

Model Development Phase Template

Date	10 th July 2024
Team ID	739754
Project Title	Food Demand Forecasting For Food Delivery Company
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Import necessary libraries import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score # Load the preprocessed dataset data = pd.read_csv('processed_data.csv') # Define features and target variable features = ['hour', 'day_of_week', 'month', 'customer_age', 'customer_gender', 'order_total', 'promo_used', 'temperature', 'precipitation', 'is_holiday'] target = 'demand' # Split data into training and testing sets (80% training, 20% testing) train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)

Initialize Random Forest Regressor model model = RandomForestRegressor(n_estimators=100, random_state=42) # Train the model model.fit(train_data[features], train_data[target]) # Predict on the test set predictions = model.predict(test_data[features]) # Evaluate the model mae = mean_absolute_error(test_data[target], predictions) rmse = mean_squared_error(test_data[target], predictions, squared=False) r2 = r2_score(test_data[target], predictions) # Print evaluation metrics print(f'Mean Absolute Error: {mae:.2f}') print(f'Root Mean Squared Error: {rmse:.2f}') print(f'R-squared: {r2:.2f}') # Save the trained model import joblib

joblib.dump(model, 'food_demand_forecasting_model.pkl')

MODEL	CLASSIFICATION REPORT	F1 SCO RE	CONCLUSION MATRIX
-------	-----------------------	-----------------	----------------------

Random Forest	<pre>accuracy=model.score(X_test,Y_test) print(["Decision Tree"]) print("Model accuracy\\t",{accuracy}) print(f'Accuracy in Percentage\t{" {:.1%}".format(accuracy)}') print(classification_report(Y_test,Y_pred))</pre>	81%	confusion_matrix(y_test,ypred) array([[62, 13],
------------------	--	-----	--