Project

Smart Sorting: Transfer Learning for Identifying Rotten Fruits and Vegetables

Team ID: LTVIP2025TMID45424

Team Members:

- Tellapuri Hiranya Jahnavi Latha (Team Lead)
- B Haritha
- Sidda Keerthi
- · Chantimalla Bharathi

Phase 1: Brainstorming and Ideation

Objective: To conceptualize a practical and efficient solution for rotten fruits and vegetables classification using deep learning methodologies, with a focus on medical relevance and real-time deployment potential.

Key Points:

- **Problem Statement:** Manual identification of rotten fruits and vegetables is time-consuming, prone to errors, and requires expert pathologists.
- **Proposed Solution:** Develop a deep learning model using transfer learning to accurately classify rotten fruits and vegetables.
- **Target Users:** This type of classification is used in food factories which uses fruits and vegetables.
- **Expected Outcome:** A web-based application capable of accurately classifying rotten fruits and vegetables using an uploaded image, improving accuracy and efficiency.

Phase 2: Requirement Analysis

Objective: To identify all technical and functional needs essential for the development and deployment of the rotten fruits and vegetables classification system.

Key Points:

- Technical Requirements:
 - \circ Python 3.9 or 3.10 \circ TensorFlow >= 2.10 \circ

Flask (for web app integration)

NumPy,

Pandas, Matplotlib, OpenCV, Seaborn o Anaconda

/ Google Colab / VS Code (for development)

Functional Requirements:

- User uploads a blood fruits and vegetables image
- The system preprocesses the image
- The trained model predicts whether the fruit or vegetable is ripened or not
- o Result is displayed with classification confidence

Constraints & Challenges:

- Model performance depends on dataset quality
- o File compatibility for .h5 in different environments
- o Limitations on Colab runtime and file storage
- o Hardware limitations on local machines for training

Phase 3: Project Design

Objective: To establish a clear and scalable system architecture and define user flow for seamless application interaction.

Key Points:

• System Architecture:

User Flow:

- o User accesses the application (locally or via browser)
- o Uploads image of blood cell
- Backend model processes and classifies the image
- o Result is shown on the frontend

Phase 4: Project Planning

Objective: To outline the project timeline, task distribution, and dependencies.

Sprint	Task	Priority	Duration	Deadline	Assigned to	Dependencies	Expected outcome
Sprint 1	Environment Setup & Package Installation	High	3 hours	Day 1	Member 1	Anaconda, Python	Project environment ready
Sprint 1	Dataset Collection & Preprocessing	High	4 hours	Day 1	Member 2	Dataset access	Clean, prepared image dataset
Sprint 2	Model Building using Transfer Learning	High	5 hours	Day 2	Member 3	Preprocessed data, TensorFlow	Trained classification model
Sprint 2	Flask Web App Integration	Medium	3 hours	Day 2	Member 1 & 4	Trained Model, Flask installed	Working web interface
Sprint 3	Testing & Debugging	Medium	2 hours	Day 2	Member 2 & 3	Complete System	Bug-free and responsive system
Sprint 3	Final Presentation & Deployment	Low	1 hour	End of Day 2	Entire Team	Working application	Project deployed and demo-ready

Phase 5: Project Development

Objective: To build and test the system iteratively, addressing challenges and refining model performance.

Key Points:

Technology Stack Used:

Language: Python

o Frameworks: TensorFlow, Flask

o Tools: Google Colab, Anaconda, Jupyter Notebook, VS Code

Development Process:

- 1. Data preprocessing and augmentation
- 2. Building and training model using transfer learning (e.g., MobileNetV2, ResNet50)
- 3. Model evaluation and tuning
- 4. Web application integration using Flask
- 5. Deployment and testing

Challenges and Fixes:

- o Issue: .h5 file not opening in VS Code
 - → Fix: Used correct Python environment with TensorFlow installed (Python 3.9/3.10)
- o Issue: Jupyter notebook not launching from virtual environment
 - + Fix: Installed Jupyter inside the specific conda environment and added kernel
 - o Issue: TensorFlow install errors
 - + Fix: Switched to supported Python version (3.10) and used clean virtual environment