Class Test 3

23rd September, 2025

Solutions

Q1. Consider the space $X = \{0, 1, 2, \ldots\}$, equipped with the topology

$$\mathcal{T}\coloneqq\{\emptyset,X\}\cup\{S\mid S\subset\{1,2,3,\dots\}\}\cup\{\{0\}\cup A\mid A\subset\{1,2,3,\dots\}\text{ is cofinite.}\}$$

Prove or disprove the following statements.

a) (X, \mathcal{T}) is compact.

Proof: Suppose $\{U_{\alpha}\}$ is a cover of X. Now, $0 \in U_{\alpha_0}$ for some α_0 . Then, $U_{\alpha_0} = \{0,1,2,3,\dots\} \setminus \{n_1,\dots,n_k\}$ for some $n_i \geq 1$. Now, $n_i \in U_{\alpha_i}$ for $i=1,\dots,k$. Then, $\{U_{\alpha_i},\ i=0,\dots,k\}$ is a finite sub-cover.

b) (X, \mathcal{T}) is first countable.

Proof: For any $n \ge 1$, we have $\{n\}$ itself is open, and hence, $\{\{n\}\}$ a countable neighborhood basis. For 0, the collection

$$\{\{0\} \cup A \mid A \subset \{1, 2, 3, \dots\} \text{ is cofinite}\}$$

is also countable, as the collection of finite subsets of $\{1, 2, ...\}$ is a countable collection. Since these are all the open sets containing 0, clearly it is a neighborhood basis. Alternatively,

$$\{U_n = \{0, n, n+1, \dots\} \mid n > 1\}$$

is another countable neighborhood basis at 0.

c) (X, \mathcal{T}) is second countable.

Proof: Since X itself is countable, and (X, \mathcal{T}) is first countable, it follows that the space is second countable. Indeed, we have a countable basis

$$\{\{n\}\,,\; n\geq 1\}\cup \{\{0\}\cup A\;|\; A\subset \{1,2,3,\dots\}\; \text{is cofinite}\}\,.$$

Show that X is homeomorphic to $K=\{0\}\cup\{\frac{1}{n}|n\geq 1\}\subset\mathbb{R}$ with the usual topology.

Proof: Consider the obvious map, with its inverse

$$\begin{aligned} f: X &\longrightarrow K & g: K &\longrightarrow X \\ 0 &\longmapsto 0 & 0 & \vdots \\ n &\longmapsto \frac{1}{n}, & \frac{1}{n} &\longmapsto n. \end{aligned}$$

Since $g = f^{-1}$, it follows that f is bijective. Let us check that f continuous. Indeed, any $\left\{\frac{1}{n}\right\}$ is discrete in K, and also,

$$f^{-1}\left(\left\{\frac{1}{n}\right\}\right) = \{n\}$$

is open in X. For $0 \in K$, any open neighborhood is of the form

$$U := K \setminus \left\{ \frac{1}{n_1}, \dots, \frac{1}{n_k} \right\},$$

and clearly, $f^{-1}(U) = \{0,1,2,\dots\} \setminus \{n_1,\dots,n_k\}$ is open in X. Finally, $f:X \to K$ is a continuous bijection, from a compact space (X,\mathcal{T}) to a T_2 space K. Hence, f is an open map. (Alternatively, similar argument shows that g is continuous.) Thus, $f:X \to K$ is a homeomorphism.

- Q2. Suppose X is a Hausdorff space. Let $B \subset X$ be compact.
 - a) If $x \in X \setminus B$, then show that there exists open neighborhoods $x \in U$ and $B \subset V$ such that $U \cap V = \emptyset$.

Proof: Since X is T_2 , for each $b \in B$, there exists some open sets $x \in U_b, b \in V_b$ such that $U_b \cap V_b = \emptyset$. Then, we have a cover $B \subset \bigcup_{b \in B} V_b$, which admits a finite sub-cover, say, $B \subset \bigcup_{i=1}^k V_{b_i}$. Consider $U := \bigcap_{i=1}^k U_{b_i}$, and $V := \bigcup_{i=1}^k V_{b_i}$. Then, $x \in U, B \subset V$ are open neighborhoods. Also,

$$U \cap V = \bigcup_{i=1}^k U \cap V_{b_i} = \bigcup_{i=1}^k (U_{b_1} \cap \cdots \cap U_{b_i} \cap \cdots \cap U_{b_k}) \cap V_{b_i} = \emptyset.$$

b) If $A \subset X \setminus B$ is a compact set, then show that there exists open neighborhoods $A \subset U$ and $B \subset V$ such that $U \cap V = \emptyset$.

Proof: For each $a \in A$, as $a \in X \setminus B$, by a), we have open neighborhoods $a \in U_a, B \subset V_a$ such that $U_a \cap V_a = \emptyset$. Then, we have a cover $A \subset \bigcup_{a \in A} U_a$, which admits a finite subcover $A \subset \bigcup_{i=1}^k U_{a_i}$. Consider $U := \bigcup_{i=1}^k U_{a_i}$, and $V := \bigcap_{i=1}^k V_{a_i}$. Then, we have open neighborhoods $A \subset U, B \subset V$. Also,

$$U \cap V = \bigcup_{i=1}^k U_{a_i} \cap V = \bigcup_{i=1}^k U_{a_i} \cap (V_{a_1} \cap \dots \cap V_{a_i} \cap \dots \cap V_{a_k}) = \emptyset.$$