Logika kombinátorov^(SK)

Už dávnejšie sme sa stretli s tromi dôležitými príkladmi:

■
$$S = \lambda xyz.((xz)(yz))$$
 inými slovami: $S f g x \rightarrow (f x) (g x)$

•
$$K = \lambda xy.x$$
 $K \subset X \rightarrow C$

$$I = \lambda x.x \rightarrow x$$

pričom vieme, že platí (veta o zbytočnosti identity I):

•
$$((S K) K) = I$$

((S K) S) = I -- toto sme možno netušili, tak si to dokážme...

$$S K K x = ((S K) K) x = (K x) (K x) = x$$

 $S K S x = ((S K) S) x = (K x) (S x) = x$

https://en.wikipedia.org/wiki/Combinatory_logic http://people.cs.uchicago.edu/~odonnell/Teacher/Lectures/Formal_Organization_of_Knowledge/Examp les/combinator_calculus/

1958, Haskell Curry: Combinatory Logic

Logika kombinátorov^(SK)

Ukážeme, že ľub. **uzavretý λ-výraz** (neobsahujúci voľné premenné) vieme prepísať pomocou kombinátorov S, K, (I) tak, že zápis neobsahuje abstrakciu (t.j. neobsahuje premenné - pozn. ktoré robia problémy v interpreteri).

Intuitívne smerujeme k transformácii LExp -> Ski (pre **uzavreté λ-termy**).

Kým v λ-teórii sme mali hlavné pravidlo β-redukcie, v Ski-teórii máme tri nové redukčné/výpočtové pravidlá (vlastne sú to definície operátorov):

- S-redukcia S f g x \rightarrow ((f x) (g x))
- K-redukcia $K c x \rightarrow c$
- I-redukcia I $x \rightarrow x$

$$S = \lambda xyz.(xz)(yz)$$

 $K = \lambda xy.x$
 $I = \lambda x.x$

S, K, (I) transformácie

Transformácia do SK(I)

- λx.x \rightarrow_{I} I = ((S K) K)
- λx.c →_K K c ak x ∉ Free(c)
 λx.(M N) →_S S (λx.M) (λx.N)

Prvé dve sú evidentné, ale poslednú rovnosť si overme:

- $\lambda x.(M N) y \rightarrow_{\beta} (M[x:y] N[x:y])$
- $S(\lambda x.M)(\lambda x.N)y \rightarrow_{\beta} (\lambda x.My)(\lambda x.Ny) \rightarrow_{\beta} (M[x:y]N[x:y])$ plàtí...©

Zmyslom S, K, (I) transformácií je eliminácia abstrakcie, premenných t.j. dostaneme výraz neobsahujúci abstrakciu, viazané premenné.

Skôr, než si to sami naprogramujete, vyskúšajte

Príklad transformácie

Transformácia do SK(I)

$$\lambda x.x \rightarrow I$$

$$\lambda x.c \rightarrow Kc$$

$$\lambda x.(M N) \rightarrow S (\lambda x.M) (\lambda x.N)$$

http://ski.aditsu.net/

```
λx.λy.(y x)
```

$$\lambda x. \lambda y. (y x) \longrightarrow_{S}$$

•
$$\lambda x.(S (\lambda y.y) (\lambda y.x)) \rightarrow_I$$

• $\lambda x.(S I (\lambda y.x)) \rightarrow_K$

•
$$\lambda x.(S I (K x))$$
 \rightarrow_S

■ S (
$$\lambda$$
x.(S I)) (λ x.(K x)) \rightarrow_{K}

• S (K (S I))
$$(\lambda x.(K x)) \rightarrow_S$$

• S (K (S I)) (S (
$$\lambda x.K$$
) ($\lambda x.x$)) \rightarrow_K

• S (K (S I)) (S (K K)
$$(\lambda x.x)$$
) \rightarrow_{I}

•
$$S(K(SI))(S(KK)I)$$
. = $((S(K(S((SK)K))))((S(KK)))((SK)K)))$

Väčší príklad:

Y

((S ((S ((S (K S)) ((S (K K)) I))) (K ((S I) I)))) ((S ((S (K S)) ((S (K K)) I))) (K ((S I) I))))

Transformácia do SK(I)

 $\lambda x.x \qquad \rightarrow \qquad \quad I$

 $\lambda x.c \rightarrow K c$

 $\lambda x.(M N) \rightarrow S (\lambda x.M) (\lambda x.N)$

• $\lambda x.\lambda y.(y x) = ...$

Výpočet v SK(I) teórii

 $\begin{array}{ll} \text{S-redukcia} & \text{((S f) g) } x \rightarrow \text{(f x) (g x)} \\ \text{K-redukcia} & \text{(K c) x} \rightarrow \text{c} \\ \text{I-redukcia} & \text{I x} \rightarrow \text{x} \\ \end{array}$

```
((\lambda x.\lambda y.(y x) 5) (+1))

pri výpočte nemáme viazané premenné,

                                  t.j. nepotrebujeme pojem substitúcie
S (K (S I)) (S (K K) I) 5 (+1)
((K(SI))5)((S(KK)I)5)(+1)
(S I) ((S (K K) I) 5) (+1)
                                           \rightarrow_{\mathsf{S}}
(I (+1)) ((S (K K) I) 5) (+1)
(+1) ((S (K K) I) 5) (+1)
                                           \rightarrow_{\mathsf{S}}
(+1) (((K K) 5) <u>(I 5)</u> (+1))
(+1) (((K K) 5) 5 (+1))
(+1) (K 5 (+1))
(+1)5
                                           \rightarrow_+
6
```


V module ski definujte:

- •funkciu toSki :: LExp -> Ski
- •funkciu fromSki :: Ski -> Lexp
- •funkciu oneStep :: Ski -> Ski a nf :: Ski -> Ski

Domáca úloha

Naprogramujte konvertor do/z SK(I) Naprogramujte SK(I) redukčný stroj, teda normálnu formu ak existuje Implementačná poznámka:

Funkcia LExp → Ski sa zle píše, lebo proces transformácie do SKI má medzistavy, keď výraz už nie je LExp a ešte nie je Ski.

```
data LExpSki =

LAMBDA String LExp |

ID String |

APL LExp LExp |

CON String |

CN Integer |

S | K | I

deriving(Show, Read, Eq)

toSki :: LExpSki -> LExpSki
```

Vlastnosti SK(I) teórie

S-redukcia
$$((S f) g) x \rightarrow (f x) (g x)$$

K-redukcia $(K c) x \rightarrow c$
I-redukcia $I x \rightarrow x$

SKI redukcie spĺňajú Church-Rosserovu vlastnosť, t.j. SKI term má najviac jednu normálnu formu vzhľadom na redukcie S, K, I

Vážny problém: dve **rôzne** SKI-normálne formy predstavujú rovnaký λ -term SKK = I = SKS

Existuje nekonečné odvodenie,
$$\Omega = ((S I I) (S I I)) \rightarrow_S ((I (S I I)) (I (S I I))) \rightarrow_I ((S I I) (I (S I I))) \rightarrow_I ((S I I) (S I I))$$

Cvičenie:

$$\lambda x.(x \ x) \rightarrow_{S} S (\lambda x.x) (\lambda x.x) \rightarrow_{I,I} S I I$$

Je systém SK minimálny?

Či existuje verzia kombinátorovej logiky aj s jedným kombinátorom ? Je to čisto teoretická otázka, v praxi potrebujeme opak...

Nech $X = \lambda x.(x K S K)$

- potom vieme ukázať, že K = X X X = (X X) X
- A tiež, že S = X . X X = X (X X)

Skúste si to ako cvičenie...

Iná možnosť je, ak $X = \lambda x.((x S) K)$

- potom K = X (X (X X))
- a S = X (X (X (X X)))

Toto je na rozcvičke

Môže sa zdať, že ide o čisto teoretický výsledok, ale existuje programovací jazyk (<u>Iota</u> - pokročilé čítanie pre extrémisticky ladených nadšencov) používajúci X ako jedinú jazykovú konštrukciu.

https://en.wikipedia.org/wiki/Iota_and_Jot

https://esolangs.org/wiki/Iota

http://www.nyu.edu/projects/barker/Iota/

$X = \lambda x.(x K S K)$

Nech $X = \lambda x.(x K S K)$ potom vieme ukázať, že K = X X X = (X X) X

A tiež, že $S = X \cdot X X = X (X X) \cdot ... Rozcvička 8$

$$K = X X X = (X X) X$$

$$(X X) X =$$

$$S = X \cdot X X = X (X X)$$

$$X (X X) = ... = S$$

$X = \lambda x.(x K S K)$

Nech $X = \lambda x.(x K S K)$ potom vieme ukázať, že K = X X X = (X X) X

A tiež, že $S = X \cdot X X = X (X X) \cdot ... Rozcvička 6$

```
K = X X X = (X X) X
(X X) X = (\lambda x.(x K S K) X) X
= (X K S K) X
= (\lambda x.(x K S K) K S K) X
= ((K K S K) S K) X
= ((K K S K) S K) X
= (K K S K) S K) X
= (K K S K) S K) X
```

```
S = X . X X = X (X X)
X (X X) = \lambda x.(x K S K) (X X)
= (X X) K S K
= (\lambda x.(x K S K) X) K S K
= (X K S K) K S K
= (\lambda x.(x K S K) K S K) K S K
= ((K K S K) S K) K S K
= ((K K S K) S K) K S K
= ((K K S K) S K) K S K
= (K K S K) S K
= (K K S K) S K
= (K S K) S K
= S
```

Vlastnosti operátorov

(príklady SKI výrazov)

Komutatívnosť operátora f:

Ak C f x y = f y x, potom musí platiť, že C f = f (aby f bola komutatívna oper.)

- $v \lambda$ -teórii je $C = \lambda f.\lambda x.\lambda y.(f y) x$
- v SKI-teórii

naozaj: ((S ((S (K S)) ((S (K S)) ((S (K S)) ((S (K S)) ((S (K K)) I))) (K I)))))) (K ((S (K K)) I))) f a b \rightarrow ((f b) a)

Asociatívnosť operátora f:

```
As obtained in A _1 f = A _2 f

A _1 f x y z = (f (f x y) z) = _1 f._2 f. (S (K S)) ((S (K (S (K S)))) ((S (K (S (K S)))))) ((S (K (S (K S)))))) ((S (K (S (K S)))))) ((S (K (S (K S))))) ((S (K (S (K S)))))) ((S (K (S (K S))))) ((S (K (S (K S))))) ((S (K (S (K S)))))) ((S (K (S (K S))))) ((S (K
```


B, C kombinátory

Praktický problém pri používaní kombinátorov je v tom, že výsledné SK výrazy sú veľké, napr. $\lambda x.(+1) \rightarrow S(K+)(K1)$ pričom aj K(+1) by stačilo. Problém je λ -abstrakcia pri S transformácii, ktorá sa množí do M aj N.

Špecializujme S kombinátor na dve verzie:

$$B = \lambda xyz.(x (yz))$$
 B-redukcia B f g x = (f (g x))
 $C = \lambda xyz.((x z) y)$ C-redukcia C f g x = ((f x) g)

Následne potom zavedieme dve nové transformácie: Transformácia do SK(I)BC

```
λx.x → I = S K K
λx.c → K c ak x ∉ Free(c)
λx.(M N) → S (λx.M) (λx.N) ak x∈Free(M) & x ∈ Free(N)
λx.(M N) → B M (λx.N) ak x∈Free(N) & x ∉ Free(M)
λx.(M N) → C (λx.M) N ak x∈Free(M) & x ∉ Free(N)
```

Cvičenie: doprogramujte BC transformácie a BC redukcie do interpretera

$$B = \lambda xyz.x (yz)$$
 B-redukcia B f g x = f (g x)
C = $\lambda xyz.(x z)$ y C-redukcia C f g x = (f x) g

Optimalizácia výsledného kódu

Problém SK termov je ich veľkosť, preto sa sústredíme na to, ako ju zmenšiť pri zachovaní jeho sémantiky.

Uvedieme niekoľko príkladov a z toho odvodených pravidiel:

$$\lambda x.(+1) \rightarrow S (K +) (K 1) \rightarrow K (+ 1)$$
 $S (K p) (K q) = K (p q)$
 $\lambda x.-x \rightarrow S (K -) I \rightarrow B - I$
 $S (K p) q = B p q$
 $S (K p) I = B p I = p$
 $S (K p) I = C p q$
 $S p (K q) x \rightarrow C p q x \rightarrow (p x) (K q x) \rightarrow (p x) q$

Simon Pevton Jones, 1987.

Simon Peyton Jones, 1987,

The Implementation of Functional Programming Languages

S,K,I,B,C kombinátory

- $\lambda x.x$ $\rightarrow I$
- $\lambda x.C$ $\rightarrow KC$ $x \notin Free(C)$
- $\lambda x.(M N) \rightarrow S(\lambda x.M)(\lambda x.N)$
- $\lambda x.(M x) \rightarrow M$ $x \notin Free(M)$
- $S(KM)N \rightarrow BMN$
- $SM(KN) \rightarrow CMN$
- $\bullet S(KM)(KN) \rightarrow K(MN)$
- $S(KM)I \rightarrow M$

$$p^1$$
 = toSki $\lambda x_1.p$, q^1 = toSki $\lambda x_1.q$
 p^2 = toSki $\lambda x_2.\lambda x_1.p$, q^2 = toSki $\lambda x_2.\lambda x_1.q$

.

S' kombinátor

- $\lambda x_{n}...\lambda x_{3}.\lambda x_{2}.\lambda x_{1}.(p q) \rightarrow \lambda x_{n}.\lambda x_{n}.(p q)$
- $\lambda x_n ... \lambda x_3 .\lambda x_2 .(S p^1 q^1)$
- $\lambda x_n ... \lambda x_3 .(S (B S p^2) q^2)$ \rightarrow
- $\lambda x_n ... \lambda x_4 .(S (B S (B (B S) p^3)) q^3) \rightarrow$
- $\lambda x_n ... \lambda x_5$.(S (B S (B (B S) (B (B S)) p^4))) q^4) → rastie kvadraticky od n často vyskytujúci sa vzor S (B x y) z nahradíme novým kombinátorom S' x y z teda S B nahradíme S'
- $\lambda x_{n}...\lambda x_{4}.(\underline{S}(\underline{B} S (B (B S) p^{3})) q^{3}) \rightarrow \\ \lambda x_{n}...\lambda x_{4}.(\underline{S}'(\underline{S}(\underline{B} (B S) p^{3})) q^{3}) \rightarrow \\ \lambda x_{n}...\lambda x_{4}.(\underline{S}'(\underline{S}'(B S) p^{3}) q^{3}) \rightarrow \\ \lambda x_{n}...\lambda x_{4}.(\underline{S}'(\underline{S}'S) p^{3} q^{3}) \rightarrow \\ B f g x = f (g x)$
 - $\lambda x_1 ... \lambda x_2 .\lambda x_1 .(p q)$
 - $\lambda x_n ... \lambda x_3 .\lambda x_2 .(S p^1 q^1) \longrightarrow$
 - $\lambda x_n ... \lambda x_3 .(S' S p^2 q^2)$ \rightarrow
 - $\lambda x_n ... \lambda x_4 .(S' (S' S) p^3 q^3)$
 - $\lambda x_n ... \lambda x_5 .(S'(S'(S'S))) p^4 q^4)$ \rightarrow rastie už len lineárne...

$$B = \lambda xyz.x (yz)$$
 B-redukcia B f g x = f (g x)
C = $\lambda xyz.(x z)$ y C-redukcia C f g x = (f x) g

často vyskytujúci sa vzor (S (B x y) z) nahradíme novým kombinátorom S' x y z

Keď dosadíme S B, dostaneme S' kombinátor ako

$$S' c f g x = S (B c f) g x = (B c f x) (g x) = (c (f x)) (g x)$$

$$S' c f g x = c (f x) (g x)$$

Analogicky potom zavedieme dva obmedzené kombinátory podľa vzoru B', C'

$$B' c f g x = c f (g x)$$

$$C' c f g x = c (f x) g$$

Cvičenie:

Pridajte špecialne kombinátory pre IF, =, MOD, DIV a definujte rekurzívne NSD. Vypočítajte NSD 18 24.

Nerozhodnuteľ nosť SK(I) teórie $B = \lambda xyz.x (yz)$ B-redukcia B f g x = f (g x) C-redukcia C f g x = (f x) g

Je nerozhodnuteľné, či SKI term má normálnu formu (pekný dôkaz viď http://en.wikipedia.org/wiki/Combinatory_logic

Nech existuje také N, čo počíta, či x má n.f. alebo nie:

(N x) = True, if x ak má normálnu formu [True = K] F, inak.

[False = (K I)]

Dar nebies: $Z = (C (C (B N (S I I)) \Omega) I)$

 $(S I I Z) \rightarrow_S$ $((I Z) (I Z)) \rightarrow_{I}$ $(Z (I Z)) \rightarrow T$ $(Z Z) \rightarrow_7$ $(C (C (B N (S I I)) \Omega) I Z) \rightarrow_C$ $(((C (B N (S I I)) \Omega) Z) I) \rightarrow_C$ $(((B \ N \ (S \ I \ I) \ Z) \ \Omega) \ I) \rightarrow_{R}$ $((N(SIIZ))\Omega I)$

Ak N (S I I Z) = True (**má n.f.**) tak výsledok je True Ω I $\rightarrow \Omega \rightarrow \Omega \rightarrow \Omega$ teda nemá n.f., preto SPOR.

Ak N (S I I Z) = False (**nemá n.f.**) tak výsledok je (K I) Ω I \rightarrow I, teda. nemá n.f., preto SPOR

Super-kombinátor

Uzavretý term $\lambda x_1 \lambda x_2 \dots \lambda x_n$. E je super-kombinátor, ak

- E nie je λ-abstrakcia
- všetky λ-abstrakcie v E sú super-kombinátory

Príklady:

- λx.x
- λx.λy.(- x y)
- $\lambda f.(f \lambda x.(* x x))$

Príklady termov, ktoré nie sú super-kombinátory:

- λx.ynie je uzavretý
- $\lambda f.(f \lambda x.(f x x))$ nie je $\lambda x.(f x x)$ super-kombinátor
- λx.(x (λy.y (λz.z y))) nie je (λz.z y) super-kombinátor

Transformácia termu do super-kombinátorov

 $\lambda x.(\underline{\lambda y.(+ y x)}x) 4$

λy.(+ y x) nie je super-kombinátor, ale (po η-konverzii) dostaneme

$$(\lambda x.\lambda y.(+ y x)) x$$
 $(\lambda-lifting)$

a R = $(\lambda x.\lambda y.(+ y x))$ je super-kombinátor, dosadíme R x, teda $\lambda x.((R x) x)$ 4

 $Q = \lambda x.(R \times x)$ je super-kombinátor, takže celý program zredukujeme

Q 4

pričom

$$Q = \lambda x.(R \times x)$$

$$R = (\lambda x. \lambda y. (+ y x))$$

Rekurzia

Opäť ale máme problém s rekurziou:

- 1) riešenie pomocou Y operátora:
 - f x = g (f (x-1)) 0
 - $f = \lambda F. \lambda x.(g (F (x-1)) 0) f$
 - $f = Y (\lambda F. \lambda x.(g (F (x-1)) 0))$
- 2) riešenie pomocou rekurzívnych super-kombinátorov

Lifting lambda

```
sumInts m = suma (count 1) where
  count n \mid n > m = [] -- lokálna definícia funkcie
  count n \mid otherwise = n : count (n+1)
suma [] = 0
suma (n:ns) = n + suma ns
 ----- zavedieme let-in
sumInts' m =
  let count' n = if n > m then [] else n : count' (n+1)
  in suma' (count' 1)
suma' ns = if ns == [] then 0 else (head ns) + suma' (tail ns)
----- prehodíme definíciu suma dovnútra
```

Lifting lambda / 1

```
sumInts'' m =
  let
      count'' n = if n > m then [] else n : count'' (n+1)
      suma'' ns =
         if ns == [] then 0 else (head ns) + suma'' (tail ns)
  in
      suma'' (count'' 1)
              ----- zavedieme λ abstrakcie
sumInts''' m =
  let
    count''' = n-i n > m then [] else n : count''' (n+1)
    suma''' = \ns-\if ns == [] then 0
                  else (head ns) + suma''' (tail ns)
  in suma''' (count''' 1)
  ----- count''' nie je super-kombinátor
```

Lifting lambda / 2

```
----- λ-lifting
sumInts''' m =
  let
    count = \c->\m->\n->if n > m then [] else n:c (n+1)
    count'''' = count count''' m -- rekurzia
    suma'''' = \ns -> if ns == [] then 0
                      else (head ns) + suma''' (tail ns)
  in suma'''' (count'''' 1)
         ----- definícia pomocou super-kombinátorov
sumInts'''' m =
  let
   sc1 = c->m->n->if n > m then [] else n : c (n+1)
   sc2 = ns - if ns == [] then 0 else (head ns) + sc2 (tail ns)
   sc3 = sc1 sc3 m -- rekurzia
  in sc2 (sc3 1)
```

$X = \lambda x.(x K S K)$

```
Nech X = \lambda x.(x K S K)
potom vieme ukázať, že K = X X X = (X X)
X
A tiež, že S = X . X X = X (X X)
```

```
K = X X X = (X X) X
(X X) X = (\lambda x.(x K S K) X) X
= (X K S K) X
= (\lambda x.(x K S K) K S K) X
= ((\underline{K K S} K) S K) X
= ((\underline{K K) S} K) X = \underline{K K X}
= K
```

```
S = X . X X = X (X X)

X (X X) = (λx.(x K S K)) (X X)
= ((X X) K S K)
= (((λx.(x K S K) X) K S K)
= ((X K S K) K S K)
= (((λx.(x K S K)) K S K) K S K)
= (((K K S K) S K) K S K)
= (((K K S K) S K) K S K)
= (((K K) S K) K S K)
= ((K K) K S K)
= (K S K)
= S
```