

process similarly as described in Example 3 using the compositions of preliminary and main plating bath under the plating conditions as shown in Tables 3 and 4 in Example 7, respectively, which was then cut off in a similar manner as described in Example 7 to form chip parts having a shape of Fig. 9 (perspective view).

Example 9

The base assembly 21 used in Example 7 was partially coated with coating material 3 as shown in Fig. 7 (A) to (C) and subjected to a plating process similarly as described in Example 4 using the compositions of preliminary and main plating bath under the plating conditions as shown in Tables 3 and 4 in Example 7, respectively, which was then cut off in a similar manner as described in Example 7 to form chip parts having a shape of Fig. 9 (perspective view).

Example 10

The base assembly 21 used in Example 7 was partially coated with coating material 3 as shown in Fig. 7 (A) to (C) and subjected to a plating process similarly as described in Example 5 using the compositions of preliminary and main plating bath under the plating conditions as shown in Tables 3 and 4 in Example 7, respectively, which was then cut off in a similar manner as described in Example 7 to form chip parts having a shape of Fig. 9 (perspective view).

Example 11

A procedure of Example 9 was repeated except that the assembly 21 was coated with PVA as a coating material and plated by treating thereof with aluminum chloride and lithium hydroxide in a tetrahydrofurn solution to form a Al-plated layer of $2 \mu\text{m}$ thick (generally 0.5 to $2.5 \mu\text{m}$ thick) thereon.

What is claimed is:

1. A method for partially plating on a base by the use of a plating catalyst comprising a coating process to coat a surface to be plated or not to be plated by means of a coating material selected from a water soluble polymer or