Math 344 Sample Midterm 2

Midterm topics include: Series solutions to linear differential equations, Legendre polynomials, projections in \mathbb{R}^n , the Gram-Schmidt procedure, applications to linear regression/curve fitting/classification, projection matrices, the normal equation, inner products on PS[a,b], projections for functions, orthogonal families.

The exam is closed notes/resources.

These practice problems are similar to those found on the midterm. They will not be collected.

1. Use series to solve these differential equations:

a.
$$y'' - xy' - y = 0$$

b.
$$y'' + (1+x)y = 0$$

c.
$$(1-x^2)y'' + y = 0$$
.

- **2.** Which point on the line passing through (0,0,0) and parallel to the vector $\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ is closest to (1,2,3)?
- **3.** Let $L_k(x)$ is the polynomial solution to $\frac{d}{dx}\left(xe^{-x}y'\right)=-ke^{-x}y$ that satisfies $L_k(0)=1$.
 - a. Find $L_2(x)$.
 - b. Show that if $k \neq m$, then $\int_0^\infty e^{-x} L_k(x) L_m(x) dx = 0$.
 - c. Given $\int_0^\infty e^{-x} L_k^2(x) dx = 1$, find a formula for the constants which make the approximation

$$f(x) \approx a_0 L_0(x) + a_1 L_1(x) + \cdots + a_n L_n(x)$$

as accurate as possible.

4. Let $p_k(x)$ be the k^{th} Legendre polynomial and let q(x) be a polynomial of degree k or less. Explain why

$$\int_{-1}^{1} q(x) p_k(x) \, dx = 0.$$

- **5.** Find a polynomial solution to xy'' xy' + 2y = 0.
- **6.** Which function of the form $ax + bx^2$ in PS[0,1] is closest to the function 1?
- **7.** Use the normal equation to find the line f(x) = mx + b that best fits the data $\{(0,1), (0,0), (2,1)\}$.
- **8.** Find the projection matrix for the projection onto the span of your favorite three vectors in \mathbb{R}^4 .