Devátá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK) Zimní semestr 2023

Devátá přednáška

Program

- Löwenheim-Skolemova věta
- věta o kompaktnosti
- hilbertovský kalkulus.
- úvod do rezoluce v predikátové logice
- skolemizace

Materiály

Zápisky z přednášky, Sekce 7.5-7.6 z Kapitoly 7, Sekce 8.1-8.2 z Kapitoly 8

7.5 Důsledky korektnosti a úplnosti

$$\vdash = \models$$

Syntaktickou analogií důsledků jsou teorémy:

$$\mathsf{Thm}_L(T) = \{ \varphi \mid \varphi \text{ je L-sentence a } T \models \varphi \}$$

Z korektnosti a úplnosti okamžitě dostáváme:

- $T \models \varphi$ právě když $T \models \varphi$
- $\mathsf{Thm}_L(T) = \mathsf{Csq}_L(T)$

Všude můžeme nahradit 'platnost' pojmem 'dokazatelnost'. Např:

- T je sporná, je-li v ní dokazatelný spor (tj. $T \vdash \bot$)
- T je kompletní, je-li pro každou sentenci buď $T \vdash \varphi$ nebo $T \vdash \neg \varphi$, ale ne obojí (jinak by byla sporná)

Věta (O dedukci): $T, \varphi \vdash \psi$ právě když $T \vdash \varphi \rightarrow \psi$.

Důkaz: Stačí dokázat: $T, \varphi \models \psi \Leftrightarrow T \models \varphi \to \psi$. To je snadné. \square

Löwenheim-Skolemova věta & Věta o kompaktnosti

Věta (Löwenheim-Skolemova): Je-li *L* spočetný bez rovnosti, potom každá bezesporná *L*-teorie má spočetně nekonečný model. (Později ukážeme i verzi s rovností, kan. model může být konečný.)

Důkaz: V T není dokazatelný spor. Dokončené tablo z T s $F \perp v$ kořeni tedy musí obsahovat bezespornou větev. Hledaný model je L-redukt kanonického modelu pro tuto větev.

Věta o kompaktnosti, vč. důkazu, je stejná jako ve výrokové logice:

Věta (O kompaktnosti): Teorie má model, právě když každá její konečná část má model.

Důkaz: Model teorie je modelem každé části. Naopak, pokud T nemá model, je sporná, tedy $T \models \bot$. Vezměme nějaký konečný tablo důkaz \bot z T. K jeho konstrukci stačí konečně mnoho axiomů T, ty tvoří konečnou podteorii $T' \subseteq T$, která nemá model.

Nestandardní model přirozených čísel

- $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ je standardní model přirozených čísel
- teorie struktury Th(N): všechny sentence pravdivé v N
- n-tý numerál: term $\underline{n} = S(S(\cdots(S(0)\cdots))$, kde S je n-krát

Přidáme nový konstantní symbol c a vyjádříme, že je ostře větší než každý n-tý numerál:

$$T = \mathsf{Th}(\underline{\mathbb{N}}) \cup \{\underline{n} < c \mid n \in \mathbb{N}\}\$$

- každá konečná část T má model
- dle věty o kompaktnosti: i T má model
- říkáme mu nestandardní model (označme A)
- platí v něm tytéž sentence, které platí ve standardním modelu
- ale zároveň obsahuje prvek $c^{\mathcal{A}}$, který je větší než každé $n \in \mathbb{N}$ (tzn. větší než hodnota termu \underline{n} v nestandardním modelu \mathcal{A})

7.6 Hilbertovský kalkulus v

predikátové logice

Hilbertovský kalkulus v predikátové logice

- používá jen \neg a \rightarrow , dokazuje lib. formule (nejen sentence)
- schémata log. axiomů (φ, ψ, χ) formule, t term, x proměnná)
 - (i) $\varphi \to (\psi \to \varphi)$

(ii)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(iii) $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$

(iv)
$$(\forall x)\varphi \rightarrow \varphi(x/t)$$

je-li t substituovatelný za x do φ

(iiv)
$$(\forall x)(\varphi \to \psi) \to (\varphi \to (\forall x)\psi)$$

není-li x volná ve φ

a navíc axiomy rovnosti, je-li jazyk s rovností

odvozovací pravidla:

$$\frac{\varphi, \varphi \to \psi}{\psi} \text{ (modus ponens)} \qquad \frac{\varphi}{(\forall x) \varphi} \text{ (generalizace)}$$

$$\frac{\varphi}{(\forall x)\varphi}$$
 (generalizace)

- hilbertovský důkaz formule φ z T je konečná posloupnost $\varphi_0, \dots, \varphi_n = \varphi$, kde φ_i je logický axiom (vč. axiomů rovnosti), axiom teorie, nebo lze odvodit z předchozích pomocí pravidel
- existuje-li, píšeme T ⊢_H φ

Korektnost a úplnost

Věta (o korektnosti hilbertovského kalkulu): $T \vdash_H \varphi \Rightarrow T \models \varphi$

Důkaz: Indukcí dle délky důkazu: každá φ_i (vč. $\varphi_n = \varphi$) platí v T

- logické axiomy (vč. axiomů rovnosti) jsou tautologie, platí v T
- axiomy z T jistě v T také platí
- modus ponens i generalizace jsou korektní inferenční pravidla:
 - je-li $T \models \varphi$ a $T \models \varphi \rightarrow \psi$, potom $T \models \psi$
 - je-li $T \models \varphi$, potom $T \models (\forall x)\varphi$

Věta (o úplnosti hilbertovského kalkulu): $T \models \varphi \Rightarrow T \vdash_H \varphi$ Důkaz vynecháme.

Kapitola 8: Rezoluce v predikátové logice

8.1 Úvod

Rezoluce v predikátové logice

 $T \models \varphi ? \leadsto T \cup \{ \neg \varphi \} \leadsto \mathsf{CNF} \text{ formule } S \leadsto \mathsf{rezolu\check{c}ni} \text{ zamitnuti}$

- literál je atomická formule $R(t_1,\ldots,t_n)$ nebo její negace
- klauzule je konečná množina literálů, formule množina klauzulí
- otevřenou formuli snadno převedeme do CNF, i univerzální kvantifikátor na začátku: $(\forall x)(P(x) \lor \neg Q(x)) \sim \{P(x), \neg Q(x)\}$
- co s existenčními kvantifikátory? nové symboly pro 'svědky' $(\exists x)(P(x) \lor \neg Q(x)) \leadsto \{P(c), \neg Q(c)\}$ "skolemizace"
- není ekvivalentní, ale zachovává [ne]splnitelnost, to nám stačí
- rezoluční krok? literály nemusí být stejné, stačí unifikovatelné z klauzulí $\{P(x), \neg Q(x)\}$ a $\{Q(f(c))\}$ odvodíme $\{P(f(c))\}$
- unifikace je substituce $\{x/f(c)\}$

Příklady

1. Nechť
$$T=\{(\forall x)P(x),(\forall x)(P(x)\to Q(x))\}$$
 a $\varphi=(\exists x)Q(x)$.

$$\neg \varphi = \neg (\exists x) Q(x) \sim (\forall x) \neg Q(x) \sim \neg Q(x)$$

Teorii $T \cup \{\neg \varphi\}$ tedy můžeme převést na ekvivalentní CNF formuli

$$S = \{ \{ P(x) \}, \{ \neg P(x), Q(x) \}, \{ \neg Q(x) \} \}$$

kterou snadno zamítneme rezolucí ve dvou krocích. (Představte si místo P(x) prvovýrok p a místo Q(x) prvovýrok q.)

8.2 Skolemizace