

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaguan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.com.cn

•	TEST REPORT			
Report No. ····:	GTI20191558E			
FCC ID::	2AJ9K-UT888			
Applicant·····:	UTONG (HK) Commercial Limited			
Address····:	Room 913, 9F, Hollywood Plaza, 610 N Kong	athan Road, Mong Kok, Hong		
Manufacturer·····:	UTONG (HK) Commercial Limited			
Address····:	Room 913, 9F, Hollywood Plaza, 610 N Kong	athan Road, Mong Kok, Hong		
Product Name·····:	Mini Wireless Speaker			
Trade Mark·····:	N/A			
Listed Model(s) ·····:	N/A			
Standard::	FCC CFR Title 47 Part 15 Subpart C Section 15.247 RSS-GEN Issue 5 RSS-247 Issue 2 ANSI C63.10-2013			
Date of receipt of test sample:	2019-06-28			
Date of testing:	2019-06-28 to 2019-07-16			
Date of issue:	2019-07-17			
Result:	PASS			
Compiled by:		Toray T'		
(Printed name+signature)	Torny Fang	Torrey rang		
Supervised by: (Printed name+signature)	Eric Zhang	Torny Fang Biczhang		
Approved by: (Printed name+signature)	Walter Chen Julian Chns			

Testing Laboratory Name.....: CTC Laboratories, Inc.

High-Tech Park, Longhua District, Shenzhen, Guangdong, China

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

			Table of Contents	Fage
1.	TES1	SUMMARY		3
	1.1.	TEST STANDARDS		3
	1.2.			
	1.3.	TEST DESCRIPTION		
	1.4.	TEST FACILITY		5
	1.5.	MEASUREMENT UNCERTAINTY		5
	1.6.	ENVIRONMENTAL CONDITIONS		6
2.	GEN	ERAL INFORMATION		7
	2.1.	CLIENT INFORMATION		
	2.2.	GENERAL DESCRIPTION OF EUT		
	2.3.	OPERATION STATE		8
	2.4.	MEASUREMENT INSTRUMENTS LIST		
3.	TES1	TITEM AND RESULTS		11
	3.1.	CONDUCTED EMISSION		11
	3.2.	RADIATED EMISSION		14
	3.3.	BAND EDGE EMISSIONS		20
	3.4.	CHANNEL SEPARATION AND BANDWIDTH		26
	3.5.	NUMBER OF HOPPING CHANNEL		35
	3.6.			
	3.7.	PEAK OUTPUT POWER		39
	3.8.	ANTENNA REQUIREMENT		44
4.	EUT	TEST PHOTOS		45
5.	РНО	TOGRAPHS OF EUT CONSTRUCTION	AL	46

Page 3 of 46

Report No.: GTI20191558E

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

RSS 247 Issue 2: Standard Specifications for Frequency Hopping Systems (FHSs) and Digital Transmission Systems (DTSs) Operating in the Bands 902-928MHz, 2400-2483.5MHz and 5725-5850MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	2019-07-17	Original

CTC Laboratories, Inc

1.3. Test Description

FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 5					
Test Item	Standard	l Section	Decult	Test Engineer	
rest item	FCC	IC	Result		
Antenna Requirement	15.203	/	Pass	Terry Su	
Conducted Emission	15.207	RSS-GEN 7.2.2	Pass	Terry Su	
Restricted Bands	15.205	RSS-Gen 7.2.3	Pass	Terry Su	
Hopping Channel Separation	15.247(a)(1)	RSS 247 5.1 (2)	Pass	Terry Su	
Dwell Time	15.247(a)(1)	RSS 247 5.1 (4)	Pass	Terry Su	
Peak Output Power	15.247(b)(1)	RSS 247 5.4 (2)	Pass	Terry Su	
Number of Hopping Frequency	15.247(b)(1)	RSS 247 5.1 (4)	Pass	Terry Su	
Band Edge Emissions	15.247(d)	RSS 247 5.5	Pass	Terry Su	
Radiated Spurious Emission	15.247(c)&15.20 9	RSS 247 5.5	Pass	Terry Su	
99% Occupied Bandwidth & 20dB Bandwidth	15.247(a)	RSS 247 5.1 (1)	Pass	Terry Su	

Note: The measurement uncertainty is not included in the test result.

Accreditation Administration of the People's Republic of China: yz.cnca.cn

Address of the report laboratory

CTC Laboratories, Inc.

Add: 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: CN1208

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: 9783A

The 3m alternate test site of CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC-Registration No.: 951311

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	UTONG (HK) Commercial Limited
Address:	Room 913, 9F, Hollywood Plaza, 610 Nathan Road, Mong Kok, Hong Kong
Manufacturer:	UTONG (HK) Commercial Limited
Address:	Room 913, 9F, Hollywood Plaza, 610 Nathan Road, Mong Kok, Hong Kong
Factory	UTONG (HK) Commercial Limited
Address:	Room 913, 9F, Hollywood Plaza, 610 Nathan Road, Mong Kok, Hong Kong

2.2. General Description of EUT

Product Name:	Mini Wireless Speaker	
Model/Type reference:	UT888	
Marketing Name:	N/A	
Listed Model(s):	N/A	
Power supply:	DC 3.7V 300mAh	
Hardware version:	K8122-25B-A10-V1.2	
Software version:	K8122-25B-A10-V1.2	
Bluetooth 2.1+EDR		
Modulation:	GFSK, π/4-DQPSK	
Operation frequency:	2402MHz~2480MHz	
Max Peak Output Power:	-6.79dBm(π/4-DQPSK)	
Channel number:	79	
Channel separation:	1MHz	
Antenna type:	PIFA Antenna	
Antenna gain:	-0.58dBi	

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Page 8 of 46

Report No.: GTI20191558E

2.3. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT EDR, 79 channels are provided to the EUT. Channels 00/39/78 were selected for testing. Operation Frequency List:

Channel	Frequency (MHz)
00	2402
01	2403
i i	:
38	2440
39	2441
40	2442
:	i i
77	2479
78	2480

Note: The display in grey were the channel selected for testing.

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

2.4. Measurement Instruments List

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	LISN	R&S	ENV216	101112	Dec. 28, 2019
2	LISN	R&S	ENV216	101113	Dec. 28, 2019
3	EMI Test Receiver	R&S	ESCI	100920	Dec. 28, 2019
4	ISN CAT6	Schwarzbeck	NTFM 8158	8158-0046	Dec. 28, 2019

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 28 2019
2	Spectrum Analyzer	Rohde & Schwarz	FUV40-N	101331	Dec. 28 2019
3	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 28 2019
4	Signal Generator	Agilent	E8257D	MY46521908	Dec. 28 2019
5	Power Sensor	Agilent	U2021XA	MY5365004	Dec. 28 2019
6	Power Sensor	Agilent	U2021XA	MY5365006	Dec. 28 2019
7	Simultaneous Sampling DAQ	Agilent	U2531A	TW54493510	Dec. 28 2019
8	Climate Chamber	TABAI	PR-4G	A8708055	Dec. 28 2019
9	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	116410	Dec. 28 2019
10	Climate Chamber	ESPEC	MT3065		Dec. 28 2019
11	300328 v2.1.1 test system	TONSCEND	v2.6	1	1

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	EMI Test Receiver	Rohde & Schwarz	ESCI	100658	Dec. 28 2019
2	High pass filter	micro-tranics	HPM50111	142	Dec. 28 2019
3	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4180	Dec. 28 2019
4	Ultra-Broadband Antenna	ShwarzBeck	BBHA9170	25841	Dec. 28 2019
5	Loop Antenna	LAPLAC	RF300	9138	Dec. 28 2019
6	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 28 2019
7	Horn Antenna	Schwarzbeck	BBHA 9120D	647	Dec. 28 2019
	Horn Antenna	Rohde & Schwarz	Sep-60	69483	Dec. 28 2019
8	Pre-Amplifier	HP	8447D	1937A03050	Dec. 28 2019
9	Pre-Amplifier	EMCI	EMC051835	980075	Dec. 28 2019
10	Antenna Mast	UC	UC3000	N/A	N/A
11	Turn Table	UC	UC3000	N/A	N/A
12	Cable Below 1GHz	Schwarzbeck	AK9515E	33155	Dec. 28 2019
13	Cable Above 1GHz	Hubersuhner	SUCOFLEX102	DA1580	Dec. 28 2019

CTC Laboratories, Inc

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Page 10 of 46 Report No.: GTI20191558E

14	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 28 2019
15	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	Dec. 28 2019
16	RF Connection Cable	Chengdu E-Microwave			Dec. 28 2019
17	High pass filter	Compliance Direction systems	BSU-6	34202	Dec. 28 2019
18	Attenuator	Chengdu E-Microwave	EMCAXX-10R NZ-3		Dec. 28 2019

Note:1. The Cal. Interval was one year.

^{2.} The cable loss has calculated in test result which connection between each test instruments.

Page 11 of 46

Report No.: GTI20191558E

3. TEST ITEM AND RESULTS

3.1. Conducted Emission

Limit

Conducted Emission Test Limit

Fraguency	Maximum RF Line Voltage (dBμV)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment.

 The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

CTC Laboratories, Inc

24.7

27.2

50.8

50.0

Please refer to the clause 2.2.

Test Results

Only show worst adapter data.

Emission Level= Read Level+ Correct Factor

26.1

22.8

0.281460

9.068260

5000.00

5000.00

9.000

9.000

Off

Off

L1

10.0

10.1

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.151200	46.8	5000.00	9.000	Off	N	9.5	19.1	65.9
0.153030	45.8	5000.00	9.000	Off	N	9.5	20.0	65.8
0.155800	44.9	5000.00	9.000	Off	N	9.5	20.8	65.7
Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.211090	34.7	5000.00	9.000	Off	N	9.5	18.5	53.2
0.497420	23.3	5000.00	9.000	Off	N	9.4	22.7	46.0
0.497420	20.0		0.000	•				

Emission Level= Read Level+ Correct Factor

Page 14 of 46

Report No.: GTI20191558E

3.2. Radiated Emission

Limit

Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Meters(at 3m)				
(MHz)	Peak	Average			
Above 1000	74	54			

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m).

Test Configuration

Below 30MHz Test Setup

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Below Above 1GHz Test Setup

Above 1GHz Test Setup

Page 16 of 46

Report No.: GTI20191558E

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=3MHz RMS detector for Average value.

Test Mode

Please refer to the clause 2.2.

Test Result

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Only show worse case:GFSK

Emission Level= Read Level+ Correct Factor

中国国家认证认可监督管理委员会

Emission Level= Read Level+ Correct Factor

中国国家认证认可监督管理委员会

Only show worse case: GFSK

No report for the emission which more than 10 dB below the prescribed limit.

Test Mode:	Test Mode: GFSK - 2402MHz								
Frequency (MHz)	Reading (dBuV)	Antenna Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark		
4804	45.92	3.09	49.01	74	-24.99	V	peak		
7206	44.27	5.21	49.48	74	-24.52	V	peak		
4804	46.55	3.09	49.64	74	-24.36	Н	peak		
7206	46.14	5.21	51.35	74	-22.65	Н	peak		

Remark:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Test Mode:	Test Mode: GFSK - 2441MHz								
Frequency (MHz)	Reading (dBuV)	Antenna Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark		
4882	46.51	3.37	49.88	74	-24.12	V	peak		
7323	45.92	5.56	51.48	74	-22.52	V	peak		
4882	44.88	3.37	48.25	74	-25.75	Н	peak		
4882	45.55	3.37	48.92	74	-25.08	V	peak		

Remark:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Test Mode:	Test Mode: GFSK - 2480MHz								
Frequency (MHz)	Reading (dBuV)	Antenna Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark		
4960	45.08	3.44	48.52	74	-25.48	V	peak		
7440	43.74	5.64	49.38	74	-24.62	V	peak		
4960	45.85	3.44	49.29	74	-24.71	Н	peak		
7440	43.79	5.64	49.43	74	-24.57	Н	peak		

Remark:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Page 20 of 46

Report No.: GTI20191558E

3.3. Band Edge Emissions

Limit

Restricted Frequency Band	(dBuV/m)(at 3m)				
(MHz)	Peak	Average			
2310 ~2390	74	54			
2483.5 ~2500	74	54			

Note: All restriction bands have been tested, only the worst case is reported.

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:

RBW=1MHz, VBW=3MHz PEAK detector for Peak value.

RBW=1MHz, VBW=10Hz with PEAK Detector for Average Value.

Test Mode

Please refer to the clause 2.2.

Test Results

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

(1) Radiation Test
Only show worse case:GFSK

EDR			2402M	1Hz			
Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value
2390	54.45	3.28	57.73	74	-16.27	Vertical	Peak
2400	52.63	3.85	56.48	74	-17.52	Vertical	Peak
2390	53.41	3.02	56.43	74	-17.57	Horizontal	Peak
2400	51.02	3.67	54.69	74	-19.31	Horizontal	Peak
2390	45.36	3.28	48.64	54	-5.36	Vertical	Average
2400	43.99	3.85	47.84	54	-6.16	Vertical	Average
2390	43.85	3.02	46.87	54	-7.13	Horizontal	Average
2400	43.25	3.67	46.92	54	-7.08	Horizontal	Average

EDR	EDR 2480MHz						
Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	Test value
2483.5	57.63	3.79	61.42	74	-12.58	Vertical	Peak
2500	50.59	4.09	54.68	74	-19.32	Vertical	Peak
2483.5	50.75	3.65	54.4	74	-19.6	Horizontal	Peak
2500	53.95	3.95	57.9	74	-16.1	Horizontal	Peak
2483.5	41.52	3.79	45.31	54	-8.69	Vertical	Average
2500	40.85	4.09	44.94	54	-9.06	Vertical	Average
2483.5	38.95	3.65	42.6	54	-11.4	Horizontal	Average
2500	41.59	3.95	45.54	54	-8.46	Horizontal	Average

Remark:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

(2) Conducted Test

Accreditation Administration of the People's Republic of China: yz.cnca.cn

中国国家认证认可监督管理委员会

Page 26 of 46

3.4. Channel Separation and Bandwidth

Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5

Report No.: GTI20191558E

Test Configuration

Test Procedure

- The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- Spectrum Setting:
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) ≥ 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

Please refer to the clause 2.2.

Test Results

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Test Mode:	GFSK Mode			
Channel frequer (MHz)	су	99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
2402		923.08	1091.346	727.564
2441		927.88	1091.346	727.564
2480		932.69	1105.769	737.179

GFSK Mode

2402 MHz

品 中国国家认证认可监督管理委员会

Test Mode:	π/4-DQPSK Mode				
Channel frequen (MHz)	су	99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)	
2402		1211.536	1379.808	919.872	
2441		1216.346	1370.192	913.461	
2480		1206.731	1365.385	910.257	

π/4-DQPSK Mode

2402 MHz

Test Mode:	GFSK Hopping Mode				
Channel frequency (MHz)		Separation Read Value (kHz)	Separation Limit (kHz)		
2402		1014.42	727.564		
2441		1000.00	727.564		
2480		1004.80	737.179		
		GFSK Hopping Mode			
		2402 MHz			

5.JUL.2019 11:30:14

Test Mode:	π/4-DQPSK Hopping Mode		
Channel frequency (MHz)		Separation Read Value (kHz)	Separation Limit (kHz)
2402		1322.12	919.872
2441		990.38	913.461
2480		1004.81	910.257

π/4-DQPSK Hopping Mode

2402 MHz

5.JUL.2019 11:45:56 Date:

Page 35 of 46

3.5. Number of Hopping Channel

<u>Limit</u>

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

Report No.: GTI20191558E

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
 - (1) Peak Detector: RBW=100 kHz, VBW≥RBW, Sweep time= Auto.

Test Mode

Please refer to the clause 2.2.

Test Result

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Test Mode: Hopping Mode **Quantity of Hopping Frequency Range Test Mode** Limit Channel **GFSK** 79 2402MHz~2483.5MHz >15 79 π/4-DQPSK **GFSK Mode** * RBW 100 kHz *VBW 300 kHz SWT 10 ms * Att 78.147435897 MHz Offset Start 2.4 GHz 8.35 MHz/ Stop 2.4835 GHz 5.JUL.2019 11:56:05 π/4-DQPSK Mode **%** * RBW 100 kHz Delta 1 [T1] Ref 5 dBm 25 dB SWT 10 ms 78.013621795 MHz Offset 3 dB Marker 1 [T1 through with a fight through the first of the best of the state of the Stop 2.4835 GHz

5.JUL.2019 12:00:24

3.6. Dwell Time

Limit

Section	Test Item	Limit
15.247(a)(1)/ RSS-210 Annex 8(A8.1d)	Average Time of Occupancy	0.4 sec

Test Configuration

Test Procedure

- The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
 - (1) Spectrum Setting: RBW=1MHz, VBW≥RBW.
 - (2) Use video trigger with the trigger level set to enable triggering only on full pulses.
 - (3) Sweep Time is more than once pulse time.
 - (4) Set the center frequency on any frequency would be measure and set the frequency span to zero.
 - (5) Measure the maximum time duration of one single pulse.
 - (6) Set the EUT for packet transmitting.

Test Mode

Please refer to the clause 2.2

Test Result

Modulation	Packet	Dwell time (second)	Limit (second)	Result
GFSK	DH5	0.310	0.40	Pass
π/4DQPSK	2DH5	0.311	0.40	Pass

Note:

- We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.
- 2. Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) × $(1600 \div 6 \div 79)$ ×31.6 Second for DH5, 2-DH5, 3-DH5

Page 38 of 46 Report No.: GTI20191558E

3.7. Peak Output Power

Limit

Test Item	Limit Frequency Range	
Peak Output Power	Hopping Channels>75 Power<1W(30dBm) Other <125mW(21dBm)	2400~2483.5

Report No.: GTI20191558E

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=3 MHz for bandwidth more than 1MHz.

Test Mode

Please refer to the clause 2.2

Test Result

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Test Mode:	GFSK Mo	de			
Channel frequence	cy (MHz)	Test Res	ult (dBm)	L	imit (dBm)
2402		-6.	.92		
2441		-7.06			30
2480		-7.	.51		
		GFSK	Mode		
		2402	MHz		
\$			*RBW 1 MHz *VBW 3 MHz	Marker 1 [T1] -6.92	dBm
Re	ef 5 dBm	* Att 25 dB	SWT 2.5 ms	2.401956731	GHz

5.JUL.2019 10:15:04

Test Mode:	π/4-DQPS	SK Mode		
Channel frequen	cy (MHz)	Test Result (dBm)	Limit (dBm)	
2402		-6.79		
2441		-6.85	21	
2480		-7.31		
4 2024				

π/4-DQPSK Mode

2402 MHz

5.JUL.2019 10:23:43

Page 44 of 46

Report No.: GTI20191558E

3.8. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The EUT's antenna is soldered to the PCB. The gain of the antenna is -0.58dBi. Meet the standards.

Please reference to the annex: Internal Photographs

Please reference to the annex: Test Photo

5.PHOTOGRAPHS OF EUT CONSTRUCTIONAL

Please reference to the annex: External Photographs and Internal Photographs

