Um Algoritmo Evolutivo Híbrido para o Escalonamento de *Workflows* Científicos em Ambientes de Nuvem

Luan Teylo¹, Ubiratam de Paula², Yuri Frota¹, Daniel de Oliveira¹, Lúcia M. A. Drummond¹

¹Instituto de Computação Universidade Federal Fluminense

²COPPE Universidade Federal do Rio de Janeiro

II Escola Regional de Alto Desempenho do Rio de Janeiro, 2016

Agenda

- Definição do Problema
- 2 Algoritmo Evolutivo Híbrido
- Resultados Experimentais
- 4 Conclusão e Trabalhos Futuros

Workflows Científicos

- Os chamados experimentos in silico são comumente representados como uma cadeia de aplicações, na qual a saída de um programa é a entrada para o outro.
- Essas aplicações são modeladas na forma de grafo acíclico dirigido, chamados de workflows científicos.

Workflows Científicos

 Um exemplo recente do uso de workflows científicos foi o utilizado nas detecções de ondas gravitacionais feitas pelo observatório americano LIGO.

O LIGO pyCBC contém 60.000 tarefas e processa mais de 65.000 arquivos (70 GB).

Figura: LIGO pyCBC workflow.

Ambiente

- Os Workflows científicos têm uma alta demanda computacional e, portanto, é necessário utilizar ambientes computacionais de alto desempenho.
- As nuvens computacionais surgem como uma alternativa viável, tanto do ponto de vista financeiro como da facilidade técnica.

O Problema de Escalonamento

 Neste trabalho, o escalonamento de tarefas e a distribuição de dados são abordados de forma conjunta. O objetivo é reduzir o tempo total de execução de workflows em ambientes de nuvem.

Algoritmo Evolutivo (EA)

Algoritmos Evolutivos são métodos de otimização inspirados nos mecanismos de evolução biológica observados na natureza.

Algoritmo Evolutivo Híbrido (HEA)

- A população inicial contém uma solução gerada com a heurística MinMin-TS.
- Buscas locais são efetuadas nas melhores soluções.

Representação

O cromossomo é composto por duas estruturas, que representam: (i)
a ordem de execução das tarefas, e (ii) a distribuição das tarefas e dos
dados.

Ordem de execução

Ordem de execução

Vetor de Alocação

Vetor de Alocação

Operador de Mutação

• O operador de mutação é aplicado apenas no vetor de alocação.

Operador de Mutação

• O operador de mutação é aplicado apenas no vetor de alocação.

____ Máquina Virtual Alterada

Foram definidas três buscas locais e uma heurística de busca:

- Swap-vm
- Swap-position
- Move-element
- Heurística Path-relinking

Todas as buscas locais são first-improvement.

Swap-vm

Swap-vm

Swap-vm

Path-Relinking

- As melhores soluções encontradas pela metaheurística são guardadas em um conjunto elite
- A estratégia de path-reliking explora soluções intermediárias ao longo da trajetória que conecta duas soluções pertencentes a esse conjunto

Path-Relinking

 O caminho é gerado selecionando movimentos que introduzem características da Solução Guia na Solução Inicial.

Função de Fitness

A qualidade de um indivíduo é estimada conforme o *makespan* de sua solução.

Foram realizados os seguintes experimentos:

- Avaliação teórica comparando duas propostas encontradas na literatura, a heurística MinMin-Task Schedule [Mahesswaran et al. 1999] e o Algoritmo Evolutivo (EA) [Szabo et al. 2013].
- Avaliação prática com o workflow SciPhy [Ocaña et al. 2011],
 utilizando a máquina de execução SciCumulus [Oliveira et al. 2010].

Configuração:

- Intel Core i7-3770 CPU 3.40GHz com 12Gb memória e sistema operacional Ubuntu 14.04.
- Os dados sintéticos utilizados no experimento teórico foram gerados pelo Workflow Generator [Silva et al. 2014] e são baseados em workflows reais.
- A avaliação prática foi realizada no serviço de nuvem EC2 da Amazon.

Resultados Experimentais HEA vs MinMin-TS e EA

Tabela: Avaliação teórica entre MinMin-TS, EA e HEA.

MinMIn-TS			EA		HEA		
Workflow	Makespan(min)	Makespan(min)	Std. dev	Tempo(s)	Makespan(min)	Std. dev	time(s)
CyberShake_30	54.52	56.15	1.31	11.2	50.45	0.35	124.64
CyberShake_50	65.25	79.13	6.21	15.66	62.54	1.41	125.9
CyberShake_100	83.87	127.71	2.89	37.31	78.73	2.22	300.17
Epigenomics_24	1123.53	1027.89	22.33	9.23	998.97	1.64	67.96
Epigenomics_46	2310.08	1993.54	77.91	27.89	1856.45	37.73	54.56
Epigenomics_100	17140.17	17899.87	2256.66	49.5	13018.03	406.02	291.45
Inspiral_30	374.62	414.23	21.3	14.33	313.18	0	75.06
Inspiral_50	610.02	741.59	25.55	24.07	458.58	9.75	136.37

HEA vs MinMin-TS e EA

• Foram obtidos resultados mais significativos em *workflows* com uma maior quantidade de dados.

Tabela: Avaliação teórica entre MinMin-TS, EA e HEA.

MinMIn-TS			EA		HEA		
Workflow	Makespan(min)	Makespan(min)	Std. dev	Tempo(s)	Makespan(min)	Std. dev	time(s)
CyberShake_30	54.52	56.15	1.31	11.2	50.45	0.35	124.64
CyberShake_50	65.25	79.13	6.21	15.66	62.54	1.41	125.9
CyberShake_100	83.87	127.71	2.89	37.31	78.73	2.22	300.17
Epigenomics_24	1123.53	1027.89	22.33	9.23	998.97	1.64	67.96
Epigenomics_46	2310.08	1993.54	77.91	27.89	1856.45	37.73	54.56
Epigenomics_100	17140.17	17899.87	2256.66	49.5	13018.03	406.02	291.45
Inspiral_30	374.62	414.23	21.3	14.33	313.18	0	75.06
Inspiral_50	610.02	741.59	25.55	24.07	458.58	9.75	136.37

HFA vs MinMin-TS e FA

• Foram obtidos resultados mais significativos em *workflows* com uma maior quantidade de dados.

Tabela: Avaliação teórica entre MinMin-TS, EA e HEA.

MinMIn-TS			EA		HEA		
Workflow	Makespan(min)	Makespan(min)	Std. dev	Tempo(s)	Makespan(min)	Std. dev	time(s)
CyberShake_30	54.52	56.15	1.31	11.2	50.45	0.35	124.64
CyberShake_50	65.25	79.13	6.21	15.66	62.54	1.41	125.9
CyberShake_100	83.87	127.71	2.89	37.31	78.73	2.22	300.17
Epigenomics_24	1123.53	1027.89	22.33	9.23	998.97	1.64	67.96
Epigenomics_46	2310.08	1993.54	77.91	27.89	1856.45	37.73	54.56
Epigenomics_100	17140.17	17899.87	2256.66	49.5	13018.03	406.02	291.45
Inspiral_30	374.62	414.23	21.3	14.33	313.18	0	75.06
Inspiral_50	610.02	741.59	25.55	24.07	458.58	9.75	136.37

Avaliação prática

Tabela: Avaliação prática entre Greedy (Scicumulus) e HEA.

Algoritmo	Média	Mediana	Min	Max
Greedy	268.99	266.39	250.26	294.45
HEA	210.01	207.08	198.54	221.05

Conclusão

- A abordagem proposta demonstrou resultados satisfatórios e tempo de execução aceitável (média de 2 minutos).
- Houve um ganho médio de 20% em relação ao MinMin-TS, 36% em relação ao EA e 21,93% em relação ao Greedy (avaliação prática).

Conclusão

- Foram observados resultados mais significativos em workflows com muita movimentação de dados (GB).
- Em trabalhos futuros serão incluídas técnicas multi-objetivo e alocação dinâmica de recursos.

Obrigado pela atenção!

Perguntas?