Planning and Analysis for Solar Energy in Libya

Mohamed Abuella
Department of Electromechanical Engineering
College of Industrial Technology, Misurata, Libya
كلية التقنية الصناعية، مصراتة، ليبيا

July 19th, 2021

Presentation Outline

Solar Energy Modeling Capacity Factor of Solar Energy Resources Variability of Solar Energy Resources Aggregation of Solar Energy Resources

Solar Energy Analysis for Some Locations in Libya

9 Locations for Comparison of Solar Energy Modeling and Analysis: Tripoli, Misurata, Sirte, Benghazi, Derna, Houn, Gadamis, Sebha, Kufra

Typical Meteorological Year (TMY) data represents the weather for a "median year". Data are retrieved from NREL's Developer Network: https://developer.nrel.gov/

Comparison of Monthly Average Temperature, in degree Celsius (°C)

Berlin in Germany has been added just for sake of comparison.

Comparison of Monthly Average Wind Speed, in meter per second (m/s)

Comparison of Monthly Average Relative Humidity, in percentage (%)

Comparison of Solar Energy by the Global Horizontal Irradiance (GHI), Watt-Hour accumulated monthly per Square-Meter, (Wh/m²)

Berlin in Germany has been added just for sake of comparison.

Comparison of Solar Energy by the Global Horizontal Irradiance (GHI), Watt-Hour accumulated monthly per Square-Meter, (Wh/m²)

Comparison between Misurata, Libya and Berlin, Germany

Comparison of Solar Energy by the Direct Normal Irradiance (DNI), Watt-Hour accumulated monthly per Square-Meter, (Wh/m²)

Comparison of Solar Energy by the Plane of Array (POA), Watt-Hour accumulated (Wh) for PV system of rating PW=1000W

The POA irradiance is modeled for solar panels with double-axis orientated, in other words, with optimal tilt and azimuth angles at each locations, for a Solar PV System with capacity of 1000W.

Comparison of Solar Energy by an Output Power AC-PW (PWac), Watt-Hour accumulated (Wh) for PV system of rating PW=1000W

The POA irradiance is modeled for solar panels with double-axis orientated, in other words, with optimal tilt and azimuth angles at each locations, for a Solar PV System with capacity of 1000W.

Comparison of Net Capacity Factors (NFC)

The Capacity Factor is calculated based on Several Irradiances and Output Powers (DC) and (AC). The Rating of Solar PV System =1000W during an entire year = 8760 hours.

Location	GHI_CFs	POA_CFs	PWDC_CFs	PWAC_CFs	DNI_CFs	POA_DNI_CFs
Tripoli	0.234199	0.290585	0.269381	0.255352	0.259360	0.221591
Misurata	0.241662	0.299089	0.276883	0.261649	0.265344	0.226979
Sirte	0.243338	0.299912	0.278514	0.262380	0.264714	0.228497
Benghazi	0.233556	0.289290	0.269182	0.253993	0.256688	0.220415
Derna	0.228293	0.282047	0.265982	0.249833	0.240903	0.210889
Houn	0.260896	0.320580	0.294575	0.276308	0.290568	0.250722
Gadamis	0.259906	0.324995	0.295710	0.279878	0.298431	0.255136
Sabha	0.262925	0.327496	0.298587	0.282232	0.297604	0.258812
Kufra	0.279635	0.349891	0.317157	0.298130	0.316106	0.278651
Berlin	0.125719	0.153390	0.149713	0.143000	0.120461	0.09442

Comparison of Net Capacity Factors (NFC)

The Capacity Factor is calculated based on Several Irradiances and Output Powers (DC) and (AC). The Rating of Solar PV System =1000W during an entire year = 8760 hours.

Comparison of Net Capacity Factors (NFC)

The Capacity Factor is calculated based on Output power (PWac).

The Rating of Solar PV System =1000W during an entire year = 8760 hours.

Comparison of Solar Power Variability

The Variability solar energy at a given location is determined based on the irradiance deviation from the clear-sky irradiance, (GHI/Cl-GHI).

Comparison of Solar Power Variability

The Variability solar energy at a given location is determined based on the irradiance deviation from the clear-sky irradiance. The standard deviation of this (GHI/Cl-GHI) or (DNI/Cl-DNI) is used as an indication to the solar variability at a given location.

Comparison of Aggregated Solar Power Variability

The solar resources are aggregated based to their locations:

- Coast Region: Tripoli, Misurata, Sirte, Benghazi, Derna.
- Sahara Region: Houn, Gadamis, Sabha, Kufra.
- and the All Locations: Tripoli, Misurata, Sirte, Benghazi, Derna, Houn, Gadamis, Sabha, Kufra.

Improvement of Variability Due to Aggregated Solar Resources

The solar resources are aggregated based to their locations:

- Coast Region: Tripoli, Misurata, Sirte, Benghazi, Derna.
- Sahara Region: Houn, Gadamis, Sabha, Kufra.
- and the All Locations: Tripoli, Misurata, Sirte, Benghazi, Derna, Houn, Gadamis, Sabha, Kufra.

GHI_Improvement at Aggregated Locs=(1 - (Agg GHI_var/min_Agg_Var@Region))*100

Improvement (%)	Agg vs. Best Coast	Agg vs. Best Sahara	Agg vs. Best All
Coast	22.866774	-2.955564	-2.955564
Sahara	23.329008	-2.338584	-2.338584
All	31.228778	8.205837	8.205837

DNI_Improvement at Aggregated Locs=(1 - (Agg DNI_var/min_Agg_Var@Region))*100

Improvement (%)	Agg vs. Best Coast	Agg vs. Best Sahara	Agg vs. Best All
Coast	35.079876	18.053005	18.053005
Sahara	36.248064	19.527579	19.527579
All	47.168813	33.312558	33.31255

Visualization of Aggregated Solar Power Variability

The solar resources are aggregated based to their locations: Aggregated All Location against an individual location is Derna During days from January 1st to January 15th

Net Capacity Factor for Aggregated Locations

The aggregated net capacity factor for all aggregated locations:

• and the All Locations: Tripoli, Misurata, Sirte, Benghazi, Derna, Houn, Gadamis, Sabha, Kufra.

Net Capacity Factor for Aggregated Locations

The aggregated net capacity factor for all aggregated locations:

• and the All Locations: Tripoli, Misurata, Sirte, Benghazi, Derna, Houn, Gadamis, Sabha, Kufra.

NCF based on GHI

Net Capacity Factor based on GHI for All Aggregated Locations=0.249

While Average Net Capacity Factor based on GHI=0.237 And Max Net Capacity Factor based on GHI=0.279 @ Kufra location

NCF based on DNI

Net Capacity Factor based on DNI for All Aggregated Locations=0.269

While Average Net Capacity Factor based on DNI=0.261 And Max Net Capacity Factor based on DNI=0.316 @ Kufra location

Conclusions

- In Libya, the southern locations yield more solar energy, but the northern locations have a good yielding compared to some locations in the world with significant solar power deployment.
- The average net capacity factor is about 0.30, and it can be considered high for solar power plants.
- The variability of the Coast locations is higher than the southern "Sahara" locations, which means a need for more auxiliary services at the coast region, such as more energy storage.
- The aggregation of Coast, Sahara, and All locations leads to a reduction in the variability and slightly increasing the capacity factor.
- Aggregation different solar plants from various regions can lead to more enhancement in solar power deployment.

Thanks for Listening

Any Question?

Mohamed Abuella

mabuella@cit.edu.ly

https://mohamedabuella.github.io

