Elektrochemie

FS 2025 – Mario Graf

Autoren:

Fabian Suter & Steiner, Vorlage: Yves Looser, Nino Briker, Sandro Heidrich

 $\begin{tabular}{ll} Version: \\ 0.0.1 \\ \underline{ https://github.com/FabianSuter/ElChem.git} \end{tabular}$

Inhaltsverzeichnis

l	Aufbau der Stoffe	2	5	Säure-Base-Reaktionen	
	1.1 Grundlagen	2		5.1 Säure-Base GGW	3
	1.2 Valenzelektronen	2			
	1.3 Lewis-Formel → gibt nur Valenzelektronen an	2	6	Redox-Reaktionen	3
	· ·			6.1 Grundlagen	
2	Stoffklassen	2		6.2 Redoxpotential	3
	2.1 Metalle und Halbmetalle	2	_	4 1 1 D 1 D 1 d	,
	2.2 Dotierung von Halbmetallen	2	7	Anwendungen der Redox-Reaktionen	•
	2.3 Bindungswinkel		8	Korrosion	-
	2.4 Löslichkeit	2	0	8.1 Korrosionsarten	-
				8.2 Oxidschichten	-
3	Flüssigkristalle	2		8.3 Ablauf der Korrosion in wässrigen Lösungen	-
	3.1 TN-Zelle	2		8.4 Passivatoren und Depassivatoren	
ı	Ablauf chemischer Reaktionen (Freiwilligkeit)	2		8.5 Potentialverhältnisse/Aktivierungsenergie	
	4.1 Enthalpie H / Reaktionsenthalpie ΔH_R	2		8.7 Lochfrasskorrosion	
	4.2 Entropie S / Reaktionsentropie ΔS				
	4.3 Freie Enthalpie ΔG			8.8 Belüftungselemente	٠
	4.4 Aktivierungsenergie/Reaktionsgeschw./Katalysatoren	3	9	Emotional support meme	_
	7.4 / IKUVICIUII SCHOI SIC I CURLOUI SECOLIW./IKUUI SUUDICII	5	,	Emotional Support memo	

1 Aufbau der Stoffe

1.1 Grundlagen

Atomare Masseeinheit:	Elementarladung:	max. $2 \cdot n^2$ Elektronen
$u = \frac{1}{6.022} 10^{-23} g$	$e = \pm 1.6022 \cdot 10^{-19} C$	pro Energieniveau n

Atommasse X Ladung Ordnungszahl

- Ordnungszahl = Protonenzahl
- Atommasse = Summe Protonen & Neutronen
- Ladung = Summe Protonen & Elektronen

Bausteine: Protonen & Neutronen im Kern, Elektronen in der Hülle

1.2 Valenzelektronen

Die Anzahl Valenzelektronen (V.e.) kann anhand der Hauptgruppen aus dem PSE ausgelesen werden:

- Natrium(Na); erste Hauptgruppe = 1 V.e.
- Kohlenstoff(C); 4. Hauptgruppe = 4 V.e.

Für die Elemente der Nebengruppe wird die bestimmung der V.e.-Anzahl komplizierter/unmöglich da diese in verschiedenen Formen vorkommen können.

Die chemischen Eigenschaften der Elemente sind stark abhängig von der Anzahl-V.e.

Atome streben die Oktett-Regel an!

Das bedeutet das die Atome steht die äusserste Schale (Valenz-Schale) voll haben möchten. Um diesen Zustand zu erreichen werden Elektronen aufgenommen oder abgege ben(chemische Reaktion).

1.3 Lewis-Formel → gibt nur Valenzelektronen an

·Li + :
$$\ddot{F}$$
 · \longrightarrow Li⁺ : \ddot{F} : $^{-}$ (= LiF)

 $1s^2 2s^1 \quad 1s^2 2s^2 2p^5 \quad 1s^2 \quad 1s^2 2s^2 2p^6$

2 Stoffklassen

Stoffe lassen sich in 3 Arten einteilen:

- molekulare Stoffe:
 - Abgeschlossener Atomverband aus Nichtmetallen (Molekül).
 - Formel: genaue Anzahl Atome pro Molekül. Z.B
 - Nicht elektrisch Leitend, da keine freien Ladungsträger vorhanden.
- Metalle und Halbmetalle:
- unendlicher Verband aus metallischen Atomkernen umgebend von delokaliserten Damit Moleküle eine solche Phase zeigen können müssen folgende Kriterien erfüllt sein: (Valenz-) Elektronen (Elektronen-Wolke).
- Formel: Verhältnis der Atome im Gitter. Z.B. Fe
- Salze:
 - unendlicher Verband aus Ionen(Kation(+); Anion(-)).
 - metallische Kationen und nichtmetallische Kationen
 - (können auch molekulare Kationen sein(SO₄-)).
 - Formel: Verhältnis der Kationen und Anionen. Z.B. KCl

Besitzt in Schmelze und in Lösung frei Ladungsträger (Ionen) leiten in diesen Zuständen dementsprechend gut Strom.

2.1 Metalle und Halbmetalle

Metalle besitzen durch die delokalisierten Valenzelektronen (Elektronenwolke) frei Ladungsträger, leiten sehr gut Strom und Wärme.

- Leitfähigkeit nimmt mit steigender Temperatur ab.
- Die Bewegung der Atomrümpfe erhöht sich wodurch weniger Platz für die ELektronen um sich zu bewegen bleibt.

Allgemein sind Stoffe leitfähig wenn sie entweder wie Lithium:

- das Valenzband (spez. Energieniveau) nicht ganz gefüllt haben und sich dadurch ELektronen in jenem Band bewegen können.
- oder wenn sie wie Beryllium:
- das Valenzband komplett gefüllt haben dieses jedoch mit einem leeren Leitungsband überlappt. Wodurch wiederum die beweglichkeit der Elektronen gewährleistet ist.

Halbmetalle haben weder Elektronenwolken noch überlappende Energieniveaus jedoch sind Valenz- und Leitungsband so nahe bei einander das ein überspringen ermöglicht wird.

• Leitfähigkeit nimmt mit zunehmender Temperatur stark zu. Die Elektronen springen viel zahlreicher auf das Leitungband über wodurch im Leitungsband wiederum Platz für Elektronenbewegung geschaffen wird.

2.2 Dotierung von Halbmetallen

Unter Dotierung versteht man das einbringen von Fremdatomen ins Atomgitter eines Halbleiters. Man unterscheidet 2 Arten von dotierung:

- n-Halbleiter
 - z.B. einzelne As-Atome im Si-Gitter(1:10'000'000)

Ein "überschüssiges" Elektron pro As-Atom. Dadurch entsteht Leitfähigkeit. Elektron von As-Atom kann ins Leitungsband von Si überspringen und sich dort frei bewegen.

p-Halbleiter z. B. einzelne B-Atome im Si-Gitter(1:1'000'000) Ein "fehlendes" Elektron pro B-Atom. Dadurch entsteht Leitfähigkeit. Elektronen aus dem vollen Valenzband von Si können in diese "Lückeßpringen und sich so bewegen.

2.3 Bindungswinkel

2.4 Löslichkeit

Die Löslichkeit von Salzen hängt von ihrer Bildungsstärke ab. Je grösser die Ladung der Ionen und je grösser die Ionen desto schlechter sind sie in Wasser löslich.

immer gut löslich sind:	oft schwer löslich sind:
alle Alkalisalze (NaCl, KOH,)	• viele Sulfidsalze (PbS,)
• alle Ammoniumsalze (NH ₄ Cl,)	• viele Phosphatsalze (AIPO ₄ ,)
• alle Nitratsalze (Pb(NO ₃) ₂ , Ca(NO ₃) ₂ ,)	• viele Carbonatsalze (CaCO ₃ ,)
alle Hydrogensalze (Ca(HCO ₃) ₂ ,)	

3 Flüssigkristalle

Flüssigkristalle haben zwischen den Aggregatzuständen "fest" und "flüssig" einen weiteren Aggregatzustand. Der "flüssigkristalline" Aggregatzustand macht sich erkennbar durch die trübe Farbe.

Es wird in 3 verschiedene flüssigkristalline-Phasen unterschieden:

- · smektische Phase
- nematische Phase
- · cholesterische Phase

- lange, stäbchenartige Moleküle (4x 6x Molekülbreite)
- starre Atomgruppen wie z.B. Benzen-Ringe, Doppel- Dreifachbindungen
- Funktionellegruppe mit sehr starken Dipolmoment (-CN-, -COOH)

3.1 TN-Zelle

4 Ablauf chemischer Reaktionen (Freiwilligkeit)

4.1 Enthalpie H / Reaktionsenthalpie ΔH_R

Prinzip Energieminimum: Stoff will energiearmen Zustand erreichen! $\Delta H_R = H_{Produkte} - H_{Edukte} \quad [H] = \frac{kJ}{mol*K}$

4.2 Entropie S / Reaktionsentropie ΔS

Prinzip Energiemax: Stoffe eines Sys. mögl. grosse Unordnung an! $\Delta S = \sum S_{Produkte}^{\bar{0}} - \sum S_{Edukte}^{\bar{0}}$ S⁰: Molare Standartentropie (1mol des Stoffs bei Std.Bedingungen)

4.3 Freie Enthalpie ΔG

Beschreibt Freiwilligkeit der Reaktion:

$$\Delta G = \Delta H - T * \Delta S$$

• $\Delta G < 0$: Exergon (freiwillige Reaktion)

 $[\Delta G] = \frac{kJ}{mol}$

• $\Delta G > 0$: Endergon(unfreiwillige Reaktion)

4.4 Aktivierungsenergie/Reaktionsgeschw./Katalysatoren

- RGT-Regel: Δ T = 10 \rightarrow RG \cdot 2
- Katalysator = Stoff nimmt an Reaktion teil, wird nicht verbraucht
- Beschleunigt Reaktion: $E_{AKat} \ll E_{ANorm}$
- Δ G sowie ΔH_R bleiben gleich
- Selektiv (wirkt nicht mit allen Stoffen)

5 Säure-Base-Reaktionen

$$pK_s + pK_b = 14$$

5.1 Säure-Base GGW

Bergab = GGW rechts: $HCl + H_2O \longrightarrow Cl^- + H_3O^+$ Bergauf = GGW links: $HS^- + H_2O \rightleftharpoons S_2^- + H_3O^+$

6 Redox-Reaktionen

6.1 Grundlagen

Eine Reaktion ist eine Redox-Reaktion, wenn die Oxidationszahlen der Atome der Edukte nicht die selben sind wie die Oxidationszahlen der Atome der Produkte.

Aufgrund der Standartpotenziale der Metalle Zn und Cu herrscht eine "Spannun", welche die Reaktion ermöglicht. Das Zn⁰ wird an der Anode zu Zn²⁺ oxidiert (e⁻-Abgabe), Zn⁰ dient somit als Reduktionsmittel. Die Elektronen werden an die Kathode abgegeben, wo Cu²⁺ aus der Lösung zu Cu⁰ reduziert (e⁻-Aufnahme) wird. Cu²⁺ dient somit als Oxidationsmittel. Damit die Lösungen jeweils ungeladen bleiben, wandern über die Salzbrücke Zn^{2+} -Ionen und SO_4^{2-} -Ionen.

6.2 Redoxpotential

Das Redoxpotential einer Halbzelle kann aus der Redox-Reihe ausgelesen werden (ganz rechts). Dieses Potenzial wurde jeweils gegenüber einer Standart-Wasserstoff-Elektrode

Das Redoxpotential ist jedoch von pH, Druck, Ionenkonz und Temperatur abhängig. Potenziale bei Nicht-Standardbedingungen können mit folgender GLeichung berechnet werden. Nernst-Gleichung:

$$E_{RM/OM}^{0} + \frac{0.059}{z} \cdot lg \frac{[OM]}{[RM]}$$
• $z = \text{Anz. e}^- \text{ die pro Atom übergeben werden}$
• $[OM] = \text{konz. OM in mol/L}$
• $[RM] = \text{konz. RM in mol/L}$

Inkl. pH-Wert:

• Redoxpaar: H₂ + 2 H₂O (2)H₃O⁺ + 2 e⁻

$$E_{H_2/H_3O^+} = 0 + \frac{0.059V}{2} \cdot lg \left(\frac{[H_3O^+]^2}{p(H_2) \cdot [H_2O]^2} \right) = -0.059V \cdot pH$$

• Redoxpaar: 4 OH- / O₂ + 2 H₂O + 4 e

$$E_{0H^-/O_2} = E_{0H^-/O_2}^0 + \frac{0.059V}{4} \cdot \lg \left(\frac{p(O_2) \cdot [H_2O]^2}{[OH^-]^4} \right) = \textbf{1}.\textbf{23} - \textbf{0}.\textbf{059V} \cdot \textbf{pH}$$

7 Anwendungen der Redox-Reaktionen

Spannung galvanische Zelle: $U = E^{Kathode} - E^{Anode}V$

8 Korrosion

Metall reagiert als RM: Me \iff $Me^{z+} + ze^{-}$

Möglich wenn $\Delta G < 0 \& v.a. O_2, H_2O/H_3O^+$ (OM) vorhanden

8.1 Korrosionsarten

8.1.1 Elchem Korrosion

⇒ Bildung galvanische Zelle

8.1.2 O2-Typ-Korrosion

$$\begin{array}{l} O_2 + 2\,H_2O + 4\,e^- \longrightarrow 4\,OH^- \\ 2\,Fe + \frac{3}{2}\,O_2 + H_2O \longrightarrow 2\,FeOOH \end{array}$$

Voraussetzung ist Vorhandensein von O₂ und H₂O; RG relativ langsam!

8.1.3 Säure/Wasserstoffkorrosion

Ist pH-Abhängig:

- Sauer: $2 H_3 O^+ + 2 e^- \rightleftharpoons H_2 + 2 H_{20}$
- Basisch: $2 H_2 O + 2 e^- \rightleftharpoons H_2 + 2 O H^-$

8.1.4 Beispiele Al H-Typ-Korrosion

H2 Korrosion von Al in basischer Lösung

Depassivierung: $Al_2^{+}OH^{-}3H_2O$ $2[AL(OH)_4]^-(aq)$ Oxidation: Al $Al_3^+ + 3e^ H_2 + 2 OH^ 2\,H_2O + 2\,e^-$ Reduktion: $2 A1 + 6 H_2O + 2 OH^-$ Redoxreaktion: $2 [Al(OH)_4]^- + 3 H_2$

H2 Korrosion von Al in saurer Lösung

 $Al_3^+ + 3e^-$ Oxidation: Al $2 H_3 O^+ + 2 e^ H_2 + H_2 + 2 H_2 O$ Reduktion: Redoxreaktion: $2 \text{ Al} + 6 \text{ H}_3 \text{O}^+$ $2 \text{ Al}_3^+ + 6 \text{ H}_2\text{O} + 3 \text{ H}_2$

8.2 Oxidschichten

Metallische Werkstoffe (ausser Gold/Platinmetalle) bilden bei Raumtemperatur mit Luft eine Oxidschicht, es entsteht ein Metalloxid:

 $n \operatorname{Me} + \frac{\mathrm{m}}{2} \operatorname{O}_2 \longrightarrow Me_n O_m$

Der Schutzfaktor kann mittels PBV ermittelt werden: $PBV = \frac{V(Metalloxid)}{V(Metall)}$

- PBV ≪ 1: Rissige, nicht schützende Schicht (MG(0.8), Na (0.3))
- PBV 1- 2: Kompakte, schützende Oxidschicht (Al(1.3), Ni(1.5), Ti(1.7), Cu(1.7), Cr(2.1), Fe(2.1))
- PBV ≫ 2: Abblätternde nicht schützende Schicht (V(3.2), W(3.4), Rost(3.6))

8.3 Ablauf der Korrosion in wässrigen Lösungen

Alle Korrosionsreaktionen verlaufen in 2 Teilschritten:

- Depassivierung
- Eigentliche Korrosion

Voraussetzungen für Korrosion:

- Metall ist in Elektrolytlösung eingetaucht
- Metall ist von dünnem Flüssigkeitsfilm bedekt. Können durch Regen, Tau, Bodenfeuchtigkeit oder rel. Luftfeuchtigkeit > 70% entstehen. Bei Oberflächen mit hygroskopischen Salzen kann auch früher Korrosion entste-

8.4 Passivatoren und Depassivatoren

Depassivierung hängt vom Gehalt von Passivatoren und Depassivatoren in Elektrolytlösung ab

8.4.1 Passivatoren

 \Rightarrow bieten **anodischen Schutz**(E_A wird vergrössert)

- Fe: OH-,CrO₄²⁻, NO₂
- Al: NO₃

8.4.2 Depassivatoren

 \Rightarrow **zerstören Passivoxidfilm**, bewirken (oft lokale **Depassivierung**(E_A wird verkleinert))

- Fe: Cl⁻, H₃O⁺, SO₄²
 Al: Cl⁻, H₃O⁺, OH⁻
- Cu: Cl⁻, H₃O⁺, NH₃
- Ni: Cl⁻, H₃O⁺

8.5 Potentialverhältnisse/Aktivierungsenergie

Wann korrodieren Metalle nach H₂/O₂-Typ?

- $\Rightarrow \Lambda G < 0$
- ⇒ Korrosion abhängig von E(M/M^{z+}) unsd E(OM)

E(OM) ist pH-abhängig:

 $E_{H2} = -0.059*pH$

 $E_{O2} = 1.23 - 0.059 * pH$

8.6 Kontaktkorrosion

- Reduktion von O2 an gesamter Oberfläche
- Oxidation nur an unedlerem Metall → verstärkte Korrosion
- Edleres Metall → keine Korrosion(kathodisch geschützt)
- Flächenregel: $\frac{v_k(Zn)}{v_k(Zn+Fe)} = \frac{A(Zn)}{A(Zn+Fe)}$

8.7 Lochfrasskorrosion

- · Stark lokalisierte Korrosion
- Bildung enger tiefer Löcher
- · schwer erkennbar

8.8 Belüftungselemente

- Kann nur bei passivierbaren Metallen auftreten!
- Für Passivschicht ist O2 notwendig
 - An engen Stellen kann O2-Zufuhr erschwert werden → Depassivierung ⇒ Lochfrass
- Zusätzlich Flächenregel (Spalt → kleine Anode, Passivoxidschicht → grosse Kathode)

