Program Verification with Hoare Logic

Anders Møller

http://www.brics.dk/~amoeller/talks/hoare.pdf

Using Assertions in Programming

- Assertion: invariant at specific program point
- dynamic checks, runtime errors
 (e.g. Java 1.4 assert (exp))
- Floyd, 1967:
 - use assertions as foundation for static correctness proofs
 - specify assertions at every program point
 - correctness reduced to reasoning about individual statements

Hoare Logic

<u>Hoare, 1969</u>: use Floyd's ideas to define **axiomatic semantics** (i.e., define the programming language semantics as a **proof system**)

- partial correctness: if S is executed in a store initially satisfying P and it terminates, then the final store satisfies Q
- total correctness: as partial, but also requires termination
- (we ignore termination and definedness...)

Hoare Logic for miniTIP

miniTIP: as TIP, but without

- functions
- pointers
- input/output

i.e., a core while-language with only pure expressions

An Axiom for Assignment

$${Q[E/id]} id=E; {Q}$$

Example:
$$\{y+7>42\}$$
 $x=y+7$; $\{x>42\}$

- the most central aspect of imperative languages is reduced to simple syntactic formula substitution!
- this axiom is "backwards" it allows the precondition to be inferred automatically from the statement and the postcondition

A Proof Rule for Sequence

$$\{P\} S_1 \{R\} = \{R\} S_2 \{Q\}$$

 $\{P\} S_1 S_2 \{Q\}$

(Apparently) R must be created manually...

A Proof Rule for Conditional

$$\{P \land E\} S_1 \{Q\} \{P \land \neg E\} S_2 \{Q\}$$

 $\{P\} \text{ if } (E) \{S_1\} \text{ else } \{S_2\} \{Q\}$

A Proof Rule for Iteration

$$\{P \land E\} S \{P\}$$
 $\{P\} \text{ while (E) } \{S\} \{P \land \neg E\}$

- P is the loop invariant this is where the main difficulty is!
- This rule can be extended to handle total correctness...

Pre-Strengthening and Post-Weakening

Intuitively, A⇒B means that A is **stronger** than B

Soundness and Completeness

- Soundness: if {P} S {Q} can be proven, then it is certain that executing S from a store satisfying P will only terminate in stores satisfying Q
- Completeness: the converse of soundness

- Hoare logic is both sound and complete, provided that the underlying logic is!
- often, the underlying logic is sound but incomplete (e.g. Peano arithmetic)

Example: factori al

```
a logical variable, remembers the initial value
\{n\geq 0 \land t=n\}
r=1; / \{P_1\}
while (n\neq 0)\{P_2\} {
   r=r*n; \{P_3\}

n=n-1; \{P_3\}
                                    P_1 \equiv n \ge 0 \land t = n \land r = 1
{r=t!}
                                    P_2 \equiv r = t! / n! \wedge t \ge n \ge 0
                                    P_3 \equiv r = t! / (n-1)! \wedge t \ge n > 0
```

- Peano arithmetic can be used in the assertions

Proof Obligations in the Example

•
$$\{n\geq 0 \land t=n\} r=1; \{P_1\}$$

•
$$P_1 \Rightarrow P_2$$

•
$$\{P_2 \land n\neq 0\} r=r*n; \{P_3\}$$

•
$$\{P_3\}$$
 n=n-1; $\{P_2\}$

•
$$(P_2 \land \neg(n\neq 0)) \Rightarrow r=t!$$

Hoare Logic for the full TIP language?

- Input/Output expressions?
 - just convert to separate statements

Functions?

- require pre/post-conditions at function declaration
- the frame problem: to be useful, the pre/post-conditions also need to specify which things do not change

Pointers?

- the heap-as-array trick: model *x=y as H[x]=y
- the global reasoning problem: in the proofs,
 each heap write appears to affect every heap read

Dijkstra's Weakest Precondition Technique

<u>Dijkstra</u>, 1975:

Given a statement **S** and a postcondition **Q**, the **weakest precondition WP(S,Q)** denotes the **largest set of stores** for which **S** terminates and the resulting store satisfies **Q**.

•
$$WP(id=E; , Q) = Q[E/id]$$

this shows that the intermediate assertion comes for free in the sequence rule in Hoare Logic

•
$$WP(S_1 S_2, Q) = WP(S_1, WP(S_2, Q))$$

• WP(i f (E)
$$\{S_1\}$$
 el se $\{S_2\}$, Q) = E \Rightarrow WP(S_1 ,Q) $\land \neg$ E \Rightarrow WP(S_2 ,Q)

• WP(while (E) {S}, Q) =
$$\exists k \ge 0$$
: H_k where
$$H_0 = \neg E \land Q$$

$$H_{k+1} = H_0 \lor WP(S, H_k)$$
 inductive definition, calls for inductive proofs

Strongest Postcondition

- WP is a **backward** predicate transformer
- **SP** (strongest postcondition) is **forward**:

$$SP(P, id=E;) = \exists v: P[v/id] \land id=E[v/id]$$

. . .

$$\{P\}$$
 S $\{Q\}$ iff $P \Rightarrow WP(S,Q)$ iff $SP(P,S) \Rightarrow Q$ (if using the total correctness variant)

The Pointer Assertion Logic Engine

- PALE: a tool for verifying pointer intensive programs, e.g., datatype operations
 - no memory leaks or dangling pointers
 - no null pointer dereferences
 - datatype invariants preserved
- Uses M2L-Tree (Monadic 2nd-order Logic on finite Trees)
 - a decidable but very expressive logic
 - MONA: a decision procedure based on tree automata
 - suitable for modeling many heap structures
 - heap ~ universe
 - pointer variable x ~ unary predicate x(p)
 - pointer field f ~ binary predicate f(p,q)

Example: Red-Black Search Trees

A red-black tree is

- a binary tree whose nodes are red or black and have parent pointers
- 2. a red node cannot have a red successor
- 3. the root is black
- 4. the number of black nodes is the same for all direct paths from the root to a leaf

Goal: verify correctness of the insert procedure

Example: red_bl ack_i nsert. pal e

```
proc redbl acki nsert(data t, root: Node): Node
{ pointer y, x: Node;
  x = t:
  root = treeinsert(x, root);
  x. color = false:
  while (x!=root & x.p.color=false) {
    if (x. p=x. p. p. left) {
      y = x. p. p. right;
      if (y!=null & y. color=false) {
        x. p. color = true;
        y. col or = true;
        x. p. p. col or = fal se;
        X = X. p. p;
      else {
        if (x=x.p.right) {
          x = x. p;
          root = leftrotate(x, root);
        x. p. col or = true;
        x. p. p. color = false;
        root = rightrotate(x. p. p, root);
        root. col or = true:
    }}
```

```
el se {
    y = x. p. p. left;
    if (y!=null & y. color=false) {
      x. p. color = true;
      y. color = true;
      x. p. p. col or = fal se;
      x = x. p. p;
    else {
    if (x=x. p. left) {
      x = x. p;
      root = rightrotate(x, root);
    x. p. color = true;
    x. p. p. color = false;
    root = leftrotate(x. p. p, root);
    root. col or = true:
}}
root. col or = true:
return root;
```

+ auxiliary procedures I eftrotate, ri ghtrotate, and treei nsert (total ~135 lines of program code)

Using Hoare Logic in PALE

- Require invariants at all while-loops and procedure calls (extra assertions are allowed)
- 2. Split the program into **Hoare triples**: {P} S {Q}
- 3. Verify each triple separately (only loop/call-free code left)
 - including check for null-pointer dereferences and other memory errors

Note: highly modular, no fixed-point iteration, but requires invariants!

Verifying the Hoare Triples

Reduce everything to M2L-Tree and use the MONA tool.

Use *transductions* to encode loop-free code:

- Store predicates (for program variables and record fields) model the store at each program point
- **Predicate transformation** models the semantics of statements Example: x = y. next; $\rightarrow x'(p) = \exists q. y(q) \land next(q,p)$
- Verification condition is constructed by expressing the pre- and post-condition using store predicates from end points
- Looks like an interpreter, but is essentially Weakest Precondition
- Sound and complete for individual Hoare triples!

Example: Red-Black Search Trees

- Insert invariants and pre- and post-conditions, expressing correctness requirements for red_bl ack_i nsert and the auxiliary procedures
- 2. Run the **PALE** tool

Result: after 9000 tree automaton operations and 50 seconds, PALE replies that

- all assertions are valid
- there can be no memory-related errors

If verification fails, a **counterexample** is returned!

PALE Experiments

Benchmark	Lines of code	Invariants	Time (sec.)
reverse	16	1	0.52
search	12	1	0.25
zi p	33	1	4.58
del ete	22	0	1.36
insert	33	0	2.66
rotate	11	0	0.22
concat	24	0	0.47
bubbl esort_si mpl e	43	1	2.86
bubbl esort_bool ean	43	2	3.37
bubbl esort_ful l	43	2	4.13
orderedreverse	24	1	0.46
recreverse	15	2	0.34
doubl yl i nked	72	1	9.43
leftrotate	30	0	4.62
ri ghtrotate	30	0	4.68
treei nsert	36	1	8.27
redbl acki nsert	57	7	35.04
threaded	54	4	3.38

References

- An Axiomatic Basis for Computer Programming C.A.R. Hoare, CACM 12(10), 1969
- The Science of Programming
 D. Gries, Springer-Verlag, 1981
- The Pointer Assertion Logic Engine
 A. Møller and M.I. Schwartzbach, PLDI 2001