Beam Emission Spectroscopy (BES)

Physical principles

When neutral particles enter in a plasma, they are subject to inelastic collisions with plasma's ions and electrons. The neutrals' electrons, which initially are in their ground state, can reach a higher energy level, E_2 and, when they decay to a lower energy state E_1 , they emit a photon with energy $E_{\gamma}=E_2-E_1$, and wavelength $\lambda=\frac{hc}{E_{\gamma}}$.

In particular, of specific interest is the Balmer- α emission of the deuterium atom D_{α} , which corresponds to the transition between n=3 and n=2, and is characterized by an energy $E_{D_{\alpha}}=1.89$ eV and a wavelength $\lambda_{D_{\alpha}}=656.279$ nm.