Wydział: EAIIB	Konrad Lewandowski Karol Pietruszka	2016	pt. 9.45	Zespół: 8
PRACOWNIA FIZYCZNA WFiIS	Temat: Mostek Wheat	32		
Data wykonania 7.01.16	Data oddania: 8.01.16	Zwrot do pop.	Data zaliczenia	Ocena

1 Wstęp

Celem laboratorium było wyznaczenie wartości dwóch nieznanych oporów R_1 , R_2 oraz ich połączenia szeregowego i równoległego. Finalnie należało obliczyć wartość nieznanego oporu R_3 na podstawie analizy połączenia mieszanego wszystkich tych oporów.

Rysunek 1: Analizowane kombinacje

Rysunek 2: Konfiguracja mostka pomiarowego i opis oznaczeń

2 Wyniki pomiarów oraz niepewności pomiarowe

$$R_x = R_z \cdot \frac{l}{100-l}, u(R_x) = \sqrt{\frac{\sum\limits_{i=1}^{n} (R_i - \overline{R_x})^2}{n(n-1)}}$$

$R_z[\Omega]$	2	5	8	10	15	20	25	30	40	50
l[cm]	81	63	55	45	47	31.5	27	24	19	15.5
$R_1[\Omega]$	8.53	8.51	9.78	8.18	13.30	9.20	9.25	9.47	9.38	9.17

$R_z[\Omega]$	2	5	7	9	10	20	30	40	50	60
l[cm]	85	75	69	64	61	45	37	30	26	23.5
$R_2[\Omega]$	11.33	15.00	15.58	16.00	15.64	16.36	17.62	17.14	17.57	18.43

$R_z[\Omega]$	2	5	7	9	10	20	30	40	50	60
$l[\mathrm{cm}]$	89	81	75	72	70	56	45	40	35	31
$R_1 + R_2[\Omega]$	16.18	21.32	21.00	23.14	23.33	25.45	24.55	26.67	26.92	26.96

$R_z[\Omega]$	2	5	7	9	10	20	30	40	50	60
$l[\mathrm{cm}]$	68	52	45	39	36	21	16	13	11	8
$1/\left(\frac{1}{R_1}+\frac{1}{R_2}\right)[\Omega]$	4.25	5.42	5.73	5.75	5.62	5.32	5.71	5.98	6.18	5.22

$R_z[\Omega]$	2	5	7	9	10	20	30	40	50	60
$l[\mathrm{cm}]$	85	78.5	73	68	63	68	40	35	29	26
$1/\left(\frac{1}{R_1}+\frac{1}{R_2}\right)[\Omega]$	11.33	18.26	18.93	19.12	17.03	42.50	20.00	21.54	20.42	21.08

$$R_{1} = 9.05\Omega$$

$$R_{2} = 16.59\Omega$$

$$R_{1} + R_{2} = 24.37\Omega$$

$$R_{p} = 1/\left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right) = 5.59\Omega$$

$$R_{m} = 1/\left(\frac{1}{R_{2}} + \frac{1}{R_{3}}\right) + R_{1} = 19.55\Omega$$

$$u(R_{1}) = 0.18\Omega$$

$$u(R_{2}) = 0.38\Omega$$

$$u(R_{1}) = 0.009\Omega$$

$$u(R_{1}) = 0.009\Omega$$

$$u(R_{2}) = 0.009\Omega$$

$$u(R_{2}) = 0.009\Omega$$

$$u(R_{2}) = 0.009\Omega$$

$$u(R_{2}) = 0.009\Omega$$

$$u(R_{3}) = 0.19\Omega$$

$$u(R_{3}) = 0.19\Omega$$

$$u(R_3) = \sqrt{\left(\frac{\partial R_3}{\partial R_1}u(R_1)\right)^2 + \left(\frac{\partial R_3}{\partial R_2}u(R_2)\right)^2 + \left(\frac{\partial R_3}{\partial R_m}u(R_m)\right)^2}$$

3 Wnioski

Mostek Wheatstone'a ze względu na duże niedokładności pomiarowe (nieliniowość oporu drutu w rezystorze nastawnym, brak dokładnie skalibrowanych rezystorów odniesienia oraz błędy odczytu amperomierza analogowego) nadaje się tylko do pomiaru dużych rezystancji (rzędu kiloomów).