Construcción de soluciones utilizando Vivado y HLS

Patricia Miriam Borensztejn

Miguel Ángel García

Departamento de Computación, FCEN, UBA - 2016

Zybo

- AP SoC: Zynq 7000
- HDMI
- VGA
- 512MB RAM
- U\$D 189

AP SoC Zynq 7000

Suite Vivado

- Vivado IP Integrator: Diseño plataforma hardware
- Vivado SDK: Desarrollo del software
- Vivado HLS: Diseño de IP Cores utilizando lenguajes de ALTO nivel

Flujo de trabajo

- Solución inicial en PC.
- Implementación inicial en Zybo utilizando solo software.
- Medir y optimizar implementando funcionalidad en IP Cores.

Demo: procesamiento de video

• Capturar video → aplicarle un filtro → mostrar resultado

• Input: HDMI

Output: VGA

 Basado en proyecto de Digilent: http://github.com/Digilent/ZYBO

Demo: hardware de input / output

Demo: Control desde el software

Demo: prueba inicial

• Antes de optimizar chequear que todo funcione!

Demo: Optimización

- Delegar el filtro de video al hardware
 - Diseñar IP Core
 - Integrarlo
 - Controlarlo desde el software

Demo: hardware de input / output

Demo: MyFilter en HLS

- Vivado High Level Synthesis (HLS) → permite especificar hardware en C o C++.
- Traducción "casi" automática a HDL, requiere:
 - Definir interfaces
 - Decidir sobre optimizaciones
 - Decidir los tipos de memorias a utilizar

Para esto se utilizan "directivas"

 Ojo: el resultado se ve impactado por la forma en que se codifica el algoritmo!

Patrón de diseño IP Cores para imágenes

- Basado en documento técnico de Xilinx (Vallina).
- Aplicable a IP Cores que procesan <u>secuencialmente</u> los píxeles de una imagen:
 - Caracteriza entradas y salidas como flujos unidireccionales (streams).

Patrón: Jerarquía de memoria

- Para procesar cada píxel suele ser necesario un contexto de NxM alrededor del mismo.
 - → Guardamos una porción de la imagen en dos tipos de buffers:
 - Line Buffers (LB): acceso a un elemento para escritura y otro para lectura por ciclo: Block RAM
 - Window: acceso simultáneo a todos sus elementos:
 LUTs RAM

Patrón: algoritmo general, paso 1

Leer un píxel del stream + **desplazar** Window y Line Buffers (ej 3^{er} píxel de una línea):

Window:

Line Buffers:

Patrón: algoritmo general, paso 2

Alimentar Window desde Line Buffers:

Patrón: algoritmo general, paso 3

Procesar Window:

Demo: Integración

- Vivado IP Integrator:
 - Agregar controlador DMA
 - Agregar nuestro nuevo IP

Demo: Control del IP

 Controlar el IP desde el software utilizando el driver generado por Vivado HLS.

Muchas Gracias

http://github.com/miguelgarcia/zybo-sase-2016