Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação

SSC 140 - SISTEMAS OPERACIONAIS I

Turmas A e B

Aula 3 - Conceitos Básicos

Profa. Sarita Mazzini Bruschi

Alta Complexidade

Slides de autoria de Luciana A. F. Martimiano baseados nos livros Sistemas Operacionais Modernos de A. Tanenbaum e Arquitetura de Sistemas Operacionais de Machado e Maia

Roteiro

- Por que Sistemas Operacionais;
- Conceitos Básicos:
 - Processos:
 - Chamadas de Sistema system calls;
 - Estrutura de Sistemas Operacionais;

Por que?

- □ Sistemas de computadores modernos são compostos por diversos dispositivos:
 - Processadores;
 - Memória;
 - Controladoras;
 - Monitor;
 - Teclado: Mouse;
 - Impressoras;
 - Etc...

Por que?

- Com tantos dispositivos, surge a necessidade de gerenciamento e manipulação desses diversos dispositivos;
- □ Sistema Operacional: Software responsável por gerenciar dispositivos que compõem um sistema computacional e realizar a interação entre o usuário e esses dispositivos;

Arquitetura do Sistema ■ APLICATIVOS Passagens Banco Compiladores Editores **PROGRAMAS** DO SISTEMA SISTEMA OPERACIONAL Linguagem de Máquina HARDWARE Micro Arquitetura Dispositivos Físicos

Arquitetura do Sistema

□ Hardware: Diversas camadas

- Dispositivos físicos:
- □ Circuitos (chips)
 - Cabos
 - Transistores
 - Capacitores
 - Memória
 - Disco rígido
 - etc...

Arquitetura do Sistema

- Micro Arquitetura: dispositivos físicos são agrupados para formar unidades funcionais
 - CPU processamento;
 - ULA (Unidade Lógica Aritmética) operações aritméticas. Essas operações podem ser controladas por software (micro programas) ou por circuitos de hardware;

Arquitetura do Sistema

- Linguagem de Máquina: conjunto de instruções interpretadas pelos dispositivos que compõem a micro arquitetura;
 - Possui entre 50 e 300 instruções;
 - Realiza operações por meio de registradores;
 - Baixo nível de abstração;
 - Ex.: Assembler.

8

Sistema Operacional

- □ Pode atuar de duas maneiras diferentes:
 - Como máquina estendida (top-down) tornar uma tarefa de baixo nível mais fácil de ser realizada pelo usuário;
 - Como gerenciador de recursos (bottom-up) gerenciar os dispositivos que compõem o computador;

Sistema Operacional como Máquina Estendida

- Ex.: como é feita a entrada/saída de um disco flexível – tarefa: Leitura e Escrita
 - SO: baixo nível de detalhes
 - Número de parâmetros;
 - □ Endereço de bloco a ser lido;
 - Número de setores por trilha;
 - Modo de gravação;
 - Usuário: alto nível abstração simples
 - □ Visualização do arquivo a ser lido e escrito;
 - Arquivo é lido e escrito;
 - □ Arquivo é fechado.

10

Sistema Operacional como Gerenciador de Recursos

- Gerenciar todos os dispositivos e recursos disponíveis no computador
 - Ex.: se dois processos querem acessar um mesmo recurso, por exemplo, uma impressora, o SO é responsável por estabelecer uma ordem para que ambos os processos possam realizar sua tarefa de utilizar a impressora.
 - Uso do HD;
 - Uso da memória;
- Coordena a alocação controlada e ordenada dos recursos;

Classes de Sistemas Operacionais

Classe	Período	Principal Preocupação	Conceitos chave
Processamento Batch	1960s	Tempo de CPU parada	Transição automática entre os jobs
Multiprogramação	1960s	Utilização de recursos	Prioridade dos programas, preempção
Tempo compartilhado	1970s	Bom tempo de resposta	Time slice,round- robin, escalonamento
Tempo real	1980s	Atingir restrições de tempo	Escalonamento de tempo real
Distribuído	1990s	Compartilhamento de recursos	Controle distribuído, transparência

Conceitos Básicos Processos □ Processos: chave do SO; ■ Caracterizado por programas em execução; ■ Cada processo possui: □ Programa (instruções que serão executadas); □ Um espaço de endereço de memória (mínimo, máximo); □ Contextos de hardware: informações de registradores; □ Contextos de software: atributos; □ O Sistema Operacional gerencia todos os processos → bloco de controle de processo (BCP) e tabela de processos;

Conceitos Básicos Processos Um processo pode resultar na execução de outros processos, chamados de processos-filhos: Características para a hierarquia de processos: Comunicação (Interação) e Sincronização; Segurança e proteção; Uma árvore de no máximo três níveis; Escalonadores de processos – processo que escolhe qual será o próximo processo a ser executado; Diversas técnicas para escalonamento de processos; Comunicação e sincronismo entre processos;

Conceitos Básicos Chamadas de Sistema • Modos de Acesso: • Modo usuário; • Modo kernel ou Supervisor ou Núcleo; • São determinados por um conjunto de bits localizados no registrador de status do processador: PSW (program status word); • Por meio desse registrador, o hardware verifica se a instrução pode ou não ser executada pela aplicação; • Protege o próprio kernel do Sistema Operacional na RAM contra acessos indevidos;

Conceitos Básicos Chamadas de Sistema

■ Modo usuário:

- Aplicações não têm acesso direto aos recursos da máquina, ou seja, ao hardware;
- Quando o processador trabalha no modo usuário, a aplicação só pode executar instruções sem privilégios, com um acesso reduzido de instruções;
- Por que? Para garantir a segurança e a integridade do sistema;

19

Conceitos Básicos Chamadas de Sistema

■ Modo *Kernel*:

- Aplicações têm acesso direto aos recursos da máquina, ou seja, ao hardware;
- Operações com privilégios;
- Quando o processador trabalha no modo kernel, a aplicação tem acesso ao conjunto total de instruções;
- Apenas o SO tem acesso às instruções privilegiadas;

20

Conceitos Básicos Chamadas de Sistema

- Se uma aplicação precisa realizar alguma instrução privilegiada, ela realiza uma chamada de sistema (system call), que altera do modo usuário para o modo kernel;
- Chamadas de sistemas são a porta de entrada para o modo Kernel;
 - São a interface entre os programas do usuário no modo usuário e o Sistema Operacional no modo kernel;
 - As chamadas diferem de SO para SO, no entanto, os conceitos relacionados às chamadas são similares independentemente do SO;

21

Conceitos Básicos Chamadas de Sistema TRAP: instrução que permite o acesso ao modo kernel; Exemplo: Instrução do UNIX: count = read(fd,buffer,nbytes); Arquivo a ser lido Ponteiro para o Buffer O programa sempre deve checar o retorno da chamada de sistema para saber se algum erro ocorreu!!!

Conceitos Básicos Chamadas de Sistema: - Exemplos de chamadas de sistema: - Chamadas para gerenciamento de processos: - Fork (CreateProcess - WIN32) - cria um processo; - Chamadas para gerenciamento de diretórios: - Mount - monta um diretório; - Chamadas para gerenciamento de arquivos: - Close (CloseHandle - WIN32) - fechar um arquivo; - Outros tipos de chamadas: - Chmod: modifica permissões;

Estrutura dos Sistemas Operacionais

- □ Principais tipos de estruturas:
 - Monolíticos;
 - Em camadas;
 - Máquinas Virtuais;
 - Arquitetura Micro-kernel;
 - Cliente-Servidor;

25

Estrutura dos Sistemas Operacionais

- Monolítico

- Todos os módulos do sistema são compilados individualmente e depois ligados uns aos outros em um único <u>arquivo-objeto</u>;
- O Sistema Operacional é um conjunto de processos que podem interagir entre si a qualquer momento sempre que necessário;
- Cada processo possui uma interface bem definida com relação aos parâmetros e resultados para facilitar a comunicação com os outros processos;
- Simples:
- Primeiros sistemas UNIX e MS-DOS;

26

Estrutura dos Sistemas Operacionais

– Em camadas

- Possui uma hierarquia de níveis;
- Primeiro sistema em camadas: THE (idealizado por E.W. Dijkstra);
 - Possuía 6 camadas, cada qual com uma função diferente:
 - Sistema em batch simples;
- Vantagem: isolar as funções do sistema operacional, facilitando manutenção e depuração
- Desvantagem: cada nova camada implica uma mudanca no modo de acesso
- □ Atualmente: modelo de 2 camadas

28

Estrutura dos Sistemas Operacionais — Máquina Virtual

□ Idéia em 1960 com a IBM → VM/370;
□ Modelo de máquina virtual cria um nível intermediário entre o SO e o Hardware;
□ Esse nível cria diversas máquinas virtuais independentes e isoladas, onde cada máquina oferece um cópia virtual do hardware, incluindo modos de acesso, interrupções, dispositivos de E/S, etc.;
□ Cada máquina virtual pode ter seu próprio SO;

Estrutura dos Sistemas Operacionais – Máquina Virtual Aplicação ApMV₁ $ApMV_2$ $ApMV_n$ Sistema SOMV SOMV₁ SOMV₂ Operacional Cópia HwMV₁ $HwMV_2$ $HwMV_n$ Hardware Gerência das MV Hardware

Estrutura dos Sistemas Operacionais – Máquina Virtual

- Atualmente, a idéia de máquina virtual é utilizada em contextos diferentes:
 - Programas MS-DOS: rodam em computadores 32bits;
 - As chamadas feitas pelo MS-DOS ao Sistema Operacional são realizadas e monitoradas pelo monitor da máquina virtual (VMM);
 - Virtual 8086;
 - Programas JAVA (Máquina Virtual Java-JVM): o compilador Java produz código para a JVM (bytecode).
 Esse código é executado pelo interpretador Java:
 - Programas Java rodam em qualquer plataforma, independentemente do Sistema Operacional;

38

Estrutura dos Sistemas Operacionais – Máquina Virtual

- Vantagens
 - Flexibilidade;
- Desvantagem:
 - Simular diversas máquinas virtuais não é uma tarefa simples → sobrecarga;

39

Estrutura dos Sistemas Operacionais – Baseados em *Kernel* (núcleo)

- Kernel é o núcleo do Sistema Operacional
- Provê um conjunto de funcionalidades e serviços que suportam várias outras funcionalidades do SO
- O restante do SO é organizado em um conjunto de *rotinas não-kernel*

Interface com usuário

Rotinas não kernel

Kernel

Hardware

40

Estrutura dos Sistemas Operacionais – Micro-Kernel Servidor de Rede Servidor de Rede Modo usuário Modo usuário Microkernel Microkernel

Hardware

Estrutura dos Sistemas Operacionais – Cliente/Servidor

- Reduzir o Sistema Operacional a um nível mais simples:
 - Kernel: implementa a comunicação entre processos clientes e processos servidores → Núcleo mínimo:
 - Maior parte do Sistema Operacional está implementado como processos de usuários (nível mais alto de abstração);
 - Sistemas Operacionais Modernos;

42

