MobileNet

: Efficient Convolutional Neural Networks for Mobile Vision Applications 논문 링크: <u>MobileNets: Efficient Convolutional Neural Networks for Mobile Vision</u> Applications

1. Abstract

모바일, embedded vision 앱에서 사용되는 것을 목적으로 한 MobileNet이라는 효율적인 모델을 제시한다. Depth-wise separable convolutions라는 구조에 기반하며 2개의 단순한 hyper-parameter를 가진다. 이 2가지는 사용되는 환경에 따라 적절히 선택하여 적당한 크 기의 모델을 선택할 수 있게 한다. 수많은 실험을 통해 가장 좋은 성능을 보이는 설정을 찾으 며 타 모델에 비해 성능이 거의 떨어지지 않으면서 모델 크기는 ~배까지 줄인 모델을 소개한 다.

- 경량화된 효율적인 model을 제안
- 경량화 모델 구축을 위해 depthwise separable convolution 사용
- latency와 accuracy 사이의 효율적인 trade off를 하는 두개의 파라미터

2. Introduction

ConvNet은 computer vision분야라면 어디서든 사용되었지만, 모델의 크기가 너무 커지고 가성비가 좋지 않다.

그리고 핸드폰이나 임베디드 시스템 같이 저용량 메모리 환경에 딥러닝을 적용하기 위해서는 모델 경량화가 필요하다. 그래서 이 논문에서는 모델의 크기와 성능을 적절히 선택할 수 있도록 하는 2개의 hyper-parameter를 갖는 효율적인 모델을 제시한다. 이 2개의 hyper-parameter는 latency(지연시간)과 accuracy(성능)의 균형을 조절한다.

Figure 1. MobileNet models can be applied to various recognition tasks for efficient on device intelligence.

MobileNet은 기본적으로 작은 모델, 여기서 Depthwise separable convolutions을 사용한다.

3. Depthwise Separable Convolution

표준 convolution을

- Depthwise convolution과
- Pointwise convolution(1×1 convolution)

으로 쪼갠 것이다.

(1) Depthwise convolution

Depthwise convolution은 각 입력 채널에 대하여 3x3 conv 하나의 필터가 연산을 수행하여 하나의 피쳐맵을 생성한다. 입력 채널 수가 M개이면 M개의 피쳐맵을 생성하는 것이다. 각 채널마다 독립적으로 연산을 수행하여 spatial correlation을 계산하는 역할을 한다.

예를 들어, 5 채널의 입력값이 입력되었으면, 5개의 3x3 conv가 각 채널에 대하여 연산을 수행하고, 5개의 feature map을 생성한다.

Depthwise convolution의 연산량은 다음과 같다.

$$D_K \cdot D_K \cdot M \cdot D_F \cdot D_F$$

M은 input channel

N은 output channel

 D_K \vdash filter size

 $D_F \succeq \text{output size}$

(2) Pointwise convolution

Pointwise convolution은 Depthwise convolution이 생성한 피쳐맵들을 1x1conv로 채널 수를 조정한다.

1x1conv는 모든 채널에 대하여 연산하므로 cross-channel correlation을 계산하는 역할을 한다.

Pointwise convolution의 연산량은 다음과 같다.

$$M \cdot N \cdot D_F \cdot D_F$$

M은 input channel

N은 output channel

 $D_F \succeq \text{output size}$

(3) Depthwise separable convolution

Depthwise separable convolution은 Depthwise convolution 이후에 Pointwise convolution을 적용한 것

아래 그림은 표준 Convolution과 MobileNet에서 사용하는 Depthwise separable convolution 구조

Original Convolution

$$D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F$$

Depthwise Conv & Pointwise Conv

1

$$D_K \cdot D_K \cdot M \cdot D_F \cdot D_F$$

 $M \cdot N \cdot D_F \cdot D_F$

이 과정을 시각화하면 다음과 같다. 각 큐브는 3차원의 필터 모양(혹은 parameter의 개수)을 나타내며, 표준 conv는 딱 봐도 큐브의 부피 합이 커 보이지만 Depthwise convolution와 Pointwise convolution는 하나 또는 2개의 차원이 1이므로 그 부피가 작다(즉, parameter의 수가 많이 적다).

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

Figure 2. The standard convolutional filters in (a) are replaced by two layers: depthwise convolution in (b) and pointwise convolution in (c) to build a depthwise separable filter.

이는 다르게 말해서 3차원적인 계산을 두 방향의 차원으로 먼저 계산한 후 나머지 한 차원을 그 다음에 계산하는 방식이라 생각해도 된다.

Depthwise separable convolution의 전체 연산량은 Depthwise Convolution과 Point Convolution 둘의 연산량을 더해준 것이 된다. **Depthwise separable convolution 연산량은 기존 conv 연산량보다 8~9배 더 적다.**

cf) Xception은 Depthwise separable convolution을 활용하여 감소한 파라미터 수 많큼 층을 쌓아 성능을 높이는데 집중했는데, MobileNet은 반대로 경량화에 집중한 것이다.

4. MobileNet Architecture

Table 1. MobileNet Body Architecture

Table 1. Wobilettet Body / Heintecture				
Type / Stride	Filter Shape	Input Size		
Conv / s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$		
Conv dw / s1	$3 \times 3 \times 32 \text{ dw}$	$112 \times 112 \times 32$		
Conv / s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$		
Conv dw / s2	$3 \times 3 \times 64 \text{ dw}$	$112 \times 112 \times 64$		
Conv / s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$		
Conv dw / s1	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$		
Conv / s1	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$		
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$		
Conv / s1	$1\times1\times128\times256$	$28 \times 28 \times 128$		
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$		
Conv / s1	$1 \times 1 \times 256 \times 256$	$28 \times 28 \times 256$		
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$		
Conv / s1	$1\times1\times256\times512$	$14 \times 14 \times 256$		
5× Conv dw / s1	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$		
Onv / s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$		
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$		
Conv / s1	$1\times1\times512\times1024$	$7 \times 7 \times 512$		
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$		
Conv / s1	$1\times1\times1024\times1024$	$7 \times 7 \times 1024$		
Avg Pool / s1	Pool 7 × 7	$7 \times 7 \times 1024$		
FC / s1	1024×1000	$1 \times 1 \times 1024$		
Softmax / s1	Classifier	$1 \times 1 \times 1000$		

Table 2. Resource Per Layer Type

Mult-Adds	Parameters
94.86%	74.59%
3.06%	1.06%
1.19%	0.02%
0.18%	24.33%
	94.86% 3.06% 1.19%

Pointwise convolution에 많은 연산량과 파라미터가 사용된다는 것을 볼 수 있다.

5. Hyper - parameter

MobileNet은 모델이 latency와 accuracy를 조절하는 두 개의 하이퍼파라미터가 존재한다.

(1) Width Multiplier Thinner Models

첫 번째 하이퍼파라미터 α 는 MobileNet의 두께를 결정한다. conv net에서 두께는 각 레이어에서 필터수를 의미한다.

이 width Multiplier α 는 더 얇은 모델이 필요할 때 사용한다. 입력 채널 M과 출력 채널 N에 적용하여 α M, α N이 된다. 따라서 연산량은 다음과 같이 된다.

$$D_K \cdot D_K \cdot \alpha M \cdot D_F \cdot D_F + \alpha M \cdot \alpha N \cdot D_F \cdot D_F$$

 α 는 0~1 범위이고 기본 MobileNet은 1을 사용한다. Width Multiplier를 낮추면 모델의 파라 미터 수가 감소한다.

Table 6. MobileNet Width Multiplier

Width Multiplier	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
1.0 MobileNet-224	70.6%	569	4.2
0.75 MobileNet-224	68.4%	325	2.6
0.5 MobileNet-224	63.7%	149	1.3
0.25 MobileNet-224	50.6%	41	0.5

(2) Resolution Multiplier: Reduced Representation

두 번째 하이퍼파라미터는 Resolution Multiplier ρ이다.

모델의 연산량을 감소시키기 위해 사용한다. ρ는 입력 이미지에 적용하여 해상도를 낮춘다.

범위는 $0\sim1$ 이고, 논문에서는 입력 이미지 크기가 224, 192, 169, 128 일때 비교를 한다. 기본 MobileNet은 $\rho=1$ 을 사용한다.

Layer/Modification	Million	Million
	Mult-Adds	Parameters
Convolution	462	2.36
Depthwise Separable Conv	52.3	0.27
$\alpha = 0.75$	29.6	0.15
$\rho = 0.714$	15.1	0.15

두 가지 파라미터를 조정했을 때의 변화

6. Experiments

MobileNet을 여러 multiplier 등 여러 세팅을 바꿔가면서 실험한 결과인데, 주로 성능 하락은 크지 않으면서도 모델 크기나 계산량이 줄었음을 보여준다. 혹은 정확도는 낮아도 크기가 많이 작기 때문에 여러 embedded 환경에서 쓸 만하다는 주장을 한다.

Table 4. Depthwise Separable vs Full Convolution MobileNet

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
Conv MobileNet	71.7%	4866	29.3
MobileNet	70.6%	569	4.2

Table 5. Narrow vs Shallow MobileNet

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
0.75 MobileNet	68.4%	325	2.6
Shallow MobileNet	65.3%	307	2.9

Depthwise Separable과 Full Convolution의 차이는 명확하다. 정확도는 1% 낮지만, **모델 크기는 7배 이상** 작다.

또 Narrow와 Shallow MobileNet을 비교하면 아래와 같다. (깊고 얇은 모델 vs 얕고 두꺼운 모델)

Imagenet Accuracy vs Mult-Adds

계산량과 성능 사이의 trade-off는 위처럼 나타난다. 계산량이 지수적으로 늘어나면, 정확도는 거의 선형적으로 늘어난다.

Imagenet Accuracy vs Million Parameters

정확도, 계산량, 모델 크기를 종합적으로 비교

Table 8. MobileNet Comparison to Popular Models

ImageNet	Million	Million
Accuracy	Mult-Adds	Parameters
70.6%	569	4.2
69.8%	1550	6.8
71.5%	15300	138
	Accuracy 70.6% 69.8%	Accuracy Mult-Adds 70.6% 569 69.8% 1550

Table 9. Smaller MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
0.50 MobileNet-160	60.2%	76	1.32
Squeezenet	57.5%	1700	1.25
AlexNet	57.2%	720	60

다른 모델들과의 성능 비교

웹에서 얻은 대량이지만 noisy한 데이터를 사용하여 학습한 다음 Stanford Dogs dataset에서 테스트해보았다.

Table 10. MobileNet for Stanford Dogs

Model	Top-1	Million	Million
	Accuracy	Mult-Adds	Parameters
Inception V3 [18]	84%	5000	23.2
1.0 MobileNet-224	83.3%	569	3.3
0.75 MobileNet-224	81.9%	325	1.9
1.0 MobileNet-192	81.9%	418	3.3
0.75 MobileNet-192	80.5%	239	1.9

MobileNet의 또 다른 쓸모 있는 점은 전혀 또는 거의 알려져 있지 않은(unknown or esoteric) 학습 과정을 가진 큰 모델을 압축할 수 있다는 것

MobileNet 구조를 사용하여 얼글 특징 분류기에서 distillation을 수행했는데, 이는 분류기가 GT label 대신에 더 큰 모델의 출력값을 모방하도록 학습하는 방식으로 작동한다. 기본 모델에 비해 최대 99%까지 연산량을 줄이면서도 성능 하락은 별로 없는 것을 볼 수 있다.

Width Multiplier /	Mean	Million	Million
Resolution	AP	Mult-Adds	Parameters
1.0 MobileNet-224	88.7%	568	3.2
0.5 MobileNet-224	88.1%	149	0.8
0.25 MobileNet-224	87.2%	45	0.2
1.0 MobileNet-128	88.1%	185	3.2
0.5 MobileNet-128	87.7%	48	0.8
0.25 MobileNet-128	86.4%	15	0.2
Baseline	86.9%	1600	7.5

MobileNet을 물체 인식에도 적용시켜서 Faster-RCNN 등과 비교해 보았다. 이 결과 역시 모델 크기나 연산량에 비해 성능이 좋다는 것을 보여주고 있다.

Framework	Model	mAP	Billion	Million
Resolution			Mult-Adds	Parameters
	deeplab-VGG	21.1%	34.9	33.1
SSD 300	Inception V2	22.0%	3.8	13.7
	MobileNet	19.3%	1.2	6.8
Faster-RCNN	VGG	22.9%	64.3	138.5
300	Inception V2	15.4%	118.2	13.3
	MobileNet	16.4%	25.2	6.1
Faster-RCNN	VGG	25.7%	149.6	138.5
600	Inception V2	21.9%	129.6	13.3
	Mobilenet	19.8%	30.5	6.1

얼굴인식 모델에서 FaceNet은 SOTA 모델인데, 적절히 distillation을 수행한 결과, 성능은 조금 낮으나 연산량을 고려하면 만족할 만한 수준인 것 같다.

Table 14. MobileNet Distilled from FaceNet

Model	1e-4	Million	Million
	Accuracy	Mult-Adds	Parameters
FaceNet [25]	83%	1600	7.5
1.0 MobileNet-160	79.4%	286	4.9
1.0 MobileNet-128	78.3%	185	5.5
0.75 MobileNet-128	75.2%	166	3.4
0.75 MobileNet-128	72.5%	108	3.8

7. Conclusion

Depthwise Separable Convolutions을 사용한 경량화된 모델 MobileNet을 제안하였다. 모델 크기나 연산량에 비해 성능은 크게 떨어지지 않고, 시스템의 환경에 따라 적절한 크기 의 모델을 선택할 수 있도록 하는 여러 옵션(multiplier)를 제공하였다.

참고자료

블로그

https://deep-learning-study.tistory.com/532

https://greeksharifa.github.io/computer vision/2022/02/01/MobileNetV1/

유튜브

https://www.youtube.com/watch?v=GyQUBLDQEJI