Linear Algebra for Data Science

BIPN 162

By the end of this lecture, you will be able to:

(in addition to the learning objectives for the take home videos!)

- Identify the possible uses of linear algebra in neuroscience
- Compute a dot product and explain its relationship to a correlation
- Construct and multiply matrices in Python (and by hand)
 - Create and manipulate special cases of matrices
- Define what eigenvalues & eigenvectors are and determine them using Python

Why linear algebra?

Why linear algebra?

- The "language of data"!
- Useful in a variety of contexts, from <u>simplifying large datasets</u> to <u>modeling populations of animals</u>
- It's how we can find solutions to multiple linear equations

Linear algebra can be used to solve for angles in a CAT scan

What do we mean by "linear equations"?

In two dimensions, a line in a rectangular xy-coordinate system can be represented by an equation of the form:

$$ax + by = c$$
 (a, b not both 0)

In three dimensions a plane in a rectangular xyz-coordinate system can be represented by an equation of the form:

$$ax + by + cz = d$$
 $(a, b, c \text{ not all } 0)$

More generally, we define a linear equation in the n variables $x1, x2, \ldots, xn$ to be one that can be expressed in the form:

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$$

Does not involve any products or roots of variables! No trigonometric, logarithmic, or exponential functions!

Additional use cases of linear algebra in biology

- Modeling of population dynamics
- Analysis of food web dynamics & ecology
- Genetics & DNA sequencing (e.g., sequence alignment)
- Metabolic pathway analysis
- Dimensionality reduction!!!!
 - Protein structure & folding
 - Neurophysiology data
- Image analysis (convolution, matrix transformations)

Why is linear algebra useful for (neuroscience) data?

Vectors

Pre-lecture viewing

After watching chapters 1 & 2 you should be able to:

- Describe vectors, their properties
 (dimensionality/length), and two of their operations:
 addition & multiplication
- Define span and basis vectors
- Determine and explain the number of basis vectors necessary for a given vector space

Vector notation (there isn't *one* standard!)

Vector property: **Dimensionality**

(the number of numbers in the vector)

Note: this is different than dimensionality in code! Mathematical dimensionality is **length** or **shape** in Python.

Vector Property: Length

(aka magnitude or norm)

Length of
$$\mathbf{x} = \sqrt{2^2 + 3^2}$$
 // $\mathbf{x} = \sqrt{13}$

Vector property: Orientation

whether the vector is in column orientation (standing up tall) or in row $_{\odot}$ (orientation (flat and wide)

Are these the same?
Does it matter?
Sometimes yes, sometimes no.

column vector

row vector

$$\mathbf{x}^{\mathsf{T}} = \left(\begin{array}{cccc} 4 & 1 & 2 \end{array} \right)$$

Note: The convention in linear algebra is to *assume* vectors are in column orientation, unless otherwise specified.

Special vectors

Zero vector: vector with length 0

$$\mathbf{y} = egin{bmatrix} 0 \ 0 \end{bmatrix}$$
 (Each component is zero!)

Unit vector: vector with length 1

(or with a "hat" instead of a tilde)
$$\mathbf{\tilde{x}} = \frac{\mathbf{x}}{||\mathbf{x}||}$$

 $oldsymbol{x} = \left \lceil rac{2}{3}
ight
ceil$

$$||m{x}|| = \sqrt{13}$$

$$ilde{oldsymbol{x}} = egin{bmatrix} rac{2}{\sqrt{13}} \ rac{3}{\sqrt{13}} \end{bmatrix}$$

You can turn any vector into a unit vector by dividing **each of its components** by the length of the vector

Vector addition

Vector addition

Vector addition

Note: we can only use vector addition (and subtraction) when vectors have the same dimensionality *and* the same orientation.

Vector subtraction

Vector subtraction

$$\left[\begin{array}{c}\mathbf{2}\\\mathbf{4}\end{array}\right]-\left[\begin{array}{c}\mathbf{2}\\-\mathbf{2}\end{array}\right]$$

Vector-Scalar Multiplication

- "Scalars" are non-dimensional quantities
- Typically indicated by lowercase Greek letters such as α or λ
- Multiply each vector element by the scalar.

Vector Normalization

 Dividing a vector by its magnitude to generate a unit vector (with magnitude 1)

$$ilde{\mathbf{x}} = rac{\mathbf{x}}{||\mathbf{x}||}$$

By the end of this lecture, you will be able to:

(in addition to the learning objectives for the take home videos!)

- Identify the possible uses of linear algebra in neuroscience
- Compute a dot product and explain its relationship to a correlation
- Construct and multiply matrices in Python (and by hand)
 - Create and manipulate special cases of matrices
- Define what eigenvalues & eigenvectors are and determine them using Python

The **dot product**: a single number that provides information about the relationship between two vectors or matrices

a = 1st vector

 $b = 2nd \ vector$

 $m{n}$ = dimension of the vector space

 a_i = component of vector a

 b_i = component of vector b

In other words, multiply the corresponding elements of two vectors, and then sum over all of the individual products.

In other other words, element-wise multiplication & sum.

The **dot product**: a single number that provides information about the relationship between two vectors or matrices

Another way to write this...

Gives intuition for why dot product is 0 when angle is 90! (because cos(90) = 0!)

Example dot product calculation

$$[1234] \cdot [5678] = 1 \times 5 + 2 \times 6 + 3 \times 7 + 4 \times 8$$
$$= 5 + 12 + 21 + 32$$

- 1. Multiply corresponding elements of two vectors
- 2. Sum over all products

Okay, but why is the dot product useful?

- It tells us the similarity between vectors!
- Larger dot products mean the vectors are more similar.
- To make meaning of the absolute value of the dot product, we need to normalize it.
- The normalized dot product is the Pearson correlation coefficient.

Curious about the proof?

The example for today's notebook will focus on the visual system — specifically connections from the **retina** to the **LGN**, a visual nucleus in the **thalamus**

The retina *projects* to the LGN

Dorsal Pathway LGN **Ventral Pathway** Retina

Image: Neuromatch Academy

We can describe **LGN** activity as an equation, summing the weights (\mathbf{w}) * activities (\mathbf{r}) of each **retina** neuron.

We can simplify this by using vectors, and computing the **dot product**.

Building a model of neural connections using linear equations

Matrices

Pre-lecture viewing

After watching chapter 3:

- Explain matrices as a linear transformation
- Relate matrix properties to properties of that linear transformation

A brief introduction to matrices

2 x 3 matrix

Matrix A has 2 rows and 3 columns, can

be indexed as $\mathbf{A}_{i,j}$, where i is the row number and j is the column number.

For example,
$$A_{1,2} = 4$$
 and $A_{2,3} = 3$.

$$A = \begin{pmatrix} 2 & 4 & 8 \\ 1 & 7 & 3 \end{pmatrix}$$

Note: Be mindful of indexing differences when translating formulas into Python code!

Special matrices

Square matrices are those with the same number of row and column. m = n. For example,

$$A = \begin{pmatrix} 2 & 4 \\ 1 & 5 \end{pmatrix}, b = \begin{pmatrix} 2 & 4 & 8 \\ 1 & 7 & 3 \\ 2 & 5 & 6 \end{pmatrix}$$

Diagonal matrices are square matrices with only the values along the main diagonal are non-zero. For example,

$$C = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

Identity matrices are diagonal matrices where all the non-zero values are 1. For example,

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Slide: Jing Wang

Matrix transposition

Transposition flips rows and columns — each row of the original matrix becomes the corresponding column of the new matrix

$$A = \begin{pmatrix} 2 & 4 & 8 \\ 1 & 7 & 3 \end{pmatrix}$$
We can move between these with transposition
$$A^{T} = \begin{pmatrix} 2 & 1 \\ 4 & 7 \\ 8 & 3 \end{pmatrix}$$

Thinking about the computations as linear transformations of matrices

Additional resources

Essence of linear algebra - YouTube

<u>Tutorial 1: Vectors — Neuromatch Academy</u> ← much of this lecture was adopted from these materials!

<u>https://www.youtube.com/watch?v=Ene_TYyTdNM</u> — modeling neural connections as vectors and dot product review

http://matrixmultiplication.xyz/ — awesome visualization of matrix multiplication!

Cohen, Practical Linear Algebra for Data Science

MATH 18