ВОЕННО-КОСМИЧЕСКАЯ АКАДЕМИЯ ИМЕНИ А.Ф. МОЖАЙСКОГО

Кафедра информационно-вычислительных систем и сетей

УТВЕРЖДАЮ							
Начальник 24 кафедры							
полковник							
				А. Басыров			
«			20	года			

Автор: преподаватель 24 кафедры, кандидат технических наук, доцент В. Тимофеев

Тема1. Основные понятия, показатели и методы обеспечения надёжности **АС**

Практическое занятие **Исследование свойств резервирования**

по дисциплине

Надежность автоматизированных систем

	O	бсуждено	и одобрено	э на засе	едании 24 кафедри	ы
« ₋	»		20	_ года	протокол №	

Цель занятия: привитие обучаемым навыков определения по статистическим данным об отказах отдельных элементов и подсистем показателей надежности резервированных систем

СОДЕРЖАНИЕ ЗАНЯТИЯ И ВРЕМЯ

Введение	5 мин.
1. Разбор типовых примеров	40 мин.
2. Выполнение индивидуального задания	135 мин.
3. Подготовка отчета	45 мин.
4. Защита отчета о выполненной работе	40 мин.
Заключение	5 мин.

1. Общее резервирование с постоянно включенным резервом

Чтобы оценить свойства резервированных систем, необходимо уметь определять их показатели надежности.

Рис. 1. Общее резервирование с постоянно включенным резервом

Для схемы системы с общим резервированием и постоянно включенным резервом, показанной на рис. 1, показатели надежности определяются по формулам:

$$\begin{split} F_i(t) &= 1 - P_i(t), \\ P_c(t) &= 1 - F_c(t) = I - \prod_{i=1}^m (1 - P_i(t)), \\ f_c(t) &= F_c'(t) = \\ &= \sum_{i=1}^m (1 - P_0(t)) \dots f_i(t) \dots (1 - P_m(t)), \\ \lambda_c(t) &= \frac{f_c(t)}{P_c(t)} = \frac{\sum_{i=1}^m (1 - P_0(t)) \dots f_i(t) \dots (1 - P_m(t))}{1 - \prod_{i=0}^m (1 - P_i(t))}, \end{split}$$

где $P_i(t)$, $F_i(t)$, $f_i(t)$ — вероятность безотказной работы, вероятность отказа и плотность распределения (частота отказов) i-го элемента резервированной системы.

Для однородных систем и постоянной интенсивности отказов элементов λ

$$P_c(t) = 1 - (1 - P(t))^m = 1 - (1 - e^{-\lambda \Lambda t})^m,$$
 (1.a)

$$f_c(t) = m\lambda e^{-\lambda t} (1 - e^{-\lambda t})^{m-1}$$
(1.6)

$$\lambda_{c}(t) = -\frac{P_{c}'(t)}{P_{c}(t)} = \frac{m\lambda e^{-\lambda t}(1 - e^{-\lambda t})^{m-1}}{1 - (1 - e^{-\lambda t})^{m}},$$
 (1.B)

$$T_c = \int_0^\infty P_c(t)dt = T \sum_{k=1}^m \frac{1}{k}, \qquad (1.\Gamma)$$

где
$$T = \frac{1}{\lambda}$$
.

Формулы 1 справедливы при следующих допущениях:

- время исправной работы каждого элемента подчинено экспоненциальному закону;
- элементы (основные и резервные) каждого резервного соединения равно надежны;
 - одновременный отказ двух и более элементов соединения невозможен;
- при выходе из строя отдельных элементов характеристики надежности оставшихся элементов не меняются, т.е. имеют место отказы без последействия.

2. Порядок выполнения индивидуального задания

На практическом занятии исследуются системы с общим резервированием, целой кратностью и постоянно включенным резервом.

В вариантах индивидуальных заданий задаются: время испытаний Т, общее число элементов, участвующих в испытаниях К, и результаты испытания 1000 систем. Испытание производилось с восстановлением (заменой) отказавших систем.

По числу К можно определить структуру резервированных систем, поставленных на испытание. Пусть K=2000. Поскольку в испытании участвуют 1000 систем, то каждая из 1000-и систем будет иметь 2 элемента, один резервный и один основной, т.е. кратность резервирования h=1. Для K=4000 каждая из 1000-и систем будет иметь 4 элемента, три резервных и один основной, т.е. кратность резервирования h=3.

Далее следует выполнить следующие действия:

1. Используя данные испытания, приведенные в таблице индивидуальных заданий, по формулам (9) и (13), приведенным в Руководстве для «Практического занятия 1», вычислить двенадцать значений $p^*(i\Delta t)$ и среднее время между отказами T^* . С целью сокращения времени на выполнение расчетов по формулам (9) — (13) используется приложение Excel «Автоматизация расчетов для ПЗ 1 и 2» с заменой отказавших при испытаниях элементов. Для вычисления $T^* = t_{cp}$ в приложении Excel необходимо

проделать действия, описанные в п. 2.1 руководства к практическому занятию 1.

2. Определить интенсивность отказа λ одного элемента системы. Для этого надо определить структуру системы. Например, для K = 2000, которое задается в варианте индивидуального задания, структура системы будет следующей:

Рис.2. Резервированная система с одним основным и одним резервным элементом

По формуле (2) для среднего времени до отказа, соответствующей системе представленной на рис. 2, определить интенсивность отказа одного элемента системы λ .

$$T_c = T \sum_{k=1}^m \frac{1}{k} \,, \tag{2}$$

где $m=2,\,T=\frac{1}{\lambda}.$ Тогда

$$\lambda = \frac{3}{2T_C},\tag{3}$$

значение T_c берется из приложения Excel, т.е. $T_c = t_{cp}$.

- 3. Для найденного значения λ по формуле (1.a) рассчитать двенадцать значений $P_c(i\Delta t)$ и двенадцать значений $P(i\Delta t)=e^{-\lambda i\Delta t}$ (i=1,2,...,12), на одном графике построить их кривые и кривую для $p^*(i\Delta t)$, вычисленных с помощью приложения Excel. Сделать выводы о целесообразности резервирования.
- 4. Подсчитать выигрыш по надежности по формулам (4) для двух значений времени $t_1 = \Delta t$ и $t_2 = 11\Delta t$.

$$\gamma_p = \frac{P_c(t)}{P(t)}, \quad \gamma_F = \frac{1 - P(t)}{1 - P_c(t)}, \quad \gamma_T = \frac{T_c}{T_0},$$
(4)

где P(t) и T — соответственно вероятность и среднее время без отказной работы нерезервированной системы.

$$P(t) = e^{-\lambda t}, \quad T = \frac{1}{\lambda}, \tag{5}$$

Сделать выводы об эффективности данного метода резервирования.

Таблица 1. Варианты индивидуальных заданий

No			Результаты испытаний											
варианта	T	К	1	2	3	4	5	6	7	8	9	10	11	12
1	1000	2000	100	80	150	110	170	120	175	125	180	130	185	140
2	2000	3000	50	161	60	150	70	145	80	140	90	130	100	120
3	3000	2000	20	100	40	150	100	175	110	180	120	175	130	170
4	4000	4000	65	111	102	123	112	131	132	145	134	146	140	143
5	5000	4000	20	100	40	120	160	140	90	140	100	140	125	140
6	6000	3000	20	101	60	145	105	170	150	175	157	180	161	176
7	7000	4000	22	105	81	133	102	140	120	125	130	152	125	161
8	8000	9000	35	75	65	105	70	127	82	142	87	142	90	147
9	9000	6000	15	33	45	84	81	119	81	127	107	137	127	133
10	1000	6000	40	65	80	140	90	151	100	160	110	165	121	170
11	1500	2000	126	107	79	127	168	149	115	86	121	156	146	117
12	2500	3000	20	90	30	100	50	110	60	120	70	125	80	130
13	3500	2000	50	93	115	107	159	165	157	160	145	165	157	160
14	4500	4000	50	76	100	117	109	132	113	139	121	145	138	156
15	5500	4000	50	150	135	155	130	160	132	167	140	170	150	165
16	6500	3000	35	115	55	140	75	155	110	155	125	168	145	165
17	7500	4000	45	98	132	121	154	139	163	150	174	160	171	180
18	8500	9000	35	112	132	65	157	106	190	113	131	201	135	196
19	9500	6000	24	101	57	141	112	135	121	153	130	162	151	159
20	15000	6000	21	101	37	121	61	139	94	151	135	158	149	155
21	3000	2000	23	51	21	79	52	86	56	91	59	86	63	83
22	4000	3000	51	87	110	116	123	119	125	121	131	127	134	132
23	5000	2000	50	92	89	112	106	125	132	160	135	173	143	172
24	6000	4000	55	61	54	83	71	94	85	105	87	112	105	116
25	7000	4000	54	105	81	133	102	140	120	125	130	152	125	161
26	8000	3000	25	60	37	70	51	71	60	74	64	87	70	80
27	9000	4000	45	63	55	74	80	110	84	129	107	133	125	133
28	10000	9000	27	81	57	101	112	137	126	151	133	161	154	159
29	11000	6000	31	91	47	121	65	139	101	153	135	159	151	163
30	12000	6000	27	101	57	111	71	130	94	151	139	158	149	155

T – время испытаний;

k – общее число элементов, участвующих в испытаниях.

3. Отчетность о выполнении индивидуального задания

По выполнению задания каждый курсант должен представить отчет. Отчет должен содержать:

- название практического занятия;
- цель занятия;
- индивидуальное задание и схему резервированного соединения;
- таблицу со статистическими данными о результатах испытаний на надежность резервированных систем;

- расчетные формулы для определения T_c , P(t), γ_p , γ_F и γ_T ;
- на одном и том же рисунке графики $P_c(t)$ и P(t);
- количественные значения для γ_p , γ_F и γ_T ;
- выводы по результатам исследования надежности резервированных систем.

Отчетный материал представляется преподавателю, и результаты защищаются.

4. Критерии для оценивания выполнения индивидуального задания

«Отлично», если обучающийся правильно выполнил индивидуальное задание и правильно ответил на заданные преподавателем контрольные вопросы.

«Хорошо», если обучающийся правильно выполнил индивидуальное задание и правильно ответил не на все заданные преподавателем контрольные вопросы.

«Удовлетворительно», если обучающийся неправильно выполнил индивидуальное задание, но правильно ответил на большинство заданных преподавателем контрольных вопросов.

«Неудовлетворительно», если обучающийся неправильно выполнил индивидуальное задание и не ответил на заданные преподавателем контрольные вопросы.

5. Контрольные вопросы

- 1. Какие системы называются резервированными?
- 2. Какова классификация способов резервирования?
- 3. Какой тип резервирования исследуется в данной работе?
- 4. Какие допущения принимаются при оценке надежности исследуемой резервированной системы?
 - 5. Как определить по графику функции P(t) значение T.
 - 6. Как по графикам f(t) и $\lambda(t)$ построить график P(t).
 - 7. Определить по графику f(t) значения функций F(t) и P(t).

				В. Тимофеев
				(воинское звание, подпись, инициал имени, фамилия автора)
χ.	>>	20	Г	