PROGRAMMING LANGUAGES: IMPERATIVE PROGRAM CONSTRUCTION 3. QUANTIFICATIONS

Shin-Cheng Mu Autumn Term, 2022

National Taiwan University and Academia Sinica

SYNATX AND INTERPRETATION OF

QUANTIFICATION

SUMMATION, DUMMY VARIABLES

- We have all seen quantifed expressions like this: $\sum_{i=1}^{n} e_i$
 - which denotes $e[i \mid 1] + e[i \mid 2] + \dots e[i \mid n]$.
 - Example: $\sum_{i=1}^{3} i^2 = 1^2 + 2^2 + 3^2$.
- · Note that the variable *i* is a *dummy variable* (虛擬變數). It is different from an ordinary variable its value is not drawn from the state. Instead it is a "local" variable.
- Name of the dummy variable does not matter. E.g. $\sum_{i=1}^{3} i^2 = \sum_{i=1}^{3} j^2$

- The usual notation for quantifiers is confusing at times, however.
 - $\cdot 1 + \sum_{n=1}^{3} n^2$ is 15.
 - Should $\sum_{n=1}^{3} n^2 + 1$ be 15 or 17?
 - Should $\sum_{n=1}^{3} 1 + n^2$ be 17 or $3 + n^2$?
- Similar problems occurs in conventional notations for logic.
 - It is sometimes not clear whether $\forall x.P \ x \land Q$ denotes $(\forall x.P \ x) \land Q$ or $(\forall x.P \ x \land Q)$.

A LINEAR NOTATION

Instead of $\sum_{i=1}^{n} e_i$, we use a linear notation:

$$\langle \Sigma i : 1 \leq i \leq n : e \rangle$$

for several reasons:

- it is clearer that Σi declares a dummy variable i.
- The parentheses makes the *scope* of *i* clear.
- · You can write more general ranges:
 - $\langle \Sigma i : 1 \leq i \leq 7 \land \text{ even } i : i \rangle = 2 + 4 + 6$,
 - $\langle \Sigma i : 1 \leqslant i \leqslant 7 \land odd i : 2 \times i \rangle = 2 \times 1 + 2 \times 3 + 2 \times 5 + 2 \times 7.$
- And it extends easily to more variables:
 - $\langle \Sigma i, j : 1 \leqslant i \leqslant 2 \land 3 \leqslant j \leqslant 4 : i^j \rangle = 1^3 + 1^4 + 2^3 + 2^4$.

This notation is sometimes called the *Eindhoven notation*, named after the university where many advocates came from.

- Let ★ be any binary operator that is
 - symmetric: $b \star c = c \star b$, and
 - associative: $(b \star c) \star d = b \star (c \star d)$, and has an
 - identity $u: u \star b = b = b \star u$.
- · We allow the general quantification (量詞, 量化句) over *:

$$\langle \star x, y : R : P \rangle$$

It informally means "for all the x, y such that R is True, collect all the P and apply \star to them.".

 Variables x and y are distinct. They are called the bound variables, or the dummies, of the quantification. There may be one or more dummies.

- Let ★ be any binary operator that is
 - symmetric: $b \star c = c \star b$, and
 - associative: $(b \star c) \star d = b \star (c \star d)$, and has an
 - identity $u: u \star b = b = b \star u$.
- · We allow the general quantification (量詞, 量化句) over *:

$$\langle \star x, y : R : P \rangle$$

It informally means "for all the x, y such that R is True, collect all the P and apply \star to them.".

 Note that x and y should be restricted by their types. For this course, we assume that their types can be inferred by the context.

- Let ★ be any binary operator that is
 - symmetric: $b \star c = c \star b$, and
 - associative: $(b \star c) \star d = b \star (c \star d)$, and has an
 - identity $u: u \star b = b = b \star u$.
- · We allow the general quantification (量詞, 量化句) over ★:

$$\langle \star x, y : R : P \rangle$$

It informally means "for all the x, y such that R is True, collect all the P and apply \star to them.".

• R: an boolean expression, the range of the quantification. When it is omitted, as in $\langle *x :: P \rangle$, we mean R = True.

- Let ★ be any binary operator that is
 - symmetric: $b \star c = c \star b$, and
 - associative: $(b \star c) \star d = b \star (c \star d)$, and has an
 - identity $u: u \star b = b = b \star u$.
- · We allow the general quantification (量詞, 量化句) over ★:

$$\langle \star x, y : R : P \rangle$$

It informally means "for all the x, y such that R is True, collect all the P and apply \star to them.".

• *P*: an expression, the *body* of the quantification. The type of the result of the quantification is the type of *P*.

$$\langle +i: 0 \le i < 4: i \times 8 \rangle =$$

 $\langle \times i: 0 \le i < 3: i + (i + 1) \rangle =$
 $\langle \wedge i: 0 \le i < 2: i \times d \ne 6 \rangle =$
 $\langle \vee i: 0 \le i < 21: b[i] = 0 \rangle =$

$$\langle +i: 0 \le i < 4: i \times 8 \rangle = 0 \times 8 + 1 \times 8 + 2 \times 8 + 3 \times 8$$

 $\langle \times i: 0 \le i < 3: i + (i + 1) \rangle =$
 $\langle \wedge i: 0 \le i < 2: i \times d \ne 6 \rangle =$
 $\langle \vee i: 0 \le i < 21: b[i] = 0 \rangle =$

$$\langle +i : 0 \le i < 4 : i \times 8 \rangle = 0 \times 8 + 1 \times 8 + 2 \times 8 + 3 \times 8$$

 $\langle \times i : 0 \le i < 3 : i + (i + 1) \rangle = (0 + 1) \times (1 + 2) \times (2 + 3)$
 $\langle \wedge i : 0 \le i < 2 : i \times d \ne 6 \rangle =$
 $\langle \vee i : 0 \le i < 21 : b[i] = 0 \rangle =$

$$\langle +i : 0 \le i < 4 : i \times 8 \rangle = 0 \times 8 + 1 \times 8 + 2 \times 8 + 3 \times 8$$

 $\langle \times i : 0 \le i < 3 : i + (i + 1) \rangle = (0 + 1) \times (1 + 2) \times (2 + 3)$
 $\langle \wedge i : 0 \le i < 2 : i \times d \ne 6 \rangle = 0 \times d \ne 6 \wedge 1 \times d \ne 6$
 $\langle \vee i : 0 \le i < 21 : b[i] = 0 \rangle =$

$$\langle +i : 0 \le i < 4 : i \times 8 \rangle = 0 \times 8 + 1 \times 8 + 2 \times 8 + 3 \times 8$$

 $\langle \times i : 0 \le i < 3 : i + (i + 1) \rangle = (0 + 1) \times (1 + 2) \times (2 + 3)$
 $\langle \wedge i : 0 \le i < 2 : i \times d \ne 6 \rangle = 0 \times d \ne 6 \wedge 1 \times d \ne 6$
 $\langle \vee i : 0 \le i < 21 : b[i] = 0 \rangle = b[0] = 0 \vee ... \vee b[20] = 0$

CONVENTIONS

To relate to more familiar symbols, we bow to the convention and write

```
\langle +x:R:P \rangle as \langle \Sigma x:R:P \rangle

\langle \times x:R:P \rangle as \langle \Pi x:R:P \rangle

\langle \vee x:R:P \rangle as

\langle \wedge x:R:P \rangle as
```

CONVENTIONS

To relate to more familiar symbols, we bow to the convention and write

```
\langle +x:R:P \rangle as \langle \Sigma x:R:P \rangle

\langle \times x:R:P \rangle as \langle \Pi x:R:P \rangle

\langle \vee x:R:P \rangle as \langle \exists x:R:P \rangle

\langle \wedge x:R:P \rangle as
```

CONVENTIONS

To relate to more familiar symbols, we bow to the convention and write

```
\langle +x:R:P \rangle as \langle \Sigma x:R:P \rangle

\langle \times x:R:P \rangle as \langle \Pi x:R:P \rangle

\langle \vee x:R:P \rangle as \langle \exists x:R:P \rangle

\langle \wedge x:R:P \rangle as \langle \forall x:R:P \rangle
```

FREE V.S. BOUND VARIABLES

- Consider $\langle \forall i :: x \times i = 0 \rangle$. The value of this expression depends on x, which is in the state, but not i: writing $\langle \forall j :: x \times j = 0 \rangle$ means the same thing.
- Occurrences of x in such expression are said to be *free*.
- The scope of the dummy *i* is the range and body of the expression.
- Occurrences of *i* in the scope are said to be *bound*.

FREE V.S. BOUND OCCURRENCES

- Note that being free or bound is not a property of not variables, but occurrences of variables.
- In $i > 0 \lor \langle \forall i : 0 \leqslant i : x \times i = 0 \rangle$, the leftmost occurrence of i (in i > 0) is free.
- The variable i is used in two different ways. The first (i.e. free) occurrence of i refer to a different variable than the other (i.e. bound) occurrences.
- The expression is equivalent to $i > 0 \lor \langle \forall j : 0 \le j : x \times j = 0 \rangle$.
- · Similar to local variables in programming languages.

FREE OCCURRENCES, FORMALLY

Formal definitions of free and bound occurrences are rather tedious. Let us try.

(8.9) Definition

- 1. The occurrence of *i* in the expression *i* is free.
- 2. If an occurrence of i is free in E, the same occurrence is also free in (E), in $f(\ldots, E, \ldots)$, and in $\langle \star x : E : F \rangle$ and in $\langle \star x : F : E \rangle$ if i is not x.
- (8.9)' **Definition** occurs(v, e) is *True* iff. v occurs free at least once in e.

In general, both v and e could be sets. In that case, occurs(v, e) means at least one variable in v occurs free at least once in e.

BOUND OCCURRENCES, FORMALLY

(8.10) Definition

- 1. Let an occurrence of i be free in E. That occurrence of i is bound in $\langle \star i : E : F \rangle$ or $\langle \star i : F : E \rangle$.
- 2. If an occurrence of i is bound in E, the same occurrence is also bound (to the same dummy) in (E), in $f(\ldots, E, \ldots)$, $\langle \star x : E : F \rangle$ and in $\langle \star x : F : E \rangle$.

Consider the equation:

$$i + j + \langle \Sigma i : 1 \leqslant i \leqslant 10 : b[i]^j \rangle +$$

 $\langle \Sigma i : 1 \leqslant i \leqslant 10 : \langle \Sigma j : 1 \leqslant j \leqslant 10 : c[i,j] \rangle \rangle$

(8.11) Provided that $\neg occurs(y, \{x, F\})$, $\langle \star y : R : P \rangle [x \backslash F] = \langle \star y : R[x \backslash F] : P[x \backslash F] \rangle$

- The caveat means that if *y* occurs free in *x* or *F*, it has to be replaced by a fresh dummy variable (using (8.21)) before we can perform the substitution.
- In a sense, bound occurrences are "protected" from alien substitutions. Their names are replaced, and thus never touched by an alien substitution.

$$\langle \Sigma x : 1 \leqslant x \leqslant 2 : y \rangle [y \backslash y + z] =$$

 $\langle \Sigma i : 0 \leqslant i < n : b[i] = n \rangle [n \backslash m] =$

 $\langle \Sigma y : 0 \leqslant y < n : b[y] = n \rangle [n \backslash y] =$

 $\langle \Sigma y : 0 \leq y < n : b[y] = n \rangle [y \backslash m] =$

$$\langle \Sigma x : 1 \leqslant x \leqslant 2 : y \rangle [y \backslash y + z] =$$

$$\langle \Sigma x : 1 \leqslant x \leqslant 2 : y + z \rangle$$

$$\langle \Sigma i : 0 \leqslant i < n : b[i] = n \rangle [n \backslash m] =$$

$$\langle \Sigma y : 0 \leqslant y < n : b[y] = n \rangle [n \backslash y] =$$

$$\langle \Sigma y : 0 \leqslant y < n : b[y] = n \rangle [y \backslash m] =$$

$$\langle \Sigma x : 1 \leqslant x \leqslant 2 : y \rangle [y \backslash y + z] =$$

$$\langle \Sigma x : 1 \leqslant x \leqslant 2 : y + z \rangle$$

$$\langle \Sigma i : 0 \leqslant i < n : b[i] = n \rangle [n \backslash m] =$$

$$\langle \Sigma i : 0 \leqslant i < m : b[i] = m \rangle$$

$$\langle \Sigma y : 0 \leqslant y < n : b[y] = n \rangle [n \backslash y] =$$

$$\langle \Sigma y : 0 \leqslant y < n : b[y] = n \rangle [y \backslash m] =$$

$$\langle \Sigma x : 1 \leqslant x \leqslant 2 : y \rangle [y \backslash y + z] =$$

$$\langle \Sigma x : 1 \leqslant x \leqslant 2 : y + z \rangle$$

$$\langle \Sigma i : 0 \leqslant i < n : b[i] = n \rangle [n \backslash m] =$$

$$\langle \Sigma i : 0 \leqslant i < m : b[i] = m \rangle$$

$$\langle \Sigma y : 0 \leqslant y < n : b[y] = n \rangle [n \backslash y] =$$

$$\langle \Sigma j : 0 \leqslant j < y : b[j] = y \rangle$$

$$\langle \Sigma y : 0 \leqslant y < n : b[y] = n \rangle [y \backslash m] =$$

$$\langle \Sigma x : 1 \leqslant x \leqslant 2 : y \rangle [y \backslash y + z] =$$

$$\langle \Sigma x : 1 \leqslant x \leqslant 2 : y + z \rangle$$

$$\langle \Sigma i : 0 \leqslant i < n : b[i] = n \rangle [n \backslash m] =$$

$$\langle \Sigma i : 0 \leqslant i < m : b[i] = m \rangle$$

$$\langle \Sigma y : 0 \leqslant y < n : b[y] = n \rangle [n \backslash y] =$$

$$\langle \Sigma j : 0 \leqslant j < y : b[j] = y \rangle$$

$$\langle \Sigma y : 0 \leqslant y < n : b[y] = n \rangle [y \backslash m] =$$

$$\langle \Sigma j : 0 \leqslant j < n : b[j] = n \rangle$$

RULES ABOUT QUANTIFICATION

• Since $x + x = 2 \times x$, we would expect this to be true:

$$\langle \Sigma x : R : x + x \rangle = \langle \Sigma x : R : 2 \times x \rangle$$

 However, the current Leibniz rule does not allow us to prove the quality. In the attempt below:

$$\frac{x + x = 2 \times x}{\langle \Sigma x : R : z \rangle [z \backslash x + x] = \langle \Sigma x : R : z \rangle [z \backslash 2 \times x]}$$

• Since x is protected in (8.11), the conclusion simplifies to $\langle \Sigma y : \ldots : x + x \rangle = \langle \Sigma y : \ldots : 2 \times x \rangle$.

ADDITIONAL LEIBNIZ RULE

The following additional rules allow substitution of equals for equals in the range and body of a quantification:s

(8.12) Leibniz:
$$\frac{P = Q}{\langle \star x : E[z \setminus P] : S \rangle = \langle \star x : E[z \setminus Q] : S \rangle}$$
$$\frac{R \Rightarrow P = Q}{\langle \star x : R : E[z \setminus P] \rangle = \langle \star x : R : E[z \setminus Q] \rangle}$$

DEFINING AXIOMS

```
(8.13) Axiom, Empty range: \langle \star x : False : P \rangle = u, where u is the identity of \star (8.14) Axiom, One-point rule: \langle \star x : x = E : P \rangle = P[x \setminus E], provided that \neg occurs(x, E)
```

Example of one-point rule:

$$\langle \Sigma x : x = 3 : x^2 \rangle = 3^2$$

DISTRIBUTIVITY

(8.15) Axiom, Distributivity:

$$\langle \star X : R : P \rangle \star \langle \star X : R : Q \rangle = \langle \star X : R : P \star Q \rangle$$
, provided that $P, Q : Bool$ or R is finite

Example of distributivity:

$$\langle \Sigma i:i^2<9:i^2\rangle + \langle \Sigma i:i^2<9:i^3\rangle = \langle \Sigma i:i^2<9:i^2+i^3\rangle$$

```
(8.16) Axiom, Range split:

\langle *X : R \lor S : P \rangle = \langle *X : R : P \rangle * \langle *X : S : P \rangle,

provided R \land S \equiv False and

P : Bool \text{ or } R \text{ and } S \text{ are finite}
```

The restriction that $R \wedge S \equiv False$ ensures that an operand that satisfies both R and S is not accumulated twice in the RHS.

For the more general case, we may add the repeated operands to the RHS:

(8.17) Axiom, Range split:

$$\langle \star x : R \vee S : P \rangle \star \langle \star x : R \wedge S : P \rangle =$$

$$\langle \star X : R : P \rangle \star \langle \star X : S : P \rangle$$
,

provided P: Bool or R and S are finite

If \star is idempotent, that is $e \star e = e$ for all e, it does not matter how many times e is accumulated.

(8.18) Axiom, Range split for idempotent *:

$$\langle \star X : R \lor S : P \rangle =$$

 $\langle \star X : R : P \rangle \star \langle \star X : S : P \rangle$,
provided that \star is idempotent

Nested quantifications with the same operator can be interchanged:

(8.19) Axiom, Interchange of dummies:

```
\langle \star x : R : \langle \star y : Q : P \rangle \rangle =

\langle \star y : Q : \langle \star x : R : P \rangle \rangle,

provided that \star is idempotent, or

R and Q are finite,

\neg occurs(y, R), and \neg occurs(x, Q)
```

How a single quantification over a list of dummies can be viewed as a nested quantification:

```
(8.20) Axiom, Nesting : \langle \star x, y : R \land Q : P \rangle = \langle \star x : R : \langle \star y : Q : P \rangle \rangle, provided \neg occurs(y, R)
```

A dummy can be replaced by a fresh dummy.

```
(8.21) Axiom, Renaming : \langle \star x : R : P \rangle = \langle \star y : R[x \backslash y] : P[x \backslash y] \rangle, provided \neg occurs(y, \{R, P\})
```

The restrictions with $\neg occur$ in axioms (8.19), (8.20), and (8.21) ensure that an expression that contains an occurrence of a dummy is not moved outside (or inside) the scope of that dummy.

A MORE GENERAL RENAMING

- Consider $\langle \Sigma i : 2 \leq i \leq 10 : i^2 \rangle$.
- We may rewrite this expression so that the range starts at 0 instead of 2: $\langle \Sigma k : 0 \le k \le 8 : (k+2)^2 \rangle$.
- Note the relationship: i = k + 2, and k = i 2.
- The second expression is $\langle \Sigma k : (2 \le i \le 10)[i \setminus k + 2] : (i^2)[i \setminus k + 2] \rangle$.

(8.22) Change of dummy : $\langle \star x : R : P \rangle = \langle \star y : R[x \setminus f y] : P[x \setminus f y] \rangle$, provided $\neg occurs(y, \{R, P\})$, and f has an inverse

• f has an inverse: $x = f y \equiv y = f^{-1} x$.

PROVING (8.22)

```
\langle \star v : R[x \setminus f v] : P[x \setminus f v] \rangle
= { one-point rule (8.14) }
      \langle \star v : R[x \setminus f v] : \langle \star x : x = f v : P \rangle \rangle
= { nesting (8.20), \neg occurs(x, R[x \setminus f y]) }
     \langle \star x, v : R[x \setminus f v] \wedge (x = f v) : P \rangle
= \{ (3.84a) \}
      \langle \star x, y : R[x \backslash x] \land (x = f y) : P \rangle
= { since R[x \setminus x] = R }
      \langle \star x, v : R \wedge (x = f v) : P \rangle
= { nesting (8.20), \neg occurs(y, R) }
      \langle \star x : R : \langle \star y : x = f y : P \rangle \rangle
```

PROVING (8.22)

```
\langle \star x : R : \langle \star y : x = f y : P \rangle \rangle
= { assumption: x = f y \equiv y = f^{-1} x  }
\langle \star x : R : \langle \star y : y = f^{-1} x : P \rangle \rangle
= { one-point rule (8.14) }
\langle \star x : R : P[y \setminus f^{-1} x] \rangle
= { since \neg occurs(y, P) }
\langle \star x : R : P \rangle
```

Rules for Specific Operators

EXISTENTIAL QUANTIFICATION

```
Trading:  \langle \exists i : R \land S : P \rangle = \langle \exists i : R : S \land P \rangle  Distributivity:  Q \land \langle \exists i : R : S \rangle = \langle \exists i : R : Q \land S \rangle ,  provided \neg occurs(i, Q)  Q \lor \langle \exists i : R : S \rangle = \langle \exists i : R : Q \lor S \rangle ,  provided \neg occurs(i, Q) and R non-empty
```

Universal Quantification

```
Trading:
     \langle \forall i : R \land S : P \rangle = \langle \forall i : R : S \Rightarrow P \rangle
Distributivity:
  Q \lor \langle \forall i : R : S \rangle = \langle \forall i : R : Q \lor S \rangle,
     provided \neg occurs(i, Q)
  Q \land \langle \forall i : R : S \rangle = \langle \forall i : R : Q \land S \rangle,
     provided \neg occurs(i, Q) and R non-empty
de Morgan :
     \neg \langle \exists i : R : S \rangle = \langle \forall i : R : \neg S \rangle
```

MINIMUM AND MAXIMUM

More distributivity. Provided that $\neg occurs(i, F)$:

$$F \downarrow \langle \uparrow i : R : S \rangle = \langle \uparrow i : R : F \downarrow S \rangle$$
$$F \uparrow \langle \downarrow i : R : S \rangle = \langle \downarrow i : R : F \uparrow S \rangle$$

Provided that $\neg occurs(i, F)$ and R non-empty:

$$F + \langle \uparrow i : R : S \rangle = \langle \uparrow i : R : F + S \rangle$$

$$F + \langle \downarrow i : R : S \rangle = \langle \downarrow i : R : F + S \rangle$$

For $F \ge 0$, $\neg occurs(i, F)$ and R non-empty:

$$F \times \langle \uparrow i : R : S \rangle = \langle \uparrow i : R : F \times S \rangle$$

$$F \times \langle \downarrow i : R : S \rangle = \langle \downarrow i : R : F \times S \rangle$$

$$-\langle \uparrow i : R : S \rangle = \langle \downarrow i : R : -S \rangle$$

UPPER/LOWER BOUNDS

Least upper bound and greatest lower bound:

```
S x = \langle \uparrow i : R i : S i \rangle \equiv
R x \wedge \langle \forall i : R i : S i \leqslant S x \rangle
S x = \langle \uparrow i : R i : S i \rangle \equiv
R x \wedge \langle \forall i : R i : S i \leqslant S x \rangle
```

NUMBER OF ...

Let $\langle \#i : Ri : Si \rangle$ denote "the number of i in range Ri such that Si is true".

Definition

- 1. Function $\#: Bool \rightarrow Int$ is defined by # False = 0 and # True = 1.
- 2. $\langle \#i : Ri : Si \rangle = \langle \Sigma i : Ri : \#(Si) \rangle$.

MANIPULATING RANGES

(8.23) Theorem, Split off term: for n : Nat, (a) $\langle \star i : 0 \leq i < n + 1 : P \rangle$ $= \langle \star i : 0 \leq i < n : P \rangle \star P[i \setminus n]$ (b) $\langle \star i : 0 \leq i < n + 1 : P \rangle$ $= P[i \setminus 0] \star \langle \star i : 0 < i < n + 1 : P \rangle$

Important: notice that by n : Nat we are assuming that $0 \le n$, therefore the range $0 \le i < n + 1$ is never empty.

There is a more general variation that is less used in this course:

```
(8.23)' Theorem, Split off term:

for m, n : Nat such that m \le n,

(a) \langle \star i : m \le i < n + 1 : P \rangle

= \langle \star i : m \le i < n : P \rangle \star P[i \setminus n]

(b) \langle \star i : m \le i < n + 1 : P \rangle

= P[i \setminus m] \star \langle \star i : m < i < n + 1 : P \rangle
```

PROOF OF (8.23A)

Proof.

```
\langle \star i : 0 \leq i < n+1 : P \rangle
= \{ 0 \le i < n+1 \equiv 0 \le i < n \lor i = n \}
     \langle \star i : 0 \leq i < n \vee i = n : P \rangle
= { range split (8.16),
            since 0 \le i < n \land i = n \equiv False
     \langle \star i : 0 \leq i < n : P \rangle \star \langle \star i : i = n : P \rangle
= { one-point rule (8.14) }
     \langle \star i : 0 \leq i < n : P \rangle \star P[i \backslash n]
```

AN ASSUMED PROPERTY ABOUT ARITHMETICS

In the proof of (8.23a) we used the following theorem regarding natural numbers:

$$(8.24) \ b \leqslant c \leqslant d \ \Rightarrow \ (b \leqslant i < d \ \equiv \ b \leqslant i < c \ \lor \ c \leqslant i < d)$$

In a course on discrete mathematics, such properties are justified by axioms for arithmetics (see Chapter 15 of Gries and Schneider.) For this course, we just take them as granted.

Let
$$0 \leq n$$
.

$$\langle \Sigma i : 0 \leq i < n+1 : b[i] \rangle =$$

$$\langle \Pi i : 0 \leqslant i < n+1 : b[i] \rangle =$$

$$\langle \forall i : 0 \leqslant i \leqslant n : b[i] = 0 \rangle =$$

$$\langle \Pi i : 0 \leq i \leq n : b[i] \rangle =$$

Let
$$0 \leqslant n$$
.

$$\langle \Sigma i : 0 \leqslant i < n+1 : b[i] \rangle =$$

$$\langle \Sigma i : 0 \leqslant i < n : b[i] \rangle + b[n]$$

$$\langle \Pi i : 0 \leqslant i < n+1 : b[i] \rangle =$$

$$\langle \forall i : 0 \leqslant i \leqslant n : b[i] = 0 \rangle =$$

$$\langle \Pi i : 0 \leqslant i \leqslant n : b[i] \rangle =$$

Let
$$0 \le n$$
.
$$\langle \Sigma i : 0 \le i < n+1 : b[i] \rangle = \langle \Sigma i : 0 \le i < n : b[i] \rangle + b[n]$$

$$\langle \Pi i : 0 \le i < n+1 : b[i] \rangle = b[0] \times \langle \Pi i : 0 < i < n+1 : b[i] \rangle$$

$$\langle \forall i : 0 \le i \le n : b[i] = 0 \rangle = \langle \Pi i : 0 \le i \le n : b[i] \rangle$$

Let $0 \leq n$. $\langle \Sigma i : 0 \leq i < n+1 : b[i] \rangle =$ $\langle \Sigma i : 0 \leq i < n : b[i] \rangle + b[n]$ $\langle \Pi i : 0 \leq i < n+1 : b[i] \rangle =$ $b[0] \times \langle \Pi i : 0 < i < n+1 : b[i] \rangle$ $\langle \forall i : 0 \leq i \leq n : b[i] = 0 \rangle =$ $\langle \forall i : 0 \leq i < n : b[i] = 0 \rangle \wedge b[n] = 0$ $\langle \Pi i : 0 \leq i \leq n : b[i] \rangle =$

Let
$$0 \leqslant n$$
.

$$\langle \Sigma i : 0 \leqslant i < n+1 : b[i] \rangle =$$

$$\langle \Sigma i : 0 \leqslant i < n : b[i] \rangle + b[n]$$

$$\langle \Pi i : 0 \leqslant i < n+1 : b[i] \rangle =$$

$$b[0] \times \langle \Pi i : 0 < i < n+1 : b[i] \rangle$$

$$\langle \forall i : 0 \leqslant i \leqslant n : b[i] = 0 \rangle =$$

$$\langle \forall i : 0 \leqslant i \leqslant n : b[i] = 0 \rangle \wedge b[n] = 0$$

$$\langle \Pi i : 0 \leqslant i \leqslant n : b[i] \rangle =$$

$$b[0] \times \langle \Pi i : 0 < i \leqslant n : b[i] \rangle$$

EXAMPLE: SUM OF A TRIANGULAR ARRAY

Let $0 \le n$. Consider the following expression:

(8.25)
$$\langle \Sigma i, j : 0 \le i \le j < n+1 : c[i,j] \rangle$$

It is the sum of a triangular portion of an array.

We will show that it equals

$$\langle \Sigma i, j : 0 \leq i \leq j < n : c[i, j] \rangle +$$

 $\langle \Sigma i : 0 \leq i \leq n : c[i, n] \rangle$

That is, we can compute the sum of the last row and the sum of the rest of the triangle, before adding them.

TO SPLIT THE RANGE ...

...we note that \leq and < is used conjunctively. That is, $a \leq b < c$ is an abbreviation of $a \leq b$ and b < c.

We reason:

$$0 \leqslant i \leqslant j < n+1$$

$$= \{ \text{ remove abbreivation } \}$$

$$0 \leqslant i \leqslant j \land j < n+1$$

$$= \{ j < n+1 \equiv j < n \lor j = n \}$$

$$0 \leqslant i \leqslant j \land (j < n \lor j = n)$$

$$= \{ \text{ distributivity } (3.46) \}$$

$$(0 \leqslant i \leqslant j \land j < n) \lor (0 \leqslant i \leqslant j \land j = n)$$

$$= \{ \text{ use abbreivation } \}$$

$$(0 \leqslant i \leqslant j < n) \lor (0 \leqslant i \leqslant j \land j = n)$$

THE CALCULATION

We can now manipulate (8.25):

```
\langle \Sigma i, j : 0 \leq i \leq j < n+1 : c[i,j] \rangle
= { the proof above }
     \langle \Sigma i, j : (0 \leq i \leq j < n) \vee (0 \leq i \leq j \wedge j = n) : c[i, j] \rangle
= { range split (8.16) }
     \langle \Sigma i, j : 0 \leq i \leq j < n : c[i, j] \rangle +
     \langle \Sigma i, j : 0 \leq i \leq j \wedge j = n : c[i, j] \rangle
= \{ nesting (8.20) \}
     \langle \Sigma i, i : 0 \leq i \leq i < n : c[i, i] \rangle +
     \langle \Sigma j : j = n : \langle \Sigma i : 0 \leq i \leq j : c[i,j] \rangle \rangle
= { one-point rule (8.14) }
     \langle \Sigma i, j : 0 \leq i \leq j < n : c[i, j] \rangle + \langle \Sigma i : 0 \leq i \leq n : c[i, n] \rangle
```

The calculation looks tedious, but is familiar to people in this field, and can be considered trivial. In practice, such manipulation is usually quickly condensed in one step:

```
\begin{split} &\langle \Sigma i, j : 0 \leqslant i \leqslant j < n+1 : c[i,j] \rangle \\ &= \{ \text{ range split (8.16); one-point rule (8.14) } \} \\ &\langle \Sigma i, j : 0 \leqslant i \leqslant j < n : c[i,j] \rangle + \langle \Sigma i : 0 \leqslant i \leqslant n : c[i,n] \rangle \end{split}
```