

5-2-3.입체도형에서의 활용(1)_직육면체와 정육면체의 대각선의 길이

[영역] 5.기하

중 3 과정

- ◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시
- 1) 제작연월일 : 2016-10-25
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

계산시 참고사항

1. 직육면체의 대각선의 길이

세 모서리의 길이가 각각 a, b, c인 직육면체의 대각선의 길이를 l이라 하면 $\Rightarrow l = \sqrt{a^2 + b^2 + c^2}$

한 모서리의 길이가 a인 정육면체의 대각선의 길이를 l이라 하면 $\Rightarrow l = \sqrt{3} a$

참고

◉ 직육면체의 대각선은 4개이고, 그 길이가 모두 같다.

직육면체의 대각선의 길이

☑ 다음 직육면체의 대각선의 길이를 구하여라.

1.

2.

3.

4.

5.

7.

8.

9.

10.

11.

12.

☑ 다음 그림과 같은 직육면체에서 대각선 BH의 길이를 구하여라.

13.

14.

15.

16.

ightharpoonup 다음 그림과 같은 직육면체에서 x의 값을 구하여라.

18.

19.

20.

21.

22.

23.

24.

25.

26.

28.

29.

30.

31.

32.

33.

34.

35.

☑ 세 모서리의 길이가 각각 다음과 같은 직육면체의 대각선의 길이를 구하여라.

- 36. 1cm, 2cm, 4cm
- 37. 2cm, 4cm, 6cm
- 38. 3cm, 6cm, $3\sqrt{2}$ cm
- 39. $3\sqrt{2}$ cm, $4\sqrt{2}$ cm, 5cm

정육면체의 대각선의 길이

□ 다음 그림과 같은 정육면체에서 대각선 BH의 길이를 구하여라.

40.

41.

42.

43.

☑ 다음 그림과 같은 정육면체에서 대각선의 길이를 구하여라.

44.

45.

46.

47.

48.

50.

51.

☑ 다음 그림과 같은 정육면체에서 x의 값을 구하여라.

52.

53.

54.

55.

56.

57.

58.

59.

직육면체의 대각선의 길이의 응용

☑ 다음 물음에 답하여라.

61. 다음 그림과 같이 한 모서리의 길이가 2인 정육면체의 꼭 짓점 F에서 대각선 AG에 내린 수선의 발을 I라고 할 때, FI의 길이를 구하여라.

62. 한 모서리의 길이가 8인 정육면체에 외접하는 구의 지름의 길이를 구하여라.

63. 다음 그림과 같이 한 모서리의 길이가 10인 정육면체의 꼭 짓점 H에서 \overline{DF} 에 내린 수선의 발을 M이라 할 때, \overline{HM} 의 길이를 구하여라.

64. 다음 그림과 같이 반지름의 길이가 3인 구에 들어갈 수 있 는 가장 큰 정육면체의 부피를 구하여라.

65. 한 변의 길이가 10인 정육면체에서 $\overline{\mathrm{BF}}$ 와 $\overline{\mathrm{DH}}$ 의 중점을 M, N이라 할 때, □AMGN의 넓이를 구하여라.

 \overline{AC} 의 길이가 \overline{AC} 의 길이가 \overline{AC} 인 정육면체에 서 △ABC의 넓이를 구하여라.

67. 다음 정육면체의 한 모서리의 길이가 8cm에서 △AFG의 둘레의 길이를 구하여라.

68. 다음 그림과 같이 한 모서리의 길이가 6cm 인 정육면체에 서 점 M이 \overline{CD} 의 중점일 때, $\triangle MAG$ 의 넓이를 구하여라.

69. 한 모서리의 길이가 4cm 인 정육면체에서 \overline{BF} 의 중점을 $M, \ \overline{BC}$ 의 중점을 N이라고 할 때, $\triangle AMN$ 의 넓이를 구하여 라.

70. 한 모서리의 길이가 5 cm 인 정육면체에서 $\overline{\text{AE}}$ 의 중점을 M, \overline{CG} 의 중점을 N이라 할 때, $\square MFND$ 의 넓이를 구하여 라.

정답 및 해설 🖁

- 1) $5\sqrt{2}$ cm
- $\Rightarrow \sqrt{4^2+3^2+5^2} = 5\sqrt{2} \text{ (cm)}$
- 2) $2\sqrt{11}$ cm
- $\Rightarrow \sqrt{2^2+2^2+6^2} = 2\sqrt{11}$ (cm)
- 3) $2\sqrt{29}$ cm
- $\Rightarrow \sqrt{8^2+4^2+6^2} = 2\sqrt{29}$ (cm)
- 4) $\sqrt{71}$ cm
- $\Rightarrow \sqrt{6^2 + (\sqrt{10})^2 + 5^2} = \sqrt{71} \text{ (cm)}$
- 5) 13
- \Rightarrow 직육면체의 대각선의 길이는 $\sqrt{3^2+4^2+12^2}=13$
- 6) $\sqrt{82}$ cm
- $\Rightarrow \sqrt{3^2+3^2+8^2} = \sqrt{82} \text{ (cm)}$
- 7) $2\sqrt{30}$ cm
- $\Rightarrow \sqrt{10^2 + 2^2 + 4^2} = 2\sqrt{30}$ (cm)
- 8) $\sqrt{155}$ cm
- $\Rightarrow \sqrt{9^2 + 7^2 + 5^2} = \sqrt{155} \text{ (cm)}$
- 9) $3\sqrt{10}$
- \Rightarrow 직육면체의 대각선의 길이는 $\sqrt{4^2+5^2+7^2} = \sqrt{90} = 3\sqrt{10}$
- 10) 14cm
- $\Rightarrow \sqrt{6^2 + 4^2 + 12^2} = \sqrt{196} = 14 \text{ (cm)}$
- 11) $\sqrt{77}$ cm
- 12) $6\sqrt{5}$ cm
- $\Rightarrow \sqrt{8^2 + 4^2 + 10^2} = 6\sqrt{5} \text{ (cm)}$
- 13) $2\sqrt{19}$ cm
- $\Rightarrow \overline{BH} = \sqrt{6^2 + 2^2 + 6^2} = \sqrt{76} = 2\sqrt{19}$ (cm
- 14) $5\sqrt{2}$ cm
- $\Rightarrow \overline{BH} = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{50} = 5\sqrt{2} \text{ (cm)}$
- 15) $2\sqrt{29}$ cm
- $\Rightarrow \overline{BH} = \sqrt{6^2 + 4^2 + 8^2} = \sqrt{116} = 2\sqrt{29} \text{ (cm)}$
- 16) 5cm

- $\Rightarrow \overline{BH} = \sqrt{(2\sqrt{3})^2 + 2^2 + 3^2} = \sqrt{25} = 5 \text{ (cm)}$
- 17) $\sqrt{106}$ cm
- $\Rightarrow \overline{BH} = \sqrt{6^2 + 5^2 + (3\sqrt{5})^2} = \sqrt{106} \text{ (cm)}$
- 18) 6
- $\sqrt{3^2+5^2+x^2} = \sqrt{70}$ 이므로 $34+x^2 = 70$ $x^2 = 36$ $\therefore x = 6$
- 19) $5\sqrt{7}$
- $\Rightarrow \sqrt{12^2 + 9^2 + x^2} = 20$ $x^2 + 225 = 400, \ x^2 = 175 \qquad \therefore x = 5\sqrt{7}(x > 0)$
- 20) $2\sqrt{2}$
- $7^2 = 5^2 + 4^2 + x^2, \ x^2 = 49 41 = 8,$ $\therefore \ x = \sqrt{8} = 2\sqrt{2} \ (x > 0)$
- 21) $\sqrt{34}$
- \Rightarrow 직육면체의 대각선의 길이가 8이 되므로 $8^2=\left(2\sqrt{3}\right)^2+\left(3\sqrt{2}\right)^2+x^2,$ $64=12+18+x^2,\ x^2=34$ \therefore $x=\sqrt{34}\ (x>0)$
- 22) $\sqrt{77}$
- $\Rightarrow \sqrt{6^2 + x^2 + 15^2} = 13\sqrt{2}$ $x^2 + 261 = 338, \quad x^2 = 77 \qquad \therefore x = \sqrt{77} (x > 0)$
- 23) $5\sqrt{3}$
- $\Rightarrow \sqrt{12^2 + 9^2 + x^2} = 10\sqrt{3}$ $x^2 + 225 = 300, \ x^2 = 75 \qquad \therefore \ x = 5\sqrt{3} \ (x > 0)$
- 24) 3
- Arr 직육면체의 대각선의 길이는 $\sqrt{6^2 + 2^2 + x^2} = 7$ 이므로 $x^2 + 40 = 49$, $x^2 = 9$ $\therefore x = 3$
- 25) 5
- $ightharpoonup \sqrt{3^2+2^2+x^2} = \sqrt{38}$ 이므로 $13+x^2=38, x^2=25$ $\therefore x=5(\because x>0)$
- 26) 4
- $ightharpoonup \sqrt{7^2 + 3^2 + x^2} = \sqrt{74}$ 이므로 $58 + x^2 = 74, x^2 = 16$ $\therefore x = 4(\because x > 0)$
- 27) 4
- $ightharpoonup \sqrt{x^2 + (2\sqrt{5})^2 + 5^2} = \sqrt{61}$ 이므로 $x^2 + 45 = 61, x^2 = 16$ $\therefore x = 4(\because x > 0)$
- 28) 2
- $\sqrt{x^2 + (\sqrt{15})^2 + 5^2} = 2\sqrt{11} \text{ 이므로}$ $x^2 + 40 = 44, x^2 = 4$ $\therefore x = 2(\because x > 0)$

29) 4

$$> \sqrt{5^2 + x^2 + (2\sqrt{2})^2} = 70$$
 므로 $x^2 + 33 = 49, x^2 = 16$ $: x = 4(: x > 0)$

30) 1

$$ightharpoonup \sqrt{(\sqrt{5})^2 + x^2 + (\sqrt{3})^2} = 30$$
 으로 $x^2 + 8 = 9, x^2 = 1$ $\therefore x = 1 (\because x > 0)$

31) $\sqrt{41}$

⇒ 대각선의 길이가 7이므로
$$\sqrt{2^2+2^2+x^2} = \sqrt{49}$$

$$x^2 = 41$$
 $\therefore x = \sqrt{41}$

32) 3

$$ightharpoonup \sqrt{x^2+6^2+2^2}=7$$
이므로 $x^2+40=49, x^2=9$ $\therefore x=3 \ (x>0)$

33) $\sqrt{11}$

$$ightharpoonup \sqrt{5^2 + x^2 + 8^2} = 10$$
이므로 $x^2 + 89 = 100, \ x^2 = 11$ $\therefore x = \sqrt{11} (x > 0)$

- 34) $2\sqrt{2}$
- 35) 5
- 36) $\sqrt{21}$ cm

$$\Rightarrow \sqrt{1^2 + 2^2 + 4^2} = \sqrt{21} \text{ (cm)}$$

37) $2\sqrt{14}$ cm

$$\sqrt{2^2+4^2+6^2} = \sqrt{4+16+36} = \sqrt{56} = 2\sqrt{14}$$
 가 된다.

38) $3\sqrt{7}$ cm

$$\Rightarrow \sqrt{3^2+6^2+(3\sqrt{2})^2}=3\sqrt{7}$$
 (cm)

39) $5\sqrt{3}$ cm

$$\Rightarrow \sqrt{(3\sqrt{2})^2 + (4\sqrt{2})^2 + 5^2} = 5\sqrt{3}$$
 (cm)

40) $3\sqrt{3}$ cm

$$\Rightarrow \overline{BH} = \sqrt{3} \times 3 = 3\sqrt{3} \text{ (cm)}$$

41) $5\sqrt{3}$ cm

$$\Rightarrow \overline{BH} = \sqrt{3} \times 5 = 5\sqrt{3} \text{ (cm)}$$

42) 6cm

$$\Rightarrow \overline{BH} = \sqrt{3} \times 2\sqrt{3} = 6(cm)$$

43) $9\sqrt{2}$ cm

$$\Rightarrow \overline{BH} = \sqrt{3} \times 3\sqrt{6} = 9\sqrt{2} \text{ (cm)}$$

44) 6cm

$$\Rightarrow \sqrt{3} \times 2\sqrt{3} = 6$$
 (cm)

45) $2\sqrt{3}$ cm

$$\Rightarrow \sqrt{3} \times 2 = 2\sqrt{3}$$
 (cm)

46) $8\sqrt{3}$ cm

$$\Rightarrow \sqrt{3} \times 8 = 8\sqrt{3} \text{ (cm)}$$

47) $3\sqrt{3}$ cm

$$\Rightarrow \sqrt{3} \times 3 = 3\sqrt{3} \text{ (cm)}$$

48) $5\sqrt{3}$ cm

$$\Rightarrow \sqrt{3} \times 5 = 5\sqrt{3}$$
 (cm)

49) $9\sqrt{3}$ cm

$$\Rightarrow \sqrt{3} \times 9 = 9\sqrt{3} \text{ (cm)}$$

50) 3cm

51) 6cm

$$\Rightarrow \sqrt{3} \times 2\sqrt{3} = 6$$
 (cm)

52) $3\sqrt{3}$

$$\Rightarrow \sqrt{3} \times x = 9$$
 $\therefore x = 3\sqrt{3}$

53) 8

$$\Rightarrow \sqrt{3} \times x = 8\sqrt{3}$$
 $\therefore x = 8$

54) 11

$$\Rightarrow \sqrt{3} \times x = 11\sqrt{3}$$
 $\therefore x = 11$

55) $4\sqrt{3}$

$$\Rightarrow \sqrt{3} \times x = 12$$
 $\therefore x = 4\sqrt{3}$

56) $2\sqrt{3}$

$$\Rightarrow \sqrt{3} \times x = 6 \qquad \therefore x = 2\sqrt{3}$$

57) $\sqrt{2}$

$$\Rightarrow \sqrt{3} x = \sqrt{6} \qquad \therefore x = \sqrt{2}$$

50\ n

$$\Rightarrow \sqrt{3} x = 2\sqrt{3}$$
 $\therefore x = 2$

59) $2\sqrt{3}$

$$\Rightarrow \sqrt{3} x = 6$$
 $\therefore x = 2\sqrt{3}$

60) $8\sqrt{3}$

$$\Rightarrow \sqrt{3} x = 24$$
 $\therefore x = 8\sqrt{3}$

61) $\frac{2\sqrt{6}}{3}$

$$\Rightarrow \overline{AG} = \sqrt{2^2 + 2^2 + 2^2} = 2\sqrt{3}$$
, $\overline{AF} = 2\sqrt{2}$

$$\triangle$$
AFG 에서 $2 \times 2\sqrt{2} = 2\sqrt{3} \times \overline{\mathrm{FI}}$
 $\therefore \overline{\mathrm{FI}} = \frac{2\sqrt{2}}{\sqrt{3}} = \frac{2\sqrt{6}}{3}$

- 62) $8\sqrt{3}$
- ightharpoonup 한 모서리의 길이가 $8\sqrt{3}$ 이므로 정육면체에 외접하는 구의 지름의 길이는 $8\sqrt{3}$ 이다.
- 63) $\frac{10\sqrt{6}}{3}$
- 64) $24\sqrt{3}$
- \Rightarrow 정육면체의 한 변의 길이를 a라고 하면

정육면체의 대각선의 길이와 구의 지름의 크기가 같아져서

$$\sqrt{3} a = 6, \ a = \frac{6}{\sqrt{3}} = 2\sqrt{3}$$

정육면체의 부피= $a^3 = (2\sqrt{3})^3 = 8 \times 3\sqrt{3} = 24\sqrt{3}$ 이 된다.

- 65) $50\sqrt{6}$
- \square AMGN은 $\overline{AM} = \overline{MG} = \overline{GN} = \overline{NA} = \sqrt{10^2 + 5^2} = 5\sqrt{5}$ 인 마름모이다.

- 66) $6\sqrt{2}\,\text{cm}^2$
- ightharpoonup 정육면체의 한 모서리의 길이를 a라 하면 대각선의 길이는 $\sqrt{3}\,a=6$ 이므로 $a=2\,\sqrt{3}$

$$\triangle$$
ABC에서 $\overline{BC} = 2\sqrt{3}$, $\overline{AB} = \sqrt{(2\sqrt{3})^2 + (2\sqrt{3})^2} = 2\sqrt{6}$

$$\therefore \triangle ABC = \frac{1}{2} \times 2\sqrt{3} \times 2\sqrt{6} = 6\sqrt{2}$$

- 67) $8(1+\sqrt{2}+\sqrt{3})$ cm
- $\Rightarrow \triangle ABFOMM \overline{AF} = \sqrt{8^2 + 8^2} = 8\sqrt{2}$

정육면체의 대각선 $\overline{AG} = \sqrt{8^2 + 8^2 + 8^2} = 8\sqrt{3}$

따라서 △AFG의 둘레의 길이는

 $8+8\sqrt{2}+8\sqrt{3}=8(1+\sqrt{2}+\sqrt{3})$ or \mathbb{R} .

- 68) $9\sqrt{6} \text{ cm}^2$
- \Rightarrow \triangle ADM에서 $\overline{AM} = \sqrt{6^2 + 3^2} = 3\sqrt{5}$

$$\triangle$$
CGM에서 $\overline{\text{MG}} = \sqrt{6^2 + 3^2} = 3\sqrt{5}$

정육면체의 대각선의 길이 $\overline{AG} = \sqrt{6^2 + 6^2 + 6^2} = 6\sqrt{3}$

 \triangle MAG는 $\overline{AM} = \overline{MG} = 3\sqrt{5}$ 인 이등변삼각형이므로

점 M에서 \overline{AG} 에 내린 수선의 발을 P라 하면

 \triangle AMP에서 $\overline{MP} = \sqrt{(3\sqrt{5})^2 - (3\sqrt{3})^2} = 3\sqrt{2}$

 $\therefore \triangle MAG = \frac{1}{2} \times 6\sqrt{3} \times 3\sqrt{2} = 9\sqrt{6}$

69) 6cm²

$$\overline{AH} = \sqrt{(2\sqrt{5})^2 - (\sqrt{2})^2} = \sqrt{18} = 3\sqrt{2}$$
$$\therefore \triangle AMN = \frac{1}{2} \times 2\sqrt{2} \times 3\sqrt{2} = 6$$

70) $\frac{25\sqrt{6}}{2}$ cm²