

DEFENCE AGAINST ADVERSARIAL EXAMPLES

Yishay Asher • Steve Gutfreund **Instructor:** Hanan Rosemarin

Problem Description

Building high accuracy DNN models which are sufficiently resistant to adversarial attacks

Set-Up

Training models on encrypted images, on the datasets mnist and fashion-mnist, see figure 1. **Encryption techniques:**

- Permutation (on the pixels)
- AES in ECB, CBC and CTR modes of operation

Figure 1: Architecture of the models

Attacking

Attacking the sufficiently accurate models with the following attacks:

- Carlini & Wagner, CW https://github.com/carlini/nn robust attacks
- Fast Gradient Sign Method, FGSM https://github.com/tensorflow/cleverhans

Figure 2: visualization of an attack

Results

the project is based on the article "Bridging machine learning and cryptography in defence against adversarial attacks", in the article they used only permutation, we got quite surprising results with AES in CTR mode encryption as well.

See figure 4 for the detailed results.

Figure 3: Sample of the encrypted images (permutated and aes-ctr). Interesting to see how for the human eyes it's impossible to distinguish between various classes but a DNN model classifies quite well, see figure 4 for accuracies

Future Work

- improve accuracy on AES-ECB model (we got error rate of 19% on mnist and 55% on fashionmnist)
- we contacted Nicholas Carlini (the owner of CW attack) and he believes we still might defeat these defenses
- try some other datasets; i.e. cifar-10, its images are 3 layered (rgb) and might be more difficult to learn encrypted images

		mnist			fashion_mnist		
	model	original images	adversarial images		original	adversarial images	
			attack	gray-box	images	attack	gray-box
UNENCRYPTED	Α	1.49	CW I ₂	100.00	8.30	CW I ₂	100.00
			CW I ₀	100.00		CW I ₀	100.00
			CW I _∞	100.00		CW I₀₀	100.00
	В	2.10	FGSM	39.50	9.50	FGSM	77.20
PERMUTATED	Α	3.70	CW I ₂	4.50	12.30	CW I ₂	12.70
			CW I ₀	7.30		CW I ₀	12.50
			CW I∞	5.40		CW I∞	12.90
	В	4.20	FGSM	8.60	12.00	FGSM	29.80
AES · CTR	Α	3.70	CW I ₂	4.20	17.40	CW I ₂	17.20
	В	2.70	FGSM	4.90	16.70	FGSM	26.50

Figure 4: Table of accuracies

