Model Evaluation

Ninghao Liu

University of Georgia

February 1, 2023

Some contents adopted from "Data Mining", Section 8.5.

Where we left off: Classification Error

$$L_{0-1}(x, y, \mathbf{w}) = \mathbb{1}[y' \neq y] = \mathbb{1}[(\mathbf{w}^{\mathsf{T}} \cdot \phi(x))y \leq 0]$$

We define **Accuracy** as:

$$Acc = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \mathbb{1}[\mathbf{y}' = \mathbf{y}] = \frac{\text{\#correct predictions}}{\text{\#predictions}} \tag{1}$$

Training, Validation and Testing in Practice

To report model performance:

- \mathcal{D}_{in} (Training set): totally contaminated.
- \mathcal{D}_{test} (Test set): totally clean.

Questions

- **1** How to choose \mathcal{D} ?
 - $\mathcal{D}_{\textit{test}}$ in testing to report final performance.
 - \mathcal{D}_{val} in model selection and hyper-parameter tuning.
- Are these evaluation metrics enough?

Questions

- How to choose \mathcal{D} ?
- Are these evaluation metrics enough?

Questions

Scenarios:

- Bomb detection.
 - +: Bomb detected. -: No bomb.
- Email spam detection.
 - +: Spam email. -: Normal email.

Is accuracy a good metric?

Evaluation Terminology

In the classification scenario (especially multi-class classification):

- Positive samples (positive tuples)
 - Tuples of the main class of interest
- Negative samples (negative tuples)
 - All other tuples

P is the number of positive tuples and N is the number of negative tuples.

Evaluation Terminology

For each tuple, compare the predictor's class label prediction with the tuple's ground-truth class label.

- True positives (TP)
 - The positive tuples that were correctly predicted.
 - Let *TP* be the number of true positives.
- True negatives (TN)
 - The *negative* tuples that were *correctly* predicted.
 - Let TN be the number of true negatives.
- False positives (FP)
 - The negative tuples that were incorrectly predicted (as positive).
 - Let FP be the number of false positives.
- False negatives (FN)
 - The positive tuples that were incorrectly predicted (as negative).
 - Let FN be the number of false negatives.

Predicted class

Actual class

Treateted class					
	yes	по	Total		
yes	TP	FN	P		
по	FP	TN	N		
Total	P'	N'	P+N		

Classes	buys_computer = yes	buys_computer = no	Total	Recognition (%)
buys_computer = yes	6954	46	7000	99.34
buys_computer = no	412	2588	3000	86.27
Total	7366	2634	10,000	95.42

Given C classes (where $C \ge 2$), a confusion matrix is a table of at least size C by C.

Commonly Used Metrics

- accuracy: $\frac{TP+TN}{P+N}$
- error rate: $\frac{FP+FN}{P+N}$
- True positive rate (TPR): $\frac{TP}{P}$
 - Also called "sensitivity".
- True negative rate (TNR): $\frac{TN}{N}$
 - Also called "specificity".

$$accuracy = sensitivity \frac{P}{P+N} + specificity \frac{N}{P+N}$$

Commonly Used Metrics

- Precision: $\frac{TP}{TP+FP}$
 - what percentage of tuples predicted as positive are actually such
- Recall: $\frac{TP}{TP+FN} = \frac{TP}{P}$
 - what percentage of positive tuples are predicted as such

Classification Error

- F measure: $\frac{2 \times precision \times recall}{precision + recall}$
 - The harmonic mean of precision and recall
 - Also known as F_1 score or F-score
- F_{β} measure: $\frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$

Measure	Formula	
accuracy, recognition rate	$\frac{TP+TN}{P+N}$	
error rate, misclassification rate	$\frac{FP + FN}{P + N}$	
sensitivity, true positive rate, recall	TP P	
specificity, true negative rate	$\frac{TN}{N}$	
precision	$\frac{TP}{TP + FP}$	
F, F ₁ , F-score, harmonic mean of precision and recall	$\frac{2 \times precision \times recall}{precision + recall}$	
F_{β} , where β is a non-negative real number	$\frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$	