Balance Principles

In this chapter we discuss some important fundamental balance principles such as,

- conservation of mass,
- the momentum balance principle (linear and angular momentum), and
- balance of energy.

These principles are valid in all branches of continuum mechanics. They must be satisfied for all times.

We will also discuss some fundamentals laws which are inequalities such as second law of thermodynamics.

System

Open system (Control Volume) Ω_{c} $\partial\Omega_{c}$

Fixed amount of volume.

Mass and energy can cross the boundaries

Fixed amount of mass.
Energy can cross the boundaries

Conservation of Mass

Every continuum body has mass, (denoted by m), which is a fundamental property indicating the amount of matter contained in the body. We will assume that the mass is continuously distributed over an arbitrary region Ω .

It is assumed that during the motion neither the mass is created (no mass sources) nor destroyed (no mass sinks). So mass of a particle during the motion remain unchanged. Thus considering a closed system (i.e. fixed mass system)

$$m(\Omega_0)=m(\Omega)>0, \, {
m at \,\, all \,\, time } \,\, t.$$

This relation is known as the **conservation of mass**. In differential (or local) form

$$\mathrm{d} m(extbf{ extit{X}}) = \mathrm{d} m(extbf{ extit{x}}, \mathrm{t}) > 0,$$

where dm is infinitesimal element mass. It should be noted that the mass m is independent of the motion, and hence the material time derivative of the mass m is,

$$\frac{D}{Dt}m(\Omega_0) = \frac{D}{Dt}m(\Omega) = 0.$$

The mass is characterized by continuous (or at least piecewise continuous) scaler fields, i.e. $\rho_0 = \rho_0(\mathbf{X}) > 0$ and $\rho = \rho(\mathbf{x}, t) > 0$, respectively.

 $\rho_0(\mathbf{X})$ is called the reference mass density (independent of time) and $\rho(\mathbf{x}, t)$ is called the spatial mass density during the motion.

The mass densities are defined as,

$$\rho_0(\boldsymbol{X}) = \lim_{\Delta V \to 0} \frac{\Delta m(\Omega_0)}{\Delta V(\Omega_0)} = \frac{dm}{dV}, \quad \rho(\boldsymbol{x}, t) = \lim_{\Delta v \to 0} \frac{\Delta m(\Omega)}{\Delta v(\Omega)} = \frac{dm}{dv},$$

where dV and dv are infinitesimal volume element in reference and spatial configurations.

Differential form of conservation of mass in terms of density can now be written as,

$$\rho_0(\mathbf{X})dV = \rho(\mathbf{x}, t)dv > 0,$$

which suggests that the volume increases when density decreases.

Total mass of the system will be,

$$m = \int_{\Omega_0} \rho_0(\boldsymbol{X}) dV = \int_{\Omega} \rho(\boldsymbol{x}, t) dv = \text{constant} > 0, \text{ at all times } t.$$

Hence, the rate form is,

$$\dot{m} = \frac{Dm}{Dt} = \frac{D}{Dt} \int_{\Omega} \rho(\boldsymbol{x}, t) dv = 0.$$

which means that the material time derivative of m is zero for region Ω at all time t during the motion. Above equations are known as integral (or global) form of conservation of mass.

We want to determine the relationship between the referential mass density $\rho_0(X)$ and the spacial mass density $\rho(x,t)$. We start with the integral form of conservation of mass.

Using the relation between the volume elements in the reference and current configurations, we can rewrite the integral form as,

$$m = \int_{\Omega_0} \rho_0(\mathbf{X}) dV = \int_{\Omega_0} \rho(\mathbf{\chi}(\mathbf{X}, t), t) J(\mathbf{X}, t) dV = \text{constant} > 0, \text{ at all times } t$$

$$\Rightarrow \int_{\Omega_0} (\rho_0(\mathbf{X}) - J(\mathbf{X}, t) \rho(\mathbf{\chi}(\mathbf{X}, t), t)) dV = 0.$$

Considering that V is an *arbitrary* volume of region Ω_0 implies that, the integrand must vanish everywhere (following the *localization theorem*), hence,

$$\rho_0(\mathbf{X}) - J(\mathbf{X}, t)\rho(\mathbf{\chi}(\mathbf{X}, t), t) = 0$$
 or $\rho_0(\mathbf{X}) = J(\mathbf{X}, t)\rho(\mathbf{\chi}(\mathbf{X}, t), t),$

which is known as the **continuity mass equation** in *Lagrangian description*, which relates the referential density to the spatial density. The rate form in the material description becomes,

$$\frac{\partial \rho_0(\boldsymbol{X})}{\partial t} = \dot{\rho}_0(\boldsymbol{X}) = 0.$$

To obtain the rate form of the continuity equation in spatial description, we start with.

$$\dot{\rho}_0(\boldsymbol{X}) = \frac{D\rho_0(\boldsymbol{X})}{Dt} = \frac{D(J\rho)}{Dt} = \frac{\dot{J}}{J\rho} = 0.$$

Using the product rule, $\dot{\overline{J}\rho} = J\dot{\rho} + \dot{J}\rho = 0.$

Using the material time derivative of spatial density field $\rho(\boldsymbol{x},t)$ and J, we obtain the spatial form of continuity equation as,

$$\dot{\rho}(\boldsymbol{x},t) + \rho(\boldsymbol{x},t) \operatorname{div} \boldsymbol{v}(\boldsymbol{x},t) = 0, \quad \text{or} \quad \dot{\rho} + \rho \frac{\partial v_i}{\partial x_i} = 0.$$

Following expressions will be used to derive the above result.

Following expressions will be used to derive the above result.
$$D_{\alpha} = \partial_{\alpha}$$

$$\dot{\rho} = \frac{D\rho}{Dt} = \frac{\partial\rho}{\partial t} + \operatorname{grad}\rho \cdot \boldsymbol{v}.$$

$$\dot{J}(\boldsymbol{F}, t) = \frac{\partial J}{\partial \boldsymbol{F}} : \dot{\boldsymbol{F}}, \quad \frac{\partial J}{\partial \boldsymbol{F}} = J\boldsymbol{F}^{-T}, \quad \det \boldsymbol{A} = \frac{1}{6}e_{ijk}e_{rst}A_{ir}A_{js}A_{kt}, \quad \dot{\boldsymbol{F}} = \boldsymbol{l}\boldsymbol{F}.$$

Exercise

Reynolds' transport theorem

Let us consider a spatial scaler field $\phi(x,t)$, which may indicate any physical quantity (such as mass, entropy, internal energy or heat etc.) of a particle in space per unit *volume* at any time t. ϕ is smooth and continuously differentiable. Thus the following integral gives the integration of the field over the spatial volume v of the body Ω ,

$$I(t) = \int_{\Omega} \phi(\boldsymbol{x}, t) dv.$$

Now we compute the material time derivative of the volume integral I.

$$\dot{I}(t) = \frac{D}{Dt} \int_{\Omega} \phi(\boldsymbol{x}, t) dv = \frac{D}{Dt} \int_{\Omega_{s}} \phi(\boldsymbol{\chi}(\boldsymbol{X}, t), t) J(\boldsymbol{X}, t) dV.$$

Not as the region of integration is reference configuration, which is independent of time, hence the integration and differentiation commute. Thus,

$$\frac{D}{Dt} \int_{\Omega} \phi(\boldsymbol{x}, t) dv = \int_{\Omega_0} \left[\dot{\phi}(\boldsymbol{\chi}(\boldsymbol{X}, t), t) J(\boldsymbol{X}, t) + \phi(\boldsymbol{\chi}(\boldsymbol{X}, t), t) \dot{J}(\boldsymbol{X}, t) \right] dV.$$
₈

$$\frac{D}{Dt} \int_{\Omega} \phi(\boldsymbol{x}, t) dv = \int_{\Omega_0} \left[\dot{\phi}(\boldsymbol{\chi}(\boldsymbol{X}, t), t) J(\boldsymbol{X}, t) + \phi(\boldsymbol{\chi}(\boldsymbol{X}, t), t) J(\boldsymbol{X}, t) \operatorname{div} \boldsymbol{v} \right] dV$$

$$\Rightarrow \int_{\Omega_0} \left[\dot{\phi}(\boldsymbol{\chi}(\boldsymbol{X}, t), t) + \phi(\boldsymbol{\chi}(\boldsymbol{X}, t), t) \operatorname{div} \boldsymbol{v} \right] J(\boldsymbol{X}, t) dV$$

$$\Rightarrow \int_{\Omega} \left[\dot{\phi}(\boldsymbol{x}, t) + \phi(\boldsymbol{x}, t) \operatorname{div} \boldsymbol{v}(\boldsymbol{x}, t) \right] dv$$

Thus,

$$\frac{D}{Dt} \int_{\Omega} \phi dv = \int_{\Omega} \left[\dot{\phi} + \phi \operatorname{div} \boldsymbol{v} \right] dv.$$

Another form of Reynolds' transport theorem can be written by using the definition of material time derivative as,

$$\frac{D}{Dt} \int_{\Omega} \phi dv = \int_{\Omega} \left[\frac{\partial \phi}{\partial t} + \operatorname{grad} \phi \cdot \boldsymbol{v} + \phi \operatorname{div} \boldsymbol{v} \right] dv = \int_{\Omega} \left[\frac{\partial \phi}{\partial t} + \operatorname{div} \phi \boldsymbol{v} \right] dv$$

After applying the Gauss-Divergence theorem,

$$\frac{D}{Dt} \int_{\Omega} \phi dv = \int_{\Omega} \frac{\partial \phi}{\partial t} dv + \int_{\partial \Omega} \phi \boldsymbol{v} \cdot \boldsymbol{n} ds.$$

The first term on the right denotes the local time rate of change of ϕ in region Ω , whereas the second term characterizes the rate of transport (or the outward normal flux) of ϕv across the surface $\partial \Omega$ out of region Ω . This contribution arises from the moving region.