☞ Fonction logarithme 3

1. On considère la fonction suivante définie sur $]0;+\infty[$:

$$g(x) = 4x - 3 + 3\ln(x)$$

- **a.** Calculer la limite de g en 0⁺
- **b.** Calculer la limite de g en $+\infty$
- c. Calculer la dérivée de g.
- **d.** Déterminer le signe de g'(x).
- **e.** En déduire le tableau de variation de g(x).
- **f.** Déterminer le nombre de solutions de g(x) = 0.
- **2.** On considère la fonction suivante définie sur $]0; +\infty[$:

$$f(x) = \frac{4x - 3}{x} \ln(x)$$

- **a.** Calculer la limite de f en 0^+
- **b.** Calculer la limite de f en $+\infty$
- **c.** Calculer la dérivée de f.
- **d.** Déterminer le signe de f'(x).
- **e.** En déduire le tableau de variation de f(x).
- **f.** En déduire le nombre de solutions de f(x) = 0.

Logarithme TG

Correction:

1. a. On sait que:

$$\lim_{x \to 0^+} 4x - 3 = -3$$

$$\lim_{x \to 0^+} 3\ln(x) = -\infty \quad \text{par propriété du cours}$$

$$\dim \lim_{x \to 0^+} 4x - 3 + 3\ln(x) = -\infty$$

b.

$$\lim_{x \to +\infty} 4x - 3 = +\infty$$

$$\lim_{x \to +\infty} 3x \ln(x) = +\infty \quad \text{par propriété du cours}$$

$$\dim \lim_{x \to +\infty} 4x - 3 + 3\ln(x) = +\infty$$

c.

$$g'(x) = 4 + 3 \times \frac{1}{x}$$

d.

$$g'(x) \ge 0 \quad \forall x > 0$$

e. On a:

x	0	+∞
g'(x)		+
g(x)		$-\infty$

f. La fonction g est croissante de $-\infty$ à $+\infty$, donc, d'après le théorème des valeurs intermédiaires, il existe une unique valeur $\alpha > 0$ telle que $g(\alpha) = 0$.

$$g(0.86) < 0$$

 $g(0.87) > 0$
donc $0.86 < \alpha < 0.87$

Logarithme TG

2. a. On sait que:

$$\lim_{x \to 0^+} \frac{4x - 3}{x} = -\infty$$

$$\lim_{x \to 0^+} \ln(x) = -\infty \quad \text{par propriété du cours}$$

$$\dim \lim_{x \to 0^+} \frac{4x - 3}{x} \ln(x) = +\infty$$

b. On sait que:

$$\lim_{x \to +\infty} \frac{4x - 3}{x} = 4$$

$$\lim_{x \to +\infty} \ln(x) = +\infty \quad \text{par propriété du cours}$$

$$\dim \lim_{x \to +\infty} \frac{4x - 3}{x} \ln(x) = +\infty$$

c. On sait que:

$$f'(x) = \left(\frac{4x - 3}{x}\ln(x)\right)'$$

$$= \left(\frac{4x - 3}{x}\right)'\ln(x) + \left(\frac{4x - 3}{x}\right)\ln(x)'$$

$$= \left(\frac{(4x - 3)' \times x - (4x - 3) \times x'}{x^2}\right)\ln(x) + \left(\frac{4x - 3}{x}\right) \times \frac{1}{x}$$

$$= \left(\frac{4x - (4x - 3)}{x^2}\right)\ln(x) + \left(\frac{4x - 3}{x^2}\right)$$

$$= \frac{(4x - 4x + 3)\ln(x) + 4x - 3}{x^2}$$

$$= \frac{4x - 3 + 3\ln(x)}{x^2}$$

$$= \frac{g(x)}{x^2}$$

d. On a:

x	0		α		+∞
g'(x)		_	0	+	
f'(x)		_	0	+	
f(x)	+00)	$f(\alpha)$		<u>+∞</u>

Logarithme TG

e.

$$f(\alpha) = \frac{4\alpha - 3}{\alpha} \ln(\alpha)$$
or $g(\alpha) = 4\alpha - 3 + 3\ln(\alpha)$
donc $f(\alpha) = \frac{-3\ln^2(\alpha)}{\alpha} < 0$

Comme f est contine, d'après le théorème des valeurs intermédiaires, on déduit que f s'annule en deux valeurs x_1 et x_2 : $0 < x_1 < \alpha$ et $x_2 > \alpha$