Probability and Statistics

Robert Stengel Robotics and Intelligent Systems MAE 345 Princeton University, 2015

Learning Objectives

- Concepts and reality
 - Interpretations of probability
 - Measures of probability
- Scalar uniform and Gaussian distributions
- Hypothesis testing
- · Bayes's Law
- Bayesian Belief Networks
- Propagation of the state's probability distribution

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html

1

Probability

 ... a way of expressing knowledge or belief that an event will occur or has occurred

Statistics

 The science of making effective use of numerical data relating to groups of individuals or experiments

How Do Probability and Statistics Relate to Robotics and Intelligent Systems?

- Decision-making under uncertainty
- Controlling random dynamic processes

3

Concepts and Reality

(Papoulis)

- Theory may be exact
 - Deals with averages of phenomena with many possible outcomes
 - Based on models of behavior
- Application can be only approximate
 - Measure of our state of knowledge or belief that something may or may not be true
 - Subjective assessment

A:event

P(A): probability of event

 $|n_A|$: number of times A occurs experimentally

N:total number of trials

$$P(A) \approx \frac{n_A}{N}$$

4

Interpretations of Probability

(Papoulis)

- **Axiomatic Definition (Theoretical interpretation)**
 - Probability space, abstract objects (outcomes), and sets (events)
 - Axiom 1: Pr(A_i) ≥0
 - Axiom 2: Pr("certain event") = 1 = Pr [all events in probability space (or universe)]
 - Axiom 3: Independent events,

$$\Pr(A_i \text{ and } A_j) = \Pr(A_i \cap A_j) = \Pr(A_i) \Pr(A_j)$$

- Axiom 4: Mutually exclusive events,

$$\Pr(A_i \text{ or } A_j) = \Pr(A_i \cup A_j) = \Pr(A_i) + \Pr(A_j)$$

- Axiom 5: Non-mutually exclusive events,

$$Pr(A_i \text{ or } A_j) = Pr(A_i) + Pr(A_j) - Pr(A_i)Pr(A_j)$$

Interpretations of Probability

(Papoulis)

Relative Frequency (Empirical interpretation)

$$\Pr(A_i) = \lim_{N \to \infty} \left(\frac{n_{A_i}}{N}\right)$$

 $\Pr(A_i) = \lim_{N \to \infty} \left(\frac{n_{A_i}}{N} \right) \qquad \frac{N = \text{number of trials (total)}}{n_{A_i} = \text{number of trials with attribute } A_i}$

Classical ("Favorable outcomes" interpretation)

$$\Pr(A_i) = \frac{n_{A_i}}{N}$$

 n_{Ai} = number of outcomes "favorable to" A_i

- Measure of belief (Subjective interpretation)
 - $Pr(A_i)$ = measure of belief that A_i is true (similar to fuzzy sets)
 - Informal induction precedes deduction
 - Principle of insufficient reason (i.e., total prior ignorance):
 - e.g., if there are 5 event sets, A_i , i = 1 to 5, $Pr(A_i) = 1/5 = 0.2$

Favorable Outcomes Example: Probability of Rolling a "7" with Two Dice

(Papoulis)

• Proposition 1: 11 possible sums, one of which is 7

$$\Pr(A_i) = \frac{n_{A_i}}{N} = \frac{1}{11}$$

$$\Pr(A_i) = \frac{n_{A_i}}{N} = \frac{3}{21}$$

• <u>Proposition 3</u>: 36 possible outcomes, distinguishing between the two dice

$$\Pr(A_i) = \frac{n_{A_i}}{N} = \frac{6}{36}$$

Propositions are knowable and precise; outcome of rolling the dice is not.

7

Steps in a Probabilistic Investigation

(Papoulis)

- 1) Physical (Observation): Determine probabilities, $Pr(A_i)$, of various events, A_i , by experiment
 - Experiments cannot be exact
- 2) Conceptual (Induction): Assume that $Pr(A_i)$ satisfies certain axioms and theorems, allowing deductions about other events, B_i , based on $Pr(B_i)$
 - · Build a model
- 3) Physical (*Deduction*): Make predictions of B_i based on $Pr(B_i)$

Empirical (or Relative) Frequency of Discrete, Mutually Exclusive Events in Sample Space

$$\Pr(x_i) = \frac{n_i}{N} \quad \text{in } [0,1]; \quad i = 1 \text{ to } I$$

- N = total number of events
- n_i = number of events with value x_i
- I = number of different values
- x_i = ordered set of hypotheses or values

x is a random variable

9

Empirical (or Relative) Frequency of Discrete, Mutually Exclusive Events in Sample Space

- x is a random variable
- Equivalent sets

$$A_i = \{ x \in U | x = x_i \}$$
 ; $i = 1 \text{ to } I$

 Cumulative probability over all sets

$$\sum_{i=1}^{I} \Pr(A_i) = \sum_{i=1}^{I} \Pr(x_i) = \frac{1}{N} \sum_{i=1}^{I} n_i = 1$$

Cumulative Probability, Pr(x ≥/≤ a), and Discrete Measurements of a Continuous Variable

Suppose x represents a continuum of colors

 x_i is the center of a band in x

$$\Pr(x_i \pm \Delta x / 2) = n_i / N$$

$$\sum_{i=1}^{I} \Pr(x_i \pm \Delta x / 2) = 1$$

Probability Density Function, pr(x)Cumulative Distribution Function, Pr(x < X)

Probability density function

$$\operatorname{pr}(x_{i}) = \frac{\operatorname{Pr}(x_{i} \pm \Delta x / 2)}{\Delta x}$$

$$\sum_{i=1}^{I} \operatorname{Pr}(x_{i} \pm \Delta x / 2) = \sum_{i=1}^{I} \operatorname{pr}(x_{i}) \Delta x \xrightarrow{\Delta x \to 0} \int_{-\infty}^{\infty} \operatorname{pr}(x) dx = 1$$

Cumulative distribution function

$$\Pr(x < X) = \int_{-\infty}^{X} \Pr(x) dx$$

Probability Density Function, pr(x) **Cumulative Distribution Function,** Pr(x < X)

13

Random Number Example

Statistical -- not deterministic -- properties prior to actual event

- **Excel spreadsheet: 2 random rows and one deterministic row**
 - [RAND()] generates a uniform random number on each call

the results are determined

Properties of Random Variables

- Mode
 - Value of x for which pr(x) is maximum
- Median
 - Value of x corresponding to 50th percentile
 - Pr(x < median) = Pr(x ≥ median) = 0.5
- Mean
 - Value of x corresponding to statistical average
- First moment of x = Expected value of x

$$\overline{x} = E(x) = \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx$$
"Moment arm"

15

Expected Values

 Mean Value is the first moment of x

$$\overline{x} = E(x) = \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx$$

- Second central moment of x = Variance
 - Variance from the mean value rather than from zero
 - Smaller value indicates less uncertainty in the value of x

$$E\left[\left(x-\overline{x}\right)^{2}\right] = \sigma_{x}^{2} = \int_{-\infty}^{\infty} \left(x-\overline{x}\right)^{2} \operatorname{pr}(x) dx$$

Expected value of a function of x

$$E[f(x)] = \int_{-\infty}^{\infty} f(x) \operatorname{pr}(x) dx$$

Expected Value is a Linear Operation

Expected value of sum of random variables

$$E[x_1 + x_2] = \int_{-\infty}^{\infty} (x_1 + x_2) \operatorname{pr}(x) dx$$

= $\int_{-\infty}^{\infty} x_1 \operatorname{pr}(x) dx + \int_{-\infty}^{\infty} x_2 \operatorname{pr}(x) dx = E[x_1] + E[x_2]$

Expected value of constant times random variable

$$E[kx] = \int_{-\infty}^{\infty} kx \operatorname{pr}(x) dx = k \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx = k E[x]$$

17

Mean Value of a Uniform Random Distribution

- Used in most random number generators (e.g., RAND)
- Bounded distribution
- Example is symmetric about the mean

$$pr(x) = \begin{cases} 0 & x < x_{\min} \\ \frac{1}{x_{\max} - x_{\min}} & ; & x_{\min} < x < x_{\max} \\ 0 & x > x_{\max} \end{cases}$$

$$\overline{x} = E(x) = \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx = \int_{x_{\min}}^{x_{\max}} \frac{x}{x_{\max} - x_{\min}} dx$$
$$= \frac{1}{2} \frac{x_{\max}^2 - x_{\min}^2}{x_{\max}^2 - x_{\min}^2} = \frac{1}{2} (x_{\max} + x_{\min})$$

Variance and Standard Deviation of a Uniform Random Distribution

Variance

$$x_{\min} = -x_{\max} \triangleq a$$

$$E\left[(x - \overline{x})^{2} \right] = \sigma_{x}^{2} = \frac{1}{2a} \int_{-a}^{a} x^{2} dx = \frac{x^{3}}{6a} \Big|_{-a}^{a} = \frac{a^{2}}{3}$$

Standard deviation

$$\sigma_x = \sqrt{\sigma_x^2} = \sqrt{\frac{a^2}{3}} = \frac{a}{\sqrt{3}}$$

19

Gaussian (Normal) Random Distribution

- Used in some random number generators (e.g., RANDN)
- Unbounded, symmetric distribution
- Defined entirely by its mean and standard deviation

$$pr(x) = \frac{1}{\sqrt{2\pi} \sigma_x} e^{-\frac{(x-\overline{x})^2}{2\sigma_x^2}}$$

Mean value; from symmetry

$$E(x) = \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx = \overline{x}$$

Variance

$$E\left[\left(x-\overline{x}\right)^{2}\right] = \int_{-\infty}^{\infty} \left(x-\overline{x}\right)^{2} \operatorname{pr}(x) dx = \sigma_{x}^{2}$$

Units of x and σ_x are the same

Probability of Being Close to the Mean

(Gaussian Distribution)

Probability of being within ±1σ_x

$$\Pr\left[x < \left(\overline{x} + \sigma_x\right)\right] - \Pr\left[x < \left(\overline{x} - \sigma_x\right)\right] \approx 68\%$$

Probability of being within ±2σ_x

$$\Pr\left[x < \left(\overline{x} + 2\sigma_x\right)\right] - \Pr\left[x < \left(\overline{x} - 2\sigma_x\right)\right] \approx 95\%$$

Probability of being within ±3σ_x

$$\Pr\left[x < \left(\overline{x} + 3\sigma_x\right)\right] - \Pr\left[x < \left(\overline{x} - 3\sigma_x\right)\right] \approx 99\%$$

21

Experimental Determination of Mean and Variance

• Sample mean for N data points, $x_1, x_2, ..., x_N$

$$\overline{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

Sample variance for same data set

22

- Divisor is (N-1) rather than N to produce an unbiased estimate
 - Only (N-1) terms are independent
 - If N is large, the difference is inconsequential
- Distribution is not necessarily Gaussian
 - Prior knowledge: fit histogram to known distribution
 - Hypothesis test: determine best fit (e.g., Rayleigh, binomial, Poisson, ...)

Central Limit Theorem

Probability density function of the sum of 2 random variables the convolution of their probability density functions (Papoulis, 1990)

$$y = x_1 + x_2$$

$$pr(y) = \int_{-\infty}^{+\infty} pr[x_1(x_2)] pr(x_2) dx_2 = \int_{-\infty}^{+\infty} pr(y - x_2) pr(x_2) dx_2$$

The probability distribution of the sum of variables with any distributions approaches a normal distribution as the number of variables approaches infinity

Some Non-Gaussian Distributions

- Bimodal Distribution
 - Two Peaks
 - Often the sum of two unimodal distributions
- Binomial Distribution
 - Random variable, x
 - Probability of k successes in n trials
 - Discrete probability distribution described by a probability mass function, pr(x)

$$pr(x) = \frac{n!}{k!(n-k)!} p(x)^k \left[1 - p(x)\right]^{n-k} \triangleq \binom{n}{k} p(x)^k \left[1 - p(x)\right]^{n-k}$$

- = probability of exactly k successes in n trials, in (0,1)
 - \sim normal distribution for large n

Parameters of the distribution p(x): probability of occurrence, in (0,1)

n: number of trials

Some Non-Gaussian Distributions

- Poisson Distribution
 - Probability of a number of events occurring in a fixed period of time
 - Discrete probability distribution described by a probability mass function

$$\operatorname{pr}(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

 λ = Average rate of occurrence of event (per unit time) k = # of occurrences of the event $\operatorname{pr}(k)$ = probability of k occurrences (per unit time) \sim normal distribution for large λ

- Cauchy-Lorentz Distribution
 - Mean and variance are undefined
 - <u>"Fat tails"</u>: extreme values more likely than normal distribution
 - Central limit theorem fails

Simple Hypothesis Test: *t* Test

Is A greater than B?

- Welch's t test compares mean values of two data sets
 - If is reduced by uncertainty in the data sets (o)
 - If is increased by number of points in the data sets (n)

$$t = \frac{\left(m_A - m_B\right)}{\sqrt{\frac{\sigma_A^2}{n_A} + \frac{\sigma_B^2}{n_B}}}$$

- m = mean value of data set
- σ = standard deviation of data set
- n = number of points in data set
- It > 3, $m_A \neq m_B$ with $\geq 99.7\%$ confidence (error probability ≤ 0.003 for Gaussian distributions) [n > 25]

DNA Microarrays

- Photolithography deposits known 25-mer DNA sequences (oligonucleotides) at known locations (features, or probes) on chip
- 10-20 probes (base pairs) per gene
- Perfect and mismatched features for each gene in separate probes

27

Application of t Test to **DNA Microarray Data**

(data from Alon et al, 1999)

$$t = \left(m_T - m_N\right) / \sqrt{\frac{\sigma_T^2}{36} + \frac{\sigma_N^2}{22}}$$

- 58 RNA samples representing tumor and normal tissue
- 1,151 transcripts are over/underexpressed in tumor/normal comparison ($p \le 0.003$)
- Genetically dissimilar samples are apparent

Tumor (36 samples) Normal t ≥ 3 (689 genes t ≤ -3 (462 genes)

Red: Overexpressed Yellow: Neutral Green: Underexpressed

28

Joint Probability (n = 2)

Suppose x can take I values and y can take J values; then,

$$\sum_{i=1}^{I} \Pr(\mathbf{x}_{i}) = 1 \quad ; \quad \sum_{j=1}^{J} \Pr(\mathbf{y}_{j}) = 1$$

If x and y are independent,

 $\Pr(\mathbf{x}_{i}, \mathbf{y}_{j}) = \Pr(\mathbf{x}_{i} \wedge \mathbf{y}_{j}) = \Pr(\mathbf{x}_{i}) \Pr(\mathbf{y}_{j})$ and $\sum_{i=1}^{I} \sum_{j=1}^{J} \Pr(\mathbf{x}_{i}, \mathbf{y}_{j}) = 1$ $\Pr(\mathbf{x}_{i})$

 $Pr(y_j)$

		0.5	0.3	0.2	
;)	0.6	0.3	0.18	0.12	0.6
	0.4	0.2	0.12	0.08	0.4
		0.5	0.3	0.2	1

29

Conditional Probability (n = 2)

If x and y are not independent, probabilities are related Probability that x takes ith value when y takes jth value

 $\operatorname{Pr}\left(x_{i} \mid y_{j}\right) = \frac{\operatorname{Pr}\left(x_{i}, y_{j}\right)}{\operatorname{Pr}\left(y_{j}\right)}$

$$\Pr(y_j \mid x_i) = \frac{\Pr(x_i, y_j)}{\Pr(x_i)}$$

Similarly

$$\Pr(x_i \mid y_j) = \Pr(x_i)$$

iff x and y are independent of each other

$$\Pr(y_j \mid x_i) = \Pr(y_j)$$
iff *x* and *y* are independent of each other

Conditional probability does not address causality

Applications of Conditional Probability

(n=2)

Joint probability can be expressed in two ways

$$\Pr(x_i, y_j) = \Pr(y_j \mid x_i) \Pr(x_i) = \Pr(x_i \mid y_j) \Pr(y_j)$$

Unconditional probability of each variable is expressed by a sum of terms

$$\Pr(\mathbf{x}_{i}) = \sum_{j=1}^{J} \left[\Pr(\mathbf{x}_{i} \mid \mathbf{y}_{j}) \Pr(\mathbf{y}_{j}) \right] \qquad \Pr(\mathbf{y}_{j}) = \sum_{i=1}^{J} \left[\Pr(\mathbf{y}_{j} \mid \mathbf{x}_{i}) \Pr(\mathbf{x}_{i}) \right]$$

$$\Pr(y_j) = \sum_{i=1}^{I} \left[\Pr(y_j \mid x_i) \Pr(x_i) \right]$$

31

Bayes's Rule

Bayes's Rule proceeds from the previous results Probability of x taking the value x_i conditioned on v taking its ith value

$$\Pr(\mathbf{x}_{i} \mid \mathbf{y}_{j}) = \frac{\Pr(\mathbf{y}_{j} \mid \mathbf{x}_{i}) \Pr(\mathbf{x}_{i})}{\Pr(\mathbf{y}_{j})} = \frac{\Pr(\mathbf{y}_{j} \mid \mathbf{x}_{i}) \Pr(\mathbf{x}_{i})}{\sum_{i=1}^{I} \Pr(\mathbf{y}_{j} \mid \mathbf{x}_{i}) \Pr(\mathbf{x}_{i})}$$

... and the converse

$$\Pr(y_{j} \mid x_{i}) = \frac{\Pr(x_{i} \mid y_{j}) \Pr(y_{j})}{\Pr(x_{i})} = \frac{\Pr(x_{i} \mid y_{j}) \Pr(y_{j})}{\sum_{j=1}^{J} \Pr(x_{i} \mid y_{j}) \Pr(y_{j})}$$

Aircraft Flight Through Microburst Wind Shear

33

Decision Making Under Uncertainty

(FAA Guidelines)

Probability of Microburst Wind Shear (FAA)

OBSERVAT	ION	PROBABILITY OF WIN	D SHEAR
PRESENCE	OF CONVECTIVE WEAT	THER NEAR FLIGHT PA	TH:
-	With localized strong win observed blowing dust, ri- tornado-like features, etc.).	ngs of dust.	нісн
-	With heavy precipitation cations of contour, red or		HIGH
-	With rainshower		MEDIUM
-	With lightning		MEDIUM
-	With virga		
-	With moderate or greater radar indications)	turbulence (Reported or	MEDIUM
-	With temperature/dew po between 30 and 50 degrees	oint spread s Fahrenheit	MEDIUM
ONBOARD	WINDSHEAR DETECTIO (Reported or observed)		HIGH
PIREP OF A	IRSPEED LOSS OR GAIN	٧;	
-	15 knots or greater Less than 15 knots		MEDIUM
	Less than 13 knots		MEDIUM
LLWAS AL	ERT/WIND VELOCITY C		
-	20 knots or greater		HIGH
-	Less than 20 knots		MEDIUM
EUDEUVEL	OF CONVECTIVE WEAT	HER	LOW

35

Bayesian Rules of Inference for Situation Assessment and Decision Making

(Stratton and Stengel)

- Boxes represent unconditional probabilities
- Arrows represent conditional probabilities

Multivariate Statistics and Propagation of Uncertainty

37

Multivariate Expected Values: Mean Value Vector and Covariance Matrix

Mean value vector of the dynamic state

$$\overline{\mathbf{x}} = E(\mathbf{x}) = \int_{-\infty}^{\infty} \mathbf{x} \operatorname{pr}(\mathbf{x}) d\mathbf{x} = \begin{bmatrix} \overline{x}_1 \\ \overline{x}_2 \\ \dots \\ \overline{x}_n \end{bmatrix} \quad \operatorname{dim}(\mathbf{x}) = n \times 1$$

Covariance matrix of the state

$$\mathbf{P} \triangleq E\left[\left(\mathbf{x} - \overline{\mathbf{x}}\right)\left(\mathbf{x} - \overline{\mathbf{x}}\right)^{T}\right] = \int_{-\infty}^{\infty} \left(\mathbf{x} - \overline{\mathbf{x}}\right)\left(\mathbf{x} - \overline{\mathbf{x}}\right)^{T} \operatorname{pr}(\mathbf{x}) d\mathbf{x}$$

If the state variation is Gaussian, its probability distribution is

$$\operatorname{pr}(\mathbf{x}) = \frac{1}{\left(2\pi\right)^{n/2} \left|\mathbf{P}\right|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \overline{\mathbf{x}})^T \mathbf{P}^{-1}(\mathbf{x} - \overline{\mathbf{x}})}$$

Inner and Outer Products

$$\mathbf{x} = \begin{bmatrix} a \\ b \end{bmatrix}; \quad \mathbf{y} = \begin{bmatrix} c \\ d \end{bmatrix}$$

$$\mathbf{x}^T \mathbf{y} = ac + bd$$

$$\mathbf{x}\mathbf{y}^{T} = \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} c & d \end{bmatrix} = \begin{bmatrix} ac & ad \\ bc & bd \end{bmatrix}$$

39

State Covariance Matrix is the **Expected Value of the Outer Product** of the Variations from the Mean

$$\mathbf{P} = E\left[(\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^T \right]$$

$$= \begin{bmatrix} \sigma_{x_1}^2 & \rho_{12}\sigma_{x_1}\sigma_{x_2} & \dots & \rho_{1n}\sigma_{x_1}\sigma_{x_n} \\ \rho_{21}\sigma_{x_2}\sigma_{x_1} & \sigma_{x_2}^2 & \dots & \rho_{2n}\sigma_{x_2}\sigma_{x_n} \\ \dots & \dots & \dots & \dots \\ \rho_{n1}\sigma_{x_n}\sigma_{x_1} & \rho_{n2}\sigma_{x_n}\sigma_{x_2} & \dots & \sigma_{x_n}^2 \end{bmatrix}$$

$$\sigma_{x_1}^2 = Variance of x_1$$

$$\rho_{12} = Correlation coefficient for x_1 and x_2$$

$$-1 < \rho_{ij} < 1$$

$$\rho_{12}\sigma_{x_1}\sigma_{x_2} = Covariance of x_1 and x_2$$

$$\sigma_{x_1}^2 = Variance of x_1$$

$$\rho_{12} = Correlation coefficient for x_1 and x_2$$

$$-1 < \rho_{ij} < 1$$

$$\rho_{12}\sigma_{x_1}\sigma_{x_2} = Covariance of x_1 and x_2$$

Gaussian probability distribution is totally described by its mean value and covariance matrix

$$\operatorname{pr}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\mathbf{P}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \overline{\mathbf{x}})^T \mathbf{P}^{-1} (\mathbf{x} - \overline{\mathbf{x}})}$$

Stochastic Model for Propagating Mean Values and Covariances of Variables

LTI discrete-time model with known coefficients

$$\mathbf{x}_{k+1} = \mathbf{\Phi} \mathbf{x}_k + \mathbf{\Gamma} \mathbf{u}_k + \mathbf{\Lambda} \mathbf{w}_k, \quad \mathbf{x}_0 \quad given$$

Mean and covariance of the state

$$\overline{\mathbf{x}}_0 = E[\mathbf{x}_0]; \quad \mathbf{P}_0 = E\{[\mathbf{x}_0 - \overline{\mathbf{x}}_0][\mathbf{x}_0 - \overline{\mathbf{x}}_0]^T\}$$

$$\overline{\mathbf{x}}_k = E[\mathbf{x}_k]; \quad \mathbf{P}_k = E\{[\mathbf{x}_k - \overline{\mathbf{x}}_k][\mathbf{x}_k - \overline{\mathbf{x}}_k]^T\}$$

Covariance of the disturbance with zero mean value

$$\overline{\mathbf{w}}_k = \mathbf{0}; \ \mathbf{Q}_k = E\left[\left[\mathbf{w}_k \right] \left[\mathbf{w}_k \right]^T \right]$$

Mean of perfectly known control vector

$$\left|\mathbf{u}_{k} = \overline{\mathbf{u}}_{k} = E[\mathbf{u}_{k}]; \quad \mathbf{U}_{k} = \mathbf{0}\right|$$

Mean Value and Covariance of the Disturbance

$$\overline{\mathbf{w}} = E(\mathbf{w}) = \int_{-\infty}^{\infty} \mathbf{w} \operatorname{pr}(\mathbf{w}) d\mathbf{w} = \begin{bmatrix} \overline{\mathbf{w}}_{1} \\ \overline{\mathbf{w}}_{2} \\ \dots \\ \overline{\mathbf{w}}_{n} \end{bmatrix}$$

$$\mathbf{Q} \triangleq E\left[\left(\mathbf{w} - \overline{\mathbf{w}}\right)\left(\mathbf{w} - \overline{\mathbf{w}}\right)^{T}\right] = \int_{-\infty}^{\infty} \left(\mathbf{w} - \overline{\mathbf{w}}\right)\left(\mathbf{w} - \overline{\mathbf{w}}\right)^{T} \operatorname{pr}(\mathbf{w}) d\mathbf{w}$$

If the <u>disturbance</u> is Gaussian, its probability distribution is

$$\operatorname{pr}(\mathbf{w}) = \frac{1}{(2\pi)^{s/2} |\mathbf{Q}|^{1/2}} e^{-\frac{1}{2}(\mathbf{w} - \overline{\mathbf{w}})\mathbf{Q}^{-1}(\mathbf{w} - \overline{\mathbf{w}})}$$

41

Dynamic Model to Propagate the Mean Value of the State

$$E(\mathbf{x}_{k+1}) = E(\mathbf{\Phi}\mathbf{x}_k + \mathbf{\Gamma}\mathbf{u}_k + \mathbf{\Lambda}\mathbf{w}_k)$$

If disturbance mean value is zero

$$\overline{\mathbf{x}}_{k+1} = \mathbf{\Phi} \overline{\mathbf{x}}_k + \mathbf{\Gamma} \overline{\mathbf{u}}_k + 0, \quad \overline{\mathbf{x}}_0 \text{ given}$$

43

Dynamic Model to Propagate the Covariance of the State

$$E\left\{\left[\mathbf{x}_{k+1} - \overline{\mathbf{x}}_{k+1}\right]\left[\mathbf{x}_{k+1} - \overline{\mathbf{x}}_{k+1}\right]^{T}\right\} = \mathbf{P}_{k+1}$$

$$= E\left[\left(\mathbf{\Phi}\left[\mathbf{x}_{k} - \overline{\mathbf{x}}_{k}\right] + \mathbf{\Gamma}\mathbf{u}_{k} + \mathbf{\Lambda}\mathbf{w}_{k}\right)\left(\mathbf{\Phi}\left[\mathbf{x}_{k} - \overline{\mathbf{x}}_{k}\right] + \mathbf{\Gamma}\mathbf{u}_{k} + \mathbf{\Lambda}\mathbf{w}_{k}\right)^{T}\right]$$

Expected values of cross terms are zero

$$\begin{aligned} \mathbf{P}_{k+1} &= E \Big\{ \mathbf{\Phi} \Big[\mathbf{x}_k - \overline{\mathbf{x}}_k \Big] \Big[\mathbf{x}_k - \overline{\mathbf{x}}_k \Big]^T_{k} \mathbf{\Phi}^T + 0 + \mathbf{\Lambda} \mathbf{w}_k \mathbf{w}^T_{k} \mathbf{\Lambda}^T_{k} \Big\} \\ &= \mathbf{\Phi} E \Big\{ \Big[\mathbf{x}_k - \overline{\mathbf{x}}_k \Big] \Big[\mathbf{x}_k - \overline{\mathbf{x}}_k \Big]^T_{k} \Big\} \mathbf{\Phi}^T + \mathbf{\Lambda} E \Big(\mathbf{w}_k \mathbf{w}^T_{k} \Big) \mathbf{\Lambda}^T \\ &= \mathbf{\Phi} \mathbf{P}_k \mathbf{\Phi}^T + \mathbf{\Lambda} \mathbf{Q}_k \mathbf{\Lambda}^T, \quad \mathbf{P}_0 \text{ given} \end{aligned}$$

LTI System Propagation of the Mean and Covariance

Propagation of the Mean Value

$$\overline{\mathbf{x}}_{k+1} = \mathbf{\Phi} \overline{\mathbf{x}}_k + \mathbf{\Gamma} \overline{\mathbf{u}}_k, \quad \overline{\mathbf{x}}_0 \text{ given}$$

Propagation of the Covariance

$$\mathbf{P}_{k+1} = \mathbf{\Phi} \mathbf{P}_k \mathbf{\Phi}^T + \mathbf{\Lambda} \mathbf{Q}_k \mathbf{\Lambda}^T, \quad \mathbf{P}_0 \text{ given}$$

Both propagation equations are *linear*

45

Next Time: Classification of Data Sets

47

Supplementary Material

Evolution of a Wind Shear Advisory

Correlation and Independence

 Probability density functions of two random variables, x and y

$$pr(x)$$
 and $pr(y)$ given for all x and y in $(-\infty,\infty)$
 $pr(x,y)$: Joint probability density function of x and y

$$\int_{-\infty}^{\infty} pr(x)dx = 1; \quad \int_{-\infty}^{\infty} pr(y)dy = 1; \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} pr(x,y)dx dy = 1;$$

- Expected values of x and y
 - Mean values
 - Covariance

$$E(x) = \int_{-\infty}^{\infty} x \ pr(x) dx = \overline{x}$$

$$E(y) = \int_{-\infty}^{\infty} y \ pr(y) dy = \overline{y}$$

$$E(xy) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y \ pr(x,y) dx dy$$

Independence (probability) and Correlation (expected value)

x and y are independent if

$$pr(x,y) = pr(x) pr(y)$$
 at every x and y in $(-\infty,\infty)$
 $pr(x | y) = pr(x); \quad pr(y | x) = pr(y)$

Dependence

 $pr(x,y) \neq pr(x)pr(y)$ for some x and y in $(-\infty,\infty)$

x and y are uncorrelated if

$$E(xy) = E(x)E(y)$$
$$= \overline{x} \ \overline{y}$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \ pr(x,y) dx dy = \int_{-\infty}^{\infty} x \ pr(x) dx \int_{-\infty}^{\infty} y \ pr(y) dy$$

Correlation

$$E(xy) \neq E(x)E(y)$$

51

Which Combinations are Possible?

Independence and lack of correlation

$$pr(x,y) = pr(x) pr(y) \text{ at every } x \text{ and } y \text{ in } (-\infty,\infty)$$

$$\iint_{-\infty}^{\infty} xy pr(x,y) dx dy = \iint_{-\infty}^{\infty} x pr(x) dx \iint_{\infty}^{\infty} y pr(y) dy = \overline{x} \overline{y}$$

Dependence and lack of correlation

$$pr(x,y) \neq pr(x) pr(y)$$
 for some x and y in $(-\infty,\infty)$
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \, pr(x,y) dx dy = \int_{-\infty}^{\infty} xy \, pr(x) dx \int_{-\infty}^{\infty} y \, pr(y) dy = \overline{x} \, \overline{y}$$

Independence and correlation

$$pr(x,y) = pr(x) pr(y) \text{ at every } x \text{ and } y \text{ in } (-\infty,\infty)$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy pr(x,y) dx dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy pr(x) pr(y) dx dy \neq \int_{-\infty}^{\infty} x pr(x) dx \int_{-\infty}^{\infty} y pr(y) dy = \overline{x} \overline{y}$$

Dependence and correlation

$$pr(x,y) \neq pr(x) pr(y)$$
 for some x and y in $(-\infty,\infty)$

$$\iint_{-\infty}^{\infty} x y \, pr(x,y) dx dy \neq \int_{-\infty}^{\infty} x \, pr(x) dx \int_{-\infty}^{\infty} y \, pr(y) dy = \overline{x} \, \overline{y}$$

Correlation, Orthogonality, and **Dependence of Two Random Variables**

If two variables are uncorrelated

E(xy) = E(x)E(y)

Two variables are orthogonal if

$$E(xy) = 0$$

Two variables are independent if

Given independent x and y

$$pr(x, y) = pr(x)pr(y)$$

$$\operatorname{pr}(x,y) = \operatorname{pr}(x)\operatorname{pr}(y)$$
 $E[g(x)h(y)] = E[g(x)]E[h(y)]$

Still no notion of causality

53

Example
$$\mathbf{x}_k = \begin{bmatrix} x_k \\ y_k \end{bmatrix} = \begin{bmatrix} x_{1_k} \\ x_{2_k} \end{bmatrix}$$

2nd-order LTI system

$$\mathbf{x}_{k+1} = \mathbf{\Phi} \mathbf{x}_k + \mathbf{\Lambda} \mathbf{w}_k, \quad \mathbf{x}_0 = \mathbf{0}$$

Gaussian disturbance, w, with independent, uncorrelated components

$$\boxed{\overline{\mathbf{w}} = \begin{bmatrix} \overline{w}_1 \\ \overline{w}_2 \end{bmatrix}; \quad \mathbf{Q} = \begin{bmatrix} \sigma_{w_1}^2 & 0 \\ 0 & \sigma_{w_2}^2 \end{bmatrix}}$$

Propagation of state mean and covariance

$$\overline{\overline{\mathbf{x}}}_{k+1} = \mathbf{\Phi} \overline{\mathbf{x}}_k + \mathbf{\Lambda} \overline{\mathbf{w}}$$

$$\mathbf{P}_{k+1} = \mathbf{\Phi} \mathbf{P}_k \mathbf{\Phi}^T + \mathbf{\Lambda} \mathbf{Q} \mathbf{\Lambda}^T, \quad \mathbf{P}_0 = 0$$

Off-diagonal elements of P and Q express correlation

$$\overline{\mathbf{x}}_{k+1} = \mathbf{\Phi} \overline{\mathbf{x}}_k + \mathbf{\Lambda} \overline{\mathbf{w}}$$

$$\mathbf{P}_{k+1} = \mathbf{\Phi} \mathbf{P}_k \mathbf{\Phi}^T + \mathbf{\Lambda} \mathbf{Q} \mathbf{\Lambda}^T, \quad \mathbf{P}_0 = 0$$

Example

Independence and lack of correlation in state

Independent dynamics and correlation in <u>state</u>

$$\mathbf{\Phi} = \left[\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right]; \quad \mathbf{\Lambda} = \left[\begin{array}{cc} c & 0 \\ 0 & d \end{array} \right]$$

$$\boxed{\boldsymbol{\Phi} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}}; \quad \overline{\mathbf{x}}_0 \neq \mathbf{0}; \quad \overline{\mathbf{w}} = \overline{w}; \quad \boldsymbol{\Lambda} = \begin{bmatrix} c \\ c \end{bmatrix}}$$

Dependence and lack of correlation in nonlinear output

$$\mathbf{\Phi} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}; \quad \mathbf{\Lambda} = \begin{bmatrix} e & 0 \\ 0 & f \end{bmatrix}$$
$$\mathbf{z} = \begin{bmatrix} x_1 \\ x_2^2 \end{bmatrix}; \quad \text{Conjecture (t.b.d.)}$$

Dependence and correlation in state

$$\mathbf{\Phi} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}; \quad \mathbf{\Lambda} = \begin{bmatrix} e & 0 \\ 0 & f \end{bmatrix}$$

55

2nd-Order Example Position and Velocity

LTI Dynamic System with Random Disturbance

$$\begin{bmatrix} x_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix} \begin{bmatrix} x_k \\ v_k \end{bmatrix} + \begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix} u_k + \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} w_k$$

Propagation of the Mean Value

$$\begin{bmatrix}
\overline{x}_{k+1} \\
\overline{v}_{k+1}
\end{bmatrix} = \begin{bmatrix}
\phi_{11} & \phi_{12} \\
\phi_{21} & \phi_{22}
\end{bmatrix} \begin{bmatrix}
\overline{x}_{k} \\
\overline{v}_{k}
\end{bmatrix} + \begin{bmatrix}
\gamma_{1} \\
\gamma_{2}
\end{bmatrix} \overline{u}_{k}$$

Propagation of the Covariance

$$\begin{bmatrix} P_{xx_{k+1}} & P_{xv_{k+1}} \\ P_{vx_{k+1}} & P_{vv_{k+1}} \end{bmatrix} = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix} \begin{bmatrix} P_{xx_{k}} & P_{xv_{k}} \\ P_{vx_{k}} & P_{vv_{k}} \end{bmatrix} \begin{bmatrix} \phi_{11} & \phi_{21} \\ \phi_{12} & \phi_{22} \end{bmatrix} + \begin{bmatrix} \lambda_{1} \\ \lambda_{2} \end{bmatrix} \sigma_{w_{k}}^{2} \begin{bmatrix} \lambda_{1} & \lambda_{2} \end{bmatrix}$$