rey Name:

You must show your work to get full credit.

1. A 6 inch carp weights .2 pounds.

Weight ≈ 7.407 lbs (a) Estimate the weight of a 20 inch carp. If $L = l_{eus} + m$ $W = w_{eisu} + l_{eisu}$ Thus

then $W = 0.2 L^3$ for some $0.2 L^3$ When $L = 0.009293 L^3$.

when L = 6, W = -2.50 when L = 2.0 + mis $0.2 = 1.0009259(20)^3$ Thus $W = \frac{1.2}{63} = 0.0009259$

(b) Estimate the length of a 15 pound carp.

From (a) we have $W = .0009259 L^3$ Let W = 15 and solve for L $= (20/(.0009259))^{3}(V3)$ = 27.85 inL3 = 20/1.008/259)

Length ≈ ____ 27.85 in

2. A population of bluegill in a small pond has a discrete logistic growth rate with a per capita growth rate of .3 fish/fish and a carrying capacity of 800 fish. Let P_t be the number of fish t years after the pond is first stocked.

(a) What is the formula for P_{t+1} in terms of P_t ?

Pt+1 = Pt + 3 Pt (1 - Pt 400)

(b) If $P_0 = 200$ (that is the pond is originally stocked with 200 fish) compute the following:

$$P_1 = P_0 + .3P_0 \left(1 - \frac{P_0}{8000}\right)$$

= 200 + .3(200)(1 - $\frac{200}{8000}$)
= 245

$$P_1 = 245$$

$$P_2 = 295.99$$

$$P_3 = 351.93$$

$$P_{2} = P_{1} + .3 P_{1} (1 - \frac{P_{1}}{800})$$

$$= 245 + .3 (245) (1 - \frac{245}{800})$$

$$= 295.99$$

$$P_3 = P_2 + .3 P_2 (1 - \frac{P_2}{800})$$

= 295.99 + .3 (295.99) (1 - $\frac{295.99}{800}$)
= 351.93