rebmix: Finite Mixture Modeling, Clustering & Classification

Marko Nagode

August 28, 2017

Abstract

The **rebmix** package provides R functions for random univariate and multivariate finite mixture model generation, estimation, clustering and classification. Variables can be continuous, discrete, independent or dependent and may follow normal, lognormal, Weibull, gamma, binomial, Poisson, Dirac or von Mises parametric families.

1 Introduction

To cite the REBMIX algorithm please refer to (Nagode and Fajdiga, 2011a,b; Nagode, 2015). For theoretical backgrounds please upload also http://doi.org/10.5963/JA00302001.

2 What's new in version 2.9.3

Acceleration rate is now progressively increasing. The Newton-Raphson root finding in C++ functions is improved in version 2.9.3, too. This affects only Weibull, gamma and von Mises parametric families. Circular von Mises parametric family is added and further debugging is done in version 2.9.2. Version 2.9.1 is further debugged version 2.8.4. The R code is extended and rewritten in S4 class system. The background C code is extended and rewritten as object-oriented C++ code, too. The package can easier be extended to other parametric families. Multivariate normal mixtures with unrestricted variance-covariance matrices are added. Clustering is added and classification is improved.

3 Examples

To illustrate the use of the REBMIX algorithm, univariate and multivariate datasets are considered. The **rebmix** is loaded and the prompt before starting new page is set to TRUE.

```
R> library("rebmix")
R> devAskNewPage(ask = TRUE)
```

3.1 Gamma datasets

Three gamma mixtures are considered (Wiper et al., 2001). The first has four well-separated components with means 2, 4, 6 and 8, respectively

$$\theta_1 = 1/100$$
 $\beta_1 = 200$ $n_1 = 100$
 $\theta_2 = 1/100$ $\beta_2 = 400$ $n_2 = 100$
 $\theta_3 = 1/100$ $\beta_3 = 600$ $n_3 = 100$
 $\theta_4 = 1/100$ $\beta_4 = 800$ $n_4 = 100$.

The second has equal means but different variances and weights

$$\begin{array}{lll} \theta_1 = 1/27 & \beta_1 = 9 & n_1 = 40 \\ \theta_2 = 1/270 & \beta_2 = 90 & n_2 = 360. \end{array}$$

The third is a mixture of a rather diffuse component with mean 6 and two lower weighted components with smaller variances and means of 2 and 10, respectively

$$\theta_1 = 1/20$$
 $\beta_1 = 40$ $n_1 = 80$
 $\theta_2 = 1$ $\beta_2 = 6$ $n_2 = 240$
 $\theta_3 = 1/20$ $\beta_3 = 200$ $n_3 = 80$.

3.1.1 Finite mixture generation

```
R> n <- c(100, 100, 100, 100)

R> Theta <- list(pdf1 = "gamma", theta1.1 = c(1/100, 1/100, 1/100, 1/100, 1/100), theta2.1 = c(200, 400, 600, 800))

R> gamma1 <- RNGMIX(Dataset.name = "gamma1", n = n, Theta = Theta)

R> n <- c(40, 360)

R> Theta <- list(pdf1 = "gamma", theta1.1 = c(1/27, 1/270), theta2.1 = c(9, 90))

R> gamma2 <- RNGMIX(Dataset.name = "gamma2", n = n, Theta = Theta)

R> n <- c(80, 240, 80)

R> Theta <- list(pdf1 = "gamma", theta1.1 = c(1/20, 1, 1/20), theta2.1 = c(40, 6, 200))

R> gamma3 <- RNGMIX(Dataset.name = "gamma3", rseed = -4, n = n, Theta = Theta)
```

3.1.2 Finite mixture estimation

```
R> gamma1est <- REBMIX(Dataset = gamma1@Dataset, Preprocessing = "Parzen window",
+ cmax = 8, Criterion = c("AIC", "BIC"), pdf = "gamma")
R> gamma2est <- REBMIX(Dataset = gamma2@Dataset, Preprocessing = "histogram",
+ cmax = 8, Criterion = "BIC", pdf = "gamma")
R> gamma3est <- REBMIX(Dataset = gamma3@Dataset, Preprocessing = "histogram",
+ cmax = 8, Criterion = "BIC", pdf = "gamma", K = 23:27)</pre>
```

3.1.3 Plot method

R > plot(gamma3est, pos = 1, what = c("den", "dis"), ncol = 2, npts = 1000)

= 3, v = 25, BIC = 1953, $\log L = -953$.

Figure 1: Gamma 3 dataset. Empirical density (circles) and predictive gamma mixture density in black solid line.

3.1.4 Summary and coef methods

R> summary(gamma2est)

```
Dataset Preprocessing Criterion c v/k
1 gamma2
              histogram
                              BIC 2 16 -1321 676 5
Maximum logL = 676 at pos = 1.
R> coef(gamma1est, pos = 2)
  comp1 comp2 comp3 comp4
w 0.25 0.25
              0.25 0.25
               1
theta1.1 0.01027
theta1.2 0.00921
theta1.3 0.00870
theta1.4 0.01118
theta2.1 195
theta2.2 437
theta2.3 918
theta2.4 535
3.1.5
      Bootstrap methods
R> gamma3boot <- boot(x = gamma3est, pos = 1, Bootstrap = "p", B = 10)
R> gamma3boot
An object of class "REBMIX.boot"
Slot "c":
 [1] 3 3 3 3 3 3 3 3 3 3
Slot "c.se":
[1] 0
Slot "c.cv":
[1] 0
Slot "c.mode":
[1] 3
Slot "c.prob":
[1] 1
R> summary(gamma3boot)
     comp1 comp2 comp3
w.cv 0.122
             0.2 0.175
theta1.1.cv 0.457
theta1.2.cv 0.840
theta1.3.cv 0.508
theta2.1.cv 2.149
theta2.2.cv 0.697
theta2.3.cv 1.083
Mode probability = 1 at c = 3 components.
```

3.2 Poisson dataset

Dataset consists of n = 600 two dimensional observations obtained by generating data points separately from each of three Poisson distributions. The component dataset sizes and parameters, which are those studied in Ma et al. (2009), are displayed below

$$\theta_1 = (3, 2)^{\top}$$
 $n_1 = 200$
 $\theta_2 = (9, 10)^{\top}$
 $n_2 = 200$
 $\theta_3 = (15, 16)^{\top}$
 $n_3 = 200$

For the dataset Ma et al. (2009) conduct 100 experiments by selecting different initial values of the mixing proportions. In all the cases, the adaptive gradient BYY learning algorithm leads to the correct model selection, i.e., finally allocating the correct number of Poissons for the dataset. In the meantime, it also results in an estimate for each parameter in the original or true Poisson mixture which generated the dataset. As the dataset of Ma et al. (2009) can not exactly be reproduced, 10 datasets are generated with random seeds r_{seed} ranging from -1 to -10.

3.2.1 Finite mixture generation

3.2.2 Finite mixture estimation

```
R> poissonest <- REBMIX(Dataset = poisson@Dataset, Preprocessing = "histogram",
+ cmax = 10, Criterion = "MDL5", pdf = rep("Poisson", 2), K = 1)</pre>
```

3.2.3 Plot method

3.2.4 Clustering

3.2.5 Summary and coef methods

R> summary(poissonest)

```
Dataset Preprocessing Criterion c v/k
                                                IC logL M
                                            1 6992 -3368 8
1
    Poisson 1
                  histogram
                                  MDL5 3
2
    Poisson_2
                   histogram
                                  MDL5 2
                                            1 7180 -3510 5
3
    Poisson_3
                  histogram
                                  MDL5 3
                                            1 7030 -3387 8
    Poisson_4
                  histogram
                                  MDL5 3
                                            1 7005 -3375 8
4
5
    Poisson_5
                  histogram
                                  MDL5 3
                                            1 6992 -3368 8
6
                                  MDL5 3
                                            1 7044 -3394 8
    Poisson_6
                  histogram
7
    Poisson_7
                   histogram
                                  MDL5 2
                                            1 7239 -3539 5
8
    Poisson_8
                   histogram
                                  MDL5 3
                                            1 7036 -3390 8
                                            1 7067 -3406 8
9
    Poisson_9
                   histogram
                                  MDL5 3
10 Poisson_10
                  histogram
                                  MDL5 3
                                            1 7008 -3376 8
Maximum logL = -3368 at pos = 5.
```

R> coef(poissonest, pos = 9)

```
comp1 comp2 comp3
w 0.336 0.155 0.509
1 2
theta1.1 2.93 2.01
theta1.2 7.75 8.68
```

```
R> plot(poissonest, pos = 9, what = c("dens", "marg", "IC", "D", + "logL"), nrow = 2, ncol = 3, npts = 1000)
```


Figure 2: Poisson dataset. Empirical densities (coloured large circles), predictive multivariate Poisson-Poisson mixture density (coloured small circles), empirical densities (circles), predictive univariate marginal Poisson mixture densities and progress charts (solid line).

```
theta1.3 13.05 14.42
1 2
theta2.1 0 0
theta2.2 0 0
theta2.3 0 0
```

3.3 Multivariate normal wreath dataset

A wreath dataset (Fraley et al., 2005) consist of 1000 observations drawn from a 14-component normal mixture in which the covariances of the components have the same size and shape but differ in orientation.

```
R> data("wreath", package = "mclust")
```

3.3.1 Finite mixture estimation

3.3.2 Plot method

3.3.3 Clustering

R> poissonclu <- RCLRMIX(x = poissonest, pos = 9, Zt = poisson@Zt) R> plot(poissonclu)

Figure 3: Poisson dataset. Predictive cluster membership (coloured circles), error (black circles).

3.3.4 Summary and coef methods

```
R> summary(wreathest)
```

```
Dataset Preprocessing Criterion c v/k IC logL M 1 dataset1 histogram BIC 14 30 11106 -5266 83 Maximum logL = -5266 at pos = 1.
```

R> coef(wreathest)

```
comp1 comp2 comp3 comp4 comp5 comp6 comp7 comp8 comp9 comp10 comp11
w 0.0694 0.0724 0.0717 0.0744 0.0825 0.0774 0.0775 0.0795 0.0677 0.0704 0.0663
comp12 comp13 comp14
```

w 0.0633 0.0663 0.0612

```
1
            2.38 -10.72090
theta1.1
theta1.2
            9.76
                   4.75272
theta1.3
            2.40
                 10.72197
theta1.4
         -11.15
                 -0.06269
theta1.5
         10.26 -12.85516
theta1.6
           9.95
                 -4.70048
theta1.7
          10.18 12.72588
theta1.8
          16.43
                  0.00907
          -6.73
                 -8.32251
theta1.9
theta1.10 -14.68
                  6.99218
```

R> plot(wreathest)

Dataset = dataset1, Preprocessing = histogram, Restraints = loose, c_{max} = 20, a_r = 0.1, c_r = 14, v_r = 30, BIC = 11106, log L = -5266.

Figure 4: Dataset wreath. Empirical densities (coloured circles), predictive multivariate normal mixture density (coloured lines).

```
-7.07099
theta1.11 -14.92
theta1.12
           -7.05
                   8.64628
theta1.13
           -3.72 -15.83666
theta1.14
           -3.69
                  15.99514
            1-1
                   1-2
                          2-1
                                 2-2
          1.236
                 0.247
theta2.1
                        0.247 0.640
          1.230 -0.382 -0.382 0.595
theta2.2
theta2.3
          0.777 -0.523 -0.523 1.242
theta2.4
          1.151
                 0.402
                        0.402 0.747
theta2.5
          0.559 -0.283 -0.283 1.079
theta2.6
         0.751
                 0.396
                        0.396 1.379
theta2.7
          0.576
                 0.434
                        0.434 1.474
theta2.8
          0.921 -0.502 -0.502 0.763
theta2.9
          1.218
                 0.291
                        0.291 0.679
theta2.10 1.104 -0.592 -0.592 1.392
theta2.11 1.412
                 0.555
                        0.555 0.973
theta2.12 1.016
                 0.585
                        0.585 1.440
theta2.13 0.652 -0.453 -0.453 2.093
theta2.14 1.666 0.341
                        0.341 0.800
```

R> wreathclu <- RCLRMIX(model = "RCLRMVNORM", x = wreathest) R> plot(wreathclu, s = 14)

Figure 5: Dataset wreath. Predictive cluster membership (coloured circles).

3.3.5 Summary method

R> summary(wreathclu)

Number of clusters	1	2	3	4	5
From cluster	2	9	7	4	3
To cluster	1	1	2	2	2
Entropy	4.33e-15	2.05e-04	4.86e-04	1.07e-03	2.07e-03
Entropy decrease	0.000205	0.000282	0.000579	0.001001	0.002103
Number of clusters	6	7	8	9	10
From cluster	5	11	13	10	12
To cluster	1	4	9	4	10
Entropy	4.17e-03	6.82e-03	9.48e-03	1.89e-02	3.06e-02
Entropy decrease	0.002648	0.002666	0.009404	0.011694	0.009756
Number of clusters	11	12	13		
From cluster	6	8	14		
To cluster	5	2	3		
Entropy	4.03e-02	6.07e-02	1.98e-01		
Entropy decrease	0.020395	0.137158	0.693423		

3.4 Multivariate normal ex4.1 dataset

A ex4.1 dataset (Baudry et al., 2010; Fraley et al., 2016) consist of 600 two dimensional observations.

```
R> data("Baudry_etal_2010_JCGS_examples", package = "mclust")
```

3.4.1 Finite mixture estimation

3.4.2 Plot method

R > plot(ex4.1est, pos = 1, what = c("dens"), nrow = 1, ncol = 1)

Dataset = dataset1, Preprocessing = Parzen window, Restraints = loose, c_{max} = 10, a_r = 0.1, c = 7, v = 14, AIC = 4047, log L = -1983.

Figure 6: Dataset ex4.1. Empirical densities (coloured circles), predictive multivariate normal mixture density (coloured lines).

3.4.3 Clustering

3.4.4 Summary method

R> summary(ex4.1est)

```
Dataset Preprocessing Criterion c v/k IC logL M 1 dataset1 Parzen window AIC 7 14 4047 -1983 41 Maximum logL = -1983 at pos = 1.
```

3.5 Multivariate iris dataset

The well known set of iris data as collected originally by Anderson (1936) and first analysed by Fisher (1936) is considered here. It is available at Asuncion and Newman (2007) consisting of the measurements of the length and width of both sepals and petals of 50 plants for each of the three types of iris species setosa, versicolor and virginica. The iris dataset is loaded, split into three subsets for the three classes and the Class column is removed.

```
R> ex4.1clu <- RCLRMIX(model = "RCLRMVNORM", x = ex4.1est)

R> plot(ex4.1clu)
```


Figure 7: Dataset ex4.1. Predictive cluster membership (coloured circles).

3.5.1 Finite mixture estimation

```
R> irisest <- REBMIX(model = "REBMVNORM", Dataset = Iris@train,
+ Preprocessing = "Parzen window", cmax = 10, Criterion = "ICL-BIC")</pre>
```

3.5.2 Classification

```
R> iriscla <- RCLSMIX(model = "RCLSMVNORM", x = list(irisest), Dataset = Iris@test,
+ Zt = Iris@Zt)</pre>
```

3.5.3 Show and summary methods

R> iriscla

1 2 3

```
An object of class "RCLSMVNORM" Slot "CM":
```

```
1 13 0 0
2 0 13 0
3 0 1 12
Slot "Error":
[1] 0.0256
Slot "Precision":
[1] 1.000 1.000 0.923
Slot "Sensitivity":
[1] 1.000 0.929 1.000
Slot "Specificity":
[1] 1.000 1.040 0.963
Slot "Chunks":
[1] 1
```

R> summary(iriscla)

	Test	Predictive	Frequency	
1	1	1	13	
2	2	1	0	
3	3	1	0	
4	1	2	0	
5	2	2	13	
6	3	2	1	
7	1	3	0	
8	2	3	0	
9	3	3	12	
Error = 0.0256.				

3.5.4 Plot method

R> plot(iriscla, nrow = 3, ncol = 2)

Figure 8: Dataset iris. Predictive class membership (coloured circles), error (black circles).

3.6 Multivariate adult dataset

The adult dataset containing 48842 instances with 16 continuous, binary and discrete variables was extracted from the census bureau database Asuncion and Newman (2007). Extraction was done by Barry Becker from the 1994 census bureau database. The adult dataset is loaded, complete cases are extracted and levels are replaced with numbers.

```
R> data("adult")
R> adult <- adult[complete.cases(adult), ]
R> adult <- as.data.frame(data.matrix(adult))</pre>
```

Numbers of unique values for variables are determined and displayed.

```
R> cmax <- unlist(lapply(apply(adult[, c(-1, -16)], 2, unique),
+ length))
R> cmax
```

Age	Workclass	Fnlwgt	Education	Education.Num
74	7	26741	16	16
Marital.Status	Occupation	Relationship	Race	Sex
7	14	6	5	2
Conitol Coin	Conital Laga	Hanna Dan Haalt	Notine Country	

Capital.Gain Capital.Loss Hours.Per.Week Native.Country
121 97 96 41

The dataset is split into train and test subsets for the two incomes and the Type and Income columns are removed.

```
R> Adult <- split(p = list(type = 1, train = 2, test = 1), Dataset = adult,
+ class = 16)</pre>
```

3.6.1 Finite mixture estimation

Number of components, component weights and component parameters are estimated assuming that the variables are independent for the set of chunks $y_{1j}, y_{2j}, \ldots, y_{14j}$.

3.6.2 Classification

The class membership prediction is based upon the best first search algorithm.

```
R> adultcla <- BFSMIX(x = adultest, Dataset = Adult@test, Zt = Adult@Zt)
```

3.6.3 Show and summary methods

```
R> adultcla
```

```
An object of class "RCLSMIX" Slot "CM":
```

```
1 2
1 10649 711
2 1397 2303
Slot "Error":
[1] 0.14
Slot "Precision":
[1] 0.937 0.622
Slot "Sensitivity":
[1] 0.884 0.764
```

```
Slot "Specificity":

[1] 1.228 0.943

Slot "Chunks":

[1] 11 12 4 8 1
```

R> summary(adultcla)

	Test	Predictive	Frequency	
1	1	1	10649	
2	2	1	1397	
3	1	2	711	
4	2	2	2303	
Error = 0.14 .				

3.6.4 Plot method

R> plot(adultcla, nrow = 5, ncol = 2)

Figure 9: Dataset adult. Predictive class membership (coloured circles), error (black circles).

4 Summary

The users of the rebmix package are kindly encouraged to inform the author about bugs and wishes.

References

- E. Anderson. The species problem in iris. Annals of the Missouri Botanical Garden, 23(3):457–509, 1936. doi: 10.2307/2394164.
- A. Asuncion and D. J. Newman. Uci machine learning repository, 2007. URL http://archive.ics.uci.edu/ml.
- J. P. Baudry, A. E. Raftery, G. Celeux, K. Lo, and R. Gottardo. Combining mixture components for clustering. *Journal of Computational and Graphical Statistics*, 19(2):332–353, 2010. doi: 10.1198/jcgs.2010.08111.
- R. A. Fisher. The use of multiple measurements in taxonomic problems. *Annals of Eugenics*, 7(3): 179–188, 1936. doi: 10.1111/j.1469-1809.1936.tb02137.x.
- C. Fraley, A. Raftery, and R. Wehrens. Incremental model-based clustering for large datasets with small clusters. *Journal of Computational and Graphical Statistics*, 14(3):529–546, 2005. doi: 10.1198/106186005X59603.
- C. Fraley, A. E. Raftery, L. Scrucca, T. B. Murphy, and M. Fop. mclust: Normal Mixture Modelling for Model-Based Clustering, Classification, and Density Estimation, 2016. URL http://CRAN.R-project.org/package=mclust. R package version 5.1.
- J. Ma, J. Liu, and Z. Ren. Parameter estimation of poisson mixture with automated model selection through by harmony learning. *Pattern Recognition*, 42(11):2659–2670, 2009. doi: 10.1016/j.patcog. 2009.03.029.
- M. Nagode. Finite mixture modeling via rebmix. *Journal of Algorithms and Optimization*, 3(2):14–28, 2015. doi: 10.5963/JAO0302001.
- M. Nagode and M. Fajdiga. The rebmix algorithm for the univariate finite mixture estimation. Communications in Statistics Theory and Methods, 40(5):876–892, 2011a. doi: 10.1080/03610920903480890.
- M. Nagode and M. Fajdiga. The rebmix algorithm for the multivariate finite mixture estimation. Communications in Statistics Theory and Methods, 40(11):2022–2034, 2011b. doi: 10.1080/03610921003725788.
- M. Wiper, D. R. Insua, and F. Ruggeri. Mixtures of gamma distributions with applications. *Journal of Computational and Graphical Statistics*, 10(3):440–454, 2001. URL http://www.jstor.org/stable/1391098.

Marko Nagode University of Ljubljana Faculty of Mechanical Engineering Aškerčeva 6 1000 Ljubljana Slovenia Marko.Nagode@fs.uni-lj.si.