Concevoir la partie commande des systèmes asservis afin de valider leurs performances

Chapitre 1 - Correction des systèmes

Sciences Industrielles de l'Ingénieur

Appplication 1

Réglage de correcteurs P

Etude d'un poste de palettisation de bidons. CCPM MP 2010.

1

Savoirs et compétences :

Res1.C4.SF1 : proposer la démarche de réglage d'un correcteur proportionnel, proportionnel intégral et à avance de phase.

La boucle de position est représentée figure cidessous. On admet que:

- $H(p) = \frac{\Omega_m(p)}{U_v(p)} = \frac{30}{1 + 5 \cdot 10^{-3} p}$; $K_r = 4 \text{V rad}^{-1}$: gain du capteur de position;
- K_a : gain de l'adaptateur du signal de consigne
- le signal de consigne $\alpha_e(t)$ est exprimé en degrés;
- le correcteur C(p) est à action proportionnelle de gain réglable K_c .

Objectif • On souhaite une marge de phase de 45°.

• On souhaite un écart de traînage inférieur à 1° pour une consigne de vitesse de 105° s⁻¹.

Question 1 Déterminer la fonction de transfert R(p) =du réducteur.

Question 2 Déterminer le gain K_a de l'adaptateur.

Question 3 Déterminer, en fonction notamment de K'_m et t'_m , la fonction de transfert en boucle ouverte T(p) que l'on exprimera sous forme canonique. En déduire l'expression du gain de boucle, noté K_{BO} .

On souhaite une marge de phase de 45°.

Question 4 Déterminer la valeur de K_{BO} permettant de satisfaire cette condition.

Question 5 En déduire la valeur du gain K_c du correcteur.

Question 6 Déterminer l'écart de position. Conclure vis-à-vis des exigences du cahier des charges.

On souhaite un écart de traînage inférieur à 1°pour une consigne de vitesse de $105\,^{\circ}\,\mathrm{s}^{-1}$.

Question 7 Déterminer l'expression de $\alpha_e(t)$ correspondant à une consigne de vitesse de 105° s⁻¹. En déduire $\alpha_e(p)$.

Question 8 La valeur de K_{BO} définie précédemment permet-elle de satisfaire l'exigence de précision imposée par le cahier des charges? Conclure.

Concevoir la partie commande des systèmes asservis afin de valider leurs performances

Chapitre 1 - Correction des systèmes

Sciences Industrielles de l'Ingénieur

Appplication 1

Réglage de correcteurs P

Etude d'un poste de palettisation de bidons. CCPM MP 2010.

Savoirs et compétences :

Res1.C4.SF1 : proposer la démarche de réglage d'un correcteur proportionnel, proportionnel intégral et à avance de phase.

La boucle de position est représentée figure cidessous. On admet que:

- $H(p) = \frac{\Omega_m(p)}{U_v(p)} = \frac{30}{1 + 5 \cdot 10^{-3} p}$; $K_r = 4 \text{V rad}^{-1}$: gain du capteur de position;
- K_a : gain de l'adaptateur du signal de consigne
- le signal de consigne $\alpha_e(t)$ est exprimé en degrés;
- le correcteur C(p) est à action proportionnelle de gain réglable K_c .

Objectif • On souhaite une marge de phase de 45°.

• On souhaite un écart de traînage inférieur à 1° pour une consigne de vitesse de 105° s⁻¹.

Question 1 Déterminer la fonction de transfert R(p) =du réducteur.

Question 2 Déterminer le gain K_a de l'adaptateur.

Question 3 Déterminer, en fonction notamment de K'_m et t'_m , la fonction de transfert en boucle ouverte T(p) que l'on exprimera sous forme canonique. En déduire l'expression du gain de boucle, noté K_{BO} .

On souhaite une marge de phase de 45°.

Question 4 Déterminer la valeur de K_{BO} permettant de satisfaire cette condition.

Question 5 En déduire la valeur du gain K_c du correcteur.

Question 6 Déterminer l'écart de position. Conclure vis-à-vis des exigences du cahier des charges.

On souhaite un écart de traînage inférieur à 1°pour une consigne de vitesse de $105\,^{\circ}\,\mathrm{s}^{-1}$.

Question 7 Déterminer l'expression de $\alpha_e(t)$ correspondant à une consigne de vitesse de 105° s⁻¹. En déduire $\alpha_e(p)$.

Question 8 La valeur de K_{BO} définie précédemment permet-elle de satisfaire l'exigence de précision imposée par le cahier des charges? Conclure.

Concevoir la partie commande des systèmes asservis afin de valider leurs performances

Chapitre 1 - Correction des systèmes

Sciences
Industrielles de
l'Ingénieur

Appplication 1 – Corrigé

Réglage de correcteurs P

Etude d'un poste de palettisation de bidons. CCPM MP 2010.

Savoirs et compétences :

Res1.C4.SF1: proposer la démarche de réglage d'un correcteur proportionnel, proportionnel intégral et à avance de phase.

La boucle de position est représentée figure cidessous. On admet que :

- $H(p) = \frac{\Omega_m(p)}{U_v(p)} = \frac{30}{1 + 5 \cdot 10^{-3} p}$;
- $K_r = 4 \text{V rad}^{-1}$: gain du capteur de position;
- K_a : gain de l'adaptateur du signal de consigne $\alpha_e(t)$;
- le signal de consigne $\alpha_e(t)$ est exprimé en degrés;
- le correcteur C(p) est à action proportionnelle de gain réglable K_c .

• On souhaite une marge de phase de 45°.

• On souhaite un écart de traînage inférieur à 1° pour une consigne de vitesse de 105° s⁻¹.

Question 1 Déterminer la fonction de transfert $R(p) = \frac{\alpha_r(p)}{\Omega_m(p)}$ du réducteur.

Correction

Question 2 Déterminer le gain K_a de l'adaptateur.

Correction

Question 3 Déterminer, en fonction notamment de K'_m et t'_m , la fonction de transfert en boucle ouverte T(p) que

l'on exprimera sous forme canonique. En déduire l'expression du gain de boucle, noté K_{BO} .

Correction

On souhaite une marge de phase de 45°.

Question 4 Déterminer la valeur de K_{BO} permettant de satisfaire cette condition.

Correction

Question 5 En déduire la valeur du gain K_c du correcteur.

Correction

Question 6 Déterminer l'écart de position. Conclure vis-à-vis des exigences du cahier des charges.

Correction

On souhaite un écart de traînage inférieur à 1° pour une consigne de vitesse de $105\,^{\circ}\,\text{s}^{-1}$.

Question 7 Déterminer l'expression de $\alpha_e(t)$ correspondant à une consigne de vitesse de $105 \, ^{\circ} \, \text{s}^{-1}$. En déduire $\alpha_e(p)$.

Correction

Question 8 La valeur de K_{BO} définie précédemment permet-elle de satisfaire l'exigence de précision imposée par le cahier des charges? Conclure.

Correction