La cryptographie Moderne (suite)

Les modes de chiffrement

- □ Comment traiter les informations d'un fichier par exemple ?
- □ Chiffrement par blocs
 - Carnet de codage électronique (ECB)
 - Chaînage de blocs (CBC)
- ☐ Chiffrement en continu
 - Chiffrement à rétroaction (CFB)
 - Chiffrement à rétroaction de sortie (OFB)

Carnet de codage électronique

- □ ElectronicCodeBook (ECB)
 - Chaque bloc est chiffré indépendamment des autres blocs
 - Deux blocs clairs identiques donnent deux blocs chiffrés identiques

$$M_i = M_j \Rightarrow C_i = C_j$$

suite

- □ Inconvénients :
 - la répétition dans le message clair entraine la répétition dans le message chiffré
 - Elaboration de carnets de codes avec les correspondances clair ⇔ chiffré
 - Un carnet de code bien rempli permet de se dispenser de la clé

Chaînage de blocs

- □ Cipher-Block Chaining (CBC)
 - Le dernier bloc chiffré est combiné (XOR) avec le bloc clair suivant

- □ Vecteur d'initialisation (IV)
 - Résout le problème du premier bloc

- ☐ La valeur est quelconque
 - C'est celle que l'on obtiendrait à la fin de déchiffrement, donc inutile
- ☐ Peut utiliser l'heure système
 - Deux messages clairs identiques produiront des messages chiffrés différents
- □ Il peut être public!
 - Si l'attaquant connaît IV, il lui reste à décrypter C₀ pour décrypter le reste, c'est-à-dire trouver la clé secrète (le problème reste entier)

☐ Formalisation du chiffrement

$$C_i = E_k(M_i \oplus C_{i-1})$$

$$C_0 = VI$$

□ Formalisation du déchiffrement

$$M_i = D_k(C_i) \oplus C_{i-1}$$
$$C_0 = VI$$

- □ Sécurité accrue par rapport à ECB
 - Recommandé pour le chiffrement de fichiers

Chiffrement à rétroaction

- □ Cipher FeedBack (CFB)
 - Le texte clair peut être vu comme un flux de bits (l à la fois ou n à la fois)
 - L'algorithme de chiffrement est utilisé pour générer les clés utilisées pour chiffrer le texte clair (par XOR)

□ Formalisation du chiffrement (où Ci et Pisont des blocs de n bits)

$$C_i = E_k(C_{i-1}) \oplus M_i$$
$$C_0 = VI$$

□ Formalisation du déchiffrement

$$M_i = E_k(C_{i-1}) \oplus C_i$$

$$C_0 = VI$$

- □ Le déchiffrement est identique au chiffrement ?
 - Normal, l'algorithme de chiffrement est le XOR!

Chiffrement à rétroaction de sortie

- □ Output-FeedBack (OFB)
 - Mode similaire à CFB
 - La sortie de E_k est directement utilisée comme entrée pour l'étape suivante
 - E_k est utilisée uniquement comme générateur de nombres aléatoires
 - Le germe est la clé secrète !
 - Le sécurité ne repose plus que sur le caractère aléatoire de l'algorithme

Les modes de chiffrement

- □ Quel mode choisir ?
 - Trois critères essentiels :
 - ➤ La sécurité
 - > L'efficacité (logiciel ou matériel)
 - ➤ La tolérance aux fautes
 - ECB est le plus facile, mais le moins sûr (à éviter)
 - CBC, CFB ou OFB peuvent convenir pour pratiquement toutes les applications
 - Il existe d'autres modes, mais plus exotiques

Advanced Encryption Standard (AES)

- ☐ Historique
- □ Caractéristiques d'AES
- lue Opérations dans \mathbb{F}_2^8
- □ L'algorithme

- □ Concours du NIST pour remplacer DES en 1997
- □ Caractéristiques exigées:
 - Chiffrement de blocs de 128 bits
 - Clés de 128, 192 ou 256 bits
 - Algorithme public et libre de droits

- □ 15 réponses
- □ Sélection achevée en 2000, après trois ans de soumissions et de discussions auprès de la communauté
- □ Le vainqueur : Rijndael (Rijmen et Daemen, Université catholique de Louvain, Belgique)
- □ Le NIST publie FIPS 197 en 2001

Caractéristiques d'AES

- ☐ Un message est traité par blocs de 128 bits
 - Soit 4 mots de 32 bits
 - Nb=4
- ☐ La clé est également traitée par mots de 32 bits
 - AES-128 : Nk=4
 - AES-192 : Nk=6
 - AES-256 : Nk=8

- □ Algorithme par rondes
- □ Le nombre de rondes dépend de la taille de la clé
 - AES-128 : Nr=10
 - AES-192 : Nr=12
 - **AES-256**: Nr=14

- ☐ La variable « state »:
 - Matrice 4 lignes x **Nb** octets
 - Initialisée avec le bloc d'entrée
 - Toutes les opérations de l'algorithme agissent sur l'état
- □ Utilise une représentation polynomiale des nombres binaires : Le corps fini GF(28)

GF(28): Définition

- □ $GF(2) = F_2$ = unique corps fini à 2 éléments = $\{0,1\}$ avec les opérations booléennes usuelles
- □ F₂[X] = ensemble des polynômes à coefficients dans F₂
- □ Soit P(X) un polynôme irréductible de degré 8 appartenant à F₂[X]
- \square Par définition, $GF(2^8) = F_2[X] / P$

GF(28): Exemple

- Prenons $P(X) = X^8 + X^4 + X^3 + X + 1$
- Éléments dans GF(28)
 - = polynômes réduits « modulo P »
 - = polynômes de degré < 8
- Exemple

$$a = X^6 + X^4 + X^2$$

Soient a et b dans GF(28)

$$a = X^6 + X^4 + X^2$$

 $b = X^2$

Addition :

$$a+b = (X^6 + X^4 + X^2) + (X^2) = X^6 + X^4$$

· Multiplication:

a x b =
$$(X^8 + X^6 + X^4)$$
 modulo $(X^8 + X^4 + X^3 + X + 1)$
a x b = $(X^6 + X^4) + X^4 + X^3 + X + 1$

GF(28): représentation

Chaque élément de GF(2⁸) est représenté
 b₇X⁷ + b₆X⁶ + ... + b₁X + b₀

- On le stocke sur l'octet représenté en binaire par (b₇,...,b₀)
- Représentation entre 0 et 255

$GF(2^8)$

☐ Un octet peut être vu comme un polynôme :

$$b_7b_6b_5b_4b_3b_2b_1b_0 = b_7x^7 + b_6x^6 + b_5x^5 + b_4x^4 + b_3x^3 + b_2x^2 + b_1x^1 + b_0x^0$$

□ Exemple :

$$01100011_2 = x^6 + x^5 + x + 1$$

□ L'addition et la multiplication sont définies mais sont différentes des opérateurs binaires habituels

- □ L'addition notée +
 - C'est un XOR sur les coefficients binaires
 - **Exemple**:

$$(x^6 + x^4 + x^2 + x + 1) + (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2$$

 $01010111_2 \oplus 10000011_2 = 11010100_2$

- ☐ La multiplication notée
 - C'est la multiplication des polynômes suivie d'une réduction par un polynôme irréductible pour ramener le polynôme résultat à un degré ≤ 7
 - Un polynôme irréductible est l'équivalent d'un nombre premier pour les entiers
 - Dans AES, le polynôme irréductible choisi m(x) est :

$$m(x)=x^8+x^4+x^3+x+1$$

□ Réduire un polynôme dans GF(28) correspond, pour les entiers, à calculer le reste d'une division entière

■ Exemple:

$$(x^{6} + x^{4} + x^{2} + x + 1) \cdot (x^{7} + x + 1)$$

$$= (x^{13} + x^{11} + x^{9} + x^{8} + x^{6} + x^{5} + x^{4} + x^{3} + 1)$$

- □ La réduction est une opération itérative consistant à éliminer successivement les coefficients > 7
 - Si le polynôme P(x) à réduire est de degré n
 - Multiplier m(x) par xⁿ⁻⁸ (le résultat sera un polynôme de degré n)
 - Additionner P(x) et $m(x) \bullet x^{n-8}$ (le xor annule x^n)

□ Exemple : éliminer x¹³

$$P(x) = x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$$

$$m(x) \cdot x^5 = x^{13} + x^9 + x^8 + x^6 + x^5$$

$$P(x) + m(x) \cdot x^5 = x^{11} + x^4 + x^3 + 1$$

- On recommence ces opérations pour éliminer x¹¹, etc.
 jusqu'à ce que l'on obtienne un polynôme de degré ≤
 7
- □ Exercice : réduire (Voir TD)

$$P(x)=x^{12}+x^9+x^5+1$$

 \square Cas particulier de la multiplication par x (=2₁₀)

Soit
$$b(x) = b_7 x^7 + b_6 x^6 + b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x^1 + b_0 x^0$$

 $b(x) \cdot x = b_7 x^8 + b_6 x^7 + b_5 x^6 + b_4 x^5 + b_3 x^4 + b_2 x^3 + b_1 x^2 + b_0 x^1$

- ☐ En binaire, c'est un décalage à gauche
- □ On ne réduit le résultat que si b₇= I
- En binaire

$$b(x) \bullet x = 1$$
 $b_6b_5b_4b_3b_2b_1b_00$ Toutes les opérations se $m(x) = 1$ 00011011 font au niveau de l'octet d'où $(b(x) \bullet x) \oplus m(x) \Leftrightarrow b_6b_5b_4b_3b_2b_1b_00 \oplus 00011011$

- □ Cette fonction s'appelle xtime(v)
 - Effectue un décalage de v puis un XOR avec Ibhex

- □ Multiplier deux nombres dans GF(28) revient à des appels successifs de xtime()
- □ Exemple : v•3
 - Dans GF(2⁸), 3 est représenté par x+1
 - Donc v●3=xtime(v)⊕v
- □ Exemple: v•4
 - Dans GF(28), 4 est représenté par x² ou encore x.x
 - Donc v•4=xtime(xtime(v))

Exemple

• $'57' \cdot '13' = ?(1)$

On utilise une représentation en hexadécimal pour alléger les calculs:

Donc (1) devient

$$(57' \cdot 01') \oplus (57' \cdot 02') \oplus (57' \cdot 10') = 57' \oplus AE' \oplus 07' = FE'$$

Vu que

$$57' \bullet 02' = xtime(57) = AE'$$

$$57' \bullet 04' = xtime(AE) = 47'$$

$$57' \bullet 08' = xtime(47) = 8E'$$

$$57' \bullet 10' = xtime(8E) = 07'$$

□ Un mot de 32 bits (4 octets) peut être vu comme un polynôme de degré 3 où les coefficients appartiennent à GF(28)

$$a(x) = a_3 x^3 + a_2 x^2 + a_1 x^1 + a_0 x^0$$
 où $a_0, a_1, a_2, a_3 \in GF(2^8)$
 a_3, a_2, a_1, a_0 sont les octets du mot de 32 bits

□ L'addition revient à additionner (donc XOR) les coefficients

$$a(x)+b(x)=(a_3 \cdot b_3)x^3+(a_2 \cdot b_2)x^2+(a_1 \cdot b_1)x^1+(a_0 \cdot b_0)x^0$$

- □ La multiplication revient à développer le produit des deux polynômes puis de réduire le résultat par un polynôme irréductible
- □ Dans AES, le polynôme (pas irréductible!) choisi pour cette opération est x⁴+ l
 - La réduction de xⁿ par x⁴+1 vaut x^(n mod 4)

 □ Dans AES, la multiplication suivie de la réduction par x⁴+1 est notée ⊗

$$a(x) \otimes b(x) = d(x) = d_3 x^3 + d_2 x^2 + d_1 x^1 + d_0 x^0 \text{ où}$$

$$d_0 = (a_0 \cdot b_0) \oplus (a_3 \cdot b_1) \oplus (a_2 \cdot b_2) \oplus (a_1 \cdot b_3)$$

$$d_1 = (a_1 \cdot b_0) \oplus (a_0 \cdot b_1) \oplus (a_3 \cdot b_2) \oplus (a_2 \cdot b_3)$$

$$d_2 = (a_2 \cdot b_0) \oplus (a_1 \cdot b_1) \oplus (a_0 \cdot b_2) \oplus (a_3 \cdot b_3)$$

$$d_3 = (a_3 \cdot b_0) \oplus (a_2 \cdot b_1) \oplus (a_1 \cdot b_2) \oplus (a_0 \cdot b_3)$$

□ Cette multiplication peut être exprimée sous forme d'un produit matriciel

$$\begin{bmatrix} d_0 \\ d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} a_0 & a_3 & a_2 & a_1 \\ a_1 & a_0 & a_3 & a_2 \\ a_2 & a_1 & a_0 & a_3 \\ a_3 & a_2 & a_1 & a_0 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- □ Dans AES, il faut pouvoir inverser cette matrice
- □ x⁴+1 n'est pas irréductible, donc AES utilise

$$a(x) = [03]x^3 + [01]x^2 + [01]x^1 + [02]x^0 \text{ d'où}$$

$$a^{-1}(x) = [0b]x^3 + [0d]x^2 + [09]x^1 + [0e]x^0$$

- □ Comme dans DES, il y a deux parties
 - La génération des clés intermédiaires
 - Le chiffrement proprement dit

Structure générale

Les données sont stockées dans un « carré » de 4 x 4 = 16 cases

X ₁	X ₂	X ₃	X ₄
X ₅	X ₆	X ₇	X ₈
X ₉	X ₁₀	X ₁₁	X ₁₂
X ₁₃		X ₁₅	

Chaque case contient 1 octet (8 x 16 = 128 bits d'état interne)

Fonction de tour

Entrée du tour (128 bits) Substitution par Octet (16 boîtes-S de 8 bits) Décalage par Ligne Mélange par Colonne Sous-clé (128 bits) Sortie du tour (128 bits)

input bytes in_0 in_4 in_8

 in_1 in_5 in_9 in_{13} in_2 in_6 in_{10} in_{14} in_3 in_7 in_{11} in_{15}

 in_{12}

State array

S _{0,0}	$S_{0,1}$	S _{0,2}	S _{0,3}
S _{1,0}	$S_{1,1}$	S _{1,2}	S _{1,3}
S _{2,0}	$S_{2,1}$	S _{2,2}	$S_{2,3}$
S _{3,0}	S _{3,1}	S _{3,2}	S _{3,3}

$$s[r,c] = in[r + 4c]$$

output bytes

out ₀	out ₄	out ₈	out ₁₂
out ₁	out ₅	out ₉	out ₁₃
out ₂	out ₆	out ₁₀	out ₁₄
out ₃	out ₇	out ₁₁	out ₁₅

$$out[r + 4c] = s[r,c]$$

Substitution par Octet

X ₁	X ₂	X ₃	X ₄
X ₅	X ₆	X ₇	X ₈
X ₉	X ₁₀	X ₁₁	X ₁₂
X ₁₃	X ₁₄	X ₁₅	X ₁₆

Pour tout $1 \le i \le 16$, $Y_i = S(X_i)$

La boîte S

	99	124	119	123	242	107	111	197	48	1	103	43	254	215	171	118
	202	130	201	125	250	89	71	240	173	212	162	175	156	164	114	192
	183	253	147	38	54	63	247	204	52	165	229	241	113	216	49	21
	4	199	35	195	24	150	5	154	7	18	128	226	235	39	178	117
	9	131	44	26	27	110	90	160	82	59	214	179	41	227	47	132
	83	209	0	237	32	252	177	91	106	203	190	57	74	76	88	207
	208	239	170	251	67	77	51	133	69	249	2	127	80	60	159	168
Sbox =	81	163	64	143	146	157	56	245	188	182	218	33	16	255	243	210
SDUX -	205	12	19	236	95	151	68	23	196	167	126	61	100	93	25	115
	96	129	79	220	34	42	144	136	70	238	184	20	222	94	11	219
	224	50	58	10	73	6	36	92	194	211	172	98	145	149	228	121
	231	200	55	109	141	213	78	169	108	86	244	234	101	122	174	8
	186	120	37	46	28	166	180	198	232	221	116	31	75	189	139	138
	112	62	181	102	72	3	246	14	97	53	87	185	134	193	29	158
	225	248	152	17	105	217	142	148	155	30	135	233	206	85	40	223
	140	161	137	13	191	230	66	104	65	153	45	15	176	84	187	22

Décalage par ligne

X ₁	X ₂	X ₃	X ₄
X ₆	X ₇	X ₈	X ₅
X ₁₁	X ₁₂	X ₉	X ₁₀
X ₁₆	X ₁₃	X ₁₄	X ₁₅

Décalage circulaire (vers la gauche) de i cases pour la ligne numéro i, 0 ≤ i ≤ 3

Mélange par colonne

MixColumn() est appliquée à chaque colonne

Mélange par colonne

Opérations linéaires dans GF(28)

Génération des clés

- □ Les clés de ronde
 - Sont générées une fois pour toute
 - Sont stockées dans le tableau d'octets de taille
 Nb*(Nr+I)
 - KeyExpansion() : procédure de génération des clés

```
KeyExpansion (byte key[4*Nk], word w[Nb * (Nr+1)], Nk)
début
  word temp
  i = 0;
  tant que (i < Nk) faire
       w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])
       i = i+1
  fin tant que
       i = Nk
  tant que (i < Nb * (Nr+1)) faire
       tmp = w[i-1]
       si (i mod Nk = 0) alors
          tmp = SubWord(RotWord(tmp)) Xor Rcon[i/Nk]
       sinon si (Nk > 6 et i mod Nk = 4) alors
          tmp = SubWord(tmp)
       fin si
       w[i] = w[i-Nk] Xor tmp
       i = i + 1
  fin tant que
fin
```


2b	28	ab	09	a0	88	23	2a	f2	7a	59	73	3d	47	1e	6d
7e	ae	f7	cf	fa	54	a3	6c	с2	96	35	59	80	16	23	7a
15	d2	15	4f	fe	2c	39	76	95	b9	80	f6	47	fe	7e	88
16	a6	88	3c	17	b1	39	05	f2	43	7a	7f	7d	3е	44	3b

Cipher Key Round key 1 Round key 2 Round key 3

. . .

d0	с9	e1	b6
14	e	3f	63
f9	25	00	0C
a8	89	c8	a6

Round key 10

□ SubByte()

- Reçoit un octet en entrée et renvoie une valeur de substitution
- Un octet est vu comme un couple de 2 nombres de 4 bits: x et y
- La valeur de substitution est le contenu de la table « S-Box » de coordonnées (x,y)
- L'essentiel de la sécurité repose sur la non linéarité de la S-Box : chaque valeur est le résultat d'une transformation affine dans GF(28)

□ Exemple (en hexadécimal) :

■ En entrée : 2a

■ En sortie: e5

												У					
		0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
	0	63	7c	77	7ъ	f2	6ъ	6f	с5	30	01	67	2ъ	fe	d7	ab	76
	1	ca	82	с9	7d	fa	59	47	f0	ad	d4	12	af	9с	a4	72	c0
X	2 •	ь7	fd	93	26	36	3£	£7	-00	34	-5	e5	f1	71	d8	31	15
	3	04	с7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	2c	1a	1b	6e	5a	a0	52	3ъ	d6	ъ3	29	e3	2f	84
	5	53	d1	00	ed	20	fc	b1	5ъ	6a	cb	be	39	4a	4c	58	cf
S-Box	6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
	7	51	a 3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
	8	cd	0с	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	ъ8	14	de	5e	ОЪ	db
	a	e0	32	За	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	b	e7	с8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	С	ba	78	25	2e	1c	a6	ъ4	с6	e8	dd	74	1f	4b	bd	8ъ	8a
		70	0		00	40	0.0	0.0	-	-04	OF.	F.O.	10	0.0		4.1	

L3 Informatique Université de Tlemcen

- □ SubWord(mot)
 - Reçoit un mot de 4 octets
 - Renvoie un mot de 4 octets
 - Chaque octet en entrée est substitué par SubByte()
- □ RotWord(mot)
 - Reçoit un mot de 4 octets (a0,a1,a2,a3)
 - Renvoie le mot (a1,a2,a3,a0)

□ Rcon: tableau prédéfini

$$Rcon[i] = [x^{i-1}, [00], [00], [00]]$$

☐ En d'autres termes :

Le chiffrement: Chiffrement d'un bloc

```
Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
début
          byte state [4, Nb]
  1
  2
  3
          state = in
                          // l'entrée est copiée dans le bloc
  5
          AddRoundKey(state, w[0, Nb-1])
  6
          pour round = 1 à Nr-1 par pas de 1 faire
 8
               SubBytes(state)
               ShiftRows(state)
 9
               MixColumns(state)
 10
11
               AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
 12
          finpour
 13
14
          SubBytes(state)
          ShiftRows(state)
 15
          AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
16
 17
18
                        // copie du bloc dans la sortie
          out = state
fin
```

04	e0	48	28
66	cb	f8	06
81	19	d3	26
e5	9a	7a	4c

a0	88	23	2a
fa	54	a3	6C
fe	2c	39	76
17	b1	39	05

Round key

a4	68	6b	02
9c	9f	5b	6a
7f	35	ea	50
f2	2b	43	49

- □ AddRoundKey(state,clé)
 - Ajoute la clé de ronde à l'état
 - Principe:

- □ SubBytes(state)
 - Réalise une substitution de chaque octet de l'état (voir SubByte)
 - Principe :

☐ ShiftRows(state)

Effectue une rotation vers la gauche des octets de chaque ligne

Le numéro de ligne indique le nombre de rotations à

effectuer

Principe:

- MixColumns(state)
 - Principe :

□ Chaque colonne est considérée comme un polynôme de GF(28)

□ On applique le produit matriciel (cf. 18) avec la matrice suivante :

$$\begin{bmatrix} S'_{0,c} \\ S'_{1,c} \\ S'_{2,c} \\ S'_{3,c} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} S_{0,c} \\ S_{1,c} \\ S_{2,c} \\ S_{3,c} \end{bmatrix}$$

□ En d'autres termes, pour S'_{0,c}:

$$S'_{0,c} = [02] \cdot S_{0,c} + [03] \cdot S_{1,c} + [01] \cdot S_{2,c} + [01] \cdot S_{3,c}$$

 $S'_{0,c} = xtime(S_{0,c}) \oplus (xtime(S_{1,c}) \oplus S_{1,c}) \oplus S_{2,c} \oplus S_{3,c}$

- □ Algorithme identique mais avec des transformations inversées
 - Les rondes sont réalisées à rebours
 - L'algorithme:

```
InvCipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
début
         byte state [4, Nb]
 1
 2
 3
                         // l'entrée est copiée dans le bloc
         state = in
         AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
 5
 6
         pour round = Nr-1 à 1 par pas de -1 faire
              InvShiftRows(state)
 8
9
              InvSubBytes(state)
              AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
10
11
              InvMixColumns(state)
12
         finpour
13
14
         InvShiftRows(state)
         InvSubBytes(state)
15
         AddRoundKey(state, w[0, Nb-1])
16
17
18
                       // copie du bloc dans la sortie
         out = state
fin
```

- □ InvShiftRows(state)
 - Rotation circulaire vers la droite
 - Principe :

□ InvSubBytes(state)

Applique à chaque octet de l'état, une substitution (cf. SubByte()) au moyen d'une S-Box obtenue par la transformation affine inverse

	0	1	2	3	4	5	6	7	8	9	a	ь	С	d	е	f
0	52	09	6a	d5	30	36	a5	38	bf	40	a3	9e	81	f3	d7	fb
1	7 c	е3	39	82	9ъ	2f	ff	87	34	8e	43	44	c4	de	e 9	cb
2	54	7ъ	94	32	a6	c2	23	3d	ee	4c	95	0ъ	42	fa	с3	4e
3	08	2e	a1	66	28	d9	24	b2	76	5Ъ	a2	49	6d	8ъ	d1	25
4	72	f8	f6	64	86	68	98	16	d4	a4	5c	cc	5d	65	b6	92
5	6c	70	48	50	fd	ed	ь9	da	5e	15	46	57	a7	8d	9d	84
6	90	d8	ab	00	8c	bc	d3	0a	f7	е4	58	05	ъ8	ъ3	45	06
7	d0	2c	1e	8f	ca	3f	Of	02	c1	af	bd	03	01	13	8a	6ъ
8	3a	91	11	41	4f	67	dc	ea	97	f2	cf	ce	f0	b4	e6	73
9	96	ac	74	22	e7	ad	35	85	e2	f9	37	e8	1c	75	df	6e
a	47	f1	1a	71	1d	29	с5	89	6f	b7	62	0e	aa	18	be	1b
b	fc	56	Зе	4b	c6	d2	79	20	9a	db	c0	fe	78	cd	5a	f4
С	1f	dd	a8	33	88	07	c7	31	Ъ1	12	10	59	27	80	ec	5f
d	60	51	7f	a9	19	b5	4a	0d	2d	e5	7a	9f	93	с9	9с	ef
e	a0	e0	3ъ	4d	ae	2a	f5	ьо	с8	eb	bb	3с	83	53	99	61

- □ InvMixColumns(state)
 - Principe identique à MixColumns
 - La matrice est composée des coefficients de a-1(x)

$$\begin{bmatrix} S'_{0,c} \\ S'_{1,c} \\ S'_{2,c} \\ S'_{3,c} \end{bmatrix} = \begin{bmatrix} 0e & 0b & 0d & 09 \\ 09 & 0e & 0b & 0d \\ 0d & 09 & 0e & 0b \\ 0b & 0d & 09 & 0e \end{bmatrix} \begin{bmatrix} S_{0,c} \\ S_{1,c} \\ S_{2,c} \\ S_{3,c} \end{bmatrix}$$