CHEMICAL PROCESS CALCULATIONS

(Reactive process balance)

Lecture # 13: October 17, 2022

Reactive system balance

- (a) molecular species balances (similar to nonreactive systems)
- (b) atomic species balances
- (c) extents of reaction

- independent equations
- independent species
- independent chemical reactions

Molecular species balances

No. degrees of freedom =

No. unknown labeled variables

- + No. independent chemical reactions
- No. independent molecular species balances
- No. other equations relating unknown variables

$$C_2H_6
ightarrow C_2H_4 + H_2$$
 i_2 mh c_2H_4/h

Atomic species balances

No. degrees of freedom =

No. unknown labeled variables

- No. independent atomic species balances
- No. molecular balances on independent nonreactive species
- No. other equations relating unknown variables

100 mor Cetto/h 40 mor H2/h
$$\dot{n}_1$$
 mor Cetto/h \dot{n}_2 mor Cetto/h \dot{n}_2 mor Cetto/h

Balance using extent of reaction

No. degrees of freedom =

No. unknown labeled variables

- + No. independent reactions (one extent of reaction for each reaction)
- No. independent reactive species
- No. independent nonreactive species
- No. other equations relating unknown variables

$$C_2H_6
ightarrow C_2H_4 + H_2$$
 i_2 mer C_2H_4 i_2 mer C_2H_4 i_3 mer C_2H_4 i_4

Reactive system balance

- Atomic species balances:
 - straightforward solution procedure
 - less complicated for multiple reaction cases
- Extents of reaction:
 - convenient for chemical equilibrium problems
- Molecular species balances:
 - complex calculations
 - considered for simple systems (one reaction)

Methane is burned with air in a continuous steady-state combustion reactor to yield a mixture of carbon monoxide, carbon dioxide, and water. The reactions taking place are:

$$CH_4 + 3/2 O_2 = CO + 2H_2O$$

 $CH_4 + 2O_2 = CO_2 + 2H_2O$

The feed to the reactor contains 7.80 mole% CH_4 , 19.4% O_2 , and 72.8% N_2 . The percentage conversion of methane is 90.0%, and the gas leaving the reactor contains 8 mol CO_2 /mol CO_2

- Perform degree-of-freedom analysis on the process.
- Calculate the molar composition of the product stream using molecular species balances, atomic species balances, and extents of reaction.

$$CH_4 + 3/2 O_2 = CO + 2H_2O$$
 $O'0780 \text{ mol } CH_4/\text{mol}$
 $CH_4 + 2O_2 = CO_2 + 2H_2O$
 $O'194 \text{ mol } O_2/\text{ mol}$
 $O'728 \text{ mol } N_2/\text{mol}$

not mot con mot con mot mot mot mot

MSB

Unknown variables (5)

+ Independent reactions (2)

- n moleculer species (6)
- Additional information (1) (CHZ conversion)

DOF = 0

EOR

Unknown variables (5)

- + Independent reactions (2)
- EoR expression for species (5)
- Non reactive moleulen species (1)
- Additional information (1)

DOF = 0

(ASB)

Unknown variables (5)

- Indépendent atomie aprèces (3)
- Nontreactive molecular species (1)
- Additional information (1) (Cetz comersion)

DOF = 0

90%. CHE Conversion not mol 100 mol 0.0780 mol CHZ/mol MCHZ = (1-0.900) x7.8 = 0.78 mol CHZ no mer 8 neo mil coz 0.194 mol 02/ mol 0.728 mol Ny mol nyzo mol Nonreactive species (N2) balance noz mol input = output = nN2 = 72'8 mol N2 $CH_4 + 3/2 O_2 = CO + 2H_2O^{\gamma}N_{\gamma}$ $CH_4 + 2O_2 = CO_2 + 2H_2O$ CO balance: Orput = generation => nco = Gco,1 CO2 balance: output 2 generation => 8 nw = 9co2,2 CHZ balance: input = ontput + consumption 7'8 = 0'780 + GCH7,1 + CCH7,2 >> 7.02 = 9co,1 + 9co2,2

not mol 100 mol 0:0780 mol Cuy/mol no mor 0.194 mol 02/ mol 8 neo mil coz 0.728 mol Ny mol ny mol noz mol nor mor H20 balance: Output = generation n 1/20 = GH20,1 + GH20,2 > n 420 = Gw,1 ×2 + Gco2,2 ×2 = nco x2 + &nco x2 => n 400 = 14.04 mil 40

 \Rightarrow 7'02 = m_{co} + $8m_{co}$ \Rightarrow n_{co} = 0.780 mar co \Rightarrow n_{co_2} = 8×0.780 mar co = 6.24 mar co = 6.24 mar co

non mol

$$CH_4 + 3/2 O_2 = CO + 2H_2O$$

 $CH_4 + 2O_2 = CO_2 + 2H_2O$

O₂ balance:
input = ontput + consumption

$$\Rightarrow$$
 19'4 = m_{o_2} + C_{o_2} , 1 + C_{o_2} , 2
 \Rightarrow 19'4 = m_{o_2} + G_{co_1} , ×1'5 + G_{co_2} , 2
 \Rightarrow 19'4 = m_{o_2} + m_{co} ×1'5 + m_{co} ×2
 \Rightarrow m_{o_2} = 5'75 mol o_2

Atomic Species Balances

C balance not mol 100 mol input = output 0.0780 mol CHq/mol no mor 0.194 mol 02/ mol 8 neo mil coz 7.8 = 0.78 + nco + 8nco 0.728 mol Ny mol ny mol noz mol $CH_4 + 3/2 O_2 = CO + 2H_2O$ non mor $CH_4 + 2O_2 = CO_2 + 2H_2O$ >> nco = 0.78 min co H balance: nco2 = 8x0'78 = 6:24 mol co2 $7.8 \times 4 = 0.78 \times 4 + 9_{H_{20}} \times 2$ => n 420 = 14'04 mol 120 O balance: 19.4 × 2 = MO2 × 2 + 0.78 × 1 + 6.24 × 2 + 14.04 × 1 = 5.75 mol 02

Extents of Reaction

$$\text{Mco} = \xi_1$$
 $\text{Mco}_2 = \xi_2 = 8 \text{Mco} = 8\xi_1$
 $\text{MH}_{20} = 2\xi_1 + 2\xi_2$
 $\text{Mo}_2 = 19.4 - 1.5\xi_1 - 2\xi_2$

Recycle and conversion

$C_3H_8 \to C_3H_6 + H_2$

Overall conversion of poopune: 95%. # Seperation after reaction -> H2, C3H2 & 0:555% of C3H8 leaving
the reactor [Product] -> unreaded C3 H8 & 5% of C3 H5 in
We product stream [Reych]