ACM ICPC Manila 2016

Solution Sketches

Problem G: Go Go Go Special Action Force!

- Easy problem
- Check if the input is a valid Sudoku grid
 - Option 1: sets
 - Option 2: bitmasks
- Just be careful!

Problem L: LoL Tournament

- The tournament is a binary tree
- The highest chance is those with fewest battles
 - o i.e., minimum depth
- Construct tree and compute depths
- Special case: p = 0 or p = 1
 - All nodes are equiprobable!

- Given sequence of edge removals, compute MST before each removal
- Bad:
 - E times Prim's/Kruskal's
 - Too slow
 - \circ O(E² log E)

• Good:

- Reverse the input; so we're now dealing with edge additions.
- After each edge addition, compute new MST. Throw away unused edges permanently.
- This keeps edge count at most V-1 always
- O(EV log V)

- Better:
 - Maintain cost-sorted list of edges.
 - \circ O(EV $\alpha(V)$)
- Betterer:
 - MST update after an insertion can be done in O(V)
 - BFS to find the largest cost in the (new) cycle
 - O(EV)

- Asymptotically faster solutions exist
 - o (I think)
 - o Link-cut trees?

- Assume single segment / line.
 - Calculus optimization / linear algebra
- Let f(i, j) be this answer for the segment pt[i..j].
- f(i, j) can be computed in O(n).

- Assume single segment / line.
 - Calculus optimization / linear algebra
- Let f(i, j) be this answer for the segment pt[i..j].
- f(i, j) can be computed in O(1) by precomputing some sums.

- Let F(j) be the answer for pt[1..j].
 - \circ F(0) = 0
 - $F(j) = min_i F(i) + C + f(i+1, j) [0 \le i < j]$
- Dynamic programming in O(n²)

Yes, the title doesn't start with a "K"... it's off the rails

Problem B: Balloon Distribution

- Simple solution: Priority queue
 - O(N log M). Too slow

Problem B: Balloon Distribution

- Assume a/b is the ratio in the last rank. How many balloons?
 - o count(a/b) := sum($1 \le i \le M$) floor(P[i]*b/a)
- Binary search to find the real last ratio a/b.
- Quite tricky. Be careful about precision.

Problem B: Balloon Distribution

- One way to do it:
 - Let M = max(P[i])+1. Find smallest D: $count(M/D) \ge N$.
 - Binary search
 - Next, let d[i] = floor(P[i]*D/M)
 - Sort the list [P[1]/d[1], P[2]/d[2], ..., P[M]/d[M]]
 - The answer is in this list. Binary search again
 - No big ints/floats necessary. Use 64-bits.
- O(M (log M + log N))

Problem J: Jack and Jill and Joe

- The dimensions are a² and b(b+a), and we want
 - $(a^2 b(b+a))^2 \le 900$
 - o equivalently, a^2 b(b+a) = d for some $|d| \le 30$.
 - o equivalently, $(2b+a)^2$ $5a^2$ = 4d for some |d| ≤ 30.
- Gives us 61 generalized Pell equations!

Problem J: Jack and Jill and Joe

- Solutions follow a familiar pattern: a 2D recurrence.
 - In fact, Fibonacci recurrence:
 - (a, b) is a solution -> (a + b, a) is a solution
- Pattern-match and precompute all solutions for all d.

Problem J: Jack and Jill and Joe

- There are so few solutions: 443
 - they grow exponentially
- To answer a query N, easiest to just linear search.
- Watch out for d's with multiple "solution families"!

Problem I: Imelda's Shopping Spree

- Range queries:
 - Range increment.
 - Range reverse.
 - Query: How many contiguous increasing subsequences?

Problem I: Imelda's Shopping Spree

- Compute the difference array D[i] = P[i+1] P[i].
 Then:
 - Range increment reduces to 2 "point increments".
 - Range reverse reduces to range reverse + range negate + 2 "point increments".
 - Query reduces to counting the number of contiguous positive subsequences.

Problem I: Imelda's Shopping Spree

- Splay tree or treap can handle reverse. Need the following info for every node:
 - Sum of values.
 - Longest pos./neg. streak on left and right.
 - Number of contiguous pos./neg. subsequences.
 - Need to keep track of negatives to account for range negates
 - "Reverse" flag for lazy propagation

Problem C: Convex Quadrilaterals

- Only convex hull matters.
- DP: Choose starting edge and keep track of current edge and number of edges used so far.
- O(N³) (O(N²) states, O(N) transition)
- To compute (signed) areas, you can use shoelace formula

- Easy/tricky cases
 - o If y = 0, output xx -
 - o If y > 0 and x = 0, impossible.
- General case: 28 ops quite tight!
 - Binary, ternary, etc., don't work

- Let {y} be a string that evaluates to xy for any x > 0.
 - Output "{y}x/"
- You can write {y} in ≤ 27 operations!
 - o for **0 < y < 1212**

Tricks:

```
 {1} = x
 {ab} ≤ {a}{b}x/* for a, b > 1
 {a+b} ≤ {a}{b}+ for a, b > 0
```

"≤" means "has the ff. candidate solution"

- Tricky trick:
 - Use subtraction!
 - - for **a**, **b**, **c** < **ab-c**.
 - Without it, you might fail 1103.
- With these tricks, generate all.

- Worst case?
 - o **27** operations: 823, 1006, 1111, 1198, 1211 ...
 - 28 operations: 1114, 1138, 1166, 1193
- I'd like to see better solutions!

- Be careful with intermediate values!
 - They should be small
 - Always divide first:
 - $\{a\}\{b\}*x/ \rightarrow \{a\}\{b\}x/*$

- Invert the 4D matrix, and check if the resulting product with the vector is all nonnegative.
- Tricky when non-invertible.

- Another way to look at it:
 - Given 4D points P_0 , P_1 , P_2 , P_3 , P_4 , can P_0 be expressed as a *nonnegative* rational linear combination of P_1 , P_2 , P_3 , P_4 ?
 - Also known as convex combination

- Project all points to a 3D-hyperplane
 - \circ x+y+z+w = 1
- The problem is now: Is the 3D point P₀' inside the tetrahedron with vertices P₁', P₂', P₃', P₄'?

- Is the 3D point P₀' inside the tetrahedron with vertices P₁', P₂', P₃', P₄'?
- General case:
 - For each vertex P_i , check if P_0 is in the same side of the plane determined by the remaining three vertices.
 - Cross products + Dot products

- Watch out for special/degenerate cases! E.g.
 - The tetrahedron has zero area, e.g. it's 2D, 1D, 0D, etc.
 - One (or more) of the original 4D points is the origin (0,0,0,0).
 - Can't be projected; needs special handling.
- Be careful with precision!
 - Add fractions with lcm.

- A disco dance always alternates row and column and ends up at the starting point.
- Thus, number of lit cells it unlits per row/column is even.
- Thus, necessary condition is: each row/column must have even no. of lit cells.

- It's also sufficient!
 - Draw a bipartite graph with m+n nodes, and edge (i, j) if cell (i, j) is lit.
 - Then a disco dance is just a simple cycle!
 - Each connected component can be decomposed into a cycle
 - Eulerian cycle

- So the goal is: make the no. of lit cells even, per row/column.
- If there are R rows and C columns with odd no. of lit cells, then max(R,C) moves are necessary to make them all even.
- It's also sufficient!
 - Why?

- So we have to compute R and C. (Symmetric)
- Sweep line + Range queries to process events:
 - Range increment/decrement.
 - Range "how many are equal to 0".

Segment tree:

- Insight: "0" only ever appears as the min.
- (min value, frequency of min value)

Problem H: Handbags

- BFS/DFS too slow; large dimensions
- Be careful; prices can't "pass through" sources.
- Sometimes sources even block off some sections of the map.

Problem H: Handbags

- Solution: Coordinate compression.
 - Let $X = \{0, a\} \cup \{x-1, x, x+1 \text{ for all sources } (x,y)\}$
 - Let Y = $\{0, b\} \cup \{y-1, y, y+1 \text{ for all sources } (x,y)\}$
 - Dijkstra on the coordinates X and Y.
 - Coordinate compression
 - "Fill in" each (big) cell in O(1) using tricky arithmetic

Thank you!

- Credits
 - AdoraBalls Atienza
 - Balloon Distribution Muga, Atienza
 - Convex Quadrilateral Manalastas
 - Disco Dance Debacle Atienza
 - Expression Atienza
 - Frog Pushers Atienza
 - Go Go Go Special Action Force! Chua
 - Handbags Muga, Atienza
 - o Imelda's Shopping Spree Atienza
 - Jack and Jill and Joe Sioson, Atienza
 - Off the Rails Zuniga
 - LoL Tournament Atienza

- Judges
 - o Dr. Allan Sioson
 - Also chief judge
 - Dr. Pablo Manalastas
 - Mr. Kevin Atienza
 - Also testing
 - Also additional test cases
 - Also problem extensions
 - o Dr. Philip Zuniga
 - Dr. Felix Muga
 - o Dr. Caslon Chua