Devoir surveillé n°08 : corrigé

SOLUTION 1.

1. a. Soient (x, y, z) et (x', y', z') deux vecteurs de \mathbb{R}^3 et $(\lambda, \mu) \in \mathbb{R}^2$.

$$f(\lambda(x, y, z) + \mu(x', y', z'))$$

$$= f((\lambda x + \mu x', \lambda y + \mu y', \lambda z + \mu z')$$

$$= (2(\lambda y + \mu y') - 2(\lambda z + \mu z'), (\lambda x + \mu x') + (\lambda y + \mu y') - 2(\lambda z + \mu z'), (\lambda x + \mu x') - (\lambda y + \mu y'))$$

$$= \lambda(2y - 2z, x + y - 2z, x - y) + \mu(2y' - 2z', x' + y' - 2z', x' - y')$$

$$= \lambda f((x, y, z)) + \mu f((x', y', z'))$$

Ainsi $f \in \mathcal{L}(\mathbb{R}^3)$.

b. Soit $(x, y, z) \in \mathbb{R}^3$.

$$(x, y, z) \in \operatorname{Ker} f \iff \begin{cases} 2y - 2z = 0 \\ x + y - 2z = 0 \\ x - y = 0 \end{cases}$$
$$\iff \begin{cases} y = x \\ z = x \end{cases}$$

Ainsi Ker $f = \{(x, x, x), x \in \mathbb{R}\}$ = vect((1, 1, 1)). Comme (1, 1, 1) est non nul, ((1, 1, 1)) est une base de Ker f. Ainsi dim Ker f = 1.

D'après le théorème du rang, $\operatorname{rg} f = 2$. De plus, f((1,0,0)) = (0,1,1) et f((0,1,1)) = (2,1,-1) appartiennent à $\operatorname{Im} f$ et sont non colinéaires. Donc la famille ((0,1,1),(2,1,-1)) est une base de $\operatorname{Im} f$.

Puisque Ker $f \neq \{(0,0,0)\}$, f n'est pas injectif. Puisque rg $f=2<3=\dim \mathbb{R}^3$, f n'est pas surjectif. A fortiori, f n'est pas bijectif.

c. D'après la question précédente, $\operatorname{Ker} f + \operatorname{Im} f = \operatorname{vect}((1,1,1),(0,1,1),(2,1,-1))$. Soit $(\lambda,\mu,\nu) \in \mathbb{R}^3$ tel que

$$\lambda(1,1,1) + \mu(0,1,1) + \nu(2,1,-1) = (0,0,0)$$

On a donc

$$\begin{cases} \lambda + 2\nu = 0 \\ \lambda + \mu + \nu = 0 \\ \lambda + \mu - \nu = 0 \end{cases}$$

Ce système équivaut à

$$\begin{cases} \lambda = -2\nu \\ \mu - \nu = 0 \\ \mu - 3\nu = 0 \end{cases}$$

ce qui conduit finalement à $(\lambda, \mu, \nu) = (0, 0, 0)$. Ainsi la famille ((1, 1, 1), (0, 1, 1), (2, 1, -1)) est libre. Puisqu'elle contient trois éléments et que dim $\mathbb{R}^3 = 3$, cette famille est une base de \mathbb{R}^3 . Ainsi

$$\operatorname{Ker} f + \operatorname{Im} f = \operatorname{vect}((1, 1, 1), (0, 1, 1), (2, 1, -1)) = \mathbb{R}^3$$

Par ailleurs dim Ker $f + \dim \operatorname{Im} f = 2 + 1 = 3 \dim = \mathbb{R}^3$, ce qui suffit à affirmer que $E = \operatorname{Im} f \oplus \operatorname{Ker} f$.

d. Soit $(x, y, z) \in \mathbb{R}^3$. Puisque ((1, 1, 1), (0, 1, 1), (2, 1, -1)) est une base de \mathbb{R}^3 , il existe $(\lambda, \mu, \nu) \in \mathbb{R}^3$ tel que

$$(x, y, z) = \lambda(1, 1, 1) + \mu(0, 1, 1) + \nu(2, 1, -1)$$

On a donc

$$\begin{cases} \lambda + 2\nu = x \\ \lambda + \mu + \nu = y \\ \lambda + \mu - \nu = z \end{cases}$$

On en déduit

$$\begin{cases} \lambda + 2\nu = x \\ \mu - \nu = y - x \\ \mu - 3\nu = z - x \end{cases}$$

puis

$$\begin{cases} \lambda + 2\nu = x \\ \mu - \nu = y - x \\ -2\nu = z - y \end{cases}$$

et enfin

$$\begin{cases} \lambda = x - y + z \\ \mu = \frac{-2x + 3y - z}{2} \\ \nu = \frac{y - z}{2} \end{cases}$$

On a alors $p((x, y, z)) = \mu(0, 1, 1) + \nu(2, 1, -1) = (y - z, -x + 2y - z, -x + y)$.

2. Soit $(x, y, z) \in \mathbb{R}^3$. On trouve successivement

$$f^{2}((x, y, z)) = (4y - 4z, -x + 5y - 4z, -x + y)$$

et

$$f^3((x, y, z)) = (8y - 8z, x + 7y - 8z, x - y)$$

On vérifie alors que $f^3((x,y,z)) = f^2((x,y,z)) + 2f((x,y,z))$. On en déduit que $f^3 - f^2 - 2f = 0$.

3. a. On calcule

$$q^2 = \frac{1}{4} (f^2 - f - 2 \operatorname{Id})^2 = \frac{1}{4} (f^4 - 2f^3 - 3f^2 + 4f + 4 \operatorname{Id})$$
Or $f^3 = f^2 + 2f$ et $f^4 = f^3 \circ f = f^3 + 2f^2 = 3f^2 + 2f$. Ainsi
$$q^2 = \frac{1}{4} (3f^2 + 2f - 2f^2 - 4f - 3f^2 + 4f + 4 \operatorname{Id}) = \frac{1}{4} (-2f^2 + 2f + 4 \operatorname{Id}) = -\frac{1}{2} (f^2 - f - 2 \operatorname{Id}) = q$$

Ainsi q est bien un projecteur.

b.

$$q \circ f = f \circ q = -\frac{1}{2}(f^3 - f^2 - 2f) = 0$$

c. Puisque $q \circ f = 0$, Im $f \subset \text{Ker } q$.

Soit $X \in \text{Ker } q$. Alors q(X) = 0 i.e. $f^2(X) - f(X) - 2X = 0$. Ainsi $X = \frac{1}{2}(f^2(X) + f(X)) = f\left(\frac{1}{2}f(X) + X\right) \in \text{Im } f$. Par conséquent, $\text{Ker } q \in \text{Im } f$ et, par double inclusion, Ker q = Im f. Puisque $f \circ q = 0$, $\text{Im } q \in \text{Ker } f$.

Soit $X \in \text{Ker } f$. Alors f(X) = 0 puis $q(X) = -\frac{1}{2} \left(f^2(X) - f(X) - 2X \right) = X$ donc $X \in \text{Im } q$. Par conséquent, $\text{Ker } f \subset \text{Im } q$ et, par double inclusion, Ker f = Im q.

- **d.** Comme q est un projecteur, q est le projecteur sur Im q parallélement à Ker q, c'est-à-dire le projecteur sur Ker f parallélement à Im f. Mais p est le projecteur sur Im f parallélement à Ker f donc pour tout $X \in \mathbb{R}^3$, X = p(X) + q(X) i.e. $p + q = \mathrm{Id}$.
- 4. a. Tout d'abord

$$r^2 = \frac{1}{36}(f^4 + 2f^3 + f^2)$$
 Or $f^3 = f^2 + 2f$ et $f^4 = f^3 \circ f = f^3 + 2f^2 = 3f^2 + 2f$. Ainsi
$$r^2 = \frac{1}{36}\left(3f^2 + 2f + 2f^2 + 4f + f^2\right) = \frac{1}{6}\left(f^2 + f\right) = r$$

Donc r est un projecteur. De même

$$s^2 = \frac{1}{9} \left(f^4 - 4 f^3 + 4 f^2 \right) = \frac{1}{9} \left(3 f^2 + 2 f - 4 f^2 - 8 f + 4 f^2 \right) = \frac{1}{3} \left(f^2 - 2 f \right) = s$$

Donc s est un projecteur.

b.

$$r \circ s = s \circ r = \frac{1}{18} (f^4 - f^3 - 2f^2) = \frac{1}{18} f \circ (f^3 - f^2 - 2f) = 0$$

c. D'une part,

$$f \circ r = r \circ f = \frac{1}{6} (f^3 + f^2) = \frac{1}{6} (f^2 + 2f + f^2) = \frac{1}{3} (f^2 + f) = 2r$$

D'autre part

$$f \circ s = s \circ f = \frac{1}{3} (f^3 - 2f^2) = \frac{1}{3} (f^2 + 2f - 2f^2) = -\frac{1}{3} (f^2 - 2f) = -s$$

d. Tout d'abord, $2r - s = \frac{1}{3}(f^2 + f) - \frac{1}{3}(f^2 - 2f) = f$. Supposons qu'il existe $n \in \mathbb{N}^*$ tel que $f^n = 2^n r + (-1)^n s$. Alors

$$f^{n+1} = f \circ f^n = 2^n f \circ r + (-1)^n f \circ s = 2^{n+1} r + (-1)^{n+1} s$$

d'après la question précédente.

Par récurrence, pour tout $n \in \mathbb{N}^*$, $f^n = 2^n r + (-1)^n s$.

e. Soient $n \in \mathbb{N}^*$ et $(x, y, z) \in \mathbb{R}^3$.

$$f^{n}((x, y, z)) = 2^{n}r((x, y, z)) + (-1)^{n}s((x, y, z))$$

Or

$$r((x, y, z)) = \frac{1}{6} (f^2((x, y, z)) + f((x, y, z)))$$

$$= \frac{1}{6} ((4y - 4z, -x + 5y - 4z, -x + y) + (2y - 2z, x + y - 2z, x - y))$$

$$= (y - z, y - z, 0)$$

et

$$s((x, y, z)) = \frac{1}{3} (f^2((x, y, z)) - 2f((x, y, z)))$$

= $\frac{1}{3} ((4y - 4z, -x + 5y - 4z, -x + y) - 2(2y - 2z, x + y - 2z, x - y))$
= $(0, -x + y, -x + y)$

Donc

$$f^{n}((x, y, z)) = (2^{n}(y - z), 2^{n}(y - z) + (-1)^{n}(-x + y), (-1)^{n}(-x + y))$$

- **5. a.** Pour tout $n \in \mathbb{N}$, $(x_{n+1}, y_{n+1}, z_{n+1}) = f((x_n, y_n, z_n))$. Une récurrence simple montre que pour tout $n \in \mathbb{N}$, $(x_n, y_n, z_n) = f((x_0, y_0, z_0))$.
 - **b.** D'après la question **4.e**, pour tout $n \in \mathbb{N}^*$,

$$f^{n}((x_{0}, y_{0}, z_{0})) = (2^{n}(y_{0} - z_{0}), 2^{n}(y_{0} - z_{0}) + (-1)^{n}(-x_{0} + y_{0}), (-1)^{n}(-x_{0} + y_{0}))$$

Donc pour tout $n \in \mathbb{N}^*$

$$\begin{cases} x_n = 2^n (x_0 - z_0) \\ y_n = 2^n (y_0 - z_0) + (-1)^n (-x_0 + y_0) \\ z_n = (-1)^n (-x_0 + y_0) \end{cases}$$

SOLUTION 2.

1. Poson $\varphi(a) = \int_a^{a+T} f(t) dt$. Comme f est continue sur \mathbb{R} , elle y admet une primitive F et $\varphi(a) = F(a+T) - F(a)$ pour tout $a \in \mathbb{R}$. Comme f est dérivable sur \mathbb{R} , φ l'est également et

$$\forall a \in \mathbb{R}, \ \varphi'(a) = F'(a+T) - F'(a) = f(a+T) - f(a) = 0$$

car f est T-périodique. Ainsi φ est constante sur \mathbb{R} . Notamment,

$$\forall a \in \mathbb{R}, \int_{a}^{a+T} f(t) dt = \varphi(a) = \varphi(0) = \int_{0}^{T} f(t) dt$$

2. Comme f est T-périodique,

$$\forall t \in \mathbb{R}, \ f(x+T) = f(x)$$

En dérivant cette relation, on obtient

$$\forall t \in \mathbb{R}, \ f'(x+T) = f'(x)$$

Ainsi f' est également T-périodique.

La réciproque est fausse. En posant par exemple $f: t \mapsto t$, f' est constante égale à 1 donc T-périodique. Par contre, $f(T) = T \neq 0 = f(0)$ donc f n'est pas T-périodique.

- **3.** A nouveau, f est continue sur \mathbb{R} donc elle y admet une primitive F. Pour tout $x \in \mathbb{R}$, U(f)(x) = F(x+1) F(x). Comme F est dérivable sur \mathbb{R} , U(f) l'est également.
- **4.** Soient $(\lambda, \mu) \in \mathbb{R}^2$ et $(f, g) \in \mathcal{E}^2$. Pour tout $x \in \mathbb{R}$,

$$U(\lambda f + \mu g)(x) = \int_{x}^{x+1} (\lambda f + \mu g)(t) dt$$

$$= \int_{x}^{x+1} (\lambda f(t) + \mu g(t)) dt$$

$$= \lambda \int_{x}^{x+1} f(t) dt + \mu \int_{x}^{x+1} g(t) dt$$

$$= \lambda U(f)(x) + \mu U(g)(x)$$

$$= (\lambda U(f) + \mu U(g))(x)$$

Par conséquent, $U(\lambda f + \mu g) = \lambda U(f) + \mu U(g)$. Ainsi U est bien linéaire.

Par ailleurs, si $f \in \mathcal{E}$, U(f) est de classe \mathcal{C}^1 sur \mathbb{R} donc a fortiori continue sur \mathbb{R} . Ainsi $U(f) \in \mathcal{E}$. On en déduit que $U \in \mathcal{L}(\mathcal{E})$.

5. Soit $f \in \text{Ker U}$. Alors U(f) est nulle i.e.

$$\forall x \in \mathbb{R}, \ \int_{x}^{x+1} f(t) \ \mathrm{d}t = 0$$

Notamment, pour x = 0, on obtient $\int_0^1 f(t) dt = 0$.

De plus, en notant F une primitive de f sur \mathbb{R} ,

$$\forall x \in \mathbb{R}, \ U(f)(x) = F(x+1) - F(x) = 0$$

Donc, en dérivant, on obtient

$$\forall x \in \mathbb{R}, \ f(x+1) - f(x) = 0$$

La fonction f est donc bien 1-périodique.

6. Réciproquement, soit $f \in \mathcal{E}$ périodique de période 1 telle que $\int_0^1 f(t) dt = 0$. Alors, d'après la première question,

$$\forall x \in \mathbb{R}, \ U(f)(x) = \int_{x}^{x+1} f(t) \ dt = \int_{0}^{1} f(t) \ dt = 0$$

Ainsi U(f) est nulle donc $f \in \text{Ker } U$.

Par double inclusion, Ker U est bien l'ensemble des fonctions $f \in \mathcal{E}$ périodiques de période 1 telles que $\int_0^1 f(t) dt = 0$.

7. Le noyau de U n'est pas nul. En effet, la fonction $f: t \mapsto \sin(2\pi t)$ est bien 1-périodique et $\int_0^1 f(t) dt = 0$ et pourtant f n'est pas nulle. Par conséquent, U n'est pas injectif.

On a montré précédemment, que pour tout $f \in \mathcal{E}$, U(f) est de classe \mathcal{C}^1 sur \mathbb{R} . La fonction $t \mapsto |t|$ appartient bien à \mathcal{E} mais n'est pas de classe \mathcal{C}^1 sur \mathbb{R} (elle n'est pas dérivable en 0). Elle n'appartient donc pas à l'image de U, qui n'est donc pas surjectif.

8. a. Tout d'abord, $U(f_0) = f_0$. Supposons alors $a \neq 0$. Un simple calcul montre que

$$\forall x \in \mathbb{R}, \ F_a(x) = U(f_a)(x) = \int_x^{x+1} e^{at} \ dt = \frac{e^{a(x+1)} - e^{ax}}{a} = \frac{e^a - 1}{a} e^{ax}$$

Autrement dit, $F_a = \frac{e^a - 1}{a} f_a$.

b. On sait que $e^x = 1 + x + o(x)$. On en déduit que $\lim_0 g = 1$. g est don prolongeable par continuité en 0. En posant g(0) = 1, g est alors continue sur \mathbb{R} . g est clairement dérivable sur \mathbb{R}^* et

$$\forall x \in \mathbb{R}^*, \ g'(x) = \frac{xe^x - (e^x - 1)}{x^2} = \frac{(x - 1)e^x + 1}{x^2}$$

Posons $h: x \in \mathbb{R} \mapsto (x-1)e^x + 1$. A nouveau, h est clairement dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \ h'(x) = e^x + (x-1)e^x = xe^x$$

On en déduit que h' est strictement négative sur \mathbb{R}_+^* , nulle en 0 et strictement positive sur \mathbb{R}_+^* . Par conséquent, h' est strictement décroissante sur \mathbb{R}_+^* et strictement croissante sur \mathbb{R}_+^* . Comme h(0) = 0, h est positive sur \mathbb{R} et ne s'annule qu'en 0.

Ainsi g' est strictement positive sur \mathbb{R}^* . Comme g est également continue en 0, la fonction g est strictement croissante sur \mathbb{R} . Par opération, $\lim_{-\infty} g = 0$ et par croissances comparées, $\lim_{+\infty} g = +\infty$.

c. Remarquons que pour tout $a \in \mathbb{R}$, $U(f_a) = g(a)f_a$ (y compris lorsque a = 0). Le théorème de la bijection montre que g réalise une bijection de \mathbb{R} sur \mathbb{R}_+^* . Soit $\lambda \in \mathbb{R}_+^*$. On peut donc affirmer qu'il existe $a \in \mathbb{R}$ tel que $g(a) = \lambda$. Ainsi $U(f_a) = g(a)f_a = \lambda f_a$. Comme f_a est non nulle, $Ker(U - \lambda \operatorname{Id}_{\mathcal{E}}) \neq \{0_{\mathcal{E}}\}$ donc $U - \lambda \operatorname{Id}_{\mathcal{E}}$ n'est pas injectif.

SOLUTION 3.

1. Remarquons que

$$f(E_x) = \text{vect}(f(x_n), n \in \mathbb{N}) = \text{vect}(x_{n+1}, n \in \mathbb{N}) = \text{vect}(x_n, n \in \mathbb{N}^*) \subset E_x$$

2. Puisque $x \in F$ et que F est stable par f, on montre par récurrence que $x_n \in F$ pour tout $n \in \mathbb{N}$. Comme F est un sous-espace vectoriel de E,

$$E_x = \text{vect}(x_n, n \in \mathbb{N}) \subset F$$

- **3. a.** Notons A l'ensemble des entiers naturels non nuls q tels que $(x_0, ..., x_{q-1})$ est une famille libre. Alors $1 \in A$ puisque $x = x_0$ est non nul. De plus, A est majorée par d puisqu'une famille libre comporte au plus d éléments. Comme A est une partie de \mathbb{N}^* , elle admet un maximum p.
 - **b.** Par définition de p, la famille (x_0, \dots, x_p) est liée. Il existe donc $(\lambda_0, \dots, \lambda_p) \in \mathbb{R}^{p+1} \setminus \{(0, \dots, 0)\}$ tel que $\sum_{k=0}^p \lambda_k x_k = 0_E$. Supposons que $\lambda_p = 0$. Alors on aurait $\sum_{k=0}^{p-1} \lambda_k x_k = 0_E$ et donc $\lambda_0 = \dots = \lambda_{p-1} = 0$ car (x_0, \dots, x_{p-1}) est libre. Finalement, $\lambda_0 = \dots = \lambda_{p-1} = \lambda_p = 0$, ce qui contredit notre supposition initiale. Ainsi $\lambda_p \neq 0$ et donc

$$x_p = -\sum_{k=0}^{p-1} \frac{\lambda_k}{\lambda_p} x_k = \sum_{k=0}^{p-1} a_k x_k$$

en posant $a_k = -\frac{\lambda_k}{\lambda_p}$ pour $k \in [0, p-1]$.

c. Remarquons que

$$f(F_x) = \text{vect}(f(x_0), \dots, f(x_{p-1})) = \text{vect}(x_1, \dots, x_p)$$

Pour $k \in [1, p-1]$, $x_k \in F_x$ et la question précédente montre que $x_p \in F_x$. Comme F_x est un sous-espace vectoriel de E,

$$f(F_x) = \text{vect}(x_1, \dots, x_p) \subset F_x$$

- **d.** Il est clair que $F_x \subset E_x$ De plus, F_x est un sous-espace vectoriel de E contenant x et est stable par f, donc $E_x \subset F_x$ d'après la question **2**. Par double inclusion, $E_x = F_x$. Comme $(x_0, ..., x_{p-1})$ est libre et engendre F_x , c'est une base de $F_x = E_x$.
- **4.** Soit $(\lambda_0, \dots, \lambda_{p-1}) \in \mathbb{R}^p$ tel que $\sum_{k=0}^{p-1} \lambda_k g^k = 0$. En évaluant cette égalité en x, on obtient

$$\sum_{k=0}^{p-1} \lambda_k x_k = 0_{\mathbf{E}}$$

Comme (x_0, \dots, x_{p-1}) est libre, $\lambda_0 = \dots = \lambda_{p-1} = 0$. Ainsi $(\mathrm{Id}_{\mathsf{E}_x}, g, g^2, \dots, g^{p-1})$ est une famille libre de $\mathcal{L}(\mathsf{E}_x)$.

5. Puisque $x_p = \sum_{k=0}^{p-1} a_k x_k$, $g^p(x_0) = \sum_{k=0}^{p-1} a_k g^k(x_0)$. Soit $j \in [0, p-1]$. En appliquant g^j à l'égalité précédente, on obtient

$$g^{p+j}(x_0) = \sum_{k=0}^{p-1} a_k g^{k+j}(x_0)$$

ou encore

$$g^{p}(x_{j}) = \sum_{k=0}^{p-1} a_{k}g^{k}(x_{j})$$

Ainsi g^p et $\sum_{k=0}^{p-1} a_k g^k$ sont deux endomorphismes de E_x qui coïncident sur la base (x_0, \dots, x_{p-1}) de E_x : ils sont donc égaux.