MCHC	for	Structure	Legraiag
			0

In the Context of Structure Courning, MCA possible coursal Structures and estimate t	yc methods	lan be used f	explore the s	haw of
nossible cousal structures and estimate t	le postenion	probability	of different	Cousal graphs
given the observed data.	•		, , ,	'

- General MCMC process:	2 dicichlet is Dischete
1. Desine a prior pr(G) =	2 dicichlet if D is Discrete Wilshaw if D is Pontinuous

Flow do I know the MCNC on graph	onverged? Expected value Effective sample
BN:	D: Effective sample
X->4-=7	X 9 2 conv. des
goint distribution of BN:	M1 Y1 El (haia)
$P_1(x,y,z) = P_1(x)P_1(y)P_1(z)$	
likelihood of the Jata Given the graph.	Un yn In
Pr(D) G) = II Pr(X=xi, g=yi, 2=	?i)

Proposal Step: the proposal Step involves generaling a new graph from the durrent distribution Q (G'16) which is the probability of proposing a move from graph G to graph G'
Let G be the lurent graph and G'be a proposed new graph. the proposal distribution Q(G'IG) is a conditional probability distribution that defines the probability of proposing each possible new graph G' given the wrent graph G.
A lommon Phoice for Q (G'1G) is a uniform distribution over all graphs that Pan be obtained by adding, Leleting or reversing a single edge.
Under this definition, the proposal distribution is symmetric:
Q(G' G)=Q(G G') for all G and G'. This is because each possible move from G to G' is also possible move in the reverse direction from G' to G.
the proposal Step of the Metropolis-Hastings algorithm involves drawing a sumple from this proposal distribution. This can be done by adding, removing or reversing, and proposing the resulting graph as the new graph.

Acceptance Step: Consists in accepting or rejecting the proposed new graph.
Mew graph.
Let G be the Current graph and 6' be the proposed new graph G' the acceptance probability A(G,G') is defined as follows:
$A(G,G') = min\left(1, \frac{P_{\ell}(G' D) \times O(G G')}{P_{\ell}(G D) \times O(G' G')}\right)$
Where Pr(GID) and Pr(G'ID) are the posterior probabilities of the bureer and proposed graphs.
grom G to G' and srom G' to G.
the acceptance step of the Metropolis-Hustings involves generating a random number u from a uniform distribution between \varnothing and 1 . The accept if $u < A(G,G')$ $G \leftarrow G'$ and G' are G' and G' and G' are G' and G' and G' are G' are G' and G' are G' are G' and G' are G' and G' are G' and G' are G' are G' and G' are G' and G' are G' are G' are G' are G' and G' are G' and G' are G' and G' are G' and G' are G'
if the proposal distribution is symmetric, then ratio of the posterior $A(G_1G_1) = \min(L_1, P_r(G_1D))/P_r(G_1D))$ the proposes and curry graph

Triout. Jata & IDNXM
Al Gorithm: Input: Jata & 12"xm max iterations
we can already asmatu
1. Initialize a graph G the graph resulting from the end of skeleton phase in Pc-alg.
end of skeleton phase in Pc-alg.
2. While max iterations is not reached to:
21. Propose a new graph 6' by making a small random
21. Propose a new graph 6' by making a small random lhange to G. (e.g. add, remove, reverse a random edge)
2.2. Compute the acceptance probability A (G, G') as follows
2.2.1. Compute the posterior probabilities P(GID) and P(G'1D)
If the proposal distribution is symmetric:
$A(G,G')=\min(1,P_r(G' D)/P_r(G D))$
g(SQ:
Compute the proposal probabilities Q(G1G') and
$\mathcal{O}(G'G)$
A(G(G')= min 1, Pr(G(D) x Q(G,G'))
(P(G(D) xQ(G',G))
A(G/G')= min 1, Pr(G/D) x Q(G,G') Pr(G/D) x Q(G',G) 2.3. Generate a random number a from a unifor distriction selection.
IP u L A(G,G'),
If u L A(G,G'), Accept the proposed graph: G=G'
return G.

$$P(D(a) \leq \prod_{i \in A} P(v_i | P_a(v_i))$$

