Principles of Information Security

Indranil Pradhan

2019202008

M.Tech in CSIS

Evaluation 1

Question Number [Q]

Question:- Design a zero-knowledge proof for the Discrete-Logarithm Problem (DLP), that is, given prime p, generator g and the element $y = g_x \mod p$, how does a prover claiming to know x, convince the veri_er, without revealing x? Moreover, using hash-functions (and assuming them to be random oracles) show how would to build a *digital signature* scheme based on your above zero-knowledge proof and the hardness of DLP? Also, show how would you design collision-resistant hash functions based on the hardness of DLP.

Answer:

- To achieve the goal following steps are followed
 - 1. Prover choose a random number $0 \le r \le p 1$ and sends the verifier $h = g^r \pmod{p}$.
 - Verifier sends back a random bit b.
 - 3. Prover sends $s = (r + b * x) \pmod{(p-1)}$ to verifier.
 - 4. Verifier computes $g^s \pmod{p}$ which should equal to $h * y^b \pmod{p}$.

The basic idea here is that if b = 1, the prover gives a number to the verifier (V) that looks random $s = r+x \pmod{(p-1)}$. But V already knows $h = g^r$ and $y = g^x$ and can multiply these and compare them to g^s .

We should be careful what is proved by that. What verifier actually sees are h and s, and so what verifier knows is that s = dlog(h) + x(mod (p - 1)), where dlog(h) is the discrete log of h relative to g. The verifier knows s and so do you, the prover. Now if you also know dlog(h), then it's clear that you know x.

- ➤ Here the assumption based on that the message M is hashed to a value m.
 - 1. Let x be a secret key known only to you, the signer. Let p be a large prime, and g be a generator of Z_p^* . You can publish (g, p, g^x (mod p)) as your public key.
 - 2. In order to sign m, (prover) choose a random r and compute c (simulating verifier's choice) as the hash of $c = h(m^x \pmod{p}, g^r \pmod{p})$.
 - 3. Let s = c * x + r, you publish the digital signature which is m together with $(s,m^x \pmod{p}, m^r \pmod{p})$, $g^r \pmod{p}$.
 - 4. To check the signature, a verifier first computes c as the hash of the values $(m^x \pmod{p}, m^r \pmod{p}, g^r \pmod{p})$ which were published with the signature. Then the verifier checks that $g^s \pmod{p} = (g^x)^c * g^r \pmod{p}$ and $m^s \pmod{p} = (m^x)^c * m^r \pmod{p}$.

Here the goal to convince the verifier that the prover knows x which private to the prover. So the prover instead of x gives s which depends on x. But verifier does not know about x as s is multiplied by random variable c. added a random value r to it. For that the distribution will be random

The discrete log is hard. Because of that it can be safely told the verifier about g^x (mod p) and g^r (mod p). These values also does not help verifier to know about x and r. The value c is really a "challenge" to you, the prover, to prove that you know x as it is computed from random hash function. When x is private and not known, you will be challenged with with a c, the value $(g^x)^{c*} g^r$ (mod p) could be any element of Z_p^* . So it is hard discrete log problem to find out s that satisfy satisfying g^s (mod p) = $(g^x)^{c*}$

which satisfies the possibility is of very probability. (For a one bit b it is fifty fifty)

g^r (mod p). There are two many possible c's , so the signer also can't guess r by enumeration and the c