Week2 CNN Architectures

Tutor: Email:

Tutorial:

Code: https://github.com/Jinxu-Lin/COMP5329

Overfitting

Overfitting

- Reasons:
 - Training data is too small to represent the whole dataset
 - Large amount of irrelavent information
 - Model complexity is too high
 - The model is trained for too long

Overfitting

- Solutions:
 - Increase training data (collect more data)
 - Data cleaning jobs
 - Reduce model complexity
 - Regularization (reduce the effect of model complexity)
 - Stop training early

Techniques

L1/L2 Regularization

• Given loss $\hat{L}(\theta)$, Trainin objective:

$$\min_{\theta} \hat{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} l(\theta, x_i, y_i), \text{ s.t. } R(\theta) \le r, \text{ where } l \text{ is the loss for each instance.}$$

- L2 regularization: $R(\theta) = ||\theta||^2$
- L1 regularization: $R(\theta) = |\theta|$
- Bayesian regularization can actually be transformed to L2/L1 regularization. Refer to this link to see: https://towardsdatascience.com/a-bayesian-take-on-modelregularization-9356116b6457

Soft Regularization

Use regularization as penalty, we have the new objective

$$\min_{\theta} = \frac{1}{n} \sum_{i=1}^{n} l(\theta, x_i, y_i) + \lambda * R(\theta)$$

• However, the calculation of $R(\theta)$ is still very complicated in case of L2 regularization, we adopt the weight decay:

•
$$\theta = \theta - w_d * \theta$$

• Normally, weight decay $w_d \rightarrow 0$. We can change this value during training

Dropout

- The basic idea is to add some random/surprising factors into the training process (only training/ deactivated during testing)
 - o = f(W*x + b)
- o^* mask, half of the mask to be 0.0, half of the mask to be 1

Dropout

- During the test time, you need to scale down or scale up in the training
- Behaviors of dropout during training and testing phase is different:
 - Magnitude of values
 - don't filter out values during testing.

Batch Normalization

- The previous regularization only helps to shrink/cut-off redundant information/ provide surprising factors to the training process.
- We need a more essential method to tackle the difference between training data and testing data.

Batch Normalization

Training

- Update mean value $\mu_B \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$
- Update variance value $\sigma_B^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i \mu_B)^2$
- Update running mean value $\mu_{\chi} \leftarrow E[\mu_B]$ (implementation)
- Update running var value $\sigma_{x}^{2} \leftarrow E[\sigma_{B}^{2}]$ (implementation)

Calculate Normalized value
$$\hat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

• Update new neural value $x_i \leftarrow \gamma \hat{x}_i + \beta$

Batch Normalization

Testing

Calculate Normalized value
$$\hat{x}_i \leftarrow \frac{x_i - \mu_x}{\sqrt{\sigma_x^2 + \epsilon}}$$

- Update new neural value $x_i \leftarrow \gamma \hat{x}_i + \beta$
- with γ, β are learned values, μ_B, σ_B^2 are accumulated during training.

Exam-Style Questions

Code

Code

- ./materials/Week7_Regularization/Week7_Regularization.ipynb
- ./ResNet/Models/batch_normalization.py
- ./ResNet/Models/dropout.py
- ./ResNet/Models/resnet.py
- ./ResNet/Optimizers/sgd.py: line26-28