MATH 241

Chapter 4

SECTION 4.1: AREAS AND DISTANCES

Contents

Area Problem Divide and Congress With the Dight Endpoint Dule!	
Divide and Conquer With the Right Endpoint Rule!	
Divide and Conquer With the Left Endpoint Rule!	
Sigma Notation	
Taking the Limit!	
The Distance Problem	

CREATED BY: PIERRE-OLIVIER PARISÉ

 $Fall\ 2022$

What is the area of the following shapes?

<u>Trick:</u> Use simpler shapes, such as rectangles, to approximate the area.

EXAMPLE 1. Using rectangles, approximate the area of the region S under the graph of $y = x^2$ between x = 0 and x = 1. Go to Desmos: https://www.desmos.com/calculator/sabgeefzbq

Divide and Conquer With the Right Endpoint Rule!

Suppose we want to compute the area of a region S bounded by the graph of some function y = f(x).

Step I Subdivide the region S into n strips of equal width $\Delta x = (b-a)/n$.

STEP II Choose the right-end point for all subintervals: $x_1 = a + \Delta x, \ x_2 = a + 2\Delta x, \dots, \ x_{n-1} = a + (n-1)\Delta x, \ x_n = b.$

 $\underline{\textsc{Step III}}$ Approximate by adding the area of each rectangle:

$$R_n = f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x.$$

Divide and Conquer With the Left Endpoint Rule!

Suppose we want to compute the area of a region S bounded by the graph of some function y = f(x) from x = a to x = b.

Step I Subdivide the region S into n strips of equal width $\Delta x = (b-a)/n$.

Step II Choose the left-end point for all subintervals: $x_0 = a, x_1 = a + \Delta x, \dots, x_{n-2} = a + (n-2)\Delta x, x_{n-1} = a + (n-1)\Delta x.$

Step III Approximate by adding the area of each rectangle:

$$L_n = f(x_0)\Delta x + f(x_1)\Delta x + \dots + f(x_{n-1})\Delta x.$$

Sigma Notation

We use the symbol \sum to write a summation of numbers compactly:

$$\sum_{i=k}^{n} a_i$$

Example 2.

- Expand $\sum_{i=1}^{7} i$.
- Write $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}$ with the Sigma notation.
- Write 1+3+5+7+9+11+13 with the Sigma notation.

<u>Useful Sum Formulas:</u>

•
$$\sum_{i=0}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2};$$

•
$$\sum_{i=0}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
;

•
$$\sum_{i=0}^{n} i^3 = 1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$
.

Taking the Limit!

EXAMPLE 3. Show that the area of the region S in Example 1 is 1/3. In other words, show that

$$Area(S) = \lim_{n \to \infty} R_n = 1/3.$$

General definition of Area: The area of the region S lying under the graph of a function y = f(x) from x = a to x = b is given by

• Area(S) =
$$\lim_{n \to \infty} R_n = \lim_{n \to \infty} \left(f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_n) \Delta x \right)$$

• Area(S) =
$$\lim_{n \to \infty} L_n = \lim_{n \to \infty} \left(f(x_0) \Delta x + f(x_1) \Delta x + \dots + f(x_{n-1}) \Delta x \right)$$

THE DISTANCE PROBLEM

If an object move at constant velocity, then the distance between the start and finish line is easy to compute:

 $\text{Distance} = \text{Velocity} \times \Delta \text{Time} \; .$

What do we do if the velocity is not constant?

EXAMPLE 4. Suppose the odometer on our car is broken and we want to estimate the distance driven over a 30-second time interval. We take speedometer readings every five seconds and record them in the following table:

Time (s)	0	5	10	15	20	25	30
Velocity (ft/s)	25	31	35	43	47	45	41

Remark:
• The total distance is given by the area under the curve of the velocity function!