Advanced Discretization Methods (WS 19/20) Homework 1

(P. Knabner, L. Wester)

Deadline for submission (theory): October 29th, 2019, 12:15
Deadline for submission (programming): (this sheet: no programming)

Exercise 1: Minimization property (10)

Let V be a Hilbert space, a be a symmetric, continuous, and coercive bilinear form, $f \in V'$, $J(u) := \frac{1}{2}a(u,u) - f(u)$, and $U \subset V$ be closed and convex. Show that u is a solution of

$$J(u) = \inf_{v \in U} J(v)$$

if and only if

$$a(u, v - u) \ge f(v - u) \quad \forall v \in U.$$

Exercise 2: Chain rule for weak derivatives (5+5)

a) Let $f \in C^1(\mathbb{R})$, $f' \in L^{\infty}(\mathbb{R})$, $u \in L^1_{loc}(\Omega)$ with weak derivatives of order 1 (i.e. there exists $D^{\alpha}u \in L^1_{loc}(\Omega)$ for all multi-indices $\alpha \in \mathbb{N}^d$ with $|\alpha| = 1$). Prove that a version of the chain rule also holds in the weak sense, i.e. $f \circ u$ is weakly differentiable and

$$D(f \circ u) = f'(u)Du$$

Hint: You can use the following theorem without proof:

Let u and v be locally integrable in Ω . Then $v = D^{\alpha}u$ if and only if there exists a sequence of $C^{\infty}(\Omega)$ functions $(u_m)_{m \in \mathbb{N}}$ converging in $L^1_{loc}(\Omega)$ whose derivatives $D^{\alpha}u_m$ converge to v in $L^1_{loc}(\Omega)$.

b) Let $u \in H^1(\Omega)$, $u^+ := \max\{u, 0\}$, $u^- := \min\{u, 0\}$. Show that $u^+, u^-, |u| \in H^1(\Omega)$ and

$$Du^{+} = \begin{cases} Du & u > 0 \\ 0 & u \le 0 \end{cases}$$

$$Du^{-} = \begin{cases} 0 & u \ge 0 \\ Du & u < 0 \end{cases}$$

$$D|u| = \begin{cases} Du & u > 0 \\ 0 & u = 0 \\ -Du & u < 0 \end{cases}$$

Hint: Approximate u^+ with

$$f_{\varepsilon}(u) := \begin{cases} (u^2 + \varepsilon^2)^{1/2} - \varepsilon & u > 0 \\ 0 & u \le 0 \end{cases}$$

Exercise 3: H^1 -Estimate for the Poisson Problem (3+2+5)

Let $\Omega \subset \mathbb{R}^d$ be a sufficiently smooth domain. For $f \in L^2(\Omega)$ we consider the Poisson problem with Dirichlet boundary values:

$$-\triangle u = f \quad \text{in } \Omega, \qquad \qquad u|_{\partial\Omega} = 0.$$

Let $X_h \subset X := H_0^{1,2}(\Omega)$ be the Lagrange finite element space of order $k \in \mathbb{N}$.

- a) Derive the weak form of this equation, both for the continuous problem with $u \in X$ and the discrete problem with $U_h \in X_h$.
- b) Prove for the discrete solution $U_h \in X_h$ the following error identity:

$$\int_{\Omega} \nabla (U_h - u) \nabla \phi_h \ dx = 0 \qquad \forall \phi_h \in X_h.$$

c) Use Céa's Lemma and the Lagrange interpolation operator I_h to derive the following error estimate if $u \in H^{k+1,2}(\Omega)$ and d < 2k + 2:

$$||u - U_h||_X \le C h^k ||u||_{k+1,2}.$$

Explain the necessity of the condition on d.

Exercise 4: L^2 -Estimate for the Poisson Problem (2+3+3+2)

Let $\Omega \subset \mathbb{R}^d$ be a sufficiently smooth domain. We use a duality argument to derive an L^2 -estimate for the Poisson problem from Exercise 3. For this, consider the dual problem: Find $w \in X$ such that

$$\int_{\Omega} \nabla w \nabla \phi \ dx = \int_{\Omega} (U_h - u) \phi \ dx \qquad \forall \phi \in X.$$

We assume H^2 -regularity of our problem, i.e. for $U_h - u \in L^2(\Omega)$ there holds $w \in H^{2,2}(\Omega) \cap H_0^{1,2}(\Omega)$ with bound $||w||_2 \leq C ||U_h - u||$.

a) Let $W_h \in X_h$ be the finite element solution of the dual problem. Using the Galerkin orthogonality, prove that

$$||U_h - u||^2 = \int_{\Omega} \nabla (U_h - u) \nabla (w - W_h) dx.$$

b) Use the preceeding identity to prove

$$||U_h - u||^2 \le C||\nabla (U_h - u)|| \inf_{V_h \in X_h} ||\nabla (w - V_h)||.$$

c) Use Lagrange interpolation estimates and the assumed H^2 -regularity to prove for $d \leq 3$:

$$\inf_{V_h \in X_h} \|\nabla (w - V_h)\| \le C \ h \|U_h - u\|.$$

d) If $u \in H^{k+1,2}(\Omega)$ and d < 2k+2 conclude with Exercise 3:

$$||u - U_h|| \le C h^{k+1} ||u||_{k+1,2}.$$