

UNIVERSIDADE FEDERAL DA BAHIA (UFBA)

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

DISCIPLINA: MATA02 - CÁLCULO A

UNIDADE I - LISTA DE EXERCÍCIOS

Matemática básica

- (1) Calcule a média aritmética, o m.m.c. e o m.d.c. dos números 36, 40 e 56.
- (2) Qual é a metade de 2^{2019} ?
- (3) Verdadeiro ou falso?

(a)
$$2^3 + 2^2 = 2^5$$

(d)
$$\sqrt[3]{\sqrt[4]{7}} = \sqrt[7]{7}$$

(g)
$$\sqrt{a+b} = \sqrt{a} + \sqrt{b}$$

(b)
$$(4^3)^2 \neq 4^9$$

(e)
$$\sqrt{\sqrt{10}} = \sqrt[4]{10}$$

(h)
$$(a-b)^2 = a^2 - b^2$$

(c)
$$(4^3)^2 = (4^2)^3$$

(f)
$$(a+b)^2 = a^2 + 2ab + b$$

(f)
$$(a+b)^2 = a^2 + 2ab + b^2$$
 (i) $\frac{a}{a+b} = \frac{a}{a} + \frac{a}{b}$.

(4) Simplifique as seguintes expressões numéricas:

(a)
$$\left[2^9 \div \left(2^2 \cdot 2\right)^3\right]^{-3} \cdot (0,2)^2$$

$$(g) \ \sqrt{1+\sqrt{5}} \cdot \sqrt{\sqrt{5}-1}$$

(b)
$$\frac{6 \cdot 10^{-3} \cdot 3 \cdot 10^{-4} \cdot 10^{8}}{6 \cdot 10^{-1} \cdot 10^{4}}$$

(h)
$$(x-y)^2 - (x+y)^2$$

(c)
$$\sqrt[3]{8^{-2}} + \sqrt{9}$$

(i)
$$\left(\frac{2}{3}\right)^{-2} - \left(\frac{1}{2}\right)^{-1} + \left(-\frac{1}{4}\right)^{-2}$$

(d)
$$\sqrt{8} - \sqrt{18} + 2\sqrt{2}$$

(j)
$$16^{0.5} + 8^{-\frac{1}{3}} + \left(\frac{1}{32}\right)^{-0.2} - (0.25)^2$$

(e)
$$\frac{a^{-1/9} \cdot (a^{-1/3})^2}{-a^2} \div \left(-\frac{1}{a}\right)^2$$
, para $a \neq 0$

(k)
$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}}$$
.

(f)
$$(\sqrt{2} + \sqrt{3})^2 + \frac{1}{5 + 2\sqrt{6}}$$

(5) Resolva as seguintes equações:

(a)
$$2 - 5x = 17$$

(b)
$$\frac{2-1/3}{1+1/4} = \frac{x}{1+2/5}$$

(c)
$$x^2 - 10x + 25 = 0$$

(d)
$$1 - \frac{1}{1-x} = \frac{1}{1-x}$$

(e)
$$\frac{2-3x}{x+2} = 0$$

(f)
$$\frac{2(x+1)}{3} - \frac{3(x+2)}{4} = \frac{x+1}{6}$$

(g)
$$(4x-3)(x+1) = 0$$

(h)
$$\frac{\frac{1}{x} - \left(\frac{1}{6x} - \frac{1}{3x}\right)}{\left(\frac{1}{6x} + \frac{1}{2x}\right)^2 + \frac{3}{2x}} = 1.$$

(6) Resolva as seguintes equações:

(a)
$$-2x^2 + 3x + 3 = -2$$

(c)
$$x^4 - 8x^2 + 16 = 0$$

(b)
$$(x-1)(1+x)(4-2x) = 0$$

(d)
$$70 = \frac{x}{1,2} + \frac{3x}{(1,2)^2}$$
.

(7) Encontre a solução dos seguintes sistemas de equações:

(a)
$$\begin{cases} x - y = 2 \\ 2x + y = 1 \end{cases}$$

(b)
$$\begin{cases} 3x + y = 1 \\ 2x + 2y = 1 \end{cases}$$

(8) Simplifique as expressões:

(a)
$$\frac{a+b}{\frac{1}{a}+\frac{1}{b}}$$
, (b) $\frac{a^2+2ab+b^2}{a^2-b^2} \div \frac{a-b}{a+b}$ e (c) $\frac{\frac{m}{m+n}+\frac{n}{m-n}}{\left(\frac{n}{m+n}-\frac{m}{m-n}\right)} + \frac{1+\frac{m}{n}}{1+\frac{(m-n)^2}{4mn}} \cdot \left(1+\frac{n}{m}\right)$.

Revisão: números reais, módulos e inequações

(1) Decida se as afirmações abaixo são verdadeiras ou falsas. Justifique suas respostas!

(a)
$$\sqrt{4} = \pm 2$$
;

(b)
$$\sqrt{x^2} = x$$
, para todo $x \in \mathbb{R}$;

(c)
$$\sqrt{36} + \sqrt{64} = \sqrt{36 + 64}$$
;

(d)
$$3 < \frac{1}{x} \iff x < \frac{1}{3}$$
, para $x \neq 0$;

(e)
$$a \le b \implies a^2 \le b^2$$
, para a, b rea
is quaisquer;

(f) Sejam
$$a \in \mathbb{Q}$$
 e $b \in \mathbb{R} \setminus \mathbb{Q}$. Então $a \cdot b \in \mathbb{R} \setminus \mathbb{Q}$;

(g)
$$|a+b| = |a| + |b|$$
, $\forall a, b \in \mathbb{R}$;

(h) Se
$$x < y$$
, então $|x - y| = x - y$;

(i) Para
$$0 < a < b$$
, vale $0 < \sqrt{ab} < \frac{a+b}{2} < b$.

(2) Resolva as seguintes inequações:

(a)
$$-5x + 2 \le 3x + 8$$

(e)
$$\frac{x^2 - x + 2}{x^2 + 4x} \ge 0$$

(b)
$$(-5x+2)(x-2) \le (3x+8)(x-2)$$

(f)
$$\frac{x-2}{x-3} \le x-1$$

(c)
$$\frac{(x-3)(x+2)}{x} < 1$$

(g)
$$x^4 - 3x^2 + 2 > x^2 - 1$$

(d)
$$\frac{x}{x+1} - \frac{x}{x-1} \ge 0$$

(h)
$$(4x+7)^{18}(2x+8) < 0$$
.

(3) O que está errado na seguinte demonstração?

Seja
$$x = y \implies x^2 = xy \implies x^2 - y^2 = xy - y^2$$

 $\implies (x + y)(x - y) = y(x - y)$
 $\implies x + y = y$
 $\implies 2y = y \implies 2 = 1.$

- (4) Mostre que $\sqrt{6} \notin \mathbb{Q}$. Em seguida, prove que $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}$.
- (5) Resolva as seguintes inequações modulares:

(a)
$$|x-1| - |x+2| \ge 5$$

(b)
$$|x+2| \cdot |x-1| > 3$$

(c)
$$|x^2 - 3x| > 2|x| + 1$$

(d)
$$|2x^2 - 1| < 1$$

(e)
$$3|x-1| + |2x-7| < -|x-1|$$

(f)
$$|(-x)^2 - 2|x| + 2| \le 1$$

$$(g) \left| \frac{2x+1}{x-1} \right| < \frac{1}{2}$$

$$(h) \left| 4 + \frac{1}{x} \right| < 6$$

(i)
$$\frac{|x-3|}{x-2} \le |x-1|$$
.

Funções reais de uma variável real

- (1) Calcule $g(0), g(2), g(\sqrt{2})$ e o domínio de g, onde $g(x) = \frac{x}{x^2 1}$.
- (2) Simplifique a expressão $\frac{f(a+b)-f(a-b)}{ab}$, sendo $f(x)=x^2$ e $ab\neq 0$.
- (3) Considere a função $f(x) = \frac{x-5}{2-x}$.
 - (a) Dê o domínio de f, esboce o gráfico de f e encontre a imagem de f;
 - (b) Determine os valores de x para os quais $f(x) \ge 2$.
- (4) Encontre o domínio das seguintes funções:

(a)
$$a(x) = \sqrt{\frac{1}{x} + \frac{1}{x-1}}$$

(c)
$$c(x) = \frac{|x-2|}{|x-3|-|x-5|}$$

(b)
$$b(x) = \sqrt{-3 - |x+1|}$$

(d)
$$d(x) = \frac{1}{x+1} - \sqrt{-x}$$
.

(5) Esboce o gráfico das seguintes funções:

(a)
$$f(x) = x - |x|$$

(c)
$$g(x) = \frac{x^3 + 3x^2 + 2x + 6}{x + 3}$$

(b)
$$h(x) = \begin{cases} 10 - 2x, & \text{se } x > 3\\ (x - 2)^2, & \text{se } x \le 3 \end{cases}$$

(d)
$$l(x) = \frac{|x|}{x}$$
.

(6) Sejam $f(x) = \frac{x^2 - 9}{x - 3}$ e g(x) = x + 3. Podemos dizer que f = g? Explique!

(7) Seja f uma função cujo gráfico está esboçado na figura abaixo. A partir deste, esboce os gráficos das funções: g(x) = |f(x)|, h(x) = f(|x|), j(x) = f(x-1) e k(x) = f(x) - 1.

(8) Quais das seguintes funções são pares? E ímpares?

(a)
$$a(x) = (x-1)^2$$

(b)
$$b(x) = x|x|$$

(c)
$$c(x) = \sqrt{3x^4 + 2x^2}$$
.

(9) Determine se o conjunto dado é o gráfico de uma função:

(a)
$$A = \{(x, y) \in \mathbb{R}^2 ; y = x^2 \}$$

(c)
$$C = \{(x, y) \in \mathbb{R}^2 ; x^2 + y^2 = 1\}$$

(b)
$$B = \{(x, y) \in \mathbb{R}^2 ; y^2 = x\}$$

(d)
$$D = \{(x, y) \in \mathbb{R}^2 ; x^2 + y^2 = 1 e y \ge 0\}.$$

- (10) Seja $f: A \longrightarrow [-8, 1[$ dada por $f(x) = \frac{3+2x}{2-x}$. Determine o conjunto A.
- (11) Verifique que $\text{Im}(f) \subset D_g$ e determine a composta h(x) = g(f(x)) nos seguintes casos:

(a)
$$g(x) = 3x + 1 e f(x) = x + 2$$

(b)
$$f(x) = 2 + x^2 e g(x) = \sqrt{x}$$

(c)
$$f(x) = x^2 + 3 e g(x) = \frac{x+1}{x-2}$$
.

(12) O gráfico de y=f(x) é dado abaixo. Associe cada equação com o seu gráfico e dê razões para suas escolhas:

(b)
$$y = f(x) + 3$$

(c)
$$y = f(x)/3$$

(d)
$$y = -f(x+4)$$

(e)
$$y = 2f(x+6)$$
.

- (13) Determine f de modo que g(f(x)) = x, $\forall x \in D_f$, sendo g dada por $g(x) = \frac{x+2}{x+1}$.
- (14) Estudos recentes indicam que a temperatura média da superfície da Terra vem aumentando continuamente. Alguns cientistas modelaram a temperatura pela função linear T = 0.02t + 8.50 em que T é a temperatura em graus Celsius (${}^{\circ}C$) e t representa o número de anos desde 1900.
 - (a) Use a equação para prever a temperatura média global em 2100.
 - (b) Segundo este modelo, em qual ano a temperatura média global será de 15,5°C?
- (15) Encontre as funções $f \circ g$, $g \circ f$, $g \circ g$ e $f \circ f \circ f$, sendo f(x) = 1/x e $g(x) = x^3 + 2x$.
- (16) Determine o valor de a para que as retas dadas sejam paralelas:

 - (a) y = ax e y = 3x 1 (b) 2x + y = 1 e y = |a|x + 2 (c) x + ay = 0 e y = 3x + 2.
- (17) Expresse a área de um triângulo equilátero em função do lado.
- (18) Seja d a distância de (0,0) a (x,y). Expresse d como função de x, sabendo que (x,y) é um ponto do gráfico de $y = \frac{1}{x}$.

Limites e continuidade: noções intuitiva e formal, e suas propriedades

(1) Considere uma função f cujo gráfico é dado por:

Estime as informações pedidas:

- (a) $\lim_{x \to -\infty} f(x)$ (c) f(-2) (e) $\lim_{x \to 1^+} f(x)$ (g) f(1) (i) f(4) (b) $\lim_{x \to -2} f(x)$ (d) $\lim_{x \to 1^-} f(x)$ (f) $\lim_{x \to 1} f(x)$ (h) $\lim_{x \to 4} f(x)$ (j) $\lim_{x \to \infty} f(x)$.

(2) Explique com suas palavras o que significa

$$\lim_{x \to 2} f(x) = 5.$$

Podemos concluir que f(2) = 5? Além disso, é possível afirmarmos que f(2) = 3?

(3) Explique o significado de

$$\lim_{x \to 1^{-}} f(x) = 2 \quad \text{e} \quad \lim_{x \to 1^{+}} f(x) = 5.$$

O que você pode dizer sobre o limite de f(x) quando x tende a 1?

(4) Demonstre, pela definição, os seguintes limites:

(a)
$$\lim_{x \to 2} (4x - 3) = 5$$
 (b) $\lim_{x \to 2} x^2 = 4$

(b)
$$\lim_{x \to 2} x^2 = 4$$

(c)
$$\lim_{x \to 0} |x| = 0$$
.

(5) Prove que a reta é contínua, ou seja, dados $a, b \in \mathbb{R}$, a função f(x) = ax + b é contínua.

(6) Seja f uma função definida em \mathbb{R} e tal que $|f(x)-3|\leq 2|x-1|,\ \forall\ x\in\mathbb{R}$. Calcule $\lim_{x\to 1}f(x)$.

(7) Prove que a função modular é contínua em toda a reta, ou seja, $\lim_{x\to a} |x| = |a|, \ \forall \ a\in \mathbb{R}.$

(8) Calcule, se existir, o valor de $\lim_{x\to 1} \frac{f(x)-f(1)}{x-1}$, sendo a função f dada por

$$f(x) = \begin{cases} \sqrt{x}, & \text{se } x \ge 1\\ x^2, & \text{se } x < 1 \end{cases}.$$

Em seguida, esboce o gráfico de f e determine o conjunto dos pontos onde f é contínua.

(9) Determine, se existir, os seguintes limites:

(a)
$$\lim_{x \to -1} (-x^2 - 2x + 3)$$

(a)
$$\lim_{x \to -1} (-x^2 - 2x + 3)$$
 (j) $\lim_{x \to -9} (\sqrt{-x} - x - 10)$

(b)
$$\lim_{x\to 2} \sqrt{7}$$

(k)
$$\lim_{x \to 2^-} \frac{x^2 - 2x}{x^2 - 4x + 4}$$

$$\int_{1}^{2} \left(\frac{1}{x-1} + \frac{3}{1-x^{3}} \right)$$

(t)
$$\lim_{t \to 0} \frac{\sqrt{2-t} - \sqrt{2}}{t}$$

(d)
$$\lim_{x \to 3} \frac{3x - 9}{x - 3}$$

(m)
$$\lim_{x \to 1} \frac{x + \sqrt{x} - 2}{x^3 - 1}$$

(u)
$$\lim_{x \to a} \frac{(\sqrt{x} - \sqrt{a})^2}{x - a}$$

(e)
$$\lim_{x \to 4} \frac{x - 4}{\sqrt{x} - \sqrt{2}}$$

(n)
$$\lim_{x \to 1} \frac{x^2 - 1}{|x - 1|}$$

(v)
$$\lim_{x \to 2} \frac{\frac{1}{x} - \frac{1}{2}}{x - 2}$$

(f)
$$\lim_{a \to -2} \sqrt{a(a-1)}$$

(o)
$$\lim_{h \to 0} \frac{(4+h)^2 - 16}{h}$$

(w)
$$\lim_{x \to 1} \frac{\sqrt{x} - x^2}{1 - \sqrt{x}}$$

(g)
$$\lim_{x \to -3} \frac{\sqrt{x^2 + 16 - 5}}{x^2 + 3x}$$

$$\text{(p)} \quad \lim_{x \to 9} \ \frac{x\sqrt{x}}{x^2 - 1}$$

(x)
$$\lim_{x \to 2} \left| \frac{x^2 - 4}{2 - x} \right|$$

(h)
$$\lim_{x \to 1} \frac{x^4 - x^3 - x^2 + 1}{x^2 + x - 2}$$

(q)
$$\lim_{\lambda \to 3} \frac{1 - \sqrt{1 + \lambda}}{\sqrt{\lambda - 1} - \lambda}$$

(y)
$$\lim_{x \to 3} \frac{\sqrt{(x-3)^2}}{x-3}$$

(i)
$$\lim_{x \to 1^{-}} \frac{|x-1|}{x-1}$$

(r)
$$\lim_{x \to 0} \frac{\sqrt{2+3x} - \sqrt{x+2x}}{x+3x^2}$$

(10) Obtenha o conjunto dos pontos de continuidade das seguintes funções:

(a)
$$f(x) = \begin{cases} 2x, & \text{se } x \le 1 \\ 1, & \text{se } x > 1 \end{cases}$$
 (b) $g(x) = \begin{cases} x, & \text{se } x < 0 \\ x^2, & \text{se } 0 \le x \le 2 \\ 8 - x, & \text{se } x > 2 \end{cases}$

(11) Verifique se $\exists \lambda \in \mathbb{R}$ tal que a função seja contínua no ponto p:

(a)
$$f(x) = \begin{cases} \frac{|x|}{x}, & \text{se } x \neq 0 \\ \lambda, & \text{se } x = 0 \end{cases}$$
, $p = 0$ (b) $f(x) = \begin{cases} \frac{x^3 - 8}{x - 2}, & x \neq 2 \\ \lambda, & x = 2 \end{cases}$, $p = 2$.

- (12) Dê exemplo de uma função definida em \mathbb{R} e que seja contínua em $\mathbb{R} \setminus \{-1,0,1\}$.
- (13) Existe um número $a \in \mathbb{R}$ tal que $\lim_{x \to -2} \frac{3x^2 + ax + a + 3}{x^2 + x 2}$ exista? Caso afirmativo, encontre a e o valor do limite.
- (14) Considere a função $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por:

$$f(x) = \begin{cases} \frac{x^2 - 3x + 2}{x - 1}, & \text{se } x \neq 1 \\ 0, & \text{se } x = 1 \end{cases}.$$

Verifique que $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^-} f(x)$. Pergunta-se: f é contínua em x=1? Por que?

- (15) Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ uma função satisfazendo $\lim_{x\to 0} \frac{f(x)}{x} = 1$.
 - (a) Calcule o valor de $\lim_{x\to 0} f(x)$;
 - (b) O seguinte cálculo está correto? Justifique!

$$\lim_{x \to 0} \frac{f(3x)}{x} = \lim_{x \to 0} \frac{3 \cdot f(x)}{x} = 3 \cdot \lim_{x \to 0} \frac{f(x)}{x} = 3 \cdot 1 = 3.$$

- (c) Mostre que $\lim_{x\to 0} \frac{f(3x)}{x} = 3$.
- (16) Seja f uma função que satisfaz $-x^2 + 3x \le f(x) \le \frac{x^2 1}{x 1}$, $\forall x \ne 1$. Calcule $\lim_{x \to 1} f(x)$.
- (17) Suponha que $|f(x) f(1)| \le \sqrt{2}(x-1)^2$, para todo x suficientemente próximo de 1. Mostre que f é contínua em x = 1.
- (18) Decida se as afirmações abaixo são verdadeiras ou falsas, justificando ou apresentando um contra-exemplo:
 - (a) Se o limite de f em x_0 existe, então f está definida em x_0 ;
 - (b) Se f é descontínua em x_0 , então os limites laterais de f em x_0 são infinitos;
 - (c) Se f é contínua, então |f| é contínua;
 - (d) Se |f| é contínua, então f é contínua;
 - (e) $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) \implies f$ é contínua em a.

(19) Determine constantes A e B reais de modo que a função abaixo seja contínua em \mathbb{R} :

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & \text{se } x < 2\\ Ax^2 - Bx + 3, & \text{se } 2 \le x < 3\\ 2x - A + B, & \text{se } x \ge 3 \end{cases}$$

- (20) Dados $a,b,c\in\mathbb{R}$ fixos, suponha que vale $|a+bx+cx^2|\leq |x|^3,\ \forall\ x\in\mathbb{R}.$ Prove que a=b=c=0.
- (21) Na Teoria da Relatividade, a fórmula da contração de Lorentz

$$L(v) = L_0 \sqrt{1 - \frac{v^2}{c^2}}$$

expressa o comprimento L de um objeto como uma função de sua velocidade v em relação a um observador, onde L_0 é o comprimento do objeto em repouso e c é a velocidade da luz. Encontre $\lim_{v\to c^-} L(v)$ e interprete o resultado (em termos físicos). Por que é necessário o limite à esquerda?

- (22) **<u>Desafio:</u>** Seja $f(x) = x^3 2$.
 - (a) Encontre um número real $\delta > 0$ tal que, se

$$0 < |x-2| < \delta$$
, então $|f(x)-6| < \epsilon$, com $\epsilon = 1$.

- (b) Repita o exercício anterior com $\epsilon = 0, 1$ e $\epsilon = 0, 01$;
- (c) Encontre um $\delta>0$ para um $\epsilon>0$ arbitrário, e conclua que $\lim_{x\to 2}\ f(x)=6$.

Limites trigonométricos e o 1º limite fundamental

- (1) Mostre que, $\forall x, y \in \mathbb{R}$, valem as seguintes identidades trigonométricas:
 - (a) sen(x y) = sen x cos y sen y cos x
 - (b) $\cos(x y) = \cos x \cos y + \sin x \sin y$
 - (c) $\cos(2x) = \cos^2 x \sin^2 x$
 - (d) sen(2x) = 2 sen x cos x
 - (e) $\cos^2 x = \frac{1 + \cos(2x)}{2}$
 - (f) $\sin^2 x = \frac{1 \cos(2x)}{2}$.
- (2) Verifique que, para todo $x \in \mathbb{R}$ com $\cos x \neq 0$, tem-se $\sec^2 x = 1 + \operatorname{tg}^2 x$.
- (3) Determine o domínio e esboce o gráfico das funções cotangente e cossecante.
- (4) Dados $a, b \in \mathbb{R}$, verifique que sen $a \operatorname{sen} b = \frac{1}{2} [\cos(a-b) \cos(a+b)]$. Utilize esse resultado para provar que a função cosseno é contínua.

- (5) Prove, pela definição, que $\lim_{x\to 0} \sin x = 0$.
- (6) Calcule, se existir, o valor dos seguintes limites:

(a)
$$\lim_{x \to 0} \frac{\operatorname{sen}(3x)}{x}$$

(b)
$$\lim_{x \to 0} x \operatorname{sen}\left(\frac{1}{x}\right)$$

(c)
$$\lim_{x \to 0} \frac{\operatorname{tg} x}{\operatorname{sen} x}$$

(d)
$$\lim_{x \to 0} \frac{1 - \cos\left(x^2\right)}{x^2}$$

(e)
$$\lim_{x \to 0} x \operatorname{cossec} x$$

(f)
$$\lim_{x \to \frac{\pi}{2}} \cos x \left(x - \frac{\pi}{2} \right)^{-1}$$

(g)
$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x}$$

(f)
$$\lim_{x \to \frac{\pi}{2}} \cos x \left(x - \frac{\pi}{2}\right)^{-1}$$
 (j) $\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{2x - \pi}$ (g) $\lim_{x \to 0} \frac{\operatorname{tg} x}{x}$ (k) $\lim_{x \to 0} \frac{\operatorname{tg}(3x)}{\operatorname{sen}(4x)}$ (h) $\lim_{x \to 0} \frac{x^2 \operatorname{sen}\left(\frac{1}{x}\right)}{\operatorname{sen} x}$ (l) $\lim_{x \to p} \frac{\operatorname{sen}(x^2 - p^2)}{x - p}$ $\operatorname{sen}(\pi x)$

(i)
$$\lim_{x \to \pi} \frac{\sin x}{x - \pi}$$

$$\text{(j)} \quad \lim_{x \to \frac{\pi}{2}} \quad \frac{1 - \sin x}{2x - \pi}$$

(k)
$$\lim_{x \to 0} \frac{\operatorname{tg}(3x)}{\operatorname{sen}(4x)}$$

(l)
$$\lim_{x \to p} \frac{\operatorname{sen}(x^2 - p^2)}{x - p}$$

(m)
$$\lim_{x \to 1} \frac{\operatorname{sen}(\pi x)}{x - 1}$$
.

Limites no infinito e limites infinitos

- (1) Explique o significado dos seguintes limites: $\lim_{x\to 1} f(x) = \infty$ e $\lim_{x\to \infty} f(x) = 1$.
- (2) Calcule o valor dos seguintes limites:

(
$$\alpha$$
) $\lim_{x \to \infty} \frac{2x^3 - x^2 + 7x - 3}{2 - x + 5x^2 - 4x^3}$

$$(\beta) \lim_{x \to \infty} \left(\sqrt{x+1} - \sqrt{x} \right)$$

$$(\gamma) \lim_{x \to \infty} \frac{x}{\sqrt{x+1}}$$

(
$$\delta$$
) $\lim_{x \to \infty} \frac{x^3 - 2x^2}{x^2 - 4x + 4}$

$$(\epsilon) \lim_{x \to \infty} \frac{x^2 - 2x + 1}{x^3 + 1}$$

$$(\zeta) \lim_{x \to -\infty} \frac{2x+1}{x+3}$$

$$(\eta) \lim_{x \to -\infty} \left[5 + \frac{1}{x} + \frac{3}{x^2} \right]$$

$$(\theta) \lim_{x \to \infty} \sqrt[3]{5 + \frac{2}{x}}$$

$$(\iota) \quad \lim_{x \to \infty} \sqrt[3]{\frac{x}{x^2 + 3}}$$

$$(\kappa) \lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{3x + 2}$$

(
$$\lambda$$
) $\lim_{x \to \infty} \frac{\sqrt[3]{x^3 + 2x - 1}}{\sqrt{x^2 + x + 1}}$

$$(\mu) \lim_{x \to \infty} \frac{\sqrt{x} + \sqrt[3]{x}}{x^2 + 3}$$

$$(\nu) \lim_{x \to \infty} \left[x^4 - 3x + 2 \right]$$

$$(\xi) \lim_{x \to \infty} \frac{\sqrt{x+1}}{\sqrt{9x+1}}$$

(o)
$$\lim_{u \to 1} \frac{1}{u^2 - 3u + 2}$$

$$(\pi)$$
 $\lim_{x\to 1} \frac{\sqrt[3]{x+7}-2}{x-1}$

$$(\rho) \lim_{x \to -\infty} [5 - 4x + x^2 - x^5]$$

$$(\sigma)$$
 $\lim_{x \to \infty} \left(x - \sqrt{x^2 + 3x} \right)$

$$(\tau) \lim_{x \to \infty} \frac{\sin x}{x}$$

$$(v) \lim_{x \to 3^+} \frac{5}{3-x}$$

$$(\phi) \quad \lim_{x \to 0^-} \ \frac{3}{x^2 - x}$$

$$(\chi) \lim_{x \to 3^{+}} \frac{x^{2} - 3x}{x^{2} - 6x + 9}$$

$$(\psi) \lim_{x \to -1^+} \frac{2x+1}{x^2+x}$$

$$(\omega) \lim_{x \to 0^+} \frac{\sin x}{x^3-x^2}.$$

(
$$\omega$$
) $\lim_{x\to 0^+} \frac{\sin x}{x^3-x^2}$

- (3) <u>**Desafio:**</u> Calcule $\lim_{x\to\infty} \left(\sqrt{x+\sqrt{x}}-\sqrt{x-1}\right)$.
- (4) Prove que $\lim_{x \to +\infty} \sqrt[n]{x} = +\infty$, onde n > 0 é um natural.

(5) Na Teoria da Relatividade, a massa m de uma partícula com velocidade v é dada por

$$m = \frac{m_0}{\sqrt{1 - v^2/c^2}},$$

onde m_0 é a massa da partícula em repouso (v=0) e c é a velocidade da luz $(c \approx 300.000 \ km/s)$. O que acontece quando $v \longrightarrow c^{-}$? Por que é necessário o limite à esquerda?

(6) Calcule os seguintes limites:

(a)
$$\lim_{x\to 0} \frac{x^2+1}{\sin x}$$

(b)
$$\lim_{x \to -3} \frac{3x - 11}{|x| - 3}$$

(a)
$$\lim_{x \to 0} \frac{x^2 + 1}{\sec x}$$
 (b) $\lim_{x \to -3} \frac{3x - 11}{|x| - 3}$ (c) $\lim_{x \to -\infty} \frac{3x + |x|}{7x - 5|x|}$.

(7) Dê exemplos de funções f e g tais que:

$$\lim_{x \to 0} f(x) = +\infty, \quad \lim_{x \to 0} g(x) = \infty \quad e \quad \lim_{x \to 0} (f(x) - g(x)) = 1.$$

- (8) Dada a função $f(x) = \frac{-5x^2 + 50x + 375}{x^2 20x + 75}$, faça o que se pede:
 - (a) Determine onde f é descontínua, e qual o seu comportamento nestas descontinuidades;
 - (b) Calcule $\lim_{x \to \pm \infty} f(x)$;
 - (c) Determine onde f intercepta os eixos $x \in y$;
 - (d) Com base nessas informações, tente esboçar o gráfico de f.
- (9) Use limites para provar que as seguintes desigualdades são válidas:
 - (a) $\frac{x^2+1}{(1-x)^2} > 3700$ para todo x suficientemente próximo de 1 (exceto x=1);
 - (b) $1,95 < \frac{2x+75}{x} < 2,1$ para todo x suficientemente grande.

(10) A força gravitacional exercida pela Terra sobre uma unidade de massa à uma distância r do centro do planeta Terra é dada por

$$F(r) = \begin{cases} GMrR^{-3}, & \text{se } r < R \\ \frac{GM}{r^2}, & \text{se } r \ge R \end{cases},$$

onde M é a massa da Terra, R é seu raio e G é a constante gravitacional ($G \approx 6,67 \cdot 10^{-11} m^3 kg^{-1}s^{-2}$).

- (a) Qual é o domínio de F? Podemos dizer que F é uma função contínua de r?
- (b) Calcule $\lim_{r\to\infty} F(r)$ e interprete seu significado físico.

Limites logarítmicos e exponenciais, e o T.V.I.

(1) Determine o domínio, a imagem e esboce o gráfico das seguintes funções:

(a)
$$a(x) = 7^x$$

(c)
$$c(x) = \log_3(x)$$

(e)
$$e(x) = |\ln x|$$

(b)
$$b(x) = (0, 2017)^x$$
 (d) $d(x) = \ln|x|$

(d)
$$d(x) = \ln |x|$$

(f)
$$f(x) = |\ln |x||$$
.

- (2) A função $f(x) = x^5 + x + 1$ possui alguma raiz real?
- (3) Mostre que a equação sen $x + 2\cos x = x^2$ possui solução no intervalo $\left[0, \frac{\pi}{2}\right]$.
- (4) Utilize o T.V.I. para mostrar que:
 - (a) o polinômio $p(x) = x^4 3x^3 + 4$ tem alguma raiz real no intervalo [1, 2];
 - (b) a equação $2^x + 3 = 4x$ tem pelo menos duas soluções reais.
- (5) Prove que todo polinômio de grau ímpar tem pelo menos uma raiz real.
- (6) As funções seno e cosseno hiperbólicos são definidos por senh $x=\frac{e^x-e^{-x}}{2}$ e cosh $x=\frac{e^x+e^{-x}}{2}$, respectivamente. Calcule o limite dessas funções para $x\to\pm\infty$ e esboce o gráfico das mesmas.
- (7) Determine onde as funções abaixo são contínuas:

(a)
$$a(x) = \ln(x^2 - x - 6)$$

(c)
$$c(x) = \frac{x^3}{\ln|x|}$$

(b)
$$b(x) = \frac{\sqrt[4]{x+5}}{1-e^x}$$

(d)
$$d(x) = \sqrt{2 - \sqrt{x}}$$
.

- (8) Após um objeto ser retirado do forno, sua temperatura T (em $^{\rm o}C$) variou ao longo do tempo t (em min) de acordo com a lei $T(t)=28+52e^{-\frac{t}{15}}$. Ache a temperatura inicial do objeto e para qual valor ela converge após um tempo suficientemente longo.
- (9) Aplique a definição para provar que $\lim_{x \to +\infty} \log_2 x = +\infty$.
- (10) Calcule os seguintes limites, caso existam:

(a)
$$\lim_{x \to \infty} [2^x - 3^x]$$

$$(j) \lim_{x \to 0} \sqrt[x]{1 - 2x}$$

(b)
$$\lim_{x \to \infty} \frac{1 - 2^x}{1 - 3^x}$$

$$(k) \lim_{x \to 0} \frac{5^x - 1}{x}$$

(c)
$$\lim_{x \to \infty} \ln \left(\frac{x}{x+1} \right)$$

(1)
$$\lim_{x \to 0^+} e^{1/x} \ln(x)$$

(d)
$$\lim_{x \to \infty} [\ln(2x+1) - \ln(x+3)]$$

(m)
$$\lim_{x \to 0} \frac{2^{3x} - 1}{x}$$

(e)
$$\lim_{x \to \infty} \left(1 + \frac{4}{x}\right)^x$$

(n)
$$\lim_{x \to -\infty} \frac{2^{\frac{1}{x}}}{1 + 2^{\frac{5}{x}}}$$

(f)
$$\lim_{x \to \infty} x^x$$

(o)
$$\lim_{x \to 0^+} (x^2 + \ln x)$$

(g)
$$\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^{3x}$$

(p)
$$\lim_{x \to 2^-} \ln(2-x)$$

(h)
$$\lim_{x \to \infty} \left(1 - \frac{3}{x}\right)^{2x}$$

(q)
$$\lim_{x \to +\infty} \left(\frac{x-4}{x-1}\right)^{x+3}$$

(i)
$$\lim_{x \to -\infty} \left(\frac{x+2}{x+1}\right)^x$$

(r)
$$\lim_{x \to +\infty} \left(\frac{x^2 + 1}{x^2 - 3} \right)^{x^2}$$
.

(11) Mostre que, $\forall x \ge 1$, vale a igualdade $\ln\left(\frac{x+\sqrt{x^2-1}}{x-\sqrt{x^2-1}}\right) = 2\ln\left(x+\sqrt{x^2-1}\right)$.

(12) Para calcular o limite $\lim_{x\to 1} \frac{e^{(x^2-1)}-1}{x-1}$, um aluno fez a seguinte mudança de variável:

$$h = x^2 - 1 \iff x^2 = h + 1 \iff x = \pm \sqrt{h + 1}$$

Qual dessas duas possibilidades de x ele deve considerar? Em outras palavras, qual dos limites abaixo está correto:

$$\lim_{x \to 1} \ \frac{e^{(x^2 - 1)} - 1}{x - 1} = \lim_{h \to 0} \ \frac{e^h - 1}{\sqrt{h + 1} - 1} \quad \text{ou} \quad \lim_{x \to 1} \ \frac{e^{(x^2 - 1)} - 1}{x - 1} = \lim_{h \to 0} \ \frac{e^h - 1}{-\sqrt{h + 1} - 1} \ ?$$

Explique e calcule o valor do respectivo limite.

(13) Aplique o teorema do confronto (ou sanduíche) para calcular os seguintes limites:

(a)
$$\lim_{x\to 0^+} \sqrt{x} \cos(\ln x)$$
 (b) $\lim_{x\to 0^+} \sqrt{x} e^{\sin(\frac{\pi}{x})}$

(b)
$$\lim_{x \to 0^+} \sqrt{x} e^{\sin(\frac{\pi}{x})}$$

(c)
$$\lim_{x \to +\infty} (2 + \cos x)^{\frac{1}{x}}$$
.

(14) **Desafio:** Utilize o teorema do confronto para avaliar o seguinte limite:

$$\lim_{x \to 0} \left[\frac{\operatorname{sen} x}{x} + \frac{x^2}{e^{\operatorname{sen}\left(\frac{1}{x}\right)} + 1} \right].$$

- (15) O método da exaustão, considerado como o precursor dos métodos de cálculo, é um método para se encontrar a área de uma figura inscrevendo-se dentro dela uma sequência de polígonos cuja soma das áreas converge para a área da figura desejada. Arquimedes usou tal método para calcular uma aproximação de π , preenchendo o círculo com polígonos de um número cada vez maior de lados. Para exemplificar esse método, faça o seguinte:
 - (a) Seja A_n a área de um polígono com n lados iguais inscrito em um círculo de raio r. Dividindo o polígono em n triângulos congruentes com ângulo central $\frac{2\pi}{n}$, mostre que

$$A_n = \frac{1}{2}nr^2 \operatorname{sen}\left(\frac{2\pi}{n}\right).$$

(b) Verifique que $\lim_{n \to \infty} A_n = \pi r^2$ e interprete!

GABARITO

Matemática básica

- (1) Média aritmética = 44, m.m.c.(36, 40, 56) = 2520 e m.d.c.(36, 40, 56) = 4; (2) 2^{2018} ;
- $\textbf{(3)} \ \ (a) \ F, \ \ (b) \ V, \ \ (c) \ V, \ \ (d) \ F, \ \ (e) \ V, \ \ (f) \ V, \ \ (g) \ F, \ \ (h) \ F, \ \ (i) \ F;$

(4) (a)
$$0,04$$
, (b) $3 \cdot 10^{-2}$, (c) $\frac{13}{4}$, (d) $\sqrt{2}$, (e) $-a^{-7/9}$, (f) 10, (g) 2, (h) $-4xy$, (i) $\frac{65}{4}$, (j) $\frac{103}{16}$,

$$(k) \frac{8}{5}; \quad \textbf{(5)} \quad (a) \quad x = -3, \quad (b) \quad x = \frac{28}{15}, \quad (c) \quad x = 5, \quad (d) \quad x = -1, \quad (e) \quad \frac{2}{3}, \quad (f) \quad -4, \quad (g) \quad x \in \left\{-1, \frac{3}{4}\right\},$$

(h)
$$-\frac{4}{3}$$
; (6) (a) $x \in \left\{-1, \frac{5}{2}\right\}$, (b) $x \in \{-1, 1, 2\}$, (c) $x = \pm 2$, (d) $x = 24$; (7) (a) $x = 1$, $y = -1$,

(b)
$$x = y = \frac{1}{4}$$
; (8) (a) ab , (b) $\left(\frac{a+b}{a-b}\right)^2$ e (c) 3.

Revisão: números reais, módulos e inequações

- (1) A única alternativa verdadeira é a letra (i). Para ver isso, note que $\left(\sqrt{a} \sqrt{b}\right)^2 = a + b 2\sqrt{ab}$.
- (2) Denotando por \mathcal{S} o conjunto solução das inequações, temos:

(a)
$$S = \left[-\frac{3}{4}, +\infty \right)$$

(e)
$$S = (-\infty, -4) \cup (0, +\infty)$$

(b)
$$S = \left(-\infty, -\frac{3}{4}\right] \cup [2, +\infty)$$

(f)
$$S = \left[\frac{5-\sqrt{5}}{2}, 3\right] \cup \left[\frac{5+\sqrt{5}}{2}, +\infty\right]$$

(c)
$$S = \left(-\infty, 1 - \sqrt{7}\right) \cup \left(0, 1 + \sqrt{7}\right)$$

(g)
$$S = (-\infty, -\sqrt{3}) \cup (-1, 1) \cup (\sqrt{3}, +\infty)$$

(d)
$$S = (-\infty, -1) \cup [0, 1)$$

(h)
$$S = (-\infty, -4)$$
.

- (4) Dica: Após provar, por absurdo, que $\sqrt{6} \notin \mathbb{Q}$, use este fato para demonstrar que $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}$.
- (5) Denotando por S o conjunto solução das inequações modulares, temos:

(a)
$$S = \emptyset$$

(e)
$$S = \emptyset$$

(b)
$$S = \left(-\infty, -\frac{1+\sqrt{21}}{2}\right) \cup \left(\frac{-1+\sqrt{21}}{2}, +\infty\right)$$

(f)
$$S = \{-1, 1\}$$

(c)
$$S = \left(-\infty, \frac{1-\sqrt{5}}{2}\right) \cup \left(\frac{5+\sqrt{29}}{2}, +\infty\right)$$

(g)
$$S = \left(-1, -\frac{1}{5}\right)$$

(d)
$$S = (-1,0) \cup (0,1)$$

(h)
$$S = \left(-\infty, -\frac{1}{10}\right) \cup \left(\frac{1}{2}, +\infty\right)$$

(i)
$$S = (-\infty, 2) \cup [1 + \sqrt{2}, +\infty)$$
.

Funções reais de uma variável real

(2) 4; (3) (a)
$$D_f = \mathbb{R} \setminus \{2\} \in \text{Im}(f) = \mathbb{R} \setminus \{-1\}, (b) (2,3];$$

(4) (a)
$$\left(0, \frac{1}{2}\right] \cup (1, +\infty), (b) \emptyset, (c) \mathbb{R} \setminus \{4\} \text{ e } (d) (-\infty, 0] \setminus \{-1\};$$
 (6) Não, pois $D_f \neq D_g$.

(7)

(8) (a) Não é par nem ímpar, (b) Ímpar e (c) Par; (9) (a) É gráfico de função, (b) Não é gráfico de função, (c) Não é gráfico de função, (d) É gráfico de função; (10) $A = \left(-\infty, -\frac{1}{3}\right) \cup \left[\frac{19}{6}, \infty\right);$ (11) (a) h(x) = 3x + 7, (b) $h(x) = \sqrt{2 + x^2}$, (c) $h(x) = \frac{x^2 + 4}{x^2 + 1}$; (13) $f(x) = \frac{x - 2}{1 - x}$; (14) (a) $11, 5^{\circ}C$ e (b) Ano 2250; (16) (a) a = 3, (c) $a = -\frac{1}{3}$; (17) $A(l) = \frac{\sqrt{3}}{4}l^2$; (18) $d = \frac{\sqrt{x^4 + 1}}{|x|}$.

Limites e continuidade: noções intuitiva e formal, e suas propriedades

(1) (a) 3, (b) 3, (c) 5, (d) 1, (e) -1, (f) não existe, (g) -1, (h) ∞ , (i) não existe, (j) 0;

(6) 3; (7) Utilize a desigualdade $||a| - |b|| \le |a - b|$, que é válida para todos $a, b \in \mathbb{R}$;

(8) O limite não existe e a função f é contínua no conjunto $\mathbb{R} \setminus \{1\}$.

(9) (a) 4, (b) $\sqrt{7}$, (c) -5, (d) 3, (e) 0, (f) $\sqrt{6}$, (g) $\frac{1}{5}$, (h) $-\frac{1}{3}$, (i) -1, (j) 2, (k) $-\infty$, (l) 1, (m) $\frac{1}{2}$, (n) Não existe, (o) 8, (p) $\frac{27}{80}$, (q) $\frac{1}{3-\sqrt{2}}$, (r) $\frac{\sqrt{2}}{2}$, (s) 2, (t) $-\frac{1}{2\sqrt{2}}$, (u) 0 (a > 0) ou $\not\equiv$ (a = 0), (v) $-\frac{1}{4}$, (w) 3, (x) 4, (y) Não existe, (z) $-\frac{1}{2}$;

(10) $(a) \mathbb{R} \setminus \{1\}$, $(b) \mathbb{R} \setminus \{2\}$; (11) (a) Não existe $\lambda \in \mathbb{R}$, (b) $\lambda = 12$; (13) a = 15 e o limite vale -1; (14) Não é contínua em x = 1; (15) (a) 0, (b) Não; (16) 2; (18) A única alternativa verdadeira é a letra (c); (19) $A = B = \frac{1}{2}$; (22) (a) $\delta = \min \left\{2 - \sqrt[3]{7}, \sqrt[3]{9} - 2\right\}$.

Limites trigonométricos e o 1º limite fundamental

(3)

(6) (a) 3, (b) 0, (c) 1, (d) 0, (e) 1, (f) -1, (g) 1, (h) 0, (i) -1, (j) 0, (k) $\frac{3}{4}$, (l) 2p, (m) $-\pi$.

Limites no infinito e limites infinitos

(2) $(\alpha) - \frac{1}{2}$, $(\beta) 0$, $(\gamma) \infty$, $(\delta) \infty$, $(\epsilon) 0$, $(\zeta) 2$, $(\eta) 5$, $(\theta) \sqrt[3]{5}$, $(\iota) 0$, $(\kappa) \frac{1}{3}$, $(\lambda) 1$, $(\mu) 0$, $(\nu) \infty$, $(\xi) \frac{1}{3}$, (o) não existe, $(\pi) \frac{1}{7}$, $(\rho) \infty$, $(\sigma) - \frac{3}{2}$, $(\tau) 0$, $(v) - \infty$, $(\phi) + \infty$, $(\chi) + \infty$, $(\psi) \infty$, $(\omega) - \infty$; (3) $\frac{1}{2}$, (5) A massa se torna arbitrariamente grande; (6) (a) Não existe, (b) Não existe, $(c) \frac{1}{6}$; (8) (a) Descontinuidade removível em x = 15 e descontinuidade infinita em x = 5, (b) Ambos dão -5, (c) Nos pontos (-5,0) e (0,5); (d) Ver o gráfico abaixo e note que há um buraco em x = 15:

(9) (a) Mostre que $\lim_{x \to 1} \frac{x^2 + 1}{(1 - x)^2} = +\infty$, (b) Mostre que $\lim_{x \to +\infty} \frac{2x + 75}{x} = 2$.

Limites logarítmicos e exponenciais, e o T.V.I.

- (2) Note que f(0) > 0 e f(-1) < 0;
- (4) (b) Fazendo $f(x) = 2^x + 3 4x$, observe que f(1) > 0, f(2) < 0 e f(4) > 0;
- (7) (a) $(-\infty, -2) \cup (3, +\infty)$, (b) $\{x \in \mathbb{R} ; x \ge -5 \text{ e } x \ne 0\}$, (c) $\{x \in \mathbb{R} ; x \ne 0 \text{ e } x \ne \pm 1\}$, (d) [0, 4];
- (8) $T(0) = 80^{\circ}C \text{ e } 28^{\circ}C;$
- (9) Note que $\log_2 x > \epsilon = \log_2 (2^{\epsilon})$ e utilize que a função $f(x) = \log_2 x$ é crescente;
- (10) $(a) -\infty$, (b) 0, (c) 0, $(d) \ln(2)$, $(e) e^4$, $(f) \infty$, $(g) e^6$, $(h) e^{-6}$, (i) e, $(j) e^{-2}$, $(k) \ln(5)$, $(l) -\infty$, $(m) 3 \ln(2)$, $(n) \frac{1}{2}$, $(o) -\infty$, $(p) -\infty$, $(q) e^{-3}$, $(r) e^4$; (12) 2; (13) (a) 0, (b) 0, (c) 1;
- (14) 1; (15) (a) Considere o triângulo isósceles de lado r e base como sendo um lado do polígono.

Última atualização: 07/02/2019