SHAMBHUNATH INSTITUTE OF ENGINEERING AND TECHNOLOGY

Subject Code: BAS 103

Subject: ENGINEERING MATHEMATICS-I

Course: B.Tech.

SEMESTER: I

FIRST SESSIONAL EXAMINATION, ODD SEMESTER, (2022-2023)

(Only for Sec E)

Time -1hr 30 min

Maximum Marks - 30

SECTION - A

1. Attempt all questions in brief.

QN	QUESTION	Marks	CO	BL
a.	If $u = \frac{x^3 y^3}{x^3 + y^3}$, find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$	2	CO1	L2
b.	If $x = r \cos \theta$, $y = r \sin \theta$, find $\frac{\partial y}{\partial \theta}$.	2	CO1	L2
c.	State Euier's Theorem.	2	CO1	L3
d.	$If y = \sin^2 x \cos^3 x find y_n.$	2	CO1	L3

SECTION - B

2. Attempt any <u>ONE</u> of the following.

QN	QUESTION	Marks	CO	BL
a.	If $y = \cos(m \sin^{-1}x)$, prove that $(1 - x^2) y_{n+2} - (2n+1) xy_{n+1} + (m^2 - n^2) y_n = 0$	5	CO1	L3
b.	If $z = f(x, y)$ where $x = e^u \cos v$, $y = e^u \sin v$, show that $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = e^{-2u} \left[\left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2\right]$	5	CO1	L3

3. Attempt any <u>ONE</u> of the following.

QN	QUESTION	Marks	CO	BL
a.	Verify Euler's Theorem for $u = x^2 \tan^{-1} \left(\frac{y}{x}\right) - y^2 \tan^{-1} \left(\frac{x}{y}\right)$	5	CO1	L3

						(2-) 21	∂^2	Z	
į.	If $If z^3$	-3vz	-3x=0	show that z	$\left \frac{\partial^2 z}{\partial x \partial y}\right +$	$\left(\frac{\partial z}{\partial x}\right)$	$=\frac{\partial}{\partial y^2}$	2	
D.	11 1) 2				West .				I_{ij}

SECTION - C

4. Attempt any ONE part of the following:

ON	O N QUESTION		CO	BL
a.	If $u = tan^{-1} (x^2 + 2y^2)$, show that (i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$ (ii) $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy}$	6	CO1	L4
b.	If If $x^x y^y z^z = c$ show that at $x = y = z$, $\frac{\partial^2 z}{\partial x \partial y} = -(x \log ex)^{-1}$	6	CO1	L3

5. Attempt any <u>ONE</u> part of the following:

QN	QUESTION	Marks	CO	BL
a.	If $\theta = t^n e^{-\frac{r^2}{4t}}$ find what value of n will make $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) = \frac{\partial \theta}{\partial t}$	6	CO1	L4
b.	If \emptyset $(c \ x - a \ z, \ c \ y - b \ z) = 0$, show that $a \ p + b \ q = c$, where $p = \frac{\partial z}{\partial x}$ and $q = \frac{\partial z}{\partial y}$	6	CO1	L3

Bloom's Taxonomy Level (BL):Remember (L1), Understanding (L2), Apply (L3), Analyze (L4), Evaluating (L5),

Creating (L6)