МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информационных систем и технологий

Кафедра: «Измерительно-вычислительные комплексы»

Дисциплина: «Методы искусственного интеллекта»

Отчет

по лабораторной работе № 5

по теме: «Исследование инструментов классификации библиотеки Scikit-learn»

Выполнила:

студентка гр. ИСТбд-4

Тагашев И.

Проверил:

к.т.н., доцент

Шишкин В.В.

Выполнение лабораторной работы по теме: «Исследование инструментов классификации библиотеки Scikit-learn»

Классификаторы: классификация с помощью стохастического градиентного спуска, с помощью опорных векторов и метод случайного леса.

Amacem: «Covid19» https://www.kaggle.com/datasets/meirnizri/covid19-dataset

Данный датасет содержит сырые данные и состоит из следующих полей:

- 1. USMER уровень подразделения медицинского учреждения (1, 2, 3)
- 2. MEDICAL_UNIT тип учреждения Национальной системы здравоохранения, которое оказывало медицинскую помощь (1-13)
- SEX − пол (женский − 1; мужской − 2)
- 4. PATIENT_TYPE вид медицинской помощи, которую пациент получал в отделении (1 для возвращения домой; 2 для госпитализации)
- 5. DATE_DIED дата смерти (указывается дата или 9999-99-99, если пациент не умер)
- 6. INTUBED был ли пациент подключен к аппарату искусственной вентиляции легких (1 да, 2 нет, 97 и 99 отсутствие данных)
- 7. PNEUMONIA была ли у пациента уже пневмония (1 да, 2 нет, 97 и 99 отсутствие данных)
- 8. AGE возраст пациента
- 9. PREGANT беременность (1 да, 2 нет, 97 и 99 отсутствие данных)
- 10. DIABETES болен ли пациент диабетом (1 да, 2 нет, 97 и 99 отсутствие данных)
- 11. COPD есть ли у пациента хроническая обструктивная болезнь легких (1 да, 2 нет, 97 и 99 отсутствие данных)
- 12. ASTHMA есть ли у пациента астма (1 да, 2 нет, 97 и 99 отсутствие данных)
- 13. INMSUPR имеет ли пациент подавленный иммунитет (1 да, 2 нет, 97 и 99 отсутствие данных)
- 14. HIPERTENSION есть ли у пациента гипертония (1 да, 2 нет, 97 и 99 отсутствие данных)
- 15. OTHER_DISEASE есть ли у пациента другие заболевания (1 да, 2 нет, 97 и 99 отсутствие данных)
- 16. CARDIOVASCULAR есть ли у пациента заболевания, связанные с сердцем или кровеносными сосудами (1 да, 2 нет, 97 и 99 отсутствие данных)

- 17. OBESITY- страдает ли пациент ожирением (1 да, 2 нет, 97 и 99 отсутствие данных)
- 18. RENAL_CHRONIC есть ли у пациента хроническое заболевание почек (1 да, 2 нет, 97 и 99 отсутствие данных)
- 19. ТОВАССО пациент-курильщик (1 да, 2 нет, 97 и 99 отсутствие данных)
- 20. CLASSIFICATION результат теста на Covid-19 (значения 1-3 означают, что у пациента был диагностирован covid в разной степени; 4 и выше означает, что пациент не является носителем covid или что тест не дает результатов)
- 21. ICU был ли пациент госпитализирован в отделение интенсивной терапии (1 да, 2 нет, 97 и 99 отсутствие данных)

Для данного датасета для всех классификаторов в качестве целевого столбца выберем столбец «CLASIFFICATION_FINAL» (значения: «1», «2», «3», «4»), отберем 5 значимых определяющих признаков на основе важности признаков, используя классификатор ExtraTreesClassifier.

Перед обучением на сырых данных во избежание ошибки несоответствия типов уберем единственный столбец с датой смерти (также данный столбец не будет влиять на результат теста на Covid19), сократим количество записей до 10 тысяч, так как в первоначальном датасете содержится около миллиона записей, что значительно замедляет работу программы для учебного проекта, и проведем отбор 5 значимых признаков.

Код:

```
#загрузка и выбор первых 10000 строк датасета
dataset =
pd.read_csv(r"/Users/katyaanosova/Desktop/Covid_Data.csv")
dataset.drop('DATE_DIED', axis = 1, inplace = True)
dataset = dataset.head(10000)

#выделение целевого столбца и выбор первых 10000 строк
aim_label = dataset['CLASIFFICATION_FINAL']
aim_label = aim_label.head(10000)
dataset.drop('CLASIFFICATION_FINAL', axis = 1, inplace = True)

#отбор значимых признаков
model = ExtraTreesClassifier()
model.fit(dataset, aim_label)
print(model.feature_importances_)
```

Результат отбора:

```
[0.02172063 0.20229271 0.0109869 0.00663675 0.01706895 0.03094936 0.49400901 0.01510243 0.02543232 0.0115651 0.00968934 0.01342576 0.02637528 0.01563012 0.01926105 0.02209054 0.01996494 0.0193579 0.0184409 ]
```

Зная, что чем больше значение оценки, тем важнее признак, выберем 10 значений:

PNEUMONIA – наличие у пациента пневмонии

AGE – возраст пациента

COPD - наличие у пациента хронической обструктивной болезни легких HIPERTENSION - наличие у пациента гипертонии

OBESITY – наличие у пациента ожирения

Таким образом, сформируем отдельно выборку данных по интересующим признакам, затем с помощью train_test_split разделим данные на обучающую и тестовую выборку.

Код:

```
#формирование новой выборки значимых признаков columns = [0, 1, 2, 3, 4, 7, 8, 10, 11, 13, 14, 16, 17, 18] dataset.drop(dataset.columns [columns], axis = 1, inplace = True)
```

#разделение датасета на обучающую и тестовую выборки X_train, X_test, Y_train, Y_test = train_test_split(dataset, aim_label, test_size=0.1, random_state=0)

Результат – выборка из значимых признаков, обучающая и тестовая выборки:

	PNEUMONIA	AGE	COPD	HIPERTENSION	OBESITY
0	1	65	2	1	2
1	1	72	2	1	1
2	2	55	2	2	2
3	2	53	2	2	2
4	2	68	2	1	2

Обучающая выборка

U	· <u>+</u>				
	PNEUMONIA	AGE	COPD	HIPERTENSION	OBESITY
1554	1	77	2	2	2
2087	2	52	2	1	2
5470	2	43	2	2	2
2363	2	53	2	2	2
7570	2	58	2	2	2
9225	1	52	2	2	2
4859	1	51	2	2	2
3264	2	42	2	2	2

2732 2 34 2 2 2 2 2 2 [9000 rows x 5 columns] Тестовая выборка РNEUMONIA AGE COPD HIPERTENSION OBESITY 9394 2 41 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9845	1	59	2	2	2
Тестовая выборка РNEUMONIA AGE COPD HIPERTENSION OBESITY 9394 2 41 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2732	2	34	2	2	2
PNEUMONIA AGE COPD HIPERTENSION OBESITY 9394 2 41 2 2 2 898 1 78 2 1 2 2398 2 37 2 2 2 2 5906 1 47 2 2 2 1 2 2343 2 32 2 2 98 98 <	[9000	rows x 5 c	olumn	.s]		
PNEUMONIA AGE COPD HIPERTENSION OBESITY 9394 2 41 2 2 2 898 1 78 2 1 2 2398 2 37 2 2 2 2 5906 1 47 2 2 2 1 2 2343 2 32 2 2 98 98 <						
9394 2 41 2 2 2 898 1 78 2 1 2 2398 2 37 2 2 2 5906 1 47 2 2 1 2343 2 32 2 2 98 9319 2 29 2 2 2 2 2662 2 57 2 1 2 2 6925 2 26 2 2 2 2 8070 2 35 2 2 2 2 3651 2 55 2 2 2 2	Тестог	зая выборка	L			
898 1 78 2 1 2 2398 2 37 2 2 2 5906 1 47 2 2 1 2343 2 32 2 2 98 9319 2 29 2 2 2 2662 2 57 2 1 2 6925 2 26 2 2 2 8070 2 35 2 2 2 2 3651 2 55 2 2 2 2		PNEUMONIA	AGE	COPD	HIPERTENSION	OBESITY
2398 2 37 2 2 2 5906 1 47 2 2 1 2343 2 32 2 2 98 9319 2 29 2 2 2 2 2662 2 57 2 1 2 2 6925 2 26 2 2 2 2 8070 2 35 2 2 2 2 3651 2 55 2 2 2 2	9394	2	41	2	2	2
5906 1 47 2 2 1 2343 2 32 2 98 9319 2 29 2 2 2 2662 2 57 2 1 2 6925 2 26 2 2 2 8070 2 35 2 2 2 3651 2 55 2 2 2 2	898	1	78	2	1	2
2343 2 32 2 98 9319 2 29 2 2 2 2662 2 57 2 1 2 6925 2 26 2 2 2 8070 2 35 2 2 2 3651 2 55 2 2 2 2	2398	2	37	2	2	2
9319 2 29 2 2 2 2 2662 2 57 2 1 2 6925 2 26 2 2 2 8070 2 35 2 2 2 3651 2 55 2 2 2	5906	1	47	2	2	1
2662 2 57 2 1 2 6925 2 26 2 2 2 8070 2 35 2 2 2 3651 2 55 2 2 2	2343	2	32	2	2	98
2662 2 57 2 1 2 6925 2 26 2 2 2 2 8070 2 35 2 2 2 2 3651 2 55 2 2 2 2						
6925 2 26 2 2 2 8070 2 35 2 2 2 2 3651 2 55 2 2 2 2	9319	2	29	2	2	2
8070 2 35 2 2 2 3651 2 55 2 2 2	2662	2	57	2	1	2
3651 2 55 2 2 2	6925	2	26	2	2	2
	8070	2	35	2	2	2
[1000 rows x 5 columns]	3651	2	55	2	2	2
	[1000	rows x 5 c	olumn	s]		

Стохастический градиентный спуск

Проведем обучение и оценку модели, используя метод стохастического градиентного спуска:

Код:

```
#обучение модели
sgd = SGDClassifier (loss='hinge', penalty='12', alpha=1e-3, random_state=42, max_iter=5, tol=None)
sgd.fit(X_train, Y_train)
y_pred = sgd.predict(X_test)
score = accuracy_score(Y_test, y_pred)
print(f'Tочность SGD-классификатора: {round(score * 100, 2)}%')
```

Результат:

Точность SGD-классификатора: 84.9%

Затем произведем очистку данных – приведем строки с отсутствующими данными (97, 98, 99) к единому формату (1 — да, 2 — нет, 3 — данные отсутствуют), мы не будем удалять эти строки, так как эти данные тоже важны. Код:

```
#очистка выборки значимых признаков dataset.loc[dataset['OBESITY'] > 2, 'OBESITY'] = 3 dataset.loc[dataset['PNEUMONIA'] > 2, 'PNEUMONIA'] = 3 dataset.loc[dataset['COPD'] > 2, 'COPD'] = 3 dataset.loc[dataset['HIPERTENSION'] > 2, 'HIPERTENSION'] = 3 dataset = dataset.fillna(3)
```

После очистки данных снова произведем обучение и выведем оценку точности модели:

Точность SGD-классификатора: 85.0%

Далее произведем визуализацию данных.

	Значения тестовой выборки	Предсказанные значения
9394	4	3
898	3	3
2398	3	3
•••		
6925	3	3
8070	3	3
3651	3	3

Можно заметить, что данный классификатор имеет относительно небольшую точность. В основном, хорошо определяет результат Covid-19 со степенью тяжести «3». Скорее всего ошибка в выборке данных, они не являются уравновешенными, идет большой перевес класса «3».

Линейный метод опорных векторов

Проведем обучение и оценку модели, используя линейный метод опорных векторов:

Код:

svc = LinearSVC()

```
svc.fit(X_train, Y_train)
y_pred = svc.predict(X_test)
score = accuracy_score(Y_test, y_pred)
print(f'Toчнoсть SVC-классификатора: {round(score * 100, 2)}%')
```

Результат:

Точность SVC-классификатора: 84.6%

Затем сделаем очистку данных и снова произведем обучение с оценкой точности модели:

Точность SVC-классификатора: 84.7%

Визуализация данных:

	Значения тестовой выборки	Предсказанные значения
9394	4	3
898	3	3
2398	3	3
• • •		
6925	3	3
8070	3	3
3651	3	3

Данный классификатор имеет меньшую точность, чем предыдущий, а также снова видно ошибку в выборке неуравновешенных данных (идет большой перевес класса «3»).

Классификация случайного леса

Проведем обучение и оценку модели, используя метод случайного леса. Код:

```
rf = RandomForestClassifier(max_depth = 2, random_state = 0)
rf.fit(X_train, Y_train)
y_pred = rf.predict(X_test)
score = accuracy_score(Y_test, y_pred)
print(f'Точность случайного леса: {round(score * 100, 2)}%')
```

Результат:

Точность случайного леса: 84.8%

Затем сделаем очистку данных и снова произведем обучение с оценкой точности модели:

Точность случайного леса: 84.8%

Визуализация:

	Значения тестовой выборки	Предсказанные значения
9394	4	3
898	3	3
2398	3	3
• • •		
6925	3	3
8070	3	3
3651	3	3

Данный классификатор имеет большую точность, чем предыдущий, но меньшую, чем первый, а также снова видно ошибку в выборке неуравновешенных данных (идет большой перевес класса «3»).

Вывод

Таким образом, в результате выполнения лабораторной работы мы исследовали классификаторы библиотеки Sklearn. В результате исследования для данного датасета и при проведенной обработке данных наиболее точным оказался метод стохастического градиентного спуска. Также на основе данного датасета стало понятно, почему важно выбирать уравновешенные данные без перевеса какого-либо класса.