5.44 balance_cycle

DESCRIPTION LINKS GRAPH

Origin derived from balance and cycle

Constraint balance_cycle(BALANCE, NODES)

Arguments BALANCE : dvar

NODES : collection(index-int, succ-dvar)

Restrictions

```
\begin{split} \text{BALANCE} &\geq 0 \\ \text{BALANCE} &\leq \max(0, |\text{NODES}| - 2) \\ \textbf{required}(\text{NODES}, [\text{index}, \text{succ}]) \\ \text{NODES.index} &\geq 1 \\ \text{NODES.index} &\leq |\text{NODES}| \\ \textbf{distinct}(\text{NODES}, \text{index}) \\ \text{NODES.succ} &\geq 1 \\ \text{NODES.succ} &\leq |\text{NODES}| \end{split}
```

Purpose

Consider a digraph G described by the NODES collection. Partition G into a set of vertex disjoint circuits in such a way that each vertex of G belongs to a single circuit. BALANCE is equal to the difference between the number of vertices of the largest circuit and the number of vertices of the smallest circuit.

Example

```
\mathtt{index}-1
              succ - 2,
\mathtt{index}-2
              succ - 1,
index - 3
              succ - 5,
{\tt index}-4
              succ - 3,
\mathtt{index} - 5
              \verb+succ-4+
\mathtt{index}-1
              succ - 2,
index - 2
              succ - 3,
\mathtt{index} - 3
              succ - 1,
\mathtt{index}-4
              succ - 5,
{\tt index}-5
              succ - 6,
              \verb+succ-4+
{\tt index}-6
{\tt index}-1
              succ - 2,
index - 2
              succ - 3,
index - 3
              succ - 4,
              succ - 5.
\mathtt{index}-4
{\tt index}-5
              succ - 1,
index - 6
              \verb+succ-6+
```

In the first example we have the following two circuits: $1 \to 2 \to 1$ and $3 \to 5 \to 4 \to 3$. Since BALANCE = 1 is the difference between the number of vertices of the largest circuit (i.e., 3) and the number of vertices of the smallest circuit (i.e., 2) the corresponding balance_cycle constraint holds.

20111218 689

All solutions

Figure 5.118 gives all solutions to the following non ground instance of the balance_cycle constraint: BALANCE $\in [0,1]$, $S_1 \in [1,2]$, $S_2 \in [1,3]$, $S_3 \in [3,5]$, $S_4 \in [3,4]$, $S_5 \in [2,5]$, balance_cycle(BALANCE, $\langle 1 S_1, 2 S_2, 3 S_3, 4 S_4, 5 S_5 \rangle$).

```
 \begin{array}{c} \textcircled{1} \ (0,\langle \mathbf{1}_{1},\mathbf{2}_{2},\mathbf{3}_{3},\mathbf{4}_{4},\mathbf{5}_{5}\rangle) \\ \textcircled{2} \ (\mathbf{1},\langle \mathbf{1}_{1},\mathbf{2}_{2},\mathbf{4}_{3},\mathbf{3}_{4},\mathbf{5}_{5}\rangle) \\ \textcircled{3} \ (\mathbf{1},\langle \mathbf{1}_{1},\mathbf{2}_{2},\mathbf{5}_{3},\mathbf{4}_{4},\mathbf{3}_{5}\rangle) \\ \textcircled{4} \ (\mathbf{1},\langle \mathbf{2}_{1},\mathbf{1}_{2},\mathbf{3}_{3},\mathbf{4}_{4},\mathbf{5}_{5}\rangle) \\ \textcircled{5} \ (\mathbf{1},\langle \mathbf{2}_{1},\mathbf{1}_{2},\mathbf{4}_{3},\mathbf{3}_{4},\mathbf{5}_{5}\rangle) \\ \textcircled{6} \ (\mathbf{1},\langle \mathbf{2}_{1},\mathbf{1}_{2},\mathbf{5}_{3},\mathbf{3}_{4},\mathbf{4}_{5}\rangle) \\ \textcircled{7} \ (\mathbf{1},\langle \mathbf{2}_{1},\mathbf{1}_{2},\mathbf{5}_{3},\mathbf{4}_{4},\mathbf{3}_{5}\rangle) \end{array}
```

Figure 5.118: All solutions corresponding to the non ground example of the balance_cycle constraint of the **All solutions** slot; the index attribute is displayed as indices of the succ attribute, and all vertices of a same cycle are coloured by the same colour.

Typical

 $|\mathtt{NODES}|>2$

Symmetry

Items of NODES are permutable.

Arg. properties

Functional dependency: BALANCE determined by NODES.

Counting

Length (n)	2	3	4	5	6	7	8	9	10
Solutions	2	6	24	120	720	5040	40320	362880	3628800

Number of solutions for balance_cycle: domains 0..n

Solution density for balance_cycle

Solution density for balance_cycle

20111218 691

Length (n)		2	3	4	5	6	7	8	9	10
Total		2	6	24	120	720	5040	40320	362880	3628800
Parameter value	0	2	3	10	25	176	721	6406	42561	436402
	1	-	3	6	45	60	861	1778	23283	84150
	2	-	-	8	20	250	770	7980	38808	363680
	3	-	-	-	30	90	1344	6300	75348	456120
	4	-	-	-	-	144	504	8736	45360	708048
	5	-	-	-	-	-	840	3360	66240	378000
	6	-	-	-	-	-	-	5760	25920	572400
	7	-	-	-	-	-	-	-	45360	226800
	8	-	-	-	-	-	-	-	-	403200

Solution count for balance_cycle: domains 0..n

Parameter value as fraction of length

See also

related: balance (equivalence classes correspond to vertices in same cycle rather than variables assigned to the same value), cycle (do not care how many cycles but how balanced the cycles are).

Keywords

combinatorial object: permutation.

constraint type: graph constraint, graph partitioning constraint.

filtering: DFS-bottleneck.

final graph structure: circuit, connected component, strongly connected component, one_succ.

modelling: cycle, functional dependency.

Cond. implications

 $\bullet \; \mathtt{balance_cycle}(\mathtt{BALANCE}, \mathtt{NODES})$

 $\begin{array}{ll} \text{with} & \text{BALANCE} > 0 \\ \text{and} & \text{BALANCE} \leq 2 \end{array}$

implies all_differ_from_at_least_k_pos(K : BALANCE, VECTORS : NODES).

• balance_cycle(BALANCE, NODES)
implies permutation(VARIABLES : NODES).

Arc input(s)	NODES					
Arc generator	$CLIQUE \mapsto \texttt{collection}(\texttt{nodes1}, \texttt{nodes2})$					
Arc arity	2					
Arc constraint(s)	nodes1.succ = nodes2.index					
Graph property(ies)	• NTREE= 0 • RANGE_NCC= BALANCE					
Graph class	ONE_SUCC					

Graph model

From the restrictions and from the arc constraint, we deduce that we have a bijection from the successor variables to the values of interval [1, |NODES|]. With no explicit restrictions it would have been impossible to derive this property.

In order to express the binary constraint that links two vertices one has to make explicit the identifier of the vertices. This is why the balance_cycle constraint considers objects that have two attributes:

- One fixed attribute index that is the identifier of the vertex,
- One variable attribute succ that is the successor of the vertex.

The graph property NTREE = 0 is used in order to avoid having vertices that both do not belong to a circuit and have at least one successor located on a circuit. This concretely means that all vertices of the final graph should belong to a circuit.

Parts (A) and (B) of Figure 5.119 respectively show the initial and final graph associated with the first example of the **Example** slot. Since we use the **RANGE_NCC** graph property, we show the connected components of the final graph. The constraint holds since all the vertices belong to a circuit (i.e., **NTREE** = 0) and since BALANCE = **RANGE_NCC** = 1.

Figure 5.119: Initial and final graph of the balance_cycle constraint