IMO Shortlist Writeups

Alston Yam

June 29, 2025

1 Introduction

Here's a compiled list of my typed up solutions to various IMO shortlist problems during my preparation for the 66th IMO.

2 Problems

2.1 ISL 2022

Problem 2.1–2022 A1 Let $(a_n)_{n\geq 1}$ be a sequence of positive real numbers with the property that

$$(a_{n+1})^2 + a_n a_{n+2} \le a_n + a_{n+2}$$

for all positive integers n. Show that $a_{2022} \leq 1$.

Solution. Define a sequence $b_i = a_i - 1 \ \forall i$. The given condition is equivalent to

$$b_n b_{n+2} + b_{n+1} (b_{n+1} + 2) \le 0$$

Where $b_i > -1 \ \forall i$. Now FTSOC $b_{2022} > 0$. Notice we also have

$$b_{n-1}b_{n+1} + b_n(b_n+2) \le 0$$

Summing the two gives

$$b_n(b_{n-1} + b_n + 2) + b_{n+1}(b_{n+1} + b_{n-1} + 2) \le 0$$

Substituting n=2022 and n=2021 into the above equation, we get that $b_{2021}<0$ and also $b_{2023}<0$ respectively. As a result, considering n=2021 in the first equation gives us a contradiction, and we're done.

2.2 ISL 2019

Problem 2.2–2019 G4 Let P be a point inside triangle ABC. Let AP meet BC at A_1 , let BP meet CA at B_1 , and let CP meet AB at C_1 . Let A_2 be the point such that A_1 is the midpoint of PA_2 , let B_2 be the point such that B_1 is the midpoint of PB_2 , and let C_2

be the point such that C_1 is the midpoint of PC_2 . Prove that points A_2, B_2 , and C_2 cannot all lie strictly inside the circumcircle of triangle ABC.

Fig 1: Diagram for 2019 G4

Proof. We will first prove the case where ABC is acute, and then deal with the obtuse case. \Box

Remark: As I was attempting this problem, I told myself that barycentric coordinates would be an easy way to solve this, but I didn't know how they worked :(It turns out, this problem is much easier with a bary bash.

Problem 2.3–2019 N3 We say that a set S of integers is *rootiful* if, for any positive integer n and any $a_0, a_1, \dots, a_n \in S$, all integer roots of the polynomial $a_0 + a_1x + \dots + a_nx^n$ are also in S. Find all rootiful sets of integers that contain all numbers of the form $2^a - 2^b$ for positive integers a and b.

Proof. I claim that the answer is $S \in \mathbb{Z}$. Clearly this works. Now we prove that if we start with the set $S = \{2^a - 2^b \mid a, b \in \mathbb{Z}^+\}$, we can then get every integer with the appropriate choices of coefficients.

First we see 1 is in S by taking P(x) = 2x - 2.

Now, notice that if k is in S, -k must also be in S by taking P(x) = x + k. Therefore, we restrict our search to only positive integers, as the negative integers will follow.

We will take the minimal positive integer m such that $m \notin S$ and aim to find a contradiction. Let $m = 2^e p$, where p is odd. Consider the number $M = 2^{e+\varphi(p)+1} - 2^{e+1} = 2^{e+1}(2^{\varphi(p)} - 1)$. Clearly $M \in S$ and $m \mid M$ (by Euler's Theorem).

We write $M = b_1 m + b_2 m^2 + b_3 m^3 + \cdots + b_n m^n$. Then we can consider the polynomial

$$P(x) = -M + b_1 x + b_2 x^2 + b_3 x^3 + \dots + b_n x^n$$

This works as $b_i \in S \ \forall i$ since $b_i < m$. Finally, notice that m must be a root to the above polynomial, and so $m \in S$, and we're done.

2.3 ISL 2017

Problem 2.4–2017 A4 A sequence of real numbers a_1, a_2, \ldots satisfies the relation

$$a_n = -\max_{i+j=n} (a_i + a_j)$$
 for all $n > 2017$.

Prove that the sequence is bounded, i.e., there is a constant M such that $|a_n| \leq M$ for all positive integers n.

Proof. Let's denote a_x to be the element with the maximum absolute value in the set $\{a_1, a_2, \dots a_{2017}\}$. We split the problem into cases:

Case 1: $a_x = 0$. This case is trivial as all values in the sequence is equal to 0.

Case 2: $a_x > 0$. Let $M = a_x$, I will prove that $-2M \le a_i \le M \ \forall i$. Proof: Notice that

$$\max_{i \neq i-2018} (a_i + a_j) \ge a_x + a_{2018-x} \ge 0$$

So $a_{2018} = -\max_{i+j=2018}(a_i + a_j) \le 0$, i.e. It's bounded above by 0. We also know that

$$\max_{i+j=2018} (a_i + a_j) \le M + M = 2M$$

so $a_{2018} = -\max_{i+j=2018}(a_i + a_j) \ge -2M$. So we have

$$-2M \le a_{2018} \le 0$$

Now, if $-M \le a_{2018} \le 0$, we can carry on this process iteratively to get that the next element also has the bound stated above. Otherwise, assume that $-2M \le a_{2018} < -M$. We see that

$$\max_{i+j=2019} (a_i + a_j) \ge a_x + a_{2019-x} \ge M + (-2M) = -M$$

So that means $a_{2019} = -\max_{i+j=2019} (a_i + a_j) \le M$. But also,

$$\max_{i+j=2019} (a_i + a_j) \le M + M = 2M$$

So we have

$$-2M \le a_{2019} \le M$$

Thus we may continue this process iteratively to get that $-2M \le a_i \le M \ \forall i$.

Case 3: $a_x < 0$. Let $-M = a_x$, M > 0.

Notice that

$$\max_{i+j=2018} (a_i + a_j) \le 2M$$

$$\max_{i+j=2018} (a_i + a_j) \ge -2M$$

So we achieve the bound that $-2M \le a_{2018} \le 2M$.

Case 3.1: If $M < a_{2018} \le 2M$, we can refer to Case 2 above to see that the sequence is bounded.

Case 3.2: If $-M \le a_{2018} \le M$, We can iterate this process again, as $a_x = -M$ is still the a_i with the largest absolute value.

Case 3.3: $-2M \le a_{2018} \le -M$.

Let $a_{2018} = -k$. Therefore there must exist p, q such that p + q = 2018 and $a_p + a_q = k$. WLOG let $a_p \ge \frac{k}{2}$.

We see

$$\max_{i+j=2019} (a_i + a_j) \ge a_p + a_{2019-p} \ge \frac{k}{2} + (-k) = \frac{-k}{2} \ge \frac{-2M}{2} = -M$$

and also

$$\max_{i+j=2019} (a_i + a_j) \le M + M = 2M$$

So we actually see that

$$-2M \le a_{2019} \le M$$

But we're done here, by considering the most negative element $a_n = -N$. There must be an a_i with $a_i > \frac{N}{2}$, so the lower bound for $\max_{i+j=n}(a_i+a_j)$ is $\frac{N}{2}+(-N)=\frac{-N}{2}\geq -M$. The upper bound of 2M is obvious to see.

So when when calculate the next values of the sequence, the upper and lower bounds for $\max_{i+j=n}(a_i+a_j)$ are fixed at 2M and -M respectively, so we're done.