INDUSTRIAL TRAINING DAILY DIARY DAY 13

09 July, 2025

Topic: Practice of Pandas on real world datasets

Objectives:

- To understand how to work with string data within a pandas DataFrame.
- To apply string functions using the .str accessor on Series.
- To perform common operations like:
 - Converting to lowercase and uppercase using .str.lower() / .str.upper()
 - Removing whitespace with .str.strip(), .str.lstrip(), and .str.rstrip()
 - Finding substrings using .str.contains() and .str.find()
 - Replacing characters or substrings using .str.replace()
 - Splitting strings with .str.split() and extracting parts using .str.get()
 - Checking for string patterns (like prefixes/suffixes) using .str.startswith() and .str.endswith()
- To clean and preprocess textual data for analysis or machine learning tasks.
- Exercise on US CRIMES Dataset
- Step 1. Import the necessary libraries
- Step 2. Import the dataset from this [address]
 (https://raw.githubusercontent.com/guipsamora/pandas exercises/
 master/04 Apply/US Crime Rates/US Crime Rates 1960 2014.csv).
- Step 3. Assign it to a variable called crime.

116470

130390

174210 1086400

203050 1213200

2297800

2514400

408300

472800

17650

21420

Step 4. What is the type of the columns?

3792500

8640

9360

3 1963

188483000 4109500 316970

4 1964 191141000 4564600 364220

crime.dtypes	
Year	int64
Population	int64
Total	int64
Violent	int64
Property	int64
Murder	int64
Forcible_Rape	int64
Robbery	int64
Aggravated_assault	int64
Burglary	int64
Larceny_Theft	int64
Vehicle_Theft	int64
dtype: object	

Step 5. Convert the type of the column Year to datetime64

```
crime['Year']= pd.to_datetime(crime['Year'])
```

Step 6. Set the Year column as the index of the dataframe

```
crime.set_index('Year',inplace = True)
```

Step 7. Delete the Total column

<pre>crime.drop('Total',axis = 1)</pre>	rime.drop('Total',axis = 1)										
	Population	Violent	Property	Murder	Forcible_Rape	Robbery	Aggravated_assault	Burglary	Larceny_Theft	Vehicle_Theft	
Year											
1970-01-01 00:00:00.000001960	179323175	288460	3095700	9110	17190	107840	154320	912100	1855400	328200	
1970-01-01 00:00:00.000001961	182992000	289390	3198600	8740	17220	106670	156760	949600	1913000	336000	
1970-01-01 00:00:00.000001962	185771000	301510	3450700	8530	17550	110860	164570	994300	2089600	366800	
1970-01-01 00:00:00.000001963	188483000	316970	3792500	8640	17650	116470	174210	1086400	2297800	408300	
1970-01-01 00:00:00.000001964	191141000	364220	4200400	9360	21420	130390	203050	1213200	2514400	472800	
1970-01-01 00:00:00.000001965	193526000	387390	4352000	9960	23410	138690	215330	1282500	2572600	496900	
1970-01-01 00:00:00.000001966	195576000	430180	4793300	11040	25820	157990	235330	1410100	2822000	561200	
1970-01-01 00:00:00.000001967	197457000	499930	5403500	12240	27620	202910	257160	1632100	3111600	659800	

Step 8. Group the year by decades and sum the values

```
data.shape[0]
li = []
for i in range(data.shape[0]):
   y = data.iloc[i,0]
   if int(y) % 10 == 0:
       li.append( data.iloc[i,:])
ndata = pd.DataFrame(li)
print(ndata.head())
   Year Population
                      Total Violent Property Murder Forcible_Rape
   1960
        179323175
                   3384200
                             288460
                                     3095700
                                               9110
                                                             17190
10 1970 203235298 8098000 738820 7359200 16000
                                                             37990
20 1980 225349264 13408300 1344520 12063700 23040
                                                             82990
30 1990
          248709873 14475600 1820130 12655500
                                               23440
                                                            102560
40 2000
        281421906 11608072 1425486 10182586
                                               15586
                                                             90178
   Robbery Aggravated_assault Burglary Larceny_Theft Vehicle_Theft
0
    107840
                       154320
                              912100
                                           1855400
                                                           328200
   349860
10
                      334970
                             2205000
                                            4225800
                                                           928400
  565840
                      672650 3795200
                                           7136900
                                                          1131700
30 639270
                                           7945700
                     1054860 3073900
                                                          1635900
40
   408016
                      911706
                              2050992
                                            6971590
                                                          1160002
```

Exercise on TITANIC Dataset

Step 1. Import the necessary libraries

```
: import pandas as pd
```

Step 2. Import the dataset from this [address]
(https://raw.githubusercontent.com/guipsamora/pandas exercises/master/
07 Visualization/Titanic Desaster/train.csv)

Step 3. Assign it to a variable titanic

titanic = pd.read_csv(r"https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/07_Visualization/Titanic_Desaster/train.csv")

Step 4. Set PassengerId as the index

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Passengerld											
1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 11 columns

Step 5. Create a pie chart presenting the male/female proportion

```
import matplotlib.pyplot as plt
a = ['pink', 'lavender']

titanic.groupby('Sex')['Survived'].sum().plot(
    kind='pie',
    autopct='%1.0f%%',
    colors=a,
    title='Survival by Sex',
    ylabel=''
)
plt.show()
```

