Лабораторная работа №7. Элементы криптографии. Однократное гаммирование

дисциплина: Информационная безопасность

Рыбалко Элина Павловна

Содержание

Цель работы	5
Объект/Предмет исследования	6
Теоретическое введение	7
Выполнение лабораторной работы	8
Вывод	10
Контрольные вопросы	11
Список литературы	13

Список иллюстраций

1	D												
l	Разработанное приложение											•	9

Список таблиц

Цель работы

Освоить на практике применение режима однократного гаммирования.

Объект/Предмет исследования

Режим однократного гаммирования.

Теоретическое введение

Гаммирование представляет собой наложение (снятие) на открытые (зашифрованные) данные последовательности элементов других данных, полученной с помощью некоторого криптографического алгоритма, для получения зашифрованных (открытых) данных. Иными словами, наложение гаммы — это сложение её элементов с элементами открытого (закрытого) текста по некоторому фиксированному модулю, значение которого представляет собой известную часть алгоритма шифрования.

В соответствии с теорией криптоанализа, если в методе шифрования используется однократная вероятностная гамма (однократное гаммирование) той же длины, что и подлежащий сокрытию текст, то текст нельзя раскрыть. Даже при раскрытии части последовательности гаммы нельзя получить информацию о всём скрываемом тексте. [1] (#список-литературы).

Выполнение лабораторной работы

Нужно подобрать ключ, чтобы получить сообщение «С Новым Годом, друзья!». Требуется разработать приложение, позволяющее шифровать и дешифровать данные в режиме однократного гаммирования. Приложение должно:

- 1. Определить вид шифротекста при известном ключе и известном открытом тексте (см. рис. -@fig:001).
- 2. Определить ключ, с помощью которого шифротекст может быть преобразован в некоторый фрагмент текста, представляющий собой один из возможных вариантов прочтения открытого текста (см. рис. -@fig:001).

```
[22] import string
       import random
       def f_hkey(text):
         return ' '.join(hex(ord(i))[2:] for i in text)
       def f_key(size):
         return ''.join(random.choice(string.ascii_letters+string.digits) for _ in range(size))
       def enscryption(text, key):
         return ''.join(chr(a^b) for a,b in zip (text, key))
       def decryption(text, encrypt):
        return ''.join(chr(a^b) for a,b in zip (text, encrypt))
(23] #message = 'C Новым Годом, друзья!'
       message = (input("Введите сообщение: "))
       key = f_key(len(message))
       hex_key = f_hkey(key)
       print("Используемый ключ: ", key)
       print("Ключ в шестнадцатиричносм виде: ", hex_key)
       encrypt = enscryption([ord(i) for i in message], [ord(i) for i in key])
       hex_encrypt = f_hkey(encrypt)
       print("Зашифрованное сообщение", hex_encrypt)
       decrypt = enscryption([ord(i) for i in encrypt], [ord(i) for i in key])
       print("Расшифрованное сообщение", decrypt)
       Введите сообщение: С Новым Годом, друзья!
       Используемый ключ: xgSgFPPeQu9PkAMfVwwnkq
       Ключ в шестнадцатиричносм виде: 78 67 53 67 46 50 50 65 51 75 39 50 6b 41 4d 66 56 77 77 6e 6b 71
       Зашифрованное сообщение 459 47 44e 459 474 41b 46c 45 442 44b 40d 46e 457 6d 6d 452 416 434 440 422 424 50
       Расшифрованное сообщение С Новым Годом, друзья!
/ [24] compute_key = decryption([ord(i) for i in message], [ord(i) for i in encrypt])
       decrypt_compute_key = enscryption([ord(i) for i in encrypt], [ord(i) for i in key])
       print("Исходный ключ: ", key)
       print("Расшифровка открытого текста", decrypt_compute_key)
       Исходный ключ: xgSgFPPeQu9PkAMfVwwnkq
       Расшифровка открытого текста С Новым Годом, друзья!
```

Рис. 1: Разработанное приложение

Вывод

Освоили на практике применение режима однократного гаммирования.

Контрольные вопросы

1. Поясните смысл однократного гаммирования.

Гаммирование представляет собой наложение (снятие) на открытые (зашифрованные) данные последовательности элементов других данных, полученной с помощью некоторого криптографического алгоритма, для получения зашифрованных (открытых) данных.

2. Перечислите недостатки однократного гаммирования.

Объём ключевого материала совпадает с объемом передаваемых сообщений. Необходимо иметь эффективные процедуры для выработки случайных равновероятных двоичных последовательностей и специальную службу для развоза огромного количества ключей.

3. Перечислите преимущества однократного гаммирования.

Простота реализации, теоретически гарантированная стойкость.

4. Почему длина открытого текста должна совпадать с длиной ключа?

Используется однократная вероятностная гамма (однократное гаммирование) той же длины, что и подлежащий сокрытию текст, то текст нельзя раскрыть. Даже при раскрытии части последовательности гаммы нельзя получить информацию о всём скрываемом тексте.

5. Какая операция используется в режиме однократного гаммирования, назовите её особенности?

Сложение происходит по модулю мощности алфавита. Если зашифровывается текст, представленный в двоичном виде, то операция шифрования представляет собой исключающее или (XOR), примененное к ключу и открытому тексту.

6. Как по открытому тексту и ключу получить шифротекст?

Если известны ключ и открытый текст, то задача нахождения шифротекста заключается в применении к каждому символу открытого текста сложения по модулю между символом открытого текста и символом ключа.

7. Как по открытому тексту и шифротексту получить ключ?

Если известны шифротекст и открытый текст, то задача нахождения ключа решается так, что обе части равенства необходимо сложить по модулю 2 с Рі. Открытый текст имеет символьный вид, а ключ — шестнадцатеричное представление. Ключ также можно представить в символьном виде, воспользовавшись таблицей ASCII-кодов.

- 8. В чем заключаются необходимые и достаточные условия абсолютной стойкости шифра?
- полная случайность ключа; равенство длин ключа и открытого текста; однократное использование ключа.

Список литературы

- 1. Лабораторная работа №7
- 2. Использование однократного гаммирования
- 3. Руководство по формуле Cmd Markdown
- 4. Руководство по оформлению Markdown файлов