Random Intervals and Confidence Intervals (Ch. 6.1)

Yifan 7hu

Iowa State University

Random Intervals and Confidence Intervals (Ch. 6.1)

Yifan Zhu

Motivation

Random Intervals

Outline

Random Intervals and Confidence Intervals (Ch. 6.1)

Yifan Zhu

Motivation

Random Interval

Confidence Intervals $(n \ge 25, \sigma)$

Motivation

Random Intervals

Confidence Intervals ($n \ge 25$, σ known)

Yifan Zhu

Motivation

Random Intervals

Confidence ntervals $n \geq 25, \ \sigma$ known)

- Statistical inference: using data from the sample to draw formal conclusions about the population
 - Point estimation (confidence intervals): estimating population parameters and specifying the degree of precision of the estimate.
 - Hypothesis testing: testing the validity of statements about the population that are framed in terms of parameters.

- We want information on a population. For example:
 - ► True mean breaking strength of a kind of wire rope.
 - True mean fill weight of food jars.
 - ▶ True mean instrumental drift of a kind of scale.
 - Average number of cycles to failure of a kind of spring.
- ▶ We can use point estimates:
 - For example: if we measure breaking strengths (in tons) of 6 wire ropes as 5, 3, 7, 3,10, and 1, we might estimate the true mean breaking strength $\mu \approx \overline{x} = \frac{5+3+7+3+10+1}{6} = 4.83$ tons.
- Or, we can use interval estimates:
 - μ is likely to be inside the interval (4.83 2, 4.83 + 2) = (2.83, 6.83).
 - We are confident that the true mean breaking strength, μ , is somewhere in (2.83, 6.83). But how confident can we be?

Outline

Random Intervals and Confidence Intervals (Ch. 6.1)

Yifan Zhu

Motivation

Random Intervals

Confidence Intervals $(n \ge 25, \sigma known)$

Motivation

Random Intervals

Confidence Intervals ($n \ge 25$, σ known)

- ► A **random interval** is an interval on the real line with a random variable at one or both of the endpoints.
- Examples:
 - $(Z-2,Z+2), Z \sim N(0,1)$
 - \triangleright (Z, ∞)
 - ▶ $(-\infty, X)$, $X \sim N(-2, 9)$
 - $(T s \cdot t_{7,0.975}, T + s \cdot t_{7,0.975}), T \sim t_7$
 - $(X \sigma \cdot z_{1-\alpha}, \infty)$, $X \sim N(5, \sigma^2)$, $0 < \alpha < 1$.
- ightharpoonup Random intervals take into account the uncertainty in the measurement of a true mean, μ .

- Let Z be a measure of instrumental drift of a random voltmeter that comes out of a certain factory. Say $Z \sim N(0,1)$.
- Define a random interval:

$$(Z-2, Z+2)$$

- ▶ What is the probability that -1 is inside the interval?
 - ▶ Equivalent to asking how likely it is that the drift of the next instrument is within 2 units of -1.

Intervals $(n \ge 25, \sigma)$

$$P(-1 \text{ in } (Z-2, Z+2)) = P(Z-2 < -1 < Z+2)$$

$$= P(Z-1 < 0 < Z+3)$$

$$= P(-1 < -Z < 3)$$

$$= P(-3 < Z < 1)$$

$$= P(Z \le 1) - P(Z \le -3)$$

$$= \Phi(1) - \Phi(-3)$$

$$= 0.84$$

Example: instrumental drift: the range of Z values for which -1 is in (Z-2,Z+2)

pdf of Z

Random Intervals and Confidence Intervals (Ch. 6.1)

Yifan Zhu

Motivation

Random Intervals

Confidence ntervals $n \geq 25, \ \sigma$

Random Intervals and Confidence Intervals (Ch. 6.1)

Yifan Zhu

Motivation

Random Intervals

Confidence Intervals $(n \ge 25, \sigma \text{known})$

Calculate:

- 1. $P(2 \text{ in } (X-1,X+1)), X \sim N(2,4)$
- 2. $P(6.6 \text{ in } (X-2,X+1)), X \sim N(7,2)$

Here, $0 < \alpha < 1$.

1.
$$X \sim N(2,4)$$

$$P(2 \in (X - 1, X + 1)) = P(X - 1 < 2 < X + 1)$$

$$= P(-1 < 2 - X < 1)$$

$$= P(-1 < X - 2 < 1)$$

$$= P\left(\frac{-1}{2} < \frac{X - 2}{2} < \frac{1}{2}\right)$$

$$= P(-0.5 < Z < 0.5)$$

$$= \Phi(0.5) - \Phi(-0.5)$$

$$= 0.69 - 0.31$$

$$= 0.38$$

Answers: random intervals

2. $X \sim N(7,2)$

$$P(6.6 \in (X - 2, X + 1)) = P(X - 2 < 6.6 < X + 1)$$

$$= P(-2 < 6.6 - X < 1)$$

$$= P(-1 < X - 6.6 < 2)$$

$$= P(-1.4 < X - 7 < 1.6)$$

$$= P\left(\frac{-1.4}{\sqrt{2}} < \frac{X - 7}{\sqrt{2}} < \frac{1.6}{\sqrt{2}}\right)$$

$$= P(-0.99 < Z < 1.13)$$

$$= \Phi(1.13) - \Phi(-0.99)$$

$$= 0.87 - 0.16$$

$$= 0.71$$

Random Intervals and Confidence Intervals (Ch. 6.1)

Yifan Zhu

Motivation

Random Intervals

Confidence Intervals $(n \geq 25, \sigma)$

- Let's say X_1, X_2, \ldots, X_n are iid with:
 - ▶ n > 25
 - ightharpoonup mean μ
 - variance σ^2
- The random interval, $(\overline{X} z_{1-\alpha} \frac{\sigma}{\sqrt{n}}, \infty)$, is useful for estimating μ $(0 < \alpha < 1)$.
- ▶ The interval contains μ with probability 1α .

$$\begin{split} P(\mu \in (\overline{X} - z_{1-\alpha} \frac{\sigma}{\sqrt{n}}, \, \infty)) \\ &= P\left(\overline{X} - z_{1-\alpha} \frac{\sigma}{\sqrt{n}} < \mu\right) \\ &= P\left(\overline{X} - \mu < z_{1-\alpha} \frac{\sigma}{\sqrt{n}}\right) \\ &= P\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < z_{1-\alpha}\right) \\ &\approx P(Z < z_{1-\alpha}) \quad \text{(Central Limit Theorem)} \\ &= \Phi(z_{1-\alpha}) \\ &= 1 - \alpha \quad \text{(by the definition of } z_p) \end{split}$$

Random Intervals and Confidence Intervals (Ch. 6.1)

Yifan Zhu

Motivation

Random Intervals

Calculate:

- 1. $P(\mu \in (-\infty, \overline{X} + z_{1-\alpha} \frac{\sigma}{\sqrt{n}})), \overline{X} \sim N(\mu, \sigma^2)$
- 2. $P(\mu \in (\overline{X} z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \overline{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}})), \ X \sim N(\mu, \sigma^2)$

Remember the Central Limit Theorem:

$$rac{\overline{X} - \mu}{\sigma / \sqrt{n}} pprox \mathit{N}(0, 1)$$

Answers: abstract random intervals

1.

$$\begin{split} P\big(\mu \in & (-\infty, \ \overline{X} + z_{1-\alpha} \frac{\sigma}{\sqrt{n}})\big) \\ &= P\left(\mu < \overline{X} + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}\right) \\ &= P\left(-z_{1-\alpha} \frac{\sigma}{\sqrt{n}} < \overline{X} - \mu\right) \\ &= P\left(-z_{1-\alpha} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right) \\ &\approx P\left(-z_{1-\alpha} < Z\right) \quad \text{(Central Limit Theorem)} \\ &= 1 - P(Z \le -z_{1-\alpha}) \\ &= 1 - \Phi(-z_{1-\alpha}) \\ &= 1 - \Phi(z_{\alpha}) \quad \text{(by symmetry: N(0,1) pdf)} \\ &= 1 - \alpha \quad \text{(by the definition of } z_p) \end{split}$$

Random Intervals and Confidence Intervals (Ch. 6.1)

Yifan Zhu

Motivation

Random Intervals

2.

$$\begin{split} P(\mu \in (X - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \overline{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}})) \\ &= P\left(\overline{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right) \\ &= P\left(-z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} < \mu - \overline{X} < z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right) \\ &= P\left(-z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} < \overline{X} - \mu < z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right) \\ &= P\left(-z_{1-\alpha/2} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < z_{1-\alpha/2}\right) \\ &\approx P(-z_{1-\alpha/2} < Z < z_{1-\alpha/2}) \quad \text{(Central Limit Theorem)} \\ &= \Phi(z_{1-\alpha/2}) - \Phi(-z_{1-\alpha/2}) \\ &= \Phi(z_{1-\alpha/2}) - \Phi(z_{\alpha/2}) \quad \text{(by symmetry: N(0,1) pdf)} \\ &= (1 - \frac{\alpha}{2}) - \frac{\alpha}{2} = 1 - \alpha \end{split}$$

Random Intervals and Confidence Intervals (Ch. 6.1)

Yifan Zhu

Motivation

Random Intervals

Outline

Random Intervals and Confidence Intervals (Ch. 6.1)

Yifan Zhu

Motivation

Random Intervals

Confidence Intervals $(n \ge 25, \ \sigma \text{known})$

Motivation

Random Intervals

Confidence Intervals ($n \ge 25$, σ known)

- ▶ A $1-\alpha$ confidence interval for an unknown parameter is the finite realization of a random interval that contains that parameter with probability $1-\alpha$.
- ▶ 1α is called the **confidence level** of the interval.
- Example: for observations $x_1, x_2, \ldots x_n$ from random variables X_1, X_2, \ldots, X_n iid with $E(X_1) = \mu$, $Var(X_1) = \sigma^2$, a 1α confidence interval for μ is:

$$\left(\overline{x}-z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}},\overline{x}+z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$$

which is a random draw from the random interval:

$$\left(\overline{X}-z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}},\overline{X}+z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$$

Confidence intervals for μ : σ known, $n \ge 25$

▶ Two-sided $1 - \alpha$ confidence interval:

$$\left(\overline{x} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{x} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

▶ One-sided $1 - \alpha$ upper confidence interval:

$$\left(-\infty, \ \overline{x} + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}\right)$$

▶ One-sided $1 - \alpha$ lower confidence interval:

$$\left(\overline{x}-z_{1-\alpha}\frac{\sigma}{\sqrt{n}}, \infty\right)$$

Random Intervals and Confidence Intervals (Ch. 6.1)

Yifan Zhu

Motivation

Random Intervals

Example: fill weight of jars

- Suppose a manufacturer fills jars of food using a stable filling process with a known standard deviation of $\sigma = 1.6g$.
- ▶ We take a sample of n = 47 jars and measure the sample mean weight $\overline{x} = 138.2$ g.
- A two-sided 90% confidence interval ($\alpha=0.1$) for the true mean weight μ is:

$$\left(\overline{x} - z_{1-0.1/2} \frac{\sigma}{\sqrt{n}}, \ \overline{x} + z_{1-0.1/2} \frac{\sigma}{\sqrt{n}}\right)$$

$$= \left(138.2 - z_{0.95} \frac{1.6}{\sqrt{47}}, \ 138.2 + z_{0.95} \frac{1.6}{\sqrt{47}}\right)$$

$$= (138.2 - 1.64 \cdot 0.23, \ 138.2 + 1.64 \cdot 0.23)$$

$$= (137.82, 138.58)$$

I could have also written the interval as:

$$138.2 \pm 0.38 \ g$$

Random Intervals and Confidence Intervals (Ch. 6.1)

Yifan Zhu

Motivation

Random Intervals

Interpreting the confidence interval: fill weight of jars

Random Intervals and Confidence Intervals (Ch. 6.1)

Yifan Zhu

Motivation

Random Intervals

- ▶ We are 90% confident that the true mean fill weight is between 137.82g and 138.58g.
- If we took 100 more samples of 47 jars each, roughly 90 of those samples would yield confidence intervals containing the true mean fill weight.
- These methods of interpretation generalize to all confidence intervals.

Example: fill weight of jars.

- What if we just want to be sure that the true mean fill weight is high enough?
- ► Then, we would use a one-side lower 90% confidence interval:

$$\left(\overline{x} - z_{1-\alpha} \frac{\sigma}{\sqrt{n}}, \infty\right) \\
= \left(138.2 - z_{1-\alpha} \frac{\sigma}{\sqrt{n}}, \infty\right) \\
= \left(138.2 - z_{0.9} \frac{1.6}{\sqrt{47}}, \infty\right) \\
= (138.2 - 1.28 \cdot 0.23, \infty) \\
= (137.91, \infty)$$

▶ We're 90% confident that the true mean fill weight is above 137.91 g.

Random Intervals and Confidence Intervals (Ch. 6.1)

Yifan Zhu

Motivation

Random Intervals

known)

- Consider a grinding process used to rebuild car engines, which involves grinding rod journals for engine crankshafts.
- Of interest is the deviation of the true mean rod journal diameter from the target diameter.
- ▶ Suppose the standard deviation of the individual differences from the target diameter is 0.7×10^{-4} in.
- ▶ 32 consecutive rod journals are ground, with a sample mean deviation of -0.16×10^{-4} in from the target diameter.
- ► Calculate and interpret a two-sided 95% confidence interval for the true mean deviation from the target diameter. Is there enough evidence that we're missing the target on average?

- $\alpha = 1 0.95 = 0.05$, n = 32, $\sigma = 0.7 \times 10^{-4}$, and $\overline{x} = -0.16 \times 10^{-4}$.
- ► Interval:

$$\begin{split} &\left(\overline{x}-z_{1-0.05/2}\frac{\sigma}{\sqrt{n}},\ \overline{x}+z_{1-0.05/2}\frac{\sigma}{\sqrt{n}}\right)\\ &=\left(-0.16\times10^{-4}-z_{0.975}\frac{0.7\times10^{-4}}{\sqrt{32}},\ -0.16\times10^{-4}+z_{0.975}\frac{0.7\times10^{-4}}{\sqrt{32}}\right)\\ &=\left(-0.16\times10^{-4}-1.96\cdot1.2\times10^{-5},\ -0.16\times10^{-4}+1.96\cdot1.2\times10^{-5}\right)\\ &=\left(-4.0\times10^{-5},7.5\times10^{-6}\right) \end{split}$$

- ▶ We are 95% confident that the true mean deviation from the target diameter of the rod journals is between -4.0×10^{-5} in and 7.5×10^{-6} in
- Since 0 is in the confidence interval, there is not enough evidence to conclude that the rod journal grinding process is off target.

- ▶ F. Willett, in the article *The Case of the Derailed Disk Drives* (Mechanical Engineering, 1988), discusses a study done to isolate the cause of *blink code A failure* in a model of Winchester hard disk drive.
- For each disk, the investigator measured the breakaway torque (in. oz.) required to loosen the drive's interrupter flag on the stepper motor shaft.
- Breakaway torques for 26 disk drives were recorded, with a sample mean of 11.5 in. oz.
- Suppose you know the true standard deviation of the breakaway torques is 5.1 in. oz.
- Calculate and interpret:
 - 1. A two-sided 90% confidence interval for the true mean breakaway torque of the relevant type of Winchester drive.
 - 2. An analogous two-sided 95% confidence interval.
 - 3. An analogous two-sided 99% confidence interval.
- Is there enough evidence to conclude that the mean breakaway torque is different from the factory's standard of 33.5 in. oz.?

- $\sigma = 5.1, \overline{x} = 11.5, n = 26.$
- ▶ All three confidence intervals have the form:

$$\begin{split} &\left(\overline{x} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \overline{x} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right) \\ &= \left(11.5 - z_{1-\alpha/2} \frac{5.1}{\sqrt{26}}, \ 11.5 + z_{1-\alpha/2} \frac{5.1}{\sqrt{26}}\right) \\ &= \left(11.5 - 1.0002 \cdot z_{1-\alpha/2}, \ 11.5 + 1.0002 \cdot z_{1-\alpha/2}\right) \end{split}$$

- The confidence intervals are thus:
 - 1. 90% CI means $\alpha = 0.1$

$$\begin{aligned} &(11.5 - 1.0002 \cdot z_{1-0.1/2}, \ 11.5 + 1.0002 \cdot z_{1-0.1/2}) \\ &= (11.5 - 1.0002 \cdot z_{0.95}, \ 11.5 + 1.0002 \cdot z_{0.95}) \\ &= (11.5 - 1.0002 \cdot 1.64, \ 11.5 + 1.0002 \cdot 1.64) \\ &= (9.86, 13.14) \end{aligned}$$

Random Intervals and Confidence Intervals (Ch. 6.1)

Yifan Zhu

Motivation

Random Intervals

Random Intervals

2. 95% CI means $\alpha = 0.05$

$$(11.5 - 1.0002 \cdot z_{1-0.05/2}, \ 11.5 + 1.0002 \cdot z_{1-0.05/2})$$

$$= (11.5 - 1.0002 \cdot z_{0.975}, \ 11.5 + 1.0002 \cdot z_{0.975})$$

$$= (11.5 - 1.0002 \cdot 1.96, \ 11.5 + 1.0002 \cdot 1.96)$$

$$= (9.54, 13.46)$$

3. 99% CI means $\alpha = 0.01$

$$(11.5 - 1.0002 \cdot z_{1-0.01/2}, 11.5 + 1.0002 \cdot z_{1-0.01/2})$$

$$= (11.5 - 1.0002 \cdot z_{0.995}, 11.5 + 1.0002 \cdot z_{0.995})$$

$$= (11.5 - 1.0002 \cdot 2.33, 11.5 + 1.0002 \cdot 2.33)$$

$$= (9.17, 13.83)$$

Yifan Zhu

Motivation

Random Intervals

- Notice: the confidence intervals get wider as the confidence level 1α increases.
- ▶ None of these confidence intervals contains the manufacturer's target of 33.5 in. oz., so there is significant evidence that the process misses this target.
- Hence, there is a design flaw in the manufacturing process of the disk drives that must be corrected.

- If you want to estimate the breakaway torque with a 2-sided, 95% confidence interval with ± 2.0 in. oz. of precision, what sample size would you need?
- ► The confidence interval is:

$$\begin{split} &\left(\overline{x} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \overline{x} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right) \\ &= \left(11.5 - z_{1-0.05/2} \cdot \frac{5.1}{\sqrt{n}}, \ 11.5 + z_{1-0.05/2} \cdot \frac{5.1}{\sqrt{n}}\right) \\ &= \left(11.5 - z_{0.975} \cdot \frac{5.1}{\sqrt{n}}, \ 11.5 + z_{0.975} \cdot \frac{5.1}{\sqrt{n}}\right) \\ &= \left(11.5 - 1.96 \cdot 5.1 \cdot n^{-1/2}, 11.5 + 1.96 \cdot 5.1 \cdot n^{-1/2}\right) \\ &= \left(11.5 - 9.996 \cdot n^{-1/2}, 11.5 + 9.996 \cdot n^{-1/2}\right) \end{split}$$

Random Intervals and Confidence Intervals (Ch. 6.1)

Yifan Zhu

Motivation

Random Intervals

The interval precision (half-width) δ is:

$$\delta = \frac{1}{2} \left((11.5 + 9.996 \cdot n^{-1/2}) - (11.5 - 9.996 \cdot n^{-1/2}) \right)$$

= 9.996 \cdot n^{-1/2}

We require δ to be at most 2:

$$2.0 \le 9.996 \cdot n^{-1/2}$$
$$n > 25$$

▶ We would need a sample of 25 disk drives to meet a precision of ± 2.0 .