Note: 20/20 (score total	: 26/26)
	(000.0 1010.	,,

+71/1/40+

IPS - S7A - Jean-Matthieu Bourgeot

QCM2

IPS								
\mathbf{Quizz}	$d\mathbf{u}$	13/11/2013						

Nom et pre	enom :						
(ABON)	Sandie	 	 	 		 	

Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses.

Ne pas faire de RATURES, cocher les cases à l'encre.

Question 1 •	Classer	ses	différentes	technologies	de	CAN	par	ordre	de	Temps	de	conversion
(du plus rapide a	u plus le	ent)	?									

flach	approximation	encoeeivee .	double	ramne -	simple	rampo
 nasn -	approximation	successives -	- double	rampe -	smibie	rampe

- double rampe flash approximation successives simple rampe
- flash approximation successives simple rampe double rampe
- approximation successives flash double rampe simple rampe
 - approximation successives flash simple rampe double rampe

Question 2 •

On considère une résistance thermométrique Pt100 de résistance $R_C(T)=R_0(1+\alpha T)$ où Treprésente la température en °C, $R_0=1$ k Ω la résistance à 0°C et $\alpha=3,85.10^{-3}$ °C $^{-1}$ le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant

$$V_G \le 12V$$

$$V_G \leq 5V$$

$$V_G \ge 12V$$
 $V_C < 10V$

Question 3 •

Quelle est la capacité d'un condensateur plan ? On note :

- ε : Permittivité du milieu entre les armatures.
- S : Surface des armatures.
- d : Distance entre les armatures.

$$C = \epsilon dS$$

$$C = \frac{\epsilon S}{d}$$
 $C = \epsilon dS$ $C = \frac{\epsilon}{Sd}$ $C = \frac{\epsilon d}{S}$

$$C = \frac{\epsilon d}{S}$$

Question 4 •

Le capteur sur la photo ci-contre permet de mesurer ...

		des	courants
//	 	~~~	

... des potentiels.

... des différences de potentiels.

...des différences de températures.

		des	temp	éra	tures.
--	--	-----	------	-----	--------

2/2

3/3

2/2

Le système est oscillant

Question 5 • Pourquoi faire du sur-échantillonnage ? Pour supprimer les perturbations de mode commun. 2/2 Pour réduire le bruit de quantification Pour améliorer l'efficacité du filtre antirepliement. A quoi est reliée la résolution d'un potentiomètre linéaire à piste résistive ? Question 6 • Le pas de bobinage La longueur du potentiomètre 1/1 La résistance maximale du potentiomètre La taille des grains de la poudre utilisée La course électrique. Question 7 • Des jauges extensométriques permettent de mesurer des grands déplacements. ... des flux lumineux. ... des résista ... des courants. ... des déformations. ... des températures. 1/1 Question 8 • Un capteur LVDT permet de mesurer : des déplacement linéaires 1/1 des flux lumineux des températurcs des déplacements angulaires Question 9 • Quels sont les intérêts d'un amplificateur d'instrumentation ? Cela permet d'isoler galvaniquement la chaine d'acquisition et le procédé. Le gain est fixé par une seule résistance. 3/3 Les voies sont symétriques. De rejeter les perturbations de mode différentiel. Les impédances d'entrées sont élevés. Question 10 • Soit un CAN acceptant en entrée des signaux compris entre 0V et 10V, la quantification s'effectue sur 8bits, le temps de conversion est de $T_C = 1$ ms. Quel est le pas de quantification de ce CAN? 1/1 Question 11 • On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) =$ $\frac{A_0}{1+\tau_C p}$, avec U_s la sortic de l'AOP et $\epsilon=u_+-u_-$. Pour le montage suivant, quel(s) cst(sont) le(s) pole(s) de la FT entre E et U_s, Que dire de la stabilité du système bouclé ?

6/6