Project Proposal

Kyle Daruwalla

Department of Electrical and Computer Engineering University of Wisconsin – Madison daruwalla@wisc.edu

Akhil Sundararajun

Department of Electrical and Computer Engineering University of Wisconsin – Madison asundararaja@wisc.edu

Abstract

Insert abstract.

1 Introduction

Include brief information on setting up the CNN problem.

1.1 Field-Programmable Gate Arrays

Include brief information on FPGAs.

2 Problem Definition

Set up the goals of the project.

3 Implementation

Brief overview of implementation.

3.1 TensorFlow on EC2

Information on TensorFlow implementation on EC2. Talk about CPU baseline. Talk about speed up using GPU and Hogwild!

3.2 Neural Networks on FPGAs

Information on implementing a neural network on FPGA

4 Proposed Analysis

Talk about analysis that we are targeting.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

References

[1] F. Niu, B. Recht, C. Ré, and S. J. Wright, "Hogwild!: A lock-free approach to parallelizing stochastic gradient descent." arXiv:1106.5730v2, 2011.