

Schletter, Inc.		30° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00 psf
Q MIN	=	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, P_g =	30.00 psf	
Sloped Roof Snow Load, P _s =	16.49 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
$C_s =$	0.73	
$C_e =$	0.90	

 $C_t =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	85 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 11.34 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.150 (Property)	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.600	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.100	applica array from allo carracor

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	1.67	$C_{S} = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.07	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>74.01</u>	<u>5110.02</u>	k
Compressive Load =	3623.45	<u>4385.46</u>	k
Lateral Load =	<u>435.65</u>	3204.06	k
Moment (Weak Axis) =	0.87	0.34	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 144397.0 in-lbs Resisting Force Required = 2019.54 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3365.90 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding Force = 769.92 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 1924.80 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 769.92 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

Bearing Pressure

 $\frac{\text{Ballast Width}}{35 \text{ in}} = \frac{35 \text{ in}}{36 \text{ in}} = \frac{37 \text{ in}}{37 \text{ in}} = \frac{38 \text{ in}}{38 \text{ in}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) = \frac{7560 \text{ lbs}}{7776 \text{ lbs}} = \frac{7992 \text{ lbs}}{7992 \text{ lbs}} = \frac{8208 \text{ lbs}}{38 \text{ lbs}}$

ASD LC		1.0D ·	+ 1.0S			1.0D+	- 1.0W		1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W				
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1398 lbs	1398 lbs	1398 lbs	1398 lbs	1129 lbs	1129 lbs	1129 lbs	1129 lbs	1749 lbs	1749 lbs	1749 lbs	1749 lbs	-29 lbs	-29 lbs	-29 lbs	-29 lbs
F _B	1394 lbs	1394 lbs	1394 lbs	1394 lbs	1835 lbs	1835 lbs	1835 lbs	1835 lbs	2277 lbs	2277 lbs	2277 lbs	2277 lbs	-2450 lbs	-2450 lbs	-2450 lbs	-2450 lbs
F _V	207 lbs	207 lbs	207 lbs	207 lbs	1411 lbs	1411 lbs	1411 lbs	1411 lbs	1194 lbs	1194 lbs	1194 lbs	1194 lbs	-1540 lbs	-1540 lbs	-1540 lbs	-1540 lbs
P _{total}	10352 lbs	10568 lbs	10784 lbs	11000 lbs	10523 lbs	10739 lbs	10955 lbs	11171 lbs	11586 lbs	11802 lbs	12018 lbs	12234 lbs	2057 lbs	2187 lbs	2316 lbs	2446 lbs
M	3663 lbs-ft	3663 lbs-ft	3663 lbs-ft	3663 lbs-ft	2757 lbs-ft	2757 lbs-ft	2757 lbs-ft	2757 lbs-ft	4432 lbs-ft	4432 lbs-ft	4432 lbs-ft	4432 lbs-ft	4677 lbs-ft	4677 lbs-ft	4677 lbs-ft	4677 lbs-ft
е	0.35 ft	0.35 ft	0.34 ft	0.33 ft	0.26 ft	0.26 ft	0.25 ft	0.25 ft	0.38 ft	0.38 ft	0.37 ft	0.36 ft	2.27 ft	2.14 ft	2.02 ft	1.91 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft								
f _{min}	244.8 psf	244.0 psf	243.3 psf	242.6 psf	262.8 psf	261.6 psf	260.4 psf	259.2 psf	269.1 psf	267.7 psf	266.4 psf	265.1 psf	0.0 psf	0.0 psf	0.0 psf	2.4 psf
f _{max}	350.9 psf	347.2 psf	343.7 psf	340.4 psf	342.7 psf	339.2 psf	335.9 psf	332.8 psf	397.5 psf	392.5 psf	387.8 psf	383.3 psf	127.6 psf	127.2 psf	127.1 psf	127.2 psf

Maximum Bearing Pressure = 398 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_0 = 2695.9 \text{ ft-lbs}$

Resisting Force Required = 1848.62 lbs S.F. = 1.67

Weight Required = 3081.03 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	ΣE	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		35 in			35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	350 lbs	720 lbs	226 lbs	899 lbs	2344 lbs	803 lbs	145 lbs	211 lbs	23 lbs		
F _V	244 lbs	238 lbs	251 lbs	177 lbs	174 lbs	198 lbs	246 lbs	239 lbs	248 lbs		
P _{total}	9708 lbs	10079 lbs	9585 lbs	9808 lbs	11253 lbs	9712 lbs	2882 lbs	2947 lbs	2760 lbs		
M	969 lbs-ft	953 lbs-ft	990 lbs-ft	718 lbs-ft	722 lbs-ft	784 lbs-ft	969 lbs-ft	950 lbs-ft	977 lbs-ft		
е	0.10 ft	0.09 ft	0.10 ft	0.07 ft	0.06 ft	0.08 ft	0.34 ft	0.32 ft	0.35 ft		
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft		
f _{min}	222.0 psf	233.6 psf	217.2 psf	239.7 psf	281.0 psf	233.1 psf	25.5 psf	28.6 psf	21.6 psf		
f _{max}	336.7 psf	346.4 psf	334.4 psf	324.7 psf	366.5 psf	325.8 psf	140.3 psf	141.0 psf	137.2 psf		

Maximum Bearing Pressure = 366 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 26in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

	Rear Strut	
2.787 k	Maximum Axial Load =	3.432 k
12.808 k	M12 Bolt Capacity =	12.808 k
7.421 k	Strut Bearing Capacity =	7.421 k
<u>38%</u>	Utilization =	<u>46%</u>
2.173 k		
12.808 k	Bolt and bearing capacities are accounting for	or double shear.
7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
<u>29%</u>		
0	Struts under compression are	shown to demor
	12.808 k 7.421 k 38% 2.173 k 12.808 k 7.421 k	2.787 k 12.808 k 7.421 k 38% 2.173 k 12.808 k Bolt and bearing capacities are accounting for 7.421 k (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\label{eq:main_main} \begin{array}{ll} \text{Mean Height, } h_{\text{sx}} = & 60.93 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 h_{\text{sx}} \\ \text{1.219 in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.996 \text{ in} \\ \hline 0.996 \leq 1.219, \text{ OK.} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 120 \text{ in}$$

$$J = 0.432$$

$$331.976$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 120 \\ \mathsf{J} &= & 0.432 \\ & & 211.117 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_l} &= & 28.6 \end{split}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.4 \text{ ksi}$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr^*h/t]$$

 $\phi F_L = 43.2 \text{ ksi}$

25.1 ksi

2.155 in⁴

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

y = 41.015 mm

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 23.1 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

Sy=

 $M_{max}Wk =$

1.073 in⁴

0.599 in³

1.152 k-ft

45.5 mm

Sx=

 $M_{max}St =$

 $\varphi F_L St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 $L_b = 104.56 \text{ in}$ $L_b = 104.56$ J = 1.08 J = 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.0 \text{ ksi}$ $\phi F_1 =$ 28.9

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b [Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

 $\phi F_L =$

3.4.18

h/t =

S1 =

Bbr -

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.0 \text{ ksi}$$

 $lx = 984962 \text{ mm}^4$

y = 43.717 mm

2.366 in⁴

1.375 in³

3.323 k-ft

$$\begin{array}{rcl} m = & 0.65 \\ C_0 = & 40 \\ C_0 = & 40 \\ C_0 = & 40 \\ S2 = & \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L W k = & 33.3 \text{ ksi} \\ y = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \\ \end{array}$$

16.2

36.9

 $\frac{\theta_y}{2}$ 1.3Fcy

Compression

 $M_{max}St =$

Sx =

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*}\sqrt{((\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1

$$S2 = C_t$$
S2 = 141.0

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

S1 =
$$\frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

S1 = $\frac{36.9}{m}$ m = 0.65
C₀ = 27.5
Cc = 27.5
S2 = $\frac{k_1Bbr}{mDbr}$
S2 = 77.3
 $\phi F_L = 1.3\phi y F c y$
 $\phi F_L = 28.2 \text{ ksi}$
 $\phi F_L = 279836 \text{ mm}^4$
0.672 in⁴

27.5 mm

0.621 in³

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

 $Sy = 0.621 \text{ in}^3$

 $M_{max}Wk = 1.460 \text{ k-ft}$

h/t = 24.5

y = Sx =

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7 $\lambda = 0.57371$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.87952$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

28.2 ksi

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \end{array}$$

$$φF_L$$
= $φc[Bp-1.6Dp*b/t]$
 $φF_L$ = 28.2 ksi

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_{y}}{\theta_{b}}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_{L} = \phi y Fcy$
 $\phi F_{L} = 33.25 \text{ ksi}$
 $\phi F_{L} = 6.11 \text{ ksi}$
A = 663.99 mm²
1.03 in²

6.29 kips

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 78.35 $L_b =$ 78.35 in $L_b =$ 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\varphi F_L =$ $\phi F_L =$ 29.8 ksi 29.8

S14.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $φF_L$ = 1.17φyFcy $φF_L$ = 38.9 ksi

3.4.16.1 N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.8125 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.83375 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 8.88278 \text{ ksi} \end{array}$$

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\varphi F_L = \varphi c [Bp-1.6Dp^*b/t]$$

 $\varphi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\varphi F_L = \varphi c [Bp-1.6Dp^*b/t]$
 $\varphi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕyFcy} \\ \text{ϕF}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 8.88 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 9.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1	•			4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.866	-46.866	0	0
2	M14	Υ	-46.866	-46.866	0	0
3	M15	Υ	-46.866	-46.866	0	0
4	M16	Υ	-46 866	-46 866	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-42.8	-42.8	0	0
2	M14	V	-42.8	-42.8	0	0
3	M15	V	-68.853	-68.853	0	0
4	M16	V	-68.853	-68.853	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

_		Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
	1	M13	V	96.766	96.766	0	0
	2	M14	V	74.435	74.435	0	0
	3	M15	V	40.939	40.939	0	0
	4	M16	У	40.939	40.939	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	7.874	7.874	0	0
2	M14	Ζ	7.874	7.874	0	0
3	M15	Ζ	7.874	7.874	0	0
4	M16	Ζ	7.874	7.874	0	0
5	M13	Z	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes			2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	624.187	2	1050.763	2	.91	1	.004	1	0	1	0	1
2		min	-792.279	3	-1214.338	3	-42.055	5	258	4	0	1	0	1
3	N7	max	.046	9	1098.561	1	-1.067	12	002	12	0	1	0	1
4		min	162	2	-56.004	5	-335.112	4	666	4	0	1	0	1
5	N15	max	.01	9	2787.269	1_	0	2	0	2	0	1	0	1
6		min	-1.784	2	-56.927	3	-313.733	4	635	4	0	1	0	1
7	N16	max	2326.629	2	3373.432	2	0	3	0	3	0	1	0	1
8		min	-2464.662	3	-3930.782	3	-41.821	5	261	4	0	1	0	1
9	N23	max	.057	14	1098.561	1	18.752	1	.036	1	0	1	0	1
10		min	162	2	12.451	12	-321.68	5	644	4	0	1	0	1
11	N24	max	624.187	2	1050.763	2	064	12	0	12	0	1	0	1
12		min	-792.279	3	-1214.338	3	-42.968	5	261	4	0	1	0	1
13	Totals:	max	3572.896	2	10349.007	1	0	2						
14		min	-4049.264	3	-6387.584	3	-1088.44	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	108.179	1	409.703	1	-10.736	12	0	3	.304	1	0	4
2			min	6.37	12	-560.594	3	-211.566	1	014	2	.018	12	0	3
3		2	max	108.179	1	286.401	1	-8.417	12	0	3	.159	4	.531	3
4			min	6.37	12	-394.592	3	-162.342	1	014	2	.007	12	387	1
5		3	max	108.179	1	163.099	1	-6.097	12	0	3	.088	5	.877	3
6			min	6.37	12	-228.589	3	-113.119	1	014	2	057	1	636	1
7		4	max	108.179	1	39.797	1	-3.778	12	0	3	.047	5	1.039	3
8			min	6.37	12	-62.587	3	-63.896	1	014	2	155	1	749	1
9		5	max	108.179	1	103.416	3	-1.378	10	0	3	.009	5	1.016	3
10			min	6.37	12	-83.505	1	-36.036	4	014	2	199	1	725	1
11		6	max	108.179	1	269.418	3	34.551	1	0	3	009	12	.809	3
12			min	2.71	15	-206.807	1	-28.301	5	014	2	188	1	564	1
13		7	max	108.179	1	435.421	3	83.775	1	0	3	007	12	.417	3
14			min	-8.777	5	-330.109	1	-24.771	5	014	2	122	1	265	1
15		8	max	108.179	1	601.423	3	132.998	1	0	3	.001	2	.17	1
16			min	-21.889	5	-453.41	1	-21.241	5	014	2	082	4	159	3
17		9	max	108.179	1	767.426	3	182.222	1	0	3	.173	1	.742	1
18			min	-35.001	5	-576.712	1	-17.711	5	014	2	101	5	919	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	108.179	1	700.014	1	-10.138	12	.004	14	.403	1	1.452	1
20			min	6.37	12	-933.428	3	-231.445	1	014	2	.015	12	-1.864	3
21		11	max	108.179	1	576.712	1	-7.819	12	.014	2	.173	1	.742	1
22			min	6.37	12	-767.426	3	-182.222	1	0	3	.005	12	919	3
23		12	max	108.179	1	453.41	1	-5.5	12	.014	2	.08	4	.17	1
24			min	6.37	12	-601.423	3	-132.998	1	0	3	004	3	159	3
25		13	max	108.179	1	330.109	1	-3.18	12	.014	2	.036	5	.417	3
26			min	6.37	12	-435.421	3	-83.775	1	0	3	122	1	265	1
27		14	max	108.179	1	206.807	1	861	12	.014	2	002	15	.809	3
28			min	6.37	12	-269.418	3	-41.785	4	0	3	188	1	564	1
29		15	max		1	83.505	1	14.672	1	.014	2	009	12	1.016	3
30		10	min	-2.122	5	-103.416	3	-29.662	5	0	3	199	1	725	1
31		16	max	108.179	1	62.587	3	63.896	1	.014	2	006	12	1.039	3
32		10	min	-15.233	5	-39.797	1	-26.132	5	0	3	155	1	749	1
33		17		108.179	1	228.589	3	113.119	1	.014	2	0	12	.877	3
34		17	max min	-28.345	5	-163.099	1	-22.602	5	0	3	111	4	636	1
		10					_								3
35		18	max	108.179	1	394.592	3	162.342	1	.014	2	.096	1	.531	
36		40	min	-41.457	5	-286.401	1	-19.072	5	0	3	119	5	387	1
37		19	max	108.179	1	560.594	3	211.566	1	.014	2	.304	1	0	1
38			min	-54.568	5	-409.703	1	-15.542	5	0	3	138	5	0	3
39	M14	1_	max	62.465	4	445.771	1	-11.088	12	.009	3	.354	1	0	4
40		_	min	3.212	12	-445.748	3	-219.134	1	012	1	.02	12	0	3
41		2	max	58.642	1	322.469	1	-8.768	12	.009	3	.234	4	.425	3
42			min	3.212	12	-319.445	3	-169.911	1	012	1	.009	12	427	1
43		3	max	58.642	1	199.167	1_	-6.449	12	.009	3	.133	5	.71	3
44			min	3.212	12	-193.142	3	-120.687	1	012	1	023	1	717	1
45		4	max	58.642	1	75.865	1	-4.13	12	.009	3	.072	5	.854	3
46			min	3.212	12	-66.839	3	-71.464	1	012	1	13	1	869	1
47		5	max	58.642	1	59.464	3	-1.81	12	.009	3	.015	5	.858	3
48			min	-3.498	5	-47.437	1	-55.532	4	012	1	182	1	885	1
49		6	max	58.642	1	185.767	3	26.983	1	.009	3	009	12	.722	3
50			min	-16.61	5	-170.739	1	-45.619	5	012	1	18	1	764	1
51		7	max	58.642	1	312.07	3	76.207	1	.009	3	007	12	.446	3
52			min	-29.721	5	-294.041	1	-42.089	5	012	1	122	1	506	1
53		8	max	58.642	1	438.373	3	125.43	1	.009	3	0	10	.029	3
54			min	-42.833	5	-417.343	1	-38.558	5	012	1	137	4	118	2
55		9	max	58.642	1	564.676	3	174.653	1	.009	3	.157	1	.422	1
56			min	-55.945	5	-540.644	1	-35.028	5	012	1	172	5	529	3
57		10	max	90.43	4	663.946	1	-9.787	12	.009	3	.378	1	1.091	1
58			min	3.212	12	-690.979	3	-223.877	1	012	1	.014	12	-1.226	3
59		11	max		4	540.644	1	-7.467	12	.012	1	.234	4	.422	1
60			min	3.212	12	-564.676	3	-174.653	1	009	3	.004	12	529	3
61		12			4	417.343	1	-5.148	12	.012	1	.13	4	.029	3
62			min	3.212	12	-438.373	3	-125.43	1	009	3	01	1	118	2
63		13			1	294.041	1	-2.828	12	.012	1	.068	5	.446	3
64		10	min	3.212	12	-312.07	3	-76.207	1	009	3	122	1	506	1
65		14	max		1	170.739	1	509	12	.012	1	.011	5	.722	3
66		17	min	3.212	12	-185.767	3	-56.692	4	009	3	18	1	764	1
67		15	max		1	47.437	1	22.24	1	.012	1	008	12	.858	3
68		13	min	3.212	12	-59.464	3	-45.895	5	009	3	182	1	885	1
69		16				66.839	3	71.464		.012			12	.854	3
		16	max		1		-		1		1	005			
70		17	min	-2.043	5	-75.865	1	-42.365	5	009	3	13	1	869	1
71		17	max	58.642	1	193.142	3	120.687	1	.012	1	.002	3	.71	3
72		40	min	-15.155	5	-199.167	1	-38.834	5	009	3	144	4	717	1
73		18	max		1	319.445	3	169.911	1	.012	1	.138	1	.425	3
74		40	min		5	-322.469		-35.304	5	009	3	177	5	427	1
75		<u> 19</u>	max	58.642	1	445.748	3	219.134	1	.012	_1_	.354	1_	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
76			min	-41.378	5	-445.771	1	-31.774	5	009	3	214	5	0	3
77	M15	1	max	101.605	5	562.59	2	-11.02	12	.013	1	.424	4	0	2
78			min	-62.925	1	-245.109	3	-219.056	1	008	3	.02	12	0	3
79		2	max	88.493	5	404.534	2	-8.7	12	.013	1	.289	4	.235	3
80			min	-62.925	1	-178.354	3	-169.832	1	008	3	.009	12	537	2
81		3	max	75.382	5	246.478	2	-6.381	12	.013	1	.172	5	.396	3
82			min	-62.925	1	-111.6	3	-120.609	1	008	3	024	1	899	2
83		4	max	62.27	5	88.421	2	-4.062	12	.013	1	.096	5	.483	3
84			min	-62.925	1	-44.845	3	-84.265	4	008	3	13	1	-1.085	2
85		5	max	49.158	5	21.909	3	-1.742	12	.013	1	.024	5	.496	3
86			min	-62.925	1	-69.635	2	-69.35	4	008	3	182	1	-1.095	2
87		6	max	36.047	5	88.664	3	27.061	1	.013	1	009	12	.435	3
88			min	-62.925	1	-227.691	2	-59.374	5	008	3	18	1	93	2
89		7	max	22.935	5	155.418	3	76.285	1	.013	1	007	12	.299	3
90			min	-62.925	1	-385.748	2	-55.843	5	008	3	138	4	589	2
91		8	max	9.823	5	222.173	3	125.508	1	.013	1	0	10	.089	3
92			min	-62.925	1	-543.804	2	-52.313	5	008	3	174	4	088	1
93		9	max	-2.071	15	288.927	3	174.732	1	.013	1	.157	1	.619	2
94			min	-62.925	1	-701.86	2	-48.783	5	008	3	224	5	195	3
95		10	max	-3.769	12	859.917	2	-9.855	12	.013	1	.423	4	1.487	2
96			min	-62.925	1	-355.682	3	-223.955	1	008	3	.014	12	553	3
97		11	max	-3.769	12	701.86	2	-7.535	12	.008	3	.287	4	.619	2
98			min	-62.925	1	-288.927	3	-174.732	1	013	1	.005	12	195	3
99		12	max	-3.769	12	543.804	2	-5.216	12	.008	3	.167	4	.089	3
100			min	-62.925	1	-222.173	3	-125.508	1	013	1	01	1	088	1
101		13	max	-3.769	12	385.748	2	-2.896	12	.008	3	.09	5	.299	3
102			min	-62.925	1	-155.418	3	-85.481	4	013	1	122	1	589	2
103		14	max	-3.769	12	227.691	2	577	12	.008	3	.018	5	.435	3
104			min	-62.925	1	-88.664	3	-70.566	4	013	1	18	1	93	2
105		15	max	-3.769	12	69.635	2	22.162	1	.008	3	008	12	.496	3
106			min	-74.692	4	-21.909	3	-59.656	5	013	1	182	1	-1.095	2
107		16	max	-3.769	12	44.845	3	71.385	1	.008	3	005	12	.483	3
108			min	-87.804	4	-88.421	2	-56.126	5	013	1	147	4	-1.085	2
109		17	max	-3.769	12	111.6	3	120.609	1	.008	3	.001	3	.396	3
110			min	-100.915	4	-246.478	2	-52.596	5	013	1	184	4	899	2
111		18	max	-3.769	12	178.354	3	169.832	1	.008	3	.138	1	.235	3
112			min	-114.027	4	-404.534	2	-49.066	5	013	1	232	5	537	2
113		19	max	-3.769	12	245.109	3	219.056	1	.008	3	.354	1	0	2
114				-127.139	4	-562.59	2	-45.536	5	013	1	284	5	0	5
115	M16	1	max	96.069	5	528.211	2	-10.536	12	.011	1	.317	4	0	2
116				-121.738		-219.944				011	3	.017	12	0	3
117		2		82.957	5	370.154	2	-8.217	12	.011	1	.206	4	.207	3
118				-121.738	1	-153.19	3	-162.82	1	011	3	.007	12	499	2
119		3		69.846	5	212.098	2	-5.898	12	.011	1	.122	5	.34	3
120				-121.738	1	-86.435	3	-113.597	1	011	3	055	1	823	2
121		4		56.734	5	54.042	2	-3.578	12	.011	1	.068	5	.399	3
122				-121.738	1	-19.681	3	-64.373	1	011	3	154	1	97	2
123		5		43.622	5	47.074	3	-1.259	12	.011	1	.018	5	.384	3
124				-121.738	1	-104.015	2	-47.686	4	011	3	198	1	943	2
125		6	max	30.511	5	113.828	3	34.074	1	.011	1	009	12	.295	3
126		Ĭ		-121.738	1	-262.071	2	-39.726	5	011	3	188	1	739	2
127		7		17.399	5	180.583	3	83.297	1	.011	1	007	12	.131	3
128				-121.738	1	-420.127	2	-36.196	5	011	3	122	1	36	2
129		8	max	4.287	5	247.337	3	132.52	1	.011	1	0	10	.194	2
130				-121.738	1	-578.183	2	-32.665	5	011	3	112	4	107	3
131		9	max		15	314.092	3	181.744	1	.011	1	.172	1	.925	2
132				-121.738	1	-736.24	2	-29.135	5	011	3	143	5	418	3
102			1111111	1211700		100.27		20.100		.011					

Model Name

Schletter, Inc. HCV

пС

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
133		10	max	-6.816	12	894.296	2	-10.338	12	.011	1	.401	1_	1.83	2
134			min	-121.738	1	-380.846	3	-230.967	1	011	3	.016	12	805	3
135		11	max	-5.497	15	736.24	2	-8.019	12	.011	3	.211	4	.925	2
136			min	-121.738	1	-314.092	3	-181.744	1	011	1	.006	12	418	3
137		12	max	-6.816	12	578.183	2	-5.699	12	.011	3	.11	4	.194	2
138			min	-121.738	1	-247.337	3	-132.52	1	011	1	003	3	107	3
139		13	max	-6.816	12	420.127	2	-3.38	12	.011	3	.053	5	.131	3
140			min	-121.738	1	-180.583	3	-83.297	1	011	1	122	1	36	2
141		14	max	-6.816	12	262.071	2	-1.06	12	.011	3	.002	5	.295	3
142			min	-121.738	1	-113.828	3	-53.224	4	011	1	188	1	739	2
143		15	max	-6.816	12	104.015	2	15.15	1	.011	3	009	12	.384	3
144			min	-121.738	1	-47.074	3	-41.052	5	011	1	198	1	943	2
145		16	max	-6.816	12	19.681	3	64.373	1	.011	3	006	12	.399	3
146			min	-121.738	1	-54.042	2	-37.522	5	011	1	154	1	97	2
147		17	max	-6.816	12	86.435	3	113.597	1	.011	3	001	12	.34	3
148			min	-121.738	1	-212.098	2	-33.992	5	011	1	144	4	823	2
149		18	max	-6.816	12	153.19	3	162.82	1	.011	3	.099	1	.207	3
150			min	-129.875	4	-370.154	2	-30.462	5	011	1	165	5	499	2
151		19	max	-6.816	12	219.944	3	212.044	1	.011	3	.307	1	0	2
152			min	-142.987	4	-528.211	2	-26.931	5	011	1	197	5	0	5
153	M2	1	max	972.702	1	2.056	4	.605	1	0	12	0	3	0	1
154			min	-1060.602	3	.498	15	-37.161	4	0	4	0	1	0	1
155		2	max	973.232	1	1.985	4	.605	1	0	12	0	1	0	15
156			min	-1060.205	3	.481	15	-37.623	4	0	4	013	4	0	4
157		3	max	973.761	1	1.914	4	.605	1	0	12	0	1	0	15
158			min	-1059.808	3	.464	15	-38.084	4	0	4	027	4	001	4
159		4	max	974.29	1	1.843	4	.605	1	0	12	0	1	0	15
160			min	-1059.411	3	.448	15	-38.545	4	0	4	041	4	002	4
161		5	max		1	1.772	4	.605	1	0	12	0	1	0	15
162			min	-1059.014	3	.431	15	-39.006	4	0	4	055	4	003	4
163		6	max	975.349	1	1.701	4	.605	1	0	12	.001	1	0	15
164			min	-1058.617	3	.414	15	-39.467	4	0	4	069	4	003	4
165		7	max	975.878	1	1.63	4	.605	1	0	12	.001	1	0	15
166			min	-1058.221	3	.398	15	-39.929	4	0	4	083	4	004	4
167		8	max	976.407	1	1.559	4	.605	1	0	12	.002	1	001	15
168			min	-1057.824	3	.381	15	-40.39	4	0	4	097	4	005	4
169		9	max	976.937	1	1.488	4	.605	1	0	12	.002	1	001	15
170			min	-1057.427	3	.364	15	-40.851	4	0	4	112	4	005	4
171		10	max		1	1.417	4	.605	1	0	12	.002	1	001	15
172			min	-1057.03	3	.348	15	-41.312	4	0	4	127	4	006	4
173		11		977.995	1	1.345	4	.605	1	0	12	.002	1	001	15
174			min	-1056.633	3	.331	15	-41.774	4	0	4	142	4	006	4
175		12	max		1	1.274	4	.605	1	0	12	.002	1	002	15
176		1,2	min		3	.314	15	-42.235	4	0	4	157	4	007	4
177		13	max		1	1.203	4	.605	1	0	12	.003	1	007	15
178		13	min	-1055.839	3	.297	15	-42.696	4	0	4	172	4	002	4
179		14		979.583	1	1.132	4	.605	1	0	12	.003	1	002	15
180		17	min	-1055.442	3	.281	15	-43.157	4	0	4	187	4	002	4
181		15		980.112	1	1.061	4	.605	1	0	12	.003	1	007	15
182		13	min	-1055.045	3	.263	12	-43.618	4	0	4	203	4	002	4
183		16		980.642	1	.99	4	.605	1	0	12	.003	1	002	15
184		10	min	-1054.648	3	.235	12	-44.08	4	0	4	219	4	002	4
185		17			1	.919	4	.605	1	0	12	.003	1	002	15
186		17	max min	-1054.251	3		12	-44.541	4	0	4	234	4	002	4
187		18		981.7	1	.208 .848	4	.605	1		12	.004	_ 4 _	009	
188		10	max min	-1053.854	3		12	-45.002	4	0	4	251	4		15
		10				.18				0				009	-
189		19	max	982.23	1	.777	4	.605	_1_	0	12	.004	<u>1</u>	002	15

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]		z Shear[lb]		Torque[k-ft]			LC	z-z Mome	LC
190			min	-1053.457	3	.152	12	-45.463	4	0	4	267	4	009	4
191	<u>M3</u>	1	max		2	8.9	4	1.931	4	0	12	0	1	.009	4
192			min	-702.761	3_	2.103	15	.026	12	0	4	029	4	.002	15
193		2	max	546.378	2	8.031	4	2.536	4	0	12	0	1_	.005	4
194			min	-702.888	3	1.899	15	.026	12	0	4	028	4	.001	12
195		3	max	546.208	2	7.162	4	3.141	4	0	12	0	1	.002	2
196			min	-703.016	3_	1.695	15	.026	12	0	4	026	4	0	3
197		4	max	546.037	2	6.293	4	3.746	4	0	12	.001	1_	0	15
198			min	-703.144	3	1.49	15	.026	12	0	4	025	4	002	3
199		5	max	545.867	2	5.424	4	4.351	4	0	12	.001	1_	0	15
200			min	-703.272	3	1.286	15	.026	12	0	4	023	4	004	6
201		6	max		2	4.555	4	4.956	4	0	12	.002	1_	002	15
202			min	-703.4	3	1.082	15	.026	12	0	4	021	5	007	6
203		7	max	545.526	2	3.686	4	5.561	4	0	12	.002	1	002	15
204			min	-703.527	3	.878	15	.026	12	0	4	018	5	009	6
205		8	max	545.356	_2_	2.818	4	6.166	4	0	12	.002	1_	002	15
206			min	-703.655	3	.673	15	.026	12	0	4	016	5	01	6
207		9	max	545.185	2	1.949	4	6.771	4	0	12	.002	1	003	15
208			min	-703.783	3	.469	15	.026	12	0	4	013	5	011	6
209		10	max	545.015	2	1.08	4	7.377	4	0	12	.002	1	003	15
210			min	-703.911	3	.265	15	.026	12	0	4	009	5	012	6
211		11	max	544.845	2	.266	2	7.982	4	0	12	.003	1	003	15
212			min	-704.038	3	059	3	.026	12	0	4	006	5	012	6
213		12	max	544.674	2	144	15	8.587	4	0	12	.003	1	003	15
214			min	-704.166	3	659	6	.026	12	0	4	002	5	012	6
215		13	max	544.504	2	348	15	9.192	4	0	12	.003	1	003	15
216			min	-704.294	3	-1.528	6	.026	12	0	4	0	12	012	6
217		14	max	544.334	2	552	15	9.797	4	0	12	.007	4	003	15
218			min	-704.422	3	-2.397	6	.026	12	0	4	0	12	011	6
219		15	max	544.163	2	756	15	10.402	4	0	12	.012	4	002	15
220			min	-704.549	3	-3.266	6	.026	12	0	4	0	12	009	6
221		16	max	543.993	2	961	15	11.007	4	0	12	.017	4	002	15
222			min	-704.677	3	-4.135	6	.026	12	0	4	0	12	008	6
223		17	max	543.823	2	-1.165	15	11.612	4	0	12	.022	4	001	15
224			min	-704.805	3	-5.003	6	.026	12	0	4	0	12	006	6
225		18	max	543.652	2	-1.369	15	12.217	4	0	12	.028	4	0	15
226			min	-704.933	3	-5.872	6	.026	12	0	4	0	12	003	6
227		19	max	543.482	2	-1.573	15	12.822	4	0	12	.034	4	0	1
228			min	-705.06	3	-6.741	6	.026	12	0	4	0	12	0	1
229	M4	1	max	1095.495	1	0	1	-1.067	12	0	1	.027	4	0	1
230			min	-57.435	5	0	1	-334.056	4	0	1	0	12	0	1
231		2	max	1095.665	1	0	1	-1.067	12	0	1	.001	1	0	1
232			min	-57.356	5	0	1	-334.204	4	0	1	011	4	0	1
233		3	max	1095.835	1	0	1	-1.067	12	0	1	0	12	0	1
234			min	-57.276	5	0	1	-334.352	4	0	1	05	4	0	1
235		4	max	1096.006	1	0	1	-1.067	12	0	1	0	12	0	1
236			min		5	0	1	-334.499		0	1	088	4	0	1
237		5	max	1096.176	1	0	1	-1.067	12	0	1	0	12	0	1
238				-57.117	5	0	1	-334.647	4	0	1	126	4	0	1
239		6		1096.346	1	0	1	-1.067	12	0	1	0	12	0	1
240				-57.038	5	0	1	-334.795		0	1	165	4	0	1
241		7		1096.517	1	0	1	-1.067	12	0	1	0	12	0	1
242			min		5	0	1	-334.942		0	1	203	4	0	1
243		8		1096.687	1	0	1	-1.067	12	0	1	0	12	0	1
244			min		5	0	1	-335.09	4	0	1	242	4	0	1
245		9		1096.858	1	0	1	-1.067	12	0	1	0	12	0	1
246			min		5	0	1	-335.238		0	1	28	4	0	1
0															

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

				<u> </u>											
	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	_LC_
247		10	max	1097.028	_1_	0	1	-1.067	12	0	1	0	12	0	1
248			min	-56.72	5	0	1	-335.385	4	0	1	319	4	0	1
249		11	max	1097.198	1	0	1	-1.067	12	0	1	001	12	0	1
250			min	-56.64	5	0	1	-335.533	4	0	1	357	4	0	1
251		12	max	1097.369	1	0	1	-1.067	12	0	1	001	12	0	1
252			min	-56.561	5	0	1	-335.68	4	0	1	396	4	0	1
253		13		1097.539	1	0	1	-1.067	12	0	1	001	12	0	1
254			min	-56.481	5	0	1	-335.828	4	0	1	434	4	0	1
255		14		1097.709	1	0	1	-1.067	12	0	1	001	12	0	1
256		17	min	-56.402	5	0	1	-335.976	4	0	1	473	4	0	1
257		15	max			0	1	-1.067	12	0	1	002	12	0	1
258		15		-56.322	5	0	1	-336.123	4	0	1	511	4	0	1
		16	min				1								
259		16	max		1_	0		-1.067	12	0	1	002	12	0	1
260		4-	min	-56.243	5_	0	1	-336.271	4	0	1	55	4	0	1
261		17	max		_1_	0	1	-1.067	12	0	1	002	12	0	1
262			min	-56.163	5_	0	1	-336.419		0	1	589	4	0	1
263		18		1098.391	_1_	0	1	-1.067	12	0	1	002	12	0	1
264			min	-56.084	5	0	1	-336.566	4	0	1	627	4	0	1
265		19	max	1098.561	_1_	0	1	-1.067	12	0	1	002	12	0	1
266			min	-56.004	5	0	1	-336.714	4	0	1	666	4	0	1
267	M6	1	max	3079.301	1_	2.149	2	0	1	0	1	0	4	0	1
268			min	-3431.658	3	.354	12	-37.604	4	0	4	0	1_	0	1
269		2	max	3079.83	1	2.094	2	0	1	0	1	0	1	0	12
270			min	-3431.261	3	.327	12	-38.065	4	0	4	014	4	0	2
271		3		3080.359	1	2.038	2	0	1	0	1	0	1	0	12
272			min	-3430.864	3	.299	12	-38.526	4	0	4	027	4	002	2
273		4		3080.889	1	1.983	2	0	1	0	1	0	1	0	12
274			min	-3430.467	3	.271	12	-38.987	4	0	4	041	4	002	2
275		5		3081.418	1	1.928	2	0	1	0	1	0	1	0	12
276			min	-3430.07	3	.244	12	-39.449	4	0	4	055	4	003	2
277		6		3081.947		1.872	2	0	1	0	1	0	1	0	12
278		0	min		3	.216	12	-39.91	4	0	4	07	4	004	2
		7		3082.476			2		1		1			0	12
279		-			1_	1.817		0	•	0		0	1_	_	
280			min	-3429.276	3	.188	12	-40.371	4	0	4	084	4_	004	2
281		8		3083.006	1_	1.761	2	0	1	0	1	0	1_	0	12
282			min	-3428.879	3	.161	12	-40.832	4	0	4	098	4_	005	2
283		9		3083.535	_1_	1.706	2	0	1	0	1	0	1_	0	12
284			min	-3428.482	3	.133	12	-41.293	4	0	4	113	4	006	2
285		10		3084.064	_1_	1.651	2	0	1_	0	_1_	0	_1_	0	12
286			min		3	.105	12	-41.755	4	0	4	128	4	006	2
287		11		3084.594	_1_	1.595	2	0	1	0	1	0	_1_	0	12
288			min		3	.073	3	-42.216	4	0	4	143	4	007	2
289		12	max	3085.123	1_	1.54	2	0	1	0	1	0	1_	0	12
290			min	-3427.291	3	.031	3	-42.677	4	0	4	158	4	007	2
291		13	max	3085.652	1	1.485	2	0	1	0	1	0	1	0	12
292			min		3	01	3	-43.138	4	0	4	174	4	008	2
293		14		3086.181	1	1.429	2	0	1	0	1	0	1	0	12
294			min		3	052	3	-43.6	4	0	4	189	4	008	2
295		15		3086.711	1	1.374	2	0	1	0	1	0	1	0	12
296			min	-3426.1	3	093	3	-44.061	4	0	4	205	4	009	2
297		16		3087.24	1	1.319	2	0	1	0	1	0	1	0	12
298		10	min		3	135	3	-44.522	4	0	4	221	4	009	2
		17		3087.769			2		1		1		1		
299		17			1	1.263		0		0		0		0	12
300		40	min		3_	176	3	-44.983	4	0	4	237	4	01	2
301		18		3088.299	1_	1.208	2	0	1	0	11	0	1_	0	12
302		4.0	min		3_	218	3	-45.444	4	0	4	253	4_	01	2
303		19	max	3088.828	1	1.153	2	0	1	0	1	0	1_	0	12

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

		Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]				z-z Mome	LC
304	n 47		min	-3424.512	3	259	3	-45.906	4	0	4	27	4	011	2
305	M7	1		2093.011	2	8.909	6	1.399	4	0	1	0	1	.011	2
306			min	-2170.883	3	2.091	15	0	1	0	4	029	4	0	12
307		2		2092.841	2	8.04	6	2.004	4	0	1	0	1	.007	2
308			min	-2171.011	3	1.887	15	0	1	0	4	028	4	001	3
309		3		2092.671	2	7.171	6	2.609	4	0	1	0	1	.004	2
310			min	-2171.138	3	1.683	15	0	1	0	4	027	4	003	3
311		4	max	2092.5	2	6.302	6	3.215	4	0	1	0	1	.002	2
312		_	min	-2171.266	3	1.479	15	0	1	0	4	026	4	005	3
313		5	max	2092.33	2	5.433	6	3.82	4	0	1	0	1	0	2
314		_	min	-2171.394	3_	1.274	15	0	1_	0	4	024	4	006	3
315		6		2092.159	2	4.564	6	4.425	4	0	1	0	1_	002	15
316			min	-2171.522	3_	1.07	15	0	1	0	4	022	4	007	3
317		7		2091.989	2	3.695	6	5.03	4	0	1	0	1	002	15
318		_	min	-2171.65	3_	.866	15	0	1	0	4	02	4	009	4
319		8		2091.819	2	2.826	6	5.635	4	0	1	0	1_	002	15
320		_	min	-2171.777	3	.662	15	0	1	0	4	017	4	01	4
321		9		2091.648	2	1.957	6	6.24	4	0	1	0	1	003	15
322			min	-2171.905	3	.419	12	0	1	0	4	015	4	011	4
323		10		2091.478	2	1.258	2	6.845	4	0	1	0	1	003	15
324			min	-2172.033	3	.08	12	0	1	0	4	011	4	012	4
325		11		2091.308	2	.581	2	7.45	4	0	1	0	1	003	15
326			min	-2172.161	3_	421	3	0	1	0	4	008	4	012	4
327		12		2091.137	2	096	2	8.055	4	0	_1_	0	1_	003	15
328			min	-2172.288	3	929	3	0	1	0	4	004	4	012	4
329		13	max	2090.967	2	359	15	8.66	4	0	1	0	1	003	15
330			min	-2172.416	3	-1.518	4	0	1	0	4	0	4	012	4
331		14	max	2090.797	2	564	15	9.265	4	0	1	.004	4	003	15
332			min	-2172.544	3	-2.387	4	0	1	0	4	0	1	011	4
333		15	max	2090.626	2	768	15	9.87	4	0	1	.008	4	002	15
334			min	-2172.672	3	-3.256	4	0	1	0	4	0	1	009	4
335		16	max	2090.456	2	972	15	10.475	4	0	1_	.013	4	002	15
336			min	-2172.799	3	-4.125	4	0	1	0	4	0	1	008	4
337		17	max	2090.286	2	-1.176	15	11.08	4	0	1	.018	4	001	15
338			min	-2172.927	3	-4.994	4	0	1	0	4	0	1	006	4
339		18	max	2090.115	2	-1.381	15	11.686	4	0	1_	.023	4	0	15
340			min	-2173.055	3	-5.863	4	0	1	0	4	0	1	003	4
341		19	max	2089.945	2	-1.585	15	12.291	4	0	1_	.029	4	0	1
342			min	-2173.183	3	-6.732	4	0	1	0	4	0	1	0	1
343	M8	1	max	2784.202	_1_	0	1	0	1	0	1	.023	4	0	1
344			min	-59.226	3	0	1	-317.409	4	0	1	0	1	0	1
345		2	max	2784.373	_1_	0	1	0	1	0	1	0	1	0	1
346			min		3	0	1	-317.556		0	1	013	4	0	1
347		3	max	2784.543	_1_	0	1	0	1	0	1	0	1	0	1
348			min	-58.971	3	0	1	-317.704	4	0	1	05	4	0	1
349		4	max	2784.713	1	0	1	0	1	0	1	0	1	0	1
350			min	-58.843	3	0	1	-317.852	4	0	1	086	4	0	1
351		5	max	2784.884	1	0	1	0	1	0	1	0	1	0	1
352			min	-58.715	3	0	1	-317.999	4	0	1	123	4	0	1
353		6		2785.054	1	0	1	0	1	0	1	0	1	0	1
354				-58.588	3	0	1	-318.147	4	0	1	159	4	0	1
355		7		2785.224	1	0	1	0	1	0	1	0	1	0	1
356			min	-58.46	3	0	1	-318.295	4	0	1	196	4	0	1
357		8		2785.395	1	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	-318.442	4	0	1	232	4	0	1
359		9		2785.565	1	0	1	0	1	0	1	0	1	0	1
360			min		3	0	1	-318.59	4	0	1	269	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	v Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
361		10	max	2785.735	1	0	1	0	1	0	1	0	1	0	1
362			min		3	0	1	-318.738	4	0	1	305	4	0	1
363		11		2785.906	1	0	1	0	1	0	1	0	1	0	1
364				-57.949	3	0	1	-318.885	4	0	1	342	4	0	1
365		12		2786.076	1	0	1	0	1	0	1	0	1	0	1
366			min	-57.821	3	0	1	-319.033	4	0	1	379	4	Ö	1
367		13		2786.247	1	0	1	0	1	0	1	0	1	0	1
368				-57.693	3	0	1	-319.18	4	0	1	415	4	0	1
369		14		2786.417	1	0	1	0	1	0	1	0	1	0	1
370				-57.566	3	0	1	-319.328	4	0	1	452	4	0	1
371		15		2786.587	1	0	1	0	1	0	1	0	1	0	1
372		-10	min	-57.438	3	0	1	-319.476	4	0	1	489	4	0	1
373		16		2786.758	1	0	1	0	1	0	1	0	1	0	1
374		10	min	-57.31	3	0	1	-319.623	4	0	1	525	4	0	1
375		17		2786.928	1	0	1	0	1	0	1	0	1	0	1
376		17	min	-57.182	3	0	1	-319.771	4	0	1	562	4	0	1
377		18		2787.098	1	0	1	0	1	0	1	0	1	0	1
378		10		-57.055	3	0	1	-319.919	4	0	1	599	4	0	1
379		19		2787.269	1	0	1	0	1	0	1	0	1	0	1
380		13	min	-56.927	3	0	1	-320.066	4	0	1	635	4	0	1
381	M10	1	max		<u> </u>	1.99	6	034	12	0	1	0	4	0	1
382	IVITO			-1060.602	3	.453	15	-37.53	4	0	5	0	3	0	1
383		2		973.232	1	1.919	6	034	12	0	1	0	10	0	15
384			min	-1060.205	3	.437	15	-37.992	4	0	5	014	4	0	6
385		3			<u> </u>	1.848	6	034	12	0	1	0	12	0	15
386		3	max	-1059.808	3	.42	15	-38.453	4	0	5	027	4	001	6
387		4	_	974.29	1	1.777	6	034	12	0	1	0	12	0	15
388		4		-1059.411	3	.403	15	-38.914	4	0	5	041	4	002	6
389		5		974.819	<u> </u>	1.706	6	034	12	0	1	0	12	002	15
390		5		-1059.014	3	.387	15	-39.375	4	0	5	055	4	003	6
391		6		975.349	<u> </u>	1.634	6	034	12	0	<u> </u>	033 0	12	003 0	15
392		0		-1058.617	3	.37	15	-39.836	4	0	5	069	4	003	6
		7		975.878	<u> </u>	1.563	6	034	12	0	<u> </u>	069	12	003 0	15
393 394			min	-1058.221	3	.353	15	-40.298	4	0	5	084	4	004	6
		0									<u> </u>		12		
395		8	max	976.407	<u>1</u> 3	1.492	6 1E	034	12	0	5	0		0	15
396		0	min			.337	15	-40.759	4		<u>ວ</u> 1	098	4	004	6
397		9		976.937 -1057.427	<u>1</u> 3	1.421	6 15	034 -41.22	12	0		113	12	001	15
398		10				.32	6		<u>4</u> 12	0	<u>5</u>	0	12	005	6
399		10		977.466	1	1.35		034		0		_		001	15
400		11		-1057.03	3	.303	15	-41.681	4	0	<u>5</u>	128	4	005	6
401		11		977.995 -1056.633	1	1.279	6	034	12	0		1/12	12	001	15
402		12			3	.286	15	-42.143	4	0	5	143	4	006	15
403		12		978.524	1	1.208	6	034	12	0	1	150	12	001	15
404		40		-1056.236	3	.27	15	-42.604	4	0	5	158	4	006	15
405		13		979.054	<u>1</u> 3	1.137	6	034	12	0	1	172	12	002	15
406		1.4	min			.253	15	-43.065	4		5	173 0	4	007 002	15
407		14		979.583	1	1.066	6	034	12	0	1	189	12		15
408		4.5			3	.236	15	-43.526	4	0	5		4	007	6
409		15		980.112	1	.995	6	034	12	0	1	0	12	002	15
410		4.0		-1055.045	3	.22	15	-43.987	4	0	5	205	4	007	6
411		16		980.642	1_	.924	6	034	12	0	1_	0	12	002	15
412		4-		-1054.648	3	.203	15	-44.449	4	0	5	221	4	008	6
413		17	max		1_	.853	6	034	12	0	1_	0	12	002	15
414			min	-1054.251	3_	.186	15	-44.91	4	0	5	237	4	008	6
415		18	max	981.7	1_	.794	2	034	12	0	1_	0	12	002	15
416			min	-1053.854	3	.17	15	-45.371	4	0	5	253	4	008	6
417		19	max	982.23	_1_	.739	2	034	12	0	_1_	0	12	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
418			min	-1053.457	3	.152	12	-45.832	4	0	5	269	4	009	6
419	M11	1	max	546.548	2	8.849	6	1.645	5	0	1	0	12	.009	6
420			min	-702.761	3	2.069	15	472	1	0	4	029	4	.002	15
421		2	max	546.378	2	7.98	6	2.251	5	0	1	0	12	.005	2
422			min	-702.888	3	1.865	15	472	1	0	4	028	4	.001	15
423		3	max	546.208	2	7.112	6	2.856	5	0	1	0	12	.002	2
424			min	-703.016	3	1.661	15	472	1	0	4	027	4	0	3
425		4	max	546.037	2	6.243	6	3.461	5	0	1	0	12	0	2
426			min	-703.144	3	1.457	15	472	1	0	4	025	4	002	3
427		5	max	545.867	2	5.374	6	4.066	5	0	1	0	12	001	15
428			min	-703.272	3	1.252	15	472	1	0	4	023	4	005	4
429		6	max	545.697	2	4.505	6	4.671	5	0	1	0	12	002	15
430			min	-703.4	3	1.048	15	472	1	0	4	021	4	007	4
431		7	max	545.526	2	3.636	6	5.276	5	0	1	0	12	002	15
432			min	-703.527	3	.844	15	472	1	0	4	019	4	009	4
433		8	max	545.356	2	2.767	6	5.881	5	0	1	0	12	003	15
434			min	-703.655	3	.64	15	472	1	0	4	016	4	01	4
435		9	max	545.185	2	1.898	6	6.486	5	0	1	0	12	003	15
436			min	-703.783	3	.435	15	472	1	0	4	014	4	012	4
437		10	max	545.015	2	1.029	6	7.091	5	0	1	0	12	003	15
438			min	-703.911	3	.231	15	472	1	0	4	01	4	012	4
439		11	max	544.845	2	.266	2	7.696	5	0	1	0	12	003	15
440			min	-704.038	3	059	3	472	1	0	4	007	4	012	4
441		12	max	544.674	2	177	15	8.301	5	0	1	0	12	003	15
442			min	-704.166	3	709	4	472	1	0	4	003	4	012	4
443		13	max	544.504	2	382	15	8.906	5	0	1	.002	5	003	15
444			min	-704.294	3	-1.578	4	472	1	0	4	003	1	012	4
445		14	max	544.334	2	586	15	9.511	5	0	1	.006	5	003	15
446		17	min	-704.422	3	-2.447	4	472	1	0	4	003	1	011	4
447		15	max	544.163	2	79	15	10.116	5	0	1	.011	5	002	15
448		13	min	-704.549	3	-3.316	4	472	1	0	4	004	1	01	4
449		16	max	543.993	2	994	15	10.722	5	0	1	.015	5	002	15
450		10	min	-704.677	3	-4.185	4	472	1	0	4	004	1	002	4
451		17	max	543.823	2	-1.199	15	11.327	5	0	1	.021	5	001	15
452		17	min	-704.805	3	-5.054	4	472	1	0	4	004	1	006	4
453		18	max	543.652	2	-1.403	15	11.932	5	0	1	.026	5	0	15
454		10	min	-704.933	3	-5.923	4	472	1	0	4	004	1	003	4
455		19		543.482	2	-1.607	15	12.537	5	0	1	.032	5	0	1
456		19	max min	-705.06	3	-6.792	4	472	1	0	4	004	1	0	1
457	M12	1		1095.495	<u> </u>		1	19.333	1	0	1	.026		0	1
	IVIIZ					0	1				1		<u>5</u> 1	0	1
458		2	min		12		1	-322.21	1	0	1	004	12		1
459 460		2	min	1095.665 11.003	<u>1</u> 12	0	1	19.333 -322.357	4	0	<u>1</u> 1	012	4	0	1
461		3		1095.835		0	1	19.333	1	0	1	012 0	<u>4</u> 1	0	1
462		J	min	11.088	12	0	1	-322.505	4	0	1	049	4	0	1
		1					1				1		_ 4		
463		4		1096.006		0		19.333	1	0		.003		0	1
464		F	min	11.173	12	0	1	-322.653	4	0	1	086	4_	0	1
465		5		1096.176	1	0	1	19.333	1	0	<u>1</u> 1	.005	1_4	0	1
466		_	min		12	0	1	-322.8	4	0		123	4	0	1
467		6		1096.346	1	0	1	19.333	1	0	1	.008	11	0	1
468		-	min		12	0	1	-322.948		0	1_	16	4	0	1
469		7		1096.517	1_	0	1	19.333	1	0	1	.01	1_	0	1
470			min	11.429	12	0	1	-323.096		0	1_	197	4	0	1
471		8		1096.687	1	0	1	19.333	1	0	1	.012	1_	0	1
472			min	11.514	12	0	1	-323.243	4	0	1_	234	4	0	1
473		9		1096.858		0	1	19.333	1	0	1	.014	_1_	0	1
474			min	11.599	12	0	1	-323.391	4	0	_1_	271	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

475	Member	Sec	I	Axial[lb]						Torque[k-ft]					1
475		10		1097.028	1	0	1	19.333	1_1	0	1	.016	1_4	0	1
476		4.4	min	11.684	12	0	1_	-323.539	4	0	1_	309	4	0	1
477		11		1097.198	1	0	1	19.333	1_1	0	1	.019	1_4	0	1
478		40	min		12	0	1	-323.686	4	0	1	346	4	0	1
479		12		1097.369	<u>1</u> 12	0	1	19.333	1_4	0	1	.021	<u>1</u> 4	0	1
480		12	min	11.855		0		-323.834	4	0	_	383		0	-
481		13		1097.539	1_	0	1	19.333	1_1	0	1_	.023	1_	0	1
482		4.4	min	11.94	12	0	1_	-323.981	4	0	1_	42	4_	0	1
483		14		1097.709	1_	0	1_	19.333	1_	0	1_	.025	1_	0	1
484		4.5	min	12.025	12	0	1_	-324.129	4	0	1_	457	4_	0	1
485		15	max		1_	0	1	19.333	1	0	1	.028	1	0	1
486		10	min	12.11	12	0	1	-324.277	4	0	1_	495	4_	0	1
487		16	max		_1_	0	1_	19.333	_1_	0	1_	.03	_1_	0	1
488			min	12.196	12	0	1_	-324.424	4	0	1	532	4	0	1
489		17	max	1098.22	_1_	0	1	19.333	1	0	1	.032	_1_	0	1
490			min	12.281	12	0	1	-324.572	4	0	1_	569	4	0	1
491		18		1098.391	_1_	0	_1_	19.333	_1_	0	_1_	.034	_1_	0	1
492			min	12.366	12	0	1_	-324.72	4	0	1_	606	4	0	1
493		19	max	1098.561	_1_	0	1_	19.333	_1_	0	_1_	.036	_1_	0	1
494			min	12.451	12	0	1	-324.867	4	0	1	644	4	0	1
495	M1	1	max	211.573	_1_	560.546	3	54.5	5	0	1	.304	1	0	3
496			min	-15.542	5	-407.43	1	-107.96	1	0	3	138	5	014	2
497		2	max	212.416	1	559.452	3	55.961	5	0	1	.237	1	.24	1
498			min	-15.149	5	-408.889	1	-107.96	1	0	3	104	5	348	3
499		3	max	450.049	3	474.072	1	21.5	5	0	3	.17	1	.485	1
500			min	-278.026	2	-413.089	3	-107.687	1	0	1	069	5	684	3
501		4	max	450.681	3	472.613	1	22.96	5	0	3	.103	1	.191	1
502			min	-277.183	2	-414.183	3	-107.687	1	0	1	055	5	427	3
503		5	max		3	471.154	1	24.42	5	0	3	.036	1	005	15
504			min	-276.341	2	-415.278	3	-107.687	1	0	1	041	5	17	3
505		6	max		3	469.695	1	25.88	5	0	3	002	12	.088	3
506			min	-275.499	2	-416.372	3	-107.687	1	0	1	032	4	399	2
507		7	max		3	468.236	1	27.341	5	0	3	006	12	.347	3
508				-274.656	2	-417.466	3	-107.687	1	0	1	097	1	685	1
509		8	max		3	466.777	1	28.801	5	0	3	.009	5	.606	3
510			min	-273.814	2	-418.561	3	-107.687	1	0	1	164	1	975	1
511		9	max		3	39.886	2	71.407	5	0	9	.101	1	.709	3
512			min	-182.065	2	.439	15	-166.393	1	0	3	172	5	-1.112	1
513		10	max		3	38.427	2	72.867	5	0	9	0	12	.691	3
514				-181.222	2	004	5	-166.393	1	0	3	129	4	-1.125	1
515		11		471.808	3	36.968	2	74.327	5	0	9	006	12	.674	3
516			min	-180.38	2	-1.791	4	-166.393	1	0	3	106	4	-1.138	1
517		12		489.037	3	274.645	3	186.806	5	0	2	.161	1	.588	3
518		12		-109.299	5	-526.187	2	-103.56	1	0	3	291	5	-1.007	2
519		13		489.668	3	273.551	3	188.266	5	0	2	.096	1	.418	3
520		10		-108.906	5	-527.646	2	-103.56	1	0	3	175	5	688	1
521		14	max		3	272.456	3	189.726	5	0	2	.032	1	.248	3
522		17		-108.513	5	-529.105	2	-103.56	1	0	3	058	5	37	1
523		15		490.932	3	271.362	3	191.186	5	0	2	.061	5	.08	3
524		13	min		5	-530.564	2	-103.56	1	0	3	032	1	052	1
525		16		491.564	3	270.268	3	192.646	5	0	2	.18	5	.306	2
		10									3		<u> </u>	088	3
526		17		-107.726	5	-532.023	2	-103.56	1_	0		096 .3			
527		17		492.196	3_	269.173	3	194.106	5	0	2		_5_	.637	2
528		40		-107.333	5_	-533.482	2	-103.56	1	0	3	161	1	256	3
529		18	max		_5_	530.509	2	-6.817	12	0	5	.268	5_1	.319	2
530		40	min		1_	-218.954	3	-144.597	4	0	2	231	1	126	3
531		19	max	26.931	5	529.05	2	-6.817	12	0	5	.197	5	.011	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

- 00	Member	Sec	1 .	Axial[lb]						Torque[k-ft]					
532	1.45	_		-212.038	1_	-220.049	3	-143.137	4_	0	2	307	1	011	1
533	M5	1	max		1_	1866.72	3	111.683	5	0	1	0	1	.028	2
534			min	20.278	12	-1388.287	1	0	_1_	0	4_	301	4	0	3
535		2	max		_1_	1865.626	3	113.143	5	0	1	0	1	.889	1
536			min	20.699	12	-1389.746	1	0	_1_	0	4_	232	4	-1.158	3
537		3	max		3_	1385.797	1	83.441	4_	0	4	0	1	1.721	1
538		_	min	-967.722	2	-1297.183	3	0	_1_	0	1_	162	4	-2.281	3
539		4	max	1428.388	<u>3</u>	1384.338	1_	84.901	_4_	0	_4_	0	1_	.862	1
540			min	-966.88	2	-1298.277	3	0	1_	0	1	109	4	-1.475	3
541		5	max	1429.02	3_	1382.879	1	86.361	_4_	0	_4_	0	1	.024	9
542			min	-966.037	2	-1299.371	3	0	_1_	0	1_	056	4	669	3
543		6	max	1429.652	3_	1381.42	1_	87.821	4	0	4_	0	1	.138	3
544			min	-965.195	2	-1300.466	3	0	1	0	1	002	5	866	2
545		7	max	1430.283	3	1379.961	1	89.281	4	0	4	.053	4	.945	3
546			min	-964.352	2	-1301.56	3	0	1	0	1	0	1	-1.712	1
547		8	max	1430.915	3	1378.501	1	90.741	4	0	4	.109	4	1.753	3
548			min	-963.51	2	-1302.654	3	0	1	0	1	0	1	-2.568	1
549		9	max	1460.762	3	133.21	2	238.981	4	0	1	0	1	2.02	3
550			min	-773.985	2	.445	15	0	1	0	1	262	4	-2.914	1
551		10	max	1461.394	3	131.751	2	240.442	4	0	1	0	1	1.956	3
552			min	-773.143	2	.005	15	0	1	0	1	114	4	-2.958	1
553		11	max	1462.026	3	130.292	2	241.902	4	0	1	.036	4	1.892	3
554			min	-772.3	2	-1.458	6	0	1	0	1	0	1	-3.002	1
555		12	_	1492.086	3	843.347	3	265.718	4	0	1	0	1	1.66	3
556			min	-582.789	2	-1572.713	2	0	1	0	4	426	4	-2.682	2
557		13	max		3	842.252	3	267.178	4	Ö	1	0	1	1.137	3
558			min	-581.946	2	-1574.172	2	0	1	0	4	26	4	-1.729	1
559		14	max		3	841.158	3	268.638	4	0	1	0	1	.614	3
560		17		-581.104	2	-1575.631	2	0	1	0	4	094	4	782	1
561		15		1493.982	3	840.064	3	270.098	4	0	1	.073	4	.25	2
562		13		-580.261	2	-1577.09	2	0	1	0	4	.073	1	0	13
563		16		1494.614	3	838.969	3	271.558	4	0	1	.241	4	1.229	2
564		10	min	-579.419	2	-1578.549	2	0	1	0	4	0	1	428	3
565		17		1495.245	3	837.875	3	273.018	4	0	1	.41	4	2.21	2
566		17	min	-578.577	2	-1580.008	2	0	1	0	4	0	1	949	3
		18			12	1794.164	2	0	+	0	4	.429	4	1.132	2
567		10	max	-21.096							1	_	1		3
568		40	min	-462.789	1_	-761.169	3	-28.098	5_	0		0		494	
569		19	max		12	1792.705	2	0	1_	0	4_	.413	4	.022	1
570	140	4		-461.947	1_	-762.263	3	-26.638	5	0	1_	0		021	3
571	M9	1		211.573	1_	560.546	3	107.96	1_	0	3	018	12	0	3
572				10.735	12	-407.43	1	6.369	12	0	4	304	1	014	2
573		2	max		1_	559.452	3	107.96	1_	0	3	014	12	.24	1
574				11.157	12	-408.889	1_	6.369	12	0	4_	237	1	348	3
575		3		450.049	3	474.072	1	107.687	1_	0	1_	01	12	.485	1
576				-278.026	2	-413.089	3	6.336	12	0	3_	17	1_	684	3
577		4		450.681	3_	472.613	1_	107.687	_1_	0	_1_	006	12	.191	1
578				-277.183	2	-414.183	3	6.336	12	0	3	103	1	427	3
579		5		451.313	3_	471.154	1	107.687	_1_	0	_1_	002	12	005	15
580				-276.341	2	-415.278	3	6.336	12	0	3	055	4	17	3
581		6		451.945	3_	469.695	1_	107.687	_1_	0	_1_	.031	1	.088	3
582				-275.499	2	-416.372	3	6.336	12	0	3	021	5	399	2
583		7	max	452.576	3	468.236	1	107.687	1	0	1	.097	1	.347	3
584			min	-274.656	2	-417.466	3	6.336	12	0	3	.003	15	685	1
585		8		453.208	3	466.777	1	107.687	1	0	1	.164	1	.606	3
586				-273.814	2	-418.561	3	6.336	12	0	3	.01	12	975	1
587		9		470.544	3	39.886	2	166.393	1	0	3	006	12	.709	3
588				-182.065	2	.454	15	9.541	12	0	9	212	4	-1.112	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	471.176	3	38.427	2	166.393	1	0	3	.002	1	.691	3
590			min	-181.222	2	.013	15	9.541	12	0	9	127	4	-1.125	1
591		11	max	471.808	3	36.968	2	166.393	1	0	3	.105	1	.674	3
592			min	-180.38	2	-1.676	6	9.541	12	0	9	066	5	-1.138	1
593		12	max	489.037	3	274.645	3	229.476	4	0	3	009	12	.588	3
594			min	-105.917	10	-526.187	2	5.779	12	0	2	357	4	-1.007	2
595		13	max	489.668	3	273.551	3	230.936	4	0	3	005	12	.418	3
596			min	-105.215	10	-527.646	2	5.779	12	0	2	214	4	688	1
597		14	max	490.3	3	272.456	3	232.396	4	0	3	002	12	.248	3
598			min	-104.513	10	-529.105	2	5.779	12	0	2	07	4	37	1
599		15	max	490.932	3	271.362	3	233.857	4	0	3	.074	4	.08	3
600			min	-103.811	10	-530.564	2	5.779	12	0	2	.002	12	052	1
601		16	max	491.564	3	270.268	3	235.317	4	0	3	.22	4	.306	2
602			min	-103.109	10	-532.023	2	5.779	12	0	2	.005	12	088	3
603		17	max	492.196	3	269.173	3	236.777	4	0	3	.367	4	.637	2
604			min	-102.407	10	-533.482	2	5.779	12	0	2	.009	12	256	3
605		18	max	-10.958	12	530.509	2	121.944	1	0	2	.36	4	.319	2
606			min	-212.88	1	-218.954	3	-97.887	5	0	3	.013	12	126	3
607		19	max	-10.537	12	529.05	2	121.944	1	0	2	.317	4	.011	3
608			min	-212.038	1	-220.049	3	-96.427	5	0	3	.017	12	011	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.162	2	.009	3	1.117e-2	2	NC	1	NC	1
2			min	-1.035	4	03	3	004	2	-2.09e-3	3	NC	1	NC	1
3		2	max	0	1	.236	3	.052	1	1.253e-2	2	NC	5	NC	2
4			min	-1.035	4	01	9	031	5	-2.067e-3	3	902.356	3	4777.629	1
5		3	max	0	1	.452	3	.122	1	1.388e-2	2	NC	5	NC	3
6			min	-1.035	4	138	1	037	5	-2.045e-3	3	498.484	3	1995.089	1
7		4	max	0	1	.583	3	.182	1	1.524e-2	2	NC	5	NC	3
8			min	-1.035	4	208	1	027	5	-2.022e-3	3	391.805	3	1332.898	1
9		5	max	0	1	.614	3	.212	1	1.66e-2	2	NC	5	NC	3
10			min	-1.035	4	206	1	007	5	-1.999e-3	3	373.023	3	1141.955	1
11		6	max	0	1	.547	3	.204	1	1.795e-2	2	NC	5	NC	5
12			min	-1.035	4	134	1	.009	15	-1.976e-3	3	416.515	3	1187.976	1
13		7	max	0	1	.402	3	.159	1	1.931e-2	2	NC	5	NC	10
14			min	-1.035	4	016	9	.011	10	-1.954e-3	3	556.464	3	1520.835	1
15		8	max	0	1	.217	3	.092	1	2.066e-2	2	NC	1	NC	3
16			min	-1.035	4	.005	15	.002	10	-1.931e-3	3	971.624	3	2653.183	1
17		9	max	0	1	.286	2	.038	4	2.202e-2	2	NC	4	NC	1
18			min	-1.035	4	.009	15	008	10	-1.908e-3	3	1936.066	2	6252.889	4
19		10	max	0	1	.34	2	.027	3	2.337e-2	2	NC	3	NC	1
20			min	-1.035	4	026	3	019	2	-1.885e-3	3	1347.314	2	NC	1
21		11	max	0	12	.286	2	.029	3	2.202e-2	2	NC	4	NC	1
22			min	-1.035	4	.009	15	024	5	-1.908e-3	3	1936.066	2	NC	1
23		12	max	0	12	.217	3	.092	1	2.066e-2	2	NC	1	NC	3
24			min	-1.035	4	.005	15	023	5	-1.931e-3	3	971.624	3	2653.183	1
25		13	max	0	12	.402	3	.159	1	1.931e-2	2	NC	5	NC	5
26			min	-1.035	4	016	9	007	5	-1.954e-3	3	556.464	3	1520.835	1
27		14	max	0	12	.547	3	.204	1	1.795e-2	2	NC	5	NC	5
28			min	-1.035	4	134	1	.01	15	-1.976e-3	3	416.515	3	1187.976	1
29		15	max	0	12	.614	3	.212	1	1.66e-2	2	NC	5	NC	3
30			min	-1.035	4	206	1	.02	10	-1.999e-3	3	373.023	3	1141.955	1
31		16	max	0	12	.583	3	.182	1	1.524e-2	2	NC	5	NC	3
32			min	-1.035	4	208	1	.017	12	-2.022e-3	3	391.805	3	1332.898	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

35		(n) L/z Ratio		(n) L/y Ratio	LC 2	x Rotate [r 1.388e-2	LC 1	z [in] .122	LC 3	y [in] .452	LC 12	x [in]	may	Sec 17	Member	33
36	3											_		17		
Min	2								_					1Ω		
38												_		10		
38	1				_									10		
M14	1													13		
Max	1		_											1	M14	
1	1										_				IVIT	
Mathematical Property of the	2				-									2		
44																
Max	3								_		_			3		
45							_							3		
46	3								_					1		
48														4		
Max														_		
49	3										•			5		
So									_					_		
51 7 max 0 1 1.054 3 .146 1 1.372e-2 1 7999.255 15 NC 52 min .748 4 -1.488 1 .01 10 -9.842e-3 3 244.196 1 1668.53f 53 8 max 0 1 .954 3 .088 4 1.49e-2 1 8740.244 15 NC 54 min .748 4 -1.414 1 .002 10 -1.074e-2 3 264.362 1 2703.512 55 9 max 0 1 .853 3 .058 4 1.609e-2 1 9734.342 15 NC 56 min .748 4 -1.287 1 017 2 -1.254e-2 3 307.336 1 NC 58 min .748 4 -1.287 1 017 2 -1.254e-2	3										_			ь		
52 min 748 4 -1.488 1 .01 10 -9.842e-3 3 244.196 1 1668.536 53 8 max 0 1 .954 3 .088 4 1.49e-2 1 8740.244 15 NC 54 min 748 4 -1.414 1 .002 10 -1.074e-2 3 264.362 1 2703.512 55 9 max 0 1 .853 3 .058 4 1.609e-2 1 9734.342 15 NC 56 min 748 4 -1.329 1 007 10 -1.164e-2 3 291.559 1 4068.488 57 10 max 0 1 .804 3 .024 3 1.728e-2 1 NC 15 NC 58 min 748 4 -1.329 1 -0.45 5 -1.164e-2														-		
53 8 max 0 1 .954 3 .088 4 1.49e-2 1 8740.244 15 NC 54 min 748 4 -1.414 1 .002 10 -1.074e-2 3 264.362 1 2703.512 55 9 max 0 1 .853 3 .058 4 1.609e-2 1 9734.342 15 NC 56 min 748 4 -1.329 1 007 10 -1.164e-2 3 291.559 1 4068.488 57 10 max 0 1 .804 3 .024 3 1.728e-2 1 NC 15 NC 58 min 748 4 -1.329 1 045 5 -1.164e-2 3 291.559 1 580.726 61 12 max 0 12 .954 3 .085 1 1.49e-2 1 <t< td=""><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>	3											-				
54 min 748 4 -1.414 1 .002 10 -1.074e-2 3 264.362 1 2703.512 55 9 max 0 1 .853 3 .058 4 1.609e-2 1 9734.342 15 NC 56 min 748 4 -1.329 1 007 10 -1.164e-2 3 291.559 1 NC 57 10 max 0 1 .804 3 .024 3 1.728e-2 1 NC 15 NC 58 min 748 4 -1.287 1 017 2 -1.254e-2 3 307.336 1 NC 60 min 748 4 -1.329 1 045 5 -1.164e-2 3 291.559 1 580.726 61 12 max 0 12 .954 3 .085 1 1.49e-2 1									_		_					
55 9 max 0 1 .853 3 .058 4 1.609e-2 1 9734.342 15 NC 56 min 748 4 -1.329 1 007 10 -1.164e-2 3 291.559 1 4068.486 57 10 max 0 1 .804 3 .024 3 1.728e-2 1 NC 15 NC 59 11 max 0 12 .853 3 .025 3 1.609e-2 1 9734.306 15 NC 60 min 748 4 -1.329 1 045 5 -1.164e-2 3 291.559 1 5580.726 61 12 max 0 12 .954 3 .085 1 1.49e-2 1 8740.14 15 NC 62 min 748 4 -1.414 1 -0.51 5 -1.074e-2 3 264.362 1	3													8		
56 min 748 4 -1.329 1 007 10 -1.164e-2 3 291.559 1 4068.488 57 10 max 0 1 .804 3 .024 3 1.728e-2 1 NC 15 NC 58 min 748 4 -1.287 1 017 2 -1.254e-2 3 307.336 1 NC 59 11 max 0 12 .853 3 .025 3 1.609e-2 1 9734.306 15 NC 60 min 748 4 -1.329 1 045 5 -1.164e-2 3 291.559 1 5580.726 61 12 max 0 12 .954 3 .085 1 1.49e-2 1 8740.14 15 NC 62 min 748 4 -1.414 1 -0.51 5 -1.074e-2 <									_		-					
57 10 max 0 1 .804 3 .024 3 1.728e-2 1 NC 15 NC 58 min 748 4 -1.287 1 017 2 -1.254e-2 3 307.336 1 NC 59 11 max 0 12 .853 3 .025 3 1.609e-2 1 9734.306 15 NC 60 min 748 4 -1.329 1 045 5 -1.164e-2 3 291.559 1 5580.726 60 61 12 max 0 12 .954 3 .085 1 1.49e-2 1 8740.14 15 NC 62 min 748 4 -1.488 1 033 5 -9.842e-3 3 244.196 1 1668.536 65 14 max 0 12 1.111 3 .183 1	1													9		
58 min 748 4 -1.287 1 017 2 -1.254e-2 3 307.336 1 NC 59 11 max 0 12 .853 3 .025 3 1.609e-2 1 9734.306 15 NC 60 min 748 4 -1.329 1 045 5 -1.164e-2 3 291.559 1 5580.726 61 12 max 0 12 .954 3 .085 1 1.49e-2 1 8740.14 15 NC 62 min 748 4 -1.414 1 051 5 -1.074e-2 3 264.362 1 2866.08 63 13 max 0 12 1.054 3 .146 1 1.372e-2 1 799.085 15 NC 64 min 748 4 -1.488 1 033 5 -9.842e-3																
59 11 max 0 12 .853 3 .025 3 1.609e-2 1 9734.306 15 NC 60 min 748 4 -1.329 1 045 5 -1.164e-2 3 291.559 1 5580.726 61 12 max 0 12 .954 3 .085 1 1.49e-2 1 8740.14 15 NC 62 min 748 4 -1.414 1 051 5 -1.074e-2 3 264.362 1 2866.08 63 13 max 0 12 1.054 3 .146 1 1.372e-2 1 7999.085 15 NC 64 min 748 4 -1.488 1 033 5 -9.842e-3 3 244.196 1 1668.536 65 14 max 0 12 1.011 3 .183 1 <	1										•			10		
60 min 748 4 -1.329 1 045 5 -1.164e-2 3 291.559 1 5580.726 61 12 max 0 12 .954 3 .085 1 1.49e-2 1 8740.14 15 NC 62 min 748 4 -1.414 1 051 5 -1.074e-2 3 264.362 1 2866.08° 63 13 max 0 12 1.054 3 .146 1 1.372e-2 1 7999.085 15 NC 64 min 748 4 -1.488 1 033 5 -9.842e-3 3 244.196 1 1668.536 65 14 max 0 12 1.111 3 .183 1 1.253e-2 1 .7732.367 15 NC 67 15 max 0 12 1.099 3 .185 1	1								•		_					
61 12 max 0 12 .954 3 .085 1 1.49e-2 1 8740.14 15 NC 62 min 748 4 -1.414 1 051 5 -1.074e-2 3 264.362 1 2866.08° 63 13 max 0 12 1.054 3 .146 1 1.372e-2 1 7999.085 15 NC 64 min 748 4 -1.488 1 033 5 -9.842e-3 3 244.196 1 1668.536 65 14 max 0 12 1.111 3 .183 1 1.253e-2 1 7732.367 15 NC 66 min 748 4 -1.515 1 0 15 -8.941e-3 3 237.774 1 1327.56° 67 15 max 0 12 1.099 3 .185 1 <t< td=""><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11</td><td></td><td></td></t<>	1													11		
62 min 748 4 -1.414 1 051 5 -1.074e-2 3 264.362 1 2866.08 63 13 max 0 12 1.054 3 .146 1 1.372e-2 1 7999.085 15 NC 64 min 748 4 -1.488 1 033 5 -9.842e-3 3 244.196 1 1668.536 65 14 max 0 12 1.111 3 .183 1 1.253e-2 1 7732.367 15 NC 66 min 748 4 -1.515 1 0 15 -8.941e-3 3 237.774 1 1327.567 67 15 max 0 12 1.099 3 .185 1 1.134e-2 1 8068.287 15 NC 68 min 748 4 -1.468 1 .018 10 -8.04e-3 <td></td>																
63 13 max 0 12 1.054 3 .146 1 1.372e-2 1 7999.085 15 NC 64 min 748 4 -1.488 1 033 5 -9.842e-3 3 244.196 1 1668.536 65 14 max 0 12 1.111 3 .183 1 1.253e-2 1 7732.367 15 NC 66 min 748 4 -1.515 1 0 15 -8.941e-3 3 237.774 1 1327.567 67 15 max 0 12 1.099 3 .185 1 1.134e-2 1 8068.287 15 NC 68 min 748 4 -1.468 1 .018 10 -8.04e-3 3 249.434 1 1309.438 69 16 max 0 12 1.003 3 .153 1	3											-		12		
64 min 748 4 -1.488 1 033 5 -9.842e-3 3 244.196 1 1668.536 65 14 max 0 12 1.111 3 .183 1 1.253e-2 1 7732.367 15 NC 66 min 748 4 -1.515 1 0 15 -8.941e-3 3 237.774 1 1327.567 67 15 max 0 12 1.099 3 .185 1 1.134e-2 1 8068.287 15 NC 68 min 748 4 -1.468 1 .018 10 -8.04e-3 3 249.434 1 1309.438 69 16 max 0 12 1.003 3 .153 1 1.015e-2 1 9324.488 15 NC 70 min 748 4 -1.335 1 .014 10 -7.14e-3 <td></td>																
65 14 max 0 12 1.111 3 .183 1 1.253e-2 1 7732.367 15 NC 66 min 748 4 -1.515 1 0 15 -8.941e-3 3 237.774 1 1327.567 67 15 max 0 12 1.099 3 .185 1 1.134e-2 1 8068.287 15 NC 68 min 748 4 -1.468 1 .018 10 -8.04e-3 3 249.434 1 1309.438 69 16 max 0 12 1.003 3 .153 1 1.015e-2 1 9324.488 15 NC 70 min 748 4 -1.335 1 .014 10 -7.14e-3 3 289.369 1 1591.224 71 17 max 0 12 .825 3 .095 1 <t< td=""><td>3</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>13</td><td></td><td></td></t<>	3						_							13		
66 min 748 4 -1.515 1 0 15 -8.941e-3 3 237.774 1 1327.56 67 15 max 0 12 1.099 3 .185 1 1.134e-2 1 8068.287 15 NC 68 min 748 4 -1.468 1 .018 10 -8.04e-3 3 249.434 1 1309.438 69 16 max 0 12 1.003 3 .153 1 1.015e-2 1 9324.488 15 NC 70 min 748 4 -1.335 1 .014 10 -7.14e-3 3 289.369 1 1591.224 71 17 max 0 12 .825 3 .095 1 8.964e-3 1 NC 15 NC 72 min 748 4 -1.118 1 .008 10 -6.239e-3																
67 15 max 0 12 1.099 3 .185 1 1.134e-2 1 8068.287 15 NC 68 min 748 4 -1.468 1 .018 10 -8.04e-3 3 249.434 1 1309.435 69 16 max 0 12 1.003 3 .153 1 1.015e-2 1 9324.488 15 NC 70 min 748 4 -1.335 1 .014 10 -7.14e-3 3 289.369 1 1591.22e 71 17 max 0 12 .825 3 .095 1 8.964e-3 1 NC 15 NC 72 min 748 4 -1.118 1 .008 10 -6.239e-3 3 391.806 1 2551.469 73 18 max 0 12 .579 3 .061 4 7.	3													14		
68 min 748 4 -1.468 1 .018 10 -8.04e-3 3 249.434 1 1309.435 69 16 max 0 12 1.003 3 .153 1 1.015e-2 1 9324.488 15 NC 70 min 748 4 -1.335 1 .014 10 -7.14e-3 3 289.369 1 1591.22e 71 17 max 0 12 .825 3 .095 1 8.964e-3 1 NC 15 NC 72 min 748 4 -1.118 1 .008 10 -6.239e-3 3 391.806 1 2551.469 73 18 max 0 12 .579 3 .061 4 7.776e-3 1 NC 5 NC 74 min 748 4 832 1 0 10 -5.338e-3 3					_			_								
69 16 max 0 12 1.003 3 .153 1 1.015e-2 1 9324.488 15 NC 70 min 748 4 -1.335 1 .014 10 -7.14e-3 3 289.369 1 1591.224 71 17 max 0 12 .825 3 .095 1 8.964e-3 1 NC 15 NC 72 min 748 4 -1.118 1 .008 10 -6.239e-3 3 391.806 1 2551.469 73 18 max 0 12 .579 3 .061 4 7.776e-3 1 NC 5 NC 74 min 748 4 832 1 0 10 -5.338e-3 3 734.796 1 3898.992 75 19 max 0 12 .292 3 .008 3 6.588e-3	3						_							15		
70 min 748 4 -1.335 1 .014 10 -7.14e-3 3 289.369 1 1591.224 71 17 max 0 12 .825 3 .095 1 8.964e-3 1 NC 15 NC 72 min 748 4 -1.118 1 .008 10 -6.239e-3 3 391.806 1 2551.469 73 18 max 0 12 .579 3 .061 4 7.776e-3 1 NC 5 NC 74 min 748 4 832 1 0 10 -5.338e-3 3 734.796 1 3898.992 75 19 max 0 12 .292 3 .008 3 6.588e-3 1 NC 1 NC 76 min 748 4 506 1 004 2 -4.437e-3 3									•		_					
71 17 max 0 12 .825 3 .095 1 8.964e-3 1 NC 15 NC 72 min 748 4 -1.118 1 .008 10 -6.239e-3 3 391.806 1 2551.469 73 18 max 0 12 .579 3 .061 4 7.776e-3 1 NC 5 NC 74 min 748 4 832 1 0 10 -5.338e-3 3 734.796 1 3898.992 75 19 max 0 12 .292 3 .008 3 6.588e-3 1 NC 1 NC 76 min 748 4 506 1 004 2 -4.437e-3 3 NC 1 NC 77 M15 1 max 0 12 .299 3 .007 3 3.767e-3 <td>3</td> <td></td> <td>16</td> <td></td> <td></td>	3													16		
72 min 748 4 -1.118 1 .008 10 -6.239e-3 3 391.806 1 2551.469 73 18 max 0 12 .579 3 .061 4 7.776e-3 1 NC 5 NC 74 min 748 4 832 1 0 10 -5.338e-3 3 734.796 1 3898.992 75 19 max 0 12 .292 3 .008 3 6.588e-3 1 NC 1 NC 76 min 748 4 506 1 004 2 -4.437e-3 3 NC 1 NC 77 M15 1 max 0 12 .299 3 .007 3 3.767e-3 3 NC 1 NC																
73 18 max 0 12 .579 3 .061 4 7.776e-3 1 NC 5 NC 74 min 748 4 832 1 0 10 -5.338e-3 3 734.796 1 3898.992 75 19 max 0 12 .292 3 .008 3 6.588e-3 1 NC 1 NC 76 min 748 4 506 1 004 2 -4.437e-3 3 NC 1 NC 77 M15 1 max 0 12 .299 3 .007 3 3.767e-3 3 NC 1 NC	3													17		
74 min 748 4 832 1 0 10 -5.338e-3 3 734.796 1 3898.992 75 19 max 0 12 .292 3 .008 3 6.588e-3 1 NC 1 NC 76 min 748 4 506 1 004 2 -4.437e-3 3 NC 1 NC 77 M15 1 max 0 12 .299 3 .007 3 3.767e-3 3 NC 1 NC												748	min			
75 19 max 0 12 .292 3 .008 3 6.588e-3 1 NC 1 NC 76 min 748 4 506 1 004 2 -4.437e-3 3 NC 1 NC 77 M15 1 max 0 12 .299 3 .007 3 3.767e-3 3 NC 1 NC	2						4							18		
76 min 748 4 506 1 004 2 -4.437e-3 3 NC 1 NC 77 M15 1 max 0 12 .299 3 .007 3 3.767e-3 3 NC 1 NC					3_			_	_							
77 M15 1 max 0 12 .299 3 .007 3 3.767e-3 3 NC 1 NC	1		1_		_1_				3					19		
	1		1_		_								min			
78 min - 592 4 - 505 1 - 004 2 -6 758e-3 1 NC 1 NC	1				3		3		3					1	M15	
	1	NC		NC	1	-6.758e-3	2		1	505	4	592	min			78
79 2 max 0 12 .492 3 .035 1 4.533e-3 3 NC 5 NC	2				3_								max	2		
	5	4055.39	2		1_		5						min			
81 3 max 0 12 .663 3 .096 1 5.299e-3 3 NC 15 NC	3				3		1				12		max	3		
		2549.828	2		1		5				4	592	min			
83 4 max 0 12 .796 3 .153 1 6.066e-3 3 9340.673 15 NC	3	NC	15	9340.673	3	6.066e-3	1	.153		.796	12	0	max	4		83
		1585.214			1		5						min			
85 5 max 0 12 .882 3 .186 1 6.832e-3 3 8083.857 15 NC	3	NC	15	8083.857	3	6.832e-3	1	.186		.882	12	0	max	5		85
	3 1	1305.068	2		1		5			-1.588	4	592				
87 6 max 0 12 .92 3 .183 1 7.598e-3 3 7749.439 15 NC	3	NC	15		3		1	.183	3	.92	12	0	max	6		87
	1 1	1323.104			1		10			-1.62	4	592				
89 7 max 0 12 .916 3 .146 1 8.365e-3 3 8019.811 15 NC	3				3		1		3		12			7		

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC				
90			min	592	4	-1.561	2	.011	10 -1.413e-2	1	226.25	2	1661.885	1
91		8	max	0	12	.883	3	.104	4 9.131e-3	3	8767.111	15	NC	3
92			min	592	4	-1.446	2	.002	10 -1.536e-2	1	253.682	2	2297.445	4
93		9	max	0	12	.843	3	.071	4 9.897e-3	3	9769.52	15	NC	1
94			min	592	4	-1.337	1	006	10 -1.659e-2	1	288.493	1	3335.125	4
95		10	max	0	1	.822	3	.022	3 1.066e-2	3	NC	15	NC	1
96			min	592	4	-1.284	1	016	2 -1.782e-2	1	308.065	1	NC	1
97		11	max	0	1	.843	3	.025	1 9.897e-3	3	9769.489	15	NC	1
98			min	592	4	-1.337	1	058	5 -1.659e-2	1	288.493	1	4278.464	5
99		12	max	0	1	.883	3	.086	1 9.131e-3	3	8767.032	15	NC	3
100			min	592	4	-1.446	2	067	5 -1.536e-2	1	253.682	2	2848.035	1
101		13	max	0	1	.916	3	.146	1 8.365e-3	3	8019.689	15	NC	3
102			min	592	4	-1.561	2	044	5 -1.413e-2	1	226.25	2	1661.885	1
103		14	max	0	1	.92	3	.183	1 7.598e-3	3	7749.272	15	NC	3
104			min	592	4	-1.62	2	003	5 -1.29e-2	1	214.445	2	1323.104	1
105		15	max	0	1	.882	3	.186	1 6.832e-3	3	8083.632	15	NC	3
106			min	592	4	-1.588	2	.017	12 -1.167e-2	1	220.618	2	1305.068	1
107		16	max	0	1	.796	3	.153	1 6.066e-3	3	9340.351	15	NC	3
108			min	592	4	-1.451	2	.014	12 -1.044e-2	1	252.457	2	1585.214	1
109		17	max	0	1	.663	3	.113	4 5.299e-3	3	NC	15	NC	3
110			min	592	4	-1.209	2	.008	10 -9.216e-3	1	338.697	2	2110.068	
111		18	max	0	1	.492	3	.076	4 4.533e-3	3	NC	5	NC	2
112			min	592	4	88	2	.001	10 -7.987e-3	1	631.745	2	3123.155	4
113		19	max	0	1	.299	3	.007	3 3.767e-3	3	NC	1	NC	1
114			min	592	4	505	1	004	2 -6.758e-3	1	NC	1	NC	1
115	M16	1	max	0	12	.156	1	.006	3 6.816e-3	3	NC	1	NC	1
116			min	149	4	101	3	003	2 -1.007e-2	1	NC	1	NC	1
117		2	max	0	12	.003	13	.051	1 7.858e-3	3	NC	5	NC	2
118			min	149	4	084	2	044	5 -1.116e-2	1	1048.675	2	4843.17	1
119		3	max	0	12	.045	3	.121	1 8.9e-3	3	NC	5	NC	3
120			min	149	4	265	2	055	5 -1.226e-2	1	584.996	2	2009.928	1
121		4	max	0	12	.075	3	.181	1 9.942e-3	3	NC	5	NC	3
122			min	149	4	367	2	042	5 -1.336e-2	1	468.286	2	1338.32	1
123		5	max	0	12	.067	3	.211	1 1.098e-2	3	NC	5	NC	3
124			min	149	4	376	2	015	5 -1.445e-2	1	460.547	2	1143.633	1
125		6	max	0	12	.022	3	.204	1 1.203e-2	3	NC	5	NC	3
126			min	149	4	294	2	.01	15 -1.555e-2	1	546.929	2	1186.386	
127		7	max	0	12	.002	13	.16	1 1.307e-2	3	NC	5	NC	3
128			min	149	4	14	2	.013	10 -1.664e-2	1	840.579	2	1512.179	
129		8	max	0	12	.093	1	.093	1 1.411e-2	3	NC	4	NC	3
130			min		4	137	3	.004	10 -1.774e-2		2440.025	2	2610.33	1
131		9	max	_	12	.249	1	.048	4 1.515e-2	3	NC	4	NC	2
132			min	149	4	212	3	005	10 -1.883e-2	1	2170.165	3	4951.718	
133		10	max	0	1	.319	1	.019	3 1.619e-2	3	NC	5	NC	1
134		10	min	149	4	245	3	014	2 -1.993e-2	1	1472.43	1	NC	1
135		11	max	0	1	.249	1	.027	1 1.515e-2	3	NC	4	NC	2
136		+ ' '	min	149	4	212	3	034	5 -1.883e-2	1	2170.165	3	7327.546	
137		12	max	0	1	.093	1	.093	1 1.411e-2	3	NC	4	NC	3
138		12	min	148	4	137	3	035	5 -1.774e-2	1	2440.025	2	2610.33	1
139		13	max	0	1	.002	13	<u>035</u> .16	1 1.307e-2	3	NC	5	NC	3
140		13	min	148	4	14	2	015	5 -1.664e-2	1	840.579	2	1512.179	
141		14	max	0	1	.022	3	.204	1 1.203e-2	3	NC	5	NC	3
142		14	min	148	4	294	2	.01			546.929	2	1186.386	
		15			1					1_2	NC			
143		15	max	140		.067	3	.211	1 1.098e-2	3		5	NC	3
144		10	min	148	4	376	2	.017	12 -1.445e-2	1_2	460.547	2	1143.633	
145		16	max	0	1	.075	3	.181	1 9.942e-3	3	NC 460,206	5	NC	3
146			min	148	4	367	2	.015	12 -1.336e-2	<u> 1</u>	468.286	2	1338.32	1

Model Name

Schletter, Inc.HCV

0: 1 15:44

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

147 17 max 0 1 .045 3 .121 1 8.9e-3 3 NC 148 min 148 4 265 2 .011 12 -1.226e-2 1 584.996 149 18 max .001 1 .002 13 .065 4 7.858e-3 3 NC	5 2 5	NC 2009.928	3
149 18 max .001 1 .002 13 .065 4 7.858e-3 3 NC	5	2009.928	4
			1
		NC	2
150 min148 4084 2 .003 10 -1.116e-2 1 1048.675		3644.517	4
151	1	NC NC	1
152	1	NC NC	2
	<u> </u>		4
	1	80.364 NC	2
155 2 max .007 1 .006 2 .013 1 2.762e-3 5 NC 156 min007 3013 3886 4 -3.164e-4 1 NC	1	87.484	4
156 11111007 3013 3006 4 -3.164e-4 1 NC 157 3 max .006 1 .005 2 .012 1 2.824e-3 5 NC	1	NC	2
158 min007 3013 3808 4 -2.995e-4 1 NC	1	95.936	4
159 4 max .006 1 .004 2 .011 1 2.886e-3 5 NC	1	NC	2
160 min007 3012 3731 4 -2.825e-4 1 NC	1	106.065	4
161 5 max .006 1 .003 2 .01 1 2.948e-3 5 NC	1	NC	2
162 min006 3012 3655 4 -2.656e-4 1 NC	1	118.345	4
163 6 max .005 1 .001 2 .008 1 3.01e-3 5 NC	1	NC	2
164 min006 3012 3581 4 -2.487e-4 1 NC	1	133.425	4
165 7 max .005 1 0 2 .007 1 3.072e-3 5 NC	1	NC	1
166 min005 3011 3509 4 -2.317e-4 1 NC	1	152.232	4
167 8 max .004 1 0 15 .006 1 3.134e-3 5 NC	1	NC	1
168 min005 3011 344 4 -2.148e-4 1 NC	1	176.113	4
169 9 max .004 1 0 15 .005 1 3.198e-3 4 NC	1	NC	1
170 min004 301 3374 4 -1.979e-4 1 NC	1	207.094	4
171 10 max .004 1001 15 .005 1 3.266e-3 4 NC	1	NC	1
172 min004 301 3312 4 -1.81e-4 1 NC	1	248.338	4
173 11 max .003 1001 15 .004 1 3.334e-3 4 NC	1	NC	1
174 min004 3009 3254 4 -1.64e-4 1 NC	1	305.014	4
175 12 max .003 1001 15 .003 1 3.402e-3 4 NC	1	NC	1_
176 min003 3008 3201 4 -1.471e-4 1 NC	1	386.048	4
177 13 max .002 1001 15 .002 1 3.47e-3 4 NC	1	NC	1
178 min003 3007 3153 4 -1.302e-4 1 NC	1	507.975	4
179	1	NC TO LOS	1
180 min002 3006 311 4 -1.132e-4 1 NC	1	704.35	4
181	1	NC	1
182 min002 3005 3074 4 -9.632e-5 1 NC	1	1052.271	4
183	1	NC 4762.075	1
	1	1763.875	1
185	1	NC 3620.01	4
187	1	NC	1
188 min 0 3002 6007 4 -4.553e-5 1 NC	1	NC NC	1
189	1	NC	1
190 min 0 1 0 1 0 1 -2.86e-5 1 NC	1	NC	1
191 M3 1 max 0 1 0 1 0 1 5.421e-6 1 NC	1	NC	1
192 min 0 1 0 1 0 1 -8.42e-4 4 NC	1	NC	1
193 2 max 0 3 0 15 .021 4 4.18e-5 1 NC	1	NC	1
194 min 0 2003 6 0 1 -2.535e-5 5 NC	1	NC	1
195 3 max 0 3001 15 .04 4 8.114e-4 4 NC	1	NC	1
196 min 0 2006 6 0 1 4.315e-6 12 NC	1	7954.73	5
197 4 max .001 3002 15 .058 4 1.638e-3 4 NC	1	NC	1
198 min 0 2009 6 0 1 6.297e-6 12 NC	1	6002.957	5
199 5 max .002 3003 15 .074 4 2.465e-3 4 NC	1	NC	1
200 min001 2012 6 0 1 8.279e-6 12 8520.357	6	5157.93	5
201 6 max .002 3003 15 .089 4 3.292e-3 4 NC	5	NC	1
202 min001 2015 6 0 1 1.026e-5 12 6904.454		4794.105	5
203 7 max .002 3004 15 .103 4 4.118e-3 4 NC	5	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

205		Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
206	204			min	002	2	017	6	0	1	1.224e-5			6	4719.521	
207			8													
208														_		5
209			9								5.7720-3					1
210			40													
11			10													
212			11													
12 max																
214			12											_		
215			12								2.2150.5					
216			12											_		
217			13								9.079e-3					
18			1.1											_		
219			14													
220			15													
221			13													
222			16													
223			10													
224			17													
225			11/													
226			10											•		
19 max			10													
228			10			_								_		
229 M4			13													1
230		MA	1													3
231		IVI T														
232			2									-		•		
233 3 max .002 1 .004 2 0 12 2.338e-4 1 NC 1 NC 3																
234			3											•		
235						-										
236			4							_				•		
237			_			_										
238			5											_		
239																
240 min 0 5 005 3 149 4 -6.414e-4 5 NC 1 166.729 4 241 7 max .002 1 .003 2 0 12 2.338e-4 1 NC 1 NC 3 242 min 0 5 005 3 13 4 -6.414e-4 5 NC 1 190.265 4 243 8 max .002 1 .003 2 0 12 2.338e-4 1 NC 1			6		•											
241 7 max .002 1 .003 2 0 12 2.338e-4 1 NC 1 NC 3 242 min 0 5 005 3 13 4 -6.414e-4 5 NC 1 190.265 4 243 8 max .002 1 .003 2 0 12 2.338e-4 1 NC 1 NC 3 244 min 0 5 004 3 113 4 -6.414e-4 5 NC 1 220.191 4 245 9 max .001 1 .003 2 0 12 2.338e-4 1 NC 1 259.067 4 247 10 max .001 1 .003 2 0 12 2.338e-4 1 NC 1 NC 1 NC 1 NC 1 NC 1																
242 min 0 5 005 3 13 4 -6.414e-4 5 NC 1 190.265 4 243 8 max .002 1 .003 2 0 12 2.338e-4 1 NC 1 NC 3 244 min 0 5 004 3 113 4 -6.414e-4 5 NC 1 220.191 4 245 9 max .001 1 .003 2 0 12 2.338e-4 1 NC 1 NC 2 246 min 0 5 004 3 096 4 -6.414e-4 5 NC 1 259.067 4 247 10 max .001 1 .003 2 0 12 2.338e-4 1 NC 1 NC 1 NC 2 250 1 1 NC 2 <			7									-				
243 8 max .002 1 .003 2 0 12 2.338e-4 1 NC 1 NC 3 244 min 0 5 004 3 113 4 -6.414e-4 5 NC 1 220.191 4 245 9 max .001 1 .003 2 0 12 2.338e-4 1 NC 1 NC 2 246 min 0 5 004 3 096 4 -6.414e-4 5 NC 1 259.067 4 247 10 max .001 1 .003 2 0 12 2.338e-4 1 NC 1 NC 2 248 min 0 5 004 3 08 4 -6.414e-4 5 NC 1 310.894 4 249 11 max .001 1 .002			Ľ						-					1		
244 min 0 5 004 3 113 4 -6.414e-4 5 NC 1 220.191 4 245 9 max .001 1 .003 2 0 12 2.338e-4 1 NC 1 NC 2 246 min 0 5 004 3 096 4 -6.414e-4 5 NC 1 259.067 4 247 10 max .001 1 .003 2 0 12 2.338e-4 1 NC 1 NC 2 248 min 0 5 004 3 08 4 -6.414e-4 5 NC 1 310.894 4 249 11 max .001 1 .002 2 0 12 2.338e-4 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC			8											1		
245 9 max .001 1 .003 2 0 12 2.338e-4 1 NC 1 NC 2 246 min 0 5 004 3 096 4 -6.414e-4 5 NC 1 259.067 4 247 10 max .001 1 .003 2 0 12 2.338e-4 1 NC 1 NC 2 248 min 0 5 004 3 08 4 -6.414e-4 5 NC 1 310.894 4 249 11 max .001 1 .002 2 0 12 2.338e-4 1 NC 1 NC 2 250 min 0 5 003 3 065 4 -6.414e-4 5 NC 1 382.217 4 251 12 max .001 1 .002										4	-6.414e-4	5		1		
246 min 0 5 004 3 096 4 -6.414e-4 5 NC 1 259.067 4 247 10 max .001 1 .003 2 0 12 2.338e-4 1 NC 1 NC 2 248 min 0 5 004 3 08 4 -6.414e-4 5 NC 1 310.894 4 249 11 max .001 1 .002 2 0 12 2.338e-4 1 NC 1 NC 2 250 min 0 5 003 3 065 4 -6.414e-4 5 NC 1 382.217 4 251 12 max .001 1 .002 2 0 12 2.338e-4 1 NC 1 NC 1 253 13 max 0 1 .002			9													
247 10 max .001 1 .003 2 0 12 2.338e-4 1 NC 1 NC 2 248 min 0 5 004 3 08 4 -6.414e-4 5 NC 1 310.894 4 249 11 max .001 1 .002 2 0 12 2.338e-4 1 NC 1 NC 2 250 min 0 5 003 3 065 4 -6.414e-4 5 NC 1 382.217 4 251 12 max .001 1 .002 2 0 12 2.338e-4 1 NC									096					1		_
248 min 0 5 004 3 08 4 -6.414e-4 5 NC 1 310.894 4 249 11 max .001 1 .002 2 0 12 2.338e-4 1 NC 1 NC 2 250 min 0 5 003 3 065 4 -6.414e-4 5 NC 1 382.217 4 251 12 max .001 1 .002 2 0 12 2.338e-4 1 NC 1 NC 2 252 min 0 5 003 3 051 4 -6.414e-4 5 NC 1 484.357 4 253 13 max 0 1 .002 2 0 12 2.338e-4 1 NC 1 NC 1 254 min 0 5 002 3			10		.001					12		1		1		2
249 11 max .001 1 .002 2 0 12 2.338e-4 1 NC 1 NC 2 250 min 0 5 003 3 065 4 -6.414e-4 5 NC 1 382.217 4 251 12 max .001 1 .002 2 0 12 2.338e-4 1 NC 1 NC 2 252 min 0 5 003 3 051 4 -6.414e-4 5 NC 1 484.357 4 253 13 max 0 1 .002 2 0 12 2.338e-4 1 NC 1 NC 1 254 min 0 5 002 3 039 4 -6.414e-4 5 NC 1 638.328 4 255 14 max 0 1 .001									08			5		1		_
250 min 0 5 003 3 065 4 -6.414e-4 5 NC 1 382.217 4 251 12 max .001 1 .002 2 0 12 2.338e-4 1 NC 1 NC 2 252 min 0 5 003 3 051 4 -6.414e-4 5 NC 1 484.357 4 253 13 max 0 1 .002 2 0 12 2.338e-4 1 NC 1 NC 1 254 min 0 5 002 3 039 4 -6.414e-4 5 NC 1 638.328 4 255 14 max 0 1 .001 2 0 12 2.338e-4 1 NC 1 NC 1 256 min 0 5 002 3			11		.001					12				1		
251 12 max .001 1 .002 2 0 12 2.338e-4 1 NC 1 NC 2 252 min 0 5 003 3 051 4 -6.414e-4 5 NC 1 484.357 4 253 13 max 0 1 .002 2 0 12 2.338e-4 1 NC 1 NC 1 254 min 0 5 002 3 039 4 -6.414e-4 5 NC 1 638.328 4 255 14 max 0 1 .001 2 0 12 2.338e-4 1 NC 1 NC 1 256 min 0 5 002 3 028 4 -6.414e-4 5 NC 1 886.881 4 257 15 max 0 1 .001									065			5		1		
252 min 0 5 003 3 051 4 -6.414e-4 5 NC 1 484.357 4 253 13 max 0 1 .002 2 0 12 2.338e-4 1 NC 1 NC 1 254 min 0 5 002 3 039 4 -6.414e-4 5 NC 1 638.328 4 255 14 max 0 1 .001 2 0 12 2.338e-4 1 NC 1 NC 1 256 min 0 5 002 3 028 4 -6.414e-4 5 NC 1 886.881 4 257 15 max 0 1 .001 2 0 12 2.338e-4 1 NC 1 NC 1 258 min 0 5 002 3 <td< td=""><td></td><td></td><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td><td>12</td><td></td><td>-</td><td></td><td>1</td><td></td><td>2</td></td<>			12							12		-		1		2
253 13 max 0 1 .002 2 0 12 2.338e-4 1 NC 1 NC 1 254 min 0 5 002 3 039 4 -6.414e-4 5 NC 1 638.328 4 255 14 max 0 1 .001 2 0 12 2.338e-4 1 NC 1 NC 1 256 min 0 5 002 3 028 4 -6.414e-4 5 NC 1 886.881 4 257 15 max 0 1 .001 2 0 12 2.338e-4 1 NC 1 NC 1 258 min 0 5 002 3 019 4 -6.414e-4 5 NC 1 1328.564 4 259 16 max 0 1 0 2 0 12 2.338e-4 1 NC 1 NC 1									051	4		5		1		_
254 min 0 5 002 3 039 4 -6.414e-4 5 NC 1 638.328 4 255 14 max 0 1 .001 2 0 12 2.338e-4 1 NC 1 NC 1 256 min 0 5 002 3 028 4 -6.414e-4 5 NC 1 886.881 4 257 15 max 0 1 .001 2 0 12 2.338e-4 1 NC 1 NC 1 258 min 0 5 002 3 019 4 -6.414e-4 5 NC 1 1328.564 4 259 16 max 0 1 0 2 0 12 2.338e-4 1 NC 1 NC 1			13									1		1		1
255 14 max 0 1 .001 2 0 12 2.338e-4 1 NC 1 NC 1 256 min 0 5 002 3 028 4 -6.414e-4 5 NC 1 886.881 4 257 15 max 0 1 .001 2 0 12 2.338e-4 1 NC 1 NC 1 258 min 0 5 002 3 019 4 -6.414e-4 5 NC 1 1328.564 4 259 16 max 0 1 0 2 0 12 2.338e-4 1 NC 1 NC 1						5						5		1		4
256 min 0 5 002 3 028 4 -6.414e-4 5 NC 1 886.881 4 257 15 max 0 1 .001 2 0 12 2.338e-4 1 NC 1 NC 1 258 min 0 5 002 3 019 4 -6.414e-4 5 NC 1 1328.564 4 259 16 max 0 1 0 2 0 12 2.338e-4 1 NC 1 NC 1			14		_									1		
257 15 max 0 1 .001 2 0 12 2.338e-4 1 NC 1 NC 1 258 min 0 5 002 3 019 4 -6.414e-4 5 NC 1 1328.564 4 259 16 max 0 1 0 2 0 12 2.338e-4 1 NC 1 NC 1																
258 min 0 5 002 3 019 4 -6.414e-4 5 NC 1 1328.564 4 259 16 max 0 1 0 2 0 12 2.338e-4 1 NC 1 NC 1			15									1				
259 16 max 0 1 0 2 0 12 2.338e-4 1 NC 1 NC 1												5		1		4
			16		0					12				1		
	260					5	001		011		-6.414e-4	5		1	2235.791	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	12	2.338e-4	1	NC	1_	NC	1
262			min	0	5	0	3	005	4	-6.414e-4	5	NC	1_	4618.582	4
263		18	max	0	1	0	2	0	12	2.338e-4	1	NC	1	NC	1
264			min	0	5	0	3	002	4	-6.414e-4	5	NC	1	NC	1
265		19	max	0	1	0	1	0	1	2.338e-4	1	NC	1	NC	1
266			min	0	1	0	1	0	1	-6.414e-4	5	NC	1	NC	1
267	M6	1	max	.023	1	.03	2	0	1	2.864e-3	4	NC	3	NC	1
268	1410		min	026	3	041	3	975	4	0	1	2584.591	2	79.483	4
269		2	max	.022	1	.027	2	0	1	2.923e-3	4	NC	3	NC	1
270			min	024	3	039	3	896	4	0	1	2858.291	2	86.525	4
271		3		.024	1	.024	2	<u>090</u> 0	1	2.983e-3	4	NC	3	NC	1
		3	max							_					
272		-	min	023	3	037	3	<u>817</u>	4	0	1_	3193.536	2	94.885	4
273		4	max	.019	1	.021	2	0	1	3.042e-3	4	NC	3	NC	1
274			min	021	3	035	3	739	4	0	1_	3609.563	2	104.904	4
275		5	max	.018	1	.019	2	0	1	3.102e-3	4	NC	3_	NC	1
276			min	02	3	032	3	662	4	0	1_	4134.052	2	117.049	4
277		6	max	.017	1	.016	2	0	1	3.161e-3	4_	NC	3	NC	1
278			min	018	3	03	3	587	4	0	1	4808.046	2	131.966	4
279		7	max	.015	1	.014	2	0	1	3.221e-3	4	NC	1	NC	1
280			min	017	3	028	3	515	4	0	1	5694.61	2	150.568	4
281		8	max	.014	1	.011	2	0	1	3.28e-3	4	NC	1	NC	1
282			min	016	3	026	3	445	4	0	1	6894.937	2	174.188	4
283		9	max	.013	1	.009	2	0	1	3.34e-3	4	NC	1	NC	1
284			min	014	3	024	3	378	4	0	1	8580.393	2	204.83	4
285		10	max	.011	1	.007	2	0	1	3.399e-3	4	NC	1	NC	1
286		10	min	013	3	022	3	315	4	0.0996-0	1	NC	1	245.624	4
		11					2			3.459e-3			•		4
287		11	max	.01	1	.005		0	1		4	NC NC	1_	NC 204 CO	1
288		10	min	<u>011</u>	3	<u>019</u>	3	257	4	0	1_	NC	1_	301.68	4
289		12	max	.009	1	.004	2	0	1	3.518e-3	4_	NC		NC	1
290			min	01	3	017	3	203	4	0	<u>1</u>	NC	1_	381.826	4
291		13	max	.008	1	.002	2	0	1	3.578e-3	4	NC	_1_	NC	1
292			min	009	3	015	3	<u>154</u>	4	0	1_	NC	_1_	502.412	4
293		14	max	.006	1	.001	2	0	1	3.637e-3	4	NC	<u>1</u>	NC	1
294			min	007	3	012	3	111	4	0	1	NC	1	696.619	4
295		15	max	.005	1	0	2	0	1	3.697e-3	4	NC	1	NC	1
296			min	006	3	01	3	074	4	0	1	NC	1	1040.675	4
297		16	max	.004	1	0	2	0	1	3.756e-3	4	NC	1	NC	1
298			min	004	3	007	3	044	4	0	1	NC	1	1744.301	4
299		17	max	.003	1	0	2	0	1	3.816e-3	4	NC	1	NC	1
300		1	min	003	3	005	3	022	4	0.01000	1	NC	1	3579.28	4
301		18	max	.001	1	<u>.005</u>	2	0	1	3.875e-3	4	NC	1	NC	1
302		10	min	001	3	003	3	007	4	0.0700 0	1	NC	1	NC	1
303		19			1	003	1		1	3.935e-3	4	NC	1	NC	1
		19	max	0	1	0	1	0					1		1
304	N 477		min	0			-	0	1	0	1_	NC	•	NC NC	
305	M7	1_	max	0	1	0	1	0	1	0	1	NC	1_	NC	1
306			min	0	1	0	1	0	1	-8.549e-4	4	NC	1_	NC	1
307		2	max	.001	3	0	15	.021	4	0	_1_	NC	_1_	NC	1
308			min	001	2	003	3	0	1	-5.615e-5	4	NC	1_	NC	1
309		3	max	.002	3	001	15	.041	4	7.426e-4	4	NC	1_	NC	1
310			min	002	2	007	3	0	1	0	1	NC	1	7071.216	4
311		4	max	.004	3	002	15	.059	4	1.541e-3	4	NC	1	NC	1
312			min	003	2	01	3	0	1	0	1	NC	1	5282.925	4
313		5	max	.005	3	003	15	.075	4	2.34e-3	4	NC	1	NC	1
314			min	005	2	012	3	0	1	0	1	8575.985	4	4486.358	4
315		6	max	.006	3	004	15	.09	4	3.139e-3	4	NC	1	NC	1
316			min	006	2	015	4	0	1	0	1	6945.504	4	4112.418	-
317		7		.007	3	004	15	.104	4	3.937e-3	4	NC	2	NC	1
317		/	max	.007	⊥ຽ	004	LIO	.104	4	J.33/6-3	4	INC		INC	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio			
318			min	007	2	018	4	0	1	0	1_	5963.694	4	3981.329	
319		8	max	.008	3	005	15	.117	4	4.736e-3	4	NC	5	NC	1
320			min	008	2	02	4	0	1	0	1_	5358.103	4_	4029.738	
321		9	max	.009	3	005	15	.129	4	5.535e-3	4	NC FOOD F	5	NC 40.46.000	1
322		40	min	009	2	021	4	0	1	0	1_1	5000.5	<u>4</u>	4246.099	4
323		10	max	.011	3	005 022	15	.14	4	6.334e-3	4	NC	<u>5</u>	NC 4655.653	1
324 325		11	min	01	3		15	<u>0</u>	4	7.132e-3	1_1	4828.695 NC		NC	1
326			max	.012 011	2	005 022	4	15 0	1	7.132e-3	<u>4</u> 1	4817.411	<u>5</u> 4	5327.218	
327		12		.013	3	022 005	15	.16	4	7.931e-3	4	NC	-4 5	NC	1
328		12	max min	013	2	005 021	4	0	1	0	1	4968.599	4	6404.114	
329		13	max	.014	3	005	15	.17	4	8.73e-3	4	NC	5	NC	1
330		13	min	014	2	003	4	0	1	0.736-3	1	5313.43	4	8188.28	4
331		14	max	.015	3	004	15	.179	4	9.528e-3	4	NC	5	NC	1
332		17	min	015	2	018	4	0	1	0	1	5928.411	4	NC	1
333		15	max	.017	3	004	15	.189	4	1.033e-2	4	NC	1	NC	1
334			min	016	2	016	4	0	1	0	1	6982.947	4	NC	1
335		16	max	.018	3	003	15	.199	4	1.113e-2	4	NC	1	NC	1
336			min	017	2	013	3	0	1	0	1	8887.199	4	NC	1
337		17	max	.019	3	002	15	.21	4	1.192e-2	4	NC	1	NC	1
338			min	018	2	011	3	0	1	0	1	NC	1	NC	1
339		18	max	.02	3	001	15	.222	4	1.272e-2	4	NC	1	NC	1
340			min	019	2	008	3	0	1	0	1	NC	1	NC	1
341		19	max	.021	3	0	10	.236	4	1.352e-2	4	NC	1	NC	1
342			min	02	2	005	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	1	.02	2	0	1	0	1_	NC	1_	NC	1
344			min	0	3	022	3	236	4	-8.699e-4	4	NC	1_	105.252	4
345		2	max	.006	1	.019	2	0	1	0	_1_	NC	_1_	NC	1
346			min	0	3	021	3	217	4	-8.699e-4	4	NC	1_	114.505	4
347		3	max	.006	1	.018	2	0	1	0	_1_	NC	_1_	NC	1
348			min	0	3	<u>019</u>	3	198	4	-8.699e-4	4	NC	1_	125.514	4
349		4	max	.006	1	.016	2	0	1	0	1	NC	_1_	NC	1
350			min	0	3	018	3	<u>179</u>	4	-8.699e-4	4_	NC	1_	138.736	4
351		5	max	.005	1	.015	2	0	1	0	1	NC	1_	NC 454.70	1
352			min	0	3	017	3	<u>16</u>	4	-8.699e-4	4_	NC NC	1_	154.79	4
353		6	max	.005	1	.014	2	0	1	0 000 4	1	NC NC	1_1	NC	1
354		7	min	0	3	016	2	142	1	-8.699e-4	4	NC NC	1_1	174.538	4
355			max	.004	3	.013	3	0 125	4	0 -8.699e-4	1_1	NC NC	1_1	NC 100 201	1
356 357		8	min	<u> </u>	1	015 .012	2	<u>125</u> 0	1	0	<u>4</u> 1	NC NC	1	199.201 NC	1
358		0	max min	<u>.004</u> 0	3	013	3	108		-8.699e-4		NC NC	1	230.561	4
359		9	max	.004	1	.011	2	0	1	0	1	NC	1	NC	1
360		9	min	0	3	012	3	091	4	-8.699e-4	4	NC NC	1	271.3	4
361		10	max	.003	1	.01	2	0	1	0.0336-4	1	NC	1	NC	1
362		10	min	0	3	011	3	076	4	-8.699e-4	4	NC	1	325.611	4
363		11	max	.003	1	.009	2	0	1	0.0000 4	1	NC	1	NC	1
364			min	0	3	01	3	062	4	-8.699e-4	4	NC	1	400.354	4
365		12	max	.003	1	.008	2	0	1	0	1	NC	1	NC	1
366			min	0	3	009	3	049	4	-8.699e-4	4	NC	1	507.394	4
367		13	max	.002	1	.007	2	<u>.045</u> 0	1	0.0000 4	1	NC	1	NC	1
368			min	0	3	007	3	037	4	-8.699e-4	4	NC	1	668.757	4
369		14	max	.002	1	.005	2	0	1	0	1	NC	1	NC	1
370			min	0	3	006	3	027	4	-8.699e-4	4	NC	1	929.253	4
371		15	max	.001	1	.004	2	0	1	0	1	NC	1	NC	1
372			min	0	3	005	3	018	4	-8.699e-4	4	NC	1	1392.179	4
373		16	max	.001	1	.003	2	0	1	0	1	NC	1	NC	1
374					3					-8.699e-4					

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

376		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
1877	375			max												
378	376			min	0	3	002	3	005		-8.699e-4	4	NC	1	4840.86	4
19			18		0	-		2		1		1_		1_		1
1880				min			001	3	002		-8.699e-4	4		1		
1881			19			_		-								
1882								_								
1883		<u>M10</u>	1	_												
384																
386			2			_										
386																
1887			3							-				_		
388			4													
389			4													
930			_													
391			5													
392			6											_		_
393			0	_												
394			7													
395																_
396			8								3 261e-3			_		_
397			Ŭ											_		
398			9													
399						-								1		
400			10											1		
401						3			315		1.112e-5			1		4
12 max			11		.003	1	002		0	12		4	NC	1		1
Mode	402			min	004	3	009	3	256	4	1.008e-5	12	NC	1	302.362	4
405	403		12	max	.003	1	002	15	0	12	3.491e-3	4	NC	1	NC	1
Mode				min		3			202			12		1		4
407	405		13	max	.002		002	15		12				_1_	NC	1
Mode				min		3			154			12		1_		4
15 max			14													•
410 min 002 3 006 4 074 4 5.944e-6 12 NC 1 1043.366 4 411 16 max .001 1 001 15 0 12 3.722e-3 4 NC 1 NC 1 NC 1 1412 min 001 3 005 4 044 4 4.909e-6 12 NC 1 1749.167 4 413 17 max 0 1 0 15 0 12 3.779e-3 4 NC 1 NC 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
411 16 max .001 1 001 15 0 12 3.722e-3 4 NC 1 NC 1 412 min 001 3 005 4 044 4 4.909e-6 12 NC 1 1749.167 4 413 17 max 0 1 0 15 0 12 3.779e-3 4 NC 1 NC 1 414 min 0 3 004 4 022 4 3.875e-6 12 NC 1 3590.591 4 415 min 0 3 002 4 007 4 2.841e-6 12 NC 1 NC 1 416 min 0 1 0 1 0 1 3.895e-3 4 NC 1 NC 1 417 19 max 0 1 0 1 1 </td <td></td> <td></td> <td>15</td> <td></td>			15													
412 min 001 3 005 4 044 4 4.909e-6 12 NC 1 1749.167 4 413 17 max 0 1 0 15 0 12 3.779e-3 4 NC 1 NC 1 414 min 0 3 004 4 022 4 3.875e-6 12 NC 1 3590.591 4 415 18 max 0 1 0 15 0 12 3.837e-3 4 NC 1 NC 1 416 min 0 3 002 4 007 4 2.841e-6 12 NC 1 NC 1 417 19 max 0 1 0 1 3.895e-3 4 NC 1 NC 1 418 min 0 1 0 1 3.895e-3 4 NC<								_						_		
413 17 max 0 1 0 15 0 12 3.779e-3 4 NC 1 NC 1 414 min 0 3004 4022 4 3.875e-6 12 NC 1 3590.591 4 415 18 max 0 1 0 15 0 12 3.837e-3 4 NC 1 NC 1 416 min 0 3002 4007 4 2.841e-6 12 NC 1 NC 1 417 19 max 0 1 0 1 0 1 3.895e-3 4 NC 1 NC 1 418 min 0 1 0 1 0 1 1.806e-6 12 NC 1 NC 1 419 M11 1 max 0 1 0 1 0 1 1.3503e-7 12 NC 1 NC 1 420 min 0 1 0 1 0 1 3.452e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .021 4 -2.332e-6 12 NC 1 NC 1 422 min 0 2003<			16													
414 min 0 3 004 4 022 4 3.875e-6 12 NC 1 3590.591 4 415 18 max 0 1 0 15 0 12 3.837e-3 4 NC 1 NC 1 416 min 0 3 002 4 007 4 2.841e-6 12 NC 1 NC 1 417 19 max 0 1 0 1 0 1 3.895e-3 4 NC 1 NC 1 418 min 0 1 0 1 0.895e-3 4 NC 1 NC 1 418 min 0 1 0 1 3.895e-3 4 NC 1 NC 1 419 M11 1 max 0 1 0 1 -3.503e-7 12 NC 1 N			4-													-
415 18 max 0 1 0 15 0 12 3.837e-3 4 NC 1 NC 1 416 min 0 3 002 4 007 4 2.841e-6 12 NC 1 NC 1 417 19 max 0 1 0 1 0 1 3.895e-3 4 NC 1 NC 1 418 min 0 1 0 1 0 1 1.806e-6 12 NC 1 NC 1 419 M11 1 max 0 1 0 1 -3.503e-7 12 NC 1 NC 1 419 M11 1 max 0 1 0 1 -3.503e-7 12 NC 1 NC 1 420 min 0 1 0 1 -8.452e-4 4 NC			1/											1_		
416 min 0 3 002 4 007 4 2.841e-6 12 NC 1 NC 1 417 19 max 0 1 0 1 0 1 3.895e-3 4 NC 1 NC 1 418 min 0 1 0 1 0 1 1.806e-6 12 NC 1 NC 1 419 M11 1 max 0 1 0 1 -3.503e-7 12 NC 1 NC 1 420 min 0 1 0 1 -8.452e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .021 4 -2.332e-6 12 NC 1 NC 1 422 min 0 2 003 4 0 12 -4.18e-5 1 NC			40											1_		
417 19 max 0 1 0 1 0 1 3.895e-3 4 NC 1 NC 1 418 min 0 1 0 1 0 1 1.806e-6 12 NC 1 NC 1 419 M11 1 max 0 1 0 1 -3.503e-7 12 NC 1 NC 1 420 min 0 1 0 1 -3.503e-7 12 NC 1 NC 1 420 min 0 1 0 1 -8.452e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .021 4 -2.332e-6 12 NC 1 NC 1 422 min 0 2 003 4 0 12 -4.18e-5 1 NC 1 NC			18													
418 min 0 1 0 1 1.806e-6 12 NC 1 NC 1 419 M11 1 max 0 1 0 1 -3.503e-7 12 NC 1 NC 1 420 min 0 1 0 1 -8.452e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .021 4 -2.332e-6 12 NC 1 NC 1 422 min 0 2 003 4 0 12 -4.18e-5 1 NC 1 NC 1 423 3 max 0 3 002 15 .04 4 7.668e-4 5 NC 1 NC 1 424 min 0 2 006 4 0 12 -7.818e-5 1 NC 1 NC<			10	_												
419 M11 1 max 0 1 0 1 -3.503e-7 12 NC 1 NC 1 420 min 0 1 0 1 -8.452e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .021 4 -2.332e-6 12 NC 1 NC 1 422 min 0 2 003 4 0 12 -4.18e-5 1 NC 1 NC 1 423 3 max 0 3 002 15 .04 4 7.668e-4 5 NC 1 NC 1 424 min 0 2 006 4 0 12 -7.818e-5 1 NC 1			19													
420 min 0 1 0 1 -8.452e-4 4 NC 1 NC 1 421 2 max 0 3 0 15 .021 4 -2.332e-6 12 NC 1 NC 1 422 min 0 2 003 4 0 12 -4.18e-5 1 NC 1 NC 1 423 3 max 0 3 002 15 .04 4 7.668e-4 5 NC 1 NC 1 424 min 0 2 006 4 0 12 -7.818e-5 1 NC 1 7454.887 4 425 4 max .001 3 002 15 .058 4 1.568e-3 4 NC 1 NC 1 426 min 0 2 01 4 0 12 -1.146e-4		N/11	1			-										
421 2 max 0 3 0 15 .021 4 -2.332e-6 12 NC 1 NC 1 422 min 0 2 003 4 0 12 -4.18e-5 1 NC 1 NC 1 423 3 max 0 3 002 15 .04 4 7.668e-4 5 NC 1 NC 1 424 min 0 2 006 4 0 12 -7.818e-5 1 NC 1 7454.887 4 425 4 max .001 3 002 15 .058 4 1.568e-3 4 NC 1 NC 1 426 min 0 2 01 4 0 12 -1.146e-4 1 NC 1 NC 1 427 5 max .002 3 003 15		IVIII				_		-			-8 452e-4					
422 min 0 2 003 4 0 12 -4.18e-5 1 NC 1 NC 1 423 3 max 0 3 002 15 .04 4 7.668e-4 5 NC 1 NC 1 424 min 0 2 006 4 0 12 -7.818e-5 1 NC 1 7454.887 4 425 4 max .001 3 002 15 .058 4 1.568e-3 4 NC 1 NC 1 426 min 0 2 01 4 0 12 -1.146e-4 1 NC 1 NC 1 427 5 max .002 3 003 15 .074 4 2.372e-3 4 NC 1 NC 1 428 min 001 2 013 4 0			2									_				
423 3 max 0 3 002 15 .04 4 7.668e-4 5 NC 1 NC 1 424 min 0 2 006 4 0 12 -7.818e-5 1 NC 1 7454.887 4 425 4 max .001 3 002 15 .058 4 1.568e-3 4 NC 1 NC 1 426 min 0 2 01 4 0 12 -1.146e-4 1 NC 1 5599.909 4 427 5 max .002 3 003 15 .074 4 2.372e-3 4 NC 1 NC 1 428 min 001 2 013 4 0 12 -1.509e-4 1 8243.393 4 4785.446 4 429 6 max .002 3 004 15 .089 4 3.177e-3 4 NC 5 NC 1				_								1				
424 min 0 2 006 4 0 12 -7.818e-5 1 NC 1 7454.887 4 425 4 max .001 3 002 15 .058 4 1.568e-3 4 NC 1 NC 1 426 min 0 2 01 4 0 12 -1.146e-4 1 NC 1 5599.909 4 427 5 max .002 3 003 15 .074 4 2.372e-3 4 NC 1 NC 1 428 min 001 2 013 4 0 12 -1.509e-4 1 8243.393 4 4785.446 4 429 6 max .002 3 004 15 .089 4 3.177e-3 4 NC 5 NC 1 430 min 001 2 016			3									5				-
425 4 max .001 3002 15 .058 4 1.568e-3 4 NC 1 NC 1 426 min 0 201 4 0 12 -1.146e-4 1 NC 1 5599.909 4 427 5 max .002 3003 15 .074 4 2.372e-3 4 NC 1 NC 1 428 min001 2013 4 0 12 -1.509e-4 1 8243.393 4 4785.446 4 429 6 max .002 3004 15 .089 4 3.177e-3 4 NC 5 NC 1 430 min001 2016 4 0 12 -1.873e-4 1 6699.357 4 4418.855 4																
426 min 0 2 01 4 0 12 -1.146e-4 1 NC 1 5599.909 4 427 5 max .002 3 003 15 .074 4 2.372e-3 4 NC 1 NC 1 428 min 001 2 013 4 0 12 -1.509e-4 1 8243.393 4 4785.446 4 429 6 max .002 3 004 15 .089 4 3.177e-3 4 NC 5 NC 1 430 min 001 2 016 4 0 12 -1.873e-4 1 6699.357 4 4418.855 4			4													
427 5 max .002 3 003 15 .074 4 2.372e-3 4 NC 1 NC 1 428 min 001 2 013 4 0 12 -1.509e-4 1 8243.393 4 4785.446 4 429 6 max .002 3 004 15 .089 4 3.177e-3 4 NC 5 NC 1 430 min 001 2 016 4 0 12 -1.873e-4 1 6699.357 4 4418.855 4												1				
428 min 001 2 013 4 0 12 -1.509e-4 1 8243.393 4 4785.446 4 429 6 max .002 3 004 15 .089 4 3.177e-3 4 NC 5 NC 1 430 min 001 2 016 4 0 12 -1.873e-4 1 6699.357 4 4418.855 4			5									4				1
429 6 max .002 3 004 15 .089 4 3.177e-3 4 NC 5 NC 1 430 min 001 2 016 4 0 12 -1.873e-4 1 6699.357 4 4418.855 4												1		_		4
430 min001 2016 4 0 12 -1.873e-4 1 6699.357 4 4418.855 4			6					_				4		•		
431 7 max .002 3 004 15 .103 4 3.981e-3 4 NC 5 NC 1	431		7	max	.002	3	004	15	.103	4	3.981e-3	4	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC				
432			min	002	2	018	4	0	10	-2.237e-4	1_	5768.609	4	4315.447	4
433		8	max	.003	3	005	15	.116	4	4.786e-3	4_	NC	5_	NC	1
434			min	002	2	02	4	0	1	-2.601e-4	1_	5194.924	4	4414.291	4
435		9	max	.003	3	005	15	.128	4	5.59e-3	4	NC	5	NC	1
436			min	002	2	022	4	0	1	-2.965e-4	1	4857.653	4	4712.604	4
437		10	max	.003	3	006	15	.139	4	6.394e-3	4	NC	5	NC	1
438			min	003	2	022	4	001	1	-3.328e-4	1	4698.434	4	5254.193	4
439		11	max	.004	3	006	15	.149	4	7.199e-3	4	NC	5	NC	1
440			min	003	2	023	4	002	1	-3.692e-4	1	4693.931	4	6146.438	4
441		12	max	.004	3	005	15	.159	4	8.003e-3	4	NC	5	NC	1
442			min	003	2	022	4	002	1	-4.056e-4	1	4846.893	4	7619.194	4
443		13	max	.005	3	005	15	.169	4	8.808e-3	4	NC	5	NC	1
444			min	004	2	021	4	003	1	-4.42e-4	1_	5188.366	4	NC	1
445		14	max	.005	3	005	15	.179	4	9.612e-3	4	NC	5	NC	1
446			min	004	2	019	4	004	1	-4.784e-4	1	5793.604	4	NC	1
447		15	max	.005	3	004	15	.189	4	1.042e-2	4	NC	3	NC	1
448			min	004	2	016	4	006	1	-5.147e-4	1	6828.716	4	NC	1
449		16	max	.006	3	003	15	.2	4	1.122e-2	4	NC	1	NC	1
450			min	004	2	013	4	007	1	-5.511e-4	1	8695.476	4	NC	1
451		17	max	.006	3	002	15	.212	4	1.203e-2	4	NC	1	NC	1
452			min	005	2	01	4	009	1	-5.875e-4	1	NC	1	NC	1
453		18	max	.007	3	002	15	.224	4	1.283e-2	4	NC	1	NC	2
454			min	005	2	006	4	011	1	-6.239e-4	1	NC	1	9279.418	1
455		19	max	.007	3	0	10	.238	4	1.363e-2	4	NC	1	NC	2
456			min	005	2	002	1	013	1	-6.603e-4	1	NC	1	7741.692	1
457	M12	1	max	.003	1	.005	2	.013	1	-1.32e-5	12	NC	1	NC	3
458			min	0	12	007	3	238	4	-7.454e-4	4	NC	1	104.017	4
459		2	max	.002	1	.005	2	.012	1	-1.32e-5	12	NC	1	NC	3
460			min	0	12	007	3	219	4	-7.454e-4	4	NC	1	113.151	4
461		3	max	.002	1	.004	2	.011	1	-1.32e-5	12	NC	1	NC	3
462		1	min	0	12	006	3	2	4	-7.454e-4	4	NC	1	124.019	4
463		4	max	.002	1	.004	2	.01	1	-1.32e-5	12	NC	1	NC	3
464			min	0	12	006	3	181	4	-7.454e-4	4	NC	1	137.072	4
465		5	max	.002	1	.004	2	.009	1	-1.32e-5	12	NC	1	NC	3
466		T .	min	0	12	006	3	162	4	-7.454e-4	4	NC	1	152.923	4
467		6	max	.002	1	.004	2	.008	1	-1.32e-5	12	NC	1	NC	3
468		+	min	0	12	005	3	144	4	-7.454e-4	4	NC	1	172.42	4
469		7	max	.002	1	.003	2	.007	1	-1.32e-5	12	NC	1	NC	3
470			min	0	12	005	3	126	4	-7.454e-4	4	NC	1	196.77	4
471		8	max	.002	1	.003	2	.006	1	-1.32e-5	12	NC	1	NC	3
472		1	min	0	12	004	3	109	4	-7.454e-4		NC	1	227.732	4
473		9	max	.001	1	.003	2	.005	1	-1.32e-5	12	NC	1	NC	2
474			min	0	12	004	3	093	4	-7.454e-4	4	NC	1	267.955	4
475		10	max	.001	1	.003	2	.004	1	-1.32e-5	12	NC	1	NC	2
476		10	min	0	12	004	3	077	4	-7.454e-4	4	NC	1	321.577	4
477		11		.001	1	.002	2	.004	1	-1.32e-5	12	NC	1	NC	2
478		+ ' '	max	0	12		3	063	4	-7.454e-4		NC	1	395.37	
479		12	min		1	003	2			-1.32e-5	4	NC NC	1	NC	2
		12	max	.001	12	.002		.003	1		<u>12</u>	NC NC	1		
480		42	min	0		003	3	05	4	-7.454e-4	4			501.049	4
481		13	max	0	1 12	.002	3	.002	1 4	-1.32e-5	<u>12</u>	NC NC	<u>1</u> 1	NC 660 359	1
482		4.4	min			002		038		-7.454e-4	4			660.358	4
483		14	max	0	1	.001	2	.002	1	-1.32e-5	<u>12</u>	NC	1	NC 047 F22	1
484		4.5	min	0	12	002	3	027	4	-7.454e-4	4	NC NC	1_	917.533	4
485		15	max	0	1	.001	2	.001	1	-1.32e-5	12	NC	1	NC 4074 545	1
486		40	min	0	12	002	3	<u>018</u>	4	-7.454e-4	4	NC NC	1_	1374.545	
487		16	max	0	1	0	2	0	1	-1.32e-5	12	NC	1	NC	1
488			min	0	12	001	3	011	4	-7.454e-4	4	NC	1_	2313.286	4

Model Name

Schletter, Inc.HCV

110 V

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		LC
489		17	max	0	1	0	2	0	1	-1.32e-5	12	NC	_1_	NC	1
490			min	0	12	0	3	005	4	-7.454e-4	4	NC	1_	4778.943	4
491		18	max	0	1	0	2	0	1	-1.32e-5	12	NC	_1_	NC	1
492			min	0	12	0	3	002	4	-7.454e-4	4	NC	1_	NC	1
493		19	max	0	1	0	1	0	1	-1.32e-5	12	NC	_1_	NC	1
494			min	0	1	0	1	0	1	-7.454e-4	4	NC	1_	NC	1
495	M1	1	max	.009	3	.162	2	1.035	4	1.316e-2	_1_	NC	_1_	NC	1
496			min	004	2	03	3	0	12	-2.069e-2	3	NC	1	NC	1
497		2	max	.009	3	.08	1	1	4	1.033e-2	4	NC	5	NC	1
498			min	004	2	013	3	01	1	-1.027e-2	3	1620.276	2	8154.439	
499		3	max	.009	3	.013	3	.964	4	1.769e-2	4	NC	5	NC	2
500			min	004	2	011	2	014	1	-3.008e-4	1	781.847	2	4499.566	5
501		4	max	.009	3	.057	3	.926	4	1.536e-2	4	NC	15	NC	2
502			min	004	2	111	2	013	1	-4.179e-3	3	494.893	2	3267.96	5
503		5	max	.008	3	.112	3	.887	4	1.303e-2	4	9888.605	15	NC	1
504			min	004	2	216	2	009	1	-8.251e-3	3	357.006	1	2649.039	5
505		6	max	.008	3	.172	3	.847	4	1.38e-2	1	7801.805	15	NC	1
506			min	004	2	318	1	004	1	-1.232e-2	3	280.38	1	2272.759	5
507		7	max	.008	3	.229	3	.807	4	1.85e-2	1	6571.235	15	NC	1
508			min	004	2	41	1	0	3	-1.64e-2	3	235.246	1	1998.653	4
509		8	max	.008	3	.277	3	.765	4	2.32e-2	1	5843.791	15	NC	1
510			min	004	2	483	1	0	12	-2.047e-2	3	208.596	1	1791.765	4
511		9	max	.008	3	.309	3	.722	4	2.562e-2	1	5463.678	15	NC	1
512			min	004	2	53	1	0	1	-2.074e-2	3	194.718	1	1654.548	4
513		10	max	.008	3	.32	3	.675	4	2.651e-2	1	5347.623	15	NC	1
514			min	004	2	545	1	0	12	-1.846e-2	3	190.566	1	1613.544	4
515		11	max	.007	3	.312	3	.624	4	2.816e-2	2	5463.429	15	NC	1
516			min	004	2	529	1	0	12	-1.619e-2	3	195.027	1	1648.407	4
517		12	max	.007	3	.286	3	.569	4	2.71e-2	2	5843.207	15	NC	1
518			min	004	2	482	1	001	1	-1.373e-2	3	209.545	1	1766.253	4
519		13	max	.007	3	.244	3	.508	4	2.176e-2	2	6570.101	15	NC	1
520			min	004	2	407	1	0	1	-1.098e-2	3	237.565	1	2097.599	4
521		14	max	.007	3	.189	3	.442	4	1.642e-2	2	7799.724	15	NC	1
522			min	003	2	313	1	0	12	-8.23e-3	3	285.333	1	2833.175	
523		15	max	.007	3	.128	3	.374	4	1.108e-2	2	9884.782	15	NC	1
524		10	min	003	2	208	1	0	12	-5.482e-3	3	367.161	1	4587.604	
525		16	max	.006	3	.065	3	.309	4	1.079e-2	4	NC	15	NC	1
526		10	min	003	2	102	1	0	12	-2.734e-3	3	517.633	1	NC	1
527		17	max	.006	3	.005	3	.248	4	1.208e-2	4	NC	5	NC	2
528		1 '	min	003	2	006	2	0	12	1.187e-5	12	836.561	1	9533.673	1
529		18	max	.006	3	.08	1	.194		9.011e-3		NC	5		1
530		10	min	003	2	05	3	0	12	-3.193e-3	3	1762.642	1	NC	1
531		19	max	.006	3	.156	1	.148	4	1.787e-2	2	NC	1	NC	1
532		15	min	003	2	101	3	001	1	-6.507e-3	3	NC	1	NC	1
533	M5	1	max	.027	3	.34	2	1.035	4	0	1	NC	1	NC	1
534	IVIO		min	019	2	026	3	0	1	-9.747e-6	4	NC	1	NC	1
535		2	max	.027	3	.164	1	1.008	4	9.078e-3	4	NC	5	NC	1
536			min	019	2	008	3	0	1	0	1	771.115	2	6030.126	_
		2						<u></u> .974		1.795e-2					
537		3	max	.027	3	.041	3		1		4_1	NC 363,096	15	NC 3566.54	1
538		1	min	019	2	036	2	0	· ·	0 1.462e-2	1_1	362.086	<u>2</u>		4
539		4	max	.026	3	.149	3	.935	4		4	6861.793	<u>15</u>	NC	1
540		-	min	018	2	274	2	0	1	0	1_	221.334	2	2787.746	
541		5	max	.026	3	.296	3	.893	4	1.13e-2	4_	4786.947	<u>15</u>	NC	1
542			min	018	2	534	1	0	1	0	1_	154.84	1_	2422.273	
543		6	max	.025	3	.463	3	.85	4	7.976e-3	4_	3676.477	<u>15</u>	NC 2000 000	1
544		-	min	018	2	797	1	0	1	0	1_	118.871	1_	2200.009	
545		7	max	.025	3	.625	3	.806	4	4.652e-3	4	3036.624	15	NC	_1_

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

-10	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_	LC	(n) L/y Ratio LC		
546			min	017	2	-1.036	1	0	1	0	1_	98.131 1	2016.93	4
547		8	max	.024	3	.762	3	.764	4	1.328e-3	4_	2665.345 15		1
548			min	017	2	-1.228	1	0	1	0	_1_	86.091 1	1822.187	4
549		9	max	.024	3	.85	3	.722	4	0	_1_	2475.004 15		1
550		10	min	<u>016</u>	2	-1.349	1	0	1	-5.859e-6	5_	79.919 1	1648.279	4
551		10	max	.023	3	.882	3	.674	4	0	_1_	2417.616 15		1
552			min	<u>016</u>	2	-1.39	1	0	1	-5.651e-6	5	78.087 1	1626.409	
553		11	max	.022	3	.86	3	.623	4	0	_1_	2475.104 15		1
554		1.0	min	<u>016</u>	2	-1.348	1	0	1	-5.443e-6	5_	80.064 1	1012.000	
555		12	max	.022	3	.785	3	.571	4	8.441e-4	4_	2665.589 15		1
556		40	min	016	2	-1.223	1	0	1	0	1_	86.568 1	1730.609	
557		13	max	.021	3	.665	3	<u>51</u>	4	2.958e-3	4_	3037.136 15		1
558		4.4	min	015	2	-1.025	1	0	1	0	1_	99.373 1	2048.764	4
559		14	max	.021	3	.513	3	.441	4	5.072e-3	4_	3677.495 15		1
560		4.5	min	015	2	778	1	0	1	0	1_	121.681 1	2935.086	
561		15	max	.02	3	.344	3	.369	4	7.186e-3	4_	4788.986 15		1
562		40	min	015	2	<u>51</u>	1	0	1	0	1_	160.979 1	5797.712	4
563		16	max	.019	3	.173	3	.299	4	9.3e-3	4_	6866.103 15		1
564		4-7	min	015	2	247	1	0	1	0	1_	235.861 1		1
565		17	max	.019	3	.014	3	.237	4	1.141e-2	4_	NC 15		1
566		40	min	014	2	018	2	0	1	0	1_	400.456 1	NC NC	1
567		18	max	.019	3	.167	1	.186	4	5.773e-3	4	NC 5		1
568		40	min	014	2	122	3	0	1	0	1_	877.891 1	NC NC	1
569		19	max	.019	3	.319	1	.149	4	0		NC 1	NC NC	1
570	140		min	014	2	245	3	0	1	-5.737e-6	4_	NC 1	NC NC	1
571	<u>M9</u>	1_	max	.009	3	.162	2	1.035	4	2.069e-2	3	NC 1	NC NC	1
572		_	min	004	2	03	3	001	1	-1.316e-2	1_	NC 1	NC NC	1
573		2	max	.009	3	.08	1	1.006	4	1.027e-2	3	NC 5		1
574			min	004	2	013	3	0	12	-6.327e-3	1_	1620.276 2	6427.583	
575		3	max	.009	3	.013	3	.972	4	1.789e-2	4	NC 5	NC	2
576		1	min	004	2	011	2	0	12	4.781e-6	<u>10</u>	781.847 2	3737.116	
577		4	max	.009	2	.057	3	.934	4	1.4e-2 -4.399e-3	5	NC 15		2
578			min	004		111	2	0	12		1_	494.893 2	2866.034	1
579		5	max	.008	3	.112	3	.893	4	1.055e-2	5	9840.069 15 357.006 1	NC 2445.319	
580		6	min	004	3	216 .172	3	<u> </u>	12	-9.099e-3	1_	001.000		1
581 582		6	max	.008	2				4	1.232e-2	3	7765.156 15 280.38 1	2189.304	
		7	min	004	3	318 .229	3	0	12	-1.38e-2 1.64e-2	<u>1</u> 3			
583			max	.008	2		1	.807	1			6541.38 15 235.246 1		1
584 585		0	min	004	3	41 .277		<u> </u>		-1.85e-2 2.047e-2	<u>1</u> 3	235.246 1 5817.856 15	1000.102	1
586		8	max min	.008 004	2	483	3	.764 001	1	-2.32e-2		208.596 1		
587		9		.008	3	.309	3	.722	4	2.074e-2	3	5439.744 15		1
588		9	max	004	2	53	1	0	12	-2.562e-2	1	194.718 1		_
589		10	max	.008	3	.32	3	.675	4	1.846e-2	3	5324.28 15		1
590		10	min	004	2	545	1	<u>.075</u>	1	-2.651e-2	1	190.566 1		
591		11	max	.007	3	.312	3	.623	4	1.619e-2	3	5439.515 15		1
592		- 11	min	004	2	529	1	0	1	-2.816e-2	2	195.027 1	1656.189	-
593		12	max	.007	3	.286	3	.57	4	1.373e-2	3	5817.444 15		1
594		12	min	004	2	482	1	0	12	-2.71e-2	2	209.545 1	1750.403	_
595		13		.007	3	.244	3	.508	4	1.098e-2	3	6540.795 15		1
596		13	max min	004	2	407	1	<u>.506</u>	12	-2.176e-2	2	237.565 1		-
597		14		.007	3	.189	3	.44	4	8.23e-3	3	7764.356 15		1
598		14	min	003	2	313	1	003	1	-1.642e-2	2	285.333 1		5
599		15	max	.003	3	.128	3	.369	4	6.832e-3	5	9838.952 15		1
600		13	min	003	2	208	1	008	1	-1.108e-2	2	367.161 1	5191.418	
601		16	max	003 .006	3	.065	3	.301	4	9.198e-3	5	NC 15		1
602		10	min	003	2	102	1	012	1	-5.863e-3		517.633 1		1
002			1111111	000		102		012		0.0006-0		017.000 I	INC	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.006	3	.005	3	.239	4	1.159e-2	4	NC	5	NC	2
604			min	003	2	006	2	013	1	-8.458e-4	1	836.561	1	9533.673	1
605		18	max	.006	3	.08	1	.189	4	5.527e-3	5	NC	5	NC	1
606			min	003	2	05	3	009	1	-9.011e-3	2	1762.642	1	NC	1
607		19	max	.006	3	.156	1	.149	4	6.507e-3	3	NC	1	NC	1
608			min	003	2	101	3	0	12	-1.787e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/c$	$(d_a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}$				
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	
4.00	0.50	1.00	2500	7.87	

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	ωχ ψ (2)(11νε) 11νεο) 1 εα, ν 1 ε, ν 1 η, ν ν μ (333. Β. π. η, Β. 3.2. η (3) α Ε η. Β Σ 1)						
Avc (in ²)	$Av\infty$ (in ²)	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:			_		

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	1/5		
Project:	Standard PVMax - Worst Case, 21-31 Inch Width				
Address:					
Phone:					
E-mail:					

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Anchors subjected to sustained tension: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016					
Engineer:	HCV	Page:	2/5					
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-31 Inch Width						
Address:								
Phone:								
E-mail:								

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21-	-31 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2495.5	1558.5	0.0	1558.5
2	2495.5	1558.5	0.0	1558.5
Sum	4991.0	3117.0	0.0	3117.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4991

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

<i>k</i> _c	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_c)$	Nc / A Nco) $\Psi_{ec,N}$ Ψ_{ec}	$_{I,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b}$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324.00	1.000	0.972	1.00	1.000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f short-term	K _{sat}	τ _{k,cr} (psi)
1.00	1.00	1035
nef (Eq. D-16f)		
d _a (in)	h _{ef} (in)	N _{a0} (lb)
0.50	6.000	9755
	1.00 nef (Eq. D-16f) de (in)	1.00 1.00 nef (Eq. D-16f) d _a (in) h _{ef} (in)

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \varPsi_{ed,Na} \varPsi_{g,Na} \varPsi_{ec,Na} \varPsi_{\rho,Na} N_{a0} \left(\text{Sec. D.4.1 \& Eq. D-16b} \right)$

A_{Na} (in ²)	A_{Na0} (in ²)	$arPsi_{\sf ed,Na}$	$arPsi_{g,Na}$	$arPsi_{\sf ec,Na}$	$arPsi_{p,Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)	
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093	

Company:	Schletter, Inc.	Date:	8/1/2016				
Engineer:	HCV	Page:	4/5				
Project:	Standard PVMax - Worst Case, 21-31 Inch Width						
Address:							
Phone:							
E-mail:							

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc / Avco) Yec, v Ye	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	$Av \infty$ (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
378.00	648.00	1.000	0.836	1.000	1.000	15593	0.70	5323

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (Ib)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cpg} = \phi \min |k_{cp} N_{ag} \; ; \; k_{cp} N_{cbg}| = \phi \min |k_{cp} (A_{Na} / A_{Nao}) \; \Psi_{ed,Na} \; \Psi_{g,Na} \; \Psi_{ec,Na} \; \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc} / A_{Nco}) \; \Psi_{ed,N} \; \Psi_{e,N} \; \Psi_{c,N} \;$

,			(,	-, 3,,	μ, ,μ (,	,,,	(-1)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A_{Nc} (in ²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2496	6071	0.41	Pass
Concrete breakout	4991	9208	0.54	Pass
Adhesive	4991	8093	0.62	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1559	3156	0.49	Pass
T Concrete breakout x+	3117	5323	0.59	Pass (Governs)

Company:	Schletter, Inc.	Date:	8/1/2016	
Engineer:	HCV	Page:	5/5	
Project:	Standard PVMax - Worst Case, 21-31 Inch Width			
Address:				
Phone:				
E-mail:				

Concrete break	out y- 1559	12241	0.	13	Pass (Governs)	
Pryout	3117	19833	0.	16	Pass	
Interaction check	Nua/φNn	Vua/ ϕ Vn	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.62	0.59	120.2 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.