МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

KAMAK

многоконтроллерный крейт

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ Минск

Предисловие

1 РАЗРАБОТАН АО "Фирма СКАН" (Системы комплексной автоматизации научной аппаратуры)

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации 21 октября 1993 г. протокол № 4—93

За принятие проголосовали:

Наименование государства	Наименование национального орган по стандартизации		
Республика Азербайджан	Азгосстандарт		
Республика Армения	Армогосстандарт		
Республика Беларусь	Белстандарт		
Республика Казахстан	Госстандарт Республики Казахстан		
Республика Кыргызстан	Кыргызстандарт		
Республика Молдова	Молдовастандарт		
Российская Федерация	Госстандарт России		
Таджикистан	Таджикский государственный центр		
	по стандартизации, метрологии		
	и сертификации		
Республика Туркменистан	Туркменглавгосинспекция		
Республика Узбекистана	Узгосстандарт		
Украина	Госстандарт Украины		

- 3 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 11.01.96 № 14 межгосударственный стандарт ГОСТ 27079—95 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1997 г.
- 4 Настоящий стандарт содержит полный аутентичный текст международного стандарта МЭК 729—82 "Многоконтроллерный крейт КАМАК" с дополнительными требованиями, отражающими потребности экономики страны
 - 5 B3AMEH ΓΟCT 27079-86

© ИПК Издательство стандартов, 1996

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

П. ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ, СРЕДСТВА АВТОМАТИЗАЦИИ И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Группа П70

к ГОСТ 27079-95 КАМАК. Многоконтроллерный крейт

В каком месте	Напечатано	Должно быть
Обозначение стан- дарта	ΓΟCT 27079—95	ГОСТ 27079—94

(ИУС № 3 2001 г.)

ПЕРЕСМОТР НАСТОЯЩЕЙ ПУБЛИКАЦИИ

Техническое содержание публикаций МЭК постоянно пересматривается, отражая современное состояние техники.

Информацию о пересмотре и издании пересмотренных стандартов можно получить в Национальных комитетах МЭК и из следующих источников:

- Бюллетеня МЭК;
- Отчета о деятельности МЭК (публикуется ежегодно);
- Каталога публикаций МЭК (публикуется ежегодно).

ТЕРМИНОЛОГИЯ

Термины, применяемые в настоящем стандарте, соответствуют Публикации МЭК 50—79 Международный электротехнический словарь (МЭК), который выпускается в форме отдельных глав, относящихся к определенной области электротехники. Общий указатель издан одной брошюрой. По требованию может быть представлен полный МЭС.

Термины и определения, содержащиеся в настоящей публикации, взяты либо из МЭС, либо одобрены специально для целей настоящего стандарта.

ГРАФИЧЕСКИЕ И БУКВЕННЫЕ ОБОЗНАЧЕНИЯ

Графические обозначения, буквенные символы и обозначения, одобренные МЭК для общего употребления, должны удовлетворять требованиям:

- Публикации МЭК 27—71 Буквенные обозначения, применяемые в электротехнике;
- Публикации МЭК 117—83 Рекомендуемые графические обозначения.

ГОСТ 27079-95

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ	VI
ВВЕДЕНИЕ \	VII
1 Область применения и назначение	1
1.1 Область применения	l
1.2 Назначение	i
2 Общие положения	2
3 Сигналы магистрали дополнительного контроллера и связую-	
щие сигналы передней панели	3
4 Использование линий магистрали дополнительных контролле-	
ров и связующих сигналов	6
4.1 Управляющие сигналы	6
4.2 Сигналы EN	9
4.3 Сигналы запросов	9
4.4 Прочие сигналы	9
5 Соединитель магистрали дополнительных контроллеров и свя-	
зующие соединители передней панели	9
6 Нормы на сигналы	10
6.1 Нормы на сигналы АСВ	10
6.2 Нормы на сигналы, связующие переднюю панель с АСВ	11
6.3 Нормы сигналов на соединения АС с магистралью крейта	11
6.4 Защита входов сигналов	11
ПРИЛОЖЕНИЕ А Спецификация крейт-контроллера КАМАК	
типа А2	12
T. 6	
Таблицы 1 Сигналы линий, подключенных к соединителю магистрали до-	
полнительного контроллера и связующим соединителям перед-	
· · · · · · · · · · · · · · · · · · ·	20
2 Распределение контактов соединителя магистрали дополни-	20
	21
3 Требования к смещению сигналов и источникам токов смеще-	1
ния на соединителе магистрали дополнительного контроллера	
	21
4 Требования к сигналам Q, R и X на соединителе магистрали	
дополнительного контроллера	22

ГОСТ 27079—95

5	Команды ветви, выполняемые крейт-контроллером типа А2	22
6	Распределение контактов соединителя сортировщика запросов крейт-контроллера типа А2	23
P	исунки	
1	Многоконтроллерный крейт	24
2	Крейт-контроллер. Минимальная конфигурация	24
	Последовательность сигналов АС, осуществляющего захват уп-	
	равления и операцию команды	25
48	а Последовательность сигналов при захвате управления по спо-	
	собу ACL без прерывания текущей операции	26
46	5 Последовательность сигналов при захвате управления по спо-	
	собу ACL с прерыванием текущей операции	
5	Коаксиальный соединитель типа МК-50	
5	Крейт-контроллер КАМАК типа А2	28
À	лфавитный указатель	29

ПРЕДИСЛОВИЕ

- 1 Официальные решения или соглашения МЭК по техническим вопросам, подготовленные техническими комитетами, в которых представлены все заинтересованные национальные комитеты, выражают с возможной точностью международную согласованную точку зрения по рассматриваемым вопросам.
- 2 Эти решения представляют собой рекомендации для международного пользования и в этом виде принимаются национальными комитетами.
- 3 В целях содействия международной унификации МЭК выражает пожелание, чтобы все национальные комитеты приняли текст рекомендаций МЭК в качестве своих национальных стандартов, насколько это позволяют условия каждой страны. Любые расхождения между рекомендациями МЭК и соответствующими национальными стандартами должны быть, по возможности, четко изложены в последних.

ВВЕДЕНИЕ

Настоящий стандарт подготовлен Техническим комитетом № 45 "Ядерное приборостроение" Международной электротехнической комиссии.

Первый проект обсуждался на заседании в Ницце в 1978 г. В результате этого заседания проект — Документ 45 (Центральное бюро) 130 — в июне 1979 г. был представлен национальным комитетам на утверждение по Правилу шести месяцев.

В марте 1981 г. национальным комитетом были направлены поправки, содержащиеся в документе 45 (Центральное бюро) 144.

За издание публикации голосовали следующие страны:

Австралия
Австрия
Бельгия
Болгария
ГДР
Египет
Испания
Италия
Канала

Нидерланды
Польша
США
СССР
ФРГ
Финляндия
Франция
Чехословакия

Швения

KHP ЮАР

В стандарте имеются ссылки на следующие стандарты:

ГОСТ 26.201.1—94 Система КАМАК. Организация многокрейтовых систем. Требования к магистрали ветви и крейт-контроллеру КАМАК типа A1

ГОСТ 26.201.2—94 Система КАМАК. Последовательная магистраль интерфейсной системы

ГОСТ 27080—93 КАМАК. Модульная система технических средств для обработки данных

МЕЖГОСУЛАРСТВЕННЫЙ СТАНЛАРТ

KAMAK

Многоконтроллерный крейт

Multiple controller in a CAMAC crate

Лата введения 1997-01-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ И НАЗНАЧЕНИЕ

1.1 Область применения

Настоящий стандарт распространяется на КАМАК — систему, определенную в ГОСТ 27080.

Применение настоящего стандарта не отменяет и не дополняет обязательные требования ГОСТ 27080.

1.2. Назначение стандарта

Настоящий стандарт устанавливает метод распределенного управления в крейте КАМАК. Стандарт полностью соответствует требованиям к конструкции и сигналам, установленным в ГОСТ 27080.

Для доступа к магистрали крейта нескольких контроллеров применяется магистраль дополнительных контроллеров (Auxiliary Controller Bus — ACB) и устанавливается протокол арбитража по определению приоритета. При этом дополнительные контроллеры (Auxiliary Controllers — AC's) занимают нормальные станции крейта. АСВ передает код адреса АС крейт-контроллеру (Crate Controller — CC), занимающему управляющую станцию крейта, и переносит сигналы запросов L от CC на все АС. АСВ, связанная с контроллерами, может использоваться также при определении приоритета для управления магистралью крейта.

Стандарт полностью совместим с ГОСТ 26.201.2 и с ГОСТ 26.201.1.

Он применим также в автономных системах (системах, не имеющих внешних магистралей) или в системах с крейт-контроллером типа U^* .

^{*} Крейт-контроллер типа U (Undifined — неопределенный) имеет внешний интерфейс не такой, как установлен спецификациями CAMAC, а такой, как у компьютерной пины ввола-вывола.

Приложение А определяет крейт-контроллер параллельной магистрали ветви, называемый крейт-контроллером типа A2. Этот контроллер аналогичен крейт-контроллеру типа A1, определенному в приложении A ГОСТ 26.201.1, за исключением соединителя АСВ и протокола определения приоритета. В остальном крейт-контроллеры типов A1 и A2 полностью взаимозаменяемы.

2. ОБПИЕ ПОЛОЖЕНИЯ

Настоящий стандарт изложен в виде учебного пособия, описывающего и характеризующего управление многоконтроллерным крейтом КАМАК. Для лучшего его понимания рекомендуется в процессе изучения ознакомиться с дополняемыми им ГОСТ 27080, ГОСТ 26.201.1 и ГОСТ 26.201.2.

Ни одна часть настоящего стандарта не направлена на отмену или изменение требований вышеупомянутых стандартов. Настоящий стандарт содержит обязательные требования, реко-

мендации и допущения.

Обязательные требования стандарта выделены полужирным шрифтом и содержат слово "должен".

Пояснения, рекомендуемые практикой (которым нужно следовать, если против того нет достаточно серьезных доводов), содержат слово "рекомендуется".

Допущения обычно содержат слово "может" и оставляют свободу

допущения обычно содержат слово может и оставляют свободу выбора разработчику или пользователю.

Чтобы "соответствовать" спецификации настоящего стандарта, оборудование системы должно отвечать всем его обязательным требованиям исключая приложение А. Если оборудование конструируется как вставной блок КАМАК, оно должно также отвечать обязательным требованиям ГОСТ 26,201.1.

Приложение A определяет крейт-контроллер KAMAK типа A2 таким образом, что выпускаемые различными изготовителями контроллеры типа A2 будут функционально взаимозаменяемыми. Основной текст настоящего стандарта содержит меньше ограничений и определяет контроллеры, которые не обязаны быть взаимозаменяемыми. Приложение А следует рассматривать как спецификацию

крейт-контроллера типа A2.

Чтобы быть "совместимым" с ACB, оборудованию нет необходимости отвечать всем обязательным требованиям, но оно не должно мешать полному функционированию тех средств контроллера, которые "соответствуют" настоящему стандарту.

Ни одна часть настоящего стандарта не направлена на исключение

использования оборудования, совместимого в указанном выше смысле, даже если оно не полностью соответствует настоящему стандарту или сконструировано не как вставной блок KAMAK.

Для использования настоящего стандарта не требуется лицензии или разрешения.

3 СИГНАЛЫ МАГИСТРАЛИ ДОПОЛНИТЕЛЬНОГО КОНТРОЛЛЕРА И СВЯЗУЮЩИЕ СИГНАЛЫ ПЕРЕДНЕЙ ПАНЕЛИ

Стандартный крейт KAMAK, описанный в ГОСТ 26.201.1, требует наличия контроллера для управления и координации действиями крейта. Во время адресованной операции команды на магистрали крейта контроллер передает по линиям B, N, A, F, S1 и S2 сигналы, пеобходимые для осуществления операции команды и для осуществления таймирования операции. Во время адресованной операции команды, включающей данные, контроллер передает или получает данные по линиям W и R соответственно. Во время неадресованной операции контроллер передает необходимые сигналы на линии B, S1, S2 С или Z. Контроллер может устанавливать состояние сигнала I и следить за состоянием сигналов L, X и Q.

Каждый крейт КАМАК имеет одну управляющую станцию — единственную станцию, обеспечивающую доступ к линиям N и L. Управляющая и нормальная станции обеспечивают доступ контроллера ко всем линиям сигналов для выполнения описанных выше операций. Контроллер, который занимает управляющую станцию, называется крейт-контроллером (Crate Controller — СС). Примерами СС являются крейт-контроллеры типа L2 для последовательной магистрали, описанные в приложении А ГОСТ 26.201.2, и типа А2 для нараллельной магистрали ветви (приложение A).

Источником добавочных сигналов управления в крейте КАМАК является дополнительный контроллер (Auxiliary Controller — AC), который занимает одну или несколько нормальных станций. Для сонряжения нескольких АС необходимы два условия: 1) доступ к линиям N и L на нормальных станциях и 2) арбитраж приоритета для управления магистралью крейта. Доступ к линиям N необходим для того, чтобы АС мог полностью генерировать завершенную адресованную операцию команды. Доступ к линиям L необходим для того, чтобы АС мог отвечать на сигналы L других модулей и/или контроллеров. Протокол арбитража приоритета таков, что только один контроллер может управлять крейтом. Он обеспечивает порядок захвата управления крейтом на основе заложенных приоритетов.

Доступ к линиям N и L обеспечивается ACB через CC (см. 4.2 и 4.3). Контроллер в соответствии с настоящим стандартом имеет соединитель на задней панели для присоединения к ACB. Все линии ACB присоединяются к каждому контроллеру в соответствии с рис.1. При выполнении адресованной операции команды AC генерирует 5-битовый двоичный код, соответствующий номеру станци, кото-

э-оитовыи двоичныи код, соответствующий номеру станции, которой адресована команда, и передает его по линиям EN ACB. СС получает код номера этой станции, декодирует его и передает на управляющую станцию логическую "1" по соответствующей линии N магистрали крейта. СС получает 24 сигнала L через управляющую станцию и передает эти сигналы на соединитель ACB.

Для того, чтобы СС разрешал использование АС, он должен как минимум соединять линии L магистрали крейта с ACB и должен содержать N-декодер, соединитель ACB и источники токов смещения в линиях как это показано на рис. ?

в линиях, как это показано на рис. 2.

в линиях, как это показано на рис. 2.

Протокол арбитража предусматривает два способа: "Требование/Разрешение" (Request/Grant — R/G) и "Отключение дополнительного контроллера" (Auxiliary Controller Lockout — ACL). Предпочтительным является протокол арбитража по способу R/G. Для реализации этого способа используют три сигнала:

1) "Требование" (Request — RG), поступающий по линии, соединенной с каждым контроллером через ACB, на соответствующее гнездо передней панели, имеющееся у каждого контроллера;

2) "Разрешение" (Grant), передаваемый по последовательной цепи, организованной таким образом, что "Разрешение-выход" (Grant-Out) одного контроллера соединено с "Разрешение-вход" (Grant-In) другого контроллера через соответствующие гнезда передних панелей контроллеров:

- них панелей контроллеров;
- 3) "Запрет требования" (Reguest Inhibit-RI), получаемый контроллерами по сквозным линиям ACB.

троллерами по сквозным линиям АСВ.

Гнездо "Request", расположенное на передней панели контроллера с наивысшим приоритетом, должно быть соединено с гнездом "Grant-In" на его же передней панели, гнездо "Grant-Out" должно быть соединено с гнездом "Grant-In" следующего по приоритету контроллера и так далее от контроллера к контроллеру, пока не образуется последовательная цепь до низшего по приоритету контроллера в крейте КАМАК.

Последовательность сигналов, необходимая для того, чтобы контроллер захватил управление крейтом, показана на рис. 3. Контроллер сначала генерирует сигнал "Требование" и ждет прихода сигнала "Разрешение-вход". Остальные контроллеры, которые не генериро-

вали сигнал "Требование", должны пропускать сигнал "Разрешение" со входа на выход. Контроллер, выдавший сигнал "Требование", не должен пропускать сигнал "Разрешение" на выход. Последовательное соединение цепи сигнала "Разрешение", идущей от контроллера к контроллеру, обеспечивает передачу сигнала до контроллера с наивысшим приоритетом, запросившего управление крейтом.

Когда контроллер получает сигнал "Разрешение-вход", он генерирует и поддерживает сигнал "Запрет требования" (это означает, что он управляет крейтом) и снимает свой сигнал "Требование". В ответ на сигнал "Запрет требования" сигналы "Требование" других контроллеров снимаются, что вызывает сброс сигнала "Разрешение". После окончания своих операций на магистрали крейта контроллер снимает сигнал "Запрет требования", и управление крейтом передается следующему потребовавшему его контроллеру. Если в этот момент два или более контроллеров одновременно требуют управления крейтом, то контроллер, имеющий наибольший приоритет, определяется по положению в цепи сигнала "Разрешение" (рис. 1).

Захват контроллером управления крейтом задерживается, если магистраль крейта уже кем-то занята. Если контроллер соединен с внешней магистралью, то эта задержка определяется интерфейсом внешней магистрали. Примером такого интерфейса внешней магистрали с соответствующей ему задержкой является параллельная магистраль ветви КАМАК, определяемая ГОСТ 26.201.1. Способ R/G не годится для контроллера, для которого такая задержка неприемлема. Примером является также крейт-контроллер последовательной магистрали типа L2, определяемый ГОСТ 26.201.2. Крейт-контроллер последовательной магистраль, осуществляет операции на магистрали крейта вопреки протоколу R/G.

Режим "Отключение дополнительного контроллера" (ACL) предусмотрен для контроллера, для которого неприемлема задержка, связанная с протоколом R/G. В таком крейте только один контроллер (АС, если он имеется, или СС) может реализовать режим ACL для захвата управления крейтом. Сигнал ACL передается через ACB всем остальным контроллером в крейте. После получения этого сигнала контроллер, управляющий крейтом, прерывает или завершает свою операцию, прежде чем контроллер, выдавший сигнал ACL, начнет свою операцию на магистрали крейта (см. 4.1.5). Примеры последовательностей сигналов, вызванных сигналом ACL, приведены на рис. 4 а, б.

Необходимые соединения линий Request, Grant, Request Inhibit и ACL приведены на рис. 1.

Крейт-контроллер последовательной магистрали типа L2, описанный в приложении A ГОСТ 26.201.2, не имеет соединителя АСВ. Однако соединитель его SGL-сортировщика (последовательного сортировщика запросов) может быть использован для подключения к АСВ, так как сигналы АСВ представляют собой подгруппу сигналов относительно тех, которые поступают на соединитель SGL-сортировщика. Крейт-контроллер последовательной магистрали типа L2 в этом случае может выступать как СС, согласующийся с настоящим стандартом. Однако контроллер L2 может не иметь источника тока смещения на шине "Запрет требования". В этом случае к контакту 17 соединителя SGL-сортировщика контроллера L2 необходимо подключить источник тока смещения и соединить его с линией "Запрет требования" соединителя АСВ.

Неалресованные операции пуска магистрали крейта Z и сброса магистрали крейта C не требуют использования сигналов EN от ACB. Однако перед выполнением любой из этих операций контроллер должен захватить управление крейтом одним из способов арбитража приоритета. Необходимо следить за тем, чтобы сигналы Z и C, генерируемые на магистраль крейта одним контроллером, не нарушали операций другого контроллера.

Сигнал "Запрет" (Inhibit-I) магистрали крейта не связан с операциями на магистрали крейта и может генерироваться в любое время любыми контроллерами или другими вставными блоками. В отличие от требований, предъявляемых к вставным блокам (см. 5.5.2 ГОСТ 27080), контроллеры, хотя и способны генерировать и поддерживать сигнал I на магистрали крейта, не должны отвечать выдачей и поддержанием сигнала I на магистрали крейта при Z · S2.

4 ИСПОЛЬЗОВАНИЕ ЛИНИЙ МАГИСТРАЛИ ДОПОЛНИТЕЛЬНЫХ КОНТРОЛЛЕРОВ И СВЯЗУЮЩИХ СИГНАЛОВ

Каждая линия соединителя АСВ и соответствующих гнезд передних панелей должна использоваться в соответствии с обязательными требованиями, изложенными в следующих пунктах. В табл. 1 представлены обозначения, принятые сокращения и источники сигналов, определенных в этом разделе.

4.1 Управляющие сигналы

Контроллер, который используется совместно с одним или несколькими контроллерами в крейте КАМАК, не должен генерировать никаких сигналов на магистрали крейта, кроме сигнала 1 и сигнала (сигналов) L на занимаемой ими станции (занимаемых станциях), если он не захватил управление крейтом или не адресован как модуль. Контроллер должен за сватить управление или выдачей сигнала "Требование" при способе R/G, или сигнала ACL при способе ACL. Рекомендуется осуществлять захват управления по способу R/G, если против этого нет серьсзных гехнических возражений.

4.1.1. Сигнал "Требование"

Аля того, чтобы захватить управление крейтом по протоколу R/C, контроллер должен сначала выдать сигнал "Требование" в виде логи ческой "1". Однако он не должен начинать переход "0 →1" сигнала "Требование", если сигналы "Запрет запроса" и АСL не соответствуют одновременно логическому "0". Если он выдал сигнал "Требование" в принимает сигнал "Запрет запроса", равный логической "1", или сигнал АСL, равный логической "1", он должен в течение 50 ыс осуществить переход "1 →0" сигнада "Требование"

4.1.2. Сигналы "Разрешение-вход" и "Разрешение-выход". Контроллер, работающий по способу R/G, должен генерировать сигнал "Разрешение-выход" следующим образом.

- 1) Он должен тенервровать сигнал "Разрешение-выход", равный ло-гическому "0", если сигнал "Разрешение-вход" равен логическому "0". 2) Если он не выдавал сигнал "требование" перед поступлением
- перехода "0→1" на "Разрешение-вход", он должен ретранслировать сигнал с "разрешения-вход" на "Разрешение-выход".

 3) Если он выдал сигнал "Требование" перед поступлением перехода "0→1" на "Разрешение-вход", он должен поддерживать логический "9"
- на "Разрешение-выход" до того, как получит переход "0→1"" на "Разрешение-вход" и выдаст сигнал "Запрет требования", чтобы установить управление крейтом.

Если контроллер ретранелирует сигнал "Разрешение", то рекомендуется передавать сигнал с минимальной задержкой.

4.1.3 Сигнал "Запрет требования"

Контроллер захватывает управление крейтом инициацией перехода "0→1" "Запрет требования" и удерживает управление крейтом до ини-циации им перехода "1→0" "Запрет требования". Он должен удерживать управление крейтом минимум 350 нс, если только он не получит сигнал ACL, равный логической "1".

Контроллер устанавливает свой контроль над крейтом выдачей сигнала "Запрет требования". Если контроллер генерирует сигнал "Запрет требования", равный логическому "0", между операциями команды, то он теряет свой контроль после каждой операции, давая тем самым возможность другому контроллеру захватить (и, возможно, удерживать) управление. Если, напротив, контроллер между операциями команды поддерживает сигнал "Запрет требования" равным догической "1", то контроллером удерживается управление крейтом, что позволяет, например, осуществить передачу блоков данных с минимальной залержкой

4.1.4 Тенерация сигнала АСІ.

В любой конкретный момент времени генерация сигнала АСL должна быть разрешена только одному контроллеру в крейте КАМАК. Контроллеру, генерирующему сигнал АСL, рекомендуется генерировать его только в том случае, если он собирается начать операцию на магистрали: крейта (например, при распознавании адреса крейта в адресованной ему команде КАМАК), и тем самым обеспечить максимальное использование магистрали крейта другими контроллерами. Сигнал АСL должен полдерживаться до завершения операции на магистрали крейта.

Контроллер, выдавший сигнал АСL, не должен начинать свою операцию на магистрали крейта, еслы:

- 1) не прошло менее 200 не после выдачи сигнала АСА:
- 2) его сигнал "Запрет требования" не установлен в состояние логического "".

Последовательный контроллер типа L2 приступает к операции на магистрали крейта независимо от состояния сигнала "Запрет требования". После получения первого байта адресованной ему команды, он генерирует сигнал АСЬ для захвата управления крейтом. Операция на магистрали крейта может быть разрешена только после получения четырех последующих байтов. Минимальное время прохождения четырех последующих байтов не превышает 800 не для последовательной ветви при максимальной ее пропускной способности 5-106 байт/с в байт-последовательном режимс.

4.1.5 Реакция на сигнал АСІ.

Контроллер не должев начинать операцию на магистрали крейта до перевода своего сигнала ACL в состояние логической "1". Контроллер должен закончить свою операцию на магистрали крейта, если он получил сигнал ACL в состоянии логической "1", после того, как выдал стробсигнал S1. Контроллер в ответ на сигнал ACL должен завершить управление до того, как контроллер, выдавший сигнал ACL, начнет свою операцию на магистралы крейт».

Контроллер заканчивает управление крейтом, прерывая или завершая операцию на магистрали крейта. Если используется последовательная магистраль, контроллер, при оперировании на максимальной скорости последовательной магистрали, обычно имеет в своем распоряжении 800 нс до окончания управления В ином случае байт-такт информирует (см. 54.8 ГОСТ 26.201.2), что он может

продлить свое управление. В последнем случае контроллер может завершить доследовательность операций на магистрали крейта до окончания управления.

4.2 Сигналы FN

4.2.1. Теперирование сигналов TN

Для осуществления операций команды на магистрали крейта контроллер должен выдать на адресуемую станцию закодированный в двочином коде номер станции по линиям EN (EN1 — EN16) ACB. Так же, как это установлено для сигналов магистрали крейта, АС не должен выдавать сигналы EN, если он не захватил управление крейтом. При таймировании операции команды на магистрали крейта временные задержки, связанные с лекодированием сигналов EN в СС, должны быть учтены в промежутке времени t_0 и t_1 (см. рис. 9 ГОСТ 27080—93).

4.2.2 Реавиня на сигнаты EN

СС волжен реагировать на поступление ас линиям EN закодировавных в двоичном коде номеров станций испрерывно, за исключением промежутков времени, когда он не управляет крейтом. В СС каждый из кодов номера станции от N (1) до N (24) должен быть декодирован и преобразовая в сигнал на соответствующей линии магистрали крейта от N (1) до N (24) в течение не болес 100 нс.

43 € итнэзы запросов

СС должен передавать сисвалы запросов (L1 — L24) от управляю- нией станции по магистрали крейта на контакты запросов (AL1 — Δ L24) соединителя ACB.

44 Прочис сиганиы

Линия "Условно свободен" зарезервирована для передачи сигнала байт-такта в системях с последовательной магистрально.

5. СОЕДИНИ ГЕЛЬ МАСИСТРАЛИ ДОПОЛНИТЕЛЬНЫХ КОНТРОЛЛЕРОВ В СВЯЗМОНИЕ СОЕДИНИТЕЛИ ПЕРЕЛИЕЙ ПАНЕЛИ

Каждый контроллер должен иметь расположенный свади 40-контактным соединитель АСВ. Соединитель должен иметь два ряда контактных штырей с шагом 2,54 мм, размер контакта — 0,635 мм. Примеры соединителей, отвечающих этим требованиям, представлены в документах IEEE Std 675 и EUR 6500e. Соединитель должей размещаться на задвей нане и контроллера над соединителем магистрали крейта. Контакт 1 должен быть правым нижним (если смотреть на концы штырей) и сто местоположение должно быть отмечено на задней нанели контроллера. Контакт 1 должен быть расположен от 130,4 до 133,4 мм над горизонтальной базой блока. Никакая часть соединителя на должна выступать за следующие размеры: 188,6 мм нал горизонтальной базой; 290 мм от вертикальной базы в зоне ниже отметки 126,6 мм над

горизонтальной базой вставного блока (см. рис. 4 и 5 ГОСТ 27080). Соответствие между сигналами и линиями АСВ представлено в табл. 2. Контроллер, предназначенный для захвата управления крейтом по протоколу R/G, кроме того, должен иметь на передней панели три коаксиальных соединителя типа МК-50 (в соответствии с рис. 5). Эти три соединителя должны маркироваться и использоваться следующим образом.

- 1) Для выхода сигнала "Требование" (Request). Этот сигнал должен быть в любой момент времени таким же, как сигнал "Требование" на ACB.

 - 2) Для входа сигнала "Разрешение-вход" (Grant-In).3) Для выхода сигнала "Разрешение-выход" (Grant-Out).

6. НОРМЫ НА СИГНАЛЫ

Выходные сигналы контроллеров должны передаваться на все линии АСВ и на соответствующие соединители передней панели через внутренние схемы ИЛИ. В каждой линии должен иметься индивидуальный источник тока смещения, который приводит линию в состояние "0" при отсутствии сигнала "1". Время нарастания и спада выходных сигналов не должно быть меньше 10 нс для того, чтобы исключить взаимовлияние сигналов.

Выходные сигналы контроллеров от всех линий магистрали крейта должны полностью отвечать обязательным требованиям ГОСТ 27080.

6.1 Нормы на сигналы АСВ

Все сигналы на АСВ должны соответствовать нормам на напряжение сигналов, указанным в табл. 5, и нормам, установленным в табл. 3 настоящего стандарта на источники токов смещения.

Нормы на источники токов смещения в АСВ заимствованы из табл. 6 ГОСТ 27080 и соответствуют нормам, установленным для логических элементов, потребляющих ток (например, для стандартных TTL и DTL-схем для блоков, генерирующих сигналы, и TTL-схем Шоттки низкой мощности для блоков, принимающих сигналы). Они соответствуют также нормам сигналов на соединителе SGL-кодировщика последовательного крейт-контроллера (см. разд. 14 ГОСТ 26.201.2). Эти нормы лимитируют количество АС, допустимое в крейте КАМАК. Этот лимит составляет 8 АС, он определяется общим током потребления и токовой нагрузкой в линиях AL. Если SGL-ко-дировщик подключен через соединитель SGL крейта, то допустимое количество AC уменьшается. Если некоторые AC не принимают сигналы AL, то количество AC может быть увеличено, но до предела,

обусловленного допустимым током нагрузки линий магистрали крейта (см 6.3).

6.2 Нормы на сигналы, связующие переднюю панель с АСВ

Сигналы передней панели "Требование", "Разрешение-вход" и "Разрешение-выход" должны соответствовать нормам напряжений сигналов, указанным и табл. 5 ГОСТ 27080, и нормам на источники токов смещения, указанным в табл. 3 настоящего стандарта.

6.3 Нормы сигналов на соединения АС магистралью крейта

Все сигналы интерфейса магистрали крейта КАМАК в АС должны соответствовать табл. 5 ГОСТ 27080, за исключением сигналов Q, R и Х, которые должны соответствовать нормам, представленным в табл. 4 настоящего стандарта.

Нормы на сигналы интерфейса магистрали крейта КАМАК допускают до 12 АС в крейте КАМАК. Однако предельное количество АС может быть уменьшено, если некоторые вставные блоки, полностью соответствующие ГОСТ 27080, принимают сигналы Q, R или X с магистрали крейта. Подобный блок составляет токовую нагрузку на магистраль крейта, эквивалентную токовой нагрузке от четырех АС. 6.4 3 а щ и та в ходов сигналов

Входы сигналов "Разрешение-вход" и "Запрет требования" рекомендуется защищать от помех, наводимых другими сигналами линий магистрали АС или магистрали крейта. Эту защиту рекомендуется выбирать в соответствии со спецификой назначения контроллера, но обычно достаточно применить интегрирующую цепочку с постоянной времени ≈50 нс для сигнала "Разрешение-вход" и интегрируюшую цепочку с постоянной времени ≈ 50 нс для положительного (" $1\rightarrow 0$ ") фронта на входе "Запрет требования" каждого контроллера.

Целью такой защиты является прелотвращение одновременного захвата управления магистралью крейта более чем одним контроллером вследствие помех или других непредвиденных случайных отклонений сигнала.

ПРИЛОЖЕНИЕ А

СПЕПИФИКАЦИЯ КРЕЙТ-КОНТРОЛЛЕРА КАМАК ТИПА А2

А1. Крейт-контроллер КАМАК типа А2

Чтобы соответствовать спецификации крейт-контродлера типа A2, крейт-контродлер должен содержать все обязательные средства, определенные в настоящем приложении. Он не должен содержать иных средств, которые могли бы нарушить его взаимозаменяемость с другими крейт-контродлерами типа A2 как с точки зрения схемотехники, так и с точки зрения программирования. Он должен быть полностью взаимозаменяем с тем, который соответствует рис. 6, при этом идентичность структуры, внутренних сигиалов (указанных без префикса "В" на рис.6) или логических выражений не является обязательной.

Что касается протокола связи по магистрали ветви, то у контроллера типа A2 (ССА2) он взаимозаменяем с протоколом, определенным в приложении А ГОСТ 26 201.1 для крейт-контролтера типа A1 (ССА1). На практике, длительности циклов магистрали ветви могут отличаться вследствие наличия у ССА2 логики арбитража приоритета.

Для того, чтобы иметь возможность использовать дополнительные контроллеры, ССА2 в отличие от ССА1 имеет соединитель магистрали дополнительного контроллера и связующие средства, описанные в разд. 1—6. Различия (кроме несущественных) между настоящим приложением и Приложением А ГОСТ 26.201.1 обозначены в настоящем приложении вертикальной чертой на поле.

А2. Прочие крейт-контроллеры

Для обеспечения взаимозаменяемости прочих крейт-контроллеров с крейт-контроллером типа A2 рекомендуется те их средства, которые обязательны или характерны для CCA2, выполнять в соответствии с требованиями к CCA2.

А3. Основные средства

Крейт-контроллер должен полностью соответствовать обязательным требованиям ГОСТ 27080 и ГОСТ 26.201.1 (разд. 1—7). Все входные сигналы ССА2 у порта магистрали встви обязательно должны соответствовать норме на самый слабый сигнал (±0,3 мА), указанной в табл. 8 ГОСТ 26.201.1.

Крейт-контролдер типа A2 не должен занимать более трех станций. Рекомендуется строить его в виде блока двойной ширины, подключающегося к магистрали крейта через управляющую станцию и смежную нормальную станцию.

Кроме двух соединителей портов магистрали встви, установленных на передней панели (см. А4), крейт-контроллер должен быть снабжен устанавливаемым сзади соединителем, обеспечивающим возможность подключения блока LAM-сортировщика (см. А9).

Крейт-контроллер должен полностью соответствовать обязательным требованиям разд. 1—6 настоящего стандарта. Кроме устанавливаемого сзади соединителя LAM-сортировшика, крейт-контроллер должен иметь сзади же соединитель АСВ.

А4. Передняя панель

Крейт-контроллер должен иметь все перечисленные средства передней панели и никаких других во избежание нарушения взаимозаменяемости (допустимо, например, добавление индикаторов, предназначенных для тестирования).

 должен иметь два соединителя портов магистрали встви, как указано в разд. 6 ГОСТ 26.201.1, установленных в правильной ориентации и соединенных со всеми соответствующими контактами.

- 6) Должен иметь метку, показывающую установленный крейту адрес (от 1 до 7). Допускается ограниченный доступ к средствам изменения адреса крейта на передней панели или через переднюю панель.
- в) Должен иметь средство переключения крейт-контроллера в режим "off-line" (см. A10).
- г) Должен иметь коаксиальный соединитель типа МК-50, соответствующий рис. 5, для ввода сигнала запрета. Нормы сигнала должны соответствовать 7.2.1 ГОСТ 27080.
- д) Должен иметь две кнопки (или аналогичные ручные органы управления) для пуска или сброса. Рекомендуется с помощью надписи на передней панели указать, что этими кнопками следует пользоваться только в режиме "off-line".
- е) Должен иметь три коаксиальных соединителя для сигналов "Требование" и "Разрешение". Эти соединители должны полностью соответствовать обязательным требованиям разл. 5.
- ж) Должен иметь средства для индикации применяемого способа управления R/G или ACL (см. A5.5). Допускается ограниченный доступ к средствам переключения с одного способа на другой на передней панели или через переднюю панель.
 - А5 Сигналы магистрали ветви

Крейт-контроллер типа A2 должен осуществлять захват управления крейтом в соответствии с обязательными требованиями 4.1.

А5.1 Сигналы данных

Когда крейт-контроллер находится в состоянии "on-line", адресован и управляет крейтом во время операции команды чтения со станции с номером, отличным от N(30), он должен передать сигналы с 24 линий "Чтение" магистрали крейта через внутренние схемы "ИЛИ" линий BRW. Крейт-контроллер типа A2 должен иметь вентили между линиями R и BRW, чтобы передача данных чтения осуществлялась только тогда, когда крейт-контроллер находится в состоянии "on-line", адресован и управляет крейтом, например, если BCR_i (BTA + BTB_i) = 1. Во время операций записи со станции с номером, отличным от N(30), он должен ретрапислировать сигналы 24 линий BRW на линии "Запись" магистрали крейта. Крейт-контроллер типа A2 должен иметь вентили между линиями BRW и W, чтобы передача дапных записи осуществлялась только тогда, когда контроллер адресован, находится в состоянии "on-line" и управляет крейтом.

Вентили, установленные между линиями R и <u>BRW</u> а также BRW и W, могут ограничивать передачи только в операциях чтения <u>BF16-BF8</u> = 1 и операциях записи <u>BF16-BF8</u> = 1 соответственно. Однако крейт-контроллеру разрешается генерация сигналов на линиях "Запись" магистрали крейта во время любой операции, которой он управляет, а другие блоки, подключенные к магистрали крейта, могут реагировать на присутствие этих сигналов только во время операций записи.

А5.2 Сигналы команд

Сигналы команд ветвей BN, BA и BF рекомендуется в крейт-контроллере привести в надлежащее состояние (кондиционировать), например, путем интегрирования или накопления во время переключения BTA "0→1" (перехода BTA из состояния "0" в "1") для того, чтобы защитить командные линии магистрали ветви от эффектов смещения фронтов.

Сигналы субадреса и функции должны ретранслироваться крейт-контроллером с линий ВА и ВF на линии А и F магистрали крейта во время всех операций команды, когда контроллер находится в состоянии "on-line", адресован и управляет крейтом.

В крейт-контроллере, занимающем две станции, любой из кодов номера станции от N(1) до N(23) должен быть декодирован для выработки крейт-контроллером сигнала соответствующей линии от N(1) до N(23) магистрали крейта. Когда крейт-контроллер управляет крейтом при операции на магистрали ветви, код номера станции должен декодироваться с линий ВN соединителя порта магистрали ветви. Во все иные

моменты времени коды номера станции должны декодироваться с линий EN соединителя ACB.

Коды номера станции от N(26) до N(30), полученные с соединителя порта магистрали ветви (не обязательно с соединителя ACB), должны быть декодированы в адреса внутренних средств крейт-контроллера.

При операциях команды с N(26) сигналы магистрали крейта должны подаваться на все линии от N1 до N23. При операциях команды с N(24) на линии от N1 до N23 подаются сигналы магистрали крейта, соответствующие содержимому 23-битного регистра номера станции (SNR). Этот регистр должен загружаться с линий BRW1 — BRW23 по команде N(30) A(8) F(16). Бит регистра номера станции, который загружен с линии BRW1, управляет состоянием N1, и т.д. Регистр номера станции не должен сбрасываться по сигналу магистрали крейта "Пуск" (Z).

Контроллер, занимающий три станции, может отличаться наличием 22-битного регистра номера станции, декодировать от N(1) до N(22) и выдавать сигналы на линем от N1 до N22 магистрали крейта.

A5.3 Сигналы общего управления

Сигнал пуска магистрали крейта Z должен генерироваться в ответ на команду $N(28)\cdot A(8)\cdot F(26)$ и в ответ на сигнал "Пуск ветви" (см. 4.5.1 ГОСТ 26.201.1). Когда крейт-контроллер нахолится в состоянии" off-line", сигнал Z должен генерироваться в ответ на "Пуск" от ручного управления.

Сигнал сброса магистрали крейта С должен генерироваться в ответ на команду N(28) - A(9) - 1, (26). Когда крейт-контроллер находится в состоянии "off-line", сигнал С должен генерироваться в ответ на "Сброс" от ручного управления.

Сигналы магистрали крейта "Пуск" (Z) и "Сброс" (С) не должны генерироваться, если крейт-контроллер управляет крейтом, и должны генерироваться согласно требованиям таймирования неадресованных операций, приведенным на рис. 10 ГОСТ 27080.

Они должны быть увязаны с последовательностью, включающей сигналы В и S2 по тем же требованиям таймирования, приведенным в ГОСТ 27080. В этой последовательности может присутствовать необязательный сигнал S1, но другие блоки, подключенные к магистрали крейта, не должны реагировать не генерацию S1 вместе с Z и C.

Сигнал магистрали крейта "Пуск" (Z) должен генерироваться в ответ на сигнал "Пуск ветви" только тогда, когда крейт-контроллер управляет крейтом и сигнал "Пуск ветви" находится в состоянии логической "1". (Следует заметить, что крейт-контроллер типа А2 может не успевать генерировать сигнал магистрали крейта "Пуск" (Z) в ответ на "Пуск ветви", если какой-либо дополнительный контроллер проводит в это время длинную последовательность операций на магистрали крейта).

Сигнал магистрали крейта "Запрет" (I) может быть инициирован, если находящимся в состоянии "on-line" крейт-контроллером выдан сигнал магистрали крейта "Hyck" (Z), он должен достичь установившегося состояния "I" не позднее, чем через время t (см. ГОСТ 27080, рис. 10). Если "Пуск" выдан другим блоком (в сопровождении "Запрет" или без него), то находящийся в состоянии "on-line" крейт-контроллер не должен генерировать "Запрет" в ответ на Z магистрали крейта, сопровождаемый S2. Сигнал "Запрет" должен генерироваться также в ответ на команду N(30) - A(9) - F(26). Во всех этих случаях сигнал "Запрет" должен поддерживаться крейт-контроллером до сброса по команде N(30) - A(9) - F(24). Он должен также генерироваться при поступлении сигнала "Запрет" с передней панели.

Если сигнал на линии "Запрет" магистрали крейта находится в состоянии "1", то в ответ на команду $N(30) \cdot A(9) \cdot F(27)$ должен выдаваться O = 1.

А5.4 Дополнительные соединения

Крейт-контроллер типа A2 не должен использовать дополнительные контакты занимаемых им станций магистрали крейта. А5.5 Способы арбитража, используемые крейтконтроллером

Крейт-контроллер типа A2 должен захватывать управление крейтом способами "Требование/Разрешение" (R/G) и "Отключение дополнительного контроллера" (ACL). Использование метода "Отключение дополнительного контроллера" или "Требование/Разрешение" определяется состоянием органов управления установкой R/G или ACL. При состоянии "1" органов управления должен использоваться способ "Отключение дополнительного контроллера". При состоянии "0" органов управления должен использоваться способ "Требование/Разрешение". Если крейт-контроллер использует способ "Требование/Разрешение", то он должен отвечать на сигнал ACL по ACB (см. 4.1.5).

Аб Обработка запроса

Аб.1 Запрос ветви

Сигнал "Запрос ветви" (Branch Demand — BD) должен быть выведен, с последующим приведением в надлежащее состояние, из схемы объединения по ИЛИ сигнала "Внешний запрос" (External Demand), поступающего с контакта 48 соединителя LAM-сортировника, и сигнала "Внутренний запрос" (Internal Demand), который, в свою очередь, является объединением по ИЛИ 24 GL-сигналов, поступающих через соединитель LAM-сортировщика.

Вывод сигнала "Запрос ветви" на линию BD должен запрещаться командой N(30) A(10) F(24) или сигналом магистрали крейта "Пуск" (Z) совместно с S2, когда они генерируются крейт-контроллером. Он разрешается командой N(30) A(10) F(26). Команда N(30) A(10) F(27) должна, при разрешенном выводе сигнала "Запрет ветви" на линию BD, вызывать отклик BG-1.

Команда $N(30)\cdot A(11)\cdot F(27)$ должна вызывать отклик BQ=1, если объединенные по ИЛИ сигналы внутреннего или внешнего запроса находятся в состоянии "1", даже если выход сигнала BD запрещен.

Сигнал "Внутренний запрос" должен запрещаться сигналом "Запрет внутреннего запроса" (Inhibit Internal D) в состоянии "1", поступающим с контакта 51 LAM-сортировщика.

А6.2 Сортировка L

В ответ на сигнал GL-требования (Graded-L Request) BG=1 в сопровождении $BCR_i=1$ крейт-контроллер должен захватить управление крейтом. Он должен генерировать сигнал GL-операции (Graded-L operation) на контакте "1" соединителя LAM-сортировщика. Он должен принять GL-сигналы GL1—GL24 с соединителя LAM-сортировщика и передать их на соответствующие линии BRW (GL1 на BRW1 и т.д.).

Крейт-контроллер должен принять GL-сигналы с соединителя LAM-сортировшика и передать их на соответствующие линии BRW в ответ на операции команды вида $N(30) \cdot A(0-7) \cdot F(0)$ (см. A9.4).

В обоих случаях GL-информация должна передаваться с LAM-сортировщика на линии BRW с минимальной задержкой, и эти сигналы не должны появляться на линиях чтения магистрали крейта.

Аб.3 Токи смещения на линиях GL и L

Источники токов смещения, соответствующие табл. 6 ГОСТ 27080, должны быть подключены ко всем линиям GL соединителя LAM-сортировщика и ко всем линиям AL соединителя магистрали дополнительного контроллера, установленного на крейт-контроллере. Линии L соединителя LAM-сортировщика должны быть изолированы от линий L магистрали крейта и не должны обеспечиваться источниками токов смещения, что позволяет в простых LAM-сортировщиках формировать комбинации проводных ИЛИ сигналов L без участия линий AL ACB.

А7 Требования таймирования

Запуск любой операции крейт-контроллера разрешается сигналами магистрали ветви BCR_i, BG, BZ и BTA и сигналами, связующими с ABC ("Требование", "Разрешение", "Отключение дополнительного контроллера" и "Запрет требования").

Перед выполнением операции на магистрали ветви крейт-контроллер должен сначала захватить управление крейтом. Он должен начать процесс захвата управления крейтом при получении $BCR_i=1$. Он должен удерживать управление крейтом выдачей "Запрет запроса" или ACL до тех пор, пока не получит $BCR_i=0$.

Если между операциями команды драйвер ветви генерирует BCRi = 0, крейт-контроллер должен прекращать управление крейтом после каждой операции для того, чтобы дать возможность дополнительным контроллерам захватить (и, возможно, удерживать) управление крейтом. Если в промежутках между операциями команды драйвер ветви поддерживает BCR_i = 1, то крейт-контроллер должен удерживать управление крейтом непрерывно, что позволяет выполнить, например, передачу блоков данных с минимальной задержкой.

При выполнении операций команды с кодом номера станции, отличным от N(30), крейт-контроллер должен генерировать строб-сигналы магистрали крейта S1 и S2 с таймированием, аналогичным таймированию сигналов встви ВТА и ВТВ, как определено в A7.1.

Операции команды с кодом номера станции N(30) не требуют генерирования сигналов S1, S2 или B на линии магистрали крейта (см. A7.3).

При GL-операциях строб-сигналы или сигнал В магистрали крейта не применяются и при таймировании необходимо учитывать задержки в соединениях вне магистрали крейта с блоком LAM-сортировщика. Требования таймирования представлены в A7.2 и A9.3.

Внутренний таймер-генератор крейт-контроллера должен быть защищен от паразитных выбросов в линиях ВТА и ВСR.

Один из способов защиты, показанный на рис. 6, состоит в кондиционировании сигналов, поступающих с линии ВТА или с выбранной линии ВСR, интегрированием с постоянной времени 100^{+50} нс. Другой способ заключается в кондиционировании внутреннего сигнала ТА, управляющего таймер-генератором. Приход сигналов ВТА и ВСR обнаруживается крейт-контроллером с задержкой (см. рис. 3 и 4 ГОСТ 26.201.1), внесенной этой защитой.

А7.1 Выполнение операций команды, сопровождаемых сигналами магистрали крейта S1, S2 и R

Когда крейт-контроллер отвечает на команду выполнения операции ветви, требующей одновременной операции на магистрали крейта в сопровождении сигналов S1, S2 и В, должны удовлетворяться нижеуказанные соотношения таймирования. В этом разделе моменты времени 10, 13, 15 и т.д. соотносятся с соответствующими ключевыми точками на рис. 9 ГОСТ 27080.

Во время фазы 1 операции драйвер ветви генерирует сигналы BF, BA и BN вместе с сигналами BCR_i на адресованный крейт-контроллер. Крейт-контроллер должен с минимальной задержкой начать процесс захвата управления крейтом, как только он обнаружит переход "0->1" сигнала BCR_i (см. разд. 4 настоящего стандарта).

В фазе 2 операции после действий, выполненных драйвером ветви и крейт-контроллером во время фазы 1, крейт-контроллер принимает BTA = 1, сопровождаемый BG = 0, BCRi = 1, и назначенные сигналы команды. Он должен установить на магистрали крейта требуемые сигналы N и сигналы команды, которые начинают операцию на магистрали крейта во время ф, совпадающее с моментом обнаружения BTA = 1 или с моментом захвата управления крейтом, если захват происходит позже BTA = 1 (см. 4 настоящего стандарта).

В момент t_3 , через 400^{+200} не после t_0 , крейт-конгроллер должен начать переход "0 \rightarrow 1"

строб-сигнала S1 магистрали крейта и переход "1 \rightarrow 0" сигнала таймирования ветви ВТВі. В момент t_5 , через 200⁺¹⁰⁰ не после t_5 , должен быть начат переход "1 \rightarrow 0" строб-сигнала S1.

В фазе 4 крейт-контроллер начинает переход "0 \rightarrow 1" строб-сигнала S2 в момент t_6 , который или совпадает с обнаружением BTA = 0, или определяется интервалом t_5-t_6 , равным 100^{+100} нс, если BTA = 0 обнаруживается позже.

В момент t_8 , через 200^{+100} нс после t_6 , должен быть начат переход " $1 \rightarrow 0$ " S2.

В момент \mathfrak{H}_0 , через 100^{+100} нс после \mathfrak{H}_0 , крейт-контроллер должен начать переход "1 \mathfrak{H}_0 " сигналов N и В магистрали крейта и должен изолировать линии Q и R магистрали ветви от линий BQ и BRW магистрали ветви соответственно. Затем он должен начать переход "0 \rightarrow 1" сигнала таймирования ветви BTB_i. Когда крейт-контроллер получит BCR_i = 0, он должен начать переход "1 \rightarrow 0" сигнала "Запрет требования" или сигнала "Отключение дополнительного контроллера", если последний используется.

А7.2 G L-о п е р а ц и и (о п е р а ц и и с о р т и р о в к и з а п р о с о в) Крейт-контроллер во время операции сортировки запросов при BG = 1 и BCR_i = 1 должен выполнять следующие соотношения таймирования. Во время фазы 1 операции драйвер ветви генерирует сигнал команды BG одновременно с сигналами BCR_i на адресованные крейт-контроллеры. Крейт-контроллер должен начать с минимальной зарержкой процесс захвата управления крейтом при обнаружении перехода "0→1" сигнала BCR_i. В фазе 2 он должен начать переход "1→0" сигнала таймирования ветви ВТВ_i через 400⁺²⁰⁰ ис после получения ВТА = 1 или носле захвата управления крейтом, если захват осуществляется после получения ВТА = 1. В то же время он должен выставить на своих выходах ВRW GL-информацию, поступившую с соединителя LAM- сортировщика (см. А9.3). Во время фазы 4 он должен с минимальной задержкой сбросить GL-информацию со своих выходов ВWR после прихода ВТА = 0 и начать переход "0→1" сигнала ВТВ_i. Крейт-контроллер должен поддерживать управление крейтом до получения ВСRi = 0, после чего он должен начать переход "1→0" сигнала "Запрет требования" или сигнала "Отключение дополнительного контроллера", если последний используется.

А7.3 Выполнение операций команды, не сопровождаемых сигналами магистрали крейта S 1, S 2 и В

Выполнение операций команды, адресованных к N(30), осуществляется внутренними средствами крейт-контроллера и связано с чтением GL-информации через соединитель LAM-сортировщика. Крейт-контроллер не должен генерировать сигналы на линиях магистрали крейта S1, S2, В или R.

Таймирование этих операций должно соответствовать требованиям к выполнению операций команды (см. A7.1), за исключением сигналов S1, S2 и B, которые не генерируются на линиях магистрали крейта, хотя могут иметься эквивалентные внутренние сигналы.

А8 Команды, выполняемые крейт-контроллером типа А2

Крейт-контроллер типа A2 должен распознавать и выполнять команды, сведенные в табл. 5, и не должен использовать никакие иные команды. Будучи адресован одной из этих команд, он должен генерировать BX = 1. В крейт-контроллере должны полностью декодироваться коды пяти функций F (0, 16, 24, 26, 27).

Крейт-контроллер должен в ответ на все команды чтения или записи с внутренних регистров или соединителя LAM-сортировщика генерировать BQ=1. Это осуществляется двумя командами — $N(30) \cdot A(0-7) \cdot F(0)$ и $N(30) \cdot A(8) \cdot F(16)$.

А9 Соединитель LAM-сортировщика

Размещенный сзади соединитель, предназначенный для подключения LAM-сортировщика, должен быть 52-контактным, двухрядным, с запрессованными штырями. В подразделе A1. 9 приложения к документу EUR 4600е и в IEEE Std. 596 дан пример соединителя, соответствующего этим требованиям. Он должен размещаться на крейт-контроллере сзади, над соединителем магистрали крейта в зоне свободного доступа (см. ГОСТ 27080, рис. 3), контакт 1 внизу. Распределение 52 контактов показано в табл. 6.

LAM-сортировщик получает сигналы L от крейт-контроллера через соединитель LAM-сортировщика. Он генерирует отсортированные сигналы L, GL и, возможно, сигнал "Внешний запрос". Он может содержать вентили, регистры маски и т.п. для обработки сигналов L или может просто состоять из пассивных перемычек между контактами соединителя LAM-сортировщика. Он может взаимодействовать с крейт-контроллером следующим образом:

1) Запрос встви. Крейт-контроллер вырабатывает сигнал "Запрос встви" (Branch Demand — BD) от сигналов отсортированных L (и, возможно, сигнала "Внешний запрос"), которые поступают к нему через соединитель LAM-сортировщика.

2) GL-операции. Крейт-контроллер генерирует сигнал операции сортировки 1. на

контакт 1, указывая тем самым, что требует отсортированных сигналов 1.

Если LAM-сортировщик реагирует на этот сигнал, то он должен ответить по требованиям таймирования A9.3.

3) Выполнение операций команды. В ответ на команды ветви с N(28) или N(30), крейт-контроллер генерирует сигнал "Контроллер адресован" на контакте 50. Это позволяет использовать LAM-сортировщик в качестве отдельной части крейт-контроллера, адресуемой независимо от ее места в крейте. Операции с N(28) отличаются от операций с N(30) наличием сигнала магистрали крейта "Занято" (Виѕу — В). Сигнал "Контроллер адресован" совместно с сигналами магистрали крейта А (0—7), но без сигнала В, показывает, что крейт-контроллер требует GL-сигналы. Сигнал "Контроллер адресован" совместно с сигналом В и операцией магистрали крейта может использоваться, например, для обращения к регистрам LAM-сортировщика.

Если LAM-сортировщик реагирует на сигнал "Контроллер адресован", то он должен ответить по требованиям таймирования 9.4.

Если крейт-контроллер в состоянии "on-line", управляет крейтом и $(BTA+BTB_i) \cdot BG \cdot BCR_i = 1$, то сигнал операции сортировки L на контакте 1 должен быть в состоянии логической "1".

Если крейт-контроллер в состоянии "on-line", управляет крейтом и [N(28) + N(30)] (BTA + BTB_i) BG BCR_i = 1, то во время операций команды с N(28) или N(30) сигнал "Контроллер адресован" на контакте 50 должен быть в состоянии "1".

Эквивалентные условия генерации этих двух сигналов — "Контролдер адресован" и "GL-операция" показаны в табл. 5 в терминах внутренних (необязательных) сигналов частной реализации крейт-контролдера типа A2.

Все обязательные требования таймирования относятся к персдаче сигнала с соединителя LAM-сортировщика на крейт-контроллер. Интервал между началом сигнала крейт-контроллера и получением установившегося отклика от внешнего блока включает задержки во внешнем блоке и задержки кабеля связи.

А9.1 Нормы на сигналы

Все сигналы, проходящие через соединитель LAM-сортировщика, должны отвечать требованиям 7.1 ГОСТ 27080. Норма на сигнал операции сортировки L на контакте 1, а также на сигнал "Контроллер адресован" на контакте 50 должна удовлетворять нормам на сигналы N. Все остальные сигналы, включая сигнал "Внешний запрос" на контакте 48 и сигнал "Запрет внугреннего запроса" на контакте 51, должны удовлетворять нормам на сигнал L.

А9.2 Таймирование сигнала "Запрос ветви"

Максимальная общая задержка между моментом достижения сигналом L устойчивого состояния "1" или "0" на управляющей станции крейт-контроллера и моментом, когда сигнал BD у порта магистрали встви этого же крейт-контроллера достигнет соответственно

состояния "1" или "0", определена 4.4.1. Если крейт-контроллер используется совместно с внешним LAM-сортировщиком, то компонента этой задержки, вызванная самим крейт-контроллером, не должна превышать 250 нс.

A9.3 Таймирование GL-операций

Интервал между генерацией сигнала "GL"-операция" (запуск сортировщика), сопровождаемый сигналами L, и установлением соответствующих GL-сигналов не должен превышать 350 нс.

А9.4 Таймирование выполнения операций команды

Интервал между генерацией сигнала "Контроллер адресован", сопровождаемого сигналами L вместе с сигналами магистрали крейта F(0), A(0-7), B=0, и установлением соответствующих GL-сигналов не должен превыщать 350 нс.

Внешний блок должен выдавать идентичную GL-информацию в ответ на сигнал "GL-операция" и на сигнал "Контроллер адресован", сопровождаемую A(0), F(0) и B=0. Субадреса A(1-7) могут быть использованы для доступа к разным выборкам GL-информации.

Если внешний блок отвечает на выполнение операций команды с $N(28) \cdot A(0-15)$, B=1 и кодом F, он должен удовлетворять обычным требованиям таймирования по ГОСТ 27080 для модулей КАМАК и иметь возможность обмена данными через линии магистрали крейта R и W.

A10 Состояние "off-line"

Состояние "off-line" устанавливается при помощи средства ручного управления состояниями "off-line/on-line", расположенного на передней панели крейт-контроллера. В этом состоянии контроллер не отвечает на команды или на сигналы требования сортировки І на магистрали ветви, а также не генерирует сигналы таймирования ветви на магистраль.

В состоянии "off-line" должны выполняться следующие минимальные условия.

- 1) Ручное управление пуском и сбросом с передней панели должно действовать. (В состоянии "on-line" не должно действовать).
- 2) Ввод сигнала "Запрет" с передней панели с возможностью его поддержания должен оказывать эффективное действие. Сигнал "Запрет" на магистрали крейта должен генерироваться только в ответ на поступление "Запрет" с передней панели.
- 3) Крейт-контроллер не должен отвечать на BTA = 1. Он не должен генерировать сигналы магистрали крейта B, N, S1 или S2 в ответ на BTA = 1 в сопровождении BG = 0 или обращаться к информации сортировки L в ответ на BTA = 1 в сопровождении BG = 1.
- 4) Крейт-контроллер не должен генерировать состояние "1" на выходах линий ВТВ, ВD, BRW, BQ или ВХ. В состоянии "off-line" крейта это предотвращает его вмешательство в операции встви.
 - 5) Крейт-контроллер не должен отвечать на BZ = 1.
- 6) Крейт-контроллер не должен предпринимать никаких действий, мешающих управлению или использованию магистрали крейта дополнительными контроллерами.
- В состоянии "off-line" рекомендуется соблюдать следующие дополнительные условия:
- 7) При отсутствии питания крейт-контроллера рекомендуется всем его входам и выходам на порты магистрали ветви беспрепятственно устанавливаться в состояние "0" или "1" по требованиям других блоков, подключенных к ветви, и не рекомендуется создавать перегрузки по току.
 - A11. "Запрет" (I) магистрали крейта в состоянии "off-line"

Те блоки, которые по требованиям ГОСТ 27080 (5.5.2) генерируют "Пуск" (Z), должны генерировать и І. Блоки, способные генерировать и поддерживать I, должны поддерживать I = 1 вплоть до специального сброса (см. 5.5.2 ГОСТ 27080). Крейт-контроллер типа A2, находящийся в состоянии "on-line", удовлетворяет этим требованиям.

Однако в состоянии "off-line" поз. 2 разд. A10 настоящего стандарта запрещает ему генерирование I = 1 иначе, чем в ответ на ввод "Запрет" с передней панели. В таком случае, при установленном состоянии "off-line", сигналом "Запрет" (I) может управлять дополнительный контроллер, пока крейт-контроллер в "off-line". Поз. 2 разд. 10 предназначена, главным образом, для предупреждения генерирования и поддержания i = 1 крейт-контроллером типа A2, находящимся в состоянии "off-line".

В этом случае:

1) Крейт-контроллеру типа A2 рекомендуется генерировать 1, как описано в A5 3 и A10 (и как показано на рис. 6).

2) Прочим дополнительным средствам, способным генерировать I (не дополнительным контроллерам), в состоянии крейта "off-line", рекомендуется в соответствии с 5.5.2 ГОСТ 27080 генерировать I=1 в ответ на $Z \in S2$. Им рекомендуется иметь возможность поддерживать I=1 и средства для его сброса.

А12. Соединитель магистрали дополнительного контроллера

Крейт-контроллер типа A2 должен иметь расположенный сзади соединитель ACB типа, описанного в разд. 5, соответствие контактов сигнальным линиям дано в табл. 2.

Т а б л и ц а 1 — Сигналы линий, подключенных к соединителю магистрали дополнительного контроллера и связующим соединителям передней панели

Название	Где проходит	Обозна- чение	Кем возбуж - дается	Число линий	Исп/ изование
Требование	АСВ и	RG	СС или АС	1	Указывает на наличие гребования управления
	передняя панель		AC		треоования управления
Разрешение- вхол	Передняя панель	Gl	CC или AC	ı	Указывает, что требо- вание удовлетворяется
Разрешенис- выход	Передняя панель	G0	СС или АС	!	Контроллер указывает, что GI поступил, но
Запрет требо- вания	ACB	RI	CC или AC	1	он его не требовал Указывает, что конт- роллер получил управ-
Отключение дополнитель- ного кон-	АСВ	ACL	один из СС или АС	1	ление по способу R/G Указывает на требова- ние прекратить управ- ление
троллера Код номера етанции	ACB	EN1, 2, 4, 8, 16	AC	5	Двоичный код номера станции
Запрос на внимание	ACB	ALI— AL24	CC	24	24 линии запросов от модулей
Условно сво- бодная линия	ACB	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	СС	1	Линия рекомендуется для байт-такта в системах с последовательной магистралью (ГОСТ 26.201.2)
Заземление	ACB	ov	СС или АС	7	Система заземления

FOCT 27079-95

Т а б л и ц а 2 — Распределение контактов соединителя магистрали дополнительного контроллера

Контакт	Линия	Контакт	Линия
1	0V	2	ENI
3	EN2	4	EN4
5	EN8	6	EN16
; 7	0V	8	ACL
9	0V	10	Условно свободна
11	0V	12	RQ
13	0V	14	RI
15	0V	16	ALI
17	AL2	18	AL3
19	AL4	20	AL5
21	AL6	22	AL7
23	AL8	24	AL9
25	AL10	26	ALII
27	AL12	28	AL13
29	AL14	30	AL15
31	AL16	32	AL17
33	AL18	34	AL19
35	AL20	36	AL21
37	AL22	38	AL23
39	AL24	40	0V

Примечание — Контакт 2 расположен напротив контакта 1, контакт 4 — напротив контакта 3, и т.д.

Т а б л и ц а 3 — Требования к смещению сигналов и источникам токов смещения на соединителе магистрали дополнительного контроллера и связующих соединителях передней панели

Требование к сигналу на соединителе	ACL RI	AL	Request, Grant- In/Out	EN, условно свободен
Линия в состоянии "1" при 0,5 В. Мини-мальный ток, потребляемый из линии блоком, генерирующим сигнал	Для СС 6,4 мА Для АС 16,0 мА	3,2 мА	16,0 мА	16,0 мА
Линия в состоянии "1" при 0,5 В. Максимальный ток, отдаваемый в линию блоком, принимаю- щим сигнал	0,4 мА на блок (не более 6,4 мА)	0,4 мА на блок (не более 3,2 мА)	12,8 мА	11,2 мА

Продолжение таблицы 3

Требование к сигналу на соединителе	ACL Ri	AL	Request, Grant- In/Out	EN, условно свободен
Линия в состоянии "0" при 3,5 В. Максимальный ток, потребляемый из линии блоком без ис- точника смещения	100 мкА	100 мкА	100 мкА	100 mkA
Линия в состоянии "0" при 3,5 В. Минимальный ток, отдаваемый в линию блоком с источником смещения	2,5 мА	2,5 мА	2,5 мА	2,5 mA
Размещение источни- ка тока смещения При 0,5 В 6 мА < I _p < 9,6 мА	СС	СС	Grant-In	CC

Т а б л и ц а $\,$ 4 — Требования к сигналам Q, R и X на соединителе магистрали дополнительного контроллера

Состояние на соединителе магистрали крейта	Предельное ограничение
Линия в состоянии "1" при +0,5 В. Максимальный ток, отдаваемый в линию АС, принимающим сигнал	0,4 мА
Линия в состоянии "0" при +3,5 В. Максимальный ток, потребляемый из линии каждым AC	100 мкА

Таблица 5 - Команды ветви, выполняемые крейт-контроллером типа А2

Действие		Команда	Отклик	
	N	Α	F	OIRIIK
Генерация сигнала Z	28	8	26	BQ = 0
Генерация сигнала С	28	9	26	BQ = 0
Чтение сигналов GL	30	0-7	0	BQ = 1
Загрузка SNR (регистр номера станции)	30	8	16	BQ = 1
Сброс сигнала 1	30	9	24	BQ = 0

ГОСТ 27079—95

Продолжение таблицы 5

Действие	Команда			Отклик
Agenerate	N	A	F	OTKINK
Установка сигнала I	30	9	26	BQ = 0
Проверка сигнала І	30	9	27	BQ = 1
				при I = 1
Запрет выхода BD	30	10	24	BQ = 0
Разрешение выхода BD	30	10	26	BO = 0
Проверка разрешения выхода BD	30	10	27	$\overrightarrow{BQ} = 1$
1				при
				разрещенном BD
Проверка наличия запросов	30	11	27	BQ = 1 при
				наличии
<u> </u>		<u> </u>		запросов

Т а б л и ц а 6- Распределение контактов соединителя сортировщика запросов крейт-контроллера типа A2

Контакт	Линия	Контакт	Линия
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 445 47 49 51	GL-операция GL1 GL2 GL3 GL4 GL5 GL6 GL7 GL8 GL9 GL10 GL11 GL12 GL13 GL14 GL15 GL16 GL17 GL18 GL19 GL20 GL21 GL20 GL21 GL20 GL21 GL22 GL23 GL24 Запрет внутреннего	2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52	L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L20 L21 L22 L23 Внешний запрос Контроллер адресован

линии магистрали дополнительного контроллера; 2 — магистраль крейта; 3 — модуль;
 д — дополнительный контроллер с наинизшим приоритетом; 5 — дополнительный контроллер с наивысшим приоритетом; 6 — крейт-контроллер

Рисунок 1 — Многоконтроллерный крейт

- 1 источники тока смещения (в каждой линии) по требованиям АСВ;
- источники тока смещения (в каждой линии) по требованиям магистрали крейта

Рисунок 2 — Крей-контроллер. Минимальная конфигурация

FOCT 27079-95

Т_{3 тах} — максимальная задержка АС.

- 1 Все сигналы, кроме "Разрешение-вход" и "Номер станции", генерируются АС.
- Таймирование операции магистрали крейта осуществляется аналогично рис. 9 Публикации МЭК 516, но с учетом задержки, вносимой декодером N.

Рисунок 3 — Последовательность сигналов AC, осуществляющего захват управления и операцию команды

Последовательность сигналов при захвате управления по способу ACL без прерывания текущей операции

Рисунок 4а

Последовательность сигналов при захвате управления по способу ACL с прерыванием текущей операции

Рисунок 4б

 $A \sim$ позиция A; $B \sim$ позиция B; $C \sim$ розетка, аналогичная поз.B, за исключением кабельного комплекта (как в поз. A); $I \sim$ замыкающий механизм и заземляющий корпус; $2 \sim$ исходный уровень; $3 \sim$ изоляция; $4 \sim$ центровой контактный штепесль, $5 \sim$ типовое гофрированное снижающее сопротивление(допускается и негофрированное). $6 \sim$ резьба; $7 \sim$ центровые контактные розетки; $8 \sim$ наружный контакт пружинного типа (расширяющийся и шлицованный)

Примечания к рис. 5

- 1 В связи с отсутствием отечественной проработки чертежа соединителя типа МК-50 в ЕСКД, в настоящем стандарте приводится к сведению копия рис. 5 из подлинника Публикации МЭК 729.
- 2 Доступный для пользователей соединитель МК-50 этого типа выпускает фирма Tesla

К рис. 6

40- и 52-контактный соединители отвечают требованиям настоящего стандарта. Знаком (*) отмечены внутренние сигналы крейт-контроллера, знаком (1) — крейт-контроллеры, управляемые крейтом.

Условные обозначения:

- гнездо коаксиального соединителя с волновым сопротивлением 50 Ом.
 Располагается на передней панели;

переключатель;

присмник или передатчик (с низким уровнем выходного сигнала "1");

— триггер;

— источник тока смещения (в каждой линии) для сигнала L:

2 - источник тока смещения (в каждой линии) для сигнала N;

— источник тока смещения (в каждой линии) по требованиям настоящего стандарта;

— неточник тока смещения (в соответствующей линии) по требованиям ГОСТ 27080:

— верхний 132-контактный соединитель порта магистрали ветви (контакт I вверху) по требованиям к параллельной магистрали

— нижний 132-контактный соединитель порта магистрали ветви (контакт 1 внизу) по требованиям к параллельной магистрали.

АЛФАВИТНЫЙ УКАЗАТЕЛЬ

Принципиальны первые ссылки. Любые дополнительные ссылки даны после точки с запятой (;). Специфичная для крейт-контроллера типа A2 информация помечена ссылками на приложение A, например A9.2.

Дополнительные соединения	A5.4
Запрет требования	4.1.3
Запрос на внимание, сигналы	4.3
Источники токов смещения	Табл. 3
Источники смещения на линиях GL	A6.3
Источники смещения на линиях L	A6.3
Крейт-контроллер	Рис. 1, 2
Крейт-контроллер типа А2	Al, puc. 6
выполняемые команды	А8; табл. 5
запрет	Alĺ
запрет магистрали крейта в состоянии "off-line"	All
запрос ветви	A6.1; A9.1
запрос ветви, нормы на сигнал, таймирование	A9.2, A9.3, A9.4
методы арбитража	A5.5
нормы на сигналы на контактах LAM-сортировщика	A9.1
обработка запроса	A6
общее управление, сигналы	A5.3
основные средства	A3
передняя панель	A4
распределение контактов LAM-сортировщика	Табл.6
сигналы данных	A5.1
сигналы команды	A5.2
сигналы магистрали крейта	A5
сигналы общего управления	A5.3
соединитель LAM-сортировщика	A9
соединитель магистрали дополнительного контроллера	
сортировка L	A6.2
состояние "off-line"	A10, A11
таймирование	A7
таймирование GL-операции	A7.4, A9.3
таймирование операций команды	A7.1, A7.3, A9.4
токи смешения на линиях GL	A6.3
токи смещения на линиях L	A6.3
Крейт-контроллеры прочие	A2
Магистраль дополнительного контроллера	3; 4; 5; табл. 1,2
Номер станции (N), сигналы	4.2
Область применения и назначения	1
Общие положения	2
Передняя панель, соединители	5
Передняя панель, сигналы	3; табл. 1
Приложение А	Al
F	4.1.2
	4.1.2
Сигнал ACL	4
генерация	4.1.4

реакция	4.1.5
Сигналы EN	4.2
Сигналы "Запрос на внимание"	4.3
Сигналы линий магистрали дополнительного контроллера	Табл. 1
Сигналы линий, подключенных к соединителям	3, табл. 1
передней панели	,
Сигналы, нормы	6, табл. 3, 4
Сигналы на соединителях АС с магистралью крейта, нормы	6.3
Сигналы на АСВ, нормы	6.1; 6.2; табл. 1
Сигналы, порядок следования и таймирование	Рис. 3, 4a, 46
Сигналы передней панели	3, табл. 1
Сигналы прочие	4.4
Сигналы "Разрешение-вход"	4.1.2
Сигналы "Разрешение-выход"	4.1.2
Сигналы, связующие АСВ с передней панелью, нормы	6.2; табл 1
Сигналы управления	5
Соединитель LAN-сортировщика	A 9
Соединитель магистрали дополнительного контроллера	5, табл. 1, 2
распределение контактов	Табл. 2
нормы смещения сигналов	Табл. 3
Соединители передней панели	5
Требование	4.1.1

ΓΟCT 27079-95

УДК 621.039—791.1:621.317.39:621.039 KAMAK 001:006.354 OKC 17.040 П70 ОКП 42 2000

Ключевые слова: многоконтроллерный крейт, управляющие станции, сигналы, магистрали

Редактор В.П. Огурцов Технический редактор О.Н. Власова Корректор В.И. Варенцова Компьютерная верстка Е.Н. Мартемьянова

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 14.02.96. Подписано в печать 26.04.96. Усл. печ. л. 2,33 + вкл. 0,12. Уч.-изд. л. 2,34 + вкл. 0,06. Тираж 200 экз. С3402. Зак. 200.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14.

Набрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — тип. "Московский печатник" Москва, Лялин пер., 6