A Master Attack Methodology for an AI-Based Automated Attack Planner for Smart Cities

GREGORY FALCO

ARUN VISWANATHAN

CARLOS CALDERA

HOWARD SHROBE

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA

IEEE Access, 2018

Outline

- Introduction
- Background
- Design
- Evaluation
 - A case
- Conclusion

Introduction

- ICS(Industrial Control Systems)
 - Highly specialized computers used in smart cities
- IIoT(Industrial Internet of Things)
 - Consists of ICSs and sensors
- ICS is vulnerable
 - One in every five ICSs is attacked each month
 - Administrators have not been active participants in cybersecurity
- Traditional approach: enumerating attack vectors
 - Creating attack trees → tedious and requires highly technical knowledge
- Cooperating with AI
 - This paper focuses on "industry sector agnostic"

A methodology for creating attack trees based on AI-based planners

Background

- Attack tree comes from the Fault tree
 - use qualitative measures to score each leaf
- Attack tree's benefits
 - Help to structure the complex problem of defending against cyberattacks
 - Common attack trees are reusable
- Attack tree challenges
 - Need to be prepared by an expert who has both full knowledge of the system and a comprehensive understanding of how best to attack the system
 - Semantic idiosyncrasies in different researchers

Background

- Shrobe and Howard developed an automated attack tree generator using classical planning
 - Classical planning is a branch of artificial intelligence.
- Classical planning generator components:
 - An abstracted rule set describing methods
 - A detailed system description
- Classical planning generator challenges
 - Do not incorporate standardized language from the cybersecurity community into the trees
 - Do not cover all modern systems especially with the recent surge of IoT and IIoT systems.

- Hierarchy level:
 - "when" + "where" + "what" + "how"
- When: The Cyber Kill Chain
 - Sequence of phases for waging attacks
- Where: OWASP Surfaces
 - Surface area for waging an attack
- What: CAPECs & MITRE ATT&CK
 - Actions required for waging an attack
- How: Kali & MITRE Exploits
 - Tools needed for waging an attack

- When: The Cyber Kill Chain
 - Sequence of phases for waging attacks

- Where: OWASP Surfaces
 - Surface area for waging an attack
- Categories
 - Software/Hardware
 - Architecture
 - Network
 - Organizational

Kill Chain Component	Recon Weaponize	Deliver Ex	xploit Control Execute Maintain
Surface Area	$S_i = surface \ area \ of \ system$ $SA_S = \bigcup_{i=1}^n s_i$ $SA_{1,S} \dots SA_{n,S} SA_{i,S}$	$i, j, k \in [1,, n]$ $SA_{j,S}$	$S'_{i} = surface \ area \ of \ system$ $SA_{S'} = \bigcup_{i=1}^{n} s'_{i} S \subseteq S'$ $SA_{i,S'} \dots SA_{n,S} SA_{i,S'} SA_{j,S'}$

Category	Attack Surface	Vulnerability Examples			
Organizational	Ecosystem	Interoperability standards, Data governance, System wide failure, Indi-			
		vidual stakeholder risks, Implicit trust between components, Enrollment			
		security, Decommissioning system, Lost access procedures			
Software/Hardware	Device Memory	Sensitive data, Cleartext usernames, Cleartext passwords, Third-party cre-			
1 12	D : DI : IV : 6	dentials, Encryption keys			
Architecture	Device Physical Interfaces	Firmware extraction, User CLI, Admin CLI, Privilege escalation, Reset to			
		insecure state, Removal of storage media, Tamper resistance, Debug port			
Architecture	Device Web Interface	Device ID/Serial number exposure			
Arcintecture	Device web interface	Standard set of web application vulnerabilities, Credential management vulnerabilities			
Software/Hardware	Device Firmware	Sensitive data exposure, Firmware version display and/or last update date,			
Software/Hardware	Device Filmware	Vulnerable services (web, ssh, tftp, etc.), Security related function API			
		exposure, Firmware downgrade possibility			
Network	Device Network Services	Information disclosure, User CLI, Administrative CLI, Injection, De-			
		nial of Service, Unencrypted Services, Poorly implemented encryption,			
		Test/Development Services, Buffer Overflow, UPnP, Vulnerable UDP Ser-			
		vices, DoS, Device Firmware OTA update block, Firmware loaded over			
		insecure channel (no TLS), Replay attack, Lack of payload verification,			
		Lack of message integrity check, Credential management vulnerabilities,			
		Insecure password recovery mechanism			
Architecture	Administrative Interface	Standard set of web application vulnerabilities, Credential management			
		vulnerabilities, Security/encryption options, Logging options, Two-factor			
		authentication, Check for insecure direct object references, Inability to wipe device			
Organizational	Local Data Storage	Unencrypted data, Data encrypted with discovered keys, Lack of data			
Organizational	Local Data Storage	integrity checks, Use of static same enc/dec key			
Architecture	Cloud Web Interface	Standard set of web application vulnerabilities, Credential management			
Themteetare	Cloud Web Internet	vulnerabilities, Transport encryption, Two-factor authentication			
Organizational	Third-party Backend APIs	Unencrypted PII sent, Encrypted PII sent, Device information leaked,			
		Location leaked			
Architecture	Update Mechanism	Update sent without encryption, Updates not signed, Update location			
		writable, Update verification, Update authentication, Malicious update,			
		Missing update mechanism, No manual update mechanism			
Architecture	Mobile Application	Implicitly trusted by device or cloud, Username enumeration, Account			
		lockout, Known default credentials, Weak passwords, Insecure data storage,			
		Transport encryption, Insecure password recovery mechanism, Two-factor			
Organization -1	Vendor Backend APIs	authentication Inherent trust of cloud or mobile application, Weak authentication, Weak			
Organizational	vendor Dackend APIS	access controls, Injection attacks, Hidden services			
Network	Ecosystem Communication	Health checks, Heartbeats, Ecosystem commands, Deprovisioning, Pushing			
Tietwork	2005, Stein Communication	updates			
Network	Network Traffic	LAN, LAN to Internet, Short range, Non-standard, Wireless (WiFi, Z-wave,			
		XBee, Zigbee, Bluetooth, LoRA), Protocol fuzzing			
Architecture	Authentication/Authorization	Authentication/Authorization related values (session key, token, cookie,			
		etc.) disclosure, Reusing of session key, token, etc. Device to device au-			
		thentication, Device to mobile Application authentication, Device to cloud			
		system authentication, Mobile application to cloud system authentication,			
		Web application to cloud system authentication, Lack of dynamic authenti-			
		cation			
Organizational	Privacy	User data disclosure, User/device location disclosure, Differential privacy			
Software/Hardware	Hardware (Sensors)	Sensing Environment Manipulation, Tampering (Physically), Damage			
	I .	(Physical)			

- What: CAPECs & MITRE ATT&CK
 - Actions required for waging an attack

Attack Phases	Recon	Weaponize	Deliver	Exploit	Control	Execute	Maintain
CAPEC	Collect and Analyze Information			Inject Unexpected Items Engage in Deceptive Interactions Manipulate Timing and State Abuse Existing Functionality Employ Probabilistic Techniques Subvert Access Control Manipulate Data Structures Manipulate System Resources			
Lockheed Martin		Client applications	Email Websites Removable media				
ATT&CK Matrix					Command and control Credential access Privilege escalation Discovery Lateral movement	Execution Collection	 Defense evasion Escalation Persistence

- How: Kali & MITRE Exploits
 - Tools needed for waging an attack

Evaluation

Automatically generated

Maintain....

```
Goal: Exfiltrate data from IP camera
        If the goal is to Exfiltrate Data
                then you have to do
        AND
        Recon
                If the goal is to do Recon
                        then you have to do Recon on
                AND
                Network
                        AND
                        Device Network Services
                                 If the goal is to do Recon on Device Network Services
                                         then you have to do
                                 OR
                                 Fingerprinting
                                         AND
                                         If the goal is to fingerprint network services
                                                 then exploit "Information Exposure" weakness (CWE-200)
                                         If the goal is to exploit the "Information Exposure" weakness
                                                 then use nmap
                                 Protocol Analysis..
                                Footprinting...
                        Ecosystem Communication...
                        Network Traffic...
                Software/Hardware...
                Architecture...
                Organization...
        Weaponize....
        Deliver...
        Exploit...
        Control...
        Execute...
```

• Hand-drawn

```
Goal: Exfiltrate data from IP camera
        If the goal is to Exfiltrate Data
                then you have to
        AND
        Find the Data
                If the goal is to find the data
                         then you have to
                OR
                Find the Local Camera
                         If the goal is to find the data on the local camera
                                 then you need to
                         AND
                         Access the camera
                                 OR
                                 Steal Password
                                 Exploit Vulnerability
                Find the Hosting Server
                         If the goal is to find the data on the hosting server
                                 then you need to
                         AND
                         Access the hosting server
                         OR
                                 Steal Password
                                 Exploit Vulnerability
        Steal the Data
```

Conclusion

- Developing attack trees has operational challenges
- Using AI planning can ease this operational burden.
- Existing works has not generated a comprehensive attack rule set that can be used across disparate critical infrastructure sectors
- By combining attack frameworks, we have developed a master attack method