Theory of Computation, Fall 2021 Assignment 7 (Due December 17 Friday 9:35am)

- 1. Sigma^* is countable
- 2. subset of a countable set is also countable
- every language is a subset of Sigma^*
- Q1. Prove that every language is countable. You can use any theorem that we've proved in class.
- Q2. Prove that there is an undecidable subset of $\{1\}^*$. $\{0,1\}^*$ \to $\{1\}^*$
- Q3. We have already proved that the following language is not recursive. Show that it is recursively enumerable.
- 1. for i=1, 2, 3, ...Let up the each local steps $A = \{ \text{``M''} : M \text{ is a Turing machine that halts on some string} \}$ 2. halt if M halts within i steps

(Hint: You may use the fact that Turing machines are able to enumerate all the strings in Σ^* as $s_1, s_2, s_3, ...$

- Q4. Let A and B be two languages. Let f be a reduction from A to B. win A iff f(w) B
 - (a) Suppose that you have a Turing machine M_B that semidecides B. Try to construct a Turing machine M_A that semidecides A. 1. run M_B on f(w)
 - (b) What conclusion can you draw from (a)?

- 2. halt if halt
- Q5. Consider the following language. Show that the following language is not recursive by showing a reduction from H to L.

 $A = \{ M'' : M \text{ is a TM such that for any string } w, M \text{ halts on a string } w^R \text{ whenever it halts on } w \}.$

- (a) Show that the A is not recursive by showing a reduction from H to A.
- (b) Use Rice's theorem to prove that A is not recursive. on input u 1.10, accept L is RE and both w^R and w are in L 2. not 01, reject 3.01, run M on w

References

- [1] Sipser M.. Introduction to the Theory of Computation. CENGAGE Learning (2013)
- [2] Lewis H., Papadimitriou C.. Elements of the Theory of Computation. Prentice-Gall (1998)