Package 'ClimInd'

October 12, 2022

Type Package Version 0.1-3 Date 2021-04-09

Title Climate Indices

Author Fergus Reig-Gracia [aut, cre], Sergio M. Vicente-Serrano [aut], Fernando Dominguez-Castro [aut], Joaquin Bedia-Jiménez [ctb]

Maintainer Fergus Reig-Gracia <fergusrg@gmail.com>

Depends R (>= 2.10), SPEI, chron, weathermetrics

Description Computes 138 standard climate indices at monthly, seasonal and annual resolution. These indices were selected, based on their direct and significant impacts on target sectors, after a thorough review of the literature in the field of extreme weather events and natural hazards. Overall, the selected indices characterize different aspects of the frequency, intensity and duration of extreme events, and are derived from a broad set of climatic variables, including surface air temperature, precipitation, relative humidity, wind speed, cloudiness, solar radiation, and snow cover. The 138 indices have been classified as follow: Temperature based indices (42), Precipitation based indices (22), Bioclimatic indices (21), Wind-based indices (5), Aridity/ continentality indices (10), Snow-based indices (13), Cloud/radiation based indices (6), Drought indices (8), Fire indices (5), Tourism indices (5).

License GPL (>= 3)

URL https://gitlab.com/indecis-eu/indecis

LazyLoad yes **Encoding** UTF-8

Suggests MASS, rmarkdown, testthat

NeedsCompilation no RoxygenNote 7.1.1 ByteCompile true

Collate 'ClimInd.R' 'ClimIndNews.R' 'custom_functions.R' 'data.R' 'ffdi.R' 'fwi1D.R' 'penman_fao_dia.R' 'nesterovIndex.R' 'macArthurFFDI.R' 'kbdindex.R' 'indecis_indices_functions.R' 'indecis_indices.R' 'indecis.R'

Repository CRAN

Date/Publication 2021-04-10 00:00:03 UTC

R topics documented:

ClimInd-package	4
aci	5
asd	6
at	6
bi	7
bio10	8
bio11	9
bio13	9
bio14	10
bio15	11
bio16	12
bio17	12
bio18	13
bio19	14
bio20	15
bio4	15
bio5	16
bio6	17
bio7	18
	19
	19
calculate_all	20
calculate_all_scales	21
CC	22
cdd	22
cfd	23
ClimIndNews	24
cmd	24
csd	25
csdi	26
cwd	26
d32	27
d50mm	28
d95p	28
Datasets	29
dd	29
dd17	30
dfx21	31
dr1mm	31
dr3mm	32
dtr	33
eai	34
ep	35
eto	35
etr	37
fd	37

	26
fg	38
fg6bft	39
fgcalm	39
$\qquad \qquad fod \ldots \ldots$	
fpsc	41
fsc	41
fsd	42
fxx	43
gd4	43
gsl	44
6	
gsr	45
gtg	45
gtn	46
	47
gtx	
hd17	48
hi	49
hsd	50
id	50
jci	51
koi	52
lpsc	53
mai	54
mfi	55
mi	56
moi	56
ms	57
msd	58
ngsr	
ntg	59
ogs10	60
ogs6	
S .	
pci	
pici	62
preptot	63
1 1	63
ptg	
r10mm	64
r20mm	65
r95tot	65
r99tot	
rti	67
rx1day	67
rx5d	
scd	69
sd0_10	69
sd10_20	
sdii	71
snd	71
spei1	
	/ 4

4 ClimInd-package

	spei12	73
	spei3	73
	spei6	7 4
	spi1	75
	spi12	76
	spi3	76
	spi6	77
	ss	78
	ssd	78
	ssp	79
	stn10	80
	stn15	81
	stx32	81
	su	82
	ta_o	83
	tm_s	83
	tn10p	84
	tn90p	85
	tnn	85
	tnx	86
	tr	87
	tx10p	87
	tx90p	88
	txn	89
	txx	89
	uai	90
	utci	91
	vcd	92
	vdtr	93
	vwd	94
	wci	94
	wki	95
	WS	96
	wsdi	96
	xtg	97
	zcd	98
Index		99

aci 5

Description

Computes 138 standard climate indices at monthly, seasonal and annual resolution. These indices were selected, based on their direct and significant impacts on target sectors, after a thorough review of the literature in the field of extreme weather events and natural hazards. Overall, the selected indices characterize different aspects of the frequency, intensity and duration of extreme events, and are derived from a broad set of climatic variables, including surface air temperature, precipitation, relative humidity, wind speed, cloudiness, solar radiation, and snow cover. The 138 indices have been classified as follow: Temperature based indices (42), Precipitation based indices (22), Bioclimatic indices (21), Wind-based indices (5), Aridity/ continentality indices (10), Snow-based indices (13), Cloud/radiation based indices (6), Drought indices (8), Fire indices (5), Tourism indices (5).

Details

Info

See Also

Useful links:

• https://gitlab.com/indecis-eu/indecis

aci

Atmospheric Clarity Index

Description

Ratio between solar radiation at surface and solar radiation at TOA (alt top of the atmosphere)

Usage

```
aci(data, toa, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data net radiation, J/m2

toa solar radiation at TOA, W/m2 data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

index value

```
data(data_all)
aci(data = data_all$radiation, toa = data_all$radiationtoa)
```

6 at

asd

Average snow depth

Description

Average snow depth

Usage

```
asd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data snow depth, mm

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

snow depth, m

Examples

```
data(data_all)
asd(data = data_all$snowdepth)
```

at

Apparent temperature

Description

Index of the percived temperature.

Usage

```
at(taverage, w, vapor, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

taverage daily mean temperature, Celsius

w average wind, m/s

vapor water vapour pressure, hPa data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

bi 7

Value

index value

Formula

$$AT = TG + 0.33e - 0.70v - 4.00$$

TG = air temperature in Celsius; v = wind speed in m/s; e= water vapour pressure in hPa

Examples

```
data(data_all)
at(taverage = data_all$tg, w = data_all$wind, vapor = data_all$VAPOUR)
```

bi

Budyko Index

Description

Budyko Index is based on characteristics of the surface heat and water balance.

Usage

```
bi(data, pr, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data net radiation, J/m2

pr daily precipitation, mm

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

index value

Formula

$$BI = 100 \frac{Rn}{L*P}$$

Rn= annual net radiation, P = annual precipitation, L = latent heat of vaporization for water

References

Budyko M.I. The Heat Balance of the Earth's Surface U.S. Department of Commerce, Washington D.C (1958) 259 pp., translated by N.A. Stepanova

Examples

```
data(data_all)
bi(data = data_all$radiation, pr = data_all$rr)
```

bio10

TG of warmest quarter

Description

TG of the warmest quarter of the year

Usage

```
bio10(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily mean temperature, Celsius data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

```
temperature, Celsius
```

References

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim

```
data(data_all)
bio10(data = data_all$tg)
```

bio11 9

bio11

TG of coldest quarter

Description

TG of coldest quarter of the year

Usage

```
bio11(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily mean temperature, Celsius data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

temperature, Celsius

References

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim

Examples

```
data(data_all)
bio11(data = data_all$tg)
```

bio13

Precipitation of wettest month

Description

Total precipitation of the wettest month of the year

```
bio13(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily precipitation, mm

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

precipitation, mm

References

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim

Examples

```
data(data_all)
bio13(data = data_all$rr)
```

bio14

Precipitation of driest month

Description

Total precipitation of the driest month of the year

Usage

```
bio14(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily precipitation, mm

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

precipitation, mm

References

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim

Examples

```
data(data_all)
bio14(data = data_all$rr)
```

bio15

Precipitation coefficient of variation

Description

The coefficient of variation is a measure of the variation in monthly precipitation totals over the course of the year. This index is the ratio of the standard deviation of the monthly total precipitation to the mean monthly total precipitation and is expressed as a percentage.

Usage

```
bio15(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily precipitation, mm

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

index value

```
data(data_all)
bio15(data = data_all$rr)
```

bio16

Precipitation wettest quarter

Description

Precipitation of the wettest quarter of the year

Usage

```
bio16(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily precipitation, mm
data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

precipitation, mm

References

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim

Examples

```
data(data_all)
bio16(data = data_all$rr, na.rm = TRUE)
```

bio17

Precipitation of Driest Quarter

Description

Precipitation of the driest quarter of the year

```
bio17(data, data_names = NULL, na.rm = FALSE, ...)
```

bio18 13

Arguments

data daily precipitation, mm
data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

precipitation, mm

References

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim

Examples

```
data(data_all)
bio17(data = data_all$rr)
```

bio18

Precipitation warmest quarter

Description

Precipitation of the warmest quarter of the year

Usage

```
bio18(pr, taverage, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

pr daily precipitation, mm

taverage daily mean temperature, Celsius data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

precipitation, mm

References

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim

Examples

```
data(data_all)
bio18(pr=data_all$rr, taverage=data_all$tg)
```

bio19

Precipitation coldest quarter

Description

Precipitation of the coldest quarter of the year

Usage

```
bio19(pr, taverage, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

pr daily precipitation, mm

taverage daily mean temperature, Celsius data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

precipitation, mm

References

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim

```
data(data_all)
bio19(pr=data_all$rr, taverage=data_all$tg)
```

bio20 15

bio20

Mean radiation

Description

Mean radiation (W m-2)

Usage

```
bio20(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data radiation, W m-2

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

radiation, W m-2

References

Kriticos, D.J., Webber, B.L., Leriche, A., Ota, N., Macadam, I., Bathols, J. and Scott, J.K. (2012) CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, 3, 53-64. doi: 10.1111/j.2041210X.2011.00134.x

Examples

```
data(data_all)
bio20(data = data_all$radiation_w)
```

bio4

Temperature seasonality

Description

TG standard deviation * 100

```
bio4(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily mean temperature, Celsius data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

temperature, Celsius

References

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim

Examples

```
data(data_all)
bio4(data = data_all$tg)
```

bio5

TX warmest month

Description

TX of the warmest month of the year

Usage

```
bio5(data, tmax, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

daily mean temperature, Celsius
tmax daily maximum temperature, Celsius

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

temperature, Celsius

bio6 17

References

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim

Examples

```
data(data_all)
bio5(data = data_all$tg, tmax = data_all$tx)
```

bio6

TN of coldest month

Description

TN of the coldest month of the year

Usage

```
bio6(data, tmin, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily mean temperature, Celsius tmin daily minimum temperature, Celsius

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

temperature, Celsius

References

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim

```
data(data_all)
bio6(data = data_all$tg, tmin = data_all$tn)
```

u	()	•

Temperature Annual Range

Description

TX of the warmest month minus TN of coldest month

Usage

```
bio7(data, tmin, tmax, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data	daily mean temperature, Celsius
tmin	daily minimum temperature, Celsius
tmax	daily maximum temperature, Celsius
data_names	names of each period of time
na.rm	logical. Should missing values (including NaN) be removed?
	further arguments passed to or from other methods

Value

temperature, Celsius

References

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim

```
data(data_all)
bio7(data = data_all$tg, tmin = data_all$tn, tmax = data_all$tx)
```

bio8

TG of wettest quarter

Description

TG of the wettest quarter of the year

Usage

```
bio8(pr, taverage, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

pr daily precipitation, mm

taverage daily mean temperature, Celsius data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

temperature, Celsius

References

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim

Examples

```
data(data_all)
bio8(pr = data_all$rr, taverage = data_all$tg)
```

bio9

TG of driest quarter

Description

TG of the driest quarter of the year

```
bio9(pr, taverage, data_names = NULL, na.rm = FALSE, ...)
```

20 calculate_all

Arguments

pr daily precipitation, mm

taverage daily mean temperature, Celsius

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

temperature, Celsius

References

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276. https://web.archive.org/web/20190714191708/https://www.worldclim.org/bioclim

Examples

```
data(data_all)
bio9(pr = data_all$rr, taverage = data_all$tg)
```

calculate_all

Calculate all indexes

Description

Calculate all indexes for a point

```
calculate_all(
  data,
  lat = NULL,
  time.scale = YEAR,
  data_names = NULL,
  index_result = c(1:138),
  na.rm = FALSE
)
```

calculate_all_scales 21

Arguments

data data list

lat latitude, degree

time.scale month, season or year

data_names names of each period of time

index_result indexes to calculate

na.rm logical. Should missing values (including NaN) be removed? (value or array by

index)

Value

all indexes

Description

Calculate all indexes for a point and all time scales

Usage

```
calculate_all_scales(data, lat = NULL)
```

Arguments

data data list

latitude, degree

Value

all indexes

22 cdd

СС

Mean daily cloud cover

Description

Mean daily cloud cover (

Usage

```
cc(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data cloud cover, percentage
data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

percentage

Examples

```
data(data_all)
cc(data = data_all$cloud)
```

cdd

Longest dry period

Description

Maximum length of consecutive dry days (RR<1)

Usage

```
cdd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily precipitation, mm
data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

cfd 23

Value

days

References

Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.

Examples

```
data(data_all)
cdd(data = data_all$rr)
```

cfd

Maximum consecutive frost days

Description

Maximum number of consecutive days with TN < 0 Celsius

Usage

```
cfd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily minimum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

References

European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php

```
data(data_all)
cfd(data=data_all$tn)
```

24 cmd

 ${\tt ClimIndNews}$

ClimIndNews

Description

Show the NEWS file of the ClimInd package.

Usage

```
ClimIndNews()
```

Details

(See description)

cmd

Climatic moisture deficit

Description

ETo - evapotranspiration

Usage

```
cmd(
   eto,
   evapotranspiration,
   data_names = NULL,
   time.scale = YEAR,
   na.rm = FALSE
)
```

Arguments

```
eto eto, mm evapotranspiration
```

evapotranspiration, mm

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

index value

csd 25

References

Parks, S. A., Parisien, M. , Miller, C. , Holsinger, L. M. and Baggett, L. S. (2018), Fine-scale spatial climate variation and drought mediate the likelihood of reburning. Ecol Appl, 28:573-586. doi: 10.1002/eap.1671

Examples

```
data(data_all)
cmd(eto = data_all$eto, evapotranspiration = data_all$evaporation)
```

csd

Maximum consecutive summer days

Description

Maximum number of consecutive summer days (TX > 25 Celsius)

Usage

```
csd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily maximum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

```
data(data_all)
csd(data=data_all$tx)
```

26 cwd

csdi

Cold spell duration

Description

Count of days with at least 6 consecutive days when TN < 10th percentile. The 10th percentile is computed based on the time scale selected (month, season or year) not daily as ETCCDI does. If you want to compute daily you can use RClimDex package.

Usage

```
csdi(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily minimum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

Examples

```
data(data_all)
csdi(data=data_all$tn)
```

cwd

Longest wet period

Description

Maximum length of consecutive wet days (RR>=1)

Usage

```
cwd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily precipitation, mm
data_names names of each period of time
time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

d32

Value

days

References

Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.

Examples

```
data(data_all)
cwd(data = data_all$rr)
```

d32

Days TX32

Description

Number of days whith $TX \ge 32$ Celsius on the interval June-August.

Usage

```
d32(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily maximum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

```
data(data_all)
d32(data = data_all$tx)
```

28 d95p

d50mm

Heavy precipitation days

Description

Number of days with precipitation above 50mm

Usage

```
d50mm(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

daily precipitation, mm data names of each period of time data_names time.scale month, season or year

logical. Should missing values (including NaN) be removed? na.rm

Value

days

Examples

```
data(data_all)
d50mm(data = data_all$rr)
```

d95p

Very wet days

Description

Days with precipitation > 95th percentile. The 95th percentile is computed based on the time scale selected (month, season or year) not daily

Usage

```
d95p(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

daily precipitation, mm data data_names names of each period of time time.scale

month, season or year

logical. Should missing values (including NaN) be removed? na.rm

Datasets 29

Value

days

References

Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.

Examples

```
data(data_all)
d95p(data = data_all$rr)
```

Datasets

data_all

Description

See wichita

Usage

```
data(data_all)
```

Format

An object of class list of length 22.

Details

See description.

dd

Dry days

Description

Number of days with less than 1 mm

```
dd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

30 dd17

Arguments

data daily precipitation, mm

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

Examples

```
data(data_all)
dd(data = data_all$rr)
```

dd17

Difference days above/below Tx17

Description

```
(days tx > 17 Celsius)-(days TX < 17 Celsius)
```

Usage

```
dd17(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily maximum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

```
data(data_all)
dd17(data=data_all$tx)
```

dfx21 31

dfx21

Days wind gusts above 21 m/s

Description

Number of days with wind gusts above 21 m/s

Usage

```
dfx21(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data maximum wind gust, m/s
data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

Examples

```
data(data_all)
dfx21(data = data_all$windgust)
```

dr1mm

Wet days 1mm

Description

Total number of wet days >= 1 mm

Usage

```
dr1mm(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily precipitation, mm
data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

32 dr3mm

Value

days

References

European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php

Examples

```
data(data_all)
dr1mm(data = data_all$rr)
```

dr3mm

Wet days 3mm

Description

Total number of Wet days >= 3mm

Usage

```
dr3mm(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily precipitation, mm
data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

References

 $European\ Climate\ Assessment\ \&\ Dataset.\ Indices\ dictionary.\ https://www.ecad.eu//indicesextremes/indicesdictionary.php$

```
data(data_all)
dr3mm(data = data_all$rr)
```

dtr 33

dtr

Diurnal temperature range

Description

Mean difference between TX and TN.

Usage

```
dtr(tmax, tmin, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

tmax daily maximum temperature, Celsius tmin daily minimum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

temperature, Celsius

Formula

$$DTR_j = \frac{\sum_{i=1}^{I} (TX_{ij} - TN_{ij})}{I}$$

References

Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5. https://www.ecad.eu/documents/WCDMP_72_TD_1500_en_1.pdf

```
data(data_all)
dtr(tmax=data_all$tx, tmin=data_all$tn)
```

34 eai

eai

Emberger aridity index

Description

Aridity index based on annual precipitation and temperature range

Usage

```
eai(pr, taverage, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

pr daily precipitation, mm

taverage daily mean temperature, Celsius

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

index value

Formula

$$EAI = \frac{100 * P}{Thm^2 - Tcm^2}$$

P = annual precipitation; Thm = Average temperature of the hottest month in Kelvin; Tcm= Average temperature of the coldest month in Kelvin

References

Emberger L. 1930. La végétation de la région méditerranéenne: essai d'une classification des groupements végétaux Revue Générale de Botanique, 42 (641–662), pp. 705-721

```
data(data_all)
eai(pr = data_all$rr, taverage = data_all$tg)
```

ep 35

ер

Effective precipitation

Description

Precipitation minus evapotranspiration

Usage

```
ep(eto, pr, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

eto et0, mm

pr daily precipitation, mm data_names names of each period of time

 $\label{time.scale} \mbox{month, season or year}$

na.rm logical. Should missing values (including NaN) be removed?

Value

mm

Examples

```
data(data_all)
ep(eto = data_all$eto, pr = data_all$rr)
```

eto

Reference evapotranspiration

Description

If data available using Fao-56 Penman-Monteith

```
eto(
tmin,
tmax,
toa,
w,
lat,
tdew,
mde,
```

36 eto

```
radiation = NA,
insolation = NA,
rh = NA,
data_names = NULL,
time.scale = YEAR,
na.rm = FALSE
)
```

Arguments

tmin daily minimum temperature, Celsius tmax daily maximum temperature, Celsius

toa solar radiation at TOA, W/m2

w average wind, m/slat latitude, degreetdew dew point, Celsius

mde digital elevation model, m

radiation net radiation, J/m2 insolation insolation, hours of sun

rh relative humidity, percentage data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

mm

References

Chiew, F.H.S., Kamaladasa, N.N., Malano, H.M., McMahon, T.A., 1995. Penman–Monteith FAO-24 reference crop evapotranspiration and class-A pan data in Australia. Agric. Water Manage. 28, 9–21

```
data(data_all)
eto(tmin = data_all$tn, tmax = data_all$tx,
    toa = data_all$radiationtoa, w = data_all$wind,
    lat=data_all$lat, tdew = data_all$dewpoint,
    mde=data_all$mde, radiation = data_all$radiation,
    insolation=data_all$insolation, rh = data_all$humidity)
```

etr 37

etr

Extreme temperature range

Description

Difference between the maximum TX and the minimum TN.

Usage

```
etr(tmax, tmin, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

tmax daily maximum temperature, Celsius tmin daily minimum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

temperature, Celsius

Examples

```
data(data_all)
etr(tmax=data_all$tx, tmin=data_all$tn)
```

fd

Frost days

Description

Number of days with TN < 0 Celsius.

Usage

```
fd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily minimum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

38

Value

days

References

Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.

Examples

```
data(data_all)
fd(data=data_all$tn)
```

fg

Mean of daily mean wind strength

Description

Mean of daily FG

Usage

```
fg(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data average wind, m/s

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

wind, m/s

References

European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php

```
data(data_all)
fg(data = data_all$wind)
```

fg6bft 39

fg6bft

Number of days with averaged wind above 10.8m/s

Description

Number of days with FG >=6 Bft (10.8 m/s)

Usage

```
fg6bft(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data average wind, m/s

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

References

ECA&D website: European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php

Examples

```
data(data_all)
fg6bft(data = data_all$wind)
```

fgcalm

Calm days

Description

```
Number of calm days (FG <=2 m/s)
```

```
fgcalm(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

40 fod

Arguments

data average wind, m/s

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

References

ECA&D website: European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php

Examples

```
data(data_all)
fgcalm(data = data_all$wind)
```

fod

Foggy days

Description

Number of days with fog.

Usage

```
fod(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data cloud base below 100 meter, percentage

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

References

Rastogi, B., A.P. Williams, D.T. Fischer, S.F. Iacobellis, K. McEachern, L. Carvalho, C. Jones, S.A. Baguskas, and C.J. Still, 2016: Spatial and Temporal Patterns of Cloud Cover and Fog Inundation in Coastal California: Ecological Implications. Earth Interact., 20, 1–19, doi: 10.1175/EID150033.1

fpsc 41

Examples

```
data(data_all)
fod(data = data_all$cloud100)
```

fpsc

Date of first permanent snow cover

Description

First day of the longest period with consecutive snow cover day (day of the hydrological year).

Usage

```
fpsc(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data snow depth, mm

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

date

Examples

```
data(data_all)
fpsc(data = data_all$snowdepth)
```

fsc

Date of first snow cover

Description

First day when there is measurable snow cover (day of the hydrological year)

```
fsc(data, data_names = NULL, na.rm = FALSE, ...)
```

42 fsd

Arguments

data snow depth, mm

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

date

Examples

```
data(data_all)
fsc(data = data_all$snowdepth)
```

fsd

Number of snow days

Description

Number of snow days

Usage

```
fsd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data snowfall, m of water equivalent data_names names of each period of time time.scale month, season or year

month, souson or your

na.rm logical. Should missing values (including NaN) be removed?

Value

days

References

European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php

```
data(data_all)
fsd(data = data_all$snowfall)
```

fxx 43

fxx

Daily maximum wind gust

Description

Maximum value of daily maximum wind gust (m/s)

Usage

```
fxx(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data maximum wind gust, m/s
data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

wind, m/s

References

European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php

Examples

```
data(data_all)
fxx(data = data_all$windgust)
```

gd4

Growing degree days

Description

Sum of degree days of TG over 4 Celsius (the daily mean temperature is less than 4 celsius, it is set equal to 4 celsius)

```
gd4(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

gsl gsl

Arguments

data daily mean temperature, Celsius data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

temperature, Celsius

References

McMaster, G. S., & Wilhelm, W. W. (1997). Growing degree-days: One equation, two interpretations. Agricultural and Forest Meteorology, 87(4), 291-300

Examples

```
data(data_all)
gd4(data=data_all$tg)
```

gsl

Growing season length

Description

Annual count of days between the first span of at least 6 days with TG > 5 Celsius and first span after 1 July of 6 days with TG < 5 Celsius.

Usage

```
gsl(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily mean temperature, Celsius data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

days

References

European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php

gsr 45

Examples

```
data(data_all)
gsl(data=data_all$tg)
```

gsr

Growing season precipitation

Description

Growing season (april to october) total precipitation

Usage

```
gsr(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily precipitation, mm
data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

precipitation, mm

Examples

```
data(data_all)
gsr(data = data_all$rr)
```

gtg

Mean TG

Description

Mean of daily mean air temperature

```
gtg(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

46 gtn

Arguments

data daily mean temperature, Celsius data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

temperature, Celsius

References

European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php

Examples

```
data(data_all)
gtg(data=data_all$tg)
```

gtn Mean TN

Description

Mean of daily minimum air temperature

Usage

```
gtn(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily minimum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

temperature, Celsius

References

European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php

gtx 47

Examples

```
data(data_all)
gtn(data=data_all$tn)
```

gtx

Mean TX

Description

Mean of daily maximum air temperature

Usage

```
gtx(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily maximum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

```
temperature, Celsius
```

References

 $European\ Climate\ Assessment\ \&\ Dataset.\ Indices\ dictionary.\ https://www.ecad.eu//indicesextremes/indicesdictionary.php$

```
data(data_all)
gtx(data=data_all$tg)
```

48 hd17

hd17

Heating degree days

Description

accumulated degree when TG is below 17 Celsius

Usage

```
hd17(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily mean temperature, Celsius data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

temperature, Celsius

Formula

$$HD17_j = \sum_{j=1}^{I} (17^{o}C - TG_i j)$$

References

Quayle, R. G., & Diaz, H. F. (1980). Heating degree day data applied to residential heating energy consumption. Journal of Applied Meteorology, 19(3), 241-246. doi: 10.1175/15200450(1980)019<0241:HDDDAT>2.0.CO;

```
data(data_all)
hd17(data=data_all$tg)
```

hi 49

hi Heat Index

Description

Combines air temperature and relative humidity to determine the human-perceived equivalent temperature

Usage

```
hi(taverage, rh, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

taverage daily mean temperature, Celsius relative humidity, percentage rh data_names names of each period of time time.scale

month, season or year

logical. Should missing values (including NaN) be removed? na.rm

Value

index value

Formula

```
HI = -42,379 + 2,04901523*TG + 10,14333127*rh - 0,22475541*TG*rh - 0.00683783*TG^2 - 0.05481717*rh^2 + 0.0187676*TG^2 - 0.00683783*TG^2 - 0.00683785*TG^2 - 0.006875*TG^2 - 0.
```

. Where TG is air temperature in °F and rh is relative humidity in

References

The Heat Index Equation https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml

```
data(data_all)
hi(taverage = data_all$tg, rh = data_all$humidity)
```

50 id

hsd

Heavy snowy days

Description

Number of days with snow depth more than 50 cm.

Usage

```
hsd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data snow depth, mm

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

References

European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php

Examples

```
data(data_all)
hsd(data = data_all$snowdepth)
```

id

Ice days

Description

Number of days with TX < 0 Celsius.

```
id(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

jci 51

Arguments

data daily maximum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

References

Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.

Examples

```
data(data_all)
id(data=data_all$tx)
```

jci

Johansson Continentality Index

Description

The Johansson Continentality Index is usually used for the climatic differentiation between continental and oceanic climates.

Usage

```
jci(data, data_names = NULL, value, na.rm = FALSE, ...)
```

Arguments

data daily mean temperature, Celsius data_names names of each period of time

value lat

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

index value

52 koi

Formula

$$JCI = \frac{1.7(Thm - Tcm)}{sinf} - 20.4$$

Thm = Average temperature of the hottest month (Celsius); Tcm = Average temperature of the coldest month (Celsius); f = geographical latitude

References

Chronopoulou-Sereli A. 1996. Courses of Agricultural Meteorology. Publications Agricultural University of Athens: Athens, OH

Examples

```
data(data_all)
jci(data = data_all$tg, value = data_all$lat)
```

koi

Kerner Oceanity Index

Description

KOI analysed the oceanity assuming that marine climates have colder spring months in comparison with the autum months.

Usage

```
koi(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily mean temperature, Celsius data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

index value

Formula

$$KOI = \frac{100(TGo - TGa)}{Thm - Tcm}$$

TGo = Average temperature of October TGa = Average temperature of April Thm = Average temperature of the hottest month (Celsius); Tcm = Average temperature of the coldest month (Celsius)

lpsc 53

References

Zambakas J. 1992.General Climatology. Department of Geology, National & Kapodistrian University of Athens, Athens. Gavilan RG. 2005. The use of climatic parameters and indices in vege-tation distribution. A case study in the Spanish System Central.Int. J.Biometeorol.50: 111–120.

Examples

```
data(data_all)
koi(data = data_all$tg)
```

lpsc

Date of last permanent snow cover

Description

Last day of the longest period with consecutive snow cover day (day of the hydrological year).

Usage

```
lpsc(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data snow depth, mm
data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

date

```
data(data_all)
lpsc(data = data_all$snowdepth)
```

54 mai

mai

De Martonne aridity index

Description

De Martonne aridity index is the ratio between the annual amount of precipitation and anual mean of temperature plus 10 Celsius.

Usage

```
mai(pr, taverage, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

pr daily precipitation, mm

taverage daily mean temperature, Celsius

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

index value

Formula

$$MAI = \frac{P}{TG + 10}$$

P = annual precipitation (mm); TG = mean annual air temperature (Celsius)

References

De Martonne E., 1926. Une nouvelle fonction climatologique: L'indice d'aridité. La Meteorologie, 449-458.

```
data(data_all)
mai(pr = data_all$rr, taverage = data_all$tg)
```

mfi 55

mfi

Modified Fournier Index

Description

The precipitation concentration index is frequently associated to erosion risk. Values: 0-60 very low; 60-90 Low; 90-120 moderate; 120-160 high; > 160 very high.

Usage

```
mfi(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily precipitation, mm

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

further arguments passed to or from other methods

Value

index value

Formula

$$MFI = \sum_{i=1}^{12} \frac{P_i^2}{P_t}$$

References

Fournier F. 1960. Climat et Erosion. PUF: Paris. Arnoldus HM. 1980. An approximation of the rainfall factor in the Uni-versal Soil Loss Equation. In Assessments of Erosion, de Boodts M,Gabriels D (eds). John Wiley and Sons Ltd, Chichester 127–132. De Luis M., González-Hidalgo J.C., Longares L.A. Is rainfal erosivity increasing in the Mediterranean Iberian Peninsula?. Land Degradation & Development, 21: 139-144.

```
data(data_all)
mfi(data = data_all$rr)
```

56 moi

mi Mould index

Description

Number of days with a relative humidity over 90

Usage

```
mi(taverage, rh, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

taverage daily mean temperature, Celsius rh relative humidity, percentage data_names names of each period of time time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

Examples

```
data(data_all)
mi(taverage = data_all$tg, rh = data_all$humidity)
```

moi

Marsz Oceanity Index

Description

The annual range of monthly mean air temperatures grados

Usage

```
moi(data, lat, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily mean temperature, Celsius

lat latitude, degree

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

ms 57

Value

index value

Formula

$$MOI = \frac{0.731\phi + 1.767}{Thm - Tcm}$$

Phi = geographical latitude; Thm = Average temperature of the hottest month (Celsius); Tcm = Average temperature of the coldest month (Celsius)

References

Marsz A, Rakusa-Suszczewskis S. 1987. Charakterystyka ekologiczna rejonu Zatoki Admiralicji (King George Island, SouthShetland Islands). 1. Klimat i obszary wolne od lodu.Kosmos36:103–127.

Examples

```
data(data_all)
moi(data = data_all$tg, lat = data_all$lat)
```

ms

Maximum snow depth

Description

Maximum snow depth (m)

Usage

```
ms(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data snow depth, mm

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

snow depth, m

```
data(data_all)
ms(data = data_all$snowdepth)
```

58 ngsr

msd

Mild snowy days

Description

Number of days with snow depth > 5 cm.

Usage

```
msd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data snow depth, mm

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

References

European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php

Examples

```
data(data_all)
msd(data = data_all$snowdepth)
```

ngsr

Non-growing season precipitation

Description

Total precipitation from October to April

```
ngsr(data, data_names = NULL, na.rm = FALSE, ...)
```

ntg 59

Arguments

data daily precipitation, mm
data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

precipitation, mm

Examples

```
data(data_all)
ngsr(data = data_all$rr)
```

ntg

Minimum TG

Description

Minimum value of daily mean air temperature

Usage

```
ntg(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily mean temperature, Celsius data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

Average temperature

```
data(data_all)
ntg(data=data_all$tg)
```

60 ogs6

ogs10

Onset of growing season 10 days

Description

Date of the start of the first span with at least 10 days with TG > 5 Celsius

Usage

```
ogs10(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily mean temperature, Celsius data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

date

Examples

```
data(data_all)
ogs10(data=data_all$tg)
```

ogs6

Onset of growing season 6 days

Description

Date of the start of the first span with at least 6 days with TG >5 Celsius

Usage

```
ogs6(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily mean temperature, Celsius data_names names of each period of time time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

pci 61

Value

date

Examples

```
data(data_all)
ogs6(data=data_all$tg)
```

pci

Precipitation Concentration Index

Description

Index to evaluate precipitation heterogeneity at a monthly scale. Values <10 (uniform monthly rainfall distribution); values 11-15 (moderate concentration of precipitation); values 16-20 (irregular distribution); and >20 ((high precipitation concentration)

Usage

```
pci(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily precipitation, mm
data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

index value

Formula

$$PCI = \frac{\sum_{i=1}^{12} P_i^2}{(P_t)^2} * 100$$

References

Oliver, J.E. (1980) Monthly precipitation distribution: a comparative index. Professional Geographer, 32, 300–309

```
data(data_all)
pci(data = data_all$rr)
```

62 pici

pici

Pinna Combinative Index

Description

Pinna combinative index is an aridity-humidity index

Usage

```
pici(pr, taverage, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

pr daily precipitation, mm

taverage daily mean temperature, Celsius

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

index value

Formula

$$PICI = \frac{1}{2} \left(\frac{P}{TG + 10} + \frac{12Pdm}{TGdm + 10} \right)$$

P = annual precipitation (mm); TG = annual mean temperature (Celsius); Pdm= precipitation of the driest month; TGdm= temperature of the driest month

References

Zambakas J. 1992. General Climatology. Department of Geology, National & Kapodistrian University of Athens: Athens, Greece.

```
data(data_all)
pici(pr = data_all$rr, taverage = data_all$tg)
```

prcptot 63

prcptot

Total precipitation wet days

Description

Precipitation amount on days with RR >= 1 mm

Usage

```
prcptot(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily precipitation, mm

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

precipitation, mm

References

European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php

Examples

```
data(data_all)
prcptot(data = data_all$rr)
```

ptg

Sums positive

Description

Sums of positive TG calculated for the 1st of February to the 10th April interval

```
ptg(data, data_names = NULL, na.rm = FALSE, ...)
```

64 r10mm

Arguments

data daily mean temperature, Celsius data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

temperature, Celsius

Examples

```
data(data_all)
ptg(data = data_all$tg)
```

r10mm

Days precipitation >= R10mm

Description

Days with daily precipitation amount >= 10mm

Usage

```
r10mm(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily precipitation, mm
data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

References

Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.

```
data(data_all)
r10mm(data = data_all$rr)
```

r20mm 65

r	つの	mm

Days precipitation >= R20mm

Description

Days with daily precipitation amount >= 20mm

Usage

```
r20mm(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily precipitation, mm

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

References

Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.

Examples

```
data(data_all)
r20mm(data = data_all$rr)
```

r95tot

Percentage precipitation of very wet days

Description

Precipitation at days exceeding the 95th percentile divided by total precipitation expressed in percentage. The 95th percentile is computed based on the time scale selected (month, season or year) not daily.

```
r95tot(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

66 r99tot

Arguments

data daily precipitation, mm
data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

precipitation, mm

Examples

```
data(data_all)
r95tot(data = data_all$rr, time.scale="month")
```

r99tot

Precipitation fraction extremely wet days

Description

Precipitation at days exceeding the 99th percentile divided by total precipitation expressed in percentage, The 99th percentile is computed based on the time scale selected (month, season or year) not daily

Usage

```
r99tot(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily precipitation, mm

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

precipitation, mm

```
data(data_all)
r99tot(data = data_all$rr)
```

rti 67

rti

Total precipitation

Description

Total amounts of precipitation

Usage

```
rti(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily precipitation, mm

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

precipitation, mm

Examples

```
data(data_all)
rti(data = data_all$rr)
```

rx1day

Maximum precipitation

Description

The highest amount of daily precipitation

Usage

```
rx1day(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily precipitation, mm
data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

68 rx5d

Value

```
precipitation, mm
```

References

Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.

Examples

```
data(data_all)
rx1day(data = data_all$rr)
```

rx5d

Maximum 5 days R

Description

Maximum consecutive 5-day precipitation

Usage

```
rx5d(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily precipitation, mm
data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

precipitation, mm

References

Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.

```
data(data_all)
rx5d(data = data_all$rr)
```

scd 69

scd

Number of snow covered days

Description

Number of snow covered days (snow depth > 0)

Usage

```
scd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data snow depth, mm

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

Examples

```
data(data_all)
scd(data = data_all$snowdepth)
```

sd0_10

Snow depth 1-10

Description

Number of days with snow depth in the range 1-10 cm

Usage

```
sd0_10(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data snow depth, mm

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

70 sd10_20

Value

days

References

European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php

Examples

```
data(data_all)
sd0_10(data = data_all$snowdepth)
```

sd10_20

Snow depth 10-20

Description

The number of days with snow depth of 10-20 cm

Usage

```
sd10_20(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data snow depth, mm

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

References

European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php

```
data(data_all)
sd10_20(data = data_all$snowdepth)
```

sdii 71

sdii

Simple precipitation intensity index

Description

Sum of precipitation in wet days (days with >1mm of precipitation), and dividing that by the number of wet days in the period.

Usage

```
sdii(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily precipitation, mm
data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

precipitation, mm

References

Michele Brunetti, Maurizio Maugerib, Teresa Nanni, (2001) Changes in total precipitation, rainy days and extreme events in northeastern Italy, International Journal of Climatology

Examples

```
data(data_all)
sdii(data = data_all$rr)
```

snd

Sunny days

Description

Days with mean cloud cover less than 10

```
snd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

72 spei1

Arguments

data cloud cover, percentage
data_names names of each period of time
time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

Examples

```
data(data_all)
snd(data = data_all$cloud)
```

spei1

Standardised Precipitation-Evapotranspiration Index 1

Description

Standardized precipitation-evapotranspiration index calculated at 1-month time scale

Usage

```
spei1(eto, pr, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

eto evapotranspiration, mm

pr daily precipitation, mm

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

index value

References

Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I.: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index, J. Clim., 23(7), doi: 10.1175/2009JCL12909.1, 2010.

```
data(data_all)
spei1(eto = data_all$eto, pr = data_all$rr, na.rm = TRUE)
```

spei12 73

spei12

Standardised Precipitation-Evapotranspiration Index 12

Description

Standardized precipitation-evapotranspiration index calculated at 12-month time scale

Usage

```
spei12(eto, pr, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

eto evapotranspiration, mm

pr daily precipitation, mm

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

index value

References

Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I.: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index, J. Clim., 23(7), doi: 10.1175/2009JCLI2909.1, 2010.

Examples

```
data(data_all)
spei12(eto = data_all$eto, pr = data_all$rr)
```

spei3

Standardised Precipitation-Evapotranspiration Index 3

Description

Standardized precipitation-evapotranspiration index calculated at 3-month time scale

Usage

```
spei3(eto, pr, data_names = NULL, na.rm = FALSE, ...)
```

74 spei6

Arguments

eto evapotranspiration, mm daily precipitation, mm pr data_names names of each period of time logical. Should missing values (including NaN) be removed? na.rm

further arguments passed to or from other methods

Value

index value

References

Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I.: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index, J. Clim., 23(7), doi: 10.1175/2009JCLI2909.1, 2010.

Examples

```
data(data_all)
spei3(eto = data_all$eto, pr = data_all$rr)
```

spei6

Standardised Precipitation-Evapotranspiration Index 6

Description

Standardized precipitation-evapotranspiration index calculated at 6-month time scale

Usage

```
spei6(eto, pr, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

eto evapotranspiration, mm daily precipitation, mm pr data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

further arguments passed to or from other methods

Value

index value

spi1 75

References

Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I.: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index, J. Clim., 23(7), doi: 10.1175/2009JCLI2909.1, 2010.

Examples

```
data(data_all)
spei6(eto = data_all$eto, pr = data_all$rr)
```

spi1

Standardized precipitation index 1

Description

Standardized precipitation index calculated at 1-month time scale

Usage

```
spi1(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily precipitation, mm

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

index value

References

McKee, T. B., Doesken, N. J. and Kleist, J.: The relationship of drought frequency and duration to time scales, Eighth Conf. Appl. Climatol., 179–184, 1993.

```
data(data_all)
spi1(data = data_all$rr)
```

76 *spi3*

spi12

Standardized precipitation index 12

Description

Standardized precipitation index calculated at 12-month time scale

Usage

```
spi12(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily precipitation, mm data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

index value

References

McKee, T. B., Doesken, N. J. and Kleist, J.: The relationship of drought frequency and duration to time scales, Eighth Conf. Appl. Climatol., 179–184, 1993.

Examples

```
data(data_all)
spi12(data = data_all$rr)
```

spi3

Standardized precipitation index 3

Description

Standardized precipitation index calculated at 3-month time scale

Usage

```
spi3(data, data_names = NULL, na.rm = FALSE, ...)
```

spi6 77

Arguments

data daily precipitation, mm data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

index value

References

McKee, T. B., Doesken, N. J. and Kleist, J.: The relationship of drought frequency and duration to time scales, Eighth Conf. Appl. Climatol., 179–184, 1993.

Examples

```
data(data_all)
spi3(data = data_all$rr)
```

spi6

Standardized precipitation index 6

Description

Standardized precipitation index calculated at 6-month time scale

Usage

```
spi6(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily precipitation, mm
data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

index value

References

McKee, T. B., Doesken, N. J. and Kleist, J.: The relationship of drought frequency and duration to time scales, Eighth Conf. Appl. Climatol., 179–184, 1993.

78 ssd

Examples

```
data(data_all)
spi6(data = data_all$rr)
```

SS

Snowfall sum

Description

Sum of snowfall

Usage

```
ss(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data snowfall, mm of water equivalent data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

snow, mm

Examples

```
data(data_all)
ss(data = data_all$snowfallmm)
```

ssd

Sum of sunshine duration

Description

Sum of sunshine duration (hours)

Usage

```
ssd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

ssp 79

Arguments

data insolation, hours of sun data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

hours of sun

References

European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php

Examples

```
data(data_all)
ssd(data = data_all$insolation)
```

ssp

Sunshine duration percentage

Description

Sunshine duration fraction with respect to day length (

Usage

```
ssp(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data insolation, hours of sun
data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

percentage

Formula

$$SSP = \frac{SS}{SSmax}*100$$

SS: sum of sunshine duration (h); SSmax: maximun daylight (h)

80 stn10

References

European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php

Examples

```
data(data_all)
ssp(data = data_all$insolation)
```

stn10

Sums TN-10

Description

Sum of degree days when TN <=-10 Celsius recorded in December-February interval

Usage

```
stn10(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily minimum temperature, Celsius

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

```
temperature, Celsius
```

```
data(data_all)
stn10(data = data_all$tn)
```

stn15

stn15 Sums TN-15

Description

Sum of degree days when TN <= -15 Celsius recorded in December-February interval

Usage

```
stn15(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily minimum temperature, Celsius

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

temperature, Celsius

Examples

```
data(data_all)
stn15(data = data_all$tn)
```

stx32

Sums TX32

Description

Sum of degree days when $TX \ge 32$ Celsius on the interval June-August. The 32 celsius limit is the critical biological threshold for the maximum air temperature from which the physiological optimal growth and development of wheat and maize plants.

Usage

```
stx32(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily maximum temperature, Celsius

data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

82 su

Value

```
temperature, Celsius
```

Examples

```
data(data_all)
stx32(data = data_all$tx)
```

su

Summer days

Description

Number of days with daily maximum temperature > 25 Celsius.

Usage

```
su(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily maximum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

References

Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.

```
data(data_all)
su(data=data_all$tx)
```

ta_o 83

ta_o

Growing season (Apr-Oct)

Description

Growing season (april to october) mean TG

Usage

```
ta_o(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily mean temperature, Celsius data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

```
temperature, Celsius
```

Examples

```
data(data_all)
ta_o(data=data_all$tg)
```

tm_s

Growing season(May-Sep)

Description

Growing season (may to september) mean TG

Usage

```
tm_s(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily mean temperature, Celsius data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

tn10p

Value

temperature, Celsius

Examples

```
data(data_all)
tm_s(data=data_all$tg)
```

tn10p

Percentage of cold nights

Description

Percentages of days with TN lower than the 10th percentile. The 10th percentile is computed based on the time scale selected (month, season or year) not daily as ETCCDI does. If you want to compute daily you can use RClimDex package.

Usage

```
tn10p(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily minimum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

percentage

Formula

$$cn = \frac{No.daysTN < 10p}{No.days} * 100$$

```
data(data_all)
tn10p(data=data_all$tn)
```

tn90p

tn90p	Warm nights

Description

Percentages of days with TN higher than the 90th percentile. The 90th percentile is computed based on the time scale selected (month, season or year) not daily.

Usage

```
tn90p(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily minimum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

Examples

```
data(data_all)
tn90p(data=data_all$tn)
```

tnn *Minimum TN*

Description

Minimum of daily minimum air temperature

Usage

```
tnn(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily minimum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

86 tnx

Value

```
temperature, Celsius
```

References

Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5. https://www.ecad.eu/documents/WCDMP_72_TD_1500_en_1.pdf

Examples

```
data(data_all)
tnn(data=data_all$tn)
```

tnx

Maximum TN

Description

Maximum of daily minimum air temperature

Usage

```
tnx(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily minimum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

```
temperature, Celsius
```

References

Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5. https://www.ecad.eu/documents/WCDMP_72_TD_1500_en_1.pdf

```
data(data_all)
tnx(data=data_all$tn)
```

tr 87

tr

Tropical nights

Description

Number of days with TN > 20 Celsius.

Usage

```
tr(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily minimum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

References

Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5.

Examples

```
data(data_all)
tr(data=data_all$tn)
```

tx10p

Percentage of cold days

Description

Percentages of days with TX lower than the 10th percentile. The 10th percentile is computed based on the time scale selected (month, season or year) not daily as ETCCDI does. If you want to compute daily you can use RClimDex package.

Usage

```
tx10p(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

88 tx90p

Arguments

data daily maximum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

percentage

Formula

$$cd = \frac{No.daysTX < 10p}{No.days}*100$$

Examples

```
data(data_all)
tx10p(data=data_all$tx)
```

tx90p

Warm days

Description

Total numbers of days with TX higher than the 90th percentile. The 90th percentile is computed based on the time scale selected (month, season or year) not daily as ETCCDI does. If you want to compute daily you can use RClimDex package.

Usage

```
tx90p(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily maximum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

```
data(data_all)
tx90p(data=data_all$tx)
```

txn 89

txn *Minimum TX*

Description

Minimum of daily maximum air temperature

Usage

```
txn(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily maximum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

temperature, Celsius

References

Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5. https://www.ecad.eu/documents/WCDMP_72_TD_1500_en_1.pdf

Examples

```
data(data_all)
txn(data=data_all$tx)
```

txx

Maximum of daily maximum air temperature

Usage

Description

```
txx(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Maximum TX

90 uai

Arguments

data daily maximum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

temperature, Celsius

References

Klein Tank AMG, Zwiers FW, Zhang X. 2009. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, climate data and monitoring WCDMP-No 72, WMO-TD No 1500, p 5. https://www.ecad.eu/documents/WCDMP_72_TD_1500_en_1.pdf

Examples

```
data(data_all)
txx(data=data_all$tx)
```

uai

UNEP Aridity Index

Description

P/Eto

Usage

```
uai(eto, pr, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

eto evapotranspiration, mm
pr daily precipitation, mm

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

index value

utci 91

References

Huiping Huang, Yuping Han, Mingming Cao, Jinxi Song, and Heng Xiao Spatial-Temporal Variation of Aridity Index of China during 1960–2013. Advances in Meteorology, vol. 2016, Article ID 1536135, 10 pages, 2016. doi: 10.1155/2016/1536135

Examples

```
data(data_all)
uai(eto = data_all$eto, pr = data_all$rr)
```

utci

Universal Thermal Climate Index

Description

The Universal Thermal Climate is defined as the air temperature of the reference condition causing the same model response as actual conditions. The deviation of UTCI from air temperature, depends on the values of air and mean radiant temperature), wind speed and humidity.

Usage

```
utci(
  taverage,
  rh,
  w,
  tmrt,
  data_names = NULL,
  time.scale = YEAR,
  na.rm = FALSE
)
```

Arguments

```
taverage daily mean temperature, Celsius

rh relative humidity, percentage

w average wind, m/s

tmrt radiation temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?
```

Value

index value

92 vcd

References

Blazejczyk, K.; Jendritzky, G.; Bröde, P.; Fiala, D.; Havenith, G.; Epstein, Y., Psikuta, A.; Kampmann, B. 2013. An introduction to the Universal Thermal Climate Index (UTCI). Geographia Polonica, 86 (1), pp.5-10. http://www.utci.org/

Examples

vcd

Very cold days

Description

Days with TN <1st percentile. The 1th percentile is computed based on the time scale selected (month, season or year).

Usage

```
vcd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily minimum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

```
data(data_all)
vcd(data=data_all$tn)
```

vdtr 93

vdtr

Mean daily difference DTR

Description

Mean absolute day-to-day difference in DTR

Usage

```
vdtr(tmax, tmin, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

tmax daily maximum temperature, Celsius

tmin daily minimum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

logical. Should missing values (including NaN) be removed?

Value

temperature, Celsius

Formula

$$vDTR_{j} = \frac{\sum_{i=1}^{I} | (TX_{ij} - TN_{ij}) - (TX_{i-1,j} - TN_{i-1,j}) |}{I}$$

References

European Climate Assessment & Dataset. Indices dictionary. https://www.ecad.eu//indicesextremes/indicesdictionary.php

```
data(data_all)
vdtr(tmax=data_all$tx, tmin=data_all$tn)
```

94 wci

vwd Very warm days

Description

Days with TX >99th percentile per year. The 99th percentile is computed based on the time scale selected (month, season or year).

Usage

```
vwd(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily maximum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

Examples

```
data(data_all)
vwd(data=data_all$tx)
```

wci

Wind chill index

Description

Wind chill index is the lowering of body temperature due to the passing-flow of lower-temperature air. It combines air temperature and wind speed.

Usage

```
wci(taverage, w, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

taverage daily mean temperature, Celsius

w average wind, m/s

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

wki 95

Value

index value

Formula

$$WCI = 13.12 + 0.6215 * TG - 11.37 * v^{+0.16} + 0.3965 * TG * v^{+0.16}$$

Where TG in celsius and v is wind speed in Km/h

References

Osczevski, Randall; Bluestein, Maurice (2005). The new wind chill equivalent temperature chart. Bulletin of the American Meteorological Society. 86 (10): 1453–1458

Examples

```
data(data_all)
wci(taverage = data_all$tg, w = data_all$wind)
```

wki

Winkler index

Description

Sum of degree days over 10 celsius of TG from April 1 until October 31

Usage

```
wki(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily mean temperature, Celsius data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

temperature, Celsius

References

Winkler, A.J., J.A. Cook, W.M. Kliewer, and L.A. Lider. 1974. General Viticulture. 4th ed. University of California Press, Berkeley.

96 wsdi

Examples

```
data(data_all)
wki(data = data_all$tg)
```

WS

Winter Severity

Description

Mean TG of the coldest month of the year

Usage

```
ws(data, data_names = NULL, na.rm = FALSE, ...)
```

Arguments

data daily mean temperature, Celsius data_names names of each period of time

na.rm logical. Should missing values (including NaN) be removed?

... further arguments passed to or from other methods

Value

temperature, Celsius

Examples

```
data(data_all)
ws(data = data_all$tg)
```

wsdi

Warm spell duration

Description

Number of days which are part of groups of at least 6 consecutive days when TX > 90th percentile. The 90th percentile is computed based on the time scale selected (month, season or year) not daily as ETCCDI does. If you want to compute daily you can use RClimDex package.

Usage

```
wsdi(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

xtg 97

Arguments

data daily maximum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

Examples

```
data(data_all)
wsdi(data=data_all$tx)
```

xtg

Maximum TG

Description

Maximum of daily mean air temperature

Usage

```
xtg(data, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

data daily mean temperature, Celsius data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

Average temperature

```
data(data_all)
xtg(data=data_all$tg)
```

98 zcd

zcd Zero crossing days

Description

Number of days with TX > 0 Celsius and TN < 0 Celsius.

Usage

```
zcd(tmax, tmin, data_names = NULL, time.scale = YEAR, na.rm = FALSE)
```

Arguments

tmax daily maximum temperature, Celsius tmin daily minimum temperature, Celsius

data_names names of each period of time

time.scale month, season or year

na.rm logical. Should missing values (including NaN) be removed?

Value

days

```
data(data_all)
zcd(tmax=data_all$tx, tmin=data_all$tn)
```

Index

* datasets Datasets, 29 aci, 5	d95p, 28 data_all (Datasets), 29 Datasets, 29 dd, 29
asd, 6 at, 6	dd17, 30 dfx21, 31 dr1mm, 31
bi, 7	dr3mm, 32
bio10, 8 bio11, 9	dtr, 33
bio13, 9	eai, 34
bio14, 10	ep, 35
bio15, 11	eto, 35
bio16, 12	etr, 37
bio17, 12	fd, 37
bio18, 13	fg, 38
bio19, 14	fg6bft, 39
bio20, 15 bio4, 15	fgcalm, 39
bio5, 16	fod, 40
bio6, 17	fpsc, 41
bio7, 18	fsc, 41
bio8, 19	fsd, 42
bio9, 19	fxx, 43
calculate_all, 20	gd4, 43
calculate_all_scales, 21	gsl, 44
cc, 22	gsr, 45 gtg, 45
cdd, 22	gtn, 46
cfd, 23	gtx, 47
ClimInd (ClimInd-package), 4	800, 17
ClimInd-package, 4 ClimIndNews, 24	hd17, 48
cmd, 24	hi, 49
csd, 25	hsd, 50
csdi, 26	id, 50
cwd, 26	
d32, 27	jci, 51
d50mm, 28	koi, 52

INDEX

lpsc, 53 mai, 54 mfi, 55 mi, 56 moi, 56 ms, 57 msd, 58	tm_s, 83 tn10p, 84 tn90p, 85 tnn, 85 tnx, 86 tr, 87 tx10p, 87 tx90p, 88
ngsr, 58 ntg, 59	txn, 89 txx, 89
ogs10, 60 ogs6, 60	uai, 90 utci, 91
pci, 61 pici, 62 prcptot, 63	vcd, 92 vdtr, 93 vwd, 94
ptg, 63 r10mm, 64 r20mm, 65 r95tot, 65	wci, 94 wki, 95 ws, 96 wsdi, 96
r99tot, 66	xtg, 97
rti, 67 rx1day, 67 rx5d, 68	zcd, 98
scd, 69 sd0_10, 69 sd10_20, 70 sdii, 71 snd, 71 spei1, 72 spei12, 73 spei3, 73 spei6, 74 spi1, 75 spi12, 76 spi3, 76 spi6, 77 ss, 78 ssd, 78 ssd, 78 ssp, 79 stn10, 80 stn15, 81 stx32, 81 su, 82	
ta_o, 83	