Notes on Riemann Surfaces

Ziquan Yang

October 9, 2015

Contents

1	Basic Constructions and Properties			1
	1.1		results from complex analysis	
		1.1.1	Local normal form	1
		1.1.2	Fundamental theorem of algebra	1
	1.2	Complex calculus on manifolds		1
			Almost complex structures	
			Holomorphic functions	
		1.2.3	Differential forms	Ę
_				_
2	Thε	eory of	Divisors	7

1 Basic Constructions and Properties

1.1 Some results from complex analysis

1.1.1 Local normal form

Suppose $h: \Delta \to \Delta$ is a holomorphic function and h(0) = 0.

1.1.2 Fundamental theorem of algebra

1.2 Complex calculus on manifolds

1.2.1 Almost complex structures

Suppose $U \subseteq \mathbb{C}^n$ be an open subset. We want to decide when f is holomorphic. We start by looking at the tangent bundles. Let $z_j = x_j + iy_j : U \to \mathbb{C}$ and $x_j, y_j : U \to \mathbb{R}$ are sections of T^*U . Here by T^*U we mean the real tangent space of $U \subseteq \mathbb{C}^n \cong \mathbb{R}^{2n}$. Similarly we want to say $dz_j = dx_j + idy_j$ is a section of $T^*U \otimes_{\mathbb{R}} \mathbb{C} = \operatorname{Hom}_{\mathbb{R}}(TU, \mathbb{C})$. We also have $d\overline{z} = dx_j - idy_j$ as sections of

 $T^*U\otimes_{\mathbb{R}}\mathbb{C}$. We may often omit the subscript \mathbb{R} , but it is important to keep in mind that when we are dealing with these situations $\otimes_{\mathbb{R}}$ is assumed. Clearly dx, dy and $dz, d\overline{z}$ span the same space, since

$$[dz, d\overline{z}] = [dx, dy] \begin{bmatrix} 1 & 1 \\ i & -1 \end{bmatrix}$$

and matrix has determinant -2i. We may either use basis dx_j, dy_j 's or $dz_j, d\overline{z}_j$'s. For the latter we set the dual basis

$$\frac{\partial}{\partial z_i} = \frac{1}{2} \left(\frac{\partial}{\partial x_i} - i \frac{\partial}{\partial y_i} \right), \ \frac{\partial}{\partial \overline{z}_i} = \frac{1}{2} \left(\frac{\partial}{\partial x_i} + i \frac{\partial}{\partial y_i} \right)$$

Now we may write

$$df = \sum_{j=1}^{n} \left(\frac{\partial f}{\partial z_j} dz_j + \frac{\partial f}{\partial \overline{z}_j} d\overline{z}_j \right)$$

We would like to endow the bundle TU with the structure of a complex vector bundle, so we need to give an action of \mathbb{C} on fibers. We would like to say

$$i\frac{\partial}{\partial x_j} = \frac{\partial}{\partial y_j}$$

We define $J: TU \to TU$ by

$$J(\frac{\partial}{\partial x_j}) = \frac{\partial}{\partial y_j}, \ J(\frac{\partial}{\partial y_j}) = -i\frac{\partial}{\partial x_j}$$

Note that $J^2 = -1$. Hence we obtain an action of $\mathbb{C} \cong \mathbb{R}[J]/(J^2 + 1)$ on $V_{\mathbb{R}}$, where $V_{\mathbb{R}}$ is a fiber of TU.

Lemma 1.1. Let V be a finite dimensional real vector space and $J: V \to V$ be a \mathbb{R} -linear map satisfying $J^2 = -1$. Then $V \otimes \mathbb{C} = V^1 \oplus V^2 \cong V \oplus iV$, where

$$V' = \{v - iJv : v \in V\}$$
$$V'' = \{v + iJv : v \in V\}$$

Moreover $J|_{V'}=i, J|_{V''}=-i.$

Proof. Straightforward verification.

Remark 1.2. Let $J:V\to V$ be as above. We want to define a conjugate operation $V\otimes\mathbb{C}\to V\otimes\mathbb{C}$ given by $a+ib\mapsto a-ib$, where $a,b\in V$. Note that $\overline{V'}=V''$.

Example Consider a fiber T_pU . Suppose we have already defined J. Then we can write $T_pU\otimes\mathbb{C}=T'_pU\oplus T''_pU$, where J acts on the first component by i and the second by -i. T'_pU is spanned by

$$\frac{\partial}{\partial x_j} - iJ(\frac{\partial}{\partial y_j}) = \frac{\partial}{\partial x_j} - i\frac{\partial}{\partial y_j} = 2\frac{\partial}{\partial z_j}$$

and T''_pU is spanned by

$$\frac{\partial}{\partial x_j} + iJ(\frac{\partial}{\partial y_j}) = \frac{\partial}{\partial x_j} + i\frac{\partial}{\partial y_j} = 2\frac{\partial}{\partial \overline{z}_j}$$

Lemma 1.3. The composite map $\varphi': V \to V \otimes \mathbb{C} \cong V' \oplus V'' \to V'$ is complex-linear. Similarly, the composite map $\varphi'': V \to V''$ is conjugate-linear.

Proof. Recall that i acts on V as J, so being complex linear just means

$$\varphi'(Jv) = \frac{1}{2}(Jv - iJ^2v) = \frac{1}{2}(Jv + iv) = \frac{1}{2}i(v - iJv) = i\varphi'(v)$$

Example Again we look at how this applies to a fiber T_pU . Consider φ' : $T_pU \to T'_pU$. We have

$$\frac{\partial}{\partial x_j} \mapsto \frac{\partial}{\partial z_j}$$
$$\frac{\partial}{\partial y_j} \mapsto \frac{\partial}{\partial \overline{z}_j}$$

J serves to permute the vectors in both columns.

1.2.2 Holomorphic functions

Definition 1.4. A smooth function $f: U \to \mathbb{C}$ is holomorphic at $p \in U$ if

$$Df: T_pU \to T_p\mathbb{C} = \mathbb{C}$$

is \mathbb{C} -linear with respect to J.

Equivalently, we could also require that the induced map $T_pU\otimes_{\mathbb{R}}\mathbb{C} \to T_p\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C}$ commutes with J.

Note that $J:V\to V$ induces a natural map $J:V^*\to V^*.$ J is self-ajoint in that

$$\langle J\varphi, v \rangle = \langle \varphi, Jv \rangle, \forall \varphi \in V^*, v \in V$$

which can be verified by straigtforward computation. We let J to act on the cotangent spaces as well, so by Lemma 1.1 we have a decomposition

$$T_p^*U\otimes\mathbb{C}=T_p^{1,0}U\oplus T_p^{0,1}U$$

where J acts on $T_p^{1,0}U$ as i and on $T_p^{0,1}U$ as -i. $T_p^{1,0}U$ is spanned by dz_1, \dots, dz_n and $T_p^{0,1}U$ is spanned by $d\overline{z}_1, \dots, d\overline{z}_n$. Looking back to f, we see that Df_p pulls $dw \in T_{f(p)}^*\mathbb{C} \otimes_{\mathbb{R}}\mathbb{C}$ to $T_p^{1,0}U$ and $d\overline{w}$ to $T_p^{0,1}U$.

Write $w = f(z_1, \dots, z_n)$. We see that

$$dw \mapsto df = \sum_{j=1}^{n} \frac{\partial f}{\partial z_j} dz_j + \frac{\partial f}{\partial \overline{z}_j} d\overline{z}_j$$

and similarly $d\overline{w} = d\overline{f}$. Recall that d is a real operator, so $d\overline{f} = d\overline{f}$. Now we make an important observation:

$$(Df)^*$$
 commutes with $J \iff Df^*(dw)$ has type $(1,0)$ $\iff df$ has type $(1,0)$ $\iff \frac{\partial f}{\partial \overline{z}_j} = 0, \ j = 1, \cdots, n$

Example Let us look at the case n = 1. Write f = u + iv, where $u, v : U \to \mathbb{C}$. Recall that

$$\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$

and hence

$$2\frac{\partial f}{\partial \overline{z}} = (u_x - v_y) + i(u_y + v_x)$$

Therefore f is holomorphic in our new definition if and only if it satisfies the Cauchy-Riemann equations. We can also readily make the following observation:

Lemma 1.5. $f: U \to \mathbb{C}$ is holomorphic if and only if it is holomorphic in each coordinate, i.e. for all $(a_1, \dots, a_n) \in U$ and $j = 1, \dots, n$ the function

$$z \mapsto f(a_1, \cdots, a_{j-1}, z, a_{j+1}, \cdots, a_n)$$

is holomorphic.

We say a function is analytic if at each point it is given by a convergent power series. If n=1, then it is well know that $f:U\to\mathbb{C}$ is holomorphic if and only if it is analytic. We would like to extend this property to higher dimensions. Let $\Delta(z_j)$ denote copy of open disk of radius r_j whose coordinate is labelled z_j . We have the following theorem.

Theorem 1.6. A smooth function $f: \Delta(z_1) \times \cdots \times \Delta(z_n) \to \mathbb{C}$ is holomorphic if and only if there is a power series

$$\sum_{K} c_K z_1^{k_1} \cdots z_n^{k_n}, K = (k_1, \cdots, k_n) \in \mathbb{N}^n$$

that converges to $f(z_1, \dots, z_n)$.

Proof. Suppose f is holomophic on U. Choose $(s_1, \dots, s_n) \in \mathbb{R}^n_{>0}$ such that $|z_j| < s_j < r_j$. Then

$$f(z_{1}, \dots, z_{n}) = \frac{1}{2\pi i} \int_{|w_{n}| = s_{n}} \frac{f(z_{1}, \dots, z_{n-1}, w_{n})}{w_{n} - z_{n}} dw_{n}$$

$$= \left(\frac{1}{2\pi i}\right)^{2} \int_{|w_{n}| = s_{n}} \int_{|w_{n-1}| = s_{n-1}} \frac{f(z_{1}, \dots, w_{n-1}, w_{n})}{(w_{n} - z_{n})(w_{n-1} - z_{n-1})} dw_{n-1} dw_{n}$$

$$= \dots$$

$$= \left(\frac{1}{2\pi i}\right)^{n} \int \int \dots \int \frac{f(w_{1}, \dots, w_{n})}{\prod_{j=1}^{n} (w_{j} - z_{j})} dw_{1} \dots dw_{n}$$

Therefore we only need to expand the denominators:

$$\frac{1}{w_j - z_j} = \frac{1}{w_j} \sum_{n=0}^{\infty} \frac{1}{w_j^n} z_j^n$$

The converse is straightforward by Lemma 1.5.

1.2.3 Differential forms

Let M be a manifold. We can form the kth exterior product $\bigwedge^k T^*M$ and let $E^k(M)$ be the set of C^∞ sections. Linear algebra says

$$\bigwedge^k(T^*U\otimes\mathbb{C})=\bigoplus_{p+q=k}(\bigwedge^pT^{1,0}U)\otimes(\bigwedge^qT^{0,1}U)$$

Therefore $E_{\mathbb{C}}^k(U) = \{sections \ of \ T^*U \otimes_{\mathbb{R}} \mathbb{C} \},$

$$E^k_{\mathbb{C}}(U) = \bigoplus_{p+q=k} E^{p,q}(U)$$

 $E^{**}(U)$ is a bigraded algebra with operators $\partial, \overline{\partial}$. We define a map

$$d: E^0(X) \to E^{1,0} \oplus E^{0,1}$$

by $df = \partial f + \overline{\partial} f$, where

$$\partial f = \sum_{j=1}^{n} \frac{\partial f}{\partial z_j} dz_j, \ \overline{\partial} f = \sum_{j=1}^{n} \frac{\partial f}{\partial \overline{z}_j} d\overline{z}_j$$

Note that $f: X \to \mathbb{C}$ is a priori, only a C^{∞} function. It is holomorphic if and only if $\overline{\partial} f = 0$. $\partial, \overline{\partial}$ extend to maps $E^{p,q}(X) \to E^{p+1,q}(X), E^{p,q}(X) \to E^{p,q+1}(X)$ and they still satisfy $\partial^2, \overline{\partial}^2 = 0$.

Theorem 1.7. Every complex manifold has a natural orientation.

Definition 1.8. A holomorphic 1-form on a Riemann surface X is a closed 1-form of type (1,0).

At the first spot of the definition, I find the requirement that the form must be closed a bit weird, but the following lemma tells us that closedness is exactly describing the condition of being "locally holomorphic".

Lemma 1.9. Let f(z)dz be a (1,0)-form on the disk Δ . TFAE:

a. f(z)dz is holomorphic.

b. f(z) is holomorphic.

$$c. \ \overline{\partial}(f(z)dz) = 0.$$

Proof.

$$d(fdz) = df \wedge dz = (\frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial \overline{z}}d\overline{z}) \wedge dz = \frac{\partial f}{\partial \overline{z}}d\overline{z} \wedge dz = 2i\frac{\partial f}{\partial \overline{z}}dx \wedge dy$$

Therefore

$$d(f(z)dz) = 0 \iff \frac{\partial f}{\partial \overline{z}} = 0 \iff f \text{ is holomorphic}$$

To show $a \iff c$, we first show that $\overline{\partial}(dz) = 0$. Since $d^2z = 0$, we know that $(\partial + \overline{\partial})dz = 0$. $\partial(dz)$ is a (2,0) form, but there is none. Therefore $\overline{\partial}(dz) = 0$. Now

$$\overline{\partial}(fdz) = \overline{\partial}f \wedge dz = \frac{\partial f}{\partial \overline{z}} d\overline{z} \wedge dz = d(fdz)$$

Remark 1.10. More generally, on a Riemann surface X, if $f: X \to \mathbb{C}$ is a holomorphic function, then df is a holomorphic 1-form.

Example Label the coordinates of \mathbb{C}^2 by (x,y). Let $X \subseteq \mathbb{C}^2$ be the curve defined by $y^2 = p(x)$, where p(x) is some square-free polynomial. Suppose the degree of p(x) is 2g + 1. We claim that

$$\frac{dx}{y}, \frac{xdx}{y}, \cdots, \frac{x^{g-1}dx}{y}$$

Note that $x: X \to \mathbb{C}$ is a holomorphic function, so dx is a holomorphic 1-form. Let $X' = X - y^{-1}(0)$. If

$$p(x) = \prod_{j=0}^{2g} (x - a_j)$$

 $y^{-1}(0) = \{(a_j, 0), j = 0, 1, \dots, 2g\}$. Clearly $x^n dx/y$ is holomorphic on X' for all $n \geq 0$, so we are really trying to show that these forms are holomorphic at each $(a_j, 0)$. Without loss of generality, we assume $a_0 = 0$.

2 Theory of Divisors

Let M be a C^{∞} manifold, $f: M \to \mathbb{C}$ be a function. We write f = u + iv. df = du + idv is a \mathbb{C} -valued 1-form. It is a section of

$$\operatorname{Hom}_{\mathbb{R}}(TM,\mathbb{C}) = \operatorname{Hom}_{\mathbb{C}}(TM \otimes \mathbb{C},\mathbb{C}) \cong T^*M \otimes \mathbb{C} \cong T^*M \oplus iT^*M$$

We want to define $L(D) = \{ f \in \mathfrak{M}(X) : (f) + D \ge 0 \} \cup \{ 0 \}$. Notation: $\mathrm{Div}(0) = \sum_{p} \infty[p]$ and hence $\mathrm{Div}(0) \ge D$ for all D.

Proposition 2.1. Suppose $D \in \text{Div}(X)$. Then $f \cdot s(D) \in H^0(X, \mathcal{L}_D)$ if and only if $f \in L(D)$.

Proposition 2.2. If X is compact and deg D = 0, then $L(D) \neq 0$ if and only if D is principal.