الاختبار المشترك الأول العام الدراسي: 2020-2021	باسمه تعالى امتحانات الشهادة الثانوية العامة الفرع : علوم العامة	سسات أمل التربوية ديرية التربوية
الاسم: ال قد:	مسابقة في مادة الرياضيات (انكليزي) المدة : ثلاث ساعات	د المسائل: خمس

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة)

I- (3 points)

Dans le tableau suivant, une seule réponse est correcte pour chaque question. Ecrire le numéro de la question et choisir la réponse correcte correspondante en la **justifiant**.

		Réponses possibles			
Nº	Questions	A	В	C	
1)	$z = \sqrt{2} - 2e^{i\frac{\pi}{4}}$. Un argument de z est :	0	π	$-\frac{\pi}{2}$	
2)	L'équation : $e^x - 1 - 2e^{-x} = 0$ admet	Aucune racine	1 racine	2 racines	
3)	Soit f la fonction définie sur \mathbb{R} par: $f(x) = e^{2x}$. $f^{(n)}$ est la dérivée $n^{i \`{e}me}$ de f où n est une entier strictement positive. Donc $f^{(n)}(0) =$	2 ⁿ⁻¹	2 ⁿ	2^{n+1}	
4)	La courbe représentative de la fonction f définie sur $[0; +\infty[$ par : $f(x) = x - \ln\left(\frac{2e^x + 1}{e^x + 1}\right)$ admet la droite d'équation :	y = x comme asymptote oblique	$y = x + \ln 2$ comme asymptote oblique	$y = x - \ln 2$ comme asymptote oblique	
5)	Soit x > 3 et F(x) = $\int \frac{1}{3-x} dx$. Si F(6) = 1 - ln3, donc F(4) =	0	1	1 – 2ln3	
6)	La suite (U_n) définie par: $U_0 = 4 \text{ and } U_{n+1} = 2U_n + 5 \text{ est}$	croissante	décroissante	ni croissante ni décroissante	

II- (2.5 points)

Dans le plan complexe rapporté au repère orthonormé direct (0; \vec{u} , \vec{v}), On considère les points M et M' d'affixes respective z et z' telle que $z' = \frac{1+i}{z}$ ($z \neq 0$). Soit (C) la cercle de centre O et rayon $\sqrt{2}$.

- 1) Démontrer que $|z| \times |z'| = \sqrt{2}$ et trouver arg(z) + arg(z').
- 2) Démontrer que si M décrit la cercle (C), M' décrit le cercle de centre et rayon à déterminer.
- 3) Soit z = x + iy et z' = x' + iy' où x, y, x', et y' sont des nombres réels.
 - **a-** Ecrit x' et y' en fonction de x et y.
 - **b-** Démontrer que : si M décrit l'axe des abscisses privée de O, donc M' décrit le droite (D) d'équation y = x.
 - **c-** Trouver l'ensemble des points M quand M' décrit la droite d'équation $x = \frac{1}{2}$.

III- (3.5 points)

Dans la figure adjacente :

- OAB est un triangle rectangle isocèles direct telle que OA = OB = 3
- I est le point d'intersection des bissectrices des angles du triangle OAB
- (IE) est parallèle à (OA) et BE = 3.
- R est la rotation de center O et d'angle $\frac{\pi}{2}$.
- R' est la rotation de center B et d'angle $\frac{\pi}{4}$.
- $f = R' \circ R$

- 1) Soit I' le symétrique de I par rapport à (OB).
 - a- Démontrer que I' est l'image de I par R.
 - **b-** Comparer BI et BI' trouver la mesure de l'angle $(\overrightarrow{BI'}; \overrightarrow{BI})$.
 - **c-** Démontrer que f(I) = I, puis déterminer la nature et les éléments caractéristique de la transformation f.
- 2) Démontrer que f(O) = E, puis déduire une mesure de l'angle $(\overrightarrow{IO}; \overrightarrow{IE})$.
- 3) On note par $A_1 = A$ et par $A_2 = R(A_1)$, $A_3 = R(A_2)$, ..., $A_{n+1} = R(A_n)$, où $n \in \mathbb{N}^*$ Soit (U_n) la suite définie par : $U_n = (\overrightarrow{OA_n}; \overrightarrow{OA_{n+1}})$.
 - **a-** Trouver A_2 et A_3 , puis démontrer que $U_1 + U_2 = \pi + 2k\pi$ où $k \in \mathbb{Z}$.
 - **b-** Démontrer que $(\overrightarrow{OA_1}; \overrightarrow{OA_n}) = \frac{(n-1)\pi}{2} + 2k\pi$ où $k \in \mathbb{Z}$, puis trouver n telle que O, A_1 , et A_n soit colinéaire.

IV- (7 points)

Partie A

Le courbe ci-contre (T) représentes une fonction f définie sur \mathbb{R} par : $f(x) = (ax + b) e^x + c$, où a, b, et c sont trois nombres réels.

- La droite y = -2 est une asymptote horizontale à (T) en $-\infty$.
- La courbe (T) passe par l'origine O.
- La droite y = -2 coupes (T) seulement en un point d'abscisse 2

Vérifier que c = -2, b + c = 0, et 2a + b = 0, puis trouver f(x).

Partie B

Dans ce qui suit prenons $f(x) = (-x + 2)e^x - 2$.

- 1) Calculer f '(x) et dresser le tableau de variations de f.
- 2) La courbe (T) coupe l'axe des abscisses en deux points d'abscisse 0 et α . Vérifier que $1.5 < \alpha < 1.7$.
- 3) Ecrire une équation de la tangent passant par O à (T).
- 4) Calculer en fonction de α, l'aire du domaine délimitée par (T) et l'axe des abscisses.
- 5) On définit, sur $[0; +\infty[$, la fonction h par : h (0) = 0 et h(x) = $\frac{x^2}{e^x 1}$ si x > 0 et soit (H) sa courbe représentative dans une repère orthonormal $(O; \vec{i}; \vec{j})$.

a- Vérifier que h'(x) =
$$\frac{x f(x)}{\left(e^x - 1\right)^2}$$
, où $x > 0$.

- **b-** Dresser, en fonction de α , le tableau de variations de h
- **c-** Tracer la courbe représentative (H). (Prenons $\alpha = 1.6$)

V- (4 points)

Soit le tableau de variations d'une fonction continue $g(x) = 1 - \frac{2 \ln x}{x}$.

1) En utilisant le tableau de variations, démontrer que, pour tous x > 0, $\frac{\ln x}{x} \le \frac{1}{e}$.

2)

- **a-** Démontrer que la courbe représentative de n'importe quelle primitive de g sur]0; $+\infty$ [admets un point d'inflexion I.
- **b-** Déterminer la primitive G de g pour laquelle le point I appartient à la droite d'équation y = x.
- 3) Soit (U_n) la suite définie pour $n \in \mathbb{N}$, par $U_n = \left(\frac{\ln a}{a}\right)^n$ où a est un nombre réel telle que a > 1.
 - **a-** Démontrer que (U_n) est une suite géométrique de raison r et premier terme U_0 à déterminer.
 - **b-** Démontrer que la suite (U_n) est décroissante.
 - **c-** Soit S_n la somme définie par $S_n = U_1 + U_2 + U_3 \dots U_n$. Calculer S_n en fonction de n et a, puis calculer $\lim_{n \to +\infty} S_n$.