

EGCO334: Microprocessor and Interfacing

Pulse Width Modulation (PWM)

Outline

- Pulse Width Modulator (PWM)
- PWM Mode
 - Fast PWM
 - Phase Correct PWM
 - Phase and Frequency Correct PWM Mode

Pulse-width modulation (PWM) is a useful technique for controlling DC motor speeds, LED intensity and creating analog waveforms.

The idea is to modulate (or change) the width of a digital signal (a pulse) to deliver a varying amount of voltage

Generating PWM Waveform by Arduino 328P

- OCRnx (OCR0A and OCR0B) = Output Compare Registers
- TCNTn (TCNT0) = Timer/Counter Register
- OCFnx (OCF0x) = Output Compare Flag
- Ocnx = Timer/Counter1 output compare match output

Generating PWM Waveform by Arduino 328P

Atmega328

```
(PCINT14/RESET) PC6 ☐ 1
                                   28 PC5 (ADC5/SCL/PCINT13)
      (PCINT16/RXD) PD0 ☐ 2
                                   27 PC4 (ADC4/SDA/PCINT12)
      (PCINT17/TXD) PD1 3
                                   26 PC3 (ADC3/PCINT11)
      (PCINT18/INT0) PD2 T 4
                                   25 PC2 (ADC2/PCINT10)
 (PCINT19/OC2B/INT1) PD3 5
                                   24 PC1 (ADC1/PCINT9)
    (PCINT20/XCK/T0) PD4 ☐ 6
                                   23 PC0 (ADC0/PCINT8)
                   VCC 7
                                   22 GND
                   GND ☐ 8
                                   21 AREF
(PCINT6/XTAL1/TOSC1) PB6 ☐ 9
                                   20 AVCC
(PCINT7/XTAL 2/TOSC2) PR7 10
                                   19 PB5 (SCK/PCINT5)
  (PCINT21/OC0B/T1) PD5 ☐ 11
                                   18 PB4 (MISO/PCINT4)
                                  17 PB3 (MOSI/OC2A/PCINT3)
 (PCINT22/OC0A/AIN0) PD6 ☐ 12
                                  16 PB2 (SS/OC1B/PCINT2)
      (PCINT23/AINT) PD7 L 13
                                  15 PB1 (OC1A/PCINT1)
  (PCINTO/CLKO/ICP1) PB0 ☐ 14
```

Output	AVR pin	Arduino Pin
OC2B = OC0B = OC0A = OC1A = OC1B =	PD5 PD6 PB1 PB2	= D3 = D5 = D6 = D9 = D10
OC2A =	PD3	= D11

Timer/Counter Modes of Operation

- Normal
- CTC (Clear Timer on Compare Match)
- Fast PWM (Single Slope PWM)
- Phase Correct PWM (Double Slope PWM)
- Phase and Frequency Correct PWM Mode (Timer/Counter 1 Only)

Fast PWM

 Timer repeatedly counts from 0 to 255

 The output <u>turns on</u> when the timer is at 0

The output <u>turns off</u>
 when the timer matches
 the output compare register

Phase-Correct PWM

- The timer counts from 0 to 255 and then back down to 0
- The output is <u>cleared</u> when timer hits the output compare while up-counting
- The output is <u>set</u> when timer hits the output compare while down-counting
- Output frequency will be approximately half of the value for fast PWM mode

- Output Compare Registers (Double Buffer Register)
 - o OCR0x
 - o OCR0x-BUF
- TCNT0 = Timer/Counter Register
- OCF0x = Output Compare Flag
- Oc0x = Timer/Counter1 output compare match output

- Output Compare Registers (Double Buffer Register)
 - o OCR0x
 - OCR0x-BUF

OCR0x-BUF will be update by user and the value will be passed to OCR0X when TOV0 is set

TCNT0 TOV0 OCF0x OCR0x

Without double buffered registers

Period written and updated

With double buffered registers

Compare Output Mode (COM)

CTC or Normal (Non PWM)	COM0x1	COM0x0	Description
	0	0	Normal port operation, OC0 disconnected
	0	1	Toggle OC0 on compare match
	1	0	Clear OC0 on compare match
	1	1	Set OC0 on compare match
Fast PWM	COM0x1	COM0x0	Description
	0	0	Normal port operation, OC0 disconnected
	0	1	Reserved
	1	0	Clear OC0 on compare match, set OC0 at TOP.
	1	1	Set OC0 on compare match, clear OC0 at TOP.
	COM0x1	COM0x0	Description
Phase Correct PWM	COMUXI	COMUXU	Description
	0	0	Normal port operation, OC0 disconnected
	0	1	Reserved
	1	0	Clear OC0 on compare match when up-counting. Set OC0 on compare match when down-counting.
	1	1	Set OC0 on compare match when up-counting. Clear OC0 on compare match when down-counting.

Fast PWM Calculations

Fast PWM

Duty cycle = changeable (0% to 100%)

Frequency = selectable between limited choices

(N = prescaler)

$$duty cycle_{non-invert} = \frac{OCR0}{256} \times 100$$

$$duty cycle_{invert} = 1 - duty cycle_{non-invert}$$

Fast PWM Calculations

Assuming XTAL = 16 MHz, make the following pulse duty cycle = 75% and frequency = 62.500KHz

$$F_{OC0} = \frac{f_{clk}}{N(256)}$$
 62.500KHz= $\frac{16MHz}{N(256)}$ $N = \frac{16MHz}{62.500K*256}$ =1

$$0.75 = \frac{OCR0}{256}$$
$$OCR0 = 192$$

$$\left(1\frac{2}{3} \times 0.01 \times 10^{-3}\right)^{-1} = 60,000$$

Phase correct PWM Calculations

Phase Correct PWM Duty cycle = changeable (0% to 100%) Frequency = selectable between limited choices

 $F_{OC0} = \frac{f_{clk}}{N(510)}$

Phase correct PWM Calculations

Assuming XTAL = 16 MHz, make the following wave: duty cycle = 75% and frequency = 31.372KHz

$$F_{OC0} = \frac{f_{Clk}}{N(510)}$$
 31.372KHz= $\frac{16MHz}{N(510)}$ N = $\frac{16MHz}{31.372K*510}$ =1

$$0.75 = \frac{OCR0}{255}$$
$$OCR0 = 191$$

Exercise 10

1. Write a program that use fast PWM, and generate a waveform with frequency 7812 Hz and duty cycle 20%.