Fonction exponentielle

I – Introduction

A – Définition

Il existe une fonction f dérivable sur $\mathbb R$ telle que f'=fet f(0)=1. C'est la fonction exponentielle. On la note \exp .

B – Propriétés élémentaires

- $\exp(0) = 1$
- Cette fonction est strictement positive sur $\mathbb R$

II - Etude

A – Dérivabilité

• Elle est dérivable sur \mathbb{R} et $(\exp(x))' = \exp(x)$

B – Variations

• Elle est strictement croissante sur \mathbb{R}

<u>C – Représentation graphique</u>

(voir fig 1)

III - Propriétés

A - Relations

Pour tous réels x et y,

- $\exp(x+y) = \exp(x) \exp(y)$
- $\exp(-x) = \frac{1}{\exp(x)}$
- $\exp(x y) = \frac{\exp(x)}{\exp(y)}$
- $\exp(nx) = (\exp(x))^n$ avec $n \in \mathbb{N}$

B – le nombre e ℓ

1. Définition

C'est l'image de 1 par la fonction exponentielle. exp(1) = e

2. Application

• Pour tous réel
$$x$$
, $\exp(x) = e^x$

•
$$e^0 = 1$$
 et $e^1 = e$

•
$$e^x > 0$$
 et $(e^x)' = e^x$

•
$$e^{x+y} = e^x e^y$$
 et $e^{x-y} = \frac{e^x}{e^y}$

•
$$e-x=rac{1}{e^x}\operatorname{et}(e^x)^n=e^{nx}\operatorname{avec} n\in\mathbb{N}$$

•
$$e^a = e^b \iff a = b$$

•
$$e^a < e^b \iff a < b$$

IV – Relation avec les suites géométriques

• Comme $e^{na} = (e^a)^n$, la suite (e^{na}) est une suite géométrique de raison e^a .

$\underline{\text{V}-\text{Fonctions de la forme t}}\,t o e^{kt}$

A – Variations

- La fonction $t \to e^{kt}$ est dérivable sur $\mathbb R$. Sa dérivée est $t \to ke^{kt}$
- Si k>0, la fonction $t\to e^{kt}$ est strictement croissante
- Si k < 0, la fonction t $\rightarrow e^{kt}$ est strictement décroissante

B – Représentation graphique

