CS3230 AY21/22 SEM 2 github/jovyntls

01. COMPUTATIONAL MODELS

- algorithm → a well-defined procedure for finding the correct solution to the input
- correctness
- worst-case correctness → correct on every valid input
- other types of correctness: correct on random input/with high probability/approximately correct
- efficiency / running time → measures the number of steps executed by an algorithm as a function of the input size (depends on computational model used)
- number input: typically the length of binary representation
- **worst-case** running time \rightarrow *max* number of steps executed when run on an input of size n

Comparison Model

- algorithm can ${\bf compare}$ any two elements in one time unit $(x>y,\,x< y,\,x=y)$
- running time = number of comparisons made
- · array can be manipulated at no cost

Maximum Problem

- \bullet problem: find the largest element in an array A of n distinct elements
- proof that n-1 comparisons are needed:
- fix an algorithm M that solves the Maximum problem on all inputs using < n-1 comparisons. construct graph G where nodes i and j are adjacent iff M compares i and j.

- M cannot differentiate A and A'.

Second Largest Problem

- problem: find the second largest element in <2n-3 comparisons (2x Maximum $\Rightarrow (n-1)+((n-1)-1)=2n-3$)
- solution: knockout tournament $\Rightarrow n + \lceil \lg n \rceil 2$

- 1. bracket system: n-1 matches
 - every non-winner has lost exactly once
- 2. then compare the elements that have lost to the largest
 - the second-largest element must have lost to the winner
 - compares $\lceil \lg n \rceil$ elements that have lost to the winner using $\lceil \lg n \rceil 1$ comparisons

Sorting

- there is a sorting algorithm that requires $\leq n\lg n n + 1$ comparisons.
- proof: every sorting algorithm must make $\geq \lg(n!)$ comparisons.
- 1. let set $\mathcal U$ be the set of all permutations of the set $\{1,\dots,n\}$ that the adversary could choose as array A. $|\mathcal U|=n!$
- 2. for each query "is $A_i > A_j$?", if $\mathcal{U}_{yes} = \{A \in \mathcal{U} : A_i > A_j\}$ is of size $\geq |\mathcal{U}|/2$, set $\mathcal{U} := \mathcal{U}_{ues}$. else: $\mathcal{U} := \mathcal{U} \backslash \mathcal{U}_{yes}$
- 3. the size of $\ensuremath{\mathcal{U}}$ decreases by at most half with each comparison
- 4. for $> \lg(n!)$ comparisons, $\mathcal U$ will still contain at least 2 permutations

$$\begin{array}{l} n! \geq (\frac{n}{e})^n \\ \Rightarrow \lg(n!) \geq n \lg(\frac{n}{e}) = n \lg n - n \lg e \\ \approx n \lg n - 1.44n \end{array}$$

 \Rightarrow roughly $n\lg n$ comparisons are **required** and **sufficient** for sorting n numbers

String Model

- input: string of n bits
- each query: find out one bit of the string
- *n* queries are **necessary** and **sufficient** to check if the input string is all 0s.

Graph Model

- input: (symmetric) adjacency matrix of an n-node undirected graph
- each query: find out if an edge is present between two chosen nodes
- proof: $\binom{n}{2}$ queries are necessary to decide whether the graph is connected or not
- 1. suppose M is an algorithm making $\leq \binom{n}{2}$ queries.
- 2. whenever M makes a query, the algorithm tries not adding this edge, but adding all remaining unqueried edges.
 - 2.1. if the resulting graph is connected, M replies 0 (i.e. edge does not exist)
 - 2.2. else: replies 1 (edge exists)
- 3. after $<\binom{n}{2}$ queries, at least one entry of the adjacency matrix is unqueried.

02. ASYMPTOTIC ANALYSIS

- algorithm \to a finite sequence of well-defined instructions to solve a given computational problem
- runtime → measured in number of instructions taken in word-RAM model
- · operators, comparisons, if, return, etc

Asymptotic Notations

$$\begin{array}{c} \text{upper bound (\leq):} \ f(n)=O(g(n))\\ \text{if } \exists c>0, n_0>0 \ \text{such that} \ \forall n\geq n_0, \quad 0\leq f(n)\leq cg(n) \end{array}$$

$$\begin{array}{c} \text{lower bound (\geq):} \ f(n)=\Omega(g(n))\\ \text{if } \exists c>0, n_0>0 \ \text{such that} \ \forall n\geq n_0, \quad 0\leq cg(n)\leq f(n) \end{array}$$

$$\begin{array}{l} \text{tight bound: } f(n) = \Theta(g(n)) \\ \text{if } \exists c_1 > 0, c_2 > 0, n_0 > 0 \text{ such that} \\ \forall n \geq n_0, \quad 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \end{array}$$

```
\begin{split} o \text{ notation (<): } &f(n) = o(g(n)) \\ \text{if } \forall c > 0, \exists n_0 > 0 \text{ such that } \forall n \geq n_0, \\ &0 \leq f(n) < cg(n) \\ &\omega\text{-notation (>): } &f(n) = \omega(g(n)) \\ \text{if } \forall c > 0, \exists n_0 > 0 \text{ such that } \forall n \geq n_0, \\ &0 \leq cg(n) < f(n) \end{split}
```

Set definitions

```
• upper: O(g(n)) = \{f(n) : \exists c > 0, n_0 > 0 \mid \forall n \ge n_0, 0 \le f(n) \le cg(n)\}
```

• lower:
$$\Omega(g(n)) = \{f(n): \exists c>0, n_0>0 \mid \forall n\geq n_0, \ 0\leq cg(n)\leq f(n)\}$$

Proof. that
$$2n^2=O(n^3)$$
 let $f(n)=2n^2$. then $f(n)=2n^2\leq n^3$ when $n\geq 2$. set $c=1$ and $n_0=2$. we have $f(n)=2n^2\leq c\cdot n^3$ for $n\geq n_0$.

Limits

Assume f(n), g(n) > 0.

$$\begin{split} &\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \Rightarrow f(n) = o(g(n)) \\ &\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \Rightarrow f(n) = O(g(n)) \\ &0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \Rightarrow f(n) = \Theta(g(n)) \\ &\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0 \Rightarrow f(n) = \Omega(g(n)) \\ &\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \Rightarrow f(n) = \omega(g(n)) \end{split}$$

Proof. using delta epsilon definition

Properties of Big O

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

• transitivity - applies for $O, \Theta, \Omega, o, \omega$ $f(n) = O(g(n)) \land g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$

• reflexivity - for $O, \Omega, \Theta, f(n) = O(f(n))$

• symmetry - $f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n))$

complementarity -

• $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$ • $f(n) = o(g(n)) \iff g(n) = \omega(f(n))$

insertion sort: $O(n^2)$ with worst case $\Theta(n^2)$

 $\log\log n < \log n < (\log n)^k < n^k < k^n$

03. ITERATION, RECURSION, DIVIDE-AND-CONQUER

Iterative Algorithms

loop invariant implies correctness if

- initialisation true before the first iteration
- maintenance if true before an iteration, remains true at the beginning of the next iteration
- · termination true at the end

Divide-and-Conquer

powering a number

- problem: compute $f(n,m)=a^n\ (\mathrm{mod}\ m)$ for all integer n,m
- observation: $f(x+y,m) = f(x,m) * f(y,m) \pmod{m}$
- naive solution: recursively compute and combine $f(n-1,m)*f(1,m)\ (\mathrm{mod}\ m)$

- $T(n) = T(n-1) + T(1) + \Theta(1) \Rightarrow T(n) = \Theta(n)$
- better solution: divide and conquer
- divide: trivial
- conquer: recursively compute $f(\lfloor n/2 \rfloor, m)$
- · combine:
- $f(n,m) = f(\lfloor n/2 \rfloor, m)^2 \pmod{m}$ if n is even
- $f(n,m) = f(1,m) * f(\lfloor n/2 \rfloor, m)^2 \pmod{m}$ if odd
- $T(n) = T(n/2) + \Theta(1) \Rightarrow \Theta(\log n)$

Solving Recurrences

for a sub-problems of size $\frac{n}{b}$ where f(n) is the time to divide and combine, $T(n)=aT(\frac{n}{b})+f(n)$

Recursion tree

total = height × number of leaves

Master method

 $T(n) = aT(\frac{n}{b}) + f(n)$ $a \ge 0, b > 1, f$ is asymptotically positive T(n) =

$$\begin{cases} \Theta(n^{\log_b a}) & \text{if } f(n) < n^{\log_b a} \text{ polynomially} \\ \Theta(n^{\log_b a} \log n) & \text{if } f(n) = n^{\log_b a} \\ \Theta(f(n)) & \text{if } f(n) > n^{\log_b a} \text{ polynomially} \end{cases}$$

harmonic series: $\sum\limits_{k=1}^{\infty} rac{1}{k} pprox \ln k = \Theta(\lg n)$

Substitution method

- 1. guess that T(n) = O(f(n)). i.e. $\exists c$ such that $T(n) < c \cdot f(n)$, for $n > n_0$.
- 2. verify by induction:
 - 2.1. set $c = \max\{2, q\}$ and $n_0 = 1$
 - 2.2. base case $(n = n_0 = 1)$
 - 2.3. recursive case (n > 1):
 - by strong induction, assume $T(k) = c \cdot f(k)$ for n > k > 1
 - T(n) = $\langle \text{recurrence} \rangle \dots \leq c \cdot f(n)$
 - 2.4. hence $T(n) \leq c \cdot f(n)$ for $n \geq 1$.

! may not be a tight bound!

example

 $T(n) = 4T(n/2) + n^2/\lg n \Rightarrow \Theta(n^2 \lg \lg n)$

$$\begin{split} \textit{Proof.} \ T(n) &= 4T(n/2) + \frac{n^2}{\lg n} \\ &= 4(4T(n/4) + \frac{(n/2)^2}{\lg n - \lg 2}) + \frac{n^2}{\lg n} \\ &= 16T(n/4) + \frac{n^2}{\lg n - \lg 2} + \frac{n^2}{\lg n} \\ &= \sum_{k=1}^{\lg n} \frac{n^2}{\lg n - k} \\ &= n^2 \lg \lg n \text{ by approx. of harmonic series } (\sum \frac{1}{k}) \end{split}$$

04. AVERAGE-CASE ANALYSIS & RANDOMISED ALGORITHMS

Quicksort Analysis

- divide & conquer, linear-time $\Theta(n)$ partitioning subroutine
- · assume we select the first array element as pivot
- if the pivot produces subarrays of size i and (n-i-1), then $T(n) = T(j) + T(n - j - 1) + \Theta(n)$

time analysis

- worst-case: $T(n) = T(0) + T(n-1) + \Theta(n) \Rightarrow \Theta(n^2)$
- average case $A(n) \rightarrow$ expected running time when the input is chosen uniformly at random from the set of all n!permutations
- average case, $A(n) = \frac{1}{n!} \sum_{\pi} Q(\pi)$ where $Q(\pi)$ is the time complexity when the input is permutation π .

Proof. for quicksort. $A(n) = O(n \log n)$

let P(i) be the set of all those permutations of elements $\{e_1, e_2, \ldots, e_n\}$ that begins with e_i .

Let G(n, i) be the average running time of quicksort over P(i). Then

$$\begin{array}{l} G(n) = A(i-1) + A(n-i) + (n-1). \\ A(n) = \frac{1}{n} \sum_{i=1}^{n} G(n,i) \\ = \frac{1}{n} \sum_{i=1}^{n} (A(i-1) + A(n-i) + (n-1)) \\ = \frac{2}{n} \sum_{i=1}^{n} A(i-1) + n - 1 \\ = O(n \log n) \text{ by taking it as area under integration} \end{array}$$

auicksort vs meraesort

	average	best	worst
quicksort	$1.39n \lg n$	$n \lg n$	n(n-1)
mergesort	$n \lg n$	$n \lg n$	$n \lg n$

- · disadvantages of mergesort:
- · overhead of temporary storage
- · cache misses
- · advantages of guicksort
- reliable (as $n \uparrow$, chances of deviation from avg case \downarrow)
- · issues with quicksort
- distribution-sensitive → time taken depends on the initial (input) permutation

Randomised Algorithms

- randomised algorithms → output and running time are functions of the input and random bits chosen
- · vs non-randomised: output & running time are functions of the input only
- randomised quicksort: choose pivot at random
- probability that the runtime of randomised quicksort exceeds average by $x\% = n^{-\frac{x}{100} \ln \ln n}$
- P(time takes at least double of the average) = 10^{-15}
- · distribution insensitive

Randomised Quicksort Analysis

$$T(n) = n - 1 + T(q - 1) + T(n - q)$$

Let $A(n) = \mathbb{E}[T(n)]$ where the expectation is over the randomness in expectation.

Taking expectations and applying linearity of expectation:

$$A(n) = n - 1 + \frac{1}{n} \sum_{q=1}^{n} (A(q-1) + A(n-q))$$
$$= n - 1 + \frac{2}{n} \sum_{q=1}^{n-1} A(q)$$

 $A(n) = n \log n \implies$ same as average case quicksort

Randomised Quickselect

- O(n) to find the k^{th} smallest element
- · randomisation: unlikely to keep getting a bad split

Types of Randomised Algorithms

- · randomised Las Vegas algorithms
- output is always correct
- runtime is a random variable
- · e.g. randomised quicksort
- randomised Monte Carlo algorithms
- · output may be incorrect with some small probability
- · runtime is deterministic

- smallest enclosing circle: given n points in a plane, compute the smallest radius circle that encloses all n points
- best **deterministic** algorithm: O(n), but complex
- las vegas: average O(n), simple solution
- minimum cut: given a connected graph G with n vertices and m edges, compute the smallest set of edges whose removal would disconnect G.
- best **deterministic** algorithm: O(mn)
- monte carlo: $O(m \log n)$, error probability n^{-c} for any c
- primality testing: determine if an n bit integer is prime
- best **deterministic** algorithm: $O(n^6)$
- monte carlo: $O(kn^2)$, error probability 2^{-k} for any k

Geometric Distribution

Let X be the number of trials repeated until success. X is a random variable and follows a geometric distribution with probability p.

Expected number of trials,
$$E[X] = \frac{1}{p}$$

 $Pr[X = k] = q^{k-1}p$

Linearity of Expectation

For any two events X, Y and a constant a.

$$E[X + Y] = E[X] + E[Y]$$
$$E[aX] = aE[X]$$

Coupon Collector Problem

- n types of coupon are put into a box and randomly drawn with replacement. What is the expected number of draws needed to collect at least one of each type of coupon?
- let T_i be the time to collect the *i*-th coupon after the i-1coupon has been collected.
- Probability of collecting a new coupon, $p_i = \frac{(n-(i-1))}{n}$
- T_i has a geometric distribution
- $E[T_i] = 1/p_i$
- total number of draws, $T = \sum_{i=1}^{n} T_i$

•
$$E[T]=E[\sum_{i=1}^n T_i]=\sum_{i=1}^n E[T_i]$$
 by linearity of expectation
$$=\sum_{i=1}^n \frac{n}{n-(i-1)}=n\cdot\sum_{i=1}^n \frac{1}{i}=\Theta(n\lg n)$$

05. HASHING

Dictionary ADT

- different types:
- static fixed set of inserted items; only care about queries
- · insertion-only only insertions and gueries
- · dvnamic insertions, deletions, queries
- implementations
- sorted list (static) $O(\log N)$ query
- balanced search tree (dynamic) $O(\log N)$ all operations
- · direct access table
- x needs items to be represented as non-negative integers (prehashing)
- × huge space requirement
- using ${\cal H}$ for dictionaries: need to store both the hash table and the matrix A.
- additional storage overhead = $\Theta(\log N \cdot \log |U|)$, if
- other universal hashing constructions may have more efficient hash function evaluation

Hashing

- hash function, $h: U \to \{1, \dots, M\}$ gives the location of where to store in the hash table
- notation: $[M] = \{1, \dots, M\}[M] = \{1, \dots, M\}$
- **collision** \rightarrow for two different keys x and y, h(x) = h(y)
- · resolve by chaining, open addressing, etc.
- desired properties
- ✓ minimise collisions query(x) and delete(x) take time $\Theta(|h(x)|)$
- \checkmark minimise storage space aim to have M = O(N)
- ✓ function h is easy to compute (assume constant time)
- if $|U| \ge (N-1)M+1$, for any $h: U \to [M]$, there is a set of N elements having the same hash value.
- Proof: pigeonhole principle
- use randomisation to overcome the adversary
- e.g. randomly choose between two deterministic hash functions h_1 and h_2
- \Rightarrow for any pair of keys, with probability $\geq \frac{1}{2}$, there will be no collision

Universal Hashing

Suppose ${\mathcal H}$ is a set of hash functions mapping U to [M].

$$\mathcal{H} \text{ is } \frac{\text{universal}}{\text{universal}} \text{ if } \forall \, x \neq y, \frac{|h \in \mathcal{H}: h(x) = h(y)|}{|H|} \leq \frac{1}{M} \\ \text{or } \Pr_{h \sim \mathcal{H}}[h(x) = h(y)] \leq \frac{1}{M}$$

- aka: for any $x \neq y$, if h is chosen uniformly at random from a universal \mathcal{H} , then there is at most $\frac{1}{M}$ probability that h(x) = h(y)
- probability where h is sampled uniformly from \mathcal{H}

Collision Analysis

Suppose \mathcal{H} is a *universal* family of HFs mapping U to [M].

For any N elements x_1, x_2, \ldots, x_N , the **expected number of collisions** between x_N and the other elements is $<\frac{N}{M}$.

Proof. let A_i be an indicator r.v. for $h(x_i) = h(x_N)$. $E[A_i]=1 \cdot P(A_i=1)+0 \cdot P(A_i=0)=P(A_i=1) \le \frac{1}{M}$.

of collisions with
$$x_N$$
 is $\sum_{i < N} A_i$

of collisions with
$$x_N$$
 is $\sum_{i < N} A_i$

Expected Cost

Suppose \mathcal{H} is a *universal* family of HFs mapping U to [M].

For any sequence of N insertions, deletions and queries, if M > N, then the **expected total cost** for a random $h \in \mathcal{H}$ is O(N).

Proof. Each operation costs O(1) time by this claim. Linearity of expectation \Rightarrow total O(N)

Construction of Universal Family

Obtain a universal family of hash functions with M = O(N).

- Suppose U is indexed by u-bit strings and $M=2^m$.
- For any $m \times u$ binary matrix A, $h_A(x) = Ax \pmod{2}$ each element x => x % 2
- x is a $u \times 1$ matrix $\Rightarrow Ax$ is $m \times 1$
- Claim: $\{h_A:A\in\{0,1\}^{m\times u}\}$ is universal
- e.g. $U = \{00, 01, 10, 11\}, M = 2$
- h_{ab} means A = [a, b]

uo		F.	F	
	00	01	10	11
h_{00}	0	0	0	0
h_{01}	0	1	0	- 1
h_{10}	0	0	1	1
h_{11}	0	1	1	0

Proof. Let $x \neq y$. Let z = x - y. We know $z \neq 0$.

Collision: P(Ax=Ay)=P[A(x-y)=0]=P(Az=0).

To show $P(Az=0) \leq \frac{1}{M}$.

Special case - Suppose z is 1 at the i-th coordinate but 0 everywhere else. Then Az is the *i*-th column of A. Since the *i*-th column is uniformly random,

$$P(Az = 0) = \frac{1}{2m} = \frac{1}{M}$$
.

General case - Suppose z is 1 at the i-th coordinate. Let $z = [z_1 \ z_2 \ \dots \ z_u]^T$. $A = [A_1 \ A_2 \ \dots \ A_u]$

hence A_k is the k-th column of A. Then $Az = z_1 A_1 + z_2 A_2 + \cdots + z_n A_n$.

 $Az = 0 \Rightarrow z_1 A_1 = -(z_2 A_2 + \dots + z_n A_n)$ (*) We fix z_1A_1 to be an arbitrary $m \times 1$ matrix of 1s and 0s. The probability that (*) holds is $\frac{1}{2m}$.

Perfect Hashing

static case - N fixed items in the dictionary x_1, x_2, \ldots, x_N

Quadratic Space

if \mathcal{H} is universal and $M=N^2$, and h is sampled uniformly from \mathcal{H} , then the expected number of collisions is < 1.

Proof. for $i \neq j$, let indicator r.v. $A_{i,j}$ be equal to 1 if $h(x_i) = h(x_i)$, or 0 otherwise.

By universality,
$$E[A_{ij}] = P(A_{ij} = 1) \le 1/N^2$$

$$E[\text{\# collisions}] = \sum_{i < j} E[A_{ij}] \le {N \choose 2} \frac{1}{N^2} < 1$$

2-Level Scheme

No collision and less space needed

Construction

Choose $h:U\to [N]$ from a universal hash family.

- Let L_k be the number of x_i 's for which $h(x_i) = k$.
- Choose h_1,\ldots,h_N second-level hash functions $h_k:[N]\to[(L_k)^2]$ s.t. there are no collisions among the L_k elements mapped to k by h.
- quadratic second-level table \rightarrow ensures no collisions using quadratic space

Analysis

if ${\mathcal H}$ is universal and h is sampled uniformly from ${\mathcal H}$, then

$$E\left[\sum_{k}L_{k}^{2}\right]<2N$$

Proof. For $i,j\in[1,N]$, define indicator r.v. $A_{ij}=1$ if $h(x_i)=h(x_j)$, or 0 otherwise.

$$A_{ij}=$$
 # possible collisions = # pairs * 2 = L_k^2 Hence $\sum\limits_k L_k^2 = \sum\limits_{i,j} A_{ij}$

$$E\left[\sum_{i,j} A_{ij}\right] = \sum_{i}^{i,j} E[A_{ii}] + \sum_{i \neq j} E[A_{ij}]$$

$$\leq N \cdot 1 + N(N-1) \cdot \frac{1}{N}$$

$$< 2N$$

helpful approximations harmonic number, $H_n = \sum\limits_{k=1}^n rac{1}{k} = \Theta(\lg n)$