Redes de Computadores

Protocolos de enlace Estudos de caso: HDLC e PPP

Aula 09

High-level Data Link Control (HDLC)

- □ Padrão ISO para protocolo de enlace
- ☐ Suporte a comunicações *half* e *full-duplex* através de enlaces ponto a ponto ou multiponto
 - Hoje é praticamente usado apenas em enlaces ponto a ponto
- ☐ Transmissão síncrona orientado a bit
 - bit stuffing

Instituto de Informática - UFRGS A. Carissimi-1-avr.-15

- □ Define tipos de estações, de enlaces e modos de transferência de dados
 - Fazia mais sentido nos primórdios da comunicação de dados

2 Redes de Computadores

Tipos de estações

- □ Primária
 - Entidade que tem autonomia para iniciar uma comunicação enviando quadros de comandos
- Secundária

Redes de Computadores

- Entidade sem autonomia para iniciar uma comunicação
- Apenas responde a quadros de comando

Configurações de enlace e modos de transferência

- □ Normal Reponse Mode (NRM)
 - Ponto a ponto ou multiponto
 - Estações primária e secundária
 - Secundária só transmite com autorização da primária
- □ Asyncronous Response Mode (ARM)
 - Ponto a ponto
 - Estações primária e secundária
 - Secundária pode transmitir sem autorização da primária
- □ Asynchronous Balanced Mode (ABM)
 - Ponto a ponto

Redes de Computadores

- Estações combinadas
- Modo normalmente empregado

Não balanceada: ponto a ponto (NRM, ARM)

Não balanceada: multiponto (NRM)

Balanceada: ponto a ponto (ABM)

Informática - UFRGS -avr.-15

3

Estrutura do quadro

☐ Formato único de quadro para envio de dados e comandos (controle)

Bits	8	8 ou 16	8 ou 16	variável	16 ou 32	8	
	flag	Endereço	Controle	Informação (dados)	FCS	flag	

■ Descrição:

- → Flag é o caractere $7E_{16}$ (0111 1110) \rightarrow delimitação de quadro
 - · Realiza bit stuffing
- Endereço: identifica uma estação secundária origem ou destino do quadro
 - Possui um endereço especial (broadcast)
- Frame Check Sequence (FCS): CRC para detecção de erros (16 ou 32)
- Controle: informações para o controle lógico do enlace
- Informação: presente apenas em quadros do tipo I (a seguir)

Redes de Computadores

Tipos de quadro HDLC

- □ Informação (quadro I):
 - Dados, número de seqüência para controle ARQ e piggybacking
- □ Supervisão (quadro S):
 - Quadros de controle do mecanismo ARQ (RR, REJ, RNR e SREJ)
- Não numerado (quadro U)
 - Comandos adicionais para controle e gerenciamento do enlace

Identificados no campo de controle

Redes de Computadores

Campo de controle

Bit P/F

Instituto de Informática - UFRGS A. Carissimi-1-avr.-15

5

- ☐ Um bit, dois significados quando ativo (=1)
 - Poll: quando o campo de endereço fornece o destino do quadro
 - Final: quando o campo de endereço fornece a origem do quadro
- ☐ Usado para uma estação fazer consultas (*poll*) e obter uma resposta de outra (*final*)

Instituto de Informática - UFRGS A. Carissimi - 1-avr. -15

Redes de Computadores

Instituto de Informática - UFRGS A. Carissimi -1-avr.-15

Controle de erro

- □ Funcionamento default
 - Emprega apenas quadros de confirmação positiva (RR n ou RNR n)
 - Controle de erro é feito por *time-out*
 - Ao estourar um time-out envia um quadro RR com bit P=1 para questionar qual foi o último quadro recebido com sucesso.
 - Resposta é um RR com F=1 indicando o próximo quadro a ser recebido (n)
- Modo explícito (sem uso de P/F)
 - Emprega quadros de confirmação positiva (RR n ou RNR n) e de confirmação negativa (REJ n ou SREJ n)

Redes de Computadores

Instituto de Informática - UFRGS A. Carissimi -1-avr.-15

Operação do HDLC

- □ Quadros de informação(I), supervisão (S) e não numerados (U) entre duas estações
- □ Três fases
 - Inicialização
 - Envio de comando do tipo set-mode
 - Especifica um modo de transferência de dados (NRM, ABM, ARM)
 - Nro. de seqüência em 3 ou 7 bits (1 n, RR n, RNR n, SREJ n ou REJ n)
 - Recebe um quadro U tipo UA (unnumbered ACK) ou DM (Disconnect Mode)
 - Transferência de dados
 - Ambos lados transferem quadros do tipo I
 - Quadros S também são empregados no controle de erro e de fluxo:
 - RR, RNR, REJ e SREJ
 - Encerramento da conexão
 - Qualquer lado pode iniciar o pedido (DISC)
 - Solicitação deve ser aceita por um comando do tipo UA

Redes de Computadores 10

Exemplo de funcionamento

Família de protocolos HDLC

□ Conjunto de protocolos que possuem funcionamento similar ao HDLC

Redes de Computadores 12

Instituto de Informática - UFRGS A. Carissimi - 1-avr. -15

Instituto de Informática - UFRGS A. Carissimi-1-avr.-15

9

Point-to-Point Protocol (PPP)

- □ Protocolo voltado a enlaces ponto-a-ponto
 - Comumente usado nos enlaces cliente-provedor
 - Não orientado a conexão e sem confirmação
- Empregado para
 - Enquadramento de dados
 - Controlar configurações de enlace
 - Controlar configurações de rede

IΡ

PPP

Nível físico

13

Redes de Computadores

Formato do quadro

Instituto de Informática - UFRGS A. Carissimi -1-avr.-15

01111110	11111111	1100000			crc16-32	01111110
flag	endereço	controle	protocolo	área de dados	FCS	flag

- Exemplo: encapsulado em quadro do HDLC
 - Marcas de início e fim baseado em flag
 - Sem necessidade de identificar estações, pois é ponto-a-ponto
 - Controle corresponde a quadros U (sem número de sequência, sem controle de fluxo e sem controle de erro)
- □ Protocolo indica o que está sendo transportado
- □ Dados de usuário ou outras informações (a seguir...)

14 Redes de Computadores

Pilha de protocolos PPP

- □ PPP é um protocolo de enlace, mas usa outros para:
 - Estabelecer o enlace: Link Control Protocol (LCP)
 - Autenticar os pares envolvidos: Autentication Protocol (AP)
 - ◆ Password Authentication Protocol (PAP)
 - Challenge Handshake Authentication Protocol (CHAP)
 - Extensible Authentication Protocol (EAP)
 - ◆ Transportar 3-PDUs: Network Control Protocol (NCP)
 - Depende do protocolo da camada de rede
 - ◆ Internetwork Protocol Control Protocol (IPCP)
- □ Protocolos são identificados no campo "protocolo" do quadro PPP

Diagrama de transição

Redes de Computadores 15 Redes de Computadores 16

Instituto de Informática - UFRGS A. Carissimi -1-avr.-15

Instituto de Informática - UFRGS A. Carissimi -1-avr.-15

Link Control Protocol (LCP)

- □ Responsável por estabelecer, manter, configurar e encerrar o enlace
 - Envolve uma negociação de opções entre os dois pares
 - Pares devem estar de acordo para o enlace ser estabelecido
- Quadro LCP

- Requisições de configuração, término, monitoração e depuração
- Opções negociadas: tamanho máximo do quadro, autenticação (s/n), uso de compressão, etc

17 Redes de Computadores

Protocolos de autenticação

- Uso opcional do PPP
- □ Três protocolos:

Instituto de Informática - UFRGS A. Carissimi -1-avr.-15

de Informática - UFRGS ni-1-avr.-15

- · Password Authentication Protocol (PAP)
- Challenge Handshake Authentication Protocol (CHAP)
- Extensible Authentication Protocol (EAP)

18 Redes de Computadores

Password Authentication Protocol (PAP)

- Mecanismo simples baseado em dois passos:
 - Usuário envia username e password
 - Destino verifica username e password e aceita ou recusa o estabelecimento do enlace
- ☐ Três tipos de quadros encapsulados no PPP
 - Authenticate request, authenticate ack e authenticate nack

Challenge Handshake Authentication Protocol (CHAP)

- □ Mecanismo de 3 vias (*three way handshake*)
 - Maior segurança que o PAP password não é enviada na rede
- □ Três passos:
 - Sistema envia ao usuário um desafio (challenge) → conj. de bytes
 - Usuário calcula f(password, challenge) e envia o resultado+username
 - Sistema executa a mesma função e verifica se o recebido e igual ao calculado

	01111110	11111111	1100000	0xC223		crc16-32	01111110
	flag	endereço	controle	protocolo	área de dado	s FCS	flag

2							
3		código		id req/res	tamanho	área de d	ados

Quatro tipo de quadros encapsulado em PPP: challenge, resposta, sucesso e falha

20 Redes de Computadores

Instituto de Informática - UFRGS A. Carissimi -1-avr.-15

Network Control Protocol (NCP)

- ☐ Protocolo de controle para encapsular dados provenientes da camada de rede em um quadro PPP
- □ PPP possui na verdade duas negociações:
 - Camada de enlace: estabelecimento do enlace
 - Camada de rede: protocolos específicos (eg. IP, IPX, Appletalk etc)
 - Rede IP: IPCP (Internet Protocol Control Protocol)

Redes de Computadores

Leituras complementares

- □ Stallings, W. *Data and Computer Communications* (6th edition), Prentice Hall 1999.
 - Capítulo 7, seções 7.3 e 7.4
- □ Tanenbaum, A. Redes de Computadores (4ª edição), Campus, 2003.
 - Capítulo 3, seção 3.6

Trabalho opcional (Individual)

Instituto de Informática - UFRGS A. Carissimi-1-avr.-15

- ☐ Substitui uma questão da prova (2 pontos) valendo até 3 pontos
- ☐ Implementação do protocolo (VSTFP Very Simple Transfer File Protocol) baseado em Go-Back N usando um guadro HDLC-like
- □ Data entrega: 06 de MAIO de 2015 (23:59:59 horas)
- □ Especificação e mais detalhes no moodle.
- □ Lembrando: NÃO haverá aulas teóricas dias 07/04; 09/04 e 14/04

22 Redes de Computadores

Instituto de Informática - UFRGS A. Carissimi -1-avr.-15

Redes de Computadores

23

21