Heinrich-Heine-Universität Düsseldorf Institut für Theoretische Physik II Computational Physics Wintersemester 2018/2019 Prof. Dr. J. Horbach Dr. S. Ganguly (saswati@thphy.uni-duesseldorf.de) M. Eshraghi (Mojtaba.Eshraghi@hhu.de) Blatt 7 vom 27.11.2018 Abgabe bis 16:00 Uhr am 04.12.2018

Problem 7.1: Nosé-Hoover thermostat

The equations of motion for a two-dimensional system of N particles coupled to a Nosé-Hoover thermostat can be written as follows

$$\dot{\vec{r}_i} = \frac{1}{m} \, \vec{p}_i \tag{1}$$

$$\dot{\vec{p}}_i = \vec{F}_i - \frac{1}{Q} p_\eta \, \vec{p}_i \tag{2}$$

$$\dot{\eta} = \frac{1}{Q} \, p_{\eta} \tag{3}$$

$$\dot{p}_{\eta} = \sum_{i=1}^{N} \frac{1}{m} \vec{p}_{i}^{2} - 2Nk_{B}T \tag{4}$$

with $i=1,\ldots,N$ the particle index, m the mass of a particle, η the extra degree of freedom for the heat bath, p_{η} the momentum corresponding to η , Q a coupling parameter, T the temperature of the heat bath, \vec{r}_i and \vec{p}_i respectively the position and momentum of particle i, \vec{F}_i the force on particle i, and k_B the Boltzmann constant.

- a) Implement the Nosé-Hoover thermostat in the MD programme for the WCA system of exercise 6.1, using the algorithm, as derived in the lecture from the Liouville operator splitting.
- b) Consider a system of 144 particles (initial configuration from problem 6.1) in a square box with linear dimension $L=14\sigma$. Start a simulation at T=1.5 and change the temperature of the thermostat to T=1.0 after $t=5\tau$ ($\tau=\sqrt{m\sigma^2/\varepsilon}$). Determine the time series of the system's temperature up to $t_{max}=10\tau$ for the following cases:
 - Q' = 100 (weak coupling)
 - Q' = 1
 - Q' = 0.01 (strong coupling)

with $Q' = Q/2Nk_B$. Plot and discuss the results.

Problem 7.2: Fluctuations

In the microcanonical (NVE) ensemble, the heat capacity at constant volume, C_V , can be obtained in a d-dimensional system from

$$\frac{C_V}{Nk_B} = \frac{d}{2} \left(1 - \frac{2}{dN} \frac{\langle \Delta K^2 \rangle}{N \left(k_B T \right)^2} \right)^{-1} \tag{5}$$

where $\langle \Delta K^2 \rangle = \langle K^2 \rangle - \langle K \rangle^2$ quantifies the fluctuations of the kinetic energy K. In the canonical (NVT) ensemble, C_V is given by

$$\frac{C_V}{Nk_B} = \frac{\left\langle \Delta E^2 \right\rangle}{N \left(k_B T \right)^2} \tag{6}$$

where $\langle \Delta E^2 \rangle = \langle E^2 \rangle - \langle E \rangle^2$ describes the fluctuations of the total energy E.

- a) Determine C_V for the two-dimensional WCA system of exercise 7.1 using a canonical MD simulation with Nosé-Hoover thermostat at T=1.0.
- b) Now determine C_V from a microcanonical MD simulation.

Hint: To compute averages, use only the data after the system is equilibrated.