Yandex

Yandex

Dealing with categorical features and overfitting

Nikita Kazee v^{12} on behalf the CatBoost team

 $^{^{1}}$ National Research University Higher School of Economics (HSE) 2 Yandex

Categorical features

Categorical features

Image: www.petsworld.in

One-hot encoding

[proton, pion, kaon] \to [[1, 0, 0], [0, 1, 0], [0, 0, 1]]

One-hot encoding

[proton, pion, kaon] \rightarrow [[1, 0, 0], [0, 1, 0], [0, 0, 1]]

> Doesn't scale well with the number of categories

CTR (aka click-through ratio)

For each pair (target_class, categori-cal_feature_value):

$$\mathsf{ctr}_i = \frac{\mathsf{countInClass} + \mathsf{prior}}{\mathsf{totalCount} + 1}$$

- ightarrow countlnClass number of objects in the i-th class with the current categorical feature value
- > prior algorithm parameter
- totalCount total number of objects with the current categorical feature value

CTR example

fruit	target	ctr
apple	0	0.625
orange	0	0.25
apple	1	0.625
apple	1	0.625

prior = 0.5

Classes counter

For each pair (target_class, categorical_feature_value):

$$\mathsf{count}_i = \frac{\mathsf{curCount} + \mathsf{prior}}{\mathsf{totalCount} + 1}$$

- curCount number of objects with the current categorical feature value
- > prior algorithm parameter
- > totalCount total number of objects

Counters example

fruit	target	ctr	counter
apple	0	0.625	0.7
orange	0	0.25	0.3
apple	1	0.625	0.7
apple	1	0.625	0.7

prior = 0.5

Overfitting

Gradients bias in gradient boosting

> Each subsequent tree is fit to the gradient between the current predictions on train and the true labels

Gradients bias in gradient boosting

- > Each subsequent tree is fit to the gradient between the current predictions on train and the true labels
- > The gradient is estimated using the model fitted on the very dataset used for training

Gradients bias in gradient boosting

- > Each subsequent tree is fit to the gradient between the current predictions on train and the true labels
- > The gradient is estimated using the model fitted on the very dataset used for training

> The gradients are likely to be overfitted

Dynamic boosting

> Order data randomly

Dynamic boosting

- > Order data randomly
- > For each element maintain prediction based on the previous model elements

Meet CatBoost

- > Gradient boosting on decision trees
- Categorical features handling (even more advanced than discussed!)
- A novel boosting scheme (<u>submitted to NIPS</u>)
- Released into open source by Yandex on Tuesday

> Used in the LHCb PID

Contacts

Nikita Kazeev Researcher

kazeevn@yandex-team.ru

nikita.kazeev.9