Departamento de Matemáticas Cálculo Monovariable

Taller N°4: Derivadas

Profesoras Martha Pinzón y Daniela Vásquez.

Marzo 12 de 2025

- * Algunos de los ejercicios propuestos son seleccionados del texto Cálculo de una variable. G. B. Thomas Jr. Undécima edición, Pearson Addison Wesley, 2006.
- 1. Halle la derivada de las siguientes funciones.

a)
$$y = \sqrt[3]{2x}$$

c)
$$y = cos[(1 - 6t)^{2/3}]$$

b)
$$y = x(x^2 + 1)^{-1/3}$$

d)
$$y = (sen(\theta + 5))^{5/4}$$

2. Usando derivación implicíta, calcule $\frac{dy}{dx}$.

a)
$$x^3 - xy + y^3 = 1$$

$$b) (3xy + 7)^2 = 6y$$

a)
$$x^3 - xy + y^3 = 1$$
 b) $(3xy + 7)^2 = 6y$ c) $y \operatorname{sen}\left(\frac{1}{y}\right) = 1 - xy$

- 3. Si $xy + y^2 = 1$, use derivación implícita para hallar $\frac{d^2y}{dx^2}$ en el punto (0, -1).
- 4. Verifique que el punto dado está en la curva y encuentre las rectas tangente y normal en el punto.

a)
$$6x^2 + 3xy + 2y^2 + 17y - 6 = 0$$
; $(-1,0)$ b) $x \operatorname{sen}(2y) = y \cos(2x)$; $(\frac{\pi}{4}, \frac{\pi}{2})$

b)
$$x \operatorname{sen}(2y) = y \cos(2x); \quad \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$

- 5. Encuentre los dos puntos donde la curva $x^2 + xy + y^2 = 7$ cruza el ejex y muestre que las tangentes a la curva en esos puntos son paralelas. ¿Cuál es la pendiente común de esas tangentes?.
- 6. Encuentre las rectas normales a la curva xy + 2x y = 0 que son paralelas a la recta 2x + y = 0.
- 7. Considere la parábola $x=y^2$ y el punto (a,0), con $a\geq 0$. Muestre que si hay tres rectas normales a la parábola que pasan por el punto (a,0), entonces $a>\frac{1}{2}$. Observe que el $eje\,x$ siempre es una de esas normales, ¿para qué valor de a son perpendiculares las otras dos normales?.
- 8. Exploración con computador.
 - a) Dado que $x^4 + 4y^2 = 1$, encuentre $\frac{dy}{dx}$ de dos maneras: resolviendo para y y derivando la función resultante de forma usual y la otra mediante derivación implícita. ¿Obtuvo el mismo resultado en ambos casos?
 - b) Resuelva la ecuación $x^4 + 4y^2 = 1$ para y y gráfique juntas la funciones resultantes para obtener la gráfica completa de la ecuación. Después, agregue las gráficas de las primeras derivadas de estas funciones a su pantalla. ¿Podría predecir el comportamiento general de las gráficas de las primeras derivadas a partir de la observación de la gráfica de $x^4 + 4y^2 = 1$?.; Podría predecir el comportamiento general de la gráfica de $x^4 + 4y^2 = 1$ a partir de la observación de la gráfica de las derivadas?. Justifique sus respuestas.
- 9. Considere la curva $xy^3 + tan(x+y) = 2$ y el punto $P\left(\frac{\pi}{4}, 0\right)$. Use un software matemático para realizar los pasos siguientes:
 - a) Gráfique la curva y verifique que el punto dado satisface la ecuación.

- b) Usando derivación implícita, halle una fórmula para la derivada $\frac{dy}{dx}$ y evalúela en el punto P.
- c) Use la pendiente determinada en el inciso b) para encontrar una ecuación para la recta tangente a la curva en P. Después trace en un mismo gráfico la curva y la recta tangente.
- 10. Derive las siguientes funciones

a)
$$y = ln\left(\frac{10}{x}\right)$$
 f) $y = \frac{x lnx}{1 + lnx}$
b) $y = xe^x - e^x$
c) $y = lnx^3$ g) $y = ln\left(\frac{\sqrt{se}}{1 - lnx}\right)$

$$g) \ \ y = \ln\left(\frac{\sqrt{sen\theta\cos\theta}}{1 + 2ln\theta}\right)$$

$$g) \ y = \ln\left(\frac{\sqrt{sen\theta \cos \theta}}{1 + 2ln\theta}\right) \qquad \qquad j) \ y = 3^{tan\theta} \ln 3$$

$$k) \ y = \log_2(8t^{ln2})$$

$$h) \ y = \ln\left(\sqrt{\frac{(3x+1)^5}{(x+2)^{20}}}\right) \qquad \qquad l) \ y = t\log_3\left(e^{(sent)(ln3)}\right)$$

$$y = 3^{tano} \ln 3$$

 $i) \ y = e^{sent} \left(lnt^2 + 1 \right)$

$$(sent)(ln3)$$

11. Use derivación logarítmica para hallar la derivada.

$$a) \ y = (\sqrt{t})^{t}$$

d) $y = (lnx)^3$ e) $y = ln(3\theta e^{-\theta})$

c)
$$y = \frac{x\sqrt{x^2 + 1}}{(x+1)^{2/3}}$$

b)
$$y = \sqrt{2\theta + 1} \tan \theta$$

$$d) y = (lnx)^{lnx}$$

12. Usando derivación implícita halle $\frac{dy}{dx}$

$$a) \ ln(xy) = e^{(x+y)}$$

b)
$$e^{2x} = sen(x+3y)$$
 c) $tany = e^x + lnx$

c)
$$tany = e^x + lnx$$

13. Halle la derivada de las siguientes funciones

$$a) f(x) = \arccos\left(\frac{1}{x}\right)$$

c)
$$f(x) = \arctan\left(\sqrt{x^2 - 1}\right) + \arccos x$$

b)
$$f(t) = arcsen(e^{-t})$$

$$d) \ f(t) = \ln(t^2 + 4) - t \arctan\left(\frac{t}{2}\right)$$

- 14. El radio r y la altura h de un cilindro circular recto se relacionan con el volumen V del cilindro, mediante la fórmula $V = \pi r^2 h$.
 - a) ¿Cómo se relaciona $\frac{dV}{dt}$ con $\frac{dh}{dt}$ si r es constante?.
 - b) ¿Cómo se relaciona $\frac{dV}{dt}$ con $\frac{dr}{dt}$ si h es constante?.
 - c) ¿Cómo se relaciona $\frac{dV}{dt}$ con $\frac{dr}{dt}$ y $\frac{dh}{dt}$ si r y h no son constantes?.
- 15. El voltaje V (en volts), la corriente I (en amperes) y la resistencia R (en ohms) de un circuito eléctrico se relacionan mediante la ecuación V = IR. Suponga que V está creciendo a una tasa de 1 volts/seg, mientras que I está decreciendo a una tasa de $\frac{1}{3}$ amperes/seg. Sea t el tiempo en segundos.
 - a) ¿Cuál es el valor de $\frac{dV}{dt}$?.
 - b) ¿Cuál es el valor de $\frac{dI}{dt}$?.
 - c) ¿Qué ecuación relaciona $\frac{dR}{dt}$ con $\frac{dV}{dt}$ y $\frac{dI}{dt}$?
 - d) Encuentre la razón a la que cambia R cuando $V=12\,volts$ e $I=2\,amperes$. R está creciendo o decreciendo?.
- 16. La longitud l de un rectángulo está decreciendo a razón de $2 \, cm/seg$ mientra que su ancho w, está creciendo a razón de $2 \, cm/seg$. Si $l = 12 \, cm$ y $w = 5 \, cm$, encuentre las razones de cambio de

c) la longitud de las diagonales del rectángulo.

¿Cuáles de estas magnitudes están creciendo y cuáles decreciendo?

- 17. Una escalera de 13 pies está apoyada contra una casa cuando su base empieza a resbalarse. En el momento en que la base está a 12 pies de la casa, la base se está moviendo a una razón de 5 pies/seg.
 - a) ¿Qué tan rápido se está resbalando por la pared la parte superior de la escalera en ese momento?
 - b) ¿A qué tasa está cambiando el área del triángulo formado por la escalera, la pared y el suelo en ese momento?
 - c) ¿A qué tasa está cambiando el ángulo θ entre la escalera y el suelo en ese momento?.
- 18. Una niña vuela una cometa que está a 300 pies de altura, el viento aleja la cometa horizontalmente a razón de 25 pies/seg. ¿Qué tan rápido debe soltar la cuerda la niña cuando la cometa está a 500 pies de ella?.
- 19. La arena cae a la parte superior de una pila cónica desde una banda transportadora, a una razón de $10 \, m^3/min$. La altura de la pila siempre es tres octavos del diámetro de la base. ¿Qué tan rápido cambian
 - a) la altura

- b) el radio cuando la pila tiene 4 metros de altura?
- 20. Se utiliza una cuerda para arrastrar un bote hacia un muelle. Un extremo de la cuerda está atada a la proa de la embarcación y el otro a un aro ubicado en el muelle, en un punto 6 pies arriba de la proa. La cuerda se jala a una razón de 2 pies/seg.
 - a) ¿Qué tan rápido se acerca el bote al muelle cuando la cuerda mide 10 pies?
 - b) ¿A qué rázón cambia el ángulo formado por la cuerda y la vertical que sale del aro al agua, en ese momento?
- 21. Una partícula se mueve a lo largo de la parábola $y=x^2$ en el primer cuadrante, de manera que sus coordenadas x (medidas en metros) crecen a una razón estable de $10\,m/seg$. ¿Qué tan rápido cambia el ángulo de inclinación θ de la recta que une la partícula con el origen cuando $x=3\,m$?
- 22. Un hombre de 6 pies de alto camina a una razón de 5 pies/seg hacia un farol cuya luz está a 16 pies del piso. ¿A qué razón cambia la longitud de su sombra cuando está a 10 pies de la base del farol?. ¿A qué razón se mueve la punta de su sombra?
- 23. A y B caminan sobre calles rectas que se cruzan en ángulo recto. A se aproxima a la intersección a $2 \, m/seg$; B se aleja de la intersección a $1 \, m/seg$. ¿A qué razón cambia el ángulo θ cuando A está a $10 \, m$ de la intersección y B está a $20 \, m$ de la misma?

- 24. Compare los valores de Δy y dy si $y = f(x) = 4x^3 2x^2 x + 3$ y x cambia
 - a) de 2 a 2.05.

- b) de 2 a 2,01.
- 25. Encuentre la linealización de f(x) en x = a.

a)
$$f(x) = x + \frac{1}{x}$$
, $a = 1$

d) $f(x) = (1+x)^k$, a = 0.

$$b) f(x) = \cos x, \quad a = 0$$

e) $f(x) = ln(1+x), \quad a = 0$

c)
$$f(x) = cosx$$
, $a = \frac{\pi}{2}$

 $f) f(x) = e^x, a = 0$

- 26. Encuentre dy si $y = \frac{2x}{1+x^2}$.
- 27. Sea $f(x) = x^3 2x + 3$, $x_0 = 2$ y dx = 0, 1. La función f cambia su valor cuando x cambia de x_0 a $x_0 + dx$. Encuentre Δf , df y el error de aproximación.
- 28. Use la diferencial para estimar cada uno de los siguientes números dados

a)
$$e^{-0.015}$$

b)
$$\sqrt[3]{1001}$$