

Em estatística, análise exploratória de dados é uma metodologia de análise de dados para sintetizar as principais características deles, geralmente, usando gráficos estatísticos e outros métodos de visualização de dados.

Abordagem/filosofia para análise de dados que emprega uma variedade de técnicas (principalmente gráficas) para:

- Maximizar o entendimento sobre um conjunto de dados;
- Revelar informações escondidas nos dados;
- Extrair variáveis importantes;
- Detectar outliers e anomalias;
- Testar suposições;
- Desenvolver modelos de inferência adequados.

As técnicas gráficas empregadas em EDA são, frequentemente, bastante simples:

- Construir gráficos com os dados brutos
 - Gráficos de barras, histogramas, gráficos de probabilidade, gráficos de dispersão, gráfico de caixa etc.
- Obter estatística descritiva
 - Gráficos de média, gráficos de desvio padrão, gráficos de caixa.
- Posicionar esses gráficos de modo a maximizar nossas habilidades naturais de reconhecimento de padrões
 - Uso de vários gráficos por página;
 - Combinar diferentes fontes de dados em um mesmo gráfico.

Tipos de dados

- Dataset obtido no <u>repositório de Machine Learning</u> da University of California, Irvine (UCI);
- Trata-se de dados sobre empresas fraudulentas;

Data Set Characteristics:	Multivariate	Number of Instances:	777	Area:	N/A
Attribute Characteristics:	Real	Number of Attributes:	18	Date Donated	2018-07-14
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	53618

Importar bibliotecas para comodidade:

```
1 # bibiliotecas de manipulação de dados
2 import pandas as pd
3 # bibliotecas de visualização de dados
4 import seaborn as sns
5 import matplotlib.pyplot as plt
```


Obtendo e verificando o formato dos dados

```
1 # carregar o arquivo dos dados
2 df = pd.read_csv("trial.csv", sep=",")

1 # verificar o formando do dataset
2 df.shape

(776, 18)
```

Temos **776 instâncias** carregadas, além do cabeçalho dos nossos dados, o qual contém os nomes dos atributos. Além de **18 atributos** em nosso conjunto de dados, bem como foi informado no repositório da UCI.

Visualizando os dados

df.head()

	Sector_score	LOCATION_ID	PARA_A	SCORE_A	PARA_B	SCORE_B	TOTAL	numbers	Marks	Money_Value	MONEY_Marks	District	Loss	LOSS_SCORE	History	History_score	Score	Risk
0	3.89	23	4.18	6	2.50	2	6.68	5.0	2	3.38	2	2	0	2	0	2	2.4	1
1	3.89	6	0.00	2	4.83	2	4.83	5.0	2	0.94	2	2	0	2	0	2	2.0	0
2	3.89	6	0.51	2	0.23	2	0.74	5.0	2	0.00	2	2	0	2	0	2	2.0	0
3	3.89	6	0.00	2	10.80	6	10.80	6.0	6	11.75	6	2	0	2	0	2	4.4	1
4	3.89	6	0.00	2	0.08	2	0.08	5.0	2	0.00	2	2	0	2	0	2	2.0	0

Podemos perceber que os dados são todos numéricos, o que facilitará em um posterior processo de modelagem dos dados. Para garantir, podemos utilizar o comando *info()*

Visualizando os dados

```
# visualizar atributos e seus tipos
df.info()
```

Assim, podemos perceber que existem **7 atributos do tipo** float64, ou seja, valores decimais; 10 inteiros do tipo int64; e um do tipo **object**.

O atributo **LOCATION_ID**, apesar de parecer que continha apenas valores inteiros, apresenta outros valores em sua estrutura. Vamos analisá-lo mais cuidadosamente.

<class 'pandas.core.frame.DataFrame'> RangeIndex: 776 entries, 0 to 775 Data columns (total 18 columns):

Data	columns (total	18 columns):					
#	Column	Non-Null Count	Dtype				
0	Sector_score	776 non-null	float64				
1	LOCATION_ID	776 non-null	object				
2	PARA_A	776 non-null	float64				
3	SCORE_A	776 non-null	int64				
4	PARA_B	776 non-null	float64				
5	SCORE_B	776 non-null	int64				
6	TOTAL	776 non-null	float64				
7	numbers	776 non-null	float64				
8	Marks	776 non-null	int64				
9	Money_Value	775 non-null	float64				
10	MONEY_Marks	776 non-null	int64				
11	District	776 non-null	int64				
12	Loss	776 non-null	int64				
13	LOSS_SCORE	776 non-null	int64				
14	History	776 non-null	int64				
15	History_score	776 non-null	int64				
16	Score	776 non-null	float64				
17	Risk	776 non-null	int64				
dtype	es: float64(7),	int64(10), object	ct(1)				
memor	memory usage: 109.2+ KB						

Investigando o tipo de dado

```
# verificar a quantidade de ocorrências por valor existente
df['LOCATION_ID'].value_counts().sort_index()
```

Como os dados não estão obedecendo a ordem esperada para inteiros, estes dados foram tratados como *string*;

```
11
11
            26
            35
13
15
            52
16
17
18
            16
19
            68
41
42
             33
8
             76
             53
LOHARU
NUH
SAFIDON
```

Name: LOCATION ID, dtype: int64

Convertendo formato de dados

```
1 # transformar os dados em numéricos
2 df['LOCATION_ID'] = pd.to_numeric(df['LOCATION_ID'], errors='coerce')
3
4 # verificar atributos com valores ausentes
5 df.isnull().sum(axis = 0)
```

- "coerce" no parâmetro erros atribui "nan" para o registro sem valor.
- Depois de converter o tipo do atributo LOCATION_ID, checamos se existem valores nulos no dataset.
- Percebe-se que duas variáveis possuem valores nulos: LOCATION_ID e Money_Value

```
Sector score
LOCATION ID
PARA A
SCORE A
PARA B
SCORE B
TOTAL
numbers
Marks
Money Value
MONEY Marks
District
Loss
LOSS SCORE
History
History_score
Score
Risk
dtype: int64
```


Lidando com valores ausentes

```
1 # substituir valores ausentes de 'LOCATION ID'
2 df['LOCATION ID'] = df['LOCATION ID'].fillna(-1)
                                                                -1.0
4 # verificar a substituição
                                                                -1.0
5 print(df["LOCATION ID"].iloc[351])
                                                                -1.0
6 print(df["LOCATION ID"].iloc[355])
7 print(df["LOCATION ID"].iloc[367])
1 # substituir valores ausentes de 'Money Value'
2 df['Money Value'] = df['Money Value'].where(pd.notna(df['Money Value']), df['Money Value'].mean())
1 # verificar a substituição
                                                                         14.13763096774195
2 print(df['Money Value'].iloc[642])
                                                                         True
3 print(df['Money Value'].iloc[642] == df['Money Value'].mean())
```


Agrupando, agregando, ordenando e cortando

```
1 df.groupby('LOCATION_ID')['Score'].mean().sort_values(ascending=False).head(10)
LOCATION ID
41.0
       4.400000
24.0
     4.200000
                             Operação de agregação
34.0 4.200000
42.0
     4.000000
1.0
       3.927273
38.0
       3.800000
40.0
       3.733333
7.0
       3.550000
20.0
       3.360000
30.0
       3.350000
Name: Score, dtype: float64
```


Balanceamento

```
1 # verificar o balanceamento dos dados
2 df["Risk"].value_counts(normalize=True)

1     0.626289
0     0.373711
Name: Risk, dtype: float64
```

Percebemos que **62,6% das empresas** analisadas apresentariam alguma **irregularidade** em uma auditoria, enquanto que as demais, **37,4%**, **não**. Desta forma, sabemos que as amostras estão de certa forma balanceadas.

Balanceamento

Objetos de dados Pandas (DataFrame e Series) possuem o método **plot()** como meio de plot rápido para gráficos. Consulte a documentação completa <u>aqui</u>.

```
1 # plotando gráfico de barras
2 df["Risk"].value_counts(normalize=True).plot.bar();
```


Estatística descritiva

```
1 # visualizar estatísticas descritivas
2 df.describe()
```

	Sector_score	LOCATION_ID	PARA_A	SCORE_A	PARA_B
count	776.000000	776.000000	776.000000	776.000000	776.000000
mean	20.184536	14.795103	2.450194	3.512887	10.799988
std	24.319017	9.921136	5.678870	1.740549	50.083624
min	1.850000	-1.000000	0.000000	2.000000	0.000000
25%	2.370000	8.000000	0.210000	2.000000	0.000000
50%	3.890000	13.000000	0.875000	2.000000	0.405000
75%	55.570000	19.000000	2.480000	6.000000	4.160000
max	59.850000	44.000000	85.000000	6.000000	1264.630000

Loss	LOSS_SCORE	History	History_score	Score	Risk
776.000000	776.000000	776.000000	776.000000	776.000000	776.000000
0.029639	2.061856	0.104381	2.167526	2.702577	0.626289
0.184280	0.375080	0.531031	0.679869	0.858923	0.484100
0.000000	2.000000	0.000000	2.000000	2.000000	0.000000
0.000000	2.000000	0.000000	2.000000	2.000000	0.000000
0.000000	2.000000	0.000000	2.000000	2.400000	1.000000
0.000000	2.000000	0.000000	2.000000	3.250000	1.000000
2.000000	6.000000	9.000000	6.000000	5.200000	1.000000

Visualizando a distribuição dos dados

```
# visualizar distribuição das variáveis
df.hist(figsize=(16, 20), bins=20, xlabelsize=12, ylabelsize=12);
```

- Percebe-se que a maioria das variáveis possuem valores concentrados, com exceção de LOCATION_ID, Score, SCORE_A e SCORE_B.
- Outra correlação forte é entre Score e Risk.

Visualizando a correlação

```
# visualizar correlação entre as variáveis
plt.figure(figsize=(10, 10))
sns.heatmap(df.corr(), cmap='Blues');
```

Quanto mais escura a célula, maior a correlação entre as variáveis. Por exemplo, PARA_B e TOTAL possuem uma forte correlação.

Visualizando a correlação

```
1 # verificar a correlação entre as variáveis e a variável alvo
2 df.corr()['Risk'][:-1].sort_values(ascending=False)
```

SCORE_A	0.671863
Score	0.632268
SCORE_B	0.515045
MONEY_Marks	0.440226
District	0.317795
PARA_A	0.292425
Marks	0.228098
numbers	0.197750
TOTAL	0.190793
History_score	0.190466
PARA_B	0.162807
Money_Value	0.160543
History	0.151937
LOSS_SCORE	0.127472
Loss	0.124322
LOCATION_ID	0.056306
Sector_score	-0.374588
Name: Risk, dty	pe: float64

Visualizando a correlação entre a variável alvo e outras

```
# visualizar a correlação entre as variáveis e a variável alvo
for i in range(0, len(df.columns), 5):
    sns.pairplot(data=df, x_vars=df.columns[i:i+5], y_vars=['Risk'])
```


Com exceção dos atributos Sector_score e LOCATION_ID é possível notar que há uma separação nos valores do atributo entre os valores da nossa classe (Risk). Para Risk com valor o não há ocorrências de instâncias com valor levemente superior a 2.

Entendendo Boxplot

Boxplot é utilizado para avaliar e comparar o formato, **tendência central** e **variabilidade de distribuições** de amostra, e para **procurar outliers**. Por padrão, um boxplot demonstra a mediana, os quartis, o intervalo interquartil(IQR) e outliers para cada variável.

Medidas específicas

```
# média, median, moda, variância e desvio padrão
df['SCORE_B'].mean()
df['SCORE_B'].median()
df['SCORE_B'].wode()
df['SCORE_B'].var()
df['SCORE_B'].std()

# quartis
df['SCORE_B'].quantile(0.25)
df['SCORE_B'].quantile(0.5)
df['SCORE_B'].quantile(0.75)
```


Exercício - Grupo

Realize uma análise exploratória dos dados do dataset "dados-delivery.csv" e responda as seguintes questões:

- 1. Quais são os produtos mais pedidos?
- 2. Qual é o tempo médio de atraso para cada produto cuja entrega atrasa?
- 3. Qual a taxa média de atraso nas entregas (percentual de aumento em relação ao previsto)?
- 4. Quais produtos mais atrasam?
- 5. Quais dias da semana mais têm pedidos? Há correlação com atrasos?
- 6. Quais variáveis possuem correlação?
- 7. A maior parte dos pedidos são feitos em qual horário?
- 8. Quais campos possuem valores ausentes? É melhor preenchê-los ou descartá-los?
- 9. As avaliações dos pedidos podem ser explicadas pela variável atraso?

Obrigado.

