UNIVERSIDAD AUTONOMA TOMAS FRIAS CARRERA DE SISTEMAS

TAREA PROGRAMACIÓN 2 TAREA NRO 1

Ejercicio 1

Escribe un programa que solicite las coordenadas de dos puntos en el espacio tridimensional (x1, y1, z1) y (x2, y2, z2) y calcule la distancia entre ambos puntos utilizando la fórmula:

$$d = \sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2 + (z^2 - z^1)^2}$$

Ejercicio 2

Simula el lanzamiento de dos dados y calcula la probabilidad de que la suma de los valores de ambos dados sea mayor o igual a un número dado por el usuario. Utiliza la función Math.random para generar los números aleatorios.

Ejercicio 3

Escribe un programa que resuelva una ecuación cuadrática de la forma ax2+bx+c=0 ax^2 + bx + c = 0ax2+bx+c=0 utilizando la fórmula general:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Ejercicio 4

Escribe un programa que calcule una aproximación del valor de PI utilizando la serie infinita de

$$\pi = 4\left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots\right)$$

Permite que el usuario ingrese el número de términos a utilizar en la aproximación. Utiliza Math.pow.

Ejercicio 5

Dado un punto en coordenadas polares (r, θ) , conviértelo a coordenadas cartesianas (x, y) utilizando las siguientes fórmulas:

$$x = r \cdot \cos(\theta)$$

$$y = r \cdot \sin(\theta)$$

Ejercicio 6

Escribe un programa que genere un número aleatorio dentro de un rango especificado por el usuario (mínimo y máximo). Utiliza Math.random.

Ejercicio 7

Escribe un programa que calcule el monto final después de aplicar interés compuesto, utilizando la fórmula:

$$A = P \left(1 + \frac{r}{n}\right)^{nt}$$

Donde:

- A es el monto final,
- P es el monto principal,
- r es la tasa de interés anual,
- n es el número de veces que se aplica el interés por año,
- t es el tiempo en años.

Utiliza Math.pow.

Ejercicio 8

Escribe un programa que simule el movimiento de un péndulo, dado el ángulo inicial y la longitud de la cuerda. Calcula el período del péndulo usando la fórmula:

$$T=2\pi\cdot\sqrt{rac{L}{g}}$$

Donde T es el período, L es la longitud de la cuerda y g es la aceleración debido a la gravedad (9.8 m/s^2) . Utiliza Math.PI y Math.sqrt.

Ejercicio 9

Escribe un programa que calcule el MCD de dos números enteros utilizando el algoritmo de Euclides. Utiliza Math.abs para asegurar que siempre se trabaje con valores positivos.

Ejercicio 10

Escribe un programa que calcule el área y el volumen de una esfera, dado su radio. Utiliza las siguientes fórmulas:

Área:
$$A=4\pi r^2$$

Volumen:
$$V=rac{4}{3}\pi r^3$$

Utiliza Math.PI y Math.pow.