Secure Computation in Online Social Networks

Presenter: Yi LIU

Lover matching

Protocols for Secure Computations.

FOCS'82

Andrew Yao 姚期智 Turing Award (2000)

Protocols for Secure Computations.

FOCS'82

Yao's Millionaires' Problem

Andrew Yao 姚期智 Turing Award (2000)

Protocols for Secure Computations.

FOCS'82

Yao's Millionaires' Problem

For definiteness, suppose Alice has i millions and Bob has j millions, where 1 < i, j < 10. We need a protocol for them to decide whether i < j, such that this is also the only thing they know in the end (aside from their own values). Let M be the set of all N-bit nonnegative integers, and Q_N be the set of all 1-1 onto functions from M to M. Let E_a be the public key of Alice, generated by choosing a random element from Q_N .

- 1. Bob picks a random N-bit integer, and computes privately the value of $E_a(x)$; call the result k.
- 2. Bob sends Alice the number k j + 1;
- 3. Alice computes privately the values of $y_u = D_a(k j + u)$ for u = 1, 2, ..., 10.
- 4. Alice generates a random prime p of N/2 bits, and computes the values $z_u = y_u \pmod{p}$ for all u; if all z_u differ by at least 2 in the mod p sense, stop; otherwise generates another random prime and repeat the process until all z_u differ by at least 2; let p, z_u denote this final set of numbers;
- 5. Alice sends the prime p and the following 10 numbers to B: z_1, z_2, \ldots, z_i followed by $z_i + 1, z_{i+1} + 1, \ldots, z_{10} + 1$; the above numbers should be interpreted in the mod p sense.
- Bob looks at the j-th number (not counting p) sent from Alice, and decides that i ≥ j if it is equal to x mod p, and i < j otherwise.
- 7. Bob tells Alice what the conclusion is.

Andrew Yao 姚期智 Turing Award (2000)

Why (mod p)?

- 1. Bob picks a random N-bit integer, and computes privately the value of $E_a(x)$; call the result k.
- 2. Bob sends Alice the number k j + 1;
- 3. Alice computes privately the values of $y_u = D_a(k j + u)$ for u = 1, 2, ..., 10.
- 4. Alice generates a random prime p of N/2 bits, and computes the values $z_u = y_u \pmod{p}$ for all u; if all z_u differ by at least 2 in the mod p sense, stop; otherwise generates another random prime and repeat the process until all z_u differ by at least 2; let p, z_u denote this final set of numbers;
- 5. Alice sends the prime p and the following 10 numbers to B: z_1, z_2, \ldots, z_i followed by $z_i + 1, z_{i+1} + 1, \ldots, z_{10} + 1$; the above numbers should be interpreted in the mod p sense.
- Bob looks at the j-th number (not counting p) sent from Alice, and decides that i ≥ j if it is equal to x mod p, and i < j otherwise.
- 7. Bob tells Alice what the conclusion is.

Andrew Yao 姚期智 Turing Award (2000)

Two groups G and G' are homomorphic if there exists a function (homomorphism) $f: G \to G'$ such that for all $x, y \in G$, $f(x +_G y) = f(x) +_{G'} f(y)$.

Two groups G and G' are homomorphic if there exists a function (homomorphism) $f: G \to G'$ such that for all $x, y \in G$, $f(x +_G y) = f(x) +_{G'} f(y)$.

Why do we need *homomorphic encryption*?

Two groups G and G' are homomorphic if there exists a function (homomorphism) $f: G \to G'$ such that for all $x, y \in G$, $f(x +_G y) = f(x) +_{G'} f(y)$.

Why do we need *homomorphic encryption*?

Recall RSA encryption

$$E(m_1) = m_1^e \mod n, \ E(m_2) = m_2^e \mod n$$

Recall RSA encryption

$$E(m_1) = m_1^e \mod n$$
, $E(m_2) = m_2^e \mod n$
 $E(m_1) \cdot E(m_2) = m_1^e \cdot m_2^e = (m_1 \cdot m_2)^e = E(m_1 \cdot m_2)$

Recall RSA encryption

$$E(m_1) = m_1^e \mod n$$
, $E(m_2) = m_2^e \mod n$
 $E(m_1) \cdot E(m_2) = m_1^e \cdot m_2^e = (m_1 \cdot m_2)^e = E(m_1 \cdot m_2)$

RSA is multiplicatively homomorphic, but not additively homomorphic.

Recall RSA encryption

$$E(m_1) = m_1^e \mod n$$
, $E(m_2) = m_2^e \mod n$
 $E(m_1) \cdot E(m_2) = m_1^e \cdot m_2^e = (m_1 \cdot m_2)^e = E(m_1 \cdot m_2)$

RSA is multiplicatively homomorphic, but not additively homomorphic.

Paillier cryptosystem: additively homomorphic

Recall RSA encryption

$$E(m_1)=m_1^e \mod n$$
, $E(m_2)=m_2^e \mod n$

$$E(m_1) \cdot E(m_2) = m_1^e \cdot m_2^e = (m_1 \cdot m_2)^e = E(m_1 \cdot m_2)$$

RSA is multiplicatively homomorphic, but not additively homomorphic.

Paillier cryptosystem (EUROCRYPT'99): additively homomorphic

The original system: semantic security against chosen-plaintext attacks (IND-CPA)

The improved system: IND-CCA2 secure in the random oracle model

We need **both!**

What people really wanted was the ability to do arbitrary computing on encrypted data, and this requires the abibility to compute both sums and products.

Why SUMs and PRODUCTs?

XOR

 $x + y \mod 2$

PRODUCT

AND

 $x \cdot y \mod 2$

Why SUMs and PRODUCTs?

{XOR, AND} is complete, i.e., any function is a combination of XOR and AND. (e.g., OR)

Why SUMs and PRODUCTs?

{XOR, AND} is complete, i.e., any function is a combination of XOR and AND. (e.g., OR) **Example** $x OR y = x + y + x \cdot y \mod 2$.

Because {XOR, AND} is *complete*, if we can compute SUMs and PRODUCTs on encrypted bits, we can compute any function on encrypted inputs.

Because {XOR, AND} is *complete*, if we can compute SUMs and PRODUCTs on encrypted bits, we can compute any function on encrypted inputs.

Fully-homomorphic encryption!

We can delegate arbitrary processing of data without giving away access to it.

Because {XOR, AND} is *complete*, if we can compute SUMs and PRODUCTs on encrypted bits, we can compute any function on encrypted inputs.

Fully-homomorphic encryption!

We can delegate arbitrary processing of data without giving away access to it.

Applications: private cloud computing, private information retrieval, multi-party secure computation, encrypted search,

. . .

Fully Homomorphic Encryption Using Ideal Lattices

STOC'09

Craig Gentry Stanford University and IBM Watson cgentry@cs.stanford.edu

ABSTRACT

We propose a fully homomorphic encryption scheme – i.e., a scheme that allows one to evaluate circuits over encrypted data without being able to decrypt. Our solution comes in three steps. First, we provide a general result – that, to construct an encryption scheme that permits evaluation of arbitrary circuits, it suffices to construct an encryption

duced by Rivest, Adleman and Dertouzos [54] shortly after the invention of RSA by Rivest, Adleman and Shamir [55]. Basic RSA is a multiplicatively homomorphic encryption scheme – i.e., given RSA public key pk = (N,e) and ciphertexts $\{\psi_i \leftarrow \pi_i^e \mod N\}$, one can efficiently compute $\prod_i \psi_i = (\prod_i \pi_i)^e \mod N$, a ciphertext that encrypts the product of the original plaintexts. Rivest et al. [54] asked

Fully Homomorphic Encryption over the Integers

Marten van Dijk¹, Craig Gentry², Shai Halevi², and Vinod Vaikuntanathan²

¹ MIT CSAIL

² IBM Research

EUROCRYPT'10

Abstract. We construct a simple fully homomorphic encryption scheme, using only elementary modular arithmetic. We use Gentry's technique to construct a fully homomorphic scheme from a "bootstrappable" somewhat homomorphic scheme. However, instead of using ideal lattices over a

Craig Gentry

Server-Aided Secure Computation with Off-line Parties

• ESORICS'17

Server-Aided Secure Computation with Off-line Parties

- ESORICS'17
- Extend version: Secure Computation in Online Social Networks

Server-Aided Secure Computation with Off-line Parties

- Foteini Baldimtsi1, Dimitrios Papadopoulos, Stavros Papadopoulos, Alessandra Scafuro, and Nikos Triandopoulos
- ESORICS'17
- Extend version: Secure Computation in Online Social Networks
- Contribution
 - First MPC model that is specifically tailored for secure computation in the OSN setting (efficiency, friend non-participation and data re-usability)
 - Two very well-studied techniques from secure two-party computation (garbled circuits and mixed protocols) can be adapted for use in this setting
 - Implementation and experimental evaluation

Assumption

No collusion between server and users!

Garbled circuit

Garbled circuit

- 1. $\mathsf{Join}\langle U_i(1^{\lambda}), S(\mathcal{G})\rangle$: On input 1^{λ} , U_i randomly chooses a PRF key $K_i \in \{0,1\}^{\lambda}$, and sends her public-key pk_i to S. S adds v_i initialized with value pk_i into \mathcal{V} of \mathcal{G} .
- 2. Connect $\langle U_i(K_i), U_j(K_j) \rangle$: U_i receives the public key pk_j of U_j from S. Sets $k_{i \to j}$ to $E'(pk_j, K_i)$ and sends it to S. U_j computes and sends $k_{j \to i}$ to S who then creates edge e_{ij} storing $k_{i \to j}$, $k_{j \to i}$, and adds it to \mathcal{E} of \mathcal{G} .
- 3. Upload $\langle U_i(K_i, x_i), S(\mathcal{G}) \rangle$: U_i chooses nonce r_i , computes value $X_{il}^{x_i[l]}$ as $F_{K_i}(x_i[l], l, r_i) \ \forall \ l \in [\ell]$, and sends them to S who stores the value $c_i = ((X_{i1}^{x_i[1]}, \ldots, X_{i\ell}^{x_i[\ell]}), r_i)$ in v_i .
- 4. Query $\langle U_q(K_q,\alpha), S(\mathcal{G})\rangle(f)$: U_q does the following:
 - (a) Key and nonce retrieval. For each $U_j \in \mathcal{G}_q$, retrieve key $k_{j\to q}$ and (latest) nonce r_j from S, and decrypt $k_{j\to q}$ to get K_j .
 - (b) Garbled circuit computation. U_q transforms f into a circuit, and garbles it as GC.
 - (c) Selection table generation. For each user U_j in \mathcal{G}_q and index $l \in [\ell]$: Compute selection keys: Generate $s_{jl}^0 = F_{K_j}(0,l,r_j), s_{jl}^1 = F_{K_j}(1,l,r_j).$ Compute garbled inputs: Produce encryptions $E_{s_{jl}^0}(w_{jl}^0)$ and $E_{s_{jl}^1}(w_{jl}^1)$ with the selection keys. Set selection table entry: Store $E_{s_{jl}^0}(w_{jl}^0)$ and $E_{s_{jl}^1}(w_{jl}^1)$ into $T_q[j,l]$ in a random order.
 - (d) Circuit transmission. Send GC, T_q to S. S then decrypts the garbled values of each $U_j \in \mathcal{G}_q$ from T_q , with the encoding $X_{jl}^{x_j[l]}$ for each $l \in [\ell]$. He evaluates GC and sends output to U_q who Obtains the result g by decoding the circuit output.

1. Join $\langle U_i(1^{\lambda}), S(\mathcal{G}) \rangle$: On input 1^{λ} , U_i randomly chooses a PRF key $K_i \in \{0,1\}^{\lambda}$, and sends her public-key pk_i to S. S adds v_i initialized with value pk_i into \mathcal{V} of \mathcal{G} .

2. Connect $\langle U_i(K_i), U_j(K_j) \rangle$: U_i receives the public key pk_j of U_j from S. Sets $k_{i \to j}$ to $E'(pk_j, K_i)$ and sends it to S. U_j computes and sends $k_{j \to i}$ to S who then creates edge e_{ij} storing $k_{i \to j}$, $k_{j \to i}$, and adds it to \mathcal{E} of \mathcal{G} .

3. Upload $\langle U_i(K_i, x_i), S(\mathcal{G}) \rangle$: U_i chooses nonce r_i , computes value $X_{il}^{x_i[l]}$ as $F_{K_i}(x_i[l], l, r_i) \ \forall \ l \in [\ell]$, and sends them to S who stores the value $c_i = ((X_{i1}^{x_i[1]}, \ldots, X_{i\ell}^{x_i[\ell]}), r_i)$ in v_i .

3. Upload $\langle U_i(K_i, x_i), S(\mathcal{G}) \rangle$: U_i chooses nonce r_i , computes value $X_{il}^{x_i[l]}$ as $F_{K_i}(x_i[l], l, r_i) \ \forall \ l \in [\ell]$, and sends them to S who stores the value $c_i = ((X_{i1}^{x_i[1]}, \ldots, X_{i\ell}^{x_i[\ell]}), r_i)$ in v_i .

$$F_{K_a}(x_1,1,r)$$

$$F_{K_a}(x_1,1,r)$$

without learning

 x_1

$$F_{K_a}(x_1,1,r)$$

- 4. Query $\langle U_q(K_q,\alpha),S(\mathcal{G})\rangle(f)$: U_q does the following:
 - (a) **Key and nonce retrieval.** For each $U_j \in \mathcal{G}_q$, retrieve key $k_{j\to q}$ and (latest) nonce r_j from S, and decrypt $k_{j\to q}$ to get K_j .
 - (b) Garbled circuit computation. U_q transforms f into a circuit, and garbles it as GC.
 - (c) Selection table generation. For each user U_j in \mathcal{G}_q and index $l \in [\ell]$: Compute selection keys: Generate $s_{jl}^0 = F_{K_j}(0,l,r_j)$, $s_{jl}^1 = F_{K_j}(1,l,r_j)$. Compute garbled inputs: Produce encryptions $E_{s_{jl}^0}(w_{jl}^0)$ and $E_{s_{jl}^1}(w_{jl}^1)$ with the selection keys. Set selection table entry: Store $E_{s_{jl}^0}(w_{jl}^0)$ and $E_{s_{jl}^1}(w_{jl}^1)$ into $T_q[j,l]$ in a random order.
 - (d) Circuit transmission. Send GC, T_q to S. S then decrypts the garbled values of each $U_j \in \mathcal{G}_q$ from T_q , with the encoding $X_{jl}^{x_j[l]}$ for each $l \in [\ell]$. He evaluates GC and sends output to U_q who Obtains the result y by decoding the circuit output.

- 4. Query $\langle U_q(K_q,\alpha), S(\mathcal{G})\rangle(f)$: U_q does the following:
 - (a) **Key and nonce retrieval.** For each $U_j \in \mathcal{G}_q$, retrieve key $k_{j\to q}$ and (latest) nonce r_j from S, and decrypt $k_{j\to q}$ to get K_j .

- 4. Query $\langle U_q(K_q,\alpha), S(\mathcal{G})\rangle(f)$: U_q does the following:
 - (a) **Key and nonce retrieval.** For each $U_j \in \mathcal{G}_q$, retrieve key $k_{j\to q}$ and (latest) nonce r_j from S, and decrypt $k_{j\to q}$ to get K_j .

Get K_a

- (b) Garbled circuit computation. U_q transforms f into a circuit, and garbles it as GC.
- (c) Selection table generation. For each user U_j in \mathcal{G}_q and index $l \in [\ell]$: Compute selection keys: Generate $s_{jl}^0 = F_{K_j}(0, l, r_j)$, $s_{jl}^1 = F_{K_j}(1, l, r_j)$. Compute garbled inputs: Produce encryptions $E_{s_{jl}^0}(w_{jl}^0)$ and $E_{s_{jl}^1}(w_{jl}^1)$ with the selection keys.
 - Set selection table entry: Store $E_{s_{jl}^0}(w_{jl}^0)$ and $E_{s_{jl}^1}(w_{jl}^1)$ into $T_q[j,l]$ in a random order.

- (b) Garbled circuit computation. U_q transforms f into a circuit, and garbles it as GC.
- (c) Selection table generation. For each user U_j in \mathcal{G}_q and index $l \in [\ell]$: Compute selection keys: Generate $s_{jl}^0 = F_{K_j}(0, l, r_j)$, $s_{jl}^1 = F_{K_j}(1, l, r_j)$. Compute garbled inputs: Produce encryptions $E_{s_{jl}^0}(w_{jl}^0)$ and $E_{s_{jl}^1}(w_{jl}^1)$ with the selection keys.

Set selection table entry: Store $E_{s_{jl}^0}(w_{jl}^0)$ and $E_{s_{jl}^1}(w_{jl}^1)$ into $T_q[j,l]$ in a random order.

$$F_{K_a}(x_1, 1, r)$$

 K_a

- (b) Garbled circuit computation. U_q transforms f into a circuit, and garbles it as GC.
- (c) Selection table generation. For each user U_j in \mathcal{G}_q and index $l \in [\ell]$: Compute selection keys: Generate $s_{jl}^0 = F_{K_j}(0, l, r_j)$, $s_{jl}^1 = F_{K_j}(1, l, r_j)$. Compute garbled inputs: Produce encryptions $E_{s_{jl}^0}(w_{jl}^0)$ and $E_{s_{jl}^1}(w_{jl}^1)$ with the selection keys.

Set selection table entry: Store $E_{s_{jl}^0}(w_{jl}^0)$ and $E_{s_{jl}^1}(w_{jl}^1)$ into $T_q[j,l]$ in a random order.

$$F_{K_a}(x_1, 1, r)$$

 K_a

$$s^0 = F_{K_a}(0,1,r)$$

$$s^1=F_{K_a}(1,1,r)$$

$$F_{K_a}(x_1,1,r)$$

 K_a

$$s^0 = F_{K_a}(0,1,r)$$

$$s^1=F_{K_a}(1,1,r)$$

r

- (b) Garbled circuit computation. U_q transforms f into a circuit, and garbles it as GC.
- (c) Selection table generation. For each user U_j in \mathcal{G}_q and index $l \in [\ell]$: Compute selection keys: Generate $s_{jl}^0 = F_{K_j}(0, l, r_j)$, $s_{jl}^1 = F_{K_j}(1, l, r_j)$. Compute garbled inputs: Produce encryptions $E_{s_{jl}^0}(w_{jl}^0)$ and $E_{s_{jl}^1}(w_{jl}^1)$ with the selection keys.

Set selection table entry: Store $E_{s_{jl}^0}(w_{jl}^0)$ and $E_{s_{jl}^1}(w_{jl}^1)$ into $T_q[j,l]$ in a random order.

$$F_{K_a}(x_1, 1, r)$$

 K_a

$$s^0 = F_{K_a}(0,1,r)$$

$$s^1=F_{K_a}(1,1,r)$$

$$w^0, w^1$$

$$F_{K_a}(x_1,1,r)$$

$$K_a$$

$$s^0 = F_{K_a}(0,1,r)$$

$$s^1=F_{K_a}(1,1,r)$$

r

$$w^0, w^1$$

$$E_{s^0}(w^0), E_{s^1}(w^1)$$

$$F_{K_a}(x_1,1,r)$$

$$K_a$$

$$s^0 = F_{K_a}(0,1,r)$$

$$s^1=F_{K_a}(1,1,r)$$

r

- 4. Query $\langle U_q(K_q,\alpha),S(\mathcal{G})\rangle(f)$: U_q does the following:
 - (a) **Key and nonce retrieval.** For each $U_j \in \mathcal{G}_q$, retrieve key $k_{j\to q}$ and (latest) nonce r_j from S, and decrypt $k_{j\to q}$ to get K_j .
 - (b) Garbled circuit computation. U_q transforms f into a circuit, and garbles it as GC.
 - (c) Selection table generation. For each user U_j in \mathcal{G}_q and index $l \in [\ell]$: Compute selection keys: Generate $s_{jl}^0 = F_{K_j}(0,l,r_j)$, $s_{jl}^1 = F_{K_j}(1,l,r_j)$. Compute garbled inputs: Produce encryptions $E_{s_{jl}^0}(w_{jl}^0)$ and $E_{s_{jl}^1}(w_{jl}^1)$ with the selection keys. Set selection table entry: Store $E_{s_{jl}^0}(w_{jl}^0)$ and $E_{s_{jl}^1}(w_{jl}^1)$ into $T_q[j,l]$ in a random order.
 - (d) Circuit transmission. Send GC, T_q to S. S then decrypts the garbled values of each $U_j \in \mathcal{G}_q$ from T_q , with the encoding $X_{jl}^{x_j[l]}$ for each $l \in [\ell]$. He evaluates GC and sends output to U_q who Obtains the result y by decoding the circuit output.

Party interaction

Mixed Protocol

Mixed Protocol

How do server obtain

 $[[x_a]]$

while preserving the original value?

Mixed Protocol

How do server obtain

 $[[x_a]]$

while preserving the original value?

We need Re-Encryption Protocol!

- 1. $\mathsf{Join}\langle U_i(1^\lambda), S(\mathcal{G})\rangle$: On input the security parameter λ , U_i generates a PRF key K_i , and notifies S that she joins the system by sending pk_i . S adds node v_i (initialized with pk_i) to graph \mathcal{G} .
- 2. Connect $\langle U_i(K_i), U_j(K_j), S(\mathcal{G}) \rangle$: Users U_i and U_j , having each other public keys, compute $k_{j \to i} = [\![K_j]\!]_{pk_i}$, $k_{i \to j} = [\![K_i]\!]_{pk_j}$ respectively, and send them to S. Then, S creates an edge e_{ij} in \mathcal{G} storing the two values.

- 3. Upload $\langle U_i(K_i, x_i), S(\mathcal{G}) \rangle$: User U_i picks random nonce r_i , computes $\rho_i = F_{K_i}(r_i)$, and sends $c_i = (x_i + \rho_i, r_i)$ to S, who stores it into $v_i \in \mathcal{G}$.
- 4. Query $\langle U_q(K_q, \alpha), S(\mathcal{G})\rangle(f)$: User U_q and S run π_{RE} , where U_q has as input K_q and S has \mathcal{G} . Recall that \mathcal{G} contains c_j and $k_{j\to q}$ for every friend U_j of U_q . The server receives as output $[\![x_j]\!]_{pk_q}$, where x_j is the private input of a friend U_j . Subsequently, S and U_q execute π_f , where S uses as input the ciphertexts $[\![x_j]\!]_{pk_q}$, along with $[\![\alpha]\!]_{pk_q}$ which is provided by the querier. At the end of this protocol, U_q learns $y = f(\alpha, x_q, \{x_j \mid \forall j : U_j \in \mathcal{G}_q\})$.

3. Upload $\langle U_i(K_i, x_i), S(\mathcal{G}) \rangle$: User U_i picks random nonce r_i , computes $\rho_i = F_{K_i}(r_i)$, and sends $c_i = (x_i + \rho_i, r_i)$ to S, who stores it into $v_i \in \mathcal{G}$.

$$\rho_i = F_{K_i}(r_i)$$

$$c_i = (x_i + \rho_i, r_i)$$

$$S(c_{j}, k_{j \rightarrow q})$$

$$S(c_{j}, k_{j \rightarrow q})$$
1. parse c_{j} as $(x_{j} + \rho_{j}, r_{j})$
2. pick random ρ^{*}
3. compute
$$(x_{j} + \rho_{j}) + \rho^{*} = c_{j}^{*}$$

$$k_{j \rightarrow q} = \llbracket K_{j} \rrbracket$$
6. compute
$$\llbracket c_{j}^{*} - F_{K_{j}}(r_{j}) \rrbracket = \begin{bmatrix} x_{j} + \rho^{*} \end{bmatrix}$$
7. send $\llbracket x_{j} + \rho^{*} \rrbracket$
8. compute
$$\llbracket x_{j} + \rho^{*} \rrbracket \cdot \llbracket \rho^{*} \rrbracket^{-1} = \llbracket x_{j} \rrbracket$$

Acknowledgement

Some materials are extracted from the slides created by Prof.
 Qi WANG in the course Cryptography and Network Security