

Surround Modulation: A Bio-inspired Connectivity Structure for Convolutional Neural Networks

Hosein Hasani

Mahdieh Soleymani Baghshah

Hamid Aghajan

Sharif University of Technology, Tehran, Iran

- The classical receptive field of a neuron is determined by the region of sensory space where stimuli elicit neural responses
- Convolution kernel mimics the role of the receptive field concept in CNNs
- The classical receptive field of a V1 neuron is surrounded by a **non-classical receptive field** in which the **stimuli can modulate** the response of that neuron
- The surround modulation effect is maximized when the center and surround carry similar features
- A neural mechanism featuring this modulation is the lateral excitatory-inhibitory connections existing in a specific layer of the visual cortex
- ❖ By implementing a simplified and bio-inspired version of surround modulation, here we introduce the concept of the non-classical receptive field for CNNs

The Main Idea

• We add lateral excitatory-inhibitory connections between each unit of a feature map and its surrounding units in the first convolutional layer as such modulation

is more common in the early visual cortex

- The amount of modulation depends on the distance and the neural activity levels of units
- Near neighbors excite each other while far neighbors inhibit each other based on a 2D DoG profile

Effects on Neural Coding

- Multiple effects on neural activities analogous to those reported for visual cortex:
 - Increase in lifetime sparsity and population sparsity of units in the CNN
 - Decrease in correlation between the information carried by different units

Object Recognition Experiments

Ability to reach higher accuracy and training speed when performing classification tasks on natural images

Generalization Experiments

Higher generalization when testing on different domains like changes in the lighting condition

Conclusions

- This work introduces a new bio-inspired connectivity structure for the CNNs to better resemble the structure of the brain
- As a result, the following advantages are also achieved:
 - Better classification performance and higher generalization capability
 - More biologically plausible behavior (generalizing from fewer samples)
 - More biologically plausible neural coding (sparsity and decorrelation)

Future Directions

- Search for better configurations of surround modulation including feedback connections from higher layers
- Incorporate surround modulation in semantic segmentation task (motivated by similar roles of surround modulation in visual system)