CSC236 Fall 2016

Assignment #1: induction

due October 7th, 10 p.m.

The aim of this assignment is to give you some practice with various forms of induction. For each question below you will present a proof by induction. For full marks you will need to make it clear to the reader that the base case(s) is/are verified, that the inductive step follows for each element of the domain (typically the natural numbers), where the inductive hypothesis is used and that it is used in a valid case.

Your assignment must be typed to produce a PDF document (hand-written submissions are not acceptable). You may work on the assignment in groups of 1, 2, or 3, and submit a single assignment for the entire group on MarkUs

1. Consider the Fibonacci-esque function g:

$$g(n) = egin{cases} 1, & ext{if } n = 0 \ 3, & ext{if } n = 1 \ g(n-2) + g(n-1) & ext{if } n > 1 \end{cases}$$

Use complete induction to prove that if n is a natural number greater than 1, then $2^{n/2} \le g(n) \le 2^n$. You may **not** derive or use a closed-form for g(n) in your proof.

Sample solution: Proof, using complete induction.

inductive step: Let n be a typical natural number greater than 1 and assume H(n): Every natural number $i \in \{2, ..., n-1\}$ satisfies $2^{i/2} \le g(i) \le 2^i$.

show that inductive conclusion follows: We'll derive C(n): $2^{n/2} < g(n) < 2^n$.

Base cases: 1 < n < 4: g(2) = 4 and g(3) = 7 # by the definition of g(2) and g(3).

$$2^{2/2} = 2 \le 4 = g(2) \le 4 = 2^2$$
 and $2^{3/2} = 2\sqrt{2} \le 7 = g(3) \le 8 = 2^3$

C(2) and C(3) follow from our assumptions in this case.

Case $n \geq 4$: By assumptions H(n-2) and $H(n-1) \# n \geq 4$ implies $2 \leq n-2, n-1 < n$:

$$2^{(n-2)/2} \le g(n-2) \le 2^{n-2}$$
 and $2^{(n-1)/2} \le g(n-1) \le 2^{n-1}$.

Substituting these inequalities into the definition of g(n) # by definition of g(n), $n \ge 4 > 0$:

$$g(n) = g(n-2) + g(n-1) \ge 2^{(n-2)/2} + 2^{(n-1)/2} = (1+\sqrt{2})2^{(n-2)/2} \ge 2 \times 2^{(n-2)/2} = 2^{n/2}$$

 $g(n) = g(n-2) + g(n-1) \le 2^{n-2} + 2^{n-1} = (1+2)2^{n-2} \le 2^2 \times 2^{n-2} = 2^n$

C(n) follows from our assumptions in this case.

In all cases H(n) implies C(n).

2. Suppose B is a set of binary strings where each binary string is of length n. n is positive (greater than 0), and no two strings in B differ in fewer than 2 positions. Use simple induction to prove that B has no more than 2^{n-1} elements.

Sample solution: Proof, using simple induction.

verify base: There are two binary strings of length 1: "0" and "1", and they differ from each other in exactly one position (i.e. fewer than 2). That means that the only sets of binary strings of length 1 that contain no pairs that differ in fewer than 2 positions are $\{"1"\}$, $\{"0"\}$, and $\{\}$, which each have no more than $1 = 2^{1-1}$ elements, verifying the claim in this case.

inductive step: Let n be a typical natural number greater than 0. Assume H(n): any set of binary strings of length n containing no pairs that differ in fewer than 2 positions must have no more than 2^{n-1} elements.

derive conclusion C(n): We must show that from H(n) follows C(n): any set of binary strings of length n+1 containing no pairs that differ in fewer than 2 positions must have no more than 2^n strings.

Let B be an arbitrary set of binary strings of length n+1 that contains no pairs that differ in fewer than 2 positions.

Let B_1 be the subset of B consisting of those elements with 1 in the first position, and B_2 be the subset of B consisting of those elements of B with 0 in the first position. B_1 and B_2 partition B, since every element of B has either a 1 or a 0 in the first position, and no element of B has both a 1 and a 0 in the first position.

From B_1 construct B'_1 , consisting of the strings of B_1 with the leading 1 removed. Similarly, from B_2 construct B'_2 , consisting of the strings of B_2 with the leading 0 removed.

Sets B_1' and B_2' contain strings of length n, and contain no pairs that differ in fewer than 2 positions, since removing the leading 1s or 0s cannot change the number of positions in which elements differ. By assumption H(n), both B_1' and B_2' have no more than 2^{n-1} elements each. Elements of B_1 are in 1-1 correspondence with those of B_1' , since you can transform one into the other by prepending a leading 1, or removing a leading 1. Similarly elements of B_2 are in 1-1 correspondence with those of B_2' . $|B_1| = |B_1'|$ and $|B_2| = |B_2'|$, since they are in 1-1 correspondence.

 $|B|=|B_1|+|B_2|\leq 2^{n-1}+2^{n-1}=2^n$, since B_1 and B_2 partition B. This is what C(n) claims.

- 3. Define T as the smallest set of strings such that:
 - (a) "b" $\in T$
 - (b) If $t_1, t_2 \in T$, then $t_1 + "ene" + t_2 \in T$, where the + operator is string concatenation.

Use structural induction to prove that if $t \in T$ has n "b" characters, then t has 2n-2 "e" characters.

Sample solution: Proof, using structural induction.

verify basis: "b" $\in T$ # from definition. "b" has 1 character "b" and 2(1) - 2 = 0 "e" characters. This verifies the claim for the basis.

inductive step: Let $t_1, t_2 \in T$ and assume $H(\{t_1, t_2\})$: If t_1 has n_1 "b" characters and t_2 has n_2 "b" characters, then t_1 has $2n_1 - 2$ "e" characters and t_2 has $2n_2 - 2$ "e" characters.

show that inductive conclusion follows from assumptions: We'll derive $C(t_1 + "ene" + t_2)$: If $t_1 + "ene" + t_2$ has $n_{1,2}$ "b" characters, then it has $2n_{1,2} - 2$ "e" characters. $t_1 + "ene" + t_2 \in T$ # by definition of T, where + is string concatenation.

Let n_1, m_1 be the number of "b" (respectively "e") characters in t_1 , and n_2, m_2 be the number of "b" (respectively "e") characters in t_2 . $t_1 + "ene" + t2$ has $n_1 + n_2$ "b" characters # Concatenating "ene" doesn't increase the number of "b" characters.

Let $n_{1,2}$ be the number of "b" characters in $t_1 + "ene" + t_2$. Then $n_{1,2} = n_1 + n_2 \#$ since no "b" characters are added by concatenating "ene".

 $t_1 + "ene" + t_2$ has $2n_1 - 2 + 2n_2 - 2 + 2$ "e" characters # by assumptions $H(t_1)$, $H(t_2)$, and two "e" characters in "ene".

Summing up $t_1 + "ene" + t_2$ has

$$2n_1 - 2 + 2n_2 - 2 + 2 = 2(n_1 + n_2) - 2 - 2 + 2 = 2(n_1 + n_2) - 2 = 2n_{1,2} - 2$$

... "e" characters. Conclusion $C(t_1 + "ene" + t_2)$ follows in this case.

- 4. On page 79 of the Course Notes the quantity $\phi = (1 + \sqrt{5})/2$ is shown to be closely related to the Fibonacci function. You may assume that $1.61803 < \phi < 1.61804$. Complete the steps below to show that ϕ is irrational.
 - (a) Show that $\phi(\phi 1) = 1$.

Sample solution: Substituting the expression for ϕ :

$$\phi(\phi-1)=\left(rac{1+\sqrt{5}}{2}
ight)\left(rac{\sqrt{5}-1}{2}
ight)=rac{4}{4}=1$$

(b) Rewrite the equation in the previous step so that you have φ on the left-hand side, and on the right-hand side a fraction whose numerator and denominator are expressions that may only have integers, + or -, and φ. There are two different fractions, corresponding to the two different factors in the original equation's left-hand side. Keep both fractions around for future consideration.

Sample solution: I can choose to divide 1 by either ϕ or $\phi - 1$, yielding:

$$\phi = rac{1}{\phi - 1}$$
 $\phi = rac{1 + \phi}{\phi}$

(c) Assume, for a moment, that ϕ is the ratio of two natural numbers. Let $m, n \in \mathbb{N}$ such that $\phi = n/m$. Re-write the right-hand side of both equations in the previous step so that you end up with fractions whose numerators and denominators are expressions that may only have integers, + or -, m and n.

Sample solution: Substitute n/m for ϕ on the right-hand side, and then simplify:

$$\phi = rac{1}{\phi - 1} \longrightarrow \phi = rac{m}{n - m}$$
 $\phi = rac{1 + \phi}{\phi} \longrightarrow rac{m + n}{n}$

(d) Use your assumption from the previous part to construct a non-empty subset of the natural numbers that contains m. Use the Principle of Well-Ordering, plus one of the two expressions for ϕ from the previous step to derive a contradiction.

Sample solution: Let $F \subseteq \mathbb{N}$ be defined by:

$$F = \{m' \in \mathbb{N} \mid \exists n' \in \mathbb{N}, \phi = n'/m'\}.$$

By assumption in (c), F is non-empty, since it has at least one member, m. By PWO F has a smallest element, let it be m_0 , with its corresponding n_0 so that $m_0, n_0 \in \mathbb{N}$ and $\phi = n_0/m_0$..

Rewriting the equation for ϕ and using the assumption 1.61803 $< \phi <$ 1.61804 yields:

$$\phi = rac{n_0}{m_0}$$
 $\phi m_0 = n_0$ #multiply both sides by m_0
 $m_0 < n_0 < 2m_0$ # multiply 1.61803 $< \phi <$ 1.61804 by m
 $0 < n_0 - m_0 < m_0$ #subtract m_0 from both inequalities.

 $n_0 - m_0 \in \mathbb{N}$ #integers closed under - and difference is non-negative.

 $n_0 - m_0 \in F$, since $\phi = n_0/m_0 = m_0/(n_0 - m_0)$ and $n_0 - m_0 < m_0$.

Contradiction $\rightarrow \leftarrow$. m_0 is the smallest element of F, by construction.

(e) Combine your assumption and contradiction from the previous step into a proof that ϕ cannot be the ratio of two natural numbers. Extend this to a proof that ϕ is irrational.

Sample solution: Proof (by contradiction) that ϕ is irrational.

Assume, for the sake of contradiction, that ϕ is rational.

Let $z_1, z_2 \in \mathbb{Z}, \phi = z_1/z_2$ # by definition of ϕ is rational

Let $n, m \in \mathbb{N}, m/n = \phi$. # Since $\phi = z_1/z_2 > 0$ the numerator and denominator have the same sign. If $z_1, z_2 > 0$, let $n = z_1, m = z_2$. Otherwise, if $z_1, z_2 < 0$, let $n = -z_1, m = -z_2$.

Contradiction $\longrightarrow \longleftarrow$. From the previous part, there are no natural numbers m,n such that $\phi=m/n$.

 ϕ is irrational, since assuming otherwise leads to a contradiction.

5. Consider the function f, where $3 \div 2 = 1$ (integer division, like 3//2 in Python):

$$f(n) = \begin{cases} 1 & \text{if } n = 0\\ f^{2}(n \div 3) + 3f(n \div 3) & \text{if } n > 0 \end{cases}$$

Use complete induction to prove that for every natural number n greater than 2, f(n) is a multiple of 7. **NB**: Think carefully about which natural numbers you are justified in using the inductive hypothesis for.

Sample solution: Proof by complete induction.

inductive step: Let n be a typical natural number greater than 2, and assume H(n): that f(i) is a multiple of 7 for natural numbers 2 < i < n.

show that inductive conclusion follows: We'll derive C(n): f(n) is a multiple of 7.

Base case 2 < n < 6: n > 0, so by the definition of f(n):

$$f(n) = f^2(n \div 3) + 3f(n \div 3) = f^2(1) + 3f(1) = 28$$
 # $f(1) = 4$ from definition

28 is a multiple of 7, so C(n) follows in this case.

Base case $6 \le n < 9$: n > 0, so by the definition of f(n):

$$f(n) = f^2(n \div 3) + 3f(n \div 3) = f^2(2) + 3f(2) = 28$$
 # $f(2) = 4$ from definition

28 is a multiple of 7, so C(n) follows in this case.

Case $n \geq 9$: $n > n \div 3 > 2$, so by assumption $H(n \div 3)$ we know that $f(n \div 3)$ is a multiple of 7. Let $k \in \mathbb{N}$ be a natural number such that $f(n \div 3) = 7k$.

$$f(n) = f^{2}(n \div 3) + 3f(n \div 3) = 49k^{2} + 21k = 7(7k^{2} + 3k)$$

 $7(7k^2+3k)$ is a multiple of 7, so the conclusion C(n) is verified in this case.