Assignment

EE23010: Probability and Random Processes Indian Institute of Technology, Hyderabad

Aman Kumar EE22BTECH11006

Question: Let X be a random variable with probability density function

$$f(x; \lambda) = \begin{cases} \frac{1}{\lambda} e^{-\frac{x}{\lambda}} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$
 (1)

where $\lambda > 0$ is an unknown parameter. Let $Y_1, Y_2, ..., Y_n$ be a random sample of size n from a population having the same distribution as X^2 . If

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \tag{2}$$

then which of the following statements is true?

- 1) $\sqrt{\frac{\bar{y}}{2}}$ is a method of moments estimator of λ
- 2) $\sqrt{\bar{Y}}$ is a method of moments estimator of λ
- 3) $\frac{1}{2}\sqrt{\bar{Y}}$ is a method of moments estimator of λ
- 4) $2\sqrt{\bar{Y}}$ is a method of moments estimator of λ

Solution:

For random variables $Y_1, ..., Y_n$ chosen according to the probability distribution as X^2 for the parameter value λ and m a real valued function, then

$$\frac{1}{n} \sum_{i=1}^{n} m(Y_i) \to k(\theta), n \to \theta \tag{3}$$

The method of moments results from the choices $m(x) = x^m$, then

$$\mu_m = EY^m = k_m(\theta) \tag{4}$$

for m^{th} moment.

Now, PDF of X is :

$$f(x; \lambda) = \begin{cases} \frac{1}{\lambda} e^{-\frac{x}{\lambda}} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$
 (5)

For finding method of moment estimator we will find the PDF of X^2 , denoted as $f_{X^2}(y)$. For $Y = X^2$, CDF of Y:

$$F_Y(y) = P(X^2 \le y) \tag{6}$$

$$= P(0 \le X \le \sqrt{y}) \tag{7}$$

Now,

$$F_Y(y) = \int_0^{\sqrt{y}} \frac{1}{\lambda} e^{-\frac{x}{\lambda}} dx \tag{8}$$

$$=1-e^{-\frac{\sqrt{y}}{\lambda}}\tag{9}$$

Differentiating to find PDF for Y:

$$f_{X^2}(y) = \frac{d(1 - e^{-\frac{\sqrt{y}}{\lambda}})}{dy}$$
 (10)

$$=\frac{1}{2\lambda\sqrt{y}}e^{-\frac{\sqrt{y}}{\lambda}}\tag{11}$$

Now, we want to estimate the parameter λ , for which we can use method of moment estimator $(\hat{\lambda})$.

Defining Population moment

$$\mu_1(\lambda) = E(y) \tag{12}$$

$$= \int_0^\infty y f_{X^2}(y) dy \tag{13}$$

$$= \int_0^\infty \frac{1}{2\lambda} \sqrt{y} e^{-\frac{\sqrt{y}}{\lambda}} dy \tag{14}$$

$$=2\lambda^2\tag{15}$$

1

Defining sample moment as:

$$M_1 = \frac{1}{n} \sum_{i=1}^{n} Y_i \tag{16}$$

Now, equating Population and sample moment:

$$M_1 = \mu_1(\lambda) \tag{17}$$

$$\bar{Y} = 2(\lambda^2) \tag{18}$$

$$\hat{\lambda} = \sqrt{\frac{\bar{Y}}{2}} \tag{19}$$

:. Option (1) is correct.