<u>Course</u>

Progress

<u>Help</u>

sandipan_dey >

<u>Dates</u>

☆ Course / 12 Stiffness and Implicit Methods for IVPs / 12.2 Explicit and Implicit Methods

Discussion

MO Index

MO2.7

While we do not prove this in these notes, all explicit methods have a finite maximum possible timestep $\Delta t_{\rm max}$ above which they will be unstable. The exact value of $\Delta t_{\rm max}$ depends on the method and the problem being solved. However, roughly $\Delta t_{\rm max}$ will be proportional to the shortest timescale in the problem. Let's call this shortest timescale for a problem au (e.g. the combustion timescale in the oscillation combustion example). Then, for an explicit method,

$$\Delta t_{\text{max}} = C\tau \tag{12.30}$$

where C is constant typically around 1. If an explicit method is applied to solve a problem and Δt is chosen to be $\Delta t > \Delta t_{\rm max}$ then the state \underline{v}^n will increase in magnitude as n increases and eventually (i.e. for large enough n) the numerical approximation \underline{v}^n will no longer be a good approximation to the exact solution.

Now, consider the application of an explicit method to a stiff problem. Let T be the maximum time over which the solution is desired (e.g. in the oscillating combustion problem, this would likely be several periods of $I_F(t)$). Then the minimum number of timesteps required to solve this problem will occur when Δt is chosen to be its maximum. Thus,

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

Blog

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>