Introduction to Analysis Homework 9

November, 14, 2024

- 1. (a) Let $\alpha \in (0,1]$. Use the mean value theorem to show that $(1+x)^{\alpha} \leq 1 + \alpha x$ for all $x \in [-1,\infty)$.
 - (b) Use (a) to prove that the sequence $\{(1+\frac{1}{n})^n\}_{n\in\mathbb{N}}$ is increasing. Also show that $L=\lim_{n\to\infty}(1+\frac{1}{n})^n$ exists and satisfying $L\in(2,3]$.
- 2. Let $f:[a,b] \to \mathbb{R}$ be a differentiable function, where a < b. Show that if $s \in \mathbb{R}$ with f'(a) < s < f'(b) or f'(a) > s > f'(b), then there exists $c \in (a,b)$ such that f'(c) = s.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 1, & \text{if } x \ge 0 \\ 0, & \text{if } x < 0 \end{cases}$$

Prove or disprove that there exists a differentiable function $F: \mathbb{R} \to \mathbb{R}$ such that $F'(x) = f(x), \ \forall x \in \mathbb{R}$.

- 4. Prove or disprove the following statement. "Let $f, g: [0, \infty) \to \mathbb{R}$ be differentiable on $(0, \infty)$ satisfying that $g'(x) \neq 0$ for all $x \in (0, \infty)$. If $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = \infty$, then $\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{f(x)}{g(x)}$."
- 5. Let $S \subset \mathbb{R}^k$ be open, $a \in S$, and $f: S \to \mathbb{R}$. Show that if the partial derivatives $\partial_i f(x)$ all exist and are bounded for all $x \in S$, then f is continuous on S.