

Минская городская олимпиада ФИЗИКА 2002 год

9 класс.

1. Два корабля движутся с постоянными и одинаковыми по модулю скоростями $|\vec{V}_I| = |\vec{V}_2| = v$. В некоторый момент времени расстояние между ними оказалось равным L, а их взаимное расположение таким, как показано на рисунке. Угол $\alpha = 60^\circ$.

- а) Определите минимальное расстояние между кораблями в процессе движения.
- б) Капитану корабля B необходимо передать сообщение на корабль A. Для этого с корабля спускаю шлюпку, которая может двигаться со скоростью u. За какое минимальное время шлюпка может достичь корабль A, если u = v.
- в) Пусть u < v. Через какой максимальный промежуток времени может отправиться шлюпка с корабля ${\pmb B}$, чтобы она смогла достичь корабль ${\pmb A}$?
- г) Капитан корабля \boldsymbol{B} решает отправить сообщение с помощью пневматической пушки. Какова должна быть минимальная начальная скорость «снаряда сообщения», чтобы он смог достичь корабль $\boldsymbol{A?}$ Считайте, что скорость снаряда значительно больше скорости кораблей.
- 2. Электрическая цепь собрана из трех одинаковых вольтметров и трех одинаковых резисторов. Показание первого вольтметра $U_1=10B$, показание третьего вольтметра $U_3=8,0B$. Чему равно показание второго вольтметра.
- 3. Цилиндр высотой $h = 10 \, cm$ притопили так, что его верхнее основание находится на уровне воды. Определите вертикальную скорость v, с которой цилиндр выскочит из воды, если его отпустить без начальной скорости. Силой сопротивления воды и воздуха пренебречь. Ось цилиндра в процессе движения остается вертикальной. Плотность воды

$$\rho_{\scriptscriptstyle 6} = 1000 \frac{\kappa c}{{\scriptstyle M}^3},$$
 плотность материала цилиндра $\rho = 250 \frac{\kappa c}{{\scriptstyle M}^3}$.

Ускорение свободного падения $g = 9.8 \frac{M}{c^2}$.

4. Для отопления дома горячая вода температуры t_1 подается в радиаторы по трубе площадью поперечного сечения S_1 со скоростью υ_1 . При ремонте старую трубу заменили на новую с площадью поперечного сечения S_2 . Какой должна быть скорость движения воды температуры t_2 по новой трубе, чтобы температура t_0 в доме не изменилась?