What is the life cycle of Machine Learning?

What Do we need to build a machine learning model?

Building a Machine Learning model

Data Collection

- For an innovative project:
- you need to be innovative \bigcirc --

 Collect data yourself, simulations, use existing data in a different way, .. find a way

 In many cases, you may deal with legacy systems and extract data from them

Data Collection Methods

Primary

Survey/ Questionnaire

Interview

Observation

Experiment

Secondary

Literature Review

Commercial Database

Web Scraping

- Data needs to be in the form of:
 - Features
 - Numerical (Quantitative)
 - Categorical (Qualitative)
 - Ordinal : categories has relative order like grades (A , B+ , C, etc.)
 - Nominal: categories has no relative order like gender (Male, Female)

- Labels
 - Continues : in regression
 - Discrete: in classification

- Now I have the data, can I build the model?
- Not yet, you must prepare the data

Data Preparation

- Combine data from various sources
- Check data schema:
 - Usually, the source of the data has schema describing the data
- Clean your Data: identify and handle errors in your data.
 - Handle Missing data
 - Handle outliers
- Data Transformation: change the scale of some/all variables.
 Why?? We will discuss it later.
- Feature Selection: select these features that are most relevant to your task.
- Feature Engineering: combine features, derive new variables, dimensionality reduction, etc.

Exploratory Data Analysis

- We can't prepare the data without first exploring the data.
- Quantify missing data
- Identify numerical and categorical variables
- Determine unique values (cardinality) in categorical features
- Check rare/ dominant categories in categorical features
- Highlight outliers
- Identify linear relationships
- Identify a normal distribution
- Check histograms

Original Data

Team	Points	
Α	25	
Α	12	
В	15	
В	14	
В	19	
В	23	
С	25	
С	29	

Label Encoded Data

Team	Points	
0	25	
0	12	
1	15	
1	14	
1	19	
1	23	
2	25	
2	29	

Original Data

Team	Points	
Α	25	
Α	12	
В	15	
В	14	
В	19	
В	23	
С	25	
С	29	

One-Hot Encoded Data

Team_A	Team_B	Team_C	Points
1	0	0	25
1	0	0	12
0	1	0	15
0	1	0	14
0	1	0	19
0	1	0	23
0	0	1	25
0	0	1	29