MATH 6321

Theory of Functions of a Real Variable Spring 2025

First name: _	Last name:	 Points:
-ırst name:		 Points:

Assignment 6, due Thursday, March 20, 10am

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let $X=\{\alpha,b\}$ and μ a measure on X with $\mu(\{\alpha\})=1$, $\mu(\{b\})=\infty$. Describe $L^1(\mu)$, and $L^\infty(\mu)$. Is it true that there is an isometric isomorphism between the space of bounded linear functionals on $L^1(\mu)$ and $L^\infty(\mu)$? Explain a reason for your answer.

Problem 2

Let \mathcal{M} be the collection of all subsets of [0,1] such that either E or $[0,1]\setminus E$ is at most countable. Let μ be the counting measure on the σ -algebra \mathcal{M} (no need to prove its properties). Let g(x)=x, then show that g is not \mathcal{M} -measurable, but for each $f\in L^1(\mu)$,

$$\Lambda: f \mapsto \int fg d\mu$$

defines a bounded linear functional.

Problem 3

Consider $L^{\infty}(m)$, with m the Lebesgue measure on I=[0,1]. Show that there is a bounded linear functional Λ on $L^{\infty}(m)$ that is non-zero but vanishes on all of C(I). Why can you conclude that such a Λ cannot be of the form $\Lambda_g: f \mapsto \int_I fgdm$ with $g \in L^1(m)$?