Charges and Fields

Andrew Wang

Feburary 2024

Coulomb's law

The magnitude of the force F between two point charges q_1 , q_2 is given by

$$F = k \frac{|q_1 q_2|}{r^2}$$

where k is a constant and r^2 is the distance between q_1 and q_2 squared.*

To obtain both the direction and magnitude of such force, in this case from q_1 to q_2 , we could find

$$\vec{F}_{12} = k \frac{|q_1 q_2| \hat{r}_{12}}{r^2}$$

where \hat{r}_{12} is a unit vector that points from q_1 to q_2 .

Electric Fields

A point charge q exerts a electric field \vec{E} described by

$$\vec{E} = \frac{kq}{r^2}\hat{r}.$$

where r^2 is the distance between q and the position at which the field is measured, and \hat{r} is the unit vector that points from q to said position.

A test charge q_0 would experience a force \vec{F} by \vec{E} described by

$$\vec{F} = q_0 \vec{E}.$$

 $[\]vec{F}=q_0\vec{E}.$ *k is sometimes given as $k=\frac{1}{4\pi\epsilon_0}$ where ϵ_0 is the permittivity of vacuum.

Continuous Charge Distribution

Suppose we want to describe the total electric field \vec{E}_{tot} exerted by a body of charge. The principle of superposition tells us that

$$\vec{E}_{tot} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \dots + \vec{E}_n$$

$$= \sum_{i=1}^{n} \vec{E}_i.$$

$$= \int_{V} d\vec{E}.$$

 \vec{E}_{tot} is the sum of all electric fields from each point charge in said body of charge. We then say each infinitesimal point charge dq exerts a field

$$d\vec{E} = \frac{k \ dq}{r^2} \hat{r}.$$

In most cases dq has different values as the location changes. Therefore, we map dV, the infinitesimal volume or intuitively understood as the coordinates of dq, to dq with

$$dq = \lambda dV$$

where λ is the charge density. Now we replace dq with λdV and integrate $d\vec{E}$ over volume V to obtain

$$\vec{E}_{tot} = \int_{V} d\vec{E} = \int_{V} \frac{k\lambda}{r^2} \hat{r} dV.$$

A useful proposition is that for any charged wire of length 2l and charge Q measured x distance away from the midpoint, we have

$$E_x = \frac{2k\lambda l}{x\sqrt{x^2 + l^2}}$$

where $\lambda = \frac{Q}{2l}$.

Dipole Moment

The dipole moment \vec{p} given by two charges -q and +q is described by

$$\vec{p} = q\vec{l}.$$

where \vec{l} is the position vector that points from -q to +q. The dipole moment also points from -q to +q.

Suppose we are interested in finding out the torque $\vec{\tau}$ applied to an electric dipole \vec{p} by an uniform electric field \vec{E} . The magnitude of the torque vector, τ , is described by a familiar formula from classical mechanics

$$\tau = Fl_y,$$

where F is the magnitude of either \vec{F}_+ or \vec{F}_- , and l_y is the component of distance between q- and q+ perpendicular to the direction of \vec{E} . We can obtain F using

$$F = qE$$

where q is the magnitude of point charge and E is the magnitude of \vec{E} . We could also obtain l using

$$l_y = d\sin\theta$$

where d (not shown in figure) is the distance between -q, +q and θ is the angle between \vec{p} and \vec{E} . Reconstructing the equations, we have

$$\tau = Fl_y$$

$$= qdE \sin \theta$$

$$= pE \sin \theta$$

where p=qd is the magnitude of the dipole moment. To obtain the torque vector $\vec{\tau}$, we have

$$\vec{\tau} = \vec{p} \times \vec{E}$$

since the cross product of the dipole moment \vec{p} and the electric field \vec{E} describes the orientation of $\vec{\tau}$. The magnitude of the product also aligns with what we have arrived at before

$$|\vec{p} \times \vec{E}| = pE \sin \theta.$$

$$\rightarrow$$

$$\vec{E}$$

$$\rightarrow$$

$$-q$$

Consider an electric dipole \vec{p} that started off with an angle θ with \vec{E} . Under the effect of torque $\vec{\tau}$, \vec{p} rotated. We denote the angular displacement caused by the rotation ϕ . Suppose we are interested in finding out the work W that was done by \vec{E} on \vec{p}

$$W = \tau \cdot \phi.$$

Since τ is a function of $\theta - \phi$, we need to integrate dW from the starting angle θ to the final angle $\theta - \phi$ with $d\phi$ in order to get W.

$$W = \int_{\theta - \phi}^{\theta} dW = \int_{\theta - \phi}^{\theta} \tau d\phi$$

$$= \int_{\theta - \phi}^{\theta} \vec{p} \times \vec{E} d\phi$$

$$= \int_{\theta - \phi}^{\theta} pE \sin(\theta - \phi) d\phi$$

$$= pE \int_{\theta - \phi}^{\theta} \sin(\theta - \phi) d\phi$$

$$= pE \cos(\theta - \phi)|_{\theta - \phi}^{\theta}$$

$$= pE(1 - \cos\phi).$$

Suppose we are interested in finding out the potential energy U of \vec{p} that forms an angle θ with \vec{E} . Conventionally, we consider \vec{p} being perpendicular

to \vec{E} as \vec{p} having 0 potential energy. That is, to calculate the potential energy related to $\pi/2$, we find the work needed to turn \vec{p} from θ to $\pi/2$.

$$U = \int_{\pi/2}^{\theta} dW = \int_{\pi/2}^{\theta} pE \sin(\theta) d\theta$$
$$= -pE \cos \theta|_{\pi/2}^{\theta}$$
$$= -pE \cos \theta$$
$$= -\vec{p} \cdot \vec{E}.$$