

Laboratório de Desenvolvimento de Aplicações Móveis e Distribuídas Introdução à redes

Prof. Hugo Bastos de Paula

Camadas de Protocolos

Figura 3.2 Organização conceitual de protocolos em camadas.

Modelo de referência OSI

Figura 3.4 Camadas de protocolo no modelo de protocolo Open System Interconnection (OSI) da ISO.

Camadas da Internet

Figura 3.12 Camadas TCP/IP.

Pilhas de protocolos

	OSI (Open Source Interconnection) 7 Layer Mod	el			
Layer	Application/Example	tion/Example Central Device Protocols			DOD4 Model
Application (7) Serves as the window for users and application processes to access the network services.	End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access • Directory services • Network management	Use Applicat	ions		
Presentation (6) Formats the data to be presented to the Application layer. It can be viewed as the "Translator" for the network.	Syntax layer encrypt & decrypt (if needed) Character code translation • Data conversion • Data compression • Data encryption • Character Set Translation	JPEG/ASCII EBDIC/TIFF/GIF PICT		G	Process
Session (5)	Synch & send to ports (logical ports)	Logical F	Ports	Α	
Allows session establishment between processes running on different stations.	Session establishment, maintenance and termination • Session support - perform security, name recognition, logging, etc.	RPC/SQL NetBIOS n		Ţ	
Transport (4) Ensures that messages are delivered error-free, in sequence, and with no losses or duplications.	TCP Host to Host, Flow Control Message segmentation • Message acknowledgement • Message traffic control • Session multiplexing	TCP/SPX	/UDP	E W A	Host to Host
Network (3) Controls the operations of the subnet, deciding which physical path the data takes.	Packets ("letter", contains IP address) Routing • Subnet traffic control • Frame fragmentation • Logical-physical address mapping • Subnet usage accounting	Route		Y Can be	Internet
Data Link (2) Provides error-free transfer of data frames from one node to another over the Physical layer.	Frames ("envelopes", contains MAC address) [NIC card — Switch — NIC card] (end to end) Establishes & terminates the logical link between nodes • Frame traffic control • Frame sequencing • Frame acknowledgment • Frame delimiting • Frame error checking • Media access control	Switch Bridge WAP PPP/SLIP		on all layers	Natural
Physical (1) Concerned with the transmission and reception of the unstructured raw bit stream over the physical medium.	Physical structure Cables, hubs, etc. Data Encoding • Physical medium attachment • Transmission technique - Baseband or Broadband • Physical medium transmission Bits & Volts	Hub	Lavore		Network

Roteamento

Figura 3.7 Roteamento em redes de longa distância.

Tabelas de roteamento

	Nó A	
Para	Saída	Custo
Α	local	0
В	1	1
С	1	2
D	3	1
Е	1	2

	Nó B	
Para	Saída	Custo
Α	1	1
В	local	0
С	2	1
D	1	2
Е	4	1

	Nó C	
Para	Saída	Custo
Α	2	2
В	2	1
С	local	0
D	5	2
Е	5	1

Nó D	
Saída	Custo
3	1
3	2
6	2
local	0
6	1
	Saída 3 3 6 local

	Nó E	
Para	Saída	Custo
Α	4	2
В	4	1
С	5	1
D	6	1
Е	local	0

Figura 3.8 Tabelas de roteamento para a rede da Figura 3.7.

Figura 3.10 Visão simplificada de parte da rede de um campus universitário.

Adaptado de Coulouris, G.; Dollimore, J.; Kindberg, T.; Blair, G.; Sistemas distribuídos: conceitos e projeto, 5. ed. Porto Alegre: Bookman, 2013

Classes de endereçamento

Figura 3.16 Representação decimal dos endereços Internet.

ENGENHARIA DE

SOFTWARE

NAT - Network Address Translation

Figura 3.18 Uma rede doméstica típica baseada em NAT.

Camada de transporte

• Endereçamento: IP + Port.

Não-orientado à conexão, não confiável.

- Não há garantia de entrega de pacotes.
- Não mantém uma conexão socket entre o servidor e o cliente.

Aplicações cliente-servidor baseados em request-reply.

• Para transmissão de dados de tempo real, como streaming de áudio ou vídeo.

Velocidade é mais importante que confiabilidade

- Seu cabeçalho é bem reduzido e não tem nenhuma mensagem adicional de controle, assim, é mais eficiente na transmissão.
- Pacotes recebidos fora de ordem ou corrompidos são descartados.

Camada de transporte

Endereçamento: IP + Port.

Orientado à conexão, confiável.

- Garante entrega de pacotes.
- Mantém ordenação da mensagem.

Confiabilidade é mais importante que velocidade

- Realiza hand-shake.
- Retransmissão de mensagens pode ser um problema.

O Protocolo Multicast

Processo envia mensagem para um grupo de outros processos

- Um único pacote é roteado para vários endpoints.
- É necessário que um endpoint se junte (join) a um grupo multicast.

Pode ser confiável ou não confiável.

- Pode ser ordenado ou não ordenado.
- Existem vários níveis de ordenação.

Endereçamento reservado (IPv4 é classe D)

- Realiza hand-shake.
- Retransmissão de mensagens pode ser um problema.
- [224, 239] [0, 255] [0, 255] [0, 255]
 - Exemplo: 230.230.100.100
 - Reservados: 224.0.0.1 até 224.0.0.255