Задача 4.2

Агафонов Артём

• Будем проверять гипотезу равенства средних для классификаторов. Если получится так, что мы не отклоним эту гипотезу, то исследователь не сможет утвержать, что одна из моделей лучше других.

4 связанные выборки
$$X_i = \{X_i^j\}_{j=1}^6, \ i \in [1,4]$$

 $H_0: X_i$ пришли из распределений с одинаковым средним $H_1:$ двусторонняя альтернатива

• Для решения задачи мы будем попарно считать раность R_i — R_j , где R_i — сумма рангов элементов выбоки i-ого классификатора. Для того, чтобы их вычислить нам необходимо объеденить все выборки и составить вариационный ряд. В таблице ниже представлены исходные данные. В скобках указаны ранги элементов.

Критерий, которым мы будем пользоваться, называется rank sum difference test (тест 55 [Kanji, 2006])

$\overline{a_1}$	a_2	a_3	a_4
86 (21)	50 (12)	93 (23)	13 (3)
85(20)	74 (19)	55 (15)	$35 \ (7.5)$
53 (14)	92(22)	58 (17)	51 (13)
44(11)	41 (10)	56 (16)	37 (9)
2(1)	18 (5)	99(24)	26(6)
5(2)	68 (18)	35 (7.5)	17 (4)
$R_1 = 69$	$R_2 = 86$	$R_3 = 102.5$	$R_4 = 42.5$

$$|R_1 - R_2| = 17 |R_1 - R_3| = 33.5 |R_1 - R_4| = 26.5$$

 $|R_2 - R_3| = 16.5 |R_2 - R_4| = 43.5 |R_3 - R_4| = 60$

- Нулевое распределение табличное. Критические значения этого критерия можно найти в таблице 23 [Kanji, 2006].
- Решающее правило выглядит следующим образом. Если одна из разностей превосходит критическое значение, то гипотеза H_0 отвергается.
- Для значений n=6 и K=4 и уровня значимости $\alpha=0.05$ критическое значение равно 62.9. Для наших данных получилось, что

$$\max_{i,j \in [1,4]} |R_i - R_j| < 62.9.$$

Это означает, что мы не отвергаем гипотезу H_0 . Исследователь не может утвержать, что одна из моделей лучше другой.

Замечание. Мы решали задачу в предположении, что выборки связанные, ведь нам ничего о них не известно. В противном случае можно было бы предложить другое решение задачи. Например, если качество – ассигасу и мы знаем размеры выборок и то, что они iid (такие предположения вполне логичны, ведь обычно классификаторы работают для конкретных задач, где считается, что объекты идут независимо из одного распредения), то можно было бы воспользоваться критерием однордности χ^2 (условие n>40 скорее всего было бы выполнено, иначе выборки были бы слишком маленькими для обучения).

References

[Kanji, 2006] Kanji J. K. 100 statistical tests -2006.