8.	The lower fidelity estimates are a performance estimation strategy that allows (Select all that apply):	1/1 point
	☐ Training for a few epochs	
	✓ Training on a subset of the data	
	✓ Training on lower-resolution	
	Correct That's it! The lower fidelity reduces the computational cost as a result.	
	✓ Training with less filters per layer	
	 Correct Way to go! The lower fidelity estimates strategy uses fewer filters per layer and fewer cells. 	
9.	Can network morphism modify an architecture while leaving the network's function unchanged?	1/1 point
	● Yes	
	○ No	
	 Correct Exactly! This property increases the network's capacity retaining a high performance as a result. 	