

代码优化习题

基本概念

- 优化目的:
 - ●减少空间
 - ●压缩时间;
- 优化时机:
 - 中间代码生成以后;
 - 目标代码生成以后;
- 优化范围:
 - ●局部优化;
 - ●循环优化;
 - 全局优化;
- 优化策略方法:
 - 局部优化依据基本快;
 - 循环优化依据控制流;
 - 全局优化依据数据流;

基本方法

- 基本快划分:
 - ●入口语句;
 - ●划分基本快;
- 局部优化:
 - DAG图;
- 循环优化:
 - 控制流图——三元组(节点集合、有向边集合、首节 点);
 - 必经节点集合;
 - 回边;
 - ●循环
- 数据流方程:

```
void quicksort(m, n)
    int m, n;
      int i, j;
       int v, x; if (n<=m) return;
       /* fragment begins here */
       i = m-1;
       j = n;
      v = a[n];
      while(1) {
         do i = i+1; while (a \lfloor i \rfloor \leq v);
         do j = j-1; while (a[j]>v);
         if (i>=j) break;
x = a[i];
           a[i] = a[j];
           a|j| = x;
      x = a|i|;
      a[i] = a[n];
      a[n] = x;
      /* fragment ends here */
      quicksort (m, j);
      quicksort(i+1, n);
```

华华华成为

(1)	i:=m-1	(16)	t ₇ :=4*i
(2)	j:=n	(17)	t ₆ :=4*j
(3)	t ₁ :=4*n	(18)	t_9 :=a[t_8]
(4)	$v := a[t_1]$	(19)	$a[t_7] := t_9$
(5)	i:=i+1	(20)	t ₁₀ :=4*j
(6)	t ₂ :=4*i		$a[t_{10}] := x$
(7)	$t_3 := a[t_2]$	(22)	goto (5)
(8)	if $t_3 < v$ goto (5)	(23)	t ₁₁ :=4*i
(9)	j:=j-1	(24)	$x := a[t_{11}]$
(10)	t ₅ :=4*j	(25)	t ₁₂ :=4*i
(11)	$t_5:=a[t4]$	(26)	t ₁₃ :=4*n
(12)	if t_5 v goto (9)		$t_{14}^{13} := a[t_{13}]$
(13)	if $i >= j \text{ goto } (23)$	(28)	$a[t_{12}] := t_{14}$
(14)	t ₆ :=4*i	(29)	t ₁₅ :=4*n
(15)	$x := a[t_6]$	(30)	$a[t_{15}] := x$

(1) 请将四元式代码序列划分为基本块并做出其流图

基本块流图 注意三元组:

- 1、首节点
- 2、节点集合
- 3、有向边

(2) 将每个基本块的公共子表达式删除

- B5中(14)和(16)是公共子表达式、(17)和(20)是公共子表达式,B5 变为
 - (14) t6:=4*i
 - (15)
 - (16) t7:=t6
 - (17) t8:=4*j
 - •••
 - (20) t10:=t8
 - (21)
 - (22)
- B6中(23)和(25)是公共子表达式、(26)和(29)是公共子表达式,B6 变为
 - (23) t11:=4*i
 - (24)
 - (25) t12:=t11
 - (26) t13:=4*n
 - •••
 - (29) t15:=t13

(3) 找出流图中的循环,将循环不变量计算移出循环外

- 循环有三:
 - 1. {B2}
 - 2. {B3}
 - 3. {B2, B3, B4, B5}

如下程序流图中, B3中的i:=2是循环不变量, 可以将其提到前置结点吗?

不能。因 为B3不是 循环出口 B4的必经 结点。

对如下图的流图:

- (1) 求出流图中各结点n的必经结点集D(n);
- (2) 求出流图中的回边;
- (3) 求出流图中的循环。
- 各节点必经节点集合
 - $D(1)=\{1\}$
 - $D(2)=\{1,2\}$
 - $D(3)=\{1,2,3\}$
 - $D(4)=\{1,2,3,4\}$
 - $D(5)=\{1,2,3,5\}$
 - $D(6)=\{1,2,3,6\}$
 - $D(7) = \{1,2,7\}$
 - $D(8)=\{1,2,7,8\}$
- 回边 7→2(注意:2是7的必经节点)
- 循环 {2, 3, 4, 5, 6, 7}

- 各节点必经节点集合
 - $-D(B1) = \{1\}$
 - $-D(B2) = \{1, 2\}$
 - $-D(B3) = \{1, 2, 3\}$
 - $-D(B4) = \{1, 2, 3, 4\}$
 - $-D(B5) = \{1, 2, 5\}$
 - $-D(B6) = \{1, 2, 5, 6\}$
- 回边 B4→B3和B5→B2
- 循环 {3, 4} 和 {2, 3, 4, 5}