# /var/

## Various programming stuff

- Css
- Django
- Flask
- Git
- Javascript
- Pelican
- Postgresql
- Python
- Spring
- Wagtail

## A pandas pivot table primer

Τετ 21 Σεπτέμβριος 2016

#### Introduction

Recently, I started using the <u>pandas</u> python library to improve the quality (and quantity) of statistics in my applications. One pandas method that I use frequently and is really powerful is pivot\_table. This is a rather complex method that has <u>very poor documentation</u>. Beyond this, this command is explained a little more in an article about <u>data reshaping</u>, however, even this leaves much to be desired (when I first tried reading it I was overwhelmed by the amount of information there).

A great introduction to pandas is the <u>three part series</u> by Greg Reda - it touches pivot\_table however I was only able to understand it properly *after* I played a lot with it. I don't know, maybe playing with pivot\_table yourself (or being really experienced in such concepts) is the only way to properly comprehend it! To help with this journey however I'm going to try to explain various basic pandas concepts that will lead us to the pivot\_table command (and some of its friends). Notice that I'm using pandas 0.18.1.

I have to mention that I am no expert in statistics or numeric analysis so this post won't have any advanced information and may even point out some obvious things. However keep in mind things that may seem obvious to some experts are really difficult to grasp for a non-expert.

Before continuing, please notice that this article has been written as a <u>jupyter</u> <u>notebook</u> and was integrated with pelican using the <u>pelican-ipynb plugin</u>. I had to do some modifications to my theme to better integrate the notebook styling, however some stuff may not look as nice as the other articles. I have to mention that this integration is really great and I totally recommend it!

#### The DataFrame

The most important data structure that pandas uses is the <u>DataFrame</u>. This can be thought as a two dimensional array, something like an Excel spreadsheet. In the pandas nomenclature, the rows of that two-dimensional array are called *indexes* (while the columns are still called *columns*) — I'll either use rows or indexes for the rows of the DataFrame. The rows are called indexes because they can be used to ... index data (think of each column as a dictionary). However please notice that pandas has a different data structure named <u>Index</u> that is used to store the names of the headers (axis) of the rows and columns.

If we horizontally/vertically pick the values of a single row(index)/column we'll be left with a different data structure called <u>Series</u> - this is more or less a single dimensional array (or a dictionary with the names of the columns/indexes as keys). There's also a <u>Panel</u> data structure which is 3-dimensional, more like a complete Excel workbook (the third dimension being the individual sheets of the workbook) but I won't cover that here.

More info on the above can be found on the corresponding  $\underline{\text{article about data}}$  structures.

There are various ways to read the data for a Series or DataFrame: Initializing through <u>arrays or dicts</u>, <u>reading from csv</u>, <u>xls</u>, <u>database</u>, combinining series to create an array and various others. I won't go into any details about this but will include some examples on how to create Series and DataFrames. If you are familiar with python you can just convert everything to a dict and read that instead of researching individual methods.

## **Using Series**

The Series data structure is more or less used to store a single dimensional array of data. This array-like structure could either have numbers as indexes (so will be more similar to a normal array) or have textual indexes (so will be more similar to a dictionary). Let's see some examples:

```
In [203]: import pandas as pd
          def t(o):
              # Return the class name of the object
              return o.__class__._name__
          # Use an array to create a Series
          series1 = pd.Series([10,20,30])
          print "series1 (", t(series1), ')\n', series1
          # Notice that the index names were automatically generated as 0,1,2
          # Use a dict to create a Series
          # notice that the keys of the dict will be the index names
          series2 = pd.Series({'row1':11,'row2':22,'row3':33})
          print "series2 (", t(series2), ')\n', series2
          series1 ( Series )
               10
          1
               20
          2
               30
          dtype: int64
          series2 ( Series )
          row1
                  11
          row2
                  22
          row3
                  33
          dtype: int64
```

The are various ways to select values from the Series. You can use textual or numeric indexes or you can filter the elements using an intuitive syntax:

```
In [204]: # Get values from series using named indexes
           series2['row1']
           # Can also use slicing and interesting operations
           # like array in array [[]] to select specific indexes
           print series1[1:]
           print series1[[0,2]]
           print series2['row2':]
           print series2[['row1', 'row3']]
               20
          2
               30
          dtype: int64
               10
               30
          dtype: int64
           row2
                   22
           row3
                   33
          dtype: int64
          row1
                  11
           row3
                   33
          dtype: int64
```

```
In [205]: # Filtering series
          # You can use comparison operators with a Series to
          # get an array of booleans with the result of each element
          print "Boolean result\n", series2>15
          # This boolean array can then be used to filter the Series
          # by returning only the elements that are "True"
          print "Filtered result\n", series2[series2>15]
          Boolean result
          row1
                  False
          row2
                   True
          row3
                   True
          dtype: bool
          Filtered result
          row2
          row3
                  33
          dtype: int64
In [206]: # The above means that we'll only get the second and third (index: 0,2)
          # So we can create a function that returns Boolean, apply it to
          # all elements of series with map and use the result for indexing!
          def is_22(x):
              return x==22
          print "Map filtering\n", series2[series2.map(is_22)]
```

Map filtering row2 22 dtype: int64

The map method above gets a callback function and applies it to all elements of the Series, returning a new Series with the results. It is similar to the map(function, sequence) -> list global python funtion. Using map filtering is the most general way to filter elements of a series.

# **Using DataFrames**

Let's start by a quick introduction to see some basic operations on DataFrames:

```
In [207]: # Create a DataFrame using a two-dimensional array
          # Notice that the indexes and column names were automatically generated
          df1 = pd.DataFrame([[10,20,30], [40,50,60]])
          print "Dataframe from array: df1(", t(df1), ')'
          print df1
          # Use a dict to give names to columns
          df2 = pd.DataFrame([{'col1':10, 'col2':20, 'col3':30}, {'col1':40, 'col2':
          print "Dataframe from dict: df2(", t(df2), ')'
          print df2
          # Give names to indexes
          df3 = pd.DataFrame([
              {'col1':10,'col2':20,'col3':30},
              {'col1':40,'col2':50,'col3':60}
          ], index=['idx1', 'idx2'])
          print "Dataframe from dict, named indexes: df3(", t(df3), ')'
          print df3
          # What happens when columns are missing
          df4 = pd.DataFrame([{'col1':10,'col2':20,'col3':30}, {'col2':40,'col3':
          print "Dataframe from dict, missing columns: df4(", t(df4), ')'
          print df4
          # Create a DataFrame by combining series
          df5 = pd.DataFrame([pd.Series([1,2]), pd.Series([3,4])], index=['a', 'b
          print "Dataframe from series: df5(", t(df5), ')
          print df5
          # Output a dataframe as html
          print df5.to html()
          # Notice that there are many more interesting DataFrame output methods,
          # to csv, to dict, to excel, to json, to latex, to msgpack, to string,
          Dataframe from array: dfl( DataFrame )
              0
                 1
          0 10 20 30
          1 40 50 60
          Dataframe from dict: df2( DataFrame )
             col1 col2 col3
          0
               10
                     20
                           30
               40
                     50
                           60
          1
          Dataframe from dict, named indexes: df3( DataFrame )
                col1 col2 col3
          idx1
                  10
                        20
                              30
          idx2
                  40
                        50
                              60
          Dataframe from dict, missing columns: df4( DataFrame )
             col1 col2 col3 col4
            10.0
                     20
                           30
                               NaN
             NaN
                     40
                           50
                               60.0
          1
          Dataframe from series: df5( DataFrame )
             1
                2
             3
            0 1
           a 1 2
           b 3 4
```

Reading a DataFrame from an array of python dicts is (at least for me) the easiest way to put my data in a DataFrame. Use any normal python method to generate that array of dicts and then just initialize the DataFrame with that. Also, the to\_html method is really useful to quickly output a DataFrame to your web application - don't forget to add some styling to the .dataframe class!

Selecting values from the Dataframe is very easy if you know how to do it. You index ([]) directly to select columns:

```
In [208]: print "df3(", t(df3), ")\n", df3
           # We can get a column as a Series
          print "Get column as series\n", df3['col3']
           # Or multiple columns as a DataFrame
           print "Get multiple columns\n", df3[['col3', 'col2']]
           # We can also get the column by its idx
          print "Get column by index\n", df3[df3.columns[1]]
          # Pick values from a dataframe using array indexing
           # df3['col2'] returns a Series so using the ['idx2']
           # index to it will return the actual value
           print "Get value\n", df3['col2']['idx2']
          df3( DataFrame )
                col1 col2
                            col3
          idx1
                  10
                        20
                               30
          idx2
                  40
                        50
                               60
          Get column as series
          idx1
                  30
          idx2
                  60
          Name: col3, dtype: int64
          Get multiple columns
                col3 col2
          idx1
                  30
                        20
          idx2
                  60
                         50
          Get column by index
          idx1
                  20
          idx2
                  50
          Name: col2, dtype: int64
          Get value
          50
```

Also you use the loc/iloc properties of the DataFrame to select rows/indexes (either by number or by text). The loc/iloc actually behave as a two dimensional array - they can get two parameters, the first one being the row/rows and the second one being the column/columns:

```
In [209]: | # Pick an index (select a horizontal line) as a series
          print "Get index as a series\n", df3.loc['idx1']
          # Also can pick by index number
          print "Get index as a series by index\n", df3.iloc[0]
          # iloc can be used to numerically index both rows and columns by passin
          print "Two dimensional - get by index\n",df3.iloc[0, :] # This is the s
          # so to select the first column we'll use
          print "Two dimensional - get by column\n", df3.iloc[:, 0]
          # We could do more interesting things, for example select a square
          print "Two dimensional - get by index and column\n", df3.iloc[0:2, 1:3]
          # Loc which is for label based indexing can also be used as a two dimen
          print "Two dimensional - use label based indexing\n", df3.loc[['idx1','
          Get index as a series
          col1
                  10
          col2
                   20
          col3
                  30
          Name: idx1, dtype: int64
          Get index as a series by index
          col1
                  10
          col2
                  20
          col3
                  30
          Name: idx1, dtype: int64
          Two dimensional - get by index
                  10
          col2
                  20
          col3
                  30
          Name: idx1, dtype: int64
          Two dimensional - get by column
          idx1
                  10
          idx2
                  40
          Name: col1, dtype: int64
          Two dimensional - get by index and column
                col2 col3
          idx1
                  20
          idx2
                  50
          Two dimensional - use label based indexing
          idx1
                  10
          idx2
                  40
          Name: col1, dtype: int64
```

Of course, boolean indexing and filtering can also be used just like in Series:

idx2

NaN

50

NaN

```
In [210]:
          print "Boolean dataframe\n", df3>30
          print "Boolean indexing\n",df3[df3>30]
          def is_20_or_50(x):
              return x==20 or x==50
          # We need to use applymap (instead of map we used in Series)
          print "Boolean indexing\n",df3[df3.applymap(is_20_or_50)]
          Boolean dataframe
                 col1
                        col2
                                col3
          idx1 False False False
          idx2
                 True
                        True
                               True
          Boolean indexing
                col1 col2
                            col3
          idx1
                 NaN
                       NaN
                             NaN
          idx2
                40.0
                      50.0
                            60.0
          Boolean indexing
                col1
                      col2
                             col3
          idx1
                 NaN
                        20
                             NaN
```

Notice that for the DataFrame we use the applymap method which applies the callback function to all individual elements of the DataFrame and returns the result as a new DataFrame (with the same dimensions of course). The boolean indexing is nice but it does not actually drop not needed things, we see that we just get a NaN in the positions that are filtered. Could we do something better? The answer is yes, but we'll need to do index/column boolean indexing - i.e select only specific columns or indexes and then pass these to filter the dataframe:

```
In [211]: # Let's see the indexes that have *10* in their col1 column
          print df3['col1']==10
          # And then select *only* these indexes (i.e idx1)
          print df3[df3['col1']==10]
           # Now we can do exactly the opposite (see columns that have 10 in their
          print df3.loc['idx1']==10
          # And then select *only* these columns (i.e col1)
          print df3.loc[:, df3.loc['idx1']==10]
          idx1
                    True
          idx2
                  False
          Name: col1, dtype: bool
                col1 col2 col3
          idx1
                         20
                               30
                   10
          col1
                   True
          col2
                   False
          col3
                   False
          Name: idx1, dtype: bool
                col1
          idx1
                  10
          idx2
                  40
```

```
In [212]: # Let's finally see a general solution to boolean selecting with loc:
          # Select specific columns
          print df3.loc[:, [True, False, True] ]
          # Select specific rows
          print df3.loc[[False, True], : ]
          # Select specific rows and cols
          print df3.loc[[False, True], [True, False,True] , ]
          # So we can pass two boolean arrays to loc, the first for selecting ind
          # the second for selecting columns
                col1 col3
          idx1
                  10
                         30
          idx2
                  40
                         60
                       col2
                             col3
                 col1
          idx2
                         50
                 col1
                       col3
          idx2
                  40
                         60
```

# **Modifying DataFrames**

It's easy to modify the DataFrame by changing its values, adding more indexes / columns, dropping rows and columns, renaming columns and indexes. Notice that some operations are performed in place (so they modify the original DataFrame), while others return a copy of the original array.

```
In [213]: # Let's copy because some of the following operators change the datafra
          df = df3.copy()
          print df
          print "Change values of a column"
          df['col1'] = [11,41]
          print df
          print "Change values of an index"
          df.loc['idx1'] = [11,21, 31]
          print df
          print "We can change more specific values (a 2x2 array here)"
          df.iloc[0:2, 0:2] = [[4,3], [2,1]]
          print df
          print "Add another column to an existing dataframe (changes DataFrame)"
          df['col4'] = [1,2]
          print df
          print "Add another row (index) to an existing dataframe (changes DataFr
          df.loc['idx3']=[100,200,300,400]
          print df
          print "Drop a row (returns new object)"
          print df.drop('idx1')
          print "Drop a column (returns new object)"
          print df.drop('col1', axis=1)
          print "Rename index (returns new object)"
          print df.rename(index={'idx1': 'new-idx-1'})
          print "Rename column (returns new object)"
          print df.rename(columns={'col1': 'new-col-1'})
          print "Transpose array- change columns to rows and vice versa"
          print df.T
          print "Double transpose - returns the initial DataFrame"
          print df.T.T
                col1 col2 col3
          idx1
                  10
                        20
                              30
          idx2
                  40
                        50
                               60
          Change values of a column
                col1
                     col2 col3
          idx1
                  11
                        20
                               30
          idx2
                  41
                        50
                              60
          Change values of an index
                col1 col2 col3
          idx1
                        21
                  11
          idx2
                  41
                        50
                               60
          We can change more specific values (a 2x2 array here)
                col1 col2 col3
          idx1
                   4
                         3
          idx2
                   2
                         1
                               60
          Add another column to an existing dataframe (changes DataFrame)
                col1 col2 col3 col4
          idx1
                         3
                               31
                   2
          idx2
                         1
                               60
                                      2
          Add another row (index) to an existing dataframe (changes DataFrame)
                col1 col2 col3 col4
          idx1
                               31
                                      1
          ・イベン
                               60
```

## More advanced operations

Beyond the previous, more or less basic operations, pandas allows you to do some advanced operations like SQL-like joins of more than one dataset or, applying a function to each of the rows / columns or even individual cells of the DataFrame:

```
In [214]: authors_df=pd.DataFrame([{'id': 1, 'name':'Stephen King'}, {'id': 2, 'n
           books df=pd.DataFrame([
                {'id': 1, 'author_id':1, 'name':'It'},
               {'id': 2, 'author_id':1, 'name':'The Stand'}, {'id': 3, 'author_id':2, 'name':'Airframe'},
                {'id': 4, 'author_id':2, 'name':'Jurassic Park'}
           ])
           print authors_df
           print books df
           print books df.merge(authors df, left on='author id', right on='id')
                       Stephen King
           1
               2 Michael Crichton
              author_id id
                                        name
           0
                       1
                                          T†
                          1
           1
                       1
                           2
                                  The Stand
           2
                       2
                           3
                                   Airframe
                       2
                          4 Jurassic Park
                                    name_x id_y
                                                                  name_y
              author_id
                         id x
           0
                                                            Stephen King
                       1
                             1
                                           Ιt
                                                    1
           1
                       1
                             2
                                     The Stand
                                                            Stephen King
           2
                                                    2 Michael Crichton
                       2
                             3
                                      Airframe
                       2
                                Jurassic Park
                                                    2 Michael Crichton
           3
```

As can be seen above, the merge method of DataFrame can be used to do an sql-like join with another DataFrame, using specific columns as join-keys for each of the two dataframes (left\_on and right\_on). There are a lot of options for doing various join types (left, right, inner, outer etc) and concatenating DataFrames with other ways - most are discussed in the <u>corresponding post</u>.

Let's see another method of doing the above join that is more controlled, using the apply method of DataFrame that *applies* a function to each row/column of the DataFrame and returns the result as a series:

```
In [215]: # Let's do the join using a different method
          def f(r):
              author_df_partial = authors_df[authors_df['id']==r['author_id']]
              return author df partial.iloc[0]['name']
          books df['author name'] = books df.apply(f, axis=1)
          print books df
             author_id id
                                     name
                                                 author name
          0
                     1
                         1
                                       Ιt
                                                Stephen King
                     1
                         2
                                The Stand
                                                Stephen King
          1
          2
                     2
                                 Airframe Michael Crichton
                         3
          3
                     2
                         4 Jurassic Park Michael Crichton
```

How does this work? We pass the axis=1 parameter to apply so that the callback function will be called for each row of the DataFrame (by default axis=0 which means it will be called for each column). So, f will be called getting each row as an input. From this book\_df row, we get the author\_id it contains and filter authors\_df by it. Notice that author\_df\_partial is actually a DataFrame containing only one row, so we need to filter it by getting its only line, using iloc[0] which will return a Series and finally, we return the author name using the corresponding index name.

When calling the apply method, by defautl the axis parameter is 0 (i.e the function will be called for each column). When I first encountered this I found it very strange because I thought that most users would usually want to apply a function to each of the rows. However, there's a reason for applying the function to all columns, here's an example:

|     | morsture | temperature |
|-----|----------|-------------|
| 0   | 68.0     | 31.0        |
| 1   | 72.0     | 33.0        |
| 2   | 58.0     | 31.5        |
| 3   | 42.0     | 28.5        |
| avg | 60.0     | 31.0        |
| len | 5.0      | 5.0         |
| sum | 305.0    | 160.0       |
|     |          |             |

# Comprehending pivot table

After this (rather long) introduction to using and manipulating DataFrames, the time has come to see pivot\_table. The pivot\_table method is applied to a DataFrame and its purpose is to "reshape" and "aggregate" the values of a DataFrame . More on reshaping can be found <a href="here">here</a> and it means changing the indexes/columns of the DataFrame to create a new DataFrame that fits our needs. Aggregate on the other hand means that for each of the cells of the new DataFrame we'll create a summary of the data that should have appeared there.

Let's start by creating a nice set of data we'll use for the pivot table operations:

The recommended type of input (at least by me) to the pivot\_table is a simple DataFrame like the one I have already created: Your index will be the id of your database (or you could even have an auto-generated index like in the example) and the columns will be the values you want to aggregate and reshape. This is very easy to create either by reading a file (xls/csv) or by a simple SQL query (substituting all foreign keys with a representative value). In the above example, we actually have the following columns: <code>author</code>, <code>genre</code>, <code>name</code>, <code>pages</code>, <code>year</code>, <code>decade</code>, <code>size</code> - this is a pool of data that will be very useful to remember for later and it is important to also keep it in your mind for your data. So, use a unique id as the index and remember the names of your columns.

As we can see in the documentation, the  $\underline{\text{pivot table method}}$  uses four basic parameters:

- index: An array of the data that will be used as indexes to the resulting (i.e the reshaped and aggregated) DataFrame
- columns: An array of the data that will be used as a columns to the resulting DataFrame
- values: An array of the data whose values we want to aggregate in each cell
- aggfunc: Which is the function (or functions) that will be used for aggregating the values

So, how it actually works? You select a number of the headers from your pool of data and assign them to either index or columns, depending if you want to put them horizontally or vertically. Notice that both index and columns:

- take either a string (to denote a single column) or an array to denote multiple columns
- are optional (but you must define one of them) if you skip either columns or index you'll get a Series instead of a DataFrame
- are interchangable (you can put any header from your pool to either index or columns, depending on how you want to display your data)
- are mutually exclusive (you can't put the same header in both index and columns)

Multiple data headers means that you'll have <u>hierachical indexes / columns</u> in your pivot (or MultiIndex as it's called - remember that Index is used to store the axis of the DataFrame), ie the rows/columns would be grouped by a hierarchy. Let's see an example of multiple indexes:

If we used 'decade' as an index, then the pivot table index would be like

```
80s value1 value2 ...
90s value1 value2 ...
while, if we used ['decade', 'year'] we'd hove something like
```

```
70s
1975 value1 value2 ...
1978 value1 value2 ...
80s
1980 value1 value2 ...
1982 value1 value2 ...
...
90s
1990 value1 value2 ...
```

• 70s value1 value2 ...

So, each year would automatically be grouped to its corresponing decade. The same would be true if we used ['decade', 'year'] in columns (but we'll now have a vertical grouping from top to bottom). Notice that pandas doesn't know if

```
In [218]: books_df=pd.DataFrame([
                                       {'author': 'Stephen King', 'name': 'The Dark Tower IV: Wizard and Gl {'author': 'Michael Crichton', 'name': 'Airframe', 'pages': 352, 'yea {'author': 'Michael Crichton', 'name': 'Jurassic Park', 'pages': 448, {'author': 'Michael Crichton', 'name': 'Congo', 'pages': 348, 'year': {'author': 'Michael Crichton', 'name': 'Sphere', 'pages': 385, 'year' {'author': 'Michael Crichton', 'name': 'Disclosure ', 'pages': 597, '{'author': 'Michael Crichton', 'name': 'The Lost World ', 'pages': 43
                                       {'author':'Michael Crichton', 'name':'The Lost World ', 'pages': 43 {'author':'John Grisham', 'name':'A Time to Kill', 'pages': 515, 'y {'author':'John Grisham', 'name':'The Firm', 'pages': 432, 'year':1 {'author':'John Grisham', 'name':'The Pelican Brief', 'pages': 387, {'author':'John Grisham', 'name':'The Chamber', 'pages': 496, 'year {'author':'John Grisham', 'name':'The Rainmaker', 'pages': 434, 'ye {'author':'John Grisham', 'name':'The Runaway Jury', 'pages': 414, {'author':'John Grisham', 'name':'The Street Lawyer', 'pages': 347, {'author':'George Pelecanos', 'name':'Nick\'s Trip', 'pages': 2 {'author':'George Pelecanos', 'name':'A Firing Offense', 'pages': 3 {'author':'George R.R Martin', 'name':'A Clash of Kings', 'pages': {'author':'George R.R Martin', 'name':'A Game of Thrones', 'pages': {'author':'George R.R Martin', 'name':'A Game of Thrones', 'pages':
                             1)
                             # Add a decade column to the books DataFrame
                             def add decade(y):
                                                   return str(y['year'])[2] + '0\'s'
                             books df['decade'] = books df.apply(add decade, axis=1)
                             # Add a size column to the books DataFrame
                             def add_size(y):
                                                   if y['pages'] > 600:
                                                              return 'big'
                                                   elif y['pages'] < 300:
                                                              return 'small'
                                                   return 'medium'
                             books_df['size'] = books_df.apply(add_size, axis=1)
                             # Let's display it sorted here
                             books_df.sort_values(['decade', 'genre', 'year'])
```

#### Out[218]:

|    | author              | genre   | name                              | pages | year | decade | size   |
|----|---------------------|---------|-----------------------------------|-------|------|--------|--------|
| 2  | Stephen<br>King     | Horror  | Salem's Lot                       | 439   | 1975 | 70's   | medium |
| 1  | Stephen<br>King     | Horror  | The Stand                         | 823   | 1978 | 70's   | big    |
| 18 | John<br>Grisham     | Crime   | A Time to Kill                    | 515   | 1989 | 80's   | medium |
| 13 | Michael<br>Crichton | Fantasy | Congo                             | 348   | 1980 | 80's   | medium |
| 7  | Stephen<br>King     | Fantasy | The Dark Tower: The<br>Gunslinger | 224   | 1982 | 80's   | small  |

In [219]: # Here's the first example books\_df.pivot\_table(index=['decade', ], columns=['genre'], )

Out[219]:

|        |            | pages   |        |          |               | year        |       |  |  |
|--------|------------|---------|--------|----------|---------------|-------------|-------|--|--|
| genre  | Crime      | Fantasy | Horror | Thriller | Crime Fantasy |             | Horr  |  |  |
| decade |            |         |        |          |               |             |       |  |  |
| 70's   | NaN        | NaN     | 631.0  | NaN      | NaN           | NaN         | 1976. |  |  |
| 80's   | 515.000000 | 339.25  | 756.0  | 423.5    | 1989.000000   | 1984.000000 | 1984. |  |  |
| 90's   | 387.416667 | 606.50  | 529.0  | NaN      | 1994.083333   | 1994.666667 | 1998. |  |  |

In the above, we aggregated dour books by their decade and genre.

As we can see we just passed decade as an index and genre as a column. We ommited values and aggfunc so the default values were used. What happened? Pandas created a new DataFrame that had the values of decade as its index and the values of genre as its columns. Now, for each of the values (remember that since we ommitted values, pandas just gets all numerical data, i.e pages and year) it found the corresponding entries for each cell, got their average and put it in that cell. For example, since there are no Crime genre books in the 70's we got a NaN to both the pages and year values. However, there are two Horror books, with 823 and 439 pages so their average is 631. Notice that for each value a separate toplevel multi-column containing all indexes and columns was created - we can display only pages or year by indexing with ['pages'] or ['year']. We can think of each of the values columns as a seperate pivot table, so in the above example we have a pivot table for pages and a pivot table for year.

The above year column will also use the default average aggregate, something that doesn't actually makes sense. So we can use values to explicitly define which values to aggregate — here's how we can display only the pages:

In [220]: books\_df.pivot\_table(index=['decade', ], columns=['genre'], values='pag #The above is more or less the same as with books df.pivot table(index=

Out[220]:

| genre  | Crime      | Fantasy | Horror | Thriller |
|--------|------------|---------|--------|----------|
| decade |            |         |        |          |
| 70's   | NaN        | NaN     | 631.0  | NaN      |
| 80's   | 515.000000 | 339.25  | 756.0  | 423.5    |
| 90's   | 387.416667 | 606.50  | 529.0  | NaN      |

In [221]: # In the above, we could pass ['pages'] instead of 'pages' as the value # This will result in creating a multi-column index with 'pages' as the books\_df.pivot\_table(index=['decade', ], columns=['genre'], values=['pa

Out[221]:

|        | pages      |         |        |          |  |  |  |  |
|--------|------------|---------|--------|----------|--|--|--|--|
| genre  | Crime      | Fantasy | Horror | Thriller |  |  |  |  |
| decade |            |         |        |          |  |  |  |  |
| 70's   | NaN        | NaN     | 631.0  | NaN      |  |  |  |  |
| 80's   | 515.000000 | 339.25  | 756.0  | 423.5    |  |  |  |  |
| 90's   | 387.416667 | 606.50  | 529.0  | NaN      |  |  |  |  |

```
In [222]: # Also, please notice that you can skip index or columns (but not both)
          print books_df.pivot_table(index=['decade', ], values='pages')
          print books_df.pivot_table(columns=['decade', ], values='pages')
          decade
          70's
                  631.000000
          80's
                  470.111111
          90's
                  464.052632
          Name: pages, dtype: float64
          decade
          70's
                  631.000000
          80's
                  470.111111
          90's
                  464.052632
          Name: pages, dtype: float64
```

Notice that above we have exactly the same result since for both cases we got a Series (it doesn't matter that we used index in the first and columns in the second). Also, since we use *less* columns from our data pool (we used only decade while previously we used both decade and genre), the aggregation is more coarse: We got the averages of book pages in each decade. Of course, we could have the same values as before but use a multi-column index:

```
In [223]: s1 = books_df.pivot_table(index=['decade', 'genre'], values='pages')
          s2 = books df.pivot table(columns=['decade', 'genre'], values='pages')
          print "s1 equals s2: ", s1.equals(s2)
          print s1.index
          s1
          s1 equals s2: True
          MultiIndex(levels=[[u'70's', u'80's', u'90's'], [u'Crime', u'Fantasy', ι
                     labels=[[0, 1, 1, 1, 1, 2, 2, 2], [2, 0, 1, 2, 3, 0, 1, 2]],
                     names=[u'decade', u'genre'])
Out[223]: decade
                  genre
          70's
                  Horror
                              631.000000
          80's
                  Crime
                              515.000000
                  Fantasv
                              339,250000
                  Horror
                              756,000000
                  Thriller
                              423.500000
          90's
                  Crime
                              387.416667
                  Fantasy
                              606.500000
                  Horror
                              529.000000
          Name: pages, dtype: float64
```

The above return a Series with a multi column index (they are both the same). Notice that the data is exactly the same as when we passed decade and genre in in index and column. The only difference is that some NaN rows have been dropped from the Series while in the DataFrame are there, for example Crime/70's (the DataFrame will by default drop a row or index if all its values are NaN). Finally, take a look at how the multi index is represented (each easy to decypher it).

Let's now say that we actually wanted to have a meaningful value for the year, for example the first year we have a book for that genre/decade:

In [224]: # I'll intentionally skip values again to see what happens books\_df.pivot\_table(index=['decade', ], columns=['genre'], aggfunc=min

Out[224]:

|        |                     | auth                    | or              |                 | name                   |                     |                 |                     |
|--------|---------------------|-------------------------|-----------------|-----------------|------------------------|---------------------|-----------------|---------------------|
| genre  | Crime               | Fantasy                 | Horror          | Thriller        | Crime                  | Fantasy Hor         |                 | Thrille             |
| decade |                     |                         |                 |                 |                        |                     |                 |                     |
| 70's   | None                | None                    | Stephen<br>King | None            | None                   | None                | Salem's<br>Lot  | None                |
| 80's   | John<br>Grisham     | Michael<br>Crichton     |                 | Stephen<br>King | A Time<br>to Kill      | Congo               | IIIT I          | Differen<br>Seasons |
| 90's   | George<br>Pelecanos | George<br>R.R<br>Martin | Stephen<br>King | None            | A<br>Firing<br>Offense | A Clash<br>of Kings | Bag of<br>bones | None                |

This is more interesting. It seems that since we didn't use the default aggfunc value but instead we passed our own (min), pandas did not use only the numerical values but used instead all remaining columns as values: Remember that our pool of data was author, genre, name, pages, year, decade, size, the genre and decade were used as an index/column so the remaining headers were used as values: author, name, pages, year, size! For the pages and year we can understand what happens: For example, for the Horror novels of the 80's, the one with the minimal pages is Pet Sematery with 374 pages. The same has also the minimal year (1983). However, the one with the minimal name is It (since I is before P it just compares strings). The author is the same for both(Stephen King) and the minimum size is medium (since small (s) > medium (m)). Of course we could pass the values parameter to actually define which values we wanted to see.

Another really interesting thing is to take a peek at which are the values that are passed to the aggregation function. For this, we can just use tuple:

In [225]: # Please notice that for reasons unknown to me, if I used aggfunc=tuple
books\_df\_tuples = books\_df.pivot\_table(index=['decade', ], columns=['ge
books\_df\_tuples

Out[225]:

|        |                                                               | auth                                                          | or                                    |                                       |                                                              | nan                                                        | 1e                                |
|--------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|-----------------------------------|
| genre  | Crime                                                         | Fantasy                                                       | Horror                                | Thriller                              | Crime                                                        | Fantasy                                                    | Horre                             |
| decade |                                                               |                                                               |                                       |                                       |                                                              |                                                            |                                   |
| 70's   | None                                                          | None                                                          | (Stephen<br>King,<br>Stephen<br>King) | None                                  | None                                                         | None                                                       | (The<br>Stand,<br>Salem':<br>Lot) |
| 80's   | (John<br>Grisham,)                                            | (Stephen<br>King,<br>Stephen<br>King,<br>Michael<br>Crichton, | King,                                 | (Stephen<br>King,<br>Stephen<br>King) | (A Time to<br>Kill,)                                         | (The Dark<br>Tower: The<br>Gunslinger,<br>The Dark<br>Towe | (It, Pet<br>Semata                |
| 90's   | (Michael<br>Crichton,<br>Michael<br>Crichton,<br>Michael<br>C | (Stephen<br>King,<br>Stephen<br>King,<br>Michael<br>Crichton, | (Stephen<br>King,)                    | None                                  | (Airframe,<br>Rising<br>Sun,<br>Disclosure<br>, The<br>Firm, | (The Dark<br>Tower III:<br>The Waste<br>Lands, The<br>Dark | (Bag of<br>bones,)                |

Notice that for the columns we have a MultiIndex of both value\_type (author, name etc) and genre (Crime, Fantasy etc) while for the index we have the decade. So by books\_df\_tuples['author'] we'll get the author values DataFrame, by books\_df\_tuples['author']['Crime'] we'll get the Crime column of that DataFrame as a series and finally with books\_df\_tuples['author']['Crime'] ['90\'s'] we'll get the actuall value which is all author names that have written Crime books in the 90's — authors that have written multiple books will be displayed multiple times.

What if we wanted to only display the different authors for each genre and decade and remove duplicates:

```
In [227]: books_df.pivot_table(
    index=['decade', ],
    columns=['genre'],
    values='author',
    aggfunc=lambda x: ', '.join(set(x))
)
```

#### Out[227]:

| genre  | Crime        | Fantasy                                                 | Horror          | Thriller        |
|--------|--------------|---------------------------------------------------------|-----------------|-----------------|
| decade |              |                                                         |                 |                 |
| 70's   | None         | None                                                    | Stephen<br>King | None            |
| 80's   | John Grisham | Stephen King, Michael<br>Crichton                       | Stephen<br>King | Stephen<br>King |
|        |              | Stephen King, George<br>R.R Martin, Michael<br>Crichton | Stephen<br>King | None            |

What happens above is that we use the lambda x: ', '.join(set(x)) function to aggregate. This function will create a set (i.e remove duplicates) from the input (which is the corresponding values for each cell) and then join the set members using ','.

Notice that the inpout parameter that is passed to our aggfunc is actually a Series so don't be alarmed if some list operations are not working:

```
In [228]: books_df.pivot_table(
    index=['decade', ],
    columns=['genre'],
    values='author',
    aggfunc=lambda x: type(x)
)
```

#### Out[228]:

| genre  | Crime | Fantasy | Horror | Thriller |
|--------|-------|---------|--------|----------|
| decade |       |         |        |          |
| 70's   | None  | None    |        | None     |
| 80's   |       |         |        |          |
| 90's   |       |         |        | None     |

Before continuing, I'd like to present another two parameters that could be passed to the pivot\_table: fill\_value to define a value to display when no values are found to be aggregated for a cell and margins to enable or disable margin rows/columns to the left/bottom that will aggregate all values of that column, for example:

```
In [229]: books_df.pivot_table(
    index=['decade', ],
    columns=['genre'],
    values ='author',
    aggfunc=lambda x: ', '.join(set(x)),
    margins=True,
    fill_value='-'
)
```

#### Out[229]:

| genre  | Crime                                                        | Fantasy                                                       | Horror          | Thriller        | All                                                     |
|--------|--------------------------------------------------------------|---------------------------------------------------------------|-----------------|-----------------|---------------------------------------------------------|
| decade |                                                              |                                                               |                 |                 |                                                         |
| 70's   | -                                                            | -                                                             | Stephen<br>King | -               | Stephen King                                            |
| 80's   | John Grisham                                                 | Stephen King,<br>Michael<br>Crichton                          | Stephen<br>King | Stephen<br>King | Stephen King,<br>John Grisham,<br>Michael Crichton      |
| 90's   | John Grisham,<br>Michael<br>Crichton,<br>George<br>Pelecanos | Stephen King,<br>George R.R<br>Martin,<br>Michael<br>Crichton | Stephen<br>King | -               | Stephen King,<br>George R.R<br>Martin, John<br>Grisham, |
| All    | John Grisham,<br>Michael<br>Crichton,<br>George<br>Pelecanos | Stephen King,<br>George R.R<br>Martin,<br>Michael<br>Crichton | Stephen<br>King | Stephen<br>King | Stephen King,<br>George R.R<br>Martin, John<br>Grisham, |

The "All" column above will aggregate all values for each row/column (and the All/All down right will aggregate all values).

Using our previous knowledge of multi column indexes, let's display the average number of pages each author writes for each decade and genre:

```
In [230]: books_df.pivot_table(
    index=['decade', ],
    columns=['author', 'genre'],
    values='pages',
)
```

#### Out[230]:

| author | George<br>Pelecanos | George<br>R.R<br>Martin | John<br>Grisham | Michael Crichton |       | Stephen k |       |
|--------|---------------------|-------------------------|-----------------|------------------|-------|-----------|-------|
| genre  | Crime               | Fantasy                 | Crime           | Crime Fantasy    |       | Fantasy   | Horro |
| decade |                     |                         |                 |                  |       |           |       |
| 70's   | NaN                 | NaN                     | NaN             | NaN              | NaN   | NaN       | 631.0 |
| 80's   | NaN                 | NaN                     | 515.000000      | NaN              | 366.5 | 312.0     | 756.0 |
| 90's   | 268.333333          | 731.0                   | 418.333333      | 444.666667       | 439.0 | 649.5     | 529.0 |

```
In [231]: # One interesting thing is that if we changed the order of the multi-co
books_df.pivot_table(
    index=['decade', ],
    columns=['genre', 'author'],
    values='pages',
)
```

#### Out[231]:

| genre  |                                  | Crime      |                     |                         | Horr                |                 |              |
|--------|----------------------------------|------------|---------------------|-------------------------|---------------------|-----------------|--------------|
| author | George John<br>Pelecanos Grisham |            | Michael<br>Crichton | George<br>R.R<br>Martin | Michael<br>Crichton | Stephen<br>King | Steph<br>Kin |
| decade |                                  |            |                     |                         |                     |                 |              |
| 70's   | NaN                              | NaN        | NaN                 | NaN                     | NaN                 | NaN             | 631.0        |
| 80's   | NaN                              | 515.000000 | NaN                 | NaN                     | 366.5               | 312.0           | 756.0        |
| 90's   | 268.333333                       | 418.333333 | 444.666667          | 731.0                   | 439.0               | 649.5           | 529.0        |

```
In [232]: # Or we can interchange index with columns to get the same data in a ho
books_df.pivot_table(
    columns=['decade', ],
    index=['author', 'genre'],
    values='pages',
)
```

#### Out[232]:

|                   | decade   | 70's  | 80's  | 90's       |
|-------------------|----------|-------|-------|------------|
| author            | genre    |       |       |            |
| George Pelecanos  | Crime    | NaN   | NaN   | 268.333333 |
| George R.R Martin | Fantasy  | NaN   | NaN   | 731.000000 |
| John Grisham      | Crime    | NaN   | 515.0 | 418.333333 |
| Michael Crichton  | Crime    | NaN   | NaN   | 444.666667 |
|                   | Fantasy  | NaN   | 366.5 | 439.000000 |
| Stephen King      | Fantasy  | NaN   | 312.0 | 649.500000 |
|                   | Horror   | 631.0 | 756.0 | 529.000000 |
|                   | Thriller | NaN   | 423.5 | NaN        |

So, Michael Crichton was writing 445 pages for Crime novels and 439 pages for Fantasy novels on average at the 90's (of course this would be true if we had included all works of Michael Crichton). In the previous table we can see that, for example for George Pelecanos only the Crime genre is displayed (since he's only Crime genre books in our database). Pandas automatically drops columns / lines where everything is empty (NaN)— if we for some reason wanted to display it, could use the dropna=False parameter:

```
In [233]: books_df.pivot_table(
    index=['decade', ],
    columns=['author', 'genre'],
    values=['pages'],
    dropna=False
)
```

### Out[233]:

| author | Ge            | eorge Pel | ecanos |          | George R.R Martin |         |        |          |  |
|--------|---------------|-----------|--------|----------|-------------------|---------|--------|----------|--|
| genre  | Crime Fantasy |           | Horror | Thriller | Crime             | Fantasy | Horror | Thrilleı |  |
| decade |               |           |        |          |                   |         |        |          |  |
| 70's   | NaN           | NaN       | NaN    | NaN      | NaN               | NaN     | NaN    | NaN      |  |
| 80's   | NaN           | NaN       | NaN    | NaN      | NaN               | NaN     | NaN    | NaN      |  |
| 90's   | 268.333333    | NaN       | NaN    | NaN      | NaN               | 731.0   | NaN    | NaN      |  |

```
In [234]: # We can create any combination we want with our multi-index colums, fo
# be decade / year / author and genre / size
books_df.pivot_table(
    index=['decade', 'year', 'author', 'name'],
    columns=['size', 'genre'],
    values='pages',
    aggfunc=lambda x: 'v',
    fill_value='',
)
```

Out[234]:

|        |                |                     | size                                                    | bi      | g      |       | med     | dium  |
|--------|----------------|---------------------|---------------------------------------------------------|---------|--------|-------|---------|-------|
|        |                |                     | genre                                                   | Fantasy | Horror | Crime | Fantasy | Horro |
| decade | year           | author              | name                                                    |         |        |       |         |       |
| 70's   | 1975           | Stephen<br>King     | Salem's<br>Lot                                          |         |        |       |         | v     |
|        | 1978           | Stephen<br>King     | The Stand                                               |         | v      |       |         |       |
| 80's   | 1980           | Michael<br>Crichton | Congo                                                   |         |        |       | v       |       |
|        | 1982           | Stephen<br>King     | Different<br>Seasons                                    |         |        |       |         |       |
|        |                |                     | The Dark<br>Tower: The<br>Gunslinger                    |         |        |       |         |       |
|        | 1983           | Stephen<br>King     | Pet<br>Sematary                                         |         |        |       |         | v     |
|        | 1986           | Stephen<br>King     | It                                                      |         | v      |       |         |       |
|        | 1987           | Michael<br>Crichton | Sphere                                                  |         |        |       | v       |       |
|        | Stephe<br>King | Stephen             | Misery                                                  |         |        |       |         |       |
|        |                | King                | The Dark<br>Tower II:<br>The<br>Drawing of<br>the Three |         |        |       | v       |       |
|        | 1989           | John<br>Grisham     | A Time to<br>Kill                                       |         |        | v     |         |       |
| 90's   | 1990           | Michael<br>Crichton | Jurassic<br>Park                                        |         |        |       | v       |       |
|        | 1991           | John<br>Grisham     | The Firm                                                |         |        | v     |         |       |
|        |                | Stephen<br>King     | The Dark<br>Tower III:<br>The Waste<br>Lands            |         |        |       | v       |       |
|        | 1992           | George<br>Pelecanos | A Firing<br>Offense                                     |         |        |       |         |       |
|        |                | John<br>Grisham     | The<br>Pelican<br>Brief                                 |         |        | v     |         |       |
|        |                | Michael<br>Crichton | Rising Sun                                              |         |        | v     |         |       |
|        | 1993           | George<br>Pelecanos | Nick's Trip                                             |         |        |       |         |       |

One more advanced thing I'd like to cover here is that we could define multiple aggregate functions for each one of our values by passing a dictionary of value: function to the aggfunc parameter. For example, if we wanted to display

- the sum of the pages that have been written
- the range of years for which we have books
- the names of the authors
- the name of one book we have

for each genre each decade, we could do something like this

```
In [235]:
           def get range(years):
                return '{0} - {1}'.format(min(years), max(years))
            def get names(authors):
                return ', '.join(set(authors))
            def get book(books):
                # Don't forget the the passed parameter is a Series so we use iloc
                return books.iloc[0]
            books_df.pivot_table(
                index=['decade', ],
columns=['genre', ],
values=['author', 'pages', 'year', 'name'],
                aggfunc={
                     'author': get_names,
                     'pages': sum,
                     'year': get_range,
                     'name': get book,
                fill_value='-'
```

Out[235]:

|        |                | ye             | ear            |                |       | pa      | ges    |          |      |
|--------|----------------|----------------|----------------|----------------|-------|---------|--------|----------|------|
| genre  | Crime          | Fantasy        | Horror         | Thriller       | Crime | Fantasy | Horror | Thriller | Cr   |
| decade |                |                |                |                |       |         |        |          |      |
| 70's   | -              | -              | 1975 -<br>1978 | -              | -     | -       | 1262   | -        | -    |
| 80's   | 1989 -<br>1989 | 1980 -<br>1987 | 1983 -<br>1986 | 1982 -<br>1987 | 515   | 1357    | 1512   | 847      | A Ti |
| 90's   | 1991 -<br>1998 | 1990 -<br>1998 | 1998 -<br>1998 | -              | 4649  | 3639    | 529    | -        | Airf |

As we've already mentioned, the above is more or less like four different pivot tables — for example we could get a pivot table with only pages if we passed 'pages' as the values and sum as the aggfunc in the above method call.

## Friends of pivot\_table

The pivot\_table method has some friends — these are functions that operate on DataFrame and can do reshaping but they are not as powerful as pivot\_table. Let's introduce some of them:

```
In [236]: # First, I'll create a DataFrame as an example:
    df=books_df.pivot_table(index=['decade', ], columns=['genre', 'author']
    # This df has a Multi-index in columns - first level is the genres, sec
    print df.columns
    print df.index
    df
```

Out[236]:

| genre  |                     | Crime           |         |                         |       | Horror | 7               |   |
|--------|---------------------|-----------------|---------|-------------------------|-------|--------|-----------------|---|
| author | George<br>Pelecanos | John<br>Grisham | Michaei | George<br>R.R<br>Martin |       |        | Stephen<br>King | S |
| decade |                     |                 |         |                         |       |        |                 |   |
| 70's   | NaN                 | NaN             | NaN     | NaN                     | NaN   | NaN    | 1262.0          | N |
| 80's   | NaN                 | 515.0           | NaN     | NaN                     | 733.0 | 624.0  | 1512.0          | 8 |
| 90's   | 805.0               | 2510.0          | 1334.0  | 1462.0                  | 878.0 | 1299.0 | 529.0           | N |

Notice above the MultiIndex and Index structs that are used to hold the axis for columns and index.

## Stack / unstack

These two operations move columns to indexes and vice-versa. Let's see what the manual says:

- stack: Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an object with a single level of column labels) having a hierarchical index with a new inner-most level of row labels.
- unstack: Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose innermost level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex). The level involved will automatically get sorted.

I must confess that I was not able to comprehend the above! A more easy explanation is that:

- stack will re-arrange the values of the DataFrame so that the most inner column (the one at the bottom) will be converted to the most inner index (to the right)
- unstack will do the exactly opposite: Re-arrange the values of the DataFrame so that the most inner index (the one at the right) will be converted to the most inner column (to the bottom)

Also, stack and unstack do not really make sense. It would be much easier (at least to me) if stack was named col\_to\_idx (or col\_to\_row) and unstack was named idx to col (row to col).

Before looking at examples of stack and unstack let's take a look at the index and columns of our dataframe. Notice again the Index and MultiIndex data structs:

In [238]: stacked = df.stack()
 print "Index\n",stacked.index
 print "Column\n",stacked.columns
 stacked

Index

MultiIndex(levels=[[u'70's', u'80's', u'90's'], [u'George Pelecanos', u labels=[[0, 1, 1, 1, 2, 2, 2, 2, 2], [4, 2, 3, 4, 0, 1, 2, 3 names=[u'decade', u'author'])

Column

Index([u'Crime', u'Fantasy', u'Horror', u'Thriller'], dtype='object', na

#### Out[238]:

|        | genre             | Crime  | Fantasy | Horror | Thriller |
|--------|-------------------|--------|---------|--------|----------|
| decade | author            |        |         |        |          |
| 70's   | Stephen King      | NaN    | NaN     | 1262.0 | NaN      |
| 80's   | John Grisham      | 515.0  | NaN     | NaN    | NaN      |
|        | Michael Crichton  | NaN    | 733.0   | NaN    | NaN      |
|        | Stephen King      | NaN    | 624.0   | 1512.0 | 847.0    |
| 90's   | George Pelecanos  | 805.0  | NaN     | NaN    | NaN      |
|        | George R.R Martin | NaN    | 1462.0  | NaN    | NaN      |
|        | John Grisham      | 2510.0 | NaN     | NaN    | NaN      |
|        | Michael Crichton  | 1334.0 | 878.0   | NaN    | NaN      |
|        | Stephen King      | NaN    | 1299.0  | 529.0  | NaN      |

We see that the author column (which was the most inner column) was moved to the right of the indexes. The rows (index) was converted to a multi-index while the columns is a simple index now.

MultiIndex(levels=[[u'70's', u'80's', u'90's'], [u'George Pelecanos', u labels=[[0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2], [4, 2, 3, 4 names=[u'decade', u'author', u'genre'])

```
Out[239]: decade
                  author
                                      genre
          70's
                   Stephen King
                                                   1262.0
                                      Horror
          80's
                   John Grisham
                                                    515.0
                                      Crime
                   Michael Crichton
                                                    733.0
                                      Fantasy
                   Stephen King
                                      Fantasy
                                                    624.0
                                      Horror
                                                   1512.0
                                       Thriller
                                                    847.0
          90's
                   George Pelecanos
                                                    805.0
                                      Crime
                   George R.R Martin
                                      Fantasy
                                                   1462.0
                   John Grisham
                                       Crime
                                                   2510.0
                   Michael Crichton
                                       Crime
                                                   1334.0
                                       Fantasy
                                                    878.0
                   Stephen King
                                       Fantasy
                                                   1299.0
                                      Horror
                                                    529.0
```

dtype: float64

```
In [240]: # unstack does the opposite operation
unstacked = df.unstack()
print unstacked.index
unstacked
```

| Out[240]: | genre     | author            | decade |        |
|-----------|-----------|-------------------|--------|--------|
|           | Crime     | George Pelecanos  | 70's   | NaN    |
|           |           | ŭ                 | 80's   | NaN    |
|           |           |                   | 90's   | 805.0  |
|           |           | John Grisham      | 70's   | NaN    |
|           |           |                   | 80's   | 515.0  |
|           |           |                   | 90's   | 2510.0 |
|           |           | Michael Crichton  | 70's   | NaN    |
|           |           |                   | 80's   | NaN    |
|           |           |                   | 90's   | 1334.0 |
|           | Fantasy   | George R.R Martin | 70's   | NaN    |
|           |           |                   | 80's   | NaN    |
|           |           |                   | 90's   | 1462.0 |
|           |           | Michael Crichton  | 70's   | NaN    |
|           |           |                   | 80's   | 733.0  |
|           |           |                   | 90's   | 878.0  |
|           |           | Stephen King      | 70's   | NaN    |
|           |           |                   | 80's   | 624.0  |
|           |           |                   | 90's   | 1299.0 |
|           | Horror    | Stephen King      | 70's   | 1262.0 |
|           |           |                   | 80's   | 1512.0 |
|           |           |                   | 90's   | 529.0  |
|           | Thriller  | Stephen King      | 70's   | NaN    |
|           |           |                   | 80's   | 847.0  |
|           |           |                   | 90's   | NaN    |
|           | dtype: fl | oat64             |        |        |

We now see that the that the decade column (which was the only index) was moved as the most inner to the columns — however this also converts this DataFrame to a Series!

One interesting thing to notice is that a Series can only be unstack() ed since it has no columns (so stack won't work, remember  $stack = col_to_idx)$ 

In [241]: # unstack - move the rightmost idx (decade) to columns
unstacked.unstack()

#### Out[241]:

|          | decade            | 70's   | 80's   | 90's   |
|----------|-------------------|--------|--------|--------|
| genre    | author            |        |        |        |
| Crime    | George Pelecanos  | NaN    | NaN    | 805.0  |
|          | John Grisham      | NaN    | 515.0  | 2510.0 |
|          | Michael Crichton  | NaN    | NaN    | 1334.0 |
| Fantasy  | George R.R Martin | NaN    | NaN    | 1462.0 |
|          | Michael Crichton  | NaN    | 733.0  | 878.0  |
|          | Stephen King      | NaN    | 624.0  | 1299.0 |
| Horror   | Stephen King      | 1262.0 | 1512.0 | 529.0  |
| Thriller | Stephen King      | NaN    | 847.0  | NaN    |

Out[243]:

| decade   |                     |                         | 70's |                     |                 |                     |                         |
|----------|---------------------|-------------------------|------|---------------------|-----------------|---------------------|-------------------------|
| author   | George<br>Pelecanos | George<br>R.R<br>Martin | Jonn | Michael<br>Crichton | Stephen<br>King | George<br>Pelecanos | George<br>R.R<br>Martin |
| genre    |                     |                         |      |                     |                 |                     |                         |
| Crime    | NaN                 | NaN                     | NaN  | NaN                 | NaN             | NaN                 | NaN                     |
| Fantasy  | NaN                 | NaN                     | NaN  | NaN                 | NaN             | NaN                 | NaN                     |
| Horror   | NaN                 | NaN                     | NaN  | NaN                 | 1262.0          | NaN                 | NaN                     |
| Thriller | NaN                 | NaN                     | NaN  | NaN                 | NaN             | NaN                 | NaN                     |

In [244]: # One final comment is that stack and unstack can get a level parameter
# index/column level we want to pivot
# For example the following will unstack - idx\_to\_col the leftmost inde,
unstacked.unstack(level=0)

#### Out[244]:

|                   | genre  | Crime  | Fantasy | Horror | Thriller |
|-------------------|--------|--------|---------|--------|----------|
| author            | decade |        |         |        |          |
| George Pelecanos  | 70's   | NaN    | NaN     | NaN    | NaN      |
|                   | 80's   | NaN    | NaN     | NaN    | NaN      |
|                   | 90's   | 805.0  | NaN     | NaN    | NaN      |
| George R.R Martin | 70's   | NaN    | NaN     | NaN    | NaN      |
|                   | 80's   | NaN    | NaN     | NaN    | NaN      |
|                   | 90's   | NaN    | 1462.0  | NaN    | NaN      |
| John Grisham      | 70's   | NaN    | NaN     | NaN    | NaN      |
|                   | 80's   | 515.0  | NaN     | NaN    | NaN      |
|                   | 90's   | 2510.0 | NaN     | NaN    | NaN      |
| Michael Crichton  | 70's   | NaN    | NaN     | NaN    | NaN      |
|                   | 80's   | NaN    | 733.0   | NaN    | NaN      |
|                   | 90's   | 1334.0 | 878.0   | NaN    | NaN      |
| Stephen King      | 70's   | NaN    | NaN     | 1262.0 | NaN      |
|                   | 80's   | NaN    | 624.0   | 1512.0 | 847.0    |
|                   | 90's   | NaN    | 1299.0  | 529.0  | NaN      |

# pivot

The <u>pivot</u> command will convert a column values to an index. This is similar like the <u>pivot\_table</u> but does not aggregate the values and does not create multihierarchy indexes so you must be careful that each cell will contain only one value.

In [245]: # We'll use the initial books\_df DataFrame
books\_df.pivot(index='name', columns='genre', values='year')
# Notice that we used 'name' as an index (to be sure that each cell wil

Out[245]:

| genre                                       | Crime  | Fantasy | Horror | Thriller |
|---------------------------------------------|--------|---------|--------|----------|
| name                                        |        |         |        |          |
| A Clash of Kings                            | NaN    | 1998.0  | NaN    | NaN      |
| A Firing Offense                            | 1992.0 | NaN     | NaN    | NaN      |
| A Game of Thrones                           | NaN    | 1996.0  | NaN    | NaN      |
| A Time to Kill                              | 1989.0 | NaN     | NaN    | NaN      |
| Airframe                                    | 1996.0 | NaN     | NaN    | NaN      |
| Bag of bones                                | NaN    | NaN     | 1998.0 | NaN      |
| Congo                                       | NaN    | 1980.0  | NaN    | NaN      |
| Different Seasons                           | NaN    | NaN     | NaN    | 1982.0   |
| Disclosure                                  | 1994.0 | NaN     | NaN    | NaN      |
| It                                          | NaN    | NaN     | 1986.0 | NaN      |
| Jurassic Park                               | NaN    | 1990.0  | NaN    | NaN      |
| Misery                                      | NaN    | NaN     | NaN    | 1987.0   |
| Nick's Trip                                 | 1993.0 | NaN     | NaN    | NaN      |
| Pet Sematary                                | NaN    | NaN     | 1983.0 | NaN      |
| Rising Sun                                  | 1992.0 | NaN     | NaN    | NaN      |
| Salem's Lot                                 | NaN    | NaN     | 1975.0 | NaN      |
| Sphere                                      | NaN    | 1987.0  | NaN    | NaN      |
| The Big Blowdown                            | 1996.0 | NaN     | NaN    | NaN      |
| The Chamber                                 | 1994.0 | NaN     | NaN    | NaN      |
| The Dark Tower II: The Drawing of the Three | NaN    | 1987.0  | NaN    | NaN      |
| The Dark Tower III: The Waste Lands         | NaN    | 1991.0  | NaN    | NaN      |
| The Dark Tower IV: Wizard and Glass         | NaN    | 1998.0  | NaN    | NaN      |
| The Dark Tower: The Gunslinger              | NaN    | 1982.0  | NaN    | NaN      |
| The Firm                                    | 1991.0 | NaN     | NaN    | NaN      |
| The Lost World                              | NaN    | 1995.0  | NaN    | NaN      |
| The Pelican Brief                           | 1992.0 | NaN     | NaN    | NaN      |
| The Rainmaker                               | 1995.0 | NaN     | NaN    | NaN      |
| The Runaway Jury                            | 1996.0 | NaN     | NaN    | NaN      |
| The Stand                                   | NaN    | NaN     | 1978.0 | NaN      |
| The Street Lawyer                           | 1998.0 | NaN     | NaN    | NaN      |

In [246]: # We could pivot by using name as a column
books\_df.pivot(index='decade', columns='name', values='pages')

Out[246]:

| name   | A<br>Clash<br>of<br>Kings | Firing | A Game<br>of<br>Thrones | A<br>Time<br>to<br>Kill | minume | Bag<br>of<br>bones | Congo | Different<br>Seasons | Dis |
|--------|---------------------------|--------|-------------------------|-------------------------|--------|--------------------|-------|----------------------|-----|
| decade |                           |        |                         |                         |        |                    |       |                      |     |
| 70's   | NaN                       | NaN    | NaN                     | NaN                     | NaN    | NaN                | NaN   | NaN                  | Nal |
| 80's   | NaN                       | NaN    | NaN                     | 515.0                   | NaN    | NaN                | 348.0 | 527.0                | Nal |
| 90's   | 768.0                     | 216.0  | 694.0                   | NaN                     | 352.0  | 529.0              | NaN   | NaN                  | 597 |

 $3 \text{ rows} \times 30 \text{ columns}$ 

What happens is that we got the values of one column and coverted these to a column/index and use another column's values as the values of the new DataFrame. So, in the first example the values of the genre column were converted to columns and inside each cell we put the page number. In the second example instead we converted the decade value to index and put the page number inside each cell. In both cases we used the name of the book to be sure that we would each cell will contain one value (remember that pivot cannot aggregate).

The pivot command is not very useful (at least to me) since it does not actually modify (by aggregating) data but just changes its representation - you won't get any new information from pivot but you'll only display it differently. Also keep in mind that each cell after the pivoting must contain *one* value, for example in the above wouldn't work if we used author as columns (instead of book name).

# groupby

The final method we'll talk about and is related to pivot\_table is groupby. This of course is related to the SQL group by method and should be easy to comprehend. The groupby gets a parameter that defines how to group the entries and returns a GroupBy object that contains the groups. The GroupBy object can be enumerated to get the groups and their data. It's interesting to take a look at the structure of each such object:

```
type:
       len: 2
first element of tuple ("70's", 'Stephen King')
second element of tuple
type:
       len: 2
first element of tuple ("80's", 'John Grisham')
second element of tuple
       len: 2
first element of tuple ("80's", 'Michael Crichton')
second element of tuple
type:
      len: 2
first element of tuple ("80's", 'Stephen King')
second element of tuple
       len: 2
first element of tuple ("90's", 'George Pelecanos')
second element of tuple
first element of tuple ("90's", 'George R.R Martin')
second element of tuple
type: len: 2
first element of tuple ("90's", 'John Grisham')
second element of tuple
type: len: 2
first element of tuple ("90's", 'Michael Crichton')
second element of tuple
type: len: 2
first element of tuple ("90's", 'Stephen King')
second element of tuple
```

So, from the above we can see that the GroupBy object contains a number of 2-element tuples. Each tuple contains (another tuple with) the columns that were used for groupping and the actual data of that group (as a DataFrame). Now, we could either use the enumeration I shown above to operate on each group or, better, to use some of the methods that the GroupBy object contains:

```
In [248]: # get some statistics
print groupby_object.mean()
print groupby_object.sum()

# We can use the aggregate method to do anything we want
# Each aggregate function will get a Series with the values (similar to
def year_aggr(x):
    return '{0}-{1}'.format(max(x), min(x))

def genre_aggr(x):
    return ', '.join(set(x))

groupby_object.aggregate({'year':year_aggr, 'pages': sum, 'genre':genre_
pages year
```

|        |                   | þ      | ayes | year        |
|--------|-------------------|--------|------|-------------|
| decade | author            |        |      |             |
| 70's   | Stephen King      | 631.00 | 0000 | 1976.500000 |
| 80's   | John Grisham      | 515.00 | 0000 | 1989.000000 |
|        | Michael Crichton  | 366.50 | 0000 | 1983.500000 |
|        | Stephen King      | 497.16 | 6667 | 1984.500000 |
| 90's   | George Pelecanos  | 268.33 | 3333 | 1993.666667 |
|        | George R.R Martin | 731.00 | 0000 | 1997.000000 |
|        | John Grisham      | 418.33 | 3333 | 1994.333333 |
|        | Michael Crichton  | 442.40 | 0000 | 1993.400000 |
|        | Stephen King      | 609.33 | 3333 | 1995.666667 |
|        | _                 | pages  | yea  | r           |
| decade | author            |        | -    |             |
| 70's   | Stephen King      | 1262   | 395  | 3           |
| 80's   | John Grisham      | 515    | 198  | 9           |
|        | Michael Crichton  | 733    | 396  | 7           |
|        | Stephen King      | 2983   | 1190 | 7           |
| 90's   | George Pelecanos  | 805    | 598  | 1           |
|        | George R.R Martin | 1462   | 399  | 4           |
|        | John Grisham      | 2510   | 1196 | 6           |
|        | Michael Crichton  | 2212   | 996  | 7           |
|        | Stephen King      | 1828   | 598  | 7           |
|        | Stephen King      | 1020   | 330  | •           |

Out[248]:

|        |                   | genre                     | pages | year      |
|--------|-------------------|---------------------------|-------|-----------|
| decade | author            |                           |       |           |
| 70's   | Stephen King      | Horror                    | 1262  | 1978-1975 |
| 80's   | John Grisham      | Crime                     | 515   | 1989-1989 |
|        | Michael Crichton  | Fantasy                   | 733   | 1987-1980 |
|        | Stephen King      | Fantasy, Horror, Thriller | 2983  | 1987-1982 |
| 90's   | George Pelecanos  | Crime                     | 805   | 1996-1992 |
|        | George R.R Martin | Fantasy                   | 1462  | 1998-1996 |
|        | John Grisham      | Crime                     | 2510  | 1998-1991 |
|        | Michael Crichton  | Fantasy, Crime            | 2212  | 1996-1990 |
|        | Stephen King      | Fantasy, Horror           | 1828  | 1998-1991 |

Out[249]:

|        |                   | genre                     | pages | year      |
|--------|-------------------|---------------------------|-------|-----------|
| decade | author            |                           |       |           |
| 70's   | Stephen King      | Horror                    | 1262  | 1978-1975 |
| 80's   | John Grisham      | Crime                     | 515   | 1989-1989 |
|        | Michael Crichton  | Fantasy                   | 733   | 1987-1980 |
|        | Stephen King      | Fantasy, Horror, Thriller | 2983  | 1987-1982 |
| 90's   | George Pelecanos  | Crime                     | 805   | 1996-1992 |
|        | George R.R Martin | Fantasy                   | 1462  | 1998-1996 |
|        | John Grisham      | Crime                     | 2510  | 1998-1991 |
|        | Michael Crichton  | Fantasy, Crime            | 2212  | 1996-1990 |
|        | Stephen King      | Fantasy, Horror           | 1828  | 1998-1991 |

Out[250]:

|                         | genre  |                                 |                    | pages |      |      | year      |           |    |
|-------------------------|--------|---------------------------------|--------------------|-------|------|------|-----------|-----------|----|
| decade                  | 70's   | 80's                            | 90's               | 70's  | 80's | 90's | 70's      | 80's      |    |
| author                  |        |                                 |                    |       |      |      |           |           |    |
| George<br>Pelecanos     | None   | None                            | Crime              | None  | None | 805  | None      | None      | 19 |
| George<br>R.R<br>Martin | None   | None                            | Fantasy            | None  | None | 1462 | None      | None      | 19 |
| John<br>Grisham         | None   | Crime                           | Crime              | None  | 515  | 2510 | None      | 1989-1989 | 19 |
| Michael<br>Crichton     | None   | Fantasy                         | Fantasy,<br>Crime  | None  | 733  | 2212 | None      | 1987-1980 | 19 |
| Stephen<br>King         | Horror | Fantasy,<br>Horror,<br>Thriller | Fantasy,<br>Horror | 1262  | 2983 | 1828 | 1978-1975 | 1987-1982 | 19 |

# A real-world example

To continue with a real-world example, I will use the <u>MovieLens 100k</u> to represent some pivot\_table (and friends) operations. To load the data I've used the code already provided by the <u>three part series I already mentioned</u>. Notice that this won't load the genre of the movie (left as an excersize to the reader).

# In [251]: # Useful to display graphs inline %matplotlib inline

```
In [252]: import os
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt

path = 'C:/Users/serafeim/Downloads/ml-100k' # Change this to your own
    u_cols = ['user_id', 'age', 'sex', 'occupation', 'zip_code']
    users = pd.read_csv(os.path.join(path, 'u.user'), sep='|', names=u_cols
    r_cols = ['user_id', 'movie_id', 'rating', 'unix_timestamp']
    ratings = pd.read_csv(os.path.join(path, 'u.data'), sep='\t', names=r_c
    m_cols = ['movie_id', 'title', 'release_date', 'video_release_date', 'i
    movies = pd.read_csv(os.path.join(path, 'u.item'), sep='|', names=m_col
    movie_ratings = movies.merge(ratings)
    lens = movie_ratings.merge(users)
    lens.head()
```

#### Out[252]:

|   | movie_id | title                       | release_date | video_release_date | imdb_u                                                   |
|---|----------|-----------------------------|--------------|--------------------|----------------------------------------------------------|
| 0 | 1        | Toy<br>Story<br>(1995)      | 01-Jan-1995  | NaN                | http://us.imdb.com<br>/M/title-<br>exact?Toy%20Story%2   |
| 1 | 4        | Get<br>Shorty<br>(1995)     | 01-Jan-1995  | NaN                | http://us.imdb.com<br>/M/title-<br>exact?Get%20Shorty%   |
| 2 | 5        | Copycat<br>(1995)           | 01-Jan-1995  | NaN                | http://us.imdb.com<br>/M/title-<br>exact?Copycat%20(199! |
| 3 | 7        | Twelve<br>Monkeys<br>(1995) | 01-Jan-1995  | NaN                | http://us.imdb.com<br>/M/title-<br>exact?Twelve%20Monk.  |
| 4 | 8        | Babe<br>(1995)              | 01-Jan-1995  | NaN                | http://us.imdb.com<br>/M/title-<br>exact?Babe%20(1995)   |

As we can see, we are using the merge method of DataFrame to do an SQL-style join between movies and ratings and then between movie\_ratings and users - this will result in a fat DataFrame with all the info of the movie and user for each review. The head method displays the 5 first rows of the DataFrame.

We can see that there's a zip\_code - I wanted to convert it to the specific US-state. There's a service from ziptasticapi.com that can be used for that but you need to do the queries one-by-one! I've executed the queries once and created a zip-state dict to be used instead:

```
In [253]: # The following can be used to find out the state by zip_code for each
API="http://ziptasticapi.com/{0}}"
states = {}
import urllib2, json
def get_state(s):
    global states
    if states.get(s):
        return states.get(s)
    headers = { 'User-Agent' : 'Mozilla/5.0' }
    req = urllib2.Request(API.format(s), None, headers)
    state = json.loads(urllib2.urlopen(req).read()).get('state')
    states[s] = state
    return state

#using this command we can add the state column
#lens['state']=lens['zip_code'].apply(get_state)
```

In [254]: # However, since we shouldn't call the zipstatic API so many times, I'l # dict of zip:state (that I actually got through the previous command) states2={u'73013': u'0K', u'77042': u'TX', u'61455': u'IL', u'55345': u states2={u'/3013': u'OK', u'/7042': u'IX', u'61455': u'IL', u'55345': u
u'19716': u'DE', u'55343': u'MN', u'15203': u'PA', u'48446': u'MI', u'9
u'92653': u'CA', u'61073': u'IL', u'55346': u'MN', u'32303': u'FL', u'3
u'32712': u'FL', u'06437': u'CT', u'01581': u'MA', u'85719': u'AZ', u'1
u'10960': u'NY', u'32789': u'FL', u'01375': u'MA', u'60135': u'IL', u'9
u'95521': u'CA', u'49512': u'MI', u'02215': u'MA', u'80209': u'CO', u'9
u'98006': u'WA', u'52302': u'IA', u'60187': u'IL', u'46005': None, u'46
u'63021': u'MO', u'17036': u'PA', u'99206': u'WA', u'10707': u'NY', u'7
u'21208': u'MD', u'75204': u'TX', u'60007': u'IL', u'60005': u'IL', u'2 u'21201': u'MD', u'21206': u'MD', u'22906': u'VA', u'45680': u'0H', u'9 u'53144': u'WI', u'05001': u'VT', u'97208': u'0R', u'54494': u'WI', u'9 u'45660': u'0H', u'53214': u'WI', u'53210': u'WI', u'53211': u'WI', u'3 u'37412': u'TN', u'63119': u'M0', u'10025': u'NY', u'10022': u'NY', u'1 u'44648': u'0H', u'60641': u'IL', u'78213': u'TX', u'78212': u'TX', u'2 u'96819': u'HI', u'42647': u'KY', u'62901': u'IL', u'62903': u'IL', u'9 u'04102': u'ME', u'14627': u'NY', u'20006': u'DC', u'70808': u'LA', u'2 u'20001': u'DC', u'70802': u'LA', u'05452': u'VT', u'20009': u'DC', u'2 u'20001': u'DC', u'70802': u'LA', u'05452': u'VT', u'20009': u'DC', u'2
u'08610': u'NJ', u'33775': u'FL', u'30329': u'GA', u'76013': u'TX', u'8
u'11758': u'NY', u'95014': u'CA', u'08052': u'NJ', u'37777': u'TN', u'3
u'76309': u'TX', u'23509': u'VA', u'50311': u'IA', u'33884': u'FL', u'3
u'42459': u'KY', u'95064': u'CA', u'02859': u'RI', u'68504': u'NE', u'4
u'68503': u'NE', u'02918': u'RI', u'34656': u'FL', u'L1V3W': None, u'22
u'55113': u'MN', u'55117': u'MN', u'55116': u'MN', u'23112': u'VA', u'9
u'91206': u'CA', u'06927': u'CT', u'55337': u'MN', u'02136': u'MA', u'1
u'47130': u'IN', u'02139': u'MA', u'02138': u'MA', u'N2L5N': None, u'15
u'15213': u'PA', u'50670': u'IA', u'04988': u'ME', u'19382': u'PA', u'8
u'55454': u'MN', u'19149': u'PA', u'19146': u'PA', u'55021': u'MN', u'V
u'06405': u'CT', u'73071': u'OK', u'77459': u'TX', u'92037': u'CA', u'6
u'64118': u'M0', u'21114': u'MD', u'98101': u'WA', u'98103': u'WA', u'9
u'02341': u'MA', u'94306': u'CA', u'94305': u'CA', u'85233': u'AZ', u'1
u'90814': u'CA', u'14534': u'NY', u'98072': u'WA', u'16803': u'PA', u'4 u'90814': u'CA', u'14534': u'NY', u'98072': u'WA', u'16803': u'PA', u'4 u'10309': u'NY', u'95468': u'CA', u'60402': u'IL', u'60152': u'IL', u'7 u'98199': u'WA', u'12603': u'NY', u'90254': u'CA', u'84116': u'UT', u'1 u'41850': None, u'97214': u'0R', u'97215': u'0R', u'97212': u'0R', u'10 u'10018': u'NY', u'49705': u'MI', u'10011': u'NY', u'10010': u'NY', u'1 u'13210': u'NY', u'78209': u'TX', u'60659': u'IL', u'01754': u'MA', u'6 u'13210': u'NY', u'78209': u'TX', u'60659': u'IL', u'01754': u'MA', u'6
u'70124': u'LA', u'12345': u'NY', u'95161': u'CA', u'20015': u'DC', u'9
u'58202': u'ND', u'29379': u'SC', u'94703': u'CA', u'94702': u'CA', u'6
u'24060': u'VA', u'33763': u'FL', u'33765': u'FL', u'54248': None, u'80
u'03062': u'NH', u'03060': u'NH', u'18301': u'PA', u'08403': u'NJ', u'9
u'48043': u'MI', u'28450': u'NC', u'78264': u'TX', u'63304': u'M0', u'0
u'08105': u'NJ', u'07102': u'NJ', u'18015': u'PA', u'11231': u'NY', u'2
u'38115': u'TN', u'95076': u'CA', u'77845': u'TX', u'77841': u'TX', u'1
u'08360': u'NJ', u'02903': u'RI', u'01945': u'MA', u'40256': u'KY', u'9
u'89801': u'NV', u'48825': u'MI', u'48823': u'MI', u'07204': u'NJ', u'9
u'55106': u'MN', u'55107': u'MN', u'55104': u'MN', u'55105': u'MN', u'5
u'55109': u'MN', u'61755': u'IL', u'91351': u'CA', u'Y1A6B': None, u'91
u'28734': u'NC', u'55320': u'MN', u'78205': u'TX', u'11201': u'NY', u'0
u'47024': u'IN', u'43212': u'OH', u'43215': u'OH', u'02125': u'MA', u'0 u'15222': u'PA', u'M7A1A': None, u'97520': u'OR', u'76234': u'TX', u'55 u'55423': u'MN', u'55422': u'MN', u'55038': u'MN', u'55428': u'MN', u'9 u'T8H1N': None, u'16125': u'PA', u'02154': None, u'R3T5K': None, u'3580 u'97006': u'0R', u'02159': None, u'32250': u'FL', u'50613': u'IA', u'92 u'21044': u'MD', u'98117': u'WA', u'E2A4H': None, u'90804': u'CA', u'74 u'22903': u'VA', u'22904': u'VA', u'52245': u'IA', u'52246': u'IA', u'5 u'17331': u'PA', u'20723': u'MD', u'63044': u'M0', u'17110': u'PA', u'1 u'32605': u'FL', u'60067': u'IL', u'90247': u'CA', u'61820': u'IL', u'8 u'84105': u'UT', u'84107': u'UT', u'60090': u'IL', u'99835': u'AK', u'9 u'05201': u'VT', u'10003': u'NY', u'20090': u'DC', u'90064': u'CA', u'0 u'21250': u'MD', u'20657': u'MD', u'97203': u'0R', u'60466': u'IL', u'4 u'44134': u'0H', u'78390': u'TX', u'44133': u'0H', u'83686': u'ID', u'1 u'45810': u'0H', u'75006': u'TX', u'63146': u'M0', u'91335': u'CA', u'3

Beyond the state, I'd like to add some other columns for describing data and drop a bunch of non-needed columns:

```
In [255]: import datetime

# Let's also initialize it by the release_year, decade and review day
lens['release_year']=lens['release_date'].apply(lambda x: str(x).split(
lens['decade']=lens['release_year'].apply(lambda x: str(x)[2:3]+"0's" i
lens['review_day']=lens['unix_timestamp'].apply(lambda x: datetime.date

# And remove some non-needed stuff
final_lens = lens.drop(['release_date','zip_code', 'unix_timestamp', 'v

# Also add an idx column
final_lens['idx'] = final_lens.index

final_lens.head()
```

### Out[255]:

|   | title                       | rating | age | sex | occupation | state | release_year | decade | review_da |
|---|-----------------------------|--------|-----|-----|------------|-------|--------------|--------|-----------|
| 0 | Toy<br>Story<br>(1995)      | 4      | 60  | M   | retired    | CA    | 1995         | 90's   | Tuesday   |
| 1 | Get<br>Shorty<br>(1995)     | 5      | 60  | M   | retired    | CA    | 1995         | 90's   | Tuesday   |
| 2 | Copycat<br>(1995)           | 4      | 60  | M   | retired    | CA    | 1995         | 90's   | Tuesday   |
| 3 | Twelve<br>Monkeys<br>(1995) | 4      | 60  | M   | retired    | CA    | 1995         | 90's   | Tuesday   |
| 4 | Babe<br>(1995)              | 5      | 60  | M   | retired    | CA    | 1995         | 90's   | Tuesday   |

So, after the previous (I hope easy) modifications we have a DataFrame that contains useful info about reviews of movies. Each line of the dataframe contains the following 9 columns of data:

- Title of movie
- Rating it got from this review
- Age of the reviewer
- Sex of the reviewer
- Occupation of the reviewer
- State (US) of the reviewer
- Release year of the movie
- Decade the movie was released
- Day of the review

Let's take a peek at the movies of which decade were prefered by reviewers, by sex. First of all, we'll do a pivot table to aggregate the rating and idx columns values by sex and decade. For the rating we'll take the average of the reviews for each decade/sex while, for idx we'll get the len (just to count the number of reviews):

|        | rating   |          | idx   |       |
|--------|----------|----------|-------|-------|
| sex    | F        | M        | F     | М     |
| decade |          |          |       |       |
|        | 3.500000 | 3.428571 | 2     | 7     |
| 20's   | 2.857143 | 3.632653 | 7     | 49    |
| 30's   | 3.961340 | 3.912455 | 388   | 1108  |
| 40's   | 3.952641 | 4.029412 | 549   | 1700  |
| 50's   | 3.835006 | 3.972403 | 897   | 2609  |
| 60's   | 3.852321 | 3.891015 | 948   | 2927  |
| 70's   | 3.754007 | 3.899522 | 1435  | 4807  |
| 80's   | 3.700214 | 3.764700 | 2802  | 9320  |
| 90's   | 3.437366 | 3.384938 | 18712 | 51733 |

# Out[256]:

|        | rat      | ing      | idx   |       |  |
|--------|----------|----------|-------|-------|--|
| sex    | F        | M        | F     | M     |  |
| decade |          |          |       |       |  |
| 20's   | 2.857143 | 3.632653 | 7     | 49    |  |
| 30's   | 3.961340 | 3.912455 | 388   | 1108  |  |
| 40's   | 3.952641 | 4.029412 | 549   | 1700  |  |
| 50's   | 3.835006 | 3.972403 | 897   | 2609  |  |
| 60's   | 3.852321 | 3.891015 | 948   | 2927  |  |
| 70's   | 3.754007 | 3.899522 | 1435  | 4807  |  |
| 80's   | 3.700214 | 3.764700 | 2802  | 9320  |  |
| 90's   | 3.437366 | 3.384938 | 18712 | 51733 |  |

Now, we see that we have the rating and review count for both men and women. However, I'd also like to get their combined (average rating and total review) values. There are two ways that this can be done: First, we can create *another* dataframe that does not seperate sex:

#### Out[257]:

|        | idx   | rating   |
|--------|-------|----------|
| decade |       |          |
| 20's   | 56    | 3.535714 |
| 30's   | 1496  | 3.925134 |
| 40's   | 2249  | 4.010671 |
| 50's   | 3506  | 3.937250 |
| 60's   | 3875  | 3.881548 |
| 70's   | 6242  | 3.866069 |
| 80's   | 12122 | 3.749794 |
| 90's   | 70445 | 3.398864 |

Now, these two DataFrames can be easily combined because they have the same index. I'll put the values from the total DataFrame as a second level index to the seperated (by sex) DataFrame - notice how the multi index is used for indexing:

```
In [258]: prefered_decade_by_sex['rating', 'total'] = prefered_decade['rating']
    prefered_decade_by_sex['idx', 'total'] = prefered_decade['idx']
    prefered_decade_by_sex
```

#### Out[258]:

|        | rating   |          | idx   |       | rating   | idx   |
|--------|----------|----------|-------|-------|----------|-------|
| sex    | F        | M        | F     | M     | total    | total |
| decade |          |          |       |       |          |       |
| 20's   | 2.857143 | 3.632653 | 7     | 49    | 3.535714 | 56    |
| 30's   | 3.961340 | 3.912455 | 388   | 1108  | 3.925134 | 1496  |
| 40's   | 3.952641 | 4.029412 | 549   | 1700  | 4.010671 | 2249  |
| 50's   | 3.835006 | 3.972403 | 897   | 2609  | 3.937250 | 3506  |
| 60's   | 3.852321 | 3.891015 | 948   | 2927  | 3.881548 | 3875  |
| 70's   | 3.754007 | 3.899522 | 1435  | 4807  | 3.866069 | 6242  |
| 80's   | 3.700214 | 3.764700 | 2802  | 9320  | 3.749794 | 12122 |
| 90's   | 3.437366 | 3.384938 | 18712 | 51733 | 3.398864 | 70445 |

Now, the previous would be almost perfect but I would really prefer the rating and idx first-level columns to be all together. This can be done by using the sort\_index — the axis=1 parameter sorts the columns(or else the index will be sorted):

In [259]: prefered\_decade\_by\_sex = prefered\_decade\_by\_sex.sort\_index(axis=1) prefered\_decade\_by\_sex

Out[259]:

|        |       | idx   |       | rating   |          |          |  |  |
|--------|-------|-------|-------|----------|----------|----------|--|--|
| sex    | F     | M     | total | F        | M        | total    |  |  |
| decade |       |       |       |          |          |          |  |  |
| 20's   | 7     | 49    | 56    | 2.857143 | 3.632653 | 3.535714 |  |  |
| 30's   | 388   | 1108  | 1496  | 3.961340 | 3.912455 | 3.925134 |  |  |
| 40's   | 549   | 1700  | 2249  | 3.952641 | 4.029412 | 4.010671 |  |  |
| 50's   | 897   | 2609  | 3506  | 3.835006 | 3.972403 | 3.937250 |  |  |
| 60's   | 948   | 2927  | 3875  | 3.852321 | 3.891015 | 3.881548 |  |  |
| 70's   | 1435  | 4807  | 6242  | 3.754007 | 3.899522 | 3.866069 |  |  |
| 80's   | 2802  | 9320  | 12122 | 3.700214 | 3.764700 | 3.749794 |  |  |
| 90's   | 18712 | 51733 | 70445 | 3.437366 | 3.384938 | 3.398864 |  |  |

The other method to create the sex and total reviews DataFrame is to aggregate the values from prefered\_decade\_by\_sex directly (without creating another pivot table). Take a look at the get\_average function below. For each row it will take the total number of reviews for men and women and multiply that number with the corresponding average. It will then divide the sum of averages with the total number of reviws to get the average for each row. We also use the sort\_index method to display the columns correctly:

#### Out[260]:

|        |       | idx   |         | rating   |          |          |  |
|--------|-------|-------|---------|----------|----------|----------|--|
| sex    | F     | M     | total   | F M      |          | total    |  |
| decade |       |       |         |          |          |          |  |
| 20's   | 7     | 49    | 56.0    | 2.857143 | 3.632653 | 3.535714 |  |
| 30's   | 388   | 1108  | 1496.0  | 3.961340 | 3.912455 | 3.925134 |  |
| 40's   | 549   | 1700  | 2249.0  | 3.952641 | 4.029412 | 4.010671 |  |
| 50's   | 897   | 2609  | 3506.0  | 3.835006 | 3.972403 | 3.937250 |  |
| 60's   | 948   | 2927  | 3875.0  | 3.852321 | 3.891015 | 3.881548 |  |
| 70's   | 1435  | 4807  | 6242.0  | 3.754007 | 3.899522 | 3.866069 |  |
| 80's   | 2802  | 9320  | 12122.0 | 3.700214 | 3.764700 | 3.749794 |  |
| 90's   | 18712 | 51733 | 70445.0 | 3.437366 | 3.384938 | 3.398864 |  |

Let's try to plot this DataFrame to see if we can extract some useful conclusions:

In [261]: f, a = plt.subplots(1,2)
 prefered\_decade\_by\_sex['idx'].plot(ax=a[0], figsize=(15,5), logy=True)
 prefered\_decade\_by\_sex['rating'].plot(ax=a[1], figsize=(15,5))
 # It seems that women don't like movies from the 20's (but if you take
 # of votes there are too few women that have voted for 20's movies. Als
 # reviews seem to be for movies of 30's and 40's and (as expected) the
 # are for newest movies

## Out[261]:



Let's try another quick pivot\_table. Can we see if there's a specific day-of-week at which the reviewers prefer to vote?

```
In [262]: final_lens.pivot_table(
    index=['review_day'],
    columns=['sex'],
    values='idx',
    aggfunc=len
).plot()
# Probably not
```

## Out[262]:



Continuing our exploration of the movie-reviews data set, we'd like to get the total number of reviews and average rating for each movie. To make a better display for the release we'll categorise the movies by their decade and release year (using multi index rows):

```
In [263]: rating_count = final_lens.pivot_table(
    index=[ 'decade', 'release_year', 'title',],
    values=['rating', 'idx', ],
    aggfunc={
        'rating': np.average,
        'idx': len,

    }
)
# Drop movies without decade
rating_count = rating_count.drop('')
rating_count.head(10)
# Notice the nice hierarchical index on decade and release_year
```

## Out[263]:

|        |              |                                                             | idx | rating   |
|--------|--------------|-------------------------------------------------------------|-----|----------|
| decade | release_year | title                                                       |     |          |
| 20's   | 1922         | Nosferatu (Nosferatu, eine Symphonie<br>des Grauens) (1922) | 54  | 3.555556 |
|        | 1926         | Scarlet Letter, The (1926)                                  | 2   | 3.000000 |
| 30's   | 1930         | Blue Angel, The (Blaue Engel, Der)<br>(1930)                | 18  | 3.777778 |
|        | 1931         | M (1931)                                                    | 44  | 4.000000 |
|        | 1932         | Farewell to Arms, A (1932)                                  | 12  | 3.833333 |
|        | 1933         | Duck Soup (1933)                                            | 93  | 4.000000 |
|        |              | Liebelei (1933)                                             | 1   | 1.000000 |
|        | 1934         | Gay Divorcee, The (1934)                                    | 15  | 3.866667 |
|        |              | It Happened One Night (1934)                                | 81  | 4.012346 |
|        |              | Of Human Bondage (1934)                                     | 5   | 3.200000 |

As we can see above, there are movies with very few revies. I don't really want to count them since they'll probably won't have correct ratings. Also, instead of displaying all the movies I'd like to create a small list with only the best movies:

In [264]: # So, let's find the best movies (rating more than 4) with more than 15
best\_movies = rating\_count[(rating\_count.idx>150) & (rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_count.rating\_c best\_movies

Out[264]:

|        |              |                                                                                   | idx                        | rating   |
|--------|--------------|-----------------------------------------------------------------------------------|----------------------------|----------|
| decade | release_year | title                                                                             |                            |          |
| 30's   | 1939         | Wizard of Oz, The (1939)                                                          | 246                        | 4.077236 |
| 40's   | 1941         | Citizen Kane (1941)                                                               | 198                        | 4.292929 |
|        | 1942         | Casablanca (1942)                                                                 | 243                        | 4.456790 |
|        | 1946         | It's a Wonderful Life (1946)                                                      | 231                        | 4.121212 |
| 50's   | 1951         | African Queen, The (1951)                                                         | 152                        | 4.18421  |
|        | 1954         | Rear Window (1954)                                                                | 209                        | 4.387560 |
|        | 1957         | Bridge on the River Kwai, The (1957)                                              | 165                        | 4.175758 |
|        | 1958         | Vertigo (1958)                                                                    | 179                        | 4.25139  |
|        | 1959         | North by Northwest (1959)                                                         | 179                        | 4.28491  |
| 60's   | 1960         | Psycho (1960)                                                                     | 239                        | 4.10041  |
|        | 1962         | Lawrence of Arabia (1962)                                                         | 173                        | 4.23121  |
|        |              | To Kill a Mockingbird (1962)                                                      | 219                        | 4.29223  |
|        | 1963         | Dr. Strangelove or: How I Learned to<br>Stop Worrying and Love the Bomb<br>(1963) | 194                        | 4.25257  |
|        | 1967         | Graduate, The (1967)                                                              | 239                        | 4.10460  |
| 70's   | 1972         | Godfather, The (1972)                                                             | 413                        | 4.28329  |
| ľ      | 1973         | Sting, The (1973)                                                                 | 241                        | 4.05809  |
| ľ      | 1974         | Godfather: Part II, The (1974)                                                    | 209                        | 4.18660  |
|        |              | Monty Python and the Holy Grail (1974)                                            | 316                        | 4.06645  |
|        | 1975         | One Flew Over the Cuckoo's Nest<br>(1975)                                         | $\underline{\underline{}}$ | 4.29166  |
|        | 1977         | Star Wars (1977)                                                                  |                            | 4.35849  |
|        | 1979         | Alien (1979)                                                                      | 291                        | 4.03436  |
|        |              | Apocalypse Now (1979)                                                             | 221                        | 4.04524  |
| 80's   | 1980         | Empire Strikes Back, The (1980)                                                   |                            | 4.20436  |
|        | 1981         | Raiders of the Lost Ark (1981)                                                    | 420                        | 4.25238  |
|        | 1982         | Blade Runner (1982)                                                               | 275                        | 4.13818  |
|        |              | Gandhi (1982)                                                                     | 195                        | 4.02051  |
|        | 1984         | Amadeus (1984)                                                                    | 276                        | 4.16304  |
|        | 1987         | Princess Bride, The (1987)                                                        | 324                        | 4.17284  |
|        | 1989         | Glory (1989)                                                                      | 171                        | 4.07602  |
| 90's   | 1991         | Silence of the Lambs, The (1991)                                                  | 390                        | 4.28974  |
|        |              | Terminator 2: Judgment Day (1991)                                                 | 295                        | 4.00678  |
|        | 1993         | Fugitive, The (1993)                                                              | 336                        | 4.04464  |
|        |              | Much Ado About Nothing (1993)                                                     | 176                        | 4.06250  |
|        |              | Schindler's List (1993)                                                           | 298                        | 4.46644  |
| ŀ      | 1994         | Pulp Fiction (1994)                                                               | 394                        | 4.06091  |
|        | i            |                                                                                   | 283                        | 4.44523  |

In [265]: # Which are the most popular movies (number of votes) ?
best\_movies.sort\_values(by='idx', ascending=False)['idx'][:10].plot(kin
# Fargo at the 2nd and Fugitive at the 10nth place of popularity seem a

### Out[265]:



In [266]: # Which are the best movies (vote average) ?
best\_movies.sort\_values(by='rating', ascending=False)['rating'][:10].pl
# I tend to agree with most of them, however I feel that the Godfather

#### Out[266]:



Let's try to see how many people of each age are voting, however instead of displaying the votes for people of each specific age, we'll seperate the ages into groups (0-10, 10,20 etc) and dispaly the counts for them:

```
In [267]: review_idx_by_age = final_lens.pivot_table(index=['age'], values='idx',
           print review_idx_by_age.head(10)
           # Let's group by age group
           def by_age(x):
               return '\{0\}-\{1\}'.format((x/10)*10, (x/10 + 1)*10)
           grouped_review_idx = review_idx_by_age.groupby(by_age).aggregate(sum)
           grouped_review_idx
           age
                   43
           10
                   31
           11
                   27
           13
                  497
           14
                  264
           15
                  397
                  335
           16
           17
                  897
           18
                 2219
           19
                 3514
          Name: idx, dtype: int64
Out[267]: 0-10
                       43
          10-20
                    8181
          20-30
                    39535
          30-40
                    25696
          40-50
                    15021
           50-60
                     8704
           60-70
                     2623
           70-80
                      197
          Name: idx, dtype: int64
```

In [268]: # Let's plot our number of votes - we can see that most people voting a
grouped\_review\_idx.plot(kind='pie', figsize=(8, 8), legend=True, autopc

### Out[268]:



In [269]: # We can also see the same (more or less) info directly from the
 # initial dataset, using a histogram
 final\_lens['age'].hist(bins=10)

### Out[269]:



In [270]: # Or just by plotting the num of reviews / age (not the grouped one)
 review\_idx\_by\_age.plot()

Out[270]:



Let's see how people of each occupation and sex are voting. We'll get the averages for age, and rating and total number of reviews:

In [271]: aggrs = {'age': np.average, 'idx': len, 'rating':np.average}
# This creeates a dataframe for men and women
d1 = final\_lens.pivot\_table(index='occupation', columns='sex', aggfunc=
# This creates a dataframe for both
d2 = final\_lens.pivot\_table(index='occupation', aggfunc=aggrs)
# Let's put the values from the "both" dataframe to the men/women dataf
d1['idx','Total'] = d2['idx']
d1['age','Total'] = d2['age']
d1['rating','Total'] = d2['rating']
# And now let's sort the row index so that it will have the correct mul
occupations = d1.sort\_index(axis=1)
# Finally, let's sort the DataFrame by the total number of votes for ea
occupations = occupations.sort\_values(('idx', 'Total'), ascending=Fals
occupations
# Students are nol - not a surpise!

## Out[271]:

|               |           | age       |           |        | idx     |       |        |
|---------------|-----------|-----------|-----------|--------|---------|-------|--------|
| sex           | F         | M         | Total     | F      | M       | Total | F      |
| occupation    |           |           |           |        |         |       |        |
| student       | 21.092697 | 22.510731 | 22.142870 | 5696.0 | 16261.0 | 21957 | 3.6028 |
| other         | 31.813370 | 32.964704 | 32.568977 | 3665.0 | 6998.0  | 10663 | 3.5312 |
| educator      | 37.942058 | 44.570167 | 42.789240 | 2537.0 | 6905.0  | 9442  | 3.6988 |
| engineer      | 33.489655 | 34.371731 | 34.356086 | 145.0  | 8030.0  | 8175  | 3.7517 |
| programmer    | 32.463007 | 32.502167 | 32.500064 | 419.0  | 7382.0  | 7801  | 3.5775 |
| administrator | 38.096081 | 39.688083 | 39.123145 | 2654.0 | 4825.0  | 7479  | 3.7818 |
| writer        | 37.429848 | 32.219527 | 34.325867 | 2238.0 | 3298.0  | 5536  | 3.6639 |
| librarian     | 36.707343 | 38.129300 | 37.358050 | 2860.0 | 2413.0  | 5273  | 3.5800 |
| technician    | 38.000000 | 31.512655 | 31.712493 | 108.0  | 3398.0  | 3506  | 3.2685 |
| executive     | 42.529412 | 36.203331 | 36.614164 | 221.0  | 3182.0  | 3403  | 3.7737 |
| healthcare    | 37.644993 | 44.641851 | 38.885164 | 2307.0 | 497.0   | 2804  | 2.7360 |
| artist        | 27.155510 | 33.088257 | 30.592288 | 971.0  | 1337.0  | 2308  | 3.3470 |
| entertainment | 27.546667 | 28.912834 | 28.766110 | 225.0  | 1870.0  | 2095  | 3.4488 |
| scientist     | 28.273381 | 35.855133 | 35.343052 | 139.0  | 1919.0  | 2058  | 3.2517 |
| marketing     | 32.106335 | 37.759947 | 36.478462 | 442.0  | 1508.0  | 1950  | 3.5226 |
| retired       | 70.000000 | 61.375163 | 61.755749 | 71.0   | 1538.0  | 1609  | 3.2394 |
| lawyer        | 36.000000 | 34.478056 | 34.556134 | 69.0   | 1276.0  | 1345  | 3.6231 |
| none          | 33.887671 | 18.960821 | 25.007769 | 365.0  | 536.0   | 901   | 3.6328 |
| salesman      | 31.318584 | 34.882012 | 33.470794 | 339.0  | 517.0   | 856   | 3.8702 |
| doctor        | NaN       | 35.592593 | 35.592593 | NaN    | 540.0   | 540   | NaN    |
| homemaker     | 33.416357 | 23.000000 | 32.371237 | 269.0  | 30.0    | 299   | 3.2788 |

Let's manipulate the previous DataFrame to take a look at only the occupations that have voted the most number of times. Actually, we'll get only occupations that have voted more than 6000 times, all other occupations we'll just add them to the "other" occupation. For this, we'll get only the 'idx' column and filter it by the rows which have a Total<6000. We'll then take the sum for this DataFrame so that we'll get the total votes for each male/female and total.

Next, we'll add this to the "other" row of the dataframe and remove the less than 6000 rows from it. Finally, we'll plot the resulting DataFrame for all male, female and both.

```
In [272]: | occupations num = occupations['idx']
          # Let's see which are the total numbers we need to add to "other"
          add_to_other = occupations_num[occupations_num['Total']<6000].sum()</pre>
          print add_to_other
          occupations_num.loc['other']+=add_to_other
          print occupations num.loc['other']
          # Now let's get the rows that have a total of > 6000
          most_voters_with_other = occupations_num[occupations_num['Total']>6000]
          print most_voters_with_other
          most voters with other.plot(kind='pie', subplots=True, figsize=(18,5),
          sex
                    10624.0
                    23859.0
          Total
                   34483.0
          dtype: float64
          sex
          F
                    14289.0
                   30857.0
          М
          Total
                   45146.0
          Name: other, dtype: float64
                                              Total
          occupation
          student
                           5696.0 16261.0 21957.0
          other
                          14289.0 30857.0 45146.0
                                             9442.0
          educator
                           2537.0
                                    6905.0
                                    8030.0
          engineer
                           145.0
                                             8175.0
                            419.0
                                    7382.0
                                             7801.0
          programmer
          administrator
                           2654.0
                                    4825.0
                                             7479.0
Out[272]: array([,
                  ], dtype=object)
                  student
                                                                       student
                                                                       other
                  other
                    educator
                                                                       educator
                                                 student
                    engineer
                                                                       engineer
                    programmer
                                                                       programmer
                                                                       administrator
                    administrator
           otherي
                      55.5%
                                                              Σ
                                          10.3%
                                                     administrator
                                     9.9%
                                                                               9.3%
                                                engrammer
```

54 of 57 1/1/70, 4:25 AM

educator

educator

## Conclusion

In the previous, I have tried to present a comprehensive introduction of the pivot\_table command along with a small introduction to the pandas data structures (Series and DataFrame) and a bunch of other methods that will help in using pivot\_table presenting both toy and real world examples for all of them. If you feel that something is missing or you want me to add another example pivot\_table operation for either the books or the movie lens dataset feel free to tell me in the comments.

I hope that after reading (and understanding) the above you'll be able to use pandas and pivot table without problems!

Posted by Serafeim Papastefanos Τετ 21  $\Sigma$ επτέμβριος 2016 <u>python</u>, <u>pandas</u>, <u>scipy</u>, <u>numpy</u>, <u>pivot</u>, <u>pivot table</u>, <u>ipython</u>, <u>jupyter</u>, <u>notebook</u>

Tweet

## **Comments**



Be the first to comment.

ALSO ON SPAPAS.GITHUB.IO

# Understanding nested list comprehension syntax in Python

4 comments • a year ago•

**pras0784** — Awesome description of Python nested list comprehension.

# PDFs in Django: The essential guide

12 comments • 2 years ago•

spapas — Hello! The django-xhtml2pdf is actually a thin wrapper around xhtml2pdf, which does all the work. What django-

# django-rq redux: advanced techniques and tools

5 comments • 2 years ago•

Itamar Haber — But of course - here's a little something I've written on subject:https://redislabs.com/blog/...

# A comprehensive React and Flux tutorial part 1: React

7 comments • 2 years ago •

Raul Piaggio — Hi Serafeim, thank you for this! Quite enlightening example and explanation. I'm actually delving into React.js

Atom | RSS

#### **Recent Posts**

- Automatically create a category table in Postgresql by extracting unique table values
- Creating custom components for ag-grid
- Getting a logical backup of all databases of your Postgresql server
- A pandas pivot table primer
- Splitting a query into individual fields in Django

### **Categories**

- CSS
- django
- <u>flask</u>

- git
- javascript
- pelican
- postgresgl
- python
- spring
- wagtail

### **Tags**

less, rest, query, tables, pivot table, console, django-rq, github-pages, forms, yaml, 404, ldap, spring-security, init.d, python, django-extensions, class-based-views, scipy, grid, ag-grid, watchify, settings, flux, FixedDataTable, debug, imgur, security, node, google, spring, react-redux, cron, babelify, design, tutorial, gmail, reportlab, rq, redis, research, werkzeug, jobs, redux-thunk, javascript, component, ajax, ipython, java, configuration, properties, bash, es6, spring-boot, postgresql, filter, flask, static-html, pdf, react-notification, pelican, tasks, node.js, pivot, auditing, git, uglify, introduction, pusher, fixed-data-tables, heroku, xhtml2pdf, numpy, boilerplate, wagtail, rst, profiles, github.io, error, cbv, react-router-redux, history, django-rest-framework, redux-form, asynchronous, scheduling, plpgsql, generic, babel, authentication, pandas, css, npm, deploy, mongodb, react, notebook, browserify, branching, github, jupyter, windows, django, q, react-router, redux, boostrap-material-design

Copyright © 2013-2017 Serafeim Papastefanos — Powered by Pelican