Exercice 1.

Soit la fonction f définie sur [0; 3] par $f(x) = x^3 - x$.

- 1. Justifier que f est continue sur [0; 3].
- 2. Justifier que l'équation f(x) = 5 a au moins une solution dans cet intervalle.

Exercice 2.

Soit une fonction f définie et continue sur $\mathbb R$ dont on donne ci-après le tableau de variation :

- 1. Démontrer que l'équation f(x) = 0 admet une solution unique α dans l'intervalle $]-\infty$; 1].
- 2. Démontrer que l'équation f(x) = 0 n'admet pas de solution dans l'intervalle $[1; +\infty[$.

Exercice 3.

Soit la fonction f définie sur [-2; 0] par $f(x) = 2(x-1)e^x$.

On admet que l'équation f(x) = -1 a une solution unique α dans [-2; 0].

Déterminer un encadrement de α à 10^{-1} près puis la valeur approchée de α à 10^{-1} près.