© Laurent Garcin MP Dumont d'Urville

INÉGALITÉS

Inégalité triangulaire

Pour $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$,

$$\forall (x_1, \dots, x_n) \in \mathbb{K}^n, \qquad \left| \sum_{k=1}^n x_k \right| \le \sum_{k=1}^n |x_k|$$

Trigonométrie

$$\forall x \in \mathbb{R}, \qquad |\sin x| \le |x| \qquad \qquad \forall x \in \mathbb{R}_+, \qquad \sin x \le x$$

$$\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \qquad |\tan x| \ge |x| \qquad \qquad \forall x \in \left[0, \frac{\pi}{2}\right[, \qquad \tan x \le x \right]$$

Logarithme et exponentielle

$$\forall x \in]-1, +\infty[, \qquad \ln(1+x) \le x$$

 $\forall x \in \mathbb{R}, \qquad e^x \ge 1+x$

Moyennes arithmétique, géométrique, harmonique, quadratique

$$\forall (x_1, \dots, x_n) \in (\mathbb{R}_+^*)^n, \qquad \frac{1}{\frac{1}{n} \sum_{k=1}^n \frac{1}{x_k}} \le \sqrt[n]{\prod_{k=1}^n x_k} \le \frac{1}{n} \sum_{k=1}^n x_k \le \sqrt{\frac{1}{n} \sum_{k=1}^n x_k^2}$$

Inégalité de Minkowski

Pour $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$ et $p \in [1, +\infty[$,

$$\forall (x_1, \dots, x_n) \in \mathbb{K}^n, \qquad \left(\sum_{k=1}^n |x_k + y_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^n |y_k|^p\right)^{\frac{1}{p}}$$

Inégalité de Hölder

Pour
$$\mathbb{K} = \mathbb{R}$$
 ou $\mathbb{K} = \mathbb{C}$ et $(p,q) \in [1, +\infty[^2 \text{ tel que } \frac{1}{p} + \frac{1}{q} = 1,$

$$\forall (x_1, \dots, x_n) \in \mathbb{K}^n, \qquad \sum_{k=1}^n |x_k y_k| \le \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^n |y_k|^q\right)^{\frac{1}{q}}$$