1

Zeige, dass $\chi(G-v)$ entweder $\chi(G)$ oder $\chi(G)-1$ ist.

Obere Schranke: jede Färbung von G ist auch eine valide Färbung für G-v, also kann es nicht sein, dass wir dafür mehr Farben brauchen. In anderen Worten: $\chi(G-v) \leq \chi(G)$

Untere Schranke: Angenommen $\chi(G-v)$ wäre $\leq \chi(G)-2$. Dann kann ich dem Knoten v eine neue Farbe zuweisen und somit eine Färbung von G mit höchstens $\chi(G)-2+1=\chi(G)-1$ vielen Farben, Widerspruch. Also auch $\chi(G-v)\geq \chi(G)-1$.

2

Beweise oder widerlege, dass wenn $\chi(G) = k$, dann ist $|E| \geq {k \choose 2}$

Die Aussage ist wahr. Wir verwenden das Prinzip der Superknoten: Sei $V = V_1 \cup V_2 \cup \cdots \cup V_k$ die Färbung von G. Betrachte nun den Graphen G' = (V', E') mit $V' = \{V_1, V_2, \ldots, V_k\}$ und $\{V_i, V_j\} \in E'$, wenn es $v_i \in V_i$ und $v_j \in V_j$ gibt, s.d. $\{v_i, v_j\} \in E$, also genau dann wenn es mindestens eine Kante zwischen den Farbklassen gibt. Man bemerke auch, dass $\{V_i, V_i\}$ nie eine Kante sein kann, weil per Definition einer Färbung, enthält jede Farbklasse V_i keine Kanten.

Angenommen $|E| < {k \choose 2}$, dann kann G' kein kompletter Graph sein. Es muss also zwei Farbklassen geben, zwischen denen es keine Kante gibt, sodass man sie zu einer Farbklasse vereinen könnte. Formal: es würde dann mindestens einen Knoten $v \in G'$ geben mit $\deg(v) < k-1$ und somit kann man mit dem Greedy Algorithmus den Graphen G' mit k-1 Farben färben und die Gleiche Färbung auf G übertragen, was im Widerspruch zu $\chi(G) = k$ steht.

3

Beweise oder widerlege, dass wenn $|E| \geq {k \choose 2}$, dann ist $\chi(G) \geq k$

Die Aussage ist falsch. Betrachte den Sterngraphen S_6 :

Im Allgemeinen hat S_i i viele Kanten und kann mit 2 Farben gefärbt werden. S_6 z.B. hat $|E| = 6 = {4 \choose 2}$ viele Kanten, wobei $\chi(G) = 2 < 4$.

4

Oliver besitzt 3 Paare Schuhe, zwei schwarze und ein weisses. Eines Morgens muss er seine Schuhe aufgrund eines Stromausfalls in vollständiger Dunkelheit anziehen. Er wählt zwei Schuhe zufällig (gleichverteilt, ohne Zurücklegen) aus.

Sei A das Ereignis, dass er einen linken und einen rechten Schuh ausgewählt hat. Sei B das Ereignis, dass er zwei Schuhe derselben Farbe ausgewählt hat.

Gebe einen Wahrscheinlichkeitsraum an, der das Zufallsexperiment beschreibt und berechne Pr[A] und Pr[A|B]. Sind A und B unabhängig?

Zur Einfachheit werden wir Olivers Schuhe mit 1,2,3,4,5,6 bezeichnen, wobei $\{1,2\}$ das erste Paar schwarzer Schuhe ist, $\{3,4\}$ das zweite und $\{5,6\}$ das Paar weisser Schuhe ist. Seien dazu noch Schuhe 1,3,5 linke und 2,4,6 rechte.

Als Ergebnismenge können wir nun $\binom{[6]}{2} = \{\{1,2\},\{1,3\},\{1,4\},\{1,5\},\dots,\{5,6\}\}$ nehmen. Insgesamt gibt es somit $\binom{6}{2} = 15$ Elementarereignisse, die alle gleichwahrscheinlich sind (Laplace Raum).

 $\Pr[A]$ kann man nun wie folgt berechnen: bei der Wahl erster Schuh stehen Oliver alle Möglichkeiten zur Verfügung. Bei der Wahl der zweiten Schuh stehen ihm nun aber nur noch 3 von 5 Möglichkeiten zur Verfügung. Somit ist $\Pr[A] = \frac{3}{5}$. Man kann auch alternativ alle Ereignisse in A durchzählen, nämlich $A = \{\{1,2\},\{1,4\},\{1,6\},\{2,3\},\{2,5\},\{3,4\},\{3,6\},\{4,5\},\{5,6\}\}$ und somit $\Pr[A] = \frac{|A|}{|\Omega|} = \frac{9}{15}$.

Für $\Pr[A|B]$ haben wir, dass $A \cap B = \{\{1,2\}, \{1,4\}, \{2,3\}, \{3,4\}, \{5,6\}\}$ und somit $\Pr[A \cap B] = \frac{5}{15}$. Analog haben wir $\Pr[B] = \frac{\binom{4}{2}+1}{15} = \frac{7}{15}$, woraus folgt, dass $\Pr[A|B] = \frac{5}{7}$.