R20

Code No: **R204103X**

Set No. 1

IV B.Tech I Semester Regular Examinations, January – 2024 OPERATIONS MANAGEMENT

(Common to All Branches except ME)

Time: 3 hours Max. Marks: 70

Answer any FIVE Questions
ONE Question from Each unit
All Questions Carry Equal Marks

UNIT - I

1 a) The below table shows the demand for a particular brand of razor in a shop for each of the last nine months.

Month	1	2	3	4	5	6	7	8	9
Demand	10	12	13	17	15	19	20	21	20

Calculate a three month moving average for months three to nine. What would be the demand forecast for 10th month? Also, apply the exponential smoothing with a smoothing constant of 0.3 to derive a forecast for the demand in 10th month. Which of the two forecasts for 10th month is preferable and why?

10thmonth. Which of the two forecasts for 10thmonth is preferable and why? [7] b) What is job shop type production system? List out its important characteristics. [7]

tem? List out its important characteristics. [7] (OR)

- 2 a) Differentiate between Forecast and Prediction.
 - b) Explain briefly the importance of Aggregate planning.

UNIT - II

3 a) A project with the following data is to be implemented. Draw the network and find the critical path.

Activity	Predecessor	Duration (in days)			
A	-	2			
В	-	4			
С	A	1			
D	В	2			
Е	A,B	3			
F	Е	2			

[7]

[7]

[7]

b) What is ABC analysis? Explain the different policies governing ABC method of inventory management.

[7]

[7]

(OR)

- 4 a) Write the differences between forward scheduling and reverse scheduling.
 - b) Discuss the primary and secondary objectives of materials management? [7]

R20

Code No: **R204103X**

Set No. 1

[7]

[7]

[7]

[7]

[7]

[7]

[7]

[7]

[7]

UNIT - III

- 5 a) The John Equipment Company estimates its carrying cost at 15% and its ordering cost at Rs.9 per order. The estimated annual requirement is 48,000 units at a price of Rs.4 per unit.
 - i) What is the most economical number of units to order?
 - ii) How many orders should be placed in a year?

iii) How often should an order be placed?

b) What are the advantages and limitations of Material requirements planning system?

(OR)

- 6 a) Distinguish between Q and P inventory systems.
 - b) Explain the role of ERP in supply chain management.

UNIT - IV

- 7 a) What are the factors that affect the quality of any product or service? [7]
 - b) Explain briefly the organizational structure of a Six Sigma organization.

(OR)

- 8 a) Explain briefly the concept of Total Quality Management.
 - b) The number of scratch marks on a particular piece of furniture is recorded. The data for 20 samples are given below:

					_					
Sample number	1	2	3	4	5	6	7	8	9	10
Scratch mark	6	3	14	7	2	5	12	4	7	3
Sample number	11	12	13	14	15	16	17	18	19	20
Scratch mark	2	7	6	8	4	10	5	4	13	9

Draw the appropriate control chart and write the comments about the state of the process when the management sets a goal of 5 scratch marks on an average per piece.

UNIT - V

- 9 a) Write the steps involved in the North-West Corner Rule for finding an initial basic feasible solution to a transportation problem.
 - b) Solve the following assignment problem using Hungarian method. Cell values represent cost of assigning job A, B, C and D to the machines I, II, III and IV.

	Machines								
	I	II	III	IV					
A	10	12	19	11					
В	5	10	7	8					
C	12	14	13	11					
D	8	15	11	9					
(0.7)									

(OR)

10 Solve the following linear program;

Maximize $Z=x_1+3x_2$, subjected to $x_1 \le 5$, $x_1+2x_2 \le 10$, $x_2 \le 4$; $x_1, x_2 \ge 0$ [14]