MarchenkoSA 11102024-182608

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\scriptscriptstyle \rm H}=8.4~\Gamma\Gamma$ ц и $f_{\scriptscriptstyle \rm B}=9.0~\Gamma\Gamma$ ц, используя рисунок 1.

Рисунок 1 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 0.5 дБ 2) 0.9 дБ 3) 0.3 дБ 4) 1.5 дБ

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 2) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 2 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 3 ситуаций соответствует эта частотная характеристика?

Рисунок 3 – Различные реализации Г-образной цепи согласования

Варианты ОТВЕТА: 1) а 2) b 3) c 4) d

Даны значения s-параметров на некоторой частоте:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.5	0.332	-169.3	9.118	82.7	0.052	66.6	0.269	-66.6

Требуется выбрать согласованный аттенюатор с *минимальным* затуханием, подключения которого будет *достаточно*, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

Варианты ОТВЕТА:

- 1) аттенюатор с затуханием 0.0 дБ, подключённый к плечу 2;
- 2) аттенюатор с затуханием 1.4 дБ, подключённый к плечу 2;
- 3) аттенюатор с затуханием 1.0 дБ, подключённый к плечу 1;
- 4) аттенюатор с затуханием 1.9 дБ, подключённый к плечу 1.

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -7~$ дБ.

Ко входу этой цепи подключён генератор с внутренним сопротивлением $50~{\rm Om}$ и доступной мощностью $7.6~{\rm дБм}.$

Какая мощность рассеивается внутри цепи коррекции?

Варианты ОТВЕТА:

- 1) 1.5 mBT
- 2) 4.6 mBT
- 3) 1.3 мВт
- 4) 1.1 мВт

Дано значение коэффициента отражения от входа реактивной цепи коррекции $s_{11} = -0.75 \text{-} 0.27 \mathrm{i}$.

Найти модуль (в дБ) коэффициента передачи s_{21} .

Варианты ОТВЕТА:

- 1) -0.4 дБ
- 2) -8.8 дБ
- 3) -1.4 дБ
- 4) -4.4 дБ

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.319	-150.8	13.645	94.1	0.037	67.5	0.365	-57.1
1.5	0.332	-169.3	9.118	82.7	0.052	66.6	0.269	-66.6
2.0	0.345	179.6	6.714	75.0	0.067	65.1	0.214	-77.1
3.0	0.360	164.1	4.404	63.3	0.096	60.8	0.171	-96.0
5.5	0.389	138.8	2.403	38.7	0.168	45.7	0.123	-128.0
8.0	0.472	114.8	1.652	15.2	0.231	28.4	0.089	138.9

Выбрать Γ -образный четырёхполюсник (см. рисунок 4), который может обеспечить согласование со стороны плеча 2 на частоте 1.0 $\Gamma\Gamma$ ц.

Рисунок 4 – Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D