MATHEMATICAL MODELING

DIEGO HERRERA

1. General Geometric Algebra

Taken from [1].

Linear space: set of elements which is closed under addition and scalar multiplication.

Vector space: linear space plus a defined geometric product.

1.1. **Geometric Product.** Let \mathfrak{V}^n be a *n*-dim vector space over the real numbers. The geometric product of vectors \mathbf{a} , \mathbf{b} , \mathbf{c} in \mathfrak{V}^n is defined by four basis axioms:

- (1) Associative rule: $\mathbf{a}(\mathbf{bc}) = (\mathbf{ab})\mathbf{c}$,
- (2) Left distributive rule: $\mathbf{a}(\mathbf{b} + \mathbf{c}) = \mathbf{ab} + \mathbf{ac}$,
- (3) Right distributive rule: $(\mathbf{b} + \mathbf{c})\mathbf{a} = \mathbf{b}\mathbf{a} + \mathbf{c}\mathbf{a}$,
- (4) Contraction rule: $\mathbf{a}\mathbf{a} = (\mathbf{a})^2 = |\mathbf{a}|^2$,

where $|\mathbf{a}|$ is a real number called the *magnitude* or *length* of \mathbf{a} and $|\mathbf{a}| = 0$ iff $\mathbf{a} = \mathbf{0}$. Both distributive rules are needed, since multiplication is *not* commutative.

 \mathfrak{V}^n is closed under addition but not under multiplication (contraction rule: one begins with a vector and ends up with a real number!) By multiplication and addition, vectors in \mathfrak{V}^n generate a larger linear space $\mathfrak{G}_n = (\mathfrak{V}^n)$, the geometric algebra of \mathfrak{V}^n which is closed under addition and multiplication.

The contraction rule determines a measure of distance between vectors in \mathfrak{V}^n , called *Euclidean geometric algebra*. Thus, \mathfrak{V}^n can be regarded as a *n*-dim *Euclidean space*, \mathfrak{E}^n .

Additionally, the contraction rule determines the *inverse* of vectors

$$\mathbf{a}^{-1} = \frac{\mathbf{a}}{\mathbf{a}\mathbf{a}} = \frac{\mathbf{a}}{|\mathbf{a}|^2},$$

for $\mathbf{a} \neq \mathbf{0}$.

1.2. **Inner and Outer Products.** The geometric product **ab** can be decomposed into a symmetric and an antisymmetric part defined by

$$\mathbf{a} \cdot \mathbf{b} := \frac{\mathbf{a}\mathbf{b} + \mathbf{b}\mathbf{a}}{2}$$
 and $\mathbf{a} \wedge \mathbf{b} := \frac{\mathbf{a}\mathbf{b} - \mathbf{b}\mathbf{a}}{2}$.

thus

$$ab = a \cdot b + a \wedge b$$
.

The last equation is called the fundamental decomposition of the geometric product for vectors.

The product $\mathbf{a} \cdot \mathbf{b}$ is the conventional Euclidean inner product, whereas the product $\mathbf{a} \wedge \mathbf{b}$ is the Grassmann product. The outer product is the antisymmetric part that generates *bivectors*. Geometrically, $\mathbf{a} \wedge \mathbf{b}$ represents a directed plane segment.

Date: September 18, 2012.

Key words and phrases. mathematical modeling index notation engineering.

2 D. HERRERA

The geometric interpretation of the geometric product:

- \diamond **ab** = -**ba** iff **a** \cdot **b** = 0 or **ab** anticommutes iff **a** and **b** are *orthogonal*,
- \diamond **ab** = **ba** iff **a** \wedge **b** = 0 or **ab** commutes iff **a** and **b** are *colinear*.
- \diamond $\mathbf{a}^{-1}\mathbf{b}$ = measures the relative direction and magnitude of \mathbf{a} and \mathbf{b} .
- \diamond transformation of **a** into **b**: $\mathbf{a}(\mathbf{a}^{-1}\mathbf{b}) = \mathbf{b}$.

Outer product of k-vectors $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ generate a new entity $\mathbf{a}_1 \wedge \mathbf{a}_2 \wedge \dots \wedge \mathbf{a}_n$ called a k-blade. The integer k is called the step of the blade or the grade of the blade.

A linear combination of k-blades with the *same* step is called a k-vector. Therefore, every k-blade is a k-vector. But, that every k-vector is a k-blade only holds for \mathfrak{G}_n with $n \leq 3$.

From a vector **a** and a k-vector A_k , the outer product gives a (k+1)-vector $\mathbf{a} \wedge A_k$:

$$\mathbf{a} \wedge A_k = \frac{\mathbf{a} A_k + (-1)^k A_k \mathbf{a}}{2} = (-1)^k A_k \wedge \mathbf{a}.$$

The inner product, on the other hand, gives

$$\mathbf{a} \cdot A_k = \frac{\mathbf{a} A_k - (-1)^k A_k \mathbf{a}}{2} = (-1)^{k+1} A_k \cdot \mathbf{a}.$$

Thus, the outer product is a "step-up" operation, while the inner product, a "step-down" operation.

The decomposition of the geometric product into step-down and step-up parts:

$$\mathbf{a}A_k = \mathbf{a} \cdot A_k + \mathbf{a} \wedge A_k,$$

 $A_k \mathbf{a} = A_k \cdot \mathbf{a} + A_k \wedge \mathbf{a}.$

1.3. **Identities.** Let $\langle A \rangle_k$ be a k-vector A that has a step k, let **a**, **b**, ... be vectors and A, B, ... be quantities of any step.

The outer product is associative and antisymmetric. Associative:

$$A \wedge (B \wedge C) = (A \wedge B) \wedge C = A \wedge B \wedge C,$$

Antisymmetric: it reverses the sign under interchange of any two vectors in a multiple outer product:

$$A \wedge \mathbf{a} \wedge B \wedge \mathbf{b} \wedge C = -A \wedge \mathbf{b} \wedge B \wedge \mathbf{a} \wedge C.$$

The inner product is not strictly associative:

$$\langle A \rangle_r \cdot (\langle B \rangle_s \cdot \langle C \rangle_t) = (\langle A \rangle_r \cdot \langle B \rangle_s) \cdot \langle C \rangle_t,$$

for r + t < s.

The inner product relates to the outer product by

$$\langle A \rangle_r \cdot (\langle B \rangle_s \cdot \langle C \rangle_t) = (\langle A \rangle_r \wedge \langle B \rangle_s) \cdot \langle C \rangle_t,$$

for $r + s \le t$.

Another identity:

$$\mathbf{a} \cdot (\mathbf{b} \wedge C) = (\mathbf{a} \cdot \mathbf{b})C + \mathbf{b} \wedge (\mathbf{a} \cdot C).$$

A reduction formula:

$$\mathbf{a} \cdot (\mathbf{b}_1 \wedge \mathbf{b}_2 \wedge \ldots \wedge \mathbf{b}_r) = \sum_{k=1}^r (-1)^{r+1} (\mathbf{a} \cdot \mathbf{b}_k) \mathbf{b}_1 \wedge \ldots \wedge \check{\mathbf{b}}_k \wedge \ldots \wedge \mathbf{b}_r,$$

where \mathbf{b}_k is the vector omitted from the product.

Other useful identities:

$$(\mathbf{a}_r \wedge \ldots \wedge \mathbf{a}_1) \cdot (\mathbf{b}_1 \wedge \ldots \wedge \mathbf{b}_r) = (\mathbf{a}_r \wedge \ldots \wedge \mathbf{a}_2) \cdot [\mathbf{a}_1 \cdot (\mathbf{b}_1 \wedge \ldots \wedge \mathbf{b}_r)]$$

$$= \sum_{k=1}^r (-1)^{k+1} (\mathbf{a}_1 \cdot \mathbf{b}_k) (\mathbf{a}_r \wedge \ldots \wedge \mathbf{a}_2) \cdot (\mathbf{b}_1 \wedge \ldots \wedge \check{\mathbf{b}}_k \wedge \ldots \wedge \mathbf{b}_r).$$

Any matrix elements can be represented as inner products between two sets of vectors:

$$a_{ij} = \mathbf{a}_i \cdot \mathbf{b}_j$$
.

The determinant of a matrix can then be defined by

$$\det [a_i j] = (\mathbf{a}_r \wedge \ldots \wedge \mathbf{a}_1) \cdot (\mathbf{b}_1 \wedge \ldots \wedge \mathbf{b}_r).$$

- 1.4. **Parenthesis Reduction Convention.** To reduce parentheses there's a operator precedence convention
 - (1) outer products first,
 - (2) inner products then,
 - (3) geometric product finally.

Example:

$$(A \wedge B)C = A \wedge BC \neq A \wedge (BC),$$

$$(A \cdot B)C = A \cdot BC \neq A \cdot (BC),$$

$$A \cdot (B \wedge C) = A \cdot B \wedge C \neq (A \cdot B) \wedge C.$$

With such a convention, the most useful special case of the reduction formula becomes

$$\mathbf{a} \cdot (\mathbf{b} \wedge \mathbf{c}) = (\mathbf{a} \cdot \mathbf{b})\mathbf{c} - (\mathbf{a} \cdot \mathbf{c})\mathbf{b},$$

 $\mathbf{a} \cdot \mathbf{b} \wedge \mathbf{c} = \mathbf{a} \cdot \mathbf{b}\mathbf{c} - \mathbf{a} \cdot \mathbf{c}\mathbf{b}.$

1.5. Additive Structure of \mathfrak{G}_n . The vectors of a set $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r\}$ are linearly independent iff the r-blade

$$\langle A \rangle_k = \mathbf{a}_1 \wedge \mathbf{a}_2 \wedge \ldots \wedge \mathbf{a}_r$$

is not zero. Every such a r-blade determines a unique r-dim subspace \mathfrak{V}^r of the vector space \mathfrak{V}^n consisting of all vectors **a** in \mathfrak{V}^n which satisfy

$$\mathbf{a} \wedge \langle A \rangle_k = 0.$$

The blade $\langle A \rangle_k$ is a directed volume for \mathfrak{V}^r with magnitude (scalar volume) $|\langle A \rangle_k|$.

An ordered set of vectors $\{\mathbf{a}_k : k = 1, 2, ..., n\}$ in \mathfrak{V}^n is a basis for \mathfrak{V}^n iff it generates a non-zero n-blade $\mathbf{a}_1 \wedge \mathbf{a}_2 \wedge ... \wedge \mathbf{a}_n$. The n-blades are called pseudoscalars of \mathfrak{V}^n or \mathfrak{G}_n . They make up a 1-dimensional linear space, so one may choose a unit pseudoscalar \mathfrak{I} and write

$$\mathbf{a}_1 \wedge \mathbf{a}_2 \wedge \ldots \wedge \mathbf{a}_n = \alpha \mathfrak{I},$$

where α is a scalar.

Solve for the scalar volume $|\mathbf{a}_1 \wedge \mathbf{a}_2 \wedge \ldots \wedge \mathbf{a}_n|$ and express it as a determinant

$$\alpha = (\mathbf{a}_1 \wedge \mathbf{a}_2 \wedge \ldots \wedge \mathbf{a}_n) \mathfrak{I}^{-1} = (\mathbf{a}_1 \wedge \mathbf{a}_2 \wedge \ldots \wedge \mathbf{a}_n) \cdot \mathfrak{I}^{-1}.$$

The pseudoscalars $\mathbf{a}_1 \wedge \mathbf{a}_2 \wedge \ldots \wedge \mathbf{a}_n$ and \mathfrak{I} are said to be the same orientation iff α is positive. Thus, the *choice of* \mathfrak{I} assigns an orientation to \mathfrak{V}^n and \mathfrak{V}^n is said to be oriented. The opposite orientation is obtained by selecting $-\mathfrak{I}$ as unit pseudoscalar.

From any basis $\{\mathbf{a}_r\}$ for \mathfrak{V}^n , one can generate a basis for the linear space \mathfrak{G}_n^r of r-vectors by forming all independent outer products of r-vectors from the set $\{\mathbf{a}_r\}$. The number of ways it can be done is given by the binomial coefficient $\binom{n}{r}$. Therefore, \mathfrak{G}_n^r is a linear space of dimension $\binom{n}{r}$. The entire geometric algebra $\mathfrak{G}_n = \mathfrak{G}(\mathfrak{V}^n)$ can be described as a sum of subspaces with different grade; *i.e.*,

$$\mathfrak{G}_n = \mathfrak{G}_n^0 + \mathfrak{G}_n^1 + \dots + \mathfrak{G}_n^r + \dots + \mathfrak{G}_n^n = \sum_{r=0}^n \mathfrak{G}_n^r.$$

D. HERRERA

Thus \mathfrak{G}_n is a linear space of dimension

4

$$\dim \mathfrak{G}_n = \sum_{r=0}^n \dim \mathfrak{G}_n^r = \sum_{r=0}^n \binom{n}{r} = 2^n.$$

The elements of \mathfrak{G}_n are called *multivectors* or quantities or *cliffs*. Any multivector A can be expressed *uniquely* as a linear combination of its r-vector parts $\langle A \rangle_k$; *i.e.*,

$$A = \langle A \rangle_0 + \langle A \rangle_1 + \dots + \langle A \rangle_n = \sum_{r=0}^n \langle A \rangle_r.$$

Thus, it can be said that

- $\diamond\,$ the outer product moves a k-vector up one step, and
- \diamond the inner product moves a k-vector down one step.
- 1.6. Symmetric Under Duality Transformation. The dual A \mathfrak{I} of a multivector A is obtained by multiplication with the unit pseudoscalar \mathfrak{I} .

This operation maps scalars into pseudoscalars, vectors into (n-1)-vectors and viceversa. It transforms r-vector $\langle A \rangle_k$ into a (n-r)-vector $\langle A \rangle_r \mathfrak{I}$.

For any arbitrary multivector, the decomposition gives the term-by-term equivalence

$$A \Im = \sum_{r=0}^{n} \langle A \rangle_r \Im = \sum_{r=0}^{n} \langle A \Im \rangle_{n-r}.$$

The duality transformation of \mathfrak{G}_n interchanges up and down; therefore, it must interchange inner and outer products:

$$(\mathbf{a} \cdot \langle A \rangle_r) \mathfrak{I} = \mathbf{a} \wedge (\langle A \rangle_r \mathfrak{I}).$$

This can be solved to empress the inner product in terms of the outer product and two duality transformations:

$$\mathbf{a} \cdot \langle A \rangle_r = [\mathbf{a} \wedge (\langle A \rangle_r \mathfrak{I})] \mathfrak{I}^{-1}.$$

1.7. **Reversion and Scalar Parts.** Reversion facilitates computations. *Reversion* changes the order of vector factors in any multivector:

$$(\mathbf{a}_1\mathbf{a}_2\dots\mathbf{a}_r)^{\dagger}=\mathbf{a}_r\mathbf{a}_{r-1}\dots\mathbf{a}_1.$$

It follows that $\mathbf{a}^{\dagger} = \mathbf{a}$ and $\alpha^{\dagger} = \alpha$.

The reverse of the r-vector part of any multivector A is given by

$$\langle A^{\dagger} \rangle_r = \langle A \rangle_r^{\ \dagger} = (-1)^{\frac{r(r-1)}{2}} \langle A \rangle_r.$$

Moreover,

$$(AB)^{\dagger} = B^{\dagger}A^{\dagger},$$

$$(A+B)^{\dagger} = A^{\dagger} + B^{\dagger}.$$

The operation of selecting the scalar part of a multivector is so important that it deserves an own symbol: $\langle A \rangle = \langle A \rangle_0$.

This operation generalizes the selection of the real part of a complex number and corresponds to computing the trace of a matrix in matrix algebra:

$$\langle ABC \rangle = \langle BCA \rangle.$$

1.8. Scalar Product and Multiplicative Inverse. Scalar product is defined for all multivectors in the 2^n -dim linear space \mathfrak{G}_n by

$$\langle A^{\dagger}B\rangle = \sum_{r=0}^{n} \langle \langle A\rangle_{r}^{\dagger} \langle B\rangle_{r}\rangle = \langle B^{\dagger}A\rangle.$$

For every multivector A, this determines a scalar magnitude or modulus |A| given by

$$|A|^2 = \langle A^{\dagger} A \rangle = \sum_r |\langle A \rangle_r|^2 = \sum_r \langle A \rangle_r^{\dagger} \langle A \rangle_r.$$

The measure of the "size" of a multivector has the Euclidean property

$$|A|^2 > 0$$

with |A| = 0 iff A = 0. Accordingly, the scalar product is said to be *Euclidean* or *positive definite*. Every r-vector has a multiplication inverse:

$$\langle A \rangle_r^{-1} = \frac{\langle A \rangle_r}{\left| \langle A \rangle_r \right|^2}$$

1.9. **Involution.** An *automorphism* of an algebra \mathfrak{G}_n is a one-to-one mapping of \mathfrak{G}_n onto \mathfrak{G}_n which preserves the algebraic operation of addition and multiplication. An *involution* $\underline{\alpha}$ is an automorphism which equals the identity mapping when applied twice. Thus, for an element A in \mathfrak{G}_n ,

$$\underline{\alpha}^2(A) = \underline{\alpha}(\underline{\alpha}(A)) = A.$$

Geometric algebra has two fundamental involutions:

- (1) reversion: $A^{\dagger} = \underline{\alpha}(A)$,
- (2) main involution: $A^* = \alpha(A)$.

Main involution, denoted $A^* = \underline{\alpha}(A)$, can be defined by the following procedure:

Any multivector A can be decomposed into a part

$$A_{+} = \langle A \rangle + \langle A \rangle_2 + \cdots$$

called the even step of A and into a part

$$A_{-} = \langle A \rangle_1 + \langle A \rangle_3 + \cdots$$

called the odd step of A, thus

$$A = A_+ + A_-.$$

Now, the *involute of* A can be defined by

$$A^* = A_+ - A_-.$$

It follows that, for geometric product of any multivectors, one has

$$(AB)^* = A^*B^*.$$

6 D. HERRERA

References

[1] David Hestenes. New foundations for mathematical physics. on-line, http://geocalc.clas.asu.edu/html/NFMP.html, 1998.