Buisness Case: Apollo Hospitals - Hypothesis Testing

```
#Importing required libraries
In [1]:
           import pandas as pd
           import numpy as np
           import matplotlib . pyplot as plt
           import seaborn as sns
           from numpy import NaN , nan , NAN
           import statsmodels.api as sm
           import warnings
           warnings.filterwarnings("ignore")
           from scipy import stats
           from scipy.stats import levene
        In [2]:
        ▶ #Checking shape of Data
In [3]:
           df.shape
   Out[3]: (1338, 8)
In [4]:
        df.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 1338 entries, 0 to 1337
           Data columns (total 8 columns):
            #
               Column
                                      Non-Null Count Dtype
               -----
                                      -----
               Unnamed: 0
                                                     int64
            0
                                      1338 non-null
                                      1338 non-null int64
            1
               age
            2
               sex
                                      1338 non-null
                                                     object
            3
               smoker
                                      1338 non-null
                                                     object
            4
               region
                                      1338 non-null
                                                     object
            5
               viral load
                                      1338 non-null
                                                     float64
            6
               severity level
                                      1338 non-null
                                                     int64
               hospitalization charges 1338 non-null
                                                     int64
           dtypes: float64(1), int64(4), object(3)
           memory usage: 83.8+ KB
```

We have datatype of int, objects and float

In [5]: ► df.head()

Out[5]:

	Unnamed: 0	age	sex	smoker	region	viral load	severity level	hospitalization charges
0	0	19	female	yes	southwest	9.30	0	42212
1	1	18	male	no	southeast	11.26	1	4314
2	2	28	male	no	southeast	11.00	3	11124
3	3	33	male	no	northwest	7.57	0	54961
4	4	32	male	no	northwest	9.63	0	9667

```
Out[6]: 0
                   1
          2
                   2
          3
                   3
          1333
                1333
          1334
                1334
          1335
                1335
          1336
                1336
          1337
                1337
          Name: Unnamed: 0, Length: 1338, dtype: int64
```

As we can see Unnamed doesnt carry any information so we can drop this column

```
In [7]: ▶ df.drop('Unnamed: 0', inplace=True, axis=1)
```

```
M df.info()
In [8]:
            <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 1338 entries, 0 to 1337
            Data columns (total 7 columns):
                 Column
             #
                                          Non-Null Count Dtype
                 _____
                                          -----
             0
                                          1338 non-null
                                                         int64
                 age
             1
                                          1338 non-null
                                                         object
                 sex
             2
                 smoker
                                          1338 non-null
                                                         object
             3
                 region
                                          1338 non-null
                                                         object
             4
                viral load
                                          1338 non-null
                                                         float64
             5
                 severity level
                                          1338 non-null
                                                         int64
                 hospitalization charges 1338 non-null
                                                          int64
            dtypes: float64(1), int64(3), object(3)
            memory usage: 73.3+ KB
In [9]:
           #Converting object data type into category
            Object_Data = ['sex','smoker','region']
            for i in Object_Data:
                df[i] = df[i].astype("category")
            df.info()
            <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 1338 entries, 0 to 1337
            Data columns (total 7 columns):
             #
                 Column
                                          Non-Null Count Dtype
                 -----
                                          -----
                                                         int64
             0
                 age
                                          1338 non-null
             1
                 sex
                                          1338 non-null
                                                         category
             2
                 smoker
                                          1338 non-null
                                                         category
             3
                 region
                                          1338 non-null
                                                         category
             4
                 viral load
                                          1338 non-null
                                                         float64
             5
                 severity level
                                                         int64
                                          1338 non-null
                 hospitalization charges 1338 non-null
                                                          int64
            dtypes: category(3), float64(1), int64(3)
            memory usage: 46.3 KB
```

Out[10]:

	age	viral load	severity level	hospitalization charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	10.221233	1.094918	33176.058296
std	14.049960	2.032796	1.205493	30275.029296
min	18.000000	5.320000	0.000000	2805.000000
25%	27.000000	8.762500	0.000000	11851.000000
50%	39.000000	10.130000	1.000000	23455.000000
75%	51.000000	11.567500	2.000000	41599.500000
max	64.000000	17.710000	5.000000	159426.000000

Mean and Median of age is approximately same so we can say that data is not skewed.

Maximum frequency of people is from southeast region.

Out[11]:

	sex	smoker	region
count	1338	1338	1338
unique	2	2	4
top	male	no	southeast
freq	676	1064	364

```
In [12]: ► #Checking for NULL Values
df.isnull().sum()/len(df)*100
```

There are no values in dataset

```
In [13]: #Univariate Analysis for numerical features
def numerical_feature(col_data):
    fig,ax = plt.subplots(nrows=1,ncols=2,figsize=(12,5))
    sns.histplot(x = col_data, kde=True, ax=ax[0], color = 'purple')
    ax[0].axvline(col_data.mean(), color='r', linestyle='--',linewidth=2)
    ax[0].axvline(col_data.median(), color='k', linestyle='dashed', linewidth
    ax[0].legend({'Mean':col_data.mean(),'Median':col_data.median()})
    sns.boxplot(x=col_data, showmeans=True, ax=ax[1])
    plt.xticks(rotation = 30)
    plt.tight_layout()
    plt.show()
```

```
In [14]:  numerical_columns=['age', 'hospitalization charges','severity level']
```


Male and Female addmited to the hospital are nearly same.
Out of total patients 79.5% are not smokers and rest are smokers.
Southeast has highest frequency and remaining regions has approxymatley same frequency.

```
In [19]: 
sns.FacetGrid(df,hue='region',size=5)\
    .map(sns.distplot,"age")\
    .add_legend();
plt.show()
```



```
In [22]:  #Checking for outliers
plt.figure(figsize=(15,10))
sns.boxplot(x = 'sex', y = 'hospitalization charges', data = df)
plt.tight_layout(pad = 2)
```


Median of charges seems to be similar visually we can verify same using hypothesis testing.


```
In [27]: ► df1.shape[0] - df.shape[0]
```

Out[27]: -139


```
In [29]: #Bivariate Analysis
df1.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1199 entries, 0 to 1198
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	age	1199 non-null	int64
1	sex	1199 non-null	category
2	smoker	1199 non-null	category
3	region	1199 non-null	category
4	viral load	1199 non-null	float64
5	severity level	1199 non-null	int64
6	hospitalization charges	1199 non-null	int64
•			

dtypes: category(3), float64(1), int64(3)

memory usage: 41.5 KB

Age and Hospitalization charges are correlated. Severity level is not correlated


```
In [32]:  # Creating age groups of persons.

bins = [0,10,20,30,40,50,60,70,100]
    labels = ['0-10','10-20','20-30','30-40','40-50','50-60','60-70','70-100']
    df1['age groups'] = pd.cut(x = df1['age'], bins = bins, labels = labels)
    df1.head()
```

Out[32]:

	age	sex	smoker	region	viral load	severity level	hospitalization charges	age groups
0	19	female	yes	southwest	9.30	0	42212	10-20
1	18	male	no	southeast	11.26	1	4314	10-20
2	28	male	no	southeast	11.00	3	11124	20-30
3	33	male	no	northwest	7.57	0	54961	30-40
4	32	male	no	northwest	9.63	0	9667	30-40

As we can infer as ag e increases the hositalization charges increases.

There are high imbalane of data for smoker and non smoker. Patient who is smoker tends to pay more charges than non smoker.

In [36]: plt.figure(figsize=(12,7))
 sns.barplot(x='age groups',y='viral load',data=df1,hue='sex')
 plt.show()

From above graph we can conclude, Viral load has nothing to do we age group.

We can observe severity level is higher in age group 30-50

Prove (or disprove) that the hospitalization of people who do smoking is greater than those who don't? (T-test Right tailed)

Two Sample t-test assumption.

- 1)Data values must be independent. Measurements for one observation do not affect measurements for any other observation.
- 2)Data in each group must be obtained via a random sample from the population.
- 3)Data in each group are normally distributed.
- 4)Data values are continuous.
- 5)The variances for the two independent groups are equal.

```
In [38]:
           df1.shape
    Out[38]: (1199, 8)
             df1.groupby(['smoker'])['hospitalization charges'].describe()
In [39]:
    Out[39]:
                      count
                                                 std
                                                        min
                                                               25%
                                                                       50%
                                                                               75%
                                   mean
                                                                                      max
              smoker
                      1061.0 20889.284637 14541.903769
                                                      2805.0
                                                             9955.0
                                                                    18344.0 28383.0
                                                                                    83680.0
                       138.0 55035.586957 13792.707698 32074.0 44784.5 52197.0 62048.5 86182.0
                 yes
             smoker = df1[df1['smoker']== 'yes'] ['hospitalization charges'].sample(200,re
In [40]:
              non smoker = df1[df1['smoker']== 'no'] ['hospitalization charges'].sample(200
In [41]:

    def shapiro normality check(series,alpha=0.05):

                  a,p value = stats.shapiro(series)
                  print("Statistics",a, "p-value",p_value)
                  # If p-value is not less than 0.05 then we fail to reject the null hypthe
                  # If p-value is less than .05, we reject the null hypothesis.
                  if p value < alpha:</pre>
                      print("We have sufficient evidence to say that the sample data does n
                  else:
                      print("We do not have sufficient evidence to say that sample data doe
```

Statistics 0.9164139032363892 p-value 3.2035083474823978e-09 We have sufficient evidence to say that the sample data does not come from a normal distribution

Statistics 0.8812834620475769 p-value 1.8823820974178673e-11 We have sufficient evidence to say that the sample data does not come from a normal distribution

In [44]: M #Normality test using QQ plot
import statsmodels.api as sm
sm.qqplot(smoker, line = 's')
plt.show()

In [45]: > sm.qqplot(non_smoker, line = 's')
plt.show()


```
In [46]:
                      def levene var check ( sample1 , sample2 , alpha = 0.05 ):
                                      a, p value = stats.levene(sample1, sample2)
                                      print("p value = ", p_value)
                                      if p_value < alpha:</pre>
                                              print('We have sufficient evidence to say that the sample data does n
                                      else:
                                              print('We do not have sufficient evidence to say that the sample data
In [47]:
                      ▶ levene var check(smoker, non smoker)
                             p value = 0.4315574308255927
                             We do not have sufficient evidence to say that the sample data does not hav
                             e equal variance.
In [48]:
                      | alpha = 0.05
In [49]:
                      ▶ t_stat , p_value = stats . ttest_ind ( smoker , non_smoker , equal_var = Fa
                             onetail pvalue = p value/2
                             print("Test statistics = {},P value = {}, One Tail P-value = {}".format(t_state
                             Test statistics = 22.967890698163973,P value = 9.936294041876319e-75, One T
                             ail P-value = 4.968147020938159e-75
In [50]:
                      if onetail pvalue < alpha:
                                      print("P-value {} is less that alpha {}".format(onetail pvalue,alpha))
                                     print("We have sufficient evidence to reject the Null hypothesis that Ave
                             else:
                                      print("P-value {} is greater that alpha {}".format(onetail pvalue,alpha))
                                      print("We do not have sufficient evidence to reject the Null hypothesis t
                             P-value 4.968147020938159e-75 is less that alpha 0.05
                             We have sufficient evidence to reject the Null hypothesis that Average char
                             ges of smokers is less than or equal to non-smoker

★ t_stat,p_value = stats.ttest_ind(smoker,non_smoker,alternative='greater',equal

| t_stat,p_value = stats.ttest_ind(smoker,non_smoker,alternative='greater',equal
| t_stat,p_value = stats.ttest_ind(smoker,non_smoker,alternative='greater',equal
| t_stat,p_value = stats.ttest_ind(smoker,non_smoker,alternative='greater',equal
| t_stat,p_value = stats.ttest_ind(smoker,non_smoker,alternative='greater',equal
| t_stat,p_value = stats.ttest_ind(smoker,non_smoker,alternative='greater',equal
| t_stat,p_value = stats.ttest_ind(smoker,non_smoker,alternative='greater',equal
| t_stat,p_value = stats.ttest_ind(smoker,non_smoker,alternative='greater',equal
| t_stat,p_value = stats.ttest_ind(smoker,non_smoker,alternative='greater',equal
| t_stat,p_value = stats.ttest_ind(smoker,non_smoker,alternative='greater',equal
| t_stat,p_value = stats.ttest_ind(smoker,non_smoker,alternative='greater',equal
| t_stat,p_value = stat,p_value = sta
In [51]:
In [52]:
                       ▶ print("Test statistics = {} , One Tailed P-value = {} as specified that the a
                             Test statistics = 22.967890698163973 , One Tailed P-value = 4.9681470209381
                             59e-75 as specified that the alternative equal greater which means one tail
                             ed test
```

Prove (or disprove) with statistical evidence that the viral load of females is different from that of males (10 Points)

```
df1.groupby('sex')['viral load'].describe()
In [53]:
    Out[53]:
                     count
                               mean
                                         std
                                             min
                                                   25%
                                                        50%
                                                               75%
                                                                     max
                 sex
              female
                     612.0
                            9.978186 1.981809 5.60
                                                  8.595
                                                        9.86
                                                            11.1875
                                                                    16.02
                male
                     587.0 10.087700 2.026193 5.32 8.610 9.94
                                                            11.3550 17.71
             female_viral_load = df1[df1['sex'] == 'female']['viral load']
In [54]:
             male viral load = df1[df1['sex'] == 'male']['viral load']
             female viral load.shape[0],male viral load.shape[0]
In [55]:
    Out[55]: (612, 587)
          | female_viral_load_sample = df1[df1['sex'] == 'female']['viral load'].sample(5
In [56]:
             male_viral_load_sample = df1[df1['sex'] == 'male']['viral load'].sample(500,
In [57]:
             #Checking Variance
             round(female_viral_load_sample.std()**2,2), round(male_viral_load_sample.std(
    Out[57]: (3.76, 4.24)
```

Normality Test:

We will perform normality check using Shapiro test. The hypothesis of this test are:

Null Hypothesis Ho - series is normal Alternative Hypothesis Ha - series is not normal

```
In [59]:
         print('-'*50)
            normality_check(male_viral_load_sample)
            p value = 8.879068627720699e-05
            We reject the Null Hypothesis Ho
            p value = 9.073790715774521e-05
            We reject the Null Hypothesis Ho
In [60]:
         def variance check(series1, series2, alpha=0.05):
                _, p_value = levene(series1, series2)
                print(f'p value = {p_value}')
                if p_value >= alpha:
                    print('We fail to reject the Null Hypothesis Ho')
                    print('We reject the Null Hypothesis Ho')
In [61]:
         ▶ | variance_check(female_viral_load_sample, male_viral_load_sample)
            p value = 0.2404736516217631
            We fail to reject the Null Hypothesis Ho

    ★ from scipy.stats import mannwhitneyu

In [62]:
            test, p val= mannwhitneyu(female viral load sample, male viral load sample)
            if p val >= 0.05:
                print('We fail to reject the Null Hypothesis Ho')
                print('We reject the Null Hypothesis Ho')
            We fail to reject the Null Hypothesis Ho
```

Normality test - Shapiro Wilk test -> Failed Equality of Variance Test - Levene's Test -> Pass Non-parametric Test for confirmation - Mann Whitney test -> Pass Hence we can proceed for 2 sample t test

```
In [63]: 
| alpha = 0.05
t_stats, p_value = stats.ttest_ind(female_viral_load_sample,male_viral_load_s
print(f"p-value is {p_value}, test statistics is {t_stats}")
if p_value < alpha:
    print(f"Since p value {p_value} is less than alpha {alpha}, we reject telse:
    print(f"We fail to reject the H0 and hence can say that the viral load of</pre>
```

p-value is 0.9697346404030945, test statistics is 0.037950623129076856 We fail to reject the H0 and hence can say that the viral load of females is same as that of males.