ESC201T : Introduction to Electronics

Lecture 22: Diode Circuits

B. Mazhari Dept. of EE, IIT Kanpur

Clipper Circuit

Negative Clamper

$$V_{IN} - V_{OUT} \sim 3.4 \Rightarrow V_{OUT} = V_{IN} - 3.4$$

Positive Clamper

$$V_{IN} - V_{OUT} \sim -3.4 \Rightarrow V_{OUT} = V_{IN} + 3.4$$

Peak Detector

Temperature dependence of diode characteristics

$$I_D = I_S \times \{ e \times p \left(\frac{V_d}{V_T} \right) - 1 \}$$

$$V_T = \frac{kT}{Q} \qquad I_S \propto n_i^2 \propto e^{-\frac{E_g}{kT}}$$

Reverse saturation current increases with temperature. For forward bias, even though V_T increases, current still increases because of greater influence of I_S

For a diode in forward bias at a fixed current I_0 : $v_D = V_T \times \ln(I_O/I_S + 1)$

For Silicon diodes, v_D decreases at the rate of ~ -2mV/°C

If the diode voltage is 0.7 at 27°C, then at 100°C it would be only:

$$0.7 - 2 \times 10^{-3} \times (100 - 27) = 0.554V$$

Measurement of temperature using a pn junction diode

$$v_{D1} = V_T \times \ln(I_1/I_S + 1)$$

$$v_{D2} = V_T \times \ln(I_2/I_S + 1)$$

$$v_O = C \times (v_{D2} - v_{D1})$$

$$v_O = (C \times \frac{k}{q} \times \ln(\frac{I_2}{I_1})) \times T$$

Multiple-diode Circuits

Zener Diode

A diode specially designed to operate in reverse bias in 'breakdown' region

Model

Often we will assume that r_z is negligible

Example

Given
$$V_Z = 5.6V$$

$$r_Z = 0\Omega$$

Find a value for R such that the current through the diode is limited to 3mA

$$I = \frac{V_{PS} - V_{Z}}{R}$$

$$R = \frac{V_{PS} - V_{Z}}{I} = \frac{10V - 5.6V}{3mA} = 1.47k\Omega$$

$$P_Z = I_Z V_Z = 3mA \cdot 5.6V = 1.68mW$$

Datasheet

Zeners 1N4728A - 1N4752A

Absolute Maximum Ratings* T, - 25°C unless otherwise noted

Tolerance: A = 5%

DO-41

COLOR BAND DENOTES CATHODE

Symbol	Parameter	Value	Units
Po	Power Dissipation Derate above 50°C	1.0 6.67	mW/°C
T STG	Storage Temperature Hange	-65 to +200	aC.
T,	Operating Junction Temperature	+ 200	°C
Rest	Thermal resistance Junction to Lead	53.5	°C/W
Resa	Thermal resistance Junction to Ambient	100	°C/W
	Lead Temperature (1/16" from case for 10 seconds)	6.67 kange -55 to +200 mperature + 200 notion to Lead 53.5 notion to Ambient 100	°C
1	Surge Power"	10	W

^{*}These ratings are limiting values above which the serviceability of the clode may be impaired.

Electrical Characteristics T, - 25°C unless otherwise noted

Device	V _z (V)	Z _z @ (Ω)	I _{ZT} (mA)	Z _{zκ @} (Ω)	I _{ZK} (mA)	V _R @ (V)	l _R (μΑ)	I _{surge} (mA)	I _{ZM} (mA)
1N4728A	3.3	10	76	400	1.0	1.0	100	1380	276
1N4729A	3.6	10	69	400	1.0	1.0	100	1260	252
1N4730A	3.9	9.0	64	400	1.0	1.0	50	1190	234
1N4731A	4.3	9.0	58	400	1.0	1.0	10	1070	217
1N4732A	4.7	8.0	53	500	1.0	1.0	10	970	193
1N4733A	5.1	7.0	49	550	1.0	1.0	10	890	178
1N4734A	5.6	5.0	45	600	1.0	2.0	10	810	162
1N4735A	6.2	2.0	41	700	1.0	3.0	10	730	146
1N4736A	6.8	3.5	37	700	1.0	4.0	10	660	133
1N4737A	7.5	4.0	34	700	0.5	5.0	10	605	121
1N4738A	8.2	4.5	31	700	0.5	6.0	10	550	110
1N4739A	9.1	5.0	28	700	0.5	7.0	10	500	100
1N4740A	10	7.0	25	700	0.25	7.6	10	454	91
IIV9791A	11	8.0	23	700	0.20	0.4	5.0	414	0.0
1N4742A	12	9.0	21	700	0.25	9.1	5.0	380	76
1N4743A	13	10	19	700	0.25	9.9	5.0	344	69
1N4744A	15	14	17	700	0.25	11.4	5.0	304	61
1N4745A	16	16	15.5	700	0.25	12.2	5.0	285	57
1N4746A	18	20	14	750	0.25	13.7	5.0	250	50
1N4747A	20	22	12.5	750	0.25	15.2	5.0	225	45
1N4748A	22	23	11.5	750	0.25	16.7	5.0	205	41
1N4749A	24	25	10.5	750	0.25	18.2	5.0	190	38
1N4750A	27	35	9.5	750	0.25	20.6	5.0	170	34
1N4751A	30	40	8.5	1000	0.25	22.8	5.0	150	30

[&]quot;Non-recurrent square wave PW = 8.3 ms, TA = 55 degrees C.

NOTES:

1) These ratings are based on a maximum junction temperature of 200 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed. or low duty cycle operations.

Zener diode: Important Characteristics

Light Emitting Diodes

Light Emitting Diodes: Operation

Invention of LED

Nick Holonyak 1962; Red LED using GaAsP

Shuji Nakamura Blue LED using GaN, 1992 Nobel Prize, 2014

PN Junction as a Solar Cell

Sun as a source of energy

Sun as a source of energy

A.M.1.5 \sim 844 W/m²

A.M.2 ~691 W/m²

AM: air mass

Solar cell is a diode

 V_{OC} : Open circuit voltage I_{SC} : Short circuit current

What is the maximum power that can be extracted?

$$P = \frac{V_M \times J_M}{V_{\text{OC}} \times J_{SC}} \times V_{\text{OC}} \times J_{SC}$$

$$P = FF \times V_{OC} \times J_{SC}$$

Parameters of the Ideal Silicon Cell and the Best PERL Cell, and Achievable Parameters of a PERL Cell (AM1.5)

AMERICAN (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Jsc	Voc	FF	Eff.
	(mA/cm2)	(mV)	(%)	(%)
ideal cell[15]	43.0	769	89.0	29
best PERL[18]	40.8	708	83.1	24
achievable cell[19]	42.5	730	84.0	>26

 $P_{ext} = J_{SC} \times V_{OC} \times FF = 43 \times 0.769 \times 0.89 = 29.4 \, mW \ for \ 100 \, mW \ of \ incident \ solar \ power \ (1 \ sun)$

CITY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	AVG.
AGRA	3.58	4.65	5.53	5.96	6.33	5.98	4.94	4.51	4.68	4.69	3.91	3.42	4.85
ALLAHABAD	3.79	4.83	5.93	6.39	6.55	5.68	4.56	4.31	4.48	4.8	4.23	3.6	4.93
GORAKHPUR	3.41	4.25	5.28	5.88	6.5	6.34	5.66	5.35	5.02	4.54	3.74	3.2	4.93
KANPUR	3.62	4.63	5.68	6.19	6.54	5.88	4.78	4.45	4.45	4.83	4.14	3.52	4.89
LUCKNOW	3.62	4.63	5.68	6.19	6.54	5.88	4.78	4.45	4.45	4.83	4.14	3.52	4.89
MEERUT	3.6	4.53	5.73	6.7	7.28	6.68	5.54	4.9	5.17	5.01	4.15	3.47	5.23

 $kWh/m^2/day$

18% efficient solar panel of $1m^2$ would generate 0.9kWh

PN Junction as a Photodiode or detector

