Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. One approach popular for requirements analysis is Use Case analysis. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. Integrated development environments (IDEs) aim to integrate all such help. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Programming languages are essential for software development. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. Programming languages are essential for software development. Techniques like Code refactoring can enhance readability. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. Programs were mostly entered using punched cards or paper tape. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams.