

Exercise 7A

Question 1

(i) LHS =
$$\left(1 - \cos^2 \theta\right) \cos ec^2 \theta$$

= $\sin^2 \theta \times \csc^2 \theta$ $\left[\because \left(1 - \cos^2 \theta\right) = \sin^2 \theta\right]$
= $\sin^2 \theta \times \frac{1}{\sin^2 \theta} = 1$ = RHS

: LHS = RHS
(ii) LHS =
$$(1 + \infty t^2 \theta) \sin^2 \theta$$

=
$$\cos ec^2\theta \times \sin^2\theta \ \left[\because \left(1 + \cot^2\theta \right) = \cos ec^2\theta \right]$$

= $\frac{1}{\sin^2\theta} \times \sin^2\theta = 1 = RHS$

Question 2

(i) LHS =
$$(\sec^2 \theta - 1)\cot^2 \theta$$
 $[\because (\sec^2 \theta - 1) = \tan^2 \theta]$
= $\tan^2 \theta \times \cot^2 \theta$
= $\tan^2 \theta \times \frac{1}{\tan^2 \theta} = 1 = \text{RHS}$
 $\therefore \text{LHS} = \text{RHS}$
(ii) LHS = $(\sec^2 \theta - 1)(\cos \sec^2 \theta - 1)$
= $\tan^2 \theta \times \cot^2 \theta$ $[\because (\sec^2 \theta - 1) = \tan^2 \theta]$
and $(\cos \sec^2 \theta - 1) = \cot^2 \theta$
= $\tan^2 \theta \times \frac{1}{\tan^2 \theta} = 1 = \text{RHS}$
 $\therefore \text{LHS} = \text{RHS}$
(iii) $(1 - \cos^2 \theta) \sec^2 \theta$
= $\sin^2 \theta \times \sec^2 \theta$ $[\because (1 - \cos^2 \theta) = \sin^2 \theta]$
= $\sin^2 \theta \times \frac{1}{\cos^2 \theta} = \frac{\sin^2 \theta}{\cos^2 \theta}$
= $\tan^2 \theta = \text{RHS}$

: LHS = RHS

****** END ******