NOIP2023 模拟赛

2023年7月11日

题目名称	计数练习	黑白树	子图	上升
目录	perm	tree	subgraph	lis
可执行文件名	perm	tree	subgraph	lis
输入文件名	perm.in	tree.in	subgraph.in	lis.out
输出文件名	perm.out	tree.out	subgraph.out	lis.out
每个测试点时限	1 秒	1 秒	2 秒	2 秒
内存限制	1024 MB	256 MB	512 MB	1024 MB
测试点/子任务数	20	10	4	4
	20	10	_	

提交源程序文件名

对于 C++ 语言	perm.cpp	tree.cpp	subgraph.cpp	lis.cpp
-----------	----------	----------	--------------	---------

编译选项

对于 C++ 语言

注意事项 (请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)使用英文小写。
- 2. 对于 C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时返回值必 须是 0。
- 3. 若无特殊说明, 结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 4. 选手提交的程序源文件必须不大于 100KB。
- 5. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 6. 只提供 Linux 格式附加样例文件。
- 7. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

计数练习 (perm)

【题目描述】

作为一名普及组选手, 小 A 喜欢数数。

一天,小 A 学习了排列相关的知识。定义一个长度为 n 的序列 $p_{1...n}$ 是一个 n 阶排列,当且仅当 $p_{1...n}$ 都是 [1,n] 中的正整数且它们两两不同。

小 A 想数排列。为了让数排列更有趣, 小 A 决定加入一个限制:

对于一个 n 阶排列 p ,小 A 会构造一个长度为 n 的序列 Q(p) ,其中 $Q(p)_{p_i}=i$ 。小 A 称排列 p 是优秀的,当且仅当 p 的字典序严格小于 Q(p) 。即存在一个 i 使得 $\forall 1 \leq j < i, p_i = Q(p)_i$ 且 $p_i < Q(p)_i$ 。

现在,小 A 想了一个数 n,他希望对于每个 [1,n] 间的 m,计算好的 m 阶排列数量,在开始数这样的排列数量前,小 A 给了你一个质数 mod ,希望你先求出好的 m 阶排列数量对 mod 取模的结果。

为了避免极其大的输出,设 v_n 表示好的n阶排列数量对mod取模的结果,你只需要输出 $\bigoplus_{i=1}^n v_i$,即所有 v_1, \ldots, v_n 的异或和。这样小A在自己数错的时候就有大约 $1-\frac{1}{mod}$ 的概率发现自己数错了,并重新数一遍。

【输入格式】

从文件 perm.in 中读入数据。

输入文件包含一行两个正整数 n, mod, 含义见题面。

【输出格式】

输出到文件 perm.out 中。 输出一个整数,表示 $\bigoplus_{i=1}^{n} v_i$

【样例 1 输入】

4 998244353

【样例 1 输出】

1 6

【样例1解释】

n=1,2 时,不存在好的排列。

n=3 时,好的排列只有一个,为:p=(2,3,1),Q(p)=(3,1,2)

n=4 时,一共有 7 个好的排列,为 (1,3,4,2),(2,3,1,4),(2,3,4,1),(2,4,1,3),

(2,4,3,1),(3,2,4,1),(3,4,2,1)

因此答案为 $0 \oplus 0 \oplus 1 \oplus 7 = 6$ 。

【样例 2 输入】

7 998244353

【样例 2 输出】

2063

【样例 2 解释】

v 依次等于 0,0,1,7,47,322,2404

【样例 3 输入】

100 1000000007

【样例 3 输出】

273351777

【数据范围】

对于所有测试点, 保证 $n \le 10^7, 10^8 \le mod \le 1.05 * 10^9$ 。

测试点编号	特殊限制
1, 2	$n \le 5$
3, 4	$n \le 10$
5, 6, 7, 2	$n \le 16$
8,9	$n \le 30$
10, 11	$n \le 100$
12, 13, 14	$n \le 2000$
15, 16	$n \le 2 * 10^5$
17, 18	$n \le 2 * 10^5$
19, 20	无特殊限制

对于编号为奇数的测试点,额外保证 mod = 998244353。

NOIP2023 模拟赛 2 黑白树(tree)

黑白树 (tree)

【题目描述】

给定一个 n 个点的树,每一个结点都可以是黑色或白色,每一条边的长度都为 1。 定义两个点的距离为两个点最短路径上边的条数,定义一棵树的价值,为同色点距 离的最大值。

请求出在所有情况下、树的价值之和、对 109+7 取模。

【输入格式】

从文件 tree.in 中读入数据。

第一行一个正整数 n。

接下来 n-1 行,每行两个数 x,y,表示树中的一条边。

【输出格式】

输出到文件 tree.out 中。

输出一行一个数,表示你的答案,对 109+7 取模。

【样例 1 输入】

1 2

1 2

【样例 1 输出】

1 2

【样例1解释】

若两个点颜色相同,同色点距离最大值为 1。 若两个点颜色不同,同色点距离最大值为 0。 NOIP2023 模拟赛 2 黑白树(tree)

【样例 1 输入】

```
1
6

2
1
2

3
2
3

4
3
4

5
4
5

6
3
6
```

【样例 1 输出】

1 224

【样例 3】

见选手目录下的 tree/tree3.in 与 tree/tree3.out。 该样例满足测试点 2 的限制。

【样例 4】

见选手目录下的 tree/tree4.in 与 tree/tree4.out。 该样例满足测试点 7~8 的限制。

【数据范围】

对于所有测试点: $2 \le n \le 10^6$ 。 每个测试点的具体限制见下表:

测试点编号	n	特殊性质
1	≤ 10	无
2	$\leq 10^{3}$	A
3~4	$\leq 2 * 10^5$	A
5	$\leq 2 * 10^5$	В
6	$\leq 2 * 10^5$	С
7~8	$\leq 10^{3}$	无
9~10	$\leq 10^{6}$	无

NOIP2023 模拟赛 2 黑白树(tree)

特殊性质 A: 第 i 条边连接 i 和 i+1。

特殊性质 B: 1号点的度数为 n-1。

特殊性质 C: 1 号点度数 > 2, 其它点度数不超过 2, 所有度数为 1 的结点到 1 号点的距离相同。

NOIP2023 模拟赛 3 子图(subgraph)

子图 (subgraph)

【题目描述】

给定一个 n 个点 m 条边的简单无向图。对于一个导出子图 G 和一个正整数 k,称 G 是一个 k 度子图,当且仅当:

- 1. G 中的每个点在 G 中度数都 $\geq k$ 。
- 2. G 是连通图。
- 3. G 是极大的,即不存在一个 G 的超集也满足以上两个条件。

然后定义 n(G) 为 G 的点数,m(G) 为 G 的边数,b(G) 为割的大小,即一个端点在 G 中而另一个端点不在的边的个数。

定义图 G 的权值为 $score(G) = M \cdot m(G) - N \cdot n(G) + B \cdot b(G)$, 其中 M, N, B 为给定常数。

你要求出最大的 k 度子图的权值,如有多个选取 k 最大的那个。 (请注意 k 是你自己任选的。)

【输入格式】

从文件 subgraph.in 中读入数据。

第一行两个正整数 n, m。

第二行三个整数 M, N, B。

接下来 m 行, 每行两个正整数 u,v, 表示一条边。

【输出格式】

输出到文件 subgraph.out 中。

一行两个整数,第一个整数表示取到最高分数时的最大 k ,第二个整数表示最高分数。

注意一个合法的 G 要求 k > 0。

【样例 1 输入】

```
1
3
3

2
1
1
2

3
1
2
2

4
2
3
3
1
```

【样例 1 输出】

1 2 0

【数据范围】

本题采取子任务捆绑测试。

substask 编号	特殊性质	分值
1	保证 <i>n</i> ≤ 15	15
2	保证 $n, m \leq 5000$	15
3	保证 $n., m \le 10^5$	30
4	保证 $n, m \le 10^6, M , N , B \le 10^9$	40

NOIP2023 模拟赛 4 上升 (lis)

上升 (lis)

【题目描述】

给定一个 n 个点的无根树,每个点有一个标号 w_i 。

定义一条链 (u,v) 的权值为按照从 u 到 v 的顺序把这条链的标号写下来之后,得到的序列的最长上升子序列长度。

你需要删掉一个点, 使得剩下的链的权值的最大值最小。

【输入格式】

从文件 lis.in 中读入数据。

第一行一个正整数 n 。

接下来 n-1 行,每行两个正整数 u,v,表示一条边。

最后一行 n 个正整数 w_i 。

【输出格式】

输出到文件 lis.out 中。

输出一行一个整数,表示答案。

【样例 1 输入】

```
1
5

2
1
2

3
2
3

4
3
4

5
4
5

6
1
2
3
4
```

【样例 1 输出】

1 2

【数据范围】

本题采取子任务捆绑测试。

NOIP2023 模拟赛 4 上升 (lis)

substask 编号	特殊性质	分值
1	$n \le 400$	30
2	$n \le 4000$	20
3	$n \le 10^5$	30
4	$n \le 5 \times 10^5$	20