

- ? Cum putem avea redundanță în LAN?
- Cum putem evita buclele la nivelul legătură de date?

Redundanță

- Redundanța se poate implementa la niveluri diferite
 - La nivel de link (2 uplink-uri)
 - La nivel de dispozitiv de nivel 2 (multiple căi prin bucle fizice nivel 2)
 - La nivel de dispozitiv de nivel 3 (multiple gateway-uri – HSRP, VRRP)

Redundanță – niv. 2

- + Eficiență sporită (backup links, load balancing)
- Buclele pot cauza efecte nedorite în LAN
 - Broadcast storm
 - Unknown Unicast

Broadcast storm

- Stația A trimite un broadcast în LAN
- Va ajunge la Stația B?

Broadcast storm

- Stația A trimite un broadcast în LAN
- Va ajunge la Stația B?
 - Da, de o infinitate de ori

STP

- Spanning Tree Protocol
- Specificat în standardul 802.1d
- Operează pe o rețea de switch-uri
- Elimină buclele din rețea prin închiderea unor porturi
- Algoritmul STP poartă numele de **STA** (Spanning Tree Algorithm)
- Operație similară cu determinarea arborelui de acoperire pe un graf

Rolurile switch-urilor

- În terminologia STP, switch-ul poartă numele de bridge
- Există două roluri pentru switch-uri:
 - Root bridge rădăcina arborelui de switch-uri
 - Non-root bridge toate celelalte switch-uri

Rolurile porturilor

- Există trei roluri pentru porturi:
 - **Designated port** − trimite și primește trafic de date
- Root port trimite și primește trafic de date reprezintă calea cea mai eficientă spre root bridge
 - Blocked port nu trimite şi nu primeşte trafic de date
- Pe o legătură, există următoarele două perechi de roluri:
 - Designated Root:
 - Dacă legătura face parte din arborele de acoperire
 - Designated Blocked:
 - Dacă legătura nu face parte din arborele de acoperire

Costurile legăturilor

- Costul unei muchii din graful STA este dependent de lățimea de bandă a legăturii respective
- RSTP 802.1w (2004) vs. STP 802.1D (1998)

Lățime de bandă	Cost
10 Mbps	2,000,000
100 Mbps	200,000
1 Gbps	20,000
10 Gbps	2,000

Lățime de bandă	Cost
10 Mbps	100
100 Mbps	19
1 Gbps	4
10 Gbps	2

Bridge ID

- Fiecare switch are un ID unic (BID)
- Valoare pe 64 biţi
 - 4 biți prioritatea + 12 biți Extended ID (VLAN)
 - 48 biţi adresa MAC
- Prioritatea este implicit 32768
- Switch-ul cu BID-ul cel mai mic va deveni root bridge

BPDU

- Mesajele folosite de STP pentru a comunica informații între bridge-uri
- Transmise o dată la 2 secunde pe toate porturile
- Informații transmise:
 - root bridge ID
 - cost până la root bridge
 - bridge ID
 - port ID
- Observație: blocked ports încă primesc BPDUuri

BPDU

- Mesaje trimise între switch-uri
 - Bridge Protocol Data Unit (BPDU)
 - trimise la fiecare 2 secunde
 - multicast spre 01:80:C2:00:00:00

1 Byte	1 Byte	1 Byte	8 Bytes	4 Bytes	8 Bytes	2 Bytes	2 Bytes	2 Bytes	2 Bytes	2 Bytes
Version	Message Type	Flags	Root ID	Cost to bridge	Bridge ID	Port ID	Message Age	Max Age	Hello Time	Forward Delay

Pașii STA

1. Alegerea root bridge

2. Alegerea unui **root port** pe fiecare bridge (cu excepția root bridge)

3. Alegerea designated ports

4. Alegerea și închiderea blocked ports

Alegerea Root Bridge

- Bridge-urile trimit BPDU-uri până când toate cunosc cel mai mic BID din rețeaua de bridge-uri
- Bridge-ul cu ID-ul minim devine Root Bridge
- Cine ar deveni root bridge în fiecare din situațiile următoare?

Nume	Prioritate	MAC
А	32768	00E0.A3C9.6AB8
В	32768	0001.97DA.86E8
С	32768	ooDo.BCoC.844D
D	32768	0003.E496.C80E

Nume	Prioritate	MAC
А	16384	00E0.A3C9.6AB8
В	32768	0001.97DA.86E8
С	8192	ooDo.BCoC.844D
D	16384	0003.E496.C80E
Е	8192	0060.2F07.EB2B
F	8192	0060.7058.D0A5

Alegerea Root Ports (1)

Fiecare switch non-root trebuie să aibă un root port

Alegerea Root Ports (2)

Sw-E va decide Root Port pe baza BID-ului vecinului

Designated Ports

- Un Root Port este cuplat pe link cu un designated port
- Un Root Bridge are numai root ports

Designated Ports (2)

• Pe fiecare legătură trebuie să existe un designated port

Designated Ports (3)

• Pe fiecare legătură trebuie să existe un designated port

Blocked Ports

Toate porturile rămase sunt blocked ports

Topologie logică finală

10 Mbps (100) ----

Un ultim tiebreaker

Poate apărea situația în care costurile și BID-urile sunt egale:

- Pentru această situație se definește conceptul de PID (Port ID), care este un număr format din:
 - prioritatea portului (configurată static de administrator)
 - indexul portului (de exemplu 7 pentru Fao/7)
- Va fi folosită legătura care are PID-ul mai mic pe bridge-ul mai prioritar (root bridge, cost minim către root, BID mai mic)
- În cazul acesta, Fa0/9 devine root port deoarece Fa0/4 are un port id mai mic decât Fa0/7

Stări porturi STP

• În decursul STA, un port face tranziția între mai multe stări:

Stare port	Acțiune la nivel de Switch	Acțiune la nivel de Port
Disabled	Nu se acceptă nici un fel de trafic	Nu se transmit cadre Nu se transmit BPDU-uri
Blocking	Se primesc doar BPDU-uri	Nu se transmit cadre Se primesc BPDU-uri
Listening	Se construiește topologia STP	Nu se transmit cadre Se transmit BPDU-uri
Learning	Se construiește tabela de adrese MAC	Nu se transmit cadre Se învață adrese MAC Se transmit BPDU-uri
Forwarding	Se transmite traficul normal	Se transmit cadre Se învață adrese MAC Se transmit BPDU-uri

Timpi de tranziție

- Timere de tranziție
 - stabilite de root bridge
 - Hello time: 2 sec
 - Forwarding delay: 15 sec
 - Max Age: 20 sec

• timp total de convergență: 50 sec

Common STP

- Common Spanning Tree Protocol
- 802.1D
- Implementare pentru un singur VLAN
- Convergență lentă (50 sec)
- Consum redus de resurse

RSTP

- Rapid Spanning Tree Protocol
- IEEE 802.1W (1998)
- Implementare de o instanță pentru un singur VLAN
- Timp mai bun de convergență: 3-5 sec
- Consum mediu de resurse

PVST/PVST+/RPVST+

- Proprietare Cisco
- Câte o instanță de STP pentru fiecare VLAN
- PVST
 - funcționează doar peste trunk-uri Cisco ISL
- PVST+
 - funcționează peste trunk-uri 802.1q
 - convergenţă similară cu 802.1D, dar este per-VLAN
- RPVST+
 - Rapid PVST+
 - timpi de convergență similari cu RSTP
 - consumă cele mai multe resurse

MSTP

- IEEE 802.1s
- Pentru a reduce numărul de instanţe, VLANurile cu aceleaşi cerinţe de trafic sunt mapate într-o singură instanţă
- Convergență rapidă

Configurare

Configurări globale

Sw(config)# spanning-tree mode pvst | rapid-pvst

Setare prioritate manual

Sw(config)# spanning-tree vlan vlan-id priority priority

Setare prioritate automat

Sw(config)# spanning-tree vlan vlan-id root primary

Sw(config)# spanning-tree vlan vlan-id root secondary

Configurări pe interfață

Modificare cost

Sw(config-if)# spanning-tree cost cost

 Activare portfast (trecere directă în starea forwarding, doar pentru link-uri acces)

Sw(config-if)# spanning-tree portfast

 Activare BPDU-guard (nu se trimit update-uri pe link-uri acces)

Sw(config)# spanning-tree bpduguard enable

Răspunsul zilei

- ? Cum putem avea redundanță în LAN?
- Cum putem evita buclele la nivelul legătură de date?

