Gander, Golub, and von Matt consider the following problem: Given an $(n+m) \times (n+m)$ real symmetric matrix A (with n > 0), an $(n+m) \times m$ matrix N with full rank, and a nonzero vector $t \in \mathbb{R}^m$ with $||(N^\top)^+ t|| < 1$ (where $(N^\top)^+$ denotes the pseudo-inverse of N^\top),

minimize
$$x^{\top}Ax$$

subject to $x^{\top}x = 1, N^{\top}x = t, x \in \mathbb{R}^{n+m}$.

The condition $||(N^{\top})^+t|| < 1$ ensures that the problem has a solution and is not trivial. The authors begin by proving that the affine constraint $N^{\top}x = t$ can be eliminated. One way to do so is to use a QR decomposition of N. If

$$N = P \begin{pmatrix} R \\ 0 \end{pmatrix},$$

where P is an orthogonal $(n+m) \times (n+m)$ matrix and R is an $m \times m$ invertible upper triangular matrix, then if we observe that

$$x^{\mathsf{T}}Ax = x^{\mathsf{T}}PP^{\mathsf{T}}APP^{\mathsf{T}}x,$$

$$N^{\mathsf{T}}x = (R^{\mathsf{T}}0)P^{\mathsf{T}}x = t,$$

$$x^{\mathsf{T}}x = x^{\mathsf{T}}PP^{\mathsf{T}}x = 1,$$

and if we write

$$P^{\top}AP = \begin{pmatrix} B & \Gamma^{\top} \\ \Gamma & C \end{pmatrix},$$

where B is an $m \times m$ symmetric matrix, C is an $n \times n$ symmetric matrix, Γ is an $m \times n$ matrix, and

$$P^{\top}x = \begin{pmatrix} y \\ z \end{pmatrix},$$

with $y \in \mathbb{R}^m$ and $z \in \mathbb{R}^n$, we then get

$$x^{\top}Ax = y^{\top}By + 2z^{\top}\Gamma y + z^{\top}Cz,$$

$$R^{\top}y = t,$$

$$y^{\top}y + z^{\top}z = 1.$$

Thus

$$y = (R^{\top})^{-1}t,$$

and if we write

$$s^2 = 1 - y^\top y > 0$$

and

$$b = \Gamma y$$
.