

OFFICE OF NAVAL RESEARCH

Contract N00014-86-K-0556

Technical Report No. 86

Solvent Dynamical Effects in Electron Transfer:

Predicted Influences of Electron Coupling upon the

Rate-Dielectric Friction Dependence

by

A. Gochev, G. E. McManis, and M. J. Weaver

Prepared for Publication

in the

Journal of Chemical Physics

Purdue University

Department of Chemistry

West Lafayette, Indiana 47907

July 1, 1989

Reproduction in whole, or in part, is permitted for any purpose of the ${\tt United\ States\ Government.}$

* This document has been approved for public release and sale: its distribution is unlimited.

80 7 18 026

CURITY CLASSIFICATION OF THIS PAGE	·				·	
	REPORT DOCUM	MENTATION F	PAGE			
REPORT SECURITY CLASSIFICATION	16 RESTRICTIVE	MARKINGS				
Unclassified				·		
SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION AVAILABILITY OF REPORT				
DECLASSIFICATION / DOWNGRADING SCHEDU	Approved for public release and sale; its distribution is unlimited.					
PERFORMING ORGANIZATION REPORT NUMBER(S)		S MONITORING ORGANIZATION REPORT NUMBER(S)				
Technical Report No. 86	1					
NAME OF PERFORMING ORGANIZATION	74 NAME OF MONITORING ORGANIZATION					
Purdue University	(If applicable)	Division of Sponsored Programs				
Department of Chemistry	Purdue Research Foundation					
ADDRESS (City, State, and ZIP Code) Purdue University		y, State, and ZIP	Code)			
Department of Chemistry	Purdue University West Lafayette, Indiana 47907					
West Lafayette, Indiana 4790	7	west Latayette, Inutalia 4/70/				
A NAME OF FUNDING SPONSORING	86 OFFICE SYMBOL	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
ORGANIZATION	(If applicable)	1 _				
Office of Naval Research	<u> </u>		No. N00014-			
: ADDRESS (City, State, and ZIP Code)			FUNDING NUMBE			
800 N. Quincy Street		PROGRAM ELEMENT NO	PROJECT	TASK NO	WORK UNIT	
Arlington, VA 22217					1	
TITLE (Include Security Classification)		1	_ 	<u> </u>		
Solvent Dynamical Effects in	Electron Transfe	r: Predicte	d Influences	of Electr	on Coupling	
upon the Rate-Dielectric Fric						
PERSONAL AUTHOR(S)				· · · · ·		
A. Gochev, G. E. McManis, and	M. J. Weaver	•				
3a TYPE OF REPORT 136 TIME			ORT (Year, Month	(Day) 115 PA	GE COUNT	
	/1/87_ to 6/30/89	July 1,	1989			
5 SUPPLEMENTARY NOTATION						
•						
COSATI CODES	18 SUBJECT TERMS					
FIELD GROUP SUB-GROUP				e solvents	, "encounter	
		librium" treatment				
5045 CF						
3. ABSTRACT (Continue on reverse if necessa	ry and identify by block	numper)		500	•	
The predicted dependence	of the bimolecu	lar rate con	stant for ou	ter-sphere	electron	
exchange, $k_{\widehat{e}\widetilde{x}}$, upon the longinumerically on the basis of a	cudinal relaxati	ed rate form	lor bebye s	rder to ex	camine the	
manner and extent to which the						
significance, should be sensi		-			-	
related factors. The treatme	ent accounts for	the contribu	tions to kex	from a sp	oatial distri-	
bution of reactant pairs as v	ell as for the e	effects of do	nor-acceptör	interacti	lons upon the	
unimolecular rate constant, l	eft (s), for ea	ich encounter	geometry.	The latter	include the	
influence of electronic inter the effective frequency for a	actions as preso	crossing N	matrix coup	e about p	ent, n ₁₂ , upon	
transmission coefficient, Kej	(i.e. the deore	e of reaction	n nonadiabat	icity). 1	The anticipated	
dependence of the free-energy	barrier, as well	Il as \hat{v}_n and	Kan upon th	e donor-ac	cceptor	
sub e-	sun el	(continu	ed on back)	50 50	· ,	
O DISTRIBUTION AVAILABILITY OF ABSTRA		RS	SECURITY CLASSI			
28 NAME OF RESPONSIBLE INDIVIDUAL		226 TELEPHON	NE (Include Area Co	ode) 22c OFFI	CE SYMBOL	

Accession For	F 1
NTIS GRA&I DTIC TAB Unannounced Justification	
By	ty Codes
Dist Spe	má/or cial
A-1	

19. (cont.)

separation is accounted for in the k_{ex} calculations. The form of the resulting log k_{ex} - log τ_L^{-1} plots exhibit, as expected, a marked dependence on the value of H_{12} for reactant contact, H_{12} . Over the τ_L^{-1} range appropriate for common solvents at ambient temperatures, call x 10¹¹ to 5 x 10¹² s⁻¹, the log k_{ex} - log τ_L^{-1} slopes, x, are significantly (or substantially) below unity for $H_{12}^{-1} \leq 0.5$ kcal mol⁻¹; x decreases markedly with increasing τ_L^{-1} and/or for decreasing H_{12}^{-1} . The approach to the solvent inertial limit (for large τ_L^{-1}) also tends to decrease x further. Numerical comparisons are made with corresponding log k_{ex} - $log(\tau_L^{-1})$ plots obtained using the simple "encounter preequilibrium" treatment which presumes that only a fixed narrow range of encounter-pair geometries contribute to k_{ex} . While the form of the plots are not greatly different, the latter more sophisticated treatment generally yields smaller slopes. Some corresponding numerical calculations for electrochemical-exchange reactions are also included.

Too to the second

CX

Solvent Dynamical Effects in Electron Transfer: Predicted Influences of Electronic Coupling upon the Rate-Dielectric Friction Dependence

Alexander Gochev, George E. McManis, and
Michael J. Weaver

Department of Chemistry

Purdue University

West Lafayette, Indiana 47907, USA

J. Chem. Phys.

Submitted November 10, 1988

Revised March 20, 1989

ABSTRACT

The predicted dependence of the bimolecular rate constant for outersphere electron exchange, k_{ax} , upon the longitudinal relaxation time, τ_{L} , for Debye solvents is examined numerically on the basis of a suitably combined rate formulation in order to examine the manner and extent to which the rate-solvent friction dependence, of particular experimental significance, should be sensitive to the degree of donor-acceptor electronic coupling and related factors. The treatment accounts for the contributions to $\boldsymbol{k}_{\text{ex}}$ from a spatial distribution of reactant pairs as well as for the effects of donor-acceptor interactions upon the unimolecular rate constant, k_{at} (s⁻¹), for each encounter geometry. The latter include the influence of electronic interactions as prescribed by the matrix coupling element, \mathbf{H}_{12} , upon the effective frequency for adiabatic barrier crossing, $\nu_{\rm n}$, as well as upon the electronic transmission coefficient, $\kappa_{\rm el}$ (i.e. the degree of reaction nonadiabaticity). The anticipated dependence of the free-energy barrier, as well as $\nu_{\rm n}$ and $\kappa_{\rm el}$, upon the donor-acceptor separation is accounted for in the $k_{\rm ex}$ calculations. The form of the resulting log k_{ex} - log τ_{L}^{-1} plots exhibit, as expected, a marked dependence on the value of H_{12} for reactant contact, H_{12}° . Over the τ_{L}^{-1} range appropriate for common solvents at ambient temperatures, ca 1×10^{11} to 5 x 10^{12} s⁻¹, the log $k_{\rm ex}$ - log $au_{\rm L}^{-1}$ slopes, x, are significantly (or substantially) below unity for $H_{12}^{\circ} \leq 0.5 \text{ kcal mol}^{-1}$; x decreases markedly with increasing $\tau_{\rm L}^{-1}$ and/or for decreasing ${\rm H}_{12}^{\rm o}$. The approach to the solvent inertial limit (for large au_L^{-1}) also tends to decrease x further. Numerical comparisons are made with corresponding log $k_{\rm ex}$ - log $au_{\rm L}^{-1}$ plots obtained using the simple "encounter preequilibrium" treatment which presumes that only a fixed narrow range of encounter-pair geometries contribute to k.v. While the form of the plots are not greatly different, the latter more sophisticated treatment generally yields smaller slopes. corresponding numerical calculations for electrochemical-exchange reactions are also included.

There are extensive developments occurring at the present time in our understanding of solvent dynamical factors in electron transfer, as for other condensed-phase processes. The original treatments for electron transfer predict that the barrier-crossing frequency for adiabatic processes, $\nu_{\rm n}$, should simply be proportional to the inverse of the longitudinal solvent relaxation time, $\tau_{\rm L}$. Subsequent theoretical treatments have included the effects of barrier-top curvature, non-Debye solvent relaxation, and reactant vibrational distortions, all within the dielectric continuum limit, as well as solvent molecularity effects by employing the mean spherical approximation.

Most experimental kinetic investigations of these effects involve examining the dependence of the rate parameters for bimolecular homogeneous-phase or electrochemical electron-exchange reactions on the solvent, a range of media being chosen so to provide a suitably large variation in the solvent dynamics. 10,11 After appropriate correction for the solvent-dependent barrier height, the dependence of the electronexchange rate constant, k_{ax} , (or the inferred barrier-crossing frequency, $\nu_{\rm n}$) upon $au_{\rm L}^{-1}$ or related solvent dynamical parameters can yield substantial insight into the role of solvent friction upon the kinetics. 11 In order for such solvent-friction effects to be manifested, however, it is necessary for the processes to remain essentially adiabatic (or nearly so) within the range of nuclear frequencies accessed by the solvent relaxation dynamics. We recently presented numerical calculations of the dependence of ν_n upon r_1^{-1} for outer-sphere electron-exchange processes having varying degrees of donor-acceptor orbital overlap as described by the electronic coupling matrix element, H_{12} . For simplicity, the calculations assumed Debye overdamped relaxation, the effects of reaction nonadiabaticity being accounted for on the basis of a generalized Landau-Zener treatment. The results indicate that substantial H_{12} values, $H_{12} \geq 0.1$ kcal mol⁻¹, are required to maintain reaction adiabaticity and hence preserve the full effect of solvent friction, as τ_L^{-1} is increased within the range ca 3 x 10^{10} to 3 x 10^{12} s⁻¹ expected for common polar solvents at ambient temperatures. 12

The calculations presented in ref. 12 were concerned primarily with the solvent frictional dependence of the "local" unimolecular rate constant, k_{at} , referring to a particular geometry of the donor-acceptor pair. Such results can be transposed to yield corresponding information for experimental bimolecular (or electrochemical) rate constants, k_{ex} , most simply by utilizing the so-called "encounter preequilibrium" treatment. 13 This approach presumes that electron transfer takes place over a sufficiently narrow range of precursor-complex geometries such that $\boldsymbol{k}_{\text{ex}}$ can be identified approximately with k_{et} multiplied by a "precursor stability constant" K_n. However, the encounter preequilibrium treatment is inherently only an approximation to a more rigorous description of key involving an integration of $k_{\tt at}$ over a distribution of reactant separation distances, r. 14 As alluded to recently by Beretan and Onuchic, 15 and as outlined in detailed fashion herein, the relative r-dependent k. contributions to $k_{\bullet,\bullet}$ are inexorably altered somewhat as the solvent friction is modified (i.e. $\tau_{\rm L}^{-1}$ is varied) for a given reaction. As a consequence, the predicted dependence of $k_{\rm ex}$ upon $\tau_{\rm L}^{-1}$ deduced using this spatial integration approach may differ significantly from that obtained from the simple encounter preequilibrium formalism that utilizes a constant (i.e. friction-independent) K_p term.

Given the central importance of solvent-dependent friction effects upon $k_{\rm ex}$ to the interpretation of the experimental kinetics, 10,11 it is crucial to elucidate how the effects of electronic coupling combine with solvent friction to determine $k_{\rm ex}$ and, especially, its dependence upon $\tau_{\rm L}^{-1}$. The objective of the present report is to outline in detail a unified treatment of such combined electronic coupling-solvent friction effects within the Debye continuum approximation that is applicable directly to such experimental systems, and to illustrate its application by means of representative numerical calculations. While attention is focused primarily on homogeneous-phase reactions, some pertinent results are included for electrochemical exchange processes. We present in a companion paper a substantive experimental application of the present solvent friction-dependent analysis, so to provide a novel means of extracting H_{12} values for simple self-exchange reactions.

THEORETICAL TREATMENT

Bimolecular Rate Formulations

As noted above, the overall measured rate constant for bimolecular electron-exchange reactions in homogeneous solution, $k_{\rm ex}$, strictly is composed of an integral of "local" unimolecular rate constants, $k_{\rm et}(r)$. Thus we can write 14

$$k_{ex} = \frac{4\pi N}{10^3} \int_{r_0}^{\infty} r^2 k_{et}(r) g_{DA}(r) dr$$
 (1)

where N is Avogadro's number, r_o is the donor-acceptor distance corresponding to the (spherical) reactant's closest approach, and $g_{DA}(r)$ is the radial pair distribution function. For simplicity, $g_{DA}(r)$ is taken

here as unity. The relation corresponding to Eq. (1) that describes electrochemical rate constants, k_{ax}^{0} , is

$$k_{ex}^{e} = \int_{r_{0}}^{\infty} k_{et}(r) g_{DA}(r) dr$$
 (2)

reflecting the linear rather than spherical spatial coordinates relevant to heterogeneous process. ^{13}c

The local rate constant $k_{et}(r)$ can generally be expressed as 13

$$k_{et} - \kappa_{el} \nu_n \exp(-\beta \Delta G^*)$$
 (3)

where β = $(k_B T)^{-1}$ and ΔG^* is the free energy of activation. The electronic transmission coefficient κ_{el} describes the extent to which the effective barrier-crossing frequency falls below the nuclear frequency factor ν_n as a consequence of reaction nonadiabaticity. The effect of solvent friction is manifested entirely in the ν_n term, in that ν_n increases as the solvent friction (most simply τ_L) decreases.

All three components of k_{et} in Eq. (3): κ_{e1} , ν_n , and ΔG^* ; are expected to depend upon the reactant separation distance r. The electronic matrix coupling element H_{12} will decrease markedly with increasing r, which is usually approximated by the exponential form: 16,17

$$(H_{12})^2 = (H_{12}^0)^2 \exp[-\alpha(r - r_0)]$$
 (4)

where H_{12}^{o} is the matrix coupling element corresponding to $r=r_{o}$. The coefficient α is usually calculated (or measured) to be in the range ca 1.0 to 1.5 Å⁻¹. ¹⁶⁻¹⁸

The dependence of κ_{e1} upon r depends on the magnitude of H_{12}^o as well as that of α . For reactions where H_{12}^o is sufficiently large so that

reaction adiabaticity is achieved, $\kappa_{\rm el}=1$ for ${\rm r}={\rm r}_{\rm o}$. As r is increased beyond ${\rm r}_{\rm o}$, however, ${\rm H}_{12}$ must fall eventually to the point where electron transfer becomes nonadiabatic (i.e. $\kappa_{\rm el}<1$), whereby the Fermi Golden rule applies, i.e. $\kappa_{\rm el} \; \alpha \; ({\rm H}_{12})^2$ (vide infra). Under such nonadiabatic conditions, however, $\kappa_{\rm el}$ will also depend upon $\nu_{\rm n}$; for $\kappa_{\rm el} <<1$, eventually $\kappa_{\rm el} \; \alpha \; \nu_{\rm n}^{-1}$ so that the net preexponential factor $\kappa_{\rm el} \nu_{\rm n}$ becomes independent of variations in the solvent friction. 12

The decrease in H_{12} with increasing r will also obviously influence ΔG^{\star} since 19

$$\Delta G^* - \Delta G_c^* - H_{12}$$
 (5)

where ΔG_c^* is the barrier for $H_{12} \to 0$, i.e. when the barrier top resembles a cusp. In addition, ΔG^* is expected to increase sharply with increasing r even in the absence of such "resonance splitting" since according to the dielectric continuum treatment of outer-shell barriers: 20

$$\Delta G_{c}^{*} - (e^{2}/4)(\epsilon_{op}^{-1} - \epsilon_{o}^{-1})(a^{-1} - r^{-1})$$
 (6)

where e is the electronic charge, $\epsilon_{\rm op}$ and $\epsilon_{\rm o}$ are the optical and static (zero-frequency) dielectric constants, and a is the reactant radius. The functional dependence of ΔG_c^* upon r^{-1} , predicted by Eq. (6), is in accord with experimental energies of optical electron transfer within mixed-valence complexes having varying internuclear separations $r.^{21}$

The relation corresponding to Eq. (6) for electrochemical reactions is 20

$$\Delta G_{e}^{*} = (e^{2}/8)(\epsilon_{pp}^{-1} - \epsilon_{p}^{-1})[(a^{-1} - (2r_{e})^{-1})]$$
 (6a)

where r_{\bullet} is the distance between the reactant and the surface plane. Since outer-sphere processes are often anticipated to occur at the outer Helmholtz plane where the reactant is separated from the metal surface by a solvent monolayer, the influence of the "imaging" term r_{\bullet} upon ΔG_c^{\star} could be unimportant, llb,c yielding only mild increases in ΔG_c^{\star} with increasing r_{\bullet} .

In the presence of solvent friction, ν_n is anticipated to depend on the barrier height $^{2-4}$ as well as on the shape of the barrier top, and hence upon H_{12} . Although both these dependencies are relatively mild, 3,12,22 since ν_n tends to increase both with increasing ΔG_c^* and decreasing H_{12} one can predict that ν_n will increase monotonically with increasing r. In the transition-state theory (TST) limit (i.e. in the absence of solvent friction), however, both these lependencies will disappear. In any case, the influence of these factors upon the $k_{\rm et}$ -r profile are overshadowed by the corresponding increases in ΔG^* and decreases in $\kappa_{\rm el}$ with increasing r, so that $k_{\rm et}(r)$ will inexorably decrease sharply with increasing reactant separation.

Provided that $k_{\rm et}(r)$ declines sufficiently rapidly, to a first approximation the integral in Eq. (1) can be reexpressed simply in the "encounter preequilibrium" formulation 13 as

$$k_{ex} - K_p k_{et} - K_p \kappa_{el} \nu_n \exp(-\beta \Delta G^*)$$
 (7)

The preequilibrium constant K_p reflects the spatial range over which significant contributions to k_{ex} occur, with k_{et} and its component parameters κ_{e1} , ν_n , and ΔG^* being approximated by the local values at $r=r_o$. However, as noted above it is preferable for the present purposes to perform a spatial k_{ex} integration to find k_{ex} since K_p is expected to change somewhat as the solvent friction is altered (vide infra).

In the sections that follow, we outline a simple combined treatment of the above effects upon $k_{\tt et}(r)$, followed by illustrative numerical predictions of the resulting dependence of $k_{\tt ex}$ upon solvent friction.

The Unimolecular Rate Constant

We require here a treatment of $k_{et}(r)$ which accounts for the alterations in H_{12} and ΔG^{*} needed for the complete spatial integration in Eq. (1), together with the ability to consider wide variations in the extent of solvent friction. Considered first is a suitable means of describing barrier shape effects upon ν_n , followed by a formalism which can account additionally for nonadiabaticity.

In the presence of solvent friction, as $\rm H_{12}$ increases and the barrier top becomes increasingly rounded the frequency of successful barrier crossings is progressively diminished. This effect, first considered by Kramers, 23 has also been described recently in the context of electron-transfer processes. 3,4,12 In our previous examination of $\nu_{\rm n}$ - solvent friction dependencies, 12 we employed the Smoluchowski treatment described by Calef and Wolynes. 3 This approach describes the passage across the potential-energy surface in terms of simple diffusion. More generally, the diffusion coefficient, D, can be considered to depend on the position, q, along the reaction coordinate potential-energy surface, V(q). 24,25 Whereas D will be independent of q for a pair of harmonic surfaces forming a cusp barrier, when $\rm H_{12} > 0$ the diffusion coefficient within the intersection region, $\rm D_{\rm b}$, will differ from that within the parabolic wells, $\rm D_{\rm w}$. Indeed, for large $\rm H_{12}$ values (i.e. for large resonance splittings), the $\rm D_{\rm b}$ component dominates the overall barrier-crossing rate. 24

An expression for the adiabatic unimolecular rate constant, k_{et}^{e} , due to Okuyama and Oxtoby is 24

$$(k_{et}^a)^{-1} = 2 \int_{-\infty}^{q^a} dq [D(q) P_{eq}(q)]^{-1} [\int_{-\infty}^{q} dq' P_{eq}(q')]^2$$
 (8)

where
$$P_{eq}(q) = Z \exp[-\beta V(q)]$$
 (8a)

and
$$Z = \int_{-\infty}^{\infty} \exp[-\beta V(q)] dq \approx (2\pi/\beta m\omega_o^2)^{\frac{1}{2}}$$
 (8b)

(The approximation in Eq. (8b) arises since the greatest contribution to the integral will be close to the initial state where $V(q) = 0.5 \text{ m } \omega_o^2 \text{ q}^2$.) The value of q is taken to be zero for the reactant initial state; q^* refers to the transition state; m is the "effective mass" of the reacting particle, and ω_o is the well frequency. The above integrals may also be simplified for large barriers ($\beta\Delta G^* \geq 5$) to yield:

$$(k_{et}^a)^{-1} \approx 2 \int_0^{q^a} dq [D(q) P_{eq}(q)]^{-1}$$
 (9)

Equation (9) is adequate for the numerical calculations presented below, where $\beta\Delta G^*\sim 10$. This relation reduces to the simple Kramers relation²³ (e.g. ref. 3) if D is independent of q; it also can be related directly²⁴ to the well-known Grote-Hynes result.^{1a}

In order to apply this treatment to solvent friction in electron transfer, we require appropriate expressions for both V(q) and D(q). The former can be expressed as 12,19

$$V(q) = 0.5[V_1(q) + V_2(q)] - 0.5[[V_1(q) - V_2(q)]^2 + 4H_{12}^2]^{\frac{1}{2}}$$
 (10)

where $\mathbf{V_1}$ and $\mathbf{V_2}$ refer to the reactant and product potential-energy curves,

respectively. These quantities can be expressed in terms of energetic (E) as well as position (q) coordinates. Thus $V_1(q) = 0.5 \text{ m}_{\omega_0}^2 \text{ q}^2$, whereas $V_1(E) = 0.5 \text{ m}_E \omega_0^2 \text{ E}^2$, where $\text{m}_E = (2\text{E}_r \omega_0^2)^{-1}$. Convenient expressions for V_1 and V_2 in the latter (energy) coordinates are

$$V_1(E) = E^2/4E_r; V_2(E) = (E - 2E_r)^2/4E_r$$
 (11)

where E_r is the reorganization energy (= $4\Delta G^*$ for a symmetric barrier as considered here).

When $\rm H_{12}>0$, the barrier top can often be approximated by an inverted parabola, allowing the potential-energy surface close to the transition region to be expressed as

$$V_b(E) = \Delta G^* - 0.5 m_E \omega_b^2 (E - E_r)^2$$
 (12)

where the "characteristic barrier-top" frequency $\omega_{\rm b}$ is related to the well frequency for symmetric barriers by 22,26

$$\omega_{\rm b}/\omega_{\rm o} = \left[(2\Delta G_{\rm c}^{\star}/H_{12}) - 1 \right]^{\frac{1}{2}}$$
 (13)

Given this form of V(E), a general expression for the position-dependent diffusion coefficient can be written as (see Appendix A):

$$D_{p}(p - w,b) - (\beta m_{E} \eta_{p}^{eff})^{-1}$$
 (14)

where η_p^{eff} is the effective friction. This quantity can be expressed for Debye solvents as (Appendix A):

$$\eta_{\mu}^{\text{eff}} = 2\omega_0^2/\eta(1 - [1 - (4\omega_0^2/\eta^2)]^{\frac{1}{2}})$$
 (for $\eta \ge 2\omega_0$) (15a)

$$\eta_w^{\text{eff}} = 2\omega_o^2/\eta$$
 (for $\eta < 2\omega_o$) (15b)

or

$$\eta_b^{\text{eff}} = 2\omega_b^2/\eta\{[1 + (4\omega_b^2/\eta^2)]^{\frac{1}{2}} - 1]\}$$
 (16)

where $\eta = \omega_o^2 \ \tau_L$. Equations (14)-(16) enable D_w and D_b , and hence k_{et}^a , to be determined in terms of τ_L , ω_o , H_{12} , and ΔG^* which together describe the experimental reactant-solvent system. The calculation of k_{et}^a by this means employs D_w for potential energies $E \le E_s$ and D_b for $E > E_s$, where E_s defines the energy where the well potential surface gives way to the inverted parabola characteristic of the barrier top. This approach therefore provides a relatively general as well as convenient means of accounting for such "barrier-top roundedness", caused by moderate or large electronic coupling, within the adiabatic limit.

As noted above, the effects of electronically nonadiabatic barrier crossing also need to be accounted for, not only in the $k_{\rm et}$ -r integration to find $k_{\rm ex}$ in a given solvent [Eq. (1)] but also so to provide a more complete description of the $k_{\rm ex}$ - $\tau_{\rm L}^{-1}$ dependence. Whereas $k_{\rm et}^a$ is predicted to be proportional to $\tau_{\rm L}^{-1}$ in the absence of solvent inertial effects (i.e. for overdamped solvent motion), $k_{\rm et}$ will fall below $k_{\rm et}^a$ for small $k_{\rm loc}$ and/or large $k_{\rm loc}^{-1}$ and eventually will become independent of $k_{\rm loc}^{-1}$. One means of bridging these two regimes is to regard the overall unimolecular reaction to be composed of separable rate constants for approaching and then crossing the barrier top, so that $k_{\rm loc}^{2a}$, $k_{\rm loc}^{2a}$

$$(k_{et})^{-1} - (k_{et}^a)^{-1} + (k_{et}^b)^{-1}$$
 (17)

where k_{et}^{b} accounts for the possible influence of reaction nonadiabaticity (i.e. transitions to the upper diabatic surface, rather than adiabatic barrier crossings involving electron transfer). The effect of solvent

friction is contained wholly within $k_{a\,t}^a$.

A significant limitation, however, of Eq. (17) for the present purposes is that it is strictly valid only for sufficiently small "barrier-top roundedness" (small H_{12}) so that $k_{\rm et}^a$ is dominated by motion within the potential-energy wells rather than in the intersection region (vide infra). Equation (17) therefore cannot account for the effects of barrier-top shape upon $k_{\rm et}^a$. [Note that a relation of apparently similar form to Eq. (17) has been used to formulate such barrier-shape effects upon $k_{\rm et}$ within the adiabatic limit, where the first term refers to motion within the wells and the second describes the barrier-crossing step (see also ref. 22).] An expression for the "barrier-crossing" rate constant, $k_{\rm et}^b$, valid at least in the normal (as opposed to inverted) free-energy regime 27 as considered here is

$$k_{\text{et}}^{b} = \tilde{\kappa}_{\text{el}} k^{\text{TST}} = \tilde{\kappa}_{\text{el}} (\omega_{\text{o}}/2\pi) \exp(-\beta \Delta G^{*})$$
 (18)

where k^{TST} denotes the rate constant in the TST limit, and $\tilde{\kappa}_{e1}$ (not to be confused with the overall electronic transmission coefficient κ_{e1} employed above) can be expressed as 28

$$\widetilde{\kappa}_{e1} = \int_{0}^{\infty} W_{e1}(E_1) \exp(-\beta E_1) d(\beta E_1)$$
 (19)

where

$$W_{e1} = [1 - \exp(-2\pi\gamma)]/[1 - 0.5 \exp(-2\pi\gamma)]$$
 (19a)

$$\gamma = |H_{12}|^2 / 2\hbar\omega_o (E_r E_1)^{\frac{1}{2}}$$
 (19b)

and $E_1(=E-\Delta G^*)$ is the system energy relative to that at the barrier peak.

As shown in Appendix B, $\tilde{\kappa}_{\rm el}$ can be expressed to a good approximation more simply as:

$$\tilde{\kappa}_{e1} = 4\pi^{3/2}\gamma_{\text{T}}/(1 + 4\pi^{3/2}\gamma_{\text{T}})$$
 (20)

where $\gamma_{T} = |H_{12}|^{2}/2\hbar \omega_{o}(E_{r} k_{B}T)^{\frac{1}{2}}$ (20a)

Another, more familiar, form for $\tilde{\kappa}_{\bullet 1}$ is 13a,14a (See Appendix B):

$$\tilde{\kappa}_{el} = \frac{2 \, \overline{W}_{LZ}}{1 + \overline{W}_{LZ}} - \frac{2 [1 - \exp(-2\pi^{3/2}\gamma_T)]}{2 - \exp(-2\pi^{3/2}\gamma_T)}$$
 (21)

where \overline{W}_{LZ} [= 1 - $\exp(-2\pi^{3/2}\gamma_{T})$] is the averaged Landau-Zener probability for a "single crossing" of the barrier top. Equation (21) is obtained as an approximation to Eq. (19) by replacing the γ term in W_{el} [Eq. (19a)] by its average value $\pi^{3/2}\gamma_{T}$.

From Eqs. (17) and (18) we can express the distance-dependent unimolecular rate constant $k_{\tt et}(r)$ as

$$k_{et}(r) = \frac{\tilde{\kappa}_{e1} k^{TST}}{1 + [\tilde{\kappa}_{e1} k^{TST}/k_{et}^{a}]}$$
(22)

A closely related simplified expression for $k_{\rm et}$ resulting from Eqs. (17) and (20), utilized previously, is 2a,4,15

$$k_{et} = \frac{2\pi |H_{12}|^2 (16\hbar^2 \pi \Delta G_c^* \beta^{-1})^{-k_2} \exp(-\beta \Delta G^*)}{1 + (\pi |H_{12}|^2 \tau_L/\hbar \Delta G_c^*)}$$
(23)

This relation is derived from Eq. (17) by assuming that k_{et}^a refers to overdamped solvent motion over a cusp barrier (i.e. $H_{12} \rightarrow 0$), whereupon²⁻⁴

$$k_{et}^{a} - \tau_{L}^{-1} (\beta \Delta G^{*}/4\pi)^{\frac{1}{2}} \exp(-\beta \Delta G_{c}^{*})$$
 (24)

and $H_{12} \ll k_B T$ so that the expression for k_{et}^{na} reduces to 29

$$k_{\text{et}}^{\text{na}} = 2\pi |H_{12}|^2 \tilde{\pi}^{-1} (16\pi\Delta G^* \beta^{-1})^{-\frac{1}{2}} \exp(-\beta\Delta G_c^*)$$
 (25)

$$= 4\pi^{3/2} \gamma_{\scriptscriptstyle T} k^{\rm TST} \tag{25a}$$

Although Eq. (23) as well as Eq. (22) provides a useful approximate form under conditions where H_{12} is small, it does not account either for the influence of the barrier-top curvature upon $\nu_{\rm n}$ or for the onset of the inertial limit, where $\nu_{\rm n} \to \omega_{\rm o}/2\pi$ (vide infra). These shortcomings may be avoided by using in place of Eq. (17) the following modified interpolation expression, obtained by Straub and Berne [Eq. 3.15 of ref. 30a], which can be written as

$$(k_{et})^{-1} = (k_{et}^a)^{-1} + (\frac{1 - \overline{W}_{LZ}}{2\overline{W}_{LZ}}) (k^{TST})^{-1}$$
 (26)

By assuming the relation between $\overline{\kappa}_{e1}$ and \overline{W}_{LZ} given in Eq. (21), and rearranging, we obtain

$$k_{et} = \frac{\tilde{\kappa}_{el} k^{TST}}{1 - \tilde{\kappa}_{el} + [\tilde{\kappa}_{el} k^{TST} / k_{et}^a]}$$
 (27)

Equation (27) differs from the simplified Eq. (22) by the presence of an additional $-\tilde{\kappa}_{e1}$ term in the denominator. The two expressions will therefore only become equivalent either when $\tilde{\kappa}_{e1} << 1$ and/or when $k^{TST}/k_{et}^a >> 1$; i.e. for small H_{12} and/or high friction. Equation (27) is clearly preferred for the present purposes since it should be applicable also to systems having large H_{12} values, a situation often encountered light and indeed required in order for solvent dynamical effects to influence k_{et}

in low friction media (vide supra). ¹² A related point is that Eq. (27), unlike Eq. (22), yields the correct prefactor, $\omega_{\rm o}/2\pi$, in the adiabatic "zero-friction" (i.e. TST) limit. [Equation (22) yields a prefactor that is twofold smaller in this limit.]

Equation (27) therefore describes in a straightforward as well as general fashion the separate effects of reaction nonadiabaticity and solvent friction via the $\tilde{\kappa}_{e1}$ and k_{et}^a terms, respectively. The influence of solvent inertia appears in both k^{TST} and k_{et}^a . If the reaction involves sufficient electronic coupling to be entirely adiabatic, then $k_{et} = k_{et}^a$ in the presence of solvent friction, or $k_{et} = k^{TST}$ in its absence. Even though Eq. (27) is utilized primarily in the following numerical calculations, we also include some results obtained with the conventional simplified formula Eq. (23) for comparative purposes.

The form of the preceding parameters can readily be related to the phenomenological quantities κ_{el} and ν_{n} in Eq. (3). The latter parameter is obtained directly from k_{et}^{a} [Eq. (9)] by removing the Boltzmann term since [cf Eq. (3)]:

$$k_{\text{et}}^{a} = \nu_{\text{n}} \exp(-\beta \Delta G^{*})$$
 (28)

The transmission coefficient κ_{e1} can be identified with the more familiar quantity $\tilde{\kappa}_{e1}$ in the TST limit where solvent friction disappears such that $2\pi\nu_{n}=\omega_{o}$. In the presence of friction, $\kappa_{e1}>\tilde{\kappa}_{e1}$; from Eqs. (3) and (28) κ_{e1} can be expressed simply as $\kappa_{e1}=k_{et}/k_{et}^{a}$. A general relation between κ_{e1} and $\tilde{\kappa}_{e1}$ can be obtained simply from Eqs. (21) and (25):

$$\kappa_{e1} = \tilde{\kappa}_{e1} / [\kappa_a + \tilde{\kappa}_{e1} (1 - \kappa_a)] \tag{29}$$

where the "adiabatic transmission coefficient" $\kappa_{\rm a}$ (- $k_{\rm et}^{\rm a}/k^{\rm TST}$) describes the influence of solvent friction upon $k_{\rm et}$ in the absence of reaction nonadiabaticity. In some earlier calculations, ¹² we accounted for the combined effects of friction and nonadiabaticity upon $k_{\rm et}$ by using a modified form of Eq. (21) expressed in terms of $\kappa_{\rm el}$ rather than $\tilde{\kappa}_{\rm el}$. The numerical similarities of these treatments are noted briefly in Appendix B.

NUMERICAL RESULTS AND DISCUSSION

Homogeneous Bimolecular Reactions

Having outlined a relatively versatile means of predicting the functional $k_{\rm ex}$ - $\tau_{\rm L}^{-1}$ dependence, at least in the continuum Debye limit, it is of primary interest to examine the extent to which this solvent-friction dependence is sensitive to the fundamental kinetic parameters involved, and especially to the extent of donor-acceptor orbital overlap, H_{12}^{o} .

Figure 1 displays an illustrative set of log $k_{\rm ex}$ -log $\tau_{\rm L}^{-1}$ plots for homogeneous bimolecular processes obtained using the conventional simplified expression for $k_{\rm et}$ [Eq. (23)] along with Eqs. (1), (4)-(6), for the sequence of H_{12}° values 0.02, 0.05, 0.1, 0.2, 0.5, and 1.0 kcal mol⁻¹. (The $k_{\rm ex}$ values at a given $\tau_{\rm L}$ value increase with increasing H_{12} .) The other parameters required in this analysis were held constant as follows: $\Delta G_{\rm c}^{\star} = 5.0$ kcal mol⁻¹, $\alpha = 1.25$ Å⁻¹, $r_{\rm o} = 2a = 8$ Å and T = 298 K. These values are probably typical for many experimental systems. 11,16,18 Choosing different values of α and $r_{\rm o}$, at least within the ranges normally expected experimentally (ca 0.8 to 1.5 Å⁻¹ and 3 to 6 Å, respectively) have relatively little influence on the form of these plots. Admittedly, the larger H_{12} values chosen violate the assumption $H_{12} << k_{\rm B}T$ that is embodied

in Eq. (23); it is nevertheless still instructive to examine the influence of altering H_{12} more widely upon the predicted $k_{\rm ex} \cdot \tau_{\rm L}^{-1}$ dependence. Figure 1 shows that while approximately $k_{\rm ex}$ α $\tau_{\rm L}^{-1}$ at relatively small $\tau_{\rm L}^{-1}$ values, as expected, increasing $\tau_{\rm L}^{-1}$ leads eventually to marked decreases in the log $k_{\rm ex}$ -log $\tau_{\rm L}^{-1}$ slope and eventually to a solvent friction-independent rate in accordance with the Fermi Golden Rule, whereupon $k_{\rm ex}$ α $H_{12}^{\rm o}$. Necessarily, then, the range of $\tau_{\rm L}^{-1}$ values where these deviations occur shift markedly upwards as $H_{12}^{\rm o}$ is increased; i.e. solvent friction effects persist to larger $\nu_{\rm n}$ values. Even for $\tau_{\rm L}$ and/or $H_{12}^{\rm o}$ values that are sufficiently large so that essentially $k_{\rm ex}$ α $\tau_{\rm L}^{-1}$, $k_{\rm ex}$ is seen to increase significantly with increasing $H_{12}^{\rm o}$. This is due to the corresponding decreases in the effective barrier height [Eq. (5)].

Figures 2A & B display corresponding sets of log $k_{\rm ex}$ -log $r_{\rm L}^{-1}$ plots obtained by utilizing the more complete $k_{\rm et}$ expression [Eq. (27)], including the effects of barrier-top roundedness upon $k_{\rm et}^{-1}$. These calculations utilized the same input parameter values as in Fig. 1, but with inertial limiting (i.e. TST) frequencies, $\omega_{\rm o}/2\pi$, of 1 x 10^{12} and 5 x 10^{12} s⁻¹ in Figs. 2A and B, respectively. (These values represent typical rough lower and upper limits of $\omega_{\rm o}/2\pi$ for simple polar solvents. 22) As before, $k_{\rm ex}$ was calculated from $k_{\rm et}(r)$ using Eqs. (1), (4)-(6), with $k_{\rm et}^{\rm e}(r)$ obtained using Eqs. (8)-(16), $\tilde{\kappa}_{\rm el}$ from Eq. (20) and $k_{\rm el}^{\rm TST}$ from Eq. (18). The evaluation of $k_{\rm ex}$ in this manner therefore involves a double integration, both spatially [Eq. (1)] and along the reaction coordinate [Eq. (8)]. The double integrals were evaluated using a standard two-dimensional quadrature technique, 31 executed on the Purdue University Cyber 205 supercomputer using double precision (128 bit). [The single integral

calculations, for example in Fig. 1, were undertaken using a Zenith 387 laboratory microcomputer with 64 bit precision at 16 MHz.]

The overall shapes of the log $k_{\rm ex}$ - log $r_{\rm L}^{-1}$ plots in Figs. 2A and B do not differ greatly from those in Fig. 1, indicating that the inclusion of the effects of barrier-top curvature and solvent inertia do not have a dramatic effect on the rate-solvent friction dependence under most Nevertheless, the influence of the latter factor is clearly seen in the traces in Figs. 2A and B for the highest H12 values (i.e. for the strongest electronic coupling) in that the plots deviate from linearity for large $r_{\rm L}^{-1}$ values to a greater extent as $\omega_{\rm o}$ is decreased (compare Fig. 2A versus 2B). This behavior reflects the approach to the inertial limiting rate as the solvent friction is reduced to small values (i.e. when $\tau_1^{-1} \geq \omega_0$). However, in some experimental systems this "inertial limit" may not be observable, 1a,23 in part due to the well-known onset of diffusion control. 33 The primary influence of barrier-top roundedness is to diminish the displacements between the log $k_{\rm ex}$ - log $r_{\rm L}^{-1}$ curves in the "adiabatic" region, corresponding to large $au_{\rm L}$ (i.e. high friction), where roughly $k_{\rm et} ~\alpha ~\tau_{\rm L}^{-1}$ (compare Figs. 2A,B with Fig. 1). This effect arises because the inclusion of barrier-top roundedness (i.e. deviations from a cusp) tends to depress $\nu_{\rm n}$, and therefore $k_{\rm et}$ and $k_{\rm ex}$, increasingly as ${\rm H}_{12}^{\rm o}$ and hence the extent of this curvature increases (vide supra).

One significant feature of both Figs. 1 and 2 is that the slopes of the log $k_{\rm ex}$ -log $\tau_{\rm L}^{-1}$ plots are significantly below unity even within the relatively high friction, "adiabatic", region. Even for strong electronic coupling, say when $H_{12}^{\rm o}=1$ kcal mol⁻¹ (i.e. the uppermost trace in these figures), the log $k_{\rm ex}$ - log $\tau_{\rm L}^{-1}$ slopes increase slightly with decreasing

 $\tau_{\rm L}^{-1}$. For example, for the trace where ${\rm H_{12}^o}=1~{\rm kcal~mol^{-1}}$ in Fig. 2B, the slope increases from 0.93 for $\tau_{\rm L}^{-1}=10^{11}~{\rm s^{-1}}$ to 0.98 for $\tau_{\rm L}^{-1}=10^8~{\rm s^{-1}}$. Although the degree of nonlinearity can be relatively minor (as in this example), it reflects in part the changes in the form of the ${\rm k_{et}}$ -r distribution [i.e. the integrand in Eq. (1)] as the extent of solvent friction is altered (cf ref. 15).

Given this effect, it is of interest to compare more closely such $\log k_{\rm ex}$ - $\log \tau_{\rm L}^{-1}$ plots obtained by performing a spatial $k_{\rm et}$ integration [i.e. using Eq. (1)] with corresponding curves resulting from the simplified "encounter preequilibrium" treatment [Eq. (7)]. Figure 3 contains a pair of comparisons of this type for representative $\mathrm{H}^{\mathrm{o}}_{12}$ values of 0.05 and 0.5 kcal mol⁻¹. In both cases, the solid traces were extracted from Fig. 2B, i.e. involving a spatial $k_{\rm et}$ integration and including the effects of both barrier-top roundedness and solvent inertia. The dotted traces were taken from Fig. 1, i.e. with only spatial k_{et} integration taken into account. (The numerical parameters used in Fig. 3 are identical to those in Figs. 1 and 2B.) The corresponding dashed curves in Fig. 3, on the other hand, include the effects of barrier-top roundedness and solvent inertia as for the solid traces, but k_{ex} was derived from k_{et} by employing Eq. (7) rather than using the spatial integration procedure. The $k_{\bullet,\bullet}$ values used to calculate k_{ex} from Eq. (7) refer to the values with the reactants essentially in contact, i.e. with $r = r_o$, with K_p taken as $0.25 \ \underline{\text{M}}^{-1}$. This latter value, although somewhat arbitrary, corresponds to that expected for r_o (= 2a) = 8 Å, with an effective "reaction zone thickness" of about 0.5 Å. 11b,d Since $K_{_{\! P}}$ is presumed to be independent of both $au_{\rm L}^{-1}$ and $ext{H}_{12}^{\rm o}$ in this simple analysis, the form of the resulting $\log k_{\rm ex}$ - $\log \tau_{\rm L}^{-1}$ curves (dashed traces in Fig. 3) will reflect only the friction-dependent behavior of the unimolecular rate constant $k_{\rm et}$ for the reactants in contact (cf calculations in ref. 12).

Although in some respects similar, this trio of plots for both $H_{12}^{\circ} = 0.05$ and 0.5 kcal mol⁻¹ (lower and upper sets, respectively, in Fig. 3) show subtle yet significant differences. In particular, the curves calculated using the spatial $k_{\tt at}$ integration (solid, dotted traces) exhibit significantly greater nonlinearities as well as smaller slopes than that obtained from the simple preequilibrium treatment. Given that the τ_1^{-1} values for simple polar solvents at ambient temperatures differ by only about 50 fold (or less), within the range ca 1 x 10^{11} to 5 x 10^{12} s⁻¹, 11 c, d inspection of Figs. 1-3 shows that sub-unit log $k_{\rm ex}$ - log $\tau_{\rm L}^{-1}$ slopes (i.e. the fractional power law $k_{\rm ex} ~\alpha ~\tau_{\rm l}^{\rm -x}$, where 0 < x < 1) might often be anticipated experimentally. The average value of x should depend both on the magnitude of H_{12}^{o} and the range of r_{1} values accessed (cf. ref. 6b). The presence of solvent inertial effects, anticipated for low-friction solvents, may also act to depress these slopes somewhat, especially since $\omega_{_{\mathrm{O}}}$ is anticipated to vary with the solvent in a qualitatively similar fashion, albeit to a markedly smaller extent than τ_L^{-1} .

Interestingly, $\log k_{\rm ex}$ - $\log \tau_{\rm L}^{-1}$ (or related) plots having similarly fractional slopes have been predicted on the basis of other considerations, such as the influence of reactant vibrational distortions⁸ and to the presence of additional high-frequency solvent relaxation. The experimental observation of such a "fractional power-law" rate- $\tau_{\rm L}^{-1}$ dependence in at least one case ^{10f} has been attributed to the former factor. It would, however, seem at least as likely that this observation

is actually due to the friction-dependent emergence of nonadiabatic effects, as considered here. In any case, it is evident that such fractional log $k_{\rm ex}$ - log $\tau_{\rm L}^{-1}$ dependencies should often be expected. This is especially true given the likelihood that many outer-sphere electron-transfer reactions involve relatively weak donor-acceptor orbital overlap, such that $H_{12}^{\rm o} \leq 0.1$ to 0.2 kcal mol⁻¹. 4a,16

In order to investigate more closely the role of the k_{et} -r functionality upon the predicted $k_{ex} - \tau_L^{-1}$ curves it is also instructive to examine the dependence of $k_{\mathtt{et}}$ upon r for varying degrees of solvent friction and orbital overlap. Figures 4A and B contain plots of $\boldsymbol{k}_{\text{et}}$ ratioed to the value when $r = r_0$ (i.e. reactant spheres in contact), $k_{\rm et}/k_{\rm et}^{\rm o}$, against the radial separation distance, (r - $r_{\rm o}$). The rate constants were calculated as in Fig. 2B, thereby accounting both for barrier-top roundedness and solvent inertial effects. The four traces shown in both Figs. 4A and B refer to H_{12}^{o} values of 0.02, 0.2, 0.5 and 1.0 kcal mol⁻¹, as indicated. The τ_1 values in Figs. 4A and B are held constant at 5 x 10^{-8} s and 5 x 10^{-12} s, respectively. Although somewhat arbitrary, these $au_{\rm L}$ values are chosen so to correspond to conditions where the reaction remains entirely adiabatic (at $r = r_0$) over the entire range of H_{12}^o values selected (Fig. 4A), and where the reaction switches from essentially nonadiabatic to adiabatic behavior as $\mathrm{H}^{\mathrm{o}}_{12}$ is increased (Fig. 4B). Differences in these (k_{et}/k_{et}^{o}) - r profiles as H_{12}^{o} is varied reflect variations in the relative spatial-dependent contributions to the overall integration yielding k_{ax} [Eq. (1)].

In the adiabatic case (Fig. 4A), the form of this $(k_{\rm et}/k_{\rm et}^{\rm o})$ -r dependence is seen to depend only to a small extent upon $H_{12}^{\rm o}$. The slightly

more pronounced decrease in k_{et}/k_{et}^o with increasing r for larger H_{12}^o values is due primarily to the concomitant increases in ΔG^* caused by the spatial variations in H_{12} . Slightly greater alterations in the (k_{et}/k_{et}^o) -r profiles with increasing H_{12}^o are seen in Fig. 4B, in that the shallowness of the descent with increasing r is maximized at an intermediate H_{12}^o value, 0.2 kcal mol⁻¹. This nonmonotonic behavior is due to the competing influences of the H_{12} -r dependence upon κ_{e1} and ΔG^* ; only the latter factor influences the profiles in Fig. 4A. In any case, no dramatic changes in these profiles with varying H_{12}^o (or τ_L) are seen in either Fig. 4A or B.

This relative invariance of the shape of the $(k_{\rm et}/k_{\rm et}^{\circ})$ -r profiles is responsible for the approximate applicability of the simple encounter preequilibrium treatment in the present context, since then the effective value of $K_{\rm p}$ will not vary greatly with either H_{12}° or $\tau_{\rm L}$. This perhaps fortunate situation is brought about in part by the increases in ΔG^{*} with r predicted from Eq. (5) and especially Eq. (6). In order to illustrate this point, a set of $(k_{\rm et}/k_{\rm et}^{\circ})$ -r curves, corresponding to the conditions of Fig. 4A except that $\Delta G_{\rm c}^{*}$ is taken to be independent of r, are shown in Fig. 5. In contrast to Fig. 4A, the $(k_{\rm et}/k_{\rm et}^{\circ})$ -r profiles in Fig. 5 extend to substantially larger r values and are much more dependent upon H_{12}° . These differences graphically demonstrate the importance of the anticipated spatial dependencies of ΔG^{*} to the integral in Eq. (1).

As already noted, Beretan and Onuchic have recently considered in detail some factors that influence the form of the bimolecular rate expression and its dependence on solvent friction in the intermediate regime between the adiabatic and nonadiabatic limits. Included in ref. 15 is a discussion of some assumptions embodied in the well-known

spatial integration formula for $k_{\rm ex}$ [Eq. (1)]. In essence, their analysis utilizes a relation similar to Eq. (23) so that no explicit consideration of barrier-shape effects upon $k_{\rm et}^a$ are included; as noted above this expression is valid only for $H_{12} << k_{\rm B}T$. The present results also differ from those in ref. 15 in that the numerically important effects of spatial variations in ΔG^{*} are not contained in the latter.

Electrochemical Reactions

Although the foregoing analysis applied to electrochemical reactions proceeds along the same lines as for bimolecular processes, the form of the resulting log $k_{\rm ex}$ - log $\tau_{\rm L}^{-1}$ plots can be significantly different. This is not only because of the differing form of the spatial $k_{\rm et}$ integration [Eq. (2) versus Eq. (1)] but also in view of the milder dependence of $\Delta G_{\rm c}^{\star}$ upon the donor-acceptor separation in the electrochemical case (vide supra).

Figure 6 shows typical plots of log k_{ex}^{\bullet} versus log r_L^{-1} obtained for conditions corresponding to those in Fig. 3, but where the ΔG^{*} -r dependence is given by Eq. (6a) and the k_{et} -r integration utilizes Eq. (2). As before, the solid and dotted curves refer to the presence and absence, respectively, of the effects of barrier-top roundedness and solvent inertia. The distance of closest approach is taken as 8 Å, with ΔG_c^{*} for infinite surface-reactant separation (i.e. $r_e \rightarrow \infty$) set at 5 kcal mol⁻¹. (These values are typical for some experimental systems. ^{11c}) The corresponding dashed curves in Fig. 6 were obtained from the encounter preequilibrium treatment as in Fig. 3, but with K_p taken as 0.5 Å (cf refs. 11b, 13c). As before, the lower and upper trio of curves (displaced as

such at large τ_L^{-1}) refer to H_{12}^o values (i.e. H_{12} at $r_e = 8$ Å) of 0.05 and 0.5 kcal mol⁻¹.

Close comparison of Fig. 6 with Fig. 3 shows that the $\tau_{\rm L}$ -dependent log $k_{\rm ex}$ - log $\tau_{\rm L}^{-1}$ slopes for the corresponding electrochemical and homogeneous curves calculated using $k_{\rm et}$ spatial integration are very similar (within ca 5%), being smaller than the slopes for the companion "encounter preequilibrium" curves to a comparable extent. This result might at first sight appear surprising, since the presumed increases in ΔG^* with increasing r are milder in the electrochemical case, yielding $k_{\rm et}$ -r profiles which extend to larger r and exhibit a greater sensitivity to $\tau_{\rm L}^{-1}$ than for the homogeneous-phase case (vide supra). Offsetting this factor is the involvement of linear spatial coordinates in the electrochemical $k_{\rm et}$ -r integration rather than spherical coordinates as in the homogeneous-phase case. In comparison with the latter, the former function is weighted more heavily towards rate contributions for smaller donor-acceptor separations. 34

Overall, then, similar log $k_{\rm ex}$ - log $\tau_{\rm L}^{-1}$ dependencies might often be anticipated for electrochemical and homogeneous-phase exchange processes. Differences can nevertheless be expected, especially since the values of H_{12} and their functional dependence upon r may be quite dissimilar in the two environments. Another complication for electrochemical process is that the dependence of ΔG_c^* upon r_e may be quite different to that predicted by the simple imaging expression Eq. (6a).

Concluding Remarks

It should be recognized that the assumptions embodied in the foregoing

analysis impart to it less than general applicability. In particular, the barrier-crossing frequency may often be influenced importantly by innershell as well as solvent reorganization dynamics. The analysis will also need to be modified for reactions having large driving forces, and where electrostatic work terms are present since they can alter substantially the form of k, (r). These complications will nevertheless be absent for homogeneous self-exchange processes where one of the reacting partners is uncharged. This circumstance prevails in the experimental companion paper to the present work. 11g Even in the absence of such work terms, however, the assumptions that g_{DA} is independent of r, and that H_{12} remains constant when the solvent is varied may prove to be significant weaknesses once specific solvation effects upon the approach of the reaction partners are The desirability of including the effects of reactant considered. orientation upon the H_{12} -separation distance profiles is also clear. 16,38 On the other hand, the predicted rate-friction dependencies are not particularly sensitive to most details of the kinetic model for $\boldsymbol{k}_{\text{et}},$ such as the form of $\tilde{\kappa}_{\rm el}$ used, the r-dependence of ${\rm H_{12}}$, and the modifications to ka, caused by barrier-top shape effects.

The effect of non-Debye relaxation, which appear to exert marked influences upon $k_{\rm ex}$ in a number of solvents, $^{10\rm e,llc,d}$ can be incorporated into the numerical treatment. 22 However, given the magnitude of this effect together with complications in its physical description 22 the analysis of combined electronic coupling-solvent friction factors is perhaps most prudently restricted to Debye-like media. Deviations from the dielectric continuum approximation, manifested most simply in spatial variations in $\tau_{\rm L}$, can also be considered, although on the basis of a mean

spherical approximation (MSA) treatment 9 the influence upon $k_{\rm ex}$ can be relatively small. 39

Given that most outer-sphere electron-transfer processes are likely to involve relatively weak or moderate degrees of electronic coupling, however, the present treatment should provide not only a useful means of describing the effects of varying the solvent friction, but also can yield valuable information on the magnitude of $\rm H_{12}$ itself. Just such an application from our laboratory, to the self-exchange kinetics of various cobalt and iron metallocenes, is presented elsewhere. 11g

Acknowledgments

Professors D. W. Oxtoby and J. T. Hynes provided valuable advice concerning adiabatic rate expressions. We are also grateful to Dr. David Beratan for helpful discussions. This work is supported by the Office of Naval Research.

Appendix A

As noted in the text, we utilize the treatment for adiabatic barrier crossing described by Okuyama and Oxtoby, ²⁴ involving the concept of a position-dependent diffusion coefficient, D_p . This requires the calculation of a pair of diffusion coefficients, D_w and D_b , which describe the passage of the system sequentially up the reactant well (for $E \leq E_b$) and over the barrier top ($E_b < E \leq E_r$), respectively. Outlined here is the derivation of Eqs. (15) and (16), which express D_w and D_b in terms of the effective friction η_w^{eff} and η_b^{eff} , respectively [Eq. (14)]. The problem involves the calculation of η_w^{eff} and η_b^{eff} for two Brownian oscillators with natural frequencies ω_o and ω_b acted on by external forces $-dV_1/dE$ and $-dV_b/dE$, respectively. We use the results of refs. 24 and 25 derived on the basis of the Generalized Langevin equation (GLE) for Brownian oscillators and, more specifically, the Generalized Smoluchowski equation for the corresponding GLE.

The diffusion coefficient D_p is defined as the long time limit of $D_p(t)$, expressed in terms of the position autocorrelation function $\chi_p(t) = \langle E(t) E(0) \rangle_p / \langle [E(0)]^2 \rangle_p$:

$$D_{p} = \lim_{t \to \infty} D_{p}(t) = \lim_{t \to \infty} (\beta m_{E} \omega_{p}^{2})^{-1} [\pm d \ln \chi_{p}(t)/dt] = (\beta m_{E} \eta_{p}^{eff})^{-1}$$
(A.1)

where the plus and minus signs are approximate for p - b and p - w, respectively.

Since we are concerned here only with Debye solvents, the friction η is independent of frequency and equal to $\omega_{\rm o}^2 \tau_{\rm L}$ (e.g. ref. 4), whereby $\chi_{\rm w}({\rm t})$ and $\chi_{\rm b}({\rm t})$ are determined by the inverse Laplace transforms:

$$\chi_{\omega}(t) = \mathcal{I}^{-1} \{ (s + \eta)/(s^2 + \eta s + \omega_0^2) \}$$
 (A.2)

$$\chi_{b}(t) = \mathcal{I}^{-1} \{(s + \eta)/s^{2} + \eta s \cdot \omega_{b}^{2}\}$$
 (A.3)

The solutions $\chi_{p}(t)$ can be written in the general form:

$$\chi_{p}(t) = A_{1p} \exp(S_{1p}t) + A_{2p} \exp(S_{2p}t)$$
 (A.4)

where S_{1p} and S_{2p} are the roots of the quadratic equations in the denominators of Eqs. (A.2) and (A.3) for p = w and p = b, respectively, and

$$A_{1p} - (S_{1p} + \eta)/(S_{1p} - S_{2p})$$

$$A_{2p} - (S_{2p} + \eta)/(S_{2p} - S_{1p})$$
(A.5)

The correlation function $\chi_{\rm p}({\rm t})$ for the "instability region" $V_{\rm b}({\rm q})$ is determined by the positive real root 24,25 $S_{\rm 1b} = [(\eta^2 + 4\omega_{\rm b}^2)^{\frac{1}{2}} - (\eta)]/2$. Inserting $\chi_{\rm b}({\rm t})$ [= $A_{\rm 1b}$ exp($S_{\rm 1b}$ t)] into Eq. (A.1) yields $D_{\rm b} = S_{\rm 1b}/\beta m_{\rm E} \omega_{\rm b}^2$, leading to Eq. (16).

For the overdamped and critically damped friction regimes $(\eta \geq 2\omega_{_{\rm O}})$, $\chi_{_{\rm W}}(t)$ is determined by the two negative roots $S_{2w} \leq S_{1w} \leq 0^{24a}$ and its long-time behavior is determined by the larger root S_{1w} , i.e. only by the first term in Eq. (A.4). Inserting again $\chi_{_{\rm W}}(t)$ into Eq. (A.1) yields $D_{_{\rm W}} = (-S_{1w})/\beta m_{_{\rm E}} \omega_{_{\rm O}}^2$, giving Eq. (15a).

For the underdamped regime ($\eta < 2\omega_o$), we obtain two conjugate roots $S_{1w} = S_{2w}^* = a_w + ib_w$; also $A_{1w} = A_{2w}^* = x + iy$. Thus: 24a

$$\chi_{w}(t) = 2(x^{2} + y^{2})^{\frac{1}{2}} \exp(a_{w}t) \cos(\varphi + b_{w}t)$$
 (A.6)

and

$$D_{w}(t) = (\beta m_{E} \omega_{o}^{2})^{-1} [-s_{w} + b_{w} tg(\varphi + b_{w} t)]$$
 (A.7)

with φ = arctg (y/x). The long time behavior of $D_w(t)$ can be considered to be dominated by $-(\beta m_E \omega_o^2)^{-1} a_w$ due to the oscillatory character of the tg-term. Making this approximation, ^{24a} we obtain Eq. (15b).

It is also of interest to examine the forms of Eqs. (15) and (16) in

the limiting case where motion in both the well and the barrier-top regions are overdamped, i.e. when $\eta >> \omega_{\rm o}$ and $\eta >> \omega_{\rm b}$, respectively. In this case, the square root terms in both Eq. (15a) and (16) can be approximated as $(1 \pm x^2)^{\frac{1}{2}} = 1 - 0.5x^2$, where $x = 2\omega_{\rm o}/\eta$ or $2\omega_{\rm b}/\eta$, respectively, reduces these relations simply to $\eta_{\rm w}^{\rm eff} = \eta_{\rm b}^{\rm eff} = \eta$. This limiting case corresponds to the Kramers diffusion treatment generalized to allow for barrier-top curvature, 3 which we utilized for the numerical calculations in ref. 12.

Appendix B

Considered here is a justification of the form of $\tilde{\kappa}_{\rm el}$ [Eq. (20)] employed in the above analysis.

We can generally express k_{et} in the form [cf Eq. (21)]

$$k_{et} = \frac{k_{et}^{na}}{1 + (k_{et}^{na}/k_{et}^{a})} = \frac{\Omega}{1 + \Omega} \nu_{n} \exp(-\beta \Delta G^{*})$$
 (B.1)

From Eqs. (24) and (25), the "adiabaticity criterion" Ω (= k_{et}^{na}/k_{et}^{a}) is for $H_{12} \ll k_{B}T$ [i.e. where Eq. (B.1) reduces to Eq. (23)]:

$$\Omega = 4\pi \left[H_{12} \right]^2 \hbar^{-1} E_r^{-1} \tau_1 \tag{B.2}$$

since [cf Eqs. (24),(25)]:

$$\nu_{n} = \tau_{L}^{-1} (\beta \Delta G^{*}/4\pi)^{\frac{1}{2}}$$
 (B.3)

Combining Eq. (B.1) with Eq. (3) yields

$$\kappa_{e1} = \Omega/(1+\Omega) \tag{B.4}$$

The well-known form of $\gamma_{\rm T}^{19}$ [Eq. (20a)], suggests the use of the related quantity $\gamma_{\rm f}$:

$$\gamma_{\rm f} = |H_{12}|^2/4\hbar \pi \nu_{\rm n} (E_{\rm r} k_{\rm B}T)^{k_{\rm I}}$$
 (B.5)

where $\omega_{\rm o}$ is replaced by $2\pi~\nu_{\rm n}$ in order to allow for the presence of solvent friction (cf ref. 40). From Eqs. (B.2) and B.5) we obtain $\Omega=4\pi^{3/2}\gamma_{\rm f}$; from Eq. (B.4) we can express $\kappa_{\rm el}$ as

$$\kappa_{el} = 4\pi^{3/2} \gamma_f / (1 + 4\pi^{3/2} \gamma_f)$$
 (B.6)

The form of Eq. (B.6) suggests intuitively the corresponding expression [Eq. (20)] for $\tilde{\kappa}_{\bullet 1}$ given in the text.

The form of Eq. (B.5), and its TST analog Eq. (20), although approximate, provides a useful means of interpolating between the adiabatic and nonadiabatic limits. Table Bl contains a numerical comparison between values of κ_{el} evaluated for typical values of ω_{o} and H_{12} (at ΔG^* = 6 kcal mol⁻¹) using the approximate form Eq. (20) and the exact expression Eq. (19). Also included in Table Bl are corresponding κ_{el} values obtained using the oft-encountered multiple-crossing expression, 13a,14a Eq. (21). Inspection of Table B.1 shows that Eq. (20) provides a generally better approximation than Eq. (21) to the exact κ_{el} expression Eq. (19), although the differences are not large. The preference for such a Padé form for κ_{el} , as in Eq. (20), has also been noted elsewhere. 6b

This numerical success of Eq. (20) also underscores the general usefulness of Eq. (B.6). Thus in the presence of friction, Eq. (B.6) becomes equivalent to the transmission coefficient extracted by inserting Eqs. (23) and (B.3) for $k_{\rm et}$ and $\nu_{\rm n}$, respectively, into Eq. (3). In the absence of friction, Eq. (B.6) reduces to Eq. (20). Equation (B.6) therefore provides a useful approximate means of accounting in a combined manner for the effects of friction and reaction nonadiabaticity. A related

approach, involving the use of Eq. (21) with $\omega_{\rm o}/2\pi$ replaced by $2\pi\nu_{\rm n}$, was utilized in our earlier numerical calculations of rate-friction dependencies. 12,41

TABLE B1. Numerical Comparisons of the Electronic Transmission Coefficient $\tilde{\kappa}_{e1}$ Evaluated using Different Expressions for 6.0 kcal mol⁻¹ barrier at 298 K.

H ₁₂ , kcal mol ⁻¹	0.6	0.2	0.2	0.1	0.1	0.05	0.01
$\omega_{o}/2\pi$, s ⁻¹	10 ¹³	1013	1012	1013	19 ¹²	1010	10 ⁹
$\tilde{\kappa}_{el}$ [Eq. (19)]	0.504	0.103	0.540	0.029	0.219	0.945	0.785
$\tilde{\kappa}_{\bullet 1}$ [Eq. (20)]	0.520	0.110	0.553	0.030	0.236	0.885	0.756
$\widetilde{\kappa}_{el}$ [Eq. (21)]	0.590	0.113	0.631	0.030	0.250	0.989	0.881

References

- For example, see (a) J. T. Hynes, in "Theory of Chemical Reaction Dynamics", M. Baer, ed., CRC Press, Boca Raton, FL, Vol. IV, 1985, Chapter 4; (b) J. T. Hynes, J. Stat. Phys., 42, 149 (1986); (c) D. Chandler, J. Stat. Phys., 42, 49 (1986).
- (a) L. D. Zusman, Chem. Phys., <u>49</u>, 295 (1980); (b) B. T. Yakobson, A. I. Burschtein, Chem. Phys., <u>49</u>, 385 (1980); (c) I. V. Alexandrov, Chem. Phys., <u>51</u>, 499 (1980).
- 3. D. F. Calef, P. G. Wolynes, J. Phys. Chem., <u>87</u>, 3387 (1983).
- 4. J. T. Hynes, J. Phys. Chem., <u>90</u>, 3701 (1986).
- 5. I. Rips, J. Jortner, J. Chem. Phys., <u>87</u>, 2090 (1987).
- (a) M. Sparpaglione, S. Mukamel, J. Phys. Chem., <u>91</u>, 3938 (1987); (b)
 M. Sparpaglione, S. Mukamel, J. Chem. Phys., <u>88</u>, 3263 (1988); (c) M.
 Sparpaglione, S. Mukamel, J. Chem. Phys., <u>88</u>, 4300 (1988).
- 7. L. D. Zusman, Chem. Phys., <u>119</u>, 51 (1988).
- (a) H. Sumi, R. A. Marcus, J. Chem. Phys., <u>84</u>, 4894 (1986); (b) W. Nadler, R. A. Marcus, J. Chem. Phys., <u>86</u>, 3906 (1987).
- 9. (a) P. G. Wolynes, J. Chem. Phys., <u>86</u>, 5133 (1987); (b) I. Rips, J. Klafter, J. Jortner, J. Chem. Phys., <u>88</u>, 3246 (1988).
 - (a) A. Kapturkiewicz, B. Behr, J. Electroanal. Chem., <u>179</u>, 187 (1984);
 (b) W. Harrer, G. Grampp, W. Jaenicke, Chem. Phys. Lett., <u>112</u>, 263 (1984);
 (c) A. Kapturkiewicz, M. Opallo, J. Electroanal. Chem., <u>185</u>, 15 (1985);
 (d) M. Opallo, A. Kapturkiewicz, Electrochim. Acta, <u>30</u>, 1301 (1985);
 (e) M. Opallo, J. Chem. Soc. Far. Trans. I, <u>82</u>, 339 (1986);
 (f) M. McGuire, G. McLendon, J. Phys. Chem., <u>90</u>, 2547 (1986).
 - (a) M. J. Weaver, T. Gennett, Chem. Phys. Lett., <u>113</u>, 213 (1985); (b)
 T. Gennett, D. F. Milner, M. J. Weaver, J. Phys. Chem., <u>89</u>, 2787 (1985); (c) G. E. McManis, M. N. Golovin, M. J. Weaver, J. Phys. Chem., <u>90</u>, 6563 (1986); (d) R. M. Nielson, G. E. McManis, M. N. Golovin, M. J. Weaver, J. Phys. Chem., <u>92</u>, 3441 (1988); (e) R. M. Nielson, G. E. McManis, L. K. Safford, M. J. Weaver, J. Phys. Chem.,

- 93, 2152 (1989); (f) R. M. Nielson, M. J. Weaver, J. Electroanal. Chem., 260, 15 (1989). (g) G. E. McManis, R. M. Nielson, A. Gochev, M. J. Weaver, J. Am. Chem. Soc., in press. (h) R. M. Nielson, G. E. McManis, M. J. Weaver, J. Phys. Chem., submitted.
- G. E. McManis, A. K. Mishra, M. J. Weaver, J. Chem. Phys., <u>86</u>, 5550 (1987).
- (a) N. Sutin, Prog. Inorg. Chem., 30, 441 (1983); (b) G. M. Brown, N. Sutin, J. Am. Chem. Soc., 101, 883 (1979); (c) J. T. Hupp, M. J. Weaver, J. Electroanal. Chem., 152, 1 (1983); (d) T. T-T. Li, M. J. Weaver, C. H. Brubaker, J. Am. Chem. Soc., 104, 2381 (1982).
- 14. (a) B. L. Tembe, H. L. Friedman, M. D. Newton, J. Chem. Phys., <u>76</u>, 1490 (1982); (b) M. D. Newton, N. Sutin, Ann. Rev. Phys. Chem., <u>35</u>, 437 (1984).
- (a) J. N. Onuchic, D. N. Beretan, J. Phys. Chem., <u>92</u>, 4818 (1988); (b)
 D. N. Beretan, J. N. Onuchic, J. Chem. Phys., <u>89</u>, 6195 (1988).
- 16. (a) M. D. Newton, Int. J. Quant. Chem. Quant. Chem. Symp., <u>14</u>, 363 (1980); (b) M. D. Newton, J. Phys. Chem., <u>92</u>, 3049 (1988); (c) Exponential H₁₂-r behavior is not, however, always expected; see: J. Logan, M. D. Newton, J. Chem. Phys., <u>78</u>, 4086 (1983).
- 17. Equation (4) is sometimes written in a similar form, but with the electronic matrix elements expressed as linear rather than squared terms (e.g. ref. 16). The present, squared, form is utilized here since for nonadiabatic processes, $\kappa_{el} \propto R_{12}^2$, 16 so that the coefficient α in Eq. (4) describes the decrease in κ_{el} with increasing r (see text).
- For example: (a) S. Mayo, W. Ellis, R. Crutchley, H. B. Gray, Science, 233, 948 (1986); (b) G. McLendon, Acc. Chem. Res., 21, 160 (1988); (c) K. W. Renfield, J. R. Miller, M. N. Paddon-Row, E. Cotsaris, A. M. Oliver, N. S. Hush, J. Am. Chem. Soc., 109, 5061 (1987); (d) T. T-T. Li, M. J. Weaver, J. Am. Chem. Soc., 106, 6107 (1984).

- 19. For example: J. Ulstrup, "Charge Transfer Processes in Condensed Media", Springer, Berlin, 1979, Chapter 5.
- (a) R. A. Marcus, J. Chem. Phys., <u>24</u>, 966 (1956); (b) R. A. Marcus, J. Chem. Phys., <u>43</u>, 679 (1965); (c) R. A. Marcus, Ann. Rev. Phys. Chem., <u>15</u>, 155 (1964).
- 21. (a) M. J. Powers, P. J. Salmon, R. W. Callahan, T. J. Meyer, J. Am. Chem. Soc., <u>98</u>, 6731 (1976); (b) M. J. Powers, T. J. Meyer, J. Am. Chem. Soc., <u>100</u>, 4393 (1976); (c) For a review, see: A. Haim, Prog. Inorg. Chem., <u>30</u>, 273 (1983).
- 22. G. E. McManis, M. J. Weaver, J. Chem. Phys., 90, 912 (1989).
- 23. H. Kramers, Physica, 7, 284 (1940).
- 24. (a) S. Okuyama, D. W. Oxtoby, J. Chem. Phys., <u>84</u>, 5824 (1986); (b) S. Okuyama, D. W. Oxtoby, J. Chem. Phys., <u>84</u>, 5830 (1986).
- (a) S. A. Adelman, J. Chem. Phys., <u>64</u>, 124 (1976); (b) S. A. Adelman,
 B. J. Garrison, Mol. Phys., <u>33</u>, 1671 (1977).
- 26. Note that the form of Eq. (13) differs somewhat from expressions given earlier (e.g. refs. 3,4,12); the latter are incorrect. (We are indebted to Dr. Marshall Newton for bringing the correct formulation to our attention.)
- 27. M. Morillo, R. E. Cukier, J. Chem. Phys., 89, 6736 (1988).
- 28. S. G. Cristov, "Collision Theory and Statistical Theory of Chemical Reactions", Lecture Notes in Chemistry, Springer-Verlag, Berlin, 1980, Chapter III.
- 29. (a) V. Levich, R. R. Dogonadze, Coll. Czech. Chem. Comm., <u>26</u>, 193 (1961); (b) N. R. Kestner, J. Logan, J. Jortner, J. Phys. Chem., <u>78</u>, 4148 (1974).
- 30. (a) J. E. Straub, B. J. Berne, J. Chem. Phys., <u>87</u>, 6111 (1987);
 (b) Also see related discussion in J. N. Onuchic, P. G. Wolynes, J. Phys. Chem., <u>92</u>, 6495 (1988).
- 31. W. H. Press, B. P. Flannery, S. A. Tenkolsky, W. T. Vetterling, "Numerical Recipes", Cambridge University Press, Cambridge, U.K., 1986, p. 126-130.

- 32. The "inertial limit" is predicted on the basis of the Kramers 23 and related solvent friction treatments (e.g. ref. 6) to provide a maximum rather than a plateau in the rate- τ_L^{-1} (more generally rate- η^{-1}) plots, i.e. the rate is predicted to decrease again for very low friction. Indeed, such a behavior is seen for the present log $k_{\rm ex}$ log τ_L^{-1} plots derived using Eqs. (9)-(16). However, this "Kramers turnover" is predicted here to occur only at τ_L^{-1} values (> 10^{13} s⁻¹) that are not accessible under conventional experimental conditions.
- 33. The present treatment presumes, of course, that $k_{\rm ex}$ is sufficiently smaller than the corresponding diffusion-limited rate constant so that this complication is absent.
- 34. This is because the contributions to $k_{\rm ex}$ from more distant internuclear geometries will tend to be favored more greatly for spherical rather than linear spatial coordinates since the volume increment for a given distance increment increases with r^2 for the former, yet is independent of r for the latter coordinates.
- 35. R. M. Nielson, M. N. Golovin, G. E. McManis, M. J. Weaver, J. Am. Chem. Soc., <u>110</u>, 1745 (1988).
- 36. (a) J. D. Morgan, P. G. Wolynes, J. Phys. Chem., <u>91</u>, 874 (1987); (b) L. D. Zusman, Chem. Phys., <u>112</u>, 53 (1987).
- 37. P. G. Dzhavakhidze, A. A. Kornyshev, L. I. Krishtalik, J. Electroanal. Chem., 228, 329 (1987).
- 38. For example: (a) P. Siders, R. J. Cave, R. A. Marcus, J. Chem. Phys., <u>81</u>, 5613 (1984); (b) R. P. Dominque, M. D. Fayer, J. Phys. Chem., <u>90</u>, 5141 (1986).
- 39. G. E. McManis, M. J. Weaver, J. Chem. Phys., 90, 1720 (1989).
- 40. H. Frauenfelder, P. G. Wolynes, Science, <u>229</u>, 337 (1985).
- 41. Note that Eq. (9) in ref. 12 contains a typographical error, in that the factor of 4 in the numerator (within the square root) should instead be placed in the denominator.

Figure Captions

Fig. 1

Logarithmic plots of the calculated rate constant for electron self exchange, $k_{\rm ex}$ (M^{-1} s⁻¹), against the inverse longitudinal solvent relaxation time, $\tau_{\rm L}^{-1}$, for various values of the electronic coupling matrix element, H_{12} . Values of $k_{\rm ex}$ calculated using the simplified expression for $k_{\rm et}$ [Eq. (23)] along with Eqs. (1), (4)-(6). The values of H_{12} at reactant contact, $H_{12}^{\rm o}$, are 0.02, 0.05, 0.1, 0.2, 0.5, and 1.0 kcal mol⁻¹, corresponding to progressively increasing $k_{\rm ex}$ values. Other parameters used in these calculations are $\Delta G_{\rm c}^{\star} = 5.0$ kcal mol⁻¹, $\alpha = 1.25$ Å⁻¹, $r_{\rm o} = 2a = 8$ Å, and T = 298 K.

Fig. 2

As in Fig. 1, except that $k_{\rm et}$ is calculated using the more complete expression [Eq. (27)], with $k^{\rm TST}$ given by Eq. (18), $\tilde{\kappa}_{\rm el}$ from Eq. (20), and $k_{\rm et}^{\rm a}$ from Eqs. (8)-(16). Values of $\omega_{\rm o}/2\pi$ taken to be 1 x 10¹² s⁻¹ and 5 x 10¹² s⁻¹ in Figs. 2A and 2B, respectively.

Fig. 3

Comparisons between log $k_{\rm ex}$ - log $\tau_{\rm L}^{-1}$ plots calculated by using spatial integration of $k_{\rm et}$ (solid, dotted curves) with those obtained from the simplified encounter preequilibrium treatment (dashed curves). The lower and upper sets of curves refer to $H_{12}^{\rm o}$ values of 0.05 and 0.5 kcal mol⁻¹, respectively. The solid curves were calculated exactly as in Fig. 2B, and the dotted curves as in Fig. 1. The dashed curves were calculated using $k_{\rm et}$ values obtained as for the corresponding solid curves, but by inserting $k_{\rm et}$ for $r=r_{\rm o}$ (= 8 Å) into the encounter preequilibrium expression [Eq. (7)], with $K_{\rm p}$ taken as 0.25 $M_{\rm et}^{-1}$ (see text).

Fig. 4

Plots of $k_{\rm et}$ normalized to the value with reactants in contact, $k_{\rm et}/k_{\rm et}^{\rm o}$, against the radial separation distance, $(r-r_{\rm o})$. Values of $k_{\rm et}$ calculated as noted in caption to Fig. 2B. Each trace refers to the different $H_{12}^{\rm o}$ values, as indicated (kcal mol⁻¹). Values of $\tau_{\rm L}$ fixed at 5 x 10⁻⁸ s and 5 x 10⁻¹² s in Figs. 4A and B, respectively.

Fig. 5

As in Fig. 4A, but calculated with ΔG_c^{\bigstar} value held independent of r.

<u>Fig. 6</u>

Comparisons between log $k_{\rm ex}^{\bullet}$ - log $\tau_{\rm L}^{-1}$ plots for electrochemical exchange calculated by using spatial integration of $k_{\rm et}$ (solid, dotted curves) with those obtained using the encounter preequilibrium treatment (dashed curves) (cf Fig. 3 for homogeneous bimolecular case). The lower and upper sets refer to H_{12}° values of 0.05 and 0.5 kcal mol⁻¹, respectively. The solid curves take into account the effects of barrier top roundedness and the inertial limit upon $k_{\rm et}$ using Eq. (27), along with Eqs. (8-16), (18), and (20). The parameters used are: $\Delta G^{\star} = 5.0$ kcal mol⁻¹ [for $r_{\rm e} = \infty$, Eq. (6a)], $\alpha = 1.25$ Å⁻¹, $r_{\rm o} = 2a = 8$ Å, $\omega_{\rm o}/2\pi = 5$ x 10^{12} s⁻¹, and T = 298 K. The dotted curves were calculated using Eq. (23) in place of Eq. (27). The dashed curves were calculated using $k_{\rm et}$ values obtained as for the corresponding solid curves, but by inserting $k_{\rm et}$ for $r_{\rm e} = r_{\rm o}$ (= 8 Å) into the encounter preequilibrium expression [Eq. (7)], with $K_{\rm p}$ taken as 0.5 Å (see text).

GOCHEV ET AL FIG 1

GOCHEV ET AL FIG 2A

GOCHEV ET AL FIG 2B

ROCHEV ET AL FIG 3

GOCHEV ET AL FIG 4A

GOCHEV ETAL FIG 4B

GOLHEN ET AL FIG 5

GOCHEV ET AL FIG 6