

CLAIMS

1 1. (original) Circuitry comprising a filter having one or more filter sections, wherein:
2 at least one of the one or more filter sections comprises a plurality of transconductor (gm) cells;
3 and

4 at least one of the gm cells can be configured to have substantially zero transconductance, such
5 that the at least one filter section will oscillate.

1 2. (original) The invention of claim 1, wherein the at least one filter section is adapted to
2 oscillate at a cutoff frequency of the filter section.

1 3. (original) The invention of claim 1, wherein the at least one filter section has an input
2 node adapted to receive an input signal for the at least one filter section, an intermediate node, and an
3 output node adapted to present an output signal for the at least one filter section and further comprises:
4 a first gm cell connected between the input node and the intermediate node;
5 a first capacitor connected between the intermediate node and a voltage reference;
6 a second gm cell connected between the intermediate node and the output node;
7 a second capacitor connected between the output node and the voltage reference;
8 a third gm cell connected at both ends to the intermediate node; and
9 a fourth gm cell connected between the output node and the intermediate node, wherein:

10 the third gm cell comprises a set of switches that enable the third gm cell to be
11 configured to have substantially zero transconductance, such that the at least one filter section will
12 oscillate.

1 4. (original) The invention of claim 3, wherein the voltage reference is ground.

1 5. (original) The invention of claim 1, wherein:
2 the at least one filter section is in a main signal path of the filter; and
3 the at least one filter section is adapted to be configured to oscillate in order to tune the at least
4 one filter section.

1 6. (original) The invention of claim 5, wherein each filter section in the main signal path of
2 the filter can be configured to oscillate in order to tune each filter section.

1 7. (original) The invention of claim 1, wherein:
2 the filter comprises a main signal path having one or more filter sections;
3 the at least one filter section is not part of the main signal path;
4 the at least one filter section is a replica of at least one filter section in the main signal path; and
5 the at least one filter section is adapted to be configured to oscillate in order to tune the at least
6 one filter section in the main signal path.

1 8. (original) The invention of claim 1, wherein:
2 the at least one filter section comprises tuning circuitry adapted to tune the at least one filter
3 section; and
4 the tuning circuitry is adapted to store tuning control information for the at least one filter section
5 such that the at least one filter section can be tuned intermittently.

1 9. (original) The invention of claim 8, wherein information about based on the tuning
2 control information of the at least one filter section is used to tune one or more other filter sections in the
3 filter.

1 10. (original) The invention of claim 1, wherein the at least one filter section is adapted to
2 oscillate without relying on phase-locked loop circuitry.

1 11. (original) The invention of claim 1, wherein the one or more filter sections are
2 biquadratic filter sections.

1 12. (original) The invention of claim 1, wherein the one or more filter sections are
2 connected to form a ladder structure.

1 13. (original) A method for operating a filter having one or more filter sections, wherein:
2 at least one of the one or more filter sections comprises a plurality of transconductor (gm) cells;
3 the method comprising configuring at least one of the gm cells to have substantially zero
4 transconductance, such that the at least one filter section will oscillate.

1 14. (original) The invention of claim 13, wherein the at least one filter section oscillates at a
2 cutoff frequency of the filter section.

1 15. (original) The invention of claim 13, wherein:
2 the at least one filter section has an input node that receives an input signal for the at least one
3 filter section, an intermediate node, and an output node that presents an output signal for the at least one
4 filter section;
5 the at least one filter section further comprises:
6 a first gm cell connected between the input node and the intermediate node;
7 a first capacitor connected between the intermediate node and a voltage reference;
8 a second gm cell connected between the intermediate node and the output node;
9 a second capacitor connected between the output node and the voltage reference;
10 a third gm cell connected at both ends to the intermediate node; and
11 a fourth gm cell connected between the output node and the intermediate node, wherein:
12 the third gm cell comprises a set of switches that enable the third gm cell to be
13 configured to have substantially zero transconductance, such that the at least one filter section will
14 oscillate.

1 16. (original) The invention of claim 13, wherein:
2 the at least one filter section is in a main signal path of the filter; and
3 the at least one filter section is configured to oscillate in order to tune the at least one filter
4 section.

1 17. (original) The invention of claim 13, wherein:
2 the filter comprises a main signal path having one or more filter sections;
3 the at least one filter section is not part of the main signal path;
4 the at least one filter section is a replica of at least one filter section in the main signal path; and
5 the at least one filter section is configured to oscillate in order to tune the at least one filter
6 section in the main signal path.

1 18. (original) The invention of claim 13, wherein:
2 the at least one filter section comprises tuning circuitry that tunes the at least one filter section;
3 and
4 the tuning circuitry stores tuning control information for the at least one filter section such that
5 the at least one filter section can be tuned intermittently.

1 19. (original) The invention of claim 18, wherein information about the tuning of the at least
2 one filter section is used to tune one or more other filter sections in the filter.

1 20. (original) The invention of claim 13, wherein the at least one filter section oscillates
2 without relying on phase-locked loop circuitry.