Iterative search and lineal regression

Gradient descent iterative method and lineal regession

Blanca Cano Camarero

Department: DECSAI

University: ETSIIT, Granada university

Country: Spain

Date: March 16, 2021

Doble Grado matemática e informática

Contents

1	Gradient descent							5
	1.1	Grad	lient descent 's algorithm					5
		1.1.1	Introduction					5
		1.1.2	Math					5
		1.1.3	Algorithm					6
		114	Problem 2					6

4 CONTENTS

Chapter 1

Gradient descent

1.1 Gradient descent 's algorithm

1.1.1 Introduction

Gradient descent is a general technique for minimizing a twice-differentiable functions through its slope. [?] It is used to find local minimums due to the facts that the start point it is crucial.

The basic idea is to update the weights using the gradients until it is not possible to continuous minimizing the error.

1.1.2 Math

We are going to define algorithm:

Let $w(0) \in \mathbb{R}^d$ be an arbitrary initial point, $E : \mathbb{R}^d \times \mathbb{R}^d \longrightarrow \mathbb{R}$ a class C^2 function. The step size $\eta \in \mathbb{R}^+$ is a experimental coefficient about how much are we going to follow the slope to obtain the new weight. Let $w(t) \in \mathbb{R}^d$ $t \in \mathbb{N}$ be the weight for t iteration which is defined as

$$w(t+1) = w(t) - \eta \nabla E_{in}(w(t))$$

Properties

- This algorithm gives local minimums.
- Convergence it is not assured, so it would be necessary some stop criteria.
- For a convex function it would be a unique global minimum.
- η variable in time is important: fixes learning gradient descent algorithm.

1.1.3 Algorithm

The following code snippet implement the algorithm, where w(0) is the initial_point, E is the error, $\nabla E_{in}(w)$ is $gradient_function$ and finally η is eta. The value $\eta = 0.1$ is a heuristic basic on purely practical observation [?].

This algorithm does not it is necessary to figured a stop condition, otherwise the algorithm could be

In order to avoid an infinite search, our stop criteria are a limit in the number of iteration max iter and an error tolerance .

```
def gradient_descent(inicial_point, E, gradient_function, eta=0.1):
 initicial\ point:\ w\_0
 E: error function
 gradient\_function
 eta: step size
 111
 #### stop conditions
                        ######
max_iter = 1000
max_error = 0.0001
 ####
 iterations = 0
 error = E( intial_point[0], intial_point[1])
 w = initial_point
 while iterations < max_iter and error > max_error:
     w = w - eta * gradient_function(w[0], w[1])
     iterations += 1
     error = E(w[0], w[1])
 return w, iterations
```

1.1.4 Problem 2

We want to solve the following problem:

```
Run gradient descent's algorithm to find a minimum for function E(u, v) = (u^3 e^{(v-s)} - 2 * v^2 e^{-u})^2. Start with (u, v) = (1, 1) and \eta = 1.0
```

Solve analytically the gradient of E(u,v)

$$\begin{split} \nabla E(u,v) &= \left(\frac{\partial}{\partial u}(u^3e^{(v-2)} - 2*v^2e^{-u})^2, \frac{\partial}{\partial v}(u^3e^{(v-2)} - 2v^2e^{-u})^2\right) = \\ &= \left(2(u^3e^{(v-s)} - 2*v^2e^{-u})(3u^2e^{(v-2)} + 2v^2e^{-u}), 2(u^3e^{(v-s)} - 2*v^2e^{-u})(u^3e^{(v-2)} - 4ve^{-u})\right) \end{split}$$

Number of iterations.

Firstable we need to use 64-bits float, so we are going to use the data type float64 of numpy library [?].

The functions' declaration are:

Bibliography

- [1] Hsuan-Tien Lin Yaser S. Abu-Mostafa, Malik Magdon-Ismail. Learing From Data. A Short Course. AMLbook, 2012.
- [2] Numpy documentation. Numpy basic data types documentatation, 2021.