Der linearzeit MST-Algorithmus

Der schnellste Algorithmus für das MST/ MSF Problem

Max Springenberg

Proseminar: Randomisierte Algorithmen, TU Dortmund

Motivation

"the fastest"

Borůvka, Kruskal, Prim	$O(m \log(n))$	(deterministisch)
Chazelle	$O(m \log(\beta(m, n)))$	(deterministisch)
MST	O(m+n)	(randomisiert)

1

"the fastest"

```
Borůvka, Kruskal, Prim O(m \log(n)) (deterministisch)
Chazelle O(m \log(\beta(m,n))) (deterministisch)
MST O(m+n) (randomisiert)
```

"For many applications, a randomized algorithm is the simplest algorithm available, or the fastest, or both."[?]

1

Was wollen wir erreichen?

MSF

MSF

F-leicht/-schwer

Teaser: *F*-schwer

Sei G:

Teaser: *F*-schwer

Sei F:

Teaser: *F*-schwer

Dann ist etwas an diesen Kanten besonders.

F-leicht/-schwer

Sei
$$e = \{u, v\}$$
, P_e in F , w von G

$$w_F(e) = egin{cases} \infty & , u \text{ und } v \text{ in verschiedenen Komponenten} \\ max\{w(P_e(e))\} & , \text{ sonst} \end{cases}$$

F-schwer:
$$w(e) > w_F(e)$$

F-leicht:
$$w(e) \leq w_F(e)$$

Zyklus D,E,H,D∮

$$w(\{D,H\}) > w(\{E,H\})$$

$$w(\{D,H\}) > w(\{D,E\})$$

 G_{w_1} :

 G_{w_1} , MST F:

 G_{w_1} , MST F:

 G_{w_1} , MST F:

Borůvka Phasen

- 1. Kontraktierende Kanten markieren
- 2. Verbundene Komponenten bestimmen
- 3. Verbundene Komponenten durch einzelne Knoten ersetzen
- 4. Selbstschleifen entfernen

1. Kontraktierende Kanten markieren

2. Verbundene Komponenten bestimmen

3. Verbundene Komponenten durch einzelne Knoten ersetzen

4. Selbstschleifen entfernen

Reduktion der Knoten

Randomisierte Stichproben

Quelle: https://melbournechapter.net/explore/coin-flip-clipart/

Wirf eine Münze!

Kanten 'würfeln'

 G_1 :

Kanten 'würfeln'

Verschlechtern wir den MSF?

Der MST-Algorithmus

Data: Graph G

Result: Approximation eines MST/ MSF in G

Data: Graph G

Result: Approximation eines MST/ MSF in G

3 Borůvka-Phasen

1: $G_1, C \leftarrow$ **Wenn** G leer oder Borůvka-Phasen terminieren:

return F = C

Data: Graph G

Result: Approximation eines MST/ MSF in *G*

3 Borůvka-Phasen

1: $G_1, C \leftarrow$ **Wenn** G leer oder Borůvka-Phasen terminieren:

return F = C

2: $G_2 \leftarrow G_1(p=0,5)$

Data: Graph G

Result: Approximation eines MST/ MSF in *G*

3 Borůvka-Phasen

1: $G_1, C \leftarrow$ **Wenn** G leer oder Borůvka-Phasen terminieren:

return
$$F = C$$

- 2: $G_2 \leftarrow G_1(p=0,5)$
- 3: $F_2 \leftarrow MST(G_2)$

Data: Graph G

Result: Approximation eines MST/ MSF in *G*

3 Borůvka-Phasen

1: $G_1, C \leftarrow Wenn G$ leer oder Borůvka-Phasen terminieren:

return
$$F = C$$

- 2: $G_2 \leftarrow G_1(p=0,5)$
- 3: $F_2 \leftarrow MST(G_2)$
- 4: $G_3 \leftarrow (V_{G_1}, E_{G_1} E_{F_2 heavy})$

Data: Graph G

Result: Approximation eines MST/ MSF in *G*

3 Borůvka-Phasen

1: $G_1, C \leftarrow Wenn G$ leer oder Borůvka-Phasen terminieren:

return
$$F = C$$

2:
$$G_2 \leftarrow G_1(p=0,5)$$

3:
$$F_2 \leftarrow MST(G_2)$$

4:
$$G_3 \leftarrow (V_{G_1}, E_{G_1} - E_{F_2 - heavy})$$

5:
$$F_3 \leftarrow MST(G_3)$$

Data: Graph G

Result: Approximation eines MST/ MSF in *G*

3 Borůvka-Phasen

1: $G_1, C \leftarrow$ **Wenn** G leer oder Borůvka-Phasen terminieren:

return
$$F = C$$

2:
$$G_2 \leftarrow G_1(p=0,5)$$

3:
$$F_2 \leftarrow MST(G_2)$$

4:
$$G_3 \leftarrow (V_{G_1}, E_{G_1} - E_{F_2 - heavy})$$

5:
$$F_3 \leftarrow MST(G_3)$$

6: **return**
$$F = C \cup F_3$$

Laufzeit

$$G_1, C \leftarrow egin{array}{l} & ext{ 3 Borůvka-Phasen} \ & ext{ Wenn } G ext{ leer} \ & ext{ oder Borůvka-Phasen terminieren:} \ & ext{ return } F = C \ & G_2 \leftarrow G_1(p=0,5) \ & F_2 \leftarrow MST(G_2) \ & G_3 \leftarrow (V_{G_1}, E_{G_1} - E_{F_2-heavy}) \ & F_3 \leftarrow MST(G_3) \ & ext{ return } F = C \cup F_3 \ & ext{ return } F = C \cup F_3 \ & ext{ } \end{array}$$

Laufzeit

$$O(n+m)$$
 $G_1, C \leftarrow$ Wenn G leer oder Borůvka-Phasen terminieren: return $F = C$

$$O(n+m)$$
 $G_2 \leftarrow G_1(p=0,5)$ $F_2 \leftarrow MST(G_2)$

$$O(n+m)$$
 $G_3 \leftarrow (V_{G_1}, E_{G_1} - E_{F_2-heavy})$ $F_3 \leftarrow MST(G_3)$

$$O(n+m)$$
 return $F=C\cup F_3$

Laufzeit

$$O(n+m)$$
 $G_1, C \leftarrow egin{array}{c} 3 \ \mathsf{Borůvka-Phasen} \ \mathsf{Wenn} \ G \ \mathsf{leer} \ \mathsf{oder} \ \mathsf{Borůvka-Phasen} \ \mathsf{terminieren:} \ \mathsf{return} \ F = C \ \end{array}$

$$O(n+m)$$
 $G_2 \leftarrow G_1(p=0,5)$
? $F_2 \leftarrow MST(G_2)$
 $O(n+m)$ $G_3 \leftarrow (V_{G_1}, E_{G_1} - E_{F_2-heavy})$
? $F_3 \leftarrow MST(G_3)$

$$O(n+m)$$
 return $F=C\cup F_3$