COMS W3261 Computer Science Theory Lecture 1

Alexander Roth

2014 - 09 - 03

1 Schedule

- Lectures: Mondays and Wednesdays, 1:10 2:25pm, 833 Mudd.
- Office Hours: Mondays and Wednesdays, after class.

2 Course Objectives

- Learning computational thinking
- Understanding the fundamental models of computation that underlie modern computer hardware, software, and programming languages.
- Discovering that there are problems no computer can solve.
- Discovering that there are limits on how fast a computer can solve a problem.
- Mastering the foundations of automata theory, computability theory, and complexity theory.
- Learning about applications of computer science theory to algorithms, programming languages, compilers, natural language translation, operating systems, and software verification.

3 Course Syllabus

- Languages and decision problems
- Finite automata
- Regular expressions

- Properties of regular languages
- Context-free grammars
- Pushdown automata
- Algorithms and Turing machines
- Lambda calculus
 - The computational model for functional languages. Java 8 now has lambdas.
- Undecidability
- Complexity theory

4 Course Requirements

- \bullet Homeworks (best four out of five homeworks will constitute 20% of final grade)
- Midterm (40% of final grade)
- Final (40% of final grade)

5 Languages

- An alphabet Σ is a finite, nonempty set of symbols.
- A function maps an element to a range.

Example: {0,1}, ASCII, Unicode.

• A *string* is a finite sequence of symbols chosen from some alphabet.

Example: ε , the empty string, 0, 01, 011

- Don't forget about the empty string, it's important!

5.1 Terms associated with strings

Definition 1. Prefix: Any sequence of characters at the beginning of a string.

Example 1. "dog" has 4 prefixes: ε , d, do, dog.

All strings have n+1 prefixes.

Definition 2. Suffixes: Any sequence of characters at the end of a string.

Example 2. "dog" has 4 suffixes. ε , g, go, god.

All strings have n+1 suffixes

Definition 3. Substrings: Obtained by maintaining the sequence of characters while reducing the size of the strings.

Example 3. "dog":

Shortest String: ε

String of length 1: d, o, g

String of length 2: do, og, dg

String of length 3: dog

All substrings are of length n! + 1

Definition 4. Subsequences: Obtained by deleting zero or more characters in a string

Example 4. "dog": ε , d, o, g, do, dg, og, dog

 2^n subsequences in any given string x.

A string is ordered, strings are sequences and sequences have orders.

Operations on Strings Common operations:

- Concatenation
- Reversal

Terms associated with Strings

- Prefix
- Suffix
- Substring
- Subsequence

A language over Σ is a set of strings whose symbols are chosen from Σ

Example 5. • The empty set, \varnothing

- {0,1}, {0}, {1}, {01}
- $P = \{10, 11, 101, 111, 1011, 1101, \ldots\}$ (the binary representation of the prime numbers)

Distinction between finite and infinite languages:

- Distinction between finite and infinite languages:
 - There are a finite number of objects in the set.
 - Two types of infinite:
 - * Countably: 1 to 1 mapping between the numbers in the set against the natural integers. A set of all syntactically valid java programs is countably infinite.
 - * Uncountably: Do not have 1 to 1 mapping between the natural integers and the given set.

5.2 Kleene Closure

$$L \cup M$$

$$L \cap M$$

$$LM = \{\, xy \, | x \in$$