# UNIVERSITÉ PARIS DAUPHINE



# Méthodes de Monte Carlo - PROJET -

**Axel GASSOT & Antoine LUCIANO** 

Département MIDO Master 1 2020-2021

Remarque: On choisit la graine 1 pour executer notre code.

set.seed(1)

# Solution Exercice 1.

Soit f une densité de  $\mathbb{R}^2$  définie pour  $(x,y) \in \mathbb{R}^2$  par  $f(x,y) = a\psi(x,y)$  avec  $a \in \mathbb{R}_+^*$  et

$$\psi(x,y) = [|sin(\frac{2}{\pi}x^2 - \frac{\pi}{4})| + 4cos(x)^2 + y^4]e^{-2(x+|y|)}\mathbf{1}_{\{x \in [-\frac{\pi}{2}, \frac{\pi}{2}]\}}\mathbf{1}_{\{y \in [-1,1]\}}$$

Pour (X,Y) de densité f, l'objectif est d'estimer  $f_X$  la densité marginale de X.

# Simulation suivant la densité f

1.

On va montrer que pour simuler suivant f, il n'est pas nécessaire de connaître a et il suffit de trouver une constant  $m \in \mathbb{R}_+^*$  et une densité g telles que

$$\forall (x,y) \in \mathbb{R}^2, \quad \psi(x,y) \le mg(x,y)$$
 (1)

Or, d'après l'énoncé  $\psi(x,y) = \frac{f(x,y)}{a}$ . Alors, on remarque dans un premier temps que

$$\psi(x,y) \leq mg(x,y) \Leftrightarrow f(x,y) \leq Mg(x,y)$$
 avec  $M = am$  et  $a \in \mathbb{R}_+^*$ 

De plus, afin d'appliquer l'algorithme du rejet à  $\psi$ , on pose

$$T = \inf\{n \ge 1, \ U_n \le \frac{\psi(X_n, Y_n)}{mg(X_n, Y_n)}\} \quad \text{avec} \ (U_n)_{n \ge 1} \stackrel{iid}{\sim} \mathcal{U}([0, 1]) \ \text{et} \ ((X_n, Y_n))_{n \ge 1} \stackrel{iid}{\sim} g$$

On a alors, par  $\psi(x,y) = \frac{f(x,y)}{a}$ ,  $T = \inf\{n \ge 1, \ U_n \le \frac{f(X_n,Y_n)}{Mg(X_n,Y_n)}\}$ . On en déduit que T est bien un temps d'arrêt pour la fonction f et donc  $(X_T,Y_T)$  suit bien la loi de densité f.

Pour conclure, l'algorithme du rejet appliqué à  $\psi$  permet bien de simuler suivant f.

Ainsi, nous cherchons g une densité de  $\mathbb{R}^2$  pour laquelle on dispose d'un générateur aléatoire telle qu'il existe une constante  $m \geq 1$  satisfaisant (1).

Tout d'abord, nous allons majorer  $C(x,y) = |\sin(\frac{2}{\pi}x^2 - \frac{\pi}{4})| + 4\cos(x)^2 + y^4|$  par une constante.

On a  $\forall (x,y) \in [-\frac{\pi}{2},\frac{\pi}{2}] \times [-1,1]$  :

- $|sin(\frac{2}{\pi}x^2 \frac{\pi}{4})| \le \frac{\sqrt{2}}{2}$
- $4\cos(x)^2 \le 4$
- $y^4 \le 1$

Donc,  $C(x,y) \le (5 + \frac{\sqrt{2}}{2}) \ \forall (x,y) \in [-\frac{\pi}{2}, \frac{\pi}{2}] \times [-1, 1]$ 

#### Choix 1

On choisit  $g \stackrel{iid}{\sim} \mathcal{U}([-\frac{\pi}{2}, \frac{\pi}{2}]) \times \mathcal{U}([-1, 1])$  et ainsi  $g(x, y) = \frac{1}{2\pi} \mathbf{1}_{\{x \in [-\frac{\pi}{2}, \frac{\pi}{2}]\}} \mathbf{1}_{\{y \in [-1, 1]\}}$ .

On a donc  $\psi(x,y) = C(x,y)e^{-2(x+|y|)}2\pi g(x,y)$ 

Or  $\forall (x,y) \in [-\frac{\pi}{2}, \frac{\pi}{2}] \times [-1,1]$ :

•  $e^{-2x} \le exp(\pi)$ 

•  $e^{-2|y|} < 1$ 

Ainsi, en posant  $m = (5 + \frac{\sqrt{2}}{2})e^{\pi}2\pi \approx 932$  on a bien  $\psi(x,y) \leq mg(x,y)$ .

Remarque : Nous avons une trop grande valeur de m qui diminue la performance de notre simulation, ainsi nous avons préféré faire un nouveau choix pour la densité g et la constante m.

#### Choix 2

On choisit  $g(x,y) = g_1(x)g_2(y)$  avec

• 
$$g_1(x) = \frac{2e^{-2x}}{e^{\pi} - e^{-\pi}} \mathbf{1}_{\{x \in [-\frac{\pi}{2}, \frac{\pi}{2}]\}}$$
 avec  $\frac{(e^{\pi} - e^{-\pi})}{2} = \int_{\mathbb{R}} e^{-2x} \mathbf{1}_{\{x \in [-\frac{\pi}{2}, \frac{\pi}{2}]\}} dx$ 

• 
$$g_2(y) = \frac{e^{-2|y|}}{1 - e^{-2}} \mathbf{1}_{\{y \in [-1,1]\}}$$
 avec  $(1 - e^{-2}) = \int_{\mathbb{R}} e^{-2|y|} \mathbf{1}_{\{y \in [-1,1]\}} dy$ 

On a donc  $\psi(x,y) = C(x,y)(1-e^{-2})(e^{\pi}-e^{-\pi})\frac{1}{2}g(x,y)$ 

Ainsi en posant  $m = (5 + \frac{\sqrt{2}}{2})(1 - e^{-2})(e^{\pi} - e^{-\pi})\frac{1}{2} \approx 57$  on a bien  $\psi(x, y) \leq mg(x, y)$ .

#### 2.

Nous utilisons notre **Choix 2** et donc  $g(x,y) = g_1(x)g_2(y)$  avec

• 
$$g_1(x) = \frac{2e^{-2x}}{e^{\pi} - e^{-\pi}} \mathbf{1}_{\{x \in [-\frac{\pi}{2}, \frac{\pi}{2}]\}}$$

• 
$$g_2(y) = \frac{e^{-2|y|}}{1 - e^{-2}} \mathbf{1}_{\{y \in [-1,1]\}}$$

Ainsi, pour simuler suivant la densité q, nous utilisons la méthode de la fonction inverse. En effet, on note  $F_1$ et  $F_2$  les fonctions de répartition respectives de  $g_1$  et  $g_2$  et on a

$$F_{1}(x) = \begin{cases} 1 \sin x > \frac{\pi}{2} \\ 0 \sin x < -\frac{\pi}{2} \\ \frac{e^{\pi} - e^{-2x}}{e^{\pi} - e^{-\pi}} \sin x \in [-\frac{\pi}{2}, \frac{\pi}{2}] \end{cases} et F_{2}(y) = \begin{cases} 1 \sin y > 1 \\ 0 \sin y < -1 \\ \frac{e^{2y} - e^{-2}}{2(1 - e^{-2})} \sin y \in [-1, 0] \\ \frac{1 - e^{-2y}}{2(1 - e^{-2})} + \frac{1}{2} \sin y \in [0, 1] \end{cases}$$

Ces deux fonctions de répartition étant continues et strictement croissantes nous avons  $F_1^{\leftarrow} = F_1^{-1}$  et  $F_2^{\leftarrow} = F_2^{-1}$  ce qui nous donne :

$$F_1^{\leftarrow}(x) = -\tfrac{1}{2}(\ln(1-x(1-e^{-2\pi})) + \pi) \qquad \text{et} \qquad F_2^{\leftarrow}(y) = (\tfrac{\ln(2y(1-e^{-2}))}{2} - 1)\mathbf{1}_{y \in [0,\frac{1}{2}]} - \tfrac{\ln(2y-1)(1-e^{-2})}{2}\mathbf{1}_{y \in [\frac{1}{2},1]}$$

```
# Simulation selon la densité q1 avec la methode de la fonction inverse
fct_inv_x <- function(x){</pre>
  return (-(\log(1-x*(1-\exp(-2*pi)))+pi)/2)
# Simulation selon la densité q2 avec la methode de la fonction inverse
fct inv y <- function(x){</pre>
  return ((\log(2*x*(\exp(2)-1)+1)-2)/2*(x<1/2)-(\log(1-(2*x-1)*(1-\exp(-2))))/2*(x>=1/2))
}
```

```
# Simulation de n réalisations suivant la densité g
rgen_g <- function(n) {
    u <- runif(n)
    x <- fct_inv_x(u)
    y <- fct_inv_y(u)
    return(cbind(x,y))
}

# Constante m
m <- ((5+sqrt(2)/2)*(1-exp(-2))*(exp(pi)-exp(-pi)))/2

# Fonction rho
rho<- function(x,y){
    return ((abs(sin((2/pi)*x^2-pi/4))+4*cos(x)^2+y^4)/(5+sqrt(2)/2))
}</pre>
```

### Algorithme de rejet

Pour avoir un algorithme de rejet le plus efficace possible, nous calculons à chaque itération la moyenne des valeurs prises par  $\rho$  qu'on appelle ici ratio.

ratio est le taux d'acceptation de notre densité g et  $\frac{1}{ratio}$  correspond donc au nombre moyen d'essai moyen pour qu'une valeur soit acceptée.

Ainsi, nous pouvons adapter le nombre de simulation de g à l'iteration suivante en simulant k/ratio où k correspond au nombre de simulations manquantes.

```
# Simulation de n réalisations suivant la densité f par methode du rejet
rgen_f <- function(n){</pre>
  ans <- c() #Echantillon de sortie
  rho.ans <- c()
  nl <- 0
  nt <- 0
  ratio <- 1
  k <- n
  while (k>0) {
    nl <- nl + 1
    nt <- nt + floor(k/ratio)</pre>
    sim_g <- rgen_g(floor(k/ratio))</pre>
    x \leftarrow sim_g[,1]
    y <- sim_g[,2]
    rho \leftarrow rho(x,y)
    w <- which(runif(floor(k/ratio)) <= rho)</pre>
    rho.ans <- append(rho.ans,rho)</pre>
    ans <- rbind(ans, sim_g[w, ])
    ratio <- mean(rho)
    k <- n - nrow(ans)
  }
  return(list("Simulation"=ans[1:n,], "Rho"=rho.ans, "nl"=nl, "nt"=nt))
```

Nous allons à présent auto-évaluer notre simulation.

```
# Autoévaluation

n <- 10000

n_test <- 100

nl <- 0

nt <- 0

for (i in 1:n_test){
    test <- rgen_f(n)
    nl <- nl + test$nl
    nt <- nt + test$nt
}</pre>
```

L'auto-évaluation de de notre simulation nous donne :

- $nt = 3.847232 \times 10^4$
- nl = 2.87

où  $n_t$  désigne le nombre moyen de simulations suivant g et  $n_l$  le nombre moyen de passages dans une boucle for ou while pour le code utilisé pour générer les réalisations de f.

Nous sommes donc satisfaits de notre simulation.

3.

```
n <- 10000
# Echantillon z de densité f
f <- rgen_f(n)
z <- f$Simulation</pre>
```

# Méthode n°1 – Estimation de a

## 4.(a)

Nous avons dans un premier temps

$$\mathbb{E}_g[\rho(X,Y)] = \int_{\mathbb{R}^2} \rho(x,y)g(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_{\mathbb{R}^2} \frac{\psi(x,y)}{mg(x,y)}g(x,y) \, \mathrm{d}x \, \mathrm{d}y = \frac{1}{m} \int_{\mathbb{R}^2} \psi(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

Or,  $f(x,y) = a\psi(x,y)$  où f est une densité d'où

$$\int_{\mathbb{R}^2} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = 1 \iff \int_{\mathbb{R}^2} \psi(x, y) \, \mathrm{d}x \, \mathrm{d}y = \frac{1}{a}$$

Ainsi

$$\mathbb{E}[\rho(X,Y)] = \frac{1}{mg} \text{ avec } (X,Y) \sim g$$

On en déduit l'estimateur classique de Monte Carlo de  $\frac{1}{a}$ ,

$$\widehat{\delta}_n = \frac{1}{n} \sum_{i=1}^n m \rho(X_i, Y_i) \quad avec(X_i, Y_i) \stackrel{iid}{\sim} g$$

Donc nous prenons

$$\widehat{b}_n = \frac{1}{\widehat{\delta}_n} = \frac{1}{\frac{1}{n} \sum_{i=1}^n m\rho(X_i, Y_i)} \quad \text{avec } (X_i, Y_i) \stackrel{iid}{\sim} g$$

Biais de l'estimateur. Comme la fonction  $x\mapsto \frac{1}{x}$  est convexe sur  $\mathbb{R}_+^*$  , par l'inégalité de Jensen :

$$\mathbb{E}[\hat{b}_n] = \mathbb{E}[\frac{1}{\hat{\delta}_n}] \ge \frac{1}{\mathbb{E}[\hat{\delta}_n]}$$

De plus, les variables aléatoires  $(m\rho(X_n,Y_n))_{n\geq 1}$  étant identiquement distribuées, on a :

$$\mathbb{E}[\widehat{\delta}_n] = \mathbb{E}_g[m\rho(X_1, Y_1)] = \frac{1}{a}$$

Donc  $\mathbb{E}[\hat{b}_n] \geq a$ , on obtient que l'estimateur est biaisé.

Convergence de l'estimateur. Les variables aléatoires  $(m\rho(X_n,Y_n))_{n\geq 1}$  sont i.i.d. et d'espérance finie sous g. La loi forte des grands nombres donne  $\widehat{\delta}_n \xrightarrow[n \to +\infty]{p.s} \mathbb{E}_g[m\rho(X_1,Y_1)] = \frac{1}{a}$ 

D'où, par continuité de  $x\mapsto \frac{1}{x}$ , on a  $\widehat{b}_n \xrightarrow[n \to +\infty]{p.s} a$ 

Intervalle de confiance. Les variables aléatoires  $(m\rho(X_n, Y_n))_{n\geq 1}$  sont *i.i.d.* et de variance finie,  $m\rho$  étant de carré intégrable par rapport à g. En effet,

$$\mathbb{E}_{g}[m^{2}\rho(X,Y)^{2}] = \int_{\mathbb{R}^{2}} \rho(x,y)^{2}g(x,y) \,dx \,dy$$

$$= \int_{\mathbb{R}^{2}} \frac{\psi(x,y)^{2}}{g(x,y)} \,dx \,dy$$

$$\leq \int_{\mathbb{R}^{2}} m\psi(x,y) \,dx \,dy \qquad \operatorname{car} \psi(x,y) \leq mg(x,y) \iff \frac{\psi(x,y)}{g(x,y)} \leq m$$

$$\leq \frac{m}{a} < +\infty$$

Le théorème centrale limite donne

$$\sqrt{n}(\widehat{\delta}_n - \frac{1}{a}) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}(0, \sigma^2)$$

D'après la Méthode Delta pour  $h: x \mapsto \frac{1}{x}$ , on obtient

$$\sqrt{n}(\hat{b}_n - a) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}(0, \sigma^2 a^4) \text{ car } h'(x) = -\frac{1}{x^2}$$

On en déduit l'intervalle de confiance de a au niveau de confiance  $1-\alpha$ ,

$$IC_{1-\alpha} = [\hat{b}_n - q_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma^2 a^4}{n}}, \hat{b}_n) + q_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma^2 a^4}{n}}]$$

$$= [\hat{b}_n - q_{1-\frac{\alpha}{2}} \sqrt{Var[\hat{b}_n]a^4}, \hat{b}_n + q_{1-\frac{\alpha}{2}} \sqrt{Var[\hat{b}_n]a^4}]$$

où  $q_{1-\frac{\alpha}{2}}$  est le quantile d'ordre  $1-\frac{\alpha}{2}$  de la loi normale centrée réduite. Dans la pratique, on estime la variance  $\sigma^2$  via la variance empirique associée aux réalisations de la variable aléatoire  $(m\rho(X_n,Y_n))_{n\geq 1}$ :

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{k=1}^n \{ m \rho(X_k, Y_k) - \hat{b}_n \}^2$$

Et on estime  $a^4$  avec  $\hat{b}_n^4$  , par la loi forte des grands nombres et le théorème de Slutsky. Finalement,

$$IC_{1-\alpha} = \left[\hat{b}_n - q_{1-\frac{\alpha}{2}}\hat{b}_n^2\sqrt{\frac{\widehat{\sigma}_n^2}{\widehat{\sigma}_n}}, \hat{b}_n + q_{1-\frac{\alpha}{2}}\hat{b}_n^2\sqrt{\frac{\widehat{\sigma}_n^2}{\widehat{\sigma}_n}}\right]$$

# 4.(b)

```
# Estimateur b_n et intervalle de confiance associé
bn_estim <- function(y, level) {
    delta <- 1/mean(y)
    s2 <- var(y)*(delta^4)
    eps <- (pnorm(0.5 * (1 + level)) * sqrt(s2/length(y)))
    return(data.frame(
        value = delta,
        var = s2,
        ic_inf = delta - eps,
        ic_sup = delta + eps
    ))
}

# Variable dans l'estimateur b_n
y_b <- m*f$Rho

b_n <- bn_estim(y_b, 0.95)</pre>
```

Nous avons donc  $\hat{b}_n = 0.0669757$ 

Et l'intervalle de confiance asymptotique associé de a au niveau 95% est

[0.066725, 0.0672264]

**4.**(c)

Afin d'estimer le biais de l'estimateur  $\hat{b}_n$  nous utilisons une methode *Bootsrtap*. En effet, on génère à partir de K échantillons de taille 1000, aléatoirement tirés parmi l'échantillon des valeurs

de  $\rho(x,y)$ , K estimateurs afin d'estimer l'espérance de  $b_n$  par la méthode de Monte Carlo classique :

 $\frac{1}{K} \sum_{k=1}^{K} \widehat{b}_n^{(k)}$ .

Notre estimation du biais est alors

$$\widehat{B}(\widehat{b}_n, a) = (\frac{1}{K} \sum_{k=1}^K \widehat{b}_n^{(k)}) - \widehat{b}_n$$

```
# Methode Bootstrap

# On génère à partir de k échantillons de taille 10000 k estimateurs afin
# d'estimer l'esperance de l'estimateur

k <- 10000 #nombre d'estimateurs
v_boot <- c()
for (i in 1:k) {
    # x_boot : vecteur aleatoire de taille 10000 des valeurs de rho
    x_boot <- sample(x = m*f$Rho, size = 1000, replace = TRUE)
    # b_n_boot : estimateur de x_boot
    b_n_boot <- bn_estim(x_boot, 0.95)
    # v_boot : vecteur de k estimateurs
    v_boot <- append(v_boot,b_n_boot$value) #vecteur de k estimateurs
}

# Calcul du biais estimé
biais_estim <- (mean(v_boot) - b_n$value)</pre>
```

La valeur du biais estimé est  $7.8993464 \times 10^{-5}$  ce qui nous semble assez faible. L'estimateur est donc biaisé mais reste correct.

#### 5.(a)

Nous avons dans un premier temps

$$\mathbb{E}_f\left[\frac{g(X,Y)}{\psi(X,Y)}\right] = \int_{\mathbb{R}^2} \frac{g(x,y)}{\psi(x,y)} f(x,y) \mathrm{d}x \mathrm{d}y$$

$$= \int_{\mathbb{R}^2} g(x,y) a \, \mathrm{d}x \, \mathrm{d}y \qquad \text{car } \frac{f(x,y)}{\psi(x,y)} = a$$

$$= a \qquad \text{car g est une densit\'e donc } \int_{\mathbb{R}^2} g(x,y) \mathrm{d}x \mathrm{d}y = 1$$

De plus,  $\frac{g(X,Y)}{\psi(X,Y)} = \frac{1}{m\rho(X,Y)}$  et ainsi  $\mathbb{E}_f[\frac{1}{m\rho(X,Y)}] = a$ . On en déduit l'estimateur classique de Monte Carlo de a :

$$\widehat{a}_n = \frac{1}{n} \sum_{i=1}^n \frac{1}{m\rho(X_i, Y_i)} \quad \text{avec } (X_i, Y_i) \stackrel{iid}{\sim} f$$

Biais de l'estimateur. Les variables aléatoires  $(\frac{1}{m\rho(X_n,Y_n)})_{n\geq 1}$  étant identiquement distribuées, on a :

$$\mathbb{E}[\widehat{a}_n] = \mathbb{E}_f\left[\frac{1}{m\rho(X_1, Y_1)}\right] = a$$

L'estimateur est donc sans biais.

Convergence de l'estimateur. Les variables aléatoires  $(\frac{1}{m\rho(X_n,Y_n)})_{n\geq 1}$  sont i.i.d. et d'espérance finie sous f. La loi forte des grands nombres donne  $\widehat{a}_n \xrightarrow[n \to +\infty]{p.s} \mathbb{E}_f[\frac{1}{m\rho(X_1,Y_1)}] = a$ .

Donc  $\widehat{a}_n \xrightarrow[n \to +\infty]{p.s} a$ .

Intervalle de confiance. Les variables aléatoires  $(\frac{1}{m\rho(X_n,Y_n)})_{n\geq 1}$  sont *i.i.d.* et de variance finie. Le théorème centrale limite donne :

$$\sqrt{n}(\widehat{a}_n - a) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}(0, \sigma^2) \text{ avec } \sigma^2 = Var[\frac{1}{m\rho(X_1, Y_1)})]$$

On en déduit l'intervalle de confiance de a au niveau de confiance  $1-\alpha$ ,

$$IC_{1-\alpha} = \left[ \widehat{a}_n - q_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma^2}{n}}, \widehat{a}_n + q_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma^2}{n}} \right]$$
$$= \left[ \widehat{a}_n - q_{1-\frac{\alpha}{2}} \sqrt{Var[\widehat{a}_n]}, \widehat{a}_n + q_{1-\frac{\alpha}{2}} \sqrt{Var[\widehat{a}_n]} \right]$$

où  $q_{1-\frac{\alpha}{2}}$  est le quantile d'ordre  $1-\frac{\alpha}{2}$  de la loi normale centrée réduite. Dans la pratique, on estime la variance  $\sigma^2$  via la variance empirique associée aux réalisations de la variable aléatoire  $(\frac{1}{m\rho(X_n,Y_n)})_{n\geq 1}$ :

$$\widehat{\sigma}_n^2 = \frac{1}{n} \sum_{k=1}^n \{ \frac{1}{m\rho(X_k, Y_k)} - \widehat{a}_n \}^2$$

5.(b)

```
\# Estimateur a_n et intervalle de confiance associé
an_estim <- function(y, level) {</pre>
  delta <- mean(y)</pre>
  s2 <- var(y)
  eps <- (pnorm(0.5 * (1 + level)) * sqrt(s2 / length(y)))
  return(data.frame(
    value = delta,
    var = s2,
    ic_inf = delta - eps,
    ic_sup = delta + eps
  ))
}
# Variable dans l'estimateur a_n
y_a <- function(x,y){</pre>
  return((1/(m*rho(x,y))))
a_n \leftarrow an_{estim}(y_a(z[,1],z[,2]), 0.95)
```

' Nous avons donc  $\hat{a}_n = 0.0668145$ 

Et l'intervalle de confiance asymptotique associé de a au niveau 95% est

[0.06636, 0.0672691]

6.

Afin de calculer le rapport des coûts pour lesquels  $\hat{a}_n$  et  $\hat{b}_n$  atteignent la même précision nous calculons le rapport des variances de  $\hat{a}_n$  et  $\hat{b}_n$  calculés précedemment. On a

$$\frac{Var[\widehat{a}_n]}{Var[\widehat{b}_n]} = \frac{Var_f[\frac{1}{m\rho(X,Y)}]}{Var_g[m\rho(X,Y)]\widehat{b}_n^4}$$
# Rapport des coûts
$$\text{st\_1} \leftarrow \text{a\_n\$var/b\_n\$var}$$

On voit alors que  $\frac{Var[\widehat{a}_n]}{Var[\widehat{b}_n]}=0.857052<1\Rightarrow Var[\widehat{a}_n]< Var[\widehat{b}_n]$ 

On en déduit alors que  $\hat{a}_n$  est plus efficace que  $\hat{b}_n$  pour l'estimation de a.

#### 7.(a)

Soit  $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ , alors

$$\psi(x,y) = \left[ \left| \sin(\frac{2}{\pi}x^2 - \frac{\pi}{4}) \right| + 4\cos(x)^2 + y^4 \right] e^{-2(x+|y|)} \mathbf{1}_{\{y \in [-1,1]\}}$$

De plus, 
$$f(x,y) = a\psi(x,y) \Rightarrow f_X(x) = a \int_{\mathbb{R}} \psi(x,y) \, dy$$

Et 
$$\int_{\mathbb{R}} \psi(x,y) \, \mathrm{d}y = \int_{[-1,1]} [|\sin(\frac{2}{\pi}x^2 - \frac{\pi}{4})| + 4\cos(x)^2 + y^4] e^{-2(x+|y|)} \, \mathrm{d}y$$
$$= e^{-2x} [[|\sin(\frac{2}{\pi}x^2 - \frac{\pi}{4})| + 4\cos(x)^2] \frac{e^2 - 1}{e^2} + \int_{[-1,1]} y^4 e^{-2|y|} \, \mathrm{d}y]$$

Avec 
$$\int_{[-1,1]} y^4 e^{-2|y|} dy = 2 \int_{[-1,0]} y^4 e^{2y} dy = \frac{3(e^2 - 7)}{4e^2}$$
 par des intégrations par parties successives.

Ainsi,

$$\int_{\mathbb{R}} \psi(x,y) \, \mathrm{d}y = e^{-2x} [[|\sin(\frac{2}{\pi}x^2 - \frac{\pi}{4})| + 4\cos(x)^2] \frac{e^2 - 1}{e^2} + \frac{3(e^2 - 7)}{4e^2}]$$

On en déduit alors la densité marginale de X

$$f_X(x) = a.e^{-2x} \left[ \left[ \left| \sin(\frac{2}{\pi}x^2 - \frac{\pi}{4}) \right| + 4\cos(x)^2 \right] \frac{e^2 - 1}{e^2} + \frac{3(e^2 - 7)}{4e^2} \right]$$

Finalement, par le théorème de Slutsky, comme  $\widehat{a}_n \xrightarrow[n \to +\infty]{p.s} a$ , on prend

$$\widehat{f}_{X,n}(x) = \widehat{a}_n \cdot e^{-2x} \left[ \left[ \left| sin(\frac{2}{\pi}x^2 - \frac{\pi}{4}) \right| + 4cos(x)^2 \right] \frac{e^2 - 1}{e^2} + \frac{3(e^2 - 7)}{4e^2} \right] \quad \text{avec } \widehat{f}_{X,n}(x) \xrightarrow[n \to +\infty]{p.s} f_X(x)$$

(Nous aurions pû prendre  $\hat{b}_n$  pluôt que  $\hat{a}_n$  mais nous avons vu précédemment que  $\hat{a}_n$  est plus efficace.)

# 7.(b)

```
psi_x <- function(x){
    return(exp(-2*x)*(((exp(2)-1)/exp(2))*(abs(sin((2/pi)*x*x-(pi/4)))+4*cos(x)*cos(x))+3*(exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(2)-7)/(4*exp(
```

# Histogramme de X



# Méthode n°2 – Estimateur ponctuel

8.

Soient  $(X_1, Y_1), ..., (X_n, Y_n)$  une suite de variables indépendantes suivant la loi jointe  $f_{X,Y}(x,y)$  et  $\omega(.)$  une densité quelconque.

On note  $\widehat{\omega}_n(t) = \frac{1}{n} \sum_{k=1}^n \frac{\psi(t, Y_k)\omega(X_k)}{\psi(X_k, Y_k)}$ 

La loi forte des grands nombres pour la suite de variables aléatoires i.i.d.  $(\frac{\psi(t,Y_n)\omega(X_n)}{\psi(X_n,Y_n)})_{n\geq 1}$  nous donne

$$\widehat{\omega}_n(t) \xrightarrow[n \to +\infty]{p.s} \mathbb{E}\left[\frac{\psi(t, Y_1)\omega(X_1)}{\psi(X_1, Y_1)}\right]$$

De plus,

$$\mathbb{E}\left[\frac{\psi(t,Y_1)\omega(X_1)}{\psi(X_1,Y_1)}\right] = \int_{supp(f_{X,Y})} \frac{\psi(t,y)\omega(x)}{\psi(x,y)} f_{X,Y}(x,y) \, \mathrm{d}x \mathrm{d}y$$

$$= \int_{supp(f_{X,Y})} \frac{af_{X,Y}(t,y)\omega(x)}{af_{X,Y}(x,y)} f_{X,Y}(x,y) \, \mathrm{d}x \mathrm{d}y \quad \text{car } \psi(x,y) = \frac{f_{X,Y}(x,y)}{a}$$

$$= \int_{supp(f_{X,Y})} \omega(x) f_{X,Y}(x,y) \, \mathrm{d}x \mathrm{d}y$$

$$= \int_{supp(f_{Y})} f_{X,Y}(x,y) \left( \underbrace{\int_{supp(f_{X})} \omega(x) \, \mathrm{d}x}_{=1} \right) \mathrm{d}y \quad \text{d'aprés le théorème de Fubini}$$

$$= \int_{supp(f_{Y})} f_{X,Y}(x,y) \, \mathrm{d}y \quad \text{car } \omega(.) \text{ est une densité et } supp(\omega) \subseteq supp(f_{x})$$

$$= f_{X}(t)$$

Ainsi, on a bien montré que

$$\widehat{\omega}_n(t) \underset{n \to +\infty}{\xrightarrow{p.s}} f_X(t)$$

Intervalle de confiance. Les variables aléatoires  $(\frac{\psi(t,Y_n)\omega(X_n)}{\psi(X_n,Y_n)})_{n\geq 1}$  sont *i.i.d.* et de variance finie. Le théorème centrale limite donne

$$\sqrt{n}(\widehat{\omega}_n(t) - f_X(t)) \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}(0, \sigma^2) \text{ avec } \sigma^2 = Var[\frac{\psi(t, Y_1)\omega(X_1)}{\psi(X_1, Y_1)}]$$

On en déduit l'intervalle de confiance de  $f_X(t)$  au niveau de confiance  $1-\alpha$ ,

$$IC_{1-\alpha} = \left[\widehat{\omega}_n(t) - q_{1-\frac{\alpha}{2}}\sqrt{\frac{\sigma^2}{n}}, \widehat{\omega}_n(t) + q_{1-\frac{\alpha}{2}}\sqrt{\frac{\sigma^2}{n}}\right]$$
$$= \left[\widehat{\omega}_n(t) - q_{1-\frac{\alpha}{2}}\sqrt{Var[\widehat{\omega}_n(t)]}, \widehat{\omega}_n(t) + q_{1-\frac{\alpha}{2}}\sqrt{Var[\widehat{\omega}_n(t)]}\right]$$

où  $q_{1-\frac{\alpha}{2}}$  est le quantile d'ordre  $1-\frac{\alpha}{2}$  de la loi normale centrée réduite. Dans la pratique, on estime la variance  $\sigma^2$  via la variance empirique associée aux réalisations de la variable aléatoire  $(\frac{\psi(t,Y_n)\omega(X_n)}{\psi(X_n,Y_n)})_{n\geq 1}$ :

$$\widehat{\sigma}_n^2(t) = \frac{1}{n} \sum_{k=1}^n \{ \frac{\psi(t, Y_k)\omega(X_k)}{\psi(X_k, Y_k)} - \widehat{\omega}_n(t) \}^2$$

9.

On sait que  $\psi(x,y) = \frac{f(x,y)}{a}$ . De plus, les variables aléatoires X et Y sont indépendantes donc  $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ . Ainsi, on a

$$\widehat{\omega}_n(t) = \frac{1}{n} \sum_{k=1}^n \frac{f_X(t) f_Y(Y_k) \omega(X_k)}{f_X(X_k) f_Y(Y_k)} = \frac{1}{n} \sum_{k=1}^n \frac{f_X(t) \omega(X_k)}{f_X(X_k)}$$

Nous cherchons la densité  $\omega(.)$  qui minimise la variance de  $\widehat{\omega}_n(t)$ . Or

$$\min_{\omega(.)} (Var[\widehat{\omega}_n(t)]) \iff \min_{\omega(.)} \left( \frac{f_X(t)^2}{n} Var[\frac{\omega(X_1)}{f_X(X_1)}] \right) \qquad \text{car les v.a. } \left( \frac{\omega(X_n)}{f_X(X_n)} \right)_{n \ge 1} \text{ sont } i.i.d.$$

$$\iff \min_{\omega(.)} \left( \mathbb{E}[\left( \frac{f_X(t)\omega(X_1)}{f_X(X_1)} \right)^2] - \mathbb{E}[\left( \frac{f_X(t)\omega(X_1)}{f_X(X_1)} \right)]^2)$$

$$\iff \min_{\omega(.)} \left( \int_{supp(f_X)} \frac{\omega(x)^2}{f_X(x)} \, \mathrm{d}x - \left[ \int_{supp(f_X)} \omega(x) \, \mathrm{d}x \right]^2 \right)$$

$$\iff \min_{\omega(.)} \left( \int_{supp(f_X)} \frac{\omega(x)^2}{f_X(x)} \, \mathrm{d}x - 1 \right)$$

$$\mathrm{Or}\ (\int_{supp(f_X)} \frac{\omega(x)^2}{f_X(x)} \, \mathrm{d}x - 1) = Var[\frac{\omega(X_1)}{f_X(X_1)}] \, \geq 0$$

Ainsi chercher une densité  $\omega(.)$  qui minimise la variance de  $\widehat{\omega}_n(t)$  revient à chercher une densité  $\omega(.)$  pour laquelle  $\int_{supp(f_X)} \frac{\omega(x)^2}{f_X(x)} dx = 1.$ 

On remarque alors qu'un choix évident est :

$$\omega(.) = f_X(.)$$

Cependant,  $f_X$  est la densité que nous cherchons à estimer, nous ne pouvons donc l'utiliser. Dans la pratique, nous utiliserons alors l'estimateur de  $f_X$  construit précédemment, à savoir  $f_{X,n}(x)$  qui converge presque-sûrement vers  $f_X$ .

10.

```
# Estimateur w_n et intervalle de confiance associ?
wn_estim <- function(t, y, level) {</pre>
  delta <- mean(y(t))
  s2 \leftarrow var(y(t))
  eps \leftarrow (pnorm(0.5 * (1 + level)) * sqrt(s2 / length(y(t))))
  return(data.frame(
    value = delta,
    var = s2,
    ic_inf = delta - eps,
    ic_sup = delta + eps
  ))
}
# Fonction psi
psi <- function(x,y){</pre>
```

```
return(((abs(sin((2/pi)*x*x-pi/4))+4*cos(x)*cos(x)+y^4)*exp(-2*(x+abs(y))))*(abs(x) <= (pi/2))*(abs(y))

# Variable dans l'estimateur w_n
y_w <- function(t){
   return(((psi(t, z[, 2])*f_x_n(a_n$value,z[, 1]))/(psi(z[, 1], z[, 2]))))
}
w_n <- wn_estim(-1, y_w, 0.95)</pre>
```

Nous avons donc  $\hat{w}_n(-1) = 0.6016734$ 

Et l'intervalle de confiance asymptotique associé de a au niveau 95% est

[0.6012251, 0.6021217]

#### 11.

Afin de calculer le rapport des coûts pour lesquels  $\widehat{\omega}_n(-1)$  et  $\widehat{f}_{X,n}(-1)$  atteignent la même précision nous calculons le rapport des variances de  $\widehat{\omega}_n(-1)$  et  $\widehat{f}_{X,n}(-1)$ . On a

```
\begin{split} &\frac{Var[\widehat{\omega}_{n}(-1)]}{Var[\widehat{f}_{X,n}(-1)]} = \frac{Var_{f}[\frac{\psi(-1,Y)\omega(X)}{\psi(X,Y)}]}{Var_{g}[\widehat{f}_{X,n}(-1)]} \\ &\text{\# Rapport des couts} \\ &\text{st_2} <- \text{ w_n$var/var(y_a(z[,1],z[,2])*psi_x(-1)^2)} \end{split}
```

On voit alors que  $\frac{Var[\widehat{\omega}_n(-1)]}{Var[\widehat{f}_{X,n}(-1)]} = 1.6982642 \times 10^{-4} << 1 \Rightarrow Var[\widehat{\omega}_n(-1)] << Var[\widehat{f}_{X,n}(-1)]$ 

On en déduit alors que  $\widehat{\omega}_n(-1)$  est beaucoup plus efficace que  $\widehat{f}_{X,n}(-1)$  pour l'estimation de  $f_X$ .

# Solution Exercice 2.

Soit  $X=(X_1,X_2,X_3)$  un vecteur aléatoire de  $\mathbb{R}^3$  distribué suivant la loi  $\mathcal{N}(\mu,\Sigma)$  avec

$$\mu = \begin{pmatrix} 0.1 \\ 0 \\ 0.1 \end{pmatrix} \ et \ \Sigma = \begin{pmatrix} 0.047 & 0 & 0.0117 \\ 0 & 0.047 & 0 \\ 0.0117 & 0 & 0.047 \end{pmatrix}$$

On s'intéresse à

$$\delta = \mathbb{E}[\min(3, \frac{1}{3} \sum_{i=1}^{n} e^{-X_k})]$$

1.

Pour simuler la loi de X on code une fonction rmvnorm(n,mu,sigma) qui permet de générer n simulations de la loi normale multivariée de moyenne  $\mu$  et de matrice de vriance-covariance  $\Sigma$ . Cette fonction repose sur la proposition suivante du cours :

Soit  $\mathcal{Z} \sim \mathcal{N}(0_3, I_3)$ ,

on utilise la décomposition de Cholesky de  $\Sigma$  i.e.  $\Sigma = LL^T$  avec L une matrice triangulaire inférieure. Ainsi  $X = \mu + L\mathcal{Z}$  avec  $\mu \in \mathbb{R}^3$  suit la loi  $\mathcal{N}(\mu, \Sigma)$ 

```
rmvnorm <- function(n, mu, sigma) { # Simulation de X
    Z <- matrix(rnorm(3 * n), nrow = 3, ncol = n)
    X <- t(chol(sigma))
    return(mu + X %*% Z)
}

# On utilise les données de l'exercice pour simuler 10000 simulations de X
n <- 10000
mu <- c(0.1, 0, 0.1)
sigma <- matrix(c(0.047, 0, 0.0117, 0, 0.047, 0, 0.0117, 0, 0.047), 3, 3)
x <- rmvnorm(n, mu, sigma)</pre>
```

# 2.(a)

 $\delta = \mathbb{E}[\min(3, \frac{1}{3} \sum_{i=1}^{n} e^{-X_k})].$ 

On calcule l'estimateur de Monte-Carlo classque en simulant n variables aléatoires  $(X_i)_{i\in[1,n]}=((X_{1,i},X_{2,i},X_{3,i}))_{i\in[1,n]}$ , i.i.d. suivant la loi de X.

$$\bar{\delta}_n = \frac{1}{n} \sum_{i=1}^n \min(3, \frac{1}{3} \sum_{i=1}^n e^{-X_k})$$

### 2.(b)

On utilise les n simulations de la question 1.

On code une fonction h(x,n) qui prend en arguments un vecteur  $(X_i)_{i\in[1,n]}$  de taille n et renvoie un vecteur  $(h(X_i))_{i\in[1,n]}$  où  $h(X)=min(3,\frac{1}{3}\sum_{i=1}^n e^{-X_k})$ .

On utilise la fonction pmin, qui nous permet de retourner le minimum de deux vecteurs, afin d'optimiser l'efficacité de la fonction.

Pour calculer l'erreur quadratique moyenne, on utilise la formule  $\frac{Var[h(X)]}{n}$  et la fonction var(.) qui retourne la variance empirique.

```
h <- function(x, n) { # Fonction h utilisant pmin pour prendre le min de 2 vecteurs
    return(pmin(rep(3, n), colMeans(exp(-x))))
}
h.x <- h(x, n)
delta <- mean(h.x)
delta
## [1] 0.9591481
var.h <- var(h.x)
erreur <- var.h / n
erreur</pre>
```

## [1] 1.712204e-06

Ici on a  $\bar{\delta}_n = 0.9591481$ et l'erreur quadratique vaut  $1.712204 \times 10^{-6}$ .

# 3.(a)

On prend  $A(X) = 2\mu - X$  qui est mesurable. Ainsi, A(X) suit la même loi que X comme le confirme les deux graphes ci-dessous.

```
# On introduit la variable antithétique A= 2*mu - X
a <- -x + 2 * mu

par(mfrow = c(1, 2))

q_a <- quantile(a)
q_x <- quantile(x)

qqplot(q_x, q_a, xlab = "Quantiles de X",ylab = "Quantiles de A(X)", main = "QQplot de A(X) et X")
abline(a = 0, b = 1)

hist(a, freq = F,main = "Repartition de A(X)",xlab = "A(X)",ylim=c(0,3))
lines(density(x), col = "red")
legend("topright","Densité de X",col = "red",lwd = 1,box.lty = 1)</pre>
```



0.5

1.0

# Repartition de A(X)



On construit l'estimateur  $\widehat{\delta}_n$  par la méthode antithétique :

0.0

Quantiles de X

$$\left|\widehat{\delta}_n = \frac{1}{n} \sum_{i=1}^n \frac{h(X_i) + h(A(X_i))}{2}\right|$$
 où  $(X_i)_{i \in [1,n]}$  est une suite de v.a *i.i.d.* suivant la loi de  $X$ .

-0.5

On a donc 
$$Var[\widehat{\delta}_n] = \frac{1}{2n} Var[h(X)](1+\rho) = \frac{1}{2} Var[\bar{\delta}_n](1+\rho).$$

-0.5

On veut maintenant utiliser la Proposition 3.5 du cours. Ici par décroissance de  $X \mapsto -X$ , on voit facilement que A est une transformation de  $\mathbb{R}^3$  décroissante en chacune de ses coordonnées.

De plus,  $h: \mathbb{R}^3 \to \mathbb{R}$  est décroissante par décroissance de  $X \mapsto e^{-X}$ .

Ainsi, d'après la Proposition 3.5 du cours, on a  $Cov(h(X), h(A(X))) \le 0$ .

D'où, 
$$1+\rho \leq 1.$$
 On en déduit :  $\left|Var[\widehat{\delta}_n] \leq \frac{1}{2}Var[\bar{\delta}_n]\right|$ 

On s'intéresse maintenant au facteur de réduction de variance théorique, noté  $R_1$ , de  $\hat{\delta}_n$  par rapport à  $\bar{\delta}_n$ .

L'expression de  $R_1$  est:  $\boxed{R_1 = R(\widehat{\delta}_n, \bar{\delta}_n) = \frac{C\sigma^2}{C_1\sigma_1^2} = \frac{C}{C_1}\frac{2}{1+\rho} \text{ avec } \sigma^2 = Var[\bar{\delta}_n], \sigma_1^2 = Var[\widehat{\delta}_n] \text{ et } C \text{ le coût de } }$ calcul de  $\bar{\delta}_n$  et  $C_1$  de  $\hat{\delta}_n$ .

```
# Calcul de l'estimateur
h.a \leftarrow h(a, n)
delta.ant <- mean(c(h.x, h.a))</pre>
delta.ant
```

## [1] 0.9588342

```
# Calcul de l'erreur quadratique moyenne
rho \leftarrow cor(h.x, h.a)
erreur.ant \leftarrow var.h * (1 + \text{rho}) / (2 * \text{n})
erreur.ant
## [1] 3.529868e-08
# Calcul du facteur de réduction de variance théorique
library(microbenchmark)
test <- microbenchmark::microbenchmark(h(x, n), rmvnorm(n, mu, sigma), times = 1000)
print(test)
## Unit: microseconds
##
                              expr
                                                    lq
                                                               mean median
                                                                                                max neval
                                                                                        uq
##
                         h(x, n) 570.2 588.7 659.5355 596.3 628.80 2428.8 1000
    rmvnorm(n, mu, sigma) 1363.8 1382.6 1530.9234 1393.1 1430.25 5819.7 1000
C_h \leftarrow mean(test\time[which(test\time = "h(x, n)")])
C_X <- mean(test$time[which(test$expr == "rmvnorm(n, mu, sigma)")])</pre>
R1 \leftarrow 2 * (C_h + C_X) / ((C_X + 2 * C_h) * (1 + rho))
## [1] 37.28105
On conclut que \hat{\delta}_n est 37.2810544 fois plus efficace que \delta_n.
4.(a)
On choisit ici la loi génératrice des moments de loi mutivariée en \left(-\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}\right)
On a M_X(t) = e^{\mu^T t + \frac{1}{2} t^T \Sigma t} = \mathbb{E}[e^{\langle t, X \rangle}]
Et h_0(X) = e^{-\frac{1}{3} \sum_{i=1}^n X_i} = e^{\langle t, X \rangle} = exp\{\langle \begin{pmatrix} -\frac{1}{3} \\ -\frac{1}{3} \\ -\frac{1}{2} \end{pmatrix}, \begin{pmatrix} X_1 \\ X_2 \\ X_2 \end{pmatrix} \rangle\}
D'où m = \mathbb{E}[e^{\langle t, X \rangle}] = e^{\mu^T t + \frac{1}{2} t^T \Sigma t}
On en déduit finalement
                                       \hat{\delta}_n(b) = \frac{1}{n} \sum_{i=1}^n (h(X_i) - b(h_0(X_i) - m))
h0 <- function(x) {
  return(exp(-colMeans(x)))
}
h0.x \leftarrow h0(x)
rho.control <- cor(h0.x, h.x)</pre>
rho.control
## [1] 0.9932131
On a cor(h_0(X), h(X)) très proche de 1 (=0.9932131).
t1 \leftarrow c(-1 / 3, -1 / 3, -1 / 3)
m \leftarrow exp(t(mu) %*% t1 + 1 / 2 * t(t1) %*% sigma %*% t1) [1, 1]
```

```
cov.h.h0 \leftarrow cov(h0.x, h.x)
```

## 4.(b)

Pour simuler b, on utilise la méthode de la burn-in period. Ainsi on utilise les l premières estimations de la suite  $(X_n)_{n\geq 1}$  pour estimer  $b^*$  via :

$$\hat{b^*}_l = \frac{\sum_{k=1}^l (h_0(X_k) - m)(h(X_k) - \bar{h}_l)}{\sum_{k=1}^l (h_0(X_k) - m)^2}$$

On utilise ensuite les n-l estimations restantes pour calculer  $\hat{\delta}_{n-l}(\hat{b^*}_l)$ . D'après le cours, nous savons que l doit rester relativement petit face à n-l.

On fait varier donc l entre 0 et 500, pour trouver la valeur de l qui nous donne l'estimateur avec la plus faible erreur quadratique.

En traçant l'évolution de b et de l'erreur en fonction de l, on voit que l'erreur n'évolue pas trop et que b stagne vite autour de la valeur 1.

```
essai \leftarrow seq(from = 0, to = 500, by = 1)
err <- c()
del <- c()
b <- c()
for (l in essai) {
  h.x.l \leftarrow h.x[1:1]
  h.x.nl \leftarrow h.x[1:n]
  h0.x.1 \leftarrow h0.x[1:1]
  h0.x.nl <- h0.x[1:n]
  bl \leftarrow sum((h0.x.l - m) * (h.x.l - mean(h.x.l))) / sum((h0.x.l - m) * (h0.x.l - m))
  d \leftarrow mean(h.x.nl - bl * (h0.x.nl - m))
  e \leftarrow var(h.x.nl) / (n - 1) + (bl * bl * var(h0.x) - 2 * bl * cov(h.x.nl, h0.x.nl)) / (n - 1)
  err <- append(err, e)</pre>
  b <- append(b, bl)</pre>
  del <- append(del, d)</pre>
par(mfrow = c(1, 2))
plot(essai, err, xlab = "l",ylab = "Erreur Quadratique Moyenne",
     main = "Evolution de l'erreur en fonction de l", ylim = c(0, 1e-07))
lines(essai, err)
plot(essai, b,xlab = "l",ylab = "Valeur de b", main = "Evolution de b en fonction de l")
lines(essai,b,col = "red")
```

# Evolution de l'erreur en fonction d

# Evolution de b en fonction de l



```
w <- which(err == min(err))
essai[w] #Valeur de l

## [1] 153
err[w] #Erreur minimale

## [1] 1.783843e-08
b[w] #Valeur de b

## [1] 1.025162
del[w] #Valeur de l'estimateur</pre>
```

## [1] 0.9586987

Dans ce cas précis, nous aurions donc choisi, l=153 qui nous donne  $\hat{\delta}_{n-l}(\hat{b^*}_l)=0.9586987$  et  $\hat{b^*}_l=1.0251624$ . La méthode de controle permet encore de diminuer notre variance et est donc encore plus performant.

# Solution Exercice 3.

#### Travail préliminaire

On remarque très vite que la loi géometrique liée aux fonctions du langage R pgeom(), dgeom(), qgeom() et rgeom() avec prob = p suit la densité :

$$p(x) = p(1-p)^x$$

pour x = 0, 1, 2, ...

Alors que la loi géomètrique classique évoquée dans l'énoncé suit la densité :

$$p(x) = p(1-p)^{x-1}$$

pour x = 1, 2, 3, ...

On introduit donc des fonctions suivant cette loi géomètrique pour cet exercice :

```
rgeom_modif <- function(n, p = 0.2) {
  return(rgeom(n, p) + 1)
}

dgeom_modif <- function(n, p = 0.2) {
  return(dgeom(n - 1, p))
}

pgeom_modif <- function(n, p = 0.2) {
  return(pgeom(n - 1, p))
}</pre>
```

#### 1.

L'estimateur de Monte Carlo classique est donné par :

```
\bar{\delta}_n = \frac{1}{n} \sum_{k=1}^n \sum_{i=1}^{Y_k} \log(1 + X_i)
```

avec  $(X_n)_{n\geq 1}$  i.i.d suivant une loi  $\Gamma(m,\theta)$  et  $(Y_k)_{k\in [1,n]}$  i.i.d suivant une loi  $\mathcal{G}(p)$ .

```
n <- 10000

m <- 2
p <- 0.2
theta <- 2

estim_MC <- function(n, p = 0.2) {
    ans <- c()
    y <- rgeom_modif(n, p)
    for (i in 1:n) {
        ans <- append(ans, sum(log(1 + rgamma(y[i], m, theta))))
    }
    return(list("delta" = mean(ans), "Var" = var(ans) / n, "Erreur" = var(ans) / n^2))
}

MC <- estim_MC(n)
MC</pre>
```

```
## $delta
## [1] 3.101019
##
## $Var
## [1] 0.0008276195
##
## $Erreur
## [1] 8.276195e-08
```

On a  $\bar{\delta}_n = 3.1010193$  avec une erreur quadratique moyenne valant  $8.2761947 \times 10^{-8}$ .

## 2.(a)

On cherche à estimer  $\delta = \mathbb{E}[S]$  avec  $S = \sum_{i=1}^{Y} \log(X_i + 1)$  avec  $(X_n)_{n \geq 1}$  i.i.d suivant une loi  $\Gamma(m, \theta)$ 

Dans cette question, on souhaite estimer  $\delta$  à l'aide de la méthode de stratification avec L = 15 strates bien choisies.

#### Choix des strates

Il parait évident de choisir Y comme variable de stratification. En effet, comme Y suit une loi  $\mathcal{G}(p)$ , Y est à valeur dans  $\mathbb{N}^*$ . Il faut donc créer 15 ensembles  $D_k$  formant une partition de  $\mathbb{N}^*$ .

Donc cela revient donc à estimer

$$\mathbb{E}[S] = \sum_{k=1}^{L} \mathbb{P}(Y \in D_k) \mathbb{E}[S|Y \in D_k]$$

Pour  $1 \le k \le 14$ , on choisit  $D_k = \{k\}$ . On a bien  $\mathbb{P}(Y \in D_k) = \mathbb{P}(Y = k) > 0$ .

Pour k = 15, on prend donc toutes les autres valeurs de  $\mathbb{N}^*$  donc  $\mathbb{N}^* \setminus \bigcup_{k=1}^{14} D_k = \{15, 16, \ldots\}$ . On a bien  $\mathbb{P}(Y \in D_{15}) = \mathbb{P}(Y \ge 15) > 0$ .

Ainsi,

$$\mathbb{E}[S] = \sum_{k=1}^{14} \mathbb{P}(Y = k) \mathbb{E}[S|Y = k] + \mathbb{P}(Y \ge 15) \mathbb{E}[S|Y \ge 15]$$

#### Allocation proportionnelle

Nous voulons utiliser la méthode de stratification avec allocation proportionnelle, nous allons créer une suite de  $(n_1, ..., n_L)$  représentant les cardinaux des  $D_k$ .

Pour 
$$1 \le k \le 14$$
, on prend  $n_k = n \mathbb{P}(Y = k) = np(1-p)^{k-1}$  avec  $p = 0.2$ .

Pour 
$$k = 15$$
,  $n_{15} = n - \sum_{k=0}^{14} n_k$ 

# Simulation selon $\mathcal{L}(S|Y \in \mathbf{D}_k)$

Nous voulons à présent simuler selon la loi  $\mathcal{L}(S|Y \in \mathbf{D}_k)$  pour  $1 \le k \le 15$ .

Une nouvelle fois pour  $1 \le k \le 14$  cela est plutôt facile, il suffit de simuler de construire  $n_k$  fois :

$$S_i^{(k)} = \sum_{j=1}^k log(1+X_j) \forall i \in [1, n_k] \text{ avec } (X_n)_{n>1} \stackrel{iid}{\sim} \Gamma(m, \theta)$$

Pour k = 15, la tâche est plus compliquée on utilise alors la formule du cours :

Soit X une variable aléatoire réelle de fonction de répartition F. Pour k=1,...,L,  $D_k=]d_k,d_{k+1}]$  avec  $d_k$  des constantes réelles. Si  $U\sim \mathbf{U}([\mathbf{0},\mathbf{1}])$ , alors  $X_{(k)}=F^\leftarrow[F(d_k)+U(F(d_{k+1})-F(d_k))]$ , k=1,...,K suit la loi de  $X\mid X\in D_k$ .

Dans notre cas,  $S_i^{(15)} = F^{\leftarrow}[F(15) + U(1 - F(15))]$  suit la loi de  $\mathcal{L}(S|Y \in \mathbf{D}_{15})$ .

Enfin nous avons construit notre estimateur

$$\hat{\delta}_n(n_1, ..., n_L) = \sum_{i=1}^L \mathbb{P}(Y \in \mathbf{D}_k) \frac{1}{n_k} \sum_{j=1}^{n_k} S_j^{(k)}$$

2.(b)

```
estim_Strat <- function(n,L=15,p=0.2) {</pre>
  L <- 15
  # Allocation proportionnelle
  nk \leftarrow c()
  pk \leftarrow dgeom_modif(1:(L - 1), p)
  nk <- floor(n * pk)</pre>
  pk <- append(pk, 1 - pgeom_modif(L, p))</pre>
  nk <- append(nk, n - sum(nk))
  estim <- c()
  erreur <- c()
  for (i in 1:(L - 1)) { # Simulation des Si(k)
    sk <- replicate(nk[i], sum(log(1 + rgamma(i, theta, m))))</pre>
    estim <- append(estim, pk[i] * mean(sk))</pre>
    erreur <- append(erreur, pk[i] * var(sk))</pre>
  }
  U <- runif(nk[L])</pre>
  P_Y15 <- pgeom_modif(L, p)
  \# Simulation de n15 Y suivant la loi (Y >= 15)
  Y_{cond} \leftarrow qgeom(P_{Y15} + (1 - P_{Y15}) * U, p)
  sL \leftarrow c()
  # Simulation de n15 Si(15)
  for (i in Y cond) {
    sk <- sum(log(1 + rgamma(i, theta, m)))</pre>
    sL <- append(sL, sk)
  }
  estim <- append(estim, pk[L] * mean(sL))</pre>
  erreur <- append(erreur, pk[L] * var(sL))</pre>
  sum(estim)
  sum(erreur) / n
  return(list("delta" = sum(estim), "Var" = sum(erreur) / n, "Erreur" = sum(erreur) / n^2))
Strat <- estim_Strat(n)</pre>
Strat
## $delta
## [1] 3.08215
##
## $Var
## [1] 7.655507e-05
##
## $Erreur
## [1] 7.655507e-09
Ici \hat{\delta}_n(n_1,...,n_L) = 3.0821503. Et l'erreur quadratique moyenne est de 7.6555072 × 10<sup>-9</sup>.
```

# Calcul du facteur de réduction de variance

```
library(microbenchmark)
test <- microbenchmark(estim_MC(n), estim_Strat(n))</pre>
print(test)
## Unit: milliseconds
##
              expr
                        min
                                    lq
                                             mean
                                                    median
                                                                           max neval
                                                                   uq
##
       estim_MC(n) 135.4415 141.68200 148.37015 145.6270 149.58870 186.4807
                                                                                 100
   estim_Strat(n) 42.4854 45.98175 48.81409 47.6426 49.23905 72.9176
                                                                                 100
##
C_MC <- mean(test$time[which(test$expr == "estim_MC(n)")])</pre>
C_Strat <- mean(test$time[which(test$expr == "estim_Strat(n)")])</pre>
R <- (MC$Var * C_MC) / (C_Strat * Strat$Var)</pre>
```

## [1] 32.85928

L'estimateur  $\hat{\delta}_n(n_1,...,n_L)$  est 32.8592829 plus fois efficace que l'estimateur de Monte Carlo classique.