University course timetabling

Project for Problem Solving and Search in Artificial Intelligence

Timothée Durand Giulio Pace David Penz

The components of the problem

- Timeline (weeks and days)
- Courses (next slide)
- Students
 - Courses they are interested in
- Rooms
 - Capacity
 - Travel distance between rooms
- Distribution constraints
- Other constraints (e.g. overlapping courses)

Courses

Also stores maximum capacity for each class.

Image from https://www.itc2019.org/format

Distribution constraints

Constraint	Complementary	Time	Day	s Wee	ks Roo	m Pairs
SameStart	111111111111111111111111111111111111111	4	*	*	*	~
SameTime	DifferentTime	~	38	88	38	~
SameDays	DifferentDays	*	~	88	38	~
SameWeeks	DifferentWeeks	88	38	~	38	~
SameRoom	DifferentRoom	38	88	88	~	~
Overlap	NotOverlap	~	~	~	*	~
SameAttendees		~	~	~	~	~
Precedence		V	~	~	38	4
WorkDay(S)		~	~	~	38	~
MinGap(G)		V	~	~	38	₩
MaxDays(D)	1	*	V	*	*	days over D
MaxDayLoad(S)		~	~	~	38	slots over S
MaxBreaks(R,S)	~	~	~	38	breaks over R
MaxBlock(M,S)		~	~	~	38	blocks over M

- Hard constraints vs
 Soft constraints
- Evaluated in couples: penalty occurs for every pair of classes not satisfying the constraint

Image from https://www.itc2019.org/format

Our solution: decision variables

Classes

Days	Weeks	Students	Rooms	Start	Duration	Penalties
Bools	Bools	Bools	Int	Int	Int	1-100
,						

Subparts

	Students				
	Bools				
igg					

Distr. Constr.

Penalties	
1-100	

Our solution: input data

Example of our representation:

```
% possible days
classes days input = [|true, false, false, false, false, false, false, % class 1
|false,true,false,false,false,false,false,% class 1
Ifalse, false, true, false, false, false, false, % class 1
|false,false,false,true,false,false,false,% class 1
|false,false,false,false,true,false,false,% class 1
|true,false,false,false,false,false,% class 1
[false, true, false, false, false, false, false, % class 1
|false,false,true,false,false,false,false,% class 1
|false,false,false,true,false,false,false,% class 1
|false,false,false,false,true,false,false,% class 1
|true,false,false,false,false,false,% class 1
|false,true,false,false,false,false,% class 1
|false,false,true,false,false,false,false,% class 1
|false,false,false,true,false,false,false,% class 1
|false,false,false,false,true,false,false,% class 1
|true,false,false,false,false,false,% class 1
|false,true,false,false,false,false,false,% class 1
|false,false,true,false,false,false,false,% class 1
|false,false,false,true,false,false,false,% class 1
|false,false,false,false,true,false,false,% class 1
```

Auxiliary arrays: idx and cnt

Results

Solver: Chuffed 0.10.3

	Solve Time	Total Time	Result
Tiny dataset (no students)	0.47 s [2]	2.70 [2]	SAT
Tiny dataset	19.9 s [2]	30.1s [2]	SAT
Medium dataset	~4 hours [1]	~4 hours [1]	UNSAT
Real sized dataset	??	??	??

[1] -Ubuntu 18.04.2 LTS; cpu: Intel(R) Core(TM) i7-4720HQ CPU @ 2.60GHz; RAM

size: 7865MiB

[2] -Ubuntu 18.04.2 LTS; cpu: Intel(R) Core(TM) i7-4710HQ CPU @ 3.50GHz; RAM

size: 7865MiB

• Other solvers did not finish within reasonable time boundaries

Final considerations

Problems within the model:

- Too complex problem representation (Too many decision variables, high dimensionality)
 - Use a different representation (assigned course for every slot of the semester ?)
 - Use boolean decision variable for penalties (smaller research space)
- Constraint optimization required (lack of time)
- Use more MiniZinc's built in function (e.g. row() function)

Lessons learned:

- Test on big instances early
- Model representation is crucial
- Performances heavily dependant on the solvers

Thanks for the attention