Sales Prediction

Linear Regression Model

Prediction or Interpretation

- This model will be focussed on Prediction rather Interpretaion
- Model will have more explanation over the model prediction performance using performance metrics

```
In [1]:  # Importing libraries
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import numpy as np
    # will import regression models later while building it

In [2]:  # importing csv fie and creating dataframe
    df = pd.read_csv('advertising.csv')
    df.head()
Out[2]:  TV Radio Newspaper Sales
```

```
Out[2]:
              TV Radio Newspaper Sales
         0 230.1
                    37.8
                               69.2
                                     22.1
             44.5
                    39.3
                               45.1
                                    10.4
         2
           17.2
                    45.9
                               69.3
                                    12.0
         3 151.5
                    41.3
                               58.5
                                    16.5
         4 180.8
                    10.8
                               58.4
                                    17.9
```

Dataset Description and attributes summary

```
In [3]:
         df.columns
        Index(['TV', 'Radio', 'Newspaper', 'Sales'], dtype='object')
Out[3]:
In [4]:
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 200 entries, 0 to 199
        Data columns (total 4 columns):
             Column
                        Non-Null Count Dtype
         0
             TV
                                        float64
                        200 non-null
         1
             Radio
                        200 non-null
                                        float64
                                        float64
             Newspaper 200 non-null
```

£100+61

200 non null

```
dtypes: float64(4)
memory usage: 6.4 KB
```

In [5]:

0u

df.describe()

ıt[5]:		TV	Radio	Newspaper	Sales
	count	200.000000	200.000000	200.000000	200.000000
	mean	147.042500	23.264000	30.554000	15.130500
	std	85.854236	14.846809	21.778621	5.283892
	min	0.700000	0.000000	0.300000	1.600000
	25%	74.375000	9.975000	12.750000	11.000000
	50%	149.750000	22.900000	25.750000	16.000000
	75 %	218.825000	36.525000	45.100000	19.050000
	max	296.400000	49.600000	114.000000	27.000000

- This dataset has three feature with different mode of advertising TV, Radio, Newspaper
- We are gonna findout the best contributor to achieve maximum sales
- All columns has numerical values of float datatype.
- TV Holds high share in advertising campaign followed by Newspaper and Radio
- Its pretty clear visual ads attract more customers compared to Radio

Data Cleaning

```
In [6]:
          df.isnull().sum()
Out[6]:
         Radio
                      0
         Newspaper
         Sales
                       0
         dtype: int64
```

This dataset is pretty clean. Since our concern is on the model performance we dive into the next section.

Feature Selection

In [7]:	d	f.head	I()		
Out[7]:		TV	Radio	Newspaper	Sales
	0	230.1	37.8	69.2	22.1

```
1
    44.5
             39.3
                           45.1
                                  10.4
2
    17.2
             45.9
                           69.3
                                  12.0
                           58.5
3
  151.5
             41.3
                                  16.5
   180.8
             10.8
                           58.4
                                  17.9
```

In [8]: np.round(df.corr(),2)

Out[8]:

	TV	Radio	Newspaper	Sales
TV	1.00	0.05	0.06	0.90
Radio	0.05	1.00	0.35	0.35
Newspaper	0.06	0.35	1.00	0.16
Sales	0.90	0.35	0.16	1.00

```
In [9]: plt.figure(dpi=120)
    sns.heatmap(np.round(df.corr(),1),annot=True, cmap="Blues")
    plt.show()
```


As mentioned before TV advertising has maximum correlation with sales.

Determining Normality

40

Clearly shows the distribution is left skewed. so no good after transformation.

```
In [13]: normaltest(np.log(df['Sales']).values)
```

Out[13]: NormaltestResult(statistic=58.29670316124151, pvalue=2.1929652606684847e-13)

Nope Nope Nope all Bad... we have made it worse so lets keep the original format for rest of the model build

```
In [14]:
    y = df.Sales
    x = df.drop(columns = ['Sales'])
```

Polynomial feature creation

```
from sklearn.preprocessing import PolynomialFeatures
pf = PolynomialFeatures(degree = 2, include_bias = False)
x_pf = pf.fit_transform(x)
```

Train Test Split

```
from sklearn.model_selection import train_test_split
    xtrain, xtest, ytrain, ytest = train_test_split(x, y, random_state=10, train_
    xtrain_pf, xtest_pf, ytrain_pf, ytest_pf = train_test_split(x_pf, y, random_state=10)
```

Linear Model Build

Stock Linear Regression

```
from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_absolute_error as mae
    from sklearn.metrics import mean_squared_error as mse
    from sklearn.metrics import r2_score as r2
    lrmodel = LinearRegression()
    lrmodel.fit(xtrain, ytrain)
    lrypred = lrmodel.predict(xtest)
```

```
In [18]:
          # score for non polynomial feature
          print('Stock LR Non-Polynomial Score :', lrmodel.score(xtest, ytest))
          print('Mean Absolute Error :', mae(ytest, lrypred))
          print('Mean Squared Error :', mse(ytest, lrypred))
          print('Root Mean Squared Error :', np.sqrt(mse(ytest, lrypred)))
          print('R2 Score :', r2(ytest,lrypred))
         Stock LR Non-Polynomial Score: 0.8886717577059424
         Mean Absolute Error: 1.5748043429197127
         Mean Squared Error: 4.448475475432899
         Root Mean Squared Error : 2.10914093304191
         R2 Score: 0.8886717577059424
In [19]:
          # score for polynomial feature
          lrmodel.fit(xtrain pf, ytrain pf)
          lrypred = lrmodel.predict(xtest pf)
          print(' Stock LR Polynomial Score :', lrmodel.score(xtest pf, ytest pf))
          print('Mean Absolute Error :', mae(ytest, lrypred))
          print('Mean Squared Error :', mse(ytest, lrypred))
          print('Root Mean Squared Error :', np.sqrt(mse(ytest, lrypred)))
          print('R2 Score :', r2(ytest,lrypred))
          Stock LR Polynomial Score: 0.9389652287353996
         Mean Absolute Error: 1.089077274110421
         Mean Squared Error : 2.4388392156778353
         Root Mean Squared Error : 1.5616783329731623
         R2 Score: 0.9389652287353996
```

Dataset with polynomial feature performs well in stock linear regression model

Lasso Regression

```
In [20]:
          from sklearn.linear model import LassoCV
          lassomodel = LassoCV()
          lassomodel.fit(xtrain, ytrain)
          lassoypred = lassomodel.predict(xtest)
In [21]:
          # score for non polynomial feature
          print('Lasso LR Non-Polynomial Score :', lassomodel.score(xtest, ytest))
          print('Mean Absolute Error :', mae(ytest, lassoypred))
          print('Mean Squared Error :', mse(ytest, lassoypred))
          print('Root Mean Squared Error :', np.sqrt(mse(ytest, lassoypred)))
          print('R2 Score :', r2(ytest,lassoypred))
         Lasso LR Non-Polynomial Score: 0.8888142958595117
         Mean Absolute Error: 1.5856164924556566
         Mean Squared Error : 4.442779908275812
         Root Mean Squared Error : 2.107790290393191
         R2 Score: 0.8888142958595117
In [22]:
          # score for polynomial feature
          lassomodel.fit(xtrain_pf, ytrain_pf)
          lassoypred = lrmodel.predict(xtest pf)
          print('Lasso LR Non-Polynomial Score :'. lassomodel.score(xtest pf. vtest pf)
```

```
print('Mean Absolute Error :', mae(ytest_pf, lassoypred))
print('Mean Squared Error :', mse(ytest_pf, lassoypred))
print('Root Mean Squared Error :', np.sqrt(mse(ytest_pf, lassoypred)))
print('R2 Score :', r2(ytest_pf,lassoypred))

Lasso LR Non-Polynomial Score : 0.8706431811737638
Mean Absolute Error : 1.089077274110421
Mean Squared Error : 2.4388392156778353
Root Mean Squared Error : 1.5616783329731623
R2 Score : 0.9389652287353996
```

Here also polynomial feature dataset performs well in Lasso Linear Regression model

Ridge Regression

```
In [23]:
          from sklearn.linear model import RidgeCV
          ridgemodel = RidgeCV()
          ridgemodel.fit(xtrain, ytrain)
          ypred = ridgemodel.predict(xtest)
In [24]:
          # score for non polynomial feature
          print('Ridge LR Non-Polynomial Score :', ridgemodel.score(xtest, ytest))
          print('Mean Absolute Error :', mae(ytest, ypred))
          print('Mean Squared Error :', mse(ytest, ypred))
          print('Root Mean Squared Error :', np.sqrt(mse(ytest, ypred)))
          print('R2 Score :', r2(ytest,ypred))
         Ridge LR Non-Polynomial Score: 0.8886742389546507
         Mean Absolute Error: 1.5748689868770613
         Mean Squared Error: 4.448376329216271
         Root Mean Squared Error : 2.1091174289774077
         R2 Score: 0.8886742389546507
In [25]:
          ridgemodel.fit(xtrain_pf, ytrain_pf)
          ypred = ridgemodel.predict(xtest pf)
          print('Ridge LR Non-Polynomial Score :', ridgemodel.score(xtest_pf, ytest_pf)
          print('Mean Absolute Error :', mae(ytest_pf, ypred))
          print('Mean Squared Error :', mse(ytest pf, ypred))
          print('Root Mean Squared Error :', np.sqrt(mse(ytest_pf, ypred)))
          print('R2 Score :', r2(ytest_pf,ypred))
         Ridge LR Non-Polynomial Score: 0.9389616502427018
         Mean Absolute Error : 1.0890465429473049
         Mean Squared Error: 2.438982205782387
         Root Mean Squared Error : 1.5617241132102644
         R2 Score: 0.9389616502427018
         c:\Users\shankesh\AppData\Local\Programs\Python\Python310\lib\site-packages\s
         klearn\base.py:450: UserWarning: X does not have valid feature names, but Rid
         geCV was fitted with feature names
           warnings.warn(
         c:\Users\shankesh\AppData\Local\Programs\Python\Python310\lib\site-packages\s
         klearn\base.py:450: UserWarning: X does not have valid feature names, but Rid
         geCV was fitted with feature names
           warnings.warn(
         Same here notynomial feature wing
```

Best Model

Stock LR

Stock LR Polynomial Score: 0.9389652287353996

• Mean Absolute Error: 1.089077274110421

• Mean Squared Error: 2.4388392156778353

Root Mean Squared Error: 1.5616783329731623

R2 Score : 0.9389652287353996

Lasso LR

Lasso LR Non-Polynomial Score: 0.8706431811737638

Mean Absolute Error: 1.089077274110421

• Mean Squared Error: 2.4388392156778353

• Root Mean Squared Error: 1.5616783329731623

• R2 Score: 0.9389652287353996

Ridge LR

Ridge LR Non-Polynomial Score: 0.9389616502427018

Mean Absolute Error: 1.0890465429473049

Mean Squared Error: 2.438982205782387

Root Mean Squared Error: 1.5617241132102644

• R2 Score: 0.9389616502427018

For my dataset both Stock and Ridge performs well

Insights on my models

- According to my dataset all three models have similar mae, mse and r2 values
- Only the prediction score varies for same test data

Next Step Analysis