L1-MASS - ANALYSE II

FEUILLE DE TRAVAUX DIRIGÉS N° 5

séries de Fourier

Enseignant: H. El-Otmany

A.U.: 2013-2014

Exercice n°1 Soit f une fonction 2π -périodique définie par

$$f(x) = \begin{cases} -1 - x & \text{si } x \in]-\pi, \ 0[, \\ 1 - x & \text{si } x \in]0, \ \pi[. \end{cases}$$

- 1. Représenter graphiquement f sur deux périodes.
- 2. Écrire la série de Fourier associée à f.
- 3. En déduire les sommes des séries numériques $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$, $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

Exercice n°2 Soit f une fonction 2π -périodique définie sur $[-\pi, \pi[$ par $f(x) = 1 - \frac{x^2}{\pi^2}]$.

- 1. Calculer les coefficients de Fourier de la fonction f. En déduire la série de Fourier associée à f.
- 2. En déduire $\alpha = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$, $\beta = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$ et $\gamma = \sum_{n=1}^{\infty} \frac{1}{n^4}$.

Exercice n°3 Soit f une fonction 2π -périodique, impaire, définie sur $[0, \pi]$ par $f(x) = \left(x - \frac{\pi}{2}\right)^2$.

- 1. Calculer les coefficients de Fourier de la fonction f. En déduire la série de Fourier associée à f.
- 2. En déduire la relation $\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)^3} = \frac{\pi^2}{8} \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$.

Exercice n°4 Soit f une fonction 2π -périodique, paire, définie sur $[0, \pi]$ par $f(x) = |\sin^3(x)|$.

- 1. Écrire la série de Fourier associée à f.
- 2. En déduire les sommes suivantes : $\sum_{n=1}^{\infty} \frac{1}{(4n^2-1)(4n^2-9)}$ et $\sum_{n=1}^{\infty} \frac{1}{(4n^2-1)^2(4n^2-9)^2}$.

Exercice n°5 Soit f une fonction définie sur $[-\pi, \pi]$ par $f_a(x) = e^{iax}$ avec $a \in \mathbb{R}$.

- 1. Calculer les coefficients de Fourier complexes de la fonction f. En déduire la série de Fourier associée à f.
- 2. En déduire si a n'est pas entier, $\alpha = \sum_{n=0}^{\infty} \frac{(-1)^n}{a^2 n^2}$ et $\beta = \sum_{n=0}^{\infty} \left(\frac{1}{(n-a)^2} + \frac{1}{(n+a)^2} \right)$.