```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

In [2]: import warnings
warnings.filterwarnings("ignore")

In [3]: data=pd.read_csv('/home/placement/Downloads/Titanic Dataset.csv')

In [4]: data.describe()
```

Out[4]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [5]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
ـ ـ ـ ـ ـ ــ ـ ـــــ ــــــــــــــ	41+04/2	\	- / - \

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In [6]: data.head()

Out[6]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

```
In [7]: data.isna().sum()
Out[7]: PassengerId
                          0
        Survived
                          0
        Pclass
                          0
        Name
        Sex
                          0
        Age
                       177
        SibSp
                          0
        Parch
                          0
        Ticket
        Fare
                          0
        Cabin
                       687
        Embarked
                          2
        dtype: int64
In [8]: data=data.drop(['PassengerId','Name','Ticket','Cabin','SibSp','Parch'],axis=1)
```

In [9]: data

Out[9]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	male	22.0	7.2500	S
1	1	1	female	38.0	71.2833	С
2	1	3	female	26.0	7.9250	S
3	1	1	female	35.0	53.1000	S
4	0	3	male	35.0	8.0500	S
886	0	2	male	27.0	13.0000	S
887	1	1	female	19.0	30.0000	S
888	0	3	female	NaN	23.4500	S
889	1	1	male	26.0	30.0000	С
890	0	3	male	32.0	7.7500	Q

891 rows × 6 columns

```
In [10]: data['Sex']=data['Sex'].map({'male':1,'female':0})
```

In [11]: data

Out[11]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	NaN	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

Out[12]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	28.0	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

```
In [13]: data['Pclass'].unique()
Out[13]: array([3, 1, 2])
```

In [14]: data.fillna(35,inplace=True)

In [15]: data

Out[15]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	35.0	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

```
In [16]: data.isna().sum()
```

Out[16]: Survived 0
Pclass 0
Sex 0
Age 0
Fare 0
Embarked 0
dtype: int64

```
In [17]: data.dtypes
Out[17]: Survived
                       int64
         Pclass
                       int64
         Sex
                       int64
         Age
                     float64
                     float64
         Fare
         Embarked
                      object
         dtype: object
In [18]: y=data1['Survived']
         x=data1.drop('Survived',axis=1)
In [19]: x
```

Out[19]:

	Pclass	Sex	Age	Fare	Embarked
0	3	1	22.0	7.2500	S
1	1	0	38.0	71.2833	С
2	3	0	26.0	7.9250	S
3	1	0	35.0	53.1000	S
4	3	1	35.0	8.0500	S
886	2	1	27.0	13.0000	S
887	1	0	19.0	30.0000	S
888	3	0	28.0	23.4500	S
889	1	1	26.0	30.0000	С
890	3	1	32.0	7.7500	Q

891 rows × 5 columns

```
In [20]: y
Out[20]: 0
                0
                1
         3
                0
         886
                0
         887
         888
                0
         889
                1
         890
         Name: Survived, Length: 891, dtype: int64
In [21]: x=pd.get_dummies(x)
```

Out[21]:

	Pciass	Sex	Age	⊢are	Embarked_C	Embarked_Q	Embarked_S
0	3	1	22.0	7.2500	0	0	1
1	1	0	38.0	71.2833	1	0	0
2	3	0	26.0	7.9250	0	0	1
3	1	0	35.0	53.1000	0	0	1
4	3	1	35.0	8.0500	0	0	1
886	2	1	27.0	13.0000	0	0	1
887	1	0	19.0	30.0000	0	0	1
888	3	0	28.0	23.4500	0	0	1
889	1	1	26.0	30.0000	1	0	0
890	3	1	32.0	7.7500	0	1	0

891 rows × 7 columns

```
In [22]: from sklearn.model selection import train test split
         x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
In [23]: x train.isna().sum()
Out[23]: Pclass
         Sex
         Age
         Fare
         Embarked C
         Embarked Q
         Embarked S
         dtype: int64
In [24]: #importing Randaom Forest Classifier from sklearn.ensemble
         %time
         from sklearn.model selection import GridSearchCV #GridSearchCV is for parameter tuning
         from sklearn.ensemble import RandomForestClassifier
         cls=RandomForestClassifier()
         n estimators=[25,50,75,100,125,150,175,200] #number of decision trees in the forest, default = 100
         criterion=['gini', 'entropy'] #criteria for choosing nodes default = 'gini'
         max depth=[3,5,10] #maximum number of nodes in a tree default = None (it will go till all possible nodes)
         parameters={'n estimators': n estimators, 'criterion':criterion, 'max depth':max depth} #this will undergo 8*2
         RFC cls = GridSearchCV(cls, parameters)
         RFC cls.fit(x train, y train)
         CPU times: user 2 \mus, sys: 0 ns, total: 2 \mus
         Wall time: 4.05 µs
Out[24]:
                      GridSearchCV
          ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
```

```
In [25]: RFC cls.best params
Out[25]: {'criterion': 'entropy', 'max depth': 10, 'n estimators': 125}
In [26]: | cls=RandomForestClassifier(n estimators=175,criterion='entropy',max depth=5)
In [27]: cls.fit(x train,y train)
Out[27]:
                                RandomForestClassifier
        RandomForestClassifier(criterion='ent|ropy', max depth=5, n estimators=175)
In [28]: rfy pred=cls.predict(x test)
In [29]: rfy pred
Out[29]: array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
              0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
              0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
              1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
              0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,
              0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
              0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0,
              1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0,
              0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1,
              0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
              1, 0, 1, 0, 0, 0, 1, 1, 0])
In [30]: from sklearn.metrics import confusion matrix
        confusion matrix(y test,rfy pred)
Out[30]: array([[160, 15],
              [ 41, 79]])
```

```
In [31]: from sklearn.metrics import accuracy_score
accuracy_score(y_test,rfy_pred)

Out[31]: 0.8101694915254237
```

logistic regression

```
In [32]: from sklearn.linear model import LogisticRegression
         classifier=LogisticRegression()
         classifier.fit(x train,y train)# command for traning / fitting the mode
Out[32]:
          ▼ LogisticRegression
          LogisticRegression()
In [33]: y pred=classifier.predict(x test)
In [34]: |y_pred
Out[34]: array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0,
                1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
                0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1,
                0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1,
                1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0,
                0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1,
                0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
                0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0,
                1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
                0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
                0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0,
                0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 1, 1, 0])
```