





# Respimatic 100



Sunil Nanda (PARC)

# Setting the Context

The Motivation

The Problem Statement

# RESPIMATIC 100 (Patent Pending)

Is it right for you?

Only non-invasive support?

Support from Initiation to Weaning?

No compressed air or piped Oxygen?

Connect to O<sub>2</sub> Cylinder or Concentrator?

Full range of Respiration parameters?

Breath Synchronization for Patient Comfort?

Remote monitoring capability?

Handle harsh-uncontrolled Environment?

Easy-to-use System?

**Budget Friendly?** 

# The Motivation Serve the Bottom of the Pyramid

Medical Colleges & Specialization

(Tertiary In-patient Care)

**District Hospitals** 

(Secondary In-patient Care)

Subdistrict Health Complex

(Out-patient & In-patient Care)

**Gram Panchayat PHC** 

(Ambulance, Emergency, Clinic)

Village PHC

(Out-patient Care & Referrals)

Provide a robust, portable respiration assist system to remote Primary Health Centers in India and other developing countries

A system that works in a harsh uncontrolled environment and as a travel ventilator without piped compressed air or oxygen

A system that requires minimum training

Within the budget of the bottom of the pyramid



### Observations on Ventilator Evolution



Iron Lung Age



Pneumatic Age



μController Age



Smart "E"-Age

#### Most-used Ventilation Modes have not changed

- Volume and Pressure Control
- Control BPM, I/E, VT and PS
- Monitor pressures and flow
- Safety Alarm systems

# Diminishing Returns from what has evolved ...

- Exotic Ventilation modes
- Multitude of Sensors
- Fancy Touch-screen LCD Displays

# Respimatic - Respiratory Technology Revisited

#### Remote Diagnosis and Monitoring (Telemedicine)

Rural, remote areas do not have skilled specialists
BUT Communication Technologies have come of age

#### Leverage Time-proven Technologies

<u>Simplify</u> design and feature list <u>Simplify</u> Human-Machine Interface Use <u>Off-the-shelf</u> proven components

#### Maintenance Breaths in case of unexpected errors

System <u>must not</u> stop delivering breaths.

Implement <u>Fallback</u> mechanism for each error scenario.



# Respimatic 100 System Details

**System Components** 

**Technical Details** 

# Our Solution RESPIMATIC 100

4 Commonly Used Ventilation Modes CMV, ACV, SIMV, PSV

Respiration Rate, Tidal Volume, PEEP, Support Pressure Controls

Volume Controlled and Pressure Supported
Breaths

Mandatory &
Spontaneous Breaths
with Full Breath
Synchronization

Complete set of WEB Apps
Remote Dashboard
Remote Recorder
Remote Analyzer
FiO<sub>2</sub> Calculator

**Low-speed Wi-Fi sufficient** 

**Phone Hot-spot also sufficient** 

**Uses secure HTTPS protocol** 



https://www.respimatic.com

# Remote WEB Dashboard Snapshot View

Anyone, anywhere in the world can monitor any patient via the WEB

Multiple specialists can monitor the same patient

One specialist can monitor multiple patients

#### 5 Dashboard views

- Snapshots
- Charts
- Statistics
- Breath Shapes
- Alerts



https://www.respimatic.com

### Remote WEB Dashboard - Charts View



Respimatic 100 - Preliminary and Confidential

# Remote WEB Dashboard — Statistics View

#### Shape Session [20-12-2022 10:53:21]









#### Parameters Measured

| Parameter                        | Units      | Min | Max | Avg   |
|----------------------------------|------------|-----|-----|-------|
| Peak Pressure                    | cmH20      | 1   | 35  | 28.1  |
| Plateau Pressure                 | cmH20      | 17  | 33  | 27.1  |
| PEEP Pressure                    | cmH20      | 5   | 7   | 6.0   |
| Tidal Volume Delivered           | ml         | 150 | 412 | 359.4 |
| Minute Volume Delivered          | litres/min | 5.6 | 5.9 | 5.7   |
| Mandatory BPM                    | bpm        | 15  | 16  | 15.2  |
| Spontaneous BPM                  | bpm        | 0   | 1   | 0.7   |
| FIO2                             | %          | 50  | 50  | 50.0  |
| Instantaneous Static Compliance  | ml/cmH20   | 14  | 30  | 18.4  |
| Instantaneous Dynamic Compliance | ml/cmH20   | 14  | 22  | 16.5  |
| System Temperature               | degC       | 29  | 30  | 29.2  |
|                                  |            |     |     |       |

#### **Miscellaneous Information**

| Information                               | Value |
|-------------------------------------------|-------|
| Number of Breaths                         | 73    |
| Number of Mandatory Breaths               | 56    |
| Number of Spontaneous Breaths             | 17    |
| Number of Maintenance Breaths             | 0     |
| Number of Missing Breaths (Comms Failure) | 0     |
| Number of Notifications                   | 0     |
| Number of Warnings                        | 2     |
| Number of Errors                          | 17    |

#### Static Information

Patient Name: --

Patient Info: --

System Deployment Altitude: 3000 (915) ft(m)

#### **Parameter Settings Used**

| Parameter                    | Units      | Values  |
|------------------------------|------------|---------|
| Ventilation Mode             | mode       | ACV,CMV |
| Tidal Volume                 | ml         | 400,300 |
| Respiration Rate             | bpm        | 15,20   |
| I:E Ratio                    | ratio      | 1:3,1:2 |
| PEEP Pressure                | cmH20      | 6       |
| Maximum Pressure             | cmH20      | 50      |
| Support Pressure             | cmH20      | 25      |
| Support Pressure Termination | %flow,secs | F20%    |
| FIO2                         | %          | 50      |

#### **Sequence of Parameter Combinations**

| MODE | VT  | RR | I:E I | PEEP | PMAX | PS | TPS I | FIO2 | # of<br>BREATHS1 | Before<br>BREATH# |
|------|-----|----|-------|------|------|----|-------|------|------------------|-------------------|
| ACV  | 400 | 15 | 1:3   | 6    | 50   | 25 | F20%  | 50   | 17               | 0                 |
| CMV  | 300 | 15 | 1:2   | 6    | 50   | 25 | F20%  | 50   | 16               | 17                |
| ACV  | 400 | 15 | 1:3   | 6    | 50   | 25 | F20%  | 50   | 21               | 33                |
| ACV  | 400 | 20 | 1:3   | 6    | 50   | 25 | F20%  | 50   | 19               | 54                |
|      |     |    |       |      |      |    |       |      |                  |                   |

## Remote WEB Dashboard - Breath Shapes View



### Remote WEB Dashboard – Alerts View





# Remote WEB Analyzer

Any patient Session can be recorded locally or remotely.

The recorded Session can then be analyzed off-line using the Analyzer.

#### Demo Session [09-12-2022 06:39:24]



https://www.respimatic.com

# WEB Apps Architecture



# Front Panel The Human-Machine Interface

No delicate touch screen etc.

Easy to read 7-seg
LED Parameters
Display

Parameter selection using simple arrow buttons

4-line LCD Display for displaying Messages and Menus

Peak, Plateau, PEEP pressures displayed after each breath

Also shows Delivered Volumes, Lung Compliance, Breath types etc.



# System Architecture

Clearly separated
Frontend, Backend and
Breathing system

IP is in the Frontend design and Algorithms

Backend and Breathing
System can have
multiple avatars



# Respimatic 100 Under the hood

Production Cost Rs. 50,000

Potentially lower with bulk negotiations

Compact, Lightweight, and Robust
Usable in harsh environments

Intuitive HMI - Simple to operate
Front Control Panel & Remote Monitoring









So,  $(P_{GI} - P_{GZ})$  can be replaced by  $E^*(P_{GI} - P_{GZ})$  for an appropriate transforms to the one below.

$$Q = K * \sqrt{E * (P_{G1} - P_{G2})}$$

where 
$$K = \frac{C}{\sqrt{Patmoshpere} * \sqrt{E}}$$

or 
$$K = \frac{f(Re)}{\sqrt{Patmoshpere} * \sqrt{E}}$$
 where Re is the Reynold

Rewriting for every sample interval time t, the equation is as below

$$Q(t) = K * \sqrt{E * (P_{G1}(t) - P_{G2}(t))}$$



Simple electronics with time proven COTS components

Rugged mechanical system – various alternatives possible

Essential Parameter monitoring and carefully vetted alarm conditions

Robust and easy to clean enclosure surfaces

Suitable for mass production

# Breathing Circuit

One proprietary, **patent-pending** Dual Pressure line connector with Orifice plate

Off-the-shelf single-limb Breathing Circuit with NRBV

BVM or Ambu Bag with Reservoir

Pressure sensors, PEEP valve

HME Filter

Humidifier

Oxygen Source





Off-the-Shelf Single limbed Circuit with NRBM



Patent-pending Dual Pressure line Connector



### Ventilation Modes

### The 4 most frequently used

# Continuous Mandatory Ventilation (CMV)

Volume Controlled Mandatory Breaths

Ignore spontaneous breaths

#### Synchronized Assist Control Ventilation (Sync ACV)

Volume Controlled Mandatory Breaths

Volume controlled breaths in response to spontaneous breaths

Breath Synchronization

#### Synchronized Intermittent Mandatory Ventilation (SIMV)

Volume Controlled Mandatory Breaths

Pressure supported breaths in response to spontaneous breaths

Breath Synchronization

# Pressure Support Ventilation (PSV)

Pressure supported breaths in response to spontaneous breaths

Careful Monitoring of Minute Volume

No Mandatory breaths except when in dire need

# Volume Controlled Breaths (All modes)

#### Tidal Volume (ml)

200 to 600 ml increments of 50 ml

#### Respiratory Rate (bpm)

10 to 30 bpm increments of 1

#### Inspiration/Expiration Ratio (I:E)

1:1, 1:2, 1:3

#### PEEP (cmH2O)

4 to 15 cmH2O increments of 1 cmH2O

#### Max Pressure (cmH2O)

20 to 50 cmH2O increments of 5 cmH2O

#### FiO<sub>2</sub> Support

System Managed Externally Controlled 21% to 100%

# Pressure Supported Breaths

(SIMV & PSV modes)

#### Support Pressure (PS)

5 cmH<sub>2</sub>O to 30 cmH<sub>2</sub>O in increments of 5 cmH<sub>2</sub>O

#### Support Pressure Termination (TPS)

#### Flow-dependent

Terminate when flow falls below 10%, 20% or 30% of peak flow

#### Time dependent

Terminate after 1.0 secs to 2.5 secs in increments of 0.5 secs

#### **Both ACV and SIMV modes**

- A must for patient comfort
- Synchronize Mandatory breaths with Spontaneous breaths
- Prevent breath stacking

# Breath Synchronization

# FiO<sub>2</sub> Settings

Without the Reservoir bag, FiO<sub>2</sub> delivered is 21% which is normal Atmospheric O<sub>2</sub> content

FiO<sub>2</sub> delivery with the Reservoir bag is mathematically modelled, calibrated and verified in the Lab to provide +/- 5% accuracy

Front-panel HMI guides the user in setting the appropriate input O<sub>2</sub> flow rate on the connected O<sub>2</sub> source for a given FiO<sub>2</sub>

The mathematical model provides for a possible  $O_2$  concentrator as an  $O_2$  source (purity < 100%)

Online Web-accessible FiO<sub>2</sub> calculator is also provided for exploration purposes





## Alarms and Safety Features

- Enforcement of Pre-use checks
- Distinction between Alarms, Warnings and Notifications
- Maintenance Breaths till Alarm situation rectified
  - Max Pressure Alarm
  - Pressure Loss Alarm
  - System Temperature Alarm
  - Sensor failure Alarm
  - Breathing Circuit Failure Alarm
  - Detect coughing fits
  - Inconsistent input parameters
  - And many more ...



# **Power Consumption**



An online, sine-wave, external battery UPS recommended to continue operation during power outages



50 AH Car battery is sufficient to run the system for 5+ hours





100 AH Tubular battery is sufficient to run the system for 10+ hours

| Input Voltage     | 180-250 V   |  |  |  |
|-------------------|-------------|--|--|--|
| Power Consumption | < 100 Watts |  |  |  |

# Respimatic Testing Process

Timing, Flow and Pressure Checks for all combinations of various settings



Automated Testing for all combinations of VT, RR, IE, PEEP, PS with randomized spontaneous breath triggers



Automated testing of full day runs checked for timing within 1% of theoretical expectations



All testing so far with a simple test lung Next step needs a more sophisticated test lung

# Thank you

# Backup

Market Analysis

Sample Waveforms







# The Problem Scarcity & Affordability

- India has amongst the lowest per capita ICU beds in the World\*
- 1.46 beds / 1000 people\*
- 3.65 ICU beds / Lakh people\*
- Only half of ICU beds are equipped with Ventilators
- A meagre 1.8 Ventilators for one lakh people\*
- ICU ventilators are expensive equipment
- Unaffordable in remote clinics
- Ventilator Ambulances are
- Either non-existent except in few major urban centres,
- Or beyond the reach of majority of population

<sup>\*</sup> As per April 2020 Study by Center for Disease Dynamics, Economics & Policy at Princeton University, USA

# The Problem Skilled Practitioners

ICU Ventilators require highly skilled manpower to operate and monitor

#### Ventilators lie unutilised due to shortage of doctors

Jaisalmer: 11 vernment has given 17 ventilators, including 12 to Jaisalmer and five to Pokhran government hospitals. However, they were lying unutilised due to lack of doctors. The serious patients are being referred to Jodhpur and a large number of corona patients have died while undergoing treatment in Jodhpur.

On Tuesday, there were 42 fresh cases of Covid-19 in Jaisalmer district. On Sunday, 54 cases were reported. The condition of some patients is serious as they are being referred to Jodhpur which is a five hours jour-



sion. The main reason behind referring serious patients to Jodhpur is non-availability of ventilator facility and posts of main doctors are lying vacant.

There are only two phy-

three physicians, cardiolo

Jaisalmer collector Ashish Modi said that all the 17 ventilators in the district are in operational condition and oxygen and other resources are available. He said that posts of cardiologist, physician are lying vacant due to which ventilators cannot be used for corona patients. Serious patients are referred to Jodhpur on time and Jodhpur divisional commissioner Dr Samit Sharma is sicians in the Jaisalmer he said. Jaisalmer governhospital of which duty of ment hospital PMO Dr VK one of the doctors is to take Verma said that ventilator.

व्यवस्थाओं को कोरोना: सरकार ने दिए वेंटीलेटर, आधे से अधिक इंस्टाल नहीं किए

#### कहीं पर्याप्त प्रशिक्षित द्राफ ही नहीं

रोना वायरस के संक्रमण लेटर की कमी होने पर बीलेटर उपलब्ध करा सते जहां चरू नहीं होने से परेशानी आ रही है तथा



सात वेंटीलेटर मेल वार्ड में लगा दिए हैं। तीन को भी एक-दो दिन में इंस्टॉल करवा दिया जाएगा। भरतिया अस्पताल के पास जो वेंटीलेटर हैं. उन्हें जरूरत के हिसाब से इंस्टॉल कर दिया जाएगा। मेडिकल टीम को डेमो देकर प्रशिक्षित किया जाता है।

डॉ. हनमान जयपाल. एसोसिएट प्रोफेसर, मेडिकल कॉलेज, चरू

दरअसल. वेंटीलेटर का सरकार ने जिला अस्पतालों को संचालन प्रशिक्षित स्टाफ ही कर वेंटीलेटर उपलब्ध करा दिए सकता है। वह भी उस स्थिति में लेकिन चलाने के लिए यहां पर निश्चेतना विशेषज्ञ मॉनिटरिंग पर्याप्त प्रशिक्षित स्टाफ नहीं होने से रहा हो। कोविड-19 के चलते परेशानी आ रही है।

कोटा. कोटा मेडिकल कॉलेज के बढ़ने के बाद 23 नए वेंटीलेटर और

कोविड अस्पताल में 52 वेंटीलेटर हैं आए हैं। इंस्टॉल होना बाकी है। और सभी चालु हैं। वहीं, कोरोना के संचालन के लिए पर्याप्त कार्मिक हैं।

#### 25 वेंटीलेटर इंस्टाल स्टोर की बढ़ा रहे शोभा

चित्तौडगढ के जिला अस्पताल मे कोरोना से पूर्व पांच वेंटीलेटर थे, जो बढ़कर 42 हो गए हैं। इनमें से कुछ फोल्डिंग वेंटीलेटर है। वेंटीलेटर पर मरीज को रखने के लिए आईसीय का प्रशिक्षित स्टाफ चाहिए और निश्चेतन के चिकित्सक चाहिए।यहां आईसीयु का प्रक्षिक्षित स्टाफ करीब आधा दर्जन का ही है जो आईसीयू में है। यहां कुल 42 वेंटीलेटर में से अभी भी पांच



तथा जैसे ही जरूरत पडेगी। वार्ड मे

### Market Need

25 to 50 ventilators per lakh people in developed countries

1.8 ventilators per lakh people\* (India)

Even less for lower income developing and underdeveloped countries\*





<sup>\*</sup> As per April 2020 Study by Center for Disease Dynamics, Economics & Policy at Princeton University, USA

# Respimatic Sample Waveforms

Pressure , Flow and Spontaneous Breaths



#### **Back to Back Spontaneous Pressure Supported Breaths**



Respimatic 100 - Preliminary and Confidential

# Breath Synchronization in ACV Mode

Tidal volume is delivered at regular intervals  $T_i$ .



If spontaneous breath occurs during this interval at time  $T_s$ , the set tidal volume is delivered in response, and the next mandatory breath is set for  $(T_s + T_i)$ .



Again, if another spontaneous breath is detected before  $T_s + T_i$ , a mandatory breath scheduled  $T_i$  time in future.

#### **Breath Syncing in Synchronized AC Mode**

There is no sync-window – the next mandatory breath is always rescheduled after a spontaneous breath

Example below: Tidal Volume = 500ml Respiration Rate = 15 bpm



# Breath Synchronization in SIMV Mode

Tidal volume is delivered at regular intervals  $T_i$ .



This is to allow more spontaneous breaths but to trigger a mandatory VC breath if spontaneous breath is not detected within 90% of the mandatory breath interval.

#### **Breath Syncing in SIMV mode**

There is a sync-window – the next mandatory breath is rescheduled only if spontaneous breath within the sync-window



# Exceptional Mandatory Breath in PSV Mode



#### Mandatory Breath (Warning) in PSV mode

There is a quiet-window – the next mandatory breath is delivered only if no spontaneous breath within the quiet-window

