AI MATH Exercises

Elsiddig

July 2023

1 Functions

Exercise 1: The function f(x) = 2x + 3 is a line. TO plot it we choose two different values for x and calculate their corresponding y values. We draw the points defined by the x's and their y values. Finally we draw a line that passes through these two points. For our example we choose x = 0, -1. We have y = 3, 1. The plot is then

The function f(x) = 13 is constant hence a horizontal line.

The function sgn(x) is constant on three different regions. When x is larger than 0 is constant and equals 1, when x is less than 0 it is constant and equals -1, and when x = 0 its value is 0. Thus we plot is as

To plot the function f(x) = log(x-1) we first remember plot log(x) and translate it 1 unit to the right. The log function is increasing to infinity but slowly and very close to 0 from right it become too small and approaches $-\infty$. log is undefined for negative x. Putting all of this together we get the plot.

To plot the functions $3\sin(2x)$ and $2\sin(3x)$ we first look at $\sin(x)$. sin is between -1 and 1. Multiply sin by a number changes this bound. We also know that sin is periodic with period 2π . Multiplying the argument (x) of sin by a number changes the period. Therefore $3\sin(2x)$ has is between -3 and 3 and has period $2\pi/2 = \pi$ while the function $2\sin(3x)$ is between -2 and 2 and has period $2\pi/3$.

From the definition the function ReLU is constant and equals 0 when x < 0 and it coincides with the line y = x when $x \ge 0$. Thus the plot is

We first need to look at the behaviour of the function $\sigma = \frac{1}{1+e^{-x}}$. The function e^x increases to infinity quickly as x increases and decreases to 0 quickly as x decreases (try to plot it and compare it with a plotting program). The function e^{-x} is decreasing and behaves the other way. Since the reciprocal of a positive decreasing function is increasing the function σ is increasing. Now we look at the asymptotic behaviour of σ . When x is very large, the value of e^{-x} is too small and hence $1 + e^{-x} \approx 1$ that is $\sigma(x) \approx 1$ when x is large. When x is very small (negative) the value of e^{-x} is extremely large thus the value $\frac{1}{1+e^{-x}} \approx 0$. From this analysis we can plot the following

Exercise 2:

The function $\frac{x}{1-x}$ is defined everywhere except when the denominator is zero which happens only when x=1. Therefore the domain is $\mathbb{R}-\{1\}$ which can also be written as $(-\infty,1)\cup(1,\infty)$.

The function $\frac{x-2}{x^2-3x+2} + \frac{1}{x+5}$ is defined everywhere except when at least one of the denominators is zero. The roots of $x^2-3x+2=(x-2)(x-1)$ are x=1,2 and second denominator equals zero exactly when x=-5. Therefore the domain is $\mathbb{R}-\{-5,1,2\}=(-\infty,-5)\cup(-5,1)\cup(1,2)\cup(2,\infty)$

The function $\log\left(\frac{1}{x-7}\right)$ is defined when the input of log is positive and when the denominator is not zero. This happens when x > 7. The domain is $(7, \infty)$

Exercise 3: We are given $f(x+1) = x^2 - x + 1$. To find f(x) we simply substitute x-1 in place of x and expand everything

$$f(x) = (x-1)^2 - (x-1) + 1 = (x^2 - 2x + 1) - (x-1) + 1 = x^2 - 3x + 3$$

To find f(x-1) we substitute x-2

$$f(x-1) = (x-2)^2 - (x-2) + 1 = (x^2 - 4x + 4) - (x-1) + 1 = x^2 - 5x + 6$$

Exercise 4: This exercise is closely related to calculating the derivative (recall the definition of derivative).

For f(x) = 2x + 3 we have

$$\frac{f(x+h) - f(x)}{h} = \frac{(2(x+h)+3) - (2x+3)}{h} = \frac{2h}{h} = 2$$

For the function $f(x) = 5x^2$ we have

$$\frac{f(x+h) - f(x)}{h} = \frac{5(x+h)^2 - 5x^2}{h} = \frac{5(x^2 + 2hx + h^2) - 5x^2}{h} = \frac{10hx + 5h^2}{h} = 10x + 5h$$

Notice that the function $f(x) = 5x^2 - 2x - 3$ is the subtraction of the previous two functions, therefore we can quickly we that the answer is 10x + 5h - 2

Exercise 5: There are several ways to do this task. Here is one: First thing to notice is that it is not a vertical line since the x components of the points are not the same. The equation of a line has the formula y = mx + b. Substituting the pair x = 3 and y = 4 and the pair x = 0 and y = 5 we have the linear system

$$\begin{cases} 4 = 3m + b \\ 5 = b \end{cases}$$

The solution of this system is m = -1/3 and b = 5. The equation of the line is $y = -\frac{1}{3}x + 5$.

Exercise 6: To compute $g \circ f \circ h$ we calculate h(x), f(h(x)) then g(f(h(x))). $h(x) = (\sin(x), \cos(x))$, $f(h(x)) = (\sin^2(x), \cos^2(x))$ and finally $g(f(h(x))) = \sin^2(x) + \cos^2(x) = 1$.

Exercise 7:

$$g(f(x)) = \log_2(f(x) + 1) = \log_2(2^x - 1 + 1) = x$$

$$f(g(x)) = 2^{g(x)} - 1 = 2^{\log_2(x+1)} - 1 = (x+1) - 1 = x$$

Exercise 8:

• We use chain rule. The derivative of $\sin(x)$ is $\cos(x)$ and the derivative of 3x is 3. Thus

$$(\sin(3x))' = 3\cos(3x)$$

• We use the product rule

$$(x\ln(x))' = (1)\ln(x) + x\frac{1}{x} = \ln(x) + 1$$

Therefore

$$f(x) = x\sqrt{x} + \sqrt[3]{x} = x^{3/2} + x^{1/3}$$

$$f'(x) = \frac{3}{2}x^{3/2-1} + \frac{1}{3}x^{1/3-1} = \frac{3}{2}\sqrt{x} + \frac{1}{3}\frac{1}{\sqrt[3]{x^2}}$$

• We use the chain rule. The derivatives of tan(x) is $sec^2(x)$ and the derivative of $x^2 + 1$ is 2x. Thus

$$(\tan(x^2+1))' = 2x\sec^2(x^2+1)$$

• We use the chain rule. The derivative of x^6 is $6x^5$ and the derivative of $e^x + x^3 - 1$ is $e^x + 3x^2$. Thus

$$((e^x + x^3 - 1)^6)' = 6(e^x + 3x^2)(e^x + x^3 - 1)^5$$

Exercise 9:

- $f(x) = x^2 5x + 1$. The derivative is f'(x) = 2x 5. The solution of f'(x) = 0 is x = 5/2 = 2.5. When x > 2.5 the derivative is positive (take a value and substitute) and when x < 2.5 the derivative is negative. Therefore the function decreases on $(-\infty, 2.5)$ and increases on $(2.5, \infty)$. This means that the critical point x = 2.5 is a local minimum and is actually the global minimum. Therefore the minimum value of f is $f(2.5) = (2.5)^2 5(2.5) + 1 = -5.25$.
- $f(x) = \sin(x) + \cos(x)$. Since sin and cos are periodic with on $[0, 2\pi]$ it is enough to study f on this interval. We differentiate $f'(x) = \cos(x) \sin(x)$. We solve f'(x) = 0. The solutions of this equation satisfy $\cos(x) = \sin(x)$ which are $x = \pi/4$ or $x = 5\pi/4$. We have $f(\pi/4) = 2/\sqrt{2}$ and $f(5\pi/4) = -2/\sqrt{2}$ and these values are the maximum and minimum respectively. For the monotonic behaviour notice that the function $\cos(x) \sin(x)$ is positive on $[0, \pi/4)$ (check it by considering a value and substituting it) and negative on $(\pi/4, 5\pi/4)$ then again positive on $(5\pi/4, 2\pi]$. This translates to f is increasing on $[0, \pi/4) \cup (5\pi/4, 2\pi]$ and decreasing on $(\pi/4, 5\pi/4)$.
- $f(x) = (2x-1)^2 + (3x-5)^2$. We have f'(x) = (2)(2)(2x-1) + (3)(2)(3x-5) = 26x-34. Solving f'(x) = 0 we get $x = 17/13 \approx 1.3$. Similarly to the first function the derivative in positive after 17/13 and negative before it. Hence it is the minimum. The minimum value of f is $f(17/13) \approx 3.77$. The function f increases on $(17/13, \infty)$ and decreases on $(-\infty, 17/13)$.

Exercise 12: We form the matrix A and the vector \mathbf{b} as follows

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ 3 \\ 3 \\ 5 \end{bmatrix}$$

The parameters (slope and intercept) of the line of best fit are given by

$$(A^{T}A)^{-1}A^{T}\mathbf{b}$$

$$= \left(\begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \\ 3 \\ 5 \end{bmatrix}$$

$$= \left(\begin{bmatrix} 14 & 6 \\ 6 & 4 \end{bmatrix} \right)^{-1} \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \\ 3 \\ 5 \end{bmatrix}$$

$$= \frac{1}{20} \begin{bmatrix} 4 & -6 \\ -6 & 14 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \\ 3 \\ 5 \end{bmatrix}$$

$$= \frac{1}{20} \begin{bmatrix} -6 & -2 & 2 & 6 \\ 13 & 8 & 2 & -4 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \\ 3 \\ 5 \end{bmatrix}$$

$$= \frac{1}{20} \begin{bmatrix} 30//10 \end{bmatrix}$$

$$= \begin{bmatrix} 3/2 \\ 1/3 \end{bmatrix}$$

Therefore the slope of the line of best fit is 3/2 = 1.5 and its intercept is $1/3 \approx 0.333$.