# **PHYS11 CH:11**

### Temperature, Heat, and Phase Changes

Mr. Gullo

Physics Department

March, 2025

### Overview

- Temperature and Thermal Energy
- 2 Heat, Specific Heat, and Heat Transfer
- 3 Phase Change and Latent Heat
- Examples and Applications
- Summary

# Learning Objectives

### By the end of this lesson, you will be able to:

- Define temperature and explain its relationship to molecular motion
- Convert between temperature scales (Celsius, Fahrenheit, and Kelvin)
- Explain the difference between heat and temperature
- Calculate heat transfer using  $Q = mc\Delta T$
- Identify the three mechanisms of heat transfer
- Describe phase changes and calculate energy using latent heat

### Table of Contents

- Temperature and Thermal Energy
- 2 Heat, Specific Heat, and Heat Transfer
- 3 Phase Change and Latent Heat
- Examples and Applications
- Summary

# Temperature and Thermal Energy

- Temperature: Quantity measured by a thermometer
- Related to the average kinetic energy of atoms and molecules
- Absolute zero: Temperature at which there is no molecular motion
- Three main temperature scales:
  - Celsius (°C)
  - Fahrenheit (°F)
  - Kelvin (K)

[Thermometer scales diagram showing comparison of the three temperature scales]



# Temperature Scales and Conversion

# Temperature Conversion Formulas

$$T_{\text{F}} = \frac{9}{5}T_{\text{C}} + 32$$

$$T_{\text{C}} = \frac{5}{9}(T_{\text{F}} - 32)$$

$$T_{\text{K}} = T_{\text{C}} + 273.15$$

$$T_{\text{C}} = T_{\text{K}} - 273.15$$

#### **Examples**

- Room temperature:  $20^{\circ}\text{C} = 68^{\circ}\text{F} = 293.15 \text{ K}$
- Freezing point of water:  $0^{\circ}C = 32^{\circ}F = 273.15 \text{ K}$
- Absolute zero:  $-273.15^{\circ}C = -459.67^{\circ}F = 0 \text{ K}$

### Table of Contents

- Temperature and Thermal Energy
- 2 Heat, Specific Heat, and Heat Transfer
- Open Phase Change and Latent Heat
- Examples and Applications
- Summary

# Heat and Specific Heat

#### **Definitions**

- Heat (Q): Thermal energy transferred due to a temperature difference
- **Specific heat (c):** Amount of heat needed to raise the temperature of 1 kg of a substance by 1°C

#### Heat Transfer Equation

$$Q = mc\Delta T$$

#### where:

- Q = heat transferred (J)
- m = mass (kg)
- $c = \text{specific heat } (J/\text{kg} \cdot ^{\circ}\text{C})$
- $\Delta T$  = change in temperature (°C or K)

# Specific Heat of Common Materials

| Material         | Specific Heat (J/kg·°C) |
|------------------|-------------------------|
| Water            | 4,186                   |
| Ice (at 0°C)     | 2,090                   |
| Steam (at 100°C) | 2,010                   |
| Aluminum         | 900                     |
| Copper           | 385                     |
| Gold             | 129                     |
| Wood             | ≈ 1,700                 |

#### Note

Water has an unusually high specific heat, which is why bodies of water moderate climate.

#### Heat Transfer Methods

- Conduction: Transfer between objects in direct contact
  - Metals are good conductors
  - Wood and air are poor conductors (insulators)
- Convection: Transfer by movement of mass
  - Ocean currents, boiling water, air movement
- Radiation: Transfer by electromagnetic waves
  - Requires no medium (works in vacuum)
  - How the Sun's energy reaches Earth

[Diagram showing the three heat transfer mechanisms]



Convection
The transfer of heat
trought a fluid
caused by

molecular motion

The transfer of heat from one substance to another due to direct contact

#### Radiation

Energy that is radiated or transmitted in the form of rays or waves or particles

### Table of Contents

- Temperature and Thermal Energy
- 2 Heat, Specific Heat, and Heat Transfer
- 3 Phase Change and Latent Heat
- Examples and Applications
- Summary

### Phases of Matter

- Four distinct phases:
  - **Solid:** Particles in fixed positions, vibrating
  - Liquid: Particles close together but can move around
  - Gas: Particles far apart, moving freely
  - Plasma: Ionized gas (very high energy)
- Gas is the most energetic state
- Solid is the least energetic state

[Phase transition diagram showing the four states of matter and the energy relationships between them]



# Phase Changes

- Melting: Solid → Liquid
- Freezing: Liquid → Solid
- ullet Vaporization: Liquid o Gas
- ullet Condensation: Gas o Liquid
- Sublimation: Solid → Gas
- Deposition: Gas → Solid

### Important Points

- Phase changes occur at fixed temperatures
- No temperature change during phase change
- Energy breaks bonds between particles
- Increases potential energy, not kinetic energy

#### Latent Heat

#### Definition

**Latent heat:** The energy required to change the phase of a substance without changing its temperature

### Heat Transfer Equations for Phase Changes

$$Q_{
m melting/freezing} = m L_f$$
  $Q_{
m vaporization/condensation} = m L_{
m v}$ 

#### where:

- Q = heat transferred (J)
- m = mass (kg)
- $L_f$  = latent heat of fusion (J/kg)
- $L_{\nu}$  = latent heat of vaporization (J/kg)

#### Latent Heat Values

| Substance | Latent Heat of Fusion (kJ/kg) | Latent Heat of Vaporiz |
|-----------|-------------------------------|------------------------|
| Water     | 334                           | 2,260                  |
| Aluminum  | 380                           | 11,400                 |
| Gold      | 64.5                          | 1,580                  |
| Mercury   | 11.8                          | 296                    |
| Tungsten  | 184                           | 4,810                  |

### Note

During phase changes, the temperature remains constant while energy is being added or removed.

### Table of Contents

- Temperature and Thermal Energy
- 2 Heat, Specific Heat, and Heat Transfer
- Open Phase Change and Latent Heat
- 4 Examples and Applications
- Summary

# "I do" Example

#### **Problem**

How much energy would it take to heat 1.00 kg of ice at  $0^{\circ}\text{C}$  to water at  $15.0^{\circ}\text{C}$ ?

#### Solution

Energy to melt ice at 0°C to water at 0°C:

$$Q_1 = mL_f = 1.00 \text{ kg} \times 334 \text{ kJ/kg} = 334 \text{ kJ}$$

2 Energy to heat water from 0°C to 15.0°C:

$$Q_2 = mc\Delta T$$
  
= 1.00 kg × 4,186 J/(kg·°C) × 15.0 °C  
= 62,790 J = 62.8 kJ

Total energy required:

$$Q_{\text{total}} = Q_1 + Q_2 = 334 \text{ kJ} + 62.8 \text{ kJ} = 397 \text{ kJ}$$

# "We do" Example

#### **Problem**

Ice cubes are used to chill a soda with a mass of 0.250~kg at  $15.0^{\circ}C$ . The ice is at  $0^{\circ}C$ , and the total mass of the ice cubes is 0.020~kg. Assume that the soda is kept in a foam container so that heat loss can be ignored, and that the soda has the same specific heat as water. Find the final temperature when all ice has melted.

### Solution Steps

- Heat lost by soda = Heat gained by ice
- e Heat lost by soda:  $Q_{soda} = m_{soda} c_{water} (T_f T_i)$
- Heat gained by ice:  $Q_{ice} = m_{ice}L_f + m_{ice}c_{water}(T_f 0^{\circ}C)$
- **4** Set  $Q_{\text{soda}} = Q_{\text{ice}}$  and solve for  $T_f$
- **3**  $T_f = 9.03^{\circ} \text{C}$

# "You do" Example

#### Problem

A certain quantity of water is given 4.0 kJ of heat. This raises its temperature by 30.0°F. What is the mass of the water in grams?

#### Hints

- Use the equation  $Q = mc\Delta T$
- Remember to convert temperature change from °F to °C
- The specific heat of water is 4,186 J/(kg·°C)

Take some time to work this out. Then we'll discuss the solution.

# "You do" Example

#### Problem

A certain quantity of water is given 4.0 kJ of heat. This raises its temperature by 30.0°F. What is the mass of the water in grams?

#### Hints

- Use the equation  $Q = mc\Delta T$
- Remember to convert temperature change from °F to °C
- The specific heat of water is 4,186 J/(kg·°C)

Take some time to work this out. Then we'll discuss the solution.

#### **Answer**

The mass of water is 57 g.

### Table of Contents

- Temperature and Thermal Energy
- 2 Heat, Specific Heat, and Heat Transfer
- 3 Phase Change and Latent Heat
- Examples and Applications
- Summary

# **Key Equations**

#### **Temperature Conversions:**

$$T_{\text{F}} = \frac{9}{5}T_{\text{C}} + 32$$

$$T_{\text{C}} = \frac{5}{9}(T_{\text{F}} - 32)$$

$$T_{\text{K}} = T_{\text{C}} + 273.15$$

#### **Heat Transfer:**

$$Q = mc\Delta T$$

$$Q_{\rm melting/freezing} = mL_f$$

$$Q_{\text{vaporization/condensation}} = mL_v$$

# Summary

# Temperature and Thermal Energy

- Temperature relates to average kinetic energy of particles
- Three main scales: Celsius, Fahrenheit, Kelvin
- Absolute zero: no molecular motion

#### Heat, Specific Heat, and Heat Transfer

- Heat is energy transfer due to temperature difference
- ullet  $Q=mc\Delta T$  relates heat, mass, specific heat, and temperature change
- Heat transfer methods: conduction, convection, radiation

### Phase Change and Latent Heat

- Four phases: solid, liquid, gas, plasma
- Phase changes occur at constant temperature
- Heat added during melting/vaporization, released during freezing/condensation

### Thank You!

# Questions?

Remember to review the key equations and concepts for the upcoming quiz!