Gabarito da Lista 3

Ex.1 a)

Proof. A recíproca não é necessariamente verdadeira. Se existem $d, u, v \in \mathbb{Z}$ tais que $d = u \cdot a + v \cdot b$, isso não implica que d = mdc(a, b). **Refutação:** Seja a = 2 e b = 3. Então, para u = 1 e v = 0, temos $d = u \cdot a + v \cdot b = 2$. No entanto, mdc(2,3) = 1, que é diferente de 2.

Ex.1 b) Se $\exists u, v \in \mathbb{Z}$ tais que $1 = u \cdot a + v \cdot b$, então mdc(a, b) = 1.

Proof. Suponha que $1 = u \cdot a + v \cdot b$. Se mdc(a,b) = d > 1, então a e b são ambos divisíveis por d. Ou seja, existem inteiros k_1 e k_2 tais que:

$$a = d \cdot k_1$$

$$b = d \cdot k_2$$

Agora, considere uma combinação linear de a e b, que é da forma:

$$u \cdot a + v \cdot b$$

Substituindo os valores de a e b em termos de d, obtemos:

$$u \cdot a + v \cdot b = u \cdot (d \cdot k_1) + v \cdot (d \cdot k_2)$$
$$= d \cdot (u \cdot k_1 + v \cdot k_2)$$

A expressão acima é claramente divisível por d, pois d é um fator comum. Portanto, qualquer combinação linear de a e b será divisível por d. No entanto, 1 não é divisível por d > 1, o que é uma contradição. Portanto, mdc(a, b) = 1. \square

Ex.2 a)

- 1. Se mdc(a, b) = 1, então $a \in b$ são coprimos.
- 2. Se p é primo, então mdc(p, a) = 1 se e somente se p não divide a.
- 3. Se p é primo e p divide ab, então p divide a ou p divide b.

Proof. Suponha que mdc(a,n)=1 e $n\mid (ab)$. Isso significa que existe um inteiro k tal que ab=nk. Se $n\nmid b$, então pela contrapositiva da propriedade (2) temos que mdc(b,n)>1. Isso significa que b e n têm um divisor comum maior que 1. Como $n\mid ab$, pela propriedade 3, p deve dividir a uma vez que supomos que $n\nmid b$.No entanto, pela propriedade 2, isso contradiz nossa suposição inicial de que mdc(a,n)=1 (pois a e n não são coprimos). Portanto, $n\mid b$. □

Ex.2 b)

Proof. (⇒): Suponha que mdc(a,b) = 1. Queremos mostrar que $mdc(a,b^n) = 1$ para todo $n \ge 1$. Se p é um divisor primo de b^n , então p é um divisor primo de b. Como mdc(a,b) = 1, isso significa que p não divide a. Portanto, p não divide a e b^n simultaneamente. Isso é verdade para qualquer divisor primo de b^n , o que implica que $mdc(a,b^n) = 1$.

(\Leftarrow): Suponha que $mdc(a,b^n)=1$ para todo $n\geq 1$. Em particular, para n=1, temos mdc(a,b)=1.

Ex.2 c)

Proof. Suponha que mdc(a, n) = 1 e $n \mid (a^k b)$ para algum $k \ge 1$.

Usando o resultado do item (a), sabemos que se $n \mid (ab)$, então $n \mid b$. A partir do item (b), sabemos que mdc(a,n) = 1 implica que $mdc(a^k,n) = 1$ para todo $k \geq 1$. Isso significa que a^k e n são co-primos. Se $n \mid (a^kb)$, isso significa que n divide o produto de a^k e b. Mas como a^k e n são co-primos, a única maneira de n dividir o produto é se $n \mid b$.

Ex.3 a)

Proof. Prova por Indução Base da Indução: Para n = 1:

$$1^3 = \frac{1^2(1+1)^2}{4}$$
$$1 = 1$$

A igualdade é verdadeira para n=1.

Passo de Indução: Suponha que a afirmação seja verdadeira para algum n=k:

$$1^3 + 2^3 + \dots + k^3 = \frac{k^2(k+1)^2}{4}$$

Queremos provar que:

$$1^{3} + 2^{3} + \dots + k^{3} + (k+1)^{3} = \frac{(k+1)^{2}(k+2)^{2}}{4}$$

Usando a suposição de indução:

$$1^{3} + 2^{3} + \dots + k^{3} + (k+1)^{3} = \frac{k^{2}(k+1)^{2}}{4} + (k+1)^{3}$$
$$= \frac{k^{2}(k+1)^{2} + 4(k+1)^{3}}{4}$$
$$= \frac{(k+1)^{2}(k^{2} + 4(k+1))}{4}$$

$$= \frac{(k+1)^2(k^2+4k+4)}{4}$$
$$= \frac{(k+1)^2(k+2)^2}{4}$$

Por indução, a afirmação é verdadeira para todos n naturais.

Ex.3 b) Análise para os Primeiros Naturais:

Para n = 0:

$$0 \cdot 1 \cdot 2 = 0$$

Para n = 1:

$$0 \cdot 1 \cdot 2 + 1 \cdot 2 \cdot 3 = 0 + 6 = 6$$

Para n=2:

$$0 \cdot 1 \cdot 2 + 1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 = 0 + 6 + 24 = 30$$

Para n = 3:

$$0 \cdot 1 \cdot 2 + 1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + 3 \cdot 4 \cdot 5 = 0 + 6 + 24 + 60 = 90$$

Agora, vamos testar a fórmula proposta:

$$\frac{n(n+1)(n+2)(n+3)}{4}$$

Para n = 0:

$$\frac{0\cdot 1\cdot 2\cdot 3}{4}=0$$

Para n = 1:

$$\frac{1 \cdot 2 \cdot 3 \cdot 4}{4} = 6$$

Para n=2:

$$\frac{2\cdot 3\cdot 4\cdot 5}{4}=30$$

Para n = 3:

$$\frac{3\cdot 4\cdot 5\cdot 6}{4} = 90$$

Os resultados da fórmula proposta coincidem com os valores calculados para os primeiros naturais.

Proof. Para provar a fórmula, vamos usar indução matemática.

Base da Indução: Para n = 0:

$$\frac{n(n+1)(n+2)(n+3)}{4} = \frac{0 \cdot 1 \cdot 2 \cdot 3}{4}$$
$$= 0$$

O que coincide com o valor calculado.

Hipótese de Indução: Suponha que a fórmula seja verdadeira para algum n = k, ou seja:

$$\sum_{i=0}^{k} i(i+1)(i+2) = \frac{k(k+1)(k+2)(k+3)}{4}$$
 (1)

Queremos provar que: Para n = k + 1

$$\sum_{i=0}^{k+1} i(i+1)(i+2) = \frac{(k+1)((k+1)+1)((k+1)+2)((k+1)+3)}{4}$$
 (2)

Passo de Indução: Vamos provar para n = k + 1:

$$\begin{split} \sum_{i=0}^{k+1} i(i+1)(i+2) &= \sum_{i=0}^{k} i(i+1)(i+2) + (k+1)(k+2)(k+3) \\ &= \frac{k(k+1)(k+2)(k+3)}{4} + (k+1)(k+2)(k+3) \quad \text{(pela hipótese de indução)} \\ &= \frac{k(k+1)(k+2)(k+3) + 4(k+1)(k+2)(k+3)}{4} \\ &= \frac{(k+1)(k+2)(k+3)(k+4)}{4} \quad \text{(fatorando os termos iguais no numerador)} \\ &= \frac{(k+1)((k+1)+1)((k+1)+2)((k+1)+3)}{4} \end{split}$$

O que coincide com a fórmula proposta para n=k+1. Portanto, pela indução matemática, a fórmula $\frac{n(n+1)(n+2)(n+3)}{4}$ é válida para todos os $n\in\mathbb{N}$.

Ex.4)Prova por Indução

Proof. Base da Indução:

Para n = 1:

O lado esquerdo da igualdade é:

$$1 - \frac{1}{2} = \frac{1}{2}$$

E o lado direito é:

 $\frac{1}{2}$

Ambos os lados são iguais, portanto, a afirmação é verdadeira para n=1. Passo de Indução:

Suponha que a afirmação seja verdadeira para algum n = k, ou seja:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2k-1} - \frac{1}{2k} = \frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{2k}$$

Queremos provar que:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2k+1} - \frac{1}{2k+2} = \frac{1}{k+2} + \frac{1}{k+3} + \dots + \frac{1}{2k+2}$$

Para fazer isso, vamos começar adicionando e subtraindo $\frac{1}{k+1}$ ao lado esquerdo da nossa suposição de indução:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2k-1} - \frac{1}{2k} + \frac{1}{k+1} - \frac{1}{k+1}$$

Agora, vamos somar $\frac{1}{2k+1} - \frac{1}{2k+2}$ em ambos os lados:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2k-1} - \frac{1}{2k} + \frac{1}{k+1} - \frac{1}{k+1} + \frac{1}{2k+1} - \frac{1}{2k+2}$$
$$= \frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{2k} + \frac{1}{2k+1} - \frac{1}{2k+2}$$

Agora, observe que:

$$\frac{1}{k+1} - \frac{1}{2k+2} = \frac{2k+2-(k+1)}{(k+1)(2k+2)} = \frac{k+1}{(k+1)(2k+2)} = \frac{1}{2k+2}$$

Reorganizando os termos do lado esquerdo, temos:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2k+1} - \frac{1}{2k+2}$$
$$= \frac{1}{k+2} + \frac{1}{k+3} + \dots + \frac{1}{2k+2}$$

Isso completa o passo de indução.

Por indução, a afirmação é verdadeira para todos $n \ge 1$.

Ex.5)Prova por Indução

Proof. Base da Indução: Para n=0: O produto dos termos do lado esquerdo da igualdade é $\cos \alpha$. Queremos mostrar que:

$$\cos \alpha = \frac{\sin 2\alpha}{2\sin \alpha}$$

Usando a fórmula sugerida:

$$\sin 2\alpha = 2\sin \alpha\cos \alpha$$

Dividindo ambos os lados por $2\sin\alpha$, obtemos:

$$\cos\alpha = \frac{\sin 2\alpha}{2\sin\alpha}$$

Portanto, a afirmação é verdadeira para n = 0.

Passo de Indução: Suponha que a afirmação seja verdadeira para algum n=k, ou seja:

$$\cos \alpha \cdot \cos 2\alpha \cdot \cos 2^{2}\alpha \cdot \cdots \cos 2^{k}\alpha = \frac{\sin 2^{k+1}\alpha}{2^{k+1}\sin \alpha}$$

Queremos provar que:

$$\cos \alpha \cdot \cos 2\alpha \cdot \cos 2^{2}\alpha \cdot \cdots \cos 2^{k}\alpha \cdot \cos 2^{k+1}\alpha = \frac{\sin 2^{k+2}\alpha}{2^{k+2}\sin \alpha}$$

Multiplicando ambos os lados da nossa suposição de indução por $\cos 2^{k+1}\alpha$, obtemos:

$$\cos\alpha\cdot\cos2\alpha\cdot\cos2^2\alpha\cdots\cos2^k\alpha\cdot\cos2^{k+1}\alpha = \frac{\sin2^{k+1}\alpha\cdot\cos2^{k+1}\alpha}{2^{k+1}\sin\alpha} \ (*)$$

Observe que usando a fórmula sugerida para $\beta=2^{k+1}\alpha$ temos que:

$$\sin 2\beta = 2\sin \beta\cos \beta$$

$$\sin 2^{k+2}\alpha = 2\sin 2^{k+1}\alpha\cos 2^{k+1}\alpha$$
 Ou seja,
$$\sin 2^{k+1}\alpha\cos 2^{k+1}\alpha = \frac{\sin 2^{k+2}\alpha}{2}$$

Substituindo na equação (*) acima, obtemos:

$$\cos\alpha \cdot \cos 2\alpha \cdot \cos 2^2\alpha \cdots \cos 2^k\alpha \cdot \cos 2^{k+1}\alpha = \frac{1/2\sin 2^{k+2}\alpha}{2^{k+1}\sin \alpha} = \frac{\sin 2^{k+2}\alpha}{2^{k+2}\sin \alpha}$$

Isso completa o passo de indução. Por indução, a afirmação é verdadeira para todos $n \in \mathbb{N}$.

Ex.6)Prova por Indução

Proof. Base da Indução: Para n=3 (um triângulo), a soma dos ângulos internos é $180^{\circ} \times 1 = 180^{\circ}$, que é $180(3-2) = 180^{\circ}$. Portanto, a afirmação é verdadeira para n=3.

Passo de Indução: Suponha que a afirmação seja verdadeira para algum n=k, ou seja, a soma dos ângulos internos de um polígono convexo de k vértices é 180(k-2).

Agora, vamos considerar um polígono convexo de k+1 vértices. Escolhendo um vértice arbitrário, podemos traçar um segmento de reta entre os dois vértices adjacentes a ele. Ao fazer isso, dividimos o polígono em um triângulo e um polígono com k vértices.

Pela hipótese de indução, a soma dos ângulos internos do polígono de k vértices é 180(k-2). E, como já sabemos, a soma dos ângulos internos do triângulo é 180° .

No entanto, ao traçar o segmento de reta para dividir o polígono, estamos "removendo" um dos ângulos internos do polígono original. Isso significa que um dos ângulos internos do polígono de k+1 vértices não é mais um ângulo interno, mas sim um ângulo externo. Portanto, ao calcular a soma dos ângulos internos do polígono dividido, devemos subtrair 180° para compensar o ângulo que foi "removido". Assim, a soma dos ângulos internos do polígono de k+1 vértices é:

$$180(k-2) + 180 - 180 = 180(k-1)$$

que é 180((k+1)-2).

Portanto, se a afirmação for verdadeira para n=k, ela também será verdadeira para n=k+1. Por indução, a afirmação é verdadeira para todos os n > 3.

Ex.7) Definições:

• Dadas duas relações \mathcal{R} e \mathcal{S} , a composição $\mathcal{R} \circ \mathcal{S}$ é definida como:

$$\mathcal{R} \circ \mathcal{S} = \{(x, z) \mid \exists y \text{ tal que } (x, y) \in \mathcal{S} \text{ e } (y, z) \in \mathcal{R} \}$$

• A relação inversa \mathcal{R}^{-1} de \mathcal{R} é definida como:

$$\mathcal{R}^{-1} = \{ (y, x) \mid (x, y) \in \mathcal{R} \}$$

Sejam $A = \{0, 1, 2, 3, 4\}$ e $B = \{1, 2, 3\}$.

1. Relação \mathcal{R}_1 :

$$\mathcal{R}_1 = \{(a, b) \in A \times B : 2a = b\}$$

 $\mathcal{R}_1 = \{(1, 2)\}$

2. Relação \mathcal{R}_2 :

$$\mathcal{R}_2 = \{(b,a) \in B \times A : a \neq b\}$$

$$\mathcal{R}_2 = \{(1,0), (1,2), (1,3), (1,4), (2,0), (2,1), (2,3), (2,4), (3,0), (3,1), (3,2), (3,4)\}$$

3. Relação \mathcal{R}_3 :

$$\mathcal{R}_3 = \{(a, b) \in A \times B : a^2 = b\}$$

 $\mathcal{R}_3 = \{(1, 1)\}$

7.a) Para $\mathcal{R}_1 \circ \mathcal{R}_2$, queremos encontrar todos os pares (x, z) tais que $\exists y$ onde $(x, y) \in \mathcal{R}_2$ e $(y, z) \in \mathcal{R}_1$. Listando os pares:

$$\mathcal{R}_1 \circ \mathcal{R}_2 = \{(2,2), (3,2)\}$$

7.b) Para $\mathcal{R}_3 \circ (\mathcal{R}_2 \circ \mathcal{R}_1)$, primeiro encontramos $\mathcal{R}_2 \circ \mathcal{R}_1$ e, em seguida, compomos o resultado com \mathcal{R}_3 . Listando os pares:

$$\mathcal{R}_3 \circ (\mathcal{R}_2 \circ \mathcal{R}_1) = \{(1,1)\}$$

7.c) Para $\mathcal{R}_2^{-1} \circ \mathcal{R}_1^{-1}$, queremos encontrar todos os pares (x, z) tais que $\exists y$ onde $(x, y) \in \mathcal{R}_1^{-1}$ e $(y, z) \in \mathcal{R}_2^{-1}$. Listando os pares:

$$\mathcal{R}_2^{-1} \circ \mathcal{R}_1^{-1} = \{(2,2), (2,3)\}$$

Ex.8) Parte 1: Se R é transitiva, então $R^n \subseteq R$ para todo n natural.

Proof. Prova por indução em n

Base da indução: Para $n=1,\ R^1=R,$ então $R^1\subseteq R$ é trivialmente verdadeiro.

Passo da indução: Suponha que $R^k \subseteq R$ para algum $k \ge 1$. Queremos mostrar que $R^{k+1} \subseteq R$. Lembre-se de que $R^{k+1} = R^k \circ R$. Para qualquer par (a,c) em R^{k+1} , existe um elemento b em X tal que $(a,b) \in R^k$ e $(b,c) \in R$. Dado que $R^k \subseteq R$ (pela hipótese de indução), $(a,b) \in R$. Como R é transitiva e $(a,b) \in R$ e $(b,c) \in R$, então $(a,c) \in R$. Isso mostra que qualquer par em R^{k+1} também está em R, ou seja, $R^{k+1} \subseteq R$.

Parte 2: Se $R^n \subseteq R$ para todo n natural, então R é transitiva.

Proof. Suponha que $R^n \subseteq R$ para todo n natural. Queremos mostrar que R é transitiva.

Seja (a,b) e (b,c) dois pares em R. Isso é equivalente a dizer que (a,b) está em R^1 e (b,c) está em R^1 . O produto desses dois pares está em R^2 . Mas, dado que $R^2 \subseteq R$, temos que $(a,c) \in R$. Isso prova que R é transitiva.

Juntando as duas partes, provamos que uma relação R em um conjunto X é transitiva se, e somente se, para todo n natural, $R^n \subseteq R$.

Ex.9 Definição: Uma relação \mathcal{R} em um conjunto X é uma relação de ordem se ela é reflexiva, antisimétrica e transitiva.

Ex.9 Item (a)

Proof. Relação $\mathcal{R}_1 = \{(a,b) : |D_a^+| \le |D_b^+|\}$

- 1. **Reflexiva:** Para todo $a \in \mathbb{N}^*$, temos $|D_a^+| \le |D_a^+|$. Portanto, $(a, a) \in \mathcal{R}_1$. Logo, \mathcal{R}_1 é reflexiva.
- 2. Antisimétrica: Se $(a,b) \in \mathcal{R}_1$ e $(b,a) \in \mathcal{R}_1$, então $|D_a^+| \leq |D_b^+|$ e $|D_b^+| \leq |D_a^+|$. Isso implica que $|D_a^+| = |D_b^+|$. No entanto, isso não garante que a = b. Portanto, \mathcal{R}_1 não é antisimétrica.
- 3. **Transitiva:** Se $(a,b) \in \mathcal{R}_1$ e $(b,c) \in \mathcal{R}_1$, então $|D_a^+| \le |D_b^+|$ e $|D_b^+| \le |D_c^+|$. Isso implica que $|D_a^+| \le |D_c^+|$. Portanto, $(a,c) \in \mathcal{R}_1$. Logo, \mathcal{R}_1 é transitiva.

Como \mathcal{R}_1 não é antisimétrica, ela não é uma relação de ordem.

Ex.9 Item (b)

Proof. Relação $\mathcal{R}_2 = \{(a,b) : D_a^+ \subseteq D_b^+\}$

- 1. **Reflexiva:** Para todo $a \in \mathbb{N}^*$, temos $D_a^+ \subseteq D_a^+$. Portanto, $(a, a) \in \mathcal{R}_2$. Logo, \mathcal{R}_2 é reflexiva.
- 2. **Antisimétrica:** Se $(a,b) \in \mathcal{R}_2$ e $(b,a) \in \mathcal{R}_2$, então $D_a^+ \subseteq D_b^+$ e $D_b^+ \subseteq D_a^+$. Isso implica que $D_a^+ = D_b^+$. Se os conjuntos de divisores são iguais, então a = b. Portanto, \mathcal{R}_2 é antisimétrica.
- 3. Transitiva: Se $(a,b) \in \mathcal{R}_2$ e $(b,c) \in \mathcal{R}_2$, então $D_a^+ \subseteq D_b^+$ e $D_b^+ \subseteq D_c^+$. Isso implica que $D_a^+ \subseteq D_c^+$. Portanto, $(a,c) \in \mathcal{R}_2$. Logo, \mathcal{R}_2 é transitiva.

Como \mathcal{R}_2 é reflexiva, antisimétrica e transitiva, ela é uma relação de ordem. **Diagrama de Hasse para** \mathcal{R}_2 **em** A: Para $A = \{1, 2, 3, 4, 5, 6, 7\}$:

- $D_1^+ = \{1\}$
- $D_2^+ = \{1, 2\}$
- $D_3^+ = \{1, 3\}$
- $D_4^+ = \{1, 2, 4\}$
- $D_5^+ = \{1, 5\}$
- $D_6^+ = \{1, 2, 3, 6\}$
- $D_7^+ = \{1, 7\}$

O diagrama de Hasse para \mathcal{R}_2 em A terá:

- 1 na base.
- 2 e 3 acima de 1.
- 4 acima de 2.
- \bullet 6 acima de 3 e 2.
- 5 e 7 acima de 1, mas abaixo de todos os outros.

Mínimo: O mínimo é 1.

Minimal: O único elemento minimal é 1.

Figure 1: Diagrama de Hasse