Estimer une aire par la méthode de Monte-Carlo

Un peu d'histoire

Le physicien gréco-américain **Nicholas Metropolis** (1915-1999) a inventé une méthode pour obtenir une estimation de l'aire de surfaces à l'aide de probalilités.

C'est Stanislaw Ulam et John von Neumann qui donnèrent le nom de **Monte-Carlo** à cette méthode, en référence aux jeux de hasard pratiqués au casino de Monte-Carlo.

Partie A - Principe de la méthode

Dans un repère orthogonal (O ; I ; J), on considère la courbe d'équation $y=\sqrt{x}$ sur l'intervalle $[0\ ;\ 1]$ et le point K $(1\ ;\ 1)$.

On choisit au hasard un point M dans le carré OIKJ. La probabilité que le point M se trouve dans le domaine hachuré est

 $p = \frac{\text{aire du domaine hachuré}}{\text{aire du carré OIKJ}}.$

- 1. Donner l'aire du carré OIKJ.
- **2.** Soit un point M(x; y) du plan.
 - 1. À quelles conditions portant sur x et y le point M appartient-il au carré OIKJ?
 - 2. À quelles conditions portant sur x et y le point M appartient-il au domaine hachuré?

Partie B - Utilisation d'une fonction Python

À l'aide de l'activité Capytale 77c8-6837146, donner une valeur approchée de l'aire du domaine hachuré.

Partie C - Calcul exact de l'aide du domaine

- 1. Donner l'expression de l'aire, en unités d'aires, du domaine hachuré à l'aide d'une intégrale.
- 2. Démontrer que la fonction F définie sur $[0 ; +\infty[$ par $F(x) = \frac{2}{3}x\sqrt{x}$ est une primitive sur $]0 ; +\infty[$ de la fonction f définie sur $[0 ; +\infty[$ par $f(x) = \sqrt{x}$.
- **3.** Calculer l'aire du domaine hachuré et comparer le résultat avec l'estimation obtenue à l'aide de la méthode de Monte-Carlo dans la **partie B**.