Mert D. Pesé, Xiaoying Pu, and Kang G. Shin

SPy: Car Steering Reveals Your Trip Route!

Privacy Enhancing Technology Symposium (PETS 2020) 7/14/2020

Vehicles are getting increasingly connected

Revenue through Advertisements and Third-Party Apps

Who collects what data?

PROGRESSIVE

StateFarmVerizon

otonomo

Threat Model (derived from BMW CarData)

Alice wants to install Mallory's third-party app from her OEM's app market

App Permissions

- Speed
- Acc. Pedal Position
- Brake Pedal Position
- Odometer
- GPS
- Steering Wheel Angle
- Fuel Level
- ...

App not installed

Does Alice authorize the app?

Mallory offers third-party app

Telematics
data to OEM
server

Mallory obtains a copy of the requested data for processing from OEM's B2B interface

Increased connectivity comes at a price

Data Connectivity

Privacy Concerns

- Facebook-Cambridge Analytica incident
- General Data Protection Regulation (GDPR)

More Regulation and Awareness?

More Regulation and Awareness?

Voluntary guidelines from 2014

- OEMs only have to ask explicit permission for three categories:
 - Driving behavior
 - Geolocation
 - Biometrics

"covered information"

ALLIANCE OF AUTOMOBILE MANUFACTURERS, INC. ASSOCIATION OF GLOBAL AUTOMAKERS, INC.

Consumer Privacy Protection Principles

PRIVACY PRINCIPLES FOR VEHICLE TECHNOLOGIES AND SERVICES

November 12, 2014

More Regulation and Awareness?

 How much do you agree to share the following data types with an **OEM**? How much do you agree to share the following data types with a third-party app provider?

PROGRESSIVE StateFarm Spireon ExonMobil										
	Strongly disagree	Disagree	Neutral	Agree	Strongly agree					
Odometer	\circ	\circ	\circ	\circ	\circ					
Vehicle Identificat	\circ	\circ	\circ	\circ	\circ					
Outside temperat	\circ	\circ	\circ	\circ	\circ					
Location (GPS)	\circ	\circ	\circ	\circ	\circ					
Current speed	\circ	\circ	\circ	\circ	\circ					

Survey Setup and Results

Participants

N=100 61% male 85% from USA 39% familiar with car telematics

Results

OEM Mean: 3.63 3rd Party Mean: 3.12

- More comfortable sharing data with OEMs
- Not particularly uncomfortable sharing SWA data

Survey Setup and Results

Participants

N=100 61% male 85% from USA 39% familiar with car telematics

Results

OEM Mean: 3.63 3rd Party Mean: 3.12

- More comfortable sharing data with OEMs
- Not particularly uncomfortable sharing SWA data

Attack Feasibility

Weak Architecture Design

- Permission Model (e.g., Android Automotive [Pe20])
- OEM Review Process

Lax Privacy Regulation

- Voluntary Guidelines with Vague Recommendations
 - Lacking Study of GDPR Application

Lacking User Awareness

 Survey shows Steering Wheel Angle (SWA) not Sensitive enough

Location Inference / Travel Route Reconstruction through SWA
Traces is Extremely Tempting!

Attack Feasibility

Weak Architect Design

- Permission Mode (e.g., Android Auton [Pe20])
- OEM Review Proc

SOLUTION

RoCuMa (Road Curvature Matching)

Lacking User
Awareness

urvey shows Steering heel Angle (SWA) not Sensitive enough

Location Inference / Travel Route Reconstruction through SWA
Traces is Extremely Tempting!

System Design

System Design

Road Curvature

of Other Sections

Ground Truth

Road

Curvature

Split into Unique Sections at Turns

Calculate Road
Curvature

Road Curvature of Salient Section

Match Remaining

Sections

Linear Regression with Bisquare Weights

Matched Route

Match Salient
Section

Calculate DTW on
N = 5 road

segments

13

Input

Output

Processing

Input
Output
Processing

System Design

Victim's **SWA Trace** Bandemer Split into Unique Sections at Turns Island Park Road Curvature Calculate Road Curvature of Other Sections **Ground Truth** Road Curvature Road Curvature of Salient Section

Black Pond Woods Nature Area

Northwood IV

Northwood III

North Campus

Sections

Match Salient

Section

Weights

Matched Route

Calculate DTW on N = 5 road segments

System Design

Road Curvature

of Salient Section

Ground Truth

Road

Curvature

Linear Regression with Bisquare Weights

> Matched Route

Match Salient Section

Match Remaining

Sections

Calculate DTW on N = 5 road segments

Input

Output

Processing

System Design

Split Section

Calc

Road

of Sali

- (2) Deviations around 0° larger than 10°: Relatively curvy road
- (3) Spike with two peaks and flat shape in between peaks: Uturn
- (4) Deviations around 0° smaller than 10°: Relatively straight road
- (5) Spike to negative over 90°: Right turn

Linear Regression with Bisquare Weights

> **Matched** Route

Calculate DTW on N = 5 road segments

Experimental Setup

- Five different models of same OEM
 - 58 traces in total

- Vehicle Data Collection
 - OpenXC Platform
- Road Curvature Acquisition
 - OpenStreetMap

Dataset

- Ground truth database in Ann Arbor, MI
 - 236 roads, 2776 road segments
- 58 attack SWA traces collected
 - Mean length 4.28 mi
 - Median length 2.83 mi
 - Minimum length 0.35 mi
 - Maximum length 19.85 mi

Accuracy

- Success heavily depends on initial section
 - Straight final segments cause issues

Other Metrics

Memory Footprint

Total Ground Truth: 29.8 MB

Per Mile: 55.2 kB

Per Road Segment: 10.6 kB

Detroit Metro Area: ~26 GB

Computation Time & Complexity

Intel Core i7-8650U CPU
16 GB RAM
Windows 10 + MATLAB R2018a

- Max. time: <19 minutes
 - DTW: >90%
- Initial Section Matching: >99%
- Initial Section Complexity: O(N²)
- Remaining Section Complexity: O(N)

Applicability to Other Cities

City	# Road Segments	Avg. Curvature Index
Ann Arbor, MI	2776	207.82
Boston, MA	9539	195.25
San Francisco, CA	7515	158.73
Manhattan, NY	1920	92.51
Pittsburgh, PA	10692	248.61
Dublin, Ireland	12977	221.42
Ingolstadt, Germany	2338	225.17
Munich, Germany	15071	152.30

o↑ less similar roads σ↓ more similar roads

Applicability to Other Cities

- New Area with higher Avg. Curvature Index
 - 268.73 > 207.82
- 15/58 traces evaluated in this area
 - 550 < 2776 road segments
 - Mean trip length 2.2 mi < 4.28 mi
- Accuracy
 - 13/15 = 87% > 71%

Comparison with Related Work

	Nal6	Mi15	Zh17	Gal4	Del3	SPy
Data Source	Phone IMU Sensors	Phone Power Consumption	Speed from OBD-II Device	Speed from OBD-II Device	Speed from GPS Tracking Unit	Vehicular Data Collection Systems
Reference Source	Maps	Prerecorded Power Profiles for Each Phone	Maps	Maps	Time Stamp + Speed + Distance Traveled	Maps
Pre-processing	Easy	Hard	Easy	Easy	Medium	Easy
#Apps in App Market	Android: 3.5M (Dec 2017) iOS: 2.2M (Jan 2017)	Android: 3.5M (Dec 2017) iOS: 2.2M (Jan 2017)	N/A	N/A	N/A	BMW: 90 (Jan 2018)
Matching Method	Turn Angle Similarity + Curve Similarity + Travel Time Similarity	HMM	HMM, DFS	Elastic Pathing	DFS	Road Curvature Matching (RoCuMa)
No Starting Point Assumption	✓	X	X	X	X	✓
Accuracy of Estimating Entire Road	13-38%	45% (of full route)	70% in Top 30 Candidate Routes	14% (less than 250m error)	37%	71%

Limitations

• Works for most European cities with similar or higher curvature than Ann Arbor, but not for particular US cities on the grid (e.g., Manhattan)

- Rough knowledge of city/area required
- Did not consider lane changes, U-turns or roundabouts

Conclusion

Driver Location can be Viably Inferred by Steering Wheel Angle Data!

New Threat Model

Vehicular telematics systems are on the rise and allow third-party apps to access sensitive vehicular data

Awareness Survey

Drivers are not aware of sensitivity and privacy consequences of most automotive sensors

Accuracy

RoCuMa offers better accuracy compared to existing related location inference approaches

Q & A

Mert D. Pesé

Xiaoying Pu

Kang G. Shin

References

[Pe20] Pese, M., Shin, K., Bruner, J., and Chu, A., "Security Analysis of Android Automotive," SAE Technical Paper 2020-01-1295, 2020

[Na16] Sashank Narain, Triet D. Vo-Huu, Kenneth Block, and Guevara Noubir. Inferring User Routes and Locations Using Zero-Permission Mobile Sensors. Proceedings - 2016 IEEE Symposium on Security and Privacy, SP 2016, pages 397–413, 2016

[Mi15]Yan Michalevsky, Gabi Nakibly, Aaron Schulman, Gunaa Arumugam Veerapandian, and Dan Boneh. PowerSpy: Location Tracking using Mobile Device Power Analysis. 24th USENIX Security

References

[Zh17] Lu Zhou, Qingrong Chen, Zutian Luo, Haojin Zhu, and Cailian Chen. Speed-Based Location Tracking in Usage-Based Automotive Insurance. Proceedings - International Conference on Distributed Computing Systems, pages 2252–2257, 2017

[Gal4] Xianyi Gao, Bernhard Firner, Shridatt Sugrim, Victor Kaiser-Pendergrast, Yulong Yang, and Janne Lindqvist. Elastic pathing. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing - UbiComp '14 Adjunct, pages 975–986, New York, New York, USA, 2014

[Del3] Rinku Dewri, Prasad Annadata, Wisam Eltarjaman, and Ramakrishna Thurimella. Inferring trip destinations from driving habits data. Proceedings of the 12th ACM workshop on Workshop on privacy in the electronic society – WPES '13, pages 267–272, 2013