

Technische Universität Berlin

Software and Embedded Systems Engineering Group Prof. Dr. Sabine Glesner

Q

www.sese.tu-berlin.de

Sekr. TEL 12-4

Ernst-Reuter-Platz 7

10587 Berlin

Softwaretechnik und Programmierparadigmen WiSe 2023/2024

Prof. Dr. Sabine Glesner Simon Schwan Julian Klein

Übungsblatt 10

Aufgabe 1: Partielle Korrektheit

Beweist mithilfe des Hoare Kalküls die partielle Korrektheit folgender Programme.

a)
$$\max(\text{int a,int b})$$
: $\{true\}$ if a > b then
$$m := a$$
 else
$$m := b$$

$$\text{fi}$$
 $\{m \geq a \wedge m \geq b \wedge (m = a \vee m = b)\}$

b) trinumber(int n)¹:
$$\{n \ge 0\}$$

$$i := 0;$$

while i < n do

 $\quad \text{od} \quad$

$$\left\{s = \sum_{j=0}^{n} j\right\}$$

Q

¹Berechnet die sogennanten "Triangular Numbers".

c) rest(int x, int y):
$$\{x \geq 0\}$$

Q

D

$$q := 0;$$

$$r := x;$$

while
$$r >= y do$$

$$r := r - y;$$

$$q := q + 1$$

od

$$\{r < y \wedge x = q * y + r \wedge r \geq 0\}$$

d) **Zusatzaufgabe zum knobeln** (einschließlich totaler Korrektheit): $mod(int \ x, \ int \ y)$:

$$\{x = m \land y = n \land x \ge 0 \land y > 0\}$$

$$while(x >= y) do$$

$$x := x - y$$

od;

Referenz: Hoare Kalkül

- (1) Skip-Axiom: $\{P\}$ skip $\{P\}$
- (2) Zuweisungsaxiom: $\{P[x \leftarrow E]\} \ \mathtt{x} := \mathtt{E} \ \{P\}$
- (3) Sequenzregel:

$$\frac{\{P\}\;S_1\;\{R\}\quad\{R\}\;S_2\;\{Q\}}{\{P\}\;S_1;S_2\;\{Q\}}$$

(4) if-then-else-Regel:

$$\frac{\{B \wedge P\} \ S_1 \ \{Q\} \quad \{\neg B \wedge P\} \ S_2 \ \{Q\}}{\{P\} \ \text{if} \ B \ \text{then} \ S_1 \ \text{else} \ S_2 \ \text{fi} \ \{Q\}}$$

(5) while-Regel:

$$\frac{\{B \wedge I\} \; S \; \{I\}}{\{I\} \; \text{while} \; B \; \text{do} \; S \; \text{od} \; \{\neg B \wedge I\}}$$

(6) Konsequenzregel:

$$\frac{\{P \Rightarrow P'\} \quad \{P'\} \ S \ \{Q'\} \quad \{Q' \Rightarrow Q\}}{\{P\} \ S \ \{Q\}}$$

(7) Terminierung:

$$\frac{\{B \wedge I \wedge (t=m)\} \; S \; \{I \wedge (t< m)\}, \; B \wedge I \Rightarrow t \geq 0}{\{I\} \; \text{while} \; B \; \text{do} \; S \; \text{od} \; \{\neg B \wedge I\}}$$

Vorgehen: finde Terminierungsfunktion $t \mapsto \mathbb{N}$, sodass

1.
$$B \wedge I \Rightarrow t \geq 0$$
 und

2.
$$\{B \wedge I \wedge (t = m)\}\ S \{I \wedge (t < m)\}\ gilt.$$