Diff Trace: Efficient Whole-Program Trace Analysis and Diffing

Saeed Taheri staheri@cs.utah.edu University of Utah Salt Lake City, Utah, United States

> Martin Burtscher burtscher@cs.txstate.edu Texas State University San Marcos, Texas, U.S.A.

ABSTRACT

Abstract to be written

KEYWORDS

diffing, tracing, debugging

ACM Reference Format:

1 INTRODUCTION

When the next version of an HPC software system is created, logical errors often get introduced. To maintain productivity, designers need effective and efficient methods to locate these errors. Given the increasing use of hybrid (MPI + X) codes and library functions, errors may be introduced through a usage contract violation at any one of these interfaces. Therefore, tools that record activities at multiple APIs are necessary. Designs find most of these bugs manually, and the efficacy of a debugging tool is often measured by how well it can highlight the salient differences between the executions of two versions of software. Given the huge number of things that could be different - individual iterative patterns of function calls, groups of functions calls, or even specific instruction types (e.g., non-vectorized versus vectorized floating-point dot vector loops) - designers cannot often afford to rerun the application multiple times to collect each facet of behavior separately. These issues are well summarized in many recent studies [?]

One of the major challenges of HPC debugging is the huge diversity of the applications, which encompass domains such as computational chemistry, molecular dynamics, and climate simulation. In addition, there are many types of possible "bugs" or, more precisely, errors. An **error** may be a deadlock or a resource leak. These errors

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Ian Briggs
ianbriggsutah@gmail.com
University of Utah
Salt Lake City, Utah, United States

Ganesh Gopalakrishnan ganesh@cs.utah.edu University of Utah Salt Lake City, Utah, U.S.A.

may be caused by different **faults**: an unexpected message reordering rule (for a deadlock) or a forgotten free statement (for a resource leak). There exists a collection of scenarios in which a bug can be introduced: when developing a brand new application, optimizing an existing application, upscaling an application, porting to a new platform, changing the compiler, or even changing compiler flags. Unlike traditional software, there are hardly any bug-repositories, collection of trace data or debugging-purpose benchmarks in HPC community. The heterogeneous nature of HPC bugs make developers come up with their own solutions to resolve specific class of bugs on specific architecture or platforms that are not usable on other [?].

When a failure occurs (e.g., deadlock or crash) or the application outputs an unexpected result, it is not economic to rerun the application and consume resources to reproduce the failure. In addition, HPC bugs might not be reproducible due to non-deterministic behavior of most of HPC applications. Also the failure might be caused by a bug present at different APIs, system levels or network, thus multiple reruns might be needed to locate the buggy area. In our previous work[?], we have introduced ParLOT that collects whole program function call traces efficiently using dynamic binary instrumentation. ParLOT captures function calls and returns at different levels (e.g., source-code and library) and incrementally compress them on-the-fly, resulting in low runtime overhead and significantly low required bandwidth, preserving the whole-program dynamic behavior for offline analysis.

In the current work, we introduce DiffTrace, a tool-chain that post-mortem analyze ParLOT traces in order to supply developers with information about dynamic behavior of HPC applications at different levels towards debugging. Topology of HPC tasks on both distributed and shared memory often follow a "symmetric" control flow such as SPMD, master/worker and odd/even where multiple tasks contain similar events in their control flow. HPC bugs often manifest themselves as divergence in the control flow of processes comparing to what was expected. In other words, HPC bugs violates the rule of "symmetric" and "similar" control flow of one or more thread/process in typical HPC applications based on the original topology of the application. We believe that finding the dissimilarities among traces is the essential initial step towards finding the bug manifestation, and consequently the bug root cause. Large-scale HPC application execution would result in thousands of ParLOT trace files due to execution of thousands of processes and threads. Since HPC applications spend most of their time in an outer main loop, every single trace file also may contain million-long sequence of trace entries (i.e., function calls and returns). Finding the bug manifestation (i.e., dissimilarities caused by the bug) among large number of long traces is the problem of finding the needle in the haystack.

Decompressing ParLOT traces collected from long-running large-scale HPC applications for offline analysis produce overwhelming amount of data. However, missing any piece of collected data may result in loosing key information about the application behavior. We propose a variation of NLR (Nested Loop Recognition) algorithm [?] that takes a sequence of trace entries as input and by recursively detecting repetitive patterns, re-compresses traces into "iterative sets" in a lossless fashion (intra-trace compression). Analyzing the application execution as a whole is another goal that we are pursuing in this work. By extracting *attributes* from pre-processed traces, we inject them a concept hierarchy data structure called Concept Lattice [15]. Concept lattices give us the capability of reducing the search space from thousands of instances to just a few *equivalent behavior classes of traces* by measuring the similarity of traces[?]

** TODO: Highlights of results obtained as a result of the above thinking should be here. THis typically comes before ROADMAP of paper.

In summary, here are our main contributions:

- we have a powerful combination of ideas to locate bugs
- A variation of NLR algorithm to compress traces in lossless fashion for easier analysis and detecting (broken) loop structures
- FCA-based clustering of similar behavior traces, efficient,
- Ranking system based on delta-sim
- Visualization diffNLR

The rest of the paper is as follows:

- Sec 2: Background
- Sec 3: Related Work
- Sec 4: DiffTrace Components and Design
- Sec 5: DiffTrace Evaluation and Experiments
- Sec 6: Discussion, Limitations, Conclusion, Future Work

2 BACKGROUND

There are two major phases in any "Program Understanding" tool: data collection and data analysis. To understand the runtime behavior of applications, an efficient tracing mechanism is required to collect informative data during execution of the application. Upon failure or observing unexpected behavior of the program (e.g., wrong answer), studying collected execution data would reveal insight about how program dynamically behaved and what went wrong. In this section, we explain our methodology of data collection and data analysis towards debugging and locating potential root causes of unexpected behavior. The main source of whole-program dynamic behavior is provided by ParLOT, a dynamic binary tracing tool that captures all function calls and returns and compress them on the fly (section 2.1). After pre-processing ParLOT traces, a loop-detectionbased lossless data reduction mechanism applies to each trace to simplify collected data and reflect facts about loop structures (section 2.2). Whole-program analysis in HPC applications only makes sense when the analysis includes cross-thread and cross-process as well as analysis of sequential control flow of every single running thread. Inspired by many works[41][?][?][17], we have used FCA[15] to integrate collected data into a single data structure as a whole, and extract valuable information about different aspect of the execution (section 2.3) The major advantage of FCA, is that we can extract a full pair-wise similarity score matrix for all traces of a single execution in an efficient and scalable way, based on attributes that we extract from pre-processed traces. Relying on similarities of traces, we classify traces (i.e., threads) into equivalent-behavior groups. This way we reduce the search space from thousands of long traces to just a few classes of simplified trace representation Any abnormal behavior of a thread (e.g., outlier) or group of threads can be detected (section 2.5), and for more-in-depth analysis, any pair of traces can be studied with respect to their entry orders and differences using a visualization (section 2.4).

Section 2.6 discusses some additional remarks (limitations, effectiveness of our approach)

2.1 ParLOT: Efficient Trace Collection

The final executable of real HPC applications are often a production of a large code base and a complex build system with numerous dependencies and libraries. Injecting instrumentation code to the source code, as in traditional tools like [????], is not feasible in HPC space. Also recompilation of the application with tools' compilewrappers, as in TAU[38] and Score-p[23], may break the build system. Also instrumentation and tracing mechanism of existing tools are often dependent to other libraries that are need to be present on the supercomputer for trace collection. [[Example: STAT[1] and AutomaDeD[26] that requires Dyninst[?] for instrumentation and MRNet[?] and TBON [?]]] To overcome the trade-off of comprehensive data collection while adding low time and space overhead, HPC program analysis tools often sacrifice one for the other. However, ParLOT collects whole-program function call traces at as low as library level, while incrementally compressing traces on-the-fly and leave majority of the system bandwidth for the application. Par-LOT collects whole program function call traces with the mindset

Figure 1: ParLOT Overview

of paying a little upfront and save resource and time cost of reproducing the bug. ParLOT instruments the entry and exit point of each function in the binary using Pin[?] (fig. 1). Each ParLOT Trace contain full sequence of function calls and returns for every single thread that running the application code, reflecting the dynamic control flow and call-stack of the application individually. Here we define ParLOT Trace, as we refer to it in the paper:

Definition 2.1. ParLOT Trace (PT) A ParLOT Trace (PT) is a sequence of ordered integers $< f_i, ..., f_j >$ where f_0 is return and f_k is the id of function k (k! = 0).

Note that the PT is the pre-processed (decompressed and filtered) version of immediate ParLOT traces. The fresh output of ParLOT traces are highly compressed byte-codes. Also Note that $PT_{p.t}$ refers to the PT that belongs to process p and thread t of that process.

2.2 Loop structure detection

HPC applications and resources are in interest of scientists and engineers for simulating *iterative* kernels. Computer simulation of fluid dynamics, partial differential equations, Gauss-Seidel method and finite element methods in form of stencil codes do include a main outer loop that iterates over some elements (i.e., timesteps) and updates elements. This character of typical HPC applications make PT lengths too long (millions) with much smaller number (hundreds) of distinct elements (i.e., function IDs). We propose a representation of PT elements (intra-PT compression) in form of *loop structures*, such that PT = sequence of repetitive patterns (i.e., loops). In other words, each PT is a sequence of *Loop Bodies (LB)* that repeated *Loop Count (LC)* times, consecutively.

2.2.1 Loops definition. According to Makoto Kobayashi[?] definition of loops, an occurrence of a loop is defined as a sequence of elements in which a particular sequence of distinct elements (called the cycle of the loop) is successively repeated. Later Alain Ketterlin in [?] expanded this definition to numerical values for compressing and predicting memory access addresses and designed Nested Loop Recognition (NLR) algorithm. The basic idea behind NLR algorithm is that a linear function model can be extracted from the linear progression in a sequence of numbers and these linear functions form a tree in which depth of each node is the depth of nested loop(e.g., most outer loop's function is the root of the tree with depth 0).

We have modified NLR algorithm to make it suitable for PTs. Each repetitive pattern and its frequency of consecutive appearances would be compressed to a single *Loop Structure (LS)* entry.

```
Definition 2.2. Loop Structure LS = LB \hat{\ } LC where LB = pt_i, ..., pt_j > (0 <= i < j < len(PT)) that occur LC times is in a sub-sequence < pt_i, ..., pt_k > (k = 3j, k < len(PT))
```

By converting each PT to a sequence of LS_i , we reduce the length of PT by a factor of $\sum_i len(LB_i) * LC_i$. Later we will explain how this lossless representation of PTs eases the process of diffing between a pair of PTs.

2.3 Equivalencing behavior via FCA

To Reduce the search space from thousands of PTs to just a few groups of equivalent PTs (i.e., inter-PT compression not only requires a similarity measure based on a call matrix, but also requires a scheme that is efficient even for large process counts. Since a pair-wise comparison of all processes is highly inefficient, we use concept lattices that stem from formal concept analysis(FCA)[15] to store and compute groups of similar PTs. A concept lattice is based on a *formal context*[15], which is a triple (O, A, I), where O is a set of **objects**, *A* a set of **attributes**, and $I \subseteq O \times A$ an incidence relation. The incidence relation associates each object with a set of attributes. Due to its valuable properties, especially its partial order, FCA has been used widely in computer science fields from machine learning and data mining [?] to distributed systems [17]. However, since we are only interested in grouping similar PTs in this work, we only take advantage of similarity measures [?] of concept lattices, and left rest of its properties for our future work. Due to typical HPC application common topologies such as SPMD, master/worker and odd/even where multiple processes/threads behave similarly, our experiments show that large number of PTs can be reduced to just a few groups.

```
main(){
     int rank;
2
3
     int src;
     MPI Init()
4
5
     MPI_Comm_size (MPI_COMM_WORLD)
     MPI_Comm_rank (MPI_COMM_WORLD, & rank)
6
7
     if (rank != 0) {
8
     MPI Send (0) // Send to rank 0
9
     } else { /* rank = 0
      MPI_Recv(1) // Receive from rank 1
10
      MPI_Recv(2) // Receive from rank 2
11
12
      MPI_Recv(3) // Receive from rank 3
13
     MPI_Finalize()
14
15
```

An example with

- Source code
- Simple attributes and Context
- Concept Lattice
- Jaccard Similarity (heatmap or matrix)
- Visualization of LCA

Table 1: Context

	MPI_Init()	MPI_Comm_Size()	MPI_Comm_Rank()	MPI_Send()	MPI_Recv()	MPI_Finalize()
Rank 0	×	×	×		×	×
Rank 1	×	×	×	×		×
Rank 2	×	×	×	×		×
Rank 3	×	×	×	×		×

Figure 2: Sample Concept Lattice from Obj-Atr Context in table??

Figure 3: Concept Lattice with reduced labels

- CL construction [18] [3]
- Attribute Table

2.4 diffNLR: Reflecting differences

-From fig we can see that PT0 and PT1 are in different groups with similarity of XX.

Inspired by diff original algorithm[33] that has bin used in Git and GNU Diff, we visualize the differences of a pair of PT as shown in fig??.

This visualization reflects of the differences of occurrences of PT

Figure 4: Pair-wise Jaccard Similarity Matrix (JSM) of MPI processes in Sample code

elements and their **orders**.

In section 5 we show how this visualization can help us locating the points of divergence in PTs, and potential bug manifestation and root cause.

2.5 Experimental Methodology

- Candidate to look at observe its diff NLR: Max|JSM[i][j](buggy) - JSM[i][j](bugfree)|

2.6 Additional Remarks

3 RELATED WORK

3.1 Program Understanding

- Score-P [23]
- TAU [38]
- ScalaTrace: Scalable compression and replay of communication traces for HPC [35]
- Barrier Matching for Programs with Textually unaligned barriers [42]
- Pivot Tracing: Dynamic causal monitoring for distributed systems Johnathan mace [29]
- Automated Charecterization of parallel application communication patterns [37]
- Problem Diagnosis in Large Scale Computing environments [31]
- Probablistic diagnosis of performance faults in large-scale parallel applications [25]
- detecting patterns in MPI communication traces robert preissl [36]
- D4: Fast concurrency debugging with parallel differntial analysis bozhen liu [28]
- Marmot: An MPI analysis and checking tool bettina krammer [24]
- MPI-checker Static Analysis for MPI Alexandrer droste [14]
- STAT: stack trace analysis for large scale debugging Dorian Arnold [1]
- DMTracker: Finding bugs in large-scale parallel programs by detecting anomaly in data movements [16]
- SyncChecker: Detecting synchronization errors between MPI applications and libraries [10]
- Model Based fault localization in large-scale computing systems Naoya Maruyama [30]
- Synoptic: Studying logged behavior with inferred models ivan beschastnikh [4]
- Mining temporal invariants from partially ordered logs ivan beschastnikh [6]
- Scalable Temporal Order Analysis for Large Scale Debugging
 Dong Ahn [2]
- Inferring and asserting distributed system invariants ivan beschastnikh - stewart grant [19]
- PRODOMETER: Accurate application progress analysis for large-scale parallel debugging subatra mitra [32]
- Automaded : Automata-based debugging for dissimilar parallel tasks greg [8]
- Automaded : large scale debugging of parallel tasks with Automaded ignacio [26]
- Inferring models of concurrent systems from logs of their behavior with CSight ivan [5]

3.2 Trace Analysis

- Trace File Comparison with a hierarchical Sequence Alignment algorithm [40]
- structural clustering : matthias weber [41]
- building a better backtrace: techniques for postmortem program analysis ben liblit [27]

 automatically charecterizing large scale program behavior timothy sherwood [39]

3.3 Visualizations

- Combing the communication hairball: Visualizing large-scale parallel execution traces using logical time - katherine e isaacs [21]
- recovering logical structure from charm++ event traces [20]
- ShiViz Debugging distributed systems [7]

3.4 Concept Lattice and LCA

- Vijay Garg Applications of lattice theory in distributed systems
- Dimitry Ignatov [?] Concept Lattice Applications in Information Retrieval
- [15] [18] [3] [17] [33]

3.5 Repetitive Patterns

• [11] [22] [34] [13] [12]

3.6 STAT

Parallel debugger STAT[1]

- STAT gathers stack traces from all processes
- Merge them into prefix tree
- Groups processes that exhibit similar behavior into equivalent classes
- A single representative of each equivalence can then be examined with a full-featured debugger like TotalView or DDT

What STAT does not have?

- FP debugging
- Portability (too many dependencies)
- Domain-specific
- Loop structures and detection

Figure 5: diff Trace Overview

4 DFFTRACE TOOL ARCHITECTURE

4.1 General Idea

Here is a general overview of DiffTrace and its components

- Motivating example
- Problem statement
- Potential Approaches and Related Work
- Next subsections will explain the components that we have in our framework and the corresponding related work and background

4.2 Fault Injection

4.3 ParLOT

2-3 paragraph explanation about ParLOT and its mechanism $\cbekspace[\ref{eq:paragraph}]$

4.4 Filter

Include a table with all filters and their regular expressions

- 4.4.1 General Filters.
 - Returns
 - .plt
 - Memory
 - Network
 - Polling
 - String
 - Customize
 - IncludeEverything
- 4.4.2 Target Filters.
 - MPI_
 - MPIall
 - MPI_ Collectives
 - MPI_ Send/Recv
 - OMPall
 - OMPcritical
 - OMPmutex

4.5 Nested Loop Recognition

- 4.5.1 Background.
- 4.5.2 Implementation.

4.6 Concept Lattice Analysis

- 4.6.1 Background.
 - FCA (formal concept analysis) background and citations
 - FCA applications in all areas
 - FCA applications in Data Mining and Information Retrieval
 - FCA applications in distributed systems (Garg's work)
 - intro to Concept, Object, Attribute and other definitions

4.6.2 Objects/Attributes. Mapping of Object/Attribute (general) to Trace/Attribute (clTrace)

What do we expect to gain by doing so

- Single entity represents the whole execution of HPC application (can be used as signature/model in ML)
- Classifying similar behavior objects(traces)
- Efficient Incremental CL building makes it scalable
- Efficient full pair-wise Jaccard Similarity Matrix extraction
- 4.6.3 CL generation.
 - background
 - current approach
- 4.6.4 Jaccard Similarity Matrix.
 - background
 - LCA
 - Benefits

4.7 diffNLR

- motivation
- diff algorithm
- visualization

4.8 FP-Trace

5 EXPERIMENTAL STUDIES5.1 Case Study: ILCS-TSP

```
Here is the ILCS framework pseudo-code. User needs to write
CPU_Init(),CPU_Exec() and CPU_Output().
```

```
int main(argc, argv){
1
    MPI Init();
2
3
    MPI_Comm_size()
    MPI_Comm_rank(my_rank)
    // Figuring local number of CPUs
5
    MPI_Reduce() // Figuring global number of CPUs
6
7
    CPU_Init();
8
    //For storing local champion results
9
    champ[CPUs] = malloc();
10
    MPI_Barrier();
    #pragma omp parallel num_threads(CPUs+1)
11
12
      rank = omp_get_thread_num()
13
      if (rank == 0) \{ // communication thread \}
14
15
        //Find and report the thread with
16
        //local champion, global champion
17
        MPI AllReduce();
18
19
        //Find and report the process with
        //global champion
20
        MPI_AllReduce();
21
        //The process with the global champion
22
        //copy its results to bcast_buffer
23
24
        if (my_rank == global_champion){
         #pragma omp cirtical
25
         memcpy(bcast_buffer,local_champ)
26
27
        //Broadcast the champion
28
        MPI_Bcast(bcast_buffer)
29
30
       } while (no_change_threshold);
31
       cont=0 // signal worker threads to stop
      } else{ // worker threads
32
33
       while (cont) {
        // Calculate Seed
34
35
        local result = CPU Exec()
        if (local_result < champ[rank]){</pre>
36
         #pragma omp cirtical
37
         memcpy(champ[rank],local_result)
38
39
        }
40
      }
      }
41
42
    //Find and report the thread with
43
    //local champion, global champion
44
    MPI AllReduce();
45
46
    //Find and report the process with
```

```
//global champion
47
     MPI AllReduce();
     // The process with the global champion
     // copy its results to bcast_buffer
     if (my_rank == global_champion){
51
      #pragma omp cirtical
52
      memcpy(bcast_buffer,local_champ)
53
54
55
     //Broadcast the champion
56
     MPI_Bcast(bcast_buffer)
     if(my_rank = = 0)
57
     CPU Output (champ)
60
     MPI_Finalize()
61
   }
62
   /* User code for TSP problem */
64
65
   CPU Init(){
66
    // Read In data from cities
    // Calculate distances
67
    // Return data structure to store champion
68
69
   }
70
71
   CPU_Exec(){
    // Find local champions (TSP tours)
72
73 }
74
   CPU Output(){
75
    // Output champion
76
77
   }
```

	Filter	Attributes	Top Thread 0	Top Thread 1	Top Thread 2	Top Thread 3	Top Thread 4
8	(14)11.mem.mpicol.ompcrit.cust.0K10	doub.actual	1:(1_0 6_0) 1.00 2:(2_0 6_0) 1.00 3:(5_0 6_0) 1.00	1:(2_1,3_1):0.00 2:(0_1,4_1):0.00 3:(0_1,5_1):0.00	1:(1_2,6_2):0.57 2:(3_2,6_2):0.42 3:(1_2,3_2):0.34	1:(1_3,4_3):0.47 2:(6_3,7_3):0.38 3:(0_3,2_3):0.27	1:(6_4,7_4):0.71 2:(4_4,6_4):0.69 3:(0_4,6_4):0.69
1	(14)11.mem.mpicol.ompcrit.cust.0K10	doub.log10	1:(1_0 6_0) 1.00 2:(2_0 6_0) 1.00 3:(5_0 6_0) 1.00	1:(2_1,3_1):0.00 2:(0_1,4_1):0.00 3:(0_1,5_1):0.00	1:(3_2,6_2):0.36 2:(0_2,2_2):0.30 3:(1_2,3_2):0.29	1:(1_3,6_3):0.62 2:(0_3,5_3):0.29 3:(1_3,4_3):0.26	1:(1_4,5_4):0.62 2:(0_4,5_4):0.39 3:(0_4,4_4):0.33
2	(14)11.mem.mpicol.ompcrit.cust.0K10	doub.orig	1:(1_0.6_0) 1.00 2:(2_0.6_0) 1.00 3:(5_0.6_0) 1.00	1:(2_1,3_1):0.00 2:(0_1,4_1):0.00 3:(0_1,5_1):0.00	1:(3_2,6_2):0.36 2:(0_2,2_2):0.30 3:(1_2,3_2):0.29	1:(1_3,6_3):0.62 2:(0_3,5_3):0.29 3:(1_3,4_3):0.26	1:(1_4,5_4):0.62 2:(0_4,5_4):0.39 3:(0_4,4_4):0.33
3	(14)11.mem.mpicol.ompcrit.cust.0K10	sing.actual	1:(1_0.6_0) 1.00 2:(2_0.6_0) 1.00 3:(5_0.6_0) 1.00	1:(2_1,3_1):0.00 2:(0_1,4_1):0.00 3:(0_1,5_1):0.00	1:(3_2,6_2):0.71 2:(1_2,3_2):0.60 3:(1_2,6_2):0.47	1:(0_3,2_3):0.67 2:(4_3,7_3):0.60 3:(6_3,7_3):0.46	1:(6_4,7_4):0.60 2:(0_4,4_4):0.40 3:(2_4,6_4):0.40
4	(14)11.mem.mpicol.ompcrit.cust.0K10	sing.log10	1:(1_0 6_0) 1.00 2:(2_0 6_0) 1.00 3:(5_0 6_0) 1.00	1:(2_1,3_1):0.00 2:(0_1,4_1):0.00 3:(0_1,5_1):0.00	1:(5_2,7_2):0.67 2:(1_2,3_2):0.67 3:(1_2,6_2):0.50	1:(0_3,2_3):0.40 2:(1_3,6_3):0.40 3:(0_3,5_3):0.27	1:(5_4,6_4):0.50 2:(0_4,5_4):0.50 3:(1_4,5_4):0.40
5	(14)11.mem.mpicol.ompcrit.cust.0K10	sing.orig	1:(1_0.6_0) 1.00 2:(2_0.6_0) 1.00 3:(5_0.6_0) 1.00	1:(2_1,3_1):0.00 2:(0_1,4_1):0.00 3:(0_1,5_1):0.00	1:(3_2,6_2):0.43 2:(0_2,2_2):0.33 3:(1_2,3_2):0.33	1:(0_3,5_3):0.33 2:(0_3,2_3):0.33 3:(1_3,6_3):0.33	1:(5_4,6_4):0.43 2:(0_4,5_4):0.43 3:(1_4,5_4):0.33
6	-	Average	1.000	0.000	0.441	0.403	0.488
7	7 - Mean 1.000		0.000	0.441	0.483	0.488	
8	-	Min	1.000	0.000	0.286	0.262	0.333
9	-	Max	1.000	0.000	0.714	0.667	0.714

Figure 6: Recommendation Table Bug 1

Table ?? describes the bug that I injected to ILCS-TSP

5.1.1 1: AllReduce wrong op - proc 2. Bug injected within to MPI_AllReduce() in line 21 where the local champions of all processes are about computed and their MIN is going to be distributed to all other processes. However, with injecting the wrong operation (MAX instead of MIN) to one (or more) of the processes, the logic of if statement in line 24 would be violated and the control flow of the code would not take this branch which is the the core part of ILCS (deciding champion to broadcast to other processes).

After collecting traces from bug-free version and this buggy version of ILCS-TSP, and after applying filters and detecting loops, my ranking system, with the highest possible score, recommends to look at figure 4 diffNLR. This diffNLR shows that in the bug free version, we are expecting that at least one of the processes (in this case process 6 to win the championship, copy the result of that process to broadcast_buffer and broadcast it to all other processes. However, in the buggy version, the champion never gets updated (never goes through OMP critical section).

The recommendation system that I designed tries to find the pairs of traces that their similarities changed the most. In other word, this recommendation system wants to suggest top diffNLRs that are candidates to show the impact of the bug based on trace similarities. (table

5.1.2 2: AllReduce wrong size - one and all. This bug made the code crash with showing an error in MPI_Bcast(), although the bug was injected to MPI_AllReduce(). Figure 5 $CMPdiffNLR(P_{2.0}, P_{6.0})$ and 11 $CMPdiffNLR(P_{1.0}, P_{6.0})$, where $CMPdiffNLR(P_i, P_j)$ shows the comparison of

```
\begin{split} & diffNLR(P_{i.buggy}, P_{j.buggy}) \\ & \text{and} \\ & diffNLR(P_{i.bugFree}, P_{j.bugFree}) \end{split}
```

Ranking table is showing all 1.00 since most of the traces did not go through.

- 5.1.3 3: Missing Critical Section one thread in on process. I planted the bug (missing critical section) in process 2
- 5.1.4 4: Missing Critical Section one thread in on process.

Table 2: Injected Bugs to ILCS-TSP

ID	Level	Bugs	Description			
1			Different operation (MPI_MAX) in only one process (buggyProc = 2) for MPI_ALLREDUCE() in Line 21			
2	1	allRed1wrgSize-1-all-x	Wrong size in only one process (buggyProc = 2) for MPI_ALLREDUCE() in Line 21			
3		allRed1wrgSize-all-all-x	Wrong Size in all processes for MPI_ALLREDUCE() in Line 21			
4	MPI	allRed2wrgOp-1-all-x	Different operation (MPI_MAX) in only one (buggyProc) for first MPI_ALLREDUCE() – L277:ilcsTSP.c			
5	IVIFI	allRed2wrgSize-1-all-x	Wrong size in only one (buggyProc) for first MPI_ALLREDUCE() – L277:ilcsTSP.c			
6		allRed2wrgSize-all-all-x	Wrong Size in all processes for second MPI_ALLREDUCE() – L277:ilcsTSP.c			
7		bcastWrgSize-1-all-x	Wrong Size in only one (buggyProc) of MPI_Bcast() - L290:ilcsTSP.c			
8		bcastWrgSize-all-all-x	Wrong Size n all processes for MPI_Bcast() - L240:ilcsTSP.c			
9		misCrit-1-1-x	Missing Critical Section in buggyProc and buggyThread – L170:ilcsTSP.c			
10		misCrit-all-1-x	Missing Critical Section in buggyThread and all prcoesses – L170:ilcsTSP.c			
11		misCrit-1-all-x	Missing Critical Section in buggyProc and all threads – L170:ilcsTSP.c			
12		misCrit-all-all-x	Missing Critical Section in all procs and threads – L170:ilcsTSP.c			
13	OMP	misCrit2-1-1-x	Missing Critical Section in buggyProc and buggyThread – L230:ilcsTSP.c			
14	OME	misCrit2-all-1-x	Missing Critical Section in buggyThread – L230:ilcsTSP.c			
15		misCrit2-1-all-x	Missing Critical Section in buggyProc and all threads – L230:ilcsTSP.c			
16		misCrit2-all-all-x	Missing Critical Section in all procs and threads – L230:ilcsTSP.c			
17		misCrit3-1-all-x	Missing Critical Section in buggyProc and all threads – L280:ilcsTSP.c			
18		misCrit3-all-all-x	Missing Critical Section in all procs and threads – L280:ilcsTSP.c			
19	General	infLoop-1-1-1	Injected an infinite loop after CPU_EXEC() in buggyProc,buggyThread & buggyIter L164:ilcsTSP.c			

Figure 7: diffNLR of process 2 and process 6 buggy(AllReduce() wrong op) vs. bug-free

Figure 8: diffNLR of process 2 and process 6 buggy(AllReduce() wrong size) vs. bug-free

Figure 9: diffNLR of process 1 and process 6 buggy(AllReduce() wrong size) vs. bug-free

Figure 10: Part of ranking table for MisCrit 1-1

Figure 11: diffNLR of process 1 thread 3 and process 2 thread 3 buggy(missing critical section) vs. bug-free

2	(7)11.mem.ompcrit.cust.0K10	doub.actual	1:(3_0,4_0):1.00	1:(2_1,3_1):0.00	1:(3_2,6_2):0.62	1:(6_3,7_3):0.88	1:(0_4,4_4):1.00
			2:(2_0,3_0):1.00	2:(0_1,4_1):0.00	2:(3_2,5_2):0.62	2./1 2 2 2\.0 70	2:(4_4,6_4):0.83
			3:(1_0,6_0):1.00				
3	(7)11.mem.ompcrit.cust.0K10	doub.log10	1:(3_0,4_0):1.00	1:(2_1,3_1):0.00	1:(3_2,4_2):0.83	1:(1_3,4_3):0.83	1:(0_4,4_4):1.00
			2:(2_0,3_0):1.00	2:(0_1,4_1):0.00	2:(4_2,/_2):0:/1	2:(0_3,4_3):0.83	2:(4_4,6_4):0.83
			3:(1_0,6_0):1.00	3:(0_1,5_1):0.00	2./1 2 / 2).0 71	3:(2_3,4_3):0.71	3:(4_4,5_4):0.83
4	(7)11.mem.ompcrit.cust.0K10	doub.orig	1:(3_0,4_0):1.00	1:(2_1,3_1):0.00	1:(3_2,4_2):0.83	1:(1_3,4_3):0.83	1:(0_4,4_4):1.00
			2:(2_0,3_0):1.00	2:(0_1,4_1):0.00	2:(4_2,7_2):0.71	2:(0_3,4_3):0.83	2:(4_4,6_4):0.83
			3:(1_0,6_0):1.00	3:(0_1,5_1):0.00	3:(1_2,4_2):0.71	3:(2 3.4 3):0.71	3:(4_4,5_4):0.83
5	(7)11.mem.ompcrit.cust.0K10	sing.actual	1:(3_0,4_0):0.75	1:(2_1,3_1):0.00	1:(1_2,4_2):0.60	1:(1 3.2 3):0.89	1:(4_4,6_4):0.52
			2:(2_0,3_0):0.75	2:(0_1,4_1):0.00	2:(4 2,6 2):0.60	2:(6_3,7_3):0.89	2:(2_4,6_4):0.50
			3:(1_0,6_0):0.75	3:(0_1,5_1):0.00		3:(4_3,6_3):0.50	3:(1_4,2_4):0.50
6	(7)11.mem.ompcrit.cust.0K10	sing.log10	1:(3_0,4_0):0.75	1:(2_1,3_1):0.00	1:(4_2,7_2):0.63	1:(0_3,4_3):0.63	1:(4_4,6_4):0.67
			2:(2_0,3_0):0.75	2:(0_1,4_1):0.00	2:(0_2,4_2):0.63	2:(4_3,7_3):0.63	2:(2_4,4_4):0.63
			3:(1_0,6_0):0.75	3:(0_1,5_1):0.00	3:(4_2,5_2):0.63	3:(4_3,5_3):0.63	3:(1_4,4_4):0.50
7	(7)11.mem.ompcrit.cust.0K10	sing.orig	1:(3_0,4_0):0.75			1:(0_3,4_3):0.63	1:(4_4,6_4):0.67
			2:(2_0,3_0):0.75	2:(0_1,4_1):0.00	2:(0_2,4_2):0.63	2:(4_3,7_3):0.63	2:(2_4,4_4):0.63
			3:(1_0,6_0):0.75	3:(0_1,5_1):0.00	3:(4 2.5 2):0.63	3:(4 3,5 3):0.63	3:(1 4.4 4):0.50
	3	(7)11.mem.ompcrit.cust.0K10 (7)11.mem.ompcrit.cust.0K10 (7)11.mem.ompcrit.cust.0K10 (7)11.mem.ompcrit.cust.0K10	doub.log10 4 (7)11.mem.ompcrit.cust.0K10 doub.orig 5 (7)11.mem.ompcrit.cust.0K10 sing.actual 6 (7)11.mem.ompcrit.cust.0K10 sing.log10	2:(2 0,3 0):1.00 3:(1,0,6 0):1.00 3:(1,0,6 0):1.00 3:(1,0,6 0):1.00 2:(2,0,3,0):1.00 3:(1,0,6 0):1.00 2:(2,0,3,0):1.00 2:(2,0,3,0):1.00 2:(2,0,3,0):1.00 2:(2,0,3,0):1.00 2:(2,0,3,0):1.00 2:(2,0,3,0):1.00 3:(1,0,6 0):1.00 3:(1,0,6 0):0.75 3:(1,0,6 0):0.75 3:(1,0,6 0):0.75 7 (7)11.mem.ompcrit.cust.0K10 sing.oria 1:(3,0,4,0):0.75 3:(1,0,6 0):0.75	2:(2-0,3-0):1.00 2:(0-1,4-1):0.00 3:(1-0,6-0):1.00 3:(0-1,5-1):0.00 3:(1-0,6-0):1.00 3:(0-1,5-1):0.00 3:(2-0,3-0):1.00 2:(0-1,4-1):0.00 4:(7):11.mem.ompcrit.cust.0K10 doub.orig 1:(3-0,4-0):1.00 1:(2-1,3-1):0.00 4:(7):11.mem.ompcrit.cust.0K10 doub.orig 1:(3-0,4-0):1.00 1:(2-1,3-1):0.00 5:(7):11.mem.ompcrit.cust.0K10 sing.actual 1:(3-0,4-0):0.75 1:(2-1,3-1):0.00 6:(7):11.mem.ompcrit.cust.0K10 sing.logi0 1:(3-0,4-0):0.75 1:(2-1,3-1):0.00 6:(7):11.mem.ompcrit.cust.0K10 sing.logi0 1:(3-0,4-0):0.75 1:(2-1,3-1):0.00 7:(7):11.mem.ompcrit.cust.0K10 sing.orig 1:(3-0,4-0):0.75 1:(2-1,3-1):0.00 7:(7):11.m	2:(2 p, 3 e):1.00 2:(0 1, 4 1):0.00 2:(3 2, 5 2):0.62 3:(1 0, 6 e):1.00 3:(0 1, 5 1):0.00 3:(5 2, 6 2):0.34 3:(1 0, 6 e):1.00 3:(0 1, 5 1):0.00 3:(5 2, 6 2):0.34 3:(1 0, 6 e):1.00 3:(0 1, 5 1):0.00 3:(5 2, 6 2):0.34 4:(7) 11.mem.ompcrit.cust.0K10 doub.orig 1:(3 e, 4 e):1.00 1:(2 1, 3 1):0.00 2:(4 e, 7 e):0.71 4:(7) 11.mem.ompcrit.cust.0K10 doub.orig 1:(3 e, 4 e):1.00 1:(2 1, 3 1):0.00 2:(4 e, 7 e):0.71 5:(7) 11.mem.ompcrit.cust.0K10 sing.actual 1:(3 e, 4 e):0.75 1:(2 1, 3 1):0.00 2:(4 e, 2 e):0.71 6:(7) 11.mem.ompcrit.cust.0K10 sing.log10 1:(3 e, 4 e):0.75 1:(2 1, 3 1):0.00 2:(4 e, 2 e):0.60 6:(7) 11.mem.ompcrit.cust.0K10 sing.log10 1:(3 e, 4 e):0.75 1:(2 1, 3 1):0.00 2:(4 e, 2 e):0.60 7:(7) 11.mem.ompcrit.cust.0K10 sing.orig 1:(3 e, 4 e):0.75 3:(0 1, 5 1):0.00 3:(4 e, 2 e):0.63 7:(7) 11.mem.ompcrit.cust.0K10 sing.orig 1:(3 e, 4 e):0.75 3:(0 1, 5 1):0.00 3:(4 e, 2 e):0.63 7:(7) 11.mem.ompcrit.cust.0K10 sing.orig 1:(3 e, 4 e):0.75 3:(0 1, 5 1):0.00 3:(4 e, 2 e):0.63 7:(7) 11.mem.ompcrit.cust.0K10 sing.orig 1:(3 e, 4 e):0.75 3:(0 1, 5 1):0.00 3:(4 e, 2 e):0.63 7:(7) 11.mem.ompcrit.cust.0K10 sing.orig 1:(3 e, 4 e):0.75 3:(0 1, 5 1):0.00 3:(4 e, 2 e):0.63 7:(7) 11.mem.ompcrit.cust.0K10 sing.orig 1:(3 e, 4 e):0.75 3:(0 1, 5 1):0.00 3:(4 e, 2 e):0.63 7:(7) 11.mem.ompcrit.cust.0K10 sing.orig 1:(3 e, 4 e):0.75 3:(0 1, 4 1):0.00 2:(0 e, 4 e):0.63 7:(7) 11.mem.ompcrit.cust.0K10 sing.orig 1:(3 e, 4 e):0.75 3:(0 1, 5 1):0.00 3:(4 e, 2 e):0.63 7:(7) 11.mem.ompcrit.cust.0K10 sing.orig 1:(3 e, 4 e):0.75 3:(0 1, 4 1):0.00 2:(0 1, 4 e):0.63 7:(7) 11.mem.ompcrit.cust.0K10 sing.orig 1:(3 e, 4 e):0.75 3:(0 1, 4 1):0.00 2:(0 1, 4 e):0.63 7:(7) 11.mem.ompcrit.cust.0K10 sing.orig 1:(3 e, 4 e):0.75 3:(0 1, 4 e):0.75 7:(7) 11.mem.ompcrit.cust.0K10 sing.orig 1:(3 e, 4 e):0.75 3	2:(2 n 3 n):1.00 2:(0 1, 4 1):0.00 2:(3 2, 5 2):0.62 3:(3 3, 5 2):0.62 3:(3 3, 5 2):0.62 3:(3 3, 5 2):0.62 3:(3 3, 5 2):0.62 3:(3 3, 5 2):0.62 3:(3 3, 5 2):0.62 3:(3 3, 5 2):0.62 3:(3 3, 5 2):0.63 3:(3 3, 4 3):0.57 3:(3 3, 4 0):1.00 1:(3 3, 4 0):1.00 1:(3 3, 4 0):1.00 1:(3 3, 4 2):0.63 3:(1 3, 6 0):1.00 1:(2 1, 3 1):0.00 1:(3 2, 4 2):0.63 3:(2 3, 4 3):0.83 2:(2 0, 3 0):1.00 1:(2 1, 3 1):0.00 1:(3 2, 4 2):0.63 3:(2 3, 4 3):0.83 2:(2 0, 3 0):1.00 1:(2 1, 3 1):0.00 1:(3 2, 4 2):0.63 1:(3 3, 4 3):0.83 2:(2 0, 3 0):1.00 1:(2 1, 3 1):0.00 1:(3 2, 4 2):0.01 1:(3 3, 4 3):0.83 2:(2 0, 3 0):1.00 1:(2 1, 3 1):0.00 1:(3 2, 4 2):0.01 1:(3 3, 4 3):0.83 2:(2 0, 3 0):1.00 1:(2 1, 3 1):0.00 1:(3 2, 4 2):0.01 1:(3 3, 4 3):0.83 2:(2 0, 3 0):0.75 1:(2 1, 3 1):0.00 1:(1 2, 4 2):0.60 1:(2 3, 4 3):0.83 2:(2 0, 3 0):0.75 1:(2 1, 3 1):0.00 1:(1 2, 4 2):0.60 1:(2 3, 4 3):0.63 2:(4 3, 7 3):0.63 2:(4 3, 7 3):0.63 3:(4 3, 6 3):0.55 1:(2 3, 4 3):0.55 1:(2 3, 4 3):0.63 3:(4 3, 6 3):0.55 1:(2 3, 4 3):0.63 3:(4 3, 6 3):0.55 1:(2 3, 4 3):0.63 3:(4 3, 5 3):

Figure 12: Part of ranking table for MisCrit 1-all

Figure 13: diffNLR of process 1 thread 3 and process 2 thread 3 buggy(missing critical section) vs. bug-free

Figure 14: diffNLR of process 1 thread 3 and process 2 thread 3 buggy(missing critical section) vs. bug-free

DiffTrace: Efficient Whole-Program Trace Analysis and Diffing

5.2 Case Study: Hybrid (MPI+OMP) Matmul

Below is the JSM of bug free version of hybrid matmul applying different filters to understand its behavior.

Figure 15: JSM of bug-free version of hybrid Matmul (all functions)

Figure 16: JSM of bug-free version of hybrid Matmul (MPI and OMP functions)

Figure 17: JSM of bug-free version of hybrid Matmul (MPI Only)

6 DISCUSSION AND FUTURE WORK

REFERENCES

- [1] D. H. Ahn, B. R. de Supinski, I. Laguna, G. L. Lee, B. Liblit, B. P. Miller, and M. Schulz. 2009. Scalable temporal order analysis for large scale debugging. In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis. 1–11. https://doi.org/10.1145/1654059.1654104
- [2] Dong H. Ahn, Bronis R. de Supinski, Ignacio Laguna, Gregory L. Lee, Ben Liblit, Barton P. Miller, and Martin Schulz. 2009. Scalable Temporal Order Analysis for Large Scale Debugging. In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC '09). ACM, New York, NY, USA, Article 44, 11 pages. https://doi.org/10.1145/1654059.1654104
- [3] Michael A. Bender, Martín Farach-Colton, Giridhar Pemmasani, Steven Skiena, and Pavel Sumazin. 2005. Lowest common ancestors in trees and directed acyclic graphs. *Journal of Algorithms* 57, 2 (2005), 75 – 94. https://doi.org/10.1016/j. jalgor.2005.08.001
- [4] Ivan Beschastnikh, Jenny Abrahamson, Yuriy Brun, and Michael D. Ernst. 2011. Synoptic: Studying Logged Behavior with Inferred Models. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering (ESEC/FSE '11). ACM, New York, NY, USA, 448–451. https://doi.org/10.1145/2025113.2025188
- [5] Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, and Arvind Krishnamurthy. 2014. Inferring Models of Concurrent Systems from Logs of Their Behavior with CSight. In Proceedings of the 36th International Conference on Software Engineering (ICSE 2014). ACM, New York, NY, USA, 468–479. https://doi.org/10.1145/2568225. 2568246
- [6] Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, Arvind Krishnamurthy, and Thomas E. Anderson. 2011. Mining Temporal Invariants from Partially Ordered Logs. In Managing Large-scale Systems via the Analysis of System Logs and the Application of Machine Learning Techniques (SLAML '11). ACM, New York, NY, USA, Article 3, 10 pages. https://doi.org/10.1145/2038633.2038636
 [7] Ivan Beschastnikh, Patty Wang, Yuriy Brun, and Michael D. Ernst. 2016. De-
- [7] Ivan Beschastnikh, Patty Wang, Yuriy Brun, and Michael D. Ernst. 2016. Debugging Distributed Systems. Commun. ACM 59, 8 (July 2016), 32–37. https://doi.org/10.1145/2909480
- [8] G. Bronevetsky, I. Laguna, S. Bagchi, B. R. de Supinski, D. H. Ahn, and M. Schulz. 2010. AutomaDeD: Automata-based debugging for dissimilar parallel tasks. In 2010 IEEE/IFIP International Conference on Dependable Systems Networks (DSN). 231–240. https://doi.org/10.1109/DSN.2010.5544927
- [9] M. Burtscher and H. Rabeti. 2013. A Scalable Heterogeneous Parallelization Framework for Iterative Local Searches. In 2013 IEEE 27th International Symposium on Parallel and Distributed Processing. 1289–1298. https://doi.org/10.1109/ IPDPS.2013.27
- [10] Z. Chen, X. Li, J. Chen, H. Zhong, and F. Qin. 2012. SyncChecker: Detecting Synchronization Errors between MPI Applications and Libraries. In 2012 IEEE 26th International Parallel and Distributed Processing Symposium. 342–353. https://doi.org/10.1109/IPDPS.2012.40
- [11] M. Crochemore and W. Rytter. 1991. Usefulness of the Karp-Miller-Rosenberg algorithm in parallel computations on strings and arrays. *Theoretical Computer Science* 88, 1 (1991), 59 – 82. http://www.sciencedirect.com/science/article/pii/ 030439759190073B
- [12] Maxime Crochemore and Wojciech Rytter. 1994. Text Algorithms. Oxford University Press, Inc., New York, NY, USA.
- [13] Maxime Crochemore and Wojciech Rytter. 2002. Jewels of Stringology. World Scientific. https://books.google.com/books?id=ipuPQgAACAAJ
- [14] Alexander Droste, Michael Kuhn, and Thomas Ludwig. 2015. MPI-checker: Static Analysis for MPI. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC (LLVM '15). ACM, New York, NY, USA, Article 3, 10 pages. https://doi.org/10.1145/2833157.2833159
- [15] Bernhard Ganter and Rudolf Wille. 1997. Formal Concept Analysis: Mathematical Foundations (1st ed.). Springer-Verlag New York, Inc., Secaucus, NJ, USA.
- [16] Q. Gao, F. Qin, and D. K. Panda. 2007. DMTracker: finding bugs in large-scale parallel programs by detecting anomaly in data movements. In SC '07: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. 1–12. https://doi.org/10. 1145/1362622.1362643
- [17] Vijay K. Garg. 2013. Maximal Antichain Lattice Algorithms for Distributed Computations. In *Distributed Computing and Networking*, Davide Frey, Michel Raynal, Saswati Sarkar, Rudrapatna K. Shyamasundar, and Prasun Sinha (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 240–254.
- [18] Robert Godin, Rokia Missaoui, and Hassan Alaoui. [n. d.]. INCREMENTAL CON-CEPT FORMATION ALGORITHMS BASED ON GALOIS (CONCEPT) LATTICES. Computational Intelligence 11, 2 ([n. d.]), 246–267.
- [19] Stewart Grant, Hendrik Cech, and Ivan Beschastnikh. 2018. Inferring and Asserting Distributed System Invariants. In Proceedings of the 40th International Conference on Software Engineering (ICSE '18). ACM, New York, NY, USA, 1149–1159. https://doi.org/10.1145/3180155.3180199
- [20] K. E. Isaacs, A. Bhatele, J. Lifflander, D. Böhme, T. Gamblin, M. Schulz, B. Hamann, and P. Bremer. 2015. Recovering logical structure from Charm++ event traces. In SC '15: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 1–12. https://doi.org/10.1145/2807591.2807634

- [21] Katherine E. Isaacs, Peer-Timo Bremer, Ilir Jusufi, Todd Gamblin, Abhinav Bhatele, Martin Schulz, and Bernd Hamann. 2014. Combing the Communication Hairball: Visualizing Parallel Execution Traces using Logical Time. IEEE Transactions on Visualization and Computer Graphics 20 (2014), 2349–2358.
- [22] Richard M. Karp, Raymond E. Miller, and Arnold L. Rosenberg. 1972. Rapid Identification of Repeated Patterns in Strings, Trees and Arrays. In Proceedings of the Fourth Annual ACM Symposium on Theory of Computing (STOC '72). ACM, New York, NY, USA, 125–136. https://doi.org/10.1145/800152.804905
- [23] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm, Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen D. Malony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk Schmidl, Sameer Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg, and Felix Wolf. 2011. Score-P: A Joint Performance Measurement Run-Time Infrastructure for Periscope, Scalasca, TAU, and Vampir. In Tools for High Performance Computing 2011 Proceedings of the 5th International Workshop on Parallel Tools for High Performance Computing, ZIH, Dresden, September 2011. 79–91.
- [24] Bettina Krammer, Matthias MÃŒller, and Michael Resch. 2004. MPI application development using the analysis tool MARMOT, Vol. 3038. 464–471. https://doi. org/10.1007/978-3-540-24688-6_61
- [25] Ignacio Laguna, Dong H. Ahn, Bronis R. de Supinski, Saurabh Bagchi, and Todd Gamblin. 2012. Probabilistic Diagnosis of Performance Faults in Large-scale Parallel Applications. In Proceedings of the 21st International Conference on Parallel Architectures and Compilation Techniques (PACT '12). ACM, New York, NY, USA, 213–222. https://doi.org/10.1145/2370816.2370848
- [26] Ignacio Laguna, Todd Gamblin, Bronis R. de Supinski, Saurabh Bagchi, Greg Bronevetsky, Dong H. Anh, Martin Schulz, and Barry Rountree. 2011. Large Scale Debugging of Parallel Tasks with AutomaDeD. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11). ACM, New York, NY, USA, Article 50, 10 pages. https://doi.org/10.1145/ 2063384.2063451
- [27] Ben Liblit and Alex Aiken. 2002. Building a Better Backtrace: Techniques for Postmortem Program Analysis. Technical Report. Berkeley, CA, USA.
- [28] Bozhen Liu and Jeff Huang. 2018. D4: Fast Concurrency Debugging with Parallel Differential Analysis. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2018). ACM, New York, NY, USA, 359–373. https://doi.org/10.1145/3192366.3192390
- [29] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2018. Pivot Tracing: Dynamic Causal Monitoring for Distributed Systems. ACM Trans. Comput. Syst. 35, 4, Article 11 (Dec. 2018), 28 pages. https://doi.org/10.1145/3208104
- [30] N. Maruyama and S. Matsuoka. 2008. Model-based fault localization in large-scale computing systems. In 2008 IEEE International Symposium on Parallel and Distributed Processing. 1–12. https://doi.org/10.1109/IPDPS.2008.4536310
- [31] A. V. Mirgorodskiy, N. Maruyama, and B. P. Miller. 2006. Problem Diagnosis in Large-Scale Computing Environments. In SC '06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. 11–11. https://doi.org/10.1109/SC.2006.50
- [32] Subrata Mitra, Ignacio Laguna, Dong H. Ahn, Saurabh Bagchi, Martin Schulz, and Todd Gamblin. 2014. Accurate Application Progress Analysis for Large-scale Parallel Debugging. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI '14). ACM, New York, NY, USA, 193–203. https://doi.org/10.1145/2594291.2594336
- [33] Eugene W. Myers. 1986. An O(ND) Difference Algorithm and Its Variations. Algorithmica 1, 2 (1986), 251–266. https://doi.org/10.1007/BF01840446
- [34] Atsuyoshi Nakamura, Tomoya Saito, Ichigaku Takigawa, Mineichi Kudo, and Hiroshi Mamitsuka. 2013. Fast algorithms for finding a minimum repetition representation of strings and trees. Discrete Applied Mathematics 161, 10 (2013), 1556 – 1575. https://doi.org/10.1016/j.dam.2012.12.013
- [35] Michael Noeth, Prasun Ratn, Frank Mueller, Martin Schulz, and Bronis R. de Supinski. 2009. ScalaTrace: Scalable compression and replay of communication traces for high-performance computing. J. Parallel and Distrib. Comput. 69, 8 (2009), 696 – 710. https://doi.org/10.1016/j.jpdc.2008.09.001 Best Paper Awards: 21st International Parallel and Distributed Processing Symposium (IPDPS 2007).
- [36] Robert Preissl, Thomas Köckerbauer, Martin Schulz, Dieter Kranzlmüller, Bronis R. de Supinski, and Daniel J. Quinlan. 2008. Detecting Patterns in MPI Communication Traces. 2008 37th International Conference on Parallel Processing (2008), 230–237.
- [37] Philip C. Roth, Jeremy S. Meredith, and Jeffrey S. Vetter. 2015. Automated Characterization of Parallel Application Communication Patterns. In Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing (HPDC '15). ACM, New York, NY, USA, 73–84. https: //doi.org/10.1145/2749246.2749278
- [38] Sameer S. Shende and Allen D. Malony. 2006. The Tau Parallel Performance System. *International Journal on High Performance Computer Applications* 20 (May 2006), 287–311. Issue 2. https://doi.org/10.1177/1094342006064482
- [39] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Automatically Characterizing Large Scale Program Behavior. In Proceedings of the

- 10th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS X). ACM, New York, NY, USA, 45–57. https://doi.org/10.1145/605397.605403
- [40] M. Weber, R. Brendel, and H. Brunst. 2012. Trace File Comparison with a Hierarchical Sequence Alignment Algorithm. In 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications. 247–254. https://doi.org/10.1109/ISPA.2012.40
- [41] Matthias Weber, Ronny Brendel, Tobias Hilbrich, Kathryn Mohror, Martin Schulz, and Holger Brunst. 2016. Structural Clustering: A New Approach to Support Performance Analysis at Scale. IEEE, 484–493. https://doi.org/10.1109/IPDPS. 2016.27
- [42] Yuan Zhang and Evelyn Duesterwald. 2007. Barrier Matching for Programs with Textually Unaligned Barriers. In Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '07). ACM, New York, NY, USA, 194–204. https://doi.org/10.1145/1229428.1229472