Algorithmic and Theoretical Foundations of RL

Value Iteration and Policy Iteration

Recap: Bellman Operator and Bellman Optimality Operator

Bellman Operator

Elementwise form:
$$[\mathcal{T}_{\pi}v](s) = \underbrace{\mathbb{E}_{a \sim \pi(\cdot|s)}\mathbb{E}_{s'}}_{\mathbb{E}_{\pi}} [r(s, a, s') + \gamma v(s')]$$

Matrix form: $\mathcal{T}_{\pi} v = r_{\pi} + \gamma P^{\pi} v$

 \mathcal{T}_{π} is a contraction and v_{π} a fixed point of \mathcal{T}_{π} : $\mathcal{T}_{\pi}v_{\pi}=v_{\pi}$.

Bellman Optimality Operator

Elementwise form:
$$[\mathcal{T}v](s) = \max_{a} \mathbb{E}_{s'} \left[r(s, a, s') + \gamma v(s') \right]$$

Matrix form: $\mathcal{T}v = \max_{\pi} \mathcal{T}_{\pi}v = \max_{\pi} \left\{ r_{\pi} + \gamma P^{\pi}v \right\}$

 \mathcal{T} is a contraction and v^* a fixed point of \mathcal{T} : $\mathcal{T}v^* = v^*$.

Table of Contents

Value Iteration

Policy Iteration

Computational Complexity Analysis

Approximate Policy Iteration

Value Iteration

Value Iteration (VI): Solve Bellman optimality equation by fixed point iteration,

$$V_{k+1}(S) \leftarrow \max_{\alpha} \sum_{s' \in \mathcal{S}} P\left(s'|s,\alpha\right) \left(r(s,\alpha,s') + \gamma V_k\left(s'\right)\right),$$

► To retrieve a policy after value iteration:

$$\pi_{k}(a|s) = \begin{cases} 1 & \arg\max_{a} \sum_{s' \in \mathcal{S}} P\left(s'|s,a\right) \left(r(s,a,s') + \gamma v_{k}\left(s'\right)\right) \\ 0 & \text{otherwise.} \end{cases}$$

Convergence of Value Iteration

Theorem 1

Let $\{v_k\}$ be the sequence of value functions produced by value iteration. Then for any $k \geq 0$,

$$\|v_k - v^*\|_{\infty} \le \gamma^k \|v_0 - v^*\|_{\infty}$$
,

which implies that $\lim_{k\to\infty} v_k = v^*$.

- ▶ The per iteration computational cost of value iteration is $O(|S|^2|A|)$.
- ▶ After at most $k = O\left(\frac{\log(1/\varepsilon)}{\log(1/\gamma)}\right)$ iterations, one has $\|\mathbf{v}_k \mathbf{v}^*\|_{\infty} \le \varepsilon$.

We may also write k=0 $\left(\frac{1}{1-\gamma}\log(1/\varepsilon)\right)$, where $\frac{1}{1-\gamma}$ is referred to as the planning horizon that can relate a infinite horizon discounted problem to a finite horizon problem.

Illustrative Example

$$\bigcap_{r=0}^{a_0} S_0 \xrightarrow[r=R]{a_1} S_1 \xrightarrow[r=0]{a_0} S_2 \xrightarrow[r=1]{a_0}$$

▶ three states: $S = \{s_0, s_1, s_2\}$

 \blacktriangleright two actions: $\mathcal{A} = \{a_0, a_1\}$

Each edge is associated with a deterministic transition and a reward.

Suppose we start from $v_0 = 0$. Then

$$\begin{split} v_{k}\left(s_{0}\right) &= r\left(s_{0}, a_{0}, s_{0}\right) + \gamma v_{k-1}\left(s_{0}\right) = \gamma v_{k-1}\left(s_{0}\right) = \gamma^{k} v_{0}\left(s_{0}\right) = 0, \\ v_{k}\left(s_{2}\right) &= r\left(s_{2}, a_{0}, s_{2}\right) + \gamma v_{k-1}\left(s_{2}\right) = 1 + \gamma v_{k-1}\left(s_{2}\right) = \frac{1 - \gamma^{k}}{1 - \gamma} + \gamma^{k} v_{0}\left(s_{2}\right) = \frac{1 - \gamma^{k}}{1 - \gamma}, \\ v_{k}\left(s_{1}\right) &= \max\left\{r\left(s_{1}, a_{0}, s_{2}\right) + \gamma v_{k-1}\left(s_{2}\right), r\left(s_{1}, a_{1}, s_{0}\right) + \gamma v_{k-1}\left(s_{0}\right)\right\} \\ &= \max\left\{\frac{\gamma}{1 - \gamma}\left(1 - \gamma^{k-1}\right), R\right\}. \end{split}$$

Thus (assuming $R < \frac{\gamma}{1-\gamma}$),

$$v^{*}\left(s_{0}\right)=\lim_{k\rightarrow\infty}v_{k}\left(s_{0}\right)=0, v^{*}\left(s_{1}\right)=\lim_{k\rightarrow\infty}v_{k}\left(s_{1}\right)=\frac{\gamma}{1-\gamma}, v^{*}\left(s_{2}\right)=\lim_{k\rightarrow\infty}v_{k}\left(s_{2}\right)=\frac{1}{1-\gamma}.$$

Asynchronous Value Iteration

The state values in VI are updated synchronously. An alternative is **asynchronous value iteration**: Rather than sweeping through all states to create a new value vector, only updates one state (an entry of vector) at a time.

Gauss-Seidel Value Iteration:

$$\begin{aligned} \text{for } \mathbf{s} &= 1, 2, 3, \dots : \\ v\left(\mathbf{s}\right) &\leftarrow \max_{a} \sum_{\mathbf{s}'} p\left(\mathbf{s}'|\mathbf{s}, a\right) \left(r\left(\mathbf{s}, a, \mathbf{s}'\right) + \gamma v\left(\mathbf{s}'\right)\right) \end{aligned}$$

Table of Contents

Value Iteration

Policy Iteration

Computational Complexity Analysis

Approximate Policy Iteration

Policy Iteration

$$\pi_0 \xrightarrow{\mathsf{E}} \mathsf{V}_{\pi_0} \xrightarrow{\mathsf{I}} \pi_1 \xrightarrow{\mathsf{E}} \mathsf{V}_{\pi_1} \xrightarrow{\mathsf{I}} \pi_2 \xrightarrow{\mathsf{E}} \cdots \xrightarrow{\mathsf{I}} \pi^*$$

Policy Iteration (PI) has two ingredients: Given π_0 ,

► Policy Evaluation:

$$V_{\pi_k} = r_{\pi_k} + \gamma P^{\pi_k} V_{\pi_k},$$

▶ Policy Improvement (one-step value iteration):

$$\pi_{k+1}\left(a|s\right) = \begin{cases} 1 & a = \arg\max_{a} \left\{ \underbrace{\sum_{s'} p\left(s'|s,a\right)\left(r\left(s,a,s'\right) + \gamma V_{\pi_{k}}\left(s'\right)\right)}_{q_{\pi_{k}}\left(s,a\right)} \right\} \\ 0 & \text{otherwise.} \end{cases}$$

Note that $\mathcal{T}_{\pi_{k+1}} v_{\pi_k} = \mathcal{T} v_{\pi_k} = r_{\pi_{k+1}} + \gamma P^{\pi_{k+1}} v_{\pi_k}$.

Policy improvement in PI is one-step lookahead plus exploitation of the experience from π_k .

Convergence of Policy Iteration

Theorem 2 (Policy Improvement)

For any policy π , if π' is a deterministic policy such that for every state s,

$$q_{\pi}\left(s,\pi'(s)\right)\geq v_{\pi}(s),$$

then we have $\pi' \geq \pi$.

Corollary 1

For any given initial policy π_0 , policy iteration generates an improving sequence of policies $\{\pi_k\}$, i.e.,

$$V_{\pi_{k+1}}\left(s\right) \geq V_{\pi_{k}}\left(s\right), \forall s \in \mathcal{S}.$$

Proof. It is clear that

$$q_{\pi_k}(s, \pi_{k+1}(s)) = \mathcal{T}_{\pi_{k+1}} v_{\pi_k}(s) = \mathcal{T} v_{\pi_k}(s) \ge \mathcal{T}_{\pi_k} v_{\pi_k}(s) = v_{\pi_k}(s).$$

Here $\pi'(s)$ denotes the action π' chooses.

Convergence of Policy Iteration

Theorem 3

Let $\{\pi_k\}$ be the policy sequence produced by policy iteration. Then for any $k \ge 0$,

$$\|v_{\pi_k} - v^*\|_{\infty} \le \gamma^k \|v_{\pi_0} - v^*\|_{\infty}$$

which implies that $\lim_{k \to \infty} v_{\pi_k} = v^*$.

- ▶ The per iteration computational cost of policy iteration is $O(|\mathcal{S}|^3)$ to evaluate v_{π_k} plus $O(|\mathcal{S}|^2|\mathcal{A}|)$ to produce a new policy.
- ▶ After at most $k = O\left(\frac{\log(1/\varepsilon)}{\log(1/\gamma)}\right)$ iterations, one has $\|v_{\pi_k} v^*\|_{\infty} \le \varepsilon$.

Proof of Theorem 3

First it holds that

$$\begin{aligned} v_{\pi_k} &= r_{\pi} + \gamma P^{\pi_k} v_{\pi_k} \\ &\geq r_{\pi} + \gamma P^{\pi_k} v_{\pi_{k-1}} \\ &= \mathcal{T} v_{\pi_{k-1}} \geq \dots \geq \mathcal{T}^k v_{\pi_0}. \end{aligned}$$

It follows that

$$V^* - V_{\pi_b} \le V^* - \mathcal{T}^k V_{\pi_0} = \mathcal{T}^k (V^* - V_{\pi_0}).$$

The assertion follows immediately by taking infinite norm on both sides.

Illustrative Example

Consider the example in following figure, where each state is associated with three possible actions: a_l , a_0 , a_r (move leftwards, stay unchanged, and move rightwards). The reward is $r_{s_1} = -1$ and $r_{s_2} = 1$. The discount rate is $\gamma = 0.9$.

Assume the initial policy π_0 is given in (a). This policy satisfies $\pi_0(a_l|s_1)=1$ and $\pi_0(a_l|s_2)=1$. This policy is not good because it does not move toward s_2 . We next apply policy iteration algorithm to this setting.

[&]quot;Mathematical Foundation of Reinforcement Learning" by Shiyu Zhao, 2022.

Illustrative Example

► Policy Evaluation:

$$\begin{cases} v_{\pi_0}(s_1) = -1 + \gamma v_{\pi_0}(s_1) \\ v_{\pi_0}(s_2) = -1 + \gamma v_{\pi_0}(s_1) \end{cases} \Rightarrow \begin{cases} v_{\pi_0}(s_1) = -10 \\ v_{\pi_0}(s_2) = -10 \end{cases}$$

Policy Improvement:

$q_{\pi_0}(s,a)$	a_{ℓ}	a_0	ar
S_1	_	-10	-8
S_2	-10	-8	_

Since π_1 choose the action that maximize $q_{\pi_0}(s, a)$, one has (see (b)):

$$\pi_1(a_r|s_1) = 1, \pi_1(a_0|s_2) = 1$$

It is evident that this is an optimal policy.

Table of Contents

Value Iteration

Policy Iteration

Computational Complexity Analysis

Approximate Policy Iteration

$\delta ext{-Optimal Policy and Error Amplification}$

Definition 1 (δ -optimal policy)

A policy π is called δ -optimal policy if

$$v_{\pi} > v^* - \delta \mathbf{1}$$
.

Theorem 4 (Error-Amplification)

For any vector $v \in \mathbb{R}^{|S|}$, let π_v be the greedy policy with respect to v, i.e,

$$\pi_{v}\left(a|s\right) = \begin{cases} 1 & a = \arg\max_{s'} \sum_{s'} p\left(s'|s,a\right)\left(r\left(s,a,s'\right) + \gamma v\left(s'\right)\right) \\ 0 & otherwise. \end{cases}$$

Then
$$v_{\pi_{V}} \geq v^* - \frac{2\gamma}{1-\gamma} \|v - v^*\|_{\infty} \mathbf{1}$$
.

Proof of Theorem 4

A Useful Lemma

Lemma 1

For any policy π and a vector $v \in \mathbb{R}^{|S|}$, there holds

$$v_{\pi} \ge v - \frac{1}{1 - \gamma} \max_{s} \{v(s) - T_{\pi}v(s)\} \mathbf{1}.$$

Proof. Note that $v_{\pi} = \mathcal{T}_{\pi}^{k} v, k \to \infty$. We may first consider $\mathcal{T}_{\pi}^{k} v$,

$$\begin{split} \mathcal{T}_{\pi}^{k} v &= \mathcal{T}_{\pi}^{k-1}(\mathcal{T}_{\pi} v) \geq \mathcal{T}_{\pi}^{k-1} \left(v - \max_{s} \{ v(s) - \mathcal{T}_{\pi} v(s) \} \mathbf{1} \right) \\ &= \mathcal{T}_{\pi}^{k-1} v - \gamma^{k-1} \max_{s} \{ v(s) - \mathcal{T}_{\pi} v(s) \} \mathbf{1} \\ &\geq \cdots \cdots \\ &\geq v - (1 + \cdots + \gamma^{k-1}) \max_{s} \{ v(s) - \mathcal{T}_{\pi} v(s) \} \mathbf{1} \\ &= v - \frac{1 - \gamma^{k}}{1 - \gamma} \max_{s} \{ v(s) - \mathcal{T}_{\pi} v(s) \} \mathbf{1}. \end{split}$$

Taking a limit on both sides yield the result.

Proof

For ease of notation, we simplify π_{v} to π . One has

$$\mathcal{T}_{\pi}\mathsf{V} - \mathcal{T}_{\pi}^{2}\mathsf{V} = \mathsf{r}_{\pi} + \gamma \mathsf{P}^{\pi}\mathsf{V} - \mathsf{r}_{\pi} - \gamma \mathsf{P}^{\pi}(\mathcal{T}_{\pi}\mathsf{V}) = \gamma \mathsf{P}^{\pi}(\mathsf{V} - \mathcal{T}_{\pi}\mathsf{V}).$$

Thus, it follows that

$$\begin{split} \max_{s} \{ \mathcal{T}_{\pi} v(s) - \mathcal{T}_{\pi}^{2} v(s) \} &\leq \gamma \max_{s} \{ P^{\pi} (v - \mathcal{T}_{\pi} v)(s) \} \leq \gamma \max_{s} \{ (v - \mathcal{T}_{\pi} v)(s) \} \\ &= \gamma \max_{s} \{ (v - \mathcal{T} v)(s) \} \leq \gamma (1 + \gamma) \|v - v^{*}\|_{\infty}, \end{split}$$

where the inequality follows from the fact $T_{\pi}v = Tv$ by the definition of π . Thus, the application of Lemma 1 yields that

$$\begin{split} v_{\pi} &\geq \mathcal{T}_{\pi} v - \frac{1}{1 - \gamma} \max_{s} \{ \mathcal{T}_{\pi} v(s) - \mathcal{T}_{\pi}^{2} v(s) \} \mathbf{1} \\ &\geq \mathcal{T} v - \frac{\gamma(1 + \gamma)}{1 - \gamma} \| v - v^{*} \|_{\infty} = \mathcal{T} v - \mathcal{T} v^{*} + v^{*} - \frac{1}{1 - \gamma} \max_{s} \{ \mathcal{T}_{\pi} v(s) - \mathcal{T}_{\pi}^{2} v(s) \} \mathbf{1}, \end{split}$$

from which the assertion follows directly.

δ -Optimal Policy and Error Amplification

Theorem 5 (Q-Error-Amplification)

For any vector $q \in \mathbb{R}^{|S| \times |A|}$, let π_q be the greedy policy with respect to q, i.e.,

$$\pi_{q}\left(a|s\right) = \begin{cases} 1 & a = \arg\max_{a \in \mathcal{A}} q\left(s, a\right) \\ 0 & otherwise. \end{cases}$$

Then
$$v^{\pi_q} \ge v^* - \frac{2}{1-\gamma} \|q - q^*\|_{\infty} \mathbf{1}$$
.

Proof. The theorem can be proved in a pretty straightforward way.

Computational Complexity for δ -Optimal Policy

Theorem 6 (Computational Complexity of Value Iteration)

Fix a target accuracy δ . Then after

$$O\left(\frac{\left|\mathcal{S}\right|^{2}\left|\mathcal{A}\right|}{1-\gamma}\log\left(\frac{1}{\left(1-\gamma\right)\delta}\right)\right)$$

elementary arithmetic operations, value iteration produces a δ -optimal π .

Theorem 7 (Computational Complexity of Policy Iteration)

Fix a target accuracy δ . Then after

$$O\left(\frac{|\mathcal{S}|^3 + |\mathcal{S}|^2 |\mathcal{A}|}{1 - \gamma} \log\left(\frac{1}{\delta}\right)\right)$$

elementary arithmetic operations, policy iteration produces a δ -optimal π .

Computational Complexity for Optimal Policy

Definition 2 (Strongly Polynomial)

An algorithm is strongly polynomial if it is guaranteed to find an optimal policy with computation complexity **only** being polynomial in |S|, |A|, and the planning horizon $\frac{1}{1-\gamma}$.

▶ VI is not strongly polynomial, but PI is strongly polynomial.

VI is Not Strongly Polynomial: Example

$$\bigcap_{r=0}^{a_0} S_0 \stackrel{a_1}{\underset{r=R}{\longleftarrow}} S_1 \stackrel{a_0}{\underset{r=0}{\longrightarrow}} S_2 \stackrel{a_0}{\underset{r=1}{\longleftarrow}}$$

- ▶ three states: $S = \{s_1, s_1, s_3\}$
- ▶ two actions: $A = \{a_0, a_1\}$

Each edge is associated with a deterministic transition and a reward.

Recall that at k-th iteration, if starting from $v_0 = 0$ then one has

$$v_{\text{k}}\left(s_{0}\right)=0, v_{\text{k}}\left(s_{1}\right)=\max\left\{\frac{\gamma}{1-\gamma}\left(1-\gamma^{\text{k}-1}\right), R\right\}, v_{\text{k}}\left(s_{2}\right)=\frac{1-\gamma^{\text{k}}}{1-\gamma}.$$

The greedy policy with respect to v_k at state s_1 satisfies:

$$\pi_{\mathsf{v}_k}\left(\mathsf{s}_1\right) = \begin{cases} a_0 & \text{if } \frac{\gamma}{1-\gamma}\left(1-\gamma^{k-1}\right) > R\\ a_1 & \text{otherwise.} \end{cases}$$

[&]quot;Modified policy iteration algorithms are not strongly polynomial for discounted dynamic programming" by Eugene A. Feinberg, Jefferson Huang and Bruno Scherrer, 2014.

VI is Not Strongly Polynomial: Example

Assume $R<\frac{\gamma}{1-\gamma}$. Then $v^*(s_1)=\frac{\gamma}{1-\gamma}$ and the optimal action at s_1 is a_0 . Thus the greedy policy is optimal only if:

$$\frac{\gamma}{1-\gamma}\left(1-\gamma^{k-1}\right) > R \Leftrightarrow \gamma^{k-1} < 1-R\left(\frac{1-\gamma}{\gamma}\right) \Rightarrow k > 1+\frac{\log\left(1-R\left(\frac{1-\gamma}{\gamma}\right)\right)}{\log\gamma}.$$

Since $k\to\infty$ when $R\to \frac{\gamma}{1-\gamma}$, (nearly) infinite iterations are needed to produce an optimal policy.

Policy Iteration is Strongly Polynomial

Lemma 2

[Strict Progress Lemma] Fix an arbitrary suboptimal policy π_0 and let $\{\pi_k\}$ be the sequence of policies produced by policy iteration. Then there exists a state s_0 such that for any $k \geq \frac{1}{1-\gamma} \log \left(\frac{1}{1-\gamma}\right)$, one has

$$\pi_{k}\left(\mathbf{S}_{0}\right)\neq\pi_{0}\left(\mathbf{S}_{0}\right).$$

The lemma shows that after every k iterations, policy iteration eliminates one action choice at one state until there remains no suboptimal action to be eliminated. This can only be continued for at most $|\mathcal{S}||\mathcal{A}| - |\mathcal{S}|$ times: for every state, at least one action must be optimal.

[&]quot;Improved and generalized upper bounds on the complexity of policy iteration" by Bruno Scherrer, 2016.

Proof of Lemma 2

The first key question is about how to measure the progress of policies. To this end, consider

$$g(\pi',\pi) = \mathcal{T}_{\pi'} \mathsf{v}_{\pi} - \mathsf{v}_{\pi},$$

which can be viewed as advantage of π' relative to π in one-step lookahead. It is worth noting that if $g(\pi',\pi)\geq 0$, then

$$V_{\pi'} - V_{\pi} = (I - \gamma P^{\pi'})^{-1} (r_{\pi'} - (I - \gamma P^{\pi'}) V_{\pi}) = (I - \gamma P^{\pi'})^{-1} g(\pi', \pi) \ge 0.$$

Moreover, it can be shown that π^* is the optimal policy if and only if

$$g(\pi, \pi^*) \leq 0 \quad \forall \ \pi.$$

Thus, we can use $-g(\pi_k, \pi^*)$ to measure the progress of π_k , which is expected to decrease to zero. It is easy to see that if

$$-g(\pi_k, \pi^*)(s) < -g(\pi_0, \pi^*)(s),$$

then $\pi_k(s) \neq \pi_0(s)$.

Proof of Lemma 2 (Cont'd)

Moreover, we have

$$-g(\pi_k,\pi^*) = (I - \gamma P^{\pi_k})(v_{\pi^*} - v_{\pi_k}) = v_{\pi^*} - v_{\pi_k} - \gamma P^{\pi_k}(v_{\pi^*} - v_{\pi_k}) \le v_{\pi^*} - v_{\pi_k}.$$

If follows that

$$||g(\pi_{k}, \pi^{*})||_{\infty} \leq ||v_{\pi_{k}} - v_{\pi^{*}}||_{\infty} \leq \gamma^{k} ||v_{\pi_{0}} - v_{\pi^{*}}||_{\infty}$$

$$= \gamma^{k} ||(I - \gamma P^{\pi_{0}})^{-1} g(\pi_{0}, \pi^{*})||_{\infty}$$

$$\leq \frac{\gamma^{k}}{1 - \gamma} ||g(\pi_{0}, \pi^{*})||_{\infty}$$

Thus, there exists an s such that

$$-g(\pi_k, \pi^*)(s) < -g(\pi_0, \pi^*)(s)$$

for sufficiently large k.

Runtime Bound for Policy Iteration

Theorem 8

Let $\{\pi_k\}$ be the sequence of policies obtained by policy iteration starting from an arbitrary initial policy π_0 . Then, after at most

$$O\left(\frac{|\mathcal{S}||\mathcal{A}| - |\mathcal{S}|}{1 - \gamma}\log\left(\frac{1}{1 - \gamma}\right)\right)$$

iterations, the policy produced by policy iteration is optimal. In particular, policy iteration can compute an optimal policy with at most

$$O\left(\frac{|\mathcal{S}|^4|\mathcal{A}| + |\mathcal{S}|^3|\mathcal{A}|^2}{1 - \gamma}\log\left(\frac{1}{1 - \gamma}\right)\right)$$

arithmetic and logic operations.

Another Strongly Polynomial Approach: Linear Programing (LP)

The linear programming approach is based on an interesting fact: If a vector v satisfies $\mathcal{T}v \leq v$ then $v^* \leq v$. This means that for all $s \in \mathcal{S}$,

$$V^{*}\left(S\right)=\min\left\{ V\left(S\right):\mathcal{T}V\leq V\right\} .$$

Thus v^* is the unique solution of following optimization problem:

$$\min \quad \sum_{s \in \mathcal{S}} V\left(S\right)$$

s.t.
$$\mathcal{T}V(s) = \max_{a \in \mathcal{A}} \sum_{s'} p\left(s'|s,a\right) \left(r\left(s,a,s'\right) + \gamma V\left(s'\right)\right) \le V(s), \ \forall s \in \mathcal{S}.$$

This is further equivalent to LP with |S| unknown variables and $|S| \times |A|$ inequality constraints:

$$\begin{split} & \min \quad \sum_{s \in \mathcal{S}} v\left(s\right) \\ & \text{s.t.} \quad \sum_{s \in \mathcal{S}} p\left(s'|s,a\right) \left(r\left(s,a,s'\right) + \gamma v\left(s'\right)\right) \leq v(s), \ \forall s \in \mathcal{S}, a \in \mathcal{A}. \end{split}$$

[&]quot;The Simplex and Policy-Iteration Methods are Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate" by Yinyu Ye, 2011.

Table of Contents

Value Iteration

Policy Iteration

Computational Complexity Analysis

Approximate Policy Iteration

Truncated Policy Iteration

Truncated policy iteration (TPI) is the same as policy iteration except that it merely runs a finite number of iterations in the policy evaluation step.

▶ Truncated Policy Evaluation: Set $v_{k,0} = v_{k-1}$ and estimate v_{π_k} by applying the following iteration m times:

$$\mathsf{v}_{k,j} = \mathsf{r}_{\pi_k} + \gamma \mathsf{P}^{\pi_k} \mathsf{v}_{k,j-1},$$

where $1 \le j \le m_k$. Set $v_k = v_{k,m_k}$, or equivalently, $v_k = \mathcal{T}_{\pi_k}^{m_k} v_{k-1}$.

► Policy Improvement:

$$\pi_{k+1}\left(a|s\right) = \begin{cases} 1 & a = \operatorname*{max}_{a} \left\{ \sum_{s'} p\left(s'|s,a\right)\left(r\left(s,a,s'\right) + \gamma \mathbf{V_{k}}\left(s'\right)\right) \right\} \\ 0 & \text{otherwise}. \end{cases}$$

Remark 1

If we set $m=\infty$, then $v_k=v_{\pi_k}$ and TPI is exactly PI. On the other hand, if we set m=1, then $v_k=\mathcal{T}v_{k-1}$ and TPI is exactly VI.

Convergence of Truncated Policy Iteration

Theorem 9

For any $m \in \mathbb{N}^+ \cup \{+\infty\}$ in the policy evaluation step and any initial condition v_{-1} (for evaluation of v_{π_0}), the sequence $\{v_k\}, \{\pi_k\}$ produced by truncated policy iteration satisfies:

$$\lim_{k\to\infty} \mathsf{v}_k = \mathsf{v}^*$$
 and $\lim_{k\to\infty} \mathsf{v}_{\pi_k} = \mathsf{v}^*$

Proof of Theorem 9

The goal is to see whether v_{k+1} is comparable with $\mathcal{T}v_k$. Without loss of generality, assume $m_k = m$ for any k. First consider the case $\mathcal{T}v_{-1} \ge v_{-1}$. Then we have

$$\mathcal{T}v_{k+1} = \mathcal{T}(\mathcal{T}^m_{\pi_{k+1}}v_k) \geq \mathcal{T}^{m+1}_{\pi_{k+1}}v_k = \mathcal{T}^m_{\pi_{k+1}}(\mathcal{T}_{\pi_{k+1}}v_k) = \mathcal{T}^m_{\pi_{k+1}}(\mathcal{T}v_k) \geq \mathcal{T}^m_{\pi_{k+1}}v_k = v_{k+1},$$

where the second inequality follows from the induction hypothesis. Moreover,

$$v_{k+1} = \mathcal{T}_{\pi_{k+1}}^m v_k = \mathcal{T}_{\pi_{k+1}}^{m-1}(\mathcal{T}v_k) \ge \mathcal{T}_{\pi_{k+1}}^{m-1} v_k \ge \cdots \ge \mathcal{T}_{\pi_{k+1}} v_k = \mathcal{T}v_k.$$

It follows that $v_{k+1} \geq \mathcal{T}^{k+1}v_{-1}$. In addition, since $\mathcal{T}v_{k+1} \geq v_{k+1}$, one has $v_{k+1} \leq v^*$. Thus, letting $k \to \infty$ yields that $v_k \to v^*$ and $v_{\pi_k} \to v^*$ (use Theorem 4).

When $\mathcal{T}v_{-1} < v_{-1}$, we can add $c \cdot \mathbf{1}$ to v_{-1} such that $\mathcal{T}(v_{-1} + c \cdot \mathbf{1}) \ge v_{-1} + c \cdot \mathbf{1}$ for some c. Moreover, it can be shown that starting from $v_{-1} + c \cdot \mathbf{1}$ yields the same policy as starting from v_{-1} .

Approximate Policy Iteration

Approximate Policy Iteration (API) is an even more general framework than truncated policy iteration, where each policy π_k is evaluated approximately and the new policy π_{k+1} may also be generated by (approximate) policy improvement.

▶ Approximate Policy Evaluation: Given π_k , estimate v_{π_k} by v_k that satisfies

$$\|v_k-v^{\pi_k}\|_\infty\leq \delta.$$

ightharpoonup Approximate Policy Improvement: Produces a polcicy π_{k+1} that satisfies

$$\left\| r_{\pi_{k+1}} + \gamma P^{\pi_{k+1}} \mathsf{v}_k - \mathcal{T} \mathsf{v}_k \right\|_{\infty} \le \varepsilon.$$

Convergence of Approximate Policy Iteration

Theorem 10

Let $\{\pi_k\}$ be the sequence generated by approximate policy iteration. Then we have the following asymptotic result:

$$\limsup_{k\to\infty} \left\| \mathsf{V}_{\pi_k} - \mathsf{V}^* \right\|_\infty \le \frac{\varepsilon + 2\gamma\delta}{(1-\gamma)^2}.$$

[&]quot;Reinforcement Learning and Optimal Control" by Dimitri P. Bertsekas, 2019.

Proof of Theorem 10

We will make use of Lemma 1 in this proof. First note that by the algorithm,

$$\mathcal{T}_{\pi_k} \mathsf{v}_{k-1} \geq \mathcal{T} \mathsf{v}_{k-1} - \varepsilon \mathbf{1} \geq \mathsf{v} \mathbf{1}.$$

Thus,

$$\begin{split} & v_{\pi_{k}} \geq \mathcal{T}_{\pi_{k}} v_{k-1} - \frac{\max_{s} \{\mathcal{T}_{\pi_{k}} v_{k-1}(s) - \mathcal{T}_{\pi_{k}}^{2} v_{k-1}(s)\}}{1 - \gamma} \\ & \geq \mathcal{T}_{\pi_{k}} v_{k-1} - \frac{\gamma}{1 - \gamma} \max_{s} \{v_{k-1}(s) - \mathcal{T}_{\pi_{k}} v_{k-1}(s)\} \\ & \geq \mathcal{T} v_{\pi_{k-1}} - (\gamma \delta + \varepsilon) \mathbf{1} - \frac{\gamma}{1 - \gamma} \max_{s} \{v_{k-1}(s) - \mathcal{T} v_{\pi_{k-1}}(s) + (\gamma \delta + \varepsilon)\} \\ & \geq \mathcal{T} v_{\pi_{k-1}} - \frac{\varepsilon + 2\gamma \delta}{1 - \gamma} \mathbf{1} \\ & \geq \cdots \cdots \\ & \geq \mathcal{T}^{k} v_{\pi_{0}} - \frac{(1 - \gamma^{k})(\varepsilon + 2\gamma \delta)}{1 - \gamma} \mathbf{1}. \end{split}$$

Taking a limit yields the result.

