Natural Language Processing: High-Dimensional Ouputs

Sargur N. Srihari srihari@cedar.buffalo.edu

This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/CSE676

Topics in NLP

- 1. N-gram Models
- 2. Neural Language Models
- 3. High-Dimensional Outputs
- 4. Combining Neural Language Models with n-grams
- 5. Neural Machine Translation
- 6. Historical Perspective

Topics in High-Dimensional Outputs

- Overview
- 1.Use of a Short List
- 2. Hierarchical Softmax
- 3. Importance Sampling
- 4. Noise-Contrastive Estimation and Ranking Loss

Word vocabularies can be large

- In many NLP applications we want our models to produce words (rather than characters) as the fundamental output
- For large vocabularies it is computationally expensive to represent output distribution over the choice of a word because the vocabulary size is large
 - Ex: In many applications V contains $100 \mathrm{K}$ words

Naiive Approach

- Naiive approach
 - 1. Apply an affine transformation from hidden representation to output space
 - 2. Then apply a softmax function from hidden representation to output space
- The Weight matrix representing this affine transformation is very large because output dimension is $\left|V\right|$
 - High memory cost to represent it and high computational cost to multiply by it

Cost at both training and testing

- Because softmax is normalized across all |V| outputs, it is necessary to perform full matrix multiplication at training time and testing time
- We cannot calculate only the dot product with the weight vector for the correct output
- Thus the high computational cost of the output layer arises at both
 - Training time (to compute likelihood and gradient)
 - Testing time (to compute probabilities for all selected words)

Cost of Naiive Mapping to Words

- Suppose h is the top hidden layer used to predict output probabilities \hat{y}_i
- If we parameterize the transformation from h to \hat{y}_i with learned weights W and learned biases b, then the affine-softmax layer performs the following computations $a_i = b_i + \sum W_{ij}h_j \ \forall i \in \{1,...|V|\}$

$$\begin{vmatrix} a_{i} = b_{i} + \sum_{j} W_{ij} h_{j} & \forall i \in \{1, ... | V | \} \\ \hat{y}_{i} = \frac{e^{a_{i}}}{\sum_{i'=1}^{|V|} e^{a_{i'}}} \end{vmatrix}$$

- If h contains n_h elements then the above operation is $O(|V|n_h)$
 - $-n_h$ is in the thousands and |V| is in hundreds of thousands

Use of a Short List

- First neural language models to deal with high cost of using softmax over large V:
 - Split V into shortlist L of frequent words (say $10{,}000$ words handled by a neural net) and tail $T{=}V/L$ of rare words (handled by an n-gram model)
 - To combine two predictions, NN has to predict probability that word appearing after context *C* belongs to tail list
 - By extra sigmoid output unit to provide an estimate
 - The extra output can then be used to achieve an est $P(i \in \mathbb{T} \mid C)$. probability estimate over all words in V as follows:

$$P(y = i \mid C) = 1_{i \in \mathbb{L}} P(y = i \mid C, i \in \mathbb{L}) (1 - P(i \in \mathbb{T} \mid C))$$
$$+ 1_{i \in \mathbb{T}} P(y = i \mid C, i \in \mathbb{T}) P(i \in \mathbb{T} \mid C)$$

- where $P(y=i|C, i \in L)$ is provided by neural language model
- and $P(y=i|C, i \in T)$ is provided by the n-gram model

Disavantage of Short-list approach

- Potential generalization advantage of the neural language models is limited to the most frequent words
 - Where it is least useful
- This disadvantage has stimulated exploration of alternative methods to deal with highdimansional outputs
 - Described next

Hierarchical Softmax

- Classical approach to reducing computational burden of high-dimensional outputs over large vocabulary sets V is to decompose probabilities hierarchically
- Instead of necessitating a no. of computations proportional to |V| (and also proportional to no. of computations proportional to no. of hidden units n_h), the |V| factor can be reduced to as low as $\log |V|$

Hierarchy of Words

- Hierarchy builds categories of words
- Then categories of categories of words, etc
- Nested categories form a tree
 - With words at the leaves
- In a balanced tree, tree has depth $O(\log |V|)$
- Probability of choosing a word is given by:
 - The product of the probabilities of choosing the branch leading to that word at every node on a path from the root of the tree to the leaf containing the word
 - A simple example is given next

Simple Hierarchy of Word Categories

(1,1)(0,1)(0,0)(1,0) w_7 w_1 w_2 w_3 w_4 w_5 w_6 (0,1,0)(0,1,1)(1,0,0)(1,0,1)(1,1,0)(1,1,1)

Eight words $w_0,...,w_7$ organized into a three level hierarchy. Leaves represent specific words. Internal nodes represent groups of words. Any node can be indexed by the sequence of binary decisions $(0=\text{left},\ 1=\text{right})$ to reach the node from the root

Superclass (0) contains the classes (0,0) and (0,1) which respectively contain the sets of words $\{w_0,w_1\}$ and $\{w_2,w_3\}$

Superclass (1) contains the classes (1,0) and (1,1) which respectively contain the sets of words $\{w_4,w_5\}$ and $\{w_6,w_7\}$

Node (1,0) corresponds to the prefix $(b_0(w_4)=1,b_1(w_4)=0)$ and the probability of w_4 can be decomposed as:

$$P(y = w_4) = P(b_0 = 1, b_1 = 0, b_2 = 0)$$

= $P(b_0 = 1)P(b_1 = 0 \mid b_0 = 1)P(b_2 = 0 \mid b_0 = 1, b_1 = 0)$

Importance Sampling

- Training of neural language models can be speeded up by avoiding explicit computation of contribution to the gradient from all words that do not appear in the next position
- Every incorrect word should have low probability under the model
- Instead of enumerating all words, it is possible to sample only a subset of words

Gradient using Sampling

Using notation:

$$a_i = b_i + \sum_j W_{ij} h_j \quad \forall i \in \{1, \dots, |\mathbb{V}|\},$$

$$\hat{y}_i = \frac{e^{a_i}}{\sum_{i'=1}^{|\mathbb{V}|} e^{a_{i'}}}.$$

where a is the vector of pre-softmax activations (or scores) with one element per word.

the gradient written as follows:

$$\begin{split} \frac{\partial \log P(y \mid C)}{\partial \theta} &= \frac{\partial \log \operatorname{softmax}_{y}(\boldsymbol{a})}{\partial \theta} \\ &= \frac{\partial}{\partial \theta} \log \frac{e^{a_{y}}}{\sum_{i} e^{a_{i}}} \\ &= \frac{\partial}{\partial \theta} (a_{y} - \log \sum_{i} e^{a_{i}}) \\ &= \frac{\partial a_{y}}{\partial \theta} - \sum_{i} P(y = i \mid C) \frac{\partial a_{i}}{\partial \theta} \end{split}$$

The first term is the positive phase term (pushing a_y up)

Second term is the negative phase term (pushing a_i down for all i with weight P(i|C)

Since negative phase is expectation, can estimate with a Monte Carlo sample

Sampling from another distribution

- Gradient method based on sampling would require sampling from the model itself
- Sampling from the model requires computing P(i|C) for all i in the vocabulary
 - Which is precisely what we are trying to avoid
- Instead of sampling from the model, one can sample from another distribution, called the proposal distribution (denoted q)
 - And use weights to correct for bias due to sampling from wrong distribution
 - This is an application of importance sampling

Biased Importance Sampling

- Even exact importance sampling is inefficient
- It requires computing weights p_i/q_i where $p_i = P(i|C)$
 - Which can only be computed if all the scores a_i are computed
- The solution adopted is called biased importance sampling
 - Where the importance weights are normalized to sum to 1