CONTRASTIVE AUDIO-LANGUAGE LEARNING FOR MUSIC

llaria Manco^{1, 2}, Emmanouil Benetos¹, Elio Quinton², George Fazekas¹

¹Queen Mary University of London, ² Universal Music Group

Bridging audio and language in the music domain via cross-modal learning

Natural language queries offer a convenient and human-friendly way of searching for music, but they are not commonly supported by MIR systems

- With MusCALL, we propose to learn audiotext correspondences via contrastive learning, and successfully apply this to cross-modal retrieval for music, mapping natural language to audio and vice versa
- This ability to align audio and text can be transferred to music classification tasks such as genre classification and tagging in a zero-shot setting

We adopt a dual-encoder architecture to process modalities independently and ensure scalability

2 Extending multimodal contrastive learning to music and language

MusCALL is trained via multimodal contrastive learning, where each component of the loss (audio-to-text and text-to-audio) is of the form

$$\mathcal{L}_{a \to t} = -\frac{1}{N} \sum_{i}^{N} \log \frac{\exp\left(\boldsymbol{z}_{a,i} \cdot \boldsymbol{z}_{t,i}^{+} / \tau\right)}{\sum_{\boldsymbol{z} \in \left\{\boldsymbol{z}_{t,i}^{+}, \boldsymbol{z}_{t,i}^{-}\right\}}}$$

(N: batch size; $\boldsymbol{z}_{t,i}^+ \otimes \boldsymbol{z}_{t,i}^-$: embeddings of positive and negative text samples for item a_i ; τ : temperature parameter)

- To mitigate some of the limitations in the data, we explore two variants:
 - (1) Content-aware loss weighting
 - (2) Combining a **self-supervised learning objective** with the multimodal contrastive loss

- MusCALL is trained on a dataset of ~250k (audio, caption) pairs
 - Audio: 20 seconds
 - Text: ~ 1 sentence describing the track

Architecture: ResNet50 as the audio backbone and a lightweight (4-layer) Transformer as the text encoder

3 Experiments & Results

Text-to-Audio & Audio-to-Text Retrieval

Method	$Text \rightarrow Audio$					$Audio \rightarrow Text$				
111011104	R@1	R@5	R@10	mAP10	MedR ↓	R@1	R@5	5 R@10 n	mAP10	MedR ↓
DCASE [56]	2.3	10.4	17.4	5.5	50	1.1	5.6	10.1	3.0	84
DCASE + CL	3.9	12.4	18.1	6.8	81.5	2.0	8.6	16.4	4.5	64
MusCALL (ours)	25.9	51.9	63.3	36.0	5	25.8	53.0	63.0	35.9	5

MusCALL outperforms the DCASE baseline by a considerable margin even when using the same contrastive loss (DCASE + CL)

Analysing the effect of the main design choices in MusCALL, we find that the model capacity needs to be adequately chosen: adding layers to the text encoder does not help past a certain point; providing the model with longer audio sequences is beneficial, particularly when this is done alongside using attention pooling

This work was supported by UK Research and Innovation [grant number EP/S022694/1] and Universal Music Group

Contact: i.manco@qmul.ac.uk
arXiv: 2208.12208
Code: github.com/ilaria-manco/muscall

Zero-shot Transfer

Method	Prompt	Genre	Tagging		
	riompo	Acc.	ROC	PR	
MusCALL _{BASE} MusCALL _{BASE}	×	55.5 52.0	78.0 72.0	28.3 21.0	
MusCALL _{SSL} MusCALL _{SSL}	X ✓	58.2 62.0	77.4 73.4	29.3 23.2	

Qualitative Results

Query Text

An atmospheric and introspective orchestral track featuring strings, piano, and synth.

Deep chilled out space jazz with crisp beats and lush electronics.

Up tempo, pumping dance pop with female vocals.

Text of the Top-1 Audio

An inspirational and moody orchestral track featuring strings and choir.

Jaunty swing featuring trumpet.

Quirky, fun, positive disco party music.