Automi finiti, Linguaggi ed Espressioni Regolari

Rocco Zaccagnino

Dipartimento di Informatica

Università degli Studi di Salerno

Elementi di Teoria della Computazione: lezione 6

Linguaggi regolari (REG)

Relazione tra DFA e Linguaggi

Abbiamo visto..

individuare il linguaggio $L(\mathbb{M})$ riconosciuto dall'automa \mathbb{M}

Definizione formalmente il linguaggio accettato da un automa attraverso la nozione di

funzione di transizione "estesa" a stringhe

Definizione formalmente il linguaggio accettato da un automa attraverso la nozione di

funzione di transizione "estesa" a stringhe

 $extstyle{ f DEF}[ext{funzione di transizione estesa}] \ extstyle{ f passo base: } orall q \in Q, \ \hat{\delta}(q,\epsilon) = q \ ext{ }$

DEF[funzione di transizione estesa]

Definizione formalmente il linguaggio accettato da un automa attraverso la nozione di

funzione di transizione "estesa" a stringhe

```
passo base: \forall q \in Q, \ \hat{\delta}(q, \epsilon) = q
passo ricorsivo: \forall q \in Q, \ w \in \Sigma^*, \ a \in \Sigma,
\hat{\delta}(q, wa) = \delta(\hat{\delta}(q, w), a)
```

$$\begin{split} \mathsf{DEF}[\texttt{linguaggio riconosciuto}] \\ \mathsf{Sia} \ \mathbb{A} &= (Q, \Sigma, \delta, q_0, F) \ \mathsf{un \ DFA. \ II} \ \mathsf{linguaggio \ accettato} \ \mathsf{da} \ \mathsf{A} \ \acute{\mathsf{e}} \\ & L(\mathbb{A}) = \{w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F\} \end{split}$$

DEF[linguaggio riconosciuto]

Sia $\mathbb{A} = (Q, \Sigma, \delta, q_0, F)$ un DFA. Il **linguaggio accettato** da A é

$$L(\mathbb{A}) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$$

• il primo stato della sequenza è quello iniziale q_0 ,

DEF[linguaggio riconosciuto]

Sia $\mathbb{A} = (Q, \Sigma, \delta, q_0, F)$ un DFA. Il **linguaggio accettato** da A é

$$L(\mathbb{A}) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$$

- il primo stato della sequenza è quello iniziale q_0 ,
- l'ultimo stato della sequenza è uno stato finale $(q \in F)$,

DEF[linguaggio riconosciuto]

Sia $\mathbb{A} = (Q, \Sigma, \delta, q_0, F)$ un DFA. Il **linguaggio accettato** da A é

$$L(\mathbb{A}) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$$

- il primo stato della sequenza è quello iniziale q_0 ,
- l'ultimo stato della sequenza è uno stato finale $(q \in F)$,
- la sequenza di stati corrisponde a transizione valide per la stringa w.

DEF[linguaggio regolare]

Un linguaggio L è regolare **se e solo se** esiste un DFA $\mathbb M$ che lo riconosce $(L = L(\mathbb M))$.

```
DEF[linguaggio regolare]
```

Un linguaggio L è regolare se e solo se esiste un DFA $\mathbb M$ che lo riconosce $(L = L(\mathbb M))$.

• i linguaggi riconosciuti da tutti i DFA formano la classe dei linguaggi regolari (REG),

DEF[linguaggio regolare]

Un linguaggio L è regolare se e solo se esiste un DFA $\mathbb M$ che lo riconosce $(L = L(\mathbb M))$.

- i linguaggi riconosciuti da tutti i DFA formano la classe dei linguaggi regolari (REG),
- non tutti i linguaggi sono regolari (ex. $\{a^nb^n \mid n \geq 0\}$).

Osservazione: come possiamo scoprire che un linguaggio è REG?

DEF[linguaggio regolare]

Un linguaggio L è regolare se e solo se esiste un DFA $\mathbb M$ che lo riconosce $(L = L(\mathbb M))$.

- i linguaggi riconosciuti da tutti i DFA formano la classe dei linguaggi regolari (REG),
- non tutti i linguaggi sono regolari (ex. $\{a^nb^n \mid n \geq 0\}$).

Osservazione: come possiamo scoprire che un linguaggio è REG?

• progettiamo direttamente un DFA che lo riconosce,

DEF[linguaggio regolare]

Un linguaggio L è regolare se e solo se esiste un DFA $\mathbb M$ che lo riconosce $(L = L(\mathbb M))$.

- i linguaggi riconosciuti da tutti i DFA formano la classe dei linguaggi regolari (REG),
- non tutti i linguaggi sono regolari (ex. $\{a^nb^n \mid n \geq 0\}$).

Osservazione: come possiamo scoprire che un linguaggio è REG?

- progettiamo direttamente un DFA che lo riconosce,
- vedremo altri metodi per dimostrare che un linguaggio è regolare.

• tutti i linguaggi finiti,

- tutti i linguaggi finiti,
- $\{a^nb \mid n \geq 0\}$ (parole che finiscono per b e contengono esattamente una b),

- tutti i linguaggi finiti,
- $\{a^n b \mid n \ge 0\}$ (parole che finiscono per b e contengono esattamente una b),
- tutte le stringhe in $\{a, b\}^*$ con prefisso ab,

- tutti i linguaggi finiti,
- $\{a^n b \mid n \ge 0\}$ (parole che finiscono per b e contengono esattamente una b),
- tutte le stringhe in $\{a, b\}^*$ con prefisso ab,
- tutte le stringhe in $\{O,1\}^*$ che contengono OO1,

- tutti i linguaggi finiti,
- $\{a^n b \mid n \ge 0\}$ (parole che finiscono per b e contengono esattamente una b),
- tutte le stringhe in $\{a, b\}^*$ con prefisso ab,
- tutte le stringhe in $\{O,1\}^*$ che contengono OO1,
- tutte le stringhe in $\{O,1\}^*$ con un numero pari di 1.

$$L = \{a^nb \mid n \geq 0\} = \{b, ab, aab, aaab, ...\}$$

$$L = \{a^n b \mid n \ge 0\} = \{b, ab, aab, aaab, ...\}$$

$$L = \{a^n b \mid n \ge 0\} = \{b, ab, aab, aaab, ...\}$$

$$L = \{a^n b \mid n \ge 0\} = \{b, ab, aab, aaab, ...\}$$

$$L = \{a^n b \mid n \ge 0\} = \{b, ab, aab, aaab, ...\}$$

Ma i DFA possono riconoscere anche linguaggi più complessi?

stringhe contenenti esattamente due a ed almeno due b.

Ma i DFA possono riconoscere anche linguaggi più complessi?

stringhe contenenti esattamente due a ed almeno due b.

Dimostreremo che i linguaggi regolari sono chiusi rispetto alle seguenti operazioni.

Dimostreremo che i linguaggi regolari sono chiusi rispetto alle seguenti operazioni.

Siano L_1 e L_2 linguaggi regolari, allora:

• unione: $L_1 \cup L_2$ è regolare

Dimostreremo che i linguaggi regolari sono chiusi rispetto alle seguenti operazioni.

Siano L_1 e L_2 linguaggi regolari, allora:

• unione: $L_1 \cup L_2$ è regolare

• concatenazione: $L_1 \circ L_2$ è regolare

Dimostreremo che i linguaggi regolari sono chiusi rispetto alle seguenti operazioni.

- unione: $L_1 \cup L_2$ è regolare
- concatenazione: $L_1 \circ L_2$ è regolare
- star: L_1^*, L_2^* sono regolari

Dimostreremo che i linguaggi regolari sono chiusi rispetto alle seguenti operazioni.

- unione: $L_1 \cup L_2$ è regolare
- concatenazione: $L_1 \circ L_2$ è regolare
- star: L_1^*, L_2^* sono regolari
- reversal: L_1^R, L_2^R sono regolari

Dimostreremo che i linguaggi regolari sono chiusi rispetto alle seguenti operazioni.

- unione: $L_1 \cup L_2$ è regolare
- concatenazione: $L_1 \circ L_2$ è regolare
- star: L_1^*, L_2^* sono regolari
- reversal: L_1^R, L_2^R sono regolari
- complemento: $\overline{L_1}, \overline{L_2}$ sono regolari

Dimostreremo che i linguaggi regolari sono chiusi rispetto alle seguenti operazioni.

- unione: $L_1 \cup L_2$ è regolare
- concatenazione: $L_1 \circ L_2$ è regolare
- star: L_1^*, L_2^* sono regolari
- reversal: L_1^R, L_2^R sono regolari
- complemento: $\overline{L_1}, \overline{L_2}$ sono regolari
- intersezione: $L_1 \cap L_2$ è regolare

Che significa chiusura rispetto ad un'operazione?

Che significa chiusura rispetto ad un'operazione?

Una classe di oggetti è "chiusa" rispetto ad un'operazione se l'applicazione di questa operazione ad elementi della classe restituisce un oggetto ancora della classe.

Chiusura dei linguaggi regolari

Che significa chiusura rispetto ad un'operazione?

Una classe di oggetti è "chiusa" rispetto ad un'operazione se l'applicazione di questa operazione ad elementi della classe restituisce un oggetto ancora della classe.

Ad esempio...

Chiusura dei linguaggi regolari

Che significa chiusura rispetto ad un'operazione?

Una classe di oggetti è "chiusa" rispetto ad un'operazione se l'applicazione di questa operazione ad elementi della classe restituisce un oggetto ancora della classe.

Ad esempio...

• $\mathbb N$ è chiuso rispetto a "+" e " \times ": $\forall a,b\in\mathbb N$, $a+b\in\mathbb N$ and $a\times b\in\mathbb N$

Chiusura dei linguaggi regolari

Che significa chiusura rispetto ad un'operazione?

Una classe di oggetti è "chiusa" rispetto ad un'operazione se l'applicazione di questa operazione ad elementi della classe restituisce un oggetto ancora della classe.

Ad esempio...

- \mathbb{N} è chiuso rispetto a "+" e " \times ": $\forall a, b \in \mathbb{N}$, $a + b \in \mathbb{N}$ and $a \times b \in \mathbb{N}$
- \mathbb{N} non è chiuso rispetto a ":", i.e., esistono $a,b\in\mathbb{N}$ tali che $a:b\notin\mathbb{N}$ (ex. $3:2\notin\mathbb{N}$)

TEOREMA[chiusura di REG rispetto all'unione]

 L_1 e L_2 regolari $\Longrightarrow L_1 \cup L_2$ regolare

TEOREMA[chiusura di REG rispetto all'unione]

$$L_1$$
 e L_2 regolari $\Longrightarrow L_1 \cup L_2$ regolare

Vedremo una dimostrazione **costruttiva**: costruiremo un DFA M tale che

$$L(\mathbb{M}) = L_1 \cup L_2$$

Dimostrazione.

Per ipotesi, L_1 e L_2 **regolari**

Dimostrazione.

Per ipotesi, L_1 e L_2 **regolari** $\Longrightarrow \exists \ 2$ DFA \mathbb{M}_1 e \mathbb{M}_2 tali che $L_1 = L(\mathbb{M}_1)$ e $L_2 = L(\mathbb{M}_2)$ e:

$$L_1 \cup L_2 = L(\mathbb{M}_1) \cup L(\mathbb{M}_2)$$

Dimostrazione.

Per ipotesi, L_1 e L_2 **regolari** $\Longrightarrow \exists \ 2$ DFA \mathbb{M}_1 e \mathbb{M}_2 tali che $L_1 = L(\mathbb{M}_1)$ e $L_2 = L(\mathbb{M}_2)$ e:

$$L_1 \cup L_2 = L(\mathbb{M}_1) \cup L(\mathbb{M}_2)$$

Potremmo costruire \mathbb{M} combinando \mathbb{M}_1 e \mathbb{M}_2 in qualche modo...ma come?

Dimostrazione.

Per ipotesi, L_1 e L_2 **regolari** $\Longrightarrow \exists \ 2$ DFA \mathbb{M}_1 e \mathbb{M}_2 tali che $L_1 = L(\mathbb{M}_1)$ e $L_2 = L(\mathbb{M}_2)$ e:

$$L_1 \cup L_2 = L(\mathbb{M}_1) \cup L(\mathbb{M}_2)$$

Potremmo costruire \mathbb{M} combinando \mathbb{M}_1 e \mathbb{M}_2 in qualche modo...ma come?

Affinchè \mathbb{M} possa accettare $L(\mathbb{M}_1) \cup L(\mathbb{M}_2)$, esso dovrebbe accettare una stringa w quando:

Dimostrazione.

Per ipotesi, L_1 e L_2 **regolari** $\Longrightarrow \exists \ 2$ DFA \mathbb{M}_1 e \mathbb{M}_2 tali che $L_1 = L(\mathbb{M}_1)$ e $L_2 = L(\mathbb{M}_2)$ e:

$$L_1 \cup L_2 = L(\mathbb{M}_1) \cup L(\mathbb{M}_2)$$

Potremmo costruire \mathbb{M} combinando \mathbb{M}_1 e \mathbb{M}_2 in qualche modo...ma come?

Affinchè \mathbb{M} possa accettare $L(\mathbb{M}_1) \cup L(\mathbb{M}_2)$, esso dovrebbe accettare una stringa w quando:

• w è accettata da \mathbb{M}_1 ($w \in L(\mathbb{M}_1)$), **oppure**...

Dimostrazione.

Per ipotesi, L_1 e L_2 **regolari** $\Longrightarrow \exists \ 2$ DFA \mathbb{M}_1 e \mathbb{M}_2 tali che $L_1 = L(\mathbb{M}_1)$ e $L_2 = L(\mathbb{M}_2)$ e:

$$L_1 \cup L_2 = L(\mathbb{M}_1) \cup L(\mathbb{M}_2)$$

Potremmo costruire \mathbb{M} combinando \mathbb{M}_1 e \mathbb{M}_2 in qualche modo...ma come?

Affinchè \mathbb{M} possa accettare $L(\mathbb{M}_1) \cup L(\mathbb{M}_2)$, esso dovrebbe accettare una stringa w quando:

- w è accettata da \mathbb{M}_1 ($w \in L(\mathbb{M}_1)$), **oppure**...
- w è accettata da \mathbb{M}_2 ($w \in L(\mathbb{M}_2)$).

Dimostrazione.

Per ipotesi, L_1 e L_2 **regolari** $\Longrightarrow \exists \ 2$ DFA \mathbb{M}_1 e \mathbb{M}_2 tali che $L_1 = L(\mathbb{M}_1)$ e $L_2 = L(\mathbb{M}_2)$ e:

$$L_1 \cup L_2 = L(\mathbb{M}_1) \cup L(\mathbb{M}_2)$$

Potremmo costruire \mathbb{M} combinando \mathbb{M}_1 e \mathbb{M}_2 in qualche modo...ma come?

Affinchè \mathbb{M} possa accettare $L(\mathbb{M}_1) \cup L(\mathbb{M}_2)$, esso dovrebbe accettare una stringa w quando:

- w è accettata da \mathbb{M}_1 ($w \in L(\mathbb{M}_1)$), **oppure**...
- w è accettata da \mathbb{M}_2 ($w \in L(\mathbb{M}_2)$).

dovrebbe simulare M_1 e M_2 !

Dimostrazione...

Ad esempio, potremmo immaginare che $\mathbb M$ simuli prima $\mathbb M_1$ su w e poi $\mathbb M_2$.

Dimostrazione...

Ad esempio, potremmo immaginare che \mathbb{M} simuli prima \mathbb{M}_1 su w e poi \mathbb{M}_2 .

 questo non va bene perchè una volta che i simboli in input sono stati letti e usati per simulare M₁, dopo non possiamo riavvolgere il nastro per simulare M₂!

Dimostrazione...

Ad esempio, potremmo immaginare che $\mathbb M$ simuli prima $\mathbb M_1$ su w e poi $\mathbb M_2$.

 questo non va bene perchè una volta che i simboli in input sono stati letti e usati per simulare M₁, dopo non possiamo riavvolgere il nastro per simulare M₂!

Dobbiamo simulare \mathbb{M}_1 **e** \mathbb{M}_2 **contemporaneamente!**

Dimostrazione...

Ad esempio, potremmo immaginare che $\mathbb M$ simuli prima $\mathbb M_1$ su w e poi $\mathbb M_2$.

 questo non va bene perchè una volta che i simboli in input sono stati letti e usati per simulare M₁, dopo non possiamo riavvolgere il nastro per simulare M₂!

Dobbiamo simulare M_1 e M_2 contemporaneamente!

Idea: dato la parte di input letto fino ad un dato momento, bisogna portare traccia sia dello stato in cui si troverebbe \mathbb{M}_1 che quello in cui si troverebbe \mathbb{M}_2 .

Dimostrazione...

Ad esempio, potremmo immaginare che $\mathbb M$ simuli prima $\mathbb M_1$ su w e poi $\mathbb M_2$.

 questo non va bene perchè una volta che i simboli in input sono stati letti e usati per simulare M₁, dopo non possiamo riavvolgere il nastro per simulare M₂!

Dobbiamo simulare M_1 e M_2 contemporaneamente!

Idea: dato la parte di input letto fino ad un dato momento, bisogna portare traccia sia dello stato in cui si troverebbe \mathbb{M}_1 che quello in cui si troverebbe \mathbb{M}_2 .

Dimostrazione...

Idea: data la parte di input letto fino ad un dato momento, bisogna portare traccia sia dello stato in cui si troverebbe \mathbb{M}_1 che quello in cui si troverebbe \mathbb{M}_2 .

Dimostrazione...

Idea: data la parte di input letto fino ad un dato momento, bisogna portare traccia sia dello stato in cui si troverebbe \mathbb{M}_1 che quello in cui si troverebbe \mathbb{M}_2 .

Dimostrazione...

Idea: dato la parte di input letto fino ad un dato momento, bisogna portare traccia sia dello stato in cui si troverebbe \mathbb{M}_1 che quello in cui si troverebbe \mathbb{M}_2 .

Costruzione formale

Costruzione formale

Siano
$$\mathbb{M}_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$
 e $\mathbb{M}_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$.

Costruzione formale

Siano
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 e $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Definiamo $\mathbb{M} = (Q, \Sigma, \delta, q_0, F)$ che riconosce $L_1 \cup L_2$ ($L(\mathbb{M}) = L_1 \cup L_2$), come segue:

• $Q = \{(q_1, q_2) \mid q_1 \in Q_1 \text{ e } q_2 \in Q_2\}$: insieme **prodotto cartesiano** di $Q_1 \times Q_2$.

Costruzione formale

Siano
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 e $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Definiamo $\mathbb{M} = (Q, \Sigma, \delta, q_0, F)$ che riconosce $L_1 \cup L_2$ ($L(\mathbb{M}) = L_1 \cup L_2$), come segue:

- $Q = \{(q_1, q_2) \mid q_1 \in Q_1 \text{ e } q_2 \in Q_2\}$: insieme **prodotto cartesiano** di $Q_1 \times Q_2$.
- Σ è lo stesso alfabeto usato in \mathbb{M}_1 e \mathbb{M}_2 : per semplicità assumiamo che \mathbb{M}_1 e \mathbb{M}_2 usino lo stesso alfabeto, ma continua ad essere vero anche se hanno alfabeti diversi ($\Sigma = \Sigma_1 \cup \Sigma_2$).

Costruzione formale

Siano
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 e $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Definiamo $\mathbb{M} = (Q, \Sigma, \delta, q_0, F)$ che riconosce $L_1 \cup L_2$ ($L(\mathbb{M}) = L_1 \cup L_2$), come segue:

- $Q = \{(q_1, q_2) \mid q_1 \in Q_1 \text{ e } q_2 \in Q_2\}$: insieme **prodotto cartesiano** di $Q_1 \times Q_2$.
- Σ è lo stesso alfabeto usato in \mathbb{M}_1 e \mathbb{M}_2 : per semplicità assumiamo che \mathbb{M}_1 e \mathbb{M}_2 usino lo stesso alfabeto, ma continua ad essere vero anche se hanno alfabeti diversi ($\Sigma = \Sigma_1 \cup \Sigma_2$).
- For each $(q_1, q_2) \in Q$ e ogni $a \in \Sigma$:

$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$$

Costruzione formale

Siano
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 e $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Definiamo $\mathbb{M} = (Q, \Sigma, \delta, q_0, F)$ che riconosce $L_1 \cup L_2$ $(L(\mathbb{M}) = L_1 \cup L_2)$, come segue:

- $Q = \{(q_1, q_2) \mid q_1 \in Q_1 \text{ e } q_2 \in Q_2\}$: insieme **prodotto cartesiano** di $Q_1 \times Q_2$.
- Σ è lo stesso alfabeto usato in \mathbb{M}_1 e \mathbb{M}_2 : per semplicità assumiamo che \mathbb{M}_1 e \mathbb{M}_2 usino lo stesso alfabeto, ma continua ad essere vero anche se hanno alfabeti diversi ($\Sigma = \Sigma_1 \cup \Sigma_2$).
- For each $(q_1, q_2) \in Q$ e ogni $a \in \Sigma$:

$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$$

- $q_0 = (q_1, q_2)$
- F is the set of pairs in which either member is an accept state of M_1 or M_2 :

$$F = \{(q_1, q_2) \mid q_1 \in F_1 \text{ oppure } q_2 \in F_2\}$$

Chiusura di REG rispetto all'intersezione

TEOREMA[chiusura di REG rispetto all'intersezione]

 L_1 e L_2 regolari $\Longrightarrow L_1 \cap L_2$ regolare

Chiusura di REG rispetto all'intersezione

TEOREMA[chiusura di REG rispetto all'intersezione]

$$L_1$$
 e L_2 regolari $\Longrightarrow L_1 \cap L_2$ regolare

...da fare a casa!

to be continued..