Ejemplo (Lenguajes Formales)

Auxiliar: Leonardo H. Añez Vladimirovna*

Universidad Autónoma Gabriél René Moreno, Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones, Santa Cruz de la Sierra, Bolivia

I-2020

Demostrar Formalmente

Construir dos expresiones regulares α y β , tales que $|L(\alpha)| = 3$ y $|L(\beta)| = 4$, construyendo dos autómatas $(M_{\alpha}$ y $M_{\beta})$ respectivamente y demostrar **formalmente** que:

$$L(M_{\alpha}) \cap L(M_{\beta}) = \Sigma^*$$

Respuesta

Primeramente construimos las ER. α y β .

$$\alpha = (a \cup b) \cup bb$$
 $\beta = ((a \cup b) \cup aa) \cup bb$

Evidentemente, la cardinalidad del lenguaje generado por cada una cumple con el enunciado, según lo vemos a continuación:

$$\begin{split} L(\alpha) &= L((a \cup b) \cup bb) \\ &= L(a \cup b) \cup L(bb) \\ &= (L(a) \cup L(b)) \cup L(b)L(b) \\ &= (\{a\} \cup \{b\}) \cup \{b\}\{b\} \\ &= \{a,b\} \cup \{bb\} \\ &= \{a,b,bb\} \end{split} \qquad \begin{aligned} L(\beta) &= L(((a \cup b) \cup aa) \cup bb) \\ &= L((a \cup b) \cup aa) \cup L(bb) \\ &= (L(a \cup b) \cup L(aa)) \cup L(bb) \\ &= ((L(a \cup b) \cup L(ab)) \cup L(ab) \cup L(bb) \\ &= ((L(a) \cup L(b)) \cup L(a)L(a)) \cup L(b)L(b) \\ &= ((\{a\} \cup \{b\}) \cup \{a\}\{a\}) \cup \{b\}\{b\} \\ &= \{a,b,aa\} \cup \{bb\} \\ &= \{a,b,aa,bb\} \end{aligned}$$

Cardinalidad de α :

Cardinalidad de β :

$$|L(\alpha)| = 3 \qquad |L(\beta)| = 4$$

Hasta acá simplemente estamos proponiendo las ER. para demostrar su intersección, no necesariamente tienen que ser estas ER., pero podemos tratar siempre de hacerlas lo mas pequeñas posible.

^{*}Correo Electrónico: toborochi98@outlook.com

Como queremos demostrar que $L(M_{\alpha}) \cap L(M_{\beta}) = \Sigma^*$ tenemos que construir primeramente los AFDs M_{α} y M_{β} , para estos lenguajes finitos (podemos usar el método del árbol):

Lo que haremos con estos autómatas es realizar la **intersección** como la conocemos:

$$\Sigma^* - [(\Sigma^* - L(M_\alpha)) \cup (\Sigma^* - L(M_\beta))]$$

Y vemos si es que el complemento de su **intersección** es \emptyset , si fuera el caso, significa que el lenguaje aceptado por el autómata sin el complemento es Σ^* (por lo que quedaría demostrado).

Construyendo la Intersección

Primero, realizamos el complemento de cada autómata M_{α} y M_{β} :

Luego, realizamos la **unión** de los complementos:

Necesitamos ahora convertirlo a un AFD:

Hasta este paso, solo etiquete los estados para poder realizar la tabla de transición en la conversión.

Realizamos la tabla de transición:

Estados	Entrada λ	Entrada a	Entrada b
$\rightarrow q_0$	q_0, q_1, q_2	q_3,q_5	q_4, q_6
$\underline{q_1}$	q_1	q_3	q_4
$\underline{q_2}$	q_2	q_5	q_6
q_3	q_3	q_7	q_7
q_4	q_4	q_7	q_8
q_5	q_5	q_9	q_{11}
q_6	q_6	q_{11}	q_{10}
$\underline{q_7}$	q_7	q_7	q_7
q_8	q_8	q_7	q_7
q_9	q_9	q_{11}	q_{11}
q_{10}	q_{10}	q_{11}	q_{11}
q_{11}	q_{11}	q_{11}	q_{11}

Finalmente realizamos el AFD con la tabla:

Con este AFD lo unico que nos falta por hacer es el complemento para obtener la intersección que buscabamos: $L(M_{\alpha}) \cap L(M_{\beta})$. Y ver si es que nos da Σ^* .

Recordemos por un momento que doble complemento es el conjunto original:

$$(A^C)^C = A$$

Por lo que podriamos no realizar el complemento ya que obtendriamos el mismo autómata de arriba.

Finalmente teniendo el autómata, podemos afirmar que $L(M_{\alpha}) \cap L(M_{\beta}) \neq \Sigma^*$ ya que al ver el complemento de su intersección vemos que existen secuencias de aristas que nos llevan a un estado terminal a partir de $\{q_0, q_1, q_2\}$.

$$\overline{L(M_{\alpha}) \cap L(M_{\beta})} \neq \emptyset$$

Por lo tanto:

$$L(M_{\alpha}) \cap L(M_{\beta}) \neq \Sigma^*$$