Bertrand Huguenin-Bizot

Master II de Bioinformatique

Université Claude Bernard Lyon I

Intégration de données Omics issues de consortia microbiens impliqués dans la dégradation de la lignocellulose

Toulouse Biotechnology Institute - INSA **Équipe Symbiose**

Encadré par Guillermina Hernandez-Raquet, Sébastien Dejean et Melisande Albert

8 décembre 2022

Valorisation de la lignocellulose

Objectifs

- Utiliser des communautés microbiennes complexes dégradant naturellement la lignocellulose.
 - Rumen
 - Termite
- Comprendre comment les communautés microbiennes évoluent.
- Comprendre comment le pool enzymatique évolue.

Dégradation microbienne - enzymes

Méthode: Digestion anaérobie en réacteurs fermés avec de la paille de blé comme seule source de carbone

2 réplicats biologiques - 3 réplicats techniques 2 x 2 x 4 x 3 = 48 échantillons

Métaprotéomique

Spectrométrie de masse en tandem Extraction Ionisation Séparation des peptides Séparation sur gel Fragmentation **UHPLC** Digestion à la trypsine Détection de spectres de masse sur charge

Analyse bioinformatique des spectres de masse sur charge Identification des protéines

Normalized Spectral Abundance Factor

SpC est le nombre de comptage de spectres attribués à une protéine et L la longueur de la protéine.

$$NSAF = \frac{(\frac{SpC}{L})_i}{\sum_{i=1}^{N} (\frac{SpC}{L})_i}$$

Pour un échantillon la somme des abondances NSAF est égale à 1.

$$\sum_{i} NSAF_{i} = 1$$

Nous sommes dans le domaine des données compositionnelles

Données compositionnelles

D abondances NSAF de protéines $x_1, x_2, ..., x_D$.

Simplex:

$$S^{D} = \{[x_1, x_2, ..., x_D]: x_i > 0 \ (i = 1, ..., D), x_1 + \dots + x_D = 1\}$$

- Travailler dans le simplex: Géométrie d'Aitchison
- Sortir du simplex: Transformation centered log ratio

$$y = clr(x) = \left[\ln \left(\frac{x_1}{g(x)} \right), \ln \left(\frac{x_2}{g(x)} \right), \dots, \ln \left(\frac{x_D}{g(x)} \right) \right]$$

Avec
$$g(x) = (\prod_{i=1}^{D} x_i)^{1/D}$$

Imputation des zéros

- 70 % de zéros dans les données initiales.
- Regroupement des protéines au niveau taxonomique ou de la famille de CAZymes: moins de zéros à remplacer
- Exemple de regroupement à la famille de CAZymes, 30% de zéros.

Imputation des zéros

- Imputation des valeurs trop faibles engendre une distorsion de la structure de covariance (Martin-Fernandez J.A. et al., 2003).
- Remplacement des zéros par 2/3 du seuil de détection (Lubbe S. et al, 2021; Martin-Fernandez J.A. et al., 2003).
- Adaptation en utilisant 2/3 de la valeur minimale de chaque variable.

Workflow

Analyses multivariées

	Prot 1	Prot 2			Prot D
Echantillon 1					
Echantillon 2					
Echantillon n					

$$PC_1 = a_{11}prot_1 + a_{12}prot_2 + \dots + a_{1D}prot_D$$

 $PC_2 = a_{21}prot_1 + a_{22}prot_2 + \dots + a_{2D}prot_D$

	PC1	PC2
Echantillon 1		
Echantillon 2		
Echantillon n		

Analyses multivariées

unsupervised

supervised

Multivariate INTegrative method - Partial Least Square- Discriminant Analysis MINT-PLS-DA Organisation des données

		Protéine 1	Protéine 2	Protéine 3	•••	Protéine D	Discriminant Factor
Groupe 1	Rumen1_T1						T1
	Rumen1_T2						T2
	Rumen1_T3						T3
	Rumen1_T4						T4
Groupe 2	Rumen2_T1						T1
	Rumen2_T2						T2
	Rumen2_T3						Т3
	Rumen2_T4						T4
Groupe 3	Termite1_T1						T1
	Termite1_T2						T2
	Termite1_T3						T3
	Termite1_T4						T4
Groupe 4 ———	Termite2_T1						T1
	Termite2_T2						T2
	Termite2_T3						T3
	Termite2_T4						T4

Algorithme de la MINT-PLS-DA

$$t_h^{(m)} = X^{(m)} a_h \text{ et } u_h^{(m)} = Y^{(m)} b_h$$

$$\max_{||a_h||_2 = ||b_h||_2 = 1} \sum_{m=1}^M n_m cov(X^{(m)} a_h, Y^{(m)} b_h)$$

Résultats

- Analyse au niveau taxonomique et des familles de CAZymes
 - Différences entre Inocula: ACP suffisante
 - Différences communes entre inocula: Analyses multigroupes
 - Variabilité due aux temps de prélèvements

Analyse au niveau taxonomique : variance due aux Inocula

Analyse au niveau taxonomique : variance due aux temps

Analyse au niveau taxonomique : MINT-PLS-DA

Evolution des taxa discriminants

Analyses multivariées au niveau des CAZymes

Analyse au niveau des familles de CAZymes: Clustered Image Map

Evolution des fonctions de CAZymes discriminantes

Conclusions et perspectives

L'ACP nous permet de connaître les différences entre inocula.

La MINT-PLS-DA: différences communes aux inocula entre les temps.

Nous identifions:

- L'évolution des taxa discriminants au cours du temps
- L'évolution des familles de CAZymes au cours du temps
- une diminution d'abondances des protéines impliquées dans la dégradation des sucres libres
- une augmentation d'abondances des protéines impliquées dans la dégradation de l'hémicellulose et de la cellulose.

Intégration de données issues de métagénomique sur les mêmes échantillons.

Heatmap des abondances des genres centrées réduites selon les fonctions, les groupes CIM et les temps

Heatmap des abondances des genres centrées réduites selon les fonctions au temps 1 et dans le groupe CIM1

