Q-learning

Студент 172 группы, Федоров Павел

Обучение с подкреплением

States
Actions
Rewards

Стратегия

$$\pi(hungry, E) = 0.5, \pi(hungry, \overline{E}) = 0.5, \pi(full, \overline{E}) = 1.0$$

Функции значений

$$V^\pi(s)=\mathbb{E}_\pi[G_t\mid s_t=s]=\mathbb{E}_\pi[\sum_{k=0}^\infty \gamma^k r_{t+k+1}\mid s_t=s]$$
 Функция значения состояния

$$Q_\pi(s,a)=\mathbb{E}_\pi[G_t\mid s_t=s,a_t=a]=\mathbb{E}_\pi[\sum_{k=0}^\infty \gamma^k r_{t+k+1}\mid s_t=s,a_t=a]$$
 Функция значения действия

Функция

Уравнения Беллмана

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \right]$$

$$Q^{\pi}(s, a) = \sum_{s'} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma \sum_{a'} \pi(s', a') Q^{\pi}(s', a') \right]$$

Суть: Ценность начальной точки — это награда, которую ожидаем получить от пребывания в ней, плюс ценность того, где будем дальше.

Уравнение оптимальности Беллмана

$$Q^*(s, a) = \sum_{s', r} P(s', r|s, a) [r + \gamma \max_{a'} Q^*(s', a')]$$

Описывает ожидаемый выход для текущего действия а в положении s и после этого придерживаемся оптимальной стратегии

Q-learning метод

Метод основан на введении функцииQ(s,a), отражающей ценность каждого возможного действия а агента для текущего состояния s, в котором сейчас находится симуляция.

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_a Q(s_{t+1}, a)}_{\text{estimate of optimal future value}}\right)}_{\text{learning rate}},$$

Таблица состояний значений Q

Алгоритм

- Шаг 1: инициализируем Q-таблицу, заполняя ее нулями, а для Q-значений задаем произвольные константы.
- Шаг 2: теперь пусть агент реагирует на окружающую среду и пробует разные действия.
 Для каждого изменения состояния выбираем одно из всех действий, возможных в данном состоянии (S).
- Шаг 3: Переходим к следующему состоянию (S') по результатам предыдущего действия
- Шаг 4: Для всех возможных действий из состояния (S') выбираем одно с наивысшим Qзначением.
- Шаг 5: Обновляем значения Q-таблицы в соответствии с вышеприведенным уравнением.
- Шаг 6: Превращаем следующее состояние в текущее.
- Шаг 7: Если целевое состояние достигнуто завершаем процесс, а затем повторяем.

On-policy и off-policy

SARSA	Q-обучение
Обучение стратегии, наилучшей среди ε-жадных.	Обучение оптимальной стратегии
Высокая скорость обучения, т.к. принимаются во внимание "исследовательские" шаги (с вероятностью ε)	Высока вероятность попадания в локальный минимум.

Глубокие Q-learning сети

Deep Q Learning

Архитектура DQN

Experience replay

- 1. Собрать и сохранить сэмплы в буфере с текущей стратегией
- 2. Сэмплировать батчи опыта $e_t = (s_t, a_t, r_t, s_{t+1})$ из буфера
- 3. Использовать их для обновления сети
- Повторить 1-3

$$L(\theta_i) = \mathbb{E}_{s,a \sim p(\cdot)}[(y_i - Q(s,a;\theta_i))^2]$$

где,

$$y_i = \begin{cases} R_T & \text{for terminal state } s_T \\ R_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') & \text{for non-terminal state } s_t \end{cases}$$

Experience Replay

Достоинства:

Более эффективное использование предыдущего опыта благодаря многократному обучению. Когда получение реального опыта обходится дорого, можно использовать уже накопленный. Обновления сети являются инкрементными и не сходятся быстро, поэтому полезно многократное прохождение с одними и теми же данными.

Недостатки:

Труднее использовать многошаговые алгоритмы обучения, которые можно настроить, чтобы получить лучшие кривые обучения, балансируя между смещением (из-за начальной загрузки) и дисперсией (из-за задержек и случайности в долгосрочных результатах).

Область применений

Вопросы

- 1. Записать уравнение Беллмана (с пояснениями). В чем его смысл и как оно связано с q-learning?
- 2. Для чего нужен experience replay? Его плюсы и недостатки
- 3. Описать архитектуру deep q-network

Список литературы

- 1. https://xaviergeerinck.com/bellman-equations
- 2. https://arxiv.org/pdf/1312.5602.pdf
- 3. https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/
- 4. https://blog.floydhub.com/an-introduction-to-q-learning-reinforcement-learning/
- 5. http://www.incompleteideas.net/book/RLbook2018trimmed.pdf
- 6. https://towardsdatascience.com/dqn-part-1-vanilla-deep-q-networks-6eb4a00febfb