

PRP

(NASA-CR-148750): SHUTTLE USER ANALYSIS
(STUDY 2.2): VOLUME 3. BUSINESS RISK AND
VALUE OF OPERATIONS IN SPACE (BRAVO). PART
4: COMPUTER PROGRAMS AND DATA LOOK-UP
(Aerospace Corp., El Segundo, Calif.)

N76-32226
HC \$6.75

Unclas
159 p G3/16 08430

THE AEROSPACE CORPORATION

Aerospace Report No.
ATR-74(7342)-1, Vol. III
Part 4
Revision 1
26 February 1975

SHUTTLE USER ANALYSIS (STUDY 2.2)
FINAL REPORT

Volume III: Business Risk and Value of Operations
In Space (BRAVO)

Part 4: Computer Programs and Data Look-Up

Prepared by
Advanced Mission Analysis Directorate
Advanced Orbital Systems Division

30 September 1974

Systems Engineering Operations
THE AEROSPACE CORPORATION
El Segundo, California

Prepared for
OFFICE OF MANNED SPACE FLIGHT
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D. C.

Contract No. NASW-2575

Aerospace Report No.
A/TR-74(7342)-1, Vol. III
Part 4

SHUTTLE USER ANALYSIS (STUDY 2.2)
FINAL REPORT

Volume III: Business Risk and Value of Operations
In Space (BRAVO)

Part 4: Computer Programs and Data Look-Up

Prepared by

Advanced Mission Analysis Directorate
Advanced Orbital Systems Division

30 September 1974

Systems Engineering Operations
THE AEROSPACE CORPORATION
El Segundo, California

Prepared for

OFFICE OF MANNED SPACE FLIGHT
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D. C.

Contract No. NASW-2575

Aerospace Report No.
ATR-74(7342)-1, Vol. III
Part 4

SHUTTLE USER ANALYSIS (STUDY 2.2). FINAL REPORT

Volume III: Business Risk and Value of Operations In Space (BRAVO)

Part 4: Computer Programs and Data Look-Up

Approved by :

Ernest I. Pritchard

Ernest I. Pritchard
Study 2.2 Director
Advanced Mission Analysis
Directorate

L. R. Sitney

L. R. Sitney
Advanced Orbital Systems Division

Robert H. Herndon

Robert H. Herndon, Group Director
Advanced Mission Analysis Directorate

FOREWORD

The Shuttle User Analysis (Study 2.2) Final Report is comprised of four volumes, which are titled as follows:

- Volume I - Executive Summary
- Volume II - User Charge Analysis
- Volume III - Business Risk and Value of Operations In Space (BRAVO)
 - Part 1 - Summary
 - Part 2 - User's Manual
 - Part 3 - Workbook
 - Part 4 - Computer Programs and Data Look-Up
- Volume IV - Standardized Subsystem Modules Analysis

TABLE OF CONTENTS

1.	INTRODUCTION	1-1
2.	GRAPHICAL AID FOR DETERMINING COVERAGE BY SATELLITES IN SYNCHRONOUS EQUATORIAL ORBITS	2-1
3.	SATELLITE SYNTHESIS COMPUTER PROGRAM	3-1
3.1.	Program Listing	3-1
3.2.	Example Printout	3-23
3.3.	Program Symbol List	3-27
4.	SPACE SYSTEMS PAYLOAD PROGRAM COST ESTIMATING COMPUTER PROGRAM LISTING	4-1
5.	SATELLITE SYSTEM OPTIMIZATION RISK, LOGISTICS, AND SYSTEM COMPUTER PROGRAM LISTING	5-1
6.	NASA SPACE TRACKING AND DATA NETWORK (STDN)	6-1
7.	THE INTELSAT COMMUNICATIONS NETWORK	7-1
8.	TELECOMMUNICATION SYSTEMS LEASE COSTS	8-1
9.	LINE-OF-SIGHT MICROWAVE RELAY COMMUNICATIONS SYSTEM COSTS	9-1
9.1	The DATRAN System	9-1
9.2	Unit Investment Costs, Microwave Terminals and Relays	9-6
9.3	Annual Operations and Maintenance Costs	9-9
10.	U. S. POSTAL SERVICE RATES	10-1
11.	SUBMARINE TELEPHONE CABLE COSTS	11-1
11.1	Investment Costs	11-1
11.2	Annual Operating Costs	11-5
12.	TERRESTRIAL POWER GENERATION SYSTEM COSTS	12-1
12.1	Nuclear Investment Costs	12-2
12.2	Nuclear Plant Annual Costs	12-4
13.	COST EFFECTIVENESS COMPUTER PROGRAM	13-1
14.	REFERENCES	14-1

REVISION SUMMARY

REV. CODE	REV. DATE	REVISION DETAILS	REVISION ACTION	REV. CCN	REVISION APPROVAL(S)
Revision 1	26 February 1975	Title page Revision Summary Page Page 5-1 Page 5-3 Page 5-6 Page 5-7 Page 5-8 Page 13-2 Page 13-3	Revised New Revised Revised Revised Revised Revised Revised Revised	 Robert H. Herndon	Robert H. Herndon, Group Director Advanced Mission Analysis Directorate Advanced Orbital Systems Division

TABLES

6-1.	System Capabilities and Equipment Chart	6-2
6-2.	Abbreviations Used in Table 6-1	6-6
6-3.	STDN Requirements for NASCOM Channels	6-7
7-1.	Intelsat Earth Stations and Projected 1982 Traffic Demand	7-3
8-1.	Lease Costs, U. S. Domestic Voice Circuits	8-2
8-2.	Lease Costs, Transoceanic Voice Circuits	8-4
8-3.	Lease Costs, Interexchange Voice Circuits, Foreign	8-7
8-4.	Lease Costs, International Voice Circuit, Europe	8-8
9-1.	Datran Microwave Relay System Investment Cost	9-5
9-2.	Microwave Relay Investment Costs	9-7
9-3.	Annual Operations and Maintenance Cost - Microwave Relay Systems	9-10
10-1.	Approximate Distances from Los Angeles to Postal Zones 1 through 8	10-3
10-2.	Principal Mail Categories and Rates, U. S. Postal Service	10-4
10-3.	Priority Mail Rates	10-8
10-4.	Second Class Postal Rates	10-9
10-5.	Parcel Post Rates - Fourth Class	10-10
10-6.	Fourth Class Mail, Catalog Rates	10-11

FIGURES

6-1.	NASA Space Tracking and Data Network (STDN)	6-4
7-1.	Planned Growth of Intelsat System	7-2
8-1.	U. S. Leased Duplex Voice Circuit Costs, 1973 Dollars	8-3
8-2.	Leased Duplex Voice Costs, Transoceanic, 1973 Dollars	8-6
8-3.	Cost Trend, Public Telephone Cost of Station-to-Station Day Call, First Three Minutes, U. S.	8-10
9-1.	Datran Microwave Relay System	9-3
9-2.	Datran Microwave Relay System Configuration	9-4
9-3.	Line-of-Sight Microwave Terminal and Relay Station Investment Costs vs Capacity	9-8
11-1..	Investment Cost of Submarine Telephone Cables (1973 Dollars) per Half-Circuit per Kilometer	11-2
11-2.	Relative Cost per Unit Length vs Length for Submarine Telephone Cable Systems	11-4
13-1.	Output, Cost/Revenue Analysis for Constant Dollars (CORAN)	13-2
13-2.	Output, Cost/Revenue Analysis for Current Dollars (CORANR)	13-3
13-3.	The APL Function CONSTANTD	13-4
13-4.	The APL Function DISFAC for Constant Dollars	13-5
13-5.	The APL Function DATAIN for Constant Dollars	13-8
13-6.	The APL Function DFT	13-9
13-7.	The APL Function EFT	13-10
13-8.	The APL Function LOAD	13-11
13-9.	The APL Function EXECUTE for Constant Dollars	13-12
13-10.	The APL Function SHOW for Constant Dollars	13-13
13-11.	The APL Function CURRENTD	13-14
13-12.	The APL Function DISFAC for Current Dollars	13-15
13-13.	The APL Function DATAIN for Current Dollars	13-18
13-14.	The APL Function EXECUTE for Current Dollars	13-19
13-15.	The APL Function SHOW for Current Dollars	13-20
13-16.	The APL Function PRT	13-21

1. INTRODUCTION

This part (Part 4) of the BRAVO report contains computer program listings as well as graphical and tabulated data needed by the analyst to perform a BRAVO analysis. This document contains some information previously documented in Reference 1-1 but reproduced here for easy availability. Sections 5, 12, and 13 are new material. Sections 3 and 4 have been revised. Only minor changes have been made to Sections 6, 7, 8, 9, and 10.

Section 2 describes the graphical aid which can be used to determine the earth coverage of satellites in synchronous equatorial orbits. Section 3 contains the listing for the Satellite Synthesis Computer Program as well as a sample printout for the DSCS-II satellite program and a listing of the symbols used in the program. This program is coded in FORTRAN language. The APL language listing for the Payload Program Cost Estimating Computer Program is given in Section 4. This language is compatible with many of the time-sharing remote terminal computers used in the United States. Section 5 contains the APL listings for the Satellite System Optimization Risk, Logistics, and System Computer Program, which is also referred to as RISK. Information on the NASA Space Tracking and Data Network (STDN) is given in Section 6. Data on the Intelsat Communications network are contained in Section 7. Costs for telecommunications systems leasing, line-of-sight microwave relay communications systems, U. S. Postal Service, submarine telephone cables, and terrestrial power generation systems are described in Sections 8 through 12, respectively. The APL language listing for the Cost Effectiveness Computer Program is given in Section 13.

References used in Sections 6 through 12 are listed in Section 14.

2. GRAPHICAL AID FOR DETERMINING COVERAGE BY SATELLITES IN SYNCHRONOUS EQUATORIAL ORBITS

This section describes the use of a graphical aid developed by The Aerospace Corporation for use in determining earth coverage by satellites in geosynchronous orbit. The aid allows the user to:

1. establish the footprint around an aiming point corresponding to a given antenna bandwidth when he is given the prescribed boresight aiming point on the earth's surface, and
2. define the required orientation of the antenna beam axis and the antenna beamwidth when he knows the area on the earth's surface to be covered by a beam emanating from the satellite.

The aid itself, which consists of:

1. an azimuthal equidistance mapping of longitude meridians and latitude parallels (Fig. 2-1);
2. a set of ten transparent coverage overlays displaying earth footprints (i. e., beam intersections) corresponding to six antenna beamwidths from 0.5 to 16. deg and a series of ten off-nadir aiming points from 0 to 8.5 deg (Fig. 2-1a through Fig. 2-1j); and
3. a transparent overlay of visibility circles for six series of elevation angles which conform to the above mapping (Fig. 2-1k);

is contained in an envelope at the back of last years report, ATR-74(7334)-1, Vol. IV, Part 4 (15 February 1974)*.

The aid is currently used to answer two specific questions, although other applications may be developed in the future as the user becomes more knowledgeable in its usage. The use of the aid in answering these questions is illustrated by the following two examples.

* This report (see Reference 1-1, Section 14 for full title) is available upon request from The Aerospace Corporation. Contact E. I. Pritchard, telephone (213) 648-5737.

1. What is the beam's footprint on the earth when the off-nadir angle and azimuth for the boresight aiming point on the earth's surface is given?

Example: Satellite longitude = 100 deg E
Off-nadir angle = 5 deg
Azimuth angle = 40 deg

Place the cross (+) on Figure 2-1f at the center of Figure 2-1 and rotate Figure 2-1f until the index line intersects the azimuth scale on Figure 2-1 at 40 deg. The resulting aiming point is approximately 121 deg E longitude (2.1 deg from the graphical aid plus the original satellite longitude of 100 deg) and 23 deg N latitude. The coordinates for the footprints corresponding to a beamwidth of 0.5, 1, 2, 4, 8, 16 deg can be read directly from the appropriate footprint traced on Figure 1-1, i.e., for a bandwidth of 1 deg, the footprint runs from approximately 117 to 124 deg E and 20 to 26 deg N.

2. What is the required orientation of the antenna beam axis and the antenna bandwidth if it is desired to cover a specific area of the earth's surface by a beam emanating from a satellite in synchronous equatorial orbit?

Example: On Figure 2-1, plot the specific area to be covered relative to the satellite's longitude (0 deg on the figure). Select the transparent coverage overlay (Figure 2-1X)¹ which best covers the specified area. Place the cross (+) on this overlay at the center of Figure 2-1. Rotate Figure 2-1X until the area on Figure 2-1 is covered by a beam footprint. The index line on Figure 2-1X intersects the azimuth scale of Figure 2-1 at the required azimuth. The required beamwidth is that corresponding to the smallest footprint which encloses the specified area.

The graphical aid can also be used to determine the antenna elevation angle to any ground location by placing the cross (+) in Figure 2-1k at the center of Figure 2-1. Thus, for the first example, the elevation angle would be approximately 66 deg.

¹a ≤ X ≤ j

3. SATELLITE SYNTHESIS COMPUTER PROGRAM

3.1 PROGRAM LISTING

The listing for the Satellite Synthesis Computer Program is shown on the following pages of this section in FORTRAN language.

```

PROGRAM SS PRO (INPUT, OUTPUT, TAPE60=INPUT)
REAL MPRL, MPPM, MPFR, MP1, MPIR, MPGK, MP2R          000015
C 4    CONTINUE                                         000016
C 5    THIS ROUTINE READS THE VALUES FROM THE DATA CARD DECK 000017
C 6    FORMAT (
1 A10, +F10.4, A10      /
2 A10, +F10.4, 2A10     /
3 A10, F10.4, 2A10, F10.4, A10   /
4 A10, +F10.4, A10, F10.4 /
5 A10, +F10.4, A10      /
6 A10, +F10.4           /
7 A10, +F10.4           /
8 A10, +F10.4           )

2 5    READ (60,      )
1 COJE, ORBAP0, ORBPER, ORBINC, PBATF, STABTYP,        000029
2 XMISPWR, PNTACC, DEN1, XIOC, STRTYP, PROPTYP,        000030
3 PWRTYP, S, ORINT, ACSROP, XME1, TYPE,               000031
4 SORTIE, B, C, CFI, PADTYP, DV1,                      000032
5 XMMDMIN, XMMDINC, XMMDMAX, R, REDUN, PROGRAM,       000033
6 XMODMIN, XMODINC, XMODMAX, PACKFTR, U, T,            000034
7 XDNLINK, XNTAPRC, DATAPRO, ENCODR, XNXPOND, PWRXPN, 000035
8 AVTDIA4, COMFREQ, XNANT, F, G, H,                     000036
146 IF (ORBAP0 .LT. 20.) STOP                         000037
153 = 32.2                                              000038
154 IF (SORTIE .EQ. 1.) GO TO 110                      37-1
157 DF = PACKETFR                                     000039
160 RETGR = 600. $ RET1R = 500. $ RET2R = 750. $ RETSOR = 100. 39-1
165 EXCGRR = 30. $ EXC1R = 1262. $ EXC2R = 1900. $ EXCSOR = 0. 39-2
171 XMAGGR = 30. $ XMAG1R = 1575. $ XMAG2R = 2300. $ XMAGSOR = 0. 39-3
176 DDKSR = 400. $ DDK1R = 400. $ DDK2R = 600. $ DOKSR = 0. 39-4
202 RAILGR = 320. $ RAIL1R = 0. $ RAIL2R = 0. $ RAILSOR = 0. 39-5
206 DISGR = 270. $ DIS1R = 270. $ DIS2R = 270. $ DISSOR = 150. 39-6
213 IF (DV1 .LT. 2.) DV1 = 0.000                      000040
216 IF (STABTYP .EQ. 10HSPIN) ORINT = 0. OR. 10HUNORT 40-1
222 IF (STABTYP .EQ. 10H2-SPIN) ORINT = 0. OR. 10HUNORT 40-2
226 IF (STABTYP .EQ. 10HSPIR) PADTYP = 0. OR. 10HRIGID 40-3
231 IF (ORINT = 0. OR. 10HUNORT) STRTYP = 0. OR. 10HENOD 000041
235 XNDL = XDNLINK                                     000042
236 XNTR = XNTAPRC                                     000043
240 DP = DATAPRO                                      000044
241 INC = ENCODR                                      000045
243 XME2 = 0.                                         000046
243 XNAME = 6HSATWTS                                 000047
245 CALL DATE (TODAY).                                000048
247 DM = 896.                                         000049
250 IF (PROPTYP .EQ. 10HSOLID) PD = 111.             000050
254 IF (PROPTYP .EQ. 10HLIQUID) PD = 63.              000051
260 IF (PROPTYP .EQ. 10HNONE) PD = 1.                 000052
264 IF (PD .LT. 1.) PD = 1.                            000053
267 IF (TYPE .EQ. 10HCOM) GO TO 11                   000054
271 IF (TYPE .EQ. 10HOBS) GO TO 12                   000055
273 IF (TYPE .EQ. 10HNAV) GO TO 13                   000056
274 C 11    CONTINUE                                     000057
274 USE THESE FACTORS FOR COM ( COM )                000058
274 ECFM = 1.33                                       000059
275 GNFM = 1.79                                       000060
277 ACINFM = 1.28                                     000061
278                                         000062

```

300	IF (ACSPROP = EQ. 10HCOLD GAS) ACINFM = 2.8	000063
304	TTCFM = 0.75	000064
305	ELFM = 1.45	000065
307	XMEFM = 1.00	000066
310	XMMOLC = 5.0	66-1
312	SATLIFC = (1.223 * XMMOLC) + 0.067	66-2
315	GO TO 14	000067
315	C 12 CONTINUE	000068
	USE THESE FACTORS FOR OBS (EOS)	000069
315	ECFM = 1.35	000070
316	GNFM = 1.08	000071
320	ACINFM = 2.80	000072
321	IF (ACSPROP = EQ. 10HHOT GAS) ACINFM = 1.28	000073
325	TTCFM = 0.54	000074
326	ELFM = 2.40	000075
330	XMEFM = 1.00	000076
331	XMMOLC = 1.	76-1
333	GO TO 14	000077
	C USE THESE FACTORS FOR NAV (SEO)	000078
333	ECFM = 1.35	000079
334	GNFM = 1.07	000080
336	ACINFM = 1.28	000081
337	IF (ACSPROP = EQ. 1JHCOLD GAS) ACINFM = 2.8	000082
343	TTCFM = 1.16	000083
344	ELFM = 1.81	000084
346	XMEFM = 1.47	000085
347	XMMOLC = 2.	85-1
351	14 CONTINUE	000086
351	STRRL = 1.0 \$ ECRRL = 1.0 \$ GNRL = 1.0 \$ AMRL = 1.0 \$ ACINRL = 1.0	000087
356	TTCRRL = 1.0 \$ ERLRL = 1.0 \$ XMERLRL = 1.0	000088
361	ADPRL = 1.3 \$ PALLRL = 1.0	000089
363	AMFMR = 1.0	89-1
365	20 CONTINUE	000090
365	XMOO = XMDDMIN	000091
367	22 CONTINUE	000092
367	XMMO = XMDDMIN	000093
371	23 CONTINUE	000094
373	ACINRLF = (.1318 * XMMO) + 0.5205	000095
375	TTCRLF = (.1314 * XMMO) + 0.5465	000096
377	GNRLF = (.1334 * XMMO) + 0.6665	000097
382	ELRLF = (.0594 * XMMO) + 0.8515	000098
405	DISTRLF = 1.0	000099
	C OSCS-II (777) HAS AN MHD OF 4 YEARS FOR COM MISSION EQUIPMENT	99-1
406	XMERCOM = (.1814 * XMMO) + 0.2744	100
410	XMERLF = 1.	100-1
411	IF (CODE = 53, 10HDSCS-II) XMERLF = XMERCOM	100-2
415	SATLIF = (1.223 * XMMO) + 0.067	000101
	C THIS ROUTINE CALCULATES THE CURRENT EXPENDABLE WEIGHT (COL 1)	000102
420	XMMOD1 = 2.5	000103
421	SATLIFI = (1.223 * XMMOD1) + 0.067	000104
423	GW1 = 1.000	000105
+24	DW1 = .800	000107
426	8 CONTINUE	000108
426	17 CONTINUE	000109
426	XLTOD1 = 1.0	000110
		000111

427	IF (DEN1 .GT. J.) GO TO 28	111-1
432	IF (GW1 .GE. 2000.) GO TO 26	000112
434	IF (GW1 .LT. 2000.) GO TO 27	000113
436	CONTINUE	009114
436	DEN = 144.335 / ((GW1 - MP1 - AMIN1) ** 0.374153)	009115
444	IF (GW1 .GT. 10000.) DEN = L.E.	115-1
451	GO TO 28	000116
452	CONTINUE	000117
452	DEN = 36.8+68 / ((GW1 - MP1 - AMIN1) ** 0.194521)	000118
460	IF (GW1 .LT. 300.) DEN = 11.	118-1
465	CONTINUE	000119
465	IF (DEN1 .GT. J.) DEN = DEN1	119-1
470	VOL1 = DW1 / DEN	000120
472	DIAM1 = (VOL1 / (.785 * XLT001)) ** .333333	000121
477	XLG1 = XLT001 * DIAM1	000122
500	IF (DIAM1.LT. 14.7) GO TO 15	000123
503	CONTINUE	000124
503	DIAM1 = 14.67	000125
504	IF (STABTYP .EQ. 10H2-SPIN) .AND. ACSPROP .EQ. 10HHOT GAS) 125-1	125-1
515	1. WPF = 0.348	125-2
523	XLG1 = VOL1 / (.785 * (DIAM1 ** 2.))	000126
523	CONTINUE	000127
523	DIAM1 = 3. * ANTDIAM	127-1
525	XLGIE = XLG1 + ANTDIAM	127-2
526	GWT = GW1	000128
530	GN1 = 0.025 * GW1	000129
531	AVEALT = (ORBAPO + ORBPER) / 2.	000130
534	WGN3A = 1.11 * ((GW1 ** .537) * (PNTACC ** (-.243)))	003131
544	WGNSPIN = 1.79 * ((GW1 ** .35) * (PNTACC ** (-0.39)))	000132
554	WG2SPIN = 3.54 * ((GW1 ** .+17) * (PNTACC ** (-0.107)))	000133
564	IF (STABTYP .EQ. 10H2SPIN) GN1 = WGNSPIN	000134
570	IF (STABTYP .EQ. 10H2-SPIN) GN1 = WG2SPIN	000135
574	IF (STABTYP .EQ. 10H3-AXIS) GN1 = WGN3A	000136
600	CDPI = 50. + (5. * (ORBAPO ** .1) * (XNOL-1.)) + (15. * XNTR) + DP + ENC	000137
615	TTC1 := CDPI	000138
616	TOTPWR = X4ISPWR + 200.	000139
620	IF (ACSPROP .EQ. 10HHOT GAS) WPF = 0.348	140
624	IF (ACSPROP .EQ. 10HCOLD GAS) WPF = 1.040	000144
631	ACWP1 = WPF * (SATLIF1 ** 0.200) * (GW1 ** 0.769)	000145
640	ACINHG = (1.128 * ACWP1) + (0.063 * (GW1 ** 0.725))	000146
646	ACINCG = (1.15 * (ACWP1 ** 0.846)) + (1.37 * (GW1 ** 0.269))	000147
657	IF (ACSPROP .EQ. 10HHOT GAS) ACSIN1 = ACINHG	000148
663	IF (ACSPROP .EQ. 10HCOLD GAS) ACSIN1 = ACINCG	000149
667	IF (ORINT .EQ. 10HORI) .AND. PAOTYP .EQ. 10HRIGID)	000150
677	1 GO TO 19	000151
677	IF (ORINT .EQ. 10HORI) .AND. PAOTYP .EQ. 10HFLEX)	000152
677	1 GO TO 19	000153
706	IF (ORINT .NE. 10HORI) GO TO 21	000154
707	18 CONTINUE	000155
707	WSAORL = ((TOTPWR * (2.67 - 0.39 * (ALOG10 (AVEALT)))) / (9.0 - 1 * (ALOG10 (SATLIF1)))) * ((1.0 / PF) + 0.35) * (0.99 ** (XIOC - 1960.))	000156
733	WSAORM = ((TOTPWR * (2.67 - 0.39 * (ALOG10 (AVEALT)))) / (9.0 - 1 * (ALOG10 (SATLIF1)))) * ((1.0 / PF) + (2. * 0.35)) * (0.99 ** (XIOC - 1960.))	000157
757	WSAORH = ((TOTPWR * (2.67 - 0.39 * (ALOG10 (AVEALT)))) / (8.6 - 1 * 1.4 * (ALOG10 (SATLIF1)))) * ((1.0 / PF) + 0.35) * (0.99 ** (XIOC - 1960.))	000158
		000159
		000160
		000161
		000162
		000163

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR.

```

1004 IF (AVEALT .LT. 501.) WSA = WSAORL 000164
1010 IF (AVEALT .GT. 501. AND. AVEALT .LT. 19000.) WSA = WSAORM 000165
1021 IF (AVEALT .GE. 19000.) WSA = WSAORH 000166
1025 GO TO 25 000167
1026 19 CONTINUE 000168
1026   WSAORL=((TOTPWR *(2.67 - 0.39 * (ALOG10 (AVEALT)))) / (9.0 - 0.99 ** (XIOC - 1970.))) 000169
1026   1 (ALOG10 (SATLIF1))) * ((0.2 / PF) + 0.35) * (0.99 ** (XIOC - 1970.)) 000170
1052 WSAORM = ((TOTPWR *(2.67 - 0.39 * (ALOG10 (AVEALT)))) / (9.0 - 0.99 ** (XIOC - 1970.))) 000171
1052   1 (ALOG10 (SATLIF1))) * ((0.2 / PF) + (2. * 0.35)) * (0.99 ** (XIOC - 1970.)) 000172
1052   1 (XIOC - 1970.)) 000173
1076 WSAORH = ((TOTPWR *(2.67 - 0.39 * (ALOG10 (AVEALT)))) / (8.6 - 0.99 ** (XIOC - 1970.))) 000174
1076   1 1.4 * (ALOG10 (SATLIF1))) * ((0.2 / PF) + 0.35) * (0.99 ** (XIOC - 1970.)) 000175
1123 IF (AVEALT .LT. 501.) WSA = WSAORL 000176
1127 IF (AVEALT .GT. 501. AND. AVEALT .LT. 19000.) WSA = WSAORM 000177
1140 IF (AVEALT .GE. 19000.) WSA = WSAORH 000178
1144 GO TO 25 000179
1145 21 CONTINUE 000180
1145   WSAORL=((TOTPWR *(2.67 - 0.39 * (ALOG10 (AVEALT)))) / (3.38 - 3 * 0.99 ** (XIOC - 1960.))) 000181
1145   1 (ALOG10 (SATLIF1))) * ((.38 / PF) + 0.35) * (0.99 ** (XIOC - 1960.)) 000182
1172 WSAORM = ((TOTPWR *(2.67 - 0.39 * (ALOG10 (AVEALT)))) / (3.38 - 3 * 0.99 ** (XIOC - 1960.))) 000183
1172   1 (ALOG10 (SATLIF1))) * ((.38 / PF) + (2. * 0.35)) * (0.99 ** (XIOC - 1960.)) 000184
1172   1 (XIOC - 1960.)) 000185
1217 WSAORH = ((TOTPWR *(2.67 - 0.39 * (ALOG10 (AVEALT)))) / (3.19 - 0.99 ** (XIOC - 1960.))) 000186
1217   1 0.47 * (ALOG10 (SATLIF1))) * ((.38 / PF) + 0.35) * (0.99 ** (XIOC - 1960.)) 000187
1217   1 (XIOC - 1960.)) 000188
1244 IF (AVEALT .LT. 501. ) WSA = WSAORL 000189
1250 IF (AVEALT .GT. 501. AND. AVEALT .LT. 19000.) WSA = WSAORM 000190
1261 IF (AVEALT .GE. 19000.) WSA = WSAORH 000191
1265 25 CONTINUE 000192
1265   PBAT = (PBATF * XMISPPWR ) + 200. 000193
1265   C BAT. WT = FACTOR X WATTS X ECLIPSE TIME/CYCLE X REDUNDANCY X IOC 194
1270   C BAT. WT = FACTOR X WATTS X ECLIPSE TIME/CYCLE X REDUNDANCY X IOC 000195
1270   FB1 = REDUN 000196
1271   FB1 = 0.454333 + (0.037333 * SATLIF1) 000197
1274   FB2 = 1.01814 - (0.00003628 * AVEALT ) 000198
1277   FB = FB1 + FB2 000199
1301   TE = 0.33594 * (AVEALT ** 0.349097) 000200
1304   IF (AVEALT .LT. 2800.) TE = 0.59 000201
1311   PATT = FB * TE * PBAT * (1. + P) * (0.99 ** (XIOC - 1970.)) 000202
1324 16 CONTINUE 000203
1324   WELE = XME3 + TTC1 + GN1 000204
1327   DIST = 0.013 * ((WELE ** 1.31) * (VOL1 ** 0.16)) 000205
1337   ELINV = 3.11 * (TOTPWR ** 333) 000206
1343   ELI = WSA + BATT + DIST + ELINV 000207
1347   IF (STRTYD .EQ. 10HEVOO ) SFR1 = 0.218 000208
1353   IF (STRTYD .EQ. 10EXO ) SFR1 = 0.129 000209
1363   EQWT = EC1 + GN1 + AMIN1 + MP1 + ACSIN1 + ACWP1 + TTC1 + EL1 000210
1373   XLTOD = XLG1 / DIAM1 000211
1375   STR1 = SFR1 * (((EQWT ** .9) * (XLTOD ** .24)) ** 1.096.) 000212
1406   CF11= CF1 000213
1410   COVI = CF11 * (STR1 + EC1 + GN1 + ACSIN1 + AMIN1 + TTC1 + EL1) 000214
1416   PALLET = 0.0 000215
1416   I = (DV1 .LT. 2. ) GO TO 6 000216
1416   C N204 / .50 UDMH + .50 HYDRAZING VAC. IMPULSE = 310. SEC 000217
1416   C N2H4 VAC ISP = 200. 000218

```

```

1421 IF ( PROPTYP .EQ. 10HLIQUID ) XMPISP = 300. 000220
1425 IF ( PROPTYP .EQ. 10HLIQUID ) XMPISP = 2000. 000220
1430 IF ( PROPTYP .EQ. 10HSOLID ) XMPISP = 250. 000221
1434 MP1 = ( EXP ( DV1 / ( XMPISP * G ) ) - 1. ) * ( DW1 + ACWP1 ) 000222
1445 AMIN1 = .20 * MP1 000223
1446 TOTIMP = MP1 * XMPISP 000224
1450 CONTINUE 000225
1458 6 IF ( DV1 .EQ. 0. ) MP1 = 0.0 225-1
1459 IF ( DV1 .EQ. 0. ) AMIN1 = 0.0 225-2
1460 XPONDWT = XNXPOND * ((0.09 * PWRXPON) - (3.13 * XNXPOND) + 64.) 000226
1461 IF ( CODH .EQ. 10HDSCS-II ) XPONDWT = 180. 50-3
1465 C. NOTE -- COMREFD IS EXPRESSED IN GIGAHERTZ 000227
1466 ANTWT = .512 * ((ANTDIAM * 1.661) * (COMFREQ ** .332)) * XNANT 000228
1467 IF ( CODH .EQ. 10HDSCS-II ) ANTWT = 57. 50-2
1470 XME3 = XM1 + XPONDWT + ANTWT 000229
1475 DW1 = STR1 + EC1 + GN1 + ACSIN1 + AMIN1 + TTC1 + 000230
1476 1 EL1 + XME3 + RESID + CON1 000231
1477 GW1 = DW1 + ACWP1 + MP1 000232
1478 WTJIF = ABS ( GWT - GW1 ) 000233
1482 IF ( WTJIF .GT. 1. ) GO TO 17 000234
1485 AMWP1 = MP1 000235
1487 SFCWT = STR1 / (GW1 - STR1 - AMIN1 - AMWP1 - SEPDY - SEPWP - XLAND1) 000236
1490 AREA1 = (3.14159 * DIAM1 * XLG1) + (2. * .785 * (DIAM1 ** 2.)) 000237
1493 THIS ROUTINE CALCULATES ADAPTER WT. FOR THE CURRENT WT. ON A 12 000238
1494 FT. DIAM. MOUNT '(EXPENDABLE BOOSTER)' 000240
1495 GCO 000241
1496 000242
1497 000243
1500 3 TH1 = .10 000244
1504 CONTINUE 000245
1507 DI1AV = (10.3 + DIAM1) / 2. 000246
1512 DB3L = 10.00 000247
1515 DBSH = 13.5 000248
1518 PALL1 = 0. 000249
1521 IF (PALLET .EQ. 1. ) GO TO 1 000250
1524 HBL = ABS ( (10.0 - DIAM1) / 2. ) 000251
1527 1. IF (HBL .LT. .5) HBL = .50 000252
1530 1.565 FBL = (3. * GN1) + (((HBL/2.) + (XLG1/2.)) * 'GW1') / (DI1AV / 4.0) 000253
1533 1.574 R1AV = DI1AV / 2. 000254
1535 1.575 TH1 = (FBL / (2. * 3.14159 * 10. * 144. * 1000000. * ((9. * ((TH1 / R1AV) 000255
1536 1.576 1. ** .6)) + (.15 * ((R1AV / HBL) ** 1.3) * ((TH1 / R1AV) ** 3.))) ) ** .6 000256
1541 1621 TH1T = ABS ( TH1 - TBL ) 000257
1543 1623 TH1TT = .0001 * TH1 000258
1545 1625 TBL = TH1 000259
1546 1626 IF ( TH1T .GT. TH1TT ) GO TO 3. 000260
1547 1632 IF ( TH1 .LT. .0333 ) TH1 = .0333 000261
1548 1634 THBL = 12. * TH1 000262
1550 1635 ADP1 = 3.14159 * (5.0 + (DIAM1 / 2.)) + (1.414 * HBL) * TH1 * 000263
1551 1.172.8 * 1.0 000264
1552 1644 ADP1T = (0.02 * GW1) + 12. 000265
1553 1647 IF (ADP1 .LT. ADP1T) ADP1 = ADP1T 000266
1554 1653 GO TO 7. 000267
1555 1654 CONTINUE 000268
1556 1655 ADP1 = 0. 000269
1557 1656 PALUN = 78.59 000270
1558 1660 7 PALL1 = PALUN * XLG1 000271
1559 CONTINUE 000272

```

1660		XLWC = GW1 + AOP1	+ PALL1	000273
1663		XLW1V = XLW1		000274
1664		PALL1V = PALL1		000275
1665		AOP1V = AOP1		000276
1666		AOP1VL = H3L		000277
1670		TH3LV = TH3L		000278
1671		SFBLV = SFCWT		000279
				000280
C		THIS ROUTINE CALCULATES THE GROUND REFLR. WT. (COL. R)		000281
				000282
				000283
1673	31	CONTINUE		000284
1673		STRFR = 1. \$ ECFR = 1. \$ GNFR = 1. \$ AMFR = 1. \$ ACINFR = 1.		000285
1700		TTCFR = 1. \$ ELFR = 1. \$ XMEFR = 1.		000286
1704		TOTPWR = TOTPWR		000287
1705		GWGR = GW1		000288
1706		GWMR = GWGR		000289
1707		XLTOODGR = 0.7		000290
1711	33	CONTINUE		000291
1711		GWGRT = GNGR		000292
1712		PKDENMR = DEN		000293
1714		AMWPMR = MPGMR		000294
1715		VOLMR = (GWGR - AMINMR - SPWPMR - SPINMR) / PKDENMR		000295
1733		1 + (AMWPMR / PD) + ((AMINMR + SPINMR) / 490.) + (SPWPMR / PDM)		000296
1740		DIAMMR = (VOLMR / (.785 * XLTOODGR)) ** .333333		000297
		IF (DIAMMR .GT. 15.00) GO TO 127		000298
1743		GO TO 128		000299
1743	127	CONTINUE		000300
1744		DIAMMR = 15.00		000301
1745		XLGMR = VOLMR / (.735 * (DIAMMR ** 2.))		000302
1751		AREAMR = (3.14159 * DIAMMR * XLGMR) + (2. * .785 * (DIAMMR ** 2.))		000303
1760		ECFA = AREAMR / AREA1		000304
1762		GO TO 129		000305
1762	128	CONTINUE		000306
1762		XLGMR = XLTOODGR * DIAMMR		000307
1764		AREAMR = (3.14159 * DIAMMR * XLGMR) + (2. * .785 * (DIAMMR ** 2.))		000308
1772		ECFA = AREAMR / AREA1		000309
1774	129	CONTINUE		000310
1774		DIAMRE = 3. * ANTDIAM		000311
1776		XLGMR = XLGMR + ANTDIAM		311-1
2000	38	CONTINUE		311-2
2000		ECGR = EC1 * ECFR * ECFA		000312
2002		GNGR = ((GN1 * GNFR) + 10.) * GNRLF		000313
2006		IF (ACSPROP .EQ. 10H40T GAS) WPF = 0.348		000314
2012		IF (ACSPROP .EQ. 10HCOLD GAS) WPF = 1.040		315
2017		ACWPGR = WPF * (SATLIF ** 0.20C) * (GWGR ** 0.763)		000319
		EQUATION IS FOR EXPENDABLE SATELLITES WHICH EXPEND 2/3 OF THEIR PROPELLANT FOR INITIAL POSITIONING - SINCE SHUTTLE LAUNCHED SATELLITES WILL BE POSITIONED BY THE SHUTTLE OR THE DOS, ONLY 1/3 OF THE ACS PROPELLANT IS REQUIRED.		000320
2026		ACWPGR = ACWPGR / 3.0		000321
2027		ACINHG = (1.128 * ACWPGR) + (0.063 * (GWGR ** 0.725))		000322
2035		ACINCQ = (1.16 * (ACWPGR ** 0.846)) + (1.37 * (GWGR ** 0.269))		000323
2046		IF (ACSPROP .EQ. 10H40T GAS) ACSINGR = ACINHG		000324
2052		IF (ACSPROP .EQ. 10HCOLD GAS) ACSINGR = ACINCQ		000325
2056		ACINGR = ACSINGR * ACINRLF		000326

2060	$DGNMR = (GNGR - (GNGR / SNRLF)) + (ACINGR - ACINGRA)$	000331
2064	$MPGR = MP1 * (DWGR / DW1)$	000332
2067	$TOTINGR = X'PISPR * MPGR$	000333
2070	$AMINR = 3.25 * MPG * AMRL$	332
2073	36 CONTINUE	000336
2101	$TTCGR = TTC1 * TTGPF * TTCLRF$	000337
2103	$TTCMGR = TTGP - (TTCGR / TTCLRF)$	000338
2104	$WSAGR = WSA * ELRLF$	000339
2106	$BATTGR = BATT * ELRLF$	000340
2110	$DISTGR = DIST * ELRLF$	000341
2111	$ELINVGR = ELINV * ELRLF$	000342
2113	$ELGR = WSAGR + BATTGR + DISTGR + ELINVGR$	000343
2116	$JELM1R = ELGR - (ELGR / ELRLF)$	000344
2120	$ANTWGR = ANTWT * XMEFR * XMERLF$	344-1
2122	$XPNJNMR = XPDWWT * XMEFR * XMERLF$	344-2
2123	$XME1GR = XME1 * XMEFR * XMERLF$	344-3
2125	$XMEGR = ANTWGR + XPNWGR + XME1GR$	345
2130	$DM2 = XMEGR - (XMEGR / XMERLF)$	345-1
2132	$= QWTGR = ECGR + GNGR + ACINGP + ACWPGR + AMINGR + MPGR + TTGCR$	000346
2142	1 + CLGR + XMGR + RESIDGR	000347
2144	$XLTDGR = XLGR / DIAMMR$	000348
C	$STRGR = SFR1 * (((=QWTGR ** .9) * (XLTDGR ** .24)) ** 1.036)$ ADD 10 PERCENT TO STRUCTURE FOR IMPROVED GROUND ACCESSIBILITY	000349 000350
2155	$STRGR = STRGR * 1.10$	000351
2157	$CFGGR = CF1$	000352
2160	$CONGR = CFGGR * (STRGR + ECGR + GNGR + ACINGR + AMINGR + TTGCR + ELGR)$	000353
2165	$DWGR = STRGR + EQWTGR - ACWPGR - MPGR$	000354
2172	1 + CONGR	000355
2173	$GWGR = DWGR + ACWPGR + MPGR$	000356
2174	$WGWR = ABS (GWGR - GWGR)$	000357
2176	$WGWT = 1.$	000358
2177	IF (WGWR .GT. WGWT) GO TO 33	000359 000360
C	THIS ROUTINE CALCULATES ADAPTER LENGTH AND WEIGHT	000361 000362
2203	$AM2R = MPGR + AMINGR$	000363
2204	$PALL2R = 3.$	000364
2205	$PALLMR = 3.$	000365
2205	IF (PALL-T .EQ. 1.) GO TO -7	000366
2210	$TMR = .19$	000367
2211	39 CONTINUE	000368
2211	$DIMRAV = (DBSH + DIAMMR) / 2.$	000369
2214	$HBLMR = ABS ((DBSH - DIAMMR) / 2.)$	000370
2216	$EL1R = (3. * GWGR) + (((HBLMR / 2.) + (XLGR / 2.)) * GWGR) /$	000371
2221	$(.16 * (.6)) + (.16 * (RMRAV / HBLMR) * 1.3) * ((TMR / RMPAV) ** .3))))) ** .5$	000372 000373
2230	$1. (DIMRAV / 2.)$	000374
2230	$TH2RAV = DIMRAV / 2.$	000375
2232	$TH4R = (PMR / (2 * 3.14159 * 10 * 144 * 1000000 * ((9 * ((TMR / RMRAV) * 1 * .6)) + (.16 * (RMRAV / HBLMR) * 1.3) * ((TMR / RMPAV) ** .3))))))) ** .5$	000376
2256	$TH4RT = ABS (THMR - TMR)$	000377
2260	$THHRTT = .0001 * THMR$	000378
2262	$TH2R = TH2RAV$	000379
2263	IF (THHRTT .GT. TH4RTT) GO TO 39	000380
2267	TF (THMR .LT. .03333) THMR = .00333	000381
2271	$TH3L1R = 12 * THMR$	000382
2273	34 CONTINUE	000383
	$AOPMR = 3.14159 * (DIMRAV) * (1.414 * HBLMR) *$	000384

2300	1	THMR * 172.9 * 1.5	000385
2303		ADPMRT = (0.82 * GWMR) + 12.	000386
2306		IF (ADPMR .LT. ADPMRT) ADPMR = ADPMRT	000387
2310		REPMR = REUS=	000388
2310		GO TO 48	000389
2310	47	CONTINUE	000390
2310		ADPMR = 1.	000391
2311		PALLMR = 3.59 * XLGMR	000392
2313	+8	CONTINUE	000393
2314	C	ADPGR = ADPMR	000394
		ADD 100 POUNDS FOR DOCKING RING + RENDEZVOUS EQUIP.	000395
2315		ADPGR = ADPGR + 100.	000396
2316		PALLGR = PALLMR	000397
2317		GWMR = GWGR	000398
2320		XLGMR = GNMR + ADPGR + PALLGR	000399
2323	35	CONTINUE	000400
2323		IF (STABTYP .EQ. 1042-SPIN) GO TO 98	000401
2325		IF (STABTYP .EQ. 10HSPIN) GO TO 99	402
			402-1
	C	THIS ROUTINE COMPUTES CURRENT DESIGN ON-ORB MAINT WTS	000402
2327		TOTPW1R = TOTPWR	000403
2330		STRF1R = (0.114286 * XMOD) + 0.885714	000405
2333		TF (XMOD .GT. 8.) STRF1R = (0.0875 * XMOD) + 1.1	000406
2340		CF1R = 1.	000407
2341		GNF1R = 1.0 & TTCF1R = 1.0 & ACINF1R = 1.1 & ELF1R = 1.	000408
2346		AMF1R = 1.1	000409
2346		XMF1R = 1.1	1
2347		GW1R = 1.1 * GN1	410
2351		GW1R = 1.1 * DW1	300410
2353	51	CONTINUE	300411
2353		GW1TR = GW1R	300412
2354		IF (DEN1 .GT. 0.) GO TO 65	300413
2357		IF (GW1R .GT. 2000.) GO TO 62	413-1
2362		IF (GW1R .LT. 2000.) GO TO 63	000414
2363	62	CONTINUE	000415
2363		OKDEN1R = 528.6 / ((GW1R - MP1R - AMIN1R)**C.F0=528)	000416
2371		IF (GW1R .GT. 10000.) PKDEN1R = 2.0	417-1
2376		GO TO 62	000418
2377	63	CONTINUE	000419
2377		OKDEN1R = 15.23 / ((GW1R - MP1R - AMIN1R) ** .147222)	000420
2405		IF (GW1R .LT. 300.) PKDEN1R = 7.0	420-1
2412	65	CONTINUE	000421
2412		IF (DEN1 .GT. 0.) PKDEN1R = DEN1	422
2415		VOL1R = ((GW1R - MP1R - AMIN1R) / PKDEN1R) + (MP1R / PD) +	000423
		1 (AMIN1R / +90.)	000424
2424		XLTOD1R = 0.7	000425
2426		DIAM1R = (VOL1R / (.785 * XLTOD1R)) ** .333333	000426
2433		IF (DIAM1R .GT. 15.00) GO TO 68	000427
2436		GO TO 69	300428
2436	68	CONTINUE	000429
2437		DIAM1R = 15.00	000430
2440		XL1R = VOL1R / (.735 * (DIAM1R ** 2.))	000431
2444		AR-A1R = (3.1+159 * DIAM1R * XL1R) + (2.* .743 *(DIAM1R ** 2.))	000432
2453		ECFA = AR-A1R / AREA1	000433
2454		IF (ECFA .LT. 1.) ECFA = 1.	000434

2460		GO TO 71	000435
2461	69	CONTINUE	000436
2461		XL1R = XLT001R * DIAM1R	000437
2463		AREA1R = (3.14159 * DIAM1R * XL1R) + (2. * .785 * (DIAM1R ** 2.))	000438
2471		ECF1A = AREA1R / AREA1	000439
2473	71	CONTINUE	000440
2475		DIA1RE = 3. * ANTDIA1	440-1
2477		XL1RF = XL1R + ANTDIAM	440-2
2500		EC1R = ECF1R * EC1 * ECF1A	000441
2503		GN1R = ((GN1 * GNF1R) + 10.) * GNPLF	000442
2506		TTC1R = TTC1 * TTGCRLF	000443
2511		DTGMM1R = FTC1R - (TTC1R / TTGCRLF)	000444
2513		WSA1R = WSA * ELRLF	000445
2515		BATT1R = 3ATT * ELRLF	000446
2516		DIST1R = (DIST * ELRLF) + (19.7 * (XMOD - 1.))	000447
2523		DISTIFIR = DIST1R / DIST	000448
2523		ELINV1R = ELINV * ELRLF	000449
2525		EL1R = WSA1R + BATT1R + DIST1R + ELINV1R	000450
2531		DELMM1R = EL1R - (EL1R / ELRLF)	000451
2532		ANTW1R = ANTWT * XMERLF * XMEF1R	451-1
2535		XPONW1R = XPONDWT * XMFF1R * XMERLF	451-2
2537		XME11R = XME1 * XMEF1R * XMERLF	451-3
2540		XME1R = ANTW1R + XPONW1R + XME11R	452
2543		DM3A = XME1R - (XME1R / XMERLF)	
2545		IF (ACSPROP • EQ. 10HHOT GAS) WPF = 0.349	454
2551		IF (ACSPROP • EQ. 10HCOLD GAS) WPF = 1.040	000457
2556		ACWP1R = WPF * (SATLIF ** 0.200) * (GW1R ** 0.769)	000458
C		EQUATION IS FOR EXPENDABLE SATELLITES WHICH EXPEND 2/3 OF THEIR PROPELLANT FOR INITIAL POSITIONING - SINCE SHUTTLE LAUNCHED SATELLITES WILL BE POSITIONED BY THE SHUTTLE OR THE OQS, ONLY 1/3 OF THE ACS PROPELLANT IS REQUIRED.	000459
2565		ACWP1R = ACWP1R / 3.0	000460
2566		ACINHG = (0.128 * ACWP1R) + (0.063 * (GW1R ** 0.725))	000461
2574		ACINC6 = (1.16 * (ACWP1R ** 0.846)) + (1.37 * (GW1R ** 0.269))	000462
2605		IF (ACSPROP • EQ. 10HHOT GAS) ACSIN1R = ACINHG	000463
2611		IF (ACSPROP • EQ. 10HCOLD GAS) ACSIN1R = ACINC6	000464
2616		ACIN1R = ACSIN1R * ACINF1R * ACINRLF	000465
2620		DGNMM1R = (GN1R - (GN1R / GNRLF)) + (ACIN1R - (ACIN1R / ACINRLF))	000466
2624		MP1R = (DW1R / DW1) * MP1	000467
2626		TOTIM1R = XMP1SP * MP1R	000468
2630		AKIN1R = 0.25 * MP1R * AMRL * AMF1R	473
2634	66	CONTINUE	000474
2641		EQWT1R = EC1R + GN1R + TTC1R + EL1R + XME1R + ACIN1R + ACWP1R + 1 AMIN1R + MP1R + RESID1R	000475
2650		XLT001R = XL1R / DIAM1R	000476
2652		STR1R = SF21 * (((EQWT1R ** .9) + (XLT001R ** .24)) ** 1.096)	000477
2664		STR1R = STR1R * STRF1R	000478
2666		CON1R = CF1 * (STR1R + EC1R + GN1R + ACIN1R + AMIN1R + TTC1R + 1 EL1R)	000479
2673		GW1R = STR1R + EQWT1R + CON1R	000480
2676		DW1R = GW1R - ACWP1R - MP1R	000481
2700		W6 = ABS (GW1R - GW1R)	000482
2703		IF (W6 • GT. 1.) GO TO 61	000483
2707		DI1RAV = (D3SH + DIAM1R) / 2.	000484
2711		T1R = 0.10	000485
2713	67	CONTINUE	000486
2713		H1R = ABS ((D3SH - DIAM1R) / 2.)	000487

2716	IF (H1R.LT. .5) H1R = .50	000490
2722	F1R = (3. * GW1R) + (((H1R/2.) + (XLG1R/2.)) * GW1R) / (DI1RAV 1 / 4.))	000491 000492 000493
2731	RRAV = DI1RAV / .2.	000494
2732	TH1R = (F1R / (2. * 3.1+159+10.*144.*1000000.)*((9. * ((T1R / RRAV) 1** .6)) + (.15 * ((RRAV / H1R)** 1.3) * ((T1R / RRAV) ** .3)))))** .5	000495 000496
2756	THT1R = ABS (TH1R - T1R)	000497
2760	THTT1R = .0001 * TH1R	000498
2762	T1R = TH1R	000499
2763	IF (THT1R .GT. THTT1R) GO TO 67	000500
2767	IF (TH1R .LT. .00333) TH1R = .00333	000501
2771	ADP1R = 3.1+159 * ((DIAM1R / 2.) + (DRSH/2.)) * (1.414 * H1R) * TH1R 1 * 172.8 * 1.5	000502 000503
3001	ADP1RT = (3.02 * GW1R) + 12.	000504
3004	IF (ADP1P .LT. ADP1RT) ADP1R = ADP1RT	000505
C	ADJ 100 POUNDS FOR DOCKING RING + RENDEZVOUS EQUIP.	000506
3010	ADP1R = ADP1R + 100.	000507
3011	XLW1R = GW1R + ADP1R	000508
3013	37 CONTINUE	000509 000510 000511 000512
C	THIS ROUTINE COMPUTES LOW COST DESIGN ON-ORB MAINT WTS.	000513
3013	XMODLC = 15.	514
3014	STRFM = 1.0	000515
3016	TOTPWRM = TOTPWR	000516
3017	XL1002R = 0.	000517
3021	GW2R = 1.1 * GW1	000518
3023)W2R = 1.1 * W1	000519
3025	40 CONTINUE	000520
3025	GW2TR = GW2R	000521
3026	AMWP2R = MP2R	000522
3030	IF (DEN1 .GT. 0.) GO TO 55	522-1
3033	IF (GW2R .GE. 2750.) GO TO 45	000523
3035	IF (GW4R .LT. 2750.) GO TO 50	000524
3036	45 CONTINUE	000525
3036	PKDENR = .67.251 / ((GW2R - AMWP2R - AMIN2R) ** .549932)	000526
3044	IF (GW2R .GT. 10000.) PKDENR = 3.0	526-1
3051	GO TO 99	000527
3052	50 CONTINUE	000528
3052	PKDENR = 23.901 / ((GW2R - AMWP2R - AMIN2R) ** .174528)	000529
3060	IF (GW2R .LT. 500.) PKDENR = 8.0	529-1
3065	55 CONTINUE	000530
3065	IF (DEN1 .GT. 0.) PKDENR = DEN1	531
3070	AMWP2R = MP2R	000532
3071	AM2R = AMWP2R + AMIN2R	000533
3073	VOL2R = ((GW2R - AM2R) / PKDENR) + (MP2R / PD) + (AMIN2R / 490.)	000534
3101	DIAM2R = ((VOL2R / (.785 * XLTOD2R))** .333333	000535
3106	IF (DIAM2R .GT. 15.00) GO TO 56	000536
3111	GO TO 57	000537
3111	55 CONTINUE	000538
3112	DIAM2R = 15.30	000539
3113	XLGR = VOL2R / (.785 * (DIAM2R ** 2.))	000540
3117	AREA2R = (3.1+159 * DIAM2R * XLGR) + (2. * .785 * (DIAM2P ** 2.))	000541
3126	ECPA = AREA2R / AREA1	000542
3130	GO TO 58	000543

3130 57 CONTINUE
 3130 XLGR = XLTOD2R * DIAM2R
 3132 AREA2R = (3.14159 * DIAM2R * XLGR) + (2. * .785 * (DIAM2R ** 2.))
 3132 ECFA = AREA2R / AREA1
 3140 58 CONTINUE
 3142 DIA2R = 3. * ANTDIAM
 3144 XLGREF = XLGR + ANTDIAM
 3145 IF(ECFA .LT. 1.) ECFA = 1.0
 3151 EC2R = ECFM * EC1
 3153 GN2R = (GN1 * GNFM) + 10.
 3156 TTC2R = TTC1 * TTFCM
 3160 WSA2R = WSA * ELMF
 3162 PBAT = (PBATF * XMISPWR) + 200.
 3162 SAT. WT = FACTOR X WATTS X ECLIPSE TIME/CYCLE X REDUNDANCY X IOC
 3165 R = RDOWN
 3166 FB1 = 0.454333 + (0.037333 * SATLIFE)
 3171 FB2 = 1.01814 - (0.00003628 * AVEALT)
 3174 FB3 = FB1 * F32
 3176 TE = 0.03694 * (AVEALT ** 0.349087)
 3201 IF(AVEALT .LT. 28000) TE = 0.59.
 3206 BATT2 = FB * TE * PBAT * (1. + R) * (0.99 ** (XIOC - 1970.))
 3220 BATT2R = BATT2 * ELMF
 3222 DIST2R = DIST * ELMF
 3223 ELINV2R = ELINV * ELMF
 3225 EL2R = WSA2R + BATT2R + DIST2R + ELINV2R
 3231 RLFMELC = (.1814 * XMMDLC) + 0.2744
 3234 ANTWT2R = ANTWT * XMEFM * RLFMELC
 3236 XPONW2R = XPONDWT * XHEFM * RLFMELC
 3240 XME12R = XME1 * XMEFM * RLFMELC
 3241 XME2R = ANTWT2R + XPONW2R + XME12R
 3244 DM3 = XME2R - (XME2R / RLFMELC)
 3246 IF(ACSPROP .EQ. 10HHOT GAS) WPF = 0.348
 3252 IF(ACSPROP .EQ. 10HCOLD GAS) WPF = 1.040
 3257 ACWP2R = WPF * (SATLIFC ** 0.200) * (GW2R ** 0.769)
 C EQUATION IS FOR EXPENDABLE SATELLITES WHICH EXPEND 2/3 OF THEIR
 PROPELLANT FOR INITIAL POSITIONING - SINCE SHUTTLE LAUNCHED
 SATELLITES WILL BE POSITIONED BY THE SHUTTLE OR THE QOS, ONLY
 1/3 OF THE ACS PROPELLANT IS REQUIRED.
 3266 ACWP2R = ACWP2R / 3.0
 3267 ACINHG = (0.128 * ACWP2R) + (0.063 * (GW2R ** 0.725))
 3275 ACINCG = (1.16 * (ACWP2R ** 0.446)) + (1.37 * (GW2R ** 0.269))
 3306 IF(ACSPROP .EQ. 10HHOT GAS) ACSIN2R = ACINHG
 3312 IF(ACSPROP .EQ. 10HCOLD GAS) ACSIN2R = ACINCG
 3316 ACIN2R = ACSIN2R + ACINFM
 3320 M2R = (DH2R / DW1) * MP1
 3322 TOTIM2R = XMPISP * M2R
 3324 AMIN2R = 0.25 * MP2R * AMRL * AMFM
 3330 60 CONTINUE
 3335 EQWT2R = EC2R + GN2R + TTC2R + ELMF + ACIN2R + ACWP2R
 1 + AMIN2R + MP2R + RESID2R
 3344 XLTOD2R = XLGR / DIAM2R
 3346 STR2R = 2.29 * (((EQWT2R ** .9) * (XLTOD2R ** .24)) ** .90)
 3360 STR2R = STR2R * STRFM
 3362 CFFM = CF1 * CONF1
 3364 CF2R = CFFM
 3364 CON2R = CFFM * (STR2R + EC2R + GN2R + ACIN2R + AMIN2R + TTC2R + ELMF)
 3372 GW2R = STR2R + EQWT2R + CON2R

```

3375      DW2R = GW2R - ACWP2R - MP2R          599
3377      W3 = ABS (GW2TR - GW2R)             599
3402      W4 = 1.                            000600
3404      IF ( W3 .GT. W4 ) GO TO 40          001601
3410      TR = 16                            000602
3411      CONTINUE
3411      C 70 THIS ROUTINE CALCULATES ADAPTER LENGTH AND WEIGHT 000603
3412      PALL2R = 0.                         000604
3413      IF (PALLET .EQ. 1. ) GO TO 72        000605
3414      DIARAV = (DBSH + DIAM2R) / 2.        000606
3417      HR = ABS ((DBSH - DIAM2R) / 2.)      000607
3421      IF (HR .LT. .50) HR = .50            000608
3424      FR = (3. * GW2R) + (((HR/2.) + (XLGR/2.)) * GW2R) / (DIARAV / 4.) 000611
3433      RAVE = DIARAV / 2.                  000612
3435      THR = (FR / (2. * 3.1415 * 10. * 144. * 1000000. * ((3. * ((TR / RAVE)
3461      1   * .6) + (3.16 * ((RAVE / HR) ** 1.3) * ((TR / RAVE) ** 3.))) ) ) ** .5 000613
3461      THTR = ABS (THR - TR)              000614
3463      THTR = .0001 * THR                000615
3465      TR = THTR                         000616
3466      IF ( THTR .GT. THTTR ) GO TO 70    000617
3472      IF ( THTR .LT. .00333 ) THTR = .00333 000618
3474      THRI = 12. * THTR                 000619
3475      ADP2R = 3.14159 * (DIARAV) * (1.414 * HR) * THR 000620
3502      1   * 172.8 * 1.5
3502      ADP2RT = (0.02 * GW2R) + 12.          000621
3505      IF ( ADP2R .LT. ADP2RT ) ADP2R = ADP2RT 000622
3510      ADD 100 POUNDS FOR DOCKING RING + REVENDEZVOUS EQUIP. 000623
3511      ADP2R = ADP2R + 100.                  000624
3512      GO TO 73
3512      CONTINUE
3513      ADP2R = 0.                         000625
3513      PALL2R = 78.59 * XLGR              000626
3515      CONTINUE
3515      XLW2R = GW2R + ADP2R + PALL2R     000627
3520      GO TO 99
3521      98  CONTINUE
3521      STR1R = 0. $ EC1R = 0. $ GN1R = 0. $ AMIN1R = 0. $ ACIN1R = 0. $ TTC1R = 0. 533-1
3521      XHE1R = 0. $ CON1R = 0. $ DW1R = 0. $ ACWPIR = 0. $ MPIR = 0. 533-2
3525      EL1R = 0. $ BATT1R = 0. $ DIST1R = 0. $ WSA1R = 0. $ ELINV1R = 0. 533-3
3527      XHE1R = 0. $ CON1R = 0. $ DW1R = 0. $ ACWPIR = 0. $ MPIR = 0. 533-4
3532      GW1R = 0. $ ADP1R = 0. $ PALL1R = 0. $ XLW1R = 0. $ DIAM1R = 0. 533-5
3534      XL1R = 0. $ PKDEN1R = 0. $ TOTPW1R = 0. 533-6
3536      STR2R = 0. $ GN2R = 0. $ AMIN2R = 0. $ ACIN2R = 0. 533-7
3541      TTC2R = 0. $ EL2R = 0. $ BATT2R = 0. $ DIST2R = 0. $ ELINV2R = 0. 533-8
3543      XME2R = 0. $ CON2R = 0. $ DW2R = 0. $ ACW2R = 0. $ MP2R = 0. 533-9
3546      DTCMM1R = 0. $ DELMM1R = 0. $ DGNMM1R = 0. 533-10
3547      GW2R = 0. $ ADP2R = 0. $ PALL2R = 0. $ XLW2R = 0. $ DIAM2R = 0. 533-10
3552      XLR = 0. $ HR = 0. $ PKDENR = 0. $ TOTPWRM = 0. $ XMMOLC = 0. 533-11
3554      ANTW1R = 0. $ XPONW1R = 0. $ XME12R = 0. 533-12
3556      ANTW2R = 0. $ XPONW2R = 0. $ XME11R = 0. $ WSA2R = 0. 533-13
3560      99  CONTINUE
3560      C THIS ROUTINE COMPUTES SOFTIE WTS. 000634
3570      DIA2SE = 3. * ANTDIAM               535
3571      XLGSE = XLGS + ANTDIAM           635-1
3571
3573      THESE CARDS LIST COST NAMES FOR GROUND REFURBISHABLE SAT. WTS.(R) 000637
3573      WS2 = ((STRGR + EGCR) * (CFGCR + 1.)) + ADPGR 000638

```

3577	WE2 = ELGR * (CFG + 1.)	000639
3600	WC2 = TTCGR * (CFG + 1.)	000640
3602	WA2 = (GNGR + ACINGR) * (CFG + 1.)	000641
3604	WAP2 = ACWPGR	000642
3606	WP2 = AMINGR * (CFG + 1.)	000643
3610	WPP2 = MPGR	000644
3611	WM2 = XMEGR	000645
3613	DA2 = DGNMMR	000646
3614	DC2 = DTCMMR	000647
3616	DE2 = DELMMR	000648
C	THESE CARDS LIST COST NAMES FOR ON-ORBIT MAINT. SAT. WTS. (M)	000649
3617	WS3 = ((STR2R + EC2R) * (CF2R + 1.)) + ADP2R	000650
3623	WE3 = EL2R * (CF2R + 1.)	000651
3625	WC3 = TTC2R * (CF2R + 1.)	000652
3626	WP3 = AMIN2R * (CF2R + 1.)	000653
3630	WAP3 = ACWP2R	000654
3631	WA3 = (GN2R + ACIN2R) * (CF2R + 1.)	000655
3634	WPP3 = AMWP2R	000656
3635	WM3 = XME2R	000657
3637	DA3 = DGNMM2R	000658
3640	DC3 = DTCMM2R	000659
3642	DE3 = DELMM2R	000660
C	THESE CARDS LIST COST NAMES FOR CURRENT DESIGN ON-ORB SAT. WTS.	000662
3643	DA3A = DGNMM1R	000663
3645	DC3A = DTCMM1R	000664
3646	DE3A = DELMM1R	000665
3650	WS3A = ((STR1R + EC1R) * (CF1 + 1.)) + ADP1R	000666
3654	WE3A = EL1R * (CF1 + 1.)	000667
3655	WC3A = TTC1R * (CF1 + 1.)	000668
3657	WP3A = AMIN1R * (CF1 + 1.)	000669
3660	WAP3A = ACWP1R	000670
3662	WA3A = (GN1R + ACIN1R) * (CF1 + 1.0)	000671
3664	WPP3A = AMWP1R	000672
3666	WM3A = XME1R	000673
C	THESE CARDS LIST COST NAMES FOR CURRENT WEIGHT COSTS	000674
3667	WSC = ((STR1 + EC1) * (CF11 + 1.0)) + ADP1	000675
3673	WEC = EL1 * (CF11 + 1.)	000676
3675	WCC = TTC1 * (CF11 + 1.)	000677
3676	WAC = (GN1 + ACSIN1) * (CF11 + 1.)	000678
3701	WPC = AMIN1 * (CF11 + 1.)	000679
3702	WAPC = ACWP1	000680
3704	WPPC = MP1	000681
3705	WMC = XME3	000682
3707	XLW2 = XLWGR	000683
3710	XLW3 = XLW2R	000684
100	FORMAT (1H1)	000685
3712	PRINT 100	000686
106	FORMAT (5X, *PROGRAM*, A14, 5X, *CASE NUMBER*, A12, A40)	690
3716	PRINT 106, PROGRAM, CODE, TODAY	691
115	FORMAT(1JX, *TYPE ATID. CONT.* , A15, A12)	691-1
3730	PRINT 115, STA9TYP, ACSPROP	691-2
133	FORMAT (000692
1	10X, *MEAN MISS. DUR.* , F17.3,	693
1	22X, *DESIGN LIFE (YR.)* , F15.3 /	000694
1	10X, *TYPE SATELLITE*, A21,	695

	1 19X, *MODULARITY (UNITS)*, F17.0 /	000696
	1 10X, *MISS. POWER (W)*, F20.0, 19X, *BATT. REDUN. / PERCENT *,	637
	1 F16.1, F2.1 /	697-1
	1 10X, *POINT ACCUR. (DEG)*, F15.6, 10X,	000598
	1 10X, *TYPE ELECT. POWER*, A13, A10, A10,	000599
3740	PRINT 130, XM410, SATLIF, TYPE, XMOD, XMISPHP, REDUN, PBATF,	730
	1 PNTACC, PWRTYP, ORINT, PADTYP	000701
	140 FORMAT (10X, *I. O. C.* , F27.0, 19X, *VELOCITY*, F27.0 /	000702
	1 10X, *ARRAY PACK. FACT.* , F19.1, 19X, *EXT. DN. LINKS*, F21.0 /	000703
	1 10X, *NUMB. TAPE RECORD.* , F18.1, 19X, *DATA PROCESS. Wt*, F18.0 /	000704
	1 10X, *ENCRYPTION WT*, F23.0, 18X, *CONTINGENCY*, F24.0)	705
3772	PRINT 140, XIOC, DV1, PF, XNDL, XN12, DP, ENC, CP1	705
	142 FORMAT (10X, *NUMB. TRANSPONDERS*, F18.0, 19X, *TRANS. PWR. (WATTS)*, 706-1	
	1 F17.0 / 10X, *ANTENNA DIAM. (FT)*, F18.2, 19X, *COMM. FREQ. (GHZ)*, 706-2	
	1 F18.0)	706-3
4016	PRINT 142, XNXPOND, PWRXPON, ANTOIAM, COMFREQ	706-4
	141 FORMAT (10X, *NUMBER OF MODULES*, 39X, *1*, 9X, *1*, 2F10.0) .	000707
4032	PRINT 141, XMOD, XMODLC	000708
	145 FORMAT (44X, *CDR*, 7X, *LC*, 18X, *CDR*, 7X, *CDR*, 6X, *LCR*)	000709
4042	PRINT 145	000710
	102 FORMAT (5X, *ITEM*, 25X, *MDO *, 3X, *OM MOD*, 4X, *OM MOD*, 3X,	000711
	1 *REFERENCE*, 4X, *GROUND*, 3X, *ON-ORB*, 3X,	000712
	1 *ON-ORB*, +X, *SORTIE*)	000713
4046	PRINT 102	000714
	103 FORMAT (32X, *FACTOR*, 4X, *FACTOR*, 4X, *FACTOR*, 4X, *WEIGHT*,	000715
	1 5X, *REFURB., *	000716
	1 3X, *MAINT., 3X, *MAINT., 5X, *MODE* /)	000717
4052	PRINT 103	000718
	104 FORMAT (5X, *STRUCTURE*, 14X, 3F10.3, 6F10.0 /	000719
	1 5X, *ENVIRON. CONT., 9X, 3F10.3, 3F10.0 /	000720
	1 5X, *GUID. NAV. + STAB., 9X, 3F10.3, 5F10.0 /	000721
	1 5X, *DRY PROPULSION*, 9X, 3F10.3, 5F10.0 /	000722
	1 5X, *REACT. CONT., 11X, 3F10.3, 5F10.0 /	000723
	1 5X, *C. D. P. I., 12X, 3F10.3, 5F10.0 /	000724
	1 5X, *ELECTRICAL*, 13X, 3F10.3, 5F10.0 /	000725
	1 6X, *SOLAR ARRAY*, F47.0, 3F10.0 / 5X, *BATT. DYT*, F51.0, 3F10.0 /	000726
	1 6X, *DISTRIBUTION*, F30.3, F10.3, F6.0, 3F10.0 /	000727
	1 6X, *DVR. CONDITION.* F43.0, 3F10.0 /	000728
	107 FORMAT (5X, *MISS. EQUIPMENT*, 8X, 3F10.3, 5F10.0 /	729
	1 6X, *EQUIPMENT*, F49.0, 3F10.0 / 5X, *ANTENNA*, F51.0, 3F10.0 /	729-1
	1 6X, *TRANSPONDER*, F47.0, 3F10.0 /	729-2
	1 5X, *CONTINGENCY*, 12X, 3F10.3, 5F10.0 /	000730
	1 3X, *DRY HEIGHT*, 45X, 5F10.0 /	000731
	1 2X, *REACT. CONT. PROPEL., 35X, 5F10.0 /	000732
	1 5X, *MAIN PROPELLANT*, 38X, 5F10.0 /	000733
	1 3X, *WET. HEIGHT*, 45X, 5F10.0 /	000734
	1 5X, *ADAPTER WEIGHT*, 9X, 3F10.3, 5F10.0 /	000735
4056	PRINT 104, STRRL, STRFM, STR1, STRGR, STR1R, STR2R, STRSOR,	000736
	1 ECRRL, ECFM, EC1, ECGR, EC1R, EC2R, ECSOR,	000739
	1 GNRLF, GNF1R, GNFm, GN1, GNGR, GN1R, GN2R, GNSOR,	000740
	1 AMRL, AMFR, AMFM, AMINI, AMINR, AMINIR, AMIN2R, AMINSOR,	000741
	1 ACINRLF, ACINF1R, ACINFM, ACISINI, ACINR, ACINIR, ACIN2R, ACINSOR,	000742
	1 TTCRLF, TTCF1R, TTCFM, TTC1, TTCCR, TTC1R, TTC2R, TTCSR,	000743
	1 ELRLF, ELF1R, ELFm, EL1, ELGR, EL1R, EL2R, ELSOR,	000744
	1 WSA, WSAGR, WSAIR, WSA2R, BATT, BATTGR, BATTIR, BATT2R,	000745
	1 DISF1R, DISTFM, DIST, DISTGR, DIST1R, DIST2R,	000746

4306	1 ELINV, ELINVGR, ELINV1R, ELINV2R PRINT 107, XMERLF, XMEF1R, XMEFM, XME3, XMEGR, XME1R, XME2R, XMESOR,	000747 748 748-1 748-2 748-3 000749
	1 XME1, XME1GR, XME11R, XME12R, 1 ANTW1, ANTWGR, ANTW1R, ANTW2R, 1 XPONDWT, XPONWGR, XPONW1R, XPONW2R, 1 CONRL, CONFR, CONF1, CONG1, CON1P, CON2R, CONSR, DW1, DWGR, DW1R, DW2R, DWSOR, ACWP1, ACWPGR, ACWPIR, ACWP2R, ACWPSOR, MP1, MPGR, MP1R, MP2R, MPSOR, GW1, GHGR, GH1R, GH2R, GWSOR,	000750 000751 000752 000753
	1 AJDPL, ADPFR, ADPFM, ADP1, ADPGR, ADPIR, ADP2R, ADPSOR	000754
4472	105 FORMAT (3X,*AUTO, PAYLOAD SUBWT*, 36X, 5F1J.0,) PRINT 105, XLWC, XLWGR, XLW1R, XLW2R, XLWSOR	756 000757
4510	PRINT 100	757-1
4514	PRINT 149	757-2
4520	PRINT 102	757-3
	111 FORMAT (5X,*SPACELAB MOD.* , F96.0 / 5X,*SPACELAB PALLET*, F88.0 / 1 5X, *EQUIPMENT* / 7X,*EXPERIMENTS + MISSION EQUIP.* , F73.0 / 1 7X, *DATA PROCESS + DIS* , F81.0 / 7X,*ELECT. POWER*, F89.0 / 1 7X, *ENVIRON. CONT*, F88.0 / 7X,*SUPPORTS*, F93.0 / 1 5X, *DOCKING ADAPT*, F90.0 / 5X,*FWD TUNNEL*, F93.0 / 1 5X,*AFT TUNNEL*, F93.0 / 3X,*SPACELAB SUBTOTAL*, F83.0 /)	729-3 729-4 729-5 729-6 729-7 729-8
	112 FORMAT (5X,*RETENTION MECHANISM*, 45X, 4F10.0 / 1 5X, *MODULE EXCHANGE MECH.* , 43X, 4F10.0 / 1 5X, *MODULE MAGAZINE*, 49X, 4F10.0 / 1 5X, *DEPLOY/DOCKING MECH.* , 44X, 4F10.0 /	758-9 758-10 758-11 758-12
	1 5X, *SIDE RAILS*, 54X, 4F10.0 / 1 5X, *ATMOS. CONT. (EXT. CREW)* , 41X, 4F10.0 / 1 5X, *DISPLAYS + DATA MANAG.* , 42X, 4F10.0 / 1 5X, *EXTRA CREW*, 53X, 4F10.0 / 5X,*CREW FURNISH*, 51X, 4F10.0 / 1 5X, *ELECT. POWER*, 51X, 4F10.0 / 5X,*EVA / IVA*, 49X, 4F10.0 // 1 5X, *ROPS PROPEL*, 54X, 4F10.0 / 5X,*ORB. SUPPT. TOTAL*, 46X, 4F10.0 // 1 5X, *OMS HARDWARE*, 51X, 4F10.0 / 5X, *OMS PROPELLANT*, 49X, 4F10.0 // 729-16A 1 5X, *ORB. SUPPT. TOTAL*, 40X, 4F10.0 // 729-16B	758-13 758-14 758-15 758-16 758-17 758-18 729-16A 729-16B
4524	15X,*LONGITUDINAL CG*, 48X, 4F10.0 PRINT 111, PRSMOD, PALLSOR, EXPSSOR, DPSOR, ELPSSOR, ECSOR, 1 SUPTSOR, JKSOR, FNDTUN, AFTUN, SUBTOT	729-17 748 758-21
4556	PRINT 112,	758-22
	1 RETGR, RET1R, RET2R, RETSOR, EXCGR, EXCIR, EXC2R, EXGSOR, 1 XMAGGR, XMAG1R, XMAG2R, XMAGSOR, DDKGR, DDK1R, DDK2R, DDKSOR, 1 RAILGR, RAIL1R, RAIL2R, RA1LSOR, ATMGR, ATM1R, ATM2R, ATMSOR, 1 DISGR, DIS1R, DIS2R, DISSOR, CREWGP, CREW1R, CREW2R, CREWSOR, 1 FURN1R, FURN1R, FURN2R, FURNSOR, ELPGR, ELP1R, ELP2R, ELPSSOR, 1 EVAGR, EVA1R, EVA2R, EVASOR, RCSGPGR, RCSPIR, RCSPI2R, RCSPSOR, 1 TOTGR, TOT1R, TOT2R, TOTSOR, OMSGR, OMS1R, OMS2R, OMSSOR, 1 OMSPGR, OMSP1R, OMSP2R, OMSPSOR, GTOSR, GTO1R, GTO2R, GTOSOR	758-23 758-24 758-25 758-26 758-27 758-28 758-29 758-30
4772	90 CONTINUE	758-31
4772	PRINT 100	000759 759-1
	108 FORMAT (3X, *PAYLOAD GEOMETRY* / 1 10X, *DIAMETER (FT.)*, F46.1, 4F10.1 / 1 10X, *LENGTH (FT.)*, F46.1, 4F10.1 / 1 10X, *ENVELOPE DIAM. (FT.)*, F37.1, 4F10.1 / 1 10X, *ENVELOPE LENGTH (FT.)*, F37.1, 4F10.1 / 1 3X, *ADAPT. LENGTH (FT.)*, F46.1, 4F10.1 / 1 3X, *ADAPT. THICK. (FT.)*, F46.5, 4F10.5 /	000760 000761 000762 762-1 762-2 000763 763-1

```

1 3X, *DENSITY (LB/CU FT)*, F47.1, 4F10.1 / 000764
1 3X, *TOTAL ELECT. POWER (W)*, F43.1 ; 4F10.1 ) 000765
4776 PRINT 108, 765-1
1 DIAM1, DIAMMR, DIAM1R, DIAM2R, DIAM2S, 000767
1 XLG1, XLGMR, XL1E, XLGR, XLGS, . 767-1
1 DIAM1E, DIAMRE, DIA1RE, DIA2RE, DIA2SE, 767-2
1 XLG1E, XLGMR, XL1RE, XLGRE, XLGSE, . 767-2
1 HBL, HBLMR, HIR, HR, HS, 000768
1 THI, THMR, TH1R, THR, THRSOR, . 768-1
1 DEN, PKDENMR, PKDENR, PKDENR, PKDENS, 000769
1 TOTPWR, TOTPWR, TOTPWR, TOTPWR, TOTPWR, 000770
5122 109 FORMAT (3X, *BOOSTER DIAM. (FT)*, F47.1, 4F10.1 ) 000771
PRINT 109, DB3L, DBSH, DBSH, DPS4, DBSH 000772
5140 135 FORMAT (3X, *MEAN LISS. DUR.* , F52.3, 4F10.3 ) 000773
PRINT 135, XMMD1, XMMD, XMMD, XMMDLC, XMMD 000774
5156 136 FORMAT (3X, *DES. LIFE*, F58.3, 4F10.3) 000775
PRINT 136, SATLIF1, SATLIF, SATLIF, SATLIF, SATLIF 000776
5174 195 FORMAT (3X, *COST WEIGHT SUMMARY*, ) 000777
PRINT 195, 000778
200 FORMAT(5X, *CDR*, 12X, *CDR*, 13X, *LCR* 000779
1 57X, *GROUND*, 9X, *ON-OP3IT*, 8X, *ON-OPBIT*, 6X, *SORTIE*/ 000780
1 143X, *REFERENCE*, 4X, *REFURBISH*, 6X, *MAINTENANCE*, 5X, *MAINTENANCE* 000781
1 15X, *MODE* / +5X, *WEIGHT*, 4X, *MMDO*, +X, *WT.* , 6X, *MMO*, +X, 000782
1 *WT.* 5X, *MMU*, 4X, *WT.* , 5X, *WT.* ) 000783
5200 PRINT 200, 000784
205 FORMAT (5X, *STR + TPS + ADP WS*, 10X, F8.0, F10.0 / 000785
1 5X, *GN + ACS WA*, 10X, F8.0, F10.0 / 000785
1 5X, *DRY PROPULSION WP*, 10X, F8.0, F10.0 / 000787
1 5X, *C. D. P. I. WC*, 10X, F8.0, F10.0 / 000788
1 5X, *ELECTRICAL WE*, 10X, F8.0, F10.0 / 000789
1 5X, *MISSION EQUIP. WM*, 10X, F8.0, F10.0 / 000790
1 5X, *ATT. CONT. PROP. WAP*, 10X, F8.0, F10.0 / 000791
1 5X, *MAIN PROPELL. WPP*, 10X, F8.0, F10.0 / 000792
1 3X, *LAUNCH WEIGHT*, 26X, F8.0, 3F16.0, F10.0 / / 000793
5204 PRINT 205, WSC, DS2, WS2, DS3A, WS3A, DS3, WS3, WS4, 000794
1 WAC, DA2, WA2, DA3A, WA3A, DA3, WA3, WA4, 000795
1 WPC, DP2, WP2, DP3A, WP3A, DP3, WP3, WPC, 000796
1 WCC, DC2, WC2, DC3A, WC3A, DC3, WC3, WC4, 000797
1 WEC, DE2, WE2, DE3A, WE3A, DE3, WE3, WE4, 000798
1 WMC, DM2, WM2, DM3A, WM3A, DM3, WM3, WM4, 000799
1 WAPC, DAP2, WAP2, DAP3A, WAP3A, DAP3, WAP3, WAP4, 000800
1 WPPC, DPP2, WPP2, DPP3A, WPP3A, DPP3, WPP3, WPP4, 000801
1 XLWC, XLWGR, XLW1R, XLW2R, XLW4, 000802
5422 IF (PROPTYP .EQ. 10HLIQUID ) P2 = 4 000803
5426 IF (PROPTYP .EQ. 10HSOLID ) P2 = 1 000804
5432 IF (STABTYP .EQ. 10H3- AXIS ) A1 = 3. 000805
5436 IF (STABTYP .EQ. 10HSPIN ) A1 = 1. 000806
5442 IF (STRRTYP .EQ. 10HEXO ) S1 = 2. 000807
5446 IF (STRRTYP .EQ. 10HENDO ) S1 = 1. 000808
5448 IF (XLV .EQ. 1. ) XLVT = 10HSHUTTLETUG 000809
210 FORMAT(5X, *TYPE STRUCTURE S1 =*, F10.0, A12 / 000810
1 5X, *EL-C! POWER (WATTS) S1 =*, F15.0, 3F16.0 / 000811
1 5X, *ORBIT ALTITUDE C1 =*, F10.0 / 000812
1 5X, *TYPE STABILITY A1 =*, F10.0, A12, A12 / 000813
1 5X, *TOTAL IMPULSE P1 =*, 2X, +F16.0 / 000814
5456 PRINT 210, S1, STRRTYP, TOTPWR, TOTPWR, TOTPWR, 000815
1 5X, *TYPE PROPELLANT P2 =*, F10.0, A12 / 000816

```

	1 ORBAPO ₂ , A1, STABTYP, ACSPROP, TOTIMP, 1 TOTIM2 ₁ , TOTIMGR, TOTIM2R, 304 XMMOD = XMMD + XMMDINC	P ₂ , PROPTYP	000817 000818 000819
5522	IF (XMMD .LE. XMMDMAX) 23, 306		000820
5524	CONTINU		000821
5531	XMOD = XMOD + XMODINC		000823
5533	IF (XMOD .LE. XMODMAX) 22, 4		000824
5540	CONTINUE		000825
5540	199 CONTINU		826
C	110 THESE CARDS REPRESENT THE SORTIE MODE		900
5540	PRINT 100		
5544	PRINT 136, PROGRAM, CODE, TODAY		
5556	213 FORMAT (16X, *SORTIE MODE*)		903 904
5562	PRINT 213		700
5614	1 PNTACC, PWRTYP, ORINT, PADTYA		000701
5640	PRINT 140, XIOC, DV1, PF, XNDL, XNTR, DP, FNC, CF1 PRINT 142, XNXPOND, PWRXPON, ANTDIAM, COMFREQ 214 FORMAT(7.8X, *ITEM*, 18X, *WEIGHT*, 7X, *XCG*, 7X, *ZCG*,		705 705+4 907
5654	1 7X, *VOL*)		908 919
	215 FORMAT (5X, *STRUCTURE*, 14X, F10.0, F10.3, 3F10.0 1 5X, *ENVIRON. CONT.* , 9X, F10.0, F10.3, 3F10.0 1 5X, *DATA PROCESS*, 18X, F10.0, F10.3, 3F10.0 1 5X, *ELECTRICAL*, 13X, F10.0, F10.3, 3F10.0 1 5X, *DISPLAYS*, 15X, F10.0, F10.3, 3F10.0 1 5X, *PERSONNEL*, 14X, F10.0, F10.3, 3F10.0 1 5X, *FURNISHINGS*, 12X, F10.0, F10.3, 3F10.0 1 5X, *EVA EQUIP*, 13X, F10.0, F10.3, 3F10.0 1 5X, *DOCKING MOD*, 11X, F10.0, F10.3, 3F10.0 1 5X, *FWD TUNNEL*, 13X, F10.0, F10.3, 3F10.0 1 5X, *AFT TUNNEL*, 13X, F10.0, F10.3, 3F10.0 1 5X, *ATTACH FITT*, 11X, F10.0, F10.3, 3F10.0 1 5X, *CONTINGENCY*, 12X, F10.0, F10.3, 3F10.0 1 216 FORMAT (3X, *DRY WEIGHT*, 15X, F10.0, F10.3, 3F10.0 1 5X, *CONSUMABLES*, 14X, F10.0, F10.3, 3F10.0 1 5X, *WET WEIGHT*, 15X, F10.0, F10.3, 3F10.0 1 5X, *ADAPTER*, 18X, F10.0, F10.3, 3F10.0 1 5X, *PALLET*, 19X, F10.0, F10.3, 3F10.0 1 3X, *LAUNCH WT.* , 15X, F10.0, F10.3, 3F10.0		910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 940-1 941 942 943 944 945
5660	PRINT 215, STRSOR, STRXCG, STRYCG, STRZCG, STRVOL, 1 ECSR, ECXCG, ECYCG, ECZCG, ECVOL, 1 TTCOR, TTCCG, TTCCYCG, TTTCZCG, TTTCVOL,		
	ELSOR, ELYCG, ELZCG, ELVOL, DISFSOR, DISPYCG, DISPZCG, DISPVAL, PERSSOR, PERSYCG, PERSZCG, PERSVOL, FURNSOR, FURNXCG, FURNYCG, FURNZCG, FURNVOL		
	EVASOR, EVAYCG, EVAZCG, EVAVOL, DKMOJ, DKMDXCG, DKMDYCG, DKMDZCG, DKMDVOL, FWDTUNN, FWDXCG, FWDTNYCG, FWTNZCG, FWTVOL, AFTTUNN, AFTNXCG, AFTNYCG, AFTNZCG, AFTNVOL		
6066	ATTFIT, ATTXCG, ATTZCG, ATTVAL CONSOR, CONTXCG, CONTYCG, CONTZCG, CONTVOL DWSOR, DWXCG, DWYCG, DWZCG, DWVOL FLUIDS, FLUDXCG, FLUDYCG, FLUDZCG, FLUDVOL GWSOR, GWXCG, GWYCG, GWZCG, GWVOL ADPSOR, ADPXCG, ADPYCG, ADPZCG, ADPVOL		

ADP2RT	-	011171	AFTNVOL	-	011510	AFTNXCG	-	011506	AFTNYCG	-	011506
AFTNZCG	-	011507	AFTTUNN	-	011504	AFTUN	-	011312	AMFM	-	010534
AMFR	-	010700	AMF1R	-	011016	AMINGR	-	010737	AMINMR	-	010715
AMINSOR	-	011261	AMIN1	-	010556	AMIN1F	-	011024	AMIN2R	-	011111
AMRL	-	010522	AMWP1R	-	010713	AMWP1	-	010646	AMWP1R	-	011242
AMWP2R	-	011112	AMY2R	-	010764	ANTDIAM	-	010442	ANTWGR	-	010750
ANTHT	-	010635	ANTW1R	-	011050	ANTW2R	-	011136	AREAMR	-	010722
AREA1	-	010646	AREA1R	-	011031	AREA2R	-	011120	ATMGR	-	011315
ATHSOR	-	011320	ATM1R	-	011316	ATM2R	-	011317	ATTFIT	-	011511
ATTVOL	-	011512	ATTXCG	-	011512	ATTYCG	-	011513	ATTZCG	-	011514
AVEALT	-	010566	A1	-	011422	B	-	010413	BATT	-	010613
BATTGR	-	010743	BATT1R	-	011042	BATT2	-	011127	BATT2R	-	011130
C	-	010414	CDPI	-	010573	CFFM	-	011151	CFG2	-	010760
CFI	-	010416	CF1	-	010627	CF11	-	010626	CF2R	-	011153
CODE	-	010370	COMFREQ	-	010443	CONFIM	-	011152	CONFR	-	011270
CONGR	-	010761	CONRL	-	011267	CONSQR	-	011271	CONTVOL	-	011521
CONTXCG	-	011516	CONTYCG	-	011517	CONTZCG	-	011520	CON1	-	010630
CON1R	-	011065	CON2R	-	011154	CREWGR	-	011321	CREWSOR	-	011324
CREW1R	-	011322	CREW2R	-	011323	D	-	010432	DAB2	-	011410
DAP3	-	011412	DAP3A	-	011411	DATAPRO	-	010436	DA2	-	011207
DA3	-	011222	DA3A	-	011230	DB9L	-	010651	DBSKH	-	010654
DC2	-	011211	DC3	-	011224	DC3A	-	011231	DEELMMR	-	010744
DOKS0R	-	010+70	DDK1R	-	010466	DDK2R	-	010467	DGN1	-	010400
DELMM1R	-	011047	DELMM2R	-	011227	DEN	-	010554	OGNMHR	-	010733
DE2	-	011211	DE3	-	011226	DE3A	-	011232	ODIAAMRE	-	010724
OGNM1R	-	011060	OGNM2R	-	011220	DIAMMR	-	010720	DIAM2R	-	011116
DIAM1	-	010567	DIAM1F	-	010562	DIAM1R	-	010627	DIAM2	-	011116
DIAM2S	-	011370	DIARAV	-	011160	DIAAV	-	010647	DIAAV	-	011033
DIAS2RE	-	011121	DIAS2S	-	011174	DIMPRAV	-	010770	DISGR	-	010476
DISPSOR	-	011459	DISPVOL	-	011454	DISPXCG	-	011451	DISPYCG	-	011452
DISPZCG	-	011453	DISSOR	-	010500	DIST	-	010616	DISTFM	-	011265
DISTF1R	-	011044	DISTGR	-	010744	DISTRLF	-	010543	DISTIR	-	011043
DIST2R	-	011131	DIS1R	-	010476	DIS2R	-	010477	DI1RAV	-	011062
DKMDVOL	-	0111476	DKMDXCG	-	011473	DKMDYCG	-	011474	DKMDZCG	-	011475
DKMOD	-	011472	DKSOR	-	011313	DM2	-	010754	DM3	-	011141
DM3A	-	011054	DP	-	010503	DPP2	-	011414	DPP3	-	011416
DPP3A	-	011416	DPSOR	-	011306	DP2	-	011402	DP3	-	011404
DP3A	-	011403	DS2	-	011376	DS3	-	011377	DS3A	-	011376
DTCMMR	-	010741	DTCNM1R	-	011040	DTCMM2R	-	011226	DV1	-	010417
DWGR	-	010735	DWSOR	-	011272	DWVOL	-	011525	DWXCG	-	011522
DWYCG	-	011523	DWZCG	-	011524	DW1	-	010552	DW1R	-	011021
DW2R	-	011110	DCFA	-	010723	ECCFM	-	010512	ECCR	-	010676
ECF1A	-	011032	ECF1R	-	011011	ECCGR	-	010726	ECCR	-	010523
ECSOR	-	011257	CVOL	-	011377	CXC3	-	011434	CYCG	-	011433
ECCZCG	-	011436	C1F	-	010366	C1R	-	011036	C2R	-	011126
ELFLM	-	010516	ELFR	-	010703	ELF1R	-	011015	ELGR	-	010746
ELINV	-	010617	INVGR	-	010746	ELINV1R	-	011046	ELINV2R	-	011132
ELPGR	-	011331	LPSOR	-	011306	ELPIR	-	011332	ELP2R	-	011333
ELRL	-	010530	RLF	-	010542	ELSOR	-	011264	ELVOL	-	011447
ELXCG	-	011444	YCG	-	011446	ZCG	-	011446	EL1	-	010620
EL1R	-	011046	Z2R	-	011133	NC	-	010504	NCOOR	-	010437
EQNT	-	010522	WT3R	-	010756	QW1D	-	011062	QW12R	-	011145
EVAGR	-	011334	VASOR	-	011337	VAVOL	-	011471	VAXCG	-	011466
EVAYCG	-	011467	VAZCG	-	011470	VA1R	-	011335	VA2R	-	011336
EXCGR	-	010455	XCSOR	-	010+60	EXC1R	-	010456	XC2R	-	010457
EXPSUR	-	011304	F	-	010446	FB	-	010611	FBL	-	010654
FBI	-	010607	FB2	-	010610	FLUDVOL	-	011532	FLUDXCG	-	011527

		PALLSOR, PALLXCG, PALLYCG, PALLZCG, PALLVOL,	945
		XLWSOR, XLWXCG, XLWYCG, XLWZCG, XLWVOL	947
6166	308	XMMO = XMMD + XMMDINC	000819
6170		IF (XMMD .LE. XMMDMAX) 23, 310	000820
6175	310	CONTINUE	000821
6175		XMOD = XMOD + XMODINC	000923
6177		IF (XMOD .LE. XMODMAX) 22,4	000824
6204		END	000827

PROGRAM LENGTH INCLUDING I/O BUFFERS
011617

FUNCTION ASSIGNMENTS

STATEMENT	ASSIGNMENTS
1	- 001655
5	- 000003
11	- 00027
15	- 00052
19	- 001027
23	- 000372
27	- 000453
34	- 002274
38	- 002001
47	- 002311
56	- 003112
61	- 002355
66	- 002635
70	- 003412
90	- 004773
102	- 007036
106	- 006640
110	- 005541
127	- 001744
135	- 007577
142	- 007001
200	- 007517
214	- 010050
306	- 005532
2	- 006216
6	- 001451
12	- 000316
16	- 001325
20	- 000366
24	- 000504
28	- 000466
35	- 002324
39	- 002212
48	- 002314
57	- 003131
62	- 002364
67	- 00271+
71	- 002474
98	- 003522
103	- 007056
107	- 007200
111	- 007301
128	- 001763
136	- 00756
145	- 007027
205	- 007657
215	- 010061
308	- 006167
3	- 001550
7	- 001661
13	- 000334
17	- 000427
21	- 001146
25	- 001266
31	- 001674
35	- 002074
40	- 003026
50	- 003153
58	- 003143
63	- 002450
68	- 002437
72	- 003513
99	- 003561
104	- 007100
108	- 007476
112	- 007351
129	- 001775
140	- 006747
195	- 007612
210	- 007774
216	- 010207
310	- 005176
4	- 000003
8	- 000427
14	- 000352
18	- 000710
22	- 000370
26	- 000437
33	- 001712
37	- 003014
45	- 003037
55	- 003066
60	- 003331
65	- 002413
69	- 002452
73	- 003516
100	- 006635
105	- 007273
109	- 007571
113	- 006647
130	- 006655
141	- 007020
199	- 005541
213	- 010044
304	- 005523

BLOCK NAMES AND LENGTHS
SSPRO - 011617

VARIABLE ASSIGNMENTS

ACINCG	-	010500	ACINFM	-	010514	ACINFR	-	010701	ACINFR1R	-	011014
ACINGR	-	010732	ACINGR3	-	010734	ACINHG	-	010577	ACINRL	-	010526
ACINRLF	-	0110537	ACINSOR2	-	011262	ACIN1R	-	011057	ACIN2R	-	011144
ACSINGR	-	010731	ACISIN1	-	010601	ACISIN1R	-	011056	ACISIN2R	-	011143
ACSPROP	-	010407	ACWPGR	-	010730	ACWPSOR	-	01273	ACWP1	-	010576
ACWP1R	-	011055	ACWP2R	-	011142	ADPFM	-	01127	ADPFR	-	011275
ADPGR	-	011004	ADPMR	-	011000	ADPMRT	-	011001	ADPRL	-	010532
ADPSOR	-	011300	ADPVOL	-	011542	ADPXCG	-	011537	ADPYCG	-	011540
AUPZCG	-	011541	ADP1	-	010562	ADP1R	-	011100	ADP1RT	-	011101
ADP1T	-	010663	ADP1V	-	010571	ADP1VL	-	010672	ADP2R	-	011170

FLUDYCG-	011530	FLUDZCG-	011531	FLUIDS -	011526	FMR -	010772
FR -	011162	FURN3R -	011132	FURNSOR -	011133	FURNVOL -	011465
FURNXCG -	011462	FURNYCG -	011146	FURNZCG -	011146	FURN1R -	011326
FURN2R -	011327	FWTDTUN -	011311	FWTDTUNN -	011477	FWTNVOL -	011503
FWTNXCG -	011500	FWTHYCG -	011501	FWTNZCG -	011502	F1R -	011072
G -	010446	GNFM -	010313	GNFR -	010677	GNF1R -	011012
GNGR -	010727	GNRL -	010327	GNRLF -	010541	GNSOR -	011260
GN1 -	010572	GN1R -	011036	GN2R -	011124	GTOGR -	011360
GTOSOR -	011363	GTO1R -	011364	GTO2R -	011365	GWGP -	010706
GWGRT -	010711	GWMMRG -	010707	GWSOR -	011127	GWT -	010564
GWVOL -	011536	GWGXCG -	011533	GWYCG -	011153	GWZCG -	011535
GW1 -	010551	GW1R -	011020	GW1TR -	011020	GW2R -	011107
GW2TR -	011111	GW2TR -	011047	HBLR -	010600	HBLMR -	010716
HRL -	011161	HITS -	011137	H1R -	010600	HDFM -	010364
MPFR -	010363	MPGD -	010366	MPRL -	010361	MPSOR -	011274
MP1 -	010364	MP1R -	010365	MP2R -	010367	OMSGR -	011350
OMSPGR -	011354	OMSPSOR -	011357	OMSP1R -	011355	OMSP2R -	011355
OMSSOR -	011353	OMS1R -	011351	OMS2R -	011352	ORBAPO -	010371
ORBING -	010373	ORBPER -	010372	ORINT -	010406	PACKFTR -	010431
PADTYP -	010416	PALLET -	010634	PALLGP -	011050	PALLMR -	010766
PALLRL -	010533	PALLSOR -	011030	PALLVOL -	011000	PALLXCG -	011543
PALLYCG -	011544	PALL7CG -	011544	PALL1 -	010666	PALL1R -	011173
PALL1V -	010670	PALL2R -	010726	PALUN -	010664	PBAT -	010600
PBATF -	010374	PD -	010614	PDM -	010644	PERSON -	011450
PERSVOL -	011464	PERSXCG -	011464	PERSYCG -	011464	PERSZCG -	011460
PF -	010460	PKDENR -	010712	PKDENR -	011113	PKDENS -	011373
PKDEN1R -	011023	PNTACC -	010377	PRESMOD -	011302	PROGRAM -	010426
PROPTYP -	010403	PWRTYP -	010404	PWRXPON -	010441	P2 -	011421
R -	010420	RAILGR -	010471	RAILSOR -	010474	RAIL1R -	010470
RAIL2R -	010473	RAVE -	011163	RAILSOR -	011314	RCSPGR -	011340
RCSPSOR -	011343	RCSP1R -	011341	RCSP2R -	011342	REDUN -	010424
REPMR -	011802	RESIU -	010636	RESIUGR -	010756	RESID1 -	010623
RESID1R -	011063	RESID2R -	011147	RETGR -	010451	RETSOR -	010454
RET1R -	010452	RET2R -	010453	REUSH -	011003	RLFMELC -	011134
RMRRAV -	010773	RRAV -	011074	R1AV -	010655	S -	010405
SATLIF -	010546	SATLIFT -	010221	SATLIFI -	010550	SEPURY -	010642
SEPWP -	010643	SFBLV -	010674	SFCWT -	010641	SFR1 -	010621
SORTIE -	011041	SPINMR -	010717	SPWPYR -	010710	STAGTYP -	010376
STRFM -	011104	STRFR -	010575	STRF1R -	011013	STRGR -	010757
STRRL -	010522	STRSUR -	011256	STR1YP -	010402	STRVOL -	011433
STRXCG -	011436	STRYCG -	011431	STRZCG -	011432	STRI -	010626
STR1R -	011064	STR2R -	011450	SUBTOT -	011313	SUPTSOR -	011307
S1 -	011423	T -	010433	TBL -	010657	TE -	010612
THBL -	010661	TPBLMR -	010777	THBLV -	010673	THMR -	010774
THMRT -	010775	THMRTT -	010775	THR -	011164	THRI -	011157
THRSOR -	011372	THTR -	011166	HTHTR -	011166	HTTT1R -	011077
HTH1R -	011076	T41 -	010645	TH1R -	011075	HT1T -	010656
HTHT -	010669	TR -	010767	TODAY -	010607	TOTGR -	011344
TOTIMGR -	011427	TOTIMP -	010633	TOTIM1R -	011051	TOTIM2E -	011426
TOTIM2R -	011144	TOTINGR -	010736	TOTPWR -	010676	TOTPWRM -	011109
TOTPWR -	010705	TOTPWR -	011374	TOTPWR1R -	011037	TOTSOR -	011347
TOTTR -	011346	TOTTR -	011346	TR -	011157	TCF4 -	010519
TCFCR -	010760	TCFC1R -	011013	TCGCR -	010740	TCRCL -	010527
TCRCRLF -	010549	TCCSOR -	011263	TCVCVL -	011443	TCXCXCG -	011440
TCYCIG -	011441	TCZCG -	011442	TC1 -	010574	TC1R -	011037
TC2R -	011126	TYPE -	010415	TR -	011070	VOLMR -	010714
VOL1 -	010556	VOLIR -	011325	VOL2R -	011115	WAC -	011247

WAPC	-	011251	WAP2	-	011203	WAP3	-	011216	WAP3A	-	011237
WAP4	-	011413	WA2	-	011203	WA3	-	011217	WA3A	-	011240
WA4	-	011401	WCC	-	011246	WC2	-	011201	WC3	-	011214
WC3A	-	011235	WC4	-	011405	WE3A	-	011235	WE4	-	010614
WE2	-	011200	WE3	-	011213	WE3A	-	011234	WE4	-	011406
WGNSPIN-	-	010573	WGN3A	-	010567	WGK	-	010762	WGWT	-	010763
WG2SPIN-	-	010571	WMC	-	011253	WM2	-	011206	WM3	-	011221
WM3A	-	011243	WM4	-	011407	WPC	-	011250	WPF	-	010561
WPPC	-	011252	WPP2	-	011205	WPP3	-	011220	WPP3A	-	011241
WPP4	-	011417	WP2	-	011204	WP3	-	011216	WP3A	-	011236
WSA	-	010605	WSAGR	-	010742	WSAORH	-	010604	WSAORL	-	010602
WSAORM	-	010603	WSA1R	-	011341	WSA2R	-	011226	WSC	-	011244
WS2	-	011177	WS3	-	011210	WS3A	-	011230	WS4	-	0111400
WTODIF	-	010537	W3	-	011156	W4	-	011156	W6	-	011066
XCGGR	-	011364	XCGSOR	-	011367	XCG1R	-	011365	XCG2R	-	011366
XI0C	-	010401	XIAND1	-	010644	XLGMR	-	010721	XLGMRR	-	010725
XLGR	-	011117	XLGR	-	011204	XLGS	-	011176	XLGSE	-	011175
XLG1	-	010560	XLG1	-	010560	XLG1R	-	011073	XLTOOD	-	010624
XLTOODGR	-	010710	XLTOOD1	-	010553	XLTOOD1R	-	011026	XLTOOD2R	-	011106
XLV	-	011424	XLVT	-	011425	XLWC	-	010659	XLWGR	-	011086
XLHSOR	-	011301	XLWVOL	-	011552	XLWXCG	-	011547	XLWYCG	-	0111550
XLWZCG	-	011551	XW1	-	010667	XLW1R	-	011102	XLW1V	-	010666
XLW2	-	011254	XLW2R	-	011172	XLW3	-	011259	XLW4	-	0111420
XL1R	-	011030	XL1RE	-	011034	XMAGGR	-	010461	XMAGSOR	-	010464
XMAG1R	-	010462	XMAGSR	-	010463	XMFPM	-	010517	XMFPR	-	010704
XMEF1R	-	011017	XMAGGR	-	010703	XMERCOM	-	010544	XMERL	-	010531
XMERLF	-	010545	XMESOR	-	011266	XME1	-	010410	XME1GR	-	010752
XME1R	-	011053	XME11R	-	011152	XME12R	-	011137	XME2	-	010505
XME2R	-	011140	XME3	-	010615	XMISSPWR	-	010376	XMMD	-	010536
XMMODINC	-	010421	XMMOLC	-	010520	XMODMAX	-	010422	XMODMIN	-	010420
XMMOD1	-	010547	XMOD	-	010532	XMODINC	-	010427	XMODLC	-	011103
XMODMAX	-	010430	XMODMIN	-	010426	XMPISP	-	010632	XNAME	-	010506
XNANT	-	010444	XNDL	-	010501	XNDNLNK	-	010434	XNTAPRC	-	010435
XNTR	-	010502	XNXPOND	-	010446	XPONDWT	-	010634	XPONWGR	-	010751
XPONW1R	-	011051	XPONW2R	-	011136						

START OF CONSTANTS
006207

START OF TEMPORARIES
010257

START OF INDIRECTS
010357

UNUSED COMPILER SPACE
000200

3.2

EXAMPLE PRINTOUT

This section shows an example printout produced by the Satellite Synthesis Computer Program for the DSCS-II satellite program.

PROGRAM	BRAVO	CASE NUMBER	OSCS-II		07/22/74			
TYPE ATT&G. CONT.		3-AXIS	HOT GAS					
MEAN MISS. DUR.	3.000			DESIGN LIFE (YR.)	3.736			
TYPE SATELLITE	COM			MODULARITY (UNITS)	25.			
MISS. POWER (W)	218.			BATT. REDUN. / PERCENT	0,0 1,0			
POINT. ACCUR. (DEG)	.150000			TYPE ELECT. POWER	SOLAR			
I.O.C.	1975.			ORI	RIGID			
ARRAY PACK. FACT.	.9			VELOCITY	300.			
NUMB. TAPE RECORD.	0,0			EXT. DN. LINKS	1.			
ENCRYPTION HT.	25.			DATA PROCESS. HT.	0.			
NUMB. TRANSPONDERS	0			CONTINGENCY	0.			
ANTENNA DIAM. (FT)	3.65			TRANS. PWR. (WATTS)	0.			
NUMBER OF MODULES				COMM. FREQ. (GHZ)	0.			
		CDR	LC	1	25.			
ITEM	MMO FACTOR	DM MOD FACTOR	DM MOD FACTOR	REFERENCE WEIGHT	GROUND REFURB.	ON-ORB MAINT.	ON-ORB MAINT.	SORTIE MODE
STRUCTURE	1.000	3.287	1.000	92.	84.	458.	573.	0.
ENVIRON. CONT.	1.000	1.000	1.330	22.	22.	55.	29.	0.
GUID. NAV. + STAB.	1.067	1.000	1.790	67.	82.	82.	130.	0.
DRY PROPULSION	1.000	1.000	1.000	10.	10.	22.	19.	0.
REACT. CONT.	1.096	1.100	1.280	19.	12.	24.	25.	0.
C. U. P. I.	1.091	1.000	.750	75.	82.	82.	95.	0.
ELECTRICAL	1.030	1.000	1.450	235.	242.	715.	341.	0.
SOLAR ARRAY				66. 83.	68. 86.	68. 86.	96. 121.	
BATTERY								
DISTRIBUTION		8.648	0.000	52.	64.	537.	90.	
PWR. CONDITION.				23.	24.	24.	34.	
MISS. EQUIPMENT	.819	1.000	1.000	237.	194.	194.	280.	0.
EQUIPMENT				0.	0.	0.	0.	
ANTENNA				57.	47.	47.	67.	
TRANSPONDER				180.	147.	147.	213.	
CONTINGENCY		0.000	0.000	0.000	0.	0.	0.	0.
DRY WEIGHT				757.	728.	1633.	1453.	
REACT. CONT. PROPEL.				80.	25.	47.	48.	
MAIN PROPELLANT				40.	38.	86.	77.	0.
WET WEIGHT				877.	792.	1767.	1577.	
ADAPTER WEIGHT	1.000	0.000	0.000	76.	249.	210.	222.	0.
AUTO. PAYLOAD SUBWT				953.	1041.	1977.	1799.	0.

3-24

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

ITEM	MMD	CDR OM MOD	LC OM MOD	REFERENCE	CDR GROUND	CDR ON-ORB	LCR ON-ORB	SORTIE
SPACELAB MOD.								0.
SPACELAB PALLET								0.
EQUIPMENT								
EXPERIMENTS + MISSION EQUIP.								
DATA PROCESS + DISP.								
ELECT. POWER								
ENVIRON. CONT								
SUPPORTS								
DOCKING ADAPT								
FWD TUNNEL								
AFT TUNNEL								
SPACELAB SUBTOTAL								0.
RETENTION MECHANISM					500.	500.	750.	100.
MODULE EXCHANGE MECH.					0.	1265.	1900.	0.
MODULE MAGAZINE								
DEPLOY/DOCKING MECH.					400.	400.	600.	0.
SIDE RAILS					320.	0.	0.	0.
ATMOS. CONT. (EXT. CREW)					0.	0.	0.	0.
DISPLAYS + DATA MANAG.					270.	270.	270.	150.
EXTRA CREW					0.	0.	0.	0.
CREW FURNISH					0.	0.	0.	0.
ELECT. POWER					0.	0.	0.	0.
EVA / IVA					0.	0.	0.	0.
RCS PROPEL					0.	0.	0.	0.
ORB. SUPPT. TOTAL					0.	0.	0.	0.
OMS HARDWARE					0.	0.	0.	0.
OMS PROPELLANT					0.	0.	0.	0.
ORB. SUPPT. TOTAL					0.	0.	0.	0.
LONGITUDINAL CG					0.	0.	0.	0.

PAYOUT GEOMETRY**DIA METER (FT.)**

LENGTH (FT.)

ENVELOPE DIAM. (FT.)

ENVELOPE LENGTH (FT.)

ADAPT. LENGTH (FT.)**ADAPT. THICK. (FT.)****DENSITY (LB/CU FT)****TOTAL ELECT. POWER (W)****BOOSTER DIAM. (FT)****MEAN MISS. DUR.****DES. LIFE**

	4.6	5.2	6.2	7.6	8.0
LENGTH (FT.)	4.6	3.6	5.8	5.2	0.0
ENVELOPE DIAM. (FT.)	10.9	10.9	10.9	10.9	10.9
ENVELOPE LENGTH (FT.)	8.2	7.3	6.4	5.6	5.0
ADAPT. LENGTH (FT.)	2.7	4.2	2.6	3.0	0.0
ADAPT. THICK. (FT.)	.00333	.00333	.00333	.00333	.00333
DENSITY (LB/CU FT)	10.0	10.0	10.0	10.0	10.0
TOTAL ELECT. POWER (W)	418.0	418.0	418.0	418.0	418.0
BOOSTER DIAM. (FT)	10.0	13.5	13.5	13.5	13.5
MEAN MISS. DUR.	2.500	3.000	3.000	3.000	3.000
DES. LIFE	3.124	3.736	3.736	3.736	3.736

COST WEIGHT SUMMARY

REFERENCE	WEIGHT	CDR GROUND		CDR ON-ORBIT		LCR ON-ORBIT		SORTIE MODE
		REFURBISH	MHD	MHD	MHD	MHD	MHD	
STR + TPS + ADP	NS	190.	0.	355.	0.	724.	0.	824.
GN + ACS	WA	86.	17.	364.	7.	107.	0.	165.
DRY PROPULSION	WP	10.	0.	10.	0.	22.	0.	19.
C. D. P. I.	NC	75.	/	82.	7.	82.	0.	96.
ELECTRICAL	NE	235.	7.	242.	23.	715.	0.	341.
MISSION EQUIP.	WM	237.	-43.	194.	-43.	164.	43.	328.
ATT. CONT. PROP.	HAP	80.	0.	26.	0.	47.	0.	48.
MAIN PROPELL.	WPP	40.	0.	38.	0.	0.	0.	76.
LAUNCH WEIGHT		953.		1041.		1977.		1799.

TYPE STRUCTURE	S1	2.	EXO					
ELECT. POWER (WATTS)	E1		418.	418.	418.	418.		
ORBIT ALTITUDE	C1	19323.						
TYPE STABILITY	A1	0.	3-AXIS	HOT GAS				
TOTAL IMPULSE	P1		7987.	0.	0.	15318.		
TYPE PROPELLANT	P2		4.	LIQUID				

3.3 PROGRAM SYMBOL LIST

The following pages of this section list the symbols used in the Satellite Synthesis Computer Program.

ACINCG This list represents the attitude control inert weight
ACINFM for various items (lb).

ACINFR

ACINF1R

ACINGR

ACINGRB

ACINHG

ACINRL

ACINRLF

ACIN1R

ACIN2R

ACSINGR

ACSI1

ACSI1R

ACSI2R

ACSPROP

Attitude Control Propellant Weight (lb)

ACWPGR

ACWP1

ACWP1R

ACWP2R

ADPFM

Adapter Weight (lb)

ADPFR

ADPGR

ADPMR

ADPMRT

ADPRE

Adapter Weight (lb) - (Cont'd)

ADPI

ADPIR

ADPIRT

ADPIT

ADPIV

ADPIVEL

ADP2R

ADP2RT

AMFM

Apogee Motor Inert Weight (lb)

AMER

AMF1R

AMINGR

AMINGMR

AMINI

AMIN1R

AMIN2R

AMRL

AMWPMR

Apogee Motor Propellant Weight (lb)

AMWPL

AMPW1R

AMWP2R

AM2R

ANTDIAM

Communication Antenna Diameter (ft)

ANTWT

Communication Antenna Weight (lb)

AREAMR	Structural Area (ft ²)
AREA1	
AREA1R	
AREA2R	
AVEALT	Average Altitude (nmi)
BATT	Battery Weight (lb)
CDP1	Communications and Data Processing Weight (lb)
CFFM	Contingency Factor
CFGR	
CFI	
CF11	
CF2R	
CODE	Satellite Name (SEO-1)
COMFREQ	Communication Frequency (GHz)
CONFM	Contingency Weight (lb)
CONFR	
CONGR	
CONRL	
CON1	
CON1R	
CON2R	

DAP2	Attitude Control Propellant Incremental Weights due to MMD Variation (lb)
DAP3	
DAP3A	
DATAPRO	Data Processing Weight (lb)
DA2	
DA3	Cost Name for Guidance and Navigation
DA3A	
DBBL	
DBSH	Satellite Diameter (ft)
DC2	
DC3	Shuttle Adapter Diameter (ft)
DC3A	
DELMMR	Cost Name CDPI Incremental Weights due to MMD Variation
DELMM1R	
DELMM2R	
DEN	Electrical Weight Change due to MMD Variation (lb)
DEN1	
DE2	
DE3	Satellite Density (lb/ft ³)
DE3A	
DGNMMR	Cost Names for Electrical Weight Variation with MMD
DGNMM1R	
DGNMM2R	Guidance and Navigation Incremental Weight due to MMD Variation (lb)

DIAMMR
DIAMI
DIAMIR
DIARAV
DIAMZR
DIARV
DIAIAV
DIMRAV
DIIRAV

Satellite Diameter (ft)

DISTFM
DISTFIR
DIST1R
DIST2R

Electrical Distribution Weight (lb)

DM2
DM3
DM3A

Mission Equipment Weight Variation with MMD; Cost Name (lb)

D P
D P2
D P3
D P3A

Apogee Motor-Dry Weight Variation with MMD, Cost Name (lb)

DPP2
DPP3
DPP3A

Launch Weight Variation with MMD, Cost Name (lb)

DS2
DS3
DS3A

Cost Name of Structural Weight Variation with MMD (lb)

DTCMMR
DTCMM1R
DTCMM2R

CDPI Weight Variation with MMD (lb)

DV1 Velocity (ft/sec)

DWGR Satellite Dry Weight (lb)
DW1
DW1R
DW2R

Environmental Control Factors

ECFA
ECFM
ECFR
ECF1A
ECF1R
ECGR
ECRL

EC1 Environmental Control Weight (lb)
EC1R
EC2R

Electrical Factors and Weight (lb)

ELFM
ELFR
ELF1R
ELGR
ELINV
ELRL
ELRLF
ELI
EL1R
EL2R

GWGR	Gross Weight (lb)
GWGR T	
GWMR	
GWT	
GW1	
GW1R	
GW1TR	
GW2R	
GW2TR	
HBL	Adapter Height (ft)
HBLMR	
HE	
HR	
H1R	
MPFM	Main Propellant Weight (lb)
MPFR	
MR GR	
MPRL	
MPI	
MP1R	
MP2R	
ORBAPO	Orbit Apogee (nmi)
ORBINC	Orbit Inclination (deg)
ORBPER	Orbit Perigee Altitude (nmi)
ORINT	Solar Array Paddles Orientation

PACKFTR (PF)	Solar Array Cells Packing Factor (0.9)
PADTYP	Type of Solar Array Paddle (FLEX, RIGID)
PALLET	Shuttle Pallet Weight (lb)
PALLFM	
PALLFR	
PALLGR	
PALLMR	
PALLRL	
PALL1	
PALL1R	
PALL1V	
PALL2R	
PALUN	Pallet Unit Weight (lb/ft)
PBAT	Battery Power (watts)
PD	Propellant Density (lb/ft ³)
PDM	
PF	Solar Cell Packing Factor
PKDENMR	Satellite Packing Density (lb/ft ³)
PKDENR	
PKDEN1R	
PNTACC	Pointing Accuracy:(deg)
PROGRAM	Program Name (BRAVO)
PROPTYP	Propellant Type (Liquid or Solid)

PWR TYP	Power Type (Solar)
PWRXPON	Transponder Power (watts)
RAVE	Adapter Average Radius (ft)
DMRAV	
RRAF	
RRAV	
REDUN	Redundancy Factor for Batteries
REPMR	Residual Propellant Weight (lb)
RESID	
RESIDGR	
RESID1	
RESID1R	
RESID2R	
REUSE	Factor for Reuse
SATLIF	Satellite Design Life (years)
SATLIF1	
SEPDRY	Solar Electric Propulsion Dry Weight (lb)
SEPWP	Solar Electric Propulsion Propellant Weight (lb)
SFBLV	Structure Factor
SFCWT	
SFR1	
SPINMR	Solar Propulsion Inert Weight (lb)
SPIN2R	

TH1 Adapter Sidewall Thickness (ft) - (Cont'd)
TH1R
TH1T
TH1TT
TMR

TODAY Today's Date
TOTIMGR Launch Weight (lb)
TOTIM1R
TOTIM2R
TOTINGR

TOTIMP Total Impulse (lb/sec)
TOTPWR
TOTPWRE
TOTPWRM
TOTPWRR
TOTPW1R

TTCFM CDPI Weight and Factors
TTCFR
TTCF1R
TTCGR
TTCRL
TTCRLF
TTC1
TTC1R
TTC2R

TYPE Satellite Type (COM, NAV, OBS)

VOLMR	Satellite Volume (ft ³)
VOL1	
VOL1R	
VOL2R	
WAC	Cost Names for Cost/Weight Printout - Have No Effect on Program
WAPC	
WAP2	
WAP3	
WAP3A	
WA2	
WA3	
WA3A	
WC	
WCC	
WC2	
WC3	
WC3A	
WEC	
WELE	
WE2	
WE3	
WE3A	
WGNSPIN	Guidance and Navigation Weight Spinner (lb)
WGN3A	Guidance and Navigation Weight 3-Axis (lb)
WGN2SPIN	Guidance and Navigation Weight 2-Spin (lb)

WGWT

Cost Names for Cost/Weight Printout - Have No Effect on Program

WMC

WM2

WM3

WM3A

WPC

WPF

WPPC

WPP2

WPP3

WPP3.

WP2

WP3

- 4 -

Solar Array Weight (lb)

WSAORH

Solar Array Weight Oriented, High Orbit Weight

WSAORL

Solar Array Weight Oriented, Low Orbit Weight

WSAORM

Solar Array Weight Oriented, Medium Orbit Weight.

WSC

WS2

WS3

WS3A

WTDIF

Difference in Weight (lb)

W3

W4

w6

Cost Names

XMERL	Mission Equipment Factors and Weight (Cont'd)
XMEF	
XMEIR	
XME2	
XME2R	
XME3	
XMISPWR	Mission Equipment Power (watts)
XMMD	Mean Mission Duration (years)
XMMMDINC	Mean Mission Duration (years) Increment
XMMMDMAX	Mean Mission Duration (years) Maximum
XMMMDMIN	Mean Mission Duration (years) Minimum
XMMD1	Mean Mission Duration (years)
XMOD	Number of Modules
XMODINC	Number of Modules Increment
XMODMAX	Number of Modules Maximum
XMODMIN	Number of Modules Minimum
XMPISP	Main Propellant Specific Impulse (sec)
XNAME	Program Name (SATWTS)
XNDL	Number of Down Links
XNDNLNK	
XNTAPRC	Number of Tape Recorders
XNTR	
XNXPOND	Number of Transponders
XPONDWT	Transponder Weight (lb)

4. SPACE SYSTEMS PAYLOAD PROGRAM COST ESTIMATING COMPUTER PROGRAM LISTING

The listing for the Space Systems Payload Program Cost Estimating Computer Program is shown in this section.

```
    ▽ VPAYPROG[ ]▽
    ▽ PAYPROG
[1]  INITIALIZE
[2]  CONSTANTS
[3]  'ENTER SATELLITE'
[4]  □
[5]  WHFAC
[6]  DORCA
[7]  FACTOR
[8]  CER
[9]  →(TYPE#2)/CRNOT
[10] CURRCUS2
[11] CRNOT:TOTALING
[12] SPREAD
[13] LV
[14] OUTCOST
[15] OUTSPD
[16] OUTLV
[17] NESPD
```

▽

4•2

```
    ▽ INITIALIZE[ ]▽
    ▽ INITIALIZE
[1]  PD+PU←0
[2]  MD+MU←0
[3]  GU←0
[4]  LD←0
[5]  FAL←PDEV←FUNI←1
[6]  FSSD←FSLD←FSCD←FSAD←FSPD←FSMD←PSGD←1
[7]  FSCU←FSLU←FSCU←FSAU←FSPU←FSHU←FSLU←1
[8]  SSRS←SSRME←SSNEW←SREF←SSI:TH←,0
[9]  ALV1←ALV2←ALV3←0
[10] LVS1←LVS2←LVS3←COLV1←COLV2←COLV3←,0
[11] LVC1←LVC2←LVC3←1
[12] FLSD←FLED←FLCD←FLAD←FLPD←FLID←FLGD←1
[13] FLSU←FLEU←FLCU←FLAU←FLPU←FLMU←FLLU←1
[14] WS←WL←WC←WA←WAP←WP←WPP←WM←0
[15] WLR←WCR←VAR←WAPR←WPR←WMR←0
[16] LS←LR←LC←LA←LP←LM←1
```

▽

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```
...  VCONSTANTS[ ]\n  V. CONSTANTS .\n  [ 1]  BL<-1\n  [ 2]  GPS<-2\n  [ 3]  OAO<-3\n  [ 4]  EOS<-4\n  [ 5]  SHQ<-5\n  [ 6]  CM2<-6\n  [ 7]  COM<-7\n  [ 8]  RIB<-31\n  [ 9]  RWW<-25\n  [10]  OVHD<-2.06\n  [11]  FEE<-1.13\n  [12]  PLD<-1.5\n  [13]  PLU<-1.3\n  [14]  ECP<-1.15\n  [15]  PI<-1,1.065,1.144,1.17,1.225\n  [16]  YP<-73\n  [17]  FLYP<-79\n  [18]  C1<-0.13\n  [19]  B1<-P1+N1<-YRD<-RR<-MR<-0\n  [20]  C1<-P2+N2<-LES<-LVTYPE<-1\n  [21]  TYPE<-S1<-2\n  [22]  A1<-RMOD<-3\n  [23]  TMOD<-10\n  \n
```

x 4-3

```
  VWHFAC[ ]\n  V. WHFAC .\n  [ 1]  +2xTYPE\n  [ 2]  FTYPE1\n  [ 3]  +0\n  [ 4]  FTYPE2\n  [ 5]  +0\n  [ 6]  FTYPE3\n  [ 7]  +0\n  \n
```

```

    ▽ FTYPE1[L]▽
    ▽ FTYPE1
[1]   FTYPE2
[2]   RR←MR←0
    ▽

    ▽ FTYPE2[L]▽
    ▽ FTYPE2
[1]   WRATIO
[2]   FLED←0.536+0.464×WER+WE
[3]   FLEU←0.307+0.693×WER+WE
[4]   FLCD←0.715+0.285×WCR+WC
[5]   FLCU←0.475+0.525×WCR+WC
[6]   TEMP←(WAR+WAPR)÷WA+WAP
[7]   FLAU←0.466+0.534×TEMP
[8]   →(TEMP≥1.6)/D1
[9]   FLAD←0.938+0.062×TEMP
[10]  →D2
[11]  D1:FLAD←0.813+0.187×TEMP
[12]  D2:FLMD←0.812+0.188×WMR+WM
[13]  FLMU←0.39+0.61×WMR+WM
[14]  +(QMTN=0)/F21
[15]  FLAU←FLAU×1.0074-0.0074×TMOD
[16]  F21:→(MR≠0)/F22
[17]  MR←0.25
[18]  F22:MR←MR×RMOD+TMOD
[19]  →(RR≠0)/0
[20]  RR←0.39
    ▽

    ▽ WRATIO[]▽
    ▽ WRATIO
[1]   →(WER≠0)/WR1
[2]   WER←WE
[3]   WR1:→(WCR≠0)/WR2
[4]   WCR←WC
[5]   WR2:→(WAR≠0)/WR3
[6]   WAR←WA
[7]   WR3:→(WAPR≠0)/WR4
[8]   WAPR←WAP
[9]   WR4:→(WMR≠0)/0
[10]  WMR←WM
    ▽

```

```

▼FTYPE3[0]▼
▼FTYPE3
[1] LSD← 1 0.81 0.56 0.62 0.53 0.59 0.59
[2] LED← 1 0.54 0.65 0.65 0.73 0.75 0.76
[3] LCD← 1 0.57 1 0.72 0.7 0.79 0.79
[4] LAD← 1 0.58 1 0.68 0.61 0.52 0.71
[5] LPD← 1 0.88 ,5p0.85
[6] LMD← 0.75 0.75 0.63 0.75 0.75 0.75 0.75
[7] LSU← 1 0.89 0.59 0.81 0.42 0.81 0.81
[8] LEU← 1 0.59 0.79 0.95 0.85 0.54 0.8
[9] LCU← 1 0.78 1 0.66 ,3p0.85
[10] LAU← 1 0.63 1 0.82 0.83 0.59 0.87
[11] LPU← 1 1.14 ,5p0.75
[12] LMU← 1 1 0.83 1 0.65 1 1
[13] LLÜ← 1 1 ,(3p0.74), 1 1
[14] FLSD←LSD[LS]
[15] FLED←LED[LE]
[16] FLCD←LCD[LC]
[17] FLAD←LAD[LA]
[18] FLPD←LPD[LP]
[19] FLMD←LMD[LM]
[20] FLSU←LSU[LS]
[21] FLEU←LEU[LE]
[22] FLCU←LCU[LC]
[23] FLAU←LAU[LA]
[24] FLPU←LPU[LP]
[25] FLMU←LMU[LM]
[26] FLLU←LLU[LM]
[27] FLGD←0:71
[28] LSD+LED+LCD+LAD+LPD+LMD+LSU+LEU+LCU+LAU+LPU+LMU+LLU+10
[29] →(MR≠0)/F31
[30] MR←0.25
[31] F31:→(RR≠0)/0
[32] RR←0.3
▼

```

```

    ▽ DORCA[□]▽
    ▽ DORCA
[1] YRN←YR-68
[2] PI←PI[ YRN]
[3] WC←WS+WER+WCR+WAR+WAPR+WP+WPP+WMR+
[4] +(YRD≠0)/D6
[5] YRD←3+(WG>3000)
[6] D6 :→(LVTYPE=3)/D5
[7] ALV1←(8.376×PI)+0.76×PI×(LVTYPE=2)
[8] D5 :→(M1≠0)/D4
[9] +(M2=1)∨(M2=2)∨(M2=9)∨((M2=7)∧(WMR≥500)))/D1
[10] +(M2=6)∨(M2=10)∨((M2=3)∧(WMR≥500))∨((M2=4)∧(WMR≥500))∨((M2=7)∧(WMR<500))∨((M2=8)∧(WMR≥200)))/D2
[11] +(M2=5)∨((M2=3)∧(WMR<500))∨((M2=4)∧(WMR<500))∨((M2=8)∧(WMR<200)))/D3
[12] D1:M1+1
[13] →D4
[14] D2:M1+2
[15] →D4
[16] D3:M1+3
[17] D4:→(~((M2=1)∨(M2=2)∨(M2=6)))/0
[18] G1←0.025
    ▽

```

```

    ▽ FACTOR[□]▽
    ▽ FACTOR
[1] FALL←OVHD×FEE×ECP×PI×FAL
[2] FD←FALL×PLD×FDEV
[3] FU←FALL×PLU×FUNI
[4] FSD←FD×FSSD×FLSD÷1000
[5] FED←FD×FSED×FLED÷1000
[6] FCD←FD×FSCD×FLCD÷1000
[7] FAD←FD×FSAD×FLAD÷1000
[8] FPD←FD×FSPD×FLPD÷1000
[9] FMD←FD×FSMD×FLMD÷1000
[10] FGD←FAL×FDEV×FSGD×FLGD
[11] FSU←FU×FSSU×FLSU÷1000
[12] FEU←FU×FSEU×FLEU÷1000
[13] FCU←FU×FSCU×FLCU÷1000
[14] FAU←FU×FSAU×FLAU÷1000
[15] FPU←FU×FSPU×FLPU÷1000
[16] FMU←FU×FSMU×FLMU÷1000
[17] FLU←FAL×FUNI×FSLU×FLLU
    ▽

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR


```
    ▽CURREUS2[]▽
▽ CURREUS2
[1] SD←SD-SU
[2] ED←ED-EU
[3] CD←CD-CU
[4] AD←AD-AU
[5] PD←PD-PU
[6] MD←0.75×MD
[7] SPD←SD+ED+CD+AD+PD
[8] SAD←SPD+MD
```

▽

```

    VTOTALING[.]v
    v TOTALING
[1] QRD++/SSRS
[2] QME++/SSRME
[3] QINV++/SSNEW
[4] QREF++/SSREF
[5] QMTN++/SSMTN
[6] SIN+AS×QINV
[7] EIN+AE×QINV
[8] CIN+AC×QINV
[9] AIN+AA×QINV
[10] PIN+AP×QINV
[11] MIN+AM×QINV
[12] NEEXC+(SSRME>0)^(SSNEW=0)^(SSREF>0)
[13] MEQ++/MEEXC
[14] MEDELT+LES×MEQ×(1-RR)×AM
[15] MIN+MIN+MEDELT
[16] SPIN+SIN+EIN+CIN+AIN+PIN
[17] SAIN+SPIN+MIN
[18] MISCD+0.5+0.0025×SAIN
[19] MISCIN+0.0154×SAIN
[20] RDME+QME×MD
[21] RDSUB+(QRD×SPD+GD)+RDME
[22] SETDD+0.06×RDSUB+MISCD
[23] SETDIN+0.06×1.0154×SAU×LES+0.926
[24] SETDO+0.06×LU×LES
[25] TOTRD+RDSUB+MISCD+SETDD
[26] TOTINV+SAIN+MISCIN+SETDIN
[27] REFOPS+QREF×RR×ASAU
[28] MTNOPS+QMTN×MR×ASAU
[29] LOPS+LU×QINV+QREF+0.666667×QMTN×(M1×1)
[30] TOTOPS+REFOPS+MTNOPS+LOPS+SETDO
    v

```

```
    V$SPREAD[ ]V
    V SPREAD
[1]  AVG C+(TOTRD-RDME)+QRL
[2]  VECT+SSRS
[3]  WHSPD
[4]  CORD+SUM
[5]  AVG C+RDME+QME
[6]  VECT+SSRME
[7]  WHSPD
[8]  CORM+SUM
[9]  CORDTE+L0.5+CORD+CORM
[10] AVG C+(TOTINV-MEDELT)+QINV
[11] VECT+SSNEW
[12] SP3
[13] COIN+SUM
[14] AVG C+MEDELT+MEQ
[15] VECT+MEEXC
[16] SP3
[17] COIM+SUM
[18] COINVES+L0.5+COIN+COIM
[19] CORO+0
[20] +(QREF=0)/NOREF
[21] AVG C+LU+REFOPS+QREF
[22] VECT+SSREF
[23] SP2
[24] CORO+SUM
[25] NOREF:COMO+0
[26] +(QMTN=0)/NOMTN
[27] AVG C+(LU*0.6666667*(M1*1))+MTNOPS+QMTN
[28] VECT+SSMTN
[29] SP2
[30] COMO+SUM
[31] NOMTN:AVGC+LU+SETDO+QINV
[32] VECT+SSNEW
[33] SP2
[34] COLO+SUM
[35] COOPERAT+L0.5+CORO+COMO+COLO
[36] COTOTAL+CORDTE+COINVES+COOPERAT
    V
```

```

    v WHSPD[] v
    v WHSPD
[1]  →2×YRD-1
[2]  SP2
[3]  →0
[4]  SP3
[5]  →0
[6]  SP4
[7]  →0
[8]  SP5
    v

```

```

    v SP2[] v
    v SP2
[1]  TEMP1→0,0,0,0,0.5×AVGC×VECT
[2]  TEMP2→0,0,0,0.5×AVGC×VECT,0
[3]  SUM←TEMP1+TEMP2
    v

```

```

    v SP3[] v
    v SP3
[1]  TEMP1→0,0,0,0,0.2×AVGC×VECT
[2]  TEMP2→0,0,0,0.55×AVGC×VECT,0
[3]  TEMP3→0,0,0,0.25×AVGC×VECT,0,0
[4]  SUM←TEMP1+TEMP2+TEMP3
    v

```

```

    v SP4[] v
    v SP4
[1]  TEMP1→0,0,0,0,0.1×AVGC×VECT
[2]  TEMP2→0,0,0,0.35×AVGC×VECT,0
[3]  TEMP3→0,0,0,0.43×AVGC×VECT,0,0
[4]  TEMP4→0,0,0,0.12×AVGC×VECT,0,0,0
[5]  SUM←TEMP1+TEMP2+TEMP3+TEMP4
    v

```

```

    VSP5[]▽
    ▽ SP5
[1] TEMP1←0,0,0,0,0.0700000000000001×AVGC×VECT
[2] TEMP2←0,0,0,0.18×AVGC×VECT,0
[3] TEMP3←0,0,0.35×AVGC×VECT,0,0
[4] TEMP4←0,0.3×AVGC×VECT,0,0,0
[5] TEMP5←0.1×AVGC×VECT,0,0,0,0
[6] SUM←TEMP1+TEMP2+TEMP3+TEMP4+TEMP5
    ▽

```

```

    VLV[]▽
    ▽ LV
[1] →((+/LVS1)=0)/0
[2] CODE←LVC1
[3] AVGC←ALV1
[4] VECT←LVS1
[5] WHSPD2
[6] COLV1←|0.5+SUM
[7] →((+/LVS2)=0)/END1
[8] CODE←LVC2
[9] AVGC←ALV2
[10] VECT←LVS2
[11] WHSPD2
[12] COLV2←|0.5+SUM
[13] →((+/LVS3)=0)/END1
[14] CODE←LVC3
[15] AVGC←ALV3
[16] VECT←LVS3
[17] WHSPD2
[18] COLV3←|0.5+SUM
[19] END1:COLV←COLV1+COLV2+COLV3
[20] TOTPLLV←COTOTAL+COLV
    ▽

```

```

    WHSPD2[]▽
    ▽ WHSPD2
[1] →(CODE=1)/4
[2] SP3
[3] →0
[4] SUM←0,0,0,0,AVGC×VECT
[5] →0
    ▽

```

```

    VOUTCOST[0]V
    OUTCOST
    [1] RM+RMB+
    [2] ST+RM,RMW+'STRUCTURE'
    [3] EL+RM,RMW+'ELECTRICAL POWER'
    [4] CO+RM,RMW+'COMMUNICATIONS AND DATA'
    [5] SB+RM,RMW+'STABILITY AND CONTROL'
    [6] PR+RM,RMW+'PROPULSION'
    [7] SP+RM,RMW+' SPACECRAFT'
    [8] MI+RM,RMW+'MISSION EQUIPMENT'
    [9] SA+RM,RMW+' SATELLITE'
    [10] GS+RM,RMW+'GSE'
    [11] LN+RM,RMW+'LAUNCH SUPPORT'
    [12] DEV+SD,ED,CD,AD,PD,SPD
    [13] UNIT+AS,AE,AC,AA,AP,ASPU
    [14] HEADER
    [15] SUBCOST
    [16] WORDS+(TEMP,(RMB+RMW))pST,EL,CO,SB,PR,SP
    [17] WORDS,CM
    [18] DEV+MD,SAD
    [19] UNIT+AM,ASAU
    [20] SUBCOST
    [21] WORDS+(TEMP,(RMB+RMW))pMI,SA
    [22] WORDS,CM
    [23] DEV+GD,LD
    [24] UNIT+GU,LU
    [25] SUBCOST
    [26] WORDS+(TEMP,(RMB+RMW))pGS,LN
    [27] WORDS,CM
    V
    VSUBCOST[L]V
    SUBCOST
    [1] NUMB+&(2,pDEV)pDEV,UNIT
    [2] CM+ 10 0 13 2 DFT"NUMB"
    [3] TEMP+pDEV
    V

```

```
VHEADER[.]V
V HEADER
[1] RTOT+RMW+10+13+RMB*2
[2] R1+((L((RTOT-pNAME)+2))+1
[3] R1,NAME
[4] 10
[5] RH+((L((RTOT-20)+2))+1
[6] RH,'SATELLITE BASIC COST'
[7] Y1+'6970717273'
[8] YEAR+Y1[(Y2-1),(Y2+2*YRN)]
[9] RH+((L((RTOT-26)+2))+1
[10] DO+RH,'(MILLIONS OF 19'
[11] LLAR+' DOLLARS)'
[12] DO,YEAR,LLAR
[13] 10
[14] 10
[15] RH+(RMB+RMW+10-4)+1
[16] RH,'RDTE      UNIT'
[17] 10
```

```
VOUTSPD[] v
V OUTSPD
[1] FYV+(FLYP-5)+123
[2] FY1+' FY '
[3] .FY2+ 4 0 DFT FYV
[4] FY3+' TOT'
[5] .10
[6] .10
[7] FY1,FY2,FY3
[8] .10
[9] .'. SCHEDULES'
[10] +(QRD=0)/NRD
[11] WORDS+' SPACECRAFT DESIGNS '
[12] NUMB+SSRS,QRD
[13] SUBLNCH
[14] WORDS,CN
[15] NRD:+(QME=0)/NME
[16] WORDS+' MISS EQUIP DESIGNS '
[17] NUMB+SSRME,QME
[18] SUBLNCH
[19] WORDS,CM
[20] NME:+(QINV=0)/NINV
[21] WORDS+' NEW SAT LAUNCHES '
[22] NUMB+SSNEW,QINV
[23] SUBLNCH
[24] WORDS,CM
[25] NINV:+(QREF=0)/NREF
[26] WORDS+' REFURB LAUNCHES '
[27] NUMB+SSREF,QREF
[28] SUBLNCH
[29] WORDS,CM
[30] NREF:+(QMTN=0)/NMTN
[31] WORDS+' MAINTENANCE FLTS '
[32] NUMB+SSI'TN,QMTN
[33] SUBLNCH
[34] WORDS,CM
[35] NMTN:+((+/LVS1)=0)/NLV
[36] WORDS+' LAUNCH VEHICLE 1 '
[37] NUMB+LVS1,(+/LVS1)
```

16


```
    VOUTLV[ ]V
    ▽ OUTLV
[1]  i0
[2]  →((+/COLV1)=0)/0
[3]  WORDS←' LV1 '
[4]  NUMB←COLV1,+/COLV1
[5]  SUBOTSP
[6]  W5←WORDS,CM
[7]  W5
[8]  →((+/COLV2)=0)/END3.
[9]  WORDS←' LV2 '
[10] NUMB←COLV2,+/COLV2
[11] SUBOTSP
[12] WORDS,CM
[13] →((+/COLV3)=0)/END2
[14] WORDS←' LV3 '
[15] NUMB←COLV3,+/COLV3
[16] SUBOTSP
[17] WORDS,CM
[18] END2:WORD$←' LTOT'
[19] NUMB←COLV,+/COLV
[20] SUBOTSP
[21] W6←WORDS,CM
[22] W6
[23] END3:i0
[24] WORDS←' TOT '
[25] NUMB←TOTPLLV,+/TOTPLLV
[26] SUBOTSP
[27] W7←WORDS,CM
[28] W7
    ▽
```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```
    ▽MESPD[□]▽
▽ MESPD
[1] CO1←L0.5+1.06×CORM
[2] CO5←CORDTE-CO1
[3] MEIN←(1.0154×MIN)+(0.06×1.0154×MU×LES×0.926)-MEDELT
[4] AVGC←MEIN+QINV
[5] VECT←SSNEW
[6] SP3
[7] COIME←SUM
[8] CO2←L0.5+COIM+COIME
[9] CO6←COINVES-CO2
[10] MEROP←23p0
[11] +(QREF=0)/ME1
[12] AVGC←AM×RR
[13] VECT←SSREF
[14] SP2
[15] MEROP←SUM
[16] ME1:MEMOP+23p0
[17] +(QMTN=0)/ME2
[18] AVGC←AM×MR
[19] VECT←SSMTN
[20] SP2
[21] MEMOP←SUM
[22] ME2:CO3←L0.5+MEROP+MEMOP
[23] CO7←COOPERAT-CO3
[24] CO4←CO1+CO2+CO3
[25] CO8←CO5+CO6+CO7
[26] OUTME
▽
```

```
VOUTME[1]V
  V OUTME
  [1] R1,NAME
  [2] DO,YEAR,LLAR
  [3] 10
  [4] 10
  [5] FY1,FY2,FY3
  [6] 10
  [7] '      FISCAL FUNDING'
  [8] 10
  [9] '      MISSION EQUIPMENT'
  [10] NUMB+C01,+/C01
  [11] SUBOTSP
  [12] W1,CM
  [13] NUMB+C02,+/C02
  [14] SUBOTSP
  [15] W2,CM
  [16] NUMB+C03,+/C03
  [17] SUBOTSP
  [18] W3,CM
  [19] NUMB+C04,+/C04
  [20] SUBOTSP
  [21] WORDS+'      MTOT'
  [22] WORDS,CM
  [23] 10
  [24] '      SPACECRAFT'
  [25] NUMB+C05,+/C05
  [26] SUBOTSP
  [27] W1,CM
  [28] NUMB+C06,+/C06
  [29] SUBOTSP
  [30] W2,CM
  [31] NUMB+C07,+/C07
  [32] SUBOTSP
  [33] W3,CM
  [34] NUMB+C08,+/C08
  [35] SUBOTSP
  [36] WORDS+'      STOT'
  [37] WORDS,CM
  [38] 10
  [39] W4
  [40] 10
```

```
[41] →((+/COLV1)=0)/0
[42] →((+/COLV2)=0)/OM1
[43] W6
[44] →OM2
[45] OM1:W5
[46] OM2:10
[47] 10
[48] W7
```

▽

5. SATELLITE SYSTEM OPTIMIZATION RISK, LOGISTICS, AND SYSTEM COMPUTER PROGRAM LISTING

The listing for the Satellite System Optimization and Risk Assessment Computer Program is shown in this section in APL language.

In order to correct an inconsistency in computing availability and expected numbers between the orbital service and ground-based service algorithms, extensive changes in the GNDSERV (page 5-6) and ORBSERV (page 5-8) programs were required. Namely, in one case, "total time" was defined as "program time;" in the other as "program time plus outage time." Both algorithms now use the "program time" definition.

The executive program (COMBINE) (page 5-3) has been changed to permit more computation than the original version permitted.

Minor revisions in two initialization programs - NOM (page 5-7) and GO (page 5-6) - were required to accommodate added input data (e.g., unit cost multiplier).

VCIN[11]▼

▼ CIN

[1] 'NOTE: ALL COSTS IN MILLIONS OF ',BASEYEAR,' DOLLARS.'

[2] SP 4; 'LIFT COST=';2 RND CLIFT←CEOS+COOS×NEEDTUG

[3] SP 4; 'LAUNCH SUPPORT COST=';2 RND OP; ' PER LAUNCH.'

[4] SP 4; 'SAT. UNIT COST=';2 RND UNIT

[5] SP 4; 'RDTE=';2 RND CRD

[6] SP 4; 'UNIT COST OF AVERAGE MODULE=';2 RND CSRU

[7] SP 4; 'UNIT COST OF EQUIPMENT REQUIRING SATELLITE RETURN TO GROUND=';2 RND CNRU

[8] SP 4; 'REPAIR COST OF SINGLE TRUNCATION=';2 RND UNIT×CRTRUNC

[9] SP 4; 'REPAIR COST OF SINGLE MODULE=';2 RND CSRU×CRSRU

[10] SP 4; 'COST OF SATELLITE REPAIR/REFURB ON GROUND=';2 RND CNRU×CRNRU

[11] SP 4; 'REPAIR/REFURB MULTIPLIER=';2 RND CRM

▼

```
    ▽COMBINE[]▽
    ▽ COMBINE;ALPHA;BETA;Z;A;K;N;PHOLD;Q;I;L
[1]   O+1-P
[2]   AB2←WEIBFIT T,[1.5] RNRU+(**-LNRU×T)×(RSRU+1-(1-**-T×LW)×G+1)×NNRU
[3]   ALPHA+AB2[1]
[4]   BETA+AB2[2]
[5]   I←1+SRUMAX
[6]   →L2+1FLAG=0
[7]   GNDSERV SREQ
[8]   ENRU←EN-(SREQ+ETR)+RB
[9]   HNRU+X1×THETA+ALPHA×!+BETA
[10]  ORBSERV SREQ
[11]  CT←CPRORG1 SREQ
[12]  'SERVICABLE SATELLITE, NO ORBITAL SPARE.'
[13]  AV+A0
[14]  OUTPRT
[15]  Z←(ALPHA+AB[1]),(BETA+AB[2]),AB←WEIBFIT T,[1.5] R+RNRU×(1-(1-**-LW×T)×G+1)
     )×M
[16]  →L1+1OSP=0
[17]  →L4+1SHORT=1
[18]  INPRT
[19]  CIN
[20]  L4:LI 1
[21]  ENRU←ENRU+ENRÜ×(SREQ+1)+SREQ
[22]  ORBSERV SREQ+1
[23]  AV+A1
[24]  'SERVICABLE SATELLITE, 1 ORBITAL SPARE.'
[25]  CT←CPRORG1 SREQ+1
[26]  OUTPRT
[27]  L1:LI 1
[28]  L2:'EXPENDABLE SATELLITE, NO ORBITAL SPARE.'
[29]  Z←(ALPHA+AB[1]),(BETA+AB[2]),AB←WEIBFIT T,[1.5] R+RNRU×(1-(1-**-LW×T)×G+1)
     )×M
[30]  TR+0
[31]  DUM+10×+/UNIT+UNITGR),(OP+OPGR),(CRD+CRDGR),(CLIFT+GCLIFT),CLIFT1←
     GCLIFT1
[32]  GNDSERV SREQ
[33]  'AVAILABILITY IS ' ;6 RND AVO
[34]  CT+EXP SREQ
[35]  TEST1
[36]  →L3+1OSP=0
[37]  GNDSERV SREQ+1
[38]  'EXPENDABLE SATELLITE, 1 ORBITAL SPARE.'
[39]  'AVAILABILITY IS ' ;6 RND AV1
[40]  CT+EXP SREQ+1
[41]  TEST1
[42]  L3:TR+TRHOLD
[43]  GNDSERV SREQ
[44]  CT←CPRORG2 SREQ
[45]  'RETRIEVABLE AND REFURBISHABLE SATELLITE, NO ORBITAL SPARE.
[46]  'AVAILABILITY IS ' ;6 RND AVO
[47]  TEST1
[48]  →0×1OSP=0
[49]  GNDSERV SREQ+1
[50]  'RETRIEVABLE AND REFURBISHABLE SATELLITE, 1 ORBITAL SPARE.'
[51]  'AVAILABILITY IS ' ;6 RND AV1
[52]  CT←CPRORG2 SREQ+1
[53]  TEST1
    ▽
```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

    "COUNT1"≡
" COUNT1 ; S; ZZ
L1  SP 4 ; 'PDMR=';2 RND CRD;?+, WHICH IS ;2 RND 100×CRD÷CT;ZZ+ PCT. OF TOTAL.
      +
L2  →4×1+/TNV=0
L3  SP 4 ; 'INVST.'=;2 RND INV;Z;2 RND 100×INV÷CT;ZZ
L4  SP 4 ; 'TRANS.'=;2 RND TRANS;Z;2 RND 100×TRANS÷CT;ZZ
L5  SP 4 ; 'MAINT.'=;2 RND MAINT;Z;2 RND 100×MAINT÷CT;ZZ
L6  SP 4 ; 'OPNS=';2 RND OPNS;Z;2 RND 100×OPNS÷CT;ZZ
L7  →0×1P=J
L8  SP 4 ; 'CAT. SAT. LOSSES=';2 RND CLOSS;Z;2 RND 100×CLOSS÷CT;ZZ
  "

```

```

    "CPPOC1"≡
" CPPOC1 S
L1  →L1×1SHPAR=J
L2  "RN+(S+(-RR))×CLITPT×PSPY+PNR+LS+2
L3  →L2
L4  L1 : "PAVS+(-RR)×(S×CLITPT1)+(CLITPT×PNR)+CLIFT×PSPY
L5  L2 : TNV+(UMT×S+CSB)+CSPU×NSRY×SPARFMD=1
L6  PPA1TPSPU+PSPU×SRNPAR×CSRNU×CRSPU
L7  PPA4TPNRP+RNPPU×CRNPPU×CNP
L8  →L8×S+UMTPT×S×PNR
L9  "ATNPT+RTPAIPNRP+PPTATPSPN
L10  OPNS+OP×E1
L11  CPPOC1+MAINT+OPNS+CRD+CLOSS+TNV
  "

```

```

    "CPPOC2"≡
" CPPOC2 S;?
L1  →L1×1SHPAR=1
L2  "PAVS+(-RR)×CLITPT×(RN×RR)-S-LS+2
L3  →L2
L4  L1 : "PAVS+(-CLIFT1)+CLIFT×RN-S-RR
L5  L2 : OPNS+RN×OP
L6  "ATNPT+CRM×NPT×PN-S-RR
L7  TNV+UMT×S+CSB
L8  CPPOC2+CRD+TNV+MAINT+OPNS+TRANS+CLOSS
  "

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

$\nabla ENSTAT2[\square]\nabla$
 $\nabla ETPL\leftarrow R \quad ENSTAT2 \quad M; N; SLOPES; STEPS; Z; F$
 [1] $Z\leftarrow (N+1), R\leftarrow TM+TC+1 \quad R=10$
 [2] $STOPPS\leftarrow (TC+M) \times (R\times 1-R+N)+N-STEPPS+(1-R\times N)\div 1-R$
 [3] $PTR\leftarrow S\times (STEPSS-1)+SLOPES-RANDOM+TM\times (1-R)\div M$
 [4] $\rightarrow 0$

7

$\nabla MRUNC[\square]\nabla$
 $\nabla PTR\leftarrow FMRUNC \quad MC; R; K; L$
 [1] $L\leftarrow (-\Theta P+\star-LNRU\times TC)\div TC$
 [2] $V\leftarrow 1 \quad TC+EPSILON$
 [3] $FMR\leftarrow ((S\times R)\div 1+(FPMATION\times R=1)-P)\times ((1+L\times TM)\times 1-R\times K)-L\times TC\times (1+(K\times R\times K+1)-(K+1)\times R\times K)$
 [4] $\div 1-R$
 [5] $\rightarrow 0$

7

$\nabla EXP[\square]\nabla$
 $\nabla Z\leftarrow P \quad P \quad S$
 [1] $P\leftarrow \star-S\times T\div MP$

7

$\nabla EXP[\square]\nabla$
 $\nabla CT\leftarrow EXP \quad S; Z$
 [1] $CT\leftarrow CRD+(INV+0)+(MAINT\leftarrow EN\times UNIT)+(OPNS\leftarrow EN\times OP)+TRANS\leftarrow (EN+Z\times (\div RB)\times (\lceil S \rceil$
 $\div 2)-S)\times CLIFF+1+Z\leftarrow SHARE=0$

7

```

    VGNDSERV[ ] v
    v GNDSERV S;Z;V;SI;Y;Q;R1;G1;ZZ;R2;G2;YY;T;M;A;B;APQ;L;M
    [1] ZZ+1+0*(Q+1-P),SI+*S
    [2] ZZ+1+0*(Z+H+RB*TH),(W+1-D*TH+ALPHA*ZZ),D+Z+TM*(BETA*ZZ+!+BETA)*BETA+Z+
        BETA-1
    [3] A+P+.*(L+TR+TH)-SI*1-TSR+TR FN S
    [4] B+Q+.*(M+TB+TH)-SI*1-TSB+TB FN S
    [5] X1+Z+APO+A+B
    [6] AV0+1-S*W*X1+1+X1
    [7] ETR+TRUNCS
    [8] RBA+RB
    [9] EN+(*RB)*ETR+S+EF+S*TM*W+TH*1+X1
    [10] RB+1
    [11] ERFG+EN-(+RB)*ETR+S+EF1+S*TM*W+TH*1+X1+(H+RB*TH)+APQ
    [12] RB+RBA
    [13] +0+1,S=1
    [14] YI+*Y*(V+S-1)+S
    [15] R1+P*1+(V*TVR+TR FN S)-S*TR FN V
    [16] R2+Q*1+(V*TVB+TB FN S)-S*TB FN V
    [17] G1+P*L+(Y*1-TVR)-YI*1-TR FN V
    [18] G2+Q*M+(Y*1-TVB)-YI*1-TB FN V
    [19] X3+(TAU+TH)+G1+G2+(Z*1+R1+R2)-(+V)*1--V*Z
    [20] ETR+TRUNCS
    [21] AV1+1-S*W*X3+1+X3
    [22] EN1+(*RB)*ETR+S+EF2+S*TM*W+TH*1+X3
    [23] RB+1
    [24] X3+(TAU+TH)+G1+G2+(Z*1+R1+R2)-(+V)*1--V*Z+H+RB*TH
    [25] ER*G1+EN1-(+RB)*ETR+S+EF3+S*TM*W+TH*1+X3
    [26] RB+RBA
    v

```

```

    VGO[ ] v
    v GO V
    [1] HW+HNW+HNRU+H
    [2] T+(DTINT+TM+NINT)*1NINT
    [3] M+NSRU
    [4] G+V[13]
    [5] LNW+LAM*AC*0
    [6] LW+LAM*FAC*LSRU
    [7] LNRU+LAM*FAC*LNRU
    [8] K+SRUMAX
    [9] DFTAIL+0
    [10] CRD+V[1]
    [11] OP+V[2]
    [12] UNIT+UNITVRC*V[3]
    [13] CRDGR+V[4]
    [14] OPGR+V[5]
    [15] UNITGR+UNITVFC*V[6]
    [16] CLIFT+V[7]
    [17] CLIFT1+V[8]
    [18] GCLIFT+V[9]
    [19] GCLIFT1+V[10]
    [20] +L1*1SHARE=1
    [21] CLIFT1+GCLIFT1+0.5*CLIFT+GCLIFT+12.78
    [22] L1:FLAG+V[11]
    [23] BASE+V[12]
    [24] CRSPU+CRTRUNC+CRNRU+CRM
    [25] CNRU+UNIT
    [26] COMBINE
    [27] NOM
    v

```

```

    VILLOOP[ ] V
    V Z←JLOOP K;ISTOP;T;J
    [1] ISTOP←K[ρK]
    [2] Z←1+J←1
    [3] L1:Z+Z,+/(J!N-I)×(2×J)÷(I+I+J)!KN+I+J←-1+1N-I+I+1
    [4] →L1×1ISTOP≠J
    ▽

```

```

    VINTP[ ] V
    V IJ←INT;A;J;K;N;KN;Z
    [1] KN←(Y←LNW÷LNU)+N+N×M×S
    [2] →(G=1 2)/L1,L2
    [3] →0,IJ←+N×LNW+LNU
    [4] L1:→0,IJ←(½LNU)×(2×I)×(I!N)÷(KN-I)×I!KN
    [5] L2:IJ←(3×I)×(I!N)×(½LNW×VN-I)×ILLOOP I
    ▽

```

REPRODUCIBILITY OF THE
 ORIGINAL PAGE IS POOR

```

    VLI[ ] V
    V ET S
    [1] +4×1(S≤30)
    [2] 30 1 ρ' '
    [3] →0
    [4] (S,1)ρ' '
    ▽

```

```

    VNOM[ ] V
    V. NOM
    [1] UNITVEC←LAMFAC+1
    [2] LNRU←LHOLD
    [3] LNNU←LNWHOLD
    [4] LW←LNWHOLD
    [5] CRM←CRMWHOLD
    [6] TA"←0
    [7] H←2
    [8] RB←REOS×RINV
    [9] →0×1NEEDTUC=0
    [10] RB←RB×ROOS
    [11] S←SREQ
    [12] TR←TRHOLD
    ▽

```

```

    V ORBSERV[1]V
    V ORBSERV S;ALPHA,BETA;RS;AB;T0;RSA0;Z;PNWI;PWI;PNW;PW;M1;M2;M3
[1] THOLD+T
[2] +L1×1G=0
[3] AB+(*LW),1+1E-10
[4] +L2
[5] L1:AB+WEIBFIT T,[1,5] RSACALC T
[6] L2:ALPHA+AB[1]
[7] BETA+AB[2]
[8] ADJ+1+H+THETA+ALPHA×!+BETA
[9] AB1+WEIBFIT T,[1,5] RSRU+1-(1-*T×LW)*G+1
[10] ADJ1+1+H+AB1[1]*!+AB1[2]
[11] +L3×1G=0
[12] #T+S+ENRU+ESRU+(M×S)×ADJ1×LW×T[ρT]
[13] +L4
[14] L3:RSAD+RSACALC,T0+ALPHA×(+BETA×!+BETA)+*BETA-1
[15] ET+S+ENRU+ESRU+ADJ1×(-RSA0)+(TM-T0)+THETA+ALPHA×!+BETA
[16] L4:E1+P2+ERF+ET×-1+*RB
[17] ENW+ESRU×PNW+1L+/PNWI+LHW×Z+INT
[18] EN+ESRU×PW+1L+/PWI+I×LW×Z
[19] EK1N+ESRU×1-PNW+PW
[20] +L5×1G=0
[21] SRUBAR+1+(+ET-S)×TRBAR+SRUTRUNC
[22] +L6
[23] L5:SRUBAR+((1-M×S)×(+I×PNWI)+(+I×PWI)+PNW+(ρI)×1-PW+PNW)+(+ET-S)×TRBAR
    +SRUTRUNC
[24] L6:A1+1-OUT1+(+TM)×(HK1H×EK1N)+(ENRU×HNRU)+(+RB)×(HW×EW)+HNN×ENH
[25] +L9×1OSP=0
[26] M1+(TAU×S-1)+S' ..
[27] +L9×1S=1
[28] Z+1+1/O*(A+T PW S),(B+(T+TR,TB) PW S1),(VI+V+S+S1+S-1),TH+LNNU
[29] RT+1+(S1×A)-S×B
[30] GT+T+(VI×TR×1-A)-V×TH×1-B
[31] M2+(P×GT[1])+(Q×GT[2])+((1+(P×RT[1])+(Q+1-P)×RT[2]))×HRB)-(TH×S1)×1-
    (HRB+H×RB) PW S1
[32] +L7×1G=0
[33] M3+(0,5×HW)×1-*HW×S×LNRU+LW×M
[34] +L8
[35] L7:M3+(0,5×HW)×1-(*-LNRU×HW)×RSACALC,HW
[36] L8:A1+1-OUT2+(+TM)×(ENRU×M1+M2)+(EW+ENH)×M1+M3
[37] L9:T+THOLD
    V

    V RND[1]V
    V X2+N RFD X1
[1] X2+(10,5+X3×10+N)+10*N
[2] A N IS THE NUMBER OF DECIMAL PLACES TO BE KEPT. V
    V

    V RSACALC[1]V
    V RSA+RSACALC T;R1;O1;R0;RI
[1] D1:R0+1-(O1×G+1)+RN+(G+1)×R1×(O1+1-R1-*LW×T)*G
[2] RSA+(*-M×N×LHW×T)×+/(((ρT)×O1×(I×M×S))×(R0×*(M×S)-T)×RW×I
[3] +O
    V

```

```

    VSP[1] V
    V DUM←SD S
    →4×1(S≤65) :
[1] DUM←65p' '
[2]
[3] →0
[4] DUM←Sp' '

```

V.

```

    ▽SRUTRUNC[□]▽
▽ FTR←SRUTRUNC;MSRU;I;Y;R;Z
  [1]   MSRU←(÷LSRU)×(+/(Y*I)÷I←1,C+1))-(Y←1---LSRU×TC)*G+1
  [2]   →(G= 0 1 2)/L0,L1,L2.
  [3]   L0:Z←(R←1-Y),MSRU←Y÷LSRU
  [4]   →L3
  [5]   L1:R←1-Y×Y
  [6]   →L3
  [7]   L2:R←(3×(1-Y)*2)-2×(1-Y)*3
  [8]   L3:FTR←NTRUNCS×R ENSTAT2 MSRU
    ▽

```

```

    ▽TEST1[□]▽
    ▽ TEST1;I
[1]  →L1×i(0=ρρCT)∨0=ρρH
[2]  CT←CT[I←(H=RNDM)/↑ρH]
[3]  FN←EN[I]
[4]  TRANS←TRANS[I]
[5]  MAINT←MAINT[I]
[6]  OPNS←OPNS[I]
[7]  L1:'NR. OF LAUNCHES=';2 RND EN
[8]  'PROGRAM COST=';2 RND CT
[9]  COUT1
[10] LI 1
    ▽

```

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

```

    \> VTRUNC\$[n]\>
    \> ETR<-T\$VTRUNC\$;T;M;RS
[1] T<- (TC+NINT)*NINT
[2] M<- (0,TC) NFWNTINT RS<-1, *-(T+ALPHA)*BETA
[3] ETR<-RS[\$RS] ENSTAT2 M

```

```

v WEIBFIT[0]v
v AB<-WEIBFIT TP;TUNIT;R;XY;PLP;P
[1] TUNIT<1
[2] AR<=((*(1+XY)+^-1+XY)+TUNIT),^-1+XY<,XY<=(PLP×●-●(R;^-1)+TP)⊗(PLP,PLP+P×●P<(R,
    ^-1)+TP)×(R;^-1),@TUNIT×((R+1+TP),1)↑TP
[3] _ A TP = MATRIX: TP<(T[1],T[2],...),[1,5] P[1],P[2],...

```

6. NASA SPACE TRACKING AND DATA NETWORK (STDN)

NASA facilities for tracking, command, and data acquisition for satellites were developed for three general classes of missions: deep space, manned space flight, and unmanned satellites. The earth station facilities for these missions have been termed the Deep Space Network (DSN), the Manned Space Flight Network (MSFN), and the Space Tracking and Data Acquisition Network (STADAN). An integrated NASA communication system (NASCOM) links these earth stations to each other and to control centers.

The STDN is a combination of MSFN and STADAN intended to consolidate the two systems and to provide spacecraft support using fewer earth stations than the parent networks.

STDN facilities and characteristics are summarized herein. These facilities and characteristics have been selected on the basis of more than a decade of operating experience and a thorough study (Ref. 6-1) of the support requirements for missions in the latter 1970's and the alternative configurations of earth stations to satisfy these requirements. The configuration described in this section is the preferred alternative of those studied and represents the most probable form of the consolidated earth station network for manned and unmanned satellites in the late 1970's.

The introduction of a Tracking and Data Relay Satellite (TDRS) in the 1979 time frame should result in fewer earth stations being required to support missions similar to those projected by NASA from 1973 to 1978. While requirements will change somewhat for the 1980's, the capabilities of the STDN as outlined here are assumed to carry through into the 1980's for purposes of BRAVO analysis for future missions.

Current STDN system capabilities and equipment are summarized in Table 6-1 for easy reference. The table lists the characteristics of the 15 primary STDN sites shown in Figure 6-1 as well as five special purpose

Table 6-1. System Capabilities and Equipment Chart

Site	Links			Telemetry				Command				Tracking	
	Rec	Cmd		Antenna Type	Frequency Band (12)	MFR	Data System	Antenna Type	Frequency Band	Nmitr	SCE	Antenna Type	Frequency Band
ULA	4	3		35' 40' SATAN SATAN	MULTIBAND MULTIBAND VHF VHF	4 4 2 2	STADAC	30' SATAN SCAMP	S VHF VHF	1-S 4-VHF	3	30' Dipole Array Minitrack	S VHF VHF
ACN	2	2		30' SATAN	S VHF	4 2	Augm. 642B	30' SATAN	S VHF	1-S 2-VHF	2	30'	S
BDA ⁽¹⁾	2	2		30' SATAN/ (10) YAGI ARRAY	S VHF	4 2	Augm. 642B	30' SCAMP	S VHF	1-S 2-VHF	2	30'	S
CYI	2	2		30' SATAN/ (10) YAGI ARRAY	S VHF	4 2	Augm. 642B	30' SCAMP	S VHF	1-S 2-VHF	2	30'	S
GDS ⁽⁵⁾	3	2		35' 30' SATAN	S S VHF	4 4 2	Augm. 642B	35' 30' SATAN	S S VHF	1-S 1-S 2-VHF	2	35' 30' Minitrack	S S VHF
GWM	2	2		30' SATAN	S VHF	4 2	Augm. 642B	30' SATAN	S VHF	1-S 2-VHF	2	30'	S
RAW	2	2		30' SATAN/ (10) YAGI ARRAY	S VHF	4 2	Augm. 642B	30' SCAMP	S VHF	1-S 2-VHF	2	30'	S
BUR	3	2		40' 30' SATAN SATAN	MULTIBAND S VHF VHF	4 2 2	STADAC	30' SATAN SATAN	S VHF VHF	1-S 3-VHF	2	30' Minitrack	S VHF
MAD	2	2		35' SATAN	S VHF	4 2	Augm. 642B	35' SATAN	S VHF	1-S 2-VHF	2	35' Minitrack	S VHF
MIL	3	3		30' 30' SATAN	S S VHF	4 4 2	Augm. 642B	30' 30' SCAMP	S S VHF	1-S 1-S 2-VHF	3	30' 30'	S S
ORR	4	3		35' 30' SATAN SATAN	MULTIBAND S VHF VHF	4 4 2 2	STADAC	30' SATAN SATAN	S VHF VHF	1-S 3-VHF	3	30' Dipole Array Minitrack	S VHF
QUI	2	2		40' SATAN/ SATAN ^(2,9)	MULTIBAND VHF	4 3	STADAC	Dual 14' SATAN SCAMP	S VHF VHF	1-S 3-VHF	2	Dual 14' Minitrack	S VHF
ROS ⁽⁹⁾	4	3		35' 35' SATAN SATAN	MULTIBAND MULTIBAND VHF VHF	4 4 2 2	STADAC	Dual 14' SATAN SCAMP	S VHF VHF	1-S 4-VHF	3	Dual 14' Dipole Array	S VHF
AGO	3	2		40' 30' SATAN ⁽¹¹⁾ SATAN	MULTIBAND S VHF VHF	4 2 2	Augm. 642B	30' SATAN SCAMP	S VHF VHF	1-S 3-VHF	2	30' Dipole Array Minitrack	S VHF

Footnotes on next page.

Table 6-1. System Capabilities and Equipment Chart (Cont'd)

	Links		Telemetry				Command				Tracking		
	TAN ⁽¹⁾	1	1	40°	MULTIBAND	4	Augm. 642B	Dual 14' SATAN	S VHF	1-S 2-VHF	1	Dual 14' Dipole Array Himi- track	S VHF
ETC ⁽³⁾	2	1	40°	SATAN 30° 30°	MULTIBAND VHF S S	4	STADAC Augm. 642B	SATAN 30° 30° SCAMP	VHF S VHF	2-VHF 1-S 1-S 2-VHF	1	Mimi- track 30° 30°	VHF S S
VAN	1	1	30°		S	4	Augm. 642B	30	S	1-S	1	30	S
ATS, ROS ^(4,6)	4	3	85°(5)	C		2	1-D ³ F	85°(5)	C	1-C	ATS 1-5	85°(5)	C
			SATAN	VHF		3		SCAMP	VHF	2-VHF	ATS F&G		
			15°	S&L		1		15°	S&L	1-S&L	ATS F EXP		
ATS, AVE ^(4,6)	3	3	40°	C		2	1-D ³ F	40°	C	1-C	ATS 1-5	40°	C
			SATAN	VHF		3		SCAMP	VHF	2-VHF	ATS F&G		
			15°	S&L		1		15°	S&L	1-S&L	ATS F EXP		
ATS, TRANS- PORT- ABLE GND, STATION (1,6)			40°	C		2	1-D ³ F	40°	C	1-C	ATS 1-5	40°	C
			SATAN	VHF		2		SCAMP	VHF	2-VHF	ATS F&G		
			15°	S&L		1		15°	S&L	1-S&L	ATS F EXP		
ATS, MIT ^(4,6)	2	2	21° 15°	C&UHF S&L		1		21° 15°	C S&L	1-C 1-S&L			

Notes:

- (1) Launch Support Sites
- (2) Space Diversity SATAN Antennas
- (3) Special Purpose Sites
- (4) ATS Dedicated Sites
- (5) ROS 85-2 Dish Shared with ATS
- (6) ATS Frequency Bands:

Bands	Receive	Command
VHF	136-138 MHz	117-157 MHz
UHF	835-855 MHz	-
L	1500-1530 MHz	1620-1700 MHz
S	2050-2100 MHz	2200-2300 MHz
C	3700-4200 MHz	5952-6425 MHz

(12) Multiband Receive:

136-138 MHz
400-410 MHz
1700-1710 MHz
2200-2300 MHz
2550-2610 MHz⁽⁷⁾
2600-2700 MHz⁽⁷⁾

- (7) Not fully implemented
- (8) ATS antennas not included.
- (9) Two SATANs are required for a space-diversity capability.
- (10) These SATAN/YAGI Arrays satisfy the requirement for a SATAN telemetry system at these locations.

Figure 6-1. NASA Space Tracking and Data Network (STDN)

sites: the Engineering Training Center (ETC), Greenbelt, Maryland, and four dedicated stations for the Application Technology Satellites (ATS), three of them collocated with other stations.

Table 6-1 lists for each site the number of receive and command links; the telemetry antennas, frequency, number of multifunction receivers (MFR), and data systems; the command antennas, frequency, number and frequency of transmitters, and number of spacecraft command encoders (SCE); and the tracking antennas and frequency. Abbreviations for earth stations and equipments listed in Table 6-1 are shown in Table 6-2.

Table 6-3 summarizes the requirements for NASCOM channels for each of the 15 primary STDN sites. The first ten sites listed should have wideband facilities while the remaining five stations can use narrow band facilities. However, narrow band facilities are listed as alternative solutions to wideband facilities for five stations where requirements might be satisfied by additional equipment for data stripping or data compression to reduce high rate real-time spacecraft data to fit onto 7.2 kbps lines. Regardless of the specific solution chosen in each case, the communications requirements listed for each site provide a good measure of the capabilities of the late 1970's.

Table 6-2. Abbreviations Used in Table 6-1

SITES

AGO	Santiago, Chile
ATS	Applications Technology Satellite(s) - dedicated earth stations or equipment
ACN	Ascension Island
BDA	Bermuda
BUR	Johannesburg, S. Africa
CYI	Grand Canary Island
ETC	Engineering Training Center, Greenbelt, Maryland
GDS	Goldstone, California
GWM	Guam
HAW	Hawaii
MAD	Madrid, Spain
MIL	Merritt Island, Florida
ORR	Orroral Valley, Australia
QUI	Quito, Ecuador
ROS	Rosman, N. Carolina
TAN	Tanana rive, Malagasy Republic
ULA	Fairbanks, Alaska

EQUIPMENT

SATAN	136 Mhz receive; 148 Mhz transmit command.
SCAMP	148 Mhz transmit command
SATAN/YAGI	136 Mhz receive-only array with capabilities of SATAN receive system
MINITRACK	136 Mhz angle tracking system
STADAC	Station Data Acquisition Control System (multiplexing formatting and real-time data transmission to Goddard Space Flight Center)
Augm. 624B	Real-time data transmission system using 624B computer, augmented to provide STADAC-compatible data transmission formats and functions plus storage to increase data buffering
MFR	Multifunction receiver
SCE	Spacecraft command encoder

Table 6-3. STDN Requirements for NASCOM Channels

Site	WB Data Channel	Wideband Solution			Narrowband Solution		
		Quantity ^a Narrowband Channels			Quantity		
		7.2 kbps	V	TTY	7.2 kbps	V	TTY
MIL	2-50.0 kbps or higher	- (3)	- (3)	- (2)	-	-	-
ROS	Present systems: 1-800 kHz analog 1-128 kHz analog 1-240 kbps digital	- (4)	- (3)	- (2)	-	-	-
CYI	1-28.5 kbps or higher	2 (1)	2 (1)	- (2)	4	3	2
ACN	1-28.5 kbps or higher	2 (1)	2 (1)	- (2)	4	3	2
HAW	1-28.5 kbps or higher	2 (1)	2 (1)	- (2)	5	3	2
GDS	1-28.5 kbps or higher	2	2	- (2)	4	4	2
ORR	1-28.5 kbps or higher	2 (1)	2 (2)	- (2)	-	-	-
MAD	1-28.5 kbps or higher	2	2 (1)	- (2)	-	-	-
AGO	-	-	-	-	2	2	2
ULA	1-38.0 kbps or higher 1-28.5 kbps or higher	1 -	- (1)	2 -	-	-	-
BUR	-	-	-	-	2	2	2
BDA	-	-	-	-	4	2	2
TAN	-	-	-	-	2	2	2
QUI	-	-	-	-	2	2	2
QWM	1-28.5 kbps or higher	1 (1)	3 -	- (2)	3	2	2

WB = Wideband
 7.2 kbps = Voice bandwidth data channel
 V = Voice channel
 TTY = Teletype channel

^aQuantities shown in parentheses are provided separately from the wideband or group (48 kHz) channel system; other quantities shown are provided as a sub-channelization of the wideband group (48 kHz) channel.

7. THE INTELSAT COMMUNICATIONS NETWORK

The Intelsat (International Telecommunications Satellite Consortium) Network provides high quality communications by satellite throughout most of the world, primarily among nations outside the Communist bloc. The system has grown rapidly since the first commercial operations in 1965. In 1974, 71 earth stations using 88 antennas will be operating, based on 1971 planning as shown in Figure 7-1. A further growth in the number of earth stations is anticipated, but at a much lower rate. The bulk of the increase in traffic, which is expected to grow at 15 to 20 percent per year, will be accommodated by augmenting the capacity of existing earth stations which are located to serve the principal traffic demands. The current Intelsat IV satellites have a capacity of about 5000 voice circuits or 12 television channels in each of the five primary satellites. Two additional satellites are in orbit to provide backup capacity in the event of degraded service or failure of primary satellites. It is planned that future generations of Intelsat satellites will have higher capacity to match the traffic growth.

The Intelsat system provides service primarily to telecommunications common carriers rather than directly to users since the Intelsat system usually interfaces the terrestrial network at the satellite earth stations. Rates charged to users by common carriers reflect the composite of costs to provide service, including switching and other distribution costs, and costs of alternative terrestrial transmission systems.

Table 7-1 lists the Intelsat system earth stations in existence or planned as of 1971 with their projected 1982 demand in terms of voice channels. The list provides system planners with approximate locations where the Intelsat system would be available to provide high quality, reliable, voice and wideband data communications service.

SOURCES: COMSAT ANNUAL REPORT,
1971, AND COMSAT ANNUAL
REPORT TO THE PRESIDENT
AND THE CONGRESS,
MAY 31, 1971

Figure 7-1. Planned Growth of Intelsat System

Table 7-1. Intelsat Earth Stations and Projected 1982 Traffic Demand¹

Station Locations		No. of Voice Channels	Station Locations	No. of Voice Channels
Atlantic Basin	<u>North America</u>		<u>Africa</u>	
	U. S., Maine, Andover ²	8000	Ethiopia	<100
	U.S., W. Va, Etam ²	1300	Sudan, Khartoum	100
	Canada, N.S., Mill Village		Algeria	<100
	<u>Europe</u>		Morocco	125
	U.K., Goonhilly Downs ³	2800	Ivory Coast	150
	Germany, Raisting ³	1050	Nigeria	125
	France, Pleineur Bodou	1300	Senegal	<100
	Belgium, Brussels	375	Congo	<100
	Netherlands	300	Cameroon	100
Near East	Nordic ⁴	275	Gabon	<100
	Switzerland	450	Malagasy Rep.	<100
	Italy, Fucino ³	1150	<u>Caribbean, Central and South America</u>	
	Spain, Buitrago ³	675	Ascension	<100
	Spain, Grand Canary ³	<100	Barbados	250
	Greece	275	Trinidad/Tobago	250
	Yugoslavia	<100	Martinique	125
	Turkey, Ankara	<100	Jamaica	500
	Iran	150	Puerto Rico, Cayey	1000
	Israel	1150	Mexico	425
Pacific Basin	Kuwait ³	<100	Panama	275
	Saudi Arabia	<100	Venezuela	275
	<u>North America</u>		Colombia	250
	U.S., Calif., Jamesburg ⁵	5800	Peru	375
	U.S., Wash., Brewster ⁵		Brazil	550
	Canada, B.C., Lake Cowichan	200	Argentina	575
	U.S., Alaska, Talcetna	500	Chile	325
	<u>Oceania</u>		<u>Asia and Australia</u>	
	U.S., Hawaii, Paumalu	3400	Japan ³	1730
	U.S., Guam, Fulantat	450	Korea	320
Indian Ocean Basin	<u>S. E. Asia and Australia</u>		China, Rep. of ³	575
	Australia, Ceduna	1300	Phillippines ³	700
	China, Rep. of ³	<100	Viet Nam	400
	Japan ³	325	Thailand ³	460
	Philippines ³	<100	Singapore ³	<100
	Hong Kong	325	Australia, Moree	1050
	Singapore ³	325	Australia, Carnarvon	100
	Malasia	150		
	Thailand ³	<100	<u>Near East</u>	
	Indonesia	225	Kuwait ³	200
<u>India Area</u>	Ceylon	<100	Bahrain	-200
	India, Dehradun	425	Saudi Arabia ³	<100
	India, Arvi	1100	Iran ³	<100
	Pakistan		Lebanon	125
			<u>Africa</u>	
<u>Europe</u>	UK, Goonhilly Downs ³		Kenya	375
	Germany, Raisting ³		Zambia	<100
	Spain, Buitrago ³		Nigeria ³	<100
	Italy, Fucino ³		<u>Europe</u>	
			UK, Goonhilly Downs ³	1800

¹Traffic demand estimated in equivalent number of 4 kHz one-way voice channels.

²Either Etam or Andover capable of handling the total U.S.-Atlantic Basin traffic.

³Communicates with satellites in more than one ocean basin.

⁴Serves Norway, Sweden, Finland, Denmark.

⁵Either Jamesburg or Brewster capable of handling all U.S.-West Coast traffic to other parts of the Pacific Basin.

The 1982 (selected to show demand a decade into the future) traffic demand for these earth stations, in terms of equivalent voice channels, has been estimated based primarily on traffic estimates and growth rates from Comsat Corporation (the operating agency for Intelsat), AT&T, and the Federal Communications Commission, assuming a 15 percent annual growth rate. Demand for other years can be calculated by using the 15 percent growth rate, i.e., traffic doubles in five years. Where a prospective system requires voice or low speed data channels adding up to a small fraction of a particular earth station's normal load, service can be expected to be available. However, requirements for a large fraction of capacity, particularly high speed data links, may require special arrangements and additional equipment, particularly in the less industrialized countries. Stations with fewer than 100 voice channels should be assumed to provide only a few voice channels to any proposed system use.

8. TELECOMMUNICATION SYSTEMS LEASE COSTS

This section presents data on lease costs to provide a basis for comparing the cost of communications using prospective satellite systems with the cost to provide the same communication services using leased lines in the terrestrial communication network for voice and data transmission. These costs are representative of communications costs for the areas of the world with developed communication systems and were taken from Reference 8-1. All costs have been adjusted to 1973 dollars from 1969 dollars in the data source using the Bureau of Labor Statistics wholesale price index for all commodities to adjust for inflation and using a four percent per year declining trend (constant dollars) in communications costs. Commodity indices for 1969 and 1973 were 106.5 and 130.7, respectively.

Annual costs in 1973 dollars are shown in Table 8-1 for U.S. domestic leased voice circuits at several distances which are the break points in the rate charged per mile. Figure 8-1 shows the 1973 annual costs per circuit from Table 8-1 as a function of distances in kilometers. For convenience in calculations, the actual cost variation has been approximated in the range up to 804 kilometers (500 miles) by two straight lines.

Transoceanic leased voice circuit costs in 1973 dollars are shown in Table 8-2 together with the corresponding distances. The basic data, in cost per channel per month, have been restated in terms of costs per circuit (two channels per circuit) per year in addition to being adjusted to 1973 dollar costs. These costs are composite costs of the communications media used, essentially satellite and submarine telephone cables, established by international agreements. The user has no control over the medium used by the carrier to provide service and no distinction in rates is made relating to the medium actually used. Thus, comparisons using these data would be between the costs of prospective space systems and the costs of

Table 8-1. Lease Costs, U.S. Domestic Voice Circuits

DISTANCE		COST/MONTH ¹ (1969 Dollars)	COST/YEAR (1973 Dollars)
(mi)	(km)		
25	40	82.5	1,032
100	161	255.75	3,198
250	402	503.25	6,293
500	804	792.00	9,903
1500	2414	1617.00	20,219

¹Duplex (two-way circuits) costs shown here are 10 percent greater than costs per channel (one way or "simplex"), per FCC tariffs.

Figure 8-1. U.S. Leased Duplex Voice Circuit Costs, 1973 Dollars

Table 8-2. Lease Costs, Transoceanic Voice Circuits

From	To	Cost/channel per Month (\$1969)	Approx. distance (km) ¹		Cost/circuit per Year \$1000, 1973
			Actual	Shortest	
Japan	Philippines	16,582	3140		380
Japan	Guam	10,987	2670		264
Hawaii	Japan	16,506	6270		396
Hawaii	Philippines	15,120	8620		363
Hawaii	California	8,064	4020		194
Hawaii	Colorado	8,064	5460		194
Hawaii	Pennsylvania	8,064	7820		194
California	Guam	16,128	9650	9170	387
Nebraska	Okinawa	21,571	11400	9170	518
Nebraska	Puerto Rico	5,040	3940		121
Nebraska	Spain	11,945	7400	5550	287
N. Dakota	Bermuda	6,048	3540		145
Georgia	Puerto Rico	5,040	2570		121
Virginia	Panama	7,812	3280	1930	187
Virginia	Bermuda	6,048	1380		145
Virginia	Paris	12,933	6300	5550	310
Virginia	Stuttgart	12,627	6780	5950	303
Maryland	United Kingdom	13,392	5950	5310	321
N. Jersey	Spain	11,945	5870		287
Florida	Bahamas	2,520	322		60
Florida	Puerto Rico	5,040	1800		121
Florida	Cuba	1,008	481		24
Florida	Jamaica	5,976	1010		143
Panama	Uruguay	11,592	5620		278

¹ Shortest foreign-U.S. distance. Great circle distance from foreign point to nearest major U.S. city.

leasing from the established common carrier network, rather than costs of leasing service from terrestrial systems exclusively. The cost data have been plotted in Figure 8-2 as a function of distance, using two straight-line curves fitted by inspection to represent the cost/distance relationship. Substantial variation about the curves is evident, reflecting the variability of factors which bear on the international agreements. For purposes of projecting costs into the future, the cost/distance curves are preferable to a matrix of costs for each pair of countries, or areas within countries. The curves can be projected with more certainty than the individual link costs.

Costs for transoceanic links to and from the contiguous United States are related to the great circle distance between the foreign end of the link and the nearest major city in the U.S. rather than to the nominal point within the U.S. Thus, the actual transoceanic rate is the same regardless of the location within the U.S. and the curves of Figure 8-2 will provide the correct costs when distances are measured in the proper manner.

Table 8-3 shows interexchange lease costs for 500 kilometers for voice circuits in foreign countries. The sample includes primarily European countries but rates for other foreign countries in the non-Communist part of the world generally fall within the range of variation of costs shown in the table. These costs tend to vary directly with distance. For some of the countries shown, rates are a constant amount per kilometer while, for others, the cost per kilometer declines somewhat with increasing distance. Use of the average value of \$29.00 per year per kilometer per circuit for estimating costs appears to offer the best compromise between simplicity of calculations and accuracy of results.

Table 8-4 lists international voice circuit lease costs among European voice circuits. The same value may be assumed for projections of costs for other foreign areas on the basis that the technology used is similar throughout the world and most countries have an interest in promoting good communications.

Figure 8-2. Leased Duplex Voice Costs, Transoceanic, 1973 Dollars

Table 8-3. Lease Costs, Interexchange Voice Circuits, Foreign

Country	Cost Per Month @ 500 km (311 mi) (\$1969)
Belgium	\$ 1400
Denmark	550
France	1350
W. Germany	2250
Greece	1600
Italy	1410
Norway	775
Portugal	1100
Turkey	1280
United Kingdom	600
Australia	1317
Japan	840
Philippines	600
Average	\$ 1159

Average cost per kilometer (1969 dollars) = \$27.82 per year, per km

Average cost per kilometer (1973 dollars) = \$29.00 per year, per km

or = \$ 2.42 per month, per km
 or = \$ 3.89 per month, per mile

Table 8-4. Lease Costs, International Voice Circuit, Europe

From	To	Cost Per Month	Distance (km)	Annual Cost/km (1969 \$)
London	Oslo	3026	1205	30.1
London	Copenhagen	3035	977	37.3
London	Belgium	1820	367	59.5
London	Frankfurt	2637	660	47.9
London	Greece	8886	2389	44.6
London	Paris	1851	367	60.5
London	N. Italy	3271	1046	37.5
London	Lisbon	6795	1564	52.1
Oslo	Belgium	4639	1255	44.4
Oslo	Copenhagen	1209	595	24.4
Oslo	Paris	5685	1385	49.3
Oslo	Frankfurt	3267	1368	28.7
Copenhagen	Frankfurt	2385	692	41.4
Copenhagen	Belgium	3528	772	54.8
Paris	Lisbon	5489	1403	46.9
Paris	Ankara	8073	2735	35.4
Paris	N. Italy	2874	692	49.8
Paris	S. Italy	4181	1384	36.3
Italy	Ankara	8429	1850	54.7
Italy	Greece	4704	965	58.5
Average				44.70

Average cost per circuit (1969 dollars) = \$44.70 per year, per km

Average cost per circuit (1973 dollars) = \$46.58 per year, per km

or \$ 3.88 per month, per km
 or \$ 6.25 per month, per mile

The cost trend of a three-minute public telephone call of 500, 1000, and 2000 miles in the United States is shown in Figure 8-3. Data for the period from 1919 to 1972 are shown in current (current at the time, or actual) dollars. The costs for the latter part of this period, 1959 to 1972, have been stated in constant 1972 dollars, using the Bureau of Labor Statistics wholesale price index for all commodities, and have been extrapolated to 1995.

The average rate of decrease of four percent per year for a 1000-mile call, as shown in the figure, has been selected as an indicator of long-haul communications cost trends for projecting costs of communications, both U.S. and foreign, from the currently prevailing costs. The decline in costs reflects the interaction between growth in the demand for communications and decreasing cost per call due to advances in communications technology and the economies of scale and heavier traffic. This interaction and the effect on cost can be expected to be similar throughout the world.

Figure 8-3. Cost Trend, Public Telephone Cost of Station-Station Day Call, First Three Minutes, U.S.

9. LINE-OF-SIGHT MICROWAVE RELAY COMMUNICATIONS SYSTEM COSTS

Line-of-sight microwave relay trunk lines are the least expensive longer-haul terrestrial communications medium under most circumstances. These trunks make up the bulk of the AT&T Long Lines Department network in the contiguous United States (along with aerial or buried telephone cables). Special purpose carriers also have assumed the use of microwave relay systems for inter-city and national voice/data transmission in proposals for systems to service special segments of the communications market, e.g., airline operations data, or business voice and digital data communications.

Where terrestrial transmission costs are required for dedicated communications facilities of systems in the planning stages, microwave relay costs can be used as representative of costs for communications systems which might actually include other media such as aerial or buried cable or high-frequency radio. Even where a detailed system design might show other media to be preferable, costs for such media are not so different, and the likelihood of their being selected is not so great as to disturb overall communications costs significantly.

In order to provide some insight into the cost relationships for microwave relay systems, the characteristics and costs of a domestic U. S. system proposed by the Data Transmission Company (Datran) subsidiary of University Computing Company are given below and analyzed using data from additional sources. From the data and analysis, costs and cost relationships are developed which are useful in estimating costs of microwave relay systems with different configurations.

9.1 THE DATRAN SYSTEM

The system proposed to the Federal Communications Commission by Datran would connect 35 cities using a single trunk microwave relay line

and spur lines, as shown in Figure 9-1. Trunk lines and spur line relays would transmit digital data at carrier frequencies in the 4-6 GHz band. Relays would be spaced at approximately 30-mile (48 km) intervals. Distribution at traffic centers, shown in Figure 9-2, would use 11 GHz microwave relays spaced at five miles (8 km); and subscribers would be connected to the distribution microwave relays by cable. Message switching would be accomplished at ten District Offices located in ten of the 35 traffic centers; a single Regional Office would switch messages among the ten District Offices. Message switching would require no more than three seconds to establish a connection. Availability was estimated to be 99.98 percent. P.01 (probability of less than one percent of not getting a circuit) service would be provided during the busy hours. The system is designed to ensure an error probability of less than 10^{-7} .

Time division multiplexing (TDM) would be used with phase shift keying (PSK) to allow simultaneous broadcast by up to six compatible subscribers. Channel sampling at 20 kilobits per second (kbps) would be used for order wire voice. Initially, data rates up to 2 kbps would be available in the asynchronous mode and up to 14.4 kbps in synchronous mode. Higher rates, 19.2-48.0 kbps, would be offered later as the market required. Changes in capacity would be accomplished by changing channel equipment modules.

Maintenance would be simplified by the modular design of equipment, designed for field replacement of malfunctioning modules. Transportable spare stations and modules would be used to patch around catastrophic failures. One maintenance crew, consisting of seven persons, would be responsible for 10 microwave stations.

Investment costs for the system over the six years of system installation are shown in Table 9-1. Of the \$349M total costs shown, transmission and switching account for \$179M, and local distribution \$161M. Not shown is \$69M in facilities, which would probably be customer-owned.

Figure 9-1. Datran Microwave Relay System

Figure 9-2. Datran Microwave Relay System Configuration

Table 9-1. Datran Microwave Relay System Investment Cost (\$M)

	Year						Total
	1	2	3	4	5	6	
Trunks, Spurs	1.5	86.1	26.7	0	0	0	114.3
Dist. Office Switching	1.5	9.5	17.2	21.0	10.8	0.29	60.0
Regional Office Switching	0	0	0	1.4	3.7	0	5.1
Local Distrib.	0	0	21.5	62.8	56.2	20.5	161.0 ¹
Vehicles	0	0.4	0.5	0.5	0.4	0.5	2.3
Other	0	4.2	2.1	0	0	0	6.3
Total	3.0	100.2	68.0	85.7	71.1	21.0	349.0

¹Approximately 70 percent of total local distribution costs.

The following charge rates for switched message service were proposed:

<u>Data Rate (kbps)</u>	<u>Cost, ¢/min</u>	<u>Cost, ¢/kilobit</u>
0.15	8.0	0.890
4.80	19.5	0.068
9.60	35.0	0.061
14.40	47.0	0.054

Customers would be billed for actual message time, based on a six-second initial period and six-second increments for additional time. The combination of three-second switching time and six-second billing interval would offer distinct cost advantages for customers with substantial amounts of traffic in messages of only a few seconds duration. The current common carrier network, by comparison, requires approximately 20 seconds for switching and bills for an initial three-minute period at the minimum.

9.2 UNIT INVESTMENT COSTS, MICROWAVE TERMINALS AND RELAYS

Investment costs of microwave terminals and relays are broken down to the level of major components and functional elements in Table 9-2, using data from Cosgrove and Chipp (Ref. 9-1). The \$161,600 cost per relay station is divided approximately one-third each to building, site, and power; electronics and antenna system; and installation and engineering. Costs are essentially independent of the number of channels carried.

Terminal costs show a similar apportionment of costs for small capacity terminals. However, the multiplexing equipment required is directly related to the terminal capacity, and costs for this equipment increase as the 0.85 power of channel capacity. Costs for large terminals with hundreds of channels are dominated by multiplex equipment costs and the attendant costs for documentation, spares, and support equipment.

The unit costs of terminals and relays as a function of the number of channels of capacity are shown in Figure 9-3. These costs are 14 percent greater than those based directly on the Cosgrove and Chipp data in order to match the Datran estimates.

Table 9-2. Microwave Relay Investment Costs

30-mile hops

150-ft guyed tower

7-8 GHz frequency

4-ft antennas

Typical Terminal	Costs (\$1000s)			
No. of 4 kHz Telephone Channels	12	24	60	120
Electronics (\$19.5), 160 ft Waveguide (\$1.0) Antenna & Tower (\$6.0), Hardware (\$1.0) Multiplex with Signalling	27.5 27.2	27.5 42.2	27.5 90.0	27.5 162.0
Total Electronics Cost	54.7	69.7	117.5	189.5
Documentation (6.3%) Transportation (2%), Spares (7%), Ground Support Equip. (6.3%) Total 21.6% of Electronics Hardware Cost Installation, Engineering	11.8 67.0	15.1 68.0	25.4 71.0	40.9 76.0
Bldg. (200 ft ² , \$5.0); Power (15kw \$20.0); Commercial Power (\$10.0); Land, Grading, Roads, Tower Foundation (\$14.0); Fuel Storage (1000 gal, \$1.0); Fencing (800 ft, \$8.0)	58.0	58.0	58.0	58.0
Total	191.5	210.8	271.9	364.4

Typical Relay (costs essentially independent of channel capacity)	Cost (\$1000s)
Electronics (\$38.0), Waveguide (\$2.0) Tower and Antenna (\$6.5), Hardware and Miscellaneous (\$2.5)	49.0
Documentation, Transportation, Spares, Support Equipment, Total 21.6% of electronic equipment	10.6
Installation, Engineering	44.0
Building, Power, Site Preparation, Roads, Fences, (same as for terminal)	58.0
Total	161.6

Figure 9-3. Line-of-Sight Microwave Terminal and Relay Station Investment Costs vs Capacity

The top curve of the figure includes the additional costs of message switching at \$1160 per channel.

9.3 ANNUAL OPERATIONS AND

Annual costs of operating and maintaining microwave relay systems are sensitive to system configuration. Low capacity, simple systems consisting of two terminals and a very few relays tend to have higher personnel costs and lower spares costs per dollar of initial investment than networks with many terminals and high capacity. The differences are the result of scale effects (doubling a terminal's cost may increase personnel costs by only a small fraction) and equipment mix (high capacity networks have a higher proportion of multiplexing and switching equipment cost, and thus a higher proportion of spares costs).

Differences due to configuration are apparent in the estimates of annual costs in Table 9-3 for two systems. One system, used by Cosgrove and Chipp for an example, is a single trunk system, 3000 miles long, with two terminals of 60 channel capacity. Switching equipment is not included. The other, the Datran system, has somewhat more than twice the length (and number of relays) and 36 terminals, most of which have channel capacities of 1000 to 2000. Switching equipment is included. Annual costs for the former were 15.7 percent, for the latter, 11.2 percent of investment. A value of 14 percent of initial investment should be used for annual operations and maintenance costs (capital recovery costs not included) for relatively short systems with two or three terminals and relatively few channels. For systems approximating either of the example systems in the table, the corresponding percentages may be used.

Table 9-3. Annual Operations and Maintenance Cost -
Microwave Relay Systems

Cosgrove & Chipp			Datran		
(Two Terminals, 99 Relays) (no switching costs)			(36 Terminals, 241 Relays) (switching costs included)		
Cost Element and Cost Relationship	Annual Cost (\$1000s)	% of \$16.6 M Invest.	Cost Relationship	Annual Cost (\$1000s)	% of \$179 M Invest.
Personnel (104 @ \$16,000) ¹	1810	10.9	Personnel (374 @ \$18,200) ²	6820	3.8
Replacement parts (10% of electronics cost)	511	3.1	Replacement parts (10% of electronics cost)	12,000	6.7
Utilities (101 stations @ \$2000)	202	1.2	Utilities (277 stations @ \$2280) ²	632	0.4
Fuel Oil (101 stations @ \$300)	30	0.2	Fuel Oil (277 stations @ \$340) ²	95	0.1
Misc. (1/4% of investment)	42	0.3	Misc. (1/4% of investment)	448	0.2
Total	2595 ³	15.7	Total	19,995 ³	11.2

¹Includes 9% overhead and administration.

²Datran costs are about three years later than Cosgrove & Chipp data and appear to be about 14% higher. Cosgrove & Chipp unit costs have been increased 14% as appropriate for application to Datran system.

³Does not include capital recovery costs.

10. U. S. POSTAL SERVICE RATES

As an alternative to the transfer of data by communications satellite, the Postal Service may be used for transport and delivery of data or information in printed copy, photographs, or rolls of tape. The Postal Service rates below can serve as a basis for estimating cost for cost-effectiveness comparisons with space systems.

Rates charged by the Postal Service cover much more than the transportation of mail from one place to another. The rates also cover the costs of mail collection, sorting according to destination, local and long-haul transportation, further sorting, and local transport and delivery. Costs other than transportation comprise the bulk of the costs, as seen below.

	Percent of Total Costs
Collection	9
Processing	32
Transporting	11
Delivery	42
Administration	<u>6</u>
	100

Processing and delivery costs are responsible for three-fourths of total costs. Comparisons of costs for postal services with costs of information transfer by satellite must include the corresponding processing and sorting function costs for the system which uses satellites for "transportation" if the comparisons are to be valid.

Postal Service mail categories and charges are summarized below in sufficient detail to permit calculation of mailing costs according to the class of mail, the kind of sender, and the nature of the material.

Rates for most mail classes vary with distance, with rate steps related to eight postal zones. Zone 1 surrounds the originating office direct

service area, and Zones 2 through 8 are circular bands at increasing distance. Zone charts which tabulate destination postal zip codes by zone are used by post offices to determine zones and postal rates. These zone charts vary with the location of the origination post office. They are cumbersome to use in generalized studies inasmuch as zone charts for all originating post offices of concern in a study must be at hand in order to determine postal rates. Postal rates are tabulated on the following pages of this section in the form used by the Postal Service, i.e., with respect to zones.

Table 10-1 relates these zones to their approximate distances from the originating office, allowing the zone distance between two points to be determined without resort to zone charts of either point.

Table 10-2 outlines the characteristics, limitations, and costs of postal service by the major mail classifications, first through fourth class. Tables 10-3 through 10-6 provide rates detail that is too extensive for the format of Table 10-2.

The detail in Table 10-2 and the supporting tables will be adequate in most cases to determine postal rates for specific prospective mail usage. In case of doubt, the main post office of any large city can provide additional clarification.

Table 10-1. Approximate Distances from Los Angeles
to Postal Zones 1 through 8

Zone	Distance, miles ¹
1	Less than 50 ²
2	50 to 125
3	125 to 250
4	250 to 600
5	600 to 1000
6	1000 to 1400
7	1400 to 1850
8	More than 1850

¹Distances are approximate, based on scaling distances from Los Angeles to Zone boundaries as identified from the Postal Service Official Zone Chart for Los Angeles.

²Less than 50 miles but greater than radius served directly by the originating post office.

Table 10-2. Principal Mail Categories and Rates, U.S. Postal Service

	First Class	Airmail	Priority
Users, Uses	Letters, cards, business reply mail; sealed parcels	Same as first class	Sealed parcels
Characteristics, Limitations	Written, typed material must go first class Privacy assured, letters and sealed packages 12 oz or less	Same as first class, except: 8 oz or less	Same as first class, except: >8 oz up to 70 lb
Handling, Outgoing Transportation	Top priority-first dispatch Fastest surface or space-available air over 200 miles	Same as first class Fastest available	Same as first class Fastest available
Cost	6¢/card 8¢/oz Bus. reply: 8¢/card <2 oz, 8¢/oz + 2¢ each piece >2 oz, 8¢/oz + .5¢ each piece	9¢/card 11¢/oz Bus. reply: 11¢/card <2 oz, 11¢/oz + 2¢ each >2 oz, 11¢/oz + 5¢ each	See Table 10-3

1 First Class mail is, essentially, "unguaranteed airmail". Currently a large portion, roughly three-fourths, of first class mail from post offices in major metropolitan centers goes by air to destinations more than a few hundred miles away.

Table 10-2. Principal Mail Categories and Rates, U.S. Postal Service (cont'd)

	Second Class ¹			
	Zone Rate Publ.	Classroom Publ.	Non-Profit Publ.	Transient Rate
Users, Uses	Mass circulation magazines and business publications	Publishers of weekly scholastic magazines and Sunday School journals	Churches, schools, labor unions, fraternal orders, scientific societies, veterans' org., Scouts	General public
Characteristics, Limitations				
Handling Outgoing	Within 24 hours ²	Same as column to left	Same as column to left	Same as column to left
Transportation Incoming	Fastest surface No later than 2nd day	Same	Same	Same
Cost	See Table 10-4	See Table 10-4	See Table 10-4	6¢ first 2 oz 1¢ per additional oz

¹Rates and characteristics of second class mail delivered in the same county have been excluded from the table because they would be of no value to the purposes of this document.

²Major publishers pre-sort and deliver to the post office on schedules designed to minimize post office costs. These arrangements typically result in faster service.

Table 10-2. Principal Mail Categories and Rates, U.S. Postal Service (cont'd)

	Third Class			Controlled Circulation
	Single Piece Rate	Bulk Rate, Reg.	Bulk Rate, Non-Profit	
Users, Uses	Greeting cards, small parcels, printed matter, booklets, mail order catalogs, general public	Quantity advertising newsletters, booklets, catalogs, samples, seeds	Quantity mailings for fund raising newsletters, reports, booklets, non-profit corporations	Magazines & periodicals not 2nd class because circulated to readers without charge, trade publications
Characteristics, Limitations	Less than one pound per piece	Less than one pound per piece	Less than one pound per piece	25% non-advertising min. 24 pages, minimum
Handling Outgoing	Within 24 hours	Same	Same	Same
Transportation	Earliest surface	Same	Same	Same
Incoming	No later than 2nd day	Same	Same	Same
Cost	8¢, 1st 2 oz 2¢ per add'l oz	Circulars: 23¢/lb, 4.0-4.2¢ each minimum Books: 17¢/lb 4.0-4.2¢ each minimum	Circulars: 11¢/lb 1.7¢ each, minimum Books: 8¢/lb 1.7¢ each minimum	15¢/lb 4¢ each, minimum

¹The higher minimum rate applies when more than 250,000 pieces are mailed per year.

Table 10-2. Principal Mail Categories and Rates, U.S. Postal Service (cont'd)

Fourth Class				
	Educational Materials	Library Materials	Parcel Post	Catalogs
Users, Uses	Books, films, catalogs, recordings, printed music, other educational materials, book and record publishing clubs, book dealers	Similar to "educational materials" category but mailed by libraries or other educational institutions	All mailable matter not in any other class	Catalogs and similar printed and bound material
Characteristics, Limitations			70 pounds, max.	8 oz to 10 pounds, 24 pp or more individually addressed
Handling Outgoing Transportation Incoming	Within 24 hours Earliest surface Within 24 hours	Same Same Same	Same Same Same	Same Same Same
Cost	14¢, first pound 7¢ each add'l pound	6¢, first pound 2¢ each add'l pound	See Table 10-5	See Table 10-5

Table 10-3. Priority Mail Rates

Weight over 8 ounces and not exceed- ing (1 lbs)	RATE					
	Local Zones 1 2, and 3	Zone 4	Zone 5	Zone 6	Zone 7	Zone 8
1	1.00	1.00	1.00	1.00	1.00	1.00
1 1/4	1.20	1.22	1.25	1.30	1.30	1.50
2	1.40	1.43	1.51	1.60	1.68	1.77
2 1/4	1.60	1.65	1.76	1.90	2.02	2.16
3	1.80	1.86	2.01	2.20	2.36	2.54
3 3/4	2.00	2.08	2.26	2.49	2.69	2.93
4	2.20	2.30	2.52	2.79	3.03	3.31
4 1/2	2.40	2.51	2.77	3.09	3.37	3.70
5	2.60	2.73	3.02	3.39	3.71	4.08
6	3.08	3.23	3.58	4.03	4.43	4.88
7	3.56	3.73	4.14	4.67	5.15	5.68
8	4.04	4.23	4.70	5.31	5.87	6.48
9	4.52	4.73	5.26	5.95	6.59	7.28
10	5.00	5.23	5.82	6.59	7.31	8.08
11	5.48	5.73	6.38	7.23	8.03	8.88
12	5.96	6.23	6.94	7.87	8.75	9.68
13	6.44	6.73	7.50	8.51	9.47	10.48
14	6.92	7.23	8.06	9.15	10.19	11.28
15	7.40	7.73	8.62	9.79	10.91	12.08
16	7.88	8.23	9.18	10.43	11.63	12.88
17	8.36	8.73	9.74	11.07	12.35	13.68
18	8.84	9.23	10.30	11.71	13.07	14.48
19	9.32	9.73	10.86	12.35	13.79	15.28
20	9.80	10.23	11.42	12.99	14.51	16.08
21	10.28	10.73	11.98	13.63	15.23	16.88
22	10.76	11.23	12.54	14.27	15.95	17.68
23	11.24	11.73	13.10	14.91	16.67	18.48
24	11.72	12.23	13.66	15.55	17.39	19.28
25	12.20	12.73	14.22	16.19	18.11	20.08
26	12.68	13.23	14.78	16.83	18.83	20.88
27	13.16	13.73	15.34	17.47	19.55	21.68
28	13.64	14.23	15.90	18.11	20.27	22.48
29	14.12	14.73	16.46	18.75	20.99	23.28
30	14.60	15.23	17.02	19.39	21.71	24.08
31	15.08	15.73	17.58	20.03	22.43	24.88
32	15.56	16.23	18.14	20.67	23.15	25.68
33	16.04	16.73	18.70	21.31	23.87	26.48
34	16.52	17.23	19.26	21.95	24.59	27.28
35	17.00	17.73	19.82	22.59	25.31	28.08

Weight over 8 ounces and not exceed- ing: (Ebs.)	RATE					
	Local Zones 1 2, and 3	Zone 4	Zone 5	Zone 6	Zone 7	Zone 8
36	17.48	18.23	20.38	23.23	26.03	28.88
37	17.96	18.73	20.94	23.87	26.75	29.68
38	18.44	19.23	21.50	24.51	27.47	30.48
39	18.92	19.73	22.06	25.15	28.19	31.28
40	19.40	20.23	22.62	25.79	28.91	32.08
41	19.88	20.73	23.18	26.43	29.63	32.88
42	20.36	21.23	23.74	27.07	30.35	33.68
43	20.84	21.73	24.30	27.71	31.07	34.48
44	21.32	22.23	24.86	28.35	31.79	35.28
45	21.80	22.73	25.42	28.99	32.51	36.08
46	22.28	23.23	25.98	29.63	33.23	36.88
47	22.76	23.73	26.54	30.27	33.95	37.68
48	23.24	24.23	27.10	30.91	34.67	38.48
49	23.72	24.73	27.66	31.55	35.39	39.28
50	24.20	25.23	28.22	32.19	36.11	40.08
51	24.68	25.73	28.78	32.83	36.83	40.88
52	25.16	26.23	29.34	33.47	37.55	41.68
53	25.64	26.73	29.90	34.11	38.27	42.48
54	26.12	27.23	30.46	34.75	38.99	43.28
55	26.60	27.73	31.02	35.39	39.71	44.08
56	27.08	28.23	31.58	36.03	40.43	44.88
57	27.56	28.73	32.14	36.67	41.15	45.68
58	28.04	29.23	32.70	37.31	41.87	46.48
59	28.52	29.73	33.26	37.95	42.59	47.28
60	29.00	30.23	33.82	38.59	43.31	48.08
61	29.48	30.73	34.38	39.23	44.03	48.88
62	29.96	31.23	34.94	39.87	44.75	49.68
63	30.44	31.73	35.50	40.51	45.47	50.48
64	30.92	32.23	36.06	41.15	46.19	51.28
65	31.40	32.73	36.62	41.79	46.91	52.08
66	31.88	33.23	37.18	42.43	47.63	52.88
67	32.36	33.73	37.74	43.07	48.35	53.68
68	32.84	34.23	38.30	43.71	49.07	54.48
69	33.32	34.73	38.86	44.35	49.79	55.28
70	33.80	35.23	39.42	44.99	50.51	56.08

Table 10-4. Second Class Postal Rates

Second Class Category	Zone-Rate Publications	Classroom Publications	Non-Profit ² Publications
Cost ¹			
1. Reading Matter, ¢/lb	4.0	2.3	2.4
2. Advertising matter, ¢/lb			
Zones 1 and 2	6.0 ³	3.6	4.4
Zone 3	7.2	4.4	5.2
Zone 4	9.6	5.9	6.9
Zone 5	11.9	7.4	8.6
Zone 6	14.4	9.0	9.4
Zone 7	15.3	9.5	9.5
Zone 8	17.8	11.1	9.7
3. Charge per piece	0.2	0.1	0.04
4. (Minimum total charge per piece)	(1.3)	(0.8)	(0.2)

¹Total cost per piece is the sum of Items 1, 2, and 3, but not less than item 4.

²4.6¢/lb for authorized agricultural publications (Zones 1 and 2).

³Non-profit publications with less than 10 percent advertising are charged at the reading matter rate.

Table 10-5. Parcel Post Rates - Fourth Class

Weight— 1 pound and not exceeding (pounds)	Zones							
	Local	1 and 2	3	4	5	6	7	8
2 . . .	\$0.60	\$0.65	\$0.70	\$0.75	\$0.80	\$0.90	\$1.00	\$1.05
360	.75	.80	.85	.95	1.10	1.20	1.35
465	.80	.85	.95	1.10	1.30	1.40	1.60
570	.85	.90	1.05	1.20	1.45	1.65	1.90
670	.95	1.00	1.15	1.35	1.60	1.85	2.10
775	1.05	1.10	1.25	1.50	1.75	2.10	2.35
875	1.10	1.15	1.35	1.60	1.90	2.30	2.60
980	1.15	1.20	1.45	1.75	2.05	2.45	2.85
1080	1.20	1.30	1.55	1.90	2.20	2.65	3.10
11 . . .	80	1.25	1.35	1.60	2.00	2.30	2.85	3.35
12 . . .	85	1.30	1.45	1.70	2.10	2.45	3.05	3.55
13 . . .	85	1.35	1.55	1.80	2.20	2.60	3.25	3.80
14 . . .	90	1.40	1.60	1.90	2.35	2.75	3.45	4.00
1590	1.15	1.65	2.00	2.45	2.85	3.60	4.20
1695	1.35	1.75	2.05	2.55	2.95	3.80	4.40
17 . . .	1.00	1.60	1.80	2.15	2.65	3.10	4.05	4.60
18 . . .	1.00	1.65	1.90	2.20	2.75	3.20	4.15	4.80
19 . . .	1.05	1.70	2.00	2.30	2.85	3.35	4.30	5.00
20 . . .	1.05	1.75	2.05	2.40	2.95	3.50	4.50	5.20
21 . . .	1.10	1.85	2.10	2.45	3.05	3.65	4.65	5.40
22 . . .	1.15	1.90	2.15	2.55	3.15	3.75	4.85	5.60
23 . . .	1.15	1.95	2.20	2.60	3.25	3.90	5.00	5.80
24 . . .	1.20	2.00	2.25	2.65	3.35	4.05	5.15	6.00
25 . . .	1.20	2.05	2.30	2.75	3.45	4.15	5.35	6.20
26 . . .	1.20	2.10	2.35	2.85	3.55	4.40	5.50	6.40
27 . . .	1.25	2.15	2.40	2.90	3.70	4.15	5.65	6.60
28 . . .	1.25	2.20	2.45	2.95	3.80	4.60	5.80	6.80
29 . . .	1.30	2.25	2.50	3.05	3.90	4.70	5.95	7.00
30 . . .	1.30	2.30	2.55	3.10	4.00	4.85	6.10	7.20
31 . . .	1.35	2.35	2.65	3.20	4.10	5.00	6.25	7.40
32 . . .	1.40	2.40	2.70	3.30	4.20	5.15	6.45	7.60
33 . . .	1.40	2.45	2.75	3.35	4.30	5.25	6.60	7.80
34 . . .	1.45	2.50	2.80	3.40	4.40	5.40	6.75	8.00
35 . . .	1.45	2.55	2.85	3.45	4.50	5.55	6.90	8.20

Weight— 1 pound and not exceeding (pounds)	Zones							
	Local	1 and 2	3	4	5	6	7	8
36 . . .	\$1.15	\$2.60	\$2.90	\$3.55	\$4.60	\$5.65	\$7.10	\$8.10
37 . . .	1.50	2.65	3.00	3.65	4.70	5.75	7.25	8.60
38 . . .	1.50	2.70	3.05	3.70	4.80	5.90	7.45	8.80
39 . . .	1.55	2.75	3.10	3.80	4.90	6.05	7.60	9.00
40 . . .	1.55	2.80	3.15	3.85	5.00	6.15	7.75	9.20

CONSULT POSTMASTER FOR WEIGHT AND SIZE LIMITS

41 . . .	1.60	2.85	3.20	3.95	5.15	6.25	7.95	9.40
42 . . .	1.65	2.90	3.25	4.00	5.25	6.40	8.10	9.60
43 . . .	1.65	2.95	3.30	4.10	5.35	6.55	8.25	9.80
44 . . .	1.70	3.00	3.35	4.15	5.45	6.65	8.40	10.00
45 . . .	1.70	3.05	3.40	4.20	5.55	6.80	8.55	10.20
46 . . .	1.70	3.10	3.50	4.40	5.65	6.90	8.70	10.30
47 . . .	1.75	3.10	3.55	4.40	5.75	7.00	8.90	10.60
48 . . .	1.75	3.15	3.60	4.45	5.85	7.15	9.05	10.80
49 . . .	1.80	3.20	3.65	4.50	5.95	7.30	9.20	11.00
50 . . .	1.80	3.25	3.70	4.60	6.05	7.40	9.35	11.15
51 . . .	1.85	3.30	3.80	4.70	6.15	7.50	9.50	11.35
52 . . .	1.90	3.35	3.85	4.75	6.25	7.65	9.65	11.55
53 . . .	1.90	3.40	3.90	4.80	6.35	7.80	9.80	11.75
54 . . .	1.95	3.40	3.95	4.90	6.45	7.90	9.95	11.90
55 . . .	1.95	3.45	4.00	4.95	6.55	8.00	10.10	12.10
56 . . .	1.95	3.50	4.10	5.05	6.60	8.10	10.25	12.25
57 . . .	2.00	3.55	4.15	5.15	6.70	8.25	10.40	12.45
58 . . .	2.00	3.60	4.20	5.20	6.80	8.40	10.55	12.60
59 . . .	2.05	3.65	4.25	5.25	6.90	8.50	10.70	12.80
60 . . .	2.05	3.65	4.30	5.35	7.00	8.60	10.85	12.95
61 . . .	2.10	3.70	4.35	5.45	7.05	8.70	11.00	13.10
62 . . .	2.15	3.70	4.40	5.50	7.15	8.85	11.15	13.30
63 . . .	2.15	3.75	4.45	5.55	7.25	9.00	11.30	13.45
64 . . .	2.20	3.80	4.50	5.60	7.35	9.10	11.45	13.65
65 . . .	2.20	3.85	4.60	5.70	7.45	9.20	11.60	13.80
66 . . .	2.20	3.90	4.65	5.80	7.50	9.30	11.75	13.95
67 . . .	2.25	3.95	4.70	5.85	7.60	9.40	11.85	14.15
68 . . .	2.25	3.95	4.75	5.90	7.70	9.55	12.00	14.30
69 . . .	2.30	4.00	4.80	5.95	7.75	9.65	12.15	14.50
70 . . .	2.30	4.05	4.85	6.05	7.85	9.75	12.25	14.65

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

Table 10-6. Fourth Class Mail, Catalog Rates

Weight, lb	Individual Mailings							
	Local	1 & 2	3	4	5	6	7	8
1.5	28	34	34	36	38	40	42	46
2.0	29	35	36	38	41	43	47	51
2.5	30	37	38	41	43	47	51	56
3.0	31	39	40	43	47	51	56	62
3.5	32	40	42	46	50	55	60	67
4.0	33	42	44	48	53	58	65	73
4.5	34	44	46	51	56	62	69	78
5.0	35	45	48	53	59	66	74	83
6.0	37	49	52	58	65	73	83	94
7.0	39	52	56	63	71	81	92	105
8.0	41	56	60	68	77	88	101	116
9.0	43	59	64	73	83	96	110	127
10.0	45	62	68	78	89	103	119	137

Bulk Mailings ¹		
Zones	Piece Rate, cents	Bulk Pound Rate, cents
Local	21	2.1
1 and 2	25	3.4
3	25	4.0
4	25	5.0
5	25	6.1
6	25	7.5
7	25	9.1
8	26	10.8

¹300 pieces, minimum, mailed at one time. Total cost is sum of piece rate times number of pieces and pound rate times number of pounds.

11. SUBMARINE TELEPHONE CABLE COSTS

The first of the transoceanic submarine telephone cables was AT&T's TAT-1 ("Trans-Atlantic Telephone"), which went into service in 1956, providing 51 telephone circuits of 3 kHz bandwidth between the U.S. and England. Since that time, cables of increasingly larger capacity have been installed. AT&T's most recent transatlantic cable, TAT-5, carries 825 telephone circuits of 3 kHz bandwidth; and the current generation of British cables has a capacity of 1840 circuits of 3 kHz bandwidth or 1380 circuits of 4 kHz bandwidth. Currently, submarine cables connect North America with Europe, the Bahamas, the Caribbean Islands, South America, Hawaii, Guam, Japan, New Zealand, Australia, the Philippines, and several points in the East Indies and Southeast Asia. Cables also inter-connect Europe with the Near East and with South Africa.

11.1 INVESTMENT COSTS

Improvements in technology and economies of scale have reduced the investment cost per submarine telephone cable circuit by an order of magnitude, as shown in Figure 11-1. The figure shows the investment cost per half-circuit¹ per kilometer versus capacity in half-circuits for the three groups of cables: the first cables of the late 1950's with 70 to 80 half-circuits, the cables of the 1960's with 100 to 1250 half-circuits, and the cables planned for installation in the 1970's with capacities to about 6000 half-circuits. Cables with over 20,000 half-circuits, which are under development by AT&T for installation about 1976, are not shown because no estimated costs are available. Telephone half-circuit bandwidths of 3 kHz are usually provided in submarine cables. However, in Figure 11-1 the capacities are plotted in terms of 4 kHz bandwidth rather than the

¹ Two half-circuits, or channels, are required for a two-way telephone circuit.

Figure 11-1. Investment Cost of Submarine Telephone Cables (1973 Dollars) per Half-Circuit per Kilometer

nominal 3 kHz bandwidth in the interest of comparability with overland and satellite communication systems, which usually provide 4 kHz bandwidth.

The reduction of investment cost per half-circuit per kilometer over the past 15 years has resulted from two factors: improvements in technology and increases in capacity per cable. The first cables were cumbersome and expensive to construct and lay. They employed vacuum-tube repeaters in bulky cannisters, and the armored twin cables were heavy and tended to kink during laying operations. Cables of the 1960's were unarmored single cables, about one-fifth the weight in water, using transistorized repeaters in much smaller cannisters, and were easier and less expensive to lay using equipment that had been brought into service after the first cables had been laid. Inasmuch as cable construction and laying costs are relatively insensitive to capacity up to the largest capacity available, costs per half-circuit dropped almost inversely as the available cable capacity increased to about 200 to 250 half-circuits in the mid-1960's and about 1250 half-circuits by 1968.

Costs based on AT&T estimates of investment costs for cables of 2500 to 6000 half-circuits, in the lower right corner of the figure, reflect a further decrease in unit cost due both to economy of scale and further advances in technology. The effect of advancing technology is indicated by the use of separate lines in the figure to represent unit costs of the cables of the 1950's, 1960's, and 1970's. A line representing the technology of the 1980's would be lower than the line for the 1970's by a factor of 0.73 if, as appears to be reasonable, the 3.1 percent per year trend of unit cost reduction for a particular capacity from the 1960's to the 1970's continues.

Costs in Figure 11-1 have been normalized to 4000 kilometers (2486 miles) using the relative cost factors of Figure 11-2 to adjust for the effect of distance on cost per kilometer. These factors are based on estimated costs for AT&T's TAT-3 cable system which is approximately 6436 kilometers (4000 miles) long. Eleven percent of the TAT-3 costs are cable terminal costs (Ref. 11-1) which are constant regardless of cable length.

Figure 11-2. Relative Cost per Unit Length vs Length
for Submarine Telephone Cable Systems

The effect of these relative cost factors is small for most cable systems since most cable systems exceed 2500 kilometers, and the distance-related costs of cable construction and laying are dominant. For cable systems shorter than 2500 kilometers, however, costs per mile should be adjusted. For these shorter systems the cable terminal costs and the fixed costs associated with planning and initiating the system become an increasingly important part of total costs, and costs per kilometer are more than ten percent greater than the normalized values.

The service life of a submarine cable is estimated by AT&T to be 24 years.

11.2 ANNUAL OPERATING COSTS

Annual operating costs, excluding administrative costs, for a sample of seven submarine cable systems are derived from AT&T estimates¹ of revenue required for maintenance, depreciation, taxes, and return on investment. Administrative expenses, excluded from the preceding estimates, are derived from expenses reported to the Federal Communications Commission (Ref. 11-2). Total annual operating costs as a percentage of gross investment are calculated from these two sources.

	Percent of Gross Investment
Depreciation (24-year life)	4.2
Maintenance	2.8
Taxes and return on investment	15.3
Administrative expenses ²	
Traffic	0.6
Commercial	0.9
General Office	1.7
Other	1.5
Services from AT&T General Dept.	0.9
Total Administrative	<u>5.6</u>
Total Annual Operating and Maintenance	27.9

¹Comments of AT&T on FCC Docket 18875, "Inquiry into Policy to be Followed in Future Licensing of Facilities for Overseas Communications," August 19, 1970.

²Data are the 1969 values of AT&T Long Lines department expenses as a percentage of gross Long Lines plant cost.

The estimated revenue required for taxes and return on investment, 15.3 percent, for the seven submarine cable systems can be compared to a 1969 return of 17.3 percent on Long Lines Department net plant investment, of which 2.4 percent went to taxes other than Federal Income Tax, 7.1 percent was required for Federal Income Tax, and 7.8 percent remained as return on investment.

For purposes of estimating annual costs, excluding depreciation, taxes, and return, for submarine cable systems, the following may be used:

Maintenance	2.8% of initial investment
Administrative expense	5.6% of initial investment
TOTAL	8.4% of initial investment.

12. TERRESTRIAL POWER GENERATION SYSTEM COSTS

Costs of nuclear electric power generation were estimated to provide baseline costs for comparing the estimated costs of a solar cell power satellite (SCPS) system in the time period 1990 - 2020.

Nuclear power costs were selected for the comparison inasmuch as the bulk of new capacity added in this time period will be nuclear according to Federal Power Commission estimates. According to FPC estimates in the 1970 National Power Survey, approximately 45 percent of U. S. generating capacity will be nuclear by 1990. Projecting the trends to 2020, about 68 percent of capacity will be nuclear or new technology. In addition, both the nuclear and SCPS systems are best suited to supply base load power. Both systems have higher capital costs per kW of capacity and lower operating costs (including fuel) per kW hr produced than fossil fueled plants; hence, the costs per kW hr for these systems are the most competitive relative to fossil-fueled system costs at high utilization rates.

The SCPS system was assumed for the analysis to provide for a fraction, either ten percent or 25 percent, of the incremental growth of U. S. generating capacity beyond 1990 out to 2020. Growth of U. S. generating capacity was projected at six percent per year. Nuclear systems to provide the same capacities were assumed for comparison.

Nuclear capacity installed in the 1990s was assumed to be of the boiling water reactor (BWR) or pressurized water reactor (PWR) types. Fast breeder reactors were assumed to be selected for all capacity added after 2000. These assumptions were intended to approximate a transition to fast breeder reactors from their initial commercial installations in the 1980s to their dominance of newly installed capacity in the first decade of the next century.

Nuclear generation costs only were included. Transmission and distribution costs were excluded. Costs per unit output were calculated in terms of mills per kW hr generated, rather than per kW hr solid. Sales are about ten percent less than the amount generated owing to losses in transmission and distribution. Costs from the data sources were adjusted to April 1973 dollar levels using the Bureau of Labor Statistics index of wholesale prices, and further calculations and results were in constant April 1973 dollars.

The primary source of data for nuclear power facilities was the Federal Power Commission's 1970 National Power Survey, December 1971, which provides estimates of costs and characteristics of the electric power industry based on extensive data and analyses from the industry. The actual data are complete through 1968.

Additional sources were referred to for information on fossil and nuclear fuel resources and price projections, projections of nuclear technology, and projections of nuclear costs. Most of the additional information was not used directly in arriving at cost estimates inasmuch as the FPC projections take into account anticipated changes in costs during the 1970s and 1980s.

12.1 NUCLEAR INVESTMENT COSTS

The following estimates of nuclear plant investment costs for BWR or PWR plants were the basis for the estimates used in this study. The FPC estimate applies to the 1970s and 1980s; the AEC model applies to the early 1980s. Both estimates include interest costs during construction; they do not include allowances for escalation of construction costs with time.

	Unit Capacity In MWe*	1968\$	1972\$	1973\$
FPC:				
Plant	1200-2800	222/kW		282/kW
Nuclear Inventory		<u>30/kW</u>		<u>32/kW</u>
Total		252/kW		320/kW
AEC Model**				
Plant	1000		336/kW	369/kW
	2000		275/kW	302/kW
Nuclear Inventory			(not stated)	(not stated)

* MWe is megawatt electrical output capacity.

** Estimates based on AEC cost model used by F. C. Olds, Capital Cost Calculation for Future Power Plants, Power Engineering, January 1973. Includes costs for near-zero radiation waste control and cooling towers.

Based on the data above, the plant investment cost for a large nuclear unit, 2000 MWE capacity, would cost about \$300/kW (the simple average of \$282 and \$302, rounded up to \$300). Thus the following investment costs were used for nuclear plants with 2000 MWE units⁽¹⁾.

	Time Period	Cost/kW of Installed Capacity, 1973\$
BWR and PWR		
Plant	1990s	300
Nuclear Inventory		<u>38</u>
Total Investment		338
Fast Breeder Reactors		
Plant @ (1.23 x BWR or PWR)*	2000 to 2020	369
Nuclear Inventory**		<u>38</u>
Total Investment		407

* Page IV-1-58 of 1970 National Power Survey.

** Not estimated for FBRs in the source. Assumed, herein, that nuclear inventory cost will be the same for BWRs and PWRs.

(1) Two or three units per plant site will be common.

12.2 NUCLEAR PLANT ANNUAL COSTS

The FPC data for annual plant operating costs were estimated in terms of O&M, G&A, fuel burnup, and annual fixed charges as follows:

	Annual Cost Per kW of Installed Capacity Per Year	
	1968\$	1973\$
O&M (Payroll, Engineering Exp., Supplies, Equipt.)	3.00	3.80
G&A (17 % of O&M)*	0.52	0.66
Fuel Burnup @ 0.5 mills/ kW hr, 54% cap. factor		2.37

* Page I-19-19; ratio of G&A to O&M for power production, 1968.

Annual fixed charges, per FPC estimates, page I-19-6 of the 1970 National Power Survey, figured in percent of gross investment are:

Insurance	0.2%
Income Taxes	2.2%
Other Taxes	<u>2.4%</u>
Total	4.8%

The estimated O&M cost per kilowatt per year is an average derived from detailed estimates for individual plants of various capacities and plants with one or more generating units. The fuel burnup cost of 0.5 mills/kW hr is an estimated composite cost. Fuel costs are estimated to decline rapidly with the introduction of FBRs from 1.2 mills/kW hr (1968\$) for BWRs and PWRs in 1990 to 0.4 mills/kW hr (1968\$) for FBRs in 1995. This latter cost, adjusted to 0.5 mills/kW hr (1973\$) was used to estimate fuel costs for the entire period from 1990 to 2020. Higher costs in the first decade of the period would tend to be offset by lower

costs in the second two decades, if it is assumed that fuel costs will be reduced further in the period 2000 to 2020.

A capacity factor⁽¹⁾ of 54 percent was assumed for the economic analysis to determine costs per kW hr generated. This is the FPC's estimated average factor for all types of electrical generation in 1990.

Documents used to derive the above information are listed as References 12-1 through 12-9 in Section 14 of this volume of the final report.

(1) Ratio of kW hr per year generated and sold to kW hr capacity (kW capacity times 8766 hours per year).

13. COST EFFECTIVENESS COMPUTER PROGRAM

The listing for the Cost Effectiveness Computer Program is listed in APL language on Figures 13-1 through 13-16.

SATELLITE R AND D
MISSION EQUIPMENT
SPACECRAFT
SATELLITE INVESTMENT
MISSION EQUIPMENT
SPACECRAFT
SATELLITE OPERATIONS
L/V DIRECT OPERATING COSTS
GPOUND SYSTEM INVESTMFT
ELECTRONICS
SUPPORT FACILITIES
GROUND SYSTEM OPERATIONS
TOTAL SYSTEM COSTS
YEARS AFTER START
NPV FACTOR
UNIT DEMAND PER YEAR
NPV UNIT DEMAND
SATELLITE R AND D REVENUE
NPV MISSION EQUIPMENT R AND D
MISSION EQUIPMENT UNIT CHARGE
MISSION EQUIPMENT REVENUE
NPV SPACECRAFT R AND D
SPACECRAFT UNIT CHARGE
SPACECRAFT REVENUE
SATELLITE INVESTMENT REVENUE
NPV MISSION EQUIPMNT INVESTMENT
MISSION EQUIPMENT UNIT CHARGE
MISSION EQUIPMENT REVENUE
NPV SPACECRAFT INVESTMENT
SPACECRAFT UNIT CHARGE
SPACECRAFT REVENUE
SATELLITE OPERATING REVENUE
NPV OPERATIONS
OPERATIONS UNIT CHARGE
OPERATIONS PEVENUE
L/V DOC REVENUE
NPV L/V DOC
L/V DOC UNIT CHARGE
L/V DOC REVENUE
GPOUND SYSTEM INVESTMENT REVENUE
NPV ELECTRONICS
ELECTRONICS UNIT CHARGE
ELECTRONICS REVENUE
NPV SUPPORT FACILITIES
SUPPORT FACILITIES UNIT CHARGE
SUPPORT FACILITIES REVENUE
GROUND SYSTEMS OPERATIONS REVENUE
NPV OPERATIONS
OPERATIONS UNIT CHARGE
OPERATIONS REVENUE
TOTAL SYSTEM CHARGE RATE
TOTAL SYSTEM REVENUE
TOTAL NPV OF SYSTEM COSTS

Figure 13-1. Output, Cost/Revenue Analysis for
Constant Dollars (CORAN)

SATELLITE R AND D
MISSION EQUIPMENT
SPACECRAFT
SATELLITE INVESTMENT
MISSION EQUIPMENT
SPACECRAFT
SATELLITE OPERATIONS
L/V DIRECT OPERATING COSTS
GROUND SYSTEM INVESTMENT
ELECTRONICS
SUPPORT FACILITIES
GROUND SYSTEM OPERATIONS
TOTAL SYSTEM COSTS
YEARS AFTER START
INFLATION
TOTAL SYSTEM COST IN CURRENT DOLLARS
CONSTANT DOLLAR NPV FACTOR
CURRENT DOLLAR NPV FACTOR
UNIT DEMAND PER YEAR
NPV UNIT DEMAND
SATELLITE R AND D REVENUE
NPV MISSION EQUIPMENT R AND D
MISSION EQUIPMENT UNIT CHARGE
MISSION EQUIPMENT REVENUE
NPV SPACECRAFT R AND D
SPACECRAFT UNIT CHARGE
SPACECRAFT REVENUE
SATELLITE INVESTMENT REVENUE
NPV MISSION EQUIPMENT INVESTMENT
MISSION EQUIPMENT UNIT CHARGE
MISSION EQUIPMENT REVENUE
NPV SPACECRAFT INVESTMENT
SPACECRAFT UNIT CHARGE
SPACECRAFT REVENUE
SATELLITE OPERATING REVENUE
NPV OPERATIONS
OPERATIONS UNIT CHARGE
OPERATIONS REVENUE
L/V DOC REVENUE
NPV L/V DOC
L/V DOC UNIT CHARGE
L/V DOC REVENUE
GROUND SYSTEM INVESTMENT REVENUE
NPV ELECTRONICS
ELECTRONICS UNIT CHARGE
ELECTRONICS REVENUE
NPV SUPPORT FACILITIES
SUPPORT FACILITIES UNIT CHARGE
SUPPORT FACILITIES REVENUE
GROUND SYSTEMS OPERATIONS REVENUE
NPV OPERATIONS
OPERATIONS UNIT CHARGE
OPERATIONS REVENUE
TOTAL SYSTEM CHARGE RATE
TOTAL SYSTEM REVENUE
TOTAL NPV OF SYSTEM COSTS

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

Figure 13-2. Output, Cost/Revenue Analysis for
Current Dollars (CORANR)

```

      VCONSTANTD[0]V
      VCONSTANTD.
[1]  ARR[1;]+ARR[2;]+ARR[3;]
[2]  ARR[4;]+ARR[5;]+ARR[6;]
[3]  ARR[9;]+ARR[10;]+ARR[11;]
[4]  ARR[13;]+ARR[1;]+ARR[4;]+ARR[7;]+ARR[8;]+ARR[9;]+ARR[
   12;]
[5]  +(PP=0)/T1
[6]  +(PP=1)/T2
[7]  T2:F=F
[8]  +T3
[9]  T1:DISPAC
[10] T3:ARR[15;]+(1+F)*(-ARR[14;])
[11] :ARR[17;]+ARR[15;]*ARR[16;]
[12] ARR[19;]+ARR[2;]*ARR[15;]
[13] ZARR[17]+-(+/ARR[19;])+ZARR[17]
[14] ZARR[20]+(+/ARR[19;])+ZARR[17]
[15] ARR[21;]+ARR[16;]*ZARR[20]
[16] ARR[22;]+ARR[3;]*ARR[15;]
[17] ZARR[23]+(+/ARR[22;])+ZARR[17]
[18] ARR[24;]+ARR[16;]*ZARR[23]
[19] ARR[18;]+ARR[21;]+ARR[24;]
[20] ARR[26;]+ARR[5;]*ARR[15;]
[21] ZARR[27]+(+/ARR[26;])+ZARR[17]
[22] ARR[28;]+ARR[16;]*ZARR[27]
[23] ARR[29;]+ARR[6;]*ARR[15;]
[24] ZARR[30]+(+/ARR[29;])+ZARR[17]
[25] ARR[31;]+ARR[16;]*ZARR[30]
[26] ARR[25;]+ARR[28;]+ARR[31;]
[27] ARR[33;]+ARR[7;]*ARR[15;]
[28] ZARR[34]+(+/ARR[33;])+ZARR[17]
[29] ARR[35;]+ARR[16;]*ZARR[34]
[30] ARR[32;]+ARR[35;]
[31] ARR[37;]+ARR[8;]*ARR[15;]
[32] ZARR[38]+(+/ARR[37;])+ZARR[17]
[33] ARR[39;]+ARR[16;]*ZARR[38]
[34] ARR[36;]+ARR[39;]
[35] ARR[41;]+ARR[10;]*ARR[15;]
[36] ZARR[42]+(+/ARR[41;])+ZARR[17]
[37] ARR[43;]+ARR[16;]*ZARR[42]
[38] ARR[44;]+ARR[11;]*ARR[15;]
[39] ZARR[45]+(+/ARR[44;])+ZARR[17]
[40] ARR[46;]+ARR[16;]*ZARR[45]
[41] ARR[40;]+ARR[43;]+ARR[46;]
[42] ARR[48;]+ARR[12;]*ARR[15;]
[43] ZARR[49]+(+/ARR[48;])+ZARR[17]
[44] ARR[50;]+ARR[16;]*ZARR[49]
[45] ARR[47;]+ARR[50;]
[46] ZARR[51]+ZARR[20]+ZARR[23]+ZARR[27]+ZARR[30]+ZARR[
   34]+ZARR[38]+ZARR[42]+ZARR[45]+ZARR[49]
[47] ARR[52;]+ARR[18;]+ARR[25;]+ARR[32;]+ARR[36;]+ARR[
   40;]+ARR[47;]
[48] ARR[53;]+ARR[19;]+ARR[22;]+ARR[26;]+ARR[29;]+ARR[
   33;]+ARR[37;]+ARR[41;]+ARR[44;]+ARR[48;]
[49] NPV++/ARR[53;]
[50] PEAK<+/ARR[13;]
[51] REVENUE<+/ARR[52;]

```

Figure 13-3. The APL Function CONSTANTD

```

    ⌂ DISFAC[[]]⌂ REPRODUCIBILITY OF THE
    ⌂ DISFAC ORIGINAL PAGE IS POOR
[1] RISK← 4 2 ⌂ 0
[2] RISK[,1]← 25 27 38 66
[3] RISK[,2]← 30 36 40 72
[4] RECES← 4 1 ⌂ 0
[5] RECES[,1]← 0 25 25 25
[6] GRWTH← 4 4 ⌂ 0
[7] GRWTH[,1]← 25 25 25 25
[8] GRWTH[,2]← 40 35 30 25
[9] GRWTH[,3]← 80 65 50 35
[10] GRWTH[,4]← 125 100 75 50
[11] SMF←SMF
[12] SMF←SMN
[13] RSMN←SMN+1
[14] XRSMN←SMN+1
[15] FPROJ←FPROJ
[16] →(FPROJ=0)/T1
[17] →(FPROJ=1)/T34
[18] T34:SHARE←SHARE
[19] →(SHARE>0.15)/T35
[20] SMB←1
[21] →T36
[22] T35:SMB←1÷(1-SHARE)
[23] T36:FECOH←RECON
[24] →(FECOH=0)/T2
[25] →(RSMN≤1)/T3
[26] →((RSMN≤5)∧(RSMP>1))/T5
[27] →((RSMN≤15)∧(RSMP>5))/T6
[28] UF←RECES[4;1]×0.001
[29] →T4
[30] T3:UF←RECES[1;1]×0.001
[31] →T4
[32] T5:UF←RECES[2;1]×0.001
[33] →T4
[34] T6:UF←RECES[3;1]×0.001
[35] T4:F←SMB×UF
[36] T34:SMR←((1+F)×(1+SMF))-1
[37] →0
[38] T2:→((RSMN≤1)∧(SMF≤0.02))/T7
[39] →((RSMN≤5)∧(RSMP>1)∧(SMF≤0.02))/T8
[40] →((RSMN≤15)∧(RSMN>5)∧(SMF≤0.02))/T9
[41] →((RSMN>15)∧(SMF≤0.02))/T10
[42] →((RSMN≤1)∧(SMF>0.02)∧(SMF≤0.05))/T11
[43] →((RSMN≤5)∧(RSMN>1)∧(SMF>0.02)∧(SMF≤
    0.05))/T12
[44] →((RSMN≤15)∧(RSMN>5)∧(SMF>0.02)∧(SMF≤
    0.05))/T13
[45] →((RSMN>15)∧(SMF>0.02)∧(SMF≤0.05))/T14

```

Figure 13-4. The APL Function DISFAC for Constant Dollars

```

[46] ←[[RSMN41]0[SMF70.05]0[SMF40.08]]/T15
[47] ←[[RSMN45]0[RSMN71]0[SMF70.05]0[SMF4
0.08]]/T16
[48] ←[[RSMN415]0[RSMN75]0[SMF70.05]0[SMF4
0.08]]/T17
[49] →((RSMN>15)∧(SMF>0.05)∧(SMF≤0.08))/T18
[50] →((RSMN≤1)∧(SMF>0.08))/T19
[51] →((RSMN≤5)∧(RSMN>1)∧(SMF>0.08))/T20
[52] →((PSUN≤15)∧(RSMN>5)∧(SMF>0.08))/T21
[53] →((RSMN>15)∧(SMF>0.08))/T22
[54] T7:UF←GRWTH[1;1]×0.001
[55] →T4
[56] T8:UF←GRWTH[2;1]×0.001
[57] →T4
[58] T9:UF←GRWTH[3;1]×0.001
[59] →T4
[60] T10:UF←GRWTH[4;1]×0.001
[61] →T4
[62] T11:UF←GRWTH[1;2]×0.001
[63] →T4
[64] T12:UF←GRWTH[2;2]×0.001
[65] →T4
[66] T13:UF←GRWTH[3;2]×0.001
[67] →T4
[68] T14:UF←GRWTH[4;2]×0.001
[69] →T4
[70] T15:UF←GRWTH[1;3]×0.001
[71] →T4
[72] T16:UF←GRWTH[2;3]×0.001
[73] →T4
[74] T17:UF←GRWTH[3;3]×0.001
[75] →T4
[76] T18:UF←GRWTH[4;3]×0.001
[77] →T4
[78] T19:UF←GRWTH[1;4]×0.001
[79] →T4
[80] T20:UF←GRWTH[2;4]×0.001
[81] →T4
[82] T21:UF←GRWTH[3;4]×0.001
[83] →T4
[84] T22:UF←GRWTH[4;4]×0.001
[85] →T4
[86] T1:→(TYPE=0)/T23
[87] →(FRISK=3)/T24
[88] →(FRISK=2)/T25
[89] →(FRISK=1)/T26
[90] →(FRISK=0)/T27

```

Figure 13-4. The APL Function DISFAC for Constant Dollars (Cont'd)

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```
[91] T23:→(FRISK=3)/T28
[92] →(FRISK=2)/T29
[93] →(FRISK=1)/T30
[94] →(FRISK=0)/T31
[95] T24:UF←RISK[4;1]×0.001
[96] →T32
[97] T25:UF←RISK[3;1]×0.001
[98] →T32
[99] T26:UF←RISK[2;1]×0.001
[100] →T32
[101] T27:UF←RISK[1;1]×0.001
[102] →T32
[103] T28:UF←RISK[4;2]×0.001
[104] →T32
[105] T29:UF←RISK[3;2]×0.001
[106] →T32
[107] T30:UF←RISK[2;2]×0.001
[108] →T32
[109] T31:UF←RISK[1;2]×0.001
[110] T32:→(SMB≠0)/T4
[111] IN←0
[112] T33:IN←IN+1
[113] F←ASSF
[114] CONSTANTD
[115] VG←ARR[13;]-ARR[52;]
[116] G←⌈ /VG
[117] SMB←1÷(1-(G÷CAF))
[118] F←SMB×UF
[119] →(((|F)-(|ASSF))<0.0001)/T34
[120] ASSF←F
[121] →T33
```

Figure 13-4. The APL Function DISFAC for Constant Dollars (Cont'd)

```

    VDATAIN[0]V
    V DATAIN
[1]  SMN←SMN
[2]  RSMN←SMN+1
[3]  XRSMN←SMN+1
[4]  ARR←(53,XRSMN)⍪0
[5]  N←0,1SMN
[6]  ZARR←53⍪0
[7]  ARR[14;]←N
[8]  MERD←MERD
[9]  MERD←MERD
[10] SCRD←SCRD
[11] SCRD←SCRD
[12] MEIV←MEIV
[13] MEIV←MEIV
[14] SCIV←SCIV
[15] SCIV←SCIV
[16] STOP←STOP
[17] STOP←STOP
[18] LAVOP←LAVOP
[19] LAVOP←LAVOP
[20] GSIVEL←GSIVEL
[21] GSIVEL←GSIVEL
[22] GSIVSF←GSIVSF
[23] GSIVSF←GSIVSF
[24] GSOP←GSOP
[25] GSOP←GSOP
[26] DN←DN
[27] DN←DN
[28] ARR[2;]←MERD
[29] ARR[3;]←SCRD
[30] ARR[5;]←MEIV
[31] ARR[6;]←SCIV
[32] ARR[7;]←STOP
[33] ARR[8;]←LAVOP
[34] ARR[10;]←GSIVEL
[35] ARR[11;]←GSIVSF
[36] ARR[12;]←GSOP
[37] ARR[16;]←DN
    V

```

Figure 13-5. The APL Function DATAIN for Constant Dollars

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

∇ DFT[ ]∇
  Z←W DFT, X;D;E;F;G;H;I;J;K;L;Y
[1]  D←' 0123456789.
[2]  →(∨/W≠[ W←,W+(H←0)×L←1<ρρX)/DFTERR+0×F←2
[3]  →(3 2 1 <ρρX)/(DFTERR+F←0), 2 3 +I26
[4]  →(2+I26),ρX←((∨/ 1 2 =ρW)Φ 1 2)⊗(1,ρ,X)ρZ
[5]  X←(0 1 1 /ρX)ρX
[6]  →((∧/(ρW)≠ 1 2 ,2×E←1ρΦρX),1≠ρW)/(DFTERR×F←1),3+I
    26
[7]  I←1+⌈/0,,⌈10⊗|X+1>|X
[8]  W←(2+I+W+(W≠0)+∨/,X<0),W
[9]  →(∨/2>-/[1] W←⊗(E,2)ρW)/DFTERR+0×F←2
[10] Z←((K←1ρρX),+/W[1;])ρ
[11] X←[0.5+X×10*(ρX)ρW[2;]
[12] DFTLP:→(E<H←H+1)/DFTEND
[13] J←1+[10](⌈ Y←X[ ;H])○.÷10*^-1+Φ I←W[1;H]
[14] J←(.,J)×G←,⊗(ΦρJ)ρ(.,⊗(J≠1)∨.∧(I))○.≤ιI-F+1),(K×1+F←W[
    2;H])ρ1
[15] →(∧/0≤Y)/2+I26
[16] J[1+(ρJ)]^-1+(I-+/(K,I)ρG)+I×^-1+ιK]←12×Y<0
[17] J←(K,I)ρJ
[18] →(0=F)/3+I26
[19] J←J[ ;(1Φ I G),(G←-/W[ ;H])+ιF]
[20] J[ ;G]←11
[21] →DFTLP,ρZ[ ;(+/W[1;ιH-1])+ιI]←D[1+J]
[22] DFTEND:→L/0
[23] →0×ρZ+,Z
[24] DFTERR:'DFT ',(3 6 ρ' RANK LENGTHDOMAIN')[F+1;], ' PROBLEM.'
```

Figure 13-6. The APL Function DFT

REPRODUCIBILITY OF THE
FINAL PAGE IS POOR

```

∇ EFT[ ]
  ∇ Z←EFT X;D;E;H;J;K;L;Q;S;T;U;Y
  [ 1] D←0123456789.E
  [ 2] →(v/W≠L W←,N+(H+0)×L+1<ρρX)/EFTERR+0×K+2
  [ 3] →(3 2 1 <ρρX)/(EFTERR+K+0),2 3,+I26
  [ 4] X←((v/-1 2 =ρW)Φ 1 2)Φ(1,ρ,X)ρX
  [ 5] X←(Φ2ρΦρX)ρX
  [ 6] →((Λ/(ρW)≠ 1 2 ,2×E+1ρΦρX),1≠ρW)/(EFTERR×K+1),2+I
      26
  [ 7] W←(W+6+(v/;X<0)+v/,1>|X);W
  [ 8] →(v/6>-/[1] W←Φ(E,2)ρW)/EFTERR+0×K+2
  [ 9] Z←((K+1ρρX),+/V[1;])σ!
  [10] EFTLP:→(E<H+H+1)/EFTEND
  [11] S←1+[10*|Y+0=Y←X[;H]
  [12] U←1+[10*|Y+0=Y←|0.5+(10*Q-15)+Y×1.0*(Q←W[2;H])-S
  [13] J←((T-4)ρ1),4ρ0)\1+[10|(|Y÷10*U>Q)○.÷10* 1+Φ1 -4+T←V[1;H]
  [14] J[;T- 2 1]←1+[10|(|S-U≤Q)○.÷ 10; 1
  [15] J[;(1U+T-4+Q),T]←13
  [16] J[;1,U,T,T-3]←Φ(4,K)ρ(Kρ11),(13+0>Y,S-1),Kρ12
  [17] J[;iT-3]←J[;(1ΦiU+1),(U+i+1Q)]
  [18] J[;T- 2 1 0]←(-S≤0)ΦJ[;T- 2 1 0]
  [19] →EFTLP,ρZ[;(+/W[1;iH-1])+iT]←D[J]
  [20] EFTEND:→L/0
  [21] →0×ρZ←,Z
  [22] EFTERR: EFT ,(3 .6 ρ' RANK LENGTHDOMAIN')[K+1;], PROBLEM.
  ∇

```

Figure 13-7. The APL Function EFT

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```
∇LOAD[[]]∇
  ∇ Z←LOAD A;B
  [1]   Z←(0,A)ρ' '
  [2]   T1:B←,¶
  [3]   →('//'^.=2↑B)/0
  [4]   Z←Z,[1](1,A)ρA↑B
  [5]   →T1
  ∇
```

Figure 13-8. The APL Function LOAD

```
    ∇ EXECUTE[ ]∇  
    ∇ EXECUTE  
[1]  DATAIN  
[2]  CONSTANTD  
[3]  SHOW  
    ∇
```

Figure 13-9. The APL Function EXECUTE for Constant Dollars

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```
▽SHOW[R]▽  
▽ SHOW  
[1] 'FF=';FF  
[2] 'FPROJ=';FPROJ  
[3] 'FECON=';FECON  
[4] ''  
[5] 'SMN=';SMN  
[6] 'SMF=';SMF  
[7] ''  
[8] 'SHARE=';SHARE  
[9] 'SMB=';SMB  
[10] 'UF=';UF  
[11] ''  
[12] 'F=';F  
[13] 'SMR=';SMR  
[14] ''  
[15] 'NPV=';NPV  
[16] 'PEAK=';PEAK  
[17] 'REVENUE=';REVENUE  
▽
```

Figure 13-10. The APL Function SHOW for Constant Dollars

```

    ⋮ ⋮ CURRENTTD[‘’] ⋮ ⋮
    ⋮ CURRENTTD
[1] ARR[1;]←ARR[2;]+ARR[3;]
[2] ARR[4;]←ARR[5;]+ARR[6;]
[3] ARR[9;]←ARR[10;]+ARR[11;]
[4] ARR[13;]←ARR[1;]+ARR[4;]+ARR[7;]+ARR[8;]+ARR[9;]+ARR[12;]
[5] ARR[15;]←(1+S'MF)*ARR[14;]
[6] ARR[16;]←ARR[13;]*ARR[15;]
[7] +(FF=0)/T1
[8] +(FF=1)/T2
[9] T2:F=F
[10] →T3
[11] T1:DISFAC
[12] T3:ARR[17;]←(1+F)*(-ARR[14;])
[13] ARR[18;]←(1+S'R)*(-ARR[14;])
[14] ARR[20;]←ARR[18;]*ARR[19;]
[15] ARR[21;]←ARR[24;]+ARR[27;]
[16] ZARR20←+/ARR[20;]
[17] ARR[22;]←ARR[2;]*ARR[17;]
[18] ARR[23;RSMN]←(+/ARR[22;])÷ZARR20
[19] ARR[24;]←ARR[19;]*ARR[23;]
[20] ARR[25;]←ARR[3;]*ARR[17;]
[21] ARR[26;RSMN]←(+/ARR[25;])÷ZARR20
[22] ARR[27;]←ARR[19;]*ARR[26;]
[23] ARR[28;]←ARR[31;]+ARR[34;]
[24] ARR[29;]←ARR[5;]*ARR[17;]
[25] ARR[30;RSMN]←(+/ARR[29;])÷ZARR20
[26] ARR[31;]←ARR[19;]*ARR[30;]
[27] ARR[32;]←ARR[6;]*ARR[17;]
[28] ARR[33;RSMN]←(+/ARR[32;])÷ZARR20
[29] ARR[34;]←ARR[19;]*ARR[33;]
[30] ARR[36;]←ARR[7;]*ARR[17;]
[31] ARR[37;RSMN]←(+/ARR[36;])÷ZARR20
[32] ARR[38;]←ARR[19;]*ARR[37;]
[33] ARR[35;]←ARR[38;]
[34] ARR[40;]←ARR[8;]*ARR[17;]
[35] ARR[41;RSMN]←(+/ARR[40;])÷ZARR20
[36] ARR[42;]←ARR[19;]*ARR[41;]
[37] ARR[39;]←ARR[42;]
[38] ARR[43;]←ARR[46;]+ARR[49;]
[39] ARR[44;]←ARR[10;]*ARR[17;]
[40] ARR[45;RSMN]←(+/ARR[44;])÷ZARR20
[41] ARR[46;]←ARR[19;]*ARR[45;]
[42] ARR[47;]←ARR[11;]*ARR[17;]
[43] ARR[48;RSMN]←(+/ARR[47;])÷ZARR20
[44] ARR[49;]←ARR[19;]*ARR[48;]
[45] ARR[51;]←ARR[12;]*ARR[17;]
[46] ARR[52;]←(+/ARR[51;])÷ZARR20
[47] ARR[53;]←ARR[19;]*ARR[52;]
[48] ARR[50;]←ARR[53;]
[49] ARR[54;]←ARR[23;]+ARR[26;]+ARR[30;]+ARR[33;]+ARR[37;]+ARR[41;]+ARR[45;]+ARR[48;]+ARR[52;]
[50] ARR[55;]←ARR[21;]+ARR[28;]+ARR[35;]+ARR[39;]+ARR[43;]+ARR[50;]
[51] ARR[56;]←ARR[22;]+ARR[25;]+ARR[29;]+ARR[32;]+ARR[36;]+ARR[40;]+ARR[44;]+ARR[47;]+ARR[51;]
[52] NPV←+/ARR[22;]++/ARR[25;]++/ARR[29;]++/ARR[32;]++/ARR[36;]++/ARR[40;]++/ARR[44;]++/ARR[47;]++/ARR[51;]
[53] PEAK←+/ARR[13;]
[54] REVENUT←+/ARR[55;]

```

Figure 13-11. The APL Function CURRENTD

```

    VDISPAC[0]
    V DISPAC
[1]  RISK+ 4 2 p0
[2]  RISK[;1]← 25 27 38 66
[3]  RISK[;2]← 30 36 40 72
[4]  RECES← 4 1 p0
[5]  RECES[;1]← 0 25 25 25
[6]  GRWTH← 4 4 .p0
[7]  GRWTH[;1]← 25 25 25 25
[8]  GRWTH[;2]← 40 35 30 25
[9]  GRWTH[;3]← 80 65 50 35
[10] GRWTH[;4]← 125 100 75 50
[11] SMF←SMF
[12] SMN←SMN
[13] RSMN←SMN+1
[14] XRSMN←SMN+1
[15] FPROJ←FPROJ
[16] →(FPROJ=0)/T1
[17] →(FPROJ=1)/T34
[18] T34:SHARE←SHARE
[19] →(SHARE>0.15)/T35
[20] SMB←1
[21] →T36
[22] T35:SMB←1÷(1-SHARE)
[23] T36:FECON←FECON
[24] →(FECON=0)/T2
[25] →(RSMN≤1)/T3
[26] →((RSMN≤5)∧(RSMN>1))/T5
[27] →((RSMN≤15)∧(RSMN>5))/T6
[28] UF←RECES[4;1]×0.001
[29] →T4
[30] T3:UF←RECES[1;1]×0.001
[31] →T4
[32] T5:UF←RECES[2;1]×0.001
[33] →T4
[34] T6:UF←RECES[3;1]×0.001
[35] T4:F←SMB×UF
[36] T34:SMR←((1+F)×(1+SMF))-1
[37] →0
[38] T2:→((RSMN≤1)∧(SMF≤0.02))/T7
[39] →((RSMN≤5)∧(RSMF>1)∧(SMF≤0.02))/T8
[40] →((RSMN≤15)∧(RSMN>5)∧(SMF≤0.02))/T9
[41] →((RSMN>15)∧(SMF≤0.02))/T10
[42] →((RSMN≤1)∧(SMF>0.02)∧(SMF≤0.05))/T11
[43] →((RSMN≤5)∧(RSMN>1)∧(SMF>0.02)∧(SMF≤0.05))/T12
[44] →((RSMN≤15)∧(RSMN>5)∧(SMF>0.02)∧(SMF≤0.05))/T13
[45] →((RSMN>15)∧(SMF>0.02)∧(SMF≤0.05))/T14

```

Figure 13-12. The APL Function DISFAC for Current Dollars

```

[46] T46:→((RSMN≤1)∧(SMF>0.05)∧(SMF≤0.08))/T15
[47] →((RSMN≤5)∧(RSMN>1)∧(SMF>0.05)∧(SMF≤0.08))/T16
[48] →((RSMN≤15)∧(RSMN>5)∧(SMF>0.05)∧(SMF≤0.08))/T17
[49] →((RSMN>15)∧(SMF>0.05)∧(SMF≤0.08))/T18
[50] →((RSMN≤1)∧(SMF>0.08))/T19
[51] →((RSMN≤5)∧(RSMN>1)∧(SMF>0.08))/T20
[52] →((RSMN≤15)∧(RSMN>5)∧(SMF>0.08))/T21
[53] →((RSMN>15)∧(SMF>0.08))/T22
[54] T7:UF←GRVTH[1;1]×0.001
[55] →T4
[56] T8:UF←GRVTH[2;1]×0.001
[57] →T4
[58] T9:UF←GRVTH[3;1]×0.001
[59] →T4
[60] T10:UF←GRVTH[4;1]×0.001
[61] →T4
[62] T11:UF←GRVTH[1;2]×0.001
[63] →T4
[64] T12:UF←GRVTH[2;2]×0.001
[65] →T4
[66] T13:UF←GRVTH[3;2]×0.001
[67] →T4
[68] T14:UF←GRVTH[4;2]×0.001
[69] →T4
[70] T15:UF←GRVTH[1;3]×0.001
[71] →T4
[72] T16:UF←GRVTH[2;3]×0.001
[73] →T4
[74] T17:UF←GRVTH[3;3]×0.001
[75] →T4
[76] T18:UF←GRVTH[4;3]×0.001
[77] →T4
[78] T19:UF←GRVTH[1;4]×0.001
[79] →T4
[80] T20:UF←GRVTH[2;4]×0.001
[81] →T4
[82] T21:UF←GRVTH[3;4]×0.001
[83] →T4
[84] T22:UF←GRVTH[4;4]×0.001
[85] →T4
[86] T1:→(FTYPE=0)/T23
[87] →(FRISK=3)/T24
[88] →(FRISK=2)/T25
[89] →(FRISK=1)/T26
[90] →(FRISK=0)/T27
[91] T23:→(FRISK=3)/T28

```

Figure 13-12: The APL Function DISFAC for Current Dollars (Cont'd)

```

      [0]92]
[92] →(FRISK=2)/T29
[93] →(FRISK=1)/T30
[94] →(FRISK=0)/T31
[95] T24:UF←RISK[4;1]×0.001
[96] →T32
[97] T25:UF←RISK[3;1]×0.001
[98] →T32
[99] T26:UF←RISK[2;1]×0.001
[100] →T32
[101] T27:UF←RISK[1;1]×0.001
[102] →T32
[103] T28:UF←RISK[4;2]×0.001
[104] →T32
[105] T29:UF←RISK[3;2]×0.001
[106] →T32
[107] T30:UF←RISK[2;2]×0.001
[108] →T32
[109] T31:UF←RISK[1;2]×0.001
[110] T32:→(SME≠0)/T4
[111] IN←0
[112] T33:IN←IN+1
[113] F←ASSF
[114] CURRENTD
[115] VG←ARR[13;]-ARR[52;]
[116] G←[ /VG
[117] SMB←1÷(1-(G÷CAF))
[118] F←SMB×UF
[119] →(((|F)-(|ASSF))<0.0001)/T34
[120] ASSF←F
[121] →T33
      ∇

```

Figure 13-12. The APL Function DISFAC for Current Dollars (Cont'd)

```

    V DATAIN[ ] ]V.
    V DATAIN
[1]  SMN←SMN.
[2]  RSMN←SMN+1
[3]  XRSMN←SMN+1
[4]  ARR←(56,XRSMN)ρ0
[5]  N←0+1SMN.
[6]  ZARR←56ρ0
[7]  ARR[14;]←N
[8]  MERD←MERD
[9]  MERD←MERD
[10] SCRD←SCRD
[11] SCRD←SCRD
[12] MEIV←MEIV
[13] MEIV←MEIV
[14] SCIV←SCIV
[15] SCIV←SCIV
[16] STOP←STOP
[17] STOP←STOP
[18] LAVOP←LAVOP
[19] LAVOP←LAVOP
[20] GSIVEL←GSIVEL
[21] GSIVEL←GSIVEL
[22] GSIVSF←GSIVSF
[23] GSIVSF←GSIVSF
[24] GSOP←GSOP
[25] GSOP←GSOP
[26] DN←DN
[27] DN←DN
[28] ARR[2;]←MERD
[29] ARR[3;]←SCRD
[30] ARR[5;]←MEIV
[31] ARR[6;]←SCIV
[32] ARR[7;]←STOP
[33] ARR[8;]←LAVOP
[34] ARR[10;]←GSIVEL
[35] ARR[11;]←GSIVSF
[36] ARR[12;]←GSOP
[37] ARR[19;]←DN

```

V

Figure 13-13. The APL Function DATAIN for Current Dollars

```
∇ EXECUTE[ ]∇  
  ∇ EXECUTE  
  [1]  DATAIN  
  [2]  CURRENTD  
  [3]  SHOW  
  ∇
```

Figure 13-14. The APL Function EXECUTE for Current Dollars

▼SHOW[1]▼

▼ SHOW

- [1] 'FF=';FF
- [2] 'FPROJ=';FPROJ
- [3] 'FECON=';FECON
- [4] ' '
- [5] 'SMN=';SMN
- [6] 'SMF=';SMF
- [7] ' '
- [8] 'SHARE=';SHARE
- [9] 'SMB=';SMB
- [10] 'UF=';UF
- [11] ' '
- [12] 'F=';F
- [13] 'SMR=';SMR
- [14] ' '
- [15] 'NPV=';NPV
- [16] 'PEAK=';PEAK
- [17] 'REVENUE=';REVENUE

▼

Figure 13-15. The APL Function SHOW for Current Dollars

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```
    V PRT[ ] V
    V PRT
[1] ZARR[1]++/ARR[1;]
[2] ZARR[2]++/ARR[2;]
[3] ZARR[3]++/ARR[3;]
[4] ZARR[4]++/ARR[4;]
[5] ZARR[5]++/ARR[5;]
[6] ZARR[6]++/ARR[6;]
[7] ZARR[7]++/ARR[7;]
[8] ZARR[8]++/ARR[8;]
[9] ZARR[9]++/ARR[9;]
[10] ZARR[10]++/ARR[10;]
[11] ZARR[11]++/ARR[11;]
[12] ZARR[12]++/ARR[12;]
[13] ZARR[13]++/ARR[13;]
[14] ZARR[52]++/ARR[52;]
[15] ZARR[53]++/ARR[53;]
```

Figure 13-16. The APL Function PRT

14. REFERENCES

- 1-i. Space Shuttle/Payload Interface Analysis (Study 2.4) Final Report, Volume IV, BRAVO, Part 4, Computer Programs and Data Look-Up, The Aerospace Corporation, ATR-74(7334)-1, Vol. IV, Part 4 (15 February 1974).
- 6-1. Network Integration Study, STDN No. 809, Networks Directorate, Goddard Space Flight Center, Greenbelt, Maryland (June 1972).
- 8-1. Defense Communication Agency Cost Manual, DCA Circular 600-60-1 (17 November 1970).
- 9-1. Thomas Cosgrove and Rodney D. Chipp, "Economic Considerations for Communications Systems," IEEE Transactions on Communications Technology, Vol. COM-16, No. 4 (August 1968).
- 10-1. "Toward Postal Excellence," Report of the President's Commission on Postal Organization (June 1968).
- 10-2. Postal Rate Data, U. S. Postal Service, Washington, D. C., via Post Office, El Segundo, California (28 February 1973).
- 11-1. R. T. Nichols, Submarine Telephone Cables and International Telecommunications, RM 3472-RC, The Rand Corporation (February 1963).
- 11-2. Statistics of Communications Common Carriers, 1969, Federal Communications Commission, U. S. Government Printing Office (1971).
- 12-1. The 1970 National Power Survey, Federal Power Commission, Volumes I through IV, U. S. Government Printing Office, Washington, D. C. (December 1971).
- 12-2. United States Energy Through the Year 2000, Walter G. Dupree, Jr. and James A. West, U. S. Department of the Interior, U. S. Government Printing Office (December 1972).
- 12-3. Harold E. Vann, Cost Trends for Nuclear Power Plants, Nuclear News, Vol. 14, No. 10X (October 15, 1974).
- 12-4. I. S. Zheluder, Energy Sources and Requirements, Nuclear News, Vol. 14, No. 10X (October 15, 1974).
- 12-5. Ray Schuster, PMC Digs into Build the Breeder, Power Engineering, (January 1973).

- 12-6. Energy "Demand" Studies, An Analysis and Appraisal, Committee on Interior and Insular Affairs of the U. S. House of Representatives, 92nd Congress, 2nd Session, U. S. Government Printing Office, Washington, D. C. (1972).
- 12-7. W. E. Mooz and C. C. Mow, California's Electricity Quandary:
1. Estimating Future Demand, R-1084-NSF/CSRA, The Rand Corporation (September 1972).
- 12-8. Task 4 Report, Economic Analysis - Competitive Power System, Report No. ATR-73(7283-04)-1, The Aerospace Corporation, El Segundo, California (December 31, 1972).
- 12-9. F. C. Olds, Capital Cost Calculation for Future Power Plants, Power Engineering (January 1973).