

Faculdade de Ciências da Universidade do Porto

Inteligência Artificial (CC2006) - 2020/2021

Geração de Polígonos Simples com Métodos de Pesquisa Local

Relatório do 1º Projeto de Inteligência Artificial

Fábio Silva up201707021

Mateus Almeida up 2018 05265

Índice

Introdução	2
Lista de Ficheiros	2
Geração de Pontos	4
Geração de Candidato à Solução	4
Vizinhança por 2-Exchange	5
Hill Climbing	5
Implementação	5
Simulated Annealing	6
Implementação	6
Ant Colony Optimization	7
Implementação	7
Análise de Resultados	7
Hill Climbing	12
Random	12
Less Conflicts First	12
First Improvement	12
Best Improvement First	12
Simulated Annealing	13
Ant Colony Optimization	13
Conclusão	14

Introdução

Este relatório foi realizado no âmbito do primeiro projecto da unidade curricular de Inteligência Artificial. O seu propósito é estudar diferentes algoritmos de pesquisa local como métodos de procura de polígonos simples, elaborando as vantagens e dificuldades encontrados quanto à sua aplicação.

Define-se como um polígono simples aquele que não possui arestas que se intersetem em qualquer ponto senão nos seus vértices. Na procura desses polígonos, calcula-se os cruzamentos de arestas existentes, utilizando testes baseados no produto vetorial das arestas, e resolve-se-os aplicando a heurística 2-exchange nas arestas que se interseccionam até chegar ao resultado desejado. Cada método de procura irá, depois, providenciar um diferente caminho na chegada à solução, o polígono simples.

A implementação dos algoritmos e classes auxiliares foi feita inteiramente em Java.

Lista de Ficheiros

O ficheiro <u>Point.java</u> define a classe Point, constituída pelos inteiros x e y, representando as coordenadas de um vértice, o inteiro index, representando o índice com o qual o ponto será referenciado e métodos como equals(), compareTo() e toString().

O ficheiro <u>Edge.java</u> define a classe Edge, constituída pelos inteiros origin e dest, representando os índices dos dois vértices constituintes da aresta, e o inteiro distance, o quadrado da distância euclidiana entre eles, tal como os métodos equals() e toString().

O ficheiro <u>Memory.java</u> define a classe Memory, constituída por um array de pontos points[], que guarda as coordenadas de cada ponto dado o seu índice, e os inteiros memSize, o número total de pontos, e nPoints, o número atual de pontos, tal como os métodos add() e contains()..

O ficheiro <u>Solution.java</u> define a classe Solution que representa qualquer candidato à solução. É constituída pelo array de inteiros sol[], que contém os índices dos pontos do candidato à solução, o array de Edges edges[], que contém as arestas do candidato à solução, e os inteiros edgeSol, solSize, edgeMaxSize e solMaxSize, o número atual de arestas e vértices e o número máximo de arestas e vértices, respetivamente. Contém também os inteiros totalConflicts e validConflicts, que representam o número de interseções encontradas no candidato e o número de interseções válidas, respetivamente, tal como as ArrayLists conflicts, que contém todos os cruzamentos de arestas, e neighbours, que representa a vizinhança gerada do candidato. Por fim, possui uma cópia do conjunto de pontos Memory. Estão também implementados métodos para a implementação dos diferentes algoritmos.

O ficheiro <u>HillClimbing.java</u> contém a implementação do algoritmo Hill Climbing tal como os métodos auxiliares para a resolução do mesmo. Tais são:

 hillClimbing - a implementação do algoritmo Hill Climbing. Dado um candidato, gera a sua vizinhança e encontra um novo candidato segundo o critério escolhido, melhorando o candidato ao comparar os perímetros dos dois.

- chooseFunction chama o método auxiliar pedido segundo o input.
- getNewRandom retorna uma solução aleatória dentro da vizinhança gerada.
- firstImprovement retorna a primeira solução encontrada cujo perímetro é melhor do que o do candidato a ser analisado.
- lesserConflicts retorna a solução com o menor número de conflitos encontrado na vizinhança.
- bestImprovementFirst retorna a solução encontrada que contém o melhor perímetro dentre aquelas na vizinhança.

O ficheiro <u>SimulatedAnnealing.java</u> contém a implementação de Simulated Annealing, tal como os métodos auxiliares para a sua resolução. Estão definidos como constantes os valores numIterations, o número de iterações em cada temperatura; Tmin, a temperatura mínima a atingir como condição de paragem, e alpha, o cooling factor. Os métodos implementados são:

- getNewRandom o mesmo método que em HillClimbing, retorna uma solução aleatória dentro da vizinhança gerada.
- simulatedAnnealing a implementação do algoritmo Simulated Annealing. Dado um candidato inicial, escolhe-se um vizinho aleatório que o substituirá como candidato à solução caso seja melhor, sendo o custo melhor aquele com menos interseções de arestas; caso não o seja, substitui-lo-à segundo uma probabilidade calculada. A procura pára ao encontrar um polígono simples ou quando a temperatura desce para além da temperatura mínima permitida.

O ficheiro <u>AntColonyOptimization.java</u> contém a implementação de Ant Colony Optimization, tal como os métodos auxiliares para a sua resolução. A instanciação da classe inicializa as variáveis alpha, beta, evaporation, a taxa de evaporação das feromonas, e pheromone, a matriz de ramos que contém a feromona atual de cada, em que cada entrada [i,j] representa a aresta (i,j). Os métodos implementados são:

- buildPheromone inicializa a matriz de feromonas dos ramos como 1.0.
- updatePheromone atualiza as feromonas de cada ramo como a soma do total de feromona que a formiga k encontrou, calculado com getTotalPheromone(), e o produto da feromona atual do ramo com (1-p) sendo p a taxa de evaporação.
- getTotalPheromone calcula o total de feromona a adicionar num segmento, que depende do número total de formigas que passam nesse mesmo segmento e da qualidade do caminho encontrado por cada formiga.
- euclidean calcula a distância euclidiana de dois pontos.
- buildNewSolution constrói todas as formigas, que são representantes de cada candidato à solução, utilizando a probabilidade de utilização de cada ramo com probability() durante a sua construção.
- probability calcula a probabilidade de uma dada formiga k usar um ramo dado a quantidade de feromona em cada ramo e o peso de cada.
- findBestPath constrói todas as formigas e atualiza o valor das feromonas de seguida. Para

cada formiga construída verifica-se o número de conflitos, se for zero então a função é terminada, se não encontrar nenhuma formiga com zero conflitos continua a executar.No fim de todas as iterações, se não encontrar nenhuma formiga que representa um polígono simples então procura a formiga com o melhor perímetro e menor número de conflitos e a percentagem de formigas que encontraram essa solução.

O ficheiro <u>Visualizer.java</u> é responsável pela representação gráfica de um polígono dado por um conjunto de coordenadas, neste caso vai desenhar o polígono encontrado como sendo a solução do problema. O programa começa por desenhar um plano cartesiano de coordenadas, e de seguida desenha os vários segmentos que constituem o polígono.

O ficheiro <u>Main.java</u> contém o main do programa onde será selecionado o método de input, sendo ele uma geração de pontos dado um número de pontos e o alcance das suas coordenadas ou um ficheiro já com o número e coordenadas de cada ponto definido. É depois selecionado o método de geração do primeiro candidato, permutação ou aplicação da heurística Nearest Neighbour, seguindo-se da escolha do algoritmo de procura.

Os ficheiros <u>input1.txt</u>, <u>input2.txt</u>, <u>input3.txt</u>, <u>input4.txt</u>, <u>input5.txt</u> são ficheiros exemplo que foram utilizados para o desenvolvimento das implementações e testagem dos seus resultados.

Geração de Pontos

A geração do espaço pode ser dado pela leitura de um ficheiro que conterá o número total de pontos como primeiro input e as coordenadas de todos esses pontos de seguida. Como alternativa, pode-se gerar também os pontos após a leitura do número total de pontos como primeiro input e do alcance máximo das coordenadas como segundo input.

A geração de pontos é dada no método generatePoints() que utiliza a classe Random para a escolha aleatória de dois inteiros que definem as coordenadas de um ponto, tal que, sendo i e j os inteiros aleatórios gerados e m o alcance máximo das coordenadas, dá-se (i,j) como as coordenadas de um ponto, -m < i < m e -m < j < m, que são depois guardados na estrutura Memory. O método garante ainda que não são criados coincidentes, garantido que qualquer ponto gerado não está contido na Memory antes de ser adicionado.

Geração de Candidato à Solução

A geração do candidato à solução pode ser dada pela geração de uma qualquer permutação dos pontos que compõem o espaço ou pela aplicação da heurística "nearest-neighbour first" a um ponto inicial gerado aleatoriamente.

A permutação de pontos é dada em cada instância de solução Solution, usando os métodos implementados nessa mesma classe. Chama-se o método permutation que cria uma permutação de todos os vértices com auxílio do método shuffle(), que gera cada índice da permutação aleatoriamente com apoio da classe Random,. e gera as arestas correspondentes com auxílio do método edgeGenerate(), que cria as arestas do candidato, segundo a ordem dos vértices no array sol[], por exemplo, dado o array sol do candidato $[x_0,...,x_n]$ criará $\sum_i [x_i,x_{i+1}]$.

A segunda abordagem cria um candidato à solução inicial utilizando uma estratégia greedy aplicando a heurística "Nearest Neighbour First", isto é, com auxílio do método nearestNeighbour() cria o candidato vértice a vértice. O método nearestNeighbour() em si retorna o índice mais próximo de um dado índice inicial, calculando a distância euclidiana desse vértice a outros e guardando o mínimo.

Vizinhança por 2-Exchange

A vizinhança de cada candidato é mantida numa ArrayList neighbours em cada instância de solução Solution. A sua determinação dá-se com o método resolveConflicts() que cria um novo candidato à solução a partir da variável global conflicts, que mantém todas as arestas interseccionadas, e utilizando o método twoExchange para realizar o "descruzamento", para depois adicionar tal candidato à ArrayList da vizinhança, neighbours.

O cálculo das interseções é dado pelo método edgeIntersect() que

Cada cruzamento forma um possível candidato a solução que compõe a vizinhança. O "descruzamento" que leva a essa geração é dado pelo método twoExchange() que dados duas arestas, Edge a e Edge b, que formavam uma interseção, cria dois novos ramos, Edge newA e Edge newB que serão compostos pelo ponto origem de a e b e pelos pontos destino de a e b, respetivamente, e substitui o Edge a por newA e o Edge b por newB em cada índice correspondente, invertendo a ordem ramos entre os dois. Assim, dado, por exemplo, um polígono representado pelos índices de cada ponto ABCDEFGH, em que cada letra representa um ponto e AB representa o ramo $\{A,B\}$, uma interseção de $\{B,C\}$ e $\{F,G\}$ leva à sua substituição pelas arestas $\{B,F\}$ e $\{C,G\}$, respetivamente, e à reordenação das arestas entre eles, resultando no polígono ABFEDCGH.

De seguida, o método sortPath() corrige qualquer desordenamento que pode existir resultante da inversão de posição das arestas. Por fim, atualiza-se a lista de índices sol[] para corresponder à lista de arestas atualizada edges[] com o método changeSolFromEdges().

O método conflicts() calcula o conjunto de todos as arestas que estão cruzadas, isto é, todos os conflitos, e formarão futuros candidatos, mantendo-as na variável global conflicts, iterando todos os pares de segmentos que se podem intersectar, confirmando a interseção com edgeIntersect() e a registando a validade de cada conflito, tal como o total número de conflitos encontrados, nas variáveis validConflicts e totalConflicts, respetivamente.

Hill Climbing

O algoritmo de pesquisa local Hill Climbing é um algoritmo que converge gradualmente para um máximo, terminando ao encontrar uma solução ou um máximo local, isto é, um candidato à solução que não possui vizinhos que o consigam melhorar.

No contexto do problema, o Hill Climbing converge, a partir de um polígono com *n* cruzamentos, para um polígono simples.

Implementação

Implementou-se o Hill Climbing dando uso ao candidato inicial gerado por métodos selecionados anteriormente, ou por permutação de todos os vértices ou por procura segundo a heurística greedy,

encontrando os cruzamentos existentes nesse polígono, conflicts(), e gerando a sua vizinhança, resolveConflicts(), que fica guardada numa ArrayList de candidatos solução Solution. Após a geração, e até o número de cruzamentos do dado polígono serem zero ou o número de cruzamentos encontrados, e consequentemente a vizinhança gerada, ser nula, itera-se a solução candidata.

Em cada iteração é selecionado um novo candidato segundo o critério de seleção providenciado pelo utilizador e caso este novo candidato seja melhor que o atual, sendo o atual considerado o melhor candidato até ao momento da comparação e um "melhor candidato" aquele cujo perímetro seja menor, guarda-se o novo candidato para a próximo iteração.

Se o novo candidato não for melhor que o anterior então, devido às características das heurísticas de seleção do novo candidato, presume-se que esse fosse o melhor entre toda a vizinhança, tal estão assim implementados os métodos e, não melhorando o candidato atual, então não existem vizinhos que possam melhorar o candidato atual, isto é, chegou-se a um máximo, e termina-se a procura.

Simulated Annealing

O algoritmo Simulated Annealing é um método de otimização estocástico que simula o arrefecimento lento de metais, caracterizado pela redução progressiva de movimento atómico, de modo a chegar a um mínimo global de energia interna. Tal como no processo de formação de cristais, o algoritmo reduz a "temperatura" lentamente, demorando tempo suficiente em cada temperatura, de modo a não ficar bloqueado num mínimo local e convergir ao mínimo global.

No contexto do problema, a partir de um polígono com n cruzamentos, o Simulated Annealing segue uma probabilidade de aceitação que decresce com a temperatura, convergindo assim para mínimos globais.

Implementação

Implementou-se o Simulated Annealing seguindo o mesmo padrão da implementação do Hill Climbing, isto é, criando a vizinhança do primeiro candidato, formado a partir de uma permutação dos pontos ou da aplicação da heurística Nearest Neighbour, como a resolução dos conflitos deste candidato obtidos a partir da aplicação da heurística 2-exchange aos cruzamentos de arestas existentes.

Definiu-se a temperatura inicial como o número de conflitos do candidato inicial, a temperatura mínima a alcançar como 0,01, o critério de annealing como 0,95 e o número de iterações em cada temperatura como 5.

Para cada iteração, procura-se um candidato aleatório na vizinhança dando uso ao método getNewRandom() e calcula-se o seu número de interseções. Se a diferença do número de cruzamentos de arestas do novo candidato e do candidato à solução atual, designado num double delta, for negativa, então o novo candidato contém menos interseções que o candidato atual mantido - logo, o candidato novo é melhor e substitui o anterior; se delta for maior ou igual a zero, então calcula-se a função probabilidade densidade que é dada como o exponencial de delta com a temperatura atual. A probabilidade resultante definirá a aceitação do candidato novo.

Caso o candidato não seja aceite então procura-se um próximo candidato na mesma vizinhança. Quando são dadas todas as iterações da temperatura atual, confirma-se se se chegou à condição de paragem - o candidato atual ser um polígono simples - e termina-se a procura seja esse o caso. Caso contrário, a temperatura é reduzida como o produto da temperatura atual com o critério de annealing.

Ant Colony Optimization

Ant Colony Optimization é uma metaheurística baseada em populações aplicável em problemas de procura em grafos pesados. Agentes chamados de formigas artificiais atravessam o grafo, construindo gradualmente a solução num processo de construção estocástico baseado no modelo das feromonas.

No contexto do problema, cada formiga representa um candidato à solução inicial e ao fim de cada iteração cada formiga construirá um polígono diferente, sendo influenciados pela feromona deixada pelas outras formigas em cada aresta. No final, escolher-se-à o polígono construído mais frequentemente pelas formigas.

Implementação

Implementou-se o Ant Colony Optimization tomando desde início o número de iterações a realizar e o número de formigas de modo a proceder com a construção dos candidatos à solução.

A construção dos candidatos à solução é realizado no método buildNewSolution() que, para iniciar, escolhe um índice aleatório com auxílio da classe Random para ser o primeiro ponto da solução e constrói os próximos ramos dada a probabilidade da formiga usar esse ramo, isto é, a solução adiciona o ramo com a maior probabilidade de ser usado.

O cálculo de probabilidade realiza-se no método probability() em que, dado um ponto inicial, calcula-se o peso de cada aresta possível como o produto da feromona elevada ao valor de alpha e a distância dos pontos elevada a beta, guardando o somatório de todos os produtos num inteiro, *total*, para o cálculo das probabilidades. As probabilidades são depois calculadas como a divisão do peso pelo *total* e guardadas numa ArrayList total, *prob*. Por fim, calcula-se o total das probabilidades e gera-se um double aleatório, escolhendo o índice da probabilidade mais próxima a esse.

A procura do polígono simples dá-se com o método findBestPath() que, após construir as formigas, em que cada formiga representa um possível caminho, atualiza os valores da feromona com a função updatePheromone(). Nesta função alterámos a função dada no enunciado para atualização da feromona de forma a dar mais peso aos resultados com menos conflitos. Ou seja, $\Delta \boldsymbol{\mathcal{T}}_{ij}^{k} = \frac{Q}{L_k + C}$, em que C é o número de conflitos desse percurso, e Q é uma constante a que demos o valor 1.

Cada vez que se gera um novo caminho, a solução é testada para ver se chegámos a uma solução sem conflitos, se chegarmos a uma situação sem conflitos imprimimos a solução encontrada e terminamos a procura, caso contrário continuamos a fazer iterações até ao limite máximo definido no input.

Caso a solução não seja encontrada, quando chegamos ao fim imprimimos a melhor solução que foi encontrada

Análise de Resultados

Para propósitos de testagem e análise de resultados, criou-se cinco diferentes ficheiros de input com as respectivas características:

• Input1.txt - 20 pontos com coordenadas (x,y) tal que $x,y \in [-20,20]$

Polígono gerardo com a heurística Best Improvement de Hill Climbing.

• Input2.txt - 50 pontos com coordenadas (x,y) tal que x,y \in [-50,50]

Polígono gerardo com a heurística Best Improvement de Hill Climbing.

• Input3.txt - 100 pontos com coordenadas (x,y) tal que x,y ∈ [-100,100]

Polígono gerardo com a heurística Best Improvement de Hill Climbing.

• Input4.txt - 200 pontos com coordenadas (x,y) tal que x,y \in [-100,100]

Polígono gerardo com a heurística Best Improvement de Hill Climbing.

• Input5.txt - 500 pontos com coordenadas (x,y) tal que x,y \in [-250,250]

Polígono gerardo com a heurística Best Improvement de Hill Climbing.

Para consistência entre os polígonos gerados utilizando o algoritmo de geração de candidato Nearest-Neighbour definiu-se o seu ponto inicial como 0, onde normalmente seria gerado aleatoriamente.

De seguida, analisou-se o comportamento de cada algoritmo para com cada input. Visto haver um elemento de aleatoriedade na geração de cada candidato à solução, decidiu-se analisar os resultados dos candidatos gerados por permutação separadamente daqueles gerados pela aplicação da heurística Nearest-Neighbour first.

A avaliação de performance foi realizada sem a chamada do painel Visualizar para a representação gráfica do polígono.

	Hill Climbing				Simulated Annealing
	BFI	FI	LC	Random	
Input 1	0,139s	0,134s	0,145s	0,138s	0,150s
	0 Iter	0 Iter	0 Iter	0 Iter	0 Iter
Input 2	0,155s	0,173s	0,165s	0,161s	0,149s
	5 Iter	5 Iter	5 Iter	5 Iter	5 Iter
Input 3	0,143s	0,175s	0,235s	0,177s	0,191s
	10 Iter	9 Iter	10 Iter	9 Iter	9 Iter

Input 4	0,273s	0,271s	0,642s	0,341	0,313s
	23 Iter	32 Iter	23 Iter	31 Iter	31 Iter
Input 5	0,586s	0,594s	6,081s	0,671	0,945s
	39 Iter	45 Iter	44 Iter	47 Iter	48 Iter

Resultados de Nearest-Neighbour First. BFI - Best Improvement First; FI - First Improvement; LC - Less Conflicts; Iter - Iterações

Para eliminar o fator de aleatoriedade do Nearest-Neighbour, definiu-se um nó inicial fixo (nó de índice 0) e realizou-se 5 iterações para cada algoritmo, fazendo a média absoluta dos tempos de execução de cada, selecionando-se como o valor para a tabela aquele que mais se aproximava da média absoluta e o seu número de iterações.

	Hill Climbing				Simulated Annealing
	BFI	FI	LC	Random	
Input 1	0,141s 12 Iter	0,154s 21 Iter	0,182s 13 Iter	0,158s 21 Iter	0,159s 13 Iter
Input 2	0,227s 41 Iter	0,286s 77 Iter	0,603s 34 Iter	0,264s 81 Iter	0,252s 64 Iter
Input 3	0,407s 86 Iter	0,945s 213 Iter	1m12s 95 Iter	0,759s 199 Iter	1,111s 205 Iter
Input 4	3,056s 207 Iter	12,933s 494 Iter		8,848s 482 Iter	13,450s 490 Iter
Input 5	2m44s 591 Iter				

Resultados de Permutation. BFI - Best Improvement First; FI - First Improvement; LC - Less Conflicts; Iter - Iterações

A avaliação da performance com permutação dos casos iniciais não mexeu com o fator de aleatoriedade da permutação e realizou 10 iterações, seguidos da média absoluta dos mesmos, para obter resultados mais precisos. As células com "--" foram terminadas ao fim de 5 minutos, devido ao número de conflitos ser demasiado grande.

Ant Colony optimization					
Input 1	Input 2	Input 3	Input 4	Input 5	
0,126s	2,179s				

Tal como nos casos anteriores, realizou-se 5 testes com cada input e calculou-se a média absoluta do total dos tempos de execução. Aqueles com "--" foram interrompidos ao fim de 5 minutos. Os dados de teste usados foram 10000 iterações, n formigas (sendo n o número de pontos do caso de teste), valor de peso da feromona 1, valor de peso da distância 5 e taxa de evaporação da feromona 0,1.

Hill Climbing

A implementação do Hill Climbing foi feita o mais standard possível para avaliar apenas as diferentes medidas de seleção do novo candidato na vizinhança.

Random

A performance do critério Random é, como o nome diz, mais aleatória em comparação com todos os outros, dependendo se os vizinhos selecionados nas iterações fazem melhorias consideráveis ao candidato considerado o melhor na dada iteração. Assim, foi o critério com mais divergências entre os seus resultados, e talvez a média absoluta não demonstre o mais objetivamente a sua performance. Demonstrou uma performance mais fraca com a geração do candidato como uma permutação, os dois fatores de aleatorização podendo resultar em candidatos iniciais com muitos conflitos que não são melhorados rapidamente em cada iteração.

Less Conflicts First

A performance do critério Less Conflicts foi a que demonstrou ser mais fraca, tendo os tempos mais lentos para os candidatos gerados por Nearest-Neighbour First. Tal é devido a ser necessário calcular os conflitos de todos os elementos da vizinhança para encontrar aquele com o menor número de conflitos, operações que envolvem a chamada de muitos métodos auxiliares. Nos casos de teste que retornou resultado, retornou com menos iterações realizadas que outros critérios.

First Improvement

A performance do critério First Improvement é, de certa forma, dependente da ordem da vizinhança, podendo retornar uma primeira melhoria que não é aquela com melhor perímetro da vizinhança, resultando em mais iterações. Conseguiu resolver todas as instâncias, excepto o caso de teste de 500 pontos permutado, cuja resolução conseguiria atingir mas para lá dos 10 minutos de tempo de execução.

Best Improvement First

A performance do critério Best Improvement First melhora onde o First Improvement falha, demorando mais iterações locais a procurar o vizinho com melhor perímetro mas retornando sempre o melhor novo candidato, resultando em menos iterações totais do algoritmo Hill Climbing. Encontra os mesmos problemas que o First Improvement quando confrontado com o caso de teste input5.txt, tendo a capacidade de resolvê-lo mas demorando demasiado a fazê-lo.

Simulated Annealing

Na escolha dos valores das constantes para o Simulated Annealing, escolheu-se inicialmente definir a temperatura inicial como o número de conflitos, realizar 10 iterações para cada temperatura e ter como temperatura mínima 0,01. O número de iterações não parecia afetar muito os resultados então estabilizou-se como 5 enquanto se realizava testes aos outros critérios.

Ao seguir uma implementação exemplo, experimentou-se colocar o valor da temperatura inicial como 1, mas isso levou a resultados com conflitos. Decidiu-se, então, escolher o valor da temperatura inicial entre o número de conflitos inicial e o número de pontos do teste, realizando-se testes de performance como o seguinte:

Temperatura inicial	Valor do Cooling Factor			
	0,95 0,97 0,99			
Nº de Conflitos Inicial	0,982s // 51 Iter	1,035s // 47 Iter	0,940 // 50 Iter	
Nº de Pontos	0,926s // 48 Iter	1,013s // 51 Iter	0,899 // 50 Iter	

Tabela exemplo de teste de performance

A tabela acima utilizou o conjunto de pontos do ficheiro input5.txt e o método de geração de candidato a solução Nearest-Neighbour First com nó inicial o de índice 0. Realizou-se também testes semelhantes para a geração de candidato com permutação e com Nearest-Neighbour First nó aleatório que levou à seleção das constantes temperatura inicial como o número de conflitos inicial e o valor do cooling factor como 0,95, visto serem aqueles que levavam a resultados melhor, sendo que na comparação de resultados dava-se prioridade ao tempo de execução e para tempos semelhantes comparava-se o número de iterações executados.

A performance do Simulated Annealing foi gradualmente pior com o escalar do número de pontos, tendo a performance mais fraca com candidatos gerados por permutation, sendo uma das razões para tal o valor da temperatura inicial maior, que leva a mais iterações até se chegar à temperatura mínima. O único resultado que não conseguia computar foi o input5.txt permutado, que continha um número de conflitos iniciais demasiado grande.

Ant Colony Optimization

Neste algoritmo é importante permitir a exploração de vários caminhos diferentes, de forma a encontrar mais rapidamente uma solução, mas também é importante usar a feromona de forma a aumentar a probabilidade de escolher um caminho que já se descobriu que é bom. O peso de cada um destes aspectos são controlados por duas variáveis, alpha e beta, em que quanto maior for o peso da variável mais influência esse parâmetro tem na probabilidade de escolher esse caminho.

Ao testar vários valores para ambas as variáveis chegámos à conclusão de que um valor para alpha de 1 e um valor para beta de 5 seria uma boa escolha. Desta forma conseguimos ter variedade de escolha de caminhos e ao longo do tempo o peso da feromona vai influenciando mais a escolha.

Outra variável que temos de ter em conta é a taxa de evaporação da feromona de forma a que um caminho que não é usado, por não ser bom, tenha cada vez menos probabilidade de ser usado. Como não queremos que a feromona desapareça demasiado rápido escolhemos 0,1 para esta variável.

Outras duas variáveis importantes são o máximo de iterações que permitimos, ou seja, quanto tempo permitimos que o algoritmo corra até encontrar uma solução, e o número de formigas que vamos usar. Neste caso usámos como valor máximo de iterações 10000, e usámos tantas formigas quanto pontos.

Conclusão

A geração de polígonos simples, dados como grafos completos que são ciclos de Hamilton, pode ser realizada utilizando diferentes abordagens e algoritmos diferentes. Os métodos de pesquisa local e pesquisa local estocástica implementados demonstraram comportamentos diferentes e claras diferenças de performance.

O algoritmo Hill Climbing demonstrou melhor performance com a heurística Best Improvement First que, embora ocasionalmente demorando mais iterações na chegada à solução, utilizava os benefícios da heurística Less Conflicts de encontrar um vizinho melhorativo sendo a procura baseada no perímetro dos polígonos, uma operação muito mais rápida e computacionalmente menos dispendiosa.

O algoritmo Simulated Annealing em geral realizou mais iterações que o Hill Climbing, não abdicando de encontrar resultados ótimos. O valor das constantes foi encontrado por trial and error com diferentes casos de teste, tendo podido ser encontrado um método mais eficiente de o fazer. Tal como o algoritmo Hill Climbing, Simulated Annealing não conseguiu encontrar uma solução em tempo útil para casos com 500 ou mais pontos.

O algoritmo Ant Colony Optimization é o algoritmo computacionalmente dispendioso e, devido a ser testado com grandes número de iterações, encontrou limitações com casos de teste de 100 ou mais pontos.

Encontraram-se dificuldades em optimizar os algoritmos para instâncias maiores que 500 pontos permutados, sendo que no caso de teste input5.txt o número de conflitos poderia chegar na ordem > 10000. Isso seria atribuído para o alcance mais pequeno das coordenadas dos pontos, isto é, um alcance mais baixo do que o número total de pontos, que causaria um maior número de conflitos e, consequentemente, uma maior dificuldade de geração de pontos e de encontro e resolução destes conflitos.

No entanto, independentemente do número de vértices de polígono, um dos fatores que se revelou mais importante na performance dos algoritmos foi o candidato inicial de procura. A heurística Nearest-Neighbour First, embora computacionalmente mais lenta e custosa que a permutação dos pontos, melhorou a procura substancialmente.