Input-Aware Auto-Tuning of Compute-Bound HPC Kernels

Philippe Tillet, David Cox Havard University

Motivations

Figure: cuBLAS v9.0 (sGEMM) vs Roofline Model - GV100

Preliminaries

```
Assume the existence of a kernel generator for GEMM/CONV \mathbf{x}_k: kernel parameters (e.g., tile sizes) \mathbf{x}_i: input parameters (e.g., array shapes, data-type) y(\mathbf{x}_i, \mathbf{x}_k): Performance of a given kernel on given inputs
```

(Input-Sensitive) Auto-Tuning:

• Offline: Choose \mathbf{x}_i ; find arg $\max_{\mathbf{x}_k} y(\mathbf{x}_i, \mathbf{x}_k)$.

Input-Aware Auto-Tuning:

- Offline: Build a predictive model \hat{y} for y.
- Online: \mathbf{x}_i is imposed; find arg $\max_{\mathbf{x}_k} \hat{y}(\mathbf{x}_i, \mathbf{x}_k)$.

Method

Goal: Transform a set of parameters $(\mathbf{x}_k, \mathbf{x}_i)$ (e.g., tile sizes, matrix shapes) into functional binaries.

(2,0)

(2,1)

Thread (1,1)

$$\mathbf{x}_k = (M_L, N_L, M_S, N_S, U, \mathbf{K_G}, \mathbf{K_L}, \mathbf{K_S})$$
 $\mathbf{x}_i = (M, N, K, opA, opB)$

Additional optimizations are necessary for optimal-performance:

- Double-buffering
- Vector loads/stores when possible
- Instructions predications (PTX)
- Explicit rematerialization

CONV is essentially GEMM with fancy addressing

Goal: Generate a set of pairs (\mathbf{x}_n, y_n) where $\mathbf{x} = (\mathbf{x}_i, \mathbf{x}_k)$

Method: Sample \mathbf{x} and measure y.

Problem: The space of valid configurations may be **very** (99.9%) sparse

Solution: Two potential solutions:

- (a) Rejection sampling: ignore invalid samples.
- (b) Generative modeling: build a model for valid kernel configurations

The parameters can for instance be seen as independent categorical variables:

$$P(\mathbf{x} \in \mathbb{X}) = p(\mathbf{x}_0)...p(\mathbf{x}_{I+K})$$

Problem: The auto-tuning procedure is bound by kernels compilation.

Solutions:

- (a) Use a low-level language (PTX)
- (b) Compile multiple kernels in parallel

Can compile 80,000 kernels per hour!

Regression Analysis

Regression Analysis

Goal: Given X, Y build a predictive model $\hat{y}(\mathbf{x})$

Let's use Deep Learning because **HYPE**:

- Scale well (and we can collect a lot of data!)
- Fast evaluation at runtime

Regression Analysis

Problem: Vanilla Neural Networks are **bad** at handling divisions and multiplications between features:

Even the simplest analytical model will fail:

$$\begin{split} t_{\mathsf{arith}} &= \mathsf{max}\left(\frac{\mathsf{alu_latency}}{occupancy}, \mathsf{alu_throughput}\right) \\ t_{\mathsf{mem}} &= \mathsf{max}\left(\frac{\mathsf{mem_latency}}{occupancy}, \mathsf{mem_throughput}\right) \\ t &= \mathsf{max}(t_{\mathsf{arith}}i_{\mathsf{arith}}, \quad t_{\mathsf{mem}}i_{\mathsf{mem}}) \end{split}$$

Solution: Learn $\hat{y}(\mathbf{x}' = \log \mathbf{x})$ instead. Multiplications become linear combinations and voila!

Performance vs Dataset Size

Performance vs Network Capacity

Hidden layer sizes	#weights	MSE (no log)	
64	1k	0.17 (1.2)	
512	10k	0.13 (1.0)	
32, 64, 32	5k	0.088 (0.80)	
64, 128, 64	17k	0.08 (0.75)	
32, 64, 128, 64, 32	21k	0.073 (-)	
64, 128, 256, 128, 64	83k	0.067 (-)	
64, 128, 192, 256, 192, 128, 64	163k	0.062 (-)	

Table: Cross-validation MSE for various MLP architectures

Runtime Inference

Runtime Inference

Goal: Given \mathbf{x}_i , find the best possible \mathbf{x}_k .

Method: Compute arg $\max_{\mathbf{x}_k} \hat{y}(\mathbf{x}_i, \mathbf{x}_k)$.

- Exhaustive search: millions of candidates \mathbf{x}_k can be evaluated in one second. Global maximum guaranteed
- Other choices: GA, Simulated Annealing...
- \bullet Re-benchmark the ~ 10 best predictions and pick the actual fastest.

Method Summary

- Build a parameterized code generator for GEMM and CONV
- Benchmark random kernels on random input configurations
- Build a predictive model for the performance of any kernel on any shape
- When shapes are fixed, maximize the model over kernels.

- Benchmarked the method against the latest cuBLAS and cuDNN...
- ... For GTX980 and GV100 ...
- ... On various HPC tasks (PCA/ICA, SVD)...
- ... And various DL tasks from DeepBench.

Figure: SGEMM on GV100

Figure: DGEMM on GV100

Roofline Model - Revisited

Figure: SCONV on GV100

N	Р	Q	С	R	S	NPQ	K	CRS	Name	
DeepSpeech										
16	79	341	1	5	20	431024	32	100	Conv1	
16	38	166	32	5	10	100928	32	1600	Conv2	
OCR										
16	24	240	16	3	3	92160	32	144	Conv3	
16	12	120	32	3	3	23040	64	288	Conv4	
Face Recognition										
8	54	54	64	3	3	23328	64	576	Conv5	
8	27	27	128	3	3	5832	128	1152	Conv6	
16	14	14	512	5	5	3136	48	12800	Conv7	
16	7	7	832	5	5	784	128	20800	Conv8	
Vision										
8	112	112	64	3	3	100352	128	576	Conv9	
8	56	56	128	3	3	25088	256	1152	Conv10	
Speaker ID										
16	39	174	64	5	5	79872	128	1600	Conv11	
16	19	87	128	5	5	77824	256	3200	Conv12	
ResNET										
16	7	7	512	3	3	784	512	4608	Conv13	
16	7	7	1024	1	1	784	2048	1024	Conv14	

Analysis

ISAAC learns to make sensible parameterization choices:

- (a) Smaller problems require smaller tile sizes
- (b) Deep reductions should be mindfully split
- (c) Blocking is good for arithmetically intense problems, but adds overhead in IO-bound tasks (SVD)

Conclusions

- Presented an input-aware auto-tuning technique for HPC and DL
- Presented design techniques for:
 - High-performance GEMM templates with reduction-splitting
 - Efficient parameters sampling with generative models
 - Accurate performance modeling with deep learning
- Performance often superior to hand-tuned assembly

Thanks for your attention!

http://github.com/ptillet/isaac/ The binding of Isaac: BLAS, Tensorflow.

Figure: SGEMM on GM200

Figure: SCONV on GM200

