In Exercises 1-3, for the given transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$, do the following:

- (a) Find the image of $\vec{v} = (3, -1, 2)$ under T.
- (b) Is T a linear transformation? If so, find the matrix associated with T.
- (c) Find all vectors \vec{v} whose image under T is $\vec{v'} = (1, 3, 2)$.
- (d) Find the inverse transformation, T^{-1} , or give a reason why T^{-1} does not exist.
- (e) Is T^{-1} a linear transformation? If so, find the matrix associated with T^{-1} .
- **1.** $T(v_1, v_2, v_3) = (v'_1, v'_2, v'_3)$, where

$$v_1' = v_3$$

$$v_2' = v_1 + v_2$$

$$v_3' = v_1 v_2$$

Solution: (a) T(3, -1, 2) = (2, 2, -3).

- (b) No, T is not linear. For example, if we set $\vec{v} = (3, -1, 2)$, then $T(2\vec{v}) \neq 2T(\vec{v})$.
- (c) If $\vec{v} = (v_1, v_2, v_3)$ and $T(\vec{v}) = (1, 3, 2)$, then

$$v_3 = 1$$

$$v_1 + v_2 = 3$$

$$v_1 v_2 = 2$$

Solving for v_1 , v_2 and v_3 leads to two solutions: $\vec{v} = (1, 2, 1)$ and $\vec{v} = (2, 1, 1)$.

- (d) The inverse transformation does not exist since the inverse image of $\vec{v'} = (1, 3, 2)$ is not uniquely defined: it could be either $\vec{v} = (1, 2, 1)$ or $\vec{v} = (2, 1, 1)$.
- (e) Not applicable, since T^{-1} does not exist.
- **2.** $T: \mathbb{R}^3 \to \mathbb{R}^3$, $T(v_1, v_2, v_3) = (v_1', v_2', v_3')$, where

$$v'_1 = v_1 + 2v_2 - v_3$$

 $v'_2 = v_2 + v_3$
 $v'_3 = 2 - v_3$

Solution: (a) T(3,-1,2) = (-1,1,0).

- (b) Since T(0,0,0)=(0,0,2), it follows that $T(\vec{0})\neq\vec{0}$, so T is not linear.
- (c) If $\vec{v} = (v_1, v_2, v_3)$ and $T(\vec{v}) = (1, 3, 2)$, then

$$v_1 + 2v_2 - v_3 = 1$$

 $v_2 + v_3 = 3$
 $2 - v_3 = 2$.

Solving for v_1 , v_2 and v_3 (say, by backward substitution) leads to a unique solution: $\vec{v} = (-5, 3, 0)$.

(d) For any vector $\vec{v'}$ in \mathbb{R}^3 , $T^{-1}(\vec{v'})$ is defined if and only if there is a *unique* vector \vec{v} such that $T(\vec{v}) = \vec{v'}$. Thus we need to determine whether there is exactly one solution of the system:

$$v_1 + 2v_2 - v_3 = v'_1$$

 $v_2 + v_3 = v'_2$
 $2 - v_3 = v'_3$,

where we treat v_1 , v_2 , v_3 as the unknowns and v_1' , v_2' , v_3' are fixed constants. Solving the system (say, by backward substitution) leads to a unique solution:

$$v_1 = v'_1 - 2v'_2 - 3v'_3 + 6$$

$$v_2 = v'_2 + v'_3 - 2$$

$$v_3 = 2 - v'_3$$

These equations define the inverse transformation T^{-1} , where $T^{-1}(v_1', v_2', v_3') = (v_1, v_2, v_3)$.

- (e) Since $T^{-1}(0,0,0) = (6,-2,2)$, it follows that $T^{-1}(\vec{0}) \neq \vec{0}$, so T^{-1} is not linear.
- **3.** $T: \mathbb{R}^3 \to \mathbb{R}^3$, $T(v_1, v_2, v_3) = (v'_1, v'_2, v'_3)$, where

$$v'_1 = v_1 - 5v_3$$

$$v'_2 = v_2 + 3v_3$$

$$v'_3 = 2v_1 + 3v_2$$

Solution: (a) T(3,-1,2) = (-7,5,3).

(b) The transformation is linear since the given equations can be written in the matrix form:

$$\begin{pmatrix} v_1' \\ v_2' \\ v_3' \end{pmatrix} = \begin{pmatrix} 1 & 0 & -5 \\ 0 & 1 & 3 \\ 2 & 3 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} .$$

The 3×3 matrix occurring here is the matrix associated with the transformation T.

(c) If $\vec{v} = (v_1, v_2, v_3)$ and $T(\vec{v}) = (1, 3, 2)$, then

$$\begin{pmatrix} 1 & 0 & -5 \\ 0 & 1 & 3 \\ 2 & 3 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} .$$

Solving for v_1 , v_2 and v_3 (say, by Gauss-Jordan elimination) leads to a unique solution: $\vec{v} = (-44, 30, -9)$.

(d) For any vector $\vec{v'}$ in \mathbb{R}^3 , $T^{-1}(\vec{v'})$ is defined if and only if there is a *unique* vector \vec{v} such that $T(\vec{v}) = \vec{v'}$. Thus we need to determine whether there is exactly one solution of the system:

$$\begin{pmatrix} 1 & 0 & -5 \\ 0 & 1 & 3 \\ 2 & 3 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} v_1' \\ v_2' \\ v_3' \end{pmatrix}.$$

where we treat v_1 , v_2 , v_3 as the unknowns and v_1' , v_2' , v_3' are fixed constants. This

is indeed the case since the determinant of the coefficient matrix is not zero:

$$\det \begin{pmatrix} 1 & 0 & -5 \\ 0 & 1 & 3 \\ 2 & 3 & 0 \end{pmatrix} = 1 \cdot \det \begin{pmatrix} 1 & 3 \\ 3 & 0 \end{pmatrix} + 2 \cdot \det \begin{pmatrix} 0 & -5 \\ 1 & 3 \end{pmatrix} = 1$$

In fact, we can solve the system by finding the inverse of the coefficient matrix A:

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A) = \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix}^{T} = \begin{pmatrix} M_{11} & -M_{21} & M_{31} \\ -M_{12} & M_{22} & -M_{32} \\ M_{13} & -M_{23} & M_{33} \end{pmatrix} = \begin{pmatrix} -9 & -15 & 5 \\ 6 & 10 & -3 \\ -2 & -3 & 1 \end{pmatrix}$$

Therefore the unique solution is $\vec{v} = A^{-1}\vec{v'}$, or:

$$v_1 = -9v'_1 - 15v'_2 + 5v'_3$$

$$v_2 = 6v'_1 + 10v'_2 - 3v'_3$$

$$v_3 = -2v_1 - 3v_2 + v'_3$$

These equations define the inverse transformation T^{-1} , where $T^{-1}(v_1', v_2', v_3') = (v_1, v_2, v_3)$.

(e) The inverse transformation is linear since it can be given in the matrix form:

$$\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} -9 & -15 & 5 \\ 6 & 10 & -3 \\ -2 & -3 & 1 \end{pmatrix} \begin{pmatrix} v_1' \\ v_2' \\ v_3' \end{pmatrix}.$$

The 3×3 matrix occurring here is the matrix associated with T^{-1} . This matrix is the inverse of the matrix associated with T.

4. Find all eigenvalues and corresponding eigenvectors for the matrix

$$A = \begin{pmatrix} 7 & -5 & 7 & -1 & 4 \\ 0 & 2 & 5 & -4 & 7 \\ 0 & 0 & 7 & 1 & 17 \\ 0 & 0 & 0 & 7 & 10 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}.$$

Solution: Each eigenvalue λ must be a root of the equation:

$$\det\begin{pmatrix} 7-\lambda & -5 & 7 & -1 & 4\\ 0 & 2-\lambda & 5 & -4 & 7\\ 0 & 0 & 7-\lambda & 1 & 17\\ 0 & 0 & 0 & 7-\lambda & 10\\ 0 & 0 & 0 & 0 & 2-\lambda \end{pmatrix} = 0.$$

Since the matrix is upper-triangular, its determinant is the product of the entries on the main diagonal. This leads to the equation:

$$(7-\lambda)^3(2-\lambda)^2 = 0$$

Therefore $\lambda = 7$ and $\lambda = 2$ are the only eigenvalues of the matrix A. Case 1: $\lambda = 7$

A vector \vec{v} is an eigenvector associated with $\lambda = 7$ if $(A - 7I_5)\vec{v} = \vec{0}$. This leads to a linear system:

$$\begin{pmatrix} 0 & -5 & 7 & -1 & 4 \\ 0 & -5 & 5 & -4 & 7 \\ 0 & 0 & 0 & 1 & 17 \\ 0 & 0 & 0 & 0 & 10 \\ 0 & 0 & 0 & 0 & -5 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Solving the system (say, by backward substitution), we get $v_5 = 0$, $v_4 = 0$, $v_3 = 0$, $v_2 = 0$, and v_1 is a free variable. Thus the eigenvectors corresponding to $\lambda = 7$ are of the form:

$$\vec{v} = \begin{pmatrix} v_1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = v_1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Case 2: $\lambda = 2$

A vector \vec{v} is an eigenvector associated with $\lambda = 2$ if $(A - 2I_5)\vec{v} = \vec{0}$. This leads to a linear system:

$$\begin{pmatrix} 5 & -5 & 7 & -1 & 4 \\ 0 & 0 & 5 & -4 & 7 \\ 0 & 0 & 5 & 1 & 17 \\ 0 & 0 & 0 & 5 & 10 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Solving the system (say, by backward substitution), we get $v_4 = -2v_5$, $v_3 = -3v_5$, and $v_1 = v_2 + 3v_5$, where v_2 and v_5 are free variables. Thus the eigenvectors corresponding to $\lambda = 2$ are of the form:

$$\vec{v} = \begin{pmatrix} v_2 + 3v_5 \\ v_2 \\ -3v_5 \\ -2v_5 \\ v_5 \end{pmatrix} = v_2 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + v_5 \begin{pmatrix} 3 \\ 0 \\ -3 \\ -2 \\ 1 \end{pmatrix}.$$

5. Let A and E be square matrices of the same size. Suppose E is invertible and let $B = E^{-1}AE$. Show that if (λ, \vec{v}) is an eigenpair of the matrix A, then $(\lambda, E^{-1}\vec{v})$ is an eigenpair of the matrix B.

Solution: The assumption that (λ, \vec{v}) is an eigenpair of the matrix A means that

$$A\vec{v} = \lambda \vec{v}$$
.

Hence

$$\begin{split} B(E^{-1}\vec{v}) &= (E^{-1}AE)(E^{-1}\vec{v}) = (E^{-1}A)((EE^{-1})\vec{v}) \\ &= (E^{-1}A)(I\vec{v}) = E^{-1}(A\vec{v}) = E^{-1}(\lambda\vec{v}) = \lambda(E^{-1}\vec{v}). \end{split}$$

Thus $(\lambda, E^{-1}\vec{v})$ is an eigenpair of the matrix B.