Logical

Detailed schemas in the relational model.

The Relational Data Model

Relations

Tuples

Attributes

Domains

Data is represented as a set of related tables.

Relations and Schemas

Relation

1

3

4

Named table

Schema 2

Relation's structure

Primary Key

Uniquely identifies rows

Foreign Key

Links tables

Integrity Constraints: Ensuring Data Quality

Domain Constraints

Entity Integrity

Referential Integrity

Rules maintain data accuracy and consistency. This prevents invalid data entries.

Domain Constraints

Restriction on data type and value range. Implemented by the DBMS.

Entity and Referential Integrity

Entity Integrity

Primary Key cannot be null.

Maintains relationship consistency.

Referential Integrity

Foreign Key must match a valid Primary Key or be null.

Transforming EERDs into Relations: Entities

Transforming EERDs into Relations: Relationships

Summary and Best Practices

Data Relationships

Integrity Constraints

Iterative Refinement

Modeling Tools

Logical design is crucial for a robust database. An iterative process refines based on requirements.