NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

FINAL REPORT Project No. A-2904 MASA TR-166752

ADVANCED MICROWAVE MOISTURE SOUNDER (AMMS) FOR WB-57F CCOPE MISSION

J. A. Gagliano and J. J. McSheehy

Prepared for GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland 20771

Under Contract NAS5-26528

October 1981

GEORGIA INSTITUTE OF TECHNOLOGY

A Unit of the University System of Georgia Engineering Experiment Station Atlanta, Georgia 30332

(NASA-CR-165752) ADVANCED MICROWAVE
MOISTURE SOUNDER (AMMS) FOR WB-57F CCOPE
MISSION Final Technical Report, 3 Apr. - 31
Oct. 1981 (Georgia Inst. of Tech.) 48 p
Unclas
CSCL 14B G3/35 08790

Advanced Microwave Moisture Sounder (AMMS) For WB-57F CCOPE Mission

J.A. Gagliano and J.J. McSheehy Georgia Institute of Technology Engineering Experiment Station Atlanta, Georgia 30332

October 1981 Final Technical Report for A-2904

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland 20771

SECURITY CLASSIF: CATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM					
1. REPORT NUMBER	2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER				
A-2904						
4. TITLE (and Subtitle)	<u> </u>	S. TYPE OF REPORT & PERIOD COVERED				
Advanced Michael Wednesday Com	1 (41040)	Final Technical Report,				
Advanced Microwave Moisture Soun For WB-57F CCOPE Mission	der (AMMS)	4/3/81 to 10/31/81				
ror wb-3/r CCOPE Mission		4. PERFORMING ORG. REPORT NUMBER				
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(s)				
J.A. Gagliano and J.J. McSheehy		NAS5-26528				
1						
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK				
Georgia Institute of Technology		AREA & WORK UNIT NUMBERS				
Engineering Experiment Station						
Atlanta, Georgia 30332						
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE				
NASA Goddard Space Flight Center		October 1981				
Greenbelt, Maryland 20771		13. NUMBER OF PAGES				
Project Manager, J.L. King (Code	946)	40				
14 MONITORING AGENCY NAME & ADDRESS(If different	from Controlling Office)	18. SECURITY CLASS. (of this report)				
		Unclassified				
		15a. DECLASSIFICATION DOWNGRADING SCHEDULE				
16. DISTRIBUTION STATEMENT (of this Report)						
		•				
]						
17. DISTRIBUTION STATEMENT (of the abstract entered i	n Block 20, if different fro	m Report)				
18. SUPPLEMENTARY NOTES						
TO SOLVE CHENTANT NOTES						
19. KEY WORDS (Continue on reverse side if necessary and	identify by block number)					
Multichannel scanning radiometer,	, 94 GHz, 183 GH:	z, Subharmonic Mixer, Solid				
state local oscillator, Microcomp	outer, Advanced l	Microwave Moisture Sounder				
(AMMS).						
20 ABSTRACT (Continue on reverse side if necessary and	identify by block number)					
	•	DATE OF STATE OF				
AMMS, developed by Georgia Tech u NAS5-26220, was flown on the WB-5						
Experiment (CCOPE) in May/June 19	•	•				
bands on either side of the 183.3						
and ± 8.75 GHz. Data were also co						
loss atmospheric window channel n	ear 94 GHz. The	e AMMS scanner imaged the				
scene below the WB-57F over an an	gular range of	+ 45° about nadir with beam-				
		-				

cont d on next page...

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

widths of 2 degree and 1 degree for the 94 GHz and 183 GHz sensors, respectively. The radiometer system operated under control of the onboard microcomputer used to: store radiometric data on the AMMS flight recorder, operate the stepper motor driven scanner, and collect pertinent housekeeping data for the system. A portable ground support system was used following each CCOPE flight to provide quick-look data analysis. Georgia Tech delivered CCOPE flight logs and tape of the AMMS data to NASA.

DD 1 JAN 73 1473 EDITION OF 1 NOV 45 IS OBSOLETE

Unclassified

RECURITY CLASSIFICATION OF THIS PAGE (Phon Date In's PE)

Table of Contents

Section		Page
	List of Figures	v
	List of Tables	vi
	Foreword	vii
1.0	Introduction	1
2.0	AMMS System Description	4
3.0	CCOPE Data Quick-Look Analysis Summary	10
4.0	Conclusion	15
	Appendix A: Monthly Progress Report	16
	Appendix B: "Moisture Sounding at Millimeter	
	Wavelengths (94/183 GHz) at High	
	Altitudes	34

List of Figures

Figure		Page
1	CCOPE Mission with WB-57F/AMMS Performing Measurements	2
2	WB-57F 94/183 GHz Radiometer Block Diagram and Channel Allocation	5
3	AMMS RF Package Showing Front-End Components, Scanner, and Calibration Loads	7
4	AMMS Digital Package with Flight Recorder	8
5	AMMS Ground Support System	9
6	AMMS Radiometric Images (4 Channels) From CCOPE 2 (5/31/81)	11
7	AMMS Flight Log From CCOPE 2 (5/31/81)	12
8	AMMS Flight History From CCOPE 2 (5/31/81)	13
9	AMMS Brightness Temperatures (Four Channels) Versus Aircraft Time	14

List of Tables

Table		Page
1	Advanced Microwave Moisture Sounder (AMMS)/WB-57F Mission Schedule	3
2	Key Parameters of the 94/183 GHz WB-57F AMMS	6

Foreword

This final report was prepared by the Electromagnetics Laboratory of the Engineering Experiment Station, Georgia Institute of Technology under Contract NAS5-26528. The contract was initiated by the Applications Directorate of NASA Goddard Space Flight Center, (GSFC), Greenbelt, Maryland. The contract was administered by J. Larry King of the Earth Observations Systems Division.

Final report authors are J.A. Gagliano and J.J. McSheehy. The period of performance was 3 April 1981 to 31 October 1981. The Appendix A contains copies of the monthly technical progress reports furnished to MASA/GSFC during the duration of the program. Appendix B is a copy of a recent paper, describing the AMMS CCOPE mission results, entitled "Moisture Sounding at Millimeter Wavelengths (94/183 GHz) at High Altitudes." This paper was presented in August 1981 at the SPIE 25th Annual International Technical Symposium and Exhibit in San Diego, CA.

The views and conclusions in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of NASA/GSFC or the U.S. Government.

We would like to acknowledge the valuable contribution to the successful completion of this project by Tom Wilheit, Bob Curran, Chuck Mason, and Jack Pownell of NASA/GSFC; and the following Georgia Tech personnel: Don Gallentine, Ron Forsythe, Stan Halpern, Avery Davis, and John Diller.

1.0 Introduction

The Advanced Microwave Moisture Sounder (AMMS), developed by Georgia Tech, was successfully flown on NASA's high altitude WB-57F aircraft during the CCOPE (Cooperative Convective Precipitation Experiment) Mission in June 1981. CCOPE was conducted near Miles City, Montana and its main objectives were to study the life cycles of summer convective clouds and storms and to learn how natural processes interact to produce storms. Figure 1 depicts the measurement site over Miles City and shows the AMMS/WB-57F scanning the scene below. A typical WB-57F data flight during CCOPE involved the aircraft flying above a storm at 18 km altitude within a 150 km radius circle near Miles City. At the same time other aircraft would fly in and around the storm. Other operating systems included ground based weather radar, weather balloons, and a satellite-linked network of 125 ground stations.

AMMS performed measurements near the 183.3 GHz water vapor line with three data channels and simultaneously collected data at a single window channel at 94 GHz to measure surface emissivity variations over land. The instrument operated under microcomputer control throughout each flight and collected data continuously from aircraft take-off to landing. A portable ground support system was used following each CCOPE flight to provide quick-look analysis of the data. Table 1 is a summary of AMMS/WB-57F missions performed over the past 2 years ending with the June 1981 CCOPE mission.

CCOPE Mission with WB-57F/AMMS Performing Measurements Figure 1.

Table 1. Advanced Microwave Moisture Sounder (AMMS)/WB-57F Mission Schedule Summary

Mission	Location	Month/Year
SESAME*	Southwest U.S.	June 1979
Florida Thunder- Storm	Florida	Sept. 1979
Stratiform Precipita- tion	Central and Southern U.S.	Feb. 1980
Severe Storm	South Florida	Aug. 1980
CCOPE**	Montana	May/June 1981

^{*}Severe Environmental Storms and Mesoscale Experiment

^{**}Cooperative Convective Precipitation Experiment

2.0 AMMS System Description

The APMS 94 GHz channel serves as a low-loss atmospheric window channel and as a background temperature monitor for correction of the 183 GHz water vapor channels. The three 183 GHz channels consist of bands on either side of the 183.3 GHz water vapor line at ±2.25, ±5.00, and ±8.75 GHz. The AMMS block diagram and frequency channel allocation are shown in Figure 2. The AMMS scanner images the scene below the aircraft over an angular range of ±45° about nadir. The angular beamwidths for the 94 GHz and 183 GHz sensors are 2 degrees and 1 degree, respectively. The onboard AMMS microcomputer sets the scan period, controls the calibration period, samples the four data channels, and digitizes the data for storage on the flight recorder. Table 2 provides a summary of key parameters for the 94/183 GHz imaging radiometer and ground support system. The ground support system is a portable microcomputer based unit used to provide quick-look data analysis after each flight.

The AMMS RF package is shown in Figure 3 with the external hot and cold calibration loads attached. The rotating reflector operates under microprocessor control and, after a selectable number of mapping cycles (six for the previous WB-57F flights), rotates 360° to reflect each calibration load into the AMMS antenna lens viewing port. A key component developed for the AMMS RF front-end is the 183 GHz subharmonic balanced mixer (pumped at 91.65 GHz) which uses antiparallel mounted Schottky-barrier diodes. Reference is made to the semi-annual status report "Research In Millimeter Wave Techniques" (NASA Grant No. NSG-5012), report period 15 January - 15 July 1981, for further detail on the subharmonic mixer program which supported the CCOPE flights.

Figures 4 and T are the AMMS digital package (with dual cartridge flight recorder) and the AMMS ground support system, respectively. Following each data flight the cartridge was removed from the flight recorder and inserted in the ground support recorder, where quick-look data analysis programs were performed.

b) Radiometer Channel Allocation.

Figure 2. WB-57F 94/183 CHz Radiometer Block Diagram and Channel Allocation.

Table 2

Key Parameters of the 94/183 GHz WB-57F AMMS

Parameters	Remarks
AIRBORNE SYSTEM Dual Frequency 94/183 GHz Front-end	Solid state, low noise wide band
Multichannel System	3 channels @ 183 GHz, 1 channel @ 94 GHz
Subharmonic Balanced Mixer	183 GHz (Pumped at 91.65 GHz)
Single-ended Mixer and LO Injection Cavity	94.0 GHz
Antenia	5 inch lens aperture (1^0 and 2^0 HPBW)
Precision External Calibration	Effective black body ($\epsilon > 0.999$)
Super Chopper Beam Combining	Essentially Lossless Operation
Beam Scanner (Moving Mirror)	Microprocessor Control (Nominal 6 scans/l calibration)
Data Recording (4 Radiometric Channels)	Microprocessor Control (Full 6 hour capability)
GROUND SUPPORT SYSTEM	
Data Display	Real time to 2X real time images (4 channels)
Data Flight History	Flight log printout
Data Storage	Airborne cartridge to 9 track tape
Software Support	Custom design on flight-to-flight basis

AMMS RF Package Showing Front-End Components, Scanner, and Calibration Loads Figure 3.

Figure 4. AMMS Digital Package with Flight Recorder

Figure 5. AMMS Ground Support System

3.0 CCOPE Data Quick-Look Analysis Summary

AMMS data collected onboard the WB-57F during the CCOPE mission was analyzed in the field following each data flight. Figure 6 is a four channel radiometric image generated from the flight cartridge for one of the six CCOPE data flights, i.e. CCOPE 2 on 31 May 1981. The aircraft flight time for this image begins at 2013z and ends at 2023z. The time interval of 2017z to 2021z corresponds to a storm cell below the aircraft which was flying at an altitude near 60,000 feet.

The corresponding flight log and history over the same 10 minute time interval for CCOPE 2 are shown in Figures 7 and 8 respectively. The flight log provides data information such as the maximum (MAX) and minimum (MIX) radiometric temperature recorded for each six scan (approximately eighteen seconds) sequence on each data channel. For instance, MA2 = 228K and MI2 = 137K at 2019z correspond to the 94 GHz maximum and minimum brightness temperatures, respectively. The AMMS flight history (Figure 8) provides information on component operating temperatures in degrees centigrade such as: Dicke Reference load (RF), 183 GHz Gunn diode oscillator (GN8), and 183 GHz subharmonic mixer (MX8). The temperature resolution (DELTX) for each of the four data channels is provided. The temperature resolution calculations are based on ten calibration samples each for the hot and cold calibration loads.

Figure 9 is a graph of brightness temperatures for each AMMS data channel versus flight time for the same interval. The time periods 2013z to 2017z and 2021z to 2023z correspond to scenes with relatively clear air and low clouds. The decrease in brightness temperatures on all four channels occurs between 2017z and 2021z. This event represents the detection of a storm cell and is primarily due to resonant backscattering of the 3K cosmic background by particles within the storm cell.

11

PAGE: 4 FLIGHT: CCOPE 2 BAY: 151 DATE: 5/31/81

Figure 7. AMMS Flight Log From CCOPE 2 (5/31/81)

PAGE: 4 FLIGHT: CCOPE 2 BAY: 151 BATE: 5/31/81

0 300 0156 201 5146 -17 57 28 23 22 17 19 20 0.57 0.73 1.88 2.71 2.94 0 302 0156 201 613 -17 57 28 23 22 17 19 20 0.61 0.70 2.72 1.03 2.48 0 304 0157 201 6153 -17 57 28 23 22 17 19 20 0.57 1.01 2.78 1.08 2.89 0 304 0157 201 7116 -18 57 28 23 22 17 19 20 0.57 1.01 2.78 1.08 2.89 0 304 0157 201 7116 -18 57 28 23 22 17 19 20 0.57 1.01 2.78 1.08 2.89 0 310 0157 201 7116 -18 57 28 23 22 17 19 20 0.59 1.01 2.78 1.08 2.89 0 310 0157 201 7115 -17 57 28 23 22 17 20 0.59 0.70 0.78 2.00 2.45 2.00 314 0158 201 81 3 -17 57 28 23 22 17 19 20 0.59 1.01 2.12 2.41 3.23 0 314 0158 201 8124 -17 57 28 23 22 17 19 20 0.59 1.06 2.02 2.33 2.50 0 314 0158 201 8124 -17 57 28 23 22 17 19 20 0.59 1.01 2.49 2.00 2.71 0 318 0157 201 715 71 57 28 23 22 17 19 20 0.59 1.01 2.49 1.76 3.77 0 320 0157 201 715 71 57 28 23 22 17 19 20 0.59 1.01 2.49 1.76 3.79 3 324 110 201 9152 -17 57 28 23 22 17 19 20 0.59 1.01 2.49 1.76 3.79 3 324 110 201 9152 -17 57 28 23 22 17 19 20 0.59 0.74 2.44 1.63 3.18 0 324 110 201 9152 -17 57 28 23 22 17 19 20 0.59 0.74 2.44 1.63 3.18 0 324 110 2010 9157 -17 57 28 23 22 17 19 20 0.59 0.74 2.44 1.63 3.18 0 324 110 2010 9157 -17 57 28 23 22 17 19 20 0.60 1.10 2.49 1.76 3.79 3 324 110 2010 9157 -17 57 28 23 22 17 19 20 0.60 1.01 1.10 2.37 2.44 2.54 0 330 11 2 2011 122 -17 57 28 23 22 17 19 20 0.60 1.01 1.3 1.52 2.33 2.30 0 324 110 2010 9157 -17 57 28 23 22 17 19 20 0.60 1.03 2.41 2.20 2.74 0 328 11 1 2010 9157 -17 57 28 23 22 17 19 20 0.60 1.03 2.41 2.20 2.74 0 328 11 1 2011 122 -17 57 28 23 22 17 19 20 0.60 1.03 2.41 2.20 2.75 0 344 11 2 2011 127 -17 57 28 23 22 17 19 20 0.60 1.03 2.44 2.54 2.54 2.54 2.54 2.54 2.54 2.54	TK	BLK	TIME	IRICE	CD	HT	RF	CN9	CNE	HXT	MXS	DIC	743	DELT2	DELT1	DELTS	DELTO
	•	300	0154	201 5146	-17	57	28	23	22	17	19	20	0.59	0.73	1.88	2.71	2.94
	•				_	_		23	22	17	17	20	0.61	0.70	2.72		
0 308 0157 201 7116 -18 57 28 23 22 17 19 20 0.60 1.01 2.12 2.41 3.23 0310 0157 201 7138 -17 57 28 23 22 17 20 20 0.57 0.58 2.07 2.65 2.78 0310 0157 201 813 -17 57 28 23 22 17 19 20 0.60 0.82 2.07 2.65 2.78 0314 0158 201 8123 -17 57 28 23 22 17 19 20 0.60 0.82 2.02 2.33 2.50 0314 0159 201 8144 -17 57 28 23 22 17 19 20 0.60 0.57 1.06 2.02 2.33 2.50 0314 0159 201 91 8 -17 57 28 23 22 17 19 20 0.60 1.10 2.37 2.00 2.71 0320 0157 201 91.07 -17 57 28 23 22 17 19 20 0.60 1.10 2.49 1.76 3.71 0322 11 0 201 9152 -17 57 28 23 22 17 19 20 0.60 0.59 0.86 2.05 2.12 3.23 0.32 11 0 201 9152 -17 57 28 23 22 17 19 20 0.60 0.59 0.86 2.05 2.12 3.23 0.32 11 0 201 101 4 -17 57 28 23 22 17 19 20 0.60 0.99 0.94 2.44 1.63 3.18 0.34 11 0 201 101 4 -17 57 28 23 22 17 19 20 0.60 0.99 0.94 2.44 1.63 3.18 0.34 11 0 201 101 57 -17 57 28 23 22 17 19 20 0.60 0.99 3.11 2.20 2.74 0.328 11 1 201 101 57 -17 57 28 23 22 17 19 20 0.60 0.99 3.11 2.20 2.74 0.330 11 2 201 11 44 -17 57 28 23 22 19 19 20 0.60 0.99 3.11 2.20 2.74 0.330 11 2 201 11 44 -17 57 28 23 22 19 19 20 0.60 0.99 2.27 2.44 2.54 0.334 11 2 201 12 7 -17 57 28 23 22 19 19 20 0.59 0.95 0.95 1.93 2.22 3.80 0.334 11 2 201 12 7 -17 57 28 23 22 19 19 20 0.59 0.95 0.95 1.93 2.22 3.81 0.30 0.334 11 2 201 12 7 -17 57 28 23 22 19 19 20 0.59 0.95 1.93 2.22 3.81 0.30 0.334 11 2 201 12 7 -17 57 28 23 22 19 19 20 0.59 0.95 1.93 2.22 3.81 0.30 0.334 11 2 201 12 7 -17 57 28 23 22 19 19 20 0.59 0.95 1.93 2.22 3.81 0.30 0.334 11 2 201 12 7 -17 57 28 23 22 19 19 20 0.60 0.97 2.27 2.44 2.54 0.34 0.34 0.33 0.34 0.33 0.35 0.30 0.30 0.30 0.30 0.30 0.30	•	304	0156	20: 6:31	-17	57	28					_		.70			
			-		-					-	-			–			
0 312 0 150 201 81 1 -17 57 28 23 22 19 19 20 0.60 0.82 2.49 2.70 2.23 0 314 0 158 201 8123 -17 57 28 23 22 19 19 20 0.59 1.06 2.02 2.33 2.50 0 316 0 159 201 8144 -17 57 28 23 22 19 19 20 0.59 1.01 2.37 2.00 2.71 0 318 0 159 201 9129 -17 57 28 23 22 19 19 20 0.59 1.01 2.39 1.76 3.79 0 320 0 159 201 9129 -17 57 28 23 22 19 19 20 0.59 0.84 2.05 2.12 3.23 0 320 11 0 2011014 -17 57 28 23 22 19 19 20 0.59 0.84 2.05 2.12 3.23 3.00 0 324 11 0 20110159 -17 57 28 23 22 19 19 20 0.60 0.92 3.11 2.20 2.74 0 320 11 1 2011122 -17 57 28 23 22 19 19 20 0.60 0.92 3.11 2.20 2.74 0 330 11 1 2011122 -17 57 28 23 22 19 19 20 0.60 0.92 3.11 2.20 2.74 0 330 11 1 2011122 -17 57 28 23 22 19 19 20 0.60 1.03 1.52 2.37 3.59 0 334 11 2 20112127 -17 57 28 23 22 19 19 20 0.60 1.03 1.52 2.31 2.50 0 334 11 2 20112129 -17 57 28 23 22 19 19 20 0.60 1.13 1.52 2.31 2.50 0 334 11 2 20112129 -17 57 28 23 22 19 19 20 0.60 1.13 1.52 2.31 2.50 0 334 11 2 20112129 -17 57 28 23 22 19 19 20 0.60 1.13 1.52 2.31 2.50 0 334 11 2 20112129 -17 57 28 23 22 19 19 20 0.60 1.13 1.52 2.31 2.50 0 334 11 3 20112135 -17 57 28 23 22 19 19 20 0.60 1.13 1.52 2.31 2.50 0 344 11 4 20113155 -17 57 28 23 22 19 19 20 0.60 1.03 1.03 2.41 2.03 2.71 0 338 11 3 20112152 -17 57 28 23 22 19 19 20 0.60 1.03 1.04 2.04 2.05 2.75 0 344 11 4 20113155 -17 57 28 23 22 19 19 20 0.60 0.75 1.75 2.75 2.75 3.80 0 344 11 4 20113155 -17 57 28 23 22 19 19 20 0.60 0.77 2.17 2.88 4.16 0 344 11 4 20113155 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 344 11 4 2011443 -17 57 27 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 11 5 20115126 -17 57 28 23 22 19 19 20 0.60 0.77 2.17 2.85 3.75 0 348 11 4 2011443 -17 57 27 23 22 19 19 20 0.60 0.77 2.17 2.85 3.75 0 348 11 4 2011345 -17 57 28 23 22 19 19 20 0.60 0.77 2.17 2.85 3.75 0 348 11 4 2011345 -17 57 28 23 22 19 19 20 0.60 0.77 2.50 2.75 3.80 0 350 11 5 20115126 -17 57 28 23 22 19 19 20 0.60 0.77 2.50 2.75 3.75 3.75 0 354 11 6 20116135 -17 57 28 23 22 19 19 20 0.60 0.77 2.50 2.75 3.75 3.75 0 354 11 6 20116135 -17 57 28 23 22 19 19 20 0.60 0.77																	
0 314 0158 20: 8123 -17 57 28 23 22 17 19 20 0.57 1.06 2.02 2.33 2.50 0 314 0157 20: 8144 -17 57 28 23 22 17 19 20 0.57 1.11 2.37 2.00 2.71 0 320 0157 20: 9127 -17 57 28 23 22 17 19 20 0.50 1.11 2.37 2.00 2.71 0 320 0157 20: 9127 -17 57 28 23 22 17 19 20 0.57 0.84 2.05 2.12 3.23 0 322 1: 0 20: 9152 -17 57 28 23 22 17 19 20 0.57 0.94 2.44 1.63 3.18 0 324 1: 0 20:10:14 -17 57 28 23 22 17 19 20 0.60 0.75 0.94 2.44 1.63 3.18 0 324 1: 0 20:10:13 -17 57 28 23 22 17 19 20 0.60 0.97 3.11 2.20 2.74 0 320 1: 1 20:10:157 -17 57 28 23 22 17 19 20 0.60 0.87 2.11 2.20 2.74 0 320 1: 1 20:10:157 -17 57 28 23 22 17 19 20 0.60 0.87 2.11 2.20 2.74 0 320 1: 1 20:11:122 -17 57 28 23 22 17 19 20 0.60 0.87 2.27 2.44 2.54 0 330 1: 1 20:11:122 -17 57 28 23 22 17 19 20 0.60 1.07 1.75 2.57 3.57 0 334 1: 2 20:11:14 -17 57 28 23 22 19 19 20 0.60 1.07 1.75 2.57 3.59 0 334 1: 2 20:11:14 -17 57 28 23 22 19 19 20 0.60 1.07 1.75 2.57 3.59 0 334 1: 2 20:11:14 -17 57 28 23 22 19 19 20 0.60 1.30 1.52 2.31 2.50 0 334 1: 2 20:12:152 -17 57 28 23 22 19 19 20 0.60 1.30 2.61 2.03 2.71 0 338 1: 3 20:12:152 -17 57 28 23 22 19 19 20 0.60 1.30 2.61 2.03 2.71 0 344 1: 3 20:13:13 -17 57 28 23 22 19 19 20 0.60 1.45 1.72 2.36 2.73 0 344 1: 4 20:13:55 -17 57 28 23 22 19 19 20 0.60 1.03 2.44 2.58 2.75 0 344 1: 4 20:13:55 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.79 0 344 1: 4 20:13:55 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.79 0 345 1: 4 20:13:55 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.79 0 350 1: 5 20:15: 5 -17 57 28 23 22 19 19 20 0.60 0.77 2.16 2.11 3.61 0 346 1: 4 20:15:15:0 -17 57 28 23 22 19 19 20 0.60 0.77 2.16 2.11 3.61 0 346 1: 4 20:15:15:0 -17 57 28 23 22 19 19 20 0.60 0.77 2.16 2.11 3.61 0 350 1: 5 20:15:25 -17 57 28 23 22 19 19 20 0.60 0.77 2.16 2.17 3.03 3.10 0 3.04 1: 7 20:17:19 -17 57 28 23 22 19 19 20 0.60 0.77 2.16 2.11 3.61 0 350 1: 5 20:15:5 -17 57 28 23 22 19 19 20 0.60 0.77 2.16 2.11 3.61 0 350 1: 5 20:15:5 -17 57 28 23 22 19 19 20 0.60 0.77 2.16 2.11 3.61 0 350 1: 5 20:15:5 -17 57 28 23 22 19 19 20 0.60 0.77 2.16 2.13 3									_		•						
0 314 0157 20: 0148 -17 57 28 23 22 17 19 20 0.60 1.10 2.47 1.76 3.71 0 318 0157 20: 7: 8 -17 57 28 23 22 17 19 20 0.60 1.10 2.47 1.76 3.73 0 322 1: 0 20: 7!52 -17 57 28 23 22 17 19 20 0.60 1.00 2.47 1.76 3.71 0 324 1: 0 20:10114 -17 57 28 23 22 17 19 20 0.60 0.57 0.86 2.05 2.12 3.23 0 324 1: 0 20:10114 -17 57 28 23 22 17 19 20 0.60 0.57 0.85 2.63 3.00 0 324 1: 0 20:10157 -17 57 28 23 22 17 19 20 0.60 0.57 3.11 2.20 2.74 0 320 1: 1 20:10157 -17 57 28 23 22 17 19 20 0.60 0.67 2.11 2.22 2.74 0 320 1: 1 20:10157 -17 57 28 23 22 17 19 20 0.60 0.67 2.11 2.20 2.74 2.54 0 330 1: 1 20:11122 -17 57 27 23 22 17 20 0.60 0.60 0.79 1.75 2.57 3.57 0 334 1: 2 20:11214 -17 57 28 23 22 17 19 20 0.60 0.60 0.79 1.75 2.57 3.57 0 334 1: 2 20:11217 -17 57 28 23 22 17 19 20 0.60 0.60 1.03 1.52 2.31 2.50 0 334 1: 2 20:11217 -17 57 28 23 22 19 19 20 0.59 0.57 0.75 1.73 2.22 3.80 0 334 1: 2 20:112127 -17 57 28 23 22 19 19 20 0.50 0.57 0.75 1.73 2.22 3.80 0 334 1: 2 20:11213 -17 57 28 23 22 19 19 20 0.50 0.50 1.30 2.61 2.03 2.71 0 338 1: 3 20:13313 -17 57 28 23 22 19 19 20 0.60 1.30 2.61 2.03 2.71 0 334 1: 4 20:131313 -17 57 28 23 22 19 19 20 0.60 1.30 2.61 2.03 2.71 0 344 1: 4 20:13158 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 344 1: 4 20:13158 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 344 1: 4 20:13158 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 344 1: 4 20:13158 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 350 1: 5 20:1515 5 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 350 1: 5 20:1515 5 -17 57 28 23 22 19 19 20 0.60 0.77 2.52 2.53 3.79 0 350 1: 5 20:1515 5 -17 57 28 23 22 19 19 20 0.60 0.77 2.52 2.53 3.79 0 350 1: 5 20:1515 5 -17 57 28 23 22 19 19 20 0.60 0.77 2.52 2.53 3.79 0 350 1: 5 20:1515 5 -17 57 28 23 22 19 19 20 0.60 0.77 2.52 2.53 3.79 0 350 1: 5 20:1515 5 -17 57 28 23 22 19 19 20 0.60 0.77 2.52 2.53 3.79 0 350 1: 5 20:1515 5 -17 57 28 23 22 19 19 20 0.60 0.77 2.52 2.53 3.79 0 350 1: 5 20:15150 -17 57 28 23 22 19 19 20 0.60 0.77 2.52 2.53 3.79 0 350 1: 5 20:15150 -17 57 28 23 22 19 1									-	-							
										-							
0 322 11 0 201 9152 -17 57 28 23 22 19 20 0.59 0.74 2.44 1.63 3.18 0 324 11 0 20110114 -17 57 28 23 22 19 19 21 0.59 1.05 2.63 2.30 3.00 324 11 0 201101157 -17 57 28 23 22 19 19 20 0.60 0.72 3.11 2.20 2.74 0 328 11 1 20110159 -17 57 28 23 22 19 19 20 0.60 0.89 2.27 2.44 2.54 0 330 11 1 20111122 -17 57 28 23 22 19 19 20 0.60 1.09 1.75 2.57 3.59 0 332 11 2 20111144 -17 57 28 23 22 19 19 20 0.60 1.09 1.75 2.57 3.59 0 332 11 2 20111144 -17 57 28 23 22 19 19 20 0.50 0.59 0.95 1.73 2.22 3.80 0 334 11 2 20112152 -17 57 28 23 22 19 19 20 0.59 0.95 1.73 2.22 3.80 0 334 11 2 20112152 -17 57 28 23 22 19 19 20 0.50 0.95 1.73 2.22 3.80 0 340 11 3 20112152 -17 57 28 23 22 19 19 20 0.60 1.30 2.61 2.03 2.71 0 338 11 3 20112152 -17 57 28 23 22 19 19 20 0.60 1.30 2.61 2.03 2.71 0 340 11 3 2011313 -17 57 28 23 22 19 19 20 0.60 1.45 1.79 2.56 2.75 0 344 11 4 20113158 -17 57 28 23 22 19 19 20 0.60 1.65 1.79 2.72 2.36 2.75 0 344 11 4 20114120 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 346 11 4 20114120 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 346 11 4 20114123 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 11 5 20115150 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 11 5 20115150 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 11 5 20115150 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 11 5 20115150 -17 57 28 23 22 19 19 20 0.60 0.74 2.35 2.75 3.82 0 354 11 6 20116135 -17 57 27 23 22 19 19 20 0.60 0.74 2.35 2.75 3.82 0 354 11 6 20116135 -17 57 27 23 22 19 19 20 0.60 0.74 2.35 2.75 3.82 0 354 11 6 20116135 -17 57 27 23 22 19 19 20 0.60 0.77 2.50 2.74 3.46 0 346 11 7 20114156 -17 57 27 23 22 19 19 20 0.60 0.77 2.50 2.74 3.46 0 346 11 7 20114154 -17 57 27 23 22 19 19 20 0.60 0.77 2.50 2.74 3.46 0 346 11 7 20114154 -17 57 27 23 22 19 19 20 0.60 0.77 2.50 2.74 3.46 0 346 11 7 2011415 -17 57 28 23 22 19 19 20 0.60 0.77 2.50 2.74 3.46 0 346 11 7 2011415 -17 57 28 23 22 19 19 20 0.60 0.77 2.50 2.74 3.46 0 346 11 7 2011415 -17 57 28 23 22 19 19 20 0.60 0.77 2.50 2.73 2.03 3.10 0 346 11	- :				_	-											
0 324 1: 0 20:10:14 -17 57 28 23 22 17 17 21 0.57 1.05 2.63 2.30 3.00 0 326 1: 0 20:10:137 -17 57 28 23 22 17 17 20 0.60 0.72 3.11 2.20 2.74 0 328 1: 1 20:10:157 -17 57 28 23 22 17 17 20 0.60 0.87 2.27 2.44 2.54 0 330 1: 1 20:11:122 -17 57 29 23 22 17 17 20 0.60 0.87 2.27 2.44 2.54 0 330 1: 1 20:11:122 -17 57 28 23 22 17 17 20 0.60 1.07 1.75 2.57 3.57 0 332 1: 2 20:11:44 -17 57 28 23 22 17 17 20 0.60 1.13 1.52 2.31 2.50 0 334 1: 2 20:12:7 -17 57 28 23 22 17 17 20 0.60 1.13 1.52 2.31 2.50 0 334 1: 2 20:12:7 -17 57 28 23 22 17 17 20 0.60 1.30 2.61 2.03 2.71 0 338 1: 3 20:12:52 -17 57 28 23 22 17 17 20 0.60 1.30 2.61 2.03 2.71 0 338 1: 3 20:13:13 -17 57 28 23 22 17 17 20 0.60 1.45 1.72 2.36 2.71 0 340 1: 3 20:13:13 -17 57 28 23 22 17 17 20 0.60 1.45 1.72 2.36 2.73 0 342 1: 3 20:13:13 -17 57 28 23 22 17 17 20 0.60 1.45 1.72 2.36 2.75 0 344 1: 4 20:13:58 -17 57 28 23 22 17 17 20 0.60 1.45 1.72 2.36 2.75 0 344 1: 4 20:14:20 -17 57 28 23 22 17 17 20 0.60 0.73 2.17 2.88 4.16 0 346 1: 4 20:14:20 -17 57 28 23 22 17 17 20 0.57 0.72 2.17 2.88 3.31 0 350 1: 5 20:15:5 5 -17 57 28 23 22 17 17 20 0.57 0.72 2.23 1.82 2.78 0 350 1: 5 20:15:5 5 -17 57 28 23 22 17 17 20 0.60 0.73 2.17 2.88 3.31 0 350 1: 5 20:15:5 5 -17 57 28 23 22 17 17 20 0.60 0.74 2.34 2.58 3.79 0 348 1: 4 20:14:43 -17 57 27 23 22 17 17 20 0.57 0.78 2.35 2.75 3.82 2.78 0 350 1: 5 20:15:5 5 -17 57 28 23 22 17 17 20 0.60 0.77 2.55 2.55 3.82 2.78 0 350 1: 5 20:15:5 -17 57 28 23 22 17 17 20 0.60 0.77 2.50 2.74 3.46 0 358 1: 6 20:16:13 -17 57 27 23 22 17 17 20 0.60 0.77 2.50 2.74 3.46 0 358 1: 6 20:16:13 -17 57 27 23 22 17 17 20 0.60 0.77 2.50 2.74 3.46 0 358 1: 6 20:16:13 -17 57 27 23 22 17 17 20 0.60 0.77 2.50 2.74 3.46 0 342 1: 7 20:17:14 -17 57 28 23 22 17 17 20 0.60 0.77 2.50 2.74 3.46 0 342 1: 7 20:17:14 -17 58 28 23 22 17 17 20 0.60 0.77 2.50 2.74 3.46 0 342 1: 7 20:17:14 -17 58 28 23 22 17 17 20 0.60 0.77 2.50 2.73 2.03 3.10 0 360 1: 8 20:18:40 -17 58 28 23 22 17 17 20 0.60 0.87 2.73 2.63 3.10 0 360 1: 9 20:17:14 -17 58 28 23 22 17 17 20 0.60 0.80 2.73 2.60 3	•	320	0:57	20: 7:27	-17	57	28	23	22	17		20	0.59	1.84	2.05	2.12	3.23
0 326 1: 0 20:10:37 -17 57 28 23 22 17 19 20 0.60 0.92 3.11 2.20 2.74 0 320 1: 1 20:10:57 -17 57 28 23 22 19 19 20 0.60 0.09 2.27 2.44 2.54 0 330 1: 1 20:11:22 -17 57 29 23 22 19 19 20 0.60 1.09 1.75 2.57 3.59 0 332 1: 2 20:11:44 -17 57 28 23 22 19 19 20 0.60 1.13 1.52 2.31 2.50 0 334 1: 2 20:12:27 -17 57 28 23 22 19 19 20 0.60 1.33 1.52 2.31 2.50 0 334 1: 2 20:12:27 -17 57 28 23 22 19 19 20 0.60 1.30 2.61 2.03 2.71 0 338 1: 3 20:12:52 -17 57 28 23 22 19 19 20 0.60 1.30 2.61 2.03 2.71 2.87 0 340 1: 3 20:12:52 -17 57 28 23 22 19 19 20 0.60 1.30 2.61 2.03 2.71 2.87 0 340 1: 3 20:13:13 -17 57 28 23 22 19 19 20 0.60 1.45 1.72 2.36 2.93 0 344 1: 4 20:13:58 -17 57 28 23 22 19 19 20 0.60 1.45 1.72 2.36 2.75 0 344 1: 4 20:13:58 -17 57 28 23 22 19 19 20 0.60 1.45 1.72 2.36 2.75 0 344 1: 4 20:13:58 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 344 1: 4 20:14:43 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 344 1: 4 20:14:43 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 344 1: 4 20:14:20 -17 57 28 23 22 19 19 20 0.60 0.72 2.27 2.76 2.73 0 348 1: 4 20:14:20 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 350 1: 5 20:15:28 -17 57 28 23 22 19 19 20 0.60 0.72 2.35 2.75 3.80 0 350 1: 5 20:15:28 -17 57 28 23 22 19 19 20 0.60 0.72 2.35 2.75 3.80 0 350 1: 5 20:15:28 -17 57 28 23 22 19 19 20 0.60 0.72 2.35 2.75 3.80 0 350 1: 5 20:15:28 -17 57 28 23 22 19 19 20 0.60 0.72 2.35 2.75 3.80 0 350 1: 5 20:15:28 -17 57 28 23 22 19 19 20 0.60 0.72 2.35 2.75 3.80 0 350 1: 5 20:15:28 -17 57 28 23 22 19 19 20 0.60 0.72 2.35 2.75 3.80 0 350 1: 5 20:15:28 -17 57 28 23 22 19 19 20 0.60 0.72 2.35 2.75 3.80 0 350 1: 5 20:15:28 -17 57 28 23 22 19 19 20 0.60 0.72 2.35 2.75 3.80 0 350 1: 5 20:15:28 -17 57 27 23 22 19 19 20 0.60 0.72 2.35 2.75 3.80 0 350 1: 5 20:15:30 -17 57 28 23 22 19 19 20 0.60 0.72 2.35 2.75 3.80 0 350 1: 5 20:15:30 -17 57 28 23 22 19 19 20 0.60 0.72 2.35 2.73 2.03 3.10 0 364 1: 8 20:18:49 -17 58 28 23 22 19 19 20 0.60 0.72 2.35 2.73 2.03 3.10 0 364 1: 8 20:18:49 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3	•				_	_					_	-					
0 328 1: 1 20:10:57 -17 57 28 23 22 19 19 20 0.60 0.07 2.27 2.44 2.54 330 1: 1 20:11:22 -17 57 28 23 22 19 19 20 0.60 1.09 1.95 2.57 3.59 0 332 1: 2 20:12:44 -17 57 28 23 22 19 19 20 0.60 1.03 1.52 2.31 2.50 0 334 1: 2 20:12:7 -17 57 28 23 22 20 19 20 0.59 0.95 1.93 2.22 3.80 0 336 1: 2 20:12:52 -17 57 28 23 22 19 19 20 0.59 0.95 1.73 2.22 3.80 0 336 1: 3 20:12:52 -17 57 28 23 22 19 19 20 0.60 1.30 2.61 2.03 2.71 0 338 1: 3 20:12:52 -17 57 28 23 22 19 19 20 0.60 1.30 2.61 2.03 2.71 0 340 1: 3 20:13:13 -17 57 28 23 22 19 19 20 0.60 1.43 2.44 2.58 2.75 0 344 1: 4 20:13:58 -17 57 28 23 22 19 19 20 0.60 1.03 2.44 2.58 2.75 0 344 1: 4 20:14:20 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 346 1: 4 20:14:20 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 346 1: 4 20:14:20 -17 57 28 23 22 19 19 20 0.59 0.92 2.27 2.76 2.73 0 348 1: 4 20:14:30 -17 57 28 23 22 19 19 20 0.59 0.92 2.27 2.76 2.73 0 348 1: 4 20:14:33 -17 57 28 23 22 19 19 20 0.59 0.92 2.27 2.76 2.73 0 350 1: 5 20:15:50 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15:28 -17 57 28 23 22 19 19 20 0.60 0.72 2.35 2.75 3.82 0 356 1: 6 20:16:13 -16 58 27 23 22 19 19 20 0.60 0.77 2.62 2.56 3.79 0 350 1: 5 20:15:28 -17 57 28 23 22 19 19 20 0.60 0.77 2.62 2.58 3.79 0 356 1: 6 20:16:13 -16 59 27 23 22 19 19 20 0.60 0.77 2.50 2.74 3.46 2.58 3.51 6 20:16:13 -16 59 27 23 22 19 19 20 0.60 0.77 2.50 2.74 3.46 0 356 1: 6 20:16:13 -16 59 27 23 22 19 19 20 0.60 0.77 2.50 2.74 3.46 0 364 1: 7 20:17:19 -17 57 27 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 364 1: 7 20:17:19 -17 57 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 364 1: 7 20:17:19 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 364 1: 7 20:17:19 -17 58 28 23 22 19 19 20 0.60 0.83 2.73 2.89 3.22 0 370 1: 9 20:18:49 -17 58 28 23 22 19 19 20 0.60 0.83 2.73 2.89 3.22 0 370 1: 9 20:18:49 -17 58 28 23 22 19 19 20 0.60 0.83 2.73 2.89 3.22 0 370 1: 9 20:18:49 -17 58 28 23 22 19 19 20 0.60 0.83 2.73 2.89 3.22 0 370 1: 9 20:18:49 -17 58 28 23 22 19 19 20 0.60 0.83 2.73 2.89 3.20 3.20 3.20 3.20 3.2	•		_		_						- :						
0 330 1: 1 20:11:22 -17 57 29 23 22 19 20 0.60 1.09 1.95 2.57 3.59 0 332 1: 2 20:11:144 -17 57 28 23 22 19 19 20 0.60 1.13 1.52 2.31 2.50 0 334 1: 2 20:12:27 -17 57 28 23 22 19 19 20 0.50 1.30 2.61 2.03 2.71 0 338 1: 3 20:12:52 -17 57 28 23 22 19 19 20 0.60 1.30 2.61 2.03 2.71 0 338 1: 3 20:12:52 -17 57 28 23 22 19 19 20 0.60 1.30 2.61 2.03 2.71 2.87 0 340 1: 3 20:13:13 -17 57 28 23 22 19 19 20 0.60 1.45 1.92 2.36 2.93 0 342 1: 3 22:13:135 -16 57 28 23 22 19 19 20 0.60 1.03 2.44 2.58 2.75 0 344 1: 4 20:13:58 -17 57 28 23 22 19 19 20 0.60 1.03 2.44 2.58 2.75 0 344 1: 4 20:13:58 -17 57 28 23 22 19 19 20 0.60 1.03 2.44 2.58 2.75 0 344 1: 4 20:14:20 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 346 1: 4 20:14:20 -17 57 28 23 22 19 19 20 0.59 0.72 2.27 2.76 2.73 0 348 1: 4 20:14:20 -17 57 28 23 22 19 19 20 0.59 0.78 2.23 1.82 2.98 0 350 1: 5 20:15:5 5 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15:20 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15:50 -17 57 28 23 22 19 19 20 0.60 0.74 2.35 2.75 3.82 0 354 1: 6 20:16:35 -17 57 28 23 22 19 19 20 0.60 0.77 2.35 2.75 3.82 0 354 1: 6 20:16:35 -17 57 28 23 22 19 19 20 0.60 0.77 2.36 2.74 3.46 0 356 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 346 1: 7 20:17:19 -17 57 28 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 346 1: 7 20:17:14 -17 57 28 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 346 1: 8 20:18:26 -17 58 27 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 346 1: 7 20:17:14 -17 57 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 346 1: 7 20:17:14 -17 57 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 346 1: 8 20:18:26 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.89 3.22 0 370 11 9 20:19:134 -17 58 28 23 22 19 19 20 0.60 0.85 2.73 2.89 3.20 0 370 11 9 20:19:134 -17 58 28 23 22 19 19 20 0.60 0.85 2.73 2.89 3.20 0 370 11 9 20:19:134 -17 58 28 23 22 19 19 21 0.60 0.80 2.76 3.13 2.60 0 376 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.80 2.76 3.13 2.60 0 376 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.80 2.76 3.13 2.60 0 376 1:	•										_			–			
0 332 1: 2 20:11:44 -17 57 28 23 22 19 19 20 0.60 1.13 1.52 2.31 2.50 0 334 1: 2 20:12:7 -17 57 28 23 22 20 19 20 0.59 0.95 1.93 2.22 3.80 0 336 1: 2 20:12:29 -17 57 28 23 22 19 19 20 0.60 1.30 2.61 2.03 2.71 0 338 1: 3 20:12:52 -17 57 28 23 22 19 19 20 0.60 1.45 1.92 2.36 2.93 0 340 1: 3 20:13:13 -17 57 28 23 22 19 19 20 0.60 1.45 1.92 2.36 2.93 0 342 1: 3 22:13:35 -16 57 28 23 22 19 19 20 0.60 1.45 1.92 2.36 2.93 0 344 1: 4 20:13:58 -17 57 28 23 22 19 19 20 0.60 1.45 1.92 2.36 2.75 0 344 1: 4 20:13:58 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 346 1: 4 20:14:20 -17 57 28 23 22 19 19 20 0.59 0.78 2.27 2.76 2.75 0 344 1: 4 20:13:58 -17 57 28 23 22 19 19 20 0.59 0.78 2.23 1.82 2.79 0 350 1: 5 20:15: 5 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15:20 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15:20 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15:20 -17 57 28 23 22 19 19 20 0.60 0.74 2.35 2.75 3.82 0 354 1: 6 20:15:50 -17 57 28 23 22 19 19 20 0.60 0.74 2.35 2.75 3.82 0 354 1: 6 20:15:50 -17 57 28 23 22 19 19 20 0.60 0.77 2.50 2.77 3.62 0 356 1: 6 20:16:13 -16 58 27 23 22 19 19 20 0.59 0.60 0.77 2.50 2.77 3.62 0 356 1: 6 20:16:13 -17 57 27 23 22 19 19 20 0.60 0.97 2.50 2.77 3.61 0 340 1: 7 20:17:14 -17 57 27 23 22 19 19 20 0.60 0.97 2.50 2.78 3.46 0 364 1: 7 20:17:14 -17 57 27 23 22 19 19 20 0.60 0.97 2.50 2.78 3.61 0 364 1: 7 20:17:14 -17 57 27 23 22 19 19 20 0.60 0.97 2.50 2.78 3.61 0 364 1: 7 20:17:14 -17 57 27 23 22 19 19 20 0.60 0.98 2.61 3.19 3.20 0 368 1: 8 20:18:40 -17 58 28 23 22 19 19 20 0.60 0.97 2.58 2.69 2.52 0 370 1: 9 20:18:40 -17 58 28 23 22 19 19 20 0.60 0.98 2.61 3.19 2.03 3.10 0 366 1: 8 20:18:40 -17 58 28 23 22 19 19 20 0.60 0.97 2.58 2.69 2.52 0 370 1: 9 20:18:40 -17 58 28 23 22 19 19 20 0.60 0.97 2.58 2.69 2.52 0 370 1: 9 20:18:40 -17 58 28 23 22 19 19 20 0.60 0.97 2.58 2.69 2.52 0 370 1: 9 20:18:40 -17 58 28 23 22 19 19 21 0.60 0.97 2.58 2.69 2.70 2.80 0 360 1: 0 20:18:40 -17 58 28 23 22 19 19 20 0.60 0.97 2.58 2.69 2.70 2.	_ :										_						
0 334 1: 2 20:12: 7 -17 57 28 23 22 19 19 20 0.59 0.95 1.93 2.22 3.80 0 336 1: 2 20:12:29 -17 57 28 23 22 19 19 20 0.60 1.30 2.61 2.03 2.71 0 338 1: 3 20:12:52 -17 57 26 23 22 19 19 20 0.60 1.30 2.61 2.03 2.71 2.87 0 340 1: 3 20:13:13 -17 57 28 23 22 19 19 20 0.60 1.45 1.92 2.36 2.93 0 342 1: 3 20:13:13 -17 57 28 23 22 19 19 20 0.60 1.45 1.92 2.36 2.93 0 342 1: 3 22:13:355 -16 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 346 1: 4 20:13:58 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 346 1: 4 20:14:20 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 348 1: 4 20:14:20 -17 57 28 23 22 19 19 20 0.60 0.74 2.31 2.82 2.98 0 350 1: 5 20:15: 5 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15:28 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15:20 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15:50 -17 57 28 23 22 19 19 20 0.60 0.72 2.35 2.75 3.82 0 354 1: 6 20:16:35 -17 57 28 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 358 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 358 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 358 1: 6 20:16:56 -17 57 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 364 1: 7 20:16:56 -17 57 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 364 1: 7 20:17:19 -17 57 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 364 1: 8 20:18:40 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 364 1: 8 20:18:40 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 364 1: 8 20:18:40 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 364 1: 8 20:18:40 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 364 1: 9 20:18:40 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 364 1: 9 20:18:40 -17 58 28 23 22 19 19 20 0.60 0.85 2.73 2.89 3.22 0 370 1: 9 20:17:41 -17 58 28 23 22 19 19 21 0.60 0.85 2.73 2.89 3.22 0 370 1: 9 20:17:56 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:40 -17 58 28 23 22 19 19 21 0.60 0.80 2.73 2.03 3.10 4.36 0 380 1:10 20:20:40 -17 58 28 23 22 19 19 21 0.60 0.80 2.74 3.13 2.69 0 378																	
0 336 1: 2 20:12:27 -17 57 28 23 22 19 19 20 0.60 1.30 2.61 2.03 2.71 0 338 1: 3 20:12:52 -17 57 26 23 22 19 19 20 0.59 0.90 1.50 2.91 2.87 0 340 1: 3 20:13:13 -17 57 28 23 22 19 19 20 0.60 1.45 1.92 2.36 2.93 0 342 1: 3 22:13:35 -16 57 28 23 22 19 20 0.60 0.60 0.73 2.44 2.58 2.75 0 344 1: 4 20:13:58 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 346 1: 4 20:14:20 -17 57 28 23 22 19 19 20 0.59 0.92 2.27 2.76 2.93 0 348 1: 4 20:14:20 -17 57 28 23 22 19 19 20 0.59 0.92 2.27 2.76 2.93 0 348 1: 4 20:14:43 -17 57 27 23 22 19 19 20 0.59 0.78 2.23 1.82 2.98 0 350 1: 5 20:15: 5 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15: 5 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15: 5 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 6 20:15:50 -17 57 28 23 22 19 19 20 0.60 0.74 2.35 2.75 3.82 0 354 1: 6 20:16:13 -16 58 27 23 22 19 19 20 0.60 0.92 2.35 2.75 3.82 0 354 1: 6 20:16:13 -16 58 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 358 1: 6 20:16:13 -16 58 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 342 1: 7 20:16:56 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 342 1: 7 20:17:19 -17 57 28 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 344 1: 7 20:16:56 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 342 1: 7 20:17:19 -17 57 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 364 1: 8 20:18:4 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 364 1: 8 20:18:4 -17 58 28 23 22 19 19 20 0.60 0.85 2.73 2.03 3.10 0 364 1: 9 20:19:14 -17 58 28 23 22 19 19 20 0.60 0.84 1.91 2.30 4.07 0 374 1: 9 20:19:34 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 372 1: 9 20:19:34 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 372 1: 9 20:19:34 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 372 1: 9 20:19:34 -17 58 28 23 22 19 19 21 0.60 0.82 2.71 2.30 3.10 0 364 1: 9 20:19:34 -17 58 28 23 22 19 19 21 0.60 0.82 2.71 2.30 3.10 0 364 1: 9 20:19:34 -17 58 28 23 22 19 19 21 0.60 0.82 2.71 2.30 3.10 0 374 1: 9 20:19:34 -17 58 28 23 22 19 19 21 0.60 0.82 2.71 2.30 2.72 2.72 2.72 2.72 2	ě														-		
0 340 1: 3 20:13:13 -17 57 28 23 22 19 19 20 0.60 1.45 1.92 2.36 2.93 0 342 1: 3 22:13:35 -16 57 28 23 22 19 20 0.60 1.03 2.44 2.58 2.75 0 344 1: 4 20:13:58 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 346 1: 4 20:14:20 -17 57 28 23 22 19 19 20 0.59 0.92 2.27 2.76 2.93 0 348 1: 4 20:14:43 -17 57 27 23 22 19 19 20 0.59 0.78 2.23 1.82 2.98 0 350 1: 5 20:15: 5 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15:20 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15:20 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15:50 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.79 0 354 1: 6 20:16:13 -16 58 27 23 22 19 19 20 0.60 0.74 2.34 2.58 3.79 0 354 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 358 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 358 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 364 1: 7 20:17:41 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 342 1: 7 20:17:41 -17 57 27 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 364 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 364 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 364 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.89 3.22 0 370 1: 9 20:18:49 -17 58 28 23 22 19 19 20 0.60 0.85 2.73 2.89 3.22 0 370 1: 9 20:18:49 -17 58 28 23 22 19 19 20 0.60 0.85 2.73 2.89 3.22 0 372 1: 9 20:19:34 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 374 1: 9 20:19:34 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 384 1:11 20:21:25 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 384 1:11 20:21:25 -17 58 28 23 22 19 19 21 0.60 0.80 2.79 2.42 3.70 2.86 0 384 1:11 20:21:25 -17 58 28 23 22 19 19 21 0.60 0.80 2.79 2.42 3.70 2.86 0 384 1:11 20:21:25 -17 58 28 23 22 19 19 21 0.60 0.80 3.76 3.13 2.69 2.97 2.97 2.87 2.87 2.97 2.97 2.87 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.9	•						28	23	22	19	19	20	0.60	1.30	2.61		2.71
0 342 1: 3 22:13:35 -16 57 28 23 22 19 20 0.60 1.03 2.44 2.58 2.75 0 344 1: 4 20:13:58 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 346 1: 4 20:14:20 -17 57 28 23 22 19 19 20 0.59 0.92 2.27 2.76 2.93 0 348 1: 4 20:14:43 -17 57 27 23 22 19 19 20 0.59 0.78 2.23 1.82 2.78 0 350 1: 5 20:15: 5 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15:28 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15:50 -17 57 28 23 22 19 19 20 0.60 0.72 2.35 2.75 3.82 0 354 1: 6 20:16:35 -17 57 28 23 22 19 19 20 0.60 0.97 2.62 2.58 3.79 0 356 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 358 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 358 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 342 1: 7 20:17:41 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 342 1: 7 20:17:41 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 344 1: 7 20:17:41 -17 57 27 23 22 19 19 20 0.60 0.97 2.73 2.03 3.10 0 366 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 368 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 368 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.98 2.61 3.19 3.22 0 370 1: 9 20:18:49 -17 58 28 23 22 19 19 20 0.60 0.98 2.61 3.19 3.22 0 372 1: 9 20:19:11 -17 57 28 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 364 1: 8 20:18:49 -17 58 28 23 22 19 19 20 0.60 0.85 2.73 2.89 3.22 0 372 1: 9 20:19:13 -17 58 28 23 22 19 19 21 0.60 0.85 2.73 2.89 3.22 0 372 1: 9 20:19:34 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:40 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 384 1:11 20:21:25 -17 58 28 23 22 19 19 21 0.60 0.82 2.71 2.07 2.87 0 384 1:11 20:21:25 -17 58 28 23 22 19 19 21 0.60 0.82 2.71 2.07 2.87 0 384 1:11 20:21:25 -17 58 28 23 22 19 19 21 0.60 0.82 2.71 2.07 2.87 0 384 1:11 20:21:25 -17 58 28 23 22 19 19 21 0.60 0.82 2.71 2.07 2.87 0 384 1:11 20:21:25 -17 58 28 23 22 19 19 21 0.60 0.82 2.71 2.07 2.87 0 384 1:11 20:21:25 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.97 2.97 0 384 1:11 20:	0	338	1: 3	20:12:52	-17	57								0.70			
0 344 1: 4 20:13:58 -17 57 28 23 22 19 19 20 0.60 0.73 2.17 2.88 4.16 0 346 1: 4 20:14:20 -17 57 28 23 22 19 19 20 0.59 0.92 2.27 2.76 2.93 0 348 1: 4 20:14:43 -17 57 27 23 22 19 19 20 0.59 0.78 2.23 1.82 2.98 0 350 1: 5 20:15: 5 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15:28 -17 57 28 23 22 19 19 20 0.60 0.92 2.35 2.75 3.82 0 354 1: 6 20:15:50 -17 57 28 23 22 19 19 20 0.60 0.92 2.35 2.75 3.82 0 354 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 358 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 358 1: 6 20:16:55 -17 57 27 23 22 19 19 20 0.60 0.97 2.18 1.62 3.22 0 344 1: 7 20:17:19 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 342 1: 7 20:17:141 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 342 1: 7 20:17:41 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 342 1: 7 20:17:41 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 346 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.97 2.73 2.03 3.10 0 366 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.97 2.58 2.69 2.52 0 370 1: 9 20:18:49 -17 58 28 23 22 19 19 20 0.60 0.85 2.73 2.89 3.22 0 372 1: 9 20:19:14 -17 58 28 23 22 19 19 20 0.60 0.85 2.73 2.89 3.22 0 372 1: 9 20:19:14 -17 58 28 23 22 19 19 21 0.60 0.85 2.73 2.89 3.22 0 376 1:10 20:19:34 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.82 2.71 2.07 2.86 0 378 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.82 2.79 2.42 3.70 2.86 0 382 1:11 20:21:25 -17 57 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:25 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 19 19 21 0.60 0.87 3.49 2.60 2.99											-						
0 346 1: 4 20:14:20 -17 57 28 23 22 19 19 20 0.59 0.92 2.27 2.76 2.93 0 348 1: 4 20:14:43 -17 57 27 23 22 19 19 20 0.59 0.78 2.23 1.82 2.98 0 350 1: 5 20:15: 5 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15:28 -17 57 28 23 22 19 19 20 0.60 0.74 2.35 2.75 3.82 0 354 1: 6 20:15:50 -17 57 28 23 22 19 19 20 0.60 0.92 2.35 2.75 3.82 0 354 1: 6 20:16:13 -16 58 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 358 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 358 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 358 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 342 1: 7 20:17:19 -17 57 28 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 342 1: 7 20:17:41 -17 57 27 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 366 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 368 1: 8 20:18:26 -17 58 27 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 368 1: 8 20:18:26 -17 58 27 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 368 1: 8 20:18:26 -17 58 27 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 368 1: 8 20:18:26 -17 58 28 23 22 19 19 20 0.60 0.97 2.58 2.69 2.52 0 370 1: 9 20:18:49 -17 58 28 23 22 19 19 20 0.60 0.85 2.73 2.89 3.22 0 372 1: 9 20:19:134 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 376 1:10 20:19:56 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.82 2.79 2.42 3.10 4.36 0 380 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.82 2.79 2.42 3.10 4.36 0 380 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.82 2.79 2.40 3.64 0 382 1:11 20:21:25 -17 57 28 23 22 19 19 21 0.60 0.82 2.79 2.40 3.64 0 382 1:11 20:21:25 -17 57 28 23 22 19 19 21 0.60 0.82 2.79 2.60 2.87 2.87 2.87 2.88 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.82 2.79 2.60 2.79 2.87 2.87 2.88 1:10 20:21:25 -17 57 28 23 22 19 19 21 0.60 0.82 2.79 2.60 2.79 2.87 2.87 2.87 2.88 2.89 2.89 2.89 2.89 2.99 2.90 2.90 2.90 2.90 2.90 2.90 2.9	-								_								
0 348 1: 4 20:14:43 -17 57 27 23 22 19 19 20 0.59 0.78 2.23 1.82 2.98 0 350 1: 5 20:15: 5 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15:28 -17 57 28 23 22 19 19 20 0.60 0.74 2.35 2.75 3.82 0 354 1: 6 20:15:50 -17 57 28 23 22 19 19 20 0.60 0.92 2.35 2.75 3.82 0 354 1: 6 20:16:13 -16 58 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 358 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 358 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 342 1: 7 20:14:56 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 342 1: 7 20:17:41 -17 57 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 366 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 366 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 368 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 368 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.89 3.22 0 370 1: 9 20:18:49 -17 58 28 23 22 19 19 20 0.60 0.85 2.73 2.89 3.22 0 370 1: 9 20:18:49 -17 58 28 23 22 19 19 20 0.60 0.85 2.73 2.89 3.22 0 372 1: 9 20:19:14 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 376 1:10 20:19:56 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 382 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.86 0 382 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.87 3.49 2.96 2.99																	
0 350 1: 5 20:15: 5 -17 57 28 23 22 19 19 20 0.60 0.74 2.34 2.58 3.31 0 352 1: 5 20:15:28 -17 57 28 23 22 19 19 20 0.60 0.92 2.35 2.75 3.82 0 354 1: 6 20:15:50 -17 57 28 23 22 19 19 20 0.60 0.92 2.35 2.75 3.82 0 354 1: 6 20:16:13 -16 58 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 358 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 358 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 342 1: 7 20:16:56 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 342 1: 7 20:17:19 -17 57 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 366 1: 8 20:18:26 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 366 1: 8 20:18:26 -17 58 28 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 368 1: 8 20:18:26 -17 58 27 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 368 1: 8 20:18:26 -17 58 27 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 368 1: 8 20:18:26 -17 58 27 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 370 1: 9 20:18:49 -17 58 28 23 22 19 19 20 0.60 0.85 2.73 2.89 3.22 0 372 1: 9 20:19:11 -17 57 28 23 22 19 19 20 0.60 0.85 2.73 2.89 3.22 0 372 1: 9 20:19:34 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 376 1:10 20:19:56 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:40 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.80 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.80 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.80 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.80 2.91 2.07 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.87 3.49 2.09 2.09 2.09 2.00 2.00 2.	-		-		_					-:				–			
0 352 1: 5 20:15:28 -17 57 28 23 22 19 19 20 0.60 0.92 2.35 2.75 3.82 0 354 1: 6 20:15:50 -17 57 28 23 22 19 19 20 0.59 1.29 2.62 2.58 3.79 0 356 1: 6 20:16:13 -16 58 27 23 22 19 19 20 0.59 0.69 2.18 1.62 3.22 0 340 1: 7 20:16:56 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 342 1: 7 20:17:19 -17 57 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 346 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 366 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 368 1: 8 20:18:26 -17 58 27 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 368 1: 8 20:18:49 -17 58 28 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 370 1: 9 20:18:49 -17 58 28 23 22 19 19 20 0.60 0.85 2.73 2.89 3.22 0 370 1: 9 20:19:11 -17 57 28 23 22 19 19 20 0.60 0.85 2.73 2.89 3.22 0 372 1: 9 20:19:134 -17 58 28 23 22 19 19 20 0.60 0.85 2.73 2.89 3.22 0 372 1: 9 20:19:34 -17 58 28 23 22 19 19 20 0.60 0.85 2.73 2.89 3.22 0 374 1: 9 20:19:34 -17 58 28 23 22 19 19 20 0.60 0.83 2.76 3.13 2.69 0 376 1:10 20:19:54 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:40 -17 58 28 23 22 19 19 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:40 -17 58 28 23 22 19 19 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:40 -17 58 28 23 22 19 19 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:40 -17 58 28 23 22 19 19 21 0.60 0.82 2.71 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.87 3.49 2.96 2.99 0 384 1:11 20:21:47 -17 58 28 23 22 19 19 21 0.60 0.87 3.49 2.96 2.99 0 384 1:11 20:21:47 -					_						-						
0 354 1: 6 20:15:50 -17 57 28 23 22 19 19 20 0.59 1.29 2.62 2.58 3.79 0 356 1: 6 20:16:13 -16 58 27 23 22 19 19 20 0.60 0.97 2.50 2.74 3.46 0 358 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.59 0.69 2.18 1.62 3.22 0 340 1: 7 20:16:56 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 342 1: 7 20:17:19 -17 57 28 23 22 19 19 20 0.60 0.68 3.43 2.95 2.42 0 364 1: 7 20:17:41 -17 57 27 23 22 19 19 20 0.60 0.68 3.43 2.95 2.42 0 364 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 366 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 368 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 368 1: 8 20:18: 49 -17 58 28 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 370 1: 9 20:18: 49 -17 58 28 23 22 19 19 20 0.60 0.85 2.73 2.89 3.22 0 372 1: 9 20:19:11 -17 57 28 23 22 19 19 22 0.60 0.84 1.91 2.30 4.07 0 374 1: 9 20:19:34 -17 58 28 23 22 19 19 22 0.60 0.83 2.76 3.13 2.69 0 376 1:10 20:20:40 -17 58 28 23 22 19 19 21 0.60 0.97 2.42 3.70 2.86 0 378 1:10 20:20:40 -17 58 28 23 22 19 19 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:40 -17 58 28 23 22 19 19 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:40 -17 58 28 23 22 19 19 21 0.60 0.82 2.71 2.07 2.87 0 384 1:11 20:21: 2 -17 58 28 23 22 19 19 21 0.60 0.82 2.71 2.07 2.87 0 384 1:11 20:21: 2 -17 58 28 23 22 19 19 21 0.60 0.82 2.79 2.07 2.87 0 384 1:11 20:21: 2 -17 58 28 23 22 19 19 21 0.60 0.82 2.79 2.07 2.87	ě									- :							
0 358 1: 6 20:16:35 -17 57 27 23 22 19 19 20 0.59 0.69 2.18 1.62 3.22 0 340 1: 7 20:16:56 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 342 1: 7 20:17:19 -17 57 28 23 22 19 19 20 0.60 0.68 3.43 2.95 2.42 0 364 1: 7 20:17:41 -17 57 27 23 22 19 19 20 0.60 0.68 3.43 2.95 2.42 0 364 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 366 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 368 1: 8 20:18:49 -17 58 28 23 22 19 19 20 0.60 0.99 2.58 2.69 2.52 0 370 1: 9 20:18:49 -17 58 28 23 22 19 19 21 0.60 0.85 2.73 2.89 3.22 0 372 1: 9 20:19:11 -17 57 28 23 22 19 19 22 0.60 0.84 1.91 2.30 4.07 0 374 1: 9 20:19:34 -17 58 27 23 22 19 19 21 0.60 0.97 2.42 3.70 2.86 0 376 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:15 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 19 19 21 0.60 0.87 3.49 2.96 2.94	•	354	11 6	20:15:50	-17	57	28	23		17	17	20	0.59	1.29	2.62	2.58	3.79
0 340 1: 7 20:14:56 -17 57 27 23 22 19 19 20 0.60 0.97 2.16 2.11 3.61 0 342 1: 7 20:17:19 -17 57 28 23 22 19 19 20 0.60 0.68 3.43 2.95 2.42 0 364 1: 7 20:17:41 -17 57 27 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 366 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 368 1: 8 20:18:26 -17 58 27 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 368 1: 8 20:18:26 -17 58 27 23 22 19 19 20 0.60 0.99 2.58 2.69 2.52 0 370 1: 9 20:18:49 -17 58 28 23 22 19 19 20 0.60 0.85 2.73 2.89 3.22 0 372 1: 7 20:17:11 -17 57 28 23 22 19 19 22 0.60 0.84 1.91 2.30 4.07 0 374 1: 9 20:19:34 -17 58 27 23 22 19 19 21 0.60 0.97 2.42 3.70 2.86 0 376 1:10 20:19:56 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:40 -17 58 28 23 22 19 19 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:40 -17 58 28 23 22 19 19 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:45 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 19 19 21 0.60 0.87 3.49 2.96 2.94	•						_										
0 342 1: 7 20:17:19 -17 57 28 23 22 19 19 20 0.60 0.68 3.43 2.75 2.42 0 364 1: 7 20:17:41 -17 57 27 23 22 19 19 20 0.60 0.87 2.73 2.03 3.10 0 366 1: 8 20:18: 4 -17 58 28 23 22 19 19 20 0.60 0.98 2.61 3.19 3.26 0 368 1: 8 20:18:26 -17 58 27 23 22 19 19 20 0.60 0.99 2.58 2.69 2.52 0 370 1: 9 20:18:49 -17 58 28 23 22 19 19 21 0.60 0.85 2.73 2.89 3.22 0 372 1: 7 20:17:11 -17 57 28 23 22 19 19 22 0.60 0.84 1.91 2.30 4.07 0 374 1: 9 20:19:34 -17 58 27 23 22 19 19 21 0.60 0.97 2.42 3.70 2.86 0 376 1:10 20:17:56 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 380 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.76 3.12 3.10 4.36 0 382 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 19 19 21 0.60 0.87 3.49 2.96 2.94	•							_							= :::		
0 364 1: 7 20:17:41 -17 57 27 23 22 17 17 20 0.60 0.87 2.73 2.03 3.10 0 366 1: 8 20:18: 4 -17 58 28 23 22 17 17 20 0.60 0.98 2.61 3.17 3.26 0 368 1: 8 20:18:26 -17 58 27 23 22 17 17 20 0.60 0.98 2.61 3.17 3.26 0 368 1: 8 20:18:26 -17 58 27 23 22 17 17 20 0.60 0.97 2.58 2.67 2.52 0 370 1: 7 20:18:47 -17 58 28 23 22 17 17 21 0.60 0.85 2.73 2.89 3.22 0 372 1: 7 20:17:11 -17 57 28 23 22 17 17 22 0.60 0.84 1.71 2.30 4.07 0 374 1: 7 20:17:34 -17 58 27 23 22 17 17 21 0.60 0.97 2.42 3.70 2.86 0 376 1:10 20:17:56 -17 58 28 23 22 17 17 21 0.60 0.93 2.76 3.13 2.67 0 378 1:10 20:120:17 17 58 28 23 22 17 17 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:17 17 58 28 23 22 17 17 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:17 17 58 28 23 22 17 17 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:17 17 58 28 23 22 17 17 21 0.60 0.82 2.71 2.07 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 17 17 21 0.60 0.82 2.71 2.07 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 17 17 21 0.60 0.87 3.47 2.76 2.79																	
0 366 1: 8 20:18: 4 -17 58 28 23 22 17 17 20 0.60 0.78 2.61 3.17 3.26 0 368 1: 8 20:18:26 -17 58 27 23 22 17 17 20 0.60 0.79 2.58 2.67 2.52 0 370 1: 7 20:18:47 -17 58 28 23 22 17 17 21 0.60 0.85 2.73 2.87 3.22 0 372 1: 7 20:19:11 -17 57 28 23 22 17 17 22 0.60 0.84 1.91 2.30 4.07 0 374 1: 7 20:19:34 -17 58 27 23 22 17 17 21 0.60 0.77 2.42 3.70 2.86 0 376 1:10 20:17:56 -17 58 28 23 22 17 17 21 0.60 0.83 2.76 3.13 2.67 0 378 1:10 20:20:17 -17 58 28 23 22 17 17 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:40 -17 58 28 23 22 17 17 21 0.60 0.76 3.12 3.10 4.36 0 382 1:11 20:21: 2 -17 58 28 23 22 17 17 21 0.60 0.82 2.71 2.67 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 17 17 21 0.60 0.82 2.71 2.07 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 17 17 21 0.60 0.87 3.47 2.76 2.77											-						
0 368 1: 8 20:18:26 -17 58 27 23 22 17 17 20 0.60 0.77 2.58 2.67 2.52 0 370 1: 7 20:18:47 -17 58 28 23 22 17 17 21 0.60 0.85 2.73 2.87 3.22 0 372 1: 7 20:19:11 -17 57 28 23 22 17 17 22 0.60 0.84 1.71 2.30 4.07 0 374 1: 7 20:19:34 -17 58 27 23 22 17 17 21 0.60 0.77 2.42 3.70 2.86 0 376 1:10 20:17:56 -17 58 28 23 22 17 17 21 0.60 0.83 2.76 3.13 2.67 0 378 1:10 20:20:17 -17 58 28 23 22 17 17 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:40 -17 58 28 23 22 17 17 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:40 -17 58 28 23 22 17 17 21 0.60 0.82 2.71 2.67 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 17 17 21 0.60 0.82 2.71 2.07 2.87 0 384 1:11 20:21:2 -17 58 28 23 22 17 17 21 0.60 0.82 2.71 2.07 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 17 17 21 0.60 0.87 3.47 2.76 2.79	ě		-		_	-					-	-					
0 370 1: 7 20:18:47 -17 58 28 23 22 17 17 21 0.60 0.85 2.73 2.89 3.22 0 372 1: 7 20:19:11 -17 57 28 23 22 17 17 22 0.60 0.84 1.91 2.30 4.07 0 374 1: 7 20:19:34 -17 58 27 23 22 17 17 21 0.60 0.97 2.42 3.70 2.86 0 376 1:10 20:19:56 -17 58 28 23 22 17 17 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:40 -17 58 28 23 22 17 17 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:40 -17 58 28 23 22 17 17 21 0.60 0.85 2.76 3.13 2.69 0 382 1:11 20:21: 2 -17 58 28 23 22 17 17 21 0.60 0.82 2.71 2.67 2.87 0 384 1:11 20:21: 2 -17 58 28 23 22 17 17 21 0.60 0.82 2.71 2.07 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 17 17 21 0.60 0.87 3.49 2.76 2.79	- :																
0 374 1: 9 20:19:34 -17 58 27 23 22 19 19 21 0.60 0.97 2.42 3.70 2.86 0 376 1:10 20:19:56 -17 58 28 23 22 19 19 21 0.60 0.83 2.76 3.13 2.69 0 378 1:10 20:20:19 -17 58 28 23 22 19 19 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:40 -17 58 28 23 22 19 19 21 0.60 0.76 3.12 3.10 4.36 0 382 1:11 20:21: 2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:12 20:21:47 -17 58 28 23 22 19 19 21 0.60 0.87 3.49 2.96 2.94	•	370	11 7	20:18:49	-17	58	28	23	22	17	17	21	0.60		2.73	2.89	3.22
0 376 1:10 20:17:56 -17 58 28 23 22 17 17 21 0.60 0.83 2.76 3.13 2.67 0 378 1:10 20:20:17 -17 58 28 23 22 17 17 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:40 -17 58 28 23 22 17 17 21 0.60 0.76 3.12 3.10 4.36 0 382 1:11 20:21: 2 -17 58 28 23 22 17 17 21 0.60 0.82 2.71 2.07 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 17 17 21 0.60 1.01 3.10 3.16 2.17 0 386 1:12 20:21:47 -17 58 28 23 22 17 17 21 0.60 0.87 3.47 2.76 2.79	•	372	1: 7	20:17:11	-17	57	28	23	22	17	17	22	9.60	0.84	1.91	2.30	4.07
0 378 1:10 20:20:17 -17 58 28 23 22 17 17 21 0.60 0.76 3.12 3.10 4.36 0 380 1:10 20:20:40 -17 58 28 23 22 17 17 21 0.57 1.18 2.63 2.40 3.64 0 382 1:11 20:21: 2 -17 58 28 23 22 17 17 21 0.60 0.82 2.71 2.07 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 17 17 21 0.60 1.01 3.10 3.16 2.17 0 386 1:12 20:21:47 -17 58 28 23 22 17 17 21 0.60 0.87 3.47 2.76 2.74	•		-							_							
0 380 1:10 20:20:40 -17 58 28 23 22 19 19 21 0.59 1.18 2.63 2.40 3.64 0 382 1:11 20:21: 2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 19 19 21 0.60 1.01 3.10 3.16 2.19 0 386 1:12 20:21:47 -17 58 28 23 22 19 19 21 0.60 0.87 3.49 2.96 2.94	•										_						
0 382 1:11 20:21: 2 -17 58 28 23 22 19 19 21 0.60 0.82 2.91 2.07 2.87 0 384 1:11 20:21:25 -17 57 28 23 22 19 19 21 0.60 1.01 3.10 3.16 2.19 0 386 1:12 20:21:47 -17 58 28 23 22 19 19 21 0.60 0.87 3.49 2.96 2.94	•									_	_	_					
0 384 1:11 20:21:25 -17 57 28 23 22 19 19 21 0.60 1.01 3.10 3.16 2.19 0 386 1:12 20:21:47 -17 58 28 23 22 19 19 21 0.60 0.87 3.49 2.96 2.94										-							
0 386 1:12 20:21:47 -17 58 28 23 22 19 19 21 0.60 0.87 3.49 2.96 2.94	Ĭ				_										_	_	
	ě									-	-				-		
	Ĭ							23	22	19	17			0.82	2.30	2.42	3.24
0 390 1:12 20:22:32 -16 58 28 23 22 19 19 21 0.60 0.97 2.15 3.21 3.99	•							_		_	19	21	0.60	0.97			
0 392 1:13 20:22:55 -16 58 28 23 22 19 19 21 0.60 0.73 2.76 1.76 2.76	•																
0 394 1:13 20:23:17 -17 50 28 23 22 19 19 21 0.60 0.83 2.55 2.11 3.56	•				_		-			_							
0 396 1:13 20:23:40 -16 50 27 23 22 19 19 21 0.60 0.91 3.10 2.60 3.57 0 398 1:14 20:24: 2 -14 50 20 23 22 19 19 21 0.60 0.94 2.23 3.50 3.97									_		_					_	

Figure 8. AMMS Flight History From CCOPE 2 (5/31/81)

4.0 Conclusion

In addition to quick-look analysis programs leading to flight logs and computer compatible tapes, Georgia Tech has developed programs for enhanced data analysis using the Eclipse computer system available on campus. Programs developed utilize the image processing software and high resolution COMPTAL display to produce pseudo-color and black and white images with full temperature resolution. The use of non-linear color transfer functions enhances desired temperature ranges to highlight certain weather phenomena, such as a rain cell. Other similar efforts have been performed at Georgia Tech in order to enhance analysis of the AMMS data collected onboard the aircraft.

It is expected that data gathered by AMMS on the WB-57F atmospheric 1979-1981 missions will be used in future high altitude measurement programs such as NASA's earth resources aircraft ER-2. Data gathered from high altitude aircraft programs will eventually be used in the implementation of satellite sensors to collect weather data such as: the measurement of the water content of clouds, the rate at which rain is falling, the detection and observation of developing weather patterns, and the monitoring of severe weather such as thunderstorms and hurricanes.

APPENDIX A

Monthly Progress Report

Monthly Progress Management Report No. 1

Report Period

1 April Through 30 April 1981

Report Prepared

May 8, 1981

"Advanced Microwave Moisture Sounder (AMMS)"
May/June 1981 WB-57 CCOPE mission

J.A. Gagliano

Contract NAS5-26528 (A-2904)

Prepared For

The National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

Prepared By

Engineering Experiment Station Georgia Institute of Technology Atlanta, Georgia 30332

Work Performed During This Period

The existing time code demodulator board has been repaired in preparation for the upcoming WB-57F flights. A cold solder connection on the board's supply voltage pin was found and repaired. A back-up time code board from Datum, Inc. was received and tested successfully.

A successful temperature test of the AMMS was performed during this period. The system was tested over a time period of approximately 4 hours to an ambient temperature of -30° C during which the AMMS cold load reached -14° C. Table 1 provides a log of a portion of the temperature cycle beginning at time 13:12 which is about 3 hours - 45 minutes into the test. This table covers a 15 minute time frame. Observe the stability of the four system gains (G2, G1, G5, G0) which represent in $^{\circ}$ K/volt the 94 GHz, 183/5 GHz and 183/10 GHz channels, respectively. The radiometer was very reliable throughout the entire test with no problems occuring.

A sky calibration test was performed on the AMMS at Georgia Tech during this period. Table 2 provides a log of a portion of the sky run over a 15 minute time frame. For this test the scanner viewed the sky $\pm 45^{\circ}$ about zenith. Observe the minimum radiometric temperatures (MI2, MI1, MI5, MI0) for the 94 GHz, 183/1 GHz, 183/5 GHz, and 183/10 GHz, respectively. For example at time 16:59, block 122, the sky temperature measured from a minimum of 58° K on the 94 GHz channel to a maximum of 281° K on the 183/1 GHz channel. Table 3 provides a complete pixel printout at time 16:59 of all four channels over six consecutive scans with the average (AVG) pixel temperature for the scans as shown. The zenith position printout is near pixel (PIX) 25 on each channel. PIX 1 and PIX 50 represent -3.5° and $+4.5^{\circ}$ positions on the scanner. This test was run in order to have a record of the AMMS sky calibration before the system is shipped to GSFC.

Problems Encountered During This Period

At NASA's direction, the spare 10 GHz IF amplifier was not ordered in case more critical tasks develop in support of the upcoming WB-57F CCOPE mission.

Conclusion

Atmospheric data collected by AMMS from the high altitude WB-57F aircraft will be used in the future in the implementation of satellite weather sensors. Considerable data at lower frequencies such as 19.35 GHz has been obtained from the Nimbus 5 satellite using an Electrically Scanned Microwave Radiometer (ESMR). For this application ESMR images proved useful in determining the extent, structure, and intensity of rainfall. This data has been used to determine, over oceans, the location of frontal rain, rain/snow boundaries, and tropical storm structures. In the future, a satellite weather sensor for the 183 GHz water vapor line (humidity) and the 118 GHz oxygen line (temperature) could aid in the collection of weather data. Future satellite based sensors, when placed in geosynchronous orbit, will allow the continuous observation of rapidly changing phenomena such as severe storms. For instance, a 183 GHz radiometer collecting data from geosynchronous orbit using a 4.4 meter antenna could provide nadir earth surface resolution of about 20 km. Such a sensor would provide excellent mesoscale meteorology data.

Acknowledgements

The authors would like to acknowledge the support and contributions of the following: D. O. Gallentine, Mechanical Design; R. E. Forsythe, RF Design; S. M. Halpern, Mixer Construction; J. J. McSheehy, Circuit Design; J. M. Welch, Software Development; J. F. Diller, Software Support; and G. M. Lamb, NASA Scientist. This work was supported by NASA/Goddard Space Flight Center under NASA Grant No. NSG-5012 and contracts NAS5-23710, NAS5-26220 and NAS5-26528.

References

- 1. Nieman, Dr. R. A., Dr. B. M. Krupp, Simultaneous Active and Passive Microwave Observations of Raindrops and Ice Particles in Florida Thunderstorms on Septmeber 23, 1979,
- Computer Sciences Corporation, September 1980.

 2. Wilheit, T. T., et al., "Bulletin of the American Meteorological Society", Vol. 60, Number 12, December 1979, p. 1502.
- 3. Nieman, Dr. R. A., Dr. B. J. Choudhury, Airborne Passive Microwave Observations of Raindrops and Ice Particles During Tropical Storm Cora, Computer Sciences Corporation, September 1979.
- 4. Gagliano, J. A., et al, 94/183 GHz Multichannel_kadiometer for Convair Flights, Final
- Report NASA Contract NASS-24480, Georgia Tech Engineering Experiment Station, January, 1979.
 5. Schuchardt, J. M., et al, "Dual Frequency Multi-channel Millimeter Wave Radiometers for High Altitude Observation of Atmospheric Water Vapor, 1979 IEEE MTT-S International Microwave Symposium, pp. 540-542.
- 6. Gagliano, J. A., et al, 94/183 GHz Aircraft Radiometer System for Project Storm Fury, Final Report NASA Contract NASS-23710, Georgia Tech Engineering Experiment Station, February, 1979.
- 7. Forsythe, R. E., and V. T. Brady, "Development of a 183 GHz Subharmonic Mixer," Proceedings 1979 MTT-S Symposium, Orlando, Florida, May, 1979.
- 8. Wilheit, T. T., et al, "Satellite Techniques for Quantitatively Mapping Rainfall Rates Over the Oceans," Journal of Applied Meteorology, Vol. 16, pp. 551-560, 1977.

Table 1

AMMS Temperature Cycle Log (15 minute test run)

PAGE: 11 FLIGHT: C DM:: .23	JATE:											
THE BLK TIME IRIG CO HT HE	62	Gi	G5	CO	MAZ	ni2	rin i	٠.,	MmS	PI45	MAG	M10
0 486 1121 15112 -14 5/ 27	-43	-54	-44	-44	241	174	201	124	نانام	1.73	306	179
0 488 1:21 13:13 -14 57 27	_	-5,	- 45				299					177
0 490 1:21 13:15 -14 5. 27		-53	-44		259		297			171		175
0 492 1:22 :3:18 -14 57 27		-54	-44				244			174		168
0 494 1122 13:14 -14 57 27		-53	5	.4%	294	178	29 y	174	301	169	300	161
0 496 1122 13:14 -14 57 27	-44	-5-	-45	-42	297	176	360	172	306	170	301	175
0 498 1123 13114 -14 57 27	-43	- 33	-43	-41	297	176	299	168	302	178	305	179
0 500 1123 13:15 -14 5' 27	-43	-54	-44				277			1/3	702	174
0 502 1:23 13:15 -14 57 27		-54	- 43	_			307			175		176
0 504 1124 13115 -14 57 27		-53	4				363				301	177
0 506 1:24 13:16 -14 57 27		- 32	-44				304			177		180
0 308 1:24 13:16 -14 37 27		-5.	5				304					163
0 510 1:25 13:16 -14 57 27		-54	- 4 4	-42		178			304		310	
0 512 1:25 13:17 -14 57 27 0 514 1:25 13:17 -14 57 27		·52 ·54	· +5	• 42		176	305 205				306	100
0 516 1:26 19:17 -14 5/ 27		- 5e	• 44	-42			205					181
0 516 1:26 15:18 -14 5/ 27		-53	• • 4	_	302					187		
0 520 1:26 13:18 -14 57 27		-54	- 44	-41			303				804	184
0 522 1:27 13:18 -14 57 27	_	-35	-44	-42		183			35.2		301	188
0 524 1:27 19:19 -14 57 27	_	-55	- 44	-	305				-	186		
0 526 1127 13:19 -14 8/ 27		-56	-44	-42			301					184
0 528 1:28 13:19 -14 57 28	-44 -	-54	-43	-41			30-			184	307	191
0 530 1:28 13:20 -14 57 28	-45 -	-55	-42	-41	¥03	162	305	184	304	186	306	189
0 532 1:28 13:20 -14 57 28	-4	- 35	- 43	-42	305	a fi i	307	184	307	145	308	167
0 534 1:29 13:20 -19 57 28	-44	· 35	- 43	-42		186		142	304	186	308	184
0 536 1129 13121 -13 57 26			-42	-43		187		180	•02		102	1 86
0 536 1129 15121 -13 57 26		-56	-42			186					303	188
0 540 1:30 13:21 -13 57 28	_		- 42		299					190		191
0 942 1133 19122 -13 97 28			-41	-43		186						138
0 544 1:30 13:22 -13 57 28 0 546 1:31 13:22 -13 57 28	-		-41 -40	-42	298	184		182	300		302	
0 548 1:31 13:23 -13 57 28			-41	-42				184		149		192
0 550 1:31 13:23 -15 57 26	_		- 39	-44		187	_		300			187
0 552 1132 13:23 -1 - 57 28			- 40	- 45		145			301		304	184
0 554 1:32 13:24 -13 57 28			-41	_		184		-		146	306	190
6 556 1:32 13:24 -12 57 28			-41	-44		169				185		192
0 558 1:33 13:24 -12 5/ 28	-45 -	- 55	-40	-44	300	187	502	154	300	186	303	188
0 560 1:33 13:25 -12 57 26	-45 -	-58	-41	-44	301	185				182	302	187
0 562 1133 15:25 -12 57 28	-45 -	-55	-40	-44	298	186	299	145	301	183	503	188
0 564 1134 13125 -12 57 26			· ##		300					167		187
0 566 1134 13126 -12 57 28			- 35	-45		155				192		188
0 568 1134 13:26 -12 57 28		-	- 39	- 45							204	192
0 570 1135 13126 -12 58 28			• 59				304			166		156
0 572 1:35 13:27 -10 88 28			· 37		299 200			185				189
0 574 1135 13127 -10 58 28			- 38	- 46				-	100	187	203	186
0 576 1:36 15:27 -10 56 26		-	• 56			188				188		157
0 578 1:36 15:26 -9 58 28 0 580 1:36 13:28 -9 58 2s	_		• 36 • 57					161			300	187
0 580 1:36 13:28 -9 58 28 0 582 1:37 13:28 -9 58 28			• 37 • 44	- 45 - 45			300 302	_		189		186
0 584 1:37 13:25 -8 56 28				_	-							190
A MAA 115% 19173 .0 20 70	-45	58	- 34	- 4/	5 00	196	301	190	7 V4		3 V 3	169

Table 2

AMMS Sky Calibration Test (15 minute data run)

PAGE: 1 F	Liumīi i)HIZ	٥	DAT	E:													
TK SLK TI	ME INIG	ÇĎ	нI	ŘF	C2	Ül	СS	üu	MAZ	ħ12	MAL	WJI	MAS	n/5	PIMO	MIO		
0 100 Ot	16 16 56	23	52	ÜÈ	-57	-42	-65	-10→	BiE	55	5:8	284	-15	277	321	218	Note	1
0 102 01			22		-57	- 41	-62	-93	80			262				227	HOLE	-
0 104 0:			53		-57	-41		-100	EI			281						
0 106 01		23	53	JU	-57	- 58	-20	-98	54	61	137	ذ ت 2	29:	272	266	224		
0 108 0:		29	53	31	-58	-40	-68	-97	78	э́ь	255	282	296	2/5	266	220		
0 110 0:	18 16:37	23	53	31	- >8	-37	-68	-194	79	57	296	253	296	277	257	223		
0 112 0:	18 16:54	23	5ŝ	31	-58	- 33	-60	-103	110			د 28				22 1		
0 114 0:	19 16:55	23	54	31	-60	- 39	-68	-101	72	30	295	282	296	274	267	225		
0 116 01	19 16159	23	54	31	-56	- 35	-68	-106	8€			282				219		
0 118 Oz	19 16:33	23	54	31	-61	- 37		-112	ėÝ			282						
	19 16:59	29	54	31	-59	-41	-71	-96	77			261						
0 122 0:2		23	54	31	- 58	- 36		-104	81			281						
	20 17: 0		54		-58	-38		-106	84			282						
	20 17: 0		54		-58	-40		-106	83			282						
0 128 013			55		- 58	- 36		- 104	81			254						
	21 17: 1		55		-57	-38		-108	36			292						
	21 17: 1		55		-59	-37		-110	60			283						
0 134 0:3			35		-57	-58	_	-113	8/			233						
	22 17: 2		55		-56	-42		- 110	81			279						
	22 17: 2		55		-59	-40		-128	81			283						
0 140 012			26		-58	-+2		-126	4			281						
	29 17: 3		56		-57	-43		-109	38			290						
	3 17: 3		56		- 56	-42		-119	90			282						
	24 171 3		36 25		-62	- 39		-131	71			283						
	24 17: 4		56		-59	-40		- 127	83			282						
	4 17: 4		56		-59	- 39		-192	83			283						
	25 17: 4 25 17: 5	-	56		-56 -56	-38 -38	_	-128	93			282						
	25 17: 5		56 57		-61	-37		-111	94			281						
	6 17: 5		57		-58	-42		-118	73 85			282 279			270			
	26 17: 6		57		-60	-39		-125	80			282						
	6 17: 6		5.7		-59	-40		-136	43			281						
	7 17: 6		57 57		-58	-41		-115	86			282						
	7 171 7		57		-62	-38	_	-122	70			285						
	7 171 7		57		-59	-40		-135	50			282						
	8 17: 7		5/		-60	- 39		-129	78			262						
	8 17 8		58		-61	- 39		-125	78			230						
	8 171 8		5 8		-58	-41		-141	87			283						
	9 17: 8		58		-60	-42		-131	7.			281						
	9 171 9	_	75		-58	41		-145	88			232						
	9 171 9		58		-60	-40		-147	79			283						
	0 17: 9		58		-61	-45		-132	76			281						
0 184 613			58		-61	-46		-146	78			281						
	0 17:10		58		-60	- 46		-155	82			282						
0 188 013			58		-61	-47		-154	77			282						
0 190 0:3			59		-55	- 3'5		-15				283						
0 192 0:3			שב		-61	-49	_	-164				382						_
0 194 013			59		- 59	-52		-158				27.4					Note	2
0 196 0:3			59		-60	-36	-	- 103				275						
0 198 013			59		-59			-148				277						
				-		-												

- Note 1. Absorber inserted in front of antenna during this data block.
- Note 2. Sky view of +45° scan angle obstructed by vehicle.

Table 3a

AMMS Pixel Temperature Printout (94 CHz and 183/1 GHz Channels)

PIXEL	TEMP	S								400				
		_	94		_	_	A.		.		1 61			01.5
PIX	1	2	3	4	5	6	AV6	1	3	3	4	5	6	AV6
1	80	79	79	80	81	80	80	298	290	292	290		291	292
2	74	77	78	75	76	79	77 	288	292	291	297	293	291	292
9	74	76	75	77	75	75	75	299	291	295	293	291	291	292 202
4	79	75	71	79	78	74	79	299	293	295	595	291	29 3	29 3
5	71	71	79	73	?1	73	78	290	291	298	289	293	883	290
6	71	70	78	73	79	78	72	290	291	298	291	293	288	291
7	69	70	69	69	71	70	70	289	291	290	287	292	290	290
8	71	68	69	68	69	67	69	289	292	292	290	291	299	291
9	66	67	67	69	69	68	68	287	298	288	292	288	290	290
10	68	67	67	68	66	68	67	289	294	288	287	289	290	29 0
11	65	68	68	67	66	66	67	291	292	296	29 3	290	888	292
18	65	66	64	65	66	66	66	291	287	291	290	888	289	289
13	65	65	65	66	66	66	65	290	883	289	883	287	288	288
14	68	66	67	64	65	65	65	293	289	287	287	589	287	289
15	65	65	62	63	6 3	68	63	563	888	898	287	289	284	289
16	64	64	63	61	62	64	63	282	565	291	291	287	290	588
17	63	63	68	67	68	61	63	289	290	883	290	290	289	289
18	64	64	63	63	68	68	63	287	292	291	290	291	286	290
19	60	68	65	63	62	63	63	ଌ୫୫	287	291	287	683	588	289
20	63	61	62	63	68	59	62	288	586	286	289	287	285	288
21	64	61	61	68	61	68	62	291	288	589	588	588	291	289
22	68	63	61	68	68	61	68	291	287	285	884	287	290	287
23	68	61	61	61	68	62	61	286	294	288	289	286	291	585
24	59	60	61	68	60	62	61	289	889	290	290	288	290	589
25	61	61	68	58	61	68	61	289	291	285	287	565	୫୫୧	289
26	60	61	61	68	61	61	61	287	890	589	287	291	291	589
27	61	68	61	61	59	63	61	287	282	588	285	286	288	286
28	59	58	61	61	58	60	59	286	287	588	281	286	289	286
29	60	60	60	58	62	59	60	289	287	286	288	290	290	288
30	63	61	68	58	60	60	61	898	288	289	888	287	286	588
91	61	61	59	60	60	60	60	583	289	291	291	289	287	289
92	59	61	60	60	60	58	60	288	588	286	289	285	286	287
93	60	59	58	61	58	60	59	291	286	287	290	294	286	289
94	61	59	61	59	60	61	60	289	589	287	289	286	289	288
85	60	61	61	68	68	68	62	289	290	290	289	588	290	588
96	64	64	68	63	68	60	63	293	290	298	285	288	883	589
37	68	61	65	64	64	68	63	291	29 3	288	288	288	291	290
38	63	63	64	64	68	68	63	287	285	291	292	290	294	290
39	65	65	65	65	64	64	65	292	285	291	290	291	ଌ୫୫	290
4.0	64	66	64	65	66	64	65	288	291	288	288	290	286	288
41	66	65	64	66	63	66	65	290	565	295	292	287	289	291
42	66	66	6.9	67	67	69	67	883	288	290	291	683	285	289
48	67	69	68	67	67	67	67		285		289	287	289	288
44	69	64	67	66	67	68	67		292		287	898	291	291
45	67	68	6.9	69	66	67	68		291		289	291	289	290
46	69	69	70	71	68	66	69	289	289	291	298	292	290	290
47	72	70	70	70	69	68	70	286	292	287	291	291	292	290
49	78	71	78	79	74	78	72				292		299	292
49	74	72	72	72	78	70	72				883			290
50	78	75	78	74	73	75	75				292			291

Table 3b

AMMS Pixel Temperature Printout (183/5 GHz and 183/10 GHz Channels)

			189	×5 6	MZ					183	×10	5HZ		
PIX	1	8	3	4		6	AVE	1	2	3		5	6	AV(
1	294	299	294	294	291	595	29 9	262	263	263	267	269	262	263
٤	287	299	299	296	294	292	293	263	267	264	263	269	263	265
3	291	292	599	596	291	589	292	253	264	264	263	258	261	260
4	292	299	291	288	294	290	595	253	267	260	256	260	259	259
5	293	291	292	290	293	290	291	260	259	256	256	248	258	256
6	565	292	289	595	288	290	290	249	253	259	251	251	255	253
7	285	291	289	289	287	286	288	259	251	256	250	253	250	252
8	285	288	288	565	291	290	683	248	246	251	250	249	253	244
9	287	289	288	883	290	288	288	243	249	250	249	250	249	245
10	287	289	288	ଅଟେଖ	287	290	288	248	245	247	247	244	241	245
11	289	288	287	286	289	286	288	237	248	250	254	251	241	247
12	୨୫ବ	ଜ୍ଞକ	289	288	287	287	288	246	247	249	238	252	238	245
13	287	288	287	290	287	287	288	242	246	241	243	246	245	244
14	281	287	286	291	283	288	286	249	246	239	240	249	243	242
15	289	286	589	288	283	288	287	241	236	284	241	248	280	ହୁଦ୍ର
16	284	291	284	289	285	287	287	234	294	248	239	282	241	237
17	285	288	287	281	286	286	285	288	235	241	285	243	247	240
18	286	284	287	280	287	290	286	287	234	284	236	240	285	236
19	283	288	289	284	589	282	286	285	245	239	248	286	285	299
20	286	285	286	287	285	286	286	237	241	242	294	235	243	239
21	285	287	282	284	286	287	285	236	294	284	232	235	231	294
22	286	281	288	285	281	285	284	298	235	281	240	282	233	235
29	284	୨୫୨	286	285	284	282	284	240	236	286	297	238	287	287
24	283	282	283	284	286	284	284	229	833	288	294	288	280	231
25	282	282	285	280	279	282	282	226	231	280	227	233	285	230
26	286	285	285	287	285	279	284	286	290	282	238	825	234	282
27	284	288	284	288	288	289	286	282	558	284	232	294	225	229
28	とアア	888	285	280	583	585	282	286	230	230	230	883	831	232
89	283	284	282	886	286	281	284	230	293	235	232	290	227	881
80	284	280	886	286	279	286	283	898	2 35	234	236	886	294	233
31	585	288	284	281	284	286	284	885	888	234	823	235	881	232
SE	284	282	287	286	283	283	284	883	833	891	535	282	229	290
S S	583	286	285	286	282	28 3	284	225	282	283	285	230	286	232
94	286	285	589	886	286	283	286	556	888	282	240	239	285	235
35	284	286	287	285	883	886	285	297	535	297	238	888	236	295
86	585	283	284	£89	590	283	285	296			539			240
97					888		588	237	2 33	237	239	236	236	835
98					284		285		2 38					241
99					286		287		242		_	_		244
40			_		286		285		249					845
41					284		287		240					£41
4£					281		286		250					247
49					883		883		252				_	24 7
44					683		288		245		_			246
45		-			287		288		249					247
46					588		288	-	245					254
47					588		288		261					254
48					294		291		253					855
49					29 0		290		251					257
50	588	890	663	99 0	998	287	890	258	260	259	257	866	259	260

Monthly Progress Management Report No. 2

Report Period

1 May through 31 May 1981

Report Prepared

1 June 1981

"Advanced Microwave Moisture Sounder (AMMS)"
May/June 1981 WB-57 CCOPE Mission

J.A. Gagliano

Contract NAS5-26528 (A-2904)

Prepared For

The National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

Prepared By

Engineering Experiment Station Georgia Institute of Technology Atlanta, Georgia 30332

Work Performed During This Period

The flight software to generate a nine-scan followed by a single-stare mode for the AMMS scanner was developed during this period. In addition the software was modified to increase the integration time to approximately 60 msec when operating the AMMS in the "integrate and dump" mode.

Integration of the AMMS on the WB-57F pallet at NASA/GSFC was completed during this period. Georgia Tech personnel were available at GSFC during system integration tests in mid May.

Georgia Tech personnel began field support of the AMMS during the CCOPE mission in Fargo, North Dakota. Final tests of the AMMS under aircraft power were successfully completed prior to the engineering test flight in late May.

Problems Encountered During This Period

No problems occurred during this time period.

Work to be Performed During the Next Period

Georgia Tech personnel will continue to support the CCOPE mission with 5 data flights scheduled in June 1981. Following the mission the AMMS will be packed for return shipment to NASA/GSFC via truck, and then to Georgia Tech via air freight.

Monthly Progress Management Report No. 3

Report Period

June 1 through June 30, 1981

Report prepared

July 20, 1981

"Advanced Microwave Moisture Sounder (AMMS)"
May/June 1981 WB-57 CCOPE Mission

J.A. Gagliano

Contract NAS5-26528 (A-2904)

Prepared For

The National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

Prepared By

Engineering Experiment Station Georgia Institute of Technology Atlanta, Georgia 30332

Work Performed During This Period

The WB-57F CCOPE mission was completed on June 11, 1981 following six data flights and one engineering flight using the Georgia Tech AMMS system. Data was collected at 94/183 GHz using the AMMS on all the CCOPE flights. The AMMS system performed very well throughout the mission and was used to gather severe storm data and high altitude humidity sounding data over Montana during CCOPE.

A complete set of AMMS/CCOPE flight logs were given to the NASA/GSFC scientific investigator at the end of the mission. Computer compatible tapes of CCOPE data from the engineering flight and the first four data flights were given to the scientific investigator.

The AMMS system, ground support system, and associated test equipment were returned to Georgia Tech under NASA/GSFC direction following the CCOPE mission. Georgia Tech personnel performed postflight evaluation of the AMMS and generated quick-look images of the flight data for report purposes.

Problems Encountered During This Period

The 183 GHz subharmonic mixer was replaced with a back-up unit following the third CCOPE data flight. The back-up mixer performed reliably throughout the remaining flights with all three 183 GHz IF channels collecting data.

The AMMS ground support system was damaged during the air shipment from GSFC-Greenbelt, Maryland to Atlanta, Georgia. Preliminary investigations by Georgia Tech personnel revealed damage to the Videotek display monitor, Digi-Data reel-to-reel tape recorder, and Tandberg cartridge recorder. All of these items are part of the AMMS ground support system which was government furnished equipment for this

contract. The Georgia Tech contracting officer for this contract was notified of the above damaged equipment for purposes of resolving the issues pertaining to the repair of said items.

Work to be Performed During the Next Period

Work will begin on the final technical report for project A-2904. Georgia Tech will assist as required in accessing the extent of damage to the AMMS ground support equipment. This will include coordination of repair estimates by pertinent vendors for purposes of notifying the sponsor prior to any repair being performed.

The last two data flights from CCOPE still need to be transferred from cartridge to reel-reel tape for delivery to NASA. The Digi-Data tape recorder, damaged in the return shipment from GSFC to Georgia Tech, is required for this data tape transfer and needs to be returned to the vendor for repair.

Monthly P:ogress Management Report No. 4

Report Period

July 1 through July 31, 1981

Report Prepared

August 11, 1981

"Advanced Microwave Moisture Sounder (AMMS)"
May/June 1981 WB-57 CCOPE Mission

J.A. GAgliano

Contract NAS5-26528 (A-2904)

Prepared For

The National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

Prepared By

Engineering Experiment Station Georgia Institute of Technology Atlanta, Georgia 30332

Work Performed During This Period

Work continued on the evaluation of damage to the AMMS ground support equipment incurred during the return shipment to Georgia Tech from NASA/GSFC. An inspection report from Delta airline was submitted to NASA with a description of damages to the equipment.

The last two data flights from the CCOPE mission were transferred from flight cartridges to a computer compatible reel-reel tape with 1600BPI storage capacity. The reel-reel tape recorder used for this transfer was a Georgia Tech owned replacement unit for the damaged GFE recorder.

Problems Encountered During This Period

Georgia Tech is awaiting official work from NASA regarding the repair to the AMMS GSE. Transfer of flight data to 800BPI reel-reel tapes is delayed until the Digi-Data reel-reel tape recorder can be repaired.

Work to be Performed During the Next Period

Work will continue on the final technical report required for the project.

Monthly Progress Management Report No. 5

Report Period

August 1 through August 31, 1981

Report Prepared

September 2, 1981

"Advanced Microwave Moisture Sounder (AMMS) May/June 1981 WB-57 CCOPE Mission

J.A. Gagliano

Contract NAS5-26528 (A-2904)

Prepared For

The National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

Prepared By

Engineering Experiment Station Georgia Institute of Technology Atlanta, Georgia 30332

Work Performed During This Period

Information was provided to sponsor regarding GFE items damaged during return shipment from NASA/GSFC. Modification #3 to the contract was received, allowing return shipment of damaged items to vendors for repair estimates. Items returned are as follows:

- Reel-reel tape recorder (Digi-Data Corp.);
- 2) Video Tek color monitor (Video Tek Inc.);
- 3) Tandberg TDC 3000 recorder (Innovative Data Techniques) (S/N 50306)

Problems Encountered During This Period

None to report at this time

Work To Be Performed During Next Period

Georgia Tech will send documentation to the sponsor describing AMMS packaging for possible future use on the ER-2 aircraft. A meeting, scheduled in mid-September with Lockheed personnel from Palmdale, CA, will be held at GSFC to review the status of all sensors under consideration for future ER-2 flights. The AMMS documentation will be available at this meeting.

Monthly Progress Management Report No. 6

Report Period

September 1 through September 30, 1981

Report Prepared

October 1, 1981

"Advanced Microwave Moisture Sounder (AMMS)"
Hay/June 1981 WB-57 CCOPE Mission

J.A. Gagliano

Contract NAS 5-26528 (A-2904)

Prepared For

The National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

Prepared By

Engineering Experiment Station Georgia Institute of Technology Atlanca, Georgia 30332

Work Performed During This Period

Vendor information was received regarding repair to the damaged GFE used in the AMMS ground support system for CCOPE. A summary of repair work required is as follows:

- Digi-Data Corporation (reel-reel tape recorder) recommends replacing the multi-pin interconnect cable between the transport and the formatter and repairing the bent cabinet frame which supports the transport;
- Video Tek Incorporation (color monitor) ways that the printed cracked circuit board can be repaired rather than replaced at a nominal cost;
- 3) Innovative Data Techniques (dual cartridge recorder) indicated that the tape rewind problem can be easily corrected, but also recommends that the capstan motor and record head be replaced due to excessive wear.

Problems Encountered During This Period

None to report at this time

Work To Be Performed During Next Period

The final technical report will be completed during the next period.

APPENDIX B

"Moisture Sounding at Millimeter Wavelengths (94/183 GHz) at High Altitudes"

Moisture Sounding at Millimeter Wavelengths (94/183 GHz) at High Altitudes

J. A. Gagliano

T. T. Wilheit

J. M. Schuchardt

J. L. King

Georgia Institute of Technology Atlanta, Georgia 30332

NASA, Goddard Space Flight Center Greenbelt, Maryland 20771

- . . .

Abstract

A moisture sounding radiometer at millimeter wavelengths has been developed for high altitude measurements onboard NASA's WB-57F aircraft. Three channels about the 183.3 GHz water vapor line permit measurement of the atmospheric water vapor profile. A single window channel at 94 GHz provides correction for clouds over the ocean and for surface emissivity variations over land. The instrument is an imaging radiometer operating under microprocessor control throughout each data flight. The system is contained within two packages integrated into the WB-57F pallet. A ground support system was used to perform a quick-look analysis of the data collected immediately following each flight.

Introduction

A millimeter wave radiometer operating at 94 GHz (single channel) and 183 GHz (three channels) has been developed for use onboard the NASA WB-57F high altitude aircraft. During the past 2 years the radiometer has been used to collect data from an altitude of about 18 km over severe storm regions throughout the United States. (See Table 1.) Data flights using the 94/183 GHz scanning radiometer onboard the WB-57F were initiated in June 1979 with Project SESAME (Severe Environmental Storms and Mesoscale Experiment) and most recently in June 1981 with Project CCOPE (Cooperative Convective Precipitation Experiment).

Table 1. Advanced Microwave Moisture Sounder (AMMS)/ WB-57F Mission Schedule Summary

Mission	<u>Lucation</u>	Month/Year					
SESAME*	Southwest U.S.	June 1979					
Florida Thunder- storm	Plorida	Sept. 1979					
Stratiform Precipita- tion	Central and Southern U.S.	Feb. 1980					
Severe Storm	South Florida	Aug. 1980					
CCOPE**	Montana	May/June					

Figure 1. 94/183 GHz Dual Frequency Radiometer Channel Allocation.

Figure 1 shows the relationship of the radiometer channels to the water vapor line at 183.3 GHz. The three channels (+2.25, +5.00 and +8.75 GHz from line center) permit measurement of the atmospheric water vapor profile. The window channel, centered at 94 GHz permits correction for clouds over the ocean and for surface emissivity variations over land. Although typical brightness temperatures observed are in the 240 to 280K range, brightness temperatures below 200K have been observed in convective rain with the AMMS instrument and with a nonscanning predecessor instrument that was flown into Tropic instrument^{1,2} and with a nonscanning predecessor instrument that was flown into Tropical Storm Cora on the NASA Convair 990 aircraft.^{3,4} These low brightness temperatures are interpreted as scattering of the 3K cosmic background into the radiometer by ice particles with dimensions greater than a few hundred microns. Such ice particles are common in

^{*}Severe Environmental Storms and Mesoscale Experiment

^{**}Cooperative Convective Precipitation Experiment

convective precipitation. The degree to which this scattering is observed in the various 183 GHz channels also gives information on the height to which ice is thrown in the storm. In Tropical Storm Cora ice was thrown to at least 8 km altitude. The February 1980 mission demonstrates that these low brightness temperatures are not commonly observed in stratiform precipitation except for occasional embedded convection.

AMMS System Description

The Advanced Microwave Moisture Sounder (AMMS) is an imaging radiometer developed by the Georgia Institute of Technology under contract to NASA Goddard Space Flight Center.5,4 Figure 2 is a system block diagram of the AMMS airborne 94/183 GHz radiometer as configured for the WB-57F aircraft. The imaged scene is reflected into the antenna unit by the rotating reflector and is chopped at approximately 350 Hz using a beam combining "super chopper. On every sixth mapping cycle the scanner rotates 360 degrees and reflects a hot and a cold calibration load into the antenna lens viewing port. The 94 GHz and 183 GHz channels each have a separate feedhorn behind the lens. The beam combining chopper determines which horn is viewing the mapped scene or the temperature controlled Dicke reference load. Figure 3 depicts the super chopper design implemented to view the scene alternately between the 94 GHz feed and the 183 GHz feed. The 94 GHz signal is down-converted to a 2.32 GHz IF. The 183 GHz signal is down-converted using a X2 sucharmonic mixer to intermediate frequencies at 1.5 to 3.0, 4.0 to 6.0, and 7.5 to 10.0 GHz. The three channels are triplexed, amplified, filtered and then square law detected. The detector outputs go to video amplifiers with bandpass responses centered at the chopping frequency. The video amplifier outputs are synchronously detected using phase sensitive detectors. output of the phase sensitive detector is either a two pole low pass active filter with a selectable integration time or an integrator whose output is proportional to the time integral of the phase sensitive detector output. The integrator output is periodically sampled and dumped under microprocessor control at a rate determined by the scanning period of the imaging radiometer. The microcomputer also digitizes the outputs of the phase sensitive detectors, and controls the storage of data from all four channels onto the dual cartridge flight recorder. The microprocessor also checks for proper operation of the system and, if a fault is detected, it is corrected by reloading and restarting the operating program.

Figure 2. WB-57F 94/183 GHz Radiometer Block Diagram.

ORIGINAL PAGE IS OF PUOR QUALITY

- a) Super Chopper Concept Shown Reflecting to Antenna at 94 GHz and Reflecting Into Reference Load at 183 GHz.
- b) Super-Chopper Shown Transmitting to Reference Load at 94 GHz and Transmitting to Antenna at 183 GHz.

Figure 3. 94/183 GHz Radiom ter Super-Chopper Concept.

The radiometer's beam scanner is designed to image the scene below the aircraft over an angle of ±45 degrees in a 3 second period. The angular beamwidths for the 94 GHz and 183 GHz sensors are 2 degrees and 1 degree, respectively. The radiometer's scan period is controlled by one of the AMMS microcomputers. The same controller is used to perform precise periodic calibrations of the radiometer during flight. The key parameters for the airborne system are summarized in Table 2. A key component used in the AMMS front-end is the subharmonic balanced mixer developed for the 183 GHz system using antiparallel mounted Schottky-barrier diodes. Figure 4 is a photograph showing the subharmonic mixer assembled in the 183 GHz RF front-end flown on the WB-57F during the CCOPE mission.

Table 2. Key Parameters of the AMMS System

Parameters Dual Frequency Front- End	Remarks Solid state, low noise, wide band
Multichannel System	183 GHz (3 channels), 94 GHz (1 channel)
Subharmonic Balanced Mixer	183 GHz (Pumped at 91.65 GHz)
Single-ended Mixer/ LO Injection Cavity	94.0 GHz
Anticana	5 inch lens aperture
Precision Calibration Loads	Effective black body
Dicke Chopper Beam Combining	Essentially Lossless Operation
Beam Scanner	Microcomputer

(Moving Mirror)

Data Recording

Control

Microcomputer Control

Figure 4. Assembled 183 GHz RF Front-End Using the Subharmonic Mixer.

The AMMS radiometer airborne system is contained within two packages integrated into the WB-57F universal pallet. The AMMS front-end package contains the RF, IF, and video components which are mounted on a temperature controlled common baseplate. Figure 5 is a photograph of the front-end package with the beam scanner (rotating reflector) and calibration loads as shown. An opening in the WB-57F pallet allows the scanner to view the scene below the aircraft. The second AMMS package contains the digital system including the

multiplexed analog-to-digital converter, system power supplies, the microcomputer, and the dual cartridge flight recorder. Figure 6 is a photograph of the digital package which is pressurized to withstand 10 psi differential in order to meet the environmental requirements of the flight recorder.

Figure 5. AMMS RF Package Showing Major RF Components.

Figure 6. AMMS Digital Package with Dual Cartridge Recorder.

Following each WB-57F flight the AMMS data are examined using the portable ground support system provided in the field. Key parameters for the ground support system are summarized in Table 3. This system is used to perform any necessary flight software modifications to the AMMS. Figure 7 is a photograph of the ground support system showing the ground based microcomputer, the color monitor display, the ground support cartridge recorder, and the reel-reel tape recorder with controller. Functions provided by the ground support system include radiometric images of the 94 GHz and 183 GHz data channels (see Figure 8), hard copy printout of the AMMS flight log (see Table 4), and cartridge to reel-reel tape transfer of the flight data for future analysis by NASA.

Table 3. AMMS Ground Support System Features

Parameters	Remarks		
Data Display	Real time to 2X real time images (4 Channels)		
Data Flight History	Flight log printout		k was
Data Storage	Airborne cartridge to 9 track tape		
Software Support	Custom design for each data flight		
Data Tape Initiali- zation	Modify operating system software	₹- -	

Figure 7. AMMS Ground Support System.

ORIGINAL PAGE IS OF POOR QUALITY

94 GHz 183/5 GHz

ORIGINAL PAGE IS OF POOR QUALITY

183/2.25 GHz

Note:

Lighter regions shown in each of the four channels correspond to brightness temperatures below 210K. Each region is approximately 36 km across by 15 km long.

183/8.75 GHz

Figure 8. 94/183 GHz Scanning Radiometer Imaged Data Display.

Table 4. AMMS/WB-57F Severe Storms Flight: Face 3; Day: 244; Date: 08/31/80

BLK	TIME	IRIG	CrD	HOT	REF	G2	Gl	G5	G0	MA2	MI2	MA1	M11	MA5	M15	MAO	MIO
		18:41	_	62				-157	-		_					302	253
440	1:13	18:41	2	62	29	-68	-93	-135	-71	269	247	291	218	315	240	299	256
442	1:13	18:41	3	62	29	-68	-98	-179	-70	274	247	285	198	302	166	300	210
444	1:14	18:42	2	62	29	-70	-84	-140	-76	282	225	274	182	297	173	286	157
446	1:14	18:42	2	62	29	-70	-98	-222	-74	271	119	222	116	212	16	238	110
448	1:14	18:42	2	62	29	-69	-91	-194	-86	255	108	225	105	175	22	152	59
450	1:15	18:43	2	62	29	-68	-79	-141	-67	256	120	232	134	223	99	200	109
452	1:15	18:43	2	62	29	-67	-141	-126	-74	295	179	264	56	293	166	281	119
454	1:15	18:43	2	62	29	-69	-96	-154	-80	296	247	292	208	317	208	287	204

The hard copy flight log printout provides information such as aircraft time (IRIG), calibration loads (CLD and HOT) physical temperatures, Dicke reference (REF) load physical temperature, radiometer data channels system gains (G2, G1, G5, and G0) in degrees Kelvin per volt, the maximum radiometric temperature (MA) observed for each data channel during six scans, and the minimum radiometric temperature (MI) observed for each data channel. Table 4 represents a portion of the AMMS flight 3 (8/31/80) log designated FACE (Florida Area Cumulus Experiment) from the Severe Storms mission. This partial flight log printout covers three minutes of data taken beginning about one and one-quarter hours after aircraft takeoff. Note at time IRIG 1842 that minimum radiometric temperatures were observed on all four radiometric channels at the time during which the WB-57F was crossing the west coastline of Florida near Naples Park. Each flight log is generated immediately following the day's flight and is used to correlate the AMMS data with the WB-57F backseat operator's log on visual observations. Figure 8 is a four channel radiometric image taken from the WB-57F/AMMS 8/31/80 data flight. Beginning with the upper left image and going clockwise the four channels shown are 94 GHz, 183 (2.25) GHz, 183 (8.75) GHz, and 183 (5.00) GHz respectively. This imaged data corresponds to the flight time printout data provided in Table 4.

Since the radiometer scans ± 45 degrees about nadir, a ground swath of 36 km is mapped when the WB-57F is at 18 km altitude. The ground support video monitor generates 50 pixels for each line scan which results in about 0.72 km beam cell diameter on the earth's surface. Each data image shown in Figure 8 above represents about six minutes of data collected by the radiometer. At an aircraft ground speed of 400 knots, the total distance covered by the WB-57F is about 74 km for each channel.