02_Dynamic Behavior of System and Linear System

1. Solution to Linear ODE and Matrix Exponential

Autonomous Case

General Case

Matrix Exponential

A is diagonal

A is diagonalizable

 ${\cal A}$ is not diagonalizable

2. Qualitative Analysis of System

Phase Portraits

Limit Cycle

3. Lyapunov Stability Analysis

Stability Definitions

Lyapunov Stability Analysis

Region of Attraction

Bifurcation

4. Frequency Domain Analysis

Time-Domain Solution

From State-Space Model to Frequency Domain Analysis

Bode Plots

Nyquist Graph

5. Stability of Linear ODE: State-Space Model

6. Skills in Linear Systems Analysis

Linearization

State Coordinate Change

Summary

1. Solution to Linear ODE and Matrix Exponential

Autonomous Case

$$rac{d}{dt}x(t)=Ax(t),\quad x(0)=x_0$$

has solution

$$x(t)=e^{At}x_0$$

where

$$e^{At} := I + At + A^2 \frac{t^2}{2!} + A^3 \frac{t^3}{3!} + \dots$$

General Case

For system $\dot{x} = Ax + Bu$, the solution is

$$x(t)=e^{At}\left[x_0+\int_0^t e^{-At}Bu(au)d au
ight]$$

Matrix Exponential

A is diagonal

$$A = \left[egin{array}{cccc} a_1 & 0 & \cdots & 0 \ 0 & a_2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & a_n \end{array}
ight] \Rightarrow e^A = \left[egin{array}{cccc} e^{a_1} & 0 & \cdots & 0 \ 0 & e^{a_2} & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & e^{a_n} \end{array}
ight]$$

A is diagonalizable

Case 1: If A has n distinct eigenvalues

If
$$A=T^{-1}DT$$
, then $e^A=T^{-1}e^DT$

$oldsymbol{A}$ is not diagonalizable

Things may become more complex, we just choose one case: A has eigenvalues with multiplicity

• Jordan Transformation

$$TAT^{-1} = J = \left[egin{array}{ccccc} J_1 & 0 & \cdots & 0 & 0 \ 0 & J_2 & 0 & 0 & 0 \ dots & & \ddots & \ddots & dots \ 0 & 0 & & J_{k-1} & 0 \ 0 & 0 & \cdots & 0 & J_k \end{array}
ight]$$

where
$$J_i = \left[egin{array}{ccccc} \lambda_i & 1 & 0 & \dots & 0 \ 0 & \lambda_i & 1 & & 0 \ dots & & \ddots & \ddots & dots \ 0 & 0 & & \lambda_i & 1 \ 0 & 0 & \dots & 0 & \lambda_i \end{array}
ight]$$

• Exponential

$$e^{Jt} = \left[egin{array}{ccccc} e^{J_1t} & 0 & \cdots & 0 & 0 \ 0 & e^{J_2t} & 0 & 0 & 0 \ dots & \ddots & \ddots & dots \ 0 & 0 & e^{J_{k-1}t} & 0 \ 0 & 0 & \cdots & 0 & e^{J_kt} \end{array}
ight]$$

where
$$e^{J_i t} = \left[egin{array}{ccccc} 1 & t & rac{t^2}{2!} & \cdots & rac{t^{n-1}}{(n-1)!} \ 0 & 1 & t & rac{t^{n-2}}{(n-2)!} \ dots & \ddots & \ddots & dots \ 0 & 0 & & 1 & t \ 0 & 0 & \cdots & 0 & 1 \end{array}
ight] e^{\lambda_i t}$$

•
$$e^{At} = T^{-1}e^{Jt}T$$

2. Qualitative Analysis of System

Phase Portraits

- ullet Mainly for 2-dimensions systems, consider planar case, $\,x\in R^2$
- Plot with the two states on the axis

Pendulum:
$$\dot{x} = \begin{bmatrix} x_2 \\ \sin x_1 - c x_2 + u \cos x_1 \end{bmatrix}$$
, $x_1 = \theta$, $x_2 = \dot{\theta}$

Limit Cycle

- The solutions in the phase plane **converge to a circular trajectory**
- In the time domain this corresponds to an oscillatory solution

Example: $\dot{x} = y + x(1 - x^2 - y^2)$, $\dot{y} = -x + y(1 - x^2 - y^2)$

3. Lyapunov Stability Analysis

Stability Definitions

Equilibrium Point

 x_{e} is an $\operatorname{ extbf{ extbf{e}}}$ for $\dot{x}=f(x)$ if $f\left(x_{e}
ight)=0$

• Note that for linear ODE the origin is an equilibrium point

Lyapunov stable

An equilibrium point x_e is **Lyapunov stable** if

$$orall \epsilon > 0, \exists \delta > 0: \left\| x_0 - x_e
ight\| < \delta
ightarrow \left\| x\left(t, x_0
ight) - x_e
ight\| < \epsilon, orall t \geq 0$$

Asymptotically Stable

An equilibrium point x_e is **asymptotically stable** if

1. it is Lyapunov stable

2.
$$x\left(t,x_{0}
ight)
ightarrow x_{e}, ext{ as } t
ightarrow\infty$$

Local Stable (Local Asymptotically Stable)

A solution to be **Locally Stable** if it is stable for all initial condition $x \in B_r(a)$, where

$$B_r(a) = x: ||x - a|| < r$$

Global Stable

A system is **globally stable** if it is stable for all r>0

Lyapunov Stability Analysis

Consider system $\dot{x}(t)=f(x(t)), x(0)=x_0, V(x)$ be scalar function having continuous first derivatives, satisfying

- 1. V(x) is positive definite
- 2. $\dot{V}(x)=rac{dV(x)}{dx}\dot{x}$ is negative definite

Then the system is asymptotically stable

- V(x) is called *Lyapunov function*
- V(x) can be a **measure for the total energy** in the system

For Linear Systems

If $A^TP+PA<0$ the function V(x) is a Lyapunov Function

Region of Attraction

Set of all initial conditions that converge to a given asymptotically stable equilibrium point

Bifurcation

Definition: Bifurcation

Consider the nonlinear system

$$\dot{x} = F(\mu, x)$$

where μ is a set of parameters that describe the family of equations

<u>Bifurcation</u> at $\mu = \mu^*$ if the behavior of the system changes qualitatively at μ^*

Example

Example (Bicyle)

 $\phi = {\rm roll\ angle}$

 $\delta = \text{steer angle}$

 $v_0 = \text{velocity}$

Model:

$$M \begin{bmatrix} \ddot{\phi} \\ \ddot{\delta} \end{bmatrix} + C v_0 \begin{bmatrix} \dot{\phi} \\ \dot{\delta} \end{bmatrix} + (K_0 + K_2 v_0^2) \begin{bmatrix} \phi \\ \delta \end{bmatrix}$$

For state $x=\left[\begin{array}{ccc}\phi & \delta & \dot{\phi} & \dot{\delta}\end{array}\right]^T$ the model becomes:

$$\dot{x} = \left[\begin{array}{cc} 0 & I \\ -M^{-1}(K_0 + K_2 v_0^2) & -M^{-1}Cv_0 \end{array} \right] x = A(v_0) \, x$$
 eigenvalue change with v

4. Frequency Domain Analysis

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

Time-Domain Solution

$$x(t)=e^{At}\left[x_0+\int_0^t e^{-At}Bu(au)d au
ight]$$
 If $u(t)=e^{st},\ s
eq \lambda(A)\Rightarrow x(t)=e^{At}x_0+e^{At}(sI-A)^{-1}\left(e^{(sI-A)t}-I
ight)B$

From State-Space Model to Frequency Domain Analysis

$$y(t) = G(s)u(t)$$
, for $u(t) = e^{st}$

where

$$G(s) = C(sI - A)^{-1}B + D$$

$$= \frac{C\operatorname{adj}(sI - A)B + D\operatorname{det}(sI - A)}{\operatorname{det}(sI - A)}$$

Then we define **Gain** and **Phase**

$$G(s) = M(s)e^{j\phi(s)}$$

Bode Plots

The graph of Gain and Phase regarding to input frequency

Nyquist Graph

Loop Transfer Function

Loop transfer function is obtained by breaking the feedback loop

$$L(s) = P(s)C(s)$$

From Block Diagram to Loop Transfer Function

Nyquist Graph

Nyquist Graph is the curve $L(j\omega)$ in the complex plane parameterized by ω

$$L(s) = \frac{1.4e^{-s}}{(s+1)^2}$$
 Re
$$-1$$

$$L(i\omega)$$

Nyquist Stability Theorem (Simplified Version)

Assume that L has **no poles in the closed right half-plan**e except for **single** poles on the imaginary axis

The closed loop system is stable if and only if the closed contour $L(j\omega)$ does not encircle the point -1 in the clockwise direction.

5. Stability of Linear ODE: State-Space Model

For LTI system $\dot{x}=Ax, x\in\mathbb{R}^n$, stability of equilibrium is related to the **eigenvalues** of state matrix A

- Stable if $Re(\lambda_i) \leq 0$
- Asymptotically Stable if $Re(\lambda_i) \leq 0$
- State Coordinate Change does not change the eigenvalues

6. Skills in Linear Systems Analysis

Linearization

Consider the system $\dot{x}=f(x,u)$. For a steady-state or equilibrium point (x_0,u_0,y_0) there holds

$$f\left(x_0,u_0
ight)=0 \ y_0=g(x_o,u_0)$$

Look at **small variation**s \tilde{x} , \tilde{u} , and \tilde{y} about the equilibrium (x_0, u_0, y_0) :

$$x(t) = x_0 + \tilde{x}(t)$$

$$u(t) = u_0 + \tilde{u}(t)$$

$$y(t) = y_0 + \tilde{y}(t)$$

Then, we have

$$\dot{ ilde{x}}(t) = A ilde{x}(t) + B ilde{u}(t) \ ilde{y}(t) = C ilde{x}(t) + D ilde{u}(t)$$

$$A=\left.rac{\partial f}{\partial x}
ight|_{egin{array}{c} x\equiv x_0 \ u=u_0 \end{array}}, B=\left.rac{\partial f}{\partial u}
ight|_{egin{array}{c} x\equiv x_0 \ u=u_0 \end{array}} C=\left.rac{\partial g}{\partial x}
ight|_{egin{array}{c} x\equiv x_0 \ u=u_0 \end{array}}, D=\left.rac{\partial g}{\partial u}
ight|_{egin{array}{c} x\equiv x_0 \ u=u_0 \end{array}}$$

Proof Procedure:

First of all note that $\,\dot{ ilde{x}}(t)=\dot{x}-\dot{x_0}=\dot{x},$ and so

$$egin{aligned} \dot{ ilde{x}}(t) &= f\left(x_0 + ilde{x}(t), u_0 + ilde{u}(t)
ight) \ y_0 + ilde{y}(t) &= g\left(x_0 + ilde{x}(t), u_0 + ilde{u}(t)
ight) \end{aligned}$$

Use **Taylor expansion** to describe nonlinear equations in terms of \tilde{x} and \tilde{u} :

$$egin{aligned} \dot{ ilde{x}}(t) &= f\left(x_0, u_0
ight) + A ilde{x}(t) + B ilde{u}(t) \ ilde{y}(t) &= g\left(x_0, u_0
ight) + C ilde{x}(t) + D ilde{u}(t) - y_0 \end{aligned}$$

and at the same time, we have $f\left(x_{0},u_{0}
ight)=0$ and $y_{0}=g\left(x_{0},u_{0}
ight)$

State Coordinate Change

Consider the original system

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

with z(t)=Tx(t) or $\ x(t)=T^{-1}z(t)$ with T is non-singular matrix, we will have

$$\dot{z}(t) = A'z(t) + B'u(t)$$
$$y(t) = C'z(t) + D'u(t)$$

with

$$A' = TAT^{-1} \quad B' = TB$$

$$C' = CT^{-1} \quad D' = D$$

• The transfer function keeps unchanged before and after the state coordinate change

$$Y(s) = \left(C(sI-A)^{-1}B + D\right)U(s)$$

Summary

- Solution to Autonomous ODE and Matrix Exponential
 - Solution for Autonomous system
 - o Matrix Exponential
 - Series Definition
 - Diagonal and Diagonalizable
 - Not Diagonalizable: Multiplicity Eigenvalue Case
- Qualitative Analysis
 - Phase Portraits
 - o Limit Cycle
 - Oscillation
- Lyapunov Stability Analysis
 - Definitions: Stable, Asymptotically, Exponentially, Globally ...
 - Lyapunov Stability Analysis: Lyapunov Function
 - Region of Attraction for initial conditions
 - Bifurcation
- Frequency Domain Analysis
 - State-Space ⇒ Frequency Domain
 - Bode Plots
 - Loop transfer function, Nyquist Graph and Nyquist Stability Criterion
- State Space Analysis

- For nonlinear system: **linearization**
- For linear system: state coordinate change: transfer function keeps unchanged