Lecture 1 — Solutions via Moore–Penrose and Tikhonov

Problem statement (from the class exercise)

We study the (overdetermined) system

$$\begin{cases} 2x + y = 5, \\ x - y = 1, \\ x + y = 2, \end{cases}$$
 i.e. $Ax \approx b, A = \begin{bmatrix} 2 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix}.$

The system is *inconsistent*; we seek principled approximations.

1 Moore–Penrose least–squares solution

Normal-equations view

For full column rank (rank(A) = 2), the least-squares (LS) solution is

$$x_{\rm LS} = (A^{\top}A)^{-1}A^{\top}b = A^{+}b.$$

For our A, b:

$$A^{\mathsf{T}}A = \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix}, \quad A^{\mathsf{T}}b = \begin{bmatrix} 13 \\ 6 \end{bmatrix}, \quad x_{\mathrm{LS}} = \begin{bmatrix} \frac{27}{14} \\ \frac{5}{7} \end{bmatrix} \approx \begin{bmatrix} 1.928571 \\ 0.714286 \end{bmatrix}.$$

Residual $r = b - Ax_{LS} = \left[\frac{1}{14}, -\frac{5}{7}, \frac{1}{2}\right]^{\top}$ and satisfies $A^{\top}r = 0$ (orthogonality to $\operatorname{col}(A)$).

Geometric meaning

 $x_{\rm LS}$ is the unique vector whose image $Ax_{\rm LS}$ is the orthogonal projection of b onto the column space ${\rm col}(A)$. Equivalently, $r=b-Ax_{\rm LS}\perp {\rm col}(A)$.

SVD view (numerically stable)

Let $A = U\Sigma V^{\top}$ (thin SVD, $\Sigma = \operatorname{diag}(\sigma_1, \sigma_2)$ with $\sigma_1 \geq \sigma_2 > 0$). Then

$$x_{\text{LS}} = A^+ b = V \Sigma^+ U^\top b \text{ with } \Sigma^+ = \text{diag}(\sigma_1^{-1}, \sigma_2^{-1}).$$

This expresses LS as filtered components along right singular vectors; small singular values (ill-conditioning) amplify noise.

2 Tikhonov (ridge) regularization

To control variance / ill-conditioning, solve

$$x_{\lambda} = \arg\min_{x} \|Ax - b\|_{2}^{2} + \lambda \|x\|_{2}^{2} \quad (\lambda > 0),$$

with closed form

$$x_{\lambda} = (A^{\top}A + \lambda I)^{-1}A^{\top}b.$$

For our A, b:

$$A^{\mathsf{T}}A + \lambda I = \begin{bmatrix} 6 + \lambda & 2 \\ 2 & 3 + \lambda \end{bmatrix}, \quad x_{\lambda} = \frac{1}{(6 + \lambda)(3 + \lambda) - 4} \begin{bmatrix} 3 + \lambda & -2 \\ -2 & 6 + \lambda \end{bmatrix} \begin{bmatrix} 13 \\ 6 \end{bmatrix}.$$

Limits. $x_{\lambda} \to x_{\text{LS}}$ as $\lambda \downarrow 0$; and $x_{\lambda} \to 0$ as $\lambda \uparrow \infty$ (with standard ℓ_2 penalty). **SVD filter factors.** With $A = U \Sigma V^{\top}$,

$$x_{\lambda} = \sum_{i=1}^{2} \frac{\sigma_{i}}{\sigma_{i}^{2} + \lambda} \langle b, u_{i} \rangle v_{i},$$

so each singular direction is damped by $\sigma_i/(\sigma_i^2 + \lambda)$; small σ_i are strongly suppressed. This is closely related to truncated SVD (TSVD), which zeros out directions with tiny σ_i .

3 Other geometric possibilities (beyond ℓ_2)

- Weighted LS: $\min_x ||W(Ax b)||_2^2$ to privilege certain equations (e.g. measurement reliabilities).
- ℓ_1 (LAD) fit: $\min_x ||Ax b||_1$ (robust to outliers; gives a different projection geometry via polytope distance).
- ℓ_{∞} (Chebyshev) fit: $\min_{x} ||Ax b||_{\infty}$ (minimax worst-case residual; intersection of strips around the lines).

- Constrained LS: add box/convex constraints (e.g. nonnegativity) to encode prior knowledge.
- Geometric "multi-line" compromise: each equation is a line; LS chooses the point where the vector of signed distances is orthogonal to col(A); ℓ_1 chooses a point minimizing the sum of absolute distances; ℓ_{∞} minimizes the maximal distance.

4 Numerical summary for the class system

$$x_{\text{LS}} = \begin{bmatrix} \frac{27}{14} \\ \frac{5}{7} \end{bmatrix} \approx \begin{bmatrix} 1.928571 \\ 0.714286 \end{bmatrix}, \qquad r = b - Ax_{\text{LS}} = \begin{bmatrix} \frac{1}{14} \\ -\frac{5}{7} \\ \frac{1}{2} \end{bmatrix}, \quad A^{\top}r = \mathbf{0}.$$

$$x_{\lambda} = (A^{\top}A + \lambda I)^{-1}A^{\top}b$$
 (closed form above).

Example values:

$$\lambda = 0.1: \ x_{0.1} \approx \begin{bmatrix} 1.920 \\ 0.709 \end{bmatrix}, \qquad \lambda = 1: \ x_1 \approx \begin{bmatrix} 1.875 \\ 0.688 \end{bmatrix}.$$

As λ grows, the fit relaxes and the norm of x_{λ} shrinks.

5 Computation in R

Data

Moore-Penrose via normal equations

Moore-Penrose via pseudoinverse

```
# install.packages("MASS")
library(MASS)
x_MP <- ginv(A) %*% b</pre>
```

Tikhonov (ridge) regularization

```
ridge <- function(lambda) {
   solve(t(A) %*% A + lambda * diag(ncol(A)), t(A) %*% b)
}
x_lam_01 <- ridge(0.1)
x_lam_1 <- ridge(1.0)</pre>
```

Diagnostics

```
r <- b - A %*% x_LS
t(A) %*% r  # should be (numerically) c(0,0)
norm(r, type="2")</pre>
```

6 When to use which?

- Use LS / pseudoinverse when the model is well-conditioned and you want the best ℓ_2 fit.
- Use **Tikhonov** when columns of A are nearly dependent or data are noisy; tune λ to trade bias for variance.
- Consider ℓ_1 or **weighted** fits for outliers / heterogeneous noise; **constraints** to reflect domain knowledge.