4.

Resolution

Goal

Deductive reasoning in language as close as possible to full FOL

$$\neg$$
, \wedge , \vee , \exists , \forall

Knowledge Level:

given KB, α , determine if KB |= α .

or given an open $\alpha[x_1,x_2,...x_n]$, find $t_1,t_2,...t_n$ such that KB $\models \alpha[t_1,t_2,...t_n]$

When KB is finite $\{\alpha_1, \alpha_2, ..., \alpha_k\}$

$$\begin{aligned} \mathsf{KB} &\models \alpha \\ & \text{iff } \mid = [(\alpha_1 \land \alpha_2 \land ... \land \alpha_k) \supset \alpha] \\ & \text{iff } \mathsf{KB} \cup \{ \neg \alpha \} \text{ is unsatisfiable} \\ & \text{iff } \mathsf{KB} \cup \{ \neg \alpha \} \mid = \mathsf{FALSE} \\ & \text{where } \mathsf{FALSE} \text{ is something like } \exists x. (x \neq x) \end{aligned}$$

So want a procedure to test for validity, or satisfiability, or for entailing FALSE.

Will now consider such a procedure (first without quantifiers)

Clausal representation

Formula = set of clauses

Clause = set of literals

Literal = atomic sentence or its negation

positive literal and negative literal

Notation:

If ρ is a literal, then $\bar{\rho}$ is its complement

$$\overline{p} \Rightarrow \neg p \qquad \overline{\neg p} \Rightarrow p$$

To distinguish clauses from formulas:

[and] for clauses:
$$[p, \overline{r}, s]$$
 { and } for formulas: { $[p, \overline{r}, s], [p, r, s], [\overline{p}]$ }
[] is the empty clause {} is the empty formula So {} is different from {[]}!

Interpretation:

Formula understood as <u>conjunction</u> of clauses Clause understood as <u>disjunction</u> of literals Literals understood normally

$$\{[p, \neg q], [r], [s]\}$$
 []
represents represents
 $((p \lor \neg q) \land r \land s)$ FALSE

CNF and **DNF**

Every propositional wff α can be converted into a formula α' in Conjunctive Normal Form (CNF) in such a way that $|= \alpha = \alpha'$.

- 1. eliminate \supset and \equiv using $(\alpha \supset \beta) \implies (\neg \alpha \lor \beta)$ etc.
- 2. push \neg inward using $\neg(\alpha \land \beta) \Rightarrow (\neg\alpha \lor \neg\beta)$ etc.
- 3. distribute \vee over \wedge using $((\alpha \wedge \beta) \vee \gamma) \implies ((\alpha \vee \gamma) \wedge (\beta \vee \gamma))$
- 4. collect terms using $(\alpha \vee \alpha) \Rightarrow \alpha$ etc.

Result is a conjunction of disjunction of literals.

an analogous procedure produces DNF, a disjunction of conjunction of literals

We can identify CNF wffs with clausal formulas

$$(p \vee \neg q \vee r) \wedge (s \vee \neg r) \implies \{ [p, \neg q, r], [s, \neg r] \}$$

So: given a finite KB, to find out if KB $\mid = \alpha$, it will be sufficient to

- 1. put (KB $\wedge \neg \alpha$) into CNF, as above
- 2. determine the satisfiability of the clauses

Resolution rule of inference

Given two clauses, infer a new clause:

From clause
$$\{p\} \cup C_1$$
, and $\{\neg p\} \cup C_2$, infer clause $C_1 \cup C_2$.

 $C_1 \cup C_2$ is called a <u>resolvent</u> of input clauses with respect to p.

Example:

clauses [w, r, q] and $[w, s, \neg r]$ have [w, q, s] as resolvent wrt r.

Special Case:

[p] and $[\neg p]$ resolve to [] (the C_1 and C_2 are empty)

A <u>derivation</u> of a clause c from a set S of clauses is a sequence $c_1, c_2, ..., c_n$ of clauses, where $c_n = c$, and for each c_i , either

- 1. $c_i \in S$, or
- 2. c_i is a resolvent of two earlier clauses in the derivation

Write: $S \rightarrow c$ if there is a derivation

Rationale

Resolution is a symbol-level rule of inference, but has a connection to knowledge-level logical interpretations

Claim: Resolvent is entailed by input clauses.

```
Suppose \mathcal{S} \models (p \lor \alpha) and \mathcal{S} \models (\neg p \lor \beta)

Case 1: \mathcal{S} \models p

then \mathcal{S} \models \beta, so \mathcal{S} \models (\alpha \lor \beta).

Case 2: \mathcal{S} \not\models p

then \mathcal{S} \models \alpha, so \mathcal{S} \models (\alpha \lor \beta).

Either way, \mathcal{S} \models (\alpha \lor \beta).

So: \{(p \lor \alpha), (\neg p \lor \beta)\} \models (\alpha \lor \beta).
```

Special case:

```
[p] and [\neg p] resolve to [\ ], so \{[p], [\neg p]\} |= FALSE that is: \{[p], [\neg p]\} is unsatisfiable
```

Derivations and entailment

Can extend the previous argument to derivations:

If
$$S \rightarrow c$$
 then $S \models c$

Proof: by induction on the length of the derivation. Show (by looking at the two cases) that $S \models c_i$.

But the converse does not hold in general

Can have $S \models c$ without having $S \rightarrow c$.

Example: $\{ [\neg p] \} \models [\neg p, \neg q]$ i.e. $\neg p \models (\neg p \vee \neg q)$ but no derivation

However.... Resolution is refutation complete!

Theorem: $S \rightarrow []$ iff $S \models []$

Result will carry over to quantified clauses (later)

sound and complete when restricted to []

So for any set S of clauses: S is unsatisfiable iff $S \rightarrow []$.

Provides method for determining satisfiability: search all derivations for []. So provides a method for determining all entailments

A procedure for entailment

To determine if KB $\mid = \alpha$,

- put KB, $\neg \alpha$ into CNF to get *S*, as before
- check if $S \rightarrow []$.

If KB = $\{\}$, then we are testing the validity of α

Non-deterministic procedure

- Check if [] is in S.
 If yes, then return UNSATISFIABLE
- 2. Check if there are two clauses in *S* such that they resolve to produce a clause that is not already in *S*.

 If no, then return **SATISFIABLE**
- 3. Add the new clause to *S* and go to 1.

Note: need only convert KB to CNF once

- can handle multiple queries with same KB
- after addition of new fact α , can simply add new clauses α' to KB

So: good idea to keep KB in CNF

Example 1

KB

FirstGrade

FirstGrade ⊃ Child

Child \land Male \supset Boy

Kindergarten ⊃ Child

Child ∧ Female ⊃ Girl

Female

Show that KB |= Girl

Example 2

KB

(Rain
$$\vee$$
 Sun)
(Sun \supset Mail)
((Rain \vee Sleet) \supset Mail)

Show KB |= Mail

[¬Sleet, Mail]

[Rain , Sun] [¬Sun, Mail] [¬Rain, Mail] [¬Mail]

[Rain]

[¬Rain]

Note: every clause not in S has 2 parents

Similarly KB |≠ Rain

Can enumerate all resolvents given ¬Rain, and [] will not be generated