Introduction to Cryptography Exercise Week 2

Dr. Patrick Struck patrick.struck@uni.kn

Leon Weingarten leon.weingarten@uni.kn

Jonah Herr jonah.herr@uni.kn

Exercise 1.

Consider the following scenario:

Alice wants to encrypt a message of length n using the One-Time Pad, but knows that it will be sent in the clear if the key k happens to be 0^n . To prevent that, she chooses a new random key until $k \neq 0^n$, and only then encrypts her message.

Prove that the resulting scheme is no longer perfectly secret, using

- (a) Definition 2.3.
- (b) Lemma 2.5. (Reminder: A scheme is perfectly secret if and only if, for every $m, m' \in \mathcal{M}$ and every $c \in \mathcal{C}$, Equation (2.1)

$$Pr[Enc_K(m) = c] = Pr[Enc_K(m') = c]$$

holds.)

Exercise 2.

In each of the following schemes, $\mathsf{Enc}_k(m) = [m+k \mod 3]$. State in each case whether the scheme is perfectly secret, and justify your answers.

- (a) The message space is $\mathcal{M} = \{0,1\}$, and Gen chooses a uniform key from the key space $\mathcal{K} = \{0,1\}$.
- (b) The message space is $\mathcal{M} = \{0, 1, 2\}$, and Gen chooses a uniform key from the key space $\mathcal{K} = \{0, 1, 2\}$.
- (c) The message space is $\mathcal{M} = \{0,1\}$, and Gen chooses a uniform key from the key space $\mathcal{K} = \{0,1,2\}$.

Exercise 3.

What is the ciphertext that results when the plaintext 0x012345 (written in hex) is encrypted using the one-time pad with key 0xFFEEDD?

Exercise* 4.

Recall the affine cipher from question 4 of the first exercise sheet. Assume that every key $(a,b) \in \mathcal{K}$ is chosen with equal probability $1/|\mathcal{K}|$.

- (a) Show that for messages of length $n \geq 2$, this cipher is not perfectly secret.
- (b) Prove that for messages of length n = 1, this cipher is perfectly secret.

Exercise* 5.

In this problem we consider definitions of perfect secrecy for the encryption of two messages, using the same key. Here we consider distributions on pairs of messages from the message space \mathcal{M} ; we let M_1, M_2 be random variables denoting the first and second message, respectively. (These random variables are not assumed to be independent.) We generate a (single) key k, sample a pair of messages (m_1, m_2) according to the given distribution, and then compute ciphertexts $c_1 \leftarrow \operatorname{Enc}_k(m_1)$ and $c_2 \leftarrow \operatorname{Enc}_k(m_2)$; this induces a distribution on pairs of ciphertexts and we let C_1, C_2 be the corresponding random variables.

(a) Say encryption scheme (Gen, Enc, Dec) is perfectly secret for two messages if for all distributions on $\mathcal{M} \times \mathcal{M}$, all $m_1, m_2 \in \mathcal{M}$, and all ciphertexts $c_1, c_2 \in \mathcal{C}$ with $\Pr[C_1 = c_1 \wedge C_2 = c_2] > 0$:

$$\Pr[M_1 = m_1 \land M_2 = m_2 \mid C_1 = c_1 \land C_2 = c_2] = \Pr[M_1 = m_1 \land M_2 = m_2]$$

Prove that *no* encryption scheme can satisfy this definition.

(b) Say encryption scheme (Gen, Enc, Dec) is perfectly secret for two distinct messages if for all distributions on $\mathcal{M} \times \mathcal{M}$ where the first and second messages are guaranteed to be different (i.e., distributions on pairs of distinct messages), for all $m_1, m_2 \in \mathcal{M}$ and for all ciphertexts $c_1, c_2 \in \mathcal{C}$ with $\Pr[C_1 = c_1 \wedge C_2 = c_2] > 0$:

$$\Pr[M_1 = m_1 \land M_2 = m_2 \mid C_1 = c_1 \land C_2 = c_2] = \Pr[M_1 = m_1 \land M_2 = m_2]$$

Give an encryption scheme that fulfills this property. Can you also prove it?

and the law of total probability.

Hint: Think of permutations. For the proof, you may use Bayes theorem