Relational Algebra

Databases 2022

Relational algebra notation (recap)

Operation	Notation	Example
Union	U	R1 ∪ R2
Difference	- or /	R1 - R2
Cartesian product	x	S1 x R1
Select	$\sigma_p(r)$	$\sigma_{Age>20}$ (Student)
Project	$\prod_{p}(r)$	∏ _{Lastname, age} (Students)
Rename	ρ OldName \rightarrow NewName(r)	ρ Father \rightarrow Parent(Parternity)
Join	M	R ⋈ S
Division	÷	R1 ÷ R2

Exercise I

+ Consider following schema:

Suppliers (sid: integer, sname: string, address: string)

Parts (pid: integer, pname: string, color: string)

Catalog (sid: integer, pid: integer, cost: real)

+ Convert the following statements to relation algebra

```
Find the names of suppliers who supply some red part: Is some (Tight (Suppliers) Matalog) M Suppliers (Parts) Matalog) M Suppliers who supply some red or green part. In side (Suppliers) Red or color-red (Parts) M (atalog)

Find the sids of suppliers who supply some red part or are at 221 Packer Street. The side (Suppliers) M (atalog)

Find the sids of suppliers who supply some red part and some green part. The side (Suppliers) M (atalog)

Find the sids of suppliers who supply every part. The side (Suppliers)

Find the sids of suppliers who supply every red part. The side (Suppliers) The sid
```

Exercise II

For the previous schema, state what the following queries compute:

- + $(\Pi_{sname} ((\sigma_{color=red} Parts) \bowtie (\sigma_{cost < 100} Catalog)) \bowtie Suppliers)) \cap_{names} of suppliers who supply red parts that cost less than <math>(\Pi_{sname} ((\sigma_{color=green} Parts) \bowtie (\sigma_{cost < 100} Catalog) \bowtie Suppliers))$ than 100 and green parts that cost less than 100
- + $(\Pi_{sid}((\sigma_{color=red}Parts) \bowtie (\sigma_{cost<100}Catalog) \bowtie Suppliers)) \cap (\Pi_{sid}((\sigma_{color=green}Parts) \bowtie (\sigma_{cost<100}Catalog) \bowtie Suppliers))$ SIDs of suppliers who supply red parts that cost less than 100 and green parts that cost less than 100
- + $\Pi_{sname} ((\Pi_{sid,name}((\sigma_{color=red}Parts) \bowtie (\sigma_{cost<100}Catalog)) \bowtie Suppliers) \cap (\Pi_{sid,name}((\sigma_{color=green}Parts) \bowtie (\sigma_{cost<100}Catalog) \bowtie Suppliers)))$

names of suppliers who supply red parts that cost less than 100 and green parts that cost less than 100

See you next week ©