

 $P(X=k, X+Y=m) = P(X=k, Y=m-k) \times e^{y} independenti$ = $P(X=k)P(Y=m-k) = p(1-p)^{k-1}p(1-p)^{m-k-1}$ $= p^{2} (1-p)^{m-2}.$ = la funcione di probabilità condiscionata di X dot X+Y=.Original: (X+Y)= (X+Y) $= \frac{P(X=k, X+Y=m)}{P(X+Y=m)} = \frac{1}{(m-1)p^{2}(1-p)^{m-2}} = 1$ $= \frac{1}{(m-1)p^{2}(1-p)^{m-2}} = 1$ $= \frac{1}{(m-1)p^{2}(1-p)^{m-2}} = 1$ V 12 k 2 m-1, distribusione uniforme en \{1.m-1} C) X:= v. Q. che descure il numero sle lence per otterrero "T" le prime velte. Y = v.p. che descripe il numero di ulteriori londi
per ottenere "T" di numero"; F:= Na che descrire il nemero di lonce per 12

			de velto Xey		olente.	gunde.
I(X=)	k, F	m) = m	1 - (Colcoloto	t al pe	nt b)
h°2	etaltili.		m - 1	tutti i	Valou:	Stik sono
h = 46 M 22	1	16	LET 145	MED 2		180
F 12	5		320		(10)	210
Do =	J=1.2 k=1.5	Njk -	Nj. N. k No k 1			à focolta- p. genere
72= 5 5=2		15		X= (X1 Y = (41)		
						13

$$D_{0} = \frac{\left(21 - 35\times130\right)^{2}}{100} + \frac{\left(14 - 35\times210\right)^{2}}{100} + \frac{35\times130}{100} + \frac{1}{100} \times 1210}{100} + \frac{35\times130}{100} + \frac{1}{100} \times 1210}{100} + \frac{1}{100} \times 1210} + \frac{1}{100} \times 1210}{100} + \frac{1}{100} \times 120} + \frac{1}{100} \times 120} + \frac{1}{100} \times 120}{100} + \frac{1}{100} \times 120} +$$

1003 TEOREMA: LGND Sie { Xi} une successione di v.a. iid. Suppenions che, per ognii, E(Xi)=42 V(Xi)=62. Allona, per geni E>0: $\lim_{h\to\infty} \left| \left(\frac{2}{2} \chi_{i} - \mu \right) \right| > = 0$ DIM: Sie X:= ZXI. V.Q. $E(\overline{X})=1$ $E(X_{i})=1$ $h\mu=\mu$ $V(\overline{X}) \stackrel{\text{Xi soro}}{=} 1$ $\stackrel{\text{D}}{=} V(X_i) = 1$ h. $6 = 6^2$ h Si opplie la disegnoplionra di Chebrysher a X: Jisso E>O, ottenzo 0 = P(|X-m>=) < 62 he2 $0 \le \mathbb{P}\left(\left|\frac{\tilde{Z} \times 1 - \mu}{n}\right| > \varepsilon\right) \le \frac{d^2}{n\varepsilon^2}$ Le tesi si stuène possando pl limite pur n'che Tende a os.

