Human Factors in Interaction Design

Currency identification Aid for the visually impaired in Indian Context

Process

Previously covered

Brief → Primary + Secondary Research → Ideation

This presentation

Prototyping → Iterating → Testing?

Aisha Anam Gyan Lakhwani Prachi Tank Rishi Vanukuru

Part A | Literature Review

Mahatma Gandhi new series

Denomination	Length	Breadth	Identifying Mark
10	123mm	63mm	None
50	135mm	66mm	None
100	142mm	66mm	// //
200	146mm	66mm	//00//
500	150mm	66mm	// / //
2000	166mm	66mm	/ // / //

Mahatma Gandhi series

Denomination	Length	Breadth	Identifying Mark
10	137mm	63mm	None
20	147mm	63mm	Rectangle
50	147mm	73mm	Square
100	157mm	73mm	Triangle
500	167mm	73mm	Circle

Current scenario in India

Difference in the dimensions are very small

Non-digital solutions: Currency

Folding notes

Pros - Cheap, Compact, Independent Cons - Time consuming, uni-directional

Australian Gov. Banknote Measuring Device

Pros - Cheap, Compact, Independent Cons - Time consuming

Hypothetical redesign

Embossing on notes

Brazil, Thailand, Malawi

Tiffy Template

Pros - Cheap, Compact, Independent Cons - Braille is uncommon, time consuming

Braille on notes

China, Hong Kong

Tactile Features

Chile

Money Brailler

Pros - Cheap, Compact Cons - Time consuming, uni-directional

Digital Solutions: Devices and Tools

iBill Currency Identifier \$119 price tag Tone & vibration modes protect privacy

ID mate galaxy \$1,299 price tag Bluetooth Bar code scanning Inbuilt database Memory

Student research project Hardware Prototype for a currency identifier

Tools on Android and iOS

IDEAL Currency Identifier

EyeNote Currency Identifier

LookTel Currency Identifier

Android App by IIT Delhi for Mobile Currency Identification (Article)

Part B | Visit to Dept. of Rehabilitation Interviews with 3 potential users

Transcripts and initial analysis <u>here</u>

Daily life outside currency

- Defined timetable at the Rehabilitation Center
- Most people seem to be accompanied by friends when venturing out, but in an ideal case the environment would allow them to move independently.
- The center aims to make them independent to the best of their abilities
- Confidence is a major issue, even small inconveniences can be major setbacks
- No one will wait for them while they slowly find their way
- Identifying with the community as the whole the need for collective upliftment

Photographs and Videos of the way notes and applications were used (Not detailed here for lack of time)

Final Requirements

- Quick and Accurate Usage
- Universal Accessibility
 - O Low Cost
 - Low reliance on internet/technology
 - Easy to learn, use, replace
- Suitable across contexts
 - Accepting payments
 - Conducting transactions
- Better ergonomic designs
 - Physical
 - Cognitive
- Waterproof, lightweight, secure, countable, verification

Where these ideas lie

Ideas → Prototypes

- Image recognition
- Colour sensor
- Rotary encoder with pull back string
- Rotary encoder with wheel turn
- Diagonal String

Priorities

How did we decide which ideas to try?

- 1. Aim for minimum possible cognitive load avoid solutions which require user to memorize a mapping.
- 2. If technology makes for a more expensive but easier interaction, use technology.

Image Recognition

A camera sensor + light source sends information to the wrist-mounted microcontroller, where the identity is determined and messages are sent to a smartphone via a Bluetooth module.

Colour Sensor

A colour sensor will identify the RGB values of a surface placed in front of it and the information can be sent to a smartphone via a Bluetooth module. A colour sensor can be considered as a 1 pixel camera which returns red, green, blue and brightness values which can be used to determine the denomination.

Issues		Can it be solved?		Can it be solved?
Prototy -	rping Processing power required is very high	Yes	PrototypingThe resolution of the sensor was not known/editable	Yes Yes
Implem - -	nentation Large dataset required Expensive	Yes No	Implementation Colour damage on the notes might hamper the results	No

Rotary Encoder with pull back string

A pull back string connected to a rotary encoder will measure the length of the note through the number of rotations of the encoder.

Rotary encoder with wheels

By sliding a note through two wheels and measuring their rotation, the length of the note can be measured. This interaction can be done through a small handheld device with a slit for the note to pass through

Can it be solved?			Can it be solved?	
Prototyp	ping Accuracy	Yes	Prototyping - Action was not smooth	Yes
Impleme	entation Two dimensions will have to be measured	No	Implementation Two dimensions will have to be measured	No

Usability

Accuracy might suffer because of human error No

Diagonal String

Measuring the length and width of a note separately causes 2 actions to be required before a note can be accurately determined.

Angle measurement

Using potentiometer which has an accuracy of 0.29 degrees.

Diagonal measurement

Using rotary encoder.

Table 2 Note diagonals (x) + angles (θ)

Note	Diagonal x (mm)	Angle θ degrees)
10 new	138.19	27.12
50 new	150.26	26.05
10 old	150.79	24.70
100 new	156.58	24.93
200 new	160.22	24.33
20 old	159.93	23.20
50 old	164.12	26.41
500 new	163.87	23.75
100 old	173.14	24.94
2000 new	178.63	21.68

Prototypes → **Iterations of Prototypes**

- 1. Optical sensor
- 2. Note Pocket

Colour Sensor

A colour sensor will identify the RGB values of a surface placed in front of it and the information can be sent to a smartphone via a Bluetooth module. A color sensor can be considered as a 1 pixel camera which returns red, green, blue and brightness values which can be used to determine the denomination.

Expected Task Flow

Receives

Note Pocket

A basic circuit with multiple resistors can be used to identify the length and breadth of the notes based on the amount of space that the notes occupy on the grid of wires. The breadth of the notes is determined without any action by the user. This functionality can be extended to the length as well. This could help make it easier to measure multiple notes also.

Receiving Money
Taking the device
Put on the ear phones
Put money in the
pocket
Aligns the edges on

one end

Sliding the slider

across the other edge Receiving feedback

Repeating the same for no. of currency in hand

Expected Task Flow

Note	Width (mm)	Height (mm)
10 new	123	63
50 new	135	66
10 old	137	63
100 new	142	66
200 new	146	66
20 old	147	63
50 old	147	73
500 new	150	66
100 old	157	73
2000 new	166	66

