BERECHNUNGEN UND LOGIK HAUSAUFGABENSERIE 9

HENRI HEYDEN, NIKE PULOW

stu240825, stu239549

A1

Vor.: Sei β beliebige Belegung für die Formeln $\varphi, \psi \in F_{AL}$.

Beh.: $\neg(\varphi \lor \psi) \vDash \exists \neg \varphi \land \neg \psi$

Bew.:

Fall 1.: $(\llbracket \varphi \rrbracket_{\beta}, \llbracket \psi \rrbracket_{\beta}) = (0, 0)$.

Es gilt:

$$[\![\neg(\varphi\vee\psi)]\!]_{\boldsymbol{\beta}}=f_{\neg}([\![\varphi\vee\psi]\!]_{\boldsymbol{\beta}})=f_{\neg}(f_{\vee}([\![\varphi]\!]_{\boldsymbol{\beta}},[\![\psi]\!]_{\boldsymbol{\beta}}))=f_{\neg}(f_{\vee}(0,0))$$

$$= f_{\neg}(0) = 1 = f_{\wedge}(1,1) = f_{\wedge}(f_{\neg}(0),f_{\neg}(0)) = f_{\wedge}(f_{\neg}([\![\phi]\!]_{\beta}),f_{\neg}([\![\psi]\!]_{\beta}))$$

$$= f_{\wedge}(\llbracket \varphi \rrbracket_{\beta}, \llbracket \psi \rrbracket_{\beta}) = \llbracket \neg \varphi \wedge \neg \psi \rrbracket_{\beta}$$

Fall $(\llbracket \varphi \rrbracket_{\beta}, \llbracket \psi \rrbracket_{\beta}) = (1, 1)$ analog.

 $\operatorname{Fall}\left([\![\varphi]\!]_{\beta},[\![\psi]\!]_{\beta}\right)=(0,1).$

Es gilt:

$$[\![\neg(\varphi\vee\psi)]\!]_{\beta}=f_{\neg}([\![\varphi\vee\psi]\!]_{\beta})=f_{\neg}(f_{\vee}([\![\varphi]\!]_{\beta},[\![\psi]\!]_{\beta}))=f_{\neg}(f_{\vee}(0,1))$$

$$=f_{\neg}(1)=0=f_{\wedge}(1,0)=f_{\wedge}(f_{\neg}(0),f_{\neg}(1))=f_{\wedge}(f_{\neg}(\llbracket \varphi \rrbracket_{\beta}),f_{\neg}(\llbracket \psi \rrbracket_{\beta}))$$

$$= f_{\wedge}(\llbracket \varphi \rrbracket_{\beta}, \llbracket \psi \rrbracket_{\beta}) = \llbracket \neg \varphi \wedge \neg \psi \rrbracket_{\beta}$$

Fall
$$(\llbracket \varphi \rrbracket_{\beta}, \llbracket \psi \rrbracket_{\beta}) = (1, 0)$$
 folgt aus Kommutativität

Analog folgt der Beweis auch durch Ablesen einer Tabelle wo jeweilige Ausdrücke ausgewertet werden für alle möglichen Belegungen.

A2

Vor.: $n \in \mathbb{N}_0, \varphi_0, \dots \varphi_{n-1}$ Formeln.

Beh.: $\neg \bigwedge_{i=0}^{n-1} \varphi_i \models \exists \bigvee_{i=0}^{n-1} \neg \varphi_i$

Bew.: Wir zeigen mittels Induktion:

(IB): Es gilt:
$$\neg(\land(\top)) \models \exists \neg(\top) \models \exists \bot \models \exists \lor(\bot) \models \exists \lor(\neg(\top))$$

Anderer Fall analog.

(IS): Sei angenommen (IH) $\neg \bigwedge_{i=0}^{n-2} \varphi_i \vDash \exists \bigvee_{i=0}^{n-2} \neg \varphi_i$.

Zu zeigen ist dann: $\neg \bigwedge_{i=0}^{n-1} \varphi_i \vDash \exists \bigvee_{i=0}^{n-1} \neg \varphi_i$.

Es gilt:

$$\neg \bigwedge_{i=0}^{n-1} \varphi_{i} \vDash \exists \neg \left(\bigwedge_{i=0}^{n-2} \varphi_{i} \land \varphi_{n-1} \right) \qquad | \textbf{(IB)} \text{ bzw. Bearbeitung von A1} \\
\vDash \exists \neg \bigwedge_{i=0}^{n-2} \varphi_{i} \lor \neg \varphi_{n-1} \qquad | \textbf{(IH)}, \text{ Ersetzungslemma} \\
\vDash \exists \bigvee_{i=0}^{n-2} \neg \varphi_{i} \lor \neg \varphi_{n-1} \vDash \exists \bigvee_{i=0}^{n-1} \neg \varphi_{i}$$

Somit sind Induktionsbasis und Induktionsschritt gezeigt.

A4

Vor.: $\Phi \subseteq F_{AL}$ und $\varphi \in F_{AL}$. $\Phi \cup \{ \neg \varphi \}$ unerfüllbar.

Beh.: $\Phi \models \varphi$ genau dann, wenn $\Phi \cup \{\neg \varphi\}$ unerfüllbar.

Bew.: Wenn $\Phi \cup \{\neg \varphi\}$ unerfüllbar ist, gilt $\llbracket \Phi \cup \{\neg \varphi\} \rrbracket_{\beta} = 0$ wegen der Definition von Erfüllbarkeit. Betrachte zwei Fälle:

(1) $[\![\Phi]\!]_{\beta} = 1.$

Damit $\llbracket \Phi \cup \{ \neg \varphi \} \rrbracket_{\beta} = 0$ gelten kann, muss $\llbracket \neg \varphi \rrbracket_{\beta} = 1$ gelten. Daraus folgt $\llbracket \varphi \rrbracket_{\beta} = 1$. Dann gilt $\Phi \vDash \varphi$, da $\llbracket \Phi \rrbracket_{\beta} = 1$, also $\beta \vDash \Phi$, und $\llbracket \varphi \rrbracket_{\beta} = 1$, also $\beta \vDash \varphi$.

(2) $[\![\Phi]\!]_{\beta} = 0$

Damit $[\![\Phi \cup \{\neg \varphi\}]\!]_{\beta} = 0$ gelten kann, muss $[\![\varphi]\!]_{\beta} = 1$ gelten. Dann gilt auch $[\![\varphi]\!]_{\beta} = 0$.

Dann wissen wir acuh, dass es keine passende Belegung β für Φ und φ gibt, sodass $\llbracket \Phi \rrbracket_{\beta} = 1$ und $\llbracket \varphi \rrbracket_{\beta} = 1$ gelten. Es gilt also auf Grund der Nicht-Existenz von passenden Belegungen β :

 $\Phi \vDash \varphi$.

A6

a)

$$(\neg X_0 \lor X_4) \land \neg (X_1 \land (X_3 \lor \neg X_2)) \qquad \text{Distributivit\"at}$$

$$\vDash \exists \quad (\neg X_0 \lor X_4) \land \neg ((X_1 \land X_3) \lor (X_1 \land \neg X_2)) \qquad \text{De Morgan}$$

$$\vDash \exists \quad (\neg X_0 \lor X_4) \land \neg (X_1 \land X_3) \land \neg (X_1 \land \neg X_2) \qquad \text{De Morgan}$$

$$\vDash \exists \quad (\neg X_0 \lor X_4) \land (\neg X_1 \lor \neg X_3) \land (\neg X_1 \lor \neg \neg X_2) \qquad \text{Doppelnegation}$$

$$\vDash \exists \quad (\neg X_0 \lor X_4) \land (\neg X_1 \lor \neg X_3) \land (\neg X_1 \lor X_2)$$

$$\Leftrightarrow \exists \quad (\neg X_0 \lor X_4) \land (\neg X_1 \lor \neg X_3) \land (\neg X_1 \lor X_2)$$

$$\Leftrightarrow \exists \quad (\neg X_0 \lor X_4) \land (\neg X_1 \lor \neg X_3) \land (\neg X_1 \lor X_2)$$

$$\Leftrightarrow \exists \quad (\neg X_0 \lor X_4) \land (\neg X_1 \lor \neg X_3) \land (\neg X_1 \lor X_2)$$

b)

$$(\neg X_0 \lor X_4) \land \neg (X_1 \land (X_3 \lor \neg X_2)) \qquad \text{DeMorgan}$$

$$\models \exists \quad (\neg X_0 \lor X_4) \land \neg X_1 \lor \neg (X_3 \lor \neg X_2) \qquad \text{Kommutativität}$$

$$\models \exists \quad \neg X_1 \land (\neg X_0 \lor X_4) \lor \neg (X_3 \lor \neg X_2) \qquad \text{Distributivität}$$

$$\models \exists \quad (\neg X_1 \land \neg X_0) \lor (\neg X_1 \land X_4) \lor \neg (X_3 \lor \neg X_2) \qquad \text{De Morgan}$$

$$\models \exists \quad (\neg X_1 \land \neg X_0) \lor (\neg X_1 \land X_4) \lor (\neg X_3 \land \neg \neg X_2) \qquad \text{Doppelnegation}$$

$$\models \exists \quad (\neg X_1 \land \neg X_0) \lor (\neg X_1 \land X_4) \lor (\neg X_3 \land X_2)$$

Wir erhalten $\varphi \bigvee \bigwedge = \{\{\neg X_1, \neg X_0\}, \{\neg X_1, X_4\}, \{\neg X_3, X_2\}\}.$

A7

$$\begin{split} \text{Definiere } \varphi := \bigwedge \bigvee \{\{X_2, X_1, X_5\}, \{\neg X_4, X_2, \neg X_3\}, \{\neg X_1\}, \{X_4, X_5, \neg X_2\}, \\ \{\neg X_4, X_1\}, \{X_2, \neg X_5, \neg X_3\}, \{X_3, X_1\}, \{\neg X_5, \neg X_2\}\} \end{split}$$

Wir zeigen $\varphi \vDash \bot$ mittels Resolutionsbeweis.

1.
$$\{\neg X_1\}$$
 Voraussetzung

2.
$$\{X_3, X_1\}$$
 Voraussetzung

3.
$$\{X_3\}$$
 Resolution mit X_1 aus 1 und 2

4.
$$\{X_2, \neg X_5, \neg X_3\}$$
 Voraussetzung

5.
$$\{X_2, \neg X_5\}$$
 Resolution mit X_3 aus 3 und 4

6.
$$\{\neg X_5, \neg X_2\}$$
 Voraussetzung

7.
$$\{\neg X_5\}$$
 Resolution mit X_2 aus 5 und 6

8.
$$\{X_2, X_1, X_5\}$$
 Voraussetzung

9.
$$\{X_2, X_1\}$$
 Resolution mit X_5 aus 7 und 8

10.
$$\{X_2\}$$
 Resolution mit X_1 aus 1 und 9

11.
$$\{X_4, X_5, \neg X_2\}$$
 Voraussetzung

12.
$$\{X_4, X_5\}$$
 Resolution mit X_2 aus 10 und 11

13. $\{X_4\}$ Resolution mit X_5 aus 7 und 12

14. $\{\neg X_4, X_1\}$ Voraussetzung

15. $\{X_1\}$ Resolution mit X_4 aus 13 und 14

16. {} Resolution mit X_1 aus 1 und 15

Damit ist gezeigt, was zu zeigen war.