

Robot Programming and Control for Human Interaction

Theresa Gräbner,

Daniel Ostermeier,

Jesus Arturo Sol Navarro

10.02.2025

Basic Experiments

PTP and LIN Motions

- Three Frames
- 10mm Cartesian blending
- Relative Joint-velocity: 0.2
- BasicMotions.lin()

BasicMotions.ptp()

Time (ms)

Cumulative Translational Distance over Time

Nullspace Motion

- Two Frames: PTP Motions
- Including Redundancy Parameters

Nullspace Motion

- Two Frames: PTP Motions
- Excluding Redundancy Parameters

Uniform Damping and Stiffness:

• K = 2500 N/m, D=0.3

Graphic from Lecture slides: Interaction Control

• K = 1000 N/m, D=0.3

• K = 1000 N/m, D=0

Nullspace:

Cartesian DOF:

• K = 100 N/m, D=0.3 • K = 3000 N/m, D=0.3

Different stiffnesses for Cartesian DOF

Damping factor = 0.7

Z-Axis: K = 200 N/m

X, Y and Rotation: K = 2500 N/m

Singularities

- Cartesian forces get very large near singularities
- Why? => Inversion of singular Jacobian

$$F = J^{\#-1} * \tau$$

The Wireloop: Algorithm & Experiments

Wireloop: Algorithm

Heart-Shaped Loop (Exploration)

- Rotation of π/8 per collision
- Repositions after first curve and before right curve
- Collides after repositioning before right curve

Heart-Shaped Loop: Exploration + Replay

Exploration:

- Differentiates right and left curve
- Collides after reposition maneuver

Replay:

- Collides after reposition maneuver
- Rest of motion collision free

Solution to Collision after repositioning:

 Reposition only after moving slightly back from collision point

Cartesian Position for for Exploration of Oval Loop

Oval Wireloop (Exploration)

- Repositions after first curve and before last curve
- Threshold line (+5/-5)

650

600

Oval Wireloop (Replay)

- Replay takes less time
- Collisions under the 5 N threshold
- Noise in cartesian Forces -> Threshold for Break Condition = 5N

Video: Oval with Exploring + Replay

- Successfully Exploration
- Collision-free Replay
- Potential Improvement:
 - Add cartesian blending

Thanks for your attention!

Questions? Ask ahead!

Wireloop: Reposition Handling

