Introduction to Deep Learning at TACC

David Walling

Texas Advanced Computing Center
The University of Texas at Austin

Schedule

Introduction to DL

Introduction to Keras and TensorFlow

DL and HPC at TACC

History

- 60s Cybernetics
- 90s Connectionism + Neural Networks
- 10s Deep Learning
 - Two key factors for the on-going renaissance
 - Computing capability
 - Data

Image Classification

ImageNet Classification Top-5 Error (%)

Image Classification

ImageNet Classification Top-5 Error (%)

Linear Regression

Example: Predicting house price with square footage

Determine a function $y=w^*x$ to minimize Loss = $1/n * \sum (wx^{(i)}-y'^{(i)})^2$

Model Generalization

- In practice, we divide a labeled training dataset into two parts. E.g., 80% and 20%, referred as training and validation dataset, respectively
- We derive the value of w using the training dataset.
 - value of w can be referred as model
- Then we apply the model to the validation dataset and compare the prediction with the labels
 - The difference between the prediction and the label is referred as error or loss
- A good model has low training error and low validation error
 - This is referred as good generalization

In practice

- We may use a bias item: $y = w^*x + b$, or even a regularization item: $y = w^*x + 0.5^*\lambda^*w^2$
- We use a vector of $X = \{x_1, x_2, ..., x_n\}$ as the set of features
- We may use the gradient descent algorithm to find the w with minimum error
- We may use cross-entropy as error/loss instead of the distance

- Now we have labeled data
- We can calculate y and the error with label y'
- We can then update w^{2,0}
- How can we update w^{1,0}, w^{1,1}, w^{1,2}?

TACC

11

The back-propagation algorithm

W^{1,0} should be updated as W^{1,0}=W^{1,0} - λ*∂Loss/∂W^{1,0}
 ∂Loss/∂W^{1,0} =

• $\partial LOSS/\partial VV^{1,0} =$ $\partial LOSS/\partial VV^{1,0} = \partial LOSS/\partial V^{2,0} \partial V^{2,0}/\partial Activate^{1,0} \partial Activate^{1,0}/\partial V^{1,0} \partial V^{1,0}/\partial W^{1,0}$

- Stochastic Gradient Descent
- So for each iteration, we take a small size of n (e.g., n=512), and update the parameters based on the averaged gradients

- The notion of Epoch
 - The time by which every training data item is visited once
 - So for 1,200,000 images with a 512 mini-batch size, an epoch roughly take 2,400 iterations
- How many epochs is enough?
 - Case by case
 - A somewhat standard practice uses 100 epochs for AlexNet and 90 epochs for ResNet-50
 - . In practice, limited by 'time'

Convolutional Neural Network

- What we just saw is a multi-layer perceptron (MLP) network
- If in any layer, there is a convolution operations, it is called convolutional neural network
- Often coupled with pooling operation
- Example applications:
 - Image classification
 - Object detection
 - Autonomous driving

Recurrent Neural Network

- Recurrent Neural Network is another typical neural network architecture, mainly used for ordered/sequence input
- RNNs provide a way of use information about $X_{t-i}, ..., X_{t-1}$ for inferring X_t
- Example applications:
 - Language models,
 - i.e. auto correction
 - Machine Translation
 - Auto image captioning
 - Speech Recognition
 - Autogenerating Music

https://www.oreilly.com/library/view/neural-networks-and/9781492037354/ch04.html

Generative Adversarial Network

Courtesy image from O'Reilly

Deep Reinforcement Learning

Convolutional Agent

https://skymind.ai/wiki/deep-reinforcement-learning

Notions

- Neural Network Architecture
 - Multi-layer Perceptron
 - Convolutional Neural Network
 - Recurrent Neural Network
- Activation, Loss, and Optimization
 - Activation Function
 - Loss Function
 - Back-propagation
 - Gradient Descent
 - Stochastic Gradient Descent

- Training and Validating
 - Training Dataset
 - Validation/Test Dataset
 - Training Accuracy
 - Validation/Test Accuracy Training Loss
 - Validation/Test Loss
 - Epoch
 - Iteration/Step

Schedule

Introduction to DL

- Introduction to Keras and TensorFlow
- DL and HPC at TACC
- An DL Example in Natural Hazards
 - Damage classification from images with Deep Learning with Hurricane Harvey datasets

TensorFlow

- Product of Google Brain team.
- Open source symbolic math library ideal for DL computations.
- Build up computational graphs operating on n-dimensional arrays (tensors)
- Low level API, difficult to program
- Initial release 2015
- Version 1.0.0 release Feb 2017
- Current 1.15.2 and 2.1.0 release Jan 2020

Keras

- Keras is a Python API wrapping lower level Deep Learning (DL) frameworks including Tensorflow, Theano, and CNTK.
- Philosophy: "Being able to go from idea to result with the least possible delay is key to doing good research."
- Original author: Google engineer François Chollet
- Provides many common building blocks for building DL models: layers, optimizers, activation functions
- Convenience functions for processing common data types: image and text

Keras Programming Interface

- Constructing Models Sequential and Functional API
- Setup Input Stream Data Generator API
- Instrumenting Training Callback API
- Inference/Serving Prediction API

Constructing Models — Sequential API

- model = Sequential()
- model.add(Dense(4, input_dim=8, activation='relu'))
- model.add(Dense(6, activation='relu'))
- model.add(Dense(1, activation='sigmoid'))

Constructing Models — Functional API

- inputs = Input(shape=(8,0))
- x = Dense(4, activation='relu')(inputs)
- x = Dense(8, activation='relu')(x)
- predictions = Dense(1, activation='sigmoid')(x)

Extend a Pre-trained Model

credits: https://neurohive.io/en/popular-networks/vgg16/

Loading a Pre-trained Model

- input_tensor = Input(shape=(224,224,3))
- vgg_model = VGG16(weights='imagenet', include_top=False, input_tensor=input_tensor)
- x = vgg_model.get_layer('block5_pool').output
- x = Flatten()(x)
- x = Dense(4,096, activation='relu')(x)
- x = Dense(3, activation='softmax')(x)

model = Model(input=vgg_model.input, output=x)

Data Generator API

- A natural way to feed training data to models is to
 - Placing training items in file system, with each category in one directory
 - Organizing the validation data the same way

```
Train

C0

001c4ec9-a5a3-4ef8-8154-876d3f54a7eb.jpg

0073a751-e33f-4748-b0e0-12ab9306fe8d.jpg

...

C4

000f1691-619b-4d89-849c-33e416dff150.jpg

0056732e-9b52-4b7e-ac67-e41a05f37116.jpg

...
```

Data Generator API

datagen = ImageDataGenerator()

- train_it =
 datagen.flow_from_directory('Dataset_binary/Train/',
 target_size=(224,224), class_mode='categorical',
 batch_size=16, shuffle=True)
- val_it =
 datagen.flow_from_directory('Dataset_binary/Validation/',
 target_size=(224,224), class_mode='categorical',
 batch_size=1, shuffle=False)

Data Augmentation

- datagen = ImageDataGenerator(
- rotation_range=40,
- width_shift_range=0.2,
- height_shift_range=0.2,
- shear_range=0.2,
- zoom_range=0.2,
- horizontal_flip=True,
- fill mode='nearest'
-)

Configuring a Model

- model.compile(loss='categorical_crossentropy',
- optimizer=opt,
- metrics=['accuracy'])
- print(model.summary())

Configuring a Model

Layer (type)	Output	Shap e			Param
input_1 (InputLayer)	(None,	224,	224,	3)	0
block1_conv1 (Conv2D)	(None,	224,	224,	64)	1792
block1_conv2 (Conv2D)	(None,	224,	224,	64)	36928
block1_pool (MaxPooling2D)	(None,	112,	112,	64)	0
block2_conv1 (Conv2D)	(None,	112,	112,	128)	73856
block2_conv2 (Conv2D)	(None,	112,	112,	128)	147584
block2_pool (MaxPooling2D)	(None,	56, 5	6, 12	8)	0
block3_conv1 (Conv2D)	(None,	56, 5	6, 25	6)	295168
block3_conv2 (Conv2D)	(None,	56, 5	6, 25	6)	590080
block3_conv3 (Conv2D)	(None,	56, 5	6, 25	6)	590080
block3_pool (MaxPooling2D)	(None,	28, 2	8, 25	6)	0
block4_conv1 (Conv2D)	(None,	28, 2	8, 51	2)	1180160
block4_conv2 (Conv2D)	(None,	28, 2	8, 51	2)	2359808
block4_conv3 (Conv2D)	(None,	28, 2	8, 51	2)	2359808
block4_pool (MaxPooling2D)	(None,	14, 1	4, 51	2)	0
block5_conv1 (Conv2D)	(None,	14, 1	4, 51	2)	2359808
block5_conv2 (Conv2D)	(None,	14, 1	4, 51	2)	2359808
block5_conv3 (Conv2D)	(None,	14, 1	4, 51	2)	2359808

Callbacks

- Callbacks let you instrument the training process
- Examples:
 - Checkpointing
 - ReduceLROnPlateau

Callbacks

- reduce_Ir = ReduceLROnPlateau(monitor='val_accuracy', factor=0.1, patience=5, min_Ir=1e-8)
- filepath="model-{epoch:02d}-{val_accuracy:.2f}.hdf5"
- checkpoint = ModelCheckpoint(filepath, monitor='val_accuracy', verbose=1, save_best_only=True, mode='max')

Training

```
model.fit_generator(train_it,
```

```
steps_per_epoch=83,
```

```
callbacks = [reduce_lr, checkpoint],
```

```
validation_data=val_it,
```

validation_steps=363,

epochs=5)

Training

Inference/Serving

- I_model = load_model("models/model-12-0.71.hdf5")
- img = image.load_img('Dataset_2/Validation/C4/8108cbbf-60ca-47d8-af13-2e3603a5c30e.jpg', target_size=(224,224))
- img = np.expand_dims(img, axis=0)
- y_pred = I_model.predict(img)
- print(np.argmax(y_pred))

Tuning — Model Structure

- Number of layers
- Unit count
- Variable initialization

Tuning — Hyperparameter

- Learning rate
- Momentum
- Penalty in logistic regression
- Loss in SGD

Schedule

Introduction to DL

Introduction to Keras and TensorFlow

AI/ML/DL and HPC at TACC

- An ML/DL Example in Natural Hazards
 - Damage classification from images with Deep Learning with Hurricane Harvey datasets

Deep Learning at TACC

Hardware

Software

Interface

Al Hardware at TACC

- In general, we support AI on every platform.
- For this purpose, we will focus mostly on GPUs
 - Frontera
 - Longhorn
 - Maverick
 - Chameleon

Frontera Single Precision Subsystem

- Frontera is the #5 supercomputer in the world, with more than 450,000 processors achieving 40 PetaFlops at double precision.
- It also has a smaller subsystem optimized for System Features:
 - 90 nodes/360 GPUs
 - 2x Broadwell processors
 - 128 GB RAM
 - 4x NVIDIA Turing Quadro RTX 5000 GPUs per node
 - 150 GB local SSD
- Infiniband connected to Frontera main filesystems (50 Petabytes).

Software Support for Deep Learning

- While you can produce custom code for about any method, most of what you need is easiest to get too from common frameworks.
 - For Deep Learning, PyTorch, Keras, TensorFlow
 - Many ML methods in data science frameworks like Pandas
- The typical language of choice for these methods is Python — you don't really need to know Python for today's exercises.
- The best way to work interactively in Python is through Jupyter notebooks.

Software

	Frontera (CPU)	Frontera (GPU)	Longhorn (GPU)
Keras/TensorFlow/ Horovod	•	•	
PyTorch/Horovod	•	•	
MXNet/Horovod		•	
Caffe/Intel MLSL	•		

Front-end

- Command Line
- Jupyter Notebook

Schedule

Introduction to DL

Introduction to Keras and TensorFlow

DL and HPC at TACC

- An ML/DL Example in Natural Hazards
 - Damage classification from images with Deep Learning with Hurricane Harvey datasets

Today's examples

- Deep Learning:
 - A Jupyter notebook via TACC's vis portal
 - on a Fronter RTX node,
 - using Keras over TensorFlow (GPU) to
 - build, train and infer with a CNN.
- Data sets from Hurricane Harvey reconnaissance.
- About GPU Nodes (usually the best choice)
 - TACC Systems with GPUs
 - Frontera, Longhorn, Maverick, Chameleon
 - Also possible use Stampede2 (CPU)

Starting Jupyter

- TACC Visualization Portal:
 - Go to https://vis.tacc.utexas.edu
 - Login with your training account credentials
 - Reservation ID: ML_Institute_day4

Basic Setup

- Launch Jupyter Notebook on Frontera RTX reservation via vis portal
- Open Terminal
 - cd \$SCRATCH
 - cp -rf /scratch1/00157/walling/ml-2021/dl_tutorial ./
 - cd \$HOME
 - In -s \$SCRATCH/dl_tutorial ./dl_tutorial
- Run install_tf_keras.ipynb

- Open train-1st.ipynb
- Run through the cells
- Train for the 1st time
- Tasks:
 - 1. Monitor val_accuracy change along epochs
 - 2. Monitor val_accuracy vs. train_accuracy

- Open train-2nd.ipynb
- Run through the cells
- Train for the 2nd time
- Tasks:
 - 1. Pay attention to the data augmentation code
 - Monitor val_accuracy vs. train_accuracy and check if overfitting exists

- Open train-3rd.ipynb
- Run through the cells
- Train for the 3rd time
- Tasks:
 - 1. Pay attention to label smoothing in the loss function
 - 2. Pay attention to the learning rate reducer
 - 3. Monitor val_accuracy change along epochs

- Open infer.ipynb
- Run through the cells
- Visualize selected image then predict using the trained-model
- Tasks:
 - 1. See if predictions match labels
 - 2. Randomly choose images and run predictions

Questions?

- Contact Information
 - David Walling (walling@tacc.utexas.edu)
 - Zhao Zhang (zzhang@tacc.utexas.edu)
 - Weijia Xu (<u>xwj@tacc.utexas.edu</u>)