PARÁBOLA	
Vértice na Origem	
$x^2 = 2py$	
ou	
$y^2 = 2px$	
Vértice Fora da Origem	
$(x-h)^2 = 2p(y-k)$	Cer
ou	(x -
$(y-k)^2 = 2p(x-h)$	
Forma explícita	(r -
-	$\frac{(x-b)^2}{b^2}$
$y = ax^2 + bx + c$	
ou	r
$x = ay^2 + by + c$	'
\ eixo /parábola	
P	A. F
F	
d	

ELIPSE Centro na Origem

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

ou

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

Centro Fora da Origem

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

ou

$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

Medida dos Focos

$$a^2 = b^2 + c^2$$

Excentricidade

$$e = \frac{c}{a}$$

HIPÉRBOLE Distância Entre os Vértices

Centro na Origem

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

ou

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

Centro Fora da Origem

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

ou

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

Medida dos Focos

$$c^2 = a^2 + b^2$$

Excentricidade

$$e = \frac{c}{a}$$

