8². Проверим выполнение условий окончания:

$$\left| \ \frac{15{,}142 - 15{,}123}{15{,}123} \ \right| = 0{,}0013 < \epsilon_1 = 0{,}003 \, ; \quad \left| \ \frac{1{,}65 - 1{,}6125}{1{,}6125} \ \right| = 0{,}023 < \epsilon_1 = 0{,}03 \, .$$

Поиск закончен. Полученное приближенное решение $x^* \cong \overline{x} = 1,6125$.

Найдем аналитически координату точки минимума с помощью необходимых условий безусловного экстремума: $\frac{df(x)}{dx} = 4x - \frac{16}{x^2} = 0$. Отсюда $x^* = \sqrt[3]{4} = 1,5874$. В этой точке $f''(x^*) = 4 + \frac{32}{(x^*)^3} = 12 > 0$, т.е. достаточные условия безусловного минимума выполняются.

5.2. МЕТОД КОНФИГУРАЦИЙ

Постановка задачи

Требуется найти безусловный минимум функции f(x) многих переменных, т.е. найти такую точку $x^* \in R^n$, что $f(x^*) = \min_{x \in R^n} f(x)$.

Стратегия поиска

Метод конфигураций, или метод Хука–Дживса (Hooke–Jeeves), представляет собой комбинацию *исследующего поиска* с циклическим изменением переменных и ускоряющего *поиска по образцу*. Исследующий поиск ориентирован на выявление локального поведения целевой функции и определение направления ее убывания вдоль «оврагов» [28]. Полученная информация используется при поиске по образцу при движении вдоль «оврагов» [5].

Исследующий поиск начинается в некоторой начальной точке x^0 , называемой *старым базисом*. В качестве множества направлений поиска выбирается множество координатных направлений. Задается величина шага, которая может быть различной для разных координатных направлений и переменной в процессе поиска. Фиксируется первое координатное направление и делается шаг в сторону увеличения соответствующей переменной. Если значение функции в пробной точке меньше значения функции в исходной точке, шаг считается удачным. В противном случае необходимо вернуться в предыдущую точку и сделать шаг в противоположном направлении с последующей проверкой поведения функции. После перебора всех координат исследующий поиск завершается. Полученная точка называется *новым базисом* (на рис. 5.12 в точке x^0 произведен исследующий поиск и получена точка x^1 — новый базис). Если исследующий поиск с данной величиной шага неудачен, то она уменьшается и процедура продолжается. Поиск заканчивается, когда текущая величина шага станет меньше некоторой величины.

Рис. 5.12

Поиск по образцу заключается в движении по направлению от старого базиса к новому (от точки x^0 через точку x^1 , из точки x^1 через точку x^2 , из x^2 через x^3 на рис. 5.12). Величина ускоряющего шага задается ускоряющим множителем λ . Успех поиска по образцу определяется с помощью исследующего поиска из полученной точки (например из точек 6, 11, 15 на рис. 5.12). Если при этом значение в наилучшей точке меньше, чем в точке предыдущего базиса, то поиск по образцу удачен (точки 6, 11 — результат удачного поиска по образцу, а точка 15 — неудачного). Если поиск по образцу неудачен, происходит возврат в новый базис, где продолжается исследующий поиск с уменьшенным шагом. На рис. 5.12 удачный поиск отображается сплошными линиями, а неудачный — штриховыми, числа соответствуют порождаемым алгоритмом точкам.

Обозначим через $d_1, ..., d_n$ – координатные направления:

$$d_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad d_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \quad d_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$

При поиске по направлению d_i меняется только переменная x_i , а остальные переменные остаются зафиксированными.

Алгоритм

Шаг 1. Задать начальную точку x^0 , число $\varepsilon > 0$ для остановки алгоритма, начальные величины шагов по координатным направлениям $\Delta_1, \dots, \Delta_n \ge \varepsilon$, ускоряющий множитель $\lambda > 0$, коэффициент уменьшения шага $\alpha > 1$. Положить $y^1 = x^0$, i = 1, k = 0.

Шаг 2. Осуществить исследующий поиск по выбранному координатному направлению:

- а) если $f(y^i + \Delta_i d_i) < f(y^i)$, т.е. $f(y_1^i, ..., y_i^i + \Delta_i, ..., y_n^i) < f(y_1^i, ..., y_i^i, ..., y_n^i)$, шаг считается удачным. В этом случае следует положить $y^{i+1} = y^i + \Delta_i d_i$ и перейти к шагу 3;
- б) если в п. "а" шаг неудачен, то делается шаг в противоположном направлении. Если $f(y^i-\Delta_i\ d_i) < f(y^i)$, т.е. $f(y^i_1,...,y^i_i-\Delta_i,...,y^i_n) < f(y^i_1,...,y^i_i,...,y^i_n)$, шаг считается удачным. В этом случае следует положить $y^{i+1}=y^i-\Delta_i\ d_i$ и перейти к шагу 3;
- в) если в пп. "а" и "б" шаги неудачны, положить $y^{i+1} = y^i$.

Шаг 3. Проверить условия:

- а) если i < n, то положить i = i + 1 и перейти к шагу 2 (продолжить исследующий поиск по оставшимся направлениям);
- б) если i = n, проверить успешность исследующего поиска:
 - если $f(y^{n+1}) < f(x^k)$, перейти к шагу 4;
 - если $f(y^{n+1}) \ge f(x^k)$, перейти к шагу 5.

Шаг 4. Провести поиск по образцу. Положить

$$x^{k+1} = y^{n+1}, \quad y^1 = x^{k+1} + \lambda(x^{k+1} - x^k), \quad i = 1, \quad k = k+1$$

и перейти к шагу 2.

Шаг 5. Проверить условие окончания:

- а) если все $\Delta_i \leq \varepsilon$, то поиск закончить: $x^* \cong x^k$;
- б) для тех i , для которых $\Delta_i > \varepsilon$, уменьшить величину шага: $\Delta_i = \frac{\Delta_i}{\alpha}$. Положить $v^1 = x^k$, $x^{k+1} = x^k$, k = k+1, i = 1 и перейти к шагу 2.

Замечания 5.9.

- **1.** В алгоритме можно использовать одинаковую величину шага по координатным направлениям, т.е. вместо $\Delta_1, \Delta_2, \dots, \Delta_n$ применять Δ .
- **2.** Существует модификация метода, где при исследующем поиске и поиске по образцу используется одномерная минимизация. Тогда, если функция f(x) дифференцируема, метод сходится к стационарной точке [5].

Пример 5.8. Найти минимум функции $f(x) = 4(x_1 - 5)^2 + (x_2 - 6)^2$ методом Хука – Дживса.

□ 1. На рис. 5.13 изображены линии уровня функции: семейство эллипсов, описываемое уравнением

$$f(x) = 4(x_1 - 5)^2 + (x_2 - 6)^2 = \text{const}.$$

Если const = 4, имеем $(x_1 - 5)^2 + \frac{(x_2 - 6)^2}{4} = 1$, т.е. $a = 1, b = 2, x_{10} = 5, x_{20} = 6$. Зададим $x^0 = (8, 9)^T$ — старый базис; $\varepsilon = 0.3$; $\Delta_1 = 1, \Delta_2 = 2, \alpha = 2, \lambda = 1$. Положим $k = 0, i = 1, y^1 = (8, 9)^T$.

$$2^{0}$$
. Так как $f(y^{1} + \Delta_{1}d_{1}) = f(9,9) = 73 > f(y^{1}) = f(x^{0}) = 45$, то шаг неудачен.

Так как $f(y^1 - \Delta_1 d_1) = f(7,9) = 25 < f(y^1) = f(x^0) = 45$, то этот шаг удачен: $y^2 = y^1 - \Delta_1 d_1 = (7,9)^T$.

 3^0 . Поскольку i=1<2=n , то положим i=2 и перейдем к шагу 2.

 2^1 . Так как $f(y^2 + \Delta_2 d_2) = f(7,11) = 41 > f(y^2) = 25$, то шаг неудачен.

Так как $f(y^2 - \Delta_2 d_2) = f(7,7) = 17 < f(y^2) = 25$, то этот шаг удачен:

$$y^3 = y^2 - \Delta_2 d_2 = (7,7)^T$$
.

 3^1 . Поскольку i=2=n=2 и $f(y^3)=17 < f(x^0)=45$, то перейдем к шагу 4.

 4^0 . Положим $x^1=y^3=\left(7,7\right)^T$ — новый базис, i=1, k=k+1=1, найдем $y^1 = x^1 + 1 \cdot (x^1 - x^0) = (7,7)^T + [(7,7)^T - (8,9)^T] = (6,5)^T$. Выполнен поиск по образцу. Перейдем к шагу 2.

 2^2 . Так как $f(y^1 + \Delta_1 d_1) = f(7,5) = 17 > f(y^1) = 5$, то шаг неудачен. Так как $f(y^1 - \Delta_1 d_1) = f(5,5) = 1 < f(y^1) = 17$, то шаг удачный: $y^2 = y^1 - \Delta_1 d_1 = (5,5)^T$.

 3^2 . Поскольку i=1<2=n , то положим i=i+1=2 и перейдем к шагу 2.

 2^3 . Так как $f(y^2 + \Delta_2 d_2) = f(5,7) = 1 = f(y^2) = f(5,5) = 1$, то шаг неудачен.

Так как $f(y^2 - \Delta_2 d_2) = f(5,3) = 9 > f(y^2) = 1$, то шаг неудачен. Поэтому $y^3 = y^2 = (5,5)^T$.

 3^3 . Поскольку i=2=n=2 и $f(y^3)=1< f(x^1)=17$, то поиск по образцу на шаге 4^{0} успешен. Точка $y^{3} = (5,5)^{T}$ становится новым базисом, а точка $x^{1} = (7,7)^{T}$ – старым базисом. Перейдем к шагу 4.

 4^1 . Положим $x^2 = y^3 = (5,5)^T$ – новый базис, i = 1, k = k + 1 = 2;

$$y^1 = x^2 + (x^2 - x^1) = (5,5)^T + [(5,5)^T - (7,7)^T] = (3,3)^T$$
 и перейдем к шагу 2.

 2^4 . Так как $f(y^1 + \Delta_1 d_1) = f(4,3) = 13 < f(y^1) = f(3,3) = 25$, то шаг удачен:

 $y^2 = y^1 + \Delta_1 d_1 = (4, 3)^T$.

 3^4 . Поскольку i=1<2=n , то положим i=i+1=2 и перейдем к шагу 2.

 2^5 . Так как $f(y^2 + \Delta_2 d_2) = f(4,5) = 5 < f(y^2) = 13$, то шаг удачен:

$$y^3 = y^2 + \Delta_2 d_2 = (4,5)^T$$
.

 3^5 . Поскольку i=n и $f(y^3)=5>f(x^2)=1$, то поиск по образцу на шаге 4^1 неудачен. Перейдем к шагу 5.

 5^0 . Так как $\Delta_1=1>\epsilon,\ \Delta_2=2>\epsilon$, то уменьшим шаг:

$$\Delta_1 = \frac{\Delta_1}{2} = 0,5; \ \Delta_2 = \frac{\Delta_2}{2} = 1$$
. Положим $y^1 = x^2 = \left(5,5\right)^T, \ x^3 = x^2 = \left(5,5\right)^T, \ i = 1,$ $k = k+1 = 3$ и перейдем к шагу 2.

- 2^6 . Так как $f\left(y^1+\Delta_1\,d_1\right)=f\left(5,5;5\right)=2>f\left(y^1\right)=1$, то шаг неудачен. Поскольку $f\left(y^1-\Delta_1\,d_1\right)=f\left(4,5;5\right)=2>f\left(y^1\right)=1$, то шаг неудачен. Поэтому $y^2=y^1=\left(5,5\right)^T$.
 - 3^6 . Поскольку i=1<2=n , то положим i=i+1=2 и перейдем к шагу 2.
- 2^7 . Так как $f(y^2 + \Delta_2 d_2) = f(5,6) = 0 < f(y^2) = f(5,5) = 1$, то шаг удачен: $y^3 = y^2 + \Delta_2 d_2 = (5,6)^T$.
- 3^7 . Поскольку $f(y^3) = 0 \le f(x^3) = 1$, то переходим к шагу 4. Точка y^3 становится новым базисом, а точка x^3 старым.
- 4^2 . Положим $x^4=y^3=\left(5,6\right)^T$ новый базис, i=1, k=k+1=4; $y^1=x^4+\left(x^4-x^3\right)=\left(5,6\right)^T+\left[\left(5,6\right)^T-\left(5,5\right)^T\right]=\left(5,7\right)^T$. Перейдем к шагу 2.
- 2^8 . Так как $f\left(y^1+\Delta_1\,d_1\right)=f\left(5,5;7\right)=2>f\left(y^1\right)=f\left(5;7\right)=1$, то шаг неудачен. Поскольку $f\left(y^1-\Delta_1\,d_1\right)=f\left(4,5;7\right)=2>f\left(y^1\right)=1$, то шаг тоже неудачен. Тогда $y^2=y^1=\left(5;7\right)^T$.
 - 3^8 . Поскольку i=1<2=n , то положим i=i+1=2 и перейдем к шагу 2.
- 2^9 . Так как $f(y^2 + \Delta_2 d_2) = f(5;8) = 4 > f(5;7) = 1$, то шаг неудачен. Поскольку $f(y^2 \Delta_2 d_2) = f(5;6) = 0 < f(5;7) = 1$, то шаг удачен: $y^3 = y^2 \Delta_2 d_2 = (5,6)^T$.
- 3^9 . Поскольку i=2=n=2 и $f(y^3)=f(x^4)=f(5,6)=0$, то поиск по образцу неудачен. Перейдем к шагу 5.
- 5^1 . Так как $\Delta_1 > \varepsilon$ и $\Delta_2 > \varepsilon$, то уменьшим шаг: $\Delta_1 = \frac{0.5}{2} = 0.25$; $\Delta_2 = 0.5$. Положим $y^1 = x^4 = \left(5;6\right)^T$, $x^5 = x^4$, k = k+1=5, i=1 и перейдем к шагу 2.
- 2^{10} . Так как $f\left(y^1+\Delta_1\,d_1\right)=f\left(5,25;6\right)=0,25>f\left(y^1\right)=0$, то шаг неудачен. Так как $f\left(y^1-\Delta_1\,d_1\right)=f\left(4,75;6\right)=0,25>f\left(y^1\right)=0$, то шаг неудачен и $y^2=y^1=\left(5;6\right)^T$.
 - 3^{10} . Поскольку i=1<2=n , то положим i=i+1=2 и перейдем к шагу 2.

 $2^{11} \text{. Так как } f\Big(y^2 + \Delta_2 \ d_2\Big) = f\big(5;6,5\big) = 0,25 > f\Big(y^2\Big) = 0 \text{ , то шаг неудачен. Так как } f\Big(y^2 - \Delta_2 \ d_2\Big) = f\big(5;5,5\big) = 0,25 > f\Big(y^2\Big) = 0 \text{ , то шаг неудачен: } y^3 = y^2 = \big(5;6\big)^T \text{ .}$

 3^{11} . Поскольку i=2=n=2 и $f\Big(y^3\Big)=0=f\Big(x^5\Big)=0$, то исследующий поиск неудачен. Перейдем к шагу 5.

$$5^2$$
 . Поскольку $\Delta_1=0.25<\varepsilon=0.3;$ $\Delta_2=0.5>\varepsilon$, то уменьшим шаг Δ_2 : $\Delta_1=0.25;$ $\Delta_2=\frac{0.5}{2}=0.25$. Положим $y^1=x^5=\left(5.6\right)^T$, $x^6=x^5$, $k=k+1=6$, $i=1$ и перейдем к шагу 2.
$$2^{12}$$
 . Так как $f\left(y^1+\Delta_1\,d_1\right)=f\left(5.25;6\right)=0.25>f\left(y^1\right)=0$ и $f\left(y^1-\Delta_1d_1\right)=f\left(4.75;6\right)=0.25>f\left(y^1\right)=0$, то шаги неудачные и $y^2=y^1=\left(5:6\right)^T$. 3^{12} . Поскольку $i=1<2=n$, то положим $i=i+1=2$ и перейдем к шагу 2. 2^{13} . Так как $f\left(y^2+\Delta_2\,d_2\right)=f\left(5:6.25\right)=0.0625>f\left(y^2\right)=0$ и $f\left(y^2-\Delta_2\,d_2\right)=f\left(5:5.875\right)=0.0625>f\left(y^2\right)=0$, шаги неудачны и $y^3=y^2=\left(5:6\right)^T$. 3^{13} . Поскольку $i=2=n=2$ и $f\left(y^3\right)=0=f\left(x^6\right)=0$, то перейдем к шагу 5. 5^3 . Так как $\Delta_1=0.25<\varepsilon=0.3$ и $\Delta_2=0.25<\varepsilon=0.3$, то поиск завершен: $x^*=\left(5:6\right)^T$.

На рис. 5.12,a— ϵ последовательно изображены полученные точки; сплошной линией отмечены удачные итерации, а штриховой — неудачные.

5.3. МЕТОД ДЕФОРМИРУЕМОГО МНОГОГРАННИКА

Постановка задачи

Требуется найти безусловный минимум функции f(x) многих переменных, т.е. найти такую точку $x^* \in R^n$, что $f(x^*) = \min_{x \in R^n} f(x)$.

Стратегия поиска

В основу метода деформируемого многогранника, или метода Нелдера–Мида (Nelder–Mead), положено построение последовательности систем n+1 точек $x^i(k), i=1,\ldots,n+1$, которые являются вершинами выпуклого многогранника. Точки системы $x^i(k+1), i=1,\ldots,n+1$, на (k+1)-й итерации совпадают с точками системы $x^i(k), i=1,\ldots,n+1$, кроме i=h, где точка $x^h(k)$ – наихудшая в системе $x^i(k), i=1,\ldots,n+1$, т.е. $f(x^h(k))=\max_{1\leq i\leq n+1}f(x^i(k))$. Точка $x^h(k)$ заменяется на другую точку по специальным правилам, описанным ниже. В результате многогранники деформируются в зависимости от структуры линий уровня целевой функции, вытягиваясь вдоль длинных наклонных плоскостей, изменяя направление в изогнутых впадинах и сжимаясь в окрестности минимума. Построение последовательности многогранников заканчивается, когда значения функции в вершинах текущего многогранника отличаются от значения функции в центре тяжести системы $x^i(k), i=1,\ldots,n+1; i\neq h$, не более чем на величину $\epsilon>0$.

Алгоритм

Шаг 1. Задать координаты вершин многогранника x^1, \dots, x^{n+1} ; параметры отражения α , сжатия β , растяжения γ ; число $\varepsilon > 0$ для остановки алгоритма. Положить k=0 (последующие шаги 2–6 соответствуют текущему номеру k системы точек).

Шаг 2. Среди вершин найти «наилучшую» x^l и «наихудшую» x^h , соответствующие минимальному и максимальному значениям функции:

$$f(x^l) = \min_{j=1,\ldots,n+1} f(x^j);$$
 $f(x^h) = \max_{j=1,\ldots,n+1} f(x^j),$

а также точку x^s , в которой достигается второе по величине после максимального значение функции $f(x^s)$.

$$x^{n+2} = \frac{1}{n} \left[\sum_{j=1}^{n+1} x^j - x^h \right] = \frac{1}{n} \sum_{\substack{j=1 \ i \neq h}}^{n+1} x^j.$$

Шаг 4. Проверить условие окончания:

а) если $\sigma = \left\{ \frac{1}{n+1} \sum_{j=1}^{n+1} \left[f(x^j) - f(x^{n+2}) \right]^2 \right\}^{\frac{1}{2}} \le \varepsilon$, процесс поиска можно завер-

шить и в качестве приближенного решения взять наилучшую точку текущего многогранника: $x^* \cong x^l$;

б) если $\sigma > \epsilon$, продолжать процесс.

Шаг 5. Выполнить операцию *отражения* «наихудшей» вершины через центр тяжести x^{n+2} (рис. 5.13, a):

$$x^{n+3} = x^{n+2} + \alpha \left(x^{n+2} - x^h \right).$$

Шаг 6. Проверить выполнение условий:

а) если $f(x^{n+3}) \le f(x^l)$, выполнить операцию растяжения (рис. 5.13, δ):

$$x^{n+4} = x^{n+2} + \gamma \left(x^{n+3} - x^{n+2} \right).$$

Найти вершины нового многогранника:

- если $f(x^{n+4}) < f(x^l)$, то вершина x^h заменяется на x^{n+4} (при n=2 многогранник будет содержать вершины x^1, x^3, x^6). Затем следует положить k=k+1 и перейти к шагу 2;
- если $f(x^{n+4}) \ge f(x^l)$, то вершина x^h заменяется на x^{n+3} (при n=2 многогранник будет содержать вершины x^1, x^3, x^5). Далее следует положить k=k+1 и перейти к шагу 2;

б) если $f(x^s) < f(x^{n+3}) \le f(x^h)$, то выполнить операцию *сэкатия* (рис. 5.13, e): $x^{n+5} = x^{n+2} + \beta \left(x^h - x^{n+2}\right).$

Заменить вершину x^h на x^{n+5} , положить k=k+1 и перейти к шагу 2 (при n=2 многогранник будет содержать вершины x^1,x^3,x^7);

- в) если $f(x^l) < f(x^{n+3}) \le f(x^s)$, то вершину x^h заменить на x^{n+3} . При этом следует положить k=k+1 и перейти к шагу 2;
- г) если $f(x^{n+3}) > f(x^h)$, выполнить операцию *редукции* (рис. 5.13, ε). Формируется новый многогранник с уменьшенными вдвое сторонами и вершиной x^l : $x^j = x^l + 0.5 \left(x^j x^l \right), \quad j = 1, \dots, n+1.$

При этом следует положить k = k + 1 и перейти к шагу 2.

3 а м е ч а н и е 5.10. Нелдер и Мид рекомендуют использовать параметры α = 1; β = 0,5; γ = 2; Павиани (Paviani): α = 1; 0,4 \leq β \leq 0,6; 2,8 \leq γ \leq 3; Паркинсон и Хатчинсон (Parkinson, Hutchinson): α = 2; β = 0,25; γ = 2,5. В последнем случае в рамках операции отражения фактически выполняется растяжение.

Пример 5.9. Найти минимум функции $f(x) = 4(x_1 - 5)^2 + (x_2 - 6)^2$ методом Нелдера – Мида.

 \square 1. Так как n=2, зададим начальный треугольник с вершинами $x^1=\left(8,9\right)^T$; $x^2=\left(10,11\right)^T$; $x^3=\left(8,11\right)^T$. Положим $\alpha=1$; $\beta=0,5$; $\gamma=2$; $\epsilon=0,2$; k=0. 2^0 . Так как $f\left(x^1\right)=45$, $f\left(x^2\right)=125$, $f\left(x^3\right)=61$, то $x^I=x^1$, $x^h=x^2$, $x^s=x^3$.

 3^0 . Найдем центр тяжести вершин x^1 и x^3 (середину стороны, противостоящей вершине x^h):

$$x^4 = \frac{1}{2} \cdot [x^1 + x^3] = \frac{1}{2} \cdot [(8, 9)^T + (8, 11)^T] = (8, 10)^T; \quad f(x^4) = 52.$$

 4^{0} . Так как $\sigma = \left\{ \frac{1}{3} \left(49 + 5329 + 81 \right) \right\}^{\frac{1}{2}} = 42,657 > \varepsilon$, то процесс продолжается.

 5^{0} . Выполним отражение:

$$x^5 = x^4 + (x^4 - x^2) = (8, 10)^T + [(8, 10)^T - (10, 11)^T] = (6, 9)^T; f(x^5) = f(6, 9) = 13.$$

 6^{0} . Поскольку $f(x^{5}) = 13 < f(x^{l}) = f(x^{1}) = 45$, выполним растяжение:

$$x^{6} = x^{4} + 2 \cdot (x^{5} - x^{4}) = (8, 10)^{T} + 2 \cdot [(6, 9)^{T} - (8, 10)^{T}] = (4, 8)^{T}; \quad f(x^{6}) = f(4, 8) = 8.$$

Так как $f(x^6) = 8 < f(x^1) = f(x^1) = 45$, то вершина x^2 заменяется на x^6 . Новый многогранник содержит вершины x^2, x^3, x^6 . Положим k = k + 1 = 1 и перейдем к шагу 2.

$$2^1$$
. Имеем вершины $x^1 = (8,9)^T$, $x^2 = (4,8)^T$, $x^3 = (8,11)^T$;

$$f(x^1) = 45$$
, $f(x^2) = 8$; $f(x^3) = 61$; $x^1 = x^2$, $x^h = x^3$, $x^s = x^1$.

 3^1 . Найдем центр тяжести вершин x^2 и x^1 :

$$x^4 = \frac{1}{2} \cdot \left[x^1 + x^2 \right] = \frac{1}{2} \cdot \left[(8, 9)^T + (4, 8)^T \right] = (6, 8, 5)^T; f(x^4) = 10,25.$$

$$4^1$$
. Так как $\sigma = \left\{ \frac{1}{3} \left(34,75^2 + 50,75^2 + 2,25^2 \right) \right\}^{\frac{1}{2}} = 35,53 > \varepsilon$, процесс продолжается.

5¹. Выполним отражение

$$x^5 = x^4 + 1 \cdot (x^4 - x^3) = (6; 8, 5)^T + [(6; 8, 5)^T - (8, 11)^T] = (4, 6)^T; f(x^5) = 4.$$

 6^1 . Поскольку $f(x^5) = 4 < f(x^l) = f(x^2) = 8$, выполним растяжение.

$$x^{6} = x^{4} + 2 \cdot (x^{5} - x^{4}) = (6; 8, 5)^{T} + 2 \cdot [(4; 6)^{T} - (6; 8, 5)^{T}] = (2; 3, 5)^{T};$$
$$f(x^{6}) = f(2; 3, 5) = 42, 25.$$

Так как $f(x^6) = 42,25 > f(x^1) = f(x^2) = 8$, то вершина $x^h = x^3$ заменяется на x^5 . Новый многогранник содержит вершины x^1, x^2, x^5 . Положим k = 2 и перейдем к шагу 2.

 2^2 . Имеем вершины $x^1 = (8,9)^T$, $x^2 = (4,8)^T$, $x^3 = (4,6)^T$;

$$f(x^1) = 45$$
, $f(x^2) = 8$, $f(x^3) = 4$; $x^1 = x^3$, $x^h = x^1$, $x^s = x^2$.

 3^2 . Найдем центр тяжести вершин x^2 и x^3 :

$$x^4 = \frac{1}{2} \cdot (x^2 + x^3) = \frac{1}{2} \cdot [(4, 6)^T + (4, 8)^T] = (4, 7)^T; f(x^4) = 5.$$

$$4^2$$
. Так как $\sigma = \left\{ \frac{1}{3} \left(40^2 + 3^2 + 1 \right) \right\}^{\frac{1}{2}} = 23,2 > \varepsilon$, процесс продолжается.

 5^2 . Выполним отражение:

$$x^5 = x^4 + (x^4 - x^1) = (4, 7)^T + (4, 7)^T - (8, 9)^T = (0, 5)^T;$$
 $f(x^5) = f(0, 5) = 101.$

 6^2 . Поскольку $f(x^5) = 101 > f(x^h) = 45$, выполним редукцию:

$$x^{1} = x^{l} + 0.5 \cdot (x^{1} - x^{l}) = (4, 6)^{T} + \frac{1}{2} \cdot [(8, 9)^{T} - (4, 6)^{T}] = (6, 7.5)^{T};$$

$$x^{2} = x^{I} + 0.5 \cdot (x^{2} - x^{I}) = (4, 6)^{T} + \frac{1}{2} \cdot [(4, 8)^{T} - (4, 6)^{T}] = (4, 7)^{T};$$

$$x^3 = x^l + 0.5 \cdot (x^3 - x^l) = x^l = (4,6)^T$$
.

Положим k = 3 и перейдем к шагу 2.

 2^3 . Вычислим значения функции: $f(x^1)=6,25,\ f(x^2)=5,\ f(x^3)=4$. Поэтому $x^l=x^3, x^h=x^1, x^s=x^2$.

 3^3 . Найдем центр тяжести вершин x^2 и x^3 :

$$x^4 = \frac{1}{2} \cdot (x^2 + x^3) = \frac{1}{2} \cdot [(4, 7)^T + (4, 6)^T] = (4, 6, 5)^T; \quad f(x^4) = 4,25.$$

$$4^3$$
 . Так как $\sigma = \left\{ \frac{1}{3} \left(4 + 0.75^2 + 0.25^2 \right) \right\}^{\frac{1}{2}} = 1.241 > \varepsilon$, процесс продолжается.

5³. Выполним отражение:

$$x^5 = x^4 + (x^4 - x^1) = (4;6,5)^T + [(4;6,5)^T - (6;7,5)^T] = (2;5,5)^T; f(x^5) = 36,25.$$

$$6^3$$
 . Так как $f\left(x^5\right) = 36,25 > f\left(x^l\right) = f\left(x^1\right) = 6,25$, то выполним редукцию:
$$x^1 = x^l + 0,5 \cdot \left(x^1 - x^l\right) = (4,6)^T + \frac{1}{2} \cdot \left[(6;7,5)^T - (4,6)^T \right] = (5;6,75)^T \, ;$$

$$x^2 = x^l + 0,5 \cdot \left(x^2 - x^l\right) = (4,6)^T + \frac{1}{2} \cdot \left[(4,7)^T - (4,6)^T \right] = (4;6,5)^T \, ;$$

$$x^3 = x^l = x^3 = (4,6)^T \, .$$

Положим k = k + 1 = 4 и перейдем к шагу 2.

 2^4 . Вычислим значения функции: $f(x^1)=0,5625;\ f(x^2)=4,25;\ f(x^3)=4$. Поэтому $x^l=x^1,x^h=x^2,x^s=x^3$.

 3^4 . Найдем центр тяжести вершин x^1 и x^3 :

$$x^4 = \frac{1}{2} \cdot [x^1 + x^3] = \frac{1}{2} \cdot [(5; 6,75)^T + (4, 6)^T] = (4,5; 6,375)^T; \quad f(x^4) = 1,14.$$

$$4^4$$
. Так как $\sigma = \left\{\frac{1}{3}(0,33+9,67+8,17)\right\}^{\frac{1}{2}} = 2,46 > \epsilon$, процесс продолжается.

5⁴. Выполним отражение:

$$x^{5} = x^{4} + (x^{4} - x^{2}) = (4,5;6,375)^{T} + [(4,5;6,375)^{T} - (4;6,5)^{T}] = (5;6,25)^{T};$$
$$f(x^{5}) = 0,0625.$$

 6^4 . Так как $f(x^5) < f(x^l) = 0,5625$, выполним растяжение:

$$x^{6} = x^{4} + 2 \cdot (x^{5} - x^{4}) = (4,5;6,375)^{T} + 2 \cdot [(5;6,25)^{T} - (4,5;6,375)^{T}] = (5,5;6,125)^{T};$$

$$f(x^{6}) = 1,015.$$

Так как $f(x^6) = 1,015 > f(x^l) = f(x^1) = 0,5625$, то вершина $x^h = x^2$ заменяется на x^5 . Положим k = k + 1 = 5 и перейдем к шагу 2.

2⁵. Имеем
$$x^1 = (5; 6,75)^T, x^2 = (5; 6,25)^T, x^3 = (4,6)^T;$$

$$f(x^1) = 0,5625; f(x^2) = 0,0625; f(x^3) = 4$$
. Поэтому $x^1 = x^2, x^h = x^3, x^s = x^1$.

 3^5 . Найдем центр тяжести вершин x^1 и x^2 :

$$x^4 = \frac{1}{2} \cdot \left[x^1 + x^2 \right] = \frac{1}{2} \cdot \left[(5; 6,75)^T + (5; 6,25)^T \right] = (5; 6,5)^T; f(x^4) = 0,25.$$

$$4^5$$
. Так как $\sigma = \left\{ \frac{1}{3} (0,097 + 0,035 + 14,062) \right\}^{\frac{1}{2}} = 2,17 > \varepsilon$, процесс продолжается.

5⁵ . Выполним отражение:

$$x^5 = x^4 + (x^4 - x^3) = (5, 6, 5)^T + [(5, 6, 5)^T - (4, 6)^T] = (6, 7)^T; f(x^5) = 5.$$

$$6^5$$
 . Так как $f(x^5) > f(x^h) = f(x^3) = 4$, выполним редукцию:

$$x^{1} = x^{2} + 0.5 \cdot \left(x^{1} - x^{2}\right) = \left(5; 6.25\right)^{T} + 0.5 \cdot \left[\left(5; 6.75\right)^{T} - \left(5; 6.25\right)^{T}\right] = \left(5; 6.5\right)^{T};$$

$$x^2 = x^l = (5,6,25)^T$$
;

$$x^{3} = x^{2} + 0.5 \cdot (x^{3} - x^{2}) = (5; 6.25)^{T} + 0.5 \cdot [(4, 6)^{T} - (5; 6.25)^{T}] = (4.5; 6.125)^{T}.$$

Положим k = k + 1 = 6 и перейдем к шагу 2.

$$2^6$$
. Имеем $f(x^1) = 0.25; f(x^2) = 0.0625; f(x^3) = 1.015$. Поэтому

$$x^{l} = x^{2}, x^{h} = x^{3}, x^{s} = x^{1}$$
.

 3^6 . Найдем центр тяжести вершин x^1 и x^2 :

$$x^4 = \frac{1}{2} \cdot (x^1 + x^2) = \frac{1}{2} \cdot [(5; 6,5)^T + (5; 6,25)^T] = (5; 6,375)^T; f(x^4) = 0,14.$$

$$4^6$$
. Так как $\sigma = \left\{ \frac{1}{3} \left(0,012 + 0,006 + 0,765 \right) \right\}^{\frac{1}{2}} = 0,51 > \varepsilon$, процесс продолжается.

 5^6 . Выполним отражение:

$$x^{5} = x^{4} + (x^{4} - x^{1}) = (5, 6, 375)^{T} + [(5, 6, 375)^{T} - (4, 5, 6, 125)^{T}] = (5, 5, 6, 625)^{T};$$

$$f(x^{5}) = 1,39.$$

 6^6 . Поскольку $f(x^5) > f(x^h) = 1,015$, то выполним редукцию:

$$x^{1} = x^{l} + 0.5 \cdot (x^{1} - x^{l}) = (5; 6.25)^{T} + 0.5 \cdot [(5; 6.5)^{T} - (5; 6.25)^{T}] = (5; 6.375)^{T};$$

$$x^2 = x^l = (5,6,25)^T;$$

$$x^{3} = x^{l} + 0.5 \cdot \left(x^{3} - x^{l}\right) = \left(5; 6, 25\right)^{T} + 0.5 \cdot \left[\left(4, 5; 6, 125\right)^{T} - \left(5; 6, 25\right)^{T}\right] = \left(4, 75; 6, 18\right)^{T}.$$

Положим k = k + 1 = 7 и перейдем к шагу 2.

$$2^7$$
 . Так как $f\left(x^1\right)=0,\!14; f\left(x^2\right)=0,\!0625; f\left(x^3\right)=0,\!28$, то получим $x^I=x^2, x^h=x^3, x^s=x^1$.

 3^7 . Найдем центр тяжести вершин x^1 и x^2 :

$$x^4 = \frac{1}{2} \cdot (x^1 + x^2) = \frac{1}{2} \cdot [(5; 6,375)^T + (5; 6,25)^T] = (5; 6,31)^T; f(x^4) = 0,09.$$

 4^7 . Так как $\sigma = \left\{ \frac{1}{3} (0,0025 + 0,0007 + 0,036) \right\}^{\frac{1}{2}} = 0,114 < \varepsilon = 0,2$, процесс закончен: $x^* = x^I = (5;6,25)^T$; $f(x^*) = 0,0625$.

Результаты расчетов до шага 6² приведены на рис. 5.14.■

5.4. МЕТОД РОЗЕНБРОКА

Постановка задачи

Требуется найти безусловный минимум функции f(x) многих переменных, т.е. найти такую точку $x^* \in R^n$, что $f(x^*) = \min_{x \in R^n} f(x)$.

Определение 5.5. Пусть d_1, d_2, \ldots, d_n — линейно независимые векторы, по норме равные единице. Они называются *взаимно ортогональными*, если для всех $i=1,\ldots,n$ справедливо условие $d_i^T d_j = 0, j \neq i$.

Стратегия поиска

Суть метода Розенброка (Rosenbrock) состоит в следующем. Задается начальная точка. Из нее осуществляется итеративный поиск направления убывания функции с помощью изменяемых дискретных шагов вдоль *п* линейно независимых и ортогональных направлений. В случае удачного шага в исследуемом направлении его значение на следующей итерации увеличивается с помощью коэффициента растяжения, а в случае неудачи уменьшается за счет умножения на коэффициент сжатия (при этом направление поиска изменяется на противоположное). Поиск в системе текущих направлений проводится до тех пор, пока все возможности уменьшения функции не будут исчерпаны. Если по каждому направлению поиска имеет место неудача, строится новое множество линейно независимых и ортогональных направлений и циклический поиск по отдельным направлениям продолжается. Новые направления поворачиваются по отношению к предыдущим так, что они оказываются вытянутыми вдоль «оврага»[28] (рис. 5.15).

Алгоритм

 $extit{\it Шаг}$ 1. Задать начальную точку x^0 , число $\varepsilon>0$ для остановки алгоритма, коэффициенты растяжения $\alpha>1$ и сжатия $-1<\beta<0$, в качестве начальных линейно независимых и ортогональных направлений d_1,d_2,\ldots,d_n выбрать координатные направления

$$d_{1} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, d_{2} = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, d_{n} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix};$$

начальную длину шага вдоль каждого из направлений поиска $\Delta_1^0, \dots, \Delta_n^0 > 0$; N- максимальное число неудачных серий шагов по всем направлениям на одной итерации. Положить $y^1 = x^0$, k = 0, i = 1, $\Delta_i = \Delta_i^0$ для всех i.

Шаг 2. Сделать шаг по i-му направлению:

- а) если $f(y^i + \Delta_i d_i) < f(y^i)$, шаг считается удачным. В этом случае следует положить $y^{i+1} = y^i + \Delta_i d_i$, $\Delta_i = \alpha \Delta_i$ и перейти к шагу 3;
- б) если $f(y^i + \Delta_i d_i) \ge f(y^i)$, шаг считается неудачным. Тогда следует положить $y^{i+1} = y^i$, $\Delta_i = \beta \Delta_i$ и перейти к шагу 3.

Шаг 3. Проверить выполнение условий:

- а) если i < n, то положить i = i + 1 и перейти к шагу 2 (сделать шаги по оставшимся направлениям);
- б) если i = n, проверить успешность поиска по текущим ортогональным направлениям:
 - если $f(y^{n+1}) < f(y^1)$, т.е. хотя бы один спуск по направлению на шаге 2 был успешным, положить: $y^1 = y^{n+1}$, i = 1 и перейти к шагу 2;
 - если $f(y^{n+1}) = f(y^1)$, т.е. каждый из n последних шагов был неудачным, оценить успешность поиска на текущей итерации:
 - если $f(y^{n+1}) < f(x^k)$, т.е. на k-й итерации хотя бы один шаг удачный, то перейти к шагу 4;
 - если $f(y^{n+1}) = f(x^k)$, т.е. не было ни одного удачного шага на k-й итерации, процесс поиска приостановить. Если число l последовательно неудачных серий шагов по всем направлениям на текущей итерации не превышает N, проверить условие окончания, а иначе перейти к шагу 4. Проверяются величины Δ_i , использованные во время последней серии шагов. Если $|\Delta_i| \le \varepsilon$ для всех i, то найдено приближенное решение задачи: $x^* \cong x^k$. Если $|\Delta_i| > \varepsilon$ хотя бы для одного i, то положить $y^1 = y^{n+1}$, i = 1 и перейти к шагу 2.

Шаг 4. Положить $x^{k+1} = y^{n+1}$ и проверить условие окончания:

а) если $||x^{k+1} - x^k|| \le \varepsilon$, то поиск завершить: $x^* \cong x^{k+1}$;

б) если $\|x^{k+1} - x^k\| > \epsilon$, вычислить длины шагов по каждому направлению поиска

на k-й итерации $\lambda_1,\dots,\lambda_n$ из соотношения $x^{k+1}-x^k=\sum_{i=1}^n\lambda_i\;d_i$. Далее постро-

ить новый набор линейно независимых и взаимно ортогональных направлений поиска $\overline{d}_1, \dots, \overline{d}_n$ с помощью процедуры $\Gamma pama-Шмидта$:

$$a_i = \begin{cases} d_i, & \lambda_i = 0, \\ \sum_{j=i}^n \lambda_j \, d_j, & \lambda_i \neq 0, \end{cases} \qquad b_i = \begin{cases} a_i, & i = 1, \\ a_i - \sum_{j=1}^{i-1} \left(a_i^T \overline{d}_j\right) \overline{d}_j, & i \geq 2, \end{cases} \qquad \overline{d}_i = \frac{b_i}{\parallel b_i \parallel}.$$

Заметим, что если $\lambda_i=0$, то $\overline{d}_i=d_i$, т.е. новые направления следует вычислять только для тех индексов, для которых $\lambda_i\neq 0$. После нахождения новых направлений следует положить $\overline{d}_i=d_i$, $\Delta_i=\Delta_i^{\ 0}$ для всех $i=1,\ldots,n$, $k=k+1,\ y^1=x^{k+1},\ i=1$ и перейти к шагу 2.

Замечания 5.11.

- **1.** Если шаг 2 удачен, то Δ_i заменяется на $\alpha \Delta_i$, т.е. величина шага увеличивается, так как $\alpha > 1$. Неудача приводит к сдвигу в обратном направлении вдоль *i*-го направления при следующей попытке, так как $\beta < 0$.
- **2.** Розенброк рекомендовал следующие коэффициенты растяжения и сжатия: $\alpha = 3, \; \beta = -0.5$.
- **3.** Дэвис, Свенн и Кемпи (Davies, Swann, Campey) модифицировали метод Розенброка, применив алгоритмы одномерной минимизации при поиске вдоль каждого направления d_i [5, 41]. Тогда, если функция f(x) дифференцируема, последовательность генерируемых точек сходится к стационарной точке.

Пример 5.10. Найти минимум функции $f(x) = 4(x_1 - 5)^2 + (x_2 - 6)^2$ методом Розенброка.

 \square 1. Зададим начальную точку $x^0 = (8,9)^T$, $\varepsilon = 0.6$; $\alpha = 2$, $\beta = -0.5$;

$$d_1 = \begin{pmatrix} 1,0 \end{pmatrix}^T, d_2 = \begin{pmatrix} 0,1 \end{pmatrix}^T;$$
 $\Delta_1^{\ 0} = 1,$ $\Delta_2^{\ 0} = 2,$ $N = 3$. Положим $y^1 = x^0 = \begin{pmatrix} 8,9 \end{pmatrix}^T,$ $k = 0,$ $i = 1,$ $\Delta_1 = 1,$ $\Delta_2 = 2.$

 2^0 . Так как $f(y^1 + \Delta_1 d_1) = f(9,9) = 73 > f(y^1) = f(8,9) = 45$, шаг неудачен: $y^2 = y^1 = (8,9)^T$, $\Delta_1 = -0.5 \cdot 1 = -0.5$.

 3^0 . Так как i=1 < n=2, то положим i=i+1=2 и перейдем к шагу 2.

$$2^1$$
. Поскольку $f(y^2 + \Delta_2 d_2) = f(8,11) = 61 > f(y^2) = 45$, шаг неудачен: $y^3 = y^2 = (8,9)^T$, $\Delta_2 = -0.5 \cdot 2 = -1$.

 3^1 . Так как $i=2=n,\ f\left(y^{n+1}\right)=f\left(y^3\right)=f\left(x^0\right)$, то выполнена одна неудачная серия шагов: l=1< N=3. Для выполненной серии шагов $\left|\Delta_1\right|=1>\epsilon=0,6$; $\left|\Delta_2\right|=2>\epsilon=0,6$, поэтому положим $y^1=y^3=\left(8,9\right)^T, i=1$ и перейдем к шагу 2.

$$2^2$$
. Поскольку $f(y^1+\Delta_1\,d_1)=f(7,5;9)=34 < f(y^1)=f(8,9)=45$, шаг удачен:
$$y^2=y^1+\Delta_1\,d_1=\left(7,5;9\right)^T,\ \ \Delta_1=\alpha\,\Delta_1=2\left(-0,5\right)=-1\,.$$

 3^2 . Так как i=1 < n=2 , то положим i=i+1=2 и перейдем к шагу 2.

$$2^3$$
 . Поскольку $f(y^2 + \Delta_2 d_2) = f(7,5;8) = 29 < f(y^2) = 34$, шаг удачен:

$$y^3 = y^2 + \Delta_2 d_2 = (7,5;8)^T, \ \Delta_2 = \alpha \Delta_2 = 2(-1) = -2.$$

$$3^3$$
 . Так как $i=2=n=2$, $f\left(y^3\right)=29 < f\left(y^1\right)=45$, то положим $y^1=y^3=\left(7,5;8\right)^T$, $i=1$ и перейдем к шагу 2.

$$2^4$$
. Поскольку $f(y^1 + \Delta_1 d_1) = f(6,5;8) = 13 < f(y^1) = f(7,5;8) = 29$, шаг удачен: $y^2 = y^1 + \Delta_1 d_1 = (6,5;8)^T$, $\Delta_1 = \alpha \Delta_1 = 2(-1) = -2$.

 3^4 . Так как i=1 < n=2 , то положим i=i+1=2 и перейдем к шагу 2.

$$2^5$$
 . Поскольку $f(y^2 + \Delta_2 d_2) = f(6,5;6) = 9 < f(y^2) = f(6,5;8) = 13$, шаг удачен: $y^3 = y^2 + \Delta_2 d_2 = (6,5;6)^T$, $\Delta_2 = \alpha \Delta_2 = 2(-2) = -4$.

 3^5 . Так как $i=2=n, f\left(y^3\right)=9 < f\left(y^1\right)=29$, положим $y^1=y^3=\left(6,5;6\right)^T, i=1$ и перейдем к шагу 2.

$$2^6$$
 . Поскольку $f(y^1 + \Delta_1 d_1) = f(4,5;6) = 1 < f(y^1) = f(6,5;6) = 9$, шаг удачен:
$$y^2 = y^1 + \Delta_1 d_1 = \left(4,5;6\right)^T, \quad \Delta_1 = \alpha \Delta_1 = 2\left(-2\right) = -4$$
 .

 3^6 . Так как i=1 < n=2 , то положим i=i+1=2 и перейдем к шагу 2.

$$2^7$$
. Поскольку $f(y^2 + \Delta_2 d_2) = f(4,5;2) = 17 > f(y^2) = 1$, шаг неудачен:

$$y^3 = y^2 = (4,5;6)^T$$
, $\Delta_2 = \beta \Delta_2 = -0,5(-4) = 2$.

$$3^7$$
 . Так как $i=2=n, \ f(y^3)=1 < f(y^1)=f(6,5;6)=9$, то

$$y^1 = y^3 = (4,5;6)^T$$
, $i = 1$ и перейдем к шагу 2.

$$2^8$$
 . Поскольку $f(y^1+\Delta_1 d_1)=f(0,5;6)=81>f(y^1)=f(4,5;6)=1$, шаг неудачен: $y^2=y^1=\left(4,5;6\right)^T$, $\Delta_1=-0,5\left(-4\right)=2$.

 3^8 . Так как i=1 < n=2 , то положим i=i+1=2 и перейдем к шагу 2.

$$2^9$$
. Поскольку $f(y^2 + \Delta_2 d_2) = f(4,5;8) = 5 > f(y^2) = 1$, шаг неудачен:

$$y^3 = y^2 = (4,5;6)^T$$
, $\Delta_2 = -0,5 \cdot 2 = -1$.

 3^9 . Так как i=2=n=2 и $f\!\left(y^3\right)=f\!\left(y^1\right)$, но $f\!\left(y^3\right)=1 < f\!\left(x^0\right)=45$, перейдем к шагу 4.

 4^{0} . Положим $x^{1} = y^{3} = (4,5;6)^{T}$. Поскольку

Построим новый набор направлений поиска:

$$a_1 = \sum_{j=1}^{n=2} \lambda_j d_j = -3.5 \binom{1}{0} - 3 \binom{0}{1} = \binom{-3.5}{-3}; \qquad a_2 = \sum_{j=2}^{n=2} \lambda_j d_j = -3 \binom{0}{1} = \binom{0}{-3};$$

$$b_1 = a_1 = \binom{-3.5}{-3}, \text{ так как } i = 1; \qquad \overline{d}_1 = \frac{b_1}{\parallel b_1 \parallel} = \frac{\binom{-3.5}{-3}}{4.61} = \binom{-0.76}{-0.65};$$

$$b_{2} = a_{2} - \sum_{j=1}^{2-1} \left(a_{2}^{T} \overline{d}_{j}\right) \overline{d}_{j} = \begin{pmatrix} 0 \\ -3 \end{pmatrix} - \left(\begin{pmatrix} 0 & -3 \end{pmatrix} \begin{pmatrix} -0.76 \\ -0.65 \end{pmatrix} \right) \begin{pmatrix} -0.76 \\ -0.65 \end{pmatrix} =$$

$$= \begin{pmatrix} 0 \\ -3 \end{pmatrix} - 1.95 \begin{pmatrix} -0.76 \\ -0.76 \end{pmatrix} = \begin{pmatrix} 1.482 \\ -1.729 \end{pmatrix}; \qquad \overline{d}_{2} = \frac{b_{2}}{\|b_{2}\|} = \frac{\begin{pmatrix} 1.482 \\ -1.729 \end{pmatrix}}{2.28} = \begin{pmatrix} 0.65 \\ -0.76 \end{pmatrix}.$$

Положим $d_1=\overline{d}_1, \quad d_2=\overline{d}_2, \quad \Delta_1=\Delta_1{}^0=1, \quad \Delta_2=\Delta_2{}^0=2, \qquad k=k+1=1,$ $y^1=x^1=\left(4,5;6\right)^T, \ i=1$ и перейдем к шагу 2.

 2^{10} . Поскольку $f\left(y^1+\Delta_1\,d_1\right)=f\left(3,74;5,35\right)=6,766>f\left(y^1\right)=f\left(4,5;6\right)=1$, шаг неудачен: $y^2=y^1=\left(4,5;6\right)^T,\;\;\Delta_1=-0,5\cdot 1=-0,5$.

 3^{10} . Так как i=1 < n=2 , то положим i=i+1=2 .

 2^{11} . Поскольку $f(y^2 + \Delta_2 d_2) = f(5,801;4,481) = 4,876 > f(y^2) = 1$, шаг неудачен: $y^3 = y^2 = (4,5;6)^T$, $\Delta_2 = -0,5 \cdot 2 = -1$.

 3^{11} . Так как $i=2=n, \ f(y^3)=f(y^1)=1$, то оценим успешность поиска на текущей итерации. Так как $f(y^3)=f(x^1)=1$, то на текущей итерации не было ни одного удачного шага. Поскольку l=1< N=3, то проверим условие окончания. Имеем $|\Delta_2|=1>\epsilon=0.6$, поэтому положим $y^1=y^3=\left(4.5;6\right)^T, i=1$ и перейдем к шагу 2.

 $2^{12} \text{. Поскольку} \quad f\Big(y^1 + \Delta_1 \ d_1\Big) = f\Big(4,\!880;6,\!325\Big) = 0,\!164 < f\Big(y^1\Big) = f\Big(4,\!5;6\Big) = 1 \,,$ шаг удачен: $y^2 = y^1 + \Delta_1 \ d_1 = \big(4,\!880;6,\!325\big)^T \,, \Delta_1 = \alpha \ \Delta_1 = -0,\!5 \cdot 2 = -1 \,.$

 3^{12} . Так как $\,i=1 < n=2$, то положим $\,i=i+1=2\,$ и перейдем к шагу 2 .

 2^{13} . Поскольку $f\left(y^2+\Delta_2\,d_2\right)=f\left(4{,}229;7{,}085\right)=3{,}555>f\left(y^2\right)=0{,}164$, шаг неудачен: $y^3=y^2=\left(4{,}880;6{,}325\right)^T$, $\Delta_2=\beta\,\Delta_2=-0{,}5\left(-1\right)=0{,}5$.

 3^{13} . Так как i=2=n, то проверим успешность поиска по текущим ортогональным направлениям: $f(y^3)=0,164 < f(y^1)=1$ — поиск успешный. Положим $y^1=y^3=\left(4,880;6,325\right)^T, \ i=1$ и перейдем к шагу 2.

 2^{14} . Поскольку справедливо неравенство

$$f(y^1 + \Delta_1 d_1) = f(5,639;6,976) = 2,586 > f(y^1) = f(4,880;6,325) = 0,164,$$

шаг неудачен: $y^2 = y^1 = (4,880;6,325)^T$, $\Delta_1 = -0.5 \cdot (-1) = 0.5$.

 3^{14} . Так как i=1 < n=2 , то положим i=i+1=2 и перейдем к шагу 2. 2^{15} . Поскольку $f\left(y^2+\Delta_2\,d_2\right)=f\left(5{,}205;5{,}946\right)=0{,}171>f\left(y^2\right)=0{,}164$, шаг неудачен: $y^3=y^2=\left(4{,}880;\,6{,}325\right)^T$, $\Delta_2=-0{,}5\cdot0{,}5=-0{,}25$.

 3^{15} . Так как i=2=n и $f\left(y^3\right)=0,\!164=f\left(y^1\right)$, то оценим успешность поиска на текущей итерации: $f\left(y^3\right)=0,\!164< f\left(x^1\right)=1$ — на текущей итерации был удачный шаг. Перейдем к шагу 4.

$$4^1$$
. Положим $x^2=y^3=\left(4{,}880;6{,}325\right)^T$. Так как выполняется условие окончания $\left\|x^2-x^1\right\|=\sqrt{\left(4{,}880-4{,}5\right)^2+\left(6{,}325-6\right)^2}=0{,}5<\epsilon=0{,}6$, то процесс поиска завершается: $x^*=x^2=\left(4{,}880;6{,}325\right)^T$; $f\left(x^*\right)=0{,}164$.

5.5. МЕТОД СОПРЯЖЕННЫХ НАПРАВЛЕНИЙ

Постановка задачи

Требуется найти безусловный минимум функции f(x) многих переменных, т.е. найти такую точку $x^* \in R^n$, что $f(x^*) = \min_{x \in R^n} f(x)$.

Определение 5.6. Пусть H - симметрическая матрица размеров $(n \times n)$. Векторы d_1, d_2, \ldots, d_n называются H-сопряженными или просто сопряженными, если $d_i^T H d_j = 0$ при всех $i \neq j$.

Стратегия поиска

В методе сопряженных направлений, или методе Пауэлла (Powell), используется тот факт, что минимум квадратичной функции может быть найден не более чем за n шагов при условии, что поиск ведется вдоль сопряженных относительно матрицы Гессе направлений. Так как достаточно большой класс целевых функций может быть представлен в окрестности точки минимума своей квадратичной аппроксимацией, описанная идея применяется и для неквадратичных функций. Задаются начальная точка и направления $d_1, d_2, ..., d_n$, совпадающие с координатными. Находится минимум f(x) при последовательном движении по (n+1) направлениям с помощью одного из методов одномерной минимизации (см. разд. 5.1). При этом полученная ранее точка минимума берется в качестве исходной для поиска по следующему направлению, а направление d_n используется как при первом ($d_0 = d_n$), так и при последнем поиске. Находится новое направление поиска, сопряженное с d_n . Оно проходит через точки, полученные при первом и последнем поиске. Заменяется d_1 на d_2 , d_2 на d_3 и т.д. Направление d_n заменяется сопряженным направлением, после чего повторяется поиск по (n+1) направлениям, уже не содержащим старого направления d_1 . Для квадратичных функций последовательность n^2 одномерных поисков приводит к точке минимума (если все операции выполнены точно).

Построение сопряженного направления для квадратичной функции при n=2 изображено на рис. 5.16. Оно проходит через точки 1 и 3.

Рис. 5.16

Алгоритм

Шаг 1. Задать начальную точку x^0 , число $\varepsilon > 0$ для окончания алгоритма, начальные направления поиска

$$d_{1} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, d_{2} = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, d_{n} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$

Положим $d_0 = d_n$, i = 0, $y^0 = x^0$, k = 0.

 $extit{\it Шаг}$ 2. Найти $y^{i+1}=y^i+t_i\ d_i$, где шаг t_i находится в результате поиска минимума функции $f\Big(y^i+t_i\ d_i\Big)$ по t_i одним из методов одномерной минимизации.

Шаг 3. Проверить выполнение условий:

- а) если i < n 1, положить i = i + 1 и перейти к шагу 2;
- б) если i=n-1, проверить успешность поиска по n первым направлениям. Если $y^n=y^0$, то поиск завершить: $x^*\cong y^n$, иначе положить i=i+1 и перейти к шагу 2;
- в) если i=n, проверить успешность поиска по n последним направлениям. Если $y^{n+1}=y^1$, поиск завершить: $x^* \cong y^{n+1}$, иначе перейти к шагу 4 для построения сопряженного направления.

Шаг 4. Положить $x^{k+1} = y^{n+1}$ и проверить условие окончания:

а) если $\|x^{k+1} - x^k\| < \varepsilon$, то поиск завершить: $x^* \cong x^{k+1}$;

- б) иначе положить $\overline{d}_0 = \overline{d}_n = y^{n+1} y^1$ (новое направление); $\overline{d}_i = d_{i+1}, \ i = 1, \dots, n-1$ (исключается старое направление). Проверить выполнение условия:
 - если rang $(\overline{d}_1, \dots, \overline{d}_n) = n$, то новая система направлений линейно независима. В этом случае положить $\overline{d}_i = d_i$, $i = 0, 1, \dots, n$; k = k + 1, i = 0, $y^0 = x^{k+1}$ и перейти к шагу 2;
 - если rang $(\overline{d}_1,\ldots,\overline{d}_n)$ < n , то новая система направлений линейно зависима. Тогда следует продолжать поиск в старых направлениях. Для этого положить $d_i=d_i$, $i=0,1,\ldots,n$; $y^0=x^{k+1}$, k=k+1, i=0 и перейти к шагу 2.

Замечание 5.12. Изложенный алгоритм соответствует описанному в [36]. Существует алгоритм Пауэлла, в котором не гарантируется линейная независимость направлений поиска, а в [5] приведена модификация алгоритма Пауэлла, предложенная Зангвиллом (Zangwill). Последняя модификация гарантирует линейную независимость направлений поиска и сходимость за конечное число шагов.

Пример 5.11. Найти минимум функции $f(x) = 4(x_1 - 5)^2 + (x_2 - 6)^2$ методом Пауэлла.

 $\square \ 1^0 . \ 3$ ададим начальную точку $x^0 = \left(8,9\right)^T, \ d_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, d_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ \varepsilon = 0,1 . \ \Pi$ оложим $d_0 = d_n = d_2; \ y^0 = x^0, \ i = 0, \ k = 0 .$

 2^0 . Получим $y^1=y^0+t_0\,d_0=\left(8,9\right)^T+t_0\left(0,1\right)^T=\left(8,9+t_0\right)^T$. Найдем минимум функции $f\left(8,9+t_0\right)=36+\left(3+t_0\right)^2$ по t_0 . Очевидно, $t_0=-3$, а $y^1=\left(8,6\right)^T$.

 3^0 . Имеем i=0<2=n, поэтому положим i=i+1=1 и перейдем к шагу 2.

 2^1 . Получим $y^2=y^1+t_1\ d_1=\left(8,6\right)^T+t_1\left(1,0\right)^T=\left(8+t_1,6\right)^T$. Найдем минимум функции $f\left(8+t_1,6\right)=4\left(3+t_1\right)^2$ по t_1 . Он достигается при $t_1=-3$, тогда $y^2=\left(5,6\right)^T$.

 3^1 . Имеем $i=1=n-1,\ y^n=y^2\neq y^0$, поэтому положим i=i+1=2 и перейдем к шагу 2.

 2^2 . Получим $y^3=y^2+t_2$ $d_2=\left(5,6\right)^T+t_2\left(0,1\right)^T=\left(5,6+t_2\right)^T$. Найдем минимум функции $f\left(5,6+t_2\right)=t_2^2$ по t_2 . Очевидно, $t_2=0$, а $y^3=y^2=\left(5,6\right)^T$.

 3^2 . Имеем $i=2=n,\ y^3\neq y^1$. Перейдем к шагу 4.

 4^0 . Находим $x^1=y^3=\left(5,6\right)^T$, $\left\|x^1-x^0\right\|=\sqrt{\left(8-5\right)^2+\left(9-6\right)^2}=4{,}24>\epsilon$.

Положим $\overline{d}_0 = \overline{d}_n = \overline{d}_2 = y^3 - y^1 = (5,6)^T - (8,6)^T = (-3,0)^T$; $\overline{d}_1 = d_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Так как $\operatorname{rang} \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix} = 2 = n$, то система векторов линейно независима. Положим

$$d_2=\overline{d}_2=inom{-3}{0},\ d_1=\overline{d}_1=inom{0}{1},\ d_0=\overline{d}_0=inom{-3}{0},\ k=k+1,\ i=0,\ y^0=x^1=ig(5,6ig)^T$$
 и перейдем к шагу 2.

 2^3 . Получим $y^1=y^0+t_0$ $d_0=\left(5,6\right)^T+t_0\left(-3,0\right)^T=\left(5-3t_0,6\right)^T$. Найдем минимум функции $f(5-3t_0,6)=36t_0^2$ по t_0 . Так как $t_0=0$, то $y^1=\left(5,6\right)^T=y^0$.

 3^3 . Имеем i = 0 < n - 1 = 1, поэтому положим i = i + 1 = 1 и перейдем к шагу 2.

 2^4 . Получим $y^2=y^1+t_1\,d_1=\left(5,6\right)^T+t_1ig(0,1ig)^T=\left(5,6+t_1
ight)^T$. Минимум функции $fig(5,6+t_1ig)=t_1^2$ по t_1 достигается при $t_1=0$. Тогда $y^2=\left(5,6\right)^T=y^1=y^0$.

 3^4 . Имеем $i=1=n-1,\ y^2=y^0$, поэтому поиск завершается: $x^*\cong y^2=\left(5,6\right)^T$; $f\left(x^*\right)=0$. \blacksquare

5.6. МЕТОДЫ СЛУЧАЙНОГО ПОИСКА

5.6.1. Адаптивный метод случайного поиска

Постановка задачи

Требуется найти безусловный минимум функции f(x) многих переменных, т.е. найти такую точку $x^* \in R^n$, что $f(x^*) = \min_{\mathbf{R}^n} f(x)$.

Стратегия поиска

Задается начальная точка x^0 . Каждая последующая точка находится по формуле $x^{k+1} = x^k + t_k \; \xi^k \, .$

где $t_k > 0$ — величина шага; ξ^k — случайный вектор единичной длины, определяющий направление поиска; k — номер итерации. На текущей итерации при помощи генерирования случайных векторов ξ^k получаются точки, лежащие на гиперсфере радиуса t_k с центром в точке x^k (рис. 5.17). Если значение функции в полученной точке не меньше, чем в центре, шаг считается неудачным (точки y^1, y^2 при поиске из x^0 ; y^1, y^3 при поиске из x^1). Если число неудачных шагов из текущей точки достигает некоторого числа M, дальнейший поиск продолжается из той же точки, но с меньшим шагом до тех пор, пока он не станет меньше заранее заданной величины R. Если же значение функции в полученной точке меньше, чем в центре, шаг считается удачным и в найденном направлении делается увеличенный шаг, играющий роль ускоряющего шага (как при поиске по образцу в методе конфигураций). Если при этом значение функции снова меньше, чем в центре, направление считается удачным и дальнейший поиск продолжается из этой точки (точки $z^3 = x^1$ при поиске из $z^4 = x^2$ при поиске из z^4). Если же значение функции не стало меньше, чем в центре, направление считается неудачным и поиск

продолжается из старого центра (в точке y^2 при поиске из x^1 функция меньше, чем в x^1 , а в точке z^2 уже не меньше, поэтому направление $\left(z^2-x^1\right)$ — неудачное).

Рис. 5.17

Алгоритм

Шаг 1. Задать начальную точку x^0 , коэффициенты расширения $\alpha \ge 1$ и сжатия $0 < \beta < 1$, M — максимальное число неудачно выполненных испытаний на текущей итерации, $t_0 = 1$ — начальную величину шага, R - минимальную величину шага, N — максимальное число итераций. Положить k = 0, j = 1.

Шаг 2. Получить случайный вектор $\xi^j = \left(\xi_1{}^j, \dots, \xi_n{}^j\right)^T$, где $\xi_i{}^j$ — случайная величина, равномерно распределенная на интервале [-1,1].

Шаг 3. Вычислить
$$y^j = x^k + t_k \frac{\xi^j}{\|\xi^j\|}$$
.

Шаг 4. Проверить выполнение условий:

а) если $f(y^j) < f(x^k)$, шаг удачный. Положить $z^j = x^k + \alpha (y^j - x^k)$ и определить, является ли текущее направление $y^j - x^k$ удачным:

- если $f(z^j) < f(x^k)$, то направление поиска удачное. Положить $x^{k+1} = z^j$, $t_{k+1} = \alpha \, t_k$, k = k+1 и проверить условие окончания. Если k < N, положить j = 1 и перейти к шагу 2. Если k = N, поиск завершить: $x^* \cong x^k$:
- если $f(z^j) \ge f(x^k)$, направление поиска неудачное, перейти к шагу 5;
- б) если $f(y^j) \ge f(x^k)$, шаг неудачный и перейти к шагу 5.

Шаг 5. Оценить число неудачных шагов из текущей точки:

- а) если j < M, следует положить j = j + 1 и перейти к шагу 2;
- б) если j = M, проверить условие окончания:
 - если $t_k \leq R$, процесс закончить: $x^* \cong x^k$, $f(x^*) \cong f(x^k)$;
 - если $t_k > R$, положить $t_k = \beta \, t_k$, j=1 и перейти к шагу 2.

Замечания 5.13.

- **1.** Величина $\xi_i^{\ j}$, равномерно распределенная на интервале [-1,1], генерируется обычно с помошью датчиков псевдослучайных чисел на ЭВМ. Вырабатывается случайная величина η_i^j , равномерно распределенная на [0,1], а затем используется линейное преобразование: $\xi_i^j = 2\eta_i^j 1$.
- **2.** Шумер и Стейглиц (Schumer, Steiglitz) рекомендуют следующие параметры алгоритма: $\alpha=1,618;\ \beta=0,618;\ M=3n$. При $\alpha=1$ точка z^j на шаге 4 совпадает с y^j , т.е. аналог поиска по образцу не производится. Начальный шаг $t_0 \geq R$ можно задать произвольно [36] .
- **3.** Если выполнено условие окончания $t_k \leq R$, то в качестве ответа можно использовать любую точку внутри шара с радиусом t_k и центром в точке x^k .
- **4.** Многочисленные варианты случайного поиска изложены в [12] и могут включать элементы обучения, при котором направления убывания функции становятся более вероятными, а другие направления менее вероятными.

Пример 5.12. Найти минимум функции $f(x) = 4(x_1 - 5)^2 + (x_2 - 6)^2$ методом адаптивного случайного поиска.

 \square 1^0 . Зададим начальную точку $~x^0 {=} \left(8,9 \right)^T,~\alpha = 1,\!618;~\beta = 0,\!618;~N = 10\,;~R = 0,\!8\,;$ $t_0 = 1\,;~M = 3$. Положим $k = 0,\,j = 1\,.$

 2^0 . Получим $\xi^1 = (0,843;0,374)^T$.

 3^0 . Вычислим $y^1 = x^0 + t_0 \frac{\xi^1}{\left\|\xi^1\right\|} = \left(8, 9\right)^T + \frac{\left(0,843; \ 0,374\right)^T}{0,922} = \left(8,914; \ 9,4\right)^T$.

 4^0 . Так как $f(y^1) = 72,83 > f(x^0) = 45$, шаг неудачен.

 5^0 . Имеем $\ j=1 < M=3$. Положим $\ j=j+1=2$ и перейдем к шагу 2.

 2^1 . Получим $\xi^2 = (0,239;0,954)^T$.

$$3^1$$
. Вычислим $y^2 = x^0 + t_0 \frac{\xi^2}{\|\xi^2\|} = (8, 9)^T + \frac{(0,239; 0,954)^T}{0,983} = (8,24; 9,97)^T$.

$$4^1$$
. Так как $f(y^2) = 57,75 > f(x^0) = 45$, шаг неудачен.

 5^1 . Имеем j=2 < M=3 . Положим j=j+1=3 и перейдем к шагу 2.

$$2^2$$
. Получаем $\xi^2 = (-0.159; -0.402)^T$.

$$3^2$$
. Вычислим $y^3=x^0+t_0\frac{\xi^3}{\left\|\xi^3\right\|}=\left(8,\,9\right)^T+\frac{\left(-\,0.159\,;\,-\,0.402\right)^T}{0.432}=\left(7.63;\,8.07\right)^T.$

$$4^2$$
 . Так как $f(y^3) = 31{,}95 < f(x^0) = 45$, шаг удачный. Положим

$$z^{3} = x^{0} + \alpha (y^{3} - x^{0}) = (8,9)^{T} + 1,618 [(7,63;8,07)^{T} - (8,9)^{T}] = (7,4;7,49)^{T},$$

 $f\left(z^3\right)=25,\!26 < f\left(x^0\right)=45$, направление удачное. Положим $x^1=z^3=\left(7,\!4;7,\!49\right)^T$, $t_1=\alpha$ $t_0=1,\!618\cdot 1=1,\!618$, k=k+1=1. Так как k=1< N=10, положим j=1 и перейдем к шагу 2.

$$2^3$$
. Получим $\xi^2 = (0,168; -0,727)^T$.

3³. Вычислим

$$y^{1} = x^{1} + t_{1} \frac{\xi^{1}}{\|\xi^{1}\|} = (7,4; 7,49)^{T} + 1,618 \frac{(0,168; -0,727)^{T}}{0,747} = (7,67; 5,82)^{T}.$$

$$4^3$$
 . Так как $f(y^1) = 29,19 > f(x^1) = 25,26$, шаг неудачный.

 5^2 . Имеем j=1 < M=3 . Положим $\ j=j+1=2$ и перейдем к шагу 2.

$$2^4$$
. Получим $\xi^2 = (-0.478; -0.214)^T$.

3⁴. Вычислим

$$y^2 = x^1 + t_1 \frac{\xi^2}{\|\xi^2\|} = (7,4; 7,49)^T + 1,618 \frac{(-0,478; -0,214)^T}{0,524} = (5,92; 6,83)^T.$$

 4^4 . Так как $f(y^2) = 4{,}07 < f(x^1) = 25{,}26$, шаг удачный. Положим

$$z^{2} = x^{1} + \alpha (y^{2} - x^{1}) = (7,4;7,49)^{T} + 1,618 [(5,92;6,83)^{T} - (7,4;7,49)^{T}] = (5,005;6,42)^{T},$$

$$f(z^2) = 0,176 < f(x^1) = 25,26$$
, направление удачное.

Положим $x^2=z^2=\left(5{,}005;6{,}42\right)^T$, $t_2=\alpha\,t_1=2{,}618$, k=k+1=2. Так как k=2< N=10, положим j=1 и перейдем к шагу 2.

$$2^5$$
. Получим $\xi^1 = (-0.361; 0.112)^T$.

3⁵. Вычислим

$$y^1 = x^2 + t_2 \frac{\xi^1}{\|\xi^1\|} = (5,005; 6,42)^T + 2,618 \frac{(-0,361; 0,112)^T}{0,378} = (2,93; 7,19)^T.$$

$$4^5$$
 . Так как $f(y^1) = 18,55 > f(x^2) = 0,176$, шаг неудачен.

$$5^3$$
 . Имеем $\ j=1 < M=3$. Положим $\ j=j+1=2$ и перейдем к шагу 2.

$$2^6$$
. Получим $\xi^2 = (0,674;0,551)^T$.

3⁶. Вычислим

$$y^2 = x^2 + t_2 \frac{\xi^2}{\|\xi^2\|} = (5,005; 6,42)^T + 2,618 \frac{(0,674; 0,551)^T}{0,87} = (7,03; 8,08)^T.$$

$$4^6$$
. Так как $f(y^1) = 20,81 > f(x^2) = 0,176$, шаг неудачен.

$$5^4$$
 . Имеем $\ j=2 < M=3$. Положим $\ j=j+1=3$ и перейдем к шагу 2.

$$2^7$$
. Получим $\xi^3 = (0,789; -0,742)^T$.

3⁷. Вычислим

$$y^3 = x^2 + t_2 \frac{\xi^3}{\|\xi^3\|} = (5,005; 6,42)^T + 2,618 \frac{(0,789; -0,742)^T}{1,083} = (6,91; 4,63)^T.$$

$$4^7$$
. Так как $f(y^3) = 14,73 > f(x^2) = 0,176$, шаг неудачен.

 5^5 . Имеем j=3=M . Так как $t_2=2{,}618>R=0{,}8$, положим

$$t_2 = 0,618\,t_2 = 0,618\cdot 2,618 = 1,618\,,\;\; j=1$$
 и перейдем к шагу 2.

$$2^8$$
 . Получим $\xi^1 = (-0.824; -0.193)^T$.

3⁸. Вычислим

$$y^1 = x^2 + t_2 \frac{\xi^1}{\|\xi^1\|} = (5,005; 6,42)^T + 1,618 \frac{(-0,824; -0,193)^T}{0,846} = (3,43; 6,05)^T.$$

$$4^8$$
 . Так как $f(y^1) = 9,86 > f(x^2) = 0,176$, шаг неудачен.

 5^6 . Имеем j=1 < M=3 . Положим j=j+1=2 и перейдем к шагу 2.

$$2^9$$
. Получаем $\xi^2 = (-0.08; 0.917)^T$.

3⁹. Вычислим

$$y^2 = x^2 + t_2 \frac{\xi^2}{\|\xi^2\|} = (5,005; 6,42)^T + 1,618 \frac{(-0,08; 0,917)^T}{0,92} = (4,86; 8,03)^T.$$

 4^9 . Так как $f(y^2) = 4,19 > f(x^2) = 0,176$, шаг неудачен.

 5^7 . Имеем j=2 < M=3 . Положим j=j+1=3 и перейдем к шагу 2.

$$2^{10}$$
. Получим $\xi^3 = (0.05; 0.171)^T$.

3¹⁰. Вычислим

$$y^3 = x^2 + t_2 \frac{\xi^3}{\|\xi^3\|} = (5,005; 6,42)^T + 1,618 \frac{(0,05; 0,171)^T}{0,178} = (5,46; 7,97)^T.$$

$$4^{10}$$
. Так как $f(y^3) = 4{,}73 > f(x^2) = 0{,}176$, шаг неудачен.

 5^8 . Имеем j=3=M . Так как $t_2=1,618>R=0,8$, положим $t_2=0,618\,t_2=0,618\cdot 1,618=1$, j=1 и перейдем к шагу 2.

 2^{11} . Получим $\xi^1 = (0,251;-0,447)^T$.

3¹¹. Вычислим

$$y^{1} = x^{2} + t_{2} \frac{\xi^{1}}{\|\xi^{1}\|} = (5,005; 6,42)^{T} + 1 \frac{(0,251; -0,447)^{T}}{0,51} = (5,5; 5,54)^{T}.$$

 4^{11} . Так как $f(y^1) = 1,21 > f(x^2) = 0,176$, шаг неудачен.

 5^9 . Имеем j=1 < M=3 . Положим j=j+1=2 и перейдем к шагу 2.

 2^{12} . Получим $\xi^2 = (-0.812; 0.102)^T$.

3¹². Вычислим

$$y^2 = x^2 + t_2 \frac{\xi^2}{\|\xi^2\|} = (5,005; 6,42)^T + 1 \cdot \frac{(-0,812; 0,102)^T}{0,818} = (4,01; 6,54)^T.$$

 4^{12} . Так как $f(y^2) = 4{,}12 > f(x^2) = 0{,}176$, шаг неудачен.

 5^{10} . Имеем $\,j=2 < M=3\,$. Положим $\,j=j+1=3\,$ и перейдем к шагу 2.

 2^{13} . Получим $\xi^3 = (0,507;0,537)^T$.

3¹³. Вычислим

$$y^3 = x^2 + t_2 \frac{\xi^3}{\|\xi^3\|} = (5,005; 6,42)^T + 1 \frac{(0,507; 0,537)^T}{0,738} = (5,69; 7,15)^T.$$

 4^{13} . Так как $f(y^3) = 3,23 > f(x^2) = 0,176$, шаг неудачен.

 5^{11} . Имеем j=3=M . Так как $t_2=1>R=0.8$, то положим $t_2=0.618\,t_2=0.618$, j=1 и перейдем к шагу 2.

 2^{14} . Получим $\xi^1 = (-0.587; 0.461)^T$.

3¹⁴. Вычислим

$$y^1 = x^2 + t_2 \frac{\xi^1}{\|\xi^1\|} = (5,005; 6,42)^T + 0,618 \frac{(-0,587; 0,461)^T}{0,746} = (4,52; 6,8)^T.$$

 4^{14} . Так как $f(y^1) = 1,56 > f(x^2) = 0,176$, шаг неудачен.

 5^{12} . Имеем $\,j=1 < M=3\,.$ Положим $\,j=j+1=2\,$ и перейдем к шагу 2.

 2^{15} . Получим $\xi^2 = (0,911;0,018)^T$.

3¹⁵. Вычислим

$$y^2 = x^2 + t_2 \frac{\xi^2}{\|\xi^2\|} = (5,005;6,42)^T + 0,618 \frac{(0,911;0,018)^T}{0,9112} = (5,62;6,43)^T.$$

$$4^{15}$$
. Так как $f(y^2) = 1,72 > f(x^2) = 0,176$, шаг неудачен.

 5^{13} . Имеем j=2 < M=3 . Положим j=j+1=3 и перейдем к шагу 2.

$$2^{16}$$
. Получим $\xi^3 = (-0.07; -0.971)^T$.

3¹⁶. Вычислим

$$y^{3} = x^{2} + t_{2} \frac{\xi^{3}}{\|\xi^{3}\|} = (5,005; 6,42)^{T} + 0,618 \frac{(-0,07; -0.971)^{T}}{0,973} = (4,96; 5,803)^{T}.$$

$$4^{16}$$
. Так как $f(y^3) = 0,046 < f(x^2) = 0,176$, шаг удачен. Положим

$$z^{3} = x^{2} + \alpha (y^{3} - x^{2}) = (5,005;6,42)^{T} + 1,618 [(4,96;5,803)^{T} - (5,005;6,42)^{T}] =$$

= $(4,93;5,42)^T$, $f(z^3) = 0,356 > f(x^2) = 0,176$, направление поиска неудачное. Перейдем к шагу 5.

 5^{14} . Имеем j=3=M , $t_2=0{,}618 < R=0{,}8$. Поэтому $x^*\cong x^2=\left(5{,}005;6{,}42\right)^T$, $f\left(x^*\right)\cong 0{,}176\,$ или, более точно, результат содержится в круге с радиусом $t_2=0{,}618\,$ и центром в точке x^2 . \blacksquare

5.6.2. Метод случайного поиска с возвратом при неудачном шаге

Постановка задачи

Требуется найти безусловный минимум функции f(x) многих переменных, т.е. найти такую точку $x^* \in R^n$, что $f(x^*) = \min_{x \in R^n} f(x)$.

Стратегия поиска

Задается начальная точка x^0 . Каждая последующая точка находится по формуле $x^{k+1} = x^k + t_k \; \xi^k \, ,$

где $t_k > 0$ — величина шага; ξ^k — случайный вектор единичной длины, определяющий направление поиска; k — номер итерации. На текущей итерации при помощи генерирования случайных векторов ξ^k получаются точки, лежащие на гиперсфере радиуса t_k с центром в точке x^k (рис. 5.18). Если значение функции в полученной точке не меньше, чем в центре, шаг считается неудачным (точки y^1, y^2 при поиске из x^0 ; y^1, y^2, y^3 при поиске из x^3), происходит возврат в текущий центр и поиск продолжается. Если число неудачных шагов из текущей точки достигает некоторого числа M, дальнейший поиск продолжается из той же точки, но с меньшим шагом до тех пор, пока он не станет меньше заранее заданной величины R. Если же значение функции в полученной точке меньше, чем в центре, шаг считается удачным и дальнейший поиск продолжается из этой точки.

Рис. 5.18

Алгоритм

Шаг 1. Задать начальную точку x^0 , коэффициент сжатия $0 < \beta < 1$, M — максимальное число неудачно выполненных испытаний на текущей итерации, t_0 — начальную величину шага, R - минимальную величину шага, N — максимальное число итераций. Положить k = 0, j = 1.

Шаг 2. Получить случайный вектор $\xi^j = \left(\xi_1{}^j, \dots, \xi_n{}^j\right)^T$, где $\xi_i{}^j$ – случайная величина, равномерно распределенная на интервале [-1,1].

Шаг 3. Вычислить
$$y^j = x^k + t_k \frac{\xi^j}{\|\xi^j\|}$$
.

Шаг 4. Проверить выполнение условий:

- а) если $f(y^j) < f(x^k)$, шаг удачный. Положить $x^{k+1} = y^j$, $t_{k+1} = t_k$, k = k+1 и проверить условие окончания. Если k < N, положить j = 1 и перейти к шагу 2. Если k = N, поиск завершить: $x^* \cong x^k$;
- б) если $f(y^j) \ge f(x^k)$, шаг неудачный и перейти к шагу 5.

Шаг 5. Оценить число неудачных шагов из текущей точки:

- а) если j < M, следует положить j = j + 1 и перейти к шагу 2;
- б) если j = M, проверить условие окончания:
 - если $t_k \leq R$, процесс закончить: $x^* \cong x^k$, $f(x^*) \cong f(x^k)$;
 - если $t_k > R$, положить $t_k = \beta \, t_k$, j=1 и перейти к шагу 2.

5.6.3. Метод наилучшей пробы

Постановка задачи

Требуется найти безусловный минимум функции f(x) многих переменных, т.е. найти такую точку $x^* \in R^n$, что $f(x^*) = \min_{x \in R^n} f(x)$.

Стратегия поиска

Задается начальная точка x^0 . Каждая последующая точка находится по формуле

$$x^{k+1} = x^k + t_k \, \xi^k,$$

где $t_k > 0$ — величина шага; ξ^k — случайный вектор единичной длины, определяющий направление поиска; k — номер итерации. На текущей итерации при помощи генерирования случайных векторов ξ^k получается M точек $y^1,...,y^M$, лежащих на гиперсфере радиуса t_k с центром в точке x^k (рис. 5.19). Среди полученных точек выбирается точка y^m , в которой значение функции наименьшее. Если в выбранной точке значение функции меньше, чем в центре, то дальнейший поиск продолжается из этой точки. Иначе поиск продолжается из старого центра, но с меньшим шагом до тех пор, пока он не станет меньше заранее заданной величины R.

Алгоритм

Шаг 1. Задать начальную точку x^0 , коэффициент сжатия $0 < \beta < 1$, M – число испытаний на текущей итерации, $t_0 = 1$ – начальную величину шага, R – минимальную величину шага, N – максимальное число итераций. Положить k = 0, j = 1.

Шаг 2. Получить M реализаций случайного вектора $\xi^j = \left(\xi_1^{\ j}, \dots, \xi_n^{\ j}\right)^T$, где $j=1,\dots,M$, $\xi_i^{\ j}$ – случайная величина, равномерно распределенная на интервале [-1,1]. *Шаг* 3. Вычислить

$$y^{j} = x^{k} + t_{k} \frac{\xi^{j}}{\|\xi^{j}\|}, \quad j = 1,...,M.$$

Шаг 4. Найти y^m из условия $f(y^m) = \min_{1 \le i \le M} f(y^j)$.

Проверить выполнение условий:

- а) если $f(y^m) < f(x^k)$, шаг удачный. Положить $x^{k+1} = y^m$, $t_{k+1} = t_k$, k = k+1 и проверить условие окончания. Если k < N, положить j = 1 и перейти к шагу 2. Если k = N, поиск завершить: $x^* \cong x^k$;
- б) если $f(y^m) \ge f(x^k)$, шаг неудачный и перейти к шагу 5.

Шаг 5. Проверить условие окончания:

- а) если $t_k \leq R$, процесс закончить: $x^* \cong x^k$, $f(x^*) \cong f(x^k)$;
- б) если $t_k > R$, положить $t_k = \beta \, t_k$, j = 1 и перейти к шагу 2.

Замечания 5.14.

- **1.** Существуют варианты данного метода, в которых на шаге 4 полагают $x^{k+1} = y^m$. В этом случае становятся возможными шаги в направлении возрастания функции. Они могут позволить преодолевать локальные минимумы при поиске глобального экстремума.
- **2.** Недостатком метода является учет только наилучшей пробной точки. В отбрасываемых точках содержится полезная информация о поведении целевой функции.
- 3. Одним из методов учета информации, содержащейся во всех сгенерированных точках, является алгоритм статистического градиента. Для каждой из M реализаций $\xi^1,...,\xi^M$ случайного вектора ξ , полученных в точке x^k , вычисляются разности $\Delta f^j = f(x^k + t_{\rm np} \ \xi^k) f(x^k)$, где $t_{\rm np}$ пробное значение шага. В качестве направления поиска используется вектор статистического антиградиента $d^k = -\frac{1}{t_{\rm np}} \sum_{j=1}^M \xi^j \Delta f^j$ или вектор $\frac{d^k}{\|d^k\|}$. Далее алгоритм решения совпадает с описанным выше.

1. Решить задачу

$$f(x) = x_1^3 + x_2^2 - 3x_1 - 2x_2 + 2 \rightarrow \min$$

Задачи для самостоятельного решения

методами конфигураций, деформированного многогранника, сопряженных направлений. *Ответ*: точное решение $x^* = (1, 1)^T$.

2. Решить задачу

$$f(x) = (x_1 - 2)^2 + (x_2 - 5)^2 + (x_3 + 2)^2 \rightarrow \min$$

методами конфигураций, деформированного многогранника, сопряженных направлений, Розенброка.

Ответ: точное решение $x^* = (2, 5, -2)^T$.

3. Решить задачу

$$f(x) = x_1^4 + x_2^4 + 2x_1^2 x_2^2 - 4x_1 + 3 \rightarrow \min$$

методами конфигураций, деформированного многогранника, сопряженных направлений.

Ответ: точное решение $x^* = (1, 0)^T$.

4. Решить задачу

$$f(x) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2 \rightarrow \min$$

методами конфигураций, деформированного многогранника, сопряженных направлений. В качестве начальной точки рекомендуется взять $(1; 1)^T$.

Ответ: точное решение $x^* = (3, 2)^T$.

5. Решить задачу

$$f(x) = 1 - 2x_1 - 2x_2 - 4x_1x_2 + 10x_1^2 + 2x_2^2 \rightarrow \min$$

методами конфигураций, деформированного многогранника, сопряженных направлений, Розенброка.

Ответ: точное решение $x^* = (0,25; 0,75)^T$.

6. Методом Свенна найти начальный интервал неопределенности для решения задачи

$$f(x) = x^2 - 6x + 14 \rightarrow \min$$

при $x^0 = 0$; t = 1; t = 0,1; t = 0,01.

Ответ: $L_0 = [1,7]$ при t=1 ; $L_0 = [1,5;6,3]$ при t=0,1 ; $L_0 = [1,27;5,11]$ при t=0,01 .

7. Методом Свенна найти начальный интервал неопределенности для решения задачи

$$f(x) = x^2 + 6x + 12 \rightarrow \min.$$

Ответ: $L_0=[-8;4]$ при $x^0=-10,\,t=2$; $L_0=[-5,1]$ при $x^0=1,\,t=2$; $L_0=[-6;0]$ при $x^0=1,\,t=1$; $L_0=[-7;-1]$ при $x^0=0,\,t=1$.

8. Методами равномерного поиска, деления интервала пополам, дихотомии, золотого сечения, Фибоначчи решить задачу

$$f(x) = x^2 - 6nx + 14 \rightarrow \min, L_0 = [-m, 4n].$$