David W. Hogg

http://cosmo.nyu.edu/hogg/

Center for Cosmology and Particle Physics Department of Physics New York University 4 Washington Place #424 New York, NY 10003 USA also: Center for Data Science New York University 726 Broadway, 7th floor New York, NY 10003 USA

Education

PhD 1998, Department of Physics, California Institute of Technology. SB 1992 (Major in Physics), Massachusetts Institute of Technology.

Positions

(Full) Professor of Physics and Data Science, New York University, 2014–present. Associate Professor of Physics with tenure, New York University, 2007–2014. Assistant Professor, Department of Physics, New York University, 2001–2007. Long-term member, Institute for Advanced Study, 1997–2001.

Administrative roles

Executive Director, Moore–Sloan Data Science Environment at NYU, 2013–present. Deputy Director, New York University Center for Data Science, 2014–present. Director of Undergraduate Studies, Department of Physics, New York University, 2008–present.

Short-term positions

Adjunct Senior Staff Scientist, Max-Planck-Institut für Astronomie, Heidelberg, Germany, 2012-present.

Visiting Scientist, Max-Planck-Institut für Astronomie, Heidelberg, Germany, 2006–2011.

Visiting Professor, Department of Astronomy and Astrophysics, Columbia University, 2008 February–May.

Scholar in Residence, Spitzer Science Center, California Institute of Technology, 2006 May. Visiting Professor, Department of Physics, Massachusetts Institute of Technology, 2005 January–August.

Lecturer (part-time), Department of Physics, Princeton University, 1998–2001.

Service

Astronomy and Astrophysics Advisory Committee (for the White House Office of Science and Technology Policy), 2014—present.

Spitzer Science Center Oversight Committee (for the Spitzer Space Telescope), 2008—present.

Sloan Digital Sky Survey IV Collaboration Council, 2013–present.

NASA Extragalactic Database Users Committee, 2006–2013.

Sloan Digital Sky Survey III Collaboration Council, 2008–2011.

Panel Chair, Spitzer Space Telescope Time Allocation Committee, 2005.

Sloan Digital Sky Survey Collaboration Council, 1999–2004.

Leader, Sloan Digital Sky Survey Calibration Task Force, 2000–2003.

National Optical Astronomy Observatories Time Allocation Committee, 2000–2002.

Hubble Space Telescope Time Allocation Committee, 1999.

Honors

New York University "Golden Dozen" Teaching Award, 2004.

Princeton University Engineering Council Teaching Award, 2000.

Caltech Undergraduate Teaching Award, Associated Students of Caltech, 1996.

J. S. Stemple Memorial Prize, Caltech, for Physics PhD oral candidacy exam, 1995. Phi Beta Kappa, 1992. Sigma Xi, 1992.

Award of merit, International Physics Olympiad, Bad Ischl, Austria, 1988.

Grants

Moore Foundation and Sloan Foundation Joint Grant (LeCun, PI), The Moore-Sloan Data Science Environment at NYU, 12,600,000 USD (approx), 2013–2018.

Hubble Space Telescope Archival Resarch grant (AR-13250; Hogg, PI), Probabilistic Self-Calibration of the WFC3 IR Channel, 119,988 USD, 2013–2016.

NASA Astrophysics Data Analysis Grant (NNX12AI50G; Hogg, PI), The Lives and Deaths of Planets and Stars in the Value-Added UV Photon Catalog, 473,705 USD, 2012–2015.

NSF Cyber-Enabled Discovery Type I Grant (IIS-1124794; Hogg, PI), A Unified Probabilistic Model of Astronomical Imaging, 675,000 USD, 2011–2014.

NSF Astronomy and Astrophysics Research Grant (AST-0908357; Hogg, PI), Dynamical models from kinematic data: The Milky Way Disk and Halo, 147,000 USD, 2009–2011.

Alexander von Humboldt Foundation Research Fellowship (Hogg, PI), Cosmology with the proper motions of stars, 32,000 EUR (approx), 2008–2011.

NASA Astrophysics Data Analysis Grant (NNX08AJ48G; Hogg, PI), Multi-wavelength astrometric catalog built from NASA data, 277,415 USD, 2008–2011.

Amazon Web Services Research Grant (Koposov, PI) Searching for tidal streams in the Milky Way Halo, 40,000 CPU-hours (approx), 2009–2010.

NASA Spitzer Space Telescope General Observer Grant (Spitzer programs 50568 and 50569; Schiminovich PI), S5: Spitzer-SDSS Statistical Spectroscopic Survey, 350,000 USD (approx), 2008–2010.

Google Research Grant (Blanton, PI), Beautiful and correct SDSS images for Google Sky, 86,000 USD, 2008–2009.

NASA Long-Term Space Astrophysics Grant (NAG5-11669; Hogg, PI), Tools for Galaxy Astrophysics in the Era of the Space Infrared Telescope Facility, 498,770 USD, 2002–2007.

NSF Information Technology Research Grant (AST-0428465; Hogg, PI), Automated Astrometry for Time-Domain and Distributed Astrophysics, 504,140 USD, 2004–2007.

NASA Spitzer Space Telescope General Observer Grant (Spitzer program 20120; Hogg, PI), A search for PAH emission in extremely low luminosity galaxies, 59,243 USD, 2005–2007.

NASA Galaxy Evolution Explorer Archival Research Grant (Blanton, PI), K-corrections

- for GALEX, 42,500 USD, 2004–2005.
- NASA Hubble Space Telescope Archival Research Grant (Blanton, PI), Comparing the ACS Ultra Deep Field to Low Redshift Galaxy Observations, 70,000 USD, 2003–2004.
- NSF Group Grant (PHY-0101738; Farrar, PI), Theoretical Particle Physics, Astrophysics and Cosmology, 686,000 USD (+16,000 USD in REU supplement), 2001–2004.

Hubble Postdoctoral Fellowship, 1997–2000.

NSF Graduate Fellowship, 1992–1995.

PhD supervision

Morad Masjedi, 2007, Massive galaxy merging and cosmogony, PhD thesis, New York University.

Dustin Lang, 2009, Astrometry.net: Automatic recognition and calibration of astronomical images, PhD thesis, University of Toronto (co-supervised by Sam Roweis at Toronto).

Ronin Wu, 2010, Tracing star formation in the mid-infrared, PhD thesis, New York University.

Jo Bovy, 2011, Dynamical inference in the Milky Way, PhD thesis, New York University.

Adi Zolotov, 2011, *The dual origin of stellar halos*, PhD thesis, New York University (co-supervised by Beth Willman at Haverford).

Tao Jiang, 2012, Galaxy mergers and galaxy evolution, PhD thesis, New York University.

Fengji Hou, 2014, Bayesian inference on stellar radial velocity data, PhD thesis, New York University (co-supervised by Jonathan Goodman at NYU).

Daniel Foreman-Mackey, current PhD student, New York University.

Mohammadjavad Vakili, current PhD sudent, New York University.

Refereed publications

- 1. Hogg, D. W., Quinlan, G. D., & Tremaine, S., 1991, Dynamical limits on dark matter in the Solar System, *Astron. J.* **101** 2274–2286.
- 2. Hogg, D. W., Jackson, C., Żytkow, A. N., Irwin, M., Webster, R., & Tremaine, S., 1994, A photographic search for satellites of Neptune, *Icarus* **107** 304–310.
- 3. Hogg, D. W. & Blandford, R. D., 1994, The gravitational lens system B1422+231: Dark matter, superluminal expansion and the Hubble Constant, *Mon. Not. R. Astr. Soc.* **268** 889–893.
- 4. Djorgovski, S. et~al,~1995, Deep galaxy counts in the K band with the Keck Telescope, $Astrophys.~J.~Lett.~{\bf 438}~{\it L}13-{\it L}16.$
- 5. Smail, I., Hogg, D. W., Yan, L., & Cohen, J. G., 1995, Deep optical galaxy counts with the Keck Telescope, *Astrophys. J. Lett.* **449** L105–L108.
- 6. Smail, I., Hogg, D. W., Blandford, R., Cohen, J. G., Edge, A. C., & Djorgovski, S. G., 1995, Discovery of two giant arcs in the rich cluster A2219 with the Keck Telescope, *Mon. Not. R. Astr. Soc.* **277** 1–10.
- 7. Eisenhardt, P. R., Armus, L., Hogg, D. W., Soifer, B. T., Neugebauer, G., & Werner, M. W., 1996, *Hubble Space Telescope* observations of the luminous IRAS source FSC10214+4724: A gravitationally lensed infrared quasar, *Astrophys. J.* **461** 72–83.
- 8. Cohen, J. G., Hogg, D. W., Pahre, M. A., & Blandford, R., 1996, Strong redshift clustering

- of distant galaxies, Astrophys. J. Lett. 462 L9–L12.
- 9. Hogg, D. W., Blandford, R., Kundić, T., Fassnacht, C. D., & Malhotra, S., 1996, A candidate gravitational lens in the Hubble Deep Field, *Astrophys. J. Lett.* **467** L73–L75.
- 10. Cohen, J. G., Cowie, L. L., Hogg, D. W., Songaila, A., Blandford, R., Hu, E. M., & Shopbell, P., 1996, Redshift clustering in the Hubble Deep Field, *Astrophys. J. Lett.* **471** L5–L9.
- 11. Hogg, D. W., Neugebauer, G., Armus, L., Matthews, K., Pahre, M. A., Soifer, B. T., & Weinberger, A. J., 1997, Near infrared imaging of the Hubble Deep Field with the Keck Telescope, *Astron. J.* **113** 474–482. Associated erratum: *Astron. J.* **113** 2338.
- 12. Reid, I. N., Gizis, J. E., Cohen, J., Pahre, M. A., Hogg, D. W., Cowie, L., Hu, E., & Songaila, A., 1997, Faint M dwarfs and the structure of the Galactic disk, *Pubs. Astr. Soc. Pac.* **109** 559–565.
- 13. Hogg, D. W., Pahre, M. A., McCarthy, J. K., Cohen, J. G., Blandford, R., Smail, I., & Soifer, B. T., 1997, Counts and colours of faint galaxies in the *U* and *R* bands, *Mon. Not. R. Astr. Soc.* **288** 404–410.
- 14. Hogg, D. W. & Phinney, E. S., 1997, The fading of young stellar populations and the luminosity functions of dwarf, irregular and starburst galaxies, Astrophys. J. Lett. 488 L95-L99.
- 15. Kundić, T., Hogg, D. W., Blandford, R. D., Cohen, J. G., Lubin, L. M., & Larkin, J. E., 1997, The external shear acting on gravitational lens B 1422+231, *Astron. J.* 114 2276–2283.
- 16. Hogg, D. W., 1998, On the evolution of field galaxies, PhD thesis, California Institute of Technology.
- 17. Hogg, D. W. et al, 1998, A blind test of photometric redshift prediction, Astron. J. 115 1418–1422.
- 18. Hogg, D. W., & Turner, E. L., 1998, A maximum likelihood method for improving faint source flux and color estimates, *Pubs. Astr. Soc. Pac.* **110** 727–731.
- 19. Hogg, D. W., Cohen, J. G., Blandford, R., & Pahre, M. A., 1998, The O II luminosity density of the Universe, *Astrophys. J.* **504** 622–628.
- Sykes, C. M. *et al*, 1998, The complex gravitational lens system B1933+503, *Mon. Not. R. Astr. Soc.* **301** 310–314.
- 21. Nguyen, H. T., Eisenhardt, P. R., Werner, M. W., Goodrich, R., Hogg, D. W., Armus, L., Soifer, B. T., & Neugebauer, G., 1998, Imaging polarimetry of the gravitational lens FSC10214+4724, Astron. J. 117 671-676.
- 22. Cohen, J. G., Blandford, R., Hogg, D. W., Pahre, M. A., & Shopbell, P. L., 1999, Caltech Faint Field Galaxy Redshift Survey. VIII. Analysis of the field J0053+1234, *Astrophys. J.* **512** 30–47.
- 23. Cohen, J. G., Hogg, D. W., Pahre, M. A., Blandford, R., Shopbell, P., & Richberg, K., 1999, Caltech Faint Field Galaxy Redshift Survey. VII. Data analysis techniques and redshifts in the field J0053+1234, Astrophys. J. Suppl. Ser. 120 171–178.
- 24. Barkana, R., Blandford, R., & Hogg, D. W., 1999, A possible gravitational lens in the Hubble Deep Field South, *Astrophys. J. Lett.* **513** L91–L94.
- 25. Fruchter, A. S. et al, 1999, Hubble Space Telescope and Palomar imaging of GRB 990123:

- Implications for the nature of gamma-ray bursts and their hosts, *Astrophys. J. Lett.* **519** L13–L16.
- 26. Hogg, D. W. & Fruchter, A. S., 1999, The faint-galaxy hosts of gamma-ray bursts, *Astrophys. J.* **520** 54–58.
- 27. Carlberg, R. G. et al, 2000, Caltech Faint Galaxy Redshift Survey. XI. The merger rate to redshift 1 from kinematic pairs, Astrophys. J. Lett. **532** L1–L4.
- 28. Hogg, D. W., Pahre, M. A., Adelberger, K. L., Blandford, R., Cohen, J. G., Gautier, T. N., Jarrett, T., Neugebauer, G., & Steidel, C. C., 2000, Caltech Faint Field Galaxy Redshift Survey. IX. Source detection and photometry in the Hubble Deep Field region, Astrophys. J. Suppl. Ser. 127 1–9.
- 29. Hogg, D. W., Neugebauer, G., Cohen, J. G., Dickinson, M. E., Djorgovski, S. G., Matthews, K., & Soifer, B. T., 2000, Three-micron imaging of the Hubble Deep Field, *Astron. J.* **119** 1519–1525.
- 30. Cohen, J. G., Hogg, D. W., Blandford, R., Cowie, L. L., Hu, E., Songaila, A., Shopbell, P., & Richberg, K., 2000, Caltech Faint Galaxy Redshift Survey. X. A redshift survey in the region of the Hubble Deep Field North, *Astrophys. J.* **538** 29–52.
- 31. van den Bergh, S., Cohen, J. G., Hogg, D. W., & Blandford, R., 2000, Caltech Faint Galaxy Redshift Survey. XIV. Galaxy morphology in the HDF (North) and its flanking fields to $z=1.2,\ Astron.\ J.$ 120 2190–2205.
- 32. Hogg, D. W., Cohen, J. G., & Blandford, R., 2000, The Caltech Faint Galaxy Redshift Survey. XII. Clustering of galaxies, *Astrophys. J.* **545** 32–42.
- 33. Hogg, D. W., 2001, Confusion errors in astrometry and counterpart association, Astron. J. 121 1207–1213.
- 34. Blanton, M. R. et al, 2001, The luminosity function of galaxies in SDSS commissioning data, Astron. J. 121 2358–2380.
- 35. Smette, A. et al, 2001, Hubble Space Telescope/STIS observations of GRB 000301C: CCD imaging and NUV MAMA spectroscopy, Astrophys. J. 556 70–76.
- 36. Yasuda, N. et al, 2001, Galaxy number counts from the Sloan Digital Sky Survey commissioning data, Astron. J. 122 1104–1124.
- 37. Hogg, D. W., Finkbeiner, D. P., Schlegel, D. J., & Gunn, J. E., 2001, A photometricity and extinction monitor at the Apache Point Observatory, *Astron. J.* 122 2129–2138.
- 38. Eisenstein, D. J. et al, 2001, Spectroscopic target selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample, Astron. J. 122 2267–2280.
- 39. Stoughton, C. et al, 2002, Sloan Digital Sky Survey: Early Data Release, Astron. J. 123 485–548.
- 40. Schneider, D. P. et al, 2002, The Sloan Digital Sky Survey Quasar Catalog. I. Early Data Release, Astron. J. 123 567–577.
- 41. Hogg, D. W. et al, 2002, The luminosity density of red galaxies, Astron. J. 124 646–651.
- 42. Eisenstein, D. J., Hogg, D. W., et al, 2003, Average spectra of massive galaxies in the SDSS, Astrophys. J. **585** 694–713.
- 43. Hogg, D. W. et al, 2003, The overdensities of galaxy environments as a function of luminosity and color, Astrophys. J. Lett. **585** L5–L9.
- 44. Bernardi, M. et al. 2003, Early-type galaxies in the SDSS. I. The sample, Astron. J. 125

- 1817-1848.
- 45. Bernardi, M. *et al*, 2003, Early-type galaxies in the *SDSS*. II. Correlations between observables, *Astron. J.* **125** 1849–1865.
- 46. Bernardi, M. et al, 2003, Early-type galaxies in the SDSS. III. The fundamental plane, Astron. J. 125 1866–1881.
- 47. Blanton, M. R., Brinkmann, J., Csabai, I., Doi, M., Eisenstein, D., Fukugita, M., Gunn, J. E., Hogg, D. W., & Schlegel, D. J., 2003, Estimating fixed-frame galaxy magnitudes in the SDSS, Astron. J. 125 2348–2360.
- 48. Blanton, M. R. et al, 2003, The galaxy luminosity function and luminosity density at redshift z = 0.1, Astrophys. J. **592** 819–838.
- 49. Blanton, M. R., Hogg, D. W., et al, 2003, The broadband optical properties of galaxies with redshifts 0.02 < z < 0.2, Astrophys. J. **594** 186–207.
- 50. Abazajian, K. et al, 2003, The First Data Release of the Sloan Digital Sky Survey, Astron. J. 126 2081–2086.
- 51. Hogg, D. W. et al, 2004, The dependence on environment of the olor–magnitude relation of galaxies, Astrophys. J. Lett. **601** L29–L32.
- 52. Quintero, A. D., Hogg, D. W., et al, 2004, Selection and photometric properties of K+A galaxies, Astrophys. J. **602** 190–199.
- 53. Lupton, R., Blanton, M. R., Fekete, G., Hogg, D. W., O'Mullane, W., Szalay, A., & Wherry, N., 2004, Preparing red-green-blue images from CCD data, *Pubs. Astr. Soc. Pac.* **116** 133–137.
- 54. Tegmark, M. et al, 2004, The three-dimensional power spectrum of galaxies from the Sloan Digital Sky Survey, Astrophys. J. 606 702–740.
- 55. Tegmark, M. et al, 2004, Cosmological parameters from SDSS and WMAP, Phys. Rev. D 69 103501.
- 56. Abazajian, K. et al, 2004, The Second Data Release of the Sloan Digital Sky Survey, Astron. J. 128 502–512.
- 57. Finkbeiner, D. P. et al, 2004, Sloan Digital Sky Survey imaging of low Galactic latitude fields: Technical summary and data release, Astron. J. 128 2577–2592.
- 58. Abazajian, K. et al, 2005, The Third Data Release of the Sloan Digital Sky Survey, Astron. J. 129 1755–1759.
- 59. Zehavi, I., et al, 2005, The intermediate-scale clustering of luminous red galaxies, Astrophys. J. 621 22–31.
- 60. Hogg, D. W., Eisenstein, D. J., Blanton, M. R., Bahcall, N. A., Brinkmann, J., Gunn, J. E., & Schneider, D. P., 2005, Cosmic homogeneity demonstrated with luminous red galaxies, *Astrophys. J.* **624** 54–58.
- 61. Hogg, D. W., Tremonti, C. A., Blanton, M. R., Finkbeiner, D. P., Padmanabhan, N., Quintero, A. D., Schlegel, D. J., & Wherry, N., 2005, Mid-infrared and visible photometry of galaxies: Anomalously low polycyclic aromatic hydrocarbon emission from low-luminosity galaxies, *Astrophys. J.* **624** 162–167.
- 62. Blanton, M. R. *et al*, 2005, New York University Value-Added Galaxy Catalog: A galaxy catalog based on new public surveys, *Astron. J.* **129** 2562–2578.
- 63. Willman, B., Blanton, M. R., West, A. A., Dalcanton, J. J., Hogg, D. W., Schneider, D. P.,

- Wherry, N., Yanny, B., & Brinkmann, J., 2005, A new Milky Way companion: Unusual globular cluster or extreme dwarf satellite?, *Astron. J.* **129** 2692–2700.
- 64. Willman, B. et al, 2005, A new Milky Way dwarf galaxy in Ursa Major, Astrophys. J. Lett. **626** L85–L88.
- 65. Blanton, M. R., Eisenstein, D. J., Hogg, D. W., Schlegel, D. J., & Brinkmann, J., 2005, The relationship between environment and the broad-band optical properties of galaxies in the Sloan Digital Sky Survey, Astrophys. J. 629 143–157.
- 66. Hogg, D. W., Blanton, M. R., Roweis, S. T., & Johnston, K. V., 2005, Modeling complete distributions with incomplete observations: The velocity ellipsoid from *Hipparcos* data, *Astrophys. J.* **629** 268–275.
- 67. Berlind, A. A., Blanton, M. R., Hogg, D. W., Weinberg, D. H., Davé, R., Eisenstein, D. J., & Katz, N., 2005, Interpreting the relationship between galaxy luminosity, color and environment, *Astrophys. J.* **629** 625–632.
- 68. Eisenstein, D. J., Zehavi, I., Hogg, D. W., et al, 2005, Detection of the baryon acoustic peak in the large-scale correlation function of Sloan Digital Sky Survey Luminous Red Galaxies, Astrophys. J. 633 560–574.
- 69. Adelman-McCarthy, J. K. et al, 2006, The Fourth Data Release of the Sloan Digital Sky Survey, Astrophys. J. Suppl. Ser. 162 38–48.
- 70. Farrar, G. F., Berlind, A. A., & Hogg, D. W., 2006, Foreground and source of a cluster of ultra–high-energy cosmic rays, *Astrophys. J.* **642** L89–L93.
- 71. Cool, R. J., Eisenstein, D. J., Hogg, D. W., Blanton, M. R., Schlegel, D. J., Brinkmann, J., Schneider, D. P., & Vanden Berk, D. E., 2006, SDSS pre-burst observations of recent gamma-ray burst fields, Pubs. Astr. Soc. Pac. 118 733–739.
- 72. Masjedi, M., Hogg, D. W., et al, 2006, Very small-scale clustering and merger rate of luminous red galaxies, Astrophys. J. **644** 54–60.
- 73. Blanton, M. R., Eisenstein, D. J., Hogg, D. W., & Zehavi, I. I., 2006, The scale-dependence of relative galaxy bias: Encouragement for the "halo model" description, *Astrophys. J.* **645** 977–985.
- 74. Tucker, D. L. et al, 2006, The Sloan Digital Sky Survey Monitor Telescope pipeline, Astron. Nachr. 327 821–843.
- 75. Hogg, D. W., Masjedi, M., Berlind, A. A., Blanton, M. R., Quintero, A. D., & Brinkmann, J., 2006, What triggers galaxy transformations? The environments of post-starburst galaxies, *Astrophys. J.* **650** 763–769.
- 76. Berlind, A. A. et al, 2006, Percolation galaxy groups and clusters in the SDSS Redshift Survey: Identification, catalogs, and the multiplicity function, Astrophys. J. Suppl. Ser. 167 1–25.
- 77. Tegmark, M., et al, 2006, Cosmological constraints from the SDSS Luminous Red Galaxies, Phys. Rev. D 74 123507.
- 78. Schneider, D. P., et al, 2007, The Sloan Digital Sky Survey Quasar Catalog IV: Fifth Data Release, Astron. J. 134 102–117.
- 79. Padmanabhan, N., et al, 2007, The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data, Mon. Not. R. Astr. Soc. 378 852–872.
- 80. Adelman-McCarthy, J. K. et al, 2007, The Fifth Data Release of the Sloan Digital Sky

- Survey, Astrophys. J. Suppl. Ser. 172 634-644.
- 81. Barron, J. T., Stumm, C., Hogg, D. W., Lang, D., & Roweis, S., 2008, Cleaning the USNO-B Catalog through automatic detection of optical artifacts, *Astron. J.* **135** 414–422.
- 82. Padmanabhan, N., et al, 2008, An improved photometric calibration of the Sloan Digital Sky Survey imaging data, Astrophys. J. 674 1217–1233.
- 83. Adelman-McCarthy, J. K. et al, 2008, The Sixth Data Release of the Sloan Digital Sky Survey, Astrophys. J. Suppl. Ser. 175 297–313.
- 84. Masjedi, M., Hogg, D. W., & Blanton, M. R., 2008, The growth of luminous red galaxies by merging, *Astrophys. J.* **679** 260–268.
- 85. Bell, E. F., et al, 2008, The accretion origin of the Milky Way's stellar halo, Astrophys. J. 680 295–311.
- 86. Barron, J. T., Hogg, D. W., Lang, D., & Roweis, S., 2008, Blind Date: Using proper motions to determine the ages of historical images, *Astron. J.* **136** 1490–1501.
- 87. Bovy, J., Hogg, D. W., & Moustakas, J., 2008, The transparency of galaxy clusters, *Astrophys. J.* **688** 198–207.
- 88. Maller, A. H., Berlind, A. A., Blanton, M. R., & Hogg, D. W., 2009, The intrinsic properties of SDSS galaxies, Astrophys. J. 691 394–406.
- 89. Marshall, P. J., Hogg, D. W., Moustakas, L. A., Fassnacht, C. D., Bradač, M., Schrabback, T., & Blandford, R. D., 2009, Automated detection of galaxy-scale gravitational lenses in high-resolution imaging data, *Astrophys. J.* **694** 924–942.
- 90. Lang, D., Hogg, D. W., Jester, S., & Rix, H.-W., 2009, Measuring the undetectable: Proper motions and parallaxes of very faint sources, *Astron. J.* **137** 4400–4411.
- 91. More, S., Bovy, J., & Hogg, D. W., 2009, Cosmic transparency: A test with the baryon acoustic feature and type Ia supernovae, *Astrophys. J.* **696** 1727–1732.
- 92. Abazajian, K. N. et al, 2009, The Seventh Data Release of the Sloan Digital Sky Survey, Astrophys. J. Suppl. Ser. 182 543–558.
- 93. Bunn, E. F. & Hogg, D. W., 2009, The kinematic origin of the cosmological redshift, Am. J. Phys. 77(8) 688–694.
- 94. Bovy, J., Hogg, D. W., & Roweis, S., 2009, The velocity distribution of nearby stars from *Hipparcos* data I. The significance of the moving groups, *Astrophys. J.* **700** 1794–1819.
- 95. Zolotov, A., Willman, B., Brooks, A. M., Governato, F., Brook, C. B., Hogg, D. W., Quinn, T., & Stinson, G., 2009, The dual origin of stellar halos, *Astrophys. J.* **702** 1058–1067.
- 96. Bovy, J., Hogg, D. W., & Rix, H.-W., 2009, Galactic masers and the Milky Way circular velocity, *Astrophys. J.* **704** 1704–1709.
- 97. Price-Whelan, A. M. & Hogg, D. W., 2010, What bandwidth do I need for my image?, *Pubs. Astr. Soc. Pac.* **122** 207–214.
- 98. Bovy, J., Murray, I., & Hogg, D. W., 2010, Dynamical inference from a kinematic snapshot: The force law in the Solar System, *Astrophys. J.* **711** 1157–1167.
- 99. Koposov, S. E., Rix, H.-W., & Hogg, D. W., 2010, Constraining the Milky Way potential with a 6-D phase-space map of the GD-1 stellar stream, *Astrophys. J.* **712** 260–273.
- 100. Lang, D., Hogg, D. W., Mierle, K., Blanton, M., & Roweis, S., 2010, Astrometry.net: Blind

- astrometric calibration of arbitrary astronomical images, Astron. J. 139 1782–1800.
- 101. Bovy, J. & Hogg, D. W., 2010, The velocity distribution of nearby stars from *Hipparcos* data II. The nature of the low-velocity moving groups, *Astrophys. J.* **717** 617–639.
- 102. Zolotov, A., Willman, B., Brooks, A. M., Governato, F., Hogg, D. W., Shen, S., & Wadsley, J., 2010, The dual origin of stellar halos II. Chemical abundances as tracers of formation history, Astrophys. J. 721 738–743.
- 103. Bell, E. F., Xue, X. X., Rix, H.-W., Ruhland, C., & Hogg, D. W., 2010, Stellar population variations in the Milky Way's stellar halo, *Astron. J.* **140** 1850–1859.
- 104. Hogg, D. W., Myers, A. D., & Bovy, J., 2010, Inferring the eccentricity distribution, Astrophys. J. 725 2166–2175.
- 105. Zolotov, A., Hogg, D. W., & Willman, B., 2011, Are the ultra-faint dwarf galaxies just cusps?, Astrophys. J. Lett. 727 L14. Associated erratum: Astrophys. J. Lett. 732 L37.
- 106. Bovy, J., Hennawi, J. F., Hogg, D. W., et al, 2011, Think outside the color-box: Probabilistic target selection and the SDSS-XDQSO quasar targeting catalog, Astrophys. J. 729 141.
- 107. Wu, R., Hogg, D. W., & Moustakas, J., 2011, The aromatic features in very faint dwarf galaxies, *Astrophys. J.* **730** 111.
- 108. Yoon, J. H., Johnston, K. V., & Hogg, D. W., 2011, Clumpy streams from clumpy halos: Detecting missing satellites with cold stellar structures, *Astrophys. J.* **731** 58.
- 109. Aihara, H. et al, 2011, The Eighth Data Release of the Sloan Digital Sky Survey: First data from SDSS-III, Astrophys. J. Suppl. Ser. 193 29. Associated erratum: Astrophys. J. Suppl. Ser. 195 26.
- 110. Bovy, J., Hogg, D. W., & Roweis, S., 2011, Extreme deconvolution: Inferring complete distribution functions from noisy, heterogeneous and incomplete observations, Ann. Appl. Stat. 5 1657–1677.
- 111. Eisenstein, D. J. et al, 2011, SDSS-III: Massive spectroscopic surveys of the distant Universe, the Milky Way, and extra-Solar planetary systems, Astron. J. 142 72.
- 112. Tsalmantza, P., Decarli, R., Dotti, M., & Hogg, D. W., 2011, A systematic search for massive black hole binaries in the *Sloan Digital Sky Survey* spectroscopic sample, *Astrophys. J.* **738** 20.
- 113. Malyshev, D. & Hogg, D. W., 2011, Statistics of gamma-ray point sources below the *Fermi* detection limit, *Astrophys. J.* **738** 181.
- 114. Coil, A. L. et al, 2011, The Prism MUlti-Object Survey (PRIMUS) I: Survey overview and characteristics, Astrophys. J. 741 8.
- 115. Schmidt, K. B., Rix, H.-W., Shields, J. C., Knecht, M., Hogg, D. W., Maoz, D., & Bovy, J., 2012, The color variability of quasars, *Astrophys. J.* **744** 147.
- 116. Hou, F., Goodman, J., Hogg, D. W., Weare, J., & Schwab, C., 2012, An affine-invariant sampler for exoplanet fitting and discovery in radial velocity data, *Astrophys. J.* **745** 198.
- 117. Ross, N. P. et al, 2012, The SDSS-III Baryon Oscillation Spectroscopic Survey: Quasar target selection for Data Release Nine, Astrophys. J. Suppl. Ser. 199 3.
- 118. Bovy, J. et al, 2012, Photometric redshifts and quasar probabilities from a single, data-driven generative model, Astrophys. J. 749 41.
- 119. Watson, D. F., Berlind, A. A., McBride, C. K., Hogg, D. W., & Jiang, T., 2012, The

- extreme small scales: Do satellite galaxies trace dark matter?, Astrophys. J. 749 83.
- 120. Kudryavtseva, N., et al, 2012, Instantaneous starburst of the massive clusters Westerlund 1 and NGC 3603 YC, Astrophys. J. Lett. **750** L44.
- 121. Bovy, J., Rix, H.-W., & Hogg, D. W., 2012, The Milky Way has no distinct thick disk, Astrophys. J. **751** 131.
- 122. Tsalmantza, P. & Hogg, D. W., 2012, A data-driven model for spectra: Finding double redshifts in the Sloan Digital Sky Survey, Astrophys. J. **753** 122.
- 123. Bovy, J., Rix, H.-W., Liu, C., Hogg, D. W., Beers, T. C., & Lee, Y. S., 2012, The spatial structure of mono-abundance sub-populations of the Milky Way Disk, *Astrophys. J.* **753** 148.
- 124. Lang, D. & Hogg, D. W., 2012, Searching for comets on the World Wide Web: The orbit of 17P/Holmes from the behavior of photographers, *Astron. J.* **144** 46.
- 125. Bovy, J., Rix, H.-W., Hogg, D. W., Beers, T. C., Lee, Y. S., & Zhang, L., 2012, The vertical motions of mono-abundance sub-populations in the Milky Way Disk, *Astrophys. J.* **755** 115.
- 126. Bovy, J. et al, 2012, The Milky Way's circular-velocity curve between 4 and 14 kpc from *APOGEE* data, *Astrophys. J.* **759** 131.
- 127. Jiang, T., Hogg, D. W., & Blanton, M. R., 2012, Galaxy growth by merging in the nearby Universe, *Astrophys. J.* **759** 140.
- 128. Fadely, R., Hogg, D. W., & Willman, B., 2012, Star–galaxy classification in multi-band optical imaging, *Astrophys. J.* **760** 15.
- 129. Holmes, R., Hogg, D. W., & Rix, H.-W., 2012, Designing imaging surveys for a retrospective relative photometric calibration, *Pubs. Astr. Soc. Pac.* **124** 1219–1231.
- 130. Bundy, K., Hogg, D. W., Higgs, T. D., Nichol, R. C., Yasuda, N., Masters, K. L., Lang, D., & Wake, D. A., 2012, SYNMAG Photometry: A fast tool for catalog-level matched colors of extended sources, Astron. J. 144 188.
- 131. Ahn, C. P. et al, 2012, The Ninth Data Release of the Sloan Digital Sky Survey: First spectroscopic data from the SDSS-III Baryon Oscillation Spectroscopic Survey, Astrophys. J. Suppl. Ser. 203 21.
- 132. Dawson, K. S. et al, 2013, The Baryon Oscillation Spectroscopic Survey of SDSS-III, Astron. J. 145 10.
- 133. Weisz, D. R., Fouesneau, M., Hogg, D. W., et al, 2013, The Panchromatic Hubble Andromeda Treasury IV. A probabilistic approach to inferring the high-mass stellar initial mass function and other power-law functions, Astrophys. J. 762 123.
- 134. Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J., 2013, *emcee*: The MCMC Hammer, *Pubs. Astr. Soc. Pac.* **125** 306–312.
- 135. Cool, R. J. et al, 2013, The PRIsm Multi-object Survey (PRIMUS). II. Data reduction and redshift fitting, Astrophys. J. 767 118.
- 136. Oppenheimer, B. R. et al, 2013, Reconnaissance of the HR 8799 exosolar system. I. Near-infrared spectroscopy, Astrophys. J. 768 24.
- 137. Wong, K. C., Zabludoff, A. I., Ammons, S. M., Keeton, C. R., Hogg, D. W., & Gonzalez, A. H., 2013, A new approach to identifying the most powerful gravitational lensing telescopes, *Astrophys. J.* **769** 52.

- 138. Hogg, D. W. & Lang, D., 2013, Replacing standard galaxy profiles with mixtures of Gaussians, *Pubs. Astr. Soc. Pac.* **125** 719–730.
- 139. Brewer, B. J., Foreman-Mackey, D., & Hogg, D. W., 2013, Probabilistic catalogs for crowded stellar fields, *Astron. J.* **146** 7.
- 140. Decarli, R., Dotti, M., Fumagalli, M., Tsalmantza, P., Montuori, C., Lusso, E., Hogg, D. W., & Prochaska, J. X., 2013, The nature of massive black hole binary candidates I. Spectral properties and evolution, *Mon. Not. R. Astr. Soc.* **433** 1492–1504.
- 141. Lang, D., Hogg, D. W., & Schölkopf, B., 2014, Towards building a crowd-sourced sky map (arXiv:1406.1528), JMLR Workshop and Conference Proceedings, 33 (AI & Statistics 2014), 549.
- 142. Ahn, C. P. et al, 2014, The Tenth Data Release of the Sloan Digital Sky Survey: First spectroscopic data from the SDSS-III Apache Point Observatory Galactic Evolution Experiment, Astrophys. J. Suppl. Ser. 211 17.
- 143. Goodman, A. et al, 2014, Ten simple rules for the care and feeding of scientific data, PLoS Computational Biology 10 e1003542.
- 144. Lusso, E., Decarli, R., Dotti, M., Montuori, C., Hogg, D. W., 2014, Tsalmantza, P., Fumagalli, M., & Prochaska, J. X., 2014, The nature of massive black hole binary candidates II. Spectral energy distribution atlas, Mon. Not. R. Astr. Soc. 441 316–332.
- 145. Price-Whelan, A. M., Hogg, D. W., Johnston, K. V., & Hendel, D., 2014, Inferring the gravitational potential of the Milky Way with a few precisely measured stars, *Astrophys. J.* **794** 4.
- 146. Fergus, R., Hogg, D. W., Oppenheimer, R., Brenner, D. & Pueyo, L., 2014, S4: A spatial-spectral model for speckle suppression, Astrophys. J. 794 161.
- 147. Foreman-Mackey D., Hogg, D. W., & Morton, T. D., 2014, Exoplanet population inference and the abundance of Earth analogs from noisy, incomplete catalogs, *Astrophys. J.* **795** 64.
- 148. Bonaca, A., Geha, M., Küpper, A. H. W., Diemand, J., Johnston, K. V., & Hogg, D. W., 2014, Milky Way mass and potential recovery using tidal streams in a realistic halo, Astrophys. J. 795 94.
- 149. Lee, K.-G. et al, 2015, IGM constraints from the SDSS-III/BOSS DR9 Ly α forest transmission probability distribution function, Astrophys. J. **799** 196.
- 150. Sanderson, R. E., Helmi, A., & Hogg, D. W., 2015, Action-space clustering of tidal streams to infer the Galactic potential, *Astrophys. J.* **801** 98.
- 151. Küpper, A. H. W., Balbinot, E., Bonaca, A., Johnston, K. V., Hogg, D. W., Kroupa, P., Santiago, B. X., 2015, Globular cluster streams as Galactic high-precision scales—The poster child Palomar 5, Astrophys. J. 803 80.

Publications in preparation

- Ness, M., Hogg, D. W., Rix, H.-W., Ho, A., & Zasowski, G., *The Cannon*: A data-driven approach to stellar label determination (arXiv:1501.07604), *Astrophys. J.* submitted.
- Hou, F., Goodman J., & Hogg, D. W., The probabilities of orbital-companion models for stellar radial velocity data (arXiv:1401.6128), Astron. J. submitted.
- Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D. W., & O'Neil, M., Fast

- direct methods for Gaussian Processes and the analysis of NASA Kepler Mission Data (arXiv:1403.6015), IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted.
- Patel, E., Mykytyn, D., Hogg, D. W., & Lang, D., Colors of angularly large galaxies in the Sloan Digital Sky Survey.

Unrefereed publications

- Hogg, D. W., Martin, F., & Resnick, M., 1991, Braitenberg Creatures, E&L Memo 13, Epistemology and Learning Group, MIT Media Laboratory, Cambridge, Massachusetts.
- Smail, I., Couch, W. J., Ellis, R. S., & Hogg, D. W., 1995, Gravitational lensing by the rich cluster AC114, *Clusters of Galaxies*, eds. Durret, F., Mazure, A., & Tran Thanh Van, J., Editions Frontières, 425.
- Djorgovski, S. et al, 1995, Deep galaxy counts in the K band with the Keck Telescope, Examining the Big Bang and Diffuse Background Radiation, ed. Kafatos, M., Kluwer, Dordrecht.
- Blandford, R. D. & Hogg, D. W., 1996, Gravitational telescopes, *Astrophysical Applications of Gravitational Lensing*, eds. Kochanek, C. S., & Hewitt, J. N., Cambridge University Press, Cambridge.
- Danner, R. & Hogg, D. W., 1996, *The Palomar Observatory*, a 20-minute video presentation for the Palomar Observatory Visitor Center.
- Hogg, D. W., 1997, Special Relativity, lecture notes employed in Caltech's first-year physics course, 1995–2000, and Princeton's, 1999–2001 and 2003–2004, and others (http://cosmo.nyu.edu/hogg/sr/).
- Hogg, D. W., Cohen, J. G., Blandford, R., Shopbell, P., Cowie, L. L., Hu, E. M., & Songaila, A., 1997, The redshift distribution in the Hubble Deep Field, The Hubble Space Telescope and the High Redshift Universe, eds. Tanvir, N. R., Aragón-Salamanca, A., & Wall, J. V., Cambridge University Press, Cambridge, 147–148.
- Hogg, D. W., Blandford, R., Fassnacht, C. D., Kundić, T., Brainerd, T. G., & Malhotra, S., 1997, Strong and weak gravitational lensing in the Hubble Deep Field, The Hubble Space Telescope and the High Redshift Universe, eds. Tanvir, N. R., Aragón-Salamanca, A., & Wall, J. V., Cambridge University Press, Cambridge, 267–268.
- Arav, N. & Hogg, D. W., 1997, What is the redshift of gamma-ray burst 970508? (arXiv:astro-ph/9706068).
- Hogg, D. W. & Turner, E. L., 1998, GRB971214, association with a Galactic star?, *GRB Coordinates Network Circular* 150.
- Cohen, J. G., Hogg, D. W., Blandford, R., Pahre, M. A., & Shopbell, P. L., 1998, The extremely red objects found thus far in the Caltech Faint Galaxy Redshift Survey, *Infrared Surveys: A Prelude to SIRTF*, eds. Bicay, M. D., Cutri, R. M., & Madore, B. F., ASP Conference Series **177**, 51–56.
- Thorsett, S. E. & Hogg, D. W., 1999, Possible identification of SN1999E with GRB980910, GRB Coordinates Network Circular 197.
- Hogg, D. W., 1999, Distance measures in cosmology (arXiv:astro-ph/9905116).
- Hogg, D. W., 1999, Faint field surveys: The view from Pasadena, The Hy Redshift

- Universe: Galaxy Formation and Evolution at High Redshift, eds. Bunker, A. J., & van Breugel, W. J. M., Astronomical Society of the Pacific, San Francisco, 224–233.
- Hogg, D. W., Constraints on photometric calibration from observations of high-redshift type Ia supernovae (arXiv:astro-ph/0001419).
- Smette, A. et al, 2000, Ultraviolet Spectra of GRBs: Potential with STIS, The Greatest Explosions Since the Big Bang: Supernovae and Gamma-Ray Bursts, eds. Livio, M., Panagia, N., & Sahu, K., STScI, Baltimore.
- Hogg, D. W. & Zaldarriaga, M., 2000, The big bang's radical brother (book review), Science 290 2079–2080.
- Hogg, D. W., 2001, The Sloan Digital Sky Survey, IAU Symposium 204: The Extragalactic Infrared Background and its Cosmological Implications, eds. Harwit, M., & Hauser, M. G., Astronomical Society of the Pacific, San Francisco, 209.
- Hogg, D. W., 2001, A meta-analysis of cosmic star-formation history (arXiv:astro-ph/0105280).
- Hogg, D. W., Baldry, I. K., Blanton, M. R., & Eisenstein, D. J., 2002, The K correction (arXiv:astro-ph/0210394).
- Wherry, N., Blanton, M. R., & Hogg, D. W., 2004, A more informative picture of the *HST* Ultra Deep Field (arXiv:astro-ph/0406274).
- Mahajan, S. & Hogg, D. W., 2004, Introductory physics: The new scholasticism (book review) (arXiv:physics/0412107).
- Eisenstein, D. J., Hogg, D. W., & Padmanabhan, N., 2005, GRB050509b: SDSS pre-burst observations, GRB Coordinates Network Circular 3418.
- Hogg, D. W., 2005, Galaxy evolution with future wide-field space missions, *New Astronomy Reviews* **49** 379–386.
- Hogg, D. W., 2005, What best constrains galaxy evolution in the local Universe? (arXiv:astro-ph/0512029).
- Quintero, A. D., Berlind, A. A., Blanton, M. R., & Hogg, D. W., 2006, The asymmetric relations among galaxy color, structure, and environment (arXiv:astro-ph/0611361).
- Hogg, D. W., 2006, Air resistance (arXiv:physics/0609156).
- Hogg, D. W., 2007, Real-world ballistics: A dropped bucket (arXiv:0709.0107).
- Hogg, D. W., 2008, Data analysis recipes: Choosing the binning for a histogram (arXiv:0807.4820).
- Hogg, D. W., Blanton, M. R., Lang, D., Mierle, K., & Roweis, S., 2008, Automated Astrometry, Astronomical Data Analysis Software and Systems XVII, Argyle, R. W, Bunclark, P. S., & Lewis, J. R., eds., ASP Conference Series 394, 27–34 (ISBN:978-1-58381-658-5).
- Hogg, D. W. & Lang, D., 2008, Astronomical imaging: The theory of everything, Classification and Discovery in Large Astronomical Surveys, Bailer-Jones, C. A. L., ed., AIP Conference Proceedings 1082 331–338 (ISBN:978-0-7354-0613-1).
- Weiner, B. J. et al, 2009, Astronomical Software Wants To Be Free: A Manifesto (arXiv:0903.3971).
- Hogg, D. W., 2009, Is cosmology just a plausibility argument? (arXiv:0910.3374).
- Hogg, D. W., Bovy, J., & Lang, D., 2010, Data analysis recipes: Fitting a model to data

- (arXiv:1008.4686).
- Hogg, D. W. & Lang, D., 2011, Telescopes don't make catalogs! (arXiv:1008.0738), in Gaia: At the frontiers of astrometry, Turon, C., Meynadier, F., & Arenou, F., eds, EAS Publications Series 45 351–358.
- Hogg, D. W., 2012, Data analysis recipes: Probability calculus for inference (arXiv:1205.4446).
- Hogg, D. W. et al, 2013, Maximizing Kepler science return per telemetered pixel: Detailed models of the focal plane in the two-wheel era (arXiv:1309.0653).
- Montet, B. T. et al, 2013, Maximizing Kepler science return per telemetered pixel: Searching the habitable zones of the brightest stars (arXiv:1309.0654).

Code and other non-standard publications

- Lang, D., et al, 2008, Astrometry.net codebase, GPLv2, used by hundreds of professional and amateur astronomers worldwide (http://astrometry.net/).
- Bovy, J., Hogg, D. W., & Roweis, S., 2009, extreme-deconvolution codebase, GPLv2, (http://code.google.com/p/extreme-deconvolution/).
- Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J., 2012, emcee codebase, GPLv2, (http://danfm.ca/emcee/).
- Foreman-Mackey, D. & Hogg, D. W., 2012, *Daft* codebase for drawing graphical models, MIT license, (http://daft-pgm.org/).

Invited talks

List available upon request.