(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 17 octobre 2002 (17.10.2002)

PCT

(10) Numéro de publication internationale WO 02/081453 A1

- (51) Classification internationale des brevets⁷:
 C07D 233/86, A61K 31/4116, A61P 3/10, C07D 405/04, 401/04, 409/04, 403/04, 401/10, 401/14, 403/10, 491/10, 405/06, 401/06, 401/12, 403/12
- (21) Numéro de la demande internationale :

PCT/FR02/01167

- (22) Date de dépôt international: 4 avril 2002 (04.04.2002)
- (25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité :

0104552

4 avril 2001 (04.04.2001) F

- (71) Déposant (pour tous les États désignés sauf US): LAB-ORATOIRES FOURNIER SA [FR/FR]; 9 Rue Petitot, F-21000 Dijon (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): BOUBIA, Benaïssa [FR/FR]; 23 Rue de la Fontaine Soyer, F-21850 Saint Apollinaire (FR). CHAPUT, Evelyne [FR/FR]; 72 Rue des Moulins, F-21000 Dijon (FR). OU, Khan [FR/FR]; 25A Rue De Messigny, F-21121 Hauteville-lès-Dijon (FR). RATEL, Philippe [FR/FR]; 27 Rue Des Marronniers, F-21121 Ahuy (FR).

- (74) Mandataires: HUBERT, Philippe etc.; Cabinet Beau de Loménie, 158, rue de l'Université, F-75340 Cedex 07 Paris (FR).
- (81) États désigués (national): AE, AG, AL, AM, AT, AT (modèle d'utilité), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, CZ (modèle d'utilité), DE, DE (modèle d'utilité), DK, DK (modèle d'utilité), DM, DZ, EC, EE, EE (modèle d'utilité), ES, FI, FI (modèle d'utilité), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (modèle d'utilité), SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée :

- avec rapport de recherche internationale
- avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont recues

[Suite sur la page suivante]

- (54) Title: THIOHYDANTOINS AND USE THEREOF FOR TREATING DIABETES
- (54) Titre: HIOHYDANTOÏNES ET LEUR UTILISATION DANS LE TRAITEMENT DU DIABETE

O 02/081453 A1

- (57) Abstract: The invention concerns compounds derived from 2-thiohydantoin selected among compounds of general formula (I), such as defined in the claims, and their addition salts with an acid, in particular pharmaceutically acceptable salts. The invention also concerns the method for preparing same, pharmaceutical compositions containing them and their use as pharmacologically active substance, in particular for treating diabetes, diseases mediated by hyperglycemia, hypertriglyceridemiae, dyslipidaemiae or obesity.
- (57) Abrégé: L'invention concerne des composés dérivés de la 2-thiohydantoïne choisis parmi les composés de formule générale (I), telle que définie dans les revendications, et leurs sels d'addition avec un acide, notamment les sels pharmaceutiquement acceptables. Elle concerne également leur procédé de préparation, les compositions pharmaceutiques les contenant, et leur utilisation en tant que substance pharmacologiquement active, notamment dans le cas du traitement du diabète, des maladies dûes à une hyperglycémie, des hypertriglycéridémies, des dyslipidémies ou de l'obésité.

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

HIOHYDANTOÏNES ET LEUR UTILISATION DANS LE TRAITEMENT DU DIABETE

La présente invention concerne de nouveaux composés dérivés de la thiohydantoïne (ou 2-thioxo-4-imidazolidinone), leur procédé de fabrication et leur utilisation en tant que principes actifs pour la préparation de médicaments destinés notamment au traitement du diabète.

Art antérieur

5

10

15

20

La chimie des composés de type thiohydantoïne est connue depuis de nombreuses années. Certains dérivés de cet hétérocycle ont été utilisés dans le domaine de la photographie, comme décrit par exemple dans US 2.551.134 ou JP 81.111.847, ou dans le domaine des pesticides, essentiellement des herbicides ou des fongicides, comme décrit par exemple dans US 3798233, dans les publications Indian J. Chem. 1982 Vol 21B p 162-164, J. Indian Chem. Soc. Vol 58(10) p 994-995, Chem. Abst. 67, 82381v, Indian J. Chem. 1979 vol 18B p 257-261, US 4 473.393. Plus récemment, des composés comprenant le cycle thiohydantoïne ont été préparés dans le but d'obtenir des produits actifs en thérapeutique. Par exemple, US 3923994 décrit l'utilisation de 3-aryl-2-thiohydantoïnes pour leur activité antiarthritique. US 3 984 430 propose de nouvelles thiohydantoïnes pour traiter les ulcères. Indian J. Chem. (1978), Vol 16B, p 71-72 décrit des coumarylthiohydantoïnes actives contre la tuberculose. US 4312 881 revendique des acides et des esters comprenant le cycle 2-thiohydantoïne et présentant une activité de type prostaglandine. Chem. Pharm. Bull (1982), Vol 30, n° 9, p 3244-3254 décrit l'inhibition des aldose-réductases par des composés de type 1-(phénylsulfonyl)-2-thiohydantoïne. Il Farmaco, Ed Scientifico (1983), Vol 38, nº 6, p 383-390 propose des 3dialkylaminopropyl-2-thiohydantoïnes en tant qu'agents antiarythmiques. WO 96/04248 A décrit des dérivés de type amide ou sulfonamide de la 2-thiohydantoïne antagonistes de l'angiotensine II. WO 97/19932 A revendique l'utilisation de dérivés de la 2thiohydantoïne pour augmenter les taux de HDL. WO 98/33776 cite une banque de composés obtenus par chimie combinatoire et testés pour leurs propriétés antimicrobienne ou antalgique. Enfin, WO 93/18057 et EP 584694 décrivent des acides ou des esters comprenant un cycle 2-thiohydantoïne qui sont inhibiteurs de l'agrégation plaquettaire.

Des préparations de composés comprenant le cycle 2-thiohydantoïne sans indiquer l'utilité industrielle ont également été décrites par exemple dans J. Prakt. Chem., Vol 333(2), p 261-266, Indian J. Chem (1974), vol 12, n° 6, p 577-579, Chem. Abstr <u>68</u> (1968), 87240d et Organic Magn. Resonnance, vol 19, (1) p 27-30.

Objet de l'invention

La présente invention concerne de nouveaux composés comprenant dans leur structure l'hétérocycle 2-thiohydantoïne (ou 2-thioxo-4-imidazolidinone) ainsi que leur procédé de préparation et leur utilisation en thérapeutique, notamment pour la préparation d'un médicament destiné au traitement du diabète, des maladies dues à une hyperglycémie, des hypertriglycéridémies, des dyslipidémies ou de l'obésité.

Description

5

10

15

20

Selon l'invention, on propose de nouveaux dérivés de la 2-thiohydantoine choisis parmi :

a) les composés de formule

$$R_1 \longrightarrow N \longrightarrow R_2$$

$$R_3 \longrightarrow R_4 \longrightarrow 0$$

dans laquelle

 R_1 représente un noyau aromatique non substitué ou substitué par un ou plusieurs atomes ou groupes d'atomes choisis parmi les halogènes, les groupes alcoxy en C_1 - C_4 linéaire ou ramifié, alkyle en C_1 - C_4 linéaire, ramifié ou cyclique, alkylthio en C_1 - C_4 linéaire ou ramifié, nitro, trifluorométhyle, trifluorométhoxy, méthylènedioxy ou

I

$$-N \begin{pmatrix} CH_2 & R_5 \\ X & R_6 \end{pmatrix}$$

R₂ représente un atome d'hydrogène,

un groupe alkyle en C₁-C₇ linéaire, ramifié ou cyclique, éventuellement interrompu par un ou plusieurs atomes d'oxygène,

un groupe halogénoalkyle en C1-C3,

un groupe alcényle en C3-C5, linéaire ou ramifié,

un groupe alcynyle en C₃-C₄, linéaire ou ramifié,

un groupe hydroxyalkyle en C2-C6,

25 un groupe aminoalkyle en C2-C4,

un groupe cyanoalkyle en C2-C3,

un groupe alkyle en C₁-C₃, linéaire ou ramifié, substitué par un ou plusieurs substituants R₇, ou

un noyau aromatique non substitué ou substitué par un ou plusieurs atomes ou groupes d'atomes choisis parmi les halogènes, les groupes alcoxy en C₁-C₄ linéaire ou ramifié, alkyle en C₁-C₄ linéaire, ramifié ou cyclique, alkylthio en C₁-C₄ linéaire ou ramifié, amino, cyano, hydroxy, nitro, trifluorométhyle, trifluorométhoxy, méthylènedioxy, éthylènedioxy, difluorométhylènedioxy, aminosulfonyle, diméthylamino, hydroxyalkyle en C₁-C₃, acide carboxylique, ester d'alkyle en C₂-C₃, méthanesulfonylamino, benzènesulfonylamino, t-butoxycarbonylamino, ou

$$-N \xrightarrow{\text{(CH}_2)_m} R_5$$

R₃, R₅ et R₆ représentent chacun indépendamment un atome d'hydrogène ou un groupe alkyle en C₁-C₄,

R₄ représente un atome d'hydrogène, un groupe alkyle en C₁-C₄ ou un groupe hydroxy, ou,

R₃ et R₄ forment ensemble un groupe méthylène, ou

 R_5 et R_6 forment ensemble un groupe éthylène – CH_2 - CH_2 -,

R₇ représente un groupe acide carboxylique libre ou estérifié par un groupe alkyle en C₁-C₃, un noyau phényle non substitué ou substitué par un ou plusieurs groupes méthoxy, phényle ou méthylènedioxy, un noyau 2-furyle, un noyau 2-, 3- ou 4-pyridinyle ou un groupe 4-morpholinyle,

$$m = 2 \text{ ou } 3$$

20

25

X représente un atome d'oxygène, un atome de soufre, un groupe sulfoxyde, un groupe sulfonyle, un groupe carbonyle, un groupe

$$C \stackrel{R_9}{\underset{R_8}{\longleftarrow}}$$
 ou un groupe :

 R_8 représente un atome d'hydrogène, un groupe hydroxy, un groupe hydroxyalkyle en C_1 - C_2 , un groupe benzoyle ou un groupe CO_2CH_3 ,

R₉ représente un atome d'hydrogène ou forme, avec R₈ un groupe éthylènedioxy, R₁₀ représente un groupe méthyle, un groupe hydroxyalkyle en C₂-C₄, un groupe 1-oxoalkyle en C₂-C₄, un groupe SO₂N(CH₃)₂, un groupe 2-pyridinyle ou un groupe 2-pyrimidinyle,

BNSDOCID: <WO____02081453A1_1_>

à la condition que l'un au moins des substituants R_1 et R_2 représente un noyau aromatique substitué au moins par un groupe

$$-N \xrightarrow{\text{(CH}_2)_m} R_5$$

b) les sels d'addition des composés de formule I avec un acide, notamment les sels pharmaceutiquement acceptables.

L'invention comprend également, lorsque les substituants R₃ et R₄ sont différents, les composés de configuration R, les composés de configuration S et leurs mélanges.

L'invention concerne également les composés de formule I ou leurs sels d'addition avec un acide pharmaceutiquement acceptables pour leur utilisation en tant que substance pharmacologique active.

En particulier, l'invention concerne l'utilisation d'au moins un composé selon la formule I ci-dessus en tant que principe actif pour la préparation d'un médicament destiné à une utilisation en thérapeutique, notamment pour lutter contre les maladies dues à une hyperglycémie, le diabète, les hypertriglycéridémies, les dyslipidémies ou l'obésité.

Description détaillée

5

10

15

20

25

30

Dans la formule I représentant les composés selon l'invention, on comprend par groupe alkyle en C₁-C₄ une chaîne hydrocarbonée saturée ayant de 1 à 4 atomes de carbone, linéaire, ramifiée ou bien encore cyclique. Des exemples de groupes alkyle en C₁-C₄ comprennent les groupes méthyle, éthyle, propyle, butyle, 1-méthyléthyle, cyclopropyle, 1-méthylpropyle, 2-méthylpropyle ou 1,1-diméthyléthyle. On entend par groupe alkyle en C₁-C₇ éventuellement interrompu par un ou plusieurs atomes d'oxygène, une chaîne hydrocarbonée saturée, linéaire, ramifiée ou comprenant un cycle, ayant de 1 à 7 atomes de carbone, ladite chaîne étant susceptible de comprendre un ou plusieurs atomes d'oxygène non consécutifs entre 2 atomes de carbone. Des exemples de groupes alkyles en C₁-C₇ éventuellement interrompu par un ou plusieurs atomes d'oxygène comprennent les groupes précédemment cités ainsi que, notamment, les groupes pentyle, hexyle, heptyle, 1-méthyléthyle, cyclohexyle, cyclohexylméthyle, méthylcyclohexyle, méthoxyéthyle, éthoxyéthoxyéthyle ou encore tétrahydropyranyleoxyalkyle.

Lorsqu'un groupe phényle est substitué, le substituant peut se trouver en position ortho, méta ou para, la position para étant préférée.

10

15

20

25

30

Par groupe halogénoalkyle en C₁-C₃, on comprend un groupe alkyle en C₁-C₃ porteur d'au moins un atome d'halogène choisi parmi le fluor, le chlore ou le brome, préférentiellement le fluor, par exemple un groupe trifluorométhyle ou 2,2,2-trifluoroéthyle.

Par groupe alcoxy en C_1 - C_4 linéaire ou ramifié, on entend les groupes méthoxy, éthoxy, propoxy, butoxy ou 1-méthyléthoxy.

Par groupe alcényle en C₃-C₅, on entend une chaîne, linéaire ou ramifiée, comprenant dans sa structure une double liaison entre 2 carbones.

Par groupe alcynyle en C₃-C₄, on entend une chaîne, linéaire ou ramifiée, comprenant dans sa structure une triple liaison entre 2 carbones.

Par groupe hydroxyalkyle en C₂-C₆, on entend un groupe alkyle ayant de 2 à 6 atomes de carbone substitué par un groupe hydroxyle. Des exemples de groupe hydroxyalkyle en C₂-C₆ comprennent les groupes 2-hydroxyéthyle, 2-hydroxypropyle, 3-hydroxypropyle, 4-hydroxybutyle, 5-hydroxypentyle, ou 6-hydroxyhexyle.

Par groupe aminoalkyle en C₂-C₄, on entend un groupe alkyle ayant de 2 à 4 atomes de carbone, substitué par un groupe amino NH₂, ledit groupe amino étant susceptible d'être protégé par un groupe d'atomes connus de l'homme de métier, par exemple un groupe alkylesulfonyle ou un groupe *t*-butoxycarbonyle (Boc).

Par groupe cyanoalkyle en C₂-C₃, on entend un groupe alkyle comprenant un ou deux atomes de carbone, substitué par un groupe cyano.

Des exemples de noyau aromatique sont les noyaux phényle, 2- ou 3-thiényle, 2- ou 3-furyle 2-, 3- ou 4-pyridinyle, 1- ou 2-naphtyle, indolyle, 1-*H*-imidazolyle, 1-*H*-benzimidazolyle, benzotriazolyle, 1,3-dihydro-2-oxo-benzimidazolyle, 1,3-dihydro-2-oxo-indolyle, 2*H*-2-oxo-benzopyranyle, 2*H*-4*H*-3-oxo-1,4-benzoxazinyle.

Par halogène on comprend le fluor, le chlore ou le brome, les atomes d'halogène préférés dans les composés de formule I selon l'invention étant le fluor et le chlore.

Les composés de formule I porteurs d'une fonction amine par la présence d'un hétérocycle azoté ou par la présence d'un substituant aminé, peuvent être salifiés par réaction avec un acide non toxique et acceptable en thérapeutique. Parmi ces acides, on peut choisir les acides minéraux tels que les acides chlorhydrique, bromhydrique, phosphorique et sulfurique, ou les acides organiques tels que les acides méthanesulfonique, benzènesulfonique, citrique, maléique, fumarique, oxalique, lactique, tartrique ou trifluoroacétique.

Une famille préférée des composés de formule (I) de l'invention comprend :

a) les composés de formule

dans laquelle

R₁ représente un noyau phényle éventuellement substitué par un ou plusieurs atomes ou groupes d'atomes choisis parmi les halogènes, les groupes alkyle en C₁-C₄ linéaire ou

I

R₂ représente

un groupe alkyle en C1-C7 linéaire, ramifié ou cyclique,

un groupe alcényle en C₃-C₅ linéaire, ou

un noyau phényle, 2-thiényle ou 3-pyridinyle éventuellement substitué par un ou plusieurs atomes ou groupes d'atomes choisis parmi les halogènes, les groupes alcoxy en C_1 - C_4 linéaire ou ramifié, alkyle en C_1 - C_4 linéaire, alkylthio en C_1 - C_4 linéaire, amino, hydroxy, nitro, trifluorométhyle, trifluorométhoxy, méthylènedioxy ou

$$-N$$
 R_{ϵ}
 R_{ϵ}

15

R₄ représente un atome d'hydrogène, un groupe alkyle en C₁-C₄ linéaire ou un groupe hydroxy,

 R_3 , R_5 , et R_6 représentent chacun indépendamment un atome d'hydrogène ou un groupe alkyle en C_1 - C_4 linéaire,

20 X représente un atome d'oxygène, un groupe sulfoxyde ou un atome de carbone substitué par un groupe hydroxyalkyle en C₁-C₂,

à la condition que l'un au moins des substituants R_1 et R_2 représente un noyau aromatique substitué au moins par un groupe

$$-N$$
 R_{s}
 R_{s}

b) les sels d'addition de composés de formule I avec un acide, notamment les sels pharmaceutiquement acceptables.

Parmi les composés de l'invention, on préfère tout particulièrement les composés de formule I dans lesquels R₁ représente un groupe phényle substitué au moins en position para par un groupe

$$-N \begin{pmatrix} CH_2 \\ X \\ CH_2 \end{pmatrix}_2 R_6$$

et parmi ceux-ci, ceux dans lesquels X représente un atome d'oxygène, m=2 et R_5 et R_6 représentent chacun un atome d'hydrogène ou un groupe méthyle.

On préfère également les composés de formule I dans lesquels R₃ représente un atome d'hydrogène et R₄ représente un groupe méthyle.

Les composés de formule I peuvent être préparés selon un premier procédé général A consistant à :

1) faire réagir un aminoacide de formule :

15

20

10

5

dans laquelle

R₁ représente un noyau aromatique non substitué ou substitué par un ou plusieurs atomes ou groupes d'atomes choisis parmi les halogènes, les groupes alcoxy en C₁-C₄ linéaire ou ramifié, alkyle en C₁-C₄ linéaire, ramifié ou cyclique, alkylthio en C₁-C₄ linéaire ou ramifié, nitro, trifluorométhyle, trifluorométhoxy, méthylènedioxy ou

$$-N \xrightarrow{\text{(CH}_2)_m} R_5$$

m représente 2 ou 3,

X représente un atome d'oxygène, un atome de soufre, un groupe sulfoxyde, un groupe sulfonyle, un groupe carbonyle, un groupe

10

15

25

$$C = R_9$$
 ou un groupe :

 R_3 , R_4 , R_5 et R_6 représentent chacun indépendamment un atome d'hydrogène ou un groupe alkyle en C_1 - C_4 ,

 R_8 représente un atome d'hydrogène, un groupe hydroxy, un groupe hydroxyalkyle en $C_1\text{-}C_2$, un groupe benzoyle ou un groupe CO_2CH_3 ,

 R_9 représente un atome d'hydrogène ou forme, avec R_8 un groupe éthylènedioxy,

 R_{10} représente un groupe méthyle, un groupe hydroxyalkyle en C_2 - C_4 , un groupe 1-oxoalkyle en C_2 - C_4 , un groupe $SO_2N(CH_3)_2$, un groupe 2-pyrimidinyle,

avec un isothiocyanate de formule

$$R_2-N=C=S$$
 (III)

dans laquelle R2 représente :

un groupe alkyle en C₁-C₇ linéaire, ramifié ou cyclique, éventuellement interrompu par un ou plusieurs atomes d'oxygène,

un groupe halogénoalkyle en C₁-C₃,

20 un groupe alcényle en C₃-C₅, linéaire ou ramifié,

un groupe alcynyle en C3-C4, linéaire ou ramifié,

un groupe hydroxyalkyle en C2-C6,

un groupe aminoalkyle protégé en C2-C4,

un groupe cyanoalkyle en C2-C3,

un groupe alkyle en C₁-C₃, linéaire ou ramifié, éventuellement substitué par un ou plusieurs substituants R₇, ou

un noyau aromatique non substitué ou substitué par un ou plusieurs atomes ou groupes d'atomes choisis parmi les halogènes, les groupes alcoxy en C₁-C₄ linéaire ou ramifié, alkyle en C₁-C₄ linéaire, ramifié ou cyclique, alkylthio en C₁-C₄ linéaire ou ramifié, cyano, hydroxy, nitro, trifluorométhyle, trifluorométhoxy, méthylènedioxy, éthylènedioxy,

difluorométhylènedioxy, aminosulfonyle, diméthylamino, hydroxyalkyle en C₁-C₃, acide carboxylique, ester d'alkyle en C₂-C₃, méthanesulfonylamino, benzènesulfonylamino, t-butoxycarbonylamino, ou

$$-N \xrightarrow{(CH_2)_m R_5} X$$

dans un solvant tel que par exemple l'acétonitrile ou le dichlorométhane, en présence d'une base aprotique telle que notamment la triéthylamine, à une température comprise entre 10°C et la température de reflux du solvant, pendant 2 à 4 heures, pour obtenir le composé de formule I

$$R_1$$
 R_3
 R_4
 R_2

dans laquelle R₁, R₂, R₃, R₄ conservent la même signification que précédemment, étant entendu que l'un au moins des groupes R₁ et R₂ contient dans sa structure un noyau aromatique substitué au moins par le groupe

tel que défini ci-dessus.

 si nécessaire, obtenir le sel d'addition du composé de formule I ci-dessus avec un acide organique ou minéral.

Selon un second procédé E de préparation d'un composé selon l'invention, on met en œuvre les étapes consistant à :

1) faire réagir un ester d'aminoacide de formule (IIa)

$$R_1$$
 NH COORA R_4 (IIa)

dans laquelle R₁, R₃ et R₄ ont une signification analogue à celle des substituants R₁, R₃ et R₄ notés pour le composé de formule II décrit dans le procédé A et Ra représente un groupe alkyle en C₁-C₃, préférentiellement le groupe éthyle,

avec un isothiocyanate de formule

BNSDOCID: <WO____02081453A1_I_>

15

10

15

20

25

$$R_2$$
-N=C=S (III)

telle que décrite précédemment pour le procédé A,

dans un solvant tel que par exemple le toluène et en présence d'un acide faible tel que l'acide acétique, à une température comprise entre 50°C et la température de reflux du solvant, pendant 2 à 25 heures, pour obtenir le composé de formule I

dans laquelle R_1 , R_2 , R_3 , R_4 conservent la même signification que précédemment, étant entendu que l'un au moins des groupes R_1 et R_2 contient dans sa structure un noyau aromatique substitué au moins par le groupe

$$-N \begin{pmatrix} CH_2 & R_5 \\ X & R_6 \end{pmatrix}$$

tel que défini ci-dessus.

2) si nécessaire, obtenir le sel d'addition du composé de formule I ci-dessus avec un acide organique ou minéral.

En variante de l'étape 1) du procédé E décrit ci-dessus, les composés de formule IIa peuvent être mis en réaction selon un procédé F consistant à mélanger intimement les 2 composés IIa et III, sans solvant, et à porter le mélange à une température d'environ 110 à 130 °C, pendant 0,5 à 3 heures, pour obtenir le composé de formule I dans laquelle R₁, R₂, R₃ et R₄ conservent la même signification que dans les produits de départ.

Selon une seconde variante M de l'étape 1) du procédé E décrit ci-dessus, les composés de formule IIa et III peuvent être mis en réaction selon un procédé consistant à mélanger intimement les composés IIa et III dans un tube ou un réacteur en PTFE en présence d'une faible quantité d'acide acétique et chauffer le mélange pendant 1 à 15 mn au moyen d'un rayonnement micro-ondes, pour obtenir le composé de formule I dans laquelle R₁, R₂, R₃ et R₄ conservent la même signification que dans les produits de départ.

Les composés de formule II peuvent être obtenus par réaction d'une amine de formule

$$R_1-NH_2$$
 (IV)

dans laquelle R₁ représente la même signification que précédemment, avec un acide halogéné de formule

BNSDOCID: <WO____02081453A1_I_>

dans laquelle Hal représente un halogène, préférentiellement le brome, R₃ et R₄ représentent chacun indépendamment un atome d'hydrogène ou un groupe alkyle en C₁-C₄, préférentiellement en l'absence de solvant et en présence de bicarbonate de sodium, à une température comprise entre 60 et 140 °C, pendant 0,5 à 10 heures, pour obtenir l'acide de formule

dans laquelle R₁, R₃ et R₄ conservent la même signification que dans les produits de départ, Les composés de formule IIa peuvent être obtenus par réaction d'une amine de

formule

$$R_1-NH_2$$
 (IV)

dans laquelle R_1 représente la même signification que précédemment, avec un ester α -halogéné de formule

15

20

5

10

dans laquelle Hal représente un halogène, préférentiellement le brome, Ra représente un groupe alkyle en C₁-C₃, préférentiellement un groupe éthyle, R₃ et R₄ représentent chacun indépendamment un atome d'hydrogène ou un groupe alkyle en C₁-C₄,

dans un solvant tel que l'éthanol, en présence d'acétate de sodium, à une température comprise entre 50 °C et la température de reflux du solvant, pendant 2 à 20 heures pour obtenir le composé de formule

dans lequel R₁, Ra, R₃ et R₄ conservent la même signification que dans les produits de départ.

Les composés de formule III

$$R_2$$
-N=C=S (III)

sont généralement des produits commerciaux ou peuvent être préparés en suivant des modes opératoires connus de l'homme de l'art, par exemple par réduction d'un composé nitré R₂-NO₂ de façon à obtenir l'amine primaire R₂-NH₂ que l'on fait ensuite réagir par exemple avec le thiocarbonyldiimidazole pour obtenir l'isothiocyanate correspondant.

Les composés de formule I dans lesquels R₄ représente un groupe hydroxy peuvent être obtenus à partir des composés de formule (I) dans lesquels R₄ est un atome d'hydrogène, par oxydation ménagée au moyen d'oxygène de l'air dans un solvant comme par exemple le diméthylsulfoxyde (DMSO).

Les composés de formule I dans lesquels l'un des groupes R₁ ou R₂ comprend un substituant arnino primaire ou secondaire peuvent être obtenus selon un procédé analogue aux procédés A et E décrits ci-dessus, en utilisant des composés de départ porteurs du groupe amino protégé par un groupe amino-protecteur tel que par exemple le groupe Boc (t-butyloxycarbonyl), ledit groupe protecteur étant éliminé par des moyens connus de l'homme de l'art après obtention du composé cyclisé de structure centrale 2-thioxo-4-imidazolidinone.

Les composés de formule I dans lesquels X représente un groupe S=O peuvent être obtenus au départ des composés de formule IIa dans lesquels X représente un atome de soufre, par oxydation ménagée au moyen par exemple du complexe urée/peroxyde d'hydrogène, en effectuant la réaction dans un solvant comme par exemple le méthanol, en présence d'anhydride phtalique, puis réaction de l'ester ainsi obtenu avec un isothiocyanate de formule III conformément à l'enseignement du procédé E décrit ci-dessus.

La plupart des composés selon l'invention comportent un ou plusieurs atomes de carbone présentant une asymétrie. Dans la présente description, si aucune indication n'est précisée dans la nomenclature, le composé est un composé racémique, c'est à dire contenant les isomères R et S en quantités sensiblement égales. Dans les cas de composés dont le (ou les) carbone(s) asymétrique(s) est (sont) sous une configuration déterminée, la configuration R ou S est indiquée en correspondance avec la position du substituant introducteur du centre asymétrique.

Dans les exemples qui suivent, on désigne par "préparation" les exemples décrivant la synthèse de composés intermédiaires et par "exemple" ceux décrivant la synthèse de composés de formule (I) selon l'invention. Ces exemples ont pour but d'illustrer l'invention, et ne sauraient en aucun cas en limiter la portée. Les points de fusion sont mesurés au banc Koffler et les valeurs spectrales de Résonance Magnétique Nucléaire sont

5

10

15

20

25

caractérisées par le déplacement chimique calculé par rapport au TMS, par le nombre de protons associés au signal et par la forme du signal (s pour singulet, d pour doublet, t pour triplet, q pour quadruplet, m pour multiplet). La fréquence de travail et le solvant utilisé sont indiqués pour chaque composé.

5

10

15

20

25

PREPARATION I

N-[4-(4-morpholinyl)phényl]alanine, éthyl ester

On prépare une solution de 100 g (0,56 M) de 4-(4-morpholinyl)aniline dans 3 l d'éthanol absolu et on ajoute 69 g (0,84 M) d'acétate de sodium, puis 109 ml (0,84 M) de 2-bromopropionate d'éthyle. On agite ensuite le mélange réactionnel pendant 16 heures à reflux du solvant. Après refroidissement, le mélange est filtré et le filtrat est concentré sous pression réduite. Le résidu est repris par 1,5 l d'acétate d'éthyle et la solution obtenue est lavée avec une solution aqueuse de chlorure de sodium. La phase organique est séchée sur sulfate de magnésium, puis concentrée sous pression réduite. Le résidu est repris dans 0,8 l d'éther isopropylique et le solide obtenu est isolé par filtration puis séché. On obtient ainsi 108 g du produit attendu sous forme d'un solide fin beige (rendement = 69 %).

F = 90 ° C.

PREPARATION II

N-[4-(4-morpholinyl)phényl]alanine, dichlorhydrate

On prépare une solution de 20 g (71,9 mM) de l'ester obtenu selon la préparation I dans 200 ml de tétrahydrofuranne et on ajoute 84 ml d'une solution normale de lithine dans l'eau. Le mélange est agité pendant 2 heures à température ambiante puis le solvant est éliminé sous pression réduite. La phase aqueuse résiduelle est lavée 3 fois par 100 ml d'éther éthylique puis refroidie et acidifiée par 21,6 ml d'acide chlorhydrique 10N. Le mélange est concentré sous pression réduite jusqu'à l'apparition de cristaux. Ce solide est séparé par filtration et lavé sur le filtre avec de l'acétone. Après séchage, on obtient 25,6 g du produit attendu sous forme d'un solide rose (le produit contient un peu de chlorure de lithium).

RMN ¹H (DMSO d₆, 300MHz): 1,38 (d, 3H); 3,48 (m, 4H); 4,05 (m, 4H); 4,07 (q,1H); 6,75 (d,2H); 7,53 (d,2H).

PREPARATION III

3-[4-[(1,1-diméthyléthoxycarbonyl)amino]phényl]-1-[4-(4-morpholinyl)phényl]-5-méthyl-2-thioxo-4-imidazolidinone

On mélange 450 mg (1,6 mM) de l'ester obtenu selon la préparation I et 410 mg d'isothiocyanate de 4-[(1,1-diméthyléthoxycarbonyl)amino]phényle dans 10 ml de toluène et on ajoute 0,4 ml d'acide acétique. Le mélange est agité à température de reflux du solvant pendant 5 heures puis refroidi à 10-15 °C. Le précipité blanc formé est séparé par filtration, rincé avec 2 ml de toluène froid puis séché sous pression réduite. On obtient ainsi 720 mg du produit attendu sous forme de cristaux blancs (rendement = 80 %).

F = 224-226 °C

5

15

20

PREPARATION IV

Isothiocyanate de 3-(trifluorométhoxy)phényle

On prépare une solution de 3,46 g (19,5 mM) de 3-(trifluorométhoxy)aniline dans 150 ml de diméthylformamide et on refroidit à 0 °C. On ajoute ensuite goutte à goutte une solution de 3,83 g (21,45 mM) de thiocarbonyldiimidazole dissous dans 60 ml de diméthylformamide. Le mélange réactionnel est agité à température ordinaire pendant 1 heure 30 minutes, puis versé sur 300 ml d'eau, extrait par deux fois 100 ml d'éther éthylique. Ces phases organiques sont lavées par deux fois 50 ml d'eau, séchées sur sulfate de magnésium puis concentrées sous pression réduite. Ce résidu est purifié par chromatographie sur gel de silice en éluant à l'aide du mélange cyclohexane/acétate d'éthyle (95/5; v/v). On obtient ainsi 2,1 g de produit attendu sous forme d'un liquide jaune-vert (rendement = 50 %).

RMN ¹H (CDCl₃, 300MHz): 7,38 (t, 1H); 7,15 (m, 3H)

25 PREPARATION V

N-[4-(4-morpholinyl)-2-méthylphényl]alanine, éthyl ester

En opérant de façon analogue à la préparation I, au départ de la 4-(4-morpholinyl)-2-méthylaniline, on obtient le produit attendu sous forme d'une poudre jaune (rendement = 78 %).

30 $F = 70 \, ^{\circ}C$

10

15

25

30

PREPARATION VI

N-[3,5-diméthyl-4-(4-morpholinyl)phényl]alanine, éthyl ester

En opérant de façon analogue à la préparation I, au départ de 3,5-diméthyl-4-(4-morpholinyl)aniline, on obtient le produit attendu sous forme d'une huile beige (rendement = 91 %).

RMN ¹H (CDCl₃, 300MHz): 6,25 (s, 2H); 4,20 (m, 3H); 4,07 (m, 1H); 3,75 (t,4H); 3,02 (t,4H); 2,25 (s,6H); 1,49 (d, 3H); 1,28 (t, 3H).

PREPARATION VII

N-[3,5-dichloro-4-(4-morpholinyl)phényl]alanine

On prépare un mélange de 1,66 g (6,72 mM) de 3,5-dichloro-4-(4-morpholinyl)aniline, 2 g (23,5 mM) de bicarbonate de sodium et 1,25 ml (13,44 mM) d'acide 2-bromopropanoïque et on agite le mélange réactionnel à 100 °C pendant 4 heures. Le mélange est ensuite refroidi puis repris dans 60 ml d'acétate d'éthyle et 40 ml d'eau, puis amené à pH légèrement acide à l'aide d'une solution N d'acide chlorhydrique. La phase aqueuse séparée est extraite par de l'acétate d'éthyle et les phases organiques rassemblées sont lavées avec une solution de chlorure de sodium puis séchées sur sulfate de magnésium et concentrées sous pression réduite. Le produit brut ainsi obtenu est utilisé sans purification complémentaire pour les synthèses suivantes.

PREPARATION VIII

20 N-[4-(2S,6S-diméthyl-4-morpholinyl)phényl]alanine, éthyl ester

En opérant de façon analogue à la préparation I, au départ de 4-(2S,6S-diméthyl-4-morpholinyl)aniline, on obtient le produit attendu sous forme d'une huile jaune (rendement = 87 %).

RMN ¹H (CDCl₃, 300MHz): 6,81 (d, 2H); 6,63 (d, 2H); 4,15 (m, 5H); 3,9 (m,1H); 3,08 (2d,2H); 2,75 (2d,2H); 1,48 (d, 3H); 1,32 (d, 6H); 1,30 (t, 3H).

PREPARATION IX

N-[4-(2R,6S-diméthyl-4-morpholinyl)phényl]alanine, éthyl ester

En opérant de façon analogue à la préparation I, au départ de 4-(2R,6S-diméthyl-4-morpholinyl)aniline, on obtient le produit attendu sous forme d'une pâte jaune pâle (rendement = 84 %).

RMN ¹H (CDCl₃, 300MHz): 6,82 (d, 2H); 6,59 (d, 2H); 4,17 (q, 2H); 4,07(m, 1H); 3,85 (m, 3H); 3,25 (d, 2H); 2,33 (t, 2H); 1,45 (d, 3H); 1,24 (t, 3H); 1,23 (d, 6H).

PREPARATION X

2-méthyl-N-[4-(4-morpholinyl)phényl]alanine, éthyl ester

En opérant de façon analogue à la préparation I, au départ de 2-bromo-2-méthylpropanoate d'éthyle, on obtient le produit attendu sous forme de cristaux beiges (rendement = 70 %).

 $F = 78 \, ^{\circ}C$

5

10

20

PREPARATION XI

1-(4-nitrophényl)-4-pipéridineméthanol

On prépare une solution de 1,4 g (10 mM) de 4-fluoro-1-nitrobenzène dans 20 ml de diméthylsulfoxyde et on ajoute 2,5 g (22 mM) de 4-pipéridineméthanol. Le mélange réactionnel maintenu sous agitation pendant 1 heure à 80 °C puis refroidi et versé sur 200 ml d'eau. Le précipité jaune formé est séparé par filtration, lavé à l'eau et séché. On obtient ainsi 2,3 g du produit attendu sous forme d'une poudre blanche (rendement = 99 %). F = 161 °C

15 PREPARATION XII

1-(4-aminophényl)-4-pipéridineméthanol

On prépare une solution de 2,3 g du composé obtenu selon la préparation XI dans 150 ml de méthanol et on ajoute 200 mg de charbon palladié à 10 %. Le mélange est agité sous atmosphère d'hydrogène pendant 1 h 30, à pression atmosphérique et température ambiante. Le catalyseur est ensuite séparé par filtration et le filtrat est concentré sous pression réduite. On obtient ainsi 2 g du produit attendu sous forme d'une poudre beige (rendement = 99 %).

F = 105 °C

25 PREPARATION XIII

N-[4-[4-(hydroxyméthyl)-1-pipéridinyl]phényl]alanine, dichlorhydrate

On prépare une solution de 1,95 g du composé obtenu selon la préparation XII et 2 ml d'acide 2-bromopropanoïque et on ajoute 2,78 g (33,2 mM) de bicarbonate de sodium. Le mélange réactionnel est maintenu sous agitation pendant 30 minutes à 100°C, puis refroidi et solubilisé dans 100 ml d'eau. La solution est acidifiée jusqu'à pH 1 à l'aide d'acide chlorhydrique et cette phase aqueuse est lavée par 50 ml de dichlorométhane puis concentrée sous pression réduite. On obtient ainsi 3,9 g de l'acide attendu non purifié, sous forme de cristaux beiges utilisés directement dans l'étape suivante sans autre purification.

PREPARATION XIV

N-[4-(4-thiomorpholinyl)phényl]alanine, éthyl ester

En opérant de façon analogue à la préparation I, au départ de 4-(4-thiomorpholinyl)aniline, on obtient le produit attendu sous forme d'une poudre blanche (rendement = 48 %).

 $F = 240 \,^{\circ}C$

5

10

15

25

30

PREPARATION XV

N-[4-(4-thiomorpholinyl)phényl]alanine, éthyl ester, S-oxyde

On prépare une solution de 0,13 g (1,36 mM) du composé d'addition urée/peroxyde d'hydrogène dans 4 ml de méthanol et on ajoute 0,05 g (0,34 mM) d'anhydride phtalique, puis 0,2 g (0,68 mM) de l'ester obtenu selon la préparation XIV. Le mélange réactionnel est maintenu sous agitation pendant 1 heure 30 minutes à température ambiante, puis versé sur 50 ml d'eau. Le mélange est extrait par 2 fois 50 ml d'acétate d'éthyle puis les phases organiques rassemblées sont lavées à l'eau puis séchées sur sulfate de magnésium et concentrées sous pression réduite. Le résidu est purifié par gel de silice en éluant l'aide d'un chromatographie sur dichlorométhane/méthanol (99/1; v/v). On obtient ainsi 80 mg du produit attendu (rendement = 38 %).

PREPARATION XVI

20 N-[4-(4-morpholinyl)phényl]glycine, dichlorhydrate

On mélange intimement 10 g (57 mM) de 4-(4-morpholinyl)aniline et 16,5 g de bicarbonate de sodium. On ajoute 9,4 g (67 mM) d'acide bromoacétique. Le mélange est agité à 120 °C pendant 6 minutes puis refroidi et versé sur 100 ml d'eau. La phase aqueuse obtenue est lavée avec 50 ml de dichlorométhane puis acidifiée lentement jusqu'à pH 1 avec de l'acide chlorhydrique. La phase aqueuse est concentrée sous pression réduite et le résidu solide est trituré avec 100 ml d'un mélange dichlorométhane/méthanol (80/20; v/v). Le mélange est filtré et le filtrat concentré sous pression réduite permet d'obtenir 16 g de cristaux marron qui sont utilisés sans purification complémentaire pour l'étape suivante.

Les préparations XVII à LXXX relatives à des nouveaux intermédiaires utiles pour la synthèse de composés de formule (I), généralement obtenues selon des modes opératoires analogues à ceux des préparations précédentes ou selon des procédés décrits ultérieurement (comme la méthode P), sont regroupées dans le tableau II situé plus loin.

5

10

15

3-(4-méthoxyphényl)-5-méthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-imidazolidinone

On prépare une solution de 45 g (0,16 M) du composé obtenu selon la préparation I dans 400 ml de toluène et on ajoute 36,3 g (0,22 M) de 4-(isothiocyanato)-anisole, puis 20 ml d'acide acétique. Le mélange réactionnel est ensuite maintenu à reflux pendant 16 heures. Le milieu réactionnel est concentré sous pression réduite et le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange toluène/acétate d'éthyle (80/20;v/v). On obtient ainsi 53 g du produit attendu sous forme d'un solide jaune pâle (rendement = 82,5 %).

F = 181 ° C

Exemple 2

5-méthyl-1-[4-(4-morpholinyl)phényl]-3-phényl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de phényle, on obtient le produit attendu sous forme d'une poudre jaune pâle (rendement = 77 %).

F = 214 °C

Exemple 3

5-méthyl-1-[4-(4-morpholinyl)phényl]-3-phényl-2-thioxo-4-imidazolidinone,

20 chlorhydrate

On dissout 1 g (2,72 mM) du composé obtenu selon l'exemple 2 dans 5 ml de dichlorométhane. On refroidit la solution à 0 °C puis on ajoute 1,3 ml d'une solution éthylique saturée de chlorure d'hydrogène. Le précipité blanc est séparé par filtration, lavé avec un peu d'éther éthylique et séché sous pression réduite. On obtient ainsi 1,1 g du produit attendu sous forme d'une poudre blanche (rendement = 99 %).

 $F = 212 \, ^{\circ}C$

Exemple 4

3-(4-hydroxyphényl)-5-méthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-

imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ de 4-(isothiocyanato)-phénol, on obtient le produit attendu sous forme d'une poudre blanche (rendement = 52 %). $F = 220 \, ^{\circ}$ C

5-méthyl-3-(3-méthoxyphényl)-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-

imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 3-méthoxyphényle, on obtient le produit attendu sous forme de cristaux beiges (rendement = 58 %).

F = 175 °C

Exemple 6

10

15

20

25

3-(4-éthoxyphényl)-5-méthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 4éthoxyphényle, on obtient le produit attendu sous forme de cristaux blancs avec un rendement de 48 %.

F = 180-182 °C

Exemple 7

3-(4-chlorophényl)-5-méthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-imidazolidinone

On dissout 0,6 g (2 mM) de l'acide obtenu selon la préparation II dans 5 ml de dichlorométhane et on ajoute 0,1 g de triéthylamine et 0,68 g (4 mM) d'isothiocyanate de 4-chlorophényle. Le mélange réactionnel est maintenu sous agitation pendant 20 heures à température ambiante, puis concentré sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/acétate d'éthyle (96/4; v/v). On obtient ainsi 0,37 g du produit attendu sous forme d'une poudre blanche (rendement = 46 %).

F = 212 °C

Exemple 8

3-(3-chlorophényl)-5-méthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 3-chlorophényle, on obtient le produit attendu sous forme de cristaux beiges (rendement = 54 %).

F = 137-138 °C

3-(2-chlorophényl)-5-méthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 7, au départ d'isothiocyanate de 2-chlorophényle on obtient le produit attendu sous forme de cristaux jaunes (rendement = 35 %).

F = 116 °C

Exemple 10

3-(4-fluorophényl)-5-méthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 4-10 fluorophényle, on obtient le produit attendu sous forme de cristaux blancs (rendement = 52 %).

 $F = 188-190 \, ^{\circ}C$

Exemple 11

15

20

$3\hbox{-}(3\hbox{-}fluoroph\'{e}nyl)\hbox{-}5\hbox{-}m\'{e}thyl\hbox{-}1\hbox{-}[4\hbox{-}(4\hbox{-}morpholinyl)ph\'{e}nyl]\hbox{-}2\hbox{-}thioxo\hbox{-}4\hbox{-}imidazolidinone}$

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 3-fluorophényle, on obtient le produit attendu sous forme de cristaux couleur crème (rendement = 74 %).

F = 196-198 °C

Exemple 12

3-(2-fluorophényl)-5-méthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 2-fluorophényl, on obtient le produit attendu sous forme de cristaux jaunes (rendement = 58 %).

F = 186-188 °C

Exemple 13

5-méthyl-3-(3-méthylphényl)-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 3-méthylphényle, on obtient le produit attendu sous forme de cristaux beiges (rendement = 46 %).

F = 160-162 °C

5-méthyl-3-(2-méthylphényl)-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 2-méthylphényle, on obtient le produit attendu sous forme de cristaux blancs (rendement = 9 %).

 $F = 143-145 \, ^{\circ}\text{C}$

5

15

20

Exemple 15

5-méthyl-1-[4-(4-morpholinyl)phényl]-3-(4-nitrophényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 4-nitrophényle, on obtient le produit attendu sous forme de cristaux jaunes (rendement = 88 %).

 $F = 208-210 \, ^{\circ}\text{C}$

Exemple 16

3-(4-aminophényl)-5-méthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-imidazolidinone

500 mg du composé obtenu selon la préparation III sont dissous dans 90 ml de dichlorométhane, on ajoute 10 ml d'acide trifluoroacétique puis on agite ce mélange pendant une heure à 20 °C. Le mélange réactionnel est ensuite concentré sous pression réduite et le résidu est repris en suspension dans 100 ml d'une solution saturée de bicarbonate de sodium. Cette suspension est extraite par du dichlorométhane et la phase organique obtenue est concentrée sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol (96/4; v/v). On obtient ainsi 400 mg du produit attendu sous forme de cristaux blancs (rendement = 95 %).

 $F = 269-270 \, ^{\circ}C$

Exemple 17

5-méthyl-3-[4-(méthylthio)phényl]-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-

25 imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 4-(méthylthio)phényle, on obtient le produit attendu sous forme de cristaux couleur crème (rendement = 77 %).

 $F = 168-170 \, ^{\circ}C$

5-méthyl-3-[4-(1-méthyléthoxy)phényl]-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 4-(1-5 méthyléthoxy)phényle, on obtient le produit attendu sous forme d'une poudre couleur crème (rendement = 60 %).

F = 120-122 °C

Exemple 19

5-méthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-3-[3-(trifluorométhoxy)-phényl]-4-

10 imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 3-(trifluorométhoxy)phényle, on obtient le produit attendu sous forme d'une poudre marron (rendement = 56 %).

F = 84-88 °C

15 Exemple 20

20

25

5-méthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-3-[3-(trifluorométhyl)-phényl]-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 3-(trifluorométhyl)phényle, on obtient le produit attendu sous forme de cristaux couleur crème (rendement = 70 %).

F = 163-165 °C

Exemple 21

3-(3,4-diméthoxyphényl)-5-méthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 3,4-(diméthoxy)phényle, on obtient le produit attendu sous forme d'un solide floconneux jaune pâle (rendement = 35 %).

F = 214-216 °C

3-(2,4-diméthoxyphényl)-5-méthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 2,4-5 (diméthoxy)phényle, on obtient le produit attendu sous forme de cristaux oranges (rendement = 31 %).

 $F = 110 \, ^{\circ}C$

Exemple 23

5-méthyl-3-(3,4-méthylènedioxyphényl)-1[4-(morpholinyl)phényl]-2-thioxo-4-

10 imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 3,4-(méthylènedioxy)phényle, on obtient le produit attendu sous forme d'un solide floconneux jaune (rendement = 55 %).

 $F = 223-225 \, ^{\circ}C$

Exemple 24

20

3-(4-méthoxy-2-nitrophényl)-5-méthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 4-méthoxy-2-nitrophényle, on obtient le produit attendu sous forme de cristaux beiges (rendement = 56 %).

 $F = 178-180 \, ^{\circ}C$

Exemple 25

3-(4-méthoxy-2-méthylphényl)-5-méthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 7, au départ d'isothiocyanate de 4-méthoxy-2-méthylphényle, on obtient le produit attendu sous forme de cristaux couleur crème (rendement = 12 %).

F = 144-146 °C

3-(3,4-difluorophényl)-5-méthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-

imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 3,4-5 difluorophényle, on obtient le produit attendu sous forme d'une poudre blanche (rendement = 62 %).

F = 164-165 °C

Exemple 27

10

5-méthyl-1-[4-(4-morpholinyl)phényl]-3-(3-pyridinyl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 3-pyridinyle, on obtient le produit attendu sous forme de cristaux couleur crème (rendement = 15 %).

F = 152-154 °C

Exemple 28

5-méthyl-1-[4-(4-morpholinyl)phényl]-3-(2-thiényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 2-thiényle, on obtient le produit attendu sous forme d'une poudre beige (rendement = 35 %). F = 184-185 °C

Exemple 29

20 3-éthyl-5-méthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate d'éthyle, on obtient le produit attendu sous forme d'une poudre jaune (rendement = 61 %).

F = 126 °C

Exemple 30

25 5-méthyl-1-[4-(4-morpholinyl)phényl]-3-(2-propényl)-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de 2-propényle, on obtient le produit attendu sous forme d'une poudre blanc cassé (rendement = 54 %).

F = 106 °C

30 Exemple 31

3-(cyclopentyl)-5-méthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ d'isothiocyanate de cyclopentyle, on obtient le produit attendu sous forme d'un solide blanc (rendement = 41 %).

F = 148-149 °C

Exemple 32

5-méthyl-1-[4-(4-morpholinyl)-2-méthylphényl]-3-phényl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 2, au départ de l'ester obtenu selon la préparation V, on obtient le produit attendu sous forme d'une poudre beige (rendement = 36 %).

F = 180 °C

Exemple 33

1-[3,5-diméthyl-4-(4-morpholinyl)phényl]-3-(4-méthoxyphényl)-5-méthyl-2-thioxo-4-

10 imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ de l'ester obtenu selon la préparation VI, on obtient le produit attendu sous forme d'une poudre blanc cassé (rendement = 48 %).

F = 240 °C

15 Exemple 34

1-[3,5-dichloro-4-(4-morpholinyl)phényl]-5-méthyl-3-phényl-2-thioxo-4-

imidazolidinone

En opérant de façon analogue à l'exemple 7, au départ de l'acide obtenu selon la préparation VII, on obtient le produit attendu sous forme d'une poudre blanche (rendement

20 = 16 %).

25

F = 255 °C

Exemple 35

1-[4-(2S,6S-diméthyl-4-morpholinyl)phényl]-5-méthyl-3-phényl-2-thioxo-4-

imidazolidinone

En opérant de façon analogue à l'exemple 2, au départ de l'ester obtenu selon la préparation VIII, on obtient le produit attendu sous forme d'une poudre blanche (rendement = 80 %).

F = 184 °C

1-[4-(2R,6S-diméthyl-4-morpholinyl)phényl]-5-méthyl-3-phényl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 2, au départ de l'ester obtenu selon la préparation IX, on obtient le produit attendu sous forme d'une poudre blanche (rendement = 85 %).

 $F = 200 \, ^{\circ}C$

Exemple 37

10

20

1-[4-(2R,6S-diméthyl-4-morpholinyl)phényl]-3-(4-méthoxyphényl)-5-méthyl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ de l'ester obtenu selon la préparation IX, on obtient le produit attendu sous forme d'une poudre jaune pâle (rendement = 63 %).

F = 210 °C

15 Exemple 38

1-[4-(2R,6S-diméthyl-4-morpholinyl)phényl]-3-(3-fluorophényl)-5-méthyl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 37, au départ d'isothiocyanate de 3-fluorophényle, on obtient le produit attendu sous forme d'une poudre blanche (rendement = 96 %).

F = 217 °C

Exemple 39

5,5-diméthyl-1-[4-(4-morpholinyl)phényl]-3-phényl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 2, au départ de l'ester obtenu selon la préparation X, on obtient le produit attendu sous forme d'une poudre beige (rendement = 23 %).

 $F = 206 \, ^{\circ}C$

Exemple 40

5,5-diméthyl-3-(4-méthoxyphényl)-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-

30 imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ de l'ester obtenu selon la préparation X, on obtient le produit attendu sous forme d'une poudre blanche (rendement = 30 %).

 $F = 225-230 \, ^{\circ}C$

Exemple 41

5,5-diméthyl-3-(3-fluorophényl)-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-

imidazolidinone

En opérant de façon analogue à l'exemple 11, au départ de l'ester obtenu selon la préparation X, on obtient le produit attendu sous forme d'une poudre beige (rendement = 60 %).

 $F = 219 \, ^{\circ}C$

5

10

20

Exemple 42

3-(3-chlorophényl)-5,5-diméthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-

imidazolidinone

En opérant de façon analogue à l'exemple 8, au départ de l'ester obtenu selon la préparation X, on obtient le produit attendu sous forme de cristaux blancs (rendement = 32 %).

15 $F = 220 \, ^{\circ}C$

Exemple 43

5,5-diméthyl-3-(3,4-méthylènedioxyphényl)-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 23, au départ de l'ester obtenu selon la préparation X, on obtient le produit attendu sous forme de cristaux blancs (rendement = 24 %).

F = 202 °C

Exemple 44

1-[4-[4-(hydroxyméthyl)-1-pipéridinyl]phényl]-3-(4-méthoxyphényl)-5-méthyl-2-

25 thioxo-4-imidazolidinone

On prépare une solution de 1 g (3,6 mM) de l'aminoacide obtenu selon la préparation XIII dans 20 ml d'acétonitrile et on ajoute 0,75 ml (5,4 mM) d'isothiocyanate de 4-méthoxyphényle, puis 2 ml (14,4 mM) de triéthylamine. Le mélange réactionnel est maintenu sous agitation pendant 2 heures à température ambiante puis concentré sous pression réduite. Le résidu est repris par 50 ml d'eau et 100 ml de dichlorométhane. La phase organique séparée est séchée sur sulfate de magnésium puis concentrée sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un

mélange dichlorométhane/méthanol (95/5; v/v). On obtient ainsi 370 mg de produit attendu sous forme d'une poudre blanche (rendement = 25 %)

 $F = 88-90 \, ^{\circ}C$

Exemple 45

10

20

5-hydroxy-5-méthyl-1-[4-(4-morpholinyl)phényl]-3-phényl-2-thioxo-4-imidazolidinone

On prépare une solution de 1,7 g (4,3 mM) du composé obtenu selon l'exemple 2 dans 85 ml de diméthylsulfoxyde et on ajoute 8,5 ml d'eau. Le mélange réactionnel est maintenu pendant 22 heures à 100 °C, avec une introduction d'air comprimé. La solution est ensuite refroidie, versée sur 850 ml d'eau et le mélange obtenu est extrait plusieurs fois à l'acétate d'éthyle. Les phases organiques rassemblées sont lavées avec une solution de chlorure de sodium puis séchées sur sulfate de magnésium et concentrées sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/éther éthylique (90/10; v/v). Les cristaux obtenus sont lavés avec du cyclohexane puis séchés. On obtient ainsi 0,54 g du produit attendu sous forme de cristaux crèmes (rendement = 54 %).

F = 242-244 °C

Exemple 46

5-méthyl-3-phényl-1-[4-(4-thiomorpholinyl)phényl]-2-thioxo-4-imidazolidinone, S-oxyde

En opérant de façon analogue à l'exemple 2, au départ du composé obtenu selon la préparation XV, on obtient le produit attendu sous forme de cristaux blancs (rendement = 55 %).

F = 230 °C

25 Exemple 47

3-(3,4-diméthoxyphényl)-5,5-diméthyl-1-[4-(4-morpholinyl)phényl]-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 39, au départ d'isothiocyanate de 3,4diméthoxyphényle, on obtient le produit attendu sous forme de cristaux blancs (rendement

30 = 7 %).

 $F = 180 \, ^{\circ}C$

5

10

15

20

25

30

5-hydroxy-3-(4-méthoxy-2-méthylphényl)-5-méthyl-1-[4-(4-morpholinyl)-phényl]-2-thioxo-4-imidazolidinone

On mélange 1 g (2,67 mM) de l'aminoacide obtenu selon la préparation II avec 0,83 ml (5,34 mM) d'isothiocyanate de 4-méthoxy-2-méthylphényl et 1,1 ml de triéthylamine dans 30 ml de dichlorométhane et on ajoute 30 ml de méthanol. Le mélange réactionnel est agité 24 heures à température ambiante puis concentré sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/éther éthylique (80/20; v/v).. On obtient ainsi 0,23 g du produit attendu sous forme d'une poudre blanche (rendement = 21 %).

F = 205 °C

Exemple 49

1-[4-(4-morpholinyl)phényl]-3-phényl-2-thioxo-4-imidazolidinone

On mélange 8 g de l'acide obtenu selon la préparation XVI, 8 ml (68 mM) d'isothiocyanate de phényle et 19 ml de triéthylamine dans 100 ml d'acétonitrile et on agite le mélange pendant 16 heures à température ambiante. Le milieu réactionnel est ensuite concentré sous pression réduite et le résidu est purifié par chromatographie sur gel de silice en éluant par un mélange toluène/acétate d'éthyle (60/40; v/v). On obtient ainsi 250 mg du produit attendu sous forme de cristaux beiges (rendement = 2 %).

 $F = 250 \, ^{\circ}\text{C}$

Exemple 50

3-[4-(4-morpholinyl)phényl]-5- méthyl-1-phényl-2-thioxo-4-imidazolidinone

En opérant de façon analogue à l'exemple 1, au départ de l'ester éthylique de la Nphénylalanine et de l'isothiocyanate de 4-(4-morpholinyl)phényl, on obtient le produit attendu sous forme d'une poudre blanche (rendement = 64 %).

F = 201 °C

Les structures chimiques des composés selon l'invention décrits ci-dessus sont résumées dans le tableau I.

Les autres composés nouveaux, intermédiaires ou composés selon l'invention, obtenus selon des procédés analogues à ceux décrits ci-dessus, sont regroupés dans les tableaux suivants dans lesquels on peut retrouver la structure chimique, certaines caractéristiques physiques, le rendement de la réaction (noté «rdt ») et la méthode d'obtention. Le point de fusion (F) est exprimé en °C.

10

15

20

Le tableau III regroupe d'autres exemples de composés selon l'invention, généralement obtenus selon des méthodes analogues à celles décrites précédemment.

Dans le cas de composés salifiés, HCl signifie chlorhydrate, HBr signifie bromhydrate, Sulf signifie sulfate, Ms signifie méthanesulfonate, Tfa signifie trifluoroacétate.

Les composés figurant dans ces tableaux sont obtenus au moyen de méthodes analogues à celles des préparations ou exemples décrits précédemment (procédé A analogue à l'exemple 7, procédé E analogue à l'exemple 1) ou selon des procédés décrits ci-après (procédé M avec micro-ondes, procédé F par fusion sans solvant, procédé S avec genèse in situ de l'isothiocyanate et procédé P de préparation d'un aminoester).

Modes opératoires d'obtention des intermédiaires ou des composés de formule I:

Méthode M: (procédé général)

On place dans un réacteur en PTFE, 1 mmole d'ester de formule (IIa) et 1,2 mmole d'isothiocyanate R_2 -NCS (III) et on ajoute 2 gouttes d'acide acétique. Le réacteur est ensuite placé dans une four à micro-ondes domestique et irradié pendant 2 à 10 mn (par exemple 2 mn lorsque R_3 = CH_3 et R_4 = H et 10 mn lorsque R_3 = R_4 = CH_3), sous une puissance de 700 à 900 W. Après irradiation , le réacteur est refroidi et le mélange réactionnel est repris avec environ 20 ml d'éther éthylique. Si le produit attendu cristallise, le mélange est filtré et le composé attendu est isolé. Si le produit attendu ne cristallise pas ou est obtenu impur, on effectue une purification par chromatographie sur gel de silice afin d'obtenir le produit pur. Les rendements sont indiqués dans le tableau récapitulatif des composés selon l'invention.

25 Méthode F (Exemple 62):

Le composé obtenu selon la préparation XXII (0.5 g; 1.71 mM) est intimement mélangé avec 0.35 g (2.05 mM) d'isothiocyanate de 2,5-difluorophényle. Après addition de 5 gouttes d'acide acétique, le mélange réactionnel est porté à une température de 120 °C (bain d'huile) durant 1 h 30. Le produit de la réaction est directement purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/acétate d'éthyle (97/3; v/v). Après cristallisation dans l'éther isopropylique, le produit attendu est obtenu sous forme d'un solide blanc (rendement : 80 %).

F = 148°C.

15

20

Méthode P (Préparation LXIII)

On prépare une solution de 0,3 g (1,27 mM) de 2,6-diméthyl-4-(4-morpholinyl) nitrobenzène dans 15 ml d'éthanol dans un flacon de Parr. On ajoute successivement et sous atmosphère d'azote 0,217 g (1,27 mM) de sulfate de sodium, 0,56 ml(1,27 mM) de pyruvate d'éthyle et enfin 30 mg de charbon palladié à 10%. Le mélange obtenu est hydrogéné sous agitation et sous une pression de 3400 hPa à température ambiante pendant 5 h. Le mélange réactionnel est ensuite filtré et le filtrat est concentré sous pression réduite. Le résidu d'évaporation est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange hexane (acétate d'éthyle (80/20; v/v). Le produit attendu est obtenu sous forme d'une huile jaune (rendement : 57 %).

Méthode S (Exemple 303)

On prépare une solution de 1 g (5,6 mM) de thiocarbonyldiimidazole dans 20 ml de dichlorométhane et on ajoute goutte à goutte une solution de 1 g (5,6 mM) de 4-(4-morpholinyl)aniline dans 10 ml de dichlorométhane. Le mélange réactionnel est ensuite agité pendant 1 heure à température ambiante. On ajoute ensuite 1,09 g (5,6 mM) de N-(4-méthoxyphényl)alanine dans 10 ml de dichlorométhane et ensuite 0,78 ml (5,6 mM) de triéthylamine. Le mélange réactionnel est agité pendant 4 h puis concentré sous pression réduite. Le résidu d'évaporation est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane / acétate d'éthyle (90/10; v/v). Le produit attendu est obtenu sous forme de cristaux blancs (rendement : 54 %).

TABLEAU I

$$R_1$$
 R_3
 R_4
 R_2

EX	· R _i	R ₂	R ₃	R ₄
1	o	—Стэ	CH ₃	н
2			СН3	Н
3*			CH ₃	Н
4		ОН	CH₃	Н
5		OCH ₃	CH ₃	Н
6	~	о_с ₂ н ₅	CH ₃	н
7		-C1	CH ₃	Н
8		-C1	CH ₃	Н

9	o	Cl	CH ₃	Н
10		——————————————————————————————————————	СН₃	Н
11			СН₃	Н
12		F	СН₃	H
13	0 N-	CH ³	CH ₃	Н
14	o	CH ₃	CH ₃	Н
15	0 N	NO ₂	CH₃	Н
16	0 N	NH ₂	CH ₃	Н
17	° N−	SCH ₃	CH ₃	Н
18		CH ₃	CH ₃	Н

19	o_N	O—CF ₃	CH ₃	Н
20		CF ₃	CH ₃	Н
21	0 N	OCH ₃	CH ₃	Н
22	0 N—	OCH3	CH ₃	Н
23	o		СН3	Н
24		O ₂ N OCH ₃	CH ₃	Н
25		H ₃ C ——OCH ₃	CH₃	Н
26	0 N-	F F	CH ₃	Н
27			CH ₃	Н

	,			
28			СН₃	Н
29		-C ₂ H ₅	СН3	Н
30		-CH ₂ -CH=CH ₂	CH ₃	Н
31			СН3	Н
32	O_N_CH ₃		СН3	Н
33	ON-H ₃ C	——ОСН3	СН3	Н
34	o C1		CH₃	Н
35	H ₃ C, N		CH ₃	Н
36	H ₃ C		CH ₃	Н

37	H ₃ C N	—ОСН3	СН3	Н
38	H ₃ C N	F	СН3	н
39			СН₃	СН3
40		——OCH ₃	СН3	СН₃
41		F	СН₃	СН3
42			CH ₃	СН₃
43			СН3	СН₃
44	HO—CH ₂ —N—	- ОСН3	CH ₃	Н
45			CH ₃	ОН

46	o=s_N-		СН3	Н
47	o	OCH3	СН₃	СН₃
48		CH ₃	СН₃	ОН
49	o_N		Н	Н
50		N N	СН3	Н

* : chlorhydrate de l'exemple 2

TABLEAU II

Préparation No.	Structure	F ℃	Aspect	Rdt %	Méthode (*)
XVII	O_N-(-)-N_O	107	Solide jaune	66	I
XVIII	0 N−⟨ N− N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	98	Poudre beige	67	I
XIX	AcN N—N	123	Solide beige	53	I
xx	ON-NO ₂	98	Poudre jaune	89	ХI
XXI	O N-NH ₂	RMN	Huile violette	97	XII
xxII		RMN	Huile marron clair	64	I
XXIII	0 N-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	RMN	Huile jaune	88	I
XXIV		RM	Huile jaune		I

5 (*) Méthode utilisée par analogie à celle décrite dans la préparation dont le numéro est indiqué

Préparation No	Structure	F ℃	Aspect	Rdt %	Méthode (*)
xxv	S N N N	81	Poudre marron	100	IV
XXVI	S N	> 260	Poudre jaune	30	IV
XXVII	N-C-H	RMN	Huile jaune	79	I
xxvIII	HO——N———H—O——	RMN	Huile marron	59	I
XXIX	HO NO Et		Huile marron	52	I
xxx	HO N O Et	60-70	gomme	84	I
XXXI	HO NO Et	RMN	Huile noire	7	I
xxxii	HO NO Et	RMN	Huile noire	91	I

Préparation No.	Structure	F ℃	Aspect	Rdt %	Méthode (*)
xxxv	OH NO Et	61	Cristaux Blancs	62	I
xxxvi	OH OH O Et	92-94	Cristaux blancs	57	I
XXXVII	OH O Et	90-92	Cristaux blancs	57	I
xxxvIII	OH N O Et	58-60	Cristaux beiges	46	I
XXXIX	N O Et	81	Solide marron clair	76	I
XL	N O Et	60	Solide jaune	72	I

Préparation No.	Structure	F ℃	Aspect	Rdt %	Méthode (*)
XLI	O Et	RMN	Huile jaune	63	I
XLIII	ON NO PET	67	Solide violet	92	I
XLIV	S N NH ₂	RMN	Huile violette	90	хіі
XLV	$ \begin{array}{c c} & C_2H_5 \\ & C_2H_5 \\ & C_2H_5 \end{array} $	RMN	Huile violette	72	I
XLVI	tBu N N NH ₂	RMN	Mousse violette	100	XII
XLVII	1Bu - C ₂ H ₅	RMN	Huile violette	92	I
XLVIII	N NH ₂	146	Poudre rose violacé	60	XII

Préparation No.	Structure	F ℃	Aspect	Rdt %	Méthode (*)
IL .	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	RMN	Huile violette	72	I
L	O NH ₂	159	Solide brun	65	XII
LI	O N O Et	93	Solide beige	49	I
LII	° CN CO Et	RMN	Solide collant	42	I
LIII	O Et	RMN	Solide collant	42	I
LIV	S=C N CO ₂ CH ₃	RMN	Huile brune	8	IV
LV	$\begin{array}{c c} H_3C & O \\ N-S - N \\ H_3C & O \\ \end{array}$	160	Poudre rosée	71	XII
LVI	$\begin{array}{c c} H_3C & O \\ N-S-N & N-S-N \\ H_3C & O \\ \hline \\ C_2H_5 & CO_2C_2H_5 \end{array}$	RMI	Huile claire	63	I

Préparation No.	Structure	F ℃	Aspect	Rdt %	Méthode (*)
LVII	H_3CO_2C N N N N N N N N N	74	Poudre violette	87	XII
LVIII	H_3CO_2C N C_2H_5 $C_2C_2H_5$.	RMN	Huile	52	I
LIX	CI H H ₃ C OH H ₃ C OH	124	Solide marron	100	VII
LX	N O CH ₃	RMN	Solide beige	71	Prep I
LXI	CH ₃ CO CH ₃ CH ₃	RMN	Huile jaune	60	Prep I
LXII	O H ₃ C O CH ₃	RMN	Pâte orange	17	Prep I
LXIII	CH ₃ CH ₃ N CH ₃ CH ₃ CH ₃	RMIN	Huile jaune	57	P

Préparation No.	Structure	F °C	Aspect	Rdt %	Méthode (*)
LXIV	$O \longrightarrow CH_3$ $O \longrightarrow CH_3$ CH_3	97	Poudre marron	7	Prep I
LXV	F H OCH ₃	RMN	Huile orange	66	Prep I
LXVI		RMN	Gomme rose	40	Prep I
LXVII	0 N-(-)-N-(0-)-	RMN	Huile orange	83	Prep I
LXVIII	N-(-)-N-(0-)	RMN	Huile noire	66	Prep I
LXIX	N N N N N N N N N N N N N N N N N N N	RM	Huile brune	61	P
LXX	N N N N N N N N N N N N N N N N N N N	RMI	Solide jaune		P
LXXI	N N N O	170	Solide jaune		Prep XI

Préparation No.	Structure	F °C	Aspect	Rdt %	Méthode (*)
LXXII		135	Solide jaune	92	Prep XI
LXXIII	S = N	RMN	Cristaux blancs	30	Prep IV
LXXIV	S = N N N N	260	Poudre beige	90	Prep IV
LXXV	S=N N	196	Poudre jaune	76	Prep IV
LXXVI	S==N N =0	224	Cristaux marron	78	Prep IV
LXXVII	S==N N =0	RMN	Cristaux jaunes	47	Prep IV
LXXVIII	S==N_0_0_0_		Non isolé		Prep IV

TABLEAU III

$$\begin{array}{c|c}
R_1 & N & N - R_2 \\
R_3 & R_4 & O
\end{array}$$

<u>Ex</u>	R ₁	R ₂	R ₃	R ₄	F °C		Rdt %	Méthode
51	0_N-{_}	√ _s)	CH ₂ CH ₃	Н	164	Solide blanc	27	F
52	0 N-()	\mathcal{L}_{s}	(CH ₂) ₂ CH ₃	Н	136	Poudre rosée	23	E
53	o_N-<->	Z Z	CH ₃	Н	218 - 220	Poudre grisâtre	75	F
54	0_N-{_>		CH ₂ CH ₃	Н	188 - 190	Poudre blanche	67	F
55	0_N-{}		(CH ₂) ₂ CH ₃	ОН	264	Poudre grisâtre	46	F
56		0\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CH₂CH₃	Н	222	Poudre grisâtre	13	F
57	ACN_N-{}	-\(\bigc\)	CH ₂ CH ₃	Н	128	Solide jaunâtre	63	F
58		-\(\bigcirc\)_F	СН3	Н	171	Solide blanc	13	E
59		→	CH₂CH₃	Н	138	Poudre blanche	3	E

	Ĭ							
<u>Ex</u>	R_1	R ₂	R ₃	R ₄	F °C	Aspect	Rdt %	Méthode
60		——————————————————————————————————————	(CH ₂) ₂ CH ₃	Н	120	Solide jaune pâle	20	F
61	Cha	-\(\bigcirc\)_F	СН3	CH ₃	158	Solide blanc	60	F
62		F	СН3	Н	148	Solide blanc	80	F
63		F	CH₂CH₃	Н	131	Poudre blanche	43	E
64		F	(CH ₂) ₂ CH ₃	Н	148	Solide blanc	51	F
65	On O		CH₂CH₃	Н	109	Poudre jaune	86	F
66	°C NO	-\$\bigs\{ \bigs\{ \big\{ \big\{ \bigs\} \} \big\{ \big\{ \big\{ \big\{ \big\{ \big\{ \big\{ \big\{ \bi	(CH ₂) ₂ CH ₃	н	135 - 150	pâle	56	F
67	6 NO	F	CH ₃	Н	122	Solide blanc	64	F
68		F F	CH₂CH₃	н	85 - 90	Mousse jaune	65	F
69	ChO	F	(CH ₂) ₂ CH ₃	Н	150	pâle	49	F
70	CNO	————СН3	CH ₃	Н	144	Solide blanc	89	F

<u>Ex</u>	R_1	R ₂	R ₃	R ₄	F °C		Rdt %	Méthode
71	Cha	——СН3	CH₂CH₃	Н	126	Poudre blanche	66	F
72	CMQ	——————————————————————————————————————	(CH ₂) ₂ CH ₃	н	135	Solide jaune pâle	25	Е
73	CMO	———осн3	CH₂CH₃	Н	147	Poudre blanche	92	F
74		—Строснз	(CH ₂) ₂ CH ₃	Н	138	Solide beige clair	57	F
75	CNO	СО2СН3	СН₃	Н	131	Solide blanc	89	F
76		CO ₂ CH ₃	CH₂CH₃	н	138	Poudre blanche		F
77	°C NC	CO ₂ CH ₃	(CH ₂) ₂ CH ₃	н	107	Solide rosé	30	F
78	Su C	CO ₂ CH ₃	CH ₃	CH:	118	Mousse rose	91	F
79	CNO	CO₂H	СН₃	Н	190	Solide beige	59	F
80	°C nC	CO₂H	CH₂CH₃	Н	198	crème		F
81	e Compa	—————————————————————————————————————	(CH₂)₂CH₃	Н	110	iaune	30 م	F

TABLEAU III (suite)

<u>Ex</u>	R ₁	R ₂	R ₃	R ₄	F °C	Aspect	Rdt %	Méthode
82		CH ₃	СН₃	н	200 - 202	Poudre blanche	86	F
83		CH,	CH₂CH₃	Н	169 - 171	Poudre blanche	86	F
84		CH ₃	(CH₂)₂CH₃	Н	138 - 140	Poudre blanche	59	F
85			CH ₃	Н	158 175	Poudre jaune pâle	67	F
86		II.	CH₂CH₃	Н	230	Poudre beige clair	71	F
87	e Cha	T N	(CH ₂) ₂ CH ₃	Н	228 - 230	Poudre jaune pâle	58	F
88	CNO		CH ₃	CH ₃	250	Solide blanc	38	F
89	HO		CH₃	н	173	Poudre blanche		М
90	HO N		C₂H₅	н	194	Poudre blanche	1 4 /	М
91	HO		C ₃ H ₇	Н	80- 90	Mousse	66	М
92	HO	↓ F	CH ₃	Н	70	Poudre		М

TABLEAU III (suite)

<u>Ex</u>	R_1	R_2	\mathbb{R}_3	R ₄	F °C	Aspect	Rdt %	Méthode
93	HO N	↓ F	C₂H₅	Н	97	Cristaux beiges	30	М
94	HO	↓ F	C₃H₁	Н	103	Cristaux beiges	54	М
95	HO N	, ,	СН₃	Н	90- 100	Mousse blanche	70	М
96	HO N	, F	C₂H₅	н	98	Poudre blanche	52	М
97	HO N	F	C₃H₁	н	161	Poudre blanche	38	М
98	HO \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F	CH ₃	Н	60	Poudre blanche	17	М
99	HO	F	C ₂ H ₅	Н	60- 70	Poudre beige	51	М
100	HO	F	C ₃ H ₇	н	99	Poudre blanche		М
101	HO	F	СН3	Н	60	Poudre blanche		М
102	HO	-	C₂H₅	Н	80 90			М
103	HO		C ₃ H ₇	Н	10	Poudre beige		М

<u>Ex</u>	R_1	R ₂	R ₃	R ₄	F ℃	Aspect	Rdt %	Méthode
104	HO N	ОМе	CH ₃	н	90	Poudre blanche	57	М
105	HO NOT NOT NOT NOT NOT NOT NOT NOT NOT NO	ОМе	C₂H₅	Н	80- 90	Poudre beige	29	М
106	HO	OMe	C₃H₁	н	149	Poudre blanche	54	M
107	HO	CH ₃	СН₃	Н	60	Poudre blanche	69	М
108	HO	CH₃	C₂H₅	Н	80- 93	Poudre blanche	41	М
109	HO N	CH ₃	C₃H₁	Н	163	Poudre beige	64	М
110	HO	Соон	СН3	н	152	Poudre marron	16	М
111	HO	Соосн	СН₃	Н	10:	Mousse blanche		М
112	HO	Соосн	C₂H₅	Н	10	Poudre beige	11	M
111	3 HO N	Соосн	C ₃ H ₇	F	1 80	Cristau beiges		М

<u>Ex</u>	R_1	R ₂	R ₃	R ₄	F ℃	Aspect	Rdt %	Méthode
114	HO	± ~ ~ ~	СН₃	Н	130- 140	Poudre blanche	44	М
115	HO	Ţ,	C₂H₅	Н	120- 130	Poudre blanche	16	М
116	HO	Ţ,z,z	C ₃ H ₇	н	154	Poudre blanche	11	М
117	HO	CH ₃	СН₃	Н	130	Poudre blanche	21	М
118	HO		CH ₃	Н	192- 194	Cristaux blancs	70	F
119	HO N		C₂H₅	н	146- 148	Cristaux blancs	66	F
120	HO^\\N		C ₃ H ₇	Н	120- 122	Cristaux blancs	55	F
121	HO N	↓ F	CH ₃	н	168- 170		46	F
122	HO \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	↓ F	C ₂ H ₅	Н	146 148		53	F
123	HO^N	↓ C F	C₃H₁	Н	116			F
124	HO	, F	СН3	н	168 170			F

Ex	R ₁	R ₂	R ₃	R4	F ℃	Aspect	Rdt %	Méthode
125	O P	F	C₂H₅	Н	146- 148	Cristaux blancs	52	F
126	HO	F	C₃H ₇	Н	110- 112	Cristaux jaune pale	57	F
127	HO N	F	СН3	Н	162- 164	Cristaux blancs	44	F
128	HO N	F	C₂H₅	н	110- 112	Cristaux beiges	46	F
129	HO	F	C₃H ₇	н	112- 114	Cristaux blancs	23	F
130	HO N		СН₃	Н	166- 168	Cristaux blancs	37	F
131	HO		C₂H₅	Н	140- 142	Cristaux blancs	63	F
132	HO		C ₃ H ₇	Н	130- 132	Cristaux Jaune pâle	40	F
133	HO	ОМе	СН₃	Н	182- 184	Cristaux blancs	81	F
134	HO	ОМе	C₂H₅	Н	130- 132		66	F
135	HO	ОМе	C ₃ H ₇	Н	90- 92	Cristau blancs	44	F

TABLEAU III (suite)

<u>Ex</u>	R_1	R ₂	R ₃	R4	F ℃	Aspect	Rdt %	Méthode
136	S S S S S S S S S S S S S S S S S S S	CH ₃	CH ₃	Н	160- 162	Cristaux blancs	78	F
137	HO N	CH ₃	C₂H₅	Н	164- 166	Cristaux blancs	57	F
138	HO N	CH ₃	C₃H ₇	н	134- 136	Cristaux blancs	49	F
139	HO	Соон	CH₃	Н	134- 136	Cristaux beiges	20	F
140	HO N	Соон	C₂H₅	Н	118- 120	Cristaux beiges	16	F
141	HO^\N	Соон	C₃H₁	Н	140- 142	Cristaux beiges	5	F
142	HO N	Соосн,	CH ₃	Н	104- 106	Cristaux blancs	50	F
143	HO N	COOCH3	C₂H₅	н	138- 140		50	F
144	HO	COOCH3	C₃H₁	Н	70 - 72	Cristaux beiges	44	F
145	HO N		CH ₃	Н	168 170	Cristaux blancs	41	F
140	5 HO N	T, N	C₂H₅	Н	134 136			F
14	7 HO N	i z	C₃H₁	F	I 134			F

<u>Ex</u>	R ₁	R_2	R ₃	R ₄	F ℃	Aspect	Rdt %	Méthode
148	OH CHAPTER STATE OF THE STATE O	CH ²	СН₃	Н	232- 234	Cristaux roses	16	F
149	но	CH, Z	C₂H₅	Н	102- 104	Cristaux beiges	11	E
150			C₂H₅	Н	199	Solide beige	50	F
151			C₃H₁	н	52	Solide amorphe	41	F
152		\bigcap_{F}	C₂H₅	н	170- 190	Solide beige	49	F
153		↓ F	C₃H₁	н	48	Solide amorphe	44	F
154		, ,	C₂H₅	Н	174	Solide beige	41	F
155		F	C₃H₁	Н	47	Solide amorphe	48	F
156			C₂H₅	н	188	Solide beige	48	F
157		-	C ₃ H ₇	Н	55	Solide amorphe	72	F
158		ОМе	C ₃ H ₇	н	45	Solide amorphe	25	F

ГТ		T						
<u>Ex</u>	R _i	R ₂	R ₃	R ₄	F ℃	Aspect	Rdt %	Méthode
159		CH3	C₂H₅	н	126- 142	Solide beige	39	F
160		CH ₃	C ₃ H ₇	Н	53	Solide amorphe	54	F
161		Соон	C₃H ₇	н	59	Solide amorphe	32	F
162		Соосн,	C₂H₅	н	110- 128	Solide blanc	37	F
163		COOCH ₃	C₃H₁	н	60	Solide amorphe	58	F
164	(Chlorhydrate)	↓ C F	CH₂CH₃	н	136- 145	Solide marron	9	F
165			C₂H₅	Н	155	Solide blanc	81	F
166			C ₃ H ₇	Н	157	Solide blanc	90	F
167	ê Q	Û,	СН3	Н	176	Solide beige	76	F
168		Û, _F	C ₂ H ₅	Н	146	Solide beige		F
16		Ĵ,	C ₃ H ₇	Н	140	Solide beige		F

<u>Ex</u>	R _i	R ₂	R ₃	R ₄	F °C	Aspect	Rdt %	Méthode
170	°C,	F	СН₃	Н	125	Solide beige	58	F
171		, F	C₂H₅	Н	167	Solide marron clair	75	F
172		F _F	C ₃ H ₇	Н	157	Solide jaune pâle	25	F
173		E E	CH₃	н	176	Solide beige	72	F
174		u-\u	C₂H₅	Н	141	Solide jaune	42	F
175		F -	C₃H ₇	н	167	Solide jaune pâle	71	F
176	°C, C	ОМе	СН3	н	192	Solide jaune pâle	90	F
177		ОМе	C₂H₅	Н	114	Solide jaune pâle	65	F
178		ОМе	C₃H₁	Н	107	Solide blanc	50	F
179	°C,	CH ₃	СН₃	н	164	Solide jaune pâle	76	F

<u>Ex</u>	Ri	R ₂	R ₃	R ₄	F ℃	Aspect	Rdt %	Méthode
180		CH₃	C₂H₅	н	188	Solide jaune pâle	88	F
181		CH₃	C₃H ₇	Н	170	Solide blanc	82	F
182		COOCH ₃	СН₃	Н	98	Solide orange	98	F
183		Соосн3	C₂H₅	н	146	Solide marron clair	81	F
184		Соосн₃	C ₃ H ₇	Н	144	Solide beige	12	F
185		T, N	C ₃ H ₇	Н	250	Solide blanc	22	F
186	ê C	F	CH ₃	Н	170	Solide marron clair	61	F
187	ê, a	F	C₂H₅	Н	147	Solide beige marron	51	F
188		F	C ₃ H ₇	Н	167	Solide blanc	87	F
189		↓ C	C₂H₅	н	171	Poudre blanche	43	F

<u>Ex</u>	Rı	R ₂	R ₃	R ₄	F ℃	Aspect	Rdt %	Méthode
190		Ĵ,	C₂H₅	Н	147	Poudre blanche	54	F
191	IBU N N N N N N N N N N N N N N N N N N N	↓ Ç	C ₂ H ₅	Н	110 - 124	Solide vitreux brun	60	F
192		↓ F	C₂H₅	Н	188	Poudre rosée	85	F
193		S	C₂H₅	Н	98 - 110	Poudre verdâtre	10	F
194		F	C₂H₅	н	125	Solide beige	49	F
195		F	C₃H₁	Н	48	Solide amorphe	52	F
196		CO ₂ CH ₃	C₂H₅	Н	120	Solide vitreux jaunâtre	57	F
197	H ₅ C 0 N-S-N N-	↓ Ç	C₂H₅	Н	188	Poudre blanche	67	F
198	H,CO,C-\\N-\\\\	Ĵ,	C₂H₅	Н	128	Poudre jaune	51	F
199	s)		C₂H₅	Н	190 - 192	Poudre verdâtre	7	F
200		F	C₂H₅	н	220- 221	Cristaux beiges	80	F
201		H ₃ C	C ₂ H ₅	Н	202- 203	Poudre beige	66	F

<u>Ex</u>	R ₁	R ₂	R ₃	R ₄	F ℃	Aspect	Rdt %	Méthode
202		MeO	CH₂CH₃	н	105	Poudre blanche	56	F
203			CH₂CH₂CH₃	н	166	Solide blanc	81	F
204		н ₃ с	CH₂CH₂CH₃	н	174	Solide blanc	68	F
205		MeO	CH ₂ CH ₂ CH ₃	н	105	Poudre jaune pâle	92	F
206		,X)	СН3	CH ₃	228	Cristaux beiges	62	F
207		F	CH₂CH₃	Н	141- 142		57	F
208		F	CH₂CH₂CH₃	Н	148	Poudre beige rosée	79	F

Exemple	RI	R2	R3	R4	F	Rdt %	Méthode
209			СНЗ	н	140	10	A
210		1	СНЗ	Н	213	63	E
211	Z ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	+	C	H2	192	13	Е
212	° N	+	СНЗ	НО	148	30	Ex 45
213	°C N	+	СНЗ	Н	234	100	SEL HBr
214	°CN C		CH	В	13	0 92	SEL Ms
215	°CMO	*	СН	3 H	16	50	SEL Sulf

TA	BI	EA.	U	III ((suite))
----	----	-----	---	-------	---------	---

	1110	LEAU III (suite)					
216		+	СНЗ	Н	177	94	SEL HCI
217		+	СНЗ	н	196	72	F
218	0	A STATE OF THE PARTY OF THE PAR	СНЗ	Н	192	81	SEL HCI
219		NH	СНЗ	Н	252	56	E
220	CHIRAL	+	СН	3 H	13	0 34	E
221		+	СН	13 H	I 27	70 12	A
222	S N	+	Cł	13 H	I 2	10 43	E

TABLEAU III (suite

	1710	LEAU III (suite)					
223			СНЗ	Н	213	38	E
224		A NH	СНЗ	н	224	80	E
225		+0	СНЗ	Н	202	78	E
226	°CN C↓x	dH 4	СНЗ	Н		22	E
227	°C MC		сн3	Н	112	30	Е
228		- N. 500 of St. 00	СНЗ	Н	220	60	Ex 16+ RSO2Cl
229			СНЗ	Н	110	55	E

TAB	LEAU III (suite)					 1
O _x		СНЗ	Н	136	25	E
O _x	The store of the s	СН3	Н	260	60	Ex 16+ RSO2Cl
+	+	СНЗ	Н	150	39	E
\	+	СНЗ	Н	178	63	E

230	N		СН3	Н	136	25	E	
231		The store of the s	СН3	н	260	60	Ex 16+ RSO2Cl	
232	° N− () →	→	СНЗ	Н	150	39	E	
233	0_N-{-}	+<	СНЗ	Н	178	63	E	
234	°C N	7	СНЗ	Н	11	2 40	E	
235		+ 00	СН	3 H	16	23	Е	
236	°	F F F	СН	[3] F	I 10	64 38	E	

	TAB	LEAU III (suite)					
237		FFF	СНЗ	Н	206	80	E
238		+ Col	СНЗ	н	140	42	E
239	HQ N	200	СН3	Н	90	25	A
240			СНЗ	Н	147	62	E
241		FFF	СНЗ	Н	177	86	E
242			СНЗ	Н	240	35	A
243	e Con Cox		СНЗ	н	203	3 20	Α

	TAB	LEAU III (suite)					
244		O TO NH	СНЗ	Н	93	92	E
245		- NH2	СН3	Н	223	75	SEL 2TFa
246		1	СНЗ	Н	RM N	68	E
247			СНЗ	Н	RM N	67	A
248			CH	В	26	0 30	A
249	°CN-C)+	F	СН	3 H	H 14	18 23	A

	ייייי דער	LEAU III (suite)					
250		F F	СНЗ	Н	154	40	A
251			СНЗ	Н	158	30	A
252		₹ F	СНЗ	Н	136	15	S
253	° \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		СНЗ	Н	148	40	A
254		1	СНЗ	Н	156	16	E
255			СНЗ	Н	170	47	E
256	°CN C	***************************************	СНЗ	Н		53	A

	TABI	LEAU III (suite)	Т				
257		OH J	СНЗ	н		51	S
258			СН3	Н		30	S
259		4	СНЗ	Н	134	90	M
260		7	СНЗ	Н	120	68	M
261			СНЗ	Н	163	77	A
262			СН	3 CH	3 161	49	М
263		700	СН	3 H		74	М
264	° N √ >	7	СН	13 H		72	М

and the second of the second of the second

TABLEAU	Ш	(suite)

		DE/10 III (Buite)					
265			СНЗ	Н	110	73	М
266			СНЗ	Н	91	68	М
267		OH OH	СН3	Н		70	S
268	° ~ ~ →	- / -OH	СНЗ	Н	104	52	SEL 2TFa
269	0 N−√ →		СН3	Н		24	A
270	CHIRAL		СНЗ	СНЗ	3 216	57	Е
271	CHIRAL	4J _F	СНЗ	CH:	3 200	77	E

TABLEAU III (suite)

		LLAU III (saite)					
272		400	СНЗ	H I	90	77	М
273		J. J.	СНЗ	н	208	94	М
274			СНЗ	Н	244	84	М
275	o		СНЗ	Н	200	80	A
276		→ HO	СНЗ	н		50	S
277	0 N -	X∕√ °CH	CH3	Н	123	3 25	S
278	o N−√ →		СН	3 H	16	1 58	М

		A T T	TTT	· · · · ·
'I' A I	D1 L	A 1 1	1111	(suite)
IAI	DIJ.	A	111	Sunci

		LEAU III (suite)					
279	0N	**************************************	СН3	Н	140	80	М
280			СНЗ	Н	193	78	М
281			СНЗ	H	172	92	M
282		+ 0	C2H5	Н	96	50	E
283	°CN C		C2H5	Н	194	57	E
284		x N	СНЗ	Н	70	61	Е
285		400	СНЗ	Н		92	E

T_{λ}	AB.	LEAU	ш	(suite)

	1710.	LEAU III (suite)	T		$\neg \neg$		
286	C N C		СНЗ	Н	84	83	М
287		A STATE OF THE PARTY OF THE PAR	СНЗ	Н	254	88	М
288			СНЗ	н	148		М
289			СНЗ	Н	154	80	Е
290	e Crico		CH:	3 Н	18	3 46	E
291			СН	3 F	I 9	0 69	Е
292	O. S. M. C.	+	CH	13 1	H 1	40 18	E

	TAB	LEAU III (suite)	· · · · · ·				
293	HOUNT	+ 0	СНЗ	Н	92	57	М
294		OH OH	СН3	Н		12	S
295		OH J	СНЗ	Н		15	S
296	°C N C X	F	СНЗ	Н	211	73	A
297	o		СН	В	14	0 44	A
298	C N C	OH OH	СН	3 H	26	0 86	Е
299		J OH	СН	3 H	I 24	80	E

TA	BI	ÆA.	J	Ш	(suite)	١

		LEAU III (suite)					
300			СНЗ	н	105	71	М
301	0 N-\	Ha	СНЗ	н		90	A
302		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	СН3	H		68	E
303			СНЗ	Н	203	54	S
304	ON O	NH ₂	ÇH3	Н	180	73	SEL 2TFa
305	HO	*	СНЗ	Н	190	75	М
306		J	СНЗ	Н	144	22	A

	TAB	LEAU III (suite)			- г	—-г	
307		2 N	СНЗ	н	120	94	SEL 2HCl
308			СНЗ	Н	90	64	М
309			СНЗ	Н	180	29	A
310		LT a	СНЗ	Н	173	12	Е
311	°C NC	*	СНЗ	Н	183	71	М
312	C M C	*	СНЗ	Н		58	М
313		F P	СН	3 СН	3 19	0 21	М

TABLEAU III (suite)

	1710	LEAU III (suite)				T	
314	ON Ox	1 Co	СНЗ	н		32	A
315		*	СНЗ	Н		76	A
316		+	СН3	н	208	72	E
317		+ -0	СНЗ	Н	214	58	E
318			СНЗ	Н	170	68	М
319		N N N N N N N N N N N N N N N N N N N	СНЗ	Н	95	62	М
320		0 NH2	СНЗ	Н	19	5 75	М

	TABI	LEAU III (suite)					
321		F F	СНЗ	H 1	74	22	S
322		F	СНЗ	H I	145	50	Α
323		}	СНЗ	н	220	56	E .
324		S	СН3	Н	88	23	М
325	€ CN C		СНЗ	Н		6	E
326	0 N-√>+	→ F	СНЗ	СНЗ	188	63	М
327	0_N-{-}-	→ N	CH	СНЗ	3 183	66	М

TABLEAU III (s	uite)	
----------------	-------	--

		ı		1	i	i
	TO H	СНЗ	СН3	290	32	М
		НО	СНЗ	240	10	Ex 45
	s +	СНЗ	СНЗ	3 204	73	М
°C NO	jo	СН	3 СН	3 260	0 80	М
o		- 1	CH2	22		Ex 1 +dmso reflux + air 8h
	*	СН	H3 H	I 11	80 44	М
N	+	CI	H3 1	н	68 8	3 M
	N————		CHO CHO CHO CHO CHO CHO CHO CHO	СНЗ СНЗ СНЗ СНЗ СНЗ СНЗ СНЗ СНЗ	CH3 240 CH3	CH3 CH3 204 73 CH3 CH3 260 80 CH2 224 9 CH3 H 180 44

TABLEAU III (suite)

		LEAU III (suite)					
335	0 N-√ →	→	СН3	СН3	178	40	М
336	N	→	СНЗ	Н	191	74	М
337	o∵N-√-	F	СН3	СНЗ	170	51	М
338	O _N		СНЗ	Н	140	82	М
339		₩,	СНЗ	н	206	5 61	М
340			СН	3 H	22	1 80	M

	TABI	LEAU III (suite)	 -		<u> </u>		
341		J. J. N	СНЗ	СН3	170	14	A
342		NH NH	СНЗ	СНЗ	260	13	S
343			СНЗ	Н	158	59	М
344	o N−√ →	→ 	С2Н	5 H	161	12	М
345		+ N	СН	3 СН	13 22	8 50	A
346	° C N C >	NH O	CF	13 CH	13 17	14 17	A
347		HN N N	CI	Н3 С1	H3 2	60 81	. A

TABLEAU III (suite))
--------------------	---	---

	IAD	LEAU III (suite)					
348		+ N	СНЗ	Н	85	79	М
349			СН3	Н	150	45	М
350		+	СНЗ	Н	217	76	М
351		+	СНЗ	н	196	75	М
352	°		СЗН	7 H	90	79	М
353			СЗН	17 H	9(93	M
354	N N N N N N N N N N N N N N N N N N N	→ N	СН	3 F	I 24	66	М

_	-		T T	TTT	/ · · · ·
.1.V	1 2 1	LIA		111	(suite)

		LEAU III (Suite)				$\overline{}$	
355		→	СНЗ	Н	192	54	М
356	° N	→	СЗН7	Н	60	52	М
357	° N−√>÷	→	СЗН7	H	179	46	М
358	o	→ F	но	СН3	100	44	Ex 45
359		A THE	СНЗ	СНЗ	144	12	S
360	⟨ →+	→ ~ ~~	С2Н	5 H	189	64	A
361		NH NH	СН	3 СН	3 17:	2 14	М

TAE	SLEAU	111	(suite)

		LLAO III (suite)					
362		N. N.	СН3	СН3	158	12	М
363	ON O		СН3	СНЗ	260	100	A
364	s		СНЗ	н	150	78	F
365	\$		СНЗ	Н	186	50	М
366	\$	F	CH3	Н	88	98	F
367	s	J.F.	СН	3 H	170	6 70	F
368	s		СН	3 H	98	87	F

		(suite)	

	1710	LEAU III (suite)				т	
369	sN	A CHO	СНЗ	Н	250	93	F
370	HO—	→	СНЗ	Н	60	69	М
371	HOUNT	F	СНЗ	Н	60	67	М
372	HO CN	F	СНЗ	Н	60	17	М
373	HO		СНЗ	н	70	65	М
374		O OH	СН	3 H	[25	58 83	A
375		+	СН	[3] H	H 1	76 74	A

TABL	EAU	Ш	(suite))
------	-----	---	---------	---

		LEAO III (Suite)			$\overline{}$		···-
376		F	СНЗ	Н	150	98	A
377		F	СНЗ	н	156	37	A
378		+	СНЗ	Н	144	38	A
379		+	СНЗ	н		88	A
380	F -	→__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	С2Н	5 H	182	2 71	F

Les composés non cristallisés figurant dans les tableaux précédents ont été caractérisés par leur spectre RMN proton dont les valeurs (glissement chimique, forme et intensité du signal) sont reportées ci-après :

5 PREPARATION XXI

RMN 1 H (DMSO d₆, 300 MHz): 1,86 (m, 2H); 3,39 (m, 4H); 3,55 (m, 2H); 3,66 (m, 2H); 4,30 (s, 2H); 6,50 (m, 4H).

10 PREPARATION XXII

RMN 1 H (DMSO d₆, 250 MHz): 1,15 (t, 3H); 1,32 (d, 3H); 1,86 (m, 2H); 3,41 (m, 4H); 3,55 (m, 2H); 3,67 (m, 2H); 3,91 (m, 1H); 4,06 (q, 2H); 5,16 (d, 1H); 6,47 (m, 2H); 6,56 (m, 2H).

15

PREPARATION XXIII

RMN ¹H (CDCl₃, 250 MHz): 1,00 (t, 3H); 1,24 (t, 3H); 1,81 (m, 2H); 2,00 (m, 2H); 3,51 (m, 4H); 3,70 (m, 3H); 3,79 (m, 2H); 3,89 (m, 1H); 4,18 (q, 2H); 6,61 (m, 4H).

20

25

PREPARATION XXIV

```
RMN ^{1}H (DMSO d<sub>6</sub>, 300 MHz): 0,89 (t, 3H); 1,14 (t, 3H); 1,40 (m, 2H); 1,66 (m, 2H); 1,87 (m, 2H); 3,40 (m, 4H); 3,55 (m, 2H); 3,66 (m, 2H); 3,82 (m, 1H); 4,06 (q, 2H); 5,13 (d, 1H); 6,48 (m, 2H); 6,55 (m, 2H).
```

PREPARATION XXVII

```
RMN <sup>1</sup>H (CDCl<sub>3</sub>, 250 MHz): 1,22 (t, 3H); 1,45 (s, 6H); 2,00 (m, 2H); 3,53 (m, 4H); 3,68 (m, 3H); 3,80 (m, 2H); 4,15 (q, 2H); 6,58 (m, 2H); 6,70 (m, 2H).
```

PREPARATION XXVIII

RMN ¹H (CDCl₃, 300 MHz): 1,00 (t, 3H); 1,24 (t, 3H); 1,80 (m, 2H); 2,61 (t, 2H); 2,68 (m, 4H); 3,07 (m, 4H); 3,66 (t, 2H); 3,92 (m, 2H); 4,17 (q, 2H); 6,60 (m, 2H); 6,82 (m, 2H).

PREPARATION XXXI

RMN ¹H (DMSO d₆, 300 MHz): 0,94 (t, 3H); 1,14 (t, 3H); 1,48 (m, 2H); 1,73 (m, 4H); 2,59 (m, 2H); 3,24 (m, 1H); 3,50 (m, 1H); 3,80 (m, 1H); 4,40 (q, 2H); 4,60 (s, 1H); 5,37 (d, 1H); 6,49 (d, 2H); 6,71 (d, 2H).

PREPARATION XXXII

RMN ¹H (DMSO d₆, 300 MHz): 0,89 (t, 3H); 1,16 (t, 3H); 1,43 (m, 4H); 1,69 (m, 4H); 2,54 (m, 2H); 3,24 (m, 2H); 3,52 (m, 1H); 3,84 (m, 1H); 4,37 (q, 2H); 4,60 (s, 1H); 5,37 (d, 1H); 6,46 (d, 2H); 6,71 (d, 2H).

PREPARATION XLI

RMN ¹H (DMSO d₆, 250 MHz) 0,89 (t, 3H); 1,17 (t,3H); 1,39 (m, 2H); 1,59 (m, 6H); 3,00 (t, 4H); 3,82 (m, 5H); 4,06 (q, 2H); 7,40 (d, 1H); 6,47 (d, 2H); 6,74 (d, 2H).

PREPARATION XLIV

20 RMN ¹H (CDCl₃, 300 MHz): 2,67 (m, 4H); 3,27 (s, 2H); 3,77 (m, 4H); 6,54 (d, 1H); 6,98 (dd, 1H); 7,78 (d, 1H).

PREPARATION XLV

25 RMN ¹H (CDCl₃, 250 MHz): 1,01 (t, 3H); 1,25 (t, 3H); 1,82 (m, 2H); 2,68 (m, 4H); 3,76 (m, 5H); 3,86 (m, 1H); 4,18 (m, 2H); 6,55 (d, 1H); 6,95 (dd, 1H); 7,73 (d, 1H).

PREPARATION XLVI

RMN ¹H (CDCl₃, 300 MHz): 1,23 (m, 9H); 1,96 (m, 2H); 3,46 (m, 2H); 3,60 (m, 2H); 3,76 (m, 4H); 6,42 (d, 1H); 6,97 (dd, 1H); 7,73 (d, 2H).

PREPARATION XLVII

RMN ¹H (CDCl₃, 300 MHz): 1,01 (t, 3H); 1,22 (s, 9H); 1,27 (t, 3H); 1,80 (m, 2H); 1,96 (m, 2H); 3,45 (m, 2H); 3,60 (m, 3H); 3,80 (m, 4H); 4,17 (m, 2H); 6,44 (d, 1H); 6,95 (dd, 1H); 7,68 (d, 1H).

PREPARATION XLVIII

RMN ¹H (CDCl₃, 300 MHz): 1,00 (t, 3H); 1,25 (t, 3H); 1,81 à 1,95 (m, 6H); 2,91 (m, 2H); 3,43 (m, 1H); 3,73 (m, 1H); 3,88 (m, 1H); 4,16 (m, 4H); 6,64 (d, 1H); 6,96 (dd, 1H); 7,45 à 7,59 (m, 3H); 7,74 (d, 1H); 7,96 (m, 2H).

PREPARATION LIV

RMN ¹H (CDCl₃, 300 MHz): 3,89 (s, 3H); 6,17 (d, 1H); 7,14 (d, 1H).

10

PREPARATION LVI

RMN ¹H (CDCl₃, 300 MHz): 1,0 (t, 3H); 1,24 (t, 3H); 1,82 (m, 2H); 2,85 (s, 6H); 3,07 (m, 4H); 3,39 (m, 4H); 3,94 (m, 2H); 4,17 (q, 2H); 6,60 (d, 2H); 6,82 (d, 2H).

15

20

PREPARATION LVIII

RMN ¹H (CDCl₃, 300 MHz): 1,0 (t, 3H); 1,24 (t, 3H); 1,73 à 2,01 (m, 6H); 2,40 (m, 1H); 2,67 (m, 2H); 3,42 (m, 2H); 3,70 (s, 3H); 3,93 (m, 2H); 4,17 (q, 2H); 6,59 (d, 2H); 6,85 (m, 2H).

PREPARATION LX

RMN ¹H (CDCl₃, 300 MHz): 1,24 (t, 3H); 1,44 (d, 3H); 1,52 (m, 2H); 1,70 (m, 4H); 2,98 (m, 4H); 4,05 (q, 1H); 4,15 (q, 2H); 6,58 (d, 2H); 6,86 (d, 2H).

PREPARATION LXI

RMN ¹H (CDCl₃, 300 MHz): 1,20 (t, 3H); 1,32 (d, 3H); 2,22 (s, 3H); 2,26 (s, 3H); 3,82 (m, 2H); 3,96 (m, 2H); 3,85 (m, 4H); 4,11 (q, 2H); 4,54 (q, 1H); 6,71 (d, 2H).

PREPARATION LXII

RMN ¹H (CDCl₃, 300 MHz): 1,27 (t, 3H); 1,45 (d, 3H); 2,56 (t, 4H); 3,42 (t, 4H); 4,08 (q, 1H); 4,20 (q, 2H); 6,62 (d, 2H); 6,89 (d, 2H).

PREPARATION LXIII

RMN ¹H (CDCl₃, 300 MHz): 1,23 (d, 6H); 1,24 (t, 3H); 1,44 (d, 3H); 2,32 (d, 2H); 3,25 (d, 2H); 3,82 (m, 2H); 4,08 (q, 1H); 4,16 (q, 2H); 6,61 (d, 2H); 6,85 (d, 2H).

5

PREPARATION LXV

RMN 1 H (CDCl₃, 300 MHz) : 1,01 (t, 3H) ; 1,28 (t, 3H) ; 1,81 (m, 2H) ; 3,98 (m, 1H) ; 4,21 (q, 2H) ; 6,37 (m, 3H) ; 7,08 (q, 1H).

10

PREPARATION LXVI

RMN ¹H (CDCl₃, 300 MHz): 1,26 (t, 3H); 1,46 (d, 3H); 3,13 (m, 4H); 3,62 (m, 4H); 4,07 (q, 1H); 4,21 (q, 2H); 6,59 (d, 2H); 6,82 (d, 2H).

15

PREPARATION LXVII

RMN ¹H (CDCl₃, 300 MHz): 1,17 (t, 3H); 1,30 (d, 6H); 1,49 (s, 6H); 2,34 (m, 2H); 3,28 (d, 2H); 3,80 (m, 2H); 4,14 (q, 2H); 6,64 (d, 2H); 6,77 (d, 2H).

20

25

PREPARATION LXVIII

RMN ¹H (CDCl₃, 250 MHz): 1,28 (t, 3H); 1,44 (d, 3H); 1,53 (m, 4H); 1,81 (m, 4H); 3,41 (m, 4H); 4,17 (m, 3H); 6,53 (m, 4H).

PREPARATION LXIX

RMN ¹H (DMSO d₆, 250 MHz): 1,13 (t, 3H); 1,32 (d, 3H); 1,93 (m, 2H); 3,28 (t, 4H); 3,45 (t, 4H); 3,77 (m, 2H); 3,90 (m, 1H); 4,05 (q, 2H); 5,15 (d, 1H); 6,52 (m, 6H); 7,43 (m, 1H); 8,03 (m, 1H).

PREPARATION LXX

RMN ¹H (CDCl₃, 250 MHz): 1,23 (t, 3H); 1,43 (d, 3H); 2,06 (q, 2H); 3,43 (t, 2H); 3,56 (t, 2H); 3,67 (t, 2H); 3,98 (m, 3H); 4,16 (q, 2H); 6,44 (t, 1H); 6,62 (q, 4H); 8,17 (d, 2H).

PREPARATION LXXIII

RMN ¹H (CDCl₃, 250 MHz): 6,56 (m, 1H); 7,10 (d, 1H); 7,28 (m, 1H); 7,38 (d, 1H); 7,55 (d, 1H); 8,27 (s, 1H).

PREPARATION LXXVII

 $RMN \ ^{1}H \ (DMSO \ d_{6}, 250 \ MHz) : 3,11 \ (s, 3H) \ ; \ 3,57 \ (s, 2H) \ ; \ 7,02 \ (d, 1H) \ ; \ 7,37 \ (m, 2H).$

10 EXEMPLE 226

5

RMN ¹H (CDCl₃, 300 MHz): 1,51 (d, 3H); 3,22 (s, 4H); 3,86 (s, 4H); 4,58 (q, 1H); 5,41 (s, 1H); 6,90 (m, 4H); 7,32 (m, 4H).

15 EXEMPLE 246

 $RMN ^{1}H (CDCl_{3}, 250 \, MHz): 1,39 \, (d, 3H); 3,21 \, (q, 4H); 3,37 \, (s, 3H); 3,53 \, (m, 2H); \\ 3,68 \, (m, 2H); 3,84 \, (m, 6H); 4,12 \, (m, 2H); 4,37 \, (q, 1H); 6,95 \, (d, 2H); 7,21 \, (d, 2H).$

20 EXEMPLE 247

RMN 1 H (CDCl₃, 250 MHz) : 1,32 (d, 3H) ; 2,09 (m, 2H) ; 2,72 (t, 2H) ; 3,21 (q, 2H) ; 3,86 (m, 4H) ; 3,97 (t, 2H) ; 4,23 (q, 1H) ; 6,94 (m, 2H) ; 7,21 (m, 7H).

25 EXEMPLE 256

 $RMN \ ^{1}H \ (CDCl_{3},\ 250\ MHz): 1,38\ (d,\ 3H)\ ;\ 3,20\ (q,\ 4H)\ ;\ 3,84\ (q,\ 4H)\ ;\ 4,36\ (q,\ 1H)\ ;\ 5,01\ (q,\ 2H)\ ;\ 5,93\ (s,\ 2H)\ ;\ 6,75\ (d,\ 1H)\ ;\ 6,92\ (m,\ 2H)\ ;\ 7,05\ (m,\ 2H)\ ;\ 7,22\ (m,\ 2H).$

30 EXEMPLE 257

RMN 1 H (CDCl₃, 250 MHz) : 1,41 (d, 3H) ; 1,94 (m, 2H) ; 2,73 (s, 1H) ; 3,22 (m, 2H) ; 3,62 (s, 2H) ; 3,85 (m, 4H) ; 4,09 (t, 2H) ; 4,40 (q, 1H) ; 6,95 (m, 2H) ; 7,24 (m, 2H).

35 EXEMPLE 258

 $RMN \ ^{1}H \ (CDCl_{3}, 250 \ MHz) : 0,93 \ (m, 3H) ; 1,37 \ (m, 2H) ; 1,51 \ (d, 3H) ; 1,65 \ (m, 2H) ; 2,66 \ (m, 2H) ; 3,22 \ (m, 4H) ; 3,85 \ (m, 4H) ; 4,58 \ (q, 1H) ; 6,96 \ (m, 2H) ; 7,28 \ (m, 6H).$

EXEMPLE 263

RMN ¹H (CDCl₃, 300 MHz): 1,40 (d, 3H); 2,79 (2t, 2H); 3,21 (t, 4H); 3,69 (s, 3H); 3,86 (t, 4H); 4,21 (t, 2H); 4,38 (q, 1H); 6,95 (d, 2H); 7,23 (d, 2H).

5

EXEMPLE 264

RMN 1 H (CDCl₃, 300 MHz) : 1,39 (d, 3H) ; 2,02 (m, 2H) ; 3,21 (m, 4H) ; 3,32 (s, 3H) ; 3,48 (t, 2H) ; 3,86 (m, 4H) ; 4,01 (t, 2H) ; 4,35 (q, 1H) ; 6,95 (d, 2H) ; 7,24 (d, 2H).

10

EXEMPLE 267

RMN ¹H (DMSO d₆ 300 MHz): 1,33 (d, 3H); 2,58 (t, 2H); 2,86 (t, 2H); 3,16 (m, 2H); 3,44 (s, 1H); 3,74 (m, 2H); 4,97 (q, 1H); 7,03 (d, 2H); 7,27 (d, 2H); 7,36 (m, 4H)

15

20

EXEMPLE 269

RMN ¹H (CDCl₃, 300 MHz): 1,40 (d, 3H); 1,61 (m, 6H); 3,22 (m, 4H); 3,51 (m, 1H); 3,82 (m, 2H); 3,86 (t, 4H); 4,06 (m, 2H); 4,23 (m, 1H); 4,39 (q, 1H); 4,74 (t, 1H) 6,96 (d, 2H); 7,24 (d, 2H).

EXEMPLE 276

RMN ¹H (CDCl₃, 250 MHz): 1,54 (d, 3H); 2,92 (t, 2H); 3,22 (m, 4H); 3,88 (m, 6H); 4,58 (q, 1H); 6,97 (m, 2H); 7,31 (m, 6H).

EXEMPLE 285

RMN ¹H (CDCl₃, 300 MHz): 1,44 (t, 3H); 3,21 (m, 4H); 3,79 (s, 3H); 3,86 (m, 4H); 4,48 (m, 4H); 4,48 (q, 1H); 4,69 (d, 2H); 6,94 (d, 2H); 7,26 (d, 2H).

EXEMPLE 294

RMN ¹H (CDCl₃, 250 MHz): 1,30 (m, 2H); 1,37 (d, 3H); 1,75 (m, 2H); 1,81 (m, 2H); 3,21 (m, 4H); 3,66 (t, 2H); 3,85 (m, 4H); 3,92 (m, 2H); 4,36 (q, 1H); 6,96 (d, 2H); 7,24 (d, 2H).

EXEMPLE 295

RMN ¹H (CDCl₃, 300 MHz): 1,35 (d, 3H); 1,45 (m, 4H); 1,61 (m, 2H); 1,80 (m, 2H); 3,22 (q, 4H); 3,65 (t, 2H); 3,85 (m, 2H); 3,90 (m, 2H); 4,35 (q, 1H); 6,97 (m, 2H); 7,24 (m, 2H).

EXEMPLE 301

RMN ¹H (CDCl₃, 300 MHz): 1,27 (m, 3H); 1,41 (m, 3H); 1,69 (d, 3H); 3,21 (m, 4H); 3,86 (m, 4H); 4,23 (m, 2H); 4,38 (t, 1H); 5,50 (m, 1H); 6,95 (d, 2H); 7,25 (m, 2H).

EXEMPLE 302

RMN ¹H (CDCl₃, 300 MHz): 1,41 (m, 12H); 1,90 (t, 2H); 3,20 (m, 4H); 3,86 (m, 4H); 3,99 (t, 2H); 4,38 (q, 1H); 5,1 (m, 1H); 6,94 (d, 2H); 7,23 (d, 2H).

EXEMPLE 312

RMN ¹H (CDCl₃, 250 MHz): 0,97 (t, 3H); 1,39 (m, 5H); 1,70 (m, 2H); 3,21 (m, 4H); 3,88 (m, 6H); 4,35 (q, 1H); 6,95 (d, 2H); 7,24 (d, 2H).

EXEMPLE 314

RMN ¹H (CDCl₃, 250 MHz): 1,39 (d, 3H); 1,92 (m, 2H); 2,43 (m, 6H); 3,21 (m, 4H); 3,71 (t, 4H); 3,86 (q, 4H); 4,36 (q, 1H); 6,95 (m, 2H); 7,24 (m, 2H).

EXEMPLE 315

RMN ¹H (CDCl₃, 300 MHz): 0,98 (d, 6H); 1,38 (d, 3H); 1,61 (m, 2H); 3,21 (m, 4H); 3,88 (m, 6H); 4,34 (q, 1H); 6,94 (d, 2H); 7,24 (m, 2H).

EXEMPLE 325

RMN ¹H (CDCl₃, 300 MHz): 1,54 (d, 3H); 3,23 (t, 4H); 3,51 (s, 3H); 3,86 (m, 4H); 4,6 (d, 2H); 6,59 (d, 1H); 6,98 (m, 2H); 7,21 (m, 1H); 7,32 (m, 4H).

10

15

20

25

30

35

EXEMPLE 379

RMN ¹H (CDCl₃, 300 MHz): 1,53 (d, 3H); 1,69 (m, 6H); 3,23 (m, 4H); 3,92 (s, 3H); 4,59 (q, 1H); 6,97 (d, 2H); 7,24 (d, 1H); 7,25 (m, 2H); 7,59 (m, 2H); 8,08 (m, 2H).

Les composés de formule I selon l'invention ont été soumis à des tests pharmacologiques afin d'évaluer leur potentiel à diminuer le taux de glycémie dans le sang.

Protocole expérimental

Les études in vivo ont été réalisées chez des souris C57BL/KsJ-db/db mâles en provenance du CERJ (Route des Chênes Secs- BP 5 - 53940 Le Genest St Isle – France).

Les animaux sont hébergés dans des cages munies d'un couvercle filtrant et ont libre accès à une nourriture standard irradiée ainsi qu'à de l'eau de boisson filtrée. Tout le matériel utilisé (cages, biberons, pipettes et copeaux) est stérilisé par autoclavage, irradiation ou trempage dans un désinfectant. La température de la pièce est maintenue à 23 ± 2 °C. Le cycle de lumière et d'obscurité est de 12 heures.

Pendant la période d'acclimatation, chaque animal est marqué à l'aide d'une puce électronique, dont l'implantation est effectuée sous anesthésie par inhalation d'un mélange CO_2/O_2 .

Des groupes de 10 souris sont constitués et les traitements débutent alors que les animaux sont âgés de 10 à 11 semaines. Les produits sont mis en suspension dans de la gomme arabique à 3% et administrés aux animaux à l'aide d'une canule de gavage, pendant 10 jours à raison de deux administrations par jour, ainsi que le matin du onzième jour. Les produits sont testés des doses inférieures à 200 mg/kg. Les animaux du groupe contrôle reçoivent le véhicule d'administration uniquement.

Un prélèvement sanguin est effectué avant traitement, puis trois heures après la dernière administration du produit. Les animaux sont anesthésiés par inhalation d'un mélange CO₂/O₂, le sang est prélevé au niveau du sinus rétro-orbitaire, recueilli dans un tube sec et maintenu au froid. Le sérum est séparé par centrifugation à 2 800 g (15 minutes, 4°C) dans l'heure suivant le prélèvement. Les échantillons sont conservés à –20°C jusqu'à l'analyse.

Les taux sériques de glucose et de triglycérides sont déterminés sur analyseur Konélab 30, à l'aide de kits Konélab. Les animaux dont la glycémie avant traitement était inférieure à 3 g/l sont systématiquement exclus de l'étude.

Pour chaque groupe, les taux moyens de glucose et de triglycérides avant et après traitement sont calculés et les résultats sont exprimés en pourcentage de variation de ces moyennes dans le temps.

Les résultats exprimés en pourcentage de variation du taux de glycémie et du taux de triglycérides montrent que les composés de formule I selon l'invention ou leurs sels d'addition avec un acide non toxique, permettent d'abaisser le taux de glycémie jusqu'à des valeurs de -73 % et le taux de triglycérides jusqu'à des valeurs de -56 %. On a observé également que le traitement avec les composés selon l'invention s'accompagnait d'une modification favorable des paramètres lipidiques.

Les composés selon l'invention peuvent être utilisés en tant que principe actif d'un médicament destiné au traitement du diabète chez les mammifères et, plus particulièrement, chez l'homme. Ils peuvent être utilisés pour lutter contre les hypertriglycéridémies et les maladies provoquées par un excès de triglycérides dans le sang, telles que par exemple l'athérosclérose.

D'une façon plus générale, ils peuvent être utiles pour la prévention ou le traitement des maladies associées à une hyperglycémie ou une hypertriglycéridémie telles que par exemple le diabète de type II, l'hypertension, les dyslipidémies, les maladies cardiovasculaires, et l'obésité; ils sont également utiles pour le traitement des maladies dues à des complications microvasculaires ou macrovasculaires chez le diabétique, notamment au niveau du système rénal ou du système nerveux central, lesdites complications étant généralement associées au syndrome métabolique X. Les composés selon l'invention sont également utiles pour traiter l'ischémie cérébrale ou l'accident vasculaire cérébral.

Des compositions pharmaceutiques incorporant les composés selon l'invention peuvent être formulées notamment par association de ces composés avec des excipients non toxiques habituels selon des procédés bien connus de l'homme du métier, de préférence de façon à obtenir des médicaments administrables par voie orale, par exemple des gélules ou des comprimés. De façon pratique, en cas d'administration du composé par voie orale, la posologie quotidienne chez l'homme sera de préférence comprise entre 5 et 500 mg. Bien que les formulations sous forme de gélules ou de comprimés soient préférées pour des raisons de confort du patient, les composés selon l'invention peuvent également être prescrits sous d'autres formes galéniques, par exemple si le patient n'accepte pas ou n'est pas en état d'accepter les formulations orales solides ou si le traitement nécessite une biodisponibilité très rapide du principe actif. On pourra ainsi présenter le médicament sous forme de sirop buvable, ou sous forme injectable, de préférence sous-cutanée ou intramusculaire.

10

15

20

25

10

REVENDICATIONS

1. Composé dérivé de la thiohydantoïne caractérisé en ce qu'il est choisi parmi :

a) les composés de formule

$$R_1$$
 R_3
 R_4
 R_2

dans laquelle

 R_1 représente un noyau aromatique non substitué ou substitué par un ou plusieurs atomes ou groupes d'atomes choisis parmi les halogènes, les groupes alcoxy en C_1 - C_4 linéaire ou ramifié, alkyle en C_1 - C_4 linéaire, ramifié ou cyclique, alkylthio en C_1 - C_4 linéaire ou ramifié, nitro, trifluorométhyle, trifluorométhoxy, méthylènedioxy, ou

I

$$-N$$
 $(CH_2)_m$
 R_5
 $(CH_2)_n$
 R_6

R₂ représente

un atome d'hydrogène,

un groupe alkyle en C₁-C₇ linéaire, ramifié ou cyclique, éventuellement interrompu par un ou plusieurs atomes d'oxygène,

un groupe halogénoalkyle en C1-C3,

un groupe alcényle en C₃-C₅, linéaire ou ramifié,

un groupe alcynyle en C₃-C₄, linéaire ou ramifié,

20 un groupe hydroxyalkyle en C₂-C₆,

un groupe aminoalkyle en C2-C4,

un groupe cyanoalkyle en C2-C3,

un groupe alkyle en C₁-C₃, linéaire ou ramifié, substitué par un ou plusieurs substituants R₇, ou

un noyau aromatique non substitué ou substitué par un ou plusieurs atomes ou groupes d'atomes choisis parmi les halogènes, les groupes alcoxy en C₁-C₄ linéaire ou ramifié, alkyle en C₁-C₄ linéaire, ramifié ou cyclique, alkylthio en C₁-C₄ linéaire ou ramifié, amino, cyano, hydroxy, nitro, trifluorométhyle, trifluorométhoxy, méthylènedioxy, éthylènedioxy, difluorométhylènedioxy, aminosulfonyl, diméthylamino, hydroxyalkyle en C₁-C₃, acide

carboxylique, ester d'alkyle en C₂-C₃, méthanesulfonylamino, benzènesulfonylamino, t-butoxycarbonylamino,ou

 R_3 , R_5 et R_6 représentent chacun indépendamment un atome d'hydrogène ou un groupe alkyle en C_1 - C_4 ,

 R_4 représente un atome d'hydrogène, un groupe alkyle en C_1 - C_4 ou un groupe hydroxy,ou, R_3 et R_4 forment ensemble un groupe méthylène, ou

R₅ et R₆ forment ensemble un groupe éthylène -CH₂-CH₂-,

R₇ représente un groupe acide carboxylique libre ou estérifié par un groupe alkyle en C₁-C₃, un noyau phényle non substitué ou substitué par un ou plusieurs groupes méthoxy, phényle ou méthylènedioxy, un noyau 2-furyle, un noyau 2-, 3- ou 4-pyridinyle ou un groupe 4-morpholinyle,

m = 2 ou 3

5

15 X représente un atome d'oxygène, un atome de soufre, un groupe sulfoxyde, un groupe sulfonyle, un groupe carbonyle, un groupe

$$C = R_9$$
 ou un groupe :

R₈ représente un atome d'hydrogène, un groupe hydroxy, un groupe hydroxyalkyle en C₁-C₂, un groupe benzoyle ou un groupe CO₂CH₃,

 R_9 représente un atome d'hydrogène ou forme, avec R_8 , un groupe éthylènedioxy, R_{10} représente un groupe méthyle, un groupe hydroxyalkyle en C_2 - C_4 , un groupe 1-oxoalkyle en C_2 - C_4 , un groupe $SO_2N(CH_3)_2$, un groupe 2-pyridinyle ou un groupe 2-pyrimidinyle,

à la condition que l'un au moins des substituants R₁ et R₂ représente un noyau aromatique substitué au moins par un groupe

$$-N \begin{pmatrix} (CH_2)_m & R_5 \\ X & X \\ (CH_2)_2 & R_6 \end{pmatrix}$$

20

b) les sels d'addition des composés de formule I avec un acide, notamment les sels pharmaceutiquement acceptables.

2. Composé selon la revendication 1, caractérisé en ce qu'il est choisi parmi :

a) les composés de formule

$$R_1$$
 N R_2 R_3 R_4 O

I

dans laquelle

R₁ représente un noyau phényle éventuellement substitué par un ou plusieurs atomes ou groupes d'atomes choisis parmi les halogènes, les groupes alkyle en C₁-C₄ linéaire ou

$$-N$$
 R_{6}

10

15

20

5

R₂ représente

un groupe alkyle en C1-C7 linéaire ou cyclique,

un groupe alcényle en C3-C5 linéaire, ou

un noyau phényle, 2-thiényle ou 3-pyridinyle éventuellement substitué par un ou plusieurs atomes ou groupes d'atomes choisis parmi les halogènes, les groupes alcoxy en C_1 - C_4 linéaire ou ramifié, alkyle en C_1 - C_4 linéaire, alkylthio en C_1 - C_4 linéaire, amino, hydroxy, nitro, trifluorométhyle, trifluorométhoxy, méthylènedioxy ou

R₃ représente un atome d'hydrogène, un groupe alkyle en C₁-C₄ linéaire ou un groupe hydroxy,

 R_4 , R_5 , et R_6 représentent chacun indépendamment un atome d'hydrogène ou un groupe alkyle en C_1 - C_4 linéaire,

X représente un atome d'oxygène, un groupe sulfoxyde ou un atome de carbone substitué par un groupe hydroxyalkyl en C₁-C₂,

à la condition que l'un au moins des substituants R_1 et R_2 représente un noyau aromatique substitué au moins par un groupe

$$-N$$
 R_6
 X

5

b) les sels d'addition de composés de formule I avec un acide, notamment les sels pharmaceutiquement acceptables.

3. Composé selon la revendication 1, caractérisé en ce que R₁ représente un groupe phényle substitué au moins en position para par un groupe

$$-N \xrightarrow{\text{(CH}_2)_m} R_5$$

dans lequel X, m, R_5 et R_6 sont tels que définis dans la revendication 1.

15

4. Composé selon l'une des revendications 1 à 3, caractérisé en ce que X représente un atome d'oxygène.

20

5. Composé selon l'une des revendications 1 à 4, caractérisé en ce que R₃ représente un atome d'hydrogène et R₄ représente un groupe méthyle.

25

6. Procédé de préparation d'un composé selon l'une quelconque des revendications 1 à 5 caractérisé en ce qu'il comprend les étapes consistant à :

1) faire réagir un aminoacide de formule :

-- ---

$$R_3$$
 COOH R_4 (II)

dans laquelle

5

10

15

20

R₁ représente un noyau aromatique non substitué ou substitué par un ou plusieurs atomes ou groupes d'atomes choisis parmi les halogènes, les groupes alcoxy en C₁-C₄ linéaire ou ramifié, alkyle en C₁-C₄ linéaire, ramifié ou cyclique, alkylthio en C₁-C₄ linéaire ou ramifié, nitro, trifluorométhyle, trifluorométhoxy, méthylènedioxy ou

m représente 2 ou 3,

X représente un atome d'oxygène, un atome de soufre, un groupe sulfoxyde, un groupe sulfonyle, un groupe carbonyle, un groupe

$$C \stackrel{R_9}{\underset{R_6}{\longleftarrow}} R_9$$
 ou un groupe :

R₃, R₄, R₅ et R₆ représentent chacun indépendamment un atome d'hydrogène ou un groupe alkyle en C₁-C₄,

 R_8 représente un atome d'hydrogène, un groupe hydroxy, un groupe hydroxyalkyle en C_1 - C_2 , un groupe benzoyle ou un groupe CO_2CH_3 ,

 R_9 représente un atome d'hydrogène ou forme, avec R_8 un groupe éthylènedioxy,

 R_{10} représente un groupe méthyle, un groupe hydroxyalkyle en C_2 - C_4 , un groupe 1-oxoalkyle en C_2 - C_4 , un groupe $SO_2N(CH_3)_2$, un groupe 2-pyridinyle ou un groupe 2-pyrimidinyle,

avec un isothiocyanate de formule

$$R_2$$
-N=C=S (III)

dans laquelle R₂ représente :

un groupe alkyle en C₁-C₇ linéaire, ramifié ou cyclique, éventuellement interrompu par un

ou plusieurs atomes d'oxygène,

un groupe halogénoalkyle en C₁-C₃, un groupe alcényle en C₃-C₅, linéaire ou ramifié, un groupe alcynyle en C₃-C₄, linéaire ou ramifié, un groupe hydroxyalkyle en C₂-C₆, un groupe aminoalkyle protégé en C₂-C₄,

un groupe aminoalkyle protégé en C₂-C₄, un groupe cyanoalkyle en C₂-C₃,

un groupe alkyle en C₁-C₃, linéaire ou ramifié, éventuellement substitué par un ou plusieurs substituants R₇, ou

un noyau aromatique non substitué ou substitué par un ou plusieurs atomes ou groupes d'atomes choisis parmi les halogènes, les groupes alcoxy en C₁-C₄ linéaire ou ramifié, alkyle en C₁-C₄ linéaire, ramifié ou cyclique, alkylthio en C₁-C₄ linéaire ou ramifié, cyano, hydroxy, nitro, trifluorométhyle, trifluorométhoxy, méthylènedioxy, éthylènedioxy, difluorométhylènedioxy, aminosulfonyl, diméthylamino, hydroxyalkyle en C₁-C₃, acide carboxylique, ester d'alkyle en C₂-C₃, méthanesulfonylamino, benzènesulfonylamino, t-butoxycarbonylamino,ou

$$-N \begin{pmatrix} CH_2 & R_5 \\ X & X \\ CH_2 & R_6 \end{pmatrix}$$

dans un solvant, en présence d'une base aprotique, à une température comprise entre10°C et la température de reflux du solvant, pendant 2 à 4 heures , pour obtenir le composé de formule I

$$R_1$$
 R_2 R_3 R_4 O

20

10

15

dans laquelle R₁, R₂, R₃, R₄ conservent la même signification que précédemment, étant entendu que l'un au moins des groupes R₁ et R₂ contient dans sa structure un noyau aromatique substitué au moins par le groupe

25 tel que défini ci-dessus.

10

15

- 2) si nécessaire, obtenir le sel d'addition du composé de formule I ci-dessus avec un acide organique ou minéral.
- 7. Procédé de préparation d'un composé selon l'une quelconque des revendications
- 1 à 5 caractérisé en ce qu'il comprend les étapes consistant à :
- 1) faire réagir un ester d'aminoacide de formule (IIa)

$$R_1$$
 NH COORA R_3 R_4 (IIa)

dans laquelle R_1 , R_3 et R_4 ont une signification analogue à celle des substituants R_1 , R_3 et R_4 notés pour le composé de formule Π décrit dans le procédé A et R_4 représente un groupe alkyle en C_1 - C_3 , préférentiellement le groupe éthyle, avec un isothiocyanate de formule

$$R_2-N=C=S$$
 (III)

telle que décrite précédemment pour le procédé A,

dans un solvant, en présence d'un acide faible, à une température comprise entre 50°C et la température d'ébullition du solvant, pendant 2 à 25 heures, pour obtenir le composé de formule I

dans laquelle R_1 , R_2 , R_3 , R_4 conservent la même signification que précédemment, étant entendu que l'un au moins des groupes R_1 et R_2 contient dans sa structure un noyau aromatique substitué au moins par le groupe

$$-N \begin{pmatrix} CH_2 \\ X \\ CH_2 \end{pmatrix}_2 R_6$$

tel que défini ci-dessus.

2) si nécessaire, obtenir le sel d'addition du composé de formule I ci-dessus avec un acide organique ou minéral.

25

20

10

15

20

25

8. Procédé de préparation d'un composé selon l'une quelconque des revendications 1 à 5 caractérisé en ce qu'il comprend les étapes consistant à :

1) faire réagir un ester d'aminoacide de formule (IIa)

$$R_1$$
 NH COORa R_3 R_4 (IIa)

dans laquelle R_1 , R_3 et R_4 ont une signification analogue à celle des substituants R_1 , R_3 et R_4 notés pour le composé de formule Π décrit dans le procédé A et R_4 représente un groupe alkyle en C_1 - C_3 , préférentiellement le groupe éthyle, avec un isothiocyanate de formule

$$R_2$$
-N=C=S (III)

telle que décrite précédemment pour le procédé A,

en présence d'un acide faible, sous un rayonnement micro-ondes, pendant 2 à 15 minutes, pour obtenir le composé de formule I

dans laquelle R_1 , R_2 , R_3 , R_4 conservent la même signification que précédemment, étant entendu que l'un au moins des groupes R_1 et R_2 contient dans sa structure un noyau aromatique substitué au moins par le groupe

$$-N \begin{pmatrix} (CH_2)_m & R_5 \\ X & X \\ (CH_2)_2 & R_6 \end{pmatrix}$$

tel que défini ci-dessus.

- 2) si nécessaire, obtenir le sel d'addition du composé de formule I ci-dessus avec un acide organique ou minéral.
- 9. Composition pharmaceutique caractérisée en ce qu'elle contient, en association avec au moins un excipient physiologiquement acceptable, au moins un composé de formule I selon l'une des revendications 1 à 5 ou l'un de ses sels d'addition avec un acide pharmaceutiquement acceptable.

15

20

- 10. Composé de formule (I) selon l'une quelconque des revendications 1 à 5 ou l'un de ses sels d'addition avec un acide pharmaceutiquement acceptable pour son utilisation en tant que substance pharmacologiquement active.
- 11. Utilisation d'un composé de formule I selon l'une des revendications 1 à 5 ou l'un de ses sels d'addition avec un acide pharmaceutiquement acceptable pour la préparation d'un médicament destiné au traitement du diabète ou des maladies dues à une hyperglycémie.
- 12. Utilisation d'un composé de formule I selon l'une des revendications 1 à 5 ou l'un de ses sels d'addition avec un acide pharmaceutiquement acceptable pour la préparation d'un médicament destiné au traitement des hypertriglycéridémies et des dyslipidémies.
 - 13. Utilisation d'un composé de formule I selon l'une des revendications 1 à 5 ou l'un de ses sels d'addition avec un acide pharmaceutiquement acceptable pour la préparation d'un médicament destiné au traitement de l'obésité.
 - 14. Utilisation d'un composé de formule I selon l'une des revendications 1 à 5 ou l'un de ses sels d'addition avec un acide pharmaceutiquement acceptable pour la préparation d'un médicament destiné au traitement des accidents vasculaires cérébraux.

INTERNATIONAL SEARCH REPORT

in onal Application No PCT/FR 02/01167

	CO7D233/86 A61K31/4 C07D233/86 A61K31/4 C07D409/04 C07D403/ C07D491/10 C07D405/ International Patent Classification (IPC) or	'06 C07D401/06	CO7D401/12	C07D401/04 C07D403/10 C07D403/12				
B. FIELDS	SEARCHED							
MinImum documentation searched (classification system followed by classification symbols) IPC 7 C07D A61K A61P								
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched								
Electronic data base consulted during the international search (name of data base and, where practical, search terms used)								
I CHEM A	CHEM ABS Data							
OHEN 7								
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	<u> </u>						
Category °	Citation of document, with indication, wh	ere appropriate, of the releva	ant passages	Relevant to claim No.				
А	US 4 743 611 A (AME CORPORATION) 10 May column 1 -column 2	1,9,11						
☐ Fu	urther documents are listed in the continuation	ion of box C.	χ Patent family memb	ers are listed in annex.				
*Special categories of cited documents: *T* later document published after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the								
considered to be of particular relevance invention "E" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered over or cannot be considered to								
*L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) *Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone *Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone								
P* docu								
1 _	r than the priority date claimed			ternational search report				
Date of t	ne actual completion of the international sea 16 September 2002	11G1	25/09/2002					
Name at	nd mailing address of the ISA European Patent Office, P.B. 5818	Palentiaan 2	Authorized officer					
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 65 Fax: (+31-70) 340-3016		Van Bijler	n, H				

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

In onal Application No PCT/FR 02/01167

A. CLASSIF IPC 7	CO7D413/04 //(CO7D491/10,317:00	,221:00)						
According to International Patent Classification (IPC) or to both national classification and IPC								
	SEARCHED							
	currentation searched (classification system followed by classification	tion symbols)						
		and designate on included in the folde cos	irched					
Documentati	ion searched other than minimum documentation to the extent that	such documents are included. In the lields sea	irareu					
Electronic data base consulted during the international search (name of data base and, where practical, search terms used)								
Electronic da	ald base consided during the International season (harns of data.	,						
Ì								
l			<u></u> .					
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT							
	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.					
Category °	Ondition of document, with indication, whole appropriately of the							
ì								
}								
}								
1		·						
į.								
		}						
1								
l		•						
[
ĺ								
1								
1								
1								
1		-						
1								
1								
ĺ								
1								
Fur	rither documents are listed in the continuation of box C.	χ Patent family members are listed	in annex.					
° Special o	categories of cited documents :	"T" later document published after the inte	rnational filing date					
or priority date and not in conflict with the application but								
'A' document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention								
*F' earlier document but published on or after the international *X* document of particular relevance; the claimed invention								
filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone								
which is cited to establish the publication date of another								
	citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such document.							
othe	er means	ments, such combination being obvio	us to a person skilled					
P docur	P document published prior to the international filing date but							
Date of th	e actual completion of the international search	Date of mailing of the international se	arch report					
	16 Contembon 2002							
-	16 September 2002							
Name and	d mailing address of the ISA	Authorized officer						
	European Patent Office, P.B. 5818 Patentlaan 2							
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,	Van Bijlen, H						
}	Fax: (+31-70) 340-3016) vali bijich, ii						

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

tr onal Application No PCT/FR 02/01167

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 4743611	Α	10-05-1988	EP JP JP	0251784 A2 5000390 B 63022565 A	07-01-1988 05-01-1993 30-01-1988
·					

Form PCT/ISA/210 (patent family annex) (July 1992)

RAPPORT DE RECHERCHE INTERNATIONALE

D le Internationale No PCT/FR 02/01167

CIB 7	CO7D491/10 CO7D405/06 CO	7D401/10 7D401/06	C07D405/04 C07D401/14 C07D401/12	C07D401/04 C07D403/10 C07D403/12			
	ssification internationale des brevets (CIB) ou à la fois sel	on la classificatio	on nationale et la CiB				
	ES SUR LESQUELS LA RECHERCHE A PORTE						
CIB 7	ion minimale consultée (système de classification suivi de CO7D A61K A61P	s symboles de c	aassement)				
	·						
Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche							
Base de don	nnées électronique consultée au cours de la recherche int	ernationale (non	n de la base de données, et	si réalisable, termes de recherche utilisés			
	•						
I CHEM AI	BS Data						
C DOCUME	ENTS CONSIDERES COMME PERTINENTS						
	Identification des documents cités, avec, le cas échéan	t l'indication des	naccades nertinents	no, des revendications visées			
Catégorie °	deminication des documents dies, avec, le cas échéan	t, i majoanon dec	passages permens				
А	US 4 743 611 A (AMERICAN HO CORPORATION) 10 mai 1988 (1	1,9,11					
	colonne 1 -colonne 2						
1							
				4			
ļ							
}							
}							
1							
}				}			
i							
				Į.			
				ĺ			
Voir	r la suite du cadre C pour la fin de la liste des documents	X	Les documents de far	nilles de brevets sont indiqués en annexe			
° Catégories spéciales de documents cités: 'T' document ultérieur publié après la date de dépôt international ou la							
'A' document définissant l'état général de la technique, non date de priorité et n'apparlenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe							
considéré comme particulièrement pertinent ou la théorie constituant la base de l'invention							
ou après cette date							
"L' document pouvant jeter un doute sur une revendication de inventive par rapport au document considéré isolément priorité ou cité pour déterminer la date de publication d'une "Y" document particulièrement pertinent; l'invention revendiquée							
autre citation ou pour une raison spéciale (telle qu'indiquée) ne peut être considérée comme impliquant une activité inventive							
une exposition ou tous autres moyens documents de même nature, cette combinaison étant évidente							
P document publié avant la date de dépôt international, mais pour une personne du mêtier							
Date à laquelle la recherche internationale a été effectivement achevée Date d'expédition du présent rapport de recherche internationale							
1	16 septembre 2002		25/09/2002				
Nom et adı	resse postale de l'administration chargée de la recherche	internationale	Fonctionnaire autorisé				
{	Office Européen des Brevets, P.B. 5818 Patentlaar NL – 2280 HV Rijswijk	12					
1	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016		Van Bijlen,	Н			

Formulaire PCT/ISA/210 (deuxième feuille) (juillet 1992)

RAPPORT DE RECHERCHE INTERNATIONALE

D e Internationale No PCT/FR 02/01167

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE Documentation minimale consultée (système de classification suivi des symboles de classement) Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) C. DOCUMENTS CONSIDERES COMME PERTINENTS Catégorie Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents no. des revendications visées					
B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE Documentation minimale consultée (système de classification suivi des symboles de classement) Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) C. DOCUMENTS CONSIDERES COMME PERTINENTS					
Documentation minimale consultée (système de classification suivi des symboles de classement) Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) C. DOCUMENTS CONSIDERES COMME PERTINENTS					
Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) C. DOCUMENTS CONSIDERES COMME PERTINENTS					
Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) C. DOCUMENTS CONSIDERES COMME PERTINENTS					
C. DOCUMENTS CONSIDERES COMME PERTINENTS					
C. DOCUMENTS CONSIDERES COMME PERTINENTS					
Caregorie Identification des documents steet, a section, a section, a section and a section and a section as s					
Voir la suite du cadre C pour la fin de la liste des documents X Les documents de familles de brevets sont indiqués en annexe					
Voli la sone du caule o pour la fin de la liste des documents					
*Catégories spéciales de documents cités: *T* document ultérieur publié après la date de dépôt international ou la					
'A' document définissant l'état général de la technique, non date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe					
'E' document antérieur, mais publié à la date de dépôt international					
ou après cette date étre considérée comme nouvelle ou comme impliquant une activité 'L' document pouvant jeter un doute sur une revendication de inventive par rapport au document considéré isolément					
priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) en peut être considérée comme impliquant une activité inventive ne peut être considérée comme impliquant une activité inventive					
O document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens documents de même nature, cette combinaison étant évidente pour une personne du métier					
'P' document publié avant la date de dépôt international, mals postérieurement à la date de priorité revendiquée '&' document qui fait partie de la même famille de brevets					
Date à laquelle la recherche internationale a été effectivement achevée Date d'expédition du présent rapport de recherche internationale					
16 septembre 2002					
16 Septembre 2002 Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2					

Formulaire PCT/ISA/210 (deuxième feuille) (juillet 1992)

RAPPORT DE RECHERCHE INTERNATIONALE

D le Internationale No PCT/FR 02/01167

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
US 4743611	A	10-05-1988	EP JP JP	0251784 A2 5000390 B 63022565 A	07-01-1988 05-01-1993 30-01-1988

Formulaire PCT/ISA/210 (annexe familles de brevets) (juillet 1992)

THIS PAGE BLANK (USPTO)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

1 (1881 - 1884) 18 1 1884 (1884) 1884 (1884) 1884 (1884) 1884 (1884) 1884 (1884) 1884 (1884) 1884 (1884) 1884

(43) Date de la publication internationale 17 octobre 2002 (17.10.2002)

PCT

(10) Numéro de publication internationale WO 02/081453 A1

(51) Classification internationale des brevets⁷:

C07D 233/86,

A61K 31/4166, A61P 3/10, C07D 405/04, 401/04, 409/04, 403/04, 401/10, 401/14, 403/10, 491/10, 405/06, 401/06, 401/12, 403/12, 413/04 // (C07D 491/10, 317:00, 221:00)

(21) Numéro de la demande internationale :

PCT/FR02/01167

- (22) Date de dépôt international : 4 avril 2002 (04.04.2002)
- (25) Langue de dépôt :

français

(26) Langue de publication :

français

- (30) Données relatives à la priorité : 0104552 4 avril 2001 (04.04.2001) FR
- (71) Déposant (pour tous les États désignés sauf US): LAB-ORATOIRES FOURNIER SA [FR/FR]; 9 Rue Petitot, F-21000 Dijon (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): BOUBIA, Benaïssa [FR/FR]; 23 Rue de la Fontaine Soyer, F-21850 Saint Apollinaire (FR). CHAPUT, Evelyne [FR/FR]; 72 Rue des Moulins, F-21000 Dijon (FR). OU, Khan [FR/FR]; 25A Rue De Messigny, F-21121 Hauteville-lès-Dijon (FR). RATEL, Philippe [FR/FR]; 27 Rue Des Marronniers, F-21121 Ahuy (FR).

(74) Mandataires: HUBERT, Philippe etc.; Cabinet Beau de Loménie, 158, rue de l'Université, F-75340 Cedex 07 Paris (FR)

- (81) États désignés (national): AE, AG, AL, AM, AT (modèle d'utilité), AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ (modèle d'utilité), CZ, DE (modèle d'utilité), DE, DK (modèle d'utilité), DK, DM, DZ, EC, EE (modèle d'utilité), EE, ES, FI (modèle d'utilité), FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK (modèle d'utilité), SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée :

- avec rapport de recherche internationale
- avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues
- (48) Date de publication de la présente version corrigée: 14 novembre 2002

[Suite sur la page suivante]

- (54) Title: THIOHYDANTOINS AND USE THEREOF FOR TREATING DIABETES
- (54) Titre : HIOHYDANTOÏNES ET LEUR UTILISATION DANS LE TRAITEMENT DU DIABETE

2/081453 A1

- (57) Abstract: The invention concerns compounds derived from 2-thiohydantoin selected among compounds of general formula (I), such as defined in the claims, and their addition salts with an acid, in particular pharmaceutically acceptable salts. The invention also concerns the method for preparing same, pharmaceutical compositions containing them and their use as pharmacologically active substance, in particular for treating diabetes, diseases mediated by hyperglycemia, hypertriglyceridemiae, dyslipidaemiae or obesity.
- (57) Abrégé: L'invention concerne des composés dérivés de la 2-thiohydantoīne choisis parmi les composés de formule générale (I), telle que

définie dans les revendications, et leurs sels d'addition avec un acide, notamment les sels pharmaceutiquement acceptables. Elle concerne également leur procédé de préparation, les compositions pharmaceutiques les contenant, et leur utilisation en tant que substance pharmacologiquement active, notamment dans le cas du traitement du diabète, des maladies dûes à une hyperglycémie, des hypertriglycéridémies, des dyslipidémies ou de l'obésité.

(15) Renseignements relatifs à la correction: voir la Gazette du PCT n° 46/2002 du 14 novembre 2002, Section II

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.