Lecture:

k-means Clustering and its Application

Dr. Kevin Kam Fung Yuen

PhD, Senior Lecturer, School of Business, Singapore University of Social Sciences

KKF YUEN 1

Learning Objectives

After this course, students should be able to

- Describe the theoretical issues and principles of Kmeans Clustering.
- explain the calculation procedure of k-mean algorithm with an example.
- develop a K-means algorithm with R code; compare with the built-in function for k-means.
- build k-means models for analysis of real world datasets.
- evaluate and discuss the results based on k-means model.

Reading

• Guan, C., and Yuen K.K.F., (2013) "Toward A Hybrid Approach of Primitive Cognitive Network Process and K-Means Clustering for Social Network Analysis", Proceedings of 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, pp.1267-1271.

Acknowledgement

- The similar lecture was delivered at
- Xi'an Jiaotong-Liverpool University
 - Machine Learning (Using R) (Year 4)
- National Taiwan University of Science and Technology
 - Machine Learning Algorithms (Using R) (Postgraduate)

KKF YUEn 4

Why R?

2018

Language Rank	Types	Spectrum Ranking
1. Python	⊕ 🖵 🛢	100.0
2. C++		99.7
3. Java		97.5
4. C	□ 🖵 🛢	96.7
5. C#	\oplus \Box \Box	89.4
6. PHP	(1)	84.9
7. R	7	82.9
8. JavaScript		82.6
9. Go	⊕ 🖵	76.4
10. Assembly		74.1

2017

Language Rank	Types	Spectrum Ranking
1. Python		100.0
2 . C	[] 🖵 🗰	99.7
3. Java	\bigoplus \square \square	99.4
4 . C++	[] 🖵 🛢	97.2
5 . C#	\bigoplus \square \lnot	88.6
6. R	\Box	88.1
7. JavaScript	$\oplus \Box$	85.5
8. PHP		81.4
9 . Go		76.1
10. Swift		75.3

2016

Language Rank	Types	Spectrum Ranking
1. C	[] 🖵 🛢	100.0
2. Java	\bigoplus \square \square	98.1
3. Python	⊕ 🖵	98.0
4. C++	[] 및 ∰	95.9
5. R	₽	87.9
6. C#	\bigoplus \square \lnot	86.7
7. PHP		82.8
8. JavaScript	\oplus	82.2
9. Ruby	⊕ 🖵	74.5
10 . Go	\oplus \Box	71.9

2015

Language Rank	Types	Spectrum Ranking	Spectrum Rankin
1. Java	● 🛛 🖵	100.0	100.0
2. C	□ 🖵 🛢	99.9	99.3
3. C++	□ 🖵 🛊	99.4	95.5
4. Python	⊕ 🖵	96.5	93.5
5. C#	⊕ 🖸 🖵	91.3	92.4
6. R	\Box	84.8	84.8
7. PHP	(84.5	84.5
8. JavaScript	⊕ □	83.0	78.9
9. Ruby	⊕ 🖵	76.2	74.3
10. Matlab	₽	72.4	72.8

https://spectrum.ieee.org/atwork/innovation/the-2018-topprogramming-languages

Rank: 13->6->5->6->7

2014

Supervised vs. Unsupervised Learning Classification Vs. Clustering

Supervised Learning Unsupervised Learning

hea	head(iris) X						
##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species	
##	1	5.1	3.5	1.4	0.2	setosa	
##	2	4.9	3.0	1.4	0.2	setosa	
##	3	4.7	3.2	1.3	0.2	setosa	
##	4	4.6	3.1	1.5	0.2	setosa	
##	5	5.0	3.6	1.4	0.2	setosa	
##	6	5.4	3.9	1.7	0.4	setosa	

- Supervised Learning: both X and Y are known
- Unsupervised Learning: only X

Different Clustering Methods

- There are many different types of clustering methods
 - K-Means Clustering
 - Hierarchical Clustering
 - DBSCAN
 - **\oint{\oint}**
- We will focus on K-means in this lecture.

Problem Definition

- Divide a data set, $X = \{x_1, ..., x_m\}$, into \underline{K} clusters
- \diamond C_1, \ldots, C_k
- Such that satisfy two properties:
 - Each individual belongs to one of the \underline{K} clusters: $C_1 \cup C_2 \cup ... \cup C_k = \{1, ..., m\}$.
 - ⊗ No any individual belong to more than one clusters: $C_k \cap C_{k'} = \emptyset$ for all $k \neq k'$.

n criteria /Features /Factors /attributes

		I					1
	ID	A_1	A_2	***	A_{j}		A_n
	1	<i>X</i> ₁₁	<i>X</i> ₁₂		X_{1j}	•••	X_{1n}
m	2	<i>X</i> ₂₁	<i>X</i> ₂₂		X_{2j}	•••	X_{2n}
m individuals_	•••	•••	•••		•••	•••	•••
/ records	i	<i>X</i> _{<i>i</i>1}	X_{i2}		X_{ij}	•••	X_{in}
/objects	•••	•••			•••	•••	•••
/members	m	X_{m1}	X_{m2}		X_{mj}	***	X_{mn}

m x n data matrix

Which object should belong to which cluster?

 K means is to attemp to find the least within group variances by finding the ideal means.

$$\min \sum_{x,x \in C_i} \|x - x\|$$

is equivalent to

$$\min \sum_{i=1}^k \sum_{x \in C_i} ||x - \mu_i||$$

https://en.wikipedia.org/wiki/K-means clustering

WEIGHTED K-MEANS CLUSTERING

- Step 1: Data matrix normalization
 - Normalization for data of different scale
- Step 2: Attributes' weights determination
- Step 3: data partition by k-means approach
 - Choose centers & compute the Euclidean distances
 - Assign each object to the cluster
 - Update the centers of clusters
 - Loop until clusters have no changes.

(Guan and Yuen, 2013)

The classical K-means treat each feature equally

Step 1: Data matrix normalization

n criteria

m
individuals
/ records
/objects
/members

		1				'
	ID	C_1	C_2	 C_{i}		C_n
-	T_1	<i>X</i> ₁₁	<i>X</i> ₁₂	 X_{1j}		X_{1n}
	T_2	<i>X</i> ₂₁	<i>X</i> ₂₂	 X_{2j}		X_{2n}
		•••		 •••	•••	•••
	T_i	<i>X</i> _{i1}	X_{i2}	 X_{ij}	•••	X _{in}
		•••	•••	 		
-	T_m	X_{m1}	X_{m2}	 X_{mj}		X_{mn}

m x n data matrix

Scale normalization

A function f rescales the data source to the interval of [0,1].

$$f: x_{ij} \to x_{ij}, x_{ij} \in [0,1]$$

Ordinal/interval/ratio scale

$$x'_{ij} = \frac{x_{ij} - \min x_{kj}}{\max x_{kj} - \min x_{kj}}, k \in \{1, 2, ..., m\}$$

Binary scale

The value is either 0 or 1

Social Network Analysis example Friends Referral

6 x 3 data matrix

ID	C_1	C_2	C_3
1	15	High school	Yes
2	22	Undergraduate	No
3	17	High school	No
4	40	Doctor	Yes
5	23	Undergraduate	Yes
6	25	Postgraduate	Yes

 C_1 : Age,

 C_2 : Education

 C_3 : Music preference

How can we organize the data for clustering?

ID	C_1	C_2	C_3
1	15	High school	Yes
2	22	Undergraduate	No
3	17	High school	No
4	40	Doctor	Yes
5	23	Undergraduate	Yes
6	25	Postgraduate	Yes
Interval s	cale	Ordinal scale	Binary scal
ID	C_I	C_2	C_3
1	15	1	1
2	22	2	0
3	17	1	0
4	40	4	1
5	23	2 1	
6	25	3	1

16

ID	C_1	\mathcal{C}_2	C_3
1	15	1	1
2	22	2	0
3	17	1	0
4	40	4	1
5	23	2	1
6	25	3	1

$$\frac{x-15}{40-15} \downarrow$$

$$\frac{x-1}{4-1}$$

No change

ID	C_1	C_2	C_3
1	0	0.00	1
2	0.28	0.33	0
3	0.08	0.00	0
4	1	1.00	1
5	0.32	0.33	1
6	0.4	0.67	1

Step 2: Attributes' weights determination

- Classical K-means method assumes each criterion has the equal weight, but this may not reflect the decision maker's preference. Cognitive pairwise comparison can adjust the weight of the criteria /variables.
- Suppose that the weights are as below.

	Weight
C1	0.32
C2	0.28
C3	0.40

Step 3:data partition by k-means

1)Choose objects successively, and compute the weighted Euclidean distances from objects to all the centers by

$$d_{ij} = \sqrt{w_1 |x_{i1} - x_{j1}|^2 + w_2 |x_{i2} - x_{j2}|^2 + \dots + w_n |x_{in} - x_{jn}|^2}$$

Note: If Wj = 1, it is the classical k-means approach. That is

$$d_{ij} = \sqrt{|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{in} - x_{jn}|^2}$$

SNA Example

C	C_1	C_2	C_3
W	0.32	0.28	0.40
1	0	0.00	1
2	0.28	0.33	0
3	0.08	0.00	0
4	1	1.00	1
5	0.32	0.33	1
6	0.4	0.67	1

Question.

We need to classify the above members into two clusters, A and B. Supposed ID2 is chosen for Cluster A, and ID6 is chosen for Cluster B,

What is the Euclidean distance for each member to each cluster?

	C_1	C_2	C_3	Distance To 2	Distance To 6
W	0.32	0.28	0.40		
1	0	0.00	1	0.68	0.42
2	0.28	0.33	0		
3	0.08	0.00	0		
4	1	1.00	1		
5	0.32	0.33	1 /		
6	0.4	0.67	1 /		

$$d_{12} = \sqrt{0.32 |0 - 0.28|^2 + 0.28 |0 - 0.33|^2 + 0.40 |1 - 0|^2} = 0.68$$

$$d_{16} = \sqrt{0.32 |0 - 0.40|^2 + 0.28 |0 - 0.67|^2 + 0.40 |1 - 1|^2} = 0.42$$

Similarly, we compute the Euclidean distances for the other individuals

W	C_1	C_2	C_3	Distance To 2	Distance To 6
W	0.32	0.28	0.40		
1	0	0.00	1	0.68	0.42
2	0.28	0.33	0	0.00	0.66
3	0.08	0.00	0	0.21	0.75
4	1	1.00	1	0.83	0.38
5	0.32	0.33	1	0.64	0.18
6	0.4	0.67	1	0.66	0.00

2) Assign each object to the cluster of minimum distance from this object to the cluster center

Cluster A Cluster B

	C_1	C_2	C ₃	Distance To 2	Distance To 6	Cluster A (center is 2)	Cluster B (center is 6)
W	0.32	0.28	0.40				
1	0	0.00	1	0.68	0.42	{}	{1}
2	0.28	0.33	0	0.00	0.66	{2}	{1}
3	0.08	0.00	0	0.21	0.75	{2, 3}	{1}
4	1	1.00	1	0.83	0.38	{2, 3}	{1, 4}
5	0.32	0.33	1	0.64	0.18	{2, 3}	{1, 4, 5}
6	0.4	0.67	1	0.66	0.00	{2, 3}	{1, 4, 5, 6}

3) Calculate the mean of each cluster, then update the centers of clusters by the mean values.

	C_1	C_2	C_3	Distance To 2	Distance To 6	Cluster A (center is 2)	Cluster B (center is 6)
W	0.32	0.28	0.40				
1	0	0.00	1	0.68	0.42	{}	{1}
2	0.28	0.33	0	0.00	0.66	{2}	{1}
3	0.08	0.00	0	0.21	0.75	{2, 3}	{1}
4	1	1.00	\ 1	0.83	0.38	{2, 3}	{1, 4}
5	0.32	0.33	\ 1	0.64	0.18	{2, 3}	{1, 4, 5}
6	0.4	0.67	$\setminus 1$	0.66	0.00	{2, 3}	{1, 4, 5, 6}

New center for cluster A

Member of Cluster A	C1	C2	C 3
2	0.28	0.33	0
3	0.08	0.00	0
Mean(New Center)	0.180	0.165	0

3) Calculate the mean of each cluster, then update the centers of clusters by the mean values.

	C_1	C_2	C_3	Distance To 2	Distance To 6	Cluster A (center is 2)	Cluster B (center is 6)
W	0.32	0.28	0.40				
1	0	0.00	1	0.68	0.42	{}	{1}
2	0.28	0.33	0	0.00	0.66	{2}	{1}
3	0.08	0.00	0	0.21	0.75	{2, 3}	{1}
4	1	1.00	1	0.83	0.38	{2, 3}	{1, 4}
5	0.32	0.33	1	0.64	0.18	{2, 3}	{1, 4, 5}
6	0.4	0.67	1	0.66	0.00	{2, 3}	$\{1, 4, 5, 6\}$

New center for cluster B

Member of Cluster B	C1	C2	C4
1	0.00	0.00	1
4	1.00	1.00	1
5	0.32	0.33	1
6	0.40	0.67	1
Mean (New Center)	0.430	0.500	1.000

4) the next loop will not generate new centers until the current centers are the same as ones of previous loop.

	C_1	\mathcal{C}_2	C_3	Distance To [0.180; 0.165; 0]	Distance To [0.430; 0.500; 1]	Cluster A (Center [0.180; 0.165; 0])	Cluster B (Center [0.430; 0.500; 1])
W	0.32	0.28	0.40				
1	0	0.00	1	, 0.65	0.36	{}	{1}
2	0.28	0.33	0	0.11	0.65	{2}	{1}
3	0.08	0.00	0	0.10	0.72	{2, 3}	{1}
4	1	1.00	1 /	0.90	0.42	{2, 3}	{1, 4}
5	0.32	0.33	1 /	0.65	0.11	{2,3}	{1, 4, 5}
6	0.4	0.67	1 /	0.70	0.09	{2, 3}	{1, 4, 5, 6}

$$d_{1A} = \sqrt{0.32 |0 - 0.18|^2 + 0.28 |0 - 0.165|^2 + 0.40 |1 - 0|^2} = 0.65$$

$$d_{1B} = \sqrt{0.32 |0 - 0.43|^2 + 0.28 |0 - 0.50|^2 + 0.40 |1 - 1|^2} = 0.36$$

Exercise 1

	C1	C2	С3	C4
weight	0.109	0.352	0.305	0.234
P1	0.090	0.201	0.149	0.194
P2	0.135	0.170	0.233	0.108
Р3	0.174	0.094	0.125	0.132
P4	0.174	0.167	0.201	0.174
P5	0.135	0.194	0.170	0.153
P6	0.292	0.174	0.122	0.240

Find two clusters using the above matrix by weighted K-means Clustering. Select P3 and P5 as the two clusters. Show your steps.

Labs

- Develop R codes for k-means algorithms
- Limitation of k-means
- Comparisons with the other algorithms.