Apprentissage fédéré

Vers du Deep Learning plus respectueux de la vie privée ?

Plan de l'oral

- 1. Données décentralisées, que faire ?
- 2. Introduction à l'apprentissage fédéré
- 3. Etude de cas : Google GBoard
- 4. Vraiment respectueux de la vie privée ?
- 5. Pistes d'améliorations du secteur

1. Données décentralisées, que faire ?

I. Données décentralisées, que faire ? Pourquoi des données décentralisées ?

→ Omniprésence d'appareils connectés

I. Données décentralisées, que faire ? Pourquoi des données décentralisées ?

- → Omniprésence d'appareils connectés
- → Beaucoup de données générées (1h de véhicule connecté ~ 25go)
- → Données éparpillées chez les clients finaux
- → Sensible par nature

- → Texte des SMS, photos de la galerie, localisation d'un téléphone
- → Données d'utilisation d'applications, enregistrements de la voix "dis Siri"
- → Données LIDAR ou caméra
- → Données médicales

- → Texte des SMS, photos de la galerie, localisation d'un téléphone
- → Données d'utilisation d'applications, enregistrements de la voix "dis Siri"
- → Données LIDAR ou caméra
- → Données médicales

Caractéristiques de ces données décentralisées :

Données précieuses d'un point de vue marketing : il FAUT les exploiter

- → Texte des SMS, photos de la galerie, localisation d'un téléphone
- → Données d'utilisation d'applications, enregistrements de la voix "dis Siri"
- → Données LIDAR ou caméra
- → Données médicales

Caractéristiques de ces données décentralisées :

- Données précieuses d'un point de vue marketing : il FAUT les exploiter
- MAIS problème : il est très intrusif de les extraire de leur endroit de stockage !

- → Texte des SMS, photos de la galerie, localisation d'un téléphone
- → Données d'utilisation d'applications, enregistrements de la voix "dis Siri"
- → Données LIDAR ou caméra
- → Données médicales

Caractéristiques de ces données décentralisées :

- Données précieuses d'un point de vue marketing : il FAUT les exploiter
- MAIS problème : il est très intrusif de les extraire de leur endroit de stockage !

Enjeu : trouver une façon de traiter ces données, en respectant la vie privée des utilisateurs finaux !

I. Données décentralisées, que faire ?

Apprentissage local

Première idée : les données restent en local

Un modèle de Machine Learning est appris sur chaque appareil décentralisé avec les données locales

Avantages:

la vie privée est respectée, aucune fuite de données pas de communication entre appareils décentralisés -> empreinte carbone plus faible

Inconvénients:

pas forcément suffisamment de données en local pour du Deep

ne tire pas parti des données des autres appareils décentralisés

I. Données décentralisées, que faire ?

Apprentissage centralisé

Seconde idée : les données sont transmises à un serveur centralisé

données transférées au serveur modèle appris au niveau du serveur sur ces données modèle transféré aux appareils décentralisés

Avantages:

beaucoup de données : apprentissage facile tire parti des données de tous les appareils décentralisés

Inconvénjents:

- données privées transférées !!!!! utilisation de beaucoup de bande passante : mauvaise empreinte écologique forte latence

I. Données décentralisées, que faire ? Apprentissage fédéré, le meilleur des deux mondes ?

	Local	Centralisé
Avantages	Faible bande passante Respect vie privée	Tire efficacement parti des données
Inconvénients	N'exploite pas les données de chaque appareil peu de données	Forte bande passante Non respect vie privée latence

Google en 2017 : Federated Learning

=> Contrecarre les défaillances des deux techniques précédentes

2. Introduction à l'apprentissage fédéré

II. Introduction à l'apprentissage fédéré Rappels de Machine Learning

Contexte : apprentissage supervisé, réseaux de neurones

Tâche	Entrée	Label
Classification d'images	3	3
Prédiction du prochain mot	Le réveil a été ?	difficile
Jeu de go		prochain mouvement

<u>But</u> : apprendre à partir des données une fonction **f**, paramétrée par un vecteur de paramètres **W**, telle que f(entrée) ≈ label

II. Introduction à l'apprentissage fédéré Rappels de Machine Learning

Contexte : apprentissage supervisé, réseaux de neurones

<u>But</u> : apprendre à partir des données une fonction **f**, paramétrée par un vecteur de paramètres **W**, telle que f(entrée) ≈ label

Ici, la fonction **f** est un réseau de neurones

=> entre 10 et 500M paramètres, voire +

Vocabulaire:

client = appareil avec donnée décentralisée

serveur

II. Introduction à l'apprentissage fédéré Apprentissage fédéré

Apprendre au niveau du serveur, un modèle à partir des données des clients, sans avoir accès aux données

II. Introduction à l'apprentissage fédéré Apprentissage fédéré

Server (global model)

Client

(local model)

Local

data

Client

(local model)

data

Algorithm 1 FederatedAveraging targeting updates from K clients per round.

Server executes:

initialize w_0

for each round $t = 1, 2, \dots$ do

Select 1.3K eligible clients to compute updates Wait for updates from K clients (indexed $1, \ldots, K$)

 $(\Delta^k, n^k) = \text{ClientUpdate}(w) \text{ from client } k \in [K].$

 $\bar{w}_t = \sum_k \Delta^k$ // Sum of weighted updates

 $\bar{n}_t = \sum_k n^k$ // Sum of weights

 $\Delta_t = \Delta_t^k / \bar{n}_t$ // Average update

 $w_{t+1} \leftarrow w_t + \Delta_t$

ClientUpdate(w):

 $\mathcal{B} \leftarrow (\text{local data divided into minibatches})$

 $n \leftarrow |\mathcal{B}|$ // Update weight

 $w_{\mathsf{init}} \leftarrow w$

for batch $b \in \mathcal{B}$ do

 $w \leftarrow w - \eta \nabla \ell(w;b)$ $\Delta \leftarrow n \cdot (w - w_{\text{init}}) \quad \text{// Weighted update}$ $\text{// Note } \Delta \text{ is more amenable to compression than } w$ $\text{return } (\Delta, n) \text{ to server}$

Paramètres:

- Nombre de rounds R
- Nombre d'epochs de mise à jour locale E
- Taille des batchs B
- Fraction de clients sélectionnés à chaque round C

+ Avantages :

- tire parti des données de tous les appareils décentralisés
- respecte la vie privée
- bande passante faible => impact CO² réduit

Inconvénients :

À venir

Client

(local model)

Local

data

II. Introduction à l'apprentissage fédéré Acteurs majeurs de l'apprentissage fédéré

Google: GBoard, fonction "Hey Google", († FLoC)

Apple: "Dis Siri", QuickType, "trouvé dans l'application"

Facebook, Amazon, Microsoft

Samsung, Huawei

IBM

II. Introduction à l'apprentissage fédéré Usages actuels de l'apprentissage fédéré

- > Amélioration de fonctions internes du téléphone
- > Véhicules intelligents et connectés
- Données d'institutions (en particulier hospitalières, bancaires ou d'assurance)

Etude de cas : Google **GBoard**

Contexte

2 Mds appareils Android dans le monde

Contexte

- 2 Mds appareils Android dans le monde
- données naturellement labellisées
 chaque phrase écrite peut être utilisée pour l'entraînement du modèle

Contexte

- 2 Mds appareils Android dans le monde
- données naturellement labellisées
 : chaque phrase écrite peut être utilisée pour l'entraînement du modèle
- Appareils peu fiables : les appareils qui contribuent à l'entraînement peuvent se déconnecter à tout moment

Contexte

- 2 Mds appareils Android dans le monde
- données naturellement labellisées
 chaque phrase écrite peut être utilisée pour l'entraînement du modèle
- Appareils peu fiables : les appareils qui contribuent à l'entraînement peuvent se déconnecter à tout moment
- LSTM: 1.4M params3000 rounds100 clients par round80 clients minimum

III. Etude de cas : Google GBoard Sélection des clients

- Entraînement local : téléphone branché + connecté au WiFi
- 6 à 10% des clients se déconnectent
- Le modèle est d'abord évalué, puis entraîné sur les données locales
- Mêmes performances que le modèle centralisé

III. Etude de cas : Google GBoard Contexte

Poids: 145M de scalaires

Valeurs faibles -> mises à 0

Quantization des valeurs des paramètres approximation de rang faible des poids

Codage de Huffman

Compression d'un facteur 50-100

(Federated Learning : Strategies for Improving Communication Efficiency)

4. Vraiment respectueux de la vie privée ?

IV. Vraiment respectueux de la vie privée? Inversion des gradients

A partir des mises à jour faites par les clients, il est possible de reconstruire les données d'entraînement!

=> Nécessité de cryptographie pour protéger cette information

(Federated Learning : Strategies for Improving Communication Efficiency)

IV. Vraiment respectueux de la vie privée? Secure aggregation

=> Nécessité de cryptographie pour protéger cette information

5. Pistes d'améliorations du secteur

V. Pistes d'amélioration du secteur Equité et données non-iid

- apprentissage fédéré = collaboration
- au niveau des utilisateurs : compétition pour avoir meilleures perfs
- Si beaucoup de clients ont des données biaisées, le modèle appris global sera biaisé

Ex : un modèle relié aux véhicules autonomes appris sur des véhicules thermiques. Fonctionne beaucoup moins bien sur véhicule électrique

=> Beaucoup de recherche sur la réduction des biais et des inégalités engendrées par l'apprentissage fédéré

(Fair ressource allocation in Federated Learning)

V. Pistes d'amélioration du secteur

Personnalisation

Parfois, modèle global appris avec les données de tous n'est pas adapté

=> combinaison apprentissage fédéré + entraînement local : modèle global ré-entraîné avec données locales

=> Cela s'appelle la personnalisation

(Personalized federated learning: A meta-learning approach)

V. Pistes d'amélioration du secteur

Apprentissage sans serveur

Variante de l'apprentissage fédéré sans serveur

(BrainTorrent: A Peer-to-Peer Environment for Decentralized Federated Learning)

Outils de veille utilisés

36, avenue Guy de Collongue 69130 Écully - France +33 (0)4 72 18 60 00

www.ec-lyon.fr