Structure Discrète IFT1065 **Devoir 3**Récursivité et Preuves

Franz Girardin et Aiya Ben Ouhida

24 décembre 2023

Résolution de problèmes

Problème 3 · Équivalence des vecteurs

1. Dessinez le graphe de la ralation pour les vecteurs suivants :

$$(-1,0), (1,1), (1,0), (2,0), (2,2), (2,1), (0,-1), (0,1), (0,2).$$

Soit la relation \mathcal{R} , on peut exprimer la proposition conditionnelle qui définit la relation \mathcal{R} :

Proposition 1.1 P(x, y, t, z)

$$xt = yz \implies (x, y)\mathcal{R}(z, t)$$

Nous devons représenter **toutes les paires de vecteurs** pour lesquels P(x, y, t, z) en vraie. Autrement dit, nous devons trouver tous les couples de vecteurs (x, y), (t, z) tels que xt = yz.

Considérons les vecteurs (-1,0), (1,1), (1,0), (2,0), (2,2), (2,1), (0,-1), (0,1), (0,2) comme étant $v_1,v_2,v_3,v_4,v_5,v_6,v_7,v_8,v_9$, respectivement. Nous avons alors le graphe de $\mathcal R$ pour les vecteurs v_1,v_2,\ldots,v_9 représenté par la figure suivante.

FIGURE 1.1 – Représentation de la relation $\mathcal R$ pour les vecteurs $v_1 \to v_9$

2. Montrer que la relation \mathcal{R} est une relation d'équivalence. Mentionnez explicitement les techniques de preuves que vous utilisez.

Soit l'ensemble de vecteurs

$$A = \{(x,y) : x,y \in \mathbb{Z}, x = 0 \leftrightarrow y \neq 0\},\$$

nous devons prouver que $\mathcal R$ est une relation d'équivalence. Pour ce faire, nous allons montrer que $\mathcal R$ est réflexive, symétrique et transitive.

Proposition 1.2 $P_1(v_n, A, \mathcal{R})$

Tous les vecteurs v_n faisant partie de A respectent la proposition $v_n \mathcal{R} v_n$:

$$\forall v_n \in A, v_n \mathcal{R} v_n$$

Preuve 1

Nous procédons par **preuve directe**. Supposons que $v_n = (x, y) \in A$. Pour vérfier la réflexivité de v_n , nous pouvons appliquer la **proposition 1.1** sur le vecteur v_n . La proposition devient alors P(x, y, x, y):

$$(xy = yx) \implies (x,y)\mathcal{R}(x,y)$$

Nous savons que le produit xy est égale à yx, par la commutativité de la multiplication. Par l'implication de la proposition 1.1, nous avons alors $(x,y)\mathcal{R}(x,y)$. Ainsi, $v_n\mathcal{R}v_n$ est une proposition vraie et nous concluons alors que R est réflexive.

Proposition 1.3 $P_2(v_n, A, \mathcal{R})$

Tous les vecteurs $v_a = (x, y)$, $v_b = (z, t)$ faisant partie de A sont tels que **si** v_a est en relation avec v_b , **alors** v_b est en relation avec v_a :

$$\forall v_a, v_b \in A, v_a \mathcal{R} v_b \implies v_b \mathcal{R} v_a$$

$$\updownarrow$$

$$\forall (x, y), (z, t) \in A, (x, y) \mathcal{R}(z, t) \implies (z, t) \mathcal{R}(x, y)$$

Proposition 1.4

Nous procédons pas **preuve direction**. Supposons que (x,y), $(z,t) \in A$ et $(x,y)\mathcal{R}(z,t)$. Si $(x,y)\mathcal{R}(x,t)$, alors, par la définition de la relation \mathcal{R} nous savons que xt = yz. Par l'associativité de la multipliucation, nous savons que l'équivalence suivante est vraie :

$$xt = yz \leftrightarrow tx = zy$$

Or, tx = zy est simplement $(z,t)\mathcal{R}(x,y)$. En effet, $(z,t)\mathcal{R}(x,y)$, par la définition de la la relation \mathcal{R} , signifie que zy = tx. On sait aussi que, par la réflexitivé de l'égalité, $a = b \leftrightarrow b = a$. Donc, nous avons :

$$(x,y)\mathcal{R}(z,t) \implies xt = yz$$
 Def. de \mathcal{R}
 $xt = yz \implies tx = yz$ Commutativité de mult.
 $tx = yz \leftrightarrow yz = tx$ Relexivité de l'égalité
 $yz = tx \implies (z,t)\mathcal{R}(x,y)$ Def. de \mathcal{R} , inférence

Ainsi, nous avons montré que **si** $(x,y)\mathcal{R}(z,t)$, **alors** $(z,t)\mathcal{R}(x,y)$. Nous concluons que $P_2(v_n,A,\mathcal{R})$ est vraie et \mathcal{R} est réflexive.

Proposition 1.5 $P_3(x, v_n \mathcal{R})$

Tous les vecteurs $v_a = (x, y)$, $v_b = (p, q)$, $v_c = (z, t)$ faisant partie de A sont tels que **si** v_a est en relation avec v_h , et que v_b est en relation avec v_a , alors v_a est en relation avec v_c .

$$\forall v_a, v_b, v_c \in A, \left(v_a \mathcal{R} v_b\right) \land \left(v_b \mathcal{R} v_c\right) \Longrightarrow \left(v_a \mathcal{R} v_c\right)$$

$$\updownarrow$$

$$\forall (x, y), (p, q), (z, t) \in A, \left((x, y) \mathcal{R}(p, q)\right) \land \left(p, q\right) \mathcal{R}(z, t)\right)$$

$$\forall (x,y), (p,q), (z,t) \in A, \Big((x,y)\mathcal{R}(p,q) \Big) \land \Big(p,q)\mathcal{R}(z,t) \Big)$$

$$\implies (x,y)\mathcal{R}(z,t)$$

Preuve 2

Nous procédons par preuve directe. Supposon que $(x,y),(p,q),(z,t) \in A$, que $(x,y)\mathcal{R}(p,q)$ et que $(p,q)\mathcal{R}(z,t)$ En supposant que ces deux expressions sont vraie, cela signifie que les deux expressions suivantes sont également vraies :

$$xq = yp$$
 Conséquence de. $v_a \mathcal{R} v_b$ (1.1)

$$pt = qz$$
 Conséquence de. $v_b \mathcal{R} v_c$ (1.2)

Or, en multipliant les deux côtés de l'équation (1.1) par t, et en multipliant les deux côté de l'équation (1.2) par y, nous obtenons

$$xqt = ypt (1.3)$$

$$ypt = yqz (1.4)$$

Par la transitivité de l'égalité, nous avons :

$$xqt = yqz \tag{1.5}$$

nous ne pouvons pas diviser les deux côtés de l'équation (1.5) par t, puisqu'il est possible que t soit égal à 0 et que $(z,t) = (z,0)|z \in \mathbb{Z}, z \neq 0$. Mais, à toute fin pratique, nous pouvons ignorer t. Si t est égal à zéro, l'équation (1.5) est trivialement vraie; les deux côté de l'égalité sont égale à 0. Mais si $t \neq$, nous avons alors l'expression suivante :

$$xt = yz$$

Par la définition de la relation \mathcal{R} nous savons que cette expression signie $(x,y)\mathcal{R}(z,t)$ ou $v_a\mathcal{R}v_b$. Notons que si t = 0, la relation $(x, y)\mathcal{R}(z, t)$ tient, tant que y = 0. Dans ce cas, $(x, y)\mathcal{R}(z, t)$ découle natuellement de xqt =yaz et toutes les autres équations et dérivations menant à $(x, y)\mathcal{R}(z, t)$ demeurent vraies. Ainsi, nous avons montré que **si** $(x,y)\mathcal{R}(p,q)$ et que $(p,q)\mathcal{R}(z,t)$, **alors**, $(x,y)\mathcal{R}(z,t)$. Nous concluons donc que \mathcal{R} est transitive.

Réponse

Nous avons montré que la relation \mathcal{R} est réflexive, symétrique et transitive. Ainsi, nous concluons que \mathcal{R} est, par définition, une relation d'équivalence.

Problème 4 ÉOUIVALENCE DES VECTEURS

- Montrez que tout ensemble défini récursivement est dénombrable. Mentionnez explicitement les techniques de preuves que vous utilisez.

Proposition 1.6 $P(E, b_i, C_i)$

Soit un ensemble *E* définit récursivement par

$$E = \begin{cases} b_1, b_2, \dots, b_n \middle| \overline{b} = \{b_1, b_2, \dots b_n\} & (\textbf{Bases}), \\ C_1, C_2, \dots, C_k \middle| \overline{C} = \{C_1, C_2, \dots C_n\} & (\textbf{Constructeurs}) \end{cases}$$

Tous les ensemble défini récursivement de cette façon sont dénombrables.

Preuve 3

Nous procédons par preuve directe et par induction.

Hypothèses

Soit l'ensemble E définit ci-haut, nous condérons alors les propriétés suivantes :

- 1. b_1, b_2, \dots, b_n est un ensemble fini, \bar{b} , d'éléments de base définissant l'ensemble E et
- 2. $C_1, C_2, \dots C_k$ est un ensemble fini, \overline{C} de constructeurs manipulant les éléments de base afin de construire de nouveaux éléments appartenant à E.

À partir de la définition de *E*, il est alors possible de construire une suite (infinie) d'ensembles $E_0, E_1, E_2, ...$ tels que chaque E_i est une sous-ensemble de E.

Constructions d'une suite d'ensembles E_i

Définissons E_0 comme l'ensemble des éléments de base : $E_0 = \overline{b}$. Par l'hypothèse, nous savons que E_0 est dénombrable. Définisson également E_{i+1} comme l'ensemble où pour chaque $i \ge 0$, E_{i+1} est l'ensemble des éléments qui peuvent être construits en utilisant le constructeurs sur E_i . Ainsi, pour obtenir E_1 , par exemple, il faut utiliser tous les constructeurs de E sur tous les éléments de bases de $E_0 = b$.

$$E_{i+1} ::= \{C_i(E_i)\}$$
 (1.6)

Montrer que chaque E_i est dénombrable

Par **l'hypothèse**, E_0 est fini et donc dénombrable. Pour construire un premier E_{i+1} , soit E_1 , nous devons nécessairement faire appel à l'application de tous les C_j sur E_0 . Or, nous savons que les C_j sont fini et donc dénombrables et nous savons également que E_0 est fini et donc dénombrable. Nous pouvons considérer les constructeurs C_j comme une fonction de E_i à E_{i+1} .

$$E_{i+1} = f(C_j, E_i) = \left\{ \sum_{i=1}^{j=k} C_j(E_i) \right\}$$
 (1.7)

En effet, les C_j donnent les instructions permettant de d'obtenir E_{i+1} à partir de E_i et chaque ensemble $\{C_i(E_i)\}$ est une partition de E_i . Nous savons que, à minori, $f(C_i, E_i)$ est surjective, puisqu'il s'agit d'une fonction de E_i à E_{i+1} ; chaque élément de E_{i+1} peut être mappée sur un seul (si $f(C_i, E_i)$ est injective) ou plusieurs éléments de E_i . Puisque E_i est dénombrable et que $f(C_i, E_i)$ est une fonction surjective de E_i à E_{i+1} , il s'ensuit que E_{i+1} est dénombre. Notons que E_{i+1} , l'image de $f(C_i, E_i)$ peut avoir moins d'éléments que l'ensemble de départ E_i , mais ne peut pas en avoir plus. Donc, dans le pire des cas, l'imag eaura la même taille que l'ensemble de départ, ce qui le rend dénombrable et demeure consitant avec la conclusions selon laquelle E_{i+1} est dénombrable. Par ailleurs, nous avons montré, par l'application de la définition de E, que $f(C_i, E_i)$ est l'image E_{i+1} de E_i . Or, chaque E_i est dénombrable et est une partition de E:

$$E = \bigcup_{i=0}^{\infty} E_i = \bigcup_{i=1}^{i=\infty} \left\{ \sum_{j=1}^{j=k} C_j(E_i) \right\}$$

Autrement dit, l'union de tous les ensembles E_i obtenus en appliquant tous les constructeurs C_j sur les E_i forment l'ensemble E, conformément à la définition récursive de E. Puisque chaque E_i est dénombrable, il s'ensuit que l'union $\bigcup\limits_{i=0}^{\infty} E_i$ est également dénombrable. Nous concluons alors que E est dénombrablement infini. Ainsi, tous les ensembles définit récursivement sont dénombrables.