Marathon of Parallel Programming - 2021 Problem: Graph Isomorphism Detection

Wilton Jaciel Loch, Guilherme Piêgas Koslovski October 26, 2021

Problem definition

Given two graphs G(V, E) and H(V, E), where V denotes the vertices and E the edges, the problem of finding isomorphic graphs consists of determining a bijection function $f: V(G) \to V(H)$ that maps the vertices of both graphs while preserving the adjacency condition. In other words, for the isomorphism property to exist, if any two vertices $u, v \in G$ are adjacent then the corresponding vertices $f(u), f(v) \in H$ must also be adjacent. In this sense, the proposed algorithm detects all the possible isomorphic relations between two undirected graphs through extensive permutations, comparing all possible vertex correspondences between G and H.

Input

An input represents only a test case. Initially, the graph G is informed followed by H. The first line contains an integer V_g ($0 < V_g < 100$) representing the number of vertices in G, while the second line informs an integer E_g ($0 \le E_g < (V_g*(V_g-1))/2$) denoting the number of edges in G. Following, E_g edges are sequentially informed, each denoted by two integers $u,v \in V_g$. The next lines repeat the same rationale for informing the graph H: an integer V_h ($0 < V_h < 100$) representing the number of vertices in H is followed by an integer E_h ($0 \le E_h < (V_h*(V_h-1))/2$) denoting the number of edges in H. Finally, E_h edges are sequentially informed, each denoted by two integers $u,v \in V_h$. The input must be read form the standard input.

Output

The output contains N lines. If there is no possible isomorphic relation between G and H, only the message The graphs are not isomorphic is printed to the output. Otherwise, a number of lines equal to the amount of possible isomorphisms is printed, each containing a stream of integers $v \in V_h$ which represents

a vertex correspondence between G and H, such that f(u) = v, with $u \in V_g$ equal to the position of each v on the stream. Thus, the order in which vertices are printed in each of the solution lines defines the solution itself.

 $The\ output\ must\ be\ written\ to\ the\ standard\ output.$

Example

Input example 1	Output example 1	Input example 2	Output example 2
4	2 3 0 1	$\parallel 4$	The graphs are not isomorphic
6		6	
0 2		0 3	
1 1		1 1	
1 3		1 3	
2 2		$\parallel 2 2$	
2 3		2 3	
3 3		3 3	
4		$\parallel 4$	
6		6	
0 0		0 0	
0 1		0 1	
0 2		0 2	
1 1		1 1	
1 3		1 3	
3 3		3 3	