Funções do Segundo Grau

Erik Perillo

Resumo

Nesta etapa, vamos falar do passo natural após as funções do primeiro grau.

Sumário

1	1 Formato da expressão		
2	A cara da função 2.1 Concavidade	3 5 6	
3	Raízes da função		
4	Exercícios	9	
5	Respostas aos exercícios	10	

1 Formato da expressão

A função do segundo grau, ou função quadrática, é apenas uma extensão da função do primeiro grau. Lembrando que, no caso da função do primeiro grau, tínhamos:

$$f(x) = a + bx$$

Vamos agora adicionar um novo termo à expressão e obter:

$$f(x) = a + bx + cx^2$$

Viu a diferença? Apenas adicionamos um novo x, agora elevado ao quadrado, junto com um termo multiplicativo. Esse é o formato geral de uma função quadrática.

2 A cara da função

Como fica a cara dessa função? Vamos primeiro analisar um caso em que a e b são nulos. Assim, temos:

$$f(x) = cx^2$$

Vamos pegar um exemplo para o valor c, digamos, 3. Temos, assim, $f(x) = 3x^2$. Vamos pegar alguns valores de x e construir uma tabela:

X	$f(x) = 3x^2$
0	0
1	3
2	12
3	27
4	48
5	75

Se colocarmos esses pontos no plano cartesiano, vamos obter:

Veja como ela cresce rápido! Ela cresce desse jeito porque o x está multiplicando por ele mesmo. Assim, quanto maior ele fica, maior fica o produto dele por ele mesmo. Se fizermos isso em todos os pontos, vamos obter:

Estranho, não? Primeiro foque na parte onde x é positivo. Nesse caso, é muito parecido com os pontos da figura anterior. Quanto x é negativo, o

valor da função é exatamente o mesmo do valor com o x positivo, porque, para qualquer número a, $(a)^2 = (-a)^2$!

A função quadrática é sempre **simétrica**. Ao formato dela, damos o nome de **parábola**.

2.1 Concavidade

Como o x^2 sempre vai ser maior que todo mundo uma hora, é o termo que acompanha ele (c) que manda. Assim, se c for negativo, a função vai ser negativa uma hora ou outra. Se for positivo, vai ser positiva.

No caso em que c é positivo, dizemos que a função tem $concavidade\ para\ cima$:

Figura 1: Um exemplo de concavidade para cima

No caso em que é negativo, dizemos que ela tem concavidade para baixo:

Figura 2: Um exemplo de concavidade para baixo

2.2 Cruzada com o eixo y

Como no caso da função do primeiro grau, a função cruza no eixo y quando x=0 e então no termo a.

3 Raízes da função

Essa parte tem decoreba e não há o que fazer. Para determinar as raizes da função linear, era muito fácil, bastava isolar o x. Isso não é possível para a equação do segundo grau. Para funções do segundo grau, ou você tem uma raiz, ou tem duas, ou tem nenhuma. Dizemos então que você tem as soluções x_1 e x_2 .

Para se resolver as raízes, usamos a fórmula de Bhaskara:

$$\Delta = \sqrt{b^2 - 4ac}$$

Chamamos esse símbolo (Δ) de delta. Temos, então, que:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

Temos três casos para delta:

- Quando Δ é positivo, temos duas raízes diferentes, ou seja, a função cruza pelo eixo x duas vezes.
- Quando Δ é zero, temos duas raízes iguais, ou seja, a função cruza pelo eixo x apenas uma vez.
- Quando Δ é negativo, não temos $x \in \mathbb{R}$, ou seja, a função não cruza pelo eixo x nenhuma vez.

Figura 3: Um exemplo de $\Delta > 0$

Figura 4: Um exemplo de $\Delta=0$

Figura 5: Um exemplo de $\Delta < 0$

4 Exercícios

1. Diga se as expressões a seguir são uma função do segundo grau ou não:

(a)
$$f(x) = -3x^2 + x - 34$$

(b)
$$f(x) = \frac{1}{x} - 34 + 3x + 8x^2$$

(c)
$$f(x) = 3x(1+x^2)$$

(d)
$$f(x) = 4x^2 + 4x - 3 + 4.3x - 12x^2$$

(e)
$$f(x) = 3x + 2x^2$$

(f)
$$f(x) = 5 + 2\sqrt{x}$$

(g)
$$f(x) = 3(1+x^2) - x$$

(h)
$$f(x) = 1 + 4x$$

- 2. Faça uma tabela com os valores em -10, 0 e 10 para a função $f(x)=2+5x-3x^2$ e esboce-a no gráfico.
- 3. Para as seguintes funções a seguir, diga se elas têm concavidade para cima ou para baixo e esboce-as no gráfico (só precisa esboçar a concavidade corretamente):

(a)
$$f(x) = 4x^2$$

(b)
$$f(x) = 8 - 3x^2$$

(c)
$$f(x) = 6x^2 - 800x$$

5 Respostas aos exercícios

- 1. (a) Sim.
 - (b) Não.
 - (c) Não. (distribuindo, aparece x^3)
 - (d) Sim.
 - (e) Sim.
 - (f) Não.
 - (g) Sim.
 - (h) Não.

X	f(x)
-10	-348
0	2
10	-248

2. Gráfico:

3. (a) Concavidade para cima.

(b) Concavidade para baixo.

(c) Concavidade para baixo.

