

Confederated Learning: Going Beyond Centralization

Zitai Wang^{1,2}, Qianqian Xu^{3*}, Ke Ma⁴,

Xiaochun Cao^{5,1}, Qingming Huang^{4,3,6,7*}

¹SKLOIS, Institute of Information Engineering, CAS
 ²SCS, University of Chinese Academy of Sciences
 ³IIP, Institute of Computing Technology
 ⁴SCST, University of Chinese Academy of Sciences
 ⁵SCST, Sun Yat-sen University
 ⁶Key Lab. of BDKM, Chinese Academy of Sciences
 ⁷Peng Cheng Laboratory

Outline

1 Background

2 Framework

□ Learning paradigm of traditional machine learning

A single entity could control the whole learning process

□ How to formulate traditional machine learning?

- ✓ Training data and test data $S = \{S^{tr}, S^{te}\}$
- \checkmark The evaluation metric defined on the test set \mathcal{M}
- \checkmark The hypothesis set \mathcal{H}
- \checkmark The specific learning algorithm $\mathcal A$
- ✓ Then, we can formulate traditional machine learning as follows:

$$\min_{h} \mathcal{M}(h; \mathcal{S}^{te})$$

where

$$h := \mathcal{A}(\mathcal{S}^{tr}, \mathcal{H})$$

☐ An intuitive example: supervised learning

- ✓ Training data $S^{tr} = \{(x_i, y_i)\}_{i=1}^m$, where x_i is the input drawn from the feature space X, and y_i denotes the associated label drawn from the label space Y
- ✓ The hypothesis set $\mathcal{H} = \{h : \mathcal{X} \to \mathcal{Y}\}$
- ✓ The specific learning algorithm: GSD, Adam...
- ✓ The evaluation metric: Accuracy, AUC, mAP, NDCG...
- ✓ Then, Empirical Risk Minimization:

$$\min_{h} \sum_{i=1}^{m} \ell(h(\boldsymbol{x}_i), y_i) + \Omega(h)$$

□ Cooperation among entities become crucial due to cost, privacy and security concerns

□ Learning paradigm of federated learning

The center entity controls the whole learning process

/

□ How to describe federated learning?

- ✓ Training data and test data $S = \cup \{S_i^{\mathrm{tr}}, S_i^{\mathrm{te}}\}_{i=1}^{N_{eg}}$
- ✓ The hypothesis set \mathcal{H}
- ✓ The specific learning algorithm $A = \{A^l, A^g\}$
- \checkmark The evaluation metric defined on the test set \mathcal{M}
- ✓ Besides, two types of entities are necessary:

$$\mathcal{E} = \{e_i^{\text{eg}}\}_{i=1}^{N_{\text{eg}}} \cup \{e^{\text{ct}}\}$$

□ Then federated learning consists of four steps:

- ✓ The center entity $e^{\rm ct}$ design the algorithm $\mathcal A$ and initializes the global model from $\mathcal H$
- ✓ The center entity transmits the current model to the edge entities
- ✓ Each edge entity $e_i^{\rm eg}$ updates the received model based on the local data $\mathcal{S}_i^{\rm tr}$ via the local update algorithm \mathcal{A}^l
- It is necessary to consider different entities

□ However..

- * It only provides two types of entities: center and edge. Such a rigid role setting fails to cover many cooperation scenarios
- * The learning process depends on the credibility of the center entity, while establishing a trustworthy center entity is generally costly

A more generalized learning paradigm for cooperation?

Outline

1 Background

2 Framework

- ☐ Inspired by the concept of permission of database, we additionally define
 - $\checkmark \mathcal{R} = \{r_i\}_{i=1}^{N_r}$, the set of roles (i.e., different types of entities)
 - $\checkmark \mathcal{P} = \{p_n\}_{n=1}^{N_p}$, the set of permissions (e.g. create, read, delete, update...)
 - ✓ Then, $p_n(r_i, S_j)$ means the role r_i has the permission p_n on S_j
 - $\checkmark \mathcal{P}_{\mathcal{R}} \subset \mathcal{P} \times \mathcal{R}$ denotes all the roles' permissions

□ Then, Cooperative learning problem can be described by:

$$\{\mathcal{R}, \mathcal{P}, \mathcal{P}_{\mathcal{R}}, \mathcal{S}, \mathcal{H}, \mathcal{A}, \mathcal{M}\}$$

- □ For traditional machine learning:
 - ✓ There only exists a single role $\mathcal{R} = \{r\}$
 - \checkmark r naturally has permissions to all the factors
 - ✓ We can formulate traditional machine learning as

$$\{r, \mathcal{P}, \mathcal{P}_r, \mathcal{S}, \mathcal{H}, \mathcal{A}, \mathcal{M}\}$$

□ For federated learning:

- ✓ Let r^{eg} denote the edge role and be the $\{r_i^{\text{eg}}\}_{i=1}^{N_{\text{eg}}}$ corresponding entities
- √ Then,

$$\left\{\{r^{\mathrm{eg}}, r^{\mathrm{ct}}\}, \mathcal{P}, \mathcal{P}_{\mathcal{R}}, \{\mathcal{S}_i\}_{i=1}^{N_{\mathrm{eg}}}, \mathcal{H}, \{\mathcal{A}^g, \mathcal{A}^l\}, \mathcal{M}\right\}$$

where

$$P(r_i^{\text{eg}}) = \{ p(r^{\text{eg}}, \theta_{\varnothing, \mathcal{H}, \mathcal{A}^g}), p(r^{\text{eg}}, \mathcal{S}), p(r^{\text{eg}}, \mathcal{A}^l), p(r^{\text{eg}}, \mathcal{M}) \}$$

$$P(r^{\text{ct}}) = \{ p(r^{\text{ct}}, \theta_{\mathcal{S}^{\text{eg}}, \mathcal{H}, \mathcal{A}^l}), p(r^{\text{ct}}, \mathcal{H}), p(r^{\text{ct}}, \mathcal{A}^g), p(r^{\text{ct}}, \mathcal{A}^l) \}$$

$$p(r^{\text{eg}}, \mathcal{S}) = \{p(r_i^{\text{eg}}, \mathcal{S}_i)\}_{i=1}^{N_{\text{eg}}}, p(r^{\text{ct}}, \theta_{\mathcal{S}^{\text{eg}}, \mathcal{H}, \mathcal{A}^l}) = \{p(r^{\text{ct}}, \theta_{\mathcal{S}_i^{\text{eg}}, \mathcal{H}, \mathcal{A}^l})\}_{i=1}^{N_{\text{eg}}}$$

☐ Assume that

- ✓ A cloud platform (i.e., r_1) provides its computing power with a non-customizable algorithm \mathcal{A}_1 and a predetermined hypothesis set \mathcal{H}_1
- ✓ How should we (i.e., r_2) collect training samples S_2 according to the current performance on metric set \mathcal{M}_2 ?
- ✓ How to formulate this problem?

□ According to the proposed framework, the problem could be denoted as

$$\{\{r_1,r_2\},\mathcal{P},\mathcal{P}_{\mathcal{R}},\mathcal{S}_2,\mathcal{A}_1,\mathcal{H}_1,\mathcal{M}_2\}$$

where

$$\mathcal{P}_{\mathcal{R}} = \{P(r_1), P(r_2)\}$$

$$P(r_1) = \{p(r_1, \mathcal{H}_1), p(r_1, \mathcal{A}_1)\}$$

$$P(r_2) = \{p(r_1, \theta_{2,1,1}), p(r_2, \mathcal{S}_2), p(r_2, \mathcal{M}_2)\}$$

□ For the problem we discussed before (GPT-3):

- $\checkmark r^a$ the role providing API
- \checkmark r^T the target role, aims to improve the performance on the target set \mathcal{S}^T
- √ Then,

$$\left\{\{r^a, r^T\}, \mathcal{P}, \mathcal{P}_{\mathcal{R}}, \{\mathcal{S}^a, \mathcal{S}^T\}, \{\mathcal{H}^a, \mathcal{H}^T\}, \{\mathcal{A}^a, \mathcal{A}^T\}, \mathcal{M}^T\right\}$$

where

$$P(r^a) = \{p(r^a, \mathcal{S}^a), p(r^a, \mathcal{H}^a), p(r^a, \mathcal{A}^a)\}$$

$$P(r^T) = \{p(r^T, \theta_{\mathcal{S}^a, \mathcal{H}^a, \mathcal{A}^a}), p(r^T, \mathcal{S}^T), p(r^T, \mathcal{H}^T), p(r^T, \mathcal{A}^T), p(r^T, \mathcal{M}^T)\}$$

$$p(r^T, \theta_{\mathcal{S}^a, \mathcal{H}^a, \mathcal{A}^a}) = \text{'predictions'}$$

☐ We assume that the target dataset

$$\{(\boldsymbol{x}_i, \overline{y}_i)\}_{i=1}^m$$

suffers from a distribution mismatch, where \overline{y}_i denotes the observed labels.

- lacksquare How to eliminate the distribution mismatch with the help of r^a ?
 - ✓ Sample Reweighting
 - ✓ Label Ensemble
 - ✓ Consistent Regularization

□ Sample Reweighting

$$\theta^* = \arg\min_{\theta} \sum_{i=1}^m h_w \ell_i(\theta) + \Omega_{\theta}$$

$$h_w(g_i^*, \overline{y}_i) = \frac{\exp(-\alpha \cdot d(g_i^*, \overline{y}_i))}{\sum_{i=1}^m \exp(-\alpha \cdot d(g_i^*, \overline{y}_i))},$$

□ Label Ensemble

$$\hat{y}_i \leftarrow \beta \overline{y}_i + (1 - \beta) g_i^*$$

□ Consistent Regularization

$$\Omega_D(g_i^*, f_i(\theta)) = \gamma \sum_{i=1}^m \|g_i^* - f_i(\theta)\|^2$$

Outline

1 Background

2 Framework

