NP Part 2

Language

- ■A language L over Σ is a subset of Σ^* .
- $\blacksquare \Sigma$ is the alphabet
- Example $\Sigma = \{0,1\}$
- L={10, 11, 101, 111, 1011, 1101, 10001,...}
 - What is L?
 - What is $\overline{L} = \sum^* -L$?
- L₁ concatenated with L₂
 - $-L=\{x_1x_2: x_1 \in L_1 \text{ and } x_2 \in L_2\}$

Language

- $L^*=\{\lambda\} \cup L \cup L^2 \cup L^3 \cup \dots$
 - Called the closure or Kleene star
- An algorithm A accepts x ∈ {0,1}*, if given input x, the output is 1, i.e. A(x)=1.
- An algorithm A rejects $x \in \{0,1\}^*$, if given input x, the output is 0, i.e. A(x)=0.
- The language accepted by algorithm A is the set of strings $L = \{x \in \{0,1\}^* : A(x)=1\}$

Language

- The language accepted by algorithm A is the set of strings L= {x ∈ {0,1}* : A(x)=1}
- For x ∉ L, A will not necessarily reject x, i.e. we are not guaranteed that A(x)=0, but that A(x) ≠1

 Example A my loop forever given input x
- A language L is <u>accepted in polynomial</u> time by A if it is accepted by A and if |x|=n, there exists a constant k so that T(n)<=O(nk)
- A language L is <u>decided in polynomial time</u> by A given $x \in \{0,1\}^*$, A determines if $x \in L$ or $x \notin L$ and if |x|=n, there exists a constant k so that $T(n) <= O(n^k)$

Complexity Class

- Each Complexity class is a set of languages.
- P={L ⊆ {0,1}* : there exist an algorithm A that decides L in polynomial time}
- ■Theorem 34.2
 - P={L ⊆ {0,1}* : there exist an algorithm A that accepts
 L in polynomial time}
 - A accepts x ∈ L in at most cn^k steps, for some c,
 k and |x|=n
 - After cn^k , if A has not accepted x, then A(x)=0

Verification Algorithms

- Given G=(V,E) a hamiltonian cycle is a simple cycle which contains every vertex of V.
- Formal Language
 - Ham_Cycle= { <G>: G is a hamiltonian graph}
- Verification, given G, suppose someone said G is hamiltonian and they offer proof.
 - a certificate (ordered list of vertices)
 - We can verify this is O(n²) time
 - Input is G and y (the certificate)

Verification Algorithms

- Verification algorithm
 - A inputs x and a certificate y, A(x,y).
 - If y verifies x, then A(x,y)=1
- A language verified by a verification algorithm
- L= $\{x \in \{0,1\}^* : \text{there exists } y \in \{0,1\}^* \text{ for which } A(x,y)=1\}$
- So for any $x \in L$, there is a y for which A(x,y)=1
- For any x∉ L and for any y, A(x,y) ≠ 1

NP (nondeterministic polynomial)

- ■The complexity class NP is the set of languages which can be verified by a polynomial time algorithm.
- $\blacksquare L \in NP \Leftrightarrow$
 - L= $\{x \in \{0,1\}^* : \text{there exists y with } |y| = O(x^c) \text{ (c a constant) such that } A(x,y) = 1\}$
- A verifies language L in polynomial time

Complexity

- $\blacksquare P \subseteq NP$
 - Given L ∈ P, there is a algorithm A which accepts L in polynomial time.
 - Covert algorithm A(x) to algorithm A(x,y) and A ignores y.
 - -A(x,y)=1 if A(x)=1, for any y
 - -A(x,y)=0 if A(x)=0, for any y

Complexity

- P = NP?
 - Unknown (probably not).
 - Clay, \$1,000,000 dollar prize for solution
- One of the largest if not largest unsolved problem in Computer Science

Co-NP

- \blacksquare co-NP={ \Box , for L∈NP}
- Example L={primes}
 - What is L?
- Unknown co-NP=NP?
 - i.e. is NP
- P is closed under complement
 - $-P \subseteq \text{co-NP}$
 - $-P \subseteq co-NP \cap NP$
- ■Unknown P=co-NP∩NP?

4 possible cases

- P=NP=co-NP
- NP=co-NP, P≠NP
- P=NP∩P, NP ≠ co-NP
- $-P \neq NP \cap P, NP \neq co-NP$

Tractable and Intractable

- Outside of NP, print the numbers from 1 to nⁿ
- A problem is tractable if there is a polynomial time algorithm which solves it.
- A problem is intractable if it is either undecidable or all algorithms are of exponential time.
- An undecidable example is the Halting problem

Halting Problem

- Given an algorithm A and input string x, determine if A will stop.
- Halt(A,x)= true if A stops
- Halt(A,x)= false if A enters infinite loop
- Can there exist a algorithm Halt?
- trouble(string x)
 - if halt(A, x) = false return true
 - else loop forever

Halting Problem

- trouble(*string* x)
 - if halt(A, x) = false return true
 - else loop forever
- A=trouble, x=trouble
- Suppose Halt (trouble, trouble) is false
 - So Trouble(trouble) did not halt
 - But then if Halt (trouble, trouble) was false, the if statement is satisfied and trouble returns true
 - So halt(trouble, trouble) is true (trouble stopped)
 - contradiction

Reducibility

■L₁ is polynomial-time reducible to L₂, written L₁ $\leq_P L_2$ (or L₁ \propto L₂) if there exists a polynomial-time computable function f:{0,1}*---> {0,1}* such that for all $x \in \{0,1\}^*$,

$$x \in L_1 \Leftrightarrow f(x) \in L_2$$

- If $L_1 \propto L_2$, we can use L_2 to solve L_1 .
 - We create an algorithm A₁ which solves L₁
 - Let A₂ be an algorithm which solves L₂
 - For $x \in \{0,1\}^*$, compute f(x) (polynomial time)
 - Output $A_2(f(x))$ [this is $A_1(x)$]
 - Running time A₁ is polynomial if A₂ is polynomial.

NP-Complete

- ■L∈ NP-complete
 - $-L \in NP$
 - for all L'∈ NP, L' ∝ L
- NP-complete is the hardest problems in NP. Solving any NP-complete problem efficiently would give a solution to any problem in NP.
- NP-hard
 - for all L'∈ NP, L' ∝ L
 - L may not necessarily be in NP

Show the following

- If $Q \propto L$ and $L \in P$, then $Q \in P$
- If L₁, L₂ \in NP, L₁ \in NP-complete and L₁ \propto L₂, then L₂ \in NP-complete.
- If L∈ NP-complete and L∈ P, then P=NP.
- If L∈ NP and L∉P, then P≠NP.

Showing L is NP-complete

- ■Show L∈NP.
- Find Q ∈ NP-complete and show Q ∝L.
- This assumes we know a problem in NP-Complete.
- Finding a first NP-complete problem is hard.

Cook's Theorem

- 1971 Satisfiability Problem is NP-Complete
- V set of Boolean variables.
- C collection of clauses, well-formed formulas.
- Problem- "Is there a satisfying truth assignment for C?"

Informal NP-Complete Proof

- Longest Path is a NP-Complete Problem
 - Solve the Hamiltonian Cycle Problem
 - Formulate as NP problem, (yes no problem)
 - Given a graph G, vertices u and v, and a number k, does there exist a simple **path** from s to t with at least k edges?
 - Input G=(V,E), u, v, k.
 - Given a certificate, we can check in polynomial time if it is a path of length k from s to t
- For each edge (u,v),
 - Call LP(V,E-(u,v), u, v, n-1)
- At most n² edges so we call LP at most n² times.