V1G3 – Lineare Algebra I

Dozent: Prof. Dr. Jan Schröer Mitschriften von: Tien Nguyen Thanh

WS 2021/2022

Stand: 4. Dezember 2021

Das sind meine persönlichen Mitschriften aus der Vorlesung und hängen in keiner Weise mit dem Dozenten als Person oder der Universität zusammen. Die Mitschriften basieren zwar auf der Vorlesung des Dozenten, wurden aber mehrfach von mir und mithilfe anderer Quellen (Personen, Bücher, Internet, Übungen) überarbeitet, sodass sie nur in ferner bis keiner Weise die Vorlesung widerspiegeln. Trotz großer Sorgfalt bei der Erstellung der Mitschriften sind alle Angaben ohne Gewähr und Anspruch auf Vollständigkeit.

Inhaltsverzeichnis

T	Gru	indiagen	Т
	1.1	Mengen	1
	1.2	Logik	3
		1.2.1 Beweis durch Induktion	4
		1.2.2 Beweis durch Widerspruch	4
		1.2.3 Gleichheit von Mengen	4
	1.3	Abbildungen	4
	1.4	Übungsaufgaben	
2	1		
	2.1	Körperaxiome	7
	2.2	Beispiele von Körpern	
	2.3	Rechenregeln in Körpern	
	2.4		9
	2.5	Die Ringe \mathbb{Z}_m	10
3	Vektorräume 1		
	3.1	Beispiele von Vektorräumen	12
	3.2	Unterräume	
\mathbf{A}	Tric	ckkiste	15

1 Grundlagen

1.1 Mengen

Wir wollen uns mit einer sehr naiven, aber für unsere Zwecke ausreichenden, Mengenbegriff beschäftigen. Was eine Menge wirklich ist, erfahren wir von den Logikern und Mengentheoretikern.

Definition 1.1 (naive Menge). Eine Menge M ist eine Zusammenfassung von verschiedenen Objekten, welche dann Elemente genannt werden, zu einem Objekt.

Beispiel 1.2.

- $\mathbb{N} := \{0, 1, 2, \ldots\}$, die Menge der *natürliche Zahlen*. In dieser Vorlesung gehört die Null dazu.
- $\mathbb{Z} := \{\ldots, -2, -1, 0, 1, 2, \ldots\}$, die Menge der ganze Zahlen.
- $\mathbb{Q} := \{a/b \mid a, b \in \mathbb{Z}, b \ge 1\}$, die Menge der rationale Zahlen.
- \mathbb{R} , die Menge der rationalen Zahlen.

1.1 Mengen Lineare Algebra I

- C, die Menge der komplexen Zahlen.
- Ø, die leere Menge, die per Definition keine Elemente enthält.

Bezeichnung 1.3 (Quantoren, Mengenschreibweise, Relationen). Einige häufig verwendete Symbole

- (...) := (...) definiert das, was links steht, durch das, was rechts steht.
- ∀ bedeutet "für alle".
- ∃ bedeutet "es existiert".
- Wenn M eine Menge ist, bezeichnet |M| die Anzahl der Elemente in M (Kardinalität). Für die leere Menge ist $|\varnothing| = 0$.
- Eine Menge M heißt n-elementig, falls $|M| = n \ (n \ge 0)$.
- Allgemein notieren wir Mengen bspw. durch

$$\{21,35\} = \{x \in \mathbb{N} \mid 5 \le x \le 40,7 \mid x,x \in \{7,14,28\}\}.$$

- { } sind Mengenklammern.
 - | steht oft für "mit der Eigenschaft". In unserem Beispiel heißt das "alle $x \in \mathbb{N}$ mit der Eigenschaft, dass . . . "
 - , steht oft für "und", eine logische Verknüpfung der Bedingungen bzw. Eigenschaften.
- € steht für "ist Element von". Hingegen ist ∉ "ist kein Element von".
- = steht für "gleich", d. h. links und rechts steht das gleiche und können gegenseitig ausgetauscht werden. Analog ist \neq "ungleich".
- \leq , <, \geq , > sind "kleiner gleich", "(echt) kleiner", "größer gleich", "(echt) größer".

Die Reihenfolge und Vielfachheit der Elemente in der Aufzählung von Mengen ist egal. Deshalb ist $\{1,2,3\} = \{2,1,3\} = \{1,1,3,2,3\}$.

Definition 1.4 (Teilmenge). Seien A und B Mengen. Dann ist

- A eine Teilmenge von B, falls $x \in B$ für alle $x \in A$, geschrieben $A \subseteq B$, und
- A eine echte Teilmenge von B, falls $A \subseteq B$, aber $A \neq B$, geschrieben $A \subset B$.

Bemerkung 1.5. Für jede Menge M gilt $\varnothing \subseteq M$, aber $\varnothing \in M$ im Allgemeinen nicht.

Weiterhin definieren wir

Definition 1.6 (Mengenoperatoren). Für Mengen A und B seien

- $A \cap B := \{x \mid x \in A, x \in B\}$ der Durchschnitt von A und B,
- $A \cup B := \{x \mid x \in A \text{ oder } x \in B\}$ die Vereinigung von A und B,
- $A \setminus B := \{x \mid x \in A, x \notin B\}$ die Mengendifferenz von A und B,
- $\mathcal{P}(A) := \{U \mid U \subseteq A\}$ die Potenzmenge von A.

Definition 1.7 (Indexmenge). Sei I eine Indexmenge, d. h. für jedes $i \in I$ ist A_i eine Menge. Dann sind

$$\bigcap_{i \in I} A_i \coloneqq \{x \mid x \in A_i \text{ für alle } i \in I\} \qquad \text{und} \qquad \bigcup_{i \in I} A_i \coloneqq \{x \mid \text{es gibt ein } i \in I \text{ mit } x \in A_i\}$$

der Durchschnitt bzw. Vereinigung der Mengen A_i über die Indexmenge I.

Beispiel 1.8.

• $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$ ist 4-elementig.

1.2 Logik Lineare Algebra I

- $\{1,2,3\} \cup \{2,3\} = \{1,2,3\}.$
- $\{1,2\} \setminus \{1,3\} = \{2\}$. Die Differenzmenge $A \setminus B$ nimmt B von A weg.
- $\varnothing \cup \{1,2\} = \{1,2\} \neq \{\varnothing,1,2\} = \{\varnothing\} \cup \{1,2\}$. Die Vereinigung mit der leeren Menge macht nichts.
- $\{\emptyset, \{1, 2, 3, 4\}\}$ ist 2-elementig, wohingegen $\{\varepsilon, 1, 2, 3, 4\}$ 5-elementig ist.

Definition 1.9 (Paar). Ein *Paar* (oder 2-Tupel) besteht aus der Angabe eines ersten Elements a und eines zweiten Elements b. Wir schreiben (a, b).

Bemerkung 1.10. Bei Paaren ist (im Gegensatz zu Mengen) die Reihenfolge wichtig. Es gilt (a,b)=(b,a) genau dann, wenn a=b: Achtung: $(a,a)\neq\{a,a\}=\{a\}$.

Definition 1.11 (KARTESISCHES Produkt, Tupel). Das KARTESISCHE Produkt zweier Mengen A und B ist $A \times B \coloneqq \{(a,b) \mid a \in A, b \in B\}$.

Für Mengen A_1, A_2, \ldots, A_n ist das KARTESISCHE Produkt

$$A_1 \times \cdots \times A_n := \{(a_1, \dots, a_n) \mid a_i \in A_i \text{ für } 1 \le i \le n\},\$$

dessen Elemente n-Tupel genannt werden.

Sei A eine Menge und n > 1. Dann ist

$$A^n := \underbrace{A \times \cdots \times A}_{n \text{ mal}}$$

das n-fache Kartesische Produkt von A.

Zwei Tupel sind gleich, wenn sie gleich viele Einträge bzw. Komponenten haben und wenn an jeder Stelle die Komponenten gleich sind.

Die *n*-Tupel (a_1, a_2, \ldots, a_n) schreiben wir oft auch senkrecht auf:

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

Beispiel 1.12. Sind A, B und C Mengen, dann sind die Elemente in $A \times B \times C$ 3-Tupel der Form (a, b, c), während die Elemente in $(A \times B) \times C$ 2-Tupel der Form ((a, b), c).

1.2 Logik

Definition 1.13 (Implikation, Äquivalenz). Seien A, B und C Aussagen. Dann bedeuten

- $A \implies B$ "A impliziert B", "aus A folgt B",
- $A \iff B$ "A genau dann, wenn B", "A und B sind äquivalent", d. h. $A \implies B$ und $B \implies A$,
- $\neg A$, "nicht A".

Zwei Schlussregeln, die wir oft verwenden werden:

Satz 1.14 (Syllogismus, Kontraposition).

- $Aus\ A \implies B\ und\ B \implies C\ folgt\ A \implies C\ (Syllogismus).$
- Es gilt $A \implies B$ genau dann, wenn $\neg B \implies \neg A$ (Kontraposition).

Beispiel 1.15.

$$\underbrace{\text{,Wenn es regnet,}}_{A} \ \underbrace{\text{ist die Straße nass."}}_{B} \qquad (A \implies B)$$

ist äquivalent zu

1.3 Abbildungen Lineare Algebra I

1.2.1 Beweis durch Induktion

Für jedes natürliche $n \ge 1$ sei A(n) eine Aussage. Wenn das Ziel ist, A(n) für alle $n \ge 1$ zu zeigen, dann kann vollständige Induktion helfen. Die Beweisstrategie:

- Induktionsanfang: Wir zeigen, dass A(1) richtig ist.
- Induktionsschritt: Wir nehmen an, dass A(n) richtig ist. Damit beweisen wir, dass auch A(n+1) richtig ist.

Das Beweisprinzip basiert auf dem Dominoeffekt: Mit dem Induktionsanfang ist A(1) wahr. Mit dem Induktionsschritt folgt aus A(1) auch A(2). Wieder mit dem Induktionsschritt folgt aus A(2) auch A(3) usw. Damit haben wir die Aussagen A(n) für alle $n \ge 1$ gezeigt.

Beispiel 1.16.

- Für alle $n \ge 1$ gilt A(n): $\sum_{k=1}^{n} (2k-1) = n^2$.
 - Induktionsanfang (n = 1): $2 \cdot 1 1 = 1^2$ ist wahr und deshalb auch A(1).
 - Induktionsschritt: Es gilt

$$\sum_{k=1}^{n+1} (2k-1) = \left(\sum_{k=1}^{n} (2k-1)\right) + (2(n+1)-1) = n^2 + 2n + 1 = (n+1)^2.$$

Dabei verwendeten wir für die zweite Gleichheit die Induktionsvoraussetzung. Folglich gilt A(n+1).

- Ein falscher Induktionsbeweis: Wir behaupten, dass A(n): (7 teilt 10^n) für alle $n \ge 1$ gilt.
 - Induktionsschritt: Angenommen A(n) ist wahr, d. h. es gilt $10^n = 7a$ für ein $a \ge 1$ in \mathbb{N} . Dann gilt auch $10^{n+1} = 10 \cdot 10^n = 10 \cdot 7a$. Also gilt A(n+1).
 - Induktions an fang: Aber A(1) ist falsch!

1.2.2 Beweis durch Widerspruch

Das Beweisprinzip ist, das Gegenteil der Behauptung anzunehmen und das auf einen Widerspruch mit der Voraussetzung zu führen. Folglich war die Annahme falsch und die Behauptung richtig.

Beispiel 1.17. Behauptung: $\sqrt{2} \notin \mathbb{Q}$.

Beweis: Angenommen $\sqrt{2} \in \mathbb{Q}$, d. h. Es gibt $a, b \in \mathbb{Z}$, $b \ge 1$ mit $\sqrt{2} = a/b$. Wir können annehmen, dass a und b teilerfremd sind (also der Bruch vollständig gekürzt ist).

Quadrieren liefert $2 = a^2/b^2 \iff 2b^2 = a^2$. Damit sind a^2 und a durch 2 teilbar, insbesondere auch a^2 durch $2 \cdot 2 = 4$ teilbar. Somit teilt 4 auch $2b^2$, also sind b^2 und b auch durch 2 teilbar (aufgrund der Eindeutigkeit der Primfaktorzerlegung). Das bedeutet, dass a und b durch 2 teilbar sind, was im Widerpsruch zur Teilerfremdheit steht.

1.2.3 Gleichheit von Mengen

Zwei Mengen sind gleich, wenn sie dieselben Elemente besitzen.

Seien A und B zwei Mengen. Um zu beweisen, dass A = B ist, muss man 1. $A \subseteq B$ und 2. $B \subseteq A$ zeigen. Der Beweis ist im Regelfall also zweiteilig!

1.3 Abbildungen

Die Idee hinter Abbildungen ist es, Mengen in Beziehung zu setzen.¹

Definition 1.18 (Abbildung). Seien X und Y Mengen. Eine $Abbildung\ f$ von X nach Y ist eine Vorschrift, durch die jedem $x \in X$ genau ein $f(x) \in Y$ zugeordnet wird.²

¹Eigentlich sind es die *Relationen* die das erfüllen, wovon Abbildungen eine spezielle Form sind.

 $^{^2}$ Die Menge X bezeichnen wir als Urbild und Y als Zielmenge. Die Elemente aus X heißen Urbilder oder Argumente, die Elemente aus Y heißen Zielelemente. Die tatsächlich angenommen Werte nennen wir Bilder oder schlicht Werte, und deren Menge auch Bild.

1.3 Abbildungen Lineare Algebra I

Jedes x wird genau einem f(x) zugeordnet. Trotzdem ist es möglich, dass verschiedene x demselben f(x) zugeordnet werden.

Zwei Abbildungen sind gleich, wenn sie dieselben Definitions- und Zielmengen haben sowie elementweise bzw. punktweise gleich sind (d. h. deren Vorschrift dasselbe macht).

Bezeichnung 1.19. Wir schreiben $f: X \to Y, x \mapsto f(x)$. Dabei verwenden wir \to zwischen Mengen und \mapsto zwischen Elementen.

Definition 1.20. Seien X und Y Mengen. Dann ist Abb(X,Y) die Menge aller Abbildungen von X nach Y.

Beispiel 1.21. Die Abbildung $f: \mathbb{Z} \to \mathbb{N}, x \mapsto x^2$ bildet jedes $x \in \mathbb{Z}$ auf $x^2 \in \mathbb{N}$ ab.

Definition 1.22 (Identität). Sei X eine Menge. Als *Identität* von X bezeichnen wir die Abbildung id $_X : X \to X$, $x \mapsto x$. Es gilt also id $_X(x) = x$ für alle $x \in X$.

Definition 1.23 (Komposition von Abbildungen). Seien $f: X \to Y$ und $g: Y \to Z$ Abbildungen. Dann ist

$$g \circ f \colon X \to Z, \quad x \mapsto g(f(x))$$

die Komposition (Hintereinanderschaltung, Verkettung) von f und g, gelesen "g verknüpft mit f", "g komponiert mit f", "g nach f" oder "g Kringel f".

Bezeichnung 1.24. Wir schreiben auch manchmal gf für $g \circ f$.

Es gilt also

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$
, $x \mapsto f(x) \mapsto g(f(x))$.

Definition 1.25 (injektiv, surjektiv, bijektiv). Sei $f: X \to Y$ eine Abbildung. Dann ist

- f text, falls für alle $x_1, x_2 \in \mathbb{R}$ mit $x_1 \neq x_2$ gilt: $f(x_1) \neq f(x_2)$,
- f surjektiv, falls für jedes $y \in Y$ ein $x \in X$ existiert, sodass f(x) = y ist, und
- f bijektiv, falls f injektiv und surjektiv ist. Dann nennen wir f eine Bijektion.

Definition 1.26 (Umkehrabbildung). Sei $f: X \to Y$ eine bijektive Abbildung. Dann ist die *Umkehrabbildung* $f^{-1}: Y \to X$ definiert durch $f^{-1}(f(x)): x$ für alle $x \in X$ bzw. $f(x) \in Y$. Es gilt dann $f^{-1} \circ f = \mathrm{id}_X$ und $f \circ f^{-1} = \mathrm{id}_Y$.

Umkehrabbildungen kann es nur für Bijektionen geben. Da auch f^{-1} eine Abbildung sein soll und Abbildungen jedem $y \in Y$ genau ein $x \in X$ zuordnet, müssen wir die Injektivität von f voraussetzen. Dann sind nämlich $f^{-1}(f(x_1))$ und $f^{-1}(f(x_2))$ für $x_1, x_2 \in X$ und $x_1 \neq x_2$ auch unterschiedlich. Da f^{-1} von Y nach X abbilden soll, muss $f^{-1}(y)$ für alle Y definiert werden, weshalb wir notwendigerweise die Surjektivität voraussetzen müssen. Dann gibt es für jedes $y \in Y$ ein $x \in X$ mit y = f(x), sodass $f^{-1}(y) = x$ wohldefiniert³ ist.

Auch die Komposition der Abbildung und dessen Umkehrung ergibt Sinn: $f^{-1} \circ f$ bildet von X nach Y und wieder nach X ab, und $f \circ f^{-1}$ bildet von Y nach X und wieder nach Y ab.

Beispiel 1.27.

- 1. $f: \{1,2,3\} \to \{1,2\}$ mit $1 \mapsto 1$, $2 \mapsto 1$ und $3 \mapsto 2$ ist surjektiv, aber nicht injektiv.
- 2. $f: \{1,2\} \rightarrow \{1,2,3\}$ mit $1 \mapsto 3$ und $2 \mapsto 1$ ist injektiv, aber nicht surjektiv.
- 3. $f: \mathbb{Z} \to \mathbb{Z}, x \mapsto x 41$ ist injektiv und surjektiv, also bijektiv.
- 4. $f: \mathbb{Z} \to \mathbb{Z}, x \mapsto 2x$ ist injektiv, aber nicht surjektiv (die ungeraden Zahlen werden nicht getroffen).
- 5. $f: \mathbb{Z} \to \mathbb{Z}$ mit $2n \mapsto n$ und $2n+1 \mapsto n$ (für $n \in \mathbb{Z}$) ist surjektiv, aber nicht injektiv.
- 6. Seien X und Y zwei endliche Mengen mit gleich vielen Elementen. Dann ist die Abbildung $f: X \to Y$ genau dann injektiv, wenn f surjektiv ist.

 $^{^{3}}$ Der Begriff wohldefiniert meint, dass ein Begriff eindeutig und widerspruchsfrei definiert ist, also weder unmöglich noch mehrdeutig ist.

1.4 Übungsaufgaben Lineare Algebra I

7. Die Abbildung $f: \{\text{Menschen in Bonn}\} \to \mathbb{N}$ definiert durch $x \mapsto \text{Alter}(x)$ ist weder surjektiv (Menschen werden nicht beliebig alt) noch injektiv (zwei Menschen können dasselbe Alter haben).

8. Für ein fixiertes $(a, b, c, d) \in \mathbb{Q}^4$ definieren wir $f: \mathbb{Q}^2 \to \mathbb{Q}^2$, $(x, y) \mapsto (ax + by, cx + dy)$. Die Abbildung f ist genau dann bijektiv, wenn $ad - bc \neq 0$ gilt. Außerdem ist f genau dann injektiv, wenn f surjektiv ist. (Der Beweis dafür erfolgt später.)

Ende der Vorlesung 1 am 12. Oktober 2021

Definition 1.28. Seien M und I Mengen. Dann sei

$$M^I := Abb(I, M)$$

die Menge aller Abbildungen $I \to M$.

Achtung: Es sind die Abbildungen von I nach M, nicht von M nach I!

Beispiel 1.29. Für $I = \{1, ..., n\}$ ist die Abbildung $M^I \to M^n$, $f \mapsto (f(1), ..., f(n))$ bijektiv, wobei M^n bekanntlich das n-fache kartesische Produkt bezeichnet.

Achtung: Die hier beschriebene Abbildung bildet Abbildungen f auf n-Tupel derer Werte ab.

Offensichtlich haben alle $f \in M^I$ dieselben Definitions- und Zielmengen. Dann sind zwei Abbildungen genau dann gleich, wenn sie für jedes Argument denselben Wert liefern, d. h. wenn die Tupel ihrer Werte gleich sind.

Definition 1.30 (Bild, Urbild einer Menge). Sei $f: X \to Y$ eine Abbildung. Und seien $A \subseteq X$ und $B \subseteq Y$ Teilmengen. Wir bezeichnen

$$f(A) := \{ f(x) \mid x \in A \}$$
 und $f^{-1}(B) := \{ x \mid f(x) \in B \}$

als Bild von A unter f bzw. Urbild von B unter f. Dahingegen ist f(X) das Bild von f. Es gilt stets $f^{-1}(Y) = X$.

Warnung: Die Schreibweise $f^{-1}(B)$ impliziert nicht, dass eine Umkehrabbildung existiert.

Bemerkung 1.31. Wir beachten, dass das nicht jedes $y \in B$ ein Urbild $\in f^{-1}(B)$ haben muss, ähnlich wie eine Abbildung nicht surjektiv sein muss. Genauso kann es mehrere Urbilder $x_1, x_2 \in f^{-1}(B)$ zu einem Bild y mit $f(x_1) = f(x_2) = y$ geben.

Definition 1.32 (Graph). Der *Graph* einer Abbildung $f: X \to Y$ ist

$$\Gamma(f) \coloneqq \{(x, f(x)) \mid x \in X\} \subseteq X \times Y.$$

Damit können wir den Begriff der Abbildung mengentheoretisch definieren. Seien X und Y Mengen, und sei $\Gamma \subseteq X \times Y$ (eine Relation) eine Menge von Paaren mit den folgenden Eigenschaften:

- 1. Für jedes $x \in X$ gibt es ein $y \in Y$ mit $(x, y) \in \Gamma$ (jedem Urbild wird ein Bild zugeordnet).
- 2. Falls $(x, y_1), (x, y_2) \in \Gamma$, so ist $y_1 = y_2$ (das Bild eines Urbilds ist eindeutig).

Damit definieren wir eine Abbildung $f_{\Gamma} \colon X \to Y$ durch $f_{\Gamma}(x) \coloneqq y$ für jedes $(x,y) \in \Gamma$. Offensichtlich gilt für den Graphen $\Gamma(f_{\Gamma}) = \Gamma$.

1.4 Übungsaufgaben

Aufgabe 1.A (B01.A1). Seien X und Y Mengen. Beweisen Sie die Äquivalenz folgender Aussagen:

- (i) $X \subseteq Y$,
- (ii) $X \cap Y = X$,
- (iii) $X \cup Y = Y$,
- (iv) $X \setminus Y = \emptyset$.

Aufgabe 1.B (B01.A2). Diskutieren Sie den folgenden Induktionsbeweis:

Behauptung: Für jedes $n \ge 1$ gilt: Halten sich n Personen in einem geschlossenen Raum auf, so sind entweder alle geimpft oder alle sind ungeimpft.

Beweis mit Induktion: Der Fall n=1 ist klar. Die Aussage sei nun wahr für n. Sind dann n+1 Personen im Raum, so wähle eine Person aus und schicke sie hinaus. Nach Induktionsannahme haben die verbleibenden Personen denselben Impfstatus. Wir holen die ausgewählte Person wieder herein und senden eine andere Person hinaus. Die im Raum verbliebenen n haben wiederum denselben Impfstatus. Damit hat die zuerst hinaus gesandte Person denselben Impfstatus wie alle anderen im Raum befindlichen Personen. Da dies nach dem ersten Beweisschritt auch für die als zweites hinaus gesandte Person zutrifft, haben alle n+1 Personen denselben Impfstatus.

Aufgabe 1.C. Zeigen Sie: Für alle $n \ge 1$ gilt

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$
(1.33)

2 Körper

Auch Rechenbereich genannt. Körper verallgemeinern und abstrahieren die uns gewohnten rationalen Zahlen und deren Rechenoperationen. Dennoch sollten wir uns ab sofort von den uns bekannten Beispielen lösen, da die in der (linearen) Algebra betrachteten Objekte sehr abstrakt werden und nicht unbedingt analog zu unserem Vorwissen funktionieren.

2.1 Körperaxiome

Definition 2.1 (Körper). Ein $K\"{o}rper$ ist eine Menge K zusammen mit zwei Abbildungen

$$+\colon K\times K\to K, \quad (a,b)\mapsto a+b \qquad \quad \text{und} \qquad \quad \colon K\times K\to K, \quad (a,b)\mapsto a\cdot b,$$

Addition bzw. Multiplikation genannt, sodass folgende Regeln (Axiome) gelten:

- (A1) a + (b + c) = (a + b) + c für alle $a, b, c \in K$ (Assoziativität der Addition);
- (A2) a + b = b + a für alle $a, b \in K$ (Kommutativität der Addition);
- (A3) Es existiert ein Element $0 = 0_K \in K$ mit a + 0 = a für alle $a \in K$ (Existenz eines Nullelements);
- (A4) Zu jedem $a \in K$ gibt es ein $-a \in K$ mit a + (-a) = 0 (Existenz eines additiven Inversen);
- (M1) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ für alle $a, b, c \in K$ (Assoziativität der Multiplikation);
- (M2) $a \cdot b = b \cdot a$ für alle $a, b \in K$ (Kommutativität der Multiplikation);
- (M3) Es existiert ein Element $1 = 1_K \in K$ mit $1 \neq 0$ und $1 \cdot a = a$ für alle $a \in K$ (Existenz eines *Einselements*);
- (M4) Zu jedem $a \in K$ mit $a \neq 0$ gibt es ein $a^{-1} \in K$ mit $a \cdot a^{-1} = 1$ (Existenz des multiplikativen Inversen);
 - (D) $(a+b) \cdot c = (a \cdot c) + (b \cdot c)$ für alle $a,b,c \in K$ (Distributivität).

Dabei steht der Ausdruck a+b eigentlich für +((a,b)) und $a\cdot b$ für $\cdot((a,b))$. Streng genommen müssten wir z. B. die Assoziativität der Addition 2.1 als

$$a + (b + c) = (a + c) + b \longrightarrow +((a, +((b, c)))) = +((+((a, b)), c))$$

und die Kommutativität der Addition 2.1 als

$$a+b=b+a \longrightarrow +((a,b))=+((b,a))$$

schreiben.

Bezeichnung 2.2. Neben diesen Axiomen führen wir noch einige Konventionen ein.

- Um Klammern zu sparen, gilt *Punktrechnung vor Strichrechnung*. Damit können wir z. B. das Distributivgesetz 2.1 umschreiben als $a \cdot c + b \cdot c$, ohne dass Verwirrung entsteht.
- Wir definieren a b := a + (-b) und $ab := a \cdot b$ für $a, b \in K$. Somit können wir Plusklammern und Malpunkte weglassen, wenn der Sinn dabei nicht verfälscht wird (z. B. nicht $1 \cdot 2 \neq 12$).
- Für $a, b \in K$ mit $b \neq 0$ sei

$$\frac{a}{b} \coloneqq a/b \coloneqq a \cdot b^{-1}.$$

Diese Regeln und Schreibweisen sind alles Konventionen und hängen nicht mit der Struktur oder den Eigenschaften eines Körper zusammen. Wir hätten genauso jede andere Konvention einführen können.

Bezeichnung 2.3. Wir definieren kurz $K^{\times} := K \setminus \{0\}.$

Ab sofort meinen wir mit K immer einen Körper mit den Operationen + und \cdot , falls nicht anders spezifiziert. Manchmal schreiben wir auch $(K, +, \cdot)$ für einen Körper.

2.2 Beispiele von Körpern

Beispiel 2.4. $\mathbb Q$ und $\mathbb R$ mit den üblichen Abbildungen + und \cdot sind Körper.

Beispiel 2.5. Z ist kein Körper, da (nur) 2.1 nicht erfüllt wird.

Beispiel 2.6. \mathbb{C} , die Menge der komplexen Zahlen mit + und \cdot ist ein Körper.

Beispiel 2.7. Sei $K := \{a, b\}$ mit $a \neq b$. Wir definieren die Abbildungen $+: K \times K \to K$ und $\cdot: K \times K \to K$ durch

$$a+a=a,$$
 $a+b=b,$ $b+a=b,$ $b+b=a$ $a\cdot a=a,$ $b\cdot b=a.$

K erfüllt alle Axiome eines Körpers, wobei das Nullelement $0_K = a$ und das Einselement $1_K = b$ ist, also $K = \mathbb{F}_2 := \{0, 1\}$. Der Körper ist der kleinstmögliche Körper (jeder Körper muss mindestens 0 und 1 enthalten). Tatsächlich ist der Körper sogar eindeutig, was wir aber nicht beweisen werden.

Beispiel 2.8. Sei $K := \mathbb{Q}(\sqrt{2}) := \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} \subset \mathbb{R}$. Wir definieren die Abbildungen $+: K \times K \to K$ und $\cdot: K \times K \to K$ als Einschränkung von $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ und $\cdot: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ (d. h. die Abbildungen sind dieselben aus \mathbb{R} bis auf den kleineren Definitionsbereich). Insbesondere heißt das

$$(a + b\sqrt{2}) + (c + d\sqrt{2}) := (a + c) + (b + d)\sqrt{2}$$

und

$$(a+b\sqrt{2})\cdot(c+d\sqrt{2})\coloneqq(ac+2bd)+(ad+bc)\sqrt{2}.$$

Die meisten Körperaxiome sind offensichtlich erfüllt. Für 2.1 stellt sich jedoch die Frage, ob $(a+b\sqrt{2})^{-1} \in K$ für alle $a+b\sqrt{2}\neq 0$ existiert. Antwort: Ja, denn

$$(a+b\sqrt{2})-1 := \frac{a}{a^2-2b^2} + \frac{-b}{a^2-2b^2}\sqrt{2}$$

mit

$$\frac{a}{a^2 - 2b^2} + \frac{-b}{a^2 - 2b^2}\sqrt{2} = \frac{a - b\sqrt{2}}{a^2 - 2b^2} = \frac{a - b\sqrt{2}}{(a + b\sqrt{2})(a - b\sqrt{2})} = \frac{1}{a + b\sqrt{2}}.$$

Beachte: Die Brüche sind definiert, weil $(a/b)^2 \neq 2 \iff a^2 - 2b^2 \neq 0$ wegen $\sqrt{2} \notin \mathbb{Q}$.

 $^{^{1}\}mathrm{Die}$ Abbildungen ähneln der Addition und Multiplikation modulo 2.

2.3 Rechenregeln in Körpern

Lemma 2.9. Es gilt a(b+c) = ac + ac für alle $a, b, c \in K$.

Beweis. Es gilt
$$a(b+c) \stackrel{2.1}{=} (b+c)a \stackrel{2.1}{=} ba + ca \stackrel{2.1}{=} ab + ac$$
.

Lemma 2.10. Es gibt nur ein Nullelement in einem Körper.

Beweis. Seien 0' und 0" Nullelemente im Körper K. Dann gilt $0'' \stackrel{2.1}{=} 0'' + 0' \stackrel{2.1}{=} 0' + 0'' \stackrel{2.1}{=} 0'$. Dabei haben wir für die erste Gleichheit die Eigenschaft $0' = 0_K$ und für die letzte Gleichheit $0'' = 0_K$ ausgenutzt.

Lemma 2.11. Für alle $a \in K$ gilt 0a = 0.

Beweis. Sei $a \in K$. Dann gelten

$$0a \stackrel{2.1}{=} (0+0)a \stackrel{2.1}{=} 0a + 0a,$$

$$0 \stackrel{2.1}{=} 0a + (-(0a)) \stackrel{(2.12)}{=} (0a+0a) + (-(0a)) \stackrel{2.1}{=} 0a + (0a + (-(0a))) \stackrel{2.1}{=} 0a + 0 \stackrel{2.1}{=} 0a.$$

$$(2.12)$$

In den Übungsaufgaben werden wir noch eine Vielzahl weiterer Regeln beweisen.

2.4 Charakteristik eines Körpers

Bezeichnung 2.13. Sei K ein Körper. Für $a \in K$ und $0 \neq m \in \mathbb{N}$ definieren wir

$$m \cdot a := \underbrace{a + a + \dots + a}_{m \text{ mal}}.$$

Definition 2.14 (Charakteristik). Wir definieren char(K) als die *Charakteristik* von K als

$$\operatorname{char}(K) \coloneqq \begin{cases} 0 & \text{falls } m \cdot 1_K \neq 0_K \text{ für alle } m \in \mathbb{N} \setminus \{0\}, \\ \min\{m \in \mathbb{N} \setminus \{0\} \mid m \cdot 1_K = 0_K\} & \text{sonst.} \end{cases}$$

Lemma 2.15. Sei K ein $K\ddot{o}rper$ mit char(K) = p > 0. Dann ist p eine Primzahl.

Beweis. Angenommen p ware keine Primzahl, sodass es $p_1, p_2 \in \mathbb{N}$ mit $p_1, p_2 \geq 2$ und $p = p_1 p_2$ gibt. Aus der Minimalität der Charakteristik folgt $p_1 \cdot 1_K \neq 0$ und $p_2 \cdot 1_K \neq 0$. Damit gilt

$$(p_1 \cdot 1_K)(p_2 \cdot 1_K) = (p_1 p_2) \cdot 1_K = p \cdot 1_K = 0_K.$$

Aufgrund der Nullteilerfreiheit in einem Körper (s. Übungsaufgabe) gilt $p_1 \cdot 1_K = 0_K$ oder $p_2 \cdot 1_K = 0_K$, ein Widerspruch.²

Ende der Vorlesung 2 am 15. Oktober 2021

Die Charakteristik ist eigentlich für Ringe (die später folgen) definiert. All diese Eigenschaften gelten auch für Ringe

²Die Charakteristik hat einige interessante Eigenschaften:

Aus einer positiven Charakteristik folgt sofort $a+a+\ldots a=0$. Sie hilft und zu bestimmen, wann ein Ausdruck Null wird, was wichtig für das Rechnen im Körper ist (wir denken an a+0=0, 0a=0 und, dass 0^{-1} nicht existiert). In diesem Kontext ist $\operatorname{char}(K)=2$ besonders wichtig, denn in dem Fall ist a+a=0 für alle $a\in K$, d. h. jedes Element ist sein eigenes additives Inverse. $\operatorname{char}(K)\neq 2$ garantiert uns die Existenz der 2:=1+1.

Jeder Teilkörper eines Körpers hat dieselbe Charakteristik wie der Körper, z. B. $\operatorname{char}(\mathbb{F}_2) = \operatorname{char}(\mathbb{F}_4) = 2$. Damit haben Körper mit gleicher Charakteristik auch eine ähnliche Struktur.

2.5 Die Ringe \mathbb{Z}_m Lineare Algebra I

2.5 Die Ringe \mathbb{Z}_m

Definition 2.16 (Ring). Ein Ring ist eine Menge R zusammen mit zwei Abbildungen

$$+\colon R\times R\to R, \quad (a,b)\mapsto a+b \qquad \quad \text{und} \qquad \quad \colon R\times R\to R, \quad (a,b)\mapsto a\cdot b$$

Addition bzw. Multiplikation genannt, sodass folgende Regeln (Axiome) gelten:

- (A1) a + (b + c) = (a + b) + c für alle $a, b, c \in R$ (Assoziativität der Addition);
- (A2) a + b = b + a für alle $a, b \in R$ (Kommutativität der Addition);
- (A3) Es existiert ein Element $0 = 0_R \in R$ mit a + 0 = a für alle $a \in R$ (Existenz eines Nullelements);
- (A4) Zu jedem $a \in R$ gibt es ein $-a \in R$ mit a + (-a) = 0 (Existenz eines additiven Inversen);
- (R1) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ für alle $a, b, c \in R$ (Assoziativität der Multiplikation);
- (R2) Es existiert ein Element $1 = 1_R \in R$ mit $1 \neq 0$ und $1 \cdot a = a$ für alle $a \in R$ (Existenz eines *Einselements*);
- (D) $(a+b) \cdot c = (a \cdot c) + (b \cdot c)$ und $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ für alle $a, b, c \in K$ (Distributivität).

Definition 2.17 (kommutativer Ring). Ein Ring R heißt kommutativ, falls zusätzlich $a \cdot b = b \cdot a$ für alle $a, b \in \mathbb{R}$ gilt.

Bemerkung 2.18.

- 1. Im Vergleich zu einem Körper sind die Axiome der Addition identisch. Bei der Multiplikation fehlt lediglich die Kommutativität 2.1 und die Existenz des Inversen 2.1. Aufgrund der fehlenden Kommutativität werden in der Distributivität beide Multiplikationsreihenfolgen angeben, die wir auch beide nachweisen müssen.
- 2. In einem Ring wird nicht verlangt, dass $1_R \neq 0_R$. Ist aber $1_R = 0_R$, so folgt daraus $a = 1_R a = 0_R a = 0_R$ für alle $a \in R$, also $R = \{0_R\}$.

Bezeichnung 2.19 (Nullring). Wir nennen $R = \{0_R\}$ den trivialen Nullring.

Wir übernehmen für Ringe alle Schreibkonventionen in bezeichnung 2.2, die wir für Körper festlegten (bis auf Brüche).

Lemma 2.20. Seien $a, m \in \mathbb{N}$ mit $m \geq 1$. Dann existieren eindeutig bestimmte Elemente $r, q \in \mathbb{N}$ mit $0 \leq r < m$, sodass a = qm + r gilt. Setze $r_m(a) \coloneqq r$.

Beweis. Zu jedem $a \in \mathbb{N}$ gibt es ein eindeutig bestimmtes $q \in \mathbb{N}$ mit $qm \le a < (q+1)m$. Mit $r \coloneqq a - qm$ folgt die Behauptung.

Definition 2.21. Sei $m \in \mathbb{N}$ mit $m \geq 2$. Dann sei $\mathbb{Z}_m := \{0, 1, \dots, m-1\}$. Für $a, b \in \mathbb{Z}_m$ definieren wir noch Abbildungen + und · durch $a + b := r_m(a +_{\mathbb{Z}} b)$ und $a \cdot b := r_m(a \cdot_{\mathbb{Z}} b)$. (Die Operationen in den $r_m(\dots)$ kommen aus \mathbb{Z} .)

Manchmal ist es hilfreich, auch die Operatoren aus verschiedenen Mengen durch Subskripte zu unterscheiden, also $+_K$, \cdot_R , etc.

Lemma 2.22. $(\mathbb{Z}_m, +, \cdot)$ ist ein kommutativer Ring.³

Beweis. Übungsaufgabe. \Box

Lemma 2.23. $(\mathbb{Z}_m, +, \cdot)$ ist genau dann ein Körper, wenn m eine Primzahl ist.

³Ein sog. Restklassenring modulo m.

Beweis. Angenommen \mathbb{Z}_m ist ein Körper. Dann folgt $\operatorname{char}(\mathbb{Z}_m) = m$ aus der Definition der Addition über die Addition in \mathbb{Z} (in \mathbb{Z} ist $m1 = 1 + 1 + \cdots + 1 = m$). Nach Lemma 2.15 ist m eine Primzahl.

Für die Umkehrung sei nun m eine Primzahl. Zuerst zeigen wir, dass \mathbb{Z}_m nullteilerfrei ist. Seien $a, b \in \mathbb{Z}_m$ mit $a \cdot b = 0 = r_m(a+b)$. Folglich wird ab von m geteilt (Rest 0). Da m eine Primzahl ist, folgt (aus dem Lemma von Euklid): m teilt a oder m teilt b. Weil nun $0 \le a, b < m$ ist, muss a = 0 oder b = 0 sein. Folglich haben wir gezeigt, dass \mathbb{Z}_m nullteilerfrei ist.

Nun zeigen wir, dass jedes $a \in \mathbb{Z}_m$ mit $a \neq 0$ ein multiplikatives Inverses besitzt. Für solche a definieren wir die Abbildung $\rho_a \colon \mathbb{Z}_m \to \mathbb{Z}_m$, $x \mapsto xa$. Dann ρ_a ist injektiv: Aus $xa = \rho_a(x) = \rho_a(y) = ya \iff (x - y)a = 0$ folgt aufgrund Nullteilerfreiheit $x - y = 0 \iff x = y$. Da \mathbb{Z}_m endlich ist, ist ρ_a auch surjektiv.

Aus der Bijektion folgt, dass $0a, 1a, \ldots, (m-1)a$ paarweise verschieden sind (injektiv), und diese Elemente auch jedes Element aus \mathbb{Z}_m repräsentiert (surjektiv), insbesondere die 1. Es gibt also ein $x \in \mathbb{Z}_m$ mit xa = 1. Zu jedem $a \in \mathbb{Z}_m \setminus 0$ gibt es also ein multiplikatives Inverses $x \in \mathbb{Z}_m$, sprich a ist invertierbar, was Axiom 2.1 erfüllt. Die restlichen Körperaxiome folgen aus dem kommutativen Ring.

Vom kommutativen Ring zum Körper fehlt nur noch die Existenz des multiplikativen Inversen. Hierfür haben wir alle möglichen Kandidaten für das Inverse betrachtet, also $0a, 1a, \ldots, (m-1)a$. Wir beobachten, dass diese Menge genau \mathbb{Z}_m entspricht, es also eine einfache Bijektion ρ_a geben muss, die wir auch beweisen haben. Der Trick hier war zu zeigen, dass \mathbb{Z}_m nullteilerfrei ist (ein gutes Zeichen, da Nullteilerfreiheit eine Körpereigenschaft ist).

3 Vektorräume

Definition 3.1 (Vektorraum). Sei K ein Körper. Ein Vektorraum über K oder K-Vektorraum ist eine Menge V zusammen mit zwei Abbildungen

$$+: V \times V \to V, \quad (v_1, v_2) \mapsto v_1 + v_2 \quad \text{und} \quad : K \times V \to V, \quad (a, v) \mapsto a \cdot v,$$

Addition bzw. Skalarmultiplikation genannt, sodass folgende Regeln (Axiome) gelten:

- (A1) $v_1 + (v_2 + v_3) = (v_1 + v_2) + v_3$ für alle $v_1, v_2, v_3 \in V$ (Assoziativität der Addition);
- (A2) $v_1 + v_2 = v_2 + v_1$ für alle $v_1, v_2 \in V$ (Kommutativität der Addition);
- (A3) Es existiert ein Element $0 = 0_V \in V$ mit $v + 0_V = v$ für alle $v \in V$ (Existenz eines Nullelements);
- (A4) Zu jedem $v \in V$ gibt es ein $-v \in V$ mit v + (-v) = 0 (Existenz eines additiven Inversen);
- (SM1) $(ab) \cdot v = a \cdot (b \cdot v)$ für alle $a, b \in K$ und $v \in V$;
- (SM2) $1_K \cdot v = v$ für alle $v \in V$;
- (SM3) $a \cdot (v_1 + v_2) = a \cdot v_1 + a \cdot v_2$ für alle $a \in K$ und $v_1, v_2 \in V$;
- (SM4) $(a+b) \cdot v = (a \cdot v) + (b \cdot v)$ für alle $a, b \in K$ und $v \in V$.

Bezeichnung 3.2. Um die Notation zu vereinfachen, legen wir $v_1 - v_2 := v_1 + (-v_2)$, $av := a \cdot v$ für alle $v_1, v_2, v \in V$ und $a \in K$ sowie *Punkt- vor Strichrechnung* fest.

Bezeichnung 3.3 (Vektor, Skalar, Nullvektor). Die Elemente von V nennen wir Vektoren, die Elemente von K nennen wir Skalare. Das Nullelement 0_V heißt Nullvektor oder auch $die Null \ von \ V$.

Bemerkung 3.4.

- 1. Es ist sehr wichtig, zu wissen, welchen Grundkörper K der Vektorraum hat. Dieselbe Menge V, aber über zwei verschiedene Körper K_1 und K_2 , sind zwei verschiedene Vektorräume, nämlich ein K_1 und ein K_2 -Vektorraum.
- 2. Die Skalarmultiplikation multipliziert ein Skalar mit einem Vektor (wie der Name schon sagt). Wir beachten auch die Reihenfolge der Skalarmultiplikation, d. h. Skalare werden von *links* multipliziert.

Wie bei Körpern gibt es eine Vielzahl an Rechenregeln für Vektorräume, die wir in den Übungen beweisen.

3.1 Beispiele von Vektorräumen

Bezeichnung 3.5 (Nullvektorraum). Sei $V := \{0\}$ über K der *Nullvektorraum* (oft auch einfach nur V = 0). Addition und Skalarmultiplikation können nur auf genau eine Weise definiert werden:

$$+: V \times V \to V, \qquad 0+0 \mapsto 0$$

 $: V \times V \to V, \qquad 0 \cdot 0 \mapsto 0$

Beispiel 3.6. Sei K ein Körper. Dann ist K ein K-Vektorraum mit Addition und Skalarmultiplikation definiert als Addition und Multiplikation von K.

Definition 3.7 (Standardvektorraum). Sei K ein Körper. Für $n \ge 1$ sei $V := K^n$ das n-fache kartesische Produkt von K. Die Elemente aus K^n schreiben wir oft als Spalten

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

mit $a_1, \ldots, a_n \in K$. Wir definieren komponentenweise

$$+: V \times V \to V \quad \text{durch} \quad \left(\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}, \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \right) \mapsto \begin{pmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{pmatrix}$$

und

$$\cdot : K \times V \to V \quad \text{durch} \quad \left(a, \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \right) \mapsto \begin{pmatrix} ab_1 \\ \vdots \\ ab_n \end{pmatrix}.$$

Dann ist $(V, +, \cdot)$ ein K-Vektorraum, der sog. Standardvektorraum. Wir legen $K^0 := 0$ aus K fest.

Dabei stammt die komponentenweise Addition und Multiplikation aus K.

In $V = \mathbb{R}^2$ mit $K = \mathbb{R}$ können wir Addition und Skalarmultiplikation visualisieren, indem wir Vektoren als Pfeile darstellen. Addition heißt dann Aneinanderreihen von Pfeilen; Skalarmultiplikation heißt dann Strecken/Stauchen oder Änderung der Richtung von Pfeilen. Das sollte aus der Schule bekannt sein.

Ein sehr wichtiges Beispiel von Vektorräumen:

Definition 3.8 (Funktionenraum). Sei K ein Körper und sei $I \neq \emptyset$ eine Menge. Wir setzen $V \coloneqq K^I \coloneqq \operatorname{Abb}(I,K)$ und definieren

$$+: V \times V \to V, \quad (f,g) \mapsto f + g \qquad \quad \text{und} \qquad \quad : K \times V \to V, \quad (a,f) \mapsto af,$$

punktweise durch

$$(f+g)(x) \coloneqq f(x) + g(x)$$
 und $(af)(x) \coloneqq a(f(x))$

für alle $f, g \in V$, $a \in K$, und $x \in I$.

Dann ist $(V, +, \cdot)$ ein K-Vektorraum, der sog. (lineare) Funktionenraum. Wir definieren $K^{\varnothing} = 0$ als Nullabbildung.

Dabei ist in der punktweisen Definition auf der linken Seite die Addition und Skalarmultiplikation in V sowie auf der rechten Seite die Addition und Multiplikation in K.^{1,2}

Ein noch wichtigeres Beispiel ist

Definition 3.9 (Menge aller Abbildungen). Sei K ein Körper und sei $I \neq \emptyset$ eine Menge. Dann ist

$$K^{(I)} := \{ f \in K^I \mid f(x) \neq 0 \text{ für nur endlich viele } x \in I \}$$

ein K-Vektorraum, wobei wir Addition und Skalarmultiplikation von K^I benutzen. Wir definieren $K^{(\varnothing)} = 0$ als Nullabbildung.

Jede Abbildung in $K^{(I)}$ bildet also fast immer auf 0 ab.s

Definition 3.10 (Teilkörper). Sei $(L, +, \cdot)$ ein Körper und sei K eine Teilmenge von L, sodass die Eigenschaften

- 1. $0, 1 \in K$;
- 2. $a + b \in K$ für alle $a, b \in K$;
- 3. $a \cdot b \in K$ für alle $a, b \in K$;
- 4. $-a \in K$ für alle $a \in K$ und
- 5. $a^{-1} \in K$ für alle $a \in K^{\times}$

erfüllt sind. Durch Einschränkung erhalten wir die Abbildungen

$$+: K \times K \to K$$
 und $\cdot: K \times K \to K$.

(Das ist aufgrund der Abgeschlossenheit von + und \cdot garantiert, s. Punkte 2 und 3.) Wir können leicht überprüfen, dass K einen Körper bildet, und nennen K einen Teilkörper von L.

Beispiel 3.11. Ist K ein Teilkörper von L, so ist L ein K-Vektorraum, wobei die Skalarmultiplikation $: K \times L \to L$ durch Einschränkung der Multiplikation $: L \times L \to L$ definiert ist.

Bspw. ist der Körper $\mathbb{Q}(\sqrt{2})$ ein \mathbb{Q} -Vektorraum, der Körper \mathbb{R} ein \mathbb{Q} -Vektorraum und \mathbb{R} auch ein $\mathbb{Q}(\sqrt{2})$ -Vektorraum.

Definition 3.12 (externe direkte Summe). Seien V und W zwei K-Vektorräume. Dann ist die $V \times W$ wieder ein K-Vektorraum, wobei Addition und Skalarmultiplikation komponentenweise definiert sind durch

$$(v_1, w_1) + (v_2, w_2) := (v_1 + v_2, w_1 + w_2)$$
 und $a(v, w) := (av, aw)$

für alle $v, v_1, v_2 \in V$, $w, w_1, w_2 \in W$ und $a \in K$. Der K-Vektorraum $V \times W$ nennen wir die (externe) direkte Summe von V und W und schreiben $V \oplus W$.

Noch ein Beispiel aus der Analysis.

Beispiel 3.13. Sei I = [a, b] ein abgeschlossenes Intervall in \mathbb{R} und sei

$$C^0(I) := \{ \text{stetige Funktionen } I \to \mathbb{R} \}$$

eine Teilmenge von \mathbb{R}^I . Dann ist $C^0(I)$ ein \mathbb{R} -Vektorraum mit der Einschränkung von $+: \mathbb{R}^I \times \mathbb{R}^I \to \mathbb{R}^I$ und $:: \mathbb{R} \times \mathbb{R}^I \to \mathbb{R}^I$ auf die neue Definitionsmenge $I \subset \mathbb{R}$.

Ende der Vorlesung 3 am 19. Oktober 2021

$$K^{\mathbb{N}} := \{(a_1, a_2, a_3, \dots) \mid a_i \in K \text{ für alle } i \in \mathbb{N}\}$$

definieren.

 $^{^1}$ An dieser Stelle fragt man sich vielleicht, warum der Standardvektorraum K^n und der Funktionenraum K^I identisch notiert werden. Das liegt daran, dass sie tatsächlich "identisch" (d. h. isomorph) sind, weil es eine Bijektion wie in Beispiel 1.29 gibt.

 $^{^2\}mathrm{F\"{u}r}\ I=\mathbb{N}$ lässt sich auch der "unendlichdimensionale" Vektorraum

3.2 Unterräume Lineare Algebra I

3.2 Unterräume

Definition 3.14. Sei V ein K-Vektorraum. Eine Teilmenge U von V heißt Unterraum von V, falls gilt:

- 1. $U \neq \emptyset$;
- 2. $u_1 + u_2 \in U$ für alle $u_1, u_2 \in U$ und
- 3. $au \in U$ für alle $a \in K$ und $u \in U$.

Lemma 3.15. Sei U ein Unterraum von V. Durch Einschränkung der Addition und Skalarmultiplikation von V erhalten wir Abbildungen $+: U \times U \to U$ und $: K \times U \to U$ (was aufgrund Punkte 2 und 3 möglich ist). Dann ist U zusammen mit beiden Einschränkungen ein K-Vektorraum.

Beweis. Sei $u \in U$. Aus Punkt 3 folgen $0u = 0 \in U$ und $(-1)u = -u \in U$. Deshalb gelten die Vektorraumaxiome 3.1 und 3.1. Alle anderen Axiome folgen aus V.

Beispiel 3.16.

- 1. Die Teilmengen V und $\{0\}$ (statt $\{0\}$ schreiben wir oft nur 0) sind Unterräume von V, die sog. trivialen Unterräume.
- 2. Sei $v \in V$. Dann ist

$$U_v \coloneqq Kv \coloneqq \{av \mid a \in K\}$$

der kleinste Unterraum von V, welcher v enthält.

Bezeichnung 3.17 (Gerade). Ist $v \neq 0$, so nennen wir U_v die durch v verlaufende Gerade.

Beispiel 3.18.

- 1. Für jede Menge I ist $K^{(I)}$ ein Unterraum von K^{I} , denn nach Addition und Skalarmultiplikation hat jede Abbildung immer noch nur endlich viele Stellen ungleich 0.
- 2. Sei I = [a, b] ein Intervall in \mathbb{R} . Dann ist $C^0(I)$ ein Unterraum von \mathbb{R}^I , weil sich die Stetigkeit unter Addition und Skalarmultiplikation nicht ändert.
- 3. Die Elemente des \mathbb{R} -Vektorraums $\mathbb{R}^{\mathbb{N}}$ sind die in der Analysis behandelten reellen Folgen. Die Teilmenge der konvergenten reellen Folgen ist ein Unterraum von $\mathbb{R}^{\mathbb{N}}$, da aufgrund der Grenzwertsätze die Folgen nach Addition und Skalarmultiplikation immer noch konvergieren.

Definition 3.19 (Durchschnitt, Summe). Seien U_1 und U_2 Unterräume von V. Dann ist $U_1 \cap U_2$ der *Durchschnitt* von U_1 und U_2 sowie

$$U_1 + U_2 := \{u_1 + u_2 \mid u_1 \in U_1, u_2 \in U_2\}$$

ist die Summe von U_1 und U_2 . $U_1 \cap U_2$ und $U_1 + U_2$ sind Unterräume von V.

Definition 3.20 (interne direkte Summe). Seien U_1 und U_2 Unterräume von V. Ist $U_1 \cap U_2 = 0$, so nennen wir $U_1 \oplus U_2 := U_1 + U_2$ die (interne) direkte Summe von U_1 und U_2 .

Ende der Vorlesung 4 am 22. Oktober 2021

A Trickkiste