

1INF33 – Bases de Datos

Semestre 2024-2

Agenda

- Sesiones de Laboratorio
- Sistema de evaluación
- Historia de Oracle
- Herramientas de Base de datos
- SQL Developer
- Caso Práctico

Sesiones de Laboratorio

Semana	Fecha	Temas	Sesión	Nota		
2	26/08	Presentación del curso – Introducción uso herramientas.	Lab. 1	No (dirigido)		
4	09/09	Modelo conceptual y lógico.	Lab. 2	No (dirigido)		
6	23/09	SQL – Lenguaje de definición y manipulación de datos (DDL y DML).	Lab. 3	Sí (calificado)		
8	07/10	Consultas (queries), funciones de columna, group by.	Lab. 4	Sí (calificado)		
Examen Parcial (15/10)						
11	28/10	Repaso de SQL.	Lab. 5	No (dirigido)		
13	11/11	Subprogramas: procedure y function.	Lab. 6	Sí (calificado)		
15	25/11	Cursores y triggers.	Lab. 7	Sí (calificado)		
Examen Final (10/12)						

Organización de los Laboratorios

► Duración: 120 minutos

Etapa	Actividad Dirigida	Tiempo
Ingreso	Ingreso de los alumnos.	10 min
Dirigida	Exposición/repaso sobre el tema a evaluar a cargo de un Jefe de Laboratorio.	110 min
Etapa	Actividad Calificada	Tiempo
Ingreso	Ingreso de los alumnos.	10 min
Calificada	Resolución de los problemas propuestos.	100 min
Entrega	Subir los archivos a la tarea de PAIDEIA.	10 min

- Los alumnos deben dedicar los últimos 10 minutos exclusivamente a subir la solución a PAIDEIA.
- ▶ Deben respetar estrictamente el formato del nombre de archivo que se indica en el enunciado.

Sistema de Evaluación

Laboratorios: Pb (4 calificados no se elimina ninguno)

Examen Parcial: Ex1

Examen Final: Ex2

Tarea Académica: TA

NOTA =
$$3 \times Pb + 2 \times TA + 3 \times Ex1 + 4 \times Ex2$$

1977:

- Fundación de Relational Software, Inc. por Larry Ellison, Bob Miner y Ed Oates.
- Inspirado en el artículo de Codd sobre el modelo relacional.

1979:

- Lanzamiento de Oracle V2, el primer RDBMS comercial basado en SQL.Primer software de bases de datos compatible con entornos multiusuario.
- Clientes tempranos: agencias gubernamentales y empresas de tecnología.

- 1982:
 - Relational Software, Inc. se convirtió en Oracle Corporation.
- 1983:
 - Se lanza la versión 3 de Oracle, completamente reescrito en el lenguaje de programación C.
 - Primer sistema de bases de datos relacional en implementar completamente SQL
 - También es a partir de esta versión que se admite la plataforma VAX y UNIX.
- 1984 1985
 - Se lanza la versión 4 que apoya la consistencia en la lectura y la versión 5 que admitía solicitudes distribuidas

- 1988 Oracle 6
 - Introducción del concepto de transacciones (PL/SQL, bloqueo a nivel de filas) con soporte para control de concurrencia multiversión (MVCC).
 - Soporte para clusters y replicación de datos, permitiendo a las empresas manejar grandes volúmenes de datos distribuidos.
- 1992 Oracle 7
 - Introducción de triggers, procedimientos almacenados y vistas materializadas, características que mejoran la automatización y eficiencia en la administración de datos. Mejoras en la integridad de datos y el rendimiento.
 - Uso extendido en aplicaciones críticas en sistemas financieros y telecomunicaciones.

- Oracle 10g (2003) y 11g (2007)
 - Introducción de la computación grid (grid computing) con Oracle 10g, que permite distribuir recursos de bases de datos a través de redes para maximizar la eficiencia y la escalabilidad.
 - Oracle 11g mejora la gestión automática de datos, con funciones como particionamiento, gestión automatizada del almacenamiento y optimización del rendimiento.

- Oracle 12c (2013)
 - Primer sistema de bases de datos diseñado específicamente para la nube.
 - Introducción de las bases de datos multitenant: capacidad de alojar múltiples bases de datos en una sola instancia, optimizando el uso de recursos.
 - Creación de pluggable databases, facilitando la gestión, actualización y migración de bases de datos en entornos de nube.
- Oracle 18c (2018), 19c (2019), 21c (2021)

- Oracle Autonomous Database (2018)
 - Revolución en la administración de bases de datos con el uso de machine learning para la automatización completa (autogestión, autoparcheo y autoseguridad).
 - Elimina la intervención manual, reduce costos operativos y mejora la seguridad al minimizar los errores humanos.
- Oracle 18c (2018), 19c (2019), 21c (2021)

- Oracle 23c (2023): Innovator Release
 - Diseñada para abordar las demandas modernas de las aplicaciones de bases de datos.
 - Presenta una arquitectura más flexible y unificada que combina datos relacionales y NoSQL, además de incorporar inteligencia artificial y machine learning directamente en la base de datos.
- Oracle 23ai (Mayo 2024)
 - Integra capacidades avanzadas de inteligencia artificial y machine learning directamente en la base de datos. Esto permite a los usuarios crear, entrenar, implementar y administrar modelos de inteligencia artificial dentro del mismo entorno de datos.

Herramientas de Base de datos

Developer

SQL DEVELOPER

Caso práctico

 Elaborar un modelo lógico y físico que soporte productos, sus respectivas marcas y los almacenes donde se alojarán.