# EEE-2103: Electronic Devices and Circuits

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

#### **SCR** operation:

- 4 layers of semiconductor materials.
- 3 junctions-  $J_1$ ,  $J_2$  and  $J_3$ .
- 3 terminals- anode (A), cathode (K) and gate (G).

 $+V_{AK}$  = +ve on A and -ve on K. G is left unconnected ( $I_G$  = 0)  $\rightarrow$ 

 $TR_1$  and  $TR_2$  = off; small leakage current  $I_{CO}$  flows.







#### **SCR** operation:

 $+V_{AK}$  = +ve on A and -ve on K.

-ve gate-cathode voltage ( $V_G = -ve$ )  $\rightarrow$ 

 $TR_1$  and  $TR_2$  = off; small leakage current flows.

 $+V_{AK}$  = +ve on A and -ve on K.

+ve gate-cathode voltage ( $V_G = +ve$ )  $\rightarrow$ 

$$I_G = I_{B2} \xrightarrow{} I_{C2}$$

$$I_{C2} = I_{B1} \rightarrow I_{C1}$$

 $I_{C_1} = I_{B_2} \rightarrow \text{latching}$ 

To switch off SCR → no gate control.

$$V_{AK} \approx 0$$







#### SCR characteristics: Reverse bias $\rightarrow$ $-V_{AK}$ = -ve on A and +ve on K. Reverse Bias *G* is left unconnected $(I_G = 0) \rightarrow$ **Forward Bias** small $-V_{AK} \rightarrow$ reverse leakage current $I_{RX}$ flows. reverse blocking current $I_{RX}$ = 100 $\mu$ A Reverse Bias $-V_{AK}$ is increased $\rightarrow$ $I_{RX}$ remains constant. reverse breakdown voltage is reached $\rightarrow$ $J_1$ and $J_3$ break down reverse current $I_R$ increases rapidly REVERSE BLOCKING REGION

#### **SCR** characteristics:

Forward bias  $\rightarrow$ 

 $+V_{AK}$  = +ve on A and -ve on K.

G is left unconnected  $(I_G = 0) \rightarrow$ 

small  $+V_{AK} \rightarrow$  forward leakage current  $I_{FX}$  flows.

reverse leakage current at  $J_2,\,I_{FX}$  = 100  $\mu\mathrm{A}$ 

 $+V_{AK}$  is increased  $\rightarrow$ 

 $I_{FX}$  remains constant.

forward breakover voltage  $V_{F(BO)}$  is reached  $\rightarrow$ 

 $J_2$  breaks down

forward current  $I_F$  increases rapidly

 $V_{AK}$  falls rapidly  $\rightarrow$ 

 $V_{AK} = V_F$  (= forward conduction voltage)

device = forward conduction region







#### Pulse control:

SCR is triggered on by gate pulse.

Average load power is varied with SCR conduction angle.

SCR is not triggered at  $\alpha = 0^{\circ}$ .  $V_{AK} >= V_{TM}$  (= forward on voltage).



SCR will switch off at  $\alpha$  < 180°.  $I_L$  falls below  $I_H$ .

$$\begin{aligned} V_L &= e_s - V_{TM} & [e_s &= \text{supply voltage}] \\ I_L &= I_A \approx I_K & [I_K &= I_A + I_G, I_G << I_A] \end{aligned}$$

Instantaneous supply voltage that causes SCR to switch off  $e_{s(0)} = V_{TM} + I_H R_L$ 



#### 90° phase control:

Moving contact is set to top of  $R_2 \rightarrow$  SCR is triggered on at  $\approx$  0°.

Moving contact is set to bottom of  $R_2 \rightarrow$  SCR is triggered on at  $\approx 90^{\circ}$ .





Moving contact controls  $\alpha \approx 0^{\circ} \sim 90^{\circ}$ .

 $D_1$  protects SCR gate from - $V_G$  during -ve half-cycle of ac supply.

Instantaneous triggering voltage at switch-on

$$V_T = V_{D1} + V_G$$

90° phase control (full-wave-rectified):



#### 90° full-wave phase control:

+ve half-cycle  $\rightarrow$ 

 $D_2$  is forward-biased.

Current flows through  $R_2$ ,  $R_3$  and  $R_4$ 

-ve half-cycle  $\rightarrow$   $D_1$  is forward-biased.

Current flows through  $R_1$ ,  $R_2$  and  $R_3$ 

$$R_1 = R_4 \rightarrow \alpha_1 = \alpha_2$$



#### Problem-41:

The SCR in Fig. 41 is to be triggered on between  $5^{\circ}$  and  $90^{\circ}$  during the positive half-cycle of the 30 V supply. The gate triggering current and voltage are 200  $\mu$ A and 0.8 V. Determine suitable resistance values for  $R_1$ ,  $R_2$  and  $R_3$ . Also, determine the SCR anode-cathode voltage at the instant of switch-on when the moving contact of potentiometer  $R_2$  is set to (a) its center position and (b) its zero (bottom) position.

SCR,

Peak supply voltage, 
$$V_{s(pk)} = 1.414 \times V_s = 1.414 \times 30 = 42.4 \text{ V}$$
  
At 5°,  $e_s = V_{s(pk)} \sin 5^\circ = 42.4 \times \sin 5^\circ \approx 3.7 \text{ V}$   
At 90°,  $e_s = V_{s(pk)} = 42.4 \text{ V}$   
Triggering voltage at switch-on,  $V_T = V_{D1} + V_G = 0.7 + 0.8 = 1.5 \text{ V}$ 

To trigger at  $e_s = 3.7 \text{ V}$ ,  $R_2$  moving contact is at top.

$$\begin{split} &V_{R2} + V_{R3} = V_T = 1.5 \text{ V} \\ &V_{R1} = e_s - V_T = 3.7 - 1.5 = 2.2 \text{ V} \\ &\text{Select } I_{1(min)} = 1 \text{ mA (} >> I_G = 200 \text{ \muA)} \\ &R_1 = V_{R1}/I_1 = 2.2/1 \times 10^{-3} = 2.2 \text{ k}\Omega \\ &R_2 + R_3 = V_T/I_1 = 1.5/1 \times 10^{-3} = 1.5 \text{ k}\Omega \end{split}$$

#### Problem-41:

To trigger at  $e_s$  = 42.4 V,  $R_2$  moving contact is at bottom.

$$\begin{split} V_{R_3} &= V_T = 1.5 \text{ V} \\ I_1 &= \frac{e_s}{R_1 + R_2 + R_3} = \frac{42.4}{2.2 \times 10^3 + 1.5 \times 10^3} \approx 11.5 \text{ mA} \\ R_3 &= V_T / I_1 = 1.5 / 11.5 \times 10^{-3} = 130 \ \Omega \text{ (use 120 } \Omega \text{ standard value)} \\ R_2 &= (R_2 + R_3) - R_3 = 1.5 \times 10^3 - 120 = 1.38 \ \text{k}\Omega \\ &\qquad \qquad \qquad \text{(use 1.5 k}\Omega \text{ standard value)} \end{split}$$

(a) SCR will trigger when  $V_T = 1.5 \text{ V} (R_2 \text{ contact at center})$ 

$$V_{AK} = \frac{V_T(R_1 + R_2 + R_3)}{R_3 + 0.5R_2} = \frac{1.5(2.2 \times 10^3 + 1.5 \times 10^3 + 120)}{120 + \frac{1}{2}(1.5 \times 10^3)} = 6.6 \text{ V}$$

(b) With  $R_2$  contact at zero

$$V_{AK} = \frac{V_T(R_1 + R_2 + R_3)}{R_3} = \frac{1.5(2.2 \times 10^3 + 1.5 \times 10^3 + 120)}{120} = 47.85 \text{ V}$$

Because  $V_{s(pk)}$  = 42.4 V, SCR will not trigger with  $R_2$  at zero position.

