Proyecto Final Análisis de Supervivencia Análisis de Supervivencia para fallas de motor

Víctor Samayoa - 175750 Saúl Caballero - 133930 Delia Del Águila - 167188

Introducción

Introducción

Se obtuvo la base de datos usada para la competencia de desafío de pronóstico en la Conferencia Internacional sobre pronóstico y gestión de la salud (PHM08). [1]

- La base consiste en múltiples series de tiempo multivariadas.
- Cada serie es de un motor diferente pero de un mismo tipo.
- Cada motor arranca con diferentes grados de desgaste inicial y variación de fabricación que es desconocido para el usuario.
- Este desgaste y variación se considera normal, es decir, no se considera una condición de falla.
- Hay tres configuraciones operativas que tienen un efecto
 sustancial en el rendimiento del motor.

Objetivos

Análisis de Datos

- La base de datos cuenta con 75,738 registros correspondientes a 436 motores
- Cada registro corresponde a un ciclo de un motor en específico e incluye las configuraciones iniciales del ciclo así como las mediciones de los sensores.
- El 50 % de censura por la derecha.

Cada configuración tiene mediciones en la siguiente escala:

- Configuración 1: De 0 a 42.1
- Configuración 2: De 0 a 0.842
- Configuración 3: Valores discretos de 0 a 100 con saltos de 20 puntos

En general cada sensor tiene mediciones en la siguiente escala:

- Sensor 16: Cuenta con dos valores 0.02 y 0.03
- Sensor 10: De 0.93 a 1.3
- Sensores 5, 6 y 15: De 3.91 a 21.61
- Sensores 11, 20 y 21: De 6.124 a 48.39
- Sensor 19: Cuenta con sólo dos valores 84.93 y 100
- Sensores 1, 2, 7 y 12: De 129.2 a 644.4
- Sensor 17: Con valores enteros entre 303 y 398
- Sensores 3 y 4: De 1029 a 1615
- Sensores 8 y 13: De 1915 a 2391
- Sensor 18: Con valores enteros entre 1915 y 2388
- Sensores 9 y 14: De 7852 a 9217

De la gráfica, anterior se decide dejar solamente una variable de aquellos pares que tengan una correlación arriba 0.90. De esta forma las variables finales son:

- sensor 01
- sensor 03
- sensor 08
- sensor 13
- sensor 18

Quedando así la siguiente matriz de correlaciones:

Análisis inferencial

Estimador Kaplan Meier

- Se procede a obtener el estimador Kaplan Meier para la función de supervivencia.
- La función de supervivencia con el estimador de Kaplan Meier se comporta de la siguiente forma:

Comparación con el modelo exponencial:

Comparación con el modelo Weibull:

Comparación con el modelo lognormal:

Comparación con el modelo loglogistico:

Modelos de vida acelerada

- Con base en las gráficas anteriores, obsevamos que el estimador de la función de supervivencia se ajusta tanto a un modelo lognormal como loglogistico.
- Se procede a realizar ajustes de regresión utilizando como covariables la información asociada a la configuración inicial.
- Se procede a realizar ajustes de regresión utilizando como covariables la información asociada a la información de los sensores.

Modelo loglogistico

Cuadro 1: Resultados del modelo de regresión

Coeficientes	Valor	Error estandar	Estadístico Z	p-value
Intercepto	5.305	0.044	119.378	0.000
Configuración 1	-0.003	0.003	-0.780	0.435
Configuración 2	0.275	0.178	1.549	0.121
Configuración 2	0.000	0.001	-0.886	0.376
Log(scale)	-2.123	0.053	-39.808	0.000

Modelo loglogistico

Cuadro 2: Resultados del modelo de regresión

Coeficientes	Valor	Error estandar	Estadístico Z	p-value
Intercepto	6.435	27.282	0.236	0.814
Sensor 01	0.005	0.059	0.088	0.930
Sensor 03	-0.009	0.002	-4.276	0.000
Sensor 08	0.067	0.036	1.853	0.064
Sensor 13	-0.005	0.023	-0.215	0.830
Sensor 18	-0.057	0.023	-2.452	0.014
Log(scale)	-2.123	0.054	-39.378	0.000

Modelo lognormal

Cuadro 3: Resultados del modelo de regresión

Coeficientes	Valor	Error estandar	Estadístico Z	p-value
Intercepto	5.297	0.043	122.392	0.000
Configuración 1	-0.003	0.003	-0.935	0.350
Configuración 2	0.301	0.179	1.685	0.092
Configuración 2	0.000	0.001	-0.530	0.596
Log(scale)	-1.573	0.046	-33.836	0.000

Modelo lognormal

Cuadro 4: Resultados del modelo de regresión

Coeficientes	Valor	Error estandar	Estadístico Z	p-value
Intercepto	7.552	25.476	0.296	0.767
Sensor 01	0.003	0.055	0.057	0.954
Sensor 03	-0.009	0.002	-4.471	0.000
Sensor 08	0.081	0.035	2.297	0.022
Sensor 13	-0.006	0.022	-0.280	0.779
Sensor 18	-0.070	0.023	-3.027	0.002
Log(scale)	-1.582	0.047	-33.582	0.000

Conclusiones

Conclusiones

Aquí van las conclusiones

Bibliografía

Bibliografía

```
[1] https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
```