Week 13: More on DID

JJ Chen

April 10, 2015

Today's Plan

- ▶ Parallel trend and parallel growth assumptions
 - ▶ Mora and Reggio (2014)

Motivation

- ▶ The ID assumption for DID design is the common trend
 - Parallel path for outcome levels in post-treatment periods
- In many DID papers, authors include group-specific linear time trends and call it
 - a robustness check, or
 - a relaxation of the parallel trend assumption
- But once we include group-specific time trends, is the ID assumption still the common trend?
- Today we try to be more specific about the ID assumption under group-specific time trends

Motivation: Why Group-Specific Trends

Review: Common Trend Assumption

- ▶ Two groups of units: $T_i = 0$, $T_i = 1$
- ▶ Two periods: $P_t = 0$, $P_t = 1$
- ► Treatment group receives treatment in post period:
 TP_{it} =T_i ×P_t
- ▶ Two potential outcomes: Y_{0it} , Y_{1it}
 - ▶ Observed outcomes: $Y_{it} = Y_{0it} \times (1 TP_{it}) + Y_{1it} \times TP_{it}$
- ► ATET: $\delta^{ATET} = \mathrm{E}(\mathrm{Y}_{1it} \mathrm{Y}_{0it} \mid \mathrm{TP}_{it} = 1)$
 - $\longrightarrow \delta^{ATET} = \mathrm{E}(\mathbf{y}_{1i1} \mathbf{y}_{0i1} \mid \mathbf{T} = 1)$

Regressions Gives Conditional Mean Comparison

$$Y_{it} = \alpha + \beta T_i + \gamma P_t + \delta T P_{it} + e_{it}$$

$$E(Y_{i1} | T = 1) = \alpha + \beta + \gamma + \delta$$

$$E(Y_{i0} | T = 1) = \alpha + \beta + \delta$$

$$E(\mathbf{Y}_{i1} \mid \mathbf{T} = 0) = \alpha + \gamma$$

$$E(\mathbf{Y}_{i0} \mid \mathbf{T} = 0) = \alpha$$

$$\delta^{DID} = E(Y_{i1} - Y_{i0} | T = 1) - E(Y_{i1} - Y_{i0} | T = 0)$$

Potential Outcome DID

- ► ATET: $\delta^{ATET} = E(Y_{1i1} Y_{0i1} | T = 1)$
- ▶ DID gives ATET?

$$\delta^{DID} = E(Y_{i1} - Y_{i0} | T = 1) - E(Y_{i1} - Y_{i0} | T = 0)$$

$$= E(Y_{1i1} - Y_{0i0} | T = 1) - E(Y_{0i1} - Y_{0i0} | T = 0)$$

$$= E(Y_{1i1} - Y_{0i0} | T = 1) - E(Y_{0i1} - Y_{0i0} | T = 1)$$

$$= E(Y_{1i1} - Y_{0i1} | T = 1)$$

$$= \delta^{ATET}$$

► ID assumption for ATET:

$$E(Y_{0i1} - Y_{0i0} | T = 1) = E(Y_{0i1} - Y_{0i0} | T = 0)$$

- ▶ Or: $Y_{0i1} Y_{0i0} \perp T$
- ▶ Can be extended to selection-on-observable: $Y_{0i1} Y_{0i0} \perp T \mid X$

Multiple Periods

- ▶ Now suppose we have three periods: t = 1, 2, 3
 - Assume two pre-pretreatment periods and one post-treatment period
 - $P_t = 1$ if t = 3; $P_t = 0$ if t = 1, 2
- ► ATET: $\delta^{ATET} = E(Y_{1i3} Y_{0i3} | TP_{it} = 1)$
- Regression that allows group-specific linear time trend
 - $Y_{it} = \alpha + \beta T_i + \gamma P_t + \delta TP_{it} + \theta (T_i \times t) + e_{it}$
 - ▶ A simple version of eqn (5.2.7) in MHE
- What are the conditional means?

Multiple Periods

$$Y_{it} = \alpha + \beta T_i + \gamma P_t + \delta TP_{it} + \theta (T_i \times t) + e_{it}$$

$$E(Y_{i3} | T = 1) = \alpha + \beta + \gamma + \delta + 3\theta$$

$$E(Y_{i2} | T = 1) = \alpha + \beta + 2\theta$$

$$E(Y_{i1} | T = 1) = \alpha + \beta + \theta$$

$$E(\mathbf{Y}_{i3} \mid \mathbf{T} = 0) = \alpha + \gamma$$

$$E(Y_{i2} | T = 0) = \alpha$$

$$E(\mathbf{Y}_{i1} \mid \mathbf{T} = 0) = \alpha$$

Þ

$$\delta^{DID} = E((Y_{i3} - Y_{i2}) - (Y_{i2} - Y_{i1}) | T = 1) - E((Y_{i3} - Y_{i2}) - (Y_{i2} - Y_{i1}) | T = 0)$$

$$= E(\Delta Y_{i3} - \Delta Y_{i2} | T = 1) - E(\Delta Y_{i3} - \Delta Y_{i2} | T = 0)$$

ID Assumption: Pallele Growth

• ATET: $\delta^{ATET} = E(Y_{1i3} - Y_{0i3} | T_{it} = 1)$

$$\begin{split} \delta^{DID} &= E(\Delta \mathbf{Y}_{i3} - \Delta \mathbf{Y}_{i2} \mid \mathbf{T} = 1) - E(\Delta \mathbf{Y}_{i3} - \Delta \mathbf{Y}_{i2} \mid \mathbf{T} = 0) \\ &= E(\Delta \mathbf{Y}_{1i3} - \Delta \mathbf{Y}_{0i2} \mid \mathbf{T} = 1) - E(\Delta \mathbf{Y}_{0i3} - \Delta \mathbf{Y}_{0i2} \mid \mathbf{T} = 0) \\ &= E(\Delta \mathbf{Y}_{1i3} - \Delta \mathbf{Y}_{0i2} \mid \mathbf{T} = 1) - E(\Delta \mathbf{Y}_{0i3} - \Delta \mathbf{Y}_{0i2} \mid \mathbf{T} = 1) \\ &= E(\Delta \mathbf{Y}_{1i3} - \Delta \mathbf{Y}_{0i3} \mid \mathbf{T} = 1) \\ &= E\left((\mathbf{Y}_{1i3} - \mathbf{Y}_{0i2}) - (\mathbf{Y}_{0i3} - \mathbf{Y}_{0i2}) \mid \mathbf{T} = 1\right) \\ &= E(\mathbf{Y}_{1i3} - \mathbf{Y}_{0i3} \mid \mathbf{T} = 1) = \delta^{ATET} \end{split}$$

ID Assumption:

$$E(\Delta Y_{0i3} - \Delta Y_{0i2} | T = 1) = E(\Delta Y_{0i3} - \Delta Y_{0i2} | T = 0)$$

Compare to parallel trend

$$\mathrm{E}(\mathrm{Y}_{0i3} - \mathrm{Y}_{0i2} \mid_{\mathrm{T}} = 1) = \mathrm{E}(\mathrm{Y}_{0i3} - \mathrm{Y}_{0i2} \mid_{\mathrm{T}} = 0)$$

Parellel Trend and Parellel Growth is Non-nested

Table 1: Parallel-(1) vs. Parallel-(2)

	$Y_{t^*-1}^0$	$Y_{t^*}^0$	$Y_{t^*+1}^0$	$\Delta Y_{t^*+1}^0$	$\Delta \left(\Delta Y_{t^*+1}^0 \right)$
Case (a)					
D = 1	1	2	3	1	0
D = 0	0	0	1	1	1
Case (b)					
D=1	1	2	4	2	1
D = 0	0	0	1	1	1
Case (c)					
D=1	1	2	4	2	1
D = 0	0	1	3	2	1

Note: Expected outcomes in the absence of treatment conditional on treatment and X. Case (a) illustrates a situation whereby Parallel-(1) is satisfied while Parallel-(2) is violated. Case (b) illustrates the opposite situation. In Case (c), both Parallel assumptions are satisfied.

Parellel Trend and Parellel Growth

- ▶ Mora and Reggio (2014) formalize the above ideas and characterize a family of identification assumptions: Parallel-(q)
 - ▶ Parallel trend: Parallel-(1); Parallel growth: Parallel-(2)
- Notations:
 - Let t^* be the last pre-treatment period. Assume the treatment finishes before the first post-treatment period, $t^* + 1$
 - ▶ Denote the s-period difference operator as $\Delta_s \equiv (1 L^s)$, and the (q-1)-th difference operator as $\Delta^{q-1} \equiv (1-L)^{q-1}$
- ▶ Parallel-(q) is defined for a given pre-treatment period $q \leq t^*$, and for a given post-treatment periods $s, 1 \le s \le J - t^*$, $E(\Delta_s \Delta^{q-1} Y_{i,t^*+s}^0 \mid X_i, D_i = 1) = E(\Delta_s \Delta^{q-1} Y_{i,t^*+s}^0 \mid X_i, D_i = 1)$ 0)
 - ▶ The number of pre-treatment periods sets the max. number of assumptions that can be assumed

More on DID Regressions

Extensions of Standard Models when there are multiple periods:

$$\mathbf{Y}_{it} = \alpha + \beta \mathbf{T}_i + \sum_{\tau=2}^{J} \gamma_{\tau} \mathbf{I}_t^{\tau} + \delta \mathbf{TP}_{it} + e_{it}$$

$$\mathbf{Y}_{it} = \alpha + \beta \mathbf{T}_i + \sum_{\tau=2}^{J} \gamma_{\tau} \mathbf{I}_t^{\tau} + \delta \mathbf{TP}_{it} + \theta (\mathbf{TP}_{it} \times t) + e_{it}$$

$$Y_{it} = \alpha + \beta T_i + \sum_{\tau=2}^{J} \gamma_{\tau} I_t^{\tau} + \sum_{s=1}^{J-t^*} \delta_s (TP_{it} \times I_t^{t^*+s}) + e_{it}$$

- ► For all the three regressions, pre-treatment dynamics are identical for controls and treated
 - ► In the presence of group-specific trends, these models are inappropriate

More on DID Regressions

Incorporating group-specific time trends:

$$Y_{it} = \alpha + \beta T_i + \sum_{\tau=2}^{J} \gamma_{\tau} I_t^{\tau} + \sum_{s=1}^{J-t^*} \delta_s (T_i \times I_t^{t^*+s}) + e_{it}$$

ı

$$\mathbf{Y}_{it} = \alpha + \beta \mathbf{T}_i + \sum_{\tau=2}^{J} \gamma_{\tau} \mathbf{I}_t^{\tau} + \sum_{s=1}^{J-t^*} \delta_s (\mathbf{T}_i \times \mathbf{I}_t^{t^*+s}) + \sum_{r=1}^{R} \delta_r (\mathbf{T}_i \times t^r) + e_{it}$$

Fully flexible model (multiple periods, two groups):

$$Y_{it} = \alpha + \beta T_i + \sum_{\tau=2}^{J} \gamma_{\tau} I_t^{\tau} + \sum_{\tau=2}^{J} \delta_{\tau} (T_i \times I_t^{\tau}) + e_{it}$$

A Brief Review of Current Practive

Table B1: List of Selected Papers

Author	Year	Journ al	Title	No. Pre	No. Post
Aaronson and Mazumder	2011	JPE	The impact of Rosenwald Schools on Black	2	2
			achievement		
Abramitzky, Delavande, and	2011	AEJ:AE	Marrying Up: The Role of Sex Ratio in Assor-	6	11
Vasconcelos			tative Matching		
Currie and Walker	2011	AEJ:AE	Traffic Congestion and Infant Health: Evi-	300	168
			dence from E-ZPass		
De Jong, Lindeboom, and Van	2011	JEEA	Screening disability insurance applications	2	1
der Klaauw					
Jayachandran, Lleras-Muney,	2010	AEJ:AE	Modern Medicine and the Twentieth Century	12	7
and Smith			Decline in Mortality: Evidence on the Impact		
			of Sulfa Drugs		
Furman and Stern	2011	AER	Climbing atop the Shoulders of Giants: The	14	18
Kotchen and Grant	2011	REStat		2	1
			idence from a Natural Experiment in Indiana		
Moser and Voena	2012	AER	Compulsory Licensing: Evidence from the	43	22
Redding, Sturm, and Wolf	2011	REStat		12	40
,, ши топ		2020			
Kotchen and Grant	2011	REStat	Climbing atop the Shoulders of Giants: The Impact of Institutions on Cumulative Research Does Daylight Saving Time Save Energy? Ev- idence from a Natural Experiment in Indiana Compulsory Licensing: Evidence from the Trading with the Enemy Act History and industry location: Evidence from German airports	2	1

Note: Papers are listed by the alphabetical order obtained from the author's name. The papers selected satisfy the following conditions: (a) There is an application of DDI; (b) the sample includes more than one period before treatment; (c) data are publicly available; and (d) the paper is published in the period 2009:2012 in one of the following 10 Economics journals: ALSIAE, AER, JAppEcon, JECOn, JECA, JEEA, JLabEC, JPE, QJE, REStat, and REStud. "NO. Per" refers to the number of prot-treatment periods and "No. Post." refers to the number of post-treatment periods.

A Brief Review of Current Practive

Table B2: Fully flexible model results and reported results from selected papers

	D ()			T2 11 1	D1 11.1 3.5 4	1		
	Reported Estimated	q = 1		Fully Flexible Mode $q = 2$			Common	Linear
Article	Effect	Effect		Effect		Equiv. Test	Common Trends	Trend
		0.039***	Dynamics		Dynamics		Trends	Trend
Aaronson and Mazumder	0.072***		3.337	0.053***	6.488	1.420		
(2011)	(0.007)	(0.012)	[0.068]	(0.017)	[0.011]	[0.234]	10.41	10.00
Abramitzky, Delavande,	-0.020**	0.036	22.651	0.106	23.428	-0.069	13.41	13.287
and Vasconcelos (2011) - 1	(0.010)	(0.039)	[0.012]	(0.073)	[0.009]	[0.118]	[0.020]	[0.010]
Abramitzky, Delavande,	-0.010***	0.008	15.983	0.010	16.205	-0.003	4.339	2.633
and Vasconcelos (2011) - 2	(0.004)	(0.016)	[0.100]	(0.030)	[0.094]	[0.870]	[0.502]	[0.621]
Abramitzky, Delavande,	-0.017***	0.003	26.989	0.031	28.664	-0.028	11.27	10.76
and Vasconcelos (2011) - 3	(0.005)	(0.013)	[0.003]	(0.022)	[0.001]	[0.042]	[0.046]	[0.029]
Currie and Walker (2011) - 1	-0.208***	-0.506***	13.748	-0.386	13.796	-0.121	652.85	323.79
	(0.028)	(0.198)	[0.132]	(0.395)	[0.131]	[0.600]	[0.000]	[0.000]
Currie and Walker (2011) - 2	-0.090***	-0.582***	33.123	-1.071***	30.811	0.489	173.23	172.45
	(0.024)	(0.198)	[0.000]	(0.353)	[0.000]	[0.013]	[0.000]	[0.000]
Currie and Walker (2011) - 3	-0.065***	0.029	13.304	0.136	15.950	-0.107	351.47	282.06
	(0.017)	(0.101)	[0.149]	(0.128)	[0.068]	[0.079]	[0.000]	[0.000]
Currie and Walker (2011) - 4	-0.181***	-0.191*	25.404	-0.380*	27.992	0.189	581.98	316.51
	(0.023)	(0.108)	[0.003]	(0.204)	[0.001]	[0.100]	[0.000]	[0.000]
Currie and Walker (2011) - 5	0.018	-0.421	20.420	-0.592	14.565	0.171	268.15	246.61
	(0.038)	(0.374)	[0.016]	(0.736)	[0.104]	[0.714]	[0.000]	[0.000]
Furman and Stern (2011)	0.535***	0.471***	1.605	0.666	1.562	0.262	69.26	69.86
	(0.142)	(0.123)	[0.071]	(0.417)	[0.083]	[0.610]	[0.000]	[0.000]
Kotchen and Grant (2011)-1	0.009***	0.006*		-0.002		7.28		
` ` ´								
	(0.003)	(0.003)		(0.005)		[0.007]		
Kotchen and Grant (2011) -2	-0.003	-0.006**		-0.013***		3.97		
	(0.003)	(0.003)		(0.005)		[0.0471]		
Moser and Voena (2012)	0.151***	0.075	4.606	0.006	3.995	2.362	6.84	2.89
()	(0.036)	(0.046)	[0.000]	(0.081)	[0.000]	[0.124]	[0.000]	[0.000]

References I

Mora, Ricardo, and Iliana Reggio. 2014. "Treatment Effect Identification Using Alternative Parallel Assumptions."