SN: 587623

PHYC90012 General Relativity Course Summary

Ву

Braden Moore

Master of Science The University of Melbourne

1 Syllabus

1.1 Part I

- 1. Introduction to gravity
 - Order of magnitude estimates
 - Small amount of quantum gravity
- 2. Equivalence principle + experimental foundations
- 3. Geometric objects
 - Need to understand geomtric components of GR
 - Vectors, metric, etc. that live on manifolds
 - Laws of nature do not depend on coordinates chosen
 - Hence can write laws of nature in terms of geometric objects w/o reference to coordinates

4. Kinematics

- Time dilation, length contraction in GR framework
- 5. Calculus in curvilinear coordinates
 - Mass and energy curve spacetime
 - Hence geometric objects moved on curved manifolds
 - Distances are not only spatial but temporal; need to use mathematics of small change = calculus
 - Uses the covariant derivative (a geometric object; independent of basis/coordinate independent)
 - This point of the course we will not be considering curved space, but instead only curvilinear coords
 - A flat space can be covered (represented?) by curved coordinates, but an intrinsically curved surface cannot be covered by flat coordinates

6. Curved spaces

- Manifolds
- How to calculate lengths, volumes, angles in curved spaces
- Introduces the idea of parallel transport \Rightarrow leads to curvature
- Define the Riemann tensor, and its children etc. Ricci tensor, ...; these satisfy the Bianchi identities
- 7. Einsten's field equations
 - Stress-energy tensor
- 8. Weak-field limit
 - Gauge transformations

1.2 Part II - Applications

- 9. GR phenomena revisited
 - GPS, Mercury's orbit, gravitational lensing, gravittional redshift, ...
- 10. Gravitational waves
 - Propagation (phase speed, polarisation, ...)
 - Generation*
 - Detection*
 - -*= "antenna problem"
- 11. Relativisitic stars
 - neutron stars
 - equation of state (cannot study on Earth because largest nuclei only have 200 elements or so; need more density)
- 12. Black holes
 - Event horizons, singularities, ...
- 13. Cosmology
 - Friedman-Robertson-Walker (FRW) metric describes a homogeneous, isotropic universe
 - We will derive this and the Friedman equations

2 Introduction to gravity

2.1 Strength of gravity

- Weak! Weakest of all fundamental forces
- Long-ranged force (like EM)
- Weakness determined by coupling constant
- Coupling constant = Newton's gravitational constant

$$\vec{F} = \frac{Gm_1m_2}{r_{12}^2}\hat{r} \tag{1}$$

• G is hard to measure; least well known of coupling constants

In 1797-98, Cavendish used torsion balls (1.8m torsion balance) with rod of big masses and rod of small masses.

• Spring constant of torsion balance was measured from free oscillation

- ten introduced 158kg balls
- \bullet measured delfection angle of balance \Rightarrow force
 - using a mini-telescope against Vernier scale
- rearrange Newton's law to get G

Exercise: Show that Cavendish also measured density if Earth as a bonus at the same time

- Product GM is known to 1 part in 10^{10} from astrophysics observations
 - \Rightarrow mass is hard to measure gravitationally
- We need a dimensionless number to characterise strength
- Newton: $\Phi = \frac{GM}{r}$ (potential)
- \bullet In free fall: $\frac{KE}{mass},\,v^2$ $\frac{GM}{r}$
- \bullet We claim gravity is strong is free-fall is relativistic, i.e. v c
- $\bullet\,$ This is an order of magnitude estimate