AEDC-TSR-78-V24 August 1978

Cy.Z

DOC NUM SER CN UNC28868-PDC

. JUN 0 3 1992

HEAT-TRANSFER, SURFACE-PRESSURE, AND BOUNDARY-LAYER SURVEYS ON CONIC AND BICONIC BODIES WITH BOUNDARY-LAYER TRIPS AT MACH NUMBER 6 - PHASE I

> Frederick K. Hube ARO, Inc., AEDC Division A Sverdrup Corporation Company von Kármán Gas Dynamics Facility Arnold Air Force Station, Tennessee

Period Covered: January 23, 30, and 31, 1978

Approved for public release; distribution unlimited.

Reviewed by:

ERVIN . JASKOLSKI, Capt, USAF Test Director, VKF Division

Directorate of Test Operations

Approved for Publication FOR THE COMMANDER

ALAN L. DEVEREAUX

Colonel, USAF

Deputy for Operations

Space and Missile Systems Organization Prepared for:

RSSE, P. O. Box 92960

Worldway Postal Center

Los Angeles, California 90009

ARNOLD ENGINEERING DEVELOPMENT CENTER · AIR FORCE SYSTEMS COMMAND ARNOLD AIR FORCE STATION, TENNESSEE

Property of U. S. Air Force AEDC LIBRARY F40600-77-C-0003

UNCLASSIFIED

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	ION NO. 3. RECIPIENT'S CATALOG NUMBER
I. REPORT ROMBS.	
AEDC-TSR-78-V24	5 TYPE OF REPORT & PERIOD COVERED
4. TITLE (and Subtitle)	
Heat-Transfer, Surface-Pressure, and Boundary	
Layer Surveys on Conic and Biconic Bodies wi	
Boundary-Layer Trips at Mach Number 6 - Phase	S. FERI DIMINIO DI CONTROLLE
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(1)
Frederick K. Hube, ARO, Inc.,	·
a Sverdrup Corporation Company	İ
a 2451q1db corboration comba3	
9 PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Arnold Engineering Development Center	Program Element 63311F
Air Force Systems Command	Control No. 627A-00-8
Arnold Air Force Station, TN 37389	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
SAMSO/RSSE	July 1978
P. O. Box 92960	13. NUMBER OF PAGES
Worldway Postal Center, Los Angeles, CA 9000	
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling	
	UNCLASSIFIED
	15a. DECLASSIFICATION DOWNGRADING
	SCHEDULE N/A
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution	inlimited.
Approved for public release; distribution	GITTIME CCC ,
	·
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if de	fferent from Report)
	· 1
·	
	•
IN SUPPLEMENTARY NOTES	
{	ì
4	
Available in DDC.	
19. KEY WORDS (Continue on teverse side if necessary and identify by blo	ck number)
boundary-layers transition	
hypersonic flow heat transfer	-
trips pressure distr	ibution
conic bodies	'
biconic bodies	January Control of the Control of th
20. ABSTRACT (Continue on reverse side if necessary and identify by blow Heat-transfer data were obtained on a 7-de	eg cone and a 14/7-deg biconic model
to determine the minimum size distributed re	oughness required to bring boundary-
layer transition near the model nose. Surfa	ace pressure and boundary-layer
surveys were also obtained on a few configur	cations in an attempt to identify
the difference in the characteristics of na	turally turbulent boundary layers
and those trianed with distributed roughness	a. Data were obtained at a nominal
Mach number of 6 at Revnolds numbers rangin	\mathbf{x} from 1 \mathbf{x} 10° to 4./ \mathbf{x} 10° per 1001.
Most of the data were obtained at zero angl	e of attack although some data were

UNCLASSIFIED

obtained at angle	of attack for a few selected	bluntness/trip combinations.
		·
		i ¦
		,
		•
AFSC Arnold AFS Tenn		•

CONTENTS

		Page
1.0	NOMENCLATURE	3 4
2.0	APPARATUS 2.1 Test Facility	4 5
	2.3.1 Test Conditions	5 5 6 6
	2.4 Survey Probes 2.4.1 Geometry Details	6 7 7
3.0	TEST DESCRIPTION 3.1 Test Conditions and Procedures 3.1.1 General	7 8 9
	3.3 Uncertainty of Measurements 3.3.1 General	9 9 10
4.0 5.0	3.4 Data Corrections	10 11 11
	APPENDIXES	
ı.	ILLUSTRATIONS	
Figu	ire	
1. 2. 3. 4. 5. 6. 7.	Tunnel B Model Geometry Boundary-Layer Trip Geometry Pitot Probe Geometry and Location Total Temperature Probes Overhead Probe Installation On-Board Probe Probe Survey Location and Related Wall Measurement Instrumentation	13 14 15 17 19 20 21
II.	TABLES	23
1. 2. 3.	Surface Instrumentation Location	25 28 31

		Page
III.	DATA REDUCTION NOMENCLATURE	33
1.	Surface Pressure Data	37
2.	Heat-Transfer Data	37
3.	Probe Data	38
	3.1 Pitot Pressure	38
	3.2 Shielded Thermocouple Probe	39
	3.3 Unshielded Thermocouple Probe	42
4.	Boundary-Layer Integral Values	45
IV.	SAMPLE DATA NOMENCLATURE AND FORMATS	
1.	Nomenclature: Surface Pressure Data	49
2.	Sample Data: Surface Pressure Data	50
3.	Nomenclature: Heat-Transfer Data	51
4.	Sample Data: Heat-Transfer Data	53
5.	Nomenclature: On-Board Probe Flow-Field Data	54
6.	Sample Data: On-Board Probe Flow-Field Data	57
7.		63
8.	Sample Data: Overhead Probe Flow-Field Data	65

NOMENCLATURE

Н (ТО)	Heat transfer coefficient based on To, BTU/ft2-sec-R
M _∞	Freestream Mach number
Po	Tunnel stilling chamber pressure, psia
P_{∞}	Freestream static pressure, psia
q_{∞}	Freestream dynamic pressure, psia
Re _∞ , Re _∞ /ft	Freestream Reynolds number, ft-1
To	Tunnel stilling chamber temperature, °R
V _∞	Freestream velocity, ft/sec
X, XSURF	Model surface length, in.
O.	Model angle of attack, deg
Ф	Model roll angel, deg
ρ _∞	Freestream density, slugs/ft3
Θ	Body surface angle
ω	Circumferential location of pressure orifice and heat gages (positive clockwise looking upstream), deg

1.0 INTRODUCTION

The work reported herein was sponsored by the Space and Missile Systems Organization (SAMSO), Air Force Systems Command (AFSC) and the Research Division of the Directorate of Test Engineering (DOTR), of the Arnold Engineering Development Center (AEDC), AFSC under Program Element 63311F AF control number 627A-00-8. The work was performed by ARO, Inc., AEDC Division, (A Sverdrup Corporation Company), contract operator of AEDC, Arnold Air Force Station, Tennessee. Project monitors were Capt. R. J. Chambers and Mr. E. R. Thompson for SAMSO and AEDC, respectively. ARO project monitor and principal investigator was Dr. M. O. Varner. Inquiries to obtain copies of the test data should be directed to either of the following: SAMSO/RSSE, P. O. Box 92960, Worldway Postal Center, Los Angeles, CA 90009, Attn: Capt. R. J. Chambers; AEDC/DOTR, Arnold AFS, TN 37389, Attn: E. R. Thompson. A copy of the final data is on file in microfilm at AEDC.

Tests were conducted in the 50-in. Diam Hypersonic Wind Tunnel (B) of the von Karman Gas Dynamics Facility (VKF) on January 23, 30, and 31, 1978, under ARO Project No. V41B-W6. The objective of the test was to determine the smallest boundary-layer trip which was effective without producing flow-field disturbances. This test phase was planned as a preliminary investigation for a more detailed study of boundary-layer trip influences.

Heat-transfer measurements were obtained to identify transition locations. Flow-field data were obtained with pitot probes and both shielded and unshielded total temperature probes. Model surface pressure and temperature distribution were also obtained. A new on-board probe system was also used during this test phase.

All data were obtained at a nominal Mach number of 6 at free-stream Reynolds numbers ranging from 1.0 x 10^6 to 4.7 x 10^6 per ft. Most of the data were obtained at angles of attack up to 14 degs. Configurations tested included a 7-deg cone and a 14/7 deg (i.e., a 14 deg fore cone section with a 7 deg aft cone frustum) biconic. Spherically blunted nose tips were tested with nose radii ranging from 0.050 in. to 0.500 in. Tests were also performed with the 7-deg sharp nose tip cone configuration.

2.0 APPARATUS

2.1 TEST FACILITY

Tunnel B is a closed circuit hypersonic wind tunnel with a 50-in.-diam test section. Two axixsymmetric controured nozzles are available to provide Mach numbers of 6 and 8 and the tunnel may be operated continuously over a range of pressure levels from 20 to 300 psia at $M_{\infty}=6$, and 50 to 900 psia at $M_{\infty}=8$. Stagnation temperatures sufficient to avoid air liquefaction in the test section (up to 1350°R) are obtained through the use of a natural gas-fired combustion heater. The entire tunnel (throat, nozzle, test section, and diffuser) is cooled by integral,

....

external water jackets. The tunnel is equipped with a model injection system, which allows removal of the model from the test section while the tunnel remains in operation. The general arrangement of Tunnel B is illustrated in Fig. 1.

2.2 TEST ARTICLE

Two model configurations were tested in this phase: (1) a 7-deg half angle cone with a virtual length of 40 in. and (2) a biconic model with a 14-deg half-angle forebody and a 7-deg afterbody (total virtual length of 29.849) as shown in Fig. 2. Nose radii of 0.050, 0.100, and 0.500 in. were tested on the conical model in addition to a baseline sharp nose configuration. The biconic model was tested with nose radii of 0.050 and 0.500 in. Model components were fabricated from Type 304 stainless steel.

The models were instrumented with pressure orifices and Gardon-type heat-flux gages. Table 1 (Appendix 2) lists the instrumentation locations and shows that the top centerline was the main ray of pressure instrumentation and the bottom centerline was the ray instrumented with Gardon gages. At three stations, pressure orifices were also installed at 90-deg intervals around the model.

Boundary-layer trips consisted of distributed roughness formed by Carborundum® grit, machined helical grooves or roughness generated by blasting the surface with grit. The geometry and location of the trips are shown in Fig. 3.

2.3 TEST INSTRUMENTATION

2.3.1 Test Conditions

Tunnel B stilling chamber pressure is measured with a 200- or 1000-psid transducer referenced to a near vacuum. Based on periodic comparisons with secondary standards, the accuracy (a bandwidth which includes 95-percent of residuals, i.e. 2σ deviation) of the transducers is estimated to be within ± 0.25 percent of reading or ± 0.30 psi, whichever is greater for the 200-psid range and ± 0.25 percent of reading or ± 0.8 psi, whichever is greater for the ± 1000 -psid range. Stilling chamber temperature measurements are made with Chromel®-Alumel® thermocouples which have an accuracy of $\pm (1.5^{\circ}\text{F} + 0.375 \text{ percent of reading})$ based on repeat calibrations (20 deviation).

2.3.2 Test Data

The Tunnel B pressure system is equipped with 1- and 15-psid transducers which are referenced to a near vacuum. The system automatically selects the transducers and calibrated ranges for best precision for each pressure measurement. Based on periodic comparisons with secondary standards, the accuracy of these transducers (bands that include 95 percent of residuals i.e., 2σ deviation) is estimated to be ± 0.2 percent of reading or ± 0.01 psi, whichever is greater, for the 15-psid transducers and ± 0.2 percent of reading or ± 0.0015 psi, whichever is greater, for the 1-psid transducers.

2.3.3 Heat-Transfer Measurements

Heat-transfer data were obtained with 0.125-in. diam Gardon-type heat-flux gages with Iron-Constantan case thermocouples used to evaluate an effective wall temperature for determining heat-transfer coefficient and for monitoring the model structural temperature level and distribution. The estimated uncertainty in the gage calibration factor is ±5 percent. Details of this type of gage are available in Ref. 1.

2.3.4 Flow-Field Measurements

Two separate probing systems were used to perform the boundary layer and flow-field surveys. One system was attached to the model sting and was equipped with a pitot tube, an unshielded thermocouple probe, and a shielded thermocouple probe. An overhead probe system was mounted on the wind tunnel and was instrumented with a pitot tube and an unshielded thermocouple probe.

Both the shielded and unshielded thermocouple probes were made with Chromel-Alumel thermocouples which had an estimated uncertainty of \pm (1.5°F + 0.375 percent of reading).

The sting-mounted pitot probe pressure was measured with the standard Tunnel B pressure system. Overhead system pitot pressure was measured with a 15-psid Druck $^{\textcircled{B}}$ transducer which has an estimated uncertainty of ± 0.009 psia. A near-vacuum reference pressure was used with the Druck transducer.

Near-vacuum reference pressures for the transducers used in this test were measured with a Hastings absolute pressure transducer.

2.4 SURVEY PROBES

2.4.1 Geometry Details

Both the overhead and sting-mounted pitot probes were fabricated by flattening a 0.024 in. O.D. (0.020 I.D.) tube as shown in Fig. 4. This procedure produced a probe tip thickness of 0.010 in. with an open slit of 0.005 in. height. The actual measured dimensions of the two pitot tubes used in this test are presented on Fig. 4.

Figure 5 illustrates the geometry of the unshielded (Fig. 5a) and shielded (Fig. 5b) thermocouple probes. The unshielded total temperature probe was fabricated by the VKF from a length of sheathed thermocouple wire (0.010-in. 0.D.) with two 0.0015-in. diameter wires. The wires were bared for a length of about 0.015 in. and the thermocouple junction formed. The probe was used in this form without a shield. Figure 5b shows that a manufacturer-prepared thermocouple junction was installed through a insulating sleeve to form the shielded thermocouple probe. Four 0.0074-in. diam vent holes were drilled in the shield tube.

2.4.2 Calibration

The recovery temperature characteristics of each total temperature probe were calibrated in the inviscid portion of the model flow field and in the tunnel free-stream flow. Calibration data for the unshielded probes were expressed in the form of recovery factor as a function of Reynolds number. Shielded probe recovery was obtained as a function of both Reynolds number and Mach number.

2.5 SURVEY MECHANISMS

The overhead probe drive system illustrated in Fig. 6 was designed and fabricated by the VKF. The positioning mechanism is housed above a port in the top of the Tunnel B test section. Access to the test section is through a 40-in.-long by 4-in. wide floor opening which can be sealed by a pneumatically-operated door. Separate drive motors are provided to (1) insert the mechanism into the test section or retract it into the housing, (2) position the mechanism at any desired axial station over a range of 35 in. with a precision of ±0.01 in., and (3) probe a flow field of approximately 10-in. depth with a precision of ±0.001 in. The drive axis inclination of the probe support can be adjusted, but all surveys obtained during this test phase were taken with the probe travel normal to the model axis (i.e. no drive axis inclination). An offset strut was used in this test to permit surveys to be made near the model base. The strut is equipped with a pneumatically-operated shield to protect the probes during injection and retraction throught the tunnel boundary layer and during tunnel condition changes.

The sting-mounted probe package shown in Fig. 7 was designed and fabricated by the VKF. A drive motor and position potentiometer were enclosed in an "L"-shaped sheet metal housing which had water tubes for cooling. The system has a vertical drive with a position resolution of ±0.001 in. Total vertical travel of the system is approximately 4 inches.

Calibration of the probe drive was checked optically with an optical micrometer. Relative position and lateral spacing of the probes was also confirmed with an optical micrometer.

3.0 TEST DESCRIPTION

3.1 TEST CONDITIONS AND PROCEDURES

3.1.1 General

A summary of the nominal test conditions at each Mach number is given below:

Slugs

M _{oo}	p _o , psia	To,°R	ρ _∞ , ft ³	V _w , ft/sec	P _∞ , psia	$\frac{\text{Re}_{\infty}/\text{ft} \times 10^{-6}}{\text{Re}_{\infty}}$
5.91	55	845	2.98 x 10 ⁻⁵	2981	0.037	1.0
5.94	131	ì	7.06×10^{-5}	2982	0.088	2.5
5.95	250	ľ	13.37 x 10 ⁻⁵	2983	0.167	4.7

Table 2 contains a summary of all configurations and test variables.

The objective of this test phase was to determine the smallest boundary-layer trip that would bring transition near the trip without introducing disturbances in the flow field. A boundary-layer trip that brought the end of transition in the vicinity of the first heat gage (see Table 1 for gage locations) was considered effective and suitable to be studied in more detail. This initial approach was taken since the ultimate goal is to fix the end of transition on the forebody of the biconic configurations to be studied in detail in later test phases.

3.1.2 Data Acquisition

Transition location at zero angle of attack was determined from heat-transfer distributions obtained with the Gardon heat-flux gages. Prior to each run, the model was cooled by flowing air over the model to obtain a uniform wall temperature near room temperature (i.e. approximately 520°R). The model was injected into the tunnel flow for about five seconds while a continuous record of gage output was recorded.

Two additional types of heat-transfer data were obtained to provide information about the circumferential transition distribution at angle of attack. One data mode was performed by rolling the model at a fixed angle of attack while continuously recording the gage output. These data provided a circumferential map of transition location. The second dynamic data mode involved obtaining a continuous record of gage output with the model moving in the pitch plane at approximately 1 deg/sec. These data are useful in defining the movement of transition along the windward and leeward model rays with angle of attack.

Surface-pressure data were obtained on primary configurations such as the sharp cone baseline body and configurations with selected bluntness/trip combinations.

Flow-field surveys consisted of approximately 50 data points obtained at different heights above the model surface at a station 0.5 in. (surface distance) forward of the model base (see Fig. 8). The probe direction of travel was normal to the model centerline. Both total temperature and pitot pressure measurements were made simultaneously along with model wall pressure and temperature data at the probe station. Data were recorded after the pitot pressure had stabilized. The total survey distance probed was approximately 4 inches. Procedures used for both the on-board and overhead probes were identical.

Initial probe positioning on the model wall was monitored optically with a high resolution (525 lines/frame) closed-circuit television (CCTV) system. The camera was fitted with a telescopic lens system which gave a total magnification factor of 38 (from tunnel centerline to monitor picture). The television image was used to verify contact

between the pitot tube and the model wall before obtaining the first data point in a survey. Television monitoring also made it possible to evaluate the deflection of unshielded thermocouple probes caused by the aerodynamic loading. This deflection was estimated to be nominally 0.010 in.

3.2 DATA REDUCTION

Although some portions of the data reduction used in this study were fairly standard, the flow field probe data included an evaluation of several boundary layer parameters including the definition of the boundary layer thickness, displacement thickness, momentum thickness, kinetic energy thickness, and total enthalpy thickness. Also, special data reduction procedures were needed to correct the shielded and unshielded total temperature probe measurements. A complete summary of the data reduction procedures used in this study are included in Appendix III.

3.3 UNCERTAINTY OF MEASUREMENTS

3.3.1 General

The accuracy of the basic measurements (p_0 and T_0) was discussed in Section 2.3. Based on repeat calibrations, these errors were found to be

$$\frac{\Delta p_o}{p_o} = 0.0025 = 0.25\%, \frac{\Delta T_o}{T_o} = 0.005 = 0.5\%$$

Uncertainties in the tunnel free-stream parameters and the model aerodynamic coefficients were estimated using the Taylor series method of error propagation, Eq. (1),

$$(\Delta F)^2 = \left(\frac{\partial F}{\partial x_1} \Delta x_1\right)^2 + \left(\frac{\partial F}{\partial x_2} \Delta x_2\right)^2 + \left(\frac{\partial F}{\partial x_3} \Delta x_3\right)^2 \dots + \left(\frac{\partial F}{\partial x_n} \Delta x_n\right)^2$$
(1)

where ΔF is the absolute uncertainty in the dependent parameter $F = f(X_1, X_2, X_3, \dots, X_n)$ and X_n is the independent parameter (or basic measurement). ΔX_n is the uncertainty (error) in the independent measurement (or variable).

3.3.2 Test Conditions

The accuracy (based on 20 deviation) of the basic tunnel parameters, p and T, (see Section 2.3) and the 20 deviation in Mach number determined from test section flow calibrations were used to estimate uncertainties in the other free-stream properties using Eq. (1). The computed uncertainties in the tunnel free-stream conditions are summarized in the following table.

Uncertainty, (±) percent of actual value

	$\frac{\text{Re}_{\infty}/\text{ft} \times 10^{-6}}{-}$	M	p_{∞}	$\frac{\mathbf{q}_{\infty}}{}$	Re _∞ /ft	$p_{\infty}V_{\infty}$	
5.91	1.0	0.3	2.1	1.4	1.0	0.9	1.4
5.94	2.5	0.2	1.0	0.7	0.7		0.7
5.95	4.7	0.2	1.0	0.7	0.7		0.7

3.3.3

Model surface pressure and on-board pitot probe data uncertainties are discussed in Section 2.3.2. Summarizing, measurements at pressure levels at 1 psia or less have an estimated uncertainty of ± 0.2 percent of reading or ± 0.0015 psi, whichever is greater. Measurements above 1 psia have an estimated uncertainty of ± 0.2 percent of reading or ± 0.01 psi, whichever is greater. Overhead probe instrumentation is discussed in detail in Section 2.3.4 in which an estimated pitot pressure uncertainty is ± 0.009 psia.

Total temperature measurements from both the shielded and the unshielded thermocouple probes is estimated to be $\pm(1.5^{\rm OF}+0.375$ percent of the reading). Consequently, because data were obtained under hot wall conditions (approximately adiabatic), the estimated uncertainty in the probe measurements throughout the flow field surveys is ± 0.5 percent of reading.

The estimated uncertainty in Gardon gage calibration factors is ± 5 percent. Overall uncertainty in the heat-transfer coefficient, H(TO), is estimated to be ± 6 percent. After the uncertainty in free-stream values of density and velocity is considered, the overall uncertainty in Stanton number is estimated to be ± 6.1 percent.

Based on optical observations and mechanical resolution the estimated uncertainty in probe position is ± 0.002 in. As noted earlier in Section 3.2.2, deflection of the unshielded thermocouple probe was optically evaluated to be 0.010 in. This deflection was accounted for in the data reduction. This uncertainty in the axial position of the probe was ± 0.050 in.

The uncertainties of all primary measurements such as pressure, temperature, heat flux rate, model attitude and free stream Mach number nonuniformity have been identified. The uncertainty in some of the free stream parameters have been identified, but the uncertainty in many of the other parameters (for example, boundary layer parameters) listed in the tabulated and plotted results of the final data fall outside the scope of this report.

3.4 DATA CORRECTIONS

The longitudinal heat-transfer distribution on the 7-deg cone showed more irregularity than expected based on the estimated uncertainty in the gage data. Consequently, a procedure was established to smooth the data by obtaining correction factors for the indicated heating level. The data distribution was compared with calculated turbulent and laminar heating data. Based on these comparisons, smooth fairings through the data were

obtained. A separate set of correction factors were obtained for the laminar and turbulent cases since these were the extremes in heating levels encountered. These two sets of correction factors were averaged and applied to the data. Correction factors were applied only to the 7-deg cone and the 7-deg conical afterbody. Data tabulations show both corrected and uncorrected data.

A correction for unshielded probe position was made to account for probe downward deflection resulting from aerodynamic loading. The deflection magnitude was determined from the television monitor screen and estimated to be 0.010 in.

4.0 DATA PACKAGE PRESENTATION

A complete set of test results in tabulated and graphical form has been transmitted to SAMSO (test sponsor) as a Final Data Package. The data computational procedures were checked by performing manual calculation verification of the computer calculations. Sample tabulated data and nomenclatures appear in Appendix IV.

5.0 REFERENCES

- 1. Trimmer, L. L., Matthews, R. K., and Buchanan, T. D. "Measurement of Aerodynamic Heat Rates at the AEDC von Karman Facility."
 International Congress on Instrumentation in Aerospace Simulation Facilities IEEE Publication CHO 784-9 AES, September 1973.
- Robertson, S. James "On the Use of the Gardon Gage for the Measurement of Convective Heat Flux," Heat Technology Lab Memo 9, Huntsville, Alabama, June 1962.
- 3. Varner, M. O. "Corrections to Single-Shielded Total Temperature Probes in Subsonic, Supersonic, and Hypersonic Flow," AEDC-TR-76-140, November 1976.

APPENDIX I

ILLUSTRATIONS

a. Tunnel assembly

b. Tunnel test section Fig. 1. Tunnel B

ALL PIMENSIONS IN

Fig. 2 Model Geometry

Oc,IN	RN, IN	×1, /*	X2,1N	GRIT NO.	GRIT SIZE, IN
7	0.05	1.481	3.900	60	0.010
	+	1	↓	30	0.022
	0.10	1.552	3.500	46	0.014
	0.50	1.574	0.800	80	0.0065
	0.50		į.	60	0.010
	0,50			30	0.022
+	0.50	+	¥	20	0.037
14	0.50	0.662	1.200	100	0.0048
+	0.50	+	+	80	0.0065

a. Distributed grit trip Fig. 3 Boundary-Layer Trip Geometry

b. 7-deg grit blasted nose

c. Grooved 7-deg insert

d. Grooved 14-deg nose Fig. 3 Concluded

a. Pitot probe geometry
Fig. 4 Pitot Probe Geometry and Location

OVERHEAD PROBE

DIMENSIONS IN INCHES.

b. Pitot location relative to thermocouple probes
 Fig. 4 Concluded

b. Shielded thermocouple probe

Fig. 5 Total Temperature Probes

Fig. 6 Overhead Probe Installation

a. On-Board Probe Installation Fig. 7 On-Board Probe

b. On-Board Probe Details Figure 7 Concluded

Fig. 8 Probe Survey Location and Related Wall Measurement Instrumentation

APPENDIX II

TABLES

TABLE 1
SURFACE INSTRUMENTATION LOCATIONS

A. PRESSURE ORIFICES

Ī	YSURF		
ORIFICE	7- deg	14/7	ω,
No.	CONE	BIGONIC	deg
1	39.800	29.801	0
2	38.300	28,30/	
3	36, 300	26.301	
4 5	34.300	24.301	
5	32,300	22.301	
6	30,300	20,301	
7	28.300	18.301	
8	26,300	16.301	
9	24.300	14.301	
/0	22.300	12,301	
//	20.150	11.162	
12	17.150	10.787	
/3	15.150	10.412	
14	13.150	9.909	
15	11.150	9.159	
16	9.150	7.159	
17	8.150	6.159	
18		5.159	
19	-	4.659	
20	-	4.159	
21		3.659	*
			

TABLE 1. Continued

 	YSURF, IN				
ORIFICE	7- deg	14/7	ω,		
No.	CONE	BICONIC	deg		
22	39.800	29.801	90		
23	30. 300	20,301			
24	11.150	4.659	†		
25	39,800	29,801	90		
26	30.300	20.301			
27	11.150	4.659	†		
29	39.800	29,801	180		
29	30.300	20.30:			
30	11.150	4.659	4		
3/	BASE	BASE	0		
32	BASE	BASE	180		
33	38 ,800	28.801	0		

B. HEAT GACES

	y suz		
GAGE	7-deg	14/7	ω, deg
No.	38,300	BICONIC 28.30/	180
3	36,300 34,300	26, 301 24, 301	
4	32,240	22.241	
5	28.240 26.240	18.241 16.241	
8	25.240 24,240	15.241 14.241	
9	23,240	13.241	
10	22,240 21,150	12.241	
12	20.150	10.787 10.41Z	
14	18.150	9.909	
15	17.150	9.159 7.159	
17	13.150 9.150	6.159 5.159	
19	8,150	3,909	•

TABLE 2
TEST CONDITIONS AND CONFIGURATIONS

 	··············			0 -6		,	
GROUP	CONFIG	Noze	TRIP	RexIO,	α,	4 ,	TYPE
		RADIUS		-Fr-/	deg	deg	DATA
1	7-deg	SHARP	NONE	4.7	0	0	STATIC H.T.
2 3	Cone	SHARP	NONE		O	0	
		0.500	NONE		0	O	
4	·	0.200			O	0	·
5		0.500	•	1	0	90	
6			V c) D			
7 8 9		0.500			0	0	
8		0.050	GRIT BLASTED		0	0	
9		0.050			٥	90	
10		0.050	0.010		o	٥	
//		0.500	2,0065		0	0	
12		0.500			0	90	
/3		0.500	4		0	180	
14		SHARP	NONE		0	90	
15.		SHARP			0	180	
16		0.100	0.014		. 0	0	
17		0.500	0.010		0	0	4
18					-1 → 10	0	of Sweep-H.T.
19					0	0->180	Row - H.T.
20					5	0 -> 180	
21		•		-	10	0->180	₩
22		0.050	NONE		0	0	STATIC H.T.
23			GROOVES		0	0	
24	}	0.100	NONE		0	0	*
25		0.500	0.010		0	0	ON-BOARD PRIZE
26			NONE		0	0	4
27			0.010		O	0	STATIC H.T.
28					0	180	
29		0.050			0	0	
30	•	•	•	•	0	180	•
	<u> </u>	*		<u> </u>	<u> </u>	<u></u>	<u> </u>

40. 2	4						
62002	CONFIC.	NOSE	TRIP	Rexion,	deq	des	DATA
> /	7./-	P. Julys	4				·
3/	7-deg	Sharp 	NONE	<i>4</i> .7 ↓	0	0	SURF. PRESS.
32	CONE				0	180	
33					Ó	0	V
34		V	VOIL		O	υ J	ON-BOLIED FRIBE
35					a		V
36		SHARP	NONE		ð	0	OVERHEAD PASEE
37		٧	4		0	O.	STATIC - H.T. (HOT)
38		0.050	0.010		0	0	STATIC "H.T.
39		•	*		0	180	H 48
40		1	V0	יעון –			¥
41		0.500	0,0,0		0	0	SURF. PRESS.
42					0	0	ON-BOARD RIBE
43 44		₩	A	V	0	0	STATIC H.T.
45		_		3.6			CALIB. FINT CVER MORIL PRIES
1				V		ļ 	CALIB. POLIT
46				2.5	_		*
47		0.500	0.022		0	0	STATIC H.T.
48		₩	NONE VOIR	₩	*	♥	
50			- VOID -	,		- Annual Control of the Control of t	
1		0.00		2,5	0		
51		0.050	0.022	2,3	ì	0	
<i>52</i> 53			NONE				ON CORR. PROCE
54				V			CAUS. PILNT
22		 		1.G			OVERHEAD PRIES
56		0.550		V			STATIC H.T.
57		0.050		1.0			SIFIE W.I.
28		0.500	V				
59		0.050	1				
60		0.500	None	129			ON-BOARD PROSE
61		SHARP	1,0%2	4.7			SURF PRESS.
6 Z		1	0.010	l I l			JUKI FRE32.
63	-	0.300	Vo	· V —	V	. ¥	Y
	₩ .						
		AND DESCRIPTION OF THE PARTY OF		kannecerezzania	COLLEGE STREET, S.	potentia (meneral section) de la constante de	The state of the second state of the second state of the second s

TABLE 2 Concluded

		**************************************		A _6			TYPE
GROJA	CONFIG	Nosć Pabjus	TRIP	Rexio	de 4	ø, d=g	DA TA
64	14/7	0,500	0,0065	4.7	0	0	STATIC H.T.
65	BICANIC	1	0,0000	ï	0	180	
66	D.COR.C	İ	NONE		0	0	
		0.050	MONE		0	180	
67		0.050			0		
68		0.050	G800157		1	0	
69		00	سول درو		0	180	
70		0,500	1	, , ,	O	0	
7/			į.	/D			
72		0,500	0.0048		O	0	4
73	j		0.0065		-1 → 14-		V
74						}	& SWEEP - H.T.
75					*	180	4
76				,	O	0->180	į
77							STATIC HIT.
73				<u> </u>	-1-14	3	d Sweep. H.T.
79					14	(.	Row - H.T.
80					0	ł	אר-איזואקצי
81		1			-1 ->14	180	d SwEEP - H.T.
82						0	SURF PRESS.
83]						4
84			1		}	·	ON BOARD ABSE
85					1 1		OVERHEAD PARE
86]					STATIC H.T. (HOT)
87							OVERHEND PROBE
ළු පු	4		•	4	.	4	CALIB. POLUT
89		******	<u> </u>	1.0			
90			_	ا ا	· —		CALIB. PONT
91	14/7	0.500	0.0065	4.7	7	0->180	۱۵.
					<u> </u>		<u> </u>

^{*} PITOT. PROBE NOT FUNCTIONING. ...

TABLE 3
SHIELDED THERMOCOUPLE PROBE CORRECTION CONSTANTS

		•	
PEC .	G	RED/(L/D)	U/UE
0	, 0	0	2.000
4	0.005	10.0	2.000
5	0.013	13.3	1.992
7	0.035	22.2	1.950
9	0.060	29.6	1.910
11	0.092	44.4	1.820
15	0.155	66.7	1.710
20	0.220	101.6	1.610
30	0.320	142.9	1.510
40	0.390	207.8	1.420
50	0.450	326.5	1.320
60	0.490	571.4	1.230
80	0.550	1142.9	1.160
100	0.590	2285.7	1.110
150	0.660	10000.0	1.050
250	0.730		
500	0.800	-	
1000	0.860		-
10000	0.870		

APPENDIX III

DATA REDUCTION

DATA REDUCTION NOMENCLATURE

- 1. Surface Pressure Data
- 2. Heat-Transfer Data
- 3. Probe Data
 - 3.1 Pitot Pressures

 - 3.2 Shielded Thermocouple Measurements3.3 Unshielded Thermocouple Measurements
- 4. Boundary-Layer Integral Values

DATA REDUCTION NOMENCLATURE

Shielded thermocouple probe entrance area, in. 2 AE Shielded thermocouple probe calibration constants ΑN Shielded thermocouple vent area, in. 2 AV Gardon gage calibration factor at 70°F, BTU/ft2 - sec - wv C1 Gardon gage calibration factor at operating temperature, BTU/ft2-C2 Specific heat of air, ft²/sec²-°R CP Boundary-layer thickness, in. DELU Boundary-layer displacement thickness, in. DELU* Boundary-layer momentum thickness, in. DELU2 Boundary-layer kinetic energy thickness, in. DELU3 Boundary-layer total enthalpy defect, in. DELU4 Shield thermocouple probe inside diameter, ft DS Unshielded thermocouple probe tip diameter, ft d Ε Gardon gage output, mv Shielded thermocouple probe calibration factor G Heat-transfer coefficient based on T_o , BTU ft^2 - $sec^{-o}R$ H(TO) Shape factor, DELU*/DELU2 HU1 HU2 Shape factor, DELU2/DELU3 Gardon gage temperature calibration factor, °R/mv K Shielded thermocouple calibration factor (see Eq. S-10) LAMBDA L/D Shielded thermocouple probe length-to-diameter ratio Shielded thermocouple probe entrance Mach number ME MSI Local Mach number at shielded temperature probe location MUE Flow viscosity at shielded thermocouple probe entrance, lbf sec \overline{FT}^{2}

MUI Local Mach number at unshielded thermocouple probe

location

MUUI Local flow viscosity at the unshielded thermocouple

probe location, lbf-sec/ft2

M Free-stream Mach number

PEC Peclet number

PO Tunnel stilling chamber pressure, psia

POE Local total pressure at the shielded thermocouple

probe location, psf

POUI Local total pressure at the unshielded thermocouple

probe location, psia

PPS Local pitot pressure at shielded thermcouple probe

location, psia

PPU Local pitot pressure at unshielded thermocouple

probe location, psia

PR Prandt1 number = 0.715

PW1 Wall pressure at pressure orifice No. 1, psia

 p_{∞} Free-stream static pressure, psia

q Heat-flux rate, BTU/ft2-sec

q_ Free-stream dynamic pressure, psia

R Universal gas constant for air, ft²/sec²-°R

R Probe shield recovery factor = 0.84

RB Body radius at probe station, in.

RED Local entrance Reynolds number for the shielded

thermocouple probe

REU Local Reynolds number at unshielded thermocouple

probe location

Re_∞, Re_∞/ft Free-stream Reynolds number, ft⁻¹

RHOUE Flow-field density at the boundary-layer edge, slugs/ft3

RHOUI Flow-field density at the unshielded thermocouple probe

location, slugs/ft3

ST(INF)	Stanton number
TCAL	Temperature parameter used to define boundary layer edge temperature (TED), °R
TE	Entrance static temperature for the shielded thermocouple probe, ${}^{\circ}R$
TEDGE	Gardon gage sensing disc edge temperature, °R
TEU	Boundary-layer edge total temperature defined from corrected unshielded thermocouple probe data, °R
то	Tunnel stilling chamber total temperature, °R
TOSI	Local corrected total temperature from shielded thermocouple probe, ${}^{\circ}R$
TOUM	Measured total temperature from the unshielded thermocouple probe, ${}^{\circ}R$
TOSM	Measured total temperature from the shielded thermocouple probe, °R
TSI	Local static temperature at the shielded thermocouple probe location, ${}^{\circ}R$
TUI	Local static temperature at the unshielded thermocouple probe location, ${}^{\circ}\boldsymbol{R}$
TW	Model wall temperature, R
ΔΤ	Temperature difference between the center and edge of a Gardon gage sensing disc, ${}^{\circ}R$
U/UE	Velocity ratio at the entrance to shielded thermocouple probe, ft/sec
UUE	Boundary-layer edge velocity, ft/sec
UUI	Local velocity at unshielded thermocouple probe location, ft/sec
v _∞	Free-stream velocity, ft/sec
X, XSURF	Model station and surface length, respectively, in.
ZS	Height of shielded thermocouple probe above the model surface, in.
zu	Height of unshielded thermocouple probe above the model surface, in.

- γ Ratio of specific heats = 1.4
- $\eta_{\text{\tiny{I}}}$, ETA Unshielded thermocouple probe calibration function

DATA REDUCTION

1. Surface Pressure Data

All surface pressure data were reduced using standard facility data reduction procedures. Linear transducer calibration factors were obtained prior to each operational period so a simple calculation was necessary:

PRESSURE = SCALE FACTOR (READING-ZERO) + REFERENCE

2. Heat-Transfer Data

Thermopile-type Gardon heat gages described in Ref. 1 were used to obtain heat-transfer distribution. The heat flux to the gage is computed as follows:

$$\dot{q} = C_2E$$
where C_2 = gage calibration factor, $\frac{BTU}{ft^2-sec-mv}$

$$E = gage output, mv$$
 (1)

Calibration factors include compensation for variation in wall temperature:

$$C_2 = C_1 \left[4.72878 - (2.83765 \times 10^{-2}) \text{TEDGE} \right.$$

$$+ . (7.82707 \times 10^{-5}) (\text{TEDGE})^2$$

$$- (9.44869 \times 10^{-8}) (\text{TEDGE})^3$$

$$+ (4.30151 \times 10^{-11}) (\text{TEDGE})^4 \right]$$
(2)

where C₁ = gage calibration factor at 530°R

TEDGE = gage sensing disc edge temperatuare, °R

The temperature difference between the center and the edge of the sensing disc was calculated by:

$$\Delta T = K \cdot E \tag{3}$$

where:

K = gage temperature calibration factor, *R/mv

The gage edge temperature was measured directly and combined with ΔT to obtain an effective wall temperature:

$$T_{xy} = TEDGE + 0.75 \Delta T \tag{4}$$

This method of obtaining an effective wall temperature is discussed in detail in Ref. 2.

Heat-transfer coefficient was then calculated as:

$$H(TO) = \frac{\dot{q}}{TO - TW} \tag{5}$$

Further reduction to Stanton number was achieved using the following:

ST(INF) =
$$\frac{H(TO)}{\rho_{\infty}V_{\infty} [0.2235 + (1.35 \times 10^{-5})(TO+TW)]}$$
(6)

Probe Data

Mean-flow boundary-layer data are presented as measured pressure and temperature values. Final reduced boundary-layer parameters are calculated only for those cases which satisfy the requirements for defining a boundary-layer edge. True probe heights above the cone surface were determined in the radial direction. The curvature of the model surface at the survey station, the lateral spacing of the probes in the rake, and the relative vertical spacing of the measurement probes were taken into account.

3.1 Pitot Pressures

Pitot pressure data were reduced following the procedures described in Section 1 which apply to surface pressure.

3.2 Shielded Thermocouple Measurements

The following calculation procedure was applied to obtain local total temperature from shielded thermocouple probe data following Varner's approach (Ref. 3) and is listed below and shown in a following block diagram.

- S-I Interpolate the local pitot pressure, PPO, from ZP to a value at the ZS locations. AT ZP = 0, set PPO = PWl. Designate interpolated values of PPO as PPS.
- S-2 Compute the local Mach number, MSI, as follows:

a. If PPS/PW1
$$\leq \left[\left((\gamma+1)/2 \right)^{\frac{\gamma}{\gamma-1}} \right]$$

b. Then MSI = $\left\{ \left[\left(PPS/PW1 \right)^{\frac{\gamma-1}{\gamma}} - 1 \right] \left[2/(\gamma-1) \right] \right\}^{\frac{1}{2}}$

Otherwise, iterate the following to obtain MSI:

PPS/PW1 =
$$\left[(\gamma+1) (MSI)^2 / 2 \right]^{\frac{\gamma}{\gamma-1}} \left[(\gamma+1) / (2\gamma (MSI)^2 - (\gamma-1)) \right]^{\frac{1}{\gamma-1}}$$

$$S-3$$
 $ME = 0.176$

$$S-4 TSI = \frac{TOSI}{1 + \frac{\gamma - 1}{2} (MSI)^2}$$

S-5 TE =
$$\frac{TOSI}{1 + \frac{\gamma - 1}{2} \text{ (ME)}^2}$$

For First Iteration, Set TOSI = TOSM

S-6 MUE =
$$\frac{0.227(10^{-7})(\text{TE})^{3/2}}{199 + \text{TE}}$$

S-7 If MSI < 1
POE =
$$\left[PW1 \left(1 + \frac{\gamma - 1}{2} \left(MSI\right)^{2}\right)^{\frac{\gamma}{\gamma - 1}}\right] 144, \text{ psf}$$

If MSI ≥ 1

$$POE = \left\{ PWI \left[\frac{(\gamma+1) (MSI)^2}{2} \right]^{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma+1}{2\gamma (MSI)^2 - (\gamma-1)} \right]^{\frac{1}{\gamma-1}} \right\} 144, \text{ psf}$$

$$S-8 \quad RED = \left[\left(\frac{2}{\gamma+1} \right)^{\frac{\gamma}{\gamma-1}} \left(\frac{2\gamma}{\gamma+1} \right)^{1/2} \frac{1}{R^{1/2}} \right] \left(\frac{AV}{AE} \right) \left(\frac{POE}{MUE} \right) \left(\frac{DS}{(TOSI)^{1/2}} \right)$$

$$S-9$$
 PEC = (RED) (PR/2)

Note: Set PR = 0.715

S-10 LAMBDA =
$$\Gamma = \left[\left(\frac{\text{TE}}{\text{TSI}} \right) - \left(1 + \frac{\gamma - 1}{2} \, \overline{R} \, (\text{MSI})^2 \right) \right] \frac{\text{TSI}}{\text{TOSI}}$$
S-11 TOSI = TOSM $\left\{ 1 + (G-1)\Gamma + \frac{\gamma}{2} \, \frac{R}{\text{CP}} \, \frac{\text{TE}}{\text{TOSI}} \, (\text{ME})^2 \left(\left(\frac{U}{\text{UE}} \right)^2 - 1 \right) \right\}^{-1}$

The values of G and U/UE are listed in Table 3.

INPUT DATA:

TOSM VS ZS POE VS ZS

MSI VS ZS

At each ZS value, correct probe data as follows:

- (a) Assume TOSI = TOSM compute Γ (Eq. S-10), RED (Eq. S-8), PEC (Eq. S-9).
- (b) Compute G and U/UE by interpolating from Table 3
- (c) Calculate the corrected temp., TOSI, from Eq. S-11

ON-BOARD SHIELDED THERMOCOUPLE PROBE CALCULATION BLOCK DIAGRAM

(d) Using corrected value of TOSI, Repeat steps (a) through (c) until:

$$\frac{\left|\frac{\text{TOSM}}{\text{TOSI}}\right|_{j+1} - \left|\frac{\text{TOSM}}{\text{TOSI}}\right|_{j}}{\left(\frac{\text{TOSM}}{\text{TOSI}}\right)_{j}} \leq 0.0005$$

CONSTANT INPUTS:

 γ = 1.4 R = Gas constant = 1717, ft²/sec²- $^{\circ}$ R

 $CP = 6006, ft^2/sec^2-R$

 \vec{R} = Probe shield recovery factor = 0.84

AV/AE = Vent area to entrance area ratio = 0.298

DS = Tube entrance inside diam = 0.001667 ft

L/D = Tube entrance length/diam ratio = 2.0

3.3 Unshielded Thermocouple Measurements

This section contains the procedure for obtaining local total temperature from the unshielded thermocouple probe output. The nomenclature used herein applies to the on-board probe although the identical procedure was used for the overhead probe. The procedure, shown in a block diagram (follows listing of equations) is as follows:

- U-1 Interpolate the local pitot pressure, PPO, from ZP to a value at the ZU locations. Designate the interpolated values as PPU.
- U-2 Compute the local Mach number, MUI, as follows:

a. If
$$PPU/PW1 \le \left((\gamma+1)/2 \right)^{\frac{\gamma}{\gamma-1}}$$

b. Then $MUI = \left\{ \left[PPU/PW1 \right]^{\frac{\gamma-1}{\gamma}} -1 \right] \left[2/(\gamma-1) \right]^{1/2}$

Otherwise, iterate the following to obtain MUI:

c. PPU/PW1 =
$$\left[(\gamma+1) (MUI)^2 / 2 \right]^{\frac{\gamma}{\gamma-1}} \left[(\gamma+1) / 2\gamma (MUI)^2 - (\gamma-1) \right]^{\frac{1}{\gamma-1}}$$

U-3 If MUI ≤ 1 POUI = PPU .

If MUI > 1

U-4 RHOUI =
$$\left(\frac{144 \text{ PW1}}{\text{R TOUI}}\right) \left[1 + \frac{\text{Y}-1}{2} \left(\text{MUI}\right)^2\right]$$

U-5 TUI = TOUI $\left(1 + \frac{\left(\text{MUI}\right)^2}{5}\right)^{-1}$

U-6 UUI = MUI $\left[\text{YR}(\text{TUI})\right]^{1/2}$

U-7 MUUI = $\frac{0.227(10^{-7})(\text{TOUI})^{3/2}}{199 + \text{TOUI}}$

U-8 REU = $\frac{(\text{RHOUI})(\text{UUI})(\text{d})}{\text{MUUI}}$

U-8 REU =
$$\frac{(RHOUI)(UUI)(d)}{MUUI}$$

$$U-9$$
 $\eta = ETA = \sum_{5=0}^{4} AN \left(\sqrt{REU}\right)^{N}$

Note that AN coefficients are unique for each probe

U-10 TOUI=TOUM
$$\frac{1 + \frac{\gamma - 1}{2} (MUI)^2}{1 + \frac{\gamma - 1}{2} \eta (MUI)^2}$$

INPUT DATA:

VS ZU TOUM VS ZU POUI MUI VS ZU

At each ZU value, the data was corrected as follows:

- (a) Assume TOUI = TOUM, compute REU from Eq. U-8
- (b) Compute n from Eq. U-9
- (c) Compute corrected temperature, TOUI, from Eq. U-10
- (d) Using the corrected value of TOUI, repeat steps (a) through (c) until

$$\frac{\left(\frac{\text{TOUM}}{\text{TOUI}}\right)_{j+1} - \left(\frac{\text{TOUM}}{\text{TOUI}}\right)_{j}}{\left(\frac{\text{TOUM}}{\text{TOUI}}\right)_{j}} \leq 0.0005$$

INPUT CONSTANTS:

- Probe tip diameter = 0.005 in. = 0.0004167 ft. AO,A1,A2 Calibration constants (see Table 4) γ = 1.4, ratio of specific heats

ON-BOARD UNSHIELDED THERMOCOUPLE CALCULATION BLOCK DIAGRAM

4. Boundary-Layer Integral Values

The procedures described in this section were used to evaluate boundary-layer parameters from integral relationships. Establishment of the boundary-layer edge location and flow conditions is required to establish the upper limit for the integrals. Note the precaution listed with the calculations.

1. INPUT DATA:

TOUI vs ZU

- 2. where TOUI is corrected unshielded thermocouple value.
- 3. Moving from the point ZU = 0.7 towards ZU = 0, curve fit the data set TOUI vs ZU. Sets of five points should be fitted with a second order (parabolic) fit.
- 4. Evaluate the curve fit segments and locate the value of ZU at which the value of

 $TOUI = TCAL (1 \pm 0.0025).$

NOTE: For cases where TOUI = 0.9975 TCAL, print message:

"BOUNDARY LAYER EDGE CONDITIONS OF TOTAL TEMPERATURE OVERSHOOT NOT MET. INTEGRAL PARAMETERS SHOULD BE USED WITH CAUTION."

5. When the point in Item 4 has been located evaluate both TOUI and ZU and designate as follows:

DELU = ZU

TEU = TOUI

6. INPUT DATA:

RHOUI vs ZU (boundary-layer edge)

UUI vs ZU

- 7. Using the same ZU values used in Item 4, fit the data from Item 6 with a second order (parabolic) fit.
- 8. Evaluate the curve fits in Item 7 at DELU = ZU. Designate the values of RHOUI and UUI as follows:

9. Determine displacement thickness by evaluating the following:

$$DELU* + (DELU*)^{2} \frac{\cos \theta}{2 (RB)} = \int_{ZU=0}^{DELU} \left[1 - \frac{(RHOUI)(UUI)}{(RHOUE)(UUE)} \right] \left[1 + \frac{(ZU)(\cos \theta)}{RB} \right] dZU$$

where $\theta = body$ surface angle at the survey station, deg

RB = body radius at the survey station, in.

Use the quadratic equation:

$$DELU* = \frac{\sqrt{b^2 - 4ac} - b}{2a}$$

where
$$a = \frac{\cos \theta}{2(RB)}$$

b = 1

$$c = -\int_{ZU=0}^{DELU} \left[1 - \frac{(RHOUI)(UUI)}{(RHOUE)(UUE)}\right] \left[1 + \frac{(ZU)(\cos \theta)}{RB}\right] dZU$$

10. Determine momentum thickness by evaluating the following:

DELU2 + (DELU2)²
$$\frac{\cos \theta}{2RB} = \int_{ZU=0}^{DELU} \frac{(RHOUI)(UUI)}{(RHOUE)(UUE)} \left[1 - \frac{UUI}{UUE}\right] \left(1 + \frac{(ZU)(\cos \theta)}{RB}\right) dZU$$

Use the quadratic equation:

DELU2
$$\sqrt{b^2-4ac-b}$$

where $a = \frac{\cos \theta}{2RB}$

$$b = 1$$

$$c = -\int_{ZU=0}^{DELU} \frac{(RHOUI)(UUI)}{(RHOUE)(UUE)} \left[1 - \frac{UUI}{UUE}\right] \left[1 + \frac{(ZU)(\cos \theta)}{RB}\right] dZU$$

11. Determine the kinetic energy defect from the following:

DELU3 + (DELU3)³
$$\frac{\cos \theta}{2RB} = \int_{ZU=0}^{DELU} \frac{(RHOUI)(UUI)}{(RHOUE)(UUE)} \left[1 - \left(\frac{UUI}{UUE}\right)^{2}\right] \left(1 + \frac{(ZU)(\cos \theta)}{RB}\right) dZU$$

Use the quadratic equation:

DELU3 =
$$\sqrt{b^2-4ac-b}$$

where

$$a = \frac{\cos \theta}{2RB}$$

$$c = -\int_{ZU=0}^{DELU} \frac{(RHOUI) (UUI)}{(RHOUE) (UUE)} \left[1 - \left(\frac{UUI}{UUE} \right)^2 \right] \left(1 + \frac{(ZU) (\cos \theta)}{RB} \right) dZU$$

12. Determine the total enthalpy defect:

DELU4 + (DELU4)²
$$\frac{\cos \theta}{2RB} = \int_{ZU=0}^{DELU} \frac{(RHOUI)(UUI)}{(RHOUE)(UUE)} \left[1 - \frac{TOUI}{TEU} \right] \left(1 + \frac{(ZU)(\cos \theta)}{RB} \right) dZU$$

Use the guadratic equation:

$$DELU4 = \sqrt{b^2 - 4ac} - b$$
2a

where

$$a = \frac{\cos \theta}{2RB}$$

$$b = 1$$

$$c = -\int_{ZU=0}^{DELU} \frac{(RHOUI)(UUI)}{(RHOUE)(UUE)} \left[1 - \frac{TOUI}{TEU} \right] \left(1 + \frac{(ZU)(\cos \theta)}{RB} \right) dZU$$

13. Calculate shape factor:

$$HU1 = \frac{DELU*}{DELU2}$$

$$HU2 = \frac{DELU2}{DELU3}$$

APPENDIX LV

SAMPLE DATA NOMENCLATURE AND FORMATS

Nomenclature: Surface Pressure Data
 Sample Data: Surface Pressure Data
 Nomenclature: Heat-Transfer Data
 Sample Data: Heat-Transfer Data

Nomenclature: On-Board Probe Flow-Field Data
 Sample Data: On-Board Probe Flow-Field Data
 Nomenclature: Overhead Probe Flow-Field Data
 Sample Data: Overhead Probe Flow-Field Data

TV-1. NOMENCLATURE: SURFACE PRESSURE DATA

ALPHA MODEL Model angle of attack, deg

ALPHA PB Support sting prebend angle, deg

CONFIGURATION Model configuration (see Fig. 2)

DATA TYPE Type of data tabulated

DEW POINT Free-stream flow frost point, °F

GROUP Data group number

L Sharp 7-deg cone axial length, 40 in.

M(INF) Free-stream Mach number

MU(INF) Free-stream viscosity, lbf-sec/ft²

NOSE RADIUS Model nose tip radius, in.

ORIFICE Model pressure ofifice identification

(see Table 1)

PHI Pressure orifice circumferential location

(see Table 1), deg

P(INF) Free-stream static pressure, psia

POP Free-stream normal shock pressure, psia

PO Tunnel stilling chamber pressure, psia

PW Model wall pressure, psia

Q(INF) Free-stream dynamic pressure, psia

RE(INF) Free-stream Reynolds number, per foot

RHO(INF) Free-stream density, slugs/ft³

ROLL Model roll angle, deg

T(INF) Free-stream static temperature, °R

To Tunnel stilling chamber temperature, °R

TRIP Boundary-layer trip configuration

U(INF) Free-stream velocity, ft/sec

X Model station, in.

XSURF Orifice Surface location, in.

ARG, INC - AEDC DIVISION A SYERORUP CORPORATION COMPANT YOU KARMAN GAS DYNAMICS FACILITY ARNOLD AIR FORCE STATION, TENN

PROJECT NO V418-W6A SAMSO/DDTR HYPERSONIC TURBULENT BOUNDARY LAYER INVESTIGATION PHASE I

DATE COMPUTED 26-JUN-78
DATE RECORDED 30-JAN-78
TIME RECORDED 211 3:55

IV-2

Sample

Data

Surface

Pressure

Data

GROUP 3: M(INF)= 5; RE(INF)= 6	_	ER FT	ALPHA MODEL ALPHA PB ROLL	n -0.35 = 13.00 = -0.02	DEG.	PT==22.00 (DEG F)	CONFIGURATION 7-DEG CONE	NOST RADIUS,IN SHARP	TRIP NONE
DATA TYPE BURFACE PI	RES								
ORIFICE	X	. X/F	XSURF	PHI	PA	PW/PIN F			,
- 	(IN)		(IN)	(DEG)	(P51A)	2.10			
17	8.090	0.2023	9,150	0.	0.353 0.343	. 2.04			
16	9.082	0,2271	9,150	0.	0.342	2,03			•
15	11.067	0.2767	11.150	٥.	0,336	2.01			į
14	13.052	0.3263	13.150	0.	0,342	2,04			,
13	15.037	0,3759	15.150	0.	0.350	2,09			
12	17.023	0.4256	17.150	0.	0,331	1,98			
11	20,000	0.5000	20,150	0.	0.336	2.02	•		
10	22.075	0,5519	22.300	٥.	0,330	2,02			•
y	24.060	0.6015	24,300	٥.	0.336	2,01			
	26,045	0,6511	26.300	٥.	0,346	2.07			i
7	28.030	0.7008	28.300	Q.	0,341	2.04			
<u> </u>	30.015	0.7504	30.300	٥.	0.342	2,04			
•	32,000	0.8000	32.300	o.	0.347	2.07			
•	33,985	0.8496	34,300	٥.		2.04			
3	35,970	0,8993	36.300	o.	0.341 0.345	2,06		_	
- 3	38.015	0.9504	39,300	0.	0.345	2,06			
	39,504	0.9876	39.800	0.	0.323	1,92			
24	11.067	0,2767	11.150	-90.	0.322	1,92			
23 22	30.015	0.7504	30,300	-90.		1,92			
22	39.504	0.9876	39.800	-90.	0,323 0,324	1.93			
27	11.067	0.2767	11.150	90.	0.323	1,92			
26	30.015	0.7504	30.300	90.		1.96			
25	39,504	0,9876	39.600	90.	0.330	1.93			
30	11,067	0.2767	11.150	100.	0.323	1.81			
29	30.015	0.7504	30,300	100.	0.304				
28	39,504	0.9876	39,800	100.	0.315	1.60 2.06			
33 31	30,511	0,9626	30,800	0.	0.345				
31 32		base Base	Base Base	0. 180,	0,365 0,002	2.20 0.49			

PO = 250.73 PSIA U(INF)= 2982.2 FT/SEC TO = 844.7 DEGR Q(INF)= 4.143 PSIA P(INF)= 0.1672 PSIA T(INF)= 104.5 DEGR RE(INF)= 0.476E+07 PER FT POP = 7.70 PSIA NU(INF)= 0.841E-07 LBF-SEC/FT2 RHO(INF)= 0.134E-03 SLUGS/FT3

IV-3. NOMENCLATURE: HEAT-TRANSFER DATA

ALPHA MODEL Model angle of attack, deg

ALPHA PREBND Support sting prebend angle, deg

ALPHA SECTOR Tunnel sector pitch angle, deg

CONFIGURATION Model configuration (see Fig. 2)

DATA TYPE Type of data tabulated

DEW PT Free-stream flow frost point, °F

GAGE NO. Gardon gage identification number (see Table 1)

GROUP Data group number

H(TO) Heat-transfer coefficient, BTU/FT²-sec-°R

L Sharp 7-deg cone axial length, 40 in.

M(INF) Free-stream Mach number

MODE Static or dynamic data mode identification

MU(INF) Free-stream viscosity, 1bf-sec/ft²

NOSE RADIUS Model nose tip radius, in.

P(INF) Free-stream static pressure, psia

PO Tunnel stilling chamber pressure, psia

QDOT Heat-flux rate, BTU/FT²-sec

Q(INF) Free-stream dynamic pressure, psia

RE(INF) Free-stream Reynolds number, per ft

RHO(INF) Free-stream density, 1bm/ft³

ROLL Model roll angle, deg

ST(INF) Stanton number

ST(INF)(CORRECTED) Stanton number corrected (See Section 4.5)

TEDGE Gardon gage sensing disc edge temperature, °R

T(INF) Free-stream static temperature, aR

To Tunnel stilling chamber temperature, °R

Boundary-layer trip configuration - sphere and grit sizes stated in inches TRIP

Model wall temperature, °R TW

Free-stream velocity, ft/sec V(INF)

X Heat-gage model station, in.

Heat-gage surface location (see Table 1), in. **XSURF**

ARGITC.
AEDC DIVISION
A SVEMBRUP CURPOPATION COMPANY
YOR KAPMAN GAS DYNAMICS FACILITY
50 INCH HYPERSONIC TOWNEL B
ARNOLD AIR FORCE STATION, TN.
DATE 01/31/78 PROJECT NO. V418-W6A

SAMSO/DOTA HYPERSONIC TURBULENT BOUNDARY LAYER INVESTIGATION PHASE I GARDON GAGES

DATE	TIME	TIME REDUCED	TIME FROM CL
01/23/78	21:15:22:369	21:15:42:372	1.04

	-	TYPE TRANS	FER	CONFIGURAT	HOI	NOSE RADIL	JS, IN.	TR	IP MO	DE		1-4
				7-DEG CONE	:	SHARP		NONE	81	ATIC		•
53		G18 G17 G17 G15 G17 G17 G17 G17 G17 G17 G17 G17 G17 G17	X .) 9.090 9.067 13.052 15.037 17.023 18.008 20.093 22.067 24.060 25.052 26.045 27.000 33.985 35.970 38.015	X/L -2023 -2271 -3263 -3759 -4256 -4504 -4752 -5048 -5519 -6015 -6015 -6000 -8496 -8993 -9504	X SURFACE 8,150 9,150 13,150 15,150 17,150 19,150 20,150 21,150 22,240 23,240 23,240 24,240 26,240 28,240 34,300 36,300 36,300	ODOT (BTU/FT2-SEC) 0.3636 0.9583 0.7589 0.9560 0.8594 0.7914 0.6903 0.7865 0.9432 0.9416 0.9416 0.8512 0.97560 0.7770 0.7700 0.7710 0.7903 0.7618 0.8456	TEDGE (DEG.R) 529.7 532.1 532.1 533.5 532.8 533.1 534.2 533.3 534.4 534.4 534.4 534.6 534.6 534.6 536.8	TW (DEG. R) 531.4 531.6 531.6 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3	H(TO) (BTU/FT2-SEC-DEGR) 0.102E-02 0.115E-02 0.315E-02 0.244E-02 0.278E-02 0.255E-02 0.255E-02 0.255E-02 0.305E-02 0.305E-02 0.276E-02 0.276E-02 0.276E-02 0.276E-02 0.276E-02 0.255E-02 0.255E-02 0.268E-02	ST(INF) 0.3262-03 0.360E-03 0.980E-03 0.991E-03 0.815E-03 0.711E-03 0.814E-03 0.974E-03 0.974E-03 0.975E-03 0.975E-03 0.780E-03 0.800E-03 0.814E-03	5T(INF) (CORRECTED) 0.306E-03 0.353E-03 0.956E-03 0.958E-03 0.958E-03 0.958E-03 0.829E-03 0.829E-03 0.820E-03 0.903E-03 0.903E-03 0.713E-03 0.807E-03	Sample Data: Heat-Transfer Dat
		38 37 36 35 34 33	24.060 25.057 26.045 2P.030 32.000 33.965 35.970	.6015 .6263 .6511 .7008 .9000 .8496	24,240 25,240 26,240 28,240 32,240 34,300 36,300	0.8512 0.8922 0.7296 0.7560 0.7770 0.7903 0.7618	533.9 534.2 534.4 533.3 532.6 532.6 528.8	538.3 530.8 530.3 537.3 536.7 536.7 532.8	0.276E-02 0.290E-02 0.237E-02 0.244E-02 0.251E-02 0.255E-02 0.243E-02		0.881E-03 0.925E-03 0.755E-03 0.780E-03 0.800E-03 0.814E-03 0.775E-03	0.881E-03

M(TNF)= 5.95
POLL= -0.02 DEG.
ALPHA SECTUP= -13.00 DEG.
ALPHA PRESND= 13.00 DEG.
ALPHA MODEL = -0.06 DEG.

PO= 252.36 PSIA TO= 846.7 DEG.R P(INF)= .1683 PSIA RE(INF)= 4.770R+06 PER FT. MU(INF)= 8.432R-08LBF-8EC/FT2 RHO(INF)= 4.334E-03 LBM/FT3 V(INF)= 2965.7 FT/SEC G(INF)= 4.170 PSIA T(INF)= 104.8 DEG,R DEW PT= -20.DEG,F

GROUP 2

IV-5. NOMENCLATURE: ON-BOARD PROBE FLOW-FIELD DATA

PRINTOUT PAGE ONE

ALPHA MODEL Model angle of attack, deg

ALPHA PB Support sting prebend angle, deg

CONFIGURATION Model configuration (see Fig. 2)

DATA TYPE Type of data tabulated

DEW PT Free-stream flow frost point, °F

GROUP Data group number

LOOP Data point identification number

M(INF) Free-stream Mach number

MU(INF) Free-stream viscosity, 1bf-sec/ft²

NOSE RADIUS Model nose tip radius, in.

P(INF), PINF Free-stream static pressure, psia

PO Tunnel stilling chamber pressure, psia

POP Free-stream total pressure downstream

of a normal shock, psia

PPO On-board probe pitot pressure, psia

PROBE STATION Probe station location measured along model

surface from model nose tip, in.

PWX Model wall pressure at the survey station (X), psia

Q(INF) Free-stream dynamic pressure, psia

RE(INF) Free-stream Reynolds number, per foot

RHO(INF) Free-stream density, slugs/ft³

ROLL Model roll angle, deg

T(INF) Free-stream static temperature, °R

TGX Surface temperature at model station (X), °R

To Tunnel stilling chamber temperature, °R

TOSM Shielded thermocouple probe total temperature

measurement, °R

TOUI, TOSI Corrected total temperature measurement of

the unshielded and shielded probes respectively,

٥R

TOUM Unshielded thermocouple probe total temperature

measurement, °R

TRIP Boundary-layer trip configuration - sphere and

grit dimensions stated in inches

TW1 Model wall temperature at probe survey

station, °R

U(INF) Free-stream velocity, ft/sec

UUI Local velocity, ft/sec

ZP Pitot probe height above model surface, in.

ZS Height of shielded thermocouple probe above

model surface, in.

ZU Height of unshielded thermocouple probe above

model surface, in.

PRINTOUT PAGE TWO

All heading information is identical to page one.

TG-1 - TG-19 Gardon gage case temperature, °R

PRINTOUT PAGE THREE (UNSHIELDED TEMPERATURE PROBE CORRECTIONS)

All heading information is identical to page one.

AO - A4 Calibration constants

Effective probe recovery factor

ETA

LOOP Data point identification number

MUI Local Mach number at survey point

PO Tunnel stilling chamber pressure, psia

PPU Local pitot pressure interpolated from

REU Local Reynolds number at survey point

To Tunnel stilling chamber temperature, "R

TOUI Local corrected total temperature at survey

point, °R

TOUM Unshielded thermocouple probe reading, °R

ZU Height of unshielded thermocouple probe above

model surface, in.

PRINTOUT PAGE FOUR (BOUNDARY LAYER VALUES)

DELU Boundary-layer thickness, in.

DELU* Displacement thickness, in.

DELU2 Momentum thickness, in.

DELU3 Kinetic energy defect, in.

DELU4 Total enthalpy defect, in.

HU1 Shape factor, DELU*/DELU2

HU2 Shape factor, DELU/DELU3

RHOUE Flow density at boundary-layer edge, slugs/ft³

TEU Total temperature at boundary-layer edge, °R

UUE Flow velocity at boundary-layer edge, ft/sec

DATE COMPUTED 8-Jul

A SVERDRUP CORPORATION COMPANY.

ARNOLP IR FORCE STATIGN, TENN

PROJECT NO (3-H6A

SAMSO/DOTE HYPERSONIC TURBULENT SOUNDARY LAYER INVESTIGATION PHASE I

GROUP 42	ALPHA MODE	L = 0,06 DEG.	DEW PT=-22.00	CONFIGURATION	NOSE RADIUS, IN	TRIP
M(INF)≠ 5,95	ALPHA PB	= 13.00 DEG.	(DEG F)	7-DEG CONE	.5000	.0100 GRIT
pritoria 4.7348484 pro pa	BOL 1	0 04 BCC			•	

DATA TYPE ON-BOARD PROBE

PROBE STATION = 36.45 IN.

								•							
FOOS	P0	TO	FINF	PDP	ZP	PPO	PPO/POP	PW1	TW1	7.S	TOSM	TOSM/TO	20	TOUM	TOUK/TO
	(PSTA)	(DEGR)'	(PSIA)	(PSIA)	(IN)	(PSIA)		(PSIA)		(IN)	(DEGR)		(1H)	(DEGP)	
1	250,23	847.7	0.167	7.687	0.0050	0.587	0.075	0.306	704.	0.0142	760.	0,895	0.0048	731.	0.061
2	249,83	849,7	0.167	7.670	0.0160	0.830	0.108	0.399	708.	0.0252	767.	0,904	0.0158	743	1,875
3	250.33	949.7	0,167	7,695	0.0245	1.510	0.196	0.412	713.	0.0337	770.	0.907	0.0243	753	1,087
4	252,24	845.7	0,168	7,744	0,0345	1.936	0.252	0.400	716.	0.0437	769.	0,906	0.0343	757	₩ .892 895
5	251.94	840.7	0.169 .	7.735	0.0450	2.148	0.279	0.396	718.	0.0542	770.	0,907	0.0448	760	
6	251,24	849.7	0.168	7.713	0,0545	2.301	0,299	0.373	722.	0.0637	774.	0.912	0.0543	762	198
7	251.34	950.7	0.169	7,716	0,0640	2,455	0.319	0,361	724.	0.0732	777.	0.915	0.0633	764	טטעיין
	250.53	847.7	0.167	7.692	0.0735	2.608	0,339	0.351	725.	0.0827	779,	0.918	0.0733	766	903
- 9	250,23	647.7	0.167	7,682	0.0850	2.776	0.361	0.343	726.	0.0942	782.	0,921	0.0148	768	905 906 907
10	249.93	850.7	0.167	7,673	0,0965	2,930	0.381	0,336	727.	0,1057	784.	0.924	0,0963	769	906
11	249.93	650.7	0,167	7,670	0.1045	3.098	0,403	0.332	728.	0,1137	786.	0,926	0.1043	770	6 907
12	249.62	850.7	0.166	7,664	0,1270	3,391	0.441	0.327	729.	0.1362	790.	0.931	0.1763	773	911
13	249.42		. 0.166	7.656	0.1480	3,824	0.497	0.325	730.	0.1572.	793	0.934	0.1473	775	O 913
14	249.93	846.7	0.167	7.673	0.1655	4,136	0.537	0,324	731.	0,1747	794.	0.936	0,1053	777	D .915
15	249.93	846.7	0,167	7.673	0.1850	4,614	0,599	0.325	732.	0.1942	796.	0.938	0,1348	779	p .918 c+920
16	250.53	849.7	0.167	7,692	0.2045	5,056	0,657	0,325	733.	0.2137	798.	0.940	0.2043	781	- in
17	250.53	846.7	0.167	7.692	0.7245	5,527	0.718	0,325	734.	0.2336	B01.	0.944	0,2243	762	40 10 7 4 1
18	250.33	846.7	0.167	7.695	0.2450	6.055	0.787	0,326	734.	0.2541	803.	0.946	0.2448	793	.923
19	251.03	849.7	0.167	7.707	0.2635	6.579	0.855	0.326	735.	0,2726	B06.	0.950	0.2633	764.	974
20	250.63	846.7	0.167	7,695	0,2970	7.253	0.942	0.327	736.	0.2961	809.		0.2868	784	g ,924
21	250.83	846.7	0.167	7.701	0,3065	7.891	1,024	0.327	737,	0,3156	812.	0.957	0,3063	783.	On-Boar
22	.250.93	846.7	0.167	7.704	0.3250	A.482	1.102	0.327	737.	0.3341	816.	0,961	0.3247	763.	923
23	251,54	846.7	0,168	7,723	0,3455		1.191	0.327	738.	0.3546	819.	0.965	0.3452	762.	0 931
24	251.34	849.7	0.168	7.716	0.3650	9,751	1.267	0,328	738.	0.3741	821,	0,967	0,3647	780.	H 1919
25	252.24	849.7	0.168	7,744	0.3855	10.299	1.338	0,329	739.	0.3946	823.	0,970	0,3052	778.	
26 27	252.14 252.14	849.7 949.7	0,168 0,168	7.741 7.741	0.4050 0.4240	10.688 10.978	1.3R9 1.427	0,329	740.	0.4141	824.	0.971	0.4047	776. 775.	914 913
	251.44							0.328	740.	0.4331	824.	0.971	0.4237		H '813
28		849.7	0.168	7,719	0.4445	11.188	1.454	0.328	740.	0,4536	825.	0.972	0,4442	774.	0 .912
29	251.54	846.7	0.168	7,723	0.4660	11.336	1.473	0.327	740.	0.4751	825.	0.972	0.4657	774.	
30	251.44	846.7	0.168	7.719	0.4845	11.427	1,485	0,327	741.	0.4936	825.	0.972	0.4842	773.	,
31	250.73	849.7	0.167	7,698	0.5055	11.647	1.513	0.327	741.	0.5146	825.	0.972	0.5052	773.	118, 121
32	250,83	846.7	0.167	7.701	0.6040	11,691	1,519	0.326	742.	d.6131	825.	0.972	0,6037	773.	10w
		_					•						_		
	_														L
	-							•							i e
															Ò
					-	•									14
										•					
															ㅂ
															2
															Data
															-

LOOP	PO (PSIA)	TO {DEGR}!	PINF (PSIA)	POP (PSIA)	ZP (IN)	PPO (PSIA)	PPD/PQP	PW1 (FSIA)	TW1 (DEGP)	Z5 (IN)	TOSM	TOSM/TO	20	TOUR	TOUH/TO
33	250.23	847.7	0.167	7,682	0.7040					_	(CEGA)		(IN)	(DEGP)	
		-	-			11.754	1.527	0.326	742.	0.7130	825.	0.972	0.7037	773.	0.911
34	250.83	846.7	0,167	7.701	0.B055	11.780	1.531	0.325	742.	0.8145	825.	0.972	0.4052	772.	0.910
35	250.33	846.7	0.167	7.585	0.9050	11.783	1.531	0.326	743.	0.9140	_				
36	250.33	649.7	0.167	_ 🕶 :	_	- -		-		_	825.	0.972	0.9047	773.	0,911
				7,685	1,0060	11.708	1,532	0.326	743.	1.0150	825.	0.972	1.0057	772.	0.910
37	249.73	849.7	0.167	7.667	1,5055	11.737	1.525	0.325	743.	1.5144	ę 25 Ī	0.972	1.5051	772.	0.910
3 D	249.83	849.7	0.167	7.670	2.0035	11.440	1.480	0.325	744	-				-	
39	249.22	847.7	0_166	-	•		-			2,0124	824.	0.971	2.0031	772.	0.910
-			- · · · · · · · · · · · · · · · · · · ·	7.651	3,0030	10.743	1.396	0.325	744.	3.0117	823.	0.970	3.0025	772.	0.910
40	249.73	847.7	0,167	7,667	3.8850	9.617	1,250	0.324	744.	3.8937	922.	0,969	3.8944	771,	0.908

HEAR VALUES

PO = 250.67 PSIA U(1NF)= 2988.7 FT/SEC

TO = 848.4 DEGR Q(INF)= 4.142 PSIA

P(INF)= 0.1671 PSIA T(INF)= 105.0 DEGR

RE(INF)= 0.472E+07 PER FT POP = 7.70 PSIA

MU(INF)= 0.845E-07 LBF-SEC/FT2 RHO(INF)= 0.134E-03 SLUGS/FT3

ARNOLD A. GRCE STATION, TENH

ARO, INC - AEDC DIVISION PANEL YOU WARMAN GAS DIVANICS FACILITY DATE COMPUTED 8-306-78 TIME RECURDED

PROJECT NO V41 3A SAMSO/DOTE HYPERBONIC TURBULENT SOUNDARY LAYER INVESTIGATION PHASE I

TRIP NOSE RADIUS, IN CONFIGURATION GROUP 42 ALPHA MUDEL * 0.06 DEG. DEM PT=-22.00 .0100 GRIT .5000 (DEG F) 7-DEG CONE ALPHA PB # 13.00 DEG. M(INF)= 5.95 = -0.04 DEG. RE(INF) = 4.724E+06 PER FT ROLL

DATA TYPE ON-BOARD PRUHE

PROBE STATION = 36.45 IN.

	011-01	924IV P 4 2										-	-							
1	.00P	TG-1 DEGR	TG-2 DEGP	TG-3 DEGR	TG-4 Degr	TG-5. DEGR	TG-6 Degr	TG-7 Degp	TG-8 Degr	TG-9 Degr	TG-10 DEGR	TG-11 Degr	TG-12 Degr	TG-13 DEGR		TG-15 Degr	TG-16	TG-17 Degr	TG-18 DEGR	TG-19 Degr
	•	704-	. 720.	721.	720.	72A_	726,	723.	718.	712.	703.	702.	706.	707.	70R.	707.	710.	695.	693,	
	ż	70 t		726.	725.	733.		776.	722.		708.	707.	710.	711.	712.	711.	714.	700.	699.	702.
	2	713.	729	731.	731.	737.	735.	731.	727.		713.	712.		715.	717.	716.	712.	706.	706.	709.
	7	716.		734.	735	740.		734.	730.		719.	716.	719,		720.	719,	749,	710.	710.	713.
	- 1	718	734.	736	737.	743.		736,			721.	719.			722.	722.	723.	713.	714.	716.
	4	722.		740	742	747.		741.			726.	725.		726.	727.	727.	723.	719.	720.	722.
•	7	724.			743.	749		742.			728	726.		728.	729.	728.	724.	721.	722,	724.
	á	725.				749		744.			730.	720			730.	730,	726.	722.	723.	726.
	ä	726									731.	730.				731.	727.	724.	725.	727.
	10	727					_				732.	731.	733.	732.	733.	732.	729.			729,
	ii	728		746.							734.			734.		734.				
	12	729		747							735	734.	735.	735.				729,		
	13	730									736.						_			732.
	iā	731				_				743.	730.		738.							
	15	732.				_			748.	745.	739,	738.	739.							_
	16	733.		_		_			749	746.	740.	739.								
	17	734.			-						741.	740.	741.	740.						
	18	734								748.					742.					
	19	735			-					740.			743.	742,	742,					
υī	20	736.			_			755	753,			744.			744.					740.
9	21	737.			_					751.	746.				744.					
	22	737.					759	757.	754	, 752,	747.									
	23	730.		754			760.	758,	755.	, 753,										
	24	738.						756,	756						747,					
	25	739.							756	754,	750.									
	26	740.				762	762.	759,	- 757	, 755,				748,						
	27	740.			759.	762	762,			756,	751.				, 749,	, 748,				
	28	740.			759	763.	762.	760,								749,		-		
	29	740		•		763			758	, 756,	, 752,				- ,				•	
	30	741							759	. 757.	753.							_		
	31	741			•		763	761	759	. 75P.	, 753,									
	32	742	-	-				761,	. 760	, 750,	, 754,	753.	. 753,							
	33	742		-	-	-	764			. 758	754,	, 753.								_
	34	742	-	•	-			762			, 755,								• .	
	35	743		•			765			759	755,						-	-	_	
	36	743		-			•		. 761	. 759	756,									-
	37	743	-	•		•														
	38	744					• • • •		762	. 761										
	39	744			-	•	. 766	. 764	, 762					. 755						
	40	744					766	. 764	. 763	. 761	758	. 757	. 757	. 755	. 755	. 754	. 752	. 750	. 749	. 750,
			-	-									-							

A SVERDR CORPUPATION COMPAKY YON KAPHA. GAS DYNAMICS FACILITY

0.5052

0.6037

31

32

250.73

250,83

849.7

846.7

11,644

11.691

PROJECT NO V418-W6A ARNOLD AIR FORCE STATION, TENN

0.0465

0.0466

DATE RECOPDED 3, AN-78 TIME RECORDED .51 9

1.000 2938,20

848.

0.911

0.911

0.895

0.095

476.37

478.17

SAKSO/DOTE HYPERSONIC TUPBULENT BOUNDARY LAYER INVESTIGATION PHASE I

GRO	102	42					0.06 DEG.		7=-22.00		IGURATION EG CONE	HOSE	PADIUS, IN 5000	IR .0100	IP GRIT
M(I RE	(NF)= (INF)=	5.95 4.724E+06	PER	FT	ALPKA ROLL		13.00 DEG.		(DEG F)	,	,20 00	•		-	
UNS	SHIELD	ED TEMPERA PROBZ	TURE	PROBE	CORREC	ZMQII	PROBE	STATION	= 36.45 IN	•	•				
100i		ŽŲ	PQ		TO	PPU	PPU/PO	MUI	REU	ETA	TOUM/TO	TOUI (DEGR)	TOUI/TO	UUI (FT/SEC)	
		(IN)	(PS		(DEGR)	(PSIA)	0.0023	0.95	42.70	0.874	0.861	745.	0.979	1165.05	
1		0.0048	250,		847.7	0.576	0.0033	1.24	57.31	0.075	0.875	765.	0.902	1473.90	
2		0.0159	249.		P49.7	0.826	0.0060	1.7R	88,45	0.878	0,887	790.	0.931	1922.21	
3		0.0243	250,		R49.7	1.493	0.0077	2.06	106.48	0.879	0.892	801.	0.944	2100.25	
4		0.0343	252.		845.7	1.927		2,18	115,50	0.890	0.495	907.	0.951	2174.80	
5		0,0449 .	251.		848.7	2,144	0.0086	2,26	120.91	0.860	0,898	811.	0.,956	2220,42	
6		0.0543	251,		849.7	2.297	0.0092	2,34	126.81	0.900	0,900	B15.	0.960	2263.69	
7		0.0633	251,		850.7	2,451	0.0096	2.42	132.52	0.091	0.903	810.	0.965	.2303.51	
8		0.0733	250,		847.7	2,604	0.0104	2.50	138.77	0.881	0.905	822.	0,969	2343.68	
9		0.0848	250.		847.7	2.772	0.0111	. 2.57	144.63	0.631	0.906	824.	0.972	2376,69	
10)	0.0963	249.		850.7	2.927	0.0117	2.65	150.98	0.892	0.907	827.	0.975	2409.94	
11		0.1043	249.		950.7	3,093	0.0123	2,78	. 161.71	0.882	0.911	932.	0.981	2464.90	
12		0,1268	249.		850.7	3.388	0.0135	2.96	177.80	0.683	0.913 -	837,	0.987	2531.22	
13		0.1478	249		849.7	3,820	0.0152	3.09	169.22	0.884	0.915	841.	0.991	2574.12	
14		0.1653	249,		946,7	4,132	0.0165	3.27	206,67	0.885	0.918	845.	0,996	2629,55	
15	•	0.1848	249,		840.7	4.608	0.0194		222.72	0.895	0.920	249	1.001	2674,41	
16	,	0,2043	250,	, 5 3	849.7	5.051	0.0202	3,42	240.09	0.886	0.921	851.	1.004	2714.38	
17	,	0.2243	250,	, 5 3	846.7	5,521	0.0220	3.59	259.46	0.887	0.923	854.	1.007	2753.03	
, įį	3	0.2448	250	, 3 3	846.7	6.049	0.0241	3.76		0.888	0.924	856.	1.009	2786.46	
19		0.2633	251	.03	B49.7	6.572	0.0262	3,92	279.57	0.889	0,924	657.	1.011	2821,48	
20		0.2868	250	, ó 3	846,7	7,246	0.0289	4,12	303.73	0.890	0.923	857.	1.010	2447,57	
2	i	0.3063	250	83	846.7	7,873	0.0314	4.30	327.70		0.923	. 858.	1.011	2870.80	
2	5	0.3247	250	93	846.7	0.474	Q.033B	4.46	350.18	0,891	0.921	857.	1.010	2692.00	
2		0.3452	251		846.7	9,158	0.0365	4.64		0.891	0.919	855.	1,008	2905.61	
2	Ā	0.3647	251		949.7	9,743	0.0389	4,79	399,50	0,892		853.	1.006	2916.50	
2		0.3852	252		849.7	10,292	0.0411	4,93		0.893	0.917	851.	1.003	1922,22	
2		0.4047	252		849.7	10,693	0.0426	5.02		0.894	0.914	950.	1.002	2926.98	
2		0.4237	252		849.7	10,974	0.0438	5.09	449,43	0.894	0.913		1,001	2929.68	
2	۵	0.4442	251		849.7	11.185		5.14		0.894	0.912	849.	1,001	2932,44	
		0.4657	251		846.7	11.334		5,18		0.894	0.912	849.	1.000		
2		0.4642		44	846,7	11,426		5.20		0.894	0.911	848.			
5	v	4.40.4		. ~ .			A A168	E 30	476 27	0.895	0.911	848.	1.000	4331141	

5,25

5.26

LOOP	ZU . (IN)	PO (PSTA)	IO (DFGR)	PPU (PSIA)	PPU/PO	NUI	REU	ETA	TOUK/TO	(DEGK)	1001/10	UUI (FT/SEC)
33 34 35 36 37	0.7037 0.8052 0.9047 1.0057	250.23 250.83 250.33 250.33 249.73	(DFGR) 847.7 846.7 846.7 849.7	11.784 11.780 11.783 11.788 11.737	0.0469 0.0470 0.0470 0.0470 0.0468	5.27 5.28 5.28 5.28 5.27	480.55 482.30 481.66 482.59 480.47	0.895 0.895 0.895 0.895 0.895	0.911 0.910 0.911 0.910 0.910	848. 247. 848. 847.	1.000 0.999 1.000 0.999 0.999	2939.43 2938.01 2940.00 2938.16 2937.17
38 39 40	2.0031 3.0025 3.8844	249.83 249.22 249.73	849.7 847.7 847.7	11.440 10.744 9.617	0.0456 0.0429 0.0384	5.20 5.04 4.76	469,31 442,74 400.33	0.895 0.894 0.892	0.908 6.910 0.910	847. 647. 845.	0.998 0.998	2931.19 2915.97 2884.99

CALIBRATION CONSTANTS
AGE 8.650E-01 A1= 1.363E-03 A2= 0.000E+00 A3= 0.000E+00 A4= 0.000E+00

NEAR VALUES

PO = 250.67 PSIA U(1NF)= 2988.7 FT/SEC TO = 848.4 DEGR Q(INF)= 4.142 PSIA P(INF)= 0.1671 PSIA T(INF)= 105.0 DEGR PE(INF)= 0.472E+07 PER FT POP = 7.70 PSIA

MU(INF)= 0.845E-07 LBF-SEC/FT2 RHO(INF)= 0.134E-03 BLUGS/FT3

ARO, - AEDC DIVISION
A SV .RUP CORPOPATION COMPANY
YON KARMAN GAS DYNAMICS FACILITY
ARNOLD AIR FORCE STATION, TENN

PROJECT NO V418-W6A

DATE CGMPUTED #-201-15 DATE RECORDED 31-JAM-76 TIME RECORDED 11451 9

SAMSO/DOTE HYPERSONIC TURBULENT BOUNDARY LAYER INVESTIGATION PHASE I

GROUP 42

ALPHA MODEL = 0.06 DEG. DEF PT=-22.00 CONFIGURATION NOSE PADIUS, IN TRIP
RE(INF) = 4.724E+06 PER FT ROLL = -0.04 DEG. (DEG F) 7-DEG CONE .5000 .0100 GRIT

DATA TYPE ON-BOARD PROBE

PROBE STATION = 36.45 IN.

BOUNDARY LAYER VALUES

DELU = 0.4267 IN.
DELU= 0.1955 IN.
DELU2= 0.0159 IN.
DELU3= 0.0291 IN.
DELU4= 0.0008 IN.
HU1 = 12.2798
HU2 = 0.5475
TEU = 850.4 DEGR
UUE = 2927.3 FT PER SECOND
RHOUE= 1.981E-04 SLUGS PER FT3

MÉAN VALUES

PO = 250.67 PSIA U(INF)= 2988.7 FT/SEC

TO = 848.4 DEGR Q(INF)= 4.142 PSIA

P(INF)= 0.1671 PSIA T(INF)= 105.0 DEGR

PE(IMF)= 0.472E+07 PER FT POP = 7.70 PSIA

MU(INF)= 0.845E-G7 LBF-SEC/FT2 RHO(INF)= 0.1346-03 SLUGS/FT3

IV-7. NOMENCLATURE: OVERHEAD PROBE FLOW-FIELD DATA

PRINTOUT PAGE ONE

ALPHA MODEL Model angle of attack, deg

ALPHA PB Support sting prebend angle, deg

CONFIGURATION Model configuration (see Fig. 2)

DATA TYPE Type of data tabulated

DEW PT Free-stream flow frost point, °F

GROUP Data group number

LOOP Data point identification number

M(INF) Free-stream Mach number

MU(INF) Free-stream viscosity, 1bf-sec/ft²

NOSE RADIUS Model nose tip radius, in.

P(INF) Free-stream static pressure, psia

PO Tunnel stilling chamber pressure, psia

POP Free-stream total pressure downstream of a

normal shock, psia

POO Overhead probe pitot pressure, psia

PROBE STATION Probe station location measured along model

surface from model nose tip, in.

RE(INF) Free-stream Reynolds number per foot

ROLL Model roll angle, deg

TO Tunnel stilling chamber temperature, °R

TOO Unshielded thermocouple probe reading, °R

TRIP Boundary-layer trip configuration - sphere and

grit dimensions stated in inches

TWX Model wall temperature at probe survey station, °R

U(INF) Free-stream velocity, ft/sec

ZO Pitot probe height above model surface, in.

ZOT Height of unshielded thermocouple probe above

model surface, in.

PRINTOUT PAGE TWO

All heading information is identical to page one.

TG-1 - TG-19 Gardon gage case temperature, °R

PRINTOUT PAGE THREE (UNSHIELDED TEMPERATURE PROBE CORRECTIONS)

All heading information is identical to page one.

A00 - A04 Calibration constants

ETAO Effective probe recovery factor

LOOP Data point identification number

MOI Local Mach number at survey point

PO Tunnel stilling chamber pressure, psia

POOI Local interpolated pitot pressure, psia

ROD Local Reynolds number at survey probe

TO Tunnel stilling chamber temperature, °R

TOOI Local corrected total temperature at survey

point, °R

TOUM Unshielded thermocouple probe reading, °R

UOI Local flow velocity, ft/sec

XP Probe longitudinal location, counts

ZOT Height of unshielded thermocouple probe above

model surface, in.

PRINTOUT PAGE FOUR (BOUNDARY-LAYER VALUES)

All heading information is identical to page one.

DEL Boundary-layer thickness, in.

DEL* Displacement thickness, in.

DEL2 Momentum thickness, in.

DEL3 Kinetic energy defect, in.

DEL4 Total enthalpy defect, in.

H1 Shape factor, DEL*/DEL2
H2 Shape factor, DEL2/DEL3

RHOED Static density based on TED, Slugs/ft³

TED Total temperature, at boundary-layer edge, °R

UOED Flow velocity at boundary-layer edge, ft/sec

DATE COMPUTED 26-JUN-78 DATE RECORDED 30-JAN-78 TIME RECORDED 0:12:37

PROJECT NO V418-W5A SAMSO/DOTR HYPERSONIC TURBULENT BOUNDARY LAYER INVESTIGATION PHASE I

	JP 36 (F)= 5.95 (MF)= 4.731)	E+06 PER		Alpha Model Alpha PB Roll	-0.08 - 13.00 - 90.36	DEG,	EW PI=-22. (DEG		FIGURATION DEG CONE		ADIUS,IN ARP		TRIP NOME
	N TYPE RHEAD PPOBE				PR	OBE STATE	ON = 39.8	O IN.					F
LOOP	PO (PSIA)	ID (DFGR)	PINF (PSIA)	POP (PSIA)	20 (IN)	POO (PSIA)	PGO/POP	ZgT (IN)	T _D O (Degr)	T 00/T0	pwi	TWI	- -
1	249.52	847.7	0.166	7.661	0.0060	0.568	0.074	-0.0000	756.	0.893	0.332	742.	
ż	249.73	845.7	0,167	7,667	0.0135	1,383	0.180	0.0074	762,	0,900	0.332	742,	Z)
3	249,62	846.7	0,166	7.664	0.0255	2,219	0,289	0.0194	763.	0.901	0.332	742.	Samp le
4	249,42	847.7	0,166	7,658	0.0335	2,517	0.328	0.0274	764.	0,902	0.333	742.	Ħ
5	249,22	945.7	0,166	7,651	0,0435	2,738	0,356	0.0374	765.	0.903	0.333	742.	ř
6	748,72	847.7	0,166	7,636	0.0535	2,942	0,383	0.0474	766.	0.904	0.332	742.	
7	249.42	845.7	0,166	7,658	0.0640	3,188	0.415	0.0579	768.	0,907	0.332	742.	-
0	249,83	847.7	0,167	7,670	0.0735	3,425	0,446	0.0574	770.	0.909	0.332	742,	
9	249,22	847.7	0.166	7,651	0.0840	3,692	0,481	0.0779	772.	0,912	0.332	742.	<u></u>
10	249,22	845,7	0,166	7,651	0.0945	3,938	0,513	0,0884	773.	0.913	0.332	742.	
11	250.03	846,7	0,167	7.676	0.1035	4,205		0.0974	774.	0,914	0.334	742,	
12	251,74	845.7	0.168	7,729	0.1240	4.812	0,626	0.1179	777.	0.917	0.336	742,	_
13	253,25	P42.7	0.169	7,775	0.1430	5,360	0,699	0.1369	780.	0.921	0.337	742.	Ş
. 14	251,94	846.7	0,168	7.735	0.1630	5,993		0.1569	784.	0.926	0.336	742.	ã
15	251,74	848.7	0.168	7.729	0.1845	6,666		0.1784	789.	0.932	0.335	742.	
16	249.02	848.7	0.166	7.645	0,2030	7,245	0,943	0,1969	791.	0.934	0.333	742,	9
\$7	248,42	845.7	0,166	. 7,627	0,2250	8.003	1.042	0.2189	793.	0.936	0.337	742.	ŭ
18	249,32	847,7	0.166	7.655	0,2440	8,761		0,2379	794.	0.938	0.332	742.	O.
19	248,62	847.7	0.166	7,633	0.2635	9,500		0.2574	794.	0.936	0.332	742. 742.	hti
20	252.14	843.7	0.168	7.741	0.2835	10.384	1.352	0.2774	793.	0.936	0.335	742.	អ័
21	251.74	046.7	0.168	7.729	0.3035	10.997	1,431	0,2974	792.	0.935	0,335 0,335	742	<u>್</u>
22	250,93	844,7	0.167	7,704	0.3230	11,498		0.3169	791. 790.	0,934 0,933	0,335	742	
23	251.44	045.7	0.168	7,719	0.3425	11,698	1.547	0.3364 0.3579	789	0,932	0.335	742	
24 25	250,73	847,7	0,167	7.698	0.3640 0.3840	12,122 12,252		0.3779	788	0,930	0,334	742	늄
26	251,14	844.7	0.167	7,710	0.4025	12,314	1,603	0.3964	707.	0,929	0,335	742.	10
27	250.83 251.14	045.7 047.7	0,167 0,167	7.701 7.710	0.5050	12,336		0.4989	787	0.929	0,334	742,	Ě
28	250.33	047.7	0.167	7.685	0.6050	12.298		0.5980	787.	0.929	0.334	742.	L
29	250.93	847.7	0.167	7.704	0.7030	12.272		0.6968	787	0,929	0.334	742	
30	250,13	845.7	0.167	7,679	1.0045	12,218	1.590	0,9983	787.	0.929	0,334	742.	O
31	250,43	847.7	0.167	7,689	2.0020	11,814	1,538	1.9957	787.	0,929	0,333	742	Ľ
32	250,13	845.7	0,167	7.679	3.0045	11,247	1,464	2,9981	707	0,929	0.334	742.	
33	249.62	845.7	0,166	7,664	4,0020	7,662	0,997	3,9955	700,	0.930	0,333	742.	

DAGE	548	GENTE	36

LOOP	PO	- 10	PINF	POP	20	P00 P00/P0P	ZOT	100	T 00/T0	PWI	INI
34	(PSIA) 250.23	(DEGR) 847.7	(PSIA) 0.167	(PSIA) 7.682	(IN) 4.4990	(PSIA) 7.650 0.996	(IN) 4.4925	(DEGR) 787.	0.929	0.333	742.
35 36	249,32 249.02	847,7 845.7	0.166 0.166	7,655 7,645	0,9985 0,2490	12,100 1,575 12,066 1,571	0.9923 0.2429	707. · 789.	0.929 0.932	0.333 0.333	742. 742.

MEAN VALUES

PO = 250.23 PSIA U(INF)= 2905.5 FT/SEC

TO = 846.5 DEGR Q(INF)= 4.135 PSIA

P(INF)= 0.1660 PSIA T(INF)= 104.0 DEGR

RE(INF)= 0.473E+07 PER FT POP = 7.68 PSIA

MU(INF)= 0.043E-07 LBF-SEC/FT2 RHO(INF)= 0.134E-03 SLUGS/FT3

XP = -1. CTS

DATE COMPUTED 26-JUN-78 DATE RECORDED 30-JAN-78 0112137 TIME RECORDED

PROJECT NO V418-W6A SAMSO/DOTE HYPERSONIC TURBULENT BOUNDARY LATER INVESTIGATION PHASE I

	GROU M(IH RE(1	P 36 F)= 5,' HF)= 4	95	06 PER	FT	alpha Alpha Roll	NODEL PB	= 13,	.08 DEG .00 DEG .36 DEG		DEW PT	22.00 (DEG F)		CONFIC 7-DEC	SURATIO S COME	X		RADIUS: HARP	, I M	TRIP
	DATA OVER	TYPE HEAD P	ROBE						PROB	E STAT		39,20							· 1 8	00-10
	LOOP	TG-1 DEGR	TG-2 DEGR	TG-3 Degr	TG=4 DEGR	TG-5 DFGR		TG-7 DFGR	TG-8 Degr	TG~ ⁹ Degp	TG-10 DEGR	TG-11 DEGR	TG-12 DEGR	TG-13 DEGR	TG-14 Degr	TG-15 DEGR	TG-10 DEGR	TG-1 / DEGR	DEGR	DEGR
	_			750.		752.	753,	753.	753.	754.		754.	755.	756.				764. 764.		
	1	742. 742.		750.			753.	752.		754,	753.	754.	755.			759.	764. 764.	764.		738.
	2	742					753.	752,		754.	753,	754.	755.	756.	757.	759. 759.	764.	764.		730.
	i	742,					753,	752.	753.	754.	753.		755.	756. 756.	757. 757.	759		764.		738
	5	742					753.	752.		754.	753,		755.			759	764.	764.		738,
	6	742.		750.		752.	753.	752,		754.	753.	754.	755. 755.			759		764.	743.	730,
	7	742.		750,	752.		753.	752.		754.	753.		755.			759	764.			
	į	742.	749.	750,	752.		753.	752,		754, 754,	753. 753.		755.			759,	764.			
	9	742.					753.	752.		754.						759.	764.			
	10	742.						752.		754.					757.	759.				
	11	742.						752. 752.								759,				
	12	742,	, 749,					752		753.				755.						
	13	742,						752	-	753.			755.		757.	759.				
	14	742.						752,		753,		754.	755.							
	15	742.						752,		754.	752,				757,	759.				
ı	16	742, 742,						752			753,									
	17	742		750				752								_				
	19	742	· • •					752,						, 756.						
	20	742		•	•		752.	752,	, 752,											
	21	742																		
	22	742			. 751.										·				743	
	23	742	749	, 750		, 751.														
	24	742			•			752					`				763	, 764,		
	25	742															-			
	26	742							• -						, 757,					~
	27	742							•				755.	756,						
	28	742									•		755	756				. 764		
	29	742			•	•	•		•		•		755	. 756,						
	30	742										754								
	31	742			•						753	754							•	• = ·
	32	742								754	, 753									•
	33	742 742			-				•	754	, 753	. 754						• <u>-</u>		•
	34 35	742		•	·	-	•												•	
										. 754	. 753	. 754								

DATE COMPUTED 26-JUN-78 DATE RECORDED 30-JAN-70 TIME RECORDED 0412437

PROJECT NO V418-W6A SAMSO/DOTA HTPERSONIC TURBULENT BOUNDARY LATER INVESTIGATION PHASE I

	M(INF)=	36 5.95 4.741E+06	PER I	ALPHA	PB	= -0.08 DEG. = 13.00 DEG. = 90.36 DEG.		PT=-22.00 (DEG F)		IGURATION EG CONE		radius,im Bharp	TAIP MONE
	uxahielo Overhead		TURE ;	ROBE CORREC	TIONS	PROBE	MOITATE	= 39,80 II	Ι,				
	LOOP	207 (IN)	PO (PSI)	TO (DEGR)	POOI (PSIA)	PD01/PD	IOK	ROD	ETAO	100/10	TOOI (DEGR)	TOOI/TO	UOI (FT/BEC)
	1 -		249.52		0.331		0.09	3,84	0,925	0.893	756.	0.893	123.09
			249.73		0,725		1.12	50,97	0.922	0.900	774.	0.914	1361,92
			249,62		1,798		1,95	103,07	0.920	0.901	790	0.933	2024,54
			249.42		2.292		2,23	124.14	0.920	0,902	795.	0.940	2181.36
	5		249,22		2,604		2,38	137,00	0,920	0.903	799	0,944	2260.39
	6		248,72		2,818		2,49	145.71	0.919	0.904	801,	0.947	2307.96
			249.42	045.7	3,046	0,0122	2,59	154,55	0.919	0.907	405,	0,951	2354,98
			249.83		3,273		2,69	163,36	0.919	0.909	808.	0.955	2390,05
	ġ		249.22		3,537		2,80	173,45	0.919	0,912	812.	0,959	2442,60
	10		249,27		3.796	0,0152	2,91	183,46	0.919	0,913	814.	0,962	2480.67
	11		250.03		4,025		3.00	192.29	0,918	0.914	816.	0,965	2511.77
	12		251,74		4,632		3,23	215.29	0.918	0,917	822.	0,971	2584.18
	13		253,2	842.7	5,190		3,42	235.94	0.918	0.921	827.	0.977	2640.25
	13 14		251,94		5,803		3,63	258,10	0.917	0.926	B34.	0.985	2694,37
	15		251,74		6.476		3,84	281.69	0,917	0.932	841.	0,993	2746.57
<u> </u>	16		249.02		7,055	0,0292	4,01	302.67	0.916	0.934	B44, ·	0,998	2782,10
ן כ	17		248,42		7,792		4,22	329.50	0,916	0,936	B48.	1,002	2821,04
•	18		249.32		8,518	0.0340	4,41	356,10	0,916	0.938	851.	1,005	2852,50
	19		240,62		9,269		4,61	384.08	0,915	0.938	B52.	1,007	2079.10
	20		252.14		10,114		4,82	416,10	0,915	0.936	P52.	1,007	2903.16
	21		251.74		10.610		4,98	442.72	0.914	0.935	852.	1.007	2920.10
	22		250.93		11,341	0.0453	5.10	463.19	0.914	0.934	852.	1,006	2931,20
	23		251.44		11,766		5.20	479,69	0.914	0.933	051.	1,006	2938,97
	. 24		250.73		12,055	0.0482	5,27	491,19	0,914	0,932	451.	1.005	2943,33
	25		251.14		12,212		5,30	497.78	0.914	0.930	850.	1,004	2944,72
	26		250.83	845,7	12,293		5,32	501.56	0.914	0.929	849.	1,003	2944,52
	27		251.14		12,334	0.0493	5,33	503.10	0.914	0,929	R49.	1.003	2945,35
	28		250.33		12,300		5,32	18,102	0,914	0.929	849.	1.003	2944,66
	29		250.93		12,273		5,31	500.82	0.914	0.929	849.	1,003	2944.13
	30		250,13		12,219		5,30	498,70	0,914	0,929	849.	1.003	2943.01
	31		250.43	·	11,917		5,21	483.75	0.914	0,929	848,	1,002	2934,52
	32		250,13		11,250		5,08	462,55	0.914	0,929	840.	1,001	2921.69

LCOP	ZOT	PO	TO	POOI	PDOI/PO	HOI	ROD	ETAO	100/10	T 001	T001/T0	VOI
33 34 35 36	(IM) 3.9955 4.4925 0.9923 0.2429	(PSIA) 249.62 250.23 249.32 249.02	(DEGR) 845.7 847.7 847.7 845.7	(P81A) 7.686 7.650 12.220 8.718	0.0307 0.0306 0.0488 0.0348	4.19 4.18 5.30 4.47	327.96 327.13 498.82 366.28	0.916 0.916 0.914 0.915	0.930 0.939 0.929 0.932	(DEGR) 843. 842. 849. 846.	0.995 0.994 1.003 0.999	(FT/SEC) 2807.44 2804.08 2943.03 2850.97

CALIBRATION CONSTANTS A00= 9,261E-01 A01= -5,540E-04 A02= 0.000E+00 A03= 0.000E+00 A04= 0.000E+00

HEAN VALUES PO = 250,23 PSIA TO = 846.5 DEGR P(INF)= 0.1668 PSIA RE(INF)= 0.473E+07.PER FT NU(INF)= 0.643E-07 LBF-8EC/FT2	U(INT)= 2985.5 FT/SEC Q(INT)= 4.135 PSIA T(INT)= 104.8 DEGR POP = 7.68 PSIA RHD(INT)= 0.134E=03 SLUGS/PT3
XP = -1, CTS	

ARO, IRC - AEDC DIVISION A SYERDRUP CURPORATION COMPANY YON KARMAN GAS DYNAMICS FACILITY ARNOLD AIR FORCE STATION, TENN

DATE COMPUTED 26-JUN-78 DATE RECORDED 30-JAN-78 TIME RECORDED 0:12:37

PROJECT NO V418-W6A SAMSO/DOTA HYPERSONIC TURBULENT BOUNDARY LAYER INVESTIGATION PHASE I

GROUP 36 ALPHA MODEL = -0.08 DEG. DEW PT=-22.00 COMPIGURATION MOSE RADIUS, IN TRIP M(INF)= 3.95 ALPHA PB = 13.00 DEG. (DEG F) 7-DEG COME SHARP KONE PE(INF)= 4.731E+06 PER FT ROLL - 90.36 DEG.

DATA TYPE OVERHEAD PROBE

PROBE STATION = 39.80 IN.

BOUNDARY LAYER VALUES

DEL = 0.3491 IN.
DEL= 0.1480 IN.
DEL2 = 0.0126 IN.
DEL3 = 0.0232 IN.
DEL4 = 0.0026 IN.
H1 = 11.7809
H2 = 0.5416
TED = \$51.0 DEGR
UOED= 2941.3 FT PER SECOND
RHOED= 2.130E-04 SLUGS PER FT3

MEAN VALUES

PO = 250.23 PSIA U(INF) = 2985.5 FT/SEC

TO = 846.5 DEGR Q(INF) = 4.135 PSIA

P(INF) = 0.1668 PSIA T(INF) = 104.8 DEGR

RE(INF) = 0.473E+07 PER FT POP = 7.68 PSIA

MU(INF) = 0.843E-07 LBF-SEC/FT2 RHO(INF) = 0.134E-03 SLUGS/FT3

XP = -1. CTS