\star Spé - St Joseph/ICAM Toulouse \star

Math. - CC 1 - S1 - Algèbre

vendredi 05 octobre 2018 - Durée 1 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

Exercice 1

Dans \mathbb{R}^3 muni de sa base canonique (e_1, e_2, e_3) , on considère l'endomorphisme u défini par :

$$u(x, y, z) = (-x, 2x + y, -2x - 2y - z)$$

Soient $\varepsilon_1, \varepsilon_2$ et ε_3 les vecteurs définis par :

$$\varepsilon_1 = e_2 - e_3, \ \varepsilon_2 = -e_1 + e_2 - e_3, \ \varepsilon_3 = e_1 - e_2 + 2e_3$$

- **1.** Montrer que $\mathscr{B} = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est une base de \mathbb{R}^3 .
- **2.** Déterminer la matrice de u dans \mathscr{B} .
- 3. Que peut-on en déduire?

Exercice 2

On considère deux entiers n et p tels que $2 \le p \le n$. E désigne un espace vectoriel de dimension n sur \mathbb{K} . $f_1, f_2, ..., f_p$ sont p endomorphismes non nuls de E tels que

$$f_1 + f_2 + \dots + f_p = \operatorname{Id}_E$$
 et $f_i \circ f_j = 0$, pour tout $i \neq j$

Soient $\alpha_1, \alpha_2, \cdots, \alpha_p$ des éléments de \mathbb{K} deux à deux distincts. On note $f = \alpha_1 f_1 + \alpha_2 f_2 + \cdots + \alpha_p f_p$.

- **1.** Montrer que pour tout $i \in [1, p]$, f_i est un projecteur de E.
- **2.** Calculer $f^k = \underbrace{f \circ \cdots \circ f}_{k \text{ fois}}$, pour tout $k \in \mathbb{N}^*$.
- **3.** Montrer que $\{f_1, f_2, \cdots, f_p\}$ est une famille libre.
- 4. Montrer que

$$E = \operatorname{Im} f_1 \oplus \operatorname{Im} f_2 \oplus \cdots \oplus \operatorname{Im} f_p$$

- **5.** Montrer que la famille $\{ \mathrm{Id}_E, f, f^2, \cdots, f^{p-1} \}$ est libre.
- **6.** Pour $P = \sum_{k=0}^{d} a_k X^k \in \mathbb{K}[X]$, on définit l'endomorphisme P(f) par : $P(f) = \sum_{k=0}^{d} a_k f^k$.

Pour tout
$$i \in [1, p]$$
, on note $P_i = \prod_{\begin{subarray}{c} 1 \leq k \leq p \\ k \neq i \end{subarray}} \frac{X - \alpha_k}{\alpha_i - \alpha_k}.$

Montrer que pour tout $i \in [1, p]$, P_i est le seul polynôme de $\mathbb{K}_{p-1}[X]$ vérifiant $P_i(f) = f_i$.

Fin de l'énoncé d'algèbre