EPITA

Mathématiques

Partiel S2

durée: 3 heures

Mai 2022

Nom:
Prénom :
Classe:
NOTE:
Le barème est sur 40 points. La note sera ramenée à une note sur 20 par une simple division par 2.
Consignes:
 Lire le sujet en entier avant de commencer. Il y a en tout 7 exercices. La rigueur de votre rédaction sera prise en compte dans la note.

— Vous devez répondre directement sur les feuilles jointes. Pensez à regarder la taille (souvent surestimée) réservée

— Un malus d'un point sur la note sur 20 sera appliqué aux copies manquant de propreté.

à la réponse avant de commencer à rédiger.

— Aucune réponse au crayon de papier ne sera corrigée.

— Documents et calculatrices interdits.

Exercice 1 (6,5 points)

1.	Rappeler les développements limités en 0 à l'ordre 4 de e^u , $\cos(u)$, $\sin(u)$, $\ln(1+u)$ et $\sqrt{1+u}$.
2.	Donner le développement limité en 0 à l'ordre 4 de $f(x) = \ln(1-2x)\sin\left(\frac{x}{2}\right)$.
3.	Donner le développement limité en 0 à l'ordre 4 de $g(x) = \sqrt{1 + \cos(2x)}$.

Exercice 2 (4 points)

1.	Calculer $\lim_{x\to 0} \frac{\cos(2x^2) - 1}{e^x - e^{-x} - 2x}$
2.	Calculer $\lim_{x \to +\infty} x^2 \left(e^{\frac{1}{x^2}} - \cos\left(\frac{1}{x}\right) \right)$.

Exercice 3 (5 points)

On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique au départ et à l'arrivée est $A = \begin{pmatrix} 2 & 2 & 3 \\ 4 & 3 & 5 \\ -1 & -2 & -2 \end{pmatrix}$,
1. Inverser A.	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•

• •	
• •	
• •	
••	
	aginons que A corresponde aussi à la matrice de $g \in \mathcal{L}(\mathbb{R}_2[X], \mathbb{R}^3)$ dans les bases canoniques au départ et à l'arruelle est l'expression de g ? Justifier brièvement.
• •	
• •	
	ice 4 (5 points) exercice, les deux questions sont indépendantes.
s cet	
s cet	exercice, les deux questions sont indépendantes.
s cet 1. Or	exercice, les deux questions sont indépendantes. a se place dans $E = \mathbb{R}_2[X]$ et on considère les familles suivantes : $\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right) \text{et} \mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$
s cet L. Or Ce	exercice, les deux questions sont indépendantes. In se place dans $E = \mathbb{R}_2[X]$ et on considère les familles suivantes : $\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right) \text{et} \mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ es familles sont-elles des bases de E ? Justifiez rigoureusement votre réponse. Si oui, donner les coordonnées
s cet L. Or Ce	exercice, les deux questions sont indépendantes. In se place dans $E = \mathbb{R}_2[X]$ et on considère les familles suivantes : $\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right) \text{et} \mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ es familles sont-elles des bases de E ? Justifiez rigoureusement votre réponse. Si oui, donner les coordonnées
s cet L. Or Ce	exercice, les deux questions sont indépendantes. In se place dans $E = \mathbb{R}_2[X]$ et on considère les familles suivantes : $\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right) \text{et} \mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ es familles sont-elles des bases de E ? Justifiez rigoureusement votre réponse. Si oui, donner les coordonnées
s cet 1. Or	exercice, les deux questions sont indépendantes. In se place dans $E = \mathbb{R}_2[X]$ et on considère les familles suivantes : $\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right) \text{et} \mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ es familles sont-elles des bases de E ? Justifiez rigoureusement votre réponse. Si oui, donner les coordonnées
s cet 1. Or	exercice, les deux questions sont indépendantes. In se place dans $E = \mathbb{R}_2[X]$ et on considère les familles suivantes : $\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right) \text{et} \mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ es familles sont-elles des bases de E ? Justifiez rigoureusement votre réponse. Si oui, donner les coordonnées
s cet 1. Or	exercice, les deux questions sont indépendantes. In se place dans $E = \mathbb{R}_2[X]$ et on considère les familles suivantes : $\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right) \text{et} \mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ es familles sont-elles des bases de E ? Justifiez rigoureusement votre réponse. Si oui, donner les coordonnées
s cet 1. Or Ce	exercice, les deux questions sont indépendantes. In se place dans $E = \mathbb{R}_2[X]$ et on considère les familles suivantes : $\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right) \text{et} \mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ es familles sont-elles des bases de E ? Justifiez rigoureusement votre réponse. Si oui, donner les coordonnées
s cet 1. Or	exercice, les deux questions sont indépendantes. In se place dans $E = \mathbb{R}_2[X]$ et on considère les familles suivantes : $\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right) \text{et} \mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ es familles sont-elles des bases de E ? Justifiez rigoureusement votre réponse. Si oui, donner les coordonnées
s cet 1. Or Ce	exercice, les deux questions sont indépendantes. In se place dans $E = \mathbb{R}_2[X]$ et on considère les familles suivantes : $\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right) \text{et} \mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ es familles sont-elles des bases de E ? Justifiez rigoureusement votre réponse. Si oui, donner les coordonnées
s cet 1. Or	exercice, les deux questions sont indépendantes. In se place dans $E = \mathbb{R}_2[X]$ et on considère les familles suivantes : $\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right) \text{et} \mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ es familles sont-elles des bases de E ? Justifiez rigoureusement votre réponse. Si oui, donner les coordonnées
s cet 1. Or	exercice, les deux questions sont indépendantes. In se place dans $E = \mathbb{R}_2[X]$ et on considère les familles suivantes : $\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right) \text{et} \mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ es familles sont-elles des bases de E ? Justifiez rigoureusement votre réponse. Si oui, donner les coordonnées
s cet 1. Or Ce	exercice, les deux questions sont indépendantes. In se place dans $E = \mathbb{R}_2[X]$ et on considère les familles suivantes : $\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right) \text{et} \mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ es familles sont-elles des bases de E ? Justifiez rigoureusement votre réponse. Si oui, donner les coordonnées
s cet 1. Or	exercice, les deux questions sont indépendantes. In se place dans $E = \mathbb{R}_2[X]$ et on considère les familles suivantes : $\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right) \text{et} \mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ es familles sont-elles des bases de E ? Justifiez rigoureusement votre réponse. Si oui, donner les coordonnées
s cet 1. Or Ce	exercice, les deux questions sont indépendantes. In se place dans $E = \mathbb{R}_2[X]$ et on considère les familles suivantes : $\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right) \text{et} \mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ es familles sont-elles des bases de E ? Justifiez rigoureusement votre réponse. Si oui, donner les coordonnées
s cet 1. Or	exercice, les deux questions sont indépendantes. In se place dans $E = \mathbb{R}_2[X]$ et on considère les familles suivantes : $\mathcal{F}_1 = \left(P_1 = 1, P_2 = X^2 + X, P_3 = -X^2 - X - 2\right) \text{et} \mathcal{F}_2 = \left(Q_1 = 1, Q_2 = X^2 + X + 1, Q_3 = X^2 - X\right)$ es familles sont-elles des bases de E ? Justifiez rigoureusement votre réponse. Si oui, donner les coordonnées

2.	On se place dans \mathbb{R}^3 . Soient les vecteurs $u = (2, 3, -1)$ et $v = (1, -1, -2)$.
	(a) La famille (u, v) est-elle une base de $G = \text{Vect}(u, v)$? Justifier.
	(a) La familie (u, v) est ene due base de $u = vect(u, v)$. Subtinet.
	(b) Trouver $a \in \mathbb{R}$ tel que $w = (-15, 5, a) \in G$.

Exercice 5 (8 points)

On considère l'application linéaire $f: \left\{ \begin{array}{ccc} \mathbb{K}_2[X] & \longrightarrow & \mathbb{K}^2 \\ P & \longmapsto & (P(0), P'(1)) \end{array} \right.$
1. Trouver une base du noyau de f . En déduire sa dimension.
2. Énoncer en toute généralité le théorème du rang. En déduire la dimension de l'image de f dans notre cas.
3. f est-elle injective? f est-elle surjective? Justifier.
4. Donner la matrice de f dans les bases canoniques au départ et à l'arrivée.

5. Donner la matrice de f dans la base canonique au départ et la base $((2,1),(-1,-1))$ à l'arrivée.	
Exercice 6 (8 points)	
Soit $f \in \mathcal{L}(\mathbb{R}^3)$ dont la matrice dans la base canonique au départ et à l'arrivée est $A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ 0 & -1 & -1 \end{pmatrix}$.	
On note C_1 , C_2 et C_3 les trois vecteurs colonnes de A .	
1. La famille (C_1, C_2, C_3) est-elle libre? Sinon, en extraire une famille libre maximale.	
2. En déduire une base \mathcal{B}_1 de $\mathrm{Im}(f)$ et une base \mathcal{B}_2 de $\mathrm{Ker}(f)$. Donner leur dimension.	

	$\operatorname{B}\operatorname{B}\operatorname{B}\operatorname{B}\operatorname{B}\operatorname{B}\operatorname{B}\operatorname{B}\operatorname{B}\operatorname{B}$
• • • • • • • • • • • • • • • • • • • •	
0 1 1 42	
Calculer A	. Comment f s'appelle-t-elle?
. Des question	ns 3. et 4., donner l'image par f d'un vecteur quelconque de $\mathrm{Im}(f)$ puis d'un vecteur quelconque de \mathbb{R}^3 .
En dóduiro	sans calcul, la matrice de f dans la base $\mathcal B$ au départ et à l'arrivée.
zn dedune,	some carear, in marrice de f dans in some p an depart of a rantivec.

Exercice 7 (3,5 points)

On considère $E=\mathbb{R}^2,\,F=\mathrm{Vect}\,((1,1))$ et $G=\mathrm{Vect}\,((1,-1)).$ On admet que $F\oplus G=E.$ Ainsi, $\forall\,u\in E,\,\exists\,!(v,w)\in F\times G$ tel que u=v+w. On définit l'application linéaire s: $\left\{\begin{array}{ccc} E&\longrightarrow&E\\ u&\longmapsto&v-w\end{array}\right.$ 1. Pour $u=(1,3)\in\mathbb{R}^2,$ trouver v et w. En déduire s(u).

 	 	 	 	٠.	 ٠.	 	 	٠.	 	 	 ٠.	 	 	 	 ٠.	٠.	٠.	٠.	 	 	 	 	 ٠.	 	 	 	٠.	 	 	

2. Dessiner F et G dans \mathbb{R}^2 . Placer le vecteur u=(1,3). Expliquer comment, graphiquement, on retrouve v, w et s(u) (les dessiner aussi). À votre avis, comment peut-on appeler l'endomorphisme s?

			 	 		 • • •	 • • •	 • •	 • • •	• •	 • •		• •	 • •	 • •	 • •		• •	• •	 • •	 • • •	 •				
	• • • •	• • •	 	 	• • •	 	 • •	 • •	 • • •	• •	 • •	• • •	• •	 • •	 • •	 • •	• • •	• •	• •	 • •	 • •	 • •	 • •	 • •	 • •	 •
• • • • •			 	 		 	 	 ٠.	 	٠.	 ٠.		٠.	 	 ٠.	 		٠.		 ٠.	 • •	 ٠.	 	 ٠.	 ٠.	