FRE7251 Course Project

May 12, 2020

1 Introduction

1.1 Data

I selected CVS Health Corp (Ticker: CVS) to use MACD strategy to do analysis. I downloaded 5-year daily Adj Close data from 4/21/2011 to 4/20/2015 on Yahoo Finance.

1.2 MACD Strategy

Moving Average Convergence/Divergence (MACD) is a momentum indicator widely popular among practitioners. In MACD, momentum is calculated as the difference between a fast EMA and a slow EMA. An exponential moving average (EMA) is a type of moving average (MA) that places a greater weight and significance on the most recent data points:

$$ema(P_t, \beta) = \beta * P_t + (1 - \beta) * ema(P_{t-1}, \beta)$$

$$\beta = \frac{2}{n+1}, \beta < 1$$

starting from short moving average (sma)

The typical fast and slow periods are 12 and 26 days, respectively. The difference

$$MACD_t = ema(P_t, 12) - ema(P_t, 26)$$

is called the MACD line. Its exponential smoothing is called the signal line:

$$signal\ line = ema(MACD_t, 9)$$

Because the signal line evolves slower than the MACD line, their crossovers can be interpreted as trading signals. Namely, buying opportunity appears when the MACD line crosses from below to above the signal line. On the contrary, crossing the signal line by the MACD line from above can be seen as a selling signal.

2 Bootstrap

A universal method to the data snooping bias is data resampling. Bootstrap is the most popular resampling procedure, which implies creating multiple data sets by randomly drawing the elements of a given sample with replacement.

A more wise approach implies estimating a mathematical models that fits the given sample and

bootstrapping the model's residuals. Typical models used for stock prices are the random walk with drift, the AR models and the GARCH models.

In my project, I used the AR(1) model. The step of Bootstrap is stated below:

1. Calculate the logarithmic returns of stock price, $r_t = log(P_t) - log(P_{t-1})$ 2. Estimate with OLS (Ordinary Least Squares) α and β for

$$r_{t} = \alpha + \beta r_{t-1} + \epsilon_{t}$$

$$\epsilon_{t} = IID(0, \sigma^{2})$$

$$\sigma^{2} = Var(\epsilon_{t})$$

The result of OLS is shown below, we can conclude that both $\alpha = 0.0012$ and $\beta = -0.0598$ are significant because p-value is less than 0.1.

		OLS Regres	sion Resi	ilts		
Dep. Variab	ole:	У	R-squar	red:		0.004
Model:		OLS	Adj. R	-squared:		0.003
Method:		Least Squares	F-stat:	istic:		3.591
Date:	Tu	e, 12 May 2020	Prob (1	F-statistic)	:	0.0584
Time:		10:07:04	Log-Lil	kelihood:		3074.6
No. Observa	ations:	1002	AIC:			-6145.
Df Residual	s:	1000	BIC:			-6135.
Df Model:		1				
Covariance	Type:	nonrobust				
	coef			P> t	[0.025	0.975]
const	0.0012	0.000			0.000	0.002
x1	-0.0598	0.032 -	1.895	0.058		0.002
Omnibus:		129.154	Durbin-	======== -Watson:		1.992
Prob(Omnibu	ıs):	0.000		-Bera (JB):		1336.359
Skew:	,	-0.010	4	, ,		6.51e-291
Kurtosis:		8.658	Cond. 1	,		88.7

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. 3. Calcu-

late residuals $e_t = r_t - \alpha - \beta r_{t-1}$ 4. Generate new sample with bootstrapped residuals $\check{r}_t = \alpha + \beta \check{r}_{t-1} + \check{e}_t$, where \check{e}_t is randomly selected from e_t every time. 5. Compile new price sample $\check{P}_t = \check{P}_{t-1} \exp(\check{r}_t)$, $\check{P}_0 = P_0$. The new price sample is used to test the robustness of MACD strategy. 6. Repeat step 4 and 5 100 times.

3 Conclusion

3.1 Result

- 1. According to the performance table below, during the 5 years, under MACD strategy, it has 33 round-trip rates using the actual data. Moreover, the total return in 5 years is 79.05%. The max drawdown is 11.56%.
- 2. As for the back-testing using bootstrap, the average total return is 62.50 which is close to the empirical data though there are some returns below it. The average maximum drawdown 15.83%. Also, the number percentage of winning trades is 45.00%, which demonstrates that most returns of round-trip trades are negative. All the indictor of bootstrap are similar with the result of empirical data.

Therefore, we can conclude that the bootstrap resampling confirms profitability of your strategy.

3. In a nutshell, MACS strategy is a satisfied strategy which balances return and volatility. Though it is a litter risky, it is also profitable. To be honest, we may need more tests to ensure

	# of round-trip trades	Total return, %	Winning trades, %	Max drawdown, %
Empirical	33.0	79.05	63.64	11.56
B1	41.0	22.48	41.46	12.56
B2	41.0	44.46	31.71	20.34
В3	44.0	46.94	45.45	13.26
B4	36.0	58.53	50.00	17.98
B5	39.0	74.95	38.46	9.12
B6	38.0	77.95	42.11	12.56
B7	40.0	109.38	57.50	12.52
B8	42.0	5.07	30.95	36.15
B9	33.0	107.19	48.48	20.68
B10	41.0	11.89	39.02	28.78
B11	46.0	34.49	36.96	25.29
B12	39.0	72.93	41.03	20.53
B13	42.0	20.52	40.48	15.40
B14	42.0	37.39	33.33	26.14
B15	41.0	6.03	34.15	17.35
B16	40.0	66.71	47.50	18.63
B17	39.0	64.80	41.03	10.41

B18	41.0	36.16	43.90	21.15
B19	40.0	50.69	37.50	17.93
B20	39.0	65.50	41.03	7.15
B21	36.0	18.84	41.67	19.20
B22	42.0	-4.93	33.33	24.41
B23	36.0	55.26	55.56	16.46
B24	37.0	72.55	32.43	11.03
B25	50.0	17.95	36.00	11.10
B26	34.0	52.23	47.06	21.88
B27	39.0	76.55	48.72	11.21
B28	39.0	29.80	43.59	13.85
B29	36.0	155.58	63.89	10.14
B30	36.0	115.83	47.22	21.82
B31	35.0	46.76	48.57	15.23
B32	38.0	66.18	44.74	18.84
B33	44.0	46.07	45.45	14.75
B34	34.0	126.76	52.94	8.96
B35	39.0	98.85	46.15	10.06
B36	40.0	85.81	52.50	9.58

B37	44.0	1.86	27.27	14.80
B38	48.0	44.84	39.58	9.64
B39	37.0	46.83	51.35	9.09
B40	39.0	62.28	30.77	18.90
B41	43.0	23.71	37.21	17.55
B42	39.0	57.26	43.59	15.22
B43	45.0	11.82	33.33	20.95
B44	50.0	-6.02	28.00	20.73
B45	37.0	120.09	51.35	14.19
B46	38.0	88.14	50.00	11.00
B47	34.0	151.05	61.76	13.88
B48	34.0	59.32	44.12	21.40
B49	41.0	34.82	41.46	13.45
B50	41.0	29.95	36.59	12.84
B51	41.0	36.73	46.34	14.97
B52	41.0	61.14	46.34	13.37
B53	33.0	110.30	48.48	17.12
B54	43.0	-12.95	34.88	24.53
B55	43.0	58.23	51.16	20.24

B56	41.0	69.48	43.90	14.42
B57	44.0	9.57	40.91	9.14
B58	50.0	-5.08	32.00	14.26
B59	41.0	88.31	46.34	12.84
B60	40.0	71.57	50.00	28.53
B61	37.0	99.91	51.35	12.38
B62	36.0	92.74	63.89	13.63
B63	45.0	10.24	42.22	16.65
B64	47.0	-3.33	42.55	19.59
B65	42.0	0.59	38.10	10.47
B66	42.0	24.09	33.33	15.09
B67	42.0	75.32	45.24	14.78
B68	46.0	41.97	28.26	18.38
B69	30.0	196.08	60.00	13.09
B70	32.0	114.85	53.12	11.85
B71	44.0	27.85	47.73	14.37
B72	41.0	35.83	41.46	15.31
B73	42.0	19.34	33.33	26.36
B74	44.0	32.23	40.91	15.53

B75	35.0	155.90	54.29	15.48
B76	43.0	66.12	48.84	13.14
B77	36.0	67.15	38.89	23.38
B78	38.0	84.29	39.47	10.57
B79	39.0	-3.06	33.33	21.61
B80	40.0	47.42	45.00	24.75
B81	43.0	25.93	48.84	12.56
B82	37.0	83.64	43.24	12.48
B83	53.0	7.05	33.96	14.67
B84	36.0	86.64	61.11	11.42
B85	41.0	12.08	36.59	20.78
B86	40.0	15.17	42.50	19.10
B87	40.0	66.72	40.00	12.93
B88	37.0	112.54	62.16	17.64
B89	37.0	42.01	43.24	17.28
B90	35.0	37.49	48.57	20.26
B91	35.0	41.79	45.71	16.48
B92	39.0	83.15	38.46	15.94
B93	36.0	51.94	50.00	7.46
B94	42.0	54.11	40.48	17.63
B95	42.0	91.67	45.24	15.94
B96	41.0	116.52	43.90	11.18
B97	36.0	82.73	44.44	13.27
B98	42.0	85.97	47.62	13.90
B99	40.0	33.22	42.50	15.71
B100	38.0	84.05	52.63	22.72
Average	39.9	57.09	43.91	16.17

- the solidity of MACD strategy, for example, taking the transaction fee into consideration.
- 4. To check if the 100 total return list is a normal distribution, we use Kolmogorov-Smirnov test of scipy.stats.kstest function, which returns the D-value and the p-value. According to the result below, we can conclude that the return series is a normal distribution.

KS Test

```
1 stats.kstest(total_return_list, 'norm')
```

KstestResult(statistic=1.0, pvalue=0.0)

5. To check if mean total return differs from zero and the average return, we use Student's T-Test of stats.ttest_1samp, which returns t-statistic and the p-value. As for the test comparing to 0, p-value is 14.72006344 which is much less than 0.05, so it differs from 0 significantly. AS for the test to check if the return list equals to the average return, we also use T-Test. However, the p-value is 0.9651512 which is larger than 0.05. Hence, we cannot conclude that the return of MACD strategy equals to 62.5% significantly.

Student's T-Test

```
1 stats.ttest_1samp(total_return_list, 0)
Ttest_1sampResult(statistic=array([ 14.72006344]), pvalue=array([ 8.91787212e-27]))
1 stats.ttest_1samp(total_return_list[1:-1], 62.5)
Ttest_1sampResult(statistic=array([-0.0438022]), pvalue=array([ 0.9651512]))
```

3.2 Improvement

- 1. Though AR(1) model is popular in stock return regression model, the R square of the OLS is quite small, which means it does not take all factor related to stock return into consideration. So we can use more sophisticated model, such as ARIMA and GARCH models.
- 2. In our model, we cannot short selling and use other products to hedge. Therefore, we may miss some opportunities to make a profit.
- 3. The main disadvantage of the MACD indicator is that it is subjective to the user. Like many technical indicators, the MACD has settings that can be changed to give almost limitless numbers of variations which means results will always differ from person to person. To be more specific, we set typical fast and slow periods as 12 and 26 days, it may be arbitrary. Therefore, we can use Grid Search to find the optimal parameters which can balance profit and risk efficiently.
- 4. Though considering transaction fee may decrease the return, we are supposed to consider it. Otherwise, our model is a little unrealistic.

4 Source Code

```
In [1]: import numpy as np
    import pandas as pd
    import statsmodels.api as sm
    from scipy import stats
```

```
import random
       random.seed(0)
        import math
        import matplotlib.pyplot as plt
        import seaborn as sns
        sns.set()
In [2]: df = pd.read_csv('CVS.csv')
       df.head()
Out [2]:
                Date
                           Open
                                      High
                                                           Close Adj Close
                                                                              Volume
                                                  Low
          2011-04-21
                      36.240002
                                 36.340000
                                            36.130001 36.209999
                                                                  30.202391
                                                                             4603300
       1 2011-04-25 36.049999
                                 36.220001
                                            35.930000 36.020000 30.043913
                                                                             3879700
       2 2011-04-26 36.139999
                                 36.630001
                                            36.080002 36.090000 30.102303
                                                                             9300000
       3 2011-04-27
                      36.160000
                                 36.480000
                                            36.049999 36.369999
                                                                  30.335857
                                                                             7989700
          2011-04-28 36.250000
                                 36.320000
                                            36.020000 36.250000 30.235748
                                                                             8127800
In [3]: plt.figure(figsize=(15,6))
       plt.plot(df['Adj Close'])
       plt.show()
```


num_trades = 0

```
num_pos_trades = 0
            # return_list is used to calculate the return of each round
            return_list = []
            # close is uesd to save the adj close during trading period
            close = pd.Series(data=None)
            # Suppose we can't buy sell
            # Find the first buy signal
            begin = df[df['Signal']=='Buy'].index.tolist()[0]
            for i in range(begin, len(df)):
                if df['Signal'].iloc[i] == 'Buy' and df['Signal'].iloc[i-1] == 'Sell':
                    df.loc[i, 'Action']='Buy'
                    mark = i
                if df['Signal'].iloc[i] == 'Sell' and df['Signal'].iloc[i-1] == 'Buy':
                    df['Action'].iloc[i]='Sell'
                    close = pd.Series.append(close, df[priceName].iloc[mark:i+1],
                                              ignore_index=True)
                    num_trades += 1
                    r = df.loc[i, priceName] / df.loc[mark, priceName] - 1
                    return_list.append(r)
                    if r > 0:
                        num_pos_trades += 1
            return_list = pd.DataFrame(return_list, columns={'return'})
            return df, num_trades, num_pos_trades, return_list, close
In [6]: def calCumReturn(return_list):
            cum_return = (1+return_list).cumprod()
            total_return_pct = 100*(cum_return.iloc[-1] - 1)
            total_return_pct = total_return_pct[0].round(2)
            return total_return_pct
In [7]: def calWinTrades(num_pos_trades, num_trades):
            win_trades = num_pos_trades/num_trades
            win_trades_pct = 100*win_trades
            return win_trades_pct
In [8]: def calDrawDown(df, close):
            df['drawdown'] = pd.DataFrame(close)/pd.DataFrame(close).cummax()-1
            max_drawdown = - df['drawdown'].min()
            max_drawdown_pct = max_drawdown*100
            return max_drawdown_pct
4.1 Bootstrap
In [9]: # Bootstrap using AR(1)
        # rt is the log retruns = log(Pt) - log(Pt-1)
        rt = np.log(df['Adj Close']).diff()
        X = rt[1:-1]
```

```
Y = rt[2:]
      X = sm.add_constant(X)
      model = sm.OLS(np.array(Y), np.array(X))
      results = model.fit()
      alpha = results.params[0]
      beta = results.params[1]
      print(results.summary())
                       OLS Regression Results
Dep. Variable:
                                R-squared:
                                                            0.004
Model:
                            OLS
                                Adj. R-squared:
                                                            0.003
Method:
                   Least Squares F-statistic:
                                                            3.591
               Tue, 12 May 2020 Prob (F-statistic):
Date:
                                                        0.0584
Time:
                        23:00:07
                                Log-Likelihood:
                                                           3074.6
No. Observations:
                                                           -6145.
                           1002
                                AIC:
Df Residuals:
                           1000 BIC:
                                                            -6135.
Df Model:
                             1
Covariance Type:
                      nonrobust
             coef std err
                                                          0.9751
                                 t.
                                       P>|t|
                                                  Γ0.025
______
           0.0012
                     0.000 3.233 0.001
                                                 0.000
                                                            0.002
const
          -0.0598 0.032 -1.895 0.058
                                                 -0.122
x1
                                                            0.002
_____
                        129.154 Durbin-Watson:
Prob(Omnibus):
                          0.000 Jarque-Bera (JB):
                                                        1336.359
Skew:
                         -0.010 Prob(JB):
                                                         6.51e-291
Kurtosis:
                         8.658 Cond. No.
                                                             88.7
______
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
//anaconda3/lib/python3.7/site-packages/numpy/core/fromnumeric.py:2389: FutureWarning: Method .p
 return ptp(axis=axis, out=out, **kwargs)
In [10]: # Calculate residuals
       rt_est = results.predict(sm.add_constant(rt[1:]))
       rt_est = rt_est.reset_index(drop=True)
       # In textbook, the standardized residuals = (rt - alpha - beta*rtX)/std(residual)
       # rt_actual = rt.reset_index(drop=True)
       rt_actual = rt[1:].reset_index(drop=True)
       # residuals = (rt_actual - rt_est)/(rt_actual - rt_est).std()
       residuals = (rt_actual - rt_est)
In [11]: def createNewSample(alpha,beta , rt_actual, residuals, df):
```

r_sample = [rt_actual[0]]

```
for i in range(0, len(residuals)):
                                 index = math.floor(random.random()*len(residuals))
                                 random_residuals = residuals[index]
                                 random_return = alpha + beta *r_sample[i-1] + random_residuals
                                 r_sample.append(random_return)
                         new_price.append(df['Adj Close'].iloc[0])
                         for i in range(1, len(residuals)+1):
                                 new_price.append(new_price[i-1] * np.exp(r_sample[i-1]))
                         return pd.DataFrame(data=new_price, columns={'Price_sample'})
In [12]: # Calculate using empirical data
                 data = getSignal(df, 'Adj Close')
                  data, num_trades, num_pos_trades, return_list, close = Strategy(data, 'Adj Close')
                  total_return_pct = calCumReturn(return_list)
                  win_trades_pct = calWinTrades(num_pos_trades, num_trades)
                 max_drawdown_pct = calDrawDown(data, close)
                 result = pd.DataFrame(data=[[num_trades, total_return_pct, win_trades_pct, max_drawdown
                  # 100 times bootstrap
                  total_return_list = [total_return_pct]
                  for i in range(100):
                         Price_sample = createNewSample(alpha, beta, rt_actual, residuals, df)
                         data = getSignal(Price_sample, 'Price_sample')
                         data, num_trades, num_pos_trades, return_list, close = Strategy(Price_sample, 'Price's ample, 
                         total_return_pct = calCumReturn(return_list)
                         total_return_list.append(total_return_pct)
                         win_trades_pct = calWinTrades(num_pos_trades, num_trades)
                         max_drawdown_pct = calDrawDown(data, close)
                         Bresult = pd.DataFrame(data=[[num_trades, total_return_pct, win_trades_pct, max_dra
                         result = pd.concat([result, Bresult], axis=0)
//anaconda3/lib/python3.7/site-packages/pandas/core/indexing.py:190: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#
    self._setitem_with_indexer(indexer, value)
In [13]: result.loc['Average'] = result.mean()
                 result = result.rename(columns={0: '# of round-trip trades', 1: 'Total return, %', 2: '
                  result = result.round(decimals=2)
                 pd.set_option('display.max_rows', None)
                 result
Out[13]:
                                       # of round-trip trades Total return, % Winning trades, % \
                                                                           33.0
                                                                                                           79.05
                                                                                                                                                 63.64
                 Empirical
                 В1
                                                                           41.0
                                                                                                           22.48
                                                                                                                                                 41.46
```

new_price = []

B2	41.0	44.46	31.71
B3	44.0		
B4		46.94 58.53	45.45 50.00
	36.0		
B5	39.0	74.95	38.46
B6	38.0	77.95	42.11
B7	40.0	109.38	57.50
B8	42.0	5.07	30.95
B9	33.0	107.19	48.48
B10	41.0	11.89	39.02
B11	46.0	34.49	36.96
B12	39.0	72.93	41.03
B13	42.0	20.52	40.48
B14	42.0	37.39	33.33
B15	41.0	6.03	34.15
B16	40.0	66.71	47.50
B17	39.0	64.80	41.03
B18	41.0	36.16	43.90
B19	40.0	50.69	37.50
B20	39.0	65.50	41.03
B21	36.0	18.84	41.67
B22	42.0	-4.93	33.33
B23	36.0	55.26	55.56
B24	37.0	72.55	32.43
B25	50.0	17.95	36.00
B26	34.0	52.23	47.06
B27	39.0	76.55	48.72
B28	39.0	29.80	43.59
B29	36.0	155.58	63.89
B30	36.0	115.83	47.22
B31	35.0	46.76	48.57
B32	38.0	66.18	44.74
B33	44.0	46.07	45.45
B34	34.0	126.76	52.94
B35	39.0	98.85	46.15
B36	40.0	85.81	52.50
B37	44.0	1.86	27.27
B38	48.0	44.84	39.58
B39	37.0	46.83	51.35
B40	39.0	62.28	30.77
B41	43.0	23.71	37.21
B42	39.0	57.26	43.59
B43	45.0	11.82	33.33
B44	50.0	-6.02	28.00
B45	37.0	120.09	51.35
B46	38.0	88.14	50.00
B47	34.0	151.05	61.76
B48	34.0	59.32	44.12
B49	41.0	34.82	41.46

B50	41.0	29.95	36.59
B51	41.0	36.73	46.34
B52	41.0	61.14	46.34
B53	33.0	110.30	48.48
B54	43.0	-12.95	34.88
B55	43.0	58.23	51.16
B56	41.0	69.48	43.90
B57	44.0	9.57	40.91
B58	50.0	-5.08	32.00
B59	41.0	88.31	46.34
B60	40.0	71.57	50.00
B61	37.0	99.91	51.35
B62	36.0	92.74	63.89
B63	45.0	10.24	42.22
B64	47.0	-3.33	42.55
B65	42.0	0.59	38.10
B66	42.0	24.09	33.33
B67	42.0	75.32	45.24
B68	46.0	41.97	28.26
B69	30.0	196.08	60.00
B70	32.0	114.85	53.12
B71	44.0	27.85	47.73
B72	41.0	35.83	41.46
B73	42.0	19.34	33.33
B74	44.0	32.23	40.91
B75	35.0	155.90	54.29
B76	43.0	66.12	48.84
B77	36.0	67.15	38.89
B78	38.0	84.29	39.47
B79	39.0	-3.06	33.33
B80	40.0	47.42	45.00
B81	43.0	25.93	48.84
B82	37.0	83.64	43.24
B83	53.0	7.05	33.96
B84	36.0	86.64	61.11
B85	41.0	12.08	36.59
B86	40.0	15.17	42.50
B87	40.0	66.72	40.00
B88	37.0	112.54	62.16
B89	37.0	42.01	43.24
B90	35.0	37.49	48.57
B91	35.0	41.79	45.71
B92	39.0	83.15	38.46
B93	36.0	51.94	50.00
B94	42.0	54.11	40.48
B95	42.0	91.67	45.24
B96	41.0	116.52	43.90
B97	36.0	82.73	44.44

B98	42.0	85.97	47.62
B99	40.0	33.22	42.50
B100	38.0	84.05	52.63
Average	39.9	57.09	43.91

	Max	drawdown, %
Empirical		11.56
B1		12.56
B2		20.34
В3		13.26
B4		17.98
B5		9.12
В6		12.56
B7		12.52
B8		36.15
В9		20.68
B10		28.78
B11		25.29
B12		20.53
B13		15.40
B14		26.14
B15		17.35
B16		18.63
B17		10.41
B18		21.15
B19		17.93
B20		7.15
B21		19.20
B22		24.41
B23		16.46
B24		11.03
B25		11.10
B26		21.88
B27		11.21
B28		13.85
B29		10.14
B30		21.82
B31		15.23
B32		18.84
B33		14.75
B34		8.96
B35		10.06
B36		9.58
B37		14.80
B38		9.64
B39		9.09
B40		18.90
B41		17.55

B42	15.22
B43	20.95
B44	20.73
B45	14.19
B46	11.00
B47	13.88
B48	21.40
B49	13.45
B50	12.84
B51	14.97
	13.37
B52	
B53	17.12
B54	24.53
B55	20.24
B56	14.42
B57	9.14
B58	14.26
B59	12.84
B60	28.53
B61	12.38
B62	13.63
B63	16.65
B64	19.59
B65	10.47
B66	15.09
B67	14.78
B68	18.38
B69	13.09
B70	11.85
B71	14.37
B72	15.31
B73	26.36
B74	15.53
B75	15.48
B76	13.14
B77	23.38
B78	10.57
B79	21.61
B80	24.75
B81	12.56
B82	12.48
B83	14.67
B84	11.42
B85	20.78
B86	19.10
B87	12.93
B88	17.64
B89	17.28

B90	20.26
B91	16.48
B92	15.94
B93	7.46
B94	17.63
B95	15.94
B96	11.18
B97	13.27
B98	13.90
B99	15.71
B100	22.72
Average	16.17

5 P/L histogram

```
In [14]: total_return_list = pd.DataFrame(total_return_list, columns={'total return'})

total_return_list = total_return_list.values

m = total_return_list.mean()

std = total_return_list.std()

normal_dist = np.random.normal(m, std, 100)

plt.figure(figsize=(15,6))

plt.title('Returns P/L %', fontsize=18)

plt.xlabel('Return of Empirical and Bootstraps, %', fontsize=18)

plt.ylabel('count', fontsize=18)

plt.hist([total_return_list, normal_dist], density = False, label =['CVS','Normal'], columns={'total_return_list, normal_dist}, density = False, label =['CVS','Normal'], density = False, label =
```

Out[14]: <matplotlib.legend.Legend at 0x12a250cf8>

5.1 KS Test

```
In [15]: stats.kstest(total_return_list, 'norm')
Out[15]: KstestResult(statistic=1.0, pvalue=0.0)

5.2 Student's T-Test
In [16]: stats.ttest_1samp(total_return_list, 0)
Out[16]: Ttest_1sampResult(statistic=array([14.16907109]), pvalue=array([1.18943035e-25]))
In [17]: stats.ttest_1samp(total_return_list[1:-1], 62.5)
Out[17]: Ttest_1sampResult(statistic=array([-1.4407649]), pvalue=array([0.15283855]))
```