

<u>Databricks</u>
<u>Certified Data</u>
<u>Engineer Associate</u>

Bigdata History

Bigdata History

- > 2004: Google published a paper on the Google File System, scalable & fault-tolerant distributed file system for large amounts of data.
- > 2008: Hadoop, an open-source software framework for distributed storage and processing of big data, was released by Apache.
- > 2009: Matei Zaharia started developing Spark as a research project at UC Berkeley's AMPLab.
- >2010: Spark was open-sourced under a BSD license.
- >2012: Spark became an Apache Software Foundation incubator project.
- ▶2013: Databricks is founded by the creators of Apache Spark to provide a cloud-based platform for big data processing and analytics.
- >2014: Delta Lake, an open-source storage layer that provides ACID transactions on top of data lakes, is introduced by Databricks.
- > 2018: Databricks introduces Delta Engine, a high-performance query engine for Delta Lake, which allows queries to run up to 20x faster than Apache Spark on Delta Lake tables.
- ➤ 2020: Databricks introduces the concept of a "lakehouse", which combines the best aspects of data warehouses and data lakes, allowing users to have ACID transactions on large datasets, fast analytics, and data science capabilities in one platform.
- ▶2021: Databricks announces a \$1 billion funding round, valuing the company at \$28 billion

Introduction to Databricks

Introduction to Databricks

- ➤ Databricks is a cloud-based data engineering, data science, and machine learning platform built on top of Apache Spark.
- ➤ It was founded by the original creators of Spark in 2013 and is now used by thousands of companies, including Fortune 500 companies and startups.
- ➤ Provides a collaborative workspace where data engineers, data scientists, and machine learning engineers can work together to build data pipelines, run analytics, and build machine learning models
- > tools for data ingestion, data processing, data analysis, and machine learning, as well as a suite of collaboration tools for sharing code, notebooks, and dashboards.
- ➤ One of the key benefits of Databricks is that it abstracts away many of the complexities of managing and scaling Spark clusters, allowing users to focus on building data pipelines and models.

Data lake

- A data lake is a centralized repository that allows organizations to store all their structured and unstructured data at any scale.
- ➤ Built using Hadoop or cloud-based services like AWS S3, and provide a low-cost way to store large amounts of data in various formats.

Delta Lake

- > Delta Lake is an open-source storage layer that provides ACID transactions on top of data lakes.
- > Delta Lake addresses some of the challenges of traditional data lakes by adding reliability, scalability, and performance.
- ➤ Delta Lake provides features like schema enforcement, versioning, data indexing, and ACID transactions, which makes it easier to manage large data sets
- Deltalake enables data engineers and data scientists to work collaboratively

Data Warehouse

- > A data warehouse is a large, centralized repository of data that is used for reporting and analysis
- ➤ It is designed to support the storage and querying of large volumes of structured, semi-structured, and unstructured data from a variety of sources
- Data warehouses typically use a relational database management system (RDBMS) to store data
- It is optimized for query performance, scalability, and reliability
- > They are often used in business intelligence (BI) applications to provide users with insights and trends from large datasets

Lakehouse

- Lakehouse is a new concept introduced by Databricks in 2020, which combines the best features of
 - data warehouses
 - data lakes
- > A lakehouse architecture is built on top of Delta Lake and allows users to have
 - > ACID transactions on large datasets
 - fast analytics
 - data science capabilities in one platform

What is a Data Lakehouse?

Credit: Databricks

Key Technology Enabling the Data Lakehouse

- > There are a few key technology advancements that have enabled the data lakehouse:
- ✓ Metadata layers for data lakes
- ✓ New query engine designs providing high-performance SQL execution on data lakes
- ✓ Optimized access for data science and machine learning tools

Data lakes, Data Lakehouse & Data Warehouses

	Data lake	Data lakehouse	Data warehouse
Types of data	All types: Structure, semi-structured, unstructured (raw)	All types: Structure, semi-structured, unstructured (raw)	Structured data only
Cost	\$	\$	\$\$\$
Format	Open format	Open format	Closed, proprietary format
Scalability	Scales to hold any amount of data at low cost, regardless of type	Scales to hold any amount of data at low cost, regardless of type	Scaling up becomes exponentially more expensive due to vendor costs
Intended users	Limited: Data scientists	Unified: Data analysts, data scientists, machine learning engineers	Limited: Data analysts
Reliability	Low quality, data swamp	High quality, reliable data	High quality, reliable data
Ease of use	Difficult: Exploring large amounts of raw data can be difficult without tools to organize and catalog the data	Simple: Provides simplicity and structure of a data warehouse with the broader use cases of a data lake	Simple: Structure of a data warehouse enables users to quickly and easily access data for reporting and analytics
Performance	Poor	High	High

Databricks Lakehouse Platform

Databricks provides a wide range of integrations with other popular data tools and platforms, such as AWS, Azure, and Google Cloud Platform, making it easy to integrate into existing data ecosystems

Credit: Databricks

Azure Databricks Architecture Overview

Azure Databricks Architecture

THANK YOU

