Philosophy 31: Symbolic Logic

Professor Levy

Thilan Tran

Winter 2021

Contents

ogical Language													
Symbolic Langu	age	 											
Vocabular	7	 											
Grammar		 											

Philosophy 31: Symbolic Logic

Logical Language

- in logic, an **argument** is a set of sentences:
 - one of which is designated as a **conclusion**
 - the other sentences are called **premises**
- ex. argument:
 - 1. All dogs are animals.
 - 2. Some animals are pigs.
 - 3. Therefore some dogs are pigs.
 - (1) and (2) are premises, (3) is the conclusion of the argument:
 - * argument is often signaled by *indicator* words eg. "therefore", "hence", "thus"
 - * while premises are signaled by "because", "since", etc.
- an argument is **valid** if it is impossible for the premises to all be true and the conclusion false:
 - ie. if the premises are all true, then the conclusion must be true
 - * the example argument is a *valid* argument!
 - at least, in deductive logic
 - * in inductive reasoning, premises *lend support* to a conclusion
 - note that the validity of an argument has to do with its inherent logical structure
 - * can replace the parts of the argument uniformly and the argument would remain valid
- an argument is **sound** if it is valid and all of its premises are true:
 - the example argument is valid, but not sound
 - note that a sound argument *must* be valid
- ex. argument:
 - 1. If John eats pizza he will get thirsty.
 - 2. If John eats pasta he will get thirsty.
 - valid argument
- ex. argument:
 - 1. If John eats pizza he will get thirsty.
 - 2. John got thirsty \therefore John ate pizza.
 - invalid argument
- ex. argument:
 - 1. If John eats pizza he will get thirsty.
 - 2. If John does not eat pizza he will be hungry.

- 3. If John will not get sick he will not be hungry.
- 4. ∴ John will get sick.
- valid argument!
- a set of sentences **implies** a given sentence if and only if the truth of the given sentence is *gauranteed* by the truth of all members of the set
 - ie. sentence A implies another sentence B if and only if A's truth guarantees B's
 - eg.
 - 1. Peter likes pizza and Patsy likes pasta.
 - 2. Patsy likes pasta.
 - * sentence (1) implies sentence (2)
- sentence A is **equivalent** to sentence B if and only if A and B always agree in truth value
 - eg.
 - 1. No dogs are cats.
 - 2. No cats are dogs.
 - * equivalent sentence
 - eg.
 - 1. Either Peter likes pizza or Patsy likes pasta.
 - 2. Peter likes pizza.
 - * not equivalent

Symbolic Language

- to analyze the validity of an argument:
 - 1. extract the logical structure of an argument
 - by translating into a representative **symbolic language**
 - 2. generally analyze that structure

Vocabulary

- vocabulary:
 - sentence letters are P, Q, R, \dots, Z
 - * with or without subscripts
 - sentential connectives:
 - * \land ie. "and", \lor ie. "or", \rightarrow ie. "if-then", \leftrightarrow ie. "if and only if"
 - * \sim ie. "it is not the case that"
 - punctuation is parantheses
- ex. Peter loves pizza.
 - this is an **atomic** sentence that cannot be broken up further
- ex. Peter loves pizza because Patsy does.

- this is a compound sentence since it is connected by the binary connective "because"
- in logic, we are only concerned with **truth functional connectives**:
 - a connective is truth functional if and only if the truth values of the joined sentences always completely determine the truth value of the compound sentence
 - eg. "and", "or", "then", "if and only if" are binary truth functional connectives
 - eg. "it is not the case" ie. a negation operator is a *unary* truth functional connective
- ex. Peter loves pizza because Patsy makes pizza.
 - if we know the truth value of each component, can we determine the truth value of the compound sentence?
 - no, "because" is *not* a truth functional connective

Grammar

- in a **metalanguage**, sentences talk about a language itself
 - eg. "John" is tall vs. John is tall.
- recursive symbolic language grammar rules:
 - 1. sentence letter is a symbolic sentence
 - 2. a symbolic sentence preceded by a \sim is a symbolic sentence
 - 3. if a binary connective is placed between two symbolic sentences and enclosed in parentheses, the result is a symbolic sentence
 - eg. $P, Q, (P \to Q), \sim P, (\sim P \leftrightarrow (P \to Q))$ are all symbolic sentences
 - informal conventions:
 - 1. outermost parentheses may be omitted
 - 2. conditionals and biconditionals are assumed to *outrank* conjunctions and disjunctions:
 - thus parentheses may be omitted around conjunctions and disjunctions when there is no ambiguity
 - * eg. a reduction like $P \vee Q \wedge R$ is ambiguious
 - 3. allow brackets and braces
 - * by convention, we restore parentheses to the left when we have a string of the same connectives
- an atomic sentence is a symbolic sentence containing no connectives
- a molecular sentence is a symbolic sentence with one more connectives
- a **negation** is any sentence of the form $\sim \square$
- a **conditional** is any sentence of the form $(\Box \to \bigcirc)$:

- \square is the antecedent
- $-\bigcirc$ is the **consequent**
- a **conjunction** is any sentence of the form $(\Box \land \bigcirc)$
- a **disjunction** is any sentence of the form $(\Box \lor \bigcirc)$
- a **biconditional** is any sentence of the form $(\Box \leftrightarrow \bigcirc)$
- the **scope** of a connective is the connective itself with the components and grouping indicators it links together:
 - ie. what the connective applies to
 - $\ \ \text{eg. in } ((P \wedge {\sim} Q) \to R), \sim \text{has a scope of } {\sim} Q, \wedge \text{ has a scope of } (P \wedge {\sim} Q),$
 - \rightarrow has a scope of the entire formula ie. sentence
 - the main connective is the connective occurence with the largest scope
 - * always ranges over entire formula

Symbolization

Table 1: Truth Table for $\sim P$

 $\begin{array}{c|c} \square & \sim \square \\ \hline T & F \\ F & T \end{array}$

Table 2: Truth Table for Binary Connectives

	0	\sim	$\square \to \bigcirc$	$\square \wedge \bigcirc$	$\square \lor \bigcirc$	$\square \leftrightarrow \bigcirc$	
T	T	F	T	T	T	T	
T	F	F	F	F	T	F	
F	T	T	T	F	T	F	
F	F	T	T	F	F	T	

- to perform **symbolization** ie. convert English sentences to their symbolic equivalents:
 - 1. make a scheme of abbreviation
 - in doing so, make all the sentences positive
 - 2. rewrite the sentences replacing atomic components with sentence letters
 - 3. group
 - 4. replace the connectives with symbols
 - watch for stylistic variants and hidden negations in sentences
- ex. If Herbie eats pizza, then Herbie gets sick.
 - equivalent sentences:
 - * Provided that Herbie eats pizza, he will get sick.
 - * Herbie gets sick if he eats pizza.
 - other equivalent stylistic variants:
 - * "if", "provided that", "given that", "in case", "in which case", "assuming that", "on the condition that"
 - P: Herbie eats pizza, Q: Herbie gets sick
 - If P, then Q.
 - $-P \rightarrow Q$
- ex. The patient will live only if we operate.
 - P: the patient lives, Q: we operate
 - P only if Q.
 - $-P \rightarrow Q$
- ex. Bruce likes Budweiser, Miller, and Heineken.

- P : Bruce likes Budweiser, Q : Bruce likes Miller, R : Bruce likes Heineken
- this is known as **telescoping** of conjunctions and disjunctions
- $-(P \wedge Q) \wedge R$
- ex. Peter likes pizza but not pasta.
 - one of several other stylistic variants for "and":
 - * "but", "although", "as well", commas
 - $P \wedge \sim Q$
- ex. Peter brings his lunch unless the cafeteria is open.
 - ex. The patient will die unless we operate.
 - "unless" is a stylistic variant for "or"
 - "or" and its variants is considered inclusive unless otherwise specified
 - $-P \lor Q$
- ex. Neither Peter nor Patsy came to the party.
 - $P \wedge Q = (P \vee Q)$
- ex. If Herbie eats pizza at night or drinks cheap beer, then only if his girlfriend stays with him, will he have nightmares.
 - P: Herbie eats pizza, Q: Herbie drinks beer, R: girlfriend stays, S: Herbie has nightmares
 - $-(P \lor Q) \to (S \to R)$
- more variations:
 - ex. If Herbie's girlfriend stays with him, then he will not have nightmares although he drinks cheap beer.
 - * $R \to (\sim S \land Q)$
 - ex. If Herbie eats pizza at night, he will have nightmares unless he drinks cheap beer.
 - * $P \rightarrow (S \lor Q)$
- ex. You may have ice cream or cotton candy.
 - considered inclusive by default
 - ex. You may have ice cream or cotton candy, but not both.
 - * forces an exclusive-or
 - $* \ (P \vee Q) \wedge \mathord{\sim} (P \wedge Q) = P \leftrightarrow \ Q$