RNAseq Data Analysis

MSU Workshop

Rama Shankar

ramashan@msu.edu

Outline

- I. Introduction of RNAseq
- II. RNA isolation and library preparation
- III. RNAseq data analysis
- IV. Demo of RNAseq data analysis on MSU HPCC

I. Introduction of RNAseq

Probing cells with sequencing technologies

Types of RNA

mRNA lncRNA (long non-coding RNA)

microRNA (small RNAseq)
Circular RNA
rRNA
tRNA
snoRNA
piRNA

II. RNA isolation and library preparation

RNA isolation

Quality check of RNA

mRNA enrichment using poly dT beads

mRNA enrichment using ribosomal RNA depletion

Short reads vs long reads

Long read vs short read platforms

Oxford Nanopore (long read)

Illumina genome analyzer (short read)

IIA. From RNA to long reads

Principle of Nanopore sequencing

Library preparation and sequencing workflow for Nanopore

2D (template strand is sequenced), 1D (where each strand is ligated with an adapter and sequenced independently) and 1D² (special adapter ligated to sequence one followed by another one)

IIB. From RNA to short reads

RNAseq library construction for Illumina (short reads)

Overview of Illumina sequencing

Sequencing by Synthesis

<u>Picture is from https://www.eurofinsgenomics.co.in/en/eurofins-genomics/product-faqs/next-generation-sequencing/general-technical-questions/what-is-the-principal-of-the-illumina-sequencing-technology.aspx</u>

https://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf (Documentation from illumina)

https://www.youtube.com/watch?v=fCd6B5HRaZ8

Strandness matters

DNA is double-stranded, both strand could be transcribed.

If an RNA fragment comes from the dashed region, it is hard to know its original gene without strand information.

Nonstranded vs Stranded library

Ref: Zhao *et al*. Comparison of stranded and non-stranded RNA-seq transcriptome profiling and investigation of gene overlap. (BMC Genomics, 2015)

Single-end vs Paired-end

Output of RNAseq

- 1. According to sequencing mode, single-end or paired-end read.
- 2. Typical read length: 50bp, 75bp, 100bp.
- 3. Reads are usually stored in FASTQ format.

Preparation of RNAseq experiments

- 1. Sequencing depth (library size): deeper is better! Usually > 20 million reads should be OK (from illumina).
- 2. Stranded vs Non-stranded: Strand-specific is recommended.
- 3. SE vs PE: consider PE if you have enough budget. For gene expression analysis, SE also works well.
- 4. Technical replicates, the more the better (at least three).
- 5. Longer read length is better.

Q&A

III. RNAseq data analysis

RNA-seq data analysis

- 1. Data quality checking.
- 2. Read mapping.
- 3. Quantification of gene expression.
- 4. Differential gene expression analysis.
- 5. Interpretation of DE analysis results.

Quality check of reads using FastQC

Phred quality score

```
+SEQ_ID
!''*((((***+))%%%++)(%%%%).1**
```

A quality value Q is an integer representation of the probability p that the corresponding base call is incorrect.

$$Q = -10 \log_{10} P$$
 \longrightarrow $P = 10^{\frac{-Q}{10}}$

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10000	99.99%
50	1 in 100000	99.999%

Good and bad quality of sequencing reads

Per base sequence quality

Data quality checking and removing the contaminations

RNAseq reads quality

Adapter removal

Insert size < read length

Trimming the reads

For paired end: Bbduk, Skewer, HTStream, and FASTP

For single end: Cutadapt, HTStream, and BBduk

Software for data quality checking

- 1. We use fastqc to run data quality checking.
- 2. Available at

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

fastqc xx.fastq

Tools used for long reads mapping

- Minimap2
- LAST
- NGMLR
- GraphMap

Tools used for short reads mapping

- STAR (Spliced Transcripts Alignment to a Reference)
- Kallisto
- BWA (Burrows-Wheeler Aligner)

Read mapping (single-end)

The process to align short RNAseq reads with the genome (transcriptome) sequence.

Read mapping (paired-end)

Quantification of gene expression (raw read count)

Problem of raw read count

- 1. NOT comparable between different experiments (library size matters).
- 2. NOT comparable between different genes (gene length matters).

Quantification of gene expression (RPKM and FPKM)

RPKM: Reads Per Kilobase Per million mapped reads (single-end).

FPKM: Fragments Per Kilobase Per million mapped reads (paired-end).

C = Number of reads (fragments) mapped to a gene N = Total number of mapped reads (fragments) in the experiment

L = Exon length in base-pairs for a gene

$$RPKM = (10^9 * C) / (N * L)$$

Problem of RPKM (FPKM)

Isoform matters

Suppose we want to compute RPKM for the **purple** gene

$$RPKM = (10^9 * C)/(N * L) = 10^9 * (C / N) * (1 / L)$$

C = Number of reads mapped to a gene

N = Total number of mapped reads in the experiment

L = Exon length in base-pairs for a gene

C / N: proportion of reads coming from a gene

rl: read length RNAseq experiment

Lp: isoform length (purple)

Lr: isoform length (red, exp1)

Lrs: isoform length (red, exp2)

$$P1 = Lp * 2 / rl$$
 $R1 = Lr * 4 / rl$ $P2 = Lp * 2 / rl$ $R2 = Lrs * 4 / rl$

$$RPKM1 = 10^9 * (P1/(P1+R1)) * 1 / Lp$$

 $RPKM2 = 10^9 * (P2/(P2+R2)) * 1 / Lp$

Quantification of gene expression (TPM)

TPM: Transcripts Per Million.

Given a Gene Gi, compute $T_i = C_i / L_i$

C_i: Number of reads mapped to the gene

L_i: Exon length in base-pairs for the gene

$$TPM_i = 10^6 * T_i / (T_1 + T_2 + T_n)$$

Wagner et al. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples.

TPM vs RPKM

Original data:

Gene Name	Rep1 Counts	Rep2 Counts	Rep3 Counts
A (2kb)	10	12	30
B (4kb)	20	25	60
C (1kb)	5	8	15
D (10kb)	0	0	1

Consider 3 pies, each the same size (10).

A 3.33 sized slice is the same in each pie, and is always larger than 3.32.

TPM makes it clear that in Rep1, more of its total reads mapped to gene A than in Rep3.

TPM

Gene Nam	Rep1 TRM	Rep2 TPM	Rep3 TPM
A (2kb)	3.33	2.96	3.326
B (4kb)	3.33	3.09	3.326
C (1kb)	3.33	3.95	3.326
D (10kb)	0	0	0.02
Total:	10	10	10

RPKM

Gene Name	Rep1 RPKM	Rep2 RPKM	Rep3 RPKM
A (2kb)	1.43	1.33	1.42
B (4kb)	1.43	1.39	1.42
C (1kb)	1.43	1.78	1.42
D (10kb)	0	0	0.009

Total: 4.29

4.5

4.25

With RPKM, it is harder to compare the proportion of total reads because each replicate has different total (each pie has a different size)

A 1.43 size slice represents a different proportion of reads in in different pies.

Relationship between RPKM (FPKM) and TPM

$$TPM_i = RPKM_i / Sum (RPKM)$$

Ref: https://rnajournal.cshlp.org/content/early/2020/04/13/rna.074922.120.full.pdf

Core analysis

- 1. Data quality checking.
- 2. Read mapping.
- 3. Quantification of gene expression.
- 4. Differential gene expression analysis (R).
- 5. Interpretation of DE analysis results.

Data quality checking

- 1. We use fastqc to run data quality checking.
- 2. Available at https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

fastqc xx.fastq

Quantification of gene expression

Quantification of gene expression

Quantification of gene expression

Preparation of index files

```
Genome sequence (from NCBI):
ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_genbank/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh38/seqs_for_alig
nment pipelines/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
Genome annotation file (from GENCODE):
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_23/gencode.v23.annotation.gtf.gz
 STAR --runThreadN 32
        --runMode genomeGenerate \
        --genomeDir STAR.index \
        --genomeFastaFiles GCA 000001405.15_GRCh38_no_alt_analysis_set.fna \
        --sjdbGTFfile gencode.v23.annotation.gtf
 rsem-prepare-reference -p 4
                           gencode.v23.annotation.gtf
                    --gtf
                            GCA 000001405.15_GRCh38_no_alt_analysis_set.fna
                            RSEM.index/hg38.RSEM.index
```

Code to run the mapping using STAR aligner

```
STAR --genomeDir /ensembl38_STAR_index/
--runThreadN 6 \
--readFilesIn Mov10_oe_R1.subset.fq Mov10_oe_R2.subset.fq \
--outFileNamePrefix ../results/STAR/Mov10_oe_1_\
--outSAMtype BAM SortedByCoordinate \
--outSAMunmapped Within \
--outSAMattributes Standard
```

STAR aligner output

Quantify the read count, TPM count and FPKM count

```
Rsem-calculate-expression \
    --no-bam-output \
    --quiet \
    --no-qualities \
    -p 8 \
    --seed-length 25 \
    --bam \
    --paired-end tmp/sample/Aligned.toTranscriptome.out.bam \
    $RSEM_INDEX \
    RSEM.output/sample.txt
```

RSEM-gene-count output

gene_id	transcript_id(s)	length	effective_length	expected_count	TPM	FPKM
ENSG0000000003.14	ENST00000373020.8,ENST00000494424.1,ENST00000496771.5,ENST0000061215	2232.08	1949.92	507	21.37	16.94
ENSG0000000005.5	ENST00000373031.4,ENST00000485971.1	940.5	659.64	0	0	0
ENSG00000000419.12	ENST00000371582.8,ENST00000371584.8,ENST00000371588.9,ENST0000041308	1080.86	798.7	1030	106	84.01
ENSG00000000457.13	ENST00000367770.5,ENST00000367771.10,ENST00000367772.8,ENST000004236	3552.99	3270.82	322.57	8.11	6.42
ENSG00000000460.16	ENST00000286031.10,ENST00000359326.8,ENST00000413811.3,ENST000004597	2094.04	1811.95	266.43	12.09	9.58
ENSG00000000938.12	ENST00000374003.7,ENST00000374004.5,ENST00000374005.7,ENST0000039917	1735.29	1453.21	0	0	0
ENSG00000000971.15	ENST00000359637.2,ENST00000367429.8,ENST00000466229.5,ENST0000047091	2516.93	2234.77	491	18.06	14.31
ENSG0000001036.13	ENST00000002165.10,ENST00000367585.1,ENST00000451668.1	2310.54	2028.39	1246.83	50.53	40.04
ENSG0000001084.10	ENST00000229416.10,ENST00000504353.1,ENST00000504525.1,ENST000005051	2397.67	2116.53	759	29.48	23.36
ENSG00000001167.14	ENST00000341376.10,ENST00000353205.5	2873.33	2591.16	601	19.07	15.11
ENSG0000001460.17	ENST00000003583.12,ENST00000337248.8,ENST00000374409.5,ENST000004351	2419.78	2137.65	150	5.77	4.57
ENSG0000001461.16	ENST00000003912.7,ENST00000339255.2,ENST00000358028.8,ENST0000037439	3891.98	3609.82	907	20.65	16.37
ENSG0000001497.16	ENST00000374804.9,ENST00000374807.9,ENST00000374811.7,ENST0000046909	2360.35	2078.42	1536	60.75	48.14
ENSG0000001561.6	ENST00000321037.4	4651	4368.83	200	3.76	2.98
ENSG00000001617.11	ENST00000002829.7,ENST00000413852.5,ENST00000414301.5,ENST0000042083	3300.24	3018.08	258	7.03	5.57
ENSG00000001626.14	ENST0000003084.10,ENST00000426809.5,ENST00000429014.1,ENST000004468	5207.91	4925.92	2667	44.5	35.27
ENSG0000001629.9	ENST00000265742.7,ENST00000413588.1,ENST00000422095.1,ENST0000043988	4820.71	4538.85	1338	24.23	19.2
ENSG0000001630.15	ENST0000003100.12,ENST00000422867.1,ENST00000435873.1,ENST000004507	2898.46	2616.3	1178	37.01	29.33
ENSG0000001631.14	ENST00000340022.6,ENST00000394503.6,ENST00000394505.6,ENST0000039450	2597.49	2315.46	523.65	18.59	14.73
ENSG00000002016.16	ENST00000228345.9,ENST00000358495.7,ENST00000397230.6,ENST0000043009	1486.5	1207.08	75.14	5.12	4.06
ENSG00000002079.12	ENST00000413734.1,ENST00000425880.1,ENST00000429079.1,ENST0000043978	1368.26	1090.4	21	1.58	1.25
ENSG00000002330.13	ENST00000309032.7,ENST00000394531.3,ENST00000394532.7,ENST0000049214	892.39	610.71	604.95	81.42	64.53
ENSG00000002549.12	ENST00000226299.8,ENST00000503467.1,ENST00000504614.5,ENST0000050796	1908.17	1626	1027	51.92	41.14
ENSG00000002586.17	ENST00000381177.5,ENST00000381180.7,ENST00000381184.5,ENST0000038118	1194.92	912.76	549	49.44	39.18
ENSG00000002587.9	ENST00000002596.5,ENST00000510712.1,ENST00000514690.5	6776.5	6495.05	1076	13.62	10.79
ENSG00000002726.19	ENST00000360937.8,ENST00000416793.6,ENST00000460213.1,ENST0000046729	2572.25	2290.08	1888	67.77	53.7

Q&A

III. Demo of RNAseq data analysis on MSU HPCC

Starting the OnDemand on HPCC

Dear HPCC users,

It is now possible for users to access HPCC resources via internet browsers. Many new users will attempt to log into HPCC via the wiki page: docs.icer.msu.edu/. However, HPCC users are not able to login to the HPCC via the wiki pages. Instead, to access HPCC via a web browser, use the following portal:

HPCC OnDemand, login portal: https://ondemand.hpcc.msu.edu/@

This is our new web access to HPCC resources. To see its features and how to use it, please visit "Open OnDemand" wiki page.

https://ondemand.hpcc.msu.edu/

Login on OnDemand HPCC

Request to start Interactive Desktop

Home / My Interactive Sessions / Interactive Desktop (Legacy) Interactive Desktop (Legacy) **Interactive Apps** This app will launch an interactive desktop on one or more Desktops compute nodes. You will have full access to the resources □ Interactive these nodes provide. This is analogous to an interactive Desktop batch job. Number of hours □Interactive Desktop (Legacy) 5 GUIs Jobs shorter than four hours will schedule much faster ▲ MATLAB Number of cores per task ▲ MATLAB (Legacy) 5 ParaView Amount of memory 50GB E.g. 100GB or 500MB. 750MB per core if left blank. RStudio (Legacy) ☐ I would like to receive an email when the session starts Stata □ Advanced Options Stata (Legacy) Launch Servers

Lunch Interactive Desktop on HPCC

Access terminal on Interactive Desktop

Available versions of STAR package on HPCC

```
[ramashan@css-075 ~]$ module spider STAR
 STAR:
   Description:
      STAR aligns RNA-seg reads to a reference genome using uncompressed suffix arrays.
     Versions:
        STAR/2.6.0c
        STAR/2.6.1c
        STAR/2.7.2b
        STAR/2.7.3a
        STAR/2.7.9a
        STAR/2.7.10b
     Other possible modules matches:
        stars
 To find other possible module matches execute:
      $ module -r spider '.*STAR.*'
 For detailed information about a specific "STAR" package (including how to load the modules) u
se the module's full name.
 Note that names that have a trailing (E) are extensions provided by other modules.
 For example:
    $ module spider STAR/2.7.10b
```

Loading of STAR package on HPCC

```
[ramashan@css-075 ~]$ module spider STAR/2.7.10b
  STAR: STAR/2.7.10b
    Description:
      STAR aligns RNA-seq reads to a reference genome using uncompressed suffix arrays.
    You will need to load all module(s) on any one of the lines below before the "STAR/2.7.10b"
module is available to load.
      GCC/11.3.0
    Help:
      Description
      STAR aligns RNA-seg reads to a reference genome using uncompressed suffix arrays.
      More information

    Homepage: https://github.com/alexdobin/STAR
```

[ramashan@css-075 ~]\$ module purge [ramashan@css-075 ~]\$ module load GCC/11.3.0 STAR/2.7.10b

Loading of RSEM package on HPCC

```
[ramashan@css-075 ~]$ module spider RSEM
  RSEM:
   Description:
      RNA-Seq by Expectation-Maximization
    Versions:
        RSEM/1.3.0
        RSEM/1.3.1
        RSEM/1.3.3
[ramashan@css-075 ~]$ module spider RSEM/1.3.3
  RSEM: RSEM/1.3.3
    Description:
      RNA-Seq by Expectation-Maximization
    You will need to load all module(s) on any one of the lines below before the "RSEM/1.3.3" mo
dule is available to load.
      GCC/11.2.0 OpenMPI/4.1.1
      GCC/11.3.0 OpenMPI/4.1.4
      GCC/8.3.0 OpenMPI/3.1.4
```

[ramashan@css-075 ~]\$ module load GCC/11.3.0 OpenMPI/4.1.4 RSEM/1.3.3

Loading R on HPCC

[ramashan@css-075 ~]\$ module spider R

```
Versions:
  R/3.3.1
  R/3.4.3-X11-20160819
  R/3.4.3-X11-20171023
                                                                      [ramashan@css-075 ~]$ module spider R/4.2.1
  R/3.4.3xF
  R/3.4.3xS
  R/3.4.4-X11-20180131
                                             R: R/4.2.1
  R/3.5.0-X11-20180131
  R/3.5.1-X11-20180131
                                               Description:
  R/3.5.1-X11-20180604
                                                 R is a free software environment for statistical computing and graphics.
  R/3.6.0-X11-20180604
  R/3.6.2-X11-20180604
                                               You will need to load all module(s) on any one of the lines below before the "R/4.2.1" modul
  R/3.6.2
                                            e is available to load.
  R/3.6.3
  R/4.0.0-X11-20180604
                                                 GCC/11.3.0 OpenMPI/4.1.4
  R/4.0.0
  R/4.0.2.bak
  R/4.0.2.test
  R/4.0.2-X11-20180604
  R/4.0.2
  R/4.0.3
                                             [ramashan@css-075 ~]$ module load GCC/11.3.0 OpenMPI/4.1.4 R/4.2.1
  R/4.1.0
  R/4.1.2
  R/4.2.1
  R/4.2.2
  R/4.3.1
Other possible modules matches:
  ADMIXTURE AMDuProf APR APR-util Abaqus parallel AdapterRemoval Advisor ...
```

Test the loaded module

```
ramashan@dev-amd20-v100:~/data/RNASeq test$ STAR
Usage: STAR [options]... --genomeDir /path/to/genome/index/ \
--readFilesIn R1.fg R2.fg
Spliced Transcripts Alignment to a Reference (c) Alexander Dobin, 2009-2022
STAR version=2.7.11b
STAR compilation time, server, dir=2024-07-18T13:18:20-04:00 dev-intel14:/tmp/
panchyni/easybuild/easybuild/build/STAR/2.7.11b/GCC-13.2.0/STAR-2.7.11b/source
For more details see:
<https://github.com/alexdobin/STAR>
<https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf>
To list all parameters, run STAR ——help
```

Create reference index file for STAR and RSEM

```
[ramashan@skl-162 RNASeq test]$ STAR --runThreadN 32 --runMode genomeGenerate --genomeDir Gen
ome/ --genomeFastaFiles Genome/fasta/genome.fa --sjdbGTFfile Genome/genes/genes.gtf
        STAR --runThreadN 32 --runMode genomeGenerate --genomeDir Genome/ --genomeFastaFiles
Genome/fasta/genome.fa --sjdbGTFfile Genome/genes/genes.gtf
        STAR version: 2.7.10b compiled: 2023-09-22T17:53:50-0400 dev-intel18:/tmp/panchyni/
EASYBUILD/STAR/2.7.10b/GCC-11.3.0/STAR-2.7.10b/source
Aug 01 15:34:04 .... started STAR run
Aug 01 15:34:04 ... starting to generate Genome files
Aug 01 15:34:48 .... processing annotations GTF
Aug 01 15:35:15 ... starting to sort Suffix Array. This may take a long time...
Aug 01 15:35:30 ... sorting Suffix Array chunks and saving them to disk...
Aug 01 16:24:53 ... loading chunks from disk, packing SA...
Aug 01 16:25:56 ... finished generating suffix array
Aug 01 16:25:56 ... generating Suffix Array index
Aug 01 16:28:56 ... completed Suffix Array index
Aug 01 16:28:57 ..... inserting junctions into the genome indices
Aug 01 16:32:13 ... writing Genome to disk ...
Aug 01 16:32:14 ... writing Suffix Array to disk ...
Aug 01 16:32:23 ... writing SAindex to disk
Aug 01 16:32:24 .... finished successfully
```

[ramashan@css-075 ~]\$ rsem-prepare-reference -p 4 --gtf Genome/genes/genes.gtf Genome/fasta/Genome.fa hg38

Running bulk.rna.seq.pipeline.R to process the samples

```
[ramashan@skl-162 HUMAN JUL24]$ Rscript chenlab.bulk.rna.seq.pipeline.R sample.name.txt
Loading required package: data.table
Loading required package: plyr
Loading required package: dplyr
Attaching package: 'dplyr'
The following objects are masked from 'package:plyr':
    arrange, count, desc, failwith, id, mutate, rename, summarise,
    summarize
The following objects are masked from 'package:data.table':
    between, first, last
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
   intersect, setdiff, setequal, union
Loading required package: foreach
Loading required package: parallel
Loading required package: doParallel
Loading required package: iterators
[1] "sample HT29.Ctr1 finished!"
[1] "sample HT29.Ctr2 finished!"
[1] "sample HT29.Ctr3 finished!"
[[1]]
[1] "sample HT29.Ctr1 finished!"
[[2]]
[1] "sample HT29.Ctr2 finished!"
[[3]]
[1] "sample HT29.Ctr3 finished!"
```

Raw read count in processed samples

•	HT29_CPN_OE1 [‡]	HT29_CPN_OE2 [‡]	HT29_CPN_OE3 [‡]	HT29_Ctr1 [‡]	HT29_Ctr2 [‡]	HT29_Ctr3 [‡]
ENSG0000000003	9.192293	9.269127	9.330917	8.988685	8.965784	9.157347
ENSG0000000005	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
ENSG00000000419	10.051209	10.317413	10.323055	10.009829	10.125413	10.317413
ENSG00000000457	8.463851	8.578826	8.552439	8.337934	8.354602	8.283551
ENSG00000000460	8.128871	8.236636	7. 8.5524	8.063018	8.122414	8.310158
ENSG00000000938	0.000000	1.000000	0.000000	0.000000	1.000000	0.000000
ENSG00000000971	9.330917	9.560333	9.467606	8.942515	9.019591	8.960002
ENSG0000001036	10.278275	10.410271	10.383564	10.285206	10.229816	10.310567
ENSG0000001084	9.479780	9.622052	9.632995	9.569856	9.567956	9.471391
ENSG0000001167	9.105909	9.385862	9.442943	9.233620	9.182394	9.038919
ENSG0000001460	7.011227	7.383704	6.930737	7.238405	7.139551	7.228819
ENSG0000001461	10.080818	10.166163	9.981567	9.826548	9.823367	9.829723
ENSG0000001497	10.634811	10.760720	10.676839	10.585901	10.544964	10.502832
ENSG0000001561	7.451211	7.807355	7.918863	7.651052	8.055282	7.584963
ENSG0000001617	7.189825	7.383704	7.118941	8.016808	7.826548	8.027906
ENSG00000001626	11.611025	11.811776	11.706496	11.381543	11.442943	11.123475
ENSG0000001629	10.590587	10.716819	10.568906	10.386940	10.454299	10.090112
ENSG00000001630	10.592457	10.827343	10.743151	10.203348	10.197217	10.286558

FPKM values in processed samples

*	HT29_CPN_OE1 ÷	HT29_CPN_OE2	HT29_CPN_OE3 [‡]	HT29_Ctr1 ÷	HT29_Ctr2	HT29_Ctr3
ENSG00000000003	4.38474059	4.29278175	4.40190347	4.16510799	4.14812063	4.33199178
ENSG00000000005	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
ENSG00000000419	6.36457243	6.50937915	6.59155975	6.40956065	6.49441561	6.64745843
ENSG00000000457	2.86987141	3.00719550	2.92219785	2.89141919	2.88557436	2.75060650
ENSG00000000460	3.28540222	3.38818954	3.11935618	3.40326772	3.35614381	3.51222689
ENSG00000000938	0.00000000	0.04264434	0.00000000	0.00000000	0.05658353	0.00000000
ENSG00000000971	4.22650853	4.24031433	4.27575205	3.93640238	3.91838623	4.02236781
ENSG0000001036	5.28429203	5.28798935	5.33378150	5.35895883	5.26190686	5.33449677
ENSG0000001084	4.64558639	4.78816366	5.03033608	4.60644223	4.85199884	4.79233481
ENSG0000001167	3.82171022	3.89239103	4.12928302	4.00988459	3.96347412	3.64616266
ENSG0000001460	2.33342373	2.76765480	2.15380534	2.47767733	2.36176836	2.63691458
ENSG0000001461	4.39574833	4.34411833	4.27127626	4.11852585	4.19298317	4.00898878
ENSG0000001497	5.56955185	5.61470984	5.56437817	5.61882595	5.49952702	5.48284828
ENSG0000001561	1.79077204	1.95977016	2.09761080	1.99276843	2.28688115	1.90303827
ENSG00000001617	1.94860085	1.99276843	2.30742853	2.71589337	2.58255600	2.69599381
ENSG0000001626	5.25247621	5.32624970	5.40803247	5.18070484	5.13996057	4.75381844
ENSG00000001629	4.78920758	4.36946648	4.85399565	4.33628339	4.59514557	3.97361128
ENSG00000001630	5.25738784	5.31542132	5.35473424	4.92267359	4.93545975	4.90400232
ENSG0000001631	4.45549162	4.25851892	4.26077843	3.97544677	4.23496109	4.02768488

^{*} Data was paired end

TPM values in processed samples

<u> </u>	HT29_CPN_OE1 [‡]	HT29_CPN_OE2 [‡]	HT29_CPN_OE3 [‡]	HT29_Ctr1 [‡]	HT29_Ctr2 [‡]	HT29_Ctr3 [‡]
ENSG row names 3	4.71314590	4.63981098	4.70984202	4.48349335	4.49313492	4.57470705
ENSG00000000005	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
ENSG00000000419	6.70431868	6.86888427	6.90977310	6.74146699	6.85436974	6.89953819
ENSG00000000457	3.17152711	3.33055840	3.20633065	3.18745105	3.20476675	2.97085365
ENSG00000000460	3.59693514	3.71918344	3.40599236	3.71039319	3.68818036	3.74631277
ENSG00000000938	0.00000000	0.05658353	0.00000000	0.00000000	0.07038933	0.00000000
ENSG00000000971	4.55397481	4.58616425	4.58255600	4.25247621	4.26077843	4.26228281
ENSG0000001036	5.61970645	5.64299031	5.64789009	5.68734069	5.61676937	5.58315800
ENSG0000001084	4.97682185	5.13955135	5.34269696	4.92979100	5.20437551	5.03826058
ENSG0000001167	4.14323013	4.23342794	4.43362717	4.32696871	4.30597052	3.88166462
ENSG0000001460	2.61353165	3.08406426	2.40871186	2.75915583	2.66220550	2.85199884
ENSG0000001461	4.72410452	4.69097574	4.57773093	4.43629512	4.53853816	4.24868663
ENSG0000001497	5.90665013	5.97108366	5.87946072	5.94836723	5.85574059	5.73199779
ENSG0000001561	2.04614178	2.23878686	2.35049725	2.25096157	2.58255600	2.09423607
ENSG00000001617	2.21101219	2.27202319	2.56803210	3.00539999	2.89141919	2.91264986
ENSG0000001626	5.58796499	5.68116812	5.72246602	5.50779464	5.49441561	4.99954909
ENSG00000001629	5.12142991	4.71644224	5.16551002	4.65706830	4.94532678	4.21256934
ENSG00000001630	5.59305492	5.67044381	5.66902677	5.24830712	5.28835856	5.15015346
ENSG0000001631	4.78502736	4.60466442	4.56681515	4.29204549	4.58135125	4.26753580

Visualization of Raw read count, FPKM, and TPM

Take-home message

- 1. Know your RNAseq library clearly (SE or PE, Stranded or Nonstranded).
- 2. Three gene expression quantification measurements (raw-read-count, RPKM (FPKM), TPM).

Resources

Resources

- 1. Wang et al. RNA-Seq: a revolutionary tool for transcriptomics. (Nature Reviews Genetics).
- 2. Ana et al. A survey of best practices for RNA-seq data analysis (Genome Biology).
- 3. Lior Pachter's blog (https://liorpachter.wordpress.com/).
- 4. RNASeq blog (https://www.rna-seqblog.com/).

Thank you

Q & A