Ekonometrija 1 užduotis

Eglė Kaleckaitė

2011 m. spalio 8 d.

Mano nagrinėjama įmonių grupė yra trečia, o endogeninis kintamasis – val_Ax. Prieš pradėdama tolimesnį darbą su duomenimis, iš pradžių juos pertvarkiau formatu, kuris būtų tinkamas panelinių duomenų analizei su R, t.y. dabar duomenis sudaro 11 stulpelių:

nr, time, veikla, grupe, paj, dsk, val, atlyg, ter, nace1, nace2 Taigi atsirado papildomas stulpelis su data - time, kuriame skaičius po kablelio žymi ketvirtį, t.y. x.00 žymi pirmą x metų ketvirtį, x.25 – antrą, x.50 – trečią

1 Duomenų aprašymas ir paruošimas

ir x.75 – ketvirtą.

Žemiau patektoje lentelėje matyti kiekvienas duomenų stulpelis ir jo pagrinės charakteristikos.

nr	time	veikla	grupe	paj
Min. : 530	Min. :2005	Min. :70	Min. :3	Min. : 0
1st Qu.: 4246	1st Qu.:2006	1st Qu.:70	1st Qu.:3	1st Qu.: 20199
Median : 6520	Median :2007	Median:70	Median :3	Median : 161270
Mean : 6645	Mean :2007	Mean :70	Mean :3	Mean : 1013081
3rd Qu.: 9278	3rd Qu.:2008	3rd Qu.:70	3rd Qu.:3	3rd Qu.: 551697
Max. :11944	Max. :2009	Max. :70	Max. :3	Max. :68509767
				NA's : 15460
dsk	val	at	lyg	ter
Min. : 0.50	O Min. :	0.0 Min.	: 0	Min. : 11.00
1st Qu.: 2.00) 1st Qu.:	711.8 1st Qu	.: 2784	1st Qu.: 13.00
Median: 3.00	O Median : 1	.808.0 Median	: 7500	Median : 19.00
Mean : 6.28	1 Mean : 3	8849.4 Mean	: 29180	Mean : 23.31
3rd Qu.: 7.00	3rd Qu.: 4	369.5 3rd Qu	.: 22772	3rd Qu.: 21.00
Max. : 359.50	0 Max. :69	208.0 Max.	:3427509	Max. : 91.00
NA's :4309.00	0 NA's :16	368.0 NA's	: 4309	NA's :352.00
nace1	nace2			
Min. :452100	Min. : 240	000		
1st Qu.:702000	1st Qu.:6820	000		
Median :702000	Median:6820	000		
Mean :703170	Mean :6652	281		
3rd Qu.:702000	3rd Qu.:6820	000		

Max. :930500 Max. :960900 NA's : 288 NA's : 288

Stulpeliai veikla ir grupe yra neįdomūs, nes jie yra konstantos. Taip pat galima pasakyti, jog duomenys korektiški ženklų prasme, t.y. nėra neigiamų reikšmių. Minimalios pajamų, valandų ir atlyginimo reikšmės yra 0. Lentelė taip pat parodo ir NA (praleistų) reikšmių kiekį kievienam rodikliui.

Kadangi kiti rodikliai yra beveik konstantos ir žymi tik priklausymai vienai ar kitai grupei, tai mus labiau domina val bei atlyg ir dsk priklausomybė. Tai galima pamatyti paveikslėliuose 1 ir 2. Paveikslėliuose galima pastebėti didelę duomenų koncentraciją ties mažesnėmis reikšmėmis. Taigi, galima sakyti, jog mažesnių įmonių yra ženkliai mažiau nei didelių. Taip pat galime pastebėti ryškią valandų ir darbuotojų skaičiaus tiesinę priklausomybę. Būtų keistą, jei būtų kitaip. Tačiau tarp atlyginimų ir valandų priklausomybė ne tokia aiški, lyg ir galima įžvelgti eksponentinę priklausomybę.

1 pav.: Kintamųjų val ir atlyg sklaidos diagrama

Iš viso turima 1430 įmonių priklausančių trečiai grupei, tačiau domina tik tos, kurių rodiklis *val* turi bent viena reikšmę per visus metus. Kitu atveju, duomenys nesuteiks naudingos informacijos. Tokių įmonių yra 651:

[1]	530	544	552	570	571	574	577	580	591	607	629	683
[13]	729	743	748	750	757	807	815	875	889	949	1088	1099
[25]	1128	1193	1195	1208	1209	1241	1264	1272	1291	1306	1307	1337
[37]	1346	1405	1433	1489	1514	1560	1590	1596	1602	1655	1661	1668
[49]	1672	1687	1708	1765	1794	1825	1845	1872	1887	1896	1901	1918
[61]	1941	1944	1945	1947	1966	1967	2095	2113	2116	2137	2145	2153
[73]	2156	2157	2174	2177	2189	2200	2215	2249	2254	2256	2259	2266
[85]	2267	2269	2277	2280	2283	2284	2294	2327	2342	2394	2440	2468

2 pav.: Kintamųjų valir dsksklaidos diagrama

[97]	2491	2508	2530	2596	2697	2707	2708	2725	2727	2799	2813	2867
[109]	2869	2911	2936	2952	2955	2964	2972	2973	2976	2982	2989	3049
[121]	3139	3165	3181	3200	3203	3206	3208	3230	3305	3313	3351	3361
[133]	3362	3366	3368	3374	3375	3398	3401	3440	3469	3528	3585	3607
[145]	3632	3649	3657	3660	3670	3681	3682	3683	3685	3687	3690	3693
[157]	3696	3731	3759	3761	3789	3795	3830	3896	3942	3972	3978	3988
[169]	3995	4004	4006	4009	4036	4040	4055	4062	4063	4064	4065	4078
[181]	4085	4090	4091	4099	4100	4101	4108	4112	4119	4122	4152	4190
[193]	4229	4243	4273	4325	4455	4481	4483	4517	4533	4564	4574	4591
[205]	4603	4636	4639	4646	4647	4648	4650	4651	4652	4654	4681	4686
[217]	4687	4708	4722	4734	4735	4737	4741	4747	4760	4761	4763	4765
[229]	4775	4776	4779	4791	4800	4807	4818	4820	4824	4847	4853	4867
[241]	4870	4873	4886	4889	4892	4894	4896	4899	4901	4904	4906	4908
[253]	4917	4918	4919	4924	4925	4947	4963	4968	4973	4979	5029	5052
[265]	5053	5057	5060	5116	5118	5151	5162	5169	5175	5212	5224	5228
[277]	5280	5290	5338	5400	5411	5428	5442	5457	5477	5501	5553	5573
[289]	5587	5609	5644	5645	5660	5709	5716	5736	5757	5760	5766	5778
[301]	5802	5825	5840	5845	5896	5903	5904	5971	5992	6012	6024	6025
[313]	6044	6050	6053	6061	6062	6074	6077	6080	6093	6094	6099	6101
[325]	6103	6139	6148	6151	6152	6160	6163	6167	6168	6170	6175	6178
[337]	6179	6182	6190	6200	6201	6206	6209	6214	6218	6245	6248	6251
[349]	6255	6270	6282	6285	6316	6318	6325	6326	6334	6337	6338	6348
[361]	6355	6361	6385	6390	6411	6424	6438	6445	6459	6462	6464	6486
[373]	6534	6539	6542	6548	6554	6570	6571	6592	6641	6653	6746	6768
[385]	6784	6847	6907	6914	7056	7074	7090	7123	7139	7199	7245	7265
[397]	7357	7385	7425	7455	7509	7510	7529	7688	7761	7767	7838	7845

```
[409]
       7868
              7887
                    7889
                           7890
                                  7954
                                        7955
                                               8017
                                                     8020
                                                            8041
                                                                   8068
                                                                         8073
                                                                                8085
[421]
       8105
              8120
                    8136
                           8143
                                 8145
                                        8148
                                               8152
                                                     8162
                                                            8183
                                                                   8224
                                                                         8240
                                                                                8246
[433]
       8266
              8302
                    8361
                           8409
                                 8411
                                        8442
                                               8475
                                                     8477
                                                            8483
                                                                   8485
                                                                         8544
                                                                                8554
[445]
       8588
              8594
                    8605
                           8643
                                 8694
                                        8700
                                               8733
                                                     8734
                                                            8740
                                                                   8742
                                                                         8766
                                                                                8769
                    8853
                           8860
                                 8864
                                               8896
                                                     8917
                                                            8937
                                                                   8947
                                                                         8962
[457]
       8787
              8794
                                        8869
                                                                                8968
       8974
              8975
                    8979
                           9001
                                  9002
                                        9006
                                               9007
                                                     9029
                                                            9034
                                                                   9049
                                                                         9074
                                                                                9079
[469]
[481]
       9087
              9088
                    9089
                           9090
                                  9096
                                        9103
                                               9112
                                                     9114
                                                            9120
                                                                   9122
                                                                         9129
                                                                                9145
                                               9182
                                                     9184
                                                            9185
                                                                   9186
                                                                         9191
[493]
       9147
              9152
                    9153
                           9158
                                  9164
                                        9178
                                                                                9193
                                                     9257
                                                            9262
[505]
       9195
              9202
                    9213
                           9214
                                  9216
                                        9245
                                               9250
                                                                   9263
                                                                         9266
                                                                                9267
[517]
       9277
              9278
                    9281
                           9282
                                  9284
                                        9310
                                               9336
                                                     9341
                                                            9356
                                                                   9391
                                                                         9400
                                                                                9413
[529]
       9414
              9417
                    9421
                           9427
                                  9428
                                        9431
                                               9435
                                                     9450
                                                            9480
                                                                   9491
                                                                         9492
                                                                                9495
[541]
       9501
              9516
                    9519
                           9541
                                  9542
                                        9543
                                               9547
                                                     9554
                                                            9578
                                                                   9598
                                                                         9610
                                                                                9628
                    9674
                                        9716
[553]
       9630
              9631
                           9683
                                  9684
                                               9718
                                                     9731
                                                            9733
                                                                   9753
                                                                         9754
                                                                                9760
[565]
       9774
              9775
                    9782
                           9787
                                  9799
                                        9804
                                               9856
                                                     9868
                                                            9870
                                                                   9893
                                                                         9908 10008
      10017 10051 10057
                          10092 10122 10149 10166
                                                    10167 10204
                                                                 10206 10263 10265
[577]
[589] 10285 10311 10320 10350
                                10381 10398 10416 10440 10465 10477 10492 10535
[601] 10565 10567 10597 10629 10650 10668 10687 10694 10732 10765 10787
                                                                               10838
[613] 10842 10855 10904 10939 10973 10992 10997 11016 11025 11065 11089 11160
[625] 11167 11283 11374 11382 11409 11438 11452 11468 11489 11612 11707 11720
[637] 11730 11760 11795 11797 11812 11819 11824 11829 11839 11853 11855 11859
[649] 11880 11931 11939
```

Dabar pagrindinės duomenų charakteristikos atrodo taip:

nr	time	veikla	grupe	paj
Min. : 539	Min. :2005	Min. :70	Min. :3	Min. : 0
1st Qu.: 4819	1st Qu.:2006	1st Qu.:70	1st Qu.:3	1st Qu.: 45000
Median : 7187	Median:2007	Median :70	Median :3	Median: 198609
Mean : 6980	Mean :2007 1	Mean :70	Mean :3	Mean : 1110513
3rd Qu.: 9432	3rd Qu.:2008	3rd Qu.:70	3rd Qu.:3	3rd Qu.: 621630
Max. :11944	Max. :2009 1	Max. :70	Max. :3	Max. :68509767
				NA's : 5695
dsk	val	at:	lyg	ter
Min. : 0.500			: 0	Min. : 11.00
1st Qu.: 2.000	1st Qu.: 71	1.8 1st Qu	.: 4500	1st Qu.: 13.00
Median: 4.500	Median : 1808	8.0 Median	: 13916	Median : 18.00
Mean : 8.167	Mean : 3849	9.4 Mean	: 43096	Mean : 21.69
3rd Qu.: 9.000	3rd Qu.: 4369	9.5 3rd Qu	.: 40688	3rd Qu.: 21.00
Max. : 154.500	Max. :69208	8.0 Max.	:2883086	Max. : 91.00
NA's :1705.000	NA's : 5952	2.0 NA's	: 1705	NA's :212.00
nace1	nace2	t		
Min. :452100	Min. : 24000	Min. :20	005	
1st Qu.:702000	1st Qu.:682000	1st Qu.:20	006	
Median :702000	Median :682000	Median :20	007	
Mean :703986	Mean :657128	Mean :20	007	
3rd Qu.:702000	3rd Qu.:682000	3rd Qu.:20	800	
Max. :930500	Max. :960900	Max. :20	009	
NA's : 188	NA's : 188			

Kad susidaryčiau aiškesnį vaizdą, kokie yra turimi duomenys, išsibrėžiau kiekvienos įmonės kiekvieno rodiklio grafikus. Jie patalpinti šio dokumento prisegtuke pdf formatu, pavadinimu all_ind.pdf. Panašu, jog duomenys turi daug

tuščių reikšmių ir trūkių. Iš pradžių pabandysiu tai ignoruoti ir sudaryti panelinių duomenų modelį. Taip pat paruošiu kelis duomenų masyvus, t.y. skelsiu duomenis pagal tuščių reikšmių kiekį bei skaidysiu į grupes. Ir bandysiu pagerinti rezultatus.

2 Modeliavimas

Kaip jau minėta, pradžioje sudarysiu paprastą panelių duomenų modelį. Kadangi kintamieji nace1 ir nace2 žymi tą patį tik pagal skirtingus reikalavimus, pasiliksiu vieną iš jų. Tegul tai būna nace2. Sudarysiu pooled panelinių duomenų modelį (R paketas plm)duomenims iki 2008 metų:

```
val ~ t + dsk + atlyg + ter + nace1
Oneway (individual) effect Pooling Model
Call:
plm(formula = fm, data = model.data, effect = "individual", model = "pooling")
Unbalanced Panel: n=691, T=1-12, N=4702
Residuals :
  Min. 1st Qu.
                 Median 3rd Qu.
                                    Max.
 -23000
                                   38600
           -342
                     51
                             396
Coefficients :
               Estimate
                         Std. Error
                                      t-value Pr(>|t|)
(Intercept)
            1.9181e+05
                         4.7360e+04
                                      4.0500 5.204e-05 ***
                         2.3602e+01
                                     -4.0670 4.840e-05 ***
            -9.5991e+01
t
             3.9346e+02
                         2.1132e+00 186.1888 < 2.2e-16 ***
dsk
             4.9017e-03
                         2.5771e-04
                                     19.0203 < 2.2e-16 ***
atlyg
            -1.1681e+00
                         1.2337e+00
                                      -0.9469
                                                 0.3438
ter
nace1
             5.5020e-04 6.7892e-04
                                       0.8104
                                                 0.4177
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                         2.1153e+11
Residual Sum of Squares: 8591400000
R-Squared
               : 0.95938
      Adj. R-Squared: 0.95816
F-statistic: 22184.7 on 5 and 4696 DF, p-value: < 2.22e-16
```

Du kintamieji yra nereikšmingi (ter ir nace1), tačiau jei jie nereikšmingi, jų dydžiai ir neturės reikšmingos įtakos endogeniniam kintamąjam. Tokių kintamųjų pašalinti nėra prasmės, tuo labiau, kai nežinoma, ar gautas modelis geras. Gerų rezultatų nerodo ir paklaidų kvadratų sumos. Dar galima pastebėti, jog laiko įtaka yra neigiama. Būtų galima logaritmuoti atlyg, tačiau šis kintamasis turi nulinių reikšmių. Pabandžiau įtraukti teritorijos žymimuosius kintamuosius, tačiau rezultatai tik pablogejo. Taip pat galima bandyti įtraukti sezoninius žymimuosius kintamuosius. Tai ir padarysiu. Įrauksiu tris žymimuosius kintamuosius s2, s3 ir s4, kurie žymės antrą, trečią ir ketvirtą sezonus atitinkamai.

```
val \sim t + s2 + s3 + s4 + dsk + atlyg + ter + nace1
Oneway (individual) effect Pooling Model
Call:
plm(formula = fm.s, data = model.data1, effect = "individual",
    model = "pooling")
Unbalanced Panel: n=691, T=1-12, N=4702
Residuals :
    Min.
          1st Qu.
                    Median
                            3rd Qu.
                                         Max.
-22900.0
           -337.0
                      59.6
                              397.0
                                      38500.0
Coefficients :
               Estimate
                         Std. Error
                                      t-value Pr(>|t|)
            2.0652e+05
                         5.0142e+04
                                      4.1187 3.876e-05 ***
(Intercept)
                                      -4.1322 3.656e-05 ***
t
            -1.0330e+02
                         2.4999e+01
s2
            -9.0789e+01
                         5.6563e+01
                                      -1.6051
                                               0.108540
s3
            -1.5269e+02
                         5.7615e+01
                                      -2.6501
                                               0.008073 **
s4
             7.8624e+01
                         5.9353e+01
                                       1.3247
                                              0.185337
dsk
             3.9365e+02
                         2.1100e+00 186.5621 < 2.2e-16 ***
             4.8759e-03
                         2.5732e-04
                                      18.9486 < 2.2e-16 ***
atlyg
            -1.2040e+00
                         1.2315e+00
                                      -0.9776 0.328312
ter
             5.4479e-04 6.7962e-04
                                       0.8016 0.422815
nace1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                         2.1153e+11
Residual Sum of Squares: 8554800000
               : 0.95956
R-Squared
      Adj. R-Squared: 0.95772
F-statistic: 13918.3 on 8 and 4693 DF, p-value: < 2.22e-16
```

Matome, kad ir s3 yra reikšmingas. Nepašalinu ir likusių kintamųjų. Pabandysiu padaryti šio modelio prognozę. Prognozių grafikai patalpinti šio dokumento prisegtuke pavadinimu Valandos_prognoze_skirtumas_zym.pdf. Iš paveiklslėlių matyti, jog gan dažnai prognozė daug nenuklysta nuo realių duomenų (turint omenyje, jog dirbama su gan dideliais dydžiais). Tačiau yra ir nemažai atvejų, kai prognozė labai nutolsta nuo realybės. Skirtumai tarp valandų ir jų prognozės pavaizduoti paveikslėliuose 3 ir 4. Reikia pastebėti, jog nepavaizduotos tos reikšmės, kurioms nebuvo realių duomenų, nes palyginimui jos nereikšmingos. Tačiau taip pat svarbu paminėti, jog išprognozuotų reikšmių buvo daugiau nei realiųjų.

Bendras įspūdis nėra blogas, bet pabandysiu prognozes pagerinti. Kadangi duomenis sudaro įvairaus ilgio valandų laiko eilutės, būtų galima tokias eilutes skirstyti į ilgesnes ir trumpesnes pagal kintamąjį val. Ilgesnėmis laikysiu eilutes, kurias sudaro bent 4 netuščios reikšmės, visa kita bus laikoma kaip trumpos laiko eilutės. Taip pat pastebėjau, jog valandas sudaro ir pastovios laiko eilutės (konstantos). Konstantas prognozuoti lengva, tam nereikia sudaryti regresijos, užtenka pratesti tą pačia reikšmę. Tokių yra 9:

 $3~{\rm pav}.:~{\rm Taškais}$ pavaizduotos visų įmonių skirtumai tarp valandų ir jų prognozės laike

[1] 1368 1574 1735 7050 7537 9331 9836 10632 11429

Jau anksčiau sudarytas modelis, tik ilgesnėms duomenų laiko eilutems:

Oneway (individual) effect Pooling Model

Call:

plm(formula = fm.s, data = long, effect = "individual", model = "pooling")

Unbalanced Panel: n=723, T=2-16, N=6153

Residuals :

Min. 1st Qu. Median 3rd Qu. Max. -22700.0 -332.0 69.3 412.0 38600.0

Coefficients :

	Estimate	Std. Error	t-value	Pr(> t)	
(Intercept)	1.8737e+05	3.1700e+04	5.9108	3.587e-09	***
t	-9.3754e+01	1.5797e+01	-5.9351	3.098e-09	***
s2	-7.6873e+01	4.9169e+01	-1.5634	0.11800	
s3	-1.0511e+02	4.9633e+01	-2.1177	0.03424	*
s4	8.7291e+01	5.0463e+01	1.7298	0.08372	
dsk	3.9628e+02	1.8675e+00	212.1952	< 2.2e-16	***
atlyg	4.2060e-03	2.1167e-04	19.8709	< 2.2e-16	***
ter	-9.8901e-01	1.0997e+00	-0.8993	0.36851	
nace1	5.2527e-04	6.3577e-04	0.8262	0.40873	

4 pav.: Skirtumų tarp valandų ir jų prognozių boxplot

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Total Sum of Squares: 2.5884e+11
Residual Sum of Squares: 1.125e+10

R-Squared : 0.95654

Adj. R-Squared: 0.95514

F-statistic: 16903.1 on 8 and 6144 DF, p-value: < 2.22e-16

Rezultatai tik pablogėjo. Nors įmonių skaičius mažesnis, t.y. paklaidų kvadratų sumos padidėjo. Nors ir su ilgesnėmis laiko eilutėmis, duomenys vistiek turi labai daug tuščių reikšmių. Todėl pagalvojau, kad juos galima užpildyti pasitelkus R f-ją na.spline. Rezultatai pateikti žemiau. Kintamųjų reikšmingumas sumažėjęs ir rezultatai tik pablogėjo.

Oneway (individual) effect Pooling Model

```
Call:
```

```
plm(formula = fm.s, data = long.na, effect = "individual", model = "pooling")
```

Balanced Panel: n=723, T=12, N=8676

Residuals :

```
Min. 1st Qu. Median 3rd Qu. Max. -23000 -701 -239 268 94400
```

Coefficients :

```
Estimate Std. Error t-value Pr(>|t|)
(Intercept) -2.1065e+04 8.7935e+04 -0.2395
                                           0.8107
            1.0869e+01 4.3833e+01 0.2480
                                            0.8042
s2
           -2.2560e+01 1.0172e+02 -0.2218
                                           0.8245
           -3.5925e+01 1.0366e+02 -0.3466
s3
                                           0.7289
           1.0037e+02 1.0649e+02 0.9426
                                           0.3459
s4
           3.7582e+02 4.2400e+00 88.6369
                                            <2e-16 ***
           6.4654e-03 4.6738e-04 13.8333
                                            <2e-16 ***
atlyg
           -3.2631e+00 2.2504e+00 -1.4500
                                            0.1471
ter
           -1.0060e-03 1.3448e-03 -0.7481
                                            0.4544
nace1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                        3.2084e+11
Residual Sum of Squares: 9.6131e+10
            : 0.70037
R-Squared
     Adj. R-Squared: 0.69965
F-statistic: 2532.35 on 8 and 8667 DF, p-value: < 2.22e-16
Taip pat ta patį modelį pritaikiau ir trumpoms laiko eilutėms:
Oneway (individual) effect Pooling Model
Call:
plm(formula = fm.s, data = short, effect = "individual", model = "pooling")
Unbalanced Panel: n=45, T=1-7, N=216
Residuals :
  Min. 1st Qu. Median 3rd Qu.
-4090.0 -487.0 -40.8 317.0 13400.0
Coefficients:
              Estimate Std. Error t-value Pr(>|t|)
(Intercept) 5.4537e+04 2.3085e+05 0.2362 0.81348
t
           -2.6654e+01 1.1493e+02 -0.2319 0.81684
s2
           4.1659e+01 3.5548e+02 0.1172 0.90682
           1.7546e+02 3.5575e+02 0.4932 0.62239
s3
           -3.8530e+01 3.6090e+02 -0.1068 0.91508
           3.8532e+02 2.3039e+01 16.7249 < 2e-16 ***
dsk
           3.8330e-03 2.9308e-03 1.3079 0.19237
atlyg
            1.4844e+01 7.2532e+00 2.0465 0.04197 *
ter
           -2.5119e-03 2.9458e-03 -0.8527 0.39481
nace1
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                        2809100000
Residual Sum of Squares: 414530000
            : 0.85244
R-Squared
     Adj. R-Squared: 0.81692
F-statistic: 149.472 on 8 and 207 DF, p-value: < 2.22e-16
```

Rezultatai taip pat nieko gero nežada. Bet ir nėra, ko norėti, kai laiko eilutės trumpesnės negu 4. Dar pabandysiu pagerinti ilgesniųjų laiko eilutėų prognozes. Skaidysiu duomenis į keles grupes pagal įmonių dydį, t.y. dsk. Tai darysiu pagal histogramą ?? Pirmąją grupę sudarys įmonės su mažesniu nei 5 darbuotojų skaičiumi, antrąją – 5:10 darbuotojų, trečiąją – 10:20, ketvirtąją – 20:40 ir penktąją įmonės su 40 ir daugiau darbuotojų.

5 pav.: Ilgesniųjų laiko eilučių darbuotojų skaičiaus histograma

```
$gr1
$gr1$Summary
Oneway (individual) effect Pooling Model
Call:
plm(formula = fm.s, data = datt, effect = "individual", model = "pooling")
Unbalanced Panel: n=376, T=2-16, N=2626
Residuals :
   Min. 1st Qu.
                 Median 3rd Qu.
-1740.0 -211.0
                  -20.5
                          208.0
                                  3670.0
Coefficients:
               Estimate
                         Std. Error t-value Pr(>|t|)
(Intercept)
             9.3500e+04
                         1.3626e+04
                                      6.8619 8.450e-12 ***
                         6.7891e+00 -6.9141 5.894e-12 ***
t
            -4.6940e+01
s2
             5.5413e+00
                         2.1305e+01
                                      0.2601
                                               0.79481
s3
             1.6915e+01
                         2.1506e+01
                                     0.7865
                                               0.43164
```

```
s4
            2.2854e+01 2.1874e+01 1.0448
                                             0.29620
            3.3360e+02 5.7455e+00 58.0625 < 2.2e-16 ***
dsk
            7.3894e-03 5.1654e-04 14.3056 < 2.2e-16 ***
atlyg
            4.7941e-01 4.5031e-01 1.0646
                                            0.28715
ter
            6.7825e-04 3.2355e-04 2.0963
                                            0.03615 *
nace1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                        1160700000
Residual Sum of Squares: 382100000
R-Squared
          : 0.6708
      Adj. R-Squared: 0.6685
F-statistic: 666.575 on 8 and 2617 DF, p-value: < 2.22e-16
$gr1$plm
Model Formula: val ~ t + s2 + s3 + s4 + dsk + atlyg + ter + nace1
<environment: 0x0595e908>
Coefficients:
(Intercept)
                                           s3
                     t
                                s2
                                                       s4
                                                                  dsk
9.3500e+04 -4.6940e+01 5.5413e+00 1.6915e+01 2.2854e+01 3.3360e+02
                  ter
                             nace1
7.3894e-03 4.7941e-01 6.7825e-04
$gr2
$gr2$Summary
Oneway (individual) effect Pooling Model
Call:
plm(formula = fm.s, data = datt, effect = "individual", model = "pooling")
Unbalanced Panel: n=184, T=3-16, N=1591
Residuals :
  Min. 1st Qu. Median 3rd Qu.
-3650.0 -456.0
                  22.2 414.0 19000.0
Coefficients:
              Estimate Std. Error t-value Pr(>|t|)
(Intercept) 1.1930e+05 4.1044e+04 2.9067 0.003703 **
           -5.8900e+01 2.0447e+01 -2.8807 0.004022 **
t
s2
           -7.3866e+01 6.2538e+01 -1.1811 0.237724
s3
           -1.0345e+02 6.3342e+01 -1.6332 0.102626
s4
           -4.7733e+01 6.4393e+01 -0.7413 0.458640
            3.4963e+02 8.7209e+00 40.0907 < 2.2e-16 ***
dsk
            4.2306e-03 5.4317e-04 7.7887 1.216e-14 ***
atlyg
           -1.3116e-01 1.5076e+00 -0.0870 0.930684
ter
```

```
-1.7381e-03 6.9145e-04 -2.5137 0.012046 *
nace1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                        2.979e+09
Residual Sum of Squares: 1.209e+09
R-Squared
            : 0.59414
     Adj. R-Squared: 0.59078
F-statistic: 289.489 on 8 and 1582 DF, p-value: < 2.22e-16
$gr2$plm
Model Formula: val ~ t + s2 + s3 + s4 + dsk + atlyg + ter + nace1
<environment: 0x0940d5c8>
Coefficients:
(Intercept)
                                                        s4
                     t
                                s2
                                            s3
                                                                   dsk
 1.1930e+05 -5.8900e+01 -7.3866e+01 -1.0345e+02 -4.7733e+01 3.4963e+02
     atlyg
                   ter
                            nace1
 4.2306e-03 -1.3116e-01 -1.7381e-03
$gr3
$gr3$Summary
Oneway (individual) effect Pooling Model
Call:
plm(formula = fm.s, data = datt, effect = "individual", model = "pooling")
Unbalanced Panel: n=109, T=4-16, N=1144
Residuals :
  Min. 1st Qu. Median 3rd Qu.
                                  Max.
 -11000
          -585
                   115
                           661
                                 10800
Coefficients:
              Estimate Std. Error t-value Pr(>|t|)
(Intercept) 3.9987e+05 7.1323e+04 5.6065 2.591e-08 ***
           -2.0069e+02 3.5538e+01 -5.6473 2.059e-08 ***
t.
           -2.3887e+01 1.0599e+02 -0.2254 0.8217325
s2
s3
           -9.3326e+01 1.0690e+02 -0.8730 0.3828228
s4
            1.1523e+02 1.0876e+02 1.0595 0.2896002
dsk
            3.6515e+02 8.3592e+00 43.6826 < 2.2e-16 ***
            3.6259e-03 5.3138e-04 6.8236 1.442e-11 ***
atlyg
ter
           -7.8089e+00 2.1531e+00 -3.6269 0.0002996 ***
            4.0885e-03 1.3426e-03 3.0453 0.0023779 **
nace1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Total Sum of Squares:
                       6.241e+09
Residual Sum of Squares: 1811500000
R-Squared
          : 0.70975
     Adj. R-Squared: 0.70416
F-statistic: 346.924 on 8 and 1135 DF, p-value: < 2.22e-16
$gr3$plm
Model Formula: val ~ t + s2 + s3 + s4 + dsk + atlyg + ter + nace1
<environment: 0x0504e36c>
Coefficients:
                               s2
(Intercept)
                     t
                                           s3
                                                       s4
                                                                 dsk
3.9987e+05 -2.0069e+02 -2.3887e+01 -9.3326e+01 1.1523e+02 3.6515e+02
                  ter
                            nace1
3.6259e-03 -7.8089e+00 4.0885e-03
$gr4
$gr4$Summary
Oneway (individual) effect Pooling Model
Call:
plm(formula = fm.s, data = datt, effect = "individual", model = "pooling")
Unbalanced Panel: n=44, T=9-16, N=640
Residuals :
   Min. 1st Qu.
                 Median 3rd Qu.
                                      Max.
-11000.0 -918.0
                   83.4
                            948.0 38400.0
Coefficients:
              Estimate Std. Error t-value Pr(>|t|)
(Intercept) 1.7173e+05 1.8129e+05 0.9473 0.34387
           -8.7030e+01 9.0339e+01 -0.9634 0.33573
s2
           -2.4933e+02 2.6864e+02 -0.9281 0.35370
s3
           -5.0674e+02 2.7132e+02 -1.8677 0.06227 .
           5.4017e+02 2.7506e+02 1.9638 0.04999 *
s4
           4.2566e+02 1.0577e+01 40.2453 < 2e-16 ***
dsk
           1.5370e-03 7.2438e-04 2.1218 0.03424 *
atlyg
            1.4305e+01 8.6257e+00 1.6584 0.09773.
ter
            2.9507e-03 3.2173e-03 0.9171 0.35942
nace1
```

Total Sum of Squares: 1.5105e+10 Residual Sum of Squares: 3580600000

R-Squared : 0.76295

Adj. R-Squared : 0.75223

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```
F-statistic: 253.866 on 8 and 631 DF, p-value: < 2.22e-16
$gr4$plm
Model Formula: val ~ t + s2 + s3 + s4 + dsk + atlyg + ter + nace1
<environment: 0x029f4148>
Coefficients:
(Intercept)
                                s2
                                           s3
                                                       s4
                                                                  dsk
                     t
 1.7173e+05 -8.7030e+01 -2.4933e+02 -5.0674e+02 5.4017e+02 4.2566e+02
      atlyg
                             nace1
                   ter
 1.5370e-03 1.4305e+01 2.9507e-03
$gr5
$gr5$Summary
Oneway (individual) effect Pooling Model
Call:
plm(formula = fm.s, data = datt, effect = "individual", model = "pooling")
Unbalanced Panel: n=10, T=12-16, N=152
Residuals :
  Min. 1st Qu. Median 3rd Qu.
                                  Max.
 -22900 -1850
                   346 1890
                                 20500
Coefficients:
              Estimate Std. Error t-value Pr(>|t|)
(Intercept) 8.9031e+05 9.3180e+05 0.9555 0.340949
           -5.3493e+02 4.0479e+02 -1.3215 0.188444
           -1.4006e+03 1.1034e+03 -1.2693 0.206381
s2
s3
           -8.4022e+02 1.1528e+03 -0.7289 0.467267
s4
            2.7847e+02 1.1649e+03 0.2390 0.811418
dsk
            4.1116e+02 1.5958e+01 25.7653 < 2.2e-16 ***
            6.0684e-03 1.2279e-03 4.9420 2.134e-06 ***
atlyg
           -2.1521e+02 7.7158e+01 -2.7892 0.006004 **
            2.6250e-01 8.3571e-01 0.3141 0.753896
nace1
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                        3.9656e+10
Residual Sum of Squares: 3273400000
R-Squared
             : 0.91746
     Adj. R-Squared: 0.86313
F-statistic: 198.676 on 8 and 143 DF, p-value: < 2.22e-16
```

\$gr5\$plm

```
Model Formula: val ~ t + s2 + s3 + s4 + dsk + atlyg + ter + nace1 \leq environment: 0x04fb1050>
```

Coefficients:

```
(Intercept) t s2 s3 s4 dsk
8.9031e+05 -5.3493e+02 -1.4006e+03 -8.4022e+02 2.7847e+02 4.1116e+02
atlyg ter nace1
6.0684e-03 -2.1521e+02 2.6250e-01
```

Padariusi prognozes ir suskaičiavusi jų skirtumą nuo realių darbo valandų, gavau, jog skaidymas į grupes pagerino absoliutinių skirtumų sumą, t.y:

```
> sum(abs(errors.long$Skirtumas), na.rm = TRUE)
```

[1] 1093791

> sum(abs(errors.gr\$Skirtumas), na.rm = TRUE)

[1] 993769.5

Dar bandžiau padaryti paprastą tiesinę regresiją kiekvienai įmonei atskirai. Tačiau geresnių rezultatų gauti nepavyko. Galutines prognozes, bei skirtumus nuo realių valandų galima pamatyti šio dokumento prisegtuke pavadinimu *Prognozes.csv*.

3 Išvados

Labai gerų rezultatų gauti nepavyko. To priežąstys gali būti:

- blogai sudarytas modelis
- per didelė įmonių įvairovė
- pasirinkti ne tie metodai
- ir k.t.