Signals & Systems

Spring 2019

https://sites.google.com/site/ntusands/ https://ceiba.ntu.edu.tw/1072EE2011_04

Yu-Chiang Frank Wang 王鈺強, Associate Professor Dept. Electrical Engineering, National Taiwan University

Ch. 5 Discrete-Time Fourier Transform

- Sec. 5.1 Representation of Aperiodic Signals: The Discrete-Time Fourier Transform
- Sec. 5.2 The Fourier Transform for Periodic Signals
- Sec. 5.3 Properties of the Discrete-Time Fourier Transform
- Sec. 5.4 The Convolution Property
- Sec. 5.5 The Multiplication Property
- Sec. 5.6 Tables of FT Properties and Basic FT Pairs
- Sec. 5.7 Duality
- Sec. 5.8 Systems Characterized by Linear Constant Coefficient Differential Equations

Sec. 5.1 Representation of Aperiodic Signals: The Discrete-Time Fourier Transform

Develop DT FT for Aperiodic Signals

As $N \to \infty$, $\tilde{x}[n] = x[n]$ for any finite value of n. We will use this relation to derive the DTFT of aperiodic signals. Recall the FS representation of DT signals:

$$\tilde{x}[n] = \sum_{k=\langle N \rangle} a_k e^{jk\omega_0 n}$$

$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} \tilde{x}[n] e^{-jk\omega_0 n}$$

$$\omega_0 = \frac{2\pi}{N}$$

Develop DT FT for Aperiodic Signals

Since $\tilde{x}[n] = x[n]$ within any period $\langle N \rangle$, we have

$$a_k = \frac{1}{N} \sum_{n = < N >} \tilde{x}[n] e^{-jk\omega_0 n} = \frac{1}{N} \sum_{n = -N_1}^{N_2} x[n] e^{-jk\omega_0 n} = \frac{1}{N} \sum_{n = -\infty}^{+\infty} x[n] e^{-jk\omega_0 n}$$

Define

$$\bigcap \mathsf{TFT} \quad X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

then we have

$$a_k = \frac{1}{N} X(e^{jk\omega_0}).$$

Substituting this a_k to the synthesis equation yields

$$\tilde{x}[n] = \sum_{k=< N>} \frac{1}{N} X(e^{jk\omega_0}) e^{jk\omega_0 n}.$$

Since $\omega_0 = 2\pi / N$, or equivalently, $1/N = \omega_0 / 2\pi$,

$$\tilde{x}[n] = \frac{1}{2\pi} \sum_{k=} X(e^{jk\omega_0}) e^{jk\omega_0 n} \omega_0.$$

Sec. 5.1 Representation of Aperiodic Signals: The Discrete-Time Fourier Transform

DTFT

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$

Inverse Fourier transform Synthesis equation

Fourier transform Analysis equation

Recall the CTFT:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Sec. 5.1 Representation of Aperiodic Signals: The Discrete-Time Fourier Transform

Periodicity

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$

$$X(e^{j(\omega+2\pi)}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j(\omega+2\pi)n}$$

$$= \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}e^{-j2\pi n}$$

$$= \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$

$$\therefore X(e^{j(\omega+2\pi)}) = X(e^{j\omega})$$

 $\Rightarrow X(e^{j\omega})$ is periodic with period 2π

• Example 5.1

$$x[n] = a^n u[n], \quad |a| < 1$$

$$-1 < a < 0$$

$$\Rightarrow X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} a^n u[n] e^{-j\omega n} = \sum_{n=0}^{\infty} (ae^{-j\omega})^n = \frac{1}{1 - ae^{-j\omega}}$$

Sect. 5.2 FT for *Periodic* Signals

Reall:

 $e^{j\omega_0 t} \stackrel{F}{\longleftrightarrow} 2\pi \delta(\omega - \omega_0)$

in the CT domain.

FT from FS

$$x[n] = e^{j\omega_0 n}, \quad \omega_0 = \frac{2\pi}{N}$$

$$\Rightarrow X(e^{j\omega}) = \sum_{l=-\infty}^{+\infty} 2\pi \delta(\omega - \omega_0 - 2\pi l)$$

Proof:

$$\frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{2\pi} \sum_{l=-\infty}^{+\infty} 2\pi \delta(\omega - \omega_0 - 2\pi l) e^{j\omega n} d\omega$$
$$= e^{j(\omega_0 + 2\pi r)n} = e^{j\omega_0 n}$$

Sect. 5.2 FT for *Periodic* Signals

 $x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$

• FT from FS (cont'd)

Thus, for a periodic sequence x[n] with period N and with the FS representation

$$x[n] = \sum_{k=< N>} a_k e^{jk\omega_0 n},$$

$$a_{k+N} = a_k$$

its FT is related to its Foureir coefficient by

$$X(e^{j\omega}) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega + k\omega_0).$$

The FT of a periodic signal can be directly constructed from its Fourier coefficients.

We can verify this equation graphically by expressing x[n] as

$$x[n] = a_0 + a_1 e^{j\omega_0 n} + a_2 e^{j2\omega_0 n} + \dots + a_{N-1} e^{j(N-1)\omega_0 n},$$

plot the FT of each term, and then superimpose them.

Sect. 5.2 FT for *Periodic* Signals

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$

FT from FS (cont'd)

To determine the discrete-time Fourier transform for a periodic discrete-time signal x[n] (i.e., x[n] = x[n+N])

(1) First, use the discrete-time Fourier series (Sec. 3.6) to express x[n] by

$$x[n] = \sum_{n = \langle N \rangle} a_k e^{jk(2\pi/N)n}$$

where
$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$

(2) Then

$$X(e^{j\omega}) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta\left(\omega - \frac{2\pi k}{N}\right) \qquad \text{for } -\pi \le \omega < \pi$$

$$X(e^{j\omega}) = X(e^{j(\omega+2\pi)})$$

• FT from FS (cont'd)

• Example 5.5

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}$$

$$x[n] = \cos(\omega_0 n) = \frac{e^{j\omega_0 n} + e^{-j\omega_0 n}}{2}, \qquad \omega_0 = \frac{2\pi}{5}$$
$$X(e^{j\omega}) = \sum_{l=-\infty}^{+\infty} \pi \delta(\omega - \frac{2\pi}{5} - 2\pi l) + \sum_{l=-\infty}^{+\infty} \pi \delta(\omega + \frac{2\pi}{5} - 2\pi l)$$

• Example 5.6 DTFT of Impulse Trains

$$x[n] = \sum_{k=-\infty}^{+\infty} \delta[n - kN]$$

$$\Rightarrow a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk(2\pi/N)n}$$

$$= \frac{1}{N} \sum_{n=0}^{N} x[n] e^{-jk(2\pi/N)n}$$

$$\Rightarrow X(e^{j\omega}) = \sum_{k=-\infty}^{+\infty} \delta(\omega - k \frac{2\pi}{N})$$

$$x[n]$$

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$$

$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$

$$X(e^{j\omega}) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega - \frac{2\pi k}{N})$$

Sect. 5.3 Properties of DTFT

Recall that...

Synthesis equation

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Analysis equation

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$

$$X(e^{j\omega}) = F\{x[n]\}$$

$$x[n] = F^{-1}\{X(e^{j\omega})\}$$

$$x[n] \stackrel{F}{\longleftrightarrow} X(e^{j\omega})$$

$$\frac{1}{1 - ae^{j\omega}} = F\{a^n u[n]\}, \quad |a| < 1$$

$$a^n u[n] = F^{-1}\{\frac{1}{1 - ae^{j\omega}}\}$$

$$a^n u[n] \stackrel{F}{\longleftrightarrow} \frac{1}{1 - ae^{j\omega}}$$

Periodicity of DT Fourier Transform:

$$X(e^{j(\omega+2\pi)}) = X(e^{j\omega})$$

Linearity:

$$x[n] \stackrel{F}{\longleftrightarrow} X(e^{j\omega})$$

$$y[n] \stackrel{F}{\longleftrightarrow} Y(e^{j\omega})$$

$$\Rightarrow ax[n] + by[n] \stackrel{F}{\longleftrightarrow} aX(e^{j\omega}) + bY(e^{j\omega})$$

Time & Frequency Shifting:

$$x[n-n_0] \stackrel{F}{\longleftrightarrow} e^{-j\omega n_0} X(e^{j\omega})$$
$$e^{j\omega_0 n} x[n] \stackrel{F}{\longleftrightarrow} X(e^{j(\omega-\omega_0)})$$

• Example 5.7 Relationship between LPF & HPF

Simple LP/HP/BP Filter Conversion Techniques

Conjugation & Conjugate Symmetry

$$x[n] \stackrel{F}{\longleftrightarrow} X(e^{j\omega}) \implies x^*[n] \stackrel{F}{\longleftrightarrow} X^*(e^{-j\omega})$$

If
$$x[n]$$
 is real, then $x[n] = x^*[n]$ and $X(e^{-j\omega}) = X^*(e^{j\omega})$.

That is, $X(e^{j\omega})$ is conjugate symmetric and

$$\underline{Ev}\{x[n]\} \longleftrightarrow \underline{Re}\{X(e^{j\omega})\}$$

$$Od\left\{x[n]\right\} \stackrel{F}{\longleftrightarrow} jIm\left\{X(e^{j\omega})\right\}$$

Let
$$X(e^{j\omega}) = Re\{X(e^{j\omega})\} + jIm\{X(e^{j\omega})\}$$

$$\Rightarrow Re\{X(e^{j\omega})\} = Re\{X(e^{-j\omega})\}$$

$$\Rightarrow Im\{X(e^{j\omega})\} = -Im\{X(e^{-j\omega})\}$$

Real part is an even function Imaginary part is an odd function

Let
$$X(e^{j\omega}) = |X(e^{j\omega})| e^{\angle X(e^{j\omega})}$$

$$\Rightarrow$$
 $X(e^{j\omega})$ even, $\angle X(e^{j\omega})$ odd \longrightarrow Magnitude: an even function Phase: an odd function

Conjugation & Conjugate Symmetry

$$x[n] \stackrel{F}{\longleftrightarrow} X(e^{j\omega}) \implies x^*[n] \stackrel{F}{\longleftrightarrow} X^*(e^{-j\omega})$$

- If $x[n] = x^*[n]$ and x[-n] = x[n]
 - $\Rightarrow X(e^{-j\omega}) = X^*(e^{j\omega}) \text{ and } X(e^{-j\omega}) = X(e^{j\omega})$
 - $\Rightarrow X(e^{j\omega}) = X^*(e^{j\omega})$
 - \Rightarrow If x[n] is real and even, then $X(e^{j\omega})$ is real and even.
- If x[n] is real and odd, then $X(e^{j\omega})$ is pure imaginary and odd.

Differencing & Accumulation

$$x[n] \stackrel{F}{\longleftrightarrow} X(e^{j\omega})$$

$$x[n] - x[n-1] \stackrel{F}{\longleftrightarrow} (1 - e^{-j\omega}) X(e^{j\omega})$$

Differentiation in Frequency

$$x[n] \stackrel{F}{\longleftrightarrow} X(e^{j\omega}) \Rightarrow nx[n] \stackrel{F}{\longleftrightarrow} j \frac{d}{d\omega} X(e^{j\omega})$$

Proof:

$$\frac{d}{d\omega}X(e^{j\omega}) = \frac{d}{d\omega}\sum_{n=-\infty}^{+\infty}x[n]e^{-j\omega n}$$
$$= \sum_{n=-\infty}^{+\infty}(-jn)x[n]e^{-j\omega n} = (-j)\sum_{n=-\infty}^{+\infty}(nx[n])e^{-j\omega n}$$

Time Reversal

$$x[n] \stackrel{F}{\longleftrightarrow} X(e^{j\omega}) \Rightarrow x[-n] \stackrel{F}{\longleftrightarrow} X(e^{-j\omega})$$

Proof:

$$X(e^{j\omega}) = \sum_{n = -\infty}^{+\infty} x[n]e^{-j\omega n}, \quad X(e^{j(-\omega)}) = \sum_{n = -\infty}^{+\infty} x[n]e^{-j(-\omega)n}$$

Time Expansion

$$x[n] \Rightarrow x[an] = ?$$

If a is an integer and a>1, x[an] is a time-compressed version of x[n]. For example, x[2n] is the even samples of x[n].

However, if a is not an integer, the value of x[an] is unknown because discrete-time signals are defined over integer intervals. Consequently, we cannot slow down the signal by making a < 1.

We resort to an alternative method (on next page).

Time Expansion

Define
$$x_{(k)}[n] = \begin{cases} x[n/k], & \text{if n is a multiple of } k \end{cases}$$
 otherwise.

 $x_{(k)}[n]$ is obtained by placing k-1 zeros between successive samples of the original signal.

Time Expansion

$$X_{(k)}(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x_{(k)}[n]e^{-j\omega n}$$

$$= \sum_{r=-\infty}^{+\infty} x_{(k)}[rk]e^{-j\omega rk} \qquad x_{(k)}[rk] = x[r]$$

$$= \sum_{r=-\infty}^{+\infty} x[r]e^{-jk\omega r}$$

$$= X(e^{jk\omega})$$

$$x_{(k)}[n] \stackrel{F}{\longleftrightarrow} X(e^{jk\omega})$$

As a signal is spread out and slowed down in time, its FT is compressed.

Time Expansion

Inverse relationship between the time and frequency domains

Example 5.9

$$x[n] = y_{(2)}[n] + 2y_{(2)}[n-1]$$

$$y_{(2)}[n] = \begin{cases} y[n/2], & \text{if } n \text{ is even} \\ 0, & \text{if } n \text{ is odd} \end{cases}$$

$$Y(e^{j\omega}) = e^{-j2\omega} \frac{\sin(5\omega/2)}{\sin(\omega/2)}$$

$$y[n]$$

$$y(2) = e^{-j2\omega} \frac{\sin(5\omega/2)}{\sin(\omega/2)}$$

$$y(3) = e^{-j2\omega} \frac{\sin(5\omega/2)}{\sin(\omega/2)}$$

$$y(2) = e^{-j2\omega} \frac{\sin(5\omega/2)}{\sin(\omega/2)}$$

$$2y_{(2)}[n-1] \longleftrightarrow \frac{3}{2e^{-j5\omega}} \frac{\sin(5\omega)}{\sin(\omega)}$$

$$X(e^{j\omega}) = e^{-j4\omega} (1 + 2e^{-j\omega}) \left(\frac{\sin(5\omega)}{\sin(\omega)} \right)$$

Parseval's relation

$$x[n] \stackrel{F}{\longleftrightarrow} X(e^{j\omega})$$

$$\sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})|^2 d\omega$$
Total energy

Energy density spectrum

• Example 5.10 Determine if x[n] is periodic/real/even/finite energy.

$$X(e^{j\omega}) \neq \text{ impulse train} \qquad \Rightarrow x[n] \text{ is NOT periodic}$$
Even magnitude odd phase $\Rightarrow x[n] \text{ is real}$
 $X(e^{j\omega}) \text{ is not real} \qquad \Rightarrow x[n] \text{ is NOT even}$
 $X(e^{j\omega}) \text{ has finite energy} \qquad \Rightarrow x[n] \text{ is finite}$

Sect. 5.4 & 5.5 Convolution vs. Multiplication Property

Convolution Property

$$y[n] = x[n] * h[n] \longleftrightarrow Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$$

$$=\sum_{n=-\infty}^{+\infty}x[k]h[n-k]$$

Example 5.11 Time shifting property

$$h[n]$$

$$x[n] \longrightarrow \text{LTI System} \longrightarrow y[n]$$

$$h[n] = \delta[n - n_0]$$

$$\Rightarrow H(e^{j\omega}) = \sum_{n = -\infty}^{+\infty} \delta[n - n_0] e^{-j\omega n} = e^{-j\omega n_0}$$

$$\Rightarrow Y(e^{j\omega}) = H(e^{j\omega}) X(e^{j\omega})$$

$$= e^{-j\omega n_0} X(e^{j\omega})$$

$$\Rightarrow y[n] = x[n - n_0]$$

• Example 5.12 Ideal LPF

$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega = \frac{\sin \omega_c n}{\pi n}$$

Example 5.13 Determine y[n]

$$x[n] \longrightarrow \text{Filter} \longrightarrow y[n]$$

$$x[n] \longrightarrow \text{ITI System} \longrightarrow y[n]$$

$$h[n] = a^n u[n], \quad |a| < 1 \qquad \Rightarrow H(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}$$

$$x[n] = b^n u[n], \quad |b| < 1 \qquad \Rightarrow X(e^{j\omega}) = \frac{1}{1 - be^{-j\omega}}$$

$$\Rightarrow Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$$

$$= \frac{1}{1 - ae^{-j\omega}} \frac{1}{1 - be^{-j\omega}}$$

• Example 5.13 (cont'd)

if
$$a \neq b$$

$$Y(e^{j\omega}) = \left[\left(\frac{a}{a - b} \right) \frac{1}{1 - ae^{-j\omega}} + \left(\frac{-b}{a - b} \right) \frac{1}{1 - be^{-j\omega}} \right]$$

$$\Rightarrow y[n] = \left(\frac{a}{a - b} \right) a^n u[n] - \left(\frac{b}{a - b} \right) b^n u[n]$$
if $a = b$
$$Y(e^{j\omega}) = \left(\frac{1}{1 - ae^{-j\omega}} \right)^2 = \frac{j}{a} e^{j\omega} \frac{d}{d\omega} \left(\frac{1}{1 - ae^{-j\omega}} \right)$$
since
$$a^n u[n] \stackrel{F}{\longleftrightarrow} \frac{1}{1 - ae^{-j\omega}}$$

$$na^n u[n] \stackrel{F}{\longleftrightarrow} j \frac{d}{d\omega} \left(\frac{1}{1 - ae^{-j\omega}} \right)$$

$$(n+1)a^{n+1}u[n+1] \stackrel{F}{\longleftrightarrow} je^{j\omega} \frac{d}{d\omega} \left(\frac{1}{1 - ae^{-j\omega}} \right)$$

$$\Rightarrow y[n] = (n+1)a^n u[n+1] = (n+1)a^n u[n]$$

• Example 5.14

$$H_{lp}(e^{j\omega})$$
: Low-pass filter with $\omega_c = \pi/4$

$$(-1)^n = e^{j\pi n}$$

$$w_{1}[n] = e^{j\pi n} x[n] = (-1)^{n} x[n]$$

$$\Rightarrow W_{1}(e^{j\omega}) = X(e^{j(\omega-\pi)})$$

$$W_{2}(e^{j\omega}) = H_{lp}(e^{j\omega}) X(e^{j(\omega-\pi)})$$

$$w_{3}[n] = e^{j\pi n} w_{2}[n] = (-1)^{n} w_{2}[n]$$

$$\Rightarrow W_{3}(e^{j\omega}) = W_{2}(e^{j(\omega-\pi)}) = H_{lp}(e^{j(\omega-\pi)}) X(e^{j(\omega-2\pi)})$$

$$= H_{lp}(e^{j(\omega-\pi)}) X(e^{j\omega})$$

• Example 5.14

 $H_{lp}(e^{j\omega})$: Low-pass filter with $\omega_c = \pi/4$

$$W_4(e^{j\omega}) = H_{lp}(e^{j\omega})X(e^{j\omega})$$

$$Y(e^{j\omega}) = W_3(e^{j\omega}) + W_4(e^{j\omega})$$

$$= H_{lp}(e^{j(\omega-\pi)})X(e^{j\omega}) + H_{lp}(e^{j\omega})X(e^{j\omega})$$

$$= [H_{lp}(e^{j(\omega-\pi)}) + H_{lp}(e^{j\omega})]X(e^{j\omega})$$

$$H(e^{j\omega}) = H_{lp}(e^{j(\omega-\pi)}) + H_{lp}(e^{j\omega})$$

high-pass filter low-pass filter

Ziejw)

Sect. 5.4 & 5.5 Convolution vs. Multiplication Property

Multiplication Property

$$y[n] = x_1[n]x_2[n] \iff Y(e^{j\omega}) = \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) X_2(e^{-j(\omega-\theta)}) d\theta$$

(Proof):
$$Y(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} y[n]e^{-j\omega n} = \sum_{n=-\infty}^{+\infty} x_1[n]x_2[n]e^{-j\omega n}$$

$$Y(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x_2[n] \left\{ \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) e^{j\theta n} d\theta \right\} e^{-j\omega n}$$

$$Y(e^{j\omega}) = \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) \left[\sum_{n=-\infty}^{+\infty} X_2[n] e^{-j(\omega-\theta)n} \right] d\theta$$

$$= \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) X_2(e^{-j(\omega-\theta)}) d\theta$$

Converting periodic convolution into ordinary convolution

$$x[n] = x_1[n]x_2[n]$$

$$x_1[n] = \frac{\sin(\frac{\pi}{2}n)}{\pi n}$$

$$x_2[n] = \frac{\sin(\frac{3\pi}{4}n)}{\pi n}$$

$$X(e^{j\omega}) = \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) X_2(e^{j(\omega-\theta)}) d\theta$$

We can convert this equation to an ordinary convolution. Define

$$\widehat{X}_{1}(e^{j\theta}) = \begin{cases} X_{1}(e^{j\theta}), & \text{for } -\pi < \theta \leq \pi \\ 0, & \text{otherwise.} \end{cases}$$

• Example 5.15 Converting periodic convolution into ordinary convolution

$$\begin{split} X(e^{j\omega}) &= \frac{1}{2\pi} \int_{-\pi}^{+\pi} \hat{X}_1(e^{j\theta}) X_2(e^{j(\omega-\theta)}) d\theta \\ &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{X}_1(e^{j\theta}) X_2(e^{j(\omega-\theta)}) d\theta \end{split}$$

TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal	Fourier Transform
		x[n]	$X(e^{j\omega})$ periodic with
		y[n]	$Y(e^{j\omega})$ period 2π
5.3.2	Linearity	ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$
5.3.3	Time Shifting	$x[n-n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$
5.3.3	Frequency Shifting	$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$
5.3.4	Conjugation	$x^*[n]$	$X^*(e^{-j\omega})$
5.3.6	Time Reversal	x[-n]	$X(e^{-j\omega})$
5.3.7	Time Expansion	$x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n = \text{multiple of } 0, & \text{if } n \neq \text{multiple of } 0 \end{cases}$	$\frac{\sum_{k}^{j} k}{k} X(e^{jk\omega})$
5.4	Convolution	x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$
5.5	Multiplication	x[n]y[n]	$\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
5.3.5	Differencing in Time	x[n] - x[n-1]	$(1-e^{-j\omega})X(e^{j\omega})$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$rac{1}{1-e^{-j\omega}}X(e^{j\omega}) \ rac{1}{1-e^{-j\omega}}X(e^{j\omega})$
			$+\pi X(e^{j0})\sum_{i=1}^{+\infty}\delta(\omega-2\pi k)$
5.3.8	Differentiation in Frequency	nx[n]	$+\pi X(e^{j0})\sum_{k=-\infty}^{+\infty}\delta(\omega-2\pi k)$ $j\frac{dX(e^{j\omega})}{d\omega}$

5.3.4	Conjugate Symmetry for Real Signals Symmetry for Real, Even	x[n] real $x[n]$ real an even	$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \Re \{X(e^{j\omega})\} = \Re \{X(e^{-j\omega})\} \\ \Im \{X(e^{j\omega})\} = -\Im \{X(e^{-j\omega})\} \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \langle X(e^{j\omega}) = -\langle X(e^{-j\omega}) \rangle \end{cases}$ $X(e^{j\omega}) \text{ real and even}$
	Signals	x[n] rear air even	A(e) real and even
5.3.4	Symmetry for Real, Odd Signals	x[n] real and odd	$X(e^{j\omega})$ purely imaginary and odd
5.3.4	Even-odd Decomposition of Real Signals	$x_e[n] = \mathcal{E}v\{x[n]\}$ [x[n] real] $x_o[n] = \mathcal{O}d\{x[n]\}$ [x[n] real]	$\Re e\{X(e^{j\omega})\} \ j rac{g}{m}\{X(e^{j\omega})\}$
5.3.9		Telation for Aperiodic Signals $ X ^2 = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^2 d\omega$	

TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=\langle N\rangle} a_k e^{jk(2n/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	a_k
$e^{j\omega_0 n}$	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, & k = m, m \pm N, m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
$\cos \omega_0 n$	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
$\sin \omega_0 n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \{ \delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l) \}$	(a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$

Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N\sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N, \dots$ $a_k = \frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$ for all k
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$	
$x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \text{ sinc } \left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$	
$\delta[n]$	1	
u[n]	$\frac{1}{1-e^{-j\omega}}+\sum_{k=-\infty}^{+\infty}\pi\delta(\omega-2\pi k)$	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a < 1$	$\frac{1}{(1-ae^{-j\omega})^r}$	

Reall:

 $e^{j\omega_0 t} \stackrel{F}{\longleftrightarrow} 2\pi \delta(\omega - \omega_0)$

• FT from FS in the CT domain.

$$x[n] = e^{j\omega_0 n}, \quad \omega_0 = \frac{2\pi}{N}$$

$$\Rightarrow X(e^{j\omega}) = \sum_{l=-\infty}^{+\infty} 2\pi \delta(\omega - \omega_0 - 2\pi l)$$

Proof:

$$\frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{2\pi} \sum_{l=-\infty}^{+\infty} 2\pi \delta(\omega - \omega_0 - 2\pi l) e^{j\omega n} d\omega$$
$$= e^{j(\omega_0 + 2\pi r)n} = e^{j\omega_0 n}$$

 $x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$

• FT from FS (cont'd)

If
$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$$
 then $X(e^{j\omega}) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$ for $-\pi \leq \omega < \pi$

$$X(e^{j\omega}) = X(e^{j(\omega+2\pi)})$$

 $x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$

• FT from FS (cont'd)

Thus, for a periodic sequence x[n] with period N and with the FS representation

$$x[n] = \sum_{k=< N>} a_k e^{jk\omega_0 n},$$

$$a_{k+N} = a_k$$

its FT is related to its Foureir coefficient by

$$X(e^{j\omega}) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega - k\omega_0).$$

The FT of a periodic signal can be directly constructed from its Fourier coefficients.

We can verify this equation graphically by expressing x[n] as

$$x[n] = a_0 + a_1 e^{j\omega_0 n} + a_2 e^{j2\omega_0 n} + \dots + a_{N-1} e^{j(N-1)\omega_0 n},$$

plot the FT of each term, and then superimpose them.

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$

FT from FS (cont'd)

To determine the DTFT for a periodic discrete-time signal x[n] (i.e., x[n] = x[n+N])

(1) First, use the DTFS (Sec. 3.6) to express x[n] by

$$x[n] = \sum_{n=\langle N \rangle} a_k e^{jk(2\pi/N)n}$$

where
$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$

(2) Then

$$X(e^{j\omega}) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta\left(\omega - \frac{2\pi k}{N}\right) \qquad \text{for } -\pi \le \omega < \pi$$

$$X(e^{j\omega}) = X(e^{j(\omega+2\pi)})$$

• FT from FS (cont'd)

• Example 5.6 DTFT of Impulse Trains

$$x[n] = \sum_{k=-\infty}^{+\infty} \delta[n - kN]$$

$$\Rightarrow a_k = \frac{1}{N} \sum_{n=} x[n] e^{-jk(2\pi/N)n}$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk(2\pi/N)n}$$

$$= \frac{1}{N}$$

$$\Rightarrow X(e^{j\omega}) = \frac{2\pi}{N} \sum_{k=-\infty}^{+\infty} \delta(\omega - k \frac{2\pi}{N})$$

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$$

$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$

$$X(e^{j\omega}) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega - \frac{2\pi k}{N})$$

Sect. 4.3.6 Duality in CTFT

• Duality $x_1(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & |t| > T_1 \end{cases} \xrightarrow{\mathcal{F}} X_1(j\omega) = \frac{2\sin(\omega T_1)}{\omega}$

$$x_{2}(t) = \frac{\sin(Wt)}{\pi t} \overset{\mathcal{F}}{\longleftrightarrow} X_{2}(j\omega) = \begin{cases} 1, & |\omega| < W \\ 0, & |\omega| > W \end{cases}$$

Example 4.13

From Example 4.2
$$e^{-|t|} \longleftrightarrow \frac{2}{1+\omega^2}$$

Therefore, $\mathcal{F}\left(\frac{2}{1+t^2}\right) = 2\pi e^{-|\omega|}$

(Proof): $e^{-|t|} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\frac{2}{1+\omega^2}\right) e^{j\omega t} d\omega$
 $2\pi e^{-|t|} = \int_{-\infty}^{\infty} \left(\frac{2}{1+\omega^2}\right) e^{-j\omega t} d\omega$

 $2\pi e^{-|\omega|} = \int_{-\infty}^{\infty} \left(\frac{2}{1+t^2}\right) e^{-j\omega t} dt$

(2) Duality for Properties

$$\frac{dx(t)}{dt} \stackrel{\mathfrak{F}}{\longleftrightarrow} j\omega X(j\omega)$$

$$x(t-t_0) \longleftrightarrow e^{-j\omega t_0} X(j\omega)$$

$$\int_{-\infty}^{t} x(\tau)d\tau \xleftarrow{\mathfrak{F}} \frac{1}{j\omega} X(j\omega) + \pi X(0)\delta(\omega) \qquad -\frac{1}{jt} x(t) + \pi x(0)\delta(t) \xleftarrow{\mathfrak{F}} \int_{-\infty}^{\omega} X(j\eta)d\eta$$

Duality

$$-jtx(t) \longleftrightarrow \frac{dX(j\omega)}{d\omega}$$

$$e^{j\omega_0 t} x(t) \stackrel{\mathfrak{F}}{\longleftrightarrow} X(j(\omega - \omega_0))$$

$$-\frac{1}{jt}x(t) + \pi x(0)\delta(t) \longleftrightarrow \int_{-\infty}^{\infty} X(j\eta)d\eta$$

Sect. 5.7 Duality

Duality in DTFS

The Fourier coefficient a_k of a periodic sequence x[n] is also periodic. So we can apply DTFS again to a_k .

$$x[n] = \sum_{\substack{k = < N > \\ \text{ discrete time periodic in time}}} a_k e^{jk(2\pi/N)n} \longleftrightarrow a_k = \sum_{\substack{n = < N > \\ \text{ periodic in frquency}}} \frac{1}{N} x[n] e^{-jk(2\pi/N)n}$$

Sect. 5.7 Duality

Duality in DTFS (cont'd)

Consider two periodic sequences related by

$$f[m] = \frac{1}{N} \sum_{r = \langle N \rangle} g[r] e^{-jr(2\pi/N)m}$$

$$\Rightarrow \text{Set } m = k, r = n \Rightarrow f[k] = \frac{1}{N} \sum_{n = \langle N \rangle} g[n] e^{-jk(2\pi/N)n} \Rightarrow g[n] \stackrel{FS}{\longleftrightarrow} f[k]$$

$$\Rightarrow \text{Set } m = n, r = -k \Rightarrow f[n] = \frac{1}{N} \sum_{k = \langle N \rangle} g[-k] e^{jk(2\pi/N)n} \Rightarrow f[n] \stackrel{FS}{\longleftrightarrow} \frac{1}{N} g[-k]$$

For the DT Fourier series pair $x[n] \xleftarrow{FS} a_k$

$$x[n] = \sum_{k=< N>} a_k e^{jk\omega_0 n} = \sum_{k=< N>} a_k e^{jk(2\pi/N)n}$$

$$a_k = \frac{1}{N} \sum_{k=< N>} x[n] e^{-jk\omega_0 n} = \frac{1}{N} \sum_{k=< N>} x[n] e^{-jk(2\pi/N)n}$$

The duality implies that the Fourier coefficients for a_k are $\frac{1}{N}x[-n]$

Sect. 5.7 Duality (cont'd)

Duality in DT Fourier Series (cont'd)

The duality implies that every property of the DT FS has a dual. For example,

$$x[n-n_0] \stackrel{FS}{\longleftrightarrow} e^{-jk(2\pi/N)n_0} a_k$$

$$e^{+jm(2\pi/N)n} x[n] \stackrel{FS}{\longleftrightarrow} a_{k-m}$$
 dual

$$\sum_{r=\langle N\rangle} x[n]y[n-r] \stackrel{FS}{\longleftrightarrow} Na_k b_k$$

$$x[n]y[n] \stackrel{FS}{\longleftrightarrow} \sum_{l=\langle N\rangle} a_l b_{k-l}$$
 dual

See Table 3.2 on p. 221.

Sect. 5.7 Duality (cont'd)

5.7.2 Duality between DTFT and CTFS

CTFS

$$a_{k} = \frac{1}{T} \int_{T} x(t)e^{-jk\omega_{0}t} dt$$

$$\omega_{0} = 2\pi / T$$

$$k \to -n$$

$$\omega_{0}t \to \omega$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_{k}e^{jk\omega_{0}t}$$

$$k \to -n$$

$$T = 2\pi \quad \omega_{0} = 1$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega})e^{j\omega n} d\omega$$

We can interpret the DTFT pair as the FS representation of $X(e^{j\omega})$

 \Rightarrow The *n*th Fourier coefficient is x[-n]

 \Rightarrow The period of $X(e^{jo})$ is 2π

Example 5.17 Determine DTFT by duality

$$x[n] = \frac{\sin(\pi n/2)}{\pi n} \longleftrightarrow X(e^{j\omega}) = ?$$

Which CT signal has the Fourier coefficient $a_k = x[k]$ and $T=2\pi$?

From Example 3.5,

$$g(t) = \begin{cases} 1, & |t| \le T_1 \\ 0, & T_1 < |t| \le \pi \end{cases} \quad \longleftrightarrow \quad a_k = \frac{\sin(kT_1)}{k\pi}$$

Let $T_1 = \pi/2 \implies a_k = x[k]$ and

$$a_k = \frac{\sin(\pi k/2)}{\pi k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(t) e^{-jkt} dt = \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} e^{-jkt} dt$$

Replacing k by -n and t by ω yields

$$\frac{\sin(\pi n/2)}{\pi n} = \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} e^{jn\omega} d\omega$$

Thus

$$X(e^{j\omega}) = \begin{cases} 1, & |\omega| \le \pi/2 \\ 0, & \pi/2 < |\omega| \le \pi \end{cases}$$

TABLE 5.3 SUMMARY OF FOURIER SERIES AND TRANSFORM EXPRESSIONS

	Continuous time		Discrete time	
	Time domain	Frequency domain	Time domain	Frequency domain
Fourier	$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} $ Chap. 3	$a_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t}$	$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n} $ 3.6	$a_k = \frac{1}{N} \sum_{k=\langle N \rangle} x[n] e^{-jk(2\pi/N)n}$
Series	continuous time periodic in time	discrete frequency aperiodic in frequency	discrete time duality	discrete frequency periodic in frequency
Fourier Transform	$x(t) = \underset{\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega}{\text{Chap. 4}} 4$	$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$	$x[n] = $ Chap. 5 $\frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$,	$X(e^{j\omega)} = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$
	continuous time aperiodic in time	continuous frequency aperiodic in frequency	discrete time aperiodic in time	continuous frequency periodic in frequency

Sect. 5.8 Systems Characterized by Linear Constant-Coefficient Difference Equations

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k] \qquad x[n] \longrightarrow \text{LTI System} \longrightarrow y[n]$$

 \Rightarrow Determine the frequency response $H(e^{j\omega})$ of the system

Approach 1: Use eigenfunctions

Let
$$x[n]=e^{j\omega n} \Rightarrow y[n]=H(e^{j\omega})e^{j\omega n}$$

Approach 2: Use DTFT

$$Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega}) \Rightarrow H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{\sum_{k=0}^{M} b_k e^{-jk\omega}}{\sum_{k=0}^{N} a_k e^{-jk\omega}}$$

Sect. 5.8 Systems Characterized by **Linear Constant-Coefficient Difference Equations**

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k] \qquad x[n] \longrightarrow \text{LTI System} \longrightarrow y[n]$$

$$F\left\{\sum_{k=0}^{N} a_{k} y[n-k]\right\} = F\left\{\sum_{k=0}^{M} b_{k} x[n-k]\right\}$$

$$\sum_{k=0}^{N} a_k F\{y[n-k]\} = \sum_{k=0}^{M} b_k F\{x[n-k]\} \qquad x[n-n_0] \stackrel{F}{\longleftrightarrow} e^{-j\omega n_0} X(e^{j\omega})$$

$$\sum_{k=0}^{N} a_k e^{-jk\omega} Y(e^{j\omega}) = \sum_{k=0}^{M} b_k e^{-jk\omega} X(e^{j\omega})$$

$$\Rightarrow H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{\sum_{k=0}^{M} b_k e^{-jk\omega}}{\sum_{k=0}^{N} a_k e^{-jk\omega}}$$

$$x[n-n_0] \stackrel{F}{\longleftrightarrow} e^{-j\omega n_0} X(e^{j\omega})$$

$$\begin{array}{c} h[n] \\ x[n] \longrightarrow \text{ LTI System } \longrightarrow y[n] \end{array}$$

$$y[n]-ay[n-1] = x[n], |a| < 1$$

$$\Rightarrow H(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}$$

From Example 5.1, we immediately find that

$$h[n] = a^n u[n]$$

$$x[n] \longrightarrow \text{LTI System} \longrightarrow y[n]$$

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n]$$

$$\Rightarrow H(e^{j\omega}) = \frac{2}{1 - \frac{3}{4}e^{-j\omega} + \frac{1}{8}e^{-j2\omega}} = \frac{2}{(1 - \frac{1}{2}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})}$$

$$= \frac{4}{(1 - \frac{1}{2}e^{-j\omega})} - \frac{2}{(1 - \frac{1}{4}e^{-j\omega})}$$

$$\Rightarrow h[n] = 4(\frac{1}{2})^n u[n] - 2(\frac{1}{4})^n u[n]$$

Given
$$x[n] = (\frac{1}{4})^n u[n]$$
 and $H(e^{j\omega}) = \frac{2}{(1 - \frac{1}{2}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})}$, find $y[n]$.

$$Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$$

$$= \frac{1}{1 - \frac{1}{4}e^{-j\omega}} \cdot \frac{2}{(1 - \frac{1}{2}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})}$$

$$= \frac{2}{(1 - \frac{1}{2}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})^{2}}$$

$$= \frac{8}{(1 - \frac{1}{2}e^{-j\omega})} - \frac{4}{(1 - \frac{1}{4}e^{-j\omega})} - \frac{2}{(1 - \frac{1}{4}e^{-j\omega})^{2}}$$

$$\Rightarrow y[n] = \{8(\frac{1}{2})^{n} - 4(\frac{1}{4})^{n} - 2(n+1)(\frac{1}{4})^{n}\}u[n]$$

We have learned FS or FT of infinite-duration signals

	Aperiodic	Periodic
Continuous-Time	FT	FS FT
Discrete-Time	FT	FS FT

Discrete Fourier Transform for DT signals of finite duration

Recall DT FS pair
$$\tilde{x}[n] \longleftrightarrow a_k$$
:
$$\tilde{x}[n] = \sum_{k=< N>} a_k e^{jk\omega_0 n}$$

$$a_k = \frac{1}{N} \sum_{n=< N>} \tilde{x}[n] e^{-jk\omega_0 n}$$

$$a_k = a_{k+N}$$

$$\omega_0 = \frac{2\pi}{N}$$

DFT of
$$x[n]$$
, $0 \le n \le N - 1$

$$x[n] = \sum_{0}^{N-1} \mathcal{X}[k] e^{jk(2\pi/N)n}$$

$$\mathcal{X}[k] = \frac{1}{N} \sum_{0}^{N-1} x[n] e^{-jk(2\pi/N)n}$$

$$= \frac{1}{N} \sum_{0}^{N-1} x[n] W_{N}^{nk}$$

$$W_{N} = e^{-j2\pi/N}$$