Exercices TP d'initiation au LATEX

Pigassou Mathis*

UFR Informatique, Université Toulouse Capitole, France Email: mathis.pigassou@ut-capitole.fr

Abstract—Réponses du premier au dix-huitième exercice du TP d'initiation au LaTeX.

Index Terms-Mathématiques, LATEX

T.

Pour n entier naturel non nul, on pose $u_0 = 0$ et $u_n = u_{n-1} + u_n$

Alors

$$\forall n \le 0, u_n = \frac{n(n+1)}{2}.$$

 Π

La formule de Stirling exprime, pour n grand, que

$$n! \sim C n^n \sqrt{n} \exp -n$$
,

où $C=\sqrt{2\pi}.$ Cette constante peut se calculer en utilisant la formule de Wallis, que l'on trouve grâce aux intégrales éponymes :

$$\forall n \in \mathbb{N}, I_n = \int_0^{\frac{\pi}{2}} (\sin x)^n \, dx.$$

111.

La fonction $\Gamma: \mathbb{R}_+^* \to \mathbb{R}$, définie par

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

et appelée "fonction Gamma (d'Euleur)", généralise la factorielle. En effet, $\forall n \in \mathbb{N}^*, \Gamma(n+1) = n!$. On peut aussi montrer que

$$\Gamma(\frac{1}{2}) = \sqrt{\pi},$$

en se ramenant à l'intégrale de Gauss $I=\int_0^{+\infty} {\rm e}^{-t^2}$ (par changement de variables), cette dernière valant $\frac{\sqrt{\pi}}{2}$ (par exemple en considérant le carré de I et un passage en coordonnées polaires).

IV.

Pour $M \in \mathcal{M}_n(\mathbb{Z})$,

$$M \in GL_n(\mathbb{Z}) \iff \det M = \pm 1.$$

V.

Considérons $\phi, \Sigma, \hbar, \epsilon$ et l des réels et (O, \vec{i}, \vec{j}) un repère orthonormé.

VI

Écrivons le moment magnétique

$$\overrightarrow{\mathcal{M}} = \frac{1}{2} \iiint_{\mathcal{V}} \overrightarrow{OP} \wedge \overrightarrow{j}(P) dr$$
 (\mathcal{V} étant un volume).

VII.

L'exercice 3 peut aider au calcul de l'intégrale de Fresnel

$$\varphi \stackrel{def}{=} \int_0^{+\infty} \exp(ix^2) dx = \frac{\sqrt{\pi}}{2} \exp\left(\frac{i\pi}{4}\right)$$

en montrant, pour α dans]0,1[, que

$$J: \alpha \longmapsto \int_{]0,+\infty[} t^{a-1} e^{it} dt$$

vérifie

$$J(\alpha) = \Gamma(\alpha) e^{i\alpha \frac{\pi}{2}}.$$

VIII.

Si $f \in L^1(\mathbb{R})$ alors sa transformée de Fourier, notée \hat{f} , est continue et vérifie (pour une définition bien choisie)

$$\hat{f}(x) \xrightarrow[x \to \pm \infty]{} 0 \quad et \quad \left\| \frac{\hat{f}}{2\pi} \right\|_{\infty} \le \|f\|_1.$$

Soit $a_1, \ldots, a_k \in \mathbb{N}^*$. Supposons les a_i premiers entre eux dans leur ensemble (pour $i \in \{1, \ldots, k\}$ et notons, pour $n \geq 1$, u_n le nombre de k-uplets $(x_1, \ldots, x_k) \in \mathbb{N}^k$ tels

que
$$\sum_{i=1}^{k} a_i x_i = n$$
.

Alors

$$u_n \underset{+\infty}{\sim} \frac{1}{a_1 a_2 \dots a_k} \frac{n^{k-1}}{(k-1)!}.$$

Pour avoir la valeur d'une intégrale, deux moyens existent :

- Calculer sa valeur exacte. Différents outils peuvent être utilisés, en particulier :
 - la règle des invariants de Bioche :
 - si $-x \leftarrow x$ est un invariant, on utilise $u = \cos x$,
 - si c'est $\pi x \leftarrow x$, on utilise $u = \sin x$,
 - si c'est $\pi + x \leftarrow x$, on utilise $u = \tan x$;
 - le théorème des résidus;
 - l'égalité de Plancherel-Parseval.
- Calculer une valeur approchée. On distingue deux types de méthodes :
 - (a) des méthodes déterministes, contenant :
 - i. les méthodes de Newton-Cotes,
 - ii. les méthodes de Gauss;
 - (b) une méthode probabiliste : la méthode de Monte-Carlo.

À savoir sur les méthodes de quadrature :

Méthode	Ordre
Rectangles à gauche	0
Rectangles à droite	0
Point milieu	1
Trapèzes	1
Simpson	3

XII.

Voici un parallèle entre des méthodes de calcul approché d'intégrales et des shémas de résolution approchée d'équations différentielles ordinaires :

Méthode de quadrature		Schéma EDO
Nom	Ordre	Nom
Rectangles à gauche	0	Euler explicite
Rectangles à droite	0	Euler implicite
Point milieu	1	Euler modifié
Trapèzes	1	Crank-Nicolson
Simpson	3	Runge-Kutta d'ordre 4 (RK4)

XIII.

On a l'identité remarquable, numérotée (1) :

$$\forall a, b \in \mathbb{N}, \quad (a+b)^2 = a^2 + 2ab + b^2.$$
 (1)

XIV

Pour tout $(a_1, \ldots, a_n) \in \mathbb{K}^n$, le déterminant de Vandermonde est

$$V(a_1, \dots, a_n) = \begin{vmatrix} 1 & a_1 & \dots & a_1^{n-1} \\ 1 & a_2 & \dots & a_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & \dots & a_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (a_j - a_i).$$

Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in]0,\frac{\pi}{2}]$ et $\forall n\in\mathbb{N},\,u_{n+1}=\sin(u_n)$. Alors on peut montrer successivement que :

$$\lim_{n \to +\infty} u_n = 0,$$

$$u_n \underset{+\infty}{\sim} \sqrt{\frac{3}{n}},$$

$$u_n \underset{+\infty}{=} \sqrt{\frac{3}{n}} - \underbrace{\frac{3\sqrt{3}}{10} \frac{\ln n}{n\sqrt{n}} + o\left(\frac{\ln n}{n\sqrt{n}}\right)}_{=O\left(\frac{\ln n}{n\sqrt{n}}\right)}.$$

XVI

Soit $f:\mathbb{R}\setminus\{0\} \longrightarrow \mathbb{R}$. On peut prolonger f par continuité en $x \longmapsto \frac{\sin x}{x}$

$$\sin_c \text{ définie par } \sin_c(x) = \begin{cases} f(x) & \text{si } x \in]-\infty, 0[\cup]0, +\infty[\\ 1 & \text{sinon} \end{cases}$$