SUPERVISION TEMPS-REEL DES CONSOMMATIONS ELECTRIQUES DOMESTIQUES

Date: Aout 2014

Révision: A0

I. **SOMMAIRE**

I. SOM	MAIRE	
II. ILLUS	STRATIONS	3
II.1. L	Liste des figures	3
II.2. L	Liste des tableaux	3
	XIQUE	
IV. DE.	SCRIPTION	5
V. CONF	FIGURATION DE LA R-PI	6
VI. AR	CHITECTURE	
VI.1. VI.1.1.	A-0 - Architecture Générale Schéma de principe	
VI.2.	A1 - Compteur ERDF	8
VI.3.	A2 – Conditionnement	8
VI.3.1.	. Schéma de principe	8
VI.4.	A3 - Acquisition – Stockage	10
VI.4.1.		
VI.4.2.	. A31 –Programme en C	11
VI.4	1.2.1. Synoptique d'une trame	11
VI.4	1.2.2. Algorithme	12
VI.5.	A4 – Transfert	13
VI.5.1.	. Schéma de principe	13
VI.5.2.	. A41 – Fichier csv	14
VI.6.	A5 – Exploitation	16
VI.6.1.	. Schéma de principe	16
VI.6.2.	. Programme sous Scilab	17
VI.6.3.	. Schéma de principe	17
VI.6	5.3.1. Algorithme	17
VI.6	5.3.2. Liste des fonctions disponibles	
VI.7.	A6 – Affichage	20
VI.7.1.	Schéma de principe	20
VII. AN	INEXES	21
VII.1.	Bibliographie	21
VII.2.	Compteurs Testés	
VII.3.	BOM	
VII.4.	Fichiers générés	21

II. ILLUSTRATIONS

II.1.Liste des figures

Figure 1 - A-0 - Schéma de principe	7
Figure 2 - A2 - Schéma de principe	8
Figure 3 - A2 - Schéma électrique	9
Figure 4 - A3 - Schéma de principe	10
Figure 5 – A31 - Constitution d'une trame	11
Figure 6 – A31 - Algorithme	12
Figure 7 - A4 - Schéma de principe	13
Figure 8 – A41 - Fichier csv	14
Figure 9 – Extrait du fichier csv pour une configuration Base	15
Figure 10 – Extrait du fichier texte pour une configuration Base	15
Figure 11 – Extrait du fichier texte pour une configuration HCHP	16
Figure 12 - A5 - Schéma de principe	16
Figure 13 - A6 - Schéma de principe	20
II 2 Liste des tables	
II.2.Liste des tableaux	
Tableau 1 – Configuration FTP	13
Tableau 2 – Liste des fonctions disponubles	
Tubleuu 2 – Liste des jonctions dispondbles	19

Révision : A0 3/21

III. LEXIQUE

BOM Bill Of Materials, nomenclature

Checksum Somme de contrôle

ERDF Électricité **R**éseau **D**istribution **F**rance

Fc Fréquence de Coupure

FTP File Transfert Protocol, protocole de transfert de fichiers

OS Operating System, système d'exploitation

R-Pi Raspberry-Pi

SSH Secure **SH**ell

TR Temps Réel

Universal Asynchronous Receiver Transmitter, émetteur-récepteur asynchrone

universel

VNC Virtual Network Computing

Révision : A0 4/21

IV. DESCRIPTION

Ce projet permet de consulter les consommations électriques en temps réel depuis un terminal connecté (ex.: ordinateur, Smartphone ou tablette). Une extension permet d'accéder aux fichiers de point et de réaliser des analyses approfondies avec Scilab (www.scilab.org/fr).

Dans l'objectif d'avoir une nomenclature la plus économique possible, le projet se base sur le compteur électrique ERDF en tête d'installation électrique et d'une Raspberry-Pi (www.raspberrypi.org).

Il est possible de se connecter sur tout type de compteur électronique possédant une sortie liaison série. Se reporter au §VII.2 pour connaître la liste des compteurs déjà testés.

Révision : A0 5/21

CONFIGURATION DE LA R-PI V.

<mark>Libérer UART</mark>

Client NTP

Dongle Wifi

Lancer le programme en SSH : ./compteur_linky >> compteur.log &

6/21 Révision: A0

VI. **ARCHITECTURE**

VI.1. A-0 - Architecture Générale

Schéma de principe VI.1.1.

Figure 1 - A-0 - Schéma de principe

Référence	Nom	Description
A-0	Architecture Générale	Vue d'ensemble
A1	Compteur ERDF	Acquisition des grandeurs électriques, échantillonnage, envoi sur liaison série
A2	Conditionnement	Mise en forme électrique de la liaison série
A3	Acquisition - Stockage	Décodage, horodatage, stockage, serveurs
A4	Transfert	Transfert ponctuel pour exploitation
A5	Exploitation	Analyses approfondies avec Scilab
A6	Affichage	Affichage basique avec un navigateur web

7/21 Révision: A0

VI.2. A1 - Compteur ERDF

A partir des documents [D1] et [D2], les caractéristiques physiques des signaux de téléinformation client, sous le couvre-bornes, sont les suivantes :

- binaire,
- unidirectionnelle,
- vitesse de modulation 1200 bauds +/-1%,
- durée égale des bits à « 0 » et à « 1 » ,
- fréquence de la porteuse 50kHz +/-3%,
- logique de codage négative
 - o un bit émis à "0" correspond à la présence de porteuse pendant le temps correspondant.
 - o un bit émis à "1" correspond à l'absence de porteuse pendant le temps correspondant.

Après démodulation, la liaison asynchrone classique a les caractéristiques suivantes:

- vitesse de transmission 1200 bauds
- codage de toutes les informations sous forme ASCII (affichable)
 - o 7 bits pour représenter un caractère ASCII
 - 1 bit de parité, parité paire (even)
- un bit de start avant chaque caractère <=> "0" logique
- un bit de stop après chaque caractère <=> "1" logique

Le contenu des trames est décrite dans le §VI.4.2.1.

VI.3. A2 - Conditionnement

VI.3.1. Schéma de principe

Figure 2 - A2 - Schéma de principe

Révision : A0 8/21

Cette fonction convertie un signal modulé en amplitude en un signal logique 3,3V. La BOM se trouve dans le §VII.3.

Figure 3 - A2 - Schéma électrique

Nota : Le compteur ERDF est une modélisation électrique.

La tension porteuse entre Ve+ et Ve- est à la fréquence de 50kHz. L'optocoupleur Q1 est naturellement lent à la commutation et filtre le 50kHz d'où Vs un signal carré à logique positive.

Le filtre R5C2 est fixé à fc ≈ 12kHz

Le pont R1, R2 et R3 est symétrique et assure la continuité du courant lorsque $|V_{e+} - V_{e-}| < V_d$, tension de seuil des diodes.

Révision : A0 9/21

VI.4. A3 - Acquisition - Stockage

VI.4.1. Schéma de principe

Figure 4 - A3 - Schéma de principe

La R-Pi assure la communication unidirectionnelle avec le compteur, le décodage, l'horodatage et l'enregistrement des points de mesure.

L'interface SSH/VNC sert à la gestion à distance.

Révision : A0 10/21

VI.4.2. A31 -Programme en C

VI.4.2.1. Synoptique d'une trame

Les trames envoyées par le compteur ne sont pas horodatées et se composent comme décrit dans la *Figure 5*. Envoyées en boucle, leur contenu peut varier selon le compteur ou la configuration utilisée (Base, HCHP, ...).

L'algorithme du programme est donnée dans le §VI.4.2.2.

Légende

STX Start Of Text Début de la trame
ETX End Of Text Fin de la trame
LF Line Feed Effacer la ligne
HT Horizontal Tabulation Espace

CR Carriage return Retour au début de la ligne

Figure 5 – A31 - Constitution d'une trame

Révision : A0 11/21

VI.4.2.2. Algorithme

Le programme est structuré comme présenté par la Figure 6.

Figure 6 – A31 - Algorithme

Révision : A0 12/21

VI.5. A4 - Transfert

VI.5.1. Schéma de principe

A4

Figure 7 - A4 - Schéma de principe

L'obtention du fichier de point s'effectue par le transfert des fichiers en utilisant le protocole FTP. Il est possible d'utiliser le client FileZilla (http://filezilla.fr)

Les informations de connexion sont les suivantes :

Description	Valeur
Adresse IP de la R-Pi	192.168.1.xxx
Nom du compte	pi
Mot de passe	XXX
Port	22
Protocole	SFTP

Tableau 1 – Configuration FTP

Révision : A0 13/21

VI.5.2. A41 – Fichier csv

Le fichier csv est un des 2 formats de sortie, le second étant la base de donnée (cf. §VI.7).

Le nom du fichier est composé de la sorte :

Avec aaaa l'année sur 4 chiffres, MM le mois sur 2 chiffres et jj le jour sur 2 chiffres.

Le contenu du fichier varie selon la configuration du compteur mais il peut être illustré par la *Figure 8*. Des exemples sont accessibles sous *Code\Compteur_Linky\Releves\Fichiers csv*.

Figure 8 - A41 - Fichier csv

Dans un souci de taille de fichier, les index d'énergie ne sont enregistrés que toutes les heures à xh00m00s avec x=[0...23]. Lorsque la PAPP n'est pas disponible (i.e. non envoyée par le compteur) l'index est enregistré à chaque trame, le champ Papp est alors vide.

Lorsque l'utilisateur demande l'arrêt du programme, le dernier index, le MOTDETAT et IMAX sont ajoutés.

La Figure 10 est un extrait d'un fichier csv pour un compteur configuré en Base.

```
Creation le 2013/12/15 00:00:02
Compteur n°271067095836

Heure; Papp; Base
00:00:02; 00091; 004312814
00:00:05; 00092;
00:00:10; 00092;
00:00:13; 00092;
[...]
00:59:57; 00151;
00:59:58; 00151
01:00:00; 00152; 004312900
01:00:01; 00153;
01:00:03; 00151;
```

Révision : A0 14/21

```
[...]
23:59:56;00093;
23:59:57;00093;
23:59:58;00093;
23:59:59;00093;004316605
Motdetat 000000 Imax 010
```

Figure 9 – Extrait du fichier csv pour une configuration Base

ATTENTION: En attendant d'être mis à jour, ce sont des *espace-tabulation-espace* et non un *point-virgule* qui sépare les valeurs ; aussi l'extension du fichier est .txt.

La *Figure 10* est un extrait d'un fichier texte pour un compteur configuré en base et la *Figure 11* pour une configuration HCHP.

[Invalide] est une synthèse sur la validité des trames. Ce calcul se base sur les cheksums reçus et calculés ; cette valeur est uniquement présente et égale à « 1 » ou « -1 » lorsqu'il y a un écart.

Creation 1	le 2013/12/15	00:00:02	
Compteur r	n°271067095836	5	
Heure	Рарр	Base	Invalide
00:00:02	00091	004312814	
00:00:05	00092		
00:00:08	00092		
00:00:10	00092		
00:00:13	00092		
[]			
00:59:57	00151		
00:59:58	00151		
01:00:00	00152	004312900	
01:00:01	00153		
01:00:03	00151		
[]			
23:59:56	00093		1
23:59:57	00093		1
23:59:58	00093		1
00:00:00	00093	004316605	1
Motdetat	000000	Imax	010

Figure 10 – Extrait du fichier texte pour une configuration Base

```
Creation le 2013/12/28 17:10:49

Compteur n°049701078744
```

Révision : A0 15/21

Heure	Рарр	H creuses		H pleines	Invalide
17:10:49	098437215	131783106	-1		
17:10:51	098437215	131783109			
17:10:53	098437215	131783111			
17:10:54	098437215	131783112			
17:10:55	098437215	131783114			
[]					
23:59:55	098441046	131797583			
23:59:56	098441046	131797583			
23:59:58	098441046	131797583			
23:59:59	098441046	131797583	-1		
Motdetat	000F00 Imax	049			

Figure 11 – Extrait du fichier texte pour une configuration HCHP

VI.6. A5 - Exploitation

Schéma de principe VI.6.1.

A5

Figure 12 - A5 - Schéma de principe

L'exploitation des relevés se fait à partir de scripts Scilab décrit dans les paragraphes suivants.

Le fichier [A52] contient les mêmes informations que [A41] mais dans un format binaire (extension .sod) qui est plus rapidement importé dans l'environnement Scilab.

16/21 Révision: A0

VI.6.2. Programme sous Scilab

VI.6.3. Schéma de principe

A51

VI.6.3.1. Algorithme

Révision : A0 17/21

Liste des fonctions disponibles VI.6.3.2.

Le Tableau 2 liste les fonctions présentes, une liste exhaustive et à jour est fournie dans [D3].

NOM	DESCRIPTION	PROTOTYPE			
[A511] Importer le fichier texte					
Charger_Txt	OBSOLETE Importer les données du fichier texte [A41]	cheminFichier = Charger_Txt(dataPath)			
Importer_Txt	Importer les données du fichier texte [A41]	<pre>cheminFichier = Importer_Txt(dataPath, isDEBUG)</pre>			
Indexer_Trame_Base	Retourne les valeurs [heure], [papp] et [index] de la trame reçue – Configuration BASE	Indexer_Trame_Base (trame, stcPosiTab)			
Indexer_Trame_HCHP	Retourne les valeurs [heure], [papp], [indexHC] et [indexHP] de la trame reçue — Configuration HCHP	Indexer_Trame_HCHP (trame, stcPosiTab)			
LocaliserCaractere	Retourne la position d'un caractère dans une chaine de caractères	posiCaract = LocaliserCaractere(trame,caractere)			
Puissance_HCHP	Calculer la puissance à partir des index [indexHC] et [indexHP]. Filtrage sur 40 échantillons	Papp = Puissance_HCHP (Heure, Index)			
	[A512] Importer le fichier binaire	е			
charger_variables	Importe les variables depuis le fichier binaire [A52]	charger_variables(dataPath2Sa ve)			
	[A513] Tracer les courbes				
couleur_plot	Retourne un tableau comprenant toutes les couleurs disponibles pour tracer	couleur = couleur_plot()			
heures_Abscisses	Afficher les abscisses en heure	heures_Abscisses(nbrLignes, fenetre, graphique, temps)			
mise_en_forme	Met en forme le graphique (titre, légende, échelles, couleur de fond)	mise_en_forme(graphique, fenetre, opt_BackgndCouleur)			
tracer_2_Graph	Tracer 2 graphs ayant des unités différentes (puissance et énergie)	tracer_2_Graph(stcReleve)			
tracer_D_Graph	Tracer plusieurs courbes de différentes couleurs, dans 1 graph	tracer_D_Graph(data2plot, jour, heure)			
tracer_Graph	Tracer 1 graph	tracer_Graph(data2plot, NumCompteur)			
[A514] Analyses					
configuration	Affiche en console et retourne des booléens avec la configuration du compteur	configuration(donnee)			
conversion_temps	Converti un temps en secondes en heures, minutes, secondes et affichage en console (optionnel)	<pre>duree = conversion_temps(tempsSecon des, opt_affichage)</pre>			

18/21 Révision: A0

NOM	DESCRIPTION	PROTOTYPE	
difTemps	Calcule la différence de temps entre 2 instants	Dtemps = difTemps(heure1, heure2)	
dimensions	Retourne la longueur ou la largeur du tableau	nombre = dimensions(data,choix)	
energie	Retourne une chaine de caractères les énergies de début et de fin du relevé et leur unité	<pre>energieStr = energie(obs_nbrLignes, obs_config)</pre>	
GlrBrandtMoy	Retourne le signal filtré par une détection de rupture, basé sur un saut de moyenne	[g,mc,kd,krmv]=GlrBrandtMoy(x,h,Nest,Ndmax)	
HeuresFonctionneme nt	Comptabilise un temps (de fonctionnement) où Papp(i) >= moyenne(Papp)	[duree, moyenne] = HeuresFonctionnement(opt_m oylnact)	
info_compteur	Affiche en console les informations du compteur	info_compteur(stcReleve)	
matrice	Retourne une matrice de valeur constante	tab = matrice(nbrLignes, nombre)	
Modifier_Horodatage	Modifier l'horodatage	Modifier_Horodatage(Heure, offset)	
moyenneGlissante	Retourne le signal filtré avec un filtre à moyenne glissante	signal_f = moyenneGlissante(signal, fenetre)	
nom_compteur	Retourne le nom du compteur à partir de son numéro	nom = nom_compteur(numCompteur)	
nom_jour	Retourne le nom du jour	nom = nom_jour(dateReleve)	
nombre_2_Chiffres	Retourne un nombre sur 2 chiffres	strNombre = nombre_2_Chiffres (nombre)	
puissMoyStr	Retourne une chaine de caractères de la puissance moyenne avec son unité	<pre>puissMoyStr = puiss_Moyenne()</pre>	
Affichage du signal avant et après filtrage, reglerFctDeci pour régler les coefficients du filtre [GlrBrandtMoy]		reglerFctDeci(x, h, g, mc)	
[A515] Exporter le fichier binaire			
Sauve_Variables	Sauvegarder les variables dans un fichier binaire [A52]	Sauve_Variables (filePath, stcReleve, stcStatistiques)	

Tableau 2 – Liste des fonctions disponubles

19/21 Révision : A0

VI.7. A6 - Affichage

VI.7.1. Schéma de principe

Figure 13 - A6 - Schéma de principe

Révision : A0 20/21

VII. ANNEXES

VII.1. Bibliographie

- [D1] ERDF-NOI-CPT_44E <u>www.erdf.fr/medias/DTR Generalites/ERDF-NOI-CPT 44E.pdf</u> Septembre 2013
- [D2] Document Compteur_energie_zcd126_02 http://www.france-electric.com/compteur-electrique-monophase-edf-chauffage-90a-20kwh-c2x2206265 Septembre 2013
- [D3] Liste exhaustive des fonctions disponiblse sous Scilab

[D4]

VII.2. Compteurs Testés

Les compteurs électroniques monophasés déjà testés sont les suivants :

Référence compteur	Configuration	Remarque
Landis & Gyr ZCD126.02		
Linky	Base	
Mt Sax <mark>(TBD)</mark>	Heures Pleines - Heures Creuses	Pas de Papp dans les trames
Claix <mark>(TBD)</mark>	Base	

VII.3. BOM

VII.4. Fichiers générés

Révision : A0 21/21