

ORBSLAM2源码讲解专题五

理解共视图、本质图、扩展树

小六 2020.08.29

直观理解共视图、本质图

▶关键帧(KeyFrame)、共视图(Covisibility Graph)

(a) KeyFrames (blue), Current Camera (green), MapPoints (black, red), Current Local MapPoints (red)

(b) Covisibility Graph

直观理解共视图、本质图

▶扩展树(Spanning Tree)、本质图(Essential Graph)

共视图(Covisibility Graph)的定义

- ▶共视图 是无向加权图, 每个节点是关键帧,如 果两个关键帧之间满足 一定的共视关系(至少 15个共同观测地图点) 他们就连成一条边,边 的权重就是共视地图点 数目
- ▶非常重要!是 ORB_SLAM2算法中的 核心

共视图的作用

- ▶跟踪局部地图,扩大搜索范围
- Tracking::UpdateLocalKeyFrames()
- ▶局部建图里关键帧之间新建地图点
- LocalMapping::CreateNewMapPoints()
- LocalMapping::SearchInNeighbors()
- ▶闭环检测、重定位检测
- LoopClosing::DetectLoop()、LoopClosing::CorrectLoop()
- KeyFrameDatabase::DetectLoopCandidates
- KeyFrameDatabase::DetectRelocalizationCandidates

≻优化

Optimizer::OptimizeEssentialGraph

本质图(Essential Graph)的定义

- >只针对关键帧, 普通帧不考虑
- ▶共视图比较稠密,本质图比共视图更稀疏,这是因为本质图的作用是用在闭环矫正时,用相似变换来矫正尺度漂移,把闭环误差均摊在本质图中。本质图中节点也是所有关键帧,但是连接边更少,只保留了联系紧密的边来使得结果更精确

▶本质图中包含:

- 1.扩展树连接关系
- 2.形成闭环的连接关系,闭环后地图点变动后新增加的连接关系
- 3.共视关系非常好(至少100个共视地图点)的连接关系

本质图(Essential Graph)的作用

▶相比全局BA,本质图可以快速收敛并且结果更精确

Table 4.6: Comparison of loop closing strategies in KITTI 09.

Method	Time (s)	Graph Edges	RMSE (m)	
Without Loop Closure	-	-	48.77	
Full BA (20 iterations)	14.64	-	49.90	
Full BA (100 iterations)	72.16	-	18.82	
Essential Graph ($\theta_{min} = 200$)	0.38	890	8.84	
Essential Graph ($\theta_{min} = 100$)	0.48	1979	8.36	
Essential Graph $(\theta_{min} = 50)$	0.59	3583	8.95	
Essential Graph ($\theta_{min} = 15$)	0.94	6663	8.88	
Essential Graph ($\theta_{min} = 100$) + full BA (20 iterations)	13.40	1979	7.22	

本质图(Essential Graph)的作用

▶相比全局BA, 本质图可以快速收 敛并且结果更精确

Figure 4.13: Comparison of different loop closing strategies in KITTI 09.

Spanning tree的定义

▶只针对关键帧, 普通帧不考虑

Spanning tree的定义、作用

>只针对关键帧, 普通帧不考虑

▶建立: 新关键帧建立时确定父子关系

KeyFrame::UpdateConnections()

▶应用1: 跟踪里更新局部地图关键帧

• TrackLocalMap 里 UpdateLocalKeyFrames更新局部地图中的关键帧

➤应用2:闭环矫正时 优化 Essential Graph

Optimizer::OptimizeEssentialGraph()

从零开始学习SLAM知识星球

➤SLAM星球介绍

- 独家图文/视频教学+代码实战
- 高质量的交流学习社区
- 最新开源论文/代码翻译
- 学习工作问题答疑解惑
- 精选SLAM常见面试题
- 工作机会: 实习生/校园/社会招聘

• 视频教程: ORBSLAM2 无死角代码讲解,已经更新到第17讲

从零开始学习SLAM知识星球

▶视频教程: ORBSLAM2 无死角代码讲解,已经更新到第26讲

视频名	•	画质	时长
ORBSLAM2原理代码详解26-不同跟踪方法的对比、跟踪完整流程		1080p	21:59
ORBSLAM2原理代码详解4-特征点四叉树均匀化分配策略		1080p	33:38
ORBSLAM2原理代码详解10-单目初始化中特征匹配角点筛查原理及bug解析		1080p	25:01
ORBSLAM2原理代码详解11-单目初始化单应矩阵归一化及DLT计算原理		1080p	34:52
ORBSLAM2原理代码详解6-ORB描述子steer brief计算方法		1080p	27:02
ORBSLAM2原理代码详解7-去畸变算图像边界划分网格		1080p	22:18
ORBSLAM2原理代码详解3-特征提取仿函数、图像扩充金字塔		1080p	23:35
ORBSLAM2原理代码详解25- 关键帧简介、插入及创建关键帧		1080p	29:30
ORBSLAM2原理代码详解24-局部地图跟踪-局部地图点搜索匹配		1080p	23:31
ORBSLAM2原理代码详解23-跟踪局部地图-创建局部关键帧和地图点		1080p	22:19
ORBSLAM2原理代码详解22- 跟踪丢失后的重定位方法		1080p	36:30

➤ORBSLAM2 代码注释

• https://github.com/electech6/ORBSLAM2_detailed_comments

▶为什么做这个?

- 公开资料有错误, 缺乏系统、代码级的详解
- 原作者代码本身存在疑似/确定bug
- 原理(理想) vs. 代码(现实)

➤ORBSLAM2 QQ交流群

• QQ群: 1017297661

• 欢迎加入, 一起学习进步!

群名称:ORBSLAM2 交流学习 群 号:1017297661

祝paper不断、offer多多、工作棒棒哒!