Actividad de puntos evaluables - Escenario 6

Fecha de entrega 4 de oct en 23:55

Puntos 100

Preguntas 8

Disponible 1 de oct en 0:00 - 4 de oct en 23:55

Límite de tiempo 90 minutos

Intentos permitidos 2

Instrucciones

Apreciado estudiante, presenta tus exámenes como SERGIO EL ELEFANTE, quien con honestidad, usa su sabiduría para mejorar cada día.

Lee detenidamente las siguientes indicaciones y minimiza inconvenientes:

- Tienes dos intentos para desarrollar tu evaluación.
- 2. Si respondiste uno de los intentos sin ningún inconveniente y tuviste problemas con el otro, el examen no será habilitado nuevamente.
- 3. Cuando estés respondiendo la evaluación, evita abrir páginas diferentes a tu examen. Esto puede ocasionar el cierre del mismo y la pérdida de un intento.
- 4. Asegúrate de tener buena conexión a internet, cierra cualquier programa que pueda consumir el ancho de banda y no utilices internet móvil.
- 5. Debes empezar a responder el examen por lo menos dos horas antes del cierre, es decir, máximo a las 9:55 p. m. Si llegada las 11:55 p. m. no lo has enviado, el mismo se cerrará y no podrá ser calificado.
- El tiempo máximo que tienes para resolver cada evaluación es de 90 minutos.

- 7. Solo puedes recurrir al segundo intento en caso de un problema tecnológico.
- 8. Si tu examen incluye preguntas con respuestas abiertas, estas no serán calificadas automáticamente, ya que requieren la revisión del tutor.
- 9. Si presentas inconvenientes con la presentación del examen, puedes crear un caso explicando la situación y adjuntando siempre imágenes de evidencia, con fecha y hora, para que Soporte Tecnológico pueda brindarte una respuesta lo antes posible.
- Podrás verificar la solución de tu examen únicamente durante las 24 horas siguientes al cierre.
- Te recomendamos evitar el uso de teléfonos inteligentes o tabletas para la presentación de tus actividades evaluativas.
- 12. Al terminar de responder el examen debes dar clic en el botón "Enviar todo y terminar" de otra forma el examen permanecerá abierto.

¡Confiamos en que sigas, paso a paso, en el camino hacia la excelencia académica! ¿Das tu palabra de que realizarás esta actividad asumiendo de corazón nuestro

Historial de intentos

	Intento	Hora	Puntaje
MANTENER	Intento 2	28 minutos	100 de 100
MÁS RECIENTE	Intento 2	28 minutos	100 de 100
	Intento 1	32 minutos	87.5 de 100

① Las respuestas correctas estarán disponibles del 4 de oct en 23:55 al 5 de oct en 23:55.

Puntaje para este intento: 100 de 100

Entregado el 2 de oct en 20:14

Este intento tuvo una duración de 28 minutos.

Pregunta 1	12.5 / 12.5 pts
El valor de $\int_0^{\pi/4} \tan^2 x dx$ es:	
O 0	
Ο π	
\bigcirc $-\frac{\pi}{2}$	
$0 1 - \frac{\pi}{4}$	

Pregunta 2	12.5 / 12.5 pts
Al resolver $\int \left(t - \frac{2}{t}\right) \left(t + \frac{2}{t}\right) dt$ se tiene:	
$\bigcirc \frac{t^3}{3} + \frac{1}{t}$	
$\circ \frac{t^3}{3} - \frac{12}{t^3} + k$	
$\bigcirc \frac{t^3}{3} + \frac{4}{t^3} + k$	

Pregunta 3 12.5 / 12.5 pts

Al calcular
$$\int \frac{x^2 e^x + x}{x^2} dx$$
 se obtiene:

$$x^3 e^x + x^2 + C$$

$$\circ$$
 $e^x + \ln|x| + C$

$$\bigcirc \frac{x^3 e^x + x^2}{x^3} + C$$

$$x^3 e^{x^2} + x^2 + C$$

Pregunta 4

12.5 / 12.5 pts

El desarrollo del cociente $\dfrac{x+9}{(x+6)^2}$ en fracciones parciales es

$$\frac{9}{x+6} + \frac{6}{(x+6)^3}$$

$$\frac{9}{x} - \frac{1}{(x+6)^2}$$

$$\frac{9}{x+6} + \frac{1}{(x+6)^2}$$

Pregunta 5

12.5 / 12.5 pts

El valor de $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$ es:

$$\frac{\pi}{2}$$

0

$$-\frac{\pi}{2}$$

⊚ π

Pregunta 6

12.5 / 12.5 pts

La $\frac{d}{dx}$ (sin⁻¹ x^2) es:

Pregunta 7

12.5 / 12.5 pts

El Área de la región Ω

Si no puede ver la imagen clic<u>aqui</u> ⇒ (https://gmn3rwsn3302.files.1drv.com/y2pHZ5i1Q9lbJoFijfWHZvRmbD029Q1RtQOHfMSG15ZY9WHhKs_mGg <u>psid=1)</u>

encerrada en el circulo $\left(x - \frac{1}{2}\right)^2 + \left(y - \frac{1}{3}\right)^2 = \frac{13}{36}$, y que se encuentra por encima de la curva $y = \frac{2}{3} x^{\frac{3}{2}}$, es:

- $\frac{13 \pi}{72}$ unidades de área.
- $\frac{13\pi}{72} + \frac{1}{15}$ unidades de área.

>

- $\bigcirc \frac{13\pi-1}{72} \text{ unidades de área.}$
- $\bigcirc \frac{13\pi}{72} 15 \text{ unidades de área.}$

Pregunta 8

12.5 / 12.5 pts

Utilice el método de ecuaciones diferenciales separables para dar respuesta a la pregunta que se plantea.

La solución de la ecuación diferencial $\frac{dy}{dx} = \sin 5x$, es:

- $y = \cos 5x + C$
- $y = -2\cos 5x + C$
- $y = -0.2\cos 5x + C$

Esa es la solución correcta.

 $y = 0.2\cos 5x + C$

Puntaje del examen: 100 de 100

×