Inference 2, 2023, lecture 12

Rolf Larsson

December 7, 2023

Today

Chap. 5. Testing hypotheses (continued): Unbiased tests

Example 1:

- Let $\mathbf{X} = (X_1, ..., X_n)$ be a i.i.d. sample from $N(\mu, \sigma^2)$ with known σ^2 .
- Test H_0 : $\mu = \mu_0$ vs H_1 : $\mu \neq \mu_0$.
- Is there any UMP test for this situation?

- Suppose we want to test H_0 : $\theta \in \Theta_0$ vs H_1 : $\theta \in \Theta_1$ at significance level α .
- It is reasonable to require that the power function is at least equal to α for all $\theta \in \Theta_1$.

Definition (5.11)

A test is called an **unbiased** α -test if.f.

 $\alpha = \sup_{\theta \in \Theta_0} E_{\theta} \varphi(\mathbf{X}) \text{ and } \inf_{\theta \in \Theta_1} E_{\theta} \varphi(\mathbf{X}) \ge \alpha.$

Example 1':

- Suggest an unbiased test for example 1:
- Reject if $|\bar{x} \mu_0| > \lambda_{\alpha/2} \sigma / \sqrt{n}$.
- The power function is (why?)

$$\pi(\mu) = \Phi\left(-\lambda_{\alpha/2} + \frac{\mu - \mu_0}{\sigma/\sqrt{n}}\right) + \Phi\left(-\lambda_{\alpha/2} - \frac{\mu - \mu_0}{\sigma/\sqrt{n}}\right).$$

Power function, for $\mu_0 = 2$, $\sigma = 1$, n = 10, $\alpha = 0.05$:

Definition (5.12)

A test φ^* is called a uniformly most powerful unbiased (UMPU) α -test if.f. $\alpha = \sup_{\theta \in \Theta_0} \mathrm{E}_{\theta} \varphi^*(\mathbf{X})$ and $\mathrm{E}_{\theta} \varphi^*(\mathbf{X}) \geq \mathrm{E}_{\theta} \varphi(\mathbf{X})$ for all $\theta \in \Theta_1$ and for all unbiased α -tests φ .

6/10

Theorem (5.5)

Let $\mathbf{X} = (X_1, ..., X_n)$ be a sample from a distribution P_{θ} belonging to a one-parameter exponential family with

$$p(\mathbf{x}; \theta) = C(\theta) \exp{\{\theta T(\mathbf{x})\}} h(\mathbf{x}),$$

where $\theta \in \mathcal{R}$. For H_0 : $\theta = \theta_0$ vs H_1 : $\theta \neq \theta_0$, the UMPU α -test is given by

$$\varphi\{T(\mathbf{x})\} = \begin{cases} 1 & \text{if} \quad T(\mathbf{x}) > k_u; \ T(\mathbf{x}) < k_l, \\ \gamma_1 & \text{if} \quad T(\mathbf{x}) = k_u, \\ \gamma_2 & \text{if} \quad T(\mathbf{x}) = k_l, \\ 0 & \text{if} \quad k_l < T(\mathbf{x}) < k_u, \end{cases}$$

with γ_1 , γ_2 , k_u , k_l such that

$$E_{\theta_0}\varphi(\mathbf{X}) = \alpha$$

and

$$E_{\theta_0}\{\varphi(\mathbf{X})T(\mathbf{X})\} = \alpha E_{\theta_0}\{T(\mathbf{X})\}.$$

Corollary (5.3)

Under the conditions of theorem 5.5 and under the additional assumption that T has a symmetrical distribution around some point a under the null hypothesis, the UMPU α -test has the form

$$\varphi\{T(\mathbf{x})\} = \begin{cases} 1 & \text{if} \quad T(\mathbf{x}) - a > a - C; \quad T(\mathbf{x}) - a < C - a, \\ \gamma & \text{if} \quad T(\mathbf{x}) - a = a - C, \\ \gamma & \text{if} \quad T(\mathbf{x}) - a = C - a, \\ 0 & \text{if} \quad C - a < T(\mathbf{x}) - a < a - C, \end{cases}$$

with γ , C such that

$$\mathrm{P}_{\theta_0}^{\mathcal{T}}(\mathit{T}-\mathit{a}<\mathit{C}-\mathit{a})+\gamma\mathrm{P}_{\theta_0}^{\mathcal{T}}(\mathit{T}-\mathit{a}=\mathit{C}-\mathit{a})=\frac{\alpha}{2}.$$

Example 2: Derive UMPU tests on level $\alpha = 0.05$ as explicitly as possible for the following situations.

- Let $\mathbf{X} = (X_1, ..., X_n)$ be an i.i.d. sample from $N(\mu, \sigma^2)$ with known σ^2 . Test H_0 : $\mu = \mu_0$ vs H_1 : $\mu \neq \mu_0$.
- ② $X \sim \text{Bin}(5, p)$. Test $H_0: p = 1/2 \text{ vs } H_1: p \neq 1/2$.
- **3** Let $\mathbf{X} = (X_1, ..., X_n)$ be an i.i.d. sample from $N(\mu, \theta)$ with known μ . Test H_0 : $\theta = \theta_0$ vs H_1 : $\theta \neq \theta_0$.

News of today

Generalization to two-sided tests:

- Unbiased test
- UMPU test
- The exponential family: A (certain) test is UMPU if it has the correct size and if the test function is uncorrelated with the test statistic.