

Gerstenhaber - Serezhkin theorem

Canonical name GerstenhaberSerezhkinTheorem

Date of creation 2013-03-22 19:20:05 Last modified on 2013-03-22 19:20:05 Owner kammerer (26336) Last modified by kammerer (26336)

Numerical id 7

Author kammerer (26336)

Entry type Theorem Classification msc 15A30

Related topic BottaPierceWatkinsTheorem

Let \mathbb{F} be an arbitrary field. Consider $\mathcal{M}_n(\mathbb{F})$, the vector space of all $n \times n$ matrices over \mathbb{F} . Define

- $\mathcal{N} = \{ A \in \mathcal{M}_n(\mathbb{F}) : A \text{ is nilpotent} \},$
- $\mathcal{GL}_n(\mathbb{F}) = \{ A \in \mathcal{M}_n(\mathbb{F}) : \det(A) \neq 0 \},$
- $\mathcal{T} = \{ A \in \mathcal{M}_n(\mathbb{F}) : A \text{ is strictly upper triangular} \}.$

Notice that \mathcal{T} is a linear subspace of $\mathcal{M}_n(\mathbb{F})$. Moreover, $\mathcal{T} \subseteq \mathcal{N}$ and $\dim \mathcal{T} = n(n-1)/2$.

The Gerstenhaber – Serezhkin theorem on linear subspaces contained in the nilpotent cone [?, ?] reads as follows.

Theorem 1 Let \mathcal{L} be a linear subspace of $\mathcal{M}_n(\mathbb{F})$. Assume that $\mathcal{L} \subseteq \mathcal{N}$. Then

- (i) $\dim \mathcal{L} \leq n(n-1)/2$,
- (ii) dim $\mathcal{L} = n(n-1)/2$ if and only if there exists $U \in \mathcal{GL}_n(\mathbb{F})$ such that $\{UAU^{-1}: A \in \mathcal{L}\} = 1$

An alternative simple proof of inequality (i) can be found in [?].

References

- [G] M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices, I, Amer. J. Math. 80: 614–622 (1958).
- [M] B. Mathes, M. Omladič, H. Radjavi, Linear Spaces of Nilpotent Matrices, *Linear Algebra Appl.* **149**: 215–225 (1991).
- [S] V. N. Serezhkin, On linear transformations preserving nilpotency, $Vests\bar{\iota}$ Akad. Navuk BSSR Ser. F $\bar{\iota}z$ -Mat. Navuk 1985, no. 6: 46–50 (Russian).