TD 02 - Algorithmes de plus courts chemins (DIJKSTRA et BELLMAN-FORD)

Exo #1. Algorithme de DIJKSTRA

Q1. Rappeler les conditions d'application de cet algorithme.

- **Q2.** Appliquer l'algorithme de DIJKSTRA sur le graphe de gauche en prenant comme source (s=1). Pour cela, compléter :
 - le tableau **D[t]** qui est le tableau des distances au sommet source s
 - le tableau **PRED[t]** qui est le tableau des prédécesseurs

Visités	D[1]	D[2]	D[3]	D[4]	D[5]	D[6]	
{} {1}	0 0	inf 3	inf 2	inf 6	inf inf	inf inf	
PRED	1	2	3	4	5	6	
	nil nil	nil 1	nil 1	nil 1	nil nil	nil nil	

Q3. Appliquer l'algorithme de DIJKSTRA sur le graphe de droite en prenant comme sommet source s. (exo. de révision à faire en dehors du TD ; ci-dessous la solution)

Evolution du tableau DistSource[u] au fur et à mesure des itérations

Iter	s	t	y	X	Z
0	0	+∞	+∞	+∞	+∞
1	0	10	5	+∞	+∞
2	0	8	5	14	7
3	0	8	5	13	7
4	0	8	5	9	7
5	0	8	5	9	7

Tableau des prédécesseurs

s	t	y	X	\mathbf{z}
-1	\mathbf{y}	S	t	y

Sélections successives du sommet à traiter et construction de l'arbre des plus courts chemins

Exo #2. Adapter l'algorithme de DIJKSTRA. On considère un réseau de télécommunication, composé d'émetteurs/récepteurs pouvant s'envoyer des messages, avec une certaine fiabilité de communication, i.e. une certaine probabilité pour que la communication ne soit pas interrompue.

On modélise ce problème à l'aide du graphe orienté valué suivant, où la valuation d'un arc est une valeur réelle comprise entre 0 et 1 indiquant la probabilité que la communication se passe sans souci.

Question : Comment déterminer le chemin le plus fiable pour envoyer un message d'un sommet source (ici le sommet a) vers un sommet cible (ici le sommet i) ?

On cherche un chemin pour lequel le produit des probabilités sera maximal. Pour cela, adapter l'algorithme de DIJKSTRA en apportant les corrections en bleu à l'algorithme ci-dessous :

```
procédure DIJKSTRA ADAPTE(G: graphe valué, s: sommet source);
début
DistSource[s] := ???;
pour tout sommet u ≠ s faire DistSource[u] := ???;
pour tout sommet u faire PRED[u] := nil;
tantque tous les sommets ne sont pas marqués faire
        soit t0 un sommet non marqué tq ???
        marquer le sommet t0;
        pour tout successeur non marqué t de t0 faire Relacher(t0 -> t);
fttque
fin
procédure Relacher (arc u -> v);
début
        si DistSource [v] ???
            alors
                 DistSource[v] := ???
                 PRED[v] := u
        <u>fsi</u>
<u>fin</u>
```

Rq. Cet algorithme n'est correct que si les poids des arcs sont tous compris entre 0 et 1. Chaque fois que l'on ajoute un arc à un chemin, on diminue le coût total du chemin (ceci pour la même raison que L'algorithme de DIJKSTRA n'est correct que si tous les coûts sont positifs ou nuls).

Exo #3. Algorithme de BELLMAN-FORD

On considère le graphe orienté valué suivant :

Q1. Appliquer l'algorithme de BELLMAN-FORD au graphe ci-dessus en prenant comme sommet source le sommet z.

Indications. Durant l'application de l'algorithme, on considèrera les arcs dans l'ordre suivant : (u, v), (u, x), (u, y), (v, u), (x, v), (x, y), (y, v), (y, z), (z, u), (z, x)

Q2. Même question mais en changeant le poids de l'arc (y, v) à 4.

Montrer qu'il existe un circuit absorbant ? Que peut-on en déduire

Eléments de correction pour la question Q1.

Eléments de correction pour la question Q2.

v-u-y-v est un circuit absorbant. Bellman-Ford détecte l'absence de PCC