- 1. 已知集合 $A = \{-2, 1, 2\}, B = \{\sqrt{a} + 1, a\},$ 且 $B \subseteq A$, 则实数 a 的值是______.
- 2. 若直线 l 的参数方程为 $\begin{cases} x=4-4t, \\ y=-2+3t, \end{cases}$ $t\in\mathbf{R}$, 则直线 l 在 y 轴上的截距是______.

- 5. 把三阶行列式 $\begin{vmatrix} 2^x & 0 & 3 \\ x & 4 & 0 \\ 1 & x-3 & -1 \end{vmatrix}$ 中第 1 行第 3 列元素的代数余子式记为 f(x), 则关于 x 的不等式 f(x) < 0 的解集为
- 6. 焦点在 y 轴上, 焦距为 6, 且经过点 $(0,\sqrt{5})$ 的双曲线的标准方程为______.
- 7. 已知抛物线型拱桥的顶点距水面 2 米时, 量得水面宽为 8 米, 当水面下降 1 米后, 水面的宽为_____ 米.
- 8. 函数 $y = \sin(\frac{\pi}{6} x), x \in [0, \frac{3\pi}{2}]$ 的单调递减区间是______.
- 9. 已知定义在 R 上的函数 f(x) 满足: ① f(x) + f(2-x) = 0; ② f(x) f(-2-x) = 0; ③ 在 [-1,1] 上表达式为 $f(x) = \begin{cases} \sqrt{1-x^2}, & x \in [-1,0], \\ 1-x, & x \in (0,1], \end{cases}$ 则函数 f(x) 与 $g(x) = \begin{cases} 2^x, & x \leq 0 \\ \log_{\frac{1}{2}}x, & x > 0 \end{cases}$ 的图像在区间 [-3,3] 上的交点的个数为
- 10. 已知 6 个正整数, 它们的平均数是 5, 中位数是 4, 唯一众数是 3, 则这 6 个数方差的最大值为______(精确到小数点后一位).
- 11. 已知正方形 ABCD 边长为 8, $\overrightarrow{BE} = \overrightarrow{EC}$, $\overrightarrow{DF} = 3\overrightarrow{FA}$, 若在正方形边上恰有 6 个不同的点 P, 使 $\overrightarrow{PE} \cdot \overrightarrow{PF} = \lambda$, 则 λ 的取值范围为_____
- 12. 已知 $f(x) = 2x^2 + 2x + b$ 是定义在 [-1,0] 上的函数, 若 $f[f(x)] \le 0$ 在定义域上恒成立, 而且存在实数 x_0 满足: $f[f(x_0)] = x_0$ 且 $f(x_0) \ne x_0$, 则实数 b 的取值范围是______.
- 13. 如图, 水平放置的正三棱柱的俯视图是(____).

14. 已知 z=x+yi, $x,y\in \mathbf{R}$, i 是虚数单位. 若复数 $\frac{z}{1+\mathrm{i}}+\mathrm{i}$ 是实数, 则 |z| 的最小值为 (

B.
$$\frac{5}{2}$$

D.
$$\sqrt{2}$$

$$15. 已知点 $P(x,y)$ 满足约束条件
$$\begin{cases} x+y\leq 50,\\ 2x+5y\leq 200,\\ 0\leq x\leq 40,\\ y\geq 0, \end{cases}$$
 则目标函数 $z=x-y$ 的最小值为 ().$$

B.
$$-40$$

D.
$$-30$$

16. 如图, 在直角坐标平面内有一个边长为 a, 中心在原点 O 的正六边形 ABCDEF, $AB \parallel Ox$. 直线 l:y=kx+t(k 是常数) 与正六边形交于 M、N 两点, 记 $\triangle OMN$ 的面积为 S, 则函数 S=f(t) 的奇偶性为 ().

A. 偶函数

B. 奇函数

C. 不是奇函数, 也不是偶函数

- D. 奇偶性与 k 有关
- 17. 如图, 在直三棱柱 $ABC-A_1B_1C_1$ 中, $AB\perp AC$, $AA_1=AB=AC=1$, $\angle ABC=\frac{\pi}{4}$, D、M、N 分别是 CC_1 、 A_1B_1 、BC 的中点.

- (1) 求异面直线 MN 与 AC 所成角的大小;
- (2) 求点 M 到平面 ADN 之间的距离.
- 18. 某地计划在一处海滩建造一个养殖场.

- (1) 如图, 射线 OA、OB 为海岸线, $\angle AOB = \frac{2\pi}{3}$, 现用长度为 1 千米的围网 PQ 依托海岸线围成一个 $\triangle POQ$ 的养殖场, 问如何选取点 P、Q, 才能使养殖场 $\triangle POQ$ 的面积最大, 并求其最大面积;
- (2) 如图, 直线 1 为海岸线, 现用长度为 1 千米的围网依托海岸线围成一个养殖场。

方案一: 围成三角形 OAB(点 A、B 在直线 l 上), 使三角形 OAB 面积最大, 设其为 S_1 ;

方案二: 围成弓形 CDE(点 D、E 在直线 l 上, C 是优弧所在圆的圆心且 $\angle DCE = \frac{2\pi}{3}$), 其面积为 S_2 ; 试求出 S_1 的最大值和 S_2 (均精确到 0.001 平方千米), 并指出哪一种设计方案更好 (面积较大的更好).

- 19. 已知各项均不为零的数列 $\{a_n\}$ 满足 $a_1=1$, 前 n 项的和为 S_n , 且 $\frac{S_n^2-S_{n-1}^2}{a_n}=2n^2,\,n\in\mathbf{N}^*,\,n\geq 2$, 数列 $\{b_n\}$ 满足 $b_n=a_n+a_{n+1},\,n\in\mathbf{N}^*$.
 - (1) $\Re a_2$, a_3 , S_{2019} ;
 - (2) 已知等式 $kC_n^k = n \cdot C_{n-1}^{k-1}$ 对 $1 \le k \le n, k, n \in \mathbb{N}^*$ 成立,请用该结论求有穷数列 $\{b_kC_n^k\}, k = 1, 2, \cdots, n$ 的前 n 项和 T_n .
- 20. (1) 设椭圆 $C_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 与双曲线 $C_2: 9x^2 \frac{9y^2}{8} = 1$ 有相同的焦点 F_1 、 F_2 , M 是椭圆 C_1 与双曲线 C_2 的公共点, 且 $\triangle MF_1F_2$ 的周长为 6, 求椭圆 C_1 的方程;

我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为"盾圆".

 $(2) \text{ 如图, 已知 "盾圆 } D" \textbf{ 的方程为 } y^2 = \begin{cases} 4x, & 0 \leq x \leq 3, \\ & \text{设 "盾圆 } D" \textbf{ 上的任意一点 } M \textbf{ 到 } F(1,0) \end{cases}$

的距离为 d_1 , M 到直线 l: x=3 的距离为 d_2 , 求证: d_1+d_2 为定值;

(3) 由抛物线弧 $E_1: y^2 = 4x(0 \le x \le \frac{2}{3})$ 与第 (1) 小题椭圆弧 $E_2: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(\frac{2}{3} \le x \le a)$ 所合成的封闭曲线为 "盾圆 E". 设 "盾圆 E" 上的两点 AB 关于 x 轴对称, O 为坐标原点, 试求 $\triangle OAB$ 面积的最大值.

- 21. 已知函数 $f(x) = \log_2 x$.
 - (1) 若 f(x) 的反函数是 $f^{-1}(x)$, 解方程: $f^{-1}(2x+1) = 3f^{-1}(x) 1$;
 - (2) 当 $x \in (3m, 3m + 3](m \in \mathbb{N})$ 时, 定义 g(x) = f(x 3m). 设 $a_n = n \cdot g(n)$, 数列 $\{a_n\}$ 的前 n 项和为 S_n , 求 a_1 、 a_2 、 a_3 、 a_4 和 S_{3n} ;

- (3) 对于任意 a、b、 $c \in [M, +\infty)$,且 $a \ge b \ge c$. 当 a、b、c 能作为一个三角形的三边长时,f(a)、f(b)、f(c) 也总能作为某个三角形的三边长,试探究 M 的最小值.
- 22. 集合 $A = \{1, 2, 3, 4\}, B = \{x | (x-1)(x-5) < 0\}, M A \cap B = \underline{\hspace{1cm}}$
- 23. **复数** $z = \frac{2-i}{1+i}$ 所对应的点在复平面内位于第______ 象限.
- 24. 已知首项为 1 公差为 2 的等差数列 $\{a_n\}$, 其前 n 项和为 S_n , 则 $\lim_{n \to \infty} \frac{(a_n)^2}{S_n} =$ ______.
- 25. 已知双曲线 $\frac{x^2}{a^2} \frac{y^2}{81} = 1 (a > 0)$ 的一条渐近线方程为 y = 3x, 则 a =______.
- 26. 若圆柱的侧面展开图是边长为 4 的正方形, 则圆柱的体积为_____.
- 27. 已知 x、y 满足 $\begin{cases} x-y \leq 0, \\ x+y \leq 2, \\ x+2 \geq 0, \end{cases}$, 则 z=2x+y 的最大值是______.
- 28. 已知函数 $f(x) = \begin{cases} 2^x, & x \le 0 \\ \log_2 x, & 0 < x \le 1 \end{cases}$ 的反函数是 $f^{-1}(x)$, 则 $f^{-1}(\frac{1}{2}) =$ ______.
- 29. 生产零件需要经过两道工序,在第一、第二道工序中产生废品的概率分别为 0.01 和 p, 每道工序产生废品相互独立, 若经过两道工序后得到的零件不是废品的概率是 0.9603, 则 $p = ______$.
- 30. 如图, 长方体 $ABCD A_1B_1C_1D_1$ 的边长 $AB = AA_1 = 1$, $AD = \sqrt{2}$, 它的外接球是球 O, 则 A、 A_1 这两点的球面距离等于_______.

- 31. [x] 是不超过 x 的最大整数, 则方程 $(2^x)^2 \frac{7}{4} \cdot [2^x] \frac{1}{4} = 0$ 满足 x < 1 的所有实数解是______.
- 32. 在直角 $\triangle ABC$ 中, $\angle A=\frac{\pi}{2}$, AB=1, AC=2, M 是 $\triangle ABC$ 内一点, 且 $AM=\frac{1}{2}$, 若 $\overrightarrow{AM}=\lambda \overrightarrow{AB}+\mu \overrightarrow{AC}$, 则 $\lambda+2\mu$ 的最大值为______.
- 33. 已知函数 $f(x) = \cos x$, 若对任意实数 x_1 、 x_2 , 方程 $|f(x) f(x_1)| + |f(x) f(x_2)| = m(m \in \mathbf{R})$ 有解, 方程 $|f(x) f(x_1)| |f(x) f(x_2)| = n(n \in \mathbf{R})$ 也有解, 则 m + n 的值的集合为______.
- 34. 已知 α, β 是两个不同平面, m 为 α 内的一条直线, 则 " $m \parallel \beta$ " 是 " $\alpha \parallel \beta$ " 的 ().
 - A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

35. 如图, P 为正方体 $ABCD-A_1B_1C_1D_1$ 中 AC_1 与 BD_1 的交点, 则 $\triangle PAC$ 在该正方体各个面上的正投影可能是 ().

- A. (1)(2)(3)(4)
- B. (1)(3)

C. (1)(4)

- D. (2)(4
- 36. 已知 f(x) 是定义在 R 上的奇函数,对任意两个不相等的正数 $x_1, \, x_2$ 都有 $\frac{x_2 f(x_1) x_1 f(x_2)}{x_1 x_2} < 0$,则函数

$$g(x) = \begin{cases} \frac{f(x)}{x}, & x \neq 0, \\ 0, & x = 0 \end{cases}$$
).

- A. 是偶函数, 且在 $(0,+\infty)$ 上单调递减
- C. 是奇函数, 且单调递减

- B. 是偶函数, 且在 $(0,+\infty)$ 上单调递增
 - D. 是奇函数, 且单调递增
- 37. 已知数列 $\{a_n\}$ 的首项 $a_1=a,$ 且 $0< a \leq 4,$ $a_{n+1}= \begin{cases} a_n-4, & a_n>4, \\ & S_n$ 是此数列的前 n 项和,则以下结 $6-a_n, & a_n\leq 4, \end{cases}$

论正确的是().

- A. 不存在 a 和 n 使得 $S_n = 2015$
- C. 不存在 a 和 n 使得 $S_n = 2017$
- B. 不存在 a 和 n 使得 $S_n = 2016$
- D. 不存在 a 和 n 使得 $S_n = 2018$
- 38. 如图, 在多面体 $ABC A_1B_1C_1$ 中, AA_1 、 BB_1 、 CC_1 均垂直于平面 ABC, $AA_1 = 4$, $CC_1 = 3$, $BB_1 = AB = AC = 2$, $\angle BAC = 120^{\circ}$.

- (1) 求 AB_1 与 $A_1B_1C_1$ 所成角的大小;
- (2) 求二面角 $A A_1B_1 C_1$ 的大小.
- 39. 已知函数 $f(x) = 1 \frac{6}{a^{x+1} + a} (a > 0, a \neq 1)$ 是定义在 R 上的奇函数.
 - (1) 求实数 a 的值及函数 f(x) 的值域;
 - (2) 若不等式 $t \cdot f(x) \ge 3^x 3$ 在 $x \in [1, 2]$ 上恒成立, 求实数 t 的取值范围.

40. 某城市的棚户区改造建筑用地平面示意图如图所示, 经过调研、规划确定, 棚改规划用地区域近似为圆面, 该圆的内接四边形 ABCD 区域是原棚户区建筑用地, 测量可知边界 $AB=AD=2(\mathrm{km}), BC=3(\mathrm{km}), CD=1(\mathrm{km}).$

- (1) 求 AC 的长及原棚户区建筑用地 ABCD 的面积;
- (2) 因地理条件限制, 边界 AD, DC 不能变更, 而边界 AB, BC 可以调整, 为了增加棚户区建筑用地的面积, 请在弧 $\stackrel{\frown}{ABC}$ 上设计一点 P, 使得棚户区改造后的新建筑用地 (四边形 APCD) 的面积最大, 并求出这个面积最大值.
- 41. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0),$ 定义椭圆 C 上的点 $M(x_0, y_0)$ 的 "伴随点"为 $N(\frac{x_0}{a}, \frac{y_0}{b})$.
 - (1) 求椭圆 C 上的点 M 的 "伴随点" N 的轨迹方程;
 - (2) 如果椭圆 C 上的点 $(1,\frac{3}{2})$ 的 "伴随点"为 $(\frac{1}{2},\frac{3}{2b})$,对于椭圆 C 上的任意点 M 及它的 "伴随点"N,求 $\overrightarrow{OM}\cdot\overrightarrow{ON}$ 的取值范围;
 - (3) 当 a=2, $b=\sqrt{3}$ 时, 直线 l 交椭圆 C 于 A, B 两点, 若点 A, B 的 "伴随点" 分别是 P, Q, 且以 PQ 为直径的圆经过坐标原点 O, 求 $\triangle OAB$ 的面积.
- 42. 已知项数为 m $(m \in N^*, m \ge 2)$ 的数列 $\{a_n\}$ 满足条件: ① $a_n \in N^* (n = 1, 2, \cdots, m)$ ② $a_1 < a_2 < \cdots < a_m$.; 若数列 $\{b_n\}$ 满足 $b_n = \frac{(a_1 + a_2 + \cdots + a_m) a_n}{m-1} \in \mathbf{N}^* (n = 1, 2, \cdots, m)$, 则称 $\{b_n\}$ 为数列 $\{a_n\}$ 的 "关联数列".
 - (1) 数列 1,5,9,13,17 是否存在"关联数列"? 若存在,写出其"关联数列"; 若不存在,请说明理由;
 - (2) 若数列 $\{a_n\}$ 存在 "关联数列" $\{b_n\}$, 证明: $a_{n+1}-a_n \geq m-1 (n=1,2,\cdots,m-1)$;
 - (3) 已知数列 $\{a_n\}$ 存在 "关联数列" $\{b_n\}$, 且 $a_1 = 1$, $a_m = 2049$, 求数列 $\{a_n\}$ 项数 m 的最小值与最大值.
- 43. 已知复数 z 满足 $z=3-\mathrm{i}(\mathrm{i}$ 为虚数单位), 则 $z\cdot\overline{z}=$ _____.
- 44. 已知函数 $f(x) = \sqrt{2x-1}$ 的反函数为 $f^{-1}(x)$,则 $f^{-1}(7) =$ _____.
- 45. 在行列式 $D=egin{pmatrix} 1 & 3 & 7 \\ 2 & 5 & -2 \\ 1 & 2 & 3 \end{bmatrix}$ 中,第二行第三列的元素 3 的代数余子式的值为______.
- 46. 在 $(x \sqrt{2})^8$ 的二项展开式中, x^5 项的系数是______.

- 48. 方程 $\log_5(4^x 11) 1 = \log_5(2^x 3)$ 的解为 x =___
- 49. 已知一组数据 a, 3, -2, 8 的中位数为 5, 则其总体方差为_____
- 50. 已知函数 f(x) = g(x) + |2x 1| 为奇函数, 若 g(-2) = 7, 则 g(2) =______.
- 51. 直线 l:(n+2)x-y+n-1=0 $(n\in \mathbf{N}^*)$ 被圆 $C:(x-1)^2+y^2=16$ 所截得的弦长为 d_n , 则
- 52. 非空集合 A 中所有元素乘积记为 T. 已知集合 $M = \{1, 4, 5, 7, 8, 9\}$, 从集合 M 的所有非空子集中任选一个 子集 A, 则 T(A) 为偶数的概率是_____(结果用最简分数表示).
- 53. 函数 $f(x) = \sin(\omega x) + \sqrt{3}\cos(\omega x)(\omega > 0)$,若恰有两个实数 m 满足: ① $0 \le m \le \frac{\pi}{2}$;② x = m 是函数图像 的对称轴, 则 ω 的取值范围是______
- 54. 如图, 在棱长为 2 的正方体 $ABCD-A_1B_1C_1D_1$ 中, 点 P 是平面 ACC_1A_1 上一动点, 且满足 $\overrightarrow{DP}\cdot\overrightarrow{CP}=0$ 则满足条件的所有点 P 所围成的平面区域的面积是

- 55. 若 $m,n\in\mathbf{R},$ i 是虚数单位,则 " $m^2=n^2$ " 是 "(m-n)+(m+n)i 为纯虚数" 的 ().
 - A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

- D. 既不充分也不必要条件
- 56. 已知数列 $\{a_n\}$ 是无穷等比数列, 若 $a_1 < a_2 < 0$, 则数列 $\{a_n\}$ 的前 n 项和 S_n (
 - A. 无最大值, 有最小值

B. 有最大值, 有最小值

C. 有最大值, 无最小值

- D. 无最大值, 无最小值
- 57. 若直线 ax + by = 2(a, b) 不全为零) 经过点 $M(2\cos\alpha, \sin\alpha)(\alpha \in \mathbf{R})$, 则 (

- A. $4a^2 + b^2 \le 4$ B. $4a^2 + b^2 \ge 4$ C. $\frac{4}{a^2} + \frac{1}{b^2} \le 4$ D. $\frac{4}{a^2} + \frac{1}{b^2} \ge 4$
- 58. 已知集合 $M = \{(x,y)|y=f(x)\}$, 若对于任意 $(x_1,y_1) \in M$, 存在 $(x_2,y_2) \in M$, 使得 $x_1x_2 + y_1y_2 = 0$ 成 立,则称集合 M 是 " Ω 集合". 给出下列 4 个集合: ① $M = \{(x,y)|y = \frac{1}{x}\};$ ② $M = \{(x,y)|y = \mathrm{e}^x - 2\};$ ③ $M = \{(x,y)|y = \cos x\};$ ④ $M = \{(x,y)|y = \ln x\}$. 其中所有 " Ω 集合" 的序号是 (

59. 如图, 棱柱 $ABC - A_1B_1C_1$ 中, $AB = BC = AA_1 = 2$, $BB_1 \perp$ 底面ABC, $AB \perp BC$, D 是棱 AB 的中点.

- (1) 求证: 直线 BC 与直线 DC₁ 为异面直线;
- (2) 求直线 DC_1 与平面 A_1BC 所成角的大小.
- 60. 已知 $f(x) = ax + \frac{x^2}{x^2 + 1}$, a 为实常数.
 - (1) 当 a = 1 时, 求不等式 $f(x) + f(\frac{1}{x}) < x$ 的解集;
 - (2) 若函数 f(x) 在 $(0,+\infty)$ 中有零点, 求 a 的取值范围.
- 61. 如图, A, B, C 三地在以 O 为圆心的圆形区域边界上, AB = 30 公里, AC = 10 公里, $\angle BAC = 60^{\circ}$, D 是圆 形区域外一景点, $\angle DBC = 90^{\circ}$, $\angle DCB = 60^{\circ}$.

- (1) O、A 相距多少公里 (精确到小数点后两位)? (2) 若一汽车从 A 处出发, 以每小时 50 公里的速度沿公路 AD 行驶到 D 处, 需要多少小时 (精确到小数点后两位)?
- 62. 已知椭圆 $\Omega: \frac{x^2}{4} + \frac{y^2}{3} = 1$ 的左右两焦点分别为 F_1, F_2 .
 - (1) 若矩形 ABCD 的边 AB 在 y 轴上, 点 C,D 均在 Ω 上, 求该矩形绕 y 轴旋转一周所得圆柱侧面积 S 的 取值范围:

 - 问是否存在实数 λ , 使得 $|EF_1| \cdot |RF_2| = \lambda |EF_2| \cdot |RF_1|$ 恒成立? 若存在, 求出 λ 的值; 若不存在, 说明理由.

- 63. 已知无穷数列 $\{a_n\}$ 与无穷数列 $\{b_n\}$ 满足下列条件: ① $a_n \in \{0,1,2\}, \, n \in \mathbf{N}^*;$ ② $\frac{b_{n+1}}{b_n} = (-1)^n \cdot |\frac{1}{2}a_n a_n|$ $\frac{1}{4}a_{n+1}|, n \in \mathbf{N}^*$. 记数列 $\{b_n\}$ 的前 n 项积为 T_n . (1) 若 $a_1 = b_1 = 1$, $a_2 = 0$, $a_3 = 2$, $a_4 = 1$, 求 T_4 ;
 - (2) 是否存在 a_1, a_2, a_3, a_4 , 使得 b_1, b_2, b_3, b_4 成等差数列? 若存在, 请写出一组 a_1, a_2, a_3, a_4 ; 若不存在, 请说 明理由:
 - (3) 若 $b_1 = 1$, 求 T_{2021} 的最大值.
- 64. 若 $\sin \alpha = \frac{1}{4}$, 则 $\sin(\pi + \alpha) =$ _____.
- 65. 设集合 $A = \{1, 2, 3\}, B = \{y | y = \sin x, x \in \mathbf{R}\}, \text{ } \emptyset \text{ } A \cap B = \underline{\hspace{1cm}}$
- 66. 已知圆锥的底面半径为 1, 母线长为 2, 则该圆锥的体积为_____.
- 67. 关于 x 的不等式 $\frac{1}{x} > 1$ 的解集为_____.
- 68. 已知常数 $a \in \mathbb{R}$, 若复数 z = (a+i)(2+i)(i) 为虚数单位) 的实部与虚部相等, 则 |z| = 2
- 69. 在 $(x^2 + \frac{2}{x})^7$ 的二项展开式中, x^2 的系数为______.
- 70. 各项都不为零的等差数列 $\{a_n\}$ 满足 $a_2 2a_8^2 + 3a_{10} = 0$, 则 $a_8 =$ ______.
- 71. 设椭圆 $\Gamma: \frac{x^2}{a^2} + y^2 = 1 (a > 1)$ 的左顶点为 A, 过点 A 的直线 l 与 Γ 相交于另一点 B, 与 y 轴相交于点 C. 若 |OA| = |OC|, |AB| = |AC|, 则 a =______
- 72. 已知常数 $b, c \in \mathbf{R}$. 若函数 $f(x) = (x^2 + x 2)(x^2 + bx + c)$ 为偶函数, 则 b + c =_____.
- 73. 设 a,b,c,d,e,f 为 1,2,3,4,5,6 的任意一个排列, 则使得 (a+b)(c+d)(e+f) 为偶数的排列共有_ 个.
- 74. 已知定点 A(1,0), 圆 $\omega: x^2+y^2=4$, M,N 为 ω 上的动点, 满足 $|MN|=2\sqrt{3}$, 则 $\overrightarrow{AM}\cdot\overrightarrow{AN}$ 的取值范围
- 75. 空间中, 给定两条异面直线 m,n 以及平面 α , 满足: $m \perp n$, n 在平面 α 上, m 与 α 所成的角 $\theta \in [60^{\circ}, 90^{\circ}]$. 动点 $P \propto \alpha$ 上, 满足 $P \sim 10$ 加 的距离与 $P \sim 10$ 和 的距离相等, 记 $P \sim 10$ 的轨迹为曲线 Γ . 对于下列命题: ① $\Gamma \sim 10$ 以是椭圆; ② Γ 可以是双曲线, 且两条渐近线的夹角为 30°; ③ Γ 可以是双曲线, 且两条渐近线的夹角为 60°; ④ Γ 可以是抛物线, 所有真命题的序号为_
- 76. 行列式 $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = ($).

A. -4

B. -2

C. 2

D. 4

77. 函数 $f(x) = \sin(2x + \frac{\pi}{4})$ 的图像关于 () 对称.

A. 直线 $x = \frac{\pi}{4}$ B. 直线 $x = \frac{3\pi}{8}$

C. 点 $(\frac{\pi}{4}, 0)$

D. 点 $(\frac{3\pi}{8}, 0)$

- 78. 设 a, b, c 表示三条互不重合的直线, $\alpha \land \beta$ 表示两个不重合的平面, 则使得 $a \parallel b$ 成立的一个充分条件为 ().
 - A. $a \perp c$, $b \perp c$

B. $a \parallel \alpha, b \parallel \alpha$

C. $a \parallel \alpha$, $a \parallel \beta$, $\alpha \cap \beta = b$

- D. $b \perp \alpha$, $c \parallel \alpha$, $a \perp c$
- 79. 在锐角 $\triangle ABC$ 中, O 为 $\triangle ABC$ 的外心, 设 O 到直线 BC, AC, AB 的距离分别为 d_1, d_2, d_2 . 若将所有的全等三角形看作同一个三角形,则对于命题: ① 对任意给定的 $d_1, d_2 \in \mathbf{R}^+$ 以及 $\angle C \in (0, \frac{\pi}{2})$, 锐角 $\triangle ABC$ 都存在且唯一; ② 对任意给定的 $d_1, d_2, d_3 \in \mathbf{R}^+$, 锐角 $\triangle ABC$ 都存在且唯一,下列判断正确的是 ().
 - A. ①、②均为真命题

B. ①、②均为假命题

C. ①为真命题, ②为假命题

- D. ①为假命题, ②为真命题
- 80. 如图, 在长方体 $ABCD A_1B_1C_1D_1$ 中, $2AB = BC = AA_1$, 点 M 为棱 C_1D_1 上的动点.

- (1) 求三棱锥 $D A_1B_1M$ 与长方体 $ABCD A_1B_1C_1D_1$ 的体积比;
- (2) 若 M 为棱 C_1D_1 的中点, 求直线 DB_1 与平面 DA_1M 所成角的大小.
- 81. 已知常数 $a \in \mathbb{R}^+$, 函数 $f(x) = 3^x + a^2 \cdot 3^{-x}$.
 - (1) 若 $a = \sqrt{3}$, 解关于 x 的不等式 f(x) < 4;
 - (2) 若 f(x) 在 $[3,+\infty)$ 上为增函数, 求 a 的取值范围.
- 82. 某居民小区为缓解业主停车难的问题,拟对小区内一块扇形空地 AOB 进行改建. 如图所示,平行四边形 OMPN 区域为停车场,其余部分建成绿地,点 P 在围墙 $\stackrel{\frown}{AB}$ 上,点 M 和 N 分别在道路 OA 和道路 OB 上,且 $OA=60\mathrm{m}$, $\angle AOB=\frac{\pi}{3}$. 设 $\angle POB=\theta$.

- (1) 求停车场面积 $S(\bullet d: m^2)$ 关于 θ 的函数关系式, 并写出 θ 的取值范围;
- (2) 求停车场面积 S 的最大值以及相应 θ 的值.
- 83. 已知常数 p>0, 抛物线 $\Gamma: y^2=2px$ 的焦点为 F.
 - (1) 若直线 x=2 被 Γ 截得的弦长为 4, 求 p 的值;
 - (2) 设 E 为点 F 关于原点 O 的对称点, P 为 Γ 上的动点, 求 $\frac{|PE|}{|PF|}$ 的取值范围;
 - (3) 设 p=2. 两条互相垂直的直线 l_1,l_2 均过点 F,l_1 与 Γ 相交于 A,B 两点, l_2 与 Γ 相交于 C,D 两点. 若 $AC \perp BC$, 求四边形 ACBD 的面积.
- 84. 记无穷数列 $\{a_n\}$ 的前 n 项和为 S_n , 集合 $M = \{x | x = a_n, n \in \mathbb{N}^*\}$. 若对任意 $n \in \mathbb{N}^*$, 恒有 $S_n \in M$, 则称 $\{a_n\}$ 具有性质 P.
 - (1) 若无穷数列 $\{a_n\}$ 的前 n 项和为 $S_n = n^2 + n + 2$, 判断 $\{a_n\}$ 是否具有性质 **P**, 并说明理由;
 - (2) 若无穷数列 $\{a_n\}$ 为等差数列, 首项 $a_1 = -1$, 公差 d > 0, 且 $\{a_n\}$ 具有性质 **P**, 求 d 的值;
 - (3) 若无穷数列 $\{a_n\}$ 为等比数列, 首项 $a_1=1$, 公比 q>0, 问: 是否存在 q, 使得 $\{a_n\}$ 具有性质 \mathbf{P} ? 若存在, 求出所有 q 的值; 若不存在, 说明理由.
- 85. 方程 $\log_3(2x+1) = 2$ 的解是_____.
- 86. 已知集合 $M = \{x | |x+1| \le 1\}, N = \{-1,0,1\}, M \cap N = \underline{\hspace{1cm}}$
- 87. 若复数 $z_1 = a + 2i$, $z_2 = 2 + i(i$ 是虚数单位), 且 $z_1 z_2$ 为纯虚数, 则实数 a = 1
- 88. 直线 $\begin{cases} x = -2 \sqrt{2}t, \\ y = 3 + \sqrt{2}t \end{cases}$ (t 为参数) 对应的普通方程是______.

 89. 函数 $y = \begin{vmatrix} \sin x & 1 \\ 0 & \cos x \end{vmatrix}$ 的最小正周期为______.
- 90. 若 $(x+2)^n = x^n + ax^{n-1} + \dots + bx + c(n \in \mathbb{N}^*, n \ge 3)$, 且 b = 4c, 则 a 的值为______.
- 91. 若函数 $f(x) = 2^x(x+a) 1$ 在区间 [0,1] 上有零点, 则实数 a 的取值范围是_____
- 92. 某学生在上学路上要经过 2 个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯概率都是 $\frac{1}{3}$,则这名 学生在上学路上到第二个路口时第一次遇到红灯的概率是_
- 93. 设不等式组 $\begin{cases} x+y-6\geq 0,\\ x-y+2\geq 0,\end{cases}$ 表示的可行域为 Ω ,若指数函数 $y=a^x$ 的图像与 Ω 有公共点,则 a 的取值 $x-3y+6\leq 0$ 范围县
- 94. 已知椭圆 $x^2+\frac{y^2}{b^2}=1(0< b<1)$,其左、右焦点分别为 F_1 、 F_2 , $|F_1F_2|=2c$,若椭圆上存在点 P,使 P 到直线 $x=\frac{1}{c}$ 距离是 $|PF_1|$ 与 $|PF_2|$ 的等差中项,则 b 的最大值为_______.

- 95. 已知 $f(x) = 1 + ax \sqrt{1 + ax^2}$, 若对任意 $x \in [0, \sqrt{2}]$, $f(x) \le 0$ 恒成立, 则实数 a 的取值范围为______.
- 96. 已知函数 $f(x) = |\sin x| + |\cos x| 4\sin x \cos x k$, 若函数 f(x) 在区间 $(0,\pi)$ 内恰好有奇数个零点, 则实数 k 的所有取值之和为_____.
- 97. 函数 $y = x^2 (x \le 0)$ 的反函数为 ().

A. $y = \sqrt{x}, \ x \ge 0$ B. $y = -\sqrt{x}, \ x \ge 0$ C. $y = \sqrt{x}, \ x \le 0$ D. $y = -\sqrt{x}, \ x \le 0$

98. 某高科技公司所有雇员的工资情况如下表所示.

年薪 (万元)	135	95	80	70	60	52	40	31
人数	1	1	2	1	3	4	1	12

该公司雇员年薪的标准差约为().

A. 24.5(万元)

B. 25.5(万元)

C. 26.5(万元)

D. 27.5(万元)

- 99. 已知函数 $f(x) = x + \frac{a}{x}(a > 0), 0 < x_1 < x_2, 且 f(x_1) = f(x_2),$ 给出以下结论:
 - ① $\frac{x_1 + x_2}{2} > \sqrt{a}$ 恒成立; ② $f(2\sqrt{a} x_1) < f(x_2)$ 恒成立. 则 ().

A. ①正确, ②正确

B. ①正确, ②错误

C. ①错误, ②正确

D. ①错误, ②错误

100. 在直角坐标平面上, 到两条直线 y=0 与 y=x 的距离和为 3 的点的轨迹所围成的图形的面积是 ().

A. 18

B. $18\sqrt{2}$

C. 36

D. $36\sqrt{2}$

101. 如图, 在四棱锥 M-ABCD 中, 已知 $AM\perp$ 平面ABCD, $AB\perp AD$, $AB\parallel CD$, AB=2CD, 且 AB=2CDAM = AD = 2.

- (1) 求四棱锥 M ABCD 的体积;
- (2) 求直线 MC 与平面 ADM 所成的角.
- 102. 已知 $x \in \mathbf{R}$, $\overrightarrow{m} = (2\cos x, 2\sqrt{3}\sin x)$, $\overrightarrow{n} = (\cos x, \cos x)$.
 - (1) 设 $f(x) = \overrightarrow{m} \cdot \overrightarrow{n}$, 求函数 y = f(x) 的解析式及最大值;
 - (2) 设 $\triangle ABC$ 的三个内角 A,B,C 的对边分别为 a,b,c, 当 x=A 时, $\overrightarrow{m}=a\overrightarrow{n},$ 且 $c=2\sqrt{3},$ 求 $\triangle ABC$ 的 面积.
- 103. 某学校对面有一块空地要围建成一个面积为 360m² 的矩形场地, 要求矩形场地的一面利用旧墙 (旧墙需要整 修), 其它三面围墙要新建, 在旧墙对面的新墙上要留一个宽度为 2m 的进出口, 如图所示. 已知旧墙的整修费

用为 45元/m, 新建墙的造价为 180元/m, 建 2m 宽的进出口需 2360 元的单独费用, 设利用的旧墙的长度为 x(单位: m), 设修建此矩形场地围墙的总费用 (含建进出口的费用) 为 y(单位: 元).

- (1) 将 y 表示为 x 的函数;
- (2) 试确定 x, 使修建此矩形场地围墙的总费用 (含建进出口的费用) 最少, 并求出最少总费用.
- 104. 已知椭圆 Γ 的中心是坐标原点 O, 焦点在 x 轴上, 点 B 是椭圆 Γ 的上顶点, 椭圆 Γ 上一点 $A(1,\frac{\sqrt{2}}{2})$ 到两焦点距离之和为 $2\sqrt{2}$.

- (1) 求椭圆 Γ 的标准方程;
- (2) 若点 P,Q 是椭圆 Γ 上异于点 B 的两点, $BP \perp BQ$, 且满足 $3\overrightarrow{PC} = 2\overrightarrow{CQ}$ 的点 C 在 y 轴上, 求直线 BP 的方程;
- (3) 设 x 轴上点 T 坐标为 (2,0), 过椭圆 Γ 的右焦点 F 作直线 l(不与 x 轴重合) 与椭圆 Γ 交于 M 、N 两点, 如图, 点 M 在 x 轴上方, 点 N 在 x 轴下方, 且 $\overrightarrow{FM} = 2\overrightarrow{NF}$, 求 $|\overrightarrow{TM} + \overrightarrow{TN}|$ 的值.
- 105. 已知数列 $\{x_n\}$, 若对任意 $n \in \mathbb{N}^*$, 都有 $\frac{x_n + x_{n+2}}{2} > x_{n+1}$, 则称数列 $\{x_n\}$ 为 "差增数列".
 - (1) 试判断数列 $a_n = n^2 (n \in \mathbf{N}^*)$ 是否为 "差增数列", 并说明理由;
 - (2) 对于所有各项均为正整数的"差增数列" $\{a_n\}$, 其中 $a_1=a_2=1$, 若使得 $a_k=m$ 成立的序数 k 的最大值为 20, 求正整数 m 的所有可能取值的集合;
 - (3) 若数列 $\{\lg x_n\}$ 为 "差增数列" $(n \in \mathbb{N}^*, n \le 2020)$ 且 $\lg x_1 + \lg x_2 + \cdots + \lg x_{2020} = 0$, 证明: $x_{1010} \cdot x_{1011} < 1$.
- 106. 集合 $A = \{x|x^2 2x < 0\}, B = \{x||x| < 1\}, 则 <math>A \cup B = \underline{\hspace{1cm}}$.
- 107. 已知函数 $f(x) = \log_3(\frac{4}{x+2})$,则方程 $f^{-1}(x) = 4$ 的解 $x = \underline{\hspace{1cm}}$.
- 108. 等比数列 $\{a_n\}(n \in \mathbf{N}^*)$ 中, 若 $a_2 = \frac{1}{16}$, $a_5 = \frac{1}{2}$, 则 $a_8 =$ ______.
- 109. 若方程 $x^2 2x + 3 = 0$ 的两个根为 α 和 β , 则 $|\alpha| + |\beta| = _____.$
- 110. 函数 $f(x) = A\sin(\omega x + \varphi)(A > 0, \, \omega > 0, \, |\varphi| < \frac{\pi}{2})$ 的部分图像如图所示, 则 f(x) =______.

- 111. 双曲线 $\frac{x^2}{4} \frac{y^2}{9} = 1$ 的焦点到渐近线的距离等于_
- 112. 在二项式 $(1+ax)^7(a \in \mathbf{R})$ 的展开式中, x 的系数为 $\frac{7}{3}$, 则 $\lim_{n \to \infty} (a+a^2+a^3+\cdots+a^n)$ 的值是______.
- 113. 已知正四棱柱 $ABCD A_1B_1C_1D_1$ 的八个顶点都在同一球面上, 若 AB = 1, $AA_1 = \sqrt{2}$, 则 $A \cdot C$ 两点间的 球面距离是_____.
- 114. 在 $\triangle ABC$ 中,已知 AB=1, BC=2, 若 $y=\begin{vmatrix}\cos C & \sin C\\\sin C & \cos C\end{vmatrix}$, 则 y 的最小值是_
- 115. 已知双曲线 $C: \frac{x^2}{9} \frac{y^2}{8} = 1$,左、右焦点分别为 F_1 、 F_2 ,过点 F_2 作一直线与双曲线 C 的右支交于 P、Q两点, 使得 $\angle F_1PQ = 90^\circ$, 则 $\triangle F_1PQ$ 的内切圆的半径 r =_____
- 116. 若函数 $f(x) = (1 + \sin x)^{2021} + (1 \sin x)^{2021}$, 其中 $\frac{\pi}{6} \le x \le \frac{2\pi}{3}$, 则 f(x) 的最大值为_
- 117. 已知实数 a、b 使得不等式 $|ax^2 + bx + a| \le x$ 对任意 $x \in [1,2]$ 都成立, 在平面直角坐标系 xOy 中, 点 (a,b)形成的区域记为 Ω , 若圆 $x^2 + y^2 = r^2$ 上的任一点都在 Ω 中, 则 r 的最大值为_
- 118. 设 z_1 、 z_2 为复数,下列命题一定成立的是(
 - A. 如果 $z_1^2 + z_2^2 = 0$, 那么 $z_1 = z_2 = 0$
 - B. 如果 $|z_1| = |z_2|$, 那么 $z_1 = \pm z_2$
 - C. 如果 $|z_1| \le a$, a 是正实数, 那么 $-a \le z_1 \le a$
 - D. 如果 $|z_1| = a$, a 是正实数, 那么 $z_1 \cdot \overline{z_1} = a^2$
- 119. 下列命题为真命题的是(
 - A. 若直线 l 与平面 α 上的两条直线垂直, 则直线 l 与平面 α 垂直
 - B. 若两条直线同时垂直于一个平面, 则这两条直线平行
 - C. 若两个平面同时垂直于第三个平面,则这两个平面垂直
 - D. 若直线 l 上的不同两点到平面 α 的距离相等, 则直线 l 与平面 α 平行
- 120. 若数列 $\{a_n\}$ 、 $\{b_n\}$ 的通项公式分别为 $a_n = (-1)^{n+2020}a$, $b_n = 2 + \frac{(-1)^{n+2019}}{n}$, 且 $a_n < b_n$ 对任意 $n \in \mathbb{N}^*$ 恒成立, 则实数 a 的取值范围为 (

A.
$$[-2,1)$$

B.
$$[-2, \frac{3}{2})$$
 D. $[-1, 1)$

C.
$$[-1, \frac{1}{2}]$$

D.
$$[-1,1)$$

121. 已知定义在实数集 R 上的函数 f(x) 满足 $f(x+1) = \frac{1}{2} + \sqrt{f(x) - f^2(x)}$,则 f(0) + f(2021) 的最小值与最 大值的和为(

A. 2

В. 3

C.
$$\frac{3}{2} + \frac{\sqrt{2}}{2}$$

D. $\frac{5}{2} + \frac{\sqrt{2}}{2}$

122. 如图, 在直三棱柱 $ABC - A_1B_1C_1$ 中, $BA \perp BC$, $BA = BC = BB_1 = 2$.

- (1) 求异面直线 AB_1 与 A_1C_1 所成角的大小;
- (2) 若 M 是棱 BC 的中点. 求点 M 到平面 A_1B_1C 的距离.
- 123. 随着生活水平的不断提高,人们更加关注健康,重视锻炼,通过"小步道",走出"大健康",健康步道成为引领健康生活的一道亮丽风景线。如图,A-B-C-A 为某区的一条健康步道,AB、AC 为线段, $\stackrel{\frown}{BC}$ 是以 BC 为直径的半圆, $AB=2\sqrt{3}$ km,AC=4km, $\angle BAC=\frac{\pi}{6}$.

- (1) 求 $\stackrel{\frown}{BC}$ 的长度;
- (2) 为满足市民健康生活需要,提升城市品位,改善人居环境,现计划新建健康步道 A-D-C(B,D 在 AC 两侧),其中 AD,CD 为线段.若 $\angle ADC=\frac{\pi}{3}$,求新建的健康步道 A-D-C 的路程最多可比原有健康步道 A-B-C 的路程增加多少长度 (精确到 $0.01\mathrm{km}$)?
- 124. 已知椭圆 $\frac{x^2}{6}+\frac{y^2}{3}=1$ 上有两点 P(-2,1) 及 Q(2,-1), 直线 l:y=kx+b 与椭圆交于 A、B 两点, 与线段 PQ 交于点 C(异于 P、Q).
 - (1) 当 k=1 且 $\overrightarrow{PC}=\frac{1}{2}\overrightarrow{CQ}$ 时, 求直线 l 的方程;
 - (2) 当 k=2 时, 求四边形 PAQB 面积的取值范围.
- 125. 在数列 $\{a_n\}$ 中,已知 $a_1=2$, $a_{n+1}a_n=2a_n-a_{n+1}(n\in \mathbf{N}^*)$.
 - (1) 证明: 数列 $\{\frac{1}{a_{-}}-1\}$ 为等比数列;
 - (2) 记 $b_n = \frac{a_n a_{n+1}}{2^n}$, 数列 $\{b_n\}$ 的前 n 项和为 S_n . 求使得 $S_n > 1.999$ 的整数 n 的最小值;
 - (3) 是否存在正整数 m、n、k, 且 m < n < k, 使得 a_m 、 a_n 、 a_k 成等差数列? 若存在, 求出 m、n、k 的值; 若不存在, 请说明理由.

126.	设 m 为给定的实常数,	若函数 $y = f(x)$	在其定义域内存在实数 x_0 ,	使得	$f(x_0 + m) =$	$f(x_0) + f($	m) 成立,
	则称函数 $f(x)$ 为 " $G(x)$ "	n) 函数".					

- (1) 若函数 $f(x) = 2^x$ 为 "G(2) 函数", 求实数 x_0 的值;
- 都有 $\frac{g(x_1)-g(x_2)}{f(x_1)-f(x_2)}>2$ 成立, 求实数 t 的最大值.
- 128. 函数 $y = \arcsin(x+1)$ 的定义域是_
- 129. 计算行列式的值, $\begin{vmatrix} 0 & 1 \\ 2 & 3 \end{vmatrix} = _____.$
- 130. 已知双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 (a>0,\,b>0)$ 的实轴与虚轴长度相等, 则 C 的渐近线方程是_
- 131. 已知无穷数列 $a_n = \frac{2}{(-3)^n}, n \in \mathbb{N}^*, 则数列 \{a_n\}$ 的各项和为______.
- 132. 一个圆锥的表面积为 π , 母线长为 $\frac{5}{6}$, 则其底面半径为______
- 133. 某种微生物的日增长率为 r, 经过 n 天后其数量由 p_0 变化为 p, 并且满足方程 $p=p_0e^{rn}$. 实验检测, 这种微
- 134. 已知 $(x-\frac{1}{2x})^n$ 的展开式的常数项为第 6 项, 则常数项为______.
- 135. 某医院 ICU 从 3 名男医生和 2 名女医生中任选 2 位赴武汉抗疫, 则选出的 2 位医生中至少有 1 位女医生的 概率是 .
- 136. 已知方程 $x^2 + tx + 1 = 0$ ($t \in \mathbb{R}$) 的两个根是 $x_1, x_2,$ 若 $|x_1 x_2| = 2\sqrt{2}$, 则 t =____
- 137. 已知 O 是坐标原点,点 A(-1,1),若点 M(x,y) 为平面区域 $\begin{cases} x+y\geq 2,\\ x\leq 1, \end{cases}$ 上的一个动点,则 $\overrightarrow{OA}\cdot\overrightarrow{OM}$ 的 取值范围是 .

138. 课本中介绍了应用祖暅原理推导棱锥体积公式的做法. 祖暅原理也可用来求旋转体的体积. 现介绍用祖暅原 理求球体体积公式的做法: 可构造一个底面半径和高都与球半径相等的圆柱, 然后在圆柱内挖去一个以圆柱 下底面圆心为顶点, 圆柱上底面为底面的圆锥, 用这样一个几何体与半球应用祖暅原理 (左图), 即可求得球的 体积公式. 请研究和理解球的体积公式求法的基础上, 解答以下问题: 已知椭圆的标准方程为 $\frac{x^2}{4} + \frac{y^2}{25} = 1$, 将此椭圆绕 y 轴旋转一周后, 得一橄榄状的几何体 (右图), 其体积等于

- 139. 抛物线 $y = 4x^2$ 的准线方程是 (
 - A. x = -2

- C. $y = -\frac{1}{8}$ D. $y = -\frac{1}{16}$
- 140. 若函数 $f(x) = \sin x + a \cos x$ 的图像关于直线 $x = \frac{\pi}{4}$ 对称, 则 a 的值为 ().
 - A. 1

B. -1

C. $\sqrt{3}$

- D. $-\sqrt{3}$
- 141. 已知 \overrightarrow{a} , \overrightarrow{b} 是平面内两个互相垂直的单位向量, 若向量 \overrightarrow{c} 满足 $(\overrightarrow{c}-\overrightarrow{a})\cdot(\overrightarrow{c}-\overrightarrow{b})=0$, 则 $|\overrightarrow{c}|$ 的最大值是
 - A. 1

B. 2

C. $\sqrt{2}$

- D. $\frac{\sqrt{2}}{2}$
- 142. 已知命题: "若 a,b 为异面直线, 平面 α 过直线 a 且与直线 b 平行, 则直线 b 与平面 α 的距离等于异面直线 a,b 之间的距离"为真命题. 根据上述命题, 若 a,b 为异面直线, 且它们之间的距离为 d, 则空间中与 a,b 均异 面且距离也均为 d 的直线 c 的条数为 (
 - A. 0 条

B. 1 条

C. 多于 1 条, 但为有限条

- D. 无数多条
- 143. 如图, 在直三棱柱 $ABC A_1B_1C_1$ 中, $\angle ACB = 90^\circ$, AB = 2AC = 2, D 是 AB 的中点.

- (1) 若三棱柱 $ABC A_1B_1C_1$ 的体积为 $3\sqrt{3}$, 求三棱柱 $ABC A_1B_1C_1$ 的高;
- (2) 若 $C_1C = 2$, 求二面角 $D B_1C_1 A_1$ 的大小.
- 144. 已知函数 $f(x) = \sqrt{2}\sin(\omega x + \varphi)$, $g(x) = \sqrt{2}\cos\omega x$, $\omega > 0$, $\varphi \in [0,\pi)$, 它们的最小正周期为 π .
 - (1) 若 y = f(x) 是奇函数, 求 f(x) 和 g(x) 在 $[0,\pi]$ 上的公共递减区间 D;
 - (2) 若 h(x) = f(x) + g(x) 的一个零点为 $x = -\frac{\pi}{6}$, 求 h(x) 的最大值.

- 145. 已知函数 $f(x) = ax + \log_2(2^x + 1)$, 其中 $a \in \mathbf{R}$.
 - (1) 根据 a 的不同取值, 讨论 f(x) 的奇偶性, 并说明理由;
 - (2) 已知 a>0, 函数 f(x) 的反函数为 $f^{-1}(x)$, 若函数 $y=f(x)+f^{-1}(x)$ 在区间 [1,2] 上的最小值为 $1+\log_2 3$, 求函数 f(x) 在区间 [1,2] 上的最大值.
- 146. 设椭圆 Γ : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的右焦点为 F(1,0), 短轴的一个端点 B 到 F 的距离等于焦距. (1) 求椭圆 Γ 的标准方程;
 - (2) 设 C、D 是四条直线 $x = \pm a$, $y = \pm b$ 所围成的矩形在第一、第二象限的两个顶点, P 是椭圆 Γ 上任意一点, 若 $\overrightarrow{OP} = m\overrightarrow{OC} + n\overrightarrow{OD}$, 求证: $m^2 + n^2$ 为定值;
 - (3) 过点 F 的直线 l 与椭圆 Γ 交于不同的两点 M、N, 且满足 $\triangle BFM$ 与 $\triangle BFN$ 的面积的比值为 2, 求直线 l 的方程.
- 147. 定义: 设 $\{a_n\}$ 是无穷数列, 若存在正整数 k 使得对任意 $n \in \mathbb{N}^*$, 均有 $a_{n+k} > a_n(a_{n+k} < a_n)$, 则称 $\{a_n\}$ 是近似递增 (减) 数列, 其中 k 叫近似递增 (减) 数列 $\{a_n\}$ 的间隔数.
 - (1) 若 $a_n = n + (-1)^n$, $\{a_n\}$ 是不是近似递增数列? 并说明理由;
 - (2) 已知数列 $\{a_n\}$ 的通项公式为 $a_n = \frac{1}{(-2)^{n-1}} + a$, 其前 n 项的和为 S_n , 若 2 是近似递增数列 $\{S_n\}$ 的间隔数, 求 a 的取值范围;
 - (3) 已知 $a_n = -\frac{n}{2} + \sin n$, 证明 $\{a_n\}$ 是近似递减数列, 并且 4 是它的最小间隔数.
- 148. 在复平面内, 复数 $\frac{2}{1+i}$ 对应的点与原点的距离是______.
- 149. 将参数方程 $\begin{cases} x=\cos\theta,\\ (\theta\in[0,\pi]) \text{ 化为普通方程, 所得方程是}___. \end{cases}$
- 150. 已知向量 $\overrightarrow{a}=(1,4,-5), \overrightarrow{b}=(1,1,4),$ 则 \overrightarrow{a} 在 \overrightarrow{b} 方向上的投影是______
- 151. 若函数 $y = \tan 2x \cdot (2\cos^2 x 1)$ 的定义域是
- 152. 在等差数列 $\{a_n\}$ 中, 已知 $a_4 + a_8 = 16$, 则该数列前 11 项和 $S_{11} =$ ______.
- 153. 在 $(\sqrt[3]{x} + \frac{2}{x})^n$ 的二项展开式中, 所有项的系数之和为 81, 则其常数项为______.
- 154. 在均匀分布的条件下,某些概率问题可转化为几何图形的面积比来计算,勒洛三角形是由德国机械工程专家勒洛首先发现,作法为: 以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,在勒洛三角形中随机取一点,此点取自正三角形的概率为______.

- 156. 设定义域为 R 的函数 f(x)、g(x) 都有反函数, 且函数 f(x-1) 和 $g^{-1}(x-3)$ 图像关于直线 y=x 对称, 若 g(5)=2015, 则 f(4)=_______.
- 157. 在 $\triangle ABC$ 中, $\frac{\sin A}{a} = \frac{\sqrt{3}\cos B}{b}$, 如果 b = 2, 则 $\triangle ABC$ 面积的最大值为______.
- 158. 数列 $\{a_n\}$ 中, $a_1=2$, $a_2=7$, a_{n+2} 等于 $a_n \cdot a_{n+1}$ 的个位数,则 $a_{2019}=$ ______.
- 159. 已知函数 f(x) 满足: ① 对任意 $x \in (0, +\infty)$ 恒有 f(2x) = 2f(x) 成立; ② $x \in (1, 2]$ 时, f(x) = 2 x; 若 f(a) = f(2020), 则满足条件的最小的正实数 a 是______.
- 160. 给出下列命题, 其中正确的命题为 ().
 - A. 若直线 a 和 b 共面, 直线 b 和 c 共面, 则 a 和 c 共面
 - B. 直线 a 与平面 α 不垂直, 则 a 与平面 α 内的所有直线都不垂直
 - C. 直线 a 与平面 α 不平行, 则 a 与平面 α 内的所有直线都不平行
 - D. 异面直线 a、b 不垂直, 则过 a 的任何平面与 b 都不垂直
- 161. 已知平面向量 \overrightarrow{OA} 、 \overrightarrow{OB} 、 \overrightarrow{OC} 为三个单位向量,且 \overrightarrow{OA} · $\overrightarrow{OB} = 0$,若 $\overrightarrow{OC} = x\overrightarrow{OA} + y\overrightarrow{OB}(x, y \in \mathbf{R})$,则 x + y 的最大值为 ().
 - A. 1 B. $\sqrt{2}$ C. $\sqrt{3}$
- 162. 已知函数① $f(x) = 3 \ln x$; ② $f(x) = 3 \mathrm{e}^{\cos x}$; ③ $f(x) = 3 \mathrm{e}^{x}$; ④ $f(x) = 3 \cos x$; 其中对于 f(x) 定义域内的任意一个自变量 x_1 都存在唯一一个自变量 x_2 , 使 $\sqrt{f(x_1)f(x_2)} = 3$ 成立的函数是 ().
 - A. ③ B. ②③ C. ①②④ D. ④
- 163. 在圆锥 PO 中,已知高 PO = 2,底面圆的直径 AB = 8,M 为母线 PB 的中点.根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆 (截面平行于底面)、椭圆 (椭圆长轴为线段 AM)、双曲线的一部分 (双曲线所在平面垂直于 AB) 及抛物线的一部分 (抛物线对称轴为 MO 所在直线),下面四个命题:
 - ① 圆的面积为 4π ; ② 椭圆的长轴为 $\sqrt{37}$; ③ 双曲线两渐近线的夹角为 $\arcsin\frac{3}{5}$; ④ 抛物线中焦点到准线的距离为 $\frac{8\sqrt{5}}{5}$ 中,正确的个数为 ().

A. 1 个

B. 2 个

C. 3 个

D. 4 个

- 164. 已知复数 $z_1 = \sin 2x + \lambda i$, $z_2 = m + (m \sqrt{3}\cos 2x)i(\lambda, m, x \in \mathbf{R})$, 且 $z_1 = z_2$.
 - (1) 若 $\lambda = 0$ 且 $0 < x < \pi$, 求 x 的值;
 - (2) 设 $\lambda = f(x)$, 求 f(x) 的最小正周期和单调递减区间.

165. 如图, 在直角梯形 PBCD 中, $PB \parallel DC$, $DC \perp BC$, PB = BC = 2CD = 2, 点 A 是 PB 的中点, 现沿 AD 将平面 PAD 折起, 设 $\angle PAB = \theta$.

- (1) 当 θ 为直角时, 求异面直线 PC 与 BD 所成角的大小;
- (2) 当 θ 为多少时, 三棱锥 P-ABD 的体积为 $\frac{\sqrt{2}}{6}$.
- 166. 对于两个定义域相同的函数 f(x)、g(x)、若存在实数 m、n, 使 h(x) = mf(x) + ng(x),则称函数 h(x) 是由 "基函数 f(x)、g(x)" 生成的.
 - (1) $f(x) = x^2 + 3x$ 和 g(x) = 3x + 4 生成一个偶函数 h(x), 求 h(2) 的值;
 - (2) 若 $h(x) = 2x^2 + 3x 1$ 由 $f(x) = x^2 + ax$, $g(x) = x + b(a, b \in \mathbf{R}$ 且 $ab \neq 0$) 生成, 求 a + 2b 的取值范围.
- 167. 设抛物线 $y^2 = 4px$ (p > 0) 的准线与 x 轴的交点为 M, 过 M 作直线 l 交抛物线于 $A \times B$ 两点.
 - (1) 求线段 AB 中点的轨迹方程;
 - (2) 若线段 AB 的垂直平分线交对称轴于 $N(x_0,0)$, 求 x_0 的取值范围;
 - (3) 若直线 <math>l 的斜率依次取 $p, p^2, p^3, \cdots, p^n, \cdots$ 时,线段 AB 的垂直平分线与对称轴的交点依次为 $N_1, N_2, N_3, \cdots, N_n, \cdots$ 当 $0 时,求: <math>S = \frac{1}{|N_1 N_2|} + \frac{1}{|N_2 N_3|} + \frac{1}{|N_3 N_4|} + \cdots + \frac{1}{|N_n N_{n+1}|} + \cdots$ 的值.
- 168. 给定无穷数列 $\{a_n\}$, 若无穷数列 $\{b_n\}$ 满足: 对任意 $n \in \mathbb{N}^*$, 都有 $|b_n a_n| \le 1$, 则称 $\{a_n\}$ 与 $\{b_n\}$ "接近".
 - (1) 设 $\{a_n\}$ 是首项为 1, 公比为 $\frac{1}{2}$ 的等比数列, $b_n = a_{n+1} + 1$, $n \in \mathbb{N}^*$, 判断数列 $\{b_n\}$ 是否与 $\{a_n\}$ 接近, 并说明理由;
 - (2) 设数列 $\{a_n\}$ 的前四项为: $a_1=1, a_2=2, a_3=4, a_4=8, \{b_n\}$ 是一个与 $\{a_n\}$ 接近的数列, 记集合 $M=\{x|x=b_i, i=1,2,3,4\},$ 求 M 中元素的个数 m 的所有可能值;
 - (3) 已知 $\{a_n\}$ 是公差为 d 的等差数列, 若存在数列 $\{b_n\}$ 满足: $\{b_n\}$ 与 $\{a_n\}$ 接近, 且在 $b_2-b_1,b_3-b_2,\cdots,b_{201}-b_{200}$ 中至少有 100 个为正数, 求 d 的取值范围.
- 169. 已知集合 $A = \{1, 3, m\}, B = \{3, 5\},$ 且 $B \subseteq A$, 则实数 m 的值是______.
- 170. 函数 $f(x) = \sqrt{1 \frac{2}{x}}$ 的定义域是_____.
- 171. 函数 $y = 2^x (x \ge 2)$ 的反函数是_____.
- 172. 如果圆锥的底面积为 π , 母线长为 2, 那么该圆锥的高为
- 173. 二项式 $(\sqrt[3]{x} \frac{2}{x})^8$ 的展开式中的常数项为______.
- 174. 某班从 4 位男生和 3 位女生志愿者选出 4 人参加校运会的点名签到工作,则选出的志愿者中既有男生又有女生的概率的是______(结果用最简分数表示).

175.	在复平面内,三点 A 、 B 、 C 分别对应复数 z_A 、 z_B 、 z_C ,若 $\frac{z_B-z_A}{z_C-z_A}=1+\frac{4}{3}$ i,则 $\triangle ABC$ 的三边长之比为
176.	已知函数 $f(x)=\sin(\omega x+\frac{\pi}{6}),\ \omega>0,$ 若函数 $f(x)$ 满足 $f(x)=f(x+12),\ x\in\mathbf{R}$ 恒成立,且在"任意两个相邻奇数所形成的闭区间"内总存在至少两个零点,则 ω 的最小值为
	在 $\triangle ABC$ 中,角 A 、 B 、 C 所对的边分别为 a 、 b 、 c , 如果对任意的实数 λ , $ \overrightarrow{BA} - \lambda \overrightarrow{BC} \ge \overrightarrow{BC} $ 恒成立,则 $\frac{c}{b} + \frac{b}{c}$ 的最大值是

- 178. 在边长为 1 的正方形 ABCD 中, P、Q 分别为边 BC、CD 上的动点, 如果 $\triangle PCQ$ 的周长为定值 2, 那么 $\triangle PAQ$ 的外接圆直径的最小值为______.
- 179. 已知平面直角坐标系中两点 $A(a_1,a_2)$ 、 $B(b_1,b_2)$,有 $S_{\triangle AOB}=\frac{1}{2}|a_1b_2-a_2b_1|$. 设 (x_1,y_1) 、 (x_2,y_2) 、 (x_3,y_3) 是平面曲线 $x^2+y^2=2x-4y$ 上任意三点,则 $T=x_1y_2-x_2y_1+x_2y_3-x_3y_2$ 的最大值为______.
- 180. 对实数 $x \in \mathbf{R}$, 函数 f(x) 满足: $f(x+1) = \sqrt{f(x) f^2(x)} + \frac{1}{2}$, $a_n = f^2(n) f(n)$, 数列 $\{a_n\}$ 的前 15 项和为 $-\frac{31}{16}$, 数列 $\{c_n\}$ 满足 $c_n + c_{n+1} = [f(2019)]^n$, 若数列 $\{c_n\}$ 的前 n 项和 S_n 的极限存在, 则 $c_1 = \underline{\hspace{1cm}}$.
- 181. 关于 x、y 的二元一次方程组 $\begin{cases} 3x + 4y = 1, \\ x 3y = 10 \end{cases}$ 的增广矩阵为 (). $A. \begin{pmatrix} 3 & 4 & -1 \\ 1 & -3 & 10 \end{pmatrix}$ $B. \begin{pmatrix} 3 & 4 & -1 \\ 1 & -3 & -10 \end{pmatrix}$ $C. \begin{pmatrix} 3 & 4 & 1 \\ 1 & -3 & 10 \end{pmatrix}$ $D. \begin{pmatrix} 3 & 4 & 1 \\ 1 & 3 & 10 \end{pmatrix}$
- 182. 已知函数 $f(x) = \cos(3x + \varphi)$ 满足 $f(x) \le f(1)$ 恒成立, 则 ().
 - A. 函数 f(x-1) 一定是奇函数 B.
 - B. 函数 f(x+1) 一定是奇函数

C. 函数 f(x-1) 一定是偶函数

- D. 函数 f(x+1) 一定是偶函数
- 183. 如果一个几何体绕着一条直线旋转 θ 角与原几何体重合, 其中 $0^{\circ} < \theta \le 180^{\circ}$, 称该直线为该几何体的一条旋转轴. 正四面体的不同旋转轴有 ()条.
 - A. 3 B. 4 C. 6 D. 7
- 184. 已知点 P 为椭圆 $\frac{x^2}{9} + \frac{y^2}{16} = 1$ 上的任意一点,点 F_1 、 F_2 分别为该椭圆的上下焦点,设 $\alpha = \angle PF_1F_2$, $\beta = \angle PF_2F_1$,则 $\sin \alpha + \sin \beta$ 的最大值为 ().

A.
$$\frac{3\sqrt{7}}{7}$$
 B. $\frac{4\sqrt{7}}{7}$ C. $\frac{8}{9}$

185. 如图, 四棱柱 $ABCD - A_1B_1C_1D_1$ 中, 侧棱 $AA_1 \perp$ 底面 ABCD, $AB \parallel CD$, $AB \perp AD$, AD = DC = 1, $AA_1 = AB = 2$, E 为棱 AA_1 的中点.

- (1) 求二面角 $B_1 CE C_1$ 的正弦值;
- (2) 设点 M 为线段 C_1E 上, 且直线 AM 与平面 ADD_1A_1 所成角正弦值为 $\frac{\sqrt{2}}{6}$, 求线段 AM 的长.
- 186. 在锐角 $\triangle ABC$ 中, 已知 $\cos A = \frac{5}{13}$, $S_{\triangle ABC} = 6$, 若点 D 是线段 BC 上一点 (不含端点), 过 D 作 $DE \perp AB$ 于 E, $DF \perp AC$ 于 F.

- (1) 求 BC 的取值范围;
- (2) 问点 D 在何处时, $\triangle DEF$ 的面积最大, 最大值为多少?
- 187. 已知各项都不为零的无穷数列 $\{a_n\}$ 满足: $a_{n+1}a_n + a_{n+1} a_n = 0.n \in \mathbb{N}^*$.
 - (1) 证明 $\{\frac{1}{a_n}\}$ 为等差数列, 并求 $a_1 = 1$ 时数列 $\{a_n\}$ 中的最大项;
 - (2) 若 a_{2018} 为数列 $\{a_n\}$ 中的最小项, 求 a_1 的取值范围.
- 188. 已知曲线 $\Gamma: F(x,y) = 0$,对坐标平面上任意一点 P(x,y),定义 F[P] = F(x,y). 若两点 $P \cdot Q$,满足 $F[P] \cdot F[Q] > 0$,称点 $P \cdot Q$ 在曲线 Γ 同侧; 若 $F[P] \cdot F[Q] < 0$,称点 $P \cdot Q$ 在曲线 Γ 两侧.
 - (1) 直线 l: kx y = 0 过原点, 线段 AB 上所有点都在直线 l 同侧, 其中 A(-1,1)、B(2,3), 求直线 l 的倾斜角的取值范围;
 - (2) 已知曲线 $F(x,y) = (3x + 4y 5) \cdot \sqrt{4 x^2 y^2} = 0$, O 为坐标原点, 求点集 $S = \{P|F[P] \cdot F[O] > 0\}$ 的面积;
 - (3) 记到点 (0,1) 与到 x 轴距离和为 5 的点的轨迹为曲线 C, 曲线 $\Gamma: F(x,y)=x^2+y^2-y-a=0$, 若曲线 C 上总存在两点 M、N 在曲线 Γ 两侧, 求曲线 C 的方程与实数 a 的取值范围.
- 189. 设函数 f(x) 在 $[1, +\infty)$ 上有定义, 实数 a 和 b 满足 $1 \le a < b$, 若 f(x) 在区间 (a, b] 上不存在最小值, 则称 f(x) 在区间 (a, b] 上具有性质 P.
 - (1) 当 $f(x) = x^2 + cx$, 且 f(x) 在区间 (1,2] 上具有性质 P, 求实数 c 的取值范围;

- (2) 已知 $f(x+1) = f(x) + 1(x \ge 1)$, 且当 $1 \le x < 2$ 时, f(x) = 1 x, 判别 f(x) 在区间 (1,4] 上是否具有 性质 P;
- (3) 若对于满足 $1 \le a < b$ 的任意实数 a 和 b, f(x) 在区间 (a,b] 上具有性质 P, 且对于任意 $n \in \mathbb{N}^*$, 当 $x \in (n, n+1)$ 时,有|f(n) - f(x)| + |f(x) - f(n+1)| = |f(n) - f(n+1)|,证明: 当 $x \ge 1$ 时,f(2x) > f(x).
- 190. 已知 $\tan \alpha = \frac{1}{2}$, 则 $\tan 2\alpha =$ _____.
- 191. 不等式 $\frac{1}{x-1} > 1$ 的解集为_____.
- 192. 在 $(x \frac{1}{\sqrt[3]{x}})^6$ 的二项展开式中, x^2 项的系数为______.
- . 193. 已知球的体积为 $\frac{4}{3}\pi$, 则该球的左视图所表示图形的面积为_____.
- 194. 己知圆的方程为 $x^2 + y^2 2x 4y + 4 = 0$, 则圆心到直线 l: 3x + 4y + 4 = 0 的距离 d = 0.
- 195. 若关于 x 的实系数一元二次方程 $x^2 bx + c = 0$ 的一根为 1 i(i) 为虚数单位), 则 b + c =______
- 196. 已知 $m \in \mathbb{R}$, 若直线 $l_1: mx + y + 1 = 0$ 与直线 $l_2: 9x + my + 2m + 3 = 0$ 平行, 则 m = 2.
- 197. 己知实数 x, y 满足约束条件 $\begin{cases} x+2y\geq 3,\\ 2x+y\geq 3, & \text{则 } z=x+y \text{ 的最小值是} \\ x>0, & u>0. \end{cases}$
- 198. 设 f(x) 是定义在 R 上的奇函数, 当 x > 0 时, $f(x) = a^x + b(0 < a < 1, b \in \mathbf{R})$, 若 f(x) 存在反函数, 则 b 的取值范围是
- 199. 上海某高校哲学专业的 4 名研究生到指定的 4 所高级中学宣讲习近平新时代中国特色社会主义思想. 若他们 每人都随机地从 4 所学校选择一所, 则 4 人中至少有 2 人选择到同一所学校的概率是_____ (结果用最 简分数表示).
- 200. 在 $\triangle ABC$ 中, 已知 AB=1, AC=2, $\angle A=120^\circ$, 若点 P 是 $\triangle ABC$ 所在平面上一点, 且满足 $\overrightarrow{AP}=1$ $\overrightarrow{AB} + \lambda \overrightarrow{AC}, \overrightarrow{BP} \cdot \overrightarrow{CP} = -1, \text{ Mys } \lambda \text{ hff}$
- 201. 已知定义在 R 上的函数 f(x) 满足 f(x+1) = 2f(x) + 1, 当 $x \in [0,1)$ 时, $f(x) = x^3$. 设 f(x) 在区间 $[n, n+1)(n \in \mathbb{N}^*)$ 上的最小值为 a_n , 若存在 $n \in \mathbb{N}^*$, 使得 $\lambda(a_n+1) < 2n-7$ 成立, 则实数 λ 的取值范围
- 202. 下列以 t 为参数的参数方程中, 其表示的曲线与方程 xy=1 表示的曲线完全一致的是 (

A.
$$\begin{cases} x = t^{\frac{1}{2}}, \\ y = t^{-\frac{1}{2}} \end{cases}$$
 B. $\begin{cases} x = |t|, \\ y = \frac{1}{|t|} \end{cases}$ C. $\begin{cases} x = \cos t, \\ y = \sec t \end{cases}$ D. $\begin{cases} x = \tan t, \\ y = \cot t \end{cases}$ 203. 已知函数 $f(x) = \sin 2x, \ x \in [a, b], \ \emptyset, \ \emptyset, \ \emptyset, \ \emptyset, \ \emptyset$ B. 必要不充分 C. 充要 D. 既不充分也不

- - A. 充分不必要
- B. 必要不充分 C. 充要

D. 既不充分也不必要

204. 某高校举行科普知识竞赛, 所有参赛的 500 名选手成绩的平均数为 82, 方差为 0.82, 则下列四个数据中不可能是参赛选手成绩的是().

A. 60 B. 70 C. 80 D. 100

- 205. 设数列 $\{a_n\}$, 若存在常数 t, 对任意小的正数 s, 总存在正整数 n_0 , 当 $n \ge n_0$ 时, $|a_n t| < s$, 则数列 $\{a_n\}$ 为 收敛数列. 下列关于收敛数列说法正确的是 ().
 - A. 若等比数列 $\{a_n\}$ 是收敛数列, 则公比 $q \in (0,1)$
 - B. 等差数列不可能是收敛数列
 - C. 设公差不为 0 的等差数列 $\{a_n\}$ 前 n 项和为 $S_n(S_n \neq 0)$, 则数列 $\{\frac{1}{S_n}\}$ 一定是收敛数列
 - D. 设数列 $\{a_n\}$ 的前 n 项和为 S_n , 满足 $a_1 = 1$, $S_{n+1} = a_n + 1$, 则数列 $\{a_n\}$ 是收敛数列
- 206. 如图, 已知 AB 为圆柱 OO_1 的底面圆 O 的一条直径, P 为圆周上的一点, OA=2, $\angle BOP=60^\circ$, 圆柱 OO_1 的表面积为 24π .

- (1) 求三棱锥 $A_1 APB$ 的体积;
- (2) 求直线 AP 与平面 A₁PB 所成的角的大小.
- 207. 已知 a 为实数, 函数 $f(x) = x|x a| a, x \in \mathbf{R}$.
 - (1) 当 a=2 时, 求函数 f(x) 的单调递增区间;
 - (2) 若对任意 $x \in (0,1)$, f(x) < 0 恒成立, 求 a 的取值范围.
- 208. 某动物园喜迎虎年的到来,拟用一块形如直角三角形 ABC 的地块建造小老虎的休息区和活动区. 如图, $\angle BAC = 90^\circ$,AB = AC = 20(单位: 米), $E \cdot F$ 为 BC 上的两点,且 $\angle EAF = 45^\circ$, $\triangle AEF$ 区域为休息区, $\triangle ABE$ 和 $\triangle ACF$ 区域均为活动区. 设 $\angle EAB = \alpha(0 < \alpha < 45^\circ)$.

- (1) 求 AE、AF 的长; (用 α 的代数式表示) (2) 为了使小老虎能健康成长,要求所建造的活动区面积尽可能大 (即休息区尽可能小). 当 α 为多少时,活动区的面积最大? 最大面积活动区为多少?
- 209. 在平面直角坐标系中,已知点 $A(0,\sqrt{2})$ 、 $B(0,-\sqrt{2})$,动点 C(x,y) 关于直线 y=x 的对称点为 D,且 \overrightarrow{AD} · $\overrightarrow{BD}=\frac{1}{2}x^2$,动点 C 的轨迹为曲线 E.
 - (1) 求曲线 E 的方程;
 - (2) 已知动点 P 在曲线 E 上, 点 Q 在直线 $y = 2\sqrt{2}$ 上, 且 $\overrightarrow{OP} \cdot \overrightarrow{OQ} = 0$, 求线段 PQ 长的最小值;
 - (3) 过点 $(-\sqrt{2},0)$ 且不垂直于 x 轴的直线交曲线 E 于 M、N 两点,点 M 关于 x 轴的对称点为 M',试问:在 x 轴上是否存在一定点 T,使得 M'、N、T 三点共线? 若存在,求出定点 T 的坐标;若不存在,说明理由.
- 210. 对于数列 $\{a_n\}$, 记 $V(n) = |a_2 a_1| + |a_3 a_2| + \cdots + |a_n a_{n-1}| (n > 1, n \in \mathbb{N}^*)$.
 - (1) 若数列 $\{a_n\}$ 通项公式为: $a_n = \frac{1+(-1)^n}{2} (n \in \mathbf{N}^*)$, 求 V(5);
 - (2) 若数列 $\{a_n\}$ 满足: $a_1=a, a_n=b,$ 且 a>b, 求证: V(n)=a-b 的充分必要条件是 $a_{i+1}\leq a_i(i=1,2,\cdots,n-1);$
 - (3) 已知 V(2022)=2022, 若 $y_t=\frac{1}{t}(a_1+a_2+\cdots+a_t)$, $t=1,2,\cdots,2022$, 求 $|y_2-y_1|+|y_3-y_2|+\cdots+|y_{2022}-y_{2021}|$ 的最大值.
- 211. 函数 $f(x) = 3\cos 2x + 1$ 的最小值为_____.
- 212. 函数 $f(x) = \sqrt{\frac{1-x}{3+x}}$ 的定义域为_____.
- 213. 若集合 $A = \{2, 4, 6, 8\}, B = \{x | x^2 4x \le 0\}, 则 A \cap B = _____.$
- 214. 已知函数 g(x) 的图像与函数 $f(x) = \log_2(3^x 1)$ 的图像关于直线 y = x 对称,则 g(3) =______.
- 215. 设复数 $z=\begin{vmatrix}\cos\alpha & \mathrm{i}\\ \sin\alpha & \sqrt{2}+\mathrm{i}\end{vmatrix}$ (i 为虚数单位),若 $|z|=\sqrt{2}$,则 $\tan2\alpha=$ ______.
- 216. 设 $\triangle ABC$ 的内角 A,B,C 的对边分别为 a,b,c,若 $b=2\sqrt{3},\,c=8,\,A=30^{\circ}$,则 $\sin C=$ _______.
- 217. 已知点 A(3,-2),点 P 满足线性约束条件 $\begin{cases} x+2\geq 0,\\ y-1\leq 0, & \text{设}\ O\ \text{为坐标原点}, \text{则}\ \overrightarrow{OA}\cdot\overrightarrow{OP}\ \text{的最大值为}____ \\ x-2y\leq 4, \end{cases}$
- 218. 若函数 $f(x) = \log_2(2^x + 1) + kx$ 是偶函数, 则 k =_____
- 219. 已知等边 $\triangle ABC$ 的边长为 $2\sqrt{3}$, 点 P 是其外接圆上的一个动点, 则 \overrightarrow{PA} · \overrightarrow{PB} 的取值范围是______.
- 220. 已知函数 $f(x) = \cos(2x \frac{\pi}{6})$,若对于任意的 $x_1 \in [-\frac{\pi}{4}, \frac{\pi}{4}]$,总存在 $x_2 \in [m, n]$,使得 $f(x_1) + f(x_2) = 0$,则 |m n| 的最小值为______.
- 221. 已知 AB 为单位圆 O 的一条弦, P 为单位圆 O 上的点, 若 $f(\lambda)=|\overrightarrow{AP}-\lambda\overrightarrow{AB}|(\lambda\in\mathbf{R})$ 的最小值为 m, 当点 P 在单位圆上运动时, m 的最大值为 $\frac{4}{3}$, 则线段 AB 长度为______.

- 223. 若 O 为坐标原点, P 是直线 x-y+2=0 上的动点, 则 |OP| 的最小值为 ().
 - A. $\frac{\sqrt{2}}{2}$
- B. $\sqrt{2}$

- D. 2
- 224. 若 $|x-a| \le 1$ 成立的一个充分不必要条件是 $1 \le x \le 2$, 则实数 a 的取值范围是 (
 - A. $1 \le a \le 2$
- B. $a \ge 1$
- C. $a \leq 2$
- D. $a \ge 1$ 或 $a \le 2$
- 225. 在正方体 $ABCD A_1B_1C_1D_1$ 中, $P \setminus Q$ 两点分别从点 B 和点 A_1 出发, 以相同的速度在棱 BA 和 A_1D_1 上运动至点 A 和点 D_1 , 在运动过程中, 直线 PQ 与平面 ABCD 所成角 θ 的变化范围为 (

A. $\left[\frac{\pi}{4}, \frac{\pi}{3}\right]$ C. $\left[\frac{\pi}{4}, \arctan \sqrt{2}\right]$

- B. $\left[\arctan \frac{\sqrt{2}}{2}, \arctan \sqrt{2}\right]$ D. $\left[\arctan \frac{\sqrt{2}}{2}, \frac{\pi}{2}\right]$
- 226. 已知函数 $f(x) = m \cdot 2^x + x^2 + nx$, 记集合 $A = \{x | f(x) = 0, \ x \in \mathbf{R}\}$, 集合 $B = \{x | f(f(x)) = 0, \ x \in \mathbf{R}\}$. 若 A = B, 且 $A \cdot B$ 都不是空集, 则 m + n 的取值范围是 (
 - A. [0,4)

- B. [-1,4)
- C. [-3, 5]
- D. [0,7)

- 227. 已知函数 $f(x) = 2\cos^2 x + 2\sqrt{3}\sin x \cos x$.
 - (1) 求 f(x) 的最大值和最小正周期 T;
 - (2) 在 $\triangle ABC$ 中, 内角 A、B、C 所对的边分别为 a、B、C, 已知 $f(\frac{A}{2})=3$, 且 a=1, 求 $\triangle ABC$ 面积的最 大值.
- 228. 已知函数 $f(x) = a \frac{4}{3^x + 1} (a$ 为实常数).
 - (1) 讨论函数 f(x) 的奇偶性, 并说明理由;
 - (2) 当 f(x) 为奇函数时, 对任意的 $x\in[1,5],$ 不等式 $f(x)\geq\frac{u}{3^x}$ 恒成立, 求实数 u 的最大值.
- 229. 如图, 某公园有三条观光大道 $AB \setminus BC \setminus CA$ 围成直角三角形, 其中直角边 BC = 200 m, 斜边 AB = 400 m, 现有甲、乙、丙三位小朋友分别在 AB、BC、AC 大道上嬉戏, 所在位置分别记为点 D、E、F.

- (1) 若甲乙都以每分钟 100m 的速度从点 B 出发在各自的大道上奔走, 到大道的另一端时即停, 乙比甲迟 2 分钟出发, 当乙出发 1 分钟后, 求此时甲乙两人之间的距离;
- (2) 设 $\angle CEF=\theta,$ 乙丙之间的距离是甲乙之间距离的 2 倍,且 $\angle DEF=\frac{\pi}{3},$ 请将甲乙之间的距离 y 表示为 θ 的函数,并求甲乙之间的最小距离.
- 230. 如图, 已知椭圆 $M: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 经过圆 $N: x^2 + (y+1)^2 = 4$ 与 x 轴的两个交点和与 y 轴正半轴的交点.

- (1) 求椭圆 M 的方程;
- (2) 若点 P 为椭圆 M 上的动点, 点 Q 为圆 N 上的动点, 求线段 PQ 长的最大值;
- (3) 若不平行于坐标轴的直线 L 交椭圆 M 于 A、B 两点, 交圆 N 于 C、D 两点, 且满足 $\overrightarrow{AC} = \overrightarrow{DB}$, 求证: 线段 AB 的中点 E 在定直线上.
- 231. 已知函数 f(x) 的定义域为 D, 若存在实常数 λ 及 $a(a \neq 0)$, 对任意 $x \in D$, 当 $x + a \in D$ 且 $x a \in D$ 时, 都有 $f(x + a) + f(x a) = \lambda f(x)$ 成立, 则称函数 f(x) 具有性质 $M(\lambda, a)$.
 - (1) 判断函数 $f(x) = x^2$ 是否具有性质 $M(\lambda, a)$, 并说明理由;
 - (2) 若函数 $g(x) = \sin 2x + \sin x$ 具有性质 $M(\lambda, a)$, 求 λ 及 a 应满足的条件;
 - (3) 已知定义域为 R 的函数 y = h(x) 不存在零点,且具有性质 $M(t + \frac{1}{t}, t)$ (其中 $t > 0, t \neq 1$),记 $a_n = h(n)(n \in \mathbf{N}^*)$,求证:数列 $\{a_n\}$ 为等比数列的充要条件是 $\frac{a_2}{a_1} = t$ 或 $\frac{a_2}{a_1} = \frac{1}{t}$.
- 232. 函数 $y = 3\sin(2x + \frac{\pi}{3})$ 的最小正周期 T =______

- 233. 函数 $y = \lg x$ 的反函数是
- 234. 已知集合 $P = \{x | (x+1)(x-3) < 0\}, Q = \{x | |x| > 2\}, 则 P \cap Q =$
- 235. 函数 $y = x + \frac{9}{x}, x \in (0, +\infty)$ 的最小值是_____.
- 236. 计算: $\lim_{n\to\infty} \left[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \left(\frac{1}{2}\right)^n\right] = \underline{\hspace{1cm}}$
- 237. 记球 O_1 和 O_2 的半径、体积分别为 r_1 、 V_1 和 r_2 、 V_2 ,若 $\frac{V_1}{V_2} = \frac{8}{27}$,则 $\frac{r_1}{r_2} =$ ______.
- 238. 若某线性方程组对应的增广矩阵是 $\binom{m-4-2}{1-m-m}$, 且此方程组有唯一的一组解, 则实数 m 的取值范围是
- 239. 若一个布袋中有大小、质地相同的三个黑球和两个白球,从中任取两个球,则取出的两球中恰是一个白球和一 个黑球的概率是
- 240. $(1+2x)^n$ 的二项展开式中,含 x^3 项的系数等于含 x 项的系数的 8 倍,则正整数 n=______
- 241. 平面上三条直线 x 2y + 1 = 0, x 1 = 0, x + ky = 0, 如果这三条直线将平面划分为六个部分, 则实数 k 的 取值组成的集合 $A = ____$.
- 242. 已知双曲线 $C: \frac{x^2}{9} \frac{y^2}{8} = 1$, 左、右焦点分别为 F_1 、 F_2 , 过点 F_2 作一直线与双曲线 C 的右支交于 P、Q两点, 使得 $\angle F_1 PQ = 90^\circ$, 则 $\triangle F_1 PQ$ 的内切圆的半径 r =______
- 243. 已知点 $B(4,0),\ C(2,2),\$ 平面直角坐标系上的动点 P 满足 $\overrightarrow{OP}=\lambda\cdot\overrightarrow{OB}+\mu\cdot\overrightarrow{OC}$ (其中 O 是坐标原点, 且 $1 < \lambda \le a, 1 < \mu \le b$), 若动点 P 组成的区域的面积为 8, 则 a + b 的最小值是_
- 244. 若向量 $\overrightarrow{a} = (2,0), \ \overrightarrow{b} = (1,1), 则下列结论中正确的是 ().$

A.
$$\overrightarrow{a} \cdot \overrightarrow{b} = 1$$

B.
$$|\overrightarrow{a}| = |\overrightarrow{b}|$$

$$\text{A. } \overrightarrow{a} \cdot \overrightarrow{b} = 1 \\ \text{B. } |\overrightarrow{a}| = |\overrightarrow{b}| \\ \text{C. } (\overrightarrow{a} - \overrightarrow{b}) \perp \overrightarrow{b} \\ \text{D. } \overrightarrow{a} \parallel \overrightarrow{b}$$

D.
$$\overrightarrow{a} \parallel \overrightarrow{b}$$

245. 椭圆的参数方程为 $\begin{cases} x=5\cos\theta, \\ y=3\sin\theta \end{cases} \qquad (\theta\ \mbox{为参数}), 则它的两个焦点坐标是 ().$

A.
$$(\pm 4, 0)$$

B.
$$(0. \pm 4)$$

$$C (\pm 5.0)$$

D.
$$(0, \pm 3)$$

246. 如图几何体是由五个相同正方体叠成的, 其三视图中的左视图序号是().

247. 定义 $F(a,b) = egin{cases} a, & a \leq b, \\ & & ,$ 已知函数 f(x)、 g(x) 定义域都是 $\mathbf{R},$ 给出下列命题: $b, & a > b, \end{cases}$

- (1) 若 f(x)、g(x) 都是奇函数, 则函数 F(f(x),g(x)) 为奇函数
- (2) 若 f(x)、g(x) 都是减函数, 则函数 F(f(x),g(x)) 为减函数;
- (3) 若 $f_{\min}(x) = m$, $g_{\min}(x) = n$, 则 $F_{\min}(f(x), g(x)) = F(m, n)$;
- (4) 若 f(x)、g(x) 都是周期函数, 则函数 F(f(x),g(x)) 是周期函数.

其中正确命题的个数为().

A. 1 个

B. 2 ↑

C. 3 个

D. 4 个

248. 在四棱锥 P-ABCD 中, 底面 ABCD 是边长为 6 的正方形, $PD \perp$ 平面ABCD, PD=8.

- (1) 求 PB 与平面 ABCD 所成角的大小;
- (2) 求异面直线 PB 与 DC 所成角的大小.

249. 复数 $z=(\frac{1}{2}-\frac{\sqrt{3}}{2}\mathrm{i})^2$ 是一元二次方程 $mx^2+nx+1=0(m,n\in\mathbf{R})$ 的一个根.

- (1) 求 m 和 n 的值;
- (2) 若 $(m+ni)\overline{u}+u=z(u\in \mathbb{C})$, 求 u.
- 250. 如图, 经过村庄 A 有两条夹角为 60° 的公路 AB、AC, 根据规划拟在两条公路之间的区域内建一工厂 P, 分别在两条公路边上建两个仓库 M、N(异于村庄 A), 要求 PM = PN = MN = 2(单位: 千米). 记 $\angle MN = \theta$.

- (1) 将 AN、AM 用含 θ 的关系式表示出来;
- (2) 如何设计 (即 AN、AM 为多长时), 使得工厂产生的噪声对居民的影响最小 (即工厂与村庄的距离 AP 最大)?

- 251. 已知椭圆 $C: \frac{x^2}{2} + y^2 = 1$ 的左、右焦点分别为 F_1 、 F_2 .
 - (1) 点 P 在椭圆 C 上运动 (点 P 不在 x 轴上), 设 F_2 关于 $\angle F_1PF_2$ 的外角平分线所在直线的对称点为 Q, 求 Q 的轨迹方程;
 - (2) 设 M、N 分别是曲线 C 上的两个不同点,且点 M 在第一象限,点 N 在第三象限,若 $\overrightarrow{OM} + 2\overrightarrow{ON} = 2\overrightarrow{OF_1}$, O 为坐标原点,求直线 MN 的斜率;
 - (3) 过点 $S(0, -\frac{1}{3})$ 的动直线 l 交曲线 C 于 A、B 两点, 在 y 轴上是否存在定点 T, 使以 AB 为直径的圆恒过这个点? 若存在, 求出点 T 的坐标; 若不存在, 请说明理由.
- 252. 已知无穷数列 $\{a_n\}(a_n \in \mathbf{Z})$ 的前 n 项和为 S_n , 记 S_1 、 S_2 、···、 S_n 中奇数的个数为 b_n .
 - (1) 若 $a_n = n$, 请写出数列 $\{b_n\}$ 的前 5 项;
 - (2) 求证: " a_1 为奇数, $a_i (i = 2, 3, 4, \cdots)$ 均为偶数" 是 "数列 $\{b_n\}$ 是单调递增数列" 的充分不必要条件;
 - (3) 若 $a_i = b_i$, $i = 1, 2, 3, \dots$, 求数列 $\{a_n\}$ 的通项公式.
- 253. 设 $m \in \mathbb{R}$. 已知集合 $A = \{2,3\}, B = \{1,m\}$. 若 $4 m \in A$, 则 m =_____.
- 254. 不等式 |1-x| > 1 的解集是_____.
- 255. 设 $a \in \mathbf{R}$. 若 a 使得函数 $f(x) = \sqrt{8 ax 2x^2}$ 是偶函数, 则函数 y = f(x) 的定义域是_____.
- 256. 已知 $\triangle ABC$ 的三内角 A,B,C 所对的边长分别为 a,b,c, 若 $a^2=b^2+c^2+2bc\sin A$, 则内角 A 的大小 是
- 257. 已知向量 \overrightarrow{a} 在向量 \overrightarrow{b} 方向上的投影为 -2, 且 $|\overrightarrow{b}|=3$, 则 $\overrightarrow{a}\cdot\overrightarrow{b}=$ _____(结果用数值表示).
- 258. 方程 $\log_3 \frac{1}{2^x + 4} + \log_3 (4^x 2) = 0$ 的解 x =_____.
- 259. 已知函数 $f(x) = \begin{vmatrix} \sin x \cos x \\ \cos x \cos x \end{vmatrix}$, 则函数 y = f(x) 的最小正周期是______.
- 261. 已知 α 是实系数一元二次方程 $x^2-(2m-1)x+m^2+1=0$ 的一个虚数根, 且 $|\alpha|\leq 2$, 则实数 m 的取值范围是______.
- 262. 设 $a \in \mathbb{R}$. 若函数 y = f(x) 是奇函数, 且 x > 0 时, f(x) = a(x-1) + 1. 若 y = f(x) 是单调增函数, 则 a 取 值范围为______.
- 263. 已知数列 $\{a_n\}$ 是共有 k 个项的有限数列,且满足 $a_{n+1}=a_{n-1}-\frac{n}{a_n}$ $(n=2,\cdots,k-1)$,若 $a_1=24,$ $a_2=51,$ $a_k=0,$ 则 k=______.
- 264. 设 $\varphi \in (0,\pi)$. 若存在实数 a,b 使得关于 x 的方程 $a\sin(2x+\varphi)+b=0$ 在 $[0,2\pi]$ 时恰有 5 个解, 且解的和 为 $\frac{63}{11}\pi$, 则 $\varphi =$ ______.

- 265. 设 $x \in \mathbb{R}, y \in \mathbb{R}$. 那么 "x > 0" 是 "xy > 0" 的 (
 - A. 充分非必要条件

B. 必要非充分条件

C. 充要条件

D. 既非充分又非必要条件

266. 在某段时间内, 甲地不下雨的概率为 $P_1(0 < P_1 < 1)$, 乙地不下雨的概率为 $P_2(0 < P_2 < 1)$. 若在这段时间内 两地下雨相互独立,则这段时间内两地都下雨的概率为().

A. P_1P_2

B. $1 - P_1 P_2$

C. $P_1(1-P_2)$ D. $(1-P_1)(1-P_2)$

267. 已知梯形 ABCD, $AB \parallel CD$, 设 $\overrightarrow{AB} = \overrightarrow{e_1}$, 向量 $\overrightarrow{e_2}$ 的起点和终点分别是 A, B, C, D 中的两个点, 若对平面 中任意的非零向量 \overrightarrow{a} , 都可以唯一表示为 \overrightarrow{e} , \overrightarrow{e} 的线性组合, 那么 \overrightarrow{e} 的个数为 (

A. 6

B. 8

C. 10

D. 12

268. 在 $\triangle ABC$ 中, BC = a, CA = b, AB = c, 对于下面两个说法: ① 对于任意 $\triangle ABC$, 以 \sqrt{a} , \sqrt{b} , \sqrt{c} 为三边 的三角形存在, 且总是一个锐角三角形; ② 存在一个 $\triangle ABC$, 以 $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ 为三边的三角形是一个钝角三角形. 下面判断正确的是(

A. ①正确, ②错误

B. ①错误, ②正确

C. ①正确, ②正确

D. ①错误, ②错误

269. 如图, 在棱长为 2 的正方体 ABCD - A'B'C'D' 中, E 为 AB 的中点.

- (1) 求证: 直线 AE 平行于平面 CC'D'D;
- (2) 求点 E 到平面 AB'C 的距离.
- 270. 经济订货批量模型, 是目前大多数工厂、企业等最常采用的订货方式, 即某种物资在单位时间的需求量为某常 数, 经过某段时间后, 存储量消耗下降到零, 此时开始订货并随即到货, 然后开始下一个存储周期. 该模型适 用于整批间隔进货、不允许缺货的存储问题. 具体如下:

年存储成本费 T(元) 关于每次订货 x(单位: 吨) 的函数关系为 $T(x) = \frac{Bx}{2} + \frac{AC}{x}$, 其中 A 为年需求量, B 为 每单位物资的年存储费, C 为每次订货费.

某化工厂需用甲醇作为原料, 年需求量为 6000 吨, 每吨存储费为 120 元/年, 每次订货费为 2500 元. (1) 若该 化工厂每次订购 300 吨甲醇, 求年存储成本费;

- (2) 每次需订购多少吨甲醇, 可使该化工厂年存储成本费最少? 最少费用为多少?
- 271. 已知函数 $f(x) = \sin x$.
 - (1) 设 $a \in \mathbf{R}$, 判断函数 $g(x) = a \cdot f(x) + f(x + \frac{\pi}{2})$ 的奇偶性, 并说明理由;
 - (2) 设函数 $F(x)=2f(x)-\sqrt{3}$. 对任意 $b\in\mathbf{R}$, 求 y=F(x) 在区间 $[b,b+100\pi]$ 上零点个数的所有可能值.

272.	双曲线	Γ :	x^2	_	$\frac{y^2}{h^2}$	=	1(b	>	0).
------	-----	------------	-------	---	-------------------	---	-----	---	-----

- (1) 若 Γ 的一条渐近线方程为 y = 2x, 求 Γ 的方程;
- (2) 设 F_1 、 F_2 是 Γ 的两个焦点, P 为 Γ 上一点, 且 $PF_1 \perp PF_2$, $\triangle PF_1F_2$ 的面积为 9, 求 b 的值;
- (3) 已知斜率为 2 的直线与 Γ 交于 A、B 两点,点 M 是线段 AB 的中点,设点 M 的横坐标的集合为 Ω . 若 $\{x|x=2n,\ n\in {\bf N}^*\}\subseteq \Omega$,求正数 b 的取值范围.
- 273. 已知以 a_1 为首项的数列 $\{a_n\}$ 满足: $|a_{n+1}| = |a_n + 1| (n \in \mathbf{N}^*)$.
 - (1) 当 $a_1 = -\frac{1}{3}$ 时, 且 $-1 < a_n < 0$, 写出 a_2, a_3 ;
 - (2) 若数列 $\{|a_n|\}(1 \le n \le 10, n \in \mathbb{N}^*)$ 是公差为 -1 的等差数列, 求 a_1 的取值范围;
 - (3) 设 $a_1 = 0$. 记 S_n 为 $\{a_n\}$ 的前 n 项和, 给定正整数 $m \ge 4$, 求 S_{m-1} 的最小值, 并证明取到最小值的数列 $\{a_n\}$ 不唯一.
- 274. 函数 $y = \log_2(x-2)$ 的定义域为_____.
- 275. 设圆锥的底面半径为 1, 体积为 $\frac{2\sqrt{2}}{3}\pi$, 则该圆锥的侧面积为_____.
- 276. 等差数列 $\{a_n\}$ 中, $a_3 + a_{10} = 25$, 则其前 12 项之和 S_{12} 的值为______
- 277. 幂函数 $y = x^k$ 的图像经过点 $(4, \frac{1}{2})$, 则它的单调减区间为______.
- 278. 三角形 ABC 中, $A = 45^{\circ}$, $B = 75^{\circ}$, AB 边的长为 $2\sqrt{6}$, 则 BC 边的长为______.
- 279. 已知 a 是实数, 方程 $x^2 + 2x + a = 0$ 的两根在复平面上对应的点分别为 P 和 Q. 若三角形 POQ 是等腰直角三角形, 则 a =______.
- 280. 设实数 x, y 满足 $|x| + |y| \le 1$, 则 2x + y 的最大值为______
- 281. 已知偶函数 y = f(x) 的定义域为 R, 且当 $x \ge 0$ 时, f(x) = x 4, 则不等式 $x f(x) \le 5$ 的解为______.
- 282. 等比数列 $\{a_n\}$ 的首项为 1, 公比为 3, 则极限 $\lim_{n\to\infty}\frac{a_1a_2+a_2a_3+\cdots+a_na_{n+1}}{a_1+a_2+\cdots+a_{2n-1}}$ 的值为______.
- 283. 甲乙两人分别投掷两颗骰子与一颗骰子,设甲的两颗骰子的点数分别为 a 与 b, 乙的骰子的点数为 c. 则掷出的点数满足 |a-b|=c 的概率为______(用最简分数表示).
- 284. 已知 a 是实数, 在 $(1+ax)^8$ 的二项展开式中, 第 k+1 项的系数为 $c_{k+1} = C_8^k \cdot a^k$ $(k=0,1,2,3,\cdots,8)$. 若 $c_1 < c_2 < c_3 < \cdots < c_9$,则 a 的取值范围为______.
- 285. 设 $P_1P_2P_3\cdots P_8$ 是平面直角坐标系中的一个正八边形, 点 P_i 的坐标为 (x_i,y_i) $(i=1,2,\cdots,8)$. 集合 $A=\{y|$ 存在 $i\in\{1,2,\cdots,8\}$,使得 $y=y_i\}$,则集合 A 的元素个数可能为______(写出所有可能的值).
- 286. 方程 $2\sin(2x+\frac{\pi}{3})-1=0$ 在区间 $[0,4\pi)$ 上的解的个数为 (). A. 2 B. 4 C. 6 D. 8

287. 已知直线 l 平行于平面 α , 平面 β 垂直于平面 α . 则以下关于直线 l 与平面 β 的位置关系的表述, 正确的是 ().

A. l 与 β 不平行

B. l 与 β 不相交

C. l 不在平面 β 上

D. $l \in \beta$ 上, 与 β 平行, 与 β 相交都有可能

288. 设三角形 ABC 是位于平面直角坐标系 xOy 的第一象限中的一个不等边三角形. 该平面上的动点 P 满足: $|PA|^2 + |PB|^2 + |PC|^2 = |OA|^2 + |OB|^2 + |OC|^2.$ 已知动点 P 的轨迹是一个圆, 则该圆的圆心位于三角形 ABC 的 ().

A. 内心

B. 外心

C. 重心

D. 垂心

289. 已知 y = f(x) 与 y = g(x) 皆是定义域、值域均为 R 的函数. 若对任意 $x \in \mathbf{R}$, f(x) > g(x) 恒成立,且 y = f(x) 与 y = g(x) 的反函数 $y = f^{-1}(x)$ 、 $y = g^{-1}(x)$ 均存在. 命题 P: "对任意 $x \in \mathbf{R}$, $f^{-1}(x) < g^{-1}(x)$ 恒成立";命题 Q: "函数 y = f(x) + g(x) 的反函数一定存在". 以下关于这两个命题的真假判断,正确的是 ().

A. 命题 P 真, 命题 Q 真

B. 命题 P 真, 命题 Q 假

C. 命题 P 假, 命题 Q 真

D. 命题 P 假, 命题 Q 假

290. 如图, 空间几何体由两部分构成, 上部是一个底面半径为 1, 高为 2 的圆锥, 下部是一个底面半径为 1, 高为 2 的圆柱. 圆锥和圆柱的轴在同一直线上, 圆锥的下底面与圆柱的上底面重合. 点 P 是圆锥的顶点, AB 是圆柱下底面的一条直径, AA₁、BB₁ 是圆柱的两条母线. C 是弧 AB 的中点.

- (1) 求异面直线 PA_1 与 BC 所成的角的大小;
- (2) 求点 B_1 到平面 PAC 的距离.
- 291. 已知 α, λ 是实常数, $f(x) = \begin{vmatrix} \lambda \cos x \sin(x \alpha) \\ \sin(x + \alpha) \cos x \end{vmatrix}$.
 - (1) 当 $\lambda=1,\,\alpha=\frac{\pi}{3}$ 时, 求函数 y=f(x) 的最小正周期、单调增区间与最大值;
 - (2) 是否存在 λ , 使得 f(x) 是与 α 有关的常数函数 (即 f(x) 的值与 x 的取值无关)? 若存在, 求出所有满足条件的 λ ; 若不存在, 说明理由.

- 292. 已知 a 是实常数, a > 0, $f(x) = ax 1 + \frac{1}{x^2}$.
 - (1) 当 a=2 时, 判断函数 y=f(x) 在区间 $[1,+\infty)$ 上的单调性, 并说明理由;
 - (2) 写出一个 a 的值, 使得 f(x) = 0 在区间 $(0, +\infty)$ 上有至少两个不同的解, 并严格证明你的结论.
- 293. 设抛物线 Γ 的方程为 $y^2=2px$, 其中常数 p>0. F 是抛物线 Γ 的焦点.
 - (1) 若直线 x=3 被抛物线 Γ 所載得的弦长为 6, 求 p 的值;
 - (2) 设 A 是点 F 关于顶点 O 的对称点. P 是抛物线 Γ 上的动点, 求 $\frac{|PA|}{|PF|}$ 的最大值;
 - (3) 设 p=2, l_1 , l_2 是两条互相垂直, 且均经过点 F 的直线. l_1 与抛物线 Γ 交于点 A、B, l_2 与抛物线交于点 C、D. 若点 G 满足 $4\overrightarrow{FG} = \overrightarrow{FA} + \overrightarrow{FB} + \overrightarrow{FC} + \overrightarrow{FD}$, 求点 G 的轨迹方程.
- 294. 设各项均为整数的无穷数列 $\{a_n\}$ 满足: $a_1=1$, 且对所有 $n\in {\bf N}^*$, 均成立 $|a_{n+1}-a_n|=n$.
 - (1) 写出 a4 的所有可能值 (不需要写计算过程);
 - (2) 若 $\{a_{2n-1}\}$ 是公差为 1 的等差数列, 求 $\{a_n\}$ 的通项公式;
 - (3) 证明: 存在满足条件的数列 $\{a_n\}$, 使得在该数列中, 有无穷多项为 2019.