CAPSTONE PROJECT

POWER SYSTEM FAULT DETECTION AND CLASSIFICATION

Presented By -

Student Name - Shivam Laxman Dhamankar
College Name - Wainganga College of Engineering, Nagpur
Department - Computer Science & Engineering

OUTLINE

- Problem Statement
- Proposed Solution
- System Approach
- Process (Auto Al)
- Deployment
- Result
- Conclusion
- Future Scope
- References
- IBM Certifications

PROBLEM STATEMENT

- Design a machine learning model to detect and classify different types of faults in a power distribution system.
- Using electrical measurement data (e.g., voltage and current phasors), the model should be able to distinguish between normal operating conditions and various fault conditions (such as line-to-ground, line-to-line, or three-phase faults).
- The objective is to enable rapid and accurate fault identification, which is crucial for maintaining power grid stability and reliability.

PROPOSED SOLUTION

- Fault Pattern Analysis :-
 - 1) Use clustering (e.g., K-Means) on fault types with environmental and load data to identify risk zones.
 - 2) Analyze correlation between high temperature, load, and specific fault types (e.g., Overheating).
- Predictive Maintenance System :-
 - 1) Train a classification model using features like temperature, current, and component health to predict fault likelihood.
 - 2) Use anomaly detection for identifying abnormal readings.

SYSTEM APPROACH

- IBM Cloud Lite Services
- Watsonx Al Studio (Service)
- Watson.ai Runtime
- IBM Cloud Object Storage
- IBM Cloud Tools (Auto Al)
- Windows 11

PROCESS (AUTO AI)

Pipeline leaderboard ▽

	Rank 1	Name	Algorithm	Specialization	Accuracy (Optimized) Cross Validation	Enhancements	Build time	î
*	1	Pipeline 9	Batched Tree Ensemble Classifier (Random Forest Classifier)	INCR	0.409	HPO-1 FE HPO-2 BATCH	00:02:31	
	2	Pipeline 8	O Random Forest Classifier		0.409	HPO-1 FE HPO-2	00:02:28	
	3	Pipeline 4	O Snap Logistic Regression		0.393	HPO-1 FE HPO-2	00:02:58	U
	4	Pipeline 3	O Snap Logistic Regression		0.393	HPO-1 FE	00:02:03	
	5	Pipeline 7	O Random Forest Classifier		0.376	HPO-1 (FE)	00:01:27	

DEPLOYMENT

RESULT

CONCLUSION

- In this project, a machine learning-based approach was designed and implemented to rapidly detect and classify faults in a power distribution system using electrical measurement data, such as voltage and current phasors.
- The model was trained to distinguish between normal operation and various types of faults —
 including line-to-ground (LG), line-to-line (LL), double line-to-ground (LLG), and three-phase faults
 (LLL, LLLG).
- These measurements serve as critical indicators of the operating state of power systems and are essential for making timely decisions during fault conditions.

FUTURE SCOPE

- The future of power system fault detection lies in the integration of intelligent, adaptive, and explainable ML solutions that operate in real-time, across distributed networks, and in concert with other smart grid technologies.
- By extending the model's scope to include localization, adaptive learning, real-time deployment, and cybersecurity, this research can play a foundational role in building the next-generation resilient and intelligent power grid.
- Fault Localization

REFERENCES

- IBM Cloud https://cloud.ibm.com/
- Watsonx Al Studio https://cloud.ibm.com/catalog/services/watsonxai-studio
- Data Sets https://www.kaggle.com/datasets/ziya07/power-system-faults-dataset

IBM CERTIFICATIONS

IBM CERTIFICATIONS

IBM CERTIFICATIONS

This certificate is presented to

Shivam Dhamankar

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 24 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

