1 Converting between channel representations

1. Krauss operators \rightarrow Pauli Liouville matrix.

Input: $\{K_i\}_{k=1}^r$, where each of K_i are 2×2 matrices. Output: Γ , a 4×4 real matrix. The entries of Γ are given by the following expression.

$$\Gamma_{i,j} = \mathsf{Tr}(\mathcal{E}(P_i)P_j) \tag{1}$$

where \mathcal{E} is the CPTP map described by the input Krauss operators, as in (Eq. ??) and P_i is one of the Pauli matrices $\{I, X, Y, Z\}$. So, the process matrix can be expressed in terms of the Krauss operators as

$$\Gamma_{i,j} = \sum_{k=1}^{r} \operatorname{Tr}(K_k P_i K_k^{\dagger} P_j). \tag{2}$$

2. Krauss operators \rightarrow Choi Matrix

Input: $\{K_i\}_{k=1}^r$, where each of K_i are 2×2 matrices. Output: J, a 4×4 complex matrix.

The Choi matrix of a CPTP map \mathcal{E} (specified by the input Krauss operators) is the result of applying \mathcal{E} on the first qubit of a bell state, i.e,

$$J = \frac{1}{4} \sum_{i,j=0}^{1} \mathcal{E}(|i\rangle\langle j|) \otimes |i\rangle\langle j|$$
(3)

$$= \frac{1}{4} \sum_{i,j=0}^{1} \sum_{k=1}^{r} K_k |i\rangle\langle j| K_k^{\dagger} \otimes |i\rangle\langle j| \tag{4}$$

3. χ matrix \rightarrow Pauli Liouville Matrix

Input: χ , a 4 × 4 complex matrix. Output: Γ , a 4 × 4 real matrix.

The action of a CPTP map \mathcal{E} on an input state ρ is specified using its χ matrix as

$$\mathcal{E}(\rho) = \sum_{l,m} \chi_{l,m} P_l \rho P_m. \tag{5}$$

Using the definition of the process matrix Γ , corresponding to the CPTP map \mathcal{E} , in (Eq. 1), we have

$$\Gamma_{i,j} = \sum_{l,m} \operatorname{Tr}(P_l P_i P_m P_j) \chi_{l,m}.$$

Defining a 16 × 16 matrix Ω , such that $\Omega_{4\times i+j,4\times l+m} = \text{Tr}(P_l P_i P_m P_j)$, we have

$$|\Gamma\rangle\rangle = \Omega|\chi\rangle\rangle,\tag{6}$$

where $|\Gamma\rangle$ and $|\chi\rangle$ are the (column) vectorized forms of Γ and χ respectively.

4. Pauli Liouville Matrix $\rightarrow \chi$ matrix.

We can easily obtain $|\chi\rangle$ by inverting the relation in Eq. 6, giving

$$|\chi\rangle\rangle = \Omega^{-1}|\Gamma\rangle\rangle. \tag{7}$$

5. Choi Matrix \rightarrow Krauss operators.

Input: J, a 4×4 complex matrix. Output: $\{K_i\}_{k=1}^r$, where each of K_i are 2×2 matrices.

Eq. 4 can be expressed as

$$J = \sum_{k=1}^{r} |K_k\rangle\rangle\langle\langle K_k|, \tag{8}$$

where $|K_k\rangle$ is the (column) vectorized form of the Krauss operator $\frac{1}{2}K_k$. Performing a singular value decomposition of J, we find $J = \sum_k \lambda_k |\lambda_k\rangle\langle\lambda_k|$. Hence the Krauss operator K_k can be constructed from un-vectorizing $2|\lambda_k\rangle$.

6. Pauli Liouville Matrix \rightarrow Choi Matrix

Input: Γ , a 4×4 real matrix. Output: J, a 4×4 complex matrix.

Combining the expression for the bell state in the Pauli basis,

$$\frac{1}{4}(|00\rangle + |11\rangle)(\langle 00| + \langle 11|) = \frac{1}{4}\sum_{i=1}^{4} P_i \otimes P_i^T,$$

where $P_i \in \{I, X, Y, Z\}$ is a Pauli matrix, with Eq. 3, we find

$$J = \frac{1}{4} \sum_{i} \mathcal{E}(P_i) \otimes P_i^T.$$

Applying the definition of the Pauli Liouville representation of \mathcal{E} in Eq. 1, we find

$$J = \sum_{i,j} \Gamma_{i,j} P_j \otimes P_i^T. \tag{9}$$

7. Choi Matrix \rightarrow Pauli Liouville Matrix.

Input: J, a 4×4 complex matrix. Output: Γ , a 4×4 real matrix.

Multiplying on either sides of Eq. 9 by $P_a \otimes P_b^T$, we find

$$J \cdot (P_a \otimes P_b^T) = \sum_{i,j} \Gamma_{i,j} P_j P_a \otimes P_i^T P_b^T.$$

Taking the trace of the above equation yields

$$\Gamma_{b,a} = \mathsf{Tr}(J \cdot (P_a \otimes P_b^T)). \tag{10}$$

8. Strinespring dilation \rightarrow Krauss operators.

The action of any CPTP map \mathcal{E} on an input state ρ can be derived from unitary dynamics U on a larger Hilbert space, that comprises of the system ρ and its environment, which is initially in some state $|0\rangle_E\langle 0|_E$. Under the unitary evolution described by U, we find

$$\rho \otimes |0\rangle_E \langle 0|_E \to U \left[\rho \otimes |0\rangle_E \langle 0|_E\right] U^{\dagger}.$$

Since the state of the environment is essentially unknown, we must discard it resulting in a partial trace over the environment basis, denoted by $\{|e_k\rangle_E\}$, resulting in

$$\rho \otimes |0\rangle_{E} \langle 0|_{E} \to \operatorname{Tr}_{E} \left(U \left[\rho \otimes |0\rangle_{E} \langle 0|_{E} \right] U^{\dagger} \right)$$

$$= \rho_{ab} \sum_{k=1}^{r} \langle e_{k} | U | e_{0} \rangle \rho \langle e_{0} | U^{\dagger} | e_{k} \rangle. \tag{11}$$

The above expression is the Krauss representation of the channel where the Krauss operators are $\{\langle e_k|U|e_0\rangle\}_{k=1}^r$.

Figure 1: The chrep command in chflow can be used to change channel representations. The usage of the command is chrep <representation>, where <representation> should be replaced by one of {krauss, process, choi, chi, stine}, which results in the current channel being stored in the specified representation.