1.4. Electric Work and Electric Voltage

(i) Mechanical work - calculation on an arbitrary path in a position-dependent force field

- Electric field = force field: if you move charged particles in an electric field, you have to perform mechanical work
- Simple case: force is not depending on location (constant force field), path is straight line

W=IFI Dh

F is parallel
$$\vec{\Delta r} \Rightarrow W_{mech} = |\vec{F_1}| \cdot |\vec{\Delta r}|$$

Case 2: When $|\vec{F_2}| \cdot |\vec{\Delta r}| \cdot |\vec{\Delta r}|$ Cos $\vec{\alpha}$ $\vec{F_2} \cdot |\vec{C}| \cdot |\vec{C}|$ Cos $\vec{\alpha}$ $\vec{F_3} \cdot |\vec{C}| \cdot |\vec{C}|$ Cos $\vec{\alpha}$ $\vec{F_3} \cdot |\vec{C}| \cdot |\vec{C}|$ Cos $\vec{\alpha}$ $\vec{F_4} \cdot |\vec{C}| \cdot |\vec{C}|$ Cos $\vec{\alpha}$ $\vec{F_4} \cdot |\vec{C}| \cdot |\vec{C}|$ Cos $\vec{\alpha}$ \vec{C} The path \vec{C} cos \vec{C} is parallel \vec{C} and \vec{C} is parallel \vec{C} and \vec{C} is parallel \vec{C} is parallel \vec{C} in \vec{C} in \vec{C} in \vec{C} in \vec{C} in \vec{C} in \vec{C} is parallel \vec{C} in \vec{C}

$$\Rightarrow$$
 only component of \vec{F} parallel to $\vec{\Delta r}$ Contributes to the Wmech.

- General case: magnitude and direction of force depend on location (force field not constant), moving something along an arbitrary path/curve C
- Curve arbitrary ((β, β₂)
- Force field position-dependent $\vec{F}(\tau)$
- Piece-wise summation along curve C(P1,P2)

 $\Delta W_{mech_i} = \Delta \vec{F}(\vec{r}_i) \cdot \Delta \vec{r}_i$

 Calculate line integral in vector field along curve C Sum up different Contributions DWmechi

along the curve, if we move from P, to P2 \Rightarrow total work along $C(P_1, P_2)$ $W_{med} = \sum_{i} \vec{r}(\vec{r}_i) \cdot \Delta \vec{r}_i$ $\Delta \vec{r}_i$ infinitesimal small \Rightarrow $d\vec{\tau} \Rightarrow Replace Sum by integral$

For determining work performed in a vector field, we have to solve a path integral in the vector field:

Basically we have to do three Step

- (i) Find a Suitable parameterization of the Curve $C(P_1, P_2)$ and the limits of integration
- (ii) Parameterize vector field accordingly (= force field)
- (iii) adjust I parameterize differential line element of in a way that we follow the path C, Cr, P2)

$$W = \int \vec{F}(\vec{r}) d\vec{r}$$

 $C(\vec{r}_1, \vec{r}_2)$

- (i) introduce parameters S, which follows the path $S \in [0, 1)$ $C: S \mapsto \overline{\tau}(s)$
- (ii) Vector field F(t) → F(t(s))
- (iii) adjust differential line element of and the integration limits $s \in [0, L]$ (can be represented by a sequence of tangent vectors to $t = d\vec{r}(s) \Rightarrow d\vec{r} = \vec{t} \cdot ds$

$$W = \int \vec{F}(\vec{r}) d\vec{r} = \int \vec{F}(\vec{r}(s)) \cdot \vec{F} \cdot ds = \int \vec{F}(\vec{r}(s)) \cdot d\vec{r}(s) \cdot ds$$

$$(C(r, P_2)) = \vec{r}_1(s) = 0 \qquad d\vec{r}$$

(ii) Electric work:

$$\vec{F}_{el} = q \cdot \vec{E}(\vec{r}) \Rightarrow |W_{el}| = \int q \cdot \vec{E}(\vec{r}) \cdot d\vec{r}$$

$$C(P_{el}P_{2})$$

electric Work performed on Charge q When moving along Curve C

Example: electric work in the field of a point charge:

Point Charge Q, Q70, located at
$$\overline{r_0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0$$

To solve:
$$W = \int \vec{F} dr = \int q \cdot \vec{E}(\vec{r}) d\vec{r}$$
 with $\vec{E}(\vec{r}) = \frac{1}{4\pi \epsilon_0} \cdot \frac{Q(\vec{r} - \vec{r_0})}{|\vec{r} - \vec{r_0}|^3}$

. spherical symmetric problem \rightarrow integrate along radius \Rightarrow introduce a unit vector in r-direction \vec{e}_r $(|\vec{e}_r|=1) \Rightarrow d\vec{r} = \vec{e}_r \cdot dr$ $W = \int_{q} \cdot \vec{E}(\vec{r}) d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{1}^{q} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0) \cdot \vec{e}_r \cdot d\vec{r} = \frac{1}{4\pi \epsilon_0} \int_{r_1}^{r_2} \frac{q \cdot Q}{|\vec{r} - \vec{r}_0|^3} (\vec{r} - \vec{r}_0)$

1.4.2 Electric voltage see ppt presentation