

CITADEL AI Summer School 2022

Rodrique Kafando, PhD rodrique.kafando@citadel.bf kafando.rodrique@gmail.com

19-25.09.22

Objectifs

- Donnez des exemples d'apprentissage automatique dans diverses industries;
- Décrire les étapes utilisées par l'apprentissage automatique pour résoudre les problèmes ;
- Donner des exemples de diverses techniques utilisées dans l'apprentissage automatique ;
- Décrire les bibliothèques Python généralement utilisées pour l'apprentissage automatique ;
- Expliquer les différences entre les algorithmes supervisés et non supervisés ;
- Décrire les capacités des différents algorithmes.

Confiance

Machine Learning pour faire de la prédiction..

Machine Learning pour faire de la prédiction...

Machine Learning pour la prise de decision..

M Learning pour la segmentation des clients...

Inclusion

M Learning pour systèmes de recommandations...

Machine Learning sous python en quelques lignes...

Machine Learning sous python en quelques lignes...

	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn		
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	Yes)	
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	Yes		
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	No	>	Modeling
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	No		
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	?		
										No		No

Environnement de travail...

1 to 10, with 1 being the closest to benign.

The Class field contains the diagnosis, as confirmed by separate medical procedures, as to whether the samples are benign (value = 2) or malignant (value = 4).

Let's look at the distribution of the classes based on Clump thickness and Uniformity of cell size:

[40]: ax = cell_df[cell_df['Class'] == 4][0:50].plot(kind='scatter', x='Clump', y='UnifSize', color='DarkBlue', label='malignant'); cell_df[cell_df['Class'] == 2][0:50].plot(kind='scatter', x='Clump', y='UnifSize', color='Yellow', label='benign', ax=ax); plt.show()

Data pre-processing and selection

Let's first look at columns data types:

[41]: cell df.dtypes

Ce que vous retiendrez de ce cours....

Des compétences :

Régression

Classification

Clustering

Sklearn & Scipy

Appliquées sur des cas d'études concrets

