

Velocity Optimization of Pure Electric Vehicles with Traffic Dynamics Consideration

Liuwang Kang, Haiying Shen, and Ankur Sarker

Department of Computer Science, University of Virginia

Outline

- Introduction
- System Design
- Performance Evaluation
- Conclusion

Factors impeding wide electric vehicle application

☐ Short driving range

Driving range per battery charge or full fuel fill

Factors impeding wide electric vehicle application

- ☐ Short driving range
- ☐ Limited battery cycle life

Driving range per battery charge or full fuel fill

Battery cycle life of lithium-ion battery

Solution: Velocity optimization

☐ Consider constraints such as vehicle acceleration, speed limit, stop sign and traffic light on the road

Solution: Velocity optimization

☐ Consider constraints such as vehicle acceleration, speed limit, stop sign and traffic light on the road

☐ Optimize the velocity profile to reduce total energy consumption

Solution: Velocity optimization

- ☐ Consider constraints such as vehicle acceleration, speed limit, stop sign and traffic light on the road
- ☐ Optimize the velocity profile to reduce total energy consumption

Challenges of current velocity optimization methods

☐ How to estimate waiting vehicles in the traffic signal areas

Challenges of current velocity optimization methods

- ☐ How to estimate waiting vehicles in the traffic signal areas
- ☐ How to apply waiting vehicle information into velocity optimization

Our method: DP-based velocity optimization system

☐ Propose vehicle movement (VM) model

Our method: DP-based velocity optimization system

- ☐ Propose vehicle movement (VM) model
- ☐ Build queue length model

Our method: DP-based velocity optimization system

- ☐ Propose vehicle movement (VM) model
- ☐ Build queue length model
- ☐ Apply vehicle queue length into DP (Dynamic Programming) algorithm

Queue length model

Energy consumption model of pure EVs

☐ Driving force:

$$F_{drive} = m\frac{dv}{dt} + \frac{1}{2}\rho A_f C_d v^2 + mg\sin\theta + \mu mg\cos\theta$$

Driving force of pure EV

Energy consumption model of pure EVs

☐ Driving force:

$$F_{drive} = m\frac{dv}{dt} + \frac{1}{2}\rho A_f C_d v^2 + mg\sin\theta + \mu mg\cos\theta$$

☐ Energy generated by the battery pack:

$$E = UQ\eta_1\eta_2$$

Driving force of pure EV

U - Battery pack voltage;

 ${\it Q}$ - Charge consumption;

 η_1 - Battery transforming efficiency;

 η_2 - Powertrain working efficiency;

Energy consumption model of pure EVs

☐ Driving force:

$$F_{drive} = m\frac{dv}{dt} + \frac{1}{2}\rho A_f C_d v^2 + mg\sin\theta + \mu mg\cos\theta$$

☐ Energy generated by the battery pack:

Driving force of pure EV

$$E = UQ\eta_1\eta_2$$

☐ Energy consumption per time:

$$\xi = \frac{F_{drive}v}{U\eta_1\eta_2}$$

U - Battery pack voltage;

 ${\it Q}$ - Charge consumption;

 η_1 - Battery transforming efficiency;

 η_2 - Powertrain working efficiency;

Traffic dynamics in traffic signal areas

Queue length model is built to estimate waiting vehicle numbers in traffic signal areas:

- ☐ Vehicle arrival rate V_{in}
- ☐ Vehicle leaving rate V_{out}

Traffic dynamics in traffic signal areas

☐ Arrival vehicle rate V_{in}: estimated based on real-time traffic volume

Traffic dynamics in traffic signal areas

- ☐ Arrival vehicle rate V_{in}: estimated based on real-time traffic volume
- □ Vehicle leaving rate V_{out}: estimated with vehicle movement model

Traffic dynamics in traffic signal areas

- ☐ Arrival vehicle rate V_{in}: estimated based on real-time traffic volume
- Vehicle leaving rate V_{out}: estimated with vehicle movement model
- \square Queue length L_q : calculated with V_{in} and V_{out}

Arrival and leaving vehicle rates

Waiting vehicle numbers in one traffic light period of US-25 highway

Traffic dynamics in traffic signal areas

- ☐ Arrival vehicle rate V_{in}: estimated based on real-time traffic volume
- Vehicle leaving rate V_{out}: estimated with vehicle movement model
- \square Queue length L_q : calculated with V_{in} and V_{out}

Arrival and leaving vehicle rates

Waiting vehicle numbers in one traffic light period of US-25 highway

ExperimentSimulation settings

1. Vehicle parameters in energy consumption model

Parameters	m	A_f	C_d	μ	η_1	η_2
Values	1300 kg	1.97 m ²	0.33	0.018	0.9	0.97

Experiment

Simulation settings

1. Vehicle parameters in energy consumption model

Parameters	m	A_f	C_d	μ	η_1	η_2
Values	1300 kg	1.97 m ²	0.33	0.018	0.9	0.97

- 2. Experiment road segment on US-25 highway
 - ☐ Total 4050 m long
 - ☐ One stop sign
 - ☐ Two traffic signals
 - □ speed limit 65 mile/hour

Experiment

Simulation settings

1. Vehicle parameters in energy consumption model

Parameters	m	A_f	C_d	μ	η_1	η_2
Values	1300 kg	1.97 m ²	0.33	0.018	0.9	0.97

- 2. Experiment road segment on US-25 highway
 - ☐ Total 4050 m long
 - ☐ One stop sign
 - ☐ Two traffic signals
 - □ speed limit 65 mile/hour

3. Velocity optimization results are verified in SUMO environment

Experiment

Energy consumption estimation

Data:

- ☐ Parameters of Chevrolet S-park EV
- ☐ Road gradient effect is ignored here

Estimation result:

☐ EV consumes more energy when it accelerates

Energy consumption of pure EV

ExperimentVelocity optimization

Metric: Total energy consumption during the trip

Observation: Reduces by **8.4%** energy compared with current method in the experiment

Reason: Enables EVs to immediately pass through traffic lights without meeting waiting vehicles

Velocity optimization comparisons

Consumed energy comparisons

Conclusion

- 1. We proposed a velocity optimization system for EVs with considering queue length in traffic signal areas
- 2. We conducted velocity optimization simulation study with SUMO to verify our method

Conclusion

- 1. We proposed a velocity optimization system for EVs with considering queue length in traffic signal areas
- 2. We conducted velocity optimization simulation study with SUMO to verify our method

Future work

- 1. Consider the effect of road gradient on the proposed system
- 2. More practical experiments in different traffic conditions

Thank you! Questions & Comments?

Ankur Sarker

as4mz@Virginia.edu

Ph.D. Candidate

Pervasive Communication Laboratory

University of Virginia