Juan de Dios Pérez y Alfonso Romero

Parcial

Este examen pertenece al Banco de Exámanes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen.

- 1. Contesta razonadamente las siguientes cuestiones:
 - Sea V un e.v. sobre K con dimensión 1. ¿Es cierto que parra cada $f \in End_K(V)$ existe un único $a \in K$ de manera que $f(v) = av \ \forall v \in V$?
 - Para $g \in End_{\mathbb{R}}(\mathbb{R}^2)$ se sabe que g(1,3) = (0,2) y g(4,2) = (1,1). ¿Puede ocurrir que g(2,5) = g(1,2)?
 - Se sabe que $h \in End_{\mathbb{R}}(\mathbb{R}^2)$ tiene rango 1.
 - ¿Es posible encontrar bases ordenadas B y B' de \mathbb{R}^2 de manera que $M(h, B, B') = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$?
 - ¿Es osible encontrar siempre una base ordenada \tilde{B} de manera que $M(h, \tilde{B}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.
 - Considera $\alpha, \beta \in (\mathbb{R}^2)^*$ no nulas tales que $Ker(\alpha) = Ker(\beta)$. ¿Existe $c \in \mathbb{R}^*$ tal que $\beta = c\alpha$?
- 2. Se consideran los subespacios $U=\{(x,y,z)\in\mathbb{R}^3:x+2y-z=0\}$ y $W=\{(x,y,z)\in\mathbb{R}^3:x-3y+2z=0$ y $x+y+z=0\}$. Construye, si es posible, un endomorfismo f de \mathbb{R}^3 que cumpla que $\mathrm{Im}(f)=\mathrm{U}$ y $\mathrm{Ker}(f)=\mathrm{W}$, dando además su matriz respecto a la base usual de \mathbb{R}^3 .
- 3. Se considera $\phi \in \mathcal{A}_3(\mathbb{R})^*$ dada por $\phi(A) = b c$ para cada $A = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix}$ con $a, b, c \in \mathbb{R}$.
 - Encuentra una base \tilde{B} de $\mathcal{A}_3(\mathbb{R})^*$ que contenga a ϕ .
 - Calcula la base B de $\mathcal{A}_3(\mathbb{R})^*$ cuya dual es \tilde{B} .
 - En una base ordenada B'' obtenida de \tilde{B} , calcula las coordenadas de la forma lineal ψ dada por $\psi(A) = 2a 3c$.