Assignment-1

AI5100: Deep Learning

Shubham Jain SM20MTECH12007

Date of submission: 04/02/2021

Solution-1

1.a) <u>Convolve Image (I) and filter (F).</u>

step 1 Rotating Filter by 180°.

$$\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$$
 [1.]

step 2 Passing rotated filter over padded image Matrix.

$$I \times F = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & -1 & 2 \end{bmatrix} \times \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$$
 [2.]

step 3 Calculation

$$=\begin{bmatrix} (0\times -1) + (0\times 1) + (0\times -1) + (2\times 1) & (0\times -1) + (0\times 1) + (2\times -1) + (0\times 1) & (0\times -1) + (0\times 1) + (0\times -1) + (0\times -1) + (1\times 1) \\ (0\times -1) + (2\times 1) + (0\times -1) + (1\times 1) & (2\times -1) + (0\times 1) + (1\times -1) + (-1\times 1) & (0\times -1) + (1\times 1) + (-1\times -1) + (2\times 1) \end{bmatrix}$$

step 4 Results

$$I \times F = \begin{bmatrix} 2 & -2 & 1 \\ 3 & -4 & 4 \end{bmatrix}$$
 [3.]

1.b) For separable filters F can be written as Matrix product of F_1 and F_2 :

step 1 Using SVD or analytically we can separate F in separate 1D Filters.

$$\underbrace{\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}}_{F_1} = \underbrace{\begin{bmatrix} 1 \\ 1 \end{bmatrix}}_{F_2} \times \underbrace{\begin{bmatrix} -1 & 1 \end{bmatrix}}_{F_2}$$
[4.]

step 2 Passing Filter F₁ over padded image matrix

$$I \times F_1 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & -1 & 2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 [5.]

step 3 Calculation

$$I \times F_1 = \begin{bmatrix} (1 \times 0) + (1 \times 0) & (1 \times 0) + (1 \times 2) & (1 \times 0) + (1 \times 0) & (1 \times 0) + (1 \times 1) \\ (1 \times 0) + (1 \times 0) & (1 \times 2) + (1 \times 1) & (1 \times 0) + (1 \times -1) & (1 \times 1) + (1 \times 2) \end{bmatrix}$$
 [6.]

step 4 Intermediate result after passing F_1 .

$$I \times F_1 = \begin{bmatrix} 0 & 2 & 0 & 1 \\ 0 & 3 & -1 & 3 \end{bmatrix}$$
 [7.]

step 5 Passing Filter F₂ over Intermediate result

$$I \times F_1 \times F_2 = \begin{bmatrix} 0 & 2 & 0 & 1 \\ 0 & 3 & -1 & 3 \end{bmatrix} \times [-1 & 1]$$
 [8.]

step 6 Calculation

$$I \times F_1 \times F_2 = \begin{bmatrix} (-1 \times 0) + (1 \times 2) & (-1 \times 2) + (1 \times 0) & (-1 \times 0) + (1 \times 1) \\ (-1 \times 0) + (1 \times 3) & (-1 \times 3) + (1 \times -1) & (-1 \times -1) + (1 \times 3) \end{bmatrix}$$
[9.]

step 7 Result.

$$I \times F_1 \times F_2 = \begin{bmatrix} 2 & -2 & 1 \\ 3 & -4 & 4 \end{bmatrix}$$
 [10.]

1.c) Proof of F * I = F2 * (F1 * I)

Given to us: -

$$(F * I)[i,j] = \sum_{k,l} I[i - k,j - l]F[k,l]$$
 [11.]

As the filter is separable, it can be written as: -

$$F[k,l] = F_1[k] \times F_2[l]$$
 [12.]

Put eqn.-12 in eqn.-11.

$$(F * I)[i,j] = \sum_{k,l} I[i - k,j - l] (F_1[k] \times F_2[l])$$
 [13.]

If we apply definition of convolution on previous equation, we get.

$$(F * I)[i,j] = \sum_{l} \left\{ \sum_{k} I[i - k, j - l] F_1[k] \right\} F_2[l]$$
 [14.]

Hence F * I can be written as: -

$$F * I = F2 * (F1 * I)$$
 [15.]

Hence Proved.

1.d) Number of multiplications involved in part (a) and part (b).

• If we count the number of multiplications made in 1.a) step 3.

$$6 * 4 = 24$$

• If we count the number of multiplications made in 1.b) step 3 and step 6

$$(2 * 8) + (2 * 6) = 28$$

Here we get a greater number of multiplications for two 1-D filters as compared to single 2-D direct filter.

1.e) Number of multiplications for general case:

<u>I is an $M_1 \times N_1$ image, and F is an $M_2 \times N_2$ separable filter.</u>

Filter size of $= M_2 * N_2$

Figure 1: $M_2 * N_2$ filter

Image size of = $(M_1 * N_1)$

Figure 2: $(M_1 * N_1)$

Resulting image size = $(M_1 - M_2 + 1) * (N_1 - N_2 + 1)$

Figure 3: = $(M_1 - M_2 + 1) * (N_1 - N_2 + 1)$

I. Number of Multiplication made to get resulting Image with 2-D filter.

- Multiplications for getting each pixel of resulting image = M₂ * N₂
- Number of Pixels in resulting image = $(M_1 M_2 + 1) * (N_1 N_2 + 1)$
- Hence, total number of multiplications made =

$$(M_1 - M_2 + 1) * (N_1 - N_2 + 1) * M_2 * N_2$$
 [16.]

II. For separable filter F can be broken into 2, 1-D filters.

Figure 4: separated filters

now, each 1-D filter can be passed over the image one by one.

Figure 5: two 1-D convolutions in sequence

step 1 Number of Multiplication made with 1st 1-D filter.

$$= (M_1 - M_2 + 1) * N_1 * M_2$$

Note: - As, we can see the size of matrix after passing of 1^{st} 1-D filter is reduced to $(M_1 - M_2 + 1) * N_1$

step 2 Number of Multiplication made with 2nd 1-D filter.

$$= (M_1 - M_2 + 1) * (N_1 - N_2 + 1) * N_2$$

step 3 Total number of Multiplication with two, 1-D filters.

$$= (M_1 - M_2 + 1) * N_1 * M_2 + (M_1 - M_2 + 1) * (N_1 - N_2 + 1) * N_2$$
 [17.]

III. Efficiency based on Big-O notation.

For non-separable filter of 2-D size, Complexity is given by.

$$= \mathcal{O}(M_1 * N_1 * M_2 * N_2)$$

For separable 1st, 1-D filter, Complexity is given by = $\mathcal{O}(M_1 * N_1 * M_2)$ For separable 2nd, 1-D filter, Complexity is given by = $\mathcal{O}(M_1 * N_1 * N_2)$

We can see that order of time complexity for 2-D direct filter is $\mathcal{O}(n^4)$, where else for the two 1-D filters time complexity is $\mathcal{O}(n^3)$.

Thus, we can say that generally, convolution with two 1-D filters will have less Complexity as compared single 2-D filter.

Solution-2

2.a) Will the rotated edge be detected using the same Canny edge detector?

Figure 6: Rotation of image

The image is now rotated at certain angle θ and the relationship between coordinates of new image and originally given will have coordinates as below: -

$$x' = x \cos\theta$$
$$v' = x \sin\theta$$

 $D_{xx} = derrivate in x direction for orriginal image$

 $D_{yy} = derrivate in y direction for orriginal image$ = 0(as no vertical edge)

 $D_{x'x'} = derrivate \ in \ x \ direction \ for \ rotated \ image = D_{xx} \ \cos \theta$

 $D_{y'y'} = derrivate in y direction for rotated image = D_{xx} \sin \theta$

Case-1 Magnitudes in original image: -

$$\sqrt{D_{xx}^2 + D_{yy}^2} = \sqrt{D_{xx}^2 + 0} = D_{xx}$$

Case-2 Magnitudes in rotated image: -

$$\sqrt{D_{x'x'}^2 + D_{y'y'}^2} = \sqrt{(D_{xx} \cos \theta)^2 + (D_{xx} \sin \theta)^2}$$

$$= \sqrt{D_{xx}^2 \times (\cos^2 \theta + \sin^2 \theta)} = D_{xx}$$

Magnitudes in both the cases are exactly same. Hence, we proved mathematically that rotated edge will be detected using the same Canny edge detector.

2.b) How would you adjust the threshold to address Broken Edges and spurious edges problem?

Figure 7 gradient magnitudes with low High-threshold and high Low-Threshold.

Figure 8 gradient magnitudes with lowered (adjusted) Lowthreshold and higher (adjusted) High-Threshold.

Broken Edges: - The reason for breaking of long edges into short segments separated by gaps is because of higher Low-Threshold. As we can see in figure-7, region-1 that the part of gradient magnitude slips below Low-Threshold and thus part of long edges with low magnitude disappear. This issue can be solved by lowering the Low-Threshold slightly, taking care that the lowering low-threshold does not affect classification of non-edge pixels as shown in figure-8.

Spurious Edges: - The reason for spurious edges is low High-Threshold. In figure-7, region-2 we can see that the gradient magnitude value for non-edge pixels lie above high threshold making the resulting feature map with spurious edges. This can be resolved by marking the High-Threshold slightly higher, while also taking care that edge pixels are not wrongly classified as non-edge pixel as shown in figure-8.