Introduction

- AI Engineering:
 - Focuses less on modeling and training, and more on model adaption and evaluation
 - Works with models that are bigger and consume more compute resources, and incur higher latency than traditional ML models
- Token:
 - Basic unit of a language model (can be a word, character, or part of a word)
 - Allow models to break words into meaningful components
 - There are fewer unique tokens than unique words
 - Number of tokens in a model's dataset isn't the same as its number of training tokens
 - → the number of training tokens measures the tokens that the model is trained on
- Masked language model: Trained to predict a token anywhere in a sequence, using the context from both before and after the missing token \rightarrow fill in the blank
- Autoregressive language model:
 - Trained to predict the next token in a sequence, using only the preceding tokens
 - Can continually generate one token after another
- Generative models can generate open-ended outputs
- Classical ML models are closed-ended since they only can outputs that are among predefined values
- Completions are predictions based on probabilities, and not guaranteed to be correct
- Self-supervision:
 - Model infers labels from the input data
 - Language modeling is self-supervised because each input sequence provides both the labels (tokens to be predicted) and the contexts the model can use to predict these labels \rightarrow labels are inferred from the input data
- Foundation model: Can be built upon for different needs
- Multimodal model: Models that can work with more than one data modality
- Agents: AI that can plan and use tools
- Three layers of AI stack:
 - Application development: Provide a model with good prompts and necessary context
 - Model development: Tooling for developing models, including frameworks for modeling, training, finetuning, and inference optimization
 - Infrastructure: Tooling for model infrastructure, including tooling for model serving, managing data and compute, and monitoring
- Inference optimization: Make models faster and cheaper
- Prompt engineering: Get AI models to express the desirable behaviors from the input alone, without changing the model weights

Foundation Models

Sampling

- Process of constructing output
- How does a model chooses an output from all possible options
- Makes an AI's output probabilistic
- To generate the next token, the model first computes the probability distribution over all tokens in the vocabulary

- \bullet Greedy sampling: Always pick the most likely outcome \to creates boring outputs since the most common words are responded
- Instead of picking the most likely token, the model can sample the next tokens according to the probability distribution
- Sampling strategies:
 - Temperature: A higher temperature reduces the probabilities of common tokens and increases the probability of rarer tokens
 - Top-k: Pick top-k logits to perform softmax over these \rightarrow smaler k makes the text more predictable but less interesting
 - Top-p:
 - * Allows for a more dynamic selection of values to be sampled from than top-k
 - * Model sums the probabilities of the most likely next values in descending order and stops when the sum reaches $p \to only$ the values within the cumulative probability are considered
 - * Focuses only on the set of most relevant values for each context and allows outputs to be more contextually appropriate
 - * Typically range from 0.95 to 0.99

• Logit vector:

- Corresponds to one possible value \rightarrow one token in the model's vocabulary
- Logit vector size is the size of the vocabulary
- Do not represent probabilities
- To convert logits to probabilities, a softmax layer is often used
- Sparsity allows for more efficient data storage and computation (large percentage of zero-value parameters)
- FLOP: Unit for a model's compute requirement → measures the number of floating point operations performed for a certain task
- Utilization: Measures how much of the maximum compute capacity one can use
- Post-Training:
 - Issues of a pre-trained model:
 - * Self-supervision optimizes the model for text completion, not conversations
 - * Outputs can be biased or wrong
 - Solution:
 - * Supervised finetuning (SFT): finetune the pre-trained model on high-quality instruction data to optimize models for conversations instead of completion
 - * Preference finetuning: Finetune the model to output responses that aligh with human preferences
 - Preference finetuning is typically done with reinforcement learning or reinforcement learning from human feedback (RLHF)
 - Pre-training optimizes token-level quality
 - Post-training optimizes the model to generate responses that users prefer

• RLHF:

- Train a reward model that scores the foundation model's output
- Optimize the foundation model to generate responses for which the reward model will give maximal scores

• Reward model:

- Outputs a score for how good the response is
- Generate multiple responses for each prompt and the resulting data is comparison

data with the format (prompt, winning response, losing response)

- Robustness: A model is robust if it doesn't dramatically change its outputs with small variations in the input
- Inconsistency: Generating very different responses for the same or slightly different prompts
- Hallucination:
 - Response that isn't grounded in facts
 - Cannot differentiate between the data it's given and the data it generates
 - Snowball hallucinations: Model continues ti justify the initial wrong assumption
 - Also caused by the mismatch between the model's internal knowledge and the labeler's internal knowledge

Evaluation Methodology

Metrics

- Most autoregressive LMs are trained using cross entropy or perplexity (predictive accuracy metrics → the more accurately, the lower the metrics)
- Entropy:
 - $-\,$ Measures how much information, on average, a token carries \rightarrow the higher the entropy, the more information
 - Measures how difficult it is to predict what comes next in a language \rightarrow the lower the language's entropy, the more predictable that language
- Cross Entropy on a dataset:
 - When training a LM on a dataset, the goal is to get the model learn the distribution of this training data
 - Measures how difficult it is for the LM to predict what comes next in this dataset
 - An LM is trained to minimize its cross entropy with respect to the training data
 - A model's cross entropy is its approximation of the entropy of its training data
- Bits-per-byte (BPB): Number of bits an LM needs to represent one byte of the original training data
- Perplexity:
 - Exponential of entropy and cross entropy
 - Rules
 - * More structured data gives lower expected perplexity
 - * The bigger the vocabulary, the higher the perplexity
 - * The longer the context, the lower the perplexity

Exact Evaluation

- Judgment without ambiguity
- Approaches:
 - Functional Correctness: Evaluating a system based on whether it performs the intended functionality
 - Similarity Measurements Against Reference Data: Evaluate AI's output against reference data
- Ground truth: Reference responses
- Similarity measurement: Asking an evaluator, exact match, lexical similarity, semantic similarity

- Exact match: Generated response matches one of the reference responses exactly
- Lexical similarity:
 - Measures how much two texts overlap \rightarrow Counting how many tokens two texts have in common
 - Approximate string matching (fuzzy matching): Measures similarity between two texts by counting how many edits it'd need to convert from one text to another (edit distance)
- Semantic similarity: Aims to compute the similarity in semantics, requiring embeddings
- Embeddings: Numerical representation (vector) that aims to capture the meaning of the original data

Al as Judge

- Using AI to evaluate AI
- Approaches:
 - Evaluate data by itself
 - Compare a generated response to a reference response
 - Compare two generated responses and determine which one is better
- Challenges:
 - AI as a judge criteria aren't standardized
 - AIs are subjective \rightarrow Evaluation results can change based on the judge model and prompt
 - Probabilistic nature of AI makes it seem too unreliable to act as evaluator
 - Inconsistency: Same judge, on the same input, can output different scores if prompted differently
 - Criteria ambiguity: Misinterpret and misuse judge metrics since they are not standardized
 - Evaluation should be fixed, but AI judges also change over time
 - Self-bias: Model favors own response over response from other models
 - first-position-bias: AI judge my favor the first answer in a pairwise comparison
 - Verbosity bias: Favoring lengthier answers, regardless of their quality
- Judge models:
 - Reward model: Takes in (prompt, response) pair and scores how good the response is given the prompt
 - Reference-based judge: Evaluates the generated response with respect to one or more references
 - Preference model: Takes in (prompt, response 1, response 2) as input and outputs which of the two responses is better for the given prompt

Evaluate AI Systems

Evaluation Criteria

- Evaluation-driven development: Define evaluation criteria before building the application
- Evaluation criteria:
 - Domain-specific capability
 - Generation capability
 - Instruction-following capability

- Cost and latency

Domain-Specific Capability

- Domain-specific capabilities are commonly evaluated using exact evaluation
- Coding-related capabilities are evaluated using functional correctness
- Efficiency can be evaluated by measuring runtime or memory usage
- Non-coding domain capabilities are often evaluated with close-ended tasks (MCQs) \rightarrow how many questions the model gets right
- Classification metrics: F1 Score, precision, and recall
- MCQs are best suited for evaluating knowledge and reasoning, but not ideal for evaluating generation capabilities

Generation Capability

- Fluency: Measures whether the text is grammatically correct and natural-sounding (became less important)
- Coherence: How well-structured is the whole text (became less important)
- Faithfulness (for translation task): How faithful is the generated translation to the original sentence?
- Relevance: Does the summary focus on the most important aspects of the source document?
- Factual consistency:
 - Local factual consistency: Output is evaluated against a context and is considered factually consistent if it's supported by the given context
 - Global factual consistency: Output is evaluated against open knowledge
- Most straightforward evaluation approach is AI as a judge:
 - Self-verification: If a model generates multiple outputs that disagree with one anther, the original output is likely hallucinated
 - Knowledge-augmented verification
- Textual entailment: Determine the relationship between two statements

Prompt Engineering

- Instruction given to a model to perform a task
- Guides a model's behavior without changing the model's weights
- Parts:
 - Task description: What you want the model to do
 - Examples of how to do the task
 - Concrete task
- Chain-of-Thought (CoT): Asking the model to think step by step, reducing hallucinations
- Self-critique (self-eval): Asking the model to check its own outputs

In-Context Learning: Zero-Shot and Few-Shot

- In-Context Learning:
 - Teaching models what to do via prompts
 - Language models can learn behavior from examples in the prompt
 - Allows a model to incorporate new information continually to make decisions
- Shot: Examples provided in the prompt
- Few-Shot: Teaching a model to learn from examples in the prompt
- Zero-Shot: No example is provided in the prompt

System Prompt and User Prompt

- System prompt:
 - Task description
 - Contain the instructions provided by the application developers
- User prompt:
 - Task
 - Instructions provided by the user
- System and user prompt are combined by the model into a single prompt, following a template

Defensive Prompt Engineering

- Main prompt attacks:
 - Prompt extraction: Extracting the application's prompt, including system prompt
 - Jailbreaking and prompt injection
 - Information extraction: Getting the model to reveal its training data
- Reverse prompt engineering:
 - Process of deducing the system prompt used for certain applications
 - Done by analyzing outputs or by tricking the model into repeating its entire prompt, including system prompt

Jailbreaking and Prompt Injection

- Jailbreaking: Subvert a model's safety features
- Prompt injection: Injection of malicious instructions are injected into the user prompt
- Direct manual prompt hacking: Trick a model into dropping its safety filters (obfuscation, role playing)

Defenses Against Prompt Attacks

- Model-level defense:
 - Model is unable to differentiate between system instructions and malicious instructions
 - Levels of priority:
 - 1. System prompt
 - 2. User prompt
 - 3. Model outputs
 - 4. Tool outputs
 - Not only recognize malicious prompts but also generate safe responses for borderline requests (invoke both safe and unsafe responses)
- Prompt-level defense:
 - Be explicit about what the model isn't supposed to do
 - Repeat system prompt twice, both before and after the user prompt
- System-level defense:
 - Isolation
 - Placing guardrails both to the inputs and outputs

RAG and Agents