Statistics for Data Analytics

Summary Sheet

John S Butler (TU Dublin)

Data Type

Categorical

Ordinal

Interval

Ratio

But a picture is worth having

Mathematical Probability

Definitions

Define some event A that can be the outcome of an experiment. $\Pr(A)$ is the probability of a given event A will happen.

- Pr(A) is between 0 and 1, 0 < Pr(A) < 1;
- $\cdot \operatorname{Pr}(A) = 1$, means it will definitely happen:
- Pr(A) = 0, means it will definitely not happen;
- Pr(A) = 0.05, is arbitrarily considered unlikely.

Sample Space and Events

The **Sample Space**. S, of an experiment is the universal set of all possible outcomes for that experiment, defined so, no two outcomes can occur simultaneously. For example:

• Throwing a die $S = \{1, 2, 3, 4, 5, 6\}$

An event, A, is a subset of the sample space S. For example

 $\bullet \ \ \text{Throwing a die } S \, = \, \{3, 4, 6\};$

Axioms of Probabilities

For an event A subset S associated a number $\Pr(A),$ the probability of A, which must have the following properties

- $Pr(A \cap B) = 0$; $Pr(A \cup B) = Pr(A) + Pr(B)$;
- Probability of the Null Event Pr(0) = 0;
- The probability of the complement of A, $Pr(\bar{A}) = 1 Pr(A)$;
- $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$.

Conditional Probability

The Conditional Probability $\Pr(A|B)$ denotes the probability of the event A occurring given that the event B has occurred,

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}.$$

Example: The rain in Ireland

A normal probability would be what is the probability it is going to rain, $\Pr(\text{rain})$. A conditional probability would, be what is the probability it is going to rain **given** that you are in Ireland, $\Pr(\text{rain}|\text{Ireland})$,

$$\Pr(\text{rain}|\text{Ireland}) = \frac{\Pr(\text{rain} \bigcap \text{Ireland})}{\Pr(\text{Ireland})}$$

where the probability of rain is $\Pr(\text{rain}) = 0.3$, the probability of being in Ireland is $\Pr(\text{Ireland}) = 0.4$ and the probability of being in Ireland and it raining is $\Pr(\text{rain}) \lceil |\text{Peland}) = 0.2$.

$$\Pr(\text{rain}|\text{Ireland}) = \frac{0.2}{0.4} = 0.5,$$

You could be interested in the probability that you are in Ireland given that it is raining,

$$\Pr(\text{Ireland}|\text{rain}) = \frac{\Pr(\text{rain} \bigcap \text{Ireland})}{\Pr(\text{rain})} = \frac{0.2}{0.3} = 0.75.$$

Bayes Theorem

Bayes Theorem states

$$Pr(A|B) = \frac{Pr(B|A)P(A)}{Pr(B)}.$$

Example: Diagnostic test

The probability that an individual has a rare disease is $\Pr(\mathsf{Disease}) = 0.01$. The probability that a diagnostic test results in a positive (•) test *given you have* the disease is $\Pr(+|\mathsf{Disease}) = 0.95$. On the other hand, the probability that the diagnostic test results in a positive (•) test *given you do not have* the disease is $\Pr(+|\mathsf{No \, Disease}) = 0.1$. This raises the important question if you are given a positive diagnosis, what is the probability you have the disease $\Pr(\mathsf{Disease}|+)$? From Bayes Theorem we have:

$$\Pr(\text{Disease}|+) = \frac{\Pr(+|\text{Disease}) \Pr(\text{Disease})}{\Pr(+)}$$

The probability of a positive test is,

Pr(+) = Pr(+|Disease) Pr(Disease) + Pr(+|No Disease) Pr(No Disease),

$$Pr(+) = 0.1085.$$

$$\Pr(\text{Disease}|+) = \frac{\Pr(+|\text{Disease}) \Pr(\text{Disease})}{\Pr(+)} = \frac{0.95 \times 0.01}{0.1085} = 0.0875576.$$

This can also be done in a simple table format, by assume a population of 10,000

Group	+ Diagnosis	- Diagnosis	Total
Disease	95	5	100
No Disease	990	8,910	9,900
Total	1,085	8,915	10,000

From the table we can calculate the same answer,

$$Pr(Disease|+) = \frac{95}{1085} = 0.0875576.$$

Discrete Distribution

Probability Mass Functions

Event Number i	0	1	2	3	4
Event Value x_i	-1	0	1	2	3
Probability of Event $Pr(x_i)$	0.3	0.1	0.3	0.1	0.2

The expected value of the distribution is:

$$\mu = E[X] = \Sigma_i x_i \Pr(x_i),$$

 $\Sigma_i x_i p(x_i) = -1\times0.3+0\times0.1+1\times0.3+0.1\times2+0.2\times3 = 0.8,$ The variance of the distribution is:

 $Var[X] = \Sigma_i (x_i - \mu)^2 p(x_i) = \Sigma_i (x_i - 0.8)^2 p(x_i).$

Binomial Distribution

The formula for the Binomial distribution is

$$Pr(k) = \binom{n}{k} p^k q^{n-k}, k = 0, 1, 2, ...n,$$

$$E[k] = np, \quad Var[k] = npq,$$

where n is the total of games, k is the number of "wins", p is the probability of a "win", q=1-p probability of a "loss".

Geometric Distribution

The formula for the Geometric distribution is:

$$\Pr(k) = q^{\left(k-1\right)} p, \ k = 1, 2, \dots$$

$$E[k] = \frac{1}{p}, \ Var[k] = \frac{q}{p^2},$$

k is the number of events until one 'win', p is the probability of a 'win', q=1-p probability of a 'loss'.

Discrete Distribution

Poisson Distribution

The formula for the Poisson distribution is:

$$\Pr(k) = \frac{\lambda^k e^{-\lambda}}{k!}, \ k = 0, 1, 2, \dots$$

$$E[k] = \lambda$$
, $Var[k] = \lambda$.

where λ is the mean and standard deviation of the distribution and k is the number of "wins" in a specified time or space.

Continuous Distribution

Normal Distribution

Confidence Intervals

Hypothesis Testing

Five steps for Hypothesis testings

- 1. State the Null Hypothesis H_0 ;
- 2. State an Alternative Hypothesis H_{α} ;
- 3. Calculate a Test Statistic (see below);
- 4. Calculate a p-value and/or set a rejection region;
- 5. State your conclusions.

z-test

Continuous Data

The test statistic is given by

$$Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0, 1),$$

where \bar{x} is the observed mean, μ is the historical mean, σ is the standard deviation and n is the number of observations. $\mathcal{N}(0,1)$ is the normal distribution with a mean of 0 and a standard deviation of 1.

Do supplements make you faster?

The effect of a food supplements on the response time in rats is of interest to a biologist. They have established that the normal response time of rats is $\mu_0=1.2$ seconds. The n=100 rats were given a new food supplements. The following summary statistics were recorded from the data $\tilde{x}=1.05$ and $\sigma=0.5$ seconds

- 1. The rats in the study are the same as normal rats, $H_0: \mu = 1.2$.
- 2. The rats are different, $H_{\alpha}: \mu \neq 1.2$.
- 3. Calculate a Test Statistic $Z=\frac{1.05-1.2}{\frac{0.5}{\sqrt{100}}}=-3$
- 4. Reject the Null hypothesis H_0 if Z<-1.96 and Z>1.96
- 5. The data suggests that rats are faster with the new food.

Proportional Data

The test statistic is given by

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}} \sim \mathcal{N}(0, 1).$$

where \hat{p} is the observed proportion, p_0 is the historical proportion, q_0 is the complement $q_0=1-p_0$, and n is the number of observations.

t-test

paired t-test

The test statistic is given by

$$t = \frac{\bar{x} - \bar{\mu}_0}{\frac{s}{\sqrt{n}}} \sim t_{\alpha, df}$$

where \bar{x} is the observed mean, μ_0 is the null mean, s is the standard deviation and n is the number of observations. α is the alpha level and df is the degrees of freedom.

unpaired t-test

The test statistic is given by

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{\alpha, df}$$

where $s_p=\sqrt{\frac{s_{x_1}^2+s_{x_2}^2}{2}}$ is the pooled sample standard deviation, \bar{x}_1 and \bar{x}_2 are the sample means, n_1 and n_2 are the sample sizes.

χ^2 Independence test

The test statistic to test if data are independent of group is given by:

$$\chi_{Ind}^2 = \sum \frac{(O-E)^2}{E} \sim \chi_{(r-1)(c-1)}^2.$$

where ${\cal O}$ is the observed data, ${\cal E}$ is the expected data if independent, r is the number of rows and c is the number of columns.

Does ice-cream flavour matter?

An ice-cream company had 500 people sample one of three different ice-cream flavours and asked them to say whether they liked or disliked the ice-cream.

	Vanilla	Chocolate	Strawberry
Liked	130	170	100
Disliked	20	30	50

The χ^2_{Ind} independence test could be used to determine if the enjoyment of the ice-cream depends on the flavour.

χ^2 Goodness of Fit

The test statistic to test if data come from a specific distribution is given by:

$$\chi^2_{GoF} = \sum \frac{(O-E)^2}{E} \sim \chi^2_{k-1},$$

where O is the observed data, E is the expected data from a chosen distribution and k is the number of observation bins.

Does it fit?

The χ^2_{GoF} can test if the observed distribution of the height of Dutch people (grey) fits the expected distribution of heights (dark grey).

Linear Regression

A linear regression is used to model a linear relationship of the dependent variable y and the regressors $x_1, x_2, ...$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots,$$

where β_0 , β_1 are the slopes of the regressors.

Height Prediction

A simple linear regression (correlation) is used to predict the height of 744 children y using the height of their parent x,

$$y = \beta_0 + \beta_1 x.$$

The plot below shows the fit of the model

The parents' height x explained 12.7% of the childrens' height y

Logistic Regression

A logistic regression (or logit model) is used to model the probability of a binary events such as win/lose. The general formula for the Logistic regression is

$$p_i = \frac{e^{\eta}}{1 + e^{\eta}},$$

where

$$\eta = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$$

and β is the slope corresponding to the predictor variable x.

Sexton Conversion Rate

Data from 1000 conversions kicks by Johnny Sexton was acquired; the distance (m) from the goal-line and if the kick was a miss 0 or a conversion 1. The data was fit to a logistic regression. The model was

$$p = \frac{e^{\eta}}{1 + e^{\eta}}$$

where

$$\eta = \beta_0 + \beta_1$$
 Distance

and \emph{p} is the probability of a conversion. The plot below shows the fit of the model:

The model predicts that at the half-way line (50m) Sexton has a 0.375 probability of conversion

Bibliography

- 1. Alexander, R. Telling Stories with Data 2022 website
- Devore & Peck Statistics: The exploration and analysis of data (2011)
- 3. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer book website.
- 4. Poldrack R. Statistical Thinking in the 21st Century 2020 website.

Popular Press

Fry, H. - Hello World: How to be Human in the Age of the Machine, Doubleday, 2018

Resources

Butler, J. S., R GitHub Repository

Notation

- \bar{x} mean of a list of numbers x_i
- σ standard deviation of a list of numbers x_i
- σ^2 variance of a list of numbers
- Pr(A) probability of event A
- $\Pr(\bar{A})$ probability of not event A
- Pr(A|B) probability of event A given event B is known
- $\sum_{i=1}^{n} x_i$ the sum of a list of number x_i
- n! n factorial is $n \times (n-1) \times \cdots \times 1$
- 5! 5 factorial is $5 \times (5-1) \times (5-2) \times (5-3) \times (5-4) = 5 \times 4 \times 3 \times 2 \times 1 = 120$
- $\binom{n}{k} = {n \choose k} n$ choose k equals to $\frac{n!}{k!(n-k)!}$
- $\binom{5}{3}=^5C_3$ 5 choose 3 equals to $\frac{5!}{3!(5-3)!}=\frac{5!}{3!2!}=\frac{5\times4\times3\times2\times1}{3\times2\times1\times2\times1}=10$
- ${}^{n}P_{k}$ n pick k equals to $\frac{n!}{(n-k)!}$
- 5P_3 5 pick 3 equals to $\frac{5!}{(5-3)!}=\frac{5!}{2!}=\frac{5\times4\times3\times2\times1}{2\times1}=60$
- p p probability of a "win"
- q q probability of a "loss" 1 p
- p^n p to the power of n is $p \times p \times \cdots \times p$
- 0.1^4 0.1 to the power of 4 is $0.1 \times 0.1 \times 0.1 \times 0.1 \times 0.1$
- E[X] the expected value of a probability distribution
- Var[X] the variance of a probability distribution
- \cdot e is the exponential which is it equal to approximately 2.718 it is comes up again and again in mathematics formulas
- H_0 null hypothesis
- H_{α} alternative hypothesis
- μ real mean (generally never known)
- μ_0 historical mean
- \bar{x} observed mean given the data
- \hat{p} is the observed sample proportion
- $oldsymbol{\cdot}$ p_0 is the historical proportion
- $\mathcal{N}(\mu,\sigma)$ is the Gaussian distribution with mean μ and standard deviation σ
- * $\mathcal{N}(0,1)$ is a special case of Gaussian distribution known as the Normal Distribution with mean 0 and standard deviation
- · df-degrees of freedom
- + χ^2_{df} Chi (χ)-squared (2) distribution with degrees of freedom df
- β the coefficient for a regression
- $\hat{\beta}$ the coefficient estimated for a regression from the observed