Homework Assignments:

- Increased the number of attempts to 10 in OWL homework
- Chapter 5 HW due October 11 at 11:55 pm
- · Will assign Chapter 6 HW today!

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

14

Atomic Spectra

 Atomic spectra: The pattern of wavelengths absorbed and emitted by an element

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

15

 Electrical current dissociates molecular H₂ into excited atoms, which emit light that separates into four discrete wavelengths after being passed through a prism

Excited hydrogen atoms give off a red light, and excited neon atoms emit orange light

The Bohr Model of the Atom (continued)

- Excited state: When the electrons are not at the lowest possible energy state
- Ground state: When the electrons are at the lowest possible energy state
- · Atoms return to ground state by emitting radiation

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

20

Example Problem

- When a hydrogen atom undergoes a transition from E_3 to E_1 , it emits a photon with λ = 102.6 nm. Similarly, if the atom undergoes a transition from E_3 to E_2 , it emits a photon with λ = 656.3 nm
 - Find the wavelength of light emitted by an atom making a transition from E₂ to E₁

Convert given λs to energies For $E_3 \longrightarrow E_1$ transition,

$$E_{3\rightarrow1} = \frac{hc}{\lambda} = \frac{(6.626\times10^{-34}~\mathrm{J~s})(2.998\times10^8~\mathrm{m~s^{-1}})}{102.6\,\mathrm{nm}} \times \frac{10^9~\mathrm{nm}}{1~\mathrm{m}} = 1.936\times10^{-18}~\mathrm{J}$$

For the $E_3 \longrightarrow E_2$ transition

$$E_{3
ightarrow2} = rac{hc}{\lambda} = rac{(6.626 imes10^{-34}~{
m J~s})(2.998 imes10^8~{
m m~s^{-1}})}{656.3\,{
m nm}} imes rac{10^9~{
m nm}}{1~{
m m}} = 3.027 imes 10^{-19}~{
m J}$$

From the diagram, $E_{3 \rightarrow 1} = E_{3 \rightarrow 2} + E_{2 \rightarrow 1}$

So.

$$E_{2 o 1} = E_{3 o 1} - E_{3 o 2} = 1.936 imes 10^{-18} \; \mathrm{J} - 3.027 imes 10^{-19} \; \mathrm{J} = 1.633 imes 10^{-18} \; \mathrm{J}$$

Now we need to convert energy to wavelength (λ) ,

$$\lambda_{2 o 1} = rac{hc}{E_{2 o 1}} = rac{(6.626 imes 10^{-34} ext{ J s})(2.998 imes 10^8 ext{ ms}^{-1})}{1.633 ext{ nm} imes 10^{-18} ext{ J}} = 1.216 imes 10^{-7} ext{ m}$$

= 121.6 nm

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

The Quantum Mechanical Model of the Atom

- Quantum mechanical model replaced the Bohr model of the atom
 - It depicts electrons as waves spread out or delocalized through a region of space called an orbital
- An orbital is characterized by three parameters called quantum numbers: n, l, and m_l.

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

23

Principal Quantum Number (n)

- Commonly called shell
- Positive integer (*n* = 1, 2, 3, 4, ...)
- n = 1 is the first shell, n = 2 is the second shell, and so on
- · Each shell has different energies

© 2014 Pearson Education, Inc.

Secondary Quantum Number (I)

- Commonly called <u>subshell</u>
- I can have any integral value from 0 to n-1
 - If n = 1, then l = 0
 - If n = 2, then l = 0 or 1
 - If n = 3, then l = 0, 1, or 2
 - and so forth

Table 6.1 Letter designations for naming orbitals

ℓ-value	0	1	2	3	4
Letter designation	S	p	d	f	g

© 2014 Pearson Education, Inc.

Magnetic Quantum Number (m,)

- Defines the spatial orientation of the orbital
- can have any integer value from -/ to +/
 - If l = 0, then $m_l = 0$
 - If l = 1, then $m_l = -1$, 0, or +1
 - If I = 2, then $m_I = -2, -1, 0, +1, or +2$
 - etc.

© 2014 Pearson Education, Inc.

Allowed combination of quantum numbers:

Value of n	Values for ℓ (letter	Values for m_ℓ	Number of Orbitals
	designation)		
1	0 (s)	0	1
2	0 (s)	0	1
	1 (p)	-1, 0, 1	3
3	0 (s)	0	1
	1 (p)	-1, 0, 1	3
	2 (d)	-2, -1, 0, 1, 2	5
4	0 (s)	0	1
	1 (p)	-1, 0, 1	3
	2 (d)	-2, -1, 0, 1, 2	5
	3 (f)	-3, -2, -1, 0, 1, 2, 3	7

© 2014 Pearson Education, Inc.

Example Problem

• Write all of the allowed sets of quantum numbers $(n, l, and m_l)$ for a 3p orbital

©ാള്ത് പ്രക്ഷ് Pears Gre പ്രമുടക്ഷത്ത് in Made Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

Visualizing Orbitals

- s orbitals are spherical
- p orbitals have two lobes separated by a nodal plane
 - A nodal plane is a plane where the probability of finding an electron is zero
 - Here, it is the xy plane
- d orbitals have more complicated shapes due to the presence of two nodal planes

Spin quantum number (*m*_s)

 Electrons have spin, which gives rise to a tiny magnetic field and to a spin quantum number (m_s), which can have +1/2 or -1/2

32

Effective Nuclear Charge (ENC): The nuclear charge actually felt by an electron.

- · Masking of the nuclear charge is called shielding
- · Shielding results in a reduced, effective nuclear charge

ENC = Actual nuclear charge (NC) – Electron shielding

© 2014 Pearson Education, Inc

Problem

In most cases, how is effective nuclear charge (ENC) related to nuclear charge (NC) for an atom?

- ENC < NC
- ENC = NC
- ENC > NC

Answer: ENC < NC

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

34

The Periodic Table and Electron Configurations

- The periodic table is broken into s, p, d, and f blocks
- Structure of periodic table can be used to predict the orbital filling order that leads to write electron configurations for most elements

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

35

Hund's Rule and the Aufbau Principle

- Aufbau principle Lower energy orbital fill before higher energy orbitals
- Hund's rule states that within a subshell, electrons occupy orbitals individually and with spin paired whenever possible.
 One with spin up and other with spin down
- An orbital can hold two electrons only
- Electron configurations are sometimes depicted using boxes to represent orbitals
- This depiction shows paired and unpaired electrons
 - · See the example for carbon below:

