Segundo parcial de Matemática Discreta 2 - Curso 2006 - IMERL

Lunes 03 de Julio de 2006, 13:00 hs. Duración: 4 horas.

N ^o . Parcial	Cédula	Apellido, Nombre	

No se permite el uso de ningún tipo de material salvo calculadoras. Se solicita apagar los celulares.

Ejercicio 1. (15 puntos)

Sea (G, \star) un grupo y H un subgrupo de G.

- (1) (2 puntos) Definir el conjunto cociente G/H.
- (2) (6 puntos) Probar que, si H es un subgrupo normal de G entonces G/H tiene estructura de grupo con la operación $[a]\overline{\star}[b] = [a \star b]$ (se pide probar todas las propiedades que tiene un grupo).
- (3) (7 puntos) En las condiciones de (2), probar que existe un morfismo de grupos φ : $G \to G/H$, sobreyectivo, tal que $Ker(\varphi)$, el núcleo de φ , es H.

Ejercicio 2. (15 puntos)

Sea G un grupo tal que |G| = 110.

- (1) (3 puntos) Probar que existe H subgrupo normal de G tal que |H| = 11.
- (2) (2 puntos) Probar que existe K subgrupo de G tal que |K| = 5.
- (3) (6 puntos) Probar que existe T subgrupo de G tal que |T| = 55 y que T es normal en G..
- (4) (4 puntos) ¿Es G abeliano?

Ejercicio 3. (12 puntos)

Sea σ perteneciente a S_9 tal que:

- (1) (5 puntos) Hallar a,b,c y d para que σ tenga el mayor orden posible.
- (2) (4 puntos) Para la σ hallada calcular σ^{248} .
- (3) (3 puntos) Hallar el signo de σ .

Ejercicio 4. (18 puntos)

Sea $(\mathbb{R}^3, +, \times)$ tal que

$$(x,y,z) + (x',y',z') = (x+x',y+y',z+z'),$$

 $(x,y,z) \times (x',y',z') = (xx',yy',xz'+y'z).$

- (1) (5 puntos) Demostrar que $(\mathbb{R}^3, +, \times)$ es un anillo, no conmutativo y con unidad.
- (2) (3 puntos) Hallar las unidades del anillo (los elementos invertibles) y sus inversos.
- (3) (3 puntos) Mostrar que el anillo tiene divisores propios de cero.
- (4) (3 puntos) Sea $I = \{(a,0,b) : a,b \in \mathbb{R}\}$. Probar que I es un ideal a izquierda y a derecha de \mathbb{R}^3 .
- (5) (4 puntos) Probar que I es maximal. (Sugerencia: Considerar la función $\varphi : \mathbb{R}^3 \to \mathbb{R}$ definida por $\varphi(x,y,z) = y$).

¡Buena Suerte!

PARA USO DOCENTE:

Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4
(1)	(1)	(1)	(1)
(2)	(2)	(2)	(2)
(3)	(3)	(3)	(3)
	(4)		(4)
			(5)
Total:	Total:	Total:	Total:

TOTAL PARCIAL: