Алгебра Лекции

Дима Трушин

2024

Содержание

1	Бин	рные операции	2
	1.1	Определения	2
	1.2	Свойства	
		L.2.1 Ассоциативность	
		1.2.2 Нейтральный элемент	
		1.2.3 Обратный элемент	
		1.2.4 Коммутативность	,
2	Гру	пы	ļ
	2.1	Определение	ļ
		Мультипликативная и аддитивная нотации	
		Подгруппы	
		Циклические группы	

1 Бинарные операции

В математике часто изучаются разные структуры. Обычно это множества снабженные дополнительной структурой. В алгебре обычно множества снабжаются разного рода операциями. Простейший тип операций – бинарные операции, то есть операции с двумя аргументами. Давайте обсудим какие бывают бинарные операции и после перейдем к определению самой простой алгебраической структуры – группы.

1.1 Определения

Определение 1. Пусть X – некоторое множество. Бинарная операция на X – это отображение \circ : $X \times X \to X$ по правилу $(x,y) \mapsto x \circ y$ для всех $x,y \in X$.

В этом случае \circ – это имя операции. Проще говоря, операция – это правило, которое съедает два элемента из X и выплевывает один новый элемент, называемый $x \circ y$, из того же множества X. Новый элемент $x \circ y$ обычно называется произведением элементов x и y.

Обратите внимание, что у бинарных операций есть функциональный стиль обозначения, когда имя операции пишется не между аргументами, а в виде имени функции перед аргументами. Давайте я повторю определение операции в функциональном стиле.

Определение 2. Пусть X – некоторое множество. Бинарная операция на X – это отображение μ : $X \times X \to X$ по правилу $(x,y) \mapsto \mu(x,y)$ для всех $x,y \in X$.

Это не новое определение, это всего лишь переобозначение предыдущего. Я буду предпочитать операторное обозначение.

Примеры 3. Бинарные операции:

1. Сложение целых чисел. В операторной форме

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \quad (m, n) \mapsto m + n$$

В функциональной форме

add:
$$\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$
, $(m,n) \mapsto \operatorname{add}(m,n) = m+n$

Так как мы привыкли к сложению в форме m+n, мы хотим, чтобы общее определение было похоже на привычную нам запись. С другой стороны, многие языки программирования допускают оба вида нотаций. Но по сути add(m,n) и m+n это одно и то же.

2. Умножение целых чисел. В операторной форме

$$: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \quad (m, n) \mapsto m \cdot n$$

В функциональном стиле

$$\mathrm{mult} \colon \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \quad (m, n) \mapsto \mathrm{mult}(m, n) = m \cdot n$$

3. Максимум целых чисел. В операторной форме

$$\vee : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \quad (m, n) \mapsto m \vee n$$

В функциональной форме

$$\max: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \quad (m, n) \mapsto \max(m, n) = m \vee n$$

На всякий случай поясню, что $\max(m,n)=m\vee n$, то лишь разные обозначения максимума.

¹Операция может быть какой угодно, например, на множестве целых чисел можно рассматривать сложение, взятие максимума, или что-либо другое, но с абстрактной точки зрения результат операции все равно называется произведением элементов. Не забывайте, что математика – это искусство обозначать одинаковые вещи по разному и разные вещи одинаково.

4. Минимум целых чисел. В операторной форме

$$\wedge : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \quad (m, n) \mapsto m \wedge n$$

В функциональной форме

$$\min: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \quad (m, n) \mapsto \min(m, n) = m \wedge n$$

Как и выше $\min(m, n) = m \wedge n$ это разные обозначения минимума.

5. Просто случайная дурацкая бинарная операция на целых числах

$$\phi \colon \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \quad (m,n) \mapsto m^2 - n^2$$

Давайте резюмируем, что бинарная операция на X – это любое отображение вида $f: X \times X \to X$. И вы вольны задать его как вам вздумается по любому правилу. Но разные операции будут иметь разные свойства, какие-то операции будут лучше, чем другие. Давайте теперь обсудим какие же есть свойства у операций.

1.2 Свойства

Можно рассматривать множество различных свойств операций. Я хочу обсудить лишь те, которые нам понадобятся в дальнейшем для определения группы.

1.2.1 Ассоциативность

Определение 4. Операция $\circ: X \times X \to X$ называется ассоциативной, если для любых элементов $x, y, z \in X$ выполнено $(x \circ y) \circ z = x \circ (y \circ z)$.

Если у вас есть бинарная операция \circ на множестве X, то вы можете посчитать произведение трех элементов x, y, z двумя разными способами:

- сначала посчитаем произведение $w=x\circ y$ и потом вычислим $w\circ z=(x\circ y)\circ z.$
- сначала посчитаем произведение $u = y \circ z$ и потом вычислим $x \circ u = x \circ (y \circ z)$.

Если операция взята произвольно, то может случится, что эти два способа дают разные результаты для каких-то значений $x,\ y$ и z. Ассоциативность означает, что не важен порядок, в котором вы вычисляете операции. Кроме того, если $(x\circ y)\circ z=x\circ (y\circ z)$ для всех $x,y,z\in X$, то на самом деле не имеет значения, как вы расставляете скобки в произвольных произведениях. Например, все следующие выражения равны $(x\circ y)\circ (z\circ w),\ x\circ (y\circ (z\circ w))$ and $((x\circ y)\circ z)\circ w,$ а значит мы можем убрать все скобки и просто записать $x\circ y\circ z\circ w.$ Поэтому для ассоциативных операций обычно не используют скобки, так как они не существенны.

Примеры 5. Ниже примеры ассоциативных и не ассоциативных операций.

1. Целочисленное сложение ассоциативно.

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \quad (m, n) \mapsto m + n$$

Если $m, n, k \in \mathbb{Z}$, то мы знаем, что (m+n) + k = m + (n+k).

2. Вычитание целых чисел не ассоциативно.

$$-: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \quad (m, n) \mapsto m - n$$

Тогда равенство (m-n)-k=m-(n-k) не выполняется для всех целых чисел. Действительно, если взять m=n=0 и k=1, то левая часть равенство будет -1, а правая -1. Так что, $(0-0)-1\neq 0-(0-1)$.

1.2.2 Нейтральный элемент

Определение 6. Пусть \circ : $X \times X \to X$ – некоторая операция на X. Элемент $e \in X$ называется нейтральным если для каждого элемента $x \in X$ выполнены равенства $x \circ e = x$ и $e \circ x = x$.

По простому, нейтральный элемент $e \in X$ – это такой элемент, который ничего не меняет по умножению в смысле операции.

Примеры 7. Нейтральный элемент может существовать, а может и не существовать.

1. Целочисленное сложение имеет нейтральный элемент.

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \quad (m,n) \mapsto m+n$$

Ясно, что элемент e=0 удовлетворяет всем требованиям на нейтральный элемент. Действительно, для всех $m\in\mathbb{Z}$ имеем m+0=m и 0+m=m.

2. Целочисленное вычитание не имеет нейтрального элемента.

$$-: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \quad (m,n) \mapsto m-n$$

Давайте покажем, что нет элемента $e \in \mathbb{Z}$ такого, что e-m=m для всех $m \in \mathbb{Z}$. Действительно, если такой e существует, то e=2m для каждого $m \in \mathbb{Z}$. Но это не возможно, поскольку для $m=0, \ e=0$ а для $m=1, \ e=2,$ противоречие. С другой стороны, отметим, что m-0=m для всех $m \in \mathbb{Z}$. То есть 0 является нейтральным только с одной стороны для вычитания.

Последний пример показывает, что вообще говоря не достаточно проверять только одно из условий $x \circ e = x$ или $e \circ x = x$. Это очень частая ошибка. Постарайтесь не забыть оба условия.

Правильный вопрос, которым теперь надо задаться: а сколько нейтральных элементов может быть? Правильный ответ – не более одного. Давайте покажем это.

Утверждение 8. Пусть X – некоторое множество $u \circ : X \times X \to X$ – бинарная операция. Тогда существует не более одного нейтрального элемента.

Доказательство. Если нейтральных элементов нет, то и доказывать нечего. Пусть теперь e и e' – два произвольных нейтральных элемента. Мы должны показать, что они равны. Рассмотрим произведение $e \circ e'$. Так как e является нейтральным элементом, $e \circ x = x$ для любого $x \in X$. В частности при x = e' мы получим, что $e \circ e' = e'$. С другой стороны, так как e' является нейтральным элементом, то $x \circ e' = x$ для любого $x \in X$. И значит в частности при x = e имеем $e \circ e' = e$. То есть $e = e \circ e' = e'$.

1.2.3 Обратный элемент

Я хочу начать с замечания, что это свойство зависит от предыдущего. А именно, для того чтобы говорить об обратных элементах необходимо, чтобы для операции существовал нейтральный элемент. Если же нейтрального элемента нет, то нет и способа говорить об обратимых элементах.

Определение 9. Пусть \circ : $X \times X \to X$ — некоторая операция с нейтральным элементом $e \in X$. Элемент $y \in X$ называется обратным к элементу $x \in X$, если выполнено $x \circ y = e$ и $y \circ x = e$.

 ${\bf X}$ напомню, что нейтральный элемент единственный если существует. Потому элемент e корректно определен в равенствах выше.

Правильный вопрос, которым надо задаться: а сколько может быть обратных элементов для заданного элемента $x \in X$? Оказывается, что не больше одного, если операция ассоциативна.

Утверждение 10. Пусть \circ : $X \times X \to X$ — некоторая ассоциативная бинарная операция c нейтральным элементом $e \in X$. Тогда, для любого $x \in X$ существует не более одного обратного элемента.

Доказательство. Давайте зафиксируем элемент $x \in X$. Если для него нет обратного, то и доказывать нечего. Теперь предположим, что y_1 и y_2 — это два обратных элемента к x. Последнее означает, что выполнены равенства

$$\begin{cases} x \circ y_1 = e \\ y_1 \circ x = e \end{cases} \quad \text{II} \quad \begin{cases} x \circ y_2 = e \\ y_2 \circ x = e \end{cases}$$

Теперь рассмотрим произведение $y_1 \circ x \circ y_2$. Так как \circ ассоциативна, то расстановка скобок не имеет значение, то есть $(y_1 \circ x) \circ y_2 = y_1 \circ (x \circ y_2)$. Если посчитать левую часть, то получим:

$$(y_1 \circ x) \circ y_2 = e \circ y_2 = y_2$$

А для правой части имеем:

$$y_1 \circ (x \circ y_2) = y_1 \circ e = y_1$$

Значит $y_2 = (y_1 \circ x) \circ y_2 = y_1 \circ (x \circ y_2) = y_1$ и все доказано.

Так как в общем случае существует не более одного обратного для элемента x, то его принято обозначать через x^{-1} .

Примеры 11. 1. Предположим, что операция – сложение целых чисел.

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \quad (m,n) \mapsto m+n$$

Нейтральный элемент у нас 0. Если $n \in \mathbb{Z}$, то обратный к нему будет -n. Действительно, n + (-n) = 0 и (-n) + n = 0. Значит любой элемент имеет обратный для этой операции.

2. Предположим, что операция – это умножение целых чисел

$$: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \quad (m, n) \mapsto m \cdot n$$

Нейтральный элемент – 1. Если n=1, то его обратный будет тоже 1. Если n=-1, то его обратный будет -1. Если же $n \neq \pm 1$, то обратного не существует в \mathbb{Z} . Потому только два элемента обратимы для этой операции.

1.2.4 Коммутативность

Определение 12. Бинарная операция $\circ: X \times X \to X$ называется коммутативной если для любых $x, y \in X$ выполнено $x \circ y = y \circ x$.

То есть коммутативность означает, что нам не важен порядок операндов в операции.

Примеры 13. 1. Целочисленное сложение коммутативно.

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \quad (m, n) \mapsto m + n$$

Действительно, для любых $m,n\in\mathbb{Z}$, мы имеем m+n=n+m.

2. Целочисленное вычитание не коммутативно.

$$-: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \quad (m, n) \mapsto m - n$$

Коммутативность означает равенство m-n=n-m для всех целых m,n. Ясно, что это не выполнено уже в случае m=0 и n=1.

2 Группы

2.1 Определение

Теперь мы готовы к тому, чтобы дать определение одного из самых важных в алгебре объектов – группы. Прежде чем сделать это, я хочу пояснить, что мы встретим много абстрактных определений в будущем и все они будут сотканы по единому шаблону. Давайте я проясню этот шаблон в начале. В любом абстрактном определении есть две части. В первой части говорится какие данные нам даны. А во второй части говорится каким аксиомам эти данные должны удовлетворять. ²

Определение 14. Определение группы

• Данные:

 $^{^{2}}$ Если проводить аналогию с программированием, то первая часть описывает интерфейс, а вторая часть – это контракт на интерфейс.

- 1. G множество.
- 2. Операция $\circ: G \times G \to G$.

• Аксиомы:

- 1. Операция ∘ ассоциативна.
- 2. Операция о обладает нейтральным элементом.
- 3. Каждый элемент $x \in G$ имеет обратный.

В этом случае мы будем говорить, что пара (G, \circ) является группой. Чтобы упростить обозначения, мы будем обычно говорить, что просто G является группой, подразумевая, что на G задана некоторая фиксированная операция. Если в дополнение к аксиомам выше выполнена следующая аксиома

4. Операция о коммутативна.

То группа G называется абелевой или просто коммутативной.

Если коротко, то группа – это множество с «хорошей» операцией. Здесь слово «хорошая» означает, что нам не важно как расставлять скобки, у нас есть нейтральный элемент и на любой элемент можно поделить. Если же в дополнение ко всему не важно в каком порядке стоят аргументы операции, то группа называется абелевой.

- Примеры 15. 1. Целые числа по сложению (\mathbb{Z} , +) образуют абелеву группу. Действительно, операция + ассоциативна, нейтральный элемент 0, для каждого числа n есть его обратный -n и порядок аргументов в сложении не важен n+m=m+n. Мы обычно называем эту группу просто \mathbb{Z} подразумевая, что операция обязательно сложение.
 - 2. Целые числа по умножению (\mathbb{Z},\cdot) группу не образуют. Мы знаем, что операция ассоциативна и есть нейтральный элемент 1. И мы уже проверяли, что только ± 1 являются обратимыми элементами.
 - 3. Не нулевые вещественные числа по умножению (\mathbb{R}^* , ·) образуют абелеву группу. Действительно, умножение ассоциативно. Нейтральным элементом будет будет 1, для всякого элемента x обратным будет 1/x, и порядок аргументов в умножении не важен xy = yx.
 - 4. Пусть n положительное целое, тогда множество $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ с операцией $a+b \pmod n$ является абелевой группой. Для простоты операция сложения по модулю n так же обозначается просто +.
 - 5. Пусть n положительное целое. Положим $\mathbb{Z}_n^* = \{m \in \mathbb{Z}_n \mid (m,n) = 1\}$ (множество всех чисел из \mathbb{Z}_n взаимно простых с n), а операцию зададим как $a \cdot b \pmod{n}$. В этом случае мы так же получим абелеву группу. Для простоты операция в \mathbb{Z}_n^* обозначается как операция умножения \cdot .

2.2 Мультипликативная и аддитивная нотации

В определении группы G мы обозначали операцию \circ . Если надо использовать произведение нескольких элементов, то нам приходится писать $x \circ y \circ z \circ w$. Это не очень удобно. Вместо этого есть два более привычных стиля. А именно, давайте будем обозначать операцию как умножение \cdot или как сложение +. Тогда получаются две разные нотации: мультипликативная и аддитивная.

	Мультипликативная	Аддитивная
Операция	$\cdot : G \times G \to G$	$+: G \times G \to G$
На элементах	$(x,y)\mapsto xy$	$(x,y) \mapsto x + y$
Нейтральный элемент	1	0
Обратный элемент	x^{-1}	-x
Степерь элемента	$x^n = \underbrace{x \cdot \ldots \cdot x}_{}$	$nx = \underbrace{x + \ldots + x}$
	n	n

Обычно мультипликативная нотация используется в случае неабелевых групп или когда свойство коммутативности вообще говоря не известно. А аддитивная нотация зарезервирована сугубо для абелевых групп. Я буду в основном использовать мультипликативную нотацию.

Я подчеркну, что указанные нотации – это всего лишь два разных способа обозначать операцию \circ , а не какие-то новые специальные операции. То есть мы выбираем обозначение для \circ в виде \cdot или + в зависимости от наших предпочтений. Не надо путать эти обозначения с операциями сложения и умножения целых чисел. В случае произвольной группы G путаницы быть не должно, потому что там нет никаких заранее заданных операций сложения и умножения. Однако, если мы работаем с целыми числами (вещественными, рациональными, комплексными и т.д.), то операции + и \cdot обозначают обычные сложение и умножение.

2.3 Подгруппы

Определение 16. Пусть G – некоторая группа. Определим подгруппу H в группе G следующим образом.

- Данные:
 - 1. Подмножество $H \subseteq G$.
- Аксиомы:
 - 1. Нейтральный элемент 1 группы G принадлежит H.
 - 2. Если $x, y \in H$, то $xy \in H$.
 - 3. Если $x \in H$, то $x^{-1} \in H$.

В этом случае, мы говорим, что H – подгруппа в группе G.

Стоит отметить, что если H – подгруппа в группе (G, \cdot) , то \cdot можно ограничить на H и получится операция на H. В этом случае (H, \cdot) удовлетворяет всем аксиомам группы. Таким образом подгруппа H сама является группой относительно той же самой операции (или точнее относительно ограничения операции), что была на группе G.

Примеры 17. Пусть $G = \mathbb{Z}$ по сложению.

- 1. Если $H \subseteq \mathbb{Z}$ подмножество четных чисел $H = 2\mathbb{Z}$, то H является подгруппой.
- 2. Если $H \subseteq \mathbb{Z}$ подмножество нечетных чисел $H = 1 + 2\mathbb{Z}$, то H не является подгруппой. В этом случае H не содержит нейтрального элемента 0 и не замкнуто относительно операции сложения.

2.4 Циклические группы

Пусть G — некоторая группа и $g \in G$ — ее элемент. Тогда мы можем определить целочисленные степени элемента g по следующим правилам.

Мультипликативная нотация	Аддитивная нотация	
	$g + \ldots + g, \qquad n > 0$)
\bigcap_{n}	n	
$g^n = \begin{cases} 1, & n = 0 \end{cases}$	$ng = \begin{cases} 0, & n = 0 \end{cases}$)
$g^{-1} \cdot \dots \cdot g^{-1}, n < 0$	$(-g) + \ldots + (-g), n < 0$)
$\begin{pmatrix} & & & \\ & & -n & & \end{pmatrix}$	-n	

Утверждение 18. Пусть G – некоторая группа. Тогда

- 1. Для любых $x, y \in G$ выполнено $(xy)^{-1} = y^{-1}x^{-1}$.
- 2. Для любого $g \in G$ верно $(g^{-1})^n = (g^n)^{-1} = g^{-n}$.
- 3. Для любого $g \in G$ и любых $n, m \in \mathbb{Z}$ верно $g^n g^m = q^{n+m}$.

Доказательство. 1) Нам надо показать, что $(xy)^{-1} = y^{-1}x^{-1}$. С психологической точки зрения удобно обозначить $y^{-1}x^{-1}$ через z. Если мы покажем, что (xy)z = z(xy) = 1, то это будет означать, что $z = (xy)^{-1}$ по определению. Теперь посчитаем

$$(xy)z = xyz = xyy^{-1}x^{-1} = xx^{-1} = 1$$

³Строго говоря (G,\cdot) , но я буду использовать более короткие обозначения.

Аналогично делается и второе равенство.

2) Сначала покажем первое равенство. Давайте применим предыдущее свойство несколько раз, получим

$$(g_1 \cdot \ldots \cdot g_n)^{-1} = g_n^{-1} \cdot \ldots \cdot g_1^{-1}$$
, whenever $g_1, \ldots, g_n \in G$

При подстановке $g_1 = \ldots = g_n = g$, получим нужное равенство для n > 0. Если n = 0, то по определению $(g^{-1})^0 = 1$. С другой стороны, $(g^0)^{-1} = 1^{-1} = 1$ потому что обратный к 1 есть 1.

Если n < 0, то по определению

$$(g^{-1})^n = \underbrace{(g^{-1})^{-1} \cdot \dots \cdot (g^{-1})^{-1}}_{p}$$

С другой стороны

$$(g^n)^{-1} = (\underbrace{g^{-1} \cdot \dots \cdot g^{-1}}_{-n})^{-1} = \underbrace{(g^{-1})^{-1} \cdot \dots \cdot (g^{-1})^{-1}}_{-n}$$

где последнее равенство берется из предыдущего пунка утверждения.

Теперь надо проверить второе равенство. В случае n > 0 имеем по определению

$$(g^{-1})^n = (\underbrace{g^{-1} \cdot \dots \cdot g^{-1}}_n)$$
 и $g^{-n} = (\underbrace{g^{-1} \cdot \dots \cdot g^{-1}}_n)$

Значит левая часть равна правой. Если n=0, то обе части равны 1. Теперь рассмотрим n<0. Для удобства изменим степень с n на -n и можно считать, что n > 0. Получаем

$$(g^{-1})^{-n} = (\underbrace{(g^{-1})^{-1} \cdot \dots \cdot (g^{-1})^{-1}}_{n})$$
 и $g^{-(-n)} = (\underbrace{g \cdot \dots \cdot g}_{n})$

То есть теперь достаточно показать, что $(g^{-1})^{-1} = g$. А это делается по определению. Элемент g удовлетворяет равенствам $gg^{-1} = 1$ и $g^{-1}g = 1$, то есть g является обратным к g^{-1} , что и требовалось.

- 3) Мы должны рассмотреть следующие 4 случая:
- 1. $n \ge 0$ and $m \ge 0$.
- 2. n < 0 and $m \ge 0$.
- 3. $n \ge 0$ and m < 0.
- 4. n < 0 and m < 0.

Пусть у нас первый случай:

$$g^n g^m = \underbrace{g \cdot \dots \cdot g}_n \cdot \underbrace{g \cdot \dots \cdot g}_m = \underbrace{g \cdot \dots \cdot g}_{n+m} = g^{n+m}$$

Для удобства рассмотрим $g^{-n}g^m$ где n>0 and $m\geqslant 0$ во втором случае. Тогда

$$g^{-n}g^m = \underbrace{g^{-1} \cdot \dots \cdot g^{-1}}_{n} \cdot \underbrace{g \cdot \dots \cdot g}_{m}$$

Мы сокращаем множители в середине выражения. Если n > m, получим

$$\underbrace{g^{-1}\cdot\ldots\cdot g^{-1}}_{n-m}=g^{-n+m}$$

Если n < m, имеем

$$\underbrace{g \cdot \ldots \cdot g}_{m-n} = g^{m-n}$$

Если n=m получается $1=q^{m-n}$.

Третий случай по сути является вторым с переставленными множителями. Значит остается разобрать четвертый случай. Опять же для удобства будем считать, что нам даны g^{-n} и g^{-m} , где n>0 и m>0. Тогда

$$g^{n-}g^{-m} = \underbrace{g^{-1} \cdot \dots \cdot g^{-1}}_{n} \underbrace{g^{-1} \cdot \dots \cdot g^{-1}}_{m} = \underbrace{g^{-1} \cdot \dots \cdot g^{-1}}_{n+m} = g^{-n-m}$$

Что и требовалось показать.

Определение 19. Пусть G – группа и $g \in G$ – некоторый элемент. Тогда обозначим множество всех целых степеней g следующим образом

$$\langle g \rangle = \{\dots, g^{-2}, g^{-1}, 1, g, g^2, \dots\} = \{g^k \mid k \in \mathbb{Z}\}\$$

Данное подмножество удовлетворяет определению подгруппы в группе G. Эта группа называется циклической подгруппой порожденной g. Элемент g называется порождающим подгруппы $\langle g \rangle$.

В аддитивной нотации циклическая подгруппа имеет вид

$$\langle g \rangle = \{ \dots, -2g, -g, 0, g, 2g, \dots \} = \{ kg \mid k \in \mathbb{Z} \}$$

По построению $\langle g \rangle$ – это самая маленькая подгруппа в G содержащая элемент g.

Определение 20. Пусть G – некоторая группа. Если найдется элемент $g \in G$ такой, что $\langle g \rangle = G$, то группа G называется циклической.

 $\Pi p u m e p \omega 21.$ 1. Группа ($\mathbb{Z}, +$) является циклической. Ее образующие 1 и -1.

- 2. Группа $(\mathbb{Z}_n, +)$ является циклической.
- 3. Группа перестановок на n элементах S_n не является циклической при n>2.
- 4. Группа $(\mathbb{R}, +)$ не является циклической.

Определение 22. Пусть G – некоторая группа и $g \in G$ – ее элемент. Порядок элемента g – это минимальное положительное целое число такое, что $g^n = 1$ и ∞ если такого числа нет. Порядок g обозначается ord g.

Замечания

- Обратите внимание, что g = 1 тогда и только тогда, когда ord g = 1.
- Если мы используем аддитивную нотацию, то есть будем обозначать операцию через +, то порядок $g \in G$ это такое минимальное положительное целое n, что ng = 0.

⁴Действительно, нейтральный элемент содержится в ней. Это множество замкнуто по умножению в силу свойства (3) предыдущего утверждения и в силу свойства (2) предыдущего утверждения с каждым элементом лежит его обратный.