Week 10: Data Wrangling in Python

POP77001 Computer Programming for Social Scientists

Tom Paskhalis

14 November 2022

Module website: tinyurl.com/POP77001

Overview

- Numerical analysis in Python
- Tabular data
- Pandas object types
- Working with dataframes in pandas
- Data input and output

- As opposed to other programming languages (Julia, R, MatLab), Python provides very bare bones functionality for numeric analysis.
- E.g. no built-in matrix/array object type, limited mathematical and statistical functions

- As opposed to other programming languages (Julia, R, MatLab), Python provides very bare bones functionality for numeric analysis.
- E.g. no built-in matrix/array object type, limited mathematical and statistical functions

- As opposed to other programming languages (Julia, R, MatLab), Python provides very bare bones functionality for numeric analysis.
- E.g. no built-in matrix/array object type, limited mathematical and statistical functions

- As opposed to other programming languages (Julia, R, MatLab), Python provides very bare bones functionality for numeric analysis.
- E.g. no built-in matrix/array object type, limited mathematical and statistical functions

```
In [1]: # Representing 3x3 matrix with list
        mat = [[1, 2, 3],
               [4, 5, 6],
               [7, 8, 91]
In [2]: # Subsetting 2nd row, 3rd element
        mat[1][2]
Out[2]: 6
In [3]: # Naturally, this representation
        # breaks down rather quickly
        mat * 2
Out[3]: [[1, 2, 3], [4, 5, 6], [7, 8, 9], [1, 2, 3], [4, 5, 6], [7, 8,
         9]]
```

NumPy - numerical analysis in Python

- NumPy (Numeric Python) package provides the basis of numerical computing in Python:
 - multidimensional array
 - mathematical functions for arrays
 - array data I/O
 - linear algebra, RNG, FFT, ...

NumPy - numerical analysis in Python

- NumPy (Numeric Python) package provides the basis of numerical computing in Python:
 - multidimensional array
 - mathematical functions for arrays
 - array data I/O
 - linear algebra, RNG, FFT, ...

```
In [4]: # Using 'as' allows to avoid typing full name
# each time the module is referred to
import numpy as np
```

- Multidimensional (N) array object (aka ndarray) is a principal container for datasets in Python.
- It is the backbone of data frames, operating behind the scenes

- Multidimensional (N) array object (aka ndarray) is a principal container for datasets in Python.
- It is the backbone of data frames, operating behind the scenes

- Multidimensional (N) array object (aka ndarray) is a principal container for datasets in Python.
- It is the backbone of data frames, operating behind the scenes

- Multidimensional (N) array object (aka ndarray) is a principal container for datasets in Python.
- It is the backbone of data frames, operating behind the scenes

```
In [8]: # Object type
  type(arr)
Out[8]: numpy.ndarray
```

```
In [8]: # Object type
type(arr)

Out[8]: numpy.ndarray

In [9]: # Array dimensionality
arr.ndim

Out[9]: 2
```

```
In [8]: # Object type
type(arr)

Out[8]: numpy.ndarray

In [9]: # Array dimensionality
arr.ndim

Out[9]: 2

In [10]: # Array size
arr.shape

Out[10]: (3, 3)
```

Out[111:

```
In [8]: # Object type
         type(arr)
Out[8]: numpy.ndarray
In [9]: # Array dimensionality
         arr.ndim
Out[9]: 2
In [10]: # Array size
         arr.shape
Out[10]: (3, 3)
In [11]: # Calculating summary statistics on array
         # axis indicates the dimension
         # compare to R's `apply(arr, 1, mean)`
         # note that every list within a list
         # is treated as a column (not row)
         arr.mean(axis = 0)
        array([4., 5., 6.])
```

Array indexing and slicing

Source: Python for Data Analysis

Tidy data

- Tidy data is a specific subset of rectangular data, where:
 - Each variable is in a column
 - Each observation is in a row
 - Each value is in a cell

Source: R for Data Science

Pandas

- Standard Python library does not have data type for rectangular data
- However, pandas library has become the de facto standard for data manipulation
- pandas is built upon (and often used in conjuction with) other computational libraries
- E.g. numpy (array data type), scipy (linear algebra) and scikit-learn (machine learning)

Pandas

- Standard Python library does not have data type for rectangular data
- However, pandas library has become the de facto standard for data manipulation
- pandas is built upon (and often used in conjuction with) other computational libraries
- E.g. numpy (array data type), scipy (linear algebra) and scikit-learn (machine learning)

```
In [12]: import pandas as pd
```

Core pandas object types

- Series one-dimensional sequence of values
- DataFrame (typically) two-dimensional rectangular table

```
In [13]: sr1 = pd.Series([150.0, 120.0, 3000.0])
         sr1
                150.0
Out[13]:
                120.0
               3000.0
          dtype: float64
In [14]:
         sr1[0] # Slicing is similar to standard Python objects
          150.0
Out[14]:
In [15]:
         sr1[sr1 > 200] # But subsetting is also available
               3000.0
Out[15]:
          dtype: float64
```

• Another way to think about Series is as a ordered dictionary

• Another way to think about Series is as a ordered dictionary

```
In [16]: d = {'apple': 150.0, 'banana': 120.0, 'watermelon': 3000.0}
```

Another way to think about Series is as a ordered dictionary

Another way to think about Series is as a ordered dictionary

```
In [16]: d = {'apple': 150.0, 'banana': 120.0, 'watermelon': 3000.0}
In [17]:
         sr2 = pd.Series(d)
         sr2
          apple
                         150.0
Out[17]:
          banana
                         120.0
                        3000.0
          watermelon
          dtype: float64
In [18]:
         sr2[0] # Recall that this slicing would be impossible for standard dict
          150.0
Out[18]:
```

Another way to think about Series is as a ordered dictionary

```
In [16]: d = {'apple': 150.0, 'banana': 120.0, 'watermelon': 3000.0}
In [17]:
        sr2 = pd.Series(d)
         sr2
          apple
                         150.0
Out[17]:
                         120.0
          banana
          watermelon
                        3000.0
          dtype: float64
In [18]:
         sr2[0] # Recall that this slicing would be impossible for standard dict
          150.0
Out[18]:
In [19]:
         sr2.index # Sequence of labels is converted into an Index object
         Index(['apple', 'banana', 'watermelon'], dtype='object')
Out[19]:
```

DataFrame - the workhorse of data analysis

• DataFrame is a rectangular table of data

DataFrame - the workhorse of data analysis

• DataFrame is a rectangular table of data

Out[20]:		fruit	weight	berry
	0	apple	150.0	False
	1	banana	120.0	True
	2	watermelon	3000.0	True

Indexing in DataFrame

- DataFrame has both row and column indices
- DataFrame.loc() provides method for *label* location
- DataFrame.iloc() provides method for *index* location

Indexing in DataFrame

- DataFrame has both row and column indices
- DataFrame.loc() provides method for *label* location
- DataFrame.iloc() provides method for *index* location

```
In [21]: df.iloc[0] # First row

Out[21]: fruit apple weight 150.0 berry False Name: 0, dtype: object
```

Indexing in DataFrame

- DataFrame has both row and column indices
- DataFrame.loc() provides method for *label* location
- DataFrame.iloc() provides method for *index* location

```
In [21]: df.iloc[0] # First row

Out[21]: fruit apple weight 150.0 berry False Name: 0, dtype: object

In [22]: df.iloc[:,0] # First column

Out[22]: 0 apple 1 banana 2 watermelon Name: fruit, dtype: object
```

Summary of indexing in DataFrame

Expression	Selection Operation
df[val]	Column or sequence of columns +convenience (e.g. slice)
df.loc[lab_i]	Row or subset of rows by label
<pre>df.loc[:, lab_j]</pre>	Column or subset of columns by label
<pre>df.loc[lab_i, lab_j]</pre>	Both rows and columns by label
<pre>df.iloc[i]</pre>	Row or subset of rows by integer position
<pre>df.iloc[:, j]</pre>	Column or subset of columns by integer position
<pre>df.iloc[i, j]</pre>	Both rows and columns by integer position
<pre>df.at[lab_i, lab_j]</pre>	Single scalar value by row and column label
<pre>df.iat[i, j]</pre>	Single scalar value by row and column integer position

Extra: Pandas documentation on indexing

```
In [23]: df.iloc[:2] # Select the first two rows (with convenience shortcut for
              fruit weight berry
Out[23]:
              apple
                    150.0
                           False
            banana 120.0 True
In [24]:
         df[:2] # Shortcut
              fruit weight berry
Out[24]:
              apple
                     150.0
                           False
                    120.0
            banana
                           True
```

```
In [23]: df.iloc[:2] # Select the first two rows (with convenience shortcut for
              fruit weight berry
Out[23]:
              apple
                    150.0 False
            banana 120.0 True
In [24]:
        df[:2] # Shortcut
              fruit weight berry
Out[24]:
              apple
                    150.0 False
            banana 120.0 True
In [25]:
        df.loc[:, ['fruit', 'berry']] # Select the columns 'fruit' and 'berry'
                  fruit berry
Out[25]:
                 apple
                       False
                       True
               banana
         2 watermelon
                      True
```

```
In [23]: df.iloc[:2] # Select the first two rows (with convenience shortcut for
              fruit weight berry
Out[23]:
             apple 150.0 False
            banana 120.0 True
In [24]: df[:2] # Shortcut
            fruit weight berry
Out[24]:
             apple
                    150.0 False
            banana 120.0 True
In [25]: df.loc[:, ['fruit', 'berry']] # Select the columns 'fruit' and 'berry'
                 fruit berry
Out[25]:
                 apple
                      False
                      True
               banana
         2 watermelon True
In [26]: df[['fruit', 'berry']] # Shortcut
```

Out[26]:

	fruit	berry
0	apple	False
1	banana	True
2	watermelon	True

```
In [27]: df.columns # Retrieve the names of all columns (index object)
Out[27]: Index(['fruit', 'weight', 'berry'], dtype='object')
```

```
In [27]: df.columns # Retrieve the names of all columns (index object)
Out[27]: Index(['fruit', 'weight', 'berry'], dtype='object')
In [28]: df.columns[0] # This Index object is subsettable
Out[28]: 'fruit'
```

```
In [27]: df.columns # Retrieve the names of all columns (index object)
Out[27]: Index(['fruit', 'weight', 'berry'], dtype='object')
In [28]: df.columns[0] # This Index object is subsettable
Out[28]: 'fruit'
In [29]: df.columns.str.startswith('fr') # As column names are strings, we can a
Out[29]: array([ True, False, False])
```

```
In [27]:
         df.columns # Retrieve the names of all columns (index object)
          Index(['fruit', 'weight', 'berry'], dtype='object')
Out[27]:
In [28]:
         df.columns[0] # This Index object is subsettable
          'fruit'
Out[28]:
In [29]:
         df.columns.str.startswith('fr') # As column names are strings, we can a
          array([ True, False, False])
Out[29]:
In [30]:
         df.iloc[:,df.columns.str.startswith('fr')] # This is helpful with more
                  fruit
Out[30]:
                 apple
                banana
             watermelon
```

```
In [31]: # Select rows where fruits are not berries
         df[df.loc[:,'berry'] == False]
          fruit weight berry
Out[31]:
         0 apple 150.0 False
In [32]: # The same can be achieved with more concise syntax
         df[df['berry'] == False]
          fruit weight berry
Out[32]:
         0 apple 150.0 False
In [33]: # Create new dataset with rows where weight is higher than 200
         weight200 = df[df['weight'] > 200]
         weight200
                  fruit weight berry
Out[33]:
           watermelon 3000.0 True
```

```
In [34]: df = df.rename(columns = {'weight': 'weight_g'}) # Columns can be renam
```

```
In [34]: df = df.rename(columns = {'weight': 'weight_g'}) # Columns can be renam
In [35]: df
                  fruit
                        weight_g
                                 berry
Out[35]:
                           150.0
                                False
                 apple
                           120.0
                                  True
                banana
            watermelon
                          3000.0
                                True
In [36]:
        df['weight_oz'] = 0 # Columns can be added or modified by assignment
```

```
In [34]: df = df.rename(columns = {'weight': 'weight_g'}) # Columns can be renam
In [35]:
                   fruit
                        weight_g
                                 berry
Out[35]:
                                 False
                            150.0
                  apple
                            120.0
                                  True
                banana
                          3000.0
            watermelon
                                 True
In [36]:
        df['weight oz'] = 0 # Columns can be added or modified by assignment
In [37]:
                   fruit
                        weight_g berry weight_oz
Out[37]:
                  apple
                            150.0
                                  False
                            120.0
                                   True
                banana
             watermelon
                          3000.0
                                   True
                                                0
```

```
In [38]: df['weight_oz'] = df['weight_g'] * 0.04
```

```
In [38]:
         df['weight_oz'] = df['weight_g'] * 0.04
In [39]:
                   fruit
                         weight_g
                                  berry
                                          weight_oz
Out[39]:
                             150.0
                                   False
                                                6.0
                  apple
                                                4.8
                 banana
                             120.0
                                    True
             watermelon
                           3000.0
                                              120.0
                                    True
```

```
In [38]:
         df['weight_oz'] = df['weight_g'] * 0.04
In [39]: df
                   fruit
                        weight_g
                                  berry
                                         weight_oz
Out[39]:
                            150.0
                                  False
                                               6.0
                  apple
                                               4.8
                            120.0
                                   True
                banana
             watermelon
                           3000.0
                                             120.0
                                   True
In [40]:
         df['weight_oz'] = round(df['weight_oz'], 1)
```

```
In [38]:
         df['weight_oz'] = df['weight_g'] * 0.04
In [39]:
                         weight_g
                                   berry
                                          weight_oz
                    fruit
Out[39]:
                                                 6.0
                             150.0
                                   False
                   apple
                             120.0
                                    True
                                                 4.8
                 banana
                            3000.0
                                               120.0
             watermelon
                                    True
In [40]:
         df['weight oz'] = round(df['weight oz'], 1)
In [41]:
                    fruit
                         weight_g
                                   berry
                                          weight_oz
Out[41]:
                                                 6.0
                   apple
                             150.0
                                   False
                                                 4.8
                             120.0
                                    True
                 banana
             watermelon
                            3000.0
                                    True
                                               120.0
```

```
In [42]: df['fruit'].map(lambda x: x.upper())
                    APPLE
Out[42]:
                   BANANA
               WATERMEI ON
          Name: fruit, dtype: object
In [43]:
         transform = lambda x: x.capitalize()
In [44]:
        transformed = df['fruit'].map(transform)
In [45]:
         transformed
                   Apple
Out[45]:
                   Banana
               Watermelon
          Name: fruit, dtype: object
```

File object

- File object in Python provides the main interface to external files
- In contrast to other core types, file objects are created not with a literal,
- But with a function, open():

<variable_name> = open(<filepath>, <mode>)

Data input and output

- Modes of file objects allow to:
 - (r)ead a file (default)
 - (w)rite an object to a file
 - e(x)clusively create, failing if a file exists
 - (a)ppend to a file
- You can r+ mode if you need to read and write to file

```
In [46]: f = open('../temp/test.txt', 'w') # Create a new file object in write n
```

```
In [46]: f = open('../temp/test.txt', 'w') # Create a new file object in write n
In [47]: f.write('This is a test file.') # Write a string of characters to it
Out[47]: 20
```

```
In [46]: f = open('../temp/test.txt', 'w') # Create a new file object in write n
In [47]: f.write('This is a test file.') # Write a string of characters to it
Out[47]: 20
In [48]: f.close() # Flush output buffers to disk and close the connection
```

Data input example

• To avoid keeping track of open file connections, with statement can be used

Extra: Python documentation on with statement

Data input example

• To avoid keeping track of open file connections, with statement can be used

Extra: Python documentation on with statement

```
In [49]:
with open('../temp/test.txt', 'r') as f: # Note that we use 'r' mode fo
text = f.read()
```

Data input example

• To avoid keeping track of open file connections, with statement can be used

Extra: Python documentation on with statement

```
In [49]: with open('../temp/test.txt', 'r') as f: # Note that we use 'r' mode for
    text = f.read()

In [50]: text
Out[50]: 'This is a test file.'
```

Reading and writing data in **pandas**

- pandas provides high-level methods that takes care of file connections
- These methods all follow the same read_<format> and to_<format> name patterns
- CSV (comma-separated value) files are the standard of interoperability

```
<variable_name> = pd.read_<format>(<filepath>)

<variable_name>.to_<format>(<filepath>)
```

Reading data in **pandas** example

- We will use the data from Kaggle 2021 Machine Learning and Data Science Survey
- For more information you can read the executive summary
- Or explore the winning Python Jupyter Notebooks

Reading data in **pandas** example

- We will use the data from Kaggle 2021 Machine Learning and Data Science Survey
- For more information you can read the executive summary
- Or explore the winning Python Jupyter Notebooks

```
In [51]: # We specify that we want to combine first two rows as a header
kaggle2021 = pd.read_csv(
    '../data/kaggle_survey_2021_responses.csv',
    header = [0,1]
)

/tmp/ipykernel_215835/1877677354.py:2: DtypeWarning: Columns (1
95,201) have mixed types. Specify dtype option on import or set
low_memory=False.
    kaggle2021 = pd.read csv(
```

Visual data inspection

Visual data inspection

n [52]:	kag	ggle2021.h	ead() # /	Returns ti	he top n (′n=5 defaul	t) rows	
ut[52]:		Time from Start to Finish (seconds)	Q1	Q2	Q3	Q4	Q5	
		Duration (in seconds)	What is your age (# years)?	What is your gender? - Selected Choice	In which country do you currently reside?	What is the highest level of formal education that you have attained or plan to attain within the next 2 years?	Select the title most similar to your current role (or most recent title if retired): - Selected Choice	For hov year yo writin program
	0	910	50-54	Man	India	Bachelor's degree	Other	5-1

1	784	50-54	Man	Indonesia	Master's degree	Program/Project Manager	20
2	924	22-24	Man	Pakistan	Master's degree	Software Engineer	1-
3	575	45-49	Man	Mexico	Doctoral degree	Research Scientist	20
4	781	45-49	Man	India	Doctoral degree	Other	<

5 rows × 369 columns

Visual data inspection continued

Visual data inspection continued

In [53]:	kaggle	2021.tail() # Retu	rns the b	ottom n (r	n=5 default	nows	
Out[53]:		Time from Start to Finish (seconds)	Q1	Q2	Q3	Q4	Q5	
		Duration (in seconds)	What is your age (# years)?	What is your gender? - Selected Choice	In which country do you currently reside?	What is the highest level of formal education that you have attained or plan to attain within the next 2 years?	Select the title most similar to your current role (or most recent title if retired): - Selected Choice	For how years you writing a programn
	25968	1756	30-34	Man	Egypt	Bachelor's degree	Data Analyst	1-3

25969	253	22-24	Man	China	Master's degree	Student	1-3
25970	494	50-54	Man	Sweden	Doctoral degree	Research Scientist	I have written
25971	277	45-49	Man	United States of America	Master's degree	Data Scientist	5-10
25972	255	18-21	Man	India	Bachelor's degree	Business Analyst	I have written

5 rows × 369 columns

Reading in other (non- .csv) data files

- Pandas can read in file other than .csv (comma-separated value)
- Common cases include STATA .dta, SPSS .sav and SAS .sas
- Use pd.read_stata(path), pd.read_spss(path) and pd.read_sas(path)
- Check here for more examples

Writing data out in Python

- Note that when writing data out we start with the object name storing the dataset
- I.e. df.to_csv(path) as opposed to df = pd.read_csv(path)
- Pandas can also write out into other data formats
- E.g. df.to_excel(path), df.to_stata(path)

Writing data out in Python

- Note that when writing data out we start with the object name storing the dataset
- I.e. df.to_csv(path) as opposed to df = pd.read_csv(path)
- Pandas can also write out into other data formats
- E.g. df.to_excel(path), df.to_stata(path)

```
In [54]: kaggle2021.to_csv('../temp/kaggle2021.csv')
```

Summarizing numeric variables

DataFrame methods in pandas can automatically handle (exclude) missing data
 (NaN)

Summarizing numeric variables

DataFrame methods in pandas can automatically handle (exclude) missing data
 (NaN)

```
In [55]: kaggle2021.describe() # DataFrame.describe() provides an range of summa

Out[55]:

Time from
Start to
Finish
(seconds)

Q30_B_Part_1 Q30_B_Part_2 Q30_B_Part_3 Q30_B_Part
```

	Duration (in seconds)	In the next 2 years, do you hope to become more familiar with any of these specific data storage products? (Select all that apply) - Selected Choice - Microsoft Azure Data Lake Storage	In the next 2 years, do you hope to become more familiar with any of these specific data storage products? (Select all that apply) - Selected Choice - Microsoft Azure Disk Storage	In the next 2 years, do you hope to become more familiar with any of these specific data storage products? (Select all that apply) - Selected Choice - Amazon Simple Storage Service (S3)	In the next years, do years, do year
count	2.597300e+04	0.0	0.0	0.0	(
mean	1.105466e+04	NaN	NaN	NaN	Na
			11011	11011	
std	1.014716e+05	NaN	NaN	NaN	Ni
std min	1.014716e+05 1.200000e+02				
		NaN	NaN	NaN	Ni
min	1.200000e+02	NaN NaN	NaN NaN	NaN NaN	Na Na
min 25%	1.200000e+02 4.430000e+02	NaN NaN NaN	NaN NaN NaN	NaN NaN NaN	Na Na Na

```
In [56]: kaggle2021.iloc[:,0].mean() # Rather than using describe(), we can appi
Out[56]: 11054.66492126439
```

```
In [56]: kaggle2021.iloc[:,0].mean() # Rather than using describe(), we can appi
Out[56]: 11054.66492126439
In [57]: kaggle2021.iloc[:,0].median() # Median
Out[57]: 656.0
```

```
In [56]: kaggle2021.iloc[:,0].mean() # Rather than using describe(), we can appi
Out[56]: 11054.66492126439
In [57]: kaggle2021.iloc[:,0].median() # Median
Out[57]: 656.0
In [58]: kaggle2021.iloc[:,0].std() # Standard deviation
Out[58]: 101471.6221245172
```

```
In [56]:
         kaggle2021.iloc[:,0].mean() # Rather than using describe(), we can appl
          11054.66492126439
Out[56]:
In [57]:
         kaggle2021.iloc[:,0].median() # Median
          656.0
Out[57]:
In [58]:
         kaggle2021.iloc[:,0].std() # Standard deviation
          101471.6221245172
Out[58]:
In [59]:
         import statistics ## We don't have to rely only on methods provided by
         statistics.stdev(kaggle2021.iloc[:,0])
          101471.6221245172
Out[59]:
```

Summarizing categorical variables

Summarizing categorical variables

In [60]:	kaggle2	021.describe(include	= 'all')	# Adding	include =	'all' tel	ls par
Out[60]:		Time from Start to Finish (seconds)	Q1	Q2	Q3	Q4	Q5	
		Duration (in seconds)	What is your age (# years)?	What is your gender? - Selected Choice	In which country do you currently reside?	What is the highest level of formal education that you have attained or plan to attain within the next 2 years?	Select the title most similar to your current role (or most recent title if retired): - Selected Choice	For h y wri progr
	count	2.597300e+04	25973	25973	25973	25973	25973	
	unique	NaN	11	5	66	7	15	

top	NaN	25-29	Man	India	Master's degree	Student	
freq	NaN	4931	20598	7434	10132	6804	
mean	1.105466e+04	NaN	NaN	NaN	NaN	NaN	
std	1.014716e+05	NaN	NaN	NaN	NaN	NaN	
min	1.200000e+02	NaN	NaN	NaN	NaN	NaN	
25%	4.430000e+02	NaN	NaN	NaN	NaN	NaN	
50%	6.560000e+02	NaN	NaN	NaN	NaN	NaN	
75%	1.038000e+03	NaN	NaN	NaN	NaN	NaN	
max	2.488653e+06	NaN	NaN	NaN	NaN	NaN	

11 rows × 369 columns

```
In [61]:
         kaggle2021.iloc[:,2].mode() # Mode, most frequent value
               Man
Out[61]:
          Name: (Q2, What is your gender? - Selected Choice), dtype: obje
          ct
In [62]:
         kaggle2021.iloc[:,2].value_counts() # Counts of unique values
                                      20598
          Man
Out[62]:
          Woman
                                       4890
          Prefer not to say
                                        355
          Nonbinary
                                        88
          Prefer to self-describe
                                        42
          Name: (Q2, What is your gender? - Selected Choice), dtype: int6
```

```
In [61]:
         kaggle2021.iloc[:,2].mode() # Mode, most frequent value
               Man
Out[61]:
          Name: (Q2, What is your gender? - Selected Choice), dtype: obje
          ct
In [62]:
         kaggle2021.iloc[:,2].value counts() # Counts of unique values
                                      20598
          Man
Out[62]:
                                       4890
          Woman
          Prefer not to say
                                        355
                                         88
          Nonbinary
          Prefer to self-describe
                                         42
          Name: (Q2, What is your gender? - Selected Choice), dtype: int6
In [63]:
         kaggle2021.iloc[:,2].value counts(normalize = True) # We can further no
          Man
                                      0.793054
Out[63]:
          Woman
                                      0.188272
          Prefer not to sav
                                      0.013668
          Nonbinary
                                      0.003388
          Prefer to self-describe
                                      0.001617
```

Summary of descriptive statistics methods

Method	Numeric	Categorical	Description
count	yes	yes	Number of non-NA observations
value_counts	yes	yes	Number of unique observations by value
describe	yes	yes	Set of summary statistics for Series/DataFrame
min, max	yes	yes (caution)	Minimum and maximum values
quantile	yes	no	Sample quantile ranging from 0 to 1
sum	yes	yes (caution)	Sum of values
prod	yes	no	Product of values
mean	yes	no	Mean
median	yes	no	Median (50% quantile)
var	yes	no	Sample variance
std	yes	no	Sample standard deviation
skew	yes	no	Sample skewness (third moment)
kurt	yes	no	Sample kurtosis (fourth moment)

Next

- Tutorial: Reading/writing and reshaping data in Python
- Next week: Classes and Object-oriented programming