1. Preliminaries

1.1. Elements of logic and theory of sets

1.1.3. Sets

Elements of theory of sets

Content:

- Sets: basic notions
- Types of sets
- Basic operations with sets
- Algebra of sets
- Further operations with sets

A set is a well-defined collection of objects. The items present in a set are called elements (or members) of a set.

B. Bolzano (1781 -1848)

(from wikipedia.org, mathsisfun.com, basic-mathematics.com)

Analysis 1 for Engineers V. Grushkovska

Basic notations and definitions

- A, B ..., X, Y sets
- $a, b \dots, x, y$ elements of sets
- $a \in A a$ is an element of set A
- $a \notin A a$ is not an element of set A
- $A = \{a, b, c, ...\}$ set A consists of elements a, b, c, and other elements defined by some rule
- ∅ null or empty set (the set with no elements)
- U (or X) universal set

(from mathsisfun.com)

Special sets of numbers in mathematics

- $\mathbb{N} = \{1, 2, 3, \dots\}$ the set of all natural numbers (sometimes with 0);
- $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ the set of all integer numbers;
- $ullet \mathbb{Q} = \left\{ \left. rac{\mathsf{a}}{\mathsf{b}} \right| \mathsf{a}, \mathsf{b} \in \mathbb{Z} \ \mathsf{and} \ \mathsf{b}
 eq 0
 ight\} \mathsf{the} \ \mathsf{set} \ \mathsf{of} \ \mathsf{all} \ \mathsf{rational} \ \mathsf{numbers};$
- ullet R the set of all real numbers, including all rational numbers and all irrational numbers (which include algebraic numbers such as $\sqrt{2}$ that cannot be rewritten as fractions, as well as transcendental numbers such as π and e);
- $\mathbb{C} = \{a + ib | a, b \in \mathbb{R}\}$ the set of all complex numbers $(i = \sqrt{-1})$.

Subsets

Set A is a **subset** of B, $A \subseteq B$, if any element of A is contained in B. In this case, set B is **superset** of A, $B \supseteq A$. If $A \subset B$, but $A \neq B$, then A is called a **proper subset** of B, $A \subset B$ or $A \subsetneq B$, and B is a **proper superset** of A, $B \supset A$ or $B \supseteq A$.

(from mathsisfun.com)

Example: $A = \{1, 2, 3\}, B = \{1, 2, 3, 4, 5\}. A \subset B, B \supset A.$

Relations

Sets A and B are **equal**, A = B, if the consist of the same elements. If two sets have at least one element that is different, then they are **unequal** sets, $A \neq B$.

Example:
$$A = \{1, 2, 3\}$$
, $B = \{3, 1, 2\}$, $C = \{1, 2\}$. $A = B$, $A \neq C$, $B \neq C$.

Two sets A and B are said to be **equivalent**, $A \sim B$, when they have the same number of elements, though the elements are different.

The number of elements is called the **cardinality** (or the cardinal number) of the set, n(A).

Two sets are said to be **overlapping** if at least one element from set *A* is present in set *B*. Otherwise, they called to be **disjoint**.

Types of sets

A set that does not contain any element is called an **empty set** or a **null** set. A

A set with a single element is a singleton.

A **finite** set is a set that has a finite number of elements. Otherwise, it is **infinite**.

A set is **countable** if either it is finite or it can be made in one to one correspondence with the set of natural numbers $\mathbb{N}=0,1,2,3,...$ Otherwise, the set is **uncountable**.

Power set is the set of all subsets that a set could contain.

Algebra of sets

Basic operations and relations:

- complement A^c ;
- intersection ∩;
- ullet union \cup ;
- inclusion ⊂;
- ullet equality =.

Negation

Let A be a set in U. The **complement of** A **in** U, \bar{A} , A^c , A' is the set of elements that are in U and not in A:

$$A^c = \{x \in U : x \notin A\}.$$

Venn diagram:

$$\begin{split} & \textit{U} = \mathbb{Z}, \\ & \textit{A} = \{1, 2, \dots, \}. \\ & \textit{A}^c = \{\dots, -3, -2, -1, 0\}. \end{split}$$

Intersection

Let A, B be sets in U. The intersection of sets A and B, $A \cap B$, is the set of elements that exist in both set A and set B:

$$A \cap B = \{x \in U : x \in A \text{ and } x \in B\}.$$

Venn diagram:

$$A = \{1, 2, 3\}.$$

 $B = \{1, 2, 5\}.$
 $A \cap B = \{1, 2\}.$

Let A, B be sets in U. The union of sets A and B, $A \cup B$, $A \cup B$, is the set of elements that exist in set A, set B, or both A and B:

$$A \cup B = \{x \in U : x \in A \text{ or } x \in B\}.$$

Venn diagram:

$$A = \{1, 2, 3\}.$$

$$B = \{1, 2, 5\}.$$

$$A \cup B = \{1, 2, 3, 5\}.$$

Algebra of sets

Let A, B, C be sets in U.

Idempotent laws	$A \cup A = A$, $A \cap A = A$
Associative laws	$A\cap (B\cap C)=(A\cap B)\cap C$
	$A \cup (B \cup C) = (A \cup B) \cup C$
Commutative laws	$A \cap B = B \cap A$, $A \cup B = B \cup A$
Distributive laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Identity laws	$A \cup \emptyset = A, \ A \cap U = A$
Domination laws	$A \cap \emptyset = \emptyset$, $A \cup U = U$
Double complement	$(A^c)^c = A$

Algebra of sets (cont'd)

Complement laws	$A \cap A^c = \emptyset$, $A \cup A^c = U$,
	$U^c = \emptyset, \ \emptyset = ^c U$
De Morgan's laws:	$(A\cap B)^c = A^c \cup B^c$
	$(A \cup B)^c = A^c \cap B^c$
Absorption laws	$A \cup (A \cap B) = A$
	$A \cap (A \cup B) = A$
Conditional identities	$A\subseteq B\iff A^c\cup B=U$
	$A = B \iff (A \subseteq B) \text{ and } (B \subseteq A)$

Further operations with sets

Further operations:

- complement A^c ;
- intersection ∩;
- union \cup ;
- set difference \;
- symmetric difference △;
- Cartesian product $A \times B$.

Difference

Let A, B be sets in U. The difference (or relative complement) of sets A and $B, A \setminus B$, is the set of elements that exist in set A but not in set B:

$$A \setminus B = \{x \in U : x \in A \text{ and } x \notin B\}.$$

Venn diagram:

$$A = \{1, 2, 3\}.$$

 $B = \{1, 2, 5\}.$
 $A \setminus B = \{3\},$
 $B \setminus A = \{5\}.$

Difference

Properties:

•
$$A \setminus B = A \cap B^c$$
, $(A \setminus B)^c = A^c \cup B = A^c \cup (B \cap A)$, $A^c \setminus B^c = B \setminus A$

•
$$A \setminus A = \emptyset$$
, $A \setminus \emptyset = A$, $\emptyset \setminus A = \emptyset$;

•
$$U \setminus A = A^c$$
, $A \setminus U = \emptyset$

•
$$C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$$
,

•
$$C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$$
,

•
$$C \setminus (B \setminus A) = (C \cap A) \cup (C \setminus B)$$
,

•
$$(B \setminus A) \cap C = (B \cap C) \setminus A = B \cap (C \setminus A)$$
,

•
$$(B \setminus A) \cup C = (B \cup C) \setminus (A \setminus C)$$
.

Symmetric difference

Let A, B be sets in U. The symmetric difference (or disjunctive union) of sets A and $B, A \triangle B$, is the set of elements which are either in A or in B, but not in their intersection:

$$A\triangle B = \{x : x \in A \text{ or } x \in B \text{ and } x \notin A \cap B\}.$$

Venn diagram:

$$A = \{1, 2, 3\}.$$

$$B = \{1, 2, 5\}.$$

$$A \triangle B = \{3, 5\}.$$

Symmetric difference

Properties:

- $A\triangle B = (A \setminus B) \cup (B \setminus A)$;
- $A\triangle B = (A \cup B) \setminus (A \cap B)$;
- $A\triangle B = B\triangle A$, $(A\triangle B)\triangle C = A\triangle (B\triangle C)$;
- $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C);$
- $A\triangle\emptyset = A$, $A\triangle A = \emptyset$, $A\triangle U = A^c$;
- $A \triangle B = A^c \triangle B^c$;
- $A \triangle B = \emptyset$ iff A = B.

Cartesian product

Let A, B be sets in U. The Cartesian product of sets A and B, $A \times B$, the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$:

$$A \times B = \{(a, b) : a \in A \text{ and } b \in B\}.$$

from wikipedia.org

$$A = \{1, 2, 3\}.$$

$$B = \{1, 2, 5\}.$$

$$A \times B = \{(1, 1), (1, 2), (1, 5), (2, 1), (2, 2), (2, 5), (3, 1), (3, 2), (3, 5)\}.$$

Cartesian product

Properties:

- $A \times B \neq B \times A$ (unless A = B or $A = \emptyset$ or $B = \emptyset$);
- $(A \times B) \times C \neq A \times (B \times C)$ (unless one of the involved sets is empty);
- $A \times (B \cap C) = (A \times B) \cap (A \times C),$ $A \times (B \cup C) = (A \times B) \cup (A \times C),$ $A \times (B \setminus C) = (A \times B) \setminus (A \times C).$
- $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$ In most cases, the above statement is not true if we replace intersection with union:

$$(A \cup B) \times (C \cup D) \neq (A \times C) \cup (B \times D)$$

 $\bullet |A \times B| = |A| \cdot |B|.$