import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

import warnings

1.Download the dataset: Dataset 2.Load the dataset

data=pd.read_csv("Churn_Modelling.csv",encoding='ISO-8859-1')
data.head()

₽		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Ва
	0	1	15634602	Hargrave	619	France	Female	42	2	
	1	2	15647311	Hill	608	Spain	Female	41	1	838
	2	3	15619304	Onio	502	France	Female	42	8	1596
	3	4	15701354	Boni	699	France	Female	39	1	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	1255
	4									•

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balaı
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.0000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.8892
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.4052
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.0000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.0000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.5400
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.2400
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.0900

data.dtypes

RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64

NumOfProducts int64
HasCrCard int64
IsActiveMember int64
EstimatedSalary float64
Exited int64

dtype: object

3.Perform Below Visualizations Univariate Analysis ,Bi - Variate Analysis,Multi - Variate Analysis **

#univariate analysis "Histogram"
sns.histplot(data["Gender"],color='darkorange')

<matplotlib.axes._subplots.AxesSubplot at 0x7f4e6e7e9e10>

#univariate analysis "Countlot"
sns.countplot(data['Gender'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f4e6e744090>

Double-click (or enter) to edit

#bivariate analysis"Barplot"
sns.barplot(x='Geography',y='Age',data=data)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4e6e256190>

#bivariate analysis"Pointplot"
sns.pointplot(x='Geography',y='Age',data=data,color='darkorange')

<matplotlib.axes._subplots.AxesSubplot at 0x7f4e6e17a390>

#Multivariate analysis"Pairplot"
sns.pairplot(data)

4.** Perform descriptive statistics on the dataset.**

Descriptive statistics of the data set accessed.
data.describe().T

	count	mean	std	min	25%	
RowNumber	10000.0	5.000500e+03	2886.895680	1.00	2500.75	5.000500
CustomerId	10000.0	1.569094e+07	71936.186123	15565701.00	15628528.25	1.569074
CreditScore	10000.0	6.505288e+02	96.653299	350.00	584.00	6.520000
Age	10000.0	3.892180e+01	10.487806	18.00	32.00	3.700000
Tenure	10000.0	5.012800e+00	2.892174	0.00	3.00	5.000000
Balance	10000.0	7.648589e+04	62397.405202	0.00	0.00	9.719854
NumOfProducts	10000.0	1.530200e+00	0.581654	1.00	1.00	1.000000
HaeCrCard	10000 0	7 055000-01	N /558/N	0 00	0 00	1 00000

5. Handle the Missing values.

0

This dataset does not contain any missing value.

6. Find the outliers and replace the outliers

```
sns.boxplot(data['Age'],data=data)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning
<matplotlib.axes._subplots.AxesSubplot at 0x7f4e6084d510>

7. Check for Categorical columns and perform encoding.

print(data['Gender'].unique())

```
print(data['Age'].unique())
     ['Female' 'Male']
     [42 41 39 43 44 50 29 27 31 24 34 25 35 45 58 32 38 46 36 33 40 51 61 49
      37 19 66 56 26 21 55 75 22 30 28 65 48 52 57 73 47 54 72 20 67 79 62 53
      80 59 68 23 60 70 63 64 18 82 69 74 71 76 77 88 85 84 78 81 92 83]
data['Gender'].value_counts()
data['Age'].value_counts()
     37
           478
     38
           477
     35
           474
     36
           456
     34
           447
     92
             2
     82
             1
     88
              1
     85
             1
     83
              1
     Name: Age, Length: 70, dtype: int64
one_hot_encoded_data = pd.get_dummies(data, columns = ['Age', 'Gender'])
print(one_hot_encoded_data)
           RowNumber CustomerId
                                      Surname CreditScore Geography Tenure
     0
                    1
                         15634602
                                     Hargrave
                                                        619
                                                               France
                                                                             2
     1
                    2
                         15647311
                                         Hill
                                                        608
                                                                Spain
                                                                             1
     2
                    3
                         15619304
                                         Onio
                                                        502
                                                               France
                                                                             8
     3
                    4
                                                        699
                                                                             1
                         15701354
                                         Boni
                                                               France
     4
                    5
                         15737888
                                   Mitchell
                                                        850
                                                                Spain
                                                                             2
                  . . .
                                                        . . .
                9996
                                   Obijiaku
                                                        771
     9995
                         15606229
                                                               France
                                                                             5
     9996
                9997
                         15569892 Johnstone
                                                        516
                                                                            10
                                                               France
                                                                             7
     9997
                9998
                         15584532
                                          Liu
                                                        709
                                                               France
     9998
                9999
                         15682355
                                    Sabbatini
                                                        772
                                                                             3
                                                              Germany
     9999
                10000
                         15628319
                                       Walker
                                                        792
                                                               France
                                                                             4
                       NumOfProducts HasCrCard IsActiveMember
             Balance
                                                                         Age_80
                                                                    . . .
     0
                                    1
                 0.00
                                               1
                                                                 1
                                                                              0
                                                                    . . .
     1
            83807.86
                                                                              0
                                    1
                                               0
                                                                 1
     2
           159660.80
                                    3
                                               1
                                                                0
                                                                              0
                                                                    . . .
                                    2
     3
                                               0
                                                                0
                                                                              0
                 0.00
     4
           125510.82
                                    1
                                               1
                                                                              0
                                                                 1
                  . . .
                                  . . .
                                                                    . . .
     . . .
                                    2
     9995
                 0.00
                                               1
                                                                0
                                                                              0
                                                                    . . .
     9996
            57369.61
                                    1
                                               1
                                                                1
                                                                              0
                                                                    . . .
     9997
                 0.00
                                    1
                                               0
                                                                 1
                                                                    . . .
                                                                              0
                                    2
     9998
            75075.31
                                               1
                                                                 0
                                                                              0
     9999
           130142.79
                                    1
                                                1
                                                                              0
```

	Age_81	Age_82	Age_83	Age_84	Age_85	Age_88	Age_92	<pre>Gender_Female</pre>	\
0	0	0	0	0	0	0	0	1	
1	0	0	0	0	0	0	0	1	
2	0	0	0	0	0	0	0	1	
3	0	0	0	0	0	0	0	1	
4	0	0	0	0	0	0	0	1	
• • •			• • •	• • •	• • •	• • •		• • •	
9995	0	0	0	0	0	0	0	0	
9996	0	0	0	0	0	0	0	0	
9997	0	0	0	0	0	0	0	1	
9998	0	0	0	0	0	0	0	0	
9999	0	0	0	0	0	0	0	1	

Gender_Male
0
0
0
0
0
1
1
0
1
0

[10000 rows x 84 columns]

8. Split the data into dependent and independent variables.

```
from sklearn.datasets import load_iris

from sklearn import preprocessing
data = load_iris()

# separate the independent and dependent variables
X_data = data.data
target = data.target
print("Dependent variable")
print(X_data)
print("Independent variable")
print(target)
```

```
Dependent variable [[5.1 3.5 1.4 0.2] [4.9 3. 1.4 0.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5. 3.6 1.4 0.2] [5.4 3.9 1.7 0.4] [4.6 3.4 1.4 0.3] [5. 3.4 1.5 0.2] [4.4 2.9 1.4 0.2] [4.9 3.1 1.5 0.1] [5.4 3.7 1.5 0.2] [4.8 3.4 1.6 0.2]
```

```
[4.8 3. 1.4 0.1]
[4.3 3.
        1.1 0.1]
[5.8 4.
         1.2 0.2]
[5.7 4.4 1.5 0.4]
[5.4 3.9 1.3 0.4]
[5.1 3.5 1.4 0.3]
[5.7 3.8 1.7 0.3]
[5.1 3.8 1.5 0.3]
[5.4 3.4 1.7 0.2]
[5.1 3.7 1.5 0.4]
[4.6 3.6 1. 0.2]
[5.1 3.3 1.7 0.5]
[4.8 3.4 1.9 0.2]
[5. 3. 1.6 0.2]
[5. 3.4 1.6 0.4]
[5.2 3.5 1.5 0.2]
[5.2 3.4 1.4 0.2]
[4.7 3.2 1.6 0.2]
[4.8 3.1 1.6 0.2]
[5.4 3.4 1.5 0.4]
[5.2 4.1 1.5 0.1]
[5.5 4.2 1.4 0.2]
[4.9 3.1 1.5 0.2]
[5. 3.2 1.2 0.2]
[5.5 3.5 1.3 0.2]
[4.9 3.6 1.4 0.1]
[4.4 3. 1.3 0.2]
[5.1 3.4 1.5 0.2]
[5. 3.5 1.3 0.3]
[4.5 2.3 1.3 0.3]
[4.4 3.2 1.3 0.2]
[5. 3.5 1.6 0.6]
[5.1 3.8 1.9 0.4]
[4.8 3. 1.4 0.3]
[5.1 3.8 1.6 0.2]
[4.6 3.2 1.4 0.2]
[5.3 3.7 1.5 0.2]
[5. 3.3 1.4 0.2]
[7. 3.2 4.7 1.4]
[6.4 3.2 4.5 1.5]
[6.9 3.1 4.9 1.5]
[5.5 2.3 4. 1.3]
[6.5 2.8 4.6 1.5]
[5.7 2.8 4.5 1.3]
```

9. Scale the independent variable**

[6.3 3.3 4.7 1.6]

```
# scale of independent variables
standard = preprocessing.scale(target)
print(standard)
```

```
[-1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487
```

```
-1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487
-1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487 -1.22474487
-1.22474487 -1.22474487 0.
                                    0.
                                                0.
                                                            0.
0.
            0.
                        0.
                                    0.
                                                0.
                                                            0.
0.
            0.
                        0.
                                    0.
                                                0.
                                                            0.
0.
            0.
                        0.
                                    0.
                                                0.
                        0.
0.
            0.
                                    0.
                                                0.
                                                            0.
0.
            0.
                        0.
                                    0.
                                                0.
                                                            0.
0.
            0.
                        0.
                                    0.
                                                0.
                                                            0.
0.
            0
                        0
                                    0
                                                0
                                                            0
0.
            0.
                        0.
                                    0.
                                                1.22474487 1.22474487
1.22474487
            1.22474487
                        1.22474487
                                    1.22474487
                                                1.22474487
                                                           1.22474487
1.22474487
           1.22474487
                        1.22474487 1.22474487
                                                1.22474487
                                                           1.22474487
1.22474487 1.22474487 1.22474487 1.22474487
                                                1.22474487 1.22474487
1.22474487 1.22474487 1.22474487 1.22474487
                                                1.22474487 1.22474487
1.22474487 1.22474487
                        1.22474487 1.22474487
                                                1.22474487 1.22474487
1.22474487 1.22474487 1.22474487 1.22474487
                                                1.22474487 1.22474487
                        1.22474487 1.22474487
1.22474487 1.22474487
                                                1.22474487
                                                            1.22474487
1.22474487 1.22474487 1.22474487 1.22474487
                                                1.22474487
                                                           1.224744871
```

10. Split the data into training and testing

```
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
# get the locations
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
     KeyError
                                                Traceback (most recent call last)
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/__init__.py in __getattr__(self
                          return self[key]
     --> 117
         118
                     except KeyError:
     KeyError: 'iloc'
     During handling of the above exception, another exception occurred:
     AttributeError
                                                Traceback (most recent call last)
                                         🗘 1 frames
     /usr/local/lib/python3.7/dist-packages/sklearn/utils/__init__.py in __getattr__(self)
         117
                         return self[key]
         118
                     except KeyError:
     --> 119
                         raise AttributeError(key)
         120
         121
                 def __setstate__(self, state):
     AttributeError: iloc
      SEARCH STACK OVERFLOW
```

```
# split the dataset
print(X_train, X_test, y_train, y_test = train_test_split(
   X, y, test_size=0.05, random_state=0))
    ______
                                          Traceback (most recent call last)
    NameError
    <ipython-input-33-45b3f6ea52c4> in <module>
          1 # split the dataset
    ----> 2 print(X_train, X_test, y_train, y_test = train_test_split(
               X, y, test_size=0.05, random_state=0))
    NameError: name 'X_train' is not defined
     SEARCH STACK OVERFLOW
print(X_train)
    NameError
                                          Traceback (most recent call last)
    <ipython-input-32-1c88d69feddc> in <module>
    ----> 1 print(X_train)
    NameError: name 'X_train' is not defined
     SEARCH STACK OVERFLOW
```

Colab paid products - Cancel contracts here

×