CAPÍTULO 1

Detección

Hola

1.1. Típos de características

Intro y mas breves definiciones?. Bordes, esquinas, líneas, segmentos de línea, regiones (blobs).

1.2. Bordes y esquinas

- 1.2.1. Detector de bordes de Canny
- 1.2.2. Detector de bordes y esquinas de Harris
- 1.2.3. SUSAN Y FAST
- 1.3. Líneas y segmentos de línea
- 1.3.1. Detector de líneas de Hough
- 1.3.2. Detector de segmentos de línea: LSD
- 1.4. Regiones y puntos de interés
- 1.4.1. FAST
- 1.4.2. Blobs

1.5. Detección sin primitivas markerless

SIFT (puntero a capitulo que tiene SIFT para reconocimiento) SURF, ETC ETC.

1.6. Marcadores

Marcadores que se usan. Limitaciones

La inclusión de *marcadores*, *marcas de referencia* o *fiduciales*, en inglés *markers*, *landmarks* o *fiducials*, en la escena ayuda al problema de extracción de características y por lo tanto al problema de estimación de pose [?]. Estos por construcción son elementos que presentan una detección estable en la imagen para el tipo de característica que se desea extraer así como medidas facilmente utilizables para la estimación de la pose.

Se distinguen dos tipos de *fiduciales*. El primer tipo son los que se llaman puntos *fiduciales* por que proveen una correspondencia de puntos entre la escena y la imagen. El segundo tipo, *fiduciales planares*, se pueden obtener mediante la construcción en una geometría coplanar de una serie de *puntos fiduciales* identificables como esquinas. Un único *fiducial planar* puede contener por si solo todas las seis restricciones espaciales necesarias para definir el marco de coordenadas.

Como se explica en la sección ?? el problema de estimación de pose requiere de una serie de correspondencias $\mathbf{M}_i \leftrightarrow \mathbf{m}_i$ entre puntos 3D en la escena en coordenadas del mundo y puntos en la imagen. El enfoque elegido

1.7. Marcador QR

El enfoque inicial elegido para la detección de *puntos fiduciales* para marcadores parte del trabajo de fin de curso de Matías Tailanian para el curso *Tratamiento de imágenes por computadora* de Facultad de Ingeniería, Universidad de la Republica¹. La elección se basa principalmente en los buenos resultados obtenidos para dicho trabajo con un enfoque relativamente simple. El trabajo desarrolla, entre otras cosas, un diseño de marcador y un sistema de detección de marcadores basado en el detector de segmentos LSD[?] por su buena performance y aparente bajo costo computacional.

El marcador utilizado está basado en la estructura de detección incluida en los códigos *QR* y se muestra en la figura 1.1. Éste consiste en trés grupos idénticos de tres cuadrados concéntricos superpuestos de tal forma que los lados de cada uno de trés cuadrados son visualizables. A diferencia de los códigos *QR* la disposición de los grupos de cuadrados es distinto para evitar ambiguedades en la determinación de su posicionamiento espacial. Estas dos características son escenciales para la extracción de los *puntos fiduciales* de forma coherente, es decir, las correspondencias tienen que poder ser determinadas completamente bajo criterios razonables.

Figura 1.1: Marcador propuesto basado en la estructura de detección de códigos QR.

¹Autoposicionamiento 3D - http://sites.google.com/site/autoposicionamiento3d/

1.7.1. Estructura del marcador

A continuación se presentan algunas definiciones de las estructuras básicas que constituyen el marcador propuesto. Estas son de utilidad para el diseño y forman un flujo natural y escalable para el desarrollo del algoritmo de determinación de correspondencias.

Los elementos mas básicos en la estructura son los *segmentos* los cuales consisten en un par de puntos en la imagen, $\mathbf{p} = (p_x, p_y)$ y $\mathbf{q} = (q_x, q_y)$. Estos *segmentos* forman lo que son los lados del *cuadrilátero*, el próximo elemento estructural del marcador.

Un cuadrilátero o quadrilateral en inglés, al que se le denomina Ql, está determinado por cuatro segmentos conexos y distintos entre sí. El cuadrilátero tiene dos propiedades notables; el centro definido como el punto medio entre sus cuatro vértices y el perímetro definido como la suma de el largo de sus cuatro lados. Los vértices de un cuadrilátero se determinan mediante la intersección, en sentido amplio, de dos segmentos contiguos. Es decir, si s_1 es contiguo a s_2 dadas las recta r_1 que pasa por los puntos \mathbf{p}_1 , \mathbf{q}_1 del segmento s_1 y la recta r_2 que pasa por los puntos \mathbf{p}_2 , \mathbf{q}_2 del segmento s_2 , se determina el vértice correspondiente como la intersección $r_1 \cap r_2$.

A un *conjunto de cuadriláteros* o *quadrilateral set* se le denomina QlSet, se construye a partir de M cuadriláteros, que comparten un mismo centro, y se diferencian por un factor de escala, con M > 1. A partir de dichos cuadriláteros se construye un lista ordenada $(Ql[0], Ql[1], \ldots, Ql[M-1])$ en donde el orden viene dado por el valor de *perímetro* de cada Q1. Se define el *centro del grupo de cuadriláteros* como el promedio de los centros de cada Ql de la lista ordenada.

Finalmente el *marcador QR* estará constituido por N *conjuntos de cuadriláteros* dispuestos en una geometría particular. Esta geometría debe determinar un sistema de coordenadas, un origen y dos ejes. Se tendrá una lista ordenada (QlSet[0],QlSet[1],...,QlSet[N-1]) en donde el orden se determinará mediante la geometría de los mismos.

Un marcador proveerá un numero de $4 \times M \times N$ vértices y por lo tanto la misma cantidad de puntos fiduciales para proveer las correspondencias $\mathbf{M}_i \leftrightarrow \mathbf{m}_i$ al algoritmo de estimación de pose.

1.7.2. Diseño

En base a las estructuras previamente definidas es que se describe el diseño del marcador. Como ya se explicó se toma un marcador tipo QR lo que determina una cantidad de $3 \times Ql$ Set's conteniendo $3 \times Ql$'s cada uno. Bajo esta elección de parámetros se tienen n=36 segmentos y vértices.

Un detalle del marcador se muestra en la figura $\ref{eq:conjunto}$ en donde se define el conjunto i de cuadriláteros concentricos como el QlSet[i] y se definen los respectivos centros \mathbf{c}_i para cada QlSet[i]. Se considera además un eje de coordenadas que queda definido por los vectores normalizados.

$$\mathbf{x} = \frac{\mathbf{c}_1 - \mathbf{c}_0}{||\mathbf{c}_1 - \mathbf{c}_0||}$$

$$\mathbf{y} = \frac{\mathbf{c}_2 - \mathbf{c}_0}{||\mathbf{c}_2 - \mathbf{c}_0||}$$

Por otro lado la disposición de los QlSet es tal que la distancia indicada \mathbf{d}_{01} definida como la norma del vector entre los centros \mathbf{c}_1 y \mathbf{c}_0 es significativamente mayor que la distancia \mathbf{d}_{02} definida como la norma del vector entre los centros \mathbf{c}_2 y \mathbf{c}_1 . Esto es, $\mathbf{d}_{01} \gg \mathbf{d}_{02}$.

Figura 1.2: Detalle del marcador propuesto formando un sistema de coordenadas.

En base al sistema de coordenadas definido en la figura ?? se puede fijar un orden determinado para los *vértices* de cada QlSet. Éstos se toman partiendo del Ql

Figura 1.3: Detalle de un QlSet indicando el orden de los puntos basados en el eje de coordenadas definido previamente.

1.7.3. Filtrado de segmentos

1.7.4. Determinación de correspondencias

1.8. Resultados

[?].