EG2131 芯片用户手册

大功率 MOS 管、IGBT 管栅极驱动芯片

版本变更记录

版本号	日期	描述		
V1.0	2017年6月12日	EG2131 数据手册初稿		

目 录

1.	特性.	, -
2.	描述.	
		领域
		引脚定义2
	4.2	引脚描述
5.	结构机	框图
6.	典型厂	应用电路
7.		ー, C - C - C - C - C - C - C - C - C - C
/.	-	极限参数
	7.1	
		典型参数
	7.3	开关时间特性及死区时间波形图
8.	应用i	设计
	8.1	Vcc 端电源电压
		输入逻辑信号要求和输出驱动器特性
		自举电路
		尺寸9
	0.1	COO 封柱日子

EG2131 芯片数据手册 V1.0

1. 特性

- 高端悬浮自举电源设计,耐压可达 300V
- 适应 5V、3.3V 输入电压
- 最高频率支持 500KHZ
- 低端 VCC 欠压关断输出
- 输出电流能力 IO+/- 1A/1.5A
- 内建死区控制电路
- 自带闭锁功能,彻底杜绝上、下管输出同时导通
- HIN 输入通道高电平有效,控制高端 HO 输出
- LIN 输入通道低电平有效,控制低端 LO 输出
- 外围器件少
- 静态电流小于 5uA,非常适合电池场合
- 封装形式: SOP-8

2. 描述

EG2131 是一款高性价比的大功率 MOS 管、IGBT 管栅极驱动专用芯片,内部集成了逻辑信号输入处理电路、死区时控制电路、欠压关断电路、闭锁电路、电平位移电路、脉冲滤波电路及输出驱动电路,专用于无刷电机控制器中的驱动电路。

EG2131 高端的工作电压可达 300V, 低端 Vcc 的电源电压范围宽 11V~20V, 静态功耗小于 5uA。该芯片具有闭锁功能防止输出功率管同时导通,输入通道 HIN 内建了一个 200K 下拉电阻, LIN 内建了上拉 5V高电位,在输入悬空时使上、下功率 MOS 管处于关闭状态,输出电流能力 I0+/- 1/1.5A,采用 S0P8 封装。

3. 应用领域

- 移动电源高压快充开关电源
- 变频水泵控制器
- 300V 降压型开关电源

- 电动车控制器
- 无刷电机驱动器
- 高压 Class-D 类功放

4. 引脚

4.1 引脚定义

图 4-1. EG2131 管脚定义

4.2 引脚描述

引脚序号	引脚名称	I/O	描述	
1 Vcc		Power	芯片工作电源输入端, 电压范围 11V-20V, 外接一个高频 0.1uF 旁路	
			电容能降低芯片输入端的高频噪声	
			逻辑输入控制信号高电平有效,控制高端功率 MOS 管的导通与截止	
2	HIN	I	"0"是关闭功率 MOS 管	
			"1"是开启功率 MOS 管	
			逻辑输入控制信号低电平有效,控制低端功率 MOS 管的导通与截止	
3 LIN		I	"1"是关闭功率 MOS 管	
			"0"是开启功率 MOS 管	
4	GND	GND	芯片的地端。	
5	LO	0	输出控制低端 MOS 功率管的导通与截止	
6	VS	0	高端悬浮地端	
7	НО	0	输出控制高端 MOS 功率管的导通与截止	
8	VB	Power	高端悬浮电源	

5. 结构框图

图 5-1. EG2131 内部电路图

6. 典型应用电路

图 6-1. EG2131 典型应用电路图

7. 电气特性

7.1 极限参数

无另外说明,在TA=25℃条件下

符号	参数名称	测试条件	最小	最大	单位
VB	自举高端 VB 电源	_	-0.3	300	V
VS	高端悬浮地端	ı	VB-25	VB+0.3	V
НО	高端输出	-	VS-0.3	VB+0.3	V
L0	低端输出	-	-0.3	VCC+0.3	V
VCC	电源	_	-0.3	25	٧
HIN	高通道逻辑信号输入电平	_	-0.3	VCC+0.3	V
LIN	低通道逻辑信号输入电平	_	-0.3	6	V
TA	环境温度	_	-45	125	$^{\circ}\!\mathbb{C}$
Tstr	储存温度	-	-55	150	$^{\circ}$
TL	焊接温度	T=10S	-	300	$^{\circ}$

注:超出所列的极限参数可能导致芯片内部永久性损坏,在极限的条件长时间运行会影响芯片的可靠性。

7.2 典型参数

无另外说明,在 TA=25℃, Vcc=15V,负载电容 CL=10nF 条件下

参数名称	符号	测试条件	最小	典型	最大	单位		
电源	Vcc	-	11	15	20	V		
静态电流	Icc	输入悬空,Vcc=12V	-	-	30	uA		
输入逻辑信号高电位	Vin(H)	所有输入控制信号	2.5	-	-	V		
输入逻辑信号低电位	Vin(L)	所有输入控制信号	-0.3	0	1.0	٧		
输入逻辑信号高电平的电流	Iin(H)	Vin=5V	-	-	20	uA		
输入逻辑信号低电平的电流	Iin(L)	Vin=0V	-20	-	-	uA		
VCC 电源欠压关断特性			•					
Vcc 开启电压	Vcc (on)	-	9.6	10.3	11	V		
Vcc 关断电压	Vcc (off)	-	8.6	9.3	10	V		
低端输出 LO 开关时间特性								
开延时	Ton	见图 7-1	-	410	500	nS		
关延时	Toff	见图 7-1	-	150	300	nS		
上升时间	Tr	见图 7-1	-	180	300	nS		
下降时间	Tf	见图 7-1	-	70	150	nS		
高端输出 HO 开关时间特性								
开延时	Ton	见图 7-2	-	400	500	nS		
关延时	Toff	见图 7-2	-	150	400	nS		
上升时间	Tr	见图 7-2	-	180	300	nS		
下降时间	Tf	见图 7-2	-	70	150	nS		
死区时间	DT	见图 7-3 , 无负载电容 CL=0	150	250	350	nS		
I0 输出最大驱动能力								
IO 输出拉电流	I0+	Vo=0V,VIN=VIH PW≤10uS	0.7	1	-	А		
IO 输出灌电流	I0-	Vo=12V,VIN=VIL PW≤10uS	1	1.5	-	Α		

7.3 开关时间特性及死区时间波形图

图 7-1. 低端输出 LO 开关时间波形图图

7-2. 高端输出 HO 开关时间波形图

图 7-3. 死区时间波形图

8. 应用设计

8.1 Vcc 端电源电压

在考虑有足够的驱动电压去驱动 N 沟道功率 MOS 管,推荐电源 Vcc 工作电压典型值为 11V-20V; EG2131 芯片的地跟 MCU 的地共地。

8.2 输入逻辑信号要求和输出驱动器特性

EG2131 主要功能有逻辑信号输入处理、死区时间控制、电平转换功能、悬浮自举电源结构和上下桥图腾柱式输出。逻辑信号输入端高电平阀值为 2.5V 以上,低电平阀值为 1.0V 以下,要求逻辑信号的输出电流小,可以使 MCU 输出逻辑信号直接连接到 EG2131 的输入通道上。

高端上桥臂和低端下桥臂输出驱动器的最大灌入可达 1.5A 和最大输出电流可达 1A, 高端上桥臂通道可以承受 300V 的电压,输入逻辑信号与输出控制信号之间的传导延时小,低端输出开通传导延时为 410nS、关断传导延时为 140nS,高端输出开通传导延时为 400nS、关断传导延时为 150nS。低端输出开通的上升时间为 180nS、关断的下降时间为 100nS。高端输出开通的上升时间为 180nS、关断的下降时间为 100nS。

输入信号和输出信号逻辑功能图如图 8-1:

图8-1. 输入信号和输出信号逻辑功能图

输入信号和输出信号逻辑真值表:

输入		输出			
输入、输出逻辑					
HIN (引脚 4)	IIN (引脚 3)	HO (引脚 7)	LO (引脚 5)		
0	0	0	1		
0	1	0	0		
1	0	0	0		
1	1	1	0		

从真值表可知,在输入逻辑信号 HIN 和LIN同时为"0"和非同时为"1"情况下,驱动器控制输出H0、L0同时为"0"上、下功率管同时关断;当输入逻辑信号 HIN、LIN同时为"0"时,驱动器控制输出H0为"0"上管关断,L0为"1"下管导通;当输入逻辑信号 HIN、LIN同时为"1"时,驱动器控制输出 H0为"1"上管导通,L0为"0"下管关断;内部逻辑处理器杜绝控制器输出上、下功率管同时导通,具有相互闭锁功能。

8.3 自举电路

EG2131 采用自举悬浮驱动电源结构大大简化了驱动电源设计,只用一路电源电压 VCC 即可完成高端 N 沟道 MOS 管和低端 N 沟道 MOS 管两个功率开关器件的驱动,给实际应用带来极大的方便。EG2131 可以使用外接一个自举二极管如图 8-2 和一个自举电容自动完成自举升压功能,假定在下管开通、上管关断期间 C 自举电容已充到足够的电压(Vc=VCC),当 HO 输出高电平时上管开通、下管关断时,VC 自举电容上的电压将等效一个电压源作为内部驱动器 VB 和 VS 的电源,完成高端 N 沟道 MOS 管的驱动。

图 8-2. EG2131 自举电路结构

9. 封装尺寸

9.1 SO8 封装尺寸

