

Programmierung und Deskriptive Statistik

BSc Psychologie WiSe 2022/23

Belinda Fleischmann

(10) Maße der Variabilität

Orga

Datum	Einheit	Thema
12.10.22	Einführung	(1) Einführung
19.10.22	R Grundlagen	(2) R und RStudio I
26.10.22	R Grundlagen	(2) R und RStudio II
02.11.22	R Grundlagen	(3) Vektoren
09.11.22	R Grundlagen	(4) Matrizen
16.11.22	R Grundlagen	(5) Listen und Dataframes
23.11.22	R Grundlagen	(6) Datenmanagement
30.11.22	Deskriptive Statistik	(7) Häufigkeitsverteilungen I
07.12.22	Deskriptive Statistik	(7) Häufigkeitsverteilungen II
14.12.22	Deskriptive Statistik	(8) Verteilungsfunktionen und Quantile
19.12.22	Leistungsnachweis Teil 1	
21.12.22	Deskriptive Statistik	(9) Maße der zentralen Tendenz
	Weihnachtspause	
04.01.23	Deskriptive Statistik	(10) Maße der Datenvariabilität
11.01.23	Deskriptive Statistik	(12) Anwendungsbeispiel (Deskriptive Statistik)
18.01.23	Inferenzstatistik	(13) Anwendungsbeispiel (Parameterschätzung, Konfidenzintervalle)
25.01.23	Inferenzstatistik	(14) Anwendungsbeispiel (Hypothesentest)
27.01.23	Leistungsnachweis Teil 2	Online, 9:00 - 10:00 Uhr

Spannbreite Stichprobenvarianz Stichprobenstandardabweichung Selbstkontrollfragen

Spannbreite

Stichprobenvarianz

Stich proben standard abweichung

 ${\sf Selbstkontroll fragen}$

Spannbreite

Definition (Spannbreite)

 $\boldsymbol{x}=(x_1,...,x_n)$ sei ein Datensatz. Dann ist die Spannbreite von $x_1,...,x_n$ definiert als

$$sb := \max(x_1, ..., x_n) - \min(x_1, ..., x_n).$$
 (1)

Spannbreite

Berechnen der Spannbreite mit range()

```
# Einlesen des Beispieldatensatzes
fname = file.path(data_dir, "psychotherapie_datensatz.csv")
       = read.table(fname, sep = ",", header = T)
D
# Manuelle Spannbreitenberechnung
       = D$Pre.BDI
                                            # double Vektor der Pre-BDI Werte Werte
х
x max = max(x)
                                            # Maximum der TA1 Werte
x \min = \min(x)
                                           # Mininum der TA1 Werte
sb
       = x max - x min
                                            # Spannbreite
print(sb)
> [1] 9
# automatische Spannbreitenberechnung
MinMax = range(x)
                                            # "automatische" Berechnung von min(x), max(x)
       = MinMax[2] - MinMax[1]
                                            # Spannbreite
sb
print(sb)
> [1] 9
```

 ${\sf Spannbreite}$

Stichprobenvarianz

Stich proben standard abweichung

 ${\sf Selbstkontroll fragen}$

Definition (Stichprobenvarianz, empirische Stichprobenvarianz)

 $x=(x_1,...,x_n)$ sei ein Datensatz und \bar{x} das Stichprobenmittel. Die $\it Stichprobenvarianz$ von $\it x$ ist definiert als

$$s^2 := \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \tag{2}$$

und die empirische Stichprobenvarianz von x ist definiert als

$$\tilde{s}^2 := \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2. \tag{3}$$

Bemerkungen

- s^2 ist ein unverzerrter Schätzer von $\mathbb{V}(\xi)$, \tilde{s}^2 ist ein verzerrter Schätzer $\mathbb{V}(\xi)$.
- Für $n \to \infty$ gilt $\frac{1}{n} \approx \frac{1}{n-1}$, \tilde{s}^2 ist ein asymptotisch unverzerrter Schätzer von $\mathbb{V}(\xi)$.
- \tilde{s}^2 ist der ML Schätzer, s^2 ist der ReML Schätzer von σ^2 bei $\xi_1,...,\xi_n \sim N(\mu,\sigma^2)$.
- Es gelten

$$\tilde{s}^2 = \frac{n-1}{n} s^2, s^2 = \frac{n}{n-1} \tilde{s}^2 \text{ und } 0 \le \tilde{s}^2 < s^2.$$
 (4)

Berechnen der Stichprobenvarianz mit var ()

```
= D$Pre_BDT
                                                # double Vektor der Pre-RDT Werte Werte
Y
            = length(x)
                                                # Anzahl der Werte
n
            = (1/(n-1))*sum((x - mean(x))^2) # Stichprobenvarianz
s2
print(s2)
> [1] 3.03
            = var(x)
                                                # "automatische" Stichprobenvarianz
s2
print(s2)
> [1] 3.03
s2_tilde
          = (1/n)*sum((x - mean(x))^2)
                                                # Empirische Stichprobenvarianz
print(s2_tilde)
> [1] 3
s2_{tilde} = ((n-1)/n)*var(x)
                                                # "automatische" empirische Stichprobenvarianz
print(s2_tilde)
> [1] 3
```

Theorem (Stichprobenvarianz bei linear-affinen Transformationen)

 $x=(x_1,...,x_n)$ sei ein Datensatz mit Stichprobenvarianz s_x^2 und $y=(ax_1+b,...,ax_n+b)$ sei der mit $a,b\in\mathbb{R}$ linear-affin transformierte Datensatz mit Stichprobenvarianz s_x^2 . Dann gilt

$$s_y^2 = a^2 s_x^2. (5)$$

Beweis

$$\begin{split} s_y^2 &\coloneqq \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2 = \frac{1}{n-1} \sum_{i=1}^n (ax_i + b - (a\bar{x} + b))^2 \\ &= \frac{1}{n-1} \sum_{i=1}^n (ax_i + b - a\bar{x} - b)^2 \\ &= \frac{1}{n-1} \sum_{i=1}^n (a(x_i - \bar{x}))^2 \\ &= \frac{1}{n-1} \sum_{i=1}^n a^2 (x_i - \bar{x})^2 = a^2 \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 = a^2 s_x^2 \end{split} \tag{6}$$

Stichprobenvarianz bei linear-affinen Transformationen

```
# Stichprobenuarianz nach Transformation
       = D$Pre.BDI
х
                                               # double Vektor der Pre-BDI Werte Werte
s2x = var(x)
                                               # Stichprobenvarianz von x_1, \ldots, x_n
  = 2
                                               # Multiplikationskonstante
  = 5
                                               # Additionskonstante
b
    = a*x + b
                                               # y i = ax i + b
٧
s2v
      = var(y)
                                               # Stichprobenvarianz y 1,..., y n
print(s2y)
> [1] 12.1
# Stichprobenvarianz nach Theorem
s2y
       = a^2*s2x
                                               # Stichprobenvarianz y_1,...,y_n
print(s2y)
```

Theorem (Verschiebungssatz zur empirischen Stichprobenvarianz)

 $x=(x_1,...,x_n)$ sei ein Datensatz, $x^2:=(x_1^2,...,x_n^2)$ sei sein elementweises Quadrat und \bar{x} und $\overline{x^2}$ seien die respektiven Mittelwerte. Dann gilt

$$\tilde{s}^2 = \overline{x^2} - \bar{x}^2 \tag{7}$$

Beweis

$$\begin{split} \vec{s}^2 &:= \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 \\ &= \frac{1}{n} \sum_{i=1}^n \left(x_i^2 - 2x_i \bar{x} + \bar{x}^2 \right) \\ &= \frac{1}{n} \sum_{i=1}^n x_i^2 - 2\bar{x} \frac{1}{n} \sum_{i=1}^n x_i + \frac{1}{n} \sum_{i=1}^n \bar{x}^2 \\ &= \overline{x^2} - 2\bar{x}\bar{x} + \frac{1}{n} n\bar{x}^2 \\ &= \overline{x^2} - 2\bar{x}^2 + \bar{x}^2 \\ &= \overline{x^2} - \bar{x}^2 \end{split} \tag{8}$$

> [1] 3.03

Verschiebungssatz zur empirischen Stichprobenvarianz

```
# Direkte Berechnung der empirischen Stichprobenvarianz
           = D$Pre.BDT
                                                   # double Vektor der Pre-BDI Werte Werte
x
     = length(x)
                                                   # Anzahl Datenpunkte
n
x_bar = mean(x)
                                                   # Stichprobenmittel
s2_{tilde} = ((n-1)/n)*var(x)
                                                   # empirische Stichprobenvarianz
print(s2_tilde)
> [1] 3
# Berechnung der empirischen Stichprobenvarianz mit Theorem
s2 tilde = mean(x^2) - (mean(x))^2 # \bar{x} - \bar{x}^2 - \bar{x}^2
print(s2_tilde)
> [1] 3
# Das Theorem gilt nicht für die Stichprobenvarianz
s2
           = var(x)
                                                   # s^2 \neq bar\{x^2\} - bar\{x\}^2
print(s2)
```

 ${\sf Spannbreite}$

Stichprobenvarianz

Stichprobenstandardabweichung

 ${\sf Selbstkontroll fragen}$

Stichprobenstandardabweichung

Definition (Stichprobenstandardabweichung, empirische)

 $x=(x_1,...,x_n)$ sei ein Datensatz. Die Stichprobenstandardabweichung von x ist definiert als

$$s := \sqrt{s^2} \tag{9}$$

und die empirische Stichprobenstandardabweichung von x ist definiert als

$$\tilde{s} := \sqrt{\tilde{s}^2}.$$
(10)

Bemerkungen

- s ist ein verzerrter Schätzer von $\mathbb{S}(\xi)$.
- s^2 misst Variabilität in quadrierten Einheiten, zum Beispiel Quadratmeter (m^2) .
- s misst Variabilität in unquadrierten Einheiten, zum Beispiel Meter (m).
- Es gilt

$$\tilde{s} = \sqrt{(n-1)/n}s. \tag{11}$$

Stichprobenstandardabweichung

Berechnung der Stichprobenstandardabweichung mit sd()

```
# Manuelle Berechnung der Stichprobenstandardabweichung
                                                 # double Vektor der Pre-BDI Werte Werte
        = D$Pre.BDI
       = length(x)
                                                # Anzahl der Werte
        = sqrt((1/(n-1))*sum((x - mean(x))^2)) # Standardabweichung
print(s)
> [1] 1.74
# Automatische Berechnung der Stichprobenstandardabweichung
        = sd(x)
                                                 # "automatische" Berechnung
print(s)
> [1] 1.74
# Empirische Standardabweichung
s_tilde = sqrt((1/(n))*sum((x - mean(x))^2)) # empirische Standardabweichung
print(s_tilde)
> [1] 1.73
s_{tilde} = sqrt((n-1)/n)*sd(x)
                                               # empirische Standardabweichung
print(s_tilde)
> [1] 1.73
```

Theorem (Stichprobenvarianz bei linear-affinen Transformationen)

 $x=(x_1,...,x_n) \text{ sei ein Datensatz mit Stichprobenstandardabweichung } s_x \text{ und } y=(ax_1+b,...,ax_n+b) \text{ sei der mit } a,b \in \mathbb{R} \text{ linear-affin transformierte Datensatz mit Stichprobenstandardabweichung } s_y. \text{ Dann gilt}$

$$s_y = |a|s_x. (12)$$

Beweis

$$\begin{split} s_y \coloneqq & \left(\frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2\right)^{1/2} = \left(\frac{1}{n-1} \sum_{i=1}^n \left(ax_i + b - (a\bar{x} + b)\right)^2\right)^{1/2} \\ & = \left(\frac{1}{n-1} \sum_{i=1}^n \left(a(x_i - \bar{x})\right)^2\right)^{1/2} \\ & = \left(\frac{1}{n-1} \sum_{i=1}^n a^2 (x_i - \bar{x})^2\right)^{1/2} \\ & = \left(a^2\right)^{1/2} \left(\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2\right)^{1/2} \end{split}$$

Also gilt $s_{\mathcal{Y}}=as_{\mathcal{X}}$, wenn $a\geq 0$ und $s_{\mathcal{Y}}=-as_{\mathcal{X}}$, wenn a<0. Dies aber entspricht $s_{\mathcal{Y}}=|a|s_{\mathcal{X}}$.

Stichprobenstandardabweichung

Stichprobenstandardabweichung bei linear-affinen Transformationen

```
# a >= 0
x = D$Pre_BDT
                       # double Vektor der Pre-RDI Werte Werte
s_x = sd(x)
                       # Stichprobenvarianz von x
                       # Multiplikationskonstante
a = 2
                       # Additionskonstante
b = 5
y = a*x + b  \# y_i = ax_i + b
s_y = sd(y)
                       # Stichprobenvarianz von y
print(s_y)
> [1] 3.48
                       # Stichprobenvarianz von y
s_y = a*s_x
print(s_y)
> [1] 3.48
\# a < 0
x = D$Pre.BDI
                       # double Vektor der Pre-BDI Werte Werte
s_x = sd(x)
                       # Stichprobenvarianz von x
a = -3
                       # Multiplikationskonstante
                       # Additionskonstante
b = 10
y = a*x + b
                       # y i = ax i + b
s_y = sd(y)
                       # Stichprobenvarianz von y
print(s_y)
> [1] 5.22
s_y = (-a)*s_x
                       # Stichprobenvarianz von u
print(s_y)
> [1] 5.22
```

Spannbreite
Stichprobenvarianz

Stich proben standard abweichung

Selbstkontroll fragen

Selbstkontrollfragen

- 1. Geben Sie die Definition der Spannbreite eines Datensatzes wieder.
- 2. Berechnen Sie die Spannbreite der Post.BDI Daten.
- 3. Geben Sie die Definition der Stichprobenvarianz und der empirischen Stichprobenvarianz wieder.
- 4. Berechnen Sie die Stichprobenvarianz und die empirische Stichprobenvarianz der Post.BDI Daten.
- 5. Geben Sie das Theorem zur Stichprobenvarianz bei linear-affinen Transformationen wieder.
- 6. Geben Sie den Verschiebungssatz zur empirischen Stichprobenvarianz wieder.
- Geben Sie die Definition der Stichprobenstandardabweichung und der empirischen Stichprobenstandardabweichung wieder.
- Berechnen Sie die Stichprobenstandardabweichung und die empirische Stichprobenstandardabweichung der Post.BDI Daten.
- 9. Geben Sie das Theorem zur Stichprobenstandardabweichung bei linear-affinen Transformationen wieder.