# LC22-Cinétique homogène



Permanganate acidifié, à O,O1mol/L  $MnO_{4~(aq)}^{-} + H_{(aq)}^{+}$ 



Solution d'ions Fe(II) à 0,05mol/L  $Fe_{(aq)}^{2+}$ 



Solution d'acide oxalique à O,O5mol/L  $H_2C_2O_4$ 



$$-MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$$

$$-MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$$

$$-Fe^{2+} = Fe^{3+} + e^{-}$$

$$-MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$$
$$-Fe^{2+} = Fe^{3+} + e^-$$

$$MnO_4^- + 5Fe^{2+} + 8H^+ = Mn^{2+} + 5Fe^{3+} + 4H_2O$$

$$-MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$$

$$-Fe^{2+} = Fe^{3+} + e^{-}$$

$$MnO_4^- + 5Fe^{2+} + 8H^+ = Mn^{2+} + 5Fe^{3+} + 4H_2O$$

$$-MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$$
$$-H_2C_2O_4 = 2CO_2 + 2H^+ + 2e^-$$

$$-H_2C_2O_4 = 2CO_2 + 2H^+ + 2e^{-1}$$

$$2MnO_4^- + 5H_2C_2O_4 + 6H^+ = 2Mn^{2+} + 10CO_2 + 8H_2O$$

$$-MnO_{4}^{-} + 8H^{+} + 5e^{-} = Mn^{2+} + 4H_{2}O$$

$$-Fe^{2+} = Fe^{3+} + e^{-}$$

$$-MnO_{4}^{-} + 8H^{+} + 5e^{-} = Mn^{2+} + 4H_{2}O$$

$$-MnO_{4}^{-} + 8H^{+} + 5e^{-} = Mn^{2+} + 4H_{2}O$$

$$-H_{2}C_{2}O_{4} = 2CO_{2} + 2H^{+} + 2e^{-}$$

$$E(V)$$

$$MnO_{4}^{-} + 5H_{2}C_{2}O_{4} + 6H^{+} = 2Mn^{2+} + 10CO_{2} + 8H_{2}O$$

$$E(V)$$

$$MnO_{4}^{-} + 5H_{2}C_{2}O_{4} + 6H^{+} = 2Mn^{2+} + 10CO_{2} + 8H_{2}O$$

$$O_{4}^{-} + 5H_{2}C_{2}O_{4} + 6H^{+} = 2Mn^{2+} + 10CO_{2} + 8H_{2}O$$

$$O_{4}^{-} + 5H_{2}C_{2}O_{4} + 6H^{+} = 2Mn^{2+} + 10CO_{2} + 8H_{2}O$$

$$O_{4}^{-} + 5H_{2}C_{2}O_{4} + 6H^{+} = 2Mn^{2+} + 10CO_{2} + 8H_{2}O$$

$$O_{4}^{-} + 5H_{2}C_{2}O_{4} + 6H^{+} = 2Mn^{2+} + 10CO_{2} + 8H_{2}O$$

$$O_{4}^{-} + 5H_{2}C_{2}O_{4} + 6H^{+} = 2Mn^{2+} + 10CO_{2} + 8H_{2}O$$

$$O_{4}^{-} + 5H_{2}C_{2}O_{4} + 6H^{+} = 2Mn^{2+} + 10CO_{2} + 8H_{2}O$$

$$O_{4}^{-} + 5H_{2}C_{2}O_{4} + 6H^{+} = 2Mn^{2+} + 10CO_{2} + 8H_{2}O$$

$$O_{4}^{-} + 5H_{2}C_{2}O_{4} + 6H^{+} = 2Mn^{2+} + 10CO_{2} + 8H_{2}O$$

$$O_{4}^{-} + 5H_{2}C_{2}O_{4} + 6H^{+} = 2Mn^{2+} + 10CO_{2} + 8H_{2}O$$

$$O_{4}^{-} + 5H_{2}C_{2}O_{4} + 6H^{+} = 2Mn^{2+} + 10CO_{2} + 8H_{2}O$$

$$O_{4}^{-} + 5H_{2}C_{2}O_{4} + 6H^{+} = 2Mn^{2+} + 10CO_{2} + 8H_{2}O$$

$$O_{4}^{-} + 5H_{2}C_{2}O_{4} + 6H^{+} = 2Mn^{2+} + 10CO_{2} + 8H_{2}O$$

$$O_{4}^{-} + 5H_{2}C_{2}O_{4} + 6H^{+} = 2Mn^{2+} + 10CO_{2} + 8H_{2}O$$

$$O_{4}^{-} + 5H_{2}^{-} + 6H^{-} + 10CO_{2} + 8H_{2}O$$

$$O_{4}^{-} + 5H^{-} + 10CO_{2} + 8H^{-} + 10CO_{2} + 10CO_{2}$$

 $CO_2 + -0.48 H_2 C_2 O_4$ 

|      | $MnO_4^-$     | $+ 5Fe^{2+}$  | + 8 <i>H</i> + | $=Mn^{2+}$ - | + 5 <i>Fe</i> <sup>3+</sup> + | - 4 <i>H</i> <sub>2</sub> <i>O</i> |
|------|---------------|---------------|----------------|--------------|-------------------------------|------------------------------------|
| E.I. | $[MnO_4^+]_0$ | $[Fe^{2+}]_0$ | $[H^{+}]_{0}$  | 0            | 0                             | excès                              |
|      |               |               |                |              |                               |                                    |

|      | $MnO_4^-$     | $+ 5Fe^{2+}$  | + 8 <i>H</i> + = | $=Mn^{2+}$ - | + 5 <i>Fe</i> <sup>3+</sup> + | 4H <sub>2</sub> O |
|------|---------------|---------------|------------------|--------------|-------------------------------|-------------------|
| E.I. | $[MnO_4^+]_0$ | $[Fe^{2+}]_0$ | $[H^{+}]_{0}$    | 0            | 0                             | excès             |
|      |               |               |                  |              |                               |                   |



|      | $MnO_4^-$         | $+ 5Fe^{2+}$       | + 8 <i>H</i> + = | $=Mn^{2+}$ | + 5 <i>Fe</i> <sup>3+</sup> + | - 4 <i>H</i> <sub>2</sub> <i>O</i> |
|------|-------------------|--------------------|------------------|------------|-------------------------------|------------------------------------|
| E.I. | $[MnO_4^+]_0$     | $[Fe^{2+}]_0$      | $[H^{+}]_{0}$    | 0          | 0                             | excès                              |
| Àt   | $[MnO_4^+]_0 - x$ | $[Fe^{2+}]_0 - 5x$ | $[H^+]_0 - 8x$   | x          | 5x                            | excès                              |



| $MnO_4^-$ | + | $5Fe^{2+}$ | $+ 8H^{+}$ | $= Mn^{2+} + 5Fe^{3+} + 4H_2O$ |
|-----------|---|------------|------------|--------------------------------|
|-----------|---|------------|------------|--------------------------------|

| E.I. | $[MnO_4^+]_0$ | $[Fe^{2+}]_0$ | $[H^{+}]_{0}$ | 0 | 0 | excès |
|------|---------------|---------------|---------------|---|---|-------|
|------|---------------|---------------|---------------|---|---|-------|

Àt  $[MnO_4^+]_0 - x$   $[Fe^{2+}]_0 - 5x$   $[H^+]_0 - 8x$  x 5x excès





$$MnO_4^- + 5Fe^{2+} + 8H^+ = Mn^{2+} + 5Fe^{3+} + 4H_2O$$
E.I.  $[MnO_4^+]_0$   $[Fe^{2+}]_0$   $[H^+]_0$  0 0 excès

Àt  $[MnO_4^+]_0 - x$   $[Fe^{2+}]_0 - 5x$   $[H^+]_0 - 8x$  x 5x excès

$$|\nu_1|A_1+\cdots+|\nu_n|A_n \to |\nu_{n+1}|A_{n+1}+\cdots+|\nu_{n+k}|A_{n+k}$$
 
$$v_i < 0 \ r\'{e}actifs$$
 
$$v_i > 0 \ produits$$

Vitesse de réaction volumique :  $v = \frac{1}{v_i} \frac{d[A_i]}{dt}$ 

| Bécher n°                                                                      | 1  | 2  | 3  |
|--------------------------------------------------------------------------------|----|----|----|
| Solution de KI à 0,2 mol.L <sup>-1</sup><br>V <sub>KI</sub> (mL)               | 5  | 10 | 15 |
| Solution de H <sub>2</sub> SO <sub>4</sub> à 0,5 mol.L <sup>-1</sup><br>V (mL) | 5  | 5  | 5  |
| Veau distillée (mL)                                                            | 15 | 10 | 5  |







| Bécher n°                                                                      | 1  | 2  | 3  |
|--------------------------------------------------------------------------------|----|----|----|
| Solution de KI à 0,2 mol.L <sup>-1</sup><br>V <sub>KI</sub> (mL)               | 5  | 10 | 15 |
| Solution de H <sub>2</sub> SO <sub>4</sub> à 0,5 mol.L <sup>-1</sup><br>V (mL) | 5  | 5  | 5  |
| V <sub>eau distillée</sub> (mL)                                                | 15 | 10 | 5  |







# 2-1-Suivi cinétique



20 mL diiode  $I_2$  à  $1,00.10^{-4} mol. L^{-1}$ 



10 mL acide chlorhydrique HCL à 0,1 mol/L et 20mL propanone à 2mol/L

| Solution | Propanone                     | HCI                              | I <sub>2</sub> dans KI                       |
|----------|-------------------------------|----------------------------------|----------------------------------------------|
| Sı       | 20 mL à 2 mol.L-1             | 10 mL à 0,1 mol.L <sup>-1</sup>  | 20 mL à 10 <sup>-4</sup> mol.L <sup>-1</sup> |
| $S_2$    | 20 mL à 2 mol.L-1             | 10 mL à 0,05 mol.L <sup>-1</sup> | 20 mL à 10 <sup>-4</sup> mol.L <sup>-1</sup> |
| $S_3$    | 20 mL à 1 mol.L <sup>-1</sup> | 10 mL à 0,1 mol.L <sup>-1</sup>  | 20 mL à 10 <sup>-4</sup> mol.L <sup>-1</sup> |

Se ramener à une loi cinétique de la forme  $v=k[A]^q$ 

#### Méthode de la dégénérescence de l'ordre

- 1. Soit une réaction de loi cinétique  $v=k[A]^{\alpha}[B]^{\beta}.$
- 2. On introduit B en large excès :  $[B]_0 \gg [A]_0$ .
- 3. Alors, au cours du temps  $[B](t) \approx [B]_0$ .
- 4. La loi cinétique apparente est alors :

$$v = k_{app}[A]^{\alpha}$$
 avec  $k_{app} = k[B]_0^{\beta}$ 

5. On détermine alors  $\alpha$ On peut déterminer la constante de vitesse comme  $k=\frac{k_{app}}{[B_0]^{\beta}}$ .

### Se ramener à une loi cinétique de la forme $v = k[A]^q$

#### Méthode de la dégénérescence de l'ordre

- 1. Soit une réaction de loi cinétique  $v = k[A]^{\alpha}[B]^{\beta}$ .
- 2. On introduit B en large excès :  $[B]_0 \gg [A]_0$ .
- 3. Alors, au cours du temps  $[B](t) \approx [B]_0$ .
- 4. La loi cinétique apparente est alors :

$$v = k_{app}[A]^{\alpha}$$
 avec  $k_{app} = k[B]_0^{\beta}$ 

5. On détermine alors  $\alpha$ On peut déterminer la constante de vitesse comme  $k=\frac{k_{app}}{|B_0|^{\beta}}$ .

#### Méthode du mélange stœchiométrique

- 1. Soit une réaction de loi cinétique  $v = k[A]^{\alpha}[B]^{\beta}$ .
- 2. Un mélange est stœchiométrique si les quantités de réactifs initiales sont telles que :

$$\frac{[A]_0}{a} = \frac{[B]_0}{b}$$

où a et b sont les coefficients stocchiométriques absolues de A et B.

3. Dans ces conditions à chaque instant ultérieur :

$$\frac{[A](t)}{a} = \frac{[B](t)}{b}$$

4. La loi cinétique apparente est alors :

$$v = k_{app}[A]^q$$

avec  $q = \alpha + \beta$  l'ordre global et  $k_{app} = k \left(\frac{b}{a}\right)^{\beta}$ 

5. On détermine alors q

#### Méthode différentielle

$$v = k[A]^q \Rightarrow \ln(v) = \ln(k) + q\ln([A])$$

- 1. On mesure [A](t).
- 2. On en déduit  $v=\frac{1}{\nu_A}\frac{d[A]}{dt}$  par dérivation numérique de [A](t).
- 3. On trace alors la courbe représentative de la fonction  $\ln(v) = f(\ln([A](t)))$ .
- 4. Si la courbe n'est pas une droite, la réaction n'admet pas d'ordre
- 5. Si la courbe peut-être modélisée par une droite alors la réaction admet un ordre
  - le coefficient directeur est l'ordre q de la réaction,
  - l'ordonnée à l'origine vaut  $\ln k$  : on en déduit la valeur de la constante de vitesse k.

#### Méthode différentielle

$$v = k[A]^q \Rightarrow \ln(v) = \ln(k) + q\ln([A])$$

- 1. On mesure [A](t).
- 2. On en déduit  $v=\frac{1}{\nu_A}\frac{d[A]}{dt}$  par dérivation numérique de [A](t).
- 3. On trace alors la courbe représentative de la fonction  $\ln(v) = f(\ln(|A|(t)))$ .
- 4. Si la courbe n'est pas une droite, la réaction n'admet pas d'ordre
- 5. Si la courbe peut-être modélisée par une droite alors la réaction admet un ordre
  - le coefficient directeur est l'ordre q de la réaction,
  - l'ordonnée à l'origine vaut ln k : on en déduit la valeur de la constante de vitesse k.

#### Méthode intégrale

- On mesure la concentration d'un réactif ou d'un produit [A](t) au cours du temps.
- 2. On suppose que la réaction admet un ordre et on émet une hypothèse sur sa valeur.
- On teste ensuite cette hypothèse par une ajustement d'une certaine fonction de f([A]) variant linéairement avec t. la fonction f dépend de l'ordre testé.

Ordre 0 : 
$$[A](t) = [A]_0 + \nu_A k$$
 t,

Ordre 1 : 
$$\ln[A](t) = \ln[A]_0 + \nu_A k$$
 t,

Ordre 2: 
$$\frac{1}{[A](t)} = \frac{1}{[A]_0} + \nu_A k$$
 t.

#### Méthode différentielle

$$v = k[A]^q \Rightarrow \ln(v) = \ln(k) + q\ln([A])$$

- On mesure [A](t).
- 2. On en déduit  $v = \frac{1}{\nu_A} \frac{d[A]}{dt}$  par dérivation numérique de [A](t).
- 3. On trace alors la courbe représentative de la fonction  $\ln(v) = f(\ln(|A|(t)))$ .
- 4. Si la courbe n'est pas une droite, la réaction n'admet pas d'ordre
- 5. Si la courbe peut-être modélisée par une droite alors la réaction admet un ordre
  - le coefficient directeur est l'ordre q de la réaction,
  - l'ordonnée à l'origine vaut ln k : on en déduit la valeur de la constante de vitesse k.

#### Méthode intégrale

- On mesure la concentration d'un réactif ou d'un produit [A](t) au cours du temps.
- 2. On suppose que la réaction admet un ordre et on émet une hypothèse sur sa valeur.
- On teste ensuite cette hypothèse par une ajustement d'une certaine fonction de f([A]) variant linéairement avec t. la fonction f dépend de l'ordre testé.

Ordre 0 : 
$$[A](t) = [A]_0 + \nu_A k$$
 t,

Ordre 1 : 
$$\ln[A](t) = \ln[A]_0 + \nu_A k$$
 t,

Ordre 2: 
$$\frac{1}{[A](t)} = \frac{1}{[A]_0} + \nu_A k$$
 t.

#### Méthode du temps de demi-réaction

Temps de demi-réaction pour une réaction d'ordre 0

$$t_{1/2} = -\frac{[A]_0}{2k\nu_A}$$

Temps de demi-réaction pour une réaction d'ordre 1

$$t_{1/2}=-\frac{\ln 2}{k\nu_A}$$

Temps de demi-réaction pour une réaction d'ordre 2

$$t_{1/2} = -\frac{1}{k\nu_A[A]}$$

## 2-3-Interpretation microscopique



# 2-3-Interpretation microscopique



#### Profil énergétique :



# 2-3-Interpretation microscopique

