WHAT IS CLAIMED IS:

1. A compound of the formula I:

or a pharmaceutically acceptable salt thereof; wherein each n is independently 0, 1, or 2;

Ar is phenyl substituted with one to five R³ substituents;

10 R1 is selected from the group consisting of hydrogen,

15

20

25

- C₁₋₁₀ alkyl, wherein alkyl is unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkoxy, carboxy, C₁₋₆ alkyloxycarbonyl, and phenyl-C₁₋₃ alkoxy, wherein alkoxy is unsubstituted or substituted with one to five halogens,
- (CH₂)_n-aryl, wherein aryl is unsubstituted or substituted with one to five substituents independently selected from halogen, CN, hydroxy, R², OR², NHSO₂R², NR²SO₂R², SO₂R², CO₂H, and C₁₋₆ alkyloxycarbonyl,
- (CH₂)_n-heteroaryl, wherein heteroaryl is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halogen, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,
- $(CH_2)_n$ -heterocyclyl, wherein heterocyclyl is unsubstituted or substituted with one to three substituents independently selected from oxo, hydroxy, halogen, C_{1-6} alkyl, and C_{1-6} alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,
- (CH₂)_n-C₃₋₆ cycloalkyl, wherein cycloalkyl is unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens; and

wherein any methylene (CH₂) carbon atom in (CH₂)_n is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl unsubstituted or substituted with one to five halogens;

```
hydrogen,
      halogen,
      cyano,
      hydroxy,
      C<sub>1-6</sub> alkyl, unsubstituted or substituted with one to five halogens,
10
       C<sub>1-6</sub> alkoxy, unsubstituted or substituted with one to five halogens,
       carboxy,
       alkoxycarbonyl,
       amino,
       NHR<sup>2</sup>,
15
       NR^2R^2.
       NHSO_2R^2,
       NR^2SO_2R^2,
       NHCOR<sup>2</sup>.
       NR<sup>2</sup>COR<sup>2</sup>,
20
       NHCO_2R^2,
       NR^2CO_2R^2,
       SO_2R^2,
        SO2NH2,
       SO_2NHR^2, and
25
        SO_2NR^2R^2;
        each R2 is independently C1-6 alkyl, unsubstituted or substituted with one to five substituents
        independently selected from halogen, CO<sub>2</sub>H, and C<sub>1-6</sub> alkyloxycarbonyl;
 30
        R4, R6, and R10 are each independently selected from the group consisting of:
        hydrogen,
        cyano,
```

each R3 is independently selected from the group consisting of

carboxy,

C₁₋₆ alkyloxycarbonyl,

35

C₁₋₁₀ alkyl, unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkoxy, carboxy, C₁₋₆ alkyloxycarbonyl, and phenyl-C₁₋₃ alkoxy, wherein alkoxy is unsubstituted or substituted with one to five halogens, 5 (CH₂)_n-aryl, wherein aryl is unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens. (CH₂)_n-heteroaryl, wherein heteroaryl is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halogen, C1-6 alkyl, and C1-6 alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens, 10 (CH2)n-heterocyclyl, wherein heterocyclyl is unsubstituted or substituted with one to three substituents independently selected from oxo, hydroxy, halogen, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens, (CH₂)_n-C₃₋₆ cycloalkyl, wherein cycloalkyl is unsubstituted or substituted with one to three 15 substituents independently selected from halogen, hydroxy, C1-6 alkyl, and C1-6 alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens, (CH2)_nCONR¹²R¹³, wherein R¹² and R¹³ are independently selected from the group consisting of hydrogen, tetrazolyl, thiazolyl, (CH2)n-phenyl, (CH2)n-C3-6 cycloalkyl, 20 and C₁₋₆ alkyl, wherein alkyl is unsubstituted or substituted with one to five halogens and wherein phenyl and cycloalkyl are unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C1-6 alkyl, and C1-6 alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens; or wherein R¹² and R¹³ together with the nitrogen atom to which they are attached form a heterocyclic ring selected from azetidine, pyrrolidine, piperidine, piperazine, and 25 morpholine wherein said heterocyclic ring is unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C1-6 alkyl, and C1-6 alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens; and wherein any methylene (CH2) carbon atom in (CH2)n is unsubstituted or substituted with 30 one to two groups independently selected from halogen, hydroxy, and C1-4 alkyl unsubstituted or substituted with one to five halogens;

R⁸ is selected from the group consisting of halogen, hydroxy, and R⁴;

5

10

20

25

 R^5 , R^7 and R^{11} are each independently hydrogen or C_{1-6} alkyl; or wherein R^7 and R^1 together with the nitrogen atom to which R^1 is attached form a heterocyclic ring selected from azetidine, pyrrolidine and piperidine wherein said heterocyclic ring is unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C_{1-6} alkyl, and C_{1-6} alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens; and

 R^9 is selected from the group consisting of hydrogen, hydroxy, halogen, or C_{1-6} alkyl; with the proviso that at least one of R^6 , R^7 , R^8 and R^9 is not hydrogen.

2. The compound of Claim 1 of the formula Ia:

wherein the carbon atom marked with an * has the R configuration.

- 3. The compound of Claim 1 wherein R³ is selected from the group consisting of hydrogen, fluoro, chloro, bromo, trifluoromethyl, and methyl.
 - 4. The compound of Claim 3 wherein R³ is hydrogen, chloro, or fluoro.
 - 5. The compound of Claim 1 wherein R¹ is selected from the group consisting of

hydrogen,

- C₁₋₆ alkyl, wherein alkyl is unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkoxy, carboxy, C₁₋₆ alkyloxycarbonyl, and phenyl-C₁₋₃ alkoxy, wherein alkoxy is unsubstituted or substituted with one to five halogens, and
- (CH₂)_n-C₃₋₆ cycloalkyl, wherein cycloalkyl is unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens; and

wherein any methylene (CH₂) carbon atom in (CH₂)_n is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl unsubstituted or substituted with one to five halogens.

- 5 6. The compound of Claim 5 wherein R¹ is selected from the group consisting of hydrogen, methyl, and cyclopropyl.
 - 7. The compound of Claim 6 wherein R¹ is hydrogen.
- 10 8. The compound of Claim 1 wherein R⁴ is selected from the group consisting of: hydrogen,
 - C₁₋₆ alkyl, unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkoxy, carboxy, C₁₋₆ alkyloxycarbonyl, and phenyl-C₁₋₃ alkoxy, wherein alkoxy is unsubstituted or substituted with one to five halogens,
 - (CH₂)_n-aryl, wherein aryl is unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,
 - (CH₂)_n-heteroaryl, wherein heteroaryl is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halogen, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,
 - (CH₂)_n-C₃₋₆ cycloalkyl, wherein cycloalkyl is unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens; and wherein any methylene (CH₂) carbon atom in (CH₂)_n is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl unsubstituted or substituted with one to five halogens.
 - 9. The compound of Claim 8 wherein R⁴ is selected from the group consisting of:

hydrogen,

30 CH₃,

15

20

25

CH₂CH₃,

CH₂CF₃,

CH₂(2-pyridyl),

CH₂Ph,

35 $CH_2(2-F-Ph)$,

 $CH_2(2\text{-Me-Ph})$, and $CH_2(2\text{-CF}_3\text{-Ph})$.

5

10

15

20

25

30

35

10. The compound of Claim 1 wherein R⁶ is selected from the group consisting of: hydrogen,

C₁₋₆ alkyl, unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkoxy, carboxy, C₁₋₆ alkyloxycarbonyl, and phenyl-C₁₋₃ alkoxy, wherein alkoxy is unsubstituted or substituted with one to five halogens,

(CH₂)_n-aryl, wherein aryl is unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,

(CH₂)_n-heteroaryl, wherein heteroaryl is unsubstituted or substituted with one to three substituents independently selected from hydroxy, halogen, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens,

(CH₂)_n-C₃₋₆ cycloalkyl, wherein cycloalkyl is unsubstituted or substituted with one to three substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy,

wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens; and wherein any methylene (CH₂) carbon atom in (CH₂)_n is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C₁₋₄ alkyl unsubstituted or substituted with one to five halogens.

- 11. The compound of Claim 10 wherein R⁶ is selected from the group consisting of: hydrogen,
- C₁₋₆ alkyl, unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkoxy, carboxy, C₁₋₆ alkyloxycarbonyl, and phenyl-C₁₋₃ alkoxy, wherein alkoxy is unsubstituted or substituted with one to five halogens, and
- (CH₂)_n-aryl, wherein aryl is unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens; and

wherein methylene (CH₂) carbon atom in (CH₂)_n is unsubstituted or substituted with one to two groups independently selected from halogen, hydroxy, and C_{1-4} alkyl unsubstituted or substituted with one to five halogens.

12. The compound of Claim 11 wherein R⁶ is selected from the group consisting of: hydrogen,

CH₃, CH₂CH₃, CF₃,

CH₂Ph, and

5 $CH_2(2-F-Ph)$.

13. The compound of Claim 1 wherein R⁸ is selected from the group consisting of: hydrogen, hydroxy,

10 halogen, and

15

20

C₁₋₆ alkyl, unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkoxy, carboxy, C₁₋₆ alkyloxycarbonyl, and phenyl-C₁₋₃ alkoxy, wherein alkoxy is unsubstituted or substituted with one to five halogens.

- 14. The compound of Claim 13 wherein R⁸ is hydrogen.
- $\label{eq:compound} \mbox{15.} \qquad \mbox{The compound of Claim 1 wherein R^{10} is selected from the group consisting of: } \\ \mbox{hydrogen, and} \qquad$

C₁₋₆ alkyl, unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkoxy, carboxy, C₁₋₆ alkyloxycarbonyl, and phenyl-C₁₋₃ alkoxy, wherein alkoxy is unsubstituted or substituted with one to five halogens.

- 16. The compound of Claim 15 wherein R¹⁰ is hydrogen.
- 25 The compound of Claim 1 wherein R⁵, R⁷ and R¹¹ are each independently selected from hydrogen and methyl.
 - 18. The compound of Claim 17 wherein R5, R7 and R11 are hydrogen.
- The compound of Claim 1 wherein R⁹ is selected from hydrogen, halogen and methyl.
 - 20. The compound of Claim 19 wherein R⁹ is hydrogen.

```
The compound of Claim 19 wherein R9 is methyl and R5, R7, R8, R10, and R11
                           21.
       are hydrogen.
                                      The compound of Claim 21 wherein R4 is selected from the group consisting of:
                            22.
                  hydrogen,
 5
                  CH<sub>3</sub>,
                  CH<sub>2</sub>CH<sub>3</sub>,
                  CH<sub>2</sub>CF<sub>3</sub>,
                  CH<sub>2</sub>(2-pyridyl),
10
                  CH<sub>2</sub>Ph,
                  CH_2(2-F-Ph),
                  CH<sub>2</sub>(2-Me-Ph), and
        CH<sub>2</sub>(2-CF<sub>3</sub>-Ph).
                                       The compound of Claim 1 wherein R5, R7, R8, R9, R10, and R11 are hydrogen,
                             23.
15
        with the proviso that R6 is not hydrogen.
                                       The compound of Claim 23 wherein R4 is selected from the group consisting of:
                             24.
                   hydrogen,
20
                   CH<sub>3</sub>,
                   CH<sub>2</sub>CH<sub>3</sub>,
                   CH2CF3,
                   CH<sub>2</sub>(2-pyridyl),
                   CH<sub>2</sub>Ph,
 25
                   CH<sub>2</sub>(2-F-Ph),
                   CH<sub>2</sub>(2-Me-Ph), and
                   CH<sub>2</sub>(2-CF<sub>3</sub>-Ph); and
         R6 is selected from the group consisting of:
                   CH<sub>3</sub>,
                    CH<sub>2</sub>CH<sub>3</sub>,
 30
                    CF<sub>3</sub>,
                    CH<sub>2</sub>Ph, and
          CH2(2-F-Ph).
```

35

26. The compound of Claim 25 wherein the stereogenic carbon atoms marked with an ** and an *** have the stereochemistry as depicted in formula Ib:

$$\begin{array}{c|c} NH_2 & O & R^4 \\ \hline NH_2 & O & R^4 \\ \hline NH & NH \\ \hline (Ib) & R^6 \\ \end{array}$$

- The compound of Claim 1 wherein R⁷ and R¹ together with the nitrogen atom to which R¹ is attached form a heterocyclic ring selected from azetidine, pyrrolidine and piperidine wherein said heterocyclic ring is unsubstituted or substituted with one to five substituents independently selected from halogen, hydroxy, C₁₋₆ alkyl, and C₁₋₆ alkoxy, wherein alkyl and alkoxy are unsubstituted or substituted with one to five halogens.
 - 28. The compound of Claim 27 wherein R⁷ and R¹ together with the nitrogen atom to which R¹ is attached form a pyrrolidine ring.
- 29. The compound of Claim 28 wherein R⁴ is selected from the group consisting of:

15 hydrogen,

10

25

CH₃,

CH2CH3,

CH2CF3,

CH₂(2-pyridyl),

20 CH₂Ph,

CH₂(2-F-Ph),

CH₂(2-Me-Ph), and

CH₂(2-CF₃-Ph).

30. A compound selected from the group consisting of:

$$F \longrightarrow H_{2} \longrightarrow H_{3} \longrightarrow H_{2} \longrightarrow$$

$$F = \begin{pmatrix} H_{3}C & & \\ & &$$

or a pharmaceutically acceptable salt thereof.

5 31. A pharmaceutical composition which comprises a compound of Claim 1 and a pharmaceutically acceptable carrier.

32. Use of a compound in accordance with Claim 1 in the manufacture of a medicament for use in treating a condition selected from the group consisting of hyperglycemia, Type 2 diabetes, obesity, and a lipid disorder in a mammal.

- The use according to Claim 32 wherein said lipid disorder is selected from the group consisting of dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL, and high LDL.
- 34. The pharmaceutical composition of Claim 31 additionally comprising metformin.