

PROPOSTA DE PROJETO DE EXTENSÃO

1. DADOS GERAIS

HydroSense

Projeto focado em prevenir e detectar possíveis enchentes. Este projeto tem como intuito ajudar a população para evitar que destruições e tragédias venham acontecer novamente.

Integrantes da equipe

Identificar o nome completo e o RA dos participantes do projeto

Nome:	RA:
Anderson Silva Andreia Alaini	01020406 24026333
Angelo Vitorino Bruna Lira	24026263 24025837
Matheus Antero	24026326

Professor responsável

Rodnil da Silva, Victor Rosset

Curso

Tecnólogo em Análise de Desenvolvimento de Sistemas

Linha de atuação

Identificar com ✓ uma ou mais linhas de atuação conforme projeto pedagógico de curso.

- Projeto Interdisciplinar: Sensor de umidade.

Objetivos do Desenvolvimento Sustentável

Identificar com ✓ um ou mais ODS impactado(s) pelo projeto

- 1- Erradicação da Pobreza
- 2- Fome Zero
- 3- Saúde e Bem Estar ✓
- 4- Educação de Qualidade
- 5- Igualdade de Gênero
- 6- Água Potável e Saneamento
- 7- Energia Limpa e Acessível
- 8- Trabalho Decente e Crescimento Econômico
- 9- Indústria, Inovação e Infraestrutura

- 10- Redução das Desigualdades
- 11-Cidades e Comunidades Sustentáveis ✓
- 12- Consumo e Produção Responsáveis
- 13- Ação Contra a Mudança Global do Clima
- 14- Vida na Água
- 15- Vida Terrestre
- 16- Paz, Justiça e Instituições Eficazes
- 17- Parcerias e Meios de Implementação ✓

Tipo de projeto

Identificar com ✓ o tipo de projeto.

- Atividade de Extensão não implementado na prática (proposta de intervenção)
- Atividade de Extensão implementado na prática (intervenção executada) /

Tema gerador

Tema que trabalha com base no arduino e lógica de programação, usando a ODS 3, 6, 11 e 17.

Produto decorrente do projeto (opcional dependendo do tipo de projeto)

Código C## para nosso projeto

#define BLYNK_TEMPLATE_ID "TMPL2I62GmY9g"

#define BLYNK TEMPLATE NAME "Sensor de enchentes"

#define BLYNK_AUTH_TOKEN "dTCA-Aj2AkhLQ2wvxufM5lCmY-iLlRLv"

#define BLYNK PRINT Serial

//BIBLIOTECAS

#include <WiFi.h>

//#include <WiFiClient.h>

#include <BlynkSimpleEsp32.h>

#include <dummy.h>

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

//Inicializando o objeto timer do tipo BlynkTimer

BlynkTimer timer;

// DEFINE O NUMERO DE COLUNAS E LINHAS DO LCD

//#define col 16 //numero de colunas

//#define lin 2

// número de linhas

//#define ende 0x3F


```
//define o endereço do display
#define TRIGGER_PIN 23
#define ECHO_PIN 18
LiquidCrystal_I2C lcd(0x27,16,2);
//Cria o objeto lcd passando como parâmetros o endereço, o nº de colunas e o nº de linhas
// WIFI E SENHA
char auth[] = "dTCA-Aj2AkhLQ2wvxufM5lCmY-iLlRLv";
char ssid[] = "Wi-Fi ACS07";
char pass[] = "195f791ab816";
// VARIÁVEIS
int verde = 13;
int amarelo = 12;
int vermelho = 14;
int sirene = 17;
// SETUP
void setup() {
 Serial.begin(9600);
 pinMode(TRIGGER_PIN, OUTPUT);
 pinMode(ECHO_PIN, INPUT);
 pinMode(verde, OUTPUT);
```



```
pinMode(vermelho, OUTPUT);
 pinMode(amarelo, OUTPUT);
 pinMode(sirene, OUTPUT);
 lcd.init();
//inicializa a comunicação com o display ja conectado
//lcd.clear(); //limpa a tela do display
lcd.backlight(); //Aciona a luz de fundo do display
// INICIALIZANDO O BLYNK
Blynk.begin(auth, ssid, pass);
void loop() {
// CHAMA A FUNÇÃO Blynk.run()
 Blynk.run();
// CHAMA A FUNÇÃO timer.run()
 timer.run();
 long duration, distance;
 // LIMPA O PINO DE TRIGGER
 digitalWrite(TRIGGER_PIN, LOW);
 delayMicroseconds(2);
 // ENVIA UM PULSO DE 10 MICROSSEGUNDOS NO PINO DE TRIGGER
```



```
digitalWrite(TRIGGER_PIN, HIGH);
 delayMicroseconds(10);
 digitalWrite(TRIGGER PIN, LOW);
 // LÊ A DURAÇÃO DO PULSO NO PINO DE ECO
 duration = pulseIn(ECHO PIN, HIGH);
 // CALCULA A DISTÂNCIA EM CENTÍMETROS
 distance = duration * 0.034 / 2;
 // EXIBE A DISTÂNCIA NO MONITOR SERIAL
 Serial.print("Distancia: ");
 Serial.print(distance);
 Serial.println(" cm");
// ESCREVE NO PINO VIRTUAL V1 O VALOR DA VARIÁVEL (DISTANCE)
 Blynk.virtualWrite(V1, distance);
 delay(1000); // Espera 1 segundo antes de realizar a próxima leitura
 //lcd.setCursor(0, 0); //Coloca o cursor do display na coluna 1 e linha 1
 //lcd.setCursor(0, 1); //Coloca o cursor do display na coluna 1 e linha 2
 // LEITURA DOS LED'S
 if (distance>=25 && distance<=38)
   digitalWrite(verde, HIGH);
```



```
lcd.setCursor(0, 0); //Coloca o cursor do display na coluna 1 e linha 1
  lcd.print(" AVISO: "); //BAIXAS CHANCES!
  lcd.setCursor(0, 1); //Coloca o cursor do display na coluna 1 e linha 2
  lcd.print(" OBSERVACAO "); // BAIXAS CHANCES
  delay(1000);
  //lcd.clear();
 }
else
digitalWrite(verde, LOW);
lcd.clear();
}
if (distance >=15 && distance <=25)
 {
  digitalWrite(amarelo, HIGH);
  lcd.setCursor(0, 0); //Coloca o cursor do display na coluna 1 e linha 1
  lcd.print(" AVISO: "); //BAIXAS CHANCES!
  lcd.setCursor(0, 1); //Coloca o cursor do display na coluna 1 e linha 2
  lcd.print(" CUIDADO "); // BAIXAS CHANCES
  delay(1000);
 lcd.clear();
else
```



```
digitalWrite(amarelo, LOW);
  }
  if(distance >=1 && distance <=15)
   digitalWrite(vermelho,HIGH);
    lcd.setCursor(0, 0); //Coloca o cursor do display na coluna 1 e linha 1
    lcd.print(" AVISO: "); //BAIXAS CHANCES!
    lcd.setCursor(0, 1); //Coloca o cursor do display na coluna 1 e linha 2
    lcd.print(" PERIGO "); // BAIXAS CHANCES
   delay(1000);
   lcd.clear();
 }
  else
   digitalWrite(vermelho, LOW);
// PARTE DO BUZZER
  if(distance >=1 && distance <=15)
  {
   digitalWrite(sirene,HIGH);
  }
  else
   digitalWrite(sirene, LOW);
```


}			
}			

2. IDENTIFICAÇÃO DO CENÁRIO DE INTERVENÇÃO E HIPÓTESES DE SOLUÇÃO Local (cenário) previsto para a implementação do projeto

A intervenção será no saneamento básico e nos esgotos da cidade, em possível parceria com o governo para evitar catástrofes, o cenário para ser usado é justamente em momentos de desequilíbrio climático.

Público-alvo a ser atendido pelo projeto

O público alvo será as periferias brasileiras que são a parcela da população que mais sofrem com as enchentes e estragos materiais, físicos e mentais.

Apresentação do(s) problema(s) observado(s) e delimitação do objeto de estudo e intervenção

Como vemos recorrentemente, não é incomum que aconteçam enchentes e tragédias envolvendo as condições climáticas. Queremos implementar algo prático para que a população não dependa apenas dos líderes políticos para se movimentarem sobre uma possível enchente.

Definição de hipóteses para a solução do problema observado

Além do trato do saneamento básico, o projeto do Arduino vai contribuir para reduzir os danos.

3 DESCRIÇÃO DO PROJETO

É importante destacar que um projeto de extensão não precisa ser necessariamente igual a um projeto de pesquisa. Mesmo que haja necessidade de pesquisa prévia para a fundamentação teórica, construção da introdução e para um melhor entendimento sobre a realidade a ser trabalhada, é preciso que um projeto de extensão contemple práticas que promovam mudanças e/ou melhorias identificadas como necessárias. O projeto final deverá ser simples, objetivo, claro e ter de 3 a 5 páginas, dentro do modelo aqui proposto.

Resumo

Este projeto visa proteger a população, evitando a ocorrência de destruições e tragédias como as vivenciadas no Rio Grande do Sul. Utilizando sensor ultrassônico com ligação ao ESP32 e o buzzer, alertamos os moradores sobre possíveis enchentes. Além disso, implementamos um sistema de luzes que indica o nível de perigo conforme a altura da água. Complementando, desenvolvemos um aplicativo acessível a todos, permitindo uma compreensão clara da gravidade das enchentes. O público alvo está na população mais pobre que sofre constantemente com a falta de manutenção sanitária e desprezo político na qualidade de vida dos mesmos.

Introdução

Este projeto está fundamentalmente ligado a pelo menos quatro assuntos essenciais da ODS: Saúde, Saneamento, Métodos de implementação e Cidade Sustentável. Trabalhado com uma proposta de apoio para a população carente em situações de saneamento precário. Com a implementação deste projeto nos esgotos das cidades, podemos garantir uma melhoria no saneamento básico, e buscar incentivar a sociedade para que se tornem sustentáveis e que possam facilitar o objetivo do projeto de continuar atuando em áreas mais difíceis. Promovendo por sequência a saúde e o bem estar dos mesmos.

Objetivos

Orientar e preservar a vida dos povos que podem ser afetados.

Métodos

O projeto em fase de teste para implementação visa identificar os bairros com maior incidência de alagamentos para garantir o sucesso da implementação do HydroSense. Propomos uma parceria com o governo para assumir a montagem e execução do projeto. O HydroSense consiste em sensores instalados nas tampas dos bueiros, capazes de medir a altura da água e enviar sinais correspondentes. A interação com a comunidade será promovida por meio de canais governamentais, panfletos, redes sociais, e outros, para garantir que a população esteja ciente do projeto e seus benefícios. O processo inclui visitas aos locais identificados, entrevistas com moradores, aplicação de questionários e realização de reuniões para garantir uma intervenção eficaz e alinhada com as necessidades da comunidade.

Resultados (ou resultados esperados)

Esperamos que a implementação do projeto HydroSense resulte em uma redução significativa dos problemas de alagamento nos bairros identificados como de maior incidência. Com a instalação dos sensores nos bueiros, será possível monitorar em tempo real os níveis de água, permitindo uma resposta mais rápida e eficiente por parte das autoridades competentes. Prevemos que essa intervenção contribuirá para a prevenção de danos materiais e, principalmente, para a proteção da vida dos moradores dessas áreas vulneráveis. Além disso, a parceria com o governo possibilitará uma maior integração entre os setores público e privado, promovendo uma abordagem colaborativa na resolução de problemas urbanos.

Considerações finais

Ao concluir este projeto, reconhecemos a importância do engajamento comunitário e da colaboração entre diferentes instâncias governamentais e sociais. A experiência adquirida durante a criação do HydroSense não apenas nos permitiu desenvolver uma solução inovadora para problemas de alagamento, mas também fortaleceu os laços entre a equipe de projeto. Esperamos que os resultados obtidos sirvam como inspiração para futuras iniciativas de intervenção urbana e que o impacto positivo seja duradouro e amplamente sentido por todos os envolvidos.

Referências

https://curtocircuito.com.br/blog/Categoria%20Arduino/como-usar-um-sensor-de-nivel-de-agua https://youtu.be/Rx3hkcfdL8Q?si=eyP5XzjO_NLEyyDm https://youtu.be/3dvAtrGheRM?si=NEyAZP95v8 3WVa6

ANEXO I

As atividades de extensão podem resultar em produto caracterizado a partir do fazer extensionista, sempre mediados pela interação dialógica entre a comunidade acadêmica e a sociedade e seus setores, sendo exemplos: softwares; aplicativos; protótipos; desenhos técnicos; patentes; simuladores; objetos de aprendizagem; games; insumos alternativos; processos e procedimentos operativos inovadores; relatórios; relatos de experiências; cartilhas; revistas; manuais; jornais; informativos; livros; anais; cartazes; artigos; resumos; pôster; banner; site; portal; hotsite; fotografia; vídeos; áudios; tutoriais, dentre outros.

Revistas	Link:
CAMINHO ABERTO: REVISTA DE EXTENSÃO DO IFSC	https://periodicos.ifsc.edu.br/index.php/caminhoaberto/index
EXTRAMUROS	https://www.periodicos.univasf.edu.br/index.php/extramuros
REVISTA BRASILEIRA DE EXTENSÃO UNIVERSITÁRIA	https://periodicos.uffs.edu.br/index.php/RBEU/
REVISTA CIÊNCIA EM EXTENSÃO	https://ojs.unesp.br/index.php/revista_proex/index
REVISTA DE CULTURA E EXTENSÃO	https://www.revistas.usp.br/rce
REVISTA EXTENSÃO EM AÇÃO	http://periodicos.ufc.br/extensaoemacao
EXPRESSA EXTENSÃO (UFPEL)	https://periodicos.ufpel.edu.br/ojs2/index.php/expressaextensao/inde x

Outras revistas podem ser consultadas em:

https://www.ufrgs.br/ppggeo/ppggeo/wp-content/uploads/2019/12/QUALIS-NOVO-1.pdf

Documentos FECAP	
Regulamento das Atividade de Extensão – Bacharelado em Ciência da Computação	

