Конспект лекций курса «Анализ на многообразиях» А.В. Пенского

Авторы: Хоружий Кирилл

От: 1 ноября 2020 г.

Содержание

1	Лен	Лекция № 1		
	1.1	Векторы как дифференцирование функций	2	
	1.2	Дифференцирование как вектор	2	
	1.3	Замена координат		
	1.4	Коммутатор		
2	Лен	кция № 2	3	
	2.1	Обратный образ	3	
	2.2	Тензор	4	
3	Лен	кция № 3	4	
	3.1	Дифференциальная форма	4	
	3.2	Билинейные формы		
	3.3	Полилинейные формы		
	3.4	Внешний дифференциал		
4	Лен	кция № 4	6	
	4.1	Обращение с обратным образом (?)	6	
	4.2	Кривые		
	4.3	Явно заданные поверхности		
	4.4	Неявно заданные поверхности		
	4.5	Гладкие функции и пути на поверхности		
	4.6	Векторы на поверхности		
	4.7	Замена локальных координат		
5	Лев	кция № 5	10	
-	5.1	Производная по направлению		
		Лвойственность		

1 Лекция № 1

1.1 Векторы как дифференцирование функций

Что такое вектор? С одной стороны можем посмотреть на производную функции по направлению

$$\partial_X f(A) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left(f(A + \varepsilon X) - F(A) \right). \tag{1.1}$$

Что очень просто выглядит в декартовых координатах

$$\partial_X f(A) = \lim_{\varepsilon \to 0} \dots = \frac{d}{d\varepsilon} f\left(A^1 + \varepsilon X^1, \dots, A^n + \varepsilon XN\right) \Big|_{\varepsilon = 0} = \frac{\partial f}{\partial x^1} \left(A^1, \dots, A^n\right) X^1 + \dots + \frac{\partial f}{\partial x^n} \left(A^1, \dots, A^n\right).$$

Таким образом

$$\partial_X f(A) = X^i \frac{\partial f}{\partial x^i}(A). \tag{1.2}$$

Таким образом построили отображение

$$X \mapsto \partial_X \big|_A$$
.

Выпишем несколько свойств такого оператора

$$\partial_X (f+g)(A) = \partial_X f(A) + \partial_X g(A)$$
$$\partial_X (fg)(A) = (\partial_X f(A))g(A) + f(A)(\partial_X g(A)).$$

Что соответсвует правилу Лейбница.

1.2 Дифференцирование как вектор

Теперь зайдём с другой стороны. Рассмотрим $C^{\infty}(\mathbb{R}^n)$. Рассмотрим отображение D

$$D \colon C^{\infty}(U) \to \mathbb{R},$$

удоволетворяющее свойствам

$$D(f+g) = Df + Dg$$

$$D(fg) = (Df) \cdot g(A) + f(A) \cdot (Dg).$$

Что и назовём дифференцированием в точке A.

Легко показать, что D(const) = 0, $D\lambda f = \lambda Df$ и $f(A) = g(A) = 0 \Rightarrow D(fg) = 0$. Вспомним теперь формулу Тейлора в координатах u^1, \dots, u^n .

$$f(u^{1}, \dots, u^{n}) = f(A^{1}, \dots, A^{n}) + \frac{\partial f}{\partial u^{i}}(A^{1}, \dots, A^{n}) \cdot (u^{i} - A^{i}) + h_{ij}(u^{1}, \dots, u^{n})(u^{i} - A^{i}) \cdot (u^{j} - A^{j}).$$

Тогда

$$D(f) = 0 + \underbrace{D(u^i - A^i)}_{X^i} \frac{\partial f}{\partial u^i}(A^1, \dots, A^n).$$

Таким образом

$$Df = X^{i} \frac{\partial f}{\partial u^{i}} \left(A^{1}, \dots, A^{n} \right). \tag{1.3}$$

Итого

- 1. В ДСК $X \mapsto \partial_X|_A$.
- 2. В ДСК D имеет вид $\partial_X \big|_A$ для некоторого X.
- 3. Получили взаимно-однозначное соответствие векторы дифференцирование.
- 4. Определим векторы, как дифференцирование. Это определение инвариантно.

$$X = X^i \frac{\partial}{\partial u^i},\tag{1.4}$$

где (X^1,\dots,X^n) – координаты вектора в координатах (u^1,\dots,u^n) .

1.3 Замена координат

Допустим выбрали некоторые (u^1, \dots, u^n) и (v^1, \dots, v^n) . Тогда

$$D = X^i \frac{\partial}{\partial u^i} = Y^j \frac{\partial}{\partial v^j}.$$

По правилу дифференцирования сложной функции

$$\frac{\partial f}{\partial u^i} = \frac{\partial v^j}{\partial u^i} \frac{\partial f}{\partial v^j}, \quad \Rightarrow \quad X^i \frac{\partial}{\partial u^i} = \underbrace{X^i \frac{\partial v^j}{\partial u^i}}_{V^i} \frac{\partial}{\partial v^j}.$$

Получили формулу изменения координат вектора при смене системы¹ координат

$$Y^{j} = \frac{\partial v^{j}}{\partial u^{i}} X^{i} \quad \Leftrightarrow \quad Y = JX. \tag{1.5}$$

1.4 Коммутатор

Для матриц известен коммутатор вида

$$[A, B] = AB - BA.$$

Аналогично для дифференцирования

$$\left[\partial_X,\partial_Y\right]f = \partial_X\partial_Y f - \partial_Y\partial_X f = X^i \frac{\partial}{\partial u^i} \left(Y^j \frac{\partial f}{\partial u^j}\right) - Y^j \frac{\partial}{\partial u^j} \left(X^i \frac{\partial f}{\partial u^i}\right) = X^i \frac{\partial Y^j}{\partial u^i} \frac{\partial f}{\partial u^i} - Y^j \frac{\partial X^i}{\partial u^j} \frac{\partial f}{\partial u^j}$$

Таким образом

$$[\partial_X, \partial_Y] f = \left[X^i \frac{\partial Y^j}{\partial u^i} - Y^i \frac{\partial x^j}{\partial u^i} \right] \frac{\partial f}{\partial u^i}. \tag{1.6}$$

Это, как ни странно, дифференциальный оператор первого порядка. Это значит что есть такое векторное поле [X,Y], что

$$\partial_{[X,Y]} = [\partial_X, \partial_Y] f.$$

Таким образом [X,Y] существует и равен

$$[X,Y] = X^{i} \frac{\partial Y^{j}}{\partial u^{i}} - Y^{i} \frac{\partial x^{j}}{\partial u^{i}}.$$
(1.7)

2 Лекция № 2

2.1 Обратный образ

Пусть

$$X^n \xrightarrow{F} X^k \xrightarrow{\varphi} \mathbb{R}.$$

Или можем рассмотреть отображение

$$X^n \xrightarrow{F^*\varphi} \mathbb{R}$$
, где $F^*\varphi \stackrel{\text{def}}{=} \varphi \circ F$,

что и является обратным образом.

Пусть теперь $P \in X^n$ отображается в $F(P) \in X^k$. Пусть $W(P) \in X^n$, постороим $d_p F(W)$ – вектор $F(P) \in X^k$. Пусть $\varphi \in C^\infty(X^k)$, тогда

$$\underbrace{d_P F(W)}_{\text{BEKTOP}} \varphi \stackrel{\text{def}}{=} W(F^* \varphi). \tag{2.1}$$

Def 2.1. $d_P F - \partial u \phi \phi e p e h u u a \pi F$ в точке P.

Пусть $\varphi \circ \Psi = \varphi(v^1,\dots,v^k)$ в координатах $v^1,\dots,v^k.$ Тогда

$$F^*\varphi=\varphi(F) \qquad \Rightarrow \qquad F^*\varphi(u^1,\dots,u^k)=\underbrace{\varphi(v^1(u^1,\dots,u^n),\dots,v^k(u^1,\dots,u^n))}_{F^*\varphi\text{ B координатах }u^1,\dots,u^n}=\varphi\circ F\circ \Phi,$$

 $^{^{1}}$ «В Царство небесное войдут только те кто думают про вектор, как про дифференцирование, потому что там нет координат.»

где Φ – координатное отображение. Теперь вектор W

$$W = W^1 \frac{\partial}{\partial u^1} + \dots + W^n \frac{\partial}{\partial u^n} = W^i \frac{\partial}{\partial u^i}.$$

Соответсвенно, по определению

$$d_P F(W) \varphi \stackrel{\text{def}}{=} W F^* \varphi, \tag{2.2}$$

расписывая, получим

$$WF^*\varphi = W^i \frac{\partial}{\partial u^i} \varphi(v^1(u^1, \dots, u^n), \dots) = W^i \frac{\partial \varphi}{\partial v^j} \frac{\partial v^j}{\partial u^i} = \underbrace{\frac{\partial v^j}{\partial u^i} W^i \frac{\partial}{\partial v^j}}_{d_p F(W)} \varphi.$$

А это кто? А вот матрица Якоби F, записанного в координатах v^1,\dots,v^k

$$\begin{bmatrix} d_P F(W)^1 \\ \vdots \\ d_P F(W)^k \end{bmatrix} = \begin{pmatrix} \frac{\partial v^j}{\partial u^i} \end{pmatrix} \begin{pmatrix} W^1 \\ \vdots \\ W^n \end{pmatrix}$$
 (2.3)

Тогда выясняется, что $d_P F$ – линейное отображение. Действительно,

$$d_P F(W_1 + W_2)\varphi = (W_1 + W_2)F^*\varphi = W_1 D^*\varphi + W_2 F^*\varphi = (d_P F(W_1) + d_P F(W_2))\varphi.$$

2.2 Тензор

Есть пространство V с векторами и двойственное V^* с ковекторами, пространство линейных функций. Тогда e_1, \dots, e_n – базис в V, e^1, \dots, e^n – двойственный базис в V^* , т.е. $e^i e_j = \delta^i_j$.

Для начала скажем, что W – вектор и он же линейная функция на ковекторах.

$$W(\xi) = \xi(W) = \langle W, \xi \rangle,$$

что называется спариванием вектора и ковектора.

Пусть есть некоторая B(W,Y) – билинейная функция от двух векторов. А теперь посмотрим на линейный оператор $A\colon V\to V$, билинейную функцию от вектора и ковектора.

$$A(W,\xi) = \langle A(W), \xi \rangle$$

Обобщим до понятия тензора:

$$T \colon \underbrace{V^* \otimes \ldots \otimes V^*}_{p} \otimes \underbrace{V \otimes \ldots \otimes V}_{q} \to \mathbb{R},$$

где T полилинейная функция от p ковекторов и q векторов, тензор типа p,q. Они образуют линейное пространство

$$T \in \underbrace{V \otimes \ldots \otimes V}_{p} \otimes \underbrace{V^{*} \otimes \ldots \otimes V^{*}}_{q} = \mathbb{T}_{q}^{p}(V).$$

3 Лекция № 3

3.1 Дифференциальная форма

В линейной алгебре есть ковекторы, а вот в дифференциальной геометрии ковекторные поля суть дифференциальные 1-формы.

Def 3.1. Дифференциальная 1-форма – это ковекторное поле.

Def 3.2. Дифференциал функции f от векторного поля X это $df(X) \stackrel{\text{def}}{=} Xf$.

Что это нам даёт? Ну, во-первых, пусть x^1, \dots, x^n – некоторые координаты.

$$X = X^i \frac{\partial}{\partial x^i}.$$

Тогда

$$df(X) = Xf = X^i \frac{\partial f}{\partial x^i}.$$

Но, заметим, что $\frac{\partial}{\partial x^1},\dots,\frac{\partial}{\partial x^n}$ – базис в каждой точке. Рассмотрим теперь $f=x^i$ и $X=\frac{\partial}{\partial x^j},$ тогда

$$dx^{i}\left(\frac{\partial}{\partial x^{j}}\right) = \frac{\partial x^{i}}{\partial x^{j}} = \delta^{i}_{j}. \tag{3.1}$$

Из этого следует, что dx^1,\dots,dx^n — двойственный к $\frac{\partial}{\partial x^1},\dots,\frac{\partial}{\partial x^n}$ базис в V^* . Тогда в этом базисе $df=\omega_i\,dx^i.$

Заметим, что

$$\underbrace{\omega_i \, dx^i}_{df} \left(\frac{\partial}{\partial x^j} \right) = \omega_i \delta^i_j = \omega_j, \quad \Rightarrow \quad \omega_j = df \left(\frac{\partial}{\partial x^j} \right) = \frac{\partial f}{\partial x^j}.$$

Тогда

$$df = \frac{\partial f}{\partial x^i} dx^i. {3.2}$$

Получается ковектор df расписывается по базису dx^i двойственного пространства с координатами $\partial f/\partial x^i$. А для общей 1-формы

$$\omega = \omega_i \, dx^i,$$

где ω^1,\dots,ω^n – координаты ω в локальной системе координат.

Def 3.3. ω гладкая, если $\forall X$, где X – гладкое поле, верно, что $\omega(X)$ – гладкая функция.

Lem 3.4. $\omega = \omega_i dx^i$ – гладкая форма $\forall i$.

3.2 Билинейные формы

Пространство билинейных форм на $V-V^*\otimes V^*=S^2V^*\oplus \Lambda^2V^*$. Что ж, в V^* базис $\boldsymbol{e}^1,\dots,\boldsymbol{e}^n$, в S^2V^* базис

$$e^i \cdot e^j(X,Y) = \frac{1}{2} \left(X^i Y^j + X^j Y^i \right),$$

а скалярное произведение

$$g = g_{ij}dx^i \cdot dx^j.$$

В кососимметрических же $\Lambda^2 V^*$ базис

$$e^{i} \wedge e^{j}(X,Y) = X^{i}Y^{j} - X^{j}Y^{i}, \quad 1 \leqslant i \leqslant j \leqslant n.$$

$$(3.3)$$

В таком случае, если есть некоторая кососимметрическая ω , то

$$\omega = \sum_{i < j} \omega_{ij} \, dx^i \wedge dx^j.$$

Def 3.5. Поле кососимметрических билинейных форм – дифференциальные 2-формы.

Возьмём два поля и засунем в 2-форму, получим функцию.

3.3 Полилинейные формы

Пусть V — векторное пространство, $\Lambda^k V^k$ — векторное пространство кососимметрических полилинейных функций от k векторов.

$$\omega(X_1,\ldots,X_k)\in\mathbb{R}.$$

Введём некоторое внешнее умножение

$$\wedge : \Lambda^k V^* \times \Lambda^l V^* \to \Lambda^{k+l} V^*.$$

Пусть $\sigma \in \Lambda^k V^*$, $\tau \in \Lambda^l V^*$, тогда

$$\sigma \wedge \tau\left(X_{1},\ldots,X_{k+l}\right) = \frac{1}{k!l!} \sum_{\pi \in S_{k+l}} \operatorname{sign}(\pi) \ \sigma\left(X_{\pi(1)},\ldots,X_{\pi(k)}\right) \ \tau\left(X_{\pi(k+1)},\ldots,X_{\pi(k+l)}\right).$$

Если в V базис e_1,\dots,e_k , то в $\Lambda^k V$ в качестве базиса можно взять

$$e^{i_1} \wedge \dots \wedge e^{i_k}, \quad i_1 < \dots < i_k.$$

Def 3.6. Дифференциальная k-форма – поле полилинейных кососимметрических форм от k векторов, при чем

$$\omega = \sum_{i_1 < \dots < i_k} \omega_{i_1, \dots, i_k} e^{i_1} \wedge \dots \wedge e^{i_k}, \tag{3.4}$$

где $\omega_{i_1,...,i_k} = \omega\left(e_{i_1},...,e_{i_k} \right)$ – гладкие функции.

3.4 Внешний дифференциал

Обозначим $\Omega^k(U)$ – пространство дифференциальных k-форм на некоторой $U \in \mathbb{A}^n$. Также будем говорить, что $X^{\infty}(U) = \Omega^0(u)$ – 0-формы. У нас уже есть такое отображение

$$\Omega^0(U) \stackrel{d}{\longrightarrow} \Omega^1(U) \stackrel{?}{\longrightarrow} \dots$$

Ну и введём тогда операцию внешнего дифференцирования

$$d: \Omega^k(U) \to \Omega^{k+1}(U). \tag{3.5}$$

Введём её аксиоматически²

- 1) $d(\omega_1 + \omega_2) = d\omega_1 + d\omega_2;$
- 2) $d(\sigma \wedge \tau) = (d\sigma) \wedge \tau + (-1)^{|\sigma|} \sigma \wedge (d\tau);$
- 3) $d^2 = 0$, r.e. $d(d\omega) = 0$;
- 4) $f \in \Omega^0(U) = C^\infty(U) \Rightarrow df(X) = Xf$.

Thr 3.7. Внешний дифференциал d существует и единственнен.

 \triangle .

І. Пусть существует внешний дифференциал. Тогда получим, что

$$d\omega = d\left(\sum_{i_1 < \dots < i_k} \omega_{i_1, \dots, i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}\right) = \sum_{i_1 < \dots < i_k} \frac{\partial \omega_{i_1, \dots, i_k}}{\partial x^i} dx^i \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k}.$$
 (3.6)

Собственно, подобный ответ является единственным.

II. Докажем теперь существование. Пусть x^1, \dots, x^n – координаты, тогда определим d, как (3.6). Легко показать, что такое определение удоволетворяет всем свойствам.

4 Лекшия № 4

4.1 Обращение с обратным образом (?)

На данный момент у нас есть отображения для $U\in\mathbb{R}^n$ и $V\in\mathbb{R}^k$, считая $U\stackrel{F}{\longrightarrow} V$ $U\stackrel{F^*}{\longrightarrow} V\stackrel{\varphi}{\longrightarrow} \mathbb{R}$

$$C^{\infty}(U) \stackrel{F^*}{\longleftarrow} C^{\infty}(V) \qquad \qquad U \stackrel{F}{\longrightarrow} V \stackrel{\varphi}{\rightarrow} \mathbb{R}$$

$$T_{P}U \stackrel{d_{P}F}{\longrightarrow} T_{F(P)}V \qquad \qquad U \stackrel{F^*\varphi}{\longrightarrow} \mathbb{R}, \quad \text{где} \qquad F^*\varphi \stackrel{\text{def}}{=} \varphi \circ F,$$

$$d_{P}F \underbrace{X}_{\in T_{P}U} \underbrace{\varphi}_{\in C^{\infty}(V)} = X \underbrace{F^*\varphi}_{\in C^{\infty}(U)}. \qquad (4.1)$$

С формами ситуация схожая с функциями, то есть

$$C^{\infty}(V) = \Gamma^0(V),$$

получается

$$\Omega^k(U) \stackrel{F^*}{\longleftarrow} \Omega^k(V),$$
 $T_U U \stackrel{d_PF}{\longrightarrow} T_{F(P)}(V).$

Теперь пусть X_1, \dots, X_k – векторное поле на U, тогда

$$(F^*\omega)(X_1,\ldots,X_k) = \omega\left(dF(X_1),\ldots,dF(X_k)\right).$$

 $^{^2}$ Формы образуют градуированную алгебру. Это такой эмпирический факт: в градуированной алгебре дифференциал должен быть с таким знаком и счастье будет.

Собственно, факт:

$$dF^*\omega = F^* d\omega. \tag{4.2}$$

И ещё факт

$$F^*(\sigma \wedge \tau) = F^*\sigma \wedge F^*\tau. \tag{4.3}$$

4.2 Кривые

Кривые должны быть гладкими, но этого недостаточно. Поэтому требуем и регулярность:

$$\forall x, y \colon F(x, y) = 0 \qquad \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right) \neq (0, 0),$$
 (4.4)

а в параметрическом задание

$$\forall t \in (a, b) \quad \dot{r}(t) = (\dot{x}(t), \dot{y}(t)) \neq (0, 0).$$
 (4.5)

Пусть F(x,y) = 0 – регулярная гладкая неявно заданная кривая. Тогда в окрестности любой своей точки её можно задать как регулярную гладкую параметрическую кривую. В самом деле,

$$F(x_0, y_0) = 0, \quad \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\Big|_{(x_0, y_0)} \neq 0\right), \quad \Rightarrow \quad \exists \varphi \in U(x_0, y_0) \colon F(x, y) \Leftrightarrow x = \varphi(y).$$

А вот пусть теперь есть гладкая регулярная параметризованная регулярная кривая (x,y)(t): $(\dot{x},\dot{y}) \neq 0$. Пусть $\dot{x} \neq 0$, тогда по тереме об обратной функции t = t(x).

4.3 Явно заданные поверхности

Регулярная (не особая) гладкая k-мерна поверхность в n-мерном афинном пространстве, заданная параметрически.

Формально,

$$r\colon D\in\mathbb{R}^k o\mathbb{R}^n$$
, при чем
$$\begin{cases} 1) \text{ гладкость:} & m{r}\equiv[x^1(u^1,\dots,u^k),\dots,x^n(u^1,\dots,u^k)] \\ 2) \text{ регуярность:} & \mathrm{rg}(\partial x^i/\partial u^j)=k. \end{cases}$$

где подразумевается $r \in C^{\infty}(D, \mathbb{R}^n)$. Регулярность же, по сути, это утверждение о том что в J существует невырожденный минор $k \times k$.

Пусть это $(\partial x^i/\partial u^j)$, где $i,j=1,\dots,k$. Тогда, по теореме об обратной функции, в окрестности этой точки $u^1=u^1(x^1,\dots,x^k)$

$$u^k = u^k(x^1, \dots, x^k)$$

Тогда, это просто график отображения

$$x^{k+1} = x^{k+1}(u^{1}(x^{1}, \dots, x^{k}), \dots, u^{k}(x_{1}, \dots, x^{k}))$$

$$\dots$$

$$x^{n} = x^{n}(u^{1}(x^{1}, \dots, x^{k}), \dots, u^{k}(x_{1}, \dots, x^{k}))$$

такого, что

$$\mathbb{R}^k \to \mathbb{R}^{n-k}$$

Так, например, для сферы, можно выразить $z = \sqrt{1 - x^2 - y^2}$.

4.4 Неявно заданные поверхности

Гладкая регулярная k-мерная поверхность в n-мерном афинном пространстве, заданная неявно. Тогда есть n-k уравнений

$$\begin{cases} F^1(x^1,\ldots,x^n)=0\\ & \dots \\ F^{n-k}(x^1,\ldots,x^n)=0 \end{cases} \Leftrightarrow \quad \pmb{F}\colon \mathbb{R}^n\to\mathbb{R}^{n-k}, \quad \pmb{F}=0.$$

Аналогично мы требуем гладкость: $F^i \in C^{\infty}(\mathbb{R}^n)$, и регулярность в тех точках, где $\mathbf{F} = 0$. Условие регулярности в таком случае

$$\operatorname{rg}\left(\frac{\partial F^{i}}{\partial x^{j}}\right) = n - k. \tag{4.6}$$

Lem 4.1. Гладкая регулярная неявно заданная поверхность, может рассматриваться, как параметрическая.

 \triangle .

I. Пусть в точке P

$$\operatorname{rg}\left(\frac{\partial F^i}{\partial x^j}\right) = n - k.$$

- II. Тогда можем считать, что есть невырожденный минор $\operatorname{rg}\left(\frac{\partial F^i}{\partial x^j}\right)(P)$, где $i=1,\ldots,n-k$ и $j=k+1,\ldots,n$.
- III. По теореме о неявной функции

$$\begin{cases} x^{k+1}=x^{k+1}(x^1,\dots,x^k)\\ & \qquad - \qquad \text{гладкие}.\\ x^n=x^n(x^1,\dots,x^k) \end{cases}$$

IV. Тогда понятно, как утроен параметрический вид:

Def 4.2. Назовем $x^1, ..., x^n$ координатами объемлющего пространства, а $u^1, ..., u^k$ локальными координатами.

4.5 Гладкие функции и пути на поверхности

Функции

Def 4.3. Пусть есть гладкая функция $F(x^1, ..., x^n)$ – гладкая в окрестности Σ , тогда $F|_{\Sigma}$ – гладкая на поверхности Σ .

Def 4.4. Пусть $f(u^1, ..., u^k)$ – гладкая, тогда f – гладкая функция на Σ .

Докажем равносильность двух следующих определений.

 \triangle . \Rightarrow Пусть $F(x^1, ..., x^n)$ – гладкая, тогда и $F(x^1(u^1, ..., u^k), ..., x^n(u^1, ..., u^k))$ – гладкая. \Leftarrow Пусть есть $f(u^1, ..., u^k)$ – гладкая, тогда и $f(u^1(x^1, ..., x^k), ..., u^k(x^1, ..., x^k))$ – тоже гладкая.

Пути

Def 4.5. Путь $r(u^1(t), ..., u^k(t))$ гладкий, если u^i – гладкие.

Def 4.6. Если $x^1(t), \dots, x^n(t)$ – гладкие, такие что $[x^1(t), \dots, x^n(t)] \in \Sigma$, то и путь r гладкий.

Эти определения равносильны. Получается, что пути можно описывать как в глобальных, так и в локальных координатах. Далее ограничимся рассмотрением путей в локальных координатах, ничего при этом не потеряв.

4.6 Векторы на поверхности

Точка A имеет локальные координаты u_0^1, \dots, u_0^k , то есть $A = r(u_0^1, \dots, u_0^k)$.

Если мы посмотрим на путь точки A, то увидим (считая, что в t=0 r=A).

$$r(t) = r(u^1, \dots, u^k)(t)$$
 \Rightarrow $\frac{dr}{dt} = r_{u^i}(u^1(t), \dots, u^k(t)) \cdot \dot{u}^i(t).$

где подразумевается, что

$$r_{u^i} = \frac{\partial \mathbf{r}}{\partial u^i} = \left(\frac{\partial x^1}{\partial u^i}, \dots, \frac{\partial x^n}{\partial u^i}\right).$$

При t=0, увидим

$$\frac{dr}{dt}\bigg|_{t=0} = \underbrace{r_{u^i}(u_0^1, \dots, u_0^k)}_{\text{векторы}} \underbrace{\dot{u}^i(0)}_{\text{числа}},$$

где векторы зависят только от точки A, а числа зависят от конкретной кривой. Получается, что есть некоторые пространство, порожденное этими векторами.

Def 4.7. Назовём касательным пространством к Σ в точке A

$$T_A \Sigma = \operatorname{span}(r_{u^1}(A), \dots, r_{u^k}(A)).$$

Пусть есть некоторый вектор V

$$\mathbf{V} = \alpha^i r_{u^i}(A).$$

Он может быть получен кривой $u^i = u_0^1 + \alpha^1 t$. Получается, что $T_A \Sigma$ состоит в точности из векторов скорости кривых в точке A.

Lem 4.8. Размерность dim $T_A \Sigma = k$.

△. Действительно, по условию регулярности

$$\operatorname{rg}(r_{u^i}) = \operatorname{rg}\left(\frac{\partial x^i}{\partial u^j}\right) \stackrel{\operatorname{reg}}{=} k.$$

В этом и состоит геометрический смысл условия регулярности

4.7 Замена локальных координат

 ${\bf C}$ одной стороны понятно, что множество всех кривых на поверхности D инвариантно. ${\bf C}$ другой стороны интересно посмотреть, что же происходит ${\bf c}$ векторами.

$$\begin{cases} v^1 = v^1(x^1(u^1,\dots,u^k),\dots,x^k(u^1,\dots,u^k))\\ \dots & - \quad \text{диффеоморфизм.} \\ v^k = v^k(x^1(u^1,\dots,u^k),\dots,x^k(u^1,\dots,u^k)) \end{cases}$$

Действительно, Якобиан композиции равен произведению Якобианов, получается композия двух невырожденных преобразований будет невырождена.

$$r_{u^i} = \frac{\partial r}{\partial v^j} \frac{\partial v^j}{\partial u^i} = \underbrace{\frac{\partial v^j}{\partial u^i}}_{I} r_{v^i},$$

получается, что матрица перехода от базиса r_{v^j} к r_{u^i} – матрица Якоби J замены координат.

$$\forall V \in T_A \Sigma \quad V = V^i r_{v^i} = \underbrace{V^i \frac{\partial r^j}{\partial u^i}}_{\widetilde{V}^j} r_{v^j}.$$

Тогда

$$V = \widetilde{V}^j r_{v^j} \quad \Rightarrow \quad \widetilde{V}^j = \frac{\partial v^j}{\partial u^i} V^i.$$
 (4.7)

Оказывается, что если

$$\begin{pmatrix} \widetilde{V}^1 \\ \dots \\ \widetilde{V}^k \end{pmatrix} = \begin{pmatrix} \frac{\partial v^j}{\partial u^i} \end{pmatrix}_{(A)} \begin{pmatrix} V^1 \\ \dots \\ V^k \end{pmatrix}.$$

5 Лекция № 5

5.1 Производная по направлению

Раньше определили

$$\partial_V f(A) = \lim_{\varepsilon \to 0} \frac{f(A + \varepsilon V) - f(A)}{\varepsilon},$$

но сложность в том, что $A + \varepsilon V \notin \Sigma$. Но гладкую функцию с поверхности может всегда продлить в некоторую окрестность поверхности. Это продолжение F не единственно.

Def 5.1. Определим

$$\partial_V f(A) \stackrel{\text{def}}{=} \partial_V F(A),$$

при чём def инвариантно к выбору F.

 \triangle .

- I. Мы дифференцируем только вдоль касательных векторов к Σ , следовательно существует кривая γ на Σ такая, что
 - 1) $\forall t \ \gamma(t) \in \Sigma$
 - 2) $\gamma(0) = A$
 - 3) $\ddot{\gamma}(0) = V$.

II. Тогда

$$\underbrace{\frac{d}{dt}f(\gamma(t))\bigg|_{t=0}}_{} = \frac{d}{dt}F(\gamma(t))\bigg|_{t=0} = \frac{\partial F}{\partial x^i}(x^1,\ldots,x^n)\dot{x}^i(t)\bigg|_{t=0} = \frac{\partial F}{\partial x^i}(A)V^i = \underbrace{\partial_V F(A)}_{**},$$

считая $\gamma(t) = [x^1(t), ..., x^n(t)].$

- III. Но, т.к. * не зависит от выбора F, то и ** не зависит от выбора F. Тогда $\partial_V f(A)$ определена корректно.
- IV. К слову, ** не зависит от выбора пути, тогда и * не зависит от выбора пути.

Получается мы можем определить понятие дифференцирования гладкой функции на поверхности в точке.

Def 5.2. Для $f \colon \Sigma \to \mathbb{R}$ достаточно быть определенной в некоторой окрестности точки A. Скажем, что D –

дифференцирование на Σ в точкеA, если

1)
$$Df \in \mathbb{R}$$

2)
$$D(f+g) = Df + Dg$$

3)
$$D(fg) = (Df) \cdot g(A) + f(A) \cdot (Dg)$$
.

Пусть $u^1, ..., u^k$ – локальные координаты в окрестности точки A.

Lem 5.3. Для $\forall D \; \exists V^1, \dots, V^K \; maкой, что$

$$Df = \frac{\partial f}{\partial u^i}(A)V^i.$$

Пусть есть некоторый касательный вектор $W \in T_A \Sigma$

$$W = W^i r_{u^i}(A).$$

Тогда можно рассматривать путь $\gamma(t)$ в локальных координатах такой, что $\gamma(0) = A$, $\dot{\gamma}(0) = W$, то есть для $A = (u_0^1, \dots, u_0^k)$ и $\gamma(t) = \begin{bmatrix} u^1(t), \dots, u^k(t) \end{bmatrix}$ верно, что

$$u^i(0) = u_0^i, \quad \dot{u}^i(0) = W^i.$$

Тогда

$$\partial_W f(A) = \frac{d}{dt} f(\gamma(t)) \Big|_{t=0} = \frac{\partial f}{\partial u^i}(A) W^i.$$

Получается, что **каждый** касательный вектор W даёт дифференцирование $\partial_W|_A$, и **каждое** дифференцирование в A получается из касательного вектора. Поэтому будем писать просто

$$W = \partial_W = W^i \frac{\partial}{\partial u^i}.$$
 (5.1)

5.2 Двойственность

Раз есть касательные векторы, то есть и кососимметрические полилинейные функии на них. Так приходим к следующей двойственной структуре:

- $\cdot T_P \Sigma$ касательное пространство к Σ в P,
- $\cdot T_P^*\Sigma \stackrel{\mathrm{def}}{=} (T_P\Sigma)^*$ кокасательное пространство к Σ в P.

Получаются векторное поле $X: X(P) \in T_P\Sigma$, и ковекторное поле $\xi: \xi(P) \in T_P^*\Sigma$.

Если u^1, \dots, u^k – локальные координаты на Σ , то

$$rac{\partial}{\partial u^i} = r_{u^i} \quad - \quad$$
 базис в $T_P \Sigma$.

Соответственно,

$$du^1,\dots,du^k$$
 — базис в $T_P^*\Sigma$.

А вот

$$du^{i_1} \wedge \dots \wedge du^{i_q} -$$
 базис в $\Lambda^q T_P^* \Sigma$,

где $\Lambda^q T_P^* \Sigma$ – пространство q-форм.