Hilbert 符号

邱才颙

2023年1月22日

1

$$\mathbb{Z}_p^{\times} = \{ x \in \mathbb{Z}_p | \exists y \in \mathbb{Z}_p, xy = 1 \}$$
$$\mathbb{Q}_p^{\times} = \{ x \in \mathbb{Q}_p | \exists y \in \mathbb{Q}_p, xy = 1 \}$$

注意, $\mathbb{Q}_p^{\times} = \mathbb{Q}_p - \{0\}$, 但是 $\mathbb{Z}_p^{\times} \neq \mathbb{Z}_p - \{0\}$ 。

我们的第一个任务是,分析 \mathbb{Q}_p^{\times} 的结构。首先我们要知道,p 进数域 \mathbb{Q}_p 和 \mathbb{R} 一样,都是有理数 \mathbb{Q} 的一种完备化,因此我们先看看 \mathbb{R}^{\times} 的乘法结构,看看是否能够有所启发:

定理 1.1

任何非零实数 $x \in \mathbb{R}^{\times}$ 都可以写成

$$x = \epsilon(x)|x|$$

其中 $\epsilon(x) \in \{\pm 1\}$, 而对于后一部分 $|x| \in \mathbb{R}_{>0}$, 我们有公式

$$\ln|xy| = \ln|x| + \ln|y|$$

这个定理有许多可以解读的地方:

- 我们可以定义映射 $\epsilon: \mathbb{R}^{\times} \to \{\pm 1\}$,这个映射可以用来判断一个非零 实数是不是平方元素,这个映射是乘法群同态
- $\{\pm 1\}$ 这个集合,恰好是 $\mathbb R$ 中的所有单位根,也就是说 $\mu(\mathbb R)=\{\pm 1\}$
- ϵ 的核(kernel)就是 $\mathbb{R}_{>0}$

- ln 给出了 ℝ>0 到 (ℝ, +) 的同构
- 平方元(正实数)的附近的元素也是平方元(正实数)

我们在之前已经知道,任何 $x \in \mathbb{Q}_p^{\times}$ 都可以写成

$$x = u(x)p^{v_p(x)}$$

其中 $u(x) \in \mathbb{Z}_p^{\times}$ 被 x 唯一确定,所以 p 进数的乘法结构的关键,就是乘法 群 \mathbb{Z}_p^{\times} 的结构。

对于 \mathbb{Z}_p^{\times} 的结构,从 $\mu(\mathbb{R})$ 得到启发,首先我们来研究单位根:

引理 1.2

设 $p \neq 2$, 那么方程

$$X^{p-1} = 1$$

在 \mathbb{Z}_p 中有 p-1 个解。

证明. 考虑多项式 $f(X) = X^{p-1} - 1$,对于 $k = 1, 2, \ldots, p-1$,我们知道 f(k) 是 p 的倍数 (费马小定理),换言之, $|f(k)|_p \le \frac{1}{p}$ 。而 $f'(k) = (p-1)k^{p-2}$ 和 p 互素,因此 $|f'(k)|_p = 1$,Hensel 引理可以使用,因此每个 k 都可以提升为一个精确解。而 f(X) = 0 即便在域 \mathbb{Q}_p 中也最多有 p-1 个不同的根,证毕。

如果我们选择 k 为 $\mathbb{Z}/p\mathbb{Z}$ 的原根,那么 k 的提升 $\zeta \in \mathbb{Z}_p^{\times}$ 具有性质

$$\{x \in \mathbb{Q}_p : x^{p-1} = 1\} = \{\zeta^i : i = 1, 2, \dots, p-1\} = \mu_{p-1}(\mathbb{Z}_p^{\times})$$

并且 ζ^i 模 p 的结果取遍 $1, 2, \ldots, p-1$,或者说:

$$\mu_{p-1}(\mathbb{Z}_p^{\times}) \subset \mathbb{Z}_p^{\times} \xrightarrow{\varepsilon_1} (\mathbb{Z}/p\mathbb{Z})^{\times}$$

是同构, ε_1 (作为乘同态)的核为 $1+p\mathbb{Z}_p$ 。

引理 1.3

设 p=2, 那么方程

$$X^2 = 1$$

在 \mathbb{Z}_2 中有两个解,即 ± 1 。

这里的一个技术性问题是, $\{\pm 1\} \to (\mathbb{Z}/2\mathbb{Z})^{\times}$ 并不是同构,实际上要使用 $\{\pm 1\} \xrightarrow{\varepsilon_2} (\mathbb{Z}/4\mathbb{Z})^{\times}$,而 ε_2 (作为乘同态)的核为 $1+4\mathbb{Z}_2$ 。

定理 1.4

设 $x \in \mathbb{Z}_n^{\times}$, 那么

- 若 $p \neq 2$, x 可以写成 $x = \theta y$, 其中 $\theta \in \mu_{p-1}(\mathbb{Q}_p)$ 而 $y \in 1 + p\mathbb{Z}_p$, 这个分解是唯一的
- 若 p=2, x 可以写成 $x=\theta y$, 其中 $\theta \in \mu_2(\mathbb{Q}_2)$ 而 $y \in 1+4\mathbb{Z}_2$, 这个分解是唯一的

这时候,我们就会猜想,是否有一种神奇的对数函数,使得 $1+p\mathbb{Z}_p$ 作为乘法群,同构于加法群 \mathbb{Z}_p ,而 $1+4\mathbb{Z}_2$ 作为乘法群,同构于 \mathbb{Z}_2 呢?

答案是: 是的。(使用 $f(x) = \ln(1+x)$ 的 Taylor 级数)

2 总结

• 若 $p \neq 2$, 那么 $0 \neq x \in \mathbb{Q}_p$ 可以写成

$$x = p^n y$$

而 $y \in \mathbb{Z}_p^{\times}$ 又可以写成 $y = \theta z$,其中 $\theta \in \mu_{p-1}(\mathbb{Q}_p)$ 而 $z \in 1 + p\mathbb{Z}_p$ 。

- $x \in \mathbb{Q}_p$ 中的平方元当且仅当(I)n 是偶数,(II) θ 是本原单位根的 偶数次方,(III) $\log z$ 是 \mathbb{Z}_p 中某个元素的两倍
- 上面的 (II) 可以用 Legendre 符号来计算
- 上面的(III)恒成立,不需要考虑
- 若 p=2, 那么 $0 \neq x \in \mathbb{Q}_2$ 可以写成

$$x = 2^n y$$

而 $y \in \mathbb{Z}_2^{\times}$ 又可以写成 $y = \theta z$, 其中 $\theta \in \mu_2(\mathbb{Q}_2)$ 而 $z \in 1 + 4\mathbb{Z}_2$ 。

- $x \in \mathbb{Q}_2$ 中的平方元当且仅当(I)n 是偶数,(II) θ 是 -1 的偶数次方(III)存在 $w \in \mathbb{Z}_2$ 使得 $z = (1 + 4w)^2 = 1 + 8w + 16w^2$
- (III) 告诉我们 $z \in 1 + 8\mathbb{Z}_2$, Hensel 引理说明这是充要的(留作习题)

上面的 $\theta \in \mu(\mathbb{Q}_p)$ 叫做 y 的 Teichmüller, $z = \frac{y}{\theta}$ 叫做 y 的 diamond 再总结: 提出 p 的幂之后, mod p 或者 mod 8

3 例题

3.1

证明 $X^2 + 1 = 0$ 在 \mathbb{Q}_p 中有解, 当且仅当 $p \equiv 1 \mod 4$

3.2

证明 $X^2 + 2 = 0$ 在 \mathbb{Q}_p 中有解, 当且仅当 $p \equiv 1,3 \mod 8$

证明. 若 p=2,那么 -2 可以写成 $2^1 \times (-1)$,由于这里出现了 2 的奇数次幂,故 p 不能是 2,下考虑 $p \neq 2$,我们知道只需要

$$\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right) = 1$$

只需回忆并查表:

$$\left(\frac{-1}{p}\right) = \begin{cases} 1, & p \equiv 1 \mod 4 \\ -1, & p \equiv 3 \mod 4 \end{cases} \quad \left(\frac{2}{p}\right) = \begin{cases} 1, & p \equiv 1,7 \mod 8 \\ -1, & p \equiv 3,5 \mod 8 \end{cases}$$

3.3 课后习题

对于什么样的 p, $X^2 + 6 = 0$ 在 \mathbb{Q}_p 中有解?

4