Principles of Communication Systems Lab (303 P)

Lab-8 (Analog to Digital Conversion)

(Due Date: 26-10-2021, Time: 1 pm)

Instructions:

- 1. NO PLAGIARISM. Your solution must be written in your words.
- 2. Please strictly follow the LaTex template for making lab reports. The template has been uploaded on LMS.
- 3. Please mention legends, axis labels, titles etc in your plot/subplot for better understanding and clarity.
- 4. For best quality, please add .eps format of simulation plot in the report. You can directly export .eps plot from MATLAB.
- 5. The report to be submitted must include MATLAB code and all observations pertaining to each plot below the same.
- 6. Kindly number your answers correctly.
- 7. Please feel free to ask any questions in class or via LMS..

Questions:

- 1. Consider an information signal $m(t) = A_m \sin(2\pi f_m t)$ over two complete cycles with $A_m = 1$ V and $f_m = 10$ Hz.
 - (a) Sample this signal at rate $f_s = 10 f_m$. Plot the continuous time and sampled signals.
 - (b) Reconstruct the signal from its samples. Plot the reconstructed signal.
 - (c) Sample the signal m(t) at the rate $f_s = 2f_m$ and $f_s = f_m$, and plot the reconstructed signal in each case.
 - (d) Write your observations.

Note: Plot all the sub-parts in the same plot using subplot.

- 2. Consider an information signal $m(t) = A_m \sin(2\pi f_m t)$ over one complete cycles with $A_m = 2$ V and $f_m = 10$ Hz.
 - (a) Sample this signal at rate $f_s = 50 f_m$. Plot the continuous time and sampled signals.

- (b) Quantize the sampled signal by dividing its range in L=16, L=64 and L=256 uniforms steps. Assume mid point of a step as quantization level. Plot the quantize signal.
- (c) Generate bit sequence by encoding the quantize samples in each case.
- (d) Recover the signal from the bit sequence in each case, and write your observations.

Note: Plot all the sub-parts in the same plot using subplot.