Mecânica e Campo Electromagnético

Ano lectivo de 2011/12 Exercícios do Capítulo 3.6 – Campo Magnético

1. Determine a direcção inicial de deflexão das partículas carregadas seguintes, quando entram em regiões onde o campo magnético tem as direcções representadas.

- 2. No equador, junto à superfície da Terra, a amplitude do campo magnético é de, aproximadamente, $50 \, \mu T$, apontando para o norte, e o campo eléctrico tem uma amplitude de $130 \, \text{V/m}$, se o tempo estiver bom, apontando para o solo. Obtenha a força resultante (devida aos campos gravitacional, eléctrico e magnético) que sofre um electrão com a velocidade instantânea de $6\times10^6 \, \text{m/s}$ dirigida para o leste.
- 3. Um electrão é projectado para um campo magnético uniforme $\vec{B} = (1,4 \cdot \hat{i} + 2,1 \cdot \hat{j})$ T. Encontre uma expressão vectorial para a força que se exerce no electrão se a sua velocidade for $\vec{v} = 3.7 \times 10^5 \, \hat{j}$ m/s.
- **4.** Numa região do espaço coexistem um campo eléctrico $\vec{E} = (3\hat{i} + 5\hat{j} 2\hat{k}) \cdot 10^4 \ V/m$ e um campo magnético desconhecido. Uma partícula de carga $Q = 10^{-10} C$ sofre, num instante em que possui a velocidade $\vec{v} = 10^3 \hat{i} \ ms^{-1}$, uma força $\vec{F} = (3\hat{i} + 2\hat{j}) \cdot 10^{-6} N$. Determine o vector campo magnético e o ângulo entre este campo e a direcção da aceleração da partícula.
- **5.** Um fio com o comprimento de 2,8 m transporta uma corrente de 5 A numa região onde existe um campo magnético uniforme com a amplitude de 0,39 T. Calcule a amplitude da força magnética que se exerce no fio se o ângulo entre o campo magnético e a corrente for de 60°, 90° e 120°.

6. Um condutor suspenso por dois fios flexíveis tem uma massa por unidade de comprimento de 40 g/m (ver figura). Que corrente deve existir no condutor para que a tensão nos fios de suporte seja nula quando existe um campo magnético com a amplitude de 3,6 T para o interior da página?

- 7. Um fio de massa m e raio R está em repouso sobre duas barras paralelas que distam entre si
 - de um valor d e têm um comprimento L. O fio é percorrido por uma corrente I (no sentido indicado na figura) e rola sobre as barras sem atrito. Existe no espaço um campo magnético uniforme perpendicular tanto às barras como ao fio. Se este partir do

repouso, qual é a sua velocidade à saída das barras?

8. Uma bobina rectangular consistindo de *N* = 100 espiras bem juntas tem as dimensões *a* = 40 cm e *b* = 30 cm. A espira, percorrida por uma corrente *I* = 1,2 A, é presa ao eixo *y* e o seu plano faz um ângulo de 30 ° com o eixo *x*. Qual é a amplitude do momento exercido na espira por um campo magnético uniforme *B* = 0,8 T apontando no sentido positivo do eixo *x*? Qual o sentido esperado de rotação da espira?

- **9.** Um fio, de comprimento 40 cm, transporta uma corrente de 20 A. É dobrado para formar uma espira cujo plano é tangencial a um campo magnético com a amplitude de 0,52 T. Qual é o momento da força magnética sobre o circuito se ele for dobrado
 - a) Num triângulo equilátero?
 - b) Num quadrado?
 - c) Num círculo?
 - d) Em qual das formas é maior o momento?
- 10. O campo magnético da Terra num certo local está dirigido verticalmente para baixo e tem a amplitude de 50 μ T. Um protão move-se horizontalmente para oeste com uma velocidade de 6.2×10^6 m/s.
 - a) Qual é a direcção e a amplitude da força magnética que se exerce na carga?
 - b) Qual é o raio do arco circular descrito pelo protão?

- 11. Um ião positivo com a carga elementar tem uma massa de 3,2×10⁻²⁶ Kg. Depois de ser acelerado a partir do repouso por uma diferença de potencial de 833 V, o ião entra num campo magnético de 0,92 T, numa direcção perpendicular à direcção do campo. Determine o raio da trajectória seguida pelo ião no campo.
- 12. Um ião de massa m carregado com a carga elementar é acelerado a partir do repouso por uma diferença de potencial ΔV . É depois deflectido por um campo magnético uniforme (perpendicular à velocidade do ião) segundo um semi-círculo de raio R. Agora, um ião com duas vezes a carga elementar e massa m' é acelerado através da mesma diferença de potencial e deflectido através do mesmo campo magnético segundo um semi-círculo de raio R' = 2R. Qual é a razão entre as massas dos iões?
- *13*. Um selector de velocidades tem campos eléctrico e magnético descritos pelas as

expressões $\vec{E} = E \cdot \hat{k}$ e $\vec{B} = B \cdot \hat{j}$. Se B = 0.015 T, calcule o valor de E de maneira que um electrão movendo-se ao longo do eixo x com uma energia de 750 eV não seja deflectido.

14. Considere o espectrómetro de massa ilustrado esquematicamente na figura. O campo eléctrico entre as placas do selector de velocidades é de E = 250 V/m e o campo magnético tanto no selector de velocidades como na câmara de deflexão tem a amplitude de $B = B_0 = 0.035$ T. Calcule o raio da trajectória para um ião com a carga elementar e a massa de 2.18×10^{-26} Kg.

- **15.** Qual é o raio do ciclotrão necessário para acelerar protões até energias de 34 MeV usando um campo magnético de 5,2 T?
- **16.** Um ciclotrão projectado para acelerar protões tem um campo magnético com a amplitude de 0,45 T ao longo de uma região com o raio de 1,2 m.
 - a) Qual é a frequência do ciclotrão?
 - b) Calcule a velocidade máxima adquirida pelos protões.

- 17. Um tubo de raios catódicos pode usar campos magnéticos como método de deflexão. Suponha que um feixe de electrões é acelerado através de uma diferença de potencial de 50 kV e depois viaja através de uma região com campo magnético uniforme e uma largura de 1 cm. O ecrã está localizado a 10 cm do centro das bobinas e tem 50 cm de largura. Quando o campo magnético é desligado o feixe de electrões atinge o centro do ecrã. Que amplitude do campo magnético é necessária para deflectir o feixe para a extremidade do ecrã?
- **18.** Um fio com a forma ilustrada na figura transporta uma corrente I. Sabendo que o arco tem raio R e abertura α , determine o campo magnético no seu centro.

- a) Determine o campo magnético criado no ponto *P*, em função dos parâmetros indicados.
- b) Considere o fio muito comprido e calcule agora o campo magnético criado no mesmo ponto.

- *20*. Um condutor com a forma de um quadrado de lado a transporta uma corrente I.
 - a) Calcule a amplitude e a direcção do campo magnético no centro do quadrado.
 - b) Se este condutor for transformado numa espira circular e transportar a mesma corrente, qual é o campo magnético no seu centro?

21. Determine o campo magnético num ponto *P* localizado à distância *x* da esquina de um fio infinitamente longo dobrado em ângulo recto como se mostra na figura. O fio transporta uma corrente *I*.

23. Considere uma espira circular de raio R transportando uma corrente I. Considerando o eixo x como o eixo do anel e com origem no seu centro, determine o campo magnético como função de x.

24. Dois longos condutores paralelos transportam correntes de I_1 e I_2 , como se mostra na figura. Situe um sistema de eixos no fio inferior e determine o campo magnético no ponto P.

25. Um fio longo que transporta uma corrente I_1 está no mesmo plano duma espira rectangular de lados a e b (ver figura) e que transporta uma corrente I_2 . Determine a força magnética exercida na espira pelo fio.

- **26.** Duas espiras circulares, paralelas e coaxiais, estão afastadas de 1 mm, como mostra a figura. Cada espira tem 10 cm de raio. A espira de cima é percorrida por 14 A, no sentido dos ponteiros do relógio. A espira de baixo é percorrida pela mesma corrente, mas em sentido contrário.
 - a) Calcule a força magnética que a espira de baixo exerce na de cima.
 - b) A espira de cima tem uma massa de 21 g. Calcule a sua aceleração, considerando que as forças que nela se exercem são:

- i) apenas a força magnética.
- ii) as forças magnética e gravitacional.
- *27*. Quatro longos condutores, de raio r, estão situados nos vértices de um quadrado de lado a e são percorridos por densidades de corrente uniforme \vec{J} e $2\vec{J}$, como mostra a figura. Calcule a amplitude e direcção do campo magnético no centro do quadrado.

28. A figura do lado representa um corte transversal de um cabo coaxial constituído por um condutor central de raio a e uma malha condutora de raios interior e exterior b e c, respectivamente. No espaço entre o condutor central e a malha, bem como exteriormente à malha, existe um material isolador. O raio exterior é d. O cabo transporta uma corrente I (no sentido indicado) que se distribui uniformemente pelas superfícies condutoras. Determine o campo magnético em todos os pontos do espaço ocupado pelo cabo.

29. Um conjunto de 100 longos fios isolados são apertados uns contra os outros para formar um cilindro de raio R = 0.5 cm (os fios estão esticados e dispostos longitudinalmente em relação ao eixo do cilindro). Cada fio transporta uma corrente I = 2 A.

5

- a) Calcule a amplitude e a direcção da força magnética por unidade de comprimento que actua num fio situado à distância r = 0.2 cm do centro do cilindro.
- b) Um fio junto à periferia do conjunto seria sujeito a uma força maior ou menor do que a calculada na alínea anterior?
- **30.** Um longo condutor cilíndrico de raio R é percorrido por uma corrente I. A densidade de corrente é não uniforme ao longo da secção do fio, sendo dada por $\vec{J} = b \cdot r \cdot \hat{z}$, sendo b uma constante (no s..c. cilíndricas, com o eixo do fio coincidente com o eixo z).
 - a) Obtenha a amplitude e a direcção do campo magnético para um ponto do interior do fio, à distância r do seu eixo (r < R).
 - b) Obtenha a amplitude e a direcção do campo magnético para um ponto do exterior do fio, à distância r do seu eixo (r > R).
- 31. Um solenóide com o raio de 2 cm é feito com 80 m de fio de cobre (com isolamento esmaltado) com diâmetro de 1 mm. O enrolamento tem duas camadas de espiras bem juntas. Obtenha o campo magnético no centro do solenóide se este for alimentado com uma fonte de tensão de 20 V. Despreze a espessura do isolamento de esmalte.
- 32. Precisamos de criar um campo magnético com um solenóide, dispondo dos seguintes materiais: um rolo de papel de cozinha (sem papel, naturalmente; com dimensões: diâmetro: 4,5 cm; comprimento: 22,5 cm), fio de cobre (com isolamento esmaltado) com 0,4 mm de diâmetro (despreze a espessura do isolamento), resistências de vários valores com a potência nominal de 1W cada e uma fonte de tensão de 12 V (corrente máxima 0,5 A).
 - a) Qual o campo máximo que é possível obter com um único enrolamento?
 - b) Que número de espiras devemos utilizar para que a fonte não entre em sobrecarga?
 - c) Uma solução para aumentar o campo seria usar vários enrolamentos ligados em paralelo. De que factor aumentaria o campo se usassemos dois enrolamentos em paralelo? Determine o número de espiras para este caso de maneira a não sobrecarregar a fonte.
- 33. Considere uma espira de raio R, percorrida por uma corrente I. Concêntrica com ela está outra espira de raio r (r < R).
 - a) Determine o fluxo do campo magnético através da superfície da espira de raio r para r << R e os planos das duas espiras coincidentes.
 - b) Determine o fluxo do campo magnético através da superfície da espira de raio r para r <<R e os planos das duas espiras fazendo um ângulo θ .
 - c) Se usar a aproximação da alínea a) para calcular o fluxo através de uma espira para a qual não se possa considerar $r \ll R$, está a sobre-estimar ou sub-estimar o fluxo?

Soluções:

 $[\]hat{j}$; \hat{k} ; sem deflexão; $-\hat{k}$. $F_z = 2.7 \times 10^{-17} \text{ N}$.

 $[\]vec{F} = 8.29 \times 10^{-14} \hat{k} \text{ N}.$

⁴ $\vec{B} = B_x \cdot \hat{i} + 20 \hat{j} + 30 \hat{k}$ T.

```
<sup>5</sup> 4,73 N; 5,46 N; 4,73 N.
v = \sqrt{\frac{2LBId}{BId}}
^{8} M = 0,10 Nm no sentido dos ponteiros do relógio ^{9} a) M = 0,080 Nm b) M = 0,104 Nm
                                                                                                               c) M = 0.132 Nm.
 <sup>10</sup> a) F = 4.96 \times 10^{-17} N, Sul b) r = 1.29 Km
 ^{11} r = 1.98 cm.
 ^{12} m/m' = 1/8.
 ^{13} E = 244 \text{ KV/m}.
r = 2.78 \text{ cm.}

r = 16.2 \text{ cm.}
 ^{18} B = \frac{\mu_0}{4\pi} \frac{I\alpha}{R} para dentro do papel.
 <sup>19</sup> B = \frac{\mu_0 I}{4\pi d} \left( \sin \alpha_1 + \sin \alpha_2 \right)
^{20} a) B = \frac{2\sqrt{2}\mu_0 I}{\pi a}; b) B = \frac{\mu_0 \pi I}{4a}.
^{21} B = \frac{\mu_0 I}{4\pi x}.
<sup>22</sup> B = \frac{\mu_0 I}{2\pi R} (\pi + 1).
^{23} B_x = \frac{\mu_0 I}{2} \frac{R^2}{(R^2 + x^2)^{3/2}}.
\vec{B} = -9.24 \cdot \hat{i} - 9.15 \,\hat{j} \, (\mu \text{T}); \, |\vec{B}| = 13 \,\mu \text{T}.
^{25} F = \frac{\mu_0 I_1 I_2 ab}{2\pi c (a+c)}.
^{26} a) F = 24.6 mN (repulsão)
                                                            b) i) a = 1.17 \text{ m/s}^2 \text{ (cima)} ii) a = 8.63 \text{ m/s}^2 \text{ (baixo)}
^{27} B = \frac{3\mu_0 I}{\pi a}.
{}^{28} r < a: B = \frac{\mu_0 I r}{2\pi a^2}; \qquad a < r < b: B = \frac{\mu_0 I}{2\pi r}; \qquad b < r < c: B = \frac{\mu_0 I}{2\pi r} \frac{c^2 - r^2}{c^2 - b^2}.
```

³⁰ a)
$$\vec{B} = \frac{\mu_0 b r^2}{3} \hat{\phi}$$
 b) $\vec{B} = \frac{\mu_0 b R^3}{3r} \hat{\phi}$.

$$^{31}B = 2.94 \text{ mT}$$

 $^{32}a)B = 3.50 \text{ mT b}) N = 1255$ c) 2 vezes; $N' = 2N$

a)
$$\phi = \frac{\pi \mu_0 I r^2}{2R}$$
 b) $\phi = \frac{\pi \mu_0 I r^2 \cos \theta}{2R}$ c) Sobre-estima.