

100 S. Roosevelt Avenue Chandler, AZ 85226 Tel: 480-961-1382, Fax: 480-961-4533 www.rogerscorporation.com

Data Sheet

RO4000® Series High Frequency Circuit Materials

Features:

- Non-PTFE
- Excellent high frequency performance due to low dielectric tolerance and loss
- Stable electrical properties versus frequency
- Low thermal coefficient of dielectric constant
- Low Z-Axis expansion
- Low in-plane expansion coefficient
- Excellent dimensional stability
- Volume manufacturing process

Some Typical Applications:

- LNB's for Direct Broadcast Satellites
- Microstrip and Cellular Base Station Antennas and Power Amplifiers
- Spread Spectrum Communications Systems
- RF Identifications Tags

RO4000® Series High Frequency Circuit Materials are glass reinforced hydrocarbon/ceramic laminates (**Non-PTFE**) designed for performance sensitive, high volume commercial applications.

RO4000 laminates are designed to offer superior high frequency performance and low cost circuit fabrication. The result is a low loss material which can be fabricated using standard epoxy/glass (FR4) processes offered at competitive prices.

The selection of laminates typically available to designers is significantly reduced once operational frequencies increase to 500 MHz and above. RO4000 material possesses the properties needed by designers of RF microwave circuits. Stable electrical properties over environmental conditions allow for repeatable design of filters, matching networks and controlled impedance transmission lines. Low dielectric loss allows RO4000 series material to be used in many applications where higher operating frequencies limit the use of conventional circuit board laminates. The temperature coefficient of dielectric constant is among the lowest of any circuit board material (Chart 1), making it ideal for temperature sensitive applications. RO4000 materials exhibit a stable dielectric constant over a broad frequency range (Chart 2). This makes it an ideal substrate for broadband applications.

RO4000 material's thermal coefficient of expansion (CTE) provides several key benefits to the circuit designer. The expansion coefficient of RO4000 material is similar to that of copper which allows the material to exhibit excellent dimensional stability, a property needed for mixed dielectric multilayer board constructions. The low Z-axis CTE of RO4000 laminates provides reliable plated through-hole quality, even in severe thermal shock applications. RO4000 series material has a Tg of >280°C (536°F) so its expansion characteristics remain stable over the entire range of circuit processing temperatures.

RO4000 series laminates can easily be fabricated into printed circuit boards using standard FR4 circuit board processing techniques. Unlike PTFE based high performance materials, RO4000 series

laminates do not require specialized via preparation processes such as sodium etch. This material is a rigid, thermoset laminate that is capable of being processed by automated handling systems and scrubbing equipment used for copper surface preparation.

RO4000 laminates are currently offered in various configurations utilizing both 1080 and 1674 glass fabric styles, with all configurations meeting the same laminate electrical performance specification. Responding to the need for higher Relative Thermal Index (RTI) values than 105°C, we have developed the RO43508™ laminate, which exhibits RTI values as high as 150°C. Specifically designed as a drop-in replacement for RO4350™ material, RO4350B laminate is the standard flame retardent product in the RO4000 product line. These materials conform to the requirements of IPC-4103, slash sheet /10 for RO4003C™ and /11 for RO4350B.

Chart 1: RO4000 Series Materials Dielectric Constant vs. Temperature 1.008 1.006 1.004 1.002 Er(T)/Er(25C) 1.000 0.998 0.996 0.994 0.992 0.990 0.988 -30 50 130 150 -50 Temp (°C) ----RO4350 PTFE/Woven Glass Chart 2: RO4000 Series Materials Dielectric Constant vs. Frequency 1.07 1.06 1.05 Er(f)/Er (5GHz) 1.04 1.03 1.02 1.01 0.99 0.98 2.5 7.5 10 Frequency (GHz) - RO4350 **Chart 3: Microstrip Insertion Loss** (0.030" Dielectric Thickness) 0.000 -0.200 -0.400 -0.600 dB/Inch -0.800 -1.000 -1.200 -1.400 -1.600 10 2 8 12 16 18 Frequency, GHz BT Glass Epoxy/PPO BT/Epoxy RO3003 PTFE Woven Glass RO4003 RO4350

TYPICAL VALUES

RO4003C™, RO4350B™ High Frequency Laminates

PROPERTY	TYPICAL VALUE		DIRECTION	UNITS	CONDITION	TEST METHOD
	RO4003C	RO4350B ⁽¹⁾				
Dielectric Constant, $\epsilon_{_{\! f}}$	3.38±0.05	3.48±0.05 ⁽²⁾	Z	_	10 GHz/23°C 2.5 GHz/23°C	IPC-TM-650 2.5.5.5
Dissipation Factor tan, $\boldsymbol{\delta}$	0.0027 0.0021	0.0037 0.0031	Z	_	10 GHz/23°C 2.5 GHz/23°C	IPC-TM-650 2.5.5.5
Thermal Coefficient of $\epsilon_{\rm r}$	+40	+50	Z	ppm/°C	-100°C to 250°C	IPC-TM-650 2.5.5.5
Volume Resistivity	1.7 X 10 ¹⁰	1.2 X 10 ¹⁰		MΩ•cm	COND A	IPC-TM-650 2.5.17.1
Surface Resistivity	4.2 X 10 ⁹	5.7 X 10 ⁹		ΜΩ	COND A	IPC-TM-650 2.5.17.1
Electrical Strength	31.2 (780)	31.2 (780)	Z	KV/mm (V/mil)	0.51mm (0.020'')	IPC-TM-650 2.5.6.2
Tensile Modulus	26,889 (3900)	11,473 (1664)	Y	MPa (kpsi)	RT	ASTM D638
Tensile Strength	141 (20.4)	175 (25.4)	Y	MPa (kpsi)	RT	ASTM D638
Flexural Strength	276 (40)	255 (37)	-	MPa (kpsi)		IPC-TM-650 2.4.4
Dimensional Stability	<0.3	<0.5	X,Y	mm/m (mils/inch)	after etch +E2/150°	IPC-TM-650 2.4.39A
Coefficient of Thermal Expansion	11 14 46	14 16 50	X Y Z	ppm/°C	-55 to 288°C	IPC-TM-650 2.1.41
Tg	>280	>280	-	℃	А	TMA IPC-TM-650 2.4.24C
Td	425	390	-	℃		TGA ASTM D 3850
Thermal Conductivity	0.64	0.62	-	W/m/°K	100°C	ASTM F433
Moisture Absorption	0.04	0.04	-	%	48 hrs immersion 0.060" sample Temperature 50°C	ASTM D570
Density	1.79	1.86	-	gm/cm³	23°C	ASTM D792
Copper Peel Strength	1.05 (6.0)	0.88 (5.0)		N/mm (pli)	after solder float 1 oz. EDC Foil	IPC-TM-650 2.4.8
Flammability	N/A	94V-O				UL
Lead-Free Process Compatible	Yes	Yes				

STANDARD THICKNESS:	STANDARD PANEL SIZE:	STANDARD COPPER CLADDING:
RO4003C: 0.008" (0.203mm), 0.012 (0.305mm), 0.016" (0.406mm), 0.020" (0.508mm) 0.032" (0.813mm), 0.060" (1.524mm)	12" X 18" (305 X457 mm) 24" X 18" (610 X 457 mm) 24" X 36" (610 X 915 mm) 48" X 36" (1.224 m X 915 mm)	½ oz. (17μm), 1 oz. (35μm) and 2 oz. (70μm) electrodeposited copper foil.
RO4350B:		
0.004" (0.101mm), 0.0066" (0.168mm)		
0.010" (0.254mm), 0.0133 (0.338mm),		
0.0166 (0.422mm), 0.020" (0.508mm)		
0.030" (0.762mm), 0.060" (1.524mm)		

⁽¹⁾ Dielectric constant and loss tangent are reported based on IPC-TM-2.5.5.5 @ GHz (stripline resonator). Departure from this test method or frequency may yield different values. It has been reported that in some microstrip applications, a Delta (\(\Delta \)) of 0.2 in dielectric constant has been observed for both RO4003 and RO4350B based on actual circuit measurement and circuit modeling comparisons. It is up to the user to deterime which value best fits the application and modeling software used during the design process while Rogers ensures the repeatability of the product received.

CONTACT INFORMATION: Rogers Advanced Circuit Materials - ISO 9000:2000 certified USA: Tel: 480-961-1382 Fax: 480-961-4533 Belgium: Rogers NV - Gent - ISO 9000:2000 certified Tel: +32-9-2353611 Fax: +32-9-2353658 Japan: Rogers Japan Inc. Tel: 81-3-5200-2700 Fax: 81-3-5200-0571 Taiwan: Rogers Taiwan Inc. Tel: 886-2-86609056 Fax: 886-2-86609057 Tel: 82-31-716-6112 Fax: 82-31-716-6208 Korea: Rogers Korea Inc. Singapore: Rogers Technologies Singapore Inc. Tel: 65-747-3521 Fax: 65-747-7425 Rogers (Shanghai) International Trading Co., Ltd Tel: 86-21-63916088 Fax: 86-21-63915060 China:

The information in this data sheet is intended to assist you in designing with Rogers' circuit material laminates. It is not intended to and does not create any warranties express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown on this data sheet will be achieved by a user for a particular purpose. The user should determine the suitability of Rogers' circuit material laminates for each application.

These commodities, technology and software are exported from the United States in accordance with the Export Administration regulations. Diversion contrary to U.S. law prohibited.