Constrained Optimization

Maestría en Cómputo Estadístico

Centro de Investigación en Matemáticas A.C.

What is constrained optimization? I

- Roughly speaking, it is an optimization problem with either equallity or inequallity constrains
- Constrains can be linear or nonlinear

What is constrained optimization? II

 Mathematically, a nonlinear constrained optimization problem is defined as:

$$\min_{\mathbf{x}} f(\mathbf{x})$$
subject to: $g_i(\mathbf{x}) = 0, i = 1, ..., m$

$$h_i(\mathbf{x}) \le 0, j = 1, ..., I$$
(1)

What is constrained optimization? III

- Special cases are linear programming, quadratic programming, and equality constrained problems
- In linear programming problems, both objective function and constraints are linear
- In quadratic programming problems, the objective function is quadratic and constraints are linear
- In equality constrained problems, all constraints are equality
- In linearly constrained optimization problems, all constraints are linear

Feasible Solutions I

 In constrained programming, a point x is said to be feasible if and only if all constrains are satisfied

Feasible Solution

The point $\mathbf{x} \in \mathbb{R}^n$ is said to be a feasible point if and only if constraints in Equation (1) hold. The set of all feasible points is said to be a feasible set.

Feasible Solutions II

• The feasible set, \mathcal{X} , can be rewritten as:

$$\mathcal{X} = \{ \mathbf{x} : g_i(\mathbf{x}) = 0 \forall i \in \{1, \dots, m\} \cap h_j(\mathbf{x}) \le 0 \forall j \in \{1, \dots, l\} \} \quad (2)$$

• Thus, the optimization problem can be rewritten as:

$$\min_{\mathbf{x}} f(\mathbf{x})$$
subject to: $\mathbf{x} \in \mathcal{X}$

Recalling I

- A solution is a **global minimum** if and only if $f(\mathbf{x}^*) \leq f(\mathbf{x}), \forall \mathbf{x} \in \mathcal{X}$
- A solution is a **local minimum** if and only if $f(\mathbf{x}^*) \le f(\mathbf{x}), \forall \mathbf{x} \in B(\mathbf{x}^*, \delta)$, where $B(\mathbf{x}^*, \delta) = {\mathbf{x} : || \mathbf{x} \mathbf{x}^* ||_2 \le \delta}$

Active Constraints I

• Assume that \mathbf{x}^* is a local minimizer of a constrained optimization problem, if there is an index $j_0 \in \{1, \dots, j\}$ such that

$$h_{j_0}(\mathbf{x}^*) \le 0 \tag{4}$$

- Then, if we delete the j_0^{th} -constraint, \mathbf{x}^* is still the local minimizer of the constrained optimization problem
- In this case, the j_0^{th} -constraint is said to be inactive

Active Constraints II

Active constraints

Let $I(\mathbf{x})$ the set of inequality constraints such that $I(\mathbf{x}) = \{h_k : h_k(\mathbf{x}) = 0\}$ and $E(\mathbf{x})$ the set of equality constraints, the set of active constraints is defined as $A = E(\mathbf{x}) \cup IE(\mathbf{x})$

Active Constraints III

• Thus, we can rewrite the optimization problem as:

$$\min_{\mathbf{x}} f(\mathbf{x})$$
subject to: $c_i(\mathbf{x}) = 0, c_i \in A$

First-Order Optimality Conditions I

 The feasible directions play a very important role in deriving the optimality conditions

Feasible directions

Let $\mathbf{x}^* \in \mathcal{X}$, $d \in \mathbb{R}^n$ and $d \neq 0$. If there exists $\delta \geq 0$ such that $\mathbf{x}^* + td \in \mathcal{X}, \forall t \in [0, \delta]$, then d is said to be a feasible direction of \mathcal{X} at \mathbf{x}^* . The set of all feasible directions of \mathcal{X} at \mathbf{x}^* is $FD(\mathbf{x}^*, \mathcal{X}) = \{d : \mathbf{x}^* + td \in \mathcal{X}, \forall t \in [0, \delta]\}$

11

First-Order Optimality Conditions II

- For constrained optimization problems, only feasible directions are relevant
- For equality constraints problems, a necessary condition for a feasible point \mathbf{x}^* to be a solution is that the negative of the gradient lie in the space spanned by constraints, i.e., $-\nabla f(\mathbf{x}^*) = \mathbf{J}_g^T \lambda$

First-Order Optimality Conditions III

• The Lagrangian function is defined as $\mathcal{L} = f(\mathbf{x}) - \sum_{i=1}^{l+m} \lambda_i c_i(\mathbf{x})$, such that:

$$c_{i}(\mathbf{x}) = 0, c_{i} \in A$$

$$c_{i}(\mathbf{x}) = 0, c_{i} \notin A$$

$$\lambda_{i} \geq 0$$

$$\lambda_{i}c_{i} = 0$$
(6)

First-Order Optimality Conditions IV

 A necessary condition to consider x as an optimal solution can be stated as follows:

$$\nabla f(\mathbf{x}) - \sum_{i=1}^{l+m} \lambda_i \nabla c_i(\mathbf{x}) = 0$$
 (7)

This is known as the Karush-Kuhn-Tucker (KKT) condition

Second-Order Optimality Conditions I

• Let
$$\mathcal{L}(\mathbf{x}, \gamma, \lambda) = f(\mathbf{x}) - \sum_{i=1}^{l+m} \lambda_i c_i(\mathbf{x})$$

• A second-order condition should satisfy:

$$d^{T} \nabla^{2} \mathcal{L} (\mathbf{x}, \gamma, \lambda) d \ge 0$$
 (8)

Questions?

