Corrigé du DM 31, fortement inspiré de : Mines, PC 2001

Préliminaires

- 1°) Pour tout $x \in V$, $x \in \text{Ker}(f^k) \Rightarrow f^k(x) = 0 \Rightarrow f^{k+1}(x) = f(f^k(x)) = f(0) = 0 \Rightarrow x \in \text{Ker}(f^{k+1})$ Donc $\text{ker } f^k \subset \text{ker } f^{k+1}$ pour tout entier naturel k.
- **2**°)

 \diamond On suppose que $Ker(f^p) = Ker(f^{p+1})$.

Soit $x \in V$ et $k \in \mathbb{N}$. Alors

$$x \in \operatorname{Ker}(f^{p+k+1}) \iff f^{p+1}(f^k(x)) = 0 \iff f^k(x) \in \operatorname{Ker}(f^{p+1}) \iff f^k(x) \in \operatorname{Ker}(f^p)$$
$$\iff f^p(f^k(x)) = 0 \iff x \in \operatorname{Ker}(f^{p+k}),$$

donc $\operatorname{Ker}(f^{k+p+1}) = \operatorname{Ker}(f^{k+p})$ pour tout $k \in \mathbb{N}$.

Ceci prouve que la suite $(\dim(\operatorname{Ker} f^k))_{k>p}$ est constante.

 \diamond On suppose que V est de dimension $n \in \mathbb{N}$.

Pour tout $k \in \mathbb{N}$, posons $d_k = \dim(\operatorname{Ker}(f^k))$. D'après la question 1, (d_k) est une suite croissante. Elle est de plus majorée par n.

Soit $p \in \mathbb{N}$. Si $(d_k)_{0 \le k \le p}$ est strictement croissante, on montre par récurrence que, pour tout $k \in \{0, \ldots, p\}, d_k \ge k$. En particulier $p \le d_p \le n$.

La suite $(d_k)_{0 \le k \le n+1}$ n'est donc pas strictement croissante. Ainsi, il existe $p \le n$ tel que $(d_k)_{0 \le k \le p}$ est strictement croissante et tel que $d_p = d_{p+1}$. Alors, d'après le point précédent, pour tout $k \ge p$, $d_k = d_p$, ce qu'il fallait démontrer.

3°) Si $q \le n$, alors on a bien $u^n = u^q u^{n-q} = 0$.

Supposons maintenant que q > n. Avec les notations de la question 2, on sait que $d_n = d_{n+1}$, or $\ker(u^n) \subset \ker(u^{n+1})$, donc $\ker(u^n) = \ker(u^{n+1})$. Ainsi, pour tout $k \geq n$, $\ker(u^k) = \ker(u^n)$. En particulier $\ker(u^n) = \ker(u^q) = V$, donc, dans tous les cas, $u^n = 0$.

Partie I

 4°

 \diamond F est de dimension finie égale à n+1, donc F possède une base $\mathcal B$ de la forme $\mathcal{B} = (P_0, \dots, P_n) \in \mathbb{R}[X]^{n+1}$. Posons $q = \max_{0 \le i \le n} \deg(P_i)$. Tout polynôme P de F est une combinaison linéaire des polynômes de la base \mathcal{B} , donc $\deg(P) \leq q$ et $D^{q+1}(P) = 0$. Notons D_F l'endomorphisme induit par D sur F. Par récurrence sur $h \in \mathbb{N}$, on montre que, pour tout $h \in \mathbb{N}$ et $P \in F$, $D_F^h(P) = D^h(P)$ (en effet, si la propriété est vraie à l'ordre h, alors pour tout $P \in F$, $D_F^{h+1}(P) = D_F^h(D(P))$, or $D(P) \in F$, donc par hypothèse de récurrence, $D_F^{h+1}(P) = D^h(D(P)) = D^{h+1}(P)$. On en déduit que $D_F^{q+1} = 0$, donc D_F est nilpotent.

- \diamond D'après la question 3, $D_F^{n+1} = 0$. Soit $P \in F : D^{n+1}(P) = 0$, donc $\deg(P) \leq n$. Ainsi $F \subset \mathbb{R}_n[X]$. Or $\dim(F) = n + 1 = \dim(\mathbb{R}_n[X])$, donc $F = \mathbb{R}_n[X]$.
- \diamond Réciproquement, on vérifie que $\{0\}$ et les $\mathbb{R}_n[X]$ sont stables par D. Ce sont donc exactement les sous-espaces vectoriels de $\mathbb{R}[X]$ de dimension finie stables par D.
- \diamond Supposons que F est un sous-espace de dimension infinie de $\mathbb{R}[X]$, stable par F. Soit $n \in \mathbb{N}$. $\mathbb{R}_n[X]$ est de dimension finie, donc F n'est pas inclus dans $\mathbb{R}_n[X]$: il existe $P \in F$ tel que $\deg(P) > n$. Notons $p = \deg(P)$.

Posons $G = \{Q \in F \mid \deg(Q) \leq p\} : G \text{ est stable par } F, \text{ il est inclus dans } \mathbb{R}_p[X], \text{ donc}$ il est de dimension finie et d'après le point précédent, il existe $q \in \mathbb{N}$ tel que $G = \mathbb{R}_q[X]$ (ou bien $G = \{0\}$). Mais $P \in G$, donc $q \ge p \ge n$. On en déduit que $\mathbb{R}_n[X] \subset G$, pour tout $n \in \mathbb{N}$, donc $G = \mathbb{R}[X]$. La réciproque étant évidente, le seul sous-espace vectoriel de $\mathbb{R}[X]$ de dimension infinie stable par D est $\mathbb{R}[X]$.

- \Rightarrow $D_n = (X^2 \lambda)(g)$, donc D_n commute avec g en tant que polynôme en g: si u est un polynôme en g de la forme $u = \sum_{k=0}^p \alpha_k g^k$, alors $ug = \sum_{k=0}^p \alpha_k g^{k+1} = gu$.
- \diamond Par récurrence, on en déduit que, pour tout $k \in \mathbb{N}$, g commute avec D_n^k . On remarque que $P \in \mathbf{R}_p[X]$ si et seulement si $D_n^{p+1}(P) = 0$. Soit $P \in \mathbf{R}_p[X] : D_n^{p+1}(g(P)) = g(D_n^{p+1}(P)) = g(0) = 0$, donc $g(P) \in \mathbf{R}_p[X]$. Ceci montre que $\mathbf{R}_p[X]$ est stable par g.
- Soit F un sous-espace vectoriel de $\mathbb{R}[X]$.
- \diamond Supposons que F est stable par g. Soit $P \in F$. Alors $g(P) \in F$ puis $g(g(P)) \in F$, donc $D(P) = q^2(P) - \lambda P \in F$. Ainsi F est aussi stable par D.
- \diamond Réciproquement, supposons que F est stable par D. Lorsque $F = \mathbb{R}[X]$ ou $F = \{0\}$, il est évident que F est stable par g. Sinon, d'après la question 4, il existe $n \in \mathbb{N}$ tel que $F = \mathbb{R}_n[X]$.

D est un polynôme en g, donc g commute avec D, donc aussi avec D^{n+1} . Soit $P \in F : D^{n+1}(g(P)) = g(D^{n+1}(P)) = g(0) = 0$, donc $g(P) \in F$. On a prouvé que F est stable par q.

a) dim($\mathbb{R}_0[X]$) = 1 et $D_0 = 0$. Soit $g \in L(\mathbb{R}_0[X])$. Notons G la matrice de g dans la base canonique de $\mathbb{R}_0[X]$, égale à (1). Alors,

 $g^2 = \lambda Id + D_0 \iff G^2 = \lambda$, or $G \in \mathcal{M}_1(\mathbb{R}) = \mathbb{R}$, donc s'il existe $g \in L(\mathbb{R}_0[X])$ tel que $g^2 = \lambda Id + D_0$, alors $\lambda \geq 0$ et réciproquement, si $\lambda \geq 0$, en posant $g = \sqrt{\lambda}Id$, on a bien $g^2 = \lambda Id + D_0$.

En conclusion, la condition nécessaire et suffsante attendue est : $\lambda \geq 0$.

- **b)** \diamond Supposons qu'il existe un endomorphisme g de $\mathbf{R}_n[X]$ tel que $g^2 = \lambda Id_{\mathbf{R}_n[X]} + D_n$. Alors d'après la question 5, $\mathbb{R}_0[X]$ est stable par g. Si l'on note g_0 l'endomorphisme induit par g sur $\mathbb{R}_0[X]$, on a $g_0^2 = \lambda Id_{\mathbb{R}_0[X]} + D_0$ ce qui est impossible car $\lambda < 0$. \diamond Supposons qu'il existe un endomorphisme g de $\mathbf{R}[X]$ tel que $g^2 = \lambda Id_{\mathbf{R}[X]} + D$.
- Alors d'après la question 6, $\mathbb{R}_0[X]$ étant stable par D, il est également stable par g. Si l'on note g_0 l'endomorphisme induit par g sur $\mathbb{R}_0[X]$, on a à nouveau $g_0^2 = \lambda Id_{\mathbb{R}_0[X]} + D_0$ ce qui est impossible car $\lambda < 0$.
- 8°) a) $f^n \neq 0$ donc il existe y tel que $f^n(y) \neq 0$.

Soit $(\alpha_i)_{0 \le i \le n} \in \mathbb{R}^{n+1}$ tel que $\sum_{i=0}^n \alpha_i f^i(y) = 0$. Supposons qu'il existe $i \in \{0, \dots, n\}$ tel que $\alpha_i \ne 0$. On peut alors poser $k = \min\{i \in \{0, \dots, n\} \mid \alpha_i \ne 0\}$.

Ainsi, $0 = \sum_{i=k}^{n} \alpha_i f^i(y)$. Composons cette égalité par f^{n-k} : en tenant compte du fait

que $f^h(y) = 0$ dès que h > n, on en déduit que $\alpha_k f^n(y) = 0$, or $f^n(y) \neq 0$, donc $\alpha_k = 0$, ce qui est faux. Ainsi, pour tout $i \in \{0, \dots, n\}$, $\alpha_i = 0$. Ceci prouve que B est une famille libre de V. De plus B possède n + 1 vecteurs et $\dim(V) = n + 1$, donc B est une base de V.

- \diamond L'image par f du premier vecteur de B est nul, donc la première colonne de mat(f,B) est nulle. Ensuite, l'image du ième vecteur de B par f est égale au (i-1)-ième vecteur de B, donc $\text{mat}(f,B)=A_0$.
- **b)** Puisque $D_n^{n+1} = 0$ et $D_n^n(X^n) = n! \neq 0$, on peut appliquer la question a), ce qui assure l'existence de la base B_n .

Dans cette base, la matrice de $\lambda Id + D_n$ est $A_0 + \lambda I_n$ soit A_{λ} .

 9°) a) Soit $h \in L(\mathbb{R}_2[X])$.

Supposons que h commute avec D_2 .

Notons $y \in \mathbb{R}_2[X]$ tel que $D_2^2(y) \neq 0$. Alors avec les notations de la question 8.a, h(y) se décompose sur la base B_2 en : $h(y) = ay + bD_2(y) + cD_2^2(y)$, où $(a, b, c) \in \mathbb{R}^3$.

h et D_2 commutent, donc pour tout $k \in \{0, 1, 2\}$, h et D_2^k commutent également et : $h(D_2^k(y)) = D_2^k(h(y)) = aD_2^k(y) + bD_2^{k+1}(y) + cD_2^{k+2}(y) = (aId + bD_2 + cD_2^2)(D_2^k(y))$.

Ainsi h et $aId + bD_2 + cD_2^2$ sont deux endomorphismes qui coincident sur la base B_2 , donc ils sont égaux.

Réciproquement, il est clair que si $h = aId + bD_2 + cD_2^2$ alors h est un polynôme en D_2 , donc h et D_2 commutent.

b) Soit $\lambda \in \mathbb{R}$.

On souhaite résoudre l'équation (E): $g^2 = \lambda Id_{\mathbf{R}_2[X]} + D_2$ en l'inconnue g.

Si g est solution, alors g commute avec D_2 , donc d'après la question précédente, sans perte de généralité, on peut supposer qu'il existe $a,b,c\in\mathbb{R}$ tels que $g=aId+bD_2+cD_2^2$. Dans ce cas, en tenant compte du fait que $D_2^3=0$, on calcule :

 $g^2 = a^2 Id + 2abD_2 + (b^2 + 2ac)D_2^2$, donc $(E) \iff \lambda Id + D_2 = a^2 Id + 2abD_2 + (b^2 + 2ac)D_2^2$.

Or la famille (Id, D_2, D_2^2) est libre (sinon B_2 serait liée, en tant qu'image de (Id, D_2, D_2^2) par l'application linéaire $u \longmapsto u(y)$ de $L(\mathbb{R}_2[X])$ dans $\mathbb{R}_2[X]$), donc $(E) \iff (a^2 = \lambda, 2ab = 1, 2ac + b^2 = 0)$.

Lorsque $\lambda \leq 0$, ce dernier système n'a aucune solution. Supposons maintenant que $\lambda > 0$. Dans ce cas, $(E) \Longleftrightarrow (a = \pm \sqrt{\lambda}, b = \frac{1}{2a}, c = -\frac{1}{8a^3})$.

En conclusion, il existe des endomorphismes g de $\mathbf{R}_2[X]$ tels que $g^2 = \lambda Id_{\mathbf{R}_2[X]} + D_2$ si et seulement si $\lambda > 0$.

c) Soit $G \in \mathcal{M}_3(\mathbb{R})$. Notons g l'unique endomorphisme de $\mathbb{R}_2[X]$ tel que $G = \text{mat}(g, B_2)$. Alors $G^2 = A_1 \iff g^2 = Id_{\mathbb{R}_2[X]} + D_2$, donc d'après la question précédente,

$$G^2 = A \Longleftrightarrow \exists \varepsilon \in \{1, -1\}, \quad (a = \varepsilon, b = \frac{1}{2\varepsilon}, c = -\frac{1}{8\varepsilon}).$$
 Finalement, $G^2 = A_1 \Longleftrightarrow G \in \left\{I_2 + \frac{1}{2}A_0 - \frac{1}{8}A_0^2, -I_2 - \frac{1}{2}A_0 + \frac{1}{8}A_0^2\right\}.$

Partie II

- **10°)** a) \diamond Si $g^2 = D_n$ alors $g^{2n+2} = D_n^{n+1} = 0$ donc g est nilpotent.
- $\diamond g$ n'est pas injectif car $g^2 = D_n$ ne l'est pas, donc $dim(\ker(g)) \ge 1$.

De plus, si $\ker(g) = \ker(g^2)$, alors d'après la question 2, $\ker(g) = \ker(g^{n+1}) = \mathbb{R}_n[X]$, donc $0 = g = g^2 = D_n$ ce qui est faux.

Ainsi, $\dim(\operatorname{Ker}(g^2)) > \dim(\operatorname{Ker}(g)) \ge 1$, $\dim(\operatorname{Ker}(g^2)) \ge 2$.

- b) Or $Ker(g^2) = Ker(D_n) = \mathbb{R}_0[X]$ qui est de dimension 1. Ceci contredit le résultat précédent : g n'existe pas.
- c) Si $g^2 = D$ alors d'après la question 6, pour $n \in \mathbb{N}$, $\mathbb{R}_n[X]$ est stable par D_n donc par g. On peut ainsi noter g_n l'endomorphisme induit par g sur $\mathbb{R}_n[X]$. Ainsi, il existe g_n tel que $g_n^2 = D_n$ ce qui est impossible.
- **11**°) **a)** On sait que les primitives d'un polynôme sont des polynômes donc D est surjective. Ainsi $D(\mathbb{R}[X]) = \mathbb{R}[X]$ puis pour tout $m \in \mathbb{N}$, $D^m(\mathbb{R}[X]) = \mathbb{R}[X]$ et $g(g^{k-1}(\mathbb{R}[X])) = D^m(\mathbb{R}[X]) = \mathbb{R}[X]$ donc g est surjective.
- **b)** $\forall q \leq k$, $\operatorname{Ker}(g^q) \subset \operatorname{Ker}(g^k) = \operatorname{Ker}(D^m) = \mathbb{R}_{m-1}[X]$. Donc $\operatorname{Ker}(g^q)$ est de dimension finie pour $0 \leq q \leq k$.
- c) \diamond Soit $P \in \text{Ker}(g^p)$. Alors $g^{p-1}(g(P)) = g^p(P) = 0$, donc $g(P) \in \text{Ker}(g^{p-1})$. Ainsi, l'application Φ est correctement définie. Elle est linéaire en tant que restriction d'une application linéaire à des sous-espaces vectoriels.
- $\diamond \ \ \text{Noyau de } \Phi : \mathrm{Ker} \Phi = \mathrm{Ker}(g) \cap \mathrm{Ker}(g^p) = \mathrm{Ker}(g), \, \mathrm{car} \, \, p \geq 1, \, \mathrm{donc} \, \, \mathrm{Ker}(g) \subset \mathrm{Ker}(g^p).$
- \diamond Image de Φ : soit $P \in \text{Ker}(g^{p-1})$. g étant surjective, il existe $Q \in \mathbb{R}[X]$ tel que g(Q) = P. De plus, $g^p(Q) = g^{p-1}(P) = 0$ donc Q est élément de $\text{Ker}(g^p)$ ce qui permet d'écrire $\Phi(Q) = P$. Ainsi $Im(\Phi) = \text{Ker}g^{p-1}$ et Φ est surjective.
- $\Rightarrow \text{ On applique le théorème du rang : } \dim(\operatorname{Ker}(\Phi)) + \dim(\operatorname{Im}(\Phi)) = \dim(\operatorname{Ker}(g^p)), \operatorname{donc} \dim(\operatorname{Ker}(g)) + \dim(\operatorname{Ker}(g^{p-1})) = \dim(\operatorname{Ker}(g^p)).$

Il en résulte $\dim(\operatorname{Ker}(g^p)) = p \times \dim(\operatorname{Ker}(g))$ pour tout $p \in \{0, \dots, k\}$ (en effet, cette question est en fait valable pour tout $p \in \{1, \dots, k\}$ et cette dernière relation est évidente pour p = 0).

d) Soit $m \ge 1$ et $k \ge 2$.

Supposons qu'il existe au moins un endomorphisme g de l'espace vectoriel $\mathbf{R}[X]$ tel que $g^k = D^m$. D'après les questions précédentes,

 $\dim(\operatorname{Ker}(D^m)) = \dim(\mathbb{R}_{m-1}[X]) = m = \dim(\operatorname{Ker}(g^k)) = k \times \dim(\operatorname{Ker}(g))$. On en déduit que m est un multiple de k.

Réciproquement, supposons que k divise m: il existe $p \in \{1, ..., m\}$ tel que m = pk. Posons alors $g = D^p$. On a bien $g^k = D^m$.

D'où la condition nécessaire et suffisante : m est un multiple de k.

Cette condition n'est pas remplie lorque m=1 et k=2, ce qui redémontre la question 10.c.

Partie III

12°) a) On notera I au lieu de I_{n+1} .

$$(I+tD_n)(\sum_{k=0}^n (-1)^k t^k D_n^k) = \sum_{k=0}^n \left[(-1)^k t^k D_n^k - (-1)^{k+1} t^{k+1} D_n^{k+1} \right].$$
 C'est une somme

télescopique, donc
$$(I+tD_n)(\sum_{k=0}^n (-1)^k t^k D_n^k) = I - (-1)^{n+1} t^{n+1} D_n^{n+1} = I$$
, car $D_n^{n+1} = 0$.

Donc la matrice carrée $I + tD_n^{\kappa-0}$ est inversible et son inverse que l'on notera simplement

$$Q(t)$$
 est définie par $Q(t) = (I + tD_n)^{-1} = \sum_{k=0}^{n} (-1)^k t^k D_n^k$...

Ainsi, pour tout $k \in \{0, \dots, n\}, a_k(t) = (-t)^k$.

b) Les fonction a_k sont dérivables, donc d'après les théorèmes usuels, Q est aussi dérivable. De plus, Q(t) commute avec D_n en tant que polynôme de D_n .

En dérivant l'égalité $Q(t)(I + tD_n) = I$ vraie pour tout t, il vient :

$$Q'(t)(I+tD_n) + Q(t)D_n = 0$$
, donc $Q'(t) = -Q(t)D_nQ(t) = -Q(t)^2D_n$.

- c) Soit $t \in \mathbb{R}$. Il existe un polynôme P tel que $L_n(t) = D_n P(D_n) = P(D_n) D_n$, donc $L_n(t)^{n+1} = D_n^{n+1} P^{n+1}(D_n)$ or $D_n^{n+1} = 0$ d'où $L_n^{n+1} = 0$.
- **d)** \diamond En ajoutant un terme nul à L_n on obtient :

$$L'_n(t) = \sum_{k=1}^{n+1} (-1)^{k-1} t^{k-1} D_n^k = D_n \sum_{k=0}^{n} (-1)^k t^k D_n^k = D_n Q(t).$$

 $\diamond L_n(t)$ et $L'_n(t)$ sont des polynômes en D_n , donc ils commutent. On en déduit alors par récurrence sur k que $\frac{d}{dt}(L_n^k(t)) = kL'_n(t)L_n^{k-1}(t)$, donc $\frac{d}{dt}(L_n^k(t)) = kL_n^{k-1}(t)D_nQ(t)$.

13°) a) Par sommation par paquets,

$$\varphi_u(t)\varphi_v(t) = \sum_{p=0}^n \frac{u^p}{p!} (L_n(t))^p \sum_{q=0}^n \frac{v^q}{q!} (L_n(t))^q = \sum_{k=0}^{2n} \Big(\sum_{\substack{p+q=k\\0 \le n, q \le n}} \frac{u^p v^q}{p! q!} L_n(t)^{p+q} \Big),$$

or
$$L_n(t)^{n+1} = 0$$
,

donc
$$\varphi_u(t)\varphi_v(t) = \sum_{k=0}^n \left(\sum_{p+q=k} \frac{u^p v^q}{p!q!}\right) L_n(t)^k = \sum_{k=0}^n \left(\sum_{p=0}^k \frac{u^p v^{k-p}}{p!(k-p)!}\right) L_n(t)^k,$$

puis
$$\varphi_u(t)\varphi_v(t) = \sum_{k=0}^n \left(\sum_{p=0}^k \binom{k}{p} u^p v^{k-p} \frac{1}{k!}\right) L_n(t)^k$$
, donc d'après la formule du binôme de Newton, $\varphi_u(t)\varphi_v(t) = \sum_{k=0}^n \frac{(u+v)^k}{k!} L_n(t)^k = \varphi_{u+v}(t)$.

b) $t \mapsto \varphi_u(t)$ est dérivable comme combinaison linéaire de fonctions dérivables. D'après la question 12.d,

$$\varphi'_{u}(t) = \sum_{k=1}^{n} \frac{u^{k}}{k!} kQ(t) D_{n} L_{n}^{k-1}(t)
= uQ(t) D_{n} \sum_{k=1}^{n} \frac{u^{k-1}}{(k-1)!} L_{n}^{k-1}(t)
= uQ(t) D_{n} \sum_{k=0}^{n-1} \frac{u^{k}}{k!} L_{n}^{k}(t)
= uQ(t) D_{n} \sum_{k=0}^{n} \frac{u^{k}}{k!} L_{n}^{k}(t),$$

car on démontre comme en 12.c que $D_n L_n^n(t) = 0$.

Ainsi $\varphi'_u(t) = uQ(t)D_n\varphi_u(t)$.

c) φ_1' est dérivable comme produit de fonctions dérivables et

$$\varphi_1''(t) = Q'(t)D_n\varphi_1(t) + Q(t)D_n\varphi_1'(t)$$

= $-Q(t)D_nQ(t)D_n\varphi_1(t) + Q(t)D_nQ(t)D_n\varphi_1(t) = 0$

Par conséquent, en passant aux coefficients de ces matrices, il existe deux matrices A et B de $\mathcal{M}_{n+1}(\mathbb{R})$ telles que $\varphi_1(t) = A + tB$.

On a
$$A = \varphi_1(0)$$
 et $B = \varphi_1'(0)$. Ainsi, $\varphi_1(t) = \varphi_1(0) + t\varphi_1'(0)$.

Comme $L_n(0) = 0$ on déduit $\varphi_1(0) = I$ et $\varphi'_1(0) = D_n \varphi_n(0) = D_n$ et l'on conclut :

$$\forall t \in \mathbb{R}, \qquad \varphi_1(t) = I + tD_n.$$

14°) a)
$$\lambda I + D_n = \lambda (I + \frac{1}{\lambda} D_n) = \lambda \varphi_1(\frac{1}{\lambda}) = \lambda (\varphi_{\frac{1}{2}}(\frac{1}{\lambda}))^2 = (\sqrt{\lambda} \varphi_{\frac{1}{2}}(\frac{1}{\lambda}))^2$$
.

Ainsi, en posant $M = \pm \sqrt{\lambda} \varphi_{\frac{1}{2}}(\frac{1}{\lambda})$, on a bien $M^2 = \lambda I + D_n$.

Notons g l'unique endomorphisme de $\mathbb{R}_n[X]$ dont la matrice dans la base B_n est égale à M. Alors $g^2 = \lambda Id_{\mathbf{R}_n[X]} + D_n$.

b) Pour
$$\lambda = 1$$
 et $n = 2$ il vient $L_n(1/\lambda) = L_2(1) = D_2 - \frac{1}{2}D_2^2$ puis $\varphi_{\frac{1}{2}}(1) = I + \frac{1}{2}L_2(1) + \frac{1}{8}L_2^2(1) = I + \frac{1}{2}(D_2 - \frac{1}{2}D_2^2) + \frac{1}{8}D_2^2 = I + \frac{1}{2}D_2 - \frac{1}{8}D_2^2$ On retrouve bien les matrices G de la question 9.c, puisque $A_0 = D_2$ avec les notations

de l'énoncé.

Partie IV

a) Pour tout $x \in [-1, +\infty[$, $h(x) = (1+x)^{\alpha}$ avec $\alpha = \frac{1}{2}$. Ainsi, d'après le cours, h possède un développement limité à l'ordre n au voisinage de 0, donné par la formule $h(x) = b_0 + b_1 x + \cdots + b_n x^n + o(x^n)$, avec $b_0 = 1$ et pour tout $k \geq 1$,

$$b_k = \frac{\alpha(\alpha - 1) \dots (\alpha - k + 1)}{k!} = \frac{\frac{1}{2}(\frac{1}{2} - 1) \dots (\frac{1}{2} - k + 1)}{k!}$$
. On calcule

$$b_k = \frac{1}{2} (-1)^{k-1} \frac{(2 - 1) \times (2 \cdot 2 - 1) \times \dots \times (2 \cdot (k - 1) - 1)}{k! 2^{k-1}}, \text{ puis}$$

$$b_k = \frac{\alpha(\alpha - 1) \dots (\alpha - k + 1)}{k!} = \frac{\frac{1}{2}(\frac{1}{2} - 1) \dots (\frac{1}{2} - k + 1)}{k!}. \text{ On calcule}$$

$$b_k = \frac{1}{2}(-1)^{k-1} \frac{(2 - 1) \times (2 \cdot 2 - 1) \times \dots \times (2 \cdot (k - 1) - 1)}{k!2^{k-1}}, \text{ puis}$$

$$b_k = \frac{(-1)^{k-1}}{k!2^k} [1 \times 3 \times \dots \times (2k - 3)] = \frac{(-1)^{k-1}}{k!2^k} \times \frac{1 \times 2 \times 3 \times \dots \times (2k - 3)(2k - 2)}{2 \times 4 \times (2k - 2)}, \text{ donc}$$

$$b_k = \frac{(-1)^{k-1}}{k!2^k} \frac{(2k-2)!}{2^{k-1}(k-1)!} = \frac{(-1)^{k-1}}{(2k-1)2^{2k-1}} \times \frac{(2k-1)!}{k!(k-1)!} = \frac{(-1)^{k-1}}{(2k-1)2^{2k-1}} \binom{2k-1}{k}.$$

b) On peut écrire

$$1 + x = h(x)^{2} = \left(\sum_{k=0}^{n} b_{k} x^{k} + o(x^{n})\right)^{2}$$

$$= \sum_{0 \le p, q \le n} b_{p} b_{q} x^{p+q} + o(x^{n}) \quad (\operatorname{car} \sum_{k=0}^{n} b_{k} x^{k} = O(1))$$

$$= \sum_{k=0}^{n} \left(\sum_{p+q=k} b_{p} b_{k-p}\right) x^{k} + o(x^{n}).$$

Alors, d'après l'unicité du développement limité, pour tout $k \in \{0, ..., n\}$,

$$\sum_{p=0}^{k} b_p b_{k-p} = \begin{cases} 1 & \text{si } k \leq 1 \\ 0 & \text{si } k \geq 2 \end{cases}, \text{ ce qu'il fallait démontrer.}$$

a) Soit $P \in \mathbb{R}[X]$ et n un majorant de son degré.

Alors $D^p(P) = 0$ pour p > n donc $T(P) = \sum_{p=0}^{n} \frac{b_p}{\lambda^p} D^p(P)$ qui est bien un polynôme.

Si $P,Q\in\mathbb{R}[X]$ et $\alpha\in\mathbb{R},$ en notant n un majorant commun du degré de P et de Qon a $T(\alpha P + Q) = \sum_{p=0}^{\infty} \frac{b_p}{\lambda^p} D^p(\alpha P + Q) = \alpha T(P) + T(Q)$, donc T est linéaire.

Ainsi T est un endomorphisme de $\mathbb{R}[X]$ qui d'après le calcul précédent laisse stable les sous-espaces $\mathbb{R}_n[X]$.

b) Notons T_n l'endomorphisme induit par T sur $\mathbb{R}_n[X]$. Pour tout $P \in \mathbb{R}_n[X]$, $T^2(P) = T_n^2(P)$.

Or
$$T_n = \sum_{p=0}^n \frac{b_p}{\lambda^p} D_n^p$$
 ce qui conduit, compte tenu de $D_n^k = 0$ pour $k > n$ à

$$T_n^2 = \sum_{p=0}^n \frac{b_p}{\lambda^p} D_n^p \sum_{q=0}^n \frac{b_q}{\lambda^q} D_n^q = \sum_{k=0}^n \sum_{p+q=k} \frac{b_p b_q}{\lambda^{p+q}} D_n^{p+q} = \sum_{k=0}^n \frac{c_k}{\lambda^k} D_n^k$$
, en posant pour tout

$$k \in \mathbb{N}$$
, $c_k = \sum_{n=0}^k b_p b_{k-p}$. Ainsi, d'après la question 15.b, $T_n^2 = Id_{\mathbb{R}_n[X]} + \frac{1}{\lambda} D_n$.

On en déduit que, pour tout $P \in \mathbb{R}[X]$, $T^2(P) = P + \frac{1}{\lambda}D(P)$ et finalement que $T^2 = Id_{\mathbb{R}[X]} + \frac{1}{\lambda}D$.

Posons $g = \pm \sqrt{\lambda} T$. Alors $g^2 = \lambda I d_{\mathbf{R}[X]} + D$.

c) Soit $n \in \mathbb{N}$. Posons $g_n = \pm \sqrt{\lambda} \sum_{p=0}^n \frac{b_p}{\lambda^p} D_n^p$.

D'après le calcul précédent, $g_n^2 = \lambda I d_{\mathbb{R}_n[X]} + D_n$.

Lorsque n=2 et $\lambda=1, g_2=\pm(b_0I+b_1D_2+b_2D_2^2)$ avec $b_0=1, b_1=\frac{1}{2}, b_2=-\frac{1}{8}$ ce qui redonne les matrices de la question 9.c.