

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES DEPARTMENT OF PHYSICAL SCIENCES B.Sc. (General) Degree

Second Year Semester I Examination - April/May 2016

MAP 2203 - Differential Equations II

Answer Four Questions only

Time allowed: Two hours

1.

i. Discuss the **Forbenius method** for solving a second order linear differential equation,

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0.$$

ii. Find the series solution of the differential equation,

$$2x^2y'' - xy' + (1 - x^2)y = 0$$
 by using Forbenius method.

2.

i. Consider the initial value problem of the form, $\frac{dy}{dx} = F(x, y)$; $y(x_0) = y_0$, discuss the **Picard's iteration method** for n^{th} approximation $y_n(x)$.

ii. Apply Picard's method to find the solution of the problem

$$\frac{dy}{dx} = y - x, y(0) = 2.$$

3.

i. Discuss Picard's Existence and Uniqueness Theorem.

ii. Show that $\frac{dy}{dx} = (y+1)\cos(x^2y)$ has a unique solution with the initial condition y(2) = -1 and find it.

iii. Consider the initial value problem $\frac{dy}{dx} = y^2 + \cos(x^2)$; y(0) = 0, show that the initial value problem has an unique solution y(x) on the interval $|x| \le \frac{1}{2}$ and $|y| \le 1$.

4.

Find the general solution of the system, i.

$$X'(t) = \begin{bmatrix} 0 & 1 \\ -9 & 6 \end{bmatrix} X(t).$$

Find e^{At} of above system. ii.

5.

Form partial differential equations for each of the following, by eliminating i. arbitrary constants.

a.
$$Z = (x-a)^2 + (y-b)^2$$

b.
$$Z = axe^y + \frac{1}{2}a^2e^{2y} + b$$

Solve the following partial differential equations, given with the usual notations.

a.
$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \sin x$$

b.
$$p-q=\frac{z}{x+y}$$

c.
$$\left(\frac{b-c}{a}\right)yzp + \left(\frac{c-a}{b}\right)zxq = \left(\frac{a-b}{c}\right)xy$$

d. $t - xq = x^2$

$$d. t - xq = x^2$$

e.
$$t + s + q = 0$$