Universal Shift Register

- No Shift
- Right shift
- Left shift
- Parallel load
 - S₀ S₁: 1 1→ 3rd
 pin is selected
 in all MUXs
 - Input 1010
 - Clock pulse
 - Output 1 0 1 0

Dr. E. Paul Braineard

Type

Turn on captions

9

Paul Brai

is prese

Parallel outputs

Universal Shift Register Clear_b

- Select lines (S₀ S₁)
- Input lines $(I_3 I_0)$
 - S₀ S₁: 1 1→ 3rd pin is selected in all MUXs
- Output lines $(A_3 A_0)$
- No Shift
 - S₀ S₁: 0 0→ 0 pin is selected in all MUXs
- Right shift
 - S₀S₁: 1 0→ 3rd pin is selected in all MUXs
- Left shift
 - S₀S₁: 0 1→ 3rd pin is selected in all MUXs

Dr. E. Paul Braineard

Parallel outputs

Universal Shift Register

- Select lines (SoS1)
- Input lines $(I_3 I_0)$
 - S₀ S₁: 1 1→ 3rd pin is selected in all MUXs
- Output lines (A₃ A₀)
- No Shift
 - S₀S₁: 0 0→ 0 pin is selected in all MUXs
- · Left shift
 - S₀S₁: 1 0→ 2nd pin is selected in all MUXs
- · Right shift
 - S₀S₁: 0 1→ 1st pin is selected in all MUXs

Dr. E. Paul Braineard

Parallel outputs

Universal Shift Register

- Select lines (S₀ S₁)
- Input lines $(I_3 I_0)$
 - S₀ S₁: 1 1→ 3rd pin is selected in all MUXs
- Output lines $(A_3 A_0)$
- No Shift
 - S₀ S₁: 0 0→ 0 pin is selected in all MUXs
- Left shift
 - S₀S₁: 1 0→ 2nd pin is selected in all MUXs
- Right shift
 - S₀S₁: 0 1→ 1st pin is selected in all MUXs

Dr. E. Paul Braineard

Counters

- Sequential circuits that count through a specific sequence of states
 - Count up
 - Count down
 - Count through other fixed sequences
- State: The state of counter is stored in FFs
- n-bit counter
 - · Has 'n' FFs
 - Can cycle (Count) through 2ⁿ states

Dr. E. Paul Braineard

Counters

Two bit counter (Four states)

Three bit counter (Eight states)

Dr. E. Paul Braineard

Paul Brain

is preser

Counters: Examples

- Binary counter: 000, 001, 010, 011, 100, 101, 110, 111, 000
- Gray code counter:
 - 000, 010, 110, 100, 101, 111, 011, 001, 000, 010, 110
- One-hot counter: 0001, 0010, 0100, 1000, 0001, 0010, ...
- BCD counter: 0000, 0001, 0010, ..., 1001, 0000, 0001
- pseudo-random sequence generators: 10, 01, 00, 11, 10, 01, 00, ...

Dr. E. Paul Braineard

Types of Counters

- Ripple counter
 - Clock connected on the LSB bit FF
 - For all other bits, a FF output is connected to the clock input of other FF starting from LSB FF (Asynchronous)
 - Output change is delayed by one clock period towards MSB
- Synchronous counter
 - Clock is directly connected to all flip-flop clock inputs
 - · Logic is used to implement the desired state sequencing

Dr. E. Paul Braineard

Counters: Design

- 1. Draw a state graph
 - It specifies the desired sequence of the counter
- 2. Construct a state table (from the state graph)
 - One Flip-Flop for each bit in the state
- Derive a K-map (from the state table for each Flip-Flop input)
 - Select the type of Flip-Flop to be used
- 4. Determine the input equation(s) for each Flip-Flop

Dr. E. Paul Braineard

3-bit Asynchronous counter

Dr. E. Paul Braineard

cc arn on captions

21

Paul Brai

3-bit Asynchronous Up counter

Clk ₂	Clk ₁	Clko	Q ₂	Q_1	Qo
Reset			0	0	0
11	10	01	0	0	1
11	00	10	0	0	1

Rising edge

Dr. E. Paul Braineard

