Labor Supply: Static and Dynamic

Thomas H. Jørgensen

2023

Outline

Introduction

- Static Labor Supply
- 3 Dynamic Labor Supply
- 4 Estimating Elasticities

Plan

000

Introduction

- Simple static and dynamic labor supply models
 - recap for some
 - brings us to same page
 - illustrate numerical approach with closed form checks
- Keane (2011, sections 1–5)
 - same notation as him

Introduction

000

Motivation: Labor supply Elasticities are Important!

Figure: Estimated Elasticities. Hicks, Men (Keane, 2011).

Labor supply elasticity (e)	Optimal top-bracket tax rate $(\tau) = 1/(1+8^*\theta)$			
	a = 1.50	a = 1.67	a = 2.0	
2.0	25%	23%	20%	
1.0	40%	37%	33%	
0.67	50%	47%	43%	
0.5	57%	54%	50%	
0.3	69%	67%	63%	
0.2	77%	75%	71%	
0.1	87%	86%	83%	
0.0	100%	100%	100%	

Note: These rates assume the government places essentially no value on giving extra income to the top earners.

Figure 5. Distribution of Hicks Elasticity of Substitution Estimates Note: The figure contains a frequency distribution of the twenty-two estimates of the Hicks elasticity of substitution discussed in this survey.

Outline

- Static Labor Supply

Static Setup

Individuals maximize utility wrt. consumption and hours worked

$$\max_{C,h} U(C,h) = \frac{C^{1+\eta}}{1+\eta} - \beta \frac{h^{1+\gamma}}{1+\gamma}$$

where

- $\eta \leq 0$ is the CRRA coefficient
- $\gamma \geq 0$ is curvature in hours

Individuals maximize utility wrt. consumption and hours worked

$$\max_{C,h} U(C,h) = \frac{C^{1+\eta}}{1+\eta} - \beta \frac{h^{1+\gamma}}{1+\gamma}$$

where

- $\eta \leq 0$ is the CRRA coefficient
- $\gamma > 0$ is curvature in hours
- subject to the budget constraint

$$C = (1 - \tau)wh + N$$

where

- \bullet τ is the (flat) marginal tax rate
- w is the hourly wage rate
- N is non-labor income

otatic Solution

Insert budget constraint

$$\max_{h} \frac{((1-\tau)wh+N)^{1+\eta}}{1+\eta} - \beta \frac{h^{1+\gamma}}{1+\gamma}$$

• First order condition (FOC)

$$\frac{\partial U}{\partial h} = (1 - \tau)w((1 - \tau)wh + N)^{\eta} - \beta h^{\gamma}$$
$$= 0$$

such that the MRS is

$$(1-\tau)w = \frac{\beta h^{\gamma}}{((1-\tau)wh + N)^{\eta}} \tag{1}$$

Static Elasticities

- No analytic solution for optimal hours, $h^*(w, N)$. We can solve numerically!
- Elasticities can be derived analytically (see extra slides)! Can compare with numerical!

- No analytic solution for optimal hours, $h^*(w, N)$. We can solve numerically!
- Elasticities can be derived analytically (see extra slides)! Can compare with numerical!
- Slutsky equation:

$$\frac{\partial h}{\partial w} = \left. \frac{\partial h}{\partial w} \right|_{u} + h \frac{\partial h}{\partial N}$$

• In elasticities (% change from 1% change)

$$\frac{w}{h}\frac{\partial h}{\partial w} = \frac{w}{h}\frac{\partial h}{\partial w}\Big|_{u} + \frac{wh}{N}\frac{N}{h}\frac{\partial h}{\partial N}$$

$$\underbrace{e_{M}}_{\text{marshall}} = \underbrace{e_{H}}_{\text{hicks}} + \underbrace{\frac{wh}{N}e_{I}}_{\text{income effect}}$$

• Letting $S = \frac{(1-\tau)wh}{(1-\tau)wh+N}$, we have (see extra slides)

$$e_{M} = \frac{\partial \log h}{\partial \log w} = \frac{1 + \eta S}{\gamma - \eta S}$$

$$e_{H} = \frac{\partial \log h}{\partial \log w} \Big|_{u} = \frac{1}{\gamma - \eta S}$$

$$ie = \frac{\eta S}{\gamma - \eta S} < 0$$

• Since $\eta \leq 0$:

$$e_H > e_M$$

that is, "ignoring income effects gives a larger response".

Static Elasticities

 Numerical "check" of these results Simple setup Shows how to do it Can check results

Static Elasticities

- Numerical "check" of these results
 - Simple setup Shows how to do it
 - Can check results
- 1. **Solve** optimal labor supply, $h^*(w, N)$
- 2. **Simulate baseline** labor supply for $w \to h_i(w, N)$
- 3. **Simulate alternative** with 1% higher wage $\rightarrow h_i(w(1+0.01), N)$
- 4. Calculate average pct change,

$$\frac{1}{n} \sum_{i=1}^{n} \frac{h_i(w(1+0.01), N) - h_i(w, N)}{h_i(w, N)} \times 100$$

• Q: Which of the elasticities should this equal?

Outline

- Opening Labor Supply

Dynamic Labor Supply

- 2-period model with saving/borrowing
 - Perfect foresight + deterministic
 - Exogenous wages, w_1 and w_2
 - Same per-period utility as before

Dynamic Labor Supply

- 2-period model with saving/borrowing
 - Perfect foresight + deterministic
 - Exogenous wages, w₁ and w₂
 - Same per-period utility as before
- Discounted utility is

$$U = U_1(C_1, h_1) + \rho U_2(C_2, h_2)$$

where

$$C_1 = (1 - \tau)w_1h_1 + N_1 + b$$

$$C_2 = (1 - \tau)w_2h_2 + N_2 - b(1 + r)$$

and $b = -[(1 - \tau)w_1h_1 + N_1 - C_1]$ is borrowing.

Dynamic Labor Supply

- We find optimal h_1 , h_2 and b by maximizing utility
- First order conditions (FOCs)

$$\frac{\partial U}{\partial h_1} = [(1-\tau)w_1h_1 + N_1 + b]^{\eta}w_1(1-\tau) - \beta h_1^{\gamma} = 0$$
 (2)

$$\frac{\partial U}{\partial h_2} = [(1-\tau)w_2h_2 + N_2 - b(1+r)]^{\eta}w_2(1-\tau) - \beta h_2^{\gamma} = 0$$
 (3)

$$\frac{\partial U}{\partial b} = [(1-\tau)w_1h_1 + N_1 + b]^{\eta}
-\rho[(1-\tau)w_2h_2 + N_2 - b(1+r)]^{\eta}(1+r) = 0$$
(4)

- We find optimal h_1 , h_2 and b by maximizing utility
- First order conditions (FOCs)

$$\frac{\partial U}{\partial h_1} = [(1-\tau)w_1h_1 + N_1 + b]^{\eta}w_1(1-\tau) - \beta h_1^{\gamma} = 0$$
 (2)

$$\frac{\partial U}{\partial h_2} = [(1-\tau)w_2h_2 + N_2 - b(1+r)]^{\eta}w_2(1-\tau) - \beta h_2^{\gamma} = 0$$
 (3)

$$\frac{\partial U}{\partial b} = [(1-\tau)w_1h_1 + N_1 + b]^{\eta}
-\rho[(1-\tau)w_2h_2 + N_2 - b(1+r)]^{\eta}(1+r) = 0$$
(4)

- Again, no closed-form solution for optimal labor supply
- We can find elasticities
 - and simulate them!
 - e_H and e_M basically the same as in static case (because no human capital)

Frisch Elasticity

• We now have a *new* elasticity: Elasticity of intertemporal substitution

Frisch Elasticity

- We now have a new elasticity: Elasticity of intertemporal substitution
- Frisch elasticity

$$e_F \equiv \left. rac{\partial \log h_t}{\partial \log w_t} \right|_{\lambda_t}$$

where

 λ_t : marginal utility of wealth

- We now have a *new* elasticity: **Elasticity of intertemporal substitution**
- Frisch elasticity

$$e_F \equiv \left. \frac{\partial \log h_t}{\partial \log w_t} \right|_{\lambda_t}$$

where

 λ_t : marginal utility of wealth

ullet λ_t potentially depends on all state variables, such as wages.

Frisch Elasticity

- We now have a new elasticity:
 Elasticity of intertemporal substitution
- Frisch elasticity

$$e_F \equiv \left. rac{\partial \log h_t}{\partial \log w_t} \right|_{\lambda_t}$$

where

 λ_t : marginal utility of wealth

- ullet λ_t potentially depends on all state variables, such as wages.
- In our setting (see extra slide)

$$e_{F}=rac{1}{\gamma}$$

Summary: Elasticities

• Combining, we have

$$e_F > e_H > e_M$$

in this model.

- **Frisch:** Can be simulated as a unanticipated *transitory* increase in wage (income and thus wealth effects are small)
- **Hicks:** Can be simulated as a unanticipated *permanent compensated* increase in wage
- Marshall: Can be simulated as a unanticipated *permanent* increase in wage

Summary: Elasticities

• Combining, we have

$$e_F > e_H > e_M$$

in this model.

- **Frisch:** Can be simulated as a unanticipated *transitory* increase in wage (income and thus wealth effects are small)
- **Hicks:** Can be simulated as a unanticipated *permanent compensated* increase in wage
- Marshall: Can be simulated as a unanticipated *permanent* increase in wage
- If we can estimate $e_F = 1/\gamma$, we can bound the policy-relevant elasticities!
 - We can then bound the efficiency loss from labor income taxation.
 - And bound the optimal tax rate (see table from beginning).

Summary: Elasticities

Combining, we have

$$e_F > e_H > e_M$$

in this model

- Frisch: Can be simulated as a unanticipated transitory increase in wage (income and thus wealth effects are small)
- **Hicks:** Can be simulated as a unanticipated permanent compensated increase in wage
- Marshall: Can be simulated as a unanticipated permanent increase in wage
- If we can estimate $e_F = 1/\gamma$, we can **bound the policy-relevant** elasticities!
 - We can then bound the efficiency loss from labor income taxation.
 - And bound the optimal tax rate (see table from beginning).
- **Next time:** If there is learning by doing (human capital accumulation) this relationship might not hold!

Solving the 2-period model

- Backwards induction.
- Last period: What is the state variable?

Solving the 2-period model

- Backwards induction.
- **Last period:** What is the state variable?

$$V_2(b) = \max_{C_2,h_2} U_2(C_2,h_2)$$

s.t.

$$C_2 = (1 - \tau)w_2h_2 + N_2 - (1 + r)b > 0$$

such that for a grid of \overrightarrow{b} we must solve for

$$h_2^{\star}(b) = \arg\max_{h_2} U_2((1-\tau)w_2h_2 + N_2 - (1+r)b, h_2)$$

- Backwards induction.
- Last period: What is the state variable?

$$V_2(b) = \max_{C_2,h_2} U_2(C_2,h_2)$$

s.t.

$$C_2 = (1 - \tau)w_2h_2 + N_2 - (1 + r)b > 0$$

such that for a grid of \overrightarrow{b} we must solve for

$$h_2^{\star}(b) = \arg\max_{h_2} U_2((1-\tau)w_2h_2 + N_2 - (1+r)b, h_2)$$

First period:

$$V_1 = \max_{C_1,h_1} U_1(C_1,h_1) + \rho V_2(b)$$

s.t.

$$b = -[(1-\tau)w_1h_1 + N_1 - C_1]$$

Life-Cycle Model

- T periods, a_t is savings. No uncertainty (for now)
- Bellman Equation

$$V_t(a_t) = \max_{C_t, h_t} U(C_t, h_t) + \rho V_{t+1}(a_{t+1})$$
 s.t. $a_{t+1} = (1+r)(a_t + (1-\tau_t)w_t h_t - C_t)$

- T periods, a_t is savings. No uncertainty (for now)
- Bellman Equation

$$V_t(a_t) = \max_{C_t, h_t} U(C_t, h_t) + \rho V_{t+1}(a_{t+1})$$

s.t.

$$a_{t+1} = (1+r)(a_t + (1-\tau_t)w_th_t - C_t)$$

- Exogenous wages:
 - Elasticities are as discussed throughout (Keane, 2016)

Life-Cycle Model

- T periods, a_t is savings. No uncertainty (for now)
- Bellman Equation

$$V_t(a_t) = \max_{C_t, h_t} U(C_t, h_t) + \rho V_{t+1}(a_{t+1})$$

s.t.

$$a_{t+1} = (1+r)(a_t + (1-\tau_t)w_th_t - C_t)$$

- Exogenous wages:
 - Elasticities are as discussed throughout (Keane, 2016)
- Endogenous wages (through human capital, as next time):

$$w_t = w (1 + \alpha k_t)$$
$$k_{t+1} = k_t + h_t$$

- Human capital, k_t , is a new state variable
- Flasticities are different.
- In general no simple formula
- Can always simulate!

Outline

- Introduction
- Static Labor Supply
- 3 Dynamic Labor Supply
- Estimating Elasticities

Regressions often like

$$\log h_{it} = \alpha + e \log(w_{it}(1 - \tau_t)) + \beta_I N_{it} + \varepsilon_{it}$$

• Controlling for non-labor income $\rightarrow e$ interpreted as **Marshall** elasticity.

• Regressions often like

$$\log h_{it} = \alpha + e \log(w_{it}(1 - \tau_t)) + \beta_I N_{it} + \varepsilon_{it}$$

- ullet Controlling for non-labor income o e interpreted as **Marshall** elasticity.
- Not necessarily derived from a model: A "reduced-form" approach

Regressions often like

$$\log h_{it} = \alpha + e \log(w_{it}(1 - \tau_t)) + \beta_I N_{it} + \varepsilon_{it}$$

- Controlling for non-labor income $\rightarrow e$ interpreted as **Marshall** elasticity.
- Not necessarily derived from a model: A "reduced-form" approach
- Our models can illuminate potential problems (Keane, 2011, sec 4)
 - 1. Endogeneity of wages: tastes for work
 - 2. Endogeneity of wages: simultaneity
 - 3. Taxes
 - 4. Measurement error
 - 5. Wages only observed for workers
 - 6. Savings and non-labor earnings
 - 7. Human capital and other dynamics (next time)

are and a least transition of

Estimated Elasticities, Men.

Introduction

Summa	TABLE 6 RY OF ELASTICITY ES		LES	
Authors of study	Year	Marshall	Hicks	Frisch
Static models				
Kosters	1969	-0.09	0.05	
Ashenfelter-Heckman	1973	-0.16	0.11	
Boskin	1973	-0.07	0.10	
Hall	1973	n/a	0.45	
Eight British studies*	1976-83	-0.16	0.13	
Eight NIT studies"	1977-84	0.03	0.13	
Burtless-Hausman	1978	0.00	0.07-0.13	
Wales-Woodland	1979	0.14	0.84	
Hausman	1981	0.00	0.74	
Blomquist	1983	0.08	0.11	
Blomquist-Hansson-Busewitz	1990	0.12	0.13	
MaCurdy-Green-Paarsch	1990	0.00	0.07	
Triest	1990	0.05	0.05	
Van Soest-Woittiez-Kapteyn	1990	0.19	0.28	
Ecklof-Sacklen	2000	0.05	0.27	
Blomquist-Ecklof-Newey	2001	0.08	0.09	
Dynamic models				
MaCurdy	1981	0.08 ^b		0.15
MaCurdy	1983	0.70	1.22	6.25
Browning-Deaton-Irish	1985			0.09
Blundell-Walker	1986	-0.07	0.02	0.03
Altonji ^c	1986	-0.24	0.11	0.17
Altonji ^d	1986			0.31
Altug-Miller	1990			0.14
Angrist	1991			0.63
Ziliak-Kniesner	1999	0.12	0.13	0.16
Pistaferri	2003	0.51 ^b		0.70
Imai-Keane	2004	0.40℃	1.32°	0.30-2.7
Ziliak-Kniesner	2005	-0.47	0.33	0.54
Aaronson-French	2009			0.16-0.6
Average		0.06	0.31	0.85

Estimated Elasticities, Women.

 Women has been viewed as more "complex" Literature started later

When dy — TABLE 7
SUMMARY OF ELASTICITY ESTIMATES FOR WOMEN

Authors of study	Year	Marshall	Hicks	Frisch	Uncom- pensated (dynamic)	Tax response
Static, life-cycle and life-cyc	le consistent mo	dels				
Cogan	1981	0.89*				
Heckman-MaCurdy	1982			2.35		
Blundell-Walker	1986	-0.20	0.01	0.03		
Blundell-Duncan-Meghir	1998	0.17	0.20			
Kimmel-Kniesner	1998			3.05^{b}		
Moffitt	1984				1.25	
Dynamic structural models						
Eckstein-Wolpin	1989				5.0	
Van der Klauuw	1996				3.6	
Francesconi	2002				5.6	
Keane-Wolpin	2010				2.8	
Difference-in-difference met	hods					
Eissa	1995, 1996a					0.77-1.60

Notes:

[&]quot;= Elasticity conditional on positive work hours.

b = Sum of elasticities on extensive and intensive margins.

Next Time

Next time:

Dynamic labor supply with learning by doing Human capital accumulation from working (Uncertainty?)

Literature:

Keane (2016): "Life-Cycle Labour Supply with Human Capital: Econometric and Behavioural Implications"

- Read before lecture
- Reading guide:
 - Section 0: Introduction
 - Section 1: Dynamic model. Key section, main focus.
 - Section 2: Simulations of 2-period model. skim/drop.
 - Section 3: Quantitative role of HC. Read fast. focus on 3.2.
 - Section 4: Comparison with extensive margin. read if time

References I

KEANE, M. P. (2011): "Labor Supply and Taxes: A Survey," Journal of Economic Literature, 49(4), 961-1075.

(2016): "Life-cycle Labour Supply with Human Capital: Econometric and Behavioural Implications," The Economic Journal, 126(592), 546–577.

Finding elasticities in static model

Taking logs of eq. (1):

$$\underbrace{\log(1-\tau) + \log(w)}_{\text{LHS}} = \underbrace{\log(\beta) + \gamma \log(h) - \eta \log((1-\tau)wh + N)}_{\text{RHS}} \tag{5}$$

Derivative wrt. log w gives (while keeping N fixed)

$$\frac{\partial \mathsf{RHS}}{\partial \log w} = \gamma \underbrace{\frac{\partial \log h}{\partial \log w}}_{e_M} - \eta \left(\underbrace{\frac{\partial \log(\bullet)}{\partial w}}_{\underline{\partial w}} \underbrace{\frac{\partial w}{\partial \log w}}_{\underline{w}} + \underbrace{\frac{\partial \log(\bullet)}{\partial h}}_{\underline{\partial h}} \underbrace{\frac{\partial h}{\partial \log h}}_{\underline{\partial h}} \underbrace{\frac{\partial \log h}{\partial \log w}}_{\underline{e_M}} \right)$$

where
$$\log(\bullet) = \log((1-\tau)wh + N)$$
.

• Letting $S = \frac{(1-\tau)wh}{(1-\tau)wh+N}$, we have that

$$\frac{\partial RHS}{\partial \log w} = \gamma e_M - \eta (S + Se_M)$$
$$\frac{\partial LHS}{\partial \log w} = 1$$

such that

$$1 = \gamma e_{M} - \eta (S + Se_{M})$$

$$\updownarrow$$

$$e_{M} = \frac{1 + \eta S}{\gamma - \eta S}$$

Income effect

• Similarly, the income elasticity is

$$e_{I} = \frac{\partial \log h}{\partial \log N}$$
$$= \frac{\eta (1 - S)}{\gamma - \eta S}$$

- Found similarly, using that $1 S = \frac{N}{(1 \tau)wh + N}$.
- The income effect is then

$$ie = rac{wh(1- au)}{N}e_I = rac{\eta S}{\gamma - \eta S}$$

where

because $\eta \leq 0$.

The Hicks, or "compensated" elasticity is

$$e_{H} = \frac{\partial \log h}{\partial \log w} \Big|_{u}$$

$$= e_{M} - ie$$

$$= \frac{1 + \eta S}{\gamma - \eta S} - \frac{\eta S}{\gamma - \eta S}$$

$$= \frac{1}{\gamma - \eta S}$$

using the Slutsky equation.

We have

$$e_H \ge e_M$$

Frisch Elasticity

Deriving the Frisch via. the Lagrangian

$$\max_{h_1,h_2,C_1,C_2,b} U + \lambda_1[(1-\tau)w_1h_1 + N_1 + b - C_1] \\ + \lambda_2[(1-\tau)w_2h_2 + N_2 - b(1+r) - C_2]$$

Frisch Elasticity

Deriving the Frisch via. the Lagrangian

$$\max_{h_1,h_2,C_1,C_2,b} U + \lambda_1[(1-\tau)w_1h_1 + N_1 + b - C_1] \\ + \lambda_2[(1-\tau)w_2h_2 + N_2 - b(1+r) - C_2]$$

FOC for hours in period 1

$$\frac{\partial U}{\partial h_1} = -\beta h_1^{\gamma} + \lambda_1 (1 - \tau) w_1 = 0$$

such that

$$\log h_1 = \frac{1}{\gamma} \log(\lambda_1) + \frac{1}{\gamma} \log((1-\tau)w_1) - \frac{1}{\gamma} \log(\beta)$$

Frisch Elasticity

• Deriving the Frisch via. the Lagrangian

$$\begin{aligned} \max_{h_1,h_2,C_1,C_2,b} U + \lambda_1 [(1-\tau)w_1h_1 + \mathit{N}_1 + b - \mathit{C}_1] \\ + \lambda_2 [(1-\tau)w_2h_2 + \mathit{N}_2 - b(1+r) - \mathit{C}_2] \end{aligned}$$

FOC for hours in period 1

$$\frac{\partial U}{\partial h_1} = -\beta h_1^{\gamma} + \lambda_1 (1 - \tau) w_1 = 0$$

such that

$$\log h_1 = \frac{1}{\gamma} \log(\lambda_1) + \frac{1}{\gamma} \log((1-\tau)w_1) - \frac{1}{\gamma} \log(\beta)$$

• and the partial derivative (fixed λ_1)

$$e_F = \left. \frac{\partial \log h_1}{\partial \log w_1} \right|_{\lambda_1} = \frac{1}{\gamma}.$$