Χ

yashraj.devrat.aids.2020@vpkbiet.org >

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Introduction To Machine Learning (course)

Click to register for Certification exam

(https://examform.npte

If already registered, click to check your payment status

Cou	ırse
outl	ine

How does an NPTEL online course work? ()

Week 0 ()

Week 1 ()

Week 2 ()

Week 3 ()

Week 4 ()

Week 5 ()

ArtificialNeural

Week 5: Assignment 5

The due date for submitting this assignment has passed.

Due on 2023-08-30, 23:59 IST.

Assignment submitted on 2023-08-23, 08:40 IST

	9	
1)	The perceptron learning algorithm is primarily designed for:	1 point

- Regression tasks
- Unsupervised learning
- Clustering tasks
- Linearly separable classification tasks
- Non-linear classification tasks

No, the answer is incorrect.

Score: 0

Accepted Answers:

Linearly separable classification tasks

2) The last layer of ANN is linear for and softmax for . 1 point

- Regression, Regression
- Classification, Classification
- Regression, Classification
- Olassification, Regression

Yes, the answer is correct.

Score: 1

Accepted Answers:

Regression, Classification

3) Consider the following statement and answer True/False with corresponding reason: 1 point

Networks I -Early Models (unit? unit=60&lesso n=61)

- Artificial
 Neural
 Networks II Backpropagati
 on (unit?
 unit=60&lesso
 n=62)
- Artificial
 Neural
 Networks III Backpropagati
 on Continued
 (unit?
 unit=60&lesso
 n=63)
- Artificial
 Neural
 Networks IV Training,
 Initialization
 and Validation
 (unit?
 unit=60&lesso
 n=64)
- Parameter
 Estimation I The Maximum
 Likelihood
 Estimate
 (unit?
 unit=60&lesso
 n=65)
- Parameter
 Estimation II Priors and the
 MAP estimate
 (unit?
 unit=60&lesso
 n=66)
- Parameter
 Estimation III
 (unit?
 unit=60&lesso
 n=67)
- Practice:Week 5:Assignment 5

The class outputs of a classification problem with a ANN cannot be treated independently.

- True. Due to cross-entropy loss function
- True. Due to softmax activation
- False. This is the case for regression with single output
- False. This is the case for regression with multiple outputs

Yes, the answer is correct.

Score: 1

Accepted Answers:

True. Due to softmax activation

4) Given below is a simple ANN with 2 inputs $X1, X2 \in \{0, 1\}$ and edge weights **1 point** -3, +2, +2

$$h = \left\{ egin{array}{ll} 1 & if \ x \geq 0 \ 0 & otherwise \end{array}
ight.$$

Which of the following logical functions does it compute?

- OXOR
- NOR
- NAND
- OAND

No, the answer is incorrect.

Score: 0

Accepted Answers:

AND

5) Using the notations used in class, evaluate the value of the neural network with a 3- **1 point** 3-1 architecture (2-dimensional input with 1 node for the bias term in both the layers). The parameters are as follows

$$lpha = \left[egin{array}{ccc} 1 & 0.4 & 0.3 \ 1 & 0.6 & 0.5 \end{array}
ight]$$

$$eta = \left[egin{array}{ccc} 0.4 & 0.6 & 0.9 \end{array}
ight]$$

Using sigmoid function as the activation functions at both the layers, the output of the network for an input of (0.8, 0.7) will be (up to 4 decimal places)

0.7275

(Non Graded) 0.0217 (assessment? 0.2958 name=180) 0.8213 Quiz: Meek 5: 0.7291 Assignment 5 0.8414 (assessment? name=213) 0.1760 0.7552 Week 5 Feedback 0.9442 Form: None of these Introduction To Machine No, the answer is incorrect. Learning Score: 0 (unit? Accepted Answers: unit=60&lesso 0.8414 n=193) 6) If the step size in gradient descent is too large, what can happen? 1 point Week 5: Solution (unit? Overfitting unit=60&lesso The model will not converge n=215) We can reach maxima instead of minima Week 6 () None of the above No. the answer is incorrect. Week 7 () Score: 0 Accepted Answers: Week 8 () The model will not converge Week 9 () 7) On different initializations of your neural network, you get significantly different 1 point values of loss. What could be the reason for this? Text Transcripts () Overfitting Some problem in the architecture **Download** Incorrect activation function Videos () Multiple local minima Books () Yes, the answer is correct. Score: 1 Accepted Answers: **Problem** Multiple local minima Solving Session -8) The likelihood $L(\theta|X)$ is given by: 1 point July 2023 () $P(\theta|X)$ P(X). $P(\theta)$ Yes, the answer is correct.

Score: 1	
Accepted Answers: $P(X heta)$	
9) Why is proper initialization of neural network weights important?	1 point
To ensure faster convergence during training	
To prevent overfitting	
 To increase the model's capacity 	
 Initialization doesn't significantly affect network performance 	
To minimize the number of layers in the network	
Yes, the answer is correct. Score: 1	
Accepted Answers:	
To ensure faster convergence during training	
10) Which of these are limitations of the backpropagation algorithm?	1 point
10) Which of these are limitations of the backpropagation algorithm? It requires error function to be differentiable	1 point
	1 point
It requires error function to be differentiable It requires activation function to be differentiable	1 point
It requires error function to be differentiable It requires activation function to be differentiable The i^{th} layer cannot be updated before the update of layer $i+1$ is complete	1 point
It requires error function to be differentiable It requires activation function to be differentiable	1 point
$ \begin{tabular}{l} It requires error function to be differentiable \\ \hline It requires activation function to be differentiable \\ \hline The i^{th} layer cannot be updated before the update of layer $i+1$ is complete \hline All of the above \\ \hline (a) and (b) only \\ \hline \end{tabular} $	1 point
$ \begin{tabular}{l} $	1 point
$ \begin{tabular}{l} It requires error function to be differentiable \\ \hline It requires activation function to be differentiable \\ \hline The i^{th} layer cannot be updated before the update of layer $i+1$ is complete \hline All of the above \\ \hline (a) and (b) only \\ \hline \end{tabular} $	1 point
It requires error function to be differentiable It requires activation function to be differentiable The i^{th} layer cannot be updated before the update of layer $i+1$ is complete All of the above (a) and (b) only None of these Yes, the answer is correct. Score: 1 Accepted Answers:	1 point
It requires error function to be differentiable It requires activation function to be differentiable The i^{th} layer cannot be updated before the update of layer $i+1$ is complete All of the above (a) and (b) only None of these Yes, the answer is correct. Score: 1	1 point