Sublinear Time Recommendation Algorithms

Vivek Farias Andrew Li Deeksha Sinha

Motivation

The speech every woman should hear

By Frida Ghitis, Special to CNN updated 8:26 AM EDT, Fri October 19, 2012

We recommend

- 'Argo' recognizes forgotten heroes of Iran hostages
- 'Goosebumps' as daredevil jumps from edge of space
- · GPS Quiz: Test your knowledge
- China's public getting more negative about the world
- "2.5% of Americans died during civil war"
- · Blasts may have struck prison of torture in Syria

From around the web

- Is Your Bedroom a Sleep Haven? Tips for Your Private Oasis, Shibley Smiles
- "VMware, the bell tolls for thee, and Microsoft is ringing it." NetworkWorld
- Will NASA Ever Recover Apollo 13's Plutonium From the Sea? Txchnologist
- 13 Things Your Car Mechanic Won't Tell You Reader's Digest
- Warning Signs That Your Employees Are About To Leave OPEN Forum
- Early Diabetes Warning Signs You Shouldn't Ignore Live Better America

Twhi

Recommendations Today

Recommendations Today

- Two key steps
 - Learning: estimate a predictive model using past data
 - Optimization: make recommendation decisions in real-time

Recommendations Today

- Two key steps
 - Learning: estimate a predictive model using past data
 - Optimization: make recommendation decisions in real-time
- This Talk: Operationalize existing predictive models
 - Formulate as optimization problem
 - Propose sublinear time algorithm with provable guarantees
 - Show substantial improvement on massive dataset from Outbrain

- Products $v_1, \ldots, v_n \in \mathbb{S}^{d-1}$
- ullet Customers are random vectors $U \in \mathbb{S}^{d-1}$

- Products $v_1, \ldots, v_n \in \mathbb{S}^{d-1}$
- ullet Customers are random vectors $U \in \mathbb{S}^{d-1}$
- Utility of clicking product $v \in \{v_1, \dots, v_n\}$: $v^\top U + \epsilon_v$
 - ullet γ encodes utility for 'no click'

- Products $v_1, \ldots, v_n \in \mathbb{S}^{d-1}$
- Customers are random vectors $U \in \mathbb{S}^{d-1}$
- Utility of clicking product $v \in \{v_1, \dots, v_n\}$: $v^\top U + \epsilon_v$
 - ullet γ encodes utility for 'no click'
- Optimization problem:

$$\max_{|S| \le k} \mathbb{P}\left(\max_{v \in S} (v^{\top}U + \epsilon_v) > \gamma\right)$$

- Products $v_1, \ldots, v_n \in \mathbb{S}^{d-1}$
- Customers are random vectors $U \in \mathbb{S}^{d-1}$
- Utility of clicking product $v \in \{v_1, \dots, v_n\}$: $v^\top U + \epsilon_v$
 - ullet γ encodes utility for 'no click'
- Optimization problem:

$$\max_{|S| \le k} \mathbb{P}\left(\max_{v \in S} (v^{\top}U + \epsilon_v) > \gamma\right)$$

Concrete Example: Spotify

- ullet Learn a mapping from 10^8 products to \mathbb{R}^{1000}
- Good embedding: $||v_i v_j||$ small if similar vis-a-vis 'co-occurrences'
- Many algorithms do this
 - Collaborative filtering, matrix factorization [Bernhardsson '14]
 - NLP models: word2vec on playlists [Johnson '15]
 - Neural networks: CNN on audio files [Dieleman '14]
- Customers: distributions on v_1, \ldots, v_n

- Products $v_1, \ldots, v_n \in \mathbb{S}^{d-1}$
- ullet Customers are random vectors $U \in \mathbb{S}^{d-1}$
- Click happens if $v^{\mathsf{T}}U > \gamma$
- Optimization problem:

$$\max_{|S| \le k} \mathbb{P}\left(\max_{v \in S} (v^{\top}U + \epsilon_v) > \gamma\right)$$

- I. Sample $\hat{U} = \{u_1, ... u_s\}$ from U
- 2. Sample products by potential relevance
- 3. Greedy algorithm over customer samples and relevant products

- I. Sample $\hat{U} = \{u_1, ... u_s\}$ from U
- 2. Sample products by potential relevance
 - For each $u \in \hat{U}$, sample a subset of products $\mathcal{V}_u \subset \{v_1, \dots, v_n\}$
- 3. Greedy algorithm over customer samples and relevant products

- I. Sample $\hat{U} = \{u_1, ... u_s\}$ from U
- 2. Sample products by potential relevance
 - For each $u \in \hat{U}$, sample a subset of products $\mathcal{V}_u \subset \{v_1, \dots, v_n\}$
 - $v \in \mathcal{V}_u$ with probability $\mathbb{P}\left(v^{\top}u + \epsilon_v > \gamma\right)$
- 3. Greedy algorithm over customer samples and relevant products

- I. Sample $\hat{U} = \{u_1, ... u_s\}$ from U
- 2. Sample products by potential relevance
 - For each $u \in \hat{U}$, sample a subset of products $\mathcal{V}_u \subset \{v_1, \dots, v_n\}$
 - $v \in \mathcal{V}_u$ with probability $\mathbb{P}\left(v^{\top}u + \epsilon_v > \gamma\right)$
 - Set $\mathcal{V} = \mathcal{V}_{u_1} \cup \cdots \cup \mathcal{V}_{u_s}$
- 3. Greedy algorithm over customer samples and relevant products

- I. Sample $\hat{U} = \{u_1, ... u_s\}$ from U
- 2. Sample products by potential relevance
 - For each $u \in \hat{U}$, sample a subset of products $\mathcal{V}_u \subset \{v_1, \dots, v_n\}$
 - $v \in \mathcal{V}_u$ with probability $\mathbb{P}\left(v^{\top}u + \epsilon_v > \gamma\right)$
 - Set $\mathcal{V} = \mathcal{V}_{u_1} \cup \cdots \cup \mathcal{V}_{u_s}$
- 3. Greedy algorithm over customer samples and relevant products
 - Repeat while |S| < k:
 - $v^* = \operatorname*{argmax}_{v \in \mathcal{V}} f(S \cup v)$
 - $S = S \cup v^*$

- I. Sample $\hat{U} = \{u_1, ... u_s\}$ from U
- 2. Sample products by potential relevance
 - For each $u \in \hat{U}$, sample a subset of products $\mathcal{V}_u \subset \{v_1, \dots, v_n\}$
 - $v \in \mathcal{V}_u$ with probability $\mathbb{P}\left(v^{\top}u + \epsilon_v > \gamma\right)$
 - Set $\mathcal{V} = \mathcal{V}_{u_1} \cup \cdots \cup \mathcal{V}_{u_s}$
- 3. Greedy algorithm over customer samples and relevant products
 - Repeat while |S| < k:
 - $v^* = \operatorname*{argmax}_{v \in \mathcal{V}} f(S \cup v)$
 - $S = S \cup v^*$

Assumptions

- I. Bounds on Customer Consumption
 - a. Constant Upper Bound: For any fixed user realization u in the support of U, expected number of conversions does not grow

$$\mathsf{E}\left[\sum_{v} \mathbf{1}\left(v^{\top}u + \epsilon_{v} > \gamma\right)\right] = O(1)$$

b. Lower Bound: Optimal conversion does not decay fast

$$OPT = \Omega\left(\frac{1}{n^{\frac{1}{3}}}\right)$$

Assumptions

- I. Bounds on Customer Consumption
 - a. Constant Upper Bound: For any fixed user realization u in the support of U, expected number of conversions does not grow

$$\mathsf{E}\left[\sum_{v} \mathbf{1}\left(v^{\top}u + \epsilon_{v} > \gamma\right)\right] = O(1)$$

b. Lower Bound: Optimal conversion does not decay fast

$$OPT = \Omega\left(\frac{1}{n^{\frac{1}{3}}}\right)$$

2. Good Embeddings: Product vectors are 'uniformly spread'

$$|B_{c\gamma}(u) \cap V| = O(c^d)|B_{\gamma}(u) \cap V|$$

• Theorem [Farias, Li, S.]: Under the stated assumptions, the greedy algorithm achieves in expectation

$$(1 - \delta)(1 - e^{-1})$$
OPT

• Theorem [Farias, Li, S.]: Under the stated assumptions, the greedy algorithm achieves in expectation

$$(1 - \delta)(1 - e^{-1})$$
OPT

with running time

$$\tilde{o}_{\delta}\left(kn^{\frac{4}{3}}\right)$$

• Theorem [Farias, Li, S.]: Under the stated assumptions, the greedy algorithm achieves in expectation

$$(1 - \delta)(1 - e^{-1})$$
OPT

with running time

$$\tilde{o}_{\delta}\left(kn^{\frac{4}{3}}\right)$$

• Theorem [Farias, Li, S.]: Under the stated assumptions, the greedy algorithm achieves in expectation

$$(1 - \delta)(1 - e^{-1})$$
OPT

with running time

$$\tilde{o}_{\delta}\left(kn^{\frac{4}{3}}\right)$$

Goal: Sublinear time recommendation algorithm

- I. Sample $\hat{U} = \{u_1, ... u_s\}$ from U
- 2. Sample products by potential relevance
 - For each $u \in \hat{U}$, sample a subset of products $\mathcal{V}_u \subset \{v_1, \dots, v_n\}$
 - $v \in \mathcal{V}_u$ with probability $\mathbb{P}\left(v^{\top}u + \epsilon_v > \gamma\right)$
 - Set $\mathcal{V} = \mathcal{V}_{u_1} \cup \cdots \cup \mathcal{V}_{u_s}$
- 3. Greedy algorithm over customer samples and relevant products
 - Repeat while |S| < k:
 - $v^* = \operatorname*{argmax}_{v \in \mathcal{V}} f(S \cup v)$
 - $S = S \cup v^*$

$$\hat{U} = \{u_1, \dots u_s\} \qquad U$$

2. Sample products by potential relevance

- For each $u \in \hat{U}$, sample a subset of products $\mathcal{V}_u \subset \{v_1, \dots, v_n\}$
- $v \in \mathcal{V}_u$ with probability $\mathbb{P}\left(v^{\top}u + \epsilon_v > \gamma\right)$
- Set $\mathcal{V} = \mathcal{V}_{u_1} \cup \cdots \cup \mathcal{V}_{u_s}$
- 3. Greedy algorithm over customer samples and relevant products
 - Repeat while |S| < k:
 - $v^* = \operatorname*{argmax} f(S \cup v)$
 - $\bullet \quad S = S \cup v^*$

• "Sample $\mathcal{V}_u \subset \{v_1, \dots, v_n\}$ s.t. $v \in \mathcal{V}_u$ w.p. $\mathbb{P}\left(v^\top u + \epsilon_v > \gamma\right)$ "

- "Sample $\mathcal{V}_u \subset \{v_1, \dots, v_n\}$ s.t. $v \in \mathcal{V}_u$ w.p. $\mathbb{P}\left(v^\top u + \epsilon_v > \gamma\right)$ "
- Input:
 - Set of vectors $\{v_1,\ldots,v_n\}$ with norm $\|\cdot\|$
 - ullet Query point u from same normed space
 - ullet Membership probability $p:\mathbb{R}^+ o [0,1]$

- "Sample $\mathcal{V}_u \subset \{v_1, \dots, v_n\}$ s.t. $v \in \mathcal{V}_u$ w.p. $\mathbb{P}\left(v^\top u + \epsilon_v > \gamma\right)$ "
- Input:
 - Set of vectors $\{v_1,\ldots,v_n\}$ with norm $\|\cdot\|$
 - ullet Query point u from same normed space
 - Membership probability $p: \mathbb{R}^+ \to [0,1]$
- Output: $\mathcal{V} \subset \{v_1, \dots, v_n\}$ such that

$$\mathbb{P}(v_j \in \mathcal{V}) = p(\|v_j - u\|)$$

ullet Goal: construct ${\cal V}$ in sublinear (amortized) runtime

Our Result

Our Result

• Theorem [Farias, Li, S.]: Under the stated assumptions, the *locality*-sensitive sampling algorithm approximates any membership probability function s.t.

$$(1 - \epsilon) \cdot p(\|v_j - u\|) \le \mathbb{P}(v_j \in \mathcal{V}) \le (1 + \epsilon) \cdot p(\|v_j - u\|)$$

Our Result

• Theorem [Farias, Li, S.]: Under the stated assumptions, the *locality-* sensitive sampling algorithm approximates any membership probability function s.t.

$$(1 - \epsilon) \cdot p(\|v_j - u\|) \le \mathbb{P}(v_j \in \mathcal{V}) \le (1 + \epsilon) \cdot p(\|v_j - u\|)$$

with expected amortized running time

$$\tilde{O}\left(\log\left(1/\epsilon\right)n^{2/3}\right)$$

The Key Problem in Picture

The Key Problem in Picture

The Key Problem in Picture

The Key Problem in Picture

The Key Problem in Picture

The Key Problem in Picture

• Return all $v \in \{v_1, \dots, v_n\}$ s.t. $\|v - u\| \leq \gamma$

Locality-Sensitive Sampling

 We generalize LSH to arbitrary functions with only constant-factor increase in running time

Locality-Sensitive Sampling

 We generalize LSH to arbitrary functions with only constant-factor increase in running time

A Sublinear Result

• Theorem [Farias, Li, S.]: Under the stated assumptions, the greedy algorithm, combined with Locality-Sensitive Sampling, achieves in expectation

$$(1 - \delta)(1 - e^{-1})$$
OPT

with expected amortized running time

$$\tilde{o}_{\delta}\left(kn\right)$$

• In a month, Outbrain serves 250 billion personalized content recommendations

- In a month, Outbrain serves 250 billion personalized content recommendations
- Dataset contains sample of pages viewed by users on multiple publisher sites in US between 14 - 28 June 2016
 - ~ 2 billion page views, 700 million unique users

- In a month, Outbrain serves 250 billion personalized content recommendations
- Dataset contains sample of pages viewed by users on multiple publisher sites in US between 14 - 28 June 2016
 - ~ 2 billion page views, 700 million unique users
- Construction of embedding:
 - For each user, make chronological list of page views
 - Construct embedding of articles in \mathbb{R}^{100} using word2vec

Consider task of making 200 recommendations for each test user

- Consider task of making 200 recommendations for each test user
- ullet First 10 page views are taken as the samples from the distribution U

- Consider task of making 200 recommendations for each test user
- ullet First 10 page views are taken as the samples from the distribution U
- Compared the performance of LSF with two benchmarks:
 - Last viewed Recommends nearest neighbors of the last viewed page
 - Mean Recommends nearest neighbors of the mean of the samples

Algorithm Hits Improvement

Algorithm	Hits	Improvement
LSS	3.6%	

Algorithm	Hits	Improvement
LSS	3.6%	
Mean	2.8%	28.5%

Algorithm	Hits	Improvement
LSS	3.6%	
Mean	2.8%	28.5%
Last viewed	1.6%	125%

Algorithm	Hits	Improvement
LSS	3.6%	
Mean	2.8%	28.5%
Last viewed	1.6%	125%

28.5% improvement corresponds to revenue increase of \sim \$68 million

Thanks!

LSH

- LSH is a hashing scheme such that nearby points are more likely to have same hash value
- LSH algorithm:
 - Pre-process points in search space to obtain their hash values
 - Find hash value of the query and return input points having same
- LSH algorithm can determine if there exists a near neighbor with some probability in sub-linear time

Details on Near Neighbor

$$\hat{v} = argmax_{v \in V} \frac{1}{s} \sum_{i=1}^{s} \mathbf{1}(v^{T}u_{i} > \gamma)$$

- Reframe the problem as Near Neighbor queries
- Define Near Neighbor $NN(u) = \{v : v^T u > \gamma\}$
- ullet Search space for \hat{v} is narrowed from V to $\cup_{i=1}^s NN(u_i)$
- If the NN queries run in sublinear time and size of the set $\cup_{i=1}^s NN(u_i)$ is sublinear, then \hat{v} can be calculated in sublinear time
 - NN queries can be answered approximately in sublinear time using Locality Sensitive Hashing (LSH)