Chapter 20.3 Dijkstra's Algorithm & Chapter 34 NP-Completeness

Joon Soo Yoo

June 10, 2025

Assignment

34

- ► Read §22.3, §34.1
- Problems
 - ► §22.3 2

Chapter 22: Single-Source Shortest Paths

- ► Chapter 22.1: The Bellman-Ford Algorithm
- Chapter 22.2: Single-Source Shortest Paths in Directed Acyclic Graphs
- Chapter 22.3: Dijkstra's Algorithm
- ► Chapter 22.4: Difference Constraints and Shortest Paths
- Chapter 22.5: Proofs of Shortest-Paths Properties

Relaxation in Shortest-Paths Algorithms

Core Concept: Relaxation

- Each vertex v maintains a shortest-path estimate v.d
 - v.d is an upper bound on the weight of the shortest path from source s to v
- The goal is to iteratively **reduce** v.d to the correct shortest-path weight $\delta(s, v)$

Initialization:

INITIALIZE-SINGLE-SOURCE
$$(G, s)$$

1 for each vertex $v \in G$. V

2 $v.d = \infty$

3 $v.\pi = NIL$

4 $s.d = 0$

The RELAX Operation

Relaxing an edge
$$(u, v)$$
 with weight $w(u, v)$:

$$\begin{array}{ccc}
RELAX(u, v, w) \\
1 & \text{if } v.d > u.d + w(u, v) \\
2 & v.d = u.d + w(u, v) \\
3 & v.\pi = u
\end{array}$$

Effect:

- Updates v.d if a better path through u is found
- Updates $v.\pi$ to point to u

The RELAX Example

Figure 22.3 Relaxing an edge (u, v) with weight w(u, v) = 2. The shortest-path estimate of each vertex appears within the vertex. (a) Because v.d > u. d + w(u, v) prior to relaxation, the value of v.d decreases. (b) Since we have $v.d \le u.d + w(u, v)$ before relaxing the edge, the relaxation step leaves v.d unchanged.

Dijkstra's Algorithm: Overview

9 15

Goal: Find the shortest paths from a source vertex s to all other vertices in a weighted, directed graph G = (V, E), with $\mathbf{w}(\mathbf{u}, \mathbf{v}) \geq \mathbf{0}$.

Key Concepts:

- Generalizes BFS to weighted graphs
- Uses a greedy strategy to iteratively build a shortest-paths tree
- Maintains:
 - Set S: vertices whose shortest-path weights are known

Min-priority queue Q = V - S

Dijkstra's Algorithm: Pseudocode

```
DIJKSTRA(G, w, s)
    INITIALIZE-SINGLE-SOURCE (G, s)
   S = \emptyset
   O = \emptyset
    for each vertex u \in G.
        (INSERT(Q,u))
    while Q \neq \emptyset
        u = EXTRACT-MIN(Q)
         S = S \cup \{u\}
        for each vertex v in G. Adj[u]
          \bigvee RELAX(u, v, w)
10
11
             if the call of RELAX decreased v.d
               DECREASE-KEY(Q, v, v.d)
12
```

Dijkstra's Algorithm: Diagram min-p & t.7 = 5

Dijkstra's Algorithm: Step-by-Step (I)

Input: Directed graph G = (V, E) with $w(u, v) \ge 0$ for all $(u, v) \in E$ and source s

Initialization:

- 1. For each $v \in V$: set $v.d \leftarrow \infty$, $v.\pi \leftarrow NIL$; then set $s.d \leftarrow 0$ 2. Set $S \leftarrow \emptyset$ (vertices with finalized shortest-path weights)
- 3. Insert all $v \in V$ into a min-priority queue Q, keyed by v.d

Main Loop:

- \blacktriangleright While $Q \neq \emptyset$:
 - $\underline{u} \leftarrow \text{EXTRACT-MIN}(Q)$
 - \triangleright Add u to S
 - For each $v \in Adj[u]$, perform RELAX(u, v, w)
 - ▶ If v.d changes, call DECREASE-KEY(Q, v, v.d)

Dijkstra's Algorithm: Key Properties (II)

Greedy Strategy:

- ▶ Always selects vertex $u \in V S$ with the smallest u.d
- ▶ Once u is added to S, $u.d = \delta(s, u)$ is guaranteed

Invariant:

- \triangleright Q = V S at the start of each iteration
- Each vertex is extracted from Q exactly once
- Each edge (u, v) is relaxed at most once

Output: For all $v \in V$, $v.d = \delta(s, v)$ and $v.\pi$ gives the predecessor on the shortest path

Correctness of Dijkstra's Algorithm

Theorem (Theorem 22.6)

Let G = (V, E) be a weighted, directed graph with nonnegative edge weights $w(u, v) \ge 0$ and source vertex $s \in V$.

Then, after Dijkstra's algorithm terminates, for every vertex $u \in V$, we have:

$$u.d = \delta(s, u)$$

 $u.d = \delta(s, u)$ That is, the algorithm correctly computes the shortest path distance from s to u.

Corollary (Corollary 22.7)

The predecessor subgraph G_{π} forms a shortest-paths tree rooted at S.

Proof Sketch of Theorem 22.6 (1/2)

Strategy: Use induction on the number of iterations of the while loop (i.e., size of S).

Base case:

- ightharpoonup When $S=\emptyset$, no vertex is added, so the claim trivially holds.
- When $S = \{s\}$, we have $s.d = 0 = \delta(s, s)$.

Inductive step:

- ▶ Assume for all $v \in S$, $v.d = \delta(s, v)$.
- Let u be the next vertex extracted from Q = V S (minimum d).
- Show: $u.d = \delta(s, u)$.

Key idea:

- Let y be the first vertex on a shortest path from s to u that is not in S.
- Let $x \in S$ be the predecessor of y on this path.

Proof Sketch of Theorem 22.6 (2/2)

Argument:

- From the inductive hypothesis: $x.d = \delta(s, x)$.
- Relaxation of edge (x, y) ensures: $y.d = \delta(s, y)$ at the time x was added to S.
- Because u was chosen as EXTRACT-MIN(Q) and y is on the path to u, we have:

$$\left(\delta(s,y)\leq \delta(s,u)\leq u.d\leq y.d\right)$$

and since $y.d = \delta(s, y)$, all inequalities collapse: Q

$$\left(u.d=\delta(s,u)\right)$$

Conclusion: By induction, when the algorithm terminates, $u.d = \delta(s, u)$ for all $u \in V$.

Time Complexity of Dijkstra's Algorithm (Simple Array Implementation)

Assumption: Min-priority queue implemented using an *unsorted* array.

Operation Costs:

- ▶ INSERT(v): $\mathcal{O}(1)$
- \triangleright EXTRACT-MIN(): $\mathcal{O}(|V|)$
- ▶ DECREASE-KEY(v): $\mathcal{O}(1)$

Total Number of Calls:

- ► |V| calls to INSERT and EXTRACT-MIN
- At most |E| calls to DECREASE-KEY (: every edge relaxes once)

Total Time:

$$\mathcal{O}(|V| \cdot |V| + |E| \cdot 1) = \mathcal{O}(|V|^2 + |E|) + \mathcal{O}(|V|^2)$$

Use case: Acceptable for dense graphs

Time Complexity of Dijkstra's Algorithm (Binary

Min-Heap Implementation)

mir-(heap)

Assumption: Min-priority queue implemented using a *binary min-heap* with vertex-to-index mapping.

Operation Costs:

- ► INSERT(v): $\mathcal{O}(\log |V|)$ insert into heap
- **EXTRACT-MIN()**: $\mathcal{O}(\log |V|)$ remove min and heapify
- DECREASE-KEY(v): $O(\log |V|)$ heapify

Total Number of Calls:

- ightharpoonup |V| calls to INSERT and EXTRACT-MIN
- ► At most |E| calls to DECREASE-KEY

Total Time:

$$\mathcal{O}(|V|\log|V| + |E|\log|V|) = \mathcal{O}((|V| + |E|)\log|V|)$$

Use case: Efficient for sparse graphs

Chapter 34: NP-Completeness

- Chapter 34.1: Polynomial Time
 - Chapter 34.2: Polynomial-Time Verification
- Chapter 34.3: NP-Completeness and Reducibility
- Chapter 34.4: NP-Completeness Proofs
- Chapter 34.5: NP-Complete Problems

P, NP, and NP-Completeness: Informal Overview

- P: Problems solvable in polynomial time (e.g., $O(n^k)$ for some constant k).
- NP: Problems verifiable in polynomial time. Given a solution (certificate), it can be verified quickly.
- NP-Complete (NPC): Problems in NP that are as hard as any other problem in NP.

If any NP-complete problem is in P, then $P \stackrel{\checkmark}{=} NP$.

Examples of NP Verifiability

Hamiltonian Cycle:

- Input: Graph G = (V, E)
- ► Certificate: Sequence $\langle v_1, v_2, \dots, v_{|V|} \rangle$
- **Verify:** Each node appears once; all edges exist; $v_{|V|} \rightarrow v_1$

- Every problem in **P** is in **NP**.
- ▶ Open question: Is $P \subseteq \hat{NP}$?
- ▶ If any NP-complete problem is in P, then P = NP.

Most researchers believe $P \neq NP$.

What is NP-Completeness?

A problem Q is NP-complete if:

- 1. $Q \in \mathbf{NP}$ (verifiable in poly time)
- 2. Every problem in NP can be reduced to Q in poly time

If any NP-complete problem is solvable in poly time, all of NP is.

Why NP-Completeness Matters

- Proving NP-completeness shows likely intractability
- Better to design:
 - Approximation algorithms
 - Heuristics
 - Algorithms for special cases
- Many natural problems turn out to be NP-complete

Optimization vs Decision Problems

Optimization: Find best solution (e.g., shortest path, min cost). **Decision:** Yes/No form. E.g.,

▶ PATH: Is there a path from u to v with $\leq k$ edges?

We study NP-completeness through decision problems.

Reductions: Relating Problem Hardness

- ► Given problems A and B
- ▶ If you can reduce A to B in poly time:
 - \triangleright $A \leq_p B$: A is no harder than B
- Use known hard problems to show new problems are hard

Goal: Show that problem A is solvable in polynomial time.

Algorithm A' for solving A:

- 1. Input: instance α of problem A
- 2. Compute $\beta = f(\alpha)$ in polynomial time
- 3. Run the known poly-time algorithm for B on β
- 4. Output the same answer for α

Conclusion: A is solvable in polynomial time.

Proving Intractability via Reductions

Suppose:

- ▶ Problem A is known to be hard (no poly algorithm)
- ▶ You reduce A to B (i.e., A \leq_p B)

Then:

- ▶ If B had a poly-time algorithm, so would A contradiction!
- So B must also be hard

This is how we prove NP-completeness.

Chapter 34: NP-Completeness

- ► Chapter 34.1: Polynomial Time
- Chapter 34.2: Polynomial-Time Verification
- ► Chapter 34.3: NP-Completeness and Reducibility
- ► Chapter 34.4: NP-Completeness Proofs
- ► Chapter 34.5: NP-Complete Problems

Abstract Problems: Formal Definition

Abstract problem *Q* is defined as a **binary relation** between:

- ► A set / of **problem instances**, and
- ► A set *S* of **problem solutions**

Example: SHORTEST-PATH

- ▶ Instance: (G, u, v) a graph and two vertices
- Solution: A path from u to v (or empty if none exists)
- Relation: Matches each instance with a valid shortest path

Note: There may be multiple valid solutions — shortest paths are not necessarily unique.

From Abstract Problems to Decision Problems

Why focus on decision problems?

- NP-completeness theory deals with problems having yes/no answers
- These are easier to define and analyze formally

A decision problem is a function:

$$f: I \to \{0, 1\}$$

- ightharpoonup f(i) = 1 (yes) if the instance satisfies the condition
- ightharpoonup f(i) = 0 (no) otherwise

Example: PATH

- ightharpoonup Input: (G, u, v, k)
- Output: 1 if there exists a path from *u* to *v* with at most *k* edges; otherwise 0

Optimization vs. Decision Problems

Many problems are optimization problems:

Find the shortest path, largest flow, minimum cut, etc.

But we can often transform them into decision problems:

- ▶ Ask: "Is there a solution of cost $\leq k$?"
- ▶ This transformation is key in NP-completeness proofs

Why this works:

- ► The decision version is *no harder* than the optimization version
- We can recover optimal values using repeated queries (e.g., binary search)

Optimization vs. Decision: Example

Problem: SHORTEST PATH

Optimization Version

- ightharpoonup Given a graph G and vertices u, v
- ▶ **Goal:** Find the *length of the shortest path* from *u* to *v*

Decision Version

- ightharpoonup Given a graph G, vertices u, v, and integer k
- **Question:** Is there a path from u to v with length $\leq k$?
- Answer is Yes/No

Both versions deal with the same underlying problem, but the decision version is used for NP-completeness analysis.

What is an Encoding?

Encoding is how we represent abstract problem instances as binary strings that a computer can understand.

Formal Definition: An *encoding* is a function:

$$e: S \rightarrow \{0,1\}^*$$

that maps abstract objects S to binary strings.

Examples:

- e(17) = 10001
- e(A) = 01000001 (ASCII)
- ▶ A graph G: encoded as adjacency list, matrix, or edge list

Compound objects (sets, graphs, programs) are encoded by combining the encodings of their parts.

From Abstract to Concrete Problems

To run on a computer, an abstract decision problem must be encoded.

Concrete Problem:

- ▶ Input: a binary string $x \in \{0,1\}^*$
- ▶ Output: $f(x) \in \{0, 1\}$

Size of instance: n = |x| (length of binary string)

Polynomial-time algorithm: solves any input of length n in $O(n^k)$ for some constant k.

Encoding Can Affect Complexity

Encoding affects whether an algorithm appears to run in polynomial or exponential time.

Example: Integer k given as input

- ▶ Unary encoding: 111...1 (length n = k) → runtime $\Theta(k) = \Theta(n)$ → polynomial
- ▶ Binary encoding: 10001 (length $n = \lfloor \log_2 k \rfloor + 1) \to \text{runtime}$ $\Theta(k) = \Theta(2^n) \to \text{exponential}$

Conclusion: The *choice of encoding* can drastically change the apparent complexity.

Polynomially Related Encodings

Goal: We want our notion of "efficient" (polynomial-time) to be encoding-independent.

Definition: Encodings e_1 and e_2 are polynomially related if:

- ▶ There exist functions f_{12} , f_{21} computable in polynomial time
- Such that $f_{12}(e_1(i)) = e_2(i)$ and $f_{21}(e_2(i)) = e_1(i)$ for all instances i

This ensures we can convert between encodings without changing the complexity class.

Lemma 34.1: Encoding-Invariant Polynomial Time

Lemma: Let Q be an abstract decision problem. If encodings e_1 and e_2 are polynomially related, then:

$$e_1(Q) \in \mathbf{P} \iff e_2(Q) \in \mathbf{P}$$

Implication:

- Polynomial-time solvability doesn't depend on which reasonable encoding you choose
- We can now safely talk about abstract problems being in P, assuming a standard encoding

Practical Takeaways on Encodings

- You must encode instances as binary strings to analyze complexity formally
- Bad encodings (e.g., unary) can make easy problems look hard
- ► As long as we use **reasonable encodings** (e.g., binary, base-3, ASCII), complexity classes are preserved
- ▶ We usually assume a *standard encoding* (e.g., $\langle G \rangle$ for a graph)

This allows us to focus on the *problem itself*, not the details of its representation.

A Formal-Language Framework for Decision Problems

Alphabet: A finite set of symbols (denoted Σ)

Language: A set of strings over Σ (i.e., $L \subseteq \Sigma^*$)

Examples:

- $\Sigma = \{0, 1\}$
- $L = \{10, 11, 101, 111, 10001, \ldots\}$ (binary encodings of prime numbers)

Useful notation:

- $ightharpoonup \epsilon$: empty string
- $ightharpoonup \Sigma^*$: set of all binary strings

Viewing Decision Problems as Languages

Decision problem $Q: \Sigma^* \to \{0,1\}$ maps binary strings to yes/no.

We define the associated language:

$$L_Q = \{x \in \Sigma^* \mid Q(x) = 1\}$$

This is the set of inputs for which the answer is yes.

Example: PATH

- ▶ Input: $x = \langle G, u, v, k \rangle$ (encoded as a binary string)
- ▶ $x \in L_{\mathsf{PATH}}$ if G contains a path from u to v of length $\leq k$

This lets us study decision problems as formal languages, enabling complexity class definitions.

Accepting vs. Deciding a Language

Algorithm A accepts x if A(x) = 1 (i.e., it outputs yes). Language accepted by A:

$$L = \{x \in \Sigma^* \mid A(x) = 1\}$$

But: A might not halt on $x \notin L$ (it might loop forever). **Algorithm** A **decides** L if:

- $ightharpoonup A(x) = 1 \text{ for } x \in L$
- \blacktriangleright A(x) = 0 for $x \notin L$

Polynomial-Time Acceptance vs. Decision

Accepted in polynomial time:

- ▶ A outputs 1 for $x \in L$ in $O(n^k)$ time
- ▶ No guarantee for $x \notin L$ (may loop forever)

Decided in polynomial time:

- A halts on all inputs
- ▶ A(x) = 1 if $x \in L$, and A(x) = 0 otherwise

Example: PATH can be both accepted and decided in polynomial time

Defining P via Formal Languages

Complexity Class P:

 $\mathbf{P} = \{L \subseteq \Sigma^* \mid \text{there exists an algorithm that decides } L \text{ in } O(n^k) \text{ time}\}$

Theorem 34.2:

- ▶ P is the set of languages that are accepted by a polynomial-time algorithm
- Proof: Any polynomial-time accepting algorithm can be converted to a deciding algorithm via bounded simulation

Question?