Desigualdades Cuadráticas y Racionales MATE 3011

Material Suplementario Para el Curso Métodos Cuantitativos 1

Este suplemento tiene el propósito de mostrar como resolver desigualdades que contienen una expresión cuadrática o una expresión racional. Los métodos que presentaremos difieren de los desarrollados para resolver desigualdades lineales y desigualdades con valor absoluto. Como parte del proceso de resolver la desigualdad cuadrática la rearreglaremos para que un lado sea igual a cero. Luego factorizaremos la expresión cuadrática que se obtiene.

Ejemplo 1. Resuelva la designaldad $x^2 + x - 2 > 0$.

SOLUCIÓN. Comenzamos factorizando la expresión cuadrática pues uno de los lados es igual a cero.

$$x^{2} + x - 2 > 0$$
$$(x+2)(x-1) > 0$$

Ahora resolvemos la ecuación (x+2)(x-1)=0. Tenemos que

$$x + 2 = 0$$
 o $x - 1 = 0$.

Obtenemos que x=-2 o x=1. Estos valores dividen la recta real en tres intervalos: $(-\infty, -2)$, (-2,1), $(1,\infty)$. Sabemos que x=-2 y en x=1 satisfacen la ecuación $x^2+x-2=0$. Deseamos determinar el signo de la espresión x^2+x-2 en los intervalos $(-\infty, -2)$, (-2, 1), $(1, \infty)$. Para esto determinamos el signo de cada uno de los factores usando un valor de x en cada uno de los intervalos. Este valor particular de x se conoce como valor prueba. Por ejemplo, para determinar el signo del factor x-2 en el intervalo $(-\infty, -2)$ escogemos un valor de x que este en este intervalo, digamos x=-3 y lo subustituimos en x-2. Obtenemos x-2=-3-2=-5. Luego x-2 es negativo en el intervalo $(-\infty, -2)$. Por otro lado x-1=-3-1=-4 por lo que x-1 es negativo en el intervalo $(-\infty, -2)$. Repetimos este procedimiento para los otros dos intervalos. Construimos una tabla, llamada una **tabla de signos**, para organizar la información obtenida:

Intervalos	$(-\infty, -2)$	(-2,1)	$(1,\infty)$
Signo de $x + 2$	_	+	+
Signo de $x-1$	_	_	+
Signo de $(x+2)(x-1)$	+	_	+

El signo de (x+2)(x-1) se obtiene multiplicando el signo de x-2 con el signo de x+1. Nos interesa saber donde (x+2)(x-1)>0, es decir donde (x+2)(x-1) es positiva. Esto ocurre en $(-\infty, -2)$ o en $(1, \infty)$.

Ejemplo 2. Resuelva la designaldad $x^2 \le 4x + 12$.

SOLUCIÓN. Primero despejemos para que un lado de la desigualdad sea cero y factoricemos la expresión resultante:

$$x^{2} \le 4x + 12$$
$$x^{2} - 4x - 12 \le 0$$
$$(x+2)(x-6) \le 0.$$

Resolvemos la ecuación (x+2)(x-6)=0. Obtenemos que x+2=0 o x-6=0. Luego x=-2 o x=6. Ahora construimos una tabla de signos.

Intervalos	$(-\infty, -2)$	(-2,6)	$(6,\infty)$
Signo de $x + 2$	_	+	+
Signo de $x-6$	_	_	+
Signo de $(x+2)(x-6)$	+	_	+

Buscamos todos los valores de x tales que $(x+2)(x-6) \le 0$. (x+2)(x-6) es menor que cero en el intervalo (-2,6) e igual a cero en x=-2 y en x=6. Luego la solución de la desigualdad es el intervalo [-2,6].

Ejemplo 3. Resuelva la desigualdad $x^2 < 3x$.

SOLUCIÓN. Primero despejemos para que un lado de la desigualdad sea cero y factoricemos la expresión resultante:

$$x^{2} < 3x$$
$$x^{2} - 3x < 0$$
$$x(x - 3) < 0.$$

Resolvemos la ecuación x(x-3)=0. Obtenemos que x=0 o x-3=0 de donde se sigue que x=0 o x=3. Ahora construimos una tabla de signos.

Intervalos	$(-\infty,0)$	(0,3)	$(3,\infty)$
Signo de x	_	+	+
Signo de $x-3$	_	_	+
Signo de $x(x-3)$	+	_	+

Buscamos todos los valores de x tales que x(x-3) < 0. Esto ocurre en (0,3).

Ejemplo 4. Resuelva la designaldad $4x^2 + 8x \ge 5$.

SOLUCI'ON. Primero despejemos para que un lado de la desigualdad sea cero y factoricemos la expresión resultante:

$$4x^{2} + 8x \ge 5$$
$$4x^{2} + 8x - 5 \le 0$$
$$(2x + 5)(2x - 1) \le 0.$$

Resolvemos la ecuación (2x+5)(2x-1)=0. Obtenemos que 2x+5=0 o 2x-1=0. Luego $x=-\frac{5}{2}$ o $x=\frac{1}{2}$. Ahora construimos una tabla de signos.

Intervalos	$\left(-\infty,-\frac{5}{2}\right)$	$\left(-\frac{5}{2},\frac{1}{2}\right)$	$(\frac{1}{2},\infty)$
Signo de $2x + 5$	_	+	+
Signo de $2x - 1$	_	_	+
Signo de $(2x+5)(2x-1)$	+	_	+

Buscamos todos los valores de x tales que $(2x+5)(2x-1) \ge 0$. (2x+5)(2x-1) es mayor que cero en el intervalo $(-\infty, -\frac{5}{2})$ e igual a cero en $x=\frac{1}{2}$ y en $x=-\frac{5}{2}$. Luego la solución de la desigualdad es $\left(-\infty, -\frac{5}{2}\right] \cup \left[\frac{1}{2}, \infty\right)$.

Ahora nos concentraremos en desigualdades racionales.

Ejemplo 5. Resuelva la designaldad $\frac{x+1}{x-1} > 0$.

SOLUCIÓN. Primero determinemos donde el numerador es cero.

$$x + 1 = 0$$
$$x = -1$$

Segundo, determinemos donde el denominador es cero.

$$x - 1 = 0$$
$$x = 1$$

Utilizando estos números dividimos la recta real en tres intervalos:

$$(-\infty, -1), (-1, 1), (1, \infty).$$

Ahora construimos una tabla de signos.

Intervalos	$(-\infty, -1)$	(-1,1)	$(1,\infty)$
Signo de $x + 1$	_	+	+
Signo de $x-1$	_	_	+
Signo de $\frac{x+1}{x-1}$	+	_	+

Buscamos todos los valores de x tales que $\frac{x+1}{x-1} > 0$. Luego la solución de la desigualdad es $(-\infty, -1)$ o $(1, \infty)$.

Ejemplo 6. Resuelva la designaldad $\frac{x-3}{x+1} \leq 0$.

SOLUCI'ON. Primero determinemos donde el numerador es cero.

$$x - 3 = 0$$
$$x = 3$$

Segundo, determinemos donde el denominador es cero.

$$x + 1 = 0$$
$$x = -1$$

4

Utilizando estos números dividimos la recta real en tres intervalos:

$$(-\infty, -1), (-1, 3), (3, \infty).$$

Ahora construimos una tabla de signos.

Intervalos	$(-\infty, -1)$	(-1,3)	$(3,\infty)$
Signo de $x-3$	_	_	+
Signo de $x+1$	_	+	+
Signo de $\frac{x-3}{x+1}$	+	_	+

Buscamos todos los valores de x tales que $\frac{x-3}{x+1} \le 0$. Debido a que la desigualdad envuelve una expresión racional debemos ser cuidadosos al determinar la solución. La expresión $\frac{x-3}{x+1}$ es menor que cero en el intervalo (-1,3). Veamos si en alguno de los extremos es cero. En x=3 tenemos

$$\frac{x-3}{x+1} = \frac{3-3}{3+1} = \frac{0}{4} = 0$$

Luego incluimos x=4 en la solución. Ahora revisemos si en x=-1 la expresión $\frac{x-3}{x+1}$ es cero.

$$\frac{x-3}{x+1} = \frac{-1-3}{-1+1} = \frac{-4}{0}$$

Tenemos una división por cero. Luego en x=-1 la expresión $\frac{x-3}{x+1}$ no esta definida por lo que no puede ser cero. Concluimos que la solución de la desigualdad $\frac{x-3}{x+1} \le 0$ es el intervalo (-1,3].

Ejemplo 7. Resuelva la designaldad $-\frac{2x-1}{x-5} \le 0$.

SOLUCIÓN. Primero multipliquemos por -1 a ambos lados de la desigualdad para eliminar el negativo del lado izquierdo. Obtenemos

$$\frac{2x-1}{x-5} \ge 0.$$

Determinemos donde el numerador es cero.

$$2x - 1 = 0$$
$$2x = 1$$
$$x = \frac{1}{2}$$

Ahora determinemos donde el denominador es cero.

$$x - 5 = 0$$
$$x = 5$$

Utilizando estos números dividimos la recta real en tres intervalos:

$$(-\infty, 1/2), (1/2, 5), (5, \infty).$$

Ahora construimos la tabla de signos.

Intervalos	$\left(-\infty,\frac{1}{2}\right)$	$\left(\frac{1}{2},5\right)$	$(5,\infty)$
Signo de $2x - 1$	_	+	+
Signo de $x-5$	_	_	+
Signo de $\frac{2x-1}{x-5}$	+	_	+

Buscamos todos los valores de x tales que $\frac{2x-1}{x-5} \ge 0$. Como en el ejemplo anterior, debemos ser cuidadosos al determinar la solución. Primero la expresión $\frac{2x-1}{x-5}$ es mayor que cero en los intervalos $(-\infty, \frac{1}{2})$ y $(5, \infty)$. Veamos si en alguno de los extremos es cero. En $x = \frac{1}{2}$ tenemos

$$\frac{2x-1}{x-5} = \frac{2(\frac{1}{2})-1}{\frac{1}{2}-5} = \frac{1-1}{-\frac{9}{2}} = \frac{0}{-\frac{9}{2}} = 0$$

Luego incluimos $x = \frac{1}{2}$ en la solución. Ahora revisemos si en x = 5 la expresión $\frac{2x-1}{x-5}$ es cero.

$$\frac{2x-1}{x-5} = \frac{2(5)-1}{5-1} = \frac{9}{0}$$

Tenemos una división por cero. Luego en x=5 la expresión $\frac{2x-1}{x-5}$ no esta definida por lo que no puede ser cero. Concluimos que la solución de la desigualdad $\frac{2x-1}{x-5} \geq 0$ es $(-\infty, \frac{1}{2}]$ o $(5, \infty)$. \square

NOTA: Los valores de la variable que hacen que el denominador de la expresión racional sea cero NUNCA se incluyen en la solución.

EJERCICIOS: Resuelva la desigualdad (sólo los problemas con numeración impar).

1.
$$(x+2)(x-5) < 0$$

2.
$$x^2 > 16$$

3.
$$x^2 - 9 < 0$$

4.
$$x(x+1) > 0$$

5.
$$x^2 > 4x$$

6.
$$x^2 + 2x + 1 > 0$$

7.
$$x^2 - x - 6 < 0$$

8.
$$3x^2 < 10 - x$$

9.
$$x^2 - 2x - 5 > 3$$

10.
$$x^2 < 5$$

11.
$$6x - 8 > x^2$$

12.
$$6x^2 + x - 12 < 0$$

13.
$$x(3x-1) \le 4$$

14.
$$25x^2 - 9 \le 0$$

15.
$$2x^2 < 5x + 3$$

SOLUCIONES

- 1. (2,5)
- (-3,3)
- 5. $(-\infty, 0)$ o $(4, \infty)$
- 7. [-2, 3]

9.
$$(-\infty, -2]$$
 o $[4, \infty)$

11.
$$(-\infty, -5/2)$$
 o $(1, \infty)$

13.
$$[-3/5, 3/5]$$

15.
$$(-1/2, 3)$$