Disciplina sobre Blockchain

Arlindo F. da Conceição (arlindo.conceicao@unifesp.br)

O que é Blockchain?

O que é Blockchain?

Livro-razão distribuído

Definindo Blockchain...

- É um algoritmo? Não só.
- É uma estrutura de dados? Não apenas.
- É uma moeda digital? Não somente.
- É um protocolo? Mais de um...
- É um livro caixa? É mais do que isso...

"Blockchain é uma tecnologia **emergente** que oferece suporte distribuído **confiável** e **seguro** para realização de transações entre participantes que não necessariamente têm <u>confiança</u> entre si e que estão dispersos em larga **escala** numa rede P2P."

Fabíola Greve et al., SBRC, 2019, grifos meus.

Benefícios de Blockchain?

Fonte: Greve 2019.

- **Descentralização**: Sistemas e aplicações que usam a BC não precisam de uma entidade central para coordenar as ações, as tarefas são executadas de forma distribuída;
- **Disponibilidade e integridade**: Os dados e as transações são replicados para todos os participantes da BC, mantendo o sistema seguro e consistente;
- Transparência e auditabilidade: A cadeia de blocos que registra as transações é pública e pode ser auditada e verificada;
- Imutabilidade e Irrefutabilidade: os registros são imutáveis e a correção só pode ser feita a partir de novos registros. O uso de recursos criptográficos garante que os lançamentos não podem ser refutados;
- **Privacidade e Anonimidade:** As transações são anônimas, com base nos endereços dos usuários. Os servidores armazenam apenas fragmentos criptografados dos dados do usuário;
- **Desintermediação**: A BC consegue eliminar terceiros em suas transações, atuando como um conector de sistemas de forma confiável e segura;
- Cooperação e incentivos: Uso do modelo de teoria dos jogos como forma de incentivo.

Benefícios de Blockchain?

Fonte: Greve 2019.

- **Descentralização**: Sistemas e aplicações que usam a BC não precisam de uma entidade central para coordenar as ações, as tarefas são executadas de forma distribuída;
- **Disponibilidade e integridade**: Os dados e as transações são replicados para todos os participantes da BC, mantendo o sistema seguro e consistente;
- Transparência e auditabilidade: A cadeia de blocos que registra a transa dos é pública e pode ser auditada e verificada;
- Imutabilidade e Irrefutabilidade os legatros lão mu ávois excolação só pode ser feita a partir de novos registros. Couso de recursos sintegráficos parante que os lançamentos não podem ser refutados;
- **Privacidade e Alphimic Ide:** As transações são anônimas, com base nos endereços dos usuários. Os servidores armaze transações ragmentos criptografados dos dados do usuário;
- **Desintermediação**: A BC consegue eliminar terceiros em suas transações, atuando como um conector de sistemas de forma confiável e segura;
- Cooperação e incentivos: Uso do modelo de teoria dos jogos como forma de incentivo.

Linha do tempo (incompleta)

^{*} Valores e datas aproximadas

Blockchain: pilares

- 1. *Peer-to-peer*: + disponibilidade e controle
- 2. Mecanismos criptográficos
 - a. Função Hash
 - b. Chaves assimétricas (pública e privada) e assinatura digital
- 3. Mecanismo de **consenso** distribuído para uma visão consistente do sistema
- 4. Software livre para obter transparência
- 5. **Incentivos econômicos** para sustentabilidade

Resumo

https://www.youtube.com/watch?v=d13rjDagZ2Y e https://www.youtube.com/watch?v=prSe7RSRTyA

Conceitos básicos para entender Blockchain

- Chaves criptográficas assimétricas
 - Pares de chaves pública (+) e privada (-)
 - o Privacidade, autenticação e assinatura de mensagens
- Funções Hash:
 - \circ H(x) = y
 - o Dado y, qual o valor de x?
 - o Fornece uma "impressão digital" de um conteúdo
 - Exemplos: MD5 and SHA256
- Protocolos Peer-to-Peer: família Torrent
- Algoritmos de eleição e consenso distribuído
- Economia de redes de consenso distribuído

Estrutura de dados

- Hash e cópias: imutabilidade do dado
- Disponibilidade das cópias
- Pode conter qualquer tipo de Informação, depende da aplicação.
 - Em Bitcoin, são transações

Importante:

- O que se quer registrar de forma incorruptível?
- O que é uma transação para a sua aplicação?

Exemplo Bitcoin...

- Bitcoin é só uma aplicação...
- É uma boa aplicação, mas é só uma aplicação...

Bitcoin Charts

- Criado em 2008 por "Satoshi Nakamoto"
- Valor máximo:+/- 20K USD
- Valor atual:+/- 6K USD
- Excelente leitura: <u>https://bitcoin.org/bitcoin.pdf</u>

Linear Scale Log Scale 35

Fonte: https://coinmarketcap.com/currencies/bitcoin/ (Jun 2018)

- Criado em 2008 por "Satoshi Nakamoto"
- Valor máximo:+/- 60K USD
- Valor atual:+/- 32K USD
- Excelente leitura: <u>https://bitcoin.org/bitcoin.pdf</u>

Fonte: https://coinmarketcap.com/currencies/bitcoin/ (Jul 2021)

- Criado em 2008 por "Satoshi Nakamoto"
- Valor máximo:+/- 60K USD
- Valor atual:+/- 50K USD
- Excelente leitura: https://bitcoin.org/bitcoin.pdf

Fonte: https://coinmarketcap.com/currencies/bitcoin/ (Out 2021)

- Criado em 2008 por "Satoshi Nakamoto"
- Valor máximo:+/- 60K USD
- Valor atual:+/- 50K USD
- Excelente leitura: <u>https://bitcoin.org/bitcoin.pdf</u>

Fonte: https://coinmarketcap.com/currencies/bitcoin/ (Out 2023)

Controvérsias

- As criptomoedas deveriam ser reguladas por governos?
- Lavagem de dinheiro?
- Esquema de pirâmide?
- Entre outros assuntos controversos...

Funções de Hash

- Entrada de tamanho arbitrário
- Saída de tamanho fixo
- Saída determinística
- Uniformemente distribuído
- Baixa colisão
- Um único bit altera completamente o resultado
- Não volta

Funções de Hash: exemplo usando MD5

```
Arlindos-MacBook-Air:bin arlindos cat entrada.txt
-Arlindo Flavio da Conceição
Arlindos-MacBook-Air:bin arlindos md5 entrada.txt
MD5 (entrada.txt) = 4fad2a15e18e64b404401bb541e52400
Arlindos-MacBook-Air:bin arlindos vi entrada.txt
Arlindos-MacBook-Air:bin arlindo$ cat entrada.txt
-Arlindo Flavio da Conceição.
Arlindos-MacBook-Air:bin arlindo$ md5 entrada.txt
MD5 (entrada.txt) = b0753fdb4522fad30e511190a9ac6f25
Arlindos-MacBook-Air:bin arlindo$
```

Funções de Hash

- Garante a imutabilidade
- O algoritmo mais usado é o Secure Hash Algorithm (SHA), desenvolvido pela National Security Agency (NSA)
- Bitcoin usa SHA-256 (uma variação de SHA-2) para:
 - Criar um endereço a partir da chave pública
 - Prova de trabalho
 - Cadeia de blocos

Mineração: resolver um problema matemático Encontrar o nonce mantém a rede no ar...

- Um novo coordenador é eleito aproximadamente a cada 10 minutos
- O coordenador é aquele que primeiro resolve:

H(<u>nonce</u> || prev || mrkl_root || timestamp || target) < target

target é uma faixa no espaço de solução:

256 bits

Target

- A cada 2016 blocos, o **target** é ajustado da segu 000000...

 next_target = previous_target * (tempo para encontrar os últimos 2016 blocks em minutos)/(2016 * 10)
- Evolução: http://bitcoin.sipa.be/speed-lin-ever.png

Dificuldade

Halving

- Último em maio de 2020
- https://www.bitcoinblockhalf.com

Criptografia

Criptografia

- Simétrica
 - Mesma chave para codificar e para decodificar
- Assimétrica
 - Chaves diferentes para codificar e para decodificar
 - Pública e Privada
 - Codifica com a pública e decodifica com a privada ou codifica com a privada e decodifica com a pública
- Referência: Tanenbaum e Steen

Ataques...

Notação

+ Público

- Privado

ALICE -> Legítimo

BOB -> Legítimo

TRUDY -> Invasor

Assinatura de mensagens

Assinatura de mensagens usando Hash

Exemplo: uso de chaves em Bitcoin

- Identidade do usuário
- Confirmação de autoria de uma mensagem por assinatura
- Transferência de um recurso
 - Assino com a chave privada da origem e a chave pública do destino

Redes ponto-a-ponto ou P2P

P2P: redução de gargalos!

- Variações do BitTorrent
- Não centralizado
- Redundância
- Disponibilidade
- Escalabilidade (por redução de gargalos)
 - Mais clientes

What's really happening when you add a file to IPFS?

community • Aug 27, 2018

From raw data to Merkle DAGs and a few steps in between

Referência: https://blog.textile.io/what-s-really-happening-when-you-add-a-file-to-ipfs-/

Rede p2p de Bitcoin

• +/- 10K nós

GLOBAL BITCOIN NODES DISTRIBUTION

Reachable nodes as of Thu Jun 28 2018 10:10:57 GMT-0300 (Horário Padrão de Brasília).

9640 NODES

24-hour charts »

Top 10 countries with their respective number of reachable nodes are as follow.

RANK	COUNTRY	NODES	
1	United States	2419 (25.09%)	
2	Germany	1775 (18.41%)	
3	China	854 (8.86%)	
4	France	666 (6.91%)	
5	Netherlands	473 (4.91%)	
6	Canada	365 (3.79%)	
7	United Kingdom	310 (3.22%)	
8	Russian Federation	290 (3.01%)	
9	Japan	232 (2.41%)	
10	Singapore	204 (2.12%)	
	More (103)	>	

Source: https://bitnodes.earn.com e https://ethstats.net/

Consenso distribuído

Blockchain não é sobre \$\$\$

- Generais Bizantinos
 - Todos atacam: vitória
 - Todos recuam: sobrevivência
 - Ataque parcial: aniquilação
- Protocolos
 - PoW
 - o PoS e outros... Voltaremos a esse ponto.

Apresentação SBCAS

Exemplo de transação em Bitcoin

Figure 5.4. Esquema de Conjunto de Transações em Bitcoin (fonte: [Narayanan et al. 2016], slides: Montresor (UniTN))

Árvores de Merkle indexa as transações

- Apenas o hash da raiz é gravado no cabeçalho
- Transações são folhas
- Busca em O(lg n)

O campo *nonce* e a eleição distribuída

 Líderes eleitos de maneira pseudo-aleatória são responsáveis por fechar um Novo bloco

Forks

- E se dois nós encontram o *nonce* aproximadamente ao mesmo tempo?
- Consistência eventual
- Resolve, de modo probabilístico, o Consenso Bizantino
- Ataques de "51%" consistem em forçar artificialmente a escolha de uma das bifurcações

Duplo gasto

- Toda transação é validada
- O problema de duplo gasto é resolvido verificando **toda** a cadeia de pagamentos

Incentivos

- Criar um bloco
 - A cada 210.000 blocos (cerca de 4 anos) esse valor é reduzido pela metade
 - o Hoje são 6,25 BTCs
- O conjunto de transferências pode deixar um valor a ser pago para quem criou o bloco
- O número máximo de bitcoins em circulação é limitado.
- Os incentivos impelem a permanecer honesto.

Rede Ethereum

- https://ethereum.org
- Público
- ETH
- Contratos inteligentes
- Próximos passos:
 https://www.youtube.com/channel/UCNOfzGXD_C9YMYmnefmPH0g

Criptomoedas

Apenas uma aplicação!

- 1596 exemplos em Junho de 2018
- Atualmente passando por duras perdas

Fonte: https://coinmarketcap.com

- 11	ranic	market oup	11100	
1	Bitcoin	\$104.002.816.516	\$6.074,90	
2	♦ Ethereum	\$43.569.890.988	\$434,15	
3	X Ripple	\$17.941.129.471	\$0,456958	
4	[™] Bitcoin Cash	\$12.016.176.810	\$698,28	
5	≜ EOS	\$6.956.790.585	\$7,76	
6	① Litecoin	\$4.477.275.590	\$78,31	
7	Stellar	\$3.520.918.620	\$0,187679	
8	Cardano	\$3.220.505.140	\$0,124214	
9	1 Tether	\$2.695.935.492	\$0,995861	
10	₩ IOTA	\$2.675.206.173	\$0,962467	
			40	

Name

Market Cap

Price

Summary, Blockchain, a decentralized data structure

- Bitcoin example:
 - Each block contains transactions and a hash to the last block
 - Avoid modification?
 - Every +/- 10 minutes a new block is created
 - Leader gains coins
- It is public data
- It is pseudo-anonymous
- Resilient up to "51%" attack
- See data online:

 Blacks by the selection of the sel

Blocks: https://blockexplorer.com/

- TED Talk about Blockchain: https://www.youtube.com/watch?v=KP-hGPQVLpA (Recommended) (Merkle Tree)
- Curso para a UFMA: https://www.youtube.com/watch?v=d13rjDagZ2Y e https://www.youtube.com/watch?v=prSe7RSRTyA