		Set 1				
			CO	BL	PO	Marks
1	a)	Draw a semantic network representing the following knowledge: Every vehicle is a physical object. Every car is a vehicle. Every car has four wheels. Electrical system is a part of car. Battery is a part of electrical system. Pollution system is a part of every vehicle. Vehicle is used in transportation. Suzuki is a car.	4	3	1, 2, 3, 9	6
	b)	Draw an extended semantic network for representing the following English text and infer the conclusion. Everyone who sees a movie in a theatre has to buy a ticket. A person who does not have money cannot buy a ticket. John sees a movie. Conclude that John had money.	4	3	1, 2, 3, 9	4
2	a)	Illustrate the different phases in building an expert system.	5	2	1, 2, 3, 9	6
	b)	Implement expert system for planning a vacation trip.	5	4	1, 2, 3, 9	4
3		For the Bayesian network given below and the corresponding probabilities $P(A) = 0.4 , P(B A) = 0.5, P(B \sim A) = 0.1, P(C A) = 0.6, P(C \sim A) = 0.3, P(D A,B) = 0.8, P(D A,\sim B) = 0.3, P(D \sim A,B) = 0.3, P(D \sim A,B) = 0.3, P(D \sim A,B) = 0.05$ i) Generate the conditional probability table ii) Compute P(A,B,C,D) iii) Compute P(A B) iv) Compute P(A B) v) Compute P(A B,C)	6	3	3, 5, 9	10

Set-2

			CO	BL	PO	Marks
1	a)	Develop a complete Frame Based System for University applications.	4	4	1, 2, 3, 9	5
	b)	Demonstrate how Extended Semantic Network can be used for Knowledge Representation.	4	3	1, 2, 3, 9	5
2		How is an expert system different from a traditional program? How is a production system different from an expert system? Describe the knowledge acquisition component of ES.	5	3	1, 2, 3, 9	10

3	Suppose we are g	given $MB[H_1,E] = 0.6$ and $MB[H_2,E] = 0.4$,	6	3	3	10
		and $MD[H_2,E]=0.5$. Using the given data	J		5	10
					0,	
	compute the following:				9	
	i) $MB[H_1 \text{ and } I]$	H_2,E				
	ii) $MD[H_1 \text{ and } I]$	$[H_2,E]$				
	iii) $CF[H_1 \text{ and } H_2]$	$[I_2,E]$				
	iv) $MB[H_1 \text{ or } H_2]$,E]				
	$MD[H_1 \text{ or } H_2]$,E]				
	vi) $CF[H_1 \text{ or } H_2,$	E]				

Set 3

			CO	BL	PO	Marks
1	a)	Demonstrate how Knowledge can be represented using Semantic Network.	4	3	1, 2, 3, 9	6
	b)	Create a network of frames(NOF) with ako, a_part_of, and inst links with the following characteristics: i) Insert a frame in NOF with all slots value filled up. ii) Delete a frame from NOF. iii) Update the value of the slot of a given frame. iv) Query model to ask questions using FBS.	4	3	1, 2, 3, 9	4
2		Consider the knowledge base given below. Perform forward and backward chaining to satisfy the goal. R1: if A then B R2: if C then E R3: if A and C then F R4: if B and E then D Facts: A,C Goal: D	5	3	1, 2, 3, 9	10
3		Consider the mutually exclusive hypotheses represented by a set U={viral, measles, mumps, cough, conjunctivitis} in diagnostic system. Suppose we have measure s belief function 'm1' based on evidence of fever as m1({viral, measles, mumps})=0.85 and 'm2' function based on evidence of fever and headache, respectively; also m2({viral, conjunctivitis})=0.6. Combine the given belief functions to generate an m3 function using Dempster's rule.	6	3	3, 5, 9	10
