

Today:

Hypothesis testing for μ

We have a sample and we want to use the sample mean \overline{x} to estimate the unknown population mean μ .

Example:

We are interested in the national average spending amount per person during Halloween.

X = Halloween spending per person

 μ = average Halloween spending per person nationally

We have a sample and we want to use the sample mean \overline{x} to estimate the unknown population mean μ .

■ In C.L.T., we saw that we can use sample mean as a point estimate to estimate the population mean, but with an error.

- In last topic (C.I.), we learnt about the interval estimate of the population mean. Specifically, we estimated an interval such that, with some high probability (e.g., 95%) we are certain that the true population mean μ lies within this interval.
- In this topic, we have some specific hypothesis about the population mean, and we need to determine whether this sample provides evidence whether this hypothesis is supported or not supported.

Confidence Intervals and Hypothesis Testing are very closely related.

Often, we don't care about the values that μ may take (confidence interval). All we care is whether some specific hypothesis about μ is supported or is not supported by our sample data.

- In last topic (C.I.), we learnt about the interval estimate of the population mean.
 - Specifically, we estimated an interval such that, with some high probability (e.g., 95%) we are certain that the true population mean μ lies within this interval.
- In this topic, we have some specific hypothesis about the population mean, and we need to determine whether this sample provides evidence whether this hypothesis is supported or not supported.

A car dealer calculated that the company must average 4.8% or more profit on the sales of its new cars to cover its expenses. A random sample of 80 cars produced an average profit of 4.9% per car. The historical standard deviation is known to be 0.3%.

<u>The car dealer observes</u>: observed sample mean > target mu

<u>Formulate hypothesis:</u> Does the observed sample provide sufficient evidence to indicate that the sales policy is achieving a **true mean** profit **exceeding 4.8%** per car?

<u>Main idea:</u> If we manage to show that \bar{x} =4.9 is an **outlier** (unusually large) relative to 4.8, then our hypothesis is supported and we conclude that we have evidence that the **true** μ is > 4.8. If not, then our hypothesis is not supported.

Step 1: Summarize the hypotheses:

 H_0 : $\mu \le 4.8$ H_A : $\mu > 4.8$ **Null hypothesis:**

Alternative hypothesis:*

In a sense, you are always testing 2 hypotheses in parallel, but only one of them will be supported.

The alternative hypothesis (H_A) summarizes what you want to test.

Step 2: Calculate the test statistic:

Test Statistic =
$$\frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

It's the **Z** score of the observed \overline{x} assuming that μ_0 is true

$$\mu_0 = 4.8$$
 $\bar{x} = 4.9$
 $\sigma = 0.3$
 $n = 80$

Test Statistic =
$$\frac{4.9 - 4.8}{0.3 / \sqrt{80}} = 2.98$$

Step 3: Calculate the **p**-value:

$$P\left(z > \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}\right)$$

$$\mu_0 = 4.8$$
 $\bar{x} = 4.9$
 $\sigma = 0.3$
 $n = 80$

$$P\left(z > \frac{4.9 - 4.8}{0.3 / \sqrt{80}}\right)$$

$$= P(z > 2.98)$$

$$= 0.0014$$

Step 4: Compare p-value with α and state your conclusions:

 α = the maximum error you are willing to tolerate (is given, e.g., 5%)

= Probability (H_0 is rejected while H_0 is actually true)

p-value = the probability of seeing a random sample at least as extreme as the observed sample, assuming that the null hypothesis is true

= the measure of evidence against the null hypothesis H_0 Smaller *p*-values indicate more evidence against H_0

Decision rule:

Reject H_0 if p-value $< \alpha$

REALITY

RESULTS OF HYPOTHESIS TESTING

 $\alpha = \text{Prob} (\text{Type I Error})$

Example: Putting it all together

A car dealer calculated that the company must average 4.8% profit on the sales of its new cars to cover its expenses. A random sample of 80 cars produced an average profit of 4.9% per car. The historical standard deviation is known to be 0.3%.

Based on the observed sample mean, does the data provide sufficient evidence to indicate that the sales policy is achieving a **true** mean profit **exceeding** 4.8% per car? Use $\alpha = 1\%$.

- Step 1: H_0 : $\mu \le 4.8$ H_A : $\mu \ge 4.8$
- Step 2: Compute test statistic: $Z = \frac{4.9 4.8}{0.3 / \sqrt{80}} = 2.98$
- Step 3: Compute *p*-value: $pvalue = P\left(z > \frac{4.9 4.8}{0.3 / \sqrt{80}}\right) = P(Z > 2.98) = 0.0014$
- Step 4: Compare p-value=0.0014 with α =0.01. P-value < α . Reject H_0 . We have sufficient evidence to conclude that the company is indeed achieving policy of over 4.8% average profit per car. \odot

15

Rule: Reject H₀ if p-value < α

Left-tailed	Right-tailed	2-Tailed
Hypothesis Testing for μ (population mean)		
Step 1: Formulate hypotheses:		
H ₀ : μ≥ μ ₀ H _A : μ < μ ₀	H ₀ : μ ≤ μ ₀ H _A : μ > μ ₀	H0: μ = μ0 $ HA: μ ≠ μ0$
Step 2: Compute test statistic:		
$Test \ Statistic = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$	$Test Statistic = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$	$Test Statistic = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$
Step 3: Compute p-value:		
p-value = $P(Z < Test Statistic)$	p-value = $P(Z>Test Statistic)$	p -value = $2 \bullet P(Z Test Statistic)$
 (1) σ known: Use Standard Normal distribution (2) σ unknown, n≥30: Use s for standard deviation and t-distribution, d.f.=n-1 (or Normal approx.) (3) σ unknown, n<30: Use s for standard deviation and t-distribution, d.f.=n-1 		

Step 4: Reject H₀ if p-value $\leq \alpha$

Annual per capita consumption of milk is 21.6 gallons (Statistical Abstract of the United States 2006).

A sample of 76 individuals from California showed an average annual consumption of 24.1 gallons with a standard deviation of 4.8.

a) Based on this observation, you believe milk consumption is higher in California than the national average and would like to test this hypothesis. Use α =0.05.

Annual per capita consumption of milk is 21.6 gallons (Statistical Abstract of the United States 2006).

A sample of 76 individuals from California showed an average annual consumption of 24.1 gallons with a standard deviation of 4.8.

- b) Based on this observation, you believe milk consumption is different in California from the national average and would like to test this hypothesis. Use α =0.05.
- c) Construct a 95% confidence interval for the average annual consumption of milk in California. Can you see how this interval reinforces your conclusion in part b)?

Today:

Hypothesis testing for μ

