KEIVAN FARHAN

Engineering Portfolio

Email: kfarhan3@gatech.edu

Phone: 404-509-7597

PROJECT (2018): GT CAPSTONE DESIGN

RUGGEDIZED OUTDOOR ECO (ENERGY STORAGE SYSTEM)

Designed By: Keivan Farhan, Alex Gray, Rafael Garcia, Kenta Yasuda,
Maddy Kanne & Kate Moss

EnerJackets

Problem Background

- The sonnenBatterie is a smart energy storage system (ESS) that saves users money by harvesting energy from the solar PV system or the grid when energy is cheapest and uses the stored energy to power the home when energy rates are more expensive
- The power detection system senses power outages and automatically switches the home to battery power

Problem Statement

Redesign the Sonnen energy storage system enclosure to be weather resistant and maintain safe temperatures for batteries, inverter, and the interior of the enclosure

Specification Requirements

Operating Ambient Temperature	0 -45°C	IP(Ingress Protection)54: Levels of sealing
Maximum Allowable Temperature of Inverter	100°C	effectiveness of electrical enclosures, protected from
Noise	< 50 dB from 6 ft away	limited dust ingress and
Weather	IP54 or NEMA 3R enclosure rating	water spray NEMA3R: enclosure
Forces	200 lbs force against unit at farthest point from fasteners	constructed for outdoor us
Dimensions	84" × 25.6" × 15.25"	to protect from hazards
Usable Energy Capacity	4 kWh - 16 kWh	(dirt. water. ice)

Concept Sketches

SOLIDWORKS Flow Simulation Outputs Max Inverter Temp-Max Heat Sink Temp 370 W Fan Distance **Parameters** Ambient Temp: 318 K Steady State Analysis <u>Variables</u> No Radiation Heat CFM (per fan) Transfer Fan Distance (mm) No Contact Resistance Baffle (Y/N)

Max Stress = 1.388e+07 N/m^2

Future Considerations

- · Evaluate sound levels
- Evaluate the effect of moisture in the air
- Evaluate the effect of ambient pressure
- Consider the cost and power consumption of various fan types

RESEARCH (2018): FLEXIBLE LIQUID-PISTON STIRLING ENGINE OPTIMIZATION

- → Tested and developed a bendable engine made from PDMS polymer that can convert waste heat to liquid pumping
- → Designed acrylic engine mold and 3D printed joining tube plugs to improve engine's pumping capabilities
- → Co-authoring academic research paper to analyze the effect of bending forces and input heating power on engine performance

Engine schematic

Pumping schematic

Team photo with Dr. Sulchek

Physical pumping apparatus

PROJECT (2018): ELECTRIC GO-KART MODELING AND ANALYSIS

Final go-kart assembly

- → Goal: Design a new product with multiple complex parts using various surface and solid 3D modeling techniques. Then, test and validate the design with structural Finite Element Analysis (FEA) simulations
- → 37 unique parts, 59 total (excluding hardware)
- → By simulating impact collisions on NX Nastran, the hollow fenders that were made of aluminum were too weak and thin.
- → A low-density foam was incorporated into the fenders to provide more impact toughness and minimize added weight

Bezier splines used to create the driver seat

Stress-pipe diameter relationship

INTERNSHIP (2017): MECHANICAL PART DESIGN FOR CMWS TEST SYSTEM UPGRADE

CMWS Hot Mockup Unit (HMU) test system

→ Led mechanical design of signal conversion box and 3 interfacing panels to support next-gen upgrade to control unit for Common Missile Warning System (CMWS) test units

Common Missile Warning System

AH-64E Apache helicopter equipped with CMWS

INTERNSHIP (2017): MECHANICAL PART DESIGN FOR CMWS TEST SYSTEM UPGRADE

Test system modeled with new components shown in green

THE CONTRACT

Models of new panel hardware

Preliminary conversion box model

Fully fabricated conversion box

PROJECT (2016): GT ME2110 DESIGN COMPETITION

→ Goal: Design a machine to compete against others in performing prescribed tasks, namely removing block letter 'F', returning block 'T', and retrieving miniature pillows

FULL METAL JACKETS

Team A2 (FMJ) brings you STRENGTH & DURABILITY

Benefits of Metal Core:

- Weight = safe in case of collision
- Flexibility provided by garage frame
- Strength and durability ensures consistency in performance

'F' Arm Component

'T' Arm Component

activates
releasing slider
2. Slider slides

90 degrees releasing 'F'

Elastic

energy

potential

provided by

spring swings

'F' arm exerts

gravity
3. Since no reaction force on top of 'T' arm mouse traps swing 'T' arm on top of tower

Pillow Arm Component

- Pneumatic
 valves activates
 pushing slider
 Slider moves
 above and past
- Solenoid
 releases support
 to drop sliders

Before Deployment

After Deployment

Launch Sequence

Critical Specifications

- Assembly: nuts & bolts (easy maintenance and switch) + welded frame
- Energy: elastic potential energy from mouse traps + gravitational potential energy + pneumatic valves + Motors + Solenoid
- 3. Operation: Banana plugs + coded to
- Geometry: 28X12X18 (LXWXH) inches

Function Tree

58 points with no competitor involvement

PROJECT (2016): GT ME2110 DESIGN COMPETITION

Machine function tree

Shot of arena on competition day

Competition-ready machine (top left) and various team photos from throughout the project

PROJECT (2015): ME1770 3D MODELING PROJECT

→ Goal: Design and model a machine (Siege Machine) with many components and structural parts using Autodesk Inventor

→ Approach

- Something captivating mechanical engineers
- Large-scale mobile machine
- Simple, yet unique design
- Historical concept with modern interpretation

Fully assembled Siege Machine

PROJECT (2015): ME1770 3D MODELING DESIGN PROJECT

Schematic showing overall dimensions

Each subassembly shown, from left to right: crossbow, drawbridge roof, and battering ram base

Rendering of the Siege Machine in battle

WOODWORKING PROJECTS

FIJI Island Week roof structure

Stained dining table

Workbench fence and roofing

Bunked bed frame