Recall:

$$\lim_{x \to a} f(x) = l$$

means that for each positive real number ϵ , there exists a positive real number δ such that

$$0 < |x - a| < \delta \implies |f(x) - l| < \epsilon.$$

A way to remember the ϵ - δ definition:

 $\lim_{x\to a} f(x) = l$ means that if we pick any positive real number ϵ (measuring closeness to l) then we are guaranteed to find a positive real number δ (measuring closeness to a) such that if x-values are within δ of a then the f(x)-values must be within ϵ of l.

Note the direction:

get δ after ϵ ;

 ϵ -closeness to l then follows from δ -closeness to a.

An epsilon-delta proof.

We prove that $\lim_{x\to 3} (4x-5) = 7$ from 'first principles'.

Let $\epsilon > 0$. We want to find $\delta > 0$ such that

$$0 < |x - 3| < \delta \quad \Rightarrow \quad |4x - 5 - 7| = |4x - 12| = 4|x - 3| < \epsilon,$$

(using $|ab|=|a|\cdot |b|$). That is, $|x-3|<\epsilon/4$, suggesting we take $\delta=\epsilon/4$.

And that works: given $\epsilon > 0$, so that $\delta = \epsilon/4 > 0$, if

$$0 < |x - 3| < \delta = \frac{\epsilon}{4},$$

then by inequality laws,

$$|4x - 5 - 7| = 4|x - 3| < 4 \cdot \frac{\epsilon}{4} = \epsilon$$

as required in the ϵ - δ definition of $\lim_{x\to 3} (4x-5)=7$.

Limit rules

Because of the difficulty of ϵ - δ proofs, we almost always never use them to prove individual limits; rather we use a combination of established rules (each of which has an ϵ - δ proof!).

- **1.** $\lim_{x\to a} x = a$. (Try the ϵ - δ proof; should find $\delta = \epsilon$ works.)
- **2.** If c is a constant then $\lim_{x\to a} c = c$.
- 3. If c is a constant then for any function f(x), $\lim_{x\to a}(cf(x))=c\lim_{x\to a}f(x)$. e.g., $\lim_{x\to 1}(-\sqrt{2}x)=-\sqrt{2}\lim_{x\to 1}(x)=-\sqrt{2}.1=-\sqrt{2}$.

Let f(x) and g(x) be any functions.

- **4.** (Product rule.) $\lim_{x\to a} (f(x)\cdot g(x)) = \lim_{x\to a} (f(x))\cdot \lim_{x\to a} (g(x)).$
 - e.g., $\lim_{x\to a} (x^2) = \lim_{x\to a} (x) \cdot \lim_{x\to a} (x) = a.a = a^2$.

Similarly, $\lim_{x\to a}(x^3)=a^3$, $\lim_{x\to a}(x^4)=a^4$, etc.

- **5.** (Sum rule.) $\lim_{x\to a} (f(x) + g(x)) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$.
 - e.g., $\lim_{x\to 3} (x^3 2x + 1) = \lim_{x\to 3} (x^3) 2\lim_{x\to 3} (x) + 1 = 27 6 + 1 = 22$.
- **6.** (Quotient rule.) If $\lim_{x\to a} g(x) \neq 0$, then

$$\lim_{x\to a} (f(x)/g(x)) = (\lim_{x\to a} f(x))/(\lim_{x\to a} g(x)).$$

e.g.,
$$\lim_{x\to 1} \frac{3x^2-1}{x-2} = \frac{\lim_{x\to 1} (3x^2-1)}{\lim_{x\to 1} (x-2)} = \frac{3-1}{1-2} = \frac{2}{-1} = -2.$$

The preceding examples illustrate the fact that for any *polynomial* function $f(x)=c_nx^n+c_{n-1}x^{n-1}+\cdots+c_1x+c_0$, and any $a\in\mathbb{R}$,

$$\lim_{x \to a} f(x) = f(a) = c_n a^n + c_{n-1} a^{n-1} + \dots + c_1 a + c_0.$$