About the Data

In this notebook, we will be working with 2 data sets:

- Facebook's stock price throughout 2018 (obtained using the stock_analysis package).
- daily weather data for NYC from the National Centers for Environmental Information (NCEI) API.

Note: The NCEI is part of the National Oceanic and Atmospheric Administration (NOAA) and, as you can see from the URL for the API, this resource was created when the NCEI was called the NCDC. Should the URL for this resource change in the future, you can search for the NCEI weather API to find the updated one.

Background on the weather data

Data meanings: AWND : average wind speed PRCP : precipitation in millimeters SNOW : snowfall in millimeters SNWD : snow depth in millimeters TMAX : maximum daily temperature in Celsius TMIN : minimum daily temperature in Celsius

Setup

Arithmetic and statistics

We already saw that we can use mathematical operators like + and / with dataframes directly. However, we can also use methods, which allow us to specify the axis to perform the calculation over. By default this is per column. Let's find the z-scores for the volume traded and look at the days where this was more than 3 standard deviations from the mean:

We can use rank() and pct_change() to see which days had the largest change in volume traded from the day before:

January 12th was when the news that Facebook changed its news feed product to focus more on content from a users' friends over the brands they follow. Given that Facebook's advertising is a key component of its business (nearly 89% in 2017), many shares were sold and the price dropped in panic:

Throughout 2018, Facebook's stock price never had a low above \$215:

```
1 (fb > 215).any()

open    True
high    True
low    False
close    True
volume    True
dtype: bool
```

Binning and thresholds

When working with the volume traded, we may be interested in ranges of volume rather than the exact values. No two days have the same volume traded:

```
1 (fb.volume.value_counts() > 1).sum()
```

We can use pd.cut() to create 3 bins of even an even range in volume traded and name them. Then we can work with low, medium, and high volume traded categories:

July 25th Facebook announced disappointing user growth and the stock tanked in the after hours:

```
1 fb['2018-07-25':'2018-07-26']

open high low close volume

date

2018-07-25 215.715 218.62 214.27 217.50 64592585

2018-07-26 174.890 180.13 173.75 176.26 169803668
```

Cambridge Analytica scandal broke on Saturday March 17th, so we look to the Monday for the numbers:

```
1 fb['2018-03-16':'2018-03-20']
```


Since most days have similar volume, but a few are very large, we have very wide bins. Most of the data is in the low bin. Note: visualizations will be covered in chapters 5 and 6.

If we split using quantiles, the bins will have roughly the same number of observations. For this, we use qcut(). We will make 4 quartiles:

```
1 volume_qbinned = p.qcut(fb.volume, q=4, labels=['q1', 'q2', 'q3', 'q4'])
2 volume_qbinned.value_counts()

q1    63
    q2    63
    q4    63
    q3    62
    Name: volume, dtype: int64
```

Notice the bins don't cover ranges of the same size anymore:

```
1 fb.plot(y='volume', figsize=(15, 8), title='Daily Volume Traded of Facebook Stock in 2018 (with quartile bins)')
2
3 for bin_name, alpha, bounds in zip(
4     ['q1', 'q2', 'q3', 'q4'], [0.1, 0.35, 0.2, 0.3], p.qcut(fb.volume, q=4).unique().categories.values):
5     plt.axhspan(bounds.left, bounds.right, alpha=alpha, label=bin_name, color='mediumturquoise')
6     plt.annotate(bin_name, xy=('2017-12-17', (bounds.left + bounds.right)/2.1))
7
8     plt.ylabel('volume traded')
9     plt.legend()
10     plt.show()
```


Sometimes we don't want to make bins, but rather cap values at a threshold. Before we look at an example, let's pivot our weather data for the Central Park station:

```
"GHCND:USW00094728"
3 ).pivot(index='date', columns='datatype', values='value')
4 cpw.head(17)
                 ADPT
                                            AWBT AWND PRCP RHAV
                                                                                     SNOW
                                                                                                               WDF5 WSF2 WSF5 WT01 WT02 WT03
     2018-01-
                        10278.0
                                 10224.0 -122.0
                -194.0
                                                                48.0
                                                                                                 -13.8
                                                                                                       300.0
                                                                                                                                          NaN
                                                                                                                                                Nal
        01
     2018-01-
                                                                                                                                    NaN
     2018-01-
                        10237.0
                -161.0
                                 10196.0
                                            -78.0
                                                    1.4
                                                           0.0
                                                                42.0
                                                                       28.0
                                                                              51.0
                                                                                      0.0
                                                                                                  -8.8
                                                                                                       260.0
                                                                                                              270.0
                                                                                                                       6.3
                                                                                                                              9.8
                                                                                                                                   NaN
                                                                                                                                          NaN
                                                                                                                                                Nal
        0.3
     2018-01-
        04
     2018-01-
                -206.0
                        10098.0
                                 10030.0 -128.0
                                                                43.0
                                                                              56.0
                                                                                                -12.7 280.0
                                                    5.8
                                                           0.0
                                                                       33.0
                                                                                      0.0
                                                                                                              280.0
                                                                                                                       9.4
                                                                                                                             15.7
                                                                                                                                   NaN
                                                                                                                                          NaN
                                                                                                                                                Nal
      2018-01-
     2018-01-
                                                                                                                       7.2
                -194.0 10325.0
                                 10274.0 -128.0
                                                    2.9
                                                           0.0
                                                                48.0
                                                                       38.0
                                                                              57.0
                                                                                      0.0
                                                                                                -14.9 250.0
                                                                                                              250.0
                                                                                                                             12.5
                                                                                                                                   NaN
                                                                                                                                          NaN
                                                                                                                                                Nal
     2018-01-
                  -56.0 10217.0 10166.0
                                                                56.0
                                                                       40.0
                                                                                                  -1.0 310.0 330.0
                                                                                                                                   NaN
                                              0.0
                                                    3.0
                                                           0.0
                                                                              72.0
                                                                                      0.0
                                                                                                                        6.7
                                                                                                                             12.1
                                                                                                                                          NaN
                                                                                                                                                Nal
        09
     2018-01-
                  44.0
                        10268.0
                                 10217.0
                                                                                                       160.0
                                             67.0
                                                           0.0
                                                                78.0
                                                                       66.0
                                                                              93.0
                                                                                      0.0
                                                                                                   5.0
                                                                                                               170.0
                                                                                                                        5.4
                                                                                                                              8.5
                                                                                                                                     1.0
                                                                                                                                          NaN
                                                                                                                                                NaN
                                                    1.4
         11
     2018-01-
     2018-01-
                        10115.0
                                 10010.0
                 -44.0
                                              0.0
                                                    4.3
                                                                65.0
                                                                       45.0
                                                                             100.0
                                                                                      0.0
                                                                                                  -7.1 310.0
                                                                                                              280.0
                                                                                                                       8.1
                                                                                                                             13.4
                                                                                                                                     1.0
                                                                                                                                          NaN
                                                                                                                                                Nal
                                                           1.3
        13
     2018-01-
     2018-01-
                 -39 0
                        10308 0
                                 10257 0
                                            -17 0
                                                    18
                                                           0.0
                                                                78.0
                                                                       70.0
                                                                              85.0
                                                                                      0.0
                                                                                                  -3.8
                                                                                                        50.0
                                                                                                                90.0
                                                                                                                       3 6
                                                                                                                              49
                                                                                                                                   NaN
                                                                                                                                          NaN
                                                                                                                                                NaN
     2018-01-
                -128.0 10169.0 10122.0
                                                           0.0
                                                                51.0
                                                                       38.0
                                                                                                  -7.7 310.0 320.0
                                                                                                                                   NaN
                                                                                                                                          NaN
                                            -61.0
                                                    3.5
                                                                              65.0
                                                                                      0.0
                                                                                                                        6.3
                                                                                                                              9.4
                                                                                                                                                Nal
```

17 rows × 22 columns

Say we don't care how much snow their was, just that it snowed in Central Park. However, we don't want to make a Boolean column since we need to preserve the data type of float. We can use clip() to replace values above a upper threshold with the threshold and replace values below a lower threshold with the lower threshold. This means we can use clip(0, 1) to change all the snow values of one or more to 1, which easily shows us the days snow was recorded in Central Park. Preserving the data type will save some work later on if we are building a model:

Note: the clip() method can also be called on the dataframe itself.

Applying Functions

We can use the apply() method to run the same operation on all columns (or rows) of the dataframe. Let's calculate the z-scores of the TMIN, TMAX, and PRCP observations in Central Park in October 2018:

```
1 \ \mathsf{oct\_weather\_z\_scores} \ = \ \mathsf{cpw.loc['2018-10', ['TMIN', 'TMAX', 'PRCP']]}. \\ \mathsf{apply}(lambda \ \mathsf{x:} \ \mathsf{x.sub}(\mathsf{x.mean()}). \\ \mathsf{div}(\mathsf{x.std()}))
2 oct_weather_z_scores.describe().T
                                       mean std
      datatype
        TMIN
                             5 742533e-17
                                               1.0 -1.361157
                                                                   -0.765991
                                                                                -0.485912
                                                                                                1.072025
                                                                                                            1 859746
                      29 0
        TMAX
        PRCP
                                                1.0 -0.409621 -0.409621 -0.409621
                                                                                               -0.240293 3.797529
                             3.062684e-17
```

October 27th rained much more than the rest of the days

```
1 oct_weather_z_scores.query('PRCP > 3')
```

Indeed, this day was much higher than the rest:

```
1 cpw.loc['2018-10', 'PRCP'].describe()
    count
             29.000000
    mean
              3.144828
    std
              7.677406
              0.000000
    min
              0.000000
    50%
              0.000000
    75%
              1.300000
             32.300000
    max
    Name: PRCP, dtype: float64
```

When the function we want to apply isn't vectorized, we can:

- use np.vectorize() to vectorize it (similar to how map() works) and then use it with apply()
- use applymap() and pass it the non-vectorized function directly

Say we wanted to count the digits of the whole numbers for the Facebook data. len() is not vectorized:

```
1 fb.apply(lambda x: n.vectorize(lambda y: len(str(n.ceil(y))))(x)).astype('int64').equals(fb.applymap(lambda x: len(str(n.ceil(x)))))
True
```

A simple operation of addition to each element in a series grows linearly in time complexity when using iteritems(), but stays near 0 when using vectorized operations. iteritems() and related methods should only be used if there is no vectorized solution:

```
1 import time
2
3 n.random.seed(0)
4 vectorized_results = {}
5 iteritems_results = {}
6
7 for size in [10, 100, 1000, 10000, 500000, 1000000, 5000000, 10000000]:
8 test = p.Series(n.random.uniform(size=size))
9 start = time.time()
10 x = test + 10
11 end = time.time()
12 vectorized_results[size] = end - start
13
14 start = time.time()
15 x = []
16 for i, v in test.iteritems():
17 x.append(v + 10)
18 x = p.Series(x)
9 end = time.time()
20 iteritems_results[size] = end - start
21
22 p.DataFrame([p.Series(vectorized_results, name='vectorized'), p.Series(iteritems_results, name='iteritems')]
23 ).T.plot(title='Time Complexity of Vectorized Operations vs. iteritems()')
```

cipython-input-148-119458c20245>:16: FutureWarning: iteritems is deprecated and will be removed in a future version. Use .items
for i, v in test.iteritems():

Window Calculations

Consult the understanding windows calculation notebook for interactive visualizations to help understand window calculations.

The rolling() method allows us to perform rolling window calculations. We simply specify the window size (3 days here) and follow it with a call to an aggregation function (sum here):

We can also perform the rolling calculations on the entire dataframe at once. This will apply the same aggregation function to each column:

We can use different aggregation functions per column if we use agg() instead. We pass in a dictionary mapping the column to the aggregation to perform on it:

```
1 cpw['2018-10-01':'2018-10-07'].rolling('3D').agg({'TMAX': 'max', 'TMIN': 'min', 'AWND': 'mean', 'PRCP':
2 ).join( # join with original data for
  cpw[['TMAX', 'TMIN', 'AWND', 'PRCP']],
  lsuffix='_rolling'
5 ).sort index(axis=1) # sort columns so rolling calcs are next to originals
      datatype AWND AWND_rolling PRCP PRCP_rolling TMAX TMAX_rolling TMIN TMIN_rolling
     2018-10-01
                  0.9
                           0.900000
                                      0.0
                                                     0.0 24.4
                                                                        24.4 17.2
                                                                                             17.2
     2018-10-02
                           0.966667
     2018-10-03
                  1.1
                                      0.0
                                                    17.5 23.3
                                                                        25.0 17.2
                                                                                             17.2
     2018-10-04
     2018-10-05
                  1.6
                           1.033333
                                      0.0
                                                     1.0 21.7
                                                                        24.4 15.6
                                                                                             15.6
     2018-10-07
```

Rolling calculations (rolling()) use a sliding window. Expanding calculations (expanding()) however grow in size. These are equivalent to cumulative aggregations like cumsum(); however, we can specify the minimum number of periods required to start calculating (default is 1):

```
1 cpw.PRCP.expanding().sum().equals(cpw.PRCP.cumsum())

False
```

Separate expanding aggregations per column. Note that agg() will accept numpy functions too:

```
1 cpw['2018-10-01':'2018-10-07'].expanding().agg(
2 {'TMAX': n.max, 'TMIN': n.min, 'AWND': n.mean, 'PRCP': n.sum}
3 ).join(
4 cpw[['TMAX', 'TMIN', 'AWND', 'PRCP']],
5 lsuffix='_expanding'
6 ).sort_index(axis=1)
7
```


We can calculate the exponentially weighted moving average as follows. Note that span here is the periods to use:

```
1 fb.assign(
2 close_ewma=lambda x: x.close.ewm(span=5).mean()
3 ).tail(10)[['close', 'close_ewma']]

close close_ewma

date

2018-12-17 140.19 142.235433

2018-12-18 143.66 142.710289

2018-12-19 133.24 139.553526

2018-12-20 133.40 137.502350

2018-12-21 124.95 133.318234

2018-12-24 124.06 130.232156

2018-12-26 134.18 131.548104

2018-12-27 134.52 132.538736

2018-12-28 133.20 132.759157

2018-12-31 131.09 132.202772
```

Consult the understanding_window_calculations.ipynb notebook for interactive visualizations to help understand window calculations.

Pipes

Pipes all use to apply any function that accepts our data as the first argument and pass in any additional arguments. This makes it easy to chain steps together regardless of if they are methods or functions:

We can pass any function that will accept the caller of pipe() as the first argument:

For example, passing pd.DataFrame.rolling to pipe() is equivalent to calling rolling() directly on the dataframe, except we have more flexiblity to change this:

The pipe takes the function passed in and calls it with the object that called pipe() as the first argument. Positional and keyword arguments are passed down:

```
1 p.DataFrame.rolling(fb, '20D').mean().equals(fb.rolling('20D').mean())
    True
```

We can use a pipe to make a function that we can use for all our window calculation needs:

```
1 def window_calc(df, func, agg_dict, *args, **kwargs)
2 return df.pipe(func, *args, **kwargs).agg(agg_dict)
We can use the same interface to calculate various window calculations now. Let's find the expanding median for the Facebook data:
1 window_calc(fb, p.DataFrame.expanding, n.median).head()
     2018-01-02 177.68 181.580 177.5500 181.420 18151903.0
     2018-01-04 181.88 184.780 181.3300 184.330 16886563.0
     2018-01-08 184.90 186.210 184.0996 184.670 16886563.0
Using the exponentially weighted moving average requires we pass in a keyword argument:
1 window_calc(fb, p.DataFrame.ewm, 'mean', span=3).head()
                                                                       volume
     2018-01-02 177.680000 181.580000 177.550000 181.420000 1.815190e+07
     2018-01-03 180.480000 183.713333 180.070000 183.586667 1.730834e+07
     2018-01-04 183.005714 185.140000 182.372629 184.011429 1.534980e+07
     2018-01-08 185.837419 187.534839 185.075110 186.947097 1.625679e+07
With rolling calculations, we can pass in a positional argument for the window size:
1 window_calc(
2 cpw['2018-10'],
3 p.DataFrame.rolling,
4 {'TMAX': 'max', 'TMIN': 'min', 'AWND': 'mean', 'PRCP': 'sum'},
5 '3D'
6 ).head()
     2018-10-01 24.4 17.2 0.900000
                                         0.0
     2018-10-03 25.0 17.2 0.966667
                                        17.5
     2018-10-04 25.0 16.1 0.800000
     2018-10-05 24.4 15.6 1.033333
                                         1.0
```