《基础物理实验》实验报告

学号 00000000 姓名 我是谁 实验日期 ____ 2025.03.04 ___ 星期 ____ 下午

时间测量中随机误差的分布规律

一、实验目的

- 1. 认识多次重复等精度测量过程中随机误差的离散性和分布规律
- 2. 学习直接测量量的不确定度计算和表示方法。

二、实验原理

本实验使用秒表重复测量电子节拍器的周期 T_0 ,测量结果记为 T_1,T_2,\cdots,T_n 。如果测量次数足够多,那么测 量结果处于 T 附近的概率密度趋近于正态分布

$$p(T) = \frac{1}{\sigma\sqrt{2\pi}}exp\left[-\frac{\left(T - \overline{T}\right)^2}{2\sigma^2}\right]$$

其中, $\overline{T}=rac{1}{n}\sum_{j=1}^n T_j$ 表示周期测量值的平均值, $\sigma=\sqrt{rac{\sum_{j=1}^n \left(T_j-\overline{T}
ight)^2}{(n-1)}}$ 表示周期测量值的标准差。 正态分布理论表明,测量结果处于置信区间 $\left[\overline{T}-\sigma,\overline{T}+\sigma
ight]$, $\left[\overline{T}-2\sigma,\overline{T}+2\sigma
ight]$ 和 $\left[\overline{T}-3\sigma,\overline{T}+3\sigma
ight]$ 内的置信

概率 P 分别为

$$\int_{\overline{T}-\sigma}^{\overline{T}+\sigma} p(T)dT = 0.683$$

$$\int_{\overline{T}-2\sigma}^{\overline{T}+2\sigma} p(T)dT = 0.954$$

$$\int_{\overline{T}-3\sigma}^{\overline{T}+3\sigma} p(T)dT = 0.997$$

基于标准差,可以计算周期测量的 A 类标准不确定度

$$u_A = \frac{\sigma}{\sqrt{n}}$$

本次实验中,周期测量的 B 类标准不确定度主要来自实验者的估计误差(反应时间) Δ_{ft} 和秒表的仪器误差 Δ_{ft}

$$u_B = rac{\sqrt{\Delta_{
m th}^2 + \Delta_{
m Q}^2}}{C}$$
 (其中, C 为置信系数)

两类不确定度的合成和扩展公式为

$$u_p = \sqrt{(t_p u_A)^2 + (k_p u_B)^2}$$
 (其中 k_p 和 t_p 分别为置信因子和 t 因子)

最后,节拍器周期测量结果表示为

$$T = \overline{T} \pm u_p$$
 $P = 0.95$

三、实验仪器

电子节拍器,秒表

四、实验内容

- 1. 用秒表测量电子节拍器周期,测量 n 组数据, n=200。
- 2. 计算测量结果的平均值 \overline{T} 和标准差 σ 。
- 3. 根据测量结果的离散程度和极限差 $R = T_{max} T_{min}$, 合理设置小区间步长 ΔT 和个数 K。
- **4.** 统计区间 $\left[T_i \frac{\Delta T}{2}, T_i + \frac{\Delta T}{2}\right]$ 内的频率 n_i (数据点个数)、概率 P_i ($\frac{n_i}{n}$) 和概率密度 p_i ($\frac{P_i}{\Delta T}$),并绘制 p_i 随区间中值 T_i 变化的直方图。
- 5. 计算正态分布函数 $p(T)=rac{1}{\sigma\sqrt{2\pi}}exp\left[-rac{\left(T-\overline{T}
 ight)^2}{2\sigma^2}
 ight]$ 在各中值 T_i 位置的函数值。
- 6. 在 p_i T_i 直方图上添加 $p(T_i)$ T_i 散点图,检验测量结果是否符合正态分布。
- 7. 分别统计测量结果出现在置信区间 $\left[\overline{T}-\sigma,\overline{T}+\sigma\right]$, $\left[\overline{T}-2\sigma,\overline{T}+2\sigma\right]$ 和 $\left[\overline{T}-3\sigma,\overline{T}+3\sigma\right]$ 内的概率 P,并与理论值比较。
- 8. 计算测量结果的 A 类标准不确定度和 B 类标准不确定度,并写出置信概率为 P=0.95 时的测量结果完整表达式。

五、数据记录

用秒表测电子节拍器周期,记录 200 组数据。原始数据见数据记录表。

六、数据处理

1. 测量结果的平均值 \overline{T} 和标准差 σ , T 的最大值为 T_{max} , 最小值为 T_{min} , 得到以下数据(见表 1)

	总数N	均值	标准差	总和	最小值	中位数	最大值
时间	200	2. 99865	0.03582	599.73	2. 9	3	3. 1

表 1

- 2. 合理设置小区间步长和个数 $\Delta T = 0.05s; k = 8$
- 3. 统计区间内的频数 n_i ,概率 $\frac{n_i}{n}$,概率密度 $\frac{n_i}{n\Delta T}$,详见表 2,并绘制频数随区间中值变化直方图 (图 1) 和概率密度随区间中值变化直方图 (图 2)。

区间	区间起点	区间中心	区间终点	计数	累计计数	相对频率	累积频率	概率密度	正态分布
								Co1(G)/0.0	1/0.03582/
2.8 - 2.85	2.8	2. 825	2. 85	0	0	0	0	0	7. 45341
2.85 - 2.9	2. 85	2. 875	2. 9	0	0	0	0	0	9. 08536
2.9 - 2.95	2. 9	2. 925	2. 95	15	15	0. 075	0. 075	1. 5	10. 36113
2.95 - 3	2. 95	2. 975	3	54	69	0. 27	0. 345	5. 4	11. 05475
3 - 3.05	3	3. 025	3. 05	118	187	0. 59	0. 935	11.8	11. 03489
3.05 - 3.1	3. 05	3. 075	3. 1	9	196	0. 045	0. 98	0. 9	10. 30539
3.1 - 3.15	3. 1	3. 125	3. 15	4	200	0.02	1	0. 4	9. 00405
3. 15 - 3. 2	3. 15	3. 175	3. 2	0	200	0	1	0	7. 36018

表 2

- 4. 计算正态分布函数在各中值位置的函数值 $f(T)=rac{1}{\sigma\sqrt{2\pi}}exp\left[-rac{\left(T-\overline{T}
 ight)^2}{2\sigma^2}
 ight]$,并添加点线图,检验是否符合正态分布。(见图 2)
- 5. 统计测量结果出现在置信区间内的概率,并与理论值比较。

$$p(\sigma) = \int_{\overline{T}-\sigma}^{\overline{T}+\sigma} f(T)dT = 0.745$$
 理论值为 0.683
$$p(2\sigma) = \int_{\overline{T}-2\sigma}^{\overline{T}+2\sigma} f(T)dT = 0.965$$
 理论值为 0.954
$$p(3\sigma) = \int_{\overline{T}-3\sigma}^{\overline{T}+3\sigma} f(T)dT = 1.000$$
 理论值为 0.997

- 6. 计算不确定度 A 类不确定度: $u_A = \frac{\sigma}{\sqrt{n}} = 0.00253s$ B 类不确定度: $u_B = \frac{\sqrt{\Delta_{\text{th}}^2 + \Delta_{\text{th}}^2}}{C} = \frac{\sqrt{0.2^2 + 0.01^2}}{3} = 0.06675s$ 合成不确定度: $u_p = \sqrt{(t_p u_A)^2 + (k_p u_B)^2} = \sqrt{(1.96 \cdot 0.00253)^2 + (1.96 \cdot 0.06675)^2} = 0.06427s$
- 7. 测量结果的完整表达式为: $T = (2.99865 \pm 0.06427)s$ (P = 0.95)

七、误差分析

- 1. 实验人员反应延迟不稳定
- 2. 实验人员注意力涣散
- 3. 电子节拍器的仪器误差
- 4. 秒表的仪器误差

八、思考题

1. 若测量结果偏离正态分布,请分析其主要原因。

答: 仪器测量结果有误差; 实验人员反应时间不固定; 实验人员在长时间实验中易注意力涣散; 实验仪器的精度不够小导致出现不少值位于区间端点,例如测得大量 3.00s 导致处于 [3.00,3.05) 的频数大于处于 [2.95,3.00) 的频数。

2. 在不考虑系统误差的前提下,多次等精度测量的随机误差分布有哪些特征? 答: 随机误差基本服从以 0 为平均值的正态分布。

九、实验结论

本实验使用秒表重复测量电子节拍器的周期 T_i ,并且使用统计学方法求得周期 T_i 。该实验中的随机误差与正态分布有一定不吻合,但总体呈现基本符合正态分布。经过 200 次测量,测得电子节拍器的周期为

$$T = (2.99865 \pm 0.06427)s$$
 $(P = 0.95)$