# EE219 Project 3

304743326 Andrew Lin, 004587761 Wei-Ting Chen

#### Part 1

By using collaborative filtering, we get the prediction matrix of movie rating. The total least squared errors in different k are shown below. We use an additional k=500 to build the matrix. As we can see for the table, the total error decreases as k grows because larger k allows the model to be more complex, but the computational time also grows with k.

| k   | Total Least Squared Error |
|-----|---------------------------|
| 10  | 518677.53742              |
| 50  | 344355.418277             |
| 100 | 228794.691722             |
| 500 | 7332.39135187             |

Since we're finding a set of matrix factorization that has the minimum error, the error of each iteration should decrease and finally converge as shown below.









We randomly choose 10% of the raw data read from file as test data, and the rest 90% as training data and build the rating matrix for cross validation. We take 100 iterations of factorization, and generate the initial U and V as randomly generated matrices.

The average absolute error of each test for different k is shown below. It is calculated as the total error of a test divided by the number of test entries.

| Validation Test | k=10     | k=50     | k=100    | k=500    |
|-----------------|----------|----------|----------|----------|
| 1               | 1.779193 | 1.260250 | 1.141260 | 0.247676 |
| 2               | 1.783527 | 1.222235 | 1.176608 | 0.258433 |
| 3               | 1.772448 | 1.204210 | 1.183285 | 0.253079 |
| 4               | 1.784322 | 1.218771 | 1.268180 | 0.261518 |
| 5               | 1.780508 | 1.207648 | 1.146087 | 0.257994 |
| 6               | 1.762604 | 1.205965 | 1.181372 | 0.256614 |
| 7               | 1.777819 | 1.213634 | 1.140929 | 0.261418 |
| 8               | 1.797829 | 1.229649 | 1.206965 | 0.277199 |
| 9               | 1.761902 | 1.263216 | 1.131555 | 0.254955 |
| 10              | 1.816251 | 1.237786 | 1.185611 | 0.268044 |

The average absolute error of different k among each test is shown below. It is calculated as the total error of all test of a particular k divided by 10.

|                           | k=10         | k=50         | k=100        | k=500       |
|---------------------------|--------------|--------------|--------------|-------------|
| Average<br>Absolute Error | 17816.404551 | 12263.363667 | 11761.851387 | 2596.929652 |

We calculate the precision and recall using the model and the test data that give the minimum validation error with k=100. We get the result and the ROC curve as below:

Precision: 0.986564 Recall: 0.018016



This shows that our model can retrieve more accurate predictions than incorrectly predicted ones, but it fails to evaluate most of the movie preferences. This also happens with k=500 as shown below:

Precision: 0.999981 Recall: 0.149102



We interpret this as a tradeoff of precision and recall.

We apply the same matrix factorization function with K=10, 50, 100 on reversed R and W, and obtain the total squared error as shown below:

| К   | Least Squared error |
|-----|---------------------|
| 10  | 128481.586294       |
| 50  | 86853.134640        |
| 100 | 59135.867432        |

We then add a regularization term  $\lambda$  to the cost function, and run matrix factorization again, with K=10, 50, 100 and  $\lambda$ =0.01, 0.1, 1. We plotted the ROC curve and calculated the least square errors. It is seen in the plotted graphs that the result improves as K and  $\lambda$  becomes larger.



error for k = 50, lambda = 0.10: 346093.448286



error for k = 100, lambda = 0.01: 229884.253657



error for k = 50, lambda = 1.00: 347389.179082



error for k = 100, lambda = 0.10: 230289.832031



error for k = 100, lambda = 1.00: 232216.165217



Average precision on all folds for L = 5 is 0.69838939.

We calculated the hit rate by counting the number of movies in L that are liked by the users and also recommended by our system. On the other hand, the false-alarm rate is the number of movies in L that are not actually liked by the users.

| L | Precision  |
|---|------------|
| 1 | 0.72301666 |
| 2 | 0.71028271 |
| 3 | 0.70406829 |
| 4 | 0.70301212 |
| 5 | 0.69838939 |

