Parametrické vyjádření roviny

Rovinu jsme si definovali již ve standardní geometrii.

Při vyjadřování roviny budeme vycházet z toho, že rovina je určena třemi body **A**, **B**, **C**, které neleží na přímce. Těmto bodům můžeme přiřadit dvě různoběžné přímky, **AB** a **AC**, jejichž průsečíkem je bod **A** a které mají směrové vektory $\overrightarrow{u} = \overrightarrow{OB} - \overrightarrow{OA}$ a $\overrightarrow{v} = \overrightarrow{OC} - \overrightarrow{OA}$.

Vektorový zápis roviny

Potom každý bod X roviny ABC můžeme psát ve tvaru vztahu:

$$X = A + t * u + s * v$$
, kde t, s jsou reálná čísla.

Tento vztah se nazývá **parametrická rovnice roviny** (nebo také **parametrické vyjádření roviny**) **ABC**. Má dvě parametrické proměnné, **t** a **s**, což je dáno tím, že rovina je <u>dvojrozměrný prostor</u> a její body jsou dány všemi možnými <u>lineárními</u> kombinacemi vektorů u a v.

Souřadnicový zápis roviny

• Jsou-li označeny souřadnice bodů, tj.

$$A = [a_x, a_y, a_z], B = [b_x, b_y, b_z], C = [c_x, c_y, c_z],$$

• je možno vztah rozepsat po jednotlivých souřadnicích:

$$\circ X_{X} = a_{X} + t * (b_{X} - a_{X}) + s * (c_{X} - a_{X}),$$

$$X_v = a_v + t * (b_v - a_v) + s * (c_v - a_v),$$

$$X_z = a_z + t * (b_z - a_z) + s * (c_z - a_z).$$

Příklad

Jsou dány body A = [-1,5; 3,2; 1,8], B = [-1; 1,1; 1,1] a C = [1; 1,9; 0,2]. Najděte parametrickou rovnici roviny určené těmito body.

Řešení

• Odvodíme směrové vektory přímek:

$$\overrightarrow{u} = \mathbf{B} - \mathbf{A} = (-1 - (-1,5); 1,1 - 3,2; 1,1 - 1,8) = (0,5; -2,1; -0,7)$$
 $\overrightarrow{v} = \mathbf{C} - \mathbf{A} = (1 - (-1,5); 1,9 - 3,2; 0,2 - 1,8) = (2,5; -1,3; -1,6)$

• Zapíšeme parametrickou rovnici roviny:

$$\mathbf{X} = \mathbf{A} + \mathbf{t} * \mathbf{u} + \mathbf{s} * \mathbf{v}$$

Obecná rovnice roviny

Má tvar:

ax + by + cz + d = 0, alespoň jeden koeficient a, b, c musí být nenulový.

Tato rovnice je obdobou <u>obecné rovnice přímky v rovině</u>, neboli rovina je zde zadána vektorem, který je na ni kolmý.

Je-li d = 0, rovina prochází počátkem souřadnic - o tom se přesvědčíme tím, že počátek souřadnic takové rovnici vyhovuje.

Převod obecné rovnice na parametrickou

Převod na parametrický tvar provedeme dosazením tří vhodně zvolených bodů (aby neležely na jedné přímce) do rovnice. Tak dostaneme <u>výchozí body</u> pro zadání parametrické.

Příklad

Převeď te obecnou rovnici roviny 5x + 3y - 2z + 7 = 0 na parametrické vyjádření.

Řešení

• Do rovnice vhodně dosadíme tři body:

$$\circ A = [1, 0, a_z]: \\ 5 - 2a_z + 7 = 0 \\ 12 = 2a_z \\ 6 = a_z, \text{ tedy } A = [1, 0, 6]$$

$$\circ B = [0, 1, b_z]: \\ 3 - 2b_z + 7 = 0 \\ 10 = 2b_z \\ 5 = b_z, \text{ tedy } B = [0, 1, 5]$$

o
$$C = [c_x, 0, 1]$$
:
 $5c_x - 2 + 7 = 0$
 $5c_x = -2,5$
 $c_x = -0,5$, tedy $C = [-0,5, 0, 1]$

• Z těchto tří bodů sestavíme kýžené parametrické vyjádření:

$$\begin{array}{c} \circ \ X_x = a_x + t * (b_x - a_x) + s * (c_x - a_x) \\ = 1 + t * (0 - 1) + s * (-0, 5 - 1) \\ = 1 - t - s * 1, 5, \\ \circ \ X_y = a_y + t * (b_y - a_y) + s * (c_y - a_y) \\ = 0 + t * (1 - 0) + s * (0 - 0) \\ = t, \\ \circ \ X_z = a_z + t * (b_z - a_z) + s * (c_z - a_z) \\ = 6 + t * (5 - 6) + s * (1 - 6) \\ = 6 - t - s * 5. \end{array}$$

Převod parametrické rovnice na obecnou

Pro převod z parametrického tvaru na obecný tvar:

- sestrojíme vektorový součin vektorů vystupujících v parametrickém tvaru,
- tak získáme vektor na rovinu kolmý, který definuje koeficienty a, b, c,
- dosazením bodu z parametrického tvaru získáme hodnotu koeficientu d.

Příklad

Převeď te parametrické vyjádření roviny

$$X_x = 2 + t * 1 + s * 8,$$

 $X_y = 3 + t * 2 + s * 4,$
 $X_z = 7 + t * 6 + s * 5$

na obecnou rovnici roviny.

Řešení

- Sestavíme vektory: $\overrightarrow{v} = (1; 2; 6), \overrightarrow{u} = (8; 4; 5)$
- Sestavíme jejich vektorový součin $w = (\mathbf{w_x}; \mathbf{w_y}; \mathbf{w_z})$:

- Obecná rovnice tedy má tvar: -14 * x + 43 * y 12 * z + d = 0
- Dosazením bodu z parametrických rovnice dostaneme:

• Výsledná obecná rovnice roviny je -14 * x + 43 * y - 12 * z - 17 = 0

Úsekovou rovnici roviny zapisujeme jako

$$x/p + y/q + z/r = 1$$
,

kde $p \neq 0$, $q \neq 0$, $r \neq 0$ vymezují úseky vyťaté rovinou na osách x, y, z.

Příklad

Sestavte množinový zápis pro rovinu procházející body

$$A = [2; 0; 0], B = [0; 3; 0], C = [0; 0; 3].$$

Řešení

Zápis sestavíme dosazením souřadnic do podmínky:

$$\rho = \{ [x; y; z], x \in \mathbb{R} \& y \in \mathbb{R} \& z \in \mathbb{R} | x/2 + y/3 + z/3 = 1 \}.$$

Poznámka

Úsekový tvar rovnice roviny je velmi názorný a dobře se s ním pracuje. Za to bohužel platí svou obecností, jak je vidět z následujících odstavců.

Převod úsekové rovnice na obecnou

Úseková rovnice neprochází počátkem, proto při jejím převodu na obecné vyjádření

$$ax + by + cz + d = 0$$

vždy bude koeficient $\mathbf{d} \neq \mathbf{0}$.

- Tedy tato rovnice může být vždy upravena na tvar s koeficientem d = 1.
- Konverzní vzorce potom zapíšeme takto:

$$d = 1$$
, $a = -1 / p$, $b = -1 / q$, $c = -1 / r$.

Převod obecné rovnice na úsekovou

Pokud některý z koeficientů obecného vyjádření je nulový, úsekové vyjádření neexistuje. Pokud jsou všechny nenulové, potom:

$$p = -d/a$$
, $q = -d/b$, $r = -d/c$