CTRP - A Toy Example

1 Data

Considering f=5 predictors and B=10 permutations, we simulate a $B\times f$ matrix of global test statistics:

		${f G}$		
(1)	(2)	(3)	(4)	(5)
28.42	9.36	9.40	16.68	6.12
0.10	1.37	0.56	0.06	0.08
0.69	4.33	0.36	3.07	0.83
1.07	1.11	0.26	30.31	8.55
0.22	2.87	1.02	7.45	0.48
1.83	2.85	0.02	0.04	0.04
17.68	6.00	1.06	1.82	1.52
1.77	0.29	4.07	26.12	0.26
2.71	8.47	4.42	0.37	5.83
1.14	24.06	2.41	0.03	8.84

Assume that we want to test $S = \{3\}$ with significance level $\alpha = 0.20$.

2 Shortcut

Table 1: Supersets of $S = \{3\}$, having sizes |V| = 1 + v with v = 0, ..., 4. The sets in bold are used to define the lower critical value L_v .

We define

- **D**, matrix of the centered test statistics in $F \setminus S$, where the indices appear in the order (5, 2, 4, 1) (since $g_5 \leq g_2 \leq g_4 \leq g_1$);
- R, matrix obtained from **D** by sorting the elements within each row in decreasing order.

\mathbf{d}_S	D			${f R}$				
(3)	(5)	(2)	(4)	(1)				
0.00	0.00	0.00	0.00	0.00	0.00 (1)	0.00 (4)	0.00(2)	0.00(5)
-8.84	-6.03	-7.99	-16.62	-28.32	-6.03(5)	-7.99(2)	-16.62(4)	-28.32(1)
-9.04	-5.29	-5.02	-13.61	-27.72	-5.02(2)	-5.29(5)	-13.61(4)	-27.72(1)
-9.14	2.43	-8.25	13.63	-27.34	13.63(4)	2.43(5)	-8.25(2)	-27.34(1)
-8.38	-5.63	-6.49	-9.23	-28.19	-5.63(5)	-6.49(2)	-9.23(4)	-28.19(1)
-9.38	-6.08	-6.51	-16.64	-26.59	-6.08(5)	-6.51(2)	-16.64 (4)	-26.59(1)
-8.34	-4.59	-3.36	-14.86	-10.74	-3.36(2)	-4.59(5)	-10.74(1)	-14.86(4)
-5.33	-5.85	-9.07	9.44	-26.65	9.44(4)	-5.85(5)	-9.07(2)	-26.65(1)
-4.98	-0.28	-0.89	-16.31	-25.71	-0.28(5)	-0.89(2)	-16.31(4)	-25.71(1)
-6.99	2.72	14.70	-16.65	-27.27	14.70(2)	2.72(5)	-16.65(4)	-27.27(1)

The lower and upper critical values, L_v and U_v , are the 8-th ordered statistics of

$$\mathbf{d}_{\tilde{V}} = \mathbf{d}_3 + \sum_{i=1}^{v} \mathbf{D}_i$$
 $\mathbf{u}_v = \mathbf{d}_3 + \sum_{i=1}^{v} \mathbf{R}_i$.

Since the first column of **R** having no positive elements has index w = 3, we start by computing L_v for v = 0, 1, 2.

No non-rejection is found, and thus we proceed by examining v > 2, until we find either a rejection or a negative U_v . Here U_v becomes negative for v = 3, hence the supersets with v = 3, 4 are automatically rejected.

Finally, we determine the indecisive values by looking at U_v . Here they are v=1,2.

Figure 1: Upper (red) and lower (blue) critical values and observed values (zero, black) by additional superset size v. The bounds for v = 4 have not been computed in the analysis.

\overline{v}	0	1	2	3	4
					(-33.49) (-33.49)
rej	Т	?	?	Т	Т

3 Branch and Bound

3.1 Removal of the highest statistic.

The last index in \mathbf{D} , e = 1, determines the branching rule. We explore first the subspace \mathbb{S}_{-1} , where the index is removed.

Since the outcome is still indecisive for both sizes v = 1, 2, the subspace is partitioned again according to the inclusion of e = 4 (corresponding to the second highest statistic g_i).

Since S is not rejected in $\mathbb{S}_{-1,+4}$, it is not rejected in the total spece after 3 steps.

3.2 Keeping of the lowest statistic.

The first index in \mathbf{D} , e = 5, determines the branching rule. We explore first the subspace \mathbb{S}_{+5} , where the index is kept.

After 3 steps, S is rejected in the subspace \mathbb{S}_{+5} . Subsequently, after 3 other steps, it is not rejected in \mathbb{S}_{-5} . In conclusion, it is not rejected after 6 steps.

3.3 Removal of the lowest statistic.

The first index in \mathbf{D} , e=5, determines the branching rule. We explore first the subspace \mathbb{S}_{-5} , where the index is removed.

S is not rejected after 2 steps, where the subspaces \mathbb{S}_{-5} and $\mathbb{S}_{-5,-2}$ are explored.

