Proof. Consider the sequence $\{A_n\}_{n=1}^{\infty}$ where $A_n = \{a_{n,k}\}_{k \in \mathbb{Z}}$.

For every $k \in \mathbb{Z}$, the sequence $\{a_{n,k}\}_{n=1}^{\infty}$ is Cauchy since $|a_{n,k} - a_{m,k}|$ is bounded by $||A_n - A_m||$ for all $n, m \in \{1, 2, ...\}$. By completeness of $\mathbb{C}^{[1]}$ $\{a_{n,k}\}_{n=1}^{\infty}$ converges to some b_k .

Let $B = (\ldots, b_{-1}, b_0, b_1, \ldots)$. Since $\{A_n\}_{n=1}^{\infty}$ is Cauchy, for all $\epsilon > 0$ there exists N such that for all n, m > N,

$$\sum_{k=-K}^{K} |a_{n,k} - a_{m,k}|^2 \le ||A_n - A_m||^2 < \epsilon.$$

Limiting $m \to \infty$, we obtain

$$\sum_{k=-K}^{K} |a_{n,k} - b_k|^2 \le \epsilon.$$

By the monotonic convergence theorem, we can limit $K \to \infty$ and obtain

$$|A_n - B|^2 \le \epsilon,$$

so $|A_n - B| \to 0$ as $n \to \infty$.

Finally, we must prove that $B \in \ell^2(\mathbb{Z})$. Choose some $\epsilon > 0$ and pick n such that $||A_n - B|| < \epsilon$. Then for every K

$$\sqrt{\sum_{k=-K}^{K} |b_k|^2} \le ||A_n|| + ||A_n - B|| < ||A_n|| + \epsilon.$$

Limiting K to infinity, we find that

$$||B|| \le ||A_n|| + \epsilon < \infty,$$

so
$$B \in \ell^2(\mathbb{Z})$$
.

^[1] See exercise 1.