

数学分析 ^{詹伟城}

作者: Autin

目录

第1 彰元积	分	1
1.1 Gree	en 公式	. 1
第2 轮参积	分	2
2.1 Bock	hner-Lebesgue 含参积分	. 2

第 1 章 多元积分

1.1 Green 公式

定理 1.1 (面积公式)

$$\sigma(D) = -\oint_{\partial D} y \, dx = \oint_{\partial D} x \, dy = \frac{1}{2} \oint_{\partial D} (-y) \, dx + x \, dy$$

 \Diamond

 \Diamond

命题 1.1 (第二型曲线积分与第一型曲线积分的关系)

$$\iint_{D} \left(-\frac{\partial P}{\partial y} + \frac{\partial Q}{\partial x} \, dx dy \right) = \oint_{\partial D} P \, dx + Q \, dy = \int_{\partial D} \left(-P \vec{n_y} + Q \vec{n_x} \right) \, ds$$

其中 $\vec{n} = (\vec{n_x}, \vec{n_y})$ 是 ∂D 的单位外法向量

推论 1.1

设 D 同上, $ec{n}=(ec{n_x},ec{n_y})$ 为 ∂D 的单位外法向量, $P,Q\in C^1\left(\overline{D}\right)$ 则

$$\iint_{D} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) dx dy = \int_{\partial D} \left(P \vec{n}_x + Q \vec{n}_y \right)$$

推论 1.2 (二维分部积分公式)

$$\iint_{D} \frac{\partial P}{\partial x} \cdot Q \, dx dy = -\iint_{D} P \cdot \frac{\partial Q}{\partial x} \, dx dy + \int_{\partial D} P Q \vec{n}_{x} ds$$

$$\iint_{D} \frac{\partial P}{\partial y} \cdot Q \, dx dy = -\iint_{D} P \cdot \frac{\partial Q}{\partial y} \, dx dy + \int_{\partial D} P Q \vec{n}_{y} \, ds$$

Proof 以第一个式子为例

$$\frac{\partial (PQ)}{\partial x} = \frac{\partial P}{\partial x} \cdot Q + P \frac{\partial Q}{\partial x}$$

$$\implies \iint_D \frac{\partial PQ}{\partial x} \, \mathrm{d}x \mathrm{d}y = \iint_D \frac{\partial P}{\partial x} Q \, \mathrm{d}x \, \mathrm{d}y + \iint_D P \frac{\partial Q}{\partial x} \, \mathrm{d}x \, \mathrm{d}y$$

其中

$$\iint_{D} \frac{\partial PQ}{\partial x} \, \mathrm{d}x \mathrm{d}y = \int_{\partial D} PQ \vec{n_x} \, \mathrm{d}s$$

第2章 含参积分

2.1 Bochner-Lebesgue 含参积分

定理 2.1 (连续性)

设 M 是度量空间, $f: X \times M \rightarrow E$ 满足

- 1. $f(\cdot, m) \in \mathcal{L}_1(X, \mu, E)$ 对于每个 $m \in M$ 成立;
- 2. $f(x,\cdot) \in C(M,E)$ 对于 μ -几乎所有 $x \in X$ 成立;
- 3. 存在 $g \in \mathcal{L}_1(X, \mu, E)$, 使得 $|f(x, m)| \leq g(x)$ 对于 $(x, m) \in X \times M$ 成立。

则

$$F: M \to E, \quad m \mapsto \int_X f(x, m) \,\mu(dx)$$

是良定义且连续的。

Proof 良定义性由 1. 立即得到。设 $m\in M$,令 (m_j) 是在 M 中收敛到 m 的列。令 $f_j:=f(\cdot,m_j)$, $j\in\mathbb{N}$,则由 2., $f_j\to f$ μ -a.e. 且由 1, $f_j\in\mathcal{L}_1\left(X,\mu,E\right), j\in\mathbb{N}$,由 3. $|f_j|\leq |g|$,因此由控制 收敛定理

$$\lim_{j \to \infty} F\left(m_{j}\right) = \lim_{j \to \infty} \int_{X} f_{j} = \int_{X} \lim_{j \to \infty} f_{j} = \int_{X} f\left(x, m\right) \mu\left(dx\right) = F\left(m\right)$$

这表明 F 是连续的。

定理 2.2 (可微性)

设 U 是 \mathbb{R}^n 中的开集,设 $f: X \times U \to E$ 满足

- 1. $f(\cdot,y) \in \mathcal{L}_1(X,\mu,E)$ 对所有 $y \in U$ 成立;
- 2. $f(x,\cdot) \in C^1(U,E)$ 对于 μ -几乎所有 $x \in X$ 成立;
- 3. 存在 $g \in \mathcal{L}_1(X,\mu,\mathbb{R})$, 使得

$$\left| \frac{\partial}{\partial u^{j}} f(x, Y) \right| \le g(x), \quad (x, y) \in X \times U, \quad 1 \le j \le n$$

则

$$F: U \to E, \quad y \mapsto \int_X f(x, y) \,\mu(\,\mathrm{d}x)$$

是连续可微的,并且

$$\partial_{j}F(y) = \int_{Y} \frac{\partial}{\partial u^{j}} f(x, y) \mu(dx), \quad y \in U, \quad 1 \le j \le n$$

 \Diamond

 \Diamond