ANALÍZIS II SEGÉDLET

elemi függvények deriváltjai		
f(x)	f'(x)	
c	0	
x^n	nx^{n-1} , ha $n \neq 0$	
$\ln x$	$\frac{1}{x}$	
e^x	e^x	
a^x	$a^x \cdot \ln a$	
$\sin x$	$\cos x$	
$\cos x$	$-\sin x$	
tg x	$\frac{1}{\cos^2 x}$	
ctg x	$-\frac{1}{\sin^2 x}$	
arcsinx	$\frac{1}{\sqrt{1-x^2}} , \text{ ahol } x < 1$	
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}} , \text{ahol } x < 1$	
arctgx	$\frac{1}{1+x^2}$	
arcctgx	$-\frac{1}{1+x^2}$	

	elemi függvények integráljai		
	f(x)	$\int f(x) \mathrm{d}x$	
	a	$ax+C$, ha $a \in \mathbb{R}$	
***	x^n	$\left \frac{x^{n+1}}{n+1} + C \right , \text{ha } n \neq -1$	
	$\frac{1}{x}$		
**************************************	e^x	$e^x + C$	
	a^x	$\frac{a^x}{\ln a} + C$	
	$\sin x$	$-\cos x + C$	
	$\cos x$	$\sin x + C$	
	$\frac{1}{\cos^2 x}$	tg x + C	
	$\frac{1}{\sin^2 x}$	$-\operatorname{ctg} x + C$	
	$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x + C$	
*	$-\frac{1}{\sqrt{1-x^2}}$	$\arccos x + C$	
	$\frac{1}{1+x^2}$	arctgx + C	

 $\operatorname{arcctg} x + C$

integráltípusok:

$$\int f(ax+b) \, \mathrm{d}x = \frac{F(ax+b)}{a} + C$$

$$\int \frac{g'(x)}{g(x)} dx = \ln|g(x)| + C$$

$$\int g^n(x) \cdot g'(x) \, \mathrm{d}x = \frac{g^{n+1}(x)}{n+1} + C$$

$$\int f(g(x)) \cdot g'(x) \, \mathrm{d}x = F(g(x)) + C$$

 $\mathbf{parciális\ integrál\acute{a}s:}\qquad \int u(x)\cdot v'(x)\ \mathrm{d}x = u(x)\cdot v(x) - \int u'(x)\cdot v(x)\ \mathrm{d}x$

 $\textbf{helyettesítéses integrálás:} \qquad \int f(x) \, \mathrm{d}x = \left(\int f(x(t)) \cdot x'(t) \, \mathrm{d}t \right) \circ x^{-1}(t)$

integrálszámítás alkalmazásai:

 $T = \left| \int_{a}^{b} f(x) - g(x) \, \mathrm{d}x \right|$ (1) f és g függvények görbéi közötti tartomány területe:

(2) Forgástest térfogata: $V = \pi \int_{a}^{b} f^{2}(x) dx$

Kétváltozós függvények

szélsőérték létezésének szükséges, és elégséges feltételei: Az f függvénynek az (x_0, y_0) pontban

(1) létezhet lokális szélsőértéke, ha

$$f'_x(x_0, y_0) = 0$$
 és $f'_y(x_0, y_0) = 0$.

(2) létezik lokális szélsőértéke, ha a fenti (1)-s feltételen kívül még a

$$H(x_0, y_0) = \begin{pmatrix} f''_{xx}(x_0, y_0) & f''_{xy}(x_0, y_0) \\ f''_{yx}(x_0, y_0) & f''_{yy}(x_0, y_0) \end{pmatrix}$$

 $H(x_0,y_0) = \begin{pmatrix} f_{xx}''(x_0,y_0) & f_{xy}''(x_0,y_0) \\ f_{yx}''(x_0,y_0) & f_{yy}''(x_0,y_0) \end{pmatrix}$ Hesse-mátrix determinánsa pozítiv, azaz $|H(x_0,y_0)| > 0$ is teljesül. Ekkor ha $f''_{xx}(x_0, y_0) > 0$, akkor minimum, illetve ha $f''_{xx}(x_0, y_0) < 0$, akkor maximum van az (x_0, y_0) -ban.

Elsőrendű differenciálegyenletek

szétválasztható változójú egyenlet y'(x) = f(x)g(y(x)) megoldása:

$$\int \frac{1}{g(y(x))} y'(x) \, \mathrm{d}x = \int f(x) \, \mathrm{d}x \qquad \Longrightarrow \qquad \int \frac{1}{g(y(x))} \, \mathrm{d}y = \int f(x) \, \mathrm{d}x \qquad \text{alapján}$$

szétválaszthatóra visszavezethetők új változó u bevezetésével:

$$y' = f\left(\frac{y}{x}\right)$$
 típusnál $u(x) = \frac{y(x)}{x}$ $y' = f(ax + by + c)$ típusnál $u(x) = ax + by(x) + c$

lineáris inhomogén egyenlet y'(x) + f(x)y(x) = g(x) megoldása: $y = y_h \cdot p$ alakban, ahol az y_h és p függvények az $y_h' + fy_h = 0$ és a $p' \cdot y_h = g$ egyenletek megoldásai.

Másodrendű differenciálegyenletek

elsőrendűre visszavezethetők új változó bevezetésével:

$$F(y'', y', x) = 0$$
 típusnál $p(x) = y'(x)$, ekkor $y''(x) = p'(x)$; $F(y'', y', y) = 0$ típusnál $r(y) = y'(x)$, ekkor $y''(x) = r'(y)r(y)$

lineáris állandó együtthatós homogén egyenlet y'' + by' + cy = 0 megoldása:

a $\lambda^2 + b\lambda + c = 0$ karakterisztikus egyenlet megoldásai alapján

$$y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x},$$
 ha $\lambda_1 \neq \lambda_2 \in \mathbb{R}$
 $y = e^{\lambda_1 x} (C_1 x + C_2),$ ha $\lambda_1 = \lambda_2 \in \mathbb{R}$

$$y = e^{\alpha x} (C_1 \sin \beta x + C_2 \cos \beta x),$$
 ha $\lambda_1 = \overline{\lambda_2}$ komplexek és $\lambda_1 = \alpha + i\beta$

lineáris állandó együtthatós inhomogén egyenlet y'' + by' + cy = g megoldása:

 $y = y_h + p$ alakban, ahol y_h a feladat homogén változatának általános megoldása, p egy g típusú próbafüggvény alapján kapott megoldás.

próbafüggvények		
g(x)	p(x)	
x^3	$A_3x^3 + A_2x^2 + A_1x + A_0$	
$e^{\alpha x}$	$Ae^{\alpha x}$	
$\sin \alpha x$	$A\sin\alpha x + B\cos\alpha x$	
$\cos \alpha x$	$A\sin\alpha x + B\cos\alpha x$	