Rudiments de LATEX

Principe général : avec un traitement de texte, on est supposé voir ce qu'on tape tel que ce sera imprimé, mais ça tourne vite au « clicodrome ».

Avec LATEX, on doit coder dans un langage spécial ce qu'on veut imprimer. C'est donc le code qui apparaît à l'écran et non le texte qui sera imprimé. Quand on a tapé son code, on doit le compiler, ce qui produira un document pdf qu'on pourra imprimer. Par exemple, si on tape $\frac{1}{2}$, cela donnera $\frac{1}{2}$.

Tous les mots-clés du langage LATEX commencent par un anti-slash. Les arguments sont mis entre accolades. Dans l'exemple précédent, le mot-clé est **\frac** et les arguments sont 1 et 2. Toute formule mathématique doit être délimitée par des dollars.

Les mots-clés sont souvent des abréviations de mots anglais, par exemple **\$\nearrow\$** signifie « flèche nordest » \nearrow .

On obtient les lettres grecques en les épelant. Par exemple ω donne ω et Ω .

Nous savons tous que:

 $\sinh \left(\frac{\pi}{6} \right) = \frac{1}{2}$

L'objectif est de savoir aussi le taper en LAT_EX.

LATEX sous Géogébra

Géogébra accepte l'utilisation de petits bouts de LATEX pour légender les figures. Il affiche directement le rendu, sans passer par l'étape de compilation. Il y a deux façons de procéder :

Première façon:

- 1. Clic droit sur un objet dessiné
- 2. Taper la légende en LATEX dans le champ « légende ».
- 3. Plus bas, cochez « afficher l'étiquette » avec l'option « légende ».

Deuxième façon:

- 1. Cliquez sur le menu « ABC »
- 2. Puis cliquer à l'endroit voulu du plan.
- 3. Tapez votre formule LATEX, par exemple \$\frac{\pi}{2}\$
- 4. Cochez la case « Formule LATEX ».

Code IATEX	Rendu
\$\mathcal{S}=\{1\}\$	$\mathcal{S} = \{1\}$
\$u_{12}\$	u_{12}
\$x^{n+1}\$	x^{n+1}
\$x^n+1\$	$x^n + 1$
\$\text{e}^x\$	e^x
\$\sin(x)\$	sin(x)
\$\sqrt{x+1}\$	$\sqrt{x+1}$
\$\sqrt[n]{x+1}\$	$\sqrt[n]{x+1}$
\$\frac{a}{b}\$ \$\dfrac{a}{b}\$	$\frac{a}{b}$ $\frac{a}{b}$
\$\left(\frac{a}{b} \right) ^n\$	$\left(\frac{a}{b}\right)^n$
\$\displaystyle{\sum_{k=1}^{n} u_k}\$	$\sum_{k=1}^{n} u_k$
$\displaystyle \frac{1}{a}^{b}f(x)$	$\int_{a}^{b} f(x) \mathrm{d}x$
$\displaystyle $	$ \lim_{x \to +\infty} f(x) $
\$\begin{pmatrix}a&b\\c&d\end{pmatrix}	$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$
\$\overline{z}\$	\overline{z}
\$\vec{u} \binom{1}{3}\$	$\vec{u} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$
<pre>\$\overrightarrow{AB} \cdot \overrightarrow{AC}\$</pre>	$\overrightarrow{AB} \cdot \overrightarrow{AC}$
\$\cap \cup \setminus \times \pm\$	$\cap \cup \setminus \times \pm$
\$\approx \neq \leq \geq \subset \in \notin\$	≈≠≤≥⊂∈∉
\$\Longleftrightarrow \Longrightarrow\$	$\iff \Longrightarrow$
\$\nearrow \searrow \$	7 \
\forall \exists	$\forall \exists$