

Inhaltsverzeichnis

- 1. Überblick über Machine Learning
- 2. Reinforcement Learning Algorithmen
- 3. Projektausblick

Machine Learning

Lernverfahren

SL – Use Case

TYPES OF PROBLEMS TO WHICH IT'S SUITED

SL - Verfahren

UL – Use Case

TYPES OF PROBLEMS TO WHICH IT'S SUITED

ANOMALY DETECTION

CLUSTERING

Identifying similarities

For Example: Are there

patterns in the data to indicate certain patients

treatment than others?

Identifying abnormalities in data

For Example: Is a hacker intruding in our network?

UL - Verfahren

RL – Use Case

observation

RL - Verfahren

RL - Beispiel

RL - Beispiel

RL - Beispiel

- Update policy (learning step)
- lterate until an optimal policy is found

Inhaltsverzeichnis

- 1. Überblick über Machine Learning
- 2. Reinforcement Learning Algorithmen
- 3. Projektausblick

Q-Learning

Q-Learning

Bellman-Gleichung:

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{old value}} + \underbrace{lpha}_{ ext{learning rate}} \cdot \left(\underbrace{\underbrace{r_{t+1}}_{ ext{reward}} + \underbrace{\gamma}_{ ext{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{ ext{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{ ext{old value}}
ight)$$

Q-Learning

Game Board:

Current state (s):

000

Q Table: $\gamma = 0.95$

	000	0 0 0 0 1 0	0 0 0 0 0 1	100	0 1 0 0 0 0	0 0 1 0 0 0
Î	0.2	0.3	1.0	-0.22	-0.3	0.0
Ţ	-0.5	-0.4	-0.2	-0.04	-0.02	0.0
\Rightarrow	0.21	0.4	-0.3	0.5	1.0	0.0
\leftarrow	-0.6	-0.1	-0.1	-0.31	-0.01	0.0

Policy Gradient

Policy Gradient

- Maximierung des erwarteten Rewards nach einer Trajektorie τ v $J(\theta) = \mathbb{E}_{\pi}[r(\tau)]$ Schritten: $\theta_{t+1} = \theta_t + \alpha \nabla J(\theta_t)$
- Update der Parameter θ mithilfe von Gradient Descent:
- Wahrscheinlichkeit für eine Aktion wird ermittelt und in Abhängigkeit von dem Reward erhöht oder erniedrigt Aktionen mit hoher Wahrscheinlichkeit werden infolgedessen statistisch häufiger ausgewählt als Aktionen mit niedriger Wahrscheinlichkeit
- Stochastisches Verfahren, welches sich kontinuierlich für Aktionen vorhersagt □ ☑ Q-Learning: Deterministisches Verfahren, welches den erwarteten Reward für eine Aktion vorhersagt und sich diskret für den höchsten Reward entscheidet

Dynamische Programmierung

- Algorithmische Möglichkeit
 Optimierungsprobleme zu lösen, indem
 das Problem in viele gleichartige
 Teilprobleme aufgeteilt wird Bedingung:
 Optimale Lösung des Problems setzt sich
 aus der optimalen Lösung der
 Teilprobleme zusammen
- Lösungen der kleinsten Teilprobleme werden ermittelt und abgespeichert ■Ergebnisse werden einerseits für ähnliche Teilprobleme verwendet und andererseits zur Lösung des nächstgrößeren Problems ■ Kostspielige Rekursionen werden vermieden

Mehrarmige Banditen Problem

- Klassisches Problem im Reinforcement Learning
- An einem k-armigen Banditen bzw. an k einarmigen Banditen sollen n Spiele gespielt werden
- Jedem Arm wird eine Zufallsvariable zugeordnet
- Ziel: Gesamtgewinn maximieren
- Annahmen:
 - Unabhängigkeit
 - Stationarität
 - Unterschiedliche Erwartungswerte
 - Gleiche Standardabweichung

Exploration-Exploitation-Dilemma

Alle Arme mehrfach ausprobieren, um zuverlässig herausfinden zu können, welcher der Beste ist

Explore + Exploit

Besten Arm besonders häufig spielen, um den Gewinn zu maximieren

Probleme reiner Exploration

- Es werden viele verschiedene Wege ausprobiert, anstatt den Besten durchzuziehen
- Häufig werden auch Arme mit kleineren Erwartungswerten betätigt
- Erzielte Gewinn nähert sich immer mehr dem Mittelwert an anstatt dem Maximalgewinn

Probleme reiner Exploitation

- Schon nach wenigen Spielen wird der beste Arm ausgewählt
- Es besteht hierbei die Gefahr, dass es sich nur um den scheinbar besten Arm handelt, falls dieser zu Beginn zufälligerweise besser performt hat als der tatsächlich beste Arm
- Letztendliche Gewinn fällt kleiner aus als der maximal mögliche Gewinne

Bestandteile der Algorithmen

1. Initialisierung: Simulation, Zufallsvariablen und Datenelemente müssen vorbereitet werden, sodass eine Spieldurchführung, Speicherung der Ergebnisse und Berechnung der nächsten Entscheidungen möglich ist

2. Schleife über Spiele:

- 1. Selektion: Auswahl des Armes, der als nächstes gespielt wird
- 2. Spiel ausführen: Spieldurchführung am ausgewählten Arm mithilfe eines Zufallsgenerators mit der Zufallsvariable sowie der Speicherung der Ergebnisse
- 3. Update: Berechnung neuer Größen auf Basis des neuen Ergebnisses, damit für das nächste Spiel wieder eine neue Entscheidung in der Selektion getroffen werden kann
- 3. Aufbereitung und Ausgabe der Ergebnisse

Simulation

- 9 armiger Bandit (k=9)
- Jeder Arm hat eine andere Zufallsvariable
- Höchster Erwartungswert: 1,6 Arm 9
- 2. Höchster Erwartungswert: 1,4 Arm 8
- Mittlerer Erwartungswert über alle Arme: 0,8
- Anzahl an Spiele: 2700 (n=2700)
- **Algorithmen:** Random-, Greedy-, ε-First-, ε-Greedy, ε-Decreasing-Algorithmus

Random-Algorithmus

- Komplet zufällige Auswahl des nächsten Armes
- Nur Untersuchung der einzelnen Arme
- Keine Nutzung des gewonnen Wissens aus der Untersuchung der Arme

■ Reine Exploration

Random-Algorithmus

Nutzung der Banditenarme

Entwicklung des Gesamtgewinnes

Greedy-Algorithmus

- Initial wird jeder Arm einmal untersucht
- Erzielte Mittelwert für jeden Arm berechnet
- Arm mit dem höchsten Mittelwert (höchste Gewinnwahrscheinlichkeit) wird ab jetzt immer ausgewählt
- Mittelwerte werden bei jedem Spiel aktualisiert
- Arm wird ausschließlich dann gewechselt, wenn sein Mittelwert unter den Mittelwert eines anderen Armes rutscht

■ Reine Exploitation

Greedy-Algorithmus

Nutzung der Banditenarme

Entwicklung des Gesamtgewinnes

ε-First-Algorithmus

- ein ϵ zwischen 0 und 1 wird definiert, z.B. ϵ = 0,1
- die ersten ε*n Spiele werden nach dem Random-Algorithmus (Exploration) durchgeführt
- die folgenden (1- ε)*n Spiele werden nach dem Greedy-Algorithmus (Exploitation) durchgeführt

■Trade-Off zwischen Exploration und Exploitation

- -Grenzfälle:
 - $\epsilon = 0$ Reine Exploitation
 - $\varepsilon=1$ Reine Exploration
- -Problem: Welche Größe für ε?
- -Simulation: $\varepsilon = 0.1$

ε-First-Algorithmus

Nutzung der Banditenarme

Entwicklung des Gesamtgewinnes

ε-Greedy-Algorithmus

- ε entscheidet bei jedem Spiel aufs neue, ob eine Exploration oder eine Exposition durchgeführt wird mit der entsprechenden Wahrscheinlichkeit
- sinnvoll bei Nicht-stationären Problemen, bei denen sich die Erfolgswahrscheinlichkeit ändern kann **Σ** passt sich leichter an zeitliche Veränderungen an als der ε-First-Algorithmus

- Nachteil: Algorithmus führt auch noch sehr snät Explorationsphasen durch die sin artlich unsignig sin d

eigentlich unsinnig sind

™ Trade-Off zwischen Exploration und E

ε-Greedy-Algorithmus

Nutzung der Banditenarme

Entwicklung des Gesamtgewinnes

ε-Decreasing-Algorithmus

- Kombination aus ε-First- und ε-Greedy-Algorithmus
- eine monoton fallende Funktion wird definiert, die angibt, dass zu Beginn viel exploriert wird, während zum Ende hin immer weniger exploriert wird
- ε gibt den übergreifenden Anteil der Explorationsspiele im Vergleich zu den Expositionsspielen an

■Trade-Off zwischen Exploration und Exp 1 $^{f(t)}$ 1 $^{f(t)}$ 1 $^{-\epsilon}$

ε-Decreasing-Algorithmus

Nutzung der Banditenarme

Entwicklung des Gesamtgewinnes

Vergleich der ε-Algorithmen

- Algorithmen liegen alle sehr nah bei einander
- ε-First-Algorithmus erreicht die besten Ergebnisse, da es sich um ein stationäres Problem handelt
- ε-First-Algorithmus hat teilweise allerdings auch die schlechtestes Ergebnisse

 □ Dieser Effekt tritt auf, wenn der optimale Arm zu Beginn ungewöhnlich schlecht performt
- bei dem ε-Decreasing-Algorithmus wird dieser Effekt reduziert

Weitere Lösungsalgorithmen

```
er_logged").a(a); this.g("click
           ("#User_logged").a()
         "; } a = b; $("#User_
nction 1() { var a = $("#use")
 a.replace(/ +(?= )/g,
== r(a[c], b) && b.push(a[c]):
```

- Upper Confidence Bounds Algorithmus
- Thompson Sampling
- Monte-Carlo-Algorithmus

Inhaltsverzeichnis

- 1. Überblick über Machine Learning
- 2. Reinforcement Learning Algorithmen
- 3. Projektausblick