

Neural Network Acceleration on GPUs: MNIST Classification Case Study

Report By:

Ubaida Tariq (22i-1155)

Muhammad Khan (22i-1040)

Rihab Rabbani (22i-1345)

1. Introduction

This report documents our implementation and optimization of a neural network for MNIST digit classification using GPU acceleration. The MNIST dataset consists of 70,000 grayscale images (28×28 pixels) of handwritten digits (0-9). Our goal was to progressively optimize the neural network implementation from a baseline CPU version to highly optimized GPU versions using various CUDA techniques.

The neural network architecture consists of:

Input layer: 784 neurons (one per pixel)

Hidden layer: 128 neurons (256 in later versions)

Output layer: 10 neurons (one per digit class)

2. Baseline Implementation (V1)

Overview

The baseline implementation (V1) is a sequential CPU implementation of a fully connected neural network with one hidden layer. Key characteristics:

Network Architecture: 784-128-10 (input-hidden-output)

Activation Functions: ReLU for hidden layer, Softmax for output

Training: Stochastic Gradient Descent with backpropagation

Learning Rate: 0.01

Epochs: 3

Batch Size: 64

Implementation Details:

- Uses standard C with no parallelization
- Matrix operations implemented with nested loops
- Memory allocated dynamically for weights and biases
- Forward and backward passes computed sequentially

Performance

• Training Time: 18 seconds

• Test Accuracy: ~92-94% (varies with random initialization)

Limitations

- No utilization of parallel processing capabilities
- All computations performed sequentially on CPU
- Memory operations not optimized
- No hardware-specific optimizations

3. Naive GPU Implementation (V2)

Overview

V2 represents our initial port of the neural network to GPU using CUDA. This version maintains the same network architecture but parallelism key operations.

Key Modifications

CUDA Kernel Implementation:

- Parallelized matrix operations (matrix-vector products)
- Separate kernels for forward/backward passes
- Element-wise operations (ReLU, Softmax) parallelized

Memory Management:

- Host-device memory transfers for weights and activations
- Flattened matrix storage for coalesced memory access

Basic Optimization:

- Xavier initialization for better convergence
- Error checking with CHECK CUDA ERROR macro

Implementation Challenges

- Initial difficulty with memory management between host and device
- Ensuring correct synchronization between kernels
- Debugging race conditions in parallel implementations

Performance

• Training Time: 35.23 seconds

• Slowdown Factor: ~1.96x slower than V1

Analysis

The naive implementation was actually slower than the CPU version due to:

- Excessive host-device memory transfers
- Suboptimal kernel launch configurations
- Lack of memory hierarchy utilization
- Overhead of small kernel launches

4. Optimized GPU Implementation (V3)

Overview

V3 introduces significant optimizations to address the shortcomings of V2 while maintaining numerical accuracy.

Key Optimizations

Memory Optimizations:

- Pinned memory for faster host-device transfers
- Batch processing to reduce memory transfer overhead
- Shared memory utilization in key kernels

Kernel Optimization:

- Tiled matrix multiplication (TILE WIDTH = 16)
- Optimized launch configurations (block/grid dimensions)
- Parallel reduction for Softmax computation
- Fused operations where possible

Training Improvements:

- Momentum (0.9) for faster convergence
- Weight decay (0.0001) for regularization
- Learning rate scheduling

Numerical Stability:

- Improved Softmax implementation with max subtraction
- Careful handling of floating-point operations

Implementation Details

- Network Architecture: 784-256-10 (larger hidden layer)
- Batch Processing: More efficient memory access patterns
- Streams and Events: For asynchronous operations and timing
- Occupancy Optimization: Adjusted block sizes for better GPU utilization

Performance

- Training Time: 8.62 seconds (V3), 21.1 seconds (V3-accurate)
- Speedup: ~2.09x faster than V1 (V3), ~0.85x (V3-accurate)

V3 vs V3-accurate

The faster V3 version makes some numerical approximations that slightly reduce accuracy, while V3-accurate maintains full precision at the cost of speed.

5. Tensor Core Implementation (V4)

Overview

V4 builds upon V3's optimizations while leveraging Tensor Cores for mixed-precision computation.

Key Enhancements

FP16 Computation:

- Weights and activations stored as FP16
- Mixed-precision training with FP32 accumulation
- Custom FP16 arithmetic operations

Tensor Core Utilization:

- Matrix operations optimized for Tensor Cores
- Specialized kernels for FP16 computation
- Efficient memory access patterns for Tensor Cores

Additional Optimizations:

- Enhanced memory hierarchy usage
- Improved occupancy with better thread block configurations
- Reduced memory footprint with FP16 storage

Implementation Details

Performance

Training Time: 4.23 seconds
Speedup: ~4.25x faster than V1

5. OpenACC-Enhanced Implementation (V5)

Overview

V5 builds upon V3's CUDA optimizations while incorporating OpenACC directives to further accelerate data preparation and host-side computations. This hybrid approach combines the best of both programming models.

Key Enhancements

Hybrid Parallelization:

- CUDA for compute-intensive neural network operations
- OpenACC for parallelizing data preprocessing and memory operations

Memory Optimizations:

- Pinned memory for both CUDA and OpenACC access
- Optimized data transfers between host and device
- Unified memory management between CUDA and OpenACC regions

Compute Optimizations:

- OpenACC parallelization of data loading and batch preparation
- SIMD vectorization for host-side computations

• Asynchronous execution of data preparation and GPU computations

Implementation Details

• **Network Architecture:** 784-256-10 (same as V3/V4)

• **Batch Size:** 128 (increased from 64 for better throughput)

Parallel Regions:

- Data loading and normalization
- Batch preparation
- Shuffling and index management
- Accuracy evaluation

Performance

• **Training Time:** 6.11 seconds

• **Speedup:** ~2.95x faster than V1, 1.42x faster than V3

• **Accuracy:** ~93% (maintained full precision)

6. Performance Analysis

Training Time Comparison

Version	Time (seconds)	Speedup vs V1	Accuracy
V1 (CPU)	18.00	1.00x	~94%
V2 (Naive GP	PU) 35.23	0.51x	~94%
V3	8.62	2.09x	~94%
V3-accurate	21.10	0.85x	~98%
V4 (FP16)	4.23	4.25x	~94%
V5 (OpenACO	C) 6.11	2.95x	~94%

Key Findings

- 1. The naive GPU implementation (V2) was slower due to overheads
- 2. Proper optimizations (V3) yielded significant speedups
- 3. Tensor Cores (V4) provided the best performance
- 4. There's a trade-off between speed and accuracy in some versions
- 5. The hybrid OpenACC/CUDA approach (V5) provided a good balance between performance and accuracy
- 6. OpenACC effectively accelerated data preparation and host-side operations
- 7. V5 outperformed V3 while maintaining full precision (unlike V4's FP16)
- 8. The implementation showed that mixed-paradigm approaches can be effective

Optimization Impact

- Kernel Optimization: Proper launch configurations improved throughput
- **FP16 Computation**: Enabled Tensor Core usage for maximum speed
- **Hybrid Parallelization:** OpenACC complemented CUDA by accelerating host-side operations
- Memory Optimizations: Unified memory management reduced overhead
- **Batch Processing**: Larger batches improved throughput
- Numerical Stability: Maintained FP32 precision throughout

7. Conclusion

Through this project, we successfully accelerated a neural network through multiple optimization stages. The V5 implementation demonstrated that:

Hybrid Approaches Work: Combining CUDA and OpenACC can yield performance benefits while maintaining code simplicity for certain operations.

Host-Side Optimization Matters: Accelerating data preparation and memory operations provided measurable improvements.

Precision-Speed Trade-offs: V5 showed that near-TensorCore performance could be achieved while maintaining FP32 precision.

Future work could explore:

- Deeper integration of OpenACC and CUDA
- OpenACC for additional operations like evaluation
- Multi-GPU support through OpenACC directives
- Automated tuning of gang/vector parameters

This project provided valuable hands-on experience with GPU programming, performance optimization, and the practical challenges of accelerating machine learning workloads.