CITY UNIVERSITY OF HONG KONG

Department of Mathematics

Course Code & Title :

MA1200 Calculus and Basic Linear Algebra I

Session

Semester A, 2018-2019

Time Allowed

Three Hours

This paper has <u>SEVEN</u> pages. (including this cover page)

A brief table of derivatives is attached on page 6 and 7.

Instructions to candidates:

- 1. Answer all questions.
- 2. Start each main question on a new page.
- 3. Show all step.

This is a closed-book examination.

Candidates are allowed to use the following materials/aids:

Non-programmable portable battery operated calculator.

Materials/aids other than those stated above are not permitted. Candidates will be subject to disciplinary action if any unauthorized materials or aids are found on them.

NOT TO BE TAKEN AWAY

NOT TO BE TAKEN AWAY
BUT FORWARDED TO LIB

Consider the conic section described by the equation $4x^2 + y^2 + 24x - 4y + 24 = 0$.

- (a) Classify its type. (3 marks)
- (b) Find its center, vertices, and foci. (5 marks)
- (c) Sketch its graph. (3 marks)

Question 2

Let $f(x) = \frac{4x+3}{x+2}$.

- (a) Show that f is one-to-one in its domain of definition. (3 marks)
- (b) Calculate $f^{-1}(-2)$. (2 marks)
- (c) Find the domain and range of $f^{-1}(x)$. (4 marks)
- (d) Sketch the graph of the curve $y = f^{-1}(x)$. (2 marks)

Question 3

(a) Show that
$$\sin(3x) = 3\sin x \cos^2 x - \sin^3 x$$
. (3 marks)

(b) Find, in radians, the general solutions of the equation (3 marks)

$$\sin(3x) + \cos(3x) + 1 = 0.$$

(Hint: To solve questions (a) and (b), you may use the formulas:

$$\sin(A+B) = \sin A \cos B + \cos A \sin B, \cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\sin A + \sin B = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}, \cos A + \cos B = 2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}$$

(c) Let
$$f(x) = \frac{x^3 - 3}{x^3 - x^2 - x + 1}$$
.

- (i) Express f(x) in partial fractions. (3 marks)
- (ii) Find $f^{(3)}(x)$. (3 marks)

Consider the function $f(x) = x^2 \ln x$.

- (a) Find its domain of definition and the interval on which f(x) is positive. (2 marks)
- (b) Calculate $\lim_{x \to 0+} f(x)$. (3 marks)
- (c) Find the inflection point of f(x). (3 marks)
- (d) Find the minimum value of f(x). (3 marks)

Question 5

(a) Compute
$$\lim_{x \to \infty} \left(\frac{\ln x}{x} \right)^{1/\ln x}$$
. (4 marks)

- (b) Let $f(x) = \frac{\sqrt{|x|} \cos(\pi^{1/x^2})}{2 + \sqrt{x^2 + 3}}$ for $x \neq 0$. How should f be defined at x = 0 so that it becomes a continuous function on all \mathbb{R} ?
- (c) Show that the equation $x^5 + x^3 + 2x = 2x^4 + 3x^2 + 4$ has a solution in the open interval (2,3). (3 marks)

Question 6

Differentiate the following functions about the variable x:

(a)
$$\frac{x^2+2}{x^2-1}$$
; (2 marks)

(b)
$$\sin^{-1}\left(\frac{x^2}{3}\right)$$
; (3 marks)

(c)
$$\ln \frac{(6+\sin^2 x)^{10}}{(7+\cos x)^3}$$
; (3 marks)

(d)
$$(\sin x)^{\tan x}$$
. (3 marks)

The graph of the equation $\begin{cases} x = 5\sqrt{5} \sin^3 t, \\ y = 5\sqrt{5} \cos^3 t, \end{cases}$ for $t \in [0, 2\pi]$ is one of a family of curves called astroids; see the following figure.

(a) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at the point $(-1,8)$. (6 marks)

(b) Find the tangent line at the point
$$(-1, 8)$$
. (3 marks)

Question 8

A farmer has 100 pigs each weighing 300 pounds. It costs \$10 a day to keep one pig. The pigs gain weight at 10 pounds a day. They sell today for \$15 a pound, but the price is falling by \$0.2 a day. How many days should the farmer wait to sell his pigs in order to maximize his profit?

(11 marks)

Let $f(x) = \sin(\sinh^{-1} x)$.

(a) Show that (4 marks)

$$(1+x^2)f''(x) + xf'(x) + f(x) = 0.$$

(b) Let n be a positive integer, show that (5 marks)

$$(1+x^2)f^{(n+2)}(x) + (2n+1)xf^{(n+1)}(x) + (n^2+1)f^{(n)}(x) = 0.$$

(c) Hence, or otherwise, find the Maclaurin series of $sin(sinh^{-1} x)$ as far as the terms in x^5 . (4 marks)

Short Table of Derivatives of y = f(u) with respect to x, where u is a function of x

Functions, $y = f(u)$	Derivative of y with respect to x
y = c, where c is a constant.	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
y = cu, where c is a constant.	$\frac{\mathrm{d}y}{\mathrm{d}x} = c \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = u^p$, where p is a constant.	$\frac{\mathrm{d}y}{\mathrm{d}x} = pu^{p-1} \frac{\mathrm{d}u}{\mathrm{d}x}$
y = u + v	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x} + \frac{\mathrm{d}v}{\mathrm{d}x}$
y = uv	$\frac{\mathrm{d}y}{\mathrm{d}x} = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \frac{u}{v}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{v\frac{\mathrm{d}u}{\mathrm{d}x} - u\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}$
y = f(u), where u is a function of x .	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}f(\mathrm{u})}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}, \text{ the chain rule}$
$y = \log_a u, a > 0.$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{u} \log_a e \frac{\mathrm{d}u}{\mathrm{d}x}$
$y=a^u, \ a>0.$	$\frac{\mathrm{d}y}{\mathrm{d}x} = a^u \log_e a \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = e^u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = e^u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = u^{\nu}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = vu^{v-1}\frac{\mathrm{d}u}{\mathrm{d}x} + u^{v}\log_{e}u\frac{\mathrm{d}v}{\mathrm{d}x}$
$y = \sin u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \cos u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\sin u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \tan u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \cot u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{cosec}^2 u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \sec u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec u \tan u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \csc u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{cosec}u\mathrm{cot}u\frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \sin^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{1 - u^2}} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \cos^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{\sqrt{1 - u^2}} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \tan^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1+u^2} \frac{\mathrm{d}u}{\mathrm{d}x}$

Functions, $y = f(u)$	Derivative of y with respect to x
$y = \cot^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{1+u^2} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \sec^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{ u \sqrt{u^2 - 1}} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \csc^{-1}u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{ u \sqrt{u^2 - 1}} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \sinh u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \cosh u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \cosh u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sinh u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \tanh u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{sech}^2 u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \coth u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{cosech}^2 u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \operatorname{sech} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{sech}u\tanh u\frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \operatorname{cosech} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{cosech}u\mathrm{coth}u\frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \sinh^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{1+u^2}} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \cosh^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{u^2 - 1}} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \tanh^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 - u^2} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \coth^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 - u^2} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \operatorname{sech}^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{u\sqrt{1-u^2}} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \operatorname{cosech}^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{ u \sqrt{u^2 + 1}} \frac{\mathrm{d}u}{\mathrm{d}x}$