Johns Hopkins Engineering

Power Electronics 525.725

Module 4 Lecture 4
Transformer Isolation

6.3. Transformer isolation

Objectives:

- Isolation of input and output ground connections, to meet safety requirements
- Reduction of transformer size by incorporating high frequency isolation transformer inside converter
- Minimization of current and voltage stresses when a large step-up or step-down conversion ratio is needed use transformer turns ratio
- Obtain multiple output voltages via multiple transformer secondary windings and multiple converter secondary circuits

A simple transformer model

The magnetizing inductance L_M

- Models magnetization of transformer core material
- Appears effectively in parallel with windings
- If all secondary windings are disconnected, then primary winding behaves as an inductor, equal to the magnetizing inductance
- At dc: magnetizing inductance tends to short-circuit. Transformers cannot pass dc voltages
- Transformer saturates when magnetizing current i_M is too large

Volt-second balance in L_M

The magnetizing inductance is a real inductor, obeying

$$v_1(t) = L_M \frac{di_M(t)}{dt}$$

integrate:

$$i_M(t) - i_M(0) = \frac{1}{L_M} \int_0^t v_1(\tau) d\tau$$

Magnetizing current is determined by integral of the applied winding voltage. The magnetizing current and the winding currents are independent quantities. Volt-second balance applies: in steady-state, $i_M(T_s) = i_M(0)$, and hence

$$0 = \frac{1}{T_s} \int_0^{T_s} v_1(t) dt$$

Transformer reset

- "Transformer reset" is the mechanism by which magnetizing inductance volt-second balance is obtained
- The need to reset the transformer volt-seconds to zero by the end of each switching period adds considerable complexity to converters
- To understand operation of transformer-isolated converters:
 - replace transformer by equivalent circuit model containing magnetizing inductance
 - analyze converter as usual, treating magnetizing inductance as any other inductor
 - apply volt-second balance to all converter inductors, including magnetizing inductance

6.3.2. Forward converter

- Buck-derived transformer-isolated converter
- Single-transistor and two-transistor versions
- Maximum duty cycle is limited
- Transformer is reset while transistor is off

Forward converter with transformer equivalent circuit

Forward converter: waveforms

- Magnetizing current, in conjunction with diode D_1 , operates in discontinuous conduction mode
- Output filter inductor, in conjunction with diode D_3 , may operate in either CCM or DCM

Subinterval 1: transistor conducts

Subinterval 2: transformer reset

Subinterval 3

Magnetizing inductance volt-second balance

$$\langle v_1 \rangle = D(V_g) + D_2(-V_g n_1 / n_2) + D_3(0) = 0$$

Transformer reset

From magnetizing current volt-second balance:

$$\langle v_1 \rangle = D(V_g) + D_2(-V_g n_1 / n_2) + D_3(0) = 0$$

Solve for D_2 :

$$D_2 = \frac{n_2}{n_1} D$$

 D_3 cannot be negative. But $D_3 = 1 - D - D_2$. Hence

$$D_3 = 1 - D - D_2 \ge 0$$

$$D_3 = 1 - D\left(1 + \frac{n_2}{n_1}\right) \ge 0$$

Solve for D

$$D \le \frac{1}{1 + \frac{n_2}{n_1}}$$

for
$$n_1 = n_2$$
: $D \le \frac{1}{2}$

What happens when D > 0.5

magnetizing current waveforms, for $n_1 = n_2$

Conversion ratio M(D)

Maximum duty cycle vs. transistor voltage stress

Maximum duty cycle limited to

$$D \le \frac{1}{1 + \frac{n_2}{n_1}}$$

which can be increased by decreasing the turns ratio n_2 / n_I . But this increases the peak transistor voltage:

$$\max v_{Q1} = V_g \left(1 + \frac{n_1}{n_2} \right)$$

For
$$n_1 = n_2$$

$$D \le \frac{1}{2}$$

$$D \le \frac{1}{2}$$
 and $\max v_{Q1} = 2V_g$

6.3.4. Flyback converter

buck-boost converter:

construct inductor winding using two parallel wires:

Derivation of flyback converter, cont.

Isolate inductor windings: the flyback converter

Flyback converter having a 1:n turns ratio and positive output:

The "flyback transformer"

- A two-winding inductor
- Symbol is same as transformer, but function differs significantly from ideal transformer
- Energy is stored in magnetizing inductance
- Magnetizing inductance is relatively small

Subinterval 1

CCM: small ripple approximation leads to

$$v_L = V_g$$

$$i_C = -\frac{V}{R}$$

$$i_g = I$$

Subinterval 2

CCM: small ripple approximation leads to

$$v_{L} = -\frac{V}{n}$$

$$i_{C} = \frac{I}{n} - \frac{V}{R}$$

$$i_{g} = 0$$

CCM Flyback waveforms and solution

Volt-second balance:

$$\langle v_L \rangle = D (V_g) + D' (-\frac{V}{n}) = 0$$

Conversion ratio is

$$M(D) = \frac{V}{V_g} = n \frac{D}{D'}$$

Charge balance:

$$\langle i_C \rangle = D \left(-\frac{V}{R} \right) + D' \left(\frac{I}{n} - \frac{V}{R} \right) = 0$$

Dc component of magnetizing current is

$$I = \frac{nV}{D'R}$$

Dc component of source current is

$$I_g = \left\langle i_g \right\rangle = D \left(I \right) + D' \left(0 \right)$$

SIMULINK SIMULATION FLYBACK CONVERTER

$$V_g = 48 \text{ V}$$
 $V = 12 \text{ V}$
 $P_{\text{out}} = 150 \text{ W}$
 $f_{sw} = 100 \text{ kHz}$
 $L_m = 250 \text{ uH}$

Build Simulink Simulation

Linear Transformer Model

The Linear Transformer block model shown consists of three coupled windings wound on the same core.

- Use SI units for simplicity
- Uncheck three winding transformer
- To model as ideal transformer, set. R1,L1,R2,L2 to 0
- Turns ratio "n" incorporated when setting the V1 and V2 values.
- Set magnetizing inductance as Lm

Use Idealized Diode and MOSFET Models

Simulate Converter 2 ms

- Use same configuration parameters as lab 1
 - Power gui set to discrete "Tustin" since using PWM generator
 - Ode23tb for main simulation parameters
- What is the required duty cycle? verify correct output voltage (12V)
- What is the average DC component of the magnetizing current? - verify
- Adjust Lmag until discontinuous mode
 - What happens to output voltage?