Servidores Web

Julio Cezar Estrella 18-11-08

Roteiro

- O que é um Servidor Web
- Características
- História
- Limites de Carga
- O Servidor Web Apache
 - Características
 - Arquitetura Preforking
 - Módulos de Multiprocessamento
 - Recursos

Roteiro

- Qualidade de Serviço
 - Arquitetura IntServ
 - Arquitetura DiffServ
 - SWDS
- Os Servidores Web na atualidade

O que é um Servidor Web

- Um programa de computador que é o responsável por aceitar solicitações HTTP na web
- Isso é feito a partir de clientes, que são conhecidos como navegadores web
- Serve respostas HTTP juntamente com os dados de conteúdo, que geralmente são páginas da Web, tais como documentos HTML e demais objetos ligados (imagens, videos, etc).

Características

- As características comuns de qualquer servidor web
 - Autenticação
 - Logging
 - Manipulação de conteúdo estático e dinâmico
 - Suporte ao HTTPS
 - Compressão de conteúdo
 - Virtual Hosting
 - Suporte a arquivos grandes

- **1989**
 - Tim Berners-Lee propõe um novo projeto
 - Objetivo: Facilitar a troca de informações entre cientistas através de um sistema de hipertexto
 - O resultado deste projeto foi o surgimento de dois programas:
 - Um browser chamado World Wide Web
 - Um servidor HTTP chamado CERN HTTPd que executava em um sistema operacional multitarefa e orientado a objetos denominado Nextstep

- É preciso definir um limite de cargas porque um servidor pode manipular somente um limite de conexões concorrentes
- Esse limite depende:
 - Das características do servidor
 - Do tipo de requisição HTTP
 - Tipo de conteúdo (estático ou dinâmico)
 - Conteúdo estar ou não em uma cache
 - Limites de hardware e software do OS em que o servidor está executando

- Causas da sobrecarga em servidores web:
 - Muito tráfego
 - DDoS
 - Worms (Computadores intfectados que causam anormalidade no tráfego)
 - XSS vírus (Aumento do tráfedo devido a infecção de browsers e servidores web)
 - Internet web robots (Trafego não filtrado em grandes web sites com muito pouco recurso (bandwidth, etc)
 - Internet (network slowdowns)

- Sintomas da sobrecarga em servidore web:
 - Requisições atendidas com um retardo (delay) muito alto
 - Erros HTTP (500, 502, 503, 504)
 - Conexões TCP recusadas ou resetadas antes de o conteúdo ser entregue ao cliente

- Técnicas anti-sobrecarga:
 - Firewalls
 - Gerenciadores de tráfego HTTP
 - Gerenciamento de banda
 - Medir e controlar o tráfego de pacotes na rede de comunicação, para evitar a sobrecarga do link
 - Traffic shaping
 - Controlar o tráfego da rede para otimizar e garantir o desempenho, diminuir a latência

- Técnicas anti-sobrecarga:
 - Técnicas de web cache
 - Aumentar os recursos de hardware
 - Agrupamento de servidores (clusters)
 - Balancemanto de carga

- 50.24% dos servidores utilizam o Apache com servidor web
- Oficialmente o Apache é chamado de HTTP Server Project pela Apache Software Foundation
- Sua primeira versão foi lançada em 1995
- É capaz de executar scripts nas linguagens PHP,
 Perl, Python, CGI e ASP

- Características
 - Compatível com o protocolo HTTP.
 - Suas funcionalidades são mantidas através de uma estrutura de módulos
 - O próprio usuário pode escrever seus próprios módulos utilizando a API do software.

- Características
 - Duas versões
 - 1.X e 2.X
 - Possuem arquiteturas diferentes
 - Diferenças entre as versões
 - A versão 2.x apresenta módulos de multiprocessamento (MPM
 - Multiprocessing Modules)
 - A versão 1.3 utilizava uma arquitetura preforking

- Arquitetura Preforking
 - O processo pai sofre forks p/ um conjunto de filhos
 - Cada filho recebe uma requisição
 - O processo pai somente monitora os filhos, de acordo com a quantidade de requisições recebidas
 - Problemas:
 - Desempenho ruim

- Módulos de Multiprocessamento
 - MPM Prefork
 - Reproduz a estrutura utilizada nas versões do Apache 1.3
 - Com o prefork, cada processo filho obtém uma única thread.
 - Exemplo: 30 processos filhos 30 requisições atendidas simultaneamente
 - Vantagem: Se um filho morre, os outros continuam atendendo requisições

- Módulos de Multiprocessamento
 - MPM threaded
 - Responsável pelo suporte a threads
 - Semelhante ao prefork, só que cada processo filho pode ter um número predeterminado de threads
 - Cada thread dentro do filho pode atender uma requisição diferente
 - Exemplo: Pai inicia 30 processos filhos, cada um com 10 threadas. Então:
 - Número de requisições atendidas simultaneamente: 300

- Módulos de Multiprocessamento
 - MPM threaded
 - Se uma thread do processo filho morrer, todas as requisições que estiverem sendo atendidas pelas threads dentro daquele mesmo processo filho, serão perdidas
 - Como as requisições são distribuídas entre as threads em processos filhos separados
 - A morte de um deles somente causa a queda de conexões atendidas pelo mesmo processo filho

- Módulos de Multiprocessamento
 - MPM threaded
 - Threads são mais eficientes que processos no uso dos recursos do sistema
 - Contribui para a escalabilidade

- Módulos de Multiprocessamento
- MPM per Child
 - Esse módulo inicia um número pré-determinado de processos filhos com um número pré-determinado de threads
 - Carga aumenta → Processos abrem novas threads conforme necessário
 - Numero de requisições diminui
 - Processos condesam sua contagem de threads
 - Empregam uma configuração de contagem mínima e máxima de threads

- Módulos de Multiprocessamento
- MPM Threaded X MPM per Child
 - Diferenças:
 - No módulo MPM per Child o número de threads é estático
 - Cada processo pode funcionar utilizando um GID ou UID diferente
 - Isso facilita a execução de múltiplos websites virtuais
- Vantagem do MPM per Child
 - Aumenta o nível de segurança pois limita o acesso a determinados pontos do servidor

- Módulos de Multiprocessamento
- MPM WinNT
 - Módulo multithread para plataforma Windows
 - Com esse módulo, o Apache criará um processo pai e um processo filho
 - O processo filho gerará todas as threads que atenderão as requisições feitas ao servidor

Recursos

- Suporte à autorização de acesso, podendo ser especificadas restrições para cada endereço, arquivo, diretório ou grupo de usuários acessado no servidor
- Negociação de conteúdo, permitindo a exibição da página Web no idioma requisitado pelo navegador cliente

- Recursos
 - Suporte a tipos MIME
 - Suporte a IP virtual hosting
 - Suporte a name virtual hosting
 - Personalização de logs e mensagens de erro
 - Suporte a servidor proxy FTP e HTTP com limite de acesso e caching (todos flexivelmente configuráveis)

Recursos

- Suporte a proxy e redirecionamentos baseados em URLs para endereços internos
- Suporte a criptografia via SSL e certificados digitais
- Autenticação por nome de usuário e senha para acesso a alguma página, subdiretório ou arquivo (com suporte a criptografia via Crypt e MD5), e autenticação em banco de dados

Os Servidores Web na Atualidade

٠	Vendor	Product	Web Sites Hosted	Percent
٠	Apache	Apache	91,068,713	50.24%
٠	Microsoft	IIS	62,364,634	34.4%
٠	Google	GWS	10,072,687	5.56%
٠	lighttpd	lighttpd	3,095,928	1.71%
٠	nginx	nginx	2,562,554	1.41%
٠	Oversee	Oversee	1,938,953	1.07%
٠	Others	-	10,174,366	5.61%
•	Total	-	181,277,835	100.00%

- Arquitetura DiffServ
 - A idéia de diferenciação de serviços na Web surgiu primeiramente na camada de rede através da proposição de uma arquitetura que implementa QoS com base na definição dos tipos de serviços
- Arquitetura IntServ
 - O modelo de serviços integrados é caracterizado pela reserva de recursos. Antes de iniciar uma comunicação, o emissor solicita ao receptor a alocação de recursos necessárias para definir-se uma boa qualidade na transmissão dos dados

- Arquitetura DiffeServ
 - Exemplo:
 - Utilizar o campo TOS (Type of Service) do cabeçalho IP para representar um tipo de serviço e fazer a diferenciação com base nesse critério
- Arquitetura IntServ
 - Exemplo:
 - Utilizar o protocolo RSVP para troca de mensagens de controle de alocação dos recursos (largura de banda e tempo em que a conexão será mantida).
 - Cada nó (roteador) entre o emissor e o receptor devem implementar o protocolo RSVP para que o modelo IntServ seja eficaz. (Desvantagem)

- Arquitetura DiffServ
 - O modelo mais utilizado para implementação de QoS.
 Ele exige menos dos roteadores, necessitando pouca atualização de software para prover bons métodos de classificação, policiamento, montagem e remarcação de pacote
 - Trabalha com o conceito de SLA (Sevice Level Agreement)

- Muitos dos conceitos da Arquitetura DiffServ tem sido aplicados na camada de aplicação
 - Servidores Web
- O uso de serviços diferenciados somente na rede de comunicação não garante que uma requisição seja atendida por um servidor web. (SWDS, 2004)
- Proposição de novos modelos para atendimento de requisições em servidores Web.

- Linha de Pesquisa Atual do GSPDC
 - Servidores Web com Diferenciação de Serviços
- Modelo SWDS
 - Trabalhos de Iniciação Científica, Mestrado e Doutorado envolvendo os temas:
 - Novos algoritmos de balancemanto de carga
 - Gerenciamento de sessões
 - Negociação de requisições

- Cronologia
 - -2000 2004
 - Proposição do Modelo SWDS (Doutorado em 2004)
 - -2004 2005
 - Simulação de algoritmos para:
 - Gerenciamento de Sessões (Mestrado)
 - Balanceamento de carga (Mestrado)
 - Negociação de requisições (Mestrado)
 - - 2005 2007
 - Implementação de protótipo semi-funcional do modelo SWDS (Tentativa de validar a arquitetura proposta no modelo) (Mestrado)

- 2007
 - Aprovação de projeto da FAPESP para a construção de um cluster de servidores web.
 - Objetivo:
 - Implementação dos algoritmos já testados em simulação de redes de fila, no servidor web Apache
- 2008 2010
 - Trabalhos de Iniciação Científica e Mestrados envolvendo a implementação do protótipo

Os Servidores Web na Atualidade

Os Primeiros Servidores Web da Google

Os Primeiros Servidores Web da Google

Os Primeiros Servidores Web da Google

Referências

- Google Hardware http://backrub.c63.be/May1998/hardware.htm
- The Google Linux Cluster http://www.uwtv.org/programs/displayevent.aspx?rID=2879
- Google Platform http://en.wikipedia.org/wiki/Google_platform
- Web Servers http://en.wikipedia.org/wiki/Web_server
- Apache Software Foundation http://www.apache.org/
- Qualidade de Serviço na Internet http://www.rnp.br/newsgen/9911/qos.html
- SWDS: Servidor Web com Diferenciação de Serviços, 2004
 - http://www.deinf.ufma.br/~mario/