KEAMANAN INFORMASI

11. PUBLIC KEY INFRASTRUCTURE

Doni Abdul Fatah github.com/doniaft Universitas Trunojoyo Madura

Pokok Bahasan

- **01.** Pengantar Keamanan Informasi
- **02.** Pemodelan Serangan (Attack Tree)
- **03.** Sistem Keamanan Informasi dan Internet
- **04.** Autentikasi
- **05.** Kontrol Akses
- **06.** Firewall dan Intrusion Detection System
- **07.** Network Attack

- **08.** Kriptografi
- **09.** Kriptografi Asimetrik
- 10. Biometric Authentication
- 11. Public Key Infrastructure
- 12. Protokol Keamanan
- 13. Malware & Computer Forensics
- **14.** UAS

01. Keamanan Informasi

- 1) Public Key Infrastructure
- 2) Biometric Authentication
- 3) Contact
- 4) Referensi

11. Public Key Infrastructure

Public Key Infrastructure

- ☐ Pada Kriptografi Asimetrik terdapat problem dalam pendistribusian kunci publik
 - Bagaimana mengetahui apakah kunci publik Ka benar-benar milik A
 - Serangan MiM dimana attacker menukar kunci publik 2 orang yang berkomunikasi dengan kunci publik miliknya sendiri
- ☐ Kohnfelder (mahasiswa sarjana strata 1, Teknik Elektro, MIT) memperkenalkan konsep PKI (Public Key Infrastructure) Loren M Kohnfelder, "Towards a Practical Public-Key Cryptosystem", Bachelor Thesis, MIT, 1978

Konsep PKI

- ☐ Konsep :
 - CA (Certification Authority)
 - Digital Certificate
 - RA (Registration Authority)
 - Certification Revocation List (CRL)
- ☐ CA adalah TTP (Trusted Third Party Pihak Ketiga Terpercaya) yang memvalidasi identitas seseorang / badan, dan mengikat (binding) identitas tersebut dengan kunci publik entitas tersebut.
- ☐ CA mengelola dan mendistribusikan Digital Certificate / Sertifikat Elektronik yang mengasosiasikan kunci publik dengan identitas pemiliknya.

Konsep PKI

☐ Jika Id_a adalah identitas dan atribut-atribut yang berkenaan dengan entitas A, {K_{CA},K_{CA} -1} adalah kunci publik dan kunci privat sebuahCA, maka sertifikat elektronik adalah :

$$\langle Id_a, K_a, \{h(Id_a, K_a)\}_{K_{CA}^{-1}} \rangle$$

- □ RA adalah bagian dari CA yang secara administratif membantu CA untuk memvalidasi identitas pemohon digital certificate
- ☐ CRL adalah suatu daftar berisi serial number digital certificate yang dibatalkan
- ☐ Sertifikat Elektronik (demikian terjemahannya dalam UU ITE) berstandar X.509

Proses CA

X509 Sertifikat Digital

```
Certificate:
Data:
  Version: 3 (0x2)
  Serial Number:
    b9:ee:d4:d9:55:a5:9e:b3
Signature Algorithm: sha1WithRSAEncryption
                                                                              Data
  Issuer: C=UK, O=ExampleCA, OU=TEST, CN=Test CA
  Validity
                                                                            section
    Not Before: Dec 8 14:01:48 2011 GMT
    Not After: Oct 16 14:01:48 2021 GMT
  Subject: C=UK, O=OpenSSL Group, OU=TESTING, CN=TestCert
  Subject Public Key Info:
     Public Key Algorithm: rsaEncryption
       Public-Key: (2048 bit)
       Modulus:
         00:f3:84:f3:92:36:dc:b2:46:ca:66:7a:e5:29:c5:
         f3:49:28:22:d3:b9:fe:e0:de:e4:38:ce:ee:22:1c:
         bf:11
                                                                           Signature
       Exponent: 65537 (0x10001)
  X509v3 extensions:
                                                                            section
    X509v3 Key Usage: critical
       Digital Signature, Non Repudiation, Key Encipherment
    X509v3 Subject Key Identifier:
       82:BC:CF:00:00:13:D1:F7:39:25:9A:27:E7:AF:D2:EF:20:1B:6E:AC
Signature Algorithm: sha1WithRSAEncryption
   a9:bd:4d:57:40:74:fe:96:e9:2b:d6:78:fd:b3:63:cc:f4:0b:
   4d:12:ca:5a:74:8d:9b:f2:61:e6:fd:06:11:43:84:fc:17:a0:
   a6:99:4c:54
```

Figure 1. Anatomy of an X.509 Certificate

Proses Verifikasi Dengan DC

- ☐ CA mengeluarkan Self-Signed-Certificate (SSC CA), yaitu sertifikat elektronik yang berisi kunci publik CA KCA Pengguna mendapatkan SSC CA dengan cara yang aman (misalnya bawaan OS atau Browser, atau diambil dengan menggunakan CD-ROM)
- ☐ Asumsi : pengguna mempercayai SSC CA untuk memverifikasi DC lainnya
- Notasi: DC_a dan DC_b adalah sertifikat elektronik A dan B yang diterbitkan oleh CA dan berisi identitas masing-masing (nama, email, dll) serta kunci publiknya masing-masing (K_a, K_b)

Proses Verifikasi Dengan DC

- ☐ Misal A mengirim email dengan konten m ke B.
- 1. A mendapatkan DC_b langsung dari B atau dari LDAP CA.
- 2. A memverifikasi ttd elektronik CA pada DC_b dengan menggunakan K_{CA} yang terdapat pada SSC-CA, sehingga mendapatkan kunci publik K_b yang ada dalam DC_h .
- 3. A mengirimkan email ke B : $A \rightarrow B : \{m, \{h(m)\}_{K_a^{-1}}, DC_a\}_{K_b}$
- 4. B menerima email dan mendekrip dengan kunci privatnya (K_b^{-1}) sehingga mendapatkan m, $\{h(m)\}_{Ka}^{-1}$,DC_a
- 5. B memverifikasi ttd elektronik CA pada DC_a dengan menggunakan K_{CA} yang terdapat pada SSC-CA, sehingga mendapatkan kunci publik K_a yang ada dalam DC_a
- 6. B mendekrip tandatangan elektronik A terhadap m : $\{h(m)\}_{Ka}^{-1}$ sehingga mendapatkan h(m)
- 7. B memeriksa integritas m dengan h(m)

Proses Verifikasi Dengan DC

- Jika langkah ketujuh benar, maka :
 - B percaya bahwa m dikirim oleh A
 - B memastikan bahwa m tidak termodikasi selama pengiriman
 - tidak ada yang dapat membaca m kecuali B dan A (sebagai pengirim)
 - A tidak dapat mengelak bahwa dia mengirimkan email m ke B
- □ Jika tersedia CRL, maka entitas dapat mendownload CRL tersebut dan memeriksa apakah sertifikat elektronik dalam daftar cekal tersebut.
- ☐ Saat ini, CRL dapat digantikan dengan OCSP (Online Certificate Status Protocol) karena data lebih terkini dan realtime.

Trust Model PKI

- Oligharchy
 - Entitas mempercayai banyak CA
 - Browser "memaksa" untuk mempercayai banyak CA (lebih kurang ada 80 CA dalam browser saat ini)
 - User dapat menambah SSC-CA atau tidak mempercayai CA yang ada dalam browser tersebut
- Anarchy Model
 - Siapapun bisa menjadi CA
 - PGP (Pretty Good Privacy) Web of Trust
 - Pengguna harus memilih siapa saja yang hendak dipercaya
- Hierarchical Model
 - Ada satu root CA yang berada di puncak kepercayaan, setiap user hanya perlu mendapatkan SSC-RootCA
 - Root-CA menerbitkan sertifikat elektronik bagai CA CA di bawah hierarkinya
 - CA yang berada di hirarki paling bawah akan mengeluarkan
 - DC untuk end-user
- Hybrid Model
 - Bebas
 - Bisa terjadi "cross-certification" antar CA untuk saling mempercayai

DC Trust Model PKI

Public Key Infrastructure

- □ CA sebagai TTP adalah solusi bagi kepercayaan terhadap DC
- ☐ CA menerbitkan : sertifikat elektronik, CRL, dan menyediakan OCSP
- Operasi CA didasarkan pada :
 - Kemampuan CA untuk tidak salah dalam menerbitkan DC (pernah terjadi di Microsoft)
 - Kemampuan CA untuk melindungi private-key nya

3) Kontrak Perkuliahan

- a) Tata Tertib
- b) Contact
- c) Referensi

Tata Tertib Perkuliahan SI4B

Masuk sesuai jadwal 15.25 WIB, Toleransi keterlambatan adalah 20 menit.
Pakaian bebas rapi berkerah, bersepatu.
Segala macam bentuk ijin ketidakhadiran diharuskan dengan alasan yang jelas
Setiap mahasiswa dilarang mencontek dalam pengerjaan tugas dan ujian, jika terjadi maka pengerjaan tugas dan ujian akan dikurangi 20% atau Gugur.
Setiap mahasiswa dilarang melakukan tindakan plagiat atas pengerjaan tugasnya, jika terjadi maka pengerjaan tugas akan dikurangi 20% atau Gugur.
Setiap mahasiswa wajib mengerjakan ujian dan tugas baik tugas mandiri ataupun berkelompok.
Wajib untuk bertutur kata yang sopan dan santun didalam kelas dan berpakaian rapih dan sopan

Tata Tertib Perkuliahan SI4C

Masuk sesuai jadwal 09.15 WIB, Toleransi keterlambatan adalah 15 menit.
Pakaian bebas rapi berkerah, bersepatu.
Segala macam bentuk ijin ketidakhadiran diharuskan dengan alasan yang jelas
Setiap mahasiswa dilarang mencontek dalam pengerjaan tugas dan ujian, jika terjadi maka pengerjaan tugas dan ujian akan dikurangi 20% atau Gugur.
Setiap mahasiswa dilarang melakukan tindakan plagiat atas pengerjaan tugasnya, jika terjadi maka pengerjaan tugas akan dikurangi 20% atau Gugur.
Setiap mahasiswa wajib mengerjakan ujian dan tugas baik tugas mandiri ataupun berkelompok.
Wajib untuk bertutur kata yang sopan dan santun didalam kelas dan berpakaian rapih dan sopan

Tata Tertib Perkuliahan SI4D

Masuk sesuai jadwal 12.45 WIB, Toleransi keterlambatan adalah 15 menit.
Pakaian bebas rapi berkerah, bersepatu.
Segala macam bentuk ijin ketidakhadiran diharuskan dengan alasan yang jelas
Setiap mahasiswa dilarang mencontek dalam pengerjaan tugas dan ujian, jika terjadi maka pengerjaan tugas dan ujian akan dikurangi 20% atau Gugur.
Setiap mahasiswa dilarang melakukan tindakan plagiat atas pengerjaan tugasnya, jika terjadi maka pengerjaan tugas akan dikurangi 20% atau Gugur.
Setiap mahasiswa wajib mengerjakan ujian dan tugas baik tugas mandiri ataupun berkelompok.
Wajib untuk bertutur kata yang sopan dan santun didalam kelas dan berpakaian rapih dan sopan

Proyek : Kelompok dibuat 2 s.d 4 Mahasiswa

Membuat aplikasi sederhana dengan fokus Keamanan Informasi dalam Penggunaan Aplikasi/berInternet Tahapannya : ☐ Penentuan Studi Kasus ☐ Membuat aplikasi Login Spoofing Attack 🗖 Dalam aplikasi Login Spoofing Attack untuk pemberian passwordnya di lakukan dengan menggunakan teknik Kriptografi (enkripsi) dengan menggunakan enkripsi asimetris ☐ Untuk memecahkan enkripsi tersebut maka dilakukan deskripsi dari enkripsi tersebut. ☐ Untuk Aplikasi boleh Web atau Desktop, sesuai yang dikuasai. ☐ Pembuatan Laporan atau Dokumentasi. ☐ Poin penilaian: Aplikasi, Dokumentasi, Presentasi.

5) Contact

Contact

☐ Bahan Kuliah : github.com/doniaft ☐ Email : doniaft@gmail.com ☐ WA/Telegram : ☐ Komting Keamanan Informasi ☐ SI4C : Yusril : 0856 5509 5641 ☐ SI4D: Ikrom: 0852 3027 9767 SI4B: □Rahma:: 0852 5707 1554 □Adi: 0899 3616 728

6) Referensi

Referensi (1)

Anderson, Ross, "Security Engineering", First Edition, Wiley, 2001, tersedia dalam e-Book: URL: http://www.cl.cam.ac.uk/~rja14/book.html
Menezes et.al, "Handbook of Applied Cryptography", Fifth Edition, CRC Printing, 2001, tersedia dalam e-Book URL: http://cacr.uwaterloo.ca/hac
Bishop, Matt, "Computer Security: Art and Science", Addison Wesley, 2002
Stinson, Douglas R, "Cryptography: Theory and Practice", CRC Press, 1995
Electronic Frontier Foundation, "Cracking DES", O'Reilly, 1998
Stamp, Mark, "Computer Security: Principles and Practices", Willey, 2011
Eric Cole, Ronald Krutz, and James W. Conley, "Network Security Bible",
Wiley Publishing, Inc., 2005.
Matthew Strebe, "Network Security Foundations", Sybex, 2004.
Chris McNab, "Network Security Assessment", O'reilly, 2008.
James D. McCabe, dkk, "Network Security Know It All", Morgan
Kaufmann, 2008.
Ibisa, "Keamanan Sistem Informasi", Penerbit Andi, Yogyakara, 2011