Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

Ejercicio 3

Consigna

Sea k > 0. Hallar el valor de k para que la integral

$$\int_{1}^{+\infty} \left(\frac{x}{2x^2 + 2k} - \frac{k}{x+1} \right) dx$$

sea convergente y calcularla.

Resolución

Operemos un poco con la integral para simplificar la expresión:

$$\int_{1}^{+\infty} \left(\frac{x}{2x^{2} + 2k} - \frac{k}{x+1} \right) dx$$

$$=$$

$$\int_{1}^{+\infty} \left(\frac{x^{2} + x - 2kx^{2} - 2k^{2}}{2x^{3} + 2kx + 2x^{2} + 2k} \right) dx$$

$$=$$

$$\int_{1}^{+\infty} \left(\frac{(1 - 2k)x^{2} + x - 2k^{2}}{2x^{3} + 2kx + 2x^{2} + 2k} \right) dx$$

Observemos que 1-2k determina si la integral converge o no.

- Si 1-2k=0, entonces la impropia equivale a $\frac{1}{x^2}$, por lo que convergería Si $1-2k\neq 0$, entonces la impropia equivale a $\frac{1}{x}$, por lo que divergería

De esto concluimos que la integral impropia converge sii $k=\frac{1}{2}$.

Por lo tanto queremos trabajar con la siguiente integral:

$$\int_{1}^{+\infty} \left(\frac{x}{2x^2 + 1} - \frac{1}{2(x+1)} \right) dx$$

Entonces, tenemos dos primitivas que calcular, vamos paso a paso para cada una:

Primitiva #1

$$\begin{split} &\int \frac{x}{2x^2+1} dx \\ &= \\ &\frac{1}{2} \int \frac{2x}{2x^2+1} dx \\ &= &(\text{cambio de variable } u = x^2; du = 2x dx) \\ &\frac{1}{2} \int \frac{du}{2u+1} \\ &= &(*_1) \\ &\frac{1}{4} log(2u+1) \\ &= &(\text{deshaciendo cambio de variable}) \\ &\frac{1}{4} log(2x^2+1) \end{split}$$

Observación $(*_1)$: En este paso usamos la regla de la cadena con las siguientes funciones:

•
$$f(x) = log(x)$$

•
$$g(x) = 2u + 1$$

Entonces:
$$(f \circ g)' = \frac{1}{2u+1} \cdot 2 = \frac{2}{2u+1}$$
.

Esto es casi lo que buscabamos, pero multiplicado por dos. Fácilmente vemos que si consideramos la función

•
$$\frac{1}{2}\log(2u+1)$$

La regla de la cadena devuelve lo que estamos necesitando.

Primitiva #2

$$\int \frac{1}{2(x+1)} dx$$

$$= \frac{1}{2} \int \frac{1}{x+1} dx$$

$$= \frac{1}{2} \log(x+1)$$

Primitiva original

Entonces la primitiva que queríamos calcular queda de la siguiente forma:

$$\int \left(\frac{x}{2x^2+1} - \frac{1}{2(x+1)}\right) dx$$
=
$$\frac{1}{4} \log(2x^2+1) - \frac{1}{2} \log(x+1)$$
=
$$\frac{\log(2x^2+1) - 2\log(x+1)}{4}$$
=
$$\frac{\log(2x^2+1) - \log((x+1)^2)}{4}$$
=
$$\frac{1}{4} \log\left(\frac{2x^2+1}{(x+1)^2}\right)$$

Y ahora tendríamos que evaluarla en los extremos:

$$\frac{1}{4} \log \left(\frac{2x^2 + 1}{(x+1)^2} \right) \Big|_1^{+\infty}$$

$$= \frac{1}{4} \left(\lim_{x \to +\infty} \log \left(\frac{2x^2 + 1}{(x+1)^2} \right) - \log \left(\frac{3}{4} \right) \right)$$

$$= \frac{1}{4} \left(\lim_{x \to +\infty} \log \left(\frac{2x^2}{x^2} \right) - \log \left(\frac{3}{4} \right) \right)$$

$$= \frac{1}{4} \left(\log(2) - \log \left(\frac{3}{4} \right) \right)$$

$$= \frac{1}{4} \log \left(\frac{8}{3} \right)$$

Conclusión

La integral impropia $\int_1^{+\infty} \left(\frac{x}{2x^2+2k} - \frac{k}{x+1}\right) dx$ converge a $\frac{1}{4} \log \left(\frac{8}{3}\right)$ sii $k = \frac{1}{2}$. En cualquier otro caso la integral diverge.