Puteri si radicali.

1. Prin **puterea n** a unui numar real **a** intelegem numarul $\mathbf{a}^{n} = \underbrace{\mathbf{a} \cdot \mathbf{a} \cdot \dots \cdot \mathbf{a}}_{} (\mathbf{n} \in \mathbf{N})$ **a** se numeste **baza**, iar $n \in \mathbb{N}$ se numeste **exponent**.

Daca $a \neq 0$ avem $a^0 = 1$, $a^{-n} = \frac{1}{a^n}$.

2. Prin radacina de ordin n sau radical de ordin n, $n \in \mathbb{N}$, $n \ge 2$ a unui numar a > 0 intelegem un numar real, pe care il notam cu $\sqrt[n]{a} = a^{\frac{1}{n}}$ si care are proprietatea $(\sqrt[n]{a})^n = a$.

Proprietati - puteri:

Fie $n, m \in \mathbb{N}$, $a, b \in \mathbb{R}^*$

a)
$$a^{n} a^{m} = a^{n+m}$$
,

a)
$$a^n a^m = a^{n+m}$$
, b) $(a^n)^m = a^{nm}$, c) $\frac{a^n}{a^m} = a^{n-m}$, d) $(ab)^n = a^n \cdot b^n$,

$$c)\frac{a^n}{a^m}=a^{n-m},$$

d)
$$(ab)^n = a^n \cdot b^n$$

e)
$$\left(\frac{\mathbf{a}}{\mathbf{b}}\right)^{\mathbf{n}} = \frac{\mathbf{a}^{\mathbf{n}}}{\mathbf{b}^{\mathbf{n}}}$$
.

Proprietati - radicali:

Fie a, b > 0, n, $m \in \mathbb{N}$, n, $m \ge 2$,

a)
$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$
, b) $\sqrt[n]{\frac{a}{b}} = \sqrt[n]{a}$, c) $\sqrt[n]{a^{n \cdot m}} = a^m$, d) $(\sqrt[n]{a})^m = \sqrt[n]{a^m}$,

b)
$$\sqrt[n]{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt[n]{\mathbf{a}}}{\sqrt[n]{\mathbf{b}}},$$

c)
$$\sqrt[n]{a^{n \cdot m}} = a^m$$
,

d)
$$(\sqrt[n]{a})^m = \sqrt[n]{a^m}$$
,

e)
$$\sqrt[n]{a^m} = \sqrt[nk]{a^{mk}}$$
, f) $\sqrt[n]{\sqrt[m]{a}} = \sqrt[nm]{a}$.

f)
$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[nm]{a}$$
.

3. Daca a<0, $n \ge 3$, $n \in \mathbb{N}$ impar, se numeste radical de ordinul n al lui a, numarul negativ notat $\sqrt[n]{a}$ care are proprietatea ca $(\sqrt[n]{a})^n = a$.

Obs.: Proprietatile date in cazul radicalilor din numere pozitive sunt valabile si pentru radicalii de ordin impar din numere negative.

 $4.\sqrt{A+\sqrt{B}}$ si $\sqrt{A-\sqrt{B}}$ se numesc **radicali dubli.** In anumite conditii acestia se descompun in suma sau diferenta de radicali simpli.

Daca A^2 - $B = C^2$ (este un patrat perfect) atunci:

$$\sqrt{A + \sqrt{B}} = \sqrt{\frac{A + C}{2}} + \sqrt{\frac{A - C}{2}}$$
 si $\sqrt{A - \sqrt{B}} = \sqrt{\frac{A + C}{2}} - \sqrt{\frac{A - C}{2}}$

5. O expresie care contine radicali se numeste **conjugata** unei alte expresii care contine radicali, daca produsul celor doua expresii se poate scrie fara radicali. Cele doua expresii se numesc conjugate.

Exemple:

a) a > 0, $b \in R$ atunci $\sqrt{a} + b$ si $\sqrt{a} - b$ sunt conjugate decarece $(\sqrt{a} + b)(\sqrt{a} - b) = a - b^2$,

b) a, b >0 atunci $\sqrt{a} + \sqrt{b}$ si $\sqrt{a} - \sqrt{b}$ sunt conjugate deoarece $(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = a - b$.

6. Puteri cu **exponent rational**:

a) Puteri cu exponent rational pozitiv: definim $a^{\frac{m}{n}} = \sqrt[n]{a^m}$, $a \ge 0$ si $\frac{m}{n} \in \mathbb{Q}$, $\frac{m}{n} > 0$, $n \ge 2$,

b) Puteri cu exponent rational negativ: definim $a^{-\frac{m}{n}} = \frac{1}{\frac{m}{n}} = \frac{1}{\sqrt[n]{a^m}}, \ a > 0 \text{ si } \frac{m}{n} \in \mathbb{Q}, \frac{m}{n} > 0, \ n \geq 2$

Proprietati ale puterilor cu exponent rational

Daca a > 0, b > 0 si $\frac{m}{n}$, $\frac{p}{\alpha} \in Q$ avem:

a)
$$a^{\frac{m}{n}} \cdot a^{\frac{p}{q}} = a^{\frac{m}{n} + \frac{p}{q}}$$
,

b)
$$(\mathbf{a}\mathbf{b})^{\frac{\mathbf{m}}{\mathbf{n}}} = \mathbf{a}^{\frac{\mathbf{m}}{\mathbf{n}}} \cdot \mathbf{b}^{\frac{\mathbf{m}}{\mathbf{n}}}$$

$$c)\left(\frac{a}{b}\right)^{\frac{m}{n}} = \frac{a^{\frac{m}{n}}}{b^{\frac{m}{n}}},$$

a)
$$\mathbf{a}^{\frac{m}{n}} \cdot \mathbf{a}^{\frac{p}{q}} = \mathbf{a}^{\frac{m}{n} + \frac{p}{q}},$$
 b) $(\mathbf{a}\mathbf{b})^{\frac{m}{n}} = \mathbf{a}^{\frac{m}{n}} \cdot \mathbf{b}^{\frac{m}{n}},$ c) $\left(\frac{\mathbf{a}}{\mathbf{b}}\right)^{\frac{m}{n}} = \frac{\mathbf{a}^{\frac{m}{n}}}{\mathbf{b}^{\frac{m}{n}}},$ d) $\left(\mathbf{a}^{\frac{m}{n}}\right)^{\frac{p}{q}} = \mathbf{a}^{\frac{m}{n} \cdot \frac{p}{q}},$

e)
$$\frac{a^{\frac{m}{n}}}{a^{\frac{p}{q}}} = a^{\frac{m}{n} - \frac{p}{q}}$$
.

Alte proprietati

a) Daca 0 < a < 1 si $n \ge 2$, $n \in \mathbb{N}$ atunci $0 < \sqrt[n]{a} < 1 \Leftrightarrow 0 < a^{\frac{1}{n}} < 1$.

b) Daca a > 1 si $n \ge 2$, $n \in \mathbb{N}$ atunci $1 < \sqrt[n]{a} \Leftrightarrow 1 < a^{\frac{1}{n}}$.

Pornind de la aceste proprietati putem stabili urmatoarele:

a) Daca 0 < a < 1 si $x \in Q$, x > 0 atunci $0 < a^x < 1$.

b) Daca a > 1 si $x \in Q$, x > 0 atunci $a^x > 1$.

c) Daca 0 < a < 1 si $x \in Q$, x < 0 atunci $a^x > 1$.

d) Daca a > 1 si $x \in Q$, x < 0 atunci $0 < a^x < 1$.

e) $(\forall x) \in \mathbf{Q}$ avem $\mathbf{1}^x = \mathbf{1}$.