1 2 3 4

Trabalho 1

Vítor Amorim Fróis

nUSP: 12543440

1) Negue a seguinte afirmação: $(a \lor b) \land \neg c$

$$= \neg ((a \lor b) \land \neg c)$$
 De Morgan

$$= (\neg(a \lor b) \lor \neg \neg c)$$

$$= (\lnot (a \lor b) \lor c)$$
 De Morgan

$$= (\lnot a \land \lnot b) \lor c$$
 Resultado final

2) Negue a afirmação: "Os números pares são múltiplos de 4"

Do frase, podemos extrair que: "Para todos x pares, x é múltiplo de 4"

Para negá-la, deve-se inverter o operador $\forall \to \exists$ e negar a função "x é múltiplo de 4" \to "x não é múltiplo de 4", obtendo assim:

"Existe pelo menos um número par que não é múltiplo de 4"

3) Costrua a tabela verdade da afirmação $(a \implies b) \implies c$

$$egin{aligned} (a \implies b) \implies c \ \lnot(\lnot a \lor b) \lor c
ightarrow ext{ de Morgan} \ (a \land \lnot b) \lor c \end{aligned}$$

Assim, deve-se construir uma tabela verdade a partir da equação obtida, como mostrado ao lado.

a	b	c	$a \wedge \neg b$	$(a \land \neg b) \lor c$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	0	1