Supervised learning

Notation

Supervised learning

Linear regression

Define form of function f(x) explicitly Find a good f(x) within that family

"Predictor":

Evaluate line:

$$r = \theta_0 + \theta_1 x_1$$

return r

Notation

$$\hat{y}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots$$

Define "feature" $x_0 = 1$ (constant) Then

$$\hat{y}(x) = \theta x^T \qquad \frac{\underline{\theta} = [\theta_0, \dots, \theta_n]}{\underline{x} = [1, x_1, \dots, x_n]}$$

Supervised learning

Notation

Measuring error

Mean squared error

How can we quantify the error?

MSE,
$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \hat{y}(x^{(j)}))^2$$
$$= \frac{1}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)T})^2$$

Why choosing exactly this error measure and not something else?

- Computationally convenient (more later)
- Measures the variance of the residuals
- Corresponds to likelihood under Gaussian model of "noise"

$$N(y; \hat{y}, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{1}{2\sigma^2} (y - \hat{y})^2\}$$

MSE Cost function

MSE,
$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \hat{y}(x^{(j)}))^2$$
 $\underline{\theta} = [\theta_0, \dots, \theta_n]$

$$= \frac{1}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)T})^2 \qquad \underline{y} = \begin{bmatrix} y^{(1)} \dots, y^{(m)} \end{bmatrix}^T$$

$$\underline{X} = \begin{bmatrix} x_0^{(1)} \dots & x_n^{(1)} \\ \vdots & \ddots & \vdots \\ x_0^{(m)} & \dots & x_n^{(m)} \end{bmatrix}$$

$$J(\underline{\theta}) = \frac{1}{m} (\underline{y}^T - \underline{\theta} \underline{X}^T) \cdot (\underline{y}^T - \underline{\theta} \underline{X}^T)^T$$

```
# Python / NumPy:
e = Y - X.dot( theta.T );
J = e.T.dot( e ) / m # = np.mean( e ** 2 )
```

Supervised learning

Visualizing the cost function

Finding good parameters

Want to find parameters which minimize our error...

Think of a cost "surface": error residual for that θ ...

Gradient descent

- How to change θ to improve J(θ)?
- Choose a direction in which J(θ) is decreasing

Gradient descent

- How to change θ to improve J(θ)?
- Choose a direction in which J(θ) is decreasing
- Derivative $\frac{\partial J(\theta)}{\partial \theta}$
- Positive => increasing
- Negative => decreasing

Gradient descent in >2 dimensions

Gradient vector

Indicates direction of steepest ascent (negative = steepest descent)

Gradient descent

Initialization

Step size α

Can change as a function of iteration

Gradient direction

Stopping condition

Initialize θ

Gradient for the MSE

$$\begin{aligned} &\text{MSE} \qquad J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^T})^2 \\ &\overset{e_j(\theta)}{\partial J} = ? \qquad J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \theta_0 \underline{x}_0^{(j)} - \theta_1 \underline{x}_1^{(j)} - \dots)^2 \\ &\frac{\partial J}{\partial \theta_0} = \frac{\partial}{\partial \theta_0} \frac{1}{m} \sum_{j} (e_j(\theta))^2 \\ &= \frac{1}{m} \sum_{j} \frac{\partial}{\partial \theta_0} (e_j(\theta))^2 & \frac{\partial}{\partial \theta_0} e_j(\theta) = \frac{\partial}{\partial \theta_0} y^{(j)} - \frac{\partial}{\partial \theta_0} \theta_0 x_0^{(j)} - \frac{\partial}{\partial \theta_0} \theta_1 x_1^{(j)} - \dots \\ &= \frac{1}{m} \sum_{j} 2e_j(\theta) \frac{\partial}{\partial \theta_0} e_j(\theta) &= -x_0^{(j)} \end{aligned}$$

Gradient for the MSE

MSE
$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^T})^2$$

$$\nabla J = ? \qquad J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \theta_0 \underline{x}_0^{(j)} - \theta_1 \underline{x}_1^{(j)} - \dots)^2$$

$$\nabla J(\underline{\theta}) = \begin{bmatrix} \frac{\partial J}{\partial \theta_0} & \frac{\partial J}{\partial \theta_1} & \dots \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2}{m} \sum_{j} -e_j(\theta) x_0^{(j)} & \frac{2}{m} \sum_{j} -e_j(\theta) x_1^{(j)} & \dots \end{bmatrix}$$

Gradient descent

Initialization

Step size

Can change as a function of iteration

Initialize θ Do { $\theta \leftarrow \theta - \alpha \nabla_{\theta} J(\theta)$ } while $(\alpha || \nabla_{\theta} J || > \epsilon)$

Gradient direction

Stopping condition

$$J(\underline{\theta}) = \frac{1}{m} \sum_{i} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^{T}})^{2}$$

$$\nabla J(\underline{\theta}) = -\frac{2}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)}^T) \cdot [x_0^{(j)} x_1^{(j)} \dots]$$
 Error magnitude & Sensitivity to direction for datum j each $\theta_{\rm i}$

Derivative of MSE

Rewrite using matrix form

$$\nabla J(\underline{\theta}) = -\frac{2}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)}^T) \cdot [x_0^{(j)} x_1^{(j)} \dots]$$
 Error magnitude & Sensitivity to each θ_i
$$\underline{\theta} = [\theta_0, \dots, \theta_n] \qquad \text{direction for datum j} \qquad \underline{x} = \begin{bmatrix} x_0^{(1)} & \dots & x_n^{(1)} \\ \vdots & \ddots & \vdots \\ x_0^{(m)} & \dots & x_n^{(m)} \end{bmatrix}$$

$$\underline{X} = \begin{bmatrix} x_0^{(1)} & \dots & x_n^{(1)} \\ \vdots & \ddots & \vdots \\ x_0^{(m)} & \dots & x_n^{(m)} \end{bmatrix}$$

```
e = Y - X.dot( theta.T ); # error residual
DJ = - e.dot(X) * 2.0/m # compute the gradient
theta -= alpha * DJ # take a step
```

Gradient descent on cost function

Comments on Gradient Descent

Very general algorithm

We'll see it many times

Local minima

 \circ Sensitive to starting point J(heta)

Comments on Gradient Descent

Very general algorithm

We'll see it many times

Local minima

Sensitive to starting point

Step size

- Too large? Too small? Automatic ways to choose?
- May want step size to decrease with iteration
- Common choices:
 - Fixed
 - Linear: C/(iteration)
 - Line search
 - Newton's method

