Problem Set 7

Statistical Methods In Engineering And Science

Due Date: 10:00 PM, Feb 26, 2023 Last Update: February 20, 2023 Prof. Alexander Giessing Winter Quarter, 2023

Study	Group:	
,	<u></u>	

Please upload your solution in a single pdf file on Canvas. Include all calculations, R-code, and figures (if applicable). All data sets are available on Canvas https://canvas.uw.edu/courses/1614615.

Question 1. Given a random sample $X_1, \ldots X_n$ from $Exp(\lambda)$ with unknown $\lambda > 0$ you want to estimate the mean $1/\lambda$. From the lecture you know that the sample average $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ is an unbiased estimator for $1/\lambda$. Now, consider a more general estimator of the form $T_c = c \times (\sum_{i=1}^n X_i)$ for $c \in \mathbb{R}$. You are interested in the MSE of this estimator and you would like to know whether there are choices for $c \in \mathbb{R}$ such that T_c has smaller MSE than \bar{X}_n .

- (a) Compute the $MSE(T_c)$ for arbitrary $c \in \mathbb{R}$.
- (b) For which $c \in \mathbb{R}$ does the estimator T_c perform best in the MSE sense? Compare the MSE of this "best" estimator with the MSE of the unbiased estimator \bar{X}_n (which is just the estimator T_c with c = 1/n).

Question 2. Suppose that you have two unbiased estimators U and V with the same variance Var(U) = Var(V). Based on the MSE criterion you cannot choose one estimator over the other. Now, consider W = (U + V)/2.

- (a) Show that W is unbiased.
- (b) Show that

$$\frac{\text{Var}((U+V)/2)}{\text{Var}(U)} = \frac{1}{2} + \frac{1}{2}\rho(U,V),$$

where $\rho(U, V)$ is the correlation coefficient between U and V.

(c) Why do the results for part (a) and (b) imply that we should use W instead of U or V?

Question 3. Consider the following data set consisting of 12 observations

Suppose that the data are the realization of a random sample X_1, \ldots, X_{12} from a distribution with pdf

$$f(x) = \begin{cases} (\theta + 1)x^{\theta} & \text{if } 0 \le x \le 1, \\ 0 & o/w. \end{cases}$$

- (a) What is the method of moment estimator for θ ? Compute an estimate based on the data set.
- (b) What is the maximum likelihood estimator for θ ? Compute an estimate based on the data set.

Question 4. Let X_1, \ldots, X_n be a random sample from Ber(p). Show that the method of moment estimator and the maximum likelihood estimator, both, are equal to the sample proportion $\hat{p} = n^{-1} \sum_{i=1}^{n} X_i$.

Question 5. Let X_1, \ldots, X_n be a random sample from a Bin(N, p).

- (a) Suppose that N is known and only success probability p is unknown. Compute the method of moment estimator and the maximum likelihood estimator for p.
- (b) Suppose that N and p are unknown. Compute the method of moment estimators for N and p.

Question 6. Let X_1, \ldots, X_n be a random sample from $Gamma(\alpha, \beta)$ with pdf

$$f(x) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} & \text{if } x \in (0, \infty); \\ 0 & o/w, \end{cases}$$

where $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$. Assume that the shape parameter $\alpha > 0$ is known and compute the maximum likelihood estimator of the rate parameter $\beta > 0$.