

Statistical Sciences

Tutorial - Week 3

Ruyi Pan

July 20, 2023

July 20, 2023

Outline

- Estimators
- Maximum Likelihood Estimator (MLE)
- Bayesian Inference

Estimators

- Bias
- Consistency
- Efficiency
 - Variance of Estimator
 - Cramér-Rao lower bound (unbiased estimator)
- Mean Squared Error

Exercise - MIPS 20.9

Given a random sample X_1, X_2, \ldots, X_n from a Bern(p) distribution. One consider the estimators

$$T_1 = \frac{1}{n}(X_1 + \ldots + X_n)$$
 and $T_2 = \min\{X_1, \ldots, X_n\}$

- a. Are T_1 and T_2 unbiased estimators for p?
- b. Get their Mean squared error
- c. Which estimator is more efficient when n=2?

July 20, 2023

MLE

- Likelihood or Log Likelihood function
- Properties:
 - Invariance
 - Asymptotically unbiased
 - Asymptotically minimum variance

Exercise - MIPS 21.7

Suppose that x_1, x_2, \dots, x_n is a dataset, which is a realization of a random sample from a Rayleigh distribution, which is a continuous distribution with probability density function given by

$$f_{\theta}(x) = \frac{x}{\theta} e^{-\frac{1}{2}x^2/\theta^2}$$
 for $x \ge 0$.

In this case what is the maximum likelihood estimate for θ ?

July 20, 2023

Bayesian Inference

- Bayes rule
- Law of total probability
- Prior and Posterior

Exercise - ER 7.1.4

Suppose that (x_1, \ldots, x_n) is a sample from Poisson (λ) distribution with $\lambda > 0$ unknown. If the prior distribution of λ is Gamma (α, β) , then obtain the form of the posterior density of λ .

