CIS 471/571 (Fall 2020): Introduction Artificial Intelligence

Lecture 12: Probability
Add WeChat powcoder

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Reminder

- Project 3: Reinforcement Learning
 - Deadline: Nov 10th, 2020

Assignment Project Exam Help

https://powcoder.com

- Homework 3: MDPs And dv Reint forcement Learning
 - Deadline: Nov 10th, 2020

Thanh H. Nguyen 11/9/20

Today

Probability

Random Variables

Joint and Margina Adignithetit Project Exam Help

Conditional Distribution

• Product Rule, Chain Rule, Bayes Rule

Inference

Independence

You'll need all this stuff A LOT for the next few weeks, so make sure you go over it now!

Uncertainty

- General situation:
 - Observed variables (evidence): Agent knows certain things about the state of the world (e.g. Exam Help sensor readings or symptoms)
 - Unobserved variables: Agentine as Wealth and other aspects (e.g. where an object is or what disease is present)

 Add WeChat powcoder
 - **Model**: Agent knows something about how the known variables relate to the unknown variables

 Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold? Assignment Project Exam Help
 - D = How long will it take to drive to work?
 - L = Where is the ghost? https://powcoder.com
- We denote random variables Avoith War Chaletters coder
- Like variables in a CSP, random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - D in $[0, \infty)$
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

- Associate a probability with each value
 - Temperature:

Assignment Project Exame Help

https://powcoder.com

P

0.5 hot cold 0.5

P(W)

W	P
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Probability Distributions

Unobserved random variables have distributions

P(T)0.5 hot cold

P(W)rain https://powcoder.com fog meteor Add WeChat powcoder

Shorthand notation:

ssignment Project Exam Help(hot) = P(T = hot),

P(cold) = P(T = cold),

P(rain) = P(W = rain),

OK if all domain entries are unique

A distribution is a TABLE of probabilities of values

• A probability (lower case value) is a single number

$$P(W = rain) = 0.1$$

• Must have: $\forall x \ P(X=x) \ge 0$ and $\sum P(X=x) = 1$

Joint Distributions

• A *joint distribution* over a set of random variables: $X_1, X_2, ... X_n$ specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n)$$
 $P(x_1, x_2, \dots, x_n)$
https://powcoder.com

• Must obey:

$$P(x_1, x_2, \dots x_n) \ge 0$$

Add WeChat powcoder

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

- Size of distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

P(T,W)

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Probabilistic Models

 A probabilistic model is a joint distribution over a set of random variables

Probabilistic models:

Assignment Pro

• (Random) variables with domains

Assignments are called outcomes https://powc

 Joint distributions: say whether assignments (outcomes) are likely

• *Normalized:* sum to 1.0

Ideally: only certain variables directly interact

- Constraint satisfaction problems:
 - Variables with domains
 - Constraints: state whether assignments are possible
 - Ideally: only certain variables directly interact

Distribution over T,W

	T	W	P
ignment Proj	hot	sun am He	$10^{0.4}$
	hot	rain	$^{1}P_{0.1}$
https://powo	oden.c	Om un	0.2
ssignments	cold	rain	0.3
Add WeCha	it powe	coder	

Constraint over T,W

T	W	P
hot	sun	\mathbf{T}
hot	rain	F
cold	sun	\mathbf{F}
cold	rain	T

Events

• An *event* is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n) \in E} P(x_1...x_n)$$

$$(x_1...x_n) \in E \text{ Assignment Project Exam Help}$$

- From a joint distribution, we can/powcoder.com calculate the probability of any event
 - Probability that it's hot AND sunny Add WeChat powcoder
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

P(T,W)

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Quiz: Events

P(+x, +y)?

P(X,Y)

P(+x)?

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

X	Y	P
+ _X	+y	0.2
+ _X	-y	0.3
-X	+y	0.4
-X	-у	0.1

• P(-y OR +x)?

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

•	D • • • • • • • • • • • • • • • • • • •	- 4 (1)
Assignment	Project Ex	am Heln´
1 issignment	Troject LA	
		I M 1 - T

https://powcoder.com.ot 0.5

P(t) Ada Wechat powcoder

P(W)

0.5

D(T)

$P(s) = \sum P(t, s)$	
$\frac{\mathcal{L}}{t}$	

W	P
sun	0.6
rain	0.4

Quiz: Marginal Distributions

P(X,Y)

X	Y	P
+x	+y	0.2
+ _X	-y	0.3
-X	+ y	0.4
-X	-y	0.1

P(X)

Y	P
+y	
- y	

Conditional Probabilities

- A simple relation between joint and marginal probabilities
 - In fact, this is taken as the *definition* of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

Quiz: Conditional Probabilities

$$P(+x | +y)$$
?

P(X,Y)

X	Y	P
+x	+y	0.2
+ _X	-y	0.3
-X	+y	0.4
-X	-y	0.1

Assignment Project Exam Help

https://powcoder.com
P(-x | +y)?
Add WeChat powcoder

•
$$P(-y \mid +x)$$
?

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distribution Assignment Project Exam Help

P(W	T	=	hot)
-----	---	---	------

W	P
sun	0.8
rain	0.2

$$P(W|T = cold)$$

W	P
sun	0.4
rain	0.6

https://powcoder.com

Add WeChat powcoder

Joint Distribution

P(T,W)

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

\mathbf{T}	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$
Assignment Project Exam Few $r_{r, T = c}$

$$https://powcoder.com$$

-Add WeChat poweoder

$$P(W = r|T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

W	P
sun	0.4
rain	0.6

Normalization Trick

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Assignment Project Exam Help

SELECT the joint

NORMALIZE the

probablities://powcoder.com selection matching the P(c,W) (make it sum to one)

evidenced WerChatypowcoder

•	V QCI	iayypo	V VEC
	cold	sun	0.2
	cold	rain	0.3

P(W)	T	=	c)
------	---	---	----

W	P
sun	0.4
rain	0.6

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

Normalization Trick

${f T}$	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(W|T=c)

W	P
sun	0.4
rain	0.6

• Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Quiz: Normalization Trick

 $P(X \mid Y=-y)$?

P(X,Y)

X	Y	P
+ _X	+y	0.2
+ _X	-y	0.3
-X	+y	0.4
-X	- y	0.1

SEARCIP the initial Project Exam Heap MALIZE the probabilities selection matching the powcoder.com (make it sum to one) evidence

Add WeChat powcoder

Probabilistic Inference

 Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint) Assignment Project Exam Hel

• We generally compute conditions in the spream of the second conditions in the second condition

P(on time | no reported accidents) = 0.90
 These represent the agent's beliefs given the evidence

- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

• General case:

• Evidence variables:

Hidden variables:

• Query* variable:

 $E_1 \dots E_k = e_1 \dots e_k$ Q $H_1 \dots H_r$ Assignment ProjecteExam Help

• Step 2: Sum out H to get

heiptsof/poexxcodervedance

VeChat powcoder

Step 1: Select the entries consistent with the evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

We want:

* Works fine with multiple query variables.

$$P(Q|e_1 \dots e_k)$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Inference by Enumeration

• P(W)?

Assignment Project Exam H

P(W | winter)?

https://powcoder.com

Add WeChat powcoder

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

• P(W | winter, hot)?

Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity O(dn)
 - Assignment Project Exam Help
 Space complexity O(dn) to store the joint distribution

https://powcoder.com

Add WeChat powcoder

The Product Rule

 Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = \frac{P(x,y)}{P(y)}$$
https://powcoder.com

The Product Rule

$$P(y)P(x|y) = P(x,y)$$

Assignment Project Exam Help

• Example:

P(W)

R	P
sun	0.8
rain	0.2

https://powcoder.com

P(D, W)

D	Aga	Mec
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

That powcod	er_{D}	W	P
	wet	sun	
	dry	sun	
	wet	rain	
	dry	rain	-

The Chain Rule

 More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1, x_2, x_3) = P(x_1, x_2, \dots x_n) = \prod_{i} P(x_i, x_i) P(x_i, x_i)$$

• Why is this always true?

Bayes Rule

Bayes Rule

• Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$
Assignment Project Exam Help

• Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)} P(y)$$
 (We Chat powcoder)

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple

• In the running for most important AI equation!

That's my rule!

Quiz

•Given:

•What is P(W | dry)?

Inference with Bayes' Rule

• Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect}|\text{cause})P(\text{cause})}$$
Assignment Project Exam Help

- Example:
 - M: meningitis, S: stiff neck

https://powcoder.com
$$P(+m) = 0.0001$$

$$AdP(Ws|Chat)powcoder$$

$$P(+s|-m) = 0.01$$
Example givens

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?