

Evidencia de aprendizaje 1. Automatización de la Recolección de Datos Históricos de un Indicador Económico

Adriana María Aguilar Viloria

Edwin Bernardo Villa Sánchez

Código de grupo:

PREICA2501B020128

Docente:

Andrés Felipe Callejas

Asignatura:

Proyecto integrado V

Programa Ingeniería de Software y Datos

Facultad Ingenierías y Ciencias Agropecuarias

Institución Universitaria Digital de Antioquia

Tabla de Contenido

Resumen	
Introducción	
Objetivo	
Metodología	
Resultados	
Bibliografía	

Resumen

Este proyecto tiene como objetivo automatizar la recolección continua de datos históricos del precio del dólar australiano, utilizando herramientas de programación en Python y la integración con GitHub Actions. Mediante técnicas de web scraping aplicadas a Yahoo Finanzas, se asegura la persistencia, trazabilidad y disponibilidad de los datos históricos sin intervención manual. La solución está desarrollada bajo buenas prácticas de programación orientada a objetos (POO), cuenta con un sistema de logging configurable para auditoría y seguimiento, y se integra en un entorno de control de versiones utilizando Git y GitHub. El proyecto es fácilmente reproducible dentro de GitHub Codespaces, lo que favorece su uso colaborativo y remoto.

Introducción

La disponibilidad y confiabilidad de los datos financieros son elementos clave para la toma de decisiones en campos como economía, negocios, e ingeniería financiera. La automatización de estos procesos reduce la posibilidad de errores humanos, mejora la eficiencia operativa y facilita la actualización constante de la información.

Este informe describe el diseño e implementación de un sistema automatizado de recolección de datos históricos del tipo de cambio del dólar australiano (ticker: 6A=F), obtenido de la plataforma Yahoo Finanzas. El proyecto está implementado íntegramente en Python, con ejecución programada mediante GitHub Actions y desarrollo en un entorno completamente remoto utilizando GitHub Codespaces.

Objetivo

Automatizar la recolección continua de datos históricos de un indicador económico, garantizando su persistencia y trazabilidad en un entorno de control de versiones y documentación inicial clara.

Metodología

Selección del Indicador

Se eligió el indicador 6A=F, que representa el precio del futuro del dólar australiano, como fuente principal de datos. La URL base utilizada fue:

https://es.finance.yahoo.com/quote/6A=F/

Recolección de Datos

Se emplearon las bibliotecas requests y BeautifulSoup para extraer la tabla de datos históricos directamente del HTML de la página web. El contenido extraído incluye: fecha, apertura, máximo, mínimo, cierre, cierre ajustado y volumen.

Limpieza y Estructuración

Los datos se transforman en un DataFrame de pandas, normalizando los valores numéricos y realizando una conversión precisa de fechas al formato datetime. Además, se extraen las componentes de año, mes y día para facilitar futuros análisis.

Diseño Orientado a Objetos

La clase Collector encapsula el proceso de descarga, validación y guardado de datos. Esta clase es fácilmente reutilizable y extensible para futuros indicadores. Por otro lado, la clase Logger gestiona los registros de ejecución, errores y eventos del sistema, con distintos niveles de severidad (INFO, ERROR, DEBUG), y formato estandarizado. El archivo main.py sirve como punto de entrada y orquestación del flujo de datos.

Estructura del Repositorio

El repositorio sigue una estructura modular clara:

```
<PROYECTOINTEGRADOV_2025>/
  - .github/
    --- workflows/
       L— update_data.yml
                                                     # Automatización con GitHub Actions
    src/
    <indicador economico>/
          — static/
              ├─ data/
                -- models/
                └─ model.pkl
                                                     # Modelo entrenado serializado
               - reports/
           reports/
Dashboard.pdf # Reporte PDF con capturas de gráficos
metricas.txt # Justificación de métricas del modelo
collector.py # Clase principal para recolección de datos
dashboard.py # Dashboard con visualización de datos
dashboard_prediccion.py # Dashboard con visualización de predic
enricher.py # Script para enriquecimiento y procesa
logger.py # Configuración y manejo de logs
                                                       # Clase principal para recolección de datos
                                                       # Dashboard con visualización de datos históricos
                                                       # Dashboard con visualización de predicciones
                                                       # Script para enriquecimiento y procesamiento de datos
                                           # Configuración y manejo de logs
           logger.py
                                         # Punto de entrada del programa
           — main.py
           modeller.py
                                                       # Entrenamiento y evaluación del modelo predictivo
 -- docs/
    - report entregal.pdf
                                                      # Documentación y reporte de entrega
   dolar_analysis_20250508.log
                                                    # Registros y logs de ejecución
  - setup.py
                                                      # Archivo de configuración e instalación
  - README.md
                                                      # Documentación principal del proyecto
```

Automatización con GitHub Actions

Se implementó un flujo de trabajo en .github/workflows/update_data.yml que se activa automáticamente cada vez que se realiza un push a la rama main. Este workflow configura el entorno, instala las dependencias necesarias y ejecuta el script principal (main.py), encargado de recolectar, transformar y guardar los datos históricos. En caso de detectar nuevos datos, el workflow realiza automáticamente un commit y push al repositorio, garantizando la trazabilidad y actualización continua del histórico sin necesidad de intervención manual.

Desarrollo en GitHub Codespaces

Todo el entorno de desarrollo se configura y ejecuta en Codespaces, asegurando portabilidad y facilidad de configuración. Se incluyen extensiones recomendadas como:

- Python
- Pylance
- Jupyter
- CSV Editor
- GitHub Copilot

Resultados

- Se construyó una herramienta funcional y automática para descargar, limpiar y almacenar los datos del dólar australiano.
- Se generó el archivo historical.csv con más de 6000 registros desde el año 2000 hasta la fecha actual.
- Se garantiza la persistencia del histórico, ya que las nuevas ejecuciones agregan solo datos no existentes, evitando duplicados.
- Los logs permiten rastrear todas las ejecuciones y errores ocurridos.
- El flujo automatizado de GitHub Actions verifica, ejecuta y versiona cada actualización de manera transparente.
- Todo el proyecto es portable y se ejecuta íntegramente en la nube sin configuración adicional local.

Bibliografía

GitHub. (2024). GitHub Actions documentation. https://docs.github.com/actions

Python Software Foundation. (2024). *Python language reference*. https://docs.python.org/3/

Scikit-learn developers. (2024). *Scikit-learn: Machine learning in Python*. https://scikit-learn.org/

Statsmodels developers. (2024). *Statsmodels: Statistical modeling in Python*. https://www.statsmodels.org/stable/

Yahoo Finanzas. (2024). *Historial de cotizaciones de AUD/USD*. https://es.finance.yahoo.com/quote/6A%3DF/history/

Git Development Community. (2024). *Git* (versión 2.40) [Software]. Recuperado de https://git-scm.com/