Statistics

Sample

$$X_1,\ldots,X_n \overset{i.i.d}{\sim} (\mu,\sigma^2)$$

1. sample mean

$$egin{aligned} ar{X}&=rac{\sum\limits_{i=1}^nX_i}{n},ar{X}\sim(\mu,rac{\sigma^2}{n})\ E(X^2)&=E(X)^2+Var(X)=\mu^2+\sigma^2\ E(ar{X}^2)&=\mu^2+rac{\sigma^2}{n} \end{aligned}$$

2. sample variance

$$egin{aligned} S^2 &= rac{\sum\limits_{i=1}^n (X_i - ar{X})^2}{n-1}, E(S^2) \ &\sum\limits_{i=1}^n (X_i - ar{X})^2 = \sum\limits_{i=1}^n X_i^2 - nar{X}^2 \ &\sum\limits_{i=1}^n X_i^2 = nar{X}^2 + (n-1)S^2 \end{aligned}$$

 $ar{X}$ and S^2 are independent when Normal distribution

Parameter Estimation

$$X \sim egin{cases} f(x| heta) & continues \ P(x| heta) & discrete \ \end{cases}$$
 , depending on $heta \in \Theta$

Estimator

- 1. an **estimator** $\hat{\theta}$:
- is function of samples(X_1, \ldots, X_n)
- has distribution depending on θ

$$X\sim (\mu,\sigma^2), E(ar{X})=\mu, E(S^2)=\sigma^2$$

- 2. **unbiased**: if $E(\hat{\theta}) = \theta$
- 3. MSE(Mean Square Error)

$$MSE = E((\hat{\theta}-\theta)^2) = Var(\hat{\theta}) + (E(\hat{\theta})-\theta)^2 = Var(\hat{\theta}) + (bias(\hat{\theta}))^2$$
 if $\hat{\theta}$ is unbiased, $MSE = Var(\hat{\theta})$

- 4. **SE**(Standard Error)
 - 1. 根据 $\hat{\theta}$ 的分布或者近似分布,求 $Var(\hat{\theta}) = V(\theta)$ 2. 用 $\hat{\theta}$ 替换方差 $V(\theta)$ 中的 θ , $SE = \sqrt{V(\hat{\theta})}$

MLE(Maximum Likelihood Estimation)

- 求MLE
 - 1. 写出Likelihood function $L(heta) = \prod\limits_{i=1}^n f(x_i| heta)$

2. 求
$$logL(\theta) = \sum_{i=1}^{n} logf(x_i|\theta)$$
3. 求一阶导: $\frac{\partial logL(\theta)}{\partial \theta} = 0 \Rightarrow \theta = \theta(X)$
4. 求二阶导: $\frac{\partial^2 logL(\theta)}{\partial \theta^2}|_{\theta=\theta(X)} < 0$

3. 求一阶导:
$$\frac{\partial log L(\theta)}{\partial \theta} = 0 \Rightarrow \theta = \theta(X)$$

4. 求二阶导:
$$\frac{\partial^2 log L(\theta)}{\partial \theta^2}|_{\theta=\theta(X)} < 0$$

5. 得到MLE:
$$\hat{\theta} = \theta(X)$$

• Fisher Information

$$I(\theta) = -E((\frac{\partial^2}{\partial \theta^2}logf(x|\theta))^2) = E((\frac{\partial}{\partial \theta}logf(x|\theta))^2)$$

• Asymptotic Distribution

$$egin{aligned} \hat{ heta} &\sim N(heta_0, rac{1}{nI(heta_0)}) \ SE &= rac{1}{\sqrt{nI(\hat{ heta})}} \ lpha &- CI : \hat{ heta} \pm Z_{rac{lpha}{2}} rac{1}{\sqrt{nI(\hat{ heta})}} \end{aligned}$$

Moments Estimation

- 1. 求期望 $\mu = E(X) = h(\theta)$
- 2. 用 $ar{X}$ 代替 μ ,通过 $ar{X}=E(X)=h(heta)$ 解得 $\hat{ heta}=h^{-1}(ar{X})$

Confidence Interval

- 1. 找到一个统计量 $T = T(X, \theta) \sim F$
- 2. 给定lpha,得到T的 $CI=[F_{rac{lpha}{2}}^{-1},\ F_{1-rac{lpha}{2}}^{-1}]$
- 3. 通过 $F_{rac{lpha}{2}}^{-1} \leq T(heta) \leq F_{1-rac{lpha}{2}}^{-1}$ 解得heta的CI

条件	参数	Statistics	CI
unknown μ known σ^2	μ	$T=rac{\sqrt{n}(ar{X}-\mu)}{\sigma}\sim N(0,1)$	$ar{X}\pm Z_{rac{lpha}{2}}rac{\sigma}{\sqrt{n}}$
unknown μ unknown σ^2	μ	$T=rac{\sqrt{n}(ar{X}-\mu)}{S}\sim t_{n-1}$	$ar{X}\pm t_{n-1}(rac{lpha}{2})rac{S}{\sqrt{n}}$

Central limit theorem

- 1. 定理
 - o 独立同分布

$$X_i \stackrel{i.i.d}{\sim} (\mu, \sigma^2)$$

$$ar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

$$S_n \sim N(n\mu, n\sigma^2)$$

o 独立不同分布

 $X_i \sim (\mu_i, \sigma_i^2)$ are independent

$$S_n \sim N(\sum\limits_{i=1}^n \mu_i, \sum\limits_{i=1}^n \sigma_i^2)$$

$$ar{X} \sim N(rac{\sum\limits_{i=1}^n \mu_i}{n}, rac{\sum\limits_{i=1}^n \sigma_i^2}{n^2})$$

2. 求概率/置信区间

对于
$$S_n = \sum\limits_{i=1}^n X_i$$
,利用 $rac{S_n - E(S_n)}{\sqrt{Var(S_n)}} \sim N(0,1)$ ($ar{X}$ 同理)

ο 求概率

$$P(S_n \leq x) = P(rac{S_n - E(S_n)}{\sqrt{Var(S_n)}} \leq rac{x - E(S_n)}{\sqrt{Var(S_n)}}) = \Phi(rac{x - E(S_n)}{\sqrt{Var(S_n)}})$$

o 求置信区间

$$lpha-CI=E(S_n)\pm Z_{rac{lpha}{2}}\sqrt{Var(S_n)}$$

Rejection Sampling

1. 已知可从分布 $X \sim H$ 产生随机数,构造从 $X \sim F$ 中产生随机数

找到常数 $c: f(x) \le ch(x), \forall x$

- 从*H*中产生一个随机数*X*
- o 以 $\frac{f(X)}{ch(X)}$ 概率保留X

对于离散分布,用PMF代替PDF

Efficiency为 $\frac{1}{c}$, c越小效率越高

2. 任意随机变量X, 其CDF: F满足

$$F(X) \sim U(0,1)$$

$$P(F(X) \le x) = P(X \le F^{-1}(x)) = F(F^{-1}(x)) = x \Rightarrow f(F(X)) = 1, F(X) \in [0, 1]$$

Hypothesis Testing

Concepts

- Null Hypothesis: H_0 vs Alternative Hypothesis: H_1
- ullet Test Statistic: T
 - o 是随机变量,原假设下分布 $T|H_0\sim F$
 - \circ 给定 α ,可根据原假设求RR

$$RR = \begin{cases} \{|T| > F_{1-\frac{\alpha}{2}}\} & H_0: \theta = \theta_0 \\ \{T > F_{1-\alpha}\} & H_0: \theta \leq \theta_0 \\ \{T < -F_{\alpha}\} & H_0: \theta \geq \theta_0 \end{cases}$$

- \circ 是样本的函数T(X)
- \circ reject H_0 if $T(X) \in RR$
- Rejection Region: RR
- Type I Error (Significance Level): $\alpha=P(T\in RR|H_0)$ rejecting H_0 when H_0 is true
- Type II Error: $eta = P(T
 otin RR|H_1)$ accepting H_0 when H_0 is false

for **specific value** of the alternative hypothesis: $\beta(\theta_1) = P(T \notin RR | \theta = \theta_1 \in \Theta_1)$

- Statistical Power: 1β
- **p-value**: $P(T \text{ is extreme than } T_{obs}|H_0)$
 - 1. 找分布和统计量的样本观测值

$$T|\theta=\theta_0\sim F, T_0=T(X)$$

2. 求p-value

$$p ext{-}value = \left\{ egin{aligned} P(|T| > T_0|T \sim F) & H_0: heta = heta_0 \ P(T > T_0|T \sim F) & H_0: heta \leq heta_0 \ P(T < T_0|T \sim F) & H_0: heta \geq heta_0 \end{aligned}
ight.$$

3. 给定 α

$$\begin{cases} \text{reject } H_0 & \textit{p-value} \leq \alpha \\ \text{accept } H_0 & \textit{p-value} > \alpha \end{cases}$$

Likelihood Ratio Tests(Simple Hypothesis)

$$H_0: heta = heta_0 \ \mathsf{vs} \, H_1: heta = heta_1$$

- 1. 写出 Likelihood function: $L(\theta) = \prod_{i=1}^n f(x_i|\theta)$
- 2. 求 Likelihood ratio: $\Lambda(X) = rac{L(heta_0)}{L(heta_1)}$
- 3. threshold C,得到拒绝域 $RR = \{\Lambda(X) \leq C\}$

若
$$C$$
未知,给定 $lpha$,令 $lpha=P(\Lambda(X)\leq C|X\sim F_{ heta_0})$ " $\stackrel{ ext{id}}{=}$ $P(X\leq \Lambda^{-1}(C)|X\sim F_{ heta_0})$ 可求得 C

4. 做决策,
$$\left\{ egin{array}{ll} {
m reject} \; H_0 & \Lambda \leq C \\ {
m accept} \; H_0 & \Lambda > C \end{array}
ight.$$

Generalized Likelihood Ratio Tests

$$H_0: heta \in \Theta_0 \ \mathrm{vs} \ H_1: heta \in \Theta_1$$

$$\Theta = \Theta_0 \cup \Theta_1, d = dim(\Theta), d_0 = dim(\Theta_0)$$

1. 写出 Likelihood function:
$$L(heta) = \prod\limits_{i=1}^n f(x_i| heta)$$

2. 求 Θ_0 和 Θ 下的MLE:

$$\hat{ heta_0} = \mathop{argMaxL}_{ heta \in \Theta_0}(heta)$$

$$\hat{\theta} = \underset{\theta \in \Theta}{argMaxL(\theta)}$$

3. 求 Likelihood ratio:
$$\Lambda = rac{L(\hat{ heta_0})}{L(\hat{ heta})}$$

4. 求分布:
$$-2log\Lambda \sim \mathcal{X}^2_{d-d_0}$$

5. 给定α

$$\begin{split} & \circ \quad RR = \{-2log\Lambda > F_{\mathcal{X}_{d-d_0}^2}(1-\alpha)\}, \begin{cases} \text{reject } H_0 & -2log\Lambda > F_{\mathcal{X}_{d-d_0}^2}(1-\alpha) \\ \text{accept } H_0 & -2log\Lambda \leq F_{\mathcal{X}_{d-d_0}^2}(1-\alpha) \end{cases} \\ & \circ \quad p\text{-}value = 1 - F_{\mathcal{X}_{d-d_0}^2}^{-1}(-2log\Lambda), \begin{cases} \text{reject } H_0 & p\text{-}value \leq \alpha \\ \text{accept } H_0 & p\text{-}value > \alpha \end{cases} \end{aligned}$$

Pearson's \mathcal{X}^2 Test

计算
$$\mathcal{X}^2 = \sum\limits_{i=1}^r \sum\limits_{j=1}^c rac{(O_{ij} - E_{ij})^2}{E_{ij}} \sim \mathcal{X}^2_{d-d_0}$$
:

 O_{ij} : 第i行第j列观测值, $E_{ij} = n \cdot \hat{p_{ij}}$: 第i行第j列的期望

$$d=dim(\Theta), d_0=dim(\Theta_0)$$

$$RR = \{\mathcal{X}^2 > F_{\mathcal{X}^2_{d-d_0}}(1-lpha)\}, \left\{egin{array}{ll} ext{reject } H_0 & \mathcal{X}^2 > F_{\mathcal{X}^2_{d-d_0}}(1-lpha) \ & ext{accept } H_0 & \mathcal{X}^2 \leq F_{\mathcal{X}^2_{d-d_0}}(1-lpha) \end{array}
ight.$$

$$p ext{-}value = 1 - F_{\mathcal{X}_{d-d_0}^2}^{-1}(\mathcal{X}^2), \left\{ egin{array}{ll} ext{reject H_0} & ext{p-}value \leq lpha \ ext{accept H_0} & ext{p-}value > lpha \end{array}
ight.$$

ullet 2 imes 2 Case

	1	2	
1	n_{11},p_{11}	n_{12},p_{12}	R_1
2	n_{21},p_{21}	n_{22}, p_{22}	R_2
	C_1	C_2	n

- 1. 根据 H_0 下的条件,设参数 p,\ldots ,简化 $p_{ij},L(p)=\binom{n}{n_{11},n_{12},n_{21},n_{22}}p_{11}^{n_{11}}p_{12}^{n_{12}}p_{21}^{n_{21}}p_{22}^{n_{22}}$
- 2. 求MLE并计算每个格子的概率估计: $\hat{p}, \ldots \rightarrow \hat{p_{11}}, \hat{p_{12}}, \hat{p_{21}}, \hat{p_{22}}$
- Independent Test

 $H_0: p_{ij} = p_i \cdot q_j$, 检验行和列是否独立

	1	***	j	•••	c	Σ
1	n_{11}	•••	n_{1j}		n_{11}	R_1,p_1
i	n_{i1}	•••	n_{ij}		n_{ic}	R_i,p_i
r	n_{r1}		n_{rj}		n_{rc}	R_r, p_r
\sum	C_1,q_1		C_j,q_j		C_c,q_c	n

$$\hat{p_i} = rac{R_i}{n}, \hat{q_j} = rac{C_j}{n}, E_{ij} = rac{R_i imes C_j}{n}, df = (r-1)(c-1)$$

Consistent Test

 $H_0:(p_{i1},\ldots,p_{ic})=(p_1,\ldots,p_c), i=1,\ldots,r$ 检验列在不同的行分类下是否有一致分布

	1	•••	j	 c	Σ
1	n_{11}		n_{1j}	 n_{11}	R_1
i	n_{i1}		n_{ij}	 n_{ic}	R_i
r	n_{r1}		n_{rj}	 n_{rc}	R_r
\sum	C_1,p_1		C_j,p_j	 C_c,p_c	n

$$\circ$$
 known (p_1,\ldots,p_c) $E_{ij}=R_i imes p_j, df=r(c-1)$

$$\circ$$
 unknown (p_1,\ldots,p_c) $\hat{p_i}=rac{C_i}{n}, E_{ij}=rac{R_i imes C_j}{n}, df=(r-1)(c-1)$

Normal Distribution

 $X_i \sim N(\mu, \sigma^2)$

参数情况	H_0	H_1	Statistics	RR	$p ext{-}value$
unknown μ known σ^2	$\mu=\mu_0$	$\mu eq \mu_0$	$T=rac{\sqrt{n}(ar{X}-\mu)}{\sigma} \ T _{\mu=\mu_0}\sim N(0,1)$	$ T >Z_{rac{lpha}{2}}$	$P(T >rac{\sqrt{n} ar{X}-\mu_0 }{\sigma} H_0)$
	$\mu \leq \mu_0$	$\mu > \mu_0$		$T>Z_{lpha}$	$P(T>rac{\sqrt{n}(ar{X}-\mu_0)}{\sigma} H_0)$
	$\mu \geq \mu_0$	$\mu < \mu_0$		$T<-Z_{lpha}$	$P(T<rac{\sqrt{n}(ar{X}-\mu_0)}{\sigma} H_0)$
unknown μ unknown σ^2	$\mu = \mu_0$	$\mu eq \mu_0$	$T=rac{\sqrt{n}(ar{X}-\mu)}{S} \ T _{\mu-\mu_0}\sim t_{n-1}$	$ T >t_{n-1}(rac{lpha}{2})$	$P(T >rac{\sqrt{n} ar{X}-\mu_0 }{S} H_0)$
	$\mu \leq \mu_0$	$\mu > \mu_0$		$T>t_{n-1}(lpha)$	$P(T>rac{\sqrt{n}(ar{X}-\mu_0)}{\sigma} H_0)$
	$\mu \geq \mu_0$	$\mu < \mu_0$		$T<-t_{n-1}(\alpha)$	$P(T<rac{\sqrt{n}(ar{X}-\mu_0)}{\sigma} H_0)$

Bayesian Inference

Hierarchical Model

- 参数 $\theta \in \Theta$ 看作一个随机变量,有 prior distribution: $\theta \sim f_{\Theta}(\theta)$ 如果为discrete,用PMF代替PDF
- 样本X基于heta的 $\mathbf{conditional\ distribution}$ 为 $X_1,\ldots,X_n| heta\sim f_{x| heta}(x_1,\ldots,x_n| heta)=\prod\limits_{i=1}^n f_{x| heta}(x_i| heta)$

Related Distribution

- 样本X和参数heta的joint distribution为 $f(heta,x_1,\ldots,x_n)=f_{ heta}(heta)f_{x| heta}(x_1,\ldots,x_n| heta)=f_{ heta}(heta)\prod_{i=1}^n f_{x| heta}(x_i| heta)$
- 样本X的marginal distribution(对heta求积分)为 $f_x(x_1,\ldots,x_n)=\int_{\Theta}f(heta,x_1,\ldots,x_n)d heta=\int_{\Theta}f_{x| heta}(x_1,\ldots,x_n| heta)f_{ heta}(heta)d heta$
- 参数heta基于样本X的posterior distribution为 $f_{ heta|x}(heta|x_1,\dots,x_n)=rac{f(heta,x_1,\dots,x_n)}{f_x(x_1,\dots,x_n)}=rac{f_{x| heta}(x_1,\dots,x_n| heta)f_{ heta}(heta)}{f_x(x_1,\dots,x_n)}=rac{f_{x| heta}(x_1,\dots,x_n| heta)f_{ heta}(heta)}{\int_{\Theta}f(heta,x_1,\dots,x_n)d heta}$

求后验分布如果很复杂,如Beta, Gamma等分布,用kernel:

$$f_{\theta|x}(\theta|x_1,\ldots,x_n) \propto f_{x|\theta}(x_1,\ldots,x_n|\theta)f_{\theta}(\theta)$$

只保留含有 θ 的部分(kernel), 然后根据 θ 的表达式找对应的分布类型以及参数

Credible Interval

1. 求 $\mathsf{posterior}$ distribution $f_{ heta|x}(heta|x_1,\dots,x_n)$ with CDF $F_{ heta|x}$

2. 给定 α ,区间为 $[F_{\theta|x}^{-1}(\frac{\alpha}{2}), F_{\theta|x}^{-1}(1-\frac{\alpha}{2})]$

若后验分布如果很复杂,如Beta,Gamma等分布,而题目要求求出具体数,可用正态分布近似,其均值和方差为后验分布的均值和方差

Parameter Estimation

先求**posterior distribution** $f_{ heta|x}(heta|x_1,\ldots,x_n)$,然后基于此分布估计

1. **posterior mean**: 后验分布求期望,得 $\hat{\theta_E} = E(\theta|X_1,\ldots,X_n)$

2. **posterior mode**:后验分布求MLE,得 $\hat{ heta}$

New Observation

观测新的样本 $X_{n+1}|\theta \sim F(\theta)$,求 $X_{n+1}|X_1,\ldots,X_n$

用tower law以及 $X_{n+1}|(X_1,\ldots,X_n,\theta)=X_{n+1}|\theta$,即在固定 θ 下, X_{n+1} 与 $X_1,\ldots X_n$ 无关

$$P(X_{n+1}|X_1,...,X_n) = E(P(X_{n+1}|\theta)|X_1,...,X_n)$$

$$E(h(X_{n+1})|X_1,\ldots,X_n) = E(E(h(X_{n+1})|\theta)|X_1,\ldots,X_n)$$

Random Variable

Discrete Distribution

Distribution	Poisson: $X \sim Pois(\lambda)$	Bernoulli: $X \sim Ber(p)$	Binomial Distribution: $X \sim B(n,p)$	Geometric Distribution: $X \sim Geo(p)$	Negative binomial: $X \sim NB(k,p)$	Multinomial: $X = (X_1, \dots, X_k) \sim M(n, p_1, \dots, p_k)$
Parameters	$\lambda > 0$	$0 \leq p \leq 1$	$n \in N, 0 \leq p \leq 1$	$p\in(0,1)$	$k>0, p\in (0,1)$	$n>0,\sum\limits_{i=1}^kp_i=1$
Support	$x \in N^+$	$x \in \{0,1\}$	$X \in \{0,1,\ldots,n\}$	$X \in \{1,2,\dots\}$	$X \in \{k,k+1,\dots\}$	$X_i \in \{0,\ldots,n\}, i=1,\ldots,k$ $\sum_{i=1}^k X_i = n$
PMF	$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$ $k = 0, 1, \dots$	$P(X = k) = p^{k}(1 - p)^{1-k}$ k = 0, 1	$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$ $0 \le k \le n$	$P(X=k) = p(1-p)^{k-1}$ $k \ge 1$	$P(X = n) = \binom{n-1}{k-1} p^k (1-p)^{n-k} \\ n \ge k$	$P(X_1=n_1,\ldots,X_k=n_k) = ig(egin{array}{c} ig(egin{array}{c} ig(egin{array}{c} ig(ig) ig) & ig i \ n_i & ig) \end{array} ig) = ig(ig) ig) ig(ig$
CDF	-			$P(X \le k) = 1 - (1 - p)^k$		-
Mean	$E(X) = \lambda$	E(X) = p	E(X)=np	$E(X) = \frac{1}{p}$	$E(X) = \frac{k}{p}$	$E(X_i) = np_i$
Variance	$Var(X) = \lambda$	Var(X) = p(1 - p)	Var(X) = np(1 - p)	$Var(X) = \frac{1-p}{p^2}$	$Var(X) = \frac{k(1-p)}{p^2}$	$Var(X_i) = np_i(1 - p_i)$
MLE	$\hat{\lambda} = \vec{X}$	$\hat{p} = \vec{X}$		$\hat{p} = \frac{1}{\bar{X}}$	$\hat{p} = \frac{k}{\mathcal{R}}$	$\hat{p} = \frac{X_i}{\overline{n}}$
Fisher Info (Single Sample)	$I(\lambda) = \frac{1}{\lambda}$	$I(p) = \frac{1}{p(1-p)}$	$I(p) = \frac{n}{p(1-p)}$	$I(p)=rac{1}{p^2(1-p)}$	$I(p) = \frac{k}{p^2(1-p)}$	-
Others			$X = \sum\limits_{i=1}^{n} Y_i, Y_i \overset{i.i.d}{\sim} Ber(p)$	P(X>m+n X>n)=P(X>m)	NB(1,p) = Geo(p)	$\binom{n}{n_1,,n_k} = \frac{n!}{\prod\limits_{i=1}^k n_i!}$

Continues Distribution

Distribution	Uniform: $X \sim U(a,b)$	Exponential: $X \sim Exp(\lambda)$	Normal Distribution: $X \sim N(\mu, \sigma^2)$	Gamma: $X \sim \Gamma(\alpha, \ \beta)$	Beta: $X \sim Beta(\alpha, \beta)$	Chi-squared: $X \sim \mathcal{X}_n^2$	Student's t : $X \sim t_n$
Parameters	$-\infty < a < b < \infty$	$\lambda > 0$	$\mu \in R, \sigma^2 > 0$	$\alpha > 0, \beta > 0$	$\alpha > 0, \beta > 0$	$n \in N^+$	n > 0
Support	$x \in [a, b]$	$x \ge 0$	$x \in R$	X > 0	$X \in [0,1]$	$x\in [0,\infty)$	$x \in (-\infty, \infty)$
PDF	$f(x) = \begin{cases} \frac{1}{b-a} & x \in [a, b] \\ 0 & otherwise \end{cases}$	$f(x) = \lambda e^{-\lambda x}$	$f(x)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu)^2}{2\sigma^2}}$	$f(x) = \frac{eta^{lpha}}{\Gamma(lpha)} x^{lpha-1} e^{-eta x}$	$f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$	$f(x) = \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}x^{\frac{n}{2}-1}e^{\frac{x}{2}}$	-
CDF	$f(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & x \in [a,b] \\ 1 & x > b \end{cases}$	$F(x) = 1 - e^{-\lambda x}$		-	-	-	-
Mean	$E(X) = \frac{a+b}{2}$	$E(X) = \frac{1}{\lambda}$	$E(X) = \mu$	$E(X) = \frac{\alpha}{\beta}$	$E(X) = \frac{\alpha}{\alpha + \beta}$	E(X) = n	E(X) = 0
Variance	$Var(X) = \frac{(b-a)^2}{12}$	$Var(X) = \frac{1}{\lambda^2}$	$Var(X) = \sigma^2$	$Var(X) = \frac{\alpha}{\beta^2}$	$Var(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	Var(X)=2n	$Var(X) = \frac{n}{n-2}, n > 2$
MLE	$\left\{ \begin{aligned} \hat{b} &= X_{(n)} & \text{known } a, \text{unknown } b \\ \hat{a} &= X_{(1)} & \text{unknown } a, \text{known } b \end{aligned} \right.$	$\dot{\lambda} = \frac{1}{X}$	$\begin{split} \log L(\mu, \sigma^2) &= -\frac{n}{2} ln(2\pi) - \frac{n}{2} ln\sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (x_i - \mu)^2 \\ \begin{cases} \hat{\mu} = \overline{X} & \text{unknown } \mu_i \text{known } \sigma^2 \\ \delta^2 &= \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{n} & \text{known } \mu_i \text{unknown } \sigma^2 \\ \hat{\mu} = \overline{X}, \delta^2 &= \frac{\sum_{i=1}^{N} (X_i - \overline{X})^2}{n} & \text{unknown } \mu_i \text{unknown } \sigma^2 \end{cases} \end{split}$	-	-		
Fisher Info (Single Sample)	-	$I(\lambda) = \frac{1}{\lambda^2}$	$\begin{cases} I(\mu) = \frac{1}{\sigma^2} & \text{unknown } \mu, \text{known } \sigma^2 \\ I(\sigma^2) = \frac{1}{2\sigma^i} & \text{known } \mu, \text{unknown } \sigma^2 \end{cases}$	-	-	-	-
Others	$U \sim U(0,1), X \sim U(a,b), X = a + (b-a)U$	$\begin{aligned} & \text{-Memoryless:} \\ P(X > s + t X > t) = P(X > s) \\ & \text{-Order Statistics:} \\ X_{(1)} \sim Exp(n\lambda) \\ & \text{-Scaling:} \\ aX \sim Exp(\lambda/a), a > 0 \\ & \text{-} Exp(\frac{1}{2}) = \mathcal{X}_2^2 \end{aligned}$	$\begin{split} & \cdot X \sim N(\mu, \sigma^2), aX + b \sim N(a\mu + b, a^2\sigma^2) \\ & \cdot X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^3), \\ & aX + bY \sim N(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2 + 2ab\sigma_1\sigma_2\rho) \\ & 1 - \Phi(A) = \Phi(-A) \end{split}$	$\begin{array}{c} -X_i \stackrel{indep}{\sim} \Gamma(\alpha_i,\beta), \\ \sum X_i \sim \Gamma(\sum \alpha_i,\beta) \\ -\Gamma(1,\lambda) = Exp(\lambda) \\ -\Gamma(\frac{n}{2},\frac{1}{2}) = \mathcal{X}_n^2 \end{array}$		$ \begin{aligned} & -Z_i \overset{i.i.d.}{\sim} N(0,1), \\ & V = \sum_i Z_i \sim \mathcal{X}_n^2 \\ & -\mathcal{X}_n^2 = \Gamma(\frac{n}{2},\frac{1}{2}) \end{aligned} $	$Z\sim N(0,1)$ independent with $V\sim \mathcal{X}_n^2,$ $T=rac{Z}{\sqrt{rac{V}{\pi}}}\sim t_n$