

SEMESTER END EXAMINATIONS JANUARY - FEBRUARY 2021

B.E.: Computer Science and

Semester : V

Program : Engineering
Course Name : Artificial Into

Artificial Intelligence Max. Marks: 100

Course Code : CSE551/CSE02 Duration : 3 Hrs

Instructions to the Candidates:

- Answer one full question from each unit.
- Draw diagrams wherever necessary.
- Use suitable examples to support your answers wherever required.

1 . \	a)	UNIT- I Describe model-based reflex agents and utility-based agents with	CO1	(12)
À	b)	real-time examples. What is PEAS? Illustrate the PEAS description for i) Taxi driver (ii) Medical diagnosis system.	CO1	(80)
2.	a)	Define Artificial Intelligence. Discuss the foundations of AI. List out	CO1	(10)
	b)	any five real-time applications of AI. Mention the disadvantages of Best First search algorithm. Discuss how the A* Algorithm overcomes these drawbacks.	CO1	(10)
		UNIT – II		
			CO2-	(05)
3.	a) b)	Write five simple knowledge-base sentences. Define Modus ponens and AND-Elimination. Prove that there is no pit	CO2	(80)
	0	in position[1,2]. With the help of a suitable example explain the syntax and semantics of first order logic.	CO2	(07)
4.	a) b) c)	Write sequence of steps how to grab gold in typical wumpus world. Explain 7 steps of knowledge engineering process in detail. Explain simple backward chaining algorithm, inferring FOL.	CO2 CO2 CO2	(05) (10) (05)
		UNIT – III		
5.	a)	Give comparison of STRIPS and ADL language for representation of	CO3	(06)
	b)	planning problem. Define uncertainty. Explain prior probability and conditional	CO3	(06)
	c)	probability. what are the different types of activation functions used in neural networks explain in detail.	CO3	(80)
6.5%	a) b) c)	Define Bayes' rule and its use. With a neat diagram explain nonlinear model of a neuron. Explain decision trees as performance elements.	CO3 CO3	(06) (07) (07)
7.	a)	tun atten and relational extraction systems.	CO4	(10)
•	b)	- , , , , manage hobing choosing conditional falloom neighbors to	CO4	(10)

CSE551/CSE02

8.	a)	Identify the role of damping factor in Page Rank algorithm and write a note on ASKMSR system.	CO4	(10)
	b)		CO4	(10)
		UNIT - V		
9.	a)	Discuss in detail the subsumption and pipeline robot architectures. Also, state one application area where each of them would be suitable.	CO5	(80)
	b)	Compare the advantages of using a genetic algorithm approach over artificial Neural Networks to solve the "Network topology selection" problem and "Finding the optimal set of weights" problem.	CO5	(08)
	c)	Differentiate between Niching and Speciation methods in Genetic Algorithms.	CO5	(04)
10.	a)	Justify the importance of Genetic Algorithms (GA) to the world of Artificial Intelligence. Elaborate on the application of GA on the optimization problem of Job-shop scheduling.	CO5	(80)
	b)		CO5	(06)
	c)	List any three potential threats from AI technology to society. Also, discuss how these threats can be combated.	CO5	(06)
