Project 0 - Decoder

CS 0447 — Computer Organization & Assembly Language

Due date is on the CourseWeb

Note that this extra project is optional. If you decide not to work on this project, your midterm score will remain the same. If you decide to work on this project, 4 or 7 points will be added to your midterm as follows:

- Part I (4 points)
- Part II (3 points)

Note that you midterm score is maxed at 55 points.

Part I: What is that instruction (4 Points)

What you need to do is to implement a program named mc2instr.asm that decode a 32-bit machine code (in hexadecimal) back to instruction. Simply put, your program will ask user to enter a 32-bit machine code in a form of an 8-digit hexadecimal number and prints out the instruction associated with the given machine code as shown below:

```
Please enter a machine code (hexadecimal): 00028020
add
Please enter a machine code (hexadecimal): 00108e82
srl
Please enter a machine code (hexadecimal): 2008ffff
addi
Please enter a machine code (hexadecimal): 3211003f
andi
Please enter a machine code (hexadecimal): 11020027
beq
Please enter a machine code (hexadecimal): 08100086
j
Please enter a machine code (hexadecimal): 0c1000bd
jal
Please enter a machine code (hexadecimal): afbf0000
sw
Please enter a machine code (hexadecimal): 03e00008
jr
```

Once your program prints the name of the instruction, simply asks a user again. For simplicity, you do not need to check whether a user enter a valid 8-digit hexadecimal string and we will only test with instructions listed in Table 1.

Instruction	op (Hex)	op (Bin)	funct (Hex)	funct (Bin)
add	$00_{ m hex}$	000000	$20_{ m hex}$	100000
addi	$08_{ m hex}$	001000	N/A	N/A
and	$00_{ m hex}$	000000	$24_{ m hex}$	100100
andi	$0C_{\text{hex}}$	001100	N/A	N/A
sub	$00_{ m hex}$	000000	$22_{ m hex}$	100010
or	$00_{ m hex}$	000000	$25_{ m hex}$	100101
ori	$0D_{\text{hex}}$	001101	N/A	N/A
nor	$00_{ m hex}$	000000	$27_{\rm hex}$	100111
slt	$00_{ m hex}$	000000	$2A_{hex}$	101010
slti	$0A_{\text{hex}}$	001010	N/A	N/A
sll	$00_{ m hex}$	000000	$00_{ m hex}$	000000
srl	$00_{ m hex}$	000000	$02_{ m hex}$	000010
beq	$04_{ m hex}$	000100	N/A	N/A
bne	$05_{ m hex}$	000101	N/A	N/A
j	$02_{ m hex}$	000010	N/A	N/A
jal	$03_{ m hex}$	000011	N/A	N/A
jr	$00_{ m hex}$	000000	$08_{ m hex}$	001000
lw	$23_{ m hex}$	100011	N/A	N/A
sw	$2B_{ m hex}$	101011	N/A	N/A
1h	$21_{\rm hex}$	100001	N/A	N/A
sh	$29_{ m hex}$	101001	N/A	N/A
1b	$20_{ m hex}$	100000	N/A	N/A
sb	$28_{\rm hex}$	101000	N/A	N/A

Table 1: Instructions and Control Values

Note that you program needs to print only the instruction mnemonic. It does not have to print the complete instruction in this part.

Part II: Operands (3 Points)

This part is an extension to the Part I. Simply make your program prints a complete instruction associated with the given 8-digit hexadecimal machine code as shown below:

```
Please enter a machine code (hexadecimal): 00028020
add $s0, $zero, $v0

Please enter a machine code (hexadecimal): 00108e82
srl $s1, $s0, 26

Please enter a machine code (hexadecimal): 2008ffff
addi $t0, $zero, -1

Please enter a machine code (hexadecimal): 3211003f
andi $s1, $s0, 63

Please enter a machine code (hexadecimal): 11020027
beq $t0, $v0, Label

Please enter a machine code (hexadecimal): 08100086
j Label
```

```
Please enter a machine code (hexadecimal): 0c1000bd jal Label
Please enter a machine code (hexadecimal): afbf0000
sw $ra, 0($sp)
Please enter a machine code (hexadecimal): 03e00008
jr $ra
```

Note that for instructions that need a label (beq, bne, j, and jal), simply print the string Label as shown above. All immediate values should be printed in decimal (using system call 1) for simplicity. The MIPS Reference Data can be found on the next page.

Submission

The due date of this project is stated on the CourseWeb. Late submissions will not be accepted. You should submit the file mc2instr.asm via CourseWeb. Again, we will only test your program with valid hexadecimal and instructions listed above. No need to perform error checking.

MIPS Reference Data

CORE INSTRUCTI	ON SE	Т					OPCODE
		FOR-					/ FUNCT
NAME, MNEMO Add		MAT		ATION (in V	verilog)	(1)	(Hex) 0 / 20 _{hex}
	add	R R[rd] = R[rs] + R[rt] $I R[rt] = R[rs] + SignExtImm$					
Add Immediate	addi	I			(2)	8 _{hex}	
Add Imm. Unsigned		I		R[rt] = R[rs] + SignExtImm			9 _{hex}
Add Unsigned	addu	and the second section of the second				0 / 21 _{hex}	
And	and	R	R[rd] = R[rs]	& R[rt]			0 / 24 _{hex}
And Immediate	andi	I	R[rt] = R[rs]		mm	(3)	c_{hex}
Branch On Equal	beq	I		BranchAddr		(4)	4 _{hex}
Branch On Not Equal	bne	I	if(R[rs]!=R[r PC=PC+4+	t]) BranchAddr		(4)	5 _{hex}
Jump	j	J	PC=JumpAd	dr		(5)	2_{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr			(5)	3 _{hex}
Jump Register	jr	R	PC=R[rs]	PC=R[rs]			0 / 08 _{hex}
Load Byte Unsigned	lbu	I	R[rt]={24'b0 +Sign),M[R[rs] nExtImm](7:	0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	I	R[rt]={16'b0 +Sign),M[R[rs] nExtImm](15	5:0)}	(2)	25 _{hex}
Load Linked	11	I	R[rt] = M[R]	rs]+SignExt	Imm] (2	2,7)	30_{hex}
Load Upper Imm.	lui	I	R[rt] = {imn	n, 16'b0}			f_{hex}
Load Word	lw	I	R[rt] = M[R]	rs]+SignExt	Imm]	(2)	23 _{hex}
Nor	nor	R	$R[rd] = \sim (R$	[rs] R[rt])	-		0 / 27 _{hex}
Or	or	R	R[rd] = R[rs]				0 / 25 _{hex}
Or Immediate	ori	Ι	$R[rt] = R[rs] \mid ZeroExtImm$		m	(3)	d _{hex}
Set Less Than	slt	R	R[rd] = (R[rs]			(-)	0 / 2a _{hex}
Set Less Than Imm.	slti	I	R[rt] = (R[rs			(2)	a _{hex}
Set Less Than Imm.			R[rt] = (R[rs			(2)	
Unsigned Set Less Than Unsig.	sltiu	I R		? 1:0	(2	2,6)	b _{hex} 0 / 2b _{hex}
- C					1.0	(0)	0 / 20 _{hex}
Shift Left Logical	sll	R	R[rd] = R[rt]				
Shift Right Logical	srl	R	R[rd] = R[rt]		0)		0 / 02 _{hex}
Store Byte	sb	I	M[R[rs]+Sig	R[rt](7	:0)	(2)	28 _{hex}
Store Conditional	sc	I] = (atomic)	? 1:0 (2	2,7)	38 _{hex}
Store Halfword	sh	I	M[R[rs]+Sig			(2)	$29_{ m hex}$
Store Word	SW	I	M[R[rs]+Sig	nExtImm] =		(2)	2b _{hex}
Subtract	sub	R	R[rd] = R[rs]	- R[rt]		(1)	0 / 22 _{hex}
Subtract Unsigned	subu	R	R[rd] = R[rs]				0 / 23 _{hex}
(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{in'0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic							
BASIC INSTRUCTI			_	1	ĺ		
R opcode	r		rt	rd	shamt		funct
· F · · · · ·	6 25			15 11		5	0
I opcode	r	s	rt		immediate	e	
21 2	C 25	21	20 16	10			

			······································	OLCOBE
			<u> </u>	/ FMT /FT
		FOR-		/ FUNCT
NAME, MNEMO		MAT	OPERATION	(Hex)
Branch On FP True	bc1t	FI	if(FPcond)PC=PC+4+BranchAddr (4)	
Branch On FP False	bc1f	FI	if(!FPcond)PC=PC+4+BranchAddr(4)	11/8/0/
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned	divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	
FP Add Single	add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double	auu.u	TIX	$\{F[ft],F[ft+1]\}$	11/11//0
FP Compare Single	C.X.S*	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y
FP Compare	c.x.d*	FR	$FPcond = ({F[fs],F[fs+1]}) op$	11/11//v
Double			{F[ft],F[ft+1]})?1:0	11/11//y
			==, <, or <=) (y is 32, 3c, or 3e)	
	div.s	FR	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide	div.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3
Double			{F[ft],F[ft+1]}	
FP Multiply Single	mul.s	FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply	mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$	11/11//2
Double			{F[ft],F[ft+1]}	
	sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract	sub.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} -$	11/11//1
Double		_	{F[ft],F[ft+1]}	
Load FP Single	lwc1	Ι	F[rt]=M[R[rs]+SignExtImm] (2)	
Load FP	ldc1	I	F[rt]=M[R[rs]+SignExtImm]; (2)	35//
Double			F[rt+1]=M[R[rs]+SignExtImm+4]	0 / / //0
Move From Hi	mfhi	R	R[rd] = Hi	0 ///10
Move From Lo	mflo	R	R[rd] = Lo	0 ///12
Move From Control		R	R[rd] = CR[rs]	10 /0//0
Multiply	mult	R	$\{Hi,Lo\} = R[rs] * R[rt]$	0///18
Multiply Unsigned	multu	R	$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	
Shift Right Arith.	sra	R	R[rd] = R[rt] >> shamt	0//-3
Store FP Single	swc1	Ι	M[R[rs]+SignExtImm] = F[rt] (2)	
Store FP	sdc1	Ι	M[R[rs]+SignExtImm] = F[rt]; (2)	3d//
Double			M[R[rs]+SignExtImm+4] = F[rt+1]	

(2) OPCODE

FLOATING-POINT INSTRUCTION FORMATS

ARITHMETIC CORE INSTRUCTION SET

FR	opcode	;	fm	t	f	t		fs	fd	funct	
	31	26	25	21	20	16	15	11	10 6	5	0
FI	opcode	:	fm	t	f	ì			immediate	•	
	31	26	25	21	20	16	15				0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equ	ıal bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVEDACROSS
TTITLE	NOMBER	OBE	A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

address