Examenul de bacalaureat național 2019 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 6

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{7}\left(\sqrt{7}+1\right)-\sqrt{7}=\sqrt{7}\cdot\sqrt{7}+\sqrt{7}-\sqrt{7}=$	2p
	= 7 + 0 = 7	3 p
2.	f(0) = 8	3 p
	Coordonatele punctului de intersecție cu axa Oy sunt $x = 0$ și $y = 8$	2 p
3.	$x^2 + 9 = 5^2 \Rightarrow x^2 - 16 = 0$	2p
	x = -4 sau $x = 4$, care convin	3 p
4.	$x - \frac{40}{100} \cdot x = 300$, unde x este prețul obiectului înainte de ieftinire	3 p
	x = 500 de lei	2 p
5.	M(0,2), unde punctul M este mijlocul laturii AB	2 p
	CM = 4	3 p
6.	$\sin 60^\circ = \frac{\sqrt{3}}{2}, \sin 45^\circ = \frac{\sqrt{2}}{2}$	2p
	$\frac{\sqrt{3}}{2} \cdot \sin 60^{\circ} - \frac{\sqrt{2}}{2} \cdot \sin 45^{\circ} = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{3}{4} - \frac{2}{4} = \frac{1}{4}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 6 & -10 \\ 3 & -5 \end{vmatrix} = 6 \cdot (-5) - 3 \cdot (-10) =$	3p
	=-30+30=0	2p
b)	$A \cdot A = A$ şi $M(a) \cdot M(b) = (I_2 + aA)(I_2 + bA) = I_2 + aA + bA + abA \cdot A =$	2p
	= $I_2 + aA + bA + abA = I_2 + (a+b+ab)A = M(a+b+ab)$, pentru orice numere reale a și b	3p
c)	$(I_2 + A) + (I_2 + 2A) + \dots + (I_2 + 2019A) = 2019I_2 + (1 + 2 + \dots + 2019)A =$	3 p
	$=2019(I_2+1010A)=2019M(1010)$, de unde obținem $a=1010$	2 p
2.a)	$f(1) = m \cdot 1^3 + 2 \cdot 1^2 - m \cdot 1 - 2 =$	3p
	= m + 2 - m - 2 = 0, pentru orice număr real nenul m	2 p
b)	$f = 3X^3 + 2X^2 - 3X - 2 \Rightarrow f = (X - 1)(X + 1)(3X + 2)$	2p
	$x_1 = -1, \ x_2 = -\frac{2}{3}, \ x_3 = 1$	3 p
c)	$x_1 x_2 + x_1 x_3 + x_2 x_3 = -1, \ x_1 x_2 x_3 = \frac{2}{m}$	2p
	$\frac{x_1 x_2 + x_1 x_3 + x_2 x_3}{x_1 x_2 x_3} = -4 \Leftrightarrow \frac{-m}{2} = -4 \Leftrightarrow m = 8$	3p

SUBIECTUL al III-lea (30 de pun		ncte)
1.a)	$f'(x) = 3x^2 - 3 =$	3 p
	$=3(x^2-1)=3(x-1)(x+1), x \in \mathbb{R}$	2p
b)	$f''(x) = 6x, \ x \in \mathbb{R}$	2p
	$f''(x) \ge 0$, pentru orice $x \in [0, +\infty)$, deci funcția f este convexă pe $[0, +\infty)$	3 p
c)	$f'(x) \ge 0$, pentru orice $x \in (-\infty, -1] \Rightarrow f$ este crescătoare pe $(-\infty, -1]$ și $f'(x) \le 0$, pentru	2p
	orice $x \in [-1,1] \Rightarrow f$ este descrescătoare pe $[-1,1]$	2p
	$f(x) \le f(-1)$, pentru orice $x \in (-\infty, 1]$ și $f(-1) = 7$, deci $f(x) \le 7$, pentru orice $x \in (-\infty, 1]$	3p
2.a)	$\int_{0}^{1} f^{2}(x) dx = \int_{0}^{1} (3x^{2} + 6x + 7) dx = \left(\frac{3x^{3}}{3} + \frac{6x^{2}}{2} + 7x\right) \Big _{0}^{1} =$	3 p
	=1+3+7-0=11	2p
b)	$\int_{-1}^{1} \frac{x+1}{f(x)} dx = \int_{-1}^{1} \frac{x+1}{\sqrt{3x^2 + 6x + 7}} dx = \frac{1}{3} \sqrt{3x^2 + 6x + 7} \Big _{-1}^{1} =$	3 p
	$= \frac{1}{3} \left(\sqrt{16} - \sqrt{4} \right) = \frac{2}{3}$	2p
c)	$\sqrt{3x^2 + 6x + 7} \ge \sqrt{7}$, pentru orice $x \in [0, +\infty)$	2p
	$\mathcal{A} = \int_{0}^{a} f(x) dx = \int_{0}^{a} \sqrt{3x^2 + 6x + 7} dx \ge \int_{0}^{a} \sqrt{7} dx = a\sqrt{7}, \text{ pentru orice } a \in (0, +\infty)$	3 p