Índice general

1.	Ani	llos	1
	1.1.	Ideales y anillos cociente	1
	1.2.	Operaciones con ideales	1
	1.3.	Los Teoreamas de Isomorfía y Chino de los Restos	2

Capítulo 1

Anillos

1.1. Ideales y anillos cociente

Teorema 1.1 (Teorema de la Correspondencia). Si I es un ideal de un anillo A, las asignaciones $J \mapsto J/I$ y $X \mapsto \pi^{-1}(X)$ definen aplicaciones biyectivas (una inversa de la otra) que conservan la inclusión entre el conjunto de los ideales de A que contienen al I y el conjunto de los ideales de A/I.

Demostración.

- (1) Si J es un ideal de A que contiene a I entonces J/I es un ideal de A/I y $\pi^{-1}(J/I) = J$.
- (2) Si X es un ideal de A/I entonces $\pi^{-1}(X)$ es un ideal de A que contiene a I y $\pi^{-1}(X)/I = X$.
- (3) Si $J \subseteq K$ son ideales de A que contienen a I entonces entonces $J/I \subseteq K/I$.
- (4) Si $X \subseteq Y$ son ideales de A/I entonces $\pi^{-1}(X) \subseteq \pi^{-1}(Y)$.

1.2. Operaciones con ideales

Sea A un anillo. Recordemos que X es un subconjunto de A entonces llamamos ideal de A generado por X al menor ideal de A que contiene a X y que

$$(X) = \left\{ \sum_{i=1}^{n} a_i x_i : n \ge 0, a_i \in A, x_i \in X \right\}$$

Es fácil ver que la intersección de una familia de ideales de A es un ideal de A. Eso implica que (X) es también la intersección de todos los ideales de A que contienen a X.

Si I y J son dos ideales de A entonces la suma y el producto de A son los conjuntos

$$I + J = \{x + y : x \in y \in J\}$$

$$IJ = \{x_1y_1 + \dots + x_ny_n : x_1 + \dots + x_n \in I, y_1, \dots, y_n \in J\}$$

Más generalmente, si I_1, \ldots, I_n son ideales, entonces la suma de estos ideales es

$$I_1 + \dots + I_n = \{x_1 + \dots + x_n : x_1 \in I_1, \dots, x_n \in I_n\}$$

y el producto $I_1 \cdots I_n$, es el ideal formado por las sumas de productos de la forma $x_1 \cdots x_n$ donde $x_1 \in I_1, \dots, x_n \in I_n$.

Aún más general, si $\{I_x : x \in X\}$ es una familia de ideales de A entonces

$$\sum_{x \in X} I_x = \left\{ \sum_{x \in X} a_x : a_x \in I_x \text{ para todo } x \in X \text{ y } a_x = 0 \text{ para casi todo } x \in X \right\}$$

y $\prod_{x \in X} I_x$ es el ideal formado por las sumas de productos de la forma $\prod_{x \in X} a_x$ donde $a_x \in I_x$ para todo $x \in X$ y $a_x = 1$ para casi todo $x \in X$.

Proposición 1.1. Si $\{I_x : x \in X\}$ es una familia de ideales de un anillo A entonces:

- (1) $\sum_{x \in X} I_x$ es el menor ideal de A que contiene a todos los I_x , o sea el ideal generado por $\bigcup_{x \in X} I_x$.
- (2) Si I_1, \ldots, I_n son ideales de A entonces $I_1 \cdots I_n$ es el menor ideal de A generado por los productos $x_1 \cdots x_n$ con $x_1 \in I_1, \ldots, x_n \in I_n$.

Ejemplo 1.1. Operaciones con ideales

(1) Sean $n \ y \ m$ dos números enteros y consideremos los ideales $(n) \ y \ (m)$ de \mathbb{Z} . Claramente (n)(m) = (nm). Por otro lado, $(n) \cap (m)$ está formado por los números enteros que son múltiplos de $n \ y \ m$. Esos son precisamente los múltiplos del mínimo común múltiplo de $n \ y$ de m. Finalmente, (n)+(m) es el menor ideal (d) de \mathbb{Z} que contiene a $(n) \ y \ (m)$, (d) = (n)+(m) si y solo si d divide a $n \ y \ a \ m$ y es múltiplo de todos los divisores comunes de $n \ y \ m$. O sea, d es el máximo común divisor de $n \ y \ m$. En resumen:

$$(n)(m) = (nm), \quad (n) \cap (m) = (\operatorname{mcm}(n, m)), \quad (n) + (m) = (\operatorname{mcd}(n, m))$$

(2) Consideremos ahora el anillo $\mathbb{Z}[X]$ de los polinomios con coeficientes enteros. Entonces (2) + (X) está formado por los polinomios cuyo término independiente es par. Vamos a ver que este ideal no es principal. Supongamos por reducción al absurdo que (2) + (X) = (a) para algún $a \in \mathbb{Z}[X]$. Entonces 2 = ab para algún polinomio b, lo que que implica que $a \in \mathbb{Z}$. Además, como $a \in (2, X)$, necesariamente a es par, lo que implica $X \notin (a) = (2) + (X)$, una contradicción.

1.3. Los Teoreamas de Isomorfía y Chino de los Restos

Teorema 1.2 (Primer Teorema de Isomorfía). Sea $f: A \longrightarrow B$ un homomorfismo de anillos. Entonces existe un único isomorfismo de anillos $\overline{f}: A/\operatorname{Ker} f \longrightarrow \operatorname{Im} f$

$$A \xrightarrow{f} B$$

$$\downarrow p \qquad \qquad \uparrow i$$

$$A / \operatorname{Ker} f - \overline{f} - - > \operatorname{Im} f$$

es decir, $i \circ \overline{f} \circ p = f$, donde i es la inclusión y p es la proyección. En particular,

$$A/\operatorname{Ker} f \simeq \operatorname{Im} f$$

Demostración. Sean K e $I={\rm Im}\, f$. La aplicación $\overline{f}:A/K\longrightarrow I$ dada por $\overline{f}(x+K)=f(x)$ está bien definida (no depende de representantes) pues si x+K=y+K entonces $x-y\in K$ y por lo tanto f(x)-f(y)=f(x-y)=0, es decir, f(x)=f(y). Además es elemental ver que es un homomorfismo de anillos y que es suprayectiva. Para ver que es inyectiva, veamos que su nucleo es nulo. Si x+K está en el núcleo de \overline{f} entonces $0=\overline{f}(x+K)=f(x)$, de modo que $x\in K$ y así x+K=0+K. Es decir Ker $\overline{f}=0$ y por lo tanto f es inyectiva. En conclusión, \overline{f} es un isomorfismo, y hace conmutativo el diagrama porque, para cada $x\in A$, se tiene

$$i\left(\overline{f}\left(p(x)\right)\right) = \overline{f}(x+K) = f(x)$$

En cuanto a la unicidad, supongamos que otro homomorfismo $\widehat{f}: A/K \longrightarrow I$ verifica que $i \circ \widehat{f} \circ p = f$; entonces para cada $x \in A$ se tiene $\widehat{f}(x+K) = i(\widehat{f}(p(x))) = f(x) = \overline{f}(x+K)$, y por lo tanto $\widehat{f} = \overline{f}$.