Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Институт Информационных Технологий, Математики и Механики

Направление: Прикладная математика и информатика

Магистерская программа: Компьютерные науки и приложения

ОТЧЕТ

по лабораторной работе №3

Тема:

«Разработка свёрточных нейронных сетей»

Выполнили: студенты группы 381803-4м
Котова О.А.
Подпись
Лицов А.
Подпись
Синицкая О.
Подпись
Преподаватель: доцент, к.т.н. Кустикова В.Д.
Подпись

Нижний Новгород 2019

Оглавление

1. Постановка задачи	3
2. Тренировочные и тестовые наборы данных	4
3. Метрика качества решения	5
4. Разработанные программы	5
5. Тестовые конфигурации сетей	5
б. Результаты экспериментов	9
7. Анализ результатов	. 11

Постановка задачи

Цели

Цель настоящей работы состоит в том, чтобы построить архитектуру сверточной нейронной сети, которая позволяет решать практическую задачу с высокими показателями качества.

Задачи

Выполнение практической работы предполагает решение следующих задач:

- 1. Разработка нескольких архитектур сверточных нейронных сетей (варьируются количество слоев и виды функций активации на каждом слое) в формате, который принимается выбранной библиотекой глубокого обучения.
 - 2. Обучение разработанных глубоких моделей.
 - 3. Тестирование обученных глубоких моделей.
 - 4. Публикация разработанных программ/скриптов в репозитории на GitHub.
- 5. Подготовка отчета, содержащего минимальный объем информации по каждому этапу выполнения работы.

Тренировочные и тестовые наборы данных

Выбранная задача - Intel Image Classification: https://www.kaggle.com/puneet6060/intel-image-classification.

Эти данные содержат около 25 тыс. цветных изображений размером 150x150, распределенных по 6 категориям: здания, лес, ледник, гора, море, улица. Изображения хранятся в формате jpg.

Тренировочная выборка содержит 14034 изображений.

Тестовая выборка содержит 3000 изображений.

Размер каждого изображения 150х150.

№	Категории	Размер тренировочной выборки	Размер тестовой выборки
1	mountain	2512	525
2	street	2382	501
3	glasier	2404	553
4	buildings	2191	437
5	sea	2274	510
6	forest	2271	474

Процентное соотношение категорий. Тренировочная выборка:

Процентное соотношение категорий. Тестовая выборка:

Метрика качества решения

Для оценки качества решения задачи выбрана метрика "Точность" ("Ассигасу"). Она вычисляет, как часто прогнозы соответствуют меткам. Иными словами, частота с которой у_pred совпадает с y_true.

$$accuracy(y_{pred}, y_{true}) = \frac{1}{N} \sum_{i=1}^{N} 1(y_{pred_i} == y_{true_i})$$

Разработанные программы

Lab3.ipynb – скрипт для обучения свёрточных нейронных сетей.

Тестовые конфигурации сетей

С помощью класса ImageDataGenerator и его метода flow_from_directory() генерируем пакеты. Данные возвращаются в формате (x, y), где x, y - numpy массивы.

Форма х: (batch_size, 150, 150, 3).

Форма у: (batch_size, 6).

Методу fit_generator подается на вход генератор данных в формате (x, y). Сети подается на вход массив numpy формата (150, 150, 3), который "сглаживается" сетью с помощью метода Flatten().

Конфигурация 1

Конфигурация 2

Результаты экспериментов

В таблице приведены конфигурация системы и программное обеспечение, с помощью которых проводилось обучение и тестирование построенных моделей.

Параметры	Версия			
GPU	Tesla P100, having 3584 CUDA cores, 16GB(16.28GB Usable) GDDR6 VRAM Tesla P100 Spec Sheet			
Python	3.7.5			
TensorFlow	2.0.0			

Параметры обучения:

Количество эпох	20
Размер пачки	128

Результаты экспериментов:

		ı	ı	П	ı	ı	ı
Номер сети	1	2	3	4	5	6	7
Батч	128	128	128	128	128	128	128
Количество эпох	20	20	20	20	20	20	20
Количество скрытых нейронов	128 6	128 6	128 6	180 128 6	180 128 50 6	180 128 50 6	180 128 50 6
Количество скрытых слоев	4	5	6	8	10	10	10
Функция активации	relu	tanh	relu	relu	relu	tanh	tanh
Общее время	11:39	13:38	15:06	14:28	37:41	39:08	38:15
Точность (Ассигасу) на тренировочном наборе, %	99.80	99.91	85.55	90.97	91.09	85.24	77.61
Ошибка на тренировочном наборе	0.0135	0.071	0.401	0.2511	0.2606	0.4344	0.6398
Точность (Ассигасу) на тестовом наборе, %	79.47	80.33	82.37	84.07	84.03	82.13	75.57
Ошибка на тестовом наборе	0.5915	0.6261	0.5070	0.4767	0.5015	0.5179	0.6688

Анализ результатов

- 1. Небольшое количество изображений на каждую категорию
- 2. Свёрточные сети хорошо подходят для текущей задачи
- 3. Наблюдается переобучение сети