Module 6 Peer Review Assignment

Problem 1

Suppose X and Y are independent normal random variables with the same mean μ and the same variance σ^2 . Do the random variables W=X+Y and U=2X have the same distribution? Explain.

```
egin{aligned} E[W] &= E[X] + E[Y] = \mu + \mu = 2\mu \ Var(W) &= Var(X) + Var(Y) = \sigma^2 + \sigma^2 = 2\sigma^2, 	ext{ since } X,Y 	ext{ independent} \ &\Longrightarrow W \sim \mathcal{N}(2\mu,2\sigma^2) \ E[U] &= E[2X] = 2\mu \ Var(U) &= Var(2X) = 2^2. \, Var(X) = 4\sigma^2 \ &\Longrightarrow U \sim \mathcal{N}(2\mu,4\sigma^2) \end{aligned}
```

Hence, the distributions are not the same.

Problem 2: Central Limit Theorem and Simulation

a) For this problem, we will be sampling from the Uniform distribution with bounds [0, 100]. Before we simulate anything, let's make sure we understand what values to expect. If $X \sim U(0, 100)$, what is E[X] and Var(X)?

$$E[X] = rac{0+100}{2} = 50$$
 $Var(X) = rac{(100-0)^2}{12} = 833.33$

b) In real life, if we want to estimate the mean of a population, we have to draw a sample from that population and compute the sample mean. The important questions we have to ask are things like:

- Is the sample mean a good approximation of the population mean?
- How large does my sample need to be in order for the sample mean to well-approximate the population mean?

Complete the following function to sample n rows from the U(0, 100) distribution and return the sample mean. Start with a sample size of 10 and draw a sample mean from your function. Is the estimated mean a good approximation for the population mean we computed above? What if you increase the sample size?

```
In [2]: uniform.sample.mean = function(n){
    # Your Code Here
    sample = runif(n, 0, 100)
    sample.mean = mean(sample)
    return(sample.mean)
}
uniform.sample.mean(10)
```

53.294711294584

Since sample size is small, it's not a very good approximation of population mean, since the error in approximation is $pprox rac{3.3}{50}pprox 6.6\%$.

c) Notice, for a sample size of n, our function is returning an estimator of the form

$$ar{X} = rac{1}{n} \sum_{i=1}^n X_i$$

That means, if each X_i is a random variable, then our sample mean is also a random variable with its own distribution. We call this distribution the sample distribution. Let's take a look at what this distribution looks like.

Using the uniform.sample.mean function, simulate m=1000 sample means, each from a sample of size n=10. Create a histogram of these sample means. Then increase the value of n and plot the histogram of those sample means. What do you notice about the distribution of \bar{X} ? What is the mean μ and variance σ^2 of the sample distribution?

```
In [25]: # Your Code Here
          options(repr.plot.width=20, repr.plot.height=10)
          set.seed(2)
          m < -1000
          n <- 10
          mu <- 50
          var <- 833.333
          sample.means <- replicate(m, uniform.sample.mean(n))</pre>
          mean <- mean(sample.means)</pre>
          var <- var(sample.means)</pre>
          print(c(mean, var))
          library(ggplot2)
          ggplot() + geom_histogram(aes(sample.means), binwidth=1) +
                     geom_vline(aes(xintercept=mean, color='mean of sample means'), lwd=2) +
                     geom_vline(aes(xintercept=mu, color='population mean'), lwd=2) +
                     theme(text = element_text(size = 20))
```

[1] 50.33065 83.23977

Population mean $=\mu$, variance $=\sigma^2$

By the CLT,

 $rac{ar{X} - \mu}{rac{\sigma}{\sqrt{n}}} \stackrel{D}{ o} \mathcal{N}(0,1)$

or

 $ar{X} \stackrel{D}{ o} \mathcal{N}\left(\mu, rac{\sigma^2}{n}
ight) ext{ as } n o \infty$

BY SLLN,

$$ar{X} \stackrel{a.s.}{ o} \mu ext{ as } n o \infty$$

Hence with large sample size n, mean of the sampling distribution converges to population mean $\mu=50$, with variance of the distribution as $\frac{\sigma^2}{n}=\frac{833.33}{10}=83.33$, i.e., standard error of sample mean $=SE(\bar{X})=\frac{\sigma}{\sqrt{n}}$ and the mean of the sampling distribution converges (in distribution) to $\mathcal{N}(50,83.33)$, as can be seen from the above histogram.

d) Recall that our underlying population distribution is U(0,100). Try changing the underlying distribution (For example a binomial(10, 0.5)) and check the sample distribution. Be sure to explain what you notice.

```
In [29]:
         # Your Code Here
          binom.sample.mean = function(n){
              # Your Code Here
              sample = rbinom(n, 10, 0.5)
              sample.mean = mean(sample)
              return(sample.mean)
          binom.sample.mean(10)
          set.seed(2)
          m < -1000
          n <- 10
          mu < -10*0.5
          var <- 10*0.5*(1-0.5)
          sample.means <- replicate(m, binom.sample.mean(n))</pre>
          mean <- mean(sample.means)</pre>
          var <- var(sample.means)</pre>
          print(c(mean, var))
          library(ggplot2)
          ggplot() + geom_histogram(aes(sample.means), binwidth=0.1) +
                     geom_vline(aes(xintercept=mean, color='mean of sample means'), lwd=2) +
                     geom_vline(aes(xintercept=mu, color='population mean'), lwd=2) +
                     theme(text = element_text(size = 20))
```

4.6

[1] 5.0233000 0.2459731

For $X_i \sim B(10,0.5)$, we have population mean $\mu = 10*0.5 = 5$ and variance = 10*0.5*(1-0.5) = 2.5

Again, with large sample size n, mean of the sampling distribution converges to population mean $\mu=5$ (by SLLN, CLT), with variance of the distribution as $\frac{\sigma^2}{n}=\frac{2.5}{10}=0.25$ and the mean of the sampling distribution converges (in distribution) to $\mathcal{N}(5,0.25)$, as can be seen from above.

Hence, we can see if n samples (random varibles $X_i,\ i=1,2,\dots n$) are i.i.d. (independently identically distributed r.v.s, drawn from the population with mean μ , s.d. σ), then the mean of the sampling distribution \bar{X} converges in distribution to $\mathcal{N}(\mu,\frac{\sigma^2}{n})$, no matter what the underlying distribution of the variables is (by the CLT).

Problem 3

Let X be a random variable for the face value of a fair d-sided die after a single roll. X follows a discrete uniform distribution of the form $\mathrm{unif}\{1,d\}$. Below is the mean and variance of $\mathrm{unif}\{1,d\}$.

$$E[X] = rac{1+d}{2} \qquad Var(X) = rac{(d-1+1)^2-1}{12}$$

a) Let $ar{X}_n$ be the random variable for the mean of n die rolls. Based on the Central Limit Theorem, what distribution does $ar{X}_n$ follow when d=6.

By the CLT,
$$X_n \sim \mathcal{N}\left(E[X], rac{Var(X)}{n}
ight)$$

For
$$d=6$$
, $E[X]=rac{7}{2}$ and $Var(X)=rac{35}{12}$, hence we have $X_n\sim \mathcal{N}\left(rac{7}{2},rac{35}{12n}
ight)$

b) Generate n=1000 die values, with d=6. Calculate the running average of your die rolls. In other words, create an array r such that:

$$r[j] = \sum_{i=1}^j rac{X_i}{j}$$

Finally, plot your running average per the number of iterations. What do you notice?

3.514 · 2.93674074074074e-06 · 0.00291666666666667

As we can see from the above running averge plot, the mean of the sampling distribution converges to population mean $\frac{7}{2}$, as the sample size increases (by LLN).