Chapter 1 – Network Models

- Two Methods of Understanding Networks
 - o OSI Open System Interconnection
 - Seven Layer Model
 - o Transmission Control Protocol/Internet Protocol
 - TCP/IP
 - o Understand at what layer a problem may occur and provides a common language
- The OSI Seven Layer Model in Action
 - each level has distinct protocols and encourages modular network design
 - L7 Application
 - L6 Presentation
 - L5 Session
 - \circ L4 Transport
 - \circ L3 Network
 - o L2 Data Link
 - L1 Physical
- Network Hardware and Layers 1 + 2
 - physical channel through which data moves (unshielded twisted pair UTP) connected to a central box
 - L1 defines method of moving data between computers, the physical channels, equipment, infrastructure
 - Network Interface Card (NIC) provide interface between cables/boxes and pc
 - L2 The NIC provides each system with a unique identifier burned-in firmware with 48-bit MAC address
 - designated via IEEE
 - first six digits represent NIC manufacturer (OUI), last six are manufacturers
 - unique serial # for NIC
 - o device ID
 - check with ipconfig /all
 - IEEE forms MACs from MAC-48/EUI-48
 - o How is a MAC used in NICs?
 - send/receive binary data via electrical impulses
 - broken into frames Frames are sent only to the interface associated with the destination MAC address
 - Receiver MAC + Sender MAC + Type + Data + FCS Framecheck Sequence
 - uses cyclic redundancy check to verify data is intact
 - Different networks use different frames and frame sizes ~ 1500 bytes
 - this then goes to Central Box
 - o initially a hub repeater dumb broadcasts to all ports
 - Even through every frame went to every NIC only the NIC with the correct MAC address would decipher and process
 - This was replaced with a Switch filters traffic actively via MAC address
 - o FCS 4-bytes binary arithmetic product divided by a key factor and remainder is the FCS
 - Frames are all used to control traffic limiting how much space a single NIC uses allowing for other NICs on the network to talk
 - o An NIC will first send a broadcast (FF-FF-FF) on L2 broadcast address requests MAC addresses or IPs in search of correct recipient
 - Data → NIC → Frame → add FCS → Send Along Network → Central Box → Unicast and broadcast frames → Recipient NIC → Processed
 - o Any device dealing with MAC addresses is port of OSI L2 Data Link Layer
 - Jobs of an NIC

- Logical Link Control talks to OS via device drivers
- Media Access Control creates and addresses frames sent along network
- Network Software Layers 3 7
 - o Large networks require logical addressing, breaking the internet up into subnets
 - Switching from MACs to logical addressing requires a network protocol which exists in every OS
 - rules for communication
 - creates unique system IDs
 - o TCP/IP
 - protocol suite
 - o Internet Protocol IP OSI L3 Network Layer
 - packets are created
 - IP is primary logical addressing tool via IP addresses using dotted decimal notation
 - a router connects each subnet using IP address which is stored in system software unlike burned-in MACs
 - In a TCP/IP network is a packet within the frame
 - Destination IP Address + Source IP Address + DATA
 - o then sent by NIC
 - Frame Header + Packet Header + DATA + FCS
 - Each router the frame travels along removes frame header, checks packet for IP matching, and re-frames if no match to move on to next router
 - once at correct router, frame is re-fitted with appropriate MAC frame and sent to device
 - o Segmentation and Reassembly * OSI L4 Transport Layer
 - Segmentation data is cut, framed, and organized so receiver can process data
 - Transport Protocol breaks data up into segments/datagrams with sequence numbers
 - Talking on a Network Layer 5 The Session Layer
 - Session Software connects application to applications and networks
 - Translation OSI L6 Presentation Layer
 - translates data from lower layers into format usable by application layer
 - Network Applications OSI L7 Application Layer
 - Software apps using the network
 - the code built in to all OS that enables network-aware applications
 - all Oss have Application Programming Interfaces used to make programs network aware
 - o Encapsulation and De-Encapsulation
 - preparing data to go onto a network and reverse occurs at receiver
- The TCP/IP Model
 - o Four Layers Application, Transports, Internet, Link/Network Interace
 - The Link Layer OSI L1+2
 - Physical and Data Link
 - cabling, physical addresses, NICs, Switches
 - Complete frames
 - The Internet Layer
 - pure IP packets and related protocols
 - routers, IP addressing
 - The Transport Layer
 - OSI Transport and Session Layers
 - segmentation, reassembly
 - connection and connectionless communication
 - Connection IMAP, verify good connection TCP

- Connectionless VoIP does not first verify good connection UDP
- IP Packet + IP Address = TCP segment
 - Destination Port + Source Port + Sequence Number + Checksum + Flags + Acknowledgement + DATA
 - port logical values assigned numbers between 1-65,536
 - applications first look for destination then source port
- UDP Datagram
 - Destination Port + Source Port + Length + Checksum + DATA
 - o less complex due to indifference about connection
 - o session are easy to see under this model via netstat -n
- The Application Layer
 - L5,6,7 Application, Presentation, Session
 - standard formats are an inherent part of TCP/IP
- o Frames, Packets, Segments/Datagrams
 - application creates data
 - Transport data broken down in TCP or UDP segments
 - Internet adds ID addressing, creates IP packets
 - Link wraps IP packet into a frame with MAC + FCS
- Both models are essential for primary diagnosis

Chapter 2 – Cabling and Topology

- Network Topologies
 - ways of connecting computers together
 - o Bus and Ring
 - Bus connected all computers inline with one cable
 - required terminators to prevent reflection
 - Ring network connected all computers with a ring of cable
 - entire network stop if cable was damaged
 - o Star
 - central connection box offered fault tolerance but faced difficult transition
 - o Hybrid
 - ring was shrunk into a small box with all computers to box
 - physical and logical topologies combined
 - Mesh
 - wireless devices with devices connection to two or more other devices
 - partially meshed at least two machines have redundancies
 - fully meshed all devices interconnected
- Cabling and Connectors
 - Copper Cabling and Connectors
 - twisted and coaxial
 - coaxial central wire, insulated, and wrapped in braided metal shield
 - shielded against EMI
 - originally used BNC bayonet style connectors
 - F-connectors screw on and are used for modern connections
 - o RG-59
 - \circ RG-6
 - Twisted Pair
 - common in networks, more twists = less crosstalk
 - o twisted in either shielded or unshielded (STP vs UTP)
 - STP six different types
 - UTP no shield, plastic wrapped, vulnerable to EMI

- CAT ratings dependent on MHz frequency maximums
- Modern networks can be more efficient, pumping more data through less
- originally used RJ-11 for two pairs, now uses 8-position/8-contact (8P8C)
 - o not RJ-45s
- Fiber Optic Cabling and Connectors
 - transmits light rather than electricity good for long distance and EMI areas
 - o glass core, cladding, buffer material, and insulating jacket
 - o measured via core and cladding ratings
 - structured in pairs of senders and receivers (duplex)
 - use LEDs multimode fiber (MMF)
 - use Lasers singlemode fiber (SMF) avoids modal distortion
 - o wavelength light is also measured in nanometers (nm)
 - four main connectors
 - ST SC unique ends
 - LC, MT-RJ duplex

- Other Cables
 - Classical Serial
 - since 1969 9-pin, male-D (DB-9)
 - o point-to-point, low bandwidth
 - Parallel point-to-point, low bw, 25-pin, female-D (DB-25)
- Fire Ratings
 - o PVC has no fire protection
 - o Plenum-rated much less smoke, fumes, 3-5x more expensive
 - Plenum is the space between the tile and concrete ceilings
 - o Riser vertical cables between floors have a separate fire rating
- Network Industry Standards IEEE
 - o 802 working group networking standards
 - subcommitties

Chapter 3 – Ethernet Basics

- Ethernet
- bus topology 1973 Xerox
- IEEE 802.3 Ethernet Committee
 - open standard
- 802.3 Standards
 - wired standards that shared some basic frame type and network access method
 - 802.3i 10Mbps Twisted Pair
 - 802.3ab 1 Gbps twisted Pair
 - 802.3by 25 Gbps Ethernet over Fiber
 - frames remain the same despite different components
 - Ethernet II Modern
 - Data frames with MAC address to ID networked computers and use CSMA/CD to determine which machined gained access
- Ethernet Frames
 - o data broken down into frames
 - prevent machine network monopoly of bus cable
 - retransmitting lost data becomes more efficient
 - Using small frames enables computers to share a cable easily as each computer listens to the segment

- detect if other computers are transmitting
- if corrupted data requires transmission, small chunks limit file resend size
- Basic Ethernet Frames contain Five Fields
 - Destination MAC Address
 - Data Type
 - Data
 - Source MAC
 - Frame Check Sequence
 - transmission begins with preamble (which can include pad filler)
- Preamble
 - 7-byte series of alternating binary with a 1-byte frame delimiter
 - always precedes frame
 - gives receiving NIC time to prep for incoming frame
- MAC Address
 - ID NICs on a network
 - destination address enables NICs to examine each frame and only process frames intended for them
 - source address enables accurate recipient response
- o Type
 - helps receiving computer interpret frame contents (if frame has IPv4 vs IPv6 data)
 - does not tell if frame has higher-level data (emails, webpage)
- o DATA
 - contains payload
- o Pad
 - Filler to bring packet up to 64bit minimum
- Frame Check Sequence
 - recognize corruption of data via special code called cyclic redundancy check (CRC) and attaches frame check sequences (result) to frame
 - confirmed by answer comparison
- o Early Ethernet Standards
 - Bus Ethernet
 - every computer originally connected to some hybrid star topology used since 1990s
 - o center hub electronic repeater
 - 10BaseT
 - two or more computers connected to hub via IEEE committee (10Mbps) baseband (cable carries on signal type)
 - T = twisted pair
 - UTP
 - requires CAT3 or higher UTP pair, one pair sends the other receives
 - 8P8C RJ45 connector (pins 1-8) 1+2 send, 3+6 receive
 - o hub connector cannot simultaneously send and receive
 - NIC communicates in one direction (half-duplex) originally
 - o now full-duplex
 - RJ45 connection crimp (installed via crimping) with a crimper with color coded wires (solid/stripe pair)
 - Industry Standard TIA/EIA 568 A+B
 - 10BaseT Limits and Specifications
 - cable distribution and number of computers (1024)
 - distribute between hub and computer (100 meters)
 - 10BaseFL

- Fiber Optic Version
 - max cable length 2KM
 - immune to EMI
 - harder to tap into
 - o multimode via SC or ST connector
 - o One Sender, one receiver
 - 10 Mbps; Baseband;2000m between hub and node;1024 nodes;starbus; physical star, logical bus; multimode + ST/SC
- Interconnecting versions of Ethernet via media connector

CSMA/CD

- Carrier Sense Multiple Access/Collision Detector
 - determine which computer should use a shared cable at a given moment
 - Carrier Sense node examines cable pre-frame send and waits several milliseconds between tests
 - o Multiple Access equal wire access, first come
 - if collision occurs, data is lost
 - sensed by NICs which generates RNG number that determines how long to wait
 - one is always sooner than the other
 - collision domains are rare in modern equipment
- Enhancing and Extending Ethernet Networks
 - Trouble with Hubs
 - one message on wire at a time, busy network = slow networks due to collisions
 - Switches
 - takes advantage of MAC addresses to create P2P connections
 - o gives every conversation full bandwidth
 - table of MAC addresses Source Address Table (SAT)
 - o allows accurate forwarding, handle bandwidth resources better
 - Ports are collision domains, switch buffers incoming frames to avoid collisions
 - Unicast Messages go to target
 - Broadcasting all ports
- Connecting Ethernet Segments
 - additional switches limits single point of failure exposure and increase node availability
 - Uplink Ports
 - connect two switches via using a straight-through cable
 - modern switches do not need dedicated uplink ports due to auto-sense
 - Crossover Cables
 - special twisted-pair cables
 - o reverse send/receive pairs on one end
 - one wired via TIA/EIA 568A, the other 568B
 - allows switches to hear one another via regular port
 - Spanning Tree Protocol
 - creation of redundant network connections called bridging/switches loops
 - spanning tree protocol avoids crashes due to packets
 - switches detect loops before they occur via special frames (Bridge Protect Data Units)
 - Topology established via BPDUs with one switch elected root bridge (acts as center of STP)
 - Root Bridge

- o reference point to maintain loop free topology
- If links go down, STP uses Topology Change Notification (TCN) BPDU to enable switch network around failed device
- STPs cannot be switches directory connected to PCs via PortFast setting (creates unnecessary TCN issuance)
- If ports configured with PortFast receive BPDUs, can cause loop
 - Root Guard helps to move ports to root-inconsistent (forwarding state) to help define locations where root bridge should NOT be located
- STP has been replaced by Rapid Spanning Tree Protocol (RSTP)
 - faster convergence time following network change
- Troubleshooting Switches
 - o physical damage or dead parts → replace switch or cable with known good device

Chapter 4 – Modern Ethernet

- 100-Megabit Ethernet
 - o Frame Size and Elements, CSMA stay same between 100Mgbt to 1000Mgbt
 - o standardization = communication and scalability
- 100baseT
 - 100Mbps;Baseband;100m hub/node dist; 1024 nodes; star bus, physical star and logical bus;
 Cat5 or better UTP/STP cabling with RJ45/8P8C
 - o cabling had to be replaced and NICs changed when going from 10BaseT to 100BaseT as well as halo/switch
 - costly
 - circumnavigate cost with multispeed, autosensing NICs, hubs/switches which worked with lowest BaseT
 - o Checks OS or physical card for indicators
 - o All modern NICs are multispeed, autosensing ("10/100/1000")
- 100BaseFX
 - o good for long distance, shielded against EMI, hard to tap into
 - 100Mbps;Baseband;2Km hub/node distance; 1024; star bus topology; multimode fiber-optic with ST or SC connectors
- Full-Duplex Ethernet
 - o most 100BaseT NICs can do full duplex by late 90s, doubling bandwidth but not speed
 - o autoconfigures between NIC and Switch
 - can be manually forced
 - o fast Ethernet good for LANs, simple device networks, but no longer the newest standard
- Gigabit Ethernet
 - o common modern NICs
 - IEEE 802.3ab (1000BaseT) four UTP/STP pairs, 100m
 - IEEE 802.3z (1000BaseX) SX+LX
 - o 1000BaseSX
 - multimode FOC, 220-500m; LC connectors
 - o 1000BaseLX
 - lasers for long distance; 5km; (70km with repeaters)
 - SFF Fiber Connectors
 - ST connectors require twisting and are small
 - SC connectors snap-in but are large
 - SFF = Small Form Factor Mechanical Transfer Registered Jack (MT-RJ) common
 - LC Type common in US

- Mechanical Connection Variation
 - o standard connection type is called physical contact (PC) connector
 - two fiber pieces touch
 - replace flat surface connectors
 - o PC has ultra-physical contact (UPC) significant reduction in signal loss
 - o Angled Physical Contact (APC) add 8 degree curve angle, further lowering signal loss
- Implementing Multiple Types of Gigabit Ethernet
 - o frames don't vary among ethernet flavors
 - o dedicated media convertors
 - SMF UTP/STP
 - MMF UTP/STP
 - Fiber/Coax
 - SMF/MMf
 - o modular parts Gigabit Interface Converter (GBic) can accept any ethernet jack
 - o switches and other equipment use smaller small-form factor pluggables (SFPs)
- Ethernet Evolutions
 - o 10 Gigabit Ethernet
 - 10 Gbps, FOC + Copper
 - Fiber-based 10 Gbe
 - data integrity and transfer speed
 - standards created to use either/or synchronous optical network (SONET) as well as LAN physical layer mechanisms
 - o many different 10 Gbe standards
 - defined by fiber-type, wavelength, and physical layer signaling type, maximum signal dist
 - "10 GBase" + Fiber Type signififer + Physical Layer Signal Standard Signifier
 - o R = LAN; W=SONET/WAN
 - \circ S = short wavelength; 85nm max fiber length = 300m
 - \circ L = long wavelength; 1310nm max fiber length = 10km
 - \circ E = extra long wavelength; 1550nm max fiber length = 40km
 - Other 10 Gbe Fiber Standards
 - 10GBaseL4 = 4 lasers;1300nm;legacy fiber; 300m multimode; 10km single
 - 10GBaseLRM = 10GBaseLR over legacy multimode fiber 220m
 - 10GBaseZR = 1550nm;single mode;80km LAN/WAN-SONET
 - o Copper-Based 10GbE Twisted pair Cat6 = 55m;Cat6a = 100m
 - 10GbE Physical Connections
 - multisource agreements to make interoperable devices and standards
 - MSA-transceivers make media conversion by connecting with proper transceiver
 - XENPAK
 - SFF+
 - Characteristics of Fiber Transceivers
 - standard duplex pair format
 - Wave Division Mulitplexing (WDM) differentiates wave signals on a single fiber –
 Single Strand Fiber Transmission
 - Bidirectional (BiDi) Transceivers have single optical port designed to send on one wavelength and receive on another
 - require corresponding receiver on other end to work
 - cost effective, similar performance
 - less wiring or double current wiring
 - Gigabit = SFP;10GBase=SPF+;40GBase=QSFP
- Backbones

- o speed vs cost
- multispeed ethernet
 - high speed switches with no computer connection besides server
 - sub-sets of switches that service specific areas
- IEEE 802.3ba
 - \circ 40 + 100 Gbit Ethernet
 - 40 GbE/100GbE

Chapter 5 – Installing a Physical Network

- Understanding Structured Cabling * TIA/EIA Standards * 586+
 - Cable Basics + Physical Star Network + BICSI
 - safety, changeability, organization
 - Structured Cable Network Components
 - telecom room + horizontal cabling + work area
 - Horizontal Cabling
 - typically SE or better UTP
 - Solid Core vs Stranded Core
 - solid better conductor but stiffer and brittle
 - standard weaker conductor but more robust
 - Horizontal Cable Solid Core
 - highest CAT rating possible four pair assumed (typically CAT5e or CAT6; CAT6a for 10GBaseT)
 - The Telecommunications Room
 - Intermediate Distribution Frame (IDF)
 - must impose organization to prevent mess over time
 - Equipment Racks
 - 19in wide with varying heights; free standing or bolted
 - network hardware components are mountable, rack mounted switches, servers, UPSs
 - \circ height measured = unit = U = 1.75in
 - o (most devices 1U, 2U, or 4U)
 - two post, four post, or rail rack
 - o depends what devices are to be used
 - REMEMBER PROPER AIR FLOW
 - REMEMBER TO SECURE AND LOCK
 - Patch Panels and Cables
 - box with female ports in front and permanent connectors in the back which connect to the horizontal cables to prevent moving
 - o most common type 110 block
 - o uses a punch down tool
 - punchdown block has groups for individual wires (be sure to align properly at both ends to avoid TX/RX reversed)
 - 66 blocks are still commonly found for telecoms
 - varying configurations for UTP, STP, fiber ports and different numbers
 - o patch panels come with CAT ratings
 - higher the better
 - o once patch panel is installed, connect ports to switch with patch cables
 - stranded core, can be color coded

reinforced (booted) connectors

- o The Work Area
 - wall outlet termination point for horizontal network cables
 - convenient PC/Telephone connection point
 - PC connects to wall with patch cable
 - female jacks are CAT-rated
 - label and document
 - first place to check for network troubleshooting
- Structured Cable Beyond the Star
 - typical building wide network consists of high-speed backbone running vertically through building and connects to multispeed switches on each floor
 - mirrored by telephone connections
 - typically one or more 25-pair UTP running to 66 block per floor
- Demarc Demarcation Point
 - o physical location of connection from outside world and marks division of network responsibility
 - internal vs upstream
 - o DSL/modem supplied by ISP = Network Interface Unit = Demarc for Private Networks
 - smart jacks allow ISP to determine if customer is cut off from NIU
 - allows for loopback address, remote for testing
- Connections Inside the Demarc
 - o After Demarc Network/Tele connections go to customer box for primary distribution
 - customer premises equipment (CPE)
 - NIU → CPE = Demarc Extension
 - Telecomms also use VCCs (Vertical cross connect)
 - o Demarcs, Tele-crossconnects, LAN cross-connects all go to main distribution frame (MDF) which connections to floor-specifics IDFs
 - o Multiple NIUs can exist within one building, some with Demarcs, IDFs, and MDFs
- Installing Structured Cabling
 - assessment and planning
 - floor plans, access, standards, routing
 - o Gathering a Floor Plan
 - key to proper planning first major step, DIY
 - Mapping the Runs
 - survey work areas both existing and planned
 - determine cable drops
 - inside or outside wall runs external raceways
 - o Determining the Location of the Telecommunications Room
 - Distance 90m max
 - Power and Dedicated Circuit
 - Humidity and Air Conditioning
 - Cooling and Low Temperature Maintenance
 - Access and Prevention of Unauthorized Access
 - Expandability and Scalability
 - o Pulling Cable
 - start in telecommunications room and work out to drops via hooks/cable trays
 - telescoping poles, special nylon pull ropes
 - local codes, TIA/EIA, National Electrical Code
 - vertical drops post cut-in for mount brackets, faceplates, etc
 - organize and consolidate cables for connections
 - Making Connections
 - proper jacks and cable run tests, document/label

- Connecting the Work Areas
- o Rolling Patch Cables
 - stranded core UTP cables that match CAT level of horizontal cabling
 - o crimps are solid/stranded specific
 - o RJ45 crimper with stripper and snips
 - first cut cable square
 - strip off ½ inch of plastic jacket
 - insert individual wires into correct location via TIA/EIA 568A or B
 - o limit unraveling
 - insert crimp into crimper and press
 - Good patch cables should have boots, slid on before crimping both ends
 - Test
- Connecting Patch Panels
 - cable management via proper management hardware
 - organize patch to mirror network layout either physically or logically
 - document everything
- o Testing the Cable Runs
 - Copper Challenges
 - length too long degrades signal
 - broken/open, bent pins
 - shorts
 - breaks and locating breaks
 - correct vs incorrect termination
 - EMI/RSI UTP is susceptible
 - signal from one pair interfering with another pair
 - Verify terminated ends and cables are correct with cable tester
 - continuity testers
 - wiremap test
 - time domain reflectometer (TDR)
 - o near end crosstalk detection (NEXT)
 - o far end crosstalk detection (FEXT)
 - weaker signal due to attenuation
- Measuring Signal Loss
 - dB decibal
 - process of verification perform with cable certifiers
- o Fiber Challenges
 - dB, various standards and causes
 - Signal Loss/Degradation
 - Damaged Open Connections
 - check small form factor pluggables (SFPs) or gigabit interface converters (GBic)
 - dirty connectors, mismatch
 - · attenuation and dispersion, bend radius
 - Physical or Signal Mismatch
 - few connectors
 - even if physical connection possible, signal may not be compatible (transceiver mismatch)
 - cable/fiber mismatch incorrect cable type
 - o different wavelengths
 - Fiber Tools

- o ST, SC, LC connections
- Optical Time Domain Reflectometer (OTDR)
 - determine continuity errors
- o Complex TIA/EIA requirements Fiber Certifiers
- Biggest Issues
 - o attenuation
 - o light leakage
 - o modal distortion

- NICs
 - o final part recognize various NICs by sight
 - o all UTP Ethernet NICs uses RJ45 cable runs from NIC to switch
 - o Fiber-optic NICs come in a wide variety with connectors being used for multiple standards
 - check documentation
- Buying NICs
 - o brand names, multispeed, maintain model uniformity
- Physical Connections
 - o PCI Peripheral Component Interconnect
 - o PCIe
- Drivers
 - Windows Device Manager
 - Linux Network Applet
 - MacOS Network Utility
- Bonding
 - o multiple NICs for a single machine
 - bonding/link aggregation
 - increases speed between machine and switch
 - o use Identical NICs and Switches
 - Link Aggregation Control Protocol (LACP)
- Link Lights
 - o state of the link
 - confirms connection to switch, which also has lights for connectivity
 - steady on = good
 - o Activity Light Active Traffic, good for verifying connection
 - Collision Lights = older
 - o Fiber Optics NICs typically do not have lights but issues are often related to NIC connection
 - connectors are first place to check
- Diagnostics and Repair of Physical Cabling
 - o Diagnosing Physical Problems
 - eliminate potential software errors
 - check if other networked devices are discoverable
 - process of elimination
 - o Check Lights
 - Both NIC and Switch
 - Notification Area Symbols
 - Check shared resource access from multiple locations (server)
 - continuity tests, swapping patch cables and connections
 - Check the NIC
 - OS utility, NIC-based diagnostic via Loopback Plug
 - female connection point common source of failure
 - o Cable Testing
 - majority of issues occur at work area

- horizontal cable test with midrange tester with TDR
 - test with workspace loopback plug and microscanner in telecom room
 - test patch cable or horizontal issue
 - check couplers
- Problems in the Telecommunications Room
 - o patch panel runs
 - o power and environment
 - UPS
 - power monitoring
 - generator
 - o check frequency of UPS usage = voltage event recorder
 - o temperature monitors with rack monitoring system
 - environmental monitors = humidity
- Toners
 - o generator and probe and butt set (optional)
 - assist with cable trace

Chapter 6 – TCP/IP Basics

- The TCP/IP Protocol Suite
 - Link Layer relies on technologies outside the TCP/IP protocol suite to get IP pakcets from one system to another
 - Top Three Layers
 - Internet, Transport, Application
 - o Certain parts of IP Packets fit perfectly within TCP/IP model layers
 - the header for a higher layer is data for a lower layer
- Internet Layer Protocols
 - o Internet Protocol (IP) works at Internet Layer
 - takes data chunks from Transport Layer, adds addressing, and creates final IP Packet
 - IP then gives packet to Layer 2 for Frame Encapsulation
 - certain applications use ICMP to confirm IP address pairing
 - ICMP is typically used automatically by applications as needed without user action
 - ping utility
 - o Internet Layer Common Three Protocol
 - Version + 32bits + DSCP + TTL + TCP = IP header
 - full IP packet headers have 14 different fields
 - Dest/Src IP addresses
 - DSCP for VoIP
 - Version
 - TTL
 - Header Length
 - Protocol
- Transport Layer Protocols
 - Determine connection/connectionless communication
 - TCP connection-oriented ensures data arrives in good shape
 - UDP connectionless is used when data integrity is not a major concern
- TCP Transmission Control Protocol
 - o most commonly used, transfer is reliable and complete

- requires communication rules → acknowledge sender/receiver and readiness to send/receive
- Three-Way Handshake SYN \rightarrow SYN-ACK \rightarrow ACK
- o TCP segments data, giving each piece sequence number and verifies all segments are received
 - SRC PORT + DEST PORT + SEQUENCE # + ACK = TCP Header
- o Port numbered from 1-65,535 determines what application needs requested data
 - applications are assigned specific numbers
 - web servers 80 HTTP, 443 HTTPS
 - email 143 IMAP4
- Headers also contain
 - Seq + Ack #s
 - Flags
 - Checksums
- UDP User Datagram Protocol
 - doesn't possess extras seen in TCP
 - best for mass data transfer where perfection isn't needed, or systems are so close data loss changes are low
 - o Domain Name System (DNS) and Dynamic Host Configuration Protocol (DHCP) use UDP
 - SRC PORT + DEST PORT + LENGTH + Checksum = UDP Header
 - UDPs do not get segmented
- Application Layer Protocol
 - o IP and Ethernet
 - TCP/IP simplified and complex network support (LANs and WANs)
 - o LANs
 - every host runs TCP/IP software over Ethernet hardware
 - creates two addresses (IP and MAC) per host
 - to send IP packet, sender inserts IP packet into an Ethernet frame
 - o IP Packet
 - Dest MAC + Src MAC + Type + Dest IP + Src IP + Data + FCS = Ethernet Frame
 - o For sender to get receiver MAC, it sends ARP (FF:FF:FF:FF:FF) broadcast
 - receiver sends ARP reply by providing MAC attached to specified IP
 - allows sender to transmit unicast Ethernet frames to receiver
 - test with arp -a
 - IP addresses allow unique ID of machines on a given network and allow distinguishment between LANs
 - also allows computers to communicate between LANs in a WAN
- IP Address
 - o IPv4 common 32bit value, broken into four groups of eight
 - each 8 piece section translates in dotted decimal notation
 - 00000000 = 0; 111111111 = 255
 - no two computers on the same network can have the same IP
 - every OS comes with utility that displays IP/MAC in CLI (ipconfig, ifconfig, ip a)
- IP Address in Action
 - o create network IDs so each LAN has unique ID
 - o Interconnect LANs via routers, routers use Network ID
 - Subnet Mask gives computers on the network a way to recognize if a packet is for the LAN or a computer on the WAN
- Network IDs
 - o each LAN within a WAN needs on
 - each computer within a LAN share similar but not exact IPs
 - o The network ID is the section of the IP address that is shared by all devices in a LAN

- non-shared port is host ID
- Interconnecting LANs
 - o TCP/IP LANs must have a router connection to connect to other TCP/IP LANs
 - as a result, every router needs an IP address for every LAN it connects to, to route packets to correct LAN
 - o Router Interface that connects a LAN to the router is the default gateway
 - the interface must have an address in the LANs network ID
 - typically the lowest = 1
 - Network IDs are used to determine network traffic
 - Built within the router is a routing table, the instruction that tell the router what to do with incoming packets and where to send them
 - Network IDs are flexible, can be changed as long as no other Network IDs match within connected networks (WAN)
 - allocation is governed to prevent this
 - by having more zeroes in an address for Network ID, more total addresses can be used
 - Network IDs enable multiple LANs into a WAN, with everything connected together via routers and their tables
- Subnet Mask
 - o tool that tells a sending computer whether the destination IP is local or long distance
 - o comprised of a string of ones followed by a number of zeroes, all equaling a total of 32 bits
 - IP section that aligns with subnet mask = network ID
 - zeroes section = host ID
 - o A sender will compare destination IP with own IP via subnet mask
 - if there is a match for the first three sections = local
 - no match = long distance
 - if local → sender issues ARP to determine receiver MAC
 - if not → sender sends message to default gateway via ARP for Default Gateway MAC
 - message then sent to default gateway
- Class IDs
 - Internet Assigned Numbers Authority (IANA) formed to track and disperse IP addresses
 - Five Regional Internet Registries (RIRs)
 - parse out IPs to ISPs and Corporations
 - these blocks are called network blocks
 - o Classes
 - \bullet A 1-126 1.0.0.0 126.255.255.255
 - B 128-191 128.0.0.0 191.255.255.255
 - C 192-223 192.0.0.0 223.255.255.255
 - D 224-239 224.0.0.0 239.255.255.255
 - E 240-254 240.0.0.0 254.255.255.255
 - Multicast routers talking to one another
 - o IANA structure ran out of room, efficiency, and scalability quickly
- CIDR Classless Inter-Domain Routing and Subnetting
 - o taking a single-class of IP addresses and further dividing into smaller groups
 - o subnetting done by organizations
 - o CIDR done by an ISP
- Subnetting
 - o more efficient than class blocks
 - allows creation network for security (air gap between public and private computers)
 - Bandwidth control (separation of LANs by traffic usage)
 - o cornerstone is subnet mask
 - never try to subnet without first converting to binary

- Making a Subnet
 - o begins with single network ID
 - o separate into however many subnets are needed
- Calculating Subnets
 - o start with beginning subnet mask, extend subnet extension until you have number of subnets needed
 - 2^y
 - y = number of bits added to subnet
 - the size of the subnets can be varied through Variable Length Subnet Masking (VLSM)
 - Manual Dotted Decimal to Binary Conversion
- CIDR Subnetting in the Real World
 - o competency standard
 - IP Address Assignment
 - o two ways to give a host an IP address, subnet mask and default gateway
 - static addressing manually
 - dynamic addressing server input
- Static IP Addresses
 - o manual entering IP info
 - o each node on a network must have an IP address, subnet mask, and default gateway
 - decide network ID
 - IP Address Sequentially After
 - Separate Servers from Clients
 - Document Assignments
 - Windows → IPv4 Properties
 - o MacOS → Network Utility in System Preferences
 - Unix/Linux → # ip addr add "ip" dev eth1
 - or ifconfig
 - o static IP addresses done with ip command will be lost on reboot
 - Permanent → Network Configuration GUI
 - Verify with ping command
 - troubleshoot as necessary
- Dynamic IP Addressing
 - o Dynamic Host Configuration Protocol
 - autoassigns IP addresses when a host connects to a network
 - DHCP Server and Clients
 - router for SOHO, server for Enterprise
 - client requests IP info, DHCP server responds
- How DHCP Works
 - Client sends out initial DHCP Discover Message on Broadcast
 - DHCP server responds with DHCP Offer
 - IP Addresses, subnet mask, gateway
 - Client Responds with DHCP Request
 - verifies offer is valid, accepting offer
 - DHCP server responds with DHCP Acknowledgement and lists MAC and IP info provided to client in a database
 - o DHCP Handshake
 - client gets DHCP Lease after which a request is sent from client to server again
 - server provides IP info from MAC address
- Configuring DHCP
 - o UDP Port 67/68
 - clients and servers

- o Clients most hosts configured as a client by default via OS
- Servers
 - hands on configuration
 - pool of legit IP addresses
 - knowledge of network subnet mask
 - knowledge of IP of default gateway
- Pool of IPs = DHCP Scope
 - Scope Options
 - default gateway, network time server, DNS server, etc.
- o Router Assumes it is DG typically and self-assigns initial IP
- DHCP Relays
 - o relies on broadcasting to work
 - DOR on broadcast
 - A unicast
 - o within a domain, broadcast works but routers block broadcast traffic
 - but for enterprises it is impractical to apply DHCP servers for every LAN
 - DHCP Relays (built into most routers) accepts DHCP broadcasts from clients and sends, via unicast, addresses directly to DHCP server
 - must give relay IP of real DHCP Server; IP helper address
- DHCP Reservation
 - o file servers, printers, cameras, multi-purpose devices and other hosts should never use DHCP
 - need fixed, permanent, statically assigned IPs
 - setting an IP exclusion will prevent DHCP from assigning an IP to a client
- MAC Reservations
 - o assign a server a DHCP-assigned address via MAC reservation
 - assigns a specific IP to a specific MAC
- Living with DHCP
 - o No DHCP Server
 - client cannot get address
 - Automatic Private IP Addressing (APIPA)
 - generated automatically if no response from DHCP
 - allows clients on some NetID to communicate but no Default Gateway
 - check IP if APIPA, DHCP problem
 - try to establish IP manually \rightarrow windows = ipconfig /renew
 - o MacOS → Network Utility → Renew Lease
 - force lease renew → W → ipconfig /release → ipconfig /renew
 - o MacOS \rightarrow sudo if config eth0 down \rightarrow sudo if config eth0 up
 - Linux \rightarrow sudo dhclient -r \rightarrow sudo dhclient
- Multiple DHCP Servers
 - o Single DHCP Server → Single Point of Failure
 - o Multiple DHCP Servers → assign different scopes with some subnet mask, DG, etc.
 - o DHCP failover → two servers work together to provide DHCP to network
 - primary and secondary with a single scope
 - common in large networks
- Rogue DHCP Server
 - Easy to add DHCP server to network \rightarrow assign wrong IPs
 - o Rogue DHCP Server
 - unintentional \rightarrow easy to detect, same clients can access internet and some cannot
 - ipconfig
 - o DHCP clients with incorrect network IDs
 - intentional → hard to detect, IPs in same scope as legitimate DHCP server

- change DG, enabling intercept/capture of incoming/outgoing traffic
- Special IP Addresses
 - o loopback address
 - o private IP addresses
 - never used on internet and blocked by routers
 - 10.0.0.0-10.255.255.255 Class A
 - 172.16.0.0-172.31.255.255 Class B
 - 192.168.0.0-192.168.255.255 Class C
 - all others are public

Chapter 7 – Routing

- Power of TCP/IP protocols in routing
 - o allows interconnection of individual LANs into WANs
 - o routers inspect incoming packets and forward them toward their eventual LAN destination
 - typically just require initial configuration
- How Routers Work
 - any piece of hardware or software that forwards packets based on their destination IP address
 - work at the network layer of the OSI model and at Internet Layer of TCP/IP model
 - typical routers can last for many years with software upgrades
 - o typical home routers combine switches, routers, firewalls, DHCP servers
 - Boxes connect two networks
 - the home router connects directly to a built in switch
- Routing Tables
 - process begins with packets entering router for handling
 - router strips off Layer 2 info and drops resulting IP packets into a queue
 - router inspects IP packet destination address and sends packet to correct port
 - o this inspection is performed via routing table
 - o this table is key to understanding and controlling the process of forwarding packets to their proper destination
 - Destination LAN IP a defined network ID Every network ID directly connected to one of the routers ports is always listed here
 - Subnet Mask to define a network ID, need a subnet mask
 - Routers use combinations of Destination LAN IP and subnet mask to see if a packet matches that route
 - Gateway The IP address for the next hop router; where the packet should go
 - If the network ID is directly connected to the router, then a gateway is not needed
 - Interface tells the router which port to use, different routers use different descriptions
 - A router will check the entire table before sending the packet, choosing the better path if a packet works for more than one route
 - zeroes in a routing table means anything
 - O Default Router tells router exactly what to do with every incoming packet unless another line in the routing table gives another router
 - Isolated and Tier One Backbones do not have default routes
 - o Every node on a network has a routing table
 - a metric is a relative value that defines the cost of using that route useful when directly connected to other NetIDs
 - Routing allows packets the option of taking more than one route, in case one route fails
 - Different routes require assignment of different metrics
 - automatic with Dynamic Routing

- lowest always wins
- Routers communicate and detect when routes are down
- Freedom From Layer 2
 - o Routers enable connection to different network technologies
 - routers can connect to anything that stores IP packets
 - o industry routers enable interface addition
- Network Address Translation
 - o routers running NAT hide IP addresses on LAN computers while enabling communications with Internet
 - extended IPv4 addressing life
- The Setup
 - NAT replaces source IP addresses of a computer with the source IP address from the outside router interface on outgoing packets
 - performed by NAT capable routers
- Port Address Translation
 - o Internal networks use a block of private IP addresses for hosts inside network
 - connect to Internet through one or more public IP addresses
 - o most common NAT form is one-to-many
 - Port Address Translation (PAT)
 - PAT uses port numbers to map traffic from specific machines in the network
 - Src and Dst IP addresses and port numbers for TCP/UDP segment are recorded in NAT table
 - private IP addresses are swapped for public IP addresses on each packet
 - port number is also translated into a unique port number
 - when receiving system sends packet back, it reverses the IP addresses and ports and is compared to entries in NAT translation table
- Port Forwarding
 - o PAT is not great for incoming communications. Tech traffic originating outside a network accessing an internal machine, another tech is required
 - O Static NAT maps a single non-private IP address to a single machine
 - Port Forwarding can designate a specific local IP address for various network services
 - external computers can request a service using public IP and port number of desired service
 - Port Forwarding can hide a service hosted inside your network by changing the default port number for that service
 - to access such an internal site, the URL would have to be changed to specify the port request number
- Dynamic NAT
 - o many computers share a pool of routable IP addresses that number fewer than the computers
 - o an X amount of IP addresses can be served to a Y amount of computers for external access
 - if uses exceeds availability, issues arise
- Configuring NAT
 - \circ Gateway = NAT On
 - o Router = NAT Off
- Dynamic Routing
 - o routers have the capability to update their routes dynamically, with dynamic routing protocols
- Routing Metrics
 - o it is the role of the metric setting for the router to decide which route to use
 - o Common Criteria
 - hop count, bandwidth, delay/latency, cost, MTU
 - o Different dynamic routing protocols use one or more of these routing metrics to calculate their own routing machine
- Distance Vector and Path Vector

- DV first to appear total cost hop sum, speed
 - compare total cost to get to a particular network ID within total cost to get to all the other routers for some network ID
 - entire routing table is transferred to other routers in WAN
 - Distance routers share tables, update, and pass along until a path is completed
 - compare paths to assign metric values
 - once a path is decided, routers continue to send their tables to one another
 - o convergence/steady state as all updates are completed
 - convergence takes time and does not scale well with large numbers of routers
 - Two Different DV Protocols
 - RIPv1 Routing Information Protocol max hop of 15
 - o updates every 30 seconds, cause overloads
 - o didn't use variable-length subnet masking or authentication
 - RIPv2 Current Version VLSM + authentication added
 - o obsolete for small WANs due to convergence time
 - o easy setup is good for small WANs
 - Path Vector Routing Protocol
 - o BGP
 - Autonomous Systems
 - one or more networks governed by a single dynamic routing protocol
 - AS's communicate via Autonomous System Numbers (ASNs) assigned by IANA
 - AS's use a generic External Gateway Protocol (EGP) to communicate with one another
 - AS internal communications use generic Interior Gateway Protocols (IGP)
 - o BGP protocol is the Border Gateway Protocol
 - glue of the internet
 - path vector
 - advertising info passed to them from different AS's edge routers (AS to AS) which are forwarded to include ASN
 - ignores bad routes and policies for controlling how other routers reach ISPs
 - implements route aggregation
 - simplify routing tables by tracking routers that connect to subset location

Link State

- o announce and forward individual route changes as they appeared, as opposed to forwarding entire tables
- Two Link-State Protocols
 - OSPF Open Shortest Path First most commonly used IGP
 - designed to work with simple AS
 - faster convergence
 - o connect to other OSPFs via Hello Packers
 - establish neighborship and exchange info via Link-State advertisements LSA packets
 - flood OSPF areas
 - Best routes are established and replacements if necessary
 - Cost Metric
 - o bandwidth:bandwidth type

- o scales well, prevents loops, supports authentication
 - did not originally support IPv6
- IS-Is Intermediate System to Intermediate System
 - o similar to OSPF but native support for IPv6
 - o de facto standard for ISPs
- o ELGRP Enhanced Interior Gateway Routing Protocol
 - CISCO Proprietary
 - hybrid between distance vector and link state
 - advanced DV protocol
- Dynamic Routing Makes the Internet
 - essential
 - RIPv1, RIPv2
 - BGP
 - OSPF, IS-IS
 - EIGRP
- o Route Redistribution
 - routers cannot use different routing protocols to communicate, but can speak different protocols simultaneously
 - can announce routes from one protocol onto another via route redistribution
- Working with Routers
 - Connecting to Routers
 - special serial connectors CISCO-specific
 - rollover/yost cable
 - managed devices
 - Plug into console port and serial port on PC or use a USB-to-serial Adapter
 - Use a terminal emulation program to talk to router
 - PuTTY, HyperTerminal
 - Basic Settings 9600 band, 8 data bits, no parity
 - CISCO IOS
 - Web Access
 - router must have been built-in IP address or give the router an IP address
 - never plug new address into an existing network
 - always fully configure before placing online
 - laptop and crossover cable
 - o Network Management Interface
 - NMS knows how to talk to software, routers, switches, computers, etc to give an overall view of network
 - OEM or third-party
 - Other Connection Methods
 - USB, Telnet, SSH use network as opposed to cable
- Basic Router Configuration
 - must have a minimum of two connections
 - must configure every port on router to talk to network, ID and routing table function properly
 - o Setup WAN side
 - know Network IDs for each side of router
 - DHCP
 - Setup LAN side
 - choose Network ID
 - Establish Routes
 - usually automatic
 - Configure Dynamic Protocol

- tied to individual NICs that are configured to use Dynamic Protocol
- Document and Backup
- Router Problems
 - o routing tables
 - static routes
 - wrong netmasks
 - missing routes
 - o typically manual input error
 - convergence issues
 - o use traceroute and mtr
 - tracert (w)
 - traceroute (m + L)
 - o mtr dynamic, continually update route
 - mtr is linux continuous
 - pathping is for windows set time

Chapter 8 – TCP/IP Applications

- Transport Layer and Network Layer Protocols
 - \circ TCP/IP → TCP over IP HTTP,DHCP,POP,UDP,ICMP
 - TCP/IP Suite
 - Big Three TCP, UDP, ICMP
- How People Communicate
 - o only single communication between a computer and another computer is called a session
 - sessions are connectionless or connection-oriented
- TCP * Transmission Control Protocol
 - o connection oriented communication
 - most common type
 - SYN SYNACK ACK
 - Threeway Handshale
 - session closes with FIN ACK FIN ACK
 - connection-oriented is designed to check for errors and asks for repeats as needed
- UDP * User Datagram Protocol
 - o good for sessions that don't require overhead of connection-oriented
- DHCP * Dynamic Host Configuration Protocol
 - o uses UDP
 - sends information for each step without confirmation as client wont have an IP address to begin 3-way handshake
 - Uses two port numbers
 - clients use port 67 to send/receive data
 - servers use 68 to send/receive data
- NTP/SNTP * Network Time Protocol/Simple NTP
 - o both use UDP
 - o synch clocks of devices on a network
 - via port 123
- TFTP * Trivial File Transfer Protocol
 - o uses UDP to move files across machines within the same LAN
 - port 69
- ICMP * Internet Control Message Protocol

- o works at L3 to deliver connectionless packets and handles mundane issues such as host unreachable messages (like ping)
 - sends ICMP "echo" request to which TCP/IP computers respond with "echo reply"
- IGMP * Internet Group Messaging Protocol
 - o enables routers to communicate with hosts to determine a group membership
 - IGMP Group is assigned to an address in the Class D range
 - Those who wish to receive the multicast must tell their upstream router or switch that they wish to receive it
 - joining the IGMP Group
- The Power of Port Numbers
 - o TCP/IP port numbers between 0 and 1023 are the most well-known
 - o clearly defined port numbers exist for well-known TCP/IP applications
 - o 16-bit value between 0 and 65,535
 - web servers port 80
 - o web client source port number is generated pseudo-randomly by web-client computer
 - generally 1024-5000 ephemeral port numbers
 - 49152-65535 dynamically/private port numbers
 - o ephemeral port numbers are used as the destination port to get the info back to the web client running on the client computer
- Registered Ports
 - o 1024-49151 registered ports
 - anyone can use these port numbers for their servers or for ephemeral numbers on clients
 - most Oss opt to use dynamic/private port numbers for ephemeral ports
 - Computers keep track of status of communication (Storing IP addresses and Port numbers in RAM) in a socket or endpoint
 - socket pairs or endpoints
 - o show list with netstat -n
 - a single webpage may have multiple connects to a clients computer
 - TCPView OpenSource and Free, netstat but actively update
 - NetActivity Viewer
- Connection Status
 - o open/listening port is any socket that is prepared to respond to any IP packets destined for that sockets port number
 - netstat -an, -ano, -b
 - ps
 - Task Manager, Process Explorer
- Common TCP/IP Applications
 - The World Wide Web
 - the web is composed of servers that store specifically formatted documents using language such as HTTP or HTML, XML
 - all web servers have a default web page unless otherwise specified
- HTTP
 - o runs on port 80
 - o ID how messages are formatted and transmitted, requests and responses
 - o HTTP is relatively simple, requiring Java/Ajax, server-side scripting, and cookies for smart website creation
- Publishing a Website
 - o most ISPs offer web servers, though individual hosting is possible
 - price varies
 - o upload HTML pages to a webhost, upload to a web server
- Web Servers and Web Clients

- o servers deliver/serve up web pages
 - listen on port 80 and fetch requested HTML pages
- Any computer can be a server through software
 - Microsoft IIS
 - set max connection limit depending on available bandwidth/memory
 - o protection against DoS
 - Unix/Linux Apache HTTP Server
 - o popular, can run on Windows, free
 - executed with text files
 - o GUI webadmin, webmin
 - o nginx, GWS
- SSL/TLS and HTTPS
 - for security, require authentication, encryption, and nonrepudiation
 - o Secure Sockets Layer
 - Transport Layer Security
 - latest version of SSL
 - uses encryption
 - o HTTPS uses port 443
- Telnet and SSH
 - o Telnet Protocol (unsafe) allows remote access of a computer via command line
 - port 23 TCP
 - o remotely administrate a server and communicate with other servers on a network
 - o no encryption
 - use SSH instead
- Telnet/SSH Servers and Clients
 - o freeSSHd
 - o PuTTY
- Configuring a Telnet/SSH Client
 - o provide hostname, login name, password
- SSH and the Death of Telnet
 - SSH does what Telnet can but securely encrypted
 - SSH TCP port 22
- Email
 - o email programs use a number of application level protocols to send and receive information
 - SMTP Simple Mail Transfer Protocol to send
 - port 25 TCP
 - POP3 Post Office Protocol version 3 receive
 - port 110 TCP
 - IMAPv4 Internet Message Access Protocol version 4
 - port 143 TCP
 - preferred over POP3
 - enables device synch, folders
 - o also web-based (gmail, outlook, yahoo!)
 - proprietary
- Email Servers
 - \circ Exim 50% of market share
 - PostFix
- Email Client
 - Outlook, Thunderbird
 - Configuration
 - enter POP3/IMAPv4 domain name and SMTP server domain name to email client

- password, username
- FTP * File Transfer Protocol
 - o old active FTP used TCP ports 20 + 21
 - o passive FTP uses port 21
 - o FTP sites are usually anon or secure sites
- FTP Servers and Clients
 - o servers store files, accept connections, verify usernames/passwords, file transfers
 - client logs in and downloads files
 - FileZilla Servers
 - not secure by default without login credentials
 - check client support numbers
 - CyberDuck FTP Client
- Active and Passive FTP
 - o active works unless client uses NAT
 - o passive uses port 21 for requests and replies with random port number
 - client initiates all conversations allowing NAT greenlight

Chapter 9 – Network Naming

- All TCP/IP networks, including the internet, use a name resolution protocol called Domain Name System (DNS)
- Before DNS
 - o two continue to work in modern systems: NetBIOS and Hosts
- NetBIOS
 - o used broadcasts for name resolution. A computer would broadcast name and MAC upon boot up
 - o all receiving systems would store info in a cache, whenever a system was missing a NetBIOS name, the broadcast would start again
 - o only suitable for small networks 40 hosts max
 - no logical addressing like IP addresses, each system had to remember the NetBIOS name and the MAC
 - without logical addressing, routing cannot be supported
 - widespread broadcasting made it unacceptable for large networks
 - NetBIOS over TCP/IP (NetBT) runs NetBIOS on top of TCP/IP
 - a name resolution protocol that had nothing to do with DNS
 - ports 137, 139 (TCP)
 - ports 137, 138 (UDP)
 - NetBIOS only handles host names, but did not do resource sharing (Server Message Block) TCP 445
- Hosts
 - o original TCP/IP specification implemented name resolution using a special text file called hosts
 - o the host file contained a list of IP addresses for every computer on the internet
 - this file still exists in every computer but is not relied on, OS hosts did not scale with growth of the internet
 - same users place shortcut names in a host file to avoid typing long names in certain TCP/IP applications
 - AV/AM uses this to block malicious sites
- DNS
 - How DNS Works
 - delegation through hierarchical DNS servers
 - DNS servers primarily use UDP port 53

- DNS root consists of 13 DNS server clusters
 - delegate name resolution to other servers
- Top Level Domain Servers
 - handle TLD names (.com, .org, .net, .edu, .gov, .mil, .int) and country codes
- Second Level Domain Servers
 - handle millions of names created within each top-level domain
 - support individual computers
- ICANN created additional TLDs (.biz, .info, .pro)
- DNS names have a max of 255 characters
- Name Spaces
 - DNs hierarchical name space is an imaginary tree structure of all possible names that could be used within a single system
 - host files use a flat name space
 - individual, no grouping
 - require all names be unique
 - DNS namespace is a hierarchy of DNS domains organized into a DNS tree
 - o domains = folders, separated within a period
 - Top of DNS tree is root
 - o host names fit into domains
 - Private TCP/IP networks require at least one DNS server as the root of the intranet
 - DNS naming convention works in reverse of a typical file path
 - fully qualified domain name (FQDN) written with root on far right, followed by the names of the domains added to the left, and host name on far left
 - o always have period on the end to signify the root
 - Private networks don't need TLDs
- Name Servers
 - DNs Server computer running DNS server software
 - Zone container for a single domain that gets filled with records
 - Record a line in the zone data that maps an FQDN to an IP address
 - DNS servers store DNS info
 - system requires IP address for an FQDN via DNS query
 - a single DNs server is an authoritative name server if it lists all names on the domain and corresponding IP address
 - A single domain can use more than one DNS server large scale domains start with a primary DNS server and one or more secondary DNS servers (master and slaves)
 - all servers know one another to communicate frequently
 - o maintain updates
 - DNS root servers know where to send requests
 - Domain Names must be registered for Internet use with ICANN
- o Name Resolution
 - Since routers do not forward broadcasts, another method must be used
 - modern hosts automatically map the hosts file to the hosts DNS resolver cache
 - contains recently resolved addresses
 - When a name is entered, a host contacts its DNS server and requests IP addresses
 - PC must know IP of its DNS server as DNS server data is part of the critical basic IP information such as IP address, subnet mask, and default gateway
 - DNs is configured via IPv4 Properties dialogue box (Windows); Network Config Utility (Linux).
 - verify with ipconfig, and "cat /etc/resolve.conf (Linux/Unix)

- DNs Server first checks resolver cache, if not, checks root server that handles a given name operator (like .com) which shares IP address at a .com server
 - which shares IP address of website DNS server
 - o which shares IP address of website
 - once discovered, it is stored in resolved cache and allows HTTP requests to begin
- DNS Servers
 - o Microsoft Server and Unix/Linux come with DNS Server software
 - every DNS server keeps a list of cached lookups (all resolved) which has a size limit divided into subfolders that share SLD
 - Choose authoritative or cache-only server
 - authoritative share IP addresses and FQDNs
 - cache-only are never authoritative, only used to communicate with other DNS servers to resolve IP addresses
 - IP addresses and FQDNs for computers in a domain are stored in forward lookup zones important
- DNS Record Types
 - o A record workhorse
 - o SOA, NS, CNAME, AAAA, MX, SRV, TXT
 - SOA start of authority defines primary name server in charge of forward lookup zone
 - NS shows primary server name for a domain
 - MX mail servers, SMTP server to determine where to send mail
 - TXT freeform record type, any text can be added to a forward lookup zone
 - CNAME Canonical name record acts as an alias querying this will often return host name
 - AAAA equivalent to A records but reserved for IPv6
 - SRV generic record that supports any type of server
- Primary and Secondary Zones
 - o Primary Zones act as primary name server for that zone
 - o Secondary Zone created on other DNS servers to act as backups to the primary zone
 - o Typical to have a minimum of Two DNS servers for any forward lookup zone, both authoritative
 - o Reverse Lookup Zones enable a system to determine an FQDN by knowing the IP address
 - take a network ID and reverse it, creating a PTR pointer record
 - Low-level (like mail) functions use reverse lookup zones
 - For A Records to be added automatically, Windows uses NetBIOS to name the DNS name and making SMB protocol run directly on TCP/IP without NetBT
 - SMB and NetBIOS over TCP ports UDP 137,138; TCP 137,139
 - SMB without NetBIOS TCP ports 445
 - Linux uses Samba
- Living with SMB
 - uses dual name resolution scheme
 - local SMB
 - Internet DNS
 - a Windows domain must have a true DNS name
 - Active Directory a super domain is an organization of related computers that share one or more Windows domains
 - windows domain controllers are also DNS servers
 - all domain controllers are equal partners
- Active Directory Integrated Zones
 - nothing can be updated if a primary server goes down
 - unless using an Active Directory Integrated Zone
 - o eliminating the need for zone transfers

- Placing DNS Servers
 - Do individual hosts need DNS to resolve hosts on the local network>
 - small LANs can use SMB
 - organizations use DNS
 - Local DNS for Intranet
 - o Do individual hosts need DNS to resolve Internet names?
 - always yes if connected to internet
 - Internet DNS

Local DNS

- o internal DNS server
 - contains forward lookup zone for in-house domain
 - both primary and secondary
- o can also handle internet naming needs via DNS forwarding any DNs requests for which the local server is not authoritative
 - small networks use gateway routers that contain rudimentary DNS for forwarding and caching
 - DNS Server without forwarding and no root hints in a cache-only server
- Private and Public DNS
 - Internal → Private/Invisible Server behind firewall
 - Public → Never behind firewall
 - Public DNS servers handle FQDN equally, rarely go down, with faster resolution speeds and avoid DNS reflections
 - Level 3 Cloudflare, DNS Witch, OpenDNS, SafeDNS
- External DNS Servers
 - o not internal to an organization
 - o external DNS servers (except for root) must connect to other DNS servers that are always external to an organization
 - third party DNS servers offer both public and private services or cloud-based (Azure, AWS)
- Dynamic DNS
 - o manual uploading of DNS records is common for web and email servers
 - Dynamic DNS (DDNS-1997) enabled DNS servers to get automatic updates of IP addresses of computers in their forward lookup zones via DHCP Server
 - Windows uses DDNS to talk with DHCP for updates to records (A Records)
- DNS Security Extensions
 - o DNS Security Extensions (DNSSEC)
 - authorization and integrity protocol preventing impersonation of legitimate DNS servers
 - o Implemented via Extension Mechanisms for DNS (EDNS)
 - o DDNS on the Internet
- IPAM * IP Address Management
 - software including DHCP and DNS servers specifically designed to work together to administer IP addresses for a network
- Troubleshooting DNS
 - o servers rarely go down and have backups
 - o Server Not Found Error
 - Test
 - eliminate DNS caches on local system with /flushdns
 - Run ping to test
 - o OK is msg "request timed out"
 - o If can ping IP but not name, check DNS
 - Ensure correct server entry

- o ipconfig /all
- If all info matches, nslookup to query DNS server
 - o if error, primary server is down or incorrect server settings
- Diagnosing TCP/IP Networks
 - o improper Configuration
 - Diagnose NIC
 - Check NIC Driver
 - Diagnose Locally
 - Check IP address and subnet mask
 - Run netstat
 - statistics to help diagnose problems
 - Diagnose to the Gateway
 - ping router
 - Router Status by Ping, before, at or after
 - Traceroute addresses on internet to check path

Chapter 10 – Securing TCP/IP

- Making TCP/IP Secure
 - o Five Areas of TCP/IP Security
 - Encryption, Integrity, Nonrepudiation, Authentication, and Authorization
- Encryption
 - all data starts as plaintext \rightarrow key + alg \rightarrow ciphertext
 - o Substitution
 - earliest forms of cryptography
 - broken with patterns, frequency analysis, BF
 - o XOR
 - Binary Exclusive OR
 - uses a third key value as parts of the alg
 - need to know alg + key to decrypt
 - Symmetric/Public + Asymmetric/Private
- Symmetric Key Encryption
 - most algs use block ciphers to decrypt chunks
 - good when data comes in chunks (like IP packets over wired networks)
 - DES oldest, 64bit block, 56bit key (Vulnerable to BF)
 - o Alternative to Block Cipher is Stream Cipher
 - single bits, popular when long data streams are used
 - RC4 popular, but legacy and vulnerable
 - AES is commonly used now for symmetric
 - 128bit block with 128, 192, 256 bit key sizes
 - very secure
- Asymmetric Key Cryptography
 - o allows sender to transmit key with increased safety via two separate keys
 - o RSA
- Encryption and the OSI Model
 - L1 no common encryption, large WANs use SONET
 - L2 no common encryption
 - L3 IPsec only via software
 - L4 no common encryption due to TCP/UDP

- L5, 6, 7 SSL/TLS
- Integrity
 - o Hash
 - value of fixed length (checksum, message digest)
 - 100-500 bits
 - o one-way function, irreversible and unique output per input stram
 - file hashing allows for comparison
 - passwords are hashed for mass storage, also compared
 - MD5 common 128 bit
 - SHA1-3
 - o Encryption and authentication schemes use hashes
 - SMTP \rightarrow CRAM-MD5 \rightarrow Server Authentication
- Non-Repudiation
 - Digital Signatures
 - hash of public key encrypted by private key for comparison
 - o PKI
 - certificates are standardized files with a public key and a digital signature + digital signature of a trusted third party company
 - Checked via certificate Authorities
 - Tree of Certifications
 - PKIs aren't mandatory to use certificates
 - certs and asymmetric cryptography operate hand-in-hand
- Authentication
 - o local authentication (logins)
 - o Multi-factor (Something you know, have, are, do)
- Authorization
 - Access Control List
 - Network Access Controls (NAC)
 - Permissions
 - Models
 - Mandatory (MAC) every resource is assigned a label that defines its security level
 - Discretionary (DAC) resource owners assign access to a resource at their discretion
 - Role-Based (RBAC) popular in file sharing defines user access to a resource based on roles the user plays in the network environment
 - o leads to group creation
- TCP/IP Security Standards
 - o Point-to-Point Protocol (PPP)
 - enables two p2p devices to connect, authenticate with username and password and negotiate network protocol the two devices will use – typically TCP/IP
 - Password Authentication Protocol (PAP) unsafe cleartext transfer of login
 - Challenge Handshake Authentication Protocol (CHAP) provides more secure routine with hashing
 - o repeats intermittently to prevent MitM
 - o AAA Standard to follow when overseeing central databases
 - Authentication, authorization, and Accounting
 - o port authentication
 - Authentication credentials for network access
 - Authorization capability determination

- Accounting Auditing
- RADIUS and TACACS+
- o RADIUS Remote Authentication Dial-In User Services
 - support ISP connections to a single database
 - o RADIUS Server supports PAP, CHAP, MS-CHAP
 - Network Access Servers (NACs)
 - o Groups of connected systems
 - Microsoft Internet Authentication Service (IAS)
 - Unix/Linux FreeRADIUS
 - Pulse Secure Steel-Belted RADIUS
 - UDP port 1812, 1813
 - UDP ports 1645, 1646
- o TACACS+ Terminal Access Controller Access Control System Plus
 - single server storing the ACL for all devices in the network
 - Cisco support of AAA in large complex networks
 - TCP port 49
 - o separates AAA into different ports
 - PAP, CHAP, MD5, Kerberos
- Kerberos
 - no connection to PPP
 - many TCP/IP networks all connected to a single authenticating server
 - adopted as authentication protocol for all Windows networks using a domain controller
 - windows domain is a group of computers that defers all authentication to a domain controller
 - domain controller stores a list of all user names and passwords
 - o login occurs on domain controller
 - Kerberos uses Key Distribution Center (KDC) on domain controller
 - o Authentication Server (AS)
 - o Ticket-Granting Service (TGS) and Ticket (TGT)
 - Login sends a request with hashed login info to AS, AS compares hash and responds with TGT and timestamp → authenticated, but not authorized
 - o 10 hour lifespan
 - Client sends timestamped TGT to TGS for authorization
 - o TGS sends a timestamped service ticket (token) back to client
 - token is used to access domain resources
 - contains security identifier (SID) of user account and SIDs of groups user is a part of
 - allows for single sign-on without reauthentication
 - Kerberos forces 8-hr timestamps
 - Kerberos has weaknesses
 - KDC goes down no access
 - requires backup KDC
 - Timestamp requires clock sync
 - o easy on wired networks, difficult for dispersed networks
- Encryption Standards
 - o SSH
 - servers use PKI in the form of an RSA key and asymmetry
 - AES encryption
 - Logins are used for identification or public keys (PuTTYgen for RSA/DSA keys)
 - can be turned off for hardening
 - also acts as a tunnel

- Tunneling
 - encrypted link between two programs
 - SSH tunnels are popular and easy
- Combining Authentication and Encryption
 - o SSL/TLS
 - requires server with certificate, checks copy of cert against CA root cert list
 - TLS is an upgrade to SSL more flexible in application
 - o IPSec
 - authentication and encryption protocol suite that works at the Internet/Network Layer and will grow with IPv6
 - Transport Mode only actual payload of IP packet is encrypted; dest/src IP address and header info visible
 - Tunnel Mode entire packet is encrypted and placed into IPsec endpoint where it is encapsulated inside another IP packet
- Secure TCP/IP Applications
 - o HTTPS
 - SSL/TLS
 - if certs expire, tread carefully
 - if certs are on revocation list, avoid
 - o SCP
 - Secure Copy Protocol
 - replaced by SFTP
 - o SFTP
 - SSH File Transfer Protocol
 - replaced SCP and FTP
 - TCP port 22
 - o SNMP
 - Simple Network Management Protocol
 - query state of SNMP capable devices
 - agents collect network info from management information base (MIB) server
 - o SNMP3 is current/safe for network admins
 - o LDAP
 - Lightweight Directory Access Protocol
 - query and change database used by the network
 - Windows Active Directory
 - Windows Domain Controllers, every backup must have a copy and be able to take control/update
 - LDAP used when a computer needs to access another database for info/make an update
 - o used automatically via Domain Controllers TCP/UDP port 389
 - o NTP
 - Network Time Protocol
 - gives current time, important when using Kerberos
 - o UDP port 123

Chapter 11 – Advanced Networking Devices

- Virtual Private Networks
 - an encrypted tunnel requires endpoints
 - VPNs are usually either software on dedicated boxes

- computer must be on same network with uniform network ID or share software
- VPN creates virtual NIC on device to create endpoint 1, which connected to endpoint 2
 - o creating a tunnel
- o PPTP VPNS
 - Point to Point Tunneling Protocol
 - advanced PPP with endpoints placed on client and server
 - o server endpoint routing and remote access service (RRAS)
 - o client endpoint control panel VPN, Virtual NICE DHCP query
 - once connected to RRAS server, PPTP creates a secure tunnel
 - o client takes on IP address of target network
 - o host-to-site connection
- L2TP VPN
 - Layer 2 Tunneling Protocol
 - PPTP + Cisco Layer 2 Forwarding (L2F) with support for any connection type
 - Local LAN endpoint connected to VPN concentrator (router)
 - site-to-site connection possible
 - No authentication/encryption (as PPTP has), using IPsec
- o SSL VPNs
 - don't require client software, connecting via web browser with the traffic secured using TLS
 - SSL Partial VPNs secure webpage
 - SSL Tunnel VPNs active control, greater access
- DTLS VPNs
 - Datagram TLS
 - optimize connections for delay-sensitive applications (voice/video) using UDP datagrams
 - CISCO AnyConnect
- o DMVPN
 - Dynamic Multipoint VPN
 - enables direct VPN connects between multiple locations directly without need for central connection
 - employs IPsec
- Alternative VPNs
 - OpenVPN, SSH, Generic Routing Encapsulation Protocol (GRE)
 - pure IPsec solutions
- Switch Management
 - o Managed switches have programming and logic to handle switching, security, etc
 - requires configuration via
 - direct plugin to serial interface using veritual terminal and CLI
 - switch onto network, virtual terminal over SSH and CLI
 - Get switch onto network and use switch built-in GUI
 - o Many managed switches have a special serial port called a console port
 - plugin via laptop, use PuTTY
 - common for initial config
 - o Switch needs IP address, will have default IP, login, and settings that will require change
 - DNS, Default Gateway, etc.
 - for maintenance
 - To reduce exposure, it is common to dedicate one port on every managed device as a management port
 - interface configuration can only be done on that port

- o Then plug all management ports into a switch that is totally separate from the rest of the network
 - this prevents unauthorized access to said ports
 - out of band management
- Switches often have an HTTPS/management URL
 - in-band management
- Virtual LANs
 - enables segmentation of a physical network into multiple discreet networks without adding hardware
 - take single broadcast domain, with one or more switches, and divide into multiple broadcast domains
 - o via assigning each port to a specific VLAN
 - managed switches can handle any number of VLANs
 - Trunking
 - process of transferring VLAN traffic between two or more switches
 - configure a port on each switch as a trunk port carry all traffic between all switches in a LAN
 - o Ethernet Switch IEEE 802.11Q
 - o Configuring a VLAN-capable Switch
 - SSH CLI
 - Web Browser GUI
 - CISCO Network Assistant
 - aassign ports VLAN assignment
 - Tagging
 - access ports, tag traffic with appropriate VLAN when frames enter the switch
 - access ports connect to workstations
 - Tagging and Untagging ports on VLAN switches, changing native VLAN to mitigate double-tagging attacks
 - native VLAN is set to unused VLAN and trunk port tags native VLAN traffic
 - VLAN Trunking Protocol
 - Cisco VLAN Trunking Protocol (VTP) automates the updates of multiple VLAN switches
 - switches enter one of three states
 - o server master
 - o client updates with server
 - o transparent manual settings with no updates
 - o InterVLAN Routing
 - each VLAN has own broadcast domain no way for data to get from one VLAN to another without router or multilayer switch
 - InterVLAN Routing
 - o router-on-stick configuration
 - single router interface to connect to multiple VLANs on a switch
 - Many VLAN-capable switches also do routing
 - o DHCP and VLANs
 - DHCP requests cannot go through a router, single subnet only
 - a DHCP relay agent (enabled/configured on router) will pass DHCP requests along across router interfaces
 - o Cisco IP helper command
 - DHCP relay support (ports 67, 68); TFTP (port 69); NTP (port 123); TACACS+ (port 99); DNS (port 53); NetBIOS (port 137); and NetBIOS Datagram (port 138)
- Troubleshooting VLANs
 - typically port assignment

- Multilayer Switches
 - L2 + L3 switch
 - L2 switch forwards traffic via MAC
 - L3 switch forward traffic via IP
 - o a hardware version of a software L3 router
 - o Router ports require IP address
 - Switch port and Router port
 - good for load balancing, quality of service, port bonding, and network protection
- Load Balancing
 - a single IP address divided over multiple servers
 - o creates a server cluster
 - balance demands amongst servers
 - Methods
 - DNS Load Balancing
 - o public IP, multiple A records, same FQDN
 - A Records accessed in round robin fashion as requests arrive
 - Content Switch
 - L7 read HTTP(S) requests (handle SSLs, cookies) and lightens server workload
 - QoS and Traffic Shaping
 - o prioritize traffic based on certain roles (bandwidth for clients)
 - traffic shaping controls flow of packets into/out of network
- Port Bonding
 - joining two or more ports logically in a switch so that the resulting bandwidth is treated as a single connection and the throughput is multiplied by the number of linked connectors
 - increase speed of links without upgrading infrastructure
 - NIC teaming, port aggregation
 - o Port aggregation Protocol (PAgP)
 - Link Aggregation Control Protocol (LACP)
 - IEEE 802.1AX-2014
- Network Protection
 - IDS/IPS, Proxy Servers, Port Mirroring, AAA
 - IDS/IPS
 - dedicated software separate from a firewall, functioning within the network
 - network-based or host-based
 - o network NIDS is placed around network at multiple points
 - o host runs on individual systems
 - Both check definition files for signatures to compare against
 - IPS sits directly in the traffic
 - o can stop attack but causes latency issues and can be a SPoF
 - Port Mirroring
 - copy data from any or all ports on a switch to a single physical port
 - allows admin to inspect packets to/from certain computers
 - o local onto same switch, connect to that switch
 - o remote does not require direct plugin for review
 - Proxy Server
 - redirects client requests to a proxy server, avoid usual DNS resolution
 - o HTTP(S) goes to proxy, then to web server
 - benefitted by caching
 - A forward proxy server acts on behalf of clients

- a reverse proxy server acts on behalf of servers
- any TCP application can take advantage of proxy servers
 - o Squid
- AAA
 - supports port authentication
 - RADIUS + 802.1X port authentication, TACACS+
 - very difficult to configure
 - o locate and read errors

Chapter 12 – IPv6

- IET IPv6
 - 128bit addressing space = 2^128 addresses
 - IPsec standard protocol support for every IPv6 stack
 - More efficient routing scheme using a smaller routing table footprint via aggregation
- IPv6 Basics
 - o always uses link-local addressing for communications with local network
- IPv6 Addressing Notation
 - o octets are gone, use colons over period with quartets/hextets between 0000 and ffff
 - two 64bit sections
 - network prefix first 64 bits for routing
 - interface ID second 64bits broken down into global routing prefix and subnet ID
 - o Eight groups of four hexadecimal characters
 - leading 0's can be dropped, strings of 0's can be replaced with :: only one per address
 - o Still uses /x convention (like CIDR)
 - signifying bit length of network prefix
 - unspecified addresses (all 0's or all 1's, cannot be used)
- Link-Local Addresses
 - o host no longer has a single IP address unless network is not connected to a router
 - o Upon first boot, a link-local address is self-assigned to the computer
 - always begins with fe80:
 - o The Interface ID is generated one of two ways
 - old 0's used to MAC to create 64-bit Extended Unique Identifier (EUI)
 - no longer used
 - Current OS's generate a random 64-bit #
 - o Link-local performs all necessary work when Internet is not connected
- IPv6 Prefix Length
 - o used to determine whether to send packets to a local MAC address to default gateway to send out packets to internet
 - last 64bits are generated by NIC
 - RIRs pass out /48 prefixes to ISPs plus 16 bits for subnetting
 - then provide 64bit interface IDs to users
- The End of Broadcast
 - o Link-local IPv6 address is unicast to that system
 - no broadcast is used
 - replaced with multicast
 - o IPv6 multicast functions similarly to IPv4 multicast but with additional functions
 - only routers read messages
 - encapsulated Ethernet Frames use 33-33-xx-xx-xx for IPv6

- computers not specifically setup to process said frame will drop it at L2
 - a computer must be configured as a member of a particular group to read a particular multicast
 - ff02::1 all nodes addr
 - o ff02::2 all routers addr
 - o ff02::1:ff:xx:xxxx solicited node addr
- IPv6 also uses anycast
 - gives a number of computers or clusters the same IP address
 - o routers then use BGP to determine which computer in the cluster is closest
 - packets are sent to closest root DNS server
 - anycast addresses are unicast addresses, but this is only known by the top-tier router that sends packet to closest root server
- Global Unicast Address
 - o second IPv6 address for computer
 - commonly derived from default gateway
 - router determines prefix computer generates last 64-bits
 - true internet address
 - o prefix delegation from upstream ISP
- Aggregation
 - routers underneath another router use a subset of that routers existing routes
 - gives detailed geographic picture of router organization
 - o IPv6 network is capable of changing constantly to maintain aggregation
- Regional Internet Registries
 - o ARIN, RIPE NCC, APNIC, LACNIC, AfriNIC
- Using IPv6
 - o rarely need static IPs, DHCP almost non-existent
 - o uses Neighbor Discovery Protocol
 - five packet types
 - Neighbor solicitation, advertisement
 - o search for computers in broadcast domain, only head by IPv6 machines
 - Router solicitation, advertisement, redirect
 - o attain network IDs rather than through NAT and private network IDs
- Is IPv6 Working
 - o ipconfig (windows)
 - o ip addr (linux)
 - o ifconfig (mac)
- DHCPv6
 - o gives better control over LAN in certain situations
 - o DHCPv6 Server must first be configured
 - complete IP info stateful similar to DHCP for IPv4
 - Stateless gives partial IP info, relying on router advertisements
- DNS in IPv6
 - o uses AAAA records
- Getting Past the IPv4 IPv6 Gap
 - o transition mechanisms
 - 4 to 6
 - encapsulated data type into another. IPv4 encapsulated into IPv6 tunnel to get to IPv6 router
 - needs tunneling client
 - 6 to 4

• one of two tunneling protocols that get IPv6 through IPv4 NAT

ISATAP

- o Intra-Site Automatic Tunneling Addressing Protocol
 - works within IPv4 network by adding address to an IPv6 prefix for endpoint address
- Tunnel Brokers
 - o create actual tunnel and offer custom-made endpoints client for use, to avoid manual connection
 - usually use Tunnel Setup Protocol (TSP) or Tunnel Information and Control Protocol (TIC)
- Overlay Tunnels
 - o enables two IPv6 networks to connect over an existing IPv4 infrastructure
 - run dual stack
 - o local net traffic encaps in IPv4 packets, router strips away IPv4 packet and forwards inner IPv6 packet
 - o manual tunnels can be set for point-to-point secure IPv6 connections with IPsec
- NAT64
 - NAT from IPv4 not needed in IPv6
 - NAT64 is a transition mechanism that embeds IPv4 into IPv6 for Network traversal with a NAT64 gateway handling traffic between IPv4 and IPv6 segments

Chapter 13 – Remote Connectivity

- Telephony and Beyond
 - The vast majority of the long distance connections that make up the internet use a unique type of signal called SONET
 - Most high-speed internet connections still use tech designed to handle phone calls
- The Dawn of Long Distance
 - o Analog signals degraded over long distance
 - Many individual wires solved with multiplexers which combined circuits split with demultiplexer
 - Uses modulation technology
 - Served local exchanges all over country houses in central offices
 - Analog eventually moved to digital
 - Calls kept separate via frequency multipliers, assigning individual frequency ranges in the frequency division multiplexing (FDM) process
 - o Digital is better over long distance (via repeaters)
 - Trunk lines are analog but connections between central offices and homes are converted into digital
- Digital Telephony
 - o It all starts with DS0
 - Analog converted into 8-bits 8000xsec = 64kbps DS0 digital signal rate, connected at central office
 - o Copper Carriers: T1 and T3
 - First digital trunk carriers "T-carriers"
 - T1 most common/basic, at either end (termination) is a channel service unit/digital service unit (CSU/DSU) point-to-point (no more than two CSU/DSUs on a single T1 line)
 - User digital signal 1 (DS1) primitive frames of 25 pieces (frame bit and 24 channels) with each channel holding single 8-bit DS0 data sample
 - o 193 bit/frame x 8000/sec = 1.54Mbps

- T3 Lines support 45 MBps 672 individual DS0 channels DS3 lines (E3 in Europe 34 Mbps)
 - E1 and SONET use derivative of HDLC protocol
- CSU/DSU have two connectors (at least) one goes to Demarc, and another goes to router
 - Performs line encoding and conditioning, has a loppback function (built in to newer routers)
- CSU protects against interference/lightning, stores statistics
- DSU provides timing to user ports, framing, and formatting
- Fiber Carriers: SONET/SDH and OC
 - SONET remains primary standard for long-distance, high-speed, fiber-optic transmission systems
 - Defines interface standards at Physical and Data Link Layers
 - Most long distance pipes use rings-topo for fault tolerance
 - Rings can combine DS1, DS3, E1 signals into singular massive frames
 - Optical Carrier (OC) standards denote optical data-carrying capacity of fiber-optic cables in networking using SONET
 - OC speeds from 51.8 Mbps (OC-1) \rightarrow 39.8 Gbps (OC-768)
 - Wavelength Division Multiplexing (Dense WDM enables single-mode fibers to carry signals with wavelength via laser light colors = 7.6 Gbps (off a 51.8 Mbps OC-1)
 - o Coarse WDM is simpler, but limited to 60Km 10 GBase LX4 nets
 - SONET uses STS Signal Method two parts: payload and overhead
 - Payload = data, overhead = signal and protocol info
 - o STS 1, 3, 17, 24, 48, 192, 256, 768
- Packet Switching
 - Enables interconnecting of multiple T1, T3, OCs rather than just P2P (First Gen called X.25 Packet Switching Protocol)
 - WAN connections use either Frame Relay or ATM
 - Frame Relav
 - T-carrier lines, on-again-off-again LAN traffic L1 + L2 OSI (frames, not packets)
 - Switches frames quickly, no integrity guarantee
 - High-level protocols do integrity checks
 - o ATM
 - Asynchronous Transfer Mode voice, video, data in one via short, fixed length "cell" frames (53 bytes) 152.52-622.08 Mbps
 - o MPLS
 - Multiprotocol Label Switching
 - Replace Frame Relay and ATM
 - MPLS Label sits between L2 header and L3 info
 - o Label: A unique ID used by MPLS routers
 - o Exp: Relative value that determines importance
 - o S: single bit value, single packet with many labels
 - o TTL: Determines hop #
 - Allows routers to avoid running IP packets through full tables, relying on headers = faster
 - FEC set of packets that can be sent to the same place single broadcast domain
 - LSR looks for and forwards packets based on MPLS label
 - LER MPLS router that adds MPLS labels to incoming packets without one and stripping off ones that do

- o LDP LSRs and LERs use LDP to communicate dynamic state info
- LERs determine routers (entrances and exits for MPLS network) and add labels to packets as they leave FECs
 - LSRs strip away labels and add their own, progressing until packets leave opposing LER
- MPLS are good for end user VPNs
 - Permanent virtual circuits (PVCs), popular for connecting separate customer locations
- Real-World LAN
 - ISP/Telephone company runs T-carrier line to Demarc, installs CSU/DSU on other side, and connects to router
 - o Bit Error Rate Test (BERT) verifies T-carrier connection from end-to-end
- Alternative to Telephony WAN
 - o T1, T3, OC-x replaced with 10Gbps, 40Gbps, or 100Gbps Ethernet on single-mode fiber and connected to DWDM capable switches
 - Metropolitan Area Network (MAN)
 - Good for dedicated connections
- The Last Mile
 - Solutions: dial-up, DSL, Broadband cable, Satellite, Fiber
 - o Dial-up
 - Dedicated or dial up
 - Public Switched Telephone Network
 - Oldest/slowest regular telephone line from LEC local office
 - o Band rate of 2400 RJ45 jack
 - Modem jacked in goes to either NIC or Demarc
 - o Parallel data converted to serial digital then converted to analog
 - Modem and Universal Asynchronous Receiver/Transmitter (UART)
 - o Bit Rate vs Band Rate
 - To get modems past the 2400-band limit, modems modulated 2400-band single multiple times a second
 - V Standards
 - Modems query each other to determine fastest transfer rate
 - Standards established by CCITT V-Standards
 - \circ V.22 1200bps V.32 9600bps V.34 28kbps
 - V.22bis 2400bps V.32bis 14,400bps V.90 57,6kbps
 - V.92 57.6kbps (current standard)
 - V.42 error checking, V.42bis data compression, V.44 data compression
 - o MNP5 error check and data compression
 - ISDN * Integrated Services Digital Network
 - Two types of channels bearer channels carry data and voice information via DS0
 - Delta channel carry setup info and configuration info @ 16kbps
 - Common setup is 2B/ID Basic Rate Interface (BRI) setup
 - Primary Rate Interface (PRI) = T1 = 23 billion channels
 - Physical connections similar to PSTN
 - Jack \rightarrow Demarc \rightarrow ISP
 - o 18k feet within central office
 - Configure ISDN phone number and Service Profile ID
 - o DSL * Digital Subscriber Line
 - Fully digital, dedicated same physical devices as PTSN
 - Symmetric DSL (SDSL) equal upload/download speeds

- Asymmetric DSL (ADSL) different upload/download speeds (faster download)
- DSL Features
 - Data/voice simultaneous transit, same distance restrictions as ISDN (18kft) to central office, which has a DSL Access Multiplexer (DSLAM)
- Installing DSL
 - Pre-existing telephone lines, requires DSL filter on each POTS line
 - DSL modem → jack → NIC/computer → gateway router (Cat5/6 patch) → switch
 - 1st Gen Bridged Connection DSL pluggeddirect into NIC
 - o PPPoE then used for stronger control over DSL connection
 - Requires account and password
- Broadband Cable
 - Phenomenal top speed 5-200Mbps
 - Cable modem, coax cable → headend → cable company
 - Data over cable service interface specification (DOCSIS) currently v3.1
 - o F-coax connection + RJ45
- Satellite
 - One-way download only, PSTN/dial-up for uploads
 - Two-ways both upload/download
 - Computer \rightarrow satellite mod \rightarrow satellite dish
- o Fiber
 - Passive Optical Network single fiber to neighborhood switch
 - WDM multiple signals on same fiber
- Which Connection?
 - Availability, bandwidth
 - Using Remote Access
 - Use WAN + LAN
 - Dial up to internet, VPN, Remote Terminal, Private Dial-up, Dedicated Connection, VoIP
 - Dial-Up Internet
 - Old, rare, cheap good backup
 - Modem, ISP #, username/password, PPP connection type, IP info (DHCP)
 - o Private Dial-Up
 - Private network no internet requires two systems one is a remote access server (RAS), the other is the client with a connection tool
 - Window RRAS authenticate, file, print access dial-up modem
 - Must setup a server in LAN as RAS
 - o VPNs
 - Dedicated Connection
 - Remote connections, server disconnected
 - Still need DHCP + DNS dedicated between two locations (two locations and T1 line)
 - Dedicated to the internet
 - DSL + cable PPPoE info ADSL
 - Cable splitting degrades signal logarithmically
 - o Limit cable modem splits to no more than one
 - Remote Terminal
 - Telnet
 - WinFrame/MetaFrame/XenApp
 - Windows Terminal Services
 - Remote Desktop Protocol, VNC + SSH

Remote Desktop Connection

- o VoIP
 - IP network
 - RTP * Real-Time Transport Protocol majority standard
 - SIP + H.323 Session Initiation Protocol run on top of RTP
 - (SIP) port TCP 5060, 5061; H.323 port 1720
- Skype * Peer-to-Peer Incompatible with other VoIPs
 - Real-Time Streaming Protocol on top of RTP for video streaming
- WAN Troubleshooting Scenarios
 - Loss of Internet Connectivity
 - Proper configuration
 - Tools such as ping, ipconfig, netstat, nslookup
 - Interface Errors
 - Local Ethernet Interface/LAN Interfaces
 - Make sure all LAN connections are goo
 - Modem Checks
 - o LAN → WAN
 - Two interfaces
 - o DNS Issues
 - Choosing DNS server to use
 - Sometimes DNS servers fail or use helpers
 - Use a fast public DNS IP address (like Google) and load onto secondary DNS server as backup
 - o Interference
 - CPE can cause problems (EMI), shielded cables vs unshielded
 - Modem can fail too, splitters/splices
 - Every form of remote connection has very clear fault tolerances
 - Verify during installation or system changes

Chapter 14 – Wireless Networking

- Uses RF waves to enable communication
 - o unbound media
- share same OSI layers (except first two) and same protocols
 - o type of media and protocols for transmitting/receiving data
- IEEE 802.11 Wireless Standard WiFi
- WiFi Standards
 - 1990s 802.11 standard
 - 0 802.11
 - defines how to communicate and how to secure
 - 802.11 1997 defined certain features
 - wireless network cards
 - special configuration software
 - capability to run in multiple styles of networks
 - how transmissions work
 - o Hardware
 - Wireless Ethernet NICs
 - take data from upper OSI layers
 - encapsulate into frames not the same as 802.3

- send out in streams and receive frames as radio waves
- Wireless PCIe Ethernet Cards
 - or wireless USB network adapters (USB NICs)
 - o have "placeable" benefit for strongest signal
- Wireless Access Point (WAP)
 - Interconnect wireless network nodes with wired networks
 - operates like a hub, works at OSI Layer 1
 - often combined with built-in switch and/or router
- Software
 - every wireless network adapter needs a device driver and a configuration utility
 - configuration utility determines
 - link state connection
 - signal strength
 - mode, security encryption, power saving
- Wireless Networking Modes
 - uncommon ad hoc mode
 - direct connection
 - common infrastructure mode
 - uses WAP
 - AD HOC MODE
 - peer-to-peer, decentralized FFA
 - mesh topo, forming on Independent Basic Service Set (IBSS)
 - o basic unit or organization
 - o good for < 12 computers
 - INFRASTRUCTURE MODE
 - one or more WAPs, star topo
 - WLAN, connects wireless to wired
 - \circ single WAP \rightarrow Basic Service Set (BSS)
 - o more WAPs → Extended Service Set (ESS)
- o Range
 - theoretical maximum
 - practical is roughly 50% of listed
- o BSSID, SSID, ESSID
 - Basic Service Set ID basic infrastructure mode
 - one WAP and one or more wireless clients
 - same as MAC
 - Ad hocs use random 48bit string that functions like a MAC, going in every frame
 - Service Set ID applied to BSS/IBSS to help connection occur
 - network name 32bit ID in header of frames
 - Devices must share same SSID, found via SSID broadcast
 - Extended Service Set ID SSID applied to ESS
 - single broadcast domain via connection to central switch (one with the strongest signal)
 - connections change via roaming
- Broadcasting Frequency
 - interference, avoided with specific frequencies
 - originally 2.4 or 5.0 GHz
- o Broadcasting Methods

- original 802.11 spread spectrum small chunks over different frequencies within a range
 - three different spread-spectrums
 - Direct-Sequence Spread Spectrum (DSSS)
 - uses all frequencies, more bandwidth, greater throughput but sensitive to interference
 - Frequency-Hoping Spread Spectrum (FHSS)
 - one frequency at a time
 - Orthogonal Frequency Division Multiplexing (OFDM)
- Channels
 - portion of available spectrums
 - 2.4 Ghz → 14 channels, 20 Mhz bandwidth
 - o 1, 6, 11 are non overlapping default choices
 - $5.0 \, \text{Ghz} \rightarrow 40 \, \text{channels}$
- CSMA/CA
 - wired networks use CSMA/CD
 - wireless networks use CSMA/CA
 - both access network media without frame collision
 - Modern wired networks use full-duplex, no need for CSMA, wireless does not have benefit of full-duplex
 - CD uses back-off between collided nodes to randomly pick when to resend attempted packet transmission
 - wireless devices cannot detect collisions
 - radio is half-duplex
 - cant hear C source when A and B sources are talking
 - CA takes steps to avoid collisions preemptively
 - 802.11 standard two methods for CA
 - o Distributed Coordination Function (DCF)
 - Point Coordination Function (PCF)
 - Only DCF currently implemented
 - Back-off function + IFG
 - o receiver nodes must reply with ACK per frame
 - ACK tell other nodes to wait before attempting
 - wireless networking has overhead and latency, causing stalls and timeouts
 - throughput reduced, only "goodput" carries data
 - 802.11 | 2.4 | DSSS | 2Mbps | ~300' | 802.11 compatible
 - 802.11b | 2.4 | DSSS | 11Mbps | ~300' | not compatible
 - 802.11a | 5.0 | OFDM | 54Mbps | ~150' | not compatible
 - 802.11g | 2.4 | OFDM | 54Mbps | ~300' | 802.11b compatible
 - 802.11n | 2.4 | OFDM (QAM) | 100Mbps | ~300' | 802.11b/g compatible
 - 802.11ac | 5.0 | OFDM (QAM) | 1Gbps | ~300' | 802.11a compatible
- WPS
 - WiFi Protected Setup
 - push notification or PIN
 - easily hacked
- WiFi Security
 - no default security
 - 802.11 uses MAC address filtering, authentication, and data encryption
 - MAC Address Filtering
 - accepted user lists (like ACLs) white or blacklist
 - can be countered with Spoofing

- Wireless Authentication
 - 802.11i uses IEEE 802.1x → RADIUS + EAP
 - client supplicant → WAP Network Access Server → RADIUS → [Accept-Accept Authenticator] → user
 - PPP protects supplicant-NAS connection
 - IPsec protects NAS-RADIUS connection
 - both EAP encrypted
- o EAP
- PPP wrapper that EAP-compliant applications use to accept different forms of authentication, to allow two devices to authenticate
- EAP-PSK most popular, pre-shared key, uses AES
- EAP-TLS defines RADIUS use and mutual authentication
 - client-side certificate request
 - most secure
- EAP-TTLS
 - Tunnel TLS
 - single server-side certificate
 - common for more secure networks
- EAP-MS-CHAPv2
 - Protected EAP (PEAP)
 - password function
 - most common implementation
- EAP-MD5
 - weak, least common
- LEAP
 - Lightweight EAP
 - Cisco Specific
 - MS-CHAP authentication with RADIUS
- EAP-FAST
 - Flexible Auth via Secure Tunneling
 - Cisco replacement for LEAP
- o 802.1x
 - wired form of EAP
 - PPP replaced with Ethernet Frame
 - port-based authentication network access control mechanism for networks
 - devices go through full AAA process
 - combines RADIUS AAA with EAP
 - only wireless broadly adopted 802.1x
- Data Encryption
 - Data Encryption using WEP
 - 64 or 128 bit encryption
 - subject to WEP attacks
 - o IV leaves key short
 - o key is both static and shared
 - no user authentication
 - Data Encryption using WPA
 - 802.11i intermediate fix
 - dynamic encryption key generation (per user/per session)
 - o uses TKIP-RC4
 - hackable

- Data Encryption using WPA2
 - IEEE 802.11i
 - o TKIP-RC4 replaced with CCMP-AES
 - counter mode cipher blocking chaining message authentication code protocol)
 - o common to use PSK
 - no authentication unless using Enterprise version
 - use long complex passphrases for protection
- Enterprise Wireless
 - robust construction, centralized management, VLAN pooling, Power over Ethernet, Personal into Enterprise
 - Robust Device Construction
 - better materials
 - more configurable
 - upgradeable
 - Enterprise Wireless Administration
 - wireless controllers
 - Direct WAP thick client
 - WAP through Wireless Controller thin client
 - Lightweight Access Point Protocol (LWAPP) for interoperability
- o VLAN Pooling
 - pool of VLANs for single SSID and assign clients randomly
- o Power over Ethernet
 - IEEE 802.3af
 - power over ethernet 14.4 watts
 - o PoE+ 25.5 watts
- Implementing WiFi
 - site survey
 - install Aps
 - configure Aps and Clients
 - test network
 - Performing a Site Survey
 - floor plan
 - site survey tool
 - NETSCOUT AirMagnet Survey Pro
 - discover other wireless networks
 - What If Wireless is Already There?
 - set SSID and channel to avoid overlap
 - o use wireless analyzer
 - Acrylic WiFi
 - WAPs use algorithms to configure to least-congested channels
 - o issue with high density environments
 - o heat map
 - Interference Sources
 - objects, structures, appliances
 - o require 802.11n/802.11ac with 3-4 antennas or multiple WAPs
 - Installing the Client
 - wireless NIC for desktops, most mobile devices have wireless clients
 - PCIe or USB
- Setting up an Ad Hoc Network
 - rare but still possible

- o Configuring NICs requires four things after setting NIC
 - SSID same network to Ad Hoc
 - IP Addresses no two devices can have same
 - Channel
 - Sharing
- Ensure File and Printer Sharing running on all nodes
- Setting Up an Infrastructure Network
 - o Placing the Aps/Antennas
 - Three Types
 - omnidirectional
 - unidirectional
 - patch
 - Omnidirectional
 - dipole straight antennas, two radiating in opposite directions
 - o good for outdoors or single floor
 - o subject to a lot of bleed out
 - o can require a signal booster
 - o obstacles create deadspots
 - o antennas needed to strengthen RF output (measured in dB)
 - variable sizes
 - Unidrectional
 - use one or more directional antennas that focus signal into a beam
 - unidirectional came in several shapes
 - o parabolic dish
 - o yagi beam, narrow and focused
 - Patch
 - generate half-sphere beam
 - always placed on walls
 - fill room without broadcast to room behind patch
 - Optimal Antenna Placement
 - will vary depending on site survey, space, and security concerns
 - o Configuring the AP
 - browser-based setup utility
 - enter local IP and configure WAP
 - Configuring SSID and Beacon
 - make sure it is unique
 - Beacon Traffic is a major portion of wireless traffic
 - o broadcasted every 100ms
 - Configuring MAC Address Filtering
 - build a whitelist or blacklist
 - Configuring Encryption
 - generate unique security key
 - o WPA2 both NIC and WAPS
 - o bit size and passphrase
 - Configuring Channel and Frequency
 - in environments with overlapping networks
 - 802.11n either 2.4 Ghz or 5.0 Ghz
 - o Configuring the Client
 - infrastructure mode some SSID on all nodes and Aps
- Extending the Network
 - add one or more WAPs to create an Extended Service Set

- use a wireless bridge
- wireless range extenders
- Adding A WAP
 - cable from a switch
- Wireless Bridges
 - connect two wired networks together or wired and wireless
 - point-to-point two max
 - point-to-multipoint
- Verifying the Installation
 - o move traffic between nodes
- Troubleshooting WiFi
 - cant get on
 - slow connection
 - weird connection
 - No Connection
 - Channel Problems
 - channel overlap
 - o stick to 1, 6, 11
 - frequency mismatch
 - o correct SSID but different channel
 - o set to autochannel selection
 - security type mismatch
 - o manually set encryption type is wrong
 - o wrong passphrase
 - signal/power levels
 - o distance limitations and signal attenuation
 - get closer, avoid deadspots, increase WAP power, better antenna, upgrade to newer 802.11ac
 - Slow Connection
 - Overworked WAPs
 - device saturation
 - overcapacity
 - o jitter
 - latency
 - o bandwidth saturation
 - physical issues
 - o absorption
 - o reflection
 - o refraction
 - dealing with physical issues
 - o multipath
 - captive portal
 - o can slow due to it being an extra step in the login process
 - web browser requiring accepting EULA
 - interference
 - o RF interference
 - non-wifi and wifi sources
 - shutdown or remove devices
 - scan for with RF scanner
 - signal-to-noise ration
 - Weird Connection

- Open Networks
 - o non-encrypted
 - avoid logging in with SSID used in another location
 - provide security when you do
 - o wrong SSID
 - Rogue Aps
 - misclicks
 - Untested Updates/Incompatabilities
 - research and test updates
 - determine backwards compatibility
 - Rogue Aps
 - evil twin attacks
 - War Driving and War Chalking
 - marking physical addresses with open networks with chalk
 - rare

Chapter 15 – Virtualization and Cloud Computing

- Meet the Hypervisor
 - programming that helps handle vritualization
 - handle same input/output OS requests of hardware normally
 - virtualized BIOS and System Setup
 - host allocates actual RAM and CPU power
 - Emulation versus Virtualization
 - Virtualization takes hardware of host system
 - can only act exactly like host system
 - Emulation connects commands to/from host machine into a different platform
 - Desktop Virtualization
 - New \rightarrow OS Type \rightarrow Config RAM, Memory \rightarrow OSD/ISO file \rightarrow Virtual Desktop
 - Virtualization Benefits
 - power saving, hardware, consolidation, system recovery, system duplication, research potential
 - Virtualization in Modern Networks
 - servers, especially web/email are usually virtualized
 - bare-metal hypervisors (Type 1) vs software-based (Type 2)
 - VMware ESX, can be kept in thumb drives that loads basic interface
 - Hypervisors
 - bare-metal → VMware ESX, Microsoft Hyper-V, Citrix XenServer (open source, popular with cloud)
 - also Linux KVM
 - o Administering a Hypervisor
 - ESX, Hyper-V not administered directly at the box
 - VMware vSphere Client
 - Microsoft Hyper-V Manager
- ScalingVirtualization
 - Data Storage
 - SAN
 - Storage Area Network
 - takes a pool of hard disks and present them over the network as any number of logical disks

- allows read/write blocks over network
- various mapping options, and avoid performance cost of implementing a file system
- uses Fiber Channel, Internet Smaller Computer System Interface, and InfiniBand infrastructure
 - Fiber Channel high-performance storage specific to itself
 - iSCI uses TCP/IP, enabling communications across existing networks
 - performance costs, due partly to frame processing
 - use of jumbo frames to ease number of headers
 - InfiniBand unique NICs and cabling, provide interconnection between storage array and servers
 - aggregated links, commonly four or eight connections

- NAS
 - dedicated file server with own file system, need to perform file-sharing systems work for all clients
 - simple and low cost
- Virtual Networking
 - network admins create virtual version of network devices
 - Virtual Switches
 - oldest way to give VMs valid IPs is to bridge NIC Layer 2 of OSI Model
 - virtual NICs are same as physical NICs IP address, subnet masks, etc
 - bridging NICs use a virtual switch software that does the same as a physical L2 switch
 - VMs and host NIC are all connected to virtual switch
 - still need virtual routers and firewalls
 - o Distributed Switches
 - virtual ones use a web interface for configuration
 - growth is exponential so careful configuration is necessary
 - centralized installation, configuration, and handling of every switch is distributed switching
 - VLAN assignment, trunking
 - Virtual Routers and Firewalls
 - allow dynamic reconfiguration on networks
- Software Defined Networking
 - traditional hardware routers/switches are a control and data plane pair
 - control makes decisions on how to move traffic and speak routing protocols such as OSPF and BGP
 - Software Defined Networking cuts out control plane and uses network controller to dictate how physical/virtual network components move traffic through a network
 - data plane must be designed to take input from network controller
 - network controller is programmable
- To the Cloud
 - VMs are files, which can be placed and run in the cloud
- The Service-Layer Cake
 - o servers and networks are used through layers of software
 - local/cloud software divide is minimized
 - IaaS, PaaS, SaaS
 - Cloud Delivery Models
 - Public
 - Private
 - Community

Chapter 16 – Mobile Networking

- Mobile Network Technologies
 - 802.11 Wifi and Z-Wave
 - o Cellular WAN
 - generation based
 - GSM and EDGE, CDMA, HSPA+, LTE
 - GSM and Edge
 - Global System for Mobile Communications
 - first group 2G
 - time division multiplexing (multiple access) TDMA
 - TDMA enabled multiple uses to share same channel
 - GSM introduces subscriber identity module (SIM)
 - latest version Enhanced Data routers for GSIM Evolution (EDGE)
 - o CDMA
 - Code Division Multiple Access
 - Spread Spectrum Form of transmission
 - incompatible with TDMA
 - frequencies changed by user
 - lacked SIM
 - o HSPA+
 - International Telecommunication Union (ITU) IMT-2000
 - support for MMS
 - Evolved High Speed Packet Access (HSPA+) was final 3G standard ~ 10 Mbps
 - o LTE
 - Long Term Evolution
 - 4G ~ 300Mbps download, 75Mbps upload
 - SIM card
 - 0 802.11
 - hotspot configuration
 - general configuration options
 - open networks, saved wireless profiles, spoofed AP risk
 - o Bluetooth
 - PAN
 - more secure over time
 - o require manual setting to discovery/discoverable (timed)
 - o PIN use
 - early versions did not use one or both
 - o Bluejacking victimization
 - Bluesnarfing
 - Patching secure up to v4.0
 - Be aware of BlueBorne vulnerability
- Less Common Mobile Network Technologies
 - o NFC
 - low speed, short range
 - small monetary transactions
 - NFC tag and reader

- power derived from reader, not tag
- o RFID
 - many different standards between 120khz to 10Ghz
 - broader applications
 - common features
 - o close proximity >1m
 - o security weak or none
 - o labels common location
 - easier to read
- Infrared
 - androids have IP blasters
 - single commands with no risk to phone
- o ANT
 - Adaptive Network Technology
 - low speed and power
 - passive device and active reader
 - does not require a lot of resources and used for niche devices
 - AES encrypted
- o Z-Wave and Zigbce
 - home automation tech
 - Z-Wave is closed source, Zigbie is Open Source
- Deployment Models
 - o BYOD
 - o COBO corporate owned business only
 - o COPE corporate owned personal enabled
 - o CYOD choose your own device
- On-boarding and Off-boarding
 - o on-boarding requires previously unfamiliar device to go through a series of checks and scans
 - o off-boarding requires inspection that detects proprietary applications and any sensitive data and removes them
- Scenarios
 - Geofencing
 - Locating and Disabling Lost Mobile Devices
 - Hardening IoT Devices
- Locating and Disabling Lost Mobile Devices
 - o report loss/breach
 - o locate/recover device
 - o remote wipe
 - o define encryption to mark keys lost/stolen
 - o disable all associated accounts
 - o reissue new device and configure accordingly
- Hardening IoT Devices
 - o patch maintenance
 - o physical security
 - o internal security

Chapter 17 – Building a Real-World Network

- Designing a Basic Network
 - Seven Key Factors to Consider

- list of requirements
- device types/requirements
- environmental limitations
- equipment limitations
- compatibility requirements
- wired/wireless considerations
- security considerations
- Also consider cost and budget
- Define Network Needs
 - o workstations, servers, internal cabling, intermediate distribution frames, solid connectivity
 - o operating systems, network protocols, communication and industrial controls
- Documentation
 - o support configuration management
 - Network Diagrams
 - physical and logical components
 - Asset Management
 - versions, upgrade paths, software
 - Licensing Restrictions
 - o Inventory Management
 - o IP Address Utilization
 - Vendor Documentation
 - o Standard Operating Procedures
- Network Design
 - Workstations
 - OS's
 - Servers
 - Network Authentication and Management
 - Accounting and File Management
 - Intranet and Document Sharing
 - Development Environments and Software Repositories
 - NAS devices using CIFS, NFS, FTP
 - Equipment Room
 - centralized core
 - detailed rack diagrams
 - power management, power conversion/redundancy
 - dual power supplies
 - redundant circuits
 - battery backups, UPS's
 - o Peripherals
- Compatibility Issues
 - Cat types within cabling
 - isolate legacy systems
 - implemented with VLANs
- Internal Connections
 - o Structured Cabling
 - IDFs and 10GBaseT between buildings
 - Cat6a within buildings
 - Wireless
 - 802.11ac units controlled by unified wireless controller
 - > VLANS
 - by department and/or network services

- o Set up Network IP Address Scheme
 - document and male copies
- External Connections
 - o ISP, primary and fallback secondary
 - o metro ethernet line
 - Main Distribution Frame (MDF)
- Unified Communication
 - o VoIP
 - originally required several RJ45s for separate VoIP gateways that interface with PBX
 - classic Computer Telephony Integration (CTI)_
 - VoIP uses Real-Time Transport Protocol (RTP) on TCP ports 5004 and 5005 and Session initiation Protocol (SIP) on TCP ports 5060/5061
 - separation was an issue, leading to creation of Unified Communications
 - Unified Communication Features
 - provides presence information, video conferencing/real-time video, fax, messaging, collaboration tools, workflow
 - Real-Time Services (RTS's)
 - UC Network Components
 - UC Devices VoIP telephone
 - UC Servers dedicated box
 - UC Gateways edge devices
 - UC Protocols
 - SIP and RTP, H.323 (TCP 1720) or MGCP (TCP2427/2727)
 - SIP Trunking
 - connect PBX systems from multiple locations seamlessly over Internet via virtual connections called SIP Trunks
- VTC and Medianets
 - medianets help to eliminate or reduce connection issues of VoIP
 - network of far-flung routers and servers that provide QoS and bandwidth for VTC
 - o ISDN vs IP/SIP
 - Integrated Services Digital Network
 - 128kbps bandwidth
 - H.320 + compression
 - QoS and Medianets
 - differentiated services architecture that makes QoS work
 - DSCP
 - o Differentiated Services Code Point first 6 bits with 8 classes of service
 - ECN
 - Explicit Congestion Notification 2 bits
 - 00 not QoS aware
 - 01/10 QoS aware, not congested
 - 11 QoS aware, congested
 - both go into IP header
 - o assignable to ports as priority queues

- ICS
- things to monitor/control
- specialized, interconnected
- o DCS
 - ICS has three basic components
 - Input/Output Functions sensors/actuators
 - Controller

- Operator Interface
- Distributed Control System
 - local controllers connected centralized ICS server
 - interaction with human machine interface (HMI)
- o PLC
 - Programmable Logic Controller
- SCADA
 - Supervisory Control and Data Acquisition
 - large scale, distributed processes
 - remote connections, intermittent
 - Remote Terminal Unit
 - controllers replaced by TRUs
 - autonomous capability and long distance communications
 - risk of interception
- o Network Segmentation
 - security, reduce congestion, limit network problems
 - Using OSI
 - L1 Physical air gap
 - L2 Data Link VLANs, separate Broadcast Nets
 - L3 Network different subnets, block IPs
 - L4+ VPNs, separate SSIDs, domains, virtualization
- Segmentation and Industrial Control System
 - ICS's are closed networks
 - public wireless can be used to connect to RTUs
 - SCADA servers connect to internet to provide intranet
 - Defend with VPNs

Chapter 18 – Managing Risk

- Risk Management
- probability determination
- Security Policies
 - defines how an organization will protect IT infrastructure
 - internal/external
 - Acceptable Use Policy
 - Ownership
 - Network Access
 - Privacy/Consent to Monitoring
 - Illegal Use
 - Network Access Policies
 - o who can access, how they can access it, and what can be accessed
 - Privileged User Agreement Policy
 - o aware of access without escalating a permission request
 - o role separation
 - Password Policy
 - o strength, rotation frequency
 - Data Loss Prevention Policy
 - o data access levels
 - o backups, redundancy

- Remote Access Policy
 - o VPNs
 - o open portals
- Externally Imposed Policies
 - Government and Regulation
 - o international export controls, licensing restrictions
 - o HIPAA
 - Adherence to Policies
 - o difficult, requiring review and update regularly
- Change Management
 - change infrastructure in organized, safe way
 - change management team
 - investigate, test, authorize
 - Strategic-Level Changes
 - management-level, major in scope
 - Infrastructure-Level Changes
 - Department-level
 - Initiating the Change
 - Change Requests
 - type of change
 - configuration procedures
 - rollback process
 - potential impact
 - notification
 - o Dealing with the Change Management Team
 - approval process
 - review, funding, approval
 - Making the Change Happen
 - purchasing, training
 - maintenance window
 - authorized downtime
 - notification of change
 - Documenting the Change
 - change management documentation
 - network configurations, additions
 - physical location changes
 - o Patching and Updates
 - similar to change management and regular maintenance
 - every piece of software and firmware
 - OS updates
 - network server-based patching
 - o test then distribute
 - device drivers
 - features and changes/updates
 - major vs minor updates
 - vulnerability patching with immediate application
 - minor patches implemented in a cycle
 - Firmware updates
 - manual process, but infrequent
 - o How to Patch

- Research
- Test
- Configuration Backup
 - downgrade/rollback
- Training
 - end use awareness and training, ensure understanding of
 - security policies
 - passwords
 - system and workplace security
 - social engineering
 - malware
- Points of Failure
 - avoid single points
 - ID critical assets and critical nodes
- Critical Assets
 - typically senior management process
- Critical Nodes
 - IT equipment
 - file server, web server, peripherals, edge routers
- High Availability
 - work without interruption/downtime via failover
 - detect when a muster has failed and subsystems take over
 - using virtual IP, clusters accepting traffic from a single common IP
 - Redundant Backup
 - virtual open Router redundancy Protocol (VRRP)
 - Cisco Proprietary Hot Standby Router Protocol (HSRP)
 - multiple routers ganged together into a single virtual router with single virtual IP address
 - o used a default gateway
 - o doesn't load balance
- Redundancy
 - Alternate Business Practices
 - Fault Tolerance
 - clustering
 - load balancing
- Standard Business Documents
 - Service Level Agreement (SLA)
 - Definition of service provided
 - equipment
 - technical support
 - Memorandum of Understanding
 - parties commit to perform for each other and a time frame for MOU
 - define costs, contacts, logistics, etc. for occasional business partnership
 - Multi-source Agreement
 - defines interoperability of components between manufacturers
 - Statement of Work
 - legal contract between vendor and customer
 - services/products, time frames, milestones
 - Nondisclosure Agreements
- Security Preparedness
 - Vulnerability Scanning

- Microsoft Baseline Security Analyzer
- Nmap
 - Zenmap GUI
- Nessus
- OpenVAS
- Vulnerability Management
- o Penetration Testing
 - Aircrack-ng
 - Metasploit
 - Armitage GUI
 - Kali Linux
- Contingency Planning
 - o Incident Response
 - first responders
 - address, ignore, escalate, resolve
 - evaluate scope and course
 - restore and prevent
 - Disaster Recovery
 - recovery of primary infrastructure
 - snapshots, backups, archives
 - Traditional Backup Techniques
 - full backup
 - incremental backup
 - differential backup
 - o Backup Plan Assessment
 - determine data loss and restoration potential
 - Recovery Point Potential Objective
 - Recovery Time Objective
 - Mean Time Between Failures (MTBF)
 - Mean Time To Failure (MTTF)
 - Mean Time To Recovery (MTTR)
 - o Business Continuity
 - Business Continuity Planning
 - Backup Sites
 - o Cold, Warm, Hot
 - Succession Planning
- Forensics
 - Certifications
 - Certified Forensic Computer Examiner IACIS
 - Certified Computer Examiner ISFCE
 - Certified Forensic Analyst GIAC
 - o First Responder
 - support first responder
 - capture hard drive and RAM
 - secure area
 - document scene copious notes
 - o collect evidence Chain of Custody
 - Interface with Authorities
 - o legal hold and electronic discovery

- Safety
 - Electrical Safety

- danger of electricity
- grounding
- static
 - ESD
- Physical/Installation Safety
 - proper attire
 - cable clutter avoidance
 - lifting/moving equipment
- Rack Installation and Maintenance
 - Power
 - proper power source
 - o 20amp dedicated circuit minimum
 - o each rack should have UPS
 - single power converter per rack
 - Mounting
 - secure with screws, secure racks themselves
 - enclosed, open frame, and goal post
 - tool safety
 - Environment
 - environmental controls
 - optimized airflow
 - o HVAC
 - fire suppression
 - MSDS
 - Emergency Procedures
 - building layout, fire escape plan, safety and emergency exits, fail open/fail closed, emergency alert system

Chapter 19 – Protecting Your Network

- Network Threats
 - Spoofing
 - spoof data for impersonation
 - Src MAC/IP addresses
 - emails, web addresses, usernames
 - DNS cache poisoning
 - counter with DNSSEC
 - Packet/Protocol Abuse
 - NTP for example
 - use of peers for accurate time keeping
 - query servers with htpdc monlist
 - o query can be used for DoS
 - malformed packets via Scapy with incorrect info can break servers
 - o Zero-Days
 - o ARP Cache Poisoning
 - falsification of device info to disrupt network traffic
 - allows for MitM attacks
 - o Dynamic ARP Inspection and DHCP Snooping
 - DAI tracks good ARP info, blocking bad/unknown ARP commands

- DHCP snoops will block unknown MAC devices
- enhanced port protection
- Denial of Service
 - render incoming request processing as unavailable
 - amplification through monlist commands
 - botnet use
 - reflective DDoS attacks
 - traffic spiking
- Deauthentication Attack
 - targets 802.11 WiFi, kicking clients off network WAP
 - rogue WAP grabs connection
- o Man in the Middle Attack
 - covert traffic interception
 - rogue WAPs or ARP cache poisoning
- Session Hijacking
 - grabs authentication information
- o Brute Forcing
- Physical/Local Access
 - Compromised System
 - counter with fault tolerance and redundant systems
 - Insider Threats
 - Trusted/Untrusted Users
 - unsecured access to private resources
 - compromise of trusted user accounts
 - forgotten temporary upgrades of untrusted user privileges
 - default device credentials
 - o remove guest accounts and change default logins
 - Malicious Users
 - packet sniffing
 - network/port mapping
 - banner grabbing
 - MAC OUI number collection and research
- VLAN Hopping
 - Administrative Access Control
 - Access Control Lists
 - careful control of admin accounts
- Malware
 - o cryptomalware/ransomware
 - o viruses
 - o worms
 - o macros
 - application macro exploits
 - o logic bombs
 - o trojans
 - o rootkits
 - o adware/spyware
- Social Engineering
 - o Phishing
 - o Physical Intrusion
- Common Vulnerabilities
 - Unnecessary Running Servies

- disable them to limit TCP/UDP open ports
 - be wary of blocked ports
- Unpatched/Legacy Systems
 - update systems as needed with proper process
 - isolate legacy systems
 - system life cycle policies address asset disposal
- o Unencrypted Channels
 - Telnet vs SSH
 - using HTTP vs HTTPS
 - Insecure remote desktops like VNC
 - using insecure protocols in the clear
- Cleartext Credentials
 - FTP, Telnet, POP3 credentials are sent in cleartext
 - poor configurations of applications
 - password authentication protocol (cleartext)
- o RF Emanation
 - RF spill as they penetrate physical mediums
 - NSA TEMPEST to counter
 - rarely need
- Hardening Your Networks
 - Physical Security
 - prevention and control to IT resources to appropriate personnel
 - track actions of authorized personnel
 - locks, key control, guards, mantraps, badges
 - tamper detection, biometrics, multifactor
 - Monitoring
 - video surveillance, CCTV, IP cameras, motion activated
 - Network Security
 - Access Control
 - Controlling User Accounts
 - principle of least privilege
 - improper/unauthorized access
 - File Permissions/Groups
 - effective permissions but be wary of conflicting permissions
 - avoid default accounts
 - inheritance between folders and subfolders
 - Edge
 - devices that have been optimized to perform a given task
 - installed closer to a client than the core and keeps local copies of necessary databases
 - Posture Assessment
 - Network Access Control (NAC)
 - verify node meets certain criteria before joining network
 - Cisco Network Admission Control
 - Posture Assessment
 - query network devices to ensure meet minimum security standards
 - AV, QoS, OS version/type, real/virtual machine, keylogger presence
 - o Persistent and Non-Persistent Agents
 - Agents answer posture assessment queries by scanning the computer to create an inventory of config info, resources, assets
 - persistent agents, once installed, stay installed and run upon each boot

- non-persistent agents are downloaded via portal/network and released from memory once client leaves
- Cisco Access Control Server decides to accept/deny a node
 - ACS directs edge device to allow a connection or deny
- As there are devices outside of workstations, 802.1z supplicants in the form of either an agent or client
 - agent-less client assessment
- Guest Networks and Quarantine Networks
 - denied or devices that fail assessment are sent to quarantine or guest networks
- Device Hardening
 - o changing default credentials, avoiding common password, keep network devices up to date, disable unnecessary services, using secure protocols, disabling unused ports
- Host Security
- Malware Prevent and Recovery
 - o Malware Prevention
 - frequency of symptoms
 - detection of symptoms
 - o Symptoms
 - sluggishness, crashes, increased network outflow, "top talkers"
 - o Dealing with Malware
 - AV, training and awareness, patch management, remediation
 - AV, host, network, or cloud based
 - signature based
- Firewalls
 - o software (host based) or hard (network based)
 - Advanced Firewall Techniques and Features
 - stateful inspection
 - packet part of an existing connection
 - stateless inspection
 - all packets are inspected regardless
 - Application/Context aware firewalls are at L7 of OSI Model and filter traffic based on traffic source
 - address port hopping applications
 - Next-Generation Firewalls (NGFW)
 - operates at multiple layers of OSI
 - L3 IP filter
 - L5 port filter
 - L7 application filter
 - Unified Threat Management
 - firewall and IPS and load balancing
- Implementing and Configuring Firewalls
 - o place between internet and internal network
 - performance critical from connection speed
- Restricting Access via ACLs
 - allow/deny traffic
 - implicit deny
 - assign ACL to interface
 - apply to each direction
 - web content/IP filtering
 - o DMZ and Firewall Placement.

- network segment carved out by firewall routers to provide a special place on the network for any servers that need to be publicly accessible from the Internet
- network segmentation
 - create perimeter network with different levels of trust
- Honeypots and Honeynets
- Troubleshooting Firewalls
 - misconfigured firewalls, variance in definitions, incorrect ACL settings, misconfigured applications

Chapter 20 – Network Monitoring

- SNMP
 - o de facto management protocol for TCP/IP
 - SNMP Manager requests/processes info from devices
 - managed devices run agents
 - Management Information Bases categorizes data that can be queried
 - o SNMP Manager runs specialized software called Network Management Stations
 - extensible protocol
 - Once established, SNMP network runs regular queries to managed devices and gather in usable format
 - eight core functions
 - Protocol Data Unit
 - GET query an agent
 - Response agent reply
 - Set NMS tells agent to make changes
 - Trap agent solicits info from NMS
 - can also automate tasks
 - snmpwalk utility
 - eventmanagement capability
 - o SNMPv1-v3
 - UDP ports 161/162
 - NMS listens on port 162, agent lists on port 161
 - unsecure unless with TLS
 - ports 10162/10161
- Monitoring Tools
 - packet sniffers
 - o protocol analyzers
 - o interface monitors
 - measure various metrics
 - bandwidth/throughput
 - utilization
 - packet drops
 - error rate
 - discards
 - interface resets
 - Cisco Network Assistant
 - o performance monitors
 - tied to a particular OS or app
 - Windows Performance Monitor (PerfMon)

- syslog (mac, linux)
- o logs
- o baselines
- Log Management
 - ensure log security, and maintain logs
 - control access, ensure safe/secure storage
 - o cyclical storage
- Network Operations Center
 - SNMP with Graphing program or alerts via Nagios Network Analyzer
 - look for top talkers and bottlenecks
- SIEM
 - o monitor and manage networks
 - SEM security event monitoring
 - SIM security information management
 - o file integrity monitoring (FIM) checks
 - attributes and file size
 - config values
 - content
 - credentials
 - hash values
 - privileges and security settings
 - o detect changes to indicate possible compromise

Chapter 21 – Network Troubleshooting

- Troubleshooting Tools
 - Hardware Tools
 - Cable Testers, TDRs, OTDRs
 - cabling issues typically crop up during installation or change
 - o lacking continuity, shorts, wire map problem, crosstalk, noise pickups, impedence, mismatch, echo
 - testers detect continuity
 - TDRs/OTDRs locate cable breaks (copper and fiber respectively)
 - Certifiers
 - handle rated capacity
 - detect crosstalk, attenuation, interference, impedance, mismatch
 - needs loopback adapter
 - Light Meter
 - measure light loss
 - Voltage Quality Recorder/Temperature Monitor
 - heat/power issues affect connectivity
 - HVAC issues
 - Cable Strippers/Snips
 - make UTP cables
 - need crimper as well
 - punchdown tool
 - Multimeter
 - test AC/DC voltage, resistance, continuity
 - Tone Probes and Tone Generators

- help locate particular cables
- used together
- Punchdown Tools
 - UTP wires into 66 and 110 blocks
- Software Tools
 - built in and third party
 - tracerouter/tracert
 - detect router path between two points
 - windows sends ICMP, Linux sends UDP or ICMP
 - ipconfig/ifconfig/ip
 - arp
- view/change arp table
- ping, pathping, arping
 - try arping if ping is blocked
 - pathping combins ping and traceroute
- nslookup/dig
- mtr
- route
 - display and edit local system routing table
 - shows routing table with route print or netstat -r
- netstat and ss
 - current state of all the running IP processes on a system
- Packet Sniffer/Protocol Analyzer
 - wireshark, tcpdump
- Port Scanners
 - Nmap, Angry IP Scanner
- Throughput Testers
 - measure data flow on network
 - online speed-test sites
- Looking Glass Sites
 - allow for testing of connectivity outside of local environment
- The Troubleshooting Process
 - don't make problem worse
 - backup at risk data beforehand
 - o ID problem
 - gather info, replicate problem, question, ID symptoms, determine changes, separate problems
 - Establish Theory of Probably Cause
 - even the obvious, multiple approaches, topDown/BottomUp, OSI model
 - Test Theory
 - confirm or reformulate
 - o Plan Action to Resolve Problem, ID Side Effects
 - o Implement/Escalate
 - o Verify System Function, Implement Prevention
 - o Document
- Resolving Common Network Service Issues
 - Hands On Problems
 - physical and configuration problems
 - power failure/anomalis
 - hardware failure

- o link light statuses
- transceiver failure
- o EMI/RFI
- Interface Errors
 - o incorrect termination
 - o crossover cables, wrong cable type
 - incorrect IP config
 - incorrect default gateway
 - incorrect netmask setting
 - o simultaneous wired/wireless connection handling and priority
- o LAN Problems
 - duplicate IP addresses, expired IP addresses
 - duplicate MAC addresses
 - exhausted DHCP scope
 - Client Misconfiguration
 - incorrect netmask or gateway issue
 - Server Misconfigurations
 - misconfigured DHCP (host), or DNS (server)
 - o unresponsive serve or names not resolving
 - o ping by address but not name?
 - DNS issues
 - Adding VLANs
 - interface misconfiguration
 - VLAN mismatch
 - cable placement errors
 - Link Aggregation Errors
 - NIC Teaming
 - LACP and PAgP
 - o two or more connections can work together simultaneously
 - devices need two or more interconnected network interfaces configured for LACP
 - active/passive ports (never two passive)
 - teaming misconfiguration
 - multicast must be enabled on all devices
- o WAN Problems
 - local machine, LAN switches, WAN routers, distant network switches, distant machines
 - router configuration issues, issues with ISPs, frame sizes, misconfigured multilayer network appliances, certificate issues, company security policies
 - Router Problems
 - Router Configuration Issues
 - Incorrect ACLs
 - Missing IP routes
 - ISPs/MTDs
 - MTU mismatch, corrected by PMTD but PMTD uses ICMP (blocked by routers)
 - Appliance Problems
 - o technician error
 - NAT Interface Misconfiguration
 - Certificate Problems
 - o untrusted

- Company Security Policy
 - o blocking policy, fair access policy, utilization limits, throttling policy
- Beyond Local
 - Escalate
 - o Broadcast Storms
 - o Switching Loops
 - o Proxy ARP
 - VPN concentrator misconfigured proxies can cause DoS
- End to End Connectivity
 - o ensure users are connected with essential resources within a smaller network
 - o ensure proper ports are open on an application server
 - o right people have right permissions to access resources and white list and black list ACLs are setup correctly

END			