RISK ESTIMATION -INTRODUCTION TO DATA SCIENCE-

ISL 5.1, 6.1.3

Lecturer: Darren Homrighausen, PhD

Preamble:

- Discuss how the training error is optimistic and how to correct for this optimism
- Directly estimate the risk by resampling

RISK ESTIMATION

Reminder: Prediction risk is

$$R(f) = \mathbb{E}\ell(f(X), Y) \leftrightarrow \text{Bias} + \text{Variance}$$

The overriding theme is that we would like to add a judicious amount of bias to get lower risk

As R isn't known, we need to estimate it

As discussed, $\hat{R} = \frac{1}{n} \sum_{i=1}^{n} \ell(f(X_i), Y_i)$ isn't very good (In fact, one tends to not add bias when estimating R with \hat{R})

RISK ESTIMATION: A GENERAL FORM

The problem is that \hat{R} is overly optimistic

The average optimism is

$$opt = * \mathbb{E}[R - \hat{R}]$$

Typically, opt is positive as \hat{R} will underestimate the risk

(* See ESL, Chapter 7 for details for a more precise statement)

RISK ESTIMATION: A GENERAL FORM

It turns out for a variety of ℓ (such as squared error and 0-1)

$$opt = \frac{2}{n} \sum_{i=1}^{n} Cov(\hat{f}(X_i), Y_i)$$

This is related intimately with degrees of freedom

$$df = \frac{1}{\sigma^2} \sum_{i=1}^n Cov(\hat{f}(X_i), Y_i) = \frac{n}{2\sigma^2} opt$$

$$(\sigma^2=\mathbb{V}Y_i)$$

EXAMPLE: For multiple regression (i.e. $\hat{f}(X) = \hat{\beta}_{LS}^{\top} X$),

$$\mathrm{df} = \mathrm{trace}(\mathbb{X}(\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbb{X}^{\top}) = \mathrm{rank}(\mathbb{X})$$

A RISK ESTIMATE

Therefore, we get the following expression of risk

$$GIC = \hat{R} + \widehat{\text{opt}}$$

(Writing GIC indicates generalized information criterion)

Differing $\widehat{\mathrm{opt}}$ lead to different risk estimators

opt depends on:

- a variance estimator $\hat{\sigma}$
- a scaling term

VARIOUS FORMS OF RISK ESTIMATES

Akaike's information criterion: AIC =
$$\hat{R} + \frac{2}{n} \cdot df \cdot \hat{\sigma}^2$$

Mallow's Cp = $\hat{R} - \hat{\sigma}^2 + \frac{2}{n} \cdot df \cdot \hat{\sigma}^2$

Schwarz information criterion: BIC = $\hat{R} + \frac{\log(n)}{n} \cdot df \cdot \hat{\sigma}^2$

Including more parameters leads to:

- a smaller \hat{R}
- a larger $\widehat{\mathrm{opt}}$

GOAL: Now, we can use one of the GIC procedures to tell us which model to use

(As long as $\log n \ge 2$, BIC picks a smaller model than AIC)

Various forms of risk estimates: AIC and BIC

Akaike's Information Criterion (AIC) and the Schwarz/Bayesian Information Criterion (BIC) have alternative formulations:

$$AIC = \hat{R} + \frac{2}{n} \cdot df \cdot \hat{\sigma}^{2} \qquad \text{or} \qquad n \log(\hat{R}) + 2 \cdot df$$

$$BIC = \underbrace{\hat{R} + \frac{\log(n)}{n} \cdot df \cdot \hat{\sigma}^{2}}_{\text{Use whenever}} \qquad \text{or} \qquad \underbrace{n \log(\hat{R}) + \log(n) \cdot df}_{\text{Only use when } n \geq p}$$

Cross-validation

A DIFFERENT APPROACH TO RISK ESTIMATION

Let (X_0, Y_0) be a test observation, identically distributed as an element in \mathcal{D} , but also independent of \mathcal{D} .

$$R(f) = \ell(f(X_0), Y_0) \underbrace{=}_{\text{regression}} \mathbb{E}(Y_0 - f(X_0))^2$$

Of course, the quantity $(Y_0 - f(X_0))^2$ is an unbiased estimator of R(f) and hence we could use it to estimate R(f)

However, we don't have any such new observation

Or do we?

An intuitive idea

Let's set aside one observation and predict it

For example: Set aside (X_1, Y_1) and fit $\hat{f}^{(1)}$ on $(X_2, Y_2), \dots, (X_n, Y_n)$

(The notation $\hat{f}^{(1)}$ just symbolizes leaving out the first observation before fitting \hat{f})

$$R_1(\hat{f}^{(1)}) = (Y_1 - \hat{f}^{(1)}(X_1))^2$$

As the left off data point is independent of the data points used for estimation,

$$\mathbb{E}R_1(\hat{f}^{(1)}) \approx R(\hat{f})$$

LEAVE-ONE-OUT CROSS-VALIDATION

Cycling over all observations and taking the average produces leave-one-out cross-validation

$$CV_n(\hat{f}) = \frac{1}{n} \sum_{i=1}^n R_i(\hat{f}^{(i)}) = \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{f}^{(i)}(X_i))^2.$$

More General Cross-Validation Schemes

SOME NOTATION: Suppose v is a set. Then |v| is the number of elements in that set

Example: if
$$v = \{1, 4, 10, -\pi\}$$
 then $|v| = 4$

Let
$$\mathcal{N} = \{1, \dots, n\}$$
 be the index set for \mathcal{D}

K-FOLD: Fix
$$V = \{v_1, \dots, v_K\}$$
 such that $v_j \cap v_k = \emptyset$ and $\bigcup_j v_j = \mathcal{N}$

$$CV_K(\hat{f}) = \frac{1}{K} \sum_{v \in V} \frac{1}{|v|} \sum_{i \in v} (Y_i - \hat{f}^{(v)}(X_i))^2$$

(There are others, mainly a bootstrap version)

Here,
$$|v| \approx \frac{n}{K}$$

(Example, choosing K=2 splits the data in half and hence there are $|v|=\frac{n}{2}$ observations in each fold)

More General Cross-Validation Schemes

More general cross-validation schemes: A comparison

- CV_K gets more computationally demanding as $K \to n$ (As we have to train $\hat{f}^{(v)}$ |K| times and (v) has fewer observations)
- The bias (as a risk estimator) of CV_K goes down, but the variance increases as $K \to n$
- The bootstrap version isn't commonly used

SUMMARY TIME

$\overline{\text{CV}}$	+	Good at selecting models that make good predictions
	+/-	Generally selects a model larger than necessary Is computationally demanding, especially if K is large
	-	Is computationally demanding, especially if K is large
AIC	+	Good at selecting models that make good predictions
		(and is asymptotically equivalent to CV)
	+/-	Generally selects a model larger than necessary
BIC	+	Good at selecting the correct model (if this exists)
	-	Generally selects model with poor prediction risk

Aside: There exist impossibility theorems stating that risk estimation procedures good at prediction are bad at model selection (and vice-versa)

RISK ESTIMATION IN A DATA RICH ENVIRONMENT

If we have a large amount of data, we can split into three parts:

- Training: Used to fit (or train) the considered procedures
- VALIDATION: Used to score these trained procedures
- TESTING: Used to estimate the prediction risk for the selected procedure

(A typical split might be 50%/25%/25%)

Postamble:

 Discuss how the training error is optimistic and how to correct for this optimism

```
(This generates AIC, BIC, Mallows, GCV, ...)
```

 Directly estimate the risk by resampling (Most commonly done with K-Fold CV or the bootstrap)