

NTE74HC164 Integrated Circuit TTL – High Speed CMOS, 8-Bit Serial-In/Parallel-Out Shift Register

Description:

The NTE74HC164 is an 8-bit serial-in/parallel-out shift register in a 14-Lead DIP type package that utilize advanced silicon-gate CMOS technology. It has the high noise immunity and low consumption of standard CMOS integrated circuits. It also offers speeds comparable to low power Schottky devices.

This 8-bit shift register has gated serial inputs and CLEAR. Each register bit is a D-type master/slave flip-flop. Input A & B permit complete control over the incoming data. A LOW at either or both inputs inhibits entry of new data and resets the first flip-flop to the low level at the next clock pulse. A high level on one input enables the other input which then determines the state of the first flip-flop. Data at the serial inputs may be changed while the clock is HIGH or LOW, but only information meeting the setup and hold time requirements will be entered. Data is serially shifted in and out of the 8-bit register during the positive going transition of the clock pulse. Clear is independent of the clock and accomplished by a low level at the CLEAR input.

The 74HC logic family is functionally as well as pin–out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by diodes to $V_{\rm CC}$ and GND.

Features:

Typical Operating Frequency: 50MHz

Typical Propagation Delay: Clock to Q: 19ns

Low Quiescent Current: 80μA (max)

Low Input Current: 1μA (max)

Wide Power Supply Range: 2V to 6V

Absolute Maximum Ratings: (Note 1, Note 2)

Supply Voltage, V _{CC} –0.5 to	o +7.0V
DC Input Voltage, V _{IN} –1.5 to V _{C0}	_C +1.5V
DC Output Voltage, V _{OUT}	+ 0.5V + ر
Clamp Diode Current, I _{IK} , I _{OK}	±20mA
DC Output Current (Per Pin), I _{OUT}	±25mA
DC V _{CC} or GND Current (Per Pin), I _{CC}	±50mA
Power Dissipation (Note 3), P _D	600mW
Storage Temperature Range, T _{stq} –65°C to	+150°C
Lead Temperature (During Soldering, 10sec), T _L	

- Note 1. Absolute Maximum Ratings are those values beyond which damage to the device may occur.
- Note 2. Unless otherwise specified, all voltages are referenced to GND.
- Note 3. Power Dissipation temperature derating: 12mW/°C from +65°C to +85°C.

Recommended Operating Conditions:

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{CC}	2.0	_	6.0	V
DC Input or Output Voltage	V _{IN} , V _{OUT}	0	_	V_{CC}	V
Operating Temperature Range	T _A	-55	_	+85	°C
Input Rise or Fall Times V _{CC} = 2.0V	t _r , t _f	1	_	1000	ns
$V_{CC} = 4.5V$		-	_	500	ns
$V_{CC} = 6.0V$		_	_	400	ns

DC Electrical Characteristics: (Note 4 unless otherwise specified)

		Test Conditions			T _A = +25°C		$T_A = -40^{\circ} \text{ to } +85^{\circ}\text{C}$	
Parameter	Symbol			V _{CC}	Тур	Guar	anteed Limits	Unit
Minimum High Level Input Voltage	V _{IH}			2.0	-	1.5	1.5	V
				4.5	-	3.15	3.15	V
				6.0	-	4.2	4.2	V
Maximum Low Level Input Voltage	V _{IL}			2.0	-	0.5	0.5	V
				4.5	-	1.35	1.35	V
				6.0	-	1.8	1.8	V
Minimum High Level Output Voltage	V _{OH}	$V_{IN} = V_{IH}$	I _{OUT} ≤ 20μA	-	V_{CC}	V _{CC} ^{-0.1}	V _{CC} ^{-0.1}	V
		or V _{IL}	$ I_{OUT} \le 4.0 \text{mA}$	4.5	4.2	3.98	3.84	V
			I _{OUT} ≤ 5.2mA	6.0	5.7	5.48	5.34	V
Minimum Low Level Output Voltage	V _{OL}	$V_{IN} = V_{IH}$	I _{OUT} ≤ 20μA	-	0	0.1	0.1	V
			$ I_{OUT} \le 4.0 \text{mA}$	4.5	0.2	0.26	0.33	V
			I _{OUT} ≤ 5.2mA	6.0	0.2	0.26	0.33	V
Maximum Input Current	I _{IN}	V _{IN} = V _{CC} or GND		6.0	-	±0.1	±1.0	μΑ
Maximum Quiescent Supply Current	I _{CC}	$V_{IN} = V_{CC}$	6.0	-	8.0	80	μΑ	

Note 4. For a power supply of 5V $\pm 10\%$ the worst case output voltages (V_{OH} and V_{OL}) occur at 4.5V. Thus, the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively (The V_{IH} value at 5.5V is 3.85V). The worst case leakage current (I_{IN}, I_{CC} and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

<u>AC Electrical Characteristics</u>: $(V_{CC} = 5V, t_r = t_f = 6ns, C_L = 15pF, T_A = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Тур	Guaranteed Limits	Unit
Maximum Operating Frequency	f _{MAX}		-	30	ns
Maximum Propagation Delay (Clock to Output)	t _{PHL} , t _{PLH}		19	30	ns
Maximum Propagation Delay (Clear to Output)	t _{PHL}		23	35	ns
Maximum Removal Time (Clear to Clock)	t _{REM}		-2	0	ns
Minimum Set Up Time (Data to Clock)	t _S		12	20	ns
Minimum Hold Time (Clock to Data)	t _H		1	5	ns
Minimum Pulse Width (Clear or Clock)	t _W		10	16	ns

				T _A =	+25°C	$T_A = -40^{\circ} \text{ to } +85^{\circ}\text{C}$	
Parameter	Symbol	Test Conditions	V _{CC}	Тур	Guaranteed Limits		Unit
Maximum Operating Frequency	f _{MAX}		2.0	-	5	4	MHz
			4.5	-	27	21	MHz
			6.0	-	32	25	MHz
Maximum Propagation Delay	t _{PHL} , t _{PLH}		2.0	115	175	218	ns
(Clock to Output)			4.5	13	35	44	ns
			6.0	20	30	38	ns
Maximum Propagation Delay	t _{PHL}		2.0	140	205	256	ns
(Clear to Output)			4.5	28	41	51	ns
			6.0	24	35	44	ns
Minimum Removal Time (Clear to Clock)	t _{REM}		2.0	-7	0	0	ns
			4.5	-3	0	0	ns
			6.0	-2	0	0	ns
Minimum Setup Time (Data to Clock)	t _S		2.0	25	100	125	ns
			4.5	14	20	25	ns
			6.0	12	17	21	ns
Minimum Hold Time (Clock to Data)	t _H		2.0	-2	5	5	ns
			4.5	0	5	5	ns
			6.0	1	5	5	ns
Minimum Pulse Width (Clear or Clock)	t _W		2.0	22	80	100	ns
			4.5	11	16	20	ns
			6.0	10	14	18	ns
Maximum Output Rise and Fall Time	t _{THL} , t _{TLH}		2.0	-	75	95	ns
			4.5	-	15	19	ns
			6.0	-	13	16	ns
Maximum Input Rise and Fall Time	t _r , t _f		2.0	_	1000	1000	ns
			4.5	-	500	500	ns
			6.0	_	400	400	ns
Power Dissipation Capacitance	C _{PD}	Per Package, Note 5	_	150	1	-	pF
Maximum Input Capacitance	C _{IN}		-	5	10	10	pF

Note 5. C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

Truth Table:

	Input		Outputs		
Clear	Clock	Α	В	Q_A	$Q_B \dots Q_H$
L	Х	Х	Х	L	LL
Н	L	Х	Х	Q_{AO}	$Q_{BO}\dots Q_{HO}$
Н	1	Н	Н	Н	$Q_{An}\dots Q_{Gn}$
Н	1	Ĺ	Х	L	$Q_A \dots Q_{Gn}$
Н	1	Х	L	L	$Q_{An} \dots Q_{Gn}$

H = HIGH Level (Steady State)

L = LOW Level (Steady State)

X = Irrelevant (any input, including transitions)

↑ = Transition from LOW-to-HIGH level

 $Q_{AO},\,Q_{BO},\,Q_{HO}$ = the level of $Q_A,\,Q_B,$ or $Q_H,$ respectively, before the indicated steady state input conditions were established.

 Q_{An} , Q_{Gn} = the level of Q_A or Q_G before the most recent \uparrow transition of the clock; indicated a one–bit shift.

