Group 5 Problems: Application of antiderivatives

- 1. **(Tyler Brown)** For a product, the demand curve is $p=21e^{-0.021}$ and the supply curve is $p=6\sqrt{(q)}+9$ for $0 \le q \le 600$, where q is the quantity and p is the prince in dollars (\$) per unit.
 - a. What is the equilibrium point?
 - b. What is the consumer surplus at the equilibrium point?
 - c. What is the producer surplus at the equilibrium point?
- 5. (Lilly Allen) Use the fundamental theorem to solve the following

a.
$$\int_0^5 \frac{1}{(x-3)^2} dx$$
b.
$$\int_0^1 \sqrt[7]{x^6} dx$$

- 6. (Clarissa McBride) Find the total area between $y=16-x^2$ and $0 \le x \le 6$
- 7. (Alex Flood) Using the antiderivative find the standard area under the curve between the intervals of t=0 and t=5.
 - a. $P=80(0.6)^{t}$
- 8. (Harrison Walker) The growth of a plant, g(t), in mm per day is increasing. $0 \le t \le 12$, where t equals time in days.

Time (days)	0	2	4	6	8	10	12
Growth	32	35	37	39	42	43	44

a. Estimate the total growth of the plant on the first 12 days.

* Consumer/Producer surplus -Tyler Brown -Adam Sheinkin * Using an Antiderivatives for elasticity approximations * Average Value -Brooks Wilson * Using an antiderivative to calculate the amount of work to move -Sam Rothwell an object * Reimann sum -Harrison Walker * Using an antiderivative to find present and future values -Stephen Glenn -Lilly Allen * FTC -Greg Manning * Bounds of a given rate (upper and lower estimates) * Regular Area between 2 graphs -Alex Flood * Total area between two graphs -Clarissa McBride * Antiderivative differentiation through substitution -Warner Watkins * Total change -Jack Goodall