Technika Cyfrowa - Sprawozdanie z ćwiczenia nr 2: Projekt czterobitowego licznika Fibonacciego

1. Wstęp

Celem projektu było zaprojektowanie czterobitowego licznika, który zlicza według ciągu Fibonacciego:

Licznik działa w pętli i wartość jest wyświetlana na wyświetlaczu siedmiosegmentowym. W projekcie wykorzystano **jeden typ przerzutnika** (T) oraz dowolne bramki logiczne. Rysunek poglądowy układu wygląda następująco:

Układ posiada 2 wejścia: zegarowe i reset oraz 4 wyjścia dla bitów, na których zapisana jest liczba należąca do ciągu

2. Schemat układu

Sekwencja stanów licznika Fibonacciego:

 $0 \ (0000) \ \rightarrow \ 1 \ (0001) \ \rightarrow \ 2 \ (0010) \ \rightarrow \ 3 \ (0011) \ \rightarrow \ 5 \ (0101) \ \rightarrow \ 8 \ (1000) \ \rightarrow \ 13 \ (1101) \ \rightarrow \ 0 \ (0000) \ \rightarrow \ \dots$

Tabela 2.1 Tabela przejścia automatu w kolejnym kroku czasowym n

n	Q ₃	Q ₂	Q ₁	Q ₀	->	Q ₃	Q ₂	Q ₁	Q_0
0	0	0	0	0	->	0	0	0	1
1	0	0	0	1	->	0	0	1	0
2	0	0	1	0	->	0	0	1	1
3	0	0	1	1	->	0	1	0	1
4	0	1	0	1	->	1	0	0	0
5	1	0	0	0	->	1	1	0	1
6	1	1	0	1	->	0	0	0	0

Tabela 2.2 Tabela przejść 4 przerzutników typu T w czasie

n	T ₃	T ₂	T ₁	T ₀
0	0	0	0	1
1	0	0	1	1
2	0	0	0	1
3	0	1	1	0
4	1	1	0	1
5	0	1	0	1
6	1	1	0	1

3. Tabele Karnaugh

Tabela 3.1 Tabela Karnaugh dla wejścia T₃ w czasie n

$Q_3Q_2 \setminus Q_1Q_0$	00	01	11	10
00	0	0	0	0
01	0	1	0	0
11	0	1	0	0
10	0	0	0	0

Z tabeli 3.1 wynika wzór na T₃ :

$$T_3=Q_2\overline{Q_1}Q_0$$

Tabela 3.2 Tabela Karnaugh dla wejścia T_2 w czasie n

$Q_3Q_2 \setminus Q_1Q_0$	00	01	11	10
00	0	0	1	0
01	0	1	0	0
11	0	1	0	0
10	1	0	0	0

Z tabeli 3.2 wynika wzór na T₂ :

$$T_2 = Q_2 \overline{Q_1} Q_0 + \overline{Q_3 Q_2} Q_1 Q_0 + \overline{Q_3} \overline{Q_2 Q_1 Q_0}$$

Tabela 3.3 Tabela Karnaugh dla wejścia T₁ w czasie n

$Q_3Q_2 \setminus Q_1Q_0$	00	01	11	10
00	0	1	1	0
01	0	0	0	0
11	0	0	0	0
10	0	0	0	0

Z tabeli 3.3 wynika wzór na T₁:

$$T_1=\overline{Q_3Q_2}Q_0$$

Tabela 3.4 Tabela Karnaugh dla wejścia T_0 w czasie n

$Q_3Q_2 \setminus Q_1Q_0$	00	01	11	10
00	1	1	0	1
01	0	1	0	0
11	0	1	0	0
10	1	0	0	0

Z tabeli 3.4 wynika wzór na T₀ :

$$T_0 = \overline{Q_3 Q_2 Q_1} + \overline{Q_3 Q_2 Q_0} + Q_2 \overline{Q_1} Q_0 + \overline{Q_2 Q_1 Q_0}$$

4. Schemat układu

Zaprojektowany licznik wygląda następująco:

Poniżej przedstawiona jest implementacja:

Przedstawione schematy wykorzystują magistrale komunikacyjne. Magistrale te służą do komunikacji między poszczególnymi blokami układu oraz stanowią graficzne uproszczenie układu.

Aby wyświetlić liczby na 2 wyświetlaczach siedmiosegmentowych zaprojektowaliśmy odpowiedni dekoder korzystający z konwerterów BCD-TO-7-SEGMENT-DISPLAY:

Gotowy układ wraz z wyświetlaczami siedmiosegmentowymi wygląda następująco:

5. Układ testowy

Korzystając z wcześniejszych podukładów zrobiliśmy układ testowy w celu sprawdzenia poprawności naszego licznika, korzystając z generatora słów oraz analizatora stanów logicznych. Gdy układ jest wadliwy dioda zapala się na czerwono

Poniżej znajdują się wyniki analizatora logicznego wraz z ustawieniem generatora słów:

Na podstawie analizowanych testów widać, że sekwencja czterech bitów zmienia się zgodnie z oczekiwaniami, bit piąty spełnia funkcję resetowania, a szósty bit pozostaje w stanie niskim, co potwierdza poprawne działanie układu. Generator słów wprowadza kolejne sekwencje testowe, a układ reaguje prawidłowo na wszystkie badane kombinacje wejściowe.

Wnioski

- Układ poprawnie realizuje zapętlony ciąg Fibonacciego.
- Alternatywnie można byłoby zaprojektować licznik z użyciem pamięci ROM zawierającej kolejne wartości, co upraszczałoby logikę, ale zwiększałoby koszt i złożoność układu.
- Minimalna liczba przerzutników potrzebna do stworzenia 4-bitowego licznika to 4

Praktyczne zastosowania

- Tego typu licznik można zastosować w systemach losowych lub efektach świetlnych (np. animacje LED w sekwencji Fibonacciego), gdzie nieregularne sekwencje liczb zapewniają bardziej "naturalny" lub mniej przewidywalny efekt.
- Przedstawiony poniżej system wykorzystuje licznik do kontrolowania dostępu do
 lodówki. Lodówka automatycznie blokuje się po każdym otwarciu na czas zgodny z
 sekwencją licznika. Na wyświetlaczu widoczny jest aktualny czas blokady, a diody
 pokazują liczbę poprzednich otwarć. System można zresetować wrzucając monetę do
 skarbonki.

