crtbase 参考资料

概要: 创建基因座。

描述:

该函数创建一个行矩阵,其元素对应染色体结构的基因座。对于离散数据建立种群时该函数可以与 crtbp 配合使用。

语法:

BaseV = crtbase(Lind)

BaseV = crtbase(Lind, Base)

BaseV = crtbase(SegLen, Base)

详细说明:

Lind 是一个整数,代表基因片段数,每个基因片段的长度为1。

SegLen 是一个 1 行 Lind 列的行矩阵,代表染色体各个片段的长度。

Base 是整数或者是一个 1 行 Lind 列的行矩阵,代表染色体上各个片段的等位基因的基因座。

函数返回染色体的基因座的行矩阵。这里的基因座的概念与生物学中的有些异同,实际上是指变量的"可能情况"的个数,这与变量的范围又是不一样的。结合 crtbp 函数可以更清晰地理解这个概念。

应用实例:

下面展示 crtbase 函数所有用法以及输出结果,从中也可以更好地理解上面所述的概念:

BaseV=crtbase(4) # 只输入Lind,则默认各个基因座是2

$$BaseV = \begin{pmatrix} 2 & 2 & 2 & 2 \end{pmatrix}$$

BaseV=crtbase(4, 3) # 生成包含4个基因片段,各片段的基因座均为3的基因座

$$BaseV = \begin{pmatrix} 3 & 3 & 3 & 3 \end{pmatrix}$$

BaseV=crtbase(3, np.array([[4,2,3]])) # 3个基因片段,基因座分别是4,2和3

BaseV =
$$\begin{pmatrix} 4 & 2 & 3 \end{pmatrix}$$

crtbase结合crtbp创建一个有2个基本字符{0,1,2,3}、1个基本字符{0,1}

和3个基本字符{0,1,2}的随机种群

BaseV=crtbase(np.array([[2,1,3]]), np.array([[4,2,3]]))

Chrom=crtbp(4, BaseV) # 生成一个包含4个个体,基因座为BaseV的随机种群

BaseV =
$$\begin{pmatrix} 4 & 4 & 2 & 3 & 3 & 3 \end{pmatrix}$$
Chrom = $\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 \\ 2 & 2 & 0 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 & 2 & 1 \end{pmatrix}$

BaseV=crtbase(np.array([[4,2,3]]), 3) # 3个基因片段,各个基因座均为3

BaseV =
$$\begin{pmatrix} 3 & 3 & 3 & 3 & 3 & 3 & 3 \end{pmatrix}$$