UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES

INSTITUTO DE FÍSICA

APROBADO EN EL CONSEJO DE FACULTAD DE CIENCIAS EXACTAS Y NATURALES ACTA DEL .

Disponible para editar en: http://astronomia-udea.co/principal/Curriculo/links/d3a8b3.html.

PROGRAMA DE MECÁNICA DE MEDIOS CONTINUOS

NOMBRE DE LA MATERIA	Mecánica de Medios Continuos
PROFESOR	Luis Fernando Quiroga Peláez
OFICINA	6-125
HORARIO DE CLASE	MW16-18
HORARIO DE ATENCIÓN	L16-18

Nota 1: Este plan de asignatura es válido entre los semestres 2002-1 y 2014-2.

INFORMACIÓN GENERAL

Código de la materia	0302570
Semestre	Este plan de asignatura es válido entre los semestres 2002-1 y 2014-2.
Área	Física
Horas teóricas semanales	6
Horas teóricas semestrales	64
No. de créditos	4
Horas de clase por semestre	64
Campo de Formación	Física
Validable	Si
Habilitable	Si
Clasificable	No
Requisitos	0302576, 0302401
Corequisitos	
Programas a los que se ofrece la materia	Astronomía, Física

INFORMACIÓN COMPLEMENTARIA

Duománita del Como	Adquirir conceirsiontes sobre la tacrée for de material de
Propósito del Curso:	Adquirir conocimientos sobre la teoría fundamental de los medios continuos, con aplicaciones a la Astrofísica, Mecánica de Fluidos y teoría de la elasticidad.
Justificación:	Dado que la Física de Medios Continuos estudia la evolución de aquella materia que no está sujeta a las leyes de la Mecánica Cuántica ni de la Nanociencia, y con la cual estamos en contacto en la mayoría de situaciones de la vida diaria, se convierte en una de las ramas de la Física con más aplicaciones directas. Adicionalmente, sus resultados son de vital importancia en muchas ramas de la Física y particularmente de la Astronomía.
	En Física del Medio Continuo se aplicaran los conceptos y se usan las herramientas de áreas como la Física Matemática, Álgebra Tensorial, Física de Campos, Mecánica Clásica, Métodos Numéricos, Física Computacional, entre otras, lo que le permite al estudiante afianzar conceptos ya adquiridos y combinarlos para aplicarlos en situaciones concretas. Además la Física del Medio Continuo forma parte fundamental para el estudio de tópicos de profundización de Física y Astronomía en áreas como: Estudios Climáticos y Atmosféricos, Geociencias, Astrofísica Planetaria, Astrofísica Galáctica, Astrofísica Estelar, Cosmología, Dinámica de Fluidos, Teoría de Elasticidad, etc.
	En este curso el estudiante se familiarizara con sistemas de referencia Lagrangianos y con nuevos operadores para la diferenciación que incluyen el movimiento propio de los medios continuos que se adicionan a los cambios temporales en las cantidades físicas, además del uso de métodos numéricos y programación para encontrar resultados a situaciones específicas.
Objetivo General:	Adquirir conocimientos sobre la teoría fundamental de los medios continuos, con aplicaciones a la Astrofísica, Mecánica de Fluidos y teoría de la elasticidad.
Objetivos Específicos:	Identificar y dominar las herramientas básicas en Física Matemática y Álgebra Tensorial necesarios para el desarrollo del curso. Dominar los conceptos fundamentales de la Mecánica de Fluidos y la Teoría de Elasticidad. Deducir y manipular las ecuaciones de continuidad, Cauchy y conservación de energía para medios continuos. Definir y comprender los conceptos de esfuerzo y deformación, así como sus interacciones. Reconocer la validez y el alcance de las aproximaciones tomadas sobre las ecuaciones de movimiento para medios continuos.

Usar el principio de Pascal y Arguímedes para fluidos en equilibrio hidrostático. Usar las ecuaciones de continuidad, Cauchy y Bernoulli para fludos en movimiento estables, con o sin vorticidad y con o sin viscosidad. Usar los tensores de esfuerzo y deformación, y la ley de Hooke para estudiar la dinámica de sólidos no ideales. Solucionar situaciones que impliquen el uso de desarrollos analíticos y el uso de Métodos y Numéricos y Programación. Reconocer la Física de Medios Continuos como un área fundamental para la formación de Físicos y Astrónomos Valorar las aproximaciones de la Física Clásica para el estudio de los sistemas físicos propios de la vida Reconocer la necesidad y la importancia de la Física Computacional para solucionar situaciones propias del estudio de medios continuos Contenido Resumido: 1-Introducción 2-Fluidos en reposo 3-Sólidos Deformables 4-Hidrodinámica Básica

UNIDADES DETALLADAS

Fluid Mechanics, E. Lifshits, 1959

Unidad No. 1.

Tema(s) a desarrollar	Introducción
Subtemas	Aproximación de medio continuo Hidrodinámica básica Herramientas matemáticas Definición de lo que es medio continuo. Familiarización con conceptos fundamentales y el lenguaje de los medios continuos de densidad, presión y flotabilidad. Repaso de las herramientas matemáticas más usadas en física medios continuos: sistemas de referencia, transformación de coordenadas, definición de tensores y álgebra tensorial básica. Claridad en los rangos espaciales, de densidad y volumen en los cuales la aproximación de medio continuo es válida. Dominio de los conceptos fundamentales de densidad, presión y flotación. Dominio de la notación de índices y del álgebra tensorial básica.
No. de semanas que se le dedicarán a esta unidad	3
BIBLIOGRAFÍA BÁSICA correspondiente a esta unidad	
Physics of Continuous Matter, B Lautrup, 2005	

A first course in Continuum Mechanics, Y. C. Fung, 1969. Mecánica del Medio Continuo. E. Levi, 1973.

Theory and problems of Continuum Mechanics, G. E. Mase, 1970.

Introducción a la Mecánica de los Medios Continuos, J. Naranjo, 1992.

Mecánica de Medios continuos para Ingenieros, X. O. Olivella, 2007.

Unidad No. 2.

Tema(s) a desarrollar	Fluidos en reposo
Subtemas	Presión
	Flotación
	Aplicación a planetas y estrellas
	Definición formal de presión
	Equilibrio hidrostático
	Ecuación de estado
	Estados de fluido barotrópico
	Principio de Arquímedes
	Estabilidad de cuerpos flotantes
	Corrimientos en la estabilidad
	Flujo gravitacional
	Cuerpos esféricos
	Estrella homentrópica
	Energía gravitacional
	Dominio en la definición formal de presión y flotación y
	la relación entre ellas.
	Claridad en las condiciones que garantizan el
	equilibrio hidrostático.
	Aplicar el equilibro hidrostático para un modelo simple
	de planeta y estrella.
No. de semanas que se le	4
dedicarán a esta unidad	·
BIBLIOGRAFÍA BÁSICA corres	pondiente a esta unidad
Physics of Continuous Matter, B L	_autrup. 2005

Physics of Continuous Matter, B Lautrup, 2005

Fluid Mechanics, E. Lifshits, 1959

A first course in Continuum Mechanics, Y. C. Fung, 1969.

Mecánica del Medio Continuo. E. Levi, 1973.

Theory and problems of Continuum Mechanics. G. E. Mase, 1970.

Introducción a la Mecánica de los Medios Continuos, J. Naranjo, 1992.

Mecánica de Medios continuos para Ingenieros, X. O. Olivella, 2007.

Unidad No. 3.

Tema(s) a desarrollar	Sólidos Deformables
Subtemas	Esfuerzos
	Deformaciones
	Elasticidad lineal
	Fricción.
	Concepto de esfuerzo.
	Nueve componentes del tensor de esfuerzos.
	Equilibrio mecánico.
	Simetría del tensor de esfuerzos.
	Concepto de desplazamiento.
	Deformación local.
	Significado geométrico del tensor de deformaciones.
	Trabajo y energía.

	Deformaciones finitas. Ley de Hook. Ley de Hook en materiales isotrópicos. Deformación uniforme estática. Energía de deformación.
	Dominio de las ecuaciones de movimiento para sólidos sometidos a esfuerzos. Dominio de las ecuaciones de movimiento para sólidos sometidos a deformaciones. Claridad en el análisis de la respuesta del sólido sometido a esfuerzos y deformaciones. Entender la conservación de la energía en un sólido.
No. de semanas que se le	4

dedicarán a esta unidad

BIBLIOGRAFÍA BÁSICA correspondiente a esta unidad

Physics of Continuous Matter, B Lautrup, 2005

Fluid Mechanics, E. Lifshits, 1959

A first course in Continuum Mechanics, Y. C. Fung, 1969.

Mecánica del Medio Continuo. E. Levi, 1973.

Theory and problems of Continuum Mechanics. G. E. Mase, 1970.

Introducción a la Mecánica de los Medios Continuos, J. Naranjo, 1992.

Mecánica de Medios continuos para Ingenieros, X. O. Olivella, 2007.

Unidad No. 4.

Tema(s) a desarrollar	Hidrodinámica Básica
Subtemas	Fluidos en movimiento.
	Flujo aproximadamente ideal.
	Viscosidad.
	Campo de velocidades.
	Flujo incompresible.
	Conservación de la masa.
	Movimiento con el fluido.
	Dinámica del continuo.
	Cosmología newtoniana.
	Ecuación de Euler
	Ondas de sonido de baja amplitud.
	Flujo incompresible estable
	Flujo compresible estable
	Vorticidad
	Viscosidad cortante
	Flujo planar
	Fluidos newtonianos incompresibles
	Clasificación de flujos
	Fluidos newtonianos compresibles
	Atenuación del sonido viscoso
	Circulación
	Flujo de potencial
	Dominio de las ecuaciones de movimiento para
	fluidos compresibles e incompresibles.
	Dominio de las ecuaciones de movimiento para
	fluidos compresibles e incompresibles con o sin
	vorticidad, y con o sin viscosidad.
No. de semanas que se le	E

dedicarán a esta unidad

၂၁

BIBLIOGRAFÍA BÁSICA correspondiente a esta unidad

Physics of Continuous Matter, B Lautrup, 2005

Fluid Mechanics, E. Lifshits, 1959

A first course in Continuum Mechanics, Y. C. Fung, 1969.

Mecánica del Medio Continuo. E. Levi, 1973.

Theory and problems of Continuum Mechanics. G. E. Mase, 1970.

Introducción a la Mecánica de los Medios Continuos, J. Naranjo, 1992.

Mecánica de Medios continuos para Ingenieros, X. O. Olivella, 2007.

METODOLOGÍA a seguir en el desarrollo del curso:

Clase magistral con participación del estudiante en la deducción de resultados teóricos, solución de problemas y ejercicios prácticos.

Consulta por parte de los estudiantes de las fuentes bibliográficas recomendadas, para ampliar los temas y enriquecer discusiones propuestas por el docente en clase.

Complementación de la teoría por parte de los estudiantes mediante problemas propuestos en clase.

Cada estudiante debe elegir un proyecto final del curso donde aplique las temáticas vistas en el curso, que incluya un desarrollo teórico y un resultado numérico.

EVALUACIÓN

Actividad Porcentaje Fecha (día, mes, año)

Cuatro evaluaciones escritas del 10% cada una, al final de cada unidad.Cuatro tareas computacionales del 10% cada una por unidad. Proyecto final del 20% al final del semestre que incluye exposición e informe escrito con los resultados.

Actividades de Asistencia Obligatoria:

Dado que durante la clase y asesoría se harán discusiones de situaciones previamente planteadas por el docente y que incluyen tópicos relacionados con los proyectos finales del los estudiantes, la asistencia a todas las actividades son obligatorias.

BIBLIOGRAFÍA COMPLEMENTARIA

Physics of Continuous Matter, B Lautrup, 2005

Fluid Mechanics, E. Lifshits, 1959

A first course in Continuum Mechanics, Y. C. Fung, 1969.

Mecánica del Medio Continuo. E. Levi, 1973.

Theory and problems of Continuum Mechanics. G. E. Mase, 1970.

Introducción a la Mecánica de los Medios Continuos, J. Naranjo, 1992.

Mecánica de Medios continuos para Ingenieros, X. O. Olivella, 2007.

Última actualización: Mon, 07 Sep 2015 03:11:20 -0500

Firma Autorizada Facultad: (No autorizado. Este documento es solo un borrador.)