# CS350-fall2020-hw1

### easyabi

## September 2020

# 1 Question 1

Figure 1  $^{1}$  shows the corresponding graph



Figure 1: MPL = 1

#### 1.1 a

 $\begin{array}{l} \text{Utilization(CPU)} = \frac{2}{7} \\ \text{Utilization(SSD)} = \frac{2}{7} \\ \text{Utilization(GPU)} = \frac{3}{7} \end{array}$ 

#### 1.2 b

Throughput =  $\frac{1}{7}$ 

## 1.3 c

Given the current information, GPU has the highest utilization. Therefore, it is the bottleneck of the system.

#### 1.4 d



Figure 2: MPL = 2

 $<sup>^1{\</sup>rm Figures}$  are from a student's solution

 $\begin{array}{l} \text{Utilization(CPU)} = \frac{4}{7} \\ \text{Utilization(SSD)} = \frac{4}{7} \\ \text{Utilization(GPU)} = \frac{6}{7} \end{array}$ 

#### 1.5 e

Throughput =  $\frac{2}{7}$ 

#### 1.6 f



Figure 3: MPL = 3 and MPL = 4

For MPL = 3 and MPL = 4, we see the same pattern, meaning that the achievable throughput is as follows:

Maximum Throughput = Capacity =  $\frac{2}{6}$ 

## 2 Question 2

#### 2.1 a

f is 3/7 and N=x is equal to 3.

$$x = \frac{1}{1 - f(1 - \frac{1}{x})} = \frac{1}{1 - \frac{3}{7}(1 - \frac{1}{3})} = 1.4$$

### 2.2 b

using the old GPU, the cpacity is 2/6. Using the new GPU the capacity is 2/4. Therefore, the new system is  $\frac{2/4}{2/6} = \frac{6}{4}$  faster.

#### 2.3 c

 $\ensuremath{\mathsf{GPU}}$  is no longer the bottleneck because CPU and SSD are now have the highest utilization .

$$Utilization(CPU) = \frac{2}{5}$$

$$Utilization(SSD) = \frac{2}{5}$$

$$Utilization(GPU) = \frac{1}{5}$$

#### 2.4 d

At steady state, each request takes 8ms to be processed. Give that the request arrives 10ms before it is executed, the response time is 18ms.



Figure 4:

## 3 Question 3

3.1 a

$$speedup = \frac{1}{1 - f(1 - \frac{1}{N})} = \frac{1}{1 - \frac{4}{10}(1 - \frac{1}{1.25})} = 1.087$$

3.2 b

$$speedup = \frac{1}{1 - f(1 - \frac{1}{N})} = \frac{1}{1 - \frac{25}{100}(1 - \frac{1}{12})} = 1.043$$

3.3 c

Option A = 1.087/10000 = 0.0001087Option B = 1.043/35000 = 0.0000298Therefore, option A is better.

3.4 d

$$Speedup = \frac{oldspeed}{newspeed} = \frac{5.5}{\left(0.4*\frac{1}{1.25} + 0.25*\frac{1}{1.2} + 0.35\right)*5.5} = 1.14$$

3.5 e

$$speedup = \frac{1}{1 - f(1 - \frac{1}{N})} = \frac{1}{1 - \frac{4}{10}(1 - \frac{1}{\infty})} = \frac{10}{6}$$

3.6 f

$$speedup = \frac{1}{1 - f(1 - \frac{1}{N})} = \frac{1}{1 - \frac{25}{100}(1 - \frac{1}{\infty})} = \frac{100}{75}$$