2. Klausur zu Lineare Algebra für Informatiker und Ingenieure

Gesamtpunktzahl: 110 Punkte Hinreichende Punktzahl für das Bestehen der Klausur: 50 Punkte

- 1. a) Definiere den Begriff Gruppe.
 - b) Eine Kongruenzabbildung des \mathbb{R}^2 ist eine Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^2$ der Form f(x) = Sx + v, wobei $S \in \mathbb{R}^{2 \times 2}$ eine orthogonale Matrix ist und $v \in \mathbb{R}^2$. Zeige, dass die Menge aller Kongruenzabbildungen S eine Gruppe bezüglich der Verknüpfung von Funktionen \circ bildet.

Hinweis: Es darf angenommen werden, dass die Menge aller orthogonalen $n \times n$ Matrizen $O_n(\mathbb{R})$ mit der bekannten Matrixmultiplikation eine Gruppe bildet.

(3+10 Punkte

- 2. Es seien $\pi \in S_5$ und $\tau \in S_5$ mit $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 2 & 3 & 1 \end{pmatrix}$ und $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 1 & 5 \end{pmatrix}$.
 - a) Definiere den Begriff Inversion.
 - b) Betrachte die Permutation $\rho = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ n & n-1 & \cdots & 2 & 1 \end{pmatrix} \in S_n$. Zeige, dass

$$\operatorname{inv}(\rho) = \frac{n(n-1)}{2}.$$

- c) Berechne π^n für $n \in \mathbb{N}$.
- d) Schreibe τ als Produkt von Transpositionen.
- e) Bestimme die Inversionen und das Vorzeichen von τ .

(2+4+3+2+2 Punkte)

3. Es sei die lineare Abbildung
$$\varphi : \mathbb{R}^4 \to \mathbb{R}^4$$
 gegeben durch $\varphi(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}) = \begin{pmatrix} 5x_1 - 4x_2 + 2x_3 + x_4 \\ 4x_1 - 3x_2 + 2x_3 + x_4 \\ 5x_1 - 2x_2 + 2x_3 - x_4 \\ 4x_1 - 4x_3 + 2x_3 + 2x_4 \end{pmatrix}$.

Außerdem sei eine Basis von \mathbb{R}^4 gegeben durch

$$\mathcal{B} = \{(1,1,1,1)^{\top}, (1,1,-1,1)^{\top}, (1,2,1,2)^{\top}, (-1,0,3,2)^{\top}\}.$$

- a) Bestimme die Darstellungsmatrix $M_{\mathcal{B}}^{\mathcal{B}}(\varphi)$.
- b) Ist φ surjektiv bzw. injektiv? Begründe.
- c) Bestimme alle Eigenwerte von φ sowie deren geometrische und algebraische Vielfachheiten.

(3+3+5) Punkte

- 4. Es sei die Matrix $A_t = \begin{pmatrix} 7t 2 & 2 4t & 3 9t \\ 6t 2 & 1 2t & 2 6t \\ 12t 4 & 3 6t & 5 14t \end{pmatrix} \in \mathbb{R}^{3 \times 3}$ mit $t \in \mathbb{R}$ gegeben.
 - a) Bestimme alle $t \in \mathbb{R}$, sodass A_t invertierbar ist.
 - b) Bestimme alle $t \in \mathbb{R}$, sodass $rg(A_t) \leq 1$ ist.
 - c) Bestimme ein $t \in \mathbb{R}$, sodass $v = (2, 1, 1)^{\top} \in \text{Bild}(A_t)$ gilt.

(6+4+2 Punkte)

- 5. a) Definiere den Begriff Basis.
 - b) Es sei $\{v_1, v_2\}$ eine Basis eines zweidimensionalen reellen Vektorraums V. Für welche Zahlen $r, s \in \mathbb{R}$ ist $\{w_1, w_2\}$ mit $w_1 = rv_1 + v_2$ und $w_2 = v_1 + sv_2$ wieder eine Basis von V?

(3+6 Punkte)

- 6. a) Es sei $p \in P_n$ ein Polynom vom Grad kleiner oder gleich n mit reellen Koeffizienten und einer Nullstelle $z = x + iy \in \mathbb{C}$ mit $x, y \in \mathbb{R}$. Zeige, dass dann auch $\bar{z} = x iy$ eine Nullstelle von p ist.
 - b) Es sei $A \in \mathbb{C}^{n \times n}$ diagonalisierbar. Zeige, dass $\operatorname{Spur}(A) = \sum_{i=1}^{n} \lambda_i$ und $\det A = \prod_{i=1}^{n} \lambda_i$, wobei $\lambda_1, \dots, \lambda_n \in \mathbb{C}$ die Eigenwerte von A bezeichnen.
 - c) Es sei $A \in \mathbb{R}^{5\times 5}$ und A besitze die beiden Eigenwerte i und 1+i. Außerdem sei $\operatorname{Spur}(A) = 0$. Berechne die Determinante von A.

 Hinweis: Beachte die Reihenfolge der Teilaufgaben a) bis c).
 - d) Formuliere die Cramersche Regel.

(3+6+6+3 Punkte)

- 7. Zeige oder widerlege folgende Aussagen:
 - a) Es sei $A \in \mathbb{R}^{n \times n}$, λ ein Eigenwert von A und $c \neq 1$. Dann ist λ genau dann ein Eigenwert von $c \cdot A$, wenn $\lambda = 0$.
 - b) Es sei V ein n-dimensionaler Vektorraum und $\varphi: V \to V$ linear mit der Eigenschaft, dass $\varphi = \varphi \circ \varphi$. Dann ist $\operatorname{Kern}(\varphi) \cap \operatorname{Bild}(\varphi) = \{0\}$.
 - c) Die Vereinigung von zwei Untervektorräumen ist wieder ein Untervektorraum.

(6+4+3 Punkte)

- 8. Es sei $f(x) = f(x_1, x_2) = 3x_1^2 2x_1x_2 + 3x_2^2 + 8x_1 8x_2 + 6$ ein quadratisches Polynom und $Q = \{x \in \mathbb{R}^2 : f(x) = 0\}$ eine Quadrik.
 - a) Untersuche, ob Q einen Mittelpunkt besitzt und bestimme diesen gegebenenfalls.
 - b) Eliminiere, falls möglich, den konstanten Term von f.
 - c) Bestimme eine orthogonale Matrix $S \in \mathbb{R}^{2 \times 2}$ mit $A = SDS^{-1}$, wobei $A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$.
 - d) Zeige, dass es sich bei Q um eine Ellipse handelt. Das heißt, bringe f(x) = 0 durch eine Hauptachsentransformation auf die Form $ax_1^2 + bx_2^2 1 = 0$.

(4+2+7+8 Punkte)

Viel Erfolg!