Internet of Things

Roselyne CHOTIN (largely inspired from Cécile Braunstein)

Internet of Things

Internet of Things

Bases de

Plan

Internet of Things

Bases de données

Modèle relationn Normalisation Jointures Langage SQL Modèle NoSQL

1 Bases de données

Plan

Internet of Things

Bases de données

Approche
Modèle relationne
Normalisation
Jointures
Langage SQL
Modèle NoSQL

Bases de données

- Approche
- Modèle relationnel
- Normalisation
- Jointures
- Langage SQL
- Modèle NoSQL

Environnement

Internet of Things

données
Approche
Modèle relationne
Normalisation
Jointures
Langage SQL

Base de données

Internet of Things

données
Approche
Modèle relationne
Normalisation
Jointures
Langage SQL
Modèle NoSQL

- Stockage unique des données (pas de redondance) sur une seule machine
 - les infos sur les étudiants de Polytech Sorbonne
- Interrogation à distance
 - sqlplus, phpMyAdmin
- Un intergiciel entre les accès et les données
 - Oracle, MySQL
- Langage déclaratifs, les accès aux données sont intentionnels (pas de structure de contrôle); Standard : langage SQL.
 - Qui sont les étudiants en EISE5?

Définitions

Internet of Things

Bases de données Approche Modèle relationr Normalisation Jointures Langage SQL

Une base de données (BD)

Une grande collection de données structurées sur des entités qui représentent des parties du monde que l'on cherche à stocker dans la base.

la bases de données des médicaments disponibles dans une pharmacie, la base de données des étudiants inscrits à Polytech Sorbonne, ..

Un système de gestion de base de données (SGBD)

Un gros logiciel qui facilite la gestion et l'accès à une BD par de nombreux utilisateurs

■ Oracle, MySQL, Postgresql, DB2, ...

Objectifs d'un SGBD

Internet of Things

Bases de données Approche Modèle relation Normalisation Jointures Langage SQL Modèle NoSQL

Accès contrôlé aux données

- Contrôle de la cohérence et intégrité entre les données
- Contrôle de la concurrence entre plusieurs utilisateurs
- Contrôle des performances d'accès des utilisateurs qui interrogent la BD
- Contrôle de la sécurité : toutes les données ne sont pas visibles par tout le monde

Indépendance gestion des données / applications

- Indépendance logique : vues externes cachent les détails de l'organisation logique des données
- Indépendance physique : l'organisation physique des données (fichiers, disques etc.) ne remet pas en cause le schéma logique

Utilisateurs d'un SGBD

Internet of Things

dases de lonnées
Approche
Modèle relationne
Normalisation
Jointures
Langage SQL
Modèle NoSQL

- Utilisateur final (end user)
 - Accède la BD par des formes d'écran, des interfaces applicatives ou, pour les plus experts, des requêtes SQL
- Programmeur d'application
 - construit (avec l'utilisateur) le schéma conceptuel
 - définit et gère le schéma logique et les vues
 - conçoit et implémente des applications qui accèdent la BD
- Administrateur de BD (DBA)
 - gère le schéma physique et règle les performances charge et organise la BD
 - gère la sécurité et la fiabilité

Langages et interfaces d'un SGBD

Internet of Things

Bases de données
Approche
Modèle relationne
Normalisation
Jointures
Langage SQL
Modèle NoSQI

- Langages de conception : E/A, UML
 - Utilisation : conception haut-niveau d'applications (données et traitements)
- Langage base de données : SQL
 - langage déclaratif : l'utilisateur spécifie quoi (et non comment)
 - puissance d'expression limitée (par rapport à un langage de programmation comme C ou Java)
 - utilisation : définition schémas, interrogation et mises-à-jour, administration
- Langages de programmation : PL/SQL, Java, PHP,...
 - langages avec une bibliothèque SQL
 - langage complet (au sens d'Alan Turing)
 - utilisation : programmation d'applications complète

Plan

Internet of Things

données
Approche
Modèle relationnel
Normalisation
Jointures
Langage SQL

1 Bases de données

- Approche
- Modèle relationnel
- Normalisation
- Jointures
- Langage SQL
- Modèle NoSQL

Modèle relationnel

Internet of Things

données
Approche
Modèle relation
Normalisation
Jointures
Langage SQL
Modèle NoSQL

- Un modèle de données logique permet de décrire
 - la structure des données : schéma
 - les données : instances
 - les opérations sur le schéma et les données
- Exemple : Modèle relationnel
 - schéma = ensemble de noms de tables ou relations avec des attributs
 - instance = ensemble de n-uplets (tuples, lignes) stockés dans les tables
 - opération = expression SQL

Base de données relationnelles

Internet of Things

dases de données
Approche
Modèle relationne
Normalisation
Jointures
Langage SQL
Modèle NoSQL

Avantages

- "Relation" est un concept simple avec des fondements mathématiques solides (théorie des ensembles, logique du premier ordre)
- Langages de requêtes simples, puissants et efficaces (techniques d'optimisation performantes)
- Théorie pour la conception (dépendances fonctionnelles)
- Standard : SQL

Internet of Things

Bases de données
Approche
Modèle relationne
Normalisation
Jointures
Langage SQL
Modèle NoSQL

Chaque bibliothèque possède des documents qui peuvent être empruntés par les étudiants. Les bibliothèques ont un nom et une localisation. Les étudiants ont un nom, un prénom et une adresse. Les documents ont un titre et sont rédigés par un auteur qui a lui-même un nom et un prénom.

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures Langage SQL Chaque bibliothèque possède des documents qui peuvent être empruntés par les étudiants. Les bibliothèques ont un nom et une localisation. Les étudiants ont un nom, un prénom et une adresse. Les documents ont un titre et sont rédigés par un auteur qui a lui-même un nom et un prénom.

Bibliothèque | Etudiant | Document

Internet of Things

Bases de données
Approche
Modèle relationne
Normalisation
Jointures
Langage SQL

Chaque bibliothèque possède des documents qui peuvent être empruntés par les étudiants. Les bibliothèques ont un nom et une localisation. Les étudiants ont un nom, un prénom et une adresse. Les documents ont un titre et sont rédigés par un auteur qui a lui-même un nom et un prénom.

Bibliothèque Etudiant Document

Bibliothèque des Licences, Tour 43 RDC

Cover, Harry, 4 allée des groseilliers - 92140 Clamart

Programmer en Java, Delannoy, Claude

Internet of Things

Bases de données
Approche
Modèle relationnel
Normalisation
Jointures
Langage SQL

Chaque bibliothèque possède des documents qui peuvent être empruntés par les étudiants. Les bibliothèques ont un nom et une localisation. Les étudiants ont un nom, un prénom et une adresse. Les documents ont un titre et sont rédigés par un auteur qui a lui-même un nom et un prénom.

entité association attribut

Modèle relationnel

Internet of Things

données
Approche
Modèle relationnel
Normalisation
Jointures
Langage SQL

Tables : entités

Internet of Things

Bases de données
Approche
Modèle relationnel
Normalisation
Jointures
Langage SQL

Document
Titre
Bases de données concepts, utilisation et développement
Python les fondamentaux du langage, la programmation pour les scientifiques
Programmer en Java

o 7

) 5	5
	Auteur		ש
/	Nom	Prénom /	•
/	Brucher	Matthieu	
ω.	Hainaut	Jean-Luc	
emprunte	Delannoy	Claude	
ğ			
eπ	Etudiant		

Bibliothèque	sod
Nom	Localisation
Bibliothèque des Licences	Tour 43 RDC
L1 - L2 scientifique	Patio 45-46

	Etudiant		
	Nom	Prénom	Adresse
	Cover	Harry	4 allée des groseilliers - 92140 Clamart
	Deuf	John	14 rue Berthelot - 94200 Ivry sur Seine
\setminus	Onette	Marie	18 rue d'Estrée - 75007 Paris
	Onette	Camille	18 rue d'Estrée - 75007 Paris
\	Theblues	Agathe	56 rue Arthur Rimbaud - 93300 Aubervilliers

Tables: associations

Onette

Theblues

Camille

Agathe

Internet of Things

données
Approche
Modèle relationnel
Normalisation
Jointures
Langage SQL

Marie Onette emprunte le livre "Bases de données concepts, utilisation et développement" jusqu'au 14/10/2020

Document Titre Bases de données concepts, utilisation et développement Python les fondamentaux du langage, la programmation pour les scientifiques Programmer en Java Emprunte emprunte Jusqu'au 14/10/2020 **Ftudiant** Nom Prénom Adresse Cover 4 allée des groseilliers - 92140 Clamart Harry 14 rue Berthelot - 94200 Ivry sur Seine Deuf John Marie 18 rue d'Estrée - 75007 Paris Onette

18 rue d'Estrée - 75007 Paris

56 rue Arthur Rimbaud - 93300 Aubervilliers

Cardinalité d'une association

Internet of Things

données
Approche
Modèle relationne
Normalisation
Jointures
Langage SQL

Décrit la connectivité entre les entités

- Un à un (1 :1) : une personne ne peut emprunter qu'un livre
- Un à plusieurs (1 :N) : une personne peut emprunter plusieurs livres
- Plusieurs à un (N :1) : plusieurs personnes peuvent emprunter le même livre
- Plusieurs à plusieurs (N :N) : des personnes peuvent emprunter plusieurs livres et un livre peut être emprunté par plusieurs personnes

Clés d'une entité

Internet of Things

données
Approche
Modèle relationne
Normalisation
Jointures
Langage SQL

- Sous-ensemble d'attributs
- Identifier de manière unique une instance
- Irréductible

Nom	Prénom	Adresse
Cover	Harry	4 allée des groseilliers - 92140 Clamart
Deuf	John	14 rue Berthelot - 94200 Ivry sur Seine
Onette	Marie	18 rue d'Estrée - 75007 Paris
Onette	Camille	18 rue d'Estrée - 75007 Paris
Theblues	Agathe	56 rue Arthur Rimbaud - 93300 Aubervilliers

- Clé primaire : une parmi les clés candidates
- Identifiant unique : clé artificielle simple

Clés d'une entité

Internet of Things

Approche
Approche
Modèle relationne
Normalisation
Jointures
Langage SQL

- Sous-ensemble d'attributs
- Identifier de manière unique une instance
- Irréductible

ld	Nom	Prénom	Adresse
1	Cover	Harry	4 allée des groseilliers - 92140 Clamart
2	Deuf	John	14 rue Berthelot - 94200 Ivry sur Seine
3	Onette	Marie	18 rue d'Estrée - 75007 Paris
4	Onette	Camille	18 rue d'Estrée - 75007 Paris
5	Theblues	Agathe	56 rue Arthur Rimbaud - 93300 Aubervilliers

- Clé primaire : une parmi les clés candidates
- Identifiant unique : clé artificielle simple

Clé d'une association

Internet of Things

Bases de données Approche Modèle relationnel Normalisation Jointures Langage SQL Marie Onette emprunte le livre "Bases de données concepts, utilisation et développement" jusqu'au 14/10/2020

Id	Nom	Prénom	Adresse
1	Cover	Harry	4 allée des groseilliers - 92140 Clamart
2	Deuf	John	14 rue Berthelot - 94200 Ivry sur Seine
3	Onette	Marie	18 rue d'Estrée - 75007 Paris
4	Onette	Camille	18 rue d'Estrée - 75007 Paris
5	Theblues	Agathe	56 rue Arthur Rimbaud - 93300 Aubervilliers

ld	Titre
1	Bases de données concepts, utilisation et développement
2	Python les fondamentaux du langage, la programmation pour les scientifiques
3	Programmer en Java

	ld_doc	ld_etu	Jusqu'au
ſ	1	3	14/10/2020

Clé étrangère

Internet of Things

données
Approche
Modèle relationnel
Normalisation
Jointures
Langage SQL
Modèle NoSQL

ld	Adresse	Code postal	Ville
1	4 allée des groseilliers	92140	Clamart
2	14 rue Berthelot	94200	Ivry sur Seine
3	18 rue d'Estrée	75007	Paris
4	56 rue Arthur Rimbaud	93300	Aubervilliers

ld	Nom	Prénom	ld_ad
1	Cover	Harry	1
2	Deuf	John	2
3	Onette	Marie	3
4	Onette	Camille	3
5	Theblues	Agathe	4

Plan

Internet of Things

données
Approche
Modèle relationne
Normalisation
Jointures
Langage SQL
Modèle NoSQL

1 Bases de données

- Approche
- Modèle relationnel
- Normalisation
- Jointures
- Langage SQL
- Modèle NoSQL

Principe : assurer l'efficacité

Internet of Things

données
Approche
Modèle relatione
Normalisation
Jointures
Langage SQL
Modèle NoSQL

- Redondance d'informations
- Anomalie d'insertion
- Anomalie de mise à jour
- Anomalie de suppression

Principe: assurer l'efficacité

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures Langage SQL

- Redondance d'informations
- Anomalie d'insertion
- Anomalie de mise à jour
- Anomalie de suppression

<u>Nom</u>	<u>Prénom</u>	Adresse
Cover	Harry	4 allée des groseilliers - 92140 Clamart
Deuf	John	14 rue Berthelot - 94200 Ivry sur Seine
Onette	Marie	18 rue d'Estrée - 75007 Paris
Onette	Camille	18 rue d'Estrée - 75007 Paris
Theblues	Agathe	56 rue Arthur Rimbaud - 93300 Aubervilliers

Normalisation

Internet of Things

données
Approche
Modèle relationn
Normalisation
Jointures
Langage SQL
Modèle NoSQI

■ 1^{re} forme normale (1FN) : atomicité des attributs

- 2º forme normale (2FN) : un attribut non clé ne peut pas dépendre que d'une partie de la clé
- 3° forme normale (3FN): un attribut non clé ne peut pas dépendre d'un autre attribut non clé
- Forme normale de Boyce-Codd (FNBC) : aucun attribut clé ne peut dépendre d'un attribut non clé
- Dépendances multi-valuées : 4° à 6° forme normale et forme normale domaine clé (FNDC)

Exemple

Internet of Things

données
Approche
Modèle relatione
Normalisation
Jointures
Langage SQL
Modèle NoSQL

Nom	<u>Prénom</u>	Adresse
Cover	Harry	4 allée des groseilliers - 92140 Clamart
Deuf	John	14 rue Berthelot - 94200 Ivry sur Seine
Onette	Marie	18 rue d'Estrée - 75007 Paris
Onette	Camille	18 rue d'Estrée - 75007 Paris
Theblues	Agathe	56 rue Arthur Rimbaud - 93300 Aubervilliers

Exemple

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures Langage SQL Modèle NoSQL

Nom	<u>Prénom</u>	Adresse
Cover	Harry	4 allée des groseilliers - 92140 Clamart
Deuf	John	14 rue Berthelot - 94200 Ivry sur Seine
Onette	Marie	18 rue d'Estrée - 75007 Paris
Onette	Camille	18 rue d'Estrée - 75007 Paris
Theblues	Agathe	56 rue Arthur Rimbaud - 93300 Aubervilliers

<u>Nom</u>	<u>Prénom</u>	n°	Rue	Code	Ville
Cover	Harry	4	allée des groseilliers	92140	Clamart
Deuf	John	14	rue Berthelot	94200	Ivry sur Seine
Onette	Marie	18	rue d'Estrée	75007	Paris
Onette	Camille	18	rue d'Estrée	75007	Paris
Theblues	Agathe	56	rue Arthur Rimbaud	93300	Aubervilliers

Normalisation

Internet of Things

dases de ionnées
Approche
Modèle relationne
Normalisation
Jointures
Langage SQL

- 1^{re} forme normale (1FN) : atomicité des attributs
- 2º forme normale (2FN) : un attribut non clé ne peut pas dépendre que d'une partie de la clé
- 3e forme normale (3FN): un attribut non clé ne peut pas dépendre d'un autre attribut non clé
- Forme normale de Boyce-Codd (FNBC) : aucun attribut clé ne peut dépendre d'un attribut non clé
- Dépendances multi-valuées : 4° à 6° forme normale et forme normale domaine clé (FNDC)

Exemple

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures Langage SQL Modèle NoSQL

Nom	<u>Prénom</u>	Adresse
Cover	Harry	4 allée des groseilliers - 92140 Clamart
Deuf	John	14 rue Berthelot - 94200 Ivry sur Seine
Onette	Marie	18 rue d'Estrée - 75007 Paris
Onette	Camille	18 rue d'Estrée - 75007 Paris
Theblues	Agathe	56 rue Arthur Rimbaud - 93300 Aubervilliers

<u>Nom</u>	<u>Prénom</u>	n°	Rue	Code	Ville
Cover	Harry	4	allée des groseilliers	92140	Clamart
Deuf	John	14	rue Berthelot	94200	Ivry sur Seine
Onette	Marie	18	rue d'Estrée	75007	Paris
Onette	Camille	18	rue d'Estrée	75007	Paris
Theblues	Agathe	56	rue Arthur Rimbaud	93300	Aubervilliers

Exemple

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures Langage SQL Modèle NoSQI

<u>Nom</u>	<u>Prénom</u>	
Cover	Harry	
Deuf	John	
Onette	Marie	
Onette	Camille	
Theblues	Agathe	

Nom	n°	Rue	Code	Ville
Cover	4	allée des groseilliers	92140	Clamart
Deuf	14	rue Berthelot	94200	Ivry sur Seine
Onette	18	rue d'Estrée	75007	Paris
Theblues	56	rue Arthur Rimbaud	93300	Aubervilliers

Normalisation

Internet of Things

Bases de données Approche Modèle relationn Normalisation Jointures Langage SQL Modèle NoSQI

- 1^{re} forme normale (1FN) : atomicité des attributs
- 2º forme normale (2FN) : un attribut non clé ne peut pas dépendre que d'une partie de la clé
- 3e forme normale (3FN): un attribut non clé ne peut pas dépendre d'un autre attribut non clé
- Forme normale de Boyce-Codd (FNBC) : aucun attribut clé ne peut dépendre d'un attribut non clé
- Dépendances multi-valuées : 4° à 6° forme normale et forme normale domaine clé (FNDC)

Exemple

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures Langage SQL Modèle NoSQI

<u>Nom</u>	<u>Prénom</u>		
Cover	Harry		
Deuf	John		
Onette	Marie		
Onette	Camille		
Theblues	Agathe		

Nom	n°	Rue	Code	Ville
Cover	4	allée des groseilliers	92140	Clamart
Deuf	14	rue Berthelot	94200	Ivry sur Seine
Onette	18	rue d'Estrée	75007	Paris
Theblues	56	rue Arthur Rimbaud	93300	Aubervilliers

Internet of Things

données
Approche
Modèle relationne
Normalisation
Jointures
Langage SQL
Modèle NoSQL

<u>Nom</u>	n°	Rue	Code
Cover	4	allée des groseilliers	92140
Deuf	14	rue Berthelot	94200
Onette	18	rue d'Estrée	75007
Theblues	56	rue Arthur Rimbaud	93300

<u>Code</u>	Ville
92140	Clamart
94200	Ivry sur Seine
75007	Paris
93300	Aubervilliers

Normalisation

Internet of Things

Bases de données Approche Modèle relationn Normalisation Jointures Langage SQL Modèle NoSQI

- 1^{re} forme normale (1FN) : atomicité des attributs
- 2º forme normale (2FN) : un attribut non clé ne peut pas dépendre que d'une partie de la clé
- 3e forme normale (3FN) : un attribut non clé ne peut pas dépendre d'un autre attribut non clé
- Forme normale de Boyce-Codd (FNBC) : aucun attribut clé ne peut dépendre d'un attribut non clé
- Dépendances multi-valuées : 4° à 6° forme normale et forme normale domaine clé (FNDC)

Internet of Things

données
Approche
Modèle relationn
Normalisation
Jointures
Langage SQL
Modèle NoSQL

Nom	Prénom	Adresse
Cover	Harry	4 allée des groseilliers - 92140 Clamart
Deuf	John	14 rue Berthelot - 94200 Ivry sur Seine
Onette	Marie	18 rue d'Estrée - 75007 Paris
Onette	Camille	18 rue d'Estrée - 75007 Paris
Theblues	Agathe	56 rue Arthur Rimbaud - 93300 Aubervilliers

Normalisation

Internet of Things

données
Approche
Modèle relationn
Normalisation
Jointures
Langage SQL
Modèle NoSQL

- 1^{re} forme normale (1FN) : atomicité des attributs
- 2º forme normale (2FN) : un attribut non clé ne peut pas dépendre que d'une partie de la clé
- 3e forme normale (3FN): un attribut non clé ne peut pas dépendre d'un autre attribut non clé
- Forme normale de Boyce-Codd (FNBC) : aucun attribut clé ne peut dépendre d'un attribut non clé
- Dépendances multi-valuées : 4º à 6º forme normale et forme normale domaine clé (FNDC)

Plan

Internet of Things

données
Approche
Modèle relationne
Normalisation
Jointures
Langage SQL

Bases de données

- Approche
- Modèle relationnel
- Normalisation
- Jointures
- Langage SQL
- Modèle NoSQL

Jointures

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures

- Permet d'accéder aux données liées à une clé étrangère
- Différents types de jointures

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures Langage SQL

Nom	<u>Prénom</u>	Document
Cover	Harry	1
Deuf	John	
Onette	Marie	2
Onette	Camille	
Theblues	Agathe	

lo	Titre
1	Bases de données concepts, utilisation et développement
2	Python les fondamentaux du langage, la programmation pour les scientifiques
3	Programmer en Java

Left joint : tous les étudiants

Jointures

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures

- Permet d'accéder aux données liées à une clé étrangère
- Différents types de jointures

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures Langage SQL

<u>Nom</u>	<u>Prénom</u>	Document
Cover	Harry	1
Deuf	John	
Onette	Marie	2
Onette	Camille	
Theblues	Agathe	

	ld	Titre
ĺ	1	Bases de données concepts, utilisation et développement
	2	Python les fondamentaux du langage, la programmation pour les scientifiques
	3	Programmer en Java

Full outer : tous les étudiants et tous les documents

Jointures

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures

- Permet d'accéder aux données liées à une clé étrangère
- Différents types de jointures

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures Langage SQL

<u>Prénom</u>	Document
Harry	1
John	
Marie	2
Camille	
Agathe	
	Harry John Marie Camille

ld	Titre
1	Bases de données concepts, utilisation et développement
2	Python les fondamentaux du langage, la programmation pour les scientifiques
3	Programmer en Java

Left joint (if null) : tous les étudiants qui n'ont pas emprunté de document

Jointures

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures

- Permet d'accéder aux données liées à une clé étrangère
- Différents types de jointures

Internet of Things

Bases de données Approche Modèle relationn Normalisation Jointures Langage SQL

Nom	Prénom	Document
Cover	Harry	1
Deuf	John	
Onette	Marie	2
Onette	Camille	
Theblues	Agathe	

Id	Titre
1	Bases de données concepts, utilisation et développement
2	Python les fondamentaux du langage, la programmation pour les scientifiques
3	Programmer en Java

Inner joint : tous les étudiants qui ont emprunté un document ou tous les documents qui ont été empruntés

Jointures

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures

- Permet d'accéder aux données liées à une clé étrangère
- Différents types de jointures

Internet of Things

Bases de données Approche Modèle relationn Normalisation Jointures Langage SQL

Nom	<u>Prénom</u>	Document
Cover	Harry	1
Deuf	John	
Onette	Marie	2
Onette	Camille	
Theblues	Agathe	

ld	Titre
1	Bases de données concepts, utilisation et développement
2	Python les fondamentaux du langage, la programmation pour les scientifiques
3	Programmer en Java

Right joint : tous les documents

Jointures

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures

- Permet d'accéder aux données liées à une clé étrangère
- Différents types de jointures

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures Langage SQL

Nom	<u>Prénom</u>	Document
Cover	Harry	1
Deuf	John	
Onette	Marie	2
Onette	Camille	
Theblues	Agathe	

ı	ld	Titre
	1	Bases de données concepts, utilisation et développement
2	2	Python les fondamentaux du langage, la programmation pour les scientifiques
(3	Programmer en Java

Right joint (if null) : tous les documents non empruntés

Plan

Internet of Things

Bases de données

Modèle relationne Normalisation Jointures Langage SQL

Bases de données

- Approche
- Modèle relationnel
- Normalisation
- Jointures
- Langage SQL
- Modèle NoSQL

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures Langage SQL

- CREATE : pour créer une table
- SELECT : pour extraire des données d'une table (conditions, tri)
- DELETE / INSERT: pour supprimer / insérer des données dans une table
- DROP TABLE : pour supprimer une table
- etc.

Exemple

```
CREATE TABLE etudiants (id INTEGER PRIMARY KEY AUTOINCREMENT, ...);
CREATE TABLE etudiants (..., idAd INTEGER, FOREIGN KEY (idAd) REFERENCES Adresse(id));
```


Internet of Things

Jases de Jonnées Approche Modèle relationne Normalisation Jointures Langage SQL Modèle NoSQL

- CREATE: pour créer une table
- SELECT : pour extraire des données d'une table (conditions, tri)
- DELETE / INSERT : pour supprimer / insérer des données dans une table
- DROP TABLE : pour supprimer une table
- etc.

Exemple

SELECT nom FROM etudiants;
SELECT * FROM etudiants WHERE nom="Onette";

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures Langage SQL

- CREATE: pour créer une table
- SELECT : pour extraire des données d'une table (conditions, tri)
- DELETE / INSERT : pour supprimer / insérer des données dans une table
- DROP TABLE : pour supprimer une table
- etc.

Exemple

```
INSERT INTO etudiants VALUES ("The Blues",
"Agathe");
```

DELETE FROM etudiants WHERE nom="The Blues";

Internet of Things

dases de données
Approche
Modèle relationn
Normalisation
Jointures
Langage SQL
Modèle NoSQL

- CREATE : pour créer une table
- SELECT : pour extraire des données d'une table (conditions, tri)
- DELETE / INSERT : pour supprimer / insérer des données dans une table
- DROP TABLE: pour supprimer une table
- etc.

Exemple

DROP TABLE etudiants;

Internet of Things

Bases de données Approche Modèle relation Normalisation Jointures Langage SQL Modèle NoSQL

- CREATE : pour créer une table
- SELECT : pour extraire des données d'une table (conditions, tri)
- DELETE / INSERT : pour supprimer / insérer des données dans une table
- DROP TABLE: pour supprimer une table
- etc.

Tables : entités

Internet of Things

Bases de données Approche Modèle relationn Normalisation Jointures Langage SQL

/	Auteur	rédigé		possède
/	Nom	Prénom	Bibliothèque Nom	/ a Localisation
	Brucher	Matthieu		Tour 43 RDC
l o	Hainaut	Jean-Luc	Bibliothèque des Licences L1 - L2 scientifique	Patio 45-46
nrte	Delannoy	Claude	LT - LZ Scientinque	Fall0 43-40
emprı				
eμ	Etudiant			

5	Etudiant		
	Nom	Prénom	Adresse
	Cover	Harry	4 allée des groseilliers - 92140 Clamart
	Deuf	John	14 rue Berthelot - 94200 Ivry sur Seine
	Onette	Marie	18 rue d'Estrée - 75007 Paris
	Onette	Camille	18 rue d'Estrée - 75007 Paris
\	Theblues	Agathe	56 rue Arthur Rimbaud - 93300 Aubervilliers

Exemple: CREATE

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures Langage SOL Modèle NoSOL

- CREATE TABLE Document (id INTEGER PRIMARY KEY AUTOINCREMENT, Titre TEXT NOT NULL):
- CREATE TABLE Auteur (id INTEGER PRIMARY KEY AUTOINCREMENT, Nom TEXT NOT NULL, Prenom TEXT NOT NULL);
- CREATE TABLE Bibliotheque (id INTEGER PRIMARY KEY AUTOINCREMENT, Nom TEXT NOT NULL, Localisation TEXT NOT NULL);
- CREATE TABLE Etudiant (id INTEGER PRIMARY KEY AUTOINCREMENT,
 Nom TEXT NOT NULL, Prenom TEXT NOT NULL, idAd INTEGER
 NOT NULL, FOREIGN KEY (idAd) REFERENCES Adresse(id));
- CREATE TABLE Adresse (id INTEGER PRIMARY KEY AUTOINCREMENT, Numero INTEGER NOT NULL, Rue TEXT NOT NULL, code INTEGER NOT NULL, FOREIGN KEY (code) REFERENCES VIIIe (code));
- CREATE TABLE Ville (code INTEGER PRIMARY KEY, Nom TEXT NOT NULL);

Exemple: CREATE

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures Langage SQL

CREATE TABLE Emprunte (idEtu INTEGER NOT NULL, idDoc INTEGER NOT NULL, Date TEXT NOT NULL, FOREIGN KEY (idEtu)
REFERENCES Etudiant(id), FOREIGN KEY (idDoc) REFERENCES
Document(id), PRIMARY KEY (idEtu,idDoc));

CREATE TABLE Possede (idBibli INTEGER NOT NULL, idDoc INTEGER NOT NULL, Ref TEXT NOT NULL, FOREIGN KEY (idBibli)
REFERENCES Bibliotheque(id), FOREIGN KEY (idDoc)
REFERENCES Document(id), PRIMARY KEY (idBibli.idDoc));

CREATE TABLE Redige (idAut INTEGER NOT NULL, idDoc INTEGER NOT NULL, Date TEXT NOT NULL, FOREIGN KEY (idAut)
REFERENCES Auteur(id), FOREIGN KEY (idDoc) REFERENCES
Document(id), PRIMARY KEY (idAut,idDoc));

Exemple: SELECT

Internet of Things

Approche Modèle relation Normalisation Jointures Langage SQL

```
SELECT * FROM Etudiant;

SELECT * FROM Etudiant ORDER BY Nom ASC;

SELECT * FROM Etudiant WHERE Nom = "Onette";

SELECT Nom FROM Etudiant INNER JOIN Document ON Document.id =

Etudiant.idDoc;
```

Exemple: INSERT

Internet of Things

données
Approche
Modèle relationne
Normalisation
Jointures
Langage SQL

Plan

Internet of Things

données
Approche
Modèle relationne
Normalisation
Jointures
Langage SQL
Modèle NoSQL

Bases de données

- Approche
- Modèle relationnel
- Normalisation
- Jointures
- Langage SQL
- Modèle NoSQL

Pourquoi?

Internet of Things

Jases de Jonnées Approche Modèle relationn Normalisation Jointures Langage SQL Modèle NoSQL

- Grandes entreprises de Web
 - Volumes de données importants
 - Architectures distribuées
- Tableau associatif unidimensionnel : clé,valeur
- Google (BigTable), Amazon (Dynamo), SourceForge (MongoDB)

MongoDB

Internet of Things

Jases de Jonnées Approche Modèle relationn Normalisation Jointures Langage SOL Modèle NoSQL

- SGBD NoSQL orienté documents
- Collections de documents
- Données structurées au format JSON
- Champs libres, mais clé principale obligatoire
- Pas de schéma relationnel prédéfini

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures Langage SQL Modèle NoSQL

```
"address": {
 "building": "1007",
 "coord": [-73.856077, 40.848447],
 "street": "Morris Park Ave",
"zipcode": "10462"
"borough": "Bronx".
"cuisine": "Bakery",
"grades":
 {"date":{"$date":1393804800000 }, "grade":"A", "score":2},
 {"date":{"$date":1378857600000 }, "grade":"A", "score":6},
 {"date":{"$date":1358985600000 }, "grade":"A", "score":10},
 {"date":{"$date":1322006400000 }, "grade":"A", "score":9},
 {"date":{"$date":1299715200000 },"grade":"B","score":14}
"name": "Morris Park Bake Shop",
"restaurant id": "30075445"
```

Manipulation des données

Internet of Things

Bases de données Approche Modèle relationne Normalisation Jointures Langage SQL Modèle NoSQL

- Par l'utilisation d'un langage de programmation
- Requêtes simples : insertion, recherche, mise à jour, suppression