Патутин Владимир Р3114

Вариант 143

Составим матрицы соединений R графа и расстояний D множества позиций.

Определим нижнюю границу целевой функции для этих исходных данных. Для этого упорядочим составляющие вектора r в невозрастающем порядке, а вектора d – в неубывающем.

$$r = \{4 \ 3 \ 2 \ 2 \ 0 \ 0\}$$

 $d = \{1 \ 1 \ 1 \ 2 \ 2 \ 3\}$
 $r d = 4 + 3 + 2 + 4 + 0 + 0 = 13$

Это значит, что для этих исходных данных значение целевой функции F(P) не может быть меньше 13.

1) Помещаем элемент e_1 в позицию p_1 . Т. к. размещен один элемент F(q) = 0. Неразмещенные элементы $\{e_2; e_3; e_4\}$, свободные позиции $\{p_2; p_3; p_4\}$.

Составим вектор, соответствующий первой строке матрицы R $r_1 = \{4\ 3\ 0\}$, и вектор, соответствующий первой строке матрицы D $d_1 = \{1\ 2\ 3\}$, суммарная длина соединений между размещенным и неразмещенными элементами

$$w(P) = r_1 * d_1 = 4 + 6 + 0 = 10$$

Для оценки v(P) вычеркнем из матриц R и D первые строку и столбец. Образуем вектора: $r = \{2\ 2\ 0\ \}$ и $d = \{1\ 1\ 2\}$, соответствующие верхним половинам усеченных матриц R и D.

Получим v(P) = r*d = 2 + 2 + 0=4.

Таким образом, нижняя граница F(P) = 0 + 4 + 10 = 14.

2) Помещаем элемент e_1 в позицию p_2 . Т. к. размещен один элемент F(q) = 0. Неразмещенные элементы $\{e_2; e_3; e_4\}$, свободные позиции $\{p_1; p_3; p_4\}$.

Составим вектор, соответствующий первой строке матрицы R $r_1 = \{4\ 3\ 0\}$, и вектор, соответствующий второй строке матрицы D $d_2 = \{1\ 1\ 2\}$, суммарная длина соединений между размещенным и неразмещенными элементами

$$w(P) = r_1 * d_2 = 3 + 4 + 0 = 7$$

Для оценки v(P) вычеркнем из матрицы R первые строку и столбец, а из матрицы D вторые строку и столбец. Образуем вектора: $r = \{2\ 2\ 0\}$ и $d = \{1\ 2\ 3\}$, соответствующие верхним половинам усеченных матриц R и D.

Получим v(P) = r*d = 4 + 2 + 0 = 6.

Таким образом, нижняя граница F(P) = 0 + 7 + 6 = 13.

Ввиду симметричности позиций (p1 и p4) и (p2 и p3) будут получены те же резуль-таты для симметричных позиций. Назначаем элемент e_1 на позицию p_2 .

3) Помещаем элемент e_2 в позицию p_1 . Размещены два элемента: e_1 в позиции p_2 и e_2 в позиции p_1 , $F(q) = r_{12}d_{21} = 0$.

Неразмещенные элементы $\{e3; e4\}$, свободные позиции $\{p3,p4\}$;

$$r_1 = \{4\ 3\}$$
 и $d_2 = \{1\ 2\}$, $r_1\ d_2 = 6 + 4 = 10$;
 $r_2 = \{2\ 0\}$ и $d_1 = \{2\ 3\}$, $r_2\ d_1 = 4 + 0 = 4$;
 $w(P) = 4 + 10 = 14$.
 $r = \{2\}$ и $d = \{1\}$, $v(P) = r$ $d = 2$. $F(P) = 0 + 14 + 2 = 16$.

4) Помещаем элемент e_2 в позицию p_3 . Размещены два элемента: e_1 в позиции p_2 и e_2 в позиции p_3 , $F(q) = r_{12}d_{23} = 0$.

Неразмещенные элементы $\{e_3; e_4\}$, свободные позиции $\{p_1; p_4\}$;

$$r_1 = \{4\ 3\}$$
 и $d_2 = \{1\ 2\}$, $r_1\ d_2 = 6 + 4 = 10$;
 $r_2 = \{2\ 0\}$ и $d_3 = \{1\ 2\}$, $r_2\ d_3 = 2 + 0 = 2$;
 $w(P) = 10 + 2 = 12$.
 $r = \{2\}$ и $d = \{3\}$, $v(P) = r *d = 6$. $F(P) = 0 + 12 + 6 = 18$

5) Помещаем элемент e_2 в позицию p_4 . Размещены два элемента: e_1 в позиции p_2 u e_2 в позиции p_4 , $F(q) = r_{12}d_{24} = 0$.

Неразмещенные элементы $\{e_3; e_4\}$, свободные позиции $\{p_1; p_3\}$;

```
r_1 = \{4\ 3\} и d_2 = \{1\ 1\}, r_1\ d_2 = 4+3=7; r_2 = \{2\ 0\} и d_4 = \{1\ 3\}, r_2\ d_3 = 2+0=2; w(P) = 7+2=9. r=\{2\} и d=\{2\}, v(P) = r^*d=4. F(P) = 0+9+4=13- нижняя граница
```

F(P), значит дальнейший поиск не имеет смысла, назначаем элемент e2 на позицию p4

5) Помещаем элемент e_3 в позицию p_1 . Размещены три элемента: e_1 в позиции p_2 , e_2 в позиции p_3 и e_3 в позиции p_1 , $F(q) = r_{13}d_{21} + r_{12}d_{24} + r_{32}d_{14} = 3 + 0 + 6 = 9$. Неразмещенный элемент e_4 , свободная позиция p_3 ;

```
r_1 = \{4\} и d_2 = \{1\}, r_1*d_1 = 4;

r_2 = \{0\} и d_4 = \{1\}, r_2*d_3 = 0;

r_3 = \{2\} и d_1 = \{2\}, r_3*d_2 = 4;

w(P) = 4 + 0 + 4 = 8.
```

Неразмещенный элемент один, v(P) = 0. F(P) = 9 + 8 + 0 = 17.

Неразмещенный элемент e4, свободная позиция p1;

6) Помещаем элемент e_3 в позицию p_3 . Размещены три элемента: e_1 в позиции p_2 , e_2 в позиции p_3 и e_3 в позиции p_4 , $F(q) = r_{13}d_{23} + r_{12}d_{24} + r_{32}d_{34} = 3 + 0 + 2 = 5$.

$$r_1 = \{4\}$$
 и $d_2 = \{1\}$, $r_1*d_2 = 4$; $r_2 = \{0\}$ и $d_4 = \{3\}$, $r_2*d_3 = 0$;

 $r_3 = \{2\}$ и $d_3 = \{2\}$, $r_3*d_4 = 4$;

$$w(P) = 4+4+0=8$$
.
Неразмещенный элемент один, $v(P) = 0$. $F(P) = 8+5+0=13$
Назначаем элемент e_3 на позицию p_3 .

Неразмещенный элемент $\{e4\}$, свободная позиция $\{p1\}$. Помещаем $\{e4\}$ в позицию $\{p4\}$.

 $F(q) = r_{13}d_{23} + r_{12}d_{24} + r_{14}d_{21} + r_{32}d_{34} + r_{34}d_{31} + r_{24}d_{41} = 3 + 0 + 4 + 4 + 2 + 0 = 13.$ w(P) = v(p) = 0. Получено размещение:

