F19T3A1

Sei $n \ge 1$ eine natürliche Zahl.

- a) Bestimme für die Funktion $f: \mathbb{C} \to \mathbb{C}$ mit $f(z) = z^n 1$ für alle $z \in \mathbb{C}$ alle Nullstellen mit strikt positivem Realteil.
- b) Sei $z \in \mathbb{C}$ eine der Nullstellen mit Re(z) > 0 aus Teilaufgabe a). Zeige, dass $w = z + z^{n-1}$ eine reelle Zahl echt größer Null ist.
- c) Sei n=5 und w>0 eine der positiven reellen Zahlen aus Teilaufgabe a). Nimm $w\neq 2$ an und zeige, dass

$$w^2 + w - 1 = 0$$

gilt. Bestimme den Winkel $\alpha \in]0, \pi[$ mit $w = 2\cos(\alpha)$.

Zu a):

 $z^n = 1$ wird gelöst durch die Einheitswurzeln $e^{\frac{k+1}{n}2\pi i}$ für $k = 0, 1, \dots, n-1$

$$e^{\frac{k+1}{n}2\pi i} = \cos\left(\frac{k+1}{n}2\pi\right) + i\sin\left(\frac{k+1}{n}2\pi\right)$$

Sei $l \in \{1, \dots, n\}$ mit $\cos\left(\frac{l}{n}2\pi\right) > 0$

$$\frac{l}{n}2\pi \in \left[0, \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2}, 2\pi\right] \quad \Leftrightarrow \quad \frac{l}{n}2 \in \left[0, \frac{1}{2}\right] \cup \left[\frac{3\pi}{2}, 2\right]$$

Dies sind alle Nullstellen mit strikt positiven Realteil.

Zu b):

Vorab gilt:

$$z^n=1 \text{ und } z\bar{z}=1=z\tfrac{1}{z} \ \Rightarrow \text{für } z\neq 0 \text{ ist } \tfrac{1}{z}=\bar{z}.$$

Beweis:

$$z^{n-1} = z^{n} \frac{1}{z} = \frac{1}{z} = \bar{z}$$

 $w = z + \bar{z} = 2\operatorname{Re}(z) > 0$

Zu c):

Wegen
$$n = 5$$
 gilt $z^5 = 1$ und $z \neq 1$, da $w = z + \bar{z} \neq 2$.
 $w^2 + w - 1 = (z + z^4)^2 + (z + z^4) - 1 = z^2 + 2z^5 + z^8 + z + z^4 - 1 = z^2 + 1 + z^3 + z + z^4 = \sum_{k=0}^4 z^k = \frac{1-z^{4+1}}{1-z} = \frac{1-1}{1-z} = 0$

Für w gilt laut Teil b): w > 0 und $w \le 2$

$$\cos(\alpha) = \frac{w}{2} \in]0,1[\Leftrightarrow \alpha = \arccos\left(\frac{w}{2}\right)]$$