Data-driven computer animation

Tutorial 6: Rigid Body Simulation

Prof. Taku Komura

TAs: Zhouyingcheng Liao(zycliao@cs.hku.hk)

Assignment 3

Implement a rigid body simulator using Python Taichi Library

Rigid body simulation

Particles Simulation

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ v(t) \end{pmatrix} = \begin{pmatrix} v(t) \\ F(t)/m \end{pmatrix}$$

Particles Simulation

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ v(t) \end{pmatrix} = \begin{pmatrix} v(t) \\ F(t)/m \end{pmatrix}$$

$$x(t) = x(t) + \Delta t \cdot v(t)$$

$$v(t) = v(t) + \Delta t \cdot a(t)$$

Body Space

 Our goal is to develop an analogue to equation to particles simulation for rigid body.

$$\mathbf{Y}(t) = \left(egin{array}{c} x(t) \ R(t) \ R(t) \ Position \end{array}
ight) egin{array}{c} ext{Position} \ R(t) \ P(t) \ L(t) \end{array}
ight) egin{array}{c} ext{Position} \ T(t) \ T($$

We assume that a rigid body comprises of N particles.

Mass and Centre of Mass

•
$$M = \sum m_i$$
, rigid body mass

•
$$x(t) = \frac{\sum m_i r_i}{M}$$
, centre of mass

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix}$$

Linear Velocity

$$\frac{dx(t)}{dt} = v(t)$$

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ V(t) \\ V(t) \\ V(t) \end{pmatrix}$$

Angular Velocity

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ V(t) \\ V(t) \\ V(t) \\ V(t) \end{pmatrix}$$

• In addition to translating, a rigid body can also spin.

Angular Velocity

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ V(t) \\ V(t) \\ V(t) \end{pmatrix}$$

- The magnitude of angular velocity tells how fast the body is spinning.
- How are R(t) and $\omega(t)$ related? (Clearly, the derivative of R(t) cannot be $\omega(t)$, since R(t) is a matrix, and $\omega(t)$ is a vector.)

v(t)

Angular Velocity

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ V(t) \\ V(t) \\ V(t) \end{pmatrix}$$

- Let's consider an arbitrary point or particle in the rigid body.
- The instantaneous velocity (the derivative of this point position) of the given point can be computed by $\omega(t) \times r$.

Angular Velocity

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ V(t) \\ V(t) \\ V(t) \\ V(t) \\ V(t) \end{pmatrix}$$

- Physical interpretation of the rotation matrix R(t):
 - Each column of R(t) is the world-space directions that the body-space x, y, and z axes transform to.

R(t) = [x' y' z']

Angular Velocity

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{V}(t) \\ V(t) \\$$

• Derivative of R(t) is the derivative of positions of three tips x', y', z'.

$$\dot{R} = \left(\omega(t) \times \begin{pmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{pmatrix} \quad \omega(t) \times \begin{pmatrix} r_{yx} \\ r_{yy} \\ r_{yz} \end{pmatrix} \quad \omega(t) \times \begin{pmatrix} r_{zx} \\ r_{zy} \\ r_{zz} \end{pmatrix} \right)$$
world space
$$r_{zz}$$

$$r_{zz}$$
world space
$$r_{zz}$$

And can be simplified as

• Where
$$\omega^* = \omega(t)^*R(t)$$
• $\omega_z = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ \omega_y & \omega_x & 0 \end{pmatrix}$

Angular Velocity

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ \boldsymbol{\omega}^{\star}(t)\mathbf{R}(t) \\ \boldsymbol{\omega}^{\star}(t)\mathbf{R}(t) \\ \boldsymbol{\omega}^{\star}(t)\mathbf{R}(t) \\ \boldsymbol{\omega}^{\star}(t)\mathbf{R}(t) \end{pmatrix}$$

• Derivative of R(t) is the derivative of positions of three tips x', y', z'.

$$\dot{R} = \left(\omega(t) \times \begin{pmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{pmatrix} \quad \omega(t) \times \begin{pmatrix} r_{yx} \\ r_{yy} \\ r_{yz} \end{pmatrix} \quad \omega(t) \times \begin{pmatrix} r_{zx} \\ r_{zy} \\ r_{zz} \end{pmatrix} \right) \quad \text{world space} \quad \text{world space}$$

And can be simplified as

• Where
$$\omega^* = \omega(t)^*R(t)$$
• $\omega_z = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ \omega_y & \omega_x & 0 \end{pmatrix}$

Force and Linear Momentum

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ \boldsymbol{\omega}^{\star}(t)\mathbf{R}(t) \\ \boldsymbol{\omega}^{\star}(t)\mathbf{R}(t) \end{pmatrix}$$

Force and Linear Momentum

•
$$P(t) = Mv(t)$$

$$\frac{dP(t)}{dt} = M\frac{dv(t)}{dt} = Ma(t) = \mathbf{f}(t)$$

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ \boldsymbol{\omega}^{\star}(t)\mathbf{R}(t) \\ \boldsymbol{\omega}^{\star}(t)\mathbf{R}(t) \\ \end{pmatrix}$$

Force and Linear Momentum

•
$$P(t) = Mv(t)$$

$$\frac{dP(t)}{dt} = M\frac{dv(t)}{dt} = Ma(t) = \mathbf{f}(t)$$

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ \boldsymbol{\omega}^{\star}(t)\mathbf{R}(t) \\ \mathbf{f}(t) \end{pmatrix}$$

Torque and Angular Momentum

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ \boldsymbol{\omega}^{\star}(t)\mathbf{R}(t) \\ \mathbf{f}(t) \end{pmatrix}$$

 Definition: Angular Momentum of the rigid body is given by the sum of the angular momenta of its constituent particles.

$$L(t) = \sum_{i=1}^{n} r'_i(t) \times m_i v_i(t)$$

$$= \sum_{i=1}^{n} m_i r'_i(t) \times (x'(t) + \omega(t) \times r'_i(t))$$

$$= \sum_{i=1}^{n} m_i r'_i(t) \times x'(t) + \sum_{i=1}^{n} m_i r'_i(t) \times \omega(t) \times r'_i(t)$$

$$r'_i(t) = r_i(t) - x(t)$$
$$v(t) = x'(t) + \omega(t) \times r'_i(t)$$

Torque and Angular Momentum

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ \boldsymbol{\omega}^{\star}(t)\mathbf{R}(t) \\ \mathbf{f}(t) \end{pmatrix}$$

 Definition: Angular Momentum of the rigid body is given by the sum of the angular momenta of its constituent particles.

$$L(t) = \sum_{i} r'_{i}(t) \times m_{i}v_{i}(t)$$

$$= \sum_{i} m_{i}r'_{i}(t) \times (x'(t) + \omega(t) \times r'_{i}(t))$$

$$= \sum_{i} m_{i}r'_{i}(t) \times x'(t) + \sum_{i} m_{i}r'_{i}(t) \times \omega(t) \times r'_{i}(t)$$

• The first term represents the translation contribution to the angular momentum(zero), and the second represents the rotation contribution.

Torque and Angular Momentum

•
$$L(t) = \sum_{i=1}^{n} m_i r'_i(t) \times \omega(t) \times r'_i(t)$$

After rearranging

$$L(t) = \sum_{i=1}^{\infty} m_i r_i^{\prime *}(t) r_i^{\prime *}(t) \omega(t)$$
$$= I(t)\omega(t)$$

$$=I(t)\omega(t)$$

• Where
$$I(t) = \sum_{i=1}^{\infty} m_i r_i^{*}(t) r_i^{*}(t)$$

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ \boldsymbol{\omega}^{\star}(t)\mathbf{R}(t) \\ \mathbf{f}(t) \end{pmatrix}$$

$$-\mathbf{r}^{\star} = \mathbf{r}^{\star T}$$

$$\mathbf{r}^{\star} = \begin{pmatrix} 0 & -r_z & r_y \\ r_z & 0 & -r_x \\ -r_y & r_x & 0 \end{pmatrix}$$

Torque and Angular Momentum

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ \boldsymbol{\omega}^{\star}(t)\mathbf{R}(t) \\ \mathbf{f}(t) \end{pmatrix}$$

 We can also express the inertia tensor as a transformation of the body space inertia tensor.

$$\begin{split} \mathbf{I}(t) &= \sum_{i=1}^{N} m_i \mathbf{r}_i^{'\star}(t) \mathbf{r}_i^{\star T}(t) - \mathbf{r}^{\star} \mathbf{r}^{T} = \mathbf{r}^{T} \mathbf{r} \boldsymbol{\delta} - \mathbf{r} \mathbf{r}^{T} \\ &= \sum_{i=1}^{N} m_i \left(\mathbf{r}_i^{T} \mathbf{r}_i^{'} \boldsymbol{\delta} - \mathbf{r}_i^{'} \mathbf{r}_i^{T} \right) & \mathbf{r} = \mathbf{R} \mathbf{r}_0 \\ &= \mathbf{R}(t) \sum_{i=1}^{N} m_i \left(\mathbf{r}_{0i}^{T} \mathbf{r}_{0i}^{'} \boldsymbol{\delta} - \mathbf{r}_{0i}^{'} \mathbf{r}_{0i}^{T} \right) \mathbf{R}(t)^{T} \\ &= \mathbf{R}(t) \mathbf{I}_0 \mathbf{R}(t)^{T}. \end{split}$$

Where, $I_0 = \sum m_i ((r_{0i}^T r_{0i})E - r_{0i}r_{0i}^T)$, r_{0i} is the original particle position from the original body centre of mass

Torque and Angular Momentum

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ \boldsymbol{\omega}^{\star}(t)\mathbf{R}(t) \\ \mathbf{f}(t) \end{pmatrix}$$

The inverse of inertia tensor is given by:

$$I^{-1}(t) = (R(t)I_0R(t)^T)^{-1}$$

$$= (R(t)^T)^{-1}I_0^{-1}R(t)^{-1}$$

$$= R(t)I_0^{-1}R(t)^T$$

Torque and Angular Momentum

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ \boldsymbol{\omega}^{\star}(t)\mathbf{R}(t) \\ \mathbf{f}(t) \end{pmatrix}$$

- If force ${\bf f}$ is applied to the centre of mass, the body responds like a particle with ${\bf a}={\bf f}/M$
- ullet If force ${f f}$ is applied to elsewhere, this may generate a torque as well.

$$\tau = r \times f$$

Torque and Angular Momentum

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ \boldsymbol{\omega}^{\star}(t)\mathbf{R}(t) \\ \mathbf{f}(t) \end{pmatrix}$$

Rate of change of angular momentum is then torque.

$$\frac{d\mathbf{L}(t)}{dt} = \tau$$

Torque and Angular Momentum

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ \boldsymbol{\omega}^{\star}(t)\mathbf{R}(t) \\ \mathbf{f}(t) \\ \boldsymbol{\tau}(t) \end{pmatrix}$$

• Rate of change of angular momentum is then torque.

$$\frac{d\mathbf{L}(t)}{dt} = \tau$$

Summary

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix}$$

- We have covered all the concepts we need to define the state of a rigid body.
- Centre of mass position x(t)
- Orientation R(t)
- Linear momentum P(t) = Mv(t)
- Angular momentum $L(t) = I(t)\omega(t)$

Summary

- The mass M of the body and body-space inertia tensor I_0 are constants, which we assume we know when the simulation begins
- If we define the following auxiliary quantities

$$v(t) = P(t)/M$$
 $I(t) = R(t)I_0R(t)^T$ $\omega(t) = I(t)^{-1}L(t)$

Then the update to the state of the rigid body is given by

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ \boldsymbol{\omega}^{\star}(t)\mathbf{R}(t) \\ \mathbf{f}(t) \\ \boldsymbol{\tau}(t) \end{pmatrix}$$

Initialization

 $\mathbf{x}_{cm},\mathbf{v}_{cm},\mathbf{R},\mathbf{L}$ Initial conditions of your simulation $\mathbf{I}^{-1}=\mathbf{R}\mathbf{I}_0^{-1}\mathbf{R}^T$ $\omega=\mathbf{I}^{-1}\mathbf{L}$

Forces and torques

$$au = \sum_i \mathbf{r}_i imes \mathbf{f}_i$$
 $\mathbf{F} = \sum_i \mathbf{f}_i$

Rigid body state update

$$egin{aligned} \mathbf{x}_{cm} &= \mathbf{x}_{cm} + \Delta t \cdot \mathbf{v}_{cm} \ \mathbf{v}_{cm} &= \mathbf{v}_{cm} + \Delta t \cdot \mathbf{F}/M \ \mathbf{R} &= \mathbf{R} + \Delta t \cdot \omega^{\star} \mathbf{R} \ \mathbf{L} &= \mathbf{L} + \Delta t \cdot au \ \mathbf{I}^{-1} &= \mathbf{R} \mathbf{I}_0^{-1} \mathbf{R}^T \ \omega &= \mathbf{I}^{-1} \mathbf{L} \end{aligned}$$

Particle update

$$\mathbf{r}_i = \mathbf{R} \cdot \mathbf{r}_{0i}$$
 $\mathbf{x}_i = \mathbf{x}_{cm} + \mathbf{r}_i$
 $\mathbf{v}_i = \mathbf{v}_{cm} + \omega \mathbf{r}_i$

Rotation Issue

$$\mathbf{R} = \mathbf{R} + \Delta t \cdot \omega^{\star} \mathbf{R}$$

- Errors accumulate (numerical drift)
 - The matrix becomes no longer orthogonal over time.

Rotation Issue solution

Use quaternion!

 The drifting problem can be alleviated by representing rotations with unit quaternions.

 Any quaternion of unit length corresponds to a rotation, so quaternions deviate from representing rotations only if they lose their unit length. Just normalize it occasionally to fix it.

Rotation Issue solution

• Use state q(t) to replace R(t)

• Use
$$\frac{dq(t)}{dt} = \frac{1}{2}[0,\omega_{x}(t),\omega_{y}(t),\omega_{z}(t)]q(t)$$
 to replace $\frac{dR(t)}{dt} = \omega(t)*R(t)$ when updating the state.

- Note that the rotation matrix is still useful when updating the inertia tensor.
 - Given a quaternion $[s, v_x, v_y, v_z]$, the rotation matrix is given by

$$\begin{pmatrix} 1 - 2v_y^2 - 2v_z^2 & 2v_x v_y - 2s v_z & 2v_x v_z + 2s v_y \\ 2v_x v_y + 2s v_z & 1 - 2v_x^2 - 2v_z^2 & 2v_y v_z - 2s v_x \\ 2v_x v_z - 2s v_y & 2v_y v_z + 2s v_x & 1 - 2v_x^2 - 2v_y^2 \end{pmatrix}$$

Reference

- An Introduction to Physically Based Modeling: Rigid Body Simulation I— Unconstrained Rigid Body Dynamics. David Baraff:
- https://www.cs.cmu.edu/~baraff/sigcourse/notesd1.pdf

Assignment

Due: Nov 9th 23:59

- Implement a rigid body simulator using Python Taichi Library (90%)
 - o 7 TODOs in rigid_body_dynamic.py
 - o A recording of your simulation
- Report (10%)
- Bonus: implement extra features or improve the simulation (should introduce details in the report)
- More details will be updated on Github