Entwickelte Trainer-Tools des EILD-Projekts an der H-BRS

Einordnung der Trainer in die Phasen des Datenbankentwurfs

Ein Kooperationsvorhaben empfohlen durch die:

Gefördert durch:

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Projekt EILD.nrw

Im Projekt EILD.nrw werden Open Educational Resources (OER) für die Lehre im Fach Datenbanken entwickelt.

Die Hochschule Bonn-Rhein-Sieg (H-BRS) hat interaktive Trainer entwickelt, die bestimmte Aspekte der Phasen des Datenbankentwurfs trainieren.

Die Trainer werden im Folgenden in diese Phasen eingeordnet und vorgestellt.

Entwickelten interaktive Trainer:

- <u>ER-Trainer</u>
- ER-REL-Trainer
- LOS-Trainer
- Normalisierungstrainer
- Serialisierungstrainer

Weitere entwickelte Tools:

- Interaktives ERD
- Multiple Choice

Phasen des Datenbankentwurf

Phasen des Datenbankentwurf | Schritt 1: Anforderungsanalyse

Phasen des Datenbankentwurf | Schritt 2: Semantischer (konzeptioneller) Entwurf

Miniwelt (Diskursbereich) mittels

freier Notation

Semantisches (konzeptionelles) Schema mittels

"Entity Relationship"-Datenmodell z.B. nach Abrial

ER-Trainer

Mit dem ER-Trainer werden die Kardinalitäten von Beziehungen zwischen Entitäten im ER-Diagramm trainiert. Unterstützt werden neben binären Beziehungen auch ternäre Beziehungen mit bis zu vier Entitäten, (binäre) rekursive Beziehungen und Spezialisierung/Generalisierung mit bis zu drei Sub-Entitäten. Die Beziehungen werden primär in Abrial- bzw. (min-max)-Notation dargestellt, wobei für binäre Beziehungen auch zu anderen Notationen gewechselt werden kann.

Link: https://github.com/EILD-nrw/er_trainer

Screenshot zum ER-Trainer

ER-Trainer DE ~ Bitte wählen Sie den zu der Phrase passenden Beziehungstyp in der Auswahlbox aus! Notation: Abrial **Legende** Phrase 20/47: In einer neuen Hochschule sollen nun Studenten Lehrveranstaltungen besuchen und am Ende des Semesters von einem Professor geprüft werden. Lehrveranstaltung Student wird geprüft Professor Student: Lehrveranstaltung: Professor: Bitte auswählen Bitte auswählen Bitte auswählen Die Abrial bzw. (min, max)-Notation gibt für jeden an einer Beziehung beteiligten Entitätstyp an, mit wie vielen Entitäten auf der anderen Seite eine Entität dieses Typs mindestens und höchstens in Beziehung steht. Zeige Lösung Überspringen Abschicken Neustart

Phasen des Datenbankentwurf | Schritt 3: Logischer Entwurf

Semantisches (konzeptionelles) Schema mittels

 "Entity Relationship"-Datenmodell z.B. nach Abrial

Logisches Schema mittels

Relationen-Datenmodell

ER-REL-Trainer

Mit dem ER-REL-Trainer wird, ausgehend von einer Phrase, die Überführung einer Beziehung zwischen Entitäten eines ER-Diagramms in ein logisches relationales Schema trainiert. Es gilt die nötigen Tabellen anzulegen, die erforderlichen Schlüsselattribute zu ergänzen und die Richtung festzulegen, in der die Tabellen miteinander in Beziehung stehen.

Link: https://github.com/EILD-nrw/er_rel_trainer

Screenshot zum ER-REL-Trainer

ER-REL-Trainer

Gegeben ist ein ER-Diagramm, das eine Beziehung zwischen Entitäten zeigt. Ihre Aufgabe ist es das ER-Diagramm in ein logisches relationales Schema zu überführen und dafür die nötigen Tabellen anzulegen, darin die erforderlichen Schlüsselattribute zu ergänzen und die Richtung festzulegen, in der die Tabellen miteinander in Beziehung stehen.

DE V

ER-Notation: Abrial

Legende

Phrase 12/50: Ein Architekt möchte wichtige Eckdaten zu den einzelnen individuellen Räumen seiner Gebäude verwalten.

Hinweis: Über die Buttons unter dem ER-Diagramm können neue Tabellen angelegt werden. Entscheide, welche Tabellen benötigt werden.

Abschicken Korrigieren Zeige Lösung Überspringen Neustart

+ Tabelle: "hat'

Logische Datenmodelle

Bindegliedfunktion

- Datenbanksystemhersteller orientieren sich zur Definition und Manipulation der Daten in der Datenbank an bestimmten Datenmodellen (, halten sich aber nicht immer vollständig daran)
- logische Datenmodelle verstehen sich somit als Bindeglied und formale Rahmen für die Umsetzung eines semantischen Schemas in ein konkretes Datenbankschema
- logische Datenmodelle sind daher "idealisierte" Formen bestimmter
 Datenbankmodelle bestimmter Hersteller
- Verzicht auf systemspezifische Feinheiten, Beschränkung auf grundsätzliche Modellierungskonzepte bestimmter Zielsysteme
- derzeit werden von den kommerziell angebotenen Datenbanksystemen vier grundsätzlich unterschiedliche Stoßrichtungen unterstützt

Hierarchische Datenmodelle

 älteste Datenmodell mit stark abnehmender Bedeutung aber noch im Betrieb

Netzwerk Datenmodelle

 in den 70er Jahren stark favorisiert, aber heute nahezu bedeutungslos

Relationale Datenmodell

derzeit größte praktische Bedeutung

Objekt-orientierte Datenmodelle

- wurde vielfach als Nachfolger der relationalen Datenmodelle gehandelt
- praktische Bedeutung für Anwendungen mit sehr speziellen Anforderungen der Modellierung
- erfolgreich sind objekt-relationale Datenmodelle

NoSQL Datenmodelle

- oft schemalos
- starke Nähe zur Implementierung d. Anwendung

LOS-Trainer

Screenshot zum LOS-Trainer

Schritte der Normalisierung

Erste Normalform (1NF)

keine Wiederholungsgruppen

Zweite Normalform (2NF)

- 1NF
- Eliminierung von Attributen, die bereits von Teilen des Schlüssels abhängig sind

Dritte Normalform (3NF)

- 2NF
- Eliminierung von Attributen, die zusätzlich von nicht-Schlüsselattributen abhängig sind

Boyce Codd Normalform (BCNF)

- 3NF
- zusätzlich Eliminierung von Abhängigkeiten zwischen Schlüsselattributen

Praktische Bedeutung

- 3NF oder BCNF sollte bei jedem
 Datenbankentwurf hergestellt werden
- die vollständige Redundanzfreiheit wird mit der Domain / Key Normalform (DK/NF) erzielt
- 4NF, 5NF und DK/NF haben eher theoretische Bedeutung, da noch keine einfachen Techniken zur Unterstützung der Entwickler gefunden wurden
- häufig wird beim physischen Entwurf wieder denormalisiert (Laufzeitgründe)

Normalisierungstrainer

Phasen des Datenbankentwurf | Schritt 4: Physischer Entwurf + Ausführung

Logisches Schema mittels

Relationen Datenmodell

Datenbankschema mittels

DDL der SQL

```
create table Lehrveranstaltung (
    LV-Name varchar(20) not null,
    SWS numeric(1) not null,
    primary key (Vorl-Titel));
create table Buecher (
    Titel varchar(20) not null,
    ISBN char(10) not null,
    primary key (ISBN));
create table empfiehlt (
     LV-Name varchar(20) not null,
    ISBN char(10) not null,
    primary key (ISBN, Vorl-Titel));
alter table empfiehlt
    add constraint RK emp Buc
     foreign key (ISBN)
alter table empfiehlt
    add constraint RK Vor emp
     foreign key (LV-Name)
```

Serialisierungstrainer

Weitere entwickelte Tools

Interaktives ERD

Screenshot zum interaktiven ERD

Multiple Choice

Screenshot zum Multiple Choice