10.1.5. Consider the following summary data on the modulus of elasticity (\times 10⁶ psi) for lumber of three different grades [in close agreement with values in the article "Bending Strength and Stiffness of Second-Growth Douglas-Fir Dimension Lumber" (Forest Product J., 1991: 35–43), except that the same sizes that were larger]:

 Grade
 J \bar{x}_i s_i

 1
 10
 1.63
 .27

 2
 10
 1.56
 .24

 3
 10
 1.42
 .26

Use this data and a significance level of .01 to test the null hypothesis of no difference in mean modulus of elasticity for the three grades.

 μ_i = true mean modulus of elasticity for grade i (i = 1, 2, 3). H_0 : $\mu_1 = \mu_2 = \mu_3$ vs H_a : at least two μ_i 's are different. Grand mean = $\frac{1.63(10) + 1.56(10) + 1.42(10)}{30} = 1.5367$.

$$MSTr = \frac{J}{I - 1} [(\bar{X}_{1.} - \bar{X}_{..})^{2} + (\bar{X}_{2.} - \bar{X}_{..})^{2} + (\bar{X}_{3.} - \bar{X}_{..})^{2}]$$

$$= \frac{10}{3 - 1} [(1.63 - 1.5367)^{2} + (1.56 - 1.5367)^{2} + (1.42 - 1.5367)^{2}]$$

$$= 5[(0.0933)^{2} + (0.0233)^{2} + (-0.1167)^{2}] = .1143$$

$$MSE = \frac{S_{1}^{2} + S_{2}^{2} + S_{3}^{2}}{I} = \frac{.27^{2} + .24^{2} + .26^{2}}{3} = .0660, f = \frac{MSTr}{MSE} = \frac{.1143}{.0660} = 1.73$$

At df = (2, 27), 1.73 < 2.51, so the *P*-value is more than .10. Therefore we fail to reject H_0 .

Ans: The three grades do not appear to differ significantly

10.1.7. An experiment was carried out to compare electrical resistivity for six different low-permeability concrete bridge deck mixtures. There were 26 measurements on concrete cylinders for each mixture; these were obtained 28 days after casting. The entries in the accompanying ANOVA table are based on information in the article "In-Place Resistivity of Bridge Deck Concrete Mixtures" (ACI Materials J., 2009: 114–122). Fill in the remaining entries and test appropriate hypotheses.

Source	df	Sum of Squares	Mean Square	f
Mixture	5	3575.065	715.013	51.3
Error	150	2089.350	13.929	
Total	155	5664.415		

Let μ_i denote the true mean electrical resistivity for the *i*th mixture (i=1, ..., 6). H_0 : $\mu_1 = ... = \mu_6$ vs H_a : at least two of the μ_i 's are different. There are I=6 different mixtures and J=26 measurements for each mixture. SSE = I(J-1)MSE=6(26-1)(13.929)=2089.350. SSTr = SST - SSE = 5664.415-2089.350=3575.065. MSTr = SSTr/(I-1)=3575.065/(6-1)=715.013, f=MSTr/MSE=715.013/13.929=51.3.

10.2.14. Use Tukey's procedure on the data in Example 10.3 to identify differences in true average bond strengths among the five protocols.

Treatment	1	2	3	4	5
Sample mean	10.5	14.8	15.7	16.0	21.6
Sample SD	4.5	6.8	6.5	6.7	6.0

From Example 10.3: $\alpha = .05$, I = 5, J = 10, grand mean = 15.7, MSTr = 156.875, MSE = 37.926. $Q_{\alpha,I,I(j-1)} = Q_{0.05,5,5(10-1)} = Q_{0.05,5,45} = 4.018$ (I Google'd it since Table A.10 does not provide v = 45). https://www.stat.purdue.edu/~xbw/courses/stat512/q-table.pdf

$$w = Q_{\alpha,I,I(j-1)} \cdot \sqrt{\frac{\text{MSE}}{J}} = 4.018 \sqrt{\frac{37.926}{10}} = 7.825$$

 \bar{x}_2 . $-\bar{x}_1$. = 14.8 - 10.5 = 4.3 < w, thus pair (1, 2) should be underlined as a pair. \bar{x}_3 . $-\bar{x}_1$. = 15.7 - 10.5 = 5.2 < w, thus pair (1, 3) should be underlined as a pair. \bar{x}_4 . $-\bar{x}_1$. = 16.0 - 10.5 = 5.5 < w, thus pair (1, 4) should be underlined as a pair. \bar{x}_5 . $-\bar{x}_1$. = 21.6 - 10.5 = 11.1 > w, thus pair (1, 5) should **not** be underlined as a pair. \bar{x}_3 . $-\bar{x}_2$. = 15.7 - 14.8 = 0.9 < w, thus pair (2, 3) should be underlined as a pair. \bar{x}_4 . $-\bar{x}_2$. = 16.0 - 14.8 = 1.2 < w, thus pair (2, 4) should be underlined as a pair. \bar{x}_5 . $-\bar{x}_2$. = 21.6 - 14.8 = 6.8 < w, thus pair (2, 5) should be underlined as a pair. \bar{x}_4 . $-\bar{x}_3$. = 16.0 - 15.7 = 0.3 < w, thus pair (3, 4) should be underlined as a pair. \bar{x}_5 . $-\bar{x}_3$. = 21.6 - 15.7 = 5.9 < w, thus pair (3, 5) should be underlined as a pair. \bar{x}_5 . $-\bar{x}_4$. = 21.6 - 16.0 = 5.6 < w, thus pair (4, 5) should be underlined as a pair.

$$\bar{x}_1$$
. \bar{x}_2 . \bar{x}_3 . \bar{x}_4 . \bar{x}_5 . 10.5 14.8 15.7 16 21.6

Ans: only significant difference is observed on the pair (1, 5)

10.2.16. Reconsider the axial stiffness data given in Exercise 8. ANOVA output from Minitab follows:

Analysis	of Va	ariance for	r Stiffn	ess		Tukey's pairwis	se comparison	3	
Source	DF	SS	MS	F	P	Family erro	or rate = 0.0	1500	
Length	4	43993	10998	10.48	0.000	Individual erro			
Error	30	31475	1049			Critical value	= 4.10		
Total	34	75468				Intervals for mean)	(column level	mean) - (r	ow level
Level	N	Mean	stDev			4	6	8	10
4	7	333.21	36.59			6 -85.0			
6	7	368.06	28.57			15.4			
8	7	375.13	20.83			8 -92.1	-57.3		
10	7	407.36	44.51			8.3	43.1		
	-					10 -124.3	-89.5	-82.4	
12	7	437.17	26.00			-23.9	10.9	18.0	
Pooled S	tDow :	- 22 20				12 -154.2	-119.3	-112.2	-80.0
Pooled 5	CDev -	- 32.39				-53.8	-18.9	-11.8	20.4

(a) Is it plausible that the variances of the five axial stiffness index distributions are identical? Explain.

The largest standard deviation, $s_4 = 44.51$, is only slightly twice as large as the smallest standard deviation, $s_3 = 20.83$, so we can conclude that the population variances are equal.

Ans: Yes

(b) Use the output (without reference to our F table) to test the relevant hypotheses. $H_0: u_i = u_j, i \neq j, H_a:$ at least two u_i 's are different. F = 10.48, P-value = 0.000 (both given from Minitab output), hence we reject null hypothesis (i.e., no difference in axial stiffness for different plate lengths.)

Ans: Reject H_0

(c) Use the Tukey intervals given in the output to determine which means differ, and construct the corresponding underscoring pattern.

 $\alpha = .05, I = 5, J = 7, Q_{\alpha,I,I(j-1)} = Q_{0.05,5,5(7-1)} = Q_{0.05,5,30} = 4.1, MSE = 1043$ (both given from Minitab output).

$$w = Q_{\alpha,l,l(j-1)} \cdot \sqrt{\frac{\text{MSE}}{J}} = 4.1 \sqrt{\frac{1043}{7}} = 50.191$$

 \bar{x}_2 . $-\bar{x}_1$. = 368.06 - 333.21 = 34.85 < w, thus pair (1, 2) should be underlined as a pair.

 \bar{x}_3 . $-\bar{x}_1$. = 375.13 - 333.21 = 41.92 < w, thus pair (1, 3) should be underlined as a pair.

 \bar{x}_4 . $-\bar{x}_1$. = 407.36 - 333.21 = 74.15 > w, thus pair (1, 4) should **not** be underlined as a pair.

 \bar{x}_5 . $-\bar{x}_1$. = 437.17 - 333.21 = 103.96 > w, thus pair (1, 5) should **not** be underlined as a pair.

 \bar{x}_3 . $-\bar{x}_2$. = 375.13 - 368.06 = 7.07 < w, thus pair (2, 3) should be underlined as a pair.

 \bar{x}_4 . $-\bar{x}_2$. = 407.36 - 368.06 = 39.3 < w, thus pair (2, 4) should be underlined as a pair.

 \bar{x}_5 . $-\bar{x}_2$. = 437.17 - 368.06 = 69.11 > w, thus pair (2, 5) should **not** be underlined as a pair.

 \bar{x}_4 . $-\bar{x}_3$. = 407.36 - 375.13 = 32.23 < w, thus pair (3, 4) should be underlined as a pair.

 \bar{x}_5 . $-\bar{x}_3$. = 437.17 - 375.13 = 62.04 > w, thus pair (3, 5) should **not** be underlined as a pair.

 \bar{x}_5 . $-\bar{x}_4$. = 437.17 - 407.36 = 29.81 < w, thus pair (4, 5) should be underlined as a pair.

$$\bar{x}_1$$
. \bar{x}_2 . \bar{x}_3 . \bar{x}_4 . \bar{x}_5 . 333.21 368.06 375.13 407.36 437.17

Ans: significant differences are observed on pairs (1, 4), (1, 5), (2, 5), and (3, 5)

- 11.1.1. An experiment was carried out to investigate the effect of species (factor A, with I = 4) and grade (factor B, with J = 3) on breaking strength of wood specimens. One observation was made for each species—grade combination—resulting in SSA = 442.0, SSB = 428.6, and SSE = 123.4. Assume that an additive model is appropriate.
- (a) Test H_0 : $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$ (no differences in true average strength due to species) versus H_a : at least one $\alpha_i \neq 0$ using a level .05 test.

$$f_A = \frac{\text{MSA}}{\text{MSE}} = \frac{\text{SSA}/(I-1)}{\text{SSE}/[(I-1)(J-1)]} = \frac{442.0/(4-1)}{123.4/[(4-1)(3-1)]} = \frac{147.33}{20.567} = 7.16$$

$$df = (4-1, (4-1)(3-1)) = (3, 6). F = 4.76 < 7.16 < 9.78, \text{ so } P\text{-value lies between .01 and .05.}$$

We reject H_{0A} at the .05 level.

Ans: At least one $\alpha_i \neq 0$

(b) Test H_0 : $\beta_1 = \beta_2 = \beta_3 = 0$ (no differences in true average strength due to grade) versus H_a : at least one $\beta_i \neq 0$ using a level .05 test.

$$f_B = \frac{\text{MSB}}{\text{MSE}} = \frac{\text{SSB}/(J-1)}{\text{SSE}/[(I-1)(J-1)]} = \frac{428.6/(3-1)}{123.4/[(4-1)(3-1)]} = 10.42$$

df = (3 - 1, (4 - 1)(3 - 1) = (2, 6). F = 5.14 < 10.42 < 10.92, so P-value lies between .01 and .05. We reject H_{0B} at the .05 level.

Ans: At least one $\beta_i \neq 0$

11.2.16. In an experiment to assess the effect of curing time (factor A) and type of mix (factor B) on the compressive strength of hardened cement cubes, **three** different curing times were used in combination with **four** different mixes, with **three** observations obtained for each of the 12 curing time-mix combinations. The resulting sums of squares were computed to be SSA = 30,763.0, SSB = 34,185.6, SSE = 97.436.8, and SST = 205,966.6.

(a) Construct an ANOVA table.

Source of Variation	df	SS	MS	f
Factor A	I-1	SSA	MSA	MSA/MSE
Factor B	J-1	SSB	MSB	MSB/MSE
Interaction AB	(I-1)(J-1)	SSAB	MSAB	MSAB/MSE
Error	IJ(K-1)	SSE	MSE	
Total	<i>IJK</i> – 1	SST		

$$I = 3, J = 4, K = 3, df_A = I - 1 = 3 - 1 = 2, df_B = 4 - 1 = 3$$

$$df_{AB} = (I - 1)(J - 1) = (3 - 1)(4 - 1) = 6, df_E = IJ(K - 1) = 3 \cdot 4(3 - 1) = 24$$

$$df_T = IJK - 1 = 3 \cdot 4 \cdot 3 - 1 = 35$$

$$SSAB = SST - SSA - SSB - SSE = 205,966.6 - 30,763.0 - 34,185.6 - 97,436.8$$

$$= 43581.2$$

$$MSA = \frac{SSA}{df_A} = \frac{30,763.0}{2} = 15,381.5, MSB = \frac{SSB}{df_B} = \frac{34,185.6}{3} = 11,395.2$$

$$MSAB = \frac{SSAB}{df_{AB}} = \frac{43,581.2}{6} = 7263.53, MSE = \frac{SSE}{df_E} = \frac{97,436.8}{24} = 4,059.86$$

$$f_A = \frac{MSA}{MSE} = \frac{15,381.5}{4,059.86} = 3.79, f_B = \frac{MSB}{MSE} = \frac{11,395.2}{4059.86} = 2.81$$

$$f_{AB} = \frac{MSAB}{MSE} = \frac{7,263.53}{4,059.86} = 1.79$$

Source of	df	SS	MS	f
Variation				
Factor A	2	30,763.0	15,381.5	3.79
Factor B	3	34,185.6	11,395.2	2.81
Interaction AB	6	43.581.2	7,263.53	1.79
Error	24	97,436.8	4,059.86	
Total	35	205,966.6		

(b) Test at level .05 the null hypothesis H_{0AB} : all γ_{ij} 's = 0 (no interaction of factors) against H_{aAB} : at least one $\gamma_{ij} \neq 0$.

 $X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ij}$. H_{0AB} : all γ_{ij} 's = 0, H_{aAB} : at least one $\gamma_{ij} \neq 0$. $f_{AB} = 1.79$ (from (a)). $F_{\alpha,(I-1)(J-1),IJ(K-1)} = F_{0.05,(3-1)(4-1),3\cdot4\cdot(3-1)} = F_{0.05,6,24} = 2.51$ (from Table A.9). Because $F_{0.05,6,24} > f_{AB}$, we do not reject null hypothesis H_{0AB} .

Ans: No interaction between factors

(c) Test at level .05 the null hypothesis H_{0A} : $\alpha_1 = \alpha_2 = \alpha_3 = 0$ (factor A main effects are absent) against H_{aA} : at least one $\alpha_i \neq 0$.

 $f_A = 3.79$ (from (a)). $F_{\alpha,I-1,IJ(K-1)} = F_{0.05,(3-1),3\cdot4\cdot(3-1)} = F_{0.05,2,24} = 3.40$ (from Table A.9). Because $F_{0.05,2,24} < f_A$, we reject null hypothesis H_{0A} .

Ans: Reject null hypothesis H_{0A}

(d) Test H_{0B} : $\beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$ versus H_{aB} : at least one $\beta_i \neq 0$ using a level .05 test. $f_B = 2.81$ (from (a)). $F_{\alpha,J-1,IJ(K-1)} = F_{0.05,(4-1),3\cdot4\cdot(3-1)} = F_{0.05,3,24} = 3.01$ (from Table A.9). Because $F_{0.05,3,24} > f_B$, we do not reject null hypothesis H_{0B} .

Ans: Do not reject null hypothesis H_{0B}

(e) The values of the $\bar{x}_{i..}$'s were $\bar{x}_{1..} = 4010.88$, $\bar{x}_{2..} = 4029.10$, and $\bar{x}_{3..} = 3960.02$. Use Tukey's procedure to investigate significant differences among the three curing times.

 $Q_{\alpha,I,IJ(K-1)} = Q_{0.05,3,3\cdot4\cdot(3-1)} = Q_{0.05,3,24} = 3.53$ (from Table A.10). MSE = 4059.87 (from (a)).

$$w = Q_{\alpha,I,IJ(k-1)} \cdot \sqrt{\frac{\mathsf{MSE}}{JK}} = 3.53 \sqrt{\frac{4059.87}{4 \cdot 3}} = 64.93, \bar{x}_3. < \bar{x}_1. < \bar{x}_2.$$

 $\bar{x}_1 - \bar{x}_3 = 4010.88 - 3960.02 = 50.86 < w$, thus pair (3, 1) should be underlined as a pair.

 \bar{x}_2 . $-\bar{x}_3$. = 4029.10 - 3960.02 = 69.08 > w, thus pair (3, 2) should **not** be underlined as a pair.

 \bar{x}_2 . $-\bar{x}_1$. = 4029.10 - 4010.88 = 18.22 < w, thus pair (1, 2) should be underlined as a pair.

$$\bar{x}_3$$
. \bar{x}_1 . \bar{x}_2 . 3960.02 4010.88 4029.10