

自己PR資料

名前

所属・肩書など

Agenda

- ■自己紹介
- ■略歴+興味のある分野
- ■大学での研究
- ■経験
 - □講義
 - □学外活動
 - ロインターンシップ・共同研究
 - ロアルバイト
- ■最後に

自己紹介

顔写真 名前 ■出身(育ち):広島

■学部:

■大学院 :電気通信大学

アクション&アクション 「できることはすぐにやる」 「チャンスがあるなら逃さない」 「現状で満足しない」

- ■趣味:モノづくり(ソフトウェア)、旅行、麻雀、登山、ドライブ、カメラ、英語、など
 - □ (趣味の業績などあれば)
- セキュリティ関連のイベントなどにたまに参加

2013年	
2014年	
2015年	
2016年	
2017年	
2018年	

興味のある分野

研究一学部

■テーマ:

- ■目的
 - □ 脆弱な自動車内部のネットワーク(CANバス)を守る
 - □ 機械学習を利用して様々な種類の自動車に対応
- 様々な自動車で攻撃を検証
 - Axela, Corolla Fieldar, Levorg, Bluebird sylphy, Prius, Aqua, Lexus RX

(補足)研究-学部 詳細

- (車載器)
 - Raspberry Pi 3 + CANシールド
- ■機械学習フレームワーク
 - □ Jubatus (C++でコーディング)

研究 - 修士 (現在)

■テーマ:

- ■目的
 - □ もともと通信速度が遅く、スケーラビリティが低い
 - Smart City化などに伴い需要の高騰に対応
- ■実機にて動作検証予定

(補足)研究-修士 詳細

- ■シミュレーション
 - □ノードが非常に多くなった場合をシミュレーション
 - ◆ 都市部においてノードの集中が予想されるため
 - □ シミュレータ: NS-3 (C++でコーディング)
- ■実機(予定)
 - □ 実際にMAC層の処理を実現して動作を確認
 - 数台ばらまいてその効果を検証

経験-講義

- ■学部
 - 0
 - 0 (
 - _ •
 - 0
 - .

- ■大学院

 - 0
- ۰

成果物のスクリーンショットや写真など

経験 - 学外活動

主にloTセキュリティに興味

[SecHack365]システムのイメージと分担

[SecHack365] AWSを活用したシステムアーキテクチャ

[SecHack365]サービス管理者け可視化サービス

[SecHack365]サービス管理者け可視化サービス

ユーザ毎のメッセージ数

Toyota_Aqua_kayama

Toyota_Aqua_teshiba Toyota_A

Count - vehicleId: Descending

latest alert centric

エラーメッセージ量

経験 - インターンシップ・共同研究

経験 - アルバイト

最後に

- ■経験のある言語について
 - □ C, C++, Android Java, PHP, Windows power shell, Bash shell, Python, Haskell, GO, etc
 - □なんでも勉強して書けるようになる自信あります!
- ■私の目標
 - 多くの技術に触れ、様々なサービスを支えるインフラの最先端を学び、自ら支えていきたい
 - □ "多くの人を見る"ことのできる人材へ
 - ◆ 人事という枠ではなく、勉強回などで学生と意見を交わす等

ありがとうございました

(おまけ) モチベのグラフなど

