Q1-R

August 15, 2024

1 Q1 - R section

In this section, I use R to perform differential expression analysis for feature selection. In my opinion, differential expression (DE) analysis is the most efficient feature selection method in this case because it not only considers the variance or mutual information of features but also how they are expressed across different classes. Therefore, I believe it will help us identify the best features (DEGs) for classification.

```
[23]: # Import needed libraries
library(limma)
library(edgeR)
```

[24]: # Load Data
normal_counts <- read.csv("train_normal_counts.csv")
meta_data <- read.csv("train_meta_data.csv")</pre>

[25]: head(normal_counts)

		DLDR_0036	DLDR_0081	DLDR_0191	DLDR_0188	DLDR_0130	DLDR_(
		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl $>$
A data.frame: 6×134	1	5.820135	6.5462994	6.6040504	6.480745	6.550016	6.5692529
	2	-1.060061	0.5821648	-0.8650363	-1.083676	-1.222374	0.7672549
	3	4.388400	3.7520898	4.3514891	4.361634	4.534941	4.150470
	4	4.080172	4.6451746	4.0721368	4.313540	4.370763	4.1660389
	5	2.564430	3.8408991	3.1431376	3.120196	3.512952	3.757010
	6	3.552685	3.2010747	4.0374758	1.941859	2.517867	3.253653

- [26]: dim(normal_counts)
 - 1. 17396 2. 134
- [27]: head(meta_data)

A data.frame: 6×1 $ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	Simplified_class <chr> Normal Advanced_fibrosis Normal Normal Non_advanced_Fibrosis Normal</chr>	_
[28]: dim(meta_data)		
1. 134 2. 1		
[29]: labels <- factor(met	a_data\$Simplified_clas	s)
[30]: print(labels)		
[40] Non_advanced_Fi [43] Advanced_fibros [46] Non_advanced_Fi [49] Advanced_fibros [52] Advanced_fibros [55] Normal [58] Non_advanced_Fi [61] Normal [64] Advanced_fibros [67] Advanced_fibros [70] Advanced_fibros [73] Normal [76] Normal [79] Non_advanced_Fi [82] Normal	Advanced_fibros sis Non_advanced_Fi sis Normal Normal Non_advanced_Fi brosis Normal sis Advanced_fibros Normal brosis Advanced_fibros brosis Advanced_fibros sis Advanced_fibros sis Advanced_fibros brosis Normal Advanced_fibros sis Normal Advanced_fibros sis Normal Non_advanced_Fi sis Normal sis Normal Sis Normal Non_advanced_Fi sis Normal sis Advanced_fibros Advanced_fibros Advanced_fibros sbrosis Advanced_fibros sbrosis Advanced_fibros sbrosis Advanced_fibros sbrosis Advanced_fibros	brosis Normal brosis Non_advanced_Fibrosis dis Advanced_fibrosis brosis Advanced_fibrosis Normal Advanced_fibrosis brosis Non_advanced_Fibrosis brosis Normal Advanced_fibrosis dis Advanced_fibrosis Non_advanced_Fibrosis dis Advanced_fibrosis dis Advanced_fibrosis dis Advanced_fibrosis dis Advanced_fibrosis dis Non_advanced_Fibrosis Advanced_fibrosis dis Non_advanced_Fibrosis Non_advanced_Fibrosis dis Advanced_fibrosis dis Advanced_fibrosis dis Advanced_fibrosis dis Advanced_fibrosis Normal brosis Advanced_fibrosis dis Non_advanced_Fibrosis

```
[103] Non_advanced_Fibrosis Non_advanced_Fibrosis Normal
     [106] Normal
                                  Advanced_fibrosis
                                                         Non_advanced_Fibrosis
     [109] Non advanced Fibrosis Normal
                                                         Advanced fibrosis
     [112] Non advanced Fibrosis Normal
                                                         Normal
     [115] Advanced fibrosis
                                                         Normal
     [118] Non_advanced_Fibrosis Advanced_fibrosis
                                                         Non advanced Fibrosis
     [121] Normal
                                  Advanced fibrosis
                                                         Non advanced Fibrosis
     [124] Non_advanced_Fibrosis Non_advanced_Fibrosis Normal
     [127] Advanced_fibrosis
                                  Non_advanced_Fibrosis Advanced_fibrosis
     [130] Normal
                                  Normal
                                                         Normal
     [133] Normal
                                  Normal
     Levels: Advanced_fibrosis Non_advanced_Fibrosis Normal
     Let's perform DE analysis
[31]: # Create a design matrix
      design <- model.matrix(~0 + labels)</pre>
      colnames(design) <- levels(labels)</pre>
[32]: fit <- lmFit(normal_counts, design)
[33]: contrast.matrix <- makeContrasts(
          AdvancedFibrosis_vs_Normal = `Advanced_fibrosis` - Normal,
          Fibrosis_vs_Normal = Non_advanced_Fibrosis - Normal,
          AdvancedFibrosis vs Fibrosis = `Advanced fibrosis` - Non advanced Fibrosis,
          levels = design
      )
      # Apply contrasts to the fit
      fit2 <- contrasts.fit(fit, contrast.matrix)</pre>
      # Empirical Bayes moderation to get p-values
      fit2 <- eBayes(fit2)</pre>
     Now, we are going to extract the DEGs for each pair of classes and save them
[34]: # Get the top DEGs for the Advanced Fibrosis vs Normal comparison
      top_genes_adv_vs_norm <- topTable(fit2, coef = "AdvancedFibrosis_vs_Normal",_
       ⇒adjust.method = "BH", number = Inf)
      # Get the top DEGs for the Fibrosis vs Normal comparison
      top_genes_fib_vs_norm <- topTable(fit2, coef = "Fibrosis_vs_Normal", adjust.</pre>
       →method = "BH", number = Inf)
```

Advanced_fibrosis

Normal

[97] Non_advanced_Fibrosis Advanced_fibrosis

Normal

[100] Advanced_fibrosis

Get the top DEGs for the Advanced Fibrosis vs Fibrosis comparison

```
top_genes_adv_vs_fib <- topTable(fit2, coef = "AdvancedFibrosis_vs_Fibrosis",u

adjust.method = "BH", number = Inf)

# View the top DEGs
head(top_genes_adv_vs_norm)
head(top_genes_fib_vs_norm)
head(top_genes_adv_vs_fib)
```

		logFC	AveExpr	t	P.Value	adj.P.Val	В	
-		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
	10728	-1.3278914	1.902497	-10.235955		3.015659e-14		
A data.frame: 6×6	13385	1.0088994	6.051398	9.886439	1.299982e-17	9.020981e-14		
	10694	-1.3132140	3.432308	-9.855214	1.555699e-17	9.020981e-14		
	16113	-3.4233202	-1.392599	-9.734863	3.105946e-17	1.350776e-13		
	16278	-2.8530739	-0.172656	-9.680406	4.245065e- 17	1.476943e-13	28.31501	
	6969	0.4379282	4.207436	9.600224	6.721385e-17	1.948753e-13	27.86885	
		logFC	AveExpr	t	P.Value	adj.P.Val	В	
		<dbl></dbl>	<dbl $>$	<dbl $>$	<dbl></dbl>	<dbl></dbl>	<dbl $>$	
-	13623	0.7946468	5.255822	11.73980	2.831866e-22	4.926315e-18	40.01880	
A data.frame: 6×6	10970	0.6321228	5.361546	11.47202	1.339959e-21	1.021819e-17	38.49831	
A data.frame: 0×0	5442	-1.4931333	2.180779	-11.38733	2.190883e-21	1.021819e-17	38.01728	
	17075	0.6202635	7.265926	11.37529	2.349550e-21	1.021819e-17	37.94887	
	4461	0.6782287	6.569435	11.29235	3.802820 e-21	1.323077e-17	37.47774	
	6563	0.6004911	5.545244	11.13147	9.676618e-21	2.805574e-17	36.56387	
		logFC	AveExpr	t	P.Value	adj.P.Val	В	
		<dbl></dbl>	<dbl $>$	<dbl $>$	<dbl></dbl>	<dbl></dbl>	<dbl $>$	
-	16863	1.223013	2.9208664	9.097265	1.182040e-15	2.056276e-11	24.90970	
A data.frame: 6×6	3296	1.594761	1.9955120	8.122841	2.755851e-13	1.021684e-09	19.70546	
A data frame: 6×6	673	1.485822	1.1568774	8.121636	2.774199e-13	1.021684e-09	19.69912	
	14913	-1.153029	2.6115748	-8.115173	2.874679e-13	1.021684e-09	19.66515	
	12060	1.675825	0.1951384	8.111304	2.936548e-13	1.021684e-09	19.64482	
	3227	1.279852	4.3441375	8.016339	4.947792e-13	1.434530e-09	19.14676	
<pre>write.csv(top_genes_adv_vs_norm, "DEGs_AdvancedFibrosis_vs_Normal.csv") write.csv(top_genes_fib_vs_norm, "DEGs_Fibrosis_vs_Normal.csv")</pre>								

We have filtered the top 200 DEGs for each pair. The choice of =200 appears to be optimized based on our greedy search, which has not been included in this notebook.

```
[36]: filtered_genes_adv_vs_norm <- top_genes_adv_vs_norm[1:200,]
    filtered_genes_fib_vs_norm <- top_genes_fib_vs_norm[1:200,]
    filtered_genes_adv_vs_fib <- top_genes_adv_vs_fib[1:200,]

# View filtered DEGs
head(filtered_genes_adv_vs_norm)
head(filtered_genes_fib_vs_norm)</pre>
```

write.csv(top_genes_adv_vs_fib, "DEGs_AdvancedFibrosis_vs_Fibrosis.csv")

[35]:

head(filtered_gen	nes_adv	_vs_fib)					
		\log FC	AveExpr	t	P.Value	adj.P.Val	В
		<dbl></dbl>	<dbl></dbl>	<dbl $>$	<dbl $>$	<dbl></dbl>	<dbl $>$
-	10728	-1.3278914	1.902497	-10.235955	1.733536e-18	3.015659e-14	31.41974
A data.frame: 6×6	13385	1.0088994	6.051398	9.886439	1.299982e-17	9.020981e-14	29.46392
A data.frame. 0 × 0	10694	-1.3132140	3.432308	-9.855214	1.555699e-17	9.020981e-14	29.28958
	16113	-3.4233202	-1.392599	-9.734863	3.105946e-17	1.350776e-13	28.61834
	16278	-2.8530739	-0.172656	-9.680406	4.245065e-17	1.476943e-13	28.31501
	6969	0.4379282	4.207436	9.600224	6.721385e-17	1.948753e-13	27.86885
		logFC	AveExpr	t	P.Value	adj.P.Val	В
		<dbl></dbl>	<dbl></dbl>	<dbl $>$	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
-	13623	0.7946468	5.255822	11.73980	2.831866e-22	4.926315e-18	40.01880
A 1 + C	10970	0.6321228	5.361546	11.47202	1.339959e-21	1.021819e-17	38.49831
A data.frame: 6×6	5442	-1.4931333	2.180779	-11.38733	2.190883e-21	1.021819e-17	38.01728
	17075	0.6202635	7.265926	11.37529	2.349550e-21	1.021819e-17	37.94887
	4461	0.6782287	6.569435	11.29235	3.802820 e-21	1.323077e-17	37.47774
	6563	0.6004911	5.545244	11.13147	9.676618e-21	2.805574 e-17	36.56387
		logFC	AveExpr	t	P.Value	adj.P.Val	В
		<dbl></dbl>	<dbl $>$	<dbl $>$	<dbl></dbl>	<dbl></dbl>	<dbl $>$
-	16863	1.223013	2.9208664	9.097265	1.182040e-15	2.056276e-11	24.90970
A data.frame: 6×6	3296	1.594761	1.9955120	8.122841	2.755851e-13	1.021684e-09	19.70546
	673	1.485822	1.1568774	8.121636	2.774199e-13	1.021684e-09	19.69912
	14913	-1.153029	2.6115748	-8.115173	2.874679e-13	1.021684e-09	19.66515
	12060	1.675825	0.1951384	8.111304	2.936548e-13	1.021684e-09	19.64482
	3227	1.279852	4.3441375	8.016339	4.947792e-13	1.434530 e-09	19.14676
: dim(filtered_genes_adv_vs_norm)							
dim(filtered_gene		_					
dim(filtered_gene	es_adv_	vs_fib)					

1. 200 2. 6

[37]:

1. 200 2. 6

1. 200 2. 6

These top 200 DEGs are biologically meaningful in addition to their role in computationally classifying the data. They are likely genes whose expression changes significantly when transitioning from one class to another. These genes are probably among the most correlated with the class labels, though they are not necessarily causal genes. The change in class labels may have a substantial impact on their expression, potentially affecting their associated pathways or other related biological processes.

```
[38]: genes_adv_vs_norm_names <- rownames(filtered_genes_adv_vs_norm)
genes_fib_vs_norm_names <- rownames(filtered_genes_fib_vs_norm)
genes_adv_vs_fib_names <- rownames(filtered_genes_adv_vs_fib)
```

then we combined the filtered DEGs to create a new feature space

[40]: length(combined_gene_names)

527

[41]: common_genes <- intersect(rownames(normal_counts), combined_gene_names)
selected_normal_counts <- normal_counts[common_genes,]
head(selected_normal_counts)

		DLDR_0036	DLDR_0081	DLDR_0191	DLDR_0188	$DLDR_0130$	DLDR
		<dbl></dbl>	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl></dbl>
A data.frame: 6×134	10	4.5895546	5.4821690	5.01315395	5.0660709	4.6558168	4.2990'
	57	-0.7190239	0.5821648	-1.15454295	-1.0836762	-0.2894877	-0.0064
	265	0.5876374	-2.2251901	-0.07654044	0.1964317	0.2723912	2.5231
	275	1.6624052	2.5296974	1.50842206	1.9916119	1.4679420	1.9341
	278	5.5299023	5.8462723	5.55358296	5.3592673	5.7745493	4.9626
	297	7.5494873	7.7592284	7.61253797	8.0700567	7.4394046	7.6716
		•					

[42]: dim(selected_normal_counts)

1. 527 2. 134

We extracted a subset from the data based on selected features. Let's save it and continue the analysis in Python Jupyter Notebook

[43]: write.csv(selected_normal_counts, "subset_data.csv")