0.1. Lecture 3

0.1 Lecture 3

Wednesday 18th March, 2020. Compiled: Thursday 28th May, 2020. Alice.

	Università degli Stud di Padova		Nano-size		NanoScienc NanoPhysic	
			Bulk Material	Nano Material		
		Size (L)	~ 1 m	$< 100 \text{ nm} = 10^{-7} \text{ m}$		
	F	Property (A)	$A \neq A(L)$	A = A(L)		
		 Nano-physics: L < λ_C E.g.: λ_e = electronic mean free path (10-100 nm) λ_{exc} = excitonic Bohr radius (1-10 nm) λ_M = magnetic domain (30-50 nm) 				
*		contr	ol L = contro	I A(L)		

Size Equations

NanoScience, NanoPhysics

Size Equation:

- Evolution of the chemical-physical properties vs. the nanostructures size
- Top-down approach

$$A(N) = A(\infty) \left(1 + \frac{C_N}{N^{\alpha}} \right)$$

$$A(R) = A(\infty) \left(1 + \frac{C_R}{R^{\alpha}}\right)$$

A = property

 $A(\infty)$ = bulk limit of A

N = number of atoms

R = NP radius

 C, α costants

DEGLI STUDI DI PADOVA

Size Equations

NanoScience/ **NanoPhysics**

Effective radius and atomic fraction at the surface

$$V = \frac{4\pi}{3} R_0^3 N = \frac{4\pi}{3} R_{eff}^3$$

$$R_{eff} = \left(\frac{V}{4\pi/3}\right)^{1/3} = R_0 N^{1/3}$$
 $S = \text{cluster surface}$ $R_0 = \text{atomic radius}$

V = cluster volume

$$S = 4\pi R_{eff}^2 = 4\pi R_0^2 N^{2/3}$$

$$N_{\text{sup}} = \frac{S}{S_{at}} = \frac{4\pi R_0^2 N^{2/3}}{\pi R_0^2} = 4N^{2/3}$$

$$F = \frac{N_{\text{sup}}}{N} = \frac{4}{N^{1/3}} = \frac{4R_0}{R_{eff}}$$

 \mathbf{F} = fraction of surface atoms

N	F
10 ²	0.86
10 ³	0.40
10 ⁶	0.04

G.Mattei

0.1. Lecture 3

0.1. Lecture 3 5

Thermodynamic Size Effect

NanoScience/ NanoPhysics

Given a spherical cluster with N atoms:

$$T_M(R) \leftrightarrow T_M(\infty)$$

At equilibrium between solid (S) and liquid (L) phases:

$$\mu_L(T,P) = \mu_S(T,P)$$

$$\mu \equiv \frac{\partial G}{\partial N}\Big|_{TP} = \frac{\partial U}{\partial N}\Big|_{SV}$$

First-order expansion of the chemical potential close to the bulk thermodynamic equilibrium (T_0,P_0) gives:

$$\mu(T,P) = \mu(T_0,P_0) + \frac{\partial \mu}{\partial T}(T-T_0) + \frac{\partial \mu}{\partial P}(P-P_0) + \dots$$

Considering U = U(S, V, N) and requiring that $U(\lambda S, \lambda V, \lambda N) = \lambda U(S, V, N)$ it results:

$$U \equiv TS - PV + \mu N$$

.Mattei

Thermodynamic Size Effect

NanoScience/ NanoPhysics

Using the Gibbs-Duhem relation for U(S, V, N)

$$SdT - VdP + Nd\mu = 0$$

$$d\mu = -\frac{S}{N}dT + \frac{V}{N}dP$$

$$d\mu = -sdT + \frac{1}{\rho}dP$$

$$s \equiv \frac{S}{N} = -\left(\frac{\partial \mu}{\partial T}\right)_{P}$$

$$\frac{1}{\rho} \equiv \frac{V}{N} = \left(\frac{\partial \mu}{\partial P}\right)_{T}$$

therefore:

$$0 = \mu_L(T_0, P_0) + \frac{\partial \mu_L}{\partial T}(T - T_0) + \frac{\partial \mu_L}{\partial P}(P_L - P_0) - \mu_S(T_0, P_0) - \frac{\partial \mu_S}{\partial T}(T - T_0) - \frac{\partial \mu_S}{\partial P}(P_S - P_0) + \dots$$

G.Mattei

Thermodynamic Size Effect

NanoScience/ NanoPhysics

If T₀ and P₀ are at the triple point of the bulk phase:

$$\mu_L(T_0, P_0) = \mu_S(T_0, P_0)$$

$$0 = s_L(T - T_0) - \frac{1}{\rho_L}(P_L - P_0) - s_S(T - T_0) + \frac{1}{\rho_S}(P_S - P_0)$$

$$(s_L - s_S)(T - T_0) - \frac{1}{\rho_L}(P_L - P_0) + \frac{1}{\rho_S}(P_S - P_0) = 0$$

From Laplace law:

$$P_{L} = P_{ext} + 2\frac{\gamma_{L}}{R_{L}} \approx 2\frac{\gamma_{L}}{R_{L}}$$

$$P_{S} = P_{ext} + 2\frac{\gamma_{S}}{R_{S}} \approx 2\frac{\gamma_{S}}{R_{S}}$$

$$R_{S} = \left(\frac{\rho_{L}}{\rho_{S}}\right)^{1/3} R_{L}$$

when $R \Rightarrow 0$ $P_{ext} << P_{L'} P_S$

G.Mattei

61

Thermodynamic Size Effect

NanoScience/ NanoPhysics

Considering the Latent heat of fusion per atom $L = (s_L - s_S)T_0$

$$(s_L - s_S)T_0\left(\frac{T}{T_0} - 1\right) + 2\left(\frac{\gamma_S}{R_S\rho_S} - \frac{\gamma_L}{R_L\rho_L}\right) + P_0\left(\frac{1}{\rho_L} - \frac{1}{\rho_S}\right) = 0$$

$$\frac{\Delta T}{T_0} \equiv \frac{T - T_0}{T_0} = -\frac{2}{LR_S \rho_S} \left(\gamma_S - \gamma_L \left(\frac{\rho_S}{\rho_L} \right)^{2/3} \right) = -\frac{A}{R} < 0$$

Hypoteses:

- 1. First-order expansion of the chemical potential
- 2. Spherical Cluster
- 3. $\rho_L \sim \rho_S$

G.Mattei

0.1. Lecture 3 **7**

Thermodynamic Size Effect

NanoScience/ NanoPhysics

Size equation

$$T_M(R) = T_M(\infty) \left(1 - \frac{C}{R} \right)$$

$$C \equiv \frac{2}{L\rho_S} \left(\gamma_S - \gamma_L \left(\frac{\rho_S}{\rho_L} \right)^{2/3} \right)$$

For Au:

L = 62700 J/kg (latent heat of fusion)

 $T_0 = 1336 \text{ K (bulk melting temperature)}$

 $\rho_L = 17280 \text{ kg/m}^3$ (density of the liquid phase)

 ρ_S = 18400 kg/m³ (density of the solid phase)

 $\gamma_L = 1.135 \text{ J/m}^2$ (surface tension liquid phase)

 $\gamma_S = 1.380 \text{ J/m}^2 \text{ (surface tension solid phase)}$

C(Au) = 0.34 nm

G.Mattei

63