<u>é</u>

Ser Leu	구 140	اوً	수 210
Asp Gly Asn Thr Thr Ile IIe Val His Tyr Phe Cys Pro Ala Gly Asp Tyr Gln Pro Trp Ser Leu	GGATGTGGCCAAAAGACGGAGGTGGGGCTGAATACGATTTCAATCAA	Trp Met Trp Pro Lys Asp Gly Gly Gly Ala Glu Tyr Asp Phe Asn Gln Pro Ala Asp Ser Phe Gly Ala Val	TGCAAGTGCTGATATTCCAGGAAACCCAAGTCAGGTAGGAATTATCGTTCGCACTCAAGATTGGACCAAA 210

	280	
Ala Ser Ala Asp Ile Pro Gly Asn Pro Ser Gln Val Gly Ile Ile Val Arg Thr Gln Asp Trp Thr Lys	GATGTGAGCGCTGACCGCTACATAGATTTAAGCAAAGGAAATGAGGTGTGGCTTGTAGAAGGAAACAGCC	Asp Val Ser Ala Asp Arg Tyr 11e Asp Leu Ser Lys Gly Asn Glu Val Trp Leu Val Glu Gly Asn Ser

TTATTTAGATGC		a Tyr Leu Asp Ala
ATGAAAAAGATGCTGAGGATGCAGCTAAACCCGCTGTAAGCAACGCTTATTTAGATGC 350		Asn Glu Lys Asp Ala Glu Asp Ala Ala Lys Pro Ala Val Ser Asn Ala Tyr Leu Asp Ala
GAGGATGCAGCTA	102	Glu Asp Ala Ala I
TGAAAAGATGCT	98	n Glu Lys Asp Ala
AAATTTTTATAA		GIn Ile Phe Tyr Ası

TTCAAACCAGGTGCTGGTTAAACTTAGCCAGCCGTTAACTCTTGGGGAAGGNNNAAGCGGCTTTACGGTT

Ser Asn Gin Val Leu Val Lys Leu Ser Gin Pro Leu Thr Leu Gly Glu Gly ??? Ser Gly Phe Thr Val

Į.

490

Asp :Val

믕

Ser Leu Gly

웧

Val Lys Asp

Thr Ser

₫

P S

Asp Asp Thr Ala Asn Lys Asp Ile

CATGACGACACAGCAAATAAGGATATTCCAGTGACATCTGTGAAGGATGCAAGTCTTGGTCAAGATGTAA

2/19

		.18
	840	FIG.
TAATGCGGATTTACAAGTAGAAAGCGGGTTAAAACGGATCTCGTGACGGTTACTCTAGGGGAAGATCCA	840	Asn Ala Asp Leu Gln Val Glu Ser Gly Val Lys Thr Asp Leu Val Thr Val Thr Leu Gly Glu Asp Pro

630 700 560 Ala Gly Gly Ala His Val Thr Phe Ser Tyr Ile Pro Ser Thr His Ala Val Tyr Asp Thr Ile Asn Asn Pro Ser Thr AAAGTGGCTTTAAATGATAGCTGGAATAATCCGAGTTACCCATCTGACAACATTAATTTAACAGTCCCTG CCGGCGGTGCACACGTCACTTTTCGTATATTCCGTCCACTCATGCAGTCTATGACACAATTAATAATCC CCGCTGTTTTGGCAGGTACCTTCCAACATATTTTGGAGGTTCCGATTGGGCACCTGATAATCACAGTAC ITTATTAAAAAAGGTGACTAACAATCTCTATCAATTCTCAGGAGATCTTCCTGAAGGAAACTACCAATAT Gln Tyr Pro Ş Gly Ser Asp Trp Ala Pro Asp Asn His Gly Asn Tyr Lys Val Ala Leu Asn Asp Ser Trp Asn Asn Pro Ser Tyr Pro Ser Asp Asn Ile Asn Leu Thr Tyr Gln Phe Ser Gly Asp Leu Pro Glu Ile Phe Gly GIn His Leu Leu Lys Lys Val Thr Asn Asn Leu Thr Phe 슳 뭠 Leu ◙ TAATGO Thr Ala 1

GATGTGAGCCATACTCTGTCCATTCAAACAGATGGCTATCAGGCAAAGCAGGTGATACCTCGTAATGTGC
Asp Val Ser His Thr Leu Ser Ile Gln Thr Asp Gly Tyr Gln Ala Lys Gln Val Ile Pro Ara Asn Val
TTAATTCATCACAGTACTACTATTCAGGAGATGATCTTGGGAATACCTATACACAGAAAGCAACAACCTT
309 Y Leu Asn Ser Ser Gln Tyr Tyr Tyr Ser Gly Asp Asp Leu Gly Asn Thr Tyr Thr Gln Lys Ala Thr Thr Phe
TAAAGICTGGGCACCAACTTCTACTCAAGIAAATGTTCTTCTTTATGACAGTGCAACGGGTTCTGTAACA 1050
Lys Val Trp Ala Pro Thr Ser Thr Gln Val Asn Val Leu Leu Tyr Asp Ser Ala Thr Gly Ser Val Thr
AAAATCGTACCTATGACGGCATCGGGCCATGGTGTGTGGGAAGCAACGGTTAATCAAAACCTTGAAAATT
Lys Ile Val Pro Met Thr Ala Ser Gly His Gly Val Trp Glu Ala Thr Val Asn Gln Asn Leu Glu Asn
GGTATTACATGTATGAGGTAACAGGCCCAAGGCTCTACCCGAACGGCTGTTGATCCTTATGCAACTGCGAT
391 DPY Trp Tyr Met Tyr Glu Val Thr Gly Gln Gly Ser Thr Arg Thr Ala Val Asp Pro Tyr Ala Thr Ala 11e

Ala Pro Asn Gly Thr Arg Gly Met IIe Val Asp Leu Ala Lys Thr Asp Pro Ala Gly Trp Asn Ser Asp

FIG._1C

:	
FIG.	Ser Leu His Arg Glu His IIe Gly $\left \text{Val Asn Met Asp Val Val Val Asn His Thr Phe} \right $ Ala Thr Gln IIe
1680	TTCACTCCATCGTGAACACATTGGGGTTAACATGGATGTTGTCTATAATCATACCTTTGCCACGCAAATC
	Val Pro Glu Gly Gln Tyr Ala Thr Asn Ala Asn Gly Asn Ala Arg ile Lys Glu Phe Lys Glu Met Val Leu
1610	TICCIGAAGGGCAGTATGCTACAAATGCGAATGGTAATGCTCGTATAAAAGAGTTTAAGGAAATGGTTCT
! !	YNWGY Ala Ser Ash Ser Val Asp Glu Thr Asp Pro Thr Gln Asp Asn Trp Gly Tyr Asp Pro Arg Asn Tyr Asp
1540	GCATCTAACAGTGTGGAAGTGATCCAACCCAAGATAATTGGGGTTATGACCCTCGCAACTATGATG
) :	C Asn Val Lys Thr Gly Ile Asp Ser Leu Lys Gln Leu Gly Ile Thr His Val Gln Leu Met Pro Val Phe
1470	CAACGTAAAGACGGGGATAGATTCCTTAAAACAACTTGGGATTACTCATGTTCAGCTTATGCCTGTTTTC
	B Asp Pro Asn Ser Gly Met Lys Asn Lys Gly Lys Tyr Leu Ala Leu Thr Glu Lys Gly Thr Lys Gly Pro Asp
1400	ACCCTAATTCGGGTATGAAAATAAAGGGAAGTATTTGGCTCTTACAGAAAAGGGAACAAAGGGCCCTGA
	433 A A Lys His 11e Thr Pro Lys Asn 11e Glu Asp Glu Val 11e Tyr Glu Met Asp Val Arg Asp Phe Ser 11e
1330	AAACATATTACGCCAAAGAATATAGAAGATGAGGTCATCTATGAAATGGATGTCCGTGACTITTCCATTG

2100	TAATGACAATITACGAAACGCGTTGGACGGCAATGTCTTTGATTCTTCCGCTCAAGGTTTTGCGACAGGT
6)	Gly Thr Ser Ala Leu Pro Asp Asp Gln Leu Leu Thr Lys Gly Ala Gln Lys Gly Met Gly Val Ala Val Phe
2030	GAACCTCTGCACTGCCAGATGATCAGCTTCTGACAAAAGGGAGCTCAAAAAGGCATGGGGAGTAGCGGTGTT
1960	TCCAAAGCTGCCTCGGAGCTTCATGCTATTAATCCAGGAATTGCACTTTACGGTGAGCCATGGACGGGTG III Ser Lys Ala Ala Ser Glu Leu His Ala IIe Asn Pro Gly IIe Ala Leu Tyr Gly Glu Pro Trp Thr Gly
1890	TIGGGICAAIGAGIATCATATIGACGGCTICCGTITIGACTIAAIGGCGCTGCTIGGAAAGACACGATG II Trp Val Asn Glu Tyr His lie Asp Gly Phe Arg Phe Asp Leu Met Ala Leu Leu Gly Lys Asp Thr Met
1820	AGGTACTGGAAATGCANGCNGAAAGGCCAATGGTTCAAAATTTATTATTGATTCCCTTAAGTA
1750	TCTGACTTCGATAAAATTGTACCAGAATATTATTACCGTACGATGATCCAGGTAATTATACCAACGGATC D Ser Asp Phe Asp Lys IIe Val Pro Glu Tyr Tyr Arg Thr Met IIe Gln Val IIe IIe Pro Thr Asp

Asn Asp Asn Leu Arg Asn Ala Leu Asp Gly Asn Val Phe Asp Ser Ser Ala Gln Gly Phe Ala Thr Gly FIG. 1E

+

	Gly Asp Ala Val Asn Glu Phe Asp Trp Ser Arg Lys Ala Gln Tyr Pro Asp Val Phe Asn Tyr Tyr Ser Gly
2450	GCGATGCGGTCAATGAGTTTGATTGGAGCAGGAAAGCTCAATATCCAGATGTTTTCAACTATTATAGCGG
	Val Pro Phe Met Gln Gly Gly Glu Glu Met Leu Arg ??? Lys Gly Gly Asn Asp Asn Ser Tyr Asn Ala
2380	GTTCCATTCATGCAAGGCGGGGAAGAATGCTTCGTANAAAAGGCGGCAACGACAATAGTTATAATGCAG
iec 2310	TAATGATTCCGAAGCGGATCGGATTAAAATGGATGAACTCGCACAAGCAGTTGTTATGACCTCACAAGGC
2240	GTGAGACAATTAACTATGTCACAAGTCATGATAACTACACCCTTTGGGACAAAATAGCCCTAAGCAATCC IV Gly Glu Thr lie Asn Tyr Val Thr Ser His Asp Asn Tyr Thr Leu Trp Asp Lys lie Ala Leu Ser Asn Pro
2170	GCAACAGGCTTAACTGCAATTAAGAATGGCGTTGAGGGGAGTATTAATGACTTTACCTCTTCACCAG
	A A C T G A T G C A A T T A A G A A T G G C G T T G A G G G G A G T T T A A T G A C T T T A C C T C T T C A C C A G

FIG. 1F

2520

GCTAATCCACCTTCGTCTTGATCACCCAGCCTTCCGCATGACGACAGCTAATGAAATCAATAGCCACCTC

Leu IIe His Leu Arg Leu Asp His Pro Ala Phe Arg Met Thr Thr Ala Asn Glu IIe Asn Ser His Leu

+

2794	GGTATATCTATGATGATCCTTCATCAAGAGGTAAGCCCAGACCACGGTAAAAAGTAATAGAAAA
	Ile Asn Ala Thr Ser Gly Lys Val Gly Glu Ser Thr Leu Gly Gln Ala Glu Gly Ser Val Gln Val Pro
2730	AATCAATGCTACGAGCGGTAAGGTAGGAGAATCCACCCTTGGTCAAGCAGAGGGAAGTGTCCAAGTACCA
	Gly Asn lie lie Val Val Tyr Asn Pro Asn Lys Thr Val Ala Thr lie Asn Leu Pro Ser Gly Lys Trp Ala
2660	GAAATATCATTGTTGTTTATAACCCAAATAAAACTGTAGCAACCATCAATTTGCCGAGCGGGAAATGGGC
	Gin Phe Leu Asn Ser Pro Glu Asn Thr Val Ala Tyr Glu Leu Thr Asp His Val Asn Lys Asp Lys Trp
2590	CAATTCCTAAATAGTCCAGAGAACACAGTGGCCTATGAATTAACTGATCATGTTAATAAAGACAAATGGG

Gly Ile Ser Met Met Ile Leu His Gln Glu Val Ser Pro Asp His Gly Lys Lys,

	8	/ 19	
Majority pullseqsig.seq.PRO klebpnseqsig.seq. pro subpull.seq.pro	Majority pullseqsig.seq.PRO klebpnseqsig.seq. pro subpull.seq.pro	Majority pullseqsig.seq.PRO klebpnseqsig.seq. pro subpull.seq.pro	Majority pullseqsig.seq.PRO klebpnseqsig.seq. pro subpull.seq.pro
MXXXXXXXXXXX T V L X X X X X X X X X X X X X X X Y Y 10 20 30 40 MAKKLIY V C L S V C L V L T W A F N V K G Q S A H A D G N T T T I I V H Y MLRYTRN A L V L G S L V L L S G C D - N G S S S S S G N P D T	XDXQXXXXXX-PXXXXXXXXXXXXXXXXXXXXXXXX	1 X G X X X X X X X X X X W X K E X X X X X X X X X X X X X X X X X	130

FIG._2A

Majority	pullseqsig.seq.PRO klebpnseqsig.seq. pro subpull.seq.pro	Majority	pullseqsig.seq.PRO klebpnseqsig.seq. pro subpull.seq.pro	Majoríty	pullseqsig.seq.PRO klebpnseqsig.seq. pro subpull.seq.pro	Majority	pullseqsig.seq.PRO klebpnseqsig.seq. pro subpull.seq.pro
X X L X X X X D F T X X X X X X X X X X X X X X	158 LTLGEGXSGFTVHDDTANKDIPVTSVKDASLGQDVTAVLA 145 - DLRVAFGDFT DRTVSV - IAGNSAVYDSRADAFR 34 FRLETEITDF PLAVREEYSL	XXFXXXXXXXX	198 GTFQHIFGGSDWAPDNHSTLLKKVTNNLYQFSGDL 177 AAFGVALAEAHWVDKNTLLWPGGQDKPIVRLY 54	- E X X Y X X X X X X X X X X X X X X X X	233 PEGNYQYKVALNDSWNNPSYPSDNINLTVPAGGAHVTFSY 209YSHSSKVAAD-GEGKFTDRYLKLTPTTVSQQVSMRF 54 -EAKYKYVCVSDHPVTFGK	I H X X X X X X X X Y X S G X K T D L V X X X X X X X X X X X X X X X X X X	273 IPSTHAVYDTINNPNADLQVESGVKTDLVTVTLGEDPDVS 244 PHLSSYAAFKLPD-NANVDELLQGETVAIAAAEDGILI 72 IHCVRASSGHKTDLQIGAV

FIG._2B

×

313 281 91 310 112

351

FIG._2C

K

350 150

391

390 184 S

Ω

ı

ŧ

550

540

u

I

٤٠ H

× × S

498 470 253

ш

>

G

S

K

Q

K

Ö

S

ш

Ω

> :<

Þ

×

Ω

[I

>

Д

니

ᆸ

ធា

>

H

[-

>

O

П

×

×

니

× ×

× G

۲

×

4 回

.7 J

G Ö

× ×

ш

3

S S

ᆸ Ĺ

ĸ

Σ

430

462

×

 Σ 4

O

ഗ >

Z

Ω Ω 二

Ω Ω Д

Ω 工 ы

⋖

z

Н

Σ

Ö

S

z

Ш Ø

K

Ы

I

۲

ω

L ᆸ

Æ, K

Ы

LALT

>

×

Ċ

×

z

S N N

S

z

Ω

ţ

S

щ

Ω

ĸ

×

I ×

Ш

490

500

510

klebpnseqsig.seq. pro

H Д

subpull.seq.pro

Ω G

pullseqsig.seq.PRO

Ö

Z

M ы

z

æ

Д ۵,

Ö

Z

H

Д

Ω Z

G Y NWGY

3 3

×

S

546 283

640

630

620

610

K

S

G

ω

Q,

I

×

Δ,

×

O

3

Z

×

×

a

H

ı

t

ı

а

Q

Z

ω

ы

Ŋ

G

ഗ

Ω

G

K

S

S

×

ഗ

Z

Ш

K

506 282

527

590

580

570

t

ţ

t

ı

ı

ı

ı

Modified Forms of Pullalanase

7G._2E

LRDAVXGNX-FDSXAQGFATGATCLTDAI		13 / 19								
LRDAVXGNX-FDSXAQGFAXGAGXLXXAX B10 B10 ERNALDGNV-FDSSAQGFATGLTDAI LRDSVRGGPFDSGDALRQNQGIGSGAGVLPNELASLSD FRDAVKGNT-FHLKATGFALGNGESAQAV QVRHLADLTRLGMAGNLADFVMIDKDGAAKKGSEIDYNG KNGVEGSXXXXXX QVRHLADLTRLGMAGNLADFVMIDKDGAAKKGSEIDYNG KNGVEGSSGWK XXXXXXXXXXXXXPPZFINYVXSHDNXTLWDKISXXXPQEXDLAX B90 IN 900 B10 INDFTSSPGETINYVTSHDNYTLWDKIALSNPNDSE-AD PGGYAADPTEV VNYVSKHDNYTLWDKIALSNPNDSE-AD PGGYAADPTEV VNYVSKHDNYTLWDKIALSNPNDSE-AD RXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Majority		pullseqsig.seq.PRO klebpnseqsig.seq. pro subpull.seq.pro						pullseqsig.seq.PRO klebpnseqsig.seq. pro subpull.seq.pro	
710 743 738 785 745 745 745 745 507 546 546 546	DAVXGNX-FDSXAQGFAXGAGXLXXAX	820 830	RNALDGNV-FDSSAQGFATGATGLTDAIRDSVRGGGPFDSGDALRQNQGIGSGAGVLPNELASLSDRDAVKGNT-FHLKATGFALGNGESAQAV	XXXX	850 870	XXXXXXXPQEXD-AX	NDFTSSPGET INYVTSHDNYTLWD KIALSNPNDSE-AUGGYAADPTEV VNYVSKHDNQTLWD MISYKASQEADLATAPIVPEPSQSINYVESHDNHTFWD KMSFALPQEND-SF	XMOXLAXAXVMLXQGVPFXQXGXEXLRXKXGXXNSYXS	KMDELAQAVV MTSQGVPFMQGGEEMLRXKGGNDNSYNA RMQAVSLATV MLGQGIAFDQQGSELLRSKSFTRDSYDS SRQRLAVAII LLAQGVPFIH SGQEFFRTKQGVENSYQS	

-1G._2F

19

Majority	pullseqsig.seq.PRO klebpnseqsig.seq. pro subpull.seq.pro	Majority	pullseqsig.seq.PRO klebpnseqsig.seq. pro subpull.seq.pro	Majority	pullseqsig.seq.PRO klebpnseqsig.seq. pro subpull.seq.pro	Majority)	pullseqsig.seq.PRO klebpnseqsig.seq. pro subpull.seq.pro		。 FIG2G
DXXNXXDWSRXXX	824 DAVNEFDWSRKAQ	XKXXXXYYXLIXLRKXHPAFRLXXAXXIXXHLX 1010 1020 1030 1040	LIHLRLDHPAFRMTTANEINSH LTELRKSSPLFTLGDGSAVMKR LISLRKAHPAFRLRSAADIQRH	FLNXXEX T V A Y X L X D X X X X D X W - X X I I V X X N A 10,50 10,60 10,60 10,70 10,80	871 FLNSPENTVAYELTDHVNKDKW-GNIIVVYNP 983 FRNTGSDQQAGLLVMTVDDGMKAGASLDSRLDGLVVAINA 633 CLTLKEHLIAYRLYDLDEVDEW-KDIIVIHHA	XPXSXTXNLPXGXXXXXLXAXSGXXGEXTLXXAXG	902 NKTVATINLPSGKWAINATSGKVGESTLGQAEG 1023 APESRTLNEFAGETL-QLSAIQQTAGENSLANGVQIAADG 664 SPDSVEWRLPNDIPYRLLCDPSGFQEDPTEIKK	TVXVPGIXXXILXQXXAXDXG-XKSXX Majority 1130 1140 1150	935 SVQVPGISMMILHQEVSPDHG-KKK pullseqsig.seq.PRO 1062 TVTLPAWSVAVLELPQGEAQGAGLPVSSK klebpnseqsig.seq.pro 697 TVAVNGIGTVILYLASDLKSFA subpull.seq.pro
	യാഗ		ω Oi ti)		w 0, w		5 , 6		_

Modified Forms of Pullalanase

--

