

Econométrie 2

Chapitre 3 : modèles binaires.

ENSAE 2021-2022

Michael Visser CREST-ENSAE

Plan

Introduction

Modélisation et paramètres d'intérêt

Identification et estimation

Qualité du modèle, sélection des variables

Modèle de probabilité linéaire

Application

Motivation

- ▶ On cherche à expliquer Y binaire par $X = (1, X_1, ..., X_{K-1})' \in \mathbb{R}^K$.
- Les deux valeurs possibles de Y étant arbitraires, on posera toujours $Y \in \{0,1\}$.
- Les variables discrètes (et en particulier binaire) sont très largement répandues :
 - En microéconomie : activité vs inactivité, emploi vs chômage, consommation ou non d'un bien durable...
 - En risques de crédit : défaut ou non d'un emprunteur.
 - En assurance : sinistre ou non.
 - En biostatistique : individu guéri vs malade, traitement efficace ou non.
 - En sciences sociales : obtention d'un diplôme ou non, couple vs célibat, vote vs abstention etc.

Idées générales

- Les modèles linéaires sont mal adaptés pour étudier ce genre de variables...
- ightharpoonup ... Mais on imposera un modèle linéaire sur une variable latente Y^* liée à Y.
- Comme les modèles correspondants sont non-linéaires en Y, nécessité de bien réfléchir aux paramètres d'intérêt.
- Le fait de ne pas observer Y^* impliquera la nécessité de normalisation et d'hypothèses paramétriques.
- ▶ Utilisation du maximum de vraisemblance (conditionnel aux X).
- Ces idées se retrouveront dans les chapitres suivants.

Plan

Introductio

Modélisation et paramètres d'intérêt

Identification et estimation

Qualité du modèle, sélection des variables

Modèle de probabilité linéaire

Application

Modélisation

Les modèles linéaires sont mal adaptés pour étudier ce genre de variables. En effet, si $Y \in \{0,1\}$, on a

$$E(Y|X) = P(Y = 1|X) \in [0, 1].$$
 (1)

Dans un modèle linéaire (sous hypothèse d'exogénéité $E(\varepsilon|X)=0$), on a $E(Y|X)=X'\beta_0$. Mais rien n'assure que $X'\beta_0\in[0,1]$.

Pour que (1) soit satisfaite, on va supposer que

$$E(Y|X) = F(X'\beta_0), \tag{2}$$

où F(.) est une fonction (connue) strictement croissante bijective de \mathbb{R} dans]0, 1[, donc une fonction de répartition (fdr).

▶ N.B. : l'équation (2) est celle d'un modèle linéaire généralisé (GLM en anglais), c'est-à-dire un modèle de la forme :

$$h(E(Y|X)) = X'\beta_0,$$

où h est une fonction connue (dite fonction de lien).

Modèles non-linéaires et variables latentes

- Le modèle (2) peut s'interpréter en termes de *variables latentes*.
- lacktriangle Supposons qu'il existe une variable continue $Y^*\in\mathbb{R}$ telle que

$$Y = \mathbb{1}\{Y^* \ge 0\}.$$

ightharpoonup Supposons par ailleurs que Y^* suive un modèle linéaire :

$$Y^* = X'\beta_0 + \varepsilon, \tag{3}$$

où $-\varepsilon$ est indépendante de X et a pour fonction de répartition F . Alors

$$P(Y = 1|X) = P(X'\beta_0 + \varepsilon \ge 0|X) = P(-\varepsilon \le X'\beta_0|X) = F(X'\beta_0).$$

- On retrouve donc l'équation (2).
- L'interprétation en termes de variables latentes est, très souvent, naturelle.

Interprétation en termes de variables latentes

Exemple 1 : microéconomie.

- Y = choix binaire de la part d'un agent. Soit U_1 l'utilité (espérée) de l'agent s'il décide Y=1, U_0 son utilité s'il décide Y=0.
- Posons alors $Y^* = U_1 U_0$ la différence d'utilité entre les deux choix.
- Si l'agent est rationnel, il décide en maximisant son utilité espérée :

$$Y=\mathbb{1}\{U_1\geq U_0\}=\mathbb{1}\{Y^*\geq 0\}.$$

Exemple 2: finance d'entreprise.

- Le défaut (Y = 1) d'une entreprise survient lorsque la dette de l'entreprise D dépasse un certain seuil S (éventuellement aléatoire).
- ightharpoonup On a alors $Y^* = D S$.

Interprétation en termes de variables latentes

Exemple 3: biostatistique.

- ightharpoonup Y = 1 si malade, 0 sinon.
- Un individu est guéri lorsque le nombre de bactéries N (par exemple) est descendu en dessous d'un certain seuil S, éventuellement fonction de l'individu.
- ightharpoonup On a alors $Y^* = N S$.

Exemple 4: éducation.

- ightharpoonup Y = 1 si l'individu obtient son diplôme, 0 sinon.
- On obtient son diplôme si notre moyenne M est supérieure à un seuil fixé s.
- ightharpoonup On a alors $Y^* = M s$.

Deux exemples importants : le probit et le logit

- A priori n'importe quel choix est possible pour F.
- Les plus courants sont
 - ightharpoonup F = Φ, fdr d'une $\mathcal{N}(0,1)$: modèle probit ;
 - F(x) = $\Lambda(x) = 1/(1 + \exp(-x))$, fdr d'une loi *logistique* : modèle logit.
- La différence entre les deux est assez faible. Lorsque $|x| \to +\infty$, $\varphi(x) = \Phi'(x) \propto e^{-x^2/2}$ et $\Lambda'(x) = \Lambda(x)(1 \Lambda(x)) = O(e^{-|x|})$.
- ⇒ queues plus épaisses pour la loi logistique.

Paramètres et effets marginaux

- ▶ Qualitativement, la j—ème composante X_j de X aura un effet positif sur P(Y = 1|X) ssi $\beta_{0j} > 0$.
- lacktriangle Quantitativement, l'interprétation de eta_{0j} est plus délicate.
- ▶ Dans le modèle linéaire standard $E(Y|X) = X'\beta_0$, le paramètre β_{0j} de X_j peut s'interpréter comme l'effet marginal de X_j :

$$\frac{\partial E(Y|X_1=x_1,...,X_{K-1}=x_{K-1})}{\partial x_j}=\beta_{0j}.$$

► Cette valeur est indépendante de $x = (x_1, ..., x_{K-1})$.

Paramètres et effets marginaux

Mais dans les modèles binaires (et non-linéaires plus généralement), l'effet marginal de X_i n'est plus β_{0i} , et il dépend de x:

$$\frac{\partial E(Y|X=x)}{\partial x_j} = \frac{\partial F(u)}{\partial u}\bigg|_{u=x'\beta_0} \frac{\partial x'\beta_0}{\partial x_j} = f(x'\beta_0)\beta_{0j} \quad \text{avec } f = F'.$$

- Remarque 1 : si f est symétrique unimodale, l'effet d'une variable sur P(Y=1|X) est d'autant plus fort que $x'\beta_0$ est proche de 0, soit $P(Y=1|X)\simeq 0.5$.
- Remarque 2 : on a toujours

$$\frac{\beta_{0I}}{\beta_{0j}} = \frac{\partial E(Y|X=x)/\partial x_I}{\partial E(Y|X=x)/\partial x_j}$$

Donc la comparaison des différents paramètres est licite.

Paramètres et effets marginaux

• Outre l'estimation de β_{0j} , il est intéressant d'estimer l'effet marginal moyen :

$$\Delta_j = E\left[f(X'\beta_0)\right]\beta_{0j}.$$

C'est l'effet sur Y d'une augmentation marginale de X_j appliquée à tous les individus.

- On peut également se concentrer sur des sous-populations, en calculant l'effet marginal moyen pour les individus vérifiant $X \in A$ (par exemple) : $E\left[f(X'\beta_0)|X\in A\right]\beta_{0j}$ ou encore l'effet marginal à la moyenne, $f\left(E(X)'\beta_0\right)\beta_{0j}$.
- Pour les variables explicatives discrètes (dichotomiques), l'effet marginal est remplacé par

$$F(x'_{-j}\beta_{0-j}+\beta_{0j})-F(x'_{-j}\beta_{0-j}).$$

où $x_{-j}=(1,x_1,...,x_{j-1},x_{j+1},...,x_{K-1})'$. L'effet moyen d'un changement universel de X_i de 0 à 1 est alors :

$$E\left[F(X'_{-i}\beta_{0-j}+\beta_{0j})-F(X'_{-i}\beta_{0-j})\right].$$

Une spécificité du modèle logit : les odds-ratios.

- On définit le risque (ou odd) comme égal à P(Y = 1|X)/P(Y = 0|X).
- Dans le cas du logit :

$$\frac{P(Y=1|X=x)}{P(Y=0|X=x)} = \frac{1/(1+e^{-x'\beta_0})}{e^{-x'\beta_0}/(1+e^{-x'\beta_0})} = e^{x'\beta_0}$$

ightharpoonup Considérons une variable explicative $X_i \in \{0,1\}$. On a alors :

$$e^{\beta_{0j}} = \frac{P(Y=1|X_{-j}=x_{-j},X_j=1)/P(Y=0|X_{-j}=x_{-j},X_j=1)}{P(Y=1|X_{-j}=x_{-j},X_j=0)/P(Y=0|X_{-j}=x_{-j},X_j=0)}.$$

lacktriangle Donc $e^{eta_{f 0}}$ est égal au rapport des risques (odds-ratio) correspondant à $X_i = 1$ et $X_i = 0$. Il est indépendant de la valeur de X_{-i} .

Plan

Introductio

Modélisation et paramètres d'intérê

Identification et estimation

Qualité du modèle, sélection des variables

Modèle de probabilité linéaire

Application

Identification

Revenons à l'équation :

$$Y = \mathbb{1}\{X'\beta_0 + \varepsilon \ge 0\}.$$

- Deux questions : (i) pourquoi fixer le seuil à 0? (ii) pourquoi fixer la variance de ε (à 1 pour le probit, à $\pi^2/3$ pour le logit)?
- Raison : le modèle n'est pas identifiable sinon. En effet, on a :

$$Y=\mathbb{1}\{\beta_{01}+X_{-1}'\beta_{0-1}+\varepsilon\geq s\}\Longleftrightarrow Y=\mathbb{1}\{\beta_{01}-s+X_{-1}'\beta_{0-1}+\varepsilon\geq 0\}.$$

- ▶ En d'autres termes, on ne peut pas identifier séparément la constante β_{01} et le seuil s. On fixe donc (arbitrairement) s à 0.
- De même, on ne peut pas identifier de façon jointe β_0 et la variance σ_0^2 du résidu ε . En effet,

$$Y = \mathbb{1}\{X'\beta_0 + \varepsilon \ge 0\} \iff Y = \mathbb{1}\{X'(\beta_0/\sigma_0) + \varepsilon/\sigma_0 \ge 0\}.$$

ightharpoonup On fixe donc arbitrairement σ_0 .

Identification

Proposition 1

Si s et σ_0 sont fixés et E(XX') est inversible, le modèle est identifié.

Preuve: soit P_{β} la loi des observations lorsque le vrai paramètre est β . Il s'agit de montrer que la fonction $\beta \mapsto P_{\beta}$ est injective. Dans notre modèle conditionnel, on peut montrer que l'identification est équivalente à

$$P_{\beta}(Y=1|X) = P_{\beta'}(Y=1|X) \Rightarrow \beta = \beta' \quad \forall (\beta, \beta').$$

Or

$$(E(XX') \text{ est inversible }) \iff (X'\lambda = 0 \Longrightarrow \lambda = 0)$$

Par conséquent,

$$P_{\beta}(Y = 1|X) = P_{\beta'}(Y = 1|X) \iff F(X'\beta) = F(X'\beta')$$

 $\iff X'\beta = X'\beta'$
 $\iff \beta = \beta' \sqcap$

Estimation du modèle : le maximum de vraisemblance

- On s'intéresse maintenant à l'estimation de β_0 à partir d'un échantillon i.i.d. $((Y_1, X_1), ..., (Y_n, X_n))$.
- ► Comme le modèle est paramétrique, on peut l'estimer par maximum de vraisemblance.
- ► La densité de Y conditionnellement à X s'écrit :

$$P(Y = y | X = x) = [P(Y = 1 | X = x)]^{y} [P(Y = 0 | X = x)]^{1-y}$$

= $F(x'\beta)^{y} (1 - F(x'\beta))^{1-y}$.

La fonction de vraisemblance d'un échantillon i.i.d. $(Y,X) = ((Y_1,X_1),...,(Y_n,X_n))$ conditionnellement à X s'écrit alors

$$\mathcal{L}_n(Y|X;\beta) = \prod_{i=1}^n F(X_i'\beta)^{Y_i} (1 - F(X_i'\beta))^{1-Y_i}.$$

Estimation du modèle : le maximum de vraisemblance

▶ Un estimateur du maximum de vraisemblance est alors défini par :

$$\widehat{\beta} \in \arg\max_{\beta \in \mathbb{R}^K} \mathcal{L}_n(Y|X;\beta).$$

- Remarquez que cet estimateur n'est pas forcément unique, et il peut ne pas exister.
- Remarquez aussi que $\mathcal{L}_n(Y|X;\beta)$ est la vraisemblance conditionnelle à X. En notant $g(X_i)$ la densité de X_i , la vraisemblance non-conditionnelle s'écrit

$$\mathcal{L}_n(Y,X;\beta) = \prod_{i=1}^n F(X_i'\beta)^{Y_i} (1 - F(X_i'\beta))^{1-Y_i} g(X_i).$$

Comme dans la pratique on ne s'intéresse pas à la distribution de X, on se focalise sur la vraisemblance conditionnelle.

Conditions du premier ordre du programme

On maximise plutôt la log-vraisemblance :

$$\ell_n(Y|X;\beta) = \sum_{i=1}^n Y_i \ln (F(X_i'\beta)) + (1-Y_i) \ln (1-F(X_i'\beta))$$

▶ On a $\partial F(X_i'\beta)/\partial \beta = f(X_i'\beta)X_i$. Donc :

$$\frac{\partial \ell_n}{\partial \beta}(Y|X;\beta) = \sum_{i=1}^n \left[Y_i \frac{f(X_i'\beta)}{F(X_i'\beta)} + (1 - Y_i) \frac{-f(X_i'\beta)}{1 - F(X_i'\beta)} \right] X_i$$

Soit encore

$$\frac{\partial \ell_n}{\partial \beta}(Y|X;\beta) = \sum_{i=1}^n \frac{f(X_i'\beta)}{F(X_i'\beta)(1 - F(X_i'\beta))} [Y_i - F(X_i'\beta)] X_i. \tag{4}$$

Les conditions du premier ordre s'écrivent donc :

$$\sum_{i=1}^{n} \frac{f(X_{i}'\widehat{\beta})}{F(X_{i}'\widehat{\beta})(1 - F(X_{i}'\widehat{\beta}))} \left[Y_{i} - F(X_{i}'\widehat{\beta}) \right] X_{i} = 0$$

qui n'admet pas de solution analytique simple en général.

(5)

Existence et unicité de solution

- Si une variable dichotomique X_j est telle que : si $x_{ij}=1 \Rightarrow y_i=1$ pour tout i (ou $x_{ij}=1 \Rightarrow y_i=0$ pour tout i), l'estimateur n'existe pas.
- ► En effet, $\partial \ell_n/\partial \beta_j$ s'écrit alors (on considère le cas $x_{ij}=1 \Rightarrow y_i=1$ pour tout i)

$$\sum_{i=1}^{n} \frac{f(x_{i}'\beta)}{F(x_{i}'\beta)(1 - F(x_{i}'\beta))} [y_{i} - F(x_{i}'\beta)] x_{ij} = \sum_{i:x_{ij}=1} \frac{f(x_{i}'\beta)}{F(x_{i}'\beta)} > 0 \quad \forall \beta$$

L'exemple montre que, parmi les observations telles que $x_{ij}=1$, la variable y_i doit varier à travers i pour pouvoir estimer β_{0j} . En absence de variation, des logiciels comme Stata indiquent que le paramètre β_{0j} n'est pas identifiable et "expulse" automatiquement la variable x_i du modèle.

Existence et unicité de solution

▶ Dans le cas du modèle logit, on a $\Lambda' = \Lambda(1 - \Lambda)$, donc

$$\frac{\partial^2 \ell_n}{\partial \beta \partial \beta'} (Y|X;\beta) = -\sum_{i=1}^n \Lambda'(X_i'\beta) X_i X_i' << 0.$$

La matrice des dérivés secondes est définie négative. La log-vraisemblance est donc strictement concave \Rightarrow les conditions de premier ordre ont au plus une solution, et cette solution correspond au maximum global.

- Dans le cas du modèle probit, on peut également montrer que la log-vraisemblance est bien strictement concave.
- ▶ Dans le cas général, le programme n'est pas nécessairement concave et il peut y avoir plusieurs solutions. Il faut alors (dans l'idéal) vérifier que la solution corresponde bien à un maximum global.

Remarques sur l'optimisation

- Contrairement à l'estimateur des MCO, l'estimateur du maximum de vraisemblance ne peut pas, en général, s'exprimer d'une manière explicte.
- L'estimateur peut être obtenu numériquement par un algorithme de Newton-Raphson (il existe d'autres algorithmes). Partant de $\beta^{(0)}$ quelconque, on définit la suite $\left(\beta^{(m)}\right)_{m\in\mathbb{N}}$ par :

$$\beta^{(m+1)} = \beta^{(m)} - \left[\frac{\partial^2 \ell_n}{\partial \beta \partial \beta'} (Y|X; \beta^{(m)}) \right]^{-1} \frac{\partial \ell_n}{\partial \beta} (Y|X; \beta^{(m)})$$

- Par concavité stricte de $\ell_n(Y|X;\beta)$, la suite $\beta^{(m)}$, si elle converge, tend nécessairement vers l'EMV.
- ▶ Dans le cas d'un modèle logit ou probit les itérations convergent typiquement vite et rapidement.

Propriétés asymptotiques

Proposition 2

Sous plusieurs conditions techniques (voir cours de Statistique 1), on a $\widehat{\beta} \stackrel{P}{\longrightarrow} \beta_0$ et

$$\sqrt{n}(\widehat{\beta} - \beta_0) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \mathcal{I}_1^{-1}(\beta_0)),$$

où $\mathcal{I}_1(eta_0)$ est l'information de Fisher associée à une observation. De plus,

$$\mathcal{I}_1(\beta_0) = E\left(\frac{f^2(X'\beta_0)}{F(X'\beta_0)(1 - F(X'\beta_0))}XX'\right).$$

On peut l'estimer de façon convergente par :

$$\widehat{\mathcal{I}_1(\beta_0)} = \frac{1}{n} \sum_{i=1}^n \frac{f^2(X_i'\widehat{\beta})}{F(X_i'\widehat{\beta})(1 - F(X_i'\widehat{\beta}))} X_i X_i'.$$

Rappel : l'EMV est asymptotiquement le meilleur estimateur "régulier" : si un autre estimateur $\widetilde{\beta}$ vérifie $\sqrt{n}\left(\widetilde{\beta}-\beta_0\right) \stackrel{d}{\longrightarrow} \mathcal{N}(0,V)$, alors

Propriétés asymptotiques

Preuve de la formule sur $\mathcal{I}_1(\beta_0)$: on a

$$\mathcal{I}_1(eta_0) = V\left(rac{\partial \ell_1}{\partial eta}(Y|X;eta_0)
ight)$$

où $\ell_1(Y|X;\beta_0)$ est la log-vraisemblance (évaluée en β_0) d'une observation :

$$\ell_1(Y|X; \beta_0) = Y \ln(F(X'\beta_0)) + (1 - Y) \ln(1 - F(X'\beta_0))$$

Par décomposition de la variance :

$$\mathcal{I}_{1}(\beta_{0}) = E\left[V\left(\frac{\partial \ell_{1}}{\partial \beta}(Y|X;\beta_{0})\middle|X\right)\right] + V\left[E\left(\frac{\partial \ell_{1}}{\partial \beta}(Y|X;\beta_{0})\middle|X\right)\right].$$

Or (cf. équation (4))

$$\frac{\partial \ell_1}{\partial \beta}(Y|X;\beta_0) = \frac{f(X'\beta_0)}{F(X'\beta_0)(1 - F(X'\beta_0))} [Y - F(X'\beta_0)] X.$$

Propriétés asymptotiques

Donc

$$E\left(\frac{\partial \ell_1}{\partial \beta}(Y|X;\beta_0)\middle|X\right)=0$$

car $E(Y - F(X'\beta_0)|X) = 0$, et

$$V\left(\frac{\partial \ell_{1}}{\partial \beta}(Y|X;\beta_{0})\middle|X\right) = E\left[\left(\frac{\partial \ell_{1}}{\partial \beta}(Y|X;\beta_{0})\right)\left(\frac{\partial \ell_{1}}{\partial \beta}(Y|X;\beta_{0})\right)'\middle|X\right]$$

$$= E\left[\frac{f(X'\beta_{0})^{2}}{F(X'\beta_{0})^{2}(1-F(X'\beta_{0}))^{2}}\left[Y-F(X'\beta_{0})\right]^{2}XX'\middle|X\right]$$

$$= \frac{f^{2}(X'\beta_{0})XX'}{F(X'\beta_{0})(1-F(X'\beta_{0}))}$$

car $E\left[(Y-F(X'eta_0))^2\Big|X\right]=F(X'eta_0)(1-F(X'eta_0))$. D'où le résultat.

Tests d'hypothèses.

On souhaite tester une hypothèse du type

$$H_0: R\beta_0 = 0$$
 contre $H_1: R\beta_0 \neq 0$ (R matrice $p \times K, p \leq K$).

- ▶ Par exemple, $\beta_{0j} = 0$ ou $\beta_{02} = ... = \beta_{0K-1} = 0$ (c'est à dire $\beta_{0-1} = 0$).
- On utilise l'un des trois tests liés au maximum de vraisemblance : le test de Wald, le test du score ou le test de rapport de vraisemblance. Les statistiques de test correspondantes s'écrivent :

$$\xi_{n}^{W} = n\widehat{\beta}'R'\left[R\widehat{I_{1}(\beta_{0})}^{-1}R'\right]^{-1}R\widehat{\beta}$$

$$\xi_{n}^{S} = \frac{1}{n}\frac{\partial\ell_{n}}{\partial\beta'}(Y|X;\widehat{\beta}_{C})\widehat{I_{1}(\beta_{0})}^{-1}\frac{\partial\ell_{n}}{\partial\beta}(Y|X;\widehat{\beta}_{C})$$

$$\xi_{n}^{R} = 2\left[\ell_{n}(Y|X;\widehat{\beta}) - \ell_{n}(Y|X;\widehat{\beta}_{C})\right]$$

où $\widehat{\beta}_C$ est l'estimateur du maximum de vraisemblance contraint, i.e. estimé sous H_0 .

Tests d'hypothèses.

- Concernant la statistique ξ_n^W , $\widehat{\mathcal{I}_1(\beta_0)}$ correspond à la formule de la page 24.
- Concernant la statistique ξ_n^S , il s'agit de cette même formule sauf que $\widehat{\beta}$ est remplacé par $\widehat{\beta}_C$.
- Remarquez que les trois statistiques ont tendance à être "petites" sous l'hypothèse H₀.
- Sous H_0 , $\xi_n^T \stackrel{d}{\longrightarrow} \chi^2(p)$ (T = W, S ou R).
- La région critique d'un test de niveau asymptotique α est donc de la forme $\{\xi_n^T > q_p^{Chi-2}(1-\alpha)\}$ où $q_p^{Chi-2}(y)$ est le quantile d'ordre y d'un $\chi^2(p)$.
- Lorsqu'on teste $H_0: \beta_{0j} = 0$ contre $H_1: \beta_{0j} \neq 0$, le t-test habituel est le plus souvent utilisé. Ce test donne le même résultat que le test de Wald, car (à vérifier) $\xi_n^W = \left(\widehat{\beta}_j/se(\widehat{\beta}_j)\right)^2 \equiv t_j^2$ et $|t_j| > q^N(1-\alpha/2) \Leftrightarrow \xi_n^W > q_p^{Chi-2}(1-\alpha)$ où $q^N(1-\alpha/2)$ est le quantile d'ordre $1-\alpha/2$ d'une $\mathcal{N}(0,1)$.

Plan

Introductio

Modélisation et paramètres d'intérêt

Identification et estimation

Qualité du modèle, sélection des variables

Modèle de probabilité linéaire

Application

Pouvoir explicatif du modèle

▶ On définit, de façon similaire au R^2 , le pseudo- R^2 par :

pseudo-
$$R^2 = 1 - \frac{\ell_n(Y|X; \widehat{\beta})}{\ell_n(Y|X; \widehat{\beta}_C)}$$

où $\widehat{\beta}_C$ est le paramètre estimé sous l'hypothèse nulle $\beta_{0-1}=0$.

▶ Puisque $0 > \ell_n(Y|X; \widehat{\beta}) \ge \ell_n(Y|X; \widehat{\beta}_C)$, le pseudo- R^2 appartient à]0,1]. Il est proche de 1 lorsque

$$Y_i = 1$$
 et $F(X_i'\widehat{\beta}) \simeq 1$ ou $Y_i = 0$ et $F(X_i'\widehat{\beta}) \simeq 0$.

- Comme le R^2 , le pseudo- R^2 augmente mécaniquement avec le nombre de variables.
- Autres indicateurs : table de concordance, score, pourcentage de paires concordantes...

Choix des variables

- ► Arbitrage entre :
 - l'accroissement du pouvoir explicatif du modèle;
 - la perte de précision liée à l'estimation de nombreux paramètres.
- on peut faire des tests de nullité des variables, éventuellement via des procédures séquentielles (forward, backward, ...).
- Inconvénient : lorsque n tend vers l'infini, on est conduit à accepter la plupart des variables explicatives.
- on peut utiliser les critères d'information AIC (Akaike Information Criterion, Akaike, 1973) ou BIC (Bayesian Information Criterion, Schwarz, 1978).
- Ces critères sont utilisés pour résoudre le problème du choix de modèles. Supposons que l'on ait J modèles paramétriques possibles :

$$\{(P_{\beta^{(1)}})_{\beta^{(1)} \in B^{(1)}}, ..., (P_{\beta^{(J)}})_{\beta^{(J)} \in B^{(J)}}\}$$
.

On souhaite sélectionner le vrai modèle.

Choix des variables

Critère d'Akaike pour le modèle j ayant pi paramètres :

$$AIC(j) = \ell_n(Y|X; \widehat{\beta}^{(j)}) - p_j$$

On choisit alors le modèle $j_0 = \arg\max_j AIC(j)$.

- Ce critère ne conduit pas au bon choix lorsque n tend vers l'infini. En effet, le critère ne pénalise pas assez le nombre de paramètres.
- Pour corriger cela, Schwarz (1978) propose le critère suivant :

$$\mathsf{BIC}(j) = \ell_n(\mathsf{Y}|\mathsf{X};\widehat{\beta}^{(j)}) - \frac{p_j}{2} \ln(n)$$

Plan

Introduction

Modélisation et paramètres d'intérê

Identification et estimation

Qualité du modèle, sélection des variables

Modèle de probabilité linéaire

Application

Intérêt du modèle linéaire

Parfois, pour des raisons de simplicité, on estime un modèle de probabilité linéaire plutôt qu'un modèle logit ou probit :

$$E(Y|X) = X'\beta_0.$$

► Exemple : données de panel. Supposons que

$$E(Y_{it}|X_{it},\alpha_i)=X'_{it}\beta_0+\alpha_i,$$

où α_i est un effet individuel a priori corrélé aux X_{it} .

On peut éliminer l'effet inobservé par différence ou par within :

$$E(Y_{it} - Y_{it-1}|X_{it}, X_{it-1}) = (X_{it} - X_{it-1})'\beta_0.$$

Dans les modèles non-linéaires, ce n'est pas aussi simple car

$$E(Y_{it} - Y_{it-1}|X_{it}, X_{it-1}, \alpha_i) = F(X'_{it}\beta + \alpha_i) - F(X'_{it-1}\beta + \alpha_i).$$

Par ailleurs, l'estimation par maximum de vraisemblance de $(\beta, \alpha_1, ..., \alpha_n)$ n'est pas convergente à cause du problème des paramètres incidents : le nombre de paramètres tend vers l'infini avec n.

Modélisation et estimation

Le modèle de probabilité linéaire peut se réécrire $Y = X'\beta_0 + \varepsilon$, avec

$$\varepsilon = \left| \begin{array}{cc} 1 - X'\beta_0 & \text{avec la probabilit\'e (conditionnelle)} & X'\beta_0 \\ - X'\beta_0 & \text{avec une probabilit\'e} & 1 - X'\beta_0 \end{array} \right|$$

On a donc :

$$V(\varepsilon|X) = E(\varepsilon^{2}|X) = X'\beta_{0}(1 - X'\beta_{0})^{2} + (1 - X'\beta_{0})(X'\beta_{0})^{2}$$

= $X'\beta_{0}(1 - X'\beta_{0}).$

- Le modèle est hétéroscédastique. On peut l'estimer par MCO mais aussi par MCQG :
 - ▶ On estime β_0 par MCO : $\widehat{\beta}_{MCO}$.
 - ightharpoonup On réestime eta_0 par

$$\widehat{\beta}_{MCGQ} = \arg\min_{\beta} \sum_{i=1}^{n} \frac{1}{X_{i}' \widehat{\beta}_{MCO} (1 - X_{i}' \widehat{\beta}_{MCO})} \left[Y_{i} - X_{i}' \beta \right]^{2}$$

L'estimateur des MCQG est plus précis en théorie mais pas forcément en pratique, si $X_i'\widehat{\beta}_{MCO} \simeq 0$ ou $\simeq 1$ pour certains i.

Comparaison logit/probit/modèle linéaire

- La différence avec les modèles logit, probit et linéaire est que l'on ne choisit pas le même F(.) dans $E(Y|X) = F(X'\beta_0) : F = \Lambda, \Phi$, ou Identité suivant le modèle considéré.
- Il existe des modèles semi-paramétriques où l'on suppose que $P(Y=1|X)=F(X'\beta_0)$ avec F et β_0 inconnus. Équivaut à considérer le modèle latent $Y^*=X'\beta_0+\varepsilon$ avec $\varepsilon\perp\!\!\!\perp X$ de loi inconnue.
- Ces modèles sont moins restrictifs mais plus difficiles à estimer.
- Par ailleurs, les résultats des logit, probit et modèles linéaires sont souvent très proches en termes d'effets marginaux.
- ► En termes de coefficients, on aura en général

$$\widehat{eta}_{
m logit} \simeq 1.6 \widehat{eta}_{
m probit} \simeq 4 \widehat{eta}_{
m linéaire}.$$

Plan

Introduction

Modélisation et paramètres d'intérêt

Identification et estimation

Qualité du modèle, sélection des variables

Modèle de probabilité linéaire

Application

Exemple : activité des femmes.

- ▶ On cherche à expliquer l'activité (Y = 1, Y = 0 sinon) des femmes suivant leur âge, leur diplôme et leur situation familiale (en couple ou non, nombre d'enfants de moins de 3 ans).
- On utilise les données de l'enquête emploi française 2012. On se concentre sur les femmes de moins de 65 ans ayant terminé leurs études.
- Modalités de la variable de diplôme DDIPL :
 - 1 Diplôme supérieur
 - 3 Baccalauréat + 2 ans
 - 4 Baccalauréat ou brevet professionnel ou autre diplôme de ce niveau
 - 5 CAP, BEP ou autre diplôme de ce niveau
 - 6 Brevet des collèges
 - 7 Aucun diplôme ou CEP

Code Stata


```
destring age ddipl, replace
* Sélection de l'échantillon : femme en lère interrogation, ayant fini leur
* études et de moins de 65 ans
keep if rqi=="1" & sexe=="2" & fordat!="" & acteu!="" & age<=65
gen en_couple = (TYPMEN5=="3" | TYPMEN5=="4")
gen actif = (acteu!="3")
logit actif c.age c.age#c.age NBENF3 en couple i.ddipl
* Calcul des effets marginaux
margins, dydx(_all)
margins, dydx(_all) atmeans
* Calcul des odds ratios
logistic actif c.age c.age #c.age NBENF3 en couple i.ddipl
* Comparaison des effets marginaux avec le probit
probit actif c.age c.age#c.age NBENF3 en couple i.ddipl
margins, dydx( all)
```

Résultats : coefficients du logit


```
Iteration 0: log likelihood = -17112.651
Iteration 1: log likelihood = -13273.506
Iteration 2: log likelihood = -13110.555
Iteration 3: log likelihood = -13110.084
Iteration 4: log likelihood = -13110.084
```

Logistic regression

Log likelihood = -13110.084

actif	Coef.	Std. Err.	z	P> z	[95% Conf.	<pre>Interval]</pre>
age	.3588415	.008609	41.68	0.000	.3419681	.3757148
c.age#c.age	004898	.0000999	-49.03	0.000	0050938	0047022
NBENF3 en_couple	-1.433909 2182632	.0459917	-31.18 -6.29	0.000	-1.524051 2862983	-1.343766 1502281
ddipl 3 4 5 6 7	1536238 4915752 6802183 890034 -1.411182	.0649168 .0593656 .0566461 .0680838	-2.37 -8.28 -12.01 -13.07 -25.21	0.018 0.000 0.000 0.000 0.000	2808584 6079296 7912426 -1.023476 -1.520886	0263893 3752208 569194 7565922 -1.301478
_cons	-3.342729	.180223	-18.55	0.000	-3.69596	-2.989499

Résultats : effets marginaux moyens

Average marginal effects Number of obs = 29,248

Model VCE : OIM

 $\begin{array}{lll} {\tt Expression} & : & {\tt Pr(actif), predict()} \\ {\tt dy/dx w.r.t.} & : & {\tt age NBENF3 en_couple 3.ddipl 4.ddipl 5.ddipl 6.ddipl 7.ddipl} \end{array}$

	dy/dx	Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]
age NBENE3	0129698 2050776	.0001931	-67.18 -32.77	0.000	0133482 217342	0125913 1928131
en_couple	031216	.0049551	-6.30	0.000	0409278	0215042
ddipl						
3	0185428	.0078345	-2.37	0.018	0338981	0031874
4	0637538	.0075632	-8.43	0.000	0785773	0489302
5	0916208	.0073535	-12.46	0.000	1060334	0772083
6	1247672	.0097925	-12.74	0.000	1439602	1055741
7	2160232	.0080491	-26.84	0.000	2317991	2002474

Note: dy/dx for factor levels is the discrete change from the base level.

Résultats : effets marginaux à la moyenne


```
Conditional marginal effects
                                                   Number of obs
                                                                            29,248
Model VCE
              : OTM
              : Pr(actif), predict()
Expression
dv/dx w.r.t. : age NBENF3 en couple 3.ddipl 4.ddipl 5.ddipl 6.ddipl 7.ddipl
                                      43.60835 (mean)
at.
              : age
                NBENE3
                                      .1043832 (mean)
                en couple
                                      .7026805 (mean)
                                      .1625068 (mean)
                1.ddipl
                3.ddipl
                                      .1498222 (mean)
                4.ddipl
                                      .1864401 (mean)
                                      .218032 (mean)
                5.ddipl
                6.ddipl
                                      .0816124 (mean)
                7.ddipl
                                      .2015864 (mean)
                            Delta-method
                     dv/dx
                                                   P> | z |
                                                              [95% Conf. Interval]
                              Std. Err.
          age
                 -.0068105
                              .0001604
                                         -42.46
                                                   0.000
                                                            -.0071248
                                                                         -.0064961
      NBENF3
                 -.1428768
                              .0049677
                                         -28.76
                                                   0.000
                                                            -.1526133
                                                                         -.1331404
   en couple
                 -.0217481
                              .0034523
                                          -6.30
                                                   0.000
                                                            -.0285144
                                                                         -.0149817
       ddipl
                 -.0097966
                              .0041521
                                          -2.36
                                                   0.018
                                                            -.0179346
                                                                         -.0016587
           4
                  -.036382
                              .0043838
                                         -8.30
                                                   0.000
                                                            -.0449742
                                                                         -.0277898
                                         -12.28
                                                   0.000
                  -.054696
                              .0044551
                                                            -.0634279
                                                                         -.0459642
```

Note: dy/dx for factor levels is the discrete change from the base level.

-11.54

-24.47

0.000

0.000

-.0917188

-.1667551

.0067935

.006309

-.0784038

-.1543896

7

-.0650888

-.1420242

Résultats : rapports des risques (odds-ratios)

0.2339

.6871375

.5659815

.4692629

.2721292

.0503127

Logistic regression Number of obs = 29,248 ER LR chi2(9) = 8005.14 ER Prob > chi2 = 0.0000

Pseudo R2

0.000

0.000

0.000

0.000

0.000

.544477

.4532812

.3593438

.2185182

.0248236

Log likelihood = -13110.084

4

5

6

7

_cons

.6116621

.5065064

.4106418

.2438549

.0353404

actif	Odds Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
age	1.43167	.0123253	41.68	0.000	1.407715	1.456032
c.age#c.age	.9951139	.0000994	-49.03	0.000	.9949191	.9953088
NBENF3 en_couple	.2383754 .8039138	.0109633	-31.18 -6.29	0.000	.2178277 .7510386	.2608613 .8605116
ddipl 3	.8575946	.0556723	-2.37	0.018	.7551353	.9739559

-8.28

-12.01

-13.07

-25.21

-18.55

.0363117

.0286916

.0279581

.0136491

.0063691

Résultats : sortie du probit


```
Iteration 0: log likelihood = -17112.651
Iteration 1: log likelihood = -13167.282
Iteration 2: log likelihood = -13144.263
Iteration 4: log likelihood = -13144.235
```

Probit regression

Log likelihood = -13144.235

Number of obs = 29,248 LR chi2(9) = 7936.83 Prob > chi2 = 0.0000 Pseudo R2 = 0.2319

actif	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
age	.208209	.0049031	42.46	0.000	.1985991	.2178189
c.age#c.age	0028442	.0000567	-50.19	0.000	0029553	0027331
NBENF3 en_couple	810221 1252294	.0265808	-30.48 -6.37	0.000	8623183 1637702	7581237 0866885
ddipl 3 4 5 6 7	0674434 2627095 3680032 4981455 8048283	.035364 .0324658 .0311346 .0381265 .0309099	-1.91 -8.09 -11.82 -13.07 -26.04	0.057 0.000 0.000 0.000 0.000	1367555 3263413 429026 5728721 8654106	.0018688199077830698044234189744246
_cons	-1.957251	.1033402	-18.94	0.000	-2.159794	-1.754708

Résultats : effets marginaux du probit

Average marginal effects Number of obs = 29,248

Model VCE : OIM

Expression : Pr(actif), predict()

dy/dx w.r.t. : age NBENF3 en_couple 3.ddipl 4.ddipl 5.ddipl 6.ddipl 7.ddipl

	dy/dx	Delta-method Std. Err.	l z	P> z	[95% Conf.	Interval]
age NBENF3 en_couple	0128503 2043994 0315924	.0001954 .0064625 .0049528	-65.76 -31.63 -6.38	0.000 0.000 0.000	0132333 2170657 0412996	0124673 1917331 0218851
ddip1 3 4 5 6 7	0146067 0609368 0883387 124402 217612	.0076632 .0074383 .0072784 .0098168	-1.91 -8.19 -12.14 -12.67 -27.23	0.057 0.000 0.000 0.000 0.000	0296264 0755155 1026041 1436425 2332756	.000413 046358 0740732 1051614 2019484

Note: dy/dx for factor levels is the discrete change from the base level.

Questions sur l'application

Accepte-t-on l'hypothèse nulle du modèle sans explicative?

Réponse : On rejette H_0 : $\beta_{0-1}=0$ en utilisant le test de rapport de vraisemblance. Pour le modèle Logit (page 40), la valeur de la statistique ξ_n^R vaut 8005, le p-value vaut 0.000, on rejette fortement H_0 . Idem pour le modèle Probit.

► Quelles sont les variables significatives à 5%?

Réponse : Toutes les variables sont significatives à 5 % dans le cas du modèle Logit. Dans le cas du Probit seule la variable indiquant que DDIPL=3 ne l'est pas.

Quelles sont les formules utilisées pour calculer les effet marginaux moyens et à la moyenne de la variable âge?

Réponse : On calcule l'effet marginal moyen de la variable âge via la formule

$$\frac{1}{n}\sum_{i=1}^{n}f(x_{i}'\widehat{\beta})\left(\widehat{\beta}_{age}+2\widehat{\beta}_{agecarre} \ age_{i}\right).$$

Pour calculer l'effet marginal à la moyenne, on utilise la même formule sauf que les variables x_i et age_i sont remplacées par la moyenne de ces variables dans l'échantillon.

Questions sur l'application

Estime-t-on ici l'effet causal des variables?

Réponse : On estime l'effet causal des variables si le modèle est bien spécifié et si ϵ et X sont bien indépendantes.

Comment calcule-t-on le rapport des risques (odds-ratio) correspondant à une variable continue?

Réponse : Comme dans le cas d'une variable explicative binaire (voir page 14). Par exemple, pour la variable âge, le odds-ratio dans le tableau à la page 45 correspond à $e^{\widehat{\beta}_{age}}$ où $\widehat{\beta}_{age}$ est l'estimation du paramètre associé à l'âge.

Les résultats des deux modèles sont-ils comparables?

Réponse : Oui, toutes les variables sont significatives dans les deux modèles (sauf celle correspondant à DDIPL==3), et les coefficients estimés ont le même signe. Les effets marginaux sont par ailleurs très proches.

L'essentiel

- Modélisation via les variables latentes. Modèles logit, probit.
- ► Effets marginaux : dérivation, interprétation.
- Odds-ratios pour le logit.
- Identification (normalisation), estimation via le max. de vrais.
- Choix de modèle via les critères d'information.
- Modèle de probabilité linéaire : intérêt, limites.