Max Wisniewski, Alexander Steen

Tutor: David Müßig

Aufgabe 1 (Untergruppen von Primzahlindex)

Geben Sie für jede Primzahl p > 2 endliche Gruppen G und H an, so dass #(G/H) = p und H kein Normalteiler von G ist.

Lösung:

Es sei $G = S_p$ und damit $\#G = \#S_p = p!$. Sei nun H die Gruppe der Permutationen, die alle Elemente bis auf das erste Permutiert, also $H = \{\sigma \in G \mid \sigma \ 1 = 1\}$.

H erfüllt die Gruppenaxiome:

Abgeschlossenheit:

Seien $a, b \in H$, dann ist auch $a \cdot b \in H$, da $(a \cdot b)(1) = a(b(1)) \stackrel{b \in H}{=} a(1) = 1$

Inverses Element:

Sei $a \in H$, dann ist auch $a^{-1} \in H$, da

$$\begin{array}{rcl} & a^{-1}(1) & = & 1 \\ \Leftrightarrow & a \cdot a^{-1}(1) & = & a(1) \\ \Leftrightarrow & id(1) & = & a(1) \\ \Leftrightarrow & & 1 & = & 1 \end{array}$$

Neutrales Element:

$$id(1) = 1 \Rightarrow id \in H.$$

 $H \cong S_{p-1}$, da wir bis auf ein Element alle Elemente permutieren.

Nun gilt nach dem Satz von Lagrange: $\#G = \#H \cdot \#(G/H)$. Das #(G/H) = p. Wir haben also eine Linksunterklasse gebildet, die genau p Elemente enthält.

$$H \triangleleft G \Leftrightarrow \forall g \in G \forall h \in H : ghg^{-1} \in H.$$
 Sei nun $g = g^{-1} = (1 \ 2) \in G$ und $h = (2 \ 3) \in H.$

$$ghg^{-1}(1) = gh(2) = g(3) = 3 \not\in H.$$

Damit kann H nicht Normalteiler von G sein.

Aufgabe 2 (Die orthogonale Gruppe)

a) Zeigen Sie, dass die orthogonale Gruppe O(2) von Spiegelungen erzeugt wird.

Lösung:

tbd

1 von 2

b) Es sei $N \triangleleft O(2)$ eine normale Untergruppe, die eine Spiegelung enthält. Beweisen Sie N = O(2).

Lösung:

 tbd

c) Es seien $r \in O(2)$ eine Drehung und $G = \langle r \rangle$. Weise Sie nach, dass N eine normale Untergruppe ist.

Lösung:

 tbd

d) Wann ist die untergruppe G aus Teil c) endlich?

Lösung:

tbd

Aufgabe 3 (Die Kommutatorenuntergruppe von S_n)

Satz: Für n > 2 gilt:

$$[S_n, S_n] = A_n.$$

Bew.:

 tbd

Aufgabe 4 (Die alternierende Gruppe A_4)

a) Zeigen Sie, dass e zusammen mit den Permutationen vom Zykeltyp (2,2) eine normale Untergruppe $H \triangleleft A_4$ bildet.

Lösung:

 tbd

b) Geben Sie einen Homomorphismus $\varphi: A_4 \to \mathbb{Z}_3$ mit $Ker(\varphi) = H$ an, H die Untergruppe aus Teil a).

Lösung:

 tbd