Advanced Linux

Module 9 SPI interface

SPI features

- Serial Peripheral Interface (SPI) is a synchronous serial communication interface
- Supports full-duplex communication between one SPI master (a microcontroller) and one or more SPI slaves (peripherals)
- It uses minimum three lines (excluding the ground):
 - Serial Clock (SCLK)
 - Master In Slave Out (MISO)
 - Master Out Slave In (MOSI)
- High bitrates (comparing to UART) are possible on short distance
- Logic high voltage level depends on power supply

SPI internal structure (1)

SPI internal structure (2)

SPI configurations

Daisy-chain topology

SPI modes (1)

- Idle state of the clock signal is defined with a parameter called clock polarity (CPOL):
 - CPOL = 0 means clock is low when idle
 - ullet CPOL = 1 means clock is high when idle
- Setup and sample instants are determined with a clock phase (CPHA) parameter:
 - CPHA = 0: data is sampled on the first and changed on the second edge of the clock
 - CPHA = 1: data is changed on the first and sampled on the second edge of the clock

SPI modes (2)

SPI example communication

Linux spidev API

SPI device in Linux can be accessed from userspace via /dev/spidevA.B:

- open() to open an SPI device
- Only basic half-duplex can be achieved using read() and write()
 access
- Full-duplex I/O transfer and interface configuration is achieved using ioctl() requests and struct spi_ioc_transfer structure with the following fields:
 - tx_buf: pointer to transmit buffer
 - rx_buf: pointer to receive buffer
 - len: number of bytes
 - speed_hz: bitrate in Hz
 - delay_usecs: delay between transfers in microseconds
 - bits_per_word: number of bits in a word
- close() to close the SPI device when done

Opening and closing an SPI device

Opening:

```
fd = open("/dev/spidev0.0", O_RDWR);
if (fd == -1)
    printf("Failed to open port.\n");
```

• Closing:

```
close(fd);
```

Example configuration

```
int speed = 1000000;
int mode = 2;
int size = 8;
...
ioctl(fd, SPI_IOC_WR_MODE, &mode); // mode (CPOL:CPHA)
ioctl(fd, SPI_IOC_WR_BITS_PER_WORD, &size); // word size
ioctl(fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed); // max speed
```

More information can be found on

https://www.kernel.org/doc/Documentation/spi/spidev

Example reading/writing

```
struct spi_ioc_transfer spi;
unsigned char buffer = 0x55;
for (::)
{
    spi.tx_buf = (unsigned long)(&buffer);
    spi.rx_buf = (unsigned long)(&buffer);
    spi.len = 1;
    spi.delay_usecs = 0;
    spi.speed_hz = 1000000;
    spi.bits_per_word = 8;
    ioctl(fd, SPI_IOC_MESSAGE(1), &spi);
```