Convex optimization project

Annalle Ben Simon 205798846 bachelor, Evyatar Cohen 206121654 master.

June 17, 2021

Abstract

We translated the original problem to an equavilent convex problem, that involves finding a global minimum over the set of k-upper-band martices. Then we introduced an algorithm that computes the solution in a close form way, that costs $O\left(nk^3\right)$. In addition, in the case of k=n-1, the problem is much simpler, and we show faster algorithm for this cases.

1 Introduction

Def:

k-band matrix is a matrix A where $|i-j| > k \Rightarrow A_{ij} = 0$. We denote the set of all k-band matrices as \mathcal{B}_k . We can see that \mathcal{B}_k is a linear sub-space and thus convex.

The problem

We wish to solve the following problem. Given $S \in S_{++}^n, k \in [n]$,

$$\min_{K} \operatorname{Tr}(SK) - \log |K|$$
s.t. $K \in \mathcal{B}_k$

$$K \in S_{++}^n$$

We denote this problem P.

P is a convex problem

We can see that the domain is a convex set as it is an intersection of two convex sets. And that $\operatorname{Tr}(SK) - \log |K|$ is convex as $\operatorname{Tr}(SK)$ is linear in respect to K and $-\log |K|$ is convex as we saw in class.

2 k-upper-band

Def:

k-upper-band matrix is a matrix U that is both k-band matrix and upper triangular with real and positive diagonal entries. We denote the set of all k-upper-band matrices as U_k . He can see that U_k is a polyhedron and thus convex.

Therom

Every **psd** k-band matrix K ($K \in \mathcal{B}_k \cap S_{++}^n$) can be represented as $K = U^T U$ s.t $U \in \mathcal{U}_k$.

proof

By Cholesky decomposition we know that $K = U^T U$ s.t U is **upper triangular** with real and **positive diagonal entries**. Now we need to show that for every $i, j \in [n]$ s.t. j - i > k, $U_{ij} = 0$ (We don't have to show the general |i - j| > k as U is **upper triangular**)

$$0 = K_{ij}$$

$$= (U^T U)_{ij}$$

$$= \sum_{t=1}^n U_{it}^T U_{tj}$$

$$= \sum_{t=1}^n U_{ti} U_{tj}$$
upper triangular =
$$\sum_{t=1}^{\min\{i,j\}} U_{ti} U_{tj}$$

$$[i < j] = \sum_{t=1}^i U_{ti} U_{tj}$$

Let $j \in \{i+k+1,...,n\}$ (for $j \le i+k$, we have $j-i \le i+k-i=k$). Now by induction on i,

for i = 1 we have $0 = K_{1j} = U_{11}U_{1j}$ we know the diagonal entries of U are positive, so $U_{11} \neq 0$, and we are left with $U_{1j} = 0$.

For other is s.t. j - i > k, we have by the induction assumption $0 = K_{ij} = \sum_{t=1}^{i} U_{ti} U_{tj} = U_{ii} U_{ij} \Rightarrow U_{ij} = 0$.

Therom

$$U \in \mathcal{U}_k \Longrightarrow U^T U \in \mathcal{B}_k \cap S^n_{++}$$

Proof

Let $U \in \mathcal{U}_k$, first of all, $U^T U$ is simetric so we only have to check cases where j-i>k. Now let $i,j\in[n]$ s.t. j-i>k:

$$(U^T U)_{ij} = \sum_{t=1}^n U_{it}^T U_{tj} = \sum_{t=1}^n U_{ti} U_{tj}$$

 $U_{ti}U_{tj}$ if alwase equal to 0:

- 1. If $t \leq i$ we have $j t \geq j i > k$ and thus $U_{tj} = 0$
- 2. If t > i we have U_{ti} is under the diagonal and thus $U_{tj} = 0$

So overall,

$$j - i > k \Longrightarrow (U^T U)_{ij} = 0$$

Now we have to show that $U^TU \in S_{++}$. It is by clear that $U^TU \in S_+$, so we only have to show that $|U^TU| \neq 0$. |U| > 0 as the determinant of a **triangular matrix** in the product of the diagonal entries and the diagonal entries of U are all positive. So

 $|U^T U| = |U|^2 > 0$

3 Translating the problem P and relaxation

We know that P is equivalent to

$$\min_{U} \operatorname{Tr} \left(SU^{T} U \right) - \log \left| U^{T} U \right|$$
s.t. $U \in \mathcal{U}_{k}$

As $U^TU \in S_{++} \cap \mathcal{B}_k$ and every $K \in S_{++} \cap \mathcal{B}_k$ can be represented as such U. We can see that $\log |U^TU| = \log |U^T| |U| = \log |U|^2 = 2 \log |U|$ (without absolute-value becouse the the derminant of a **upper triangular** matrix in the product of the diagonal entries and U have positive diagonal entries). So we are left with the P' form.

$$\min_{U} \operatorname{Tr} \left(SU^{T} U \right) - 2 \log |U|$$
s.t. $U \in \mathcal{U}_{h}$

And if we want K^* that solves P, we take $K^* = U^{*T}U^*$

The problem P' is convex

 \mathcal{U}_k is convex as it is a polyhedron. Now we will show that $f(U) = \text{Tr}(SU^TU) - 2\log|U|$ is convex.

$$\operatorname{Tr}\left(SU^{T}U\right) = \sum_{ij} \left(SU^{T}\right)_{ij} U_{ij} = \sum_{ij} \left\langle S_{i}, U_{j} \right\rangle U_{ij}$$

$$\frac{\partial \operatorname{Tr} \left(S U^T U \right)}{\partial U_{xy}} = \sum_{ij} \frac{\partial \left\langle S_i, U_j \right\rangle}{\partial U_{xy}} U_{ij} + \sum_{ij} \frac{\partial U_{ij}}{\partial U_{xy}} \left\langle S_i, U_j \right\rangle$$
$$= \sum_{i} S_{xi} U_{iy} + \left\langle S_x, U_y \right\rangle$$
$$= 2 \left\langle S_x, U_y \right\rangle$$

Thus

$$\frac{\partial \operatorname{Tr}\left(SU^{T}U\right)}{\partial U} = 2SU^{T}$$

Now to show strong convexity by 1st order, we will show that $\forall X,Y\in\mathbb{R}^{n\times n},$ $X\neq Y$

$$g(Y) > g(X) + \langle \nabla g(X), (Y - X) \rangle$$

In our case, $g(X) = \text{Tr}(SX^TX), \langle A, B \rangle = \text{Tr}(AB)$. So

$$\operatorname{Tr}\left(SY^{T}Y\right) \stackrel{?}{<} \operatorname{Tr}\left(SX^{T}X\right) + \operatorname{Tr}\left(2SX^{T}\left(Y-X\right)\right)$$

$$0 \stackrel{?}{<} \operatorname{Tr} \left(SY^{T}Y \right) - \operatorname{Tr} \left(SX^{T}X \right) - \operatorname{Tr} \left(2SX^{T} \left(Y - X \right) \right)$$

$$=_{1} \operatorname{Tr} \left(S \left(Y^{T}Y - X^{T}X - 2X^{T} \left(Y - X \right) \right) \right)$$

$$= \operatorname{Tr} \left(S \left(Y^{T}Y - X^{T}X - 2X^{T}Y + 2X^{T}X \right) \right)$$

$$= \operatorname{Tr} \left(S \left(Y^{T}Y - 2X^{T}Y + X^{T}X \right) \right)$$

$$= \operatorname{Tr} \left(S \left(Y - X \right)^{T} \left(Y - X \right) \right) >_{2} 0$$

 $=_1$ linarity of trace.

 $>_2 (Y-X)^T (Y-X) \in S_+$, trace of the product of psd and pd matrices in positive.

Thus $\operatorname{Tr}\left(SU^TU\right)$ is convex for all $U \in \mathbb{R}^{n \times n}$. As it is convex in every subset of the indices of the matrix in particular, convex is the k-upper-band indices $i \leq j \leq i + k$.

We know that $(-\log x)$ is convex so

$$-\log|U| = \sum_{i=1}^{n} -\log U_{ii}$$

is a sum convex functions. So we got that $f(U) = \text{Tr}(SU^TU) - 2\log|U|$ is convex as it is a sum convex functions. Thus P' is a convex problem.

4 Finding the minimum of P

The algorithm to find U is:

- 1. Initiate U to $n \times n$ zeros matrix.
- 2. For every i:
 - (a) find $x_i \in \mathbb{R}^k$ s.t. $S_{[i:i+k,i:i+k]}x_i = [1,0,...,0]^T$ (S is $k \times k$ matrix)
 - (b) calculate $\alpha = \frac{1}{\sqrt{x_i[0]}} (x_i[0])$ is the first entry of x_i

(c)
$$U_{[i,i:i+k]} \leftarrow \alpha x_i$$

- 3. return U
 - (a) (To solve for P, return $K = U^T U$)

Proof that the algorithm is properly defined

We have 2 fishey steps in the algorithm: (a) and (b).

Lemma $S \in S_{++} \Longrightarrow S_{[i:i+k,i:i+k]} \in S_{++}$.

Assume it doesn't, It means that there is a $z \in \mathbb{R}^k$ such that $z^T S_{[i:i+k,i:i+k]} z \leq 0$. We take $z' \in \mathbb{R}^n$, s.t. $z'_{[i:i+k]} = z$ and 0 otherwise.

$$z'^T S z' = z^T S_{[i:i+k,i:i+k]} z \le 0$$

Contradiction to the fact that $S \in S_{++}$

(a) proof that the system $S_{[i:i+k,i:i+k]}x_i = \begin{bmatrix}1,0,...,0\end{bmatrix}^T$ has a solution.

 $S_{[i:i+k,i:i+k]} \in S_{++}$ (Lemma) and thus invertable and thered is a unique solution $x = S_{[i:i+k,i:i+k]}^{-1} [1,0,...,0]^T$.

(b) proof that $x_i[0] > 0$

$$0 < x_i^T S_{[i:i+k,i:i+k]} x_i = x_i^T [1,0,...,0]^T = x_i [0]$$

The inequaity comes from the fact that $S_{[i:i+k,i:i+k]} \in S_{++}$.

Proof of the correctness of the algorithm - U^* is the minimum of P^\prime

First we can see that U^* is a feasible solution $(U \in \mathcal{U}_k)$ as we change only the proper indices. Also note that $x_0 > 0$, thus $U_{ii} = \frac{x_0}{\sqrt{x_0}} > 0$. Now we look on f and it's gradient:

$$f(U) = \operatorname{Tr}(SU^{T}U) - 2\log|U|$$

$$= \operatorname{Tr}(SU^{T}U) - 2\sum_{i=1}^{n} \log U_{ii}$$

$$\frac{\partial f}{\partial U_{ij}} = 2\langle S_{i}, U_{j} \rangle - \frac{2}{U_{ij}} \cdot \mathbf{1}_{i=j}$$

So we need to show that for i, j s.t. $i \leq j \leq i + k$

$$\langle S_i, U_j^* \rangle = \frac{1}{U_{ij}^*} \cdot \mathbf{1}_{i=j}$$

In other words

$$\langle S_i, U_j^* \rangle = \begin{cases} \frac{1}{U_{ii}^*} & i = j\\ 0 & i < j \le i + k \end{cases}$$

Note that as $U^* \in \mathcal{U}_k$, and S is simetric

$$\left\langle U_{[i]}^{*}, S_{[j]} \right\rangle = \left\langle U_{[i,i:i+k]}^{*}, S_{[j,i:i+k]} \right\rangle = \left\langle \frac{x_{i}}{\sqrt{x_{i}\left[0\right]}}, S_{[j,i:i+k]} \right\rangle$$

where x_i was chosen to satisfy

$$S_{[i:i+k,i:i+k]}x_i = [1,0,...,0]^T$$

so

$$S_{[i:i+k,i:i+k]}(ax_i) = [a, 0, ..., 0]^T$$

Note that

$$\left\langle U_{[i]}^*, S_{[j]} \right\rangle = \left\langle \alpha x_i, S_{[j,i:i+k]} \right\rangle = \begin{cases} 0 & i < j < i+k \\ \alpha & i = j \end{cases}$$

$$= \left\langle \frac{1}{\sqrt{x_i [0]}} x_i, S_{[j,i:i+k]} \right\rangle = \begin{cases} 0 & i < j < i+k \\ \frac{1}{\sqrt{x_i [0]}} & i = j \end{cases}$$

And this is indeed what we want

$$\left\langle U_{[i]}^{*}, S_{[i]} \right\rangle = \frac{1}{\sqrt{x_{i} [0]}} = \frac{\sqrt{x_{i} [0]}}{x_{i} [0]} = \frac{1}{U_{ii}^{*}}$$

To conclude we have

1. $U^* \in \mathcal{U}_k$

2.
$$\left\langle U_{[i]}^*, S_{[j]} \right\rangle = \begin{cases} \frac{1}{U_{ii}^*} & i = j \\ 0 & i < j \le i + k \end{cases}$$
, It meants that $\frac{\partial f}{\partial U_{ij}}(U^*) = 0$ for $i \le j \le i + k$. This means that this U^* is the minimum of P' .

5 Run time analysis

The algorithm to find U is:

- 1. Initiate U to $n \times n$ zeros matrix.
- 2. For every i:
 - (a) find $x_i \in \mathbb{R}^k$ s.t. $S_{[i:i+k,i:i+k]}x_i = [1,0,...,0]^T$ (S is $k \times k$ matrix)
 - (b) calculate $\alpha = \frac{1}{\sqrt{x_i[0]}} (x_i[0])$ is the first entry of x_i)
 - (c) $U_{[i,i:i+k]} \leftarrow \alpha x_i$

solving a $k \times k$ linear equation system costs $O(k^3)$, we do that n times. Overall the algorithm costs $O(nk^3)$.

parallization:

Notice that for every i, the computation in independent of the others. So we can use parallization to make to comutation faster.

6 Algorithm for k = n - 1

Lemma $S \in S_{++} \Longrightarrow S^{-1} \in S_{++}$

proof: Let $y \in \mathbb{R}^n$, denote $x = S^{-1}y$. This means that y = Sx.

$$y^T S^{-1} y = y^T x = x^T S^T x = x^T S x > 0$$

Algorithm for k = n - 1

In this case, $\mathcal{B}_k = \mathbb{R}^{n \times n}$.

$$f(K) = \text{Tr}(SK) - \log|K|$$

$$f'(K) = S - K^{-1}$$

$$S = K^{-1}$$
$$K = S^{-1}$$

So S^{-1} is the global minimum of f over all $K \in \mathbb{R}^{n \times n}$. notice that as $S \in S_{++}, S^{-1} \in S_{++}$ as well and thus S^{-1} is fisible. Run time of comuting S^{-1} is $O\left(n^3\right)$ which is better then the general case.