Matematyka Dyskretna

Rafal Wlodarczyk

INA 2 Sem. 2023

Wykład I 1

Współczynniki Dwumianowe 1.1

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}$$

 $\mathbb{N}^+ = \{1, 2, 3, \dots\}$

$$n \in \mathbb{N}^+$$
: $[n] = \{1, 2, 3, \dots, n\}$

Definicja 1.1.1. Silnia. Niech $n \in \mathbb{N}$. Definiujemy:

$$0! = 1$$
$$n! = 1 \cdot 2 \cdot \dots \cdot n$$

Definicja 1.1.2. Silnia górna. Niech $x \in \mathbb{R}, n \in \mathbb{N}$. Definiujemy:

$$x^{0} = 1$$

$$x^{n} = x(x+1)(x+2)\dots(x+n-1), n \ge 1.$$

Definicja 1.1.3. Silnia dolna. Analogicznie

Definicja 1.1.4. Współczynnik dwumianowy (symbol Newtona). Niech $x \in \mathbb{R}, k \in \mathbb{N}$. Definiujemy:

$$\binom{x}{k} = \frac{x^{\underline{k}}}{k!}$$

Uwaga. Czasami wygodnie będzie rozszerzyć defonicję $\binom{x}{k}$ na $k \in \mathbb{Z}$ wtedy dla k < 0przyjmujemy $\binom{x}{k} = 0$

Interpretacja kombinatoryczna: $k, n \in \mathbb{N}, n \ge k$:

 $\binom{n}{k}$ - # podzbiorów k-elementowych zbioru n-elementowego

Przykład 1.1.1. Rozważ następujące ćwiczenia:

Ćwiczenie 1. Pokaż, że podzbiorów k-elementowych zbioru n-elementowego jest $\frac{n!}{k!(n-k)!}$

Ćwiczenie 2. Niech $k, n \in \mathbb{N}, n \geqslant k$. Wtedy $\binom{n}{k} = \binom{n}{n-k}$ Ćwiczenie 3. Reguła Pochłaniania. Niech $n \in \mathbb{N}k \in \mathbb{N}^+, n \geqslant k$. Wtedy: $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$

Twierdzenie 1.1.1. Dwumian Newtona. Niech $x, y \in \mathbb{R}, n \in \mathbb{N}$. Wtedy:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

D-d. (indukcyjny) - ćwiczenie

D-d. (kombinatoryczny)

Dokonujemy mnożenia:

$$(x+y)(x+y)\dots(x+y) = x^n + x^{n-1} \cdot y + \dots + x \cdot y^{n-1} + y^n$$

Wystarczy zauważyć, że współczynnik przy $x^k \cdot y^{n-k}$ to liczba sposobów, na jakie spośród n czynników (x+y) możemy wybrać k nawiasów jako te, z których wybieramy składniki x.

Wniosek 1:

$$2^n=(1+1)^n=\textstyle\sum_{k=0}^n\binom{n}{k}1^k1^{n-k}=\textstyle\sum_{k=0}^n\binom{n}{k}}2^n=\textstyle\sum_{k=0}^n\binom{n}{k}$$
 - liczba wszystkich podzbiorów zbioru n - elementowego

Wniosek 2:

$$0 = 0^{n} = (1-1)^{n} = \sum_{k=0}^{n} {n \choose k} (-1)^{k} 1^{n-k} = \sum_{k=0}^{n} {n \choose k} (-1)^{k}$$
$$0 = \sum_{k=0}^{n} {n \choose k} (-1)^{k}$$

Zatem widzimy że:

$$\sum_{k=0}^{n} \binom{n}{k}$$
:(2 nie dzieli k) = $\sum_{k=0}^{n} \binom{n}{k}$:(2 dzieli k)

podzbiorów o mocy parzystej zbioru n-elementowego =# podzbiorów o mocy nieparzystej zbioru n-elementowego

Twierdzenie 1.1.2. Tożsamość Pascala. Niech $n \in \mathbb{N}, k \in \mathbb{N}^+, n > k$. Wtedy:

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

D-d. (analityczny). Niech $x \in \mathbb{R}$.

D-d. (analyceny). Nich
$$x \in \mathbb{R}$$
.
$$\sum_{k=0}^{n} \binom{n}{k} x^{k} = \sum_{k=0}^{n} \binom{n}{k} x^{k} 1^{n-k} = (x+1)^{n} = (x+1)^{n-1} \cdot (x+1) = (\sum_{k=0}^{n-1} \binom{n-1}{k} x^{k}) (x+1) = \sum_{k=0}^{n-1} \binom{n-1}{k} x^{k+1} + \sum_{k=0}^{n-1} \binom{n-1}{k} x^{k} = \sum_{k=1}^{n} \binom{n-1}{k-1} x^{k} + \sum_{k=0}^{n} \binom{n-1}{k} x^{k}$$
 Zatem:

$$\sum_{k=0}^{n} \binom{n}{k} x^{k} = \sum_{k=1}^{n} \binom{n-1}{k-1} x^{k} + \sum_{k=0}^{n-1} \binom{n-1}{k} x^{k}$$

 $\sum_{k=0}^{n} {n \choose k} x^k = \sum_{k=1}^{n} {n-1 \choose k-1} x^k + \sum_{k=0}^{n-1} {n-1 \choose k} x^k$ Współczynniki przy odpowiadających sobie są równe, zatem dla $k \in \mathbb{N}^+, k < n$ mamy:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

D-d. (kombinatoryczny). Zliczmy na dwa sposoby # podzbiorów k-elementowych zbioru n-elementowego.

- 1. $\binom{n}{k}$ z definicji
- 2. Wyróżniamy jeden element * w zbiorze n-elementowym. Podzbiory k-elementowe dzielą się teraz na dwie klasy:

Te, które nie zawierają *. Jest ich $\binom{n-1}{k}$ (gwiazdki nie ma) Te, które zawierają *. Jest ich $\binom{n-1}{k-1}$ (gwiazdkę wybieram)

Zatem zachodzi twierdzenie.