DEEP LEARNING FOR ECONOMICS AND FINANCE

University of Geneva, Switzerland February 26th – 28th & March 25th – 27th, 2025

https://github.com/sischei/Deep_Learning_Geneva_2025

Simon Scheidegger simon.scheidegger@unil.ch

INIL | Université de Lausanne

Day 1, Wednesday, February 26th, 2025 (Pavillon Mail PM03)

Time	Main Topics	
09:00 - 10:30	Introduction to Machine Learning and Deep Learning (part I)	
10:30 - 10:45	Coffee Break	
10:45 - 11:45	Introduction to Machine Learning and Deep Learning (part II)	
11:45 - 12:15	Python refresher, and basics on the Cloud infrastructure	

Day 2, Thursday, February 27th, 2025 (Pavillon Mail PM03)

Time	Main Topics	
09:00 - 10:30	A hands-on session on Deep Learning, Tensorflow, and Tensorboard	
10:30 - 10:45	Coffee Break	
10:45 - 12:15	Introduction to Deep Equilibrium Nets (DEQN)	
12:15 - 13:30	Lunch Break	
13:30 - 14:15	Hands-on: Solving a dynamic model with <u>DEQNs</u>	
14:15 - 15:00	Hands-on: Solving a dynamic stochastic model with <u>DEQNs</u>	
15:00 - 15:15	Coffee Break	
15:15 - 16:00	Exercise: Solving a dynamic stochastic model by <u>example</u>	
16:00 - 16:45	Introduction to a tuned DEQN library: solving a stochastic dynamic OLG model with an analytical solution	

Day 3, Friday, February 28th, 2025 (Pavillon Mail PM03)

Time	Main Topics	
09:00 - 10:30	<u>Surrogate models part I:</u> (for structural estimation and uncertainty quantification via <u>deep</u> <u>surrogate models</u>), with an example <u>DSGE model solved with DEQN and pseudo-states</u>	
10:30 - 10:45	Coffee Break	
10_45 - 12:15	<u>Surrogate models part II:</u> (for structural estimation and uncertainty quantification via <u>Gaussian process regression</u>	

UNIL | Université de Lausanne

Session 2

Day 4, Tuesday, March 25th, 2025 (Uni Dufour U364)

Time	Main Topics	
09:00 - 10:30	Recap of Session 1 (Neural Networks, Gaussian Processes, DEQN, Surrogate Models)	
10:30 - 10:45	Coffee Break	
10:45 - 11:30	Bayesian Active Learning and GPs for Surrogate Models	
11:30 - 12:00	Creating GP-based surrogates from DSGE models	
12:00 - 12:15	Gaussian Process Regression in Finance: From Dynamic Incentive Models to Portfolio Optimization (if time permits)	

Day 5, Wednesday, March 26th, 2025 (Uni Dufour, Salle 408)

Time	Main Topics	
09:00 - 09:45	Introduction to the macroeconomics of climate change, and integrated assessment models	
09:45 - 10:30	Solving dynamic stochastic, nonlinear, nonstationary models, with an application to Integrated Assessment Models	
10:30 - 10:45	Coffee Break	
12:15 - 13:00	Solving the (non-stationary) DICE model with Deep Equilibrium Nets	
12:30 - 13:30	Lunch Break	
13:30 - 15:00	Putting things together: Deep Uncertainty Quantification for stochastic integrated assessment models	
15:00 - 15:15	Coffee Break	
15:15 - 16:45	Solving PDEs with Partial Differential Equations with NNs (PINNs) (I)	

∂ Day 6, Thursday, March 27th, 2025 (Uni Dufour U365)

Time	Main Topics
09:00 - 10:30	Solving PDEs with PINNs (II)
10:30 - 10:45	Coffee Break
10:45 - 12:00	Modeling Sequence Data with RNNs, LSTMs
12:00 - 12:15	Wrap-up of the Course

UNIL I Université de Lausanne

RECAP ON DEEP LEARNING

March 25th, 2023

Simon Scheidegger simon.scheidegger@unil.ch

SOME TERMINOLOGY

- Artificial intelligence (AI)
 - Can computers be made to "think"—a question whose ramifications we're still exploring today.
 - A concise definition of the field would be as follows: the effort to automate intellectual tasks normally performed by humans.
- Machine learning (e.g., supervised ML)

Deep Learning as a particular example of an ML technique

I UNIL I Université de Lausanne

TYPES OF MACHINE LEARNING

Supervised Learning

- assume that training data is available from which they can learn to predict a target feature based on other features (e.g., monthly rent based on area).
 - Classification
 - Regression

Unsupervised Learning

- take a given data-set and aim at gaining insights by identifying patterns, e.g., by grouping similar data points.
- **Reinforcement Learning**

BUILDING AN ML ALGORITHM (II)

- x(i): "input" variables (living area in this example), also called input features
- y(i): "output" / target variable that we are trying to predict (price).
- Training example: a pair (x(i), y(i)).
- Training set: a list of m training examples {(x(i), y (i)); i = 1, . . . , m}
 - To perform supervised learning, we must decide how we're going to represent functions/hypotheses h in a computer.

UNIL | Université de Lausanne

BUILDING AN ML ALGORITHM (III)

- Model / Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x_1$
 - θ_i 's: parameters
- Cost Function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}$$

• Minimize $J(\theta)$ in order to obtain the coefficients θ .

JNIL | Université de Lausanne

BUILDING AN ML ALGORITHM (IV)

- In General: Machine learning in 3 steps:
 - Choose a **model** $h(x|\theta)$.
 - Define a **cost function** $J(\theta|x)$.
 - Optimization procedure to find θ^* that minimizes $J(\theta)$.
- Computationally, we need:
 - data, linear algebra, statistics tools, and optimization routines.

UNIL | Université de Lausanne

ARTIFICIAL NEURAL NETWORKS

A SINGLE NEURON: THE PERCEPTRON

Bias term allows you to shift your activation function to the left or the right

THE PERCEPTRON: FORWARD PROPAGATION

$$\hat{y} = g \left(w_0 + \sum_{i=1}^m x_i w_i \right)$$

$$\hat{y} = g \left(w_0 + \boldsymbol{X}^T \boldsymbol{W} \right)$$

$$\begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} \text{ and } \boldsymbol{W} = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$$

Inputs Weights Sum Non-Linearity Output

UNIL | Université de Lausanne

→ Bias term allows you to shift your activation function to the left or the right

THE PERCEPTRON: FORWARD PROPAGATION

→ Bias term allows you to shift your activation function to the left or the right

FEW ACTIVATION FUNCTIONS

- Needs to be differentiable for gradient-based learning (later)
 - Very useful in practice.
 - Sigmoid function, e.g., useful for classification (Probability).

Mil Université de Lausann

PERCEPTRON – AN EXAMPLE

Imagine we have a trained network with weights given.

→ how do we compute the output?

JNIL | Université de Lausanne

SINGLE HIDDEN LAYER NN

MEAN SQUARED ERROR (MSE)

Mean squared error can be used with regression models that output

continuous real numbers.

$$J(W) = \frac{1}{n} \sum_{i=1}^{n} \left(y_{true}^{(i)} - f\left(x^{(i)}; W\right) \right)^{2}$$

Actual Predicted

f(x)	${m y}_{\sf true}$
[450.000]	$\begin{bmatrix} 470.000 \end{bmatrix}$
250.000	220.000
190.000	250.000
[,]	[,]

Loan requested

Loan required

Unil

UNIL | Université de Lausanne

BINARY CROSS ENTROPY LOSS

Our example was a classification problem with output (0 or 1)

$$J(W) = \frac{1}{n} \sum_{i=1}^{n} \underline{y_{true}^{(i)}} \log \left(\underline{f\left(x^{(i)}; W\right)} \right) + \left(1 - \underline{y_{true}^{(i)}}\right) \log \left(1 - \underline{f\left(x^{(i)}; W\right)}\right)$$

Actual

Predicted

Actual

Predicted

Unil

GRADIENT DESCENT IN WEIGHT SPACE

→ We want to find the network weights that achieve the lowest loss!

- $-W^* = \operatorname{argmin} J(W)$
- -Randomly pick an initial (w_0, w_1)
- -Compute gradient
- -Take small steps in the opposite direction of gradient.
- -Repeat until convergence

GRADIENT DESCENT ALGORITHM

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N} \left(0, \sigma^2
 ight)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$ Can be computationally expensive
- 4. Update weights, $oldsymbol{W} \leftarrow oldsymbol{W} \eta rac{\partial J(oldsymbol{W})}{\partial W}$
- 5. Return weights

Unil

GRADIENT DESCENT ALGORITHM

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N} \left(0, \sigma^2
 ight)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- 4. Update weights, $oldsymbol{W} \leftarrow oldsymbol{W} \eta \frac{\partial J(oldsymbol{W})}{\partial W}$
- 5. Return weights

Learning rate

All that matters to train a NN.
Computationally expensive!

UNIL | Université de Lausann

STOCHASTIC GRADIENT DESCENT

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N} \left(0, \sigma^2
 ight)$
- 2. Loop until convergence:
- 3. Pick single data point i
- 4. Compute gradient, $\frac{\partial J_i(W)}{\partial W}$ Can be noisy
- 5. Update weights, $m{W} \leftarrow m{W} \eta \frac{\partial J(m{W})}{\partial m{W}}$
- 6. Return weights

Unil

STOCHASTIC GRADIENT DESCENT

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0,\sigma^2)$
- 2. Loop until convergence:
- 3. Pick batch of B data points
- 4. Compute gradient, $\frac{\partial J(W)}{\partial W} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(W)}{\partial W}$ 5. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 6. Return weights

COMPUTING GRADIENTS: ERROR BACKPROPAGATION

How does a small change in one weight (e.g., w₂) affect the final loss J(W)?

UNIL I Université de Lausanne

COMPUTING GRADIENTS: ERROR BACKPROPAGATION

- How does a small change in one weight (e.g., w₂) affect the final loss J(W)?
- Chain rule

$$\begin{array}{c|c} x & \xrightarrow{w_1} & z_1 \\ \hline \end{array} \qquad \begin{array}{c} w_2 \\ \hline \end{array} \qquad \begin{array}{c} \hat{y} \\ \hline \end{array} \qquad \begin{array}{c} J(W) \\ \hline \end{array}$$

$$\frac{\partial J(W)}{\partial w_2} = \frac{\partial J(W)}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_2}$$

Unil

COMPUTING GRADIENTS: ERROR BACKPROPAGATION

- How does a small change in one weight (e.g., w₂) affect the final loss J(W)?
- Chain rule
- Repeat this for every weight in the network using gradients from later layers

$$\frac{x}{\partial y} = \frac{w_1}{\partial y} \cdot z_1 \qquad \frac{w_2}{\partial y} \cdot \hat{y} \longrightarrow J(W)$$

$$\frac{\partial J(W)}{\partial w_1} = \frac{\partial J(W)}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_1} \qquad \frac{\partial J(W)}{\partial w_1} = \frac{\partial J(W)}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_1} * \frac{\partial z_1}{\partial w_1}$$

UNIL | Université de Lausann

LOSS FUNCTION: CAN BE DIFFICULT TO OPTIMIZE

- Remember:
 - Optimization through gradient descent:

$$W \leftarrow W - \eta \frac{\partial J(W)}{\partial W}$$

How can we set the learning rate?

Unil

SETTING THE LEARNING RATE

- Small learning rate converges slowly and gets stuck in false local minima
 - Design an adaptive learning rate that "adapts" to the landscape.

Unil Université de Lausann

SPLIT THE DATA

- To avoid over-fitting, it is good practice to assess the quality of a model based on test data that must not be used for training the model.
- The key idea is to split the available data (randomly) into <u>training</u>, <u>validation</u>, and <u>test data</u>.

SPLITTING THE DATA

- One common approach to reliably assess the quality of a machine learning model and avoid over-fitting is to randomly split the available data into
 - training data (~70% of the data)
 is used for determining optimal coefficients.
 - validation data (~20% of the data) is used for model selection (e.g., fixing degree of polynomial, selecting a subset of features, etc.)
 - test data (~10% of the data) is used to measure the quality that is reported.

A NOTEBOOK

day4/code/01_recap_week1.ipynb