



# **Engineering Economics**

**CSE-305** 

(Chapter 03c)





Dr. Durr-e-Nayab

Email: nayab.khan@uetpeshawar.edu.pk



# Agenda

- > Arithmetic Uniform Gradient Payment Series
- **Cash Flow of Uniform Gradient Series**



- > Gradient Series: Compound Amount Factor
- > Gradient Series: Uniform Series Conversion Factor
- > Gradient Series: Present Worth Factor
- Composite Gradient Series



### **Uniform Gradient Series**

Some Economic Analysis problems involve receipts or expenses that are projected to increase or decrease by a uniform amount each period. Thus, constituting an arithmetic sequence of Cash Flows.

For instance, the maintenance and operational expenses on an equipment may increase by a relatively constant amount each period.



### **Cash Flows of Uniform Gradient Series**



### Timeline of Cash Flows of Uniform Gradient Series



### **Uniform Linear Gradient Series**

#### The present worth of uniform linear Gradient Series

$$P = G \frac{i(1+i)^{N} - iN - 1}{i^{2}(1+i)^{N}}$$
$$= G(P/G, i, N)$$



The term in braces is called the Gradient Series Present Worth Factor

### **Uniform Linear Gradient Series: Present Worth Factor**

A certain end-of-year cash flows are expected to be \$1000 for the second year, \$2000 for the third year, and \$3000 for the fourth year. If the interest rate is 15% and it is desired to find **the present worth** at beginning of the first year.



 $P_{0G} = G (P/G, 15\%, 4)$ = \$1000 (3.79) = \$3790

### **Gradient to Uniform Series Conversion Factor**

$$A = \frac{G}{i} - \frac{NG}{i} \left[ \frac{i}{(1+i)^N - 1} \right]$$

$$=G\left[\frac{1}{i}-\frac{N}{(1+i)^N-1}\right]$$

$$A = G(A/G, i, N)$$

The term in braces is called the **Gradient to Uniform Series Conversion Factor** 



# **Gradient to Uniform Series Conversion Factor: Example**

Taking the previous example i.e., certain end-of-year cash flows are expected to be \$1000 for the second year, \$2000 for the third year and \$3000 for the fourth year. If the interest rate is 15% and it is desired to find **the uniform annual worth** at the end of each year.

$$A = G(A/G, 15\%, 4)$$
  
= \$1000 (1.3263) = \$1,326.3

As we have already evaluated the PW in the previous example, hence the uniform AW can be calculated as:

$$A = PoG (A/P, 15\%, 4)$$
  
= \$3790 (0.3503) = \$1326.3



### **Gradient Series: Compound Amount Factor**

#### Finding F given G:

$$F = \frac{G}{i} \left[ \sum_{k=0}^{N-1} (1+i)^{k} \right] - \frac{NG}{i}$$

$$= \frac{G}{i} (F/A, i\%, N) - \frac{NG}{i}$$



$$F = G(F/G, i, N)$$

The term in braces is called the **Compound amount Conversion Factor** 

# **Gradient Series: Compound Amount Factor**

Taking the previous example for evaluating **Compound Amount:** 

$$F_{4G} = G (F/G, 15\%, 4)$$
  
=  $G/i (F/A, 15\%, 4)$ -  $NG/I$ 

Using Annuity formula and solving:

= ((\$1000 /0.15)\*(4.99))- ((4\*\$1000)/0.15)) = \$6600



### **Gradient Series: Composite Series**



#### **Present Worth For Gradient Series**





How much do you have to <u>deposit</u> now in a savings account that earns a 12% annual interest, if you want to withdraw the annual series as shown in the figure?



#### **Present Worth For Gradient Series**





#### Present Worth For Gradient Series







### **Gradient Series: Composite Series**



### **Equivalent Present Value of Composite Gradient Series**





$$P = [\$175,000 + \$189,000(P/A,4.5\%,25) + \$7,000(P/G,4.5\%,25)](P/F,4.5\%,1)$$

$$= \$3,818,363$$



Also Check book Examples: 3.12, 3.13. 3.14

### Summary

- **Arithmetic Uniform Gradient Payment Series**
- Cash Flow of Uniform Gradient Series
- Timeline of Cash Flow in Uniform Gradient Series
- **Gradient Series: Compound Amount Factor**
- **Gradient Series: Uniform Series Conversion Factor**
- **Gradient Series: Present Worth Factor**
- **Composite Gradient Series**