

Flow Matching

参考

Continuous Normalizing Flows

Normalizing Flows

Continuous Normalizing Flows

Continuity Equation

Conditional and Marginal Probability Paths and Vector Fields

Conditional and Marginal Probability Paths and Vector Fields

Calculate Conditional Probability Paths and Conditional Vector Fields

Conditional Flow Matching

Flow Matching

Conditional Flow Matching

Diffusion conditional Vector Fields and Optimal Transport conditional Vector Fields

Diffusion conditional Vector Fields

Optimal Transport conditional Vector Fields

Continuous Normalizing Flows

CNFs是一种用于描述连续的变量变换的数学工具

Normalizing Flows

给定随机变量z, 其pdf为 $\pi(z)$, 设x = f(z), 则x的pdf为

$$p(x)=\pi(f^{-1}(x))\mathrm{det}rac{\mathrm{d}f^{-1}}{\mathrm{d}x}$$

通过一系列可逆的概率密度变换,将简单的分布映射到复杂的分布

设 p_0 为原始分布,经过一系列可逆变换 $\{f_i\}$:

$$x=z_K=f_K\circ f_{K-1}\circ \cdots \circ f_1(z_0)$$

也就是说

$$z_i = f_i(z_{i-1})$$

于是,我们有

$$egin{aligned} p_i(z_i) &= p_{i-1}(f_i^{-1}(z_i)) \left| \det rac{\mathrm{d} f_i^{-1}}{\mathrm{d} z_i}
ight| \ &= p_{i-1}(z_{i-1}) \left| \det \left(rac{\mathrm{d} f_i}{\mathrm{d} z_{i-1}}
ight)^{-1}
ight| \ &= p_{i-1}(z_{i-1}) \left| \det rac{\mathrm{d} f_i}{\mathrm{d} z_{i-1}}
ight|^{-1} \end{aligned}$$

取对数得

$$\log p_i(z_i) = \log p_{i-1}(z_{i-1}) - \log \left| \det rac{\mathrm{d} f_i}{\mathrm{d} z_{i-1}}
ight|$$

展开直到原始分布

$$\log p(x) = \log p_K(z_K) = \log \pi_0(z_0) - \sum_{i=1}^K \log \left| \det rac{\mathrm{d}f_i}{\mathrm{d}z_{i-1}}
ight|$$

模型训练时,目标为最大化对数似然 $\log p(x)$

Continuous Normalizing Flows

CNFs为NFs的连续推广,变量的连续变换通过ODE来描述

$$rac{\mathrm{d}z_t}{\mathrm{d}t} = v(z_t,t)$$

其中 $t \in [0,1]$, z_t 为Flow Map, $v(z_t,t)$ 为向量场,用于描述数据点的变化趋势,通常由神经网络预测

给定一个初始分布, $\mathbf{v}(\mathbf{z_t},\mathbf{t})$ 可以给出这个分布随时间的演变情况,最终达到目标分布该ODE可通过数值方法估计

$$z_{t+\Delta t} = z_t + \Delta t \cdot v(z_t,t)$$

Continuity Equation

用于描述守恒量的传输行为

设有流体、密度为 ρ 、速度场为 \boldsymbol{v} 、则任取体积 $\boldsymbol{\mathcal{V}}$ 、单位时间流出 $\boldsymbol{\mathcal{V}}$ 的流体质量等于其内流体质量的减少量、结合散度定理有

$$egin{aligned} &\int_{\mathcal{S}}
ho oldsymbol{v} \cdot \mathrm{d} oldsymbol{S} + rac{\partial}{\partial t} \int_{\mathcal{V}}
ho \mathrm{d} V = 0 \ &\int_{\mathcal{V}}
abla \cdot (
ho oldsymbol{v}) \mathrm{d} V + \int_{\mathcal{V}} rac{\partial}{\partial t}
ho \mathrm{d} V = 0 \ &rac{\partial}{\partial t}
ho +
abla \cdot (
ho oldsymbol{v}) = 0 \end{aligned}$$

由于概率密度总和总为1,因此**概率守恒**,将 ρ 置换为pdf p_t ,流速场置换为概率密度流 v_t ,得

$$rac{\partial p_t(x)}{\partial t} +
abla \cdot [p_t(x)v_t(x)] = 0$$
 (1)

注意: Fokker-Plank Equation为Continuity Equation的推广!

性质: Vector Field $\mathbf{v}_t(\mathbf{x})$ 与 $\mathbf{p}_t(\mathbf{x})$ 满足(1)当且仅当 $\mathbf{v}_t(\mathbf{x})$ 生成概率密度路径 $\mathbf{p}_t(\mathbf{x})$

Conditional and Marginal Probability Paths and Vector Fields

Conditional and Marginal Probability Paths and Vector Fields

现在的问题来到给定初始分布 p_0 ,如何求向量场 u_t ,使得 p_0 生成 $p_t \to q, t \to 1$

考虑条件概率流 $u(x|x_1)$, 其中 x_1 为数据空间中具体的数据样本, 其生成条件概率密度路径 $p_t(x|x_1)$ [两者满足(1)], 定义边缘概率密度路径

$$p_t(x) = \int p_t(x|x_1)q(x_1)\mathrm{d}x_1$$

再通过对条件向量场的积分得到边缘向量场

$$u_t(x) = \int u_t(x|x_1) \frac{p_t(x|x_1)q(x_1)}{p_t(x)} dx_1$$
 (3)

则 $u_t(x)$ 生成 $p_t(x)$

现在,只需要设计 $u(x|x_1)$ 或 $p_t(x|x_1)$,使得 $p_1(x) \approx q(x)$ 即可解决上述问题由于

$$p_1(x)=\int p_1(x|x_1)q(x_1)\mathrm{d}x_1$$

 $\Rightarrow p_1(x|x_1) = \delta(x_1 - x)$,则有

$$p_1(x) = \int \delta(x_1-x)q(x_1)\mathrm{d}x_1 = q(x)$$

此时, u_t 生成的概率密度 p_t 路径将收敛于q

Summary:

- 1. 定义 $p_t(x|x_1)$,使得 $p_1(x|x_1) = \delta(x_1-x), p_0(x|x_1) = p_0(x), orall x_1 \in \mathcal{X}$
- 2. 利用(1)求出对应条件向量场 $u_t(x|x_1)$
- 3. 利用(2)(3)求出边缘向量场 $u_t(x)$
- 4. p_0 在 u_t 下演变至q

Calculate Conditional Probability Paths and Conditional Vector Fields

考虑高斯条件概率路径

$$p(x|x_1) = \mathcal{N}(\mu_t(x_1), \sigma_t(x_1))$$

满足

$$\mu_0=0, \sigma_0=1$$
 $\mu_1=0, \sigma_1pprox 0$

则其满足上述边值条件 $p_1(x|x_1)=\delta(x_1-x), p_0(x|x_1)=p_0(x), orall x_1\in \mathcal{X}$ 其对应的Flow Map为

$$\psi_t(x|x_1) = \sigma_t(x_1)x + \mu_t(x_1)$$

代入(1)($z_t \leftarrow \psi_t(x|x_1)$)得到闭式解

$$u_t(x|x_1) = rac{\sigma_t'(x_1)}{\sigma_t(x_1)}[x - \mu_t(x_1)] + \mu_t'(x_1)$$

Conditional Flow Matching

尽管已经求得 $u_t(x|x_1)$,但求 $u_t(x)$ 依旧是Intractable的(积分包含未知分布q),此时,就需要依赖作者提出的Conditional Flow Matching技术

Flow Matching

拟合q已经被转化为可以生成q的概率密度向量场 u_t ,令 v_t 为由NN参数化的向量场,目标为估计 u_t

$$\mathcal{L}_{ ext{FM}}(heta) = \mathbb{E}_{t,p_t(x)} \|u_t(x) - v_t(x)\|^2$$

问题是: $u_t(x)$ 是Intractable的

Conditional Flow Matching

 $u_t(x)$ Intractable,但 $u_t(x|x_1)$ 确是已知

考虑Conditional Flow Matching Loss

$$\mathcal{L}_{ ext{CFM}}(heta) = \mathbb{E}_{t,q(x_1),p_t(x|x_1)} \|u_t(x|x_1) - v_t(x)\|^2$$

$$egin{aligned} &
abla_{ heta} L_{CFM}\left(heta
ight) =
abla_{ heta} E_{t,p_t(x|z),q(z)} \left\|v_{ heta}\left(t,x
ight) - u_t\left(x|z
ight)
ight\|^2 \ &=
abla_{ heta} E_{t,p_t(x|z),q(z)} \left[v_{ heta}(t,x)^2 - 2 \cdot v_{ heta}\left(t,x
ight) \cdot u_t\left(x|z
ight) + u_t(x|z)^2
ight] \ &=
abla_{ heta} E_{t,p_t(x|z),q(z)} \left[v_{ heta}(t,x)^2
ight] - 2
abla_{ heta} E_{t,p_t(x|z),q(z)} \left[v_{ heta}\left(t,x
ight) \cdot u_t\left(x|z
ight)
ight] \end{aligned}$$

类似的,我们考察(4)式对于 θ 的导数,有

$$egin{aligned}
abla_{ heta} L_{FM}\left(heta
ight) &=
abla_{ heta} E_{t,p_t(x)} \left\|v_{ heta}\left(t,x
ight) - u_t\left(x
ight)
ight\|^2 \ &=
abla_{ heta} E_{t,p_t(x)} \left[v_{ heta}(t,x)^2
ight] - 2
abla_{ heta} E_{t,p_t(x)} \left[v_{ heta}\left(t,x
ight) \cdot u_t\left(x
ight)
ight] \end{aligned}$$

所以现在的关键在于,以上两个式子的右边第二项有什么联系?我们继续化简

$$egin{aligned} &
abla_{ heta} E_{t,p_t(x)} \left[v_{ heta} \left(t,x
ight) \cdot u_t \left(x
ight)
ight] \ &=
abla_{ heta} \int \int v_{ heta} \left(t,x
ight) u_t \left(x
ight) p_t \left(x
ight) dx dt \ &=
abla_{ heta} \int \int v_{ heta} \left(t,x
ight) \left[\int rac{u_t(x|z)p_t(x|z)}{p_t(x)} q \left(z
ight) dz
ight] p_t \left(x
ight) dx dt \ &=
abla_{ heta} \int \int \int v_{ heta} \left(t,x
ight) u_t \left(x|z
ight) p_t \left(x|z
ight) q \left(z
ight) dx dt dz \ &=
abla_{ heta} E_{t,p_t(x|z),q(z)} \left[v_{ heta} \left(t,x
ight) \cdot u_t \left(x|z
ight)
ight] \end{aligned}$$

以上推导使用了 $u_t(x)$ 的定义(7)以及期望的积分定义,所以这就巧了,我们发现

$$abla_{ heta}L_{FM}\left(heta
ight)=
abla_{ heta}L_{CFM}\left(heta
ight)$$

也就是说, \mathcal{L}_{FM} 与 \mathcal{L}_{CFM} 有相同的极小值!!!

因此,我们将Intractable的FM转化为CFM,只要 $v_t(x)$ 最小化 $\mathcal{L}_{\mathrm{CFM}}$,则 $v_{-t}(x)$ 成功拟合 $u_t(x)$ 于是,在得到 $v_t(x)$ 后,即可通过数值求解对应的概率密度变换ODE来将 p_0 变换为目标分布q

Diffusion conditional Vector Fields and Optimal Transport conditional Vector Fields

通过设计不同的Flow Map(也就是 μ_t , σ_t),可以得到不同的概率密度路径

Diffusion

〇九平 @架书神侠

Diffusion conditional Vector Fields

• Variance Exploding (VE)

在扩散过程中逐步增大数据噪声(能量变大),也就是增大方差,数据会逐渐变得嘈杂 有利于探索更广阔的隐空间,使生成的样本更加多样化

$$p_t(x|x_1) = \mathcal{N}(x_1, \sigma_{1-t}^2 \mathbf{I})$$

其中 σ_t 为满足 $\sigma_0=0,\sigma_1\gg 1$ 的单增函数

对应

$$u_t(x|x_1)=-rac{\sigma_{1-t}'}{\sigma_{1-t}}(x-x_1)$$

• Variance Preserving (VP)

保持数据整体方差不变,用于需要保持数据分布稳定性的场景,如保持图像清晰度和结构 特征

$$p_t(x|x_1) = \mathcal{N}(lpha_{1-t}x_1, (1-lpha_{1-t}^2)\mathbf{I})$$

对应

$$u_{t}\left(x\mid x_{1}
ight)=rac{lpha_{1-t}^{\prime}}{1-lpha_{1-t}^{2}}\left(lpha_{1-t}x-x_{1}
ight)=-rac{T^{\prime}(1-t)}{2}\left\lceilrac{e^{-T(1-t)}x-e^{-rac{1}{2}T(1-t)}x_{1}}{1-e^{-T(1-t)}}
ight
ceil$$

训练更稳定

Optimal Transport conditional Vector Fields

简单定义条件概率路径为均值与标准差为时间的线性函数

$$\mu_t(x_1) = tx_1, \sigma_t(x) = 1 - (1 - \sigma_{\min})t$$

对应Flow Map

$$\psi_t(x) = (1-(1-\sigma_{\min})t)x + tx_1$$

条件向量场闭式解为

$$u_t(x|x_1) = rac{x_1-(1-\sigma_{\min})x}{1-(1-\sigma_{\min})t}$$

训练速度更快