NULL VRIJEDNOSTI I INTEGRITET PODATAKA

VI predavanje

Dr.sc. Emir Mešković

NULL vrijednosti

- Ponekad se dešava da informacije koje treba unijeti u bazu podataka nisu potpune
 - neke informacije trenutno nisu poznate
 - neke informacije uopće ne postoje
 - neke informacije postoje, ali do njih nije moguće doći
- Informacije koje nedostaju prikazuju se kao NULLvrijednosti
- Za korisnika/programera NULL-vrijednost je neovisna o tipu podatka kojeg predstavlja

Primjer

Evidencija članova biblioteke

CLAN(clanBr,	prezime,	ime,	postBr,	adresa,	vr,	matBrSt,	$\frac{\downarrow}{nastZv)}$
12345	Pirić	Damir	75000	I. Mujezinovića 25	S	11-37/10	NULĹ
34567	Pejić	Dino	75000	NULL	Ν	NŲLL	Asist.
				\uparrow		\uparrow	
	. •	1.	••	nepoznato		ne postoji	

ne postoji

Horizontalna normalizacija

Relacija *clan* razdijeli se na fragmente prema vrijednosti atributa *Vr*, te se dobiveni fragmenti projiciraju na atribute koje određene vrste članova posjeduju.

STUDENT(c	clanBr,	prezime,	ime,	postBr	adresa,		vr,	matBrSt)
•	12345	•		•	I. Mujezinović			•
NASTAVNII	K <u>(clanBr,</u>	prezime,	ime,	postBr,	adresa,	vr,	nas	tZv)
	34567	•		•	NULL			•

Interna pohrana i prikaz NULL vrijednosti

- NULL vrijednost se razlikuje od
 - vrijednosti 0 za numerički podatak
 - praznog niza za podatke tipa niza znakova
 - **.....**
- Način interne pohrane NULL vrijednosti je nebitan NULL vrijednost je neovisna o tipu podatka koji predstavlja
 - U SQL naredbama bez obzira na tip podatka koristi se "konstanta" NULL
- NULL vrijednost se interno prikazuje drugačije od bilo koje druge dozvoljene vrijednosti
 - Npr. mali cijeli brojevi imaju raspon [-32768, 32767]
 - ▶ NULL \rightarrow -32768, raspon je [-32767, 32767]
- Način na koji se NULL vrijednost prikazuje korisniku ovisi o programskom alatu koji se koristi (NULL, <null>, prazna ćelija, ...)

Pravila za rukovanje NULL vrijednostima

- Aritmetički izrazi
 - Neka je aritmetički operator $\alpha \in \{+, -, *, /\}$,
 - neka su X i Y numerički izrazi.
- Rezultat aritmetičkog izraza: $X \propto Y$ je NULL ukoliko jedan ili oba operanda (X, Y) imaju vrijednost NULL
 - ▶ 10 + NULL $\rightarrow NULL$
 - NULL * 1 → NULL
 - ightharpoonup NULL ightharpoonup NULL ightharpoonup NULL
- Unarne operacije + i -
 - Ako X poprimi NULL vrijednost, tada su rezultati operacija +X i -X također NULL
 - \rightarrow NULL \rightarrow NULL

Pravila za rukovanje NULL vrijednostima

nastavnik

sifNast	prezNast	imeNast	koef	proc
1001	Pirić	Damir	5.67	5
1002	Đurić	Maja	6.02	NULL
1003	Žunić	Senad	4.78	10
1004	Pejić	Ema	NULL	NULL

SELECT sifNast, prezNast,
 koef * (1 + proc * 0.01) AS ukupKoef,
 -proc AS negProc

FROM nastavnik

sifNast	prezNast	ukupKoef	negProc
1001	Pirić	5.95	-5
1002	Đurić	NULL	NULL
1003	Žunić	5.26	-10
1004	Pejić	NULL	NULL

Pravila za rukovanje s NULL vrijednostima

- Relacijski izrazi aritmetički operatori poređenja
 - Neka je operator Q ∈ { >, <, >=, <=, <>, =}
 - Neka je relacijski izraz: X Q Y
- U dvovalentnoj logici rezultat poređenja je uvijek ili true ili false
- U trovalentnoj logici rezultat poređenja može biti true, false ili unknown:
 - ukoliko jedan ili oba operanda (X, Y) imaju vrijednost NULL rezultat poređenja je logička vrijednost nepoznato (unknown)

```
▶ 10 < 5 \rightarrow false
```

- ► NULL ≥ 15.5 → unknown
- ▶ NULL = NULL \rightarrow unknown
- NULL ≠ NULL → unknown

Pravila za rukovanje s NULL vrijednostima

Osnovne logičke operacije - Tablice istinitosti u trovalentnoj logici (u prisustvu logičke vrijednosti unknown):

OR	true	unknown	false
true	true	true	true
unknown	true	unknown	unknown
false	true	unknown	false

AND	true	unknown	false
true	true	unknown	false
unknown	unknown	unknown	false
false	false	false	false

NOT	
true	false
unknown	unknown
false	true

NULL vrijednost i skupovi

- Neka skup S sadrži vrijednosti:
 - $S = \{1, 2, 3, NULL\}$
- NULL vrijednost u skupu S mogla bi se posmatrati na dva načina:
 - NULL vrijednost je različita od 1, 2 i 3
 - NULL vrijednost je nepoznata može poprimiti i neku od vrijednosti 1, 2 ili 3.
- Kardinalnost skupa S je u ovom slučaju neodređena (može biti 3 ili 4)
- Narušava se i definicija skupa (nije dozvoljena pojava dvije ili više jednakih vrijednosti)

Definicija kopije

- Sistemi za upravljanje bazama podataka nisu u stanju razlikovati NULL vrijednosti
- Model rukovanja s NULL vrijednostima u skupovima:
 - dozvoljena je pojava jedne i samo jedne NULL vrijednosti u skupu
 - Element e je kopija jednog od elemenata u skupu:
 - ako u skupu postoji element s jednakom vrijednošću
 - ako je vrijednost elementa e NULL, a u skupu već postoji element s NULL vrijednošću

Definicija kopije u relaciji

- ▶ n-torka $(d_1, d_2, ..., d_n)$ je kopija n-torke $(e_1, e_2, ..., e_n)$ ako i samo ako:
 - $[(d_i = e_i) \lor (d_i = NULL \land e_i = NULL)], \forall i \in \{1, .., n\}$
- Primjer:

ZAPOSLE	NIK <u>(prezime,</u>	ime,	JMBG)
t _l	Pirić	Damir	NULL
t_2	Đurić	Maja	2812964185017 nisu kopije
t_3	Pejić	Dino	NULL
t ₄	Pirić	Damir	0301958180001
t ₅	Pejić	Dino	NULL kopije

- t₁ i t₄ nisu kopije, iako će možda NULL vrijednost u t₁ biti zamijenjena s vrijednošću 0301958180001
- t₃ i t₅ jesu kopije, iako će možda NULL vrijednosti biti zamijenjene različitim vrijednostima

Osnovne operacije s relacijama

Operacija projekcije

 Prilikom obavljanja operacije projekcije potrebno je u fazi eliminacije duplikata voditi računa o definiciji kopije ntorke

$$\rightarrow$$
 s = $\pi_{B,C}(r)$

r		
Α	В	С
1	a	α
2	b	NULL
3	NULL	β
4	a	α
5	NULL	NULL
6	NULL	β
7	NULL	NULL

"međurezultat"				
С				
α				
NULL				
β				
α				
NULL				
β				
NULL				

С
α
NULL
β
NULL

Operacija selekcije

Prilikom obavljanja operacije selekcije $\sigma_{F}(r)$ dobija se relacija koja sadrži samo one n-torke relacije r za koje je vrijednost predikata F istina (true)

```
Primjer: r (prezime, postBr)

Pirić 75000

Pejić 71000

Durić NULL

Žunić 72000

Selekcija: σ<sub>postBr</sub><>75000</sub>(r)

SELECT * FROM R WHERE postBr <> 75000

Rezultat:

<Pejić, 71000>, <Žunić, 72000>
jer se za n-torku <Pirić, 75000> uslov selekcije evaluira kao false, a za n-torku <Đurić, NULL> evaluira se kao unknown
```

Operacija spajanja

- Prilikom obavljanja bilo kojeg oblika operacije spajanja (spajanje uz uslov, spajanje sa izjednačavanjem, prirodno spajanje) potrebno je voditi računa o tome da se spajaju samo one n-torke za koje uslov spajanja ima logičku vrijednost istina (true)
 - Prilikom obavljanja operacije Dekartovog proizvoda NULL vrijednosti nemaju uticaja

Operacija spajanja

Primjer: r (p	rezime,	postBr)	s (<u>postBr,</u>	grad)
	Pirić	75000	75000	Tuzla
	Pejić	71000	71000	Sarajevo
	Đurić	NULL	88000	Mostar
	Žunić	72000		

Prirodnim spajanjem relacija dobije se:

$r \triangleright \triangleleft s = t (\underline{prezime},$	postBr,	grad)
Pirić	75000	Tuzla
Pejić	71000	Sarajevo

Nepojavljivanje osobe s prezimenom \check{Z} unić rezultat je evaluiranja uslova r.postBr = s.postBr s rezultatom false.

Nepojavljivanje osobe s prezimenom Đurić rezultat je evaluiranja uslova *r.postBr* = s.postBr s rezultatom unknown.

Operacija spajanja

Primjer: r (prezime,	postBr)	s (<u>postBr,</u>	grad)
,	Pirić	75000	75000	Tuzla
	Pejić	71000	71000	Sarajevo
	Đurić	NULL	88000	Mostar
	Žunić	72000	NULL	Nepoznato

Prirodnim spajanjem relacija dobije se:

$r \triangleright \triangleleft s = t (\underline{prezime},$	postBr,	grad)
Pirić	75000	Tuzla
Pejić	71000	Sarajevo

Nepojavljivanje osobe s prezimenom Žunić rezultat je evaluiranja uslova *r.postBr* = s.postBr s rezultatom false.

Nepojavljivanje osobe s prezimenom Đurić rezultat je evaluiranja uslova *r.postBr* = s.postBr s rezultatom unknown.

Vanjsko spajanje - Outer join

- → sve n-torke iz r pojavit će se ukoliko koristimo operaciju lijevog vanjskog spajanja r *>
 - n-torkama "lijeve" relacije za koje ne postoje odgovarajuće ntorke u "desnoj" relaciji se kao vrijednosti atributa iz "desne" relacije postavljaju NULL vrijednosti

```
SELECT * FROM R LEFT OUTER JOIN S
ON R.PostBroj = S.PostBroj
```

t (<u>prezime</u>	þostBr	postBr	grad <u>)</u>
Pirić	75000	75000	Tuzla
Pejić	71000	71000	Sarajevo
Đurić	NULL	NULL	NULL
Žunić	72000	NULL	NULL

Vanjsko spajanje - Outer join

- → sve n-torke iz s pojavit će se ukoliko koristimo operaciju desnog vanjskog spajanja r >
 - n-torkama "lijeve" relacije za koje ne postoje odgovarajuće n-torke u "desnoj" relaciji se kao vrijednosti atributa iz "desne" relacije postavljaju NULL vrijednosti

```
SELECT * FROM R RIGHT OUTER JOIN S
ON R.PostBroj = S.PostBroj
```

t (<u>þrezime</u>	þostBr	<u> postBr</u>	grad <u>)</u>
 Pirić	75000	75000	Tuzla
Pejić	71000	71000	Sarajevo
NULL	NULL	88000	Mostar

Vanjsko spajanje - Outer join

→ sve n-torke iz obje relacije pojavit će se ukoliko koristimo operaciju punog vanjskog spajanja r *>

```
SELECT * FROM R FULL OUTER JOIN S
ON R.PostBroj = S.PostBroj
```

t (<u>prezime</u>	þostBr	postBr	grad <u>)</u>
Pirić	75000	75000	Tuzla
Pejić	71000	71000	Sarajevo
Đurić	NULL	NULL	NULL
Žunić	72000	NULL	NULL
NULL	NULL	88000	Mostar

Integritet baze podataka

- Pojam integriteta baze podataka odnosi se na ispravnost (konzistentnost) i istinitost podataka sadržanih u bazi.
- Neispravni ili netačni podaci mogu biti posljedica:
 - slučajne pogreške kod unosa ili ažuriranja
 - pogreške aplikacijskog programa ili sistema
 - Integritet baze podataka može biti narušen i zbog posljedica diverzije ili sabotaže, međutim o tome brine poseban dio SUBP koji je zadužen za sigurnost baze podataka.
 - Integritetska ograničenja osiguravaju da izmjene podataka koje obavljaju korisnici ne rezultiraju narušavanjem konzistentnosti podataka

Integritetska ograničenja

- Definicije integritetskih ograničenja su sastavni dio sheme baze podataka
- Definicije integritetskih ograničenja se pohranjuju u riječnik podataka baze podataka
 - Na taj način pravila definirana integritetskim ograničenjima postaju nezaobilazna za svakog korisnika sistema
 - SUBP provjerava integritetska ograničenja pri obavljanju svake operacije koja mijenja sadržaj baze podataka
 - U trenutku završetka operacije nad podacima baza podataka mora biti u stanju u kojem su zadovoljena sva integritetska ograničenja
 - SUBP odbija obaviti operacije koje nemaju to svojstvo ili obavlja kompenzacijske akcije koje osiguravaju da su na kraju sva integritetska ograničenja zadovoljena

Integritetska ograničenja

- Osnovna integritetska ograničenja
 - Entitetski integritet (Entity integrity)
 - Integritet ključa (Key integrity)
 - Referencijski integritet (Referential integrity)
- Korisnička integritetska ograničenja
 - Domenski integritet (Domain integrity)
 - Ograničenja NULL vrijednosti (Constraints on NULL)
 - Opća integritetska ograničenja (General integrity constraints)

Entitetski integritet

- (Codd, 1970) Vrijednost primarnog ključa kao cjeline, ne smije biti jednaka NULL vrijednosti.
- Ako je primarni ključ relacije složen, niti jedna njegova komponenta ne smije poprimiti NULL

Primjer:

```
NASTAVNIK = { sifNas, prezNast }

K<sub>NASTAVNIK</sub> = { sifNas } → sifNas ne smije biti NULL

ISPIT = { matbr, sifPred, datlsp, ocj, sifNas }

K<sub>ISPIT</sub> = { matbr , sifPred, datlsp }

matBr, sifPred, datlsp ne smiju biti NULL
```

Integritet ključa

- U relaciji ne smiju postojati dvije n-torke s jednakim vrijednostima ključa
 - Ovo ograničenje vrijedi za sve moguće ključeve

Primjer:

```
NASTAVNIK = { sifNas, jmbgNast prezNast }

PK<sub>NASTAVNIK</sub> = { sifNas } K2<sub>NASTAVNIK</sub> = { jmbgNas }
```

- → u relaciji nastavnik (NASTAVNIK) ne smiju postojati dvije ntorke koje imaju jednake vrijednosti atributa sifNas
- → u relaciji nastavnik (NASTAVNIK) ne smiju postojati dvije ntorke koje imaju jednake vrijednosti atributa jmbgNas

- Referencijski integritet se odnosi na konzistentnost među n-torkama dvije relacije (ili n-torkama iste relacije).
- Neformalno: n-torka iz jedne relacije koja se poziva (referencira) na drugu relaciju se može pozvati (referencirati) samo na postojeće n-torke (primarne ključeve) u toj relaciji

- Ako u relacijskoj shemi R postoji strani ključ FK_R koji odgovara primarnom ključu relacijske sheme S PK_S, tada svaka vrijednost stranog ključa u relaciji r(R) t_i(FK_R) mora biti:
 - ili jednaka vrijednosti primarnog ključa neke n-torke iz relacije $s(S) t_i(PK_S)$, tj. $t_i(FK_R) = t_i(PK_S)$
 - ▶ ili jednaka NULL vrijednosti, tj. $t_i(FK_R) = NULL$
- Relacija r(R) se naziva pozivajuća, a relacija s(S) se naziva pozivana relacija
 - Relacije r(R) i s(S) ne moraju nužno biti različite relacije
- Referencijski integritet se odnosi na ograničenje koje proizilazi iz definicije stranog ključa

Primjer

osoba <u>(sifra</u>	þrezime	<u>postBr</u>) grad	(postBr na	<u>zivGrada)</u>
100	Pirić	75000	75000	Tuzla
107	Đurić	NULL	71000	Sarajevo
109	Pejić	72000	88000	Mostar

- Relacije osoba i grad ne zadovoljavaju pravilo referencijskog integriteta jer u relaciji osoba postoji vrijednost stranog ključa (72000) za koju ne postoji odgovarajuća n-torka u relaciji grad.
 - n-torka <107, Đurić, NULL> ne narušava referencijski integritet

- Postoje slučajevi kad strani ključ iz r(R) ne smije biti jednak NULL vrijednosti. To vrijedi za slučaj kad se pravila referencijskog integriteta sukobe s nekim drugim pravilima integriteta (npr. pravilom entitetskog integriteta ili ograničenjem NULL vrijednosti)
 - > strani ključ relacije r(R) koji je ujedno dio primarnog ključa relacije r(R) ne smije poprimiti NULL vrijednost!

```
STUDENT = { matbr, prezime, ime }

K<sub>STUDENT</sub> = { matbr }

ISPIT = { matbr, sifPred, datlsp, ocj, sifNas }

K<sub>ISPIT</sub> = { matbr , sifPred, datlsp }

matBr ne smije poprimiti NULL vrijednost!
```

Domenski integritet

- Definiše domenu atributa specificira skup vrijednosti koje atribut smije poprimiti
- Primjer: MJESTO = { pbr, nazMjesto }
- Domena atributa pbr je skup cijelih brojeva iz intervala [10000, 99999]
 - Vrijednost atributa pbr u svakoj n-torki relacije mjesto(MJESTO) mora biti cijeli broj iz intervala [10000, 99999]

Ograničenja NULL vrijednosti

- Za određene atribute se može definirati ograničenje prema kojem vrijednost atributa ne smije poprimiti NULL vrijednost
- Primjer: RADNIK = { sifRad, imeRad, prezRad, email }
 - Vrijednost atributa imeRad ne smije poprimiti NULL vrijednost niti u jednoj n-torci relacije radnik(RADNIK)
 - Vrijednost atributa prezRad ne smije poprimiti NULL vrijednost niti u jednoj n-torci relacije radnik(RADNIK)

Opća integritetska ograničenja

- Opća integritetska ograničenja su ograničenja općeg (generalnog) oblika
 - Npr. određuju se dozvoljeni odnosi među pojedinim atributima
- Primjer: ZAPOSLENIK= {sifra, prezime, starost, staz }
 - Npr. može se definisati da Starost >= Staz + 16 i Starost <= Staz + 65</p>
 - Ovo integritetsko ograničenje proizilazi iz (za ovaj primjer izmišljenog) zakonskog ograničenja da se osobe mlađe od 16 godina ili starije od 65 godina ne smiju zapošljavati

Implementacija integritetskih ograničenja

Potrebno je definisati:

- pod kojim uslovima se definitivno odbija obavljanje operacije koja bi narušila integritetska ograničenja
- pod kojim uslovima se obavlja operacija uz obavljanje nekih kompenzacijskih operacija
- Ograničenja entitetskog integriteta i integriteta ključa nužno moraju zadovoljiti
 - ne smije biti nikakvog odstupanja
 - ne postoje kompenzacijske operacije koje se mogu izvesti

Implementacija integritetskih ograničenja

- Referencijski integritet za kritične operacije, npr. operaciju brisanja dozvoljava sljedeće strategije
 - ciljna n-torka se ne može obrisati ako u bazi postoje odgovarajuće pozivajuće n-torke
 - uz brisanje ciljne n-torke treba izvesti brisanje svih pozivajućih n-torki kojima je vrijednost stranog ključa jednaka vrijednosti primarnog ključa ciljne n-torke
 - kao dio operacije brisanja ciljne n-torke, vrijednosti stranih ključeva u pozivajućim n-torkama postavljaju se na NULL

Implementacija entitetskog integriteta u SQL-u

- osigurava se definisanjem primarnog ključa s pomoću naznake PRIMARY KEY
- time SUBP osigurava:
 - ključni atributi relacije ne smiju imati vrijednost NULL
 - jedinstvenost ključa

```
CREATE TABLE student
                                           INTEGER
                                                     PRIMARY KEY
                                  matbr
                                 , prezime CHAR(20)
CREATE TABLE ispit
                                            CHAR (20)
                                 ,ime
 mat.br
        TNTEGER
 , sifPred INTEGER
 ,datIsp
          DATE
 , ocj
       SMALLINT
 , sifNas INTEGER
                                                    SUBP osigurava:
  PRIMARY KEY (matbr, sifPred, datIsp)
                                                    entitetski integritet i
                                                    integritet ključa
```

Implementacija integriteta ključa u SQL-u

- osigurava se s pomoću naznake UNIQUE
- time SUBP osigurava:
 - jedinstvenost ključa

```
CREATE TABLE student (
                                   matbr
                                             INTEGER
                                                       PRIMARY KEY
                                  , prezime CHAR (20)
                                            CHAR (20)
                                  ,ime
                                  , jmbgStud CHAR(13)
                                                        UNIQUE
CREATE TABLE mjesto(
  pbr
             INTEGER
 ,nazMjesto
             CHAR (25)
 ,sifKanton
                                                     SUBP osigurava:
             INTEGER
  UNIQUE(nazMjesto, sifKanton) 
                                                     integritet ključa
```

Implementacija domenskog integriteta u SQL-u

- djelimično je definisan samom definicijom tipa podatka
 - npr. definisanjem podatka tipa SMALLINT određena je njegova domena kao skup cijelih brojeva u intervalu -32767 do 32767
- tačnije određenje domene atributa može se postići definisanjem prilikom kreiranja tablice s pomoću naznake CHECK:

```
CREATE TABLE ispit
                                                         SUBP osigurava:
 matbr
           TNTEGER
                                                         domenski integritet
 ,sifPred INTEGER
 , datisp DATE
                     CHECK (ocj BETWEEN 1 AND 5)
 ,ocj SMALLINT
 , sifNas INTEGER
                      CREATE TABLE ispit (
 , PRIMARY KEY (matbr
                       , ocj
                                 SMALLINT
                       PRIMARY KEY (matbr, sifPred, /datIsp)
                        CHECK (ocj BETWEEN 1 AND 5)
```

Implemetacija općih integritetskih ograničenja u SQL-u

- CHECK naznaka se također može koristiti za definiranje ograničenja odnosa među vrijednostima atributa u istoj ntorci
 - Ograničenje koje se tiče odnosa među vrijednostima atributa se ne može napisati neposredno uz definiciju atributa

SUBP osigurava:

ograničenje odnosa između vrijednosti atributa u istoj n-torci

Implementacija referencijskog integriteta u SQL-u

- Osigurava se s pomoću naznake FOREIGN KEY:
 - Definira skup atributa koji je strani ključ u relaciji
 - Definira relaciju i skup atributa na koji referencira strani ključ

```
CREATE TABLE ispit (
matbr INTEGER
, sifPred INTEGER
, datIsp DATE
, ocj SMALLINT
, sifNas INTEGER REFERENCES nastavnik(sifNas)
, PRIMARY KEY (matbr, sifPred, datIsp)
, FOREIGN KEY (matbr) REFERENCES student (matbr)
, FOREIGN KEY (sifPred) REFERENCES predmet (sifPred));
```

Podrazumijeva se da su u relacijama student, predmet i nastavnik pomoću PRIMARY KEY definirana ograničenja entitetskog integriteta

Implementacija referencijskog integriteta u SQL-u

- Pri definiciji ograničenja referencijskog integriteta moguće je specificirati da li će i koje kompenzirajuće akcije SUBP izvesti prilikom pokušaja narušavanja ograničenja izvođenjem operacije brisanja ili ažuriranja ciljne n-torke
 - SUBP odbija operacije brisanja ili ažuriranja ciljne n-torke
 - ON DELETE NO ACTION, ON UPDATE NO ACTION
 - SUBP obavlja operaciju brisanja ili ažuriranja ciljne n-torke i pri tome vrijednosti stranog ključa u n-torkama koje se pozivaju na obrisanu ili ažuriranu n-torku postavlja na NULL ili default vrijednost
 - ON DELETE SET NULL, ON UPDATE SET NULL
 - ON DELETE SET DEFAULT, ON UPDATE SET DEFAULT
 - SUBP obavlja operaciju brisanja ili ažuriranja ciljne n-torke i pri tome kaskadno briše pozivajuće n-torke, odnosno vrijednosti stranog ključa u n-torkama koje se pozivaju na ažuriranu n-torku postavlja na novu vrijednost primarnog ključa ciljne n-torke
 - ON DELETE CASCADE, ON UPDATE CASCADE

Implementacija referencijskog integriteta u SQL-u

Referencijski integritet definisan uz obavljanje

kompenzacijskih akcija

```
sve n-torke iz relacije ispit koje se pozivaju
CREATE TABLE ispit (
                                  na obrisane n-torke relacije student
  matbr
         INTEGER
 ,sifPred INTEGER
                                             Operacija brisanja n-torki iz relacije
 , datIsp DATE
 ,ocj SMALLINT
                                             predmet će biti odbijena – korisnik ili
 , sifNas INTEGER
                                             aplikacija će dobiti poruku o pogrešci
 ,PRIMARY KEY (matbr, sifPred, datIsp)
 , FOREIGN KEY (matbr) REFERENCES student (matbr)
        ON DELETE CASCADE
 , FOREIGN KEY (sifPred) REFERENCES predmet (sifPred)
 , FOREIGN KEY (sifNas) REFERENCES nastavnik (sifNas)
        ON DELETE SET NULL
);
                             Obrisat će se n-torke iz relacije nastavnik, a vrijednosti
```

Obrisat će se n-torke iz relacije student i

stranog ključa (sifNas) u relaciji ispit koje se pozivaju na

obrisane n-torke će se postaviti na NULL

Imenovanje integritetskih ograničenja

- Naziv integritetskog ograničenja se navodi opcionalno
 - Korisnik ili aplikacija će pri pokušaju obavljanja naredbe koja narušava integritetsko ograničenje dobiti informaciju o kojem se tačno integritetskom ograničenju radi

- Integritetsko ograničenje se može ukloniti ALTER TABLE naredbom:
 - ▶ ALTER TABLE ispit DROP CONSTRAINT chkOcj;

Ograničenja integriteta – za atribut

```
CREATE TABLE table Name
```

```
( {columnName dataType [DEFAULT defaultExpr] [ columnConstraint [, ...] | tableConstraint} [, ...] )
```

Column constraints:

[CONSTRAINT constraintName]

{NOT NULL | UNIQUE | PRIMARY KEY | CHECK (expression) |

REFERENCES reftable [(refcolumn)] [ON DELETE action] [ON UPDATE action] }

action: NO ACTION, CASCADE, SET NULL, SET DEFAULT

expression – odnosi se samo na dotičnu kolonu, rezultat mora biti logička vrijednost (boolean)

Ograničenja integriteta – za tablicu

```
CREATE TABLE table Name
({columnName dataType [DEFAULT defaultExpr] [ columnConstraint ] [, ...]
    | tableConstraint \ [, ...] )
Table constraints:
[CONSTRAINT constraintName]
{UNIQUE (columnName [, ...]) |
PRIMARY KEY (columnName [, ...]) |
CHECK (expression) |
FOREIGN KEY (columnName [, ...]) REFERENCES reftable [(refcolumn [, ...])]
   [ ON DELETE action] [ON UPDATE action] }
```