Variable	Fonction	Déductible ordinaire	Déductible avec franchise
Y^{p}	f_{Y^P} S_{Y^P}	$\frac{f_X(y+d)}{S_X(d)}$ $\frac{S_X(y+d)}{S_X(d)}$	$\begin{cases} \frac{f_X(d)}{S_X(d)} \\ 1 & , 0 \le y \le d \\ \frac{S_X(y)}{S_X(d)} & , y > d \end{cases}$
	F_{Y^P}	$\frac{F_X(y+d) - F_X(d)}{S_X(d)}$	$\begin{cases} F_X(d) & ,y = 0 \\ F_X(d) & ,0 < y \le d \\ \frac{F_X(y) - F_X(d)}{S_X(d)} & ,y > d \end{cases}$
	h_{Y^P}	$h_X(y+d)$	$\begin{cases} 0 & , 0 < y \le d \\ h_X(y) & , y > d \end{cases}$
	$E[Y^P]$	$= \frac{\mathrm{E}\left[(X-d)_{+}\right]}{S_{X}(d)}$ $= \frac{\mathrm{E}\left[X\right] - \mathrm{E}\left[X \wedge d\right]}{S_{X}(d)}$	$= \frac{\mathrm{E}\left[(X-d)_{+}^{F}\right]}{S_{X}(d)}$ $= \frac{\mathrm{E}\left[X\right] - \mathrm{E}\left[X \wedge d\right]}{S_{X}(d)} + d$

TABLE 1 – Fonctions left truncated and shifted

Variable	Fonction	Déductible ordinaire	Déductible avec franchise
Y^L	f_{Y^L}	$f_X(y+d)$	$\begin{cases} F_X(d) & ,y=0 \\ f_X(y) & ,y>0 \end{cases}$
	S_{Y^L}	$S_X(y+d)$	$\begin{cases} S_X(d) & , 0 < y \le d \\ S_X(x) & , y > d \end{cases}$
	F_{Y^L}	$F_X(y+d)$	$\left\{egin{aligned} F_X(d) & \text{, } 0 < y \leq d \ F_X(y) & \text{, } y > d \end{aligned} ight.$
	h_{Y^L}	$h_X(y+d)$	$\begin{cases} h_X(d) & , 0 < y \le d \\ h_X(x) & , y > d \end{cases}$
	$\mathbb{E}\left[Y^{L}\right]$	$ = E[(X - d)_{+}] $ $= E[X] - E[X \wedge d] $ $= \pi_{X}(d) $	$ = E \left[(X - d)_+^F \right] $ $= E \left[X \right] - E \left[X \wedge d \right] + dS_X(d) $

TABLE 2 – Fonctions left censored and shifted