Problem Set: Set Theory II

- 1. Let $S = \{\text{Homer, Marge, Bart, Lisa, Maggie}\}$. Enumerate the following relations.
 - (a) "is a sibling of"
 - (b) "is married to"
 - (c) "is taller than"
 - (d) "is older than"
- 2. Let $S = \{1, 2, 3, 4\}$. Graph the following relations.
 - (a) =
 - (b) <
 - (c) $\{(1,1),(2,1),(2,2),(3,3),(4,3),(4,4)\}$
- 3. Determine the following sets.
 - (a) The upper contour set of Lisa in 1c.
 - (b) The lower contour set of Bart in 1d
 - (c) The upper contour set of 2 in 2b
 - (d) Let $S = \mathbb{R}$. Determine the upper contour set of $x \in S$ given the relation $R = \{(x,y) \in S \times S | x^2 1 = y\}$. Graph the binary relation. Is the upper contour set convex or concave or none of both?
- 4. Check whether the following relations are reflexive, irreflexive, transitive, complete, symmetric and asymmetric. Also check whether they are a weak, strict, weak partial or strict partial order (or none of those).
 - $(a) \leq$
 - (b) <
 - (c) =
 - (d) $\{(1,1),(1,2),(1,3),(1,4)\}$
 - (e) "was born before"

- (f) $\{(a,a),(a,b)\}$
- 5. Let $S = \{1, 2, 3\}$. Show by example that...
 - (a) ...if R is asymmetric, it is also antisymmetric.
 - (b) ...if R is asymmetric, it is also irreflexive.
 - (c) ...if R is irreflexive and transitive, it is also asymmetric.
 - (d) ...if R is symmetric and antisymmetric, it is also transitive.
- 6. Let $A = \{\{a\}, \{b\}, \{a, b\}\}$. Let $B = \mathcal{P}(A) \setminus \emptyset$, where $\mathcal{P}(A)$ is the *power set*, the set of all subsets of A. Define a binary relation $R \equiv \subseteq$.
 - (a) Explicitly enumerate B, and state its cardinality.
 - (b) Prove whether R is a weak order on B.
 - (c) Prove whether R is a partial order on B.
 - (a) Let R_1 and R_2 be transitive relations on a set S. Does it follow that $R_1 \cup R_2$ is transitive?
 - (b) Let R_1 and R_2 be transitive relations on a set S. Does it follow that $R_1 \cap R_2$ is transitive?