

Ch 5. Synchronous sequential logic

5.1 Introduction

- In order to perform useful or flexible sequences of operations, we need to be able to construct circuits that can store information between the operations.
- latches and Flip-Flops
- Sequential circuits consisting of both flip-flop and combinational logic

5.2 Sequential circuits

- Outputs are function of inputs and present states
- Present states are supplied by memory elements

5.2 Sequential circuits

- Two types of sequential circuit
- Synchronous : behavior depends on the signals affecting storage elements at discrete time
- Asynchronous : behavior depends on inputs at any instance of time

5.3 Latches

- SR latch : consist of two cross-coupled NOR gates
- \circ S=1,R=0 then Q=1(set)
- \circ S=0,R=1 then Q=0(reset)
- S=0,R=0 then no change(keep condition)
- S=1,R=1 Q=Q'=0 (undefined)

Fig. 5-3 SR Latch with NOR Gates

5.3 Latches - SR latch

- S'R' latch with NAND gates
 - Require the complement value of NOR latch

Fig. 5-4 SR Latch with NAND Gates

5.3 Latches - SR latch

- SR latch with control input
 - Add two NAND gate and control signal
 - C=0(no action), C=1(act as SR latch)

C	S	R	Next state of Q
0 1 1 1	X 0 0 1	X 0 1 0	No change No change Q = 0; Reset state Q = 1; set state
1	1	1	Indeterminate

(b) Function table

5.3 Latches - D latch

- Eliminate indeterminate state in SR latch
 - C=1, output value is equal to D

CD	Next state of Q
0 X 1 0 1 1	No change $Q = 0$; Reset state $Q = 1$; Set state

(b) Function table

Fig. 5-6 D Latch

5.4 Flip-Flops

- Latch : case (a), output changes as input changes
- Flip-flop : output only changes at clock edge

5.4 Flip-flops – Master-Slave Flip-Flop

- Negative edge triggered D flip-flop
- C=0 : master disable, slave enable
- Output has no relation with input
- C=1 : master enable, slave disable

Fig. 5-9 Master-Slave D Flip-Flop

5.4 Flip-flops - Edge-Triggered Flip-Flop

- D-type positive edge triggered flip flop
 - Consist of 3 SR-latches
 - Q changes only when C becomes 0 to 1

5.4 Flip-flops - Other Flip-Flop

- JK flip-flop
 - Performs three operations
 - Set(J), Reset(K), Complement(J=K=1)
 - D=JQ'+K'Q

(a) Circuit diagram

(b) Graphic symbol

Fig. 5-12 JK Flip-Flop

5.4 Flip-flops - Other Flip-Flop

- T flip-flop
 - Complementing flip-flop
 - D=TQ'+T'Q

Fig. 5-13 T Flip-Flop

5.4 Flip-flops - Characteristic tables

Flip-flop characteristic tables

$$\mathbf{Q(t+1)} = \mathbf{JQ'+K'Q}$$

JK	Flip-	Flop	
J	K	Q(t+1)	
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

SR F	lip-Flip
------	----------

S	R	Q(t+1)	Operation
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	?	Undefined

D Flip-Flop

D	Q(t+1)	
0	0	Reset Set

$$\mathbf{Q(t+1)} = \mathbf{D}$$

T Flip-Flop

Т	Q(t+1)	
0	Q(t)	No change
1	Q'(t)	Complement

$$Q(t+1) = D$$
 $Q(t+1) = TQ'+T'Q$

5.4 Flip-flops - Terminologies

- Setup time: Time in which D input must be maintained at a constant value prior to applying the clock.
- Hold time: Time when D input must not change after the application of the positive transition of the pulse.
- Propagation delay time: Time interval between the trigger edge and the stabilization of the output to the new state.

5.5 Analysis of clocked sequential circuits

- Behavior of clocked sequential circuit is determined from input, output and present state
- Output, next state are a function of input and present state

5.5 Analysis of clocked sequential circuits - State equations

- Specifies the next state and output as a function of the present state and inputs
- \bullet A(t+1)=Ax + Bx
- B(t+1)=A'x
- \circ Y=(A+B)x'

5.5 Analysis of clocked sequential circuits - State table

- Time sequence table of inputs, outputs and flip-flop states
- two types of state table exist

Table 5-2 *State Table for the Circuit of Fig. 5-15*

Present State					
A B		X	Α	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	O
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Table 5-3Second Form of the State Table

Present State	Next S	tate	Output		
	x = 0	x = 1	x = 0	x = 1	
AB	\overline{AB}	AB	у	у	
00	00	01	0	0	
01	00	11	1	0	
10	00	10	1	0	
11	00	10	1	0	

5.5 Analysis of clocked sequential circuits - State diagram

- A kind of flow diagram
- Can be derived from state table
- State-circle, transition-line, I/O

Table 5-2 *State Table for the Circuit of Fig. 5-15*

Present State				xt ite	Output		
A B		B x		x A		В	У
0	0	0	0	0	0		
0	0	1	0	1	0		
0	1	0	0	0	1		
0	1	1	1	1	0		
1	0	0	0	0	1		
1	0	1	1	0	0		
1	1	0	0	0	1		
1	1	1	1	0	0		

Fig. 5-16 State Diagram of the Circuit of Fig. 5-15

5.5 Analysis of clocked sequential circuits - Analysis with D flip-flops

- Input equation : $D_A = A \oplus x \oplus y$
- State equation is equal to input equation

Fig. 5-17 Sequential Circuit with D Flip-Flop

Present state	Inp	uts	Next state		
A	x	y	A		
0	0	0	0		
0	0	1	1		
0	1	0	1		
0	1	1	0		
1	0	0	1		
1	0	1	0		
1	1	0	O		
1	1	1	1		

(b) State table

5.5 Analysis of clocked sequential circuits - Analysis with JK flip-flops

- State equation is not the same as the input equation
- Have to refer characteristic table or characteristic equation
- Input equations

$$J_A=B$$
 $K_A=Bx'$
 $J_B=x'$ $K_B=A'x+Ax'$

5.5 Analysis of clocked sequential circuits - Analysis with JK flip-flops

State table and state diagram

Table 5-4State Table for Sequential Circuit with JK Flip-Flops

Present State		Input		ext ate		Flip- Inp	Flop uts	
Α	В	X	A	В	J _A	K _A	J _B	K _B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Fig. 5-19 State Diagram of the Circuit of Fig. 5-18

5.5 Analysis of clocked sequential circuits - Analysis with T flip-flops

Input equations and output equation

$$T_A=Bx$$
, $T_B=x$ $y=AB$

 State equations are derived from characteristic equation

$$A(t+1)=T_AA'+T_A'A$$

$$B(t+1)=T_BB'+T_B'B$$

5.5 Analysis of clocked sequential circuits - Analysis with T flip-flops

Table 5-5State Table for Sequential Circuit with T Flip-Flops

B x A B y 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 1 1
0 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 1 1
1 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 0 1 1
1 0 1 1
1 0 0 1

5.5 Analysis of clocked sequential circuits - Mealy and Moore models

- Mealy model : output is a function of the present state and input
- Inputs must be synchronized with the clock
- Outputs must be sampled at the clock edge
- Moore model : output is a function of the present state only
- Outputs are synchronized with the clock

5.6 HDL for sequential circuits

- Two kinds of behavioral statements
- Initial : executes only once
- Always: executes repeatedly until the simulation terminates

D-latch

HDL Example 5-1

```
//Description of D latch (See Fig. 5-6)
module D_latch (Q,D,control);
  output Q;
  input D,control;
  reg Q;
  always @ (control or D)
  if (control) Q = D;  //Same as: if (control == 1)
endmodule
```


- D flip-flop
 - D flip-flop with asynchronous reset

```
//D flip-flop
module D_FF (Q,D,CLK);
   output Q;
   input D, CLK;
   reg Q;
   always @ (posedge CLK)
     O = D;
endmodule
//D flip-flop with asynchronous reset.
module DFF (Q,D,CLK,RST);
   output Q;
   input D, CLK, RST;
   reg Q;
   always @ (posedge CLK or negedge RST)
     if (\simRST) Q = 1'b0; // Same as: if (RST == 0)
     else O = D;
endmodule
```


T flip-flop from D flip-flop

```
//T flip-flop from D flip-flop and gates
module TFF (Q,T,CLK,RST);
    output Q;
    input T, CLK, RST;
    wire DT;
    assign DT = Q ^ T ;
 //Instantiate the D flip-flop
    DFF TF1 (O, DT, CLK, RST);
 endmodule
//JK flip-flop from D flip-flop and gates
module JKFF (Q,J,K,CLK,RST);
   output O;
   input J, K, CLK, RST;
   wire JK;
   assign JK = (J \& \sim Q) \mid (\sim K \& Q);
//Instantiate D flipflop
                                                                     CLK -
   DFF JK1 (O, JK, CLK, RST);
endmodule
```


JK flip-flop

HDL Example 5-4

 $\verb"endmodule"$

5.6 HDL for sequential circuits - State diagram

Fig. 5-16 State Diagram of the Circuit of Fig. 5-15

(Mealy state diagram)

```
module Mealy_mdl (x,y,CLK,RST);
  input x,CLK,RST;
 output y;
 reg y;
 reg [1:0] Prstate, Nxtstate;
 parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;
  always @ (posedge CLK or negedge RST)
      if (~RST) Prstate = S0; //Initialize to state S0
      else Prstate = Nxtstate; //Clock operations
                              //Determine next state
   always @ (Prstate or x)
         case (Prstate)
            S0: if (x) Nxtstate = S1;
                  else Nxtstate = S0;
            S1: if (x) Nxtstate = S3;
                  else Nxtstate = S0;
            S2: if (\sim x) Nxtstate = S0;
                  else Nxtstate = S2;
            S3: if (x) Nxtstate = S2;
                  else Nxtstate = S0;
         endcase
   always @ (Prstate or x)
                              //Evaluate output
         case (Prstate)
            S0: y = 0;
            S1: if (x) y = 1'b0; else y = 1'b1;
            S2: if (x) y = 1'b0; else y = 1'b1;
            S3: if (x) y = 1'b0; else y = 1'b1;
         endcase
  endmodule
```


5.6 HDL for sequential circuits - State diagram

Fig. 5-19 State Diagram of the Circuit of Fig. 5-18

(Moore state diagram)

```
//Moore state diagram (Fig. 5-19)
module Moore_mdl (x,AB,CLK,RST);
  input x, CLK, RST;
  output [1:0] AB;
  reg [1:0] state;
  parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;
     always @ (posedge CLK or negedge RST)
        if (~RST) state = S0; //Initialize to state S0
        else
        case (state)
          S0: if (\simx) state = S1; else state = S0;
          S1: if (x) state = S2; else state = S3;
          S2: if (\simx) state = S3; else state = S2;
          S3: if (\simx) state = S0; else state = S3;
        endcase
  endmodule
```


5.6 HDL for sequential circuits - Structural description

5.6 HDL for sequential circuits - Structural description

```
module testTcircuit;
  reg x,CLK,RST; //inputs for circuit
  wire y, A, B; //output from circuit
  Tcircuit TC (x,y,A,B,CLK,RST); // instantiate circuit
  initial
     begin
         RST = 0;
         CLK = 0;
      #5 RST = 1;
         repeat (16)
      #5 CLK = \simCLK;
     end
  initial
     begin
          x = 0;
      #15 x = 1;
          repeat (8)
      #10 x = ~ x;
     end
endmodule
```

(Stimulus and output)

Fig. 5-21 Simulation Output of HDL Example 5-7

5.6 HDL for sequential circuits

```
module Mealy Zero Detector (
 output reg y_out,
 input
                x in, clock, reset
 reg [1: 0]
                state, next state;
                S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;
 parameter
 always @ (posedge clock, negedge reset)
                                                 // state transition
  if (reset == 0) state <= S0;
  else state <= next state;
 always @ (state, x in) // Form the next state
  case (state)
   S0:
                if (x in) next state = S1; else next state = S0;
   S1: if (x in) next state = S3; else next state = S0;
                if (-x \text{ in}) next state = S0; else next state = S2;
    S2:
   S3: if (x in) next state = S2; else next state = S0;
  endcase
 always @ (state, x in) // Form the output
  case (state)
   S0:
                y out = 0;
   S1, S2, S3: y out = -x in;
  endcase
endmodule
module t_Mealy_Zero_Detector;
 wire t_y_out;
 reg t_x_in, t_clock, t_reset;
Mealy_Zero_Detector M0 (t_y_out, t_x_in, t_clock, t_reset);
initial #200 $finish;
initial begin t clock = 0; forever #5 t clock = ~t clock; end
```

```
initial fork
    t reset = 0:
 #2 t reset = 1:
 #87 t reset = 0;
 #89 t reset = 1;
 #10 t_x_i = 1;
 #30 t x in = 0;
 #40 t x in = 1;
 #50 t x in = 0;
 #52 t x in = 1;
 #54 t_x_in = 0;
 #70 t_x_in = 1;
 #80 t x in = 1;
 #70 t x in = 0;
 #90 t x in = 1;
 #100 t_x_i = 0;
 #120 t_x_in = 1;
 #160 t x in = 0;
 #170 t_x_in = 1;
 join
endmodule
```


5.6 HDL for sequential circuits

5.7 State reduction and assignment

- State reduction is used to reduce the number of flip-flop
- Only input/output sequences are important
- Interested in present states that go to the same next state and have the same output

5.7 State reduction and assignment - State reduction

Table 5-6 *State Table*

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	e	f	O	1	
e	а	f	0	1	
f	g	f	0	1	
g	a	f	0	1	

Reducing the State Table

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	е	f	0	1	
e	а	f	0	1	
f	e	f	0	1	

Fig. 5-22 State Diagram

5.7 State reduction and assignment - State reduction

Table 5-8 *Reduced State Table*

	Next	State	Output		
Present State	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1	
а	а	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	e	d	0	1	
e	а	d	0	1	

Fig. 5-23 Reduced State Diagram

5.7 State reduction and assignment - State assignment

- m states circuit, codes must contain n bits where $2^n \ge m$
- Three possible binary state assignments

Table 5-9 *Three Possible Binary State Assignments*

State	Assignment 1 Binary	Assignment 2 Gray code	Assignment 3 One-hot
а	000	000	00001
b	001	001	00010
c	010	011	00100
d	011	010	01000
e	100	110	10000

5.8 Design procedure

- Sequential circuit design : requires state table
 - ⇔ Combinational circuit: truth table
- The number of flip-flop is determined from the number of states in circuit
- If 2ⁿ states exist, there are *n* flip-flops

5.8 Design procedure

- Design steps
 - 1) Derive a state diagram or state table
 - 2) Reduce the number of states if necessary
 - 3) Assign binary code to the state
 - 4) Choose the type of flip-flops to be used
 - 5) Derive the flip-flop input equations and output equations
 - 6) Draw the logic diagram

5.8 Design procedure

- Derive a state diagram
 - Sequential detector
 - Three or more consecutive 1's in a string of bits coming through an input line

Fig. 5-24 State Diagram for Sequence Detector

5.8 Design procedure - Synthesis using D flip-flops

Input equations are obtained directly from the next states

Table 5-11 *State Table for Sequence Detector*

Present State				xt ate	Output	
Α	В	X	Α	В	У	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	1	1	1	
1	1	0	0	0	0	
1	1	1	1	1	1	

5.8 Design procedure - Synthesis using D flip-flops

K-maps and logic diagram

Fig. 5-26 Logic Diagram of Sequence Detector

5.8 Design procedure - Excitation table

• Excitation Table

Table 5.12 *Flip-Flop Excitation Tables*

Q(t)	Q(t=1)	J	K	_	Q(t)	Q(t=1)	T
0	0	0	X		0	0	0
0	1	1	X		0	1	1
1	0	X	1		1	0	1
1	1	X	O		1	1	0
	(a) <i>JK</i>			_		(b) <i>T</i>	I

5.8 Design procedure - Synthesis with JK flip-flops

 Input equations evaluated from the present state to next state transition

Table 5-13State Table and JK Flip-Flop Inputs

Present State		Input	Ne: Sta		Fli	p-Flo _l	p Inpi	uts
Α	В	X	A	В	J_A	K _A	J _B	K _B
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	\boldsymbol{X}	1
0	1	1	0	1	0	X	\boldsymbol{X}	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	\boldsymbol{X}	0
1	1	1	0	0	X	1	\boldsymbol{X}	1

5.8 Design procedure - Synthesis with JK flip-flops

K-maps and logic diagram

Fig. 5-27 Maps for *J* and *K* Input Equations

5.8 Design procedure - Synthesis using T flip-flops

- 3-bit binary counter
- 3-bit counter has 3 flip-flops and can count from 0 to 2ⁿ-1(n=3)

Fig. 5-29 State Diagram of 3-Bit Binary Counter

5.8 Design procedure - Synthesis using T flip-flops

State table and logic diagram

Table 5-14State Table for 3-Bit Counter

Present State			Ne	Next State			Flip-Flop Input			
A ₂	A ₁	A ₀	A ₂	Α	A ₀	T _{A2}	T_{A1}	T_{A0}		
0	0	0	0	0	1	0	0	1		
0	0	1	0	1	0	0	1	1		
0	1	0	0	1	1	0	0	1		
0	1	1	1	0	.0	1	1	1		
1	0	0	1	0	1	0	0	1		
1	0	1	1	1	0	0	1	1		
1	1	0	1	1	1	0	1	1		
1	1	1	0	0	0	1	1	1		

$$T_{A2}=A_1A_0$$
, $T_{A1}=A_0$, $T_{A0}=1$

