Solutions Question 1 2003	Marks/Comments
1 a)	1 for realising x tends
$\lim_{x \to \pm \infty} \frac{3x^2 + 4x + 5}{x^2}$	to infinity represents
11m	horizontal asymptote
4 5.	
$= \lim_{x \to \infty} (3 + \frac{4}{x} + \frac{5}{x^2})$	
=3+0+0	
= 3	I for answer
1 b)	
$\frac{x}{2-x} \le 4, x \ne 2$	1.6. 00 1 14
1 ~ ~	l for CPs by either method
x = 8 - 4x	memod
5x=8	
x = 1.6	
x = 2, 1.6 are critical points	1 for test
test points $x=0 \checkmark$, $x=5\checkmark$, $x=1.75 \times$	1 for statement.
$x \le 1.6 \text{ or } x > 2$	not 3^{rd} mark if $x \ge 2$
1 c) 2 + 5 + 8 ++ 56	
has 19 terms with common difference = 3	1 for clear expression
$\frac{n}{2}(a+l) = 9.5 \times 58 = 551$	i for correct answer
1 d)	
$\int_{-\sqrt{x^2-3}}^{6} dx$	
$\int_{2}^{3} \sqrt{x^{2}-3} dx$	
du a a a a a a a a a a a a a a a a a a a	1 not all reqd
$\frac{du}{dx} = 2x, \ x = 2, u = 1, \ x = 6, u = 33$	
$I = \frac{1}{2} \int_{1}^{33} \frac{du}{\sqrt{u}}$	
$I = \frac{1}{2} \int \sqrt{u}$	1 for clear statement
1	of integral
$=\frac{1}{2}\left[2u^{\frac{3}{2}}\right]_{i}^{33}$	1 for completion
$= \sqrt{33} - 1$	1 101 combonon
1 e) i) (15,150)	1
1 e) ii) $9t^2 = x^2 = 1.5y$	1 /12
$1 \text{ e) ii) } \mathcal{H} = x = 1.3y$	

Solutions Question 2 2003	Marks/Comments
a) i) 1:2	1
a) ii) 3:2	i
b) i)	
$\log_3 4 = \log_3 \frac{12}{3}$	1
$= \log_3 12 - \log_3 3$	
= 2.26186-1	
=1.26186	
b) ii) 1.09	1
c) $x^2 - 1 \sqrt{x^3 + 4x^2 - 2x + 3}$	I for setting up the division
Q(x) = x + 4, R(x) = 7 - x	1
d) i)	
	1
$\frac{h}{OY} = \tan 15^{\circ}$	
$OY = \frac{h}{\tan 15^0} \text{or } h \cot 15^0$	
d) ii) Likewise $OX = h \cot 10^{\circ}$	1
Now right angle at O in \triangle OXY so	
$400^2 = h^2(\cot^2 15^0 + \cot^2 10^0)$,
400	i i
$h = \frac{400}{\sqrt{\cot^2 15^0 + \cot^2 10^0}}$	
	1
$h = \frac{400}{\sqrt{46.09164071}}$	i
= 59 <i>m</i>	
d) iii)	
tan ∠OXY	1
hcot15°	
$=\frac{h\cot 10^0}{h\cot 10^0}$	
_ tan 10°	
$=\frac{\tan 15}{\tan 15^0}$	
=.658	
	1 /12
$\angle OXY = 33^{\circ}21'$	<u>l</u>

Solutions Question 3 2003	Marks/Comments
a) Now	1
$\cos 2x = 2\cos^2 x - 1$	
$\cos^2 x = \frac{\cos 2x + 1}{2}$	
$\cos^2 4x = \frac{\cos 8x + 1}{2}$	
$I = \frac{1}{2} \int_{0}^{\pi/4} \cos 8x + 1 dx$	1
$=\frac{1}{2}\left[\frac{1}{8}\sin 8x+x\right]_0^{\pi/4}$	
$=\frac{1}{2}\left(\frac{1}{8}\sin\frac{\pi}{2}+\frac{\pi}{16}-0\right)$	
$=\frac{2+\pi}{32}$	1
b) i) 9 letters, E appears 3 times and S appears twice	
$\frac{9!}{3!2!} = 30240$	1 simplification not req <u>d</u>
b) ii) The requirement is C V C V C V C V C	1
Vowels can be ordered in $\frac{4!}{3!} = 4$ ways	
Consonants can be ordered in $\frac{5!}{2!} = 60$ ways	
Probability = $\frac{240}{30240} = \frac{1}{126}$	l simplification not reqd
c) $4\cos\theta + 3\sin\theta = 2$	
then $\frac{4}{5}\cos\theta + \frac{3}{5}\sin\theta = \frac{2}{5}$	1
$5 5 5 5$ $\cot \log \sin(\alpha + \theta) = \sin \alpha \cos \theta + \cos \alpha \sin \theta$	
we have $\sin \alpha = \frac{4}{5}$ and $\cos \alpha = \frac{3}{5}$	1
$\alpha = 0.9273^{\circ}$	1
$\therefore 0.9273 + \theta = 0.41151^{\circ} \text{ or } 1.982313^{\circ}$	1 ignore failure to
and so $\theta = 1.06^{\circ}, 5.77^{\circ}$	(Answer in degrees acceptable)
d) i) $x \le 1$ or $x \ge 1$	1
, , , , , , , , , , , , , , , , , , ,	

Solutions Question 4 2003	Marks/Comments
a) BX =DX (tangents drawn from external point)	1
∴∠DBX=∠BDX	
likewise AX = CX and \angle CAX = \angle ACX] 1
(Both these pairs of equal angles are equal since ∠X is	1
common in both triangles)	1
.: AC BD (corresponding angles equal)	1
b)	
$\cos(\theta + 2\theta)$	
$=\cos\theta\cos2\theta-\sin\theta\sin2\theta$.
$=\cos\theta(2\cos^2\theta - 1) - \sin\theta(2\sin\theta\cos\theta)$	1
$=2\cos^3\theta-\cos\theta-2(1-\cos^2\theta)\cos\theta$	1
$=4\cos^3\theta-3\cos\theta$	
c) $\sin x = \frac{10 \pm \sqrt{100 - 96}}{16} = 0.5 \text{ or } 0.75$	
c) $\sin x = \frac{10 - \sqrt{100}}{16} = 0.5 \text{ or } 0.75$	l l
Then $x = .524^{\circ}$ or $.848^{\circ}$	1
Minimum when first deriv. = 0	
$16\sin x\cos x - 10\cos x = 0$	
$16\sin x = 10$	1
since $\cos x \neq 0$ $(x = \frac{\pi}{2} \text{ but } \frac{\pi}{2} > 1, \therefore \text{ not a solution})$	1.
$\sin x = 0.625$, $x = .675$	1
•	1,
$y = 8\left(\frac{5}{8}\right)^2 - 10 \times \frac{5}{8} + 3 = -0.125$	
d) i) $y = 3x - 2 $	1
d) ii) $0 \le x \le 2$	1 /12

Solutions Question 5 2003	Marks/Comments
a) i) If $n = 1$, $1 = 1^3$ true when $n = 1$	
Assume when $n = k$ ie. $1 + 7 + 19 + \dots + (3k^2 - 3k + 1) = k^3$	1
Reqd to prove	
$1+7++(3k^2-3k+1)+(3(k+1)^2-3(k+1)+1)=(k+1)^3$	
LHS = $k^3 + 3(k+1)^2 - 3(k+1) + 1$	
$= k^3 + 3k^2 + 6k + 3 - 3k - 3 + 1 = k^3 + 3k^2 + 3k + 1$	1
$=(k+1)^3$	1
The proposal holds when $n = 1$. If assumed for a number it will hold for the next number, so it holds for $n = 2$ etc. Hence by induction the proposal holds for all $n \in J$, $n \ge 1$	1
a) ii) $n^3 - (n-1)^3$	
$= n^3 - n^3 + 3n^2 - 3n + 1$	1
$=3n^2-3n+1$	<u> </u>
(b) i)	
$\frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt}$	
1	
$=v\cdot\frac{dv}{dx}$	1
$=\frac{d}{dv}\left(\frac{1}{2}v^2\right)\frac{dv}{dx}$	•
$=\frac{d}{dx}\left(\frac{1}{2}v^2\right)$	
b) ii) $-g = \frac{-k}{R^2}$ $\therefore k = gR^2$	1
b) iii) $a = \frac{-gR^2}{x^2}$	
$\frac{d}{dx}\left(\frac{1}{2}v^2\right) = -gR^2x^{-2}$	1
$\frac{1}{2}v^2 = \int -gR^2x^{-2}dx$	
$v^2 = 2gR^2x^{-1} + c$	
but when $x = R$, $v = u$,	
$\therefore c = u^2 - 2gR$	1
$\therefore v^2 = \frac{2R^2g}{x} + u^2 - 2gR \text{ as req}\underline{d}$	

b) iv) $v = 0$ for max distance	
1 ' '	1
$0 = \frac{2R^2g}{r^2} + u^2 - 2Rg$	
x -	
$2Rg - u^2 = \frac{2R^2g}{}$	1
2 kg - u = x	
2.82 0	
$x = \frac{2R^2g}{2Rg - u^2}$	
	
b) v) as $x \to \infty$, $u^2 = 2gR$.
$= 2 \times 9.8 \times 6400000$	1
$u = 11200 ms^{-1}$	
c)	
$f(x) = ax^3 + bx^2 + cx + d$ $f'(x) = 3ax^2 + 2bx + c$	
$f(-1) = -a + b - c + d \dots (1)$ $f'(-1) = 3a - 2b + c \dots (2)$	
(double root at $x = -1$)	11
min value at (I,-4)	
f(1) = a + b + c + d = -4(3) f'(1) = 3a + 2b + c = 0(4)	
(min turning point)	
Solving $(2) + (4)$, $(2) - (4)$, $(1) + (3)$, $(3) - (1)$ and	
subbing we get	
],
a=1, $b=0$, $c=-3$, $d=-2$	1
	112
	/12

Solutions Question 6 2003	Marks/Comments
a) i) $-1 \le \sin t \le 1$	_
$0 \le \sin^2 t \le 1$	1
0 ≤ 2sin <i>t</i> ≤ 2	
$\therefore \text{ extremities are between } x = 0 \text{ and } x = 2$	
a) ii) $\frac{dx}{dt} = 2 \times 2 \sin t \cos t$	1 for clear intention
$dt = 4\sin t \cos t$	to differentiate wrt !
$\frac{d^2x}{dt^2} = vu' + uv'$	
$= 4(\cos^2 t - \sin^2 t)$	
	1 for completion
$=4(1-2\sin^2t)$	1 101 0011
=4(1-x)	
a) iii) Particle has SHM since its acceleration has form $-n^2X$	1
a) iv) Maximum speed when $x = 1$, $t = \sin^{-1}(\frac{1}{\sqrt{2}})$	
/ ¥²	1
Then $\frac{dx}{dt} = 2 \times 2 \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = 2 \text{ ms}^{-1}$	
	1 for clear expression
b) $(1+x)^n = {^nC_0} + {^nC_1}x + {^nC_2}x^2 + + {^nC_n}x^n$	of bin. th. and
differentiating both sides wrt x $n(1+x)^{n-1} = {}^{n}C_{1} + 2{}^{n}C_{2}x + 3{}^{n}C_{3}x^{2} + + n{}^{n}C_{n}x^{n-1}$	differentiating or
$h(1+x) = C_1 + 2 C_2 x + 3 C_3 x + + k C_n x$	letting x equal
letting x = 1	something
$RHS = n \times 2^{n-1}$	1
(1)3 (1)2	
c) ${}^{7}C_{5}\left(\frac{1}{2}\right)^{3}\times\left(\frac{1}{2}\right)^{2}=0.1640625$	1
d) i) By inspection $m_{\text{max}} = 2$ when $x = 0$	1
d) ii) The curve represents $\frac{dy}{dx} = \frac{2}{1+x^2}$,
1],
which equals $\frac{1}{3}$ when $x = \pm \sqrt{5}$	1
d)iii)	1,
$\int_{-\infty}^{\infty} \frac{2}{1+x^2} dx = 2 \int_{0}^{\infty} \frac{2}{1+x^2} dx$	1
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	
سا ٿ	
$=4\int_{0}^{\infty}\frac{1}{1+x^{2}}dx$	
$=4\left[\tan^{-1}x\right]_{0}^{\infty}$	1
	_
$=4\times\frac{\pi}{2}$	
$=2\pi$	
$= 2\pi$	

The state of the second second

Solutions Question 7 2003	Marks/Comments
a) i) $\frac{dy}{dt} = -10t + c$ but when $t = 0$ $y' = V \sin \theta$ so	1 clear intention to
$y' = V \sin \theta - 10t$	integrate both wrt t
Also $x' = V \cos \theta$	1
$x = Vt\cos\theta$	İ
$y = \int V \sin \theta - 10t dt = Vt \sin \theta - 5t^2 + c$	1,5
and from the initial conditions $c = 10$	1 for correct constants
a) ii) By Pythagoras $\sin \theta = \frac{5}{13}$ and $\cos \theta = \frac{12}{13}$	
We require x when $y = 0$	1
$y = 13t \frac{5}{13} - 5t^2 + 10$ which =0 when	
$t = \frac{-5 \pm \sqrt{25 + 4 \times 5 \times 10}}{-10}$	
-10	
$=\frac{-20}{-10}$ or $\frac{10}{-10}$	
When $t=2$	1
$x = 13 \times 2 \times \frac{12}{13} = 24 \text{ m}$	
b) i) PQ has eqn	
$\frac{aq^2 - ap^2}{a} = \frac{y - ap^2}{a}$	
2aq - 2ap - x - 2ap	1
$=\frac{q+p}{2}$	1 .
1 2	
which becomes $2y - 2ap^2 = (p+q)x - 2apq - 2ap^2$	
when $x = 0$, $y = a$	
2a = -2apq $pa = -1$	1
$pq = -1$ b) ii) Tangent at P $y = px - ap^2$	
Tangent at Q $y = qx - aq^2$	
$q \times \text{Tangent at P} qy = pqx - ap^2q$	
$p \times \text{Tangent at Q} py = pqx - aq^2 p$	1
(q-p)y = apq(q-p)	
whence $y = -a$	
subbing $-a = px - ap^2$	
$pqa + ap^2 = px$	
x = a(p+q)	
b)iii)	
$PQ = \sqrt{(2ap - 2aq)^2 + (ap^2 - aq^2)^2}$	1
12-1(20p-209) +(op 04)	

$= \sqrt{4a^{2}(p-q)^{2} + a^{2}(p^{2}-q^{2})^{2}}$	
$=a\sqrt{4(p-q)^2+(p-q)(p+q)^2}$	
$=\alpha(p-q)\sqrt{4+(p+q)^2}, p>q$	1
$=a(p-q)\sqrt{-4pq+(p+q)^2}$, $(pq=-1)$	
$=a(p-q)\sqrt{(p-q)^2}$	
$= a(p-q)^2 \text{but } q = \frac{-1}{p}$	1
$= a \left(p + \frac{1}{p} \right)^2$ as reqd	or 3 marks for other
(, F /	method