La fonction inverse E02

EXERCICE N°1

Les fonctions suivantes sont définies et dérivables sur $]-\infty$; 0 \cup 0; $+\infty$ [.

1) Déterminer l'expression de leur dérivée sachant que pour tout réel x non nul :

$$f_1(x) = \frac{1}{x} + 25 \quad ; \quad f_2(x) = \frac{1}{x} - \pi\sqrt{7} \quad ; \quad f_3(x) = \frac{4}{x} \qquad f_4(x) = \frac{-7.5}{x} \quad ; \quad f_5(x) = \frac{-3}{x} + \frac{25}{\sqrt{7}}$$

$$g_2(x) = 2x + \frac{1}{x} \quad ; \quad g_3(x) = \frac{3}{x} + 4x^2 \quad ; \quad g_3(x) = \frac{3}{x} + \frac{25}{x} \quad ; \quad f_5(x) = \frac{-3}{x} + \frac{25}{\sqrt{7}}$$

- $g_1(x) = 2x + \frac{1}{x}$; $g_2(x) = \frac{3}{x} + 4x^2$; $g_3(x) = 3x^2 5x + 7 \frac{8}{x}$
- 2) Réduire au même dénominateur, les expressions $g_1'(x)$; $g_2'(x)$ et $g_3'(x)$.

EXERCICE N°2

- est la fonction définie sur l'intervalle $]-\infty$; 0[par : $f(x)=\frac{-1.5}{x}$
- 1) Calculer f'(x) pour tout réel x appartenant à $]-\infty$; [0]
- 2) Étudier le signe de f'(x) sur l'intervalle $-\infty$; 0.
- 3) En déduire le sens de variation de f sur $|-\infty; 0|$.

EXERCICE N°3

Soit f la fonction définie sur]0; $+\infty$ [par : $f(x)=0.16x+4.7+\frac{1}{x}$

- 1) Montrer que pour tout réel x appartenant à l'intervalle]0; $+\infty$ [$f'(x) = \frac{0.16(x-2.5)(x+2.5)}{x^2}$
- 2) Étudier le signe de f'(x) sur l'intervalle $[0; +\infty]$.
- 3) En déduire les variations de f sur l'intervalle 0; $+\infty$

LA FONCTION INVERSE E02

EXERCICE N°1

Les fonctions suivantes sont définies et dérivables sur $]-\infty$; 0 \cup 0; $+\infty$ [.

1) Déterminer l'expression de leur dérivée sachant que pour tout réel x non nul :

$$f_1(x) = \frac{1}{x} + 25 \quad ; \quad f_2(x) = \frac{1}{x} - \pi\sqrt{7} \quad ; \quad f_3(x) = \frac{4}{x} \qquad f_4(x) = \frac{-7.5}{x} \quad ; \quad f_5(x) = \frac{-3}{x} + \frac{25}{\sqrt{7}}$$

$$g_1(x) = 2x + \frac{1}{x} \quad ; \quad g_2(x) = \frac{3}{x} + 4x^2 \quad ; \quad g_3(x) = 3x^2 - 5x + 7 - \frac{8}{x}$$

2) Réduire au même dénominateur, les expressions $g_1'(x)$; $g_2'(x)$ et $g_3'(x)$.

EXERCICE N°2

$$f$$
 est la fonction définie sur l'intervalle $]-\infty$; $0[$ par : $f(x)=\frac{-1.5}{x}$

- 1) Calculer f'(x) pour tout réel x appartenant à $]-\infty$; 0[.
- 2) Étudier le signe de f'(x) sur l'intervalle $]-\infty$; 0[. 3) En déduire le sens de variation de f sur $]-\infty$; 0[.

EXERCICE N°3

Soit f la fonction définie sur]0; $+\infty$ [par : $f(x)=0.16x+4.7+\frac{1}{x}$

- 1) Montrer que pour tout réel x appartenant à l'intervalle]0; $+\infty$ [, $f'(x) = \frac{0.16(x-2.5)(x+2.5)}{x^2}$
- 2) Étudier le signe de f'(x) sur l'intervalle $[0; +\infty)$.
- 3) En déduire les variations de f sur l'intervalle]0; $+\infty$

La fonction inverse E02

EXERCICE N°1

Les fonctions suivantes sont définies et dérivables sur $]-\infty$; 0 \cup 0; $+\infty$ [.

1) Déterminer l'expression de leur dérivée sachant que pour tout réel x non nul :

$$f_1(x) = \frac{1}{x} + 25 \quad ; \quad f_2(x) = \frac{1}{x} - \pi\sqrt{7} \quad ; \quad f_3(x) = \frac{4}{x} \qquad f_4(x) = \frac{-7.5}{x} \quad ; \quad f_5(x) = \frac{-3}{x} + \frac{25}{\sqrt{7}}$$

$$g_2(x) = 2x + \frac{1}{x} \quad ; \quad g_3(x) = \frac{3}{x} + 4x^2 \quad ; \quad g_3(x) = \frac{3}{x} + \frac{25}{x} \quad ; \quad f_5(x) = \frac{-3}{x} + \frac{25}{\sqrt{7}}$$

- $g_1(x) = 2x + \frac{1}{x}$; $g_2(x) = \frac{3}{x} + 4x^2$; $g_3(x) = 3x^2 5x + 7 \frac{8}{x}$
- 2) Réduire au même dénominateur, les expressions $g_1'(x)$; $g_2'(x)$ et $g_3'(x)$.

EXERCICE N°2

- est la fonction définie sur l'intervalle $]-\infty$; 0[par : $f(x)=\frac{-1.5}{x}$
- 1) Calculer f'(x) pour tout réel x appartenant à $]-\infty$; [0]
- 2) Étudier le signe de f'(x) sur l'intervalle $-\infty$; 0.
- 3) En déduire le sens de variation de f sur $|-\infty; 0|$.

EXERCICE N°3

Soit f la fonction définie sur]0; $+\infty$ [par : $f(x)=0.16x+4.7+\frac{1}{x}$

- 1) Montrer que pour tout réel x appartenant à l'intervalle]0; $+\infty$ [$f'(x) = \frac{0.16(x-2.5)(x+2.5)}{x^2}$
- 2) Étudier le signe de f'(x) sur l'intervalle $[0; +\infty]$.
- 3) En déduire les variations de f sur l'intervalle 0; $+\infty$

LA FONCTION INVERSE E02

EXERCICE N°1

Les fonctions suivantes sont définies et dérivables sur $]-\infty$; 0 \cup 0; $+\infty$ [.

1) Déterminer l'expression de leur dérivée sachant que pour tout réel x non nul :

$$f_1(x) = \frac{1}{x} + 25 \quad ; \quad f_2(x) = \frac{1}{x} - \pi\sqrt{7} \quad ; \quad f_3(x) = \frac{4}{x} \qquad f_4(x) = \frac{-7.5}{x} \quad ; \quad f_5(x) = \frac{-3}{x} + \frac{25}{\sqrt{7}}$$

$$g_1(x) = 2x + \frac{1}{x} \quad ; \quad g_2(x) = \frac{3}{x} + 4x^2 \quad ; \quad g_3(x) = 3x^2 - 5x + 7 - \frac{8}{x}$$

2) Réduire au même dénominateur, les expressions $g_1'(x)$; $g_2'(x)$ et $g_3'(x)$.

EXERCICE N°2

$$f$$
 est la fonction définie sur l'intervalle $]-\infty$; $0[$ par : $f(x)=\frac{-1.5}{x}$

- 1) Calculer f'(x) pour tout réel x appartenant à $]-\infty$; 0[.
- 2) Étudier le signe de f'(x) sur l'intervalle $]-\infty$; 0[. 3) En déduire le sens de variation de f sur $]-\infty$; 0[.

EXERCICE N°3

Soit f la fonction définie sur]0; $+\infty$ [par : $f(x)=0.16x+4.7+\frac{1}{x}$

- 1) Montrer que pour tout réel x appartenant à l'intervalle]0; $+\infty$ [, $f'(x) = \frac{0.16(x-2.5)(x+2.5)}{x^2}$
- 2) Étudier le signe de f'(x) sur l'intervalle $[0; +\infty)$.
- 3) En déduire les variations de f sur l'intervalle]0; $+\infty$