Approximate Inference for Bayesian Models: Markov Chain Monte Carlo

Data 102 Fall 2022

Lecture 9

Weekly Outline

 So far: Bayesian models, conjugate priors, graphical models, rejection sampling

- Today: Markov Chain Monte Carlo
 - Markov Chains
 - Metropolis-Hastings
 - Gibbs sampling

Next time: Prediction (Bayesian and frequentist)

Recap: Bayesian Inference

Approximate Bayesian Inference We Specify O: unknown (random) state of the world

x: data you observe likelih P(O/x) = P(xl0)p(0) Sp(x10)p(0)d0

Intractable if 0 is ...
high-dimensional posterior: what we want! our "belief" about & after observing X.

Recap: Sampling for Approximate Inference

- Computing exact posteriors can be hard (and often impossible)
- Idea: use samples to approximate
 - \circ e.g., instead of computing $E_{\theta|x}[\theta|x]$, use mean of samples
 - \circ e.g., instead of $var_{\theta|x}(\theta)$, use variance of samples
- Certain distributions are easy to sample from
 - Well-studied distributions: uniform, normal, beta, etc.
 - np.random.beta(...) or scipy.stats.beta.rvs(...)
- Getting samples for arbitrary posteriors is hard (but possible)
- Sampling methods
 - Rejection sampling
 - Markov Chain Monte Carlo (Metropolis-Hastings and Gibbs sampling)

Recap: Rejection Sampling

- Goal: generate samples from an unnormalized target distribution
 - Usually represents the posterior distribution over parameters that we care about
- Start by defining a proposal distribution
 - Should be easy to sample from (uniform, normal, etc.)
 - Must be ≥ the target distribution for all values of the parameter(s)
- Generate samples from the proposal
- Compute the acceptance probability as target ÷ proposal
- For each proposed sample, randomly make an accept/reject decision
 - o In practice: generate a uniform random variable and seeing whether it's below the acceptance probability
- Easy to implement in most cases, but usually very inefficient

Markov Chains

- Sequence of random variables (usually indexed by "time")
- Possible values are called "states" of the chain
- Each random variable only depends on the previous one (Markov property)
- The transition probabilities between states are known and stay the same over time

Markov Chain Key Ideas

- **Steady-state distribution**: for large values of t, how likely is z_t to be in each state?
 - Depends on transition probabilities
 - Only defined for aperiodic Markov chains where all states are reachable

- Mixing time: how long does it take the Markov chain to reach the steady state distribution?
 - Depends on how "well-connected" the transition probability graph is

Markov Chain Monte Carlo

- Observation: rejection sampling is wasteful because we reject many "bad" samples
- Idea: instead of generating all samples at once, can we use each "good" sample to help us get the next "good" sample?
- Markov Chain Monte Carlo: construct a sequence of samples
 - $\hspace{0.5cm} \circ \hspace{0.5cm} \theta^{(1)} \rightarrow \theta^{(2)} \rightarrow \hspace{0.5cm} \cdots \hspace{0.5cm} \rightarrow \theta^{(t)} \rightarrow \hspace{0.5cm} \cdots$
 - Each sample depends on the previous one
 - \circ We get to specify how the transitions happen using the unnormalized target q(θ)
 - We choose the transitions to theoretically guarantee that the steady state distribution is the true posterior
 - \circ Therefore, for large values of t, $\theta^{(t)}$ is a sample from the true posterior
 - O How do we set up the transitions?
 - Metropolis-Hastings
 - Gibbs sampling
 - and many more (beyond the scope of Data 102)

Metropolis-Hastings

Inputs:

- \circ Unnormalized target distribution $q(\theta)$ (usually numerator of the posterior)
- \circ Proposal distribution $V(\theta' \mid \theta)$ (should be easy to sample from)
- o Initial sample $\theta^{(0)}$

Outputs:

- Samples that approximate the normalized distribution $q(\theta) / \int q(\theta) d\theta$
- How it works:
 - Repeat, starting with t=1:
 - Generate a proposal for $\theta^{(t)}$ using $V(\theta^{(t)} | \theta^{(t-1)})$
 - With probability $\min\left\{1, \frac{q(\theta')}{q(\theta)} \frac{V(\theta|\theta')}{V(\theta'|\theta)}\right\}$, accept the proposal and assign it to $\theta^{(t)}$
 - If the proposal is rejected, try again with a new proposal

MCMC: Practical Considerations

- Theory says: as $t \to \infty$, then $\theta^{(t)}$ is one sample from the true posterior
- In practice, we can't afford to wait that long for just one sample
- Practical MCMC
 - **Burn-in time** (almost always): throw away the first ~100s of samples
 - Option 1: take every sample after that
 - Option 2: take every k-th sample after that (throwing away the ones in between)
- If we take "small" steps, then we need to choose option 2
- If we take "big" steps (each new sample is allowed to be far from the previous one), then we can choose option 1

Frequentist and Bayesian Modeling

- Goal: estimate unknown (random/fixed for Bayesian/frequentist) from data
- What good are Bayesian models?
 - We can bring in domain knowledge with a **prior** distribution
 - Results depend on how much data we have (we're less confident with less data)
 - We can model complex relationships between many different hidden variables
- How do we compute posterior distributions?
 - Simple models: conjugate priors speed up computation
 - o Complex models: approximate inference
 - Rejection sampling
 - MCMC
 - Metropolis-Hastings
 - Gibbs sampling