Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт з лабораторної роботи № 2 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації» «Дослідження алгоритмів розгалуження» Варіант 2

Виконав студент <u>ІП-12, Басараб Олег Андрійович</u> (шифр, прізвище, ім'я, по батькові)

Перевірив <u>Басараб Олег Андрійович</u> (прізвище, ім'я, по батькові)

Лабораторна робота №2 "Дослідження алгоритмів розгалуження"

Варіант 2

Мета — дослідити подання керувальної дії чергування у вигляді умовної та альтернативної форм та набути практичних навичок їх використання під час складання програмних специфікацій.

Задача 2. Задані дійсні додатні числа а, b, c, x, y. З'ясувати, чи пройде цеглина з ребрами а, b, с в прямокутний отвір із сторонами х та у. Просовувати цеглину у отвір дозволяється тільки так, щоб кожне із її ребер було паралельне або перпендикулярне кожній із сторін отвору.

Розв'язок

Постановка задачі. Результатом розв'язку є рядок result з відповіддю ("так" або "ні") на запитання, поставлене в умові задачі. Для визначення кінцевого результату потрібно здійснити 6 перевірок вигляду (($x \ge a$) and ($y \ge b$)), скориставшись альтернативною формою оператора вибору. Змінна result набуватиме значення "Так", якщо хоча б одна з умов буде істиною. Якщо всі умови будуть хибними, то result дорівнюватиме "Ні". Для знаходження result повинні бути задані дійсні числа a, b, c, x, y > 0. Інших початкових даних для розв'язку задачі не потрібно.

Побудова математичної моделі. Складемо таблицю імен змінних.

Змінна	Тип	Ім'я	Призначення
Перше ребро цеглини	Дійсний	a	Початкове дане
Друге ребро цеглини	Дійсний	b	Початкове дане
Третє ребро цеглини	Дійсний	c	Початкове дане
Перша сторона отвору	Дійсний	X	Початкове дане
Друга сторона отвору	Дійсний	y	Початкове дане
Відповідь на запитання з умови	Рядок	result	Результат

Таким чином, формулювання завдання зводиться визначення істинності або хибності такого виразу "(($x \ge a$) and ($y \ge b$)) or (($x \ge a$)) and ($y \ge c$)) or (($x \ge b$) and ($y \ge c$)) or (($x \ge a$) and ($y \ge a$)) or (($x \ge a$)) and ($y \ge a$))". Виконання хоча б однієї умови вигляду "($x \ge a$) and ($y \ge a$)" означає можливість проходження цеглини крізь отвір (саме тому між цими умовами використано оператор "or"). Наприклад, істинність "($x \ge a$) and ($y \ge a$)" означає, що цеглина зможе пройти крізь отвір, якщо її ребра з довжинами а будуть паралельними до сторін отвору з довжинами x, а ребра цеглини з довжинами x будуть паралельними до сторін отвору з довжинами x. Усі інші умови вигляду "($x \ge a$) and ($x \ge a$)" є аналогічними.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію перевірки можливості цеглини пройти крізь отвір з використанням альтернативної форми вибору.

Псевдокод.

```
Крок 2
Крок 1
початок
                                                 початок
   введення а, b, c, x, у
                                                    введення а, b, c, x, у
                                                   якщо ((x \ge a) \text{ and } (y \ge b)) or ((x \ge a))
   перевірка можливості цеглини
   пройти крізь отвір
                                                   and (y \ge c) or ((x \ge b) and (y \ge c)) or
                                                   ((x \ge b) \text{ and } (y \ge a)) \text{ or } ((x \ge c) \text{ and } (y \ge a))
                                                   a)) or ((x \ge c) and (y \ge b))
                                                         result = "Tak"
                                                      інакше
                                                         result = "Hi"
                                                    все якщо
   вивід result
                                                    вивід result
кінець
                                                 кінець
```

Блок-схема алгоритму.

Крок 1

Крок 2

Випробування алгоритму.

Перевірка №1

Блок	Дія
	Початок
1	Введення: 4.5; 5.5; 10.0; 6.0; 5.0
2	Якщо ((6.0 \geq 4.5) and (5.0 \geq 5.5)) or ((6.0 \geq 4.5) and (5.0 \geq
	10.0)) or $((6.0 \ge 5.5)$ and $(5.0 \ge 10.0))$ or $((6.0 \ge 5.5))$ and $(5.0 \ge 10.0))$
	\geq 4.5)) or ((6.0 \geq 10.0) and (5.0 \geq 4.5)) or ((6.0 \geq 10.0) and
	$(5.0 \ge 5.5))$
	То
	$\underline{\text{result}} = \text{"Tak"}$
	Інакше
	result = "Hi"
	Усе якщо
5	Вивід: Так
	Кінець

При перевірці з таким набором даних було отримано відповідь "Так", оскільки умова ($(6.0 \ge 5.5)$ and $(5.0 \ge 4.5)$) ϵ істиною.

Перевірка №2

Блок	Дія
	Початок
1	Введення: 5.5; 5.5; 10.0; 6.0; 5.0
2	Якщо ((6.0 \geq 5.5) and (5.0 \geq 5.5)) or ((6.0 \geq 5.5) and (5.0 \geq
	10.0)) or $((6.0 \ge 5.5)$ and $(5.0 \ge 10.0))$ or $((6.0 \ge 5.5)$ and $(5.0 \ge 10.0))$
	\geq 5.5)) or ((6.0 \geq 10.0) and (5.0 \geq 5.5)) or ((6.0 \geq 10.0) and
	$(5.0 \ge 5.5))$
	То
	result = "Τακ"
	Інакше
	<u>result = "Hi"</u>
	Усе якщо
5	Вивід: Ні
	Кінець

При перевірці з таким набором даних було отримано відповідь "Ні", оскільки умова в операторі **якщо** з блоку $2 \in \text{хибною}$.

Висновки. Таким чином, в результаті виконання лабораторної роботи було досліджено подання керувальної дії чергування у вигляді альтернативної форми на прикладі виконання задачі з визначення можливості цеглини (з відомими параметрами ширини, висоти і довжини) пройти крізь отвір (з відомими параметрами ширини і висоти) та набуто практичних навичок її використання під час складання програмних специфікацій. Також було згадано правила запису складних булевих виразів (таких як "(($x \ge a$) and ($y \ge b$)) or (($x \ge a$)) and ($y \ge c$)) or

 $((x \ge b) \text{ and } (y \ge c))$ or $((x \ge b) \text{ and } (y \ge a))$ or $((x \ge c) \text{ and } (y \ge a))$ or $((x \ge c) \text{ and } (y \ge a))$ ") та використано один зі способів подання відповіді на прикладі використання змінної result.