

תזכורת משבוע שעבר:

- יש להראות שכל מחלק משותף של a,b הוא מחלק משותף (a,b)=(c,d) הוא מחלק משותף c,d של c,d
 - כדי להוכיח ש 1=(a,b) , כלומר a,b זרים אז ניתן להראות כי:

.1 = ax + by כך ש $x, y \in \mathbb{Z}$ 1.

.1 מחלק שכל a,b מחלק שכל 2.

.1- מחלק את 1 או שווה ל d=(a,b) 3.

נשים לב כי $a,b \geq 1$ מתקיים כי $a,b \geq 1$ ולכן מספיק להראות כי הוא חסום ע"י 1 $(a,b) \leq 1$ ע"י כך שהוא מחלק את 1. ולכן $(a,b) \leq 1$ ולכן $(a,b) \leq 1$

 $d \mid a - \beta b$ אם $d \mid |a - \beta b|$ אז

תרגיל 1:

: נגדיר . $k \in [1,n]$ ויהי ויהי n המספרים המספרים הראשוניים ויהי n p_1,p_2,\ldots,p_n

$$\begin{aligned} Q &\coloneqq p_1 \cdot p_2 \cdot \ldots \cdot p_k \\ R &\coloneqq p_{k+1} \cdot p_{k+2} \cdot \ldots \cdot p_n \end{aligned}$$

 $p_i \nmid Q+R$ מתקיים כי $i \in [n]$ 1.

2. העזרו בסעיף א' על מנת לתת הוכחה לכך שיש אינסוף ראשוניים.

<u>**6 פתרון:**</u> במודל

 $p_i \in [p_{k+1}, p_n]$ ראשוני כלשהו כך ש $i \in [1, n]$, $i \in [1, n]$ בה"כ כי $i \in [1, n]$

 $p_i \nmid Q \mid p_i \mid R$

נניח בשלילה כי $p_i \mid Q+R-R=Q$ ולכן לפי תכונות חלוקה מתקיים כי $p_i \mid Q+R-R=Q$ בסתירה לכך ש

ולכן $n \geq 2$ כי נניח בשלילה ש p_1, \dots, p_n הינם כל הראשוניים בעולם, מכוון ש p_1, \dots, p_n הינם כל ניח בשלילה יים בעולם, מכוון הינם כל הראשוניים לו הינם כל הראשוניים בעולם, מכוון אוניים נקבל כיום לו הינם כל הראשוניים בעולם, מכוון ש

$$Q := p_1 \cdot p_2 \cdot \dots \cdot p_k$$

$$R \coloneqq p_{k+1} \cdot p_{k+2} \cdot \dots \cdot p_n$$

היות א דוגמא נגדית עצמאית מספר פריק, כי אם אחרת, הוא דוגמא נגדית עצמאית Q+R היות להמצאות ראשוני נוסף.

לפי ההנחה Q+R פריק ולכן קיים מחלק ראשוני q כך ש q+R ולכן לפי סעיף א' מתקיים כי Q+R ולכן היא קבוצת כל $i\in [1,n]$ היא קבוצת כל $q\neq p_1,\dots,p_n$ ולכן $i\in [1,n]$ היא קבוצת כל הראשוניים בעולם.

<u>תרגיל 2:</u>

4n+3 הוכיחו כי יש אינסוף ראשוניים מהצורה

<u>פתרון:</u>

נניח כי יש מספר סופי של ראשוניים מהצורה $S\coloneqq\{p_1,p_2,\dots,p_n\}$ נגדיר נניח כי יש מספר סופי של ראשוניים מהצורה 4n+3 הראשוניים מהצורה - 3

. נגדיר N-1 מחלק ראשוני כלשהו N>1 נשים לב כי N>1 נשים לב לשהו. $N\coloneqq 4(p_1\cdot...\cdot p_n)+3$

4m+1 מספרים מהצורה 4n+1 נשארת מהצורה 2 אבחנה:

4m+1 הוכחה: נקח 2 מספרים מהצורה 1+1 ונכפיל בינהם, נראה כי הצורה שמתקבלת היא

$$(4q+1) \cdot (4k+1) = 16qk + 4q + 4k + 1 = 4(4qk+q+k) + 1 = 4m+1$$

נשים לב כי כל מחלק ראשוני של N הוא מהצורה n+1 או מהצורה n+3 (שאר הצורות זוגיות), ונשים לב כי n+3 מהצורה n+3.

לפי הטענה הקודמת, לא יכול להיות שכל המחלקים של N הם מהצורה n+1, כי אם אחרת, הוא היה נשאר מהצורה n+1, אך n+1 מהצורה n+1 ולכן **קיים** לn+1 מחלק ראשוני **אחד** לפחות מהצורה n+1, נקרא למחלק הראשוני הזה n.

 $q\mid\prod_{i\in S}p_i$ אזי לפי ההנחה $q\in S$ ולכן $q\in S$ היות ו $q\in S$ אזי לפי ההנחה $q\mid A$ מהצורה $q\mid A$ מהצורה נקבל כי: $q\mid A$ ולכן מתכונות חלוקה נקבל כי $q\mid A$ ($\prod_{i\in S}p_i$) ולכן מתכונות חלוקה נקבל כי

$$q \mid N - 4 \cdot \left(\prod_{s \in S} s \right) = 3$$

נשים לב כי היינו רוצים להגיד שהגענו לסתירה (כמו בהוכחות הקודמות) ולכן $q \notin S$ ולכן מצאנו q = 3 יכול להיות ש q = 3 יכול להיות ש

הוכחה מהצורה הזאת לא תעבוד, ולכן נשים לב כי הוכחנו בתרגול הראשון כי:

$${4n+3 \mid n \in \mathbb{Z}} = {4n-1 \mid n \in \mathbb{Z}}$$

4n-1 ולכן מספיק להוכיח כי יש אינסוף ראשוניים מהצורה

הוכחה:

נניח כי יש מספר סופי של ראשוניים מהצורה $S\coloneqq\{p_1,p_2,\dots,p_n\}$, נגדיר 4n-1, קבוצת כל הראשוניים מהצורה 4n-1.

נגדיר N=4 מחלק ראשוני כלשהו. הוכחנו כי N>1 ולכן קיים לN=4 מחלק ראשוני כלשהו. הוכחנו כי N>1 נגדיר אור באותה באותה מהצורה n+1 נשארת באותה צורה, ולכן חייב להיות מחלק ראשוני לn+1 מחלק זה.

 $q\mid\prod_{i\in S}p_i$ אזי לפי ההנחה $q\in S$ ולכן קבלנו כי $q\in S$ אזי לפי החנות וווח מהצורה $q\mid 1$ מהצורה $q\mid 4$ מתכונות חלוקה נקבל כי $q\mid 4\cdot (\prod_{i\in S}p_i)$ ולכן מתכונות חלוקה נקבל כי

$$q \mid N - 4 \cdot \left(\prod_{s \in S} s \right) = -1$$

אר $g \geq 3$ ולכן $q \geq 3$ בסתירה להנחה.

אלגוריתם אוקלידס המורחב

 $\mathcal{L}(a,b)\coloneqq\{ma+nb\mid m,n\in\mathbb{Z}\}$ לפי זהות בזו ידוע כי $(a,b)\in\mathcal{L}(a,b)$ כאשר

נשקול תרגילים מהסגנון:

$$36 = 252 \cdot x + 192 \cdot y$$
 בך ש $x, y \in \mathbb{Z}$ מצאו

אלגוריתם אוקלידס המורחב

EXT-EUCLID(a,b)

1. if b = 0 then return (a, 1, 0).

- שלמים $a \geq b > 0$ שלמים
- 2. $(d', x', y') = EXT EUCLID(b, a \mod b)$. $x, y \mid d = (a, b)$ כאשר (d, x, y) כאשר d = (a, b) כאשר d = ax + by הם הפתרונות לקומבנציה הלינארית
- 3. $(d, x, y) = (d', y', x' \lfloor a/b \rfloor y')$.
- 4. return (d, x, y).

 $(a,b) \mid c$ ש ורק אם אם יש פתרון בשלמים מax + by = c למשוואה

ax + by = c אזי כל פתרון אחר (x_0, y_0) יהי (מהרצאה): יהי יהי (x_0, y_0) פתרון למשוואה by = c

$$x = x_0 + \left(\frac{b}{(a,b)}\right) \cdot t$$
$$y = y_0 - \left(\frac{a}{(a,b)}\right) \cdot t$$

 $t \in \mathbb{Z}$ עבור

דוגמא לשימוש באלגוריתם אוקלידס המורחב: תרגיל 3:

$$36 = 252 \cdot x + 192 \cdot y$$
 בר ש $x, y \in \mathbb{Z}$ מצאו

<u>פתרון:</u>

(a,b) – מודם כל נבצע את אלגוריתם אוקלידס הרגיל ונמצא את ה-1.

$$252 = (198) \cdot 1 + 54$$
$$198 = (54) \cdot 3 + 36$$
$$54 = (36) \cdot 1 + 18$$
$$36 = (18) \cdot 2 + (0)$$

$$\Rightarrow$$
 (252,198) = 18

2. <u>נבצע "הצבה הפוכה"</u>

- .0 נמצא את המשוואה האחרונה שהשארית אינה $54 = (36) \cdot 1 + 18$
 - נבודד את כלל השאריות:

$$18 = 54 - (36) \cdot 1$$
$$36 = 192 - (54) \cdot 3$$
$$54 = 252 - (198) \cdot 1$$

252 נבצע הצבה הפוכה מהמשוואה הראשוני עד לקומבנציה לינארית של 192 ו 198

: נקבל כי

$$18 = 54 - 36 \cdot 1 =$$

$$= 54 - (192 - (54) \cdot 3) \cdot 1 =$$

$$= (54) \cdot 4 - 198 \cdot 1 =$$

$$= (252 - (198) \cdot 1) \cdot 4 - 198 \cdot 1 =$$

$$= 252 \cdot 4 - 198 \cdot 5$$

$$(x,y) = (4,-5)$$

3. <u>נבצע בדיקה עבור הפלט</u>

. אכן מתקיים -
$$18 = 252 \cdot 4 - 198 \cdot 5$$

4. <u>בדיקה האם קיים פתרון</u>

 $36 = 252 \cdot x + 198 \cdot y$ כך ש $x, y \in \mathbb{Z}$ נבדוק האם קיימים

 $(a,b) \nmid c$ יש פתרון בשלמים אם ורק אם $(a,b) \mid c$ יש פתרון בשלמים אם ax+by=c לפי טענה 1, לפי טענה 1, אזי אין פתרון למשוואה.

במקרה שלנו, a=252, b=198 ו a=252, b=198 ואכן מתקיים כי a=252, b=198 ולכן קיים פתרון במקרה שלנו, $a=252\cdot x+198\cdot y$

5. <u>נגיע למשוואה הרצויה</u>

 $\frac{36}{18} = 2$ נכפיל ב $\frac{c}{(a,b)}$ את המשוואה, במקרה שלנו נכפיל ב

$$18 = 252 \cdot 4 - 198 \cdot 5$$
 | $\cdot 2 \Rightarrow 36 = 252 \cdot 8 - 198 \cdot 10$
 $x_0 = 8, y_0 = -10$ ולכן

6. <u>פתרון</u>

לפי טענה 2, אם יש פתרונות. ללי למשוואה ax+by=c אזי יש אינסוף פתרונות. כללי למשוואה ax+by=c אזי כל פתרון אחר (x_0,y_0) ל ax+by=c הוא מהצורה:

$$x = x_0 + (\frac{b}{(a,b)}) \cdot t$$

$$y = y_0 - \left(\frac{a}{(a,b)}\right) \cdot t$$

 $t \in \mathbb{Z}$ עבור

ולכן במקרה שלנו, $(x_0,y_0)=(8,-10)$ ולכן פתרון כללי למשוואה $(x_0,y_0)=(8,-10)$ הוא מהצורה:

$$x = 8 + 11 \cdot t$$
$$y = -10 - 14 \cdot t$$

 $t \in \mathbb{Z}$ עבור

 $36 = 252 \cdot 19 + 198 \cdot (-24)$ נשים לב כי עבור t = 1 בפרט מתקיים כי