Time Series Clustering

Machine Learning for Behavioral Data May 1, 2023

Today's Topic

Week	Lecture/Lab			
8	Spring Break			
9	Time Series Prediction			
10	Unsupervised Learning			
11	Unsupervised Learning			
12	Fairness			
13	Explainability			
14	Project Presentations			
15	Whit Monday			

- K-Means, Spectral Clustering
- Choosing the optimal K*
 Clustering time-series data

Getting ready for today's lecture...

- If not done yet: clone the repository containing the Jupyter notebook and data for today's lecture into your Noto workspace.
- SpeakUp room for today's lecture:

https://go.epfl.ch/speakup-mlbd

Short quiz about the past...

In K-Means, which of the following parameters affect the goodness of the solution?

- a) Number of iterations
- b) Initial positioning of cluster centers
- c) Choice of k

Short quiz about the past...

K-Means is useful when dealing with non-convex clusters:

- a) True
- b) False

Short quiz about the past...

In a binary classification problem, it is appropriate to use the following activation function for the output layer:

- a) Linear
- b) Tanh
- c) Sigmoid

Today – Clustering Time Series Data

- 1. Aggregating features over time
- 2. Defining fixed time intervals (weeks, levels in a game, etc.)
- Dynamic Time Warping

- 4. String Metrics
- 5. Markov Models

Action Sequences

Learning Objectives

You should be able to:

- Explain the different approaches to time series clustering
- Describe their advantages and disadvantages and when it is appropriate to use them
- Implement these approaches (lecture/lab session)
- Apply them to real-world data (lab session)

Today's Use Case

- Synthetic data of 30 high school students
- Time spent on an e-learning platform over one year (computed per biweek)
- Three clusters: 1) precrastinators, 2) regular, 3) procrastinators

Agenda

- Aggregating features over time
- Defining fixed time intervals (weeks, levels in a game, etc.)
- Dynamic Time Warping
- String Metrics
- Markov Models

Aggregating features over time

- We compute the value of the feature over the whole time series (average, maximum, range, standard deviation)
- We do not explicitly represent changes in features over time

➡ We can use standard distance/similarity measures

Your Turn – Aggregated Data

Run spectral clustering on the average number of hours:

- Can we interpret the different clusters?
- Are we able to retrieve the procrastination patterns? If not, why not?

Agenda

- Aggregating features over time
- Defining fixed time intervals (weeks, levels in a game, etc.)
- Dynamic Time Warping
- String Metrics
- Markov Models
- Additional Practice

Using fixed time intervals

- Compute the feature value at fixed points in time (e.g., weeks, level in a game)
- We obtain feature vectors with the same length for every student
- We can use standard distance measures

Your Turn – Fixed Time Intervals

Run spectral clustering on the vectors of biweeks (dimension = 27) using Euclidean distance:

- What is the optimal number of clusters?
- How do the results differ from the aggregated feature results?

Agenda

- Aggregating features over time
- Defining fixed time intervals (weeks, levels in a game, etc.)
- Dynamic Time Warping
- String Metrics
- Markov Models
- Additional Practice (if time permits)

Dynamic Time Warping

- Compute distance between two time series, which may vary in speed
- Time series can have different lengths
- Develop a one-to-many match, i.e. find an optimal alignment between two time series

Example: Spoken Digits

Dynamic Time Warping vs. Euclidean Distance

Euclidean Distance

Dynamic Time Warping

Dynamic Time Warping: Rules

- Goal: minimize $D(a,b) = \min_{\emptyset} \sum_{k} d(a_{\emptyset(k)}, b_{\emptyset(k)})$
- **Rules** (given two sequences *a* and *b*):
 - Every index of $m{a}$ must be matched with one or more indices from $m{b}$, and vice versa
 - The first index from a must be matched with the first index from b (but it does not have to be its only match)
 - The last index from a must be matched with the last index from b (but it does not have to be its only match)
 - The mapping of the indices from a to indices from b must be monotonically increasing, and vice versa, i.e. if j > i are indices from a, then there must not be two indices m > n in b, such that index i is matched with index m and index m and vice versa

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

Dynamic Time Warping: Possible Paths

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

Three possible paths from each square

Dynamic Time Warping: Possible Paths

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

- Three possible paths from each square
- Every choice leads to three more possible paths
- $\Rightarrow \approx 3^{4.6}$ options

Dynamic Time Warping: Minimum Path

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

- For any cell *C* (matching indices *i*, *j*): three possible precursor cells
- Minimum cost (distance) for getting to C

$$d(i,j) + \min(D(i-1,j), D(i-1,j-1), D(i,j-1))$$

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

1. Compute pairwise distances

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

1. Compute pairwise distances

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

	3	2	1	0	2		
<i>b</i> –	4	3	2	1	1		
	4	3	2	1	1		
	2	1	0	1	3		
	2	1	0	1	3		
	2	1	0	1	3		
		1	2	3	5		
	$\frac{}{a}$						

1. Compute pairwise distances

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

1. Compute pairwise distances

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

1. Compute pairwise distances

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

1. Compute pairwise distances

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

1. Compute pairwise distances

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

	3	2	1	0	2		
<i>b</i> –	4	3	2	1	1		
	4	3	2	1	1		
	2	1	0	1	3		
	2	1	0	1	3		
	2	1	0	1	3		
		1	2	3	5		
	$\frac{}{a}$						

1. Compute pairwise distances

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

1. Compute pairwise distances

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

1. Compute pairwise distances

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

	_				
	3	2	1	0	2
<i>b</i> –	4	3	2	1	1
	4	3	2	1	1
υ –	2	1	0	1	3
	2	1	0	1	3
	2	1	0	1	3
	-	1	2	3	5
			C	a	

1. Compute pairwise distances

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

Dynamic Time Warping: Window

• Sometimes, we might want to constrain the mapping

Dynamic Time Warping: Window

Sometimes, we might want to constrain the mapping

• We introduce an window size w: an element in sequence a at index i can only be mapped to elements at index i - w, ..., i + w in sequence b

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

1. Compute pairwise distances

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

	3	2	1	0	2
	4	3	2	1	1
<i>b</i> –	4	3	2	1	1
D ¬	2	1	0	1	3
	2	1	0	1	3
	2	1	0	1	3
		1	2	3	5
			(น	

1. Compute pairwise distances

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

	3	2	1	0	2
	4	3	2	1	1
<i>b</i> –	4	3	2	1	1
D ¬	2	1	0	1	3
	2	1	0	1	3
	2	1	0	1	3
		1	2	3	5
			(น	

1. Compute pairwise distances

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

	3	2	1	0	2
	4	3	2	1	1
<i>b</i> –	4	3	2	1	1
D ¬	2	1	0	1	3
	2	1	0	1	3
	2	1	0	1	3
		1	2	3	5
			(น	

1. Compute pairwise distances

	3	_	_	_	
	4	-	-	3	
b -	4	ı	-	2	
D	2	-	1	2	
	2	2	1	2	
	2	1	1	2	
		1	2	3	5
				ן נ	_

$$a = [1,2,3,5]$$
 $b = [2,2,2,4,4,3]$

	3	2	1	0	2
	4	3	2	1	1
<i>b</i> –	4	3	2	1	1
D ¬	2	1	0	1	3
	2	1	0	1	3
	2	1	0	1	3
		1	2	3	5
			(น	

1. Compute pairwise distances

	_				
	3	ı	-	ı	5
	4	-	-	-	3
b -	4	-	-	2	3
D –	2	1	1	2	5
	2	2	1	2	5
	2	1	1	2	1
		1	2	3	5
				ו	

Your Turn – Dynamic Time Warping

Run spectral clustering using DTW with a window size of w=3:

- How do the results differ from previous results?
- What happens if you set w = 0?
- And if you set w = 27?

Agenda

- Aggregating features over time
- Defining fixed time intervals (weeks, levels in a game, etc.)
- Dynamic Time Warping
- String Metrics
- Markov Models

Example from Research: String Metrics

$$C1 \rightarrow C2 \rightarrow C3 \rightarrow C4 \rightarrow R4 \rightarrow P \rightarrow C5 \rightarrow R5 \rightarrow P$$

$$C4 \rightarrow R4 \rightarrow P \rightarrow C5 \rightarrow R5 \rightarrow P$$

Example from Research: String Metrics

- Levensthein distance: minimal number of single character edits (insertion, deletion, substitution) to change one string into the other
- Longest common subsequence (LCS): string similarity measure, find the longest common subsequence between two sequences

Agenda

- Aggregating features over time
- Defining fixed time intervals (weeks, levels in a game, etc.)
- Dynamic Time Warping
- String Metrics
- Markov Models

Markov Models

- Detailed action sequences provide rich temporal information
- Might contain a considerable amount of noise
- We might be interested not in the detailed sequence, but in patterns (which actions tend to follow each other)

Markov Models

Markov Models

$$G \rightarrow S \rightarrow G \rightarrow S \rightarrow G \rightarrow P \rightarrow S \rightarrow G$$

$$G \rightarrow G \rightarrow G \rightarrow G \rightarrow P \rightarrow G \rightarrow G$$

$$G \rightarrow P \rightarrow S \rightarrow G \rightarrow P \rightarrow S$$

Parameters: Maximum Likelihood Estimation

$$p(S|G) = \frac{10}{15} = 0.67$$

$$p(G|G) = \frac{2}{15} = 0.13$$

$$p(P|G) = \frac{3}{15} = 0.20$$

$$\begin{array}{c|cccc} & G & S & P \\ G & 0.13 & 0.67 & 0.20 \\ S & 0.79 & 0.11 & 0 \\ P & 0.33 & 0.67 & 0 \end{array}$$

Stationary Distribution

$$\begin{array}{c|cccc} & G & S & P \\ G & 0.13 & 0.67 & 0.20 \\ S & 0.89 & 0.11 & 0 \\ P & 0.33 & 0.67 & 0 \end{array}$$

$$\pi T = \pi$$

Stationary Distribution

$$\begin{array}{c|cccc} & G & S & P \\ G & 0.13 & 0.67 & 0.20 \\ S & 0.89 & 0.11 & 0 \\ P & 0.33 & 0.67 & 0 \end{array}$$

$$\pi T = \pi$$

$$\pi = [0.48 \quad 0.43 \quad 0.09]$$

Expected Frequencies

 When sequences get very long (n gets large), how often do we expect to observe the transitions?

	\boldsymbol{G}	S	P
G	/0.06	0.32	0.10
S	0.38	0.05	0
P	$\sqrt{0.03}$	0.06	$_{0}$ /

Distance Metrics

 Based on Frobenius Norm: equivalent to Euclidean distance over vectors

$$D_2(A,B) = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{m} (a_{ij} - b_{ij})^2}$$

Distance Metrics

 Kullback-Leibler Divergence: measures difference between two probability distributions

$$D_{KL}(P||Q) = \sum_{x \in X} P(x) \cdot \log(\frac{P(x)}{Q(x)})$$

 Jensen-Shannon Divergence: measures difference between two probability distributions

$$D_{JS}(P||Q) = \frac{1}{2}D_{KL}(P||M) + \frac{1}{2}D_{KL}(M||Q) \qquad M = \frac{1}{2}(P+Q)$$

Distance Metrics

 Hellinger Distance: measures difference between two probability distributions

$$D_H(P||Q) = \frac{1}{\sqrt{2}} \sqrt{\sum_{i=1}^{n} (\sqrt{p_i} - \sqrt{q_i})^2}$$

Distance between samples: Options

- Compute distance between stationary distributions: use Hellinger Distance (or Jensen-Shannon Divergence)
- Compute distance between transition matrices: use Frobenius Distance
- Compute distance between expected frequencies: use Hellinger Distance (or Jensen-Shannon Divergence)

Example from Research: Spelling Learning

Three clusters:

- Focused on the task
- Children, who frequently check performance/shop in-between tasks
- Spend long amounts of time off-task

Summary - Handling Time Series Data

- 1. Aggregating features over time
- 2. Defining fixed time intervals (weeks, levels in a game, etc.)
- 3. Dynamic Time Warping

- 4. String Measures
- 5. Markov Models

Action Sequences