Exercise 4. Let $m, n \in \mathbb{Z}_+$. Let $X \neq \emptyset$.

- (a) If $m \le n$, find an injective map $f: X^m \to X^n$.
- (b) Find a bijective map $g: X^m \times X^n \to X^{m+n}$.
- (c) Find an injective map $h: X^n \to X^\omega$.
- (d) Find a bijective map $k: X^n \times X^\omega \to X^\omega$.
- (e) Find a bijective map $l: X^{\omega} \times X^{\omega} \to X^{\omega}$.
- (f) If $A \subset B$, find an ijective map $m: (A^{\omega})^n \to B^{\omega}$.

Proof.

(a) Since $X \neq \emptyset$, let $x_0 \in X$, and define

$$f: X^m \to X^n$$

 $(x_1, x_2, \dots, x_m) \mapsto (y_1, y_2, \dots, y_n)$

with

$$\forall i \in \{1, 2, \dots, n\}, \begin{cases} y_i = x_i & \text{if } 1 \le i \le m \\ y_i = x_0 & \text{if } m+1 \le i \le n \end{cases}$$

Let

$$(y_1, y_2, \dots, y_n) = f(x_1, x_2, \dots x_m)$$
 and $(y'_1, y'_2, \dots, y'_n) = f(x'_1, x'_2, \dots, x'_m)$

and suppose that $(y_1, y_2, \ldots, y_n) = (y'_1, y'_2, \ldots, y'_n)$. Then by definition of f, $y_i = x_0 = y'_i$ for all i such that $m + 1 \le i \le n$, and $y_i = x_i = y'_i = x'_i$ for all i such that $1 \le i \le m$. From this we deduce that $\forall i, 1 \le i \le m \implies x_i = x'_i$, so that f is injective.

(b) Define

$$g: X^m \times X^n \to X^{m+n}$$

 $(x,y) \mapsto (z_1, z_2, \dots, z_{m+n})$

with

$$\forall i \in \{1, 2, \dots, m+n\}, \begin{cases} z_i = x_i & \text{if } 1 \le i \le m \\ z_i = y_i & \text{if } m+1 \le i \le m+n \end{cases}$$

Let

$$z = (z_1, z_2, \dots, z_{m+n}) = g((x_1, x_2, \dots, x_m), (y_1, y_2, \dots, y_n))$$

$$z' = (z'_1, z'_2, \dots, z'_{m+n}) = g((x'_1, x'_2, \dots, x'_m), (y'_1, y'_2, \dots, y'_n))$$

and suppose that z=z'. Then for all i such that $1 \le i \le m$, $z_i=x_i=z_i'=x_i'$, and for all i such that $m+1 \le i \le m+n$, $z_i=y_i=z_i'=y_i'$, from which we deduce that g is injective. Let now $z=(z_1,z_2,\ldots,z_{m+n})\in X^{m+n}$, and define

$$x = (z_1, z_2, \dots, z_m)$$

 $y = (z_{m+1}, z_{m+2}, \dots, z_{m+n})$

Then $(x,y) \in X^m \times X^n$, and g(x,y) = z, so that g is surjective.

(c) Let $x_0 \in X$ and define

$$h: X^n \to X^{\omega}$$
$$(x_1, x_2, \dots, x_n) \mapsto (z_1, z_2, \dots)$$

such that

$$z_i = x_i$$
 if $1 \le i \le n$
 $z_i = x_0$ if $i > n$

Let

$$z = (z_1, z_2, \dots) = h(x_1, x_2, \dots, x_n)$$

 $z' = (z'_1, z'_2, \dots) = h(x'_1, x'_2, \dots, x'_n)$

and suppose that z = z'. Then we have

$$\forall i \in \mathbb{Z}_+, \quad \begin{cases} z_i = z_i' = x_0 & \text{if } i > n \\ z_i = x_i = z_i' = x_i' & \text{if } 1 \le i \le n \end{cases}$$

so that h is injective.

(d) Let

$$k: X^n \times X^\omega \to X^\omega$$

 $(x,y) \mapsto z$

such that

$$\forall i \in \mathbb{Z}_+, \begin{cases} z_i = x_i & \text{if} \quad 1 \le i \le n \\ z_i = y_i & \text{if} \quad i > n \end{cases}$$

Let

$$z = (z_1, z_2, \dots)$$
 $x = (x_1, x_2, \dots, x_n)$ $y = (y_1, y_2, \dots)$
 $z' = (z'_1, z'_2, \dots)$ $x' = (x'_1, x'_2, \dots, x'_n)$ $y' = (y'_1, y'_2, \dots)$

and suppose that z = k(x, y) = z' = k(x', y'). Then,

$$\forall i \in \mathbb{Z}_+, \begin{cases} z_i = z_i' = y_i = y_i' & \text{if } i > n \\ z_i = z_i' = x_i = x_i' & \text{if } 1 \le i \le n \end{cases}$$

so that k is injective. Next, let $z=(z_1,z_2,\dots)\in X^{\omega}$ and take $x\in X^n$ and $y\in X^{\omega}$ such that

$$\forall i \in \mathbb{Z}_+, \begin{cases} x_i = z_i & \text{if} \quad 1 \le i \le n \\ y_i = z_i & \text{if} \quad i > n \end{cases}$$

Then k(x, y) = z, so that k is surjective.

(e) Let

$$l: X^{\omega} \times X^{\omega} \to X^{\omega}$$
$$(x, y) \mapsto z$$

such that

$$\forall i \in \mathbb{Z}_+, \begin{cases} z_i = x_i & \text{if } i \text{ is even} \\ z_i = y_i & \text{if } i \text{ is odd} \end{cases}$$

Let

$$z = (z_1, z_2, \dots)$$
 $x = (x_1, x_2, \dots)$ $y = (y_1, y_2, \dots)$
 $z' = (z'_1, z'_2, \dots)$ $x' = (x'_1, x'_2, \dots)$ $y' = (y'_1, y'_2, \dots)$

and suppose that z = l(x, y) = z' = l(x', y'). Then,

$$\forall i \in \mathbb{Z}, \begin{cases} z_{2i} = x_i = z'_{2i} = x'_i \\ z_{2i+1} = y_i = z'_{2i+1} = y'_i \end{cases}$$

so that for all $i, x_i = x_i'$ and $y_i = y_i'$, and l is injective. Next, let $z \in X^{\omega}$, and define $x \in X^{\omega}$ and $y \in X^{\omega}$ by

$$\forall i \in \mathbb{Z}_+, \ x_i = z_{2i} \text{ and } y_i = z_{2i+1}$$

Then x and y are elements of X^{ω} and l(x,y)=z, so that l is surjective.

(f) To define such a function, we need $B^{\omega} \neq \emptyset$, which implies $B \neq \emptyset$. Let

$$m: (A^{\omega})^n \to B^{\omega}$$

 $(a_1, a_2, \dots, a_n) \mapsto (a_{1,1}, a_{1,2}, \dots, a_{1,n}, a_{2,1}, \dots)$

noting $a_i = (a_{1,i}, a_{2,i}, \dots)$. Suppose that $a, a' \in (A^n)^{\omega}$ are such that $a \neq a'$. Then there exists $r \in \{1, 2, \dots, n\}$ such that $a_r \neq a'_r$, which in turns implies that there exists $q \in \mathbb{Z}_+$ such that $a_{q,r} \neq a'_{q,r}$. The terms $a_{q,r}$ and $a'_{q,r}$ appear in m(a) and m(a') at the same index i, so $m(a) \neq m(a')$ and m is therefore injective.