

t -CLASS SEMIGROUPS OF NOETHERIAN DOMAINS

S. KABBAJ AND A. MIMOUNI

ABSTRACT. The t -class semigroup of an integral domain R , denoted $\mathcal{S}_t(R)$, is the semigroup of fractional t -ideals modulo its subsemigroup of nonzero principal ideals with the operation induced by ideal t -multiplication. This paper investigates ring-theoretic properties of a Noetherian domain that reflect reciprocally in the Clifford or Boolean property of its t -class semigroup.

1. INTRODUCTION

Let R be an integral domain. The class semigroup of R , denoted $\mathcal{S}(R)$, is the semigroup of nonzero fractional ideals modulo its subsemigroup of nonzero principal ideals [3], [19]. We define the t -class semigroup of R , denoted $\mathcal{S}_t(R)$, to be the semigroup of fractional t -ideals modulo its subsemigroup of nonzero principal ideals, that is, the semigroup of the isomorphy classes of the t -ideals of R with the operation induced by t -multiplication. Notice that $\mathcal{S}_t(R)$ stands as the t -analogue of $\mathcal{S}(R)$, whereas the class group $\text{Cl}(R)$ is the t -analogue of the Picard group $\text{Pic}(R)$. In general, we have

$$\text{Pic}(R) \subseteq \text{Cl}(R) \subseteq \mathcal{S}_t(R) \subseteq \mathcal{S}(R)$$

where the first and third containments turn into equality if R is a Prüfer domain and the second does so if R is a Krull domain.

A commutative semigroup S is said to be Clifford if every element x of S is (von Neumann) regular, i.e., there exists $a \in S$ such that $x = ax^2$. A Clifford semigroup S has the ability to stand as a disjoint union of subgroups G_e , where e ranges over the set of idempotent elements of S , and G_e is the largest subgroup of S with identity equal to e (cf. [7]). The semigroup S is said to be Boolean if for each $x \in S$, $x = x^2$. A domain R is said to be *Clifford* (resp., *Boole*) t -regular if $S_t(R)$ is a Clifford (resp., Boolean) semigroup.

Date: November 28, 2008.

2000 *Mathematics Subject Classification.* 13C20, 13F05, 11R65, 11R29, 20M14.

Key words and phrases. Class semigroup, t -class semigroup, t -ideal, t -closure, Clifford semigroup, Clifford t -regular, Boole t -regular, t -stable domain, Noetherian domain, strong Mori domain.

This work was funded by KFUPM under Project # MS/t-Class/257.

This paper investigates the t -class semigroups of Noetherian domains. Precisely, we study conditions under which t -stability characterizes t -regularity. Our first result, Theorem 2.2, compares Clifford t -regularity to various forms of stability. Unlike regularity, Clifford (or even Boole) t -regularity over Noetherian domains does not force the t -dimension to be one (Example 2.4). However, Noetherian strong t -stable domains happen to have t -dimension 1. Indeed, the main result, Theorem 2.6, asserts that “ R is strongly t -stable if and only if R is Boole t -regular and $t\text{-dim}(R) = 1$.“ This result is not valid for Clifford t -regularity as shown by Example 2.9. We however extend this result to the Noetherian-like larger class of strong Mori domains (Theorem 2.10).

All rings considered in this paper are integral domains. Throughout, we shall use $\text{qf}(R)$ to denote the quotient field of a domain R , \bar{I} to denote the isomorphy class of a t -ideal I of R in $S_t(R)$, and $\text{Max}_t(R)$ to denote the set of maximal t -ideals of R .

2. MAIN RESULTS

We recall that for a nonzero fractional ideal I of R , $I_v := (I^{-1})^{-1}$, $I_t := \bigcup J_v$ where J ranges over the set of finitely generated subideals of I , and $I_w := \bigcup(I : J)$ where the union is taken over all finitely generated ideals J of R with $J^{-1} = R$. The ideal I is said to be divisorial or a v -ideal if $I = I_v$, a t -ideal if $I = I_t$, and a w -ideal if $I = I_w$. A domain R is called *strong Mori* if R satisfies the ascending chain condition on w -ideals [5]. Trivially, a Noetherian domain is strong Mori and a strong Mori domain is Mori. Suitable background on strong Mori domains is [5]. Finally, recall that the t -dimension of R , abbreviated $t\text{-dim}(R)$, is by definition equal to the length of the longest chain of t -prime ideals of R .

The following lemma displays necessary and sufficient conditions for t -regularity. We often will be appealing to this lemma without explicit mention.

Lemma 2.1 ([9, Lemma 2.1]). *Let R be a domain.*

- (1) *R is Clifford t -regular if and only if, for each t -ideal I of R , $I = (I^2(I : I^2))_t$.*
- (2) *R is Boole t -regular if and only if, for each t -ideal I of R , $I = c(I^2)_t$ for some $c \neq 0 \in \text{qf}(R)$. \square*

An ideal I of a domain R is said to be *L-stable* (here L stands for Lipman) if $R^I := \bigcup_{n \geq 1} (I^n : I^n) = (I : I)$, and R is called *L-stable* if every nonzero ideal is *L-stable*. Lipman introduced the notion of stability in the specific setting of one-dimensional commutative semi-local Noetherian rings in order to

give a characterization of Arf rings; in this context, L-stability coincides with Boole regularity [12].

Next, we state our first theorem of this section.

Theorem 2.2. *Let R be a Noetherian domain and consider the following statements:*

- (1) *R is Clifford t -regular;*
- (2) *Each t -ideal I of R is t -invertible in $(I : I)$;*
- (3) *Each t -ideal is L-stable.*

Then (1) \implies (2) \implies (3). Moreover, if $t\text{-dim}(R) = 1$, then (3) \implies (1).

Proof. (1) \implies (2). Let I be a t -ideal of a domain A . Then for each ideal J of A , $(I : J) = (I : J_t)$. Indeed, since $J \subseteq J_t$, then $(I : J_t) \subseteq (I : J)$. Conversely, let $x \in (I : J)$. Then $xJ \subseteq I$ implies that $xJ_t = (xJ)_t \subseteq I_t = I$, as claimed. So $x \in (I : J_t)$ and therefore $(I : J) \subseteq (I : J_t)$. Now, let I be a t -ideal of R , $B = (I : I)$ and $J = I(B : I)$. Since \bar{I} is regular in $\mathcal{S}_t(R)$, then $I = (I^2(I : I^2))_t = (IJ)_t$. By the claim, $B = (I : I) = (I : (IJ)_t) = (I : IJ) = ((I : I) : J) = (B : J)$. Since B is Noetherian, then $(I(B : I))_{t_1} = J_{t_1} = J_{v_1} = B$, where t_1 - and v_1 denote the t - and v -operations with respect to B . Hence I is t -invertible as an ideal of $(I : I)$.

(2) \implies (3). Let $n \geq 1$, and $x \in (I^n : I^n)$. Then $xI^n \subseteq I^n$ implies that $xI^n(B : I) \subseteq I^n(B : I)$. So $x(I^{n-1})_{t_1} = x(I^n(B : I))_{t_1} \subseteq (I^n(B : I))_{t_1} = (I^{n-1})_{t_1}$. Now, we iterate this process by composing the two sides by $(B : I)$, applying the t -operation with respect to B and using the fact that I is t -invertible in B , we obtain that $x \in (I : I)$. Hence I is L-stable.

(3) \implies (1) Assume that $t\text{-dim}(R) = 1$. Let I be a t -ideal of R and $J = (I^2(I : I^2))_t = (I^2(I : I^2))_v$ (since R is Noetherian, and so a TV-domain). We wish to show that $I = J$. By [10, Proposition 2.8.(3)], it suffices to show that $IR_M = JR_M$ for each t -maximal ideal M of R . Let M be a t -maximal ideal of R . If $I \not\subseteq M$, then $J \not\subseteq M$. So $IR_M = JR_M = R_M$. Assume that $I \subseteq M$. Since $t\text{-dim}(R) = 1$, then $\dim(R)_M = 1$. Since IR_M is L-stable, then by [12, Lemma 1.11] there exists a nonzero element x of R_M such that $I^2R_M = xIR_M$. Hence $(IR_M : I^2R_M) = (IR_M : xIR_M) = x^{-1}(IR_M : IR_M)$. So $I^2R_M(IR_M : I^2R_M) = xIR_Mx^{-1}(IR_M : IR_M) = IR_M$. Now, by [10, Lemma 5.11], $JR_M = ((I^2(I : I^2))_v)R_M = (I^2(I : I^2))R_M = (I^2R_M(IR_M : I^2R_M))_v = (IR_M)_v = I_vR_M = I_tR_M = IR_M$. \square

According to [2, Theorem 2.1] or [8, Corollary 4.3], a Noetherian domain R is Clifford regular if and only if R is stable if and only if R is L-stable and $\dim(R) = 1$. Unlike Clifford regularity, Clifford (or even Boole) t -regularity does not force a Noetherian domain R to be of t -dimension one. In order to illustrate this fact, we first establish the transfer of Boole t -regularity to pullbacks issued from local Noetherian domains.

Proposition 2.3. *Let (T, M) be a local Noetherian domain with residue field K and $\phi : T \rightarrow K$ the canonical surjection. Let k be a proper subfield of K and $R := \phi^{-1}(k)$ the pullback issued from the following diagram of canonical homomorphisms:*

$$\begin{array}{ccc} R & \longrightarrow & k \\ \downarrow & & \downarrow \\ T & \xrightarrow{\phi} & K = T/M \end{array}$$

Then R is Boole t -regular if and only if so is T .

Proof. By [4, Theorem 4] (or [6, Theorem 4.12]) R is a Noetherian local domain with maximal ideal M . Assume that R is Boole t -regular. Let J be a t -ideal of T . If $J(T : J) = T$, then $J = aT$ for some $a \in J$ (since T is local). Then $J^2 = aJ$ and so $(J^2)_{t_1} = aJ$, where t_1 is the t -operation with respect to T (note that $t_1 = v_1$ since T is Noetherian), as desired. Assume that $J(T : J) \subsetneq T$. Since T is local with maximal ideal M , then $J(T : J) \subseteq M$. Hence $J^{-1} = (R : J) \subseteq (T : J) \subseteq (M : J) \subseteq J^{-1}$ and therefore $J^{-1} = (T : J)$. So $(T : J^2) = ((T : J) : J) = ((R : J) : J) = (R : J^2)$. Now, since R is Boole t -regular, then there exists $0 \neq c \in \text{qf}(R)$ such that $(J^2)_t = ((J_t)^2)_t = cJ_t$. Then $(T : J^2) = (R : J^2) = (R : (J^2)_t) = (R : cJ_t) = c^{-1}(R : J_t) = c^{-1}(R : J) = c^{-1}(T : J)$. Hence $(J^2)_{t_1} = (J^2)_{v_1} = cJ_{v_1} = cJ_{t_1} = cJ$, as desired. It follows that T is Boole t -regular.

Conversely, assume that T is Boole t -regular and let I be a t -ideal of R . If $II^{-1} = R$, then $I = aR$ for some $a \in I$. So $I^2 = aI$, as desired. Assume that $II^{-1} \subsetneq R$. Then $II^{-1} \subseteq M$. So $T \subseteq (M : M) = M^{-1} \subseteq (II^{-1})^{-1} = (I_v : I_v) = (I : I)$. Hence I is an ideal of T . If $I(T : I) = T$, then $I = aT$ for some $a \in I$ and so $I^2 = aI$, as desired. Assume that $I(T : I) \subsetneq T$. Then $I(T : I) \subseteq M$, and so $I^{-1} \subseteq (T : I) \subseteq (M : I) \subseteq I^{-1}$. Hence $I^{-1} = (T : I)$. So $(T : I^2) = ((T : I) : I) = ((R : I) : I) = (R : I^2)$. But since T is Boole t -regular, then there exists $0 \neq c \in \text{qf}(T) = \text{qf}(R)$ such that $(I^2)_{t_1} = ((I_{t_1})^2)_{t_1} = cI_{t_1}$. Then $(R : I^2) = (T : I^2) = (T : (I^2)_{t_1}) = (T : cI_{t_1}) = c^{-1}(T : I_{t_1}) = c^{-1}(T : I) = c^{-1}(R : I)$. Hence $(I^2)_t = (I^2)_{v_1} = cI_{v_1} = cI_t = cI$, as desired. It follows that R is Boole t -regular. \square

Now we are able to build an example of a Boole t -regular Noetherian domain with t -dimension ≥ 1 .

Example 2.4. Let K be a field, X and Y two indeterminates over K , and k a proper subfield of K . Let $T := K[[X, Y]] = K + M$ and $R := k + M$ where $M := (X, Y)$. Since T is a UFD, then T is Boole t -regular [9, Proposition 2.2]. Further, R is a Boole t -regular Noetherian domain by Proposition 2.3. Now M is a v -ideal of R , so that $t\text{-dim}(R) = \dim(R) = 2$.

Recall that an ideal I of a domain R is said to be *stable* (resp., *strongly stable*) if I is invertible (resp., principal) in its endomorphism ring $(I : I)$, and R is called a stable (resp., strongly stable) domain provided each nonzero ideal of R is stable (resp., strongly stable). Sally and Vasconcelos [17] used this concept to settle Bass' conjecture on one-dimensional Noetherian rings with finite integral closure. Recall that a stable domain is L -stable [1, Lemma 2.1]. For recent developments on stability, we refer the reader to [1] and [14, 15, 16]. By analogy, we define the following concepts:

Definition 2.5. A domain R is *t-stable* if each *t*-ideal of R is stable, and R is *strongly t-stable* if each *t*-ideal of R is strongly stable.

Strong *t*-stability is a natural stability condition that best suits Boolean *t*-regularity. Our next theorem is a satisfactory *t*-analogue for Boolean regularity [8, Theorem 4.2].

Theorem 2.6. Let R be a Noetherian domain. The following conditions are equivalent:

- (1) R is strongly *t*-stable;
- (2) R is Boole *t*-regular and $t\text{-dim}(R) = 1$.

The proof relies on the following lemmas.

Lemma 2.7. Let R be a *t*-stable Noetherian domain. Then $t\text{-dim}(R) = 1$.

Proof. Assume $t\text{-dim}(R) \geq 2$. Let $(0) \subset P_1 \subset P_2$ be a chain of *t*-prime ideals of R and $T := (P_2 : P_2)$. Since R is Noetherian, then so is T (as $(R : T) \neq 0$) and $T \subseteq \bar{R} = R'$, where \bar{R} and R' denote respectively the complete integral closure and the integral closure of R . Let Q be any minimal prime over P_2 in T and let M be a maximal ideal of T such that $Q \subseteq M$. Then QT_M is minimal over P_2T_M which is principal by *t*-stability. By the principal ideal theorem, $\text{ht}(Q) = \text{ht}(QT_M) = 1$. By the Going-Up theorem, there is a height-two prime ideal Q_2 of T contracting to P_2 in R . Further, there is a minimal prime ideal Q of P_2 such that $P_2 \subseteq Q \subsetneq Q_2$. Hence $Q \cap R = Q_2 \cap R = P_2$, which is absurd since the extension $R \subset T$ is INC. Therefore $t\text{-dim}(R) = 1$. \square

Lemma 2.8. Let R be a one-dimensional Noetherian domain. If R is Boole *t*-regular, then R is strongly *t*-stable.

Proof. Let I be a nonzero *t*-ideal of R . Set $T := (I : I)$ and $J := I(T : I)$. Since R is Boole *t*-regular, then there is $0 \neq c \in \text{qf}(R)$ such that $(I^2)_t = cI$. Then $(T : I) = ((I : I) : I) = (I : I^2) = (I : (I^2)_t) = (I : cI) = c^{-1}(I : I) = c^{-1}T$. So $J = I(T : I) = c^{-1}I$. Since J is a trace ideal of T , then $(T : J) = (J : J) = (c^{-1}I : c^{-1}I) = (I : I) = T$. Hence $J_{v_1} = T$, where v_1 is the v -operation with respect to T . Since R is one-dimensional Noetherian domain, then so is T ([11, Theorem 93]). Now, if J is a proper ideal of T , then $J \subseteq N$

for some maximal ideal N of T . Hence $T = J_{v_1} \subseteq N_{v_1} \subseteq T$ and therefore $N_{v_1} = T$. Since $\dim(T) = 1$, then each nonzero prime ideal of T is t -prime and since T is Noetherian, then $t_1 = v_1$. So $N = N_{v_1} = T$, a contradiction. Hence $J = T$ and therefore $I = cJ = cT$ is strongly t -stable, as desired. \square

Proof of Theorem 2.6. (1) \implies (2) Clearly R is Boole t -regular and, by Lemma 2.7, $t\text{-dim}(R) = 1$.

(2) \implies (1) Let I be a nonzero t -ideal of R . Set $T := (I : I)$ and $J := I(T : I)$. Since R is Boole t -regular, then there is $0 \neq c \in \text{qf}(R)$ such that $(I^2)_t = cI$. Then $(T : I) = ((I : I) : I) = (I : I^2) = (I : (I^2)_t) = (I : cI) = c^{-1}(I : I) = c^{-1}T$. So $J = I(T : I) = c^{-1}I$. It suffices to show that $J = T$. Since $T = (I : I) = (II^{-1})^{-1}$, then T is a divisorial (fractional) ideal of R , and since $J = c^{-1}I$, then J is a divisorial (fractional) ideal of R too. Now, for each t -maximal ideal M of R , since R_M is a one-dimensional Noetherian domain which is Boole t -regular, by Lemma 2.8, R_M is strongly t -stable. If $I \not\subseteq M$, then $T_M = (I : I)_M = (IR_M : IR_M) = R_M$ and $J_M = I(T : I)_M = R_M$. Assume that $I \subseteq M$. Then IR_M is a t -ideal of R_M . Since R_M is strongly t -stable, then $IR_M = aR_M$ for some nonzero $a \in I$. Hence $T_M = (I : I)R_M = (IR_M : IR_M) = R_M$. Then $J_M = I_M(T_M : I_M) = R_M = T_M$. Hence $J = J_t = \bigcap_{M \in \text{Max}_t(R)} J_M = \bigcap_{M \in \text{Max}_t(R)} T_M = T_t = T$. It follows that $I = cJ = cT$ and therefore R is strongly t -stable. \square

An analogue of Theorem 2.6 does not hold for Clifford t -regularity, as shown by the next example.

Example 2.9. There exists a Noetherian Clifford t -regular domain with $t\text{-dim}(R) = 1$ such that R is not t -stable. Indeed, let us first recall that a domain R is said to be pseudo-Dedekind if every v -ideal is invertible [10]. In [18], P. Samuel gave an example of a Noetherian UFD domain R for which $R[[X]]$ is not a UFD. In [10], Kang noted that $R[[X]]$ is a Noetherian Krull domain which is not pseudo-Dedekind; otherwise, $\text{Cl}(R[[X]]) = \text{Cl}(R) = 0$ forces $R[[X]]$ to be a UFD, absurd. Moreover, $R[[X]]$ is a Clifford t -regular domain by [9, Proposition 2.2] and clearly $R[[X]]$ has t -dimension 1 (since Krull). But for $R[[X]]$ not being a pseudo-Dedekind domain translates into the existence of a v -ideal of $R[[X]]$ that is not invertible, as desired.

We recall that a domain R is called strong Mori if it satisfies the ascending chain condition on w -ideals. Noetherian domains are strong Mori. Next we wish to extend Theorem 2.6 to the larger class of strong Mori domains.

Theorem 2.10. *Let R be a strong Mori domain. Then the following conditions are equivalent:*

- (1) R is strongly t -stable;
- (2) R is Boole t -regular and $t\text{-dim}(R) = 1$.

Proof. We recall first the following useful facts:

Fact 1 ([10, Lemma 5.11]). Let I be a finitely generated ideal of a Mori domain R and S a multiplicatively closed subset of R . Then $(I_S)_v = (I_v)_S$. In particular, if I is a t -ideal (i.e., v -ideal) of R , then I is v -finite, that is, $I = A_v$ for some finitely generated subideal A of I . Hence $(I_S)_v = ((A_v)_S)_v = ((A_S)_v)_v = (A_S)_v = (A_v)_S = I_S$ and therefore I_S is a v -ideal of R_S .

Fact 2. For each v -ideal I of R and each multiplicatively closed subset S of R , $(I : I)_S = (I_S : I_S)$. Indeed, set $I = A_v$ for some finitely generated subideal A of I and let $x \in (I_S : I_S)$. Then $xA \subseteq xA_v = xI \subseteq xI_S \subseteq I_S$. Since A is finitely generated, then there exists $\mu \in S$ such that $x\mu A \subseteq I$. So $x\mu I = x\mu A_v \subseteq I_v = I$. Hence $x\mu \in (I : I)$ and then $x \in (I : I)_S$. It follows that $(I : I)_S = (I_S : I_S)$.

(1) \implies (2) Clearly R is Boole t -regular. Let M be a maximal t -ideal of R . Then R_M is a Noetherian domain ([5, Theorem 1.9]) which is strongly t -stable. By Theorem 2.6, $t\text{-dim}(R_M) = 1$. Since MR_M is a t -maximal ideal of R_M (Fact 1), then $\text{ht}(M) = \text{ht}(MR_M) = 1$. Therefore $t\text{-dim}(R) = 1$.

(2) \implies (1) Let I be a nonzero t -ideal of R . Set $T := (I : I)$ and $J := I(T : I)$. Since R is Boole t -regular, then $(I^2)_t = cI$ for some nonzero $c \in \text{qf}(R)$. So $J = c^{-1}I$. Since J and T are (fractional) t -ideals of R , to show that $J = T$, it suffices to show it t -locally. Let M be a t -maximal ideal of R . Since R_M is one-dimensional Noetherian domain which is Boole t -regular, by Theorem 2.6, R_M is strongly t -stable. By Fact 1, I_M is a t -ideal of R_M . So $I_M = a(I_M : I_M)$. Now, by Fact 2, $T_M = (I : I)_M = (I_M : I_M)$ and then $I_M = aT_M$. Hence $J_M = I_M(T_M : I_M) = T_M$, as desired. \square

We close the paper with the following discussion about the limits as well as possible extensions of the above results.

Remark 2.11. (1) Unlike Clifford regularity, Clifford (or even Boole) t -regularity does not force a strong Mori domain to be Noetherian. Indeed, it suffices to consider a UFD domain which is not Noetherian.

(2) Example 2.4 provides a Noetherian Boole t -regular domain of t -dimension two. We do not know whether the assumption “ $t\text{-dim}(R) = 1$ ” in Theorem 2.2 can be omitted.

(3) Following [8, Proposition 2.3], the complete integral closure \overline{R} of a Noetherian Boole regular domain R is a PID. We do not know if \overline{R} is a UFD in the case of Boole t -regularity. However, it's the case if the conductor $(R : \overline{R}) \neq 0$. Indeed, it's clear that \overline{R} is a Krull domain. But $(R : \overline{R}) \neq 0$ forces \overline{R} to be Boole t -regular, when R is Boole t -regular, and by [9, Proposition 2.2], \overline{R} is a UFD.

(4) The Noetherian domain provided in Example 2.4 is not strongly t -discrete since its maximal ideal is t -idempotent. We do not know if the assumption “ R strongly t -discrete, i.e., R has no t -idempotent t -prime ideals” forces a Clifford t -regular Noetherian domain to be of t -dimension one.

REFERENCES

- [1] D. D. Anderson, J. A. Huckaba and I. J. Papick, A note on stable domains, *Houston J. Math.* **13** (1) (1987), 13–17. 5
- [2] S. Bazzoni, Clifford regular domains, *J. Algebra* **238** (2001), 703–722. 3
- [3] S. Bazzoni and L. Salce, Groups in the class semigroups of valuation domains, *Israel J. Math.* **95** (1996), 135–155. 1
- [4] J. W. Brewer and E. A. Rutter, $D+M$ constructions with general overrings, *Michigan Math. J.* **23** (1976), 33–42. 4
- [5] W. Fangui, R. L. McCasland, On strong Mori domains, *J. Pure Appl. Algebra* **135** (1999), 155–165. 2, 7
- [6] S. Gabelli and E. Houston, Coherentlike conditions in pullbacks, *Michigan Math. J.* **44** (1997), 99–122. 4
- [7] J. M. Howie, Fundamentals of semigroup theory, Oxford University Press, Oxford, 1995. 1
- [8] S. Kabbaj and A. Mimouni, Class semigroups of integral domains, *J. Algebra* **264** (2003), 620–640. 3, 5, 7
- [9] S. Kabbaj and A. Mimouni, t -Class semigroups of integral domains, *J. Reine Angew. Math.* **612** (2007), 213–229. 2, 4, 6, 7
- [10] B. G. Kang, \star -Operations in integral domains, Ph.D. thesis, The University of Iowa, Iowa City, 1987. 3, 6, 7
- [11] I. Kaplansky, Commutative rings, The University of Chicago Press, Chicago, 1974. 5
- [12] J. Lipman, Stable ideals and Arf rings, *Amer. J. Math.* **93** (1971), 649–685. 3
- [13] S. Malik, J. Mott and M. Zafrullah, On t -invertibility, *Comm. Algebra* **16** (1988), 149–170.
- [14] B. Olberding, Globalizing local properties of Prüfer domains, *J. Algebra* **205** (1998), 480–504. 5
- [15] B. Olberding, On the classification of stable domains, *J. Algebra* **243** (2001), 177–197. 5
- [16] B. Olberding, On the structure of stable domains, *Comm. Algebra* **30** (2002), 877–895. 5
- [17] J. D. Sally and W. V. Vasconcelos, Stable rings and a problem of Bass, *Bull. Amer. Math. Soc.* **79** (1973), 574–576. 5
- [18] P. Samuel, On unique factorization domains, *Illinois J. Math.* **5** (1961), 1–17. 6
- [19] P. Zanardo and U. Zannier, The class semigroup of orders in number fields, *Math. Proc. Cambridge Phil. Soc.* **115** (1994), 379–391. 1

DEPARTMENT OF MATHEMATICAL SCIENCES, KING FAHD UNIVERSITY OF PETROLEUM
& MINERALS, P.O. BOX 5046, DHAHRAN 31261, KSA

E-mail address: kabbaj@kfupm.edu.sa

DEPARTMENT OF MATHEMATICAL SCIENCES, KING FAHD UNIVERSITY OF PETROLEUM
& MINERALS, P.O. BOX 5046, DHAHRAN 31261, KSA

E-mail address: amimouni@kfupm.edu.sa