확장강의계획서

(2024년도 1학기)

과목명	기초 GPU 프로그래밍	과목번호	CSEG483/CSE5483
구분(학점)	3	수강대상	"2. 선수학습내용"조건 을 만족하는 학부생
수업시간	화,목 16:30~17:45	강의실	

정명: 임 인 성 홈페이지: grmanet.sogang.ac.kr/~ihm

E-mail: ihm@sogang.ac.kr

장소: AS905
면담시간: 추후 공고

I. 교과목 개요(Course Overview)

1. 수업개요

GPU(Graphics Processing Unit)는 CPU와 함께 컴퓨팅 시스템을 구성하는 핵심 프로세서 중의 하나이다. 실시간 3D 컴퓨터 그래픽스 계산의 가속을 위하여 놀라운 속도로 발전해온 GPU는 현재 슈퍼 컴퓨팅, 인공지능, 그리고 빅 데이터 등의 대용량 데이터의 고속 병렬 처리가 필요한 여러 분야에서 널리 사용되고 있다. 따라서, GPU를 최적으로 활용할 수 있는 GPU 프로그래밍능력은 C/C++ 프로그래밍과 같은 CPU 상에서의 전통적인 프로그래밍능력과 함께 고급 소프트웨어 개발자가 갖춰야 할 기본 소양으로 자리 잡아가고 있다. 본 과목에서는 대표적인 GPU 프로그래밍 툴인 CUDA(Compute Unified Device Architecture)를 기반으로 하여, SIMT(Single Instruction, Multiple Threads) 구조의 GPU가 제공하는 강력한 병렬 처리 성능을 효과적으로 활용할 수 있는 GPU 프로그래밍 기술에 대하여 학습한다.

2. 선수학습내용

- 프로그래밍: 컴퓨터공학과 3학년 1학기생 수준의 C/C++ 프로그래밍 능력
- 이론: 자료구조/알고리즘/컴퓨터 시스템 등 컴퓨터공학과 3학년 1학기 수준의 컴퓨터공학 지식

[참고] 본 과목은 학석사연계과목이며, 강의 수준은 위에서 기술한 선수학습능력을 갖춘 컴퓨터공학과 3학년 생 이상의 수강생들이 따라올 수 있는 수준으로 진행할 예정임.

3. 수업방법 (%)

강의	토의/토론	실험/실습	현장학습	개별/팀 별 발표	기타
100%	%	0%	%	%	%

4. 평가방법 (%)

중간고사	기말고사	퀴즈	발표	프로젝트	과제물	참여도	기타
30 %	30%	%	%	30%	10%	0%	%

II. 교과목표(Course Objectives)

본 과목에서는 GPU 상에서의 CUDA 기반 병렬 프로그래밍 능력을 습득하기 위하여 다음을 비롯한 관련 주제를 학습한다.

- 1. 프로그래머 관점에서의 GPU architecture
- 2. CUDA 시스템의 이해: Programming model, execution model, SIMT processing, concurrency 등
- 3. C++를 확장한 CUDA API 및 kernel 함수 기반의 병렬 프로그래밍 기법
- 4. 기본적인 SIMT 기반 병렬 처리 기법
- 5. 응용 문제로의 적용

상기 주제에 대한 학습을 통하여, 어떠한 병렬성을 가진 문제에 대하여 GPU가 효과적으로 활용될 수 있는지 이해하고, 그러한 문제를 GPU를 사용하여 효과적으로 해결할 수 있는 문제 해결 능력을 습득한다.

Ⅲ. 수업운영방식(Course Format)

(* I -3의 수업방법의 구체적 설명)

- 정규 수업시간에 GPU 프로그래밍 관련 이론과 CUDA 프로그래밍 기법 전반에 대한 강의를 진행함.
- 이와 함께, 각 주제와 관련한 예제 코드를 다룬 후, 그에 따른 프로그래밍 숙제를 부여할 예정임.
- 따라서 Windows와 Visual Studio를 기반으로 NVIDIA GPU에서 CUDA 프로그래밍을 할 수 있는 환경(개인적으로나 또는 학과 실습실을 통하여)을 각자 구축해야 함(프로그래밍 과제에 대한 예외는 없음).

 (AMD GPU X / MAC PC X / OpenCL X / Python X)

IV. 학습 및 평가활동(Course Requirements and Grading Criteria)

- 중간고사 및 기말고사 등 두 번에 걸쳐 필기시험을 본다.
- 필요할 경우 적절하게 수업시간에 퀴즈를 보거나 문제 풀이 숙제를 부여한다.
- 몇 차례에 걸쳐 프로그래밍 숙제를 부여한다.

[참고] "I-4"의 성적 평가방법은 대략적이며, 수업의 진행 상황에 따라 (적은) 범위의 변경이 있을 수 있음.

V. 수업규정(Course Policies)

- 수업 진행과 관련하여 학칙과 보편적인 관례를 따른다.
- 수업 중 타인에게 피해가 되거나 수업 분위기를 해치는 행동은 금지한다.
- C/C++ 기반의 CUDA 프로그래밍 숙제는 혼자서 하는 것이 원칙이며, 이를 어겼을 경우 최종 성적에 큰불이익을 줄 예정임.
- 청강은 허용하지 않는다.

VI. 교재 및 참고문헌(Materials and References)

- 본 과목 제공 PPT 자료
- 본 과목 제공 기술 자료
- 본 과목 제공 예제 코드
- R. Ansorge, Programming in Parallel with CUDA: A Practical Guide, Cambridge University Press, 2022.
- W. Hwu et al., Programming Massively Parallel Processors: A Hands-on Approach, Morgan Kaufmann, 2022.
- J. Cheng et al., Professional CUDA C Programming, John Wiley and Sons, 2014.
- NVIDIA, CUDA C++ Programming Guide(Release 12.3), November 2023.
- NVIDIA, CUDA Runtime API: API Reference Manual, January 2023.
- 기타 NVIDIA 기술 문서

3

Ⅶ. 주차별 강의계획(Course Schedule)

[참고] 본 과목에서 다룰 내용들은 서로 복잡하게 연관되어 있어 아래 강의계획의 내용과 순서는 강의를 진행하면서 적절히 변경할 예정임.

	학습목표	Introduction to GPU Architecture
	 주요학습내용	본 과목에 대한 소개 후, 최신 NVIDIA GPU의 구조에 대하여 이해한다.
1 주차	-	
	수업방법	강의
	수업자료	VI. 교재 및 참고문헌 참조
	과제	추후 결정
	학습목표	Introduction to CUDA System and Execution Model
	주요학습내용	CUDA 시스템 전반에 대한 소개 후, CUDA의 SIMT 기반 계산 구조를 배운다.
2 주차	수업방법	강의
	수업자료	VI. 교재 및 참고문헌 참조
	과제	추후 결정
	 학습목표	CUDA Programming Model
3 주차	주요학습내용	Kernel과 thread hierarchy 개념에 대하여 이해한 후, CUDA Runtime API와 CUDA C++ Extensions을 사용한 명령 처리 및 프로그래밍 방식을 배운다.
	수업방법	강의
	수업자료	VI. 교재 및 참고문헌 참조
	과제	추후 결정
	학습목표	CUDA Memory Hierarchy
	주요학습내용	Register, L1/L2 cache, shared memory, global memory, texture memory, 그리고 constant memory 등 각 메모리의 구조 및 특성에 대하여 이해한다.
4 주차	수업방법	강의
	수업자료	VI. 교재 및 참고문헌 참조
	과제	추후 결정
	학습목표	Efficiency in CUDA Programming
5 주차	주요학습내용	Occupancy, divergence, global memory coalescing, shared memory bank conflict 등과 같은 성능에 영향을 미치는 요소들을 예제 코드를 통하여 배운다.
5 7 4	수업방법	강의
	수업자료	VI. 교재 및 참고문헌 참조
	과제	추후 결정
	학습목표	Matrix Multiplication and Image Filtering 행렬의 곱셈과 2D 영상 처리 문제를 예로 하여 효율적인 CUDA 프로그래밍 기
6 주차	주요학습내용 수업방법	생물의 답점파 2D 영영 처리 문제를 에도 아버 요물식인 CUDA 프로그대당 기법을 익힌다. 강의
	수업자료	성의 VI. 교재 및 참고문헌 참조
	과제	추후 결정
	학습목표	Concurrency Using CUDA Streams and Events I
	주요학습내용	CUDA가 제공하는 Stream과 Event 기능을 사용한 프로그래밍 기법을 배운다.
7 주차	수업방법	강의
	수업자료	VI. 교재 및 참고문헌 참조
	과제	추후 결정
	학습목표	평가
8 주차	주요학습내용	한 학기 동안 배운 내용에 대하여 평가한다.
0 +	수업방법	중간고사 시험
	수업자료	
	과제	

[학습목표	Concurrency Using CUDA Streams and Events II					
	 주요학습내용	CPU와 GPU가 제공하는 리소스를 최적으로 활용할 수 있는 CUDA의 비동기적					
9 주차	수업방법	병렬 처리 모델을 이해한 후, 예제 코드를 통하여 실험하여 본다.					
	 무업자료	VI. 교재 및 참고문헌 참조					
-	구립자표 과제	VI. 교세 및 검고군인 검소 추후 결정					
	 학습목표						
	역합국표	Cooperative Groups and Dynamic Parallelism 전통적인 32-thread warp 개념을 확장한 cooperative groups 기능과 동적 커널					
10 주차	주요학습내용	함수 호출을 위한 dynamic parallelism 기능에 대하여 배운다.					
IU 구시	수업방법	강의					
	수업자료	VI. 교재 및 참고문헌 참조					
	과제	추후 결정					
	학습목표	Warp-Level Primitives and Atomic Operations					
11 주차	주요학습내용	CUDA의 warp-level primitive와 atomic operation을 사용한 프로그래밍 기법을 배운다.					
'' '^'	수업방법	강의					
	수업자료	VI. 교재 및 참고문헌 참조					
	과제	추후 결정					
	학습목표	Parallel Reduction, Prefix Sum, and Compaction					
12 주차	주요학습내용	병렬 처리 분야의 기본 알고리즘들인 reduction, prefix sum, 그리고 compaction 등을 이해한 후, CUDA를 사용한 이들의 효율적인 구현 기법을 습득한다.					
12 77	수업방법	강의					
	수업자료	VI. 교재 및 참고문헌 참조					
	과제	추후 결정					
	학습목표	Tensor Cores					
13 주차	주요학습내용	인공지능 계산에서 요구하는 행렬 곱셈을 가속하기 위한 NVIDIA GPU의 Tensor Cores 기능을 활용하는 방식을 배운다.					
13 7~	수업방법	VI. 교재 및 참고문헌 참조					
	수업자료	강의					
	과제	추후 결정					
	학습목표	고급 GPU 프로그래밍 기법의 이해 I					
14 주차	주요학습내용	컴퓨터 그래픽스, 영상 처리 등 여러 분야에서 널리 사용되는 Marching Cubes 알고리즘을 구현한 NVIDIA 제공 예제 코드의 분석을 통하여 실제 응용문제 해 결을 위한 고급 CUDA 프로그래밍 기법을 배운다.					
	수업방법	강의					
	수업자료	VI. 교재 및 참고문헌 참조					
	과제	추후 결정					
	학습목표	고급 GPU 프로그래밍 기법의 이해 II					
15 주차	주요학습내용	컴퓨터 그래픽스, 영상 처리 등 여러 분야에서 널리 사용되는 Marching Cubes 알고리즘을 구현한 NVIDIA 제공 예제 코드의 분석을 통하여 실제 응용문제 해 결을 위한 고급 CUDA 프로그래밍 기법을 배운다.					
	수업방법	강의					
	수업자료	VI. 교재 및 참고문헌 참조					
	과제	추후 결정					
	학습목표	평가					
	주요학습내용	한 학기 동안 배운 내용에 대하여 평가한다.					
16주차	수업방법	기말고사 시험					
	수업자료						
	과제						

Ⅷ. 참고사항(Special Accommodations)

- 장애로 인하여 수강 시 지원이 필요한 학생들은 개별적으로 상의하기 바랍니다.

