MTH 511 HW 1

Brandyn Tucknott

Due 8 October 2025

- 1. **Exercise 3.22:** Show that $\|x\|_{\infty} \leq \|x\|_2$ for any $x \in \ell_2$, and that $\|x\|_2 \leq \|x\|_1$ for any $x \in \ell_1$. We split this proof into two parts: (a) $\|x\|_{\infty} \leq \|x\|_2$ and (b) $\|x\|_2 \leq \|x\|_1$.
 - (a) $||x||_{\infty} \le ||x||_2$

Proof. Fix $k \in \mathbb{N}$. Then clearly

$$|x_k|^2 \le \sum_{i=1}^{\infty} |x_i|^2$$

$$|x_k| \le \sqrt{\sum_{i=1}^{\infty} |x_i|^2}$$

$$||x||_{\infty} = \sup_{j \in \mathbb{N}} |x_j| \le \sqrt{\sum_{i=1}^{\infty} |x_i|^2} = ||x||_2$$

(b) $||x||_2 \le ||x||_1$

Proof. Recall that

$$||x||_1^2 = (|x_1| + |x_2| + \dots + |x_n|)^2 = \left(\sum_{i=1}^{\infty} |x_i|\right)^2.$$
 (1)

By considering the multinomial expansion of (1), we see that

$$\left(\sum_{i=1}^{\infty} |x_i|\right)^2 \ge \sum_{i=1}^{\infty} |x_i|^2$$

$$\sum_{i=1}^{\infty} |x_i| \ge \sqrt{\sum_{i=1}^{\infty} |x_i|^2}$$

$$\|x\|_1 \ge \|x\|_2.$$

2. Exercise 3.23: The subset of ℓ_{∞} consisting of all sequences that converge to 0 is denoted by c_0 . (Note that c_0 is actually a linear subspace of ℓ_{∞} ; thus c_0 is also a normed vector space under $\|\cdot\|_{\infty}$.) Show that we have the following proper set inclusions: $\ell_1 \subset \ell_2 \subset c_0 \subset \ell_{\infty}$.

Proof. Recall the following:

- By definition: $c_0 \subset \ell_{\infty}$.
- By 3.22a: $\ell_2 \subset c_0$.
- By 3.22b: $\ell_1 \subset \ell_2$.

Note: recognize our proof of 3.22a relies on the fact that (x_n) converges, but is independent of what the sequence converges to. For this reason we are able to conclude that $\ell_2 \subset c_0$ by 3.22a.

Chaining these results together, we conclude that

$$\ell_1 \subset \ell_2 \subset c_0 \subset \ell_\infty$$
.

Page 2

3. **Exercise 3.25:** Using $||f||_p = \left(\int_0^1 |f(t)|^p dt\right)^{1/p}$, state and prove lemma 3.7 and theorem 3.8 (also cover $p = 1, q = \infty$ for lemma 3.7).

Lemma 3.7 (Holder's Inequality). Let 1 and let <math>q be defined by 1/p + 1/q = 1. Given $f \in \ell_p$ and $g \in \ell_q$, we have $\sum_{i=1}^{\infty} |f(t)g(t)| \le \|f\|_p \|g\|_q$.

Proof. In the case where $p = 1, q = \infty$, note if $g_{max} = \max_{t \in [0,1]} |g(t)|$, then $|g(t)| \leq |g_{max}|$ and we have that

$$\int_{0}^{1} |f(t)g(t)|dt \le \int_{0}^{1} |f(t)g_{max}|dt$$

$$= g_{max} \int_{0}^{1} |f(t)|dt$$

$$= ||g||_{\infty} ||f||_{1} = ||g||_{q} ||f||_{p}.$$

If 1 , then by Young's Inequality we have the following:

$$\int_{0}^{1} \left| \frac{f(t)g(t)}{\|f\|_{p} \|g\|_{q}} \right| dt \le \frac{1}{p} \int_{0}^{1} \left| \frac{f(t)}{\|f\|_{p}} \right|^{p} dt + \frac{1}{q} \int_{0}^{1} \left| \frac{g(t)}{\|g\|_{q}} \right|^{q} dt$$

$$= \frac{1}{p} \frac{1}{\|f\|_{p}} \int_{0}^{1} |f(t)|^{p} dt + \frac{1}{q} \frac{1}{\|g\|_{q}^{q}} \int_{0}^{1} |g(t)|^{q} dt$$

$$= \frac{1}{p} \frac{1}{\|f\|_{p}^{p}} \|f\|_{p}^{p} + \frac{1}{q} \frac{1}{\|g\|_{q}^{q}} \|g\|_{q}^{q}$$

$$= \frac{1}{p} + \frac{1}{q} = 1.$$

So clearly $\int_{0}^{1} |f(t)g(t)| dt \leq ||f||_{p} ||g||_{q}$.

Before we can prove Theorem 3.8, we first need to prove the analogue of Lemma 3.5 for our use.

Lemma 3.5. Let $1 and <math>f, g \ge 0$. Then $(f+g)^p \le 2^p (f^p + g^p)$. Consequently $f+g \in \ell_p$ whenever $f, g \in \ell_p$.

Proof. Let $1 and <math>f, g \ge 0$.

$$(f+g)^p \le (2\max(f,g))^p$$

$$= 2^p (\max(f,g))^p$$

$$= 2^p \max(f^p, g^p)$$

$$\le 2^p (f^p + g^p).$$

It follows then that

$$||f+g||_p = \int_0^1 |f(t)+g(t)|^p dt \le 2^p \left(\int_0^1 |f(t)|^p dt + \int_0^1 |g(t)|^p dt \right)$$
$$= 2^p \left(||f||_p^p + ||g||^p \right) < \infty.$$

Thus $f + g \in \ell_p$.

Theorem 3.8 (Minkowski's Inequality). Let $1 . If <math>f, g \in \ell_p$, then $f + g \in \ell_p$ and $\|f + g\|_p \le \|f\|_p + \|g\|_p$.

Proof. Let $1 and <math>f, g \in \ell_p$. By Lemma 3.5 we have that $f + g \in \ell_p$. For the inequality, observe that

$$||f + g||_p^p = \int_0^1 |f + g|^p dt$$

$$\leq \int_0^1 |f|^p + |g|^p t$$

$$= \int_0^1 |f|^p dt + \int_0^1 |g|^p dt$$

$$= ||f||_p^p + ||g||_p^p.$$

Thus we conclude that $||f + g||_p \le ||f||_p + ||g||_p$.

4. Exercise 3.36: Given a metric space (M, d), prove a convergent sequence is Cauchy and a Cauchy sequence is bounded.

Proof. First, we will show that a convergent sequence is bounded. Recall the definition for a convergent sequence:

$$(x_n)$$
 converges to $x \leftrightarrow$ for all $\varepsilon > 0, (x_n)$ is eventually in $B_{\varepsilon}(x)$.

Let $N \in \mathbb{N}$ be such that $\{x_n : n \ge N\} \subset B_{\varepsilon}(x)$ (we know this to be possible by the definition of (x_n) converging). Also let $S = \{x_n : 1 \le n < N\}$, $m = \max(S)$. Then clearly $S \subset B_m(x)$, and we have that for all $n \ge 1$,

$$\begin{cases} x_n \in B_m(x), & 1 \le n < N \\ x_n \in B_{\varepsilon}(x), & n \ge N \end{cases}$$

and from it we conclude that $x_n \in B_{\max(m,\varepsilon)}(x)$ and thus (x_n) is bounded.

Since that $\{x_n : n \ge N\} \subset B_{\varepsilon/2}$, it follows that diam $(B_{\varepsilon/2}) < \varepsilon$, and by definition (x_n) is Cauchy. Thus the convergent sequence (x_n) is Cauchy. To show a Cauchy sequence is bounded, it follows from the definition, there for all $\varepsilon > 0$ there exists $N \ge 1$ such that diam $(x_n : n \ge N) < \varepsilon$. Then certainly $\{x_n : n \ge N\} \subset B_{\varepsilon/2}$. Since the set $\{x_n : 1 \le n < N\}$ is a finite set of finite values, it is must be bounded. Since the leading terms and tail terms are bounded, the whole sequence must be bounded.

5	Exercise 3.37:	Α	Cauchy	seguence	with a	a convergent	subsequence	converges
υ.	Everence and .	Δ	Cauchy	seductice	WILLII C	a convergent	panacaretice	COHVELSES.

Proof. Let (x_n) be Cauchy. Suppose for all subsequence $(a_n) \subset (x_n)$, (a_n) does not converge to a. Then by definition, there exists some $\varepsilon > 0$ where for all $N \ge 1$, there exists some $k \ge N$ such that $d(a_k, a) > \varepsilon/2$. Since $(a_n) \subset (x_n)$, it follows then that diam $(\{x_n : n \ge k, n\}) > \varepsilon$. This is a contradiction to our definition of a Cauchy sequence, so it must be that there exists a convergent subsequence. \square

6. Exercise 3.39: If every subsequence of (x_n) has a further subsequence that converges to x, then (x_n) converges to x.

Proof. We will do a proof by contrapositive. Given (x_n) does not converge to x, it is sufficient to show then there exists a subsequence where all further subsequences do not converge to x. Since (x_n) does not converge to x, by definition we have that there exists some $\varepsilon > 0$ where for all $N \in \mathbb{N}$, there is some $n_1 \in \mathbb{N}$, $d(x_{n_1}, x) \ge \varepsilon$.

We will now inductively construct a subsequence $(a_n) \subset (x_n)$ for which (a_n) has no convergent subsequences. Choose $a_1 = x_{n_1}$; thus $d(a_1, x) \geq \varepsilon$. For the inductive step, assume we have chosen up to a_k , and wish to choose a_{k+1} . Choose $a_{k+1} \geq a_k + 1$, but still satisfying $d(a_{k+1}, x) \geq \varepsilon$. We have just constructed a subsequence $(a_n) \subset (x_n)$ such that for all $k \in \mathbb{N}$, $d(a_k, x) \geq \varepsilon$. It is clear then, that any subsequence $(b_n) \subset (a_n)$ will have the same property, and by definition will not converge to x.