CSE 1102: Discrete Mathematics	,
Time: 90 minutes Marks: 30	
Compute number of vertices and edges of the graph $K_{50,100}$.	1.5
is it possible to draw a graph with degree of vertices 1, 1, 3, 3, 2?	1.5
in possible, draw the graph.	
✓3. Is it possible to exist any Euler path or Euler circuit in the graph G1?	2
If possible show the circuit/path.	
A. Derive chromatic number of G1 using Welch-Powel algorithm.	2.5
5. Prove that C ₇ and graph G2 are isomorphic to each other.	5
6. Suppose that a connected planar simple graph has 20 vertices each of degree 3. In this graph, how many regions are there? 7. Mention the two basic features of a tree which differentiate it from other kind of graphs. Traverse the following tree in in order way.	1.5
P S U K R	
J o z	Con
8. Write down the contrapositive of the proposition: The home team wins whenever it is raining.	1
9. Show the truth table of the proposition $(p \lor q) \land (\sim p \lor r) \rightarrow (q \lor r)$.	2
What kind of proposition is it? 10. Using quantifier express the following statements as logical expression:	1+2+2
No monkey knows calculus	
(i) Everyone has exactly one best friend.	
A negative real number does not have a square root that is a real number.	
11. Using rules of inference, prove the argument:	3.5
"Linda, a student in this class has own a red convertible. Everyone, who	
and convertible has gotten at least one speeding ticket. Therefore,	
someone in this class has gotten a speeding ticket." Plant of the someone in this class has gotten a speeding ticket."	
1. Define argument with an example.	2
VZ. Define argument with an example.	

Electrical Circuits (EEE - 1103) In course Exam

Total Marks:25 Time: 1 Hour 15minutes

Answer all questions:

1. Explain the temperature effect on the resistance of conductors, semiconductors, and insulators.

2. Find the unknown quantities, \mathbf{E} , $\mathbf{I_1}$, $\mathbf{I_3}$, $\mathbf{R_2}$, $\mathbf{R_3}$ and $\mathbf{P_{R3}}$ for the networks in Fig. 1.

Fig. 1

4

4.5

- 3. For the configuration in Fig. 2:
 - **a.** Find the currents I_2 , I_5 , and I_6 .
 - **b.** Find the voltages V_4 and V_6 .

Fig. 2

- 4. For the network in Fig. 3:
 - a. Determine voltages Va, Vb, Vc, Vac and Vbc.
 - c. Find current $\emph{I2}$ and current \emph{I}_{s3}

Fig. 3

4

- 5. For the multiple ladder configuration in Fig. 4:
 - **a.** Determine I, I₄, I₆ and I₁₀.

Fig.4

6. Write the mesh equations for each of the networks in Fig. 5. Using determinants, solve for the loop current I_2 .

University of Dhaka

Department of Computer Science and Engineering 1st Year 1st Semester Incourse Examination, 2019-20 Course: MATH-1105: Differential and Integral Calculus

Time: 40 minutes Total Marks: 20

There are six (6) questions. Answer any four of them. Marks are given in the right margin.

- Sketch the graph of the function $f(x) = 1 2^x$. Draw the vertical and/or horizontal asymptote line(s), if exists.
 - 2 Prove whether the following functions are even, or odd, or neither: [5]
 - (i) f(x) = x 1
 - (ii) $f(x) = \frac{1}{x}$
- 3 Using the definition of continuity, determine whether the following function is continuous at x = 2:

$$f(x) = \frac{x^2-4}{x-2} if x \neq 2$$
; and 3 if $x = 2$.

- Calculate $\lim_{x \to -\infty} f(x) = \frac{3x^2 x}{4x^3 7}$. You must mention the appropriate [5] limit laws used in your derivation.
- Given f(x) = |3x|, is this function differentiable at x = 0? Why or why not? You must justify your answer mathematically (i.e., algebraically), not geometrically.
- A 13 ft ladder is leaning against a wall. If the top of the ladder slips down the wall at a rate of 2 ft/s, how fast will the foot be moving away from the wall when the top is 5 ft above the ground?

University of Dhaka Department of Computer Science and Engineering 1st Year 1st Semester Incourse Examination, 2020

CSE 1101: Fundamentals of Computers and Computing

Total Marks: 100 Time: 80 Minutes

Nam e		Roll No		
	Answer all the questions. Anything, nsidered as valid answer. Do not write anything here:		the given box, v	vill
				• •
	hort notes on Keyboard and Printer. [10]			
Keyb	poard: Printer:			
2. List the	characteristics of <i>Star</i> and <i>Ring</i> topologies. [10]			
Star:	Ring:			

3. Point out three major technological advancements of the Fourth Generation computers comparing to the Third Generation Computers. [10]

4.	Page 1 of 3 Describe the types of Memory in a Computer System. [10]
	Differentiate between the Static Dandom Access Mamony (SDAM) and the Dynamic Dandom
	Differentiate between the Static Random Access Memory (SRAM) and the Dynamic Random Access Memory (DRAM). [10]
6.	List the characteristics of the Application Software. [10]

7. "Basically, Intranet and Internet have no major differences" – give your opinion with proper logic. [10]

Page 2 of 3

8.	The number of users in the different social medias are increasing exponentially. As a result,
	the privacy and the security, two of the most important aspects in human life, are becoming
	more concerning day by day. It is believed that one can ensure his/her privacy and security to
	some extent abiding by some simple practices What do you think? Explain with proper
	reasoning. [10]

9.	Consider 32-bit floating point number system. Convert the following decimal	valu	es	using
	IEEE 754 format and represent the 32-bit strings in hexadecimal (Base-16).	[10]		

SL	Given Decimal Number	32-bit IEEE 754 formated value in Base-16
1	3.1416	
2	8.3144	

10. Consider the Machine Instructions for some Machine Language below.

Opcod e	Operan d	Descriptions
0	000	RESET all the register values to 0.
1	RXY	LOAD the value XY to the register no R.
2	RXY	LOAD the value from memory address XY to the register no R.
3	RXY	STORE the value to the memory address XY from the register no R.
4	RST	ADD the integer values from register no S and T and STORE the result into the register no R.
5	RST	ADD the float values from register no S and T and STORE the result into the register no R.

6	RST	GET the integer values from register no S and T and STORE the AND result into the register no R.
7	RST	GET the integer values from register no S and T and STORE the OR result into the register no R.
8	RS0	GET the integer value from register no S and STORE the NOT (Complement) result into the register no R.
9	RST	GET the integer values from register no S and T and STORE the XOR result into the register no R.
А	RSX	GET the integer values from register no S and STORE the X bit RIGHT shifted result into the register no R.
В	RSX	GET the integer values from register no S and STORE the X bit LEFT shifted result into the register no R.
С	000	HALT the program

Write a valid sequence of machine instructions to compute the value of the

expression, 4×32-128/8+7

, that stores the result in Register no 0.
Note that the very first and the very last instructions of your sequence should be 0000 and C000, respec tively. [10]