Hierarchical Modelling with Scene Graph Construction Assignment Project Exam Help

https://tutorcs.com

Frederick Li

WeChat: cstutorcs

This Lesson

Scene graph construction

Scene Graph:

is a collection of nodes in a graph or tree structure
Assignment Project Exam Help
A tree node may have many children but often only a single parent, with the effect of a parent applied to all its child nodes https://tutorcs.com

An operation performed on a group automatically propagates its

Scene Graph

- Data structure arranges the logical and spatial representation of a graphical scene
- Hierarchical Grouping of Objects

Pseudocode for a Scene Graph

```
Group {
                                                   Group
    numObjects 3
    Group 4
                                                           Plane
                                         Group
                                                   Group
        numObjects 3
        Box { <BOX PARAMS>_}
        Box (Assignment Project Exam Helpup
                                                      Group
        Box { <BOX PARAMS>
                                            Box Box Box Sphere Sphere
                  https://tutorcs.com
        numObjects 2
        Group {
             Box { <BOX PARAMS> }
             Box { <BOX PARAMS> } }
        Group {
             Box { <BOX PARAMS> }
             Sphere { <SPHERE PARAMS> }
             Sphere { <SPHERE PARAMS> } }
    Plane { <PLANE PARAMS> } }
```


Adding Materials

```
Group {
    numObjects 3
   Material { <BLUE> }
    Group {
        numObjects 3
        Box { <BOX PARAMS> }
        Box { <BOX PARAMS> }
        Box { <BOX PARAMS> }
              Assignment Project Exam Help
    Group {
        numObjects 2
        Material { ⟨BROWN⟩/
                            tutorcs.com
        Group {
            Box { <BOX PARAMS> }
            Box { <BOX (HAHAM$ > OSTUTOTCS
            Box { <BOX PARAMS> } }
        Group {
            Material { <GREEN> }
            Box { <BOX PARAMS> }
            Material { <RED> }
            Sphere { <SPHERE PARAMS> }
            Material { <ORANGE> }
            Sphere { <SPHERE PARAMS> } } }
            Material { <BLACK> }
    Plane { <PLANE PARAMS> } }
```

Adding Transformations

Hierarchical Transformation of Objects

Apply geometric
 transformations to logical
 groups of objects within
 the scene Assignment Project

Exam Help

Simple Scene Graph

Scene Graph with transformations

Scene Graph with transformations

```
Group
    numObjects 3
    Transform {
                                                    Group
        ZRotate { 45
                                                            Plane
        Group {
            numObjects 3
            Group
            Box { <BOX PARAMS > }
                                                  Group
                                                        Group
            Box { SBOX PARAMS> } } } https://tutorcs.com
                                               Box Box Box
                                                       Box Sphere Sphere
    Transform
        Translate { -2 0 0 }
                  WeChat: cstutorcs
        Group {
            numObjects 2
            Group {
                 Box { <BOX PARAMS> }
                 Box { <BOX PARAMS> }
                 Box { <BOX PARAMS> } }
            Group {
                 Box { <BOX PARAMS> }
                 Sphere { <SPHERE PARAMS>
                 Sphere { <SPHERE PARAMS> } } }
            <PLANE PARAMS> } }
```

Sample Program (JointModel.js)

Simple robot arm with two components

What is the seeignment Project Emam Help graph? https://tutorcs.com

Each component supportshat: cstutorcs a different type of rotation

Every time when arm 1 rotates, the same rotation applies simultaneously to arm 2

arm2

→: arm1 rotation(y-axis), ↑↓: joint1 rotation(z-axis)

→---- joint1

←→: arm1 rotation(y-axis), ↑ ↓: joint1 rotation(z-axis)

WebGL Implementation

```
comparent node
181
        Arm1
182
      var arm1Length = 10.0; // Length of arm1
183
     g modelMatrix.setTranslate(0.0, -12.0, 0.0);
     g modelMatrix.rotate(g arm1Angle, 0.0, 1.0, 0.0); // Rotate y-axis
184
     drawBox(gASS1@10MMCNatrrx1O1@GMaErX21MNonG10atrix); // Draw
185
186
187
                    https://tutores.com
     g modelMatrix.translate(0.0, armlLength, 0.0);
                                                         Move to joint1
188
     g modelMatrix.rotate(g joint1Angle, 0.0, 0.0, 1.0);// Rotate z-axis
189
     g modelMatrix.scaleChato,CS.blltOrGake it a little thicker
190
191
     drawBox(gl, n, viewProjMatrix, u MvpMatrix, u NormalMatrix); // Draw
```

Hierarchical Operations:

- Draw arm 2 (upper part of robot arm); scale, then rotate, then translate it (implicitly all transformations applied for arm 1 also apply to arm 2)
- Draw arm 1; rotate, then translate it

Construct individual Component

Figure 9.6 Well-did for thrawing the robot arm OTCS

Code for the building block (cuboid)

```
var vertices = new Float32Array([
    1.5, 10.0, 1.5, -1.5, 10.0, 1.5, -1.5, 0.0, 1.5, 1.5, 0.0, 1.5, // v0-v1-v2-v3 front
    1.5, 10.0, 1.5, 1.5, 0.0, 1.5, 1.5, 0.0,-1.5, 1.5, 10.0,-1.5, // v0-v3-v4-v5 right
    1.5, 10.0, 1.5, 1.5, 10.0,-1.5, -1.5, 10.0,-1.5, -1.5, 10.0, 1.5, // v0-v5-v6-v1 up
    -1.5, 10.0, 1.5, -1.5, 10.0,-1.5, -1.5, 0.0,-1.5, -1.5, 0.0, 1.5, // v1-v6-v7-v2 left
    -1.5, 0.0,-1.5, 1.5, 0.0,-1.5, 1.5, 0.0, 1.5, -1.5, 0.0, 1.5, // v7-v4-v3-v2 down
    1.5, 0.0,-1.5, -1.5, 0.0,-1.5, -1.5, 10.0,-1.5, 1.5, 10.0,-1.5 // v4-v7-v6-v5 back
]);
```


Draw a Component

```
function drawBox(gl, n, viewProjMatrix, u_MvpMatrix, u_NormalMatrix) {
   g_mvpMatrix.set(viewProjMatrix);  // projection, view transforms
   g_mvpMatrix.muAtsSignmoterMatrix);  ect transforms
   gl.uniformMatrix4fv(u_MvpMatrix, false, g_mvpMatrix.elements);
   ...
   gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_BYTE, 0);
}

WeChat: cstutorcs
V.SHADER: gl Position = u MvpMatrix * a Position;
```

Idea:

- Transformations composition are pre-computed in the CPU
- Use GPU to apply a simple composited transformation on every vertex

A Complicated Model

←→: arm1 rotation, ↑↓: joint1 rotation, xz: joint2(wrist) rotation, cv: finger rotation

Figure 9.8 The hierarchical structure of MultiJointModel

Draw the Palm (Upper Part)


```
// A palm
  var palmLength = 2.0;
  g modelMatrix.translate(0.0, arm2Length, 0.0);  // Move to palm
  g modelMatrix.rotate(g joint2Angle, 0.0, 1.0, 0.0); // Rotate around the y-axis
  drawBox(gl, n, 2.0, palmLength, 6.0, viewProjMatrix, u MvpMatrix, u NormalMatrix);
  // Move to the century signature at the century the century the century of the century the century of the centu
  g modelMatrix.translate(0.0, palmLength, 0.0);
                                                                                    https://tutorcs.com
   // Draw finger1
   pushMatrix(g modelMatrix);
        g_modelMatrix.translate(0,0,0,0,0);
g_modelMatrix.rotate(g_)int Angle 1:10,5 tud,O1.6,5 // Rotate around the x-axis
         drawBox(gl, n, 1.0, 2.0, 1.0, viewProjMatrix, u MvpMatrix, u NormalMatrix);
  g modelMatrix = popMatrix();
  // Draw finger2
  g modelMatrix.translate(0.0, 0.0, -2.0);
  g modelMatrix.rotate(-g joint3Angle, 1.0, 0.0, 0.0); // Rotate around the x-axis
  drawBox(gl, n, 1.0, 2.0, 1.0, viewProjMatrix, u MvpMatrix, u NormalMatrix);
```


Draw the Arm (Lower Part)


```
// Draw a base
var baseHeight = 2.0;
g modelMatrix.setTranslate(0.0, -12.0, 0.0);
drawBox(gl, n, 10.0, baseHeight, 10.0, viewProjMatrix, u MvpMatrix, u NormalMatrix);
// Arm1
var arm1Length = 1ASSignment Project Exam Help
g modelMatrix.translate(0.0, baseHeight, 0.0); // Move onto the base
g_modelMatrix.rotate(g_arm1Angle, 0.0, 1.0, 0.0); // Rotate around the y-axis
drawBox(gl, n, 3.0, arm11 andth, $3/0 thic Matrix) u_MvpMatrix, u_NormalMatrix);
// Arm2
var arm2Length = 10.0; WeChat: cstutorcs
g modelMatrix.rotate(g jointlAngle, 0.0, 0.0, 1.0); // Rotate around the z-axis
drawBox(gl, n, 4.0, arm2Length, 4.0, viewProjMatrix, u MvpMatrix, u NormalMatrix);
           var g matrixStack = [];
                                            function popMatrix() {
           function pushMatrix(m) {
 Storing
                                              return q matrixStack.pop();
            var m2 = new Matrix4(m);
 a matrix:
             g matrixStack.push(m2);
```


Enhance the drawBox() Function

```
function drawBox(gl, n, width, height, depth,
                viewProjMatrix, u MvpMatrix, u NormalMatrix) {
 pushMatrix(g modelMatrix); // Save the model matrix
   g modelMatrix.scale(width, height, depth);
    // Calculate the model view project matrix and pass it to u MvpMatrix
   g_mvpMatrix.set(viewFrd3Matrix)tOTCS.COM
   g mvpMatrix.multiply(g modelMatrix);
   gl.uniformMatrix4fv WwoMatrix, cfalse openvpMatrix.elements);
   // Draw
   gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED BYTE, 0);
 g modelMatrix = popMatrix(); // Retrieve the model matrix
```


16

Summary

- Scene graph construction
- WebGL Implementation
 - Draw building blocks (object components)
 - Transform Indigitual Entire Exam Help
 - Apply a series of transformations https://tutorcs.com
- Reference: WeChat: cstutorcs
 WebGL Programming Guide [Ch. 9]

