力学和热学练习题

- 一、选择题(每题3分,共10题)
- 1. 一运动质点在某瞬时位于矢径 r(x,y) 的端点处,其速度大小为 ()

A.
$$\frac{d\vec{r}}{dt}$$
; B. $\frac{d|\vec{r}|}{dt}$; C. $\frac{dr}{dt}$; D. $\sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2}$

- 2.以下五种运动形式中, \vec{a} 保持不变的运动是(
 - (A)单摆的运动;
- (B)匀速率圆周运动;
- (C)行星的椭圆轨道运动; (D)抛体运动;
- (E) 圆锥摆运动。
- 3.如图所示,质量为m的木块用细绳水平拉住,静止于光滑的斜面上,斜面给木 块的支持力是 ()

- (A) $mg \cos \theta$; (B) $mg \sin \theta$; (C) $mg / \cos \theta$; (D) $mg / \sin \theta$.
- 4.质量分别为 m_1 、 m_2 的两个物体用一倔强系数为 k 的轻弹簧相联,放在水平光滑桌面上, 如图所示,当两物体相距x时,系统由静止释放,已知弹簧的自然长度为 x_0 ,则 当物体相距 x_0 时, m_1 的速度大小为: (

- 5. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为 J_0 , 角速度为 ω_0 . 然后两臂收回,使转动惯量减少为 $(1/3)J_0$. 这时她的角速度变为 ()
 - A. $\omega_0/3$; B. $\omega_0/\sqrt{3}$; C. $\sqrt{3}\omega_0$; D. $3\omega_0$.
- 6.按 PV^2 = 恒量规律膨胀的理想气体,膨胀后的温度为: ()
 - (A)升高;
- (B)不变; (C)降低; (D)无法确定。
- 7.标准状态下,若氧气和氦气的体积比 $V_1/V_2=1/2$,则其内能 E_1/E_2 为: ()
 - (A)1/2; (B)5/6; (C)3/2; (D)1/3.

- 8.对于一定量的理想气体,下列过程中可能实现的是: ()
 - (A)恒温下绝热膨胀;
- (B)绝热过程中体积不变而温度上升;
- (C)恒压下温度不变;
- (D)吸热而温度不变。

9.一定量的理想气体,如果内能的增量 $dE = \frac{M}{\mu} C_{\nu} dT$,那么它的适用条件是: ()
(A)必须温度升高; (B)应该是双原子分子气体;
(C)任何热力学过程; (D)必须是等体过程。
10. 汽缸内盛有一定量的理想气体, 当温度不变, 压强增大一倍时, 该气体分子的平均碰撞
次数 \overline{Z} 和平均自由程 $\overline{\lambda}$ 的变化情况是:()
(A) \overline{Z} 和 $\overline{\lambda}$ 都增大一倍; $(B)\overline{Z}$ 和 $\overline{\lambda}$ 都减为原来的一半;
(C) \overline{Z} 增大一倍而 $\overline{\lambda}$ 减为原来的一半; (D) \overline{Z} 减为原来的一半而 $\overline{\lambda}$ 增大一倍。
二 、填空题 (每空 3 分, 共 30 分)
1.一质点沿 X 方向运动,其加速度随时间变化关系为 $a = 4 + 2t$ (SI),如果初始时质点的速
度 υ_0 为 7m·s ⁻¹ ,则当 t 为 4s 时,质点的速度 υ =米/秒。
2. 一人从 10 m 深的井中提水,起始时桶中装有 10 kg 的水,桶的质量为 1 kg,由于水桶漏水,每升高 1 m 漏去 0.2 kg 水,求水桶匀速地从井中提到井口,人所作的功 W =。
3.一质点从静止出发,沿半径 $R=4$ m 的圆周运动,切向加速度 $a_{t}=2$ m/s ² ,当总加速度与半
径成 45° 角时,所经过的时间 $t=$ 秒,在上述时间内质点经过的路程 $S=$
米。
4.如图所示,半径为 R 的圆环固定在光滑的水平桌面上,一物体沿圆环内壁作圆周运动,
$t=0$ 时,物体的速率为 0 (沿切线方向),若物体与圆环的摩擦系数为 μ ,求物体稍后任
意时刻的速率 $v =$ 。
5.如图所示,两块并排的木块 A 和 B,质量分别为 m_1 和 m_2 ,静止地放置在光滑的水平面上,
一子弹水平地穿过两木块,设子弹穿过两木块所用的时间分别为 Δt_1 和 Δt_2 ,木块对子弹的
阻力为恒力 F ,则子弹穿出后,木块 A 的速度大小为,木块 B 的速度大小
为。 B A
6. 在容积为 V 的容器内,同时盛有质量为 M_1 和 M_2 的两种单原子分子
的理想气体,设混合气体处于平衡状态时它们的内能相等,且均为 E ,则混合气体压强 p
=
7. 已知,某理想气体在摄氏温度 27℃和压强 1. 0×10 ⁻² atm 情况下,密度为 11. 39g/m³,其摩
尔质量为 「克/摩尔]。(摩尔气体常量 $R=8.31 \text{ J mol}^{-1} \text{ K}^{-1}$)

8. 3mol 的理想气体开始时处在压强 p_1 =6atm、温度 T_1 =500K 的平衡态,经过一个等温过程,

三. 计算题(本题10分)

一质点沿 X 轴运动, 其加速度 a 与位置坐标 x 的关系为 $a=3+6x^2(SI)$, 如果质点 在原点处的速度为零,试求其在任意位置处的速度υ(x) = ?

四. 计算题(本题10分)

一轻绳跨过一轴承光滑的定滑轮,绳的两端分别悬有质 量为 m_1 和 m_2 的物体,滑轮可视为均质圆盘,质量为m ,半径为r , 绳子不可伸长而且与滑轮之间无相对滑动。求物体加速度、滑轮 转动的角加速度和绳子的张力。

五. 计算题(本题 10 分)

一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为 M/4,均匀分布在其边缘上,绳子 的 A 端有一质 量为 M 的人抓住了绳端, 而在绳的另一端 B 系了一质量为 M/4 的重物, 如图。已知滑轮对 O 轴的转动惯 量 J=MR2/4,设人从静止开始以相对绳匀速向上爬时, 绳与滑轮间无相对滑动, 求 B 端重物上升的加速度?

六. 计算题(本题10分)

一定量的理想气体,由状态 a 经 b 到达 c, (如图, abc 为一直线)求此过程中。

(1) 气体对外作的功; (2) 气体内能的增量; (3)气体吸收的热量。

 $[1atm=1.013 \times 105Pa]$

