Uniswap V3 Pricing Review for Lenders

Abstract

With the creation of Uniswap, thorough stochastic pricing analysis has been reviewed by Bardoscia and Milionis describing it's spot pricing dynamics. Since it's release, only a few protocols have been created to address leveraged perpetual options using Uniswap V3 pricing dynamics, effectively creating a "loan" based on backed collateral for position holders. Below is a review of simulation using Mathematica to generate empirical risk profiles for V3 positions with standard techniques in Stochastic Calculus.

Stochastic Calculus Review

Ito's Lemma

Single Variable Ito's Lemma

14.2.3 Ito's Lemma

The central tool in stochastic differential equations is Ito's lemma, which basically says that a smooth function of an Ito process is itself an Ito process.

THEOREM 14.2.1 Suppose that $f: R \to R$ is twice continuously differentiable and that $dX = a_t dt + b_t dW$. Then f(X) is the Ito process

In[1]:=

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) a_s ds + \int_0^t f'(X_s) b_s dW + \frac{1}{2} \int_0^t f''(X_s) b_s^2 ds$$

for $t \ge 0$.

In differential form, Ito's lemma becomes

$$df(X) = f'(X) a dt + f'(X) b dW + \frac{1}{2} f''(X) b^2 dt.$$
 (14.9)

14.2.3 Ito's Lemma

The central tool in stochastic differential equations is **Ito's lemma**, which basically says that a smooth function of an Ito process is itself an Ito process.

THEOREM 14.2.1 Suppose that $f: R \to R$ is twice continuously differentiable and that $dX = a_t dt + b_t dW$. Then f(X) is the Ito process

Out[1]=

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) a_s ds + \int_0^t f'(X_s) b_s dW + \frac{1}{2} \int_0^t f''(X_s) b_s^2 ds$$

for $t \ge 0$.

In differential form, Ito's lemma becomes

$$df(X) = f'(X) a dt + f'(X) b dW + \frac{1}{2} f''(X) b^2 dt.$$
 (14.9)

Multivariable Ito's Lemma

THEOREM 14.2.3 Let W_1, W_2, \ldots, W_m be Wiener processes and let $X \equiv (X_1, X_2, \ldots, X_m)$ X_m) be a vector process. Suppose that $f: \mathbb{R}^m \to \mathbb{R}$ is twice continuously differentiable and X_i is an Ito process with $dX_i = a_i dt + b_i dW_i$. Then df(X) is the following Ito process,

$$df(X) = \sum_{i=1}^{m} f_i(X) dX_i + \frac{1}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} f_{ik}(X) dX_i dX_k,$$

with the following multiplication table:

 $\rho_{ik} dt$ dW_{ν} dt

Here, ρ_{ik} denotes the correlation between dW_i and dW_k .

THEOREM 14.2.3 Let W_1, W_2, \ldots, W_m be Wiener processes and let $X \equiv (X_1, X_2, \ldots, X_m)$ X_m) be a vector process. Suppose that $f: R^m \to R$ is twice continuously differentiable and X_i is an Ito process with $dX_i = a_i dt + b_i dW_i$. Then df(X) is the following Ito process,

$$df(X) = \sum_{i=1}^{m} f_i(X) dX_i + \frac{1}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} f_{ik}(X) dX_i dX_k,$$

with the following multiplication table:

 $\frac{\partial}{\partial W_k}$ $\rho_{ik} dt$

Here, ρ_{ik} denotes the correlation between dW_i and dW_k .

$$In[4]:= MVIto[F_, vars_, stocs_] := \\ Sum[D[F, {var}] * dvar, {var, vars}] + \\ Sum[\frac{1}{2}D[F, pairs[1]], pairs[2]] * dvars[1] * dvars[2]], \\ \left\{pairs, Subsets[vars, {2}] \sim Join \sim Map[{\#, \#} \&, vars]}\right] /. stocs // Simplify;$$

Sanity Checks

The Single Variable Ito should correctly return GBM.

In[3]:=

Out[3]=

In[5]:= SVIto @@
$$\left\{e^{S}, S, \left\{d \mid S \rightarrow \mu \ d \mid t + \sigma \ d \mid W, \alpha \rightarrow \mu, \beta \rightarrow \sigma\right\}\right\} // \left(\frac{\sharp}{e^{S}}\right) \&$$
 // Simplify

Out[5]=
$$\left(\mu + \frac{\sigma^2}{2}\right) dt + \sigma dW$$

The Multi-variable Ito should correctly return the Forward Contract process.

$$\ln[6]:= \text{MVIto @@} \left\{ S \star e^{y(T-t)}, \left\{ S, t \right\}, \left\{ d \mid S \rightarrow \mu S d \mid t + \sigma S d \mid W \right\} \right\}$$

out[6]=
$$\frac{1}{2} e^{(-t+T)y} S(-2+y dt) ((y-\mu) dt - \sigma dW)$$

In[7]:=

The Multi-variable Ito should correctly return the Log Normal process.

In[8]:= MVIto @@
$$\left\{ \text{Log[S]}, \left\{ S, t \right\}, \left\{ dS \rightarrow \mu S dIt + \sigma S dIW \right\} \right\}$$
 //

Expand //
$$\left(\# \text{ /. } \left\{ (dIt)^2 \rightarrow 0, \ (dIW)^2 \rightarrow dIt, \ dIt dIW \rightarrow 0 \right\} \right) \& \text{ //}$$

Simplify

Out[8]: $\left(\mu - \frac{\sigma^2}{2} \right) dIt + \sigma dIW$

Geometric Brownian Motion

Geometric Brownian Motion is a process that assumes random percent changes. Rather than random step changes, this has features where the value is not negative and is modeled in lots of natural processes.

$$\ln[9]:= \operatorname{diffGBM} = d \mid S \rightarrow S \left(\mu + \frac{\sigma^2}{2} \right) d \mid t + S \sigma d \mid W;$$

Ornstien-Uhlenbeck

Ornstien-Uhlenbeck processes drive to the mean μ as time goes on. This is in effect a mean reverting process model.

In[10]:= diffOrnstienUhlenbeck = $dX \rightarrow \kappa (\mu - X) dt + \sigma dW$;

In[11]:= SVIto[
$$X^2$$
, X, $\{\alpha \rightarrow -\kappa * X, \beta \rightarrow \sigma\}$]

Out[11]=
$$\left(-2 X^2 \kappa + \sigma^2\right) d t + 2 X \sigma d W$$

```
\ln[12]:= MVIto[X^2, \{X, t\}, \{d \mid X \rightarrow -\kappa * X d \mid t + \sigma d \mid W\}] //
                      \left( \# \ /. \ \left\{ (d\!\!\mid\! t)^2 \ \rightarrow \ 0 \ , \ (d\!\!\mid\! W)^2 \ \rightarrow \ d\!\!\mid\! t \ , \ d\!\!\mid\! t \, d\!\!\mid\! W \ \rightarrow \ 0 \right\} \right) \& \ //
Out[12]= \left(-2 X^2 \kappa + \sigma^2\right) dt + 2 X \sigma dt W
```

Uniswap V3 Stochastic Analysis

Value of a Uniswap V3 Position

Uniswap State Equations

Pricing Derivations for Impermanent Loss

```
In[19]:= ethDailyVol = 0.0034;
       ethMeanYearly = 0.1;
       currentPrice = 1628;
       lowerBound = 1600;
       upperBound = 1700;
       initialValue = 10000;
In[25]:= currentLiquidityParams =
         Liquidity[lowerBound, upperBound, currentPrice, initialValue] // N
Out[25]= \{\{x \rightarrow 4.37661, y \rightarrow 2874.87, L \rightarrow 8249.71\}\}
In[26]:= originalValue =
          x*p+y /. tokensGivenLiquidity /. \{p_a \rightarrow lower, p_b \rightarrow higher, p \rightarrow startPrice\};
       currentValue = x * p + y /. tokensGivenLiquidity /. \{p_a \rightarrow lower, p_b \rightarrow higher\};
              currentValue - originalValue;
                        originalValue
       \label{eq:humanReadable} \text{humanReadable} \, = \, \Big\{ \, \text{lower} \, \rightarrow \, p_a \, , \, \, \text{higher} \, \rightarrow \, p_b \, , \, \, \text{startPrice} \, \rightarrow \, p_0 \Big\};
In[30]:= IL /. humanReadable // Simplify;
```

Plotting to Understand Value Curves

```
In[31]:= valueCurve = currentValue /. currentLiquidityParams;
```

```
In[32]:= GraphicsGrid[{{
         Plot[valueCurve /.
           \{ lower \rightarrow lowerBound, higher \rightarrow upperBound, startPrice \rightarrow currentPrice \},
          \{p, lowerBound, upperBound\}, AxesLabel \rightarrow \{"Price", "USD Value"\}\},
          IL /. {lower → lowerBound, higher → upperBound, startPrice → currentPrice},
          {p, lowerBound, upperBound}, AxesLabel → {"Price", "Percent Change"}
       }}]
```


Closed Form Analysis

$$\label{eq:procPVOpen} $$\inf_{n \in S^{n}:=} procPVOpen = TransformedProcess[currentValue /. \{p \to p[t]\}, \\ p \approx GeometricBrownianMotionProcess[\mu, \sigma, S], \\ t]$$$

$$\begin{aligned} & \text{Out} \text{[S7]=} & & \text{TransformedProcess} \Big[\text{L} \left(- \sqrt{\text{lower}} + \sqrt{p[\![\,t]\!]} \right) + \frac{\text{L} \left(\sqrt{\text{higher}} - \sqrt{p[\![\,t]\!]} \right) \sqrt{p[\![\,t]\!]}}{\sqrt{\text{higher}}} \;, \\ & & p \approx \text{GeometricBrownianMotionProcess} [\mu, \, \sigma, \, \text{S}], \; t \Big] \end{aligned}$$

```
In[60]:= TableForm[{
                                               {"Mean Function", Mean[procPVOpen[t]] /. {higher \rightarrow p_b, lower \rightarrow p_a}},
                                               \left\{ \text{"Variance", Variance[procPVOpen[t]]} \, /. \, \left\{ \text{higher} \, \rightarrow \, p_b, \, \, \text{lower} \, \rightarrow \, p_a \right\} \right\}
Out[60]//TableForm=
                                                                                                                              L\left(2e^{\frac{1}{8}t\left(4\mu-\sigma^2\right)}\sqrt{S}-\sqrt{p_a}-\frac{e^{t\mu}S}{\sqrt{p_b}}\right)
                                   Mean Function
                                                                                                                                \underbrace{e^{\text{t}\,\mu}\,L^{2}\,S\left(-e^{\text{t}\,\mu}\,S+e^{\text{t}\,\left(\mu+\sigma^{2}\right)}\,S+\left(4-4\,e^{-\frac{\text{t}\,\sigma^{2}}{4}}\right)p_{b}+4\,e^{\frac{1}{8}\,\text{t}\,\left(4\,\mu-\sigma^{2}\right)}\,\sqrt{S\,p_{b}}\,-4\,e^{\frac{1}{8}\,\text{t}\,\left(4\,\mu+3\,\sigma^{2}\right)}\,\sqrt{S\,p_{b}}\right)}_{p_{b}}
                                  Variance
       In [88]:= ILOpen = MVIto @@ {IL, {p, t}, {(diffGBM /. {S \rightarrow p}))} } //
                                                            Expand //
                                                    (\# /. \{(d/t)^2 \to 0, (d/W)^2 \to d/t, d/td/W \to 0\}) \& //
                                                Simplify
                                  procILOpen = ItoProcess (dV[t] == IL /. \{p \rightarrow p[t]\}), \{V[t]\}, \{V, V_0\}, \{t, 0\}, \{t, 0
                                                     \{W \approx WienerProcess[], p \approx GeometricBrownianMotionProcess[\mu, \sigma, S]\}\}
                                  TableForm[{
                                               {"Mean Function",
                                                     Mean[procILOpen[t]] \text{ /. } \Big\{ higher \rightarrow p_b, \text{ lower } \rightarrow p_a, \text{ startPrice } \rightarrow p_0 \Big\} \Big\},
                                               \left\{\text{"Variance", Variance[procILOpen[t]]}/. \right. \left\{\text{higher} \rightarrow p_b, \text{ lower } \rightarrow p_a, \text{ startPrice } \rightarrow p_\theta\right\}\right\}
                                        }]
    Out[88]= \frac{\left(2 \text{ p} \left(2 \mu + \sigma^2\right) - \sqrt{\text{higher}} \sqrt{\text{p}} \left(4 \mu + \sigma^2\right)\right) d \text{l} + \left(-4 \sqrt{\text{higher}} \sqrt{\text{p}} \sigma + 4 \text{ p} \sigma\right) d \text{lW}}{4 \left(\sqrt{\text{higher}} \left(\sqrt{\text{lower}} - 2 \sqrt{\text{startPrice}}\right) + \text{startPrice}\right)}
Out[90]//TableForm=
```

Mean Function

Variance

 V_{0}

Pricing With IL

resultIL /. humanReadable

$$\begin{array}{c} \text{Out[37]=} \end{array} \begin{array}{c} \frac{\textit{d}'\,\text{W}\left(4\;p\;\sigma-4\;\sqrt{p}\;\;\sigma\;\;\sqrt{p_b}\;\right) + \textit{d}'\,\text{t}\left(2\;p\left(2\;\mu+\sigma^2\right)-\;\sqrt{p}\;\left(4\;\mu+\sigma^2\right)\;\sqrt{p_b}\;\right)}{4\left(p_0+\left(-2\;\;\sqrt{p_0}\;+\;\sqrt{p_a}\;\right)\;\sqrt{p_b}\;\right)} \end{array}$$

In[38]:= preprocessIL = resultIL /. currentLiquidityParams[[1]] /.

$$\left\{ \text{p} \rightarrow \text{p[t], W} \rightarrow \text{W[t], lower} \rightarrow \text{lowerBound, higher} \rightarrow \text{upperBound, } \mu \rightarrow \frac{\text{ethMeanYearly}}{365} \right. \\ \left. \sigma \rightarrow \text{ethDailyVol, startPrice} \rightarrow \text{currentPrice} \right\} \text{ } \text{\textit{// N // Simplify}}$$

$$\texttt{Out[38]=} \quad \textbf{0.000228404} \ \textit{d} \ \textit{t} \ \sqrt{\textit{p[t]}} \ + \ \textbf{0.0028049} \ \textit{d} \ \textit{W[t]} \ \sqrt{\textit{p[t]}} \ - \ \textbf{5.59742} \times 10^{-6} \ \textit{d} \ \textit{t} \ \textit{p[t]} - \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} \ \textit{multiple} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} + \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} + \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} + \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{W[t]} \times \textit{p[t]} = \ \textbf{0.0000680288} \ \textit{d} \ \textit{$$

V[t], {V, 10000}, {t, 0}, {W
$$\approx$$
 WienerProcess[], p \approx

 $\label{eq:GeometricBrownianMotionProcess} \Big[\frac{\text{ethMeanYearly}}{365} \,, \,\, \text{ethDailyVol, currentPrice} \Big] \Big\} \Big];$

 $fsIL = RandomFunction[procIL, \{0, 90\}, 5];$

In[41]:= Mean[fsIL[90]]

Out[41]= 10000.

ListLinePlot[fsIL, FillingStyle
$$\rightarrow$$
 Axis]

Pricing with Position Value

9800

Further Research

```
In[49]:= TableForm[{
        {	t "Impermanent Loss in Uniswap V3", Hyperlink[
           "https://lambert-guillaume.medium.com/an-analysis-of-the-expected-value-of-the-
             impermanent-loss-in-uniswap-bfbfebbefed2"]},
        {"Uniswap Liquidity V3 Math",
         Hyperlink["http://atiselsts.github.io/pdfs/uniswap-v3-liquidity-math.pdf"]
Out[49]//TableForm=
                                          https://lambert-guillaume.medium.com/an-analysis-of-
      Impermanent Loss in Uniswap V3
                                             impermanent-loss-in-uniswap-bfbfebbefed2
      Uniswap Liquidity V3 Math
                                          http://atiselsts.github.io/pdfs/uniswap-v3-liquidity-
```

Perpetual Lending Stochastic Analysis

Mean-Reverting Additional Value Term

TBD