In [53]:

```
# data analysis and wrangling
import pandas as pd
import numpy as np
import random as rnd
# visualization
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
# machine Learning
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import Perceptron
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier
```

In []:

In []:

In [54]:

```
#Acquire data
train_df = pd.read_csv('train.csv')
test_df = pd.read_csv('test.csv')
combine = [train_df, test_df]
```

In [55]:

```
#Analyze by describing data print(train_df.columns.values)
```

In [56]:

preview the data
train_df.head()

Out[56]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	(
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	

In [57]:

train_df.tail()

Out[57]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cat
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00	Na
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00	В
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.45	Na
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.00	C1
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.75	Na
4											•

In [58]:

```
train_df.info()
print('_'*40)
test_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype	
0	PassengerId	891 non-null	int64	
1	Survived	891 non-null	int64	
2	Pclass	891 non-null	int64	
3	Name	891 non-null	object	
4	Sex	891 non-null	object	
5	Age	714 non-null	float64	
6	SibSp	891 non-null	int64	
7	Parch	891 non-null	int64	
8	Ticket	891 non-null	object	
9	Fare	891 non-null	float64	
10	Cabin	204 non-null	object	
11	Embarked	889 non-null	object	
<pre>dtypes: float64(2), int64(5), object(5)</pre>				
mamany usaga. 92 71 VP				

memory usage: 83.7+ KB

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417

Data columns (total 11 columns):

Ducu	COTAMINIS (COC	ar ir coramis).	
#	Column	Non-Null Count	Dtype
0	PassengerId	418 non-null	int64
1	Pclass	418 non-null	int64
2	Name	418 non-null	object
3	Sex	418 non-null	object
4	Age	332 non-null	float64
5	SibSp	418 non-null	int64
6	Parch	418 non-null	int64
7	Ticket	418 non-null	object
8	Fare	417 non-null	float64
9	Cabin	91 non-null	object
10	Embarked	418 non-null	object

dtypes: float64(2), int64(4), object(5)

memory usage: 36.0+ KB

In [59]:

```
train_df.describe()
# Review survived rate using `percentiles=[.61, .62]` knowing our problem description menti
# Review Parch distribution using `percentiles=[.75, .8]`
# SibSp distribution `[.68, .69]`
# Age and Fare `[.1, .2, .3, .4, .5, .6, .7, .8, .9, .99]`
```

Out[59]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [60]:

```
train_df.describe(include=['0'])
```

Out[60]:

	Name	Sex	Ticket	Cabin	Embarked
count	891	891	891	204	889
unique	891	2	681	147	3
top	Braund, Mr. Owen Harris	male	347082	B96 B98	S
freq	1	577	7	4	644

In [61]:

```
#Analyze by pivoting features
train_df[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False).mean().sort_values(by=
```

Out[61]:

	Pclass	Survived
0	1	0.629630
1	2	0.472826
2	3	0.242363

In [62]:

```
train_df[["Sex", "Survived"]].groupby(['Sex'], as_index=False).mean().sort_values(by='Survi
```

Out[62]:

	Sex	Survived
^	fomolo	0.742020

1 male 0.188908

In [63]:

```
train_df[["SibSp", "Survived"]].groupby(['SibSp'], as_index=False).mean().sort_values(by='S
```

Out[63]:

	SibSp	Survived
1	1	0.535885
2	2	0.464286
0	0	0.345395
3	3	0.250000
4	4	0.166667
5	5	0.000000
6	8	0.000000

In [64]:

train_df[["Parch", "Survived"]].groupby(['Parch'], as_index=False).mean().sort_values(by='S

Out[64]:

	Parch	Survived
3	3	0.600000
1	1	0.550847
2	2	0.500000
0	0	0.343658
5	5	0.200000
4	4	0.000000
6	6	0.000000

In [65]:

```
#Analyze by visualizing data
g = sns.FacetGrid(train_df, col='Survived')
g.map(plt.hist, 'Age', bins=20)
```

Out[65]:

<seaborn.axisgrid.FacetGrid at 0x1cc573bad60>

In [66]:

```
# grid = sns.FacetGrid(train_df, col='Pclass', hue='Survived')
grid = sns.FacetGrid(train_df, col='Survived', row='Pclass', size=2.2, aspect=1.6)
grid.map(plt.hist, 'Age', alpha=.5, bins=20)
grid.add_legend();
```

C:\Users\Hp\anaconda3\lib\site-packages\seaborn\axisgrid.py:337: UserWarnin
g: The `size` parameter has been renamed to `height`; please update your cod
e.

warnings.warn(msg, UserWarning)

In [67]:

```
# grid = sns.FacetGrid(train_df, col='Embarked')
grid = sns.FacetGrid(train_df, row='Embarked', size=2.2, aspect=1.6)
grid.map(sns.pointplot, 'Pclass', 'Survived', 'Sex', palette='deep')
grid.add_legend()
```

C:\Users\Hp\anaconda3\lib\site-packages\seaborn\axisgrid.py:337: UserWarnin
g: The `size` parameter has been renamed to `height`; please update your cod
e.

warnings.warn(msg, UserWarning)

C:\Users\Hp\anaconda3\lib\site-packages\seaborn\axisgrid.py:670: UserWarnin g: Using the pointplot function without specifying `order` is likely to produce an incorrect plot.

warnings.warn(warning)

C:\Users\Hp\anaconda3\lib\site-packages\seaborn\axisgrid.py:675: UserWarnin
g: Using the pointplot function without specifying `hue_order` is likely to
produce an incorrect plot.

warnings.warn(warning)

Out[67]:

<seaborn.axisgrid.FacetGrid at 0x1cc5778dc40>

In [68]:

```
# grid = sns.FacetGrid(train_df, col='Embarked', hue='Survived', palette={0: 'k', 1: 'w'})
grid = sns.FacetGrid(train_df, row='Embarked', col='Survived', size=2.2, aspect=1.6)
grid.map(sns.barplot, 'Sex', 'Fare', alpha=.5, ci=None)
grid.add_legend()
```

C:\Users\Hp\anaconda3\lib\site-packages\seaborn\axisgrid.py:337: UserWarnin
g: The `size` parameter has been renamed to `height`; please update your cod
e.
 warnings.warn(msg, UserWarning)
C:\Users\Hp\anaconda3\lib\site-packages\seaborn\axisgrid.py:670: UserWarnin
g: Using the barplot function without specifying `order` is likely to produc
e an incorrect plot.

Out[68]:

warnings.warn(warning)

<seaborn.axisgrid.FacetGrid at 0x1cc5753c7f0>

In [69]:

```
#Wrangle data
print("Before", train_df.shape, test_df.shape, combine[0].shape, combine[1].shape)

train_df = train_df.drop(['Ticket', 'Cabin'], axis=1)
test_df = test_df.drop(['Ticket', 'Cabin'], axis=1)
combine = [train_df, test_df]

"After", train_df.shape, test_df.shape, combine[0].shape, combine[1].shape

Before (891, 12) (418, 11) (891, 12) (418, 11)
Out[69]:
```

In [70]:

```
for dataset in combine:
    dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\.', expand=False)

pd.crosstab(train_df['Title'], train_df['Sex'])
```

('After', (891, 10), (418, 9), (891, 10), (418, 9))

Out[70]:

Title		
Capt	0	1
Col	0	2
Countess	1	0
Don	0	1
Dr	1	6
Jonkheer	0	1
Lady	1	0
Major	0	2
Master	0	40
Miss	182	0
Mile	2	0
Mme	1	0
Mr	0	517
Mrs	125	0
Ms	1	0
Rev	0	6
Sir	0	1

Sex female male

In [71]:

```
for dataset in combine:
    dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess', 'Capt', 'Col',\
    'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')

    dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')

train_df[['Title', 'Survived']].groupby(['Title'], as_index=False).mean()
```

Out[71]:

	Title	Survived
0	Master	0.575000
1	Miss	0.702703
2	Mr	0.156673
3	Mrs	0.793651
4	Rare	0.347826

In [72]:

```
title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5}
for dataset in combine:
    dataset['Title'] = dataset['Title'].map(title_mapping)
    dataset['Title'] = dataset['Title'].fillna(0)

train_df.head()
```

Out[72]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	7.2500	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	71.2833	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	7.9250	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	53.1000	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	8.0500	S
4										•

In [73]:

```
train_df = train_df.drop(['Name', 'PassengerId'], axis=1)
test_df = test_df.drop(['Name'], axis=1)
combine = [train_df, test_df]
train_df.shape, test_df.shape
```

Out[73]:

```
((891, 9), (418, 9))
```

In [74]:

```
for dataset in combine:
    dataset['Sex'] = dataset['Sex'].map( {'female': 1, 'male': 0} ).astype(int)
train_df.head()
```

Out[74]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Title
0	0	3	0	22.0	1	0	7.2500	S	1
1	1	1	1	38.0	1	0	71.2833	С	3
2	1	3	1	26.0	0	0	7.9250	S	2
3	1	1	1	35.0	1	0	53.1000	S	3
4	0	3	0	35.0	0	0	8.0500	S	1

In [75]:

```
# grid = sns.FacetGrid(train_df, col='Pclass', hue='Gender')
grid = sns.FacetGrid(train_df, row='Pclass', col='Sex', size=2.2, aspect=1.6)
grid.map(plt.hist, 'Age', alpha=.5, bins=20)
grid.add_legend()
```

C:\Users\Hp\anaconda3\lib\site-packages\seaborn\axisgrid.py:337: UserWarnin
g: The `size` parameter has been renamed to `height`; please update your cod
e.

warnings.warn(msg, UserWarning)

Out[75]:

<seaborn.axisgrid.FacetGrid at 0x1cc57629e50>

In [76]:

```
guess_ages = np.zeros((2,3))
guess_ages
```

Out[76]:

```
array([[0., 0., 0.], [0., 0., 0.]])
```

In [77]:

```
for dataset in combine:
   for i in range(0, 2):
        for j in range(0, 3):
            guess_df = dataset[(dataset['Sex'] == i) & \
                                  (dataset['Pclass'] == j+1)]['Age'].dropna()
            # age_mean = guess_df.mean()
            # age_std = guess_df.std()
            # age_guess = rnd.uniform(age_mean - age_std, age_mean + age_std)
            age_guess = guess_df.median()
            # Convert random age float to nearest .5 age
            guess_ages[i,j] = int( age_guess/0.5 + 0.5 ) * 0.5
   for i in range(0, 2):
        for j in range(0, 3):
            dataset.loc[ (dataset.Age.isnull()) & (dataset.Sex == i) & (dataset.Pclass == j
                    'Age'] = guess_ages[i,j]
   dataset['Age'] = dataset['Age'].astype(int)
train df.head()
```

Out[77]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Title
0	0	3	0	22	1	0	7.2500	S	1
1	1	1	1	38	1	0	71.2833	С	3
2	1	3	1	26	0	0	7.9250	S	2
3	1	1	1	35	1	0	53.1000	S	3
4	0	3	0	35	0	0	8.0500	S	1

In [78]:

```
train_df['AgeBand'] = pd.cut(train_df['Age'], 5)
train_df[['AgeBand', 'Survived']].groupby(['AgeBand'], as_index=False).mean().sort_values(b
```

Out[78]:

	AgeBand	Survived
0	(-0.08, 16.0]	0.550000
1	(16.0, 32.0]	0.337374
2	(32.0, 48.0]	0.412037
3	(48.0, 64.0]	0.434783
4	(64.0, 80.0]	0.090909

In [79]:

```
for dataset in combine:
    dataset.loc[ dataset['Age'] <= 16, 'Age'] = 0
    dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 32), 'Age'] = 1
    dataset.loc[(dataset['Age'] > 32) & (dataset['Age'] <= 48), 'Age'] = 2
    dataset.loc[(dataset['Age'] > 48) & (dataset['Age'] <= 64), 'Age'] = 3
    dataset.loc[ dataset['Age'] > 64, 'Age']
train_df.head()
```

Out[79]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Title	AgeBand
0	0	3	0	1	1	0	7.2500	S	1	(16.0, 32.0]
1	1	1	1	2	1	0	71.2833	С	3	(32.0, 48.0]
2	1	3	1	1	0	0	7.9250	S	2	(16.0, 32.0]
3	1	1	1	2	1	0	53.1000	S	3	(32.0, 48.0]
4	0	3	0	2	0	0	8.0500	S	1	(32.0, 48.0]

In [80]:

```
train_df = train_df.drop(['AgeBand'], axis=1)
combine = [train_df, test_df]
train_df.head()
```

Out[80]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Title
0	0	3	0	1	1	0	7.2500	S	1
1	1	1	1	2	1	0	71.2833	С	3
2	1	3	1	1	0	0	7.9250	S	2
3	1	1	1	2	1	0	53.1000	S	3
4	0	3	0	2	0	0	8.0500	S	1

In [81]:

```
for dataset in combine:
    dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1

train_df[['FamilySize', 'Survived']].groupby(['FamilySize'], as_index=False).mean().sort_value
```

Out[81]:

	FamilySize	Survived
3	4	0.724138
2	3	0.578431
1	2	0.552795
6	7	0.333333
0	1	0.303538
4	5	0.200000
5	6	0.136364
7	8	0.000000
8	11	0.000000

In [82]:

```
for dataset in combine:
    dataset['IsAlone'] = 0
    dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1

train_df[['IsAlone', 'Survived']].groupby(['IsAlone'], as_index=False).mean()
```

Out[82]:

	IsAlone	Survived
0	0	0.505650
1	1	0.303538

In [83]:

```
train_df = train_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
test_df = test_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
combine = [train_df, test_df]
train_df.head()
```

Out[83]:

	Survived	Pclass	Sex	Age	Fare	Embarked	Title	IsAlone
0	0	3	0	1	7.2500	S	1	0
1	1	1	1	2	71.2833	С	3	0
2	1	3	1	1	7.9250	S	2	1
3	1	1	1	2	53.1000	S	3	0
4	0	3	0	2	8.0500	S	1	1

In [84]:

```
for dataset in combine:
    dataset['Age*Class'] = dataset.Age * dataset.Pclass

train_df.loc[:, ['Age*Class', 'Age', 'Pclass']].head(10)
```

Out[84]:

	Age*Class	Age	Pclass
0	3	1	3
1	2	2	1
2	3	1	3
3	2	2	1
4	6	2	3
5	3	1	3
6	3	3	1
7	0	0	3
8	3	1	3
9	0	0	2

In [85]:

```
freq_port = train_df.Embarked.dropna().mode()[0]
freq_port
```

Out[85]:

'S'

In [86]:

```
for dataset in combine:
    dataset['Embarked'] = dataset['Embarked'].fillna(freq_port)

train_df[['Embarked', 'Survived']].groupby(['Embarked'], as_index=False).mean().sort_values
```

Out[86]:

	Embarked	Survived
0	С	0.553571
1	Q	0.389610
2	S	n 330nno

In [87]:

```
#Converting categorical feature to numeric
for dataset in combine:
    dataset['Embarked'] = dataset['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2} ).astype(int)
train_df.head()
```

Out[87]:

	Survived	Pclass	Sex	Age	Fare	Embarked	Title	IsAlone	Age*Class
0	0	3	0	1	7.2500	0	1	0	3
1	1	1	1	2	71.2833	1	3	0	2
2	1	3	1	1	7.9250	0	2	1	3
3	1	1	1	2	53.1000	0	3	0	2
4	0	3	0	2	8.0500	0	1	1	6

In [88]:

```
test_df['Fare'].fillna(test_df['Fare'].dropna().median(), inplace=True)
test_df.head()
```

Out[88]:

	Passengerld	Pclass	Sex	Age	Fare	Embarked	Title	IsAlone	Age*Class
0	892	3	0	2	7.8292	2	1	1	6
1	893	3	1	2	7.0000	0	3	0	6
2	894	2	0	3	9.6875	2	1	1	6
3	895	3	0	1	8.6625	0	1	1	3
4	896	3	1	1	12.2875	0	3	0	3

In [89]:

```
train_df['FareBand'] = pd.qcut(train_df['Fare'], 4)
train_df[['FareBand', 'Survived']].groupby(['FareBand'], as_index=False).mean().sort_values
```

Out[89]:

	FareBand	Survived
0	(-0.001, 7.91]	0.197309
1	(7.91, 14.454]	0.303571
2	(14.454, 31.0]	0.454955
3	(31.0, 512.329]	0.581081

In [90]:

```
for dataset in combine:
    dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0
    dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1
    dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare'] = 2
    dataset.loc[ dataset['Fare'] > 31, 'Fare'] = 3
    dataset['Fare'] = dataset['Fare'].astype(int)

train_df = train_df.drop(['FareBand'], axis=1)
combine = [train_df, test_df]

train_df.head(10)
```

Out[90]:

	Survived	Pclass	Sex	Age	Fare	Embarked	Title	IsAlone	Age*Class
0	0	3	0	1	0	0	1	0	3
1	1	1	1	2	3	1	3	0	2
2	1	3	1	1	1	0	2	1	3
3	1	1	1	2	3	0	3	0	2
4	0	3	0	2	1	0	1	1	6
5	0	3	0	1	1	2	1	1	3
6	0	1	0	3	3	0	1	1	3
7	0	3	0	0	2	0	4	0	0
8	1	3	1	1	1	0	3	0	3
9	1	2	1	0	2	1	3	0	0

In [91]:

```
test_df.head(10)
```

Out[91]:

	Passengerld	Pclass	Sex	Age	Fare	Embarked	Title	IsAlone	Age*Class
0	892	3	0	2	0	2	1	1	6
1	893	3	1	2	0	0	3	0	6
2	894	2	0	3	1	2	1	1	6
3	895	3	0	1	1	0	1	1	3
4	896	3	1	1	1	0	3	0	3
5	897	3	0	0	1	0	1	1	0
6	898	3	1	1	0	2	2	1	3
7	899	2	0	1	2	0	1	0	2
8	900	3	1	1	0	1	3	1	3
9	901	3	0	1	2	0	1	0	3

```
In [92]:
```

```
X_train = train_df.drop("Survived", axis=1)
Y_train = train_df["Survived"]
X_test = test_df.drop("PassengerId", axis=1).copy()
X_train.shape, Y_train.shape, X_test.shape
```

Out[92]:

```
((891, 8), (891,), (418, 8))
```

In [93]:

```
# Logistic Regression
logreg = LogisticRegression()
logreg.fit(X_train, Y_train)
Y_pred = logreg.predict(X_test)
acc_log = round(logreg.score(X_train, Y_train) * 100, 2)
acc_log
```

Out[93]:

80.36

In [94]:

```
coeff_df = pd.DataFrame(train_df.columns.delete(0))
coeff_df.columns = ['Feature']
coeff_df["Correlation"] = pd.Series(logreg.coef_[0])
coeff_df.sort_values(by='Correlation', ascending=False)
```

Out[94]:

	Feature	Correlation
1	Sex	2.201619
5	Title	0.397888
2	Age	0.287011
4	Embarked	0.261473
6	IsAlone	0.126553
3	Fare	-0.086655
7	Age*Class	-0.311069
0	Pclass	-0.750700

```
In [95]:
```

```
# Support Vector Machines
svc = SVC()
svc.fit(X_train, Y_train)
Y_pred = svc.predict(X_test)
acc_svc = round(svc.score(X_train, Y_train) * 100, 2)
acc_svc
```

Out[95]:

78.23

In [96]:

```
knn = KNeighborsClassifier(n_neighbors = 3)
knn.fit(X_train, Y_train)
Y_pred = knn.predict(X_test)
acc_knn = round(knn.score(X_train, Y_train) * 100, 2)
acc_knn
```

Out[96]:

83.84

In [97]:

```
# Gaussian Naive Bayes
gaussian = GaussianNB()
gaussian.fit(X_train, Y_train)
Y_pred = gaussian.predict(X_test)
acc_gaussian = round(gaussian.score(X_train, Y_train) * 100, 2)
acc_gaussian
```

Out[97]:

72.28

In [98]:

```
# Perceptron
perceptron = Perceptron()
perceptron.fit(X_train, Y_train)
Y_pred = perceptron.predict(X_test)
acc_perceptron = round(perceptron.score(X_train, Y_train) * 100, 2)
acc_perceptron
```

Out[98]:

78.34

```
In [99]:
```

```
# Linear SVC
linear_svc = LinearSVC()
linear_svc.fit(X_train, Y_train)
Y_pred = linear_svc.predict(X_test)
acc_linear_svc = round(linear_svc.score(X_train, Y_train) * 100, 2)
acc_linear_svc
C:\Users\Hp\anaconda3\lib\site-packages\sklearn\svm\_base.py:1206: Convergen
ceWarning: Liblinear failed to converge, increase the number of iterations.
  warnings.warn(
Out[99]:
79.12
In [100]:
# Stochastic Gradient Descent
sgd = SGDClassifier()
sgd.fit(X_train, Y_train)
Y_pred = sgd.predict(X_test)
acc_sgd = round(sgd.score(X_train, Y_train) * 100, 2)
acc_sgd
Out[100]:
78.0
In [101]:
# Decision Tree
decision_tree = DecisionTreeClassifier()
decision_tree.fit(X_train, Y_train)
Y pred = decision tree.predict(X test)
acc_decision_tree = round(decision_tree.score(X_train, Y_train) * 100, 2)
acc decision tree
Out[101]:
86.76
In [102]:
# Random Forest
random_forest = RandomForestClassifier(n_estimators=100)
random_forest.fit(X_train, Y_train)
Y_pred = random_forest.predict(X_test)
random_forest.score(X_train, Y_train)
acc_random_forest = round(random_forest.score(X_train, Y_train) * 100, 2)
acc_random_forest
```

Out[102]:

86.76

In [103]:

Out[103]:

	Model	Score
3	Random Forest	86.76
8	Decision Tree	86.76
1	KNN	83.84
2	Logistic Regression	80.36
7	Linear SVC	79.12
5	Perceptron	78.34
0	Support Vector Machines	78.23
6	Stochastic Gradient Decent	78.00
4	Naive Bayes	72.28

In [104]:

```
submission = pd.DataFrame({
          "PassengerId": test_df["PassengerId"],
          "Survived": Y_pred
    })
# submission.to_csv('../output/submission.csv', index=False)
```

In []: