

DIGITAL EMC CO., LTD.

683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 Tel: +82-31-321-2664 Fax: +82-31-321-1664 http://www.digitalemc.com

CERTIFICATION OF COMPLIANCE

SEOWON INTECH CO., LTD.

689-47, Kumjung-Dong, Kunpo-City, Kyunggi-Do, 435-862, Korea

Dates of Tests: January 5 ~ April 30, 2009 Test Report S/N: DR50110902C-r1

Test Site: DIGITAL EMC CO., LTD.

FCC ID.

V7MSWU-3120

APPLICANT

SEOWON INTECH CO., LTD.

Classification : Licensed Non-Broadcast Transmitter(TNB)

FCC Rule Part(s) : §27(M), §2

EUT Type : WiMAX USB Modem

Model name : SWU-3120

Serial number : Identical prototype

TX Frequency Range : 2506 ~ 2685MHz (5MHz OBW)

2506 ~ 2685MHz (10MHz OBW)

RX Frequency Range : 2506 ~ 2685MHz (5MHz OBW)

2506 ~ 2685MHz (10MHz OBW)

Max. RF Output Power : OBW: 5MHz - 0.248W EIRP (23.95 dBm)

OBW: 10MHz - 0.242W EIRP(23.83 dBm)

Max. SAR Measurement : 0.728 mW/g

Emission Designators: : 4M71G7D(QPSK)

4M71W7D(16QAM)

9M37G7D(QPSK)

9M40W7D(16QAM)

Date of Issue : May 4, 2009

TABLE OF CONTENTS

♦ MEASUREMENT REPORT

1.1 SCOPE	3
2.1 GENERAL INFORMATION	4
3.1 DESCRIPTION OF TESTS	5
3.1.1 OCCUPIED BANDWIDTH EMISSION LIMITS	5
3.1.2 SPURIOUS AND HARMONICS EMISSIONS AT ANTENNA TERMINAL	5
3.1.3 RADIATED SPURIOUS AND HARMONIC EMISSIONS	5
3.1.4 FREQUENCY STABILITY / TEMPERATURE CARIATION	6
3.1 SUMMARY OF TESTS	7
4.1 TEST DATA	8
4.1.1 CONDUCTED OUTPUT POWER	8
4.1.2 EQUIVALENT ISOTROPIC RADIATED POWER OUTPUT	9
4.1.3 RADIATED MEASUREMENTS	11
4.1.4 FREQUENCY STABILITY	23
5.1 PLOTS OF EMISSIONS	31
5.1.1 OCCUPIED BANDWIDTH	31
5.1.2 BAND EDGE	35
5.1.3 CONDUCTED SPURIOUS EMISSIONS	43
5.1.4 CONDUCTED OUTPUT POWER	55
6.1 LIST OF TEST EQUIPMENT	79
7.1 SAMPLE CALCULATIONS	81
8.1 CONCLUSION	82

MEASUREMENT REPORT

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

§2.1033 General Information

Applicant: **SEOWON INTECH CO., LTD.**

Address: 689-47, Kumjung-Dong, Kunpo-City, Kyunggi-Do, 435-862, Korea

Attention: CHOUN-SUP, KIM

• FCC ID: V7MSWU-3120

• Quantity: Quantity production is planned

• Emission Designators: 4M71G7D(QPSK), 4M71W7D(16QAM)

9M37G7D(QPSK), 9M40W7D(16QAM)

• Tx Freq. Range: 2506 ~2685 MHz (5MHz OBW)

2506 ~2685 MHz (10MHz OBW)

• Rx Freq. Range: 2506 ~2685 MHz (5MHz OBW)

2506 ~2685 MHz (10MHz OBW)

● Max. Power Rating: OBW: 5MHz – 0.248W EIRP (23.95 dBm)

OBW: 10MHz - 0.242W EIRP (23.83 dBm)

• FCC Classification(s): Licensed Non-Broadcast Transmitter(TNB)

• Equipment (EUT) Type: WiMAX USB Modem

Modulation(s): QPSK, 16QAM

• Data rates: QPSK1/2, QPSK3/4, 16QAM1/2, 16QAM3/4

Antenna Type Chip AntennaFCC Rule Part(s): §27(M), §2

• Dates of Tests: January 5 ~ April 30, 2009

Place of Tests: DIGITAL EMC
 Test Report S/N: DR50110902C-r1

2.1. GENERAL INFORMATION

This report contains the result of tests performed by:

DIGITAL EMC CO., LTD.

Address: 683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 http://www.digitalemc.com E-mail : harveysung@digitalemc.com

Tel: +82-31-321-2664 Fax: +82-31-321-1664

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competent of calibration and testing laboratory".

Tested by: Engineer

May 4, 2009 Won-Jung LEE

Data Name Signature

Reviewed by: Director

May 4, 2009 Harvey Sung

Data Name Signature

Ordering party:

Company name : SEOWON INTECH CO., LTD.

Address : 689-47, Kumjung-Dong

Zipcode : 435-862

City/town : Kunpo-City, Kyunggi-Do

Country : Korea

Date of order : July 24, 2008

3.1 DESCRIPTION OF TESTS

3.1.1 Occupied Bandwidth Emission Limits

- Part §2.1049, §27.53.(l)(4), (6)
- (a) For mobile digital stations, the attenuation factor shall be not less than 43+10log(P)dB at the channel edge and 55+10log(P)dB at 5.5MHz from the channel edges.
- (b) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

3.1.2 Spurious and Harmonic Emissions at Antenna Terminal

- Part§2.1051, §27.53.(l) (4), (6)

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

3.1.3 Radiation Spurious and Harmonic Emissions

- Part §2.1053, §27.53.(1) (4), (6)

Spurious and harmonic emissions between the lowest frequency generated in this device and up to 10th harmonic of the highest generated in this device are measured at 3-meter OATS. The equipment under test is placed on a wooden turntable located at 3-meters from the receive antenna. The receive antenna height and turntable rotations are adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole is substituted in place of the EUT. This dipole antenna is driven by a vector signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using the horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

3.1 DESCRIPTION OF TESTS

(Continued...)

3.1.4 Frequency Stability/Temperature Variation.

- Part §2.1055, §27.54

The frequency stability of the transmitter is measured by:

- a) **Temperature**: The temperature is varied from -30°C to + 50°C using an environmental chamber with 10°C increments.
- b) **Primary Supply Voltage**: The primary supply voltage is varied from 85% to 115% of the nominal voltage at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification – The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter is measured at room temperature. (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10° C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

3.2 SUMMARY OF TESTS

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)
I. Transmitt	er Test Items			
2.1049 27.53(1)(6)	Occupied Bandwidth	N/A		С
2.1051 27.53(1)(4)(6)	Band Edge	< 43+10log ₁₀ (P) within 5.5MHz from the band edge		C
2.1051 27.53(l)(4)(6)	Conducted Spurious Emissions	< 55+10log ₁₀ (P) for all emissions greater than 5.5MHz from the band edge.	Conducted	C
2.1046	Conducted Output Power	N/A		С
2.1055 27.54	Frequency Stability	Fundamental emissions must stay within the allotted band		С
27.50(h)(2)	Equivalent Isotropic Radiated Power	< 2 Watts max. EIRP		C
2.1053 27.53(1)(4)	Radiated Spurious Emissions	$< 55+\ 10log_{10}(P)$ for all out-of-band emissions	Radiated	С
II. Addition	al Test Results for JBP portion			
15.107	AC Conducted Emissions	< FCC 15.107 limits	Radiated	C ^{note 2}
15.109	General Field Strength Limits	< FCC 15.109 limits	Line Conducted	C note 2

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: The JBP (Computing device peripheral) portion of this device was tested and approved by FCC DOC procedure..

4.1 TEST DATA

4.1.1 Conducted Output Power

A vector signal generator was used to supply the WiMAX signal sources to a EUT and an external trigger source to a spectrum analyzer. The trigger was set in such a way that the analyzer recorded power measurements only during the times in which the EUT was transmitting. The WiMAX conducted powers are reported below as well as a test setup diagram.

A PC(or Notebook) controlled EUT to transmit rated output power under appropriate transmission mode and specific frequency.

- Measurement data

Bandwidth	Zone Format	Frequency (MHz)	QPSK 1/2 (dBm)	QPSK 3/4 (dBm)	16QAM 1/2 (dBm)	16QAM 3/4 (dBm)
		2506	23.50	23.34	23.68	23.46
	PUSC	2593	23.60	23.50	23.51	23.35
5MHz		2685	22.60	22.57	22.43	22.23
SMHZ		2506	24.14	24.13	24.11	24.07
	AMC	2593	24.10	24.06	23.99	23.88
		2685	23.41	23.26	23.42	23.15
		2506	23.81	23.75	23.73	23.62
	PUSC	2593	23.58	23.42	23.45	23.42
10MH-		2685	22.75	22.66	22.65	22.45
10MHz		2506	24.33	24.27	24.25	24.15
	AMC	2593	23.89	23.80	23.71	23.68
		2685	23.32	23.25	23.27	23.19

Note: According to the above power measurement data, basically the RF tests were performed with the AMC zone format and QPSK 1/2, 16QAM 1/2.

Figure 1. Test Setup Diagram of WiMAX Coducted Power

4.1.2 Equivalent Isotropic Radiated Power Output

A. POWER: Maximum (BW 5MHz)

Frequency (MHz)	Zone Format & Modulation Type	POL (H/V)	Reading Level (dBm)	Level @Ant. Terminal (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Supplied Power
2506	AMC & QPSK 1/2	V	-22.95	14.16	9.28	23.44	0.221	DC 5V
2593	AMC & QPSK 1/2	V	-23.21	12.86	9.32	22.18	0.165	DC 5V
2685	AMC & QPSK 1/2	V	-21.10	14.59	9.36	23.95	0.248	DC 5V
2685	AMC & QPSK 3/4	V	-21.27	14.44	9.36	23.80	0.240	DC 5V
2685	PUSC & QPSK 1/2	V	-21.66	14.01	9.36	23.37	0.217	DC 5V
2685	PUSC & QPSK 3/4	V	-21.87	13.81	9.36	23.17	0.207	DC 5V
2506	AMC & 16QAM 1/2	V	-23.44	13.78	9.28	23.06	0.202	DC 5V
2593	AMC & 16QAM 1/2	V	-23.51	12.53	9.32	21.85	0.153	DC 5V
2685	AMC & 16QAM 1/2	V	-21.35	14.32	9.36	23.68	0.233	DC 5V
2685	AMC & 16QAM 3/4	V	-21.51	14.17	9.36	23.53	0.225	DC 5V
2685	PUSC & 16QAM 1/2	V	-21.91	13.73	9.36	23.09	0.204	DC 5V
2685	PUSC & 16QAM 3/4	V	-22.31	13.34	9.36	22.70	0.186	DC 5V

-Note: Basically these tests were performed at low, middle, high channel with AMC zone format and QPSK 1/2, 16QAM 1/2. And these tests were repeated at the worst case channel for other zone format (PUSC) and modulation types

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A horn antenna was substituted in place of the EUT. This horn antenna was driven by a vector signal generator with WiMAX signal source and the level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the horn antenna is measured and this conducted power was corrected with antenna gain in dBi for EIRP.

4.1.2 Equivalent Isotropic Radiated Power Output

(Continued...)

A. POWER: Maximum (BW 10MHz)

Frequency (MHz)	Zone &	POL (H/V)	Reading Level	Level @Ant.	Antenna Gain	EIRP (dBm)	EIRP (W)	Supplied Power
	Mod. Type		(dBm)	Terminal (dBm)	(dBi)			
2506	AMC & QPSK 1/2	V	-22.60	14.41	9.28	23.69	0.234	DC 5V
2593	AMC & QPSK 1/2	V	-23.30	12.70	9.32	22.02	0.159	DC 5V
2685	AMC & QPSK 1/2	V	-21.59	14.04	9.36	23.40	0.219	DC 5V
2506	AMC & QPSK 3/4	V	-22.72	14.33	9.28	23.61	0.230	DC 5V
2506	PUSC & QPSK 1/2	V	-23.20	13.87	9.28	23.15	0.207	DC 5V
2506	PUSC & QPSK 3/4	V	-23.39	13.65	9.28	22.93	0.196	DC 5V
2506	AMC & 16QAM 1/2	V	-22.40	14.55	9.28	23.83	0.242	DC 5V
2593	AMC & 16QAM 1/2	V	-23.17	12.79	9.32	22.11	0.163	DC 5V
2685	AMC & 16QAM 1/2	V	-21.56	14.00	9.36	23.36	0.217	DC 5V
2506	AMC & 16QAM 3/4	V	-22.71	14.39	9.28	23.67	0.233	DC 5V
2506	PUSC & 16QAM 1/2	V	-22.76	14.28	9.28	23.56	0.227	DC 5V
2506	PUSC & 16QAM 3/4	V	-22.94	14.09	9.28	23.37	0.217	DC 5V

-Note: Basically these tests were performed at low, middle, high channel with AMC zone format and QPSK 1/2, 16QAM 1/2. And these tests were repeated at the worst case channel for other zone format (PUSC) and modulation types

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A horn antenna was substituted in place of the EUT. This horn antenna was driven by a vector signal generator with WiMAX signal source and the level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the horn antenna is measured and this conducted power was corrected with antenna gain in dBi for EIRP.

4.1.3 Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY :

MODULATION SIGNAL : WiMAX

> **AMC** ZONE MODE :

QPSK 1/2 MODULATION TYPE :

> BANDWIDTH: MHz 2506.0 MHz

MEASURED OUTPUT POWER : 23.44 dBm =0.221

> DISTANCE 3 meters

> > $55 + 10 \log_{10}(W) =$ LIMIT 48.44

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	(dBc)
		(dBm)	(dBi)	(dBm)	
5012.00	Н	-52.77	10.58	-42.19	65.63
5012.00	V	-51.71	10.58	-41.13	64.57
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator with WiMAX signal source for harmonics and with CW signal for narrow band spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

4.1.3 Radiated Measurements

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WiMAX

ZONE MODE : AMC

MODULATION TYPE : QPSK 1/2

BANDWIDTH: 5 MHz

OPERATING FREQUENCY : 2593.0 MHz
MEASURED OUTPUT POWER : 22.18 dBm = 0.165 V

DISTANCE 3 meters

LIMIT $55 + 10 \log_{10} (W) = 47.18 \text{ dBc}$

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	(dBc)
		(dBm)	(dBi)	(dBm)	
5186.00	Н	-55.18	10.71	-44.47	66.65
5186.00	V	-54.18	10.71	-43.47	65.65
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator with WiMAX signal source for harmonics and with CW signal for narrow band spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

4.1.3 Radiated Measurements

(Continued...)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY :

MODULATION SIGNAL : WiMAX

> **AMC** ZONE MODE :

QPSK 1/2 MODULATION TYPE :

> BANDWIDTH: MHz 2685.0 MHz

MEASURED OUTPUT POWER : 23.95 dBm =0.248

> DISTANCE 3 meters

> > $55 + 10 \log_{10}(W) =$ LIMIT 48.95

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	(dBc)
		(dBm)	(dBi)	(dBm)	
5370.00	Н	-52.85	10.85	-42.00	65.95
5370.00	V	-51.34	10.85	-40.49	64.44
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator with WiMAX signal source for harmonics and with CW signal for narrow band spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

4.1.3 Radiated Measurements

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WiMAX

ZONE MODE : AMC

MODULATION TYPE : 16QAM 1/2

BANDWIDTH: _____5 MHz

OPERATING FREQUENCY: 2506.0 MHz

MEASURED OUTPUT POWER : $\underline{23.06}$ dBm = $\underline{0.202}$ W

DISTANCE <u>3</u> meters

LIMIT $55 + 10 \log_{10} (W) = 48.06$ dBc

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	(dBc)
		(dBm)	(dBi)	(dBm)	
5012.00	Н	-51.57	10.58	-40.99	64.05
5012.00	V	-52.83	10.58	-42.25	65.31
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator with WiMAX signal source for harmonics and with CW signal for narrow band spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

4.1.3 Radiated Measurements

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WiMAX

ZONE MODE : AMC

MODULATION TYPE : 16QAM 1/2

BANDWIDTH: 5 MHz

OPERATING FREQUENCY : 2593.0 MHz MEASURED OUTPUT POWER : 21.85 dBm = 0.153 W

MEASURED OUTPUT POWER : 21.85 dBm = 0.153DISTANCE 3 meters

TANCE 3 meters

LIMIT $55 + 10 \log_{10} (W) = 46.85$ dBc

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	(dBc)
		(dBm)	(dBi)	(dBm)	
5186.00	Н	-53.54	10.71	-42.83	64.68
5186.00	V	-54.38	10.71	-43.67	65.52
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator with WiMAX signal source for harmonics and with CW signal for narrow band spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

4.1.3 Radiated Measurements

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WiMAX

ZONE MODE : AMC

MODULATION TYPE : 16QAM 1/2

BANDWIDTH: 5 MHz

OPERATING FREQUENCY: 2685.0 MHz

MEASURED OUTPUT POWER : $\underline{23.68}$ dBm = $\underline{0.233}$ V

DISTANCE <u>3</u> meters

LIMIT $55 + 10 \log_{10} (W) = 48.68$ dBo

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	(dBc)
		(dBm)	(dBi)	(dBm)	
5370.00	Н	-52.73	10.85	-41.88	65.56
5370.00	V	-51.16	10.85	-40.31	63.99
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator with WiMAX signal source for harmonics and with CW signal for narrow band spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

4.1.3 Radiated Measurements

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WiMAX

ZONE MODE : AMC

MODULATION TYPE : QPSK 1/2

BANDWIDTH: _____MHz

OPERATING FREQUENCY : 2506.0 MHz

MEASURED OUTPUT POWER : $\underline{23.69}$ dBm = $\underline{0.234}$ W

DISTANCE 3 meters

LIMIT $55 + 10 \log_{10} (W) = 48.69 \text{ dBc}$

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	(dBc)
		(dBm)	(dBi)	(dBm)	
5012.00	Н	-51.55	10.58	-40.97	64.66
5012.00	V	-51.42	10.58	-40.84	64.53
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator with WiMAX signal source for harmonics and with CW signal for narrow band spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

4.1.3 Radiated Measurements

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WiMAX

ZONE MODE : AMC

MODULATION TYPE : QPSK 1/2

BANDWIDTH: 10 MHz

OPERATING FREQUENCY : 2593.0 MHz
MEASURED OUTPUT POWER : 22.02 dBm = 0.159 W

DISTANCE 3 meters

LIMIT $55 + 10 \log_{10} (W) = 47.02$ dBc

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	(dBc)
		(dBm)	(dBi)	(dBm)	
5186.00	Н	-54.11	10.71	-43.40	65.42
5186.00	V	-53.95	10.71	-43.24	65.26
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator with WiMAX signal source for harmonics and with CW signal for narrow band spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

4.1.3 Radiated Measurements

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WiMAX

ZONE MODE : AMC

MODULATION TYPE : QPSK 1/2

BANDWIDTH: 10 MHz

OPERATING FREQUENCY : 2685.0 MHz
MEASURED OUTPUT POWER : 23.40 dBm = 0.219 W

DISTANCE 3 meters

LIMIT $55 + 10 \log_{10} (W) = 48.40$ dBc

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	(dBc)
		(dBm)	(dBi)	(dBm)	
5370.00	Н	-51.27	10.85	-40.42	63.82
5370.00	V	-50.55	10.85	-39.70	63.10
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator with WiMAX signal source for harmonics and with CW signal for narrow band spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

4.1.3 Radiated Measurements

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WiMAX

ZONE MODE : AMC

MODULATION TYPE : 16QAM 1/2

BANDWIDTH: 10 MHz

OPERATING FREQUENCY : 2506.0 MHz

MEASURED OUTPUT POWER : 23.83 dBm = 0.242 W

DISTANCE 3 meters

LIMIT $55 + 10 \log_{10} (W) = 48.83$ dBc

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	(dBc)
		(dBm)	(dBi)	(dBm)	
5012.00	Н	-51.70	10.58	-41.12	64.95
5012.00	V	-51.97	10.58	-41.39	65.22
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator with WiMAX signal source for harmonics and with CW signal for narrow band spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

4.1.3 Radiated Measurements

(Continued...)

Field Strength of SPURIOUS Radiation

MODULATION SIGNAL : WiMAX

ZONE MODE : AMC

MODULATION TYPE : 16QAM 1/2

BANDWIDTH: 10 MHz

OPERATING FREQUENCY : 2593.0 MHz
MEASURED OUTPUT POWER : 22.11 dBm = 0.163 W

DISTANCE 3 meters

LIMIT $55 + 10 \log_{10} (W) = 47.11 \text{ dBc}$

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	(dBc)
		(dBm)	(dBi)	(dBm)	
5186.00	Н	-54.32	10.71	-43.61	65.72
5186.00	V	-53.36	10.71	-42.65	64.76
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator with WiMAX signal source for harmonics and with CW signal for narrow band spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

4.1.3 Radiated Measurements

(Continued...)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY :

MODULATION SIGNAL : WiMAX

ZONE MODE : AMC

MODULATION TYPE : 16QAM 1/2

BANDWIDTH: 10 MHz

MEASURED OUTPUT POWER : 23.36 dBm = 0.217 W

DISTANCE 3 meters

LIMIT $55 + 10 \log_{10} (W) = 48.36$ dBc

2685.0

MHz

Freq.	POL	LEVEL@	SUBSTITUTE	CORRECT	
(MHz)	(H/V)	ANTENNA	ANTENNA	GENERATOR	
		TERMINALS	GAIN	LEVEL	(dBc)
		(dBm)	(dBi)	(dBm)	
5370.00	Н	-51.93	10.85	-41.08	64.44
5370.00	V	-51.69	10.85	-40.84	64.20
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table located at 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the spectrum analyzer. A antenna was substituted in place of the EUT. This antenna was driven by a vector signal generator with WiMAX signal source for harmonics and with CW signal for narrow band spurious emissions. The level of the signal generator was adjusted to obtain the same spectrum analyzer's reading level when EUT existed. After that conducted power at the input terminal of the transmit antenna was measured and this conducted power was corrected with antenna gain in dBi.

VDC

4.1 TEST DATA (Continued...)

4.1.4 Frequency Stability

REFERENCE VOLTAGE :

 BANDWIDTH
 5
 MHz

 ZONE MODE
 AMC

 MODULATION TYPE
 :
 QPSK 1/2

 OPERATING FREQUENCY
 :
 2,592,999,925
 Hz

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VAC)	(dB)	(Hz)	(ppm)
100%	5.00	+20(Ref)	2,592,999,925	0.000
100%		-30	2,592,999,916	-0.003
100%		-20	2,592,999,930	0.002
100%		-10	2,592,999,925	0.000
100%		0	2,592,999,932	0.003
100%		+10	2,592,999,930	0.002
100%		+20	2,592,999,925	0.000
100%		+30	2,592,999,926	0.000
100%		+40	2,592,999,924	0.000
100%		+50	2,592,999,921	-0.002
85%	4.25	+20	2,592,999,933	0.003
115%	5.75	+20	2,592,999,938	0.005
BATT.ENDPOINT	-	-	-	-

4.1.4 Frequency Stability

(Continued...)

4.1.4 Frequency Stability

(Continued...)

BANDWIDTH: 5 MHz

ZONE MODE AMC

MODULATION TYPE : 16QAM 1/2

OPERATING FREQUENCY : 2,592,999,919 Hz

REFERENCE VOLTAGE : 5 VDC

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VAC)	(dB)	(Hz)	(ppm)
100%	5.00	+20(Ref)	2,592,999,919	0.000
100%		-30	2,592,999,917	-0.001
100%		-20	2,592,999,915	-0.002
100%		-10	2,592,999,921	0.001
100%		0	2,592,999,924	0.002
100%		+10	2,592,999,921	0.001
100%		+20	2,592,999,919	0.000
100%		+30	2,592,999,923	0.002
100%		+40	2,592,999,930	0.004
100%		+50	2,592,999,932	0.005
85%	4.25	+20	2,592,999,925	0.002
115%	5.75	+20	2,592,999,927	0.003
BATT.ENDPOINT	-	-	-	-

4.1.4 Frequency Stability

(Continued...)

4.1.4 Frequency Stability

(Continued...)

BANDWIDTH: 10 MHz

ZONE MODE AMC

MODULATION TYPE : QPSK 1/2

OPERATING FREQUENCY : 2,592,999,972 Hz
REFERENCE VOLTAGE : 5 VDC

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VAC)	(dB)	(Hz)	(%)
100%	5.00	+20(Ref)	2,592,999,972	0.000
100%		-30	2,592,999,958	-0.005
100%		-20	2,592,999,955	-0.007
100%		-10	2,592,999,964	-0.003
100%		0	2,592,999,963	-0.003
100%		+10	2,592,999,966	-0.002
100%		+20	2,592,999,972	0.000
100%		+30	2,592,999,968	-0.002
100%		+40	2,592,999,964	-0.003
100%		+50	2,592,999,966	-0.002
85%	4.25	+20	2,592,999,974	0.001
115%	5.75	+20	2,592,999,973	0.000
BATT.ENDPOINT	-	-	-	-

4.1.4 Frequency Stability

(Continued...)

4.1.4 Frequency Stability

(Continued...)

BANDWIDTH: 10 MHz

ZONE MODE AMC

MODULATION TYPE : 16QAM 1/2

OPERATING FREQUENCY : 2,592,999,967 Hz
REFERENCE VOLTAGE : 5 VDC

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VAC)	(dB)	(Hz)	(%)
100%	5.00	+20(Ref)	2,592,999,967	0.000
100%		-30	2,592,999,962	-0.002
100%		-20	2,592,999,959	-0.003
100%		-10	2,592,999,955	-0.005
100%		0	2,592,999,963	-0.002
100%		+10	2,592,999,958	-0.003
100%		+20	2,592,999,967	0.000
100%		+30	2,592,999,977	0.004
100%		+40	2,592,999,976	0.003
100%		+50	2,592,999,967	0.000
85%	4.25	+20	2,592,999,973	0.002
115%	5.75	+20	2,592,999,971	0.002
BATT.ENDPOINT	-	-	-	-

4.1.4 Frequency Stability

(Continued...)

5.1 PLOTS OF EMISSIONS

5.1.1 Occupied Bandwidth(BW: 5MHz)

- Middle Channel(2593MHz) & AMC Mode & QPSK 1/2

- Middle Channel(2593MHz) & AMC Mode & QPSK 3/4

5.1.1 Occupied Bandwidth(BW: 5MHz)

(Continued...)

- Middle Channel(2593MHz) & AMC Mode & 16QAM 1/2

- Middle Channel (2593MHz) & AMC Mode & 16QAM 3/4

5.1.1 Occupied Bandwidth(BW: 10MHz)

(Continued...)

- Middle Channel(2593MHz) & AMC Mode & QPSK 1/2

- Middle Channel(2593MHz) & AMC Mode & QPSK 3/4

5.1.1 Occupied Bandwidth(BW: 10MHz)

(Continued...)

- Middle Channel(2593MHz) & AMC Mode & 16QAM 1/2

- Middle Channel (2593MHz) & AMC Mode & 16QAM 3/4

5.1.2 Band Edge(BW: 5MHz)

- Low Channel(2506MHz) & AMC Mode & QPSK 1/2

- Middle Channel(2593MHz) & AMC Mode & QPSK 1/2

5.1 PLOTS OF EMISSIONS

(Continued...)

5.1.2 Band Edge(BW: 5MHz)

(Continued...)

- High Channel(2685MHz) & AMC Mode & QPSK 1/2

5.1 PLOTS OF EMISSIONS

(Continued...)

5.1.2 Band Edge(BW: 5MHz)

(Continued...)

- Low Channel (2506MHz) & AMC Mode & 16QAM 1/2

- Middle Channel (2593MHz) & AMC Mode & 16QAM 1/2

5.1 PLOTS OF EMISSIONS

(Continued...)

5.1.2 Band Edge(BW: 5MHz)

(Continued...)

- High Channel(2685MHz) & AMC Mode & 16QAM 1/2

5.1.2 Band Edge(BW: 10MHz)

(Continued...)

- Low Channel(2506MHz) & AMC Mode & QPSK 1/2

- Middle Channel (2593MHz) & AMC Mode & QPSK 1/2

5.1 PLOTS OF EMISSIONS

(Continued...)

5.1.2 Band Edge(BW: 10MHz)

(Continued...)

- High Channel(2685MHz) & AMC Mode & QPSK 1/2

5.1.2 Band Edge(BW: 10MHz)

(Continued...)

- Low Channel(2506MHz) & AMC Mode & 16QAM 1/2

- Middle Channel (2593MHz) & AMC Mode & 16QAM 1/2

5.1 PLOTS OF EMISSIONS

(Continued...)

5.1.2 Band Edge(BW: 10MHz)

(Continued...)

- High Channel(2685MHz) & AMC Mode & 16QAM 1/2

5.1.3 Conducted Spurious Emissions(BW: 5MHz)

- Low Channel(2506MHz) & AMC Mode & QPSK 1/2

5.1.3 Conducted Spurious Emissions(BW: 5MHz)

(Continued...)

- Middle Channel (2593MHz) & AMC Mode & QPSK 1/2

5.1.3 Conducted Spurious Emissions(BW: 5MHz)

(Continued...)

- High Channel(2685MHz) & AMC Mode & QPSK 1/2

5.1.3 Conducted Spurious Emissions(BW: 5MHz)

- Low Channel(2506MHz) & AMC Mode & 16QAM 1/2

5.1.3 Conducted Spurious Emissions(BW: 5MHz)

(Continued...)

- Middle Channel(2593MHz) & AMC Mode & 16QAM 1/2

5.1.3 Conducted Spurious Emissions(BW: 5MHz)

(Continued...)

- High Channel(2685MHz) & AMC Mode & 16QAM 1/2

5.1.3 Conducted Spurious Emissions(BW: 10MHz)

(Continued...)

- Low Channel(2506MHz) & AMC Mode & QPSK 1/2

5.1.3 Conducted Spurious Emissions(BW: 10MHz)

(Continued...)

- Middle Channel(2593MHz) & AMC Mode & QPSK 1/2

5.1.3 Conducted Spurious Emissions(BW: 10MHz)

(Continued...)

- High Channel(2685MHz) & AMC Mode & QPSK 1/2

5.1.3 Conducted Spurious Emissions(BW: 10MHz)

(Continued...)

- Low Channel(2506MHz) & AMC Mode & 16QAM 1/2

5.1.3 Conducted Spurious Emissions(BW: 10MHz)

(Continued...)

- Middle Channel(2593MHz) & AMC Mode & 16QAM 1/2

5.1.3 Conducted Spurious Emissions(BW: 10MHz)

(Continued...)

- High Channel(2685MHz) & AMC Mode & 16QAM 1/2

5.1.4 Conducted Output Power(BW: 5MHz)

- Low Channel(2506MHz) & PUSC Mode & QPSK 1/2

- Low Channel(2506MHz) & PUSC Mode & QPSK 3/4

5.1.4 Conducted Output Power(BW: 5MHz)

(Continued...)

- Low Channel(2506MHz) & PUSC Mode & 16QAM 1/2

- Low Channel(2506MHz) & PUSC Mode & 16QAM 3/4

5.1.4 Conducted Output Power(BW: 5MHz)

- Low Channel(2506MHz) & AMC Mode & QPSK 1/2

- Low Channel(2506MHz) & AMC Mode & QPSK 3/4

5.1.4 Conducted Output Power(BW: 5MHz)

(Continued...)

- Low Channel(2506MHz) & AMC Mode & 16QAM 1/2

- Low Channel (2506MHz) & AMC Mode & 16QAM 3/4

5.1.4 Conducted Output Power(BW: 5MHz)

(Continued...)

- Middle Channel(2593MHz) & PUSC Mode & QPSK 1/2

- Middle Channel (2593MHz) & PUSC Mode & QPSK 3/4

5.1.4 Conducted Output Power(BW: 5MHz)

(Continued...)

- Middle Channel(2593MHz) & PUSC Mode & 16QAM 1/2

- Middle Channel (2593MHz) & PUSC Mode & 16QAM 3/4

5.1.4 Conducted Output Power(BW: 5MHz)

(Continued...)

- Middle Channel(2593MHz) & AMC Mode & QPSK 1/2

- Middle Channel(2593MHz) & AMC Mode & QPSK 3/4

5.1.4 Conducted Output Power(BW: 5MHz)

(Continued...)

- Middle Channel(2593MHz) & AMC Mode & 16QAM 1/2

- Middle Channel(2593MHz) & AMC Mode & 16QAM 3/4

5.1.4 Conducted Output Power(BW: 5MHz)

(Continued...)

- High Channel(2685MHz) & PUSC Mode & QPSK 1/2

- High Channel(2687.55MHz) & PUSC Mode & QPSK 3/4

5.1.4 Conducted Output Power(BW: 5MHz)

(Continued...)

- High Channel(2685MHz) & PUSC Mode & 16QAM 1/2

- High Channel(2685MHz) & PUSC Mode & 16QAM 3/4

5.1.4 Conducted Output Power(BW: 5MHz)

(Continued...)

- High Channel(2685MHz) & AMC Mode & QPSK 1/2

- High Channel(2687.55MHz) & AMC Mode & QPSK 3/4

5.1.4 Conducted Output Power(BW: 5MHz)

(Continued...)

- High Channel(2685MHz) & AMC Mode & 16QAM 1/2

- High Channel(2685MHz) & AMC Mode & 16QAM 3/4

5.1.4 Conducted Output Power(BW: 10MHz)

(Continued...)

- Low Channel(2506MHz) & PUSC Mode & QPSK 1/2

- Low Channel(2506MHz) & PUSC Mode & QPSK 3/4

5.1.4 Conducted Output Power(BW: 10MHz)

(Continued...)

- Low Channel(2506MHz) & PUSC Mode & 16QAM 1/2

- Low Channel(2506MHz) & PUSC Mode & 16QAM 3/4

5.1.4 Conducted Output Power(BW: 10MHz)

(Continued...)

- Low Channel(2506MHz) & AMC Mode & QPSK 1/2

- Low Channel(2506MHz) & AMC Mode & QPSK 3/4

5.1.4 Conducted Output Power(BW: 10MHz)

(Continued...)

- Low Channel(2506MHz) & AMC Mode & 16QAM 1/2

- Low Channel (2506MHz) & AMC Mode & 16QAM 3/4

5.1.4 Conducted Output Power(BW: 10MHz)

(Continued...)

- Middle Channel(2593MHz) & PUSC Mode & QPSK 1/2

- Middle Channel(2593MHz) & PUSC Mode & QPSK 3/4

5.1.4 Conducted Output Power(BW: 10MHz)

(Continued...)

- Middle Channel(2593MHz) & PUSC Mode & 16QAM 1/2

- Middle Channel (2593MHz) & PUSC Mode & 16QAM 3/4

5.1.4 Conducted Output Power(BW: 10MHz)

(Continued...)

- Middle Channel(2593MHz) & AMC Mode & QPSK 1/2

- Middle Channel(2593MHz) & AMC Mode & QPSK 3/4

5.1.4 Conducted Output Power(BW: 10MHz)

(Continued...)

- Middle Channel(2593MHz) & AMC Mode & 16QAM 1/2

- Middle Channel(2593MHz) & AMC Mode & 16QAM 3/4

5.1.4 Conducted Output Power(BW: 10MHz)

(Continued...)

- High Channel(2685MHz) & PUSC Mode & QPSK 1/2

- High Channel(2685MHz) & PUSC Mode & QPSK 3/4

5.1.4 Conducted Output Power(BW: 10MHz)

(Continued...)

- High Channel(2685MHz) & PUSC Mode & 16QAM 1/2

- High Channel(2685MHz) & PUSC Mode & 16QAM 3/4

5.1.4 Conducted Output Power(BW: 10MHz)

(Continued...)

- High Channel(2685MHz) & AMC Mode & QPSK 1/2

- High Channel (2685MHz) & AMC Mode & QPSK 3/4

5.1.4 Conducted Output Power(BW: 10MHz)

(Continued...)

- High Channel(2685MHz) & AMC Mode & 16QAM 1/2

- High Channel(2685MHz) & AMC Mode & 16QAM 3/4

6.1 LIST OF TEST EQUIPMENT

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
	Spectrum Analyzer	Agilent	E4440A	06/11/08	06/11/09	MY45304199
	Spectrum Analyzer(RE)	H.P	8563E	13/10/08	13/10/09	3551A04634
\boxtimes	Spectrum Analyzer	Rohde Schwarz	FSQ	02/02/09	02/02/10	200347
\boxtimes	Power Meter	H.P	EMP-442A	10/07/08	10/07/09	GB37170413
\boxtimes	Power Sensor	H.P	8481A	14/07/08	14/07/09	3318A96332
	Power Divider	Agilent	11636B	04/12/08	04/12/09	56471
\boxtimes	Power Splitter	Anritsu	K241B	14/10/08	14/10/09	020611
	Frequency Counter	H.P	5342A	16/09/08	16/09/09	2119A04450
\boxtimes	TEMP & HUMIDITY Chamber	JISCO	KR-100/J-RHC2	10/10/08	10/10/09	30604493/021031
\boxtimes	Digital Multimeter	H.P	34401A	13/03/09	13/03/10	3146A13475
\boxtimes	Thermo hygrograph	SATO	NS II-Q	06/10/08	06/10/09	1503512
	Thermo hygrograph	SATO	NS II-Q	17/10/08	17/10/09	1506426
	Multifuction Synthesizer	HP	8904A	06/10/08	06/10/09	3633A08404
\boxtimes	Signal Generator	Rohde Schwarz	SMR20	13/03/09	13/03/10	101251
\boxtimes	Signal Generator	H.P	ESG-3000A	09/07/08	09/07/09	US37230529
	Vector Signal Generator	Rohde Schwarz	SMJ100A	17/01/10	17/01/10	100148
	Audio Analyzer	H.P	8903B	09/07/08	09/07/09	3011A09448
	Modulation Analyzer	H.P	8901B	18/07/08	18/07/09	3028A03029
	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	31/07/08	31/07/09	GB43461134
	Universal Radio communication Tester	Rohde Schwarz	CMU 200	13/03/09	13/03/10	107631
	Bluetooth Tester	TESCOM	TC-3000A	16/12/08	16/12/09	3000A4A0121
	BAND Reject Filter	Microwave Circuits	N0308372	06/10/08	06/10/09	3125-01DC0352
	BAND Reject Filter	Wainwright	WRCG1750	06/10/08	06/10/09	2
	High-Pass Filter	ANRITSU	MP526D	06/10/08	06/10/09	MP27756
	High-pass filter	Wainwright	WHKX2.1	N/A	N/A	1
\boxtimes	High-Pass Filter	Wainwright	WHKX3.0	N/A	N/A	9
	Tunable Notch Filter	Wainwright	WRCT800.0 /960.0-0.2/40-8SSK	N/A	N/A	10
	Tunable Notch Filter	Wainwright	WRCD1700.0 /2000.0-0.2/40-10SSK	N/A	N/A	27
	Tunable Notch Filter	Wainwright	WRCT1900.0/ 2200.0-5/40-10SSK	N/A	N/A	7
\boxtimes	AC Power supply	DAEKWANG	5KVA	13/03/09	13/03/10	20060321-1
	DC Power Supply	HP	6622A	13/03/09	13/03/10	3448A03760
	DC Power Supply	НР	6633A	13/03/09	13/03/10	3524A06634
	HORN ANT	ETS	3115	13/06/08	13/06/09	6419
	HORN ANT	ETS	3115	10/09/08	10/09/09	21097
\boxtimes	HORN ANT	A.H.Systems	SAS-574	13/06/08	13/06/09	154
\boxtimes	HORN ANT	A.H.Systems	SAS-574	13/06/08	13/06/09	155

6.1 LIST OF TEST EQUIPMENT

(Continued...)

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
\boxtimes	Dipole Antenna	Schwarzbeck	VHA9103	25/11/08	25/11/09	2116
\boxtimes	Dipole Antenna	Schwarzbeck	VHA9103	25/11/08	25/11/09	2117
\boxtimes	Dipole Antenna	Schwarzbeck	UHA9105	25/11/08	25/11/09	2261
\boxtimes	Dipole Antenna	Schwarzbeck	UHA9105	25/11/08	25/11/09	2262
	Coaxial Fixed Attenuators	Agilent	8491B	01/08/08	01/08/09	MY39260700
	Coaxial Fixed Attenuators	Agilent	8491B	15/07/08	15/07/09	MY39260699
	Attenuator (10dB)	WEINSCHEL	23-10-34	01/10/08	01/10/09	BP4386
	Attenuator (20dB)	WEINSCHEL	86-20-11	06/10/08	06/10/09	432
	Attenuator (10dB)	WEINSCHEL	86-10-11	06/10/08	06/10/09	446
	Attenuator (10dB)	WEINSCHEL	86-10-11	06/10/08	06/10/09	408
	Attenuator (40dB)	WEINSCHEL	57-40-33	01/10/08	01/10/09	NN837
	Attenuator (30dB)	JFW	50FH-030-300	13/03/09	13/03/10	060320-1
	CIRCULATOR	NOVA MICROWAVE	0088CAN	11/07/08	11/07/09	788
	CIRCULATOR	NOVA MICROWAVE	0185CAN	11/07/08	11/07/09	790
	CIRCULATOR	NOVA MICROWAVE	0215CAN	11/07/08	11/07/09	112
	Amplifier (30dB)	Agilent	8449B	13/10/08	13/10/09	3008A01590
	RF Power Amplifier	OPHIRRF	5069F	09/07/08	09/07/08	1006
\boxtimes	Amplifier	EMPOWER	BBS3Q7ELU	02/02/08	02/02/10	1020
	Software	Agilent	Benchlink	N/A	N/A	A.01.09 021211
	EMI TEST RECEIVER	R&S	ESU	Calibrating	Calibrating	100014
	BILOG ANTENNA	SCHAFFNER	CBL6112B	13/06/08	13/06/09	2737
	Amplifier (22dB)	H.P	8447E	05/02/09	05/02/10	2945A02865
	Position Controller	TOKIN	5905A	N/A	N/A	N/A
	Software	ToYo EMI	EP5/RE	N/A	N/A	Ver 2.0.800
\boxtimes	EMI TEST RECEIVER	R&S	ESCI	13/05/08	13/05/09	100364
\boxtimes	Log Periodic Antenna	Schwarzbeck	UHALP9108A1	30/09/08	30/09/09	1098
\boxtimes	Biconical Antenna	Schwarzbeck	VHA9103	13/06/08	13/06/09	2233
	Amplifier (25dB)	Agilent	8447D	21/05/08	21/05/09	2944A10144
	Position Controller	TOKIN	5901T	N/A	N/A	14173
\boxtimes	Software	AUDIX	e3	N/A	N/A	Ver 3.0
\boxtimes	Driver	TOKIN	5902T2	N/A	N/A	14174
	Spectrum Analyzer(CE)	H.P	8591E	26/04/09	26/04/10	3649A05889
	LISN	Kyorits	KNW-407	04/08/08	04/08/09	8-317-8
	LISN	Kyorits	KNW-242	11/09/08	11/09/09	8-654-15
	CVCF	NF Electronic	4420	N/A	N/A	304935/337980
	Software	ToYo EMI	EP5/CE	N/A	N/A	Ver 2.0.801
	DC BLOCK	Hyuplip	KEL-007	N/A	N/A	7-1581-5
	50 ohm Terminator	НМЕ	CT-01	22/01/09	22/01/10	N/A
	RFI/FIELD Intensity Meter	Kyorits	KNW-2402	11/09/08	11/09/09	4N-170-3

7.1 SAMPLE CALCULATIONS

A. Emission Designator

- Bandwidth: 5MHz

QPSK Modulation

16QAM Modulation

Emission Designator = 4M71G7D Emission Designator = 4M71W7D

WiMAX BW = 4.7128 MHz WiMAX BW = 4.7061 MHz

G = Phase Modulation W = Composite – Quadrature Amplitude Modulation

7 = Quantized/Digital Information 7 = Quantized/Digital Information

D = Data Transmission D = Data Transmission

- Bandwidth: 10MHz QPSK Modulation

16QAM Modulation

Emission Designator = 9M37G7D Emission Designator = 9M40W7D

WiMAX BW = 9.3694 MHz WiMAX BW = 9.4039 MHz

G = Phase Modulation W = Composite – Quadrature Amplitude Modulation

7 = Quantized/Digital Information 7 = Quantized/Digital Information

D = Data Transmission D = Data Transmission

8.1 CONCLUSION

The data collected shows that the **SEOWONINTECH CO., LTD.** WiMAX USB modem(**FCC ID: V7MSWU-3120**) complies with all the requirements of Parts 2 and 27 of the FCC rules.