

CITA LEVEL II Equity Investments

泽稷网校梁老师

一级权益重难点——抽样与估计

直播时间--北京时间19:00-20:30

视频链接: http://live.zejicert.cn/item?targetId=74

详细板书请见课程视频

CFA®金融题库 立即开启百万金融分析师之路

需要更多CFA免费学习资料/加入CFA学习打卡组织请添加QQ:717849352 (●°u°●)」

- Population & sample
- Sampling
- The central limit theorem
- Standard error of the sample mean
- Point estimates
- Confidence intervals for population mean

Population & sample

- 用来测量总体(population)特征的统计量被称为parameter
- 用来测量样本(sample)特征的统计量被称为sample statistic

Population & sample

- Population Mean : $\mu = \frac{\sum_{i=1}^{N} X_i}{N}$
- Sample Mean : $\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$
- Population Variance : $\sigma^2 = \frac{\sum_{i=1}^{N} (X_i \mu)^2}{N}$
- Sample Variance : $s^2 = \frac{\sum_{i=1}^{n} (X_i \overline{X})^2}{n-1}$

- Population & sample
- Sampling
- The central limit theorem
- Standard error of the sample mean
- Point estimates
- Confidence intervals for population mean

- Simple random sampling
- Stratified random sampling
 - ✓ 基于一个或多个特征把总体分成不同的层(smaller groups),再从每一层中随机抽样
- Systematic sampling
 - ✓ 选择所有第k个成员,直到抽够所需的样本数

- 样本统计量 (sample statistic) 是一个随机变量,服从某一概率分布
- Sampling error
 - ✓ 样本统计量和总体参数之间的difference
 - ✓ 如: X-µ

- Sampling : Bias
 - ✓ Data-mining bias (数据挖掘偏差):统计上显著的模型并不一定有经济意义,因为有可能这种统计上的显著性是通过数据挖掘 (data mining)的方法得到的
 - ✓ Sample selection bias (样本选择偏差):在抽样时,样本中排除了某些特定的数据
 - Survivorship bias (生存偏差):只包含了现存活的样本,那些现在已不存在的样本数据(如,已清盘的对冲基金数据)并没有包括在内

- Look-ahead bias(前视偏差):需要使用的数据现在暂时 无法得到
- Time-period bias(时间周期偏差):选择数据的时间周期可能太短也可能太长

- Population & sample
- Sampling
- The central limit theorem
- Standard error of the sample mean
- Point estimates
- Confidence intervals for population mean

The central limit theorem

■ 对于服从任意分布的总体,总体均值为μ,方差为σ2,每次从总体中抽出一个样本容量为n的样本,只要样本容量 n≥30,样本均值(sample mean)近似服从均值为μ,方差为σ²/n的正态分布N(μ,σ²/n)

The central limit theorem

- 每一个随机抽出的样本都有它自己的样本均值,而且这个 样本均值是一个随机变量
- 总体均值µ和所有样本均值的均值(The mean of all possible sample means)是相等的
- 样本均值的方差(The variance of sample means)等
 于σ²/n,是用总体方差(The population variance)除
 以样本容量(The sample size) n

- Population & sample
- Sampling
- The central limit theorem
- Standard error of the sample mean
- Point estimates
- Confidence intervals for population mean

Standard error of the sample mean

- The standard error of the sample mean (标准误)是样本均值的标准差 (the standard deviation of the sample means)
 - ✓ Known population variance : $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$
 - ✓ Unknown population variance : $s_{\overline{X}} = \frac{s}{\sqrt{n}}$
- The larger the sample size, the greater precision with which we can estimate the population parameter. (样本容量n越大,对总体参数的估计越准确)

- Population & sample
- Sampling
- The central limit theorem
- Standard error of the sample mean
- Point estimates
- Confidence intervals for population mean

Point estimates & Confidence interval estimate

- Point estimates: 用一个样本统计量来估计总体参数(parameter)
 - \checkmark The sample mean , $\,x\,$, is an estimator of the population mean μ

- Population & sample
- Sampling
- The central limit theorem
- Standard error of the sample mean
- Point estimates
- Confidence intervals for population mean

- Confidence interval estimate
 - ✓ Level of significance (alpha, 显著性水平)
 - ✓ Degree of Confidence (1-alpha, 置信水平)
 - ✓ Confidence Interval=[Point Estimate+/- (reliability factor) ×Standard error]

- Z distribution
 - ✓ 总体方差已知

$$\checkmark \overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

- 90 percent confidence intervals : Use $Z_{0.05}=1.65$
- 95 percent confidence intervals : Use $Z_{0.025}=1.96$
- 99 percent confidence intervals : Use $Z_{0.005} = 2.58$

T Distribution

T Distribution

- Properties of the T Distribution
 - ✓ Symmetrical
 - ✓ Degrees of freedom (df): n-1
 - ✓ 与正态分布相比,尾巴更肥("fatter tails"),意味着It has more probability in the tails
 - ✓ 随着自由度(the degrees of freedom),也即样本容量(the sample size)n的增大, t分布的图形更趋近于标准正态分布(standard normal distribution)

T Distribution

df	p = 0.10	p = 0.05	p = 0.025	p = 0.01	p = 0.005	df	p = 0.10	p = 0.05	p = 0.025	p = 0.01	p = 0.005
1	3.078	6.314	12.706	31.821	63.657	31	1.309	1.696	2.040	2.453	2.744
2	1.886	2.920	4.303	6.965	9.925	32	1.309	1.694	2.037	2.449	2.738
3	1.638	2.353	3.182	4.541	5.841	33	1.308	1.692	2.035	2.445	2.733
4	1.533	2.132	2.776	3.747	4.604	34	1.307	1.691	2.032	2.441	2.728
5	1.476	2.015	2.571	3.365	4.032	35	1.306	1.690	2.030	2.438	2.724
6	1.440	1.943	2.447	3.143	3.707	36	1.306	1.688	2.028	2.434	2.719
7	1.415	1.895	2.365	2.998	3.499	37	1.305	1.687	2.026	2.431	2.715
8	1.397	1.860	2.306	2.896	3.355	38	1.304	1.686	2.024	2.429	2.712
9	1.383	1.833	2.262	2.821	3.250	39	1.304	1.685	2.023	2.426	2.708
10	1.372	1.812	2.228	2.764	3.169	40	1.303	1.684	2.021	2.423	2.704
11	1.363	1.796	2.201	2.718	3.106	41	1.303	1.683	2.020	2.421	2.701
12	1.356	1.782	2.179	2.681	3.055	42	1.302	1.682	2.018	2.418	2.698
13	1.350	1.771	2.160	2.650	3.012	43	1.302	1.681	2.017	2.416	2.695
14	1.345	1.761	2.145	2.624	2.977	44	1.301	1.680	2.015	2.414	2.692
15	1.341	1.753	2.131	2.602	2.947	45	1.301	1.679	2.014	2.412	2.690
16	1.337	1.746	2.120	2.583	2.921	46	1.300	1.679	2.013	2.410	2.687
17	1.333	1.740	2.110	2.567	2.898	47	1.300	1.678	2.012	2.408	2.685
18	1.330	1.734	2.101	2.552	2.878	48	1.299	1.677	2.011	2.407	2.682
19	1.328	1.729	2.093	2.539	2.861	49	1.299	1.677	2.010	2.405	2.680
20	1.325	1.725	2.086	2.528	2.845	50	1.299	1.676	2.009	2.403	2.678
21	1.323	1.721	2.080	2.518	2.831	60	1.296	1.671	2.000	2.390	2.660
22	1.321	1.717	2.074	2.508	2.819	70	1.294	1.667	1.994	2.381	2.648
23	1.319	1.714	2.069	2.500	2.807	80	1.292	1.664	1.990	2.374	2.639
24	1.318	1.711	2.064	2.492	2.797	90	1.291	1.662	1.987	2.368	2.632
25	1.316	1.708	2.060	2.485	2.787	100	1.290	1.660	1.984	2.364	2.626
26	1.315	1.706	2.056	2.479	2.779	110	1.289	1.659	1.982	2.361	2.621

需要更多CFA免费学习资料/加入CFA学习打卡组织请添加QQ:717849352 (●°u°●)」

- T distribution
 - ✓ 总体方差未知

$$\checkmark \overline{X} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$$

$$\checkmark t = \frac{\overline{X} - \mu_X}{S_X / \sqrt{n}} \sim t_{(n-1)}$$

	Test statistic				
When sampling from a :	Small sample (n<30)	Large sample (n≥30)			
正态分布,总体方差已知	z-statistic	z-statistic			
正态分布,总体方差未知	t-statistic	t-statistic /z-statistic			
非正态分布,总体方差已知	Not available	z-statistic			
非正态分布,总体方差未知	Not available	t-statistic /z-statistic			

Example

The average salary for a sample of 61 CFA charter holders with 10 years experience is \$200,000, and the sample standard deviation is \$80,000. Assume the population is normally distributed. Which of the following is a 99% confidence interval for the population mean salary of CFA charter holders with 10 years of experience?

A. \$172,514 to \$227,486

B. \$172,754 to \$227,246

C. \$160,000 to \$240,000

Example

■ The 99% confidence interval is

 $200,000\pm2.660(80,000/\sqrt{61})$ or

 $200,000\pm2.660\times10,243$, or $200,000\pm27,246$

Point estimates & Confidence interval estimate

- Desirable properties of an estimator
 - ✓ Unbiasedness (无偏): expected value of the estimator is equal to the parameter that are trying to estimate
 - The sample mean is an unbiased estimator of the population mean
 - ✓ Efficiency (有效): if the variance of its sampling distribution is smaller than all the other unbiased estimators of the parameter you are trying to estimate
 - ✓ Consistency (一致): the accuracy of the parameter estimate increases as the sample size increases

CFA全球考友百日打卡集训营 在全球最大的CFA考友社群中寻找CP

扫码加入全球最大的 CFA人脉圈 本期主题:CFA数量重难点--抽样与估计

本期主讲人:梁老师

祝大家都能顺利通过CFA一级的考试!