The details of the numerical setup are presented in Section ??.

Each element has $m_V = 9$ vertices so in total $ndof_V \times m_V = 18$ velocity dofs and $ndof_P * m_P = 4$ pressure dofs. The total number of velocity dofs is therefore $NfemV = nnp \times ndofV$ while the total number of pressure dofs is NfemP = nel. The total number of dofs is then Nfem = NfemV + NfemP.

As a consequence, matrix \mathbb{K} has size NfemV, NfemV and matrix \mathbb{G} has size NfemV, NfemP. Vector f is of size NfemV and vector h is of size NfemP.

renumber all nodes to start at zero!! Also internal numbering does not work here

ToDo:

• normalise pressure

features

- $Q_2 \times Q_1$ element
- incompressible flow
- mixed formulation
- Dirichlet boundary conditions (no-slip)
- \bullet isothermal
- isoviscous
- analytical solution

