Algorithms in FAST v8 $\,$

Bonnie Jonkman

March 18, 2014

1 Definitions and Nomenclature

Module	Abbreviation	Abbreviation
Name	in Module	in this Document
ElastoDyn	ED	ED
AeroDyn	AD	AD
ServoDyn	SrvD	SrvD
SubDyn	SD	SD
HydroDyn	HydroDyn	HD
MAP	MAP	MAP
FEAMooring	FEAM	FEAM
InflowWind	InfW	InfW

Table 1: Abbreviations for modules in FAST v8 $\,$

2 Initializations

3 Input-Output Relationships

3.1 Input-Output Solves (Option 2 Before 1)

This algorithm documents the procedure for the Input-Output solves in FAST, assuming all modules are in use. If an individual module is not in use during a particular simulation, the calls to that module's subroutines are omitted and the module's inputs and outputs are neither set nor used.

```
1: procedure Calcoutputs_And_SolveForInputs()
 2:
       y\_ED \leftarrow \text{ED\_CALCOUTPUT}(p\_ED, u\_ED, x\_ED, xd\_ED, z\_ED)
 3:
       u\_AD \leftarrow \text{TransferOutputsToInputs}(y\_ED)
 4:
       y\_AD \leftarrow AD\_CALCOUTPUT(p\_AD, u\_AD, x\_AD, xd\_AD, z\_AD)
 5:
 6:
 7:
       u\_SrvD \leftarrow TransferOutputsToInputs(y\_ED, y\_AD)
       y\_SrvD \leftarrow SrvD\_CALCOUTPUT(p\_SrvD, u\_SrvD, x\_SrvD, xd\_SrvD, z\_SrvD)
 8:
 9:
       u\_ED(\text{not platform reference point}) \leftarrow \text{TRANSFEROUTPUTSToInputs}(y\_SrvD, y\_AD)
10:
       u_{-}HD \leftarrow \text{TransferMeshMotions}(y_{-}ED)
11:
12:
       u\_SD \leftarrow \text{TransferMeshMotions}(y\_ED)
       u\_MAP \leftarrow \text{TransferMeshMotions}(y\_ED)
13:
       u\_FEAM \leftarrow TransferMeshMotions(y\_ED)
14:
15:
       ED_HD_SD_MOORING_INPUTOUTPUTSolve()
16:
17:
       If AeroDyn or ServoDyn had states to update, we should do this:
18:
            u\_AD \leftarrow \text{TransferOutputsToInputs}(y\_ED)
19:
            u\_SrvD \leftarrow TransferOutputsToInputs(y\_ED, y\_AD)
20:
       However, they don't so we'll omit these steps for efficiency.
21:
22: end procedure
```

Note that inputs to ElastoDyn before calling CalcOutput() in the first step are not set in CalcOutputs_And_SolveForInputs(). Instead, the ElastoDyn inputs are set depending on where CalcOutputs_And_SolveForInputs() is called:

- At time 0, the inputs are the initial guess from *ElastoDyn*;
- On the prediction step, the inputs are extrapolated values from the time history of ElastoDyn inputs;
- On the first correction step, the inputs are the values calculated in the prediction step;
- On subsequent correction steps, the inputs are the values calculated in the previous correction step.

3.2 Input-Output Solve for *HydroDyn*, *SubDyn*, *MAP*, *FEAMooring*, and the Platform Reference Point Mesh in *ElastoDyn*

This procedure implements Solve Option 1 for the accelerations and loads in HydroDyn, SubDyn, MAP, FEAMooring, and ElastoDyn (at its platform reference point mesh). The other input-output relationships for these modules are solved using Solve Option 2.

```
1: procedure ED_HD_SD_MOORING_INPUTOUTPUTSOLVE()
  2:
                    y\_MAP \leftarrow \text{CALCOUTPUT}(p\_MAP, u\_MAP, x\_MAP, xd\_MAP, z\_MAP)
  3:
                    y\_FEAM \leftarrow CALCOUTPUT(p\_FEAM, u\_FEAM, x\_FEAM, xd\_FEAM, z\_FEAM)
  4:
  5:
                        \triangleright Form u vector using loads and accelerations from u_HD, u_SD, and
  6:
          platform reference input from u_-ED
  7:
                    u \leftarrow U_{\text{VEC}}(u_{\text{-}}HD, u_{\text{-}}SD, u_{\text{-}}ED)
  8:
                    k \leftarrow 0
  9:
                    loop
                                             ▷ Solve for loads and accelerations (direct feed-through terms)
10:
                             y\_ED \leftarrow \text{ED\_CALCOUTPUT}(p\_ED, u\_ED, x\_ED, xd\_ED, z\_ED)
11:
                             y\_SD \leftarrow \text{SD\_CALCOUTPUT}(p\_SD, u\_SD, x\_SD, xd\_SD, z\_SD)
12:
                             y\_HD \leftarrow \text{HD\_CALcOutput}(p\_HD, u\_HD, x\_HD, xd\_HD, z\_HD)
13:
                             if k \ge k \text{-}max then
14:
                                       exit loop
15:
                             end if
16:
                              u\_HD\_tmp \leftarrow \text{TransferMeshMotions}(y\_ED, y\_SD)
17:
                             u\_SD\_tmp \leftarrow \text{TransferMeshMotions}(y\_ED)
18:
                                                                      \cup TransferMeshLoads(y\_HD, u\_HD\_tmp)
                             u\_ED\_tmp \leftarrow \text{TransferMeshLoads}(y\_HD, y\_SD, y\_MAP, y\_FEAM, u\_HD\_tmp, u\_SD\_tmp, u\_MAP, y\_FEAM, v\_HD\_tmp, v\_SD\_tmp, v\_MAP, v\_SD\_tmp, v\_MAP, v\_SD\_tmp, v\_SD\_tmp, v\_MAP, v\_SD\_tmp, v\_SD\_tmp,
19:
20:
                              U_Residual \leftarrow u - U_VEC(u_HD_tmp, u_SD_tmp, u_ED_tmp)
21:
22:
                             if last Jacobian was calculated at least DT_UJac seconds ago then
23:
                                       Calculate \frac{\partial U}{\partial u}
24:
25:
                             end if
                             Solve \frac{\partial U}{\partial u}\delta u = -U_{-}Residual for \delta u
26:
27:
                             if \|\delta u\|_2 < \text{tolerance then}
                                                                                                                                                   ▶ To be implemented later
28:
29:
                                       exit loop
                             end if
30:
31:
                             u \leftarrow u + \delta u
32:
                             Transfer u to u\_HD, u\_SD, and u\_ED loads and accelerations only
33:
                             k = k + 1
34:
                    end loop
35:
36:
                                                            > Transfer non-acceleration fields to motion input meshes
```

```
37: 

38: u\_HD(\text{not accelerations}) \leftarrow \text{TransferMeshMotions}(y\_ED, y\_SD)

39: u\_SD(\text{not accelerations}) \leftarrow \text{TransferMeshMotions}(y\_ED)

40: 

41: u\_MAP \leftarrow \text{TransferMeshMotions}(y\_ED)

42: u\_FEAM \leftarrow \text{TransferMeshMotions}(y\_ED)

43: end procedure
```