Special Topics: Machine Learning (ML) for Networking

COL867 Holi, 2025

Application Performance Monitoring Tarun Mangla

Recap

 What is application performance monitoring?

1) long-term capacity planne 3) Troffic Engineery

 Why: Enable application-aware network management

Active measurement

• How:

Passive traffic monitoring →
application identification → [SN or DN]
performance inference (application specific

• Modeling for video streaming in case of unencrypted traffic

/videoapp/path/V0987654321/track03/segment101.ts?p=324&token=32543563654645

Content ID Chunk quality Chunk ID Session ID

Monitor Inference Control

Application performance metrics (e.g., re-buffering)

Network Management Control Loop

below threshold -> Poor

L. Pebuffrey: modeling buff occupancy

When Traffic is Encrypted

No longer have access to HTTP transactions from network measurements

When Traffic is Encrypted

No longer have access to HTTP transactions from network measurements

Solution: learn patterns from video streaming network traffic

What kind of ML solutions? NetMicroscope, ViCrypt

Problem Statement

 Given packet-level network traffic for a video session, infer application-level performance metrics

 How would you formulate it as a machine learning problem?

```
Lassification Regression Start up delay

( high or low)

( poor, med, high)
```

- Prediction Model of NetMicroscope Features

 What is the granularity of prediction?

 (3) H PKts, Tput
- Startup delay:
 - One-time prediction
- Video resolution:
 - Time series prediction

Time-sones us entired sessions

Features used by NetMicroscope

o(1) memory

All data goodput: Remore retransmission video churk sis

Network Layer	Transport Layer	Application Layer
throughput up/down (total, video,	# flags up/down (ack / syn / rst /push	segment sizes (all previous, last-10,
non-video)	/ urgent)	cumulative)
throughput down difference	receive window size up/down	segment requests inter arrivals
packet count up/down	idle time up/down	segment completions inter arrivals
byte count up/down	goodput up/down	# of pending request
packet inter arrivals up/down	bytes per packet up/down	# of downloaded segments
# of parallel flows	round trip time	# of requested segments
	bytes in flight up/down	
	#, retransmissions up/down	ugh system cot
	# packets out of order up/down	- 0

QUIC does not provide all feature

Seg# - -> Ack

o Cov memory

Can we reconstruct HTTP segments for encrypted traffic?

Insight: Use directionality of data flow in an HTTP transaction

T2-T1

How to train and validate the model?

Need labeled ground truth data: Build automation framework

Inference Accuracy: Startup Delay

Fig. 2. Startup delay inference error across different feature sets.

Which features are the most important? [Explainability]

0.4

Does the model generalize? [Generalizability]

Transfer leaking

Inference Accuracy: Video Resolution

Explainability: Video Resolution

→ Packet sezo → Segment sezo # Febraromoor What do you think are the most important features?

All Previous Average Segment Size All Previous Max Segment Size All Previous STD Segment Size Last 10 Min Segment Size **CUMSUM Segment Size** Last 10 STD Segment Size Last 10 Max Segment Size Last 10 EWMA Segment Size Last 10 Average Segment Size # Previous Segment Requests

All Previous Max Segment Size All Previous Average Segment Size CUMSUM Segment Size All Previous Min Segment Size All Previous Max Segment IAT Down Last 10 Average Segment Size Last 10 EWMA Segment Size Median Packet IAT Down All Previous STD Segment Size Last 10 Max Segment Size

Generalizability: Video Resolution

 Collected data from 66 homes by placing a Raspberry Pi for network data collection

- **Challenge**: Data available at 5-second granularity. Did not have precise estimate of the session start time
 - Solution: Used domain adaptation

Asked interesting policy questions

Does subscribing to high-speed tier improve application performance?

(b) YouTube.

(b) YouTube.

ViCrypt

Resolution every los

Ley Quality

		ViCrypt	
	Initial delay (# classes)	✓ (continuous) →	
KQI estimation targets	Stalling (# classes)	✓ (binary detection/continuous estimation)	
Tigi estimation targets	Resolution (# classes)	✓ (6 levels, 144p–1080p)	
	Bitrate (# classes)	✓ (continuous)	
	Chunk detection required?	Х	
Input features	# features	208	
	Feature selection	✓ (down to 20 features) 🚤	
	Real time	✓	
Network monitoring	Temporal resolution	1 second	
	Feature computational efficiency	✓	
	Streaming service	YouTube	
Training/Evaluation data	# video sessions	15,000+	
	Access network	WiFi & Cellular	
	# ISPs geo-location	4 ISPs 4 EU countries	
	Devices	laptop & smartphone (native app)	
	Time span	9 months in 2018/2019	

Features

- Divide time into slots
- Short-term memory vs trend

	up/down/total	Volume	Throughput	Distribution	Protocol Shares
-	packets size	✓	✓	✓	✓
-	packet count	✓			✓
4	packet IAT		✓	✓	

Features: Stramy manner

Procedure 2 Online Update of Distribution Metrics, Used for Computation of Distribution Features. The Procedure is Executed When New Values for the Corresponding Statistics are Observed

```
1: procedure UPDATEDISTRIBUTIONS(x)
             n \leftarrow n + 1
             \mathtt{d_x} \leftarrow \mathtt{x} - \mathtt{mean}
             d_n \leftarrow \frac{d_x}{n}
 5: mean \leftarrow mean + d_n
       \mathtt{sdm_4} \, \leftarrow \, \mathtt{sdm_4} \, + \, \left[ d_x \, d_n \, (n-1) \, d_n^2 \big( n^2 - 3n + 3 \big) \right] +
       (6d_n^2 sdm_2) - (4d_n sdm_3)
 7: \operatorname{sdm}_{3} \leftarrow \operatorname{sdm}_{3} + \left[\operatorname{d}_{x}\operatorname{d}_{n}\left(n-1\right)\operatorname{d}_{n}\left(n-2\right)\right] -
       (3d_n sdm_2)
 8: \operatorname{sdm}_{2} \leftarrow \operatorname{sdm}_{2} + \left[ \operatorname{d}_{x} \operatorname{d}_{n} (n-1) \right]
             if x < min then
                    min \leftarrow x
             if x > max then
11:
12:
                     \max \leftarrow x
```

up/down/total	Volume	Throughput	Distribution	Protocol Shares
packets size	✓	✓	✓	✓
packet count	1			✓
packet IAT		1	✓	

Procedure 3 Computation of Distribution Features

1: **procedure** COMPUTEDISTRIBUTIONFEATURES

2:
$$\operatorname{var} \leftarrow \frac{\operatorname{sdm}_2}{n-1}$$

3:
$$\operatorname{std} \leftarrow \sqrt{\operatorname{var}}$$

4:
$$cvar \leftarrow \frac{std}{mean}$$

5:
$$\operatorname{skew} \leftarrow \sqrt[\operatorname{mean}]{\frac{n}{\operatorname{sdm}_2^3}} \cdot \operatorname{sdm}_3$$

6:
$$kurt \leftarrow n \cdot \frac{sdm_2}{sdm_2^2} - 3$$

Dataset

• One service: YouTube

Different network conditions

Performance: Stall Prediction

Feature Importance Pug

	4		~
	Stalling	Video resolution	Average bitrate
#1 feature	maximum upload packet size	throughput (session) [0.04]	throughput (session) [0.07]
	(trend) [0.03]		
#2 feature	standard deviation of upload packet	burst throughput (session) [0.03]	burst throughput (session) [0.05]
	size (session) [0.02]		
#3 feature	upload volume (session) [0.02]	mean IAT of download packets	skewness of upload packet-size dis-
		(session) [0.02]	tribution (session) [0.04]
#4 feature	standard deviation of download	burst throughput of download traf-	mean IAT of download packets
	packet size (session) [0.02]	fic (session) [0.02]	(session) [0.04]
#5 feature	skewness of upload packet-size dis-	coefficient of variation of IAT of	download burst throughput (ses-
	tribution (session) [0.01]	download packets (session) [0.02]	sion) [0.04]

System cost

Update Features

Prediction by the model