

ATGGCCCCAAGCCCTGCCCTGGCTCCTGCTGTGGATGGGGCGGGAGT
 GCTGCCTGCCACGGCACCCAGCACGGCATCCGGCTGCCCTGCGCA
 GCGGCCTGGGGCGCCCCCTGGGGCTGCGGCTGCCCGGGAGAC
 CGACGAAGAGCCCAGGGAGCCCCGGAGGGCAGCTTGAGA
 TGGTGGACAACCTGAGGGCAAGTCGGGAGGGCTACTACGTGGAG
 ATGACCGTGGCAGCCCCCGCAGACGCTAACATCCTGGTGGATA
 GGCAGCAGTAACCTTGAGTGGGTGCTGCCCTACCCCTTCCTGCAT
 330 CGCTACTACCAGAGGCAGCTGTCCAGCACATAACGGGACCTCCGGAAAG
 GGTGTGTATGTGCCCTACACCCAGGGCAAGTGGAAAGGGAGCTGGG
 CACCGACCTGGTAAGCATCCCCCATGGCCCCAACGTCACTGTGCGTGC
 CAACATTGCTGCCATCACTGAATCAGACAAAGTTCTTCATCAACGGCTCC
 AACTGGGAAGGCATCCTGGGGCTGGCCTATGCTGAGATTGCCAGGCCT
 GACGACTCCCTGGAGCCTTCTTGAECTCTCTGGTAAAGCAGACCCACG
 TTCCCAACCTCTTCTCCCTGCAGCTTGTGGTGTGGCTCCCCCAA
 CCAGTCTGAAGTGCTGGCCTCTGTCGGAGGGAGCATGATCATTGGAGG
 TATCGACCACTCGCTGTACACAGGCAGTCTCTGGTATACACCCATCCGG
 CGGGAGTGGTATTATGAGGTGATCATTGTGCGGGTGGAGATCAATGGA
 CAGGATCTGAAAATGGACTGCAAGGAGTACAACATATGACAAGAGCATTG
 TGGACAGTGGCACCACCAACCTCGTTGCCAACAGAAAGTGTGAAAGC
 TGCACTCAAATCCATCAAGGCAGCCTCCACGGAGAACATTCCCTGAT
 GGTTCTGGCTAGGAGAGCAGCTGGTGTGCTGGCAAGCAGGCACCACC
 CCTTGGAACATTTCCAGTCATCTCACTACCTAACATTGGTGGAGGTTAC
 CAACCAGTCCTCCGCATCACCATCCTCCGCAGCAATACCTGCAGGCCA
 GTGGAAGATGTGGCACGTCCAAGACGACTGTTACAAGTTGCCATCT
 CACAGTCATCCACGGGCACTGTTATGGGAGCTGTTATCATGGAGGGCTT
 CTACGTTGTCTTGTGATGGGGCCCGAAAACGAATTGGCTTGCTGTCAGC
 GCTTGCATGTGCACGATGAGTTAGGACGGCAGCGGTGGAAGGCCCT
 TTTGTCACCTTGGACATGGAAGACTGTGGCTACAACATTCCACAGACAG
 ATGAGTCAACCCATGACCATAGCCTATGTCATGGCTGCCATCTGCGC
 CCTCTCATGCTGCCACTCTGCCTCATGGTGTGTCAGTGGCGCTGCCTC
 CGCTGCCTGCGCCAGCAGCATGATGACTTGCTGATGACATCTCCCTGC
 TGAAG

FIG. 1A

CCATGCCGGCCCCCTCACAGCCCCGCCGGGAGCCCCGAGCCCCGTCGCCAGGGCTGGC
 CGCCCGSGTGCCTGATGTAGCGGGCTCCGGATCCCAGCCTCTCCCCCTGCTCCCGTGC
 TCTGC GG ATCTCCCTGACCGCTCTCCACAGCCCCGGACCCGGGGCTGGCCCAGG
 GCCCTGCAGGCCCTGGCGTCTGATGCCCAAGCTCCCTCTCCTGAGAAGGCCACC
 AGCACCACCCAGACTTGGGGGCAAGGCCGGGGCCACCATGGCCAAGGCCCTGCCCTGGCTCCTG
 CCAGAGGGCCCAGAAGGCCGGGGCCACCATGGCCAAGGCCCTGCCCTGGCTCCTG
 CTGTGGATGGCGCGGGAGTGCTGCCTGCCACGGCACCCAGCAGGGCATCCGGC
 TGCCCCCTGCGCAGCGGCCCTGGGGGGGCCCTGGGGCTGCGGCTGCCCGGG
 AGACCGACGAAGAGGCCCGAGGAGGCCGGGGCAGCTTGAGATGG
 GGACAACCTGAGGGGCAAGTCGGGGCAGGGCTACTACGTGGAGATGACCGTGG
 AGCCCCCGCAGACGCTAACATCCTGGGATACAGGCAGCAGTAACTTGCAGT
 GGGTGCCTGCCCTACCCCTTCCTGCATCGCTACTACCAAGAGGCAGCTGTCCAGCA
 CATAACCGGGACCTCCGGAAGGGTGTGTATGTGCCCTACACCCAGGGCAAGTGGAA
 GGGGAGCTGGGCACCGACCTGGTAAGCATCCCCATGGCCCCAACGTCACGTGCG
 TGCCAAACATTGCTGCCATCACTGAATCAGACAAGTTCTCATCAACGGCTCCA
 ACTGG
 GAAGGCATCCTGGGGCTGGCCTATGCTGAGATTGCCAGGGCTGACGACTCCCTGGA
 GCCTTCTTGACTCTCTGGTAAAGCAGACCCACGTTCCAACCTCTCCCTGCA
 CTTGTGGTGCCTGGCTCCCCCTAACCCAGTCTGAAGTGCTGGCCTGTGCG
 GAGCATGATCATTGGAGGTATCGACCACTCGCTGTACACAGGCAGTCTGGTATAC
 ACCCATCCGGCGGGAGTGGTATTATGAGGTGATCATTGTGCGGGTGGAGATCAATG
 GACAGGATCTGAAATGGACTGCAAGGAGTACAACATGACAAGAGCATTGTGGACA
 GTGGCACCACCAACCTCGTTGCCAAGAAAAGTGTGAAGCTGCAGTC
 TCAAGGCAGCCTCCACGGAGAAGTCCCTGATGGTTCTGGCTAGGAGAGCAG
 CTGGTGTGCTGGCAAGCAGGCACCCCTGGAACATTCTCCAGTCATCTCACT
 TACCTAATGGGTAGGGTACCAACCAGTCCTCCGCATCACCATTCCGCAGCAA
 TACCTGCGGCCAGTGGAGATGTGGCCACGTCCTAACGACGACTGTTACAAGTTGCC
 ATCTCACAGTCATCCACGGGACTGTTATGGAGCTGTTATCATGGAGGGCTCTAC
 GTTGTCTTGATCGGGCCAAAAGAACGAAATTGGCTTGCTGTCA
 CAGCATGAGTTCAAGCAGGGCAGCGAGGGTGGAGGGCCCTTGTCACCTGGACATGGA
 AGACTGTGGCTACAACATTCCACAGACAGATGAGTC
 AACCCCTCATGACCATAGCCTA
 TGT
 CATGGCTGCCATCTGCGCCCTTCTGCTGCCACTCTGCCTCATGGTGTCA
 GTGGCGCTGCCTCCGCTGCCAGCAGCATGACTTTGCTGATGACATCT
 CCCTGCTGAAGTGAGGAGGGCCATGGCAGAAGATAGAGATTCCCTGGAC
 ACAC
 CTCCGTGGTTCACTTGGTCACAAGTAGGAGACACAGATGGCACCTGGCCAGAG
 CACCTCAGGACCCCTCCCCACCCACCAAATGCCCTGCCCTGATGGAGAAGGAAAAG
 GCTGGCAAGGTGGGTTCCAGGGACTGTACCTGTAGGAAACAGAAAAGAGAAGAAAAG
 AAGCACTCTGCTGGGGAAATACTCTGGTCACCTCAAATTAAAGTCGGGAAATTCT
 GCTGCTGAAACTTCAGCCCTGAACCTTGTCCACCAATTCTTAAATTCTCCA
 AACCC
 AAAGTATTCTTCTTCTTAGTTCAAGAGTACTGGCATCACACGCAGGTTACCTGG
 CGTGTGTCCCTGTGGTACCCCTGGCAGAGAAGAGACCAAGCTTGT
 TTCCCTGCTGGC
 CAAAGTCAGTAGGAGAGGATGCACAGTTGCTATTGCTTAGAGACAGGGACTGTA
 TAAACAAGCCTAACATTGGTCAAAGATTGCCCTTGAATT

FIG. 1B

3/26

MAQALPWLLLWMGAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLP
RETDEEPEEPGRGSFEMVDNLRGKSGQGYYVEMTVGSPPQT
↓
LNILVDTGSSNFAVGAAAPHPFLHRYYQRQLSSTYRDLRKGVYVPY 132
TQGKWEGETGTDLVSIPHGPNTVRANIAAITESDKFFINGSNWE
GILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGFPLN
QSEVLASVGGSMIIGGIDHSLYT GSLWYTPIRREWYYEVIVRVEIN
GQDLKMDCKE NYDKSIVDSGTTNLRLPKKVFEAAVKSIAASST
EKFPDGFWLGEQLVCWQAGTT PWNIFPVISLYLMGEVTNQSFRIT
ILPQQYLRPVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVV
FDRARKRIGFAVSACHVHDEFRTAAVEGPFTLDMEDCGYNIPQ
TDESTLMTIAYVMAAICALFMLPLCLMVCQWRCLRCLRQQHDDF
ADDISLLK

FIG. 2A

4/26

ETDEEPEEPGRRGSFVEMVDNLRGKSGQGYYVEMTVGSPPQT
LNILVDTGSSNFAVGAAAPHPFLHRYYQRQLSSTYRDLRKGVYVPY
TQGKWEDELGTDLVSIPHGPNTVRANIAAITESDKFFINGSNWE
GILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSLQLCGAGFPLN
QSEVLASVGGSMIIGGIDHSLYT GSLWYTPIRREWYYEVIIVRVEIN
GQDLKMDCKEYNYDKSIVDSGTTNLRLPKKVFEAAVKSIAASST
EKFPDGFWLGEQLVCWQAGTTPWNIFPVISLYLMGEVTNQSFRIT
ILPQQYLRPVEDVATSQDDCYKFAISQSSTGTVMGAVIMEGFYVV
FDRARKRIGFAVSACHVHDEFRTAAVEGPFVTLDMEDCGYNIPQ
TDESTLMTIAYVMAAICALFMLPLCLMVCQWRCLRCLRQQHDDF
ADDISLLK

FIG. 2B

5/26

FIG. 3A

MAQALPWLLLWMGAGVLPAHGTQHGIRLPLRSGLGGAPLGLRLPRETDEEPE
EPGRRGSFVEMVDNLRGKSGQGYVEMT
VGSPPPQLNILVDTGSSNFAVGAAPHFPLHRYYQRQLSSTYRDLRKGVYVPYT
QGKWEGEGLGTDLVSIPHGPNTVRANI
AAITESDKFFINGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSQL
CGAGFPLNQSEVLAGVGGSMIIGGI
DHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEINYDKSIVDSGTTNL
RLPKKVFEAAVKSIAASSTEKFPD
GFWLGEQLVCWQAGTPWNIFPVISLYLMGEVTNQSFRITILPQQYLRPVEDVA
TSQDDCYKFAISQSSTGTVMGAVIME
GFYVVFDRAKRIGFAVSACHVHDEFRTAAVEGPFTLDMEDCGYNIPQTDED
YKDDDDK

FIG. 3B

ETDEEPEEPGRGSFVEMVDNLRGKSGQGYVEMT
VGSPPPQLNILVDTGSSNFAVGAAPHFPLHRYYQRQLSSTYRDLRKGVYVPYT
QGKWEGEGLGTDLVSIPHGPNTVRANI
AAITESDKFFINGSNWEGILGLAYAEIARPDDSLEPFFDSLVKQTHVPNLFSQL
CGAGFPLNQSEVLAGVGGSMIIGGI
DHSLYTGSLWYTPIRREWYYEVIIVRVEINGQDLKMDCKEINYDKSIVDSGTTNL
RLPKKVFEAAVKSIAASSTEKFPD
GFWLGEQLVCWQAGTPWNIFPVISLYLMGEVTNQSFRITILPQQYLRPVEDVA
TSQDDCYKFAISQSSTGTVMGAVIME
GFYVVFDRAKRIGFAVSACHVHDEFRTAAVEGPFTLDMEDCGYNIPQTDED
YKDDDDK

C

6/26

FIG. 4

P10 P1 P1' P4'
NH₂-K-T-E-E-I-S-E-V-N-[Sta-V]-A-E-F-COOH

7/26

56

8/26

REDUCING (+ β ME)

NONREDUCING (NO β ME)

FIG. 6A

FIG. 6B

9/26

FIG. 7

FIG. 8

10/26

E T O E E P E E P G R R G S F V E H V D N
GARACNGAYGARGARCCNGARGARCCNGGNHGNHGNNSNTTYGTGARATGGTNGAYAAY 63

3427-3430
5' primer set 1

3431-3434
3' primer set 1

3448-3451
5' primer set 2

3452-3455
3' primer set 2

1° HNC/primer set 1

(3428+3433)
54 bp product

1°HNC & IMR32/ primer set 2

72 bp product

sequence:

set2
5' RACE primer
3460
CCCCGAAGAGCCCCGGCCGGAGGGGGCAGCTTGTGCGA 35
P E E P G R R G S F V
ORF
3'RACE primer
3459
set 2

FIG. 9

11/26

PBS/1% Bovine Brain (17 ccus
PBS/1% Bovine Brain (15 ccus
PBS/Murine HIV cores

ACM SIGART 2000

प्रविष्ट्यु ग्रन्थात् प्रतिपूर्वकं प्रवेदात् सोऽस्य
प्रविष्ट्यु ग्रन्थात् प्रतिपूर्वकं प्रवेदात् सोऽस्य
प्रविष्ट्यु ग्रन्थात् प्रतिपूर्वकं प्रवेदात् सोऽस्य

प्राचीन विद्या का अध्ययन एवं विज्ञान का अध्ययन से विद्युत ऊर्जा का उत्पादन एवं उपयोग का विवरण।

1. *Chlorophytum comosum* (L.) Willd. (Amaryllidaceae) - This plant is a common ornamental grass-like species with long, narrow leaves and clusters of small, bell-shaped flowers at the leaf axils.

SKORNEDS TESLAOLLEGAGGRUNDEN ALLASVGGSMILIGGIDHSLYMASINMYPERREVVYVYLURVING
HÄRAN INTEPÄLJISQ

१७८५ दिनांकित अप्रैल महीने की वर्षीय राजस्थानी रुपयों की गणना।

THE
LAW
OF
NATURE
AND
GRATITUDE
TO
HIS
MAGNIFICENT
CREATION
IN
THE
UNIVERSE
BY
JOHN
COLVAN
1820

નાના પાત્રાનું હોય કે એની પાત્રાનું હોય કે

• • • • • **MAOLRWLLNGAGVLPANGTONGIRLPLRSGLGGAPGLRUDZDZLZPGRGSPY**
• • • • • **MAOLRWLLNGAGVLPANGTONGIRLPLRSGLGGAPGLRUDZDZLZPGRGSPY**
• • • • • **MAOLRWLLNGAGVLPANGTONGIRLPLRSGLGGAPGLRUDZDZLZPGRGSPY**

FIG. 10

12/26

Concentration dependence of
 β -secretase P1' mutant peptides

FIG. 11

13/26

FIG. 12

FIG. 13A

FIG. 13B

2704 ATC TCA CTC TAC CTA ATG CGT GAG GTT ACC ANC CAG TCC TTC CGC ATC ANC ATC CTT CGG CAA TAC CTG CGG CCA
 344^t Ile Ser Leu Tyr Leu Met Glu Val Thr Asn Glu Ser Phe Arg Ile Thr Ile Leu Pro Glu Glu Tyr Leu Arg Pro

2782 GTG CAA CAT GTG CGC ACG TCC CAA GAC GAC TGT TAC AAG TTT CGC ATC TCA CAG TCA TCC ACG CGC ACT GTT ATG CGA
 370^t Val Glu Asp Val Ala Thr Ser Glu Asp Asp Cys Tyr Lys Phe Ala Ile Ser Glu Ser Ser Thr Glu Thr Val Met Glu

2860 CCT GTT ATC ATG GAG CGC TTC TAC GTT GTC TTT GAT CGG CGC CGA AAA CGA ATT CGC TTT GCT GTC ACG CCT TGC CAT
 396^t Ala Val Ile Met Glu Glu Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Glu Phe Ala Val Ser Ala Cys His

2938 GTG CAC GAT GAG TTC ACG ACG GCA CGG GTG GAA CGC CCT TTT GTC ACC TTG GAC ATG GAA GAC TGT CGC TAC AAC ATT
 422^t Val His Asp Glu Phe Arg Thr Ala Ala Val Glu Glu Pro Phe Val Thr Leu Asp Met Glu Asp Cys Glu Tyr Asn Ile

3016 CCA CAG ACA GAT GAG TCA ACC CTC ATG ACC ATA CGC TAT GTC ATG CCT GCT CGC ATC TCC TTC ATG CTG CCA CTC
 448^t Pro Glu Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala Ile Cys Ala Leu Phe Met Leu Pro Leu

3094 TGC CTC ATG GTG TGT CAG TGG CGC TCG CGC CGA CGT CAT GAT GAC TTT GCT GAT GAC ATC ATC CGT
 474^t Cys Leu Met Val Cys Glu Trp Arg Cys Leu Arg Glu Glu His Asp Asp Phe Ala Asp Asp Ile Ser Leu

3172 CTG AAG TGA GGAGGOCATGGGAGAAGATAGAGATTGATGCCCTGGACACACCTCGTGGTCACTTGTGACAAAGTAGGAGACACAGATGGCACCTGTGGC
 500^t Leu Lys ***

3275 AGAGCACTCAGGACOCTOOCCAOCACCAAAATGOCCTGOCCTGATGGAGAAGGAAAGGCTGGCAAGGTGGGTOCAGGGACTGTAAGTGTAGGAAACAGAAAA

3381 GAGAAGAAAAGAACGCACTCTCTGGGGAAACTCTGGTCACCTCAATTAAAGTOGGGAAATTCTGCTGCTGAAACTTCAGOCTGAAACCTTGTOCACCATT

3487 CCTTTAAATTCTCCAACOCAAAGTATTCTCTTTCTTAGTTCAAGAGTACTGGCATCACAOCCGAGTTACCTTGGGTGTCAGTGTGGTAACCTGGCAGAGA

HindIII

3593 AGAGACCAAGCTTGTITCCCTGCTGGCAGAAAGTCAGTAGGAGAGGATGCCACAGTTGCTATTGCTTAAAGACAGGGACTGTATAAACAGCTAACATTGGTGC

3699 AAAGATTGCTCTGAAATTAAAAAAAAACTAGATGACTATTATAACAAATGGGGGGCTGGAAAGAGGAGAAGGGAGGGAGTACAAGACAGGAATAGTG

3805 GGATCAAAGCTAGGAAAGGCAGAACACAAACCACTCACCAGTOCTAGTTAGACCTCATCTOCAAGATAGCATCCCACATCAGAAGATGGGTGTTGTTCAATG

3911 TTTCTTTCTGTTGCTGACCTGACCAAAAGTGAGATGGAAAGGGCTTATCTAGOCAAAGAGCTCTTTAGCTCTCTAAATGAAGTGGCCTAAAGAAGTT

4017 CCACCTAACACATGAATTCTGOCATATTAATTCTATGCTCTATCTGAACACOCTTTATTCTACATATGATAGGCAGCACTGAAATATGCTAACCCCTAACG

4123 TCCAGGTGOCCTGTGGGAGAGCACTGGACTATAGCAGGGCTGGCTCTGCTTCTGGCTAGGCTACCTTCCCCAAATCTTCTGGAGCTTGCAGC

4229 CAAGGTGCTAAAGGAATAGTAGGAGAOCCTCTCTATCTAAATCTAAAGCTAAATGTTGAACATTCAACAGCTGATGOCCTATAACCOCTGCTGGATT

4335 TCTTCTTATTAGGCTATAAGAAGTAGCAAGATCTTACATAATTCAAGAGTGGTTCTTGCCTTCTAACCTCTCTAAATGGCCCTCTCATTATTGACTAAAGCA

4441 TCACACAGTGGCACTAGCACTAACCAAGAGTATGAGAAATACAGTGCTTATGGCTCTAACATTACTGOCCTCAGTATCAGGCTGCTGGAGAAAGGATGGCAG

4547 CCTCAGGGCTTCTTATGCTOCACCAACAGAGCTCTTGTAGAAGGTCTCTTCCCTATCTGTTCTTCCCCCTOCCTAATGGTACCTGGTACCTGGTACCC

4653 CAGGCTGGTCTTGGCTAGGTAGTGGGAOCAGTCATTAACCTGCTATCAGTCTAGCATAGTAAACTAOGGTACAGCTGTTAGTGGGAAGAGCTGGTTTTC

4759 CTAGTATAACCACTGCACTACTCTAOCCTGGTCACCCCGCTGCTTCCAGGTATGGACCTGCTAAGTGTGAAATTACCTGATAAGGGAGAGGAATACAAGGA

4865 GGGCTCTGGTGTCTGGCTCAGCCAGCTGGCTACAGCTGCTTACAGCTGACAGGAAAGACTGGAGACTGTOACTCTAGCTGGAACTTACTGTAATAAAGCA

4971 CTTOGTCGCTTGGCTGACTGGGAACACCCATAACTACAGAGTCTGACAGGAAGACTGGAGACTGTOACTCTAGCTGGAACTTACTGTAATAAAGCA

5077 TCAAGAACTCTACCATGAAGTGAAATGOCACATTCTGCTTATAATTCTAACCTGTTGGAAAAACTGCTTCTTCCAGGOCCTTCCAGGGCATAAAACCTCA

5183 AACCCCTTGGATAGCAAGTCCATCAACCTATTATTTAAAGAAAATGCACTGTTCTTACAGTTACTCTTCTGGCTTCTTCCCCAAATTATAAACCTCA

FIG. 13C

FIG. 13D

18/26

FIG. 13E

Sal

FIG. 14

20/26

FIG. 15A

FIG. 15B

21/26

untrx
 β gal
 β gal./ β sec
APPwt
 β gal
1 2 3 1 2 3

FIG. 16A

untrx
 β gal
 β gal./ β sec
APPsw
 β gal
1 2 3 1 2 3

FIG. 16B

22/26

FIG. 17A

FIG. 17B

FIG. 18

24/26

FIG. 19

25/26

APP 638

FIG. 20

26/26

FIG. 21