CSC 232: Data Structures and Algorithms

Lab7: Big-O Problems

Due: See BB

Submit your program file(s) through BB before midnight on the due date. Email your programs to me **as a last resort** if you experience problems with BB.

Exercises

1) The number of operations executed by algorithms A and B is $8n \log n$ and $2n^2$, respectively. Determine n_0 such that A is better than B for $n \ge n_0$. Hint: simplify the equation as much as possible, then try different values to solve it.

n		log n	n/4	A is a better algorithm for $n \ge 17$.
	13	3.70044	3.25	A and B are equivalent at 16.
	14	3.807355	3.5	1
	15	3.906891	3.75	
	16	4	4	
	17	4.087463	4.25	
	18	4.169925	4.5	
	19	4.247928	4.75	
	20	4.321928	5	

- 2) Explain why the plot of the function n^c is a straight line with slope c on a log scale. To plot n^c on a logarithmic scale, we are plotting $y = \log_n(c)$, or the points (c, y) where y is an exponential value based on c. Therefore for each step up in c, the y value will grow consistently, presenting as a straight line on a log scale.
- 3) Order the following functions by asymptotic growth rate.

$$4n \log n + 2n$$
 (5) 2^{10} (1) $2^{\log n}$ (8) $3n + 100 \log n$ (3) $4n$ (2) 2^n (9) $n^2 + 10n$ (6) n^3 (7) $n \log n$ (4) Note:: $1 < \log n < n < n \log n < n^2 < n^3 < 2^n$ 2^{10} (a constant), $4n$, $3n + 100 \log n$, $n \log n$, $4n \log n + 2n$, $n^2 + 10n$, n^3 , $2^{\log n}$, 2^n

4) Show that if d(n) is O(f(n)), then ad(n) is O(f(n)) for any constant a > 0.

```
Given d(n) \le c * f(n) for some n >= n0, c > 0 (by definition), then a * d(n) \le ac * f(n).
Since ac > 0, then ac*f(n). Let k = ac, then a * d(n) \le k * f(n) = O(f(n)).
```

5) Show that if d(n) is O(f(n)) and e(n) is O(g(n)), then the product d(n) * e(n) is O(f(n)g(n)).

```
Given d(n) \le c * f(n) and e(n) \le k * g(n) for some constants c, k > 0,
then d(n) * e(n) \le c * f(n) * k * g(n). Combing like terms, d(n) * e(n) \le ck * f(n)g(n).
Since c and k are constants and both f(n) and g(n) are functions, then let a = ck and g(n) = f(n) * g(n). By substitution, g(n) * e(n) \le a * g(n) = g(n) * g(n).
```

- 6) An algorithm T is used to find an element x in an array R with n rows and n columns. Algorithm T iterates over the rows of R, then calls the algorithm findIndex() on each row until x is found or it has searched all rows of R. What is the worst-case running time of:
 - a. T in terms of n? $O(n^2)$
 - b. T in terms of N, if N is the total size of R? $O(n^2)$
 - c. Can you say that T is a linear time algorithm? Justify.

No, T cannot be considered a linear time algorithm as it has a for loop with a nested while loop, each of which in the worst case runs to n, thus T can be considered quadratic.

```
Algorithm findIndex(x, R):

Input: An element x and an n-element array, R.

Output: The index if x = R[idx]. Returns -1 if no element of R is equal to x.

idx \leftarrow 0

while idx < n do

if x = R[idx] then

return idx

else

idx \leftarrow idx + 1

return -1
```

7) Show that if p(n) is a polynomial in n, then $\log p(n)$ is $O(\log n)$.

```
If p(n) is in n, the we can express p(n) = a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0. Then p(n) \leq \max\{|a_i|\}(m+1)n^m (since there are m+1 terms and n^m is the largest degree) \log p(n) \leq \log \max\{|a_1|\}(m+1) + m\log n (log product rule – add two logs) Since m and a_i (\forall i=1,2,...m) are constants, then we can allow k=\max\{|a_i|\}(m+1). By substitution, then \log p(n) \leq k+m\log n. Remembering that m is a constant, we can then say that \log p(n) \in O(\log n).
```

8) Show that 2^{n+1} is $O(2^n)$.

$$2^{n+1} = 2 * 2^n$$
 is $O(2^n)$

9) Show that n is $O(n \log n)$.

Since $n \in n \log n \ \forall n > 0$, then it can be said that n is $O(n \log n)$

10)An array W contains n elements. Algorithm L calls Algorithm M on each element W[i]. Algorithm M runs in O(i) time for element W[i]. What is the worst-case running time of Algorithm L?

O(n) - since L runs through all n elements, and M runs in O(i), then the worst case running time of L is O(i * n), but i is a constant, so the running time is O(n).