Examenul național de bacalaureat 2022 Proba E. c)

Matematică *M_tehnologic*BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(\sqrt{8}+1)\cdot(2\sqrt{2}-1)-\sqrt{36}=(2\sqrt{2})^2-1-6=$	3p
	= 8 - 7 = 1	2p
2.	$f(x) = g(x) \Leftrightarrow 5x - 1 = 5 + 2x$	2p
	Coordonatele punctului de intersecție a graficelor funcțiilor f și g sunt $x = 2$ și $y = 9$	3 p
3.	$x^2 + 6x = x^2$	3 p
	x = 0, care convine	2p
4.	Mulțimea A are 10 elemente, deci sunt 10 cazuri posibile	2p
	Numerele n din mulțimea A pentru care numărul $4 \cdot n$ este element al mulțimii A sunt 0 ,	2p
	1 și 2, deci sunt 3 cazuri favorabile	•
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{10}$	1p
	nr. cazuri posibile 10	- F
5.	$2 = \frac{3 + x_C}{2}$ şi $1 = \frac{4 + y_C}{2}$, deci punctul C are coordonatele $x_C = 1$ şi $y_C = -2$	2p
	$OA = \sqrt{5}$, $OC = \sqrt{5}$ şi $AC = \sqrt{10}$, deci $OA^2 + OC^2 = AC^2$, de unde obţinem că triunghiul	2 m
	AOC este dreptunghic isoscel	3р
6.	$\sin 30^\circ = \frac{1}{2}, \cos 60^\circ = \frac{1}{2}$	2p
	$\frac{1}{2} \cdot \sin A = \frac{1}{2} \cdot \cos A$, deci sin $A = \cos A$, de unde obținem tg $A = 1$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 3 & -6 \\ 2 & -3 \end{vmatrix} = 3 \cdot (-3) - (-6) \cdot 2 =$	3p
	=-9+12=3	2p
b)	$A \cdot A = \begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix} \Rightarrow A \cdot A + A = \begin{pmatrix} 0 & -6 \\ 2 & -6 \end{pmatrix}$	2p
	$A \cdot A + A = 2 \begin{pmatrix} 0 & -3 \\ 1 & -3 \end{pmatrix} = 2B(-1)$, de unde obţinem $x = -1$	3 p
c)	$B(a) \cdot A = \begin{pmatrix} 2a - 4 & -3a + 6 \\ 3 + 6a & -6 - 9a \end{pmatrix}, \ B(3a) = \begin{pmatrix} 0 & 3a - 2 \\ 1 & 9a \end{pmatrix}, \ \det B(a) \cdot A + B(3a) = \begin{pmatrix} 2a - 4 & 4 \\ 4 + 6a & -6 \end{pmatrix},$ pentru orice număr real a	3 p
	$\det(B(a) \cdot A + B(3a)) = -36a + 8, \text{ pentru orice număr real } a, \det(-36a + 8) = 4 \Rightarrow a = \frac{1}{9}$	2p

Probă scrisă la matematică $M_tehnologic$

Barem de evaluare și de notare

Model

2.a)	$1*2 = (1\cdot 2 + 1)(1 + 2) =$ $= 3\cdot 3 = 9$	3 p
	$=3\cdot 3=9$	2p
b)	$x * 0 = (x \cdot 0 + 1)(x + 0) = 1 \cdot x = x$, pentru orice număr real x	2p
	$0*x = (0 \cdot x + 1)(0 + x) = 1 \cdot x = x$, pentru orice număr real x , deci $e = 0$ este elementul neutru al legii de compoziție ,, *"	3p
c)	$N = 2\left(n + \frac{1}{n}\right) = 2n + \frac{2}{n}$, pentru orice număr natural nenul n	2p
	N este număr întreg, deci $\frac{2}{n}$ este număr întreg și, cum n este număr natural nenul, obținem	3p
	n=1 sau $n=2$	

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = e^x + (x-1)e^x - \frac{2x}{2} =$	3р
	$= xe^x - x = x(e^x - 1), \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to 0} \frac{f(x) - f(0)}{x^2} = \lim_{x \to 0} \frac{f'(x)}{(x^2)'} =$	2p
	$= \lim_{x \to 0} \frac{x(e^x - 1)}{2x} = \lim_{x \to 0} \frac{e^x - 1}{2} = 0$	3p
c)	$f'(x) \ge 0$, pentru orice $x \in \mathbb{R} \Rightarrow f$ este crescătoare pe \mathbb{R}	2p
	Cum $x \le 0 \le x^2$, pentru orice $x \in (-\infty, 0]$, obținem $f(x) \le f(x^2)$, pentru orice $x \in (-\infty, 0]$	3 p
2.a)	$\int_{1}^{2} (x+4) f(x) dx = \int_{1}^{2} 4x dx = 2x^{2} \Big _{1}^{2} =$	3р
	=8-2=6	2p
b)	$\left \int_{1}^{4} \frac{1}{x} \cdot f(x^{2}) dx = 2 \int_{1}^{4} \frac{2x}{x^{2} + 4} dx = 2 \int_{1}^{4} \left(x^{2} + 4\right)' \cdot \frac{1}{x^{2} + 4} dx = 2 \ln\left(x^{2} + 4\right) \right _{1}^{4} =$	3 p
	$= 2 \ln 20 - 2 \ln 5 = 4 \ln 2$	2p
c)	Dacă $F:(-4,+\infty)\to\mathbb{R}$ este o primitivă a funcției f , atunci $F'(x)=f(x)$, pentru orice	2
	$x \in (-4, +\infty)$	2p
	$F''(x) = f'(x) = \frac{16}{(x+4)^2} > 0$, pentru orice $x \in (-4, +\infty)$, deci orice primitivă a funcției f	3p
	este convexă	