Math Diagnostic Test

Econ 103

Name:

Score: _____/50

Instructions: You will have 25 minutes to complete this test. As this is merely a diagnostic test, your score will not be factored into your course grade.

- 1. Evaluate each of the following expressions.
 - (a) 1 point 5!

(a) _____**120**____

(b) 2 points $\frac{100!}{98!}$

(b) **9900**

(c) 2 points $\binom{5}{3}$

(c) _____**10**____

- 2. True or False?
 - (a) 2 points $\sum_{i=1}^{n} (x_i/n) = (\sum_{i=1}^{n} x_i)/n$

(a) **TRUE**

(b) 2 points $\sum_{k=1}^{n} x_k z_k = z_k \sum_{k=1}^{n} x_k$

(b) **FALSE**

(c) 2 points $\sum_{k=1}^{m} x_k y_k = (\sum_{k=1}^{m} x_k)(\sum_{k=1}^{m} y_k)$

(c) **FALSE**

(d) 2 points $(\sum_{i=1}^{n} x_i)(\sum_{j=1}^{m} y_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_j$

(d) **TRUE**

(e) 2 points $\sum_{i=1}^{n} x_i / (\sum_{i=1}^{n} z_i) = \sum_{i=1}^{n} (x_i / z_i)$

(e) **__FALSE**___

3. 5 points Suppose that -c < (a-x)/b < c where b > 0. Find a lower bound L and an upper bound U such that L < x < U.

Solution: Rearranging,

$$-bc - a < -x < bc - a$$

and multiplying through by -1,

$$a - bc < x < a + bc$$

- 4. Let $f(a) = (x a)^2 + (y a)^2$ where x and y are constants.
 - (a) 5 points What value of a minimizes f(a)?

Solution: The first order condition is -2(x-a)-2(y-a)=0. Solving for a, we find $a^*=(x+y)/2$.

(b) 5 points How can you be sure this is a minimum rather than a maximum?

Solution: The second derivative is 4, which is positive.

- 5. Imagine a rectangle whose base is the x-axis and whose bottom left corner is the origin (0,0). Suppose its area is 1 and the length of its base is 3. The area of this rectangle can be expressed as the definite integral of a function f(x) from a to b.
 - (a) $\boxed{3 \text{ points}}$ What is the function f?

Solution: f(x) = 1/3

(b) 2 points What are the limits of integration (a, b)?

Solution: a = 0, b = 3

6. 5 points Solve $\int_0^2 cx^2 dx = 1$ for c. Your answer should not involve x.

Solution: The integral evaluates to $\left. \frac{cx^3}{3} \right|_0^2 = 8c/3$. Setting this equal to 1 and solving, c = 3/8.

7. 5 points Let $z = \sum_{i=1}^{n} (y_i - a - bx_i)^2$. Evalulate $\partial z/\partial b$.

Solution:
$$-2\sum_{i=1}^{n}(y_i-a-bx_i)x_i$$

8. 5 points Let $F(x) = \int_a^x f(t) dt$. Express the derivative F'(x) in terms of f.

Solution: By the Fundamental Theorem of Calculus, F'(x) = f(x).