EVALUACIÓN TEMA 2 (11-3-2015)

(El examen se calificará sobre 10 puntos con una duración de 105 minutos. El primer ejercicio se recogerá transcurridos 55 minutos y los dos restantes al final)

EJERCICIO 1 (5.5 puntos y aprox. 55 min):

Sea el problema de Condiciones Iniciales y' = f(t,y) con $y(t_0) = y_0$.

Para su integración numérica con el método de Euler:

- 1) Representar gráficamente, en t_k y en t_{k+1} , los valores exactos y aproximados de la función incógnita, y los valores asociados necesarios para la definición de los errores de truncamiento global y local. De acuerdo con la representación gráfica, definir los errores de truncamiento global y local, así como el factor de amplificación Páq 37 Figura6 (1 ptos)
- Deducir el factor de amplificación analíticamente (sin usar el método de la ec. de prueba).
 (1 pto) Pág 39 entera
 - 3) Deduce analíticamente (sin utilizar la ecuación de prueba) el orden de precisión del método. (0.5 pto) Pág 37 punto 2.4.2.1 ??

Para su integración numérica con el método de Euler Regresivo,

3) Escribe la fórmula del método y muestra gráficamente el avance en un paso, indicando el carácter implícito del método. Pág 46 (0.5 pto)

Para su integración numérica con el método de Euler Mejorado,

4) Escribe la fórmula del método y muestra gráficamente el avance en un paso, indicando el carácter explícito del método. Pág 55 (0.5 pto)

Para su integración numérica con cualquier método de resolución,

5) Justificar cuando y por qué se puede obtener el factor de amplificación mediante el método de la ecuación de prueba. Pág 45 (1 pto)

Para su integración numérica con el método de Euler Regresivo,

6)Calcular el factor de amplificación mediante el método de la ecuación de prueba y, a partir de él, calcular el intervalo de estabilidad y su orden de precisión. Pág 50 (1 pto)

EJERCICIO 2 (2.5 puntos y aprox. 25m)

Para la EDO: y'' + y' + 5y = 2sen(t) con CI: y(0) = 0, y'(0) = 5, se pide:

- 1) Obtener el sistema de EDOs de orden 1 equivalente y analizar si es estable o inestable.(0.25 ptos)
- 2) Tamaño de paso umbral de estabilidad absoluta del **método de Euler** . (0.75 ptos)
- 3) Con 2 pasos del **método de Euler**, obtener el valor aproximado de y(1). (0.75 ptos)
- 4) Con 1 pasos del **método RK2**, obtener el valor aproximado de y(1). (0.75 ptos)

EJERCICIO 3 (2.5 puntos y aprox. 25 min):

1)Muy brevemente: ¿qué relación existe entre el método Euler Regresivo y el método PE(CE)2 de orden 1? Indica las similitudes y diferencias en algoritmos, estabilidad y orden de precisión.

(0.75 ptos)

- 2)Elegir de entre ambos métodos el más sencillo para resolver: $y' = -y^3$ con y(0) = 1 y calcular el primer paso con h = 0.1. (1 ptos)
- 3)Elegir de entre ambos métodos el más sencillo para resolver: y' = -3y con y(0) = 1 y calcular lo dos primeros pasos con h = 0.1. (0.75 ptos)

$$\begin{bmatrix}
\mathbf{Nota:} \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}
\end{bmatrix}$$