Lecture 6: Sampling Distributions STAT 310, Spring 2021

- ► A parameter is a numerical characteristic of the population (fixed number that is usually unknown).
- A **statistic** is a numerical characteristic of the sample (varies depending on sample).
- ► The statistic is also referred to as a **point estimate**, since it is our best guess at the value of a population parameter.

Notation for the proportion:

- p: population proportion
- \triangleright \hat{p} : sample proportion

Notation for the mean:

- $\blacktriangleright \mu$: population mean
- $\triangleright \bar{x}$: sample mean

The sample size is denoted as n

Example

A recent Gallup poll found that 66% of Americans are dissatisfied with how the COVID-19 vaccination process is going in the U.S. The survey results were based on random sample of 4,098 adults.¹

- (a) What is the sample proportion?
- (b) What is the sample size?
- (c) Describe the population proportion?

(d) Suppose another poll is conducted with a different random sample of adults. Would you expect the sample proportion to be the same, or slightly different?

https

- ➤ Sampling Error refers to how much a statistic, such as the sample proportion, will vary from one random sample to the next.
- ▶ For example, the Gallup poll reported a sampling error of ± 2 percentage points. This means that the population proportion of Americans that are dissatisfied with the vaccine rollout is likely between 64% and 68%.

A **sampling distribution** is the distribution of a statistic when repeatedly taking random samples from a population.

- In real-world applications, we never actually observe the sampling distribution, since we usually take a single random sample.
- However, it is useful to always think of a statistic, such as the sample proportion, as coming from such a hypothetical distribution.
- ► The concept of a sampling distribution is very important when trying to quantify sampling error.

Central Limit Theorem (CLT)

The sampling distribution for \hat{p} follows an approximate normal distribution centered around the population proportion p, and with standard error $\sqrt{p(1-p)/n}$.

Conditions for CLT

The following conditions should be met to apply the CLT:

- ► The data come from a simple random sample. This is called the **independence condition** since it implies that the individuals or cases in the data are unrelated.
- ▶ $np \ge 10$ and $n(1-p) \ge 10$. This is sometimes called the success-failure condition since np can be interpreted as the expected number of successes and n(1-p) the expected number of failures.

Example

Suppose that the population proportion of Americans who support the expansion of solar energy is p=0.88, and n=1000 Americans are randomly sampled.

- (a) What is the mean, or center, of the sampling distribution for \hat{p} ?
- (b) What is the standard error of the sampling distribution for \hat{p} ?

(c) What distribution does \hat{p} follow?

(d) Are the conditions for the CLT satisfied?

Example

Suppose that population proportion of Americans who support the expansion of solar energy is p=0.88, and n=1000 Americans are randomly sampled. What is the probability that the sample proportion \hat{p} will be greater than 0.9?