17.4: Green's Theorem

Green's Theorem — Circulation Form

Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that encloses a connected and simply connected region R in the plane. Assume $\mathbf{F} = \langle f, g \rangle$, where f and g have continuous first partial derivatives in R. Then

$$\underbrace{\oint_C \mathbf{F} \cdot d\mathbf{r}}_{\text{circulation}} = \underbrace{\oint_C f \, dx + g \, dy}_{\text{circulation}} = \iint_R \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dA.$$

Definition. (Two-Dimensional Curl)

The **two-dimensional curl** of the vector field $\mathbf{F} = \langle f, g \rangle$ is $\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}$. If the curl is zero throughout a region, the vector field is **irrotational** on the region.

Example. Consider the following vector fields \mathbf{F} over the region $R = \{(x, y) : x^2 + y^2 \le 1\}$. Compute the circulation using Green's Theorem.

$$\mathbf{F} = \langle -y, x \rangle$$

$$\mathbf{F} = \langle x, y \rangle$$

Example. Compute the curl of $\mathbf{F} = \langle x^2, 2y^2 \rangle$ where C is the upper half of the unit circle and the line segment $-1 \le x \le 1$.

Area of a Plane Region by Line Integrals

Under the conditions of Green's Theorem, the area of a region R enclosed by a curve C is

$$\oint_C x \, dy = -\oint_C y \, dx = \frac{1}{2} \oint_C (x \, dy - y \, dx).$$

Example. Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Green's Theorem — Flux Form

Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that encloses a connected and simply connected region R in the plane. Assume $\mathbf{F} = \langle f, g \rangle$, where f and g have continuous first partial derivatives in R. Then

$$\underbrace{\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds}_{\text{outward flux}} = \underbrace{\oint_{C} f \, dy - g \, dx}_{\text{outward flux}} = \iint_{R} \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) dA,$$

where \mathbf{n} is the outward unit normal vector on the curve.

Definition. (Two-Dimensional Divergence)

The **two-dimensional divergence** of the vector field $\mathbf{F} = \langle f, g \rangle$ is $\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}$. If the divergence is zero throughout a region, the vector field is **source free** on that region.

Example. Integrate $\oint_C (2x + e^{y^2}) dy - (4y^2 + e^{x^2}) dx$, where C is the boundary of the square with vertices (0,0), (1,0), (1,1), and (0,1).

Example. Compute the circulation and outward flux across the boundary of the given regions:

 $\mathbf{F} = \langle x,y \rangle; \ R \text{ is the half-annulus } \{(r,\theta): 1 \leq r \leq 2, 0 \leq \theta \leq \pi\},$

 $\mathbf{F} = \langle -y, x \rangle; \ R \text{ is the annulus } \{(r, \theta): 1 \leq r \leq 3, 0 \leq \theta \leq 2\pi\}.$

Stream functions:

In the same way that a vector field is conservative if there exists a potential function φ , a vector field is source free if a **stream function** ψ exists such that

$$\frac{\partial \psi}{\partial y} = f, \qquad \frac{\partial \psi}{\partial x} = -g.$$

If such a function exists, then the divergence is zero:

$$\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} = \underbrace{\frac{\partial}{\partial x} \left(\frac{\partial \psi}{\partial y} \right) + \frac{\partial}{\partial y} \left(-\frac{\partial \psi}{\partial x} \right)}_{\psi_{yx} = \psi_{xy}} = 0$$

If a vector field is both conservative and source-free, then it has both a potential function and a stream function. Furthermore, the level curves of the potential and stream functions form orthogonal families. These vector fields have zero divergence

$$0 = f_x + g_y = \varphi_{xx} + \varphi_{yy},$$

and zero curl

$$0 = g_x - f_y = -\psi_{xx} - \psi_{yy}.$$

Thus, conservative, source-free vector fields satisfy Laplace's equation:

$$\varphi_{xx} + \varphi_{yy} = 0$$
 and $\psi_{xx} + \psi_{yy} = 0$.

Example. For $\mathbf{F} = \langle -e^{-x}\sin(y), e^{-x}\cos(y) \rangle$

Show ${\bf F}$ is conservative and source-free field

Find the potential function φ and the stream function ψ

Conservative Fields $\mathbf{F} = \langle f, g \rangle$

Source-Free Fields $\mathbf{F} = \langle f, g \rangle$

$$\operatorname{curl} = \frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} = 0$$

 $divergence = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} = 0$

Potential function φ with

$$\mathbf{F} = \nabla \varphi$$
 or $f = \frac{\partial \varphi}{\partial x}$, $g = \frac{\partial \varphi}{\partial y}$

Stream function
$$\psi$$
 with $f = \frac{\partial \psi}{\partial y}$, $g = -\frac{\partial \psi}{\partial x}$

Circulation = $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ on all closed curves C.

Flux = $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = 0$ on all closed curves C.

Evaluation of the line integral

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \varphi(B) - \varphi(A)$$

Evaluation of the line integral $\int_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \psi(B) - \psi(A)$

Circulation/work integrals: $\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_C f \, dx + g \, dy$

C closed

C not closed

F conservative $(\mathbf{F} = \nabla \varphi)$

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$$

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \varphi(B) - \varphi(A)$$

F not conservative

Green's Theorem
$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_R (g_x - f_y) dA$$

Green's Theorem
$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_R (g_x - f_y) dA$$
Direct evaluation
$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b (fx' + gy') dt$$

Flux integrals:
$$\int_C \mathbf{F} \cdot \mathbf{n} \, ds = \int_C f \, dy - g \, dx$$

C closed

C not closed

F source free $(f=\psi_u, q=-\psi_r)$

$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = 0$$

$$\int_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \psi(B) - \psi(A)$$

F not source free

Green's Theorem
$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_R (f_x + g_y) \, dA \qquad \int_C \mathbf{F} \cdot \mathbf{n} \, ds = \int_a^b (fy' - gx') \, dt$$

Direct evaluation
$$\int_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{a}^{b} (fy' - gx') \, dt$$

Example. Suppose C is a circle centered at the origin, oriented counterclockwise, that encloses disk R in the plane. For $\mathbf{F} = \left\langle 4x^3y, xy^2 + x^4 \right\rangle$

a) Calculate the two-dimensional curl of ${\bf F}$

b) Calculate the two-dimensional divergence of ${\bf F}$

c) Is \mathbf{F} irrotational on R?

d) Is \mathbf{F} source free on R?

Proof. Consider the regions R enclosed by a simple closed smooth curve C oriented in a counterclockwise direction, given by

$$R = \{(x, y) : a \le x \le b, G_1(x) \le y \le G_2(x)\}$$

or

$$R = \{(x, y) : H_1(y) \le x \le H_2(y), c \le y \le d\}.$$

To prove the circulation form of Green's Theorem, we have

$$\iint_{R} \frac{\partial f}{\partial y} dA$$

$$= \int_{a}^{b} \int_{G_{1}(x)}^{G_{2}(x)} \frac{\partial f}{\partial y} dy dx$$

$$= \int_{a}^{b} \left(\underbrace{f(x, G_{2}(x))}_{\text{on } C_{2}} - \underbrace{f(x, G_{1}(x))}_{\text{on } C_{1}}\right) dx$$

$$= \int_{-C_{2}}^{c} f dx - \int_{C_{1}}^{c} f dx$$

$$= -\int_{C_{2}}^{c} f dx - \int_{C_{1}}^{c} f dx$$

$$= -\oint_{C}^{c} f dx$$

$$\iint_{R} \frac{\partial g}{\partial x} dA$$

$$= \int_{c}^{d} \int_{H_{1}(y)}^{H_{2}(y)} \frac{\partial g}{\partial x} dx dy$$

$$= \int_{c}^{d} \left(\underbrace{g(H_{2}(y), y)}_{C_{2}} - \underbrace{f(H_{1}(y), y)}_{-C_{1}} \right) dy$$

$$= \int_{C_{2}} g dy - \int_{-C_{1}} g dy$$

$$= \int_{C_{2}} g dy + \int_{C_{1}} g dy$$

$$= \oint_{C} g dy$$