Speicher vom STM32F746G Discovery

Figure 1. STM32F7 Series system architecture

- - For STM32F74xxx and STM32F75xxx devices: 4 Kbytes.

Path 1: 64-bit ITCM Bus CM Cortex-M7 GP DMA1 GP DMA2 HS DMA ART DMA2D L1-cache Flash Interface DMA_MEM2 **L** AXI t<mark>o Multi</mark> Flash DMA AHB Path 2: 64 bit Flash Memory ARI 32-bit AHB Flash register on AHB1 Path 4 32-bit AHB 32-bit Bus Matrix MSv37569V3

Figure 2. Flash memory interfaces (pathes: 1, 2, 3, 4)

- 1. The Flash memory wide size:
 - For STM32F74xxx and STM32F75xxx devices: 256 bits.

Figure 3. Flash memory interfaces (pathes: 5, 6, 7, 8)

Table 3. internal memory summary of the STM32F74xxx/STM32F75xxx devices

Memory type	Memory region	Address start	Address end	Size	Access interfaces
	FLASH-ITCM	0x0020 0000	0x002F FFFF		ITCM (64-bit)
FLASH	FLASH-AXIM 0x0800 0000 0x08	0x080F FFFF	1 Mbyte	AHB (64-bit) AHB (32-bit)	
RAM	DTCM-RAM	0x2000 0000	0x2000 FFFF	64 Kbytes	DTCM (64-bit)
	ITCM-RAM	0x0000 0000	0x0000 3FFF	16 Kbytes	ITCM (64-bit)
	SRAM1	0x2001 0000	0x2004 BFFF	240 Kbytes	AHB (32-bit)
	SRAM2	0x2004 C000	0x2004 FFFF	16 KBytes	AHB (32-bit)

Figure 4. External memory interfaces (pathes: 9, 10)

Interner Speicher

Flash: 1 Mbytes = 1024Kbytes

RAM: 340 KBytes

Externer Speicher

Quad-SPI Nor Flash memory 128-Mbit Quad-SPI Nor Flash memory (N25Q128A13EF840E from MICRON) is connected to the Quad-SPI interface of the STM32F746NGH6.

SDRAM memory

128-Mbit SDRAM (MT48LC4M32B2B5-6A from MICRON) is connected to the FMC interface of the STM32F746NGH6. Only the lowest 16-bit data are used (64-Mbit accessible). DQ16 to DQ31 are unused and connected to a 10K ohm pull-down resistor.

External memory mapping

NOR/RAM

256 Mbytes

SDRAM 0xD000 0000 - 0xDFFF FFFF 256 Mbytes **SDRAM** 0xC000 0000 - 0xCFFF FFFF 256 Mbytes **QSPI** registers 0xA000 1000 - 0xA000 1FFF **FMC** registers 0xA000 0000 - 0xA000 0FFF **QSPI** (Memory mapped mode) 0x9000 0000 - 0x9FFF FFFF 256 Mbytes 0x8000 0000 - 0x8FFF FFFF 256 Mbytes Reserved 0x7000 0000 - 0x7FFF FFFF

0x6000 0000 - 0x6FFF FFFF

128-Mbit = 16-Mbytes = 0xF42400

Table 2. Cortex[®]-M7 default memory attributes after reset

Address range	Region name	Туре	Attributes	Execute Never?
0x00000000-0x1FFFFFF	Code	Normal	Cacheable, Write-Through, Allocate on read miss	No
0x20000000-0x3FFFFFF	SRAM	Normal	Cacheable, Write-Back, Allocate on read and write miss	No
0x40000000-0x5FFFFFF	Peripheral	Device	Non-shareable	Yes
0x60000000-0x7FFFFFF	RAM	Normal	Cacheable, Write-Back, Allocate on read and write miss	No
0x80000000-0x9FFFFFF	RAM	Normal	Cacheable, Write-Through, Allocate on read miss	No
0xA0000000-0xBFFFFFF	External Device	Device	Shareable	Yes
0xC0000000-0xDFFFFFF	External Device	Device	Non-shareable	Yes
0xE0000000-0xE000FFFF	Private peripheral bus	Strongly ordered	-	Yes
0xE0010000-0xFFFFFFF	Vendor system	Device	Non-shareable	Yes

Linker Script (*.ld)

```
/* Specify the memory areas */
MEMORY
FLASH (rx)
           : ORIGIN = 0x08000000, LENGTH = 1024K
Memory1 (xrw) : ORIGIN = 0x20000000, LENGTH = 0xA0
                                                          = 160 Bytes
Memory2 (xrw) : ORIGIN = 0x200000A0, LENGTH = 0xA0
                                                          = 160 Bytes
Memory3 (xrw) : ORIGIN = 0x20000140, LENGTH = 0x1dc4
                                                          = 7.620 Bytes = 7 Kbytes
Memory4 (xrw) : ORIGIN = 0x20001F04, LENGTH = 0x1dc4
                                                          = 7.620 Bytes = 7 Kbytes
            : ORIGIN = 0x20003CC8, LENGTH = 0x6024
                                                          = 24.612 Bytes = 24 Kbytes
RAM1 (xrw)
RAM2 (xrw) : ORIGIN = 0x20009CEC, LENGTH = 0x7800
                                                          = 30.720 Bytes = 30 Kbytes
RAM (xrw) : ORIGIN = 0x200114EC, LENGTH = 0x3EB14
                                                          = 256.788 Bytes = 250 Kbytes
QSPI (rx) : ORIGIN = 0x90000000, LENGTH = 16M
}
 .ARM.attributes 0 : { *(.ARM.attributes) }
 .RxDecripSection (NOLOAD) : { *(.RxDecripSection) } > Memory1
 .TxDescripSection (NOLOAD) : { *(.TxDescripSection) } > Memory2
 .RxBUF (NOLOAD) : { *(.RxBUF) } > Memory3
 .TxBUF (NOLOAD) : { *(.TxBUF) } > Memory4
 .RamData1 (NOLOAD) : { *(.RamData1) } >RAM1
 .RamData2 (NOLOAD): { *(.RamData2) } >RAM2
 .ExtQSPIFlashSection : { *(.ExtQSPIFlashSection) } >QSPI
```

Map File (*.map)

Memory Configuration

Name	Origin	Length	Attributes
FLASH	0x0800000	0x00100000	xr
Memory1	0x20000000	0x000000a0	xrw
Memory2	0x200000a0	0x000000a0	xrw
Memory3	0x20000140	0x00001dc4	xrw
Memory4	0x20001f04	0x00001dc4	xrw
RAM1	0x20003cc8	0x00006024	xrw
RAM2	0x20009cec	0x00007800	xrw
RAM	0x200114ec	0x0003eb14	xrw
QSPI	0x90000000	0x01000000	xr
default	0x00000000	0xfffffff	

The QSPI external flash loader is not integrated with supported toolchains, it's only supported with STM32 ST-Link Utility V3.9

To load the demonstration, use STM32 ST-Link Utility to program both internal Flash and external QSPI memory.

To edit and debug the demonstration you need first to program the external QSPI memory using STLink utility and then use your preferred toolchain to update and debug the internal flash content.

In order to program the demonstration you must do the following:

- 1- Open STM32 ST-Link Utility V3.9, click on "External Loader" from the bar menu then check "N25Q128A STM32F746G-DISCO" box
- 2- Connect the STM32746G-DISCOVERY board to PC with USB cable through CN14
- 3- Use "STM32CubeDemo_STM32746G-DISCO_V1.1.2.hex" file provided under "Binary" with STM32 ST-Link Utility

to program both internal Flash and external QSPI memory

- 4- copy the audio and video files provided under "Utilities/Media/" in the USB key
- 5- Plug a USB micro A-Male to A-Female cable on CN12 connector
- -> The internal Flash and the external QSPI are now programmed and the demonstration is shown on the board.

In order to Edit and debug the program, you must do the following

- if not done, perform step 1, 2, 3, 4 and 5 described above,
- Open your preferred toolchain,
- Use the IDE to update and load the internal flash content,
- Run the demonstration.

Note If the user code size exceeds the DTCM-RAM size or starts from internal cacheable memories (SRAM1 and SRAM2), it is recommended to configure the latters as Write Through. This is ensured by configuring the memory attributes at MPU level in order to ensure cache coherence on SRAM1 and SRAM2. Please, refer to Template project for a typical MPU configuration.

Note If external memory is shared between several processors, it is recommended to configure it as Write Back (bufferable), shareable and cacheable. The memory base address and size must be properly updated. The user needs to manage the cache coherence at application level. For more details about the MPU configuration and use, please refer to AN4838 "Managing memory protection unit (MPU) in STM32 MCUs"