Non-homogeneous recurrences  $\frac{a_0 t_n + a_1 t_{n-1} + \cdots + a_k t_{n-k} = f(n)}{t_{n-2} t_{n-1} = n}$   $= t_{n-2} t_{n-1} = n - t_{n-1}$ replace n by n-1  $t_{n-1}-2t_{n-2}=n-1$  — 2) replace n by h-1  $t_{n-3}t_{n-1}+2t_{n-2}=1$  \_\_\_\_\_3) replace n by n-1  $t_{n-1}-3t_{n-2}+2t_{n-3}=1$  — 4) 3)-4) Handyeners [tn-4tn-1+5tn-2-2tn-3=0] - 5]  $\frac{\chi^{3} - 4\chi^{2} + 5\chi - 2 = 0}{1 \cdot 1 \cdot 2}$   $t_{n} = \left(C_{1} + C_{2} n\right) \cdot 1^{h} + C_{3} \cdot 2^{h}$  $= \frac{5+5n+5}{2n}$   $= \frac{5+5n+5}{2n}$ Prob.  $t_{n-2}t_{n-1}=nt^{2}$   $n\geq 1$   $t_{0}=0$ for eliminating 2 h 1)

Yeplace h by n-1  $\frac{2^{h-1}(RMS)}{2^{h-1}(RMS)}$   $\frac{2^{h-1}(RMS)}{multiply hy 2}$   $\frac{1}{4^{h-1}}$   $\frac{1}{4^{h-1$ 1) - 2)



n=3k

n=3k

n=3k

Prob:  $T_n = \sqrt{n} \cdot T_n + n$   $T_n = a T_n/6 + f_{n}$ 

divide both the sides by 2k

 $\int \frac{T(z^k)}{z^k} = \frac{T(z^{k/2})}{z^{k/2}} + 1$ 

 $T_{n} = T_{n/2} + 1$   $= O(|y|^{2})$  = V(k/2) + 1  $= \log k$ 

 $\frac{T(2^{k})}{2^{k}} = \log k = \int T(2^{k}) = 2^{k} \log k$   $\frac{T(n)}{2^{k}} = 2^{l} \frac{3^{n}}{3^{n}} \log \log n$   $\frac{1}{2^{n}} = n \log \log n$ 

Recursion Tree Method



00000---0

The atuly often) Tn= 2Tn/2+ Cn Tu(2- ) Tuly t c'n (cn/2

Tn = a Tn/b + fcn) Tn = 3 Tn/4 + Cn2 K= 194h  $\left( \mathcal{T}_{l}\right)$ T(n) =  $\sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i \operatorname{cm}^2 +$ = 0  $(n^2)$ 

