## Metody programowania 2016

## Lista zadań na pracownie nr 4+5

Termin zgłaszania w KNO: 6 czerwca 2016, godzina 6:00 AM CET

W zamierzchłej przeszłości (lata dziewięćdziesiąte dwudziestego wieku) płatności można było regulować wystawiając tak zwane "czeki". Kwotę, na jaką był wystawiony czek, wpisywało się zwykle ręcznie. Aby uniknąć oszustw, kwotę tę wpisywano dwukrotnie: w zapisie dziesiętnym oraz słownie, dodając na końcu nazwę waluty (co zabezpieczało przed możliwością dopisania dodatkowych słów na końcu kwoty). Zadanie polega na napisaniu w Haskellu programu slownie, który przedstawia słownie podaną kwotę waluty, np.:

```
shell> slownie 1 PLN
jeden złoty
shell> slownie 222 PLN
dwieście dwadzieścia dwa złote
shell> slownie 127 PLN
sto dwadzieścia siedem złotych
shell> slownie 83496523 PLN
osiemdziesiąt trzy miliony czterysta dziewięćdziesiąt sześć tysięcy pięćset dwadzieścia trzy złote
shell> slownie 1 UAH
jedna hrywna
shell> slownie 222 UAH
dwieście dwadzieścia dwie hrywny
shell> slownie 127 UAH
sto dwadzieścia siedem hrywien
```

Do zastosowań bankowych wystarczy, by program umiał wypisywać jedynie liczby dodatnie, ale nie ma powodu, by nie rozszerzyć go na dowolne liczby całkowite:

```
shell> slownie 0 PLN
zero złotych
shell> slownie -25 UAH
minus dwadzieścia pięć hrywien
```

Liczebniki główne mniejsze od 1000 tworzymy w języku polskim wymieniając osobno liczby setek, dziesiątek i jedności, np. liczbę 453 nazywamy po polsku "czterysta pięćdziesiąt trzy". Liczby od 11 do 19 mają swoje odrębne nazwy. Mówimy zatem np. "siedemnaście", a nie "dziesięć siedem":

| 1 | jeden    | 11 | jedenaście     | 10 | 0 dziesięć       |     | sto         |
|---|----------|----|----------------|----|------------------|-----|-------------|
| 2 | dwa      | 12 | dwanaście      | 20 | 20 dwadzieścia   |     | dwieście    |
| 3 | trzy     | 13 | trzynaście     | 30 | 30 trzydzieści   |     | trzysta     |
| 4 | cztery   | 14 | czternaście    | 40 | czterdzieści     | 400 | czterysta   |
| 5 | pięć     | 15 | piętnaście     | 50 | pięćdziesiąt     | 500 | pięćset     |
| 6 | sześć    | 16 | szesnaście     | 60 | sześćdziesiąt    | 600 | sześćset    |
| 7 | siedem   | 17 | siedemnaście   | 70 | siedemdziesiąt   | 700 | siedemset   |
| 8 | osiem    | 18 | osiemnaście    | 80 | osiemdziesiąt    | 800 | osiemset    |
| 9 | dziewięć | 19 | dziewiętnaście | 90 | dziewięćdziesiąt | 900 | dziewięćset |

W połączeniach z rzeczownikiem liczebniki główne mają specjalną formę dla rzeczowników męskoosobowych (np. "czterech chłopców", "dwunastu studentów"). Na szczęście nazwy walut są rzeczownikami rodzaju męskorzeczowego ("złoty"), żeńskiego ("hrywna") lub nijakiego ("peso") i łączą się zwykle z formą podstawową liczebników. Większość liczebników możemy więc tworzyć jedynie w formie podstawowej. Wyjątkiem jest osobna forma liczebników "jeden" i "dwa" w połączeniach z rzeczownikami rodzaju żeńskiego (mówimy "jedna, dwie hrywny", a nie "jeden, dwa hrywny") i nijakiego (mówimy "jedno peso" a nie "jeden peso"). W połączeniach rzeczowników z liczebnikami odmienia się natomiast rzeczownik. Liczebnik "jeden" łączymy z mianownikiem liczby pojedynczej ("jeden złoty", "jedna hrywna"), liczebniki od "dwa" do "cztery" — z mianownikiem liczby mnogiej ("trzy złote", "cztery hrywny") a liczebniki "zero" i od "pięć" do "dziewięć" — z dopełniaczem liczby mnogiej rzeczownika ("zero złotych", "siedem hrywien").

Podobny sposób tworzenia liczebników głównych występuje w większości języków europejskich. Zwykle mamy pozostałość systemu dwudziestkowego<sup>1</sup> w postaci osobnych nazw dla liczb z zakresu 11–19, choć zdarzają się dodatkowe nieregularności (np. w języku francuskim). Nam przydadzą się jeszcze liczebniki łacińskie:

| 1 | ūnus     | 11 | ūndecim       | 10 | decem        | 100 | centum       |
|---|----------|----|---------------|----|--------------|-----|--------------|
| 2 | duo      | 12 | duodecim      | 20 | vīgintī      | 200 | ducentī      |
| 3 | trēs     | 13 | tredecim      | 30 | trīgintā     | 300 | trecentī     |
| 4 | quattuor | 14 | quattuordecim | 40 | quadrāgintā  | 400 | quadringentī |
| 5 | quīnque  | 15 | quīndecim     | 50 | quīnquāgintā | 500 | quīngentī    |
| 6 | sex      | 16 | sēdecim       | 60 | sexāgintā    | 600 | sescentī     |
| 7 | septem   | 17 | septendecim   | 70 | septuāgintā  | 700 | septingentī  |
| 8 | octō     | 18 | duodēvīgintī  | 80 | octōgintā    | 800 | octingentī   |
| 9 | novem    | 19 | ūndēvīgintī   | 90 | nōnāgintā    | 900 | nōngentī     |

Liczebniki oznaczające liczby  $n \ge 1000$  budujemy w następujący sposób: przedstawiamy wpierw liczbę w zapisie pozycyjnym przy podstawie 1000, tj.  $n = n_k \cdot 1000^k + n_{k-1} \cdot 1000^{k-1} + \ldots + n_1 \cdot 1000 + n_0$ , gdzie  $n_i < 1000$  dla  $i = 0, \ldots, k$ . Każdą z liczb  $n_i$  przedstawiamy za pomocą liczebnika złożonego w opisany wyżej sposób. Liczebniki odpowiadające liczbom  $n_i$  łączymy z opisanymi niżej liczebnikami oznaczającymi potęgi liczby 1000 i tak otrzymane ciągi wyrazów ustawiamy jeden po drugim w kolejności malejących potęg.

Pozostaje opisać, w jaki sposób tworzymy liczebniki główne oznaczające liczby  $1000^k$ . Dla k=1, tj. na oznaczenie liczby 1000 Rzymianie używali liczebnika "mīlle". Słowianie mają własne słowo "tysiąc" (ukr. тисяча, ros. тысяча) etymologicznie związane z takimi słowami, jak "tyć" bądź "tuczyć" i oznaczające coś silnego, wielkiego, potężnego. Nazwy wyższych potęg są spolszczonymi i zniekształconymi liczebnikami zapożyczonymi z łaciny. Na oznaczenie "tysiąca tysięcy" używamy słowa "milion" (ukr. мільйон, ros. миллион) od łacińskiego "mīlle". Na tym jednak podobieństwa między językami polskim oraz ukraińskim i rosyjskim się kończą. Istnieją bowiem na świecie dwie konwencje nazywania potęg liczby 1000: tzw. krótka i długa skala. W Polsce i krajach kontynentalnej Europy Zachodniej używa się długiej skali, zaś w Wielkiej Brytanii, USA, Rosji i krajach posowieckich — krótkiej. Według długiej skali liczebnik oznaczający  $1000^{2k+i}$  budujemy na podstawie łacińskiego wyrażenia oznaczającego k i dodajemy końcówkę "-lion", jeśli i=0 oraz "-liard", jeśli i=1. W krótkiej skali liczebnik oznaczający  $1000^{k+1}$  budujemy na podstawie takiego samego łacińskiego wyrażenia oznaczającego liczbę k i dodajemy końcówkę "-lion". Prowadzi to do wielu nieporozumień. Na przykład "bilion" w długiej skali oznacza  $1000^{2\cdot 2}=10^{12}$ , a w krótkiej  $1000^{2+1}=10^9$ . Aby zamieszanie było większe, to w krajach, w których używa się krótkiej skali, liczebnik "miliard" jest synonimem "biliona".

Znormalizowane, notowane w słownikach językowych nazwy potęg liczby 1000 występują wyłącznie dla małych *k*, przeważnie od 1 do 9. Mamy więc:

| k | polski      | skala długa                      | ukraiński   | angielski   | skala krótka           |
|---|-------------|----------------------------------|-------------|-------------|------------------------|
|   | milion      | $1000^{2\cdot 1} = 10^6$         | мільйон     | million     | $1000^{1+1} = 10^6$    |
|   | miliard     | $1000^{2\cdot 1+1} = 10^9$       | мільярд     | milliard    |                        |
|   | bilion      | $1000^{2\cdot 2} = 10^{12}$      | більйон     | billion     | $1000^{2+1} = 10^9$    |
|   | biliard     | $1000^{2 \cdot 2 + 1} = 10^{15}$ |             |             |                        |
| 3 | trylion     | $1000^{2\cdot 3} = 10^{18}$      | трильйон    | trillion    | $1000^{3+1} = 10^{12}$ |
|   | tryliard    | $1000^{2\cdot 3+1} = 10^{21}$    |             |             |                        |
| 4 | kwadrylion  | $1000^{2\cdot 4} = 10^{24}$      | квадрильйон | quadrillion | $1000^{4+1} = 10^{15}$ |
|   | kwadryliard | $1000^{2\cdot 4+1} = 10^{27}$    |             |             |                        |
| 5 | kwintylion  | $1000^{2\cdot 5} = 10^{30}$      | квінтильйон | quintillion | $1000^{5+1} = 10^{18}$ |
|   | kwintyliard | $1000^{2\cdot 5+1} = 10^{33}$    |             |             |                        |
| 6 | sekstylion  | $1000^{2\cdot 6} = 10^{36}$      | секстильйон | sextillion  | $1000^{6+1} = 10^{21}$ |
|   | sekstyliard | $1000^{2 \cdot 6 + 1} = 10^{39}$ |             |             |                        |
| 7 | septylion   | $1000^{2\cdot7} = 10^{42}$       | септильйон  | septillion  | $1000^{7+1} = 10^{24}$ |
|   | septyliard  | $1000^{2\cdot 7+1} = 10^{45}$    |             |             |                        |
| 8 | oktylion    | $1000^{2\cdot 8} = 10^{48}$      | октильйон   | octillion   | $1000^{8+1} = 10^{27}$ |
|   | oktyliard   | $1000^{2 \cdot 8 + 1} = 10^{51}$ |             |             |                        |
| 9 | nonilion    | $1000^{2\cdot 9} = 10^{54}$      | нонільйон   | nonillion   | $1000^{9+1} = 10^{30}$ |
| 9 | noniliard   | $1000^{2 \cdot 9 + 1} = 10^{57}$ |             |             |                        |

Dla k = 9 niektóre źródła podają alternatywną polską pisownię "nonylion" i "nonyliard".

<sup>&</sup>lt;sup>1</sup>System dwudziestkowy został porzucony, gdy ludzie zaczęli nosić buty.

Można się zastanawiać, po co komu tak wielkie liczby, ale przedstawione poniżej przykłady banknotów pokazują, że kwoty, które chcemy niekiedy przedstawiać, mogą być całkiem duże<sup>2</sup>:





Banknot o najwyższym nominale, który został kiedykolwiek wydrukowany, to 10<sup>21</sup> pengő, wprowadzony do obiegu na Węgrzech w 1946 roku<sup>3</sup>. Niedługo później dokonano wymiany waluty na forinty po kursie  $4\cdot 10^{29}$  pengő za 1 forinta... W języku polskim nazwy liczb  $1000^{2k+i}$  to " $p_k$ -lion" dla i=0 i " $p_k$ -liard" dla i=1. Przyjmijmy<sup>4</sup>, że przedrostki  $p_k$  dla

k < 1000 tworzymy zgodnie z poniższą tabelą:

| <i>k</i> < 10 |         |  |  |  |  |  |
|---------------|---------|--|--|--|--|--|
| k             | $p_k$   |  |  |  |  |  |
| 1             | mi-     |  |  |  |  |  |
| 2             | bi-     |  |  |  |  |  |
| 3             | try-    |  |  |  |  |  |
| 4             | kwadry- |  |  |  |  |  |
| 5             | kwinty- |  |  |  |  |  |
| 6             | seksty- |  |  |  |  |  |
| 7             | septy-  |  |  |  |  |  |
| 8             | okty-   |  |  |  |  |  |
| 9             | noni-   |  |  |  |  |  |

| $k = 100c + 10b + a, p_k = q_a r_b s_c$ |          |   |            |   |           |  |  |  |
|-----------------------------------------|----------|---|------------|---|-----------|--|--|--|
| а                                       | $q_a$    | b | $r_b$      | С | $s_c$     |  |  |  |
| 1                                       | un-      | 1 | decy-      | 1 | centy-    |  |  |  |
| 2                                       | do-      | 2 | wicy-      | 2 | ducenty-  |  |  |  |
| 3                                       | tri-     | 3 | trycy-     | 3 | trycenty- |  |  |  |
| 4                                       | kwatuor- | 4 | kwadragi-  | 4 | kwadryge- |  |  |  |
| 5                                       | kwin-    | 5 | kwintagi-  | 5 | kwinge-   |  |  |  |
| 6                                       | seks-    | 6 | seksginty- | 6 | sescenty- |  |  |  |
| 7                                       | septen-  | 7 | septagi-   | 7 | septynge- |  |  |  |
| 8                                       | okto-    | 8 | oktagi-    | 8 | oktynge-  |  |  |  |
| 9                                       | nowem-   | 9 | nonagi-    | 9 | nonge-    |  |  |  |

Mamy więc na przykład:

| $10^{12}$  |   | $10^{6\cdot 2}$    | = | bilion        | $10^{282}$  |   | $10^{6\cdot47}$     | = | septenkwadragilion      |
|------------|---|--------------------|---|---------------|-------------|---|---------------------|---|-------------------------|
| $10^{15}$  |   | $10^{6\cdot 2+3}$  | = | biliard       | $10^{333}$  |   | $10^{6\cdot55+3}$   | = | kwinkwintagiliard       |
| $10^{18}$  | = | $10^{6\cdot 3}$    | = | trylion       | $10^{369}$  |   | $10^{6\cdot61+3}$   | = | unseksgintyliard        |
| $10^{24}$  | = | $10^{6\cdot4}$     | = | kwadrylion    | $10^{378}$  |   | $10^{6.63}$         | = | triseksgintylion        |
| $10^{48}$  | = | $10^{6.8}$         | = | oktylion      | $10^{399}$  |   | $10^{6\cdot66+3}$   | = | seksseksgintyliard      |
| $10^{69}$  |   | $10^{6\cdot11+3}$  | = | undecyliard   | $10^{450}$  |   | $10^{6\cdot75}$     | = | kwinseptagilion         |
| $10^{99}$  | = | $10^{6\cdot 16+3}$ | = | seksdecyliard | $10^{510}$  |   | $10^{6.85}$         | = | kwinoktagilion          |
| $10^{120}$ |   | $10^{6\cdot 20}$   | = | wicylion      | $10^{600}$  |   | $10^{6\cdot 100}$   | = | centylion               |
| $10^{150}$ |   | $10^{6\cdot 25}$   | = | kwinwicylion  | $10^{666}$  |   | $10^{6\cdot 111}$   | = | undecycentylion         |
| $10^{201}$ |   | $10^{6\cdot33+3}$  | = | tritrycyliard | $10^{999}$  |   | $10^{6\cdot 166+3}$ | = | seksseksgintycentyliard |
| $10^{216}$ | = | $10^{6\cdot 36}$   | = | sekstrycylion | $10^{1197}$ | = | $10^{6\cdot199+3}$  | = | nowemnonagicentyliard   |
| $10^{240}$ | = | $10^{6\cdot40}$    | = | kwadragilion  | $10^{5997}$ | = | $10^{6.999+3}$      | = | nowemnonaginongeliard   |
|            |   |                    |   |               |             |   |                     |   |                         |

Googol (10<sup>100</sup>) to inaczej dziesięć seksdecyliardów, a 10<sup>1000</sup> to dziesięć seksseksgintycentyliardów.

## Literatura

- [1] John H. Conway, Richard K. Guy, The Book of Numbers, Copernicus (Springer), 1996.
- [2] Codes for the representation of currencies, ISO 4217:2015.
- [3] Georges Ifrah, Dzieje liczby czyli historia wielkiego wynalazku, Ossolineum, 1990.
- [4] Georges Ifrah, Historia powszechna cyfr, W.A.B., 2006.

<sup>&</sup>lt;sup>2</sup>Źródło zdjęć: Wikimedia Commons.

<sup>&</sup>lt;sup>3</sup>Zob. hasło *Hungarian pengő hyperinflation* w Wikipedii.

<sup>&</sup>lt;sup>4</sup>Nie wszystkie przedrostki są ustalone lub notowane w literaturze. Autor zadania wziął je częściowo z Wikipedii, a częściowo z głowy, czyli z niczego. Niektóre źródła proponują np. "oktogi-" zamiast "oktagi-", "duo-" zamiast "do-" itp. Najczęściej cytowana wersja angielska została zaproponowana w książce [1], str. 13-16.

## Zadanie. Zaprogramuj w Haskellu moduł Slownie:

```
module Slownie (Rodzaj(..), Waluta(..), slownie) where
  data Rodzaj = Meski | Zenski | Nijaki deriving Show

data Waluta = Waluta {
    mianownik_poj :: String,
    mianownik_mn :: String,
    dopelniacz_mn :: String,
    rodzaj :: Rodzaj
} deriving Show

slownie :: Waluta -> Integer -> String
```

implementujący funkcję slownie wyznaczającą słowną reprezentację podanej waluty. Implementacja może dotyczyć języka polskiego lub innego języka europejskiego (wówczas moduł powinien nazywać się np. Verbally, Usno itp.). Wybór języka innego niż polski należy skonsultować z prowadzącym pracownię.

Funkcja slownie powinna działać poprawnie dla liczb o wartości bezwzględnej mniejszej niż  $10^{6000} - 1$  (dla długiej skali; w przypadku języka używającego skali krótkiej:  $10^{3003}$ ). Dla większych liczb funkcja powinna zwracać napis mnóstwo (lub jego odpowiednik w innym języku).

Następnie napisz w Haskellu program slownie wykorzystujący moduł Slownie, który wywołany z argumentami:

```
shell> slownie n waluta
```

wypisze do standardowego strumienia wyjściowego słowną reprezentację podanej kwoty w podanej walucie. Program powinien obsługiwać co najmniej następujące waluty<sup>5</sup>:

AUD BGN BRL BYR CAD CHF CNY CZK DKK EUR GBP HKD HRK HUF IDR ISK JPY KRW MXN MYR NOK NZD PHP PLN RON RUB SDR SEK SGD THB TRY UAH USD ZAR

Problemy, które mogą powstać podczas rozwiązywania zadania<sup>6</sup> skonsultuj z prowadzącym pracownię.

Niniejszy plik jest dostępny w serwisie KNO na stronie zajęć.

<sup>&</sup>lt;sup>5</sup>Kody walut według normy ISO 4217, patrz [2].

<sup>&</sup>lt;sup>6</sup>Np. warianty pisowni liczebników, pytania: czy 1000000 to "milion", czy "jeden milion" itp. Również sposób kodowania znaków spoza zbioru ASCII może stwarzać problemy.