NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

ELECTRONIC ENGINEERING DEPARTMENT

COMMUNICATION SYSTEMS PERFORMANCE TEE5122 ASSIGNMENT 1

DUE DATE: 26/11/2021

- 1.Two resistors $20k\Omega$ and $50k\Omega$ are at room temperature $290^{\circ}K$. Calculate for the bandwidth of 100kHz, the thermal noise for
 - i. Each resistor
 - ii. The two resistors in series
 - iii. The two resistors in parallel. [20]
- 2. The equivalent noise resistance for an amplifier is 300Ω and the equivalent shot noise current is $5\mu A$. The amplifier is fed from a 150Ω $10\mu V$ rms sinusoidal signal source. Calculate the individual noise voltage and the input signal to ratio in decibels given that the noise bandwidth is 10MHz. [20]
- 3. Derive and plot the auto correlation function of a white Gaussian noise which has a power spectral density of $\frac{N_o}{2}$. [15]
- 4. White noise with a one sided PSD is passed through a low pass filter whose transfer function is specified as $H(f)=2e^{-jf}$. Determine the output power spectral density. [15]