07/13	Proofs by Induction:
	YneN, n≥b, P(n)
	· Basis: Show P(b)
	· Inductive hypothesis: for a fixed KEN, K≥b
	ASSume PCK)
	· Inductive step: Show P(k+1)
	Important! * xread the note ch8
	ALWAYS LABEL EACH STEP!
	ALWAYS tell the variable used
	Proof (By induction on n)
<u> </u>	Always say "fixed" on I.H.
	Ex) The sum of the first nodd integers is a perfect
	square.
	$1 = 1 = (0)^2 \qquad N \ge 1$
	(+3=4=(2)
	1+3+5=9=(3)2
	1+3+5+7=16=(4)2
	first add number $\rightarrow 2i-1$ (i=1)
	Second odd number > 2i-1 (i=2)
	ith oddnumber -> [2i-1]
P. 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
7	EN (S(1-1) = N2) Le what we have to prove
	ial
	roof (by induction on n):
	pasis: (n=1)
-	$\frac{1}{2}(2^{2}+1) = 2(1)-1=1=1^{2}$
	LHS RHS

Inductive Hypothesis: Let $K \in \mathbb{N}$, $K \geq 1$ be a fixed number. Assume that $\sum_{i=1}^{n} (2i-1) = K^2$

Inductive steps:
We need to show that

Little (22-1) = (4+1)²

from LHS

(21-1) = $\frac{1}{2}(2i+1) + 2(k+1)-1$ (21-1) = $\frac{1}{2}(2i+1) + 2(k+1)-1$ (21-1) = $\frac{1}{2}(2i+1) + 2(k+2)-1$

Proof (by induction on N)

Basis: N=0LHS $2^{\circ}=1$ RHS $2^{1}-1=2-1=1$

Inductive Hypothesis: Let k be fixed st. LEN and LEO Assume \(\frac{1}{2} \) \(2^{i} = 2^{litt} - 1 \)

Inductive Step: We want to show $\sum_{i=0}^{k+1} 2^i = 2^{(k+1)+1} - ($ LHS: \(\frac{\kappa_1}{\frac{1}{20}} = \frac{\kappa_2}{\frac{1}{20}} + 2\kappa_1 + 2\kapp $= 2 \cdot (2^{k+1}) - 1$ $= 2^{k+2} - 1$ Ex.3) 2 ar' = arm -a r = 1, N ≥0, N ∈ N Proof (by induction on 1) Basis: N=0 CHS: ar'= a

RHS: ar'-a = acresi = a Inductive Hypothesis Let LEN be a fixed number s.t. 120 A38ume

Lari = aturi -a

V -1 Inductive step: We need to show that

we need to show that

we are a war - a are - a

yet are - a - are - a LHS: E ar = Sar + ar ktl = armer - a + (armer) (5-1) = ashir - a + ark+2 - ashir = arut - a L

	Ex.4) 2" < N! YNEB 5t. N24
	Proof (by induction on n)
	Basis (n=4)
	LUS 2"=16 \ 11/2"
	LUS 2"=16) 16<24 a RUS 41=24
	Inductive Hypothesis:
	Let k be fixed is.t. KEN and kz4
	Assume 2k ck!
	Inductive 5 tep:
	We have to show that
	2kt1 <(/2t1)!
	from LHS -) works fine with summation
	2441 7.
	We know of 2k < k! > - 2k+1 < (k+1)!
	- 2 (24) = 2(24) < k! (htl)
	this is true,
	We hzy
	-> 2.2 < (kti) kl.
	$\frac{1}{2 \cdot 2^k} < k+1 k!$ $\frac{1}{2^{k+1}} < (k+1)!$
1	> 3 2 5 EN 3.7 N,-N=32
W.	Ex.5) N3-N is divisible by 3 (new, n≥2)
	Basis (n=2)
	LHS 23-2= 6 divisible by 3
	= 3(2)
	Inductive Hypothesis
	for a fixed LEM, UZZ
	3 SEN S.t. 13-12-35

Inductive Stop: we need to show that (k+1)3 + (k+1) = 3r for some r EN LHS (h+1)3 - (h+1) = 12+312+31+1-K-X = 163-ky + 312+3k IM. = 35 + 3k2+3k = 3(S+k2+h) = 3r F Where V=5+12+1K EN Ex. 6) n+1 = 2n +n ≥1, NEN Proof (by induction on N) Basis: (n=1) 252 I.H.: Let u be an arbitrary fixed number, KEN UZI Assume k+1 52k & 1<2 IS. We want to show (ht)+1 < 2 (ht) 1 k+2 5 2k+2 15 1 K+1 < 24 K+1+1 5 26+2 Th+2 = 24+2 K Strong Induction D 20 buypon; brokenty that For every possible Pikk and Pz sk Springerty P, + Sproperty P -> Property P is true. -> 15 true is true

Inductive Hypothesis: -> gruen a fixed hEN, kzk Assum the property is true 4 b SY EK Inductive Step: Show that the property is the for ktl * Basis: we might need to show for several values, ex1) In EN, N>1 -) In can be written as a product of premes Proof (by (Strong) induction on n) Basis: N=2 N=12) prime I.M.: Let k be a fixed number h EN and k>1 Assume & I < r ≤ k (r can be written as a product of prines) I.S .: We want to show that Let I can be written as a product of primes W+1>2 case A) ktl is prime -> kt195 a product of primes case B) ket 1 is not prime (composite) > k+1 = ab sazz bzz > 1 ct +1 < k < k [N+1 52n] > 2 (N+1) SN > ktl =ab a = (k+i) to < (k+1) = < k 7: k+1=ab can be 1: a 5k written as a product of primes. Same in the case of b &K + I.H. 15 true for a and b -> a can be written as a product of preview & b can be written as a) product of primes

& Study this example + exam 2 (#5) Cx.2) Every postage of 212 cents can be formed Using only 4 cent stamps and 5 cent stamps Formally, YNEN, N>12 Za, b EN S.t. N= 5a+les (a is number of 5 cent stomps Proof (by induction on n) Basis: N=12 N=4(3) {b=3 N=4(3) It! Let LEN be a fixed number s.t. 1212 Assume: Fab EN s.t. k= 5a+4b I.S.: Need to show that | K+1 = 5a' + 4b' for some a', b' EN From I.H. we know 3'a, b s.t. k=5a+4b case A) b≥1 5(a+1) + 4(b-1) =5a+4b+5-4 = 5atub,+1 I.H = [= 5 a' + 46' case 8) b=0 -> all stamps must be 5 cent stamps k≥15 [k= 5a+4b b=0 a≥3] 5 then, replace 3 5 cent Stamps with 4 4 cent Stamps K+1=5a+46 L+1=5(a-3)+4(b+4) = 5a+4b-15+16 = /2+1

Proof (by Strong Induction) Basis: same as before I.H.: given a fixed LEN, LZ12 4125rsk -> r=5a+46 for some a, b EN I.S.: Show that for K+1, it is true. we need to show: kt1 = 5 a' + 46' for some a', b' EN Strong Induction: use Several base cases to show that everything up to k works I.S .: Show that the property is true for k+1 4 Postage 212 with 4c &5c Idea: any postage is (property true) I can make ktl if I Subtract 3 from k ex) 4-3+4c=4+1 Base cases: Postage 12 | 13 | 14 | 15 IH: Assume that for a fixed 12 Sk, we can generate the # 12 STER using the stamps and 50 stamps. I.S.: We need to Show that we can generate postage of · Ketl using to and 5c.