Note: This report is issued subject to TÜV SÜD PSB's "Terms and Conditions Governing Technical Services". The terms and conditions governing the issue of this report are set out as attached within this report.

Choose certainty.

Add value.

FORMAL REPORT ON TESTING IN ACCORDANCE WITH

FCC Parts 15B & C : 2007 OF A

BLUETOOTH MODULE [Model:eb101] [FCCID: WND-1000160]

TEST FACILITY TÜV SÜD PSB Pte Ltd,

Electrical & Electronics Centre (EEC), Product Services,

1 Science Park Drive, Singapore 118221

FCC REG. NO. 90937 (3m & 10m OATS)

99142 (10m Semi-Anechoic Chamber) 871638 (3m Semi-Anechoic Chamber) 325572 (10m Semi-Anechoic Chamber)

C-2305 (C.E @ Lab 6), C-2306 (C.E @ Lab 3)

T-212 (Telecom Ports @ Lab 6), T-213 (Telecom Ports @ Lab 3)

IND. CANADA REG. NO. IC 4257 (3m and 10m Semi-Anechoic Chambers)

PREPARED FOR A7 Engineering, Inc.

12127 Kirkham Road

Suite 101

Poway, CA 92064

Tel: +(858) 391-1960 Fax: +(619) 956-0082

QUOTATION NUMBER 53Q0701777

JOB NUMBER S08ICM00467

TEST PERIOD 20 Mar 2008 – 04 Jul 2008

PREPARED BY

buly/

Quek Keng Huat Associate Engineer APPROVED BY

'hung

Lim Cher Hwee Assistance Vice President

Laboratory: TÜV SÜD PSB Pte. Ltd. Testing Services No.1 Science Park Drive Singapore 118221

Phone: +65-6885 1333

Fax: +65-6776 8670

www.tuv-sud-psb.sg

Co. Reg: 199002667R

E-mail: testing@tuv-sud-psb.sg

LA-2007-0380-A LA-2007-0380-A-1 LA-2007-0381-F LA-2007-0382-B LA-2007-0384-G LA-2007-0385-E IA-2007-0386-C

The results reported herein have been performed in accordance with the laboratorys terms of accreditation under the Singapore Accreditation Council - Singapore Laboratory Accreditation Scheme. Tests/Calibrations marked "Not SAC-SINGLAS Accreditation" in this Report are not included in the SAC-SINGLAS Accreditation Schedule for our laboratory.

Regional Head Office: TÜV SÜD Asia Pacific Pte. Ltd. 3 Science Park Drive, #04-01/05 The Franklin, Singapore 118223

TABLE OF CONTENTS

TEST SUMMARY

PRODUCT DESCRIPTION

SUPPORTING EQUIPMENT DESCRIPTION

EUT OPERATING CONDITIONS

CONDUCTED EMISSION TEST

RADIATED EMISSION TEST

CARRIER FREQUENCY SEPARATION TEST

SPECTRUM BANDWIDTH (20dB BANDWIDTH MEASUREMENT) TEST

NUMBER OF HOPPING FREQUENCIES TEST

AVERAGE FREQUENCY DWELL TIME TEST

MAXIMUM PEAK POWER TEST

RF CONDUCTED SPURIOUS EMISSIONS TEST

BAND EDGE COMPLIANCE (CONDUCTED) TEST

BAND EDGE COMPLIANCE (RADIATED) TEST

PEAK POWER SPECTRAL DENSITY TEST

MAXIMUM PERMISSIBLE EXPOSURE (MPE) TEST

DUTY CYCLE FACTOR COMPUTATION

ANNEX A - EUT PHOTOGRAPHS / DIAGRAMS

ANNEX B - FCC LABEL & POSITION

ANNEX C - USER MANUAL, TECHNICAL

DESCRIPTION, BLOCK & CIRCUIT

DIAGRAMS

TEST SUMMARY

The product was tested in accordance with the customer's specifications.

Test Results Summary

Test Standard	Description	Pass / Fail
FCC Part 15: 2007		
15.107(a), 15.207	Conducted Emissions	Pass
15.109(a), 15.205, 15.209	Radiated Emissions (Spurious Emissions inclusive Restricted Bands Requirement)	Pass
15.247(a)(1)	Carrier Frequency Separation	Pass
	Spectrum Bandwidth (20dB Bandwidth Measurement)	Pass
15.247(a)(1)(iii)	Number of Hopping Frequencies	Pass
	Average Frequency Dwell Time	Pass
15.247(b)(1)	Maximum Peak Power	Pass
15.247(d)	RF Conducted Spurious Emissions	Pass
15.247(d)	Band Edge Compliance (Conducted)	Pass
15.247(d)	Band Edge Compliance (Radiated)	Pass
15.247(e)	Peak Power Spectral Density	Pass
1.1310	Maximum Permissible Exposure	See Page 61
15.35(c)	Duty Cycle Factor Computation	See Page 62

TEST SUMMARY

Notes

1. Three channels as listed below, which respectively represent the lower, middle and upper channels of the Equipment Under Test (EUT) were chosen and tested. For each channel, the EUT was configured to operate in the test mode.

Transmit Channel	Frequency (GHz)
Channel 0	2.402
Channel 39	2.441
Channel 78	2.480

- 2. All the measurements in section 15.247 were done based on conducted measurements.
- 3. The EUT is a Class B device when in non-transmitting state and meets the FCC Part15B Class B requirements.
- All test measurement procedures are according to ANSI C63.4: 2003.

Modifications

No modifications were made.

PRODUCT DESCRIPTION

Description : The Equipment Under Test (EUT) is a **Bluetooth Module**.

Manufacturer : Integrated Microelectronics, Inc

103 Trade Ave. cor Technoology Ave. Special Export Processing Zone, Laguna Technopark Ph 4

Binan, Laguna 4023,

Philippines

Model Number : eb101

FCC ID : WND-1000160

Serial Number : Nil

Microprocessor : CSR BlueCore

Operating / Transmitting

Frequency

: 2.402GHz (lower channel) to 2.480GHz (upper channel)

79 channels.

Clock / Oscillator Frequency : 24MHz

Modulation : Gaussian Frequency Shift Keying (GFSK)

Antenna Gain : 0.0 dBi

Port / Connectors : Refer to manufacturer's user manual / operating manual.

Rated Input Power : 2.2 – 3.3 VDC via AC/DC adaptor

Accessories : Nil

SUPPORTING EQUIPMENT DESCRIPTION

Equipment Description	Model, Serial & FCC ID Number	Cable Description
(Including Brand Name)		(List Length, Type & Purpose)
CSR Test Kit Board	M/N: EZBTD001 MB v1.0	2.0m unshielded AC/DC power adaptor cable
	S/N: Nil	adaptor cabic
	FCC ID: DoC	

EUT OPERATING CONDITIONS

FCC Part 15

- 1. Conducted Emissions
- 2. Radiated Emissions (Spurious Emissions inclusive Restricted Bands Requirement)
- 3. Spectrum Bandwidth (20dB Bandwidth Measurement)
- 4. Maximum Peak Power
- 5. RF Conducted Spurious Emissions
- 6. Peak Power Spectral Density
- 7. Maximum Permissible Exposure
- 8. Duty Cycle Factor Computation

The EUT was exercised by operating in maximum continuous transmission with frequency hopping off, i.e transmitting at lower, middle and upper channels respectively at one time.

FCC Part 15

- 1. Carrier Frequency Separation
- 2. Number of Hopping Frequencies
- 3. Average Frequency Dwell Time
- 4. Band Edge Compliance (Conducted)
- 5. Band Edge Compliance (Radiated)

The EUT was exercised by operating in maximum continuous transmission with frequency hopping on.

CONDUCTED EMISSION TEST

FCC Parts 15.107(a) and 15.207 Conducted Emission Limits

Frequency Range	Limit Value	es (dBµV)				
(MHz)	Quasi-peak (QP) Average (AV)					
0.15 - 0.5	66 – 56 *	56 – 46 *				
0.5 - 5.0	56	46				
5.0 - 30.0	60	50				
* Decreasing linearly with the logarithm of the frequency						

FCC Parts 15.107(a) and 15.207 Conducted Emission Test Instrumentation

Instrument	Model	S/No	Cal Due Date
Agilent EMC Analyzer-SA7	E7403A	US41160167	20 May 2009
EMCO LISN	3825/2	9309-2127	03 Jul 2009

CONDUCTED EMISSION TEST

FCC Parts 15.107(a) and 15.207 Conducted Emission Test Setup

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu H$ EUT LISN, connected to filtered mains.
- The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipment were powered separately from another LISN.

FCC Parts 15.107(a) and 15.207 Conducted Emission Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A scan was made on the NEUTRAL line over the required frequency range using an EMI test receiver.
- High peaks, relative to the limit line, were then selected.
- The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10kHz. Both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line.

Sample Calculation Example

At 20 MHz

Q-P limit (Class B) = 1000 μ V = 60.0 dB μ V

Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.2 dB

Q-P reading obtained directly from EMI Receiver = 40.0 dBμV

(Calibrated for system losses)

Therefore, Q-P margin = 40.0 - 60.0 = -20.0

i.e. 20.0 dB below Q-P limit

CONDUCTED EMISSION TEST

Conducted Emissions Test Setup (Front View)

Conducted Emissions Test Setup (Rear View)

CONDUCTED EMISSION TEST

FCC Parts 15.107(a) and 15.207 Conducted Emission Results

Test Input Power	110V 60Hz (via AC/DC adaptor)	Temperature	24°C
Line Under Test	AC Mains	Relative Humidity	52%
		Atmospheric Pressure	1030mbar
		Tested By	Andy Yap

Frequency (MHz)	Q-P Value (dBμV)	Q-P Margin (dB)	AV Value (dBμV)	AV Margin (dB)	Line	Channel
0.2887	26.7	-33.9	18.8	-31.8	Neutral	39
0.5747	27.3	-28.7	20.6	-25.4	Live	39
0.6072	33.5	-22.5	21.8	-24.2	Neutral	39
0.6525	24.9	-31.1	17.0	-29.0	Neutral	39
1.0098	24.4	-31.6	16.1	-29.9	Live	39
1.2938	22.2	-33.8	15.3	-30.7	Live	39

<u>Notes</u>

- All possible modes of operation were investigated from 150kHz to 30MHz. Only the worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings: 9kHz - 30MHz
 - RBW: 10kHz VBW: 30kHz
- 4. Conducted Emissions Measurement Uncertainty
 All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2, in the range 9kHz 30MHz is ±3.0dB.

RADIATED EMISSION TEST

FCC Part 15.205 Restricted Bands

N	ЛH	2	ľ	ИΗ	Z		МН	Z	G	Hz
0.090	-	0.110	16.42	-	16.423	399.9	-	410	4.5	- 5.15
0.495	-	0.505	16.69475	-	16.69525	608	-	614	5.35	- 5.46
2.1735	-	2.1905	16.80425	-	16.80475	960	-	1240	7.25	- 7.75
4.125	-	4.128	25.5	-	25.67	1300	-	1427	8.025	- 8.5
4.17725	-	4.17775	37.5	-	38.25	1435	-	1626.5	9.0	- 9.2
4.20725	-	4.20775	73	-	74.6	1645.5	-	1646.5	9.3	- 9.5
6.215	-	6.218	74.8	-	75.2	1660	-	1710	10.6	- 12.7
6.26775	-	6.26825	108	-	121.94	1718.8	-	1722.2	13.25	- 13.4
6.31175	-	6.31225	123	-	138	2200	-	2300	14.47	- 14.5
8.291	-	8.294	149.9	-	150.05	2310	-	2390	15.35	- 16.2
8.362	-	8.366	156.52475	-	156.52525	2483.5	-	2500	17.7	- 21.4
8.37625	-	8.38675	156.7	-	156.9	2690	-	2900	22.01	- 23.12
8.41425	-	8.41475	162.0125	-	167.17	3260	-	3267	23.6	- 24.0
12.29	-	12.293	167.72	-	173.2	3332	-	3339	31.2	- 31.8
12.51975	-	12.52025	240	-	285	3345.8	-	3358	36.43	- 36.5
12.57675	-	12.57725	322	-	335.4	3600	-	4400	Abov	e 38.6
13.36	-	13.41								

FCC Parts 15.109(a) and 15.209 Radiated Emission Limits

Frequency Range (MHz)	Quasi-Peak Limit Values (dBµV/m) @ 3m			
30 - 88	40.0			
88 - 216	43.5			
216 - 960	46.0			
Above 960	54.0*			
* Above 1GHz, average detector was used. A peak limit of 20dB above the average limit does apply.				

FCC Parts 15.109(a) and 15.209 Radiated Emission Test Instrumentation

Instrument	Model	S/No	Cal Due Date
R&S Test Receiver (20Hz-26.5GHz) –	ESMI	829214/005	21 Nov 2008
ESMI3		829550/004	
MITEQ Preamplifier (0.1-26.5GHz) – PA4	NSP2650-N	604879	26 Jan 2009
Schaffner Preamplifier (9kHz-2GHz) – PA19	CPA9231A	18763	11 Jan 2009
Schaffner Bilog Antenna –BL	CBL6112D	22020	19 May 2009
EMCO Horn Antenna – H14	3115	0003-6087	14 May 2009
Mirco-Tronics 2.4GHz Bandstop Filter	BRM50701	042	13 Aug 2008

RADIATED EMISSION TEST

FCC Parts 15.109(a) and 15.209 Radiated Emission Test Setup

- The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

FCC Parts 15.109(a) and 15.209 Radiated Emission Test Method

- The EUT was switched on and allowed to warm up to its normal operating condition.
- A prescan was carried out to pick the worst emission frequencies from the EUT. For EUT which
 is a portable device, the prescan was carried out by rotating the EUT through three orthogonal
 axes to determine which altitude and equipment arrangement produces such emissions.
- axes to determine which altitude and equipment arrangement produces such emissions.
 The test was carried out at the selected frequency points obtained from the prescan in step 2. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner:
 - a. Vertical or horizontal polarisation (whichever gave the higher emission level over a full rotation of the EUT) was chosen.
 - b. The EUT was then rotated to the direction that gave the maximum emission.
 - c. Finally, the antenna height was adjusted to the height that gave the maximum emission.
- 4. A Quasi-peak measurement was made for that frequency point if it was less than or equal to 1GHz. For frequency point that above 1GHz, both Peak and Average measurements were carried out.
- 5. Steps 3 and 4 were repeated for the next frequency point, until all selected frequency points were measured.
- 6. The frequency range covered was from 30MHz to 10th harmonics of the EUT fundamental frequency, using the Bi-log antenna for frequencies from 30MHz up to 1GHz, and the Horn antenna above 1GHz.

Sample Calculation Example

At 300 MHz

Q-P limit (Class B) = 200 μ V/m = 46.0 dB μ V/m

Log-periodic antenna factor & cable loss at 300 MHz = 18.5 dB

Q-P reading obtained directly from EMI Receiver = 40.0 dBuV/m

(Calibrated level including antenna factors & cable losses)

Therefore, Q-P margin = 40.0 - 46.0 = -6.0

i.e. 6 dB below Q-P limit

RADIATED EMISSION TEST

Radiated Emissions Test Setup (Front View)

Radiated Emissions Test Setup (Rear View)

RADIATED EMISSION TEST

FCC Parts 15.109(a), 15.205 and 15.209 Radiated Emission Results

Test Input Power	110V 60Hz (via AC/DC adaptor)	Temperature	24°C
Test Distance	3m	Relative Humidity	52%
		Atmospheric Pressure	1030mbar
		Tested By	Chang Wai Kit

Spurious Emissions ranging from 30MHz – 1GHz

Frequency (MHz)	Q-P Value (dBμV/m)	Q-P Margin (dB)	Azimuth (Degrees)	Height (cm)	Polarisation (H/V)	Channel
49.2999	28.9	-11.1	161	100	V	0
66.8860	28.1	-11.9	143	153	V	0
191.9930	25.4	-18.1	8	151	Н	0
223.9960	29.6	-16.4	224	100	V	0
255.9900	31.4	-14.6	315	100	V	0
308.3900	22.5	-23.5	212	100	V	0

Spurious Emissions above 1GHz

Frequency (GHz)	Peak Value (dB _µ V/m)	Average Value (dBμV/m)	Average Margin (dB)	Azimuth (Degrees)	Height (cm)	Pol (H/V)	Channel
1.6044	58.8	48.6	-5.4	121	100	Н	0
1.6280	57.5	47.3	-6.7	145	100	V	39
1.6550	57.5	47.3	-6.7	211	100	V	79
4.8100	50.5	40.3	-13.7	143	100	٧	0
4.8860	47.7	37.5	-16.5	153	100	Н	39
4.9660	49.6	39.4	-14.6	167	100	V	79

<u>Notes</u>

- All possible modes of operation were investigated. Only the worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
- Quasi-peak measurement was used for frequency measurement up to 1GHz. Average and peak measurements were used for emissions above 1GHz. The average measurement was done by averaging over a complete cycle of the pulse train, including the blanking interval as the pulse train duration does not exceed 0.1 second.
- 3. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 4. EMI receiver Resolution Bandwidth (RBW) and Video Bandwidth (VBW) settings:

30MHz - 1GHz

RBW: 120kHz VBW: 1MHz

>1GHz

RBW: 1MHz VBW: 1MHz

RADIATED EMISSION TEST

Notes (continued)

- 5. The upper frequency of radiated emission investigations was according to requirements stated in Section 15.33(a) for intentional radiators & Section 15.33(b) for unintentional radiators.
- 6. The channel in the table refers to the transmit channel of the EUT.
- 7. Radiated Emissions Measurement Uncertainty
 All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95%, with a coverage factor of 2, in the range 30MHz 25GHz is ±4.6dB.

CARRIER FREQUENCY SEPARATION TEST

FCC Part 15.247(a)(1) Carrier Frequency Separation Limits

The EUT shows compliance to the requirements of this section, which states the adjacent carrier frequencies must be separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, the EUT may have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW (21dBm).

FCC Part 15.247(a)(1) Carrier Frequency Separation Test Instrumentation

Instrument	Model	S/No	Cal Due Date
HP Spectrum Analyser – SA10	8564E	3846A01433	06 Apr 2008

FCC Part 15.247(a)(1) Carrier Frequency Separation Test Setup

- The EUT and supporting equipment were set up as shown in the setup photo.
- The power supply for the EUT was connected to a filtered mains.
- The RF antenna connector was connected to the spectrum analyser via a low-loss coaxial cable.
- The resolution bandwidth (RBW) and the video bandwidth (VBW) of the spectrum analyser were respectively set to 100kHz and 100kHz.
- 5. All other supporting equipment were powered separately from another filtered mains.

FCC Part 15.247(a)(1) Carrier Frequency Separation Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode with frequency hopping sequence on.
- 2. The start and stop frequencies of the spectrum analyser were set to 2.401GHz and 2.404GHz.
- 3. The spectrum analyser was set to max hold to capture the two adjacent transmitting frequencies within the span. The signal capturing was continuous until no further signals were detected.
- 4. The carrier frequency separation of the two adjacent transmitting / operating frequency was measured by finding the carrier frequency difference between the two adjacent channels.
- 5. The steps 2 to 4 were repeated with the following start and stop frequencies settings:
 - a. 2.439GHz to 2.442GHz
 - b. 2.440GHz to 2.443GHz
 - c. 2.478GHz to 2.481GHz

CARRIER FREQUENCY SEPARATION TEST

Carrier Frequency Separation Test Setup

CARRIER FREQUENCY SEPARATION TEST

FCC Part 15.247(a)(1) Carrier Frequency Separation Results

Test Input Power	110V 60Hz (via AC/DC adaptor)	Temperature	24°C
Attached Plots	1 - 3	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Foo Kai Maun

Adjacent Channels	Channel Separation (MHz)
0 and 1 (2.402GHz and 2.403GHz)	1.025
38 and 39 (2.440GHz and 2.441GHz)	1.017
77 and 78 (2.480GHz and 2.481GHz)	1.013

CARRIER FREQUENCY SEPARATION TEST

Carrier Frequency Separation Plots

Plot 1 - Channels 0 and 1 Separation

Plot 2 - Channels 38 and 39 Separation

CARRIER FREQUENCY SEPARATION TEST

Carrier Frequency Separation Plots

Plot 3 - Channels 77 and 78 Separation

SPECTRUM BANDWIDTH (20dB BANDWIDTH MEASUREMENT) TEST

FCC Part 15.247(a)(1) Spectrum Bandwidth (20dB Bandwidth Measurement) Limits

The EUT shows compliance to the requirements of this section, which states that the 20dB bandwidth of the hopping channel shall be the channel frequency separation by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

FCC Part 15.247(a)(1) Spectrum Bandwidth (20dB Bandwidth Measurement) Test Instrumentation

Instrument	Model	S/No	Cal Due Date
HP Spectrum Analyser – SA10	8564E	3846A01433	06 Apr 2008

FCC Part 15.247(a)(1) Spectrum Bandwidth (20dB Bandwidth Measurement) Test Setup

- 1. The EUT and supporting equipment were set up as shown in the setup photo.
- 2. The power supply for the EUT was connected to a filtered mains.
- The RF antenna connector was connected to the spectrum analyser via a low-loss coaxial cable.
- The resolution bandwidth (RBW) and the video bandwidth (VBW) of the spectrum analyser were respectively set to 10kHz and 30kHz.
- 5. All other supporting equipment were powered separately from another filtered mains.

FCC Part 15.247(a)(1) Spectrum Bandwidth (20dB Bandwidth Measurement) Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode, non-hopping with transmitting frequency at Channel 0 (2.402GHz).
- 2. The center frequency of the spectrum analyser was set to the transmitting frequency with the frequency span wide enough to capture the 20dB bandwidth of the transmitting frequency.
- 3. The spectrum analyser was set to max hold to capture the transmitting frequency. The signal capturing was continuous until no further changes were observed.
- 4. The peak of the transmitting frequency was detected with the marker peak function of the spectrum analyser. The frequencies below the 20dB peak frequency at lower (f_L) and upper (f_H) sides of the transmitting frequency were marked and measured by using the marker-delta function of the spectrum analyser.
- 5. The 20dB bandwidth of the transmitting frequency is the frequency difference between the marked lower and upper frequencies, $|f_H f_L|$.
- 6. The steps 2 to 5 were repeated with the transmitting frequency was set to Channel 39 (2.441GHz) and Channel 78 (2.480GHz) respectively.

SPECTRUM BANDWIDTH (20dB BANDWIDTH MEASUREMENT) TEST

Spectrum Bandwidth (20dB Bandwidth Measurement) Test Setup

SPECTRUM BANDWIDTH (20dB BANDWIDTH MEASUREMENT) TEST

FCC Part 15.247(a)(1) Spectrum Bandwidth (20dB Bandwidth Measurement) Results

Test Input Power	110V 60Hz (via AC/DC adaptor)	Temperature	24°C
Attached Plots	4 - 6	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Foo Kai Maun

Channel	Channel Frequency (GHz)	20dB Bandwidth (MHz)
0	2.402	0.950
39	2.441	0.960
78	2.480	0.935

SPECTRUM BANDWIDTH (20dB BANDWIDTH MEASUREMENT) TEST

Spectrum Bandwidth (20dB Bandwidth Measurement) Plots

Plot 4 - Channel 0

Plot 5 - Channel 39

SPECTRUM BANDWIDTH (20dB BANDWIDTH MEASUREMENT) TEST

Spectrum Bandwidth (20dB Bandwidth Measurement) Plots

Plot 6 - Channel 78

NUMBER OF HOPPING FREQUENCIES TEST

FCC Part 15.247(a)(1)(iii) Number of Hopping Frequencies Limits

The EUT shows compliance to the requirements of this section, which states the EUT shall use at least 15 channels.

FCC Part 15.247(a)(1)(iii) Number of Hopping Frequencies Test Instrumentation

Instrument	Model	S/No	Cal Due Date
HP Spectrum Analyser – SA10	8564E	3846A01433	06 Apr 2008

FCC Part 15.247(a)(1)(iii) Number of Hopping Frequencies Test Setup

- 1. The EUT and supporting equipment were set up as shown in the setup photo.
- 2. The power supply for the EUT was connected to a filtered mains.
- The RF antenna connector was connected to the spectrum analyser via a low-loss coaxial cable.
- The resolution bandwidth (RBW) and the video bandwidth (VBW) of the spectrum analyser were respectively set to 300kHz and 1MHz.
- 5. All other supporting equipment were powered separately from another filtered mains.

FCC Part 15.247(a)(1)(iii) Number of Hopping Frequencies Test Method

- The EUT was switched on and allowed to warm up to its normal operating condition. The EUT
 was then configured to operate in the test mode with frequency hopping sequence on.
- 2. The start and stop frequencies of the spectrum analyser were set to 2.43700GHz and 2.42213GHz.
- 3. The spectrum analyser was set to max hold to capture all the transmitting frequencies within the span. The signal capturing was continuous until all the transmitting frequencies were captured and no further signals were detected.
- 4. The numbers of transmitting frequencies were counted and recorded.
- 5. The steps 2 to 4 were repeated with the following start and stop frequencies settings:
 - a. 2.42217GHz to 2.44100GHz
 - b. 2.44054GHz to 2.46100GHz
 - c. 2.46039GHz to 2.48350GHz
- 6. The total number of hopping frequencies is the sum of the number of the hopping frequencies found for each span.

NUMBER OF HOPPING FREQUENCIES TEST

Number of Hopping Frequencies Test Setup

NUMBER OF HOPPING FREQUENCIES TEST

FCC Part 15.247(a)(1)(iii) Number of Hopping Frequencies Results

Test Input Power	110V 60Hz (via AC/DC adaptor)	Temperature	24°C
Attached Plots	7 - 10	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Foo Kai Maun

The EUT was found to have 79 hopping frequencies. Please refer to the attached plots.

NUMBER OF HOPPING FREQUENCIES TEST

Number Of Hopping Frequencies Plots

Plot 7 - Channels 0 to 19

Plot 8 - Channels 20 to 38

NUMBER OF HOPPING FREQUENCIES TEST

Number Of Hopping Frequencies Plots

Plot 9 - Channels 39 to 58

Plot 10 - Channels 59 to 78

AVERAGE FREQUENCY DWELL TIME TEST

FCC Part 15.247(a)(1)(iii) Average Frequency Dwell Time Limits

The EUT shows compliance to the requirements of this section, which states the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

FCC Part 15.247(a)(1)(iii) Average Frequency Dwell Time Test Instrumentation

Instrument	Model	S/No	Cal Due Date
HP Spectrum Analyser – SA10	8564E	3846A01433	06 Apr 2008

FCC Part 15.247(a)(1)(iii) Average Frequency Dwell Test Setup

- 1. The EUT and supporting equipment were set up as shown in the setup photo.
- 2. The power supply for the EUT was connected to a filtered mains.
- The RF antenna connector was connected to the spectrum analyser via a low-loss coaxial cable.
- 4. The resolution bandwidth (RBW) and the video bandwidth (VBW) of the spectrum analyser were respectively set to 1MHz and 3MHz.
- 5. All other supporting equipment were powered separately from another filtered mains.

FCC Part 15.247(a)(1)(iii) Average Frequency Dwell Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode with frequency hopping sequence on.
- 2. The center frequency of the spectrum analyser was set to 2.402GHz with zero frequency span (spectrum analyser acts as an oscilloscope).
- 3. The sweep time of the spectrum analyser was adjusted until a stable signal can be seen on the spectrum analyser.
- 4. The duration (dwell time) of a packet was measured using the marker-delta function of the spectrum analyser. The average dwell time of the transmitting frequency was computed based on general expression as shown below:
 - Average Frequency Dwell Time = [measured time slot length x hopping rate / number of hopping channels] x [0.4 x number of hopping channels]
- 5. The steps 2 to 4 were repeated with the center frequency of the spectrum analyser were set to 2.441GHz and 2.480GHz respectively.

AVERAGE FREQUENCY DWELL TIME TEST

Average Frequency Dwell Time Test Setup

AVERAGE FREQUENCY DWELL TIME TEST

FCC Part 15.247(a)(1)(iii) Average Frequency Dwell Time Results

Test Input Power	110V 60Hz (via AC/DC adaptor)	Temperature	24°C
Attached Plots	11 - 13	Relative Humidity	60%
Hopping Rate	1600 hops / s	Atmospheric Pressure	1030mbar
Number of Hopping Channels	79 channels	Tested By	Foo Kai Maun

Channel	Channel Frequency (GHz)	Average Frequency Dwell Time (s)	Average Occupancy Limit (s)
0	2.402	0.2011	0.4
39	2.441	0.2000	0.4
78	2.480	0.2011	0.4

Notes

- The EUT operates based on 1-slot transmission and 1-slot reception basis. As such, there are [
 1600 hops / s / (1 + 1)] transmissions per second and the time occupancy per channel is [
 measured time slot length / 2].
- 2. Average Frequency Dwell Time = [measured time slot length / 2 x hopping rate / 2 / number of hopping channels] x [0.4 x number of hopping channels]

AVERAGE FREQUENCY DWELL TIME TEST

Average Frequency Dwell Time Plots

Plot 11 - Channel 0

Plot 12 - Channel 39

AVERAGE FREQUENCY DWELL TIME TEST

Average Frequency Dwell Time Plots

Plot 13 - Channel 78

MAXIMUM PEAK POWER TEST

FCC Part 15.247(b)(1) Maximum Peak Power Limits

The EUT shows compliance to the requirements of this section, which states the EUT employing at least 75 non-overlapping hopping channels shall not exceed 1W (30dBm). For the EUT employs other frequency hopping systems, the peak power shall not greater than 0.125W (21dBm).

FCC Part 15.247(b)(1) Maximum Peak Power Test Instrumentation

Instrument	Model	S/No	Cal Due Date
R&S Universal Radio Communication Tester	CMU 200	837587/068	14 Aug 2008

FCC Part 15.247(b)(1) Maximum Peak Power Test Setup

- 1. The EUT and supporting equipment were set up as shown in the setup photo.
- 2. The power supply for the EUT was connected to a filtered mains.
- 3. The RF antenna connector was connected to the Universal Radio Communication Tester, which set into power analyser mode via a low-loss coaxial cable.
- 4. All other supporting equipment were powered separately from another filtered mains.

FCC Part 15.247(b)(1) Maximum Peak Power Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode, non-hopping with transmitting frequency at Channel 0 (2.402GHz).
- The maximum peak power of the transmitting frequency was detected and recorded.
- 3. The Equivalent Isotropic Radiated Power (EIRP) of the EUT was computed by adding its antenna gain to the measured maximum peak power.
- 4. The steps 2 to 3 were repeated with the transmitting frequency was set to Channel 39 (2.441GHz) and Channel 78 (2.480GHz) respectively.

MAXIMUM PEAK POWER TEST

Maximum Peak Power Test Setup

MAXIMUM PEAK POWER TEST

FCC Part 15.247(b)(1) Maximum Peak Power Results

Test Input Power	110V 60Hz (via AC/DC adaptor)	Temperature	24°C
Antenna Gain	0.0 dBi	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Foo Kai Maun

Channel	Channel Frequency (GHz)	Maximum Peak Power (W)	Maximum EIRP (W)	Limit (W)
0	2.402	0.0021	0.0008	1.0
39	2.441	0.0021	0.0007	1.0
78	2.480	0.0020	0.0005	1.0

Notes

1. Power analyser of Universal Radio Communication Tester was used for power measurement with peak detection as mode of measurement. The power analyser mode supports a wideband power measurement ranging from 100kHz to 2700MHz.

RF CONDUCTED SPURIOUS EMISSIONS TEST

FCC Part 15.247(d) RF Conducted Spurious Emissions Limits

The EUT shows compliance to the requirements of this section, which states in any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator (EUT) is operating, the radio frequency power that is produced by the EUT shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

FCC Part 15.247(d) RF Conducted Spurious Test Instrumentation

Instrument	Model	S/No	Cal Due Date
HP Spectrum Analyser – SA10	8564E	3846A01433	06 Apr 2008

FCC Part 15.247(d) RF Conducted Spurious Emissions Test Setup

- 1. The EUT and supporting equipment were set up as shown in the setup photo.
- The power supply for the EUT was connected to a filtered mains.
- The RF antenna connector was connected to the spectrum analyser via a low-loss coaxial cable.
- The resolution bandwidth (RBW) and the video bandwidth (VBW) of the spectrum analyser were respectively set to 100kHz and 300kHz.
- 5. All other supporting equipment were powered separately from another filtered mains.

FCC Part 15.247(d) RF Conducted Spurious Emissions Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode, non-hopping with transmitting frequency at Channel 0 (2.402GHz).
- The start and stop frequencies of the spectrum analyser were set to 30MHz and 10GHz.
- 3. The spectrum analyser was set to max hold to capture any spurious emissions within the span. The signal capturing was continuous until no further spurious emissions were detected.
- 4. The steps 2 to 3 were repeated with frequency span was set from 10GHz to 25GHz.
- 5. The steps 2 to 4 were repeated with the transmitting frequency was set to Channel 39 (2.441GHz) and Channel 78 (2.480GHz) respectively.

RF CONDUCTED SPURIOUS EMISSIONS TEST

RF Conducted Spurious Emissions Test Setup

RF CONDUCTED SPURIOUS EMISSIONS TEST

FCC Part 15.247(d) RF Conducted Spurious Emissions Results

Test Input Power	110V 60Hz (via AC/DC adaptor)	Temperature	24°C
Attached Plots	14 - 19	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Foo Kai Maun

All spurious signals found were below the specified limit. Please refer to the attached plots.

RF CONDUCTED SPURIOUS EMISSIONS TEST

RF Conducted Spurious Emissions Plots

Plot 14 - Channel 0

Plot 15 - Channel 0

RF CONDUCTED SPURIOUS EMISSIONS TEST

RF Conducted Spurious Emissions Plots

Plot 16 - Channel 39

Plot 17 - Channel 39

RF CONDUCTED SPURIOUS EMISSIONS TEST

RF Conducted Spurious Emissions Plots

Plot 18 - Channel 78

Plot 19 - Channel 78

BAND EDGE COMPLIANCE (CONDUCTED) TEST

FCC Part 15.247(d) Band Edge Compliance (Conducted) Limits

The EUT shows compliance to the requirements of this section, which states in any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator (EUT) is operating, the radio frequency power that is produced by the EUT shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

FCC Part 15.247(d) Band Edge Compliance (Conducted) Test Instrumentation

Instrument	Model	S/No	Cal Due Date
HP Spectrum Analyser – SA10	8564E	3846A01433	06 Apr 2008

FCC Part 15.247(d) Band Edge Compliance (Conducted) Test Setup

- 1. The EUT and supporting equipment were set up as shown in the setup photo.
- The power supply for the EUT was connected to a filtered mains.
- The RF antenna connector was connected to the spectrum analyser via a low-loss coaxial cable.
- The resolution bandwidth (RBW) and the video bandwidth (VBW) of the spectrum analyser were respectively set to 100kHz and 300kHz.
- 5. All other supporting equipment were powered separately from another filtered mains.

FCC Part 15.247(d) Band Edge Compliance (Conducted) Test Method

- The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode with frequency hopping sequence on.
- 2. The frequency span of the spectrum analyser was set to wide enough to capture the lower band edge of the transmission band, 2.400GHz and any spurious emissions at the band edge.
- 3. The spectrum analyser was set to max hold to capture any spurious emissions within the span. The signal capturing was continuous until no further spurious emissions were detected.
- 4. The steps 2 to 3 were repeated with the frequency span of the spectrum analyser was set to wide enough to capture the upper band edge frequency of the transmission band, 2.4835GHz and the any spurious emissions at the band-edge.

BAND EDGE COMPLIANCE (CONDUCTED) TEST

Band Edge Compliance (Conducted) Test Setup

BAND EDGE COMPLIANCE (CONDUCTED) TEST

FCC Part 15.247(d) Band Edge Compliance (Conducted) Results

Test Input Power	110V 60Hz (via AC/DC adaptor)	Temperature	24°C
Attached Plots	20 - 21	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Foo Kai Maun

No significant signal was found and they were below the specified limit.

BAND EDGE COMPLIANCE (CONDUCTED) TEST

Band Edge Compliance (Conducted) Plots

Plot 21 - Lower Band Edge at 2.4000GHz

Plot 22 - Upper Band Edge at 2.4835GHz

BAND EDGE COMPLIANCE (RADIATED) TEST

FCC Part 15.247(d) Band Edge Compliance (Radiated) Limits

The EUT shows compliance to the requirements of this section, which states in any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator (EUT) is operating, the radio frequency power that is produced by the EUT shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power. In addition, radiated emissions which fall in the restricted bands shall comply to the radiated emission limits specified in 15.209.

FCC Part 15.247(d) Band Edge Compliance (Radiated) Test Instrumentation

Instrument	Model	S/No	Cal Due Date
R&S Test Receiver (20Hz-26.5GHz) –	ESMI	829214/005	21 Nov 2008
ESMI3		829550/004	
MITEQ Preamplifier (0.1-26.5GHz) – PA4	NSP2650-N	604879	26 Jan 2009
Schaffner Preamplifier (9kHz-2GHz) – PA19	CPA9231A	18763	11 Jan 2009
Schaffner Bilog Antenna –BL	CBL6112D	22020	19 May 2009
EMCO Horn Antenna – H14	3115	0003-6087	14 May 2009

FCC Part 15.247(d) Band Edge Compliance (Radiated) Test Setup

- 1. The EUT and supporting equipment were set up as shown in the setup photo.
- 2. The power supply for the EUT was connected to a filtered mains.
- The resolution bandwidth (RBW) and the video bandwidth (VBW) of the spectrum analyser were respectively set to 100kHz and 300kHz to show compliance of spurious at band edges are at least 20dB below the carriers. For restricted band spurious at band edges, peak and average measurement plots were taken using the following setting:
 - a. Peak Plot:
 - RBW = VBW = 1MHz
 - b. Average Plot
 - RBW = 1MHz, VBW = 10Hz
- 4. All other supporting equipment were powered separately from another filtered mains.

FCC Part 15.247(d) Band Edge Compliance (Radiated) Test Method

- The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode with frequency hopping sequence on.
- 2. The frequency span of the spectrum analyser was set to wide enough to capture the lower band edge of the transmission band, 2.400GHz and any spurious emissions at the band edge.
- 3. The spectrum analyser was set to max hold to capture any spurious emissions within the span. The signal capturing was continuous until no further spurious emissions were detected.
- 4. The steps 2 to 3 were repeated with the frequency span of the spectrum analyser was set to wide enough to capture the upper band edge frequency of the transmission band, 2.4835GHz and the any spurious emissions at the band-edge.

BAND EDGE COMPLIANCE (RADIATED) TEST

Band Edge Compliance (Radiated) Test Setup

BAND EDGE COMPLIANCE (RADIATED) TEST

FCC Part 15.247(d) Band Edge Compliance (Radiated) Results

Test Input Power	110V 60Hz (via AC/DC adaptor)	Temperature	24°C
Attached Plots	22 - 27	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Foo Kai Maun

No significant signal was found and they were below the specified limit.

BAND EDGE COMPLIANCE (RADIATED) TEST

Band Edge Compliance (Radiated) Plots (20dB Delta from Carrier at Band Edge)

Plot 22 - Lower Band Edge at 2.4000GHz

Plot 23 - Upper Band Edge at 2.4835GHz

BAND EDGE COMPLIANCE (RADIATED) TEST

Band Edge Compliance (Radiated) Plots (Restricted Band)

Plot 24 - Peak Plot at Lower Band Edge at 2.4000GHz

Plot 25 - Average Plot at Lower Band Edge at 2.4000GHz

BAND EDGE COMPLIANCE (RADIATED) TEST

Band Edge Compliance (Radiated) Plots (Restricted Band)

Plot 26 - Peak Plot at Upper Band Edge at 2.4835GHz

Plot 27 – Average Plot at Upper Band Edge at 2.4835GHz

PEAK POWER SPECTRAL DENSITY TEST

FCC Part 15.247(e) Peak Power Spectral Density Limits

The EUT shows compliance to the requirements of this section, which states the peak power spectral density conducted from the intentional radiator (EUT) to the antenna shall not be greater than 8dBm (6.3mW) in any 3kHz band during any time interval of continuous transmission.

FCC Part 15.247(e) Peak Power Spectral Density Test Instrumentation

Instrument	Model	S/No	Cal Due Date
HP Spectrum Analyser – SA10	8564E	3846A01433	06 Apr 2008

FCC Part 15.247(e) Peak Power Spectral Density Test Setup

- 1. The EUT and supporting equipment were set up as shown in the setup photo.
- 2. The power supply for the EUT was connected to a filtered mains.
- 3. The RF antenna connector was connected to the spectrum via a low-loss coaxial cable.
- The resolution bandwidth (RBW) and the video bandwidth (VBW) of the spectrum analyser were respectively set to 3kHz and 10kHz.
- 5. All other supporting equipment were powered separately from another filtered mains.

FCC Part 15.247(e) Peak Power Spectral Density Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition. The EUT was then configured to operate in the test mode, non-hopping with transmitting frequency at Channel 0 (2.402GHz).
- The sweep time of the spectrum analyser was set to the value of the ratio of the frequency span divided by the RBW.
- The peak power density of the transmitting frequency was detected and recorded.
- 4. The step 3 was repeated with the transmitting frequency was set to Channel 39 (2.441GHz) and Channel 78 (2.480GHz) respectively.

PEAK POWER SPECTRAL DENSITY TEST

Peak Power Spectral Density Test Setup

PEAK POWER SPECTRAL DENSITY TEST

FCC Part 15.247(e) Peak Power Spectral Density Results

Test Input Power	110V 60Hz (via AC/DC adaptor)	Temperature	24°C
Attached Plots	28 - 30	Relative Humidity	60%
		Atmospheric Pressure	1030mbar
		Tested By	Foo Kai Maun

Channel	Channel Frequency (GHz)	Peak Power Spectral Density (mW)	Limit (mW)
0	2.402	0.1648	6.3
39	2.441	0.1358	6.3
78	2.480	0.0857	6.3

PEAK POWER SPECTRAL DENSITY TEST

Peak Power Spectral Density Plots

Plot 28 - Channel 0

Plot 29 - Channel 39

PEAK POWER SPECTRAL DENSITY TEST

Peak Power Spectral Density Plots

Plot 30 - Channel 78

MAXIMUM PERMISSIBLE EXPOSURE (MPE) TEST

FCC Part 1.1310 Maximum Permissible Exposure (MPE) Limits

The EUT shows compliance to the requirements of this section, which states the MPE limits for general population / uncontrolled exposure are as shown below:

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time (min)
0.3 - 1.34	614	1.63	100 Note 2	30
1.34 - 30	824 / f	2.19 / f	180 / f ^{2 Note 2}	30
30 - 300	27.5	0.073	0.2	30
300 - 1500	-	-	f / 1500	30
1500 - 100000	-	-	1.0	30
Notes				
1. f = frequency in MHz				
2. Plane wave equivalent power density				

The minimum safe distance between the EUT and field probe was computed from the following formula:

√ [(30GP) / 377S] Power density, 10W/m² where

P 0.0021W =

d G

Minimum safety distance, m Numerical isotropic gain, 1.0 (0.0dBi)

Substituting the relevant parameters into the formula:

√ [(30GP) / 377S] ď =

0.0041m

0.41cm

.. The distance between users and the EUT shall be maintained at a minimum distance of 0.41cm during normal operation in order to ensure RF exposure to the users is within the allowable safety margin.

DUTY CYCLE FACTOR COMPUTATION

FCC Part 15.35(c) Duty Cycle Correction Factor

Duty Cycle Factor (worst- case)

= 20 log [Total On time / Period]

= 20 log [(0.3900 / 1.25)]

= -10.2dB

This Report is issued under the following conditions:

- Results of the testing/calibration in the form of a report will be issued immediately after the service has been completed or terminated.
- 2. Unless otherwise requested, a report shall contain only technical results. Analysis and interpretation of the results and professional opinion and recommendations expressed thereupon, if required, shall be clearly indicated and additional fee paid for, by the Client.
- 3. This report applies to the sample of the specific product/equipment given at the time of its testing/calibration. The results are not used to indicate or imply that they are applicable to other similar items. In addition, such results must not be used to indicate or imply that TÜV SÜD PSB approves, recommends or endorses the manufacturer, supplier or user of such product/equipment, or that TÜV SÜD PSB in any way "quarantees" the later performance of the product/equipment.
- 4. The sample/s mentioned in this report is/are submitted/supplied/manufactured by the Client. TÜV SÜD PSB therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture, consignment or any information supplied.
- Additional copies of the report are available to the Client at an additional fee. No third party can obtain a copy of this report through TÜV SÜD PSB, unless the Client has authorised TÜV SÜD PSB in writing to do so.
- 6. TÜV SÜD PSB may at its sole discretion add to or amend the conditions of the report at the time of issue of the report and such report and such additions or amendments shall be binding on the Client.
- 7. All copyright in the report shall remain with TÜV SÜD PSB and the Client shall, upon payment of TÜV SÜD PSB's fees for the carrying out of the tests/calibrations, be granted a license to use or publish the report to the third parties subject to the terms and conditions herein, provided always that TÜV SÜD PSB may at its absolute discretion be entitled to impose such conditions on the license as it sees fit.
- 8. Nothing in this report shall be interpreted to mean that TÜV SÜD PSB has verified or ascertained any endorsement or marks from any other testing authority or bodies that may be found on that sample.
- 9. This report shall not be reproduced wholly or in parts and no reference shall be made by the Client to TÜV SÜD PSB or to the report or results furnished by TÜV SÜD PSB in any advertisements or sales promotion.
- 10. Unless otherwise stated, the tests are carried out in TÜV SÜD PSB Pte Ltd, No.1 Science Park Drive Singapore 118221.

January 2008

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

ANNEX A EUT PHOTOGRAPHS / DIAGRAMS

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

EUT PHOTOGRAPHS

Antenna Connector type

Front View

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

EUT PHOTOGRAPHS

Antenna Connector type

Rear View

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

EUT PHOTOGRAPHS

Antenna Chip type

Front View

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

EUT PHOTOGRAPHS

Antenna Chip type

Rear View

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

EUT PHOTOGRAPHS

Antenna pad type

Front View

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

EUT PHOTOGRAPHS

Antenna pad type

Rear View

EUT PHOTOGRAPHS / DIAGRAMS

ANNEX A

EUT PHOTOGRAPHS

Internal View - Shield Removed

FCC LABEL & POSITION

ANNEX B

ANNEX B FCC LABEL & POSITION

FCC LABEL & POSITION

ANNEX B

Labelling requirements per Section 2.925 & 15.19

The label shown will be permanently affixed at a conspicuous location on the device and be readily visible to the user at the time of purchase.

Physical Location of FCC Label on EUT

USER MANUAL TECHINCAL DESCRIPTION BLOCK & CIRCUIT DIAGRAMS

ANNEX C

ANNEX C

USER MANUAL TECHNICAL DESCRIPTION BLOCK & CIRCUIT DIAGRAMS

(Please refer to manufacturer for details)

A7 Engineering, Inc.
Bluetooth Module [Model : eb101]
 [FCC ID : WND-1000160]