Estatística: conceitos e representações - Turma 2024A

2.3 Distribuição de frequências

Determinação do número de classes (K)

É importante que a distribuição conte com um número adequado de classes. Se o número de classes for excessivamente pequeno acarretará perda de detalhe e pouca informação se poderá extrair da tabela. Por outro lado, se for utilizado um número excessivo de classes, haverá alguma classe com frequência nula ou muito pequena, não atingindo o objetivo de classificação que é tornar o conjunto de dados supervisionáveis. Não há uma fórmula única para determinar o número de classes.

Três soluções são apresentadas abaixo:

a) Para $n \le 25 \rightarrow K = 5$ e para $n \& gt; 25 \rightarrow K \sqrt{n}$

Exemplo: Se a amostra tiver 23 elementos analisados, o número de classes é 5, pois $n \le 25$. Suponha que a amostra tenha 83 elementos analisados ($n \ge 25$) o número de classes é calculado por $\sqrt{83} = 9,1104335$ 9.

b) Pode-se utilizar a regra de Sturges, que fornece o número de classes em função do total de observações:

 $K = 1+3,3 \times log n$

Onde:

K é o número de classes:

Log é a abreviação de logaritmo e o seu valor pode ser obtido com uma calculadora científica;

n é o número total de observações.

Para facilitar o cálculo do número de classes pela regra de Sturges, utilize a tabela abaixo:

Tabela 1 - Tabela para o cálculo de classes pela regra de Sturges

nº total de observações	k = número de classes a usar
1	1
2	2
3 5	3
6 11	4
12 22	5
23 46	6
47 90	7
91 181	8
182 362	9
363 724	10
725 1448	11
1449 2896	12

^{|--|} Inclui tanto o valor da direita quanto o da esquerda

Importante: A fórmula de Sturges revela um inconveniente: propõe um número demasiado de classes para um número pequeno de observações, e relativamente poucas classes quando o total de observações for muito grande.

Exemplo: Se a amostra tiver 94 elementos analisados, o cálculo do número de classes pela fórmula de Sturges ficará da seguinte maneira:

_ Não inclui nem o valor da direita, nem o da esquerda

^{-|} Inclui o valor da direita, mas não o da esquerda

^{|-} Inclui o valor da esquerda, mas não o da direita

$$K \sim = 1 + 3.3 \times Log n$$

Também percebemos pela tabela que 94 é um número entre 91 |---| 181, logo teremos 8 classes formando a tabela de frequências.

c) Truman L. Kelley sugere os seguintes números de classes, com base no número total de observações, para efeito de representação gráfica:

Tabela 2 - Números de classes com base no número total de observações

					100		
K	2	4	6	8	10	12	15

Exemplo: Se a amostra tiver 50 elementos analisados o número de classes é 8, conforme tabela acima.

Importante: Qualquer regra para determinação do número de classes da tabela não nos leva a uma decisão final: esta vai depender, na realidade de um julgamento pessoal, que deve estar ligado à natureza dos dados.

Amplitude do intervalo de classe (Ai):

É o comprimento da classe. Observação: convém arredondar o número correspondente à amplitude do intervalo de classe para facilitar os cálculos (arredondamento arbitrário).

$$Ai = H/K$$

Exemplo prático: Antes de enviar um lote de aparelhos elétricos para venda, o Departamento de Inspeção da empresa produtora selecionou uma amostra casual de 32 aparelhos, avaliando o desempenho através de uma medida específica, obtendo os seguintes resultados:

Tabela 3 - Resultados

154	155	156	164	165	170	172	175
175	176	178	178	180	180	180	184
190	190	190	192	195	198	200	200
202	205	205	210	211	212	215	218

Construir uma tabela de distribuição de frequências com intervalos de classes.

1º passo: A amplitude total será dada por:

$$H = 218 - 154$$

$$H = 64$$

2º passo: Neste caso, n = 32, pela regra de Sturges

$$K = 6$$

3º passo: A amplitude do intervalo de cada classe será:

$$Ai = H / K$$

$$Ai = 64/6$$

4º passo: Construir a tabela de distribuição de frequências com intervalos de classes

Perceba que utilizamos o menor valor do Rol, para iniciar a 1ª classe e a amplitude do intervalo encontrado para formar as outras classes que completam a tabela.

Tabela 4 - Tabela de distribuição de frequências com intervalos de classes

Classes	Frequências
154 - 165	4
165 -176	5
176 - 187	7
187 - 198	5
198 - 209	6
209 - 220	5
Total (Σ)	32

Este material foi baseado em:

FALCO, Javert Guimarães; MEDEIROS JUNIOR, Roberto José. **Estatística.** Curitiba: Instituto Federal do Paraná/Rede e-Tec Brasil, 2012.

Última atualização: sexta, 17 nov 2023, 09:39

■ 2.2 Elementos principais da tabela de distribuição de frequências

Seguir para...

2.4 Tipos de frequências ▶