Đại học Bách Khoa TP.HCM Ngành Khoa Học Máy Tính

Đề tài: Bài tập lớn Môn Kiến Trúc Máy Tính Nâng Cao

GVHD: Trần Ngọc Thịnh

Học viên:

Bùi Đức Hiếu 7140231
Trịnh Văn Giang 7140006
Lê Nguyên Dũng 7140224
Lê Nguyễn Khánh Duy 7140226
Đoàn Dũ 7140223

TP.HCM, 3-12-2014

Mục lục

Mục lục	2
Bài 1:	3
Bài 2:	4
Bài 3:	5

Bài 1:

 \mathbf{D} ộ dài dịa chỉ $\mathbf{N} = 32$ bit

Kích thước block = 32 bytes = 25 bytes (độ dài block offset = 5 bit)

Kích thước cache = 32 KB = 1024 x kích thước block = 210 x kích thước block

A. Trường hợp dùng Dirrect Mapped

Kích thước cache = 32 KB = 1024 x kích thước block = 210 x kích thước block (độ dài index = 10 bit) Cấu trúc địa chỉ:

Tag (17 bits)	Index (10 bits)	Block Offset (5 bits)

B. Trường hợp dùng Full Associative

Cấu trúc địa chỉ:

Tag (27 bits)	Block Offset (5 bits)

C. Trường họp dùng 4-way Associative

Kích thước set = 4 x kích thước block

Kich thước cache = 210 x kích thước block = 28 x 22 x kích thước block = 28 x kích thước set Cấu trúc địa chỉ:

Tag (19 bits)	Index (8 bits)	Block Offset (5 bits)

<u>Bài 2:</u>

Với cache loại 4-way associative như bài 1. Ta có kết quả như sau:

Đối với trường hợp Write through no Write Allocation:

	Address	Tag	Index	Block offset	
RD	0x00000000	000 0000 0000 0000 0000	0000 0000	0 0000	Miss
WR	0x01000000	000 0000 1000 0000 0000	0000 0000	0 0000	Miss
RD	0x01000010	000 0000 1000 0000 0000	0000 0000	1 0000	Hit
WR	0x02000050	000 0001 0000 0000 0000	0000 0010	1 0000	Miss
RD	0x02000058	000 0001 0000 0000 0000	0000 0010	1 1000	Miss

Đối với trường hợp Write back with Write Allocation:

	Address	Tag	Index	Block offset	
RD	0x00000000	000 0000 0000 0000 0000	0000 0000	0 0000	Miss
WR	0x01000000	000 0000 1000 0000 0000	0000 0000	0 0000	Miss
RD	0x01000010	000 0000 1000 0000 0000	0000 0000	1 0000	Hit
WR	0x02000050	000 0001 0000 0000 0000	0000 0010	1 0000	Miss
RD	0x02000058	000 0001 0000 0000 0000	0000 0010	1 1000	Hit

Bài 3:

Unified Cache:

Kích thước = 32 KB

Misses/1000 instructions = 43.3

Miss Rate = (43.3/1000)/(1+0.7) = 25.47x10-3

Separate Cache:

I-Cache:

Kích thước = 16 KB

Misses/1000 instructions = 3.82

Miss Rate = $(3.82/1000)/(1) = 3.82 \times 10-3$

D-Cache:

Kích thước = 16 KB

Misses/1000 instructions = 40.9

Miss Rate = $(40.9/1000)/(0.7) = 58.43 \times 10-3$

Thời gian truy xuất bộ nhớ trung bình (average memory access time) = %instructions x (Hit Time + InstructionMissRate x MissPenalty) + %data x (Hit Time + DataMissRate x MissPenalty)

Separate Cache:

Thời gian truy xuất bộ nhớ trung bình = $1 \times (1 + 3.82 \times 10 - 3 \times 50) + 0.3 \times (1 + 58.43 \times 10 - 3 \times 50) = 1.191 + 1.176 = 2.367$

Unified Cache (1 port):

Thời gian truy xuất bộ nhớ trung bình = $1 \times (1 + 25.47 \times 10-3 \times 50) + 0.3 \times (1 + 1 + 25.47 \times 10-3 \times 50) = 2.274 + 0.982 = 3.256$

Kết luận:

Trong trường hợp tính toán, Separate Cache nhanh hơn so với Unified Cache (3.256/2.367 = 1.38 lần)

------ Hết -------