ET0930

SAMPLE SEMESTER EXAMINATION

Diploma in Electrical & Electronic Engineering (DEEE) 3rd Year FT

Instructions to Candidates:

- 1. The Singapore Polytechnic examination rules are to be complied with.
- 2. This paper consists of **TWO** sections:

Section A: 5 short questions, 12 marks each Section B: 2 Long Questions, 20 marks each

- 3. **ALL** questions are **COMPULSORY**.
- 4. All questions are to be answered in the answer booklet. **Start each question on a new page**.
- 5. Fill in the Question Number, in the order that it was answered, in the boxes found on the front cover of the answer booklet under the column "Question Answered".
- 6. This paper consists of **10** pages, including 2 pages of Formula List and 4 pages of Complementary Error Function Table.
- 7. The question paper must be submitted together with the answer booklet at the end of this exam session.

Exam Sample Paper

SECTION A (5 Short Questions, 60 marks)

- A1. A 2 V_{peak}, 15 kHz sinusoidal signal is fed into a frequency modulator with carrier of 200 kHz. The FM signal generated has a peak frequency deviation of 30 kHz.
 - (a) Determine the modulation index. (4 marks)
 - (b) Determine the conversion gain of the FM modulator. (4 marks)
 - (c) Using Carson's rule, find the bandwidth of the FM signal. (4 marks)
- A2. The bandlimited signal f(t) is ideally sampled at 200 samples per second as shown in Figure A2, where f(t) = 100sinc 100t.
 - (a) Sketch the amplitude spectrum of f(t). (4 mark)
 - (b) Sketch the amplitude spectrum of the sampled signal $f_p(t)$ over -300Hz < f < 300Hz. (8 mark)

Figure A2

- A3. A uniform mid-riser 3-bit quantiser has maximum and minimum inputs from +2.8V to -2.8V respectively.
 - (a) Calculate its step size, q. (2 marks)
 - (b) Draw the input-output characteristic of the quantiser. (5 marks)
 - (c) Calculate its signal-to-quantisation noise ratio (in dB). (3 marks)
 - (d) Determine the quantised voltage for a dc input of -1.6 V. (2 marks)

A4. A baseband digital communication system transmits random equiprobable binary signals. The transmission channel is affected by additive white Gaussian noise (AWGN) of rms values of 1 mV. The receiver is a simple comparator circuit. Assume that the line code used is of the form shown in Figure A4.

- (a) Determine the value of the threshold voltage V_T to minimize the probability of bit error. (2 marks)
- (b) Calculate the probability of bit error. (5 marks)
- (c) If 10⁵ bits are transmitted in each block of message, on average how many error bits will be received per block? (3 marks)
- (d) What are the two main causes of signal degradation in the communication channel of a digital communication system? (2 marks)
- A5. A baseband digital communication system transmits logic '1' as S₂(t) and logic '0' as S₁(t) as shown in Figure A5.1. The system uses an Integrate-and-Dump Correlation receiver shown in Figure A5.2.
 - (a) Sketch the waveform at A, B and C for a sequence of 1100. (6 marks)
 - (b) Assume that the input signal to the receiver has an amplitude of 12 mV with a bit rate of of 9000 bits/sec and that the binary bits of the input signal are independent and equiprobable. Calculate the probability of bit error if the single-sided power spectral density of the AWGN channel is 2 x 10⁻⁹ watt/Hz.

 (6 marks)

Figure A5.1

ET0930

(2 marks)

Figure A5.2

SECTION B (2 Long Questions, 40 marks)

- B1. One voice signal, one music signal and a data signal are transmitted by a PCM-TDM system in which 8-bit uniform quantisers is employed. The voice signal is bandlimited to 4 kHz and the music signal is bandlimited to 10 kHz while the data signal is bandlimited to 9 kHz. The system requires synchronisation information.
 - (a) Sketch the PCM-TDM commutator system capable of handling these four signals. Ensure that uniform sampling is achieved. (10 marks)
 - (b) Determine the commutator speed.
 - (c) Calculate the gross output bit rate. (5 marks)
 - (d) Determine the minimum transmission bandwidth required if NRZ format is used. (3 marks)
- B2. Binary data at rate 4 kb/s is transmitted over a passbank channel using BPSK. The carrier amplitude at the receiver is 10 mV, and the double-sided power spectral density of the channel AWGN is 1 nanowatt/Hz.
 - (a) Sketch a clearly labelled diagram of a BPSK transmitter. (4 marks)
 - (b) If the carrier frequency is 8 kHz, draw the BPSK waveform at the transmitter for a bit sequence of 101011. (10 marks)
 - (c) Calculate the bit error rate at the receiver, assuming that an integrate-and-dump correlation receiver is used. (6 marks)

**** End of the Paper ****

ET0930

Formula List

$$P_n = kTB$$
 $E_n = \sqrt{4kTBR}$

Boltzmann's constant, $k = 1.38 \times 10^{-23} \text{ J/K}$

Room Temperature, $T_0 = 290 \text{ K}$

$$F_{t} = F_{1} + \frac{F_{2} - 1}{G_{1}} + \frac{F_{3} - 1}{G_{1}G_{2}} + \frac{F_{4} - 1}{G_{1}G_{2}G_{3}} + \dots + \frac{F_{n} - 1}{G_{1}G_{2}G_{3} \dots G_{(n-1)}}$$

Velocity of light in free space, $c = 3 \times 10^8 \text{ m/s}$

 $\cos A \cos B = \frac{1}{2} \cos(A + B) + \frac{1}{2} \cos(A - B)$

Positive envelope =
$$\left[V_c + v_s(t)\right]$$

Negative envelope =
$$-[V_c + v_s(t)]$$

$$m = \frac{Env_{max} - Env_{min}}{Env_{max} + Env_{min}}$$

$$B_{FM} = 2(m_f + 1)f_s$$
, for integer values of m_f.

$$B_{FM} = 2(m_{f_H} + 1)f_H$$

Component Amplitude:

$$C_n = \frac{A\tau}{T} \operatorname{sinc} \frac{n\tau}{T}$$

FT of impulse train:
$$x(t) = \sum_{n=-\infty}^{\infty} \frac{1}{T} e^{jn\omega_0 t} \Leftrightarrow X(f) = \frac{1}{T} \sum_{n=-\infty}^{\infty} \delta(f - nf_0)$$

Common Fourier Transforms:

 $A \operatorname{sinc} \frac{t}{-}$

 $A\tau \operatorname{rect} t\tau$

Step size for mid-riser quantiser: $\mathbf{q} = 2 X_{\text{max}} / 2^{\text{B}}$

Quantisation noise power: $N_q = \frac{q^2}{12}$

Signal-to-noise ratio (dB) for quantiser:
$$\left[\frac{S}{N_q}\right] = 1.76 + 6B$$
, $\left[\frac{S}{N_q}\right] = 1.76 + 6B + 20log_{10}\frac{V_x}{V}$

Gross output bit rate, $R = \text{commutator speed} \times \text{no. of inputs} \times \text{no. of bits per symbol}$

ET0930

Probability that AWGN exceeds T volts: $P(n > T) = \frac{1}{2} erfc \left[\frac{T}{\sqrt{2}\sigma} \right]$

Probability of bit error for a simple comparator receiver: $P_e = \frac{1}{2} erfc \left[\frac{R}{\sqrt{2}\sigma} \right]$

Noise margin: ISI degradation: Jitter(%):

$$\frac{V_{\min}}{V_{\max}} \times 100\%$$

$$20 \log_{10} \left(\frac{V_{\max}}{V_{\min}}\right) dB$$

$$\frac{\Delta T}{T} \times 100\%$$

Impulse response of a matched filter: $h(t) = s_2(T_b - t) - s_1(T_b - t)$

Probability of bit error for matched filter receiver: $P_e = \frac{1}{2} erfc(\frac{\gamma}{2\sqrt{2}})$

where
$$\gamma^2=\frac{2}{\eta}\int_0^{T_b}[s_2(t)-s_1(t)]^2dt$$

Probability of bit error for matched filter receiver with polar NRZ inputs: $P_e = \frac{1}{2} erfc \left[\sqrt{\frac{V^2 T_b}{\eta}} \right]$

Probability of bit error for BPSK: $P_e = \frac{1}{2} erfc \left[\sqrt{\frac{V^2 T_b}{2\eta}} \right]$

Probability of bit error for DPSK: $P_e = \frac{1}{2} exp \left[\frac{-V^2 T_b}{2\eta} \right] = e^{-\left(\frac{V^2 T_b}{2\eta} \right)}$

Table			Complementar	y Erro	or Function		
<u>Z</u>	erfc(Z)	<u>Z</u>	erfc(Z)	<u>Z</u>	erfc(Z)	Z	erfc(Z)
0.00	1.000000	0.40	0.571608	0.80	0.257899	1.20	0.896860D-01
0.01	0.988717	0.41	0.562031	0.81	0.251997	1.21	0.870445D-01
0.02	0.977435	0.42	0.552532	0.82	0.246189	1.22	0.844661D-01
0.03	0.966159	0.43	0.543113	0.83	0.240476	1.23	0.819499D-01
0.04	0.954889	0.44	0.533775	0.84	0.234857	1.24	0.794948D-01
0.05	0.943628	0.45	0.524518	0.85	0.229332	1.25	0.770999D-01
0.06	0.932378	0.46	0.515345	0.86	0.223900	1.26	0.747540D-01
0.07	0.921142	0.47	0.506255	0.87	0.218560	1.27	0.724864D-01
0.08	0.909922	0.48	0.497250	0.88	0.213313	1.28	0.702658D-01
0.09	0.898719	0.49	0.488332	0.89	0.208157	1.29	0.681014D-01
0.10	0.887537	0.50	0.479500	0.90	0.203092	1.30	0.659920D-01
0.11	0.876377	0.51	0.470756	0.91	0.198117	1.31	0.639369D-01
0.12	0.865242	0.52	0.462101	0.92	0.193232	1.32	0.619348D-01
0.13	0.854133	0.53	0.453536	0.93	0.188436	1.33	0.599850D-01
0.14	0.843053	0.54	0.445061	0.94	0.183729	1.34	0.580863D-01
0.15	0.832004	0.55	0.436677	0.95	0.179109	1.35	0.562378D-01
0.16	0.820988	0.56	0.428384	0.96	0.174576	1.36	0.544386D-01
0.17	0.810008	0.57	0.420184	0.97	0.170130	1.37	0.526876D-01
0.18	0.799064	0.58	0.412077	0.98	0.165768	1.38	0.509840D-01
0.19	0.788160	0.59	0.404063	0.99	0.161492	1.39	0.493267D-01
0.20	0.777297	0.60	0.396144	1.00	0.157299	1.40	0.477149D-01
0.21	0.766478	0.61	0.388319	1.01	0.153190	1.41	0.461476D-01
0.22	0.755704	0.62	0.380589	1.02	0.149162	1.42	0.446238D-01
0.23	0.744977	0.63	0.372954	1.03	0.145216	1.43	0.431427D-01
0.24	0.7343	0.64	0.365414	1.04	0.141350	1.44	0.417034D-01
0.25	0.723674	0.65	0.357971	1.05	0.137564	1.45	0.403050D-01
0.26	0.7131	0.66	0.350623	1.06	0.133856	1.46	0.389465D-01
0.27	0.702582	0.67	0.343372	1.07		1.47	
0.28	0.69212	0.68	0.336218	1.08	0.126674	1.48	0.363459D-01
0.29	0.681716	0.69	0.32916	1.09	0.123197	1.49	0.351021D-01
0.30	0.671373	0.70	0.322199	1.10	0.119795	1.50	0.338949D-01
0.31	0.661092	0.71	0.315334	1.11	0.116467	1.51	0.327233D-01
0.32	0.650874	0.72	0.308567	1.12	0.113212	1.52	0.315865D-01
0.33	0.640721	0.73	0.301896	1.13	0.110029	1.53	0.304838D-01
0.34	0.630635	0.74	0.295322	1.13	0.106918	1.54	0.294143D-01
0.35	0.620618	0.75	0.288844	1.15	0.103316	1.55	0.283773D-01
0.36	0.610670	0.76	0.282463	1.15	0.103870	1.56	0.273719D-01
0.30	0.600794	0.70	0.276178	1.17	0.100904 0.979996D-01	1.57	0.263974D-01
0.37	0.590990	0.77	0.26999	1.17	0.951626D-01	1.58	0.254530D-01
0.38	0.581261	0.78	0.263897	1.19	0.923917D-01	1.59	0.245380D-01
0.33	0.301201	0./9	0.20307/	1.17	0.74371/ D- 01	1.37	0.2 1 3300 D- 01

Exam Sample Paper Page 7 of 10

(cont'd)

Table		Co	mplementary E1	ror Fu	nction		
<u>Z</u>	erfc(Z)	<u>Z</u>	erfc(Z)	<u>Z</u>	erfc(Z)	<u>Z</u>	erfc(Z)
1.60	0.236516D-01	2.00	0.467773D-02	2.40	0.688514D-03	2.80	0.750132D-0
1.61	0.227932D-01	2.01	0.447515D-02	2.41	0.653798D-03	2.81	0.706933D-0
1.62	0.219619D-01	2.02	0.428055D-02	2.42	0.620716D-03	2.82	0.666096D-0
1.63	0.211572D-01	2.03	0.400365D-02	2.43	0.589197D-03	2.83	0.627497D-0
1.64	0.203782D-01	2.04	0.391419D-02	2.44	0.559174D-03	2.84	0.591023D-0
1.65	0.196244D-01	2.05	0.374190D-02	2.45	0.530580D-03	2.85	0.556563D-0
1.66	0.188951D-01	2.06	0.357654D-02	2.46	0.503353D-03	2.86	0.524012D-0
1.67	0.181896D-01	2.07	0.341785D-02	2.47	0.477434D-03	2.87	0.493270D-0
1.68	0.175072D-01	2.08	0.326559D-02	2.48	0.452764D-03	2.88	0.464244D-0
1.69	0.168474D-01	2.09	0.311954D-02	2.49	0.429288D-03	2.89	0.436842D-04
1.70	0.162095D-01	2.10	0.297947D-02	2.50	0.406952D-03	2.90	0.410979D-0
1.71	0.155930D-01	2.11	0.284515D-02	2.51	0.365705D-03	2.91	0.386573D-0
1.72	0.149972D-01	2.12	0.271639D-02	2.52	0.365499D-03	2.92	0.363547D-0
1.73	0.144215D-01	2.13	0.259298D-02	2.53	0.346286D-03	2.93	0.341828D-0
1.74	0.138654D-01	2.14	0.247471D-02	2.54	0.328021D-03	2.94	0.321344D-0
1.75	0.133283D-01	2.15	0.236139D-02	2.55	0.310660D-03	2.95	0.302030D-0
1.76	0.128097D-01	2.16	0.225285D-02	2.56	0.294163D-03	2.96	0.283823D-0
1.77	0.123091D-01	2.17	0.214889D-02	2.57	0.278489D-03	2.97	0.266662D-0
1.78	0.118258D-01	2.18	0.204935D-02	2.58	0.263600D-03	2.98	0.250491D-0
1.79	0.113594D-01	2.19	0.195406D-02	2.59	0.249461D-03	2.99	0.235256D-04
1.80	0.109095D-01	2.20	0.186285D-02	2.60	0.236034D-03	3.00	0.220905D-04
1.81	0.104755D-01	2.21	0.177556D-02	2.61	0.223289D-03	3.01	0.207390D-0
1.82	0.100568D-01	2.22	0.169205D-02	2.62	0.211191D-03	3.02	0.194664D-0
1.83	0,965319D-02	2.23	0.161217D-02	2.63	0.199711D-03	3.03	0.182684D-0
1.84	0.926405D-02	2.24	0.153577D-02	2.64	0.188819D-03	3.04	0.171400D-0
1.85	0.888897D-02	2.25	0.146272D-02	2.65	0.178488D-03	3.05	0.160798D-0
1.86	0.852751D-02	2.26	0.139288D-02	2.66	0.168689D-03	3.06	0.150816D-0
1.87	0.817925D-02	2.27	0.132613D-02	2.67	0.159399D-03	3.07	0.141426D-0
1.88	0.784378D-02	2.28	0.126234D-02	2.68	0.150591D-03	3.08	0.132595D-0
1.89	0.752068D-02	2.29	0.120139D-02	2.69	0.142243D-03	3.09	0.124292D-0
1.90	0.720957D-02	2.30	0.114318D-02	2.70	0.134333D-03	3.10	0.116487D-0
1.91	0.691006D-02	2.31	0.108758D-02	2.71	0.126838D-03	3.11	0.109150D-0
1.92	0.662177D-02	2.32	0.102449D-02	2.72	0.119738D-03	3.12	0.102256D-0
1.93	0.634435D-02	2.33	0.983805D-03	2.73	0.113015D-03	3.13	0.957795D-0
1.94	0.607743D-02	2.34	0.935430D-03	2.74	0.106649D-03	3.14	0.896956D-0
1.95	0.582066D-02	2.35	0.889267D-03	2.75	0.100622D-03	3.15	0.839821D-0
1.96	0.557372D-02	2.36	0.845223D-03	2.76	0.949176D-04	3.16	0.786174D-0
1.97	0.533627D-02	2.37	0.803210D-03	2.77	0.895197D-04	3.17	0.735813D-0
1.98	0.510800D-02	2.38	0.763142D-03	2.78	0.844127D-04	3.18	0.688545D-0
1.99	0.488859D-02	2.39	0.724936D-03	2.79	0.795818D-04	3.19	0.644190D-0

Exam Sample Paper Page 8 of 10

(cont'd)

Table		C	omplementary E	rror Fu	ınction		
<u>Z</u>	erfc(Z)	<u>Z</u>	erfc(Z)	<u>Z</u>	erfc(Z)	Z	erfc(Z)
3.20	0.602576D-05	3.60	0.355863D-06	4.00	0.154173D-07	4.40	0.489171D-0
3.21	0.563542D-05	3.61	0.330251D-06	4.01	0.141969D-07	4.41	0.446950D-09
3.22	0.526935D-05	3.62	0.306423D-06	4.02	0.130707D-07	4.42	0.408293D-09
3.23	0.492612D-05	3.63	0.284259D-06	4.03	0.120314D-07	4.43	0.372906D-0
3.24	0.460435D-05	3.64	0.263647D-06	4.04	0.110726D-07	4.44	0.340520D-09
3.25	0.430278D-05	3.65	0.244483D-06	4.05	0.101882D-07	4.45	0.310886D-0
3.26	0.402018D-05	3.66	0.226667D-06	4.06	0.937269D-08	4.46	0.283775D-0
3.27	0.375542D-05	3.67	0.210109D-06	4.07	0.862073D-08	4.47	0.258978D-0
3.28	0.350742D-05	3.68	0.194723D-06	4.08	0.792756D-08	4.48	0.236302D-09
3.29	0.327517D-05	3.69	0.180429D-06	4.09	0.728870D-08	4.49	0.215568D-09
3.30	0.305771D-05	3.70	0.167151D-06	4.10	0.670003D-08	4.50	0.196616D-09
3.31	0.285414D-05	3.71	0.154821D-06	4.11	0.615769D-08	4.51	0.179295D-09
3.32	0.266360D-05	3.72	0.143372D-06	4.12	0.565816D-08	4.52	0.163467D-0
3.33	0.248531D-05	3.73	0.132744D-06	4.13	0.519813D-08	4.53	0.149008D-0
3.34	0.231850D-05	3.74	0.122880D-06	4.14	0.477457D-08	4.54	0.135801D-0
3.35	0.216248D-05	3.75	0.113727D-06	4.15	0.438468D-08	4.55	0.123740D-0
3.36	0.201656D-05	3.76	0.105236D-06	4.16	0.402583D-08	4.56	0.112729D-0
3.37	0.188013D-05	3.77	0.973591D-07	4.17	0.369564D-08	4.57	0.102677D-0
3.38	0.175259D-05	3.78	0.900547D-07	4.18	0.339186D-08	4.58	0.935034D-1
3.39	0.163338D-05	3.79	0.832821D-07	4.19	0.311245D-08	4.59	0.851326D-1
3.40	0.152199D-05	3.80	0.770039D-07	4.20	0.285549D-08	4.60	0.774960D-10
3.41	0.141793D-05	3.81	0.711851D-07	4.21	0.261924D-08	4.61	0.705306D-1
3.42	0.132072D-05	3.82	0.657933D-07	4.22	0.240207D-08	4.62	0.641787D-1
3.43	0.1229940-05	3.83	0.607981D-07	4.23	0.220247D-08	4.63	0.583874D-1
3.44	0.114518D-05	3.84	0.561711D-07	4.24	0.201907D-08	4.64	0.531083D-1
3.45	0.106605D-05	3.85	0.518863D-07	4.25	0.185057D-08	4.65	0.482970D-1
3.46	0.992201D-06	3.86	0.4791890-07	4.26	0.169581D-08	4.66	0.439130D-1
3.47	0.923288D-06	3.87	0.442464D-07	4.27	0.155369D-08	4.67	0.399191D-1
3.48	0.8589950-06	3.88	0.408473D-07	4.28	0.142319D-08	4.68	0.362814D-1
3.49	0.799025D-06	3.89	0.377021D-07	4.29	0.130341D-08	4.69	0.329687D-10
3.50	0.743098D-06	3.90	0.347922D-07	4.30	0.119347D-08	4.70	0.299526D-10
3.51	0.690952D-06	3.91	0.321007D-07	4.31	0.109259D-08	4.71	0.272071D-1
3.52	0.642341D-06	3.92	0.296117D-07	4.32	0.100005D-08	4.72	0.247084D-1
3.53	0.597035D-06	3.93	0.273103D-07	4.33	0.915161D-09	4.73	0.224348D-1
3.54	0.554816D-06	3.94	0.251829D-07	4.34	0.837317D-09	4.74	0.203664D-1
3.55	0.515484D-06	3.95	0.232167D-07	4.35	0.765944D-09	4.75	0.184850D-1
3.56	0.478847D-06	3.96	0.213999D-07	4.36	0.700518D-09	4.76	0.167742D-1
3.57	0.444728D-06	3.97	0.197214D-07	4.37	0.640556D-09	4.77	0.152187D-1
3.58	0.412960D-06	3.98	0.181710D-07	4.38	0.585612D-09	4.78	0.138048D-10
3.59	0.383387D-06	3.99	0.167392D-07	4.39	0.535276D-09	4.79	0.125198D-10

Exam Sample Paper Page 9 of 10

ET0930

(cont'd)

Table	•	Co	mplementary E	rror Fu	nction		
<u>Z</u>	erfc(Z)	<u>Z</u>	erfc(Z)	<u>Z</u>	erfc(Z)	<u>Z</u>	erfc(Z)
4.80	0.113521D-10	5.10	0.549382D-12	5.40	0.222766D-13	5.70	0.756621D-15
4.81	0.102914D-10	5.11	0.495122D-12	5.41	0.199585D-13	5.71	0.673885D-15
4.82	0.932791D-11	5.12	0.446133D-12	5.42	0.178779D-13	5.72	0.600078D-15
4.83	0.845298D-11	5.13	0.401912D-12	5.43	0.160110D-13	5.73	0.534249D-15
4.84	0.765861D-11	5.14	0.362004D-12	5.44	0.143363D-13	5.74	0.475548D-15
4.85	0.693754D-11	5.15	0.325994D-12	5.45	0.128342D-13	5.75	0.423213D-15
4.86	0.628312D-11	5.16	0.293508D-12	5.46	0.114873D-13	5.76	0.376564D-15
4.87	0.568932D-11	5.17	0.264208D-12	5.47	0.102797D-13	5.77	0.334990D-15
4.88	0.515062D-11	5.18	0.237786D-12	5.48	0.919719D-14	5.78	0.297948D-15
4.89	0.466202D-11	5.19	0.213964D-12	5.49	0.822708D-14	5.79	0.264949D-15
4.90	0.421893D-11	5.20	0.192491D-12	5.50	0.735785D-14	5.80	0.235559D-15
4.91	0.381721D-11	5.21	0.173138D-12	5.51	0.657916D-14	5.81	0.209387D-15
4.92	0.345307D-11	5.22	0.155701D-12	5.52	0.588172D-14	5.82	0.186087D-15
4.93	0.312304D-11	5.23	0.139992D-12	5.53	0.525717D-14	5.83	0.165347D-15
4.94	0.282401D-11	5.24	0.125844D-12	5.54	0.469802D-14	5.84	0.146889D-15
4.95	0.255311D-11	5.25	0.113103D-12	5.55	0.419751D-14	5.85	0.130466D-15
4.96	0.230774D-11	5.26	0.101632D-12	5.56	0.374959D-14	5.86	0.115856D-15
4.97	0.208554D-11	5.27	0.913067D-13	5.57	0.334880D-14	5.87	0.102862D-15
4.98	0.188437D-11	5.28	0.820141D-13	5.58	0.299027D-14	5.88	0.913078D-16
4.99	0.170226D-11	5.29	0.736527D-13	5.59	0.266959D-14	5.89	0.810352D-16
5.00	0.153746D-11	5.30	0.661308D-13	5.60	0.238284D-14	5.90	0.719040D-16
5.01	0.138834D-11	5.31	0.593654D-13	5.61	0.212646D-14	5.91	0.637892D-16
5.02	0.125343D-11	5.32	0.532816D-13	5.62	0.189730D-14	5.92	0.565791D-16
5.03	0.113141D-11	5.33	0.478119D-13	5.63	0.169250D-14	5.93	0.501740D-16
5.04	0.102107D-11	5.34	0.428952D-13	5.64	0.150951D-14	5.94	0.444852D-16
5.05	0.921310D-12	5.35	0.384766D-13	5.65	0.134604D-14	5.95	0.394336D-16
5.06	0.831132D-12	5.36	0.345063D-13	5.66	0.120003D-14	5.96	0.349488D-16
5.07	0.749634D-12	5.37	0.309396D-13	5.67	0.106965D-14	5.97	0.309679D-16
5.08	0.675994D-12	5.38	0.277362D-13	5.68	0.953249D-15	5.98	0.274350D-16
5.09	0.609469D-12	5.39	0.248595D-13	5.69	0.849347D-15	5.99	0.243004D-16

Exam Sample Paper Page 10 of 10