Chapter 2, Section 7

James Lee

April 23, 2025

1. Let (X, \mathcal{O}_X) be a locally ringed space, and let $f : \mathcal{L} \to \mathcal{M}$ be a surjective map of invertible sheaves on X. Show that f is an isomorphism.

Proof. We reduce to the following algebraic problem: Any A-linear surjective map $\phi: A \to A$ is an isomorphism. Indeed, ϕ is determined by $r = \phi(1)$, and ϕ surjective implies there exists $a \in A$ such that $ar = \phi(a) = 1$. Thus, r is a unit, and ϕ is injective.

- **2.** Let X be a scheme over a field k. Let \mathscr{L} be an invertible sheaf on X, and let $\{s_0, \ldots, s_n\}$ and $\{t_0, \ldots, t_m\}$ be two sets of sections of \mathscr{L} , which generate the same subspace $V \subseteq \Gamma(X, \mathscr{L})$, and which generate the sheaf \mathscr{L} at every point. Suppose $n \leq m$. Show that the corresponding morphisms $\varphi: X \to \mathbb{P}^n_k$ and $\psi: X \to \mathbb{P}^m_k$ differ by a suitable linear projection $\mathbb{P}^m L \to \mathbb{P}^n$ and an automorphism of \mathbb{P}^n , where L is a linear subspace of \mathbb{P}^m of dimension m-n-1.
- **3.** Let $\varphi: \mathbb{P}^n_k \to \mathbb{P}^m_k$ be a morphism. Then:
 - (a) either $\varphi(\mathbb{P}^n) = pt$ or $m \ge n$ and dim $\varphi(\mathbb{P}^n) = n$;
 - (b) in the second case, φ can be obtained as the composition of (1) a *d*-uple embedding $\mathbb{P}^n \to \mathbb{P}^N$ for a uniquely determined $d \geq 1$, (2) a linear projection $\mathbb{P}^N L \to \mathbb{P}^m$, and an automorphism of \mathbb{P}^m . Also, φ has finite fibers.

Proof.

- (a) Let \mathscr{L} be the invertible sheaf on \mathbb{P}^n associated to the morphism $\varphi: \mathbb{P}^n \to \mathbb{P}^m$, which is generated by global sections $s_i = \varphi^*(x_i), \ i = 0, 1, \ldots, m$. Pick $P \in \varphi^{-1}((1, 0, \ldots, 0))$ (we can assume such P always exists by applying an automorphism of \mathbb{P}^m). Identifying $\mathscr{L}_P \cong \mathscr{O}_{P,\mathbb{P}^n}$, we see that $(s_i)_P$ for $i \neq 0$ is not a unit, and they generate the local ring of $\mathscr{O}_{P,\mathbb{P}^n}$. Since \mathbb{P}^n is smooth, the minimal number of generators of the maximal ideal of $\mathscr{O}_{P,\mathbb{P}^n}$ is equal to the dimension n. The sections s_i generate $\mathscr{O}_{P,\mathbb{P}^n}$. Hence, $m \geq n$. Our proof also shows the induced homomorphism of local rings $\varphi_P: \mathscr{O}_{\varphi(P),\mathbb{P}^m} \to \mathscr{O}_{P,\mathbb{P}^n}$ is surjective, which implies $\mathscr{O}_{\varphi(P),\varphi(\mathbb{P}^n)} = \mathscr{O}_{\varphi(P),\mathbb{P}^m} / \ker \varphi_P \cong \mathscr{O}_{P,\mathbb{P}^n}$. Hence, $\varphi(P)$ has dimension n.
- **5.** Establish the following properties of ample and very ample invertible sheaves on a noetherian scheme X. \mathcal{L} , \mathcal{M} will denote invertible sheaves, and for (d), (e) we assume furthermore that X is of finite type over a noetherian ring A.

- (a) If \mathcal{L} is ample and \mathcal{M} is generated by global sections, then $\mathcal{L} \otimes M$ is ample.
- (b) If \mathscr{L} is ample and \mathscr{M} is arbitrary, then $\mathscr{M} \otimes \mathscr{L}^n$ is ample for sufficiently large n.
- (c) If \mathcal{L} , \mathcal{M} are both ample, so is $\mathcal{L} \otimes \mathcal{M}$.
- (d) If \mathscr{L} is very ample and \mathscr{M} is generated by global sections, then $\mathscr{L} \otimes \mathscr{M}$ is very ample.
- (e) If \mathcal{L} is ample, then there is an $n_0 > 0$ such that \mathcal{L}^n is very ample for all $n \geq n_0$.

Proof.

(a) Fix a coherent sheaf \mathscr{F} on X for the remainder of this problem. Let $n \gg 0$ such that $\mathscr{F} \otimes \mathscr{L}^n$ is generated by global sections. If \mathscr{M} is generated by global sections, then so is \mathscr{M}^n for any n > 0. More generally, the tensor product of two invertible sheaves generated by global sections is generated by global sections. Indeed, if t_i and r_j are generating global sections of \mathscr{L} and \mathscr{M} , then $\mathscr{L} \otimes \mathscr{M}$ is generated by $t_i \otimes r_j$ for all pairs (i,j) (tensor products commutes with colimits). hus, $\mathscr{F} \otimes \mathscr{L}^n \otimes \mathscr{M}^n \cong \mathscr{F} \otimes (\mathscr{L} \otimes \mathscr{M})^n$ is generated by global sections. Hence, $\mathscr{L} \otimes \mathscr{M}$ is ample.

- (b) Let n > 0 such that $\mathcal{M} \otimes \mathcal{L}^{n-1}$ is generated by global sections. By (a), $\mathcal{L} \otimes (\mathcal{M} \otimes \mathcal{L}^{n-1}) = \mathcal{M} \otimes \mathcal{L}^n$ is ample.
- (c) If \mathcal{M} is ample, then \mathcal{M}^n is generated by global sections for large enough n. Also, \mathcal{L}^n is ample by (II, 7.5), so $\mathcal{L}^n \otimes \mathcal{M}^n$ is ample. Hence, $\mathcal{L} \otimes \mathcal{M}$ is ample by (II, 7.5) again.
- (d) Let $i: X \to \mathbb{P}_A^n$ be an immersion such that $\mathscr{L} \cong i^*\mathscr{O}_{\mathbb{P}_A^n}(1)$, and let $\varphi: X \to \mathbb{P}_A^m$ be the unique A-morphism corresponding to \mathscr{M} (II, 7.1). By the universal property of the fiber project $\mathbb{P}_A^n \times_A \mathbb{P}_A^m$, there exists a unique A-morphism $\phi: X \to \mathbb{P}_A^n \times_A \mathbb{P}_A^m$ such that $i = p_n \circ \phi$ and $\varphi = p_m \circ \phi$, where $p_n: \mathbb{P}_A^n \times_A \mathbb{P}_A^m \to \mathbb{P}_A^n$ and $p_m: \mathbb{P}_A^n \times_A \mathbb{P}_A^m \to \mathbb{P}_A^n$ are the natural projection maps. It is not hard to see ϕ is an immersion, and composing it with a Segre embedding (Ex. 5.12), we obtain an immersion $\phi': X \to \mathbb{P}_A^N$, where N = nm + n + m, such that $\mathscr{L} \otimes \mathscr{M} \cong \phi'^*\mathscr{O}(1)$.
- (e) If \mathscr{L} is ample, then there exists $n_0 > 0$ such that \mathscr{L}^{n-1} is generated by global sections for all $n \geq n_0$. By (d), $\mathscr{L}^n = \mathscr{L} \otimes \mathscr{L}^{n-1}$ is very ample for all $n \geq n_0$.