Trabajo 2

Ivan Santiago Rojas Martinez

Estudiante de Pregrado en Estadística

Docente

Rene Iral Palomino

Asignatura

Introducción al Análisis Multivariado

Sede Medellín Octubre 21 de 2023

-					
т		1	•		
•	${f n}$	$\boldsymbol{\alpha}$	1	c	Δ
	11	u	. 1	v	u

1	Parte A	2
2	Parte B	2
Ín	ndice de figuras	
Ín	idice de cuadros	

Trabajo 2

1 Parte A

2 Parte B

Para todos los efectos el vector $X=(P_1,P_7,P_{16},P_{22},P_{25},P_{27},P_{29},P_{38})$ contiene las variables continuas de su base de datos. Por notación sea el respectivo $\mu=(\mu_1,\mu_2,\mu_3,\mu_4,\mu_5,\mu_6,\mu_7,\mu_8)$ vector de medias y Σ su matriz de covarianzas.

Se procede a tomar la muestra aleatoria con la cedula **1020479466** y a seleccionar las variables numéricas.

```
library(splitstackshape)
uno <- read.table("Data/base.txt", header = TRUE)
genera <- function(cedula){
set.seed(cedula)
aux <- stratified(uno, "CAT_IMC", 200/2100)
aux
}
datos <- genera(1020479466)
x <- datos %>% select(P1, P7, P16, P22, P25, P27, P29, P38)
```

1. (**10 pts**.) Sea $\mu_0 = (66.1, 58, 81.6, 37, 47, 25, 19.2, 167)'$. Pruebe la hipótesis: $H_0: \mu = \mu_0$. Debe especificar todas las condiciones y elementos para probar esta hipótesis. Anexe los códigos en R usados.

Primero procederemos a verificar si el vector de variables se distribuye normal por medio de la prueba estadística Shapiro-Wilk de normalidad multivariada.

```
##
## Shapiro-Wilk normality test
##
## data: Z
## W = 0.9307, p-value = 4.09e-08
```

Observando un $Valor P = 4.09 \times 10^{-8}$, podemos rechazar la hipótesis nula con un nivel de significancia de $\alpha = 0.05$ lo que nos permite concluir que X no cumple normalidad multivariada. Basado en el **Teorema del limite central** sabemos que si se tiene:

$$\overline{\mathbf{X}}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i \ \mathrm{y} \ \mathbf{Z}_n = \sqrt{n} \left(\overline{\mathbf{X}}_n - \boldsymbol{\mu} \right)$$

Luego:

$$\mathbf{Z}_n \stackrel{d}{\to} N_p(\mathbf{0}, \boldsymbol{\Sigma}).$$

con $\Sigma > 0$:

$$\tilde{\mathbf{Z}}_{n} = \mathbf{\Sigma}^{-\frac{1}{2}} \sqrt{n} \left(\overline{\mathbf{X}}_{n} - \boldsymbol{\mu} \right) \stackrel{d}{\rightarrow} N_{p} \left(\mathbf{0}, I_{p} \right)$$

У

$$n\left(\overline{\mathbf{X}}_n - \boldsymbol{\mu}\right)' S^{-1}\left(\overline{\mathbf{X}}_n - \boldsymbol{\mu}\right) \stackrel{d}{\to} \chi^2(p)$$

Bajo H_0 cierta. El estadístico de prueba es:

$$\chi_0^2 = n \left(\bar{X} - \mu_0 \right)' S^{-1} \left(\bar{X} - \mu_0 \right)$$

Se define las siguientes pruebas de hipótesis:

$$H_0: \mu = \mu_0 \ vs \ H_a: \mu \neq \mu_0$$

Se procede a hallar el vector de medias muestral \bar{X} y la matriz de covarianzas muestral S en R.

```
xbar <- colMeans(x)
s <- cov(x)
n <- nrow(x)
p <- length(x)
mu_0<- as.matrix(c(mu_0))
chi_0 <- as.numeric(n*(t(xbar-mu_0)) %*%solve(s) %*%(xbar-mu_0))
chi_0</pre>
```

[1] 1603.695

Se plantea una región de rechazo de H_0 dada por:

$$X_0^2 > X_\alpha^2(p)$$

[1] 15.50731

Dado que la prueba nos arroja $X_0^2=1603.695>X_{0.05}^2(8)=15.50731$ con un nivel de significancia de $\alpha=0.05$. Se rechaza H_0 , lo que nos permite concluir que existen diferencia entre el vector μ y μ_0 .