(19)日本国特許庁(JP)

(12) 公開特許公報 (A) (II) 特許出願公開番号

特開平8-98318

(43)公開日 平成8年(1996)4月12日

(51) Int. Cl. 6 識別記号 庁内整理番号 FΙ 技術表示箇所 B60L 11/10 B60K 41/20 B60L 11/12 G F02N 11/08

審査請求 未請求 請求項の数2 OL (全6頁)

特願平6-233362 (21)出願番号

平成6年(1994)9月28日 (22)出願日

(71)出願人 000003207

トヨタ自動車株式会社

愛知県豊田市トヨタ町1番地

(72)発明者 谷畑 孝二

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

(74)代理人 弁理士 吉田 研二 (外2名)

(54) 【発明の名称】ハイブリッド型電気自動車の制御方法

(57) 【要約】

【目的】 ハイブリッド型電気自動車において、パワー ステアリング用油圧ポンプおよびプレーキブースタ用バ キュームポンプなどを駆動するエンジンが始動していな い状態での走行を禁止する。

【構成】 エンジンが所定回転数以上となり始動が判断 されると(S105)、走行許可フラグF、を1とし、 走行許可状態とする (S108)。何らかの原因でエン ジンが停止したことが判断された場合(S109)、イ グニッションスイッチのIG接点をオフしない限り(S 103、S106)、走行許可フラグF,は解除され ず、走行を継続できる。

【効果】 ハンドルやブレーキペダルの操作力が重い状 態で走行することを防止できる。

【特許請求の範囲】

【請求項1】 エンジンに駆動される発電機と走行用バ ッテリを搭載し、この発電機によって発電された電力と バッテリに蓄えられた電力の少なくとも一方によりモー タを駆動し走行するハイブリッド型電気自動車におい

補機バッテリ充電用オルタネータと、ブレーキブースタ 用バキュームポンプと、パワーステアリング用油圧ポン プの少なくともひとつを駆動する前記エンジンが始動し たことを判断する工程と、

前記エンジンが始動が判断された場合に、車両の走行を 許可する工程と、を含むことと特徴とするハイブリッド 型電気自動車の制御方法。

エンジンに駆動される発電機と走行用バ 【請求項2】 ッテリを搭載し、この発電機によって発電された電力と バッテリに蓄えられた電力の少なくとも一方によりモー 夕を駆動し走行するハイブリッド型電気自動車におい τ.

補機バッテリ充電用オルタネータと、プレーキブースタ 用バキュームポンプと、パワーステアリング用油圧ポン プの少なくともひとつを駆動する前記エンジンが所定回 転数以上であることを判断する工程と、

エンジン回転数が所定回転以上である場合、走行制御を 許可する工程と、

エンジン回転数が所定回転以下に低下しても、すでに走 行許可がなされている場合、走行許可を継続する工程 と、を含むことを特徴とするハイブリッド型電気自動車 の制御方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、エンジンにより駆動さ れる発電機と走行用バッテリを搭載し、この発電機の発 生した電力およびバッテリに蓄えられた電力によって走 行するハイブリッド型電気自動車に関し、特に、前記エ ンジンの運転状態に応じた車両の走行許可制御に関す

[0002]

【従来の技術】近年、地球環境に配慮した産業設備およ び機器の開発が盛んに行われている。自動車において も、排気ガスの無い電気自動車の開発が行われている が、バッテリの容量が未だに十分ではなく、この容量に 連続走行距離が制限されてしまうという問題がある。ま た、バッテリの充電を行う際にも長時間を要し、一旦放 電してしまうとすぐに使用できないという問題がある。 このような問題のために、電気自動車はごく限られた用 途のみに使用されるに止まっている。

【0003】このような問題を補うために、車両にエン ジンによって駆動される発電機を搭載し、この発電機に よって発生した電力によって車両を走行させるいわゆる ハイブリッド型電気自動車が開発されている。このハイ

ブリッド型電気自動車は、エンジンの運転状態を一定範 囲に保つことができ、エンジンの最大効率点付近で常時 運転することの可能である。また、一定範囲の運転状態 で、排気ガスの有害な成分を除去する対策を採ること は、様々な運転状態を想定した対策をするより確実であ り、その効果も大きい。

【0004】このハイブリッド型電気自動車において は、発電機によって発電した電力を蓄えるための走行用 バッテリが備えられている。このために、走行用モータ 10 の消費電力が少ない場合は、前記の走行用バッテリに、 発電された余剰電力を蓄え、一方消費電力が多い場合 は、走行用パッテリに蓄えられた電力を発電電力に付加 することができる。このように、余剰の電力を一旦蓄え ておくことによって、前述のようにエンジンの運転状態 を一定の範囲に収めることが可能となっている。

【0005】このようにハイブリッド型電気自動車は、 エンジンに駆動される発電機の電力によって走行できる ほか、走行用バッテリに蓄えられた電力によっても走行 することができる。したがって、エンジンの軸出力によ り直接走行する従来の自動車とは異なり、エンジンが止 まっている状態でも走行用パッテリからの電力によって 走行することができる。

【0006】また、ハイブリッド型電気自動車において は、発電機を駆動するエンジンは、さらにパワーステア リング用の油圧ポンプ(以後、P/Sポンプと記す)、 ブレーキブースタ用のバキュームポンプ、補機バッテリ 充電用の発電機(オルタネータ)およびエアコンディシ ョナのコンプレッサなども駆動している。

[0007]

30

【発明が解決しようとする課題】以上のように、ハイブ リッド型電気自動車は、エンジンが止まった状態で走行 可能であるが、この場合エンジンにより駆動される前記 のP/Sポンプやバキュームポンプが作動しないので、 ハンドル操作やブレーキペダル操作に要する操作力が重 くなるという問題があった。すなわち、エンジンが運転 しているか否かによって、ハンドルやブレーキの操作感 覚が変化してしまい、運転者に違和感を与えるという問 題があった。また、前述のオルタネータが駆動されない 場合、補機バッテリに充電が行われず、補機バッテリの 40 蓄電量が減少して電圧が低下すると、車両の電装系が駆 動できなくなるという問題があった。

【0008】本発明は前述の問題点を解決するためにな されたものであり、エンジンが運転しているか、運転し てないかによって、運転者に違和感を感じさせないハイ ブリッド型電気自動車の制御方法を提供することを目的 とする。

[0009]

【課題を解決するための手段】前述の目的を達成するた めに、本発明にかかるハイブリッド型電気自動車の制御 方法は、エンジンに駆動される発電機と走行用パッテリ 10

20

30

3

を搭載し、この発電機によって発電された電力とバッテリに替えられた電力の少なくとも一方によりモータを駆動し走行するハイブリッド型電気自動車において、補機バッテリ充電用オルタネータと、ブレーキブースタ用バキュームポンプと、パワーステアリング用油圧ポンプの少なくともひとつを駆動するエンジンが始動したことを判断する工程と、エンジン始動が判断された場合に、車両の走行を許可する工程とを含んでいる。

【0010】または、エンジンに駆動される発電機と走行用バッテリを搭載し、この発電機によって発電された電力とバッテリに蓄えられた電力の少なくとも一方によりモータを駆動し走行するハイブリッド型電気自動車において、補機バッテリ充電用のオルタネータと、ブレーキブースタ用バキュームポンプと、パワーステアリング用油圧ポンプの少なくともひとつを駆動するエンジンの回転数が所定回転数以上であるよことを判断する工程と、エンジン回転数が所定回転以上である場合、走行制御を許可する工程と、エンジン回転数が所定回転以上である場合、走行制御を許可する工程と、エンジン回転数が所定回転以上である場合、走行許可を継続する工程とを含んでいる。

[0011]

【作用】本発明は以上のような構成を有しており、エンジンが始動し、所定回転以上で運転を始めてから車両の走行許可がなされる。したがって、エンジンが止まった状態で車両を走り出させることを禁止することができる。

【0012】また、一旦エンジンが始動して走行を開始 した後にエンジンが停止した場合は、車両の走行許可を 継続することができる。

[0013]

【実施例】以下、本発明にかかる好適な実施例を図面に 従って説明する。

【0014】図1には、本実施例の電気自動車の構成、特に駆動系の構成が示されている。発電機10は増速機12を介してエンジン14により駆動される。発電機10で発電された交流電力は整流されインバータ16に送られ、三相交流電流に変換されモータ18を駆動する。また、発電機で発生された電力がモータで消費される電力より大きい場合、走行用バッテリ20にこの余剰電力が充電される。逆に、発電機で発生された電力が不足する場合は、走行用バッテリ20に蓄えられた電荷を放電してモータに電力を供給する。

【0015】発電機10、エンジン14、インバータ16などの機器を走行状態などに応じて制御する電子制御装置(ECU)が各々の機器ごとに設けられている。すなわち、界磁電流などを制御して発電機10の発電量を制御する発電機ECU22、エンジン14の点火時期や燃料噴射量などを制御してエンジン10の運転を制御するエンジンECU24、運転者のアクセルペダルやブレーキペダルの操作に応じて、インバータ16を制御し、

モータ18を所望の回転数およびトルクで運転する電気自動車走行用ECU(EV-ECU)26が備えられている。また、これらのECU22,24,26の間では、情報が互いに交換され、全体として当該電気自動車の走行を制御している。そして、これらのECU22,24,26は、補機パッテリ28からの電力によって駆動されている。

【0016】この補機パッテリ28は、エンジン14始助用のスタータ30へも電力を供給している。運転者によりイグニッションスイッチ(図示しない)が操作されて、そのIG接点32がオン、さらにイグニッションスイッチを回してST接点34がオンにされると、発電機ECU22はスタータリレー36を駆動してスタータ30を作動する。このスタータ30によりエンジン14がクランキングされ始動される。

【0017】また、エンジン14によりパワーステアリ ング用油圧ポンプ38(P/Sポンプ)、ブレーキブー スタ用バキュームポンプ40、補機用の電力を発電する オルタネータ42およびエアコンディショナ用のコンプ レッサ44が駆動されている。したがって、エンジンが 運転していない状態で当該電気自動車を走行させようと した場合、前記のパワーアシスト機構などが作動しな い。すなわち、P/Sポンプ38が作動しないためにハ ンドルが重くなったり、プレーキプースタ用の負圧を発 生するバキュームポンプ40が作動しないためにプレー キペダルの踏力が大きくなる。また、オルタネータ42 が駆動されないので、補機バッテリ28の充電が行われ ず、いずれは電気系統に支障をきたす。たとえば、EV - ECU26などに電力を供給できなくなり、走行不能 状態となる。また、走行することには直接影響はない が、コンプレッサ44が駆動されないので冷房装置の運 転はできなくなる。

【0018】以上のように、エンジン14によって前述のようなパワーアシスト機構などを駆動するハイブリッ場管気自動車においては、エンジンが停止している場合は、これらの機構が作動せず、通常の運転操作とは大きく異なったものとなる。したがって、エンジンが運転していない状態での走行を禁止することが望ましい。ないの原因でエンジンが停止した場合、走行できなくなり、その場で停止してしまっては、交通の妨げになる。また、燃料を補給したり故障を直すためにも、応急的に走行できることが望ましい。以上まとめれば、エンジンがたとえ停止しても、走行が継続できることが望ましい。

【0019】以下、前述のような走行が可能な制御について説明する。図2には、主に発電機ECU22にて行われる走行許可に関する制御フローが示されている。まずイグニッションスイッチのIG接点32がオンになっ

5

でいるかを判断し(S100)、オンになると初期設定すなわち走行許可フラグF。を0、スタータリレー36をオフ状態とする(S101)。走行許可フラグF。は、EV-ECU26に対してモータの走行制御を行う指示の有無を示すフラグであり、0の場合走行制御が行われる。スタータスイッチのST接点34がオンになったかを判断し(S102)、イグニッションスイッチのIG接点32がオンである間、オンになるまでこの状態で待機する(S1023)。イグニッションスイッチのST接点34がオンとなると、スタータリレー36がオンになりスタータ30が作動する(3104)。

【0020】そして、エンジン回転数N。が所定回転数 N.:、以上になったかが判断され(S105)、所定回 転数Next 以下の場合、イグニッションスイッチのIG 接点32がオン(S106) およびST接点34がオン している間スタータ30が作動する。エンジン回転数N . が所定回転数 N.:、に達すると、スタータリレー36 がオフとなる(S107)。前記のエンジンの始動を検 出するための所定回転数N...は、スタータ30のクラ ンキクングによる回転数以上であって、エンジンのアイ ドリング回転数以下の回転数に設定され、本実施例の場 合はたとえば500rpmに設定されている。エンジン が始動すると、走行許可を示す走行許可フラグF。を1 とし、走行制御を行う指令がなされる(S108)。こ れによって、EV-ECU26が、運転者のアクセルお よびプレーキなどの操作量に基づきモータの出力を制御 して車両が走行する。

【0021】そして、エンジン回転数 N。が所定回転数 N。1、 と比較される(S109)。通常に走行している 場合は、エンジン回転数 N。が所定回転数 N。1、以下に なることはないので、イグニッションスイッチの I G 接点 32がオンの間(S110)、継続して走行が許可される。ステップ S110にて I G 接点 32がオフとなったことが判断されると、走行許可が解除され(S111)、エンジン14 およびモータ18 が停止した車両停止状態となる。

【0022】また、ステップS109でエンジン回転数 N.が所定回転数 N., 以下となったと判断されると、何らかの異常があったと判断されて、フェイル処理が行 40 われる (S112)。このフェイル処理は、発電機 10 およびエンジン14の作動を中止する処理であり、エンジン10のスロットルを全閉とし、発電機 10の界磁電流を0として、始動待ちの状態とする処理である。このフェイル処理終了後、ステップS102に戻る。

【0023】 一旦、エンジンが始動してその後停止してステップS102に戻った場合、ST接点34がオンになるまで、またはIG接点32がオフになるまでは、ステップS102とステップS103の処理を繰り返す。 運転者がエンジンを再始動しようとしてイグニッション 50

スイッチを操作してST接点34をオンすると、スタータリレー36がオンされるが(S104)、エンジン回転数N。が低下した原因が解消されていないと回転数は復帰せず、ステップS106に移行する。そして、イグニッションスイッチのIG接点32がオフされない限り、ステップS102、S104、S105、S106の処理を繰り返す。

【0025】以上のように、本実施例の制御によれば、ステップS105にてエンジン始動が判定されるまでは、走行許可がなされない。したがって、エンジンが運転していない状態で走り出すことを禁止することができる。また、一旦エンジンが始動するとイグニッションスイッチのIG接点32がオフされるまで、走行が許可された状態が継続する。すなわち、走行中にエンジン14が停止しても、走行用バッテリ20に蓄えられた電力により走行することができる。したがって、ガソリンスタンドまで走行して燃料を補給するなり、修理工場に行くなり、エンジン停止の原因を排除する処置をとることが可能である。

[0026]

【発明の効果】以上のように本発明によれば、エンジンが始動し、所定回転以上で運転を始めてから車両の走行許可がなされる。したがって、エンジンが止まった状態で車両を走り出させることを禁止することができる。これによって、アシストがなくハンドル操作やブレーキ操作が通常操作より重い状態で、走り始めることを防止することができる。また、補機バッテリの蓄電量が不足してEV-ECUなどの電装系が作動しなくなることを防止することができる。

【0027】また、一旦エンジンが始動して走行を開始した後にエンジンが停止した場合は、車両の走行許可を継続することができる。これによって、路上で停止して交通の障害となることを防止し、また応急的に走行してエンジン停止の原因に対して処置をとることができる。

【図面の簡単な説明】

【図1】本発明にかかるハイブリッド型電気自動車の構成を示す図であり、特に駆動系の構成が示されている。 【図2】本実施例のハイブリッド型電気自動車の走行許可にかかる制御のフローチャートである。

【符号の説明】

- 10 発電機
- 14 エンジン
- 18 モータ
- 2 2 発電機ECU
- 28 補機パッテリ
- 32 イグニッションスイッチのIG接点

(5) 特開平8-98318

7

34 イグニッションスイッチのST接点

36 スタータリレー

38 パワーステアリング用油圧ポンプ

40 バキュームポンプ

42 オルタネータ

44 コンプレッサ

【図1】

【図2】

je,