ECE4273 Course Syllabus

ECE4273

Design Synthesis of Application-Specific Signal Processors (2-3-3)

CMPE Degree

This course is Elective for the CMPE degree.

EE Degree

This course is Elective for the EE degree.

Course Coordinator

Madisetti, Vijay K

Prerequisites

ECE 4270

Corequisites

None

Catalog Description

Fundamentals of theory and practice of DSP chip design in VHDL. Exposure to tools and environments for chip design, simulation, and verification.

Textbook(s)

Meyer-Baese, Uwe, Digital Signal Processing with Programmable Gate Arrays (3rd edition), Springer, 2008. ISBN 9783540726128 (required)

Student Outcomes

In the parentheses for each Student Outcome:

"P" for primary indicates the outcome is a major focus of the entire course.

"M" for moderate indicates the outcome is the focus of at least one component of the course, but not majority of course material.

"LN" for "little to none" indicates that the course does not contribute significantly to this outcome.

- 1. (LN) An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- 2. (LN) An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- 3. (LN) An ability to communicate effectively with a range of audiences
- 4. (LN) An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- 5. (LN) An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- 6. (LN) An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

7. (LN) An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Topical Outline

[6 hours]	<pre>Introduction to DSP processors and ASICs Transformational and Reactive Systems Charactersitics of DSP applications Characteristics of DSP architectures</pre>
[9 hours]	DSP Datapath Design Arithmetic Unit Design Pipelining issues and control Flow graph optimizations Examples
[15 hours]	VHDL Language Fundamentals Language fundamentals Simulation-based Design Laboratory issues
[9 hrs]	Register Transfer Level Chip Design FSM models Synthesis issues Verification
[3 hrs]	Filter and FFT chip designs
[3 hrs]	Exams