In the claims:

- 1-22. (Cancelled)
- 23. (Currently Amended) The A pharmaceutical composition comprising a compound according to claim 22, selected from the group consisting of:
- (E,E)-2-(benzylaminocarbonyl)-3-(3,4-dihydroxystyryl)acrylonitrile (CR4);
- (E,E)-2-(3,4-dihydroxybenzylaminocarbonyl)-3-(3,5-dimethoxy-4-hydroxystyryl)acrylonitrile (CR11);
- (E,E)-2-aminocarbonyl-3-(3,4-dihydroxystyryl)acrylonitrile (CR17);
- (E,E)-2-(3,4-dihydroxybenzylaminocarbonyl)-3-styrylacrylonitrile (CR19);
- (E,E)-2-(3,4-dihydroxybenzylaminocarbonyl)-3-(3,4-dihydroxystyryl)acrylonitrile (CR21); and
- (E,E)-2- $(\beta$ -ethanolaminocarbonyl)-3-(3,5-dimethoxy-4-hydroxystyryl)acrylonitrile (CR24).
- 24. (Previously Presented) A pharmaceutical composition comprising a pharmaceutically acceptable diluent or carrier and (E,E)-2-(benzylaminocarbonyl)-3-(3,4-dihydroxystyryl)acrylonitrile (CR4).
- 25. (Previously Presented) A pharmaceutical composition comprising a pharmaceutically acceptable diluent or carrier and (*E,E*)-2-(3,4-dihydroxybenzylaminocarbonyl)-3-(3,5-dimethoxy-4-hydroxystyryl)acrylonitrile (CR11).
- 26. (**Currently Amended**) A pharmaceutical composition comprising a pharmaceutically acceptable diluent or carrier and (*E,E*)-2-(3,4-dihydroxybenzylaminocarbonyl)-3-styrylacrylonitrile (CR19).
- 27. (Cancelled)
- 28. (Currently Amended) A method of modulating cell proliferation comprising administering an effective amount of a composition of claim 23 to a cell or animal in

need thereof an effective amount of a compound of Formula I, or a salt, solvate or hydrate thereof:

wherein

R¹ and R² are each independently selected from the group consisting of H, OH, C₁₋₆alkyl, C₁₋₆alkyl, N(C₁₋₆alkyl)(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, O-Si(C₁₋₆alkyl)(C₁₋₆alkyl)(C₁₋₆alkyl), NO₂, CF₃, OCF₃ and halo:

R³ is selected from the group consisting of H, OH, C_{1-6} alkyl, C_{1-6} alkyl, C_{1-6} alkyl) (C_{1-6} alky

R⁴ is selected from the group consisting of C(X)R⁵, SO₃Ar, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl), P(O)(OH₂, P(O)(OC₁₋₆alkyl)₂, and C(NH₂)=C(CN)₂;

X is selected from O, S, NH and N-C₁₋₆alkyl;

R⁵ is selected from the group consisting of NH₂, OH, NH(CH₂)_pAr, NH(CH₂)_pOH,

(CH₂)_pOC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkoxy, NHNH₂, NHC(O)NH₂, NHC(O)C₁₋₆alkoxy, N-morpholino and N-pyrrolidino; and

Ar is an aromatic or heteroaromatic group, unsubstituted or substituted with 1-4

substituents, independently selected from the group consisting of OH, C₁₋₆alkyl,

C₁₋₆alkoxy, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl)(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, NO₂,

CF₃, OCF₃ and halo;

n is 0 to 4; and

p is 1-4.

29. (Currently Amended) A method of inhibiting cell proliferation comprising administering an effective amount of a composition of claim 23 to a cell or animal in need thereof an effective amount of a compound of Formula I, or a salt, solvate or hydrate thereof:

wherein

- R^1 and R^2 are each independently selected from the group consisting of H, OH, C_{1-6} alkyl, C_{1-6} alkyl, $N(C_{1-6}$ alkyl), C_{1-6} alkyl), C_{1-6} alkyl), C_{1-6} alkyl), C_{1-6} alkyl), C_{1-6} and C_{1-6} and C_{1-6} and C_{1-6} and C_{1-6} and C_{1-6} alkyl), C_{1-6} alkyl), C_{1-6} alkyl), C_{1-6} and $C_$
- R³ is selected from the group consisting of H, OH, C₁₋₆alkyl, C₁₋₆alkoxy, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl)(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, O-Si(C₁₋₆alkyl)(C₁₋₆alkyl)(C₁₋₆alkyl)(C₁₋₆alkyl)(C₁₋₆alkyl), NO₂, halo and CH₂-S-(CH₂)₀ Ar;
- R⁴ is selected from the group consisting of $C(X)R^5$, SO_3Ar , NH_2 , $NH-C_{1-6}$ alkyl, $N(C_{1-6}$ alkyl), $P(O)(OH)_2$, $P(O)(OC_{1-6}$ alkyl)₂, and $C(NH_2)=C(CN)_2$;

X is selected from O, S, NH and N-C₁₋₆alkyl;

- R⁵ is selected from the group consisting of NH₂, OH, NH(CH₂)_pAr, NH(CH₂)_pOH,

 (CH₂)_pOC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkoxy, NHNH₂, NHC(O)NH₂, NHC(O)C₁.

 6alkoxy, N-morpholino and N-pyrrolidino; and
- Ar is an aromatic or heteroaromatic group, unsubstituted or substituted with 1-4

 substituents, independently selected from the group consisting of OH, C₁₋₆alkyl,

 C₁₋₆alkoxy, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl)(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, NO₂,

 CF₃, OCF₃ and halo;

n is 0 to 4; and

p is 1-4.

- 30. (Original) The method of claim 29, wherein the cell proliferation that is inhibited is cancer cell proliferation.
- 31. (Cancelled)
- 32. (Currently Amended) The method of claim 30 or 31, wherein said cancer is a hematopoietic cell cancer.

- 33. (Currently Amended) The method of claim 30 or 31, wherein said cancer is a leukemia, a lymphoma, a myeloma or a carcinoma.
- 34. (Currently Amended) The method of claim 33, wherein said <u>cancer is a</u> leukemia <u>selected from</u> is acute lymphoblastic leukemia, Philadelphia+ leukemia, Philadelphia- leukemia, acute myelocytic leukemia, chronic myeloid leukemia, chronic lymphocytic leukemia or juvenile myelomonocyte leukemia.
- 35. (Previously Presented) The method of claim 34, wherein said leukemia is acute lymphoblastic leukemia.

36-37. (Cancelled)

38. (Currently Amended) A method of inhibiting <u>hematopoietic</u> cancer cell proliferation, comprising administering an effective amount of a composition according to claim 1 to a cell or animal in need thereof an effective amount of a compound of <u>Formula I. or a salt, solvate or hydrate thereof:</u>

wherein

- R¹ and R² are each independently selected from the group consisting of H, OH, C₁₋₆alkyl, C₁₋₆alkyl, N(C₁₋₆alkyl), N(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, O-Si(C₁₋₆alkyl), NO₂, CF₃, OCF₃ and halo;
- R³ is selected from the group consisting of H, OH, C_{1-6} alkyl, C_{1-6} alkyl, C_{1-6} alkyl) (C_{1-6} alkyl), C_{1-6} alky
- R⁴ is selected from the group consisting of C(X)R⁵, SO₃Ar, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl), P(O)(OH)₂, P(O)(OC₁₋₆alkyl)₂, and C(NH₂)-C(CN)₂; X is selected from O, S, NH and N-C₁₋₆alkyl:

- R⁵ is selected from the group consisting of NH₂, OH, NH(CH₂)_pAr, NH(CH₂)_pOH.

 (CH₂)_pOC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkoxy, NHNH₂, NHC(O)NH₂, NHC(O)C₁₋₆alkoxy, N-morpholino and N-pyrrolidino; and
- Ar is an aromatic or heteroaromatic group, unsubstituted or substituted with 1-4

 substituents, independently selected from the group consisting of OH, C₁₋₆alkyl,

 C₁₋₆alkoxy, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl)(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, NO₂,

 CF₃, OCF₃ and halo;

n is 0 to 4; and

p is 1-4.

39-40. (Cancelled)

41. (Currently Amended) A method of inhibiting cancer cell proliferationaccording to claim 38, wherein said cancer is a leukemia, a lymphoma, a myeloma or a carcinoma, comprising administering to a cell or animal in need thereof an effective amount of a compound of Formula I, or a salt, solvate or hydrate thereof:

wherein

- R¹ and R² are each independently selected from the group consisting of H, OH, C₁₋₆alkyl, C₁₋₆alkyl, N(C₁₋₆alkyl), NH₂, NH₂, NH₂, NH₂, NH₂, N(C₁₋₆alkyl), N(C₁₋₆alkyl), NO₂, CF₃, OCF₃ and halo;
- R³ is selected from the group consisting of H, OH, C₁₋₆alkyl, C₁₋₆alkoxy, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl)(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, O-Si(C₁₋₆alkyl)(C₁₋₆alkyl)(C₁₋₆alkyl)(C₁₋₆alkyl)(C₁₋₆alkyl), NO₂, halo and CH₂-S-(CH₂)_n Ar;
- R⁴ is selected from the group consisting of C(X)R⁵, SO₃Ar, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl), P(O)(OH)₂, P(O)(OC₁₋₆alkyl)₂, and C(NH₂)-C(CN)₂; X is selected from O, S, NH and N-C₁₋₆alkyl;

- R⁵ is selected from the group consisting of NH₂, OH, NH(CH₂)_pAr, NH(CH₂)_pOH,

 (CH₂)_pOC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkoxy, NHNH₂, NHC(O)NH₂, NHC(O)C₁₋₆alkoxy, N-morpholino and N-pyrrolidino; and
- Ar is an aromatic or heteroaromatic group, unsubstituted or substituted with 1-4

 substituents, independently selected from the group consisting of OH, C₁₋₆alkyl,

 C₁₋₆alkoxy, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl)(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, NO₂,

 CF₃, OCF₃ and halo;

n is 0 to 4; and p is 1-4.

- 42. (Currently Amended) A method according to claim 41, wherein said <u>cancer is a</u> leukemia <u>selected from</u> is acute lymphoblastic leukemia, aggressive Philadelphia+ leukemia, acute myelocytic leukemia, chronic myeloid leukemia, chronic lymphocytic leukemia or juvenile myelomonocyte leukemia,
- 43. (Previously Presented) A method according to claim 42, wherein said leukemia is acute lymphoblastic leukemia.
- 44. (Previously Presented) A pharmaceutical composition comprising a pharmaceutically acceptable diluent or carrier and (E,E)-2-carboxy-3-(3,4-dihydroxystyryl)acrylonitrile.

45-46. (Cancelled)

- 47. (Currently Amended) A compound selected from:
- (E,E)-2-(benzylaminocarbonyl)-3-(3,4-dihydroxystyryl)acrylonitrile (CR4);
- (E,E)-2-(3,4-dihydroxybenzylaminocarbonyl)-3-(3,5_zdimethoxy-4-hydroxystyryl)acrylonitrile (CR11);
- (E,E)-2-aminocarbonyl-3-(3,4-dihydroxystyryl)acrylonitrile (CR17);
- (E,E)-2-(3,4-dihydroxybenzylaminocarbonyl)-3-styrylacrylonitile (CR19);
- (E,E)-2-(3,4-dihydroxybenzylaminocarbonyl)-3-(3,4-dihydroxystyryl)acrylonitrile (CR21); and

- (E,E)-2- $(\beta$ -ethanolaminocarbonyl)-3-(3,5-dimethoxy-4-hydroxystyryl)acrylonitrile (CR24).
- 48. (Previously Presented) A compound (*E,E*)-2-benzylaminocarbonyl)-3-(3,4-dihydroxystyryl)acrylonitrile (CR4).
- 49. (Previously Presented) A compound (*E,E*)-2-(3,4-dihydroxybenzylaminocarbonyl)-3-(3,5-dimethoxy-4-hydroxystyryl)acrylonitrile (CR11).
- 50. (Previously Presented) A compound (*E,E*)-2-(3,4-dihydroxybenzylaminocarbonyl)-3-styrylacrylonitrile (CR19).
- 51. (Previously Presented) A compound (*E,E*)-2-carboxy-3-(3,4-dihydroxystyryl)acrylonitrile.
- 52-57. (Cancelled)
- 58. (Previously Presented) The compound (*E,E*)-2-carboxy-3-(3,5-dimethoxy-4-hydroxystyryl)acrylonitrile (CR-14).