A second proof of the Rank-Nullity Theorem

The goal of this exercise is to give a second proof of the Rank-Nullity Theorem, where we start with a basis of the range instead of the complement of the kernel, as in class. (This is similar to an optional homework question from 2207.)

Theorem: if $\dim(U) < \infty$ and $\sigma \in L(U, V)$, then rank $\sigma + \text{nullity } \sigma = \dim U$.

We start as in class: Because $\ker \sigma$ is a subspace of U, so $\ker \sigma$ is finite-dimensional. Let $\dim \ker \sigma = k$, and take a basis $\mathscr{A} = \{\alpha_1, \dots, \alpha_k\}$ of $\ker \sigma$.

- c. Show that range σ is finite dimensional by finding a finite spanning set. (Hint: start with a basis for V and look at what the linear transformation T does to it.)
- d. Let $\mathscr{B} = \{\gamma_1, \ldots, \gamma_r\}$ be a basis for range σ , so that dim(range σ) = r. Explain why there are vectors β_1, \ldots, β_r in U such that $\sigma(\beta_i) = \gamma_i$ for $i = 1, \ldots, r$.

We now show that the set $\mathcal{D} = \{\alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_r\}$ forms a basis for U.

e. We show \mathcal{D} is linearly independent. Suppose there are weights $a_1, \ldots, a_k, b_1, \ldots, b_r \in \mathbb{F}$ such that

$$a_1\alpha_1 + \dots + a_k\alpha_k + b_1\beta_1 + \dots + b_r\beta_r = \mathbf{0}.$$
 (†)

Apply σ to (†) and use the fact that \mathscr{B} is a basis of range σ to show that $b_1 = \cdots = b_r = 0$. Then show $a_1 = \cdots = a_k = 0$.

f. We show \mathcal{D} spans U. Let α be an arbitrary vector in U. Explain why we can write $\sigma(\alpha)$ as a linear combination of \mathscr{B} , and use this linear combination to write α as a linear combination of \mathcal{D} .

Now suppose U is infinite-dimensional. Modify the above proof to show that **Theorem:** if $\sigma \in L(U,V)$, and \mathscr{A} , \mathscr{B} are bases respectively for $\ker \sigma$, range σ , then there is set \mathscr{C} such that $\mathscr{A} \cup \mathscr{C}$ is a basis for U, and $\{\sigma(\gamma)|\gamma \in \mathscr{C}\} = \mathscr{B}$.