INTRODUCTION KERNELS FOR COMPLEX DATA TYPES MULTI-VIEW LEARNING STRUCTURED OUTPUT PREDICTION CONCLUSIO

KERNEL METHODS IN MACHINE LEARNING LECTURE 9

KERNEL METHODS WITH STRUCTURED AND MULTI-VIEW DATA

Riikka Huusari Postdoctoral researcher

Aalto University Kernel Methods, Pattern Analysis and Computational Metabolomics (KEPACO)

riikka.huusari@aalto.fi

5.4.2021

OVERVIEW

Introduction

KERNELS FOR COMPLEX DATA TYPES
String kernels
Graph kernels

LEARNING WITH MULTIPLE VIEWS

STRUCTURED OUTPUT PREDICTION

OVERVIEW

Introduction

KERNELS FOR COMPLEX DATA TYPES
String kernels
Graph kernels

LEARNING WITH MULTIPLE VIEWS

STRUCTURED OUTPUT PREDICTION

WHY KERNEL METHODS WHEN THERE IS DEEP LEARNING?

No universal solution to everything; these methods work for different problems.

Different complexities:

- ▶ Kernel methods depend on the $n \times n$ kernel matrix; algorithms often $\mathcal{O}(n^3)$. Need to learn $\mathcal{O}(n)$ parameters.
 - \Rightarrow can tackle high-dimensional and complex features well, can easily tackle medium-size datasets $n \approx 10^4$
- ▶ Deep networks generally scale $\mathcal{O}(nd)$ with d the input dimension. Need to learn $\mathcal{O}(d)$ parameters¹
 - \Rightarrow can tackle a lot of data, but the dimensionality is a restricting factor if it gets very high.

¹for dense neural networks

WHY KERNEL METHODS WHEN THERE IS DEEP LEARNING?

Deep networks incorporate less prior knowledge, and use (and overfit) more data

Big data vs small data

- ► Automated data gathering from for example social networks; huge datasets ⇒ neural networks
- ► Expensive experimentations done by humans or with expensive machinery; complex, small datasets ⇒ perfect for kernel methods!
 - Life sciences, medicine, ...

RECAP: KERNELS

RKHS $\mathcal{H} \ni f: \mathcal{X} \to \mathbb{R}$

Kernel function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$

Kernel trick $k(x,z) = \langle \phi(x), \phi(z) \rangle$

Feature map $\phi: \mathcal{X} \to \mathcal{H}$

Representer theorem $f(x) = \sum_{i} \alpha_{i} k(x, x_{i}), \quad \alpha_{i} \in \mathbb{R}$

RECAP: KERNELS

RKHS $\mathcal{H} \ni f: \mathcal{X} \to \mathbb{R}$

Kernel function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$

Kernel trick $k(x,z) = \langle \phi(x), \phi(z) \rangle$

Feature map $\phi: \mathcal{X} \to \mathcal{H}$

Representer theorem $f(x) = \sum_{i} \alpha_i k(x, x_i), \quad \alpha_i \in \mathbb{R}$

 \mathcal{X} doesn't have to be \mathbb{R}^d !

OVERVIEW

INTRODUCTION

KERNELS FOR COMPLEX DATA TYPES

String kernels Graph kernels

LEARNING WITH MULTIPLE VIEWS

STRUCTURED OUTPUT PREDICTION

KERNELS ON TEXT

Learning from natural language documents.

Basic concepts:

- ▶ Word: any sequence of basic alphabet surrounded by punctuation or spaces.
- ▶ **Document**: sequence of words
- ► Corpus: full set of documents
- ▶ **Dictionary**: set of terms occurring in corpus

BAG-OF-WORDS REPRESENTATION

BoW feature:

$$\phi_{BoW}(x) = [tf(t_1, x), tf(t_2, x), ..., tf(t_N, x)]^{\top}$$

In which

- \triangleright x is a document
- \triangleright t_i is a term in the dictionary
- ▶ $tf(t_j, x)$ gives the **term frequency** of t_j in document x

BoW kernel:

$$k_{BoW}(x,z) = \langle \phi_{BoW}(x), \phi_{BoW}(z) \rangle$$

BAG-OF-WORDS REPRESENTATION

Not very efficient, however there are things to do to improve:

- ► Tokenization: avoid computing over sparse high-dimensional feature vectors
- ▶ Stop word removal: exclude frequent but non-informative words
- ▶ Stemming: remove inflections and word form variation
- Normalization: reducing the effect of the length of documents; $\phi(x) = \frac{\phi(x)}{\|\phi(x)\|}$

Doesn't capture all useful information:

- ▶ order of words "you are" vs "are you"
- ▶ grammatical information is lost (verb, noun..)

SEMANTIC KERNELS

Add semantic content by considering transformations

$$\phi_S(x) = \mathbf{S} \, \phi_{BoW}(x),$$

where the new features are now linear combinations of the old ones. (e.g. group related words, documents have non-zero similarity if they use terms from the same group.)

$$k_S(x,z) = \phi_{BoW}(x)^{\top} \mathbf{S}^{\top} \mathbf{S} \phi_{BoW}(z)$$

SEMANTIC KERNELS

$$k_S(x,z) = \phi_{BoW}(x)^{\top} \mathbf{S}^{\top} \mathbf{S} \phi_{BoW}(z)$$

Semantic kernel can be decomposed further: write S = RP;

- ▶ R is diagonal matrix containing term weights or relevances
 - ▶ Rare words might carry more meaning; inverse weighting
- ▶ P is proximity matrix defining semantic spread between the terms
 - ▶ $\mathbf{P}_{ij} > 0$ when term i is related to term j; e.g. "tree", "spruce" and "pine"
 - ▶ Load this from a database (e.g. WordNet), or analyse co-occurrences from large documents.

STRING KERNELS²

Kernel on words/strings instead of collections of words.

Based on counting common subsequences; underlying feature map contains a feature for each possible substring.

- x AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG
- x' TACCTAATTATGAAATTAAATTTC $\overline{ ext{AGTGTGCTGATGGAAACGGAGAAGTC}}$

Multiple choices to tune the kernel:

- ▶ when do two subsequences match
- what kind of subsequences to consider
- ▶ how to weight matches

²Shawe-Taylor & Cristianini, chapter 11

Graphs are everywhere

Social networks, maps, communication channels, protein interaction networks, molecules, ...

Graphs are everywhere

Machine learning tasks on graphs:

- Given a graph, predict labels for its nodes
- Link prediction: given a set of nodes, predict which ones should be connected
- Graph classification
 - ▶ Drug discovery: given a candidate drug molecule (graph), predict if it will be active against a given type of cancer cell
 - ▶ Protein function prediction: given a 3D protein structure, predict its functional role

GRAPH KERNELS

A broad idea: try to find common elements (labels, paths, subgraphs, ...) and count their occurrences

Subgraphs & neighbourhoods:

▶ Weisfeiler-Lehman kernel

Labels:

▶ Optimal assignment kernel

Paths / walks:

▶ Random walk kernel

Weisfeiler-Lehman kernel

"How often the nodes' neighbourhoods match, up to depth d?"

$$k(G, G') = \sum_{i=0}^{d} \lambda_d \sum_{v \in V} \sum_{v' \in V'} \delta(relabel(v, i), relabel(v', i))$$

In which:

- ightharpoonup G, G' are the graphs to compare
- \triangleright d is depth parameter
- \triangleright λ_d is parameter controlling importance of the level
- ▶ $\delta(\cdot, \cdot)$ returns 1 if its arguments are the same, 0 otherwise.
- ▶ $relabel(\cdot,i)$ returns a new label for the node based on it's neighbour's labels on level i-1: its own label & a sorted list of neighbouring node's labels
 - \triangleright i = 0 just use original labels

Weisfeiler-Lehman Kernel

Original labels i = 0

 $\Sigma = \{A, B\}$

Relabeled

$$i = 1$$

 $\begin{array}{cccc}
 & D & \rightarrow E & \rightarrow C \\
\hline
D & E & \hline
C & C \\
A,B & A,B
\end{array}$

$$\Sigma = \{A, B, \mathbf{C}, \mathbf{D}, \mathbf{E}\}$$

Relabeled

$$i = 2$$

$$\Sigma = \{A, B, C, D, E, F, G, H, I\}$$

Image: Kriege, Johansson and Morris: A Survey on Graph Kernels, 2020

OPTIMAL ASSIGNMENT(OA) KERNEL⁴

Find the best mapping between the nodes of two graphs.

$$k(G, G') = \max_{\pi \in \Pi_n} \sum_{i=1}^n \kappa(x_i, y_{\pi(i)})$$

In which:

- ▶ G, G' are the graphs to compare which have label sets $X = \{x_1, x_2, ..., x_n\}$ and $Y = \{y_1, y_2, ..., y_n\}^3$
- \blacktriangleright π is a permutation from set of all possible permutations of n elements, Π_n
- \triangleright κ is a kernel on labels

 $^{^3{\}rm If}$ one graph has less labels than the other, fill the it up with dummies and define similarity to a dummy be always 0.

⁴Fröchlich et al, ICML 2005

OPTIMAL ASSIGNMENT(OA) KERNEL

Image: Kriege, Johansson and Morris: A Survey on Graph Kernels, 2020

RANDOM WALK KERNELS⁵

Count common walks (sequences of adjacent nodes) in two graphs

- ▶ In an unlabeled graph two walks match if they have the same length
- ▶ In a labeled graph also the node and edge labels need to match

Number of walks of length k can be computed with adjacency matrix A raised to the kth power

$$A^2 = \left(\begin{array}{c} 2 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 2 & 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 3 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 4 & 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 3 & 0 & 2 \\ 0 & 1 & 1 & 2 & 1 & 0 & 3 & 0 \\ 1 & 1 & 1 & 1 & 1 & 2 & 0 & 3 \end{array} \right)$$

⁵Kashima et al., ICML 2003, Gärtner et al., COLT 2003

$$G_1 = (V_1, E_1)$$
 and $G_2 = (V_2, E_2) \Rightarrow \text{product graph } G_{\times} = (V_{\times}, E_{\times});$

- ▶ $V_{\times} = \{(u, v) : u \in V_1, v \in V_2, label(u) = label(v)\}$ Make a new node for all pairs for which the labels match.
- $E_{\times} = \{((u_1, v_1), (u_2, v_2)) \in E_1 \times E_2 : (u_1, u_2) \in V_{\times}, \\ (v_1, v_2) \in V_{\times}, label((u_1, u_2)) = label((v_1, v_2))\}$

Two vertices in the direct product graph are adjacent iff the associated pairs of vertices are adjacent in original graphs.

Use the adjacency matrix, A_{\times}^{k} , to simultaneously trace common **labeled** walks in the two original graphs with $G_{\times}!$

- ► Tracing a walk in the product graph corresponds to simultaneously tracing common walks in the two original graphs
- ▶ Ignore the labels in product graph; yet count only walks with matching labels.

Use the adjacency matrix, A_{\times}^{k} , to simultaneously trace common **labeled** walks in the two original graphs with $G_{\times}!$

- ➤ Tracing a walk in the product graph corresponds to simultaneously tracing common walks in the two original graphs
- ▶ Ignore the labels in product graph; yet count only walks with matching labels.

Random walk graph kernel: count all pairs of matching walks

$$k_{\times}(G_1, G_2) = \sum_{i,j=1}^{|V_{\times}|} \left[\sum_{n=0}^{\infty} \lambda^n A_{\times}^n \right]_{ij}$$

- Considers walks of any length! $[A_{\times}^n]_{ij}$ contains the number of walks of length n between the nodes i and j
- ▶ $0 \le \lambda \le 1$ is a decaying factor for the sum to converge
- ► Corresponds to an infinite-dimensional feature space

$$k_{\times}(G_1, G_2) = \sum_{i,j=1}^{|V_{\times}|} \left[\sum_{n=0}^{\infty} \lambda^n A_{\times}^n \right]_{ij} = \sum_{i,j=1}^{|V_{\times}|} s_{ij}$$

$$k_{\times}(G_1, G_2) = \sum_{i,j=1}^{|V_{\times}|} \left[\sum_{n=0}^{\infty} \lambda^n A_{\times}^n \right]_{ij} = \sum_{i,j=1}^{|V_{\times}|} s_{ij}$$

Geometric matrix series:

$$S = [s_{ij}]_{i,j=1}^{|V_{\times}|} = \sum_{n=0}^{\infty} \lambda^n A_{\times}^n = I_{|V_{\times}|} + \lambda A_{\times} + \lambda^2 A_{\times}^2 + \dots$$

$$k_{\times}(G_1, G_2) = \sum_{i,j=1}^{|V_{\times}|} \left[\sum_{n=0}^{\infty} \lambda^n A_{\times}^n \right]_{ij} = \sum_{i,j=1}^{|V_{\times}|} s_{ij}$$

Geometric matrix series:

$$S = [s_{ij}]_{i,j=1}^{|V_{\times}|} = \sum_{n=0}^{\infty} \lambda^n A_{\times}^n = I_{|V_{\times}|} + \lambda A_{\times} + \lambda^2 A_{\times}^2 + \dots$$

Multiply both sides with λA_{\times} :

$$\lambda A_{\times}S = \lambda A_{\times} \sum_{\mathbf{n}=\mathbf{0}}^{\infty} \lambda^n A_{\times}^n$$

$$k_{\times}(G_1, G_2) = \sum_{i,j=1}^{|V_{\times}|} \left[\sum_{n=0}^{\infty} \lambda^n A_{\times}^n \right]_{ij} = \sum_{i,j=1}^{|V_{\times}|} s_{ij}$$

Geometric matrix series:

$$S = [s_{ij}]_{i,j=1}^{|V_{\times}|} = \sum_{n=0}^{\infty} \lambda^n A_{\times}^n = I_{|V_{\times}|} + \lambda A_{\times} + \lambda^2 A_{\times}^2 + \dots$$

Multiply both sides with λA_{\times} :

$$\lambda A_{\times} S = \lambda A_{\times} \sum_{\mathbf{n=0}}^{\infty} \lambda^n A_{\times}^n = \sum_{\mathbf{n=1}}^{\infty} \lambda^n A_{\times}^n = S - I_{|V_{\times}|}$$

$$k_{\times}(G_1, G_2) = \sum_{i,j=1}^{|V_{\times}|} \left[\sum_{n=0}^{\infty} \lambda^n A_{\times}^n \right]_{ij} = \sum_{i,j=1}^{|V_{\times}|} s_{ij}$$

Geometric matrix series:

$$S = [s_{ij}]_{i,j=1}^{|V_{\times}|} = \sum_{n=0}^{\infty} \lambda^n A_{\times}^n = I_{|V_{\times}|} + \lambda A_{\times} + \lambda^2 A_{\times}^2 + \dots$$

Multiply both sides with λA_{\times} :

$$\lambda A_{\times} S = \lambda A_{\times} \sum_{\mathbf{n=0}}^{\infty} \lambda^{n} A_{\times}^{n} = \sum_{\mathbf{n=1}}^{\infty} \lambda^{n} A_{\times}^{n} = S - I_{|V_{\times}|}$$

$$\Rightarrow S = \left(I_{|V_{\times}|} - \lambda A_{\times}\right)^{-1}$$

$$\Rightarrow k_{\times}(G_{1}, G_{2}) = \sum_{i,j=1}^{|V_{\times}|} \left[\left(I_{|V_{\times}|} - \lambda A_{\times}\right)^{-1} \right]_{ij}$$

SHORTEST PATH KERNELS

RW kernels are not very efficient $(\mathcal{O}(n^6))$ and suffer from tottering \Rightarrow from walks to paths

Shortest path kernels⁶ much more efficient; $\mathcal{O}(n^4)$. (Uses Floyd-Warshall to find the paths).

Transform input graph to shortest-path graph.

Kernel is obtained by comparing node and edge labels in the new graph.

⁶Borgwardt and Kriegel, 2005

OVERVIEW

Introduction

KERNELS FOR COMPLEX DATA TYPES
String kernels
Graph kernels

LEARNING WITH MULTIPLE VIEWS

STRUCTURED OUTPUT PREDICTION

Multi-view data

Moi **bonjour** hello Guten Tag

Integrating data sources

Early fusion:

- ► Combine the data sources first (human expert, simple vector concatenation..)
- Learn a single model from combined data

Intermediate fusion:

- ► Input all data sources separately
- ▶ Learn how to combine the sources during learning the model
 - ► Multiple Kernel Learning

Late fusion:

- Learn a model for each data source independently
- ► Combine the results after learning e.g. majority voting

Multiple Kernel Learning

Simple input data concatenation in feature spaces:

$$k(x,z) = \sum_{v=1}^{V} k^{v}(x,z)$$

Multiple Kernel Learning (MKL):

$$k(x,z) = \sum_{v=1}^{V} \alpha_v k^v(x,z),$$

in which the weights $\alpha_v > 0$ are learnt.

Multiple Kernel Learning

How to learn the combination weights?

- ► Two-step approach with kernel alignment, where weights are learned before the predictive model
- ▶ One-step approaches: learn the weights jointly with the learning problem
 - Note: usually iterates over learning the kernel weights and learning the decision function

MKL WITH KERNEL ALIGNMENT⁷

Kernel alignment:

$$A(\mathbf{K}, \mathbf{G}) = \frac{\langle \mathbf{K}_c, \mathbf{G}_c \rangle_F}{\|\mathbf{K}_c\|_F \|\mathbf{G}_c\|_F}$$

in which
$$\mathbf{K}_c = \left(\mathbf{I} - \frac{1}{n} \mathbb{1} \mathbb{1}^{\top}\right) \mathbf{K} \left(\mathbf{I} - \frac{1}{n} \mathbb{1} \mathbb{1}^{\top}\right)$$

Ideal (target) kernel for binary classification: $\mathbf{y}\mathbf{y}^{\top}$ with $y_i = -1.1.$

A good kernel **K** for binary classification has large $A(\mathbf{K}, \mathbf{y}\mathbf{y}^{\top})$.

⁷Cortes et al 2012

MKL WITH KERNEL ALIGNMENT

ALIGN assigns the weights in MKL kernel to be the scores $A(\mathbf{K}^v, \mathbf{y}\mathbf{y}^\top)$:

$$k(x,z) = \sum_{v=1}^{V} \alpha_v k^v(x,z) = \sum_{v=1}^{V} A(\mathbf{K}^v, \mathbf{y} \mathbf{y}^\top) k^v(x,z),$$

ALIGNF problem:

$$\max_{\mathbf{d}} \frac{\left\langle \sum_{v=1}^{V} d_v \mathbf{K}^v, \mathbf{y} \mathbf{y}^\top \right\rangle_F}{\left\| \sum_{v=1}^{V} d_v \mathbf{K}^v \right\|_F \|\mathbf{y} \mathbf{y}^\top \|_F}, \quad s.t \|\mathbf{d}\|_2 = 1, d_i \ge 0$$

solved as a quadratic programming problem.

SIMPLEMKL⁸

- ▶ One-step approach: learn the model (such as SVM classifier) simultaneously with the kernel weights.
- ► Learns a linear combination

$$k_d(x_i, x_j) = \sum_{m=1}^{P} d_m k_m(x_i, x_j)$$

where kernel weights are constrained to convex combination

$$\sum_{m} d_m = 1, d_m \ge 0$$

▶ Bi-level optimization scheme with SVM solver as a wrapper

⁸Rakotomamonjy et al 2008

SIMPLEMKL: THE IDEA

- Can be interpreted as learning a mixture of classifiers
- ▶ One base classifier for each kernel, with kernel weight d_m , example weights α_i :

$$f_m(\mathbf{x}) = \langle \mathbf{w}_m, \phi_m(\mathbf{x}) \rangle = \sum_i \alpha_i y_i d_m \kappa_m(\mathbf{x}, \mathbf{x}_i)$$

- ▶ Above $\mathbf{w}_m = \sum_i \alpha_i y_i d_m \phi_m(\mathbf{x}_i)$ obtained from Lagrangian duality
- ▶ The full model will use a mixture of base classifiers:

$$f(\mathbf{x}) = \sum_{m=1}^{P} f_m(\mathbf{x}) = \sum_{i} \alpha_i y_i d_m \kappa_m(\mathbf{x}, \mathbf{x}_i)$$

SIMPLEMKL: PRIMAL PROBLEM

$$\min_{\mathbf{w},b,\xi,d} \frac{1}{2} \sum_{m} \frac{1}{d_{m}} \|\mathbf{w}_{m}\|^{2} + C \sum_{i} \xi_{i}$$

$$s.t. \ y_{i} \left(\sum_{m} \langle \mathbf{w}_{m}, \phi_{m}(\mathbf{x}_{i}) \rangle \ (+b) \right) \geq 1 - \xi_{i}, i = 1 \dots, \ell$$

$$\xi_{i} \geq 0, i = 1 \dots, \ell$$

$$\sum_{m} d_{m} = 1, d_{m} \geq 0, m = 1, \dots, P$$

- Objective minimizes a linear combination of norms of weight vectors corresponding to different kernels plus slack for examples
- ► Constraints declare that the mixture classifier should achieve a large margin
- ► It is a convex problem (Rakotomamonjy, 2008)

SIMPLEMKL: BI-LEVEL OPTIMIZATION, PRIMAL

Reformulation as a bi-level optimization problem

$$\min_{\boldsymbol{d} \in \mathcal{H}} J(\boldsymbol{d})$$

$$s.t. J(\boldsymbol{d}) = \begin{cases} \min_{\mathbf{w}, b, \xi} & \frac{1}{2} \sum_{m} \frac{1}{d_{m}} \|\mathbf{w}_{m}\|^{2} + C \sum_{i} \xi_{i} \\ s.t. & y_{i} \left(\sum_{m} \langle \mathbf{w}_{m}, \phi_{m}(\mathbf{x}_{i}) \rangle \right. (+b) \right) \geq 1 - \xi_{i} \\ & \xi_{i} \geq 0, i = 1 \dots, \ell \end{cases}$$

- ▶ In outer loop optimize kernel weights d
- ► Inner loop corresponds to a primal soft-margin SVM using a combined kernel with current kernel weights

SIMPLEMKL: BI-LEVEL OPTIMIZATION, DUAL

▶ We can plug in the dual of the SVM problem in the inner loop

$$\min_{\boldsymbol{d} \in \mathcal{H}} J(\boldsymbol{d})$$

$$s.t. \ J(\boldsymbol{d}) = \begin{cases} \max_{\alpha} & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} \sum_{m} d_{m} \kappa_{m}(\mathbf{x}_{i}, \mathbf{x}_{j}) \\ s.t. & 0 \leq \alpha_{i} \leq C \\ & (\sum_{i} \alpha_{i} y_{i} = 0) \end{cases}$$

- ▶ In outer loop optimize kernel weights d
- ► Inner loop corresponds to a dual soft-margin SVM using a combined kernel with current kernel weights

OVERVIEW

Introduction

KERNELS FOR COMPLEX DATA TYPES
String kernels
Graph kernels

LEARNING WITH MULTIPLE VIEWS

STRUCTURED OUTPUT PREDICTION

STRUCTURED OUTPUT PREDICTION

It's easy to predict functions $f: \mathcal{X} \to \mathbb{R}$ with kernel methods; $f \in \mathcal{H}$.

By extension also vector-valued functions $f: \mathcal{X} \to \mathbb{R}^p$ are easy.

We have seen that it's perfectly fine for \mathcal{X} to be structured data and not just subset of \mathbb{R}^d .

What if output space \mathcal{Y} in $f: \mathcal{X} \to \mathcal{Y}$ is structured?

STRUCTURED OUTPUT PREDICTION

- Want to find f
- \triangleright Know how to map \mathcal{Y} to RKHS \mathcal{F}_{u} with ϕ_{u}
- \rightarrow Learn $h: \mathcal{X} \rightarrow \mathcal{F}_{\eta}$
- \rightarrow In general q cannot be found explicitly: search the set of \mathcal{Y} for element that would give the predicted value in \mathcal{F}_{v} ;

Image: Brouard et al: Fast metabolite identification with Input Output Kernel Regression, 2016

CONCLUSION

- ► Kernel methods are useful for many real-world learning problems that neural networks are not well applicable to.
- ► Kernels can handle structured inputs; kernels for text, graphs..
- ► Kernels are a natural choice for incorporating multiple views in a learning problem.
- ► Kernels can also be used in prediction problems when target of a learning problem is not vectorial, but structured.