# Fundamentos de Algoritmos y Computabilidad

- \* Máquina de Turing multicinta
- \* Máquina de Turing multipista
- \* Máquina de Turing universal
- \* Lenguajes generados por una máquina de Turing

## Modificaciones de las máquinas de Turing

- · Máquina de Turing multicinta
- Máquina de Turing multipista



Máquina de Turing con una sola cinta



Máquina de Turing con una sola cinta

#### Máquina multicinta



• Máquina multicinta con 2 cintas. Cada cinta tiene su propia cabeza de lectura/escritura

### Máquina multicinta

• Tiene varias cintas, cada una con su propia cabeza de lectura/escritura



### Máquina multicinta

• Tiene varias cintas, cada una con su propia cabeza de lectura/escritura



El estado de la máquina es el mismo en todas las cintas

## Máquina multicinta



• Máquina multicinta con 3 cintas. Cada cinta tiene su propia cabeza de lectura/escritura

Una de las cintas inicia con la cadena de entrada y las otras con blancos. Éstas últimas sirven para colocar símbolos que permitan verificar que la cadena de entrada debe ser

aceptada



### Máquina multicinta

· Cada cabeza puede avanzar en un sentido distinto



### Máquina multicinta

• Una cabeza puede permanecer en su sitio. Control estacionario



## Máquina multicinta

• La función de transición para una máquina de Turing con n cintas es de la forma:

$$δ$$
: QxΓ<sup>n</sup> → QxΓ<sup>n</sup>x{L,R,S}<sup>n</sup>





$$\delta(q_1,(\alpha,B))$$



 $\delta(q_1,(\alpha,B))$ 

¿Qué debe indicar la transición?



$$\delta(q_1,(a,B))=(q_1,(a,a),(R,R))$$



$$\delta(q_1, (a, B)) = (q_1, (a, a), (R, R))$$

En la cinta $_1$  se reemplaza a/a y se mueve a la derecha Permanece en el estado  $q_1$ 



$$\delta(q_1,(a,B))=(q_1,(a,a),(R,R))$$

En la cinta $_2$  se reemplaza B/a y se mueve a la derecha Permanece en el estado  $q_1$ 





$$\delta(q_1,(b,B))=(q_2,(b,B),(S,L))$$



$$\delta(q_1, (b, B)) = (q_2, (b, B), (S, L))$$

En la cinta $_1$  se reemplaza b/b y se queda estacionaria la cabeza. Se pasa al estado  $q_2$ 



$$\delta(q_1,(b,B))=(q_2,(b,B),(S,L))$$

En la cinta $_2$  se reemplaza B/B y se mueve a la izquierda. Se pasa al estado  $q_2$ 

Muestre el cómputo sobre la siguiente MT multicinta:

$$\delta(q_1,(a,B))=(q_1,(a,A),(R,R))$$
  
 $\delta(q_1,(b,B))=(q_1,(a,A),(R,R))$   
 $\delta(q_1,(B,B))=(q_2,(B,B),(L,L))$ 



$$\delta(q_1,(a,B))=(q_1,(a,A),(R,R))$$
  
 $\delta(q_1,(b,B))=(q_1,(a,A),(R,R))$   
 $\delta(q_1,(B,B))=(q_2,(B,B),(L,L))$ 



Muestre el cómputo sobre la siguiente MT multicinta:

$$\delta(q_1,(a,B))=(q_1,(a,X),(R,R))$$
  
 $\delta(q_1,(b,B))=(q_1,(b,Y),(R,R))$   
 $\delta(q_1,(B,B))=(q_2,(B,B),(S,L))$   
 $\delta(q_2,(B,X))=(q_2,(B,Z),(S,L))$   
 $\delta(q_2,(B,Y))=(q_2,(B,Z),(S,L))$   
 $\delta(q_2,(B,B))=(q_3,(B,B),(S,S))$ 



$$\delta(q_1,(a,B))=(q_1,(a,X),(R,R))$$
  
 $\delta(q_1,(b,B))=(q_1,(b,Y),(R,R))$   
 $\delta(q_1,(B,B))=(q_2,(B,B),(S,L))$   
 $\delta(q_2,(B,X))=(q_2,(B,Z),(S,L))$   
 $\delta(q_2,(B,Y))=(q_2,(B,Z),(S,L))$   
 $\delta(q_2,(B,B))=(q_3,(B,B),(S,S))$ 



Muestre el cómputo sobre la siguiente MT multicinta:

$$\delta(q_1,(a,B))=(q_1,(a,A),(R,R))$$
  
 $\delta(q_1,(b,B))=(q_1,(b,B),(S,L))$   
 $\delta(q_1,(b,A))=(q_1,(b,C),(R,L))$   
 $\delta(q_1,(B,A))=(q_1,(B,C),(S,L))$   
 $\delta(q_1,(B,B))=(q_2,(B,B),(S,S))$ 



$$\delta(q_1,(a,B))=(q_1,(a,A),(R,R))$$
  
 $\delta(q_1,(b,B))=(q_1,(b,B),(S,L))$   
 $\delta(q_1,(b,A))=(q_1,(b,C),(R,L))$   
 $\delta(q_1,(B,A))=(q_1,(B,C),(S,L))$   
 $\delta(q_1,(B,B))=(q_2,(B,B),(S,S))$ 



MT multicinta que acepte a<sup>n</sup>b<sup>n</sup>, n≥1

## MT multicinta que acepte a<sup>n</sup>b<sup>n</sup>, n≥1

**Idea**: por cada a en la cinta<sub>1</sub> se escribe una a en la cinta<sub>2</sub>. Cuando se llegue a la primera b, se seguirá desplazando hacia la derecha en la cinta<sub>1</sub> y hacia la izquierda la cinta<sub>2</sub>. Solamente se avanza si hay una b en la cinta<sub>1</sub> y una a en la cinta<sub>2</sub>. Cuando en ambas cintas se llegue al símbolo en blanco, se acepta







$$\delta(q_1,(\alpha,B))=?$$



$$\delta(q_1,(a,B))=(q_1,(a,a),(R,R))$$



$$\delta(q_1,(b,B))=?$$



$$\delta(q_1,(b,B))=(q_2,(b,B),(S,L))$$



$$\delta(q_2,(b,a))=?$$
  
 $\delta(q_2,(B,B))=?$ 



$$\delta(q_2,(b,a))=(q_2,(b,a),(R,L))$$
  
 $\delta(q_2,(B,B))=(q_3,(B,B),(S,S))$ 

q<sub>3</sub> es un estado de aceptación

#### MT multicinta que acepte a<sup>n</sup>b<sup>n</sup>, n≥1

$$\delta(q_1,(a,B))=(q_1,(a,a),(R,R))$$
  
 $\delta(q_1,(b,B))=(q_2,(b,B),(S,L))$   
 $\delta(q_2,(b,a))=(q_2,(b,a),(R,L))$   
 $\delta(q_2,(B,B))=(q_3,(B,B),(S,S))$ 

q<sub>3</sub> es un estado de aceptación

MT multicinta que acepte a<sup>n</sup>b<sup>n</sup>c<sup>n</sup>, n≥1

#### MT multicinta que acepte a<sup>n</sup>b<sup>n</sup>c<sup>n</sup>, n≥1

**Idea**: por cada a en la cinta<sub>1</sub> se escribe una a en la cinta<sub>2</sub>. Cuando se llegue a la primera b, se desplaza hacia la derecha en la cinta<sub>1</sub> y hacia la izquierda en la cinta<sub>2</sub>. Solamente se avanza si hay una b en la cinta<sub>1</sub> y una a en la cinta<sub>2</sub>. Cuando se llegue a la primera c se avanza hacia la derecha en ambas cintas hasta que se llegue a un símbolo en blanco













$$\delta(q_1,(\alpha,B))=?$$



$$\delta(q_1,(a,B))=(q_1,(a,a),(R,R))$$



$$\delta(q_1,(b,B))=?$$



$$\delta(q_1,(b,B))=(q_2,(b,B),(S,L))$$



$$\delta(q_2,(b,a))=?$$



$$\delta(q_2,(b,a))=(q_2,(b,a),(R,L))$$



$$\delta(q_2,(c,B))=?$$



$$\delta(q_2,(c,B))=(q_3,(c,B),(S,R))$$



$$\delta(q_3,(c,a))=?$$



$$\delta(q_3,(c,a))=(q_3,(c,a),(R,R))$$



$$\delta(q_3,(B,B))=?$$



$$\delta(q_3,(B,B))=(q_4,(B,B),(S,S))$$

#### MT multicinta que acepte a<sup>n</sup>b<sup>n</sup>c<sup>n</sup>, n≥1

$$\delta(q_1,(a,B))=(q_1,(a,a),(R,R))$$
  
 $\delta(q_1,(b,B))=(q_2,(b,B),(S,L))$   
 $\delta(q_2,(b,a))=(q_2,(b,a),(R,L))$   
 $\delta(q_2,(c,B))=(q_3,(c,B),(S,R))$   
 $\delta(q_3,(c,a))=(q_3,(c,a),(R,R))$   
 $\delta(q_3,(B,B))=(q_4,(B,B),(S,S))$ 

q<sub>4</sub> es un estado de aceptación

MT multicinta que acepte a<sup>n</sup>b<sup>2n</sup>, n≥1

#### MT multicinta que acepte a<sup>n</sup>b<sup>2n</sup>, n≥1

**Idea**: por cada a en la cinta<sub>1</sub> se escribe una a en la cinta<sub>2</sub>, se deja estacionaría la cabeza<sub>1</sub> y se escribe otra a en la cinta<sub>2</sub>. Cuando se lean b's se avanza hacia la derecha en la cinta<sub>1</sub> y hacia la izquierda en la cinta<sub>2</sub>



$$\delta(q_1,(a,B))=(q_2,(a,a),(S,R))$$
  
 $\delta(q_1,(b,B))=(q_3,(b,B),(S,L))$   
 $\delta(q_2,(a,B))=(q_1,(a,a),(R,R))$   
 $\delta(q_3,(b,a))=(q_3,(b,a),(R,L))$   
 $\delta(q_3,(B,B))=(q_4,(B,B),(S,S))$ 

q<sub>4</sub> es un estado de aceptación

MT multicinta que acepte L={wcw¹ | w∈{a,b}\* }

MT multicinta que acepte L={wcw | w∈{a,b}\* }

#### Modificaciones de las máquinas de Turing

- · Máquina de Turing multicinta
- Máquina de Turing multipista

#### Máquina multipista

• La cinta está dividida en un número finito k de pistas sobre cada una de las cuales se pueden leer o escribir símbolos

#### Máquina de Turing



Se tiene una cinta con una sola pista

#### Máquina de Turing multipista



Se tiene una cinta que está dividida en dos pistas

#### MT como calculadora de funciones

Como las máquinas de Turing pueden transformar las cadenas de entrada, se pueden utilizar como mecanismos para calcular funciones

#### MT como calculadora de funciones

 Diseñar una máquina de Turing que represente la función suma f(n,m)=n+m

#### MT como calculadora de funciones

• Se coloca en la cinta la cadena a<sup>m</sup>ba<sup>n</sup>, indicando que se quiere sumar m+n



#### MT como calculadora de funciones

• La máquina de Turing debe transformar la cinta de entrada en la cadena a<sup>m+n</sup>b



a<sup>5</sup>b indica que es resultado es 5

#### MT como calculadora de funciones

- Cada entero n se representa como a<sup>n</sup>
- La función suma se define mediante la siguiente transformación:

 $a^nba^m=a^{n+m}b$ 

por ejemplo, si la entrada es a<sup>3</sup>ba<sup>2</sup>, la salida de la máquina será a<sup>5</sup>b. El símbolo b se utiliza como **punto de referencia** para separar los dos números

MT que acepte la transformación a<sup>n</sup>ba<sup>m</sup> en a<sup>n+m</sup>b, m,n≥1

MT que acepte la transformación a<sup>n</sup>ba<sup>m</sup> en a<sup>n+m</sup>b, m,n≥1

Idea: se desplaza por la cadena, una vez llega a la b, se reemplaza por una a. Se llega hasta el final de la cadena y se reemplaza la a que está al final por una b



#### Máquina de Turing multipista



Se tiene una cinta que está dividida en dos pistas

#### Máquina de Turing multipista





#### Máquina de Turing multipista





¿En dónde se escribe la salida?

#### Máquina de Turing multipista









$$\delta(q_1,(1,0,B))=(q_1,(1,0,B),R)$$
  
 $\delta(q_1,(0,1,B))=(q_1,(0,1,B),R)$   
 $\delta(q_1,(0,0,B))=(q_1,(0,0,B),R)$   
 $\delta(q_1,(1,1,B))=(q_1,(1,1,B),R)$   
 $\delta(q_1,(B,B,B))=(q_2,(B,B,B),L)$ 



$$\delta(q_1,(1,0,B))=(q_1,(1,0,B),R)$$
  
 $\delta(q_1,(0,1,B))=(q_1,(0,1,B),R)$   
 $\delta(q_1,(0,0,B))=(q_1,(0,0,B),R)$   
 $\delta(q_1,(1,1,B))=(q_1,(1,1,B),R)$   
 $\delta(q_1,(B,B,B))=(q_2,(B,B,B),L)$ 



$$\delta(q_{i},(1,0,B))=?$$



$$\delta(q_j,(1,0,B))=(q_j,(1,0,1),L)$$



$$\delta(q_{i},(0,1,B))=?$$



$$\delta(q_j,(0,1,B))=(q_j,(0,1,1),L)$$



$$\delta(q_{i},(1,1,B))=?$$



$$\delta(q_j,(1,1,B))=(q_k,(1,1,0),L)$$

MT multipista que genera en la pista<sub>3</sub> la suma de los números binarios contenidos en la pista<sub>1</sub> y la pista<sub>2</sub>



q<sub>k</sub> representa un estado donde hay acarreo



$$\delta(q_{K},(0,0,B))=?$$



$$\delta(q_K,(0,0,B))=(q_j,(0,0,1),L)$$

MT multipista que genera en la pista<sub>3</sub> la suma de los números binarios contenidos en la pista<sub>1</sub> y la pista<sub>2</sub>



$$\delta(q_K,(0,0,B)) = (q_j,(0,0,1),L)$$

qi indica que ahora no hay acarreo

MT multipista que genera en la pista<sub>3</sub> la suma de los números binarios contenidos en la pista<sub>1</sub> y la pista<sub>2</sub>



q<sub>j</sub> es un estado donde no hay acarreo q<sub>k</sub> es un estado donde hay acarreo

MT multipista que genera en la pista<sub>3</sub> la suma de los números binarios contenidos en la pista<sub>1</sub> y la pista<sub>2</sub>



 $q_j$  es un estado donde no hay acarreo  $q_k$  es un estado donde hay acarreo

$$\delta(q_{j},(0,0,B))=?$$
  
 $\delta(q_{j},(1,0,B))=?$   
 $\delta(q_{j},(0,1,B))=?$   
 $\delta(q_{j},(1,1,B))=?$ 

MT multipista que genera en la pista<sub>3</sub> la suma de los números binarios contenidos en la pista<sub>1</sub> y la pista<sub>2</sub>



q<sub>j</sub> es un estado donde no hay acarreo q<sub>k</sub> es un estado donde hay acarreo

$$\delta(q_{j},(0,0,B))=(q_{j},(0,0,0),L)$$
  
 $\delta(q_{j},(1,0,B))=(q_{j},(1,0,1),L)$   
 $\delta(q_{j},(0,1,B))=(q_{j},(0,1,1),L)$   
 $\delta(q_{j},(1,1,B))=(q_{k},(1,1,0),L)$ 

MT multipista que genera en la pista<sub>3</sub> la suma de los números binarios contenidos en la pista<sub>1</sub> y la pista<sub>2</sub>



 $q_j$  es un estado donde no hay acarreo  $q_k$  es un estado donde hay acarreo

$$\delta(q_k,(0,0,B)) = ?$$
  
 $\delta(q_k,(1,0,B)) = ?$   
 $\delta(q_k,(0,1,B)) = ?$   
 $\delta(q_k,(1,1,B)) = ?$ 

MT multipista que genera en la pista<sub>3</sub> la suma de los números binarios contenidos en la pista<sub>1</sub> y la pista<sub>2</sub>



q<sub>j</sub> es un estado donde no hay acarreo q<sub>k</sub> es un estado donde hay acarreo

$$\delta(q_k,(0,0,B))=(q_j,(0,0,1),L)$$
  
 $\delta(q_k,(1,0,B))=(q_k,(1,0,0),L)$   
 $\delta(q_k,(0,1,B))=(q_k,(0,1,0),L)$   
 $\delta(q_k,(1,1,B))=(q_k,(1,1,1),L)$ 

MT multipista que genera en la pista<sub>3</sub> la suma de los números binarios contenidos en la pista<sub>1</sub> y la pista<sub>2</sub>

$$\delta(q_1,\sigma)=(q_1,\sigma,R)$$
, si  $\sigma\neq(B,B,B)$   
 $\delta(q_1,\sigma)=(q_2,\sigma,L)$ , si  $\sigma=(B,B,B)$ 

$$\delta(q_2,(0,0,B)) = (q_2,(0,0,0),L)$$

$$\delta(q_3,(0,0,B)) = (q_2,(0,0,1),L)$$

$$\delta(q_2,(0,1,B)) = (q_2,(0,1,1),L)$$

$$\delta(q_2,(1,0,B)) = (q_2,(1,0,1),L)$$

$$\delta(q_2,(1,0,B)) = (q_2,(1,0,1),L)$$

$$\delta(q_2,(1,1,B)) = (q_3,(1,1,0),L)$$

$$\delta(q_3,(1,0,B)) = (q_2,(1,0,0),L)$$

$$\delta(q_3,(1,1,B)) = (q_3,(1,1,1),L)$$

$$\delta(q_3,(1,0,B)) = (q_4,(1,0,B),L)$$

$$\delta(q_3,(1,0,B),L) = (q_4,(1,0,B),L)$$

 $q_2$ , es el estado sin acarreo  $q_3$ , es el estado con acarreo  $q_4$ , es el estado de aceptación

Considere la siguiente MT multipista:

$$\delta(q_1,(a,a,B))=(q_1,(x,x,a),R)$$
  
 $\delta(q_1,(b,b,B))=(q_1,(y,y,b),R)$   
 $\delta(q_1,(a,b,B))=(q_1,(x,y,a),R)$   
 $\delta(q_1,(b,a,B))=(q_1,(y,a,b),R)$   
 $\delta(q_1,(B,B,B))=(q_2,(B,B,B),S)$ 

| В | а     | а | Ь | Ь | В |
|---|-------|---|---|---|---|
| В | b     | Ь | a | a | В |
| В | B     | В | В | В | В |
|   |       |   |   |   |   |
|   | $q_1$ |   |   |   |   |

Considere la siguiente MT multipista:

$$\delta(q_1,(a,a,B))=(q_1,(x,x,a),R)$$
  
 $\delta(q_1,(b,b,B))=(q_1,(y,y,b),R)$   
 $\delta(q_1,(a,b,B))=(q_1,(x,y,a),R)$   
 $\delta(q_1,(b,a,B))=(q_1,(y,a,b),R)$   
 $\delta(q_1,(B,B,B))=(q_2,(B,B,B),S)$ 

| В | X | × | У | У | В                     |
|---|---|---|---|---|-----------------------|
| В | Y | У | ۵ | α | В                     |
| В | а | а | Ь | b | B                     |
|   |   |   |   |   |                       |
|   |   |   |   |   | <b>q</b> <sub>2</sub> |

Considere la siguiente MT multipista:

$$\delta(q_1,(a,a,B))=(q_1,(x,x,a),R)$$
  
 $\delta(q_1,(b,b,B))=(q_1,(y,y,b),R)$   
 $\delta(q_1,(a,b,B))=(q_1,(x,y,a),R)$   
 $\delta(q_1,(b,a,B))=(q_1,(y,a,b),R)$   
 $\delta(q_1,(B,B,B))=(q_2,(B,B,B),S)$ 

| В | а     | Ь | Ь | а | В |
|---|-------|---|---|---|---|
| В | а     | Ь | α | Ь | В |
| В | ₿     | В | В | В | В |
|   |       |   |   |   |   |
|   | $q_1$ |   |   |   |   |

Considere la siguiente MT multipista:

$$\delta(q_1,(a,a,B))=(q_1,(x,x,a),R)$$
  
 $\delta(q_1,(b,b,B))=(q_1,(y,y,b),R)$   
 $\delta(q_1,(a,b,B))=(q_1,(x,y,a),R)$   
 $\delta(q_1,(b,a,B))=(q_1,(y,a,b),R)$   
 $\delta(q_1,(B,B,B))=(q_2,(B,B,B),S)$ 

| В | X | У | У | X | В                     |
|---|---|---|---|---|-----------------------|
| В | X | Y | a | У | В                     |
| В | а | Р | b | а | Ŗ                     |
|   |   |   |   |   |                       |
|   |   |   |   |   | <b>q</b> <sub>2</sub> |

#### Máquina de Turing universal Mu

• Una máquina de Turing universal  $M_u$  tiene como entrada una máquina de Turing M y una cadena w, y simula el comportamiento de w en M







```
public String esPar(int arg){
  if (arg%2==0)
    return "YES";
  else
    return "NO";
}
```





```
public void simular(Programa p, int arg){
   String linea=p.readline();
   if (p.equals("if"))
   ...
}
```

#### Máquina de Turing universal Mu



#### Máquina de Turing universal Mu



En la cinta de entrada de M<sub>u</sub> va a estar otra **máquina** y una **cadena w** 

Como la entrada M se debe colocar en una máquina de Turing M', es decir, en la cinta de M', se debe tener una forma de representar cualquier máquina dada, para esto se utiliza una codificación

#### Codificación de una máquina de Turing

• Se transforma M en una máquina que tenga un sólo estado de aceptación, para esto, se crea un transición entre cada estado de aceptación **p** y un nuevo estado **p'** 

#### Codificación de una máquina de Turing

• Cada **estado** de  $Q=\{q_1,q_2,...,q_n\}$  se codifica por medio de 1's así:

$$q_1=1, q_2=11, q_3=111, \ldots, q_n=11..1$$
 con n unos

donde  $q_1$  es el estado inicial y  $q_2$  es el único estado de aceptación

#### Codificación de una máquina de Turing

• Cada **símbolo** de la máquina  $\Gamma$ ={ $\sigma_1$ ,  $\sigma_2$ ,...,  $\sigma_m$ } se codifica por medio de 1's así:

$$\sigma_1$$
=1,  $\sigma_2$ =11,  $\sigma_3$ =111, . . . ,  $\sigma_n$ =11..1 con n unos

donde  $\sigma_1$  es el símbolo en blanco

#### Codificación de una máquina de Turing

•  $\Gamma$ ={B,a,b,X,Y} se codifica por medio de 1's así:

#### Codificación de una máquina de Turing

· Para indicar la dirección de la cabeza se tiene:

#### Codificación de una máquina de Turing

- Se codifican las transiciones. Cada elemento que define una transición se separa por un O
- Así mismo, el O se utiliza para hacer la separación entre una transición y otra

#### Codificación de una máquina de Turing

- Se codifican las transiciones. Cada elemento que define una transición se separa por un 0
- Así mismo, el O se utiliza para hacer la separación entre una transición y otra
- Si Q= $\{q_1,q_2,q_3,q_4\}$  y  $\Gamma$ = $\{B,a,b,c\}$ , la transición  $\delta(q_3,a)$ = $(q_4,c,L)$  se codifica como:

#### Codificación de una máquina de Turing

- Se codifican las transiciones. Cada elemento que define una transición se separa por un 0
- Así mismo, el O se utiliza para hacer la separación entre una transición y otra
- Si Q= $\{q_1,q_2,q_3,q_4\}$  y  $\Gamma$ = $\{B,a,b,c\}$ , la transición  $\delta(q_3,a)$ = $(q_4,c,L)$  se codifica como:

111011011110111101

#### Codificación de una máquina de Turing

• Si Q= $\{q_1,q_2\}$  y  $\Gamma$ = $\{B,a\}$ , codifique la máquina con las siguientes dos transiciones:

$$\delta(q_1,\alpha)=(q_1,\alpha,R)$$

$$\delta(q_1,B)=(q_2,B,L)$$

#### Codificación de una máquina de Turing

• Si Q= $\{q_1,q_2\}$  y  $\Gamma$ = $\{B,a\}$ , codifique la máquina con las siguientes dos transiciones:

$$\delta(q_1,a)=(q_1,a,R)$$

$$\delta(q_1,B)=(q_2,B,L)$$

#### Codificar la siguiente MT:

Q=
$$\{q_1,q_2,q_3\}$$
  
 $\Gamma$ = $\{B,a,b\}$   
D= $\{L,R,S\}$ 



Q=
$$\{q_1,q_2,q_3\}$$
  
 $\Gamma$ = $\{B,a,b\}$   
 $\delta(q_1,a)$ = $(q_1,a,R)$   
 $\delta(q_1,b)$ = $(q_3,b,R)$ 

 $\delta(q_3,B)=(q_2,B,S)$ 





Siendo  $\Gamma$ ={B,a,b}, decodificar la siguiente MT:

- Muestre el diagrama de transición

101101011011010111010111010101010101

$$Q=\{q_1,q_2\}$$

$$\Gamma$$
={B,a}

$$\delta(q_1,\alpha)=(q_1,\alpha,R)$$

$$\delta(q_1,b)=(q_1,b,R)$$

$$\delta(q_1,B)=(q_2,B,L)$$



101101011011010111010111010101010101

#### Máquina de Turing universal Mu

• Una máquina de Turing universal  $M_u$  tiene como entrada una máquina de Turing M y una cadena w, y simula el comportamiento de w en M



#### Máquina de Turing universal Mu

• Una máquina de Turing universal  $M_u$  tiene como entrada una máquina de Turing M y una cadena w, y simula el comportamiento de w en M





#### 





#### 10110101101101010110101



Se quiere conocer el estado final del cómputo



#### 10110101101101010110101



• La salida también está codificada y corresponde a uno de los estados  $Q = \{q_1,q_2,...,q_n\}$  si la máquina **termina** 

$$\delta(q_1,a)=(q_2,a,R)$$
  
 $\delta(q_1,b)=(q_1,b,R)$   
 $\delta(q_2,a)=(q_1,a,L)$   
 $\delta(q_2,B)=(q_3,B,L)$ 



$$\delta(q_1, a) = (q_2, a, R)$$
  
 $\delta(q_1, b) = (q_1, b, R)$   
 $\delta(q_2, a) = (q_1, a, L)$   
 $\delta(q_2, B) = (q_3, B, L)$ 



• La máquina de Turing universal se queda en un bucle infinito

#### Máquina de Turing universal Mu

M<sub>11</sub> tiene 3 cintas:

- En la cinta<sub>1</sub> se coloca la codificación de M
- En la cinta, se coloca la codificación de w
- En la cinta $_3$  se mantiene la codificación del **estado** actual de la máquina. Inicialmente será 1, que corresponde a  $q_1$

#### Máquina de Turing universal Mu



#### Máquina de Turing universal Mu

- Dado el estado en la cinta $_3$  y la cadena en la cinta $_2$  se busca la transición en la cinta $_1$  y se verifica que se genere la cadena en la cinta $_2$
- Si no se encuentra una transición que permita generar la cadena correspondiente,  $M_u$  parará, como debería hacer  $M_v$ , en otro caso,  $M_u$  se comporta como lo haría  $M_v$



 $\dot{c}$ Qué tipos de salida se pueden obtener en una  $M_u$ ?



$$\delta(q_1,a) = (q_2,a,R)$$

$$\delta(q_1,b) = (q_1,b,R)$$

$$\delta(q_2,a) = (q_1,a,L)$$

$$\delta(q_2,B) = (q_3,B,L)$$

$$Adding de Turing universal$$

$$B b a B$$

$$q_1$$

$$Se acepta w=ba$$













Para una entrada w, en la simulación puede ocurrir:

- · La máquina se detenga y w se acepte
- · La máquina se detenga y w se rechace
- · La máquina no se detenga, se quede en un bucle infinito

# Las máquinas de Turing originan las siguientes clases de lenguajes:

- Lenguajes recursivamente enumerables (LRE)
- Lenguajes recursivos (LR)

# Las máquinas de Turing originan las siguientes clases de lenguajes:

Lenguajes recursivamente enumerables (LRE)

Lenguajes recursivos (LR)

La máquina se detiene para cualquier w La máquina puede no detenerse para alguna entrada w

# Las máquinas de Turing originan las siguientes clases de lenguajes:

Lenguajes recursivamente enumerables (LRE)

Lenguajes recursivos (LR)

La máquina se detiene para cualquier w (así pertenezca, o no, al lenguaje)

La máquina puede no detenerse para alguna entrada w (w que no pertenece al lenguaje)

#### Lenguaje recursivamente enumerable

Sea M una máquina de Turing, L(M) es LRE si:

- ∀w∈L, M se detiene en q∈F
- ∀w∉L, M se detiene en q∉F o puede no parar



$$\delta(q_1, a) = (q_2, a, R)$$
  
 $\delta(q_1, b) = (q_1, b, R)$   
 $\delta(q_2, a) = (q_1, a, L)$   
 $\delta(q_2, B) = (q_3, B, L)$ 

La máquina no se detiene para la entrada **aabb** 



Por lo tanto, el lenguaje generado por la máquina es recursivamente enumerable

#### Lenguaje recursivo

Sea M una máquina de Turing, L(M) es recursivo si:

- ∀w∈L, M se detiene en q∈F
- ∀w∉L, M se detiene en q∉F



# Las máquinas de Turing originan las siguientes clases de lenguajes:

Lenguajes recursivamente enumerables (LRE)

Lenguajes recursivos (LR)

La máquina se detiene para cualquier w (así pertenezca, o no, al lenguaje)

La máquina puede no detenerse para alguna entrada w (w que no pertenece al lenguaje)

¿Entre LRE y LR, cuál conjunto es más grande?











a\*b\*, ¿qué es lo mejor que se puede hacer?



Se puede construir una MT que se detiene en todos los casos, entonces a\*b\* es un lenguaje recursivo



a<sup>n</sup>b<sup>n</sup>, ¿qué es lo mejor que se puede hacer?



Se puede construir una MT que se detiene en todos los casos, entonces anbn es un lenguaje recursivo



Máquina de Turing universal Mu, ¿qué es lo mejor que se puede hacer?



Lo mejor que se puede hacer es una MT que no se detiene en algunos casos.

 $L_u = \{MOw \mid M \text{ acepta } w \in \Sigma^*\}$ 

- Dado un <u>autómata finito</u>  $M=(Q,\Sigma,s,F,\delta)$  se puede construir una MT  $M'=(Q',\Sigma',\Gamma,s',B,F',\delta')$  tal que L(M)=L(M').
- M' se detiene ante cualquier entrada w

Por lo tanto, todo lenguaje regular es recursivo porque se puede construir una MT que acepta cualquier palabra de L(M) y siempre para

- Dado un <u>autómata de pila</u> M se puede construir una MT  $M'=(Q',\Sigma',\Gamma,s',B,F',\delta')$  tal que L(M)=L(M').
- · M' se detiene ante cualquier cadena w
- Por lo tanto, todo lenguaje independiente del contexto es recursivo porque se puede construir una MT que acepta cualquier palabra de L(M) y siempre para

Los lenguajes regulares y los independientes del contexto son recursivos, es decir, se puede construir una máquina de Turing que se detenga para cualquier entrada w



Los lenguajes regulares y los independientes del contexto son recursivos, es decir, se puede construir una máquina de Turing que se detenga para cualquier entrada w



¿Hay lenguajes recursivos acá, es decir, ni regulares ni independientes del contexto?

Hay lenguajes recursivos que no son ni regulares ni LIC

Hay lenguajes recursivos que no son ni regulares ni LIC, por ejemplo, a<sup>n</sup>b<sup>n</sup>c<sup>n</sup>

Se puede construir una MT que se detiene en todos los casos y además anbncn no es regular ni LIC









Hay lenguajes recursivamente enumerables que no son recursivos

Hay lenguajes recursivamente enumerables que no son recursivos

 $L_u = \{MOw \mid M \text{ acepta una cadena } w \in \Sigma^*\}$ 

Hay lenguajes recursivamente enumerables que no son recursivos

 $L_u = \{MOw \mid M \text{ acepta una cadena } w \in \Sigma^*\}$ 

- MOw es recursivamente enumerable porque si M no se detiene, MOw tampoco
- No es posible construir una MT que se detenga en todos los casos, por lo tanto es LRE







Hay lenguajes que no son recursivamente enumerables

Hay lenguajes que no son recursivamente enumerables

En los LRE la máquina puede que no se detenga en cadenas que no pertenecen al lenguaje.

Hay lenguajes en los que no se puede hacer ni siquiera esto

Hay lenguajes que no son recursivamente enumerables

En los LRE la máquina puede que no se detenga en cadenas que no pertenecen al lenguaje Hay lenguajes en los que en cadenas que si pertenecen al lenguaje, la MT no se detiene. En ese caso se dice que no se puede construir una máquina

Hay lenguajes que no son recursivamente enumerables  $L_d=\{w\mid w \text{ no es aceptada por una máquina }M_d\}$ 

Hay lenguajes que no son recursivamente enumerables  $L_d=\{w\mid w \text{ no es aceptada por una máquina }M_d\}$ 

 $M_d$  es la máquina que acepta  $a^nb^n$   $L_d$ ={aab, abb, aaabb, aab, b, bab, bbba, ...}

MT que acepte L= $\{a^nb^n, n\geq 1\}$ 





Hay lenguajes que no son recursivamente enumerables  $L_d=\{w\mid w \text{ no es aceptada por una máquina }M_d\}$ 

 $M_d$  es la máquina que acepta  $a^nb^n$   $L_d$ ={aab, abb, aaabb, aab, b, bab, bbba, ...}

En general no es posible construir una máquina que acepte L<sub>d</sub>

Hay lenguajes que no son recursivamente enumerables  $L_d=\{w\mid w \text{ no es aceptada por una máquina }M_d\}$ 

M<sub>d</sub> es la siguiente máquina:



$$\delta(q_1,a)=(q_2,a,R)$$
  
 $\delta(q_1,b)=(q_1,b,R)$   
 $\delta(q_2,a)=(q_1,a,L)$   
 $\delta(q_2,b)=(q_1,b,L)$ 











Se acepta w=bba











Se rechaza w=bbbb









- · La MT no se detiene
- aabb no se acepta por la MT



Hay lenguajes que no son recursivamente enumerables  $L_d=\{w\mid w \text{ no es aceptada por una máquina }M_d\}$ 

M<sub>d</sub> es la siguiente máquina:

L<sub>d</sub>={bbbb,aabb,....}

Hay lenguajes que no son recursivamente enumerables  $L_d=\{w\mid w \text{ no es aceptada por una máquina }M_d\}$ 

- $\bullet$   $L_d$  tiene las palabras que no acepta una máquina dada  $M_d$
- Como algunas de esas palabras son las que pueden quedar en un ciclo, no es posible hacer una MT que las reconozca



 $L_d = \{w_i | w_i \text{ no es aceptada por } M_i\}$