Algèbre 1 Représentations de

groupes

Question 1/18

Morphisme de représentations de (ρ, V) vers (σ, W)

Réponse 1/18

$$f:V \to W$$
 linéaire tel que pour tout $g \in G$ et tout $v \in V$, $f(g \cdot v) = g \cdot f(v)$ ie,
$$f(\varphi(g)(v)) = \sigma(g)(f(v))$$

Question 2/18

Représentation régulière V_G

Réponse 2/18

$$\rho: G \longrightarrow \mathbb{k}^G$$

$$f \longmapsto (h \mapsto f(gh))$$

Question 3/18

Caractérisation des groupes abéliens par les représentations

Réponse 3/18

Si G est un groupe fini alors G est abélien si et seulement si toutes ses représentations irréductibles sur $\mathbb C$ sont de degré 1

Question 4/18

Représentation duale de (ρ, V)

Réponse 4/18

$$\rho^*: G \longrightarrow V^* = \varphi_{\operatorname{Hom}(V,1)}$$
$$g \longmapsto (f \mapsto f \circ \rho(g^{-1}))$$

Question 5/18

Torsion de la représentation (ρ, V) par (χ, \mathbb{k})

Réponse 5/18

$$(\rho, V) \otimes (\chi, \mathbb{k}) = \begin{pmatrix} G \longrightarrow \operatorname{GL}(V) \\ g \longmapsto \chi(g)\rho(g) \end{pmatrix}$$

Question 6/18

Degré de
$$(\rho, V)$$

Réponse 6/18

 $\dim(V)$

Question 7/18

$$(\rho, V)$$
 et (σ, W) deux représentations de G

Réponse 7/18

$$\rho \otimes \sigma : G \longrightarrow \operatorname{GL}(V \otimes W)$$
$$g \longmapsto (v \otimes w \mapsto g \cdot v \otimes g \cdot w)$$

Question 8/18

Lemme de Schur

Réponse 8/18

Si V et W sont deux représentations irréductibles de G alors soit $\operatorname{Hom}_G(V, W) = \{0\}$ soit $\operatorname{Hom}_G(V, W) \cong \mathbb{k}$

Question 9/18

Décomposition en composantes irréductibles d'une représentation

Réponse 9/18

Si W est une représentation de G est \mathbb{k} est algébriquement clos tel que $\operatorname{car}(\mathbb{k}) = 0$ ou $\operatorname{car}(\mathbb{k}) \nmid |G|$ et $|G| < +\infty$ alors

$$W = \bigoplus_{V \in \mathcal{I}_G(\mathbb{k})} V^{\dim(\operatorname{Hom}_G(V,W))}$$

Cette décomposition est unique à isomorphisme près

Question 10/18

Représentation de groupe

Réponse 10/18

 (ρ, V) avec V un \mathbb{k} -ev de dimension finie et $\rho: G \to \operatorname{GL}(V)$ un morphisme de groupes

Question 11/18

Sous-représentation de (ρ, V)

Réponse 11/18

W sev de V tel que, pour tout $g \in G$, $g \cdot W \subset W^{\scriptscriptstyle 1}$

Question 12/18

$$(\rho, V)$$
 est fidèle

Réponse 12/18

 ρ est injetif

Question 13/18

$$(\rho, V)$$
 et (σ, W) deux représentations de G

Réponse 13/18

$$\rho \oplus \sigma : G \longrightarrow \operatorname{GL}(V \oplus W)$$
$$g \longmapsto (v \oplus w \mapsto g \cdot v \oplus g \cdot w)$$

Question 14/18

$$(\rho, V)$$
 est irréductible

Réponse 14/18

La représentation est de degré $\geqslant 1$ Les seules sous-représentations sont $\{0\}$ et V

Question 15/18

$$\operatorname{Hom}_G(V,W)$$

Réponse 15/18

$$\operatorname{Hom}(V, W)^G = \{ f \in \operatorname{Hom}(V, W), g \circ f = f \circ g \}$$

Question 16/18

$$\varphi_{\operatorname{Hom}(V,W)}$$

 (ρ,V) et (σ,W) deux représentations de G

Réponse 16/18

$$\varphi_{\operatorname{Hom}(V,W)}: G \longrightarrow \operatorname{GL}(\operatorname{Hom}(V,W))$$
$$g \longmapsto (f \mapsto \sigma(g) \circ f \circ \rho(g^{-1}))$$

Question 17/18

Théorème de Maschke

Réponse 17/18

Si $\operatorname{car}(\mathbb{k}) = 0$ ou $\operatorname{car}(\mathbb{k}) \nmid |G|$ et $|G| < +\infty$ alors toute représentation de G se décompose en somme directe de sous-représentation irréductibles

Question 18/18

Supplémentaire stable

Réponse 18/18

Si (ρ, V) est une représentation de G est W une sous-représentation alors il existe un supplémentaire W' de W qui est une sous-représentation de G et $V = W \oplus W'$