Live Q&A 3 Transcript

[pardon my handwriting!]

Preliminaries

- If you missed last week, please attend the replacement session if you can!
- Thanks to everyone that submitted the feedback form on KEATS. The poll closed yesterday night but I promise that by next week we will discuss it.
- This week you are asked again to give feedback on the SGTs

Exercises

3.3 For each of the following functions, determine whether...

Dis not covered.

(a) not one to one?

We need a general argument

We not a general argument

Not one to one all Natural numbers

O is not covered.

(b) not one to one e.g. two different pairs

e.g.: (3,4) o 7

(2,5) o 7

Onto?

i.e.: every natural number can be obtained by the sum of two natural numbers.

e.g. 0+0=0

Give an example... 3.4

Give all example...

(b)
$$f(n) = Zn$$
 $\Rightarrow Ao odd numbers$

(b) $f(n) = \begin{cases} \frac{n}{z} & \text{if } n \text{ is even} \\ \frac{(n-1)}{z} & \text{if } n \text{ is odd} \end{cases} \Rightarrow \text{Multiple values}$

(n-1) $\text{if } n \text{ is odd} \Rightarrow \text{mapped in codomain.}$

(C)
$$f(n) = (n \text{ if } n \text{ is odd})$$
 $n+2 \text{ if } n \text{ is divisible by } 4 \Rightarrow \text{ are mapped}$
 $n-2 \text{ if } n \text{ is even but not} \text{ and have a divisible by } 4. | to | relation$

$$f(n) = 47 \implies \text{centifying is marginal to}$$

3.5 Let f and g be...

3.7 Prove that Z is a countable set by...

Every negative number can be mapped to an odd number, whilst positive numbers an Se mapped to ever numbers.

$$\begin{cases}
Cn = \begin{cases}
Z_n & \text{if } n \neq 0 \\
-Z_n - 1 & \text{if } n < 0
\end{cases}$$