Tecnológico de Costa Rica Escuela de Matemáticas Álgebra Lineal para Computación \mathcal{T} iempo: 2 horas y 15 minutos \mathcal{P} untaje \mathcal{T} otal: 35 puntos \mathcal{M} ayo de 2012

II Examen Parcial

Instrucciones: Esta es una prueba de desarrollo, por lo tanto, debe presentar todos los pasos y procedimientos que le permitieron obtener cada una de las respuestas. Trabaje en forma clara, ordenada y utilice bolígrafo para resolver el examen. No son procedentes las apelaciones que se realicen sobre exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono celular.

1. Considere los grupos $(\mathbb{Z}_3, +)$ y $(\mathbb{Z}_2, +)$ y sea $\mathcal{G} = \mathbb{Z}_3 \times \mathbb{Z}_2$. $\forall (a, b), (c, d) \in \mathcal{G}$ se define:

$$(a,b)*(c,d) = (a+c,b+d)$$

Si se sabe que $(\mathcal{G}, *)$ es grupo:

- (a) Determine la tabla de operación binaria para $(\mathcal{G}, *)$ (3 pts)
- (b) Encuentre el simétrico de cada uno de los elementos de \mathcal{G} (3 pts)
- 2. Si $(\mathcal{G}, *)$ es algún grupo con elemento neutro e y $x \in \mathcal{G}$, se dice que x es un elemento involutivo de \mathcal{G} si, y solo si, $x^2 = e$.
 - (a) Determine todos los elementos *involutivos* del grupo $(\mathbb{Z}_4, +)$ (2 pts)
 - (b) Determine todos los elementos *involutivos* del grupo (\mathbb{R}^*, \cdot) (2 pts)
- 3. Considere la estructura $(\mathbb{R},\otimes),$ donde se define \otimes de la manera siguiente:

$$\forall a, b \in \mathbb{R}, \ a \otimes b = 5b^2 - ab + a^2 - b$$

- (a) Determine si la estructura (\mathbb{R}, \otimes) posee elemento neutro o no. (2 pts)
- (b) Se dice que un elemento z de \mathbb{R} es idempotente si $z \otimes z = z$. Determine todos los elementos idempotentes de (\mathbb{R}, \otimes) . (2 pts)
- 4. Demuestre que $\mathcal{H} = \left\{ x \in \mathbb{R}^* \middle/ x = 3^m, \ m \in \mathbb{Z} \right\}$ es subgrupo de (\mathbb{R}^*, \cdot) (4 pts)

- 5. Sea $\mathcal{D} = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \middle/ a, b \in \mathbb{R} \right\}$. Si se sabe que $(\mathcal{D}, +, \cdot)$ es anillo, verifique que es conmutativo con elemento unidad. ¿Posee divisores de cero? (3 pts)
- 6. Si se sabe que \mathcal{V} es un espacio vectorial real, determine en cada uno de los casos si \mathcal{W} es subespacio de \mathcal{V} o no lo es. Justifique. (3 pts c/u)

(a)
$$\mathcal{W} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \middle/ a = 0, b = c, d \ge 0 \right\}, \quad \mathcal{V} = \mathcal{M}_2(\mathbb{R})$$

- (b) $W = \{(x, y) \in \mathbb{R}^2 / 2x 3y = 0\}, \ V = \mathbb{R}^2$
- 7. Sea $\mathcal{B} = \{u, w, x, z\}$ algún subconjunto linealmente independiente de un espacio vectorial real \mathcal{V} . Si se definen y = 2u x 3z, m = 2x + 3w 4u, t = w 2z, determine si $\mathcal{H} = \{y, m, t\}$ es linealmente depediente o linealmente independiente. (4 pts)
- 8. Sea $\mathcal{W} = \{p(x) = a + bx + cx^2 + dx^3 \in \mathcal{P}_3(\mathbb{R}) / a + b + c + d = 0, p'(1) = 0\}$. Determine un conjunto \mathcal{S} de manera que $\mathcal{G}en(\mathcal{S}) = \mathcal{W}$. (4 pts)