# **Sales Analysis**

The Northwind database represents a fictional wholesale trading company that sells various products to customers.

Here's an overview of the tables included in the Northwind data set:



"Customers": Contains information about the company's customers, including their names, addresses, contact details, and other relevant information.

"Employees": Stores data about the employees working for the company, such as their names, titles, birth dates, hire dates, and other related details.

"Orders": Contains information about the orders placed by customers, including order IDs, order dates, customer IDs, employee IDs, and other relevant details.

"Order Details": Stores details about individual items within each order, such as product IDs, quantities, unit prices, discounts, and other related information.

"**Products**": Contains information about the products available for sale, including product names, suppliers, categories, unit prices, and other relevant details.

"Suppliers": Stores data about the suppliers who provide the products to the company, including supplier names, addresses, contact details, and other related information.

"Categories": Contains details about the categories to which the products belong, such as category names and descriptions.

"Shippers": Stores information about the shipping companies used by the company, including shipper names, phone numbers, and other related details.

"Employees Territories": Represents the relationship between employees and territories, linking each employee to the territories they are responsible for.

"Region": Contains information about different regions, such as region names.

"Territories": Stores details about the territories covered by the company, including territory names and region IDs

### **Problem 1:**

We want to send all of our high-value customers a special VIP gift. We're defining high-value customers as those who've made at least 1 order with a total value (not including the discount) equal to \$10,000 or more. We only want to consider orders made in the year 2016.

Solution: Three Tables are used: Customers, Orders, and Order Details



|            |                            | _       |                  |
|------------|----------------------------|---------|------------------|
| CustomerID | CompanyName                | OrderID | TotalOrderAmount |
| MEREP      | Mère Paillarde             | 10424   | 11493.20         |
| SIMOB      | Simons bistro              | 10417   | 11283.20         |
| QUICK      | QUICK-Stop                 | 10515   | 10588.50         |
| RATTC      | Rattlesnake Canyon Grocery | 10479   | 10495.60         |
| QUICK      | QUICK-Stop                 | 10540   | 10191.70         |
| QUICK      | QUICK-Stop                 | 10691   | 10164.80         |

Output

# Problem 2:

Change the above query to use the discount when calculating high-value customers. Order by the total amount which includes the discount.

**Solution**: Three Tables are used: Customers, Orders, and Order Details



| CustomerID | CompanyName                | OrderID | TotalOrderAmount |
|------------|----------------------------|---------|------------------|
| SIMOB      | Simons bistro              | 10417   | 11188.4000005722 |
| RATTC      | Rattlesnake Canyon Grocery | 10479   | 10495.5999755859 |
| QUICK      | QUICK-Stop                 | 10540   | 10191.6999511719 |
| QUICK      | QUICK-Stop                 | 10691   | 10164.799987793  |

Output

## **Problem 3:**

At the end of the month, salespeople are likely to try much harder to get orders, to meet their month-end quotas. Show all orders made on the last day of the month. Order by EmployeeID and OrderID

Solution: Orders Table is Used

with Last\_Day\_Of\_Month as
(
 Select EmployeeID, OrderID, OrderDate, MONTH(OrderDate) OrderMonth, YEAR(OrderDate) OrderYear,
LAST\_VALUE(OrderDate)
 over(partition by MONTH(OrderDate), YEAR(OrderDate)
 order by OrderDate range between unbounded preceding and unbounded following) as LDOM
 from [dbo].[Orders]
)
select EmployeeID, OrderID, OrderDate
from Last\_Day\_Of\_Month
where OrderDate = LDOM
 order by EmployeeID, OrderID

Code

EmployeeID OrderID OrderDate 1997-02-28 00:00:00.000 2 10616 1997-07-31 00:00:00.000 10916 1998-02-27 00:00:00.000 11077 1998-05-06 00:00:00.000 2 10368 1996-11-29 00:00:00.000 10553 1997-05-30 00:00:00.000 10583 1997-06-30 00:00:00.000 10686 1997-09-30 00:00:00.000 10915 1998-02-27 00:00:00 000 10 10989 1998-03-31 00:00:00.000 11 11060 1998-04-30 00:00:00.000 12 10432 1997-01-31 00:00:00.000 13 3 10758 1997-11-28 00:00:00 000 3 1997-11-28 00:00:00.000 10759 14 15 3 10806 1997-12-31 00:00:00.000 10988 1998-03-31 00:00:00.000 3 16 1998-04-30 00:00:00.000 17 11063 18 10294 1996-08-30 00:00:00.000 19 10343 1996-10-31 00:00:00.000 20 10522 1997-04-30 00:00:00.000 21 10554 1997-05-30 00:00:00.000 22 10584 1997-06-30 00:00:00.000 10617 1997-07-31 00:00:00.000 23 24 10725 1997-10-31 00:00:00.000 10807 1997-12-31 00:00:00.000 25 10861 1998-01-30 00:00:00.000 26 27 4 11061 1998-04-30 00:00:00.000

Output

#### Problem 4:

Show the 10 orders with the most line items, in order of total line items.

Code

Solution: Orders and Orders Details Table are Used

order by count(OD.OrderID) desc

select top 10 OD.OrderID, count(OD.OrderID) as Total\_Order\_Details
from [dbo].[Order Details] OD
inner join Orders O
on OD.OrderID = O.OrderID
group by OD.OrderID

Output

11062

11076

10269

10650

10317

1998-04-30 00:00:00.000

1998-05-06 00:00:00.000

1996-07-31 00:00:00.000

1997-08-29 00:00:00.000

1996-09-30 00:00:00.000

28

29

30 5 31 5

32

|    | OrderlD | Total_Order_Details |
|----|---------|---------------------|
| 1  | 11077   | 25                  |
| 2  | 10657   | 6                   |
| 3  | 10847   | 6                   |
| 4  | 10979   | 6                   |
| 5  | 10273   | 5                   |
| 6  | 10294   | 5                   |
| 7  | 10309   | 5                   |
| 8  | 10324   | 5                   |
| 9  | 10325   | 5                   |
| 10 | 10337   | 5                   |
|    |         |                     |

### Problem 5:

There might be a chance that ties in the number of order details for the top 10 orders, If yes, which orders are tied and how many order details do they have

Solution: Orders and Orders Details Table are Used

code
select top 10 with ties OD.OrderID , count(OD.OrderID) as Total\_Order\_Details
from [dbo].[Order Details] OD
inner join Orders O
on OD.OrderID = 0.OrderID
group by OD.OrderID
order by count(OD.OrderID) desc

|    | 0       | utput               |
|----|---------|---------------------|
|    | OrderID | Total_Order_Details |
| 1  | 11077   | 25                  |
| 2  | 10979   | 6                   |
| 3  | 10657   | 6                   |
| 4  | 10847   | 6                   |
| 5  | 10845   | 5                   |
| 6  | 10836   | 5                   |
| 7  | 10714   | 5                   |
| 8  | 10670   | 5                   |
| 9  | 10691   | 5                   |
| 10 | 10698   | 5                   |
| 11 | 10553   | 5                   |
| 12 | 10555   | 5                   |
| 13 | 10558   | 5                   |
| 14 | 10607   | 5                   |
| 15 | 10612   | 5                   |
| 16 | 10623   | 5                   |
| 17 | 10273   | 5                   |
| 18 | 10294   | 5                   |
| 19 | 10309   | 5                   |
| 20 | 10324   | 5                   |

#### Problem 6:

Janet Leverling, one of the salespeople, has come to you with a request. She thinks that she accidentally double-entered a line item on an order, with a different ProductID, but the same quantity. She remembers that the quantity was 60 or more. Show all the OrderIDs with line items that match this, in order of OrderID

Solution: Orders Details Table are Used

Code

select OrderID, Quantity
from [Order Details]
where Quantity >= 60
group by OrderID, Quantity
having count(OrderID) >1

Output

|   | OrderlD | Quantity |
|---|---------|----------|
| 1 | 10263   | 60       |
| 2 | 10990   | 65       |
| 3 | 10658   | 70       |
| 4 | 11030   | 100      |

### Problem 7:

Based on the previous question, we now want to show details of the order, for orders that match the above criteria

Solution: Orders Details Table are Used

with UniqueOrderDetails
as
(
 select OrderID, Quantity
 from [Order Details]
 where Quantity >= 60
 group by OrderID, Quantity
 having count(OrderID) >1
)
select \*
from [Order Details] OD
inner join UniqueOrderDetails UOD
on OD.OrderID = UOD.OrderID

| Output |   |
|--------|---|
|        |   |
|        | _ |

|    | OrderID | ProductID | UnitPrice | Quantity | Discount | OrderlD | Quantity |
|----|---------|-----------|-----------|----------|----------|---------|----------|
| 1  | 10263   | 16        | 13.90     | 60       | 0.25     | 10263   | 60       |
| 2  | 10263   | 24        | 3.60      | 28       | 0        | 10263   | 60       |
| 3  | 10263   | 30        | 20.70     | 60       | 0.25     | 10263   | 60       |
| 4  | 10263   | 74        | 8.00      | 36       | 0.25     | 10263   | 60       |
| 5  | 10990   | 21        | 10.00     | 65       | 0        | 10990   | 65       |
| 6  | 10990   | 34        | 14.00     | 60       | 0.15     | 10990   | 65       |
| 7  | 10990   | 55        | 24.00     | 65       | 0.15     | 10990   | 65       |
| 8  | 10990   | 61        | 28.50     | 66       | 0.15     | 10990   | 65       |
| 9  | 10658   | 21        | 10.00     | 60       | 0        | 10658   | 70       |
| 10 | 10658   | 40        | 18.40     | 70       | 0.05     | 10658   | 70       |
| 11 | 10658   | 60        | 34.00     | 55       | 0.05     | 10658   | 70       |
| 12 | 10658   | 77        | 13.00     | 70       | 0.05     | 10658   | 70       |
| 13 | 11030   | 2         | 19.00     | 100      | 0.25     | 11030   | 100      |
| 14 | 11030   | 5         | 21.35     | 70       | 0        | 11030   | 100      |
| 15 | 11030   | 29        | 123.79    | 60       | 0.25     | 11030   | 100      |
| 16 | 11030   | 59        | 55.00     | 100      | 0.25     | 11030   | 100      |

# **Problem 8:**

Some customers are complaining about their orders arriving late. Which orders are late

Solution: Orders Table are Used p

Code

select OrderID, convert(Date,OrderDate) as OrderDate,
convert(Date,RequiredDate) as RequiredDate,
convert(Date,ShippedDate) as ShippedDate
from Orders
where ShippedDate >= RequiredDate

Output

|    | OrderID | OrderDate  | RequiredDate | ShippedDate |
|----|---------|------------|--------------|-------------|
| 1  | 10264   | 1996-07-24 | 1996-08-21   | 1996-08-23  |
| 2  | 10271   | 1996-08-01 | 1996-08-29   | 1996-08-30  |
| 3  | 10280   | 1996-08-14 | 1996-09-11   | 1996-09-12  |
| 4  | 10302   | 1996-09-10 | 1996-10-08   | 1996-10-09  |
| 5  | 10309   | 1996-09-19 | 1996-10-17   | 1996-10-23  |
| 6  | 10320   | 1996-10-03 | 1996-10-17   | 1996-10-18  |
| 7  | 10380   | 1996-12-12 | 1997-01-09   | 1997-01-16  |
| 8  | 10423   | 1997-01-23 | 1997-02-06   | 1997-02-24  |
| 9  | 10427   | 1997-01-27 | 1997-02-24   | 1997-03-03  |
| 10 | 10433   | 1997-02-03 | 1997-03-03   | 1997-03-04  |
| 11 | 10451   | 1997-02-19 | 1997-03-05   | 1997-03-12  |
| 12 | 10483   | 1997-03-24 | 1997-04-21   | 1997-04-25  |
| 13 | 10515   | 1997-04-23 | 1997-05-07   | 1997-05-23  |
| 14 | 10523   | 1997-05-01 | 1997-05-29   | 1997-05-30  |
| 15 | 10545   | 1997-05-22 | 1997-06-19   | 1997-06-26  |
| 16 | 10578   | 1997-06-24 | 1997-07-22   | 1997-07-25  |
| 17 | 10593   | 1997-07-09 | 1997-08-06   | 1997-08-13  |
| 18 | 10596   | 1997-07-11 | 1997-08-08   | 1997-08-12  |
| 19 | 10660   | 1997-09-08 | 1997-10-06   | 1997-10-15  |
| 20 | 10663   | 1997-09-10 | 1997-09-24   | 1997-10-03  |
| 21 | 10687   | 1997-09-30 | 1997-10-28   | 1997-10-30  |
| 22 | 10705   | 1997-10-15 | 1997-11-12   | 1997-11-18  |
| 23 | 10709   | 1997-10-17 | 1997-11-14   | 1997-11-20  |
| 24 | 10726   | 1997-11-03 | 1997-11-17   | 1997-12-05  |