

第五章 代数结构

- §1 代数系统的引入
- §2 运算及其性质
- §3 半群
 - §4 群与子群
 - §5 阿贝尔群和循环群
 - §7 陪集与拉格朗日定理
 - §8 同态与同构
 - §9 环和域

一、半群

定义1 一个代数系统< S,*>,S为非空集合,*是S上的二元运算,即集合S对*是封闭的,则称代数系统< S,*>为广群。

定义2 设<S,*>是一代数系统,S为非空集合,*是S上的二元运算,若运算*满足结合律,即对任意的x,y,z \in S, 满足(x * y) * z = x *(y * z), 则称<S,*>为半群。

例:设集合 $S_k = \{x | x \in I \land x \geq k \}$, $k \geq 0$,证明< S_k ,+>是一个半群,其中+是普通的加法运算。

解:因为1)+是 S_k 上的二元运算;

2)+是可结合的。

所以, $\langle S_k, + \rangle$ 是一个半群。

例2: 设S={a, b, c}, S上的一个二 元运算Δ定义如表,验证<S, Δ> 是一个半群。

Δ	a	b	c
a	a	b	c
ь	a	b	c
c	a	b	c

解: 从表中可知

- 1) △是封闭的。
- 2) a, b, c都是左幺元。

所以,对于 $\forall x, y, z \in S$,都有

$$x \Delta (y \Delta z) = x \Delta z = z$$
 $(x \Delta y) \Delta z = y \Delta z = z$ 因此, $\langle S, \Delta \rangle$ 是半群。

定理1 设<S, *>是一半群, B⊆S, 且*在B上是封闭的, 那么<B, *>也是半群, 称<B, *>是<S, *>的子半群。

证明:因为*在S上可结合,而 $B\subseteq S$,所以*在B上也是可结合的。

又因为*在B上是封闭的, 所以<B, *>是半群。

例: 证明<[0,1], ×>, <[0,1), ×>, <I, ×>都是<R, ×>的 子半群。

证明: a) : ×在R上是封闭且可结合的。

∴ <R, ×>是一个半群。

群,并且是<R,×>的子半群。

b) × 在 [0,1], [0,1)和I上都是封闭的且 [0,1]⊂R, [0,1) ⊂R, I ⊂R 所以, <[0,1], ×>, <[0,1), ×>, <I, ×>都是半

补充

定义: 设*是S上的二元运算,对任 $-x \in S$,定义:

$$x^1=x$$

$$x^2 = x * x$$

• • •

$$x^{n}=x^{n-1}*x$$

定理: 设*是S上的二元运算,且 $x \in S$,对任一 $m, n \in I_+$ 有

(1)
$$x^{m} * x^{n} = x^{m+n}$$

(2)
$$(x^{m})^{n}=x^{m\cdot n}$$

定理2 设<S, *>是一半群,如果S为有限集,则必有 $a \in$ S, 使a*a=a。

证明:因<S,*>是半群,对 $\forall b \in$ S,由*的封闭性可知, $b*b \in$ S,记 $b^2 = b*b$

 $b^2*b=b*b^2 \in S$, $i \supseteq b^3=b^2*b=b*b^2$

 $b^3*b=b*b^3 \in S$, $i \supseteq b^4=b^3*b=b*b^3$

• • • • • •

由于S是有限集,必有i < j,使 $b^i = b^j$ 令p = j - i,则 $b^j = b^p * b^i$,即: $b^i = b^p * b^i$ 当 $q \ge i$ 时, $b^q = b^p * b^q$

雨课堂

又因 $p\geq 1$,总可以找到 $k\geq 1$,使得 $kp\geq i$, 对S中的bkp有 $b^{kp}=b^p*b^{kp}$ $=b^p*(b^p*b^{kp})$ $=b^{2p}*b^{kp}$ $=b^{2p}*(b^p*b^{kp})$ $=b^{3p}*b^{kp}$ $=b^{kp}*b^{kp}$ $\diamondsuit a=b^{kp}$. 则a*a=a。

二、独异点

定义3 含有幺元的半群称为独异点(monoid)。(含幺半群,拟群,幺半群)。

例: <R, +>, <I, x>, < I₊, x> <N, +>, < N, x>均为独异点 <N-{0}, +>, 不是独异点,是半群

例:设S为非空集合, P(S)是S的幂集,则<P(S), \bigcirc ,< P(S), \cup >均为独异点。

例: <I, max>, 其中max(x1, x2)取二者之大值;

<I, min>, 其中min(x1, x2)取二者之小值,

均不为独异点(不存在幺元)。

<N,max> 为独异点,其中e=0

例:代数系统<S,*>,其中S={a,0,1},运算*由下表定义,证明<S,*>是独异点。

证明 1)运算*是封闭的。

2) 对于任意x, y∈S,

$$(x * y) * a = x * y x * (y * a) = x * y$$

$$(x * y) * 0=0$$
 $x * (y * 0)=x * 0=0$

$$(x * y) * 1=1$$
 $x * (y * 1)=x * 1=1$

所以运算*是可结合的。

3)a是S中关于运算*的幺元。

因此<S, *>是独异点。

定理3 设<S,*>是一个独异点,则在关于运算*的运算 表中任何两行或两列都是不相同的。

证明:设S中关于运算*的幺元是e。

∵对于 $\forall a, b \in S$ 且 $a \neq b$ 时,总有

$$e*a=a \neq b=e*b$$
 (列不同)

$$a*e = a \neq b = b*e$$
 (行不同)

∴ 在*的运算表中不可能有两行或 两列是相同的。

*	a b
•	
•	a b
e	a b
•	
•	• • • •

*	•	•	<i>e</i> .	•	•
•		•		•	•
a	•	•	\boldsymbol{a} .	•	•
•	•	•	• •	•	•
'n	•	•		•	•
D	•	•	b .	•	•
•	•	•	• •	•	•

一例:设I是整数集合,m是任意正整数, Z_m 是由模m的同余类组成的同余类集,在 Z_m 上定义两个二元运算+ $_m$ 和× $_m$ 分别如下:对于任意的[i],[j] \in Z_m

$$[i] +_{\mathbf{m}} [j] = [(i+j) \mod \mathbf{m}]$$
$$[i] \times_{\mathbf{m}} [j] = [(i \times j) \mod \mathbf{m}]$$

试证明在这两个二元运算的运算表中任何两行或两 列都是不相同的。

考虑:只须证明<**Z**_m,+_m>和<**Z**_m, \times _m>都是独异点。分三步证明: 1)证明两个运算在**Z**_m上封闭;

- 2) 证明两个运算满足结合律;
- 3) 证明[0]是<Z_m, +_m>的幺元, [1]是<Z_m, ×_m>的幺

元。

证明:(1)由 $+_m$ 和 \times_m 的定义可知在 Z_m 上是封闭的。

(2) 对于任意
$$[i],[j],[k] \in \mathbb{Z}_{m}$$
 $([i]+_{m}[j])+_{m}[k]=[i]+_{m}([j]+_{m}[k])$
 $=[(i+j+k) \mod m]$
 $([i]\times_{m}[j])\times_{m}[k]=[i]\times_{m}([j]\times_{m}[k])$
 $=[(i\times j\times k) \mod m]$
(3)

- $: [0] +_{m} [i] = [i] +_{m} [0] = [i] : : [0] 是 < Z_{m}, +_{m} > 的 幺元$
- $: [1] \times_{\mathbf{m}} [i] = [i] \times_{\mathbf{m}} [1] = [i] : [1] 是 < \mathbb{Z}_{\mathbf{m}}, \times_{\mathbf{m}} >$ 的幺元

因此, $\langle Z_m, +_m \rangle$ 和 $\langle Z_m, \times_m \rangle$ 是独异点,两个运算表中任何两行或两列都是不相同的。

雨课堂 Rain Classroom

设m=5,则+₅和×₅运算表分别如下:

	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

\times_5	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]
[2]	[0]	[2]	[4]	[1]	[3]
[3]	[0]	[3]	[1]	[4]	[2]
[4]	[0]	[4]	[3]	[2]	[1]

市课堂 Rain Classroom

定理4 设<S, *>是独异点,对于任意 $a,b \in$ S,且a,b均 有逆元,则

a)
$$(a^{-1})^{-1}=a$$

b)
$$a*b$$
有逆元,且 $(a*b)^{-1}=b^{-1}*a^{-1}$

证明: a) $: a^{-1} = a$ 的逆元,即 $a * a^{-1} = a^{-1} * a = e$ $: (a^{-1})^{-1} = a$

b) :
$$(a * b) *(b^{-1} * a^{-1}) = a *(b * b^{-1}) * a^{-1}$$

= $a * e * a^{-1}$
= e

同理:
$$(b^{-1}*a^{-1})*(a*b)=e$$

 $\therefore (a*b)^{-1}=b^{-1}*a^{-1}$

雨课堂 Rain Classroom

第五章 代数结构

- §1 代数系统的引入
- §2 运算及其性质
- §3 半群
- §4 群与子群
 - §5 阿贝尔群和循环群
 - §6 陪集与拉格朗日定理
 - §7 同态与同构
 - §8 环和域

市课堂 Rain Classroom

一、群

定义1 设<G, *>是一代数系统, G是非空集合, *为G 上的二元运算, 如果

- (1)运算*是封闭的;
- (2)运算*是可结合的;
- (3) 存在幺元e;
- (4) G中每一个元素x都有逆元x-1。

则称<G, *>为群<group>。

例: <I,+>, <R-{0}, ×>, < P(S), ⊕>等均为群。

雨课堂 Rain Classroom

例:设R={0°,60°,120°,180°,240°,300°}表示在平面上几何图形绕形心顺时针旋转角度的六种可能情况,设★是R上的二元运算,对于R中任意两个元素a和b,a★b表示平面图形连续旋转a和b得到的总旋转角度。并规定旋转360°等于原来的状态,就看作没有经过旋转。验证<R,★>是一个群。

*	0°	60°	120°	180°	240°	300°
0°	0°	60°	120°	180°	240°	300°
60°	60°	120°	180°	240°	300°	0°
120°	120°	180°	240°	300°	0°	60°
180°	180°	240°	300°	0°	60°	120°
240°	240°	300°	0°	60°	120°	180°
300°	300°	0°	60°	120°	180°	240°

市课堂 Rain Classroom

解: 【1) ★运算是封闭的

(2) ★运算是可结合的

对于∀a,b,c∈R, (a★b)★c: 将图形依次旋转a,b和c,

a★(b★c): 将图形依次旋转b,c和a,

而总的旋转角度都等于(a+b+c)(mod 360°)

因此, (a★b)★c=a★(b★c)。

- (3) 幺元为0°;
- (4) 每一个元素均有逆元:

60°,180°,120°的逆元分别是300°,180°,240°

∴ <R, ★ >是一个群。

定义2 设<G,*>是一个群,如果G是有限集合,则称 <G,*>为有限群(finite group),G中元素个 数称为群的阶数(order),记为|G|,如果G为无限集合,则称<G,*>为无限群(infinite group)。

例: <I,+>为无限群,

上例中<R, ★>为有限群, 群的阶为|R|=6。

雨课堂 Rain Classroom

群的性质

- (1) 群具有半群和独异点所具有的所有性质;
- (2) 由于群中存在幺元, 二在群的运算表中一定没有相同的行(和列)
- (3) 在群中,每一个元素均存在逆元, 而且,<mark>群中任</mark> 何一个元素的逆元必定是唯一的。

由群中逆元的唯一性, 我们可以有以下几个定理。

雨课堂 Rain Classroom

定理1 群中不存在零元。

证明: 设 < G, * > 是一个群。

- 1) 当|G|=1时,唯一的元素是幺元e。
- 2) 当|G|>1时,设<G,*>中有零元 θ 。

 - ∴零元*6*不存在逆元,与< G,*>是群矛盾。
 所以群中不存在零元。

定理2 设<G,*>是一个群,则对 $\forall a, b \in G$ 有:

- (1) 存在唯一的元素 $x \in G$, 使a * x = b;
- (2) 存在唯一的元素 $v \in G$,使v * a = b。

证明: (a) 在G中存在x. $\theta a * x = b$ 成立。

- $a * (a^{-1} * b) = (a * a^{-1}) * b = e * b = b,$
- ∴ 至少有 $-x = (a^{-1} * b)$ 满足a * x = b成立。。

(b) 证明这样的x是唯一的。

若x是G中任一元素,且能使a * x = b成立,则

 $x = e *x = (a^{-1} * a) *x = a^{-1} * (a * x) = a^{-1} * b$

 $\therefore x = (a^{-1} * b)$ 是满足a * x = b的唯一元素,即x是唯一的。

定理3 若<G,*>是一个群,则对 $\forall a, b, c \in G$,如果有a*b=a*c 或者 b*a=c*a,则必有 b=c。
(消去律)

证明:设a*b=a*c,且a的逆元是 a^{-1} ,则有 $a^{-1}*(a*b)=a^{-1}*(a*c)$ $(a^{-1}*a)*b=(a^{-1}*a)*c$ e*b=e*cb=c当b*a=c*a时,可同样证得b=c

定义3 设S是一个非空有限集合,从集合S到S的一个双射称为S的一个置换。

譬如,对于集合S={a,b,c,d},将a映射到b,b映射到d,c映射到a,d映射到c是一个从S到S上的一个一对一映射,这个置换可以表示为

即上一行中按任何次序写出集合中的全部元素,而 在下一行中写每个对应元素的象。

定理4 有限群<G, *>的运算表中的每一行或每一列都是G的元素的置换。

证明: (1) 先证运算表中的任一行(列) 所含G中的一个元素不可能多于一次。(用反证法)

设a对应行有两个元素 b_1 、 b_2 对应的都是c,

即 $a*b_1=a*b_2=c$,且 $b_1\neq b_2$ 由消去律得 $b_1=b_2$ 与假设 $b_1\neq b_2$ 矛盾。

*	•••	. b ₁		b_2	•••
•		•		•	•
•		•		•	•
a	-	C	• •	\boldsymbol{c}	•
•		•		•	•
•		•		•	•

(2) 证明G中的每一个元素都在运算表的每一行和每 一列中出现。

对于元素 $a \in G$ 的那一行,设 $b \in G$ 中任意一个元素,

- $: b=a* (a^{-1}*b) ,$
- $\therefore b$ 必定出现在对应于a的那一行。
 - 又:运算表中没有两行或两列是相同的。
- ∴ < G, *>的运算表中的每一行都是G的元素的一个置换,且每一行都是不相同的。

同样,对于每一列结论同样成立。

独异点

<**G**,*>

*	a	0	1
a	a	0	1
0	0	0	1
1	1	0	1

群

*	a	0	1
a	a	0	1
0	0	1	a
1	1	a	0

表中任何两 行或两列都

是不同的。

表中任何行 或列都是集 合的置换。

定义4 代数系统<G,*>中,如果存在a∈G,有a*a=a,则称a为幂等元。

定理5 群<G,*>中,除幺元e外,不可能有任何别的等幂元。

证明:因为e * e = e,所以e是等幂元。

设
$$a \in G$$
, $a \neq e$ 且 $a * a = a$

则有
$$a=e*a=(a^{-1}*a)*a$$

= $a^{-1}*(a*a)$
= $a^{-1}*a=e$

与假设 $a \neq e$ 相矛盾。

雨课堂 Rain Classroom

例:在实数集合R中,+是可交换,可结合的, "0"对+ 是幂等元,而其它不为幂等元;

例:设 P(S)是集合S的幂集,在P(S)上定义的两个二元运算 \cap 和 \cup 。

- (1) 对于 \forall A ∈ P(S),有A \cap A=A A \cup A=A,
 - ∴ △和∪满足幂等律,

P(S)中任一元素,对 \cap , \cup 均是幂等元。

(2) 对称差⊕,除P(S) ={Φ}以外不满足幂等律。

 $\Box \Phi \oplus \Phi = \Phi$,

而除 Φ 以外的 $A \in P(S)$ 有 $A \oplus A \neq A$ 。

二、子群

定义5 设<G,*>是一个群,且S是G的非空子集。若
<S,*>也构成群,称<S,*>是<G,*>的一个子群(subgroup)。

定理6 设<G,*>为群,<S,*>为<G,*>的子群,那么,<G,*>中的幺元e必定也是<S,*>中的幺元. 且元素在子群S中的逆元即为在群G中的逆元.

证明: 设<S,*>中的幺元为 e_1 , 对于 $\forall x \in$ S \subseteq G,必有 $e_1 * x = x = e * x$ 故 $e_1 = e$ (消去律)

定义6 设<G,*>是一个群,<S,*>是<G,*>的子群,如果S={e},或者S=G,则称<S,*>为<G,*>的平凡子群。

讨论:

- (1) 假设G的阶不是1,则任一群<G,*>至少可找到二个子群(平凡子群),即<{e},*>和<G,*>
 - (2)除了平凡子群以外的子群称为非平凡子群。
- (3) 若S是G的真子集,则称子群<S,*>是<G,*>的真 子群。

例: <I, +>是一个群, $I_E=\{x|x=2n, n\in I\}$,证明<I $_E$, +>是 <I, +>的一个子群。

证明: (1)对于 $\forall x$, $y \in I_E$, 设 $x = 2n_1$, $y = 2n_2$ $(n_1, n_2 \in I)$ $x + y = 2n_1 + 2n_2 = 2(n_1 + n_2)$, 而 $n_1 + n_2 \in I$ $\therefore x + y \in I_E$,即+在 I_E 上封闭。

- (2) +在 I_E 上保持可结合性。
- (3) 幺元 $0 \in I_E$ 。
- (4)对于 $\forall x \in I_E$,必有n使得x=2n 而-x=-2n=2(-n),- $n \in I$ ∴ - $x \in I_E$ 而x+(-x)=(-x)+x=0因此, $<I_E$,+>是<I,+>的一个子群。

定理7 设<G,*>是一个群,B是G的非空子集(B⊆G, $B\neq\Phi$),若 B是一个有限集,则只要运算*在B上封闭,<B,*>必定是<G,*>的子群。(教材定理6.6.7)

证明: 设 $\forall b \in \mathbf{B}$, 已知*在 \mathbf{B} 上封闭,则 $b^2 = b * b \in \mathbf{B}$, $b^3 = b^2 * b \in \mathbf{B}$, ...

- ∵B是有限集,
- ∴必存在正整数i和j (i<j),使得 b^i = b^i ,即 b^i = b^i*b^{j-i} 则 b^{j-i} 是<G,*>中的幺元,且 b^{j-i} ∈B。

例: 设 $G_4 = \{ p = \langle p_1, p_2, p_3, p_4 \rangle \mid p_i \in \{0, 1\} \}, \oplus \mathbb{E}G_4 \perp n \}$

二元运算,定义为对任意 $X=\langle x_1, x_2, x_3, x_4 \rangle$,

$$Y = \langle y_1, y_2, y_3, y_4 \rangle \in G_4$$

 $X \oplus Y = \langle x_1 \nabla y_1, x_2 \nabla y_2, x_3 \nabla y_3, x_4 \nabla y_4 \rangle$

其中▽的运算表如表所示。

证明<{<0,0,0,0>,<1,1,1,1>},⊕> 是群<G₄,⊕>的子群。

∇	0	1
0	0	1
1	1	0

雨课堂 Rain Classroom

§5-4 群与子群

	∇	0	1
	0	0	1
000	1	1	0

证明:先证明<G4, ⊕>是群。

取任意的 $X=\langle x_1, x_2, x_3, x_4 \rangle$, $Y=\langle y_1, y_2, y_3, y_4 \rangle$,

$$Z= \in G_4$$

- $(1) : x_i \nabla y_i \in \{0, 1\}$
- (2) : $(x_i \nabla y_i) \nabla z_i = x_i \nabla (y_i \nabla z_i)$
 - ∴ (X⊕Y)⊕Z=X⊕(Y⊕Z) 结合性
- (3) <0,0,0,0>是幺元
- (4) X ⊕X= <0,0,0,0>, 即任一X, 以它自身为逆元。 所以<G₄, ⊕>是一个群。

其次,由于{<0,0,0,0>,<1,1,1,1>} $\subset G_4$, 且⊕在{<0,0,0,0>,<1,1,1,1>}上是封闭的, 由<u>定理7</u>可知<{<0,0,0,0>,<1,1,1,1>},⊕>是群< G_4 ,⊕>的 子群。

定理8 设<G, Δ >是群,S是G的非空子集,<S, Δ >是

<G, Δ >的子群 当且仅当 对于S中的任意元素a和b有 $a\Delta b^{-1} \in S$.

证明:必要性显然。下证充分性.分四步

(1) 证明G中的幺元e也是S中的幺元。

 $\forall a \in S \subseteq G$, 有 $a\Delta a^{-1} \in S$, 而 $a\Delta a^{-1} = e \in S$ 且 $a\Delta e = e\Delta a = a$, 即e也是S中的幺元。

(2) 证明S中的每一元素都有逆元。 $\forall a \in S$,因为 $e \in S$,所以 $e\Delta a^{-1} \in S$,即 $a^{-1} \in S$ 。

(3) 证明∆在S上是封闭的。

对 $\forall a, b \in S$, 由(2)可知 $b^{-1} \in S$ 而 $b = (b^{-1})^{-1}$ 所以 $a\Delta b = a\Delta (b^{-1})^{-1} \in S$

(4) 运算∆在S上的可结合性是保持的。

因此, <S, Δ >是<G, Δ >的子群。

例: 设<H, *>和<K, *>都是群<G, *>的子群, 试证明
<H∩K,*>也是<G, *>的子群。

证明: 设 $\forall a, b \in H \cap K, 有a, b \in H, a, b \in K$

∵ <H, *>和<K, *>都是<G, *>的子群

∴ $a * b^{-1} \in H$, $a * b^{-1} \in K$

 $\therefore a * b^{-1} \in \mathbf{H} \cap \mathbf{K}$

由<u>定理8</u>得<H∩K, *>是<G, *>的子群。

习题:

设<H, •>和<K, •>都是群<G, •>的子群, 令 HK={h•k|h∈H, k∈K} 证明<HK, •>是<G, •>的子群的充要条件是HK=KH。

证明: (1) 充分性(已知HK=KH)

对于 $\forall h_1 \cdot k_1, h_2 \cdot k_2 \in HK$

- ∵ <H, •>和<K, •>都是群
- : $(h_2 \cdot k_2)^{-1} = k_2^{-1} \cdot h_2^{-1} \in KH$

∑: HK=KH

∴必有 $h_3 \in H_1$, $k_3 \in K$, 使得 $k_2^{-1} \cdot h_2^{-1} = h_3 \cdot k_3$

雨课堂 Rain Classroom

$$(h_1 \cdot k_1) \cdot (h_2 \cdot k_2)^{-1} = (h_1 \cdot k_1) \cdot (h_3 \cdot k_3)$$

$$= h_1 \cdot (k_1 \cdot h_3) \cdot k_3$$

$$= h_1 \cdot (h_4 \cdot k_4) \cdot k_3$$

$$= (h_1 \cdot h_4) \cdot (k_4 \cdot k_3)$$

$$= h_5 \cdot k_5 \in HK$$

∴由<u>定理8</u>可知<HK, •>是<G, •>的子群

雨课堂 Rain Classroom

(2)必要性(已知<HK, •>是<G, •>的子群)

对于 $\forall k \cdot h \in KH$, $(k \cdot h)^{-1} = h^{-1} \cdot k^{-1} \in HK$

- ∵<HK, •>是群
- \therefore KH \subseteq HK

对于∀ h• k∈HK, (h• k)⁻¹∈HK 即存在 h₁∈H, k₁∈K, 使得(h• k)⁻¹= h₁• k₁

- $h \cdot k = (h_1 \cdot k_1)^{-1} = k_1^{-1} \cdot h_1^{-1} \in KH$
- \therefore HK \subseteq KH

因此: HK=KH