E/S Paralelo (análogo para PB, PC, PE, PF, PG, PH)

PORTA - Port A Data Register

Bit	7	6	5	4	3	2	1	0	_
0x02 (0x22)	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	PORTA
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

DDRA - Port A Data Direction Register

Bit	7	6	5	4	3	2	1	0	
0x01 (0x21)	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	DDRA
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

PINA - Port A Input Pins Address

Bit	7	6	5	4	3	2	1	0	
0x00 (0x20)	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	PI
Read/Write	R/W	_							
Initial Value	N/A								

Interrupciones externas INTO-INT7

(Vectores INTOaddr-INT7addr)

EICRA - External Interrupt Control Register A

The External Interrupt Control Register A contains control bits for interrupt sense control.

Bit	7	6	5	4	3	2	1	0	
(0x69)	ISC31	ISC30	ISC21	ISC20	ISC11	ISC10	ISC01	ISC00	EICRA
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

EICRB - External Interrupt Control Register B

Bit	7	6	5	4	3	2	1	0	
(0x6A)	ISC71	ISC70	ISC61	ISC60	ISC51	ISC50	ISC41	ISC40	EICRB
Read/Write	R/W	•							

EIMSK - External Interrupt Mask Register

Bit	7	6	5	4	3	2	1	0	
0x1D (0x3D)	INT7	INT6	INT5	INT4	INT3	INT2	INT1	INT0	EIMSK
Read/Write	R/W	•							
Initial Malus	0					•			

EIFR - External Interrupt Flag Register

Bit	7	6	5	4	3	2	1	0	
0x1C (0x3C)	INTF7	INTF6	INTF5	INTF4	INTF3	INTF2	INTF1	IINTF0	EIFR
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

ISCn1	ISCn0	Description
0	0	The low level of INTn generates an interrupt request.
0	1	Any edge of INTn generates asynchronously an interrupt request.
1	0	The falling edge of INTn generates asynchronously an interrupt request.
1	1	The rising edge of INTn generates asynchronously an interrupt request.

Interrupciones por cambio PCINTO -PCINT23

(Vectores PCINTOaddr-PCINT3addr)

PCICR - Pin Change Interrupt Control Register

Bit	7	6	5	4	3	2	1	0	
(0x68)	-	-	-	-	-	PCIE2	PCIE1	PCIE0	PCICR
Read/Write	R	R	R	R	R	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

PCIFR - Pin Change Interrupt Flag Register

Bit	7	6	5	4	3	2	1	0	_
0x1B (0x3B)	-	-	-	-	-	PCIF2	PCIF1	PCIF0	PCIFR
Read/Write	R	R	R	R	R	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

PCMSK0 - Pin Change Mask Register 0

Bit	7	6	5	4	3	2	1	0	_
(0x6B)	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	PCMSKO
Read/Write	R/W	_							
Initial Value	0	0	0	0	0	0	0	0	

PCMSK1 - Pin Change Mask Register 1

Bit	7	6	5	4	3	2	1	0	_
(0x6C)	PCINT15	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	PCMSK1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_
Initial Value	0	0	0	0	0	0	0	0	

PCMSK2 - Pin Change Mask Register 2

Bit	7	6	5	4	3	2	1	0	
(0x6D)	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	PCMSK2
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

Timer 0 (8 bits) (análogo para Timer 2)

TCCR0A - Timer/Counter Control Register A

Bit	7	6	5	4	3	2	1	0	
0x24 (0x44)	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	TCCR0A
Read/Write	R/W	R/W	R/W	R/W	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

TCCR0B - Timer/Counter Control Register B

Bit	7	6	5	4	3	2	1	0	
0x25 (0x45)	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00	TCCR0B
Read/Write	W	W	R	R	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

OCR0A - Output Compare Register A

Análogo para OCROB

Bit	7	6	5	4	3	2	1	0	
0x27 (0x47)				OCR0	A[7:0]				OCR0A
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Vectores OCIOAaddr, OCIOBaddr, TOIOaddr

TIMSK0 - Timer/Counter Interrupt Mask Register

Bit	7	6	5	4	3	2	1	0	
(0x6E)	-	-	-	-	-	OCIE0B	OCIE0A	TOIE0	TIMSK0
Read/Write	R	R	R	R	R	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

TIFR0 - Timer/Counter 0 Interrupt Flag Register

Bit	7	6	5	4	3	2	1	0	
0x15 (0x35)	-	-	-	-	-	OCF0B	OCF0A	TOV0	TIFR0
Read/Write	R	R	R	R	R	R/W	R/W	R/W	

Timer 0 (8 bits) continuación (análogo para Timer 2)

Preescaler

			-
CS02	CS01	CS00	Description
0	0	0	No clock source (Timer/Counter stopped)
0	0	1	clk _{I/O} /(No prescaling)
0	1	0	clk _{I/O} /8 (From prescaler)
0	1	1	clk _{I/O} /64 (From prescaler)
1	0	0	clk _{I/O} /256 (From prescaler)
1	0	1	clk _{I/O} /1024 (From prescaler)
1	1	0	External clock source on T0 pin. Clock on falling edge.
1	1	1	External clock source on T0 pin. Clock on rising edge.

Compare Output Mode Non PWM

COM0A1	COM0A0	Description
0	0	Normal port operation, OC0A disconnected.
0	1	Toggle OC0A on Compare Match
1	0	Clear OC0A on Compare Match
1	1	Set OC0A on Compare Match

Compare Output Mode Fast PWM

COM0A1	COM0A0	Description
0	0	Normal port operation, OC0A disconnected.
0	1:	WGM02 = 0: Normal Port Operation, OC0A Disconnected. WGM02 = 1: Toggle OC0A on Compare Match.
1	0	Clear OC0A on Compare Match, set OC0A at BOTTOM, (non-inverting mode).
1	1	Set OC0A on Compare Match, clear OC0A at BOTTOM, (inverting mode).

Compare Output Mode Phase Correct PWM

COM0A1	COM0A0	Description
0	0	Normal port operation, OC0A disconnected.
0	1	WGM02 = 0: Normal Port Operation, OC0A Disconnected. WGM02 = 1: Toggle OC0A on Compare Match.
1	0	Clear OC0A on Compare Match when up-counting. Set OC0A on Compare Match when down-counting.
1	1	Set OC0A on Compare Match when up-counting, Clear OC0A on Compare Match when down-counting.

Waveform Generation Mode

Mode	WGM2	WGM1	WGMO	Timer/Counter Mode of Operation	тор	Update of OCRx at	TOV Flag Set on ⁽¹⁾⁽²⁾
0	0	0	0	Normal	0xFF	Immediate	MAX
1	0	0	1	PWM, Phase Correct	0xFF	TOP	воттом
2	0	1	0	стс	OCRA	Immediate	MAX
3	0	1	1	Fast PWM	0xFF	TOP	MAX
4	1	0	0	Reserved	-	-	-
5	1	0	1	PWM, Phase Correct	OCRA	TOP	воттом
6	1	1	0	Reserved	-	-	-
7	1	1	1	Fast PWM	OCRA	воттом	TOP

Δ

Timer 1 (16 bits) (análogo para Timers 3, 4, 5)

TCCR1A - Timer/Counter 1 Control Register A

Bit	7	6	5	4	3	2	1	0	
(0x80)	COM1A1	COM1A0	COM1B1	COM1B0	COM1C1	COM1C0	WGM11	WGM10	TCCR1A
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

TCCR1B - Timer/Counter 1 Control Register B

Bit	7	6	5	4	3	2	1	0	
(0x81)	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	TCCR1B
Read/Write	R/W	R/W	R	R/W	R/W	R/W	RW	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

TCNT1H and TCNT1L - Timer/Counter 1

Bit	7	6	5	4	3	2	1	0	
(0x85)	TCNT1[15:8] T								
(0x84)	TCNT1[7:0]								
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

OCR1AH and OCR1AL - Output Compare Register 1 A Análogo para OCR1B y OCR1C

			_					-	
Bit	7	6	5	4	3	2	1	0	
(0x89)	OCR1A[15:8]							OCR1AH	
(0x88)	OCR1A[7:0]								OCR1AL
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

ICR1H and ICR1L - Input Capture Register 1

Bit	7	6	5	4	3	2	1	0	
(0x87)	ICR1[15:8]								
(0x86)	ICR1[7:0]								
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Vectores ICI1addr, OCI1Aaddr, OCI1Baddr, OCI1Caddr, TOI1addr

TIMSK1 - Timer/Counter 1 Interrupt Mask Register

Bit	7	6	5	4	3	2	1	0	
(0x6F)	-	-	ICIE1	-	OCIE1C	OCIE1B	OCIE1A	TOIE1	TIMSK1
Read/Write	R	R	R/W	R	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

TIFR1 - Timer/Counter1 Interrupt Flag Register

Bit	7	6	5	4	3	2	1	0	_
0x16 (0x36)	-	-	ICF1	-	OCF1C	OCF1B	OCF1A	TOV1	TIFR1
Read/Write	R	R	R/W	R	R/W	R/W	R/W	R/W	-
Initial Value	0	0	0	0	0	0	0	0	5

Timer 1 (16 bits) continuación (análogo para Timers 3, 4, 5)

Preescaler

CSn2	CSn1	CSn0	Description
0	0	0	No clock source. (Timer/Counter stopped)
0	0	1	clk _{IIO} /1 (No prescaling
0	1	0	clk _{i/O} /8 (From prescaler)
0	1	1	clk _{i/O} /64 (From prescaler)
1	0	0	clk _{IO} /256 (From prescaler)
1	0	1	clk _{VO} /1024 (From prescaler)
1	1	0	External clock source on Tn pin. Clock on falling edge
1	1	1	External clock source on Tn pin. Clock on rising edge

Compare Output Mode Non PWM

COM0A1	COM0A0	Description
0	0	Normal port operation, OC0A disconnected.
0	1	WGM02 = 0: Normal Port Operation, OC0A Disconnected. WGM02 = 1: Toggle OC0A on Compare Match.
1	0	Clear OC0A on Compare Match when up-counting. Set OC0A on Compare Match when down-counting.
1	1	Set OC0A on Compare Match when up-counting, Clear OC0A on Compare Match when down-counting.

Compare Output Mode Fast PWM

COM0A1	COM0A0	Description
0	0	Normal port operation, OC0A disconnected.
0	1	WGM02 = 0: Normal Port Operation, OC0A Disconnected. WGM02 = 1: Toggle OC0A on Compare Match.
1	0	Clear OC0A on Compare Match, set OC0A at BOTTOM, (non-inverting mode).
1	ĩ	Set OC0A on Compare Match, clear OC0A at BOTTOM, (inverting mode).

Compare Output Mode Phase Correct PWM

COMnA1 COMnB1 COMnC1	COMnA0 COMnB0 COMnC0	Description
0	0	Normal port operation, OCnA/OCnB/OCnC disconnected.
0	1	WGM13:0 =9 or 11: Toggle OC1A on Compare Match, OC1B and OC1C disconnected (normal port operation). For all other WGM1 settings, normal port operation, OC1A/OC1B/OC1C disconnected.
1	0	Clear OCnA/OCnB/OCnC on compare match when up-counting. Set OCnA/OCnB/OCnC on compare match when downcounting.
1	1	Set OCnA/OCnB/OCnC on compare match when up-counting. Clear OCnA/OCnB/OCnC on compare match when downcounting.

Update of

Timer/Counter

Waveform Generation Mode

Mode	WGMn3	(CTCn)	(PWMn1)	(PWMn0)	Mode of Operation	TOP	OCRnx at	Set on
0	0	0	0	0	Normal	0xFFFF	Immediate	MAX
1	0	0	0	1	PWM, Phase Correct, 8-bit	0x00FF	TOP	BOTTOM
2	0	0	1	0	PWM, Phase Correct, 9-bit	0x01FF	TOP	воттом
3	0	0	1	1	PWM, Phase Correct, 10-bit	0x03FF	TOP	BOTTOM
4	0	1	0	0	стс	OCRnA	Immediate	MAX
5	0	1	0	1	Fast PWM, 8-bit	0x00FF	BOTTOM	TOP
6	0	1	1	0	Fast PWM, 9-bit	0x01FF	воттом	TOP
7	0	1	1	1	Fast PWM, 10-bit	0x03FF	воттом	TOP
8	1	0	0	0	PWM, Phase and Frequency Correct	ICRn	воттом	воттом
9	1	0	0	1	PWM,Phase and Frequency Correct	OCRnA	воттом	воттом
10	1	0	1	0	PWM, Phase Correct	ICRn	TOP	воттом
11	1	0	1	1	PWM, Phase Correct	OCRnA	TOP	воттом
12	1	1	0	0	стс	ICRn	Immediate	MAX
13	1	1	0	1	(Reserved)	-	-	-
14	1	1	1	0	Fast PWM	ICRn	воттом	TOP
15	1	1	1	1	Fast PWM	OCRnA	BOTTOM	TOP

6

Timer 1 (16 bits) continuación (análogo para Timers 3, 4, 5)

Pinout AtMega2560

8

AVR Instruction Set

Т	ransfer
Register	Tunorer
MOV Rt, Rs	Rt ← Rs
MOVW Rt2, Rs2	Rt+1:Rt ← Rs+1:Rs
Inmediate	
LDI Rh, k8	Rh ← k8
SER Rh	Rh ← 0xFF
Direct	D. D. (40)
LDS Rt, k16	Rt ← DM(k16)
STS k16, Rs	DM(k16) ← Rt
Indirect	
LD Rt, Rp	$Rt \leftarrow DM(Rp)$
LD Rt, -Rp	$Rp; Rt \leftarrow DM(Rp)$
LD Rt, Rp+	$Rt \leftarrow DM(Rp); Rp++$
LDD Rt, Ry+k6	$Rt \leftarrow DM(Ry+k6)$
ST Rp, Rs	$DM(Rp) \leftarrow Rs$
ST -Rp, Rs	Rp ; $DM(Rp) \leftarrow Rs$
ST Rp+, Rs	$DM(Rp) \leftarrow Rs; Rp++$
ST Ry+k6, Rs	DM(Ry+k6) ← Rs
Stack	
PUSH Rs	STACK ← Rs
POP Rt	Rs ← STACK
1/0	
IN D4 A	Rt ← IO(A)
IN Rt, A	$IO(A) \leftarrow Rs$
OUT A, Rs	10(A) ← 13
Program Memory	
LPM	$R0 \leftarrow PM(Z)$
LPM Rt, Z	$Rt \leftarrow PM(Z)$
LPM Rt, Z+	$Rt \leftarrow PM(Z); Z++$
ELPM	$R0 \leftarrow PM(RAMPZ:Z)$
ELPM Rt, Z	$Rt \leftarrow PM(RAMPZ:Z)$
ELPM Rt, Z+	$Rt \leftarrow PM(RAMPZ:Z); Z++$
SPM	$PM(Z) \leftarrow R0$
	1

	701011100
	netic / Logic
Arithmetic	D. D. D
ADD Rt, Rs	Rt ← Rt + Rs
ADC Rt, Rs	$Rt \leftarrow Rt + Rs + C$
ADIW Rd, k6	$Rd \leftarrow Rd + k6$
SUB Rt, Rs	Rt ← Rt - Rs
SBC Rt, Rs	Rt ← Rt - Rs - C
SBIW Rd, k6	Rd+1:Rd ← Rd+1:Rd - k6
SUBI Rh, k8	Rh ← Rh - k8
SBCI Rh, k8	Rh ← Rh - k8 - C
INC Rt	Rt ← Rt +1
DEC Rt	Rt ← Rt -1
CP Rt, Rs	Rt - Rs
CPC Rt, Rs	Rt - Rs - C
CPI Rh, k8	Rh - k8
Logic	
AND Rt, Rs	$Rt \leftarrow Rt \cdot Rs$
ANDI Rh, k8	Rh ← Rh • k8
OR Rt, Rs	$Rt \leftarrow Rt v Rs$
ORI Rh, k8	Rh ← Rh v k8
EOR Rt, Rs	Rt ← Rt eor Rs
COM Rt	$Rt \leftarrow not Rt$
NEG Rt	Rt ← -Rt
ROR Rt	Rotate Right
ROL Rt	Rotate Left
LSR Rt	Logic Shift Right
LSL Rt	Logic Shift Left
ASR Rt	Arithmetic Shift Right
SBR Rh, k8	$Rh \leftarrow Rh \ v \ k8$
CBR Rh, k8	$Rh \leftarrow Rh \cdot not k8$
TST Rt	$Rt = 0$? ($Rt \leftarrow Rt \cdot Rt$)
CLR Rt	$Rt \leftarrow 0 (Rt \leftarrow Rt eor Rt)$
	, , , , ,
Multiply	
MUL Rt, Rs	
MULS Rh, Ri	R1:R0 ← Rh * Ri (signed)
MULSU Rm, Rn	R1:R0 ← Rm * Rn (sig/unsig)
	(0.9, 0019)
FMUL Rm, Rn	R1:R0 ← (Rt * Rs) << 1
FMULS Rm, Rn	$R1:R0 \leftarrow (Rh * Ri) << 1$
FMULSU Rm, Rn	$R1:R0 \leftarrow (Rm * Rn) << 1$
FINIOLOU KIII, KII	1X1.1X0 (1XIII 1XII) >> 1

Jump	o / Call / Branch
Jump	
RJMP k12	PC ← PC + k12
IJMP	PC ← Z
EIJMP	PC ← RAMPZ:Z
JMP k22	PC ← k22
Call/Return	
RCALL k12	PC←PC+k12; STACK←PC
ICALL	$PC \leftarrow Z$; STACK $\leftarrow PC$
EICALL	PC←RAMPZ:Z; STACK←PC
CALL k22	PC ← k22; STACK ← PC
RET	PC ← STACK
RETI	PC ← STACK; I ← 1
Branch	
CPSE Rt, Rs	Skip next instr if Rt=Rs
,	
SBRC Rs, b	Skip next instr if Rs(b)=0
SBRS Rs, b	Skip next instr if Rs(b)=1
,	
SBIC A, b	Skip next instr if IO(A)(b)=0
SBIS A, b	Skip next instr if IO(A)(b)=1
,	
BRBC s, k7	Branch if SREG(b)=0
BRBS s, k7	Branch if SREG(b)=1
•	
BRSH k7	Branch if same or higer (unsig)
BRLO k7	Branch if lower (unsig)
BRGE k7	Branch if grater or equal (sig)
BRLT k7	Branch if less than (sig)
BREQ k7	Branch if equal
BRNE k7	Branch if not equal
BRCS k7	Branch if carry set
BRCC k7	Branch if carry clear
BRMI k7	Branch if minus
BRPL k7	Branch if plus
BRHS k7	Branch if half-carry set
BRHC k7	Branch if half-carry clear
BRTS k7	Branch if T set
BRTC k7	Branch if T clear
BRVS k7	Branch if overflow set
BRVC k7	Branch if overflow clear
BRIE k7	Branch if interrupt mask set
BRID k7	Branch if interrupt mask clear

Bit /	Others
Bit Set	
BSET s	SREG(b) ← 1
BCLR s	$SREG(b) \leftarrow 0$
SBI a, b	IO(a)(b) ← 1
CBI a, b	$IO(a)(b) \leftarrow 0$
	$T \leftarrow Rt(b)$
BST Rt, b	$Rt(b) \leftarrow T$
BLD Rt, b	(t(b) ← 1
SEC	C=1
CLC	C=0
SEN	N=1
CLN	N=0
SEZ	Z=1
CLZ	Z=0
SES	S=1 (S = V eor N)
CLS	S=0 (S = V eor N)
	V=1
SEV	• •
CLV	V=0
SET	T=1
CLT	T=0
SEH	H=1
CLH	H=0
SEI	I=1
CLI	I=0
SWAP Rt	$Rt(7:4) \leftrightarrow Rt(3:0)$
MCU Control	
NOP	No operación
BREAK	Break
SLEEP	Sleep
WDR	Watchdog Reset

Register	
Rs, Rt Ordinary Source and Target register R0R31	
Rs2, Rt2 Ordinary Source and Target even register R0, R2, R4R30	
Rh, Ri Source and Target register between R16R31	
Rm, Rn Source and Target register between R16R23	
Rd Twin register R24(R25), R26(R27), R28(R29), R30(R31)	
Rp Pointer register X=R26(R27), Y=R28(R29), Z=R30(R31)	
Ry Pointer register with displacement Y=R28(R29), Z=R30(R31)	

k6 6-Bit-Constant 063	
k7 7-Bit-Constant -64+63	
k8 8-Bit-Constant 0255	
k12 12-Bit-Constante -2048+2047	
k16 16-Bit-Address 065535	
k22 22-Bit-Address 04M	

A Ordinary Port address 0..63

a Lower page port address 0..31

DM() Data memory
PM() Program memory

RAMPZ Segment Register

Instructions in ITALICS are pseudointructions

Bit	
s State Register bit 07	
b Bit position 07	

The AVR instruction set is more orthogonal than most eight-bit microcontrollers, in particular the PIC microcontrollers with which AVR competes today. Arithmetic operations work on registers R0-R31 but not directly on RAM and take one clock cycle, except for multiplication and word-wide addition (ADIW and SBIW) which take two cycles. The mostly-regular instruction set makes programming it using C (or even Pascal) compilers pretty straightforward.

Constant

Port

The data address space consists of the register file, I/O registers, and SRAM. The AVRs have 32 single-byte registers and are classified as 8-bit RISC devices. RAM and I/O space can be accessed only by copying to or from registers. Indirect access (including optional postincrement, predecrement or constant displacement) is possible through registers X, Y, and Z. All accesses to RAM takes two clock cycles. Moving between registers and I/O is one cycle. Moving eight or sixteen bit data between registers or constant to register is also one cycle. Reading program memory (LPM) takes three cycles.

There are two types of conditional branches: skips and jumps to address. Skips (SBxx) test an arbitrary bit in a register or I/O and skip the next instruction if the test was true. Conditional branches (BRxx) can test an ALU flag and jump to specified address.