ÜBUNGEN ZU "PARTIELLE DIFFERENTIALGLEICHUNGEN" WS 2020 BLATT 4 (22. 10. 2020)

EDUARD NIGSCH, CLAUDIA RAITHEL

1. Sei Ω eine Teilmenge von \mathbb{R}^n mit C^{∞} -Rand und 1_{Ω} ihre Indikatorfunktion. Zeigen Sie

$$\langle \Delta 1_{\Omega}, \varphi \rangle = \int_{\partial \Omega} \frac{\partial \varphi}{\partial \nu} \, \mathrm{d}s,$$

wobei ν der äußere Normaleneinheitsvektor auf $\partial\Omega$ ist.

2. Zeigen Sie, dass

$$F = \frac{1}{\sigma_n} \frac{x}{|x|^n}$$

eine Fundamentallösung des Differentialoperators L(u) = div u auf \mathbb{R}^n ist, wobei σ_n die Oberfläche der Einheitskugel in \mathbb{R}^n ist. Achtung: obwohl F eigentlich eine vektorwertige Distribution in $L^1_{\text{loc}}(\mathbb{R}^n)^n$ ist, wird das nicht gebraucht um die Behauptung

$$\langle \operatorname{div} F, \varphi \rangle = \varphi(0)$$

zu zeigen, da div $F = \sum_i \partial_i \left(\frac{x_i}{|x|} \right) \in \mathcal{D}'(\mathbb{R})$ ist.

- **3.** Gegeben $v \in C^2(\mathbb{R})$, sei $u(x,t) = v(x/\sqrt{t})$ für t > 0 und $x \in \mathbb{R}$.
 - (i) Zeigen Sie:

$$u_t = u_{xx} \Longleftrightarrow v''(z) + \frac{z}{2}v'(z) = 0.$$

Berechnen Sie die allgemeine Lösung v und damit u.

(ii) Wählen sie die Konstanten in u so, dass

$$\lim_{t\to 0+}u(t,x)=0 \text{ für } x<0, \quad \lim_{t\to 0+}u(t,x)=1 \text{ für } x>0.$$

(iii) Zeigen Sie, dass für $\varphi \in \mathcal{D}(\mathbb{R})$ die Funktion $f(x,t) = ((\partial_x u(.,t)) * \varphi)(x)$ (Faltung in der x-Variablen) folgendes Anfangswertproblem für die Wärmeleitungsgleichung löst:

$$f_t - f_{xx} = 0$$

$$\lim_{t \to 0+} f(t, x) = \varphi(x)$$

4. Zeigen Sie: Die Funktion

$$u(x,y) = (8\pi)^{-1}(x^2 + y^2) \ln \sqrt{x^2 + y^2}, \quad (x,y) \neq (0,0)$$

ist eine Fundamentallösung von Δ^2 mit Pol in (0,0) im \mathbb{R}^2 , wobei

$$\Delta^2 u = \Delta(\Delta u) = \sum_{i,j=1}^2 u_{x_i x_i x_j x_j}.$$

- 5. Bestimmen Sie die formal adjungierten Operatoren von
 - (i) $L\phi = a(x,y)\phi_x + b(x,y)\phi_y + c(x,y)\phi$, $\phi \in \mathcal{D}(\mathbb{R}^2)$,

 - (ii) $L\phi = x^2\phi'' + \phi' 3x^2\phi$, $\phi \in \mathcal{D}(\mathbb{R})$, (iii) $L\phi = \Delta\phi + v(x) \cdot \nabla\phi$, $\phi \in \mathcal{D}(\mathbb{R}^n)$,

mit $a, b, c \in C^{\infty}(\mathbb{R}^2)$ und $v \in C^{\infty}(\mathbb{R}^n; \mathbb{R}^n)$.

6. Bestimmen Sie eine Fundamentallösung von ∂^{α} in \mathbb{R}^{n} mit Träger in

$$\{x \in \mathbb{R}^n \mid x_i \ge 0 \ \forall i = 1 \dots n\},\$$

wobei alle $\alpha_i > 0$ sind.

- 7. Bestimmen Sie Fundamentallösungen mit Pol an $\xi \in \mathbb{R}$ folgender Differentialoperatoren auf \mathbb{R} :
 - (i) L(u) = u'
 - (ii) L(u) = u''
 - (iii) $L(u) = u' au \ (a \neq 0)$ (Hinweis: Bestimmen Sie die allgemeine Lösung u_{hom} der homogenen Differentialgleichung Lu=0 und verwenden Sie einen Ansatz der Form $U_0(x) = C_1 u_{hom}(x)$ für x < 0, $U_0(x) = C_2 u_{hom}(x)$ für x > 0 mit $C_1, C_2 \in \mathbb{R}$).