Logic in Computer Science - Assignment 2

李鹏达 10225101460

For soundness proof, complete the proof of the following proof rule cases:

- (1) $\wedge e_1$: It must be the case that $\chi_k = \chi_1$ with $\chi_1 \wedge \chi_2$ appearing at line l < k. The formula $\chi_1 \wedge \chi_2$ has the shorter proof, and therefore, using the induction hypothesis, it has the truth value T. Using the truth table for \wedge , we can conclude that the truth value of χ_1 is T.
- (2) $\wedge e_2$: Same as (1), but with $\chi_k = \chi_2$.
- (3) \perp e: It must be the case that $\chi_k = \phi$ with \perp appearing at line l < k, which means that $\chi_1, \neg \chi_1$ appears at line m, n < l. Using the induction hypothesis, both χ_1 and $\neg \chi_1$ have the truth value T. However, according to the truth table of \neg , if χ_1 has the truth value T, then $\neg \chi_1$ must have the truth value F, which contradicts the fact that $\neg \chi_1$ has the truth value T. Therefore, this case cannot happen, and χ_k is trivially true.
- (4) \neg i: It must be the case that $\chi_k = \neg \phi$ with ϕ as an assumption at line l < k and \bot appearing at line $m < k(m > l, l \in d_m)$. If ϕ is T, then by the induction hypothesis, \bot must be T since the assumption is T. However, that is impossible, so we can get χ_k is T trivially. If ϕ is F, then by the truth table of \neg , $\neg \phi$ is T. Therefore, in both cases, χ_k is T.
- (5) $\neg \neg e$: It must be the case that $\chi_k = \phi$ with $\neg \neg \phi$ appearing at line l < k. Since it has a shorter proof, using the induction hypothesis, $\neg \neg \phi$ is T, then by the truth table of \neg , $\neg \phi$ is F. Then, by the truth table of \neg again, we can get that ϕ is T. Therefore, χ_k is T.
- (6) $\forall i_1$: It must be the case that $\chi_k = \chi_1 \vee \chi_2$ with χ_1 appearing at line l < k. Since χ_1 has a shorter proof, by the induction hypothesis, χ_1 is T. Then, by the truth table of \vee , we can get that $\chi_1 \vee \chi_2$ is T. Therefore, χ_k is T.
- (7) $\forall i_2$: Same as (6), but with χ_2 appearing at line l < k.
- (8) \rightarrow i : It must be the case that $\chi_k = \phi \rightarrow \psi$ with ψ appearing at line l < k and ϕ as an assumption at line m < l ($m \in d_l$). If ϕ is F, then by the truth table of \rightarrow , $\phi \rightarrow \psi$ is T. If ϕ is T, then by the induction hypothesis, ψ is T since the assumption is T. Then, by the truth table of \rightarrow , we can get that $\phi \rightarrow \psi$ is T. Therefore, χ_k is T.
- $(9) \to e$: It must be the case that $\chi_k = \psi$ with $\phi \to \psi$ appearing at line l < k and ϕ appearing

at line m < k. Since both $\phi \to \psi$ and ϕ have shorter proofs, by the induction hypothesis, they are both T. Then, by the truth table of \to , we can get that ψ is T. Therefore, χ_k is T.

(10) $\neg e$: It must be the case that $\chi_k = \bot$ with ϕ appearing at line l < k and $\neg \phi$ appearing at line m < k. Since both ϕ and $\neg \phi$ have shorter proofs, by the induction hypothesis, they are both T. However, this case cannot happen, so the conclusion is trivially proved.