Intercambio

Adaptación (ver referencias al final)

Intercambio

- Los procesos pueden ser expulsados temporalmente de memoria principal
 - A un almacenamiento secundario (p. ej.: disco)
- Permite a los procesos "ver" más memoria física de la que realmente hay en el sistema
 - Incrementa el grado de multi programación en el sistema.
 - Potencialmente más procesos pueden cargarse para su ejecución.
- Permite a los programadores "despreocuparse" de las limitantes de memoria física
 - No importa si cabe o no, siempre (en el mejor caso) habrá espacio.

Intercambio sin paginación

- Implica mover TODO el proceso de memoria a disco y viceversa
 - Toda la imagen y el estado del proceso en memoria debe escribirse a disco
 - Requiere mucho tiempo mover todo el proceso
- S.O debe mantener metadatos del proceso que es expulsado de memoria
- La expulsión no implica que el proceso haya finalizado
- Permite un reúso (sobrevender) de la memoria
 - El sistema puede admitir más procesos que las limitantes de memoria física imponen
 - Procesos inactivos pueden ser buenos candidatos para expulsar de memoria
 - Procesos inactivos que se activen regresan a memoria

Intercambio con paginación

- Linux y Windows
- Se hace el intercambio de páginas
- Algunas se pueden quedar en almacenamiento secundario.

Intercambio con paginación

- Es más eficiente intercambiar páginas que TODO el proceso
- Cuando se presenta mucha paginación en un sistema
 - Indica que hay más procesos activos que memoria disponible
 - Solución 1: Comprar más memoria
 - Solución 2: Terminar procesos (liberar memoria)
- Páginas que no se demandan con mucha frecuencia son candidatas a llevar a almacenamiento secundario.
 - Para ello se puede usar el bit **Referencia** en la tabla de páginas y/o **TLB**.

Espacio de intercambio

- Se debe reservar en disco un área de intercambio
 - Swap space (Linux, una partición del disco)
 - Archivo de paginación (Windows)
- S.O debe recordar la dirección en disco de una página de memoria
- El tamaño del área de intercambio debe ser lo suficientemente grande
 - Determina el número de páginas de memoria que pueden estar en uso en un sistema
- Los procesos pueden ser admitidos y todas sus páginas llevadas al área de intercambio
 - Las páginas se van cargando en memoria en la medida que se demandan

Espacio de intercambio

Marco 0	Marco 1	Marco 2	Marco 3

Memoria física

Existe un proceso admitido pero no cargado en memoria física

Bloque 0	Bloque 1	Bloque 2	Bloque 3	Bloque 4	Bloque 5	Bloque 6	Bloque 7
		Libre					

Área de intercambio

Fallos de página

- Se producen cuando se hace referencia a una dirección de memoria (virtual) de una página que no está en memoria física.
 - La página está en el área de intercambio.
 - Se usa el bit de **Presente** en la tabla de páginas o en el TLB.
- Sistemas operativo debe
 - Ubicar marcos de página disponible en memoria física.
 - Ubicar la página en disco (operación de E/S, proceso bloqueado).
 - Traerla de disco y asignarla en un marco disponible.
 - Actualizar la entrada en la tabla de páginas indicando que la página está disponible en memoria.

Memoria llena

- Debe existir una política de reemplazo para permitir llevar a memoria páginas que están en el área de intercambio.
- Se debe abrir espacio en memoria para permitir la ejecución de procesos
 - Llevar páginas poco usadas al área de intercambio.
- Expulsar incorrectamente páginas de memoria tienen un alto costo en desempeño.
 - Procesos con una tasa alta de fallos de página se ejecutan muy lento.

Liberar memoria

- Se usan dos umbrales para mantener memoria principal libre
 - Umbral bajo
 - Umbral alto
- Si S.O detecta que hay disponible menos memoria que umbral bajo
 - Se ejecuta hilo en background que lleva a área de intercambio páginas.
 - Se libera memoria hasta que se alcanza umbral alto y luego sleep().
 - Swap daemon o page daemon.
- Las páginas que se llevan a memoria se llevan con alguna **política de reemplazo**.

¿Qué tanto espacio para swap en Linux?

RAM física	Espacio para swap recomendado	Espacio para swap recomendado para hibernación
≤ 2GB	dos veces la RAM	tres veces la RAM
2 GB – 8 GB	Igual a la RAM	Dos veces la RAM
8 GB – 64 GB	4 GB al 50% de la RAM	1.5 veces la RAM
> 64 GB	Mínimo 4GB	No se recomienda hibernación

Fuente: https://docs.fedoraproject.org/en-US/fedora/f28/install-guide/

IMPORTANTE: cuando el espacio de memoria virtual se esté agotando la solución **NO** es incrementarlo. La solución es añadir **mas memoria RAM.**

Referencias

• Arpaci-Dusseau, R. H., & Arpaci-Dusseau, A. (2018). Beyond Physical Memory: Mechanisms. In *Operating Systems. Three Easy Pieces* (pp. 1–11). Arpaci-Dusseau Books.