Data Processing

Milla Pihlajamaki and Caitlin Dawson

05 elokuu, 2022

Notes

- takes data downloaded from Gorilla blinded, semicolon separated, csv format, short form, versions 22-25
- cleans and processes data for the study 'Scientific thinking and decision-making in everyday life'

Version history: * version 22: Links fixed in information and consent * version 23: HJ updated the experiment (source deleted from CI task-only 5 sources because of trouble getting a stable URL; Viiskunta source was taken down) * version 24: HJ updated CI task to include all 6 sources again, one of them as image * version 25: HJ. Word adult taken off from Study Information and Content

Load packages

```
library(corrplot)
## corrplot 0.92 loaded
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(lavaan)
## This is lavaan 0.6-9
## lavaan is FREE software! Please report any bugs.
```

Load Data

This chunk loads the data and omits experiment-general columns from all files (except for participant private ID).

```
# Versions 22-25
versions <- paste0("v", 22:25)</pre>
questionnaire_types <- c("2wlk", "79hv", "7qsg", "81k4", "c7cw", "c11u", "eygv", "go4a", "mz16", "o43u"
task_types <- c("7mar", "8mu5", "9nll", "n8ns", "tg12", "zryk")
questionnaire_names <- c("epiQ", "heurQ", "openQ", "validQ", "demoQ", "sciattQ", "needcogQ", "scicurQ",
task_names <- c("uutT", "NavonT", "NeckerT", "nogoT", "matreasT", "citiT")</pre>
names_all <- c(questionnaire_names, task_names)</pre>
for (j in 1:length(versions)) {
  for (i in 1:length(questionnaire_types)) {
  assign(paste0("data_", questionnaire_names[i], "_", versions[j]),
         read.csv(paste0("data_exp_55551-", versions[j], "_questionnaire-", questionnaire_types[i], ".c
    }
}
for (j in 1:length(versions)) {
  for (i in 1:length(task_types)) {
    assign(paste0("data_", task_names[i], "_", versions[j]),
           read.csv(paste0("data_exp_55551-", versions[j], "_task-", task_types[i], ".csv"), sep = ";")
 }
}
```

Create Questionnaire Dataframe

This series of chunks computes the necessary data cleaning to merge the questionnaire dataframes and merges them.

Merge the Different Versions of Each Questionnaire

This chunk combines the different versions of each questionnaire (leaving us with one df per questionnaire).

```
# Concatenate the versions of each questionnaire
data_big5Q <- rbind(data_big5Q_v22, data_big5Q_v23,</pre>
                     data big5Q v24, data big5Q v25)
data_citiT <- rbind(data_citiT_v22, data_citiT_v23,</pre>
                     data_citiT_v24, data_citiT_v25)
data_demoQ <- rbind(data_demoQ_v22, data_demoQ_v23,</pre>
                     data_demoQ_v24, data_demoQ_v25)
data_epiQ <- rbind(data_epiQ_v22, data_epiQ_v23,</pre>
                    data_epiQ_v24, data_epiQ_v25)
data_nogoT <- rbind(data_nogoT_v22, data_nogoT_v23,</pre>
                     data_nogoT_v24, data_nogoT_v25)
data_heurQ <- rbind(data_heurQ_v22, data_heurQ_v23,</pre>
                     data_heurQ_v24, data_heurQ_v25)
data_inthumQ <- rbind(data_inthumQ_v22, data_inthumQ_v23,</pre>
                       data_inthumQ_v24, data_inthumQ_v25)
data_matreasT <- rbind(data_matreasT_v22, data_matreasT_v23,</pre>
                        data_matreasT_v24, data_matreasT_v25)
data_NavonT <- rbind(data_NavonT_v22, data_NavonT_v23,</pre>
                      data_NavonT_v24, data_NavonT_v25)
data_NeckerT <- rbind(data_NeckerT_v22, data_NeckerT_v23,</pre>
                       data_NeckerT_v24, data_NeckerT_v25)
data_needcloQ <- rbind(data_needcloQ_v22, data_needcloQ_v23,
                        data_needcloQ_v24, data_needcloQ_v25)
data_needcogQ <- rbind(data_needcogQ_v22, data_needcogQ_v23,</pre>
                        data_needcogQ_v24, data_needcogQ_v25)
data_openQ <- rbind(data_openQ_v22, data_openQ_v23,</pre>
                     data_openQ_v24, data_openQ_v25)
data_rpQ <- rbind(data_rpQ_v22, data_rpQ_v23,</pre>
                   data_rpQ_v24, data_rpQ_v25)
data_sciattQ <- rbind(data_sciattQ_v22, data_sciattQ_v23,</pre>
                       data_sciattQ_v24, data_sciattQ_v25)
data_scicurQ <- rbind(data_scicurQ_v22, data_scicurQ_v23,</pre>
                       data_scicurQ_v24, data_scicurQ_v25)
data_infoQ <- rbind(data_infoQ_v22, data_infoQ_v23,</pre>
                     data_infoQ_v24, data_infoQ_v25)
data_uutT <- rbind(data_uutT_v22, data_uutT_v23,</pre>
                    data_uutT_v24, data_uutT_v25)
data_validQ <- rbind(data_validQ_v22, data_validQ_v23,</pre>
                      data_validQ_v24, data_validQ_v25)
# Remove the empty last line of each file
for (i in 1:length(names_all)) {
  assign(paste0("data_", names_all[i]),
         get(paste0("data_", names_all[i]))[which(!is.na(get(paste0("data_", names_all[i]))[, 1])), ])
}
# Remove version files to clean up the environment
for (j in 1:length(versions)) {
 for (i in 1:length(names all)) {
    rm(list = paste0("data_", names_all[i], "_", versions[j]))
```

```
}
}
```

Merge Questionnaire Dataframes

This chunk merges all questionnaire dataframes, leaving us with one dataframe for all questionnaire data.

```
# Rename two columns before combining all the questionnaires into one df (the column has the same name
    # END. QUESTIONNAIRE column gives you the response time for that questionnaire.
    # Randomise.questionnaire.elements. column gives you a logical value indicating whether the questio
# END. QUESTIONNAIRE
names(data_demoQ) [names(data_demoQ) == "END.QUESTIONNAIRE"] <- "END.QUESTIONNAIRE.DEMOGRAPHICS"</pre>
names(data_big5Q) [names(data_big5Q) == "END.QUESTIONNAIRE"] <- "END.QUESTIONNAIRE.BIG5"
names(data_epiQ) [names(data_epiQ) == "END.QUESTIONNAIRE"] <- "END.QUESTIONNAIRE.EPISTEMIC"</pre>
names(data_heurQ) [names(data_heurQ) == "END.QUESTIONNAIRE"] <- "END.QUESTIONNAIRE.HEURISTIC"
names(data_inthumQ) [names(data_inthumQ) == "END.QUESTIONNAIRE"] <- "END.QUESTIONNAIRE.INT.HUM"</pre>
names(data_needcloQ) [names(data_needcloQ) == "END.QUESTIONNAIRE"] <- "END.QUESTIONNAIRE.NEED.CLO"
names(data_needcogQ) [names(data_needcogQ) == "END.QUESTIONNAIRE"] <- "END.QUESTIONNAIRE.NEED.COG"
names(data_openQ) [names(data_openQ) == "END.QUESTIONNAIRE"] <- "END.QUESTIONNAIRE.OPEN.THINK"</pre>
names(data_rpQ) [names(data_rpQ) == "END.QUESTIONNAIRE"] <- "END.QUESTIONNAIRE.RANDOM.PROB"</pre>
names(data sciattQ) [names(data sciattQ) == "END.QUESTIONNAIRE"] <- "END.QUESTIONNAIRE.SCIENCE.ATT"</pre>
names(data_scicurQ)[names(data_scicurQ) == "END.QUESTIONNAIRE"] <- "END.QUESTIONNAIRE.SCIENCE.CUR"
names(data infoQ) [names(data infoQ) == "END.QUESTIONNAIRE"] <- "END.QUESTIONNAIRE.INFO"
names(data_validQ) [names(data_validQ) == "END.QUESTIONNAIRE"] <- "END.QUESTIONNAIRE.VALIDITY"
# Randomise.questionnaire.elements.
names(data_demoQ) [names(data_demoQ) == "Randomise.questionnaire.elements."] <- "Randomise.questionnaire
names(data_big5Q)[names(data_big5Q) == "Randomise.questionnaire.elements."] <- "Randomise.questionnaire
names(data_epiQ) [names(data_epiQ) == "Randomise.questionnaire.elements."] <- "Randomise.questionnaire.e
names(data_heurQ) [names(data_heurQ) == "Randomise.questionnaire.elements."] <- "Randomise.questionnaire
names(data_inthumQ) [names(data_inthumQ) == "Randomise.questionnaire.elements."] <- "Randomise.questionn
names(data_needcloQ) [names(data_needcloQ) == "Randomise.questionnaire.elements."] <- "Randomise.questionnaire.elements."] <- "Randomise.questionnaire.elements."]
names(data_needcogQ) [names(data_needcogQ) == "Randomise.questionnaire.elements."] <- "Randomise.questionnaire.elements."] <- "Randomise.questionnaire.elements."]
names(data_openQ) [names(data_openQ) == "Randomise.questionnaire.elements."] <- "Randomise.questionnaire
names(data_rpQ) [names(data_rpQ) == "Randomise.questionnaire.elements."] <- "Randomise.questionnaire.elements."]
names(data_sciattQ) [names(data_sciattQ) == "Randomise.questionnaire.elements."] <- "Randomise.questionn
names(data_scicurQ)[names(data_scicurQ) == "Randomise.questionnaire.elements."] <- "Randomise.questionnaire.elements."] <- "Randomise.questionnaire.elements."]
names(data infoQ) [names(data infoQ) == "Randomise.questionnaire.elements."] <- "Randomise.questionnaire
names(data_validQ) [names(data_validQ) == "Randomise.questionnaire.elements."] <- "Randomise.questionnai
# Merge by participant ID
# All rows for all dataframes are kept
data1 <- merge(data_demoQ, data_big5Q,</pre>
                by = "Participant.Private.ID",
                all = TRUE)
data2 <- merge(data_epiQ, data_heurQ,</pre>
                by = "Participant.Private.ID",
                all = TRUE)
data3 <- merge(data_inthumQ, data_needcloQ,</pre>
                by = "Participant.Private.ID",
                all = TRUE)
```

```
data4 <- merge(data_needcogQ, data_openQ,</pre>
                by = "Participant.Private.ID",
               all = TRUE)
data5 <- merge(data_rpQ, data_sciattQ,</pre>
                by = "Participant.Private.ID",
                all = TRUE)
data6 <- merge(data_scicurQ, data_infoQ,</pre>
               by = "Participant.Private.ID",
                all = TRUE)
data7 <- merge(data1, data2,</pre>
               by = "Participant.Private.ID",
               all = TRUE)
data8 <- merge(data3, data4,
                by = "Participant.Private.ID",
                all = TRUE)
data9 <- merge(data5, data6,
                by = "Participant.Private.ID",
                all = TRUE)
data10 <- merge(data7, data8,</pre>
                 by = "Participant.Private.ID",
                 all = TRUE)
data11 <- merge(data9, data_validQ,</pre>
                 by = "Participant.Private.ID",
                all = TRUE)
data Q total <- merge(data10, data11,
                       by = "Participant.Private.ID",
                       all = TRUE)
# Clean the environment
rm(data1, data2, data3, data4, data5, data6, data7, data8, data9, data10, data11)
rm(data_big5Q, data_epiQ, data_heurQ, data_infoQ, data_inthumQ, data_needcloQ, data_needcogQ, data_open
```

Questionnaire Data

Exclusion Criteria

ALL QUESTIONNAIRES: This chunk goes through all questionnaire data, removing **all data for a participant** if they met one or more of the following exclusion criteria: * stated their data are not valid * stated their Finnish is not Äidinkieli, Keskusteleva, or Muu, Mikä.

Questionnaire Data Processing

After excluding data in accordance with the exclusion criteria above, the following steps are taken for each questionnaire: * reverse-code items (if necessary) * visualize and describe each item * check the structure of the questionnaire data with Cronbach's alpha (separately for each measured construct) * calculate mean or sum scores according to the questionnaire instructions * replace sum score 0s with NAs (no questionnaires included 0 as a lower bound in the response options, so sum/mean scores of 0 are not valid) * visualize and describe mean or sum scores

Validity and Language

```
# Save data for nonvalid ppts ("älä huomioi aineistoani") in a separate file prior to removal
data_nonvalid <- data_Q_total %>%
  filter(Validity == "Ã_1Ã" huomioi aineistoani. Jokin muu syy esti minua osallistumasta kunnolla." | V

# Save data for participants with nonvalid language answers in a separate file. One participant who sai
data_Q_lang_omit <- data_Q_total %>%
  filter(Language != "Sujuva / Ã"idinkieli" & Language != "Keskitaso / keskusteleva" & Language != "Muu

# Remove nonvalid participants
data_Q_total <- data_Q_total %>%
  filter(Validity %in% c("Aineistoani voi kÃ"yttÃ"Ã".", "Muu, mikÃ"? ", NA, "") & Language %in% c("Suju
```

TIPI (Big Five)

Reliability are not calculated for TIPI, see Gosling's website for explanation. http://gosling.psy.utexas.edu/scales-weve-developed/ten-item-personality-measure-tipi/

```
# Big Five
b5 <- c("agreeablenessNormal", "emotionalStabilityNormal", "extroversionNormal", "conscientiousnessNorm
b5_rev <- c("agreeablenessReverse", "emotionalStabilityReverse", "extroversionReverse", "conscientiousn
# Reverse-code
for (i in 1:length(b5_rev)) {
  data_Q_total[, b5_rev[i]] <- reverse.code(keys = c(-1),</pre>
                                             items = data_Q_total[, b5_rev[i]],
                                             mini = c(1),
                                             \max i = c(7)
}
# Describe: item-level
par(mfrow = c(2, 5))
for (i in 1:length(b5)) {
  hist(as.numeric(data_Q_total[, b5[i]]),
       main = colnames(data_Q_total[b5[i]]),
       col = sample(colors(), 1),
       breaks = seq(0, 7, 1),
       xlab = ""
       )
}
```

agreeablenessNormotionalStabilityNo extroversionNormonscientiousnessNo

opennessNorma

agreeablenessRevemotionalStabilityRe extroversionRevennscientiousnessRe

opennessRevers

describe(data_Q_total[, b5])

##		vars	n	mean	sd	median	trimmed	mad	min	max	range
##	agreeablenessNormal	1	157	5.09	1.27	5	5.16	1.48	2	7	5
##	emotionalStabilityNormal	2	157	4.47	1.58	5	4.54	1.48	1	7	6
##	extroversionNormal	3	157	4.44	1.57	5	4.51	1.48	1	7	6
##	conscientiousnessNormal	4	157	4.95	1.41	5	5.04	1.48	1	7	6
##	opennessNormal	5	157	5.50	1.07	6	5.58	1.48	2	7	5
##	agreeablenessReverse	6	157	4.55	1.50	5	4.58	1.48	1	7	6
##	${\tt emotionalStabilityReverse}$	7	157	4.39	1.79	5	4.45	1.48	1	7	6
##	extroversionReverse	8	157	4.12	1.70	4	4.12	2.97	1	7	6
##	conscientiousnessReverse	9	157	4.34	1.71	4	4.38	1.48	1	7	6
##	opennessReverse	10	157	4.99	1.53	5	5.12	1.48	1	7	6
##	skew kurtosis se										
##	agreeablenessNormal	-0.50)	-0.37	0.10)					
##	notionalStabilityNormal -0.35		5	-0.97	0.13	3					
##	extroversionNormal	-0.39	9	-0.89	0.13	3					
##	${\tt conscientiousnessNormal}$	-0.70)	-0.05	5 0.13	1					
##	opennessNormal	-0.67	7	0.35	0.09	9					
##	agreeablenessReverse	-0.21	L	-0.91	0.12	2					
##	${\tt emotionalStabilityReverse}$	-0.32	2	-1.13	3 0.14	4					
##	extroversionReverse	-0.04	1	-1.22	2 0.14	4					
##	conscientiousnessReverse	-0.17	7	-1.05	5 0.14	4					
##	opennessReverse	-0.76	3	0.12	2 0.12	2					

```
# Calculate means
data_Q_total$AMean <- rowMeans(cbind(data_Q_total$agreeablenessNormal,</pre>
                                      data Q total$agreeablenessReverse),
                               na.rm = TRUE)
data Q total$CMean <- rowMeans(cbind(data Q total$conscientiousnessNormal,
                               na.rm = TRUE)
data_Q_total$EMean <- rowMeans(cbind(data_Q_total$extroversionNormal,</pre>
                                      data_Q_total$extroversionReverse),
                               na.rm = TRUE)
data_Q_total$ESMean <- rowMeans(cbind(data_Q_total$emotionalStabilityNormal,</pre>
                                       data_Q_total$emostabilityReverse),
                                 na.rm = TRUE)
data_Q_total$OMean <- rowMeans(cbind(data_Q_total$opennessNormal,</pre>
                                      data_Q_total$opennessReverse),
                               na.rm = TRUE)
# Replace mean score Os with NAs (these participants stopped mid-questionnaire or before questionnaire
data_Q_total$AMean[which(data_Q_total$AMean == 0)] <- NA</pre>
data_Q_total$OMean[which(data_Q_total$OMean == 0)] <- NA</pre>
data_Q_total$EMean[which(data_Q_total$EMean == 0)] <- NA</pre>
data_Q_total$CMean[which(data_Q_total$CMean == 0)] <- NA</pre>
data Q total$ESMean[which(data Q total$ESMean == 0)] <- NA</pre>
# Describe: mean score level
b5_mean <- c("AMean", "OMean", "EMean", "CMean", "ESMean")
par(mfrow = c(2, 3))
for (i in 1:length(b5_mean)) {
 hist(data_Q_total[, b5_mean[i]],
       main = colnames(data_Q_total[b5_mean[i]]),
       col = sample(colors(), 1),
       breaks = seq(0, 7, 1),
       xlab = ""
       )
}
describe(data_Q_total[, b5_mean])
          vars n mean
                          sd median trimmed mad min max range skew kurtosis
                                5.0
                                        4.86 1.48 1.5
## AMean
             1 157 4.82 1.15
                                                            5.5 -0.39
                                                                          -0.14 0.09
## OMean
             2 157 5.25 1.07
                                5.5
                                        5.30 0.74 1.5
                                                        7
                                                            5.5 -0.60
                                                                          0.50 0.09
                                4.0
                                        4.32 2.22 1.0 7 6.0 -0.17
## EMean
             3 157 4.28 1.47
                                                                          -0.97 0.12
             4 157 4.64 1.31
                                4.5
                                        4.72 1.48 1.0 7 6.0 -0.44
                                                                          -0.37 0.10
## CMean
                                5.0
```

4.54 1.48 1.0 7 6.0 -0.35

-0.97 0.13

ESMean

5 157 4.47 1.58

Epistemic Curiosity

```
# Epistemic Curiosity
epicur <- c(paste0("Icuriosity", 1:5), paste0("Dcuriosity", 1:5))

# Describe: item-level
par(mfrow = c(2, 5))
for (i in 1:length(epicur)) {
   hist(data_Q_total[, epicur[i]],
        main = colnames(data_Q_total[epicur[i]]),
        col = sample(colors(), 1),
        breaks = seq(0, 5, 1),
        xlab = ""
        )
}</pre>
```


describe(data_Q_total[, epicur])

vars n mean sd median trimmed mad min max range skew kurtosis 4.29 1.48 3 -0.62 -0.57 ## Icuriosity1 1 156 4.21 0.80 4 2 5 ## Icuriosity2 2 156 4.51 0.70 4.63 0.00 3 -1.28 1.09 5 2 5 ## Icuriosity3 4.61 0.00 3 156 4.49 0.70 5 2 5 3 - 1.100.31 ## Icuriosity4 4 156 4.10 0.73 4 4.13 0.00 4 -0.54 0.64 1 5 ## Icuriosity5 5 156 3.59 1.14 4 3.66 1.48 5 4 - 0.44-0.74## Dcuriosity1 6 156 2.31 1.13 2 2.21 1.48 5 0.52 -0.61 1 7 156 3.06 1.10 ## Dcuriosity2 3 3.06 1.48 1 5 4 -0.07 -0.71 4 -0.29 -0.45 ## Dcuriosity3 8 156 3.29 0.99 3 3.30 1.48 5 1 ## Dcuriosity4 9 156 3.93 0.82 4 3.97 1.48 5 4 -0.50 0.14 1 ## Dcuriosity5 10 156 3.69 0.96 4 3.75 1.48 5 4 -0.42 -0.41 ## Icuriosity1 0.06 ## Icuriosity2 0.06 ## Icuriosity3 0.06 ## Icuriosity4 0.06 ## Icuriosity5 0.09 ## Dcuriosity1 0.09 ## Dcuriosity2 0.09 ## Dcuriosity3 0.08 ## Dcuriosity4 0.07 ## Dcuriosity5 0.08

```
# Cronbach's alphas
psych::alpha(data_Q_total[, epicur[1:5]])
## Reliability analysis
## Call: psych::alpha(x = data_Q_total[, epicur[1:5]])
##
##
    raw_alpha std.alpha G6(smc) average_r S/N
                                                 ase mean
                                                            sd median_r
##
          0.8
                   0.83
                           0.82
                                     0.49 4.7 0.023 4.2 0.62
##
##
   lower alpha upper
                         95% confidence boundaries
## 0.76 0.8 0.85
##
##
  Reliability if an item is dropped:
##
              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
                                      0.78
                                                0.48 3.7
## Icuriosity1
                    0.75
                              0.79
                                                            0.031 0.0228 0.43
                    0.75
                              0.77
                                      0.72
                                                0.46 3.3
                                                            0.030 0.0018 0.46
## Icuriosity2
                    0.75
                              0.77
                                      0.72
                                                0.46 3.3
                                                            0.030 0.0032 0.48
## Icuriosity3
## Icuriosity4
                    0.77
                              0.81
                                      0.79
                                                0.51 4.2
                                                            0.028 0.0199 0.49
## Icuriosity5
                    0.82
                              0.82
                                      0.80
                                                0.53 4.5
                                                            0.023 0.0157 0.50
##
##
   Item statistics
##
                 n raw.r std.r r.cor r.drop mean
## Icuriosity1 156 0.78 0.77 0.69
                                       0.63 4.2 0.80
## Icuriosity2 156 0.78 0.82 0.80
                                       0.66 4.5 0.70
## Icuriosity3 156
                   0.79 0.82 0.80
                                       0.67
                                            4.5 0.70
## Icuriosity4 156 0.72 0.73 0.62
                                       0.57 4.1 0.73
## Icuriosity5 156 0.76 0.70 0.57
                                       0.52 3.6 1.14
##
## Non missing response frequency for each item
##
                       2
                            3
                                 4
                  1
## Icuriosity1 0.00 0.02 0.18 0.37 0.43 0.1
## Icuriosity2 0.00 0.01 0.08 0.30 0.61 0.1
## Icuriosity3 0.00 0.01 0.10 0.30 0.60 0.1
## Icuriosity4 0.01 0.00 0.19 0.51 0.30 0.1
## Icuriosity5 0.04 0.16 0.22 0.34 0.24 0.1
psych::alpha(data_Q_total[, epicur[6:10]])
##
## Reliability analysis
## Call: psych::alpha(x = data_Q_total[, epicur[6:10]])
##
##
     raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
                   0.73
                           0.72
                                     0.36 2.8 0.031 3.3 0.7
##
         0.73
##
   lower alpha upper
                         95% confidence boundaries
## 0.67 0.73 0.8
##
##
   Reliability if an item is dropped:
              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
```

0.38 2.4

0.036 0.0027 0.38

0.65

0.71

Dcuriosity1

0.71

```
## Dcuriosity3
                   0.70
                             0.70
                                     0.66
                                               0.36 2.3
                                                           0.037 0.0150 0.37
                             0.70
                                     0.67
                                               0.37 2.3
## Dcuriosity4
                   0.70
                                                           0.036 0.0172 0.35
## Dcuriosity5
                             0.70
                                     0.67
                                               0.37 2.4
                                                           0.036 0.0161 0.36
                   0.70
##
  Item statistics
                n raw.r std.r r.cor r.drop mean
## Dcuriosity1 156 0.69 0.66 0.55
                                      0.46 2.3 1.13
## Dcuriosity2 156 0.82 0.79 0.76
                                      0.66 3.1 1.10
## Dcuriosity3 156 0.68 0.68 0.56
                                      0.47 3.3 0.99
## Dcuriosity4 156 0.63 0.68 0.54
                                      0.46 3.9 0.82
## Dcuriosity5 156 0.66 0.67 0.54
                                      0.45 3.7 0.96
## Non missing response frequency for each item
                      2
                  1
                           3
                                4
                                     5 miss
## Dcuriosity1 0.29 0.30 0.24 0.12 0.04 0.1
## Dcuriosity2 0.08 0.22 0.33 0.26 0.10 0.1
## Dcuriosity3 0.04 0.17 0.33 0.37 0.09 0.1
## Dcuriosity4 0.01 0.03 0.24 0.47 0.25 0.1
## Dcuriosity5 0.01 0.11 0.26 0.41 0.21 0.1
# Calculate sum scores
data_Q_total$ICuriositySum <- rowSums(cbind(data_Q_total$Icuriosity1, data_Q_total$Icuriosity2, data_Q_
data_Q_total$DCuriositySum <- rowSums(cbind(data_Q_total$Dcuriosity1, data_Q_total$Dcuriosity2, data_Q_
# Replace sum score Os with NAs (these participants stopped mid-questionnaire or before questionnaire a
data_Q_total$ICuriositySum[which(data_Q_total$ICuriositySum == 0)] <- NA</pre>
data_Q_total$DCuriositySum[which(data_Q_total$DCuriositySum == 0)] <- NA</pre>
# Describe: sum score level
epicur_sum <- c("ICuriositySum", "DCuriositySum")</pre>
par(mfrow = c(1, 2))
for (i in 1:length(epicur_sum)) {
  hist(data_Q_total[, epicur_sum[i]],
      main = colnames(data_Q_total[epicur_sum[i]]),
       col = sample(colors(), 1),
      xlab = ""
}
```

0.30 1.7

0.048 0.0049 0.28

0.57

0.63

Dcuriosity2

0.62

DCuriositySum

describe(data_Q_total[, c(epicur_sum)])

```
##
                        n mean sd median trimmed mad min max range
## ICuriositySum
                    1 156 20.89 3.1
                                        21
                                              21.14 2.97
                                                                    16 -0.76
                    2 156 16.28 3.5
                                              16.31 2.97
                                                           7
                                                              25
                                                                    18 -0.05
## DCuriositySum
                                        16
                 kurtosis
## ICuriositySum
                     0.39 0.25
## DCuriositySum
                    -0.16 0.28
```

Intellectual Humility

```
# Describe: item-level
par(mfrow = c(2, 3))
for (i in 1:length(IH)) {
   hist(data_Q_total[, IH[i]],
        main = colnames(data_Q_total[IH[i]]),
        col = sample(colors(), 1),
        breaks = seq(0, 5, 1),
        xlab = ""
        )
}
```


describe(data_Q_total[, IH])

					,	1.	,	,				,	
##		vars		mean			trimmed				_		kurtosis
##	IH1rev1	1	158	3.44	1.22	4	3.52	1.48	1	5	4	-0.39	-0.93
##	IH2rev1	2	158	3.46	1.06	4	3.49	1.48	1	5	4	-0.33	-0.70
##	IH3rev1	3	158	3.50	1.10	4	3.52	1.48	1	5	4	-0.27	-1.02
##	IH4rev1	4	158	3.58	1.08	4	3.63	1.48	1	5	4	-0.43	-0.74
##	IH5rev1	5	158	3.92	1.05	4	4.04	1.48	1	5	4	-0.81	-0.16
##	IH6norm2	6	158	4.28	0.64	4	4.33	0.00	1	5	4	-0.90	3.07
##	IH7norm2	7	158	4.01	0.73	4	4.05	0.00	1	5	4	-0.60	1.02
##	IH8norm2	8	158	4.17	0.72	4	4.23	0.00	1	5	4	-0.77	1.32
##	IH9norm2	9	158	4.29	0.73	4	4.39	0.74	1	5	4	-1.19	2.60
##	IH10norm2	10	158	4.08	0.75	4	4.13	0.00	1	5	4	-0.75	1.13
##	IH11norm3	11	158	4.03	0.81	4	4.09	1.48	1	5	4	-0.63	0.38
##	IH12norm3	12	158	4.01	0.84	4	4.10	0.00	1	5	4	-0.84	0.68
##	IH13norm3	13	158	4.23	0.69	4	4.30	0.00	1	5	4	-1.24	4.16
##	IH14norm3	14	158	3.97	0.84	4	4.05	0.00	1	5	4	-0.86	1.10
##	IH15norm3	15	158	3.58	0.84	4	3.60	1.48	1	5	4	-0.24	-0.23
##	IH16norm3	16	158	3.78	0.83	4	3.82	0.00	1	5	4	-0.71	1.04
##	IH17rev4	17	158	3.23	0.91	3	3.22	1.48	1	5	4	-0.02	-0.01
##	IH18rev4	18	158	3.46	0.93	3	3.47	1.48	1	5	4	-0.08	-0.48
##	IH19rev4	19	158	3.20	1.05	3	3.18	1.48	1	5	4	-0.03	-0.69
##	IH20rev4	20	158	3.58	0.92	4	3.60	1.48	1	5	4	-0.39	-0.52
##	IH21rev4	21	158	4.25	0.78	4	4.37	1.48	1	5	4	-1.34	2.96
##	IH22rev4	22	158	3.42	0.88	3	3.42	1.48	1	5	4	-0.19	-0.29

```
##
               se
## IH1rev1
             0.10
## IH2rev1
             0.08
## IH3rev1
            0.09
## IH4rev1
            0.09
## IH5rev1
            0.08
## IH6norm2 0.05
## IH7norm2 0.06
## IH8norm2 0.06
## IH9norm2 0.06
## IH10norm2 0.06
## IH11norm3 0.06
## IH12norm3 0.07
## IH13norm3 0.06
## IH14norm3 0.07
## IH15norm3 0.07
## IH16norm3 0.07
## IH17rev4 0.07
## IH18rev4 0.07
## IH19rev4 0.08
## IH20rev4 0.07
## IH21rev4 0.06
## IH22rev4 0.07
# Cronbach's alphas
psych::alpha(data_Q_total[, IH[1:5]])
##
## Reliability analysis
## Call: psych::alpha(x = data_Q_total[, IH[1:5]])
##
##
     raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
##
        0.87
                   0.87
                           0.88
                                     0.58 6.9 0.016 3.6 0.9
                                                                 0.55
##
   lower alpha upper
                          95% confidence boundaries
## 0.84 0.87 0.9
##
   Reliability if an item is dropped:
          raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
##
## IH1rev1
               0.87
                          0.87
                                  0.86
                                            0.63 6.8
                                                        0.016 0.0191 0.63
## IH2rev1
                0.82
                          0.83
                                  0.82
                                            0.54 4.8
                                                        0.022 0.0138 0.55
## IH3rev1
                0.84
                          0.84
                                  0.81
                                            0.57 5.2
                                                        0.020 0.0067 0.55
## IH4rev1
                                  0.84
                                            0.54 4.8
                                                        0.023 0.0245
                0.82
                          0.83
                                                                      0.49
## IH5rev1
                0.86
                          0.86
                                  0.86
                                            0.61 6.2
                                                        0.019 0.0288 0.63
##
   Item statistics
##
            n raw.r std.r r.cor r.drop mean sd
## IH1rev1 158 0.75 0.74 0.65
                                   0.59 3.4 1.2
## IH2rev1 158
              0.86 0.86
                           0.85
                                   0.77 3.5 1.1
## IH3rev1 158 0.82 0.83
                           0.81
                                   0.71 3.5 1.1
## IH4rev1 158
               0.86 0.86
                           0.82
                                   0.78 3.6 1.1
## IH5rev1 158 0.77 0.77 0.68
                                   0.64 3.9 1.1
##
## Non missing response frequency for each item
```

```
2
                        3
                             4
                                  5 miss
## IH1rev1 0.07 0.19 0.19 0.33 0.22 0.09
## IH2rev1 0.03 0.18 0.25 0.37 0.16 0.09
## IH3rev1 0.02 0.22 0.20 0.37 0.20 0.09
## IH4rev1 0.03 0.18 0.20 0.39 0.21 0.09
## IH5rev1 0.02 0.11 0.14 0.39 0.34 0.09
psych::alpha(data_Q_total[, IH[6:10]])
##
## Reliability analysis
## Call: psych::alpha(x = data_Q_total[, IH[6:10]])
##
##
     raw_alpha std.alpha G6(smc) average_r S/N ase mean
                                                            sd median_r
##
        0.85
                   0.85
                           0.82
                                     0.53 5.5 0.018 4.2 0.56
                                                                  0.53
##
                          95% confidence boundaries
  lower alpha upper
## 0.81 0.85 0.88
##
   Reliability if an item is dropped:
            raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
##
                  0.82
                            0.82
                                    0.78
                                              0.54 4.7
                                                          0.022 0.0022 0.53
## IH6norm2
                  0.81
                                              0.52 4.4
                                                          0.023 0.0033 0.53
## IH7norm2
                            0.81
                                    0.77
## IH8norm2
                  0.80
                            0.80
                                    0.76
                                              0.50 4.1
                                                          0.025 0.0021 0.51
## IH9norm2
                  0.81
                            0.81
                                    0.77
                                              0.52 4.3
                                                          0.024 0.0034 0.52
## IH10norm2
                  0.83
                            0.83
                                    0.79
                                              0.55 4.8
                                                          0.021 0.0016 0.54
##
##
   Item statistics
##
              n raw.r std.r r.cor r.drop mean
## IH6norm2 158 0.75 0.77
                                     0.62
                                           4.3 0.64
                             0.68
## IH7norm2 158
                 0.80
                       0.79
                              0.72
                                     0.66
                                          4.0 0.73
                              0.77
                                           4.2 0.72
## IH8norm2
            158
                 0.82
                        0.82
                                     0.71
## IH9norm2 158
                  0.80
                        0.80
                              0.74
                                     0.68
                                           4.3 0.73
## IH10norm2 158 0.76 0.75 0.66
                                     0.61 4.1 0.75
##
## Non missing response frequency for each item
                     2
                          3
                               4
                1
                                    5 miss
## IH6norm2 0.01 0.00 0.06 0.57 0.36 0.09
## IH7norm2 0.01 0.01 0.18 0.56 0.24 0.09
## IH8norm2 0.01 0.01 0.13 0.52 0.34 0.09
## IH9norm2 0.01 0.02 0.06 0.50 0.41 0.09
## IH10norm2 0.01 0.02 0.15 0.54 0.28 0.09
psych::alpha(data_Q_total[, IH[11:16]])
## Reliability analysis
## Call: psych::alpha(x = data_Q_total[, IH[11:16]])
##
##
    raw_alpha std.alpha G6(smc) average_r S/N ase mean
                                                            sd median r
##
         0.84
                   0.84
                           0.84
                                     0.47 5.4 0.018 3.9 0.61
##
##
   lower alpha upper
                          95% confidence boundaries
```

```
## 0.81 0.84 0.88
##
  Reliability if an item is dropped:
            raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## IH11norm3
                 0.80
                            0.80
                                    0.79
                                             0.45 4.1
                                                          0.024 0.0079 0.44
## IH12norm3
                  0.82
                            0.82
                                    0.80
                                              0.48 4.6
                                                          0.021 0.0077 0.48
## IH13norm3
                  0.83
                           0.83
                                              0.49 4.8
                                    0.81
                                                          0.021 0.0058 0.48
## IH14norm3
                  0.81
                           0.81
                                    0.79
                                              0.46 4.3
                                                          0.022 0.0088 0.44
## IH15norm3
                 0.82
                           0.82
                                    0.81
                                              0.48 4.6
                                                          0.022 0.0094 0.45
                                              0.48 4.7
## IH16norm3
                 0.82
                           0.82
                                    0.81
                                                          0.021 0.0093 0.45
##
##
   Item statistics
              n raw.r std.r r.cor r.drop mean
                                     0.71 4.0 0.81
## IH11norm3 158 0.81 0.81 0.77
                 0.74
                       0.74 0.67
                                     0.60 4.0 0.84
## IH12norm3 158
## IH13norm3 158
                  0.69
                       0.71
                              0.64
                                     0.57
                                           4.2 0.69
                             0.72
                                          4.0 0.84
## IH14norm3 158
                 0.77
                       0.77
                                     0.65
## IH15norm3 158
                 0.75 0.74 0.67
                                     0.61
                                         3.6 0.84
## IH16norm3 158 0.74 0.73 0.65
                                     0.60 3.8 0.83
## Non missing response frequency for each item
                     2
                          3
                              4
                                    5 miss
## IH11norm3 0.01 0.03 0.20 0.47 0.30 0.09
## IH12norm3 0.01 0.06 0.14 0.51 0.28 0.09
## IH13norm3 0.01 0.00 0.08 0.57 0.34 0.09
## IH14norm3 0.01 0.04 0.17 0.52 0.26 0.09
## IH15norm3 0.01 0.09 0.35 0.44 0.12 0.09
## IH16norm3 0.02 0.03 0.27 0.51 0.17 0.09
psych::alpha(data_Q_total[, IH[17:22]])
##
## Reliability analysis
## Call: psych::alpha(x = data_Q_total[, IH[17:22]])
##
##
    raw alpha std.alpha G6(smc) average r S/N ase mean
                                                            sd median r
##
        0.76
                                     0.35 3.3 0.028 3.5 0.62
                  0.77
                          0.75
                                                                  0.32
                          95% confidence boundaries
## lower alpha upper
## 0.71 0.76 0.82
##
## Reliability if an item is dropped:
##
            raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## IH17rev4
                 0.73
                           0.73
                                   0.71
                                             0.36 2.8
                                                         0.033 0.0085 0.32
## IH18rev4
                 0.72
                           0.73
                                   0.71
                                             0.35 2.7
                                                         0.033 0.0100 0.32
## IH19rev4
                 0.72
                           0.72
                                   0.69
                                             0.34 2.6
                                                         0.033 0.0070
                                                                      0.32
## IH20rev4
                 0.75
                           0.75
                                   0.72
                                             0.38 3.0
                                                         0.030 0.0067
                                                                       0.36
## IH21rev4
                 0.73
                           0.73
                                   0.71
                                             0.36 2.8
                                                         0.032 0.0096
                                                                      0.33
## IH22rev4
                 0.72
                           0.72
                                   0.69
                                             0.34 2.6
                                                         0.033 0.0089 0.31
##
##
   Item statistics
##
             n raw.r std.r r.cor r.drop mean
## IH17rev4 158 0.68 0.68 0.58
                                    0.51 3.2 0.91
## IH18rev4 158 0.70 0.69 0.60
                                    0.53 3.5 0.93
```

```
## IH19rev4 158 0.73 0.70 0.63
                                    0.54 3.2 1.05
## IH20rev4 158 0.62 0.62 0.51
                                    0.43 3.6 0.92
## IH21rev4 158 0.65 0.67 0.58
                                    0.50 4.3 0.78
## IH22rev4 158 0.70 0.71 0.64
                                    0.55 3.4 0.88
## Non missing response frequency for each item
                    2
                         3
              1
                              4
                                   5 miss
## IH17rev4 0.03 0.14 0.48 0.26 0.09 0.09
## IH18rev4 0.01 0.13 0.39 0.34 0.14 0.09
## IH19rev4 0.04 0.22 0.34 0.28 0.11 0.09
## IH20rev4 0.01 0.15 0.25 0.47 0.13 0.09
## IH21rev4 0.01 0.02 0.08 0.49 0.41 0.09
## IH22rev4 0.01 0.13 0.38 0.39 0.09 0.09
# Intellectual Humility Scoring
# https://seaver.pepperdine.edu/social-science/content/comprehensive-intellectual-humility.pdf -> sum s
# Calculate sum scores
data_Q_total$IH1Sum <- rowSums(cbind(data_Q_total$IH1rev1, data_Q_total$IH2rev1, data_Q_total$IH3rev1,
data_Q_total$IH2Sum <- rowSums(cbind(data_Q_total$IH6norm2, data_Q_total$IH7norm2, data_Q_total$IH8norm
data_Q_total$IH3Sum <- rowSums(cbind(data_Q_total$IH11norm3, data_Q_total$IH12norm3, data_Q_total$IH13n
data_Q_total$IH4Sum <- rowSums(cbind(data_Q_total$IH17rev4, data_Q_total$IH18rev4, data_Q_total$IH19rev
# Replace sum score Os with NAs
data_Q_total$IH1Sum[which(data_Q_total$IH1Sum == 0)] <- NA</pre>
data_Q_total$IH2Sum[which(data_Q_total$IH2Sum == 0)] <- NA</pre>
data_Q_total$IH3Sum[which(data_Q_total$IH3Sum == 0)] <- NA</pre>
data_Q_total$IH4Sum[which(data_Q_total$IH4Sum == 0)] <- NA</pre>
# Describe: sum score level
IH_sum <- c("IH1Sum", "IH2Sum", "IH3Sum", "IH4Sum")</pre>
par(mfrow = c(2, 2))
```


IH2Sum

describe(data_Q_total[, IH_sum])

```
##
          vars
                 n mean
                            sd median trimmed mad min max range skew kurtosis
## IH1Sum
             1 158 17.91 4.49
                                 18.5
                                        18.09 5.19
                                                      5
                                                        25
                                                               20 -0.41
                                                                           -0.29
## IH2Sum
             2 158 20.83 2.82
                                 21.0
                                        20.95 2.97
                                                               20 -1.09
                                                                            4.77
                                                      5
                                                        25
             3 158 19.82 3.08
                                                               20 -0.76
## IH3Sum
                                 20.0
                                        19.95 2.97
                                                      5
                                                        25
                                                                            2.25
## IH4Sum
             4 158 17.72 3.17
                                 17.0
                                        17.69 2.97
                                                               20 -0.25
                                                     5 25
                                                                            1.90
##
## IH1Sum 0.36
## IH2Sum 0.22
## IH3Sum 0.25
## IH4Sum 0.25
```

Need for closure

```
breaks = seq(0, 6, 1),
    col = sample(colors(), 1),
    xlab = ""
    )
}
```


describe(data_Q_total[, need_clo])

```
sd median trimmed mad min max range
             vars
                     n mean
                                                                      skew kurtosis
                 1 155 4.14 1.26
                                       4
                                             4.19 1.48
                                                              6
                                                                    5 -0.25
                                                                                -0.65
## closure1
                                                         1
                 2 155 2.57 1.22
                                       2
                                             2.47 1.48
## closure2
                                                              6
                                                                    5
                                                                       0.65
                                                                                -0.15
                                                         1
## closure3
                 3 155 3.58 1.30
                                       4
                                             3.54 1.48
                                                              6
                                                                    5
                                                                       0.10
                                                                                -0.68
## closure4
                 4 155 3.64 1.34
                                       4
                                             3.66 1.48
                                                              6
                                                                    5 -0.16
                                                                                -0.83
                                                         1
                 5 155 2.77 1.14
                                             2.75 1.48
                                                                       0.20
## closure5
                                       3
                                                                    5
                                                                                -0.63
                                                         1
                                                              6
                 6 155 3.72 1.45
## closure6
                                       4
                                             3.74 1.48
                                                              6
                                                                    5 -0.18
                                                                                -0.93
                                                         1
                 7 155 4.66 0.98
                                       5
                                             4.74 1.48
                                                                    5 -0.75
                                                                                 1.18
## closure7
## closure8
                 8 155 3.54 1.16
                                       4
                                             3.52 1.48
                                                              6
                                                                       0.07
                                                                                -0.56
                                                         1
                                                                    5
## closure9
                 9 155 3.14 1.28
                                       3
                                             3.12 1.48
                                                              6
                                                                    5
                                                                       0.22
                                                                                -0.73
                                                         1
## closure10
                10 155 4.28 1.27
                                       4
                                            4.36 1.48
                                                                    5 -0.35
                                                                                -0.54
                                                              6
                                                         1
## closure11
                11 155 3.09 1.29
                                       3
                                             3.05 1.48
                                                              6
                                                                    5
                                                                      0.34
                                                                                -0.41
                                                         1
## closure12
                12 155 3.46 1.20
                                       3
                                            3.45 1.48
                                                                    5
                                                                      0.06
                                                                                -0.44
                                                         1
                                                              6
## closure13
                13 155 3.58 1.15
                                       4
                                            3.61 1.48
                                                         1
                                                              6
                                                                    5 -0.21
                                                                                -0.26
                                       2
## closure14
                14 155 2.08 1.06
                                             1.95 1.48
                                                         1
                                                              6
                                                                    5
                                                                      1.03
                                                                                 1.23
## closure15
               15 155 3.25 1.31
                                       3
                                             3.25 1.48
                                                                    5 0.10
                                                                                -0.71
##
               se
```

```
## closure1 0.10
## closure2 0.10
## closure3 0.10
## closure4 0.11
## closure5 0.09
## closure6 0.12
## closure7 0.08
## closure8 0.09
## closure9 0.10
## closure10 0.10
## closure11 0.10
## closure12 0.10
## closure13 0.09
## closure14 0.09
## closure15 0.11
# Cronbach's alphas
psych::alpha(data_Q_total[, need_clo])
##
## Reliability analysis
## Call: psych::alpha(x = data_Q_total[, need_clo])
##
##
     raw_alpha std.alpha G6(smc) average_r S/N ase mean
                                                            sd median_r
##
         0.84
                   0.83
                           0.87
                                     0.25 4.9 0.017 3.4 0.68
##
  lower alpha upper
                          95% confidence boundaries
## 0.8 0.84 0.87
##
   Reliability if an item is dropped:
##
             raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
                  0.82
                            0.81
                                    0.85
                                              0.24 4.4
                                                           0.019 0.025
## closure1
## closure2
                  0.83
                            0.82
                                    0.86
                                              0.25 4.6
                                                           0.018 0.028
                                                                       0.21
## closure3
                  0.82
                            0.82
                                    0.85
                                              0.24 4.5
                                                           0.019 0.025
                                                                        0.21
                            0.81
                                                           0.019 0.026
## closure4
                  0.82
                                    0.85
                                              0.24 4.4
                                                                        0.21
## closure5
                  0.83
                            0.82
                                    0.86
                                              0.25 4.7
                                                           0.018 0.027
                                                                        0.21
                  0.82
                                              0.23 4.3
                                                           0.020 0.023 0.21
## closure6
                            0.81
                                    0.85
                                                           0.017 0.026 0.24
## closure7
                  0.84
                            0.84
                                    0.87
                                              0.27 5.1
## closure8
                  0.84
                            0.83
                                              0.26 4.9
                                                           0.018 0.027
                                    0.86
                                                                        0.24
## closure9
                  0.84
                            0.83
                                    0.86
                                              0.26 4.8
                                                           0.018 0.027
                                                                        0.24
## closure10
                  0.83
                            0.82
                                    0.86
                                              0.24 4.5
                                                           0.019 0.025
                                                                        0.21
## closure11
                  0.83
                            0.82
                                    0.86
                                              0.24 4.5
                                                           0.019 0.028
                                                                        0.21
                                              0.24 4.5
                                                           0.019 0.025
                                                                        0.22
## closure12
                  0.83
                            0.82
                                    0.85
## closure13
                  0.82
                            0.81
                                    0.85
                                              0.24 4.3
                                                           0.019 0.024
                                                                        0.21
## closure14
                  0.85
                            0.84
                                    0.87
                                              0.27 5.3
                                                           0.017 0.022
                                                                        0.24
                  0.82
                            0.81
                                    0.85
                                              0.24 4.3
                                                           0.020 0.025 0.21
## closure15
##
##
   Item statistics
               n raw.r std.r r.cor r.drop mean
## closure1 155 0.65 0.64 0.62
                                     0.58 4.1 1.26
## closure2
            155
                  0.53
                        0.53
                              0.49
                                     0.44
                                           2.6 1.22
## closure3 155
                  0.62
                        0.62
                              0.60
                                     0.53 3.6 1.30
                        0.64
                              0.62
                                     0.57
                                           3.6 1.34
## closure4 155
                  0.65
                                     0.42 2.8 1.14
## closure5 155
                  0.51 0.51
                             0.46
```

```
## closure6 155 0.72 0.70 0.70
                                  0.64 3.7 1.45
## closure7 155 0.30 0.32 0.23
                                  0.21 4.7 0.98
## closure8 155 0.40 0.41 0.34
                                  0.30 3.5 1.16
## closure9 155 0.44 0.45 0.39
                                  0.33 3.1 1.28
## closure10 155 0.59 0.59 0.55
                                   0.50 4.3 1.27
## closure11 155 0.59 0.58 0.55
                                  0.50 3.1 1.29
## closure12 155 0.59 0.60 0.58
                                   0.51 3.5 1.20
## closure13 155 0.67 0.68 0.68
                                   0.60 3.6 1.15
## closure14 155 0.23 0.25 0.16
                                   0.13 2.1 1.06
## closure15 155 0.68 0.67 0.66
                                   0.60 3.3 1.31
## Non missing response frequency for each item
                            4 5 6 miss
              1
                    2
                        3
## closure1 0.01 0.11 0.15 0.34 0.22 0.17 0.11
## closure2 0.19 0.36 0.22 0.15 0.05 0.02 0.11
## closure3 0.04 0.19 0.23 0.31 0.14 0.09 0.11
## closure4 0.06 0.17 0.20 0.28 0.22 0.07 0.11
## closure5 0.14 0.29 0.29 0.22 0.05 0.01 0.11
## closure6 0.07 0.17 0.17 0.26 0.21 0.12 0.11
## closure7 0.01 0.01 0.08 0.31 0.40 0.19 0.11
## closure8 0.03 0.17 0.29 0.30 0.16 0.05 0.11
## closure9 0.09 0.26 0.26 0.23 0.13 0.03 0.11
## closure10 0.02 0.06 0.18 0.29 0.24 0.21 0.11
## closure11 0.10 0.25 0.29 0.23 0.08 0.05 0.11
## closure12 0.05 0.17 0.28 0.32 0.13 0.05 0.11
## closure13 0.05 0.13 0.26 0.37 0.15 0.04 0.11
## closure14 0.35 0.34 0.23 0.06 0.01 0.01 0.11
## closure15 0.09 0.23 0.24 0.28 0.12 0.05 0.11
# Need for Closure Scoring
# https://www.midss.org/sites/default/files/need_for_closure_scale.pdf
# Not entirely sure if this is the correct file but it says to sum so I'll do that here
# Calculate sum score
data_Q_total$CloSum <- rowSums(cbind(data_Q_total$closure1, data_Q_total$closure2, data_Q_total$closure
# Replace sum score Os with NAs
data_Q_total$CloSum[which(data_Q_total$CloSum == 0)] <- NA</pre>
# Describe: sum score level
describe(data_Q_total$CloSum)
                      sd median trimmed mad min max range skew kurtosis
     vars n mean
                             51 51.33 8.9 27 80
## X1
      1 155 51.5 10.23
                                                      53 0.19
                                                                 0.03 0.82
hist(data_Q_total$CloSum,
    main = "Need for Closure",
    col = rainbow(14),
    ylim = c(0, 12),
    breaks = seq(0, 80, 1),
    xlab = "")
```

Need for Closure

Need for cognition

```
# Need for Cognition
need_cog <- c(paste0("cognition", c(1:2, 6, 10:11, 13:15, 18)),</pre>
              paste0("cognition", c(3:5, 7:9, 12, 16:17), ".rev"))
need_cog_rev <- paste0("cognition", c(3:5, 7:9, 12, 16:17), ".rev")</pre>
# Reverse-code
for (i in 1:length(need_cog_rev)) {
  data_Q_total[, need_cog_rev[i]] <- reverse.code(keys = c(-1),</pre>
                                                    items = data_Q_total[, need_cog_rev[i]],
                                                    mini = c(1),
                                                    \max i = c(6)
}
# Describe: item-level
par(mfrow = c(3, 6))
for (i in 1:length(need_cog)) {
 hist(data_Q_total[, need_cog[i]],
       main = colnames(data_Q_total[need_cog[i]]),
       breaks = seq(0, 6, 1),
       col = sample(colors(), 1),
       xlab = ""
```

}

describe(data_Q_total[, need_cog])

```
##
                    vars
                                     sd median trimmed mad min max range
                                                                              skew
                            n mean
                                              4
                                                                           5 -0.34
## cognition1
                       1 155 4.24 1.15
                                                   4.28 1.48
                                                                    6
                                                                1
## cognition2
                       2 155 4.07 1.26
                                              4
                                                   4.13 1.48
                                                                1
                                                                    6
                                                                           5 -0.52
## cognition6
                       3 155 4.50 1.09
                                              5
                                                   4.58 1.48
                                                                1
                                                                    6
                                                                           5 - 0.67
## cognition10
                       4 155 4.15 1.38
                                              4
                                                   4.23 1.48
                                                                    6
                                                                           5 - 0.37
                                                                1
## cognition11
                       5 155 4.68 1.08
                                              5
                                                   4.78 1.48
                                                                    6
                                                                           5 -0.71
                                                                1
                                              3
                                                                             0.08
## cognition13
                       6 155 3.47 1.21
                                                   3.46 1.48
                                                                1
                                                                    6
                                                                           5
                                              5
## cognition14
                       7 155 4.44 1.31
                                                   4.58 1.48
                                                                1
                                                                    6
                                                                           5 -0.75
## cognition15
                       8 155 4.10 1.24
                                              4
                                                   4.16 1.48
                                                                1
                                                                    6
                                                                           5 -0.38
                                              5
                                                                           5 -0.91
## cognition18
                       9 155 4.96 1.02
                                                   5.08 1.48
                                                                    6
                                                                1
                                              6
                                                                           5 -2.09
   cognition3.rev
                      10 155 5.31 1.02
                                                   5.50 0.00
                                                                1
                                                                    6
                                              5
                                                   4.98 1.48
                                                                    6
                                                                           5 -0.81
   cognition4.rev
                      11 155 4.86 1.01
## cognition5.rev
                      12 155 5.17 0.93
                                              5
                                                   5.29 1.48
                                                                2
                                                                    6
                                                                           4 -1.01
   cognition7.rev
                      13 155 4.69 1.05
                                              5
                                                   4.81 1.48
                                                                1
                                                                    6
                                                                           5 -0.95
  cognition8.rev
                                              4
                                                   4.23 1.48
                                                                    6
                                                                           5 - 0.47
                      14 155 4.16 1.24
                                                                1
                                              5
## cognition9.rev
                      15 155 4.45 1.20
                                                   4.50 1.48
                                                                1
                                                                    6
                                                                           5 -0.33
## cognition12.rev
                      16 155 5.03 0.93
                                              5
                                                   5.14 1.48
                                                                    6
                                                                           5 - 1.47
                                                                1
## cognition16.rev
                      17 155 3.83 1.36
                                              4
                                                   3.91 1.48
                                                                1
                                                                    6
                                                                           5 -0.52
                                              5
## cognition17.rev
                      18 155 4.94 1.03
                                                   5.07 1.48
                                                                1
                                                                    6
                                                                           5 -1.01
##
                    kurtosis
                                se
                       -0.56 0.09
## cognition1
```

```
## cognition6
                        0.46 0.09
## cognition10
                       -0.75 0.11
## cognition11
                        0.45 0.09
## cognition13
                       -0.25 0.10
## cognition14
                       -0.09 0.11
## cognition15
                       -0.390.10
## cognition18
                        0.76 0.08
## cognition3.rev
                        5.24 0.08
## cognition4.rev
                        0.60 0.08
## cognition5.rev
                        0.56 0.07
## cognition7.rev
                        1.22 0.08
## cognition8.rev
                       -0.27 0.10
                       -0.84 0.10
## cognition9.rev
## cognition12.rev
                        3.70 0.07
## cognition16.rev
                       -0.49 0.11
                        0.97 0.08
## cognition17.rev
# Cronbach's alphas
psych::alpha(data_Q_total[, need_cog])
##
## Reliability analysis
## Call: psych::alpha(x = data_Q_total[, need_cog])
##
     raw_alpha std.alpha G6(smc) average_r S/N
                                                   ase mean
                                                              sd median_r
##
         0.88
                   0.89
                            0.91
                                       0.3 7.9 0.013 4.5 0.66
                                                                      0.3
##
##
    lower alpha upper
                           95% confidence boundaries
## 0.86 0.88 0.91
##
##
    Reliability if an item is dropped:
##
                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## cognition1
                         0.87
                                   0.88
                                           0.90
                                                      0.30 7.2
                                                                  0.014 0.017 0.30
## cognition2
                         0.87
                                   0.87
                                           0.90
                                                      0.29 7.0
                                                                  0.014 0.015 0.30
## cognition6
                         0.87
                                   0.88
                                           0.90
                                                      0.30 7.3
                                                                  0.014 0.018
                                                                                0.30
                                                                  0.012 0.016 0.32
## cognition10
                         0.89
                                   0.89
                                           0.91
                                                      0.32 8.0
## cognition11
                         0.87
                                   0.88
                                           0.90
                                                      0.30 7.2
                                                                  0.014 0.015
                                                                                0.30
## cognition13
                                           0.90
                                                      0.30 7.2
                                                                  0.014 0.017
                         0.87
                                   0.88
                                                                                0.30
## cognition14
                         0.87
                                   0.88
                                           0.90
                                                      0.30 7.2
                                                                  0.014 0.017
                                                                                0.30
## cognition15
                         0.87
                                   0.88
                                           0.90
                                                      0.29 7.1
                                                                  0.014 0.016
                                                                                0.29
## cognition18
                         0.88
                                   0.88
                                           0.91
                                                      0.31 7.6
                                                                  0.013 0.018
                                                                                0.30
                                   0.88
                                           0.90
                                                      0.31 7.5
## cognition3.rev
                         0.88
                                                                  0.013 0.018
                                                                                0.30
## cognition4.rev
                         0.87
                                   0.88
                                           0.90
                                                      0.30 7.2
                                                                  0.014 0.017
                                                                                0.29
## cognition5.rev
                         0.87
                                   0.88
                                           0.90
                                                      0.30 7.2
                                                                  0.014 0.017
                                                                                0.29
                         0.88
                                   0.89
                                           0.91
                                                      0.32 7.9
## cognition7.rev
                                                                  0.013 0.016
                                                                                0.31
## cognition8.rev
                         0.88
                                   0.88
                                           0.91
                                                      0.31 7.6
                                                                  0.013 0.018
                                                                                0.30
## cognition9.rev
                         0.88
                                   0.88
                                           0.91
                                                      0.31 7.6
                                                                  0.013 0.018
                                                                                0.30
## cognition12.rev
                         0.88
                                   0.88
                                           0.90
                                                      0.30 7.3
                                                                  0.014 0.017
                                                                                0.30
## cognition16.rev
                         0.89
                                   0.89
                                           0.91
                                                      0.32 8.0
                                                                  0.012 0.016
                                                                                0.32
## cognition17.rev
                         0.88
                                   0.88
                                           0.91
                                                      0.31 7.7
                                                                  0.013 0.018 0.31
##
##
   Item statistics
##
                     n raw.r std.r r.cor r.drop mean
```

cognition2

-0.34 0.10

```
## cognition1
                  155 0.66 0.66 0.65
                                          0.60 4.2 1.15
                  155 0.76 0.75 0.75
                                          0.71 4.1 1.26
## cognition2
                                          0.57 4.5 1.09
## cognition6
                  155 0.63 0.64 0.63
## cognition10
                       0.39 0.37
                                   0.31
                                          0.29 4.2 1.38
                  155
## cognition11
                  155
                       0.66 0.66
                                   0.65
                                          0.61 4.7 1.08
## cognition13
                  155
                      0.66 0.65 0.63
                                          0.59 3.5 1.21
## cognition14
                  155 0.69 0.68 0.66
                                          0.62 4.4 1.31
## cognition15
                  155 0.71 0.70 0.69
                                          0.66 4.1 1.24
## cognition18
                  155 0.51 0.53 0.49
                                          0.45 5.0 1.02
## cognition3.rev
                  155 0.55 0.56 0.53
                                          0.49 5.3 1.02
## cognition4.rev
                  155
                       0.65 0.66
                                   0.64
                                          0.60 4.9 1.01
                       0.66 0.68
                                          0.61 5.2 0.93
## cognition5.rev
                  155
                                   0.66
## cognition7.rev
                  155
                       0.41 0.42 0.39
                                          0.34 4.7 1.05
## cognition8.rev
                  155
                       0.53 0.53
                                   0.49
                                          0.45 4.2 1.24
                                   0.50
                             0.54
                                          0.47 4.5 1.20
## cognition9.rev
                  155
                       0.54
## cognition12.rev 155
                       0.62
                             0.64
                                   0.61
                                          0.57 5.0 0.93
## cognition16.rev 155
                       0.40
                             0.38
                                   0.32
                                          0.29
                                               3.8 1.36
## cognition17.rev 155
                             0.49
                                   0.44
                                          0.41 4.9 1.03
                       0.48
## Non missing response frequency for each item
##
                     1
                          2
                                    4
                                         5
                                              6 miss
                               3
## cognition1
                  0.01 0.07 0.19 0.28 0.33 0.13 0.11
                  0.03 0.11 0.13 0.32 0.30 0.11 0.11
## cognition2
                  0.01 0.04 0.09 0.33 0.35 0.18 0.11
## cognition6
## cognition10
                  0.03 0.10 0.18 0.24 0.25 0.19 0.11
## cognition11
                  0.01 0.01 0.10 0.27 0.35 0.25 0.11
## cognition13
                  0.06 0.12 0.35 0.28 0.13 0.06 0.11
## cognition14
                  0.03 0.06 0.12 0.22 0.34 0.23 0.11
                  0.03 0.08 0.18 0.31 0.27 0.13 0.11
## cognition15
## cognition18
                  0.01 0.01 0.06 0.22 0.34 0.36 0.11
## cognition3.rev 0.02 0.01 0.01 0.10 0.30 0.55 0.11
## cognition4.rev 0.01 0.01 0.07 0.23 0.37 0.30 0.11
## cognition5.rev 0.00 0.01 0.04 0.17 0.33 0.45 0.11
## cognition7.rev 0.01 0.03 0.05 0.28 0.41 0.22 0.11
## cognition8.rev 0.03 0.08 0.15 0.32 0.28 0.14 0.11
## cognition9.rev 0.01 0.03 0.23 0.20 0.31 0.23 0.11
## cognition12.rev 0.01 0.01 0.03 0.15 0.49 0.31 0.11
## cognition16.rev 0.08 0.11 0.14 0.32 0.27 0.08 0.11
## cognition17.rev 0.01 0.02 0.06 0.19 0.39 0.34 0.11
# Need for Cognition Scoring
# https://centerofinquiry.org/uncategorized/need-for-cognition-scale-wabash-national-study/
# According to this source you should calculate the sum score for this scale
# Calculate sum score
data_Q_total$CogSum <- rowSums(cbind(data_Q_total$cognition1, data_Q_total$cognition2, data_Q_total$cog
# Replace sum score Os with NAs
data_Q_total$CogSum[which(data_Q_total$CogSum == 0)] <- NA</pre>
# Describe: sum-score level
describe(data_Q_total$CogSum)
```

X1 1 155 81.06 11.95 84 81.48 10.38 44 105 61 -0.43 -0.15 0.96

```
hist(data_Q_total$CogSum,
    main = "Need for Cognition",
    col = rainbow(14),
    xlab = "")
```

Need for Cognit

Actively openminded thinking

```
hist(data_Q_total[, aot[i]],
       main = colnames(data_Q_total[aot[i]]),
       col = sample(colors(), 1),
       breaks = seq(0, 7, 1),
       xlab = "")
}
describe(data_Q_total[, aot])
##
                                sd median trimmed mad min max range skew
                vars
                       n mean
## openReverse1
                                        7
                                              6.82 0.00
                                                                     2 - 1.59
                   1 149 6.74 0.48
                                                          5
                                                              7
## openReverse2
                                              5.30 1.48
                                                                     5 -0.52
                   2 149 5.23 1.24
                                         6
## openReverse3
                   3 149 5.85 1.13
                                         6
                                              5.98 1.48
                                                              7
                                                                    4 -0.72
                                                          3
## openReverse4
                   4 149 6.45 0.95
                                        7
                                              6.65 0.00
                                                              7
                                                                    6 - 2.51
                                                          1
                                        6
                                                              7
                                                                    5 - 1.14
## openNormal1
                   5 149 5.98 1.06
                                              6.13 1.48
## openNormal2
                   6 149 6.34 0.79
                                        7
                                                              7
                                                                    3 - 0.91
                                              6.44 0.00
## openNormal3
                   7 149 5.58 1.26
                                        6
                                              5.71 1.48
                                                          1
                                                              7
                                                                    6 -0.91
##
                kurtosis
                           se
                    1.58 0.04
## openReverse1
## openReverse2
                   -0.60 0.10
## openReverse3
                   -0.41 0.09
## openReverse4
                    8.32 0.08
## openNormal1
                    1.40 0.09
                   -0.03 0.06
## openNormal2
## openNormal3
                    0.75 0.10
# Cronbach's alpha
psych::alpha(data_Q_total[, aot])
##
## Reliability analysis
## Call: psych::alpha(x = data_Q_total[, aot])
##
##
     raw_alpha std.alpha G6(smc) average_r S/N
                                                  ase mean sd median r
         0.69
##
                    0.7
                            0.7
                                      0.25 2.4 0.035
                                                        6 0.6
                                                                  0.29
##
                          95% confidence boundaries
##
  lower alpha upper
## 0.62 0.69 0.76
##
##
   Reliability if an item is dropped:
##
                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## openReverse1
                     0.69
                               0.71
                                        0.69
                                                  0.29 2.4
                                                              0.037 0.014 0.30
## openReverse2
                     0.70
                               0.71
                                        0.70
                                                  0.29 2.5
                                                              0.033 0.012 0.30
## openReverse3
                     0.62
                               0.65
                                       0.64
                                                  0.23 1.8
                                                              0.044 0.018 0.27
## openReverse4
                     0.63
                               0.65
                                       0.64
                                                  0.23 1.8
                                                              0.042 0.019
                                                                           0.25
                                       0.64
## openNormal1
                     0.63
                               0.66
                                                  0.24 1.9
                                                              0.042 0.012
                                                                           0.27
## openNormal2
                     0.63
                               0.64
                                        0.63
                                                  0.23 1.8
                                                              0.041 0.017
                                                                           0.25
                                                  0.26 2.1
## openNormal3
                     0.66
                               0.68
                                       0.67
                                                              0.038 0.014 0.29
##
##
   Item statistics
##
                  n raw.r std.r r.cor r.drop mean
## openReverse1 149 0.35 0.48 0.33
                                         0.25 6.7 0.48
## openReverse2 149 0.52 0.47 0.31
                                         0.25 5.2 1.24
## openReverse3 149 0.70 0.67 0.60
                                        0.51 5.9 1.13
```

```
## openReverse4 149 0.66 0.67 0.60 0.50 6.4 0.95
## openNormal1 149 0.66 0.64 0.58 0.48 6.0 1.06
## openNormal2 149 0.64 0.69 0.63
                                       0.50 6.3 0.79
## openNormal3 149 0.62 0.57 0.47
                                       0.38 5.6 1.26
## Non missing response frequency for each item
                            3
                  1
                       2
                                 4
                                      5
## openReverse1 0.00 0.00 0.00 0.00 0.02 0.22 0.76 0.14
## openReverse2 0.00 0.01 0.10 0.17 0.21 0.38 0.13 0.14
## openReverse3 0.00 0.00 0.03 0.11 0.19 0.30 0.36 0.14
## openReverse4 0.01 0.00 0.01 0.03 0.06 0.26 0.64 0.14
## openNormal1 0.00 0.01 0.01 0.07 0.17 0.36 0.38 0.14
## openNormal2 0.00 0.00 0.00 0.02 0.13 0.34 0.51 0.14
## openNormal3 0.01 0.02 0.03 0.11 0.25 0.31 0.27 0.14
# Actively Openminded Thinking Scoring
# https://www.sciencedirect.com/science/article/pii/S1871187119303700
# Again, this article says to do a sum score
# Calculate sum score
data_Q_total$AOTSum <- rowSums(cbind(data_Q_total$openNormal1, data_Q_total$openNormal2, data_Q_total$o
# Replace sum score Os with NAs
data_Q_total$AOTSum[which(data_Q_total$AOTSum == 0)] <- NA</pre>
# Describe: sum-score level
describe(data_Q_total$AOTSum)
                      sd median trimmed mad min max range skew kurtosis
            n mean
                                 42.43 4.45 31 49
## X1
        1 149 42.16 4.21
                             43
                                                        18 -0.57
hist(data_Q_total$AOTSum,
    main = "Actively Openminded Thinking",
    col = rainbow(14),
    xlab = "")
```


Science Attitudes Questionnaire

This section has 12 questions with Likert responses that represent a (possible) 3 factor model based on the sources of the questions, from an early version of the Science Capital Scale from the FINSCI population survey study. The first 8 questions originally come from Archer, 2015, and the last 4 are modified from the Trust in Science and Scientists Scale (Nadelson et al., 2014).

```
# Science Attitudes
sci_att <- c(paste0("sa.1", letters[1:8]), paste0("sa.2", letters[1:4]))</pre>
sci_att_rev <- c("sa.1b", "sa.1d", "sa.2a", "sa.2b", "sa.2d")
# Reverse-code
for (i in 1:length(sci_att_rev)) {
  data_Q_total[, sci_att_rev[i]] <- reverse.code(keys = c(-1),</pre>
                                               items = data_Q_total[, sci_att_rev[i]],
                                               mini = c(1),
                                               \max i = c(5)
}
# Describe: item-level
par(mfrow = c(2, 2))
for (i in 1:length(sci_att)) {
  hist(data_Q_total[, sci_att[i]],
       main = colnames(data_Q_total[sci_att[i]]),
       col = sample(colors(), 1),
```

```
breaks = seq(0, 7, 1),
     xlab = "")
}
```


describe(data_Q_total[, sci_att])

```
##
                          sd median trimmed mad min max range
         vars
                 n mean
                                                                   skew kurtosis
## sa.1a
            1 154 3.52 0.86
                                        3.56 0.74
                                                         5
                                                                4 - 0.54
                                                     1
                                                                            -0.080.07
            2 154 4.47 0.84
                                                                3 -1.52
## sa.1b
                                   5
                                        4.65 0.00
                                                     2
                                                         5
                                                                             1.37 0.07
            3 154 4.43 0.66
                                        4.51 0.00
                                                                3 -0.98
## sa.1c
                                   5
                                                         5
                                                                             0.99 0.05
## sa.1d
            4 154 4.18 0.95
                                   4
                                        4.31 1.48
                                                     1
                                                         5
                                                                4 -1.17
                                                                             1.08 0.08
## sa.1e
            5 154 4.16 0.80
                                   4
                                        4.27 0.00
                                                         5
                                                                4 -1.12
                                                                             1.70 0.06
                                                     1
## sa.1f
            6 154 4.42 0.69
                                   5
                                        4.51 0.00
                                                     1
                                                         5
                                                                4 -1.34
                                                                             3.13 0.06
## sa.1g
            7 154 4.34 0.72
                                        4.45 1.48
                                                         5
                                                                3 - 0.92
                                                                             0.61 0.06
                                   4
## sa.1h
            8 154 4.58 0.61
                                   5
                                        4.68 0.00
                                                     2
                                                         5
                                                                3 - 1.34
                                                                             1.48 0.05
## sa.2a
            9 154 4.39 0.69
                                   5
                                        4.48 0.00
                                                         5
                                                                2 - 0.67
                                                                            -0.71 0.06
## sa.2b
           10 154 3.72 0.86
                                   4
                                        3.77 1.48
                                                     1
                                                         5
                                                                4 -0.42
                                                                            -0.13 0.07
## sa.2c
           11 154 3.62 0.83
                                        3.67 0.00
                                                     1
                                                         5
                                                                4 - 0.76
                                                                             0.78 0.07
## sa.2d
           12 154 4.01 0.85
                                        4.07 1.48
                                                                            -0.53 0.07
                                   4
                                                     2
                                                         5
                                                                3 - 0.47
```

```
# Cronbach's alphas
```

psych::alpha(data_Q_total[, sci_att])

```
##
## Reliability analysis
## Call: psych::alpha(x = data_Q_total[, sci_att])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.76 0.77 0.81 0.22 3.4 0.026 4.2 0.41 0.22
```

```
##
## lower alpha upper
                         95% confidence boundaries
## 0.71 0.76 0.82
##
##
   Reliability if an item is dropped:
         raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
##
                                                     0.029 0.020 0.22
## sa.1a
             0.74
                        0.75
                               0.78
                                          0.22 3.0
## sa.1b
                       0.74
                                                     0.031 0.018 0.18
             0.73
                               0.77
                                          0.21 2.9
## sa.1c
             0.75
                       0.76
                               0.79
                                         0.23 3.2
                                                     0.028 0.021
                                                                  0.22
## sa.1d
             0.76
                       0.77
                               0.80
                                          0.23 3.4
                                                     0.027 0.019 0.23
## sa.1e
             0.74
                       0.75
                               0.78
                                          0.22 3.1
                                                     0.029 0.019
                                                                  0.22
## sa.1f
                       0.73
                                          0.20 2.7
                                                     0.031 0.018 0.17
             0.72
                               0.77
## sa.1g
             0.75
                       0.76
                               0.79
                                         0.23 3.2
                                                     0.028 0.019 0.22
                               0.78
## sa.1h
             0.74
                       0.74
                                         0.21 2.9
                                                     0.030 0.020 0.18
## sa.2a
                       0.76
                               0.80
                                         0.23 3.2
                                                     0.028 0.022
             0.75
                                                                  0.22
## sa.2b
             0.76
                       0.77
                               0.80
                                         0.24 3.4
                                                     0.026 0.019
                                                                  0.23
## sa.2c
             0.77
                       0.78
                               0.81
                                         0.24 3.5
                                                     0.026 0.020 0.25
## sa.2d
              0.75
                       0.76
                               0.79
                                          0.23 3.2
                                                     0.028 0.021 0.22
##
##
   Item statistics
##
          n raw.r std.r r.cor r.drop mean
## sa.1a 154 0.60 0.58 0.54
                                0.47
                                      3.5 0.86
## sa.1b 154 0.68 0.67 0.65
                                0.57 4.5 0.84
## sa.1c 154 0.48 0.51 0.44
                                0.37
                                     4.4 0.66
## sa.1d 154 0.47 0.44 0.36
                                0.30 4.2 0.95
## sa.1e 154
             0.57 0.58 0.54
                                0.44 4.2 0.80
## sa.1f 154
             0.71 0.73 0.72
                                0.62 4.4 0.69
## sa.1g 154 0.50 0.51 0.45
                                0.38 4.3 0.72
## sa.1h 154
             0.61 0.65 0.62
                                0.53 4.6 0.61
## sa.2a 154
             0.48 0.50 0.42
                                0.36 4.4 0.69
## sa.2b 154
             0.43 0.42 0.34
                                0.27
                                      3.7 0.86
## sa.2c 154 0.37 0.36 0.25
                                0.21 3.6 0.83
## sa.2d 154 0.52 0.50 0.44
                                0.38 4.0 0.85
##
## Non missing response frequency for each item
            1
                 2
                     3
                          4
                               5 miss
## sa.1a 0.01 0.12 0.28 0.50 0.08 0.11
## sa.1b 0.00 0.05 0.09 0.21 0.66 0.11
## sa.1c 0.00 0.01 0.05 0.43 0.51 0.11
## sa.1d 0.02 0.04 0.14 0.34 0.45 0.11
## sa.1e 0.01 0.05 0.08 0.53 0.34 0.11
## sa.1f 0.01 0.01 0.06 0.42 0.51 0.11
## sa.1g 0.00 0.02 0.08 0.43 0.47 0.11
## sa.1h 0.00 0.01 0.05 0.31 0.64 0.11
## sa.2a 0.00 0.00 0.12 0.38 0.51 0.11
## sa.2b 0.01 0.08 0.27 0.47 0.17 0.11
## sa.2c 0.02 0.07 0.27 0.54 0.10 0.11
## sa.2d 0.00 0.05 0.21 0.42 0.32 0.11
```

Calculate sum score

data_Q_total\$sci_id <- rowSums(cbind(data_Q_total\$sa.1a, data_Q_total\$sa.1b, data_Q_total\$sa.1d, data_Q data_Q_total\$sci_impo <- rowSums(cbind(data_Q_total\$sa.1c, data_Q_total\$sa.1e, data_Q_total\$sa.1h, data_data_Q_total\$sci_tru <- rowSums(cbind(data_Q_total\$sa.2a, data_Q_total\$sa.2b, data_Q_total\$sa.2c, data_

```
# Replace total score zeroes with NA
data_Q_total$sci_id[which(data_Q_total$sci_id == 0)] <- NA</pre>
data_Q_total$sci_impo[which(data_Q_total$sci_impo == 0)] <- NA</pre>
data_Q_total$sci_tru[which(data_Q_total$sci_tru == 0)] <- NA</pre>
# Describe: sum-score level
sci_att_sum <- c("sci_id", "sci_impo", "sci_tru")</pre>
describe(data_Q_total[, sci_att_sum])
##
            vars
                    n mean
                              sd median trimmed mad min max range skew kurtosis
## sci_id
                1 154 16.51 2.48
                                           16.73 2.97
                                                            20
                                                                  11 -0.76
                                                                                0.07
                                      17
                                                         9
                                           17.78 2.97
                                                                                0.84
## sci_impo
               2 154 17.58 2.09
                                      18
                                                            20
                                                                  10 -0.86
                                                       10
## sci_tru
               3 154 15.75 2.15
                                      16
                                           15.87 1.48
                                                        8
                                                           20
                                                                  12 -0.53
                                                                                0.43
##
## sci_id
            0.20
## sci_impo 0.17
## sci_tru 0.17
par(mfrow = c(3, 1))
for (i in 1:length(sci_att_sum)) {
  hist(data_Q_total[, sci_att_sum[i]],
       main = colnames(data_Q_total[sci_att_sum[i]]),
       col = sample(colors(), 1),
       xlab = "")
}
```


Science Curiosity

This is a 4-item scale, scored as a single sum score from the quantised responses. No reverse scoring. Modified from Landrum et al., 2016 and Motta et al., 2019

```
# Science Curiosity
sci_cur <- pasteO("sc.", 1:4, ".quantised")

# Describe: item-level
par(mfrow = c(2, 2))
for (i in 1:length(sci_cur)) {
   hist(data_Q_total[, sci_cur[i]],
        main = colnames(data_Q_total[sci_cur[i]]),
        col = sample(colors(), 1),
        breaks = seq(0, 7, 1),
        xlab = "")
}</pre>
```


sc.2.quantised

sc.3.quantised

sc.4.quantised

describe(data_Q_total[, sci_cur])

```
##
                                   sd median trimmed mad min max range skew
                  vars
                         n mean
## sc.1.quantised
                     1 155 2.52 1.34
                                           2
                                                2.41 1.48
                                                             1
                                                                 5
                                                                       4 0.43
## sc.2.quantised
                     2 155 3.59 1.36
                                           4
                                                3.74 1.48
                                                                 5
                                                                       4 -0.51
                                                             1
## sc.3.quantised
                     3 155 4.43 0.73
                                           5
                                                4.55 0.00
                                                             2
                                                                 5
                                                                       3 -1.24
## sc.4.quantised
                     4 155 3.79 1.02
                                           4
                                                3.89 1.48
                                                                 5
                                                                       4 -0.74
                                                            1
```

```
##
                 kurtosis
                    -1.01 0.11
## sc.1.quantised
## sc.2.quantised
                    -1.01 0.11
## sc.3.quantised
                     1.35 0.06
## sc.4.quantised
                    -0.01 0.08
# Cronbach's alpha
psych::alpha(data_Q_total[, sci_cur])
##
## Reliability analysis
## Call: psych::alpha(x = data_Q_total[, sci_cur])
##
##
     raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
##
        0.62
                   0.66
                          0.63
                                    0.33
                                           2 0.045 3.6 0.78
                                                                 0.34
##
## lower alpha upper
                         95% confidence boundaries
## 0.54 0.62 0.71
##
##
  Reliability if an item is dropped:
##
                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## sc.1.quantised
                      0.52
                                0.60
                                        0.55
                                                  0.33 1.5
                                                              0.063 0.03739 0.37
## sc.2.quantised
                      0.59
                                0.64
                                        0.56
                                                  0.38 1.8
                                                              0.052 0.01292 0.32
## sc.3.quantised
                      0.52
                                0.52
                                        0.44
                                                   0.26 1.1
                                                              0.061 0.01518 0.31
## sc.4.quantised
                                0.62
                                        0.52
                                                  0.35 1.6
                      0.58
                                                              0.050 0.00077 0.36
##
##
  Item statistics
                   n raw.r std.r r.cor r.drop mean
## sc.1.quantised 155 0.76 0.70 0.53
                                         0.45 2.5 1.34
## sc.2.quantised 155 0.71 0.66 0.48
                                         0.37 3.6 1.36
## sc.3.quantised 155 0.69 0.78 0.69
                                         0.54 4.4 0.73
## sc.4.quantised 155 0.63 0.69 0.55
                                         0.36 3.8 1.02
##
## Non missing response frequency for each item
                    1
                         2
                              3
                                   4
## sc.1.quantised 0.30 0.23 0.23 0.14 0.11 0.11
## sc.2.quantised 0.10 0.14 0.19 0.21 0.36 0.11
## sc.3.quantised 0.00 0.03 0.06 0.37 0.54 0.11
## sc.4.quantised 0.03 0.10 0.18 0.44 0.25 0.11
# Calculate sum score
data_Q_total$sci_cur <- rowSums(cbind(data_Q_total$sc.1.quantised, data_Q_total$sc.2.quantised, data_Q_
# Replace sum score Os with NAs
data_Q_total$sci_cur[which(data_Q_total$sci_cur == 0)] <- NA</pre>
# Describe: sum-score level
describe(data_Q_total$sci_cur)
      vars n mean sd median trimmed mad min max range skew kurtosis
```

7 20

13 -0.23

14 14.44 2.97

1 155 14.33 3.13

```
hist(data_Q_total$sci_cur,
    col = sample(colors(), 1),
    xlab = "")
```

Histogram of data_Q_total\$sci_cur

Heuristic Reasoning

```
levels(data Q total$hr.3.3) <- list("b" = "Herra F. sai sydänkohtauksen", "a" = "Herra F. on yli 55-vu
# Create the variables for the combinations of answers
# abc / acb / cab = N; bac / bca /cba = H-R
data_Q_total <- data_Q_total %>%
    mutate(hr.3.updated = case_when(
    ((hr.3.1 == "b" & (hr.3.2 == "a" | hr.3.3 == "a")) | hr.3.2 == "b" & hr.3.3 == "a") ~ "H-R",
   ((hr.3.1 == "a" \& (hr.3.2 == "b" | hr.3.3 == "b")) | (hr.3.2 == "a" \& hr.3.3 == "b")) \sim "N"
data_Q_total$hr.3.updated <- factor(data_Q_total$hr.3.updated)</pre>
# Q4
data_Q_total$hr.4 <- as.factor(data_Q_total$hr.4)</pre>
levels(data_Q_total$hr.4) <- list("H-E" = "Kumpikin on yhtÃ" tehokas", "N" = "Kognitiivis-behavioraalis
# Kognitiivis-behavioraalista terapiaa = N; Yhta tehokas = H-E
# Q5
data_Q_total$hr.5 <- as.factor(data_Q_total$hr.5)</pre>
levels(data Q total$hr.5) <- list("N" = "Huomenna luultavasti sataa", "H-E" = "On mahdotonta sanoa sata
# Huomenna\ luultavasti\ sataa = N; On mahdotonta\ sanoa\ sataako\ huomenna\ vai\ ei = H-E
# Q6
data_Q_total$hr.6 <- as.factor(data_Q_total$hr.6)</pre>
levels(data_Q_total\$hr.6) <- list("N" = "Tytt\tilde{A}\P", "H-E" = "Kumpikin on yht\tilde{A}" todenn\tilde{A}"k\tilde{A}\Pist\tilde{A}"", "Neither todenna" todenna" todenna" todenna" todenna" todena tod
# Tytto = N; Kumpikin on yht? todenn?k?ist? = H-E
# Calculate sums
data_Q_total <- data_Q_total %>%
   mutate(
       total_N = apply(., 1, function(x) length(which(x == "N"))),
       total_HR = apply(., 1, function(x) length(which(x == "H-R"))),
       total_HE = apply(., 1, function(x) length(which(x == "H-E"))),
       total_Neither = apply(., 1, function(x) length(which(x == "Neither")))
 )
# Omit participants with Os in all the sum columns
heur <- c("total_N", "total_HR", "total_HE", "total_Neither")</pre>
data_Q_total[which(data_Q_total$total_N == 0 & data_Q_total$total_HR == 0 & data_Q_total$total_HE == 0
# Check that sum scores add up to 6
sum_heur <- data_Q_total %>%
    select(total_N, total_HR, total_HE, total_Neither) %>%
   rowwise() %>%
    mutate(sum_heur = total_N + total_HR + total_HE + total_Neither) %>%
    select(sum_heur)
table(sum_heur$sum_heur)
##
##
## 154
# Describe: sum score level
describe(data_Q_total[, heur])
```

```
##
                                  sd median trimmed mad min max range
                                                                         skew
                 vars
                        n mean
## total_N
                    1 154 4.33 1.05
                                          4
                                                4.35 1.48
                                                            2
                                                                6
                                                                      4 -0.35
                                                                3
                                                                         0.35
## total HR
                    2 154 0.62 0.55
                                                0.61 0.00
## total_HE
                    3 154 0.82 0.77
                                               0.77 1.48
                                                                3
                                                                      3
                                                                        0.39
                                          1
                                                            0
                                                                3
## total_Neither
                    4 154 0.23 0.52
                                          0
                                               0.11 0.00
                                                                         2.49
##
                 kurtosis
## total N
                    -0.49 0.08
## total_HR
                     0.57 0.04
## total_HE
                    -0.96 0.06
## total_Neither
                     6.70 0.04
par(mfrow = c(2, 2))
for (i in 1:length(heur)) {
  hist(data_Q_total[, heur[i]],
       main = colnames(data_Q_total[heur[i]]),
       col = sample(colors(), 1),
       xlab = "")
}
```



```
total_HR == 1 ~ 1,
total_HR == 2 ~ 1))

# Add a measure of total heuristic response, where 1 = at least one mistake in one heuristic category,
data_Q_total <- data_Q_total %>%
    group_by(Participant.Private.ID) %>%
    mutate(HEHRscore = HEscore + HRscore)
```

Randomness and Probability

New columns are created for each item, specifying whether the participant got the question correct or not (0=incorrect, 1=correct). A sum score is calculated for all the items.

```
# Q1: Sairaala B is the correct answer
# Create a new column
data Q total$rp.1 <- as.factor(data Q total$rp.1)</pre>
data_Q_total <- data_Q_total %>%
  mutate(rp.1.int = case_when(rp.1 == "Sairaalassa B (jossa syntyy 10 lasta päivässä)." ~ 1,
                               rp.1 %in% c("Sairaalassa A (jossa syntyy 50 lasta päivässä).", "Tämä
# Q2: Pyydys1 AND Pyydys 2 is the correct combination
data_Q_total$rp.2.1 <- as.factor(data_Q_total$rp.2.1)</pre>
data_Q_total$rp.2.2 <- as.factor(data_Q_total$rp.2.2)</pre>
data_Q_total$rp.2.3 <- as.factor(data_Q_total$rp.2.3)</pre>
data_Q_total$rp.2.4 <- as.factor(data_Q_total$rp.2.4)</pre>
data_Q_total$rp.2.5 <- as.factor(data_Q_total$rp.2.5)</pre>
data_Q_total$rp.2.6 <- as.factor(data_Q_total$rp.2.6)</pre>
data_Q_total$rp.2.7 <- as.factor(data_Q_total$rp.2.7)</pre>
data_Q_total$rp.2.8 <- as.factor(data_Q_total$rp.2.8)</pre>
# Create a new column
# NAs are initially coded as 2 and wrong answers (Os) as NAs; then these are recoded
data_Q_total <- data_Q_total %>%
  mutate(rp.2.int = case when((rp.2.1 == "Pyydys 1" & rp.2.2 == "Pyydys 2" & rp.2.3 == "" & rp.2.4 == "
                               is.na(rp.2.8) \sim 2))
data_Q_total[which(is.na(data_Q_total$rp.2.int)), "rp.2.int"] <- 0</pre>
data_Q_total[which(data_Q_total$rp.2.int == 2), ] <- NA</pre>
# Q3: Kanava 1; 2 tai 3 is the correct answer
# Create a new column
data_Q_total <- data_Q_total %>%
  mutate(rp.3.int = case_when(rp.3.quantised == "4" ~ 1,
                               rp.3.quantised != "4" ~ 0))
# Q4: Ruudukot A; B ja C is the correct answer
# Create a new column
data_Q_total <- data_Q_total %>%
  mutate(rp.4.int = case_when(rp.4.quantised == "5" ~ 1,
                               rp.4.quantised != "5" ~ 0))
# Calculate the sum score for the randomness/probability questions
data_Q_total <- data_Q_total %>%
  mutate(RPSum = rp.1.int + rp.2.int + rp.3.int + rp.4.int)
```


Matrix Reasoning

For the matrix reasoning task (treated as a questionnaire by Gorilla so included in this section), a participant's data for that task is replaced with missing values (NAs) if they met any of the following exclusion criteria: * medium reaction time equal to or smaller than 500ms * stated they had technical problems or did not understand the task

```
# Omit columns that are not relevant (experiment-general columns) + rows that are not relevant (e.g., p data_matreasT <- data_matreasT %>% select(Participant.Private.ID, Spreadsheet:ANSWER) %>% filter(display %in% c("Tehtävä_6", "Tehtävä_8"))

# Omit participants who commented that they had technical issues with this task or did not understand t
```

```
data_matreasT <- data_matreasT %>%
  filter(Participant.Private.ID != "5555882" & Participant.Private.ID != "5608075" & Participant.Privat
# Extract the relevant information
data_matreasT_final <- data_matreasT %>%
  group_by(Participant.Private.ID) %>%
  summarise(MatrixCorrectCount = sum(Correct, na.rm = TRUE)) %>%
  select(Participant.Private.ID, MatrixCorrectCount)
# Exclude participants with invalid responses
data_ValidityFlag <- data_validQ %>%
  select(Participant.Private.ID, Validity.quantised)
data_Language <- data_demoQ %>%
  select(Participant.Private.ID, Language)
data_matrixValidity <- merge(data_Language, data_ValidityFlag,</pre>
                             by = "Participant.Private.ID",
                             all = TRUE)
data_matreasT_final <- merge(data_matreasT_final, data_matrixValidity,</pre>
                             by = "Participant.Private.ID",
                             all = TRUE)
# Create separate df for nonvalid ppts
data_nonvalid_matrix <- data_matreasT_final %>%
  filter(Validity.quantised %in% c(2, 3, 4))
data_Q_lang_omit_matrix <- data_matreasT_final %>%
  filter(Language != "Sujuva / äidinkieli" & Language != "Keskitaso / keskusteleva" & Language != "Muu
data_matreasT_final <- data_matreasT_final %>%
  filter(Validity.quantised %in% c("1", NA, "") & Language %in% c("Sujuva / äidinkieli", "Keskitaso / 1
# Delete the irrelevant columns
data_matreasT_final <- data_matreasT_final %>%
  select(Participant.Private.ID, MatrixCorrectCount)
# Describe
describe(data_matreasT_final$MatrixCorrectCount)
##
                      sd median trimmed mad min max range skew kurtosis
## X1
         1 157 6.47 1.75
                              7
                                   6.57 1.48
                                                          7 -0.56
                                                                     -0.25 0.14
                                               2
hist(data_matreasT_final$MatrixCorrectCount,
    main = "Matrix Score",
     col = rainbow(14),
    xlab = "")
```

Matrix Score

Merge Questionnaire Variables

Analyze Missing Data in Questionnaires

Participants with large amounts of missing data or suspicious patterns of missing data are removed here. It should be noted that missing data refers to data that was missing from the start *and* data that was replaced with missing values if the participant met one of the exclusion criteria for (a) questionnaire(s).

```
# Questionnaire variables
q_var <- c("AMean", "CMean", "EMean", "ESMean", "OMean", "ICuriositySum", "DCuriositySum", "IH1Sum", "I
# Add a column for count of missing data for questionnaire variables per participant
data_Q_sub$q_missingdata <- rowSums(is.na(data_Q_sub[, q_var]))
# Plot number of missing values
ggplot(data_Q_sub, aes(x = as.factor(Participant.Private.ID), y = q_missingdata)) +
    geom_boxplot(fill = "slateblue", alpha = 0.2) +
    xlab("Missing variables count")</pre>
```


Missing variables count

```
# Plot to look for an elbow value
plot(sort(data_Q_sub$q_missingdata))
```



```
# Correlation between age and amount of missing values
gg_miss_fct(x = data_Q_sub, fct = Age)
```

Warning: Removed 28 rows containing missing values (geom_tile).


```
cor.test(data_Q_sub$Age, data_Q_sub$q_missingdata,
    method = "spearman", exact = FALSE)
```

```
##
## Spearman's rank correlation rho
##
## data: data_Q_sub$Age and data_Q_sub$q_missingdata
## S = 555745, p-value = 0.03173
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.1704308
```

```
# Visualize missing data by demographics
gg_miss_fct(x = data_Q_sub, fct = Language)
```


gg_miss_fct(x = data_Q_sub, fct = Country)

gg_miss_fct(x = data_Q_sub, fct = gender)

gg_miss_fct(x = data_Q_sub, fct = Education)


```
# Remove ppts with 7 or fewer variables missing out of 22 (~32%)
data_Q_sub <- data_Q_sub %>%
filter(q_missingdata <= 7)</pre>
```

Check Questionnaire Distributions and Correlations

This chunk checks distributions of questionnaire variables and correlations between them: * If distributions are highly skewed, transformations are applied to decrease skewness (skew > 1) * If two variables are highly correlated, one of them is dropped (Eisenberg et al.) (r > .85)

```
# Questionnaire variables without binary ones
q_var_con <- c("AMean", "CMean", "EMean", "ESMean", "OMean", "ICuriositySum", "DCuriositySum", "IH1Sum"

# Normality of variables: visualize with histograms
par(mfrow = c(2, 3))
for (i in 1:length(q_var_con)) {
   hist(data_Q_sub[, q_var_con[i]],
        main = colnames(data_Q_sub[q_var_con[i]]),
        col = sample(colors(), 1),
        xlab = "")
}</pre>
```



```
# Describe: mean, skew, kurtosis
describe(data_Q_sub[, q_var_con])[c("mean", "skew", "kurtosis")]
```

##		mean	skew	kurtosis
##	AMean	4.81	-0.38	-0.13
##	CMean	4.67	-0.35	-0.57
##	EMean	4.22	-0.13	-0.95
##	ESMean	4.47	-0.33	-0.96
##	OMean	5.23	-0.62	0.52
##	ICuriositySum	20.97	-0.79	0.59
##	DCuriositySum	16.30	-0.06	-0.12
##	IH1Sum	17.80	-0.38	-0.34
##	IH2Sum	20.96	-0.12	-0.69
##	IH3Sum	19.95	-0.17	-0.37
##	IH4Sum	17.80	0.31	0.48
##	CloSum	51.43	0.20	-0.02
##	CogSum	81.28	-0.43	-0.17
##	AOTSum	42.23	-0.64	-0.23
##	RPSum	2.47	-0.46	-0.22
##	sci_cur	14.32	-0.21	-0.66
##	sci_tru	15.79	-0.56	0.48
##	sci_impo	17.58	-0.88	0.87
##	sci_id	16.48	-0.76	0.03
##	${\tt MatrixCorrectCount}$	6.61	-0.54	-0.20

```
##
                       AMean CMean EMean ESMean OMean ICuriositySum DCuriositySum
## AMean
                                     0.12
                                                                -0.06
                        1.00
                              0.04
                                            0.24 0.16
## CMean
                                            0.41 - 0.06
                                                                -0.02
                                                                               -0.02
                        0.04
                              1.00
                                     0.14
## EMean
                        0.12
                              0.14
                                     1.00
                                            0.03 0.17
                                                                 0.10
                                                                                0.05
## ESMean
                        0.24
                              0.41
                                     0.03
                                            1.00 -0.06
                                                                 0.07
                                                                               -0.10
## OMean
                        0.16 -0.06
                                     0.17
                                           -0.06
                                                  1.00
                                                                 0.45
                                                                                0.30
## ICuriositySum
                       -0.06 - 0.02
                                     0.10
                                            0.07
                                                  0.45
                                                                 1.00
                                                                                0.59
                       -0.19 -0.02
## DCuriositySum
                                    0.05
                                                                 0.59
                                                                                1.00
                                           -0.10
                                                 0.30
## IH1Sum
                       -0.20
                              0.11
                                     0.06
                                            0.22
                                                  0.19
                                                                 0.13
                                                                                0.05
## IH2Sum
                        0.00 -0.19
                                     0.04
                                           -0.12
                                                                                0.34
                                                  0.28
                                                                 0.43
## IH3Sum
                        0.26
                              0.15
                                     0.18
                                            0.19
                                                  0.35
                                                                 0.31
                                                                                0.08
## IH4Sum
                        0.10 -0.15 -0.04
                                           -0.05 -0.04
                                                                 0.00
                                                                               -0.17
## CloSum
                        0.02
                              0.12 - 0.30
                                           -0.06 - 0.32
                                                                -0.28
                                                                               -0.04
## CogSum
                       -0.10
                              0.10 0.24
                                                  0.36
                                                                 0.64
                                                                                0.50
                                            0.15
## AOTSum
                       -0.22 -0.21 -0.13
                                           -0.01
                                                  0.07
                                                                 0.32
                                                                                0.16
## RPSum
                       -0.03 0.00 -0.15
                                           -0.02 -0.04
                                                                 0.13
                                                                                0.08
## sci_cur
                       -0.20 -0.02 -0.02
                                            0.05 0.23
                                                                 0.53
                                                                                0.31
## sci_tru
                       -0.10
                              0.06
                                     0.08
                                           -0.10 -0.01
                                                                 0.12
                                                                                0.02
                       -0.07 - 0.13
                                     0.06
                                           -0.04 0.09
## sci impo
                                                                 0.37
                                                                                0.19
                       -0.11 0.16 0.16
## sci id
                                            0.07 0.19
                                                                 0.44
                                                                                0.28
## MatrixCorrectCount 0.01 -0.17 -0.04 -0.01 -0.02
                                                                 0.15
                                                                                0.10
                       IH1Sum IH2Sum IH3Sum IH4Sum CloSum CogSum AOTSum RPSum
## AMean
                        -0.20
                                 0.00
                                        0.26
                                               0.10
                                                       0.02
                                                             -0.10
                                                                    -0.22 -0.03
## CMean
                         0.11
                               -0.19
                                        0.15
                                              -0.15
                                                       0.12
                                                              0.10
                                                                    -0.21 0.00
                                              -0.04
## EMean
                         0.06
                                 0.04
                                        0.18
                                                      -0.30
                                                                    -0.13 - 0.15
                                                              0.24
## ESMean
                         0.22
                               -0.12
                                        0.19
                                              -0.05
                                                      -0.06
                                                              0.15
                                                                    -0.01 -0.02
## OMean
                         0.19
                                 0.28
                                        0.35
                                              -0.04
                                                      -0.32
                                                              0.36
                                                                      0.07 - 0.04
## ICuriositySum
                         0.13
                                 0.43
                                        0.31
                                               0.00
                                                      -0.28
                                                              0.64
                                                                      0.32 0.13
## DCuriositySum
                         0.05
                                 0.34
                                        0.08
                                              -0.17
                                                      -0.04
                                                              0.50
                                                                      0.16 0.08
## IH1Sum
                         1.00
                                0.05
                                        0.18
                                              -0.17
                                                      -0.39
                                                              0.27
                                                                      0.06 - 0.01
## IH2Sum
                         0.05
                                1.00
                                        0.22
                                               0.23
                                                     -0.07
                                                              0.29
                                                                      0.42 0.27
## IH3Sum
                         0.18
                                0.22
                                        1.00
                                               0.03
                                                      -0.26
                                                              0.18
                                                                    -0.04
## IH4Sum
                                0.23
                                        0.03
                                                      -0.07
                                                             -0.14
                                                                      0.19
                                                                            0.04
                        -0.17
                                               1.00
## CloSum
                        -0.39
                               -0.07
                                       -0.26
                                              -0.07
                                                       1.00
                                                             -0.38
                                                                    -0.12
                                                                            0.08
## CogSum
                                        0.18
                                              -0.14
                                                     -0.38
                                                              1.00
                                                                     0.19 0.12
                         0.27
                                0.29
## AOTSum
                                      -0.04
                                               0.19
                                                      -0.12
                                                                      1.00 0.23
                         0.06
                                 0.42
                                                              0.19
## RPSum
                        -0.01
                                 0.27
                                        0.04
                                               0.04
                                                       0.08
                                                              0.12
                                                                      0.23 1.00
## sci cur
                         0.20
                                0.22
                                        0.10
                                              -0.02
                                                     -0.14
                                                              0.39
                                                                      0.15 0.21
                         0.08
                                 0.19
                                      -0.03
                                               0.02
                                                       0.03
                                                              0.20
                                                                      0.13 0.17
## sci_tru
## sci_impo
                         0.07
                                 0.21
                                      -0.02
                                               0.03
                                                     -0.08
                                                              0.33
                                                                      0.24 0.12
                                        0.09
## sci id
                         0.18
                                 0.11
                                              -0.25
                                                      -0.13
                                                              0.51
                                                                      0.08 0.31
                         0.03
## MatrixCorrectCount
                                 0.06
                                        0.09
                                               0.07 -0.10
                                                              0.11
                                                                      0.13 0.34
##
                       sci cur sci tru sci impo sci id MatrixCorrectCount
                                 -0.10
## AMean
                         -0.20
                                           -0.07
                                                  -0.11
                                                                        0.01
## CMean
                         -0.02
                                  0.06
                                           -0.13
                                                   0.16
                                                                       -0.17
                         -0.02
## EMean
                                            0.06
                                                                       -0.04
                                  0.08
                                                    0.16
## ESMean
                          0.05
                                 -0.10
                                           -0.04
                                                    0.07
                                                                       -0.01
## OMean
                          0.23
                                  -0.01
                                            0.09
                                                    0.19
                                                                       -0.02
## ICuriositySum
                          0.53
                                  0.12
                                            0.37
                                                    0.44
                                                                        0.15
```

```
0.10
## DCuriositySum
                         0.31
                                 0.02
                                          0.19
                                                 0.28
## IH1Sum
                         0.20
                                 0.08
                                          0.07
                                                 0.18
                                                                    0.03
## IH2Sum
                         0.22
                                 0.19
                                                 0.11
                                                                    0.06
                                          0.21
## IH3Sum
                         0.10
                                -0.03
                                         -0.02
                                                 0.09
                                                                    0.09
## IH4Sum
                        -0.02
                                          0.03 -0.25
                                                                    0.07
                                 0.02
## CloSum
                        -0.14
                                 0.03
                                         -0.08 -0.13
                                                                   -0.10
## CogSum
                         0.39
                                 0.20
                                          0.33
                                                                    0.11
                                                 0.51
## AOTSum
                         0.15
                                 0.13
                                          0.24
                                                 0.08
                                                                    0.13
## RPSum
                                          0.12
                                                 0.31
                                                                    0.34
                         0.21
                                 0.17
## sci_cur
                         1.00
                                 0.23
                                          0.39
                                                 0.49
                                                                    0.07
## sci_tru
                                                                    0.05
                         0.23
                                 1.00
                                          0.33
                                                 0.20
## sci_impo
                         0.39
                                 0.33
                                          1.00
                                                 0.43
                                                                    0.16
## sci_id
                         0.49
                                 0.20
                                          0.43
                                                 1.00
                                                                    0.08
## MatrixCorrectCount
                         0.07
                                 0.05
                                          0.16
                                                 0.08
                                                                    1.00
```

##	AMean										riosityS	uiii
##	Arrean	TRUE	FALSE				FAL		_	LSE	FAL	
##	CMean	FALSE	TRUE	FALSE	FAI	LSE	FAL	SE	FA	LSE	FAL	SE
##	EMean	FALSE	FALSE	TRUE	FAI	LSE	FAL	SE	FA	LSE	FAL	SE
##	ESMean	FALSE	FALSE	FALSE	TF	RUE	FAL	SE	FAI	LSE	FAL	SE
##	OMean	FALSE	FALSE	FALSE	FAI	LSE	TR	UE	FA	LSE	FAL	SE
##	ICuriositySum	FALSE	FALSE	FALSE	FAI	LSE	FAL	SE	T	RUE	FAL	SE
##	DCuriositySum	FALSE	FALSE	FALSE	FAI	LSE	FAL	SE	FA	LSE	TR	UE.
##	IH1Sum	FALSE	FALSE	${\tt FALSE}$	FAI	LSE	FAL	SE	FA	LSE	FAL	SE
##	IH2Sum	FALSE	FALSE	${\tt FALSE}$	FAI	LSE	FAL	SE	FA	LSE	FAL	SE
##	IH3Sum	FALSE	FALSE	${\tt FALSE}$	FAI	LSE	FAL	SE	FA	LSE	FAL	SE
##	IH4Sum	FALSE	FALSE	${\tt FALSE}$	FAI	LSE	FAL	SE	FA	LSE	FAL	SE
##	CloSum	FALSE	FALSE	${\tt FALSE}$	FAI	LSE	FAL	SE	FA	LSE	FAL	SE
##	CogSum	FALSE	FALSE	${\tt FALSE}$	FAI	LSE	FAL	SE	FA	LSE	FAL	SE
##	AOTSum	FALSE	FALSE	${\tt FALSE}$	FAI	LSE	FAL	SE	FA	LSE	FAL	SE
##	RPSum	FALSE	FALSE	FALSE	FAI	LSE	FAL	SE	FA	LSE	FAL	SE
##	sci_cur	FALSE	FALSE	FALSE	FAI	LSE	FAL	SE	FA	LSE	FAL	SE
##	sci_tru	FALSE	FALSE	FALSE	FAI	LSE	FAL	SE	FA	LSE	FAL	SE
##	sci_impo	FALSE	FALSE	FALSE	FAI	LSE	FAL	SE	FA	LSE	FAL	SE
##	sci_id	FALSE	FALSE	FALSE	FAI	LSE	FAL	SE	FA	LSE	FAL	SE
##	${\tt MatrixCorrectCount}$	FALSE	FALSE	FALSE	FAI	LSE	FAL	SE	FA	LSE	FAL	SE
##		IH1Sun	ı IH2Sı	ım IH3S	Sum I	H4S	um	CloSum	CogSum	AOTSum	RPSum	
##	AMean	FALSE	E FALS	SE FAI	LSE	FAL	SE	FALSE	FALSE	FALSE	FALSE	
##	CMean	FALSE	E FALS	SE FAI	LSE	FAL	SE	FALSE	FALSE	FALSE	FALSE	
##	EMean	FALSE	E FALS	SE FAI	LSE	FAL	SE	FALSE	FALSE	FALSE	FALSE	
##	ESMean	FALSE				FAL		FALSE	FALSE	FALSE	FALSE	
##	OMean	FALSE				FAL		FALSE		FALSE	FALSE	
##	ICuriositySum	FALSE				FAL		FALSE			FALSE	
##	DCuriositySum	FALSE			LSE	FAL		FALSE		FALSE	FALSE	
##	IH1Sum	TRUE			LSE	FAL		FALSE			FALSE	
##	IH2Sum	FALSE			LSE	FAL		FALSE			FALSE	
##	IH3Sum	FALSE			RUE	FAL		FALSE			FALSE	
##	IH4Sum	FALSE			LSE		UE	FALSE			FALSE	
##	CloSum	FALSE				FAL		TRUE			FALSE	
	CogSum	FALSE				FAL		FALSE		FALSE		
##	AOTSum	FALSE	E FALS	SE FAI	LSE	FAL	SE	FALSE	FALSE	TRUE	FALSE	

```
## RPSum
                   FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## sci cur
                  FALSE FALSE FALSE FALSE FALSE FALSE
                  FALSE FALSE FALSE FALSE FALSE FALSE
## sci tru
## sci_impo
                   FALSE FALSE FALSE FALSE FALSE FALSE
## sci id
                    FALSE FALSE FALSE FALSE FALSE FALSE
## MatrixCorrectCount FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
           sci cur sci tru sci impo sci id MatrixCorrectCount
## AMean
                                    FALSE FALSE
                     FALSE
                            FALSE
                                                           FALSE
## CMean
                     FALSE FALSE
                                    FALSE FALSE
                                                           FALSE
## EMean
                     FALSE FALSE
                                    FALSE FALSE
                                                           FALSE
## ESMean
                     FALSE FALSE
                                   FALSE FALSE
                                                           FALSE
## OMean
                     FALSE FALSE
                                    FALSE FALSE
                                                           FALSE
                     FALSE FALSE
## ICuriositySum
                                  FALSE FALSE
                                                           FALSE
## DCuriositySum
                     FALSE FALSE
                                  FALSE FALSE
                                                           FALSE
## IH1Sum
                     FALSE FALSE
                                  FALSE FALSE
                                                           FALSE
## IH2Sum
                                    FALSE FALSE
                     FALSE FALSE
                                                           FALSE
## IH3Sum
                     FALSE FALSE
                                   FALSE FALSE
                                                           FALSE
## IH4Sum
                     FALSE FALSE
                                    FALSE FALSE
                                                           FALSE
## CloSum
                     FALSE FALSE
                                   FALSE FALSE
                                                           FALSE
                     FALSE FALSE
## CogSum
                                   FALSE FALSE
                                                           FALSE
## AOTSum
                     FALSE FALSE
                                  FALSE FALSE
                                                           FALSE
## RPSum
                     FALSE FALSE
                                  FALSE FALSE
                                                           FALSE
## sci_cur
                                  FALSE FALSE
                     TRUE FALSE
                                                           FALSE
## sci tru
                     FALSE
                            TRUE
                                   FALSE FALSE
                                                           FALSE
## sci_impo
                     FALSE FALSE
                                    TRUE FALSE
                                                           FALSE
## sci id
                     FALSE FALSE
                                    FALSE
                                           TRUE
                                                           FALSE
## MatrixCorrectCount
                     FALSE FALSE
                                    FALSE FALSE
                                                            TRUE
corrplot(cor(data_Q_sub[, q_var_con], method = "pearson",
           use = "pairwise.complete.obs"))
# Subset data: exclude demographic variables
data_Q_sub <- data_Q_sub[, c("Participant.Private.ID", q_var_con)]</pre>
```


Task Data

Exclusion Criteria

ALL TASKS: This chunk goes through all task data, removing **all data for a participant** if they met one or more of the following exclusion criteria: * stated their data are not valid * stated their Finnish is not Äidinkieli or Keskusteleva

TASKS: A participant's data for a question naire was replaced with missing values (NAs) if they met the following exclusion criterion: * stopped during that task

For further exclusion criteria for the tasks, please see each chunk.

Task Data Processing

See each chunk.

Go No Go

Trial-level exclusion criteria: * The reaction time for each row is replaced with missing values (NAs) if it is equal to or higher than 1025ms (screen time 1000ms + 16.67ms refresh rate + ~ 8 ms latency between computer and mouse -> reaction times higher than this are likely not valid) or if it is equal to or lower than 150ms (Jaana's paper).

Participant-level exclusion criteria: * A participant's data for the Go No-Go task is replaced with missing values (NAs) if their accuracy (% of correct trials out of all trials) was equal to or lower than 60%.

Data processing: for each participant, we calculate the sum of hits/misses/FAs/CRs as well as dprime, beta, c, aprime, and bppd (see the dprime() function help file). These are described and visualized.

```
# Omit experiment-general columns & practice (etc.) rows
data_nogoT <- data_nogoT %>%
  select(Participant.Private.ID, Spreadsheet:Answer) %>%
  filter(display == "Trials")
# Exclusion Criteria: Trial-Level
  # RT <= 150ms or >= 1025ms
data_nogoT$Reaction.Time[which(data_nogoT$Reaction.Time >= 1025 | data_nogoT$Reaction.Time <= 150)] <-:
# Exclusion Criteria: Participant-Level
  # <=60% accuracy
data_nogoT <- data_nogoT %>%
  group by(Participant.Private.ID) %>%
  mutate(Accuracy = sum(Correct, na.rm = TRUE) / (sum(Correct, na.rm = TRUE) + sum(Incorrect, na.rm = T.
  mutate(go.nogo_omit = case_when(Accuracy > .60 ~ 0,
                                  Accuracy <= .60 ~ 1))
# Omit rows based on exclusion criteria
data_nogoT$Response[which(data_nogoT$go.nogo_omit == 1)] <- NA</pre>
# Create Signal Detection Theory categories for each row
data_nogoT <- data_nogoT %>%
  filter(display == "Trials") %>%
  mutate(SDT = case_when((Array %in% c("H.png", "T.png") & Response == "Go") ~ "Hit",
                         (Array %in% c("H.png", "T.png") & Response == "No Go") ~ "Miss",
                         (Array == "N.png" & Response == "Go") ~ "False Alarm",
                         (Array == "N.png" & Response == "No Go") ~ "Correct Rejection")) %>%
   mutate(Hit = case_when(SDT == "Hit" ~ 1,
                           SDT != "Hit" ~ 0),
           Miss = case_when(SDT == "Miss" ~ 1,
                            SDT != "Miss" ~ 0),
           FA = case_when(SDT == "False Alarm" ~ 1,
                          SDT != "False Alarm" ~ 0),
           CR = case_when(SDT == "Correct Rejection" ~ 1,
                          SDT != "Correct Rejection" ~ 0))
# Calculate the mean and SD of hits and FA (trials with a go response)
data_go_RT <- data_nogoT %>%
  filter(SDT %in% c("Hit", "FA")) %>%
  group_by(Participant.Private.ID) %>%
  summarise(MeanGoRT = mean(Reaction.Time, na.rm = TRUE),
            SDGoRT = sd(Reaction.Time, na.rm = TRUE))
# Compute D-Prime and Bias for each participant
{\it \# https://www.rdocumentation.org/packages/psycho/versions/0.6.1/topics/dprime}
# http://wise.cgu.edu/wise-tutorials/tutorial-signal-detection-theory/signal-detection-d-defined-2/
data_dprime <- data_nogoT %>%
  group_by(Participant.Private.ID) %>%
```

```
summarise(dp = dprime(n_hit = sum(Hit, na.rm = TRUE),
                        n_fa = sum(FA, na.rm = TRUE),
                        n_miss = sum(Miss, na.rm = TRUE),
                        n_cr = sum(CR, na.rm = TRUE),
                        n_targets = 300,
                        n distractors = 100))
## 'summarise()' has grouped output by 'Participant.Private.ID'. You can override
## using the '.groups' argument.
# Add a row to specify what the five different values given mean
data_dprime$value <- rep_len(c("GNGdprime", "GNGbeta", "GNGaprime", "GNGbppd", "GNGc"),</pre>
                             length.out = nrow(data_dprime))
# Into wide format
data_dprime <- data_dprime %>%
  pivot_wider(names_from = value, values_from = dp)
data_GNGdprime <- as.data.frame(data_dprime)</pre>
# Create a sum score of each response category for each participant
data_nogoT_final <- data_nogoT %>%
  select(Participant.Private.ID, Hit, Miss, FA, CR) %>%
  group by (Participant.Private.ID) %>%
  summarise(GNGHitSum = sum(Hit, na.rm = TRUE),
            GNGMissSum = sum(Miss, na.rm = TRUE),
            GNGFASum = sum(FA, na.rm = TRUE),
            GNGCRSum = sum(CR, na.rm = TRUE))
# Combine the dataframes (keep all rows)
data_nogoT_final <- merge(data_nogoT_final, data_GNGdprime,</pre>
                          by = "Participant.Private.ID", all = TRUE)
data_nogoT_final <- merge(data_nogoT_final, data_go_RT,</pre>
                          by = "Participant.Private.ID", all = TRUE)
# Exclude participants with invalid responses
data_ConsentValidity <- data_Q_total %>%
  select(Participant.Private.ID, Language, Validity.quantised)
# Final dataset
data_nogoT_final <- merge(data_nogoT_final, data_ConsentValidity,</pre>
                          by = "Participant.Private.ID")
# Exclude participants according to validity + language criteria; exclude the participants who stopped
data_nogoT_final <- data_nogoT_final %>%
  filter(Validity.quantised %in% c(1, NA, "") & Language %in% c("Sujuva / äidinkieli", "Keskitaso / ke
  filter(!Participant.Private.ID %in% c("5201242", "4886650", "5117494", "5282634", "5500754", "5552405
  filter(!(GNGHitSum == 0 & GNGMissSum == 0 & GNGFASum == 0))
# Final set of columns
data_nogoT_final <- data_nogoT_final %>%
  select(Participant.Private.ID, GNGHitSum, GNGMissSum, GNGFASum, GNGCRSum, MeanGoRT, SDGoRT, GNGdprime
# Change columns into numeric
```

```
nogo <- c("GNGHitSum", "GNGMissSum", "GNGFASum", "GNGCRSum", "MeanGoRT", "SDGoRT", "GNGdprime", "GNGbet</pre>
for (i in 1:length(nogo)) {
  data_nogoT_final[, nogo[i]] <- as.numeric(data_nogoT_final[, nogo[i]])</pre>
# Describe
describe(data_nogoT_final[, nogo])
                                 sd median trimmed
                                                     mad
              vars
                     n
                         mean
                                                            min
                                                                   max range
## GNGHitSum
                 1 142 290.90 18.17 296.00 294.96
                                                    4.45 161.00 300.00 139.00
## GNGMissSum
                 2 142
                         9.10 18.17
                                      4.00
                                                           0.00 139.00 139.00
                                              5.04 4.45
                 3 142 34.29 17.13 32.00
## GNGFASum
                                             33.12 19.27
                                                           4.00 78.00 74.00
## GNGCRSum
                 4 142 65.71 17.13 68.00
                                             66.88 19.27 22.00 96.00 74.00
## MeanGoRT
                 5 142 413.79 61.88 409.09 410.61 66.08 290.59 655.50 364.92
## SDGoRT
                 6 142
                        93.25 27.90 86.95
                                             90.10 25.26
                                                          49.84 182.26 132.42
## GNGdprime
                                      2.68
                 7 142
                         2.63 0.83
                                              2.65 0.83
                                                           0.88
                                                                  4.64
                                                                          3.76
## GNGbeta
                 8 142
                         0.18 0.23
                                      0.11
                                              0.13 0.11
                                                           0.01
                                                                  1.61
                                                                          1.60
## GNGaprime
                 9 142
                         0.90 0.05
                                      0.91
                                              0.90 0.06
                                                           0.74
                                                                  0.99
                                                                         0.25
## GNGbppd
                10 142
                       -0.81 0.24
                                    -0.88
                                             -0.86 0.14
                                                          -1.00
                                                                  0.30
                                                                         1.30
## GNGc
                11 142 -0.87 0.35
                                    -0.91
                                             -0.88 0.31
                                                          -1.62
                                                                  0.44
                                                                         2.06
               skew kurtosis
##
                               se
## GNGHitSum -4.35
                       22.72 1.52
## GNGMissSum 4.35
                       22.72 1.52
## GNGFASum
              0.50
                       -0.60 1.44
## GNGCRSum
                       -0.60 1.44
              -0.50
## MeanGoRT
                        0.59 5.19
              0.67
## SDGoRT
               1.06
                        0.98 2.34
## GNGdprime -0.08
                      -0.65 0.07
## GNGbeta
               3.22
                       13.27 0.02
## GNGaprime -0.66
                       -0.26 0.00
## GNGbppd
               2.16
                        5.38 0.02
## GNGc
               0.58
                        0.98 0.03
par(mfrow = c(2, 3))
for (i in 1:length(nogo)) {
 hist(data_nogoT_final[, nogo[i]],
      main = colnames(data_nogoT_final[nogo[i]]),
       col = sample(colors(), 1),
      xlab = "")
}
```


Navon

Trial-level exclusion criteria: * The reaction time for each row is replaced with missing values (NAs) if it is equal to or lower than 150ms

Participant-level exclusion criteria: * A participant's data for the Navon task is replaced with missing values (NAs) if their accuracy (% of correct trials out of all trials) was equal to or lower than 60% or if the ratio of the most frequent response to all responses is equal to or higher than .95.

Data processing: for each participant, we calculate the global-local precedence index (bias toward a global processing level), and global-to-local interference index (positive values indicate the extent to which the bias toward global stimuli interferes with processing local information). * Global-local precedence index: Standardized mean difference (cohen's d) in RT between global and local judgments on consistent trials only * Global-to-local interference index: Standardized mean difference (cohen's d) in RT between inconsistent and consistent trials in local condition only These are described and visualized.

```
data_NavonT$Consistency <- as.factor(data_NavonT$Consistency)</pre>
data_NavonT$display <- as.factor(data_NavonT$display)</pre>
# Accuracy for each task and consistency
Accuracy_Navon <- data_NavonT %>%
  group_by(Consistency, display) %>%
  summarise(Accuracy_cond = sum(Correct, na.rm = TRUE) / (sum(Correct, na.rm = TRUE) + sum(Incorrect, na.rm = TRUE)
## 'summarise()' has grouped output by 'Consistency'. You can override using the
## '.groups' argument.
# Exclusion Criteria: Trial-Level
  # RT <= 150ms
data_NavonT$Reaction.Time[which(data_NavonT$Reaction.Time <= 150)] <- NA
# Exclusion Criteria: Participant-Level
  # <= 60% accuracy
data_NavonT <- data_NavonT %>%
  group_by(Participant.Private.ID) %>%
  mutate(Accuracy = sum(Correct, na.rm = TRUE) / (sum(Correct, na.rm = TRUE) + sum(Incorrect, na.rm = T
  mutate(Navon_omit = case_when(Accuracy > .60 ~ 0,
                                 Accuracy <= .60 ~ 1))
# Omit data based on Navon_omit
data_NavonT$Reaction.Time[which(data_NavonT$Navon_omit == 1)] <- NA</pre>
# Subset to only look at correct answers
data_NavonT <- data_NavonT %>%
 filter(Correct == "1")
# Ungroup df
data_NavonT <- ungroup(data_NavonT)</pre>
# Global SD 1 (consistent trials only)
sd_Global_con <- data_NavonT %>%
 filter((Consistency == "Consistent") & display == "task1") %>%
  summarise(sd(Reaction.Time, na.rm = TRUE))
sd_Global_con <- sd_Global_con[[1]]</pre>
# Local SD 1 (consistent trials only)
sd_Local_con <- data_NavonT %>%
  filter((Consistency == "Consistent") & display == "task2") %>%
  summarise(sd(Reaction.Time, na.rm = TRUE))
sd_Local_con <- sd_Local_con[[1]]</pre>
# Local SD 2 (inconsistent trials only)
sd_Local_incon <- data_NavonT %>%
 filter((Consistency == "Inconsistent") & display == "task2") %>%
  summarise(sd(Reaction.Time, na.rm = TRUE))
sd_Local_incon <- sd_Local_incon[[1]]</pre>
# Calculate pooled SD
# https://www.statisticshowto.com/pooled-standard-deviation/
```

```
# Pooled SD consistent (local and global)
pooled_SD_con <- sqrt((sd_Global_con^2 + sd_Local_con^2)/2)</pre>
# Pooled SD local (consistent and inconsistent)
pooled_SD_local <- sqrt((sd_Local_incon^2 + sd_Local_con^2)/2)</pre>
# Final form of the Navon data
  # Select relevant columns and transform the data so columns reflect mean reaction times in each of th
data_NavonT_final <- data_NavonT %>%
  select(Participant.Private.ID, Consistency, display, Reaction.Time) %>%
  group_by(Participant.Private.ID, Consistency, display) %>%
  summarise(NavonReactionTimeMean = mean(Reaction.Time, na.rm = TRUE),
            .groups = "keep") %>%
  pivot_wider(names_from = c(Consistency, display),
             values_from = NavonReactionTimeMean)
# Global-local precedence index: Standardized mean difference (cohen's d) in RT between global and loca
data_NavonT_final <- data_NavonT_final %>%
  mutate(GlobalToLocalPrecedence = ((Consistent_task1 - Consistent_task2) / as.numeric(pooled_SD_con)))
# Global-to-local interference index: Standardized mean difference (cohen's d) in RT between inconsiste
data_NavonT_final <- data_NavonT_final %>%
  mutate(GlobalToLocalInterference = ((Inconsistent_task1 - Consistent_task2) / as.numeric(pooled_SD_lo
# Exclude nonvalid participants
data_NavonT_final <- merge(data_NavonT_final, data_ConsentValidity,</pre>
                           by = "Participant.Private.ID")
\# Validity/languege filter + get rid of participants who stopped mid-task + select relevant columns
data_NavonT_final <- data_NavonT_final %>%
  filter(Validity.quantised %in% c(1, NA, "") & Language %in% c("Sujuva / äidinkieli", "Keskitaso / ke
  filter(Participant.Private.ID != "4907987" & Participant.Private.ID != "4960307" & Participant.Privat
  select(Participant.Private.ID, Consistent_task1, Consistent_task2, Inconsistent_task1, Inconsistent_t
# Two participants' reaction times were replaced with NAs due to their accuracy being below 60%; this p
data_NavonT_final <- data_NavonT_final %>%
  filter(Participant.Private.ID != "5608075" & Participant.Private.ID != "5411218")
Navon <- c("Consistent_task1", "Consistent_task2", "Inconsistent_task1", "Inconsistent_task2", "GlobalT
describe(data_NavonT_final[, Navon])
##
                             vars n
                                       mean
                                                 sd median trimmed
                                                                      mad
                                                                             min
## Consistent_task1
                               1 134 339.25 125.81 304.47 321.95 91.63 183.15
                                2 134 350.40 143.03 323.65 327.71 97.68 186.50
## Consistent_task2
## Inconsistent_task1
                               3 134 424.62 168.62 387.51 399.77 112.44 200.26
## Inconsistent_task2
                               4 134 399.46 162.15 352.67 377.51 143.82 194.45
## GlobalToLocalPrecedence
                               5 134 -0.01
                                              0.06
                                                      0.00
                                                              0.00
                                                                   0.03 - 0.28
                                                                     0.33 - 1.44
## GlobalToLocalInterference
                               6 134
                                      0.23
                                              0.53
                                                      0.13
                                                              0.19
                                max range skew kurtosis
## Consistent_task1
                            955.31 772.16 2.05
                                                      6.01 10.87
## Consistent_task2
                           1088.44 901.94 2.16
                                                      6.72 12.36
## Inconsistent_task1
                            1190.92 990.65 1.72
                                                      3.77 14.57
```

```
## Inconsistent_task2 1078.33 883.89 1.49 2.95 14.01 ## GlobalToLocalPrecedence 0.19 0.48 -0.98 6.72 0.00 ## GlobalToLocalInterference 2.98 4.42 1.19 5.91 0.05
```

```
par(mfrow = c(2, 3))
for (i in 1:length(Navon)) {
  hist(data_NavonT_final[, Navon[i]],
        main = colnames(data_NavonT_final[Navon[i]]),
        col = sample(colors(), 1),
        xlab = "")
}
```


GlobalToLocalPrecedence

GlobalToLocalInterference

Necker

Exclusion criteria: none for now

Data processing: for each participant, we calculate the average rate of space bar hits (switches the participant experienced) per second.

```
# Omit irrelevant rows and columns
data_NeckerT <- data_NeckerT %>%
  select(Participant.Private.ID, Spreadsheet:Image) %>%
  filter(display %in% c("Trial 1", "Trial 2"))
# Calculate sum score for how many times space bar was hit in total
```

```
data_NeckerT_final <- data_NeckerT %>%
  select(Participant.Private.ID, Response) %>%
  group_by(Participant.Private.ID) %>%
  summarise(NeckerCountTotal = sum(Response == "space", na.rm = TRUE))
# Calculate switches per second
data_NeckerT_final <- data_NeckerT_final %>%
  mutate(NeckerTotalRate = NeckerCountTotal/60)
# Merge to exclude participants
data_NeckerT_final <- merge(data_NeckerT_final, data_ConsentValidity,</pre>
                            by = "Participant.Private.ID")
# Subset by validity and consent info + omit the irrelevant columns
data_NeckerT_final <- data_NeckerT_final %>%
  filter(Validity.quantised %in% c("1", NA, "") & Language %in% c("Sujuva / äidinkieli", "Keskitaso / 1
  filter(Participant.Private.ID != "5385143") %>%
  select(Participant.Private.ID, NeckerCountTotal, NeckerTotalRate)
# Describe
describe(data_NeckerT_final$NeckerTotalRate)
##
      vars n mean sd median trimmed mad min max range skew kurtosis
## X1
      1 145 0.14 0.1 0.12
                                 0.12 0.07 0 0.48 0.48 1.25
hist(data_NeckerT_final$NeckerTotalRate,
       main = "Necker Total Rate",
       col = sample(colors(), 1),
      xlab = "")
```

Necker Total Rate

Unusual Uses Task

Exclusion criteria: None.

Data processing: for each participant, we calculate the average of the fluency sum scores (ratings by two raters) and the flexibility sum scores (ratings by two raters). The fluency/flexibility sum scores capture the number of answers across all trials that were classified as fluent/flexible. * Fluency is a measure of how many unique unusual uses a ppt can think of for each item. * Flexibility score refers to the uniqueness of the functional categories of items, i.e. a participant gets two point for using a shoe as a doorstop and a flowerpot but only one point for a houseplant pot and a bonsai tree pot (same functional use).

```
data_UUT$KFlexibilitySum),
                            na.rm = TRUE)
data_UUT$FluencySum <- rowMeans(cbind(data_UUT$SFluencySum,</pre>
                                     data_UUT$KFluencySum),
                               na.rm = TRUE)
# Check validity + extract relevant columns
data_UUT <- merge(data_UUT, data_ConsentValidity,</pre>
                 by = "Participant.Private.ID")
data_UUT <- data_UUT %>%
  filter(Validity.quantised %in% c("1", NA, "") & Language %in% c("Sujuva / äidinkieli", "Keskitaso / 1
  select(Participant.Private.ID, FlexSum, FluencySum)
# Describe
uut <- c("FlexSum", "FluencySum")</pre>
describe(data_UUT[, uut])
##
              vars n mean
                              sd median trimmed
                                                  mad min max range skew
## FlexSum
              1 145 29.81 9.69 28.5 29.35 9.64
                                                        6 61
                                                                   55 0.50
## FluencySum 2 145 31.59 10.99 30.0 30.88 10.38
                                                        7 75
                                                                   68 0.85
             kurtosis
                        se
## FlexSum
                 0.32 0.81
## FluencySum
                 1.56 0.91
par(mfrow = c(2, 1))
for (i in 1:length(uut)) {
 hist(data_UUT[, uut[i]],
       main = colnames(data_UUT[uut[i]]),
       col = sample(colors(), 1),
      xlab = "")
}
```


Merge task variables

Doesn't yet include the CI task!

Analyze Missing Data in Tasks

Participants with large amounts of missing data or suspicious patterns of missing data are removed here. It should be noted that missing data refers to data that was missing from the start and data that was replaced

with missing values if the participant met one of the exclusion criteria. Done separately for questionnaires and tasks.

```
# Task variables
t_var <- c("GNGdprime", "GNGbeta", "MeanGoRT", "SDGoRT", "GlobalToLocalPrecedence", "GlobalToLocalInter

# Add a column for count of missing data per ppt
data_T_sub$t_missingdata <- rowSums(is.na(data_T_sub[, t_var]))
table(data_T_sub$t_missingdata)

##
## 0 2 3 4 5 6 7
## 131 7 1 4 1 3 2

plot(sort(data_T_sub$t_missingdata))</pre>
```


Warning: Removed 15 rows containing missing values (geom_tile).


```
cor.test(data_T_sub$Age, data_T_sub$t_missingdata,
    method = "spearman", exact = FALSE)
```

```
##
    Spearman's rank correlation rho
##
##
## data: data_T_sub$Age and data_T_sub$t_missingdata
## S = 485253, p-value = 0.1456
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
         rho
## 0.1198027
# Remove participants with 4 or more missing task variables
data_T_sub <- data_T_sub %>%
  group_by(Participant.Private.ID) %>%
  filter(t_missingdata < 4)</pre>
# Omit irrelevant columns
data_T_sub <- data_T_sub %>%
  select(-t_missingdata)
```

Check Task Distributions and Correlations

This chunk checks distributions of task variables and correlations between them: * If distributions are highly skewed (>=1), transformations are applied to decrease skewness * If two variables are highly correlated, one of them is dropped (Eisenberg et al.) (r>=.85)

```
# Normality of variables: visualize with histograms
data_T_sub <- as.data.frame(data_T_sub)
par(mfrow = c(2, 2))
for (i in 1:length(t_var)) {
   hist(data_T_sub[, t_var[i]],
        main = colnames(data_T_sub[t_var[i]]),
        col = sample(colors(), 1),
        xlab = "")
}</pre>
```


GlobalToLocalPrecedence

GlobalToLocalInterference

NeckerTotalRate

FlexSum


```
# Describe: mean, skew, kurtosis
describe(data_T_sub[, t_var])[c("mean", "skew", "kurtosis")]
```

```
##
                                mean skew kurtosis
## GNGdprime
                                2.64 -0.07
                                              -0.65
## GNGbeta
                                              14.87
                                0.17
                                      3.38
## MeanGoRT
                              412.71
                                     0.70
                                               0.68
## SDGoRT
                               92.83
                                               1.12
                                     1.10
## GlobalToLocalPrecedence
                                0.00 - 1.02
                                               6.85
## GlobalToLocalInterference
                                0.23 1.16
                                               5.82
## NeckerTotalRate
                                0.14
                                     1.28
                                               2.14
## FlexSum
                               29.95 0.60
                                               0.42
## FluencySum
                               31.72 0.98
                                               1.79
```

```
# Transforming all variables with absolute skew > 1
data_T_sub$GNGbetalog <- log10(data_T_sub$GNGbeta)
data_T_sub$SDGoRTlog <- log10(data_T_sub$SDGoRT)
data_T_sub$GlobalToLocalInterferencelog <- log10(data_T_sub$GlobalToLocalInterference)</pre>
```

Warning: NaNs produced

 $\label{local_sub} $$ \arrowvert = 10 \arrow$

```
## GNGbetalog
                                -1.02 -0.04
## MeanGoRT
                               412.71 0.70
                                               0.68
## SDGoRTlog
                                 1.95 0.38
                                               -0.25
## GlobalToLocalPrecedencelog
                                 0.08 0.49
                                                5.83
## GlobalToLocalInterferencelog -0.58 -0.25
                                               -0.27
## NeckerTotalRatelog
                                 0.05 1.00
                                               1.26
## FlexSum
                                29.95 0.60
                                                0.42
## FluencySum
                                31.72 0.98
                                                1.79
```

```
# Visualize
par(mfrow = c(2, 2))
```

FluencySum


```
for (i in 1:length(t_var_log)) {
  hist(data_T_sub[, t_var_log[i]],
    main = colnames(data_T_sub[t_var_log[i]]),
    col = sample(colors(), 1),
```

```
xlab = "")
1
```


GlobalToLocalPrecedencelog

GlobalToLocalInterferencelog

NeckerTotalRatelog

FlexSum

##		${\tt GNGdprime}$	${\tt GNGbetalog}$	${\tt MeanGoRT}$	SDGoRTlog
##	GNGdprime	1.00	-0.69	0.14	-0.39
##	GNGbetalog	-0.69	1.00	0.39	0.68
##	MeanGoRT	0.14	0.39	1.00	0.67
##	SDGoRTlog	-0.39	0.68	0.67	1.00
##	GlobalToLocalPrecedencelog	0.04	-0.09	-0.15	-0.16
##	${\tt GlobalToLocalInterferencelog}$	-0.17	0.35	0.24	0.31
##	NeckerTotalRatelog	0.07	-0.21	-0.16	-0.19
##	FlexSum	0.19	-0.12	0.00	-0.08
##	FluencySum	0.20	-0.15	-0.02	-0.09
##		GlobalToLo	ocalPreceder	ncelog	
##	GNGdprime			0.04	
##	GNGbetalog			-0.09	
##	MeanGoRT			-0.15	
##	SDGoRTlog			-0.16	
##	GlobalToLocalPrecedencelog			1.00	
##	${\tt GlobalToLocalInterferencelog}$			-0.48	
##	NeckerTotalRatelog			0.00	
##	FlexSum			-0.05	
##	FluencySum			-0.03	
##		GlobalToLo	ocalInterfe	rencelog 1	NeckerTotalRatelog
##	GNGdprime			-0.17	0.07

```
## GNGbetalog
                                                          0.35
                                                                             -0.21
## MeanGoRT
                                                          0.24
                                                                             -0.16
## SDGoRTlog
                                                          0.31
                                                                             -0.19
## GlobalToLocalPrecedencelog
                                                         -0.48
                                                                              0.00
## GlobalToLocalInterferencelog
                                                          1.00
                                                                             -0.14
## NeckerTotalRatelog
                                                                              1.00
                                                         -0.14
## FlexSum
                                                          0.07
                                                                              0.09
## FluencySum
                                                          0.07
                                                                              0.10
##
                                 FlexSum FluencySum
                                    0.19
                                                0.20
## GNGdprime
## GNGbetalog
                                   -0.12
                                               -0.15
## MeanGoRT
                                    0.00
                                               -0.02
## SDGoRTlog
                                   -0.08
                                               -0.09
                                               -0.03
## GlobalToLocalPrecedencelog
                                   -0.05
## GlobalToLocalInterferencelog
                                    0.07
                                                0.07
## NeckerTotalRatelog
                                    0.09
                                                0.10
## FlexSum
                                    1.00
                                                0.98
## FluencySum
                                    0.98
                                                1.00
abs(round(cor(data_T_sub[, t_var_log], method = "pearson",
              use = "pairwise.complete.obs"), 2)) > .85
##
                                 GNGdprime GNGbetalog MeanGoRT SDGoRTlog
## GNGdprime
                                                 FALSE
                                      TRUE
                                                          FALSE
                                                                     FALSE
                                     FALSE
                                                  TRUE
## GNGbetalog
                                                          FALSE
                                                                     FALSE
## MeanGoRT
                                                           TRUE
                                     FALSE
                                                 FALSE
                                                                     FALSE
## SDGoRTlog
                                     FALSE
                                                 FALSE
                                                          FALSE
                                                                      TRUE
## GlobalToLocalPrecedencelog
                                     FALSE
                                                 FALSE
                                                          FALSE
                                                                     FALSE
## GlobalToLocalInterferencelog
                                                          FALSE
                                     FALSE
                                                 FALSE
                                                                     FALSE
## NeckerTotalRatelog
                                     FALSE
                                                 FALSE
                                                          FALSE
                                                                     FALSE
## FlexSum
                                     FALSE
                                                 FALSE
                                                          FALSE
                                                                     FALSE
## FluencySum
                                     FALSE
                                                 FALSE
                                                          FALSE
                                                                     FALSE
##
                                 GlobalToLocalPrecedencelog
## GNGdprime
                                                       FALSE
```

GNGbetalog FALSE ## MeanGoRT FALSE ## SDGoRTlog FALSE TRUE ## GlobalToLocalPrecedencelog ## GlobalToLocalInterferencelog **FALSE** ## NeckerTotalRatelog **FALSE** ## FlexSum **FALSE** ## FluencySum **FALSE**

GlobalToLocalInterferencelog NeckerTotalRatelog ## ## GNGdprime **FALSE FALSE** ## GNGbetalog **FALSE** FALSE ## MeanGoRT FALSE FALSE ## SDGoRTlog FALSE **FALSE** ## GlobalToLocalPrecedencelog **FALSE** FALSE ## GlobalToLocalInterferencelog TRUE **FALSE** ## NeckerTotalRatelog FALSE TRUE ## FlexSum **FALSE** FALSE ## FluencySum FALSE **FALSE**

FlexSum FluencySum ## GNGdprime FALSE FALSE

```
FALSE
                                              FALSE
## GNGbetalog
## MeanGoRT
                                   FALSE
                                              FALSE
## SDGoRTlog
                                   FALSE
                                              FALSE
## GlobalToLocalPrecedencelog
                                   FALSE
                                              FALSE
## GlobalToLocalInterferencelog
                                   FALSE
                                              FALSE
## NeckerTotalRatelog
                                   FALSE
                                              FALSE
## FlexSum
                                    TRUE
                                               TRUE
                                    TRUE
                                               TRUE
## FluencySum
```

```
## Warning in corrplot(cor(data_T_sub[, t_var_log], method = "pearson", use =
## "pairwise.complete.obs")): Not been able to calculate text margin, please try
## again with a clean new empty window using {plot.new(); dev.off()} or reduce
## tl.cex
```

Exclude FluencySum as it correlates highly with FlexSum; only include log-transformed variables where data_T_sub <- data_T_sub %>%

 $\verb|select(Participant.Private.ID, GNGdprime, GNGbetalog, MeanGoRT, SDGoRT, GlobalToLocalInterferencelog, Interference to the select of the control of the select of the s$

Format the Task and Questionnaire Dataframes

##		Participant.Private.ID	AMean				OMean	ICuriositySum
##	1	4831351	4.0	7.0	6.0	2	7.0	21
##		4831981	4.0	5.5	4.0	3	6.0	21
##	3	4877584	5.5	5.0	3.0	3	4.5	21
##		4886552	5.0	6.5	2.0	5	5.0	20
##	5	4886650	NA	NA	NA	NA	NA	15
##		4886771	4.5	6.0	4.0	6	4.0	16
	7	4886773	6.5	4.0	6.0	3	6.0	23
	8	4886824	5.5	4.0	2.5	5	5.5	17
##		4887029	4.5	6.5	5.5	7	5.0	23
	10	4887607	6.0	6.5	5.0	6	3.5	18
	11	4888071	4.5	5.5	4.0	3	7.0	19
##	12	4891916	3.5	2.5	2.5	4	5.5	22
	13	4907987	6.5	5.5	3.5	6	5.0	24
##	14	4914191	6.5	4.0	6.5	3	6.0	9
	15	4916307	4.5	3.5	3.5	3	5.0	17
	16	4921307	3.5	4.0	5.0	3	5.0	20
	17	4922817	6.5	3.5	3.0	4	5.5	18
##	18	4929121	4.5	4.5	3.5	5	3.0	16
##	19	4943807	6.5	6.0	5.5	6	6.0	22
	20	4945017	5.0	6.0	5.5	6	4.5	20
	21	4946837	2.5	7.0	2.0	6	5.5	22
##		4948053	5.5	3.5	6.0	3	4.0	18
##		4948269	5.5	4.5	5.5	3	4.5	17
##		4959255	5.0	1.5	2.0	2	5.0	19
	25	4959547	5.5	2.5	7.0	3	6.0	21
	26	4973999	6.0	6.0	2.0	5	4.0	21
	27	4978306	4.0	5.0	3.5	4	7.0	25
##	28	4986367	5.0	4.0	3.0	6	5.5	21
##		5110749	6.0	5.0	4.0	4	6.5	20
##		5117494	4.0	4.5	2.0	5	6.5	23
## ##	31	5120203	4.0	3.5	4.0	3	5.5	24
	32	5126869	4.0 5.5	5.0 6.0	5.0 5.0	6	6.0 5.5	23
##	33 34	5130877				6 1		21 24
	35	5132910 5133207	3.5 4.0	4.5 5.0	5.5 6.0	5	6.5 6.0	20
	36	5133586	4.0	4.0	4.0	5 5	4.5	20
	37	5155990	4.5	6.5	5.5	4		23
##	38				3.0	2	5.0 3.5	
##	39	5175309 5189349	6.0 4.5	6.5 4.0	2.5	3	6.5	16 20
	39 40		5.5	5.5	2.5	6	4.5	22
	41	5191578 5192188	4.0	5.5	3.0	5	3.5	14
##		5201242	2.5	4.0	4.0	2	3.5	23
##	42	5201242	2.5	4.0	4.0	2	3.5	23

##		5202064	4.5	4.5	6.0	4	5.5	20
##	44	5258209	5.0	3.0	5.5	3	6.0	24
##	45	5282634	3.5	4.5	5.5	4	4.5	16
##		5287907	6.0	5.5	5.0	6	5.0	19
##						4	4.0	23
		5290491	3.5	5.5	5.0			
##		5292007	3.5	6.0	3.5	2	6.0	24
##	49	5298015	1.5	2.0	1.0	1	7.0	25
##	50	5305503	5.5	5.5	3.5	6	5.5	25
##	51	5320807	4.5	5.0	6.0	5	5.5	22
##		5336084	4.0	3.5	6.0	6	6.0	23
##		5354577	7.0	5.5	5.5	6	7.0	24
##		5355205	4.5	4.0	5.0	5	5.0	21
##	55	5358132	4.0	4.0	5.0	2	4.0	18
##	56	5372338	4.0	5.0	2.5	6	4.5	21
##	57	5375463	5.5	6.0	6.5	6	6.5	25
##		5380955	1.5	5.0	3.0	2	5.5	16
##		5384429	6.5	4.0	5.5	4	5.5	24
##		5387595	4.0	6.0	5.0	5	5.0	19
##		5388970	5.0	3.0	2.5	4	4.5	18
##	62	5399212	6.0	5.0	5.0	4	6.0	24
##	63	5411218	3.5	2.0	4.5	4	4.0	25
##	64	5435499	4.0	3.0	3.5	5	4.5	23
##	65	5440344	3.5	5.0	6.0	6	4.5	22
##		5443499				7	6.0	21
			4.5	4.5	2.5			
##		5443570	7.0	1.5	3.0	2	5.5	24
##	68	5446208	5.0	3.5	3.5	6	3.0	16
##	69	5446920	4.5	3.5	6.0	3	6.5	24
##	70	5449061	5.0	3.5	1.5	6	7.0	20
##	71	5451953	6.5	4.0	6.0	4	6.5	22
	72	5473445	5.0	3.0	1.5	6	4.5	19
	73	5476245	5.0			6		24
				5.0	3.5		5.0	
	74	5478640	3.0	5.5	3.0	2	5.0	24
##	75	5486644	6.5	6.5	4.0	6	5.0	18
##	76	5486645	4.5	6.0	6.0	5	5.5	24
##	77	5486960	5.0	4.5	4.5	7	6.0	23
##	78	5488274	4.5	5.0	4.0	5	5.5	20
##		5488336	5.5	3.0	3.5	2	5.5	20
		5493143				_		16
##			5.5	4.0	5.5	2	3.5	
##		5498171	5.5	3.0	6.0	3	5.5	25
##		5504593	6.5	4.0	4.0	5	6.0	21
##	83	5505611	6.0	2.5	3.0	1	5.0	16
##	84	5506382	3.5	3.5	2.0	5	5.5	20
##	85	5507405	4.0	5.5	5.0	5	4.5	18
##		5517409	6.0	4.0	5.5	4	6.5	25
##						6	5.0	
		5520492	5.0	3.5	4.0			19
	88	5526450	1.5	5.0	4.5	3	4.5	25
##		5542767	6.5	4.0	6.5	6	6.5	21
##	90	5548631	4.5	5.0	2.5	5	5.5	22
##	91	5555000	5.5	4.5	2.5	7	5.0	21
##		5555882	4.0	6.0	1.5	5	3.0	23
##		5556093	6.0	5.5	5.5	6	2.0	17
##		5559681	6.0	5.0	5.0	6	5.0	24
##		5562166	5.5	5.5	5.0	5	6.0	21
##	96	5569558	3.5	6.0	7.0	6	7.0	24

## 97	5578226	6.0	6.0	3.5	6	5.0	18
## 98	5608075	5.0	4.5	4.5	5	6.0	25
## 99	5614189	6.5	2.0	5.5	7	6.0	24
## 100	5616968	4.5	2.0	7.0	1	5.5	25
## 101	5618126	5.0	4.0	3.0	4	4.0	20
## 102	5621289	5.0	3.5	2.5	4	6.0	25
## 103	5626669	NA	NA	NA	NA	NA	19
## 104	5629594	5.5	4.5	5.5	3	5.0	14
## 105	5629626	3.5	5.5	3.5	4	3.0	24
## 106	5629995	3.5	2.0	6.5	2	7.0	25
## 107	5631076	5.0	6.5	4.0	4	1.5	14
## 108	5634435	6.5	4.5	4.5	6	5.5	21
## 109	5641501	3.0	4.5	4.0	3	4.5	21
## 110	5645930	5.5	5.5	3.5	7	6.0	24
## 111	5649003	5.0	3.5	4.5	6	4.0	24
## 112	5650356	6.0	5.5	4.0	6	5.5	22
## 113	5653192	4.0	3.5	2.0	6	2.5	14
## 114	5653211	6.0	6.0	5.0	6	6.0	23
## 115	5659605	6.0	4.0	2.0	5	5.5	22
## 116	5676387	4.5	6.5	5.5	6	7.0	25
## 117	5679394	4.5	4.0	2.5	3	5.0	22
## 118	5686104	3.5	3.5	4.0	5	4.5	20
## 119	5687746	6.0	6.5	5.5	7	6.5	23
## 119 ## 120	5688370	5.0	6.5	5.0	7	6.0	22
## 120 ## 121					2	7.0	22
## 121 ## 122	5691188	6.5	4.0	1.0	6	6.0	21
## 122 ## 123	5691497	5.5	4.5	2.0	4		
	5693586	4.0	5.0	3.0		4.5	20
## 124	5693701	3.5	3.0	6.0	3	5.5	20
## 125	5695843	3.0	6.5	3.0	6	3.5	17
## 126	5695925	5.0	3.0	4.0	2	7.0	24
## 127	5726771	5.5	6.5	3.5	4	5.5	19
## 128	5731793	NA	NA	NA	NA	NA	20
## 129	5731864	6.0	5.5	3.5	6	5.5	24
## 130	5747184	4.5	3.0	4.0	4	5.0	23
## 131	5758326	6.0	4.5	4.0	5	4.5	23
## 132	5758833	6.0	4.5	1.5	2	6.0	NA
## 133	5767733	4.5	4.5	3.5	3	6.5	20
## 134	5774889	4.5	6.5	7.0	3	5.5	20
## 135	5791357	3.5	4.5	6.0	3	4.0	20
## 136	5798816	3.5	2.5	2.0	3	5.0	19
## 137	5805972	3.0	5.0	5.0	5	4.0	19
## 138	5808176	4.5	3.5	3.5	3	4.0	16
## 139	5818084	5.5	6.0	5.5	6	5.5	20
## 140	5828423	5.0	6.0	5.5	7	5.5	25
## 141	5842153	5.0	6.0	6.0	6	6.5	20
## 142	5844536	6.0	5.5	6.0	5	5.5	NA
## 143	5845513	4.5	6.0	4.5	2	6.0	24
## 144	5849414	4.0	5.0	6.5	5	5.0	18
## 145	5867681	4.0	6.0	5.0	6	5.5	23
## 146	5879081	3.0	5.5	2.5	5	4.5	24
## 147	5885149	5.5	5.5	4.5	4	5.0	22
## 148	5891043	6.0	5.0	4.0	5	5.0	20
## 149	5893310	3.5	5.0	3.0	4	4.5	25
## 150	5896498	6.5	6.5	5.5	6	6.0	23

##	DCuriositySum								
## 1		25	23	23	16	41	86	41	4
	2 17	16	21	18	15	43	89	36	3
## 3		20	18	20	19	51	90	36	2
## 4		15	19	17	19	75	80	35	2
## 5		15	15	15	15	NA	63	NA	1
## 6		20	20	19	17	52	82	NA	3
## 7		15	22	21	17	52	94	43	3
	8 13	25	19	25	21	56	71	37	3
## 9		19	19	23	16	34	88	34	2
	10 16	17	20	19	22	59	79	39	2
	11 17	18	19	20	24	49	84	43	2
	12 17 13 16	20	21	19	17 17	46	82 NA	44	3 2
	13 16 14 9	18 18	21 20	25 18	17	49 62	NA 68	46 33	0
	15 10	13	20	17	21	62	64	45	3
	16 14	14	20	19	19	51	70	43	2
	17 19	11	24	22	22	50	74	39	1
	18 13	6	18	20	20	61	54	43	1
	19 16	20	20	24	17	60	74	44	3
	20 19	22	20	15	16	53	85	44	3
	21 16	24	22	20	13	57	81	47	3
	22 15	20	22	23	17	55	79	41	3
## 2		17	20	21	15	50	72	35	0
## 2		5	21	17	21	80	44	44	3
## 2		11	17	23	19	42	64	42	3
## 2	26 18	21	21	22	22	52	85	44	3
## 2	27 18	19	20	24	17	40	92	42	2
## 2	28 20	20	20	17	15	52	83	36	3
## 2	29 17	15	22	16	17	61	77	48	2
## 3	30 14	25	21	17	15	45	85	NA	1
	31 18	17	25	16	20	52	88	48	3
	32 22	18	23	25	20	57	78	43	2
	33 14	15	20	20	16	46	85	45	3
	34 20	11	21	21	16	54	86	45	2
	35 18	19	20	20	19	36	78	43	1
## 3		19	19	21	15	47	84	35	3
## 3		23	24	22	19	47	89	44	4
## 3		11 20	20 23	20 19	20 9	72 59	67 90	34 43	3
## 4		15	20	20	13	66	63	43	4 4
## 4		19	19	19	15	51	62	44	2
## 4		13	25	16	18	60	84	43	2
## 4		18	18	18	18	44	92	44	3
## 4		18	21	18	21	28	98	44	3
## 4		20	17	16	17	48	69	NA	1
## 4		24	17	24	17	38	93	34	1
## 4		20	21	18	23	43	85	43	2
## 4		12	20	17	14	50	99	46	2
## 4		25	25	21	18	37	90	49	4
## 5	50 21	22	24	22	16	46	92	44	2
## 5	51 16	20	18	20	16	48	75	40	1
## 5	52 21	19	21	18	19	44	95	42	2
## 5	53 19	14	18	20	16	33	105	39	1

##	54	13	10	20	16	15	58	72	47	3
##	55	13	18	19	17	18	39	68	42	1
##		19	20	23	20	18	73	85	NA	2
##		20	25	25	22	19	36	99	45	2
##							52		45	2
		16	25	18	18	16		63		
##		16	22	24	20	16	39	90	48	3
##		13	19	20	21	17	52	75	44	3
##	61	10	19	20	19	19	41	64	43	1
##	62	21	17	24	24	18	59	95	46	4
##	63	23	16	25	13	18	49	105	49	1
##	64	13	15	20	21	21	51	84	45	3
##	65	19	16	25	23	18	40	103	40	3
##	66	18	24	19	18	16	51	87	39	0
##		14	8	25	25	25	31	71	46	3
	68	14	13	23	15	17	49	79	40	3
##		18	16	23	20	15	56	81	40	2
##		16	11	21	22	20	56	90	45	3
##		16					55			
##			16	20	24	14		84	31	0
		10	22	24	17	20	57	64	46	2
##		19	17	22	21	15	54	93	46	3
##		19	22	22	20	19	71	88	39	4
##		15	13	17	19	16	51	85	39	3
##	76	18	25	22	24	19	50	92	41	4
##	77	17	14	21	20	17	55	82	39	2
##	78	17	18	23	20	18	58	72	37	4
##	79	16	10	20	17	18	68	60	40	0
##	80	12	11	22	18	20	57	62	38	2
##	81	23	23	25	20	22	37	84	44	3
##	82	13	12	23	22	16	68	71	36	3
##	83	10	13	19	14	24	63	66	42	4
##		17	16	22	18	24	48	75	43	4
##		12	19	19	15	19	52	77	42	2
##		19	19	25	23	17	48	77	39	1
##		9	25	22	20	18	51	85	49	3
##				21	17	22				
		23	19				34	88	NA 40	1
##		16	18	24	24	24	50	62	48	1
##		19	20	23	19	24	52	79	43	2
##		16	18	22	19	20	55	84	45	4
##		22	8	18	19	19	66	78	47	3
##		13	12	19	18	18	67	63	40	3
##		19	22	21	21	16	41	91	49	2
##	95	15	17	20	19	17	51	78	33	2
##		18	25	18	23	20	39	101	38	1
##	97	15	NA	NA	NA	NA	63	90	47	3
##	98	16	15	25	25	21	36	90	48	3
##	99	17	18	24	24	21	39	97	49	4
##	100	15	25	21	24	16	37	101	45	2
	101	16	14	20	16	16	55	74	43	3
	102	22	22	22	19	18	52	91	46	2
	103	21	23	22	20	13	52	64	40	3
	104	9	19	20	24	16	53	65	39	1
	105	20	18	20 19			53	89		
					18	16			NA 46	1
	106	25	17	25	21	17	68	92	46	2
##	107	10	13	17	17	18	68	57	36	3

##	108		13	24	22	20	17	45	81	33	3
	100		20		21		16	80	81	33 47	3
				11		12					
	110		15	22	15	21	16	48	60	33	2
	111		13	19	23	20	20	48	85	45	4
	112		16	20	21	19	20	38	88	44	3
	113		10	23	17	17	21	67	52	42	2
	114		16	16	23	21	19	66	86	42	3
	115		15	21	15	20	13	54	84	33	3
	116		13	25	25	23	22	37	99	48	3
	117		16	18	25	17	25	45	85	48	3
	118		20	22	20	19	17	49	94	40	4
	119		18	17	23	19	17	55	103	46	2
##	120		16	25	23	23	16	54	85	44	3
##	121		18	23	24	20	16	47	77	47	2
##	122		13	22	19	21	18	47	79	44	2
##	123		18	17	18	20	16	55	66	44	2
##	124		19	19	24	22	17	33	88	45	3
##	125		12	25	19	24	16	57	58	44	2
##	126		19	22	23	19	15	44	85	44	3
##	127		16	9	23	25	20	56	76	43	3
##	128		17	19	19	16	15	NA	87	43	4
##	129		22	12	16	23	13	66	96	42	2
##	130		19	15	20	21	18	46	97	46	3
##	131		14	16	18	21	18	46	93	42	3
##	132		NA	8	19	21	20	56	77	35	2
##	133		17	17	22	23	16	32	74	41	4
##	134		23	14	23	19	17	69	89	33	3
##	135		14	20	17	20	17	50	83	37	2
##	136		16	20	24	21	17	48	86	46	3
##	137		16	19	16	13	13	51	85	43	3
##	138		16	20	21	17	14	NA	NA	43	3
##	139		18	12	22	20	17	39	88	40	3
##	140		24	20	25	25	14	49	95	NA	3
##	141		15	21	19	24	17	27	86	43	1
	142		NA	24	18	18	17	44	78	NA	2
	143		21	14	24	17	19	61	79	42	4
	144		12	16	18	17	19	45	84	42	3
	145		13	20	19	23	17	49	90	43	2
	146		15	19	25	24	20	65	89	49	3
	147		18	13	23	23	16	55	66	40	4
	148		13	19	19	20	18	55	68	45	3
	149		22	16	22	22	11	67	104	44	2
	150		7	10	24	19	25	63	75	43	2
##	100	sci cur							GNGdprime		NGbetalog
##	1	15	19	18					3.6990958		_
##		16	20	20					1.8949266		
##		18	18	16					2.3391607		
##		17	18	20							
##		11	12	12				2	4.0000734 NA		.02009009 NA
##		14	NA	N.				5	NA NA		NA NA
##		17	19	19					3.7327300		
##		17	16	17					2.7319268		
##											
		19	15	20					3.7113647		
##	IO	13	14	17	15	,		NA	2.9252307	-0	. 1 1040008

##	11	12	17	19	18	7 2.7109785 -1.86110785
##		18	15	15	18	8 2.6975620 -1.22591799
##		16	19	20	18	7 2.3455435 -1.24523474
##		8	16	15	10	7 1.3924296 -0.36088673
##		12	15	17	10	4 2.7477910 -0.95171211
##		9	15	17	14	5 4.1800874 -0.88397836
##		9	12	16	11	7 3.0107551 -1.87091973
##		10	15	14	13	8 3.3715020 -1.83098496
##		18	16	19	17	4 1.8630742 -0.71354963
##		12	15	20	16	8 3.0657039 -0.98039497
	21	14	16	19	19	8 3.9169481 -1.66327253
##	22	12	15	18	18	8 3.1243005 -1.37698819
##	23	14	16	17	15	2 1.9279548 -0.41970204
##	24	14	16	20	16	7 1.6808831 -0.97160330
##	25	16	16	17	18	9 2.6459853 -1.23211309
##	26	10	14	17	18	5 1.9282842 -0.53235911
##	27	15	13	15	19	6 3.1360994 -1.86345131
##	28	13	18	16	16	7 1.5035685 -0.72256149
##	29	13	15	16	14	5 1.9507611 -0.48056593
##	30	15	15	16	18	3 NA NA
##	31	19	16	20	17	5 2.3966572 -0.79423322
##	32	17	16	15	15	8 3.1360994 -1.86345131
##	33	13	16	16	17	6 2.7268495 -0.86141340
##	34	16	11	17	18	7 3.6990958 -1.74575440
##	35	19	14	17	15	5 2.4186690 -1.11330428
##	36	12	15	15	16	6 3.0397008 -1.39554325
##	37	17	19	19	19	9 1.6526945 -0.96542567
##		13	17	19	15	8 2.9359266 -1.02162963
##		14	16	19	20	7 2.5377699 -0.76323391
##	40	16	16	20	19	7 4.0961770 -0.94086964
##		15	14	16	17	7 3.4069773 -0.57309693
##		20	18	20	18	4 NA NA
##		15	18	17	18	8 2.0097021 -0.63572273
##		18	18	18	18	9 3.0747648 -0.84664844
##		15	17	18	19	4 NA NA
##		15	13	19	19	7 2.0642028 -0.70042798
	47	18	16 18	18 20	15 20	6 3.6342777 -1.76631680 7 1.1400025 -0.52506321
##		16 18	18	15	16	6 3.8028731 -1.70903357
##		19	16	20	19	8 2.3672943 -0.93265956
##		13	16	18	15	7 3.2105380 -0.92573966
##		17	18	17	18	6 1.5725664 -0.62196467
##		16	12	18	20	5 2.3966572 -0.79423322
##		11	18	18	16	9 4.0454717 -1.60494491
##		7	19	18	9	8 2.2280977 -0.33982429
##		17	14	20	13	4 NA NA
##		20	19	20	20	5 2.5505338 -0.18390530
##		15	15	16	16	5 3.3365323 -1.05335464
##		14	19	20	20	7 3.3398437 -1.31566550
##		11	16	15	18	4 1.6616422 -0.04904076
##	61	9	14	15	12	4 1.4387027 -0.26054363
##	62	15	15	18	19	8 2.3004982 -1.42543762
##	63	16	15	20	17	7 2.1653360 -0.94805277
##	64	14	17	19	17	5 2.7187289 -0.95880354

## 68	
## 67	
## 68	-1.01900125
## 69	-0.88648642
## 70	-0.49735781
## 71	-1.79998566
## 72	-0.71831661
## 72	-0.96542567
## 73	-0.62047477
## 74	
## 75	
## 76	
## 77	
## 78	
## 79	
## 80	
## 81 12 14 20 17 5 3.1243005 ## 82 18 16 17 17 6 2.6018005 ## 83 12 18 18 18 13 9 3.2985568 ## 84 14 10 19 15 7 3.9169481 ## 85 11 18 19 16 5 2.8811350 ## 86 13 15 19 14 5 3.3759164 ## 87 15 15 17 19 8 3.4168837 ## 88 18 12 17 15 9 NA ## 89 12 17 17 9 8 3.0356679 ## 90 18 17 20 18 7 1.2440383 ## 91 17 15 18 17 8 2.7616219 ## 92 15 16 16 16 16 NA 3.6990958 ## 93 12 12 17 15 8 2.2357721 ## 94 11 16 17 17 7 7 1.2578906 ## 95 18 15 15 15 18 5 1.2193805 ## 97 8 14 13 13 NA 3.8362831 ## 98 20 16 20 17 NA 2.5521592 ## 99 13 12 19 18 9 2.5087078 ## 100 15 15 20 20 8 2.2402760 ## 101 15 17 19 18 6 2.092838 ## 102 18 14 20 19 6 1.5426176 ## 103 10 16 16 13 7 NA ## 104 8 15 16 13 4 3.4596417 ## 105 9 17 16 13 6 NA ## 106 10 19 6 1.2001138 ## 107 11 19 14 15 6 2.9054261 ## 108 11 16 16 16 13 9 2.0439524 ## 109 19 18 10 19 6 2.3427010 ## 110 13 8 16 16 16 13 9 2.0439524 ## 111 12 18 15 17 17 8 1.8763195 ## 111 11 12 18 15 16 19 7 2.0439524	
## 82	
## 83	
## 84	-1.44190303
## 85	-1.06856646
## 86	-1.66327253
## 87	-0.41457740
## 88	-1.03691700
## 88	-1.01910378
## 89	. NA
## 90	
## 91	
## 92	
## 93	
## 94	
## 95	
## 96	
## 97 8 14 13 13 NA 3.8362831 ## 98 20 16 20 17 NA 2.5521592 ## 99 13 12 19 18 9 2.5087078 ## 100 15 15 20 20 8 2.2402760 ## 101 15 17 19 18 6 2.0928383 ## 102 18 14 20 19 6 1.5426176 ## 103 10 16 16 13 7 NA ## 104 8 15 16 13 4 3.4596417 ## 105 9 17 16 13 6 NA ## 106 20 16 20 19 6 1.2001138 ## 107 11 19 14 15 6 2.9054261 ## 108 11 16 16 13 9 2.0439524 ## 109 19 18 20 19 6 2.3427010 ## 110 13 8 16 16 18 9 2.9218713 ## 111 20 17 19 18 9 2.9218713 ## 112 18 15 17 17 8 1.8763195 ## 113 12 16 16 12 7 2.4989563 ## 114 13 15 16 19 7 2.0439524	
## 98	
## 99	
## 100	
## 101	
## 102	
## 103	
## 104	-0.51673856
## 105 9 17 16 13 6 NA ## 106 20 16 20 19 6 1.2001138 ## 107 11 19 14 15 6 2.9054261 ## 108 11 16 16 13 9 2.0439524 ## 109 19 18 20 19 6 2.3427010 ## 110 13 8 16 16 8 0.8797705 ## 111 20 17 19 18 9 2.9218713 ## 112 18 15 17 17 8 1.8763195 ## 113 12 16 16 12 7 2.4989563 ## 114 13 15 16 19 7 2.0439524	. NA
## 106	-0.99973457
## 107	. NA
## 108	-0.55392279
## 109	-1.41861162
## 110	-1.10713734
## 110	-0.80380068
## 111 20 17 19 18 9 2.9218713 ## 112 18 15 17 17 8 1.8763195 ## 113 12 16 16 12 7 2.4989563 ## 114 13 15 16 19 7 2.0439524	-0.41108769
## 112	-0.79928422
## 113	
## 114 13 15 16 19 7 2.0439524	
	-0.50234739
	-0.45517775
	-1.80707708
## 118	-1.05310657

```
## 119
             12
                      14
                                20
                                       17
                                                             2 2.4260396 -0.73153170
## 120
             19
                                16
                                       16
                                                             9 1.0433926 -0.02672405
                      17
## 121
             13
                      15
                                16
                                       16
                                                             7 2.3160661 -0.93824089
## 122
                                19
                                       20
                                                             6 2.8074449 -0.93600682
             14
                      18
## 123
             15
                      15
                                17
                                       14
                                                             7 2.4221933 -1.01019507
## 124
                                                             9 3.2105380 -0.92573966
             14
                      17
                                19
                                       17
## 125
              8
                                                             6 4.0454717 -1.60494491
                      17
                                18
                                       18
                                                             7 2.6764158 -1.43988976
## 126
             16
                      16
                                18
                                       18
## 127
              7
                      11
                                11
                                       14
                                                               2.7499563 -1.21844178
## 128
             17
                      18
                                17
                                       16
                                                             8
                                                                       NA
                                                                                    NA
## 129
             13
                      16
                                19
                                       19
                                                             7 2.3686418 -1.11600814
                                20
## 130
             16
                                       15
                                                               2.6975620 -1.22591799
                      18
## 131
             18
                      16
                                17
                                       19
                                                             8 3.1127404 -0.83143662
                                                             7 1.9162028 -0.94263822
## 132
             NA
                      NA
                                NA
                                       NA
## 133
             18
                                19
                                       18
                                                             7 1.2590101 -0.76132109
                      15
## 134
              8
                      18
                                15
                                       19
                                                             4 2.6764158 -1.43988976
## 135
             15
                                                             6 3.0675049 -1.38978795
                      15
                                19
                                       18
## 136
             12
                      13
                                18
                                       12
                                                             7 2.2637489 -0.81552177
                                20
## 137
                                                             9 4.6363489 -1.24448376
             13
                      15
                                       19
## 138
             13
                      15
                                20
                                       18
                                                             8 3.0025903 -0.67883922
                                                             7 1.2952092 -0.26606055
## 139
             16
                      14
                                16
                                       17
## 140
             17
                      18
                                20
                                       20
                                                             9 2.6338700 -1.85227352
## 141
                                                             3 2.7519454 -0.77195199
             15
                      15
                                16
                                       13
                               NA
## 142
             NA
                      NA
                                       NA
                                                                       NA
                                       20
## 143
             14
                      15
                                18
                                                             6 1.0724491
                                                                           0.20702590
## 144
              9
                      15
                                20
                                       18
                                                             8 2.8486580 -0.59754265
## 145
             14
                      12
                                18
                                       14
                                                             6 2.1962288 -1.02371838
                                                             9 3.6663033 -1.75638530
##
   146
             16
                      17
                                19
                                       17
                                16
                                                             9 3.2130165 -1.35419147
## 147
             13
                      14
                                       13
## 148
             13
                      13
                                10
                                       12
                                                             4 0.9716106 -0.36589408
## 149
             19
                      20
                                18
                                       16
                                                             5 4.0006734 -1.62609009
##
   150
             14
                      19
                                18
                                       17
                                                             4 3.6663033 -1.75638530
##
       MeanGoRT
                    SDGoRT GlobalToLocalInterferencelog GlobalToLocalPrecedencelog
                  59.32952
                                               -0.82472979
##
   1
       404.6540
                                                                              0.07434374
##
   2
       332.6818
                  87.76311
                                                0.16481852
                                                                              0.07913384
##
   3
       400.6000
                  84.25173
                                                                              0.09116808
                                                        NaN
##
  4
       425.0445 103.50044
                                               -0.37144695
                                                                              0.06984183
## 5
              NA
                                                                                      NA
                         NΑ
                                                         NA
   6
              NA
                         NA
                                                                                      NA
##
                                                         NA
       409.0867
                                                                              0.08747569
##
  7
                  64.87193
                                                        NaN
       438.4237
                  90.50604
                                               -1.25189253
                                                                              0.08493435
   8
##
  9
       450.0868
                  95.60677
                                               -0.52782772
                                                                              0.07556402
##
   10
       476.6976 121.75798
                                                        NaN
                                                                              0.11832027
##
       354.2585
                  83.69391
                                                        NaN
                                                                              0.11623024
   11
                                                                              0.08834042
## 12
       362.8427
                  75.19753
                                                        NaN
## 13
       358.1717
                  78.74999
                                                                                       NA
                                                         NA
##
   14
       427.0520 116.09574
                                                        NaN
                                                                              0.09552970
##
   15
       388.6169
                  81.29261
                                                        NaN
                                                                              0.08966475
   16
##
       510.9298
                  92.72318
                                                        NaN
                                                                              0.08900591
##
   17
       442.8713
                  81.84922
                                               -0.98790889
                                                                              0.07697524
##
   18
       361.9703
                  56.94116
                                                        NaN
                                                                              0.08490554
##
  19
       461.0077 133.23553
                                                        NaN
                                                                              0.08342596
## 20
       510.6263 104.10493
                                                                              0.16962423
                                                        NaN
## 21
       379.7570
                 59.47815
                                               -0.59473686
                                                                              0.07353177
```

## 22	369.3913	60.70374	-1.47365695	0.06931156
## 23		149.49199	NaN	0.08666811
## 24	322.3443	74.94041	-0.57032249	0.08058912
## 25	376.4272	73.62481	NaN	0.09192375
## 26	358.3746	76.51562	NaN	0.09021090
## 27	330.3910	55.03769	NaN	0.08479096
## 28	356.9399	84.96941	-1.10750401	0.07915931
## 29	428.4096	117.46738	NaN	0.08736924
## 30	NA	NA	NA	NA
## 31	446.4586	100.12027	NaN	0.15413803
## 32	395.7297	80.59988	NaN	0.11543925
## 33	361.2570	73.07871	NaN	0.06916883
## 34	414.5547	88.76471	-0.89287733	0.07288570
## 35	382.2370	106.79025	-0.30886537	0.06726676
## 36	430.0535	82.76832	-1.16509761	0.08369225
## 37	302.9524	55.84429	NaN	0.08569663
## 38	370.2557	77.78421	-0.42606238	0.07325912
## 39	484.4334	114.88013	-0.69392826	0.06615275
## 40	528.0171	82.40899	NaN	0.08966911
## 41	491.7898	107.52729	NaN	0.08186760
## 42	NA	NA	NA	NA
## 43	398.9634	91.61292	NaN	0.09639073
## 44	444.4915	112.57819	-0.10595456	0.03854644
## 45	NA	NA	NA	NA
## 46		101.09151	-0.88451889	0.07504893
## 47	368.3770	58.30704	-0.73960576	0.07159786
## 48		106.00650	-0.42186120	0.07902440
## 49	423.2847	87.14320	-1.41025984	0.02270506
## 50	373.7423	113.08916	0.22138379	0.06338992
## 51	428.5473	78.17875	-0.88783775	0.08782490
## 52	355.9582	93.70388	-1.27071372	0.07703546
## 53	501.8924	141.76424	NaN	0.09912117
## 54	520.0273	68.34155	-0.89758042	0.08389532
## 55	413.4674	92.61774	-0.98571183	0.08368216
## 56	NA	NA	NA	NA
## 57		135.98137	NaN	0.08492508
## 58	447.9219	85.46470	-0.30525764	0.07161749
## 59	418.2802	93.20915	-0.60336726	0.07344478
## 60		175.69540	0.10857591	0.0000000
## 61		167.70536	-0.28479255	0.06844442
## 62	290.5893	49.83554	-0.90379226	0.08240925
## 63	377.2539	95.94254	NA	NA
## 64	415.7285	86.88115	-0.35122458	0.06895503
## 65	415.5383	90.85252	0.01607676	0.03005013
## 66	420.1894	90.58257	-0.37629276	0.07076473
## 67	355.8645	72.95775	-0.24897584	0.06463802
## 68	310.6336	72.29845	-0.06290048	0.06700588
## 69	394.2137	75.44489	-0.26376824	0.06951883
## 70	355.7801	74.35544	NaN	0.07886957
## 71	320.4291	66.97018	NaN	0.09003797
## 72		111.08294	NaN	0.10177154
## 73		124.55876	-0.22030958	0.06007764
## 74	342.3646	88.83189	-0.49770242	0.05730210
## 75		109.01576	-0.48796308	0.06563150
10	1,0.0400	_00.01010	0.4010000	0.0000100

##	76	375.5224	87.01094	-1.16985441	0.08042140
##	77	417.3433	82.46279	-0.48741525	0.07655391
##	78	368.6817	67.17141	-0.35809149	0.06266394
##	79	390.5467	65.17623	-1.29906736	0.08462124
##	80	468.9088	118.76124	-0.70888760	0.08539078
	81	377.3090	81.89450	-0.14012912	0.08156959
	82	360.5097	60.57170	-0.49673113	0.07148048
	83		111.94467	-0.02329184	0.05423012
	84	374.8183	56.29476	-0.54107121	0.07689456
	85				
			142.80075	-0.12613847	0.07531019
	86	419.3285	85.83525	-0.46278256	0.07473674
	87	419.1007	86.43608	-0.14170494	0.05824997
##	88	NA	NA	NA	NA
##	89	356.5867	65.38056	-0.85382223	0.07601702
##	90		159.93108	0.12380137	0.05995916
##	91	319.3683	79.44447	-1.60407077	0.06931136
##	92	389.0200	70.13517	NaN	0.10954597
##	93	356.1702	68.81150	-0.60749265	0.08025003
##	94	355.1151	84.80985	NaN	0.09749264
##	95	425.2316	122.32845	-1.05738571	0.08538179
##	96	418.3986	84.37228	-0.42875587	0.07259611
##	97	375.4987	81.60162	NA	NA
	98	385.2407	75.97954	NA	NA
##	99		113.14240	-0.32949839	0.06378034
		414.3444	95.28302	-0.30170187	0.06294579
##		364.0896	71.47969	0.19750144	0.06329213
##	102	319.7942	64.06533	0.47372839	0.06466924
11 11	400	37.4	37.4	37.4	37.4
	103	NA	NA	NA	NA 0. 10051100
##	104	474.4034	88.74308	NaN	0.12851462
## ##	104 105	474.4034 NA	88.74308 NA	NaN NA	0.12851462 NA
## ## ##	104 105 106	474.4034 NA 359.7462	88.74308 NA 109.78479	NaN NA -0.29566160	0.12851462 NA 0.07067528
## ## ##	104 105 106	474.4034 NA	88.74308 NA	NaN NA	0.12851462 NA
## ## ## ##	104 105 106 107	474.4034 NA 359.7462	88.74308 NA 109.78479	NaN NA -0.29566160	0.12851462 NA 0.07067528
## ## ## ##	104 105 106 107 108	474.4034 NA 359.7462 373.4125	88.74308 NA 109.78479 58.41357	NaN NA -0.29566160 -0.79916788	0.12851462 NA 0.07067528 0.07784184
## ## ## ## ##	104 105 106 107 108 109	474.4034 NA 359.7462 373.4125 331.4966 371.7509	88.74308 NA 109.78479 58.41357 66.43330	NaN NA -0.29566160 -0.79916788 NaN	0.12851462 NA 0.07067528 0.07784184 0.09108677
## ## ## ## ##	104 105 106 107 108 109 110	474.4034 NA 359.7462 373.4125 331.4966 371.7509	88.74308 NA 109.78479 58.41357 66.43330 83.08827	NaN NA -0.29566160 -0.79916788 NaN -0.39358783	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175
## ## ## ## ## ##	104 105 106 107 108 109 110	474.4034 NA 359.7462 373.4125 331.4966 371.7509 385.4282 385.1064	88.74308 NA 109.78479 58.41357 66.43330 83.08827 129.43615	NaN NA -0.29566160 -0.79916788 NaN -0.39358783 -0.69895779	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175 0.09142494
## ## ## ## ## ##	104 105 106 107 108 109 110 111 112	474.4034 NA 359.7462 373.4125 331.4966 371.7509 385.4282 385.1064 369.6223	88.74308 NA 109.78479 58.41357 66.43330 83.08827 129.43615 88.62593 125.14064	NaN NA -0.29566160 -0.79916788 NaN -0.39358783 -0.69895779 NaN -1.15637360	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175 0.09142494 0.09612765 0.08961563
## ## ## ## ## ##	104 105 106 107 108 109 110 111 112	474.4034 NA 359.7462 373.4125 331.4966 371.7509 385.4282 385.1064 369.6223 446.3596	88.74308 NA 109.78479 58.41357 66.43330 83.08827 129.43615 88.62593 125.14064 131.03898	NaN NA -0.29566160 -0.79916788 NaN -0.39358783 -0.69895779 NaN -1.15637360 -0.91921867	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175 0.09142494 0.09612765 0.08961563 0.09530770
## ## ## ## ## ## ##	104 105 106 107 108 109 110 111 112 113 114	474.4034 NA 359.7462 373.4125 331.4966 371.7509 385.4282 385.1064 369.6223 446.3596 353.4003	88.74308 NA 109.78479 58.41357 66.43330 83.08827 129.43615 88.62593 125.14064 131.03898 79.09359	NaN NA -0.29566160 -0.79916788 NaN -0.39358783 -0.69895779 NaN -1.15637360 -0.91921867	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175 0.09142494 0.09612765 0.08961563 0.09530770 0.07817125
## ## ## ## ## ## ##	104 105 106 107 108 109 110 111 112 113 114 115	474.4034 NA 359.7462 373.4125 331.4966 371.7509 385.4282 385.1064 369.6223 446.3596 353.4003 473.3868	88.74308 NA 109.78479 58.41357 66.43330 83.08827 129.43615 88.62593 125.14064 131.03898 79.09359 108.66002	NaN NA -0.29566160 -0.79916788 NaN -0.39358783 -0.69895779 NaN -1.15637360 -0.91921867 NaN -0.11109678	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175 0.09142494 0.09612765 0.08961563 0.09530770 0.07817125 0.06070631
## ## ## ## ## ## ## ##	104 105 106 107 108 109 110 111 112 113 114 115 116	474.4034 NA 359.7462 373.4125 331.4966 371.7509 385.4282 385.1064 369.6223 446.3596 353.4003 473.3868 477.5364	88.74308 NA 109.78479 58.41357 66.43330 83.08827 129.43615 88.62593 125.14064 131.03898 79.09359 108.66002 181.72357	NaN NA -0.29566160 -0.79916788 NaN -0.39358783 -0.69895779 NaN -1.15637360 -0.91921867 NaN -0.11109678 -1.03755248	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175 0.09142494 0.09612765 0.08961563 0.09530770 0.07817125 0.06070631 0.07446885
######################################	104 105 106 107 108 109 110 111 112 113 114 115 116 117	474.4034 NA 359.7462 373.4125 331.4966 371.7509 385.4282 385.1064 369.6223 446.3596 353.4003 473.3868 477.5364 388.0403	88.74308 NA 109.78479 58.41357 66.43330 83.08827 129.43615 88.62593 125.14064 131.03898 79.09359 108.66002 181.72357 65.83793	NaN NA -0.29566160 -0.79916788 NaN -0.39358783 -0.69895779 NaN -1.15637360 -0.91921867 NaN -0.11109678 -1.03755248 -0.75720706	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175 0.09142494 0.09612765 0.08961563 0.09530770 0.07817125 0.06070631 0.07446885 0.07901153
## ## ## ## ## ## ## ##	104 105 106 107 108 109 110 111 112 113 114 115 116 117	474.4034 NA 359.7462 373.4125 331.4966 371.7509 385.4282 385.1064 369.6223 446.3596 353.4003 473.3868 477.5364 388.0403 395.0468	88.74308 NA 109.78479 58.41357 66.43330 83.08827 129.43615 88.62593 125.14064 131.03898 79.09359 108.66002 181.72357 65.83793 94.64061	NaN NA -0.29566160 -0.79916788 NaN -0.39358783 -0.69895779 NaN -1.15637360 -0.91921867 NaN -0.11109678 -1.03755248 -0.75720706 -0.81267700	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175 0.09142494 0.09612765 0.08961563 0.09530770 0.07817125 0.06070631 0.07446885 0.07901153 0.07594789
## ## ## ## ## ## ## ## ##	104 105 106 107 108 109 110 111 112 113 114 115 116 117 118	474.4034 NA 359.7462 373.4125 331.4966 371.7509 385.4282 385.1064 369.6223 446.3596 353.4003 473.3868 477.5364 388.0403 395.0468 491.5318	88.74308 NA 109.78479 58.41357 66.43330 83.08827 129.43615 88.62593 125.14064 131.03898 79.09359 108.66002 181.72357 65.83793 94.64061 107.17270	NaN NA -0.29566160 -0.79916788 NaN -0.39358783 -0.69895779 NaN -1.15637360 -0.91921867 NaN -0.11109678 -1.03755248 -0.75720706 -0.81267700 0.20257907	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175 0.09142494 0.09612765 0.08961563 0.09530770 0.07817125 0.06070631 0.07446885 0.07901153 0.07594789 0.06742931
## ## ## ## ## ## ## ## ##	104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	474.4034 NA 359.7462 373.4125 331.4966 371.7509 385.4282 385.1064 369.6223 446.3596 353.4003 473.3868 477.5364 388.0403 395.0468 491.5318 442.2892	88.74308 NA 109.78479 58.41357 66.43330 83.08827 129.43615 88.62593 125.14064 131.03898 79.09359 108.66002 181.72357 65.83793 94.64061 107.17270 148.84875	NaN NA -0.29566160 -0.79916788 NaN -0.39358783 -0.69895779 NaN -1.15637360 -0.91921867 NaN -0.11109678 -1.03755248 -0.75720706 -0.81267700 0.20257907 -0.60178975	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175 0.09142494 0.09612765 0.08961563 0.09530770 0.07817125 0.06070631 0.07446885 0.07901153 0.07594789 0.06742931 0.08397434
## ## ## ## ## ## ## ## ##	104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	474.4034 NA 359.7462 373.4125 331.4966 371.7509 385.4282 385.1064 369.6223 446.3596 353.4003 473.3868 477.5364 388.0403 395.0468 491.5318 442.2892 409.0844	88.74308 NA 109.78479 58.41357 66.43330 83.08827 129.43615 88.62593 125.14064 131.03898 79.09359 108.66002 181.72357 65.83793 94.64061 107.17270 148.84875 70.99338	NaN NA -0.29566160 -0.79916788 NaN -0.39358783 -0.69895779 NaN -1.15637360 -0.91921867 NaN -0.11109678 -1.03755248 -0.75720706 -0.81267700 0.20257907 -0.60178975 -1.15103334	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175 0.09142494 0.09612765 0.08961563 0.09530770 0.07817125 0.06070631 0.07446885 0.07901153 0.07594789 0.06742931 0.08397434 0.07336249
## ## ## ## ## ## ## ## ## ##	104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	474.4034 NA 359.7462 373.4125 331.4966 371.7509 385.4282 385.1064 369.6223 446.3596 353.4003 473.3868 477.5364 388.0403 395.0468 491.5318 442.2892 409.0844 447.0436	88.74308 NA 109.78479 58.41357 66.43330 83.08827 129.43615 88.62593 125.14064 131.03898 79.09359 108.66002 181.72357 65.83793 94.64061 107.17270 148.84875 70.99338 69.43740	NaN NA -0.29566160 -0.79916788 NaN -0.39358783 -0.69895779 NaN -1.15637360 -0.91921867 NaN -0.11109678 -1.03755248 -0.75720706 -0.81267700 0.20257907 -0.60178975 -1.15103334 -0.67094481	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175 0.09142494 0.09612765 0.08961563 0.09530770 0.07817125 0.06070631 0.07446885 0.07901153 0.07594789 0.06742931 0.08397434 0.07336249 0.07478513
## ## ## ## ## ## ## ## ## ##	104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	474.4034 NA 359.7462 373.4125 331.4966 371.7509 385.4282 385.1064 369.6223 446.3596 353.4003 473.3868 477.5364 388.0403 395.0468 491.5318 442.2892 409.0844	88.74308 NA 109.78479 58.41357 66.43330 83.08827 129.43615 88.62593 125.14064 131.03898 79.09359 108.66002 181.72357 65.83793 94.64061 107.17270 148.84875 70.99338	NaN NA -0.29566160 -0.79916788 NaN -0.39358783 -0.69895779 NaN -1.15637360 -0.91921867 NaN -0.11109678 -1.03755248 -0.75720706 -0.81267700 0.20257907 -0.60178975 -1.15103334	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175 0.09142494 0.09612765 0.08961563 0.09530770 0.07817125 0.06070631 0.07446885 0.07901153 0.07594789 0.06742931 0.08397434 0.07336249
## ## ## ## ## ## ## ## ## ## ##	104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123	474.4034 NA 359.7462 373.4125 331.4966 371.7509 385.4282 385.1064 369.6223 446.3596 353.4003 473.3868 477.5364 388.0403 395.0468 491.5318 442.2892 409.0844 447.0436 391.3209	88.74308 NA 109.78479 58.41357 66.43330 83.08827 129.43615 88.62593 125.14064 131.03898 79.09359 108.66002 181.72357 65.83793 94.64061 107.17270 148.84875 70.99338 69.43740	NaN NA -0.29566160 -0.79916788 NaN -0.39358783 -0.69895779 NaN -1.15637360 -0.91921867 NaN -0.11109678 -1.03755248 -0.75720706 -0.81267700 0.20257907 -0.60178975 -1.15103334 -0.67094481	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175 0.09142494 0.09612765 0.08961563 0.09530770 0.07817125 0.06070631 0.07446885 0.07901153 0.07594789 0.06742931 0.08397434 0.07336249 0.07478513
## ## ## ## ## ## ## ## ## ## ##	104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124	474.4034 NA 359.7462 373.4125 331.4966 371.7509 385.4282 385.1064 369.6223 446.3596 353.4003 473.3868 477.5364 388.0403 395.0468 491.5318 442.2892 409.0844 447.0436 391.3209	88.74308 NA 109.78479 58.41357 66.43330 83.08827 129.43615 88.62593 125.14064 131.03898 79.09359 108.66002 181.72357 65.83793 94.64061 107.17270 148.84875 70.99338 69.43740 72.77049	NaN NA -0.29566160 -0.79916788 NaN -0.39358783 -0.69895779 NaN -1.15637360 -0.91921867 NaN -0.11109678 -1.03755248 -0.75720706 -0.81267700 0.20257907 -0.60178975 -1.15103334 -0.67094481 -0.20314484	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175 0.09142494 0.09612765 0.08961563 0.09530770 0.07817125 0.06070631 0.07446885 0.07901153 0.07594789 0.06742931 0.08397434 0.07336249 0.07478513 0.07113333
## ## ## ## ## ## ## ## ## ## ## ##	104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125	474.4034 NA 359.7462 373.4125 331.4966 371.7509 385.4282 385.1064 369.6223 446.3596 353.4003 473.3868 477.5364 388.0403 395.0468 491.5318 442.2892 409.0844 447.0436 391.3209 475.7027	88.74308 NA 109.78479 58.41357 66.43330 83.08827 129.43615 88.62593 125.14064 131.03898 79.09359 108.66002 181.72357 65.83793 94.64061 107.17270 148.84875 70.99338 69.43740 72.77049 104.91087	NaN NA -0.29566160 -0.79916788 NaN -0.39358783 -0.69895779 NaN -1.15637360 -0.91921867 NaN -0.11109678 -1.03755248 -0.75720706 -0.81267700 0.20257907 -0.60178975 -1.15103334 -0.67094481 -0.20314484 NaN	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175 0.09142494 0.09612765 0.08961563 0.09530770 0.07817125 0.06070631 0.07446885 0.07901153 0.07594789 0.06742931 0.08397434 0.07336249 0.07478513 0.07113333 0.08982446
######################################	104 105 106 107 108 109 110 111 112 113 114 115 116 117 120 121 122 123 124 125 126	474.4034 NA 359.7462 373.4125 331.4966 371.7509 385.4282 385.1064 369.6223 446.3596 353.4003 473.3868 477.5364 388.0403 395.0468 491.5318 442.2892 409.0844 447.0436 391.3209 475.7027 457.5233	88.74308 NA 109.78479 58.41357 66.43330 83.08827 129.43615 88.62593 125.14064 131.03898 79.09359 108.66002 181.72357 65.83793 94.64061 107.17270 148.84875 70.99338 69.43740 72.77049 104.91087 65.67959	NaN NA -0.29566160 -0.79916788 NaN -0.39358783 -0.69895779 NaN -1.15637360 -0.91921867 NaN -0.11109678 -1.03755248 -0.75720706 -0.81267700 0.20257907 -0.60178975 -1.15103334 -0.67094481 -0.20314484 NaN -0.39466819	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175 0.09142494 0.09612765 0.08961563 0.09530770 0.07817125 0.06070631 0.07446885 0.07901153 0.07594789 0.06742931 0.08397434 0.07336249 0.07478513 0.079113333 0.08982446 0.06968806
######################################	104 105 106 107 108 109 110 111 112 113 114 115 116 117 120 121 122 123 124 125 126	474.4034 NA 359.7462 373.4125 331.4966 371.7509 385.4282 385.1064 369.6223 446.3596 353.4003 473.3868 477.5364 388.0403 395.0468 491.5318 442.2892 409.0844 447.0436 391.3209 475.7027 457.5233 344.7809	88.74308 NA 109.78479 58.41357 66.43330 83.08827 129.43615 88.62593 125.14064 131.03898 79.09359 108.66002 181.72357 65.83793 94.64061 107.17270 148.84875 70.99338 69.43740 72.77049 104.91087 65.67959 57.74282	NaN NA -0.29566160 -0.79916788 NaN -0.39358783 -0.69895779 NaN -1.15637360 -0.91921867 NaN -0.11109678 -1.03755248 -0.75720706 -0.81267700 0.20257907 -0.60178975 -1.15103334 -0.67094481 -0.20314484 NaN -0.39466819 NaN	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175 0.09142494 0.09612765 0.08961563 0.09530770 0.07817125 0.06070631 0.07446885 0.07901153 0.07594789 0.06742931 0.08397434 0.07336249 0.07478513 0.07113333 0.08982446 0.06968806 0.10494479
######################################	104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 120 121 122 123 124 125 126 127 128	474.4034 NA 359.7462 373.4125 331.4966 371.7509 385.4282 385.1064 369.6223 446.3596 353.4003 473.3868 477.5364 388.0403 395.0468 491.5318 442.2892 409.0844 447.0436 391.3209 475.7027 457.5233 344.7809 352.5980	88.74308 NA 109.78479 58.41357 66.43330 83.08827 129.43615 88.62593 125.14064 131.03898 79.09359 108.66002 181.72357 65.83793 94.64061 107.17270 148.84875 70.99338 69.43740 72.77049 104.91087 65.67959 57.74282 82.54932	NaN NA -0.29566160 -0.79916788 NaN -0.39358783 -0.69895779 NaN -1.15637360 -0.91921867 NaN -0.11109678 -1.03755248 -0.75720706 -0.81267700 0.20257907 -0.60178975 -1.15103334 -0.67094481 -0.20314484 NaN -0.39466819 NaN -1.10927362	0.12851462 NA 0.07067528 0.07784184 0.09108677 0.06017175 0.09142494 0.09612765 0.08961563 0.09530770 0.07817125 0.06070631 0.07446885 0.07901153 0.07594789 0.06742931 0.08397434 0.07336249 0.07478513 0.07113333 0.08982446 0.06968806 0.10494479 0.08629379

```
## 130 380.9360 137.60166
                                             -0.21577530
                                                                          0.05843487
## 131 431.8068 97.92490
                                             -0.33752562
                                                                          0.07734269
## 132 333.1546
                 71.53928
                                                      NA
## 133 328.0453
                                            -0.69582510
                                                                          0.07522329
                 94.94767
## 134 360.8517
                 70.03585
                                             -0.24838687
                                                                          0.06949296
## 135 427.2258
                93.74986
                                            -0.94629059
                                                                          0.08117927
## 136 488.9951 116.96829
                                            -0.65807328
                                                                          0.07528036
## 137 503.7144 104.62921
                                            -0.42059582
                                                                          0.06571622
## 138 472.5300 116.37661
                                                      NA
                                                                                  NA
                                                                          0.05698497
                                            -0.47972240
## 139 484.7264 166.68138
## 140 388.7880
                 85.93326
                                                      NA
                                                                                  NA
                                                                          0.08258173
## 141 492.3264 110.22625
                                                     NaN
## 142
             NA
                        NΑ
                                                      NA
                                                                                  NΑ
## 143 587.1027 182.25915
                                                                          0.02137891
                                             0.11419279
## 144 475.8010 111.18467
                                             -0.15428148
                                                                          0.06482476
## 145 432.7891
                 89.48393
                                             -0.87004712
                                                                          0.07408902
## 146 371.2510
                 55.56097
                                            -1.51090099
                                                                          0.09562461
## 147 357.3391
                 76.62475
                                             -0.94962489
                                                                          0.07906439
## 148 370.0846
                 96.04684
                                            -0.23053272
                                                                          0.06277892
## 149 450.1250
                 85.77585
                                             -0.92032696
                                                                          0.08226645
## 150 453.2299 58.67465
                                            -1.02050065
                                                                          0.07511735
       NeckerTotalRatelog FlexSum
              0.041392685
                              37.5
## 1
## 2
              0.034762106
                              61.0
## 3
                              26.5
              0.028028724
              0.034762106
                              28.5
## 5
                                NA
                        NA
## 6
                        NA
                                NA
## 7
              0.028028724
                              41.0
## 8
              0.054357662
                              21.0
## 9
              0.014240439
                              40.5
## 10
              0.054357662
                              20.0
## 11
              0.028028724
                              20.0
## 12
              0.091080469
                              24.0
## 13
              0.047923552
                              15.5
              0.014240439
## 14
                              25.0
## 15
              0.047923552
                              44.0
## 16
              0.034762106
                              27.0
## 17
              0.021189299
                              29.5
## 18
              0.041392685
                              21.0
## 19
              0.028028724
                              26.0
## 20
              0.007178585
                              20.0
                              29.5
## 21
              0.161368002
## 22
              0.085171610
                              31.5
## 23
              0.073107098
                              25.0
                              27.0
## 24
              0.041392685
## 25
              0.054357662
                              27.0
## 26
              0.034762106
                              16.0
## 27
              0.073107098
                              42.0
## 28
              0.066946790
                              25.0
## 29
              0.00000000
                              42.0
## 30
                        NA
                                NA
## 31
              0.091080469
                              28.0
## 32
              0.073107098
                              52.5
```

## 33	0.096910013	38.0
## 34	0.00000000	50.0
## 35	0.047923552	27.0
## 36	0.096910013	20.0
## 37	0.113943352	18.0
## 38	0.028028724	30.0
## 39	0.146128036	57.5
## 40	0.021189299	23.0
## 41	0.047923552	36.5
## 42	NA	NA
## 43	0.073107098	24.0
## 44	0.060697840	30.0
## 45	NA	NA
## 46	0.066946790	23.0
## 47	0.166331422	24.0
## 48	0.028028724	28.0
## 49	0.028028724	31.0
## 50	0.034762106	23.0
## 51	0.007178585	33.0
## 52	0.066946790	34.0
## 53	0.014240439	15.5
## 54	0.085171610	41.0
## 55	0.073107098	NA
## 56	0.073107030 NA	NA
## 57	0.014240439	26.0
## 58	0.034762106	33.0
## 50 ## 59	0.124938737	32.0
## 60	0.021189299	23.0
## 61	0.021189299	19.0
## 62	0.041392083	28.0
	0.005171610	17.0
## 64 ## 65	0.073107098 0.041392685	33.0
## 65		41.0
## 66	0.007178585	22.0
## 67	0.079181246	39.0
## 68	0.021189299	26.5
## 69	0.066946790	39.5
## 70	0.041392685	27.0
## 71	0.041392685	33.0
## 72	0.054357662	14.0
## 73	0.028028724	43.0
## 74	0.113943352	23.0
## 75	0.028028724	41.0
## 76	0.021189299	17.0
## 77	0.054357662	32.0
## 78	0.014240439	23.0
## 79	0.00000000	21.0
## 80	0.041392685	24.0
## 81	0.041392685	46.5
## 82	0.054357662	32.0
## 83	0.073107098	28.0
## 84	0.00000000	21.0
## 85	0.014240439	33.0
## 86	0.034762106	32.0

## 87	0.085171610	37.0
## 88	NA	NA
## 89	0.171238756	22.0
## 90	0.060697840	25.0
## 91	0.079181246	29.0
## 92	0.047923552	36.5
## 93	0.041392685	25.0
## 94	0.091080469	26.0
## 95	0.047923552	48.0
## 96	0.034762106	23.0
## 97	0.066946790	24.0
## 98	0.119475841	30.5
## 99	0.041392685	19.0
## 100		32.0
## 101	0.079181246	21.0
## 102		25.0 NA
## 103 ## 104		42.0
## 104 ## 105		42.0 NA
## 105		43.0
## 100		11.0
## 107		22.0
## 100		31.5
## 109		26.0
## 110	0.000000000	37.0
## 111		36.0
## 113		6.0
## 114		28.0
## 115		34.0
## 116		16.5
## 117		37.0
## 118		23.0
## 119		30.0
## 120		37.0
## 121	0.034762106	28.0
## 122		22.5
## 123		37.0
## 124		37.0
## 125		35.0
## 126	0.041392685	54.5
## 127		19.0
## 128		NA
## 129		47.0
## 130		44.0
## 131	0.060697840	30.0
## 132	0.047923552	22.0
## 133		24.0
## 134		31.0
## 135		24.0
## 136		32.0
## 137		32.5
## 138		46.0
## 139	0.028028724	24.0
## 140	NA	37.0

```
## 141
              0.060697840
                             29.0
## 142
                               NA
                       NA
## 143
              0.047923552
                             30.0
## 144
              0.034762106
                             35.5
              0.034762106
                             38.5
## 145
## 146
              0.113943352
                             45.0
## 147
              0.091080469
                             27.0
              0.021189299
                             17.0
## 148
## 149
              0.034762106
                             21.0
## 150
              0.060697840
                             31.0
# Select relevant columns
data_all_sub_cleaned <- data_all_sub_cleaned %>%
  select(-Participant.Private.ID)
```

Citizen's Initiative

Potentially problematic ppts for CI: ri0gfe1h 5767733 skipped reading at least one article vu1mvwkd 5691188 didn't focus on the first CI text 8zz2teyh 5629594 is dyslexic tjh0tjq3 4887029 CI task invalid