UC DAVIS

STA 135

HW 4 SOLUTIONS

THESE SOLUTIONS ARE USED WITH PERMISSION FROM THE PUBLISHER. BY NO MEANS SHOULD THESE SOLUTIONS BE DISTRIBUTED OR SHARED IN ANY FORM. THEY ARE FOR PERSONAL USE ONLY.

6.2 Using a critical value $t_{n-1}(\alpha/2p) = t$	10(0.0125)) = :	2.6338,
--	------------	-------	---------

	LOWER	UPPER
Bonferroni C. I.:	-20.57	1.85
	-2.97	29.52
Simultaneous C. I.:	-22.45	3.73
	-5.70	32.25

6.6 a) Treatment 2: Sample mean vector
$$\begin{bmatrix} 2 \\ 4 \end{bmatrix}$$
; sample covariance matrix $\begin{bmatrix} 1 & -3/2 \\ -3/2 & 3 \end{bmatrix}$

Treatment 3: Sample mean vector
$$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
; sample covariance matrix $\begin{bmatrix} 2 & -4/3 \\ -4/3 & 4/3 \end{bmatrix}$

b)
$$T^2 = \begin{bmatrix} 2-3, 4-2 \end{bmatrix} \begin{bmatrix} (\frac{1}{3} + \frac{1}{4}) & \begin{bmatrix} 1.6 & -1.4 \\ -1.4 & 2 \end{bmatrix} \end{bmatrix}^{-1} \begin{bmatrix} 2-3 \\ 4-2 \end{bmatrix} = 3.88$$

$$\frac{(n_1+n_2-2)p}{(n_1+n_2-p-1)} F_{p_1,n_1+n_2-p-1}(.01) = \frac{(5)2}{4} (18) = 45$$

Since $T^z = 3.88 < 45$ do not reject $H_0 = 2 - 23 = 0$ at the $\alpha = .01$ level.

c) . 99% simultaneous confidence intervals:

$$\mu_{21} - \mu_{31}$$
: (2-3) $\pm \sqrt{45} \sqrt{(\frac{1}{3} + \frac{1}{4})1.6} = -1 \pm 6.5$

6.9 For any matrix C

$$\underline{d} = \frac{1}{n} \Sigma \underline{d}_{j} = C(\frac{1}{n} \Sigma \underline{x}_{j}) = C \underline{\overline{x}}$$

and
$$d_1 - \overline{d} = C(x_1 - \overline{x})$$

so
$$S_d = \frac{1}{n-1} \Sigma (\underline{d}_j - \underline{d}) (\underline{d}_j - \underline{d})' = C(\frac{1}{n-1} \Sigma (\underline{x}_j - \overline{x}) (\underline{x}_j - \overline{x})') C' = CC'$$

Note: For 6.16, this is one solution for the specific contrast matrix, C, specified. There are many contrast matrices that could have been specified.

6.16
$$H_0: C_{\underline{\mu}} = \underline{0}; H_1: C_{\underline{\mu}} \neq \underline{0} \text{ where } C = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Summary statistics:

$$\bar{x} = \begin{bmatrix} 1906.1 \\ 1749.5 \\ 1509.1 \\ 1725.0 \end{bmatrix}; S = \begin{bmatrix} 105625 & 94759 & 87249 & 94268 \\ & 101761 & 76166 & 81193 \\ & & 91809 & 90333 \\ & & & 104329 \end{bmatrix}$$

$$T^2 = n(C\bar{x})'(CSC')^{-1}(C\bar{x}) = 254.7$$

$$\frac{(n-1)(q-1)}{(n-q+1)} F_{q-1,n-q+1}(\alpha) = \frac{(30-1)(4-1)}{(30-4+1)} F_{3,27}(.05) = 9.54$$

Since $T^2 = 254.7 > 9.54$ we reject H_0 at $\alpha = .05$ level.

95% simultaneous confidence interval for "dynamic" versus "static"

means
$$(\mu_1 + \mu_2) - (\mu_3 + \mu_4)$$
 is, with $c' = [1 \ 1 \ -1 \ -1]$,

Converight (2 2012 Pourson Education, Inc. Publishing as Prontice Hall

Note: the QQ diagnostic plots on 6.18 are for reference and were not required to answer the question.

6.18 continued

mean vector for females:

mean vector for males:

X1BAR	X2BAR
4.9006593	4.7254436
4.6229089	4.4775738
3.9402858	3.7031858

SPOOLED 0.0187388 0.0140655 0.0165386 0.0140655 0.0113036 0.0127148 0.0165386 0.0127148 0.0158563

TSQ CVTSQ F CVF PVALUE 85.052001 8.833461 27.118029 2.8164658 4.355E-10

linear combination most responsible for rejection

of HO has coefficient vector:

COEFFVEC -43.72677 -8.710687 67.546415

95% simultaneous CI for the difference

in female and male means

LOWER UPPER 0.0577676 0.2926638 0.0541167 0.2365537 0.1290622 0.3451377

Bonferroni CI

LOWER UPPER 0.0768599 0.2735714 0.0689451 0.2217252 0.1466248 0.3275751

6.19
a)
$$\bar{x}_1 = \begin{bmatrix} 12.219 \\ 8.113 \\ 9.590 \end{bmatrix}$$
; $\bar{x}_2 = \begin{bmatrix} 10.106 \\ 10.762 \\ 18.168 \end{bmatrix}$;

S₁ =

$$\begin{bmatrix}
223.0134 & 12.3664 & 2.9066 \\
17.5441 & 4.7731 \\
13.9633
\end{bmatrix}$$

$$\left[\left(\frac{1}{n_1} + \frac{1}{n_2}\right) S_{\text{pooled}}\right]^{-1} = \begin{bmatrix} 1.0939 & -.4084 & -.0203 \\ .8745 & -.1525 \\ .5640 \end{bmatrix}$$

Since
$$T^2 = (\bar{x}_1 - \bar{x}_2)! [(\frac{1}{n_1} + \frac{1}{n_2}) S_{pooled}]^{-1} (\bar{x}_1 - \bar{x}_2) = 50.92$$

 $> \frac{(n_1 + n_2 - 2)p}{(n_1 + n_2 - p - 1)} F_{p, n_1 + n_2 - p - 1} (.01) = \frac{(57)(3)}{55} F_{3,55} (.01) = 13.$

we reject H_0 at the α = .01 level. There is a difference in the (mean) cost vectors between gasoline trucks and diesel trucks.

b)
$$\hat{a} = \int_{\text{produced}}^{-1} e_{a} d\hat{x}_{\text{period}}^{\text{period}} d\hat{x}_{\text{period}}^{\text{period}$$

c) 99% simultaneous confidence intervals are:

$$\mu_{13} - \mu_{23}$$
: -8.578 ± 4.913

d) Assumption $\ddagger_1 = \ddagger_2$.

Since S_1 and S_2 are quite different, it may not be reasonable to pool. However, using "large sample" theory $(n_1 = 36, n_2 = 23)$ we have, by Result 6.4,

$$(\bar{\underline{x}}_1 - \bar{\underline{x}}_2 - (\underline{\mu}_1 - \ \underline{\mu}_2)) \cdot [\frac{1}{n_1} \, s_1 + \frac{1}{n_2} \, s_2]^{-1} (\bar{\underline{x}}_1 - \bar{\underline{x}}_2 - (\underline{\mu}_1 - \ \underline{\mu}_2)) \, - \, \chi_p^2$$

Since

$$(\bar{x}_1 - \bar{x}_2)'[\frac{1}{n_1}S_1 + \frac{1}{n_2}S_2]^{-1}(\bar{x}_1 - \bar{x}_2) = 43.15 > \chi_3^2(.01) = 11.34$$

we reject $H_0: \mu_1 - \mu_2 = 0$ at the $\alpha = .01$ level. This is consistent with the result in part (a).

Note: part (d) was somewhat open-ended and not well defined. If students did not invoke Result 6.4, but repeated analysis with outliers removed and commented on it then that is okay.