Unlearning ERM Framework Perturbed Gradient Descent Results Future Ideas

Descent-to-Delete: Gradient-Based Methods for Machine Unlearning Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi

Presented by Ananth Mahadevan

March 16, 2021

Contents

- Unlearning
 - Motivation
 - Differential Privacy Unlearning
 - Categorization of Unlearning
- 2 ERM Framework
- Perturbed Gradient Descent
 - Strong Convexity
 - Convexity
 - Distributed Setting
- Results
- 5 Future Ideas

Data Removal

- Right to be Forgotten and GDPR
- Deleting personal data from datasets
- How to remove influence of data on deployed ML models?
 Retrain them on remaining sample?
- Retraining effort is disproportionate to number of deletion requests

Problem Statement

Design an efficient **unlearning algorithm** that produces model outputs that are **statistically indistinguishable** from the model outputs that would have arisen from **retraining**

Unlearning: A Definition

ullet Original dataset \mathcal{D}_0 and after ith removal \mathcal{D}_i

- Original dataset \mathcal{D}_0 and after *i*th removal \mathcal{D}_i
- ullet Learning algorithm ${\mathcal A}$ and ${\mathcal A}({\mathcal D}_0)= heta_0$

- ullet Original dataset \mathcal{D}_0 and after *i*th removal \mathcal{D}_i
- **Learning** algorithm \mathcal{A} and $\mathcal{A}(\mathcal{D}_0) = \theta_0$
- ullet Unlearning algorithm for \mathcal{A} , $\mathcal{R}_{\mathcal{A}}$

- ullet Original dataset \mathcal{D}_0 and after ith removal \mathcal{D}_i
- ullet Learning algorithm ${\mathcal A}$ and ${\mathcal A}({\mathcal D}_0)= heta_0$
- Unlearning algorithm for \mathcal{A} , $\mathcal{R}_{\mathcal{A}}$
- For $i \geq 1$ and removal z_i , $\mathcal{R}_{\mathcal{A}}(\mathcal{D}_{i-1}, z_i, \theta_i) = \hat{\theta}_i$

- ullet Original dataset \mathcal{D}_0 and after ith removal \mathcal{D}_i
- ullet Learning algorithm ${\mathcal A}$ and ${\mathcal A}({\mathcal D}_0)= heta_0$
- Unlearning algorithm for \mathcal{A} , $\mathcal{R}_{\mathcal{A}}$
- For $i \geq 1$ and removal z_i , $\mathcal{R}_{\mathcal{A}}(\mathcal{D}_{i-1}, z_i, \frac{\theta_i}{\theta_i}) = \hat{\theta}_i$

- ullet Original dataset \mathcal{D}_0 and after ith removal \mathcal{D}_i
- ullet Learning algorithm ${\mathcal A}$ and ${\mathcal A}({\mathcal D}_0)= heta_0$
- Unlearning algorithm for A, \mathcal{R}_A
- For $i \geq 1$ and removal z_i , $\mathcal{R}_{\mathcal{A}}(\mathcal{D}_{i-1}, z_i, \frac{\theta_i}{\theta_i}) = \hat{\theta}_i$
- **Publishing function** f_{publish} adds i.i.d gaussian noise with 0 mean and σ variance

- ullet Original dataset \mathcal{D}_0 and after ith removal \mathcal{D}_i
- ullet Learning algorithm ${\mathcal A}$ and ${\mathcal A}({\mathcal D}_0)= heta_0$
- Unlearning algorithm for \mathcal{A} , $\mathcal{R}_{\mathcal{A}}$
- For $i \geq 1$ and removal z_i , $\mathcal{R}_{\mathcal{A}}(\mathcal{D}_{i-1}, z_i, \frac{\theta_i}{\theta_i}) = \hat{\theta}_i$
- **Publishing function** f_{publish} adds i.i.d gaussian noise with 0 mean and σ variance
- $f_{\mathsf{publish}}(heta_0) = ilde{ heta}_0$ and $f_{\mathsf{publish}}(\hat{ heta}_i) = ilde{ heta}_i$ when $i \geq 1$

- ullet Original dataset \mathcal{D}_0 and after ith removal \mathcal{D}_i
- ullet Learning algorithm ${\mathcal A}$ and ${\mathcal A}({\mathcal D}_0)= heta_0$
- Unlearning algorithm for \mathcal{A} , $\mathcal{R}_{\mathcal{A}}$
- For $i \geq 1$ and removal z_i , $\mathcal{R}_{\mathcal{A}}(\mathcal{D}_{i-1}, z_i, \frac{\theta_i}{\theta_i}) = \hat{\theta}_i$
- **Publishing function** f_{publish} adds i.i.d gaussian noise with 0 mean and σ variance
- $f_{\mathsf{publish}}(heta_0) = ilde{ heta}_0$ and $f_{\mathsf{publish}}(\hat{ heta}_i) = ilde{ heta}_i$ when $i \geq 1$
- Simply, $\{\hat{\theta}_i\}_{i\geq 1}$ are **secret** model outputs and $\{\tilde{\theta}_i\}_{i\geq 0}$ are **public** models

Perfect vs Imperfect? Unlearning

Perfect Unlearning Algorithm

- Requires indistinguishable wrt full internal state
- Stronger requirement, similar to pan privacy in differential-privacy
- Unlearning algorithm $\mathcal{R}_{\mathcal{A}}$ uses **published model as input** at each step, i.e. $\theta_i = \tilde{\theta}_{i-1}$
- All prior work focus on perfect unlearning algorithms

Perfect vs Imperfect? Unlearning

Imperfect? Unlearning

- Requires only statistical indistinguishability wrt observed outputs of algorithm
- Allowed to maintain a "secret state" for unlearning
- Secret state need not satisfy indistinguishability requirement
- Unlearning algorithm $\mathcal{R}_{\mathcal{A}}$ maintains previous step's output $\hat{\theta}_{i-1}$ as secret state
- This is used as input at the current step i, i.e. $\theta_i = \hat{\theta_{i-1}}$

Strong and Weak Unlearning

Strong Unlearning Algorithm

For a fixed accuracy target, the run-time of the update operation be constant (or at most logarithmic) in the length of the update sequence.

Strong and Weak Unlearning

Strong Unlearning Algorithm

For a fixed accuracy target, the run-time of the update operation be constant (or at most logarithmic) in the length of the update sequence.

Weak Unlearning Algorithm

It may have run-time per update (or equivalently, error) that grows polynomially with the length of the update sequence

Empirical Risk Minimization Framework

- Convex loss function $\ell : \mathbb{R}^d \times Z \to \mathbb{R}$.
- Dataset $D = \{z_1, z_2, ..., z_n\} \in Z^n$
- Want to solve: $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(\theta, z_i\right) := \mathcal{L}(\theta, D)$
- Algorithm: Gradient Descent: $\theta_0, \forall t \leq T : \theta_t = \theta_{t-1} \eta \nabla L(\theta_{t-1}, D)$
- Computation cost: number of iterations T
- Accuracy: $\mathcal{L}(\theta_T, D) \min_{\theta} \mathcal{L}(\theta, D)$

Covergence Results for Gradient Descent

Strongly Convex and Smooth

Let ℓ be m-strongly convex and M smooth, and let $\theta^* = \operatorname{argmin}_{\theta \in \Theta} \mathcal{L}(\theta)$. We have that after T steps of GD with step size $\eta_t = \frac{2}{m+M}$,

$$\|\theta_T - \theta^*\|_2 \le \left(\frac{M-m}{M+m}\right)^T \|\theta_0 - \theta^*\|_2$$

Differential Privacy Sensitivity

Sensitivity

Suppose ℓ is L-Lipschitz and m-strongly convex. For any dataset \mathcal{D} , let $\theta_{\mathcal{D}}^* \triangleq \operatorname{argmin}_{\theta \in \Theta} \mathcal{L}(\theta)$. We have that for any integer n, any data set \mathcal{D} of size n, and any removal $z \in \mathcal{D}$,

$$\left\|\theta_{\mathcal{D}}^* - \theta_{\mathcal{D}\setminus\{z\}}^*\right\|_2 \leq \frac{2L}{mn}.$$

Regularized Perturbed Gradient Descent

- \bullet When ℓ is not strongly convex, can regularize it to enforce strong convexity
- Regularized loss: $\mathcal{L}_m(\theta, D) = \mathcal{L}(\theta, D) + \frac{m}{2} \|\theta\|_2^2$
- Issues with aggressive regularization
 - $m \uparrow \longrightarrow \text{sensitivity} \downarrow \longrightarrow \text{perturbation} \downarrow \longrightarrow \text{accuracy} \uparrow$
 - $m \uparrow \longrightarrow L(\theta_T, D) \uparrow \longrightarrow \text{accuracy} \downarrow$
 - ullet $m \uparrow \longrightarrow \mathsf{Degrades}\ \mathsf{Lipschitz/smoothness}\ \mathsf{of}\ \mathsf{loss}\ \mathsf{functions}$
- Therefore regularization needs to be chosen carefully

Perturbed Distributed Descent

High Level Idea

- Randomly partition dataset into K parts
- Train models separately on each part to minimize empirical loss
- Take the average of K models
- Publish average model after adding noise

Benefits

- [ZDW13] provides out of sample guarantee for accuracy of distributed setting
- Removed element present in some partition, update only those partition
- Improved results given same computation budget as non-distributed

Results

summary of tradeoffs for (ϵ, δ) -unlearning					
method	loss function properties	unlearning	accuracy	iterations for ith update	baseline iterations
PGD	SC, smooth	strong (Thm. 9)	$\frac{de^{-\mathcal{I}}}{\epsilon^2 n^2}$	\mathcal{I}	$\mathcal{I} + \log\left(rac{\epsilon n}{\sqrt{d}} ight)$
	SC, smooth	strong, perfect (Thm. 28)	$\frac{de^{-\mathcal{I}}}{\epsilon^2 n^2}$	$\log i \cdot \mathcal{I}$ $\mathcal{I} \ge \log \left(d/\epsilon \right)$	$\mathcal{I} + \log\left(\frac{\epsilon n}{\sqrt{d}}\right)$
Regularized PGD	C, smooth	strong (Thm. 10)	$\left(\frac{\sqrt{d}}{\epsilon n\mathcal{I}}\right)^{\frac{2}{5}}$	\mathcal{I}	$\left(\frac{en\mathcal{I}}{\sqrt{d}}\right)^{\frac{2}{5}}$
	C, smooth	weak (Thm. 30)	$\sqrt{rac{\sqrt{d}}{\epsilon n\sqrt{\mathcal{I}}}}$	$i^2\cdot \mathcal{I}$	$\sqrt{rac{\epsilon n\sqrt{\mathcal{I}}}{\sqrt{d}}}$
Distributed PGD	SC, smooth, Lipschitz and bounded Hessian	strong (Thm. 14)	$\frac{\frac{de^{-\mathcal{I}n^{\frac{4-3\xi}{2}}}}{\epsilon^2n^2}}{+\frac{1}{n^\xi}}$	$\log i \cdot \mathcal{I}$	$\min_{1 \le n \le 1} \left\{ \log n, \atop \mathcal{I}n^{rac{4-3\xi}{2}} + \log\left(rac{\epsilon n}{\sqrt{d}} ight) ight\}$

Table 1: (S)C: (strongly) convex, n: training dataset size, d: dimension, $\xi \in [1, 4/3]$ is a parameter.

Future Directions

- Extensive experiential analysis to check practical feasibility
- Extend approach to SGD with similar analysis in [WDD20]
- Check for local convexity in Neural Network loss landscapes and extend approach

References I

- Yinjun Wu, Edgar Dobriban, and Susan B. Davidson. DeltaGrad: Rapid retraining of machine learning models. arXiv:2006.14755 [cs, stat], June 2020.
- Yuchen Zhang, John C. Duchi, and Martin J. Wainwright.
 Communication-efficient algorithms for statistical optimization.

Journal of Machine Learning Research, 14(68):3321–3363, 2013.