# Optimizacija kolonijom mrava za problem trgovačkog putnika

Gorana Vučić, Vojkan Cvijović

Naučno izračunavanje Matematički fakultet, Beograd

13. septembar 2019



#### Pregled

- Uvod
  - Uopšteno
  - Ponašanje mrava
  - Ponašanje mrava u slučaju prepreke na putu
- Primena ACO na TSP
  - ACO i parametri
  - ACO algoritam
- Implementacija
  - Klase
  - Klasa ACS i njene metode
  - Klasa Ant i njene metode
- Pokretanje i izgled rešenja
- Rezultati pokretanja
  - ullet Promena lpha
  - Promena  $\beta$



- ACO (eng. ant colony optimization)
  - Algoritam zasnovan na ponašanju mrava i mravljih kolonija
  - Pojam je uveo Marco Dorigo 1992. godine
  - ACO pripada klasi algoritama inteligencije roja
- Primena algoritma je prikazana na rešavanju problema trgovačkog putnika
- Optimizacija kolonijom mrava predstavlja algoritam koji se koristi za nalaženje optimalnih putanja u potpuno povezanom grafu

- Ukoliko postavimo mrave u nepoznatu okolinu kako bi došli do izvora hrane u početku će se nasumično kretati
- Kada pronađu hranu pri povratku u koloniju ostavljaće trag feromona koji će privlačiti ostale mrave da se kreću u tom smeru
- Ostali mravi će početi da se kreću u smeru traga feromona, pojačavaće trag feromona i na taj način će privlačiti još mrava
- Nakon određenog vremena počinje da se odvija proces evaporacije odnosno isparavanje feromona, što je od velike koristi s obzirom da se pozicija hrane stalno menja

- U početku verovatnoća da odaberu levi ili desni put je jednaka, polovina mrava će ići levim a druga polovina desnim putem
- Levi put je kraći ⇒ ostaće jači trag feromona
- Kako vreme odmiče veći broj mrava će prolaziti tim putem, jačina feromona će biti veća i na kraju će se čitava kolonija kretati tim putem





#### Problem trgovačkog putnika

- Jedan od najpozantijih problema iz grupe NP teških problema
- Trgovački putnik:
  - Zna koje gradove treba da poseti
  - Zna udaljenost među gradovima
  - U obavezi je da svaki grad poseti tačno jednom i da se vrati u grad iz kog je pošao
- Rešenje se ogleda u tome da trgovački putnik odredi redosled gradova i da pritom putuje najoptimalnijom mogućom rutom

#### ACO algoritam za TSP i parametri

- Algoritam se odvija u četiri koraka:
  - Na slučajan način odabere se m od ukupno n gradova  $(m \le n)$  u koje se rasporedi po jedan mrav
  - Svaki mrav posećuje svaki grad tačno jedanput i u svakoj iteraciji ažurira listu gradova  $J_k$  koje treba da poseti
  - Mrav k koji se nalazi u gradu i prelazi u grad j gde je  $j \in J_k$  sa verovatnoćom:

$$\rho_{i,j}^{k} = \frac{t_{i,j}^{\alpha} * distance_{i,j}^{-\beta}}{\sum_{l \in J_{k}} t_{i,j}^{\alpha} * distance_{i,j}^{-\beta}}$$
(1)

• ..



#### ACO algoritam za TSP i parametri

- Algoritam se odvija u četiri koraka:
  - Neka je  $L_k$  dužina puta  $T_k$  koji je prešao mrav k i Q pogodno izabran pozitivan parametar. Neka važi:

$$\Delta t_{ij}^k = \begin{cases} Q/L_k & \text{ako } (i,j) \in T_k, \\ 0 & \text{inače} \end{cases}$$

$$\Delta t_{i,j} = \sum_{k=1}^{m} \Delta t_{i,j}^{k} \tag{2}$$

Za pogodno izabran parametar  $\rho \in (0,1)$ , feromonski tragovi se ažuriraju na osnovu formule

$$t_{i,j} = (1 - \rho) * t_{i,j} + \Delta t_{i,j}$$
 (3)

Parametar  $\rho$  predstavlja stepen isparavanja feromona, a  $\Delta t_{i,j}$  pojačanje količine feromona na deonici (i,j).

#### Klase

Klasa ACS i njene metode Klasa Ant i njene metode

#### Klase i metode koje su korišćene

- Korišćene su tri klase:
  - Graph
  - ACS
  - Ant
- Graph sadrži neke opšte informacije o gradovima kao što su:
  - distances: predstavlja matricu rastojanja između gradova
  - rank: predstavlja broj gradova, važi da između svaka dva grada postoji put
  - pheromone: predstavlja matricu nivoa feromona između gradova

#### Klase i metode koje su korišćene

- ACS klasa koja se koristi za rešavanje problema putujućeg trgovca primenom ACO algoritma:
  - generations: predstavlja broj iteracija samog algoritma
  - ant\_count: predstavlja broj mrava u svakoj iteraciji
  - alpha: parametar koji određuje uticaj feromona
  - beta: parametar koji određuje uticaj udaljenosti između gradova
  - rho: parametar koji oređuje koja količina starog feromona se prenosi u narednu iteraciju algoritma
  - Q: pogodno izabran pozitivan parametar
- Klasa sadrži metode update\_pheromone i solve.



#### Klase i metode koje su korišćene

- Ant klasa koja predstavlja jednog mrava u sistemu:
  - colony: instanca klase ACS
  - graph: instanca grafa koji mrav obilazi
  - total\_cost: cena puta koju je mrav prešao
  - visited\_nodes: niz čvorova koje je mrav obišao
  - pheromone\_delta: veličina feromona koju je mrav proizveo
  - unvisited\_nodes: neposećeni čvorovi u grafu
  - start\_node: početni čvor iz kog mrav polazi
  - visited\_nodes: niz čvorova koje je mrav obišao
  - current\_node: indeks čvora koji mrav trenutno obilazi
- Klasa sadrži metode update\_pheromone\_delta i select\_next\_node.



### Pokretanje i izgled rešenja

- Metodom *find\_optimal\_path* se pokreće izvršavanje programa.
- Rešenje je dato u sledećem obliku:

```
COST: 15888.860695131287,
PATH: [11, 3, 12, 10, 22, 15, 4, 5, 6, 1, 3, 7, 8, 9, 2, 17, 16, 18, 23, 24, 19, 20, 21, 25, 27, 26, 29, 30, 28, 9, 14]
9, 14]
17IME EXECUTION: 1.7936382293701172
```



#### Rezultati pokretanja

- Najbolje rešenje je dobijeno za sledeće parametre:
  - $ant\_count = 10$
  - generations = 100
  - *alpha* = 1.0
  - beta = 10.0
  - rho = 0.5
  - q = 10
- Prosečno vreme izvršavanja za zadate parametre je 5.32s, najbolje rešenje iznosi 7663.58 sa vremenom izvršavanja 5.56s.

#### Promena $\alpha$

• Najbolje rešenje je dobijeno za *alpha* = 1:



#### Promena $\beta$

• Najbolje rešenje je dobijeno za *beta* = 9:



#### Promena $\rho$

• Najbolje rešenje je dobijeno za rho = 1.0:



#### Literatura

- Stefan Mišković. Optimizacija kolonijom mrava.
   http://poincare.matf.bg.ac.rs/~stefan/ri/aco.pdf.
- Dorian Gaertner and Keith Clark. On optimal parameters for ant colony optimization algorithms. In Proceedings of the International Conference on Artificial Intelligence 2005, pages 83–89. CSREA Press, 2005.
- Ivan Brezina Jr. and Zuzana Čičková. In Solving the Travelling Sale- sman Problem Using the Ant Colony Optimization, 2011.
- K. M. Shweta and A. Singh. In An effect and analysis of parameter on ant colony optimization for solving travelling salesman problem, page 222–229. IJCSMC, 2013.
- Matplotlib library. on-line at: https://matplotlib.org/.



## Hvala na pažnji!