NASA TECHNICAL MEMORANDUM

NASA TM X-64918

(NASA-TM-1-64918) SPACE SHUTTLE LAUNCH VEHICLE PERFORMANC: TRAJECTORY, EXCHANGE RATIOS, AND DISPERSION ANALYSIS (NASA) 98 P HC \$4.75

N75-20446

G3/18 14676

SPACE SHUTTLE LAUNCH VEHICLE PERFORMANCE TRAJECTORY, EXCHANGE RATIOS, AND DISPERSION ANALYSIS

By R. G. Toelle, D. L. Blackwell, and L. N. Lott Systems Analysis and Integration Laboratory

March 1975

NASA

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

	NASA TM X-64918	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.
_	TITLE AND SUBTITLE	1	 - -
◂.		.	S. REPORT DATE March 1975
	Space Shuttle Launch Vehicle Exchange Ratios, and Dispers		6. PERFORMING ORGANIZATION CODE
7.	AUTHOR(S) R. G. Toelle; D. L. Blackwe	ll; L. N. Lott	8. PERFORMING ORGANIZATION REPORT
9.	PERFORMING ORGANIZATION NAME AND AS George C. Marshall Space F1	DORESS	10. WORK UNIT NO.
	Marshall Space Flight Cente	•	11. CONTRACT OR GRANT NO.
			13. TYPE OF REPORT & PERIOD COVERE
12.	SPONSORING AGENCY HAME AND ADDRESS	\$	7
	NASA Washington, D. C. 20546		Technical Memorandum
	• • • • • • • • • • • • • • • • • • • •		14. SPONSORING AGENCY CODE
15.	SUPPLEMENTARY NOTES		i
	Prepared by Systems Analysi	s and Integration Laboratory	,
16.	ABSTRACT		
	presented with explanation of	on use. Design envelopes of	•
	presented with explanation of		dynamic pressure, SRB
7	presented with explanation of staging point, aerodynamic land included.	on use. Design envelopes of heating and flight performan	dynamic pressure, SRB
7.	presented with explanation of staging point, aerodynamic l	con use. Design envelopes of heating and flight performant schange Ratios. For Public Herman E. Director,	dynamic pressure, SRB ice reserves are calculated STATEMENT Release
	REY WORDS Space Shuttle Trajectory, E. Design Envelopes, Flight Per	con use. Design envelopes of heating and flight performant schange Ratios. For Public Herman E. Director,	STATEMENT Release Thomason Systems Analysis

TABLE OF CONTENTS

	Page
SUMMARY	. 1
INTRODUCTION	. 1
SECTION I	
NOMINAL LAUNCH VEHICLE PARAMETERS AND BASELINE TRAJECTORY	. 3
SECTION II	
EXCHANGE RATIOS	. 53
SECTION III	
DESIGN ENVIRONMENT AND FLIGHT PERFORMANCE RESERVES	. 75
CONCLUSION	. 93
RECOMMENDATION	. 93
REFERENCES	. 94

DEFINITION OF ABBREVIATIONS

AOA Abort-Once-Around Azimuth A_z External Tank ET Flight Performance Reserve Propellants .º PR feet per second ⊥ps gravity $_{in}^{g}$ square inches Specific Impulse Isp pounds 1b MECO Orbital Main Engine Cutoff Nautical Miles n. mi. Orbital Maneuvering System OMS P1 Pay load **RCS** Reaction Control System Rockwell International/Space Division RI/SD Root Sum Squared RSS Return To Launch Site RTLS seconds Solid Rocket Booster SRB Space Shuttle Launch Vehicle SSLV Space Shuttle Main Engine(s) SSME(s) Western Test Range WTR change from baseline Δ 3-DOF Three Degree Of Freedom degrees of temperature 0 flight path angle Earth Relative Velocity v_R Weight WT Weight Flow Rate

TECHNICAL MEMORANDUM X- 64918

SPACE SHUTTLE LAUNCH VEHICLE PERFORMANCE TRAJECTORY, EXCHANGE RATIOS, AND DISPERSION ANALYSIS

SUMMARY

A baseline space Shuttle Trajectory for Mission 3A launched from WTR has been generated. Design constraints of maximum dynamic pressure, longitudinal acceleration, and delivered payload were satisfied. Payload exchange ratios for use in rapid tradeoff studies were generated and presented. A detailed dispersion analysis simulating vehicle parameters at their ± 3 σ values was performed to define design envelopes of dynamic pressure, SRB staging point, aerodynamic stagnation point heating, and flight performance reserves. Optimum fuel bias quantity was calculated.

INTRODUCTION

The Space Shuttle Program has reached a phase where all major system elements have been contracted. Each contractor has evaluated the requirements and replied with a definition of operation of his particular element.

These data have been assembled to define a launch vehicle that will perform the mission requirements. A detailed evaluation and study of these data have been performed. This report contains the baseline vehicle definition, Mission 3A baseline performance trajectory, payload exchange ratios, dispersion analysis with design environment envelopes, and a definition of flight performance reserve propellants.

SECTION I

NOMINAL LAUNCH VEHICLE PARAMETERS AND BASELINE TRAJECTORY

A. Discussion

The Space Shuttle Launch Vehicle (SSLV) has been sized under Level I groundrules (Reference 1) for a flight labeled Mission 3A. This has been ascertained through various studies as the most payload critical mission defined in Reference 1. This mission is a single revolution payload delivery flight launched from Western Test Range (WTR) into a 50 X 100 n. mi. orbit inclined at 1040 with respect to the equatorial plane. The requirement of 'orbiter intact abort' sizes the propulsion system for an Abort-Once-Around (AOA) flight caused by Space Shuttle Main Engine (SSME) failure. The current abort requirement provides safe landing in the vicinity of the launch site following a SSME failure.

The Shuttle powered flight is divided into three phases, each of which requires a different response to an abort situation. The first phase is from liftoff through Solid Rocket Booster (SRB) burn-out and staging, and into the orbiter/ET flight. During this phase, if a failure causing an abort occurs, the SSLV executes a powered turn around maneuver, initiated after SRB staging, and flies back to the launch site. The latest time that this maneuver can be executed, and thus the terminal time of this first phase, is designated the last Return To Launch Site (RTLS), first AOA interface. Beyond this time the downrange energy is too great to be cancelled, and a second phase of flight is in effect. If a SSME failure occurs in this phase the SSLV is targeted to the AOA Main Engine Cutoff (MECO) conditions stated in Table I.1. Following MECO the Orbital Mancuvering System (OMS) is fired to place the orbiter on a conic from which safe entry and landing may occur. A third and final phase occurs when the powered flight nears the nominal targeting conditions of Table I.1. If a SSME failure occurs during this phase, the remaining orbiter engines are burned to the Nominal targeting conditions and a post MECO OMS burn is used to place the orbiter into the required 50 X 100 n. mi. orbit. The MECO target conditions are such that the ET is on an earth impacting conic required for safe ET disposal.

B. Description of Launch Vehicle

The SSLV has been sized by the prime contractor, Rockwell International/Space Division (RI/SD), and the component weight and mass data used for this study are contained in Reference 2 and displayed in Table I.2. A management requirement of 7000 pounds payload growth margin at the time when this sizing exercise was performed was implemented. A sketch of the launch vehicle is displayed in Figure I.1. The aerodynamic

data was obtained from Reference 3. The forebody axial force coeffivs Mach Number and base force vs altitude curves are displayed in Figures I.2 and I.3 respectively. The Solid Rocket Booster vacuum thrust and weight flow rate profiles produced by Thiokol Chemical Corporation and designated as TC-207-1, are displayed in Figure I.4. Values of vacuum thrust and specific impulse for the SSME, OMS, and aft firing RCS engines are presented in Table I.3.

The ascent trajectory for Mission 3A was simulated using the following groundrules:

- 1. Launch from WTR, latitude = 35°, West Longitude = 120.5°
- 2. Payload weight = 32,000 lbs. (exclusive of 7000 lb payload growth margin)
- 3. Orbit inclination = 104° .
- 4. 1971 Vandenberg Reference Atmosphere simulated (Reference 4).
- 5. Maximum dynamic pressure on nominal trajectory ≤ 650 psf.
- 6. Vehicle erected on launch pad with tail fin pointing due south, $A_z=180^{\circ}$). Roll program (0° /Sec) began at 6 seconds flight until azimuth = 198.55° as required for coplanar flight.
- 7. Booster open loop pitch attitude profile selected to maximize payload while limiting loads in region of maximum dynamic pressure.
- 8. Optimum guidance initiated at SRB staging and is in effect until MECO.
- 9. Thrust vector control supplied by SRB's from liftoff to beginning of thrust decay at which time orbiter engines assume control until cutoff.
- 10. Orbiter main engine throttle set at 109% from liftoff to AOA MECO or 100% from RTLS to Nominal MECO except for throttling as required to maintain longitudinal acceleration limit of 3g's.
 - 11. Last RTLS time equals earliest AOA time (V_R = 8932 fps)
- 12. Trajectory shaped for earliest AOA (Table I.1 for targeting) with orbiter engine #1 failure. Nominal trajectory simulation started at RTLS/AOA point and targeted to nominal MECO target (Table I.1).

- 13. OMS propellant loading of 250 fps \triangle V in excess of 50 X 100 n. mi. reference orbit and RCS loading of 100 fps on orbit translational \triangle V respectively (Reference 1) are assumed.
- 14. OMS and aft firing RCS engines burned in parallel with orbiter main engines during AOA burn after engine failure. The duration is limited such that sufficient propellants are available to perform the post MECO maneuvers.

C. Trajectory Results

A sequence of events and resulting trajectory weight statement for both AOA and Nominal MECO conditions are contained in Table I.4.

Plots of dynamic pressure versus time and longitudinal acceleration versus time are displayed in Figures I.5, and I.6, respectively. A plot of stagnation point heating (Referenced to a one foot sphere) is displayed in Figure I.7.

Table I.5 is a definition of symbols of the trajectory tables. The detailed printout of the trajectory simulation from liftoff to AOA MECO is presented in Tables I.6 through I.13. Printout of the trajectory simulation from the RTLS/AOA point to Nominal MECO is presented in Tables I.14 through I.21.

FIGURE 1-1 SHUTTLE LAUNCH VEHICLE AND BODY COORDINATE SYSTEM

FIGURE 1.2 FOREBODY AXIAL FORCE COEFFICIENT (C $_{\mbox{A O}}$) VERSUS MACH NUMBER

FIGURE 1.3 ALTITUDE VERSUS POWER ON BASE FORCE

PROPELLANT WEIGHT FLOW RATE \sim POUNDS/SEC X 10 $^{-3}$

FIGURE 1.4 SRB VACUUM THRUST AND PROPELLANT WEIGHT FLOWRATE VERSUS TIME

4 or x sannos - Trush t muuda x

TABLE 1.1

MECO TARGETS - MISSION 3A

AOA Trajectory

Altitude = 55 n. mi. *

Inertial Velocity = 25,317 fps

Inertial Flight Path Angle = .75°

Inclination = 104°

Nominal Trajectory

Altitude = 60 n. mi. *

Inertial Velocity = 25,383 fps

Inertial Flight Path Angle = .5°

^{*} above equatorial radius

TABLE 1.2

SHUTTLE COMPONENT WEIGHT AND CENTER OF GRAVITY DATA - MISSION 3A

		~ ~ , s 	
Payload			32000 1ь
Personne	1		2636
Inert We	t Orbiter		156000
Usable R	CS Propellant		3915
	MS Propellant		12978
External	Tank (WET)		75000
	Tank Propellant		
	ity Incl FPR and Fu	el Bias	1555338
SRB Iner	t Staging Weight		350380
	ellants Incl Inerts	3	2202400
Gross Li	ftoff Weight at T/V	1 = 1.5	4390647
	Center of Weight 1b	Gravity XCG* (in)	ZCG* (in)
S	440000	-448.0	-16.0
T	4368500	-449.2	-16.2
A	3615100	-454.1	-19.6
G	2957400	- 415.8	-23.7
E	1911000	-279.4	-37.0
	1791600	-266.3	-39.8
1			
S	1428000	-122.0	-49.8
T	973400	-244.5	-72.0
A	601700	-412.9	-116.2
G	301300	- 756.9	-235.6
E			
	YCG* = 0		
2			

^{*} See Figure I.1

TABLE 1.3

ORBITER LIQUID ENGINE PROPULSION PARAMETERS

I Space Shuttle Main Engine (3)

Vacuum Thrust at 100% Power Level = 470000 1b Vacuum Isp at 100% Power Level = 455.2 s at 109% Power Level = 455.3 s

at 109% Power Level = 455.3 sExit Area = $6471 \text{ in}^2/\text{Engine}$

Throttle range of 109% to 50% Nominal Power Level

II Grbital Maneuvering System (2)

Vacuum Thrust = 6000 1b Vacuum Isp = 313.2 s

III Reaction Control System (4) (aft firing)

Vacuum Thrust = 875 1b Vacuum Isp = 289 s

FIGURE 1.5 DYNAMIC PRESSURE VERSUS TIME

LONGI TUDINAL ACCELERATION ~ 9'S

FLIGHT TIME FROM SRB SEPARATION TO MECO (S)
FIGURE 1.6 LONGITUDINAL ACCELERATION VERSUS FLIGHT TIME

FIGURE 1.7 STAGNATION POINT HEATING VERSUS FLIGHT TIME

TABLE 1.4

TIMED SEQUENCE OF EVENTS WITH CORRESPONDING WEIGHT HISTORY

AOA Trajectory

T IME	<u>(s)</u>	EVENT	VEHICLE W	T
(0	Liftoff	4390647	1b
(6	Initiate Tilt and Roll Attitude Program	4233432	
7.8	86	Terminate Roll Maneuver	4183779	
45.9	94	Mach Number = 1	3251833	
54.4	49	Max Dynamic Pressure = 650 psf	3082478	
107.5	50	Max SRB Longitudinal Acceleration		
		Orbiter Engines Assume Thrust Vector Control	1979738	
121.4	42	SRB Staging	1778393	
		Initiate Closed Loop Guidance	1428013	
253.0	04	Common RTLS/AOA Point		
		Engine #1 Failed/Ignite OMS & RCS	983719	
236.8	81	RCS Cutoff	905960	
342.	12	OMS Cutoff	779372	
536.0	68	Max Longitudinal Acceleration - Throttle	341533	
558.	71	AOA MECO	295395	
E'T Pro	pellant	s Consumed for AOA Trajectory	1538597	
Nomina	al Miss	ion		
253.04	4	Common RTLS/AOA Point	983719	
418.89	9	Max Longitudinal Acceleration - Throttle	470000	
485.23	3	Nominal Mission MECO	303576	
ET Pro	pe1° at	s consumed for Nominal Trajectory	1534298	

SA&I/EL24

DEFINITIONS AND SYMBOLS FOR TRAJECTORY TABLES

SYMBOL	UNITS	DEFINITION TABLE NO. 1.5
TIME	SECONDS	INSTANTANEOUS TIME FROM LIFTOFF
œ	FET	INSTANTANEOUS RADIUS FROM CENTER OF EARTH
IV	FT/SEC	INERTIAL VELOCITY
GAMMAI	DEGREES	INERTIAL FLIGHT PATH ANGLE
LAT-GD	DEGREES	GEODETIC LATITUDE
LONG	DEGREES	RELATIVE LONGITUDE
AZI	DEGREES	INERTIAL AZIMUTH (ANGULAR MEASUREMENT OF VI IN LOCAL HORIZONTAL PLANE)
ALT	FEET	INSTANTANEOUS ALTITUDE ABOVE REFERENCE ELLIPSOID
INC	DEGREES	INSTANTANEOUS INCLINATION
NODE	DEGREES	ANGULAR MEASUREMENT OF THE DESCENDING NODE FROM THE LAUNCH MERIDIAN
GAMMAR	DEGREES	RELATIVE FLIGHT PATH ANGLE
AZR	DEGREES	RELATIVE AZIMUTH ANGLE
MACH		MACH NUMBER

٧ -	٠
2	
1	
4	5

ANCIE OF ATTACK MEASURED IN VEHICLE PITCH PLANE SIDESLIP ANGLE (LATERAL ANGLE OF ATTACK) INERTIAL PITCH ATTITUDE ANGLE INERTIAL ROLL ATTITUDE ANGLE INERTIAL YAW ATTITUDE ANGLE ROLL THRUST GIMBAL COMMAND LONGITUDINAL ACCELERATION AERODYNAMIC NORMAL FORCE AERODYNAMIC AXIAL FORCE AERODYNAMIC SIDE FORCE PRODUCT OF Q AND ALPHA DEFINITIONS AND SYMBOLS FOR TRAJECTORY TABLES (Continued) PRODUCT OF Q AND BETA INSTANTANEOUS THRUST INSTANTANEOUS WEIGHT NORMAL ACCELERATION DYNAMIC PRESSURE DEFINITION LB*DEG/FT**2 LB*DEG/FT**2 LB/FT**2 DEGREES DEGREES DEGREES DEGREES DEGREES DEGREES POUNDS POUNDS POUNDS POUNDS POUNDS UNITS Sig G 'S NORMAL FORCE AXIAL FORCE SIDE FORCE NORMAL ACC LONG ACC THRUST WEIGHT SYMBOL QALPHA QBETA DELRC ALPHA CHIR CHIP CHIY BETA

DEFINITION AND		SYMBOLS FOR TRAJECTORY TABLES (Continued)	TABLE NO. I
SYMBOL	UNITS	DEFINITION	
DELPC	DEGREES	PITCH THRUST GIMBAL COMMAND	
DELYC	DEGREES	YAW THRUST GIMBAL COMMAND	
RANGE	NAUT MILES	RELATIVE SURFACE RANGE FROM INSTANTANEOUS LAUNCH POINT TO THE SUBVEHICLE POINT	LAUNCH POINT
RANGE ANGLE	DEGREES	RELATIVE RANCE ANGLE	
IIP LAT	DEGREES	INSTANTANEOUS IMPACT POINT LATITUDE	
IIP LONG	DEGREES	INSTANTANEOUS IMPACT POINT LONGITUDE	
исн	FT/SEC	CHARACTERISTIC VELOCITY	
VIDEAL	FT/SEC	IDEAL VELOCITY	
×	FEET	SHUTTLE COORDINATE SYSTEM NO 8 X POSITION	
¥	FEET	SHUTTLE COORDINATE SYSTEM NO 8 Y POSITION	
2	FEET	SHUTTLE COORDINATE SYSTEM NO 8 Z POSITION	
XDOT	FT/SEC	SHUTTLE COORDINATE SYSTEM NO 8 X VELOCITY	
YDOT	FT/SEC	SHUTTLE COORDINATE SYSTEM NO 8 Y VELOCITY	
ZDOT	FT/SEC	SHUTTLE COORDINATE SYSTEM NO 8 Z VELOCITY	
XACC	FT/SEC**2	SHUTTLE COORDINATE SYSTEM NO 8 & ACCELERATION	ION

ď	1
۲	i
_	•
S	;
E	Ì
TAR	•
-	

Ţ

TOUT		8 Y ACCELERATION	8 Z ACCELERATION	CATOR
Ables (continued)	DEFINITION	SHUTTLE COORDINATE SYSTEM NO 8 Y ACCELERATION	SHUTTLE COORDINATE SYSTEM NO 8 Z ACCELERATION	STAGNATION POINT HEATING INDICATOR
DEFINITION AND SYMBOLS FOR TRAJECTORY LABIES (CONTINUED)	UNITS DEFI	FT/SEC**2 SHUT	FT/SEC**2 SHUT	BTU/FT**2 STAG
DEFINITION AND SY	SYMBOL	YACC FT	ZACC FT	HEAT BT

STAGNATION POINT HEATING RATE

BTU/FT**2/S

HEAT RATE

					V _	BLE NO
TIME	æ		£	•	Z	
2 F C	F T	1/SE	u	DEG	9	w
0000	902727.	251,34	• 00	5.00	120.50	00.0
4.000	090200	1253.215	3.159	35.000	-120.500	
•	0903038.	255.88	. 91	5.00	120.50	10.0
•	0903038.	255.88	-	5.00	120.50	10.0
•	0903272.	14.45	79.	5.00	120.50	90.0
•	0903293.	59.71	.74	5.00	120.50	90.0
•	0904057 •	70.32	99.0	5.00	120.50	0.38
•	0905185.	86.18	4.89	5.03	120.50	1 • 10
•	0905710.	93.79	6.55	5.00	120.50	64.1
	0905710.	93.79	6.55	5.00	120.50	64.1
ċ	0906712.	19.80	9.35	4.99	120.50	62.2
*	0908650.	335.81	3.56	4.99	120.50	3.93
å	0910974.	365.70	7.30	4.99	120.50	9.94
2	0913651.	397.12	0.57	4.99	120.50	1.26
;	0916651.	430.35	3 . 4 4	4.99	120.50	00.99
ċ	0919952.	466.00	9 • 00	4.99	120.50	04.10
44.000	923536.	03.28	• -	4.98	120.50	7.59
ů	0925362.	521.28	9.03	4.98	120.50	06.38
30	0927371.	540.65	9.86	4.98	120.50	11.34
2	0931427.	579.21	1.16	4.97	120.51	15.32
•	0934056.	605.87	1.83	4.97	120.51	18.05
5 • 5	0935143.	417.52	2.07	4.97	120.51	19.21
5.5	0935143.	417.52	2.07	4.97	150021	19.21
5 . 8	0935568.	622019	2016	4.97	150021	19.67
9	0935687.	623.51	5 1 9	4.97	120.51	19:00
0:0	. 4510460	478.29	2.96	***	150.51	24.81
9.5	********	146.91	3 * 4 6	4.95	150.021	30 • 25
7 . 1	. 61 / 9 + 60	812.68	3.62	***	120.52	34.77
•	0040774.	832.07	3.63	***	120.52	35.99
0:0	0952335.	19.188	3.57	***	120.52	30.91
•	0952335.	+4:108	3.5	***	20.52	31.91
2.0	09549434	936.20	3.4	4.43	120.52	41.83
	0960427•	040.090	2 . 8	4.92	20.53	47.56

ORIGINAL PAGE IS OF POOR QUALITY

*
~
•
_
Į,
`
-
•
◂

		MISSION-34/M	-3A/MCR-500/LIFIOFF	TO ADA MECO			CASE
						1	-
O Q	TIME	9E		I		و	<
R			1/SE	DE	0 E 6	w	w
iG PO		1966180.	206.96	1 . 9 4	. 90	20.53	96.25
IN XX	00.5	4972232	375.20	0.79	4.89	120.54	57.93
IA R	0.00	0978598.	566.63	9 + + 6	4.87	120.55	.2.4
L Q		0985287	781.83	8.02	¥ . 8 .	120.56	38
P,	6	3992312.	021.39	6.54	4.82	120.57	69.69
A (. 5	0995035	117.6	9 6	4.8	~	71.
E	7 - 50	1995035	117.60	5.98	4.81	120.57	1 . 0 9
	000	3999682	283.80	5.05	4.79	120.58	72.95
8	4.00	1007436.	561.37	3.62	4.76	120.59	5 . 5 4
	7 .	1014432.	814.93	2.43	4.73	120.61	77.50
	7.53	1014432.	814.93	2.43	4.73	120.61	77.50
	8 . 00	1015458	851.58	2.25	4.73	120.61	77.76
	2.03	1023826.	129.70	0.95	4.69	120.62	79.54
	0	1032423	376.90	9.72	4 • 65	120.64	179.0
	0.000	1041151	562.66	8.59	4.61	120.66	17811
	1 • 42	1044244	591.87	8.22	4.59	120.67	177.93
SEPARATION	•	1344244	591.87	8.22	4.59	120.67	177.93
Breln Alan	1 . 4 2	1044244	591.87	8.22	4.59	120.67	177.9
	00	1049915	637.67	7.57	4.56	120,68	177.65
	0.00	1082933	956.18	3.71	4.37	120.76	176.03
	0.00	1113642.	328.15	0.27	4.17	120.85	174.6
	2 . 30	1142061.	748.88	7.27	3.94	120.94	173.35
		1168337.	216+20	4.71	3.69	121.05	172.26
	4 • 60	1192636.	729.15	. 53	3.42	121.16	171.30
	220.000	1215146.	287.76	.71	3.13	121.28	•
	36.60	1236074.	892.98	.21	2.81	121.42	169.71
	52.00	1255651	547.03	. 9.7	2 • 47	121.56	169.0
	53.	1256883.	591155	• 90	2044	121.57	169.01
INTERMEDIATE	0.66	1256883.	591.55	• 90	5 . 4	1 • 57	69.01
	268.000	1273135.	021.91	-31	2 • 10	1.71	168.64
	94.00	28743	.58	•	31.710	-121.876	-168.277
	86.81	1289621	404.54	• 5	1 . 63	. • •	168.21
	86.6	1289621	604.5	• 55	1 • 63	1 • 9 0	-168-216

SA.1/EL-24

HISSION-3A/HCR-500/LIFTUFF TO ADA MECO/

CASE 1

TA SLE NO. I.6		w	167.94	167.63	67.35	167.18	9 !	_	166.8	99.9	94.99	•	11.9	65.97	165.83	• 72	165.	-165.518	5 • 43		5.3:		-162.591-	165.	-162.291
•	Z	W	-122.044	22.2	122.40	-122.526	~	122.59	•	23.	3.2	3.4	3.7	123.9	1.4	1.	-124.786	5.0	125.4	5.6	25.7	9.6	•	-	•
		0	1.29	9.0	30.404	ċ		9.92	29.410	28.871	8	7.	7	•	ŝ	•	*	ë	• 7	-	-	ò	ċ	ċ	ċ
	Σ	30	4	.33	۳.	8	62	3	*	1.697	-1.120	-1.421	-1.608	-1.684	-1.652	-1.517	-1.279	666.	964.	071	• 050	.647	157.	151.	.751
	V 1	1/5	38.85	6 • 5 1	0	3	4	60	12474 155	13173.206	24	14704-013	07	40	6	95	5	00	2091.02	3239.04	3551.81	5060.90	5316.	5316.69	-
	~		664.	1306984	1312557	1314748.	1314748	1315567.	919	131462	131114	130602	129959	12920	128428	127631	126886	126258	125825	125682	125680	125917	126601	126001	9
	7 1 1 1 1 1	3.5	300.000	316.000	332 - 363	3420121	3420121	348.000	364.000	380.600	396.000	412.600	428.000	0000	460.000	470.003	492.000	500.000	524.000	536.683	540.000	556.000		558.712	S.
																				ALGIN GLIMIT				1 N. 15 C 7 1 D.W	

		M15510N-34/MC	15510N-3A/MCR-5J0/L1FT0FF	TU AOA ME	700		CASE
						-	ABLE NO. 1.7
	TIME		Z	0	œ >	I	A 2
	SEC	F	ш	ı.	w	DEG	DEG
.1FT-UFF	000•		4.81	0.00	3	2.17	8 • 00
	4.000	34.1	4.81	00.0	9.00	7.85	166.98
7,	6.000	10.4	4.81	66.6	m	9.81	.87
111	•	10.4	4.81	65.6	7.53	9.81	164.87
NO MOLL	7.655	7 . 7 7	4.81	40.0	5.03	9.54	•
	8 • 000	•	8	89.936	48.0	ı,	
	12.000	329.1	4.82	9.38	35.33	7.85	9.57
		457.7	4.83	8.13	31.61	5.59	9 • 8 5
	·	981.8	4.84	1.46	70.23	4.67	
	ŝ	81.6	4.84	7.46	0.23	4.67	159.95
	20.000	984.1	4.88	90.9	36.88	3.07	0
		4-126	5.01	3.22	41.45	0.50	163.25
	_	243.7	5.25	9.77	40.59	7.97	163+35
	32.000	0.6160	5.66	5.81	34.02	5.47	163.41
	300000	39160	6.29	1.35	24.56	2.96	160.47
	000.04	721405	7.22	0.40	19.41	0.41	160.52
	260.44	07991	8.49	1:1	003.20	7.80	95.0
ACH CNE	45.435	2017.6	9.23	8.53	044.52	6.53	160.57
	18.00C	4624.5	0.10	5.19	87.83	5.20	65.091
	52.000	8674.2	2.07	0.54	170.99	2.59	2
EDELARE I	24.491	129	3+55	7.17	552.94	0.89	160.64
	55.560	2384.4	4.21	5.79	249.25	0.18	160.64
	. •	2384.4	4 • 21	5.79	249.25	0.18	• 6 4
U KMS.	169.55	2838.3	4.47	5.26	58.48	16.6	160.65
	٥	2927 . 0	4.55	11.5	261.07	9.83	• 65
	ö	385.9	7.59	9.60	63.97	66.9	160.67
	0.4.0.00	2066+2	1.18	4.21	482.50	4.15	160.67
4 KMS.		11669	4.32	0.15	588.29	1.94	163.71
	66.000	9.5869	5.19	9.10	18.33	1.36	• 7.1
	70.000	539.9	7.32	6.70	693.21	4.99	160.72
	ခံ	623616	7.32	6.70	93.21	9	. 72
	2	160.9	9.48	1 * * *	-	8.65	0 • 7 3
	•	7510.4	3.84	61.0	7	6.35	163.74

			SA+1/EL.	+Z-			
		M15510N-3A/MCR-	500/L1FT0F	F TO AOA MECC	/0		CASE
						=	ABLE NO.
	TIME		Z	٥	~	MAR	<
		L	w	DEG	1/SE	056	w
	80.000	3345.9	9.06	6.50	138.84	.60	1 40 • 75
	0	69379-17	72.011		2350•2: 3	-	
	8	572204	19.5	0.54	581.35	61.6	160.76
	•	2386.4	8.84	9:16	832.77	7.22	160.76
	÷	9382.R	1.70	=	105.19	5.40	160.77
		2094.4	2.68	7	212.88	4.75	1 .77
	•	257404	2.68	*	212.88	4.75	160.
	ċ	6721.6	4.20	.35	397.07	.72	60.77
	•	1 . + 0 + +	6.33	• 86	700047	2.20	160.7
	7.	11462.7	7.94	• 75	973.99	0.98	160.77
	7	11402.7	7.94	.73	973.99	9.00	160.7
	8	2422.8	8 . 15	.60	013.31	0.81	60.77
	2.	20748.6	9.62	9	310.35	9.52	160.77
	•	1.00662	91.0	8	572.88	8.33	• 76
	•	7979.1	1 • 55	• 73	770.04	7.24	160.76
	-	41054.7	1 . 70	~	801.72	68.9	160.75
SEPANATION	•	1054.7	1.70	• 83	801.72	69.9	•
Z X Z	•	2 * + 501 +	1.70	.83	801.72	6.89	160.75
	*	46592.9	1 . 93	.98	851.62	6.26	1.4
	ċ	79496.6	3.28	1.91	194017	2.56	160.69
	÷	09970 • 2	4 . 47	2.72	587.40	9.29	160 • 65
	72.	38132,5	5.52	3.43	026.63	94.9	160.6
	9 9	44128.4	****	• 05	509.98	4.03	19.091
	. *0	88124.2	7.26	9.	036.86	. 98	19.0
	26.	10305+1	7.99	90• 9	607.64	0.26	190091
	36.	30877.7	19·8	• 52	223.56	.83	160.63
	52.	50072+3	9.23	. 91	887.11	900	9 • 0
	53.	51278.0	9.27	• 93	932.21	• 59	160.6
INTERMEDIATE	53.04	51278.0	• 27	5.93	932.21	• 59	160.65
	68.0	7147.6	99.622	91.9	369.01	• 07	160.67
	84.0	81015.4	26.	6.38	867.87	.62	160.70
	86.	83129.5	03	6.42	958.84	• 39	40.1
	200.011	8312905	0.03	. 42	958.84	.39	160.71

OR			SA+1/EL-24	-24			
IGIN		M15510N-3A/MCR	-500/LIFTOF	F TO AOA MECO.	/0		CASE 1
LA I TO						•	H
ا با	I	ALT	Z	NODE		Z V I	7 Y
đị Bị	4	J. 6.	₩	930	18E	930	4
↓G ∫A	00.00	802.2	0.30	6.59	0397.67	.34	160.74
E	16.00	99653.4	19.00	6.78	0940.33	.26	160.79
IS TO	32.00	04736.5	06.00	•	1557.36	~	
Š	42.12	9.50990	01.07	7.07	1953.45	9	160.07
	42.12	06605.5	01.07	7.07	953.45	9	160.67
	40.00	07233.6	01-17		2107.57	52	160.00
	64.00	07316.5	01.43	7.28	950.43	±	140.01
	80.00	05200.9	01.68	~	552,11	.67	.03
	96.00	01137.8	16.10	•	298.30	•	161.10
	12.00	95411.3	02.14	7.68	040-13	.3	
	20.00	88343.0	02.35	0	5933.00	1.56	161.27
	000 - 777	380298•62	102.588	-7.407	16032.707	-	141
	00.09	71697.9	02.75	0	7796.16	1.61	191046
	76.00	43025.2	02.94	9:10	8831.78	=	95.19
	92.00	24842.0	03-12	::	1150.37	1.26	141.66
	00.60	47806.2	03.29	•	1105.51	. 92	1.77
	24.00	42694.5	03.46	*	2464.74	•	111.00
BEGIN GLIMIT	36.68	617.5	03.59	•	74.44.64	•	161.98
	40.00	40434.8	03.62	- * •	3957.67	*	162.01
	90.95	41977.6	3.76	^	5468.72	•	162013
	50.71	42669.1	3:79	• 47	5724.82	•	42015
120601102	58.71	1.691	3.79	-0.470	5724.02	•	• 15
	58.71	342669.11	3.79	-0.470	\$724.82	•	91.29

		M15510N-3A/	M15510N-3A/MCR-500/LIFTOFF	TO ADA MECO/			CASE
							•
	TIME	MACH	œ	•	-	ALPH	986
	SEC		•	066	w	•	:
L 1 F T = 0 F F	000•	O	00.	00	20	00.	00•
	4.000	•	• • •	• 50	-	4.27	-
BEGIN ROLL	0000.0	•	3.70	4.	0	3.84	38
-	÷.00€	9	3.70	4.	• 02	3.84	.38
End RULL	7.855	r.	4.71	.90	60	1.74	.33
	8.000	~	5.73	. 9.3	60	2 . 4 4	. 34
	12.000	.211	63.209	3 . 2 4 5	.027	205-137	1.720
	16.000	9	6 . 5 5	. 18	õ	3.76	12.
	17.500	~	7.54	-	.02	63.55	3.04
	17.500	~	7.54	* -	.02	43.55	*0
	20.00	9	98.59	• 0	6	08.38	7 . 03
	24.000	39	86.20	. 85	• 05	16.78	15.59
	26.000	Ð	72.05	- 9 •	• 0	71.40	26.07
	32.000	~	49.43	. 38		070.40	37.48
	36.000	•	16.60	• ! •	•0•	134.01	48.89
	40.000	S.	73.34	*0.	3	172.86	59.69
	000 • * *	v	15.85	• 9 •	=	163.97	49.18
MACH UNE	45.935	ů	29.72	• 1 •	=	128.27	73.05
	43.600	S.	40.02	.72	7	105.59	76.54
	52.600	5	48.51	.70	.12	108.44	24.18
E HAXIMUM	. 64.40	22	49.71	• 7 4	• 12	32.16	3.91
	55.500	A.	49.38	76	_	145.34	84.77
	55.500	2	49.38	76	-	145.34	84.77
JU KMS.	55.891	56	49.07	• 77	:	150.78	80.58
	26.000	. 26	48.96	• 11	-	152.39	85.16
	000.00	4	39.76	. 85	:	187.95	87.32
	•	2	17.29	400	<u> </u>	139.25	87.48
IN KMS.	07.160	0	44.33	7	-	146.47	86.73
	000.84	9	87.13	.0.	147	95.50	86.43
	å	11	71.23	Š	5	58.64	95.50
	76.000	.77	1.23	9	-	79.85	• 56
	72.000	•	16.66	S	ş	28.49	84.42
	70.000	****	つらするかつら	~	951.	31.69	90.56
	. !		,				

			. 7 7 / 1 · V C				
		M18510N-3A/P	510N-3A/MCR-500/L1FT0FF	TO AOA MECO/			CASE
	1	I	æ		900	4	TABLE NO. I.B
	· v	•	/ 7100	9 30	9 30	/ 7100	/ 7.
	0	.23	450.53	.74	-	798.61	-75.20
	000	.43	07.53		.17	16.62	49.27
	.00	• 65	56.21	5	_	40.76	62.72
	00.	. 69	10.04	4.0	=	35.41	56.51
	00.4	-	16.52	?	=	50.40	\$0.21
	7.50	.24	50.42	. 25	-	13.32	47.75
	7.50	.24	50.42	• 25	÷:	13.32	47.75
	00.0	7	24.23	-	-	47.65	43.63
	4.00	. 47	94.40	-	. 20	64.35	37.20
	7.50	-	41.15	7.2	.20	11.75	31.94
	7.50	-	4	72	.20	1.75	31.94
	08.00	. 94	44.47	72	.20	08.27	31.20
	2.00	=	10.53	7	-2	4.02	25.47
	•	37	90.99	4	227	7.12	:
	00.0	. 40	1.47	;	. 2 4	7.64	14.41
	1 . 42	25.	0.79	===	. 24	4.60	15.04
EPARAT	21.42	• 50	0.79	• 53	. 24	3.37	15.04
Z.	21.42	. 50	0.79	• 53	. 24	3.37	15.04
	24.00	5	1.7	-	.26	4.23	12.70
	0000	. 83	.0.4	. 32	. 33	5.22	
	94.00	*	•	2.32	9	4.05	•
	72.00	. 28	. 22	4.0.	• 47	4.05	+0-1
	88.00	. 23	7	2.47	. 52	4.32	=
	04.00	••	25	4.8.	2	19-1	*
	20.00	. 24	3	7.30	• 62	3.	• 0
	3 00	. 53	3	7.79	•	. 24	9
	52.00	;	5	7 . 33	• 70	-	•
	53.04	•	5	400	20	6	900
INTERMEDIATE	53.0	;	õ	7.09	• 70	•	8
	48.30	. 53	8	*	.74	•	9
	64.00	• 2.	9	7.20	7	.03	9
	•	9.39	*00•	-7.385	100		900
	200.011	• 2 •	0	7.38	2	0	0

TIME MACH BETA BETA BETA BETA BETA BETA BETA BETA			SA+1/EL-24	* Z *			
## ## ## ## ## ## ## ## ## ## ## ## ##		~	CR-500/L1FT0F	TO AOA M			
NACH							ABLE NO. I.
EC	3H11	¥	œ	HAI	13	-	DBET
0.00	SEC		8/FT.	w	PE	B.DEG/FT.	B.DEG/FT.
12.000 8.399 .002 .80.110 .002 .80.110 .002 .80.110 .002 .80.209 .002 .80.209 .002 .80.209 .002 .80.209 .002 .80.209 .	300.000	#.	00	7.77	. 83	0	00
32.600 8.499 .002 .8.309 018 018 42.121 8.671 .002 028 024 018 018 48.000 9.276 002 085 024 018 018 64.000 9.276 002 085 024 019 019 64.000 9.276 002 0821 094 019 019 64.000 10.020 002 0821 094 019 019 10.000 10.020 003 0821 006 025 019 10.000 11.044 006 024 026 026 026 10.001 11.044 006 026 026 026 026 026 10.002 11.044 006 006 006 026 026 026 026 026 026 026 026 026 026 <td>07.4</td> <td>• 39</td> <td>0</td> <td>0.11</td> <td>. 87</td> <td>9</td> <td>00.</td>	07.4	• 39	0	0.11	. 87	9	00.
42.121 8.671 .002 .8.36802401802401802401802202401802202	2.60	4.	ာ	0.30	06.	•	000
42.121 8.671 .002	42.1	•	8	8.34	. 92	•	0
48.000 8.803 .002 -8.353 -9.46 .0019 .0019 .002	42.12	.67	00	9.34	. 92	0	90.
64.000 9.276 .002 -8.353 961 025 80.000 10.820 .003 025 025 025 96.000 10.820 .004 7666 006 025 96.000 13.444 .005 7664 006 004 26.000 13.432 .003 7627 004 004 26.000 14.354 .012 633 105 026 26.000 17.557 .033 578 106 108 26.000 17.557 .033 577 106 108 26.000 20.759 .056 106 108 108 26.000 20.759 .056 106 108 108 26.000 20.759 106 108 108 108 26.000 22.410 124 106 108 108 26.000 22.410 152 204 108 108	46.0	. 6.	3	9:38	3	•	000
80.000	4	.27	00	9.35	••	•	000
12.000	80.	. 93	00	0.21	. 9	0	00.
12.000	96.0	0.82	0	7.98	1.00	•	00.
26.000 13.132 .008 .7.279 .1.036 069 069 069 069 069 069 069 060 060 060 020 0	12.0	1.94	8	7.66	1.02	0	00.
14.000 14.354	26.0	3 . 1 3	00	7.27	1.03	0	00.
15.799	0.11	4.05	<u></u>	4.83	1.05	•	-
76.000 17.557 .033 -5.778 -1.065 -1.289 -1.056 -1.066 -1.289 -1.066 -1.066 -1.289 -1.066 -1.066 -1.289 -1.066 -1.066 -1.390 -1.0	و 0 • ن	5.79	02	4.33	1 • 0 5	-	.02
72.000 19.19e .056 -5.16e -1.068289006 20.759 .087 -4.491 -1.068390099 24.000 22.410 .124 -3.747 -1.06446513 36.683 23.717 .152 -3.098 -1.05847116 56.000 24.04e -1.0546016 56.000 25.432 .163 -1.694 -1.05030817 58.712 25.630 .163 -1.694 -1.004930817	76.0	7.55	S	5.17	1:06	-	60.
20.759 .087 -4.491 -1.066390090 24.000 22.410 .124 -3.747 -1.064465 34.683 23.717 .152 -3.098 -1.056471 -1.64 40.000 24.046 .157 -2.922 -1.05746015 56.000 25.432 .163 -1.694 -1.05930817 58.712 25.630 .163 -1.694 -1.04930817 58.712 25.630 .163 -1.694 -1.04930817	92.0	61.6	9	91.5	1.06		• 0
24.000 22.410 .124 -3.747 -1.06446513 36.683 23.717 .152 -3.098 -1.05647116 40.000 24.046 .157 -2.922 -1.05746016 56.000 25.432 .165 -1.694 -1.05033717 58.712 25.630 .163 -1.694 -1.04930817 58.712 25.630 .163 -1.694 -1.04930817	0.80	0.75	80	4.10	1.06	7	.00
36.683 23.717 .152 -3.098 -1.05847116 40.000 24.046 .157 -2.922 -1.05746015 56.000 25.432 .165 -2.044 -1.05033717 58.712 25.630 .163 -1.894 -1.04930817 58.712 25.630 .163 -1.894 -1.04930817	24.0	2.41	12	3.74	1.06		-
40.000 24.046 .157 -2.922 "1.05746015 56.000 25.432 .165 -2.044 -1.05033717 58.712 25.630 .163 -1.894 -1.04930817 58.712 25.630 .163 -1.894 -1.04930817	36.6	3.71	2	3.09	1.05	*	-
56.000 25.432 .165 =2.044 =1.050 =.33717 58.712 25.630 .163 =1.894 =1.049 =.30817 58.712 25.630 .163 =1.894 =1.049 =.30817 58.712 25.630 .163 =1.894 =1.049 =.308	40.00	* 0.1	<u>\$</u>	2.92	1.05	*	• -
58.712 25.630 .163 -1.894 -1.0493081 58.712 25.630 .163 -1.894 -1.0493081 58.712 25.630 .163 -1.894 -1.0493081	26.00	5.43	=	2.04	1.05		. 17
58.712 25.630 .163 -1.894 -1.0493081 58.712 25.630 .163 -1.894 -1.0493081	58.71	5 . 63	=	1.89	1.04		-
58.712 25.630 .163 -1.894 -1.0493081	58.71	5.63	•	1.89	*0.1	~	. =
	J	5 . 63	_	1.89	1.04	•	-

MISSION-3A/MCR-500/LIFTOFF TO ADA MECO/

CASE 1

				•			9	K
				≤	¥	ŭ.	O Z	Z OZ
	7 1 M E	2	£] 6	240	2	240	A	4
	SEC	-65	165	105	100	60.0		
1.16T=0FF	9	7381.	390646.	•	•	•	009	ā
	90.	6809.	284742.	462.	-	-	. 576	0
EGIN ROL	900	54633.	233431.	. 4 . 0	205.	-		a
BEGIN TILT	9	4833.	233431.	*	205.	-	19.	0
10: QN	. 85	901844.	183779.	0342.	775.	251.	019.	o
	900	905595.	179898.	0756.	043.	253.	. 642	o
	2.00	013792.	072454	9995	2002	.5	.706	0
	00.4	130965.	. 63207.	0623.	3471.	131.	.779	0
	7.50	177182.	922089.	9268.	7010.	20.	. 807	ŏ
	17.500	7,177,182.2	3922089.0	59268.5	27010.5	328.4	1.0074	.0403
	00.0	138259.	853285.	9503.	\$100.	58.	. 824	ŏ
	4.00	195422.	7479140	16235.	1 6 2 6 .	. 1 0 4	.774	ŏ
	9.00	464642.	646803.	49901.	.1904	607.	.723	a
	2.00	157851.	551652.	94277.	2429.	124.	670	ā
	00.4	998622.	462608.	46870.	12361	555.	. 652	o
	00.0	839113.	373564.	0910	* 1 + 9 1	971.	.635	ā
	4.00	678188.	291030.	01816.	4066	380.	. 5+3	ā
HACH ONE	5.93	299470.	251832.	.0+549	88400•	047	.567	ò
	9.00	514613.	209985.	07847.	. + 105	748.	. 549	ō
	2.00	422795.	130429.	52542.	32492.	0557.	. 545	ō
XOXIVE P	4.10	441463.	0824780	5,060.	.19929	0743.	.575	0
	9 - 50	446631.	063074.	48008	• 6 8 1 D •	.6190	. 511	0
	2.50	*****	063074.	48009	.01889	0019.	. 50.	õ
LC KMS.	5 . 69	4615930	.60+550	46503.	70579	. 1 + 00	. 597	õ
	00.4	***150*	053276.	40001	71039.	651.	• • 00	ò
	30.0	573125.	974885.	30835.	76760.	0447.	.690	ö
	4.00	715858.	896494.	. 1 1 6 9 4	60832.	0785.	.789	ö
LA KAS.	91.7	809197.	933214.	20400	46102.	0547.	916	ō
	6 • 00	833486.	816119.	47631.	41838.	0500.	. 900	Ö
	00.0	840436.	775147	20761.	31306.	0317.	.958	6
	00.0	840436.	7751470	0761.	1306.	13.	. 958	5
	2.00	946183.	734175.	. 1666	19883.		.019	6
	•••	030705.	151132.	1992.	3022•	473.	132	ò

ORIGINAL PAGE IS OF POOR QUALITY

		-N01581W	-3A/MCK-500/LIFT	06 6 10	ADA MECO!			CASE
							141	0 • 1
				×	£	2	9	NORMAL
	£	•	E 16	2	FORC	Œ	¥	3
	275	T 30	1	1.85	9	00	•	5
	00.0	096873.	567430.	90693.	2584·	668.	.248	60
	4.00	159572.	482914.	42150.	4519.	911.	.369	108
	9.00	219609.	396984.	01065.	. +000	900.	464.	• = =
	2.00	277248.	310668.	66617.	7878.	.5+0	. 629	122
	46.000	6331832.2	2224349.9	135935.2	8 • 5 1 + 8 1 -	5235.8	2 - 7 6 9 7	. 1269
	7.50	348463.	191547.	25141.	1583.	936.	.823	126
	7:50	348463.	191547.	251410	21583.	936.	. 623	120
	00.0	260194.	137497.	09434.	26043.	440.	198	133
	.00	118112.	052435.	87368.	29477.	716.	.921	140
	7.50	9576230	979737.	1243.	27379.	137.	.955	145
	7.50	957623.	979737.	1243.	27379.	137.	. 943	40
	CC: H	865353.	969741.	9249.	267510	057.	. 932	+
	2 • 00	125607.	895649.	5043.	20743.	471.	199.	155
	6.00	386915.	832543.	3501.	15430.	962.	.354	170
	00.0	509132.	786299.	3094.	12780.	553.	.361	212
	1 . 42	735336.	778393.	9284.	12653.	417.	. 930	230
3	1 . 42	36324.	428013.	7858.	-325.	314.	.028	244
101	1 . 42	36324.	428013.	7858.	322.	314.	.028	244
	00.	36439	419304	2083.	1004.	107	030	3 # 6
	0.00	36767.	365295.	5346.	260.	56.	.092	255
	00.0	36861.	311286.	249.	1621.	03.		264
	60:02	36889.	257277.	1474	836.	87.	.192	273
	88.00	36897.	203268.	2136.	365.	*	.247	282
	04.00	36896	149258.	384.	133.	5	.306	293
	20.02	36899.	.642540	2456.	*	*	.372	304
	36.00	36899.	041540	2475.	•	•	. 443	317
	52.00	369000	87231.	2484e		٠	. 523	330
	53.04	369000	83719.	2465.	:	•	.529	120
INTERMEDIATE	53.04	40100.	836581	*	,	•	.033	224
	•	40103	49239.	•		*	.071	230
	94.00	*0010*	12426.	•	•		+11.	238
	86.83	40103.	05959.	•	2		.122	239
	19.08	366000	.45450	•	: 2		. 1 1 9	238

	MECO/
	AOA
₹	10
SA+1/EL-24	M15510N-3A/MCR-500/L1F70FF

CASE 1	TABLE NO. 1.9	0	U	S • 9	7	2	2	267	264	261	7	210	300	.3132	326	=	357	7	395	:	11	7	~	3	~	7	0
			AC	•	5	204		0	287	310	375	. 447	23	• • • •		. 30	:	607	. 28	.487	.731	:	=	. 9 63		. 9 6 3	.0000
		0	FORCE	2	~	~	•	~	•		•	~	?	•			•	0.0	•	•	•	•	13.9	•	14.2	14.2	•
A MECO/		ĭ	ō		-			· · ·	::·	· · ·	* •	_	1.2.	N	•	•	-	*	22.	:	5	÷		;	;	=	•
IFTOFF TO AOA		X I X				•	•				•		4.7	ċ		ŝ		2.99		-		:	0	2 4 .	N	;	•
15510N-3A/MCR-500/LIFTOFF TO			9	_	787	39164.	02535.	79372	79372.	.1,199	30135.	94129.	50123	•	01110	50104.	14098.	78092	42086.	00000	70074.	4/533	34150.	00720	95398.	9539	953
C-N01551H				LBS	036600.	036600.	036600.	36400.	024400	024600.	024600.	024600.	024600.	5	024400	024600.	024400	24600.	024400	024600.	024600.	024600.	. 644200	02141.	99199	•	•
			X	SEC	00.00	14.00	32.00	42.12	42.12	40.00	00.44	00.00	94.00	412.000	20.00	44.00	00.00	74.00	92.00	00.00	24.00	34.48	40.00	54.00	54.71	58.71	50.71
																						BEGIN GLINIT				LALECT LON	

•

A+1/EL-24

			> Y + 1 / E L -	**			
		M15510N-3A/MCR	CR-503/LIFTOFF	TO AUA MECO!			CASE
						7	BLE NO. I.
	TIME	•		~	_	LPC	130
	5.6.0	O.	9	Ŀ	930	9	30
L1FT-0FF	00	47	. 69	.90	00	6 8 -	00
	.00	4	.66	9	0	9	00
108 1		161.49	.68	680	O	*	0
۳ ۶	00.	764 - 191-	.68	• 8 9	9	*	0
END ROLL	. 65	180.00	. 52	000	0	0	8
	900	00.0	.59	0	0	50	0
	12.000	0	-5.553	000.	0000	422	.000
	00.	00.0	.73	~	0	~	a
	.50	00.0	•	0	0	•	O
	7.50	00.0	- 9 •		a	•	000
	0.00	00.0	. 1.3	0	.3	•	- 00
	. 30	00.0	. 40	0	9	^	00
	60.8	00.0	14.78	0	0	•	00.
	2.00	00.0	*0.	O	0	T	00 -
	6.00	00.0	4.36	0	CO	.72	000
	00.0	00.0	1.76	0	0	~	-101
	4.00	0000	24.22	0	3	92	
MACH CNE	5.93	00.0	5.38	0	C	S	10:
	8.00	00.0	99.9	2	0	€0	
	4.30	00.0	-29.252	0	0	1.25	0
EDELKAR B	4.49	00.0	30.98	0	0	1.23	
	5.50	00.0	31.71	0	0	1.23	10.
	5∙5	3.00	31.71		0	1.23	10:-
10 AMS.	5.89	00.0	66.1		•	~	
	0000	00.0	2.07	0	a	-1.230	:10:-
	0::0	00.0	•	3	O	-1.096	
	4.00	00.0	7.83	0	0	•	10
LA KHS.	7.16	00.0	• 05	0	J	-,715	10:-
	8.0C	00.0		0	O	•	10.
	0.00		2.01		9	-	1000
	00.0	00.0	2.01	0	0		10:-
	2.00	00.0	43.36	0	00	7	- 0 10
	0000	0000	5.93	0	0	•	

*
2
٠
_
W
`
•
•

		M15510N-3A/MCR	CR-500/L1FT0FF	TO ADA MECO/			CASE 1
						*	ij
, ו	TIME	-	-		DELAC	_	0E
沙	SEC	w		فعا	Ē	0.5.6	w
	00.0	0.00	8.31	9	a	8	5
70	.00	30.0	0.50	0	0	0	5
N/A	9.00	0.00	2.53	0	0	•	015
M S	00.	00.0	4.40	0	O	•	0
, 1 Q		180.033	•	0	0	.693	_
PA U	350	00.0	6.75	0		~	0
G	7.50	0.00	6.75	0	a	~	0
E	00.0	00.0	7.64	0	0	'n	0
R	4.00	3	9.9	0	O	8	900
\$	7.50	00.0	90.0	0	0	-	0
	7.50	Ġ	0.06	C	a	.37	027
	6.00	Ū•00	0.23	0	9	• 46	~
	2.00	00.0	1 . 63	0	0	0.27	7
	00.9	0.0	-62.917	0	0	9	910
	00.0	0.00	3.89	3	9	3.81	-
	1.42	0.00	4.05	0	C	• 95	5
LPARA :	1 . 42	00.0	5 . 10	0	0	• 12	5
OF GIN MINI	1.42	00.0	-	0	0	13.12	_
	4.00	00.0	5.54	J	О	=	_
	0.00	0000	.77	0	00	• 05	Э
	20.0	0000	9.25	2	0	12.97	0
	2.00	0.0	0.56	O	7	88	a
	9.00	0.00	1 • 82	O	3	. 78	0
	00.40	.00	• 07	0	0	99.	
	20.00	0000	4.32	C	0	• 54	0
	36.00	00.0	5.58	C	0	2.41	0
	52.00	÷	77.55)	13	2.27	O
	53.04	00.0	7.88	\supset	0	• 50	0
INTERMEDIATE	53.04	0000	7 • 88	0	C	• 56	0
	68.0	180.000	0.20	O	C	9 - •	0
	94.00	3.00	3 * • -	.003	O	12.0	330
	6.8	80.00	•	. 300	.000	12.03	
	118.982	•	1 • • 1	600.	a		- 000

SA+1/EL-24

			112.17.18				
		#18510N-3A/#	SSION-3A/MCR-500/LIFTOFF	TO AOA MECO/			CASE 1
						TAE	ABLE NO. I.10
	TIME	8 T T J	-	-	DELAC	_	DELYC
	SEC	DE	30	DEG		930	0 E G
	300.000	180.000	-82.602	000•	• 000	-11.942	000
	316.000	1 90.000	-83.805	000	000•	-11.823	000
	332.000	180.000	-85.011	• 000	0	-11.697	000
	342.121	180.000	-05.777	• 000	000•	P19.11.	000
	342.121	180.000	-85.777	• 000	000•	* 1 9 . 1 1 -	000
	348.000	1 80 • 000	-86.223	• 300	000•	995.11-	000
	364.000	160.000	-87.439	000.	000•	-11.428	• 000
	ė	180.000	-88.660	.000	0	-11.282	000
	396.000	180.000	T00.69-	000•	000•	-11.127	000.
	\$	180.030	-91-110	000•	000.	-10.963	000•
	428.000	180.000	-92.329	• 200	000•	-10.777	000•
	000.4**	180.000	3.5	000•	000•	-10.564	000•
	460.000	180.000	101.101	0000	000•	•	000•
	•	180.000	-95.927	000•	000•	0	000
	\$	180.000	-97.124	• 000	000	119.6-	000.
	00.	180.000	~	000•	000•	-9.545	000•
		÷	-99.565	000•	000.	-9.290	0000
BEGIN GLINIT	9 • • •	180.000	-100.570	900•	.000	-9.106	000•
	0000	180.000	-100.836	000•	0	-9.063	000•
	556.000	180.000	-102-174	000•	000•	. 89	000•
		183.000	-102.405	000.	0	-6.870	100•
INJECTION	558.712	180.000	-102-405	000•		-8.870	100.
	558.712	140.000	-102-405	000•	000.	000.	000•

			24+1/EL*	* 7			
		M15510N-3A/HC	ON-3A/HCR-SOO/LIFTOFF	TO AOA MECO/			CASE
						-	ABLE NO. I.11
			ANG	-	-		•
	TIME	RANGE	ANGLE	LAT	LONG	U	1 DEA
	5 £C	X Z	9	4	4	w	ш
C1FT-0FF	000•	•	•	÷	120.	0	8
	000.4	•	•	*	ċ	97.65	21.36
+ ROL	000.9	•	•		120.	00.47	36.18
BEGIN TILT	0000.9	•	•	•	120.	00.47	36.18
END ROLL	7 • 855	•		•	120.	97.71	14.44
	8.000	•		*	120.	5.39	91.65
	12.000	•		*	20.	21.78	93.75
	16.000	•	-	*	120.	47.59	43.62
	17.500	•	-	*	120.	34.89	034.84
	17.500	•	-	•	120.	34.89	039.04
	20.000	•		;	120.	082.89	202 • 53
	24.300	-	-	•	120.	17.94	460047
	20.000	.2		;	120.	547.96	712.26
	32.000			*	120.	772.49	957.25
	36.000	*	-		120.	994.73	140041
	40.000	•	-	*	120.	216.81	437.75
	44.000	•	-	*	120.	438.47	674.95
MACH ONE	45.935	••	••		120.	545.36	708.75
	46.000		.2	34.7	-120.5	2659.223	2909-555
	52.000		• 5	÷	120.	119.52	141.96
TORUNAU O	24.49	•	.2	*	120	11.410	288.31
	55.500		• 2	*	120.	03.970	348-19
	55 + 500	1.7	• 5	;	120	076.50	340.19
10 KMS.	169.55		• 5	;	20.	10.000	371.51
	24.000	•	.2		120	105.10	378.02
	000.04	•	• 5	•	120.	340.37	622.29
	000.40	•	• 5	;	20.	567.37	114.15
14 KHS.	67.160		.2	;	120	791.11	04.500
	000·#+	•			120.	946.59	142.66
	70.000	3.7	• 5	34.5	120	91.00	274.42
	20.000		• 5	*	120	901100	279.92
	72.000		• 5	T • T M	20	110.70	420.24
	74.000			3	120	*04.00	710.23

	•
	MECO
	AOA
	1
	FILLES
	111
	a va/
	4
	15510
	=

				•			
		MISSION-3A/MC	SSION-3A/MCR-500/LIFTOFF	TO ADA MECO/			CASE 1
						•	ABLE NO. I.11
			9 2 4	-	_		
	TIME		ANGLE	LAT	LONG		IDEA
	Ĺ	Z	056	w		1/SE	/5E
	0	6.6	•		•	701.87	012.10
	00.				120.	012.08	326.60
	9.00	•			120.	337.96	454.75
	•	9.6	•	33.9		5678.083	• 1
	00.0	•	•	ċ	121	034.30	356.49
	7.50		.3		121.	172.21	15.34
	Q	•			121.	172.21	~
	00.	•		-	121.	405.39	730.04
	4.00	•	*•	÷	121.	783.05	110.05
	7.50	•	*.		121.	119.95	140.01
	.50	•	* •	÷	121	119.95	+4.0+4
	9.00		*.	=	121.	167.98	107-14
	2.00	•	*.	5	121.	532.92	963.45
	00.0	-	<i>*</i>	2.	121.	840.27	192.26
	00.0	•	ış.	7:	121.	119.77	453.30
	1 . 42	š	• 5	2.	121.	173.43	507.33
LPARATIO	21.42	5	5	2	121.	173.43	507.33
9	1.42	ŝ	5.	7	121.	173.45	537 - 33
	24.00		ī.	5	121.	263.02	14.965
	00.0	•	.,	-	121.	831.24	165.26
	00.9	2	6.	•	121.	422.47	756.52
	172.000	6.99	1.1	•	122.	0038.59	0372-65
	88.00	7		÷	122.	0681.78	1015.84
	04.00	•	•	•	122.	1354.51	1919
	20.00	•	٠	•	122.	2059.43	2393.69
	34.00	90	•	ė	123.	2800.42	134.48
	2.00	ċ	5.5		23	. 67	4.73
	53.04	62.	•		123.	3632,88	3966.94
INTERMEDIATE	ŝ	•	•		123.	3632.88	* 6 • 9 9 6
	٠	1.481	•	7	12	4150.92	*84.98
	284.000	90	•	•	123.	4726.21	60.27
	86.		7.0	•	-123.9	4829.65	143.71
	86.61	-	•	•	123.	4829.65	163.71

			SA+1/EL-24	54			
DR DR		M;5510N-3A/MC	:5510N-3A/MCR-500/LIFTOFF	TO AGA MECO/			CASE 1
IGI P						-	TABLE NO. I.11
N.			Z	d : 1	d I 1		1
AI R	TIME	RANGE	•	LAT	LONG	HUA N	⋖
	SEC	E Z	DEG	930	9 3 0	FT/SEC	FT/SEC
P	300.000	235.0	3.7	26.0	•	15323.480	57.54
A(A)	316.000	262.5		55.4	•	15945.934	19.96
	2.0	291.6	4.6	24.7	•	16596.104	30.16
	2 . 1	310.8	o	24.3	•	17022.882	56.94
	342-121	310.8	6.	24.3	•	17022.882	Š
	9.0	322.2	9.1	24.0	*	1 273.701	17607.761
		354.6	9.5	23.3	-125.1	17978.851	18312-911
	3.0	388.7	6 • 2	2.2 • 5	-125.3	16719.668	19053+728
	•	454.6	6.7	21.7	-125.6	19499.955	19834+015
	2.	462.6	7.6	20.8	-126.0	23324.155	20658.215
	•	502 • 6	0.8	8 • 6 1	-126.3	21197.511	21531.572
	;	545.0	8.7	•	-126.7	22126.258	22460.318
	ė	589.7	7.0	•	12	23117.891	23451 • 951
	•	637.1	10.2	15.8	-127.6	24181.556	24515.616
	2.	687.2	0.11	ë	7	45388567	25662•604
		740.4	6.11	•	-129.2	26573.017	26907.087
	*	797.0	12.8	6.9	~	27933-133	28267 • 193
BEGIN GLIMIT	•	6.448	13.6	٠.	-132.3	29100.837	29442.898
	00.0	857.1	13.8	9.1.	-133.1	29429.018	29763.078
	000.9	921.1	9 • 5 1	5	3	30973.370	11307 • 430
	558.712	932.4	15.0	•	+ 1 60 • 4	31235.093	1569.154
INJECTION	8 - 7 3	932.4	15.0	-59.0	•09	31235.093	31569•154
	8.71	932.4	15.	-59.0	7.0911	31235.093	31569-154

SA+1/EL-24

MISSION-3A/MCR-SOD/LIFTOFF TO ADA MECO/

CASE 1

Y E							-	TABLE NO. 1.12
FT FTSEC FT FTSEC FT FTSEC FT FTSEC FT FTSEC F		Σ	×	>-	2	00	001	007
14.00 209024345 -208020 600014 600757 -1086431 -1086415 -			F 7	14	14	1/SE	1/5E	./ SE
## ## ## ## ## ## ## ## ## ## ## ## ##		0	0902623.	0962.	2469.	00.	1186.33	398.09
LGIN HOLL 6.550 20902933.2 -20080.8 60081.8 107.082 -1186.415 LGIN HOLL 8.655 20902933.2 -30280.8 107.082 -1186.415 12.550 20903187.2 -30283.7 5727.0 1147.43 -1186.406 12.550 20903187.2 -30283.7 5727.0 1147.43 -1186.406 12.550 20903187.2 -30283.7 5727.0 1186.906 17.550 209057.2 -309493.7 5728.4 124 17.550 20905594.5 -44088.7 5728.7 177.7 17.7 17.7 17.8 18.7 18.7 18.7		60.	0902757 •	25708.	0877.	8.75	1186.37	397.91
### ### ### ### #### #################	EGIN RUL		0902933.	28080.	0081.	07.08	1 1 86 . 41	397.73
NO NOLL	FGIN TIL	.0	0902933.	28080.	0081.	07.08	1186.41	397.73
12.030 2090387.2 30453.7 5973.7 2344.243 1186.466 112.030 20903947.7 25199.3 5772.1 234.243 1186.466 112.030 2090597.2 39944.2 55132.7 327.20 1186.149 17.500 20905974.5 41723.4 55632.7 327.20 1186.100 17.500 20905974.5 41723.4 55632.7 327.20 1186.100 120.030 20905974.5 41723.4 55632.7 327.20 1186.100 120.030 20905974.5 41723.4 55632.7 327.20 1186.100 1186.100 120.03 120	ND ROLL		0903166.	30281.	9344·	*****	1186.47	396.92
12.000 20003947.7 =35199.3 57712.1 234-243 -1186.319		ů.	0903187	30453.	9 207 .	47.43	1186.46	396.80
16-10.00 20905072.2 -39944.2 55632.7 367.209 -11866.189 17.500 209055945 -41723.4 55632.7 367.209 -11866.080		2 . 00	0903947.	35199.	7712.	34.24	1186.31	389
17-500 20905594*5 -41723.4 55632.7 367.209 -1186.080		00.0	0905072.	39944.	6185.	29.36	1186.14	372.60
17.500 20905694.5		7 . 5 . 0	0905594	41723.	5632.	67.20	1186.06	363.69
20.000 2090553.5		7.50	0905594.	41723.	5632.	67.20	1186.08	363.69
24.030 20908524.2 -49431.9 53434.6 532.018 -1185.773 -24.030 20918524.2 -49431.9 5285.7 6241124 -1185.773 -126.000 20913626.7 -5285.7 6241124 -1185.587 -126.000 20913626.7 -5285.7 707.759 -1185.587 -126.000 20913626.7 -126.000 509185.87 -126.000 509185.87 -126.000 509185.87 -126.000 509185.87 -126.000 5092349.5 -73136.0 49857.8 924.782 -1185.011 44.600 2092349.5 -77878.6 985.6 982.773 -1184.965 -1185.011 44.600 50923167.8 -77878.6 982.773 -1184.965 -11		0.00	0906593.	44688.	4745.	32.07	1185.96	345.37
26.000 20910839.0 -54174.7 52285.7 624.124 -1185.587 -12.003 209158.6 51326.3 707.759 -1185.288 -1185.003 20919781.2 -68398.7 50082.5 858.184 -1185.258 -1185.234 -118		4.00	0908524.	49431.	3434	32.01	1185.77	308.71
32.003 20913505.7 *58916.6 51326.3 707.759 *1185.413 ** 36.000 2091349.5 ** 44.000 2092349.5 ** 754316.7 ** 49657.8 \$924.782 ** 11865.258 ** 49.000 20923167.6 ** 754316.5 \$955.6 \$953.862 ** 1184.955 ** 1184.965.011 ACH UNE H9.000 20927167.5 ** 754316.5 \$955.6 \$953.862 ** 1184.965.011 S2.000 20927167.5 ** 754316.5 \$955.6 \$954.7 \$914.558 ** 1184.965.011 S2.000 20931204.2 ** 86.000 20934902.0 ** 86.000 20934902.0 ** 86.000 209344.2 ** 87.286.9 \$1071.4 \$108.509 ** 1184.831 S5.500 2093442.7 ** 87.286.9 \$1071.4 \$108.509 ** 1184.831 S5.500 20944551.2 ** 96.000 20949453.5 ** 100.000 20949453.5 ** 100.000 20949453.5 ** 100.000 20959911: 04 \$5599.0 \$1289.300 ** 1184.485 76.000 20951999.2 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 20959911: 04 \$559.8 \$1322.936 ** 1184.485 76.000 20951999.2 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 209595411: 0 ** 100.000 209595411: 0 ** 100.000 209595411: 0 ** 100.000 209595411: 0 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 20959411: 0 ** 100.000 209595411: 0 ** 100.000 20959411: 0 ** 100.000 2000 2000 2000 2000 2000 2000 20		9.00	0913839.	54174.	2285.	24.12	1185.58	264.60
36-0JU 20916493-U -63658-O 50582-I 785-184 -1185-123 40-0GG 2091349-S -73139-C 4965-S 6862 1185-123 44-6GG 2092349-S -73139-C 4965-S 6862 1185-123 44-6GG 2092349-S -73139-C 49655-S 695-S		2.00	.403E140	58916.	1326.	07.75	1 1 8 5 . 4 1	214-10
## ## ## ## ## ## ## ## ## ## ## ## ##		6.00	39164031	63658.	0582.	82.0	1185.25	156.76
CH UNE 44.600 20923349:5 -73139:0 49855.8 924.782 -1185:011 CH UNE 45.935 20925167:0 -75431:5 49655.6 953.862 -1184:962 48.000 20921204:2 -77878:9 49932:8 -1184:926 -1184:926 52.000 20931204:2 -85569:7 50745:5 1078:58 -1184:874 55.500 20931204:2 -85569:7 1078:58 -1184:874 55.500 20934902:0 -86766:4 50745:5 1078:509 -1184:82 55.500 20934902:0 -86766:4 50745:5 1078:509 -1184:82 55.500 20934902:0 -8676:4 50746:0 -1184:82 -1184:82 55.500 20934902:0 -8728:9 51076:4 1084:84 -1184:82 56.001 20935442:7 -87328:9 51076:4 1084:84 -1184:82 56.001 20934807:0 -87357:8 51076:4 1084:84 -1184:85 57.900 20949453:5 -100*********************************		0.00	3919781.	68398.	0082.	58.04	1185.12	91.75
CH ONE 45.935 20925167.0 *75431.5 49855.6 953.862 *184.965 48.00 20927167.5 *77878.5 49932.8 782.973 *1184.926 782.973 *1184.926 782.00 20931204.2 *82618.4 50325.9 1034.558 *1184.926 782.973 *1184.926 782.00 209331204.0 *86765.4 50745.5 1034.558 *1184.8274 7878.0 *269331204.0 *269331204.0 *86765.4 50745.5 1078.509 *1184.8274 782.0 *86765.4 50765.0 *1078.509 *1184.827 *1184.		4.00	0923349	73139.	9857.	24.78	1185.01	13.51
### ## ### ### ### ### ### ### ### ###	CZ CZ	5.93	0925167.	75431.	9855.	53.86	1184.96	7 . 32
52.000 20931204.2		00.0	0927167.	77878.	9932.	82.97	1184.92	7 • 6 6
### 54.491 20933820.0		2.00	0931204.	82618.	0325.	034.55	1184.87	40.25
55.500 20934902.0	U#1 K W	4 . 49	0933820.	85569	0745.	065.60	184.84	97.52
55.500 20935324.7 =87228.9 51046.0 1083.46: -1184.831 55.591 20935324.7 =87328.9 51046.0 1083.46: -1184.825 56.030 20935442.7 =87357.8 51071.4 1084.846: -1184.825 60.000 2094457.0 =92097.0 52223.4 1137.854 -1184.825 64.030 20944551.2 =968 .9 53844.0 1195.081 -1184.485 70.000 20949453.5 =101: .4 55498.7 1243.454 -1184.485 70.000 20951999.2 =101: .4 55729.0 1256.785 -1184.485 72.000 20951999.2 =103.12.3 58759.8 1322.816 -1184.401 76.000 20954611.0 =103.12.3 58759.8 1322.816 -1184.401		5.50	0934902.	86765.	0957.	078.50	1184.83	22.18
KMS- 55-591 20935324.7 -8728.9 51046.0 1083.46! -1184.826 56-030 20935442.7 -87357.8 51071.4 1084.846! -1184.825 60-000 20935442.7 -92097.0 52223.4 1137.854 -1184.254 1137.854 -1184.587 64-030 20944551.2 -468 .9 53844.0 1195.051 -1184.587 -1184.485 -1184.485 -1184.485 -1184.485 -1184.485 -1184.485 -1184.485 -1184.401 20951999.2 -101: .4 55729.0 1256.785 -1184.485 -1184.401 20951999.2 -103.12.3 58759.8 1322.836 -1184.401 -1		9.50	3934902.	86765.	0857.	078.50	1184.83	22 • 1 8
56.000 20935442.7 *87357.8 51071.4 1084.846 *1184.825 60.000 20939887.0 *92097.0 52223.4 1137.854 *1184.754 *1187.854 *1187.854 *1184.754 *1187.855 *1184.85	Y	49.5	0935324.	87228.	1040.	083.46	1184.82	31.97
60.000 20939887.0		60.9	09354420	87357.	1071.	18++80	1184.82	34.72
KMS. 64.030 20944951.2 -468 .9 53844.0 1195.081 -1164.678 KMS. 68.00 20949453.5 -101: .4 55999.0 1256.785 -1184.485 70.000 20951999.2 -103.7.3 587299.0 1289.300 -1184.485 70.000 20951999.2 -103.7.3 58759.8 1322.816 -1184.401 76.000 20954611.0 -103.12.3 58759.8 1322.816 -1184.401		00.0	0939887 •	92097.	2223.	137.85	1184.76	43,93
KMS. 67.16C 20948403.5 -100% ".1 55498.7 1243.454 -1184.587 68.C00 20949453.5 -101% .4 5599.0 1256.785 -1184.485 70.000 20951999.2 -103% 57299.0 1289.300 -1184.485 72.000 20951999.2 -103% 57299.0 1289.300 -1184.485 72.000 20954611.0 -103%12.3 58759.8 1322.816 -1184.401 76.000 20954611.0 -103%12.3 58759.8 1322.836 -1184.401		4.00	•1554460	. 843	3844.	195.08	1164.67	60.69
68.C00 20949453.5 -101; .4 55999.0 1256.785 -1184.559 70.000 20951999.2 -103.7.7.3 57299.0 1289.300 -1184.485 70.000 20951999.2 -103.7.3 58759.8 1322.816 -1184.401 72.000 20954611.0 -103.12.3 58759.8 1322.816 -1184.401	X	7 . 16	0948403.	100-	5498.	243.45	1184.58	90.00
0.000 20951999.2 =103°°°°°° 57299.0 .289.300 =1184.485 0.000 20951999.2 =103°°°°° 57299.0 1289.300 =1184.485 2.000 20954611°0 =103°12°3 58759.8 1322.816 =1184.401 6.000 20960340.7 =111049.6 62271.8 1392.539 =1184.199		3.00	0949453.	101	2999.	256.78	1184.55	11.38
0.000 20951999.2 ~103'.; 57299.0 1289.300 ~1184.485 2.000 20954611:0 ~10.512.3 58759.8 1322.816 ~1184.401 6.000 20960340.7 ~111049.6 62231.8 1392.539 ~1184.199		00.0	. 6661560		7299.	289.30	1184.48	89.40
2.000 20954611:0 -10.512.03 58759.8 1322.816 -1184.401		0.00	.6661560	103	7299.	289.30	1184.48	89.40
6.000 20960340.7 -111049.6 62231.8 1392.539 -1184.199		2 - 00	1194560	10:512.	8759.	322.81	1184.40	72-15
		0000	0960340	111044.	2271+	192.53	184.19	16.15

SA+1/EL-24

			•				
		/ V = NO 1 55 1 W	./MCR-500/L1FT0	FF TO ADA MECC	/0		CASE 1
						•	•
	I.	×	>	7	0	00	2007
	S P. C	F 4	4	4	1/SE	1/5E	1/SE
	0 • 0	0965755.	115785.	6366	465.06	1183.94	150.01
	4.00	0971765	120521	1426.	540.36	1183.64	366.69
	9.00	0978081.	125255.	7358.	618.40	1183.29	602.55
	2 • 00	0984715.	129987.	4273.	+0.669	1182.88	858 13
	00.0	0991677 .	134718.	2251.	782.09	1182.40	134.21
	7 . 50	.476490	136491.	5533.	913.89	1182.21	243.12
	7 . 50	0994374.	136491.	5533.	013.89	1182.21	243.12
	00.0	.2798990	139446.	01373.	866.76	1181.67	456.34
	4.00	1006608.	144172.	11700.	946.66	1181.28	736.19
	7.50	1013556.	148306.	21760.	20 • 1 4	1180.72	013.07
	7.50	1013556.	148306.	21760.	020 14	1180.72	013.07
	8.00	1014569.	148896.	23276.	023.76	1180.63	053.00
	2.00	1022824.	153617.	36107.	91.460	1179.92	358.08
	9.00	1031292.	158336.	50102	135.82	1179.15	633.89
	00.0	1039872.	163051	651110	144.51	1170.33	851.03
	21.42	1042908.	164724.	70611.	131.25	1178.03	8 6 5 7 8
LPAMAT 10	21.42	1042908.	164724.	70611.	131.25	1178.03	892.98
Z	21.42	1042908.	164724.	70611.	131.25	1178.03	892.98
	4.00	1048371.	167762.	80744.	103.60	1177.47	961.86
	40.00	1360653.	186572.	47679.	931.53	1173.63	410.83
	56.00	1110187.	205316.	22056.	760.64	1169.25	091.03
	72.00	1137007-	223986.	04344.	565.35	1164.40	399.83
	88.00	1161158.	242574.	95008,	456.98	1159.13	938 13
	04.00	1182687.	261075.	94532.	564.55	1153.38	507 • 85
	20.00	1201637.	279480.	03440	104.92	1147.22	1111.57
	36.00	1218058.	297784.	22300.	47.87	1140.66	752039
	54.00	1231982.	315979.	51735.	92.31	1133.67	434.38
	10.54	1232801.	317159.	60535.	81.63	1133.21	+800+
INTERMEDIATE	1,0.642	21232801.7	-317159.0	960535.7	781.630	-1133.213	8 + 8 0 • 2 + 8
	00.89	12425250	334059.	90782.	16.77	1126.28	936.40
	84.00	1248496.	352018.	37810.	29.07	1118.49	445.83
	96.41	1249068.	355160.		76.19	1117.07	537.69
	86.4	1249068.	355160.	94487.	78.19	1117.07	537.69

SA+1/EL-24

		/YC-NO1551H	SION-3A/MCA-SOO/LIFTOFF	FF TO ADA MECO/	\ 0		1 3513
							TABLE NO. 1.12
	I	×	>	7	TOOX	0	2007
	w		L	-	786	7/SE	FT/SEC
	00.00	1249033.		93163.	===	1110.20	0477-070
	1	1246470.	17546.	67204.	: 53	01.67	10532 - 993
	32.00	1236334.	00190	30363.	.21	1072.66	11115.440
	42.12	1230687 .	16129.	44796.		1046.75	00/040711
	42.12	1230467.	16129.	44796.		1006.75	994.44.
	40.00	1225340.	22508.	13049.	7	1.24	11725-546
	00.49	1207365.	39762.	05723.	1201.64	3.42	12361-622
	90.00	1104207.	56068	06623.	1404.43	063.19	13031-836
	96.00	1155976.	73782.	22942.	1938.99	1062.54	13739.657
	12.00	1122201.	90535.	48714.	2277.62	1041.53	951.40771
	428.000	21063030 • 7	-507109-3	2986843.6	-2430.838	-1030.097	16205-152
	44.00	1030023.	13496.	36111.	14.7442	1016.26	16133-400
	00.09	00607940	39691.	33427.	7114147	1004.03	1404040
	74.00	0929784.	12667.	13765.	2779.54	. 40	1 0016 - 4 00
	92.00	0865972.	71478.	10356.	*200.7*		1 9069 - 350
	00.00	0795227 •	17050.	14492.	4646.93	:	20214-220
	24.00	07171110	02+20	27766.	\$123.01	3.22	21467-631
BEGIN CLIMIT	36.60	0	14400	36647.	8528.79	2.05	22552 - 050
	40.00	0631090	17519.	12149.	5635.20	500	82040.407
	94.00	0534574.	32469.	14042	41.46.46	100	24267 • 711
	50.71		34973.	26220.	6263.65	2:12	24507 • 151
12060100	12.05		34973.	25220.	4203.6	2 . 1 2	24507 - 161
	56.71	-	-634973.2	18220.	.6203.656	~	24507-151

Ţ

14+1/EL-24

			8A+1/EL-	EL-24			
		M15510N-3A	18510N-3A/MCR-500/L1FT0FF	TO ADA	HECO/		CASE
						•	TABLE NO. 1.13
	£	X	YACC	¥	_		
	SEC	ů	•	FT/8EC++2	BTU/FT0.2	.20	
. 1 F T = 0 F F	8	. 122	50	.04	•	•	
	9	. 55	.012	C190·	•	•	
SEGIN ROLL	9	9.673	25	<u>-</u>	•	•	
112 415	900	4.673	. 326	112	•	•	
٥	• 8 5	0.407	032	17	•		
	9	0.10	7	:	•	•	
	2.00	2.733	5	. 9 5 7	•	•	
	0000	4.833	#	. 420	-	•	
	7.50	5.620	*	.470	•	•	
	7.50	5.420	*	.470	•	9	
	00.0	5.151	047	. 132		9	
	4.00	4.012	+	. 1 46	•		
	9.00	2.012	4	1 . 0 6 3			
	2.00	. 112	7	. 402	•	• 5	
	•••	4.786	-	.276			
	00.0	7.598	=	7 . 226	•	•	
	4.00	• • 00	025	8.710	•		
ACH ONE	5.43	. 508	021	9.295	•		
	6.00	. 692	50	4.717	•		
	2.00	. 537	=	****	•		
TOTTKET T	4.40	999.	2	4.022	•		
	9.50	• • 0 9	2	1 + 9 + 1	•	.,	
	2.50	. 405	2	4.0.4	•		
C KAS.	5 . 8 9	.713	50	\$. 210			
	•••	.743	=	5.323	?	.,	
	00.0	.750	7	9.200	÷	•	
	4.00	. 862	25	3.364	•	-	
4 KHS.	7.16	.752	32	6.171		1.2	
	8.00	5.411	7	7 . 8 4 1	÷	1.2	
	00.0	. 512	-	*****	:		
	70.000	9 . 6	.0395	8481.04	5.92	-:	
	2.00	*00.	*	2 • 5 7 5	•	-	
	0000	.780	;	7.230	ŝ	1.1	

SA+1/EL-24

		W15510N-3A	1551UN-3A/HCR-500/L1F10FF	TO AOA	MECO/		CASE
							TABLE NO.1.1
	111	A	7	V	w	1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	Ś	ů	FT/SEC++2	ů	BTU/FT002	• 2 •	
	00.0	8.478	8.0	1.823	•	2.0	
		4.1	* 180 •	.54		•	
	30.8	9.839	9	*0**	ö	•	
	2 . 30	644.0	9	*-*-	•	•	
	00.4	1.074	25	8+4.1			
	7.50	. 344	131	3 • 6 0 3	•	3.5	
	7.50	1.344	_	3 . 603	•	•	
	0.00	0.972	7	9 - 3 - 5	•	•	
	4.00	0.471	3	9.052	÷	•	
	7.50	9.610	9	0 * 4 * 6	ċ	•	
	7.50	9.595	2	0.227	•	•	
	8.00	8.910	171	984.6	30.	•	
	2.00	3.242	39	2.822	4 B •	•	
	16.00	• 556•	1 9 B	4.755	÷	•	
	20:00	.385	210	6.117	83.	•	
	21.42	2.038	214	3.457	6 9	•	
A 7 10	21.42	10.723	7 1 7	181.9	89.	•	
BEGIN MINI	21042	0.723	717		89.	•	
	4.00	10.716	21	116.9	6	•	
	40.00	10.751	257	9.100	47.	•	
	00.9	9	2 B B	906.0	-	•	
	72.00	10.427		2010	9.50	•	
	80.00	10.243	3 t C	5	22.		
	04.00	10.062	7	044.			
	00.0	.893	397	9 - 9 5 6	42.		
	36.30	9.739	23	1 . 284	47.		
	52.00	.170	4	4 • 225	-	• 5	
	53.04	.360	50	4 . 4 9 8	52.	• 3	
INTERMEDIATE	53.04	17.084	Ç	9.620	52.		
	. E	17.668	12727	7		• 5	
	84.00	180.81	00	2 · 553	57.	7.	
	286.011	411.81	4	2 . 8 1 1	95	7 '	
	119.987		3	5 . 6 9 5	•	• 5	

			SA+1/EL-24	EL-24			
		MISS10N-34	S10N-3A/MCR-500/LIFTOFF	TO AOA	HECO/		CASE 1
Of Ol						HEAT	TABLE NO. 1.13
RI(F	TIME	XACC	YACC	ZAC	H	RATE	
H P(38 C	FT/SEC++2	FT/SEC+2	146	BTU/FT2		
) (1)		-18.3591	•	ċ	1.010	• •	
AJ R		-10.6377	. 5500	š	362.5	~	
		*****	.5740	÷	365.0	~•	
ŠŲ BV		-19.1986	.5920	ė	366.7	• 2	
\G A		-19.3336	.5920	38.0487	366.7	~•	
E		*101.61-	6104.	÷	367.7	• 5	
II and a second		-19.9251	.6266	ò	370.4	• 5	
3		-20.4357	0199.	÷	374.7	•	
		-21.0224	.6770	Ġ	379.5	•	
	412.000	-21.6967	.7021	40.2420	385.7	•	
		-22.4731	.7271	_	394.2	•	
		-23.3707	1251	÷	40804	•	
		-24.4126	.7768	ė	422.3	1.2	
	476.000	-25.6291	. 6013	ä	2.944	:	
	•	-27.0611	. 6254	÷	7.104	2.6	
	•	-28.7638	0440.	÷	99109	3.7	
	•	-30.0126	.6720	~	••10•	1.6	
BEGIN GLINIT	•	-32.7540		÷	673.3	6.2	
		-33.6512	. 8942	÷	5.4.9	9.9	
	554.000	-75.6419	. 9159	i	9.00	7.6	
	•	-36.0407	. 9195	i	9.420	7.7	
INJECT 10x	550.712	-34.0407	9616.	98.2.50	9.620	7.7	
	17	-30.0973	. 9219	i	829.8	7.7	

5A+I/IL-24

-- 1A

MISSION-34/MCR-5LG/A04/RILS FOINT TO NOM MECO

CASE	TABLE NO. 1.14	AZI	o tic	-169.011	69.0		. 3	7.50	-167-116	-166-770	100.501	-166-191	-165,951	100000	1000	C04 . 83 t+	-165.395	-165.273	-165-197			7 * * *	: -:	
	-	LONG	010	-121.573	21.57	1.72	-121-334	-122 cf 72	-122.262	-122 466	-122.693	-122 -914	-123,161	-124-424	-123.704	-124.812	-124-333	-124 - 321	-124.658	-125-011	100° 100° 1	1 6	-125.200	
NOK MECO		LAT-CD	9 <u>7</u> C	32.446	32.446	32 °C 72	31,656	31.227	30.755	30.245	29,696	29.104	23,465	27.72	27.072	26,743	26.177	25.358	24 - 425			22.391	22.001	
		CAMEAI	010	3) v • L	7.300	5.882	4.135	2.780	1.538	. 733	540.	334	759	\$60°-	363	- 811	683*-	82h	117	213.	J0.		002.	
SSION-3A/MCR-5LG/ADA/RILS FOINT TO		1>	FIVSEC	8591.555	53	9273,717	16012.652	10868.851	11665.734	12588.139	13532.563	14657.557	15924.223	17097.089	18435,318	19046.275	20011.215	21539.185	23067.906	24596.624	25382.783	25382,783	25382.783	
MISSION-3A/	,	œ	FT	21256882.7	21256382.7	21273375.0	21237506.7	21297.527.7	21304169.0	21308697.5	21303434.7	21368557. r	21305915.2	21302050.7	21297620.3	21296001.5	21293403.5	21290116.5	21239365.7	21288861.7	21290246.0	21290246. F	21290246.7	
	;	٦ ٦	วมร	253.041	253.041	000.692	285.000	301.000	717.00G	733.CDC	149.000	765,000	381.050	197 • COC	413.000	418,888	429.00C	30J • 5 95	461.030	477,000	485.231	485.231	485.231	
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16 21 11 62	HEIN HIDER											BECIN CLIMIT						IN CE CT HON		

SA+I/EL-24

-160.9824 -160.9824 -161.060 -161.154 -161.255 -161.489 AZR DEG -160.656 -160.656 -160.702 -161.524 -161.602 -161.729 -161.985 -161.984 TABLE NO. 1.15 -162.051 -162.051 CASE A LL844 A L 5623.028 10359.414 11172.082 12034.647 15040,194 16210,660 17487,053 13138,58 8932.215 12962-103 13961-074 204C7.556 21938.231 25000.223 25787.411 25787.411 417.044E. 23469.750 MISSION-ZA/MCR-5CD/ADA/RILS PGINT TO NOM MECO 1NC 99.275 99.275 99.275 101.02.679 100.255 102.679 102.679 102.677 102.677 103.691 103.691 103.691 103.692 351277.61 351277.61 367857.30 390769.4° 396720.63 400354.12 3982.9.50 396070.62 391568.00 396335.77 384433.30 375106.30 375106.30 375106.30 377216.90 374538.79 380844.43 381353,27 374195.25 400106.65 2533.041 269.000 301.000 301.000 333.000 381.000 418.888 429.000 418.000 445.000 485.231 BEGIN CLIMIT IGNITION BECIN MINH INJECTION

5A+I/=L-24

			7-77.85	* 7			
		MISSION-3A/M	SSION-JA/MCR-5UD/AGA/RTLS	S FOINT TO NOM	M MECO		CASF 1
							TA 3LE NO. 1.16
	TIME	MACH	o	ALFHA	BETA	SALPHA	OBETA
	SEC		L3/FT002	9 <u>:</u> 0			L3 +7EG/FT + +2
IGRITICN	253.641	Ω89•8	.013	3	702	980.	6 DD • -
BESIA WINA	253.041	8.537	.013	•	702	•029	003
	369 <u>.</u> COC	8.734	. 00.7	3.262	h2L	•023	: 00 · -
	\mathbf{r}	8.823	300.	r)	751	.111	003
	301.000	9.116	\$JO •	÷	784	900.	00 3
	17.000	9.435	100.	1.158	903	4CO.	- 003
	233 •000	268.6	£ 30 •	. 271	918	•003	. 00°-
	349.000	ö	400°	427.	930	.003	200
	365.000	4	800·	.739	878	200	+00
	381.000	Ň	• 000	638.	- 344	30D.	008
	397.000	ż	607.	1.116	946-	010	007
	413,000	iñ	.012	1.450	5 he • -	• 018	010
BEGIN CLIMIT	418.888	16.301	.614	1.58	445.4	•022	012
	459.000	,	.017	1.864	342	.032	015
	445.000	æ	• C.24	2.297	21.8*-	•0.54	020
	461.000	20.523	•030	2.744	- 343	+8U•	025
	J	-	300.	3,200	847	.113	- 0 3°
	485.231	()	•036	3	849	124	L.
INJECTION	85.2	25.492	.036	3.447	6 ₽ 8 ° −	.124	3C
	485.231	22.492	•038	3	349	.124	⊃£0°-

5A+I/:L-24

MISSION-24/MOR-500/ADA/RTLS FOINT TO NOM MEGO

CASE 1

LE NO. 1.17		ACC	•	.3272	. 7.7.7.2	40.00		2000	.3779	.3988	. 4223	0644	4795	7.1.1			1979.	• 6529	•6221	. 6148	66079	5012		7770.	.5979	.9257
TABLE		ACC	5.0	1.3982	1.7985	1.4726		13 4 13 6 14 6 14 6	T - 54 54	1-7521	1.9719	2-5670	2,1651	0032	7.557	0000	137007	2.979C	2.9404	2 - 3425	2.9446	2-1467	2.0476	371000	2.3478	4-5594
	SICE	FORCE	S	<u>ಟ</u>	a) #		, (•	• 5	61		. •					C) •	1.2	1.7	2 • 1	2.5	2.6	. • 7	2.5	2 ⋅ €
	NCRMAL	FORCE	L 8S	2.3	2.3		, ,		:		Ç••	-	0.	-			•	•	ق	1.8	3.2	4.7	3		عة. م	5.6
	⋖	1000 L	LB S	-2495.2	2.69.5-	-2459.8	-2401.5	4 6 6 4 6 1	1.26 1.7	-2455-5	-2491.3	-2490.6	-2488.4	-2484.6	-2479.2	-2471 o.E.		-2468.5	-2461.4	-2448.8	-2475-1	-2423.3	-2426.6		IJ	-2450.6
		METCHT	LBS	983719.0	983719.C	934234.1	834723.4	A 15157.9	5 20 1000	185652.2	756041.5	686480.9	635920.3	587359.6	537799.0	483238.4	0 0000	4 1000	433710.8	957	356128.0	320494.6	303576.3		35/6	363576.3
		THRUST	ر د د د	1410000.0	1410000.0	1410000.0	0.0000141	0.0000		ייייי	0.000	0.000		0.000	0.000	0.0000	2	0.000	1312132.5	1137163.9	6.8888301	961493.7	910728.9		0.000141	3 • NOOJE 61
		7 H M E					285.000						365.000									477.00C	485.231	120 204	403.631	485.231
				IGHTLION	BECIN MINH		,										PERFECT SECTION	מבסינו סרינודו						ACTE OF SE		

SA+I/:L-24

TIME CHIR SEC DEG 553.041 186.000 253.041 196.000 269.000 186.000 701.000 186.000 733.000 186.000 7349.000 186.000 781.000 186.000 181.000 186.000 181.000 186.000 185.000 186.000 185.000 186.000 185.000 186.000 185.000 186.000 185.000 186.000 185.000 186.000	CHIF DEG -89.436 -83.436 -90.550 -91.661 -91.869	7110 0100 7100 0100	DELRC	TA BLE	LE NO. 1.18
CHIR 186.000 186.000 186.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000	CHIF DEG -89.436 -90.436 -91.661 -91.661 -97.869	010 010 010 010 140	DELRC		
186.000 186.000 186.000 186.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000	9EG -89.436 -89.436 -9C.550 -91.661 -92.767	010 • 1000 • 1000	240	DELPC	DELYC
186.00 186.000 186.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000	-89.436 -89.436 -90.550 -91.661 -92.767		נו	253	DEG
196.000 186.000 186.000 186.000 186.000 186.000 186.000 186.000 186.000 186.000	-83.436 -90.550 -91.661 -52.767	000.	010	-13-197	300°-
186.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000	-90.550 -91.661 -92.767 -93.869	000	0.00	-13,197	300
180.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000	-31.661 -92.767 -93.869		070•	-13-115	220
186.000 186.000 186.000 186.000 186.000 180.000 180.000 180.000 180.000	-92.767	100 to 1	000	-13.028	000
180.000 186.000 186.000 186.000 180.000 180.000 180.000 180.000	7	222.	270.	-12.938	000 -
186.000 186.000 186.000 180.000 180.000 180.000 180.000	•	390•	200.	-12,938	0000-
130.000 130.000 130.000 130.000 130.000 130.000 130.000	-94.967	• נננ	000	-12.725	200°-
186.000 180.000 180.000 180.000 180.000 180.000	-36-361	200.	930 •	-12.626	000
18C.000 180.000 180.000 180.000 180.000 180.000	-97.151)))•	000*	-12.510	200
130.00C 180.00C 186.00C 184.00C 18C.00C 185.00C	-88.236	300.	000	-12,387	003
180.000 186.000 180.000 180.000 185.000	-59.316	373.	000.	-12.256	300 · -
186.00C 18u.00C 18C.00C 185.000 18u.00C	-100.391	000*	330 •	-12,115	200*-
180.000 180.000 180.000 180.000	-100.785	272.	000.	-12.061	330 • -
180.000 180.000 180.000 180.000	-101.462	202	200.	-11.758	003
300 186.000 300 180.000	-162.542	, rr	000*	-11.826	300
180.000	-103.634	222•	300.	-11,690	200*-
	-164.737	• נננ	000	-11.561	720
485.231 180.000 -	-105.308	202•	900.	-11.137	200•
485.231 186.COC -	-105.308	• נננ	0,00	-11.497	200.
85.231 196.000 -	-105.308	200.	300 •	-11.437	000

SA+I/EL-21

CASE 1	TABLE NO. 1.19		VIDEAL	FT/SEC	-00C	200.	755.123	1553.388	2397.683	3293.645	4248-010	5264.927	6366.380	7552.778	8843.823	10259.776	10 91 7.34 9	11793.377	13337.729	14662.080	16425.431	17220.873	17220.873	17220.873
	Ē		ACH	FT/SEC	000	000•	755.123	1553.389	2337.683	3293 • 645	4248-010	5268 -927	6366.390	7552 -778	3943.923	10259.770	10917.349	11793.377	11337,729	14882.080	16426.431	17220.872	1722C.873	17220-873
NOM MECO		IIP	L O NG	OE G	-123.4	-123.4	-123.7	-123.9	-124.2	-124.5	-124.8	-125.2	-125.6	-126.0	-126.6	-127.2	-127.5	-128.1	-129.4	-131.4	-136.9	-164.8	-164.8	-164.8
S POINT TO N		IIP	LAT	930	27.7	27.7	27.C	26.3	25.6	24.7	23.8	22.9	21.7	2C.4	13.9	16.9	13.0	1.9.1	13.2	3°2	-14.2	-62.8	-62.8	-62.8
ISSION-3A/MCR-500/A0A/RTLS POINT TC		RANGE	ANGLE	DEG	2.5	2.5	2.9	3.3	3.8	4.2	60 ° dr	5.3	5.9	9•9	7.3	ປ•8	8.3	83 60	8 • 6	10.7	11.7	12.3	12.3	12.3
HISSION-3A/MC			RANGE	Y	162.1	162.1	185.9	211.6	239.4	269.4	301.6	336.4	373.3	414.2	457.7	504.7	522.9	555.7	610.2	บ • 6 9 9	731.7	765.5	765.5	765.5
			TIME	SEC	253.041	253.041	269.000	285.000	TC1.000	217.000	333.000	200°642	365.300	381.00C	397.000	413.COC	418.389	429.COF	445.000	461.000	7	485.231	485.231	485.231
					NCILINDI	BEGIN MINH											BESIM SLIMIT						INDECTION	

Ī

DRIGINAL PAGE IN DR. POOR QUALITY

5A+1/5L-24

MISSIGN-JA/MCR-SCD/ADA/RILS POINT IC NOM MECO

CASE 1

						F	TABLE NO. 1.20
	TIME	×	>	•	X DO T	T 00 Y	ZCCI
	0 H C	FT	FT	-	FT/SEC	F 1/55C	FT/SEC
IGNI TI ON	253,041	21232301.5	-317159.C	960535.7	781.630	-1133.210	8480.543
BEGIN MINH	253.041	21232801.5	317159.0	960535.7	781.630	-1133.210	3480.543
	269.000	21242694.7	335185.8	11(152(.5	457.247	-1125.812	9192.764
	285.000	21247569.2	-353136.8	1254607.8	125,339	-1117.938	9349.242
	301,000	21246688.7	-376959.3	1420135.7	-212-324	-1109.757	15749.634
	317.500	21240531.2	-333646.8	1598967.5	-559, 937	-1101-113	11600.193
	333.000	21228755.2	-406192.9	1791643.1	-914.978	-1092-073	12507.263
	349, 300	21211136.0	-423591.C	1339438.0	-1232,012	-1032.620	13478.521
	365.000	21187661.7	-446834.6	2.245.22	-1662,112	-1072-761	14523.448
	381.00C	21157327.2	-457317.2	2454542.8	-2057,465	-1062,435	15653,331
	397.000	21121726.5	-474832.2	27248C3.C	-247C.926	-1051.824	16884.865
	413.000	21079741.7	-431573.4	3035533.6	-2406.123	-1040-750	18235.900
BEGIN GLIMIT	418,838	21061i42.r	-497699.1	3114529.0	-3072.662	-1036-573	18768-183
	429.000	21023587.2	-50o134.1	3339020.0	-3369, 302	-1023.274	13638,823
	445.000	21970785.7	-524508•P	3625947.8	- 362.205	-1017 -402	21165.651
	461.000	20904326.7	-540693*3	3336277.8	-4398,013	-1505-141	72624.396
	977.000	20830200.2	-556676.5	4259876.9	-4945.542	L64* 266-	24073.855
	485.231	20789270.0	-564912.1	4551075.2	-5244.511	-935.345	24 31 5 4 76
INJECTION	485.231	20785270.0	-564812.1	4561675.2	-5244.611	-985 •84C	24815 . 475
	485,231	20783270.0	-554312.1	4561077.2	150 68 511	225, P. C.	76 41 5.4 7 E

Ţ

SA+I/EL-24

	11 32	X Q	>- CO	ZACC	HEAT	HEA 1 RA TE	TABLE NO. I.21
	SEC	SEC * * 2	FT/SEC++2	EC * * 2	3TU/FT**2	BTU/F:++2-5	
NCILINDI	253,041	-20.1556	00		0	0	
I NI	253.041	-20.1556	3754.	43.5076	ت •	٠	
	269.000	-20,5040	•4763	45.9397	3.8	• 2	
	285 COC	-2C.913C	.5017	6713.84	6.3	•2	
	301.000	-21,3981	.5272	51.5326	9.3	.2	
	717.000	-21.9399	.5526	24.8536	12.6	64	
	733,000	-22.5815	.5781	58.6392	15.3	۳.	
	200 662	-23.3296	•6635	£2.85£2	20.8	٠.	
	165.000	-24.2065	.6283	67.8421	26.6	5.	
	381.000	-25.2425	.6543	73.6175	34.2	9•	
	397.000	-26.4775	.6796	80.4567	8.44.8	æ.	
	413.000	-27.9720	7407.	58.6292	59.7	1.1	
SLIMIT	418.383	-28.6030	.7135	32-1586	9.69	1.2	
	429°000	1838.62-	.7296	51.9032	9.08	3.5	
	445,300	-31.8673	. 7542	91.4357	109.5	2.1	
	ت	-33.8562	4777.	90.8539	148.3	2.7	
	477.000	-35.8315	.8021	90.2761	197.4	e e	
	485.231	-36-8389	.8141	89.9297	226.5	3.7	
INJECTION	485.231	-36.8387	.8141	σ	226.5	3.7	
	485.231	-40.3562	.8141	142 - 7276	2.26.5	2.7	

SECTION II

EXCHANGE RATIOS

A. Discussion

After a baseline launch vehicle system is defined, there are design variations that occur during detailed development phases. These variations may be advantageous or disadvantageous. The effects of these variations on delivered performance must be continuously analyzed. This can be done by performing a trajectory simulation with the changes evaluated. A more cost effe 'ive method is the use of exchange ratios, sometimes called payload partials whose primary purpose is to provide a quick and economical assessment of design variations on the payload delivery capability in the region near the baseline. Exchange ratios are used by multiplying a change of a baseline parameter by its corresponding exchange ratio to define the performance change at MECO. Combining these data with similar cost analyses data, trade studies may be performed to define the minimum cost impact required to recover performance capability lost due to design changes. A secondary use is to increase the baseline capability using the same methodology. The final test of any proposed change is the trajectory simulation containing all the proposed changes. This will define the new baseline payload capability and then the exchange ratios may be used during the next design cycle.

As stated in Section I the 3A Mission is the design reference (payload critical) mission. The exchange ratios contained herein are generated to describe the effects of a 'planned change' in the baseline system as compared to the random occurrence of unknown voltations about the baseline as discussed in Section III. Exchange ratios are generated by changing each system parameter individually and simulating a maximum payload trajectory through the RTLS/AOA point of $V_R = 8932$ fps to the AOA and Nomina. MECO conditions specified on Table I.1. This is done by optimizing the tilt over maneuver and closed loop guidance while limiting ET propellant consumption to maximum loaded value.

A change in the weight at AOA MECO provides a similar change in the gross payload (cargo bay plus consumables) weight. The case of Nominal MECO is not the same. At this point the change in MECO weight represents a change in gross payload from the AOA condition and a change in the ET propellant residuals. The residual increase or decrease is dependent upon whether the Nominal MECO exchange ratio is greater or less than at AOA MECO.

Historically, exchange ratios have been assumed and used as linear values. This is generally valid in small regions about the baseline; but for some cases, the design parameters of max q and accelerations are violated and must be constrained. The method for constraining max q in this analysis is reducing the initial tilt-over (lofting) prior to max q which causes the vehicle to exit the dense atmosphere quicker. This results in a non-optimum trajectory and a resulting payload improvement less for a given system change than the non-constrained results. Detailed SSME throttling prior to max q was not investigated.

A rule of thumb for use of exchange ratios is that the unconstrained ratios are used when payload is degraded or when recovering payload lost due to design refinements and the constrained curves are used when trying to increase the baseline performance.

B. Description of Results

A summary of linearized exchange ratios for both AOA MECO and Nominal MECO is shown in Table II.1. The exchange ratios for each deviation are shown in terms of Δ gross payload per unit parameter change at AOA MECO. At Nominal MECO the exchange ratio is labeled as Δ MECO weight per unit change and includes the change in AOA gross payload and ET residuals.

Figures II.1 through II.17 display Δ weight for both AOA and Nominal MECO conditions for unconstrained trajectory results. Figures II.1, 6, 7 8, 9, 10, 12 and 17 include the effects at AOA MECO when the trajectory must be reshaped to meet the dynamic pressure design constraint. These constrained curves emphasize that the exchange ratios must be used correctly in order to obtain valid results.

A method of recovering the performance losses due to meeting the constraints is by reoptimizing the trajectory portion past the time of max q to SRB staging. The system parameter chosen for this illustration is SSME thrust variation. Figure II.17 shows weight losses for a 30000 pound increase of vacuum thrust per engine of about 1000 pounds for the constrained q case as compared to 6400 pounds gain for the unconstrained q case. By optimizing the flight path profile after max q is been passed, a net gain of 3100 pounds weight can be attained as shown on Figure II.18. This example stresses that linear exchange ratios are valid only when used for small deviations about the baseline. In order to increase the baseline performance, it is more realistic to perform detailed analysis than to use the exchange ratios where design constraints are violated.

MISSION 3A

TABLE II.1 EXCHANGE RATIOS*

PARAMETER VARIED	@ AOA MECO △ PAYLOAD △ PARAMETER	@ NOMINAL MECO
FOREBODY DRAG (CAO)	- 84 lb/%	- 94 lb/%
BASE DRAG	- 20 1ь/%	- 28 lb/%
SRB SEPARATION DELAY	-185 lb/s	-200 lb/s
SRB VACUUM ISP (CONSTANT THRUST)	300 lb/s	330 lb/s
SRB VACUUM ISP (CONSTANT W)	810 lb/s	880 lb/s
SRM VACUUM THRUST (CONSTANT ISP)	664 lb/%	720 lb/%
SRM VACUUM THRUST (CONSTANT W)	2,120 1b/%	2,300 lb/%
SRB INERT WEIGHT	093 lb/lb	1 lb/lb
SRB PROPELLANT CAPACITY	.024 lb/lb	.025 lb/lb
SRB PROPELLANT TEMPERATURE	90 lb/deg F	100 lb/deg F
LAST RTLS - RELATIVE VELOCITY	3.3 lb/fps	1.2 lb/fps
ET PROPELLANT CAPACITY (NO ET .NERT WT CHANGE)	.061 lb/lb	-
ET PROPELLANT CAPACITY (ET INERT WT CHANGE)	.015 lb/lb	-
SSME VACUUM ISP (CONSTANT THRUST)	1,090 lb/s	865 lb/s
SSME VACUUM ISP (CONSTANT W)	1,360 lb/s	1,100 lb/s
SSME VACUUM THRUST (CONSTANT W)	.4 lb/lb	.43 lb/lb
SSME VACUUM THRUST (CONSTANT ISP)	.08 1ь/1ь	.07 lb/lb

^{*} LINEARITY ASSUMED OVER SMALL VARIATIONS

^{**} REPRESENTS \triangle PAYLOAD + \triangle ET PROPELLANT RESERVE AT MECO

MECO WEIGHT VARIATION WITH VARIATION OF FOREBODY AXIAL FORCE COEFFICIENT CA₀ FIGURE 11. 1

ţ

FIGURE 11. 2 MECO WEIGHT VARIATION WITH VARATION OF THE BASE DRAG

MECO WEIGHT VARIATION WITH VARIATION OF SRB SEPARATION DELAY TIME WITH NO THRUST FIGURE 11. 3

MECO WEIGHT VARIATION WITH VARIATION OF SRB VACUUM ISP WITH CONSTANT SRB VACUUM THRUST TRACE FIGURE 11. 4

FIGURE II. 5 MECO WEIGHT VARIATION WITH VARIATION OF SRB VACUUM ISP WITH CONSTANT SRB PROPELLANT LOADING

FIGURE II. 6 MECO WEIGHT VARIATION WITH VARIATION OF SRB VACUUM THRUST WITH CONSTANT VACUUM ISP

۲. ۱

FIGURE 11. 7 MECO WEIGHT VARIATION WITH VARIATION OF SRB VACUUM THRUST WITH CONSTANT SRB PROPELLANT LOADING

ĭ

FIGURE 11. 8 MECO WEIGHT VARIATION WITH VARIATION OF TOTAL SRB INERT WEIGHT

FIGURE 11. 9 MECO WEIGHT VARIATION WITH VARIATION OF SRB TOTAL PROPELLANT LOADING

FIGURE 11. 10 MECO WEIGHT VARIATION WITH VARIATION OF SRB PROPELLANT TEMPERATURE

MECO WEIGHT VARIATION WITH VARIATION OF RELATIVE VELOCITY AT LAST RTLS POINT FIGURE 11. 11

VARIATION OF LAST RTLS RELATIVE VELOCITY (fps)

FIGURE 11. 12 MECO WEIGHT VARIATION WITH VARIATION OF ET PROPELLANT AND CONSTAINT ET INERT WEIGHT

FIGURE 11.13 MECO WEIGHT VARIATION WITH VARIATION OF ET PROPELLANT AND ET INERT WEIGHT WITH CONSTANT ET MASS FRACTION

FIGURE II. 15 MECO WEIGHT VARIATION WITH VARIATION OF SSME VACUUM ISP WITH CONSTANT SSME FLOW RATE

VARIATION OF SSME VACUUM ISP(s)

FIGURE II. 16 MECO WEIGHT VARIATION WITH VARIATION OF SSME VACUUM THRUST WITH CONSTANT PROPELLANT FLOW RATE

VARIATION OF SSME VACUUM THRUST PER ENGINE (Ib)

FIGURE !I. 17 MECO WEIGHT VARIATION WITH VARIATION OF SSME VACUUM THRUST WITH CONSTAINT VACUUM ISP

VARIATION OF SSME VACUUM THRUST PER ENGINE (Ib)

EFFECT OF OPTIMIZATION OF BOOST FLIGHT ON PAYLOAD VARIATIONS FOR VARIATIONS OF SSME VACUUM THRUST WITH CONSTANT VACUUM ISP FIGURE 11. 18

SECTION III

DESIGN ENVIRONMENT AND FLIGHT PERFORMANCE RESERVES

A. Discussion

The purpose of this section is to develop a set of ascent trajectory induced design environments and flight performance reserve (FPR) propellant requirements using the same techniques as previously used on the Saturn class of launch vehicles. Every vehicle is initially designed to some nominal set of parameters and conditions at a given safety factor. It is assumed that each parameter is independent, normally distributed, and exhibits a known extreme tolerance defined as a 3 σ deviation. This says that for 99.74% of the time a given item will operate within its $+3 \sigma$ limits. This uncertainty is accounted for by providing design envelopes of key trajectory characteristics which the vehicle is predicted to stay within 99.74% of the time. The propellant variations at MECO (FPR) are analyzed to assure attainment of MECO 99.87% of the time. Therefore, each parameter may be investigated at its extreme tolerance and the deviated trajectory results combined by the root-sum-squared method. This is the technique used for the results presented in this section.

The trajectories to ACA and Nominal conditions of Section I produce the baseline characteristics for this dispersion analysis. The analysis was performed by curve fitting the booster attitude tilt profile from liftoff to SRB staging versus relative velocity and reloading this into the trajectory simulator (Reference 6). This open loop attitude profile was held constant for all dispersion runs except for the boost steering error dispersion. The closed loop guidance was initiated at SRB staging, flying the same type profile as described in Section I. Each system component parameter was deviated from its baseline value by the amount listed in Table III.1 and a trajectory simulated. All deviated trajectories assumed orbiter engine #1 failure at a relative velocity of 8932 fps to define the last RTLS/first AOA interface. AOA and Nominal targeting trajectories were simulated from this point. The RTLS trajectories were not simulated. The following list of trajectory characteristics are investigated:

- o Maximum dynamic pressure
- o Maximum longitudinal acceleration during SRB burn
- o SRB staging state vector and dynamic pressure

- o RTLS/AOA point vector deviations and ET propellant consumed from liftoff (V_R held constant at 8932 fps)
- o Stagnation point heating
- o ET propellants consumed from liftoff to AOA MECO
- o ET propellants consumed from liftoff to Nominal MECO
- o Vehicle subpoint range from liftoff to AQA MECO and Nominal MECO

Extreme (maximum and minimum) envelopes which are possible to occur during a flight are generated for each trajectory characteristic.

Table III.1 lists the dispersion sources and the 3 of extreme values of each parameter. The atmospheric variations are listed as Hot day and Cold day correlated atmospheric models and are found in Reference 4. The wind data used are from Reference 4. The aerodynamic coefficient parameters were obtained from Reference 3. Contributions due to guidance, control, and navigation systems were not analyzed due to lack of complete definition and simulator limitations. These will be analyzed at a later time when preflight analyses are performed.

B. Induced Design Environments

As each dispersion trajectory was computed, the deviated values of trajectory characteristics to be investigated were calculated. These were then root-sum-squared to define the maximum deviation envelopes about the baseline. This was done by evaluating all the plus and minus deltas separately.

Figure III.1 displays the envelope of dynamic pressure the launch vehicle may encounter in the region about nominal time of maximum q from the baseline trajectory. It is observed the maximum value could reach 727 psf at 55 seconds flight time. The major contributions are SRB Web Action Time (52%) and Headwind (44%). Figure III.2 displays the stagnation point heating envelope for the AOA and Nominal missions. The major contributors to the maximum heating envelope are + SSME thrust (24%), - SRB WAT (9%), + boost steering error (10%), Hot day atmosphere deviation (37%), and SRM misalignment (17%). It should be noted the heating at AOA MECO is 143% that at Nominal MECO for the undispersed cases. It can also be noted that the maximum heating at Nominal MECO is only 82% of the minimum heating at AOA MECO. The detailed design of ET thermal protection should be performed on the AOA trajectory. The safety factor required will define what degree of heating to use. Table III.2 lists the deviation in state vector and dynamic pressure at SRB staging.

The deviation of maximum longitudinal acceleration experienced during SRB burn is included in Table III.2.

The RTLS/AOA point was assumed to be constant at a relative velocity of 8932 fps. Table III.3 displays the deviation in state vector and consumed ET propellant at that velocity. Currently, the on-board logic to determine this interface has not been determined. More analyses are required to define which parameter will be used to define this interface in the flight computer. Some candidates other than V_R are time or characteristic velocity. Table III.4 summarizes the deviations of MECO time and surface range from the launch site at both AOA and Nominal MECO. The launch vehicle was targeted to the conditions of Table I.1 for all cases simulated.

C. Flight Performance Reserves

In order to guarantee that the MECO targets may be attained for 99.87% of the time, an extra amount of usable mainstage propellants must be carried. These are known as Flight Performance Reserves (FPR). They are calculated by root-sum-squaring the positive (those above baseline) mainstage ET propellants expended from liftoff to MECO. Table III.5 lists the contributions to FPR for each dispersion source at AOA MECO and Nominal MECO. These contributions are at laseline SSME mixture ratio of 6:1. The mixture ratio uncertainty effects of the SSME and ET loading were combined statistically while optimizing the fuel bias quantity using the technique as defined in reference 5.

The FPR required for this mission is 6471 pounds at AOA MECO and 6661 pounds at Nominal MECO including fuel bias. The optimum fuel bias is 1150 pounds. The cause for the Nominal MECO FPR being greater than the AOA MECO FPR is that the trajectory is shaped for the AOA condition and the Nominal is 'branched' at the RTLS/AOA point.

The RSS of the negative quantities of ET propellants consumed yield the negative FPR or excess residuals at MECO. These result from overperforming launch vehicle parameters and are jettisoned with the ET. The negative FPR including fuel bias could be as great as 6366 pounds at AOA MECO or 6266 pounds at Nominal MECO.

When generating performance trajectories, an estimate of FPR is desired. This has been historically done by converting the FPR from a detailed analysis such as this to a percentage of the characteristic velocity from liftoff to MECO. The results of this analysis yield an equivalent Δ V of .0085 $V_{\mbox{char}}$ at AOA MECO and .0087 $V_{\mbox{char}}$ at Nominal MECO not including the fuel bias. The fuel bias is summed with normal residuals and is not recalculated for performance quotations.

TABLE III.1

TABLE III.I	
DISPERSION SOURCE	3 σ VALUES
SRB Web Action Time *	<u>+</u> 4.71%
SRB Vacuum Specific Impulse *	<u>+</u> .5%
SRB Propellant Loading *	<u>+</u> .21%
SRB Staging Weight *	<u>+</u> .85%
SRB Staging Time	<u>+</u> .5 s
SRB Misalignment	<u>+</u> .5°
SSME Vacuum Thrust	<u>+</u> 6000 lb/Eng
SSME Vacuum Specific Impulse	<u>+</u> 2.3 s/Eng
SSME Misalignment	± .5°
SSME Mixture Ratio	<u>+</u> 1%/Eng
Orbiter & ET Inert Weight	<u>+</u> .81%
ET Propellant Loading	<u>+</u> .48%
Booster Steering Program	<u>+</u> .5°
Vehicle Center of Gravity	± 2 inches
Atmospheric	Hot/Cold day
Winds	Head/Tail Right/Left
Base Force	Reference 3
Aerodynamic Coefficients	Reference 3

NOTE: Orbiter Main Engine Variations Combined by Stage Variation = N (Dispersion/Eng)/ \sqrt{N}

Where N is number of engines operating i.e. N=3 for Nominal, N=2 for Abort

^{*} Combined Stage Variation

FIGURE III.1 DYNAMIC PRESSURE ENVELOPE VERSUS TIME

FIGURE III.2 STAGNATION POINT HEATING ENVELOPE VERSUS FLIGHT TIME

TABLE III, 2 STATE VECTOR DEVIATIONS AT SRB STAGING

DISPERSION		Δ Range n. mi.	sdj 1W	Δγ deg	ΔAlt feet	△ Dynamic Pressure psf	Δ Max Acc.* g's
SRB Web Action Time	+ :	49.59	-24.247 19.246	12	3481 -3825	- 9.1 11.42	
SRB Vacuum Specific Impulse	+ +	.32	38.425 -38.481	16 .15	807	- 1.09 1.12	.01
SRB Propellant Load	+ 1	. 09 08	10.226	. 0. . 0.	180 - 180	2	.01
SRB Staging Weight	+ 1	06 07	- 9.911 9.813	.02	- 184 184	- 25	0.01
SRB Staging Time	+ 1	.36	7.283 - 8.579	13	1083 -1079	2.7	00
SRB Misalignment	+ +	97	-19.062 16.263	. 85	1755 -1811	5.5	0.01
SSME Vacuum Thrust	+ •	.15	21.145 - 21.217	04	456 - 453	9.	01
SSME Vacuum Specific Impulse	+ 1	01 .02	2.254	.0.	- 26	. 02	00
SSME Misalignment	+ 1	18 . 07	- 11,266 6 519	. 32	453 - 295	- 1.5	00
						,	

* Maximum Acceleration is that noted prior to cutoff. Time $\approx 107.5~\text{Sec.}$

TABLE ITI.2 (Continued)

DISPERSION		Δ Range n. mi.	k ps	Δ γ deg	AAlt	A Dynamic Pressure psf	∆ Max Acc.* g's
Orbiter & ET Inert Weignt	+ •	. 05	- 6.841 6.752	.02	-125 128	2	0.01
ET Propellant Loading	+ •	17	-24.413 24.505	. 06	-456 459	9	.01
Booster Strering Program	+ •	.40	16.115 -16.237	70	-1493 1469	4.6	0.01
Vehicle Center of Gravity	+ +	03	- 1,703 1,385		157 - 141	4.	00
Ho: Day Cold Day		04	- 7.260 23.704	0 . 05	- 177 568	3.1	0.01
dead Wind Tail Wind			-31.158 31.184	. 14	295 - 404	-1.6 1.9	00
Right Cross Wind Left Cross Wind		.00	-29.99° 9.902	. 17	- 171 - 13	. 05	00
Base Force	+ •	15	-14.649 14.370	. 07	- 312 308	4.	υO
c _A o	+ •	14	17.382 16.381	.05	- 318 305	.3	0

Miximized Acceleration is that noted prior to cutoff. Fime $\approx 107.5~\text{Sec.}$

1

TABLE III.2 (Continued)

DISPERSION		A Range n. mi.	ZVI fps	A Q geb	Δ Alt feet	△ Dynamic Fressure psf	△ Max Acc.* 8's
c_{N_o}	+ 1	80. 07	2.687 - 2.193	80.	- 262 262	8 8	00
c _N	+ 1	. 03	. 758	.03	19	3.5	00
,ξ°	+ 1	. 01	. 220	.01	- 16 20		00
SE ^X	+ •	02	. 522	.02	94;		00
$\sigma_{L_{\mathcal{B}}}$	+ 1	00	0.226	0 00	49 16	. 10	00
8, N	+ +	00	.020	.02	16 49	. 0	00
$c_{Y_{eta}}$	+ •	0 0	022	0,02	49	01	00
RSS RSS	£	1.16 -1.18	76.906 -81.347	1.21 - 1.19	4539 - 4801	14.4 -13.4	. 09
Baseline		25.62	4591,878	28,23	141,054	8,09	2.96

* Maximum Acceleration is that noted prior to cutoff. Time pprox 107.5 Sec.

Ŧ

TABLE III, 3 RELATIVE STATE VECTOR AND ET PROPELLANT DEVIATIONS AT RILS/AOA DEI INED AT CONSTANT $V_{\rm R}$ = 8932 FT/SEC

DISPERSION		△ TIME seconds	Δ γ deg	△ ALTITUDE feet	△ ET PROPELLANT pounds
SRF Web Action Time	<i>+</i> 1	3.671	066	- 1509 2060	12393 - 11551
SRB Vacuum Specific Impulse	+ 1	870 1.056	.151	1506 - 289	- 2937 3564
SRB Propellant Load	+ 1	. 197	,057 ,009	604 72.	- 667 1002
SRB Sceking Weight	+ 1	.287	.003	3 224	696
SRB Staging Time	+ •	. 123	.001	173 21	415 14
SRB Misalignment	+ •	. 430	. 029	1717 - 1513	1452
SSME Vacuum Thrust	+ •	- 2.094 2.250	.101	- 340 564	- 1343 1772
SSME Vacuum Specific Impulse	+ 1	300	.035	278	- 1140 1484
SSME Misalignment	+ 1	.287	.016 .050	599 - 275	968 - 243
Orbicer & ET Inert Weight	+ 1	,481	003 .054	142 84	1623 - 1256

TABLE III, 3 (Continued)

DISPERSION		A TIME seconds	Δγ deg	△ ALTITUDE feet	Δ ET PROPELLANT pounds
ET Propellant Load	+ 1	1.602 1.488	077	215	5405 - 4975
Booster aring Program	+ +	241	.063	- 1219 1413	- 814 1253
Vehicle Center of Gravity	+ +	.086	.022	285	289 97
Hot Day Cold Day		.260	- .003	19	877 - 1906
Head Wind Tail Wind		. 812	058 .137	183 1	,741 - 2173
Right Cross Wind Left Cross Wind		.137	.019	40 97	462 153
Base Force	+ 1	.463	.037	222	1563 - 1224
° _A °	+ 1	334	.034	- 51 267	1563 - 1128
o _N	+ +	007	.031	- 70	- 25 362
¥.	+ 1	.041	.029	62 209	136 246

TABLE III.3 (Continued)

		△ TIME	Δ 2	AALTITUE	△ ET PROPELLANT
DISPERSION		seconds	deg	feet	spunod
Y.	+	.041	.022	85	136
0,,	•	,053	. 325	126	198
ر ن	+	,035	.023	99	11.7
ğ	•	\$90.	.024	146	216
	+	.054	.026	115	182
<u> </u>	•	,058	.026	151	196
, .	+	.058	.026	151	197
8	•	.050	.026	115	182
ري	+	.054	.026	115	183
В	•	.058	.026	151	196
KSS	(+)	+ 4.942	+ ,366	+ 3655	+14969
RSS	<u>:</u>	- 4.522	- ,155	- 2518	-13587
Baseline		253.041	7,597	351278	854156

TABLE III,4 DEVIATION IN MECO TIME AND RANGE FROM LAUNCH SITE FOR AOA AND NOMINAL TRAJECTORIES

DISPERSION		△ MECO TIME seconds	AOA A RANGE	NOMINAL NOMINAL Seconds	NAL A RANGE n. m1.
SRJ Web Action Time	+ •	. 118	- 10.59	1.527	- 6.40 6.16
SRB Vacuum Specific Impulse	+ +	076 018	1.91	413	.91
SRB Propellant Load	+ +	038	43	105	. 30
SRB Staging Weight	+ +	013	60		27
SRB Staging Time	+ 1	970	24	002	10
SRB Misalignment	+ •	122 .073	- 1.67	024	- 1.25
SSMT Vacuum Thrust	+ •	- 4.231 4.246	6.65	- 3.141	- 4.03 3.99
SSME Vacuum Specific Impulse	+ •	1,181	2,45	727	1.16
SSME Misalignment	+ •	048	- ,86 ,30	.089	56

TABLE III.4 (Continued)

			AOA	MON	INAL
DISPERSION		▲ MECO TIME seconds	A RANGE n, mi,	A MECO TIME A seconds n.	A RANGE
Orbiter & ET Inert Weight	+ 1	, 603 , 660	. 65	,550 ,531	. 50
ET Propellant Load	+ 1	2,263 - 2,315	2.65	1.969	1.96
Booster Steering rogram	+ 1	. 055	1.16		.94
Vehicle Center of Gravity	+ •	039	.26	,014	. 16
Hot Day Cold Day		014	- ,53 1,16	.105	22
Head Wind Tail Wind		023	- 2.09 1.82	.332	- 1.18 1.10
sight Cross Wind Left Cross Wind		.041	0 - 17	,109	.17
Base Force	+ •	003	98	,324	11
CAO	+ •	003	- 1,	,198 -,170	47
c_{N_o}	+ 1	016	,11	008 .025	

TABLE III.4 (Continued)

DISPERSION		A MECO TIME seconds	AOA A RANGE n. mi.	NOM A MECO TIME seconds	NOMINAL E A RANGE n. mi.
σ_{N}^{N}	+ •	026 034	06 20	.005	01 11
C _M O	+ •	023	08	.010	* · · · · · · · · · · · · · · · · · · ·
ر ريس	+ •	022	06	.003	. 02
c	+ •	028	11	600.	
c _N 8	֥	031	13	600.	07
$^{C_{Y_{eta}}}$	+ •		11	600.	05
RSS RSS	(÷)	+ 5.000 - 4.986	+ 13.04 - 13.82	+4,235 -4,118	+ 7.99 - 8.34
Baseline		558,712	932.37	485.231	765,46

TABLE III, 5 FLIGHT PERFORMANCE RESERVE CONTRIBUTION

DISPERSION		<pre>(a AOA MECO</pre>	@ NOMINAL MECO A ET Propellants Consumed lb
SRB Web Action Time	+ '	3327	3690 - 3468
SRB Vacuum Specific Impulse	+ 1	- 933 995	- 987 1082
SKB Propellant Load	+ 1	- 262 266	. ~ 250
SRB St a ging Weight	+ 1	259	289
SRB Staging Time	+ 1	36	98 •
SRB Misalignment	+ 1	184	268 - 86
SSME Vacuum Thrust	+ +	- 785 811	- 532 610
SSME Vacuum Specific Impulse	+ 1	- 1586 1589	- 1381 1489
SSME Misalignment	+ 1	189 - 85	22.7 26

TABLE III.5 (Continued)

DISPERSION		@ AOA MECO ▲ ET Propellants Consumed 1b	@ NOMINAL MECO Δ ET Propellants Comsumed 1b
Orbiter & ET Inert Weight	+ •	1923 - 1919	1919 - 1853
ET Propellant Loading	+ 1	957 -	- 564 628
Booster Steering Program	+ 1	- 123 163	- 151 237
Vehicle Center of Gravity	+ 1	11 8	46 16
Hot Day Cold Day		227	260 - 656
Head Wind Tail Wind		749	806 - 706
Right Cross Wind Left Cross Wind	*****	218	. 345 - 15
Base Force	+ 1	777 - 778 -	733 - 680
	+ 1	- 448	481 - 400

TABLE III.5 (Continued)

DISPERSION	@ AUA MECO A ET Propellants Consumed 1b	@ NOMINAL MECO \$\rightarrow{\r
+ + + + + + + + + + + + + + + + + + +	- 34 38	- 22 73
τ + ^ν	96	20
+ ·	- 2 5	13
+ 1 S	N Q	38
+ + β ₁	0	29
+ - + - + - + - + - + - + - + - + - + -	1 2	31 29
c _{vβ} +	2 0	30
RSS (+)	4522 -4417	4838 -4543
Orbiter Mixture Ratio Effects (SSME and ET Loading)	Dependent on 8	Dependent on amount of 'vel hias
FPR Total Including Optimum fuel bias of 1150 lb	6471 .150 lb	9661

CONCLUSION

The described launch vehicle has been evaluated and displays the capability to deliver the required performance to the design reference mission. The exchange ratios will enable management and design engineers to quickly evaluate performance effects of any proposed system changes in a rapid economic manner.

The design envelopes calcula ed shows that the maximum dynamic pressure encountered on ascent may exceed the design requirement of 650 psf by 77 psf mainly due to overperforming SRB and a headwind. The maximum ascent heating occurs on the abort-once-around mission and is considerably greater (43% on an undispersed trajectory) than that from a nominal flight. The flight performance reserves calculated have been converted to an equivalent percentage of characteristic velocity of .85% at AOA MECO and .87% at Nominal MECO. A statistical calculation of fuel bias resulted in an optimum requirement of 1150 pounds.

RECOMMENDATION

It is recommended that these data be utilized in conjunction with corresponding data generated by the system contractor, Rockwell International/Space Division, and Johnson Space Center for design of the Space Shuttle.

REFERENCES

- 1. NASA Headquarters, Space Shuttle Program Requirements Document Level I, Revision 7, October 7, 1974.
- 2. JSC 07700 Vol X Appendix 10.12, Space Shuttle System Weight and Performance Control Document, September 5, 1974.
- 3. Rockwell International Space Division Document No. SD-72-SH-0060-2G, Mated Vehicle Agrodynamics Design Data Book, June 1974.
- Daniels, Glenr E., Editor, <u>Terrestial Environment</u> (<u>Climatic</u>) <u>Criteria Guidelines for Use in Aerospace Vehicle Development</u>, <u>1973 Revision</u>, NASA TMX-64757, July, 1973.
- 5. Viera, William, Jr., A Solution To The Problem of Optimizing The Fuel Bias For A Liquid Propellant Rocket By An Application Of The Central Limit Theorm, NASA TMX 64829, March, 1974.
- 6. Lyons, J. T., Minimum Hamiltonian Ascent Shuttle Trajectory

 Evaluation Program (MASTRE) Engineering Manual, Northrop Services
 Inc., TR-240-1296, November, 1974.

APPROVAL.

SPACE SHUTTLE LAUNCH VEHICLE PERFORMANCE TRAJECTORY, EXCHANGE RATIOS, AND DISPERSION ANALYSIS

By R. G. Toelle, D. L. Blackwell, and L. N. Lott

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This document has also been reviewed and approved for technical accuracy.

I. LINDBERG

Chief, Mission Analysis Division

H. F. THOMASON

Director, Systems Analysis and Integration Laboratory