Official Amendment
Serial No. - 10/038,274
Docket No. - UVD 0280 PA / 40815.324

Amendments to the Claims

The following listing of claims will replace all prior versions, and listings, of claims in the present application:

- 1. (Currently Amended) A solid corrosion-inhibiting conversion coating formed on a substrate metal, the conversion coating comprising cobalt, wherein the cobalt is trivalent cobalt, or terravalent cobalt, or combinations thereof, and a valence stabilizer combined to form a cobalt/valence stabilizer complex within the solid corrosion-inhibiting conversion coating, and wherein the cobalt/valence stabilizer complex has a solubility in water of between about 5 X 10⁻¹ and about 1 X 10⁻⁵ moles per liter of cobalt at about 25°C and about 760 Torr.
- 2. (Canceled)
- 3. (Currently Amended) The conversion coating of claim [[2]]1 wherein the solubility of the cobalt/valence stabilizer complex in water is between about 5 X 10⁻² and about 5 X 10⁻⁵ moles per liter of cobalt at about 25°C and about 760 Torr.
- 4. (Original) The conversion coating of claim 1 wherein there is an electrostatic barrier layer around the cobalt/valence stabilizer complex in aqueous solution.
- 5. (Original) The conversion coating of claim 1 wherein the cobalt/valence stabilizer complex acts as an ion exchange agent towards corrosive ions.
- 6. (Original) The conversion coating of claim 1 wherein the conversion coating is between about 25 and about 10,000 nanometers thick.

Serial No. -- 10/038,274

Docket No. - UVD 0280 PA / 40815.324

- 7. (Original) The conversion coating of claim 6 wherein the conversion coating is between about 100 and about 500 nanometers thick.
- 8. (Original) The conversion coating of claim 1 wherein the conversion coating has a morrhology which enhances adhesion of a coating applied over the conversion coating.
- 9. (Original) The conversion coating of claim 1 wherein the valence stabilizer is selected from an inorganic valence stabilizer and an organic valence stabilizer.
- 10. (Original) The conversion coating of claim 9 wherein the valence stabilizer is the inorganic valence stabilizer selected from molybdates, tungstates, vanadates, niobates, tantalates, tellurates, periodates, iodates, carbonates, antimonates, stannates, titanates, zirconates, hafnates, bismuthates, germanates, arsenates, phosphates, borates, aluminates, and silicates, and combinations thereof.
- 11. (Original) The conversion coating of claim 10 wherein the valence stabilizer is the inorganic valence stabilizer selected from molybdates, tungstates, vanadates, niobates, tantalates, tellurates, periodates, iodates, carbonates, antimonates, and stannates, and combinations thereof.
- 12. (Original) The conversion coating of claim 10 wherein the cobalt/valence stabilizer complex has a central cavity containing a cobalt ion and an additional ion.
- 13. (Original) The conversion coating of claim 12 wherein the additional ion is B¹³, Al¹³, Si¹⁴, P⁺⁵, Ti⁺⁴, V⁺⁵, V⁺⁴, Cr¹⁶, Cr¹³, Mn¹⁴, Mn¹³, Mn⁺², Fe¹³, Fe¹², Co⁺², Ni⁺², Ni⁺³, Ni⁺⁴, Cu¹², Cu¹², Zn¹², Ga⁺³, Ge⁺⁴, As⁺⁵, As⁺³, Zr¹⁴, or Ce⁺⁴.

Official Amendment Serial No. - 10/038,274 Docket No. - UVD 0280 PA / 40815.324

(Currently Amended) The conversion coating of claim 9 wherein the valence stabilizer is 14. the organic valence stabilizer selected from monoamines; diamines; triamines; tetraamines; pentamines; hexamines; five- or six-membered heterocyclic rings containing one to four nitrogen atoms optionally having additional nitrogen, sulfur, or oxygen binding sites; five- or sixmembered heterocyclic rings containing one or two sulfur atoms and having additional nitrogen binding sites; five- or six-membered heterocyclic rings containing one or two oxygen atoms and having additional nitrogen binding sites; (two-, three-, four-, six-, eight-, or ten-)membered nitrogen, nitrogen-sulfur, or nitrogen-oxygen macrocyclics; macrocyclic oligothioketones or dithiplenes; diazenes; thio-, amido-, or imido- derivatives of hypophosphoric, phosphoric, or diphosphoric acids and salts; azo compounds, triazenes, formazans, azines, hydrazones, or Schiff Bases containing at least two azo, imine, or azine groups; azo compounds, triazenes, formazans, azines, hydrazones, or Schiff Bases with ortho- (for aryl) or alpha- or beta- (for alkyl) substitution; oximes; amidines and imido compounds; dithio ligands; amides; amino acids; N-(thio)acyl 7-aminobenzylidenimines; (thio)hydroxamates; alpha- or orthoamir othio(di)carboxylic acids and salts; (thio)semicarbazones; (thio)acyl hydrazones; (thic)carbazones; silylaminoalcohols; thioalkyl amines and imines; hydroxyalkyl imines; (thic) aryl amines and imines; guanylureas; guanidinoureas; 2-nitrosophenols; 2-nitrophenols; Nnitresohydroxylamines; 1,3-monothioketones; monothiomalonamides; 2-thioacylacetamides; 2acylthioacetamides; dithiodicarbonic diamides; trithiodicarboxylic acids and salts; monothiocarbamates; monothioethers; dithioethers; trithioethers; tetrathioethers; pentathioethers; hexathioethers; disulfides; monophosphines; diphosphines; triphosphines; tetraphosphines; pentaphosphines; hexaphosphines; five- or six-membered heterocyclic rings containing one or two sulfur atoms optionally having additional sulfur, oxygen, or phosphorus binding sites; fiveor six-membered heterocyclic rings containing one to three phosphorus atoms optionally having additional phosphorus, nitrogen, oxygen, or sulfur binding sites; five- or six-membered hete ocyclic rings containing one to four nitrogen atoms and having additional phosphorus

Scrial No. - 10/038,274

Docket No. UVD 0280 PA / 40815.324

binding sites; five- or six-membered heterocyclic rings containing one or two oxygen atoms and having additional sulfur or phosphorus binding sites; (five-, seven-, or nine-)membered nitrogen, nitrogen-sulfur, or nitrogen-oxygen macrocyclics; (two- to ten-)membered sulfur, sulfur-oxygen, or sulfur-phosphorus macrocyclics, not including oligothioketones or dithiolenes; (two- to ten-) membered phosphorus, nitrogen-phosphorus, or oxygen-phosphorus macrocyclics; thio-, amido-, or imido- derivatives of phosphonic and diphosphonic acids and salts containing no sulfur binding sites; amido-, or imido- derivatives of hypophosphoric, phosphoric, or diphosphoric acids and salts containing no sulfur binding sites; dithioperoxydiphosphoramides; dithipperoxydiphosphoric acids and salts; monothipperoxydiphosphoramides; monothioperoxydiphosphoric acids and salts; monothiophosphoric acids; phosphoro(dithioperoxoic) acids and salts; azo compounds, triazenes, formazans, azines, or Schiff Bases; silylamines; silazanes; guanidines and diguanidines; pyridinaldimines; hydrazones; hydramides; nitriles; thioureas and thioamides; ureas and biurets; monothio ligands; diketone ligar ds; dithioacyl disulfides; tetrathioperoxydicarbonic diamides; (hexa-, penta-, or tetra-) thioperoxydicarbonic acids and salts; 1,2-dithiolates; rhodanines; dithiocarbimates; (thio)xanthates; S-(alkyl- or aryl-thio)thiocarboxylic acids and salts; phosphinodithioformates; (thic)borates and (thio)boronates; (thio)arsonic acids and salts; (thio)antimonic acids and salts; phosphine and arsine sulfides or oxides; beta-hydroxykotones and -aldehydes; squaric acids and salts; earbonates; carbamates and carbimates; carbazates; imidosulfurous diamides; sulfurdimines; thiocarbonyl and mercapto oximes; 2-nitrothiophenols; 2-nitrilo(thio)phenols; acyleyanamides; imidates; 2-amidinoacetates; beta-ketoamines; 3-aminoacrylamides and 3,3diaminoacrylamides; 3-aminoacrylic acids and salts and 3-hydroxy-3-aminoacrylic acids and salts; 2-nitroanilines; amine and diazine N-oxides; hydrazides and semicarbazides; (amino- or imino-)aryl phosphines; (thio- or hydroxy-)aryl phosphines; arsines; five- or six-membered hete ocyclic rings containing one arsenic atom optionally having additional arsenic binding sites;(two- to six-)membered arsenic macrocyclics; selenoethers; five- or six-membered hete ocyclic rings containing one or two sclenium atoms optionally having additional sclenium

Serial No. - 10/038,274 Docket No. - UVD 0280 PA / 40815.324

binding sites; (two- to six-)membered sclenium macrocyclics; 1,3-diselenoketones; 1,1-diselenolates; diselenocarbamates; sclenophosphoric acids and salts; sclenocarbonates; cyanide, isocyanide, and cyanamide ligands; nitrosyl and nitrite ligands; azide ligands; thiolates and selenolates; (thio)cyanate ligands; diene or bicyclic or tricyclic hydrocarbon ligands; and carbonyl, halogen, or hydroxo ligands; and combinations thereof.

(Original) The conversion coating of claim 14 wherein the organic valence stabilizer is 15. selected from monoamines; diamines; triamines; tetraamines; pentamines; hexamines; five- or six-membered heterocyclic rings containing one to four nitrogen atoms optionally having additional nitrogen, sulfur, or oxygen binding sites; five- or six-membered heterocyclic rings containing one or two sulfur atoms and having additional nitrogen binding sites; five- or sixmembered heterocyclic rings containing one or two oxygen atoms and having additional nitrogen bind ng sites; (two-, three-, four-, six-, eight-, or ten-)membered nitrogen, nitrogen-sulfur, or nitrogen-oxygen macrocyclics; macrocyclic oligothioketones or dithiolenes; diazenes; thio-, amico-, or imido- derivatives of hypophosphoric, phosphoric, or diphosphoric acids and salts; azo compounds, triazenes, formazans, azines, hydrazones, or Schiff Bases containing at least two azo, imine, or azine groups; azo compounds, triazenes, formazans, azines, hydrazones, or Schiff Bases with ortho- (for aryl) or alpha- or beta- (for alkyl) substituted azo compounds, triazenes, formazans, azines, hydrazones, or Schiff Bases; oximes; amidines and imido compounds; dithio ligar.ds; amides; amino acids; N-(thio)acył 7-aminobenzylidenimines; (thio)hydroxamates; alpha- or ortho-aminothio(di)carboxylic acids and salts; (thio)semicarbazones; (thio)acyl hydrazones; (thio)carbazones; silylaminoalcohols; thioalkyl amines and imines; hydroxyalkyl imines; (thio)aryl amines and imines; guanylureas; guanidinoureas; 2-nitrosophenols; 2nitrephenols; N-nitrosohydroxylamines; 1,3-monothioketones; monothiomalonamides; 2thioacylacetamides; 2-acylthioacetamides; dithiodicarbonic diamides; trithiodicarboxylic acids and salts; and monothiocarbamates; and combinations thereof.

Official Amendment Serial No. – 10/038,274

Docket No. - UVD 0280 PA / 40815.324

- 16. (Original) The conversion coating of claim 14 wherein the organic valence stabilizer is the diazene selected from diazeneformimidamides; diazeneformamides; diazeneformimidamides; diazeneacetothioamides; diazeneformimidic acids and salts; diazeneacetimidic acids and salts; diazenecarbothioic acids and salts; diazenecarbothioic acids and salts; diazenecarbothioic acids and salts; diazeneformaldehydes; diazeneformothioaldehydes; diazeneacetaldehydes; diazeneacetothioaldehydes; diazenediformamides; diazenediformothioamides; diazenediacetamides; diazenediacetothioamides; diazenediacetimidamides; diazenediformimidamides; diazenediformimidamides; diazenediformimidatic acids and salts; diazenediacetimidothioic acids; diazenediaceticarbothioic acids; diazenediaceticarbodithioic acids; diazenediaceticarbodithioicar
- 17. (Original) The conversion coating of claim 14 wherein the organic valence stabilizer is the thio-, amido-, or imido- derivative of hypophosphoric, phosphoric, or diphosphoric acids and salts selected from phosphoramidimidic triamides; phosphoramidimidic acids and salts; phosphorodiamidimidothioic acids and salts; phosphorodiamidimidothioic acids and salts; phosphoramidimidodithioic acids and salts; phosphoramidimidodithioic acids and salts; phosphoramidimidodithioic acids and salts; (di- or mono-)thiohypophosphoramides; phosphoramidic acids and salts; phosphorimidic acids and salts; (di- or mono-)thiohydrazidodiphosphoric acids and salts; (di- or mono-)thiohydrazidodiphosphoramides; phosphoric triamides; (di- or mono-)thiohydrazidodiphosphoramides; phosphoric triamides; (di- or mono-)thiodiphosphoramides; (di- or mono-)thiodiphosphoramides; (di- or mono-)thiodiphosphoramides; (di- or mono-)thiodiphosphoric acids and salts; (tetra-, tri-, di-)thiophosphoric acids and salts; phosphoro(dithioperoxo)(mono-, di-, or tri-)thioic acids and salts;

Serial No. - 10/038,274

Docket No. - UVD 0280 PA / 40815.324

phosphorimido(mono-, di-, or tri-)thioic acids and salts; phosphorothioic triamides; phosphoramido(mono, di- or tri-)thioic acids and salts; and phosphorodiamido(mono, di- or tri-)thioic acids and salts; and combinations thereof.

- 18. (Original) The conversion coating of claim 14 wherein the organic valence stabilizer is a substituent for the ortho- (for aryf) or alpha- or beta- (for alkyl) substituted azo compounds, triazenes, formazans, azines, hydrazones, or Schiff Bases selected from amino; imino; oximo; diazeno; hydrazido; thiol; mercapto; thiocarbonyl; hydroxy; carbox; and carbonyl substituents; and combinations thereof.
- 19. (Original) The conversion coating of claim 14 wherein the organic valence stabilizer is the exime selected from monooximes; dioximes; carbonyl oximes; imine oximes; hydroxy oxin.es; amino oximes; amido oximes; hydrazone oximes; and azo oximes; and combinations thereof.
- 20. (Original) The conversion coating of claim 14 wherein the organic valence stabilizer is the amidine and imido compound selected from amidines; diamidines; biguanides; biguanidines; diamidinemethanes; imidoylguanidines; amidinoguanidines; diformamidine oxides, sulfides, and disuffides; imidodicarbonimidic acids and salts; diimidodicarbonimidic acids and salts; thiodiimidodicarbonimidic acids and salts; thiodiimidodicarbonimidic acids and salts; diimidoylimines; diimidoylhydrazides; imidosulfamides; diimidosulfamides; O-amidinocarbamates; O- or S-amidino(mono-, di-, or peroxy-)thiocarbamates; N-hydroxy(or N,N'-dihydroxy)amidines; and diimidosulfuric acids and salts; and combinations thereof.
- 21. (Original) The conversion coating of claim 14 wherein the organic valence stabilizer is the dithio ligand selected from dithioimidodialdehydes; dithiohydrazidodialdehydes; dithiohydrazidodicarbonic acids and salts; dithiohydrazidodicarbonic acids and salts; 1.3-

Serial No. - 10/038,274 Docket No. - UVD 0280 PA / 40815.324

dithioketones; 1,2-dithioketones; dithiomalonamides; 2-thioacylthioacetamides; dithioacyl sulfides; trithiodicarbonic diamides; (penta-, tetra-, tri-)thiodicarbonic acids and salts; beta-mercaptothioketones and aldehydes; N-(aminomethylthiol)thioureas; dithioxamides; 1,1-dithiolates; (di- or per-)thiomonocarboxylic acids and salts; (tetra- or per-)thiodicarboxylic acids and salts; (di-, tri-, or per-)thiocarbonates; dithiocarbamates (including N-hydroxydithiocarbamates and N-mercaptodithiocarbamates); and dithiocarbazates; and combinations thereof.

- 22. (Original) The conversion coating of claim 14 wherein the organic valence stabilizer is the amide selected from monoamides; lactams; amidinoamides; guanidinoamides; imidpylamides; polyamides; and polylactams; and combinations thereof.
- 23. (Original) The conversion coating of claim 14 wherein the organic valence stabilizer is the trio-, amido-, or imido-derivative of phosphonic and diphosphonic acids and salts selected from phosphonitrile amides; phosphonimidic diamides; phosphonamidimidic acids and salts; phosphonamidimidothioic acids and salts; dithioimidodiphosphonic acids and salts; dithiohydrazidodiphosphonic acids and salts; dithioimidodiphosphonamides; dithiohydrazidodiphosphonamides; dithioperoxydiphosphonamides; dithioperoxydiphosphonic acids and salts; dithioperoxydiphosphonic acids and salts; (di- and tri-) thiophosphonic acids and salts; phosphono(dithioperoxo)thioic acids and salts; phosphono(dithioperoxo)dithioic acids and salts; phosphonimidothioic acids and salts; phosphonamidothioic acids and salts; phosphonamidothioic acids and salts; phosphonamidothioic acids and salts; monothiohydrazidodiphosphonic acids and salts; monothioimidodiphosphonic acids and salts; monothiohydrazidodiphosphonamides; monothiodiphosphonic acids and salts; monothioperoxydiphosphonic acids and salts;

Official Amendment
Serial No. - 10/038,274
Docket No. - UVD 0280 PA / 40815.324

monothiophosphonic acids and salts; and phosphono(dithioperoxoic) acids and salts; and combinations thereof.

- 24. (Original) The conversion coating of claim 14 wherein the organic valence stabilizer is the amido-, or imido- derivative of hypophosphoric, phosphoric, or diphosphoric acids and salts containing no sulfur binding sites selected from hypophosphoric acids and salts; hypephosphoramides; imidodiphosphoric acids and salts; hydrazidodiphosphoramides; hydrazidodiphosphoramides; and diphosphoramides; and combinations thereof.
- 25. (Original) The conversion coating of claim 14 wherein the organic valence stabilizer is the amico-, or imido- derivative of phosphonic or diphosphonic acids and salts containing no sulfur binding sites selected from imidodiphosphonic acids and salts; hydrazidodiphosphonic acids and salts, imidodiphosphonamides; hydrazidodiphosphonamides; diphosphonamides; phosphonimidic acids and salts; phosphonamidic acids and salts; and phosphonic diamides; and combinations thereof.
- 26. (Original) The conversion coating of claim 14 wherein the organic valence stabilizer is the thiourea and thioamide selected from thioureas; thioarboxamides; thioacylthioureas, acylthioureas, and thioacylureas; thioarbylthioureas, aroylthioureas, and thioarbylureas; thioimidates; thioguanylureas; guanidinothioureas; amidinothioamides; guanidinothioamides; imidoylthioamides; 3-aminothioacrylamides; thiohydrazides; thiosemicarbazides; (mono- and di-)thiobiurets; (mono- and di-)thiobiurets; (mono- and di-)thiobiureas; N-(aminomethylol) thioureas; N-(aminomethylthiol)ureas; and beta-mercaptocarboxamides; and combinations thereof.

Seria No. - 10/038,274 Docket No. - UVD 0280 PA / 40815.324

- 27. (Original) The conversion coating of claim 14 wherein the organic valence stabilizer is the urea and biuret selected from ureas; pseudoureas; biurets; isobiurets; biureas; acylureas; aroylureas; and N-(aminomethylol)ureas; and combinations thereof.
- 28. (Original) The conversion coating of claim 14 wherein the organic valence stabilizer is the monothio ligand selected from beta-aminothiones; 3-aminothioacrylic acids and salts; 3-mercapto-3-aminothioacrylic acids and salts; N-thioacyl benzylidenimines; thioi midodialdehydes; thiohydrazidodialdehydes; thioimidodicarbonic acids and salts; thiohydrazidodicarbonic acids and salts; 1,2-monothioketones; trithioperoxydicarbonic diamides; dithioperoxydicarbonic diamides; dithioperoxydicarbonic acids and salts; trithioperoxydicarbonic acids and salts; beta-hydroxythioketones; beta-hydroxythioaldehydes; beta-mercaptoketones; beta-mercaptoaldehydes; monothiocarmides; beta-mercaptocarboxylic acids and salts; beta-mercaptothiocarboxylic acids and salts; S-arylthiocarboxylic acids and salts; S-alky thiocarboxylic acids and salts; S-aryldisulfidocarboxylic acids and salts; monothiocarboxylic acids and salts; monothiocarbonates; monothiocarboxylic acids and salts; monothiocarbonates; monothiocarboxylic acids and salts; monothiocarbonates; mercaptoalcohols; and combinations thereof.
- 29. (Original) The conversion coating of claim 14 wherein the organic valence stabilizer is the diketone ligand selected from imidodialdehydes; hydrazidodialdehydes; imidodiarbonic acids and salts; hydrazidodicarbonic acids and salts; imidodisulfamic acids and salts; imidodisulfamic acids and salts; imidodisulfamic acids and salts; imidodisulfamic acids and salts; imidodicarbonic acids and salts; 1,3-diketones; 1,2-diketones; malonamides; 2-acylacetamides; monothiodicarbonic diamides; monothiodicarbonic acids and salts; trithionic acids and salts; oxamides; and dicarboxylic acids; and combinations thereof.

Serial No. - 10/038,274 Docket No. - UVD 0280 PA / 40815.324

- 30. (Original) The conversion coating of claim 14 wherein the organic valence stabilizer is the S-(alkyl- or aryl-thio)thiocarboxylic acid and salt selected from S-(alkylthio)thiocarboxylic acids and salts; S-(arylthio)thiocarboxylic acids and salts; S-(alkyldisulfido)thiocarboxylic acids and salts; S-(aryldisulfido)thiocarboxylic acids and salts; and S,S'-disulfidobisthiocarboxylic acids and salts; and combinations thereof.
- 31. (Original) The conversion coating of claim 14 wherein the organic valence stabilizer is the phosphine and arsine sulfide or oxide selected from phosphine P-sulfides; aminophosphine sulfides; arsine As-sulfides; aminoarsine sulfides; phosphine P-oxides; aminophosphine oxides; arsine As-oxides; and aminoarsine oxides; and combinations thereof.
- 32. (Original) The conversion coating of claim 14 wherein the solubility in water of the cobalt/valence stabilizer complex is adjusted by the addition of a substituent group on the organic valence stabilizer.
- 33. (Original) The conversion coating of claim 32 wherein the solubility in water is increased by the addition of the substituent group selected from sulfonate groups (-SO₃), carboxyl groups (-CO₂-), hydroxyl groups (-OH), ester groups (-CO₃-), carbonyl groups (=C=O), amine groups (-NH₂), nitrosamine groups (=N-N=O), carbonylnitrene groups (-CO-N), sulfoxide groups (-S=O), sulfone groups (=S[-O]₂), sulfinyl groups (-N=S=O), sulfodiimines (-S[=NH]₂), sulfonyl halide groups (-S[-O]₂X), sulfonamide groups (-S[=O]₂NH₂), monohalosulfonamide groups (-S[=O]₂NHX), dihalosulfonamide groups (-S[=O]₂MX₂), halosulfonate groups (-S[-O]₂OX), halosulfonate amide groups (=N-S[-O]₂X), aminosulfonate groups (=N-S[-O]₂OH), iminosulfonate groups (-N[SO₃-]₁₋₂), phosphonate groups (-PO₃-2), phosphonamide groups (-PO₃-2), and imir ophosphonate groups (-N[PO₃-2]₁₋₂), and combinations thereof.

Serial No. – 10/038,274 Docket No. – UVD 0280 PA / 40815.324

- 34. (Original) The conversion coating of claim 32 wherein the solubility in water is decreased by the addition of the substituent group selected from nitro groups (-NO₂), perfluoroalkyl groups (- C_xF_{2x+1}), perchloroalkyl groups (- C_xCl_{2x+1}), nitramine groups (- $N-NO_2$), thicketone groups (- $N-NO_2$), sulfenyl halide groups (- $N-NO_2$), and sulfur dihaloimide groups (- $N-NO_2$), and combinations thereof.
- 35. (Original) The conversion coating of claim 14 wherein an electrostatic barrier layer of the cobalt/valence stabilizer complex is adjusted by the addition of a substituent group on the organic valence stabilizer.
- (Original) The conversion coating of claim 35 wherein the electrostatic barrier layer is 36. increased by the addition of the substituent group selected from ketones (-C-O), thioketones (=C=S), amides (-C[=O]-NR₂), thioamides (-C[=S]-NR₂), nitriles or cyano groups, (-CN), isocyanides (-NC), nitroso groups (-N=O), thionitroso groups (-N=S), nitro groups (-NO₂), azido groups (-N₃), cyanamide or cyanonitrene groups (=N-CN), cyanate groups (-O-CN), isocyanate groups (-N=C=O), thiocyanate groups (-S-CN), isothiocyanate groups (-N=C=S), nitrosamine groups (=N-N=O), thionitrosamine groups (=N-N=S), nitramine groups (=N-NO₂), thionitramine groups (=N-NS₂), carbonylnitrene groups (-CO-N), thiocarbonylnitrene groups (-CS-N), sulfenyl halides (-S-X), sulfoxides (=S=O), sulfones (-S[=O]₂), sulfinyl groups (-N=S=O), thiosulfinyl groups (-N=S=S), sulfenyl thiocyanato groups (-S-S-CN), sulfenyl cyanato groups (-S-O-CN), sulfodiimine groups (-S[-NH]2), sulfur dihaloimido groups (-N-SX2), sulfur oxide dihaloimido groups (-N=S[=O]X₂), aminosulfur oxide trihalide groups (=N-S[=O]X₃), sulfonyl azide groups (-S[-O]₂N₃), sulfonyl thiocyanate groups (-S[-O]₂SCN), sulfonyl cyanate groups (-S[=O]₂OCN), sulfonyl cyanide groups (-S[=O]₂CN), halosulfonate groups (-S[=O]₂OX), phosphonyl thiocyanate groups (-P[-O]OHSCN), phosphonyl cyanate groups (-P[-O]OHOCN), and phosphonyl cyanide groups (-P[-O]OHCN), and combinations thereof.

Seria No. - 10/038,274 Docket No. - UVD 0280 PA / 40815.324

- 37. (Original) The conversion coating of claim 1 further comprising a solubility control agent.
- 38. (Original) The conversion coating of claim 37 wherein the solubility control agent is selected from a cationic solubility control agent and an anionic solubility control agent.
- (Original) The conversion coating of claim 38 wherein the solubility control agent is the 39. cationic solubility control agent selected from H1, Li1, Na1, K1, Rb1, Cs1, NH4, Mg12, Ca12, Sr¹², Be⁺², Ba⁺², Y¹³, La⁺³, Ce¹³, Ce⁺⁴, Nd⁺³, Pr¹³, Se¹³, Sm¹³, Eu⁺³, Eu¹², Gd⁺³, Tb¹³, Dy⁺³, Ho⁺³, $Er^{15}, Tm^{*3}, Yb^{*3}, Lu^{13}, Ti^{*4}, Zr^{14}, Ti^{*3}, Hf^{*4}, Nb^{*5}, Ta^{*5}, Nb^{14}, Ta^{*4}, V^{*5}, V^{*4}, V^{*3}, Mo^{16}, W^{*6}, Ta^{*6}, Nb^{*6}, Ta^{*6}, Nb^{*6}, Ta^{*6}, Nb^{*6}, Ta^{*6}, Nb^{*6}, Nb^{*$ Mo^{15} , W^{15} , Mo^{44} , W^{44} , Cr^{43} , Mn^{42} , Mn^{43} , Mn^{44} , Fe^{42} , Fe^{43} , Co^{42} , Co^{43} , Ni^{42} , Ni^{43} , Ni^{44} , Rii^{42} , Ru¹³, Ru⁴⁴, Rh²⁵, Ir⁴³, Rh¹², Ir¹², Pd⁴⁴, Pd⁴⁴, Pd⁴², Pd⁴², Os¹⁴, Cu⁴, Cu⁴², Cu⁴³, Ag⁴, Ag⁴, Ag⁴³, Au¹, Au¹², Au¹³, Zn¹², Cd¹², Hg¹, Hg¹², Al¹³, Ga¹³, Ga¹³, Ga¹³, In¹, Tl¹³, Tl¹⁴, Ge¹⁴, Ge¹², Sn¹⁴, Sn⁺² Pb⁺⁴, Pb⁺², Sb⁺³, Sb⁺⁵, As⁺⁵, As⁺⁵, Bi⁺⁵, organic compounds containing at least one N⁺ site, organic compounds containing at least one phosphonium site, organic compounds containing at least one arsonium site, organic compounds containing at least one stibonium site, organic compounds containing at least one oxonium site, organic compounds containing at least one sulfonium site, organic compounds containing at least one selenonium site, organic compounds containing at least one iodonium site, and quaternary ammonium compounds having a formula NR, , where R is an alkyl, aromatic, or acyclic organic constituent, and combinations thereof.
- 40. (Original) The conversion coating of claim 39 wherein the cationic solubility control agera is selected from H⁺, Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, NH₄⁺, Mg⁺², Ca⁺², Sr⁺², Y⁺³, La⁺³, Ce⁺³, Ce⁺⁴, Nd⁺³, Pr⁺³, Sc⁺³, Sm⁺³, Eu⁺³, Eu⁺², Gd⁺³, Tb⁺³, Dy⁺³, Ho⁺³, Er⁺³, Tm⁺³, Yb⁺³, Lu⁺³, Ti⁺⁴, Zr⁺⁴, Ti⁺³, Hf⁺⁴, Nb⁺⁵, Ta⁺⁵, Nb⁺⁴, Ta⁺⁴, Mo⁺⁶, W⁺⁶, Mo⁺⁵, W⁺⁵, Mo⁺⁴, W⁺⁴, Mn⁺², Mn⁺³, Mn⁺⁴, Fe⁺², Fe⁺², Co⁺², Co⁺³, Ru⁺², Ru⁺³, Ru⁺⁴, Rh⁺³, Ir¹³, Rh⁺², Ir⁴², Pd⁺⁴, Pt⁺⁴, Pd⁺², Pt⁺², Cu⁺, Cu⁺², Cu⁺³,

Official Amendment
Serial No. – 10/038,274
Docket No. – UVD 0280 PA / 40815.324

Ag¹, Ag¹², Ag⁴³, Au⁺, Au⁺², Au⁺³, Zn⁺², Al⁴³, Ga¹³, Ga¹, In¹³, In⁺, Gc⁴³, Ge⁻², Sn⁻³, Sn⁻², Sb⁻³, Sb⁻⁵, Bi⁻³, Bi⁻⁵, organic compounds containing at least one N⁺ site, organic compounds containing at least one phosphonium site, organic compounds containing at least one stibonium site. organic compounds containing at least one sulfonium site, organic compounds containing at least one iodonium site, and quaternary ammonium compounds having a formula NR₄⁺, where R is an alkyl, aromatic, or acyc ic organic constituent, and combinations thereof.

(Original) The conversion coating of claim 38 wherein the solubility control agent is the 41. anionic solubility control agent selected from fluorotitanates; chlorotitanates; fluorozirconates; chlorozirconates; fluoroniobates; chloroniobates; fluorotantalates; chlorotantalates; molybdates; tungstates; permanganates; fluoromanganates; chloromanganates; fluoroferrates; chloroferrates; fluorocobaltates; chlorocobaltates; fluorozincates; chlorozincates; borates; fluoroborates; fluoroaluminates; chloroaluminates; carbonates; silicates; fluorosilicates; fluorostanuates; nitrates; nitrites; azides; cyanamides; phosphates; phosphites; phosphonates; phosphinites; thiophosphates; thiophosphites; thiophosphonates; thiophosphinites; fluorophosphates; fluoroantimonates; chloroantimonates; sulfates; sulfates; sulfonates; thiosulfates; dithionites; dithionates; fluorosulfates; tellurates; fluorides; chlorides; chlorates; perchlorates; bromides; bromates; iodides; iodates; periodates; heteropolyanions; ferricyanides; ferrocyanides; eyanocobaltates; cyanocuprates; cyanomanganates; cyanatos; cyanatoferrates; cyanatocobaltates; cyanatocuprates; cyanatomanganates; thiocyanates; thiocyanatoferrates; thiocyanatocobaltates; thiocyanatocuprates; thiocyanatomanganates; cyanamides; cyanamidoferrates; cyanamidocobaltates; cyanamidocuprates; cyanamidomanganates; nitritoferrates; nitri-ocobaltates; azides; (thio)carboxylates; di(thio)carboxylates; tri(thio)carboxylates; tetra(thio)carboxylates; (thio)phenolates; di(thio)phenolates; tri(thio)phenolates; tetra(thio)phenolates; (thio)phosphonates; di(thio)phosphonates; tri(thio)phosphonates; (thic)phosphonamides; di(thio)phosphonamides; tri(thio)phosphonamides;

Serial No. - 10/038,274

Docket No. - UVD 0280 PA / 40815.324

amino(thio)phosphonates; diamino(thio)phosphonates; triamino(thio)phosphonates; imino(thio)phosphonates; diimino(thio)phosphonates; (thio)sulfonates; di(thio)sulfonamides; tri(thio)sulfonamides; tri(thio)sulfonamides; amino(thio)sulfonates; diamino(thio)sulfonates; triamino(thio)sulfonates; imino(thio)sulfonates; diim no(thio)sulfonates; (thio)borates; di(thio)borates; (thio)boronates; organic silicates; stibonates; cyanides; cyanochromates; cyanonickelates; cyanatochromates; cyanatonickelates; thiocyanatochromates; thiocyanatonickelates; cyanamidochromates; cyanamidonickelates; nitritonickelates; arsonates; diarsonates; triarsonates; organic selenates; disclenates; arsenates; fluoroarsenates; chloroarsenates; selenates; selenates; fluorothallates; chlorothallates; iodomercury anions; chloromercurates; bromomercurates; osmates; fluoronickelates; chromates; Reinecke's salt; and vanadates; and combinations thereof.

(Original) The conversion coating of claim 41 wherein the anionic solubility control 42. agent is selected from fluorotitanates; chlorotitanates; fluorozirconates; chlorozirconates; fluoroniobates; chloroniobates; fluorotantalates; chlorotantalates; molybdates; tungstates; permanganates; fluoromanganates; chloromanganates; fluoroferrates; chloroferrates; fluorocobaltates; chlorocobaltates; fluorozincates; chlorozincates; borates; fluoroborates; fluoroaluminates; chloroaluminates; carbonates; silicates; fluorosilicates; fluorostannates; nitrates; nitrites; azides; eyanamides; phosphates; phosphites; phosphonates; phosphinites; thiophosphates; thiophosphites; thiophosphonates; thiophosphinites; fluorophosphates; fluoroantimonates; chloroantimonates; sulfates; sulfites; sulfonates; thiosulfates; dithionites; dithionates; fluorosulfates; tellurates; fluorides; chlorides; chlorates; perchlorates; bromides; bromates; iodides; iodates; periodates; heteropolyanions; ferricyanides; ferrocyanides; cyanocobaltates; cyanocuprates; cyanomanganates; cyanates; cyanatoferrates; cyanatocobaltates; cyanatocuprates; cyanatomanganates; thiocyanatos; thiocyanatoferrates; thiocyanatocobaltates; thiocyanatocuprates; thiocyanatomanganates; cyanamides; cyanamidoferrates; cyanamidocobaltates; cyanamidocuprates; cyanamidomanganates; nitritoferrates;

Serial No. - 10/038,274

Docket No. - UVD 0280 PA / 40815.324

nitritocobaltates; azides; (thio)carboxylates; di(thio)carboxylates; tri(thio)carboxylates; tetra(thio)carboxylates; (thio)phenolates; di(thio)phenolates; tri(thio)phenolates; tetra(thio)phenolates; (thio)phosphonates; di(thio)phosphonates; tri(thio)phosphonates; (thio)phosphonamides; di(thio)phosphonamides; amino(thio)phosphonates; diamino(thio)phosphonates; triamino(thio)phosphonates; imino(thio)phosphonates; diimino(thio)phosphonates; (thio)sulfonates; di(thio)sulfonates; tri(thio)sulfonates; tri(thio)sulfonates; di(thio)sulfonamides; di(thio)sulfonates; dimino(thio)sulfonates; dimino(thio)sulfonates; dimino(thio)sulfonates; dimino(thio)sulfonates; dimino(thio)sulfonates; dimino(thio)sulfonates; didimino(thio)sulfonates; didimino(thio)sulfonates; didimino(thio)sulfonates; and stibonates; and combinations thereof.

- 43. (Original) The conversion coating of claim 1 wherein the conversion coating is colored.
- 44. (Original) The conversion coating of claim 43 further comprising an agent which improves color-fastness of the conversion coating.
- 45. (Original) The conversion coating of claim 44 wherein the agent which improves color-fastress is selected from an active UV blocker, a passive UV blocker, and a brightener.
- 46. (Original) The conversion coating of claim 45 wherein the agent which improves color-fastress is the active UV blocker selected from carbon black, graphite, and phthalocyanines.
- 47. (Original) The conversion coating of claim 45 wherein the agent which improves color-fastness is the passive UV blocker selected from titanium oxide, tin oxide, lead oxide, silicon oxide, silicates, and aluminosilicates, and combinations thereof.

Serial No. -- 10/038,274

Docket No. - UVD 0280 PA / 40815.324

48. (Original) The conversion coating of claim 45 wherein the agent which improves color-fastness is the brightener selected from sulfonic acids, sulfonates, sulfonamides, sulfonic sulfones, cyanides, and nonionic surfactants.

Clairos 49 - 122 (Canceled).

- 123. (Currently Amended) A corrosion-inhibiting conversion coating bath comprising consisting essentially of a solvent, a precursor cobalt source, and a valence stabilizer combined to form a cobalt/valence stabilizer complex, optionally an oxidizer, optionally preparative agent, and optionally a solubility control agent.
- 124. (Original) The conversion coating bath of claim 123 wherein the solvent is water.
- 125. (Canceled)
- 126. (Currently Amended) The conversion coating bath of claim [[125]]123 wherein the oxidizer is selected from a dissolved solid, a liquid, and a gas.
- 127. (Original) The conversion coating bath of claim 126 wherein the oxidizer is selected from peroxides, superoxides, persulfates, perborates, pernitrates, perphosphates, percarbonates, persilicates, peraluminates, pertitanates, perzirconates, permolybdates, pertungstates, pervanadates, organic peroxyacid derivatives, ozone, hypochlorites, chlorates, perchlorates, nitrates, nitrites, vanadates, iodates, hypobromites, chlorites, bromates, permanganates, periodates, dissolved oxygen, dissolved chlorine, and dissolved fluorine, and combinations thereof.

Official Amendment Serial No. – 10/038,274

Docket No. - UVD 0280 PA / 40815.324

(Original) The conversion coating bath of claim 123 wherein the cobalt source is selected from cobalt contained within a treated substrate, cobalt nitrate, cobalt sulfate, cobalt perchlorate, coba t chloride, cobalt fluoride, cobalt bromide, cobalt iodide, cobalt bromate, cobalt chlorate, coba t fluosilicate, cobalt fluotitanate, cobalt fluozirconate, cobalt fluoborate, cobalt fluosilicate, cobalt formate, cobalt acetate, cobalt propionate, cobalt butyrate, cobalt benzoate, cobait glycolate, cobalt lactate, cobalt tartronate, cobalt malate, cobalt tartrate, cobalt citrate, cobalt benzenesulfonate, cobalt thiocyanate, cobalt acetylacetonate, ammonium cobalt sulfate, ammonium cobalt nitrate, ammonium cobalt chloride, ammonium cobalt bromide, hexaamminecobalt chloride, hexaamminecobalt bromide, hexaamminecobalt nitrate, pentaamminecobalt chloride, pentaamminecobalt bromide, pentaamminecobalt nitrate, lithium cobaltinitrite, sodium cobaltinitrite, tris(ethylenediamine)cobalt chloride, tris(ethylenediamine)cobalt chloride, tris(ethylenediamine)cobalt chloride, complexes of trivalent cobalt, and cobalticarbonates, and combinations thereof.

129. (Canceled)

- 130. (Currently Amended) The conversion coating bath of claim [[129]]123 wherein the preparative agent is selected from fluorides, chlorides, bromides, and hydroxides, and combinations thereof.
- (Original) The conversion coating bath of claim 130 wherein the preparative agent is a fluoride.
- 132. (Original) The conversion coating bath of claim 131 wherein the fluoride is selected from fluorozirconates, fluorotitanates, fluorosilicates, fluoroaluminates, fluoroborates, fluorogallates, fluoroantimonates, fluorobismuthates, fluorosulfates, fluoroselenates, fluorotellurates, fluoroselenates, fluorotellurates,

Serial No. - 10/038,274

Docket No. - UVD 0280 PA / 40815.324

fluor dentalates, fluoromolybdates, fluorotungstates, fluoropafinates, fluorovanadates, fluoromolybdates, fluorotungstates, fluorotungstates, fluorocetates, fluorocetates, fluoromanganates, fluoroferrates, fluoronickelates, fluorocebaltates, potassium fluoride, potassium hydrogen fluoride, sodium fluoride, sodium hydrogen fluoride, lithium fluoride, lithium hydrogen fluoride, ammonium fluoride, ammonium hydrogen fluoride, hydrofluoric acid, dissolved fluorine, and organic fluorides, and combinations thereof.

- 133. (Original) The conversion coating bath of claim 123 wherein the valence stabilizer is selected from an inorganic valence stabilizer and an organic valence stabilizer.
- 134. (Canceled)
- 135. (Currently Amended) The conversion coating bath of claim [[134]]123 wherein the solubility control agent is selected from a cationic solubility control agent and an anionic solubility control agent.
- (Original) The conversion coating bath of claim 135 wherein the solubility control agent is the cationic solubility control agent selected from H⁺, Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, NH₄⁺, Mg⁺², Ca⁺², Sr⁺², Be⁺², Ba⁺², Y⁺³, La⁺³, Ce⁺³, Ce⁺⁴, Nd⁺³, Pr⁺³, Sc⁺³, Sm⁺³, Eu⁺³, Eu⁺², Gd⁺³, Tb⁺³, Dy⁺³, Ho⁺³, Er⁺³, Tm⁺³, Yb⁺³, Lu⁺³, Ti⁺⁴, Zr⁺⁴, Ti⁺⁴, Hf⁺⁴, Nb⁺⁵, Ta⁺⁵, Nb⁺⁴, Ta⁺⁴, V⁺⁵, V⁺⁴, V⁺³, Mo⁺⁶, W⁺⁵ Mo⁺⁵, W⁺⁵, Mo⁺⁴, W⁺⁴, Cr⁺³, Mn⁺², Mn⁺³, Mn⁺⁴, Fe⁺², Fe⁺³, Co⁺², Co⁺³, Ni⁺², Ni⁺³, Ni⁺⁴, Ru⁺², Ru⁺³, Ru⁺⁴, Rh⁺³, Ir⁺³, Rh⁺², Ir⁺², Pd⁺⁴, Pt⁺⁴, Pd⁺², Pt⁺², Os⁺⁴, Cu⁺, Cu⁺², Cu⁺³, Ag⁺, Ag⁺², Ag⁺², Ag⁺³, Au⁺, Au⁺², Au⁺³, Zn⁺², Cd⁺², Hg⁺, Hg⁺², Al⁺³, Ga⁺³, Ga⁺, In⁺³, In⁺, Tl⁺³, Tl⁺, Ge⁺⁴, Ge⁺², Sn⁺⁴, Sn⁺², Pb⁺⁴, Pb⁺², Sb⁺³, Sb⁺⁵, As⁺³, As⁺⁵, Bi⁺³, Bi⁺⁵, organic compounds containing at least one N⁺ site, organic compounds containing at least one stibonium site, organic compounds containing at least

Serial No. - 10/038,274 Docket No. - UVD 0280 PA / 40815.324

one sulfonium site, organic compounds containing at least one selenonium site, organic compounds containing at least one iodonium site, and quaternary ammonium compounds having a formula NR₄⁺, where R is an alkyl, aromatic, or acyclic organic constituent, and combinations thereof.

(Original) The conversion coating bath of claim 136 wherein the cationic solubility control agent is selected from H⁺, Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, NH₄⁺, Mg⁺², Ca⁺², Sr⁺², Y⁺³, La⁺³, Ce⁺³, Ce⁺³, Md⁺³, Pr⁺³, Sc⁺³, Sm⁺³, Eu⁺³, Eu⁺³, Eu⁺², Gd⁺³, Tb⁺³, Dy⁺³, Ho⁺³, Er⁺³, Tm⁺³, Yb⁺³, Lu⁺³, Ti⁺⁴. Zr⁺⁴, Ti⁺³, Hf⁺⁴, Nb⁺⁵, Ta⁺⁵, Nb⁺⁴, Ta⁺⁴, Mo⁺⁶, W⁺⁶, Mo⁺⁵, W⁺⁵, Mo⁺⁴, W⁺⁴, Mn⁺², Mn⁺³, Mn⁺⁴, Fe⁺², Fe⁺³, Co⁺², Co⁺³, Ru⁺², Ru⁺³, Ru⁺⁴, Rh⁺³, Ir⁺³, Rh⁺², Ir⁺², Pd⁺⁴, Pt⁺⁴, Pd⁺², Pt⁺², Cu⁺, Cu⁺², Cu⁺³, Ag⁺, Ag⁺³, Au⁺, Au⁺², Au⁺³, Zn⁺², AJ⁺³, Ga⁺³, Ga⁺, In⁺³, In⁺, Ge⁺⁴, Ge⁺², Sn⁺⁴, Sn⁺², Sb⁺³, Sb⁺⁵, Bi⁺³, Bi⁺⁵, organic compounds containing at least one phosphonium site, organic compounds containing at least one sulfonium site, organic compounds containing at least one sulfonium site, organic compounds containing at least one sulfonium site, organic compounds containing at least one iodonium site, and quaternary ammonium compounds having a formula NR₄⁺, where R is an alkyl, aromatic, or acyclic organic constituent, and combinations thereof.

138. (Original) The conversion coating bath of claim 135 wherein the solubility control agent is the anionic solubility control agent selected from fluorotitanates; chlorotitanates; fluorozirconates; fluorozirconates; fluoroniobates; chloroniobates; fluorotantalates; chlorotantalates; molybdates; tungstates; permanganates; fluoromanganates; chloromanganates; fluoroferrates; chloroferrates; fluorocobaltates; chlorocobaltates; fluorozincates; chlorozincates; borates; fluoroborates; fluoroaluminates; chloroaluminates; carbonates; silicates; fluorosilicates; fluorostannates; nitrates; nitrites; azides; eyanamides; phosphates; phosphonates; phosphonates; phosphonates; fluorophosphates; thiophosphites; thiophosphonates; thiophosphinites;

Serial No. – 10/038,274 Docket No. – UVD 0280 PA / 40815.324

thiosalfates; dithionites; dithionates; fluorosulfates; tellurates; fluorides; chlorides; chlorates; perchlorates; bromides; bromates; iodides; iodates; periodates; heteropolyanions; ferricyanides; ferrozyanides; cyanocobaltates; cyanocuprates; cyanomanganates; cyanatoferrates; cyanatocobaltates; cyanatocuprates; cyanatomanganates; thiocyanatos; thiocyanatoferrates; thiocyanatocobaltates; thiocyanatocuprates; thiocyanatomanganates; cyanamides; cyanamidoferrates; cyanamidocobaltates; cyanamidocuprates; cyanamidomanganates; nitritoferrates; nitritocobaltates; azides; (thio)carboxylates; di(thio)carboxylates; tri(thio)carboxylates; tetra(thio)carboxylates;(thio)phenolates; di(thio)phenolates; tri(thio)phenolates; tetra(thio)phenolates; (thio)phosphonates; di(thio)phosphonates; tri(thio)phosphonates; (thio)phosphonamides; di(thio)phosphonamides; tri(thio)phosphonamides; amino(thio)phosphonates; diamino(thio)phosphonates; triamino(thio)phosphonates; imin o(thio) phosphonates; diimino (thio) phosphonates; (thio) sulfonates; di(thio) sulfonates; tri(thio)sulfonates; (thio)sulfonamides; di(thio)sulfonamides; tri(thio)sulfonamides; amir o(thio)sulfonates; diamino(thio)sulfonates; triamino(thio)sulfonates; imino(thio)sulfonates; diimino(thio)sulfonates; (thio)borates; di(thio)borates; (thio)boronates; organic silicates; stibenates; cyanides; cyanochromates; cyanonickelates; cyanatochromates; cyanatonickelates; thiocyanatochromates; thiocyanatonickelates; cyanamidochromates; cyanamidonickelates; nitritonickelates; arsonates; diarsonates; triarsonates; organic selenates; diselenates; triselenates; arsenates; arsenites; fluoroarsenates; chloroarsenates; selenates; selenites; fluorothallates; chlo othallates; iodomercury anions; chloromercurates; bromomercurates; osmates; fluoronickelates; chromates; Reinecke's salt; and vanadates; and combinations thereof.

139. (Original) The conversion coating bath of claim 138 wherein the anionic solubility control agent is selected from fluorotitanates; chlorotitanates; fluorozirconates; fluoroniobates; chloroniobates; fluorotantalates; chlorotantalates; molybdates; tungstates; permanganates; fluoromanganates; fluorocobaltates; fluorocobaltates; fluorozincates; chlorozincates; fluoroborates;

Serial No. -- 10/038,274

Docket No. - UVD 0280 PA / 40815.324

fluoroaluminates; chloroaluminates; carbonates; silicates; fluorosilicates; fluorostannates; nitrates; nitrites; azides; cyanamides; phosphates; phosphinites; phosphonates; phosphinites; thiophosphates; thiophosphites; thiophosphonates; thiophosphinites; fluorophosphates; fluor pantimonates; chloroantimonates; sulfates; sulfates; sulfonates; thiosulfates; dithionites; dithionates; fluorosulfates; tellurates; fluorides; chlorides; chlorates; perchlorates; bromides; bromates; iodides; iodates; periodates; heteropolyanions; ferricyanides; ferrocyanides; cyanocobaltates; cyanocuprates; cyanomanganates; cyanatos; cyanatoferrates; cyanatocobaltates; eyan itocuprates; cyanatomanganates; thiocyanatos; thiocyanatoferrates; thiocyanatocobaltates; thiocyanatocuprates; thiocyanatomanganates; cyanamides; cyanamidoferrates; evan imidocobaltates; eyanamidocuprates; eyanamidomanganates; nitritoferrates; nitritocobaltates; azides; (thio)carboxylates; di(thio)carboxylates; tri(thio)carboxylates; tetrarthio)carboxylates; (thio)phenolates; di(thio)phenolates; tri(thio)phenolates; tetracthio)phenolates; (thio)phosphonates; di(thio)phosphonates; tri(thio)phosphonates; (thio)phosphonamides; di(thio)phosphonamides; tri(thio)phosphonamides; amiro(thio)phosphonates; diamino(thio)phosphonates; triamino(thio)phosphonates; imin o(thio)phosphonates; diimino(thio)phosphonates; (thio)sulfonates; di(thio)sulfonates; tri(thio)sulfonates; (thio)sulfonamides; di(thio)sulfonamides; tri(thio)sulfonamides; amir o(thio)sulfonates; diamino(thio)sulfonates; triamino(thio)sulfonates; imino(thio)sulfonates; diimino(thio)sulfonates; (thio)borates; di(thio)borates; (thio)boronates; organic silicates; and stibenates; and combinations thereof.

140. (Original) The conversion coating bath of claim 123 wherein the conversion coating bath has a concentration of cobalt of between about 1 X 10⁻⁴ moles/liter cobalt and a concentration which is a maximum solubility of the cobalt source in the solvent at a temperature of the conversion coating bath.

Serial No. -- 10/038,274

Docket No. - UVD 0280 PA / 40815.324

- (Currently Amended) The conversion coating bath of claim [[125]]123 wherein the conversion coating bath has a concentration of oxidizer of between a minimum concentration wherein a majority of the cobalt is oxidized to a trivalent or tetravalent oxidation state and a maximum solubility of the oxidizer in the solvent at a temperature of the conversion coating bath.
- (Currently Amended) The conversion coating bath of claim [[131]]123 wherein the conversion coating bath has a concentration of preparative agent between a minimum concentration wherein there is a fluoride-to-cobalt ratio of 0.05 and a maximum concentration which is a maximum solubility of the preparative agent in the solvent at a temperature of the conversion coating bath.
- 143. (Original) The conversion coating bath of claim 123 wherein the conversion coating bath has a concentration of valence stabilizer between a minimum concentration wherein there is a valence stabilizer-to-cobalt ratio of 0.010 and a maximum concentration which is a maximum solubility of the valence stabilizer in the solvent at a temperature of the conversion coating bath.
- (Original) The conversion coating bath of claim 123 wherein the conversion coating bath has a pH of between about 0 and about 7.
- 145. (Original) The conversion coating bath of claim 144 wherein the conversion coating bath has a pH of between about 1 and about 6.
- 146. (Original) The conversion coating bath of claim 123 wherein the conversion coating bath has a temperature of between about 5°C and about 100°C.

Scriat No. - 10/038,274

Docket No. -- UVD 0280 PA / 40815.324

- 147. (Original) The conversion coating bath of claim 146 wherein the conversion coating bath has a temperature of between about 5°C and about 40°C.
- 148. (Original) A solid corrosion-inhibiting conversion coating formed on a substrate metal, the conversion coating comprising cobalt, wherein the cobalt is trivalent cobalt, or tetravalent cobalt, or combinations thereof, and a valence stabilizer combined to form a cobalt/valence stabilizer complex within the solid, corrosion-inhibiting conversion coating, wherein the cobalt/valence stabilizer complex is sparingly soluble in water at about 25°C and about 760 Torr.

Claims 149-150 (Canceled).

151. (Original) A corrosion-inhibiting conversion coating bath comprising a solvent, a precursor cobalt source, and a valence stabilizer combined to form a cobalt/valence stabilizer complex, optionally an oxidizer, optionally preparative agent, and optionally a solubility control agent, wherein the cobalt/valence stabilizer complex is sparingly soluble in water at about 25°C and about 760 Torr.

Please add the following new claims:

152. (New) A corrosion-inhibiting conversion coating comprising cobalt, wherein the cobalt is trivalent cobalt, or tetravalent cobalt, or combinations thereof, and a valence stabilizer combined to form a cobalt/valence stabilizer complex wherein the cobalt/valence stabilizer complex has a central cavity containing a cobalt ion and an additional ion wherein the additional ion is B¹³, Al⁴³, Si⁴⁴, P¹⁵, Ti⁴⁴, V⁴⁵, V¹⁴, Cr¹⁶, Cr⁴³, Mn⁴⁴, Mn⁴³, Mn¹², Fe⁴³, Fe⁴², Co⁴², Ni⁴³, Ni⁴³, Ni⁴⁴, Cu⁴³, Cu⁴³, Cu⁴³, Ca⁴³, Ge⁴⁴, As⁴⁵, As⁴⁵, Zr⁴⁴, or Ce⁴⁴.

Official Amendment Serial No. – 10/038,274 Docket No. – UVD 0280 PA / 40815.324

(New) A corrosion-inhibiting conversion coating comprising cobalt, wherein the cobalt is trivalent cobalt, or tetravalent cobalt, or combinations thereof, and a valence stabilizer combined to form a cobalt/valence stabilizer complex wherein the valence stabilizer is an organic valence stabi izer selected from monoamines; diamines; triamines; tetraamines; pentamines; hexamines; five- or six-membered heterocyclic rings containing one to four nitrogen atoms optionally having additional nitrogen, sulfur, or oxygen binding sites; five- or six-membered heterocyclic rings containing one or two sulfur atoms and having additional nitrogen binding sites; five- or sixmembered heterocyclic rings containing one or two oxygen atoms and having additional nitrogen binding sites; (two-, three-, four-, six-, eight-, or ten-)membered nitrogen, nitrogen-sulfur, or nitrogen-oxygen macrocyclics; macrocyclic oligothioketones or dithiolenes; diazenes; thio-. amido-, or imido- derivatives of hypophosphoric, phosphoric, or diphosphoric acids and salts; azo compounds, iriazenes, formazans, azines, hydrazones, or Schiff Bases containing at least two azo, imine, or azine groups; azo compounds, triazenes, formazans, azines, hydrazones, or Schiff Bases with ortho- (for aryl) or alpha- or beta- (for alkyl) substitution; oximes; amidines and imido compounds; dithio ligands; amides; amino acids; N-(thio)acyl 7-aminobenzylidenimines; (thio)hydroxamates; alpha- or ortho-aminothio(di)carboxylic acids and salts; (thio)semicarbazones; (thio)acyl hydrazones; (thio)carbazones; silylaminoalcohols; thioalkyl amir es and imines; hydroxyalkyl imines; (thio)aryl amines and imines; guanylureas; guaridinoureas; 2-nitrosophenols; 2-nitrophenols; N-nitrosohydroxylamines; 1,3monothioketones; monothiomalonamides; 2-thioacylacetamides; 2-acylthioacetamides; dithiodicarbonic diamides; trithiodicarboxylic acids and salts; monothiocarbamates; monothioethers; dithioethers; trithioethers; tetrathioethers; pentathioethers; hexathioethers; disu fides; monophosphines; diphosphines; triphosphines; tetraphosphines; pentaphosphines; hexaphosphines; five- or six-membered heterocyclic rings containing one or two sulfur atoms optionally having additional sulfur, oxygen, or phosphorus binding sites; five- or six-membered hete ocyclic rings containing one to three phosphorus atoms optionally having additional

Seria: No. -- 10/038,274

Docket No. -- UVD 0280 PA / 40815.324

phosphorus, nitrogen, oxygen, or sulfur binding sites; five- or six-membered heterocyclic rings containing one to four nitrogen atoms and having additional phosphorus binding sites; five- or six-membered heterocyclic rings containing one or two oxygen atoms and having additional sulfur or phosphorus binding sites; (five-, seven-, or nine-)membered nitrogen, nitrogen-sulfur, or nitrogen-oxygen macrocyclics; (two- to ten-)membered sulfur, sulfur-oxygen, or sulfurphosphorus macrocyclics, not including oligothioketones or dithiolenes; (two- to ten-) membered phosphorus, nitrogen-phosphorus, or oxygen-phosphorus macrocyclics; thio-, amido-, or imidoderivatives of phosphonic and diphosphonic acids and salts containing no sulfur binding sites; amido-, or imido- derivatives of hypophosphoric, phosphoric, or diphosphoric acids and salts containing no sulfur binding sites; dithioperoxydiphosphoramides; dithioperoxydiphosphoric acids and salts; monothioperoxydiphosphoramides; monothioperoxydiphosphoric acids and salts; monothiophosphoric acids; phosphoro(dithioperoxoic) acids and salts; azo compounds, triazenes, formazans, azines, or Schiff Bases; silylamines; silazanes; guanidines and diguanidines; pyricinaldimines; hydrazones; hydramides; nitriles; thioureas and thioamides; ureas and biurets; monothio ligands; diketone ligands; dithioacyl disulfides; tetrathioperoxydicarbonic diamides; (hex 1-, penta-, or tetra-) thioperoxydicarbonic acids and salts; 1,2-dithiolates; rhodanines; dithiocarbimates; (thio)xanthates; S-(alkyl- or aryl-thio)thiocarboxylic acids and salts; phosphinodithioformates; (thio)borates and (thio)boronates; (thio)arsonic acids and salts; (thio)antimonic acids and salts; phosphine and arsine sulfides or oxides; beta-hydroxyketones and aldehydes; squaric acids and salts; carbamates and carbimates; carbazates; imidosulfurous diarrides; sulfurdiimines; thiocarbonyl and mercapto oximes; 2-nitrothiophenols; 2nitri o(thio)phenols; acyleyanamides; imidates; 2-amidinoacetates; beta-ketoamines; 3aminoacrytamides and 3,3-diaminoacrylamides; 3-aminoacrylic acids and salts and 3-hydroxy-3aminoacrylic acids and salts; 2-nitroanilines; amine and diazine N-oxides; hydrazides and semearbazides; (amino- or imino-)aryl phosphines; (thio- or hydroxy-)aryl phosphines; arsines; five or six-membered heterocyclic rings containing one arsenic atom optionally having additional arsenic binding sites; (two- to six-)membered arsenic macrocyclics; sclenoethers; five-. Official Amendment
Seria No. – 10/038,274
Docket No. – UVD 0280 PA / 40815,324

or six-membered heterocyclic rings containing one or two sclenium atoms optionally having addit onal selenium binding sites; (two- to six-)membered sclenium macrocyclics; 1,3-disclenoketones; 1,1-disclenolates; disclenocarbamates; sclenophosphoric acids and salts; sclenocarbonates; cyanide, isocyanide, and cyanamide ligands; nitrosyl and nitrite ligands; azide ligands; thiolates and sclenolates; (thio)cyanate ligands; diene or bicyclic or tricyclic hydrocarbon ligands; and carbonyl, halogen, or hydroxo ligands; and combinations thereof; and wherein the solubility in water of the cobalt/valence stabilizer complex is decreased by the addition of a substituent group on the organic valence stabilizer, the substituent group sclected from nitro groups (-NO₂), perfluoroalkyl groups (-C_xF_{2x+1}), perchloroalkyl groups (-C_xCl_{2x+1}), nitramine groups (=N-NO₂), thioketone groups (=C=S), sulfenyl halide groups (-S-X), and sulfur dihaloimide groups (-N-SX₂), and combinations thereof.

(New) A corrosion-inhibiting conversion coating comprising cobalt, wherein the cobalt is 154. triva ent cobalt, or tetravalent cobalt, or combinations thereof, and a valence stabilizer combined to form a cobalt/valence stabilizer complex wherein the valence stabilizer is an organic valence stabilizer selected from monoamines; diamines; triamines; tetraamines; pentamines; hexamines; five- or six-membered heterocyclic rings containing one to four nitrogen atoms optionally having additional nitrogen, sulfur, or oxygen binding sites; five- or six-membered heterocyclic rings containing one or two sulfur atoms and having additional nitrogen binding sites; five- or sixmen:bered heterocyclic rings containing one or two oxygen atoms and having additional nitrogen binding sites; (two-, three-, four-, six-, eight-, or ten-)membered nitrogen, nitrogen-sulfur, or nitrogen-oxygen macrocyclics; macrocyclic oligothioketones or dithiolenes; diazenes; thio-, amico-, or imido- derivatives of hypophosphoric, phosphoric, or diphosphoric acids and salts; azo compounds, triazenes, formazans, azines, hydrazones, or Schiff Bases containing at least two azo, imine, or azine groups; azo compounds, triazenes, formazans, azines, hydrazones, or Schiff Bases with ortho- (for aryl) or alpha- or beta- (for alkyl) substitution; oximes; amidines and imido compounds; dithio ligands; amides; amino acids; N-(thio)acyl 7-aminohenzylidenimines;

Seria No. - 10/038,274 Docket No. - UVD 0280 PA / 40815.324

(thio)hydroxamates; alpha- or ortho-aminothio(di)carboxylic acids and salts; (thio) semicarbazones; (thio) acyl hydrazones; (thio) carbazones; silylamino alcohols; thio alkyl amines and imines; hydroxyalkyl imines; (thio)aryl amines and imines; guanylureas; guan dinoureas; 2-nitrosophenols; 2-nitrophenols; N-nitrosohydroxylamines; 1,3monothioketones; monothiomalonamides; 2-thioacylacetamides; 2-acylthioacetamides; dithiodicarbonic diamides; trithiodicarboxylic acids and salts; monothiocarbamates; monothioethers; dithioethers; trithioethers; tetrathioethers; pentathioethers; hexathioethers; disulfides; monophosphines; diphosphines; triphosphines; tetraphosphines; pentaphosphines; hexaphosphines; five- or six-membered heterocyclic rings containing one or two sulfur atoms optionally having additional sulfur, oxygen, or phosphorus binding sites; five- or six-membered heterocyclic rings containing one to three phosphorus atoms optionally having additional phosphorus, nitrogen, oxygen, or sulfur binding sites; five- or six-membered heterocyclic rings containing one to four nitrogen atoms and having additional phosphorus binding sites; five- or six-reembered heterocyclic rings containing one or two oxygen atoms and having additional sulfur or phosphorus binding sites; (five-, seven-, or nine-)membered nitrogen, nitrogen-sulfur, or nitrogen-oxygen macrocyclics; (two- to ten-)membered sulfur, sulfur-oxygen, or sulfurphosphorus macrocyclics, not including oligothioketones or dithiolenes; (two- to ten-) membered phosphorus, nitrogen-phosphorus, or oxygen-phosphorus macrocyclies; thio-, amido-, or imidoderivatives of phosphonic and diphosphonic acids and salts containing no sulfur binding sites; amico-, or imido- derivatives of hypophosphoric, phosphoric, or diphosphoric acids and salts containing no sulfur binding sites; dithioperoxydiphosphoramides; dithioperoxydiphosphoric acids and salts; monothioperoxydiphosphoramides; monothioperoxydiphosphoric acids and salts; monothiophosphoric acids; phosphoro(dithioperoxoic) acids and salts; azo compounds, triazenes, formazans, azines, or Schiff Bases; silylamines; silazanes; guanidines and diguanidines; pyridinaldimines; hydrazones; hydramides; nitriles; thioureas and thioamides; ureas and biurets; monothio ligands; diketone ligands; dithioacyl disulfides; tetrathioperoxydicarbonic diamides; (hexa-, penta-, or tetra-) thioperoxydicarbonic acids and salts; 1,2-dithiolates; rhodanines;

Serial No. – 10/038,274 Docket No. – UVD 0280 PA / 40815.324

dithiocarbimates; (thio)xanthates; S-(alkyl- or aryl-thio)thiocarboxylic acids and salts; phosphinodithioformates; (thio)borates and (thio)boronates; (thio)arsonic acids and salts; (thio)antimonic acids and salts; phosphine and arsine sulfides or oxides; beta-hydroxyketones and - aldehydes; squaric acids and salts; carbamates and carbimates; carbazates; imidosulfurous diamides; sulfurdiimines; thiocarbonyl and mercapto oximes; 2-nitrothiophenols; 2nitrilo(thio)phenols; acylcyanamides; imidates; 2-amidinoacetates; beta-ketoamines; 3aminoacrylamides and 3,3-diaminoacrylamides; 3-aminoacrylic acids and salts and 3-hydroxy-3aminoacrylic acids and salts; 2-nitroanilines; amine and diazine N-oxides; hydrazides and semicarbazides; (amino- or imino-)aryl phosphines; (thio- or hydroxy-)aryl phosphines; arsines; five- or six-membered heterocyclic rings containing one arsenic atom optionally having additional arsenic binding sites; (two- to six-)membered arsenic macrocyclics; selenoethers; fiveor six-membered heterocyclic rings containing one or two selenium atoms optionally having additional selenium binding sites; (two- to six-)membered selenium macrocyclics; 1,3disclenoketones; 1,1-disclenolates; disclenocarbamates; selenophosphoric acids and salts; seler ocarbonates; eyanide, isocyanide, and cyanamide ligands; nitrosyl and nitrite ligands; azide ligards; thiolates and selenolates; (thio)cyanate ligands; diene or bicyclic or tricyclic hydrocarbon ligands; and carbonyl, halogen, or hydroxo ligands; and combinations thereof; and wherein an electrostatic barrier layer of the cobalt/valence stabilizer complex is increased by the addition of a substituent group on the organic valence stabilizer, the substituent group selected from ketones (=C=O), thioketones (=C=S), amides (-C[=O]-NR₂), thioamides (-C[=S]-NR₂), nitrices or cyano groups, (-CN), isocyanides (-NC), nitroso groups (-N=O), thionitroso groups (-N=S), nitro groups (-NO₂), azido groups (-N₃), cyanamide or cyanonitrene groups (=N-CN), eyanate groups (-O-CN), isocyanate groups (-N-C=O), thiocyanate groups (-S-CN), isothiocyanate groups (-N=C=S), nitrosamine groups (=N-N=O), thionitrosamine groups (=N-N=S), nitramine groups (-N-NO₂), thionitramine groups (-N-NS₂), carbonylnitrene groups (-CO-N), thiocarbonylnitrene groups (-CS-N), sulfenyl halides (-S-X), sulfoxides (=S=O), sulfones (-S[=O]₂), sulfinyl groups (-N=S=O), thiosulfinyl groups (-N=S=S), sulfenyl

Seria, No. – 10/038,274 Docket No. – UVD 0280 PA / 40815,324

thiocyanato groups (-S-S-CN), sulfenyl cyanato groups (-S-O-CN), sulfodimine groups (-S[=NII]₂), sulfur dihaloimido groups (-N=SX₂), sulfur oxide dihaloimido groups (-N=S|=O|X₂), sulfur oxide trihalide groups (=N-S[=O]X₃), sulfonyl azide groups (-S[=O]₂SCN), sulfonyl cyanate groups (-S[=O]₂OCN), sulfonyl cyanate groups (-S[=O]₂OCN), sulfonyl cyanide groups (-S[=O]₂CN), halosulfonate groups (-S[-O]₂OX), phosphonyl thiocyanate groups (-P[=O]OHSCN), phosphonyl cyanate groups (-P[=O]OHOCN), and phosphonyl cyanide groups (-P[-O]OHCN), and combinations thereof.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
	□ BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	☐ FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
•	□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.