CS342: Networks Lab

Assignment – 4

Group 41

Nayanika Ghosh – 200123036

Parth Maheshwari – 200123037

Piyush Kumar – 200123038

Pradeep Kumar – 200123039

#Running the scripts

Create folders named wiredTCP and wirelessTCP inside scratch directory of ns3 directory.

Now copy and paste respective C++ source code files into these folders

Now run the command "./build.py --enable-examples --enable-tests" to build our files.

now run command "./waf run wiredTCP" to create plot files for wired network.

now run command "./waf run wirelessTCP" to create plot files for wireless

network.

now execute the following command to generate the plots in PNG format.

[&]quot;gnuplot wiredTCPfairness.plt"

[&]quot;gnuplot wiredTCPthroughput.plt"

[&]quot;gnuplot WirelessFairnessPlot.plt"

[&]quot;gnuplot WirelessThroughputPlot.plt"

Application #2

Wired TCP:

a) Throughput vs Packet size:

throughput	Packet size
40	1.02849
44	1.12054
48	1.202
52	1.3047
60	1.49945
250	5.92056
300	7.08738
552	12.9621
576	13.5358
628	14.7539
1420	30.575
1500	30.5465

b) Fairness index vs packet size:

40	0.590428
44	0.582498
48	0.57655
52	0.579436
60	0.576561
250	0.551018
300	0.550465
552	0.547247
576	0.547729
628	0.54755
1420	0.545793
1500	0.545837

Conclusion

In general, throughput increases with increase in packet size for all the TCP agents.

Since there is only 1 connection throughout the course of the experiment, the value of Jain's Fairness Index is 1 for all the TCP agents.

Wireless TCP:

a) Throughput vs Packet size:

5.11014
5.2915
5.41927
5.57351
5.86009
24.4639
25.3252
27.2633
56.9658
59.6267

b) Fairness index vs packet size:

40	0.768203
44	0.760125
48	0.752639
52	0.745692
60	0.730718
552	0.549224
576	0.547819
628	0.543996
1420	0.520618
1500	0.51957

Conclusion

In general, throughput increases with increase in packet size for all the TCP agents.

Since there is only 1 connection throughout the course of the experiment, the value of Jain's Fairness Index is 1 for all the TCP agents.

Jain's Fairness Index

$$\mathcal{J}(x_1,x_2,\ldots,x_n) = rac{(\sum_{i=1}^n x_i)^2}{n\cdot\sum_{i=1}^n {x_i}^2} = rac{\overline{\mathbf{x}}^2}{\overline{\mathbf{x}}^2} = rac{1}{1+\widehat{c_{\mathrm{v}}}^2}$$

In all of the cases, the value of Jain's Fairness Index comes out to be 1. The reason being that there is only 1 connection throughout the course of the experiment. The plot of Packet Size vs Jain's Fairness Index is given below.

