PROC TTEST, PROC CORR, Output Delivery System

Shannon Pileggi

STAT 330

The data

Data

PROC TTEST

PROC CORR

Beat the Blues data

- enrolled patients with depression/anxiety
- randomly assigned them to Treatment as Usual (TAU) or BtheB, a new treatment delivery therapy via computers
- measured depression via Beck Depression Inventory (BDI) at baseline (pre-treatment), and 2, 4, 6, and 8 month follow up
- ▶ BDI scores range from 0 to 63 with higher scores indicating more severe depression

Get to know the data

```
SAS Code

libname flash "C:/Users/spileggi/Google Drive/STAT330/Data";

proc contents data=flash.BtheB varnum; run;

proc freq data=flash.BtheB; run;

proc print data=flash.BtheB (obs=10); run;

SAS Code
```

First 6 observations

			S	SAS outpu	ıt			
Obs	drug	length	treatment	bdi_pre	bdi_2m	bdi_4m	bdi_6m	bdi_8m
1	No	>6m	TAU	29	2	2		
2	Yes	>6m	BtheB	32	16	24	17	20
3	Yes	<6m	TAU	25	20			
4	No	>6m	BtheB	21	17	16	10	9
5	Yes	>6m	BtheB	26	23			
6	Yes	<6m	BtheB	7	0	0	0	0
			ç	SAS outpu	ıt.			

Review

On your own: Match the appropriate statistical method for each research question.

- 1. one-sample t-test
- 2. two sample t-test
- 3. paired t-test
- 4. correlation

- ___ Is there a strong linear relationship
 between bdi_pre and bdi_2m?
 - _ Does the population average of bdi_pre differ from 20?
- On average in the population, does bdi change between the pre and 2m measurements?
- Does population average bdi differ by whether or not patients were on anti-depressants (drug)?

Dat

PROC TTEST

PROC CORE

Overview of PROC TTEST

- ► One sample t-test
- Paired t-test (use PAIRED statement)
- ► Two sample t-test (use CLASS statement)
- Options include
 - ► HO = null value
 - ► ALPHA = significance level
 - ► SIDES = U (upper) L (lower) 2 (two-sided)

One sample t-test

Does the population average baseline depression score differ from 20, at $\alpha=0.05$? Test H_0 : $\mu=20$ vs H_A : $\mu\neq20$

```
PROC TTEST DATA = flash.BtheB HO = 20 ALPHA = 0.05 SIDES = 2;

VAR bdi_pre ;

RUN ;

SAS Code _____
```

Default settings are $\boxed{\text{ALPHA} = 0.05}$ and $\boxed{\text{SIDES} = 2}$, so the only thing you must specify for this test is the null value of 20.

One sample t-test output

We (do/do not) have evidence that the (population/sample) mean baseline BDI score differs from 20.

- 1. do; population
- 2. do; sample
- 3. do not; population
- 4. do not; sample

Two sample t-test

Does the population average baseline depression score differ among patients who were and were not on antidepressants (drug), at $\alpha = 0.05$? Test H_0 : $\mu_1 = \mu_2$ vs H_A : $\mu_1 \neq \mu_2$

```
PROC TTEST DATA = flash.BtheB ALPHA = 0.05 SIDES = 2;

VAR bdi_pre;

CLASS drug;

RUN;

SAS Code
```

Default settings are H_0 : $\mu_1 = \mu_2$, ALPHA = 0.05, and SIDES = 2, .

Two sample t-test output

drug	Method	Mean	95% CI	L Mean	Std Dev	95% CL	Std Dev
No		21.5536	19.1502	23.9570	8.9745	7.5662	11.0320
Yes		25.5909	21.7669	29.4149	12.5778	10.3921	15.9364
Diff (1-2)	Pooled	-4.0373	-8.3174	0.2427	10.7059	9.3941	12.4470
Diff (1-2)	Satterthwaite	-4.0373	-8.5069	0.4322			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	98	-1.87	0.0642
Satterthwaite	Unequal	74.911	-1.80	0.0760

	Equality	of Varia	nces	s			
Method	Num DF	Den DF	F Value	Pr > F			
Folded F	43	55	1.96	0.0185			

We (do/do not) have evidence that the population mean baseline BDI differs among the two groups. Furthermore, we have evidence that μ_{yes} is (greater/less) than μ_{no} .

- 1. do; greater
- 2. do; less
- 3. do not; greater
- 4. do not; less

4 D > 4 B > 4 E > 4 E > E 990

Paired t-test

Does the population average baseline depression score change between baseline and two month follow-up, at $\alpha = 0.05$? Let $\mu_d = \mu_{pre} - \mu_{2m}$; test H_0 : $\mu_d = 0$ vs H_A : $\mu_d \neq 0$

```
PROC TTEST DATA = flash.BtheB HO = 0 ALPHA = 0.05 SIDES = 2;
PAIRED bdi_pre*bdi_2m;
RUN;
SAS Code
```

Default settings are $\boxed{\text{H0=0}}$, $\boxed{\text{ALPHA} = 0.05}$, and $\boxed{\text{SIDES} = 2}$, so these options do not need to be specified.

For the paired t-test, you cannot use CLASS or VAR statements.

Paired t-test output

We (do/do not) have evidence that the population mean BDI changes between baseline and 2 month follow up. Furthermore, we have evidence that μ_{pre} is (greater/less) than

- 1. do; greater
- 2. do; less

 μ_{2m} .

- 3. do not; greater
- 4. do not; less

Checking conditions

In general, conditions required for a t-test include:

- 1. Independent observations
- 2. Normal underlying distribution $OR \ n > 30$ (in each group for the two sample case)

On your own: How would you go about checking these conditions in SAS? What procedures/options would you use?

Dat

PROC TTES

PROC CORR

Overview of PROC CORR

- ▶ PROC CORR calculates Pearson's correlation coefficient by default
 - measures the strength of the linear relationship between two quantitative variables
- ► To obtain Spearman's Rank Correlation use PROC CORR SPEARMAN
 - measures monotonic relationships between two variables (does not require linear relationship)
- Use the VAR and WITH statements to specify the variables for computing the correlation matrix:
 - ► VAR variables are listed across columns
 - WITH variables are listed along rows
 - ▶ If WITH variables are omitted, then VAR variables are listed on both columns and rows produces redundant information.

Correlation

What is the strength of the linear relationship between baseline BDI and the follow-up BDI measurements?

```
PROC CORR DATA = flash.BtheB;

VAR bdi_pre;

WITH bdi_2m bdi_4m bdi_6m bdi_8m;

RUN;
```

Correlation select output

ე∠	11.13 4 0∠	ყ.ა სუა4	ວ/ ອ.ປບບບບ	U	
100	23.33000	10.84049	2333	2.00000	

Pearson Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations		
	bdi_pre	
bdi_2m	0.61422 <.0001 97	
bdi_4m	0.56912 <.0001 73	
bdi_6m	0.50773 <.0001 58	
bdi_8m	0.38351 0.0050 52	

The p-value tests H_0 : $\rho = 0$ vs H_A : $\rho \neq 0$.

On your own:

1. How important do you think the p-value is here?

Producing plots with PROC CORR

How do you determine if Pearson's correlation is appropriate?

```
ods graphics on;
proc corr data=flash.BtheB plots=matrix;
   var bdi_pre;
   with bdi_2m bdi_4m bdi_6m bdi_8m;
run;
ods graphics off;

SAS Code ______
```