Black hole induced spins from hyperbolic encounters in dense clusters (arXiv:2106.01436)

Santiago Jaraba Gómez Work in collaboration with Prof. Juan García-Bellido

Instituto de Física Teórica (UAM-CSIC), Madrid

26th July 2021

Introduction

- Aim of the work: study spin induction of initially nonspinning BHs within CHE.
- Based on the work of P.E. Nelson et al., Phys. Rev. D 100 (2019), done only for equal masses.
- Different approach:
 - Introducing different masses.
 - Study of the trends for different parameters with more detail.
 - Implications for real populations of BHs, particularly PBHs, which are formed without spin and in clusters.
- Numerical simulations done with the Einstein Toolkit.

Initial conditions

- Initially without spin.
- We fix d = 100M, $\vec{p}_1 = -\vec{p}_2$.
- Three free parameters: initial momentum $p = |\vec{p}_1| = |\vec{p}_2|$, incidence angle θ , mass ratio $q = m_2/m_1 \le 1$.

Santiago Jaraba Gómez 26th July 2021 3/14

Technical issues

- Cactus, Carpet, TwoPunctures, McLachlan, AHFinderDirect, QuasiLocalMeasures, WeylScal4, etc.
- Hyperbolic encounters require more space than BBH \rightarrow larger grid, more refinement, more computational power and time is required.
- Introducing $q \neq 1$ breaks a symmetry and needs more refinement around the small BH \rightarrow more resources.
 - Problematic for $q \ll 1$: we focus on $0.7 \le q \le 1$.
- We focus on the dimensionless spin parameter $\chi = a/m$.

Typical output of a simulation

Varying θ , fixed p, q = 1

Spin evolution vs time

Varying θ , fixed p, q = 1

Final spins vs θ for different p

Varying q, fixed p, $\theta = \theta_{\min}$

Spin evolution vs time

• Different spins for each mass: the highest one is induced on the most massive BH!

8 / 14

Varying q, fixed p, $\theta = \theta_{\min}$

Final spins vs mass for different p

Some words on the trends and analytic estimation

- Varying θ . Good fits to (negative) power laws. More negative exponents for lower momenta.
- Varying q. Good fits to straight lines for the $\chi-m$ curve. Greater slopes in relative terms for lower momenta.
- A weak-field analytic approach can predict the spin decrease with θ and that the higher spin is induced on the most massive BH for the $q \neq 1$ cases.
- However, it fails to predict the trends quantitatively. Expected since PPN(4) formalism would be required for accurate predictions.

The q = 0.1 simulation

- Much more time consuming due to the extra refinement levels required.
- Typical times for the simulations on an HPC cluster:
 - q=1: few days.
 - $0.7 \le q \le 1$: \sim a week.
 - q=0.1: \sim a month.
- ullet Center of mass gets displaced a lot o need for corrections when measuring Weyl scalar from spheres (necessary for strain computation).
- Drastic change of limiting angle between hyperbolic and non-hyperbolic events (θ_{\min}) .
- Simulations expected to produce a CHE end up producing a merger!

The q = 0.1 simulation

- We confirm $\chi_1 > \chi_2$ also for low q.
- Note the high spins before the merger!

Final remarks

- Spin induction effect is not lost for $q \neq 1$ simulations.
- When $q \neq 1$, highest spin induced on most massive BH.
- Weak-field approximations clearly insufficient for such strong CHE.
- Two initially nonspinning BHs can acquire relevant spins before they merge.
 Careful with parameter estimation from real GW events! The estimated initial spins could have been lower originally.
- Viable spin induction mechanism for PBH (initially nonspinning), which are clustered and produce lots of CHE. Study of spin distribution for future work.

Thanks for your attention!

Questions?

