3) X ~ multwartet symmetric Benoulli.
Obvoors XVS sub-g. Some tre coordinates one independent, the
luma of a alree That
X _Y2 = C Sym Benellil - Cordep of n.
4) Consider the coordinate distribution on R":
change are of the worddrate vectors es=
choose one of the worderest vectors es=(;
Yn Unoff &: izland.
EY20, Cov(Y) = E(YYT) = h 2 eiet = 1
So of we multiply Y by In got on Botrepic
So of me multiply Y by Sh got on sockrepte
X~ Unif (sne: izli-in).
X-bdd DH os sub-gaussia. Homever H has a veries large sub-gaussia norm
It has a very large Sub-gaussian norm
Indeed IXII was a logn,
so for large n shouldn't really think of the coop
15Hr os Sub-gaussian- 57s sub-g norm 55 too large.

	5) Corrodor $Y \sim Unf(S^{n-1})$.
	$(1)411^2 - 1211 + 12 - 1$
Ass	us he conditates are noughby the same order in some
	that I should be of order I
	unity the coordinates are roughly the same order, we see that I should be of order In. Led's scale by Sn.
	X~ \r (lwff 5"). \=(\(\lambda () -, \lambda 1.
	Q1 How is X, distributed as n >>>? We saw that if g ~ NO, In), then $\frac{1}{\ 3\ _2}$ ~ Und/Smi)
	We saw that of g ~ NO, In), then I ~ Und/Smi)
	So X & In I have the save dossto.
	SO XI & In JI have the same distr.
	[(g)[
	We have $\frac{\ g\ _{2}^{2}}{n} = \frac{g_{1}^{2} + m + g_{n}^{2}}{n} \xrightarrow{\text{By SUN}} E(g_{2}^{2}) = 1$
	So g ₂ as.) sa
	This on 10
	This $\frac{\sqrt{n}}{\ f\ _2} f_1 \longrightarrow \mathcal{N}(\mathcal{O}_{\mathcal{U}}).$
	It follows that of X ~ Unf(Sn-1), Hen
	$\sqrt{n} / \rightarrow N(O_{ll}).$
	This is called the projective certail limit thu.

Recall that Hoeffloy's meghaloty of the quantitative verson of the CLT. The quantitative versor of the projective CLT 55 the following: Thui let X be uniformly distributed on the unit splere of radous In. X~ Unof(JnSn-1). Per X 58 Sub- gaussia uf INIY EC. Pfi We can represent X intro. a goussia Let g ~ N(O, In). Per we sow 9 75 Unif (5ⁿ⁻¹). let X=51 g. To show X 55 sub-gaussoan, MTS (X,t) is Sub-gausson + + ESM-! by the rotational invariouse of X, FT is enough to Show the cose of t=(1,0-1,0), i.e. when $(X_i,t)=X_i$. (also by the robational crossocie we will have UZXXXII4, 55 Indep of +ESn-1). Let $P(t) := P(|Y_1| \ge t) = P(\frac{|y_1|}{\|y_1\|} \ge \frac{t}{|x_1|} = P(|y_1| \ge t)$ We need to bound PH from above. Sulle $\|X\|_2 = Sn$, $X_1 \leq Sn$ always, so P(X) = 0 Ft Sa.

Tus, only need to bound P(+) when + < Sn.

Know that IIg 1/2 83 close to Jn, so with high probability
Vell2>5. Lot A be the event 181/2>5h
More persely, we know
$ _2 - \leq C.$
17.042 // 2
let Y=11911 Jn.
We have $E(e^{\frac{f}{\ \mathbf{w}\ _{t_1}^2}} \le 2)$ from the definitely.
We should that this is equivalent to
- ct2/11/11/2
P(141>+) =2e -ct2/114112 ++>0
for some obsolute cost c.
Mare
Thus $P(A^c) \subseteq P(\ g\ _2 - 5n) \le 2e^{-cn}$ for some cost c
A ^C A
Va Va 3.sh 2
Non P(H & P(\frac{121}{121} > \frac{1}{m} \cappa A) + P(A^c)
3 ⋅ 2
$= 2e^{-t/8} + 2e^{-ch}$
Surce + 45n = 4e-c/fr for some const c'.
= 7 E
Due X, 55 Sub-gaussian uf a Sul-gavisjan
nom which is subspendent of a

Grothendieck's inequality

This Summer program Stanted with Caratheolony's Thun, with was a deterministic regult, however the proof introduced randomess. Vesterday saw another example in Steve's lettere.

Here is one more such example, this time using higher downly gaussians.

This (Grothendreck's onequality).

Consider on Mxn matrix (ais) of real numbers Suppose that for any Xi, Y, E R

 $\left|\sum_{i,j} \alpha_{i,j} X_i Y_j \right| \leq \max_{i} |X_i| \max_{j} |Y_j|$

(so. Hij multiply tre ith row by Xi, & the jth column by Y; & sum the entores).

Then for any Holbert space H and any ventors

Will EH we have

 $\left| \sum_{i,j} \alpha_{ij} \angle U_{i,j} U_{j,j} \right| \leq k \max_{i} |u_{sll} \cdot \max_{j} ||v_{jll}||.$

RE1.783 B on absolute constant.

Rull: while the Statement holds for a constant $K \leq 1.783$ we will give a proof that gales $K \leq 8$.

Post: A Holbert space of a vertor space together with an inner product on of which makes of a complete metars space (e.g. R" w/tee god inner product, or space of square ategorable firs of the inner product (fig) = S flooger) dx).

Of The an min metrix A, let K=K(A) be

the smalleged K which makes the shakement true for

every Holbert Space H

Note that K=Z|aij| works, so the set of K's

that work as not empty.

The Key point of the thinks that KOA) on faut does

not depend on Ain orm.

2) Given $u_i, v_j \in H$ we need to show we can find $||CC188 \text{ s.t.}|| \sum_{i,j} \alpha_{i,j} \alpha_{i,j} \alpha_{i,j} || \leq k \max_{i} ||u_{i,l}|| \max_{i} ||v_{i,l}||.$

Once U; V; are selected, the space H does not play any role any more so we can replace H by 575 subspace H spanned by all the U;'s & V;'s.

I V/s.

H Is as dimesion $\leq N = m + n$, so IF IS isometrice with a subspace of \mathbb{R}^N . Thus, without loss of general Fly we can assume $H = \mathbb{R}^N$ with the Ad direct product.

3) We reed to Bound \[\begin{align*} & \alpha \in \al
5 an 2 un vo)
let's realize (ui, vi) via randon goversom vectors.
Let $g \sim N(0, I_N)$ 2 defile $U_s = \langle g, u_s \rangle$ $V_0 = \langle g, v_s \rangle + 4s$.
$V_0 = 2g, v_0 > 9J$
Il: V- one Pareox combinations of Independent
Vi, V; one lever combinations of independent mensero joussons, so trey one mean-zero joussions.
Moreover <3,4,5
Moreover $\langle 3, v_j \rangle$ $EU_iV_j = E(u_i^{\dagger}gg^{\dagger}v_j) = u_i^{\dagger}(Egg^{\dagger})v_j = u_i^{\dagger}v_j = \langle u_i y_j \rangle$
= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$
$\sum_{i,j} a_{i,j} \langle a_{i,j} v_{j} \rangle = E \left(\sum_{i,j} a_{i,j} \mathcal{U}_{i} V_{j} \right).$
This way we could turn the armer product <ui,)="" th="" v;="" who<=""></ui,>
the made to the lost the control the expectation
to which we can apply the assumption of the thin:
for a given realization of Ui, Vi we can use
be assumption in the thin to wrote
$\frac{\sum a_{ij} \mathcal{U}_i \mathcal{V}_s}{i_{ij}} \leq \max_{i} \mathcal{U}_i \max_{j} \mathcal{V}_j .$
The ossue here os that Might are normal, so tray one not bounded, so can be arbitrously large.
ore not bounded, so I can be orbitronly
large.

4) Truncate tre RVs Vi, Vi - separate de tro
parts, the ISA 73 bdd, the End 05 unlikely (hos
Small probability).
Gren R, let
$\mathcal{U}_{i}^{-}:=\mathcal{U}_{i}$ $\mathcal{I}_{ \mathcal{U}_{i} \leq \mathcal{V}_{i} }$ $\mathcal{U}_{i}^{+}:=\mathcal{U}_{i}$ $\mathcal{I}_{ \mathcal{U}_{i} > \mathcal{R} \mathcal{U}_{i} }$
Smilarly define
$V_{j} := V_{j} 1_{ V_{j} \leq R_{l} v_{j} } V_{j}^{+} := V_{j} 1_{ V_{j} > R_{l} v_{j} }$
we have $U_i = U_0^f + U_c^-$
$V_{j} = V_{j}^{\dagger} \perp V_{j}^{\dagger}$
We have
We have $\sum a_{ij} u_i v_j = \sum a_{ij} u_i^- v_j^+ \sum a_{ij} u_i^+ v_j^- + \sum a_{ij} u_i^+ v_j^+ + \sum a_{ij} u_i^+ v_j^+ \sum a_{ij} u_i^+ v_j^+ + \sum a_{ij} u_i^+ v_j^+ \sum a_{ij} u_i^+ v_j^+ + \sum a_{ij} u_i^+ v_j^+ \sum a_{ij} u_i^+ v_j^+ + \sum a_{ij} u_i^+ v_j^+ \sum a_{ij} u_i^+ v_j^+ + \sum a_{ij} u_i^+ v_j^+ \sum a_{ij} u_i^+ v_j^+ + \sum a_{$
5, 52
tor >1 by the hypothesis in the 1/2
For S_1 by the hypothesis in the $S_1 \leq \sup_{j \in S_1} \mathcal{U}_j \leq R^2 \max_{j \in S_2} \mathcal{U}_j \leq R^2 \max_{j \in S_2} \mathcal{U}_j $
So EIS,1 & R2 max wy max wy
5) For So we made
So $E S_1 \leq R^2$ maximy maximy 5) For S_2 we write $ES_2 = \sum_{i,j} a_{i,j} E(u_i^+ v_j^-)$.
is
Consider U. 1 v, as elements of the Hilbert space Le with the
Dance Deal +
inner product $(X,Y)_L = EXY$.
<u></u>

```
Our KZK(A) Works for any Holbot Space so us have
                                                    ESZ = K max ||Utll max || V- |
        Since U_i = \langle g_i u_i \rangle_{\text{the have}} U_i \sim \mathcal{N}(0, \|u_i\|^2) \sim \|u_i\| Mo_{ii}
               This
||u_{0}^{+}||_{L_{2}}^{2} = E u_{i}^{2} 1_{|u_{i}|} >_{R_{i}|u_{i}||} = ||u_{i}||^{2} E(g^{2} 1_{|g|} >_{R})
                                                 Mee & ~N(0,1).
A shiple ategration by parts gives
\frac{1}{2} \mathbb{E} g^2 \int_{\mathbb{R}^3} \mathbb
                                                                                                      Eg2 Sy>R <2(R++) -= e-R/2 =: CR
                                     Me get \|\mathcal{U}_{3}^{+}\|_{L_{2}}^{2} \leq \|u_{3}\|^{2} C_{R}, \|V_{5}^{-}\|_{L_{2}} \leq \|V_{3}\|_{L_{2}} = \|v_{5}\|
                                              The IESz/ = K. CR mox | will max lly |
                                                 Sunday 1883/ 2 K.CR -#-
                                     So \left| \mathbb{E} \sum_{k} \alpha_{k} \mathcal{U}_{k} \mathcal{V}_{j} \right| \leq \left( \mathbb{R}^{2} + \mathbb{K} (2 \zeta_{k} + \zeta_{k}^{2}) \right) + 1
       K was tre smallest which made ) now for all H 150
K \leq R^2 + K(2C_R + C_R^2)  so K \leq \frac{R^2}{1 - (2C_R + C_R^2)}
                            Plug in R=2.3, get K = 8
```