Max-flow, Min-cut

Network flow

Max-flow

- Maximize the total amount of flow from s to t subject to two constraints
 - Flow on edge e doesn't exceed c(e)
 - For every node v ≠ {s, t}, incoming flow is equal to outgoing flow

Max-flow: Ford-Fulkerson

- Find paths from s to t using depth first search
- Find paths using the residual graph G'

Ford-Fulkerson: example

Ford-Fulkerson: DFS

Keep work on for the rest of edges

Remove "0" edge (optional)

Any more paths?

Max flow = 6 + 7 + 6 = 19

Edmonds-Karp

 Edmonds-Karp = Ford-Fulkerson + "Choose the augmenting path with the smallest number of edges" or "Choose the augmenting path with the largest bottle neck value" Edmonds-Karp vs Ford-Fulkerson

Which one is the valid first choice of Edmonds-Karp? Which one is the valid first choice of Ford-Fulkerson?

Min cut

- We want to remove some edges from the graph such that after removing the edges, there is no path from s to t
- The cost of removing e is equal to its capacity c(e)
- The minimum cut problem is to find a cut with minimum total cost

Min cut: approach

- "Subtract" the max-flow from the original graph
- Mark all nodes reachable from s. Call the set of reachable nodes A
- Now separate these nodes from the others
- Cut edges going from A to V A

Nodes reachable from s (A)

Cut edges come from V - A

G – **G** max flow = residual graph

Cost of min cut = 4 + 7 + 2 + 6 = 19 = max flow value