

Détection de patterns dans des séries de voyages Présentation Mi-parcours

Wassim Aya Riad Louheb Ali Rafik

UFR des Sciences Université de Caen Normandie

27 janvier 2025

Plan

- Introduction
- Objectifs
- 3 Recherche de motifs séquentiels
- 4 Nettoyage des données
- 6 Algorithmes
- 6 Expérimentations et analyse

Introduction

Introduction

Qu'est-ce que Sinay?

Sinay est une entreprise qui propose des solutions de données pour l'industrie maritime, comme le suivi des navires et l'analyse des conditions océaniques.

En quoi consiste ce projet?

Le projet vise à extraire des motifs et détecter des patterns dans des séries de voyages, ainsi identifier des lignes maritimes régulières (LMR).

Objectifs

Objectifs

Objectif principale

Cette étude vise à identifier des lignes maritimes régulières (LMR) dans les historiques de trajets des navires.

Pourquoi extraire les LMR?

- **Prédiction**: Anticiper les ports à visiter pour une meilleure gestion logistique.
- Trajets réel et proposé : Comparer entre les trajets réels et proposés pour identifier des optimisations.

Lignes Maritimes

Figure – Lignes maritimes - (Fournit par Sinay)

Comment extraire ces LMR?

Recherche de motifs séquentiels : Problématique

Défis de l'Extraction de Motifs Séquentiels

- Les motifs séquentiels étendent les règles d'association en ajoutant la dimension temporelle.
- Une base séquentielle contient des séquences ordonnées de transactions.
- L'intégration de la temporalité nécessite des calculs supplémentaires.

Motifs Séquentiels : Définitions Clés

Définitions Clés

- Item : Élément observé (ex. produit, événement)
- Transaction : Items achetés par un client à un instant donné
- Itemset : Ensemble d'items
- Séquence : Liste ordonnée d'itemsets
- Support : Pourcentage des clients qui supportent une séquence donnée
- Motif Fréquent : Séquence dont le support dépasse un seuil minimum

Motifs séquentiels : exemple

Exemple de motifs séquentiels

Après avoir défini les motifs séquentiels, prenons l'exemple du motif {B, I}, qui est un sous-ensemble récurrent dans les séquences, respectant l'ordre temporel. Sa fréquence dans la table des séquences est de 50%.

Client	Date	Items	
C_1	01/01/2004	(B),F	
C_1	02/02/2004	В	
C_1	04/02/2004	C	
C_1	18/02/2004	н,(І)	
C_2	11/01/2004	A	
C_2	12/01/2004	C	
C_2	29/01/2004	D,F,G	
C_3	05/01/2004	C,E,G	
C_3	12/02/2004	A,B	
C_4	06/02/2004	(B) C	
C_4	07/02/2004	D,G	
C_4	08/02/2004	(I)	

Figure – Motifs séquentiels

Nettoyage des données

Données de l'entreprise

Échantillion de données :

```
{"id": 228283
  "mmsi": 229338000
  "imo": 9625906
  "departure_port": "AUBTB"
   "arrival_port": "AUPOR",
"arrival_date":
"2022-07-16T13:27:32" ,...}
```

- id : Identifiant unique du voyage.
- mmsi : Numéro d'identification du navire.
- imo : Identifiant permanent du navire.
- departure_port : Nom du port de départ.
- arrival_port : Nom du port d'arrivée.

Nettoyage des données

• Pré-traitement :

Etapes de nettoyage

- Sélectionner les ports de départ et d'arrivée.
- Créer des séquences ordonnées par date d'arrivée.
- Exclure les anomalies :
 - Ports non renseignés (null).
 - Duplication succesive du même port dans les séquences.

Exemple de séquence avant nettoyage

 $S\'{e}q: \langle AUBTB
ightarrow AUPOR
ightarrow AUPOR
ightarrow VNSGN
ightarrow NULL \ldots
angle$

Exemple de séquence après nettoyage

 $\textit{S\'eq}: \langle \textit{AUBTB} \rightarrow \textit{AUPOR} \rightarrow \textit{VNSGN} \ldots \rangle$

Adaptation

Adaptation du format de données :

- Dictionnaire de conversion : Association des ports à des entiers uniques.
- 2 Séparation des éléments :
 - Ports séparés par la valeur -1.
 - Fin de séquence marquée par la valeur -2.

Exemple de séquence transformée

$$1 - 1 \ 3 - 1 \ 5 - 1 \ 6 - 1 \ 1 - 1 \ 2 - 1 \ \dots - 2$$

Post-traitement des motifs

Objectif du post-traitement

Assurer que seuls les motifs pertinents, susceptible d'être des **lignes** maritimes régulières, soient conservés après l'exécution de l'algorithme PrefixSpan.

- Exclusion des motifs de taille 1.
- Suppression des ports consécutifs identiques.
- Seconda des motifs avec un port unique répété.

Exemple de motif après post-traitement

 $Motif: \langle AUPOR \rightarrow VNSGN \rightarrow CNE76 \rightarrow HKHKG \rangle$

Algorithmes

Algorithme GSP

Principe

Extraction des motifs séquentiels fréquents via une approche itérative.

Génération de candidats :

- Identification des motifs fréquents de taille 1 (1-fréquents).
- Génération des séquences potentielles (candidats) en combinant les motifs fréquents précédents.

Évaluation du support :

- Calcul du support pour chaque candidat.
- Conservation des séquences atteignant un seuil minimal.

Algorithme PREFIXSPAN

Principe

Réduction de l'espace de recherche grâce à la projection de bases.

- Items fréquents :
 - Identification des items fréquents (1-fréquents).
- Projection:
 - Division de la base en sous-ensembles selon les préfixes fréquents.
 - Utilisation des suffixes pour réduire la recherche.
- Exploration récursive :
 - Détection de nouveaux préfixes fréquents.
 - Extension des motifs jusqu'à épuisement.

Exemple illustratif de PREFIXSPAN

- Préfixe <a> : extraction des bases projetées (suffixes).
- Génération des motifs fréquents à partir des bases projetées.
- Support minimum : 50% (2 séquences)

Client	Séquence		
10	< (a) (a b c) (a c) (d) (c f) >		
20	< (a d) (c) (b c) (a e) >		
30	< (e f) (a b) (d f) (c) (b) >		
40	< (e) (g) (a f) (c) (b) (c) >		

Préfixe	base projetée (suf-	motifs séquentiels
	fixes)	
<a>>	<(abc)(ac)(d)(cf)>, (_d)(c)(bc)(ae)>, <(_b)(df)(c)(b)>, <(_f)(c)(b)(c)>	<pre><a>, <(a)(a)>, <(a)(b)>, <(a)(bc)>, <(a)(bc)(a)>, <(a)(b)(a)>, <(a)(b)(c)>, <(ab)>, <(ab)(c)>, <(ab)(d)>, <(ab)(f)>, <(ab)(d)(c)>, <(a)(c)(a)>, <(a)(c)(b)>, <(a)(c)(c)>, <(a)(d)>, <(a)(d)(c)>, <(a)(f)></pre>
	<(_c)(ac)(d)(cf)>, <(_c)(ae)>, <(df)(c)(b)>, <c></c>	<pre></pre>
:	:	:

Algorithme CLOSPAN

Principe

Extraction de motifs séquentiels fermés pour réduire la redondance.

- **Ordre lexicographique :**
 - Exploration structurée en triant les motifs.
- Relations entre items :
 - Identification des relations fixes ("A précède toujours B").
- Optimisation:
 - Basé sur PREFIXSPAN pour la projection des bases.
 - Réduction de la redondance en extrayant uniquement les motifs séquentiels fermés.

Expérimentations et analyse

Protocole expérimental

Algorithme choisi: PrefixSpan

Données utilisées: 1552 navires

Paramètre variable : Support minimum (minsupp) (1% à 20%)

Métriques observées :

Temps d'exécution

Nombre de motifs extraits

Taille moyenne des motifs

• Écart-type de la taille des motifs

Expérimentations

Support minimum	Nombre de navires	Temps pris (ms)	Nombre de motifs trouvés	Taille moyenne des motifs	Écart type
1%	16	131600.55	6462944	10.19	2.02
2%	31	2021.33	25696	5.66	2.00
3%	47	768.38	4345	4.92	2.14
4%	62	569.71	1539	4.47	2.10
5%	78	504.18	741	4.29	2.04
6%	93	420.92	411	3.91	1.77
7%	109	437.76	225	3.29	1.39
8%	124	363.63	133	3.06	1.19
9%	140	357.14	74	2.59	0.80
10%	155	347.67	51	2.37	0.62
11%	171	341.53	29	2.28	0.52
12%	186	345.66	17	2.18	0.38
13%	202	337.82	8	2.00	0.00
14%	217	339.09	5	2.00	0.00
15%	233	329.06	1	2.00	0.00
16%	248	334.06	1	2.00	0.00
17%	264	335.52	0	nan	nan

Figure – Résultats des expérimentations

Analyse des résultats expérimentaux

Tendances principales observées :

- Impact du support minimum :
 - Plus le seuil de support augmente, moins il y a de motifs.
 - Exemple : 6M motifs (support 0.01) \rightarrow 0 motif (support 0.17).
- Taille des motifs :
 - Séquences longues moins fréquentes avec un support élevé.
- Temps d'exécution :
 - Support faible (0.01) : > 131s
 - Support élevé (> 0.10) : \approx 350ms

Visualisation du temps d'exécution

Explication des motifs extraits

Un échantillion de motifs fréquents extraits :

- PATBG → PACTB → PAROD → PACTB → NLMSV → PAROD #SUP : 16
- GBLGP → BEANR → NLMSV #SUP : 63

Exemple d'interprétation

Le motif GBLGP \rightarrow BEANR \rightarrow NLMSV (#SUP : 63) signifie que 63 navires ont suivi ce trajet, passant par ces ports dans cet ordre.

NB

- Entre deux ports, des trajets intermédiaires sont possibles.
- Le trajet peut aussi être direct.

Conclusion

Conclusion