Risk Analysis (QF609, AY2023-2024)

Practice Problem Set #1

1. Consider a newly established bank with an intial balance sheet:

Liabilities		Assets	
Capital	20	FRB	20
Deposits	100	Loans	100
	120		120

Assume:

- both the loans and deposits have a fixed maturity of 5Y
- 3% interest on the deposits and 5% interest on the loans, both paid annually
- $\bullet\,$ the bank will spend \$1 billion per year on operating expenses
- no interests earned on the capital deposited in FRB
- (a) With accrual accounting, how will the balance sheet look like after 3M and 6M, respectively?
- (b) With MTM accounting, how will the balance sheet look like after 3M and 6M, respectively, if the benchmark discount rate (quoted as an annually compounding rate) in 3M and 6M becomes 2% and 8%, respectively?

In above, simply provide the values of the balance sheet items (no need to provide profit and loss numbers).

- 2. What is the key difference between a banking book and a trading book?
- 3. (A small challenge) Consider an 20-year fixed-rate mortgage with a notional amount of \$1 million. The nominal mortgage rate is 5% (monthly compounding, i.e. the monthly compounding factor is given by $1 + \frac{1}{12} \cdot 5\%$). The mortage payment for the k^{th} month is defined by $A \cdot B^{k-1}$.
 - (a) Find A given B = 1.001 (you do not need to provide the calculation details, but do mention briefly what's the criteria you follow to obtain your answer).
 - (b) With the A found in (a) and B = 1.001, generate the amortization table for this mortgage in EXCEL and provide the entries for the 10-th, 100-th, 200-th, and 240-th month, respectively (you only need to provide the entries below).

Month	Opening Balance	Payment	Interest	Principal Repaid	Closing Balance
10	?	?	?	?	?
100	?	?	?	?	?
200	?	?	?	?	?
240	?	?	?	?	?

	Be	5:3M	
Liabilities		1 Assets	
Cap: Tal	20	FRB	20
Retained profit	0.25	Loans	100
Deprisy	100	Interest receivable	0,25
	12028		120 26

1- (0)

B5:6M					
Liabilities		1 Assers			
Cap (-ral)	20	FRB	20		
Retained profin	o. t	Loans	100		
Deprisy	100	Interest receivable	2 0, 5		
	1203		120,5		

2. Trading book used for short term trading activities
Banking Book one appeal to be held to maturity

3.
$$\frac{20\times 12}{2} (1+ \times 10) \times 10^{-1} \times 10^{-1$$

Month	Opening Balance	Payment	Interest	Principal Repaid	Closing Balance
10	? 28 33 87. 22 49	?6012.75461	7 ?4097. 42177	? 1913	? 981466
100	? 746848	? 6576	?3/11	? 3468	? 742120
200	?278925	? 72 70	? 1161	? 6108	? 27 2757
240	? 9137	?7568	? 31	? 753 5	? 0

4. Provide the repricing amount(s) and date(s) for each of the transaction below.

Product	Interest Rate	Notional	Maturity	repricing date	repricing gap
Interest-Only Loan	1%	\$100k	2Y	2 7	4 \$ 170 K
Interest-Only Loan	USD 3M Libor	\$100k	5Y	3 M	+ \$ 100 12
Deposit	3%	\$100k	2Y	2 7	-\$ 100 K
Deposit	USD 3M Libor	\$100k	5Y	31/1	- \$ 100 K
Treasury notes	4%	\$100k	5Y	54	+\$100 K
IRS pay	3%	\$100k	5Y	57	,
IRS receive	USD 3M Libor	\$100k	5Y	3か	7
1M-forward starting de-	3%	\$100k	2Y	I M	f
posit				27,1 M	_
1M-forward starting de-	USD 3M Libor	\$100k	2Y	IM	4
posit				1 M	
1M-forward starting IRS	3%	\$100k	5Y	Ly	
pay				FYIW	J
1M-forward starting IRS	USD 3M Libor	\$100k	5Y		4.
receive				1 M	T

5. A bank has only two products on its balance sheet, loans and deposits, respectively. The repricing time buckets and amounts for the two products are provided in the gap report below. Complete the Net Gap and CGAP (i.e. the accumulated net gap along the buckets) columns, respectively.

Repricing Time Bucket	Loans	Deposits	Net Gap	CGAP	
1D	5	-30	-25	-25	
1M	5	-20	-15	- 40	
2M	5	-20	-15	- 55	
3M	10	-20	-10	- 65	
6M	10	-30	-20	- 27	9
9M	15	-15	0	- 87	2~ 乾
1Y	20	-15	5	- 70	٨ţ
2Y	30	0	30	-30	1
3Y	15	0	15	- 3}	
4Y	20	0	20	-15	
5Y	10	0	10	-5	
7Y	5	0	8	۵	
10Y	0	0	0	0	

- 6. Take the repricing gap report from the previous question and assume that the base discount curve is given by a flat zero rate curve of 3% for all tenors.
 - (a) Calcualte the econmic value sensitivity (ΔEV) under a +100bp parallel shift of the zero rates.
 - (b) Calculate the net interest income sensitivity (ΔNII) over a 2-year horizon with the mid-point approximation under a +100bp parallel shift of the zero rates.
- 7. Assume r_1 and r_2 are two positive (annually) compounding rates, where $0 < r_1 < r_2$, and $n \ge 1$ is a positive integer. When is C defined below positive (or negative, respectively)? [A Small Challenge]

$$\frac{1}{(1+r_1)^n} - \frac{1}{(1+r_2)^n} > \frac{r_1}{Hr_1} - \frac{r_1}{Hr_2} = \sum_{k=2}^n \frac{-r_2}{(1+r_2)^k} - \sum_{k=2}^n \frac{-r_1}{(1+r_1)^k}$$

$$= \frac{\frac{n}{2}}{k=1} \frac{r_1}{(Hr_1)^k} - \frac{\frac{r_1}{2}}{(Hr_2)^k} - \frac{\frac{r_1}{2}}{(Hr_2)^k} - \frac{\frac{r_1}{2}}{(Hr_2)^k} + \frac{\frac{r_2}{2}}{(Hr_2)^n} + \frac{\frac{r_2}{2}}{(Hr_2)^n} - \frac{1}{(Hr_2)^n} - \frac{1}{(Hr_2)^n}$$

$$= -\frac{r_1}{(Hr_1)^n} + \frac{r_2}{(Hr_2)^n} - \frac{1}{(Hr_2)^n} + \frac{1}{(Hr_2)^n} - \frac{1}{(Hr_2)^n}$$

$$= \frac{2}{(Hr_2)^n} - \frac{2}{(Hr_2)^n} - \frac{2}{(Hr_2)^n}$$

$$= \frac{2}{(Hr_2)^n} - \frac{2}{(Hr_2)^n}$$