

Universidade Estadual de Campinas - UNICAMP Instituto de Computação - IC MO824 - Tópicos em Otimização Combinatória

Branch-and-Bound

Cid Carvalho de Souza

Outubro de 2006

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

1 / 22

Branch-and-Bound: introdução

$$z = \max\{cx : x \in S\}$$

Idéia do algoritmo: (paradigma de divisão e conquista)

- ullet particionar o conjunto de soluções S em subconjuntos disjuntos;
- resolver o problema para estas instâncias menores;
- combinar as soluções dos subproblemas para obter a solução do problema original.

Proposição 1

Seja $\{S_1, S_2, \ldots, S_K\}$ uma decomposição de S, i.e. $S = S_1 \cup S_2 \cup \ldots \cup S_K$. Se $z^k = \max\{cx : x \in S_k\}$, $k = 1, \ldots, K$, então $z = \max_k z^k$.

Representação do fluxo do algoritmo

árvore de enumeração !

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

Branch-and-Bound: introdução (cont.)

• Exemplo 1: $S = \{0, 1\} = \mathbb{B}^3$

• Exemplo 2: S é o conjunto de conjuntos de arestas que formam ciclos hamiltonianos no K^4 .

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

3 / 22

Branch-and-Bound: introdução (cont.)

Enumeração implícita

- a árvore de enumeração pode ficar muito grande!
- Idéia: enumerar a árvore de forma implícita.
- Como ? usar limitantes para podar ramos da árvore que não contém solução ótima.

Proposição 2

Seja $\{S_1, S_2, \ldots, S_K\}$ uma decomposição de S e $z^k = \max\{cx : x \in S_k\}$, $k = 1, \ldots, K$. Seja ainda \overline{z}^k (\underline{z}^k) um limitante superior (inferior) para z^k . Então os valores de \overline{z} e \underline{z} abaixo são limitantes superior e inferior de z, respectivamente

$$\overline{z} = \max_{k} \{\overline{z}^k\}$$
 e $\underline{z} = \max_{k} \{\underline{z}^k\}.$

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

Podando a Árvore de Enumeração

Definição

ramificação ou branching em um nó.

Definição

um nó amadurecido (pruned) não mais sofrerá branching.

Objetivo: amadurecer os nós da árvore usando limitantes!

Em que casos isto pode ser feito?

- Caso 1: poda por otimalidade
- Caso 2: poda por limitante
- Caso 3: poda por em inviabilidade

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

5 / 22

Podando a Árvore de Enumeração por otimalidade

$$\begin{array}{ccc}
S & \overline{z}^0 = 27 \\
\underline{z}^0 = 13
\end{array}$$

$$\overline{z}^1 = 20 \\
\underline{z}^1 = 20$$

$$S_1 & \overline{z}^2 = 25 \\
\underline{z}^2 = 15$$

$$\begin{array}{l} \overline{z} = \max\{\overline{z}^1, \overline{z}^2\} = \max\{20, 25\} = 25\\ \underline{z} = \max\{\underline{z}^1, \underline{z}^2\} = \max\{20, 15\} = 20 \end{array}$$

Em S_1 é conhecida uma solução de custo 20 $(=\underline{z}^1)$ e ela é <u>ótima</u> pois o custo de qualquer solução de S_1 é \leq 20 $(=\overline{z}^1)$.

Logo S_1 deve ser amadurecido!

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

Podando a Árvore de Enumeração por limitante

$$\overline{z} = \max{\{\overline{z}^1, \overline{z}^2\}} = \max{\{20, 25\}} = 25$$

 $\underline{z} = \max{\{\underline{z}^1, \underline{z}^2\}} = \max{\{18, 21\}} = 21$

A solução de maior custo em S_1 tem custo limitado a 20 $(=\bar{z}^1)$ mas, em S_2 já é conhecida uma solução de custo 21 $(=\bar{z}^2)$.

Logo S_1 deve ser amadurecido!

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

7 / 22

Podando a Árvore de Enumeração por inviabilidade

Mochila 0–1:
$$8x_1 + 5x_2 + 3x_3 + 3x_4 \le 12$$

O nó S_4 representa o subconjunto de todas as soluções que contêm o item 1 \underline{e} o item 2. Mas estes subconjunto é vazio já que a soma dos pesos destes itens ultrapassa a capacidade da mochila.

Logo S_4 deve ser amadurecido!

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

Podando a Árvore de Enumeração

Portanto, NÃO podem ser amadurecidos os nós onde $\overline{z}^i \neq \underline{z}^i \to \underline{z}^i > \underline{z} \to \underline{z}^i \in S^i \neq \emptyset$

- Nós ativos são aqueles que NÃO foram amadurecidos E que ainda não foram ramificados.
- Cálculos de limitantes:
 - primais: heurísticas e soluções viáveis obtidas durante a enumeração
 - duais: relaxações

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

9 / 22

Algoritmo de Branch-and-Bound

Considerações no projeto do algoritmo

- Limitantes:
 - fáceis de calcular mas fracos \times fortes mas computacionalmente caros
- Decomposição do espaço de soluções:
 - Decompor em duas ou em mais partes ?
 - Fixar a regra de decomposição ou deixá-la em função dos limitantes obtidas no correr da execução ?
- Ordem de percurso da árvore:
 - Profundidade ?
 - Largura ?
 - Usar nó com melhor limitante dual ?

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

Exemplo de B&B usando PL

$$\begin{array}{ll} \max & z = 4x_1 - x_2 \\ s.a. & 7x_1 - 2x_2 \leq 14, \\ & 2x_1 - 2x_2 \leq 3, \\ & x_2 \leq 3, \\ & x_1 \ \text{e} \ x_2 \ \text{inteiros} \end{array}$$

Limitantes

- solução do LP: $x_1^* = 20/7$, $x_2^* = 3$.
- Limitante superior: $\overline{z} = z_{LP} = 59/7$.
- Limitante inferior: $\underline{z} = -\infty$ (convenção !)

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

11 / 22

Branching

Escolher variável fracionária x_j^* e fazer:

$$S_1 \doteq S \cap \{x \in \mathbb{R}^n : x_j \le \lfloor x_j^* \rfloor\}$$

$$S_2 \doteq S \cap \{x \in \mathbb{R}^n : x_j \ge \lceil x_j^* \rceil\}$$

Por quê esta escolha?

- $S_1 \cup S_2 = S$ e $S_1 \cap S_2 = \emptyset$: partição de S !
- x* não é viável nem em S₁ e nem em S₂.
 Logo, na ausência de degenerescência, max{z̄₁, z̄₂} < z̄.
 Ou seja, o limitante superior vai cair!

No exemplo ...

$$S_1 = S \cap \{x \in \mathbb{R}^2 : x_1 \le 2\}$$

 $S_2 = S \cap \{x \in \mathbb{R}^2 : x_1 \ge 3\}$

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

Árvore de enumeração

Cálculo dos limitantes

- Nó S_1 : (usar o dual simplex !) $z_1^{LP} = \max\{4x_1 x_2 : 2x_1 2x_2 \le 3, 7x_1 2x_2 \le 14, x_2 \le 3, \frac{1}{2}\}, x_1^* = 2 \text{ e } x_2^* = 1/2, z_1^{LP} = 15/2.$
- Nó S_2 : podado por inviabilidade!

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

13 / 22

Novo branching

$$S_3 = S \cap \{x \in \mathbb{R}^2 : x_2 \le 0\}$$

 $S_4 = S \cap \{x \in \mathbb{R}^2 : x_2 \ge 1\}$

Árvore de enumeração

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

Cálculo dos limitantes

■ Nó S₄:

$$z_4^{LP} = \max\{4x_1 - x_2 : 2x_1 - 2x_2 \le 3, 7x_1 - 2x_2 \le 14, x_2 \le 3, x_1 \le 2, x_2 \ge 1\},$$

$$x_1^* = 2 \text{ e } x_2^* = 1, z_4^{LP} = 7.$$

Solução inteira viável: poda por otimalidade!

Atualiza z para 7.

• Nó S₃:

$$z_3^{LP} = \max\{4x_1 - x_2 : 2x_1 - 2x_2 \le 3, 7x_1 - 2x_2 \le 14, x_2 \le 3, x_1 \le 2, x_2 \le 0\},$$

$$x_1^* = 3/2 \text{ e } x_2^* = 0, z_3^{LP} = 6 = \overline{z}^3.$$

Mas, neste caso, $\overline{z}^3 < \underline{z} = 7$

 S_3 deve ser podado por limitante!

Lista de nós ativos está vazia: algortimo para !

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

15 / 22

Aspectos práticos de implementação

Informações a armazenar

- só aquelas referentes aos nós ativos;
- para cada nó:
 - limites superiores e inferiores das variáveis;
 - o limitante superior \overline{z}^k ;
 - usualmente guarda-se a base ótima para acelerar a reotimização;
- o limitante inferior global <u>z</u> (para fazer poda por limitante);

Cálculo dos limitantes

- superior: programação linear;
- inferior: heurísticas (arredondamento);

Branching

Usualmente feito sobre a variável "mais fracionária".

Alternativa: estimar custo para "tornar" a variável inteira.

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

Escolha do próximo nó a explorar

- DFS: vantagem é achar solução inteira mais rápido.
 Nota: LPs são resolvidos mais rápido pois as bases ótimas ficam na memória (dual simplex);
- Best bound: os nós ativos são mantidos em uma fila de prioridades, explorando sempre o nó com melhor limitante dual!

O objetivo desta estratégia é minimizar o número de nós explorados. Note que ela nunca explorará nós com limitantes duais piores do que o valor da solução ótima!

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

17 / 22

Usando sistemas comerciais de PLI

Características

- Pré-processamento;
- 2 Diferentes tipos de algoritmos de Programação Linear:
 - Pontos interiores: bom para a resolução do primeiro LP de modelos grandes;
 - Simplex: Primal e Dual (reotimização);
- Escolha (limitada) de regras de branching e seleção de nós da árvore de enumeração;
- Possibilidade de uso de prioridades para branching de variáveis;
- Generalized Upper Bound branching;
- Meurísticas primais: diversas (assunto em moda!);
- Fixação de variáveis por custos reduzidos.

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

GUB branching

Quando e como se aplica:

- O modelo contém restrições (GUB) da forma: $\sum_{i=1}^{k} x_i = 1$ com $x_i \in \{0,1\}$ para todo $i=1,\ldots,k$;
- Considere a solução fracionária ótima da relaxação corrente dada por x^* e assuma que $0 < x_\ell^* < 1$ para algum $\ell \in \{1, \dots, k\}$;
- Branching usual: $S_1 = S \cap \{x_\ell = 0\}$ e $S_2 = S \cap \{x_\ell = 1\}$ Problema: árvore de enumeração "desequilibrada";
- GUB branching: seja $r \doteq \min\{t : \sum_{i=1}^t x_i^* > 1/2\}$. Defina: $S_1 = S \cap \{\sum_{i=1}^r x_i = 1\}$ e $S_2 = S \cap \{\sum_{i=r+1}^k x_i = 1\}$;
- O GUB branching costuma funcionar bem para modelos com muitas restrições do tipo GUB. Exemplo: set partitioning.

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

19 / 2

Fixação de variáveis

O caso dos PLIs 0-1

- O problema: $z^* = \max\{cx : Ax = b, x \in \mathbb{B}^n\};$
- Solução básica da relaxação linear:

$$\begin{array}{ll} x_{B} & = B^{-1}b - B^{-1}N_{0}x_{N_{0}} - B^{-1}N_{1}x_{N_{1}}, \\ z & = c_{B}^{-1}b + \underbrace{(c_{N_{0}} - c_{B}^{-1}N_{0})x_{N_{0}}}_{\sum_{j \in N_{0}} \overline{c}_{j}x_{j}} + \underbrace{(c_{N_{1}} - c_{B}^{-1}N_{1})x_{N_{1}}}_{\sum_{j \in N_{1}} \overline{c}_{j}x_{j}}, \end{array}$$

onde $x_{N_0}=0$ e $x_{N_1}=\mathbb{1}$ são as variáveis não-básicas;

- Seja z um limitante primal (inferior) para z*:
 - $j \in N_0$: se $z + \overline{c}_j < \underline{z}$ então toda solução com custo melhor (maior) que \underline{z} satisfaz $x_j = 0$;
 - $j \in N_1$: se $z \overline{c}_j < \underline{z}$ então toda solução com custo melhor (maior) que \underline{z} satisfaz $x_j = 1$.

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

Fixação de variáveis: explicação

• Reescrevendo o problema em termos das variáveis não-básicas:

$$\max z = \underbrace{c_B^{-1}b}_{z_0} + \underbrace{(c_{N_0} - c_B^{-1}N_0)x_{N_0}}_{\sum_{j \in N_0} \overline{c}_j x_j} + \underbrace{(c_{N_1} - c_B^{-1}N_1)x_{N_1}}_{\sum_{j \in N_1} \overline{c}_j x_j},$$
s.a.
$$x_B + B^{-1}N_0 x_{N_0} + B^{-1}N_1 x_{N_1} = B^{-1}b$$

$$\mathbf{0}_n \le (x_B, x_{N_0}, x_{N_1}) \le \mathbb{1}_n.$$

- Se $j \in N_0$ então $x_j = 0$ e $\overline{c}_j \leq 0$. Se x_j aumentar de valor, algumas variáveis $k \in N_0$ ($\overline{c}_k \leq 0$) subirão de valor e algumas variáveis $\ell \in N_1$ ($\overline{c}_\ell \geq 0$) descerão de valor. Como as variáveis referentes a base B tem custo reduzido nulo, o custo da solução deverá ser, no máximo, igual a $z_0 + \overline{c}_j$. Portanto, se $z_0 + \overline{c}_j \leq \underline{z}$, não pode haver uma solução de custo melhor (maior) que \underline{z} satisfazendo $x_j = 1$.
- O caso $j \in N_1$ é análogo. \square

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006

21 / 22

Algumas opções interessantes dos resolvedores

- alterar a estratégia de *pricing* do simplex (escolha da variável que entrará na base);
- usar strong branching.

Dificuldades ...

O que fazer se após um tempo "aceitável" de computação,

- não houver solução viável disponível ? ou
- o "gap" entre os limitantes primal e dual for grande ? ou
- o algoritmo pàra por falta de memória devido ao grande número de nós ativos ?

Alternativas:

Melhorar os limitantes!

- Primais: heurísticas.
- Duais: mudar o modelo!

C. C. de Souza (IC-UNICAMP)

Branch-and-bound

Outubro de 2006