Aufgabe 1 Lösen Sie jeweils das Anfangswertproblem. Führen Sie dazu eine Trennung der Variablen und eventuell zuvor eine geeignete Substitution durch.

a)
$$y' + y \sin x = 0$$
, $y(\pi) = \frac{1}{2}$ b) $x(x+1)y' = y$, $y(1) = \frac{1}{2}$

b)
$$x(x+1)y' = y$$
, $y(1) = \frac{1}{2}$

c)
$$yy' = 2e^{2x}$$
, $y(0) = 2$ d) $y^2y' + x^2 = 1$, $y(2) = 1$

d)
$$y^2y' + x^2 = 1$$
, $y(2) =$

e)
$$y' + 2y = x$$
, $y(0) = 1$ f) $y' = y^2 \sin x$, $y(0) = 1$

f)
$$y' = y^2 \sin x$$
, $y(0) = 1$

Aufgabe 2 Die Sinkgeschwindigkeit v(t) eines Teilchens der Masse m in einer Flüssigkeit als Funktion der Zeit t wird beschrieben durch die Differentialgleichung

$$m\dot{v} + kv = mg$$

wobei k der Reibungsfaktor und g die Erdbeschleunigung ist. Wie lautet die Lösung dieser Differentialgleichung bei gegebener Anfangsgeschwindigkeit $v(0) = v_0$?

Aufgabe 3 Ein Kondensator der Kapazität C wird zunächst auf die Spannung U_0 aufgeladen und dann über einen ohmschen Widerstand R entladen. Die Differentialgleichung für diesen zur Zeit t=0einsetzenden Ausschaltvorgang lautet

$$RC\dot{U} + U = 0.$$

Berechnen Sie den Verlauf der Kondensatorspannung U(t) als Funktion der Zeit t.

Aufgabe 4 Welche reellwertige Funktion f einer Variable hat als Eigenschaften, dass die Kurve y = f(x)durch den Punkt (2,3) geht und dass die von den Schnittpunkten mit den Koordinatenachsen begrenzten Abschnitte aller Tangenten jeweils durch ihren Berührungspunkt halbiert werden?

Aufgabe 5 Berechnen Sie jeweils durch Variation der Konstanten die allgemeine Lösung der Differentialgleichung.

a)
$$y' + 2y = \cos x$$

$$(xy' = x^2 - y)$$

a)
$$y' + 2y = \cos x$$
 b) $xy' = x^2 - y$ c) $y' + y \tan x = \cos x$

d)
$$y' + y \tan x = 2 \sin x \cos x$$
 e) $y' + 2xy = 3x$ f) $xy' + y = x \sin x$

e)
$$y' + 2xy = 3x$$

f)
$$xy' + y = x \sin x$$

Aufgabe 6 Berechnen Sie jeweils die allgemeine Lösung der Differentialgleichung.

a)
$$y'' - 3y' + 2y = e^{17x}$$
 b) $y'' - 3y' + 2y = e^{2x}$

b)
$$y'' - 3y' + 2y = e^{2x}$$

c)
$$y'' - y = \cos x$$

d)
$$y'' \perp 2y' \perp y = xe^{-x}$$

d)
$$y'' + 2y' + y = xe^{-x}$$
 e) $y'' + 2y' + y = xe^{-2x}$ f) $y'' - 5y' + 6y = x^2$

f)
$$y'' - 5y' + 6y - x^2$$

g)
$$y'' + 9y = 4\sin(3x)$$
 h) $y'' + 9y = 3\sin(4x)$ i) $y'' - 5y' = x^2$

h)
$$y'' + 9y = 3\sin(4x)$$

i)
$$y'' - 5y' = x^2$$

Aufgabe 7 Lösen Sie jeweils das Anfangswertproblem.

a)
$$xy' + 2y = e^x$$
, $y(1) = e$

b)
$$y'' + 10y' + 21y = 0$$
, $y(0) = 0$, $y'(0) = 4$

c)
$$y'' + 2y' + 2y = e^{-2x}$$
, $y(0) = 0$, $y'(0) = 1$ d) $xy' + y = \ln x$, $y(1) = 1$

d)
$$xy' + y = \ln x$$
, $y(1) = 1$

e)
$$y'' + 4y' + 5y = 20x + 2$$
, $y(0) = 1$, $y'(0) = 1$ f) $y' = 3x^2y + e^{x^3}\cos x$, $y(0) = 2$

f)
$$y' = 3x^2y + e^{x^3}\cos x$$
, $y(0) = 2$

g)
$$y'' + 4y' + 4y = 20x + 2$$
, $y(0) = 1$, $y'(0) = 1$ h) $y' - y \tan x = 2 \sin x$, $y(0) = 0$

h)
$$y' - y \tan x = 2 \sin x$$
, $y(0) = 0$