Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 606 046 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 08.10.1997 Bulletin 1997/41

(21) Application number: 93810896.6

(22) Date of filing: 21.12.1993

(51) Int. Cl.⁶: **C07D 213/42**, C07C 311/29, C07D 317/62, C07D 317/58, C07D 405/14, C07D 277/28, C07D 215/12, C07D 277/06, C07D 207/48, C07D 277/30, A61K 31/44, A61K 31/18

(54) Arylsulfonamido-substituted hydroxamic acids

Arylsulfonamido-substituierte Hydroxamsäure Derivate Arylsulfonamido-substitués dérivés d'acides hydroxamic

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT
SE

(30) Priority: 06.01.1993 US 1136

(43) Date of publication of application: 13.07.1994 Bulletin 1994/28

(73) Proprietor: Novartis AG 4058 Basel (CH)

(72) Inventors:

 MacPherson, Lawrence J... Hampton, NJ 08827 (US)

 Parker, David Thomas Livingston, NJ 07039 (US) (56) References cited: EP-A- 0 236 872 US-A- 4 885 027

WO-A-90/05719

CHEMICAL ABSTRACTS, vol. 59, no. 4, 19
 August 1963, Columbus, Ohio, US; abstract no. 3824b, 'N-Arylglycine chemotherapeutics' column 3824; & YAKUGAKU ZASSHI vol. 83, 1963 pages 130 - 134 KAORU KONDO ET AL

 TRENDS BIOTECHNOL. vol. 10, no. 6, 1992, UK pages 200 - 207 A.J.P.DOCHERTY ET AL 'The matrix metalloproteinases and their natural inhibitors: prospects for treating degenerative tissue disease'

CHEMICAL ABSTRACTS, vol. 59, no. 4, 19
 August 1963, Columbus, Ohio, US; abstract no.
 3824b, 'N-Arylglycine chemotherapeutics'
 column 3824; compound Acetohydroxamic
 acid,2-[N-(p-methoxyphenyl)benzenesulfonamido]- & YAKUGAKU ZASSHI vol. 83, 1963
 pages 130-134 KAORU KONDO ET AL

EP 0 606 046 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

10

15

20

30

35

45

50

55

In Chem. Abstr. 59 (1963) 3824b, certain arylsulfonamido-substituted hydroxamic acids are disclosed as chemotherapeutics. In US patent 4 885 027, certain arylmethylenesulfonamido-substituted hydroxamic acids having herbicidal activity are disclosed. In Trends Biotechnol. 10 (1992) 200-207, matrix metalloproteinases and their inhibitors are reviewed. In both WO-A-90/05719 and EP-A-236 872, certain hydroxamic acids and hydroxylamine derivatives respectively having collagenase inhibitory activity are disclosed.

The present invention relates to the compounds of formula I

(a) wherein

Ar is carbocyclic or heterocyclic aryl;

R is hydrogen, lower alkyl, carbocyclic aryl-lower alkyl, carbocyclic aryl, heterocyclic aryl, biaryl-lower alkyl, heterocyclic aryl-lower alkyl, mono- or poly-halo-lower alkyl, C_3 - C_7 -cycloalkyl, C_3 - C_7 -cycloalkyl-lower alkyl, (oxa or thia)- C_3 - C_6 -cycloalkyl, [(oxa or thia)- C_3 - C_6 -cycloalkyl, lower alkyl, hydroxy-lower alkyl, acyloxy-lower alkyl, lower alkyl, lower alkyl, lower alkyl, lower alkyl, lower alkyl, (mino, mono- or di-lower alkylamino)-lower alkyl, acylomino-lower alkyl, (N-lower alkyl-piperazino or N-carbocyclic or heterocyclic aryl-lower alkylpiperazino)-lower alkyl, or (morpholino, thiomorpholino, piperidino, piperidyl) or N-lower alkylpiperidyl)-lower alkyl;

 R_1 is hydrogen, lower alkyl, carbocyclic aryl-lower alkyl, carbocyclic aryl, heterocyclic aryl, biaryl-lower alkyl, heterocyclic aryl-lower alkyl, mono- or poly-halo-lower alkyl, C_3 - C_7 -cycloalkyl, C_3 - C_7 -cycloalkyl-lower alkyl, hydroxy-lower alkyl, acyloxy-lower alkyl, lower alkoxy-lower alkyl, (carbocyclic or heterocyclic aryl)-lower alkyl, lower alkyl-giperazino or sulfinyl or sulfonyl)-lower alkyl, (amino, mono- or di-lower alkylamino)-lower alkyl, (N-lower alkyl-piperazino or N-carbocyclic or heterocyclic aryl-lower alkylpiperazino)-lower alkyl, (morpholino, thiomorpholino, piperidino, piperidyl or N-lower alkylpiperidyl)-lower alkyl, acylamino-lower alkyl, piperidyl or N-lower alkylpiperidyl;

R₂ is hydrogen or lower alkyl;

(b) or wherein R and R_1 together with the chain to which they are attached form a 1,2,3,4-tetrahydro-isoquinoline, piperidine, oxazolidine, thiazolidine or pyrrolidine ring, each unsubstituted or substituted by lower alkyl; and Ar and R_2 have meaning as defined under (a);

(c) or wherein R_1 and R_2 together with the carbon atom to which they are attached form a ring system selected from C_3 - C_7 -cycloalkane which is unsubstituted or substituted by lower alkyl; oxa-cyclohexane, thia-cyclohexane, indane, tetralin, piperidine or piperidine substituted on nitrogen by acyl, lower alkyl, carbocyclic or heterocyclic aryl-lower alkyl, (carboxy, esterified or amidated carboxy)-lower alkyl or by lower alkylsulfonyl; and Ar and R have meaning as defined under (a);

wherein the term "carbocyclic aryl" means phenyl; phenyl that is mono-, di- or tri-substituted by one, two or three radicals selected from lower alkyl, lower alkoxy, hydroxy, halogen, cyano, trifluoromethyl, lower alkylenedioxy and oxy-C₂-C₃-alkylene; or 1- or 2-naphthyl;

wherein the term "heterocyclic aryl" means pyridyl, quinolinyl, isoquinolinyl, benzothienyl, benzofuranyl, benzofuranyl, benzofuranyl, benzofuranyl, benzofuranyl, furanyl, pyrrolyl, thiazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, thienyl, or any said radical substituted by lower alkyl or halogen;

wherein the term "lower" refers to organic radicals with up to and including 7 carbon atoms;

or a pharmaceutically acceptable prodrug derivative thereof selected from such hydroxamic acids in which the

CONHOH group is derivatized in form of an O-acyl or an O-benzyl derivative, in which O-benzyl derivative the benzyl group is unsubstituted or mono-, di- or tri-substituted by substituents selected from lower alkyl, lower alkoxy, amino, nitro, halogen and trifluoromethyl;

and pharmaceutically acceptable salts thereof;

5

10

15

20

25

30

35

45

50

further to a process for the preparation of these compounds, to pharmaceutical compositions comprising these compounds, to the use of these compounds for the therapeutic treatment of the human or animal body or for the manufacture of a pharmaceutical composition.

The compounds of formula I defined under (b) above can be represented by formula la

wherein X represents methylene or 1,2-ethylene each unsubstituted or substituted by lower alkyl, or X represents oxygen, sulfur, or 1,2-phenylene; and Ar and R₂ have meaning as defined above.

The compounds of formula I defined under (c) above can be represented by formula Ib

wherein Y is a direct bond, C₁-C₄-straight chain alkylene optionally substituted by lower alkyl, CH₂OCH₂, CH₂SCH₂, 1,2-phenylene, CH₂-1,2-phenylene or CH₂N(R₆)-CH₂ in which R₆ represents hydrogen, lower alkanoyl, di-lower alkylamino-lower alkanoyl, aroyl, carbocyclic aryl-lower alkanoyl, lower alkyl, carbocyclic or heterocylic aryl-lower alkyl, (carboxy, esterified or amidated carboxy)-lower alkyl or lower alkylsulfonyl; and Ar and R have meaning as defined above.

A preferred embodiment of the compounds of formula lb relates to the compounds of formula lc

$$\begin{array}{c|c}
 & & & R \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

in which Y' represents oxygen, sulfur, a direct bond, methylene or methylene substituted by lower alkyl, or NR₆; R₆ represents hydrogen, lower alkanoyl, di-lower alkylamino-lower alkanoyl, carbocyclic aryl-lower alkanoyl, lower alkyl, carbocyclic or heterocyclic aryl-lower alkyl, (carboxy, esterified or amidated carboxy)-lower alkyl or lower alkylsulfonyl; Ar and R have meaning as defined above; pharmaceutically acceptable prodrug derivatives; and pharmaceutically acceptable salts thereof.

Preferred are said compounds of formula I, Ia, Ib and Ic wherein Ar is monocyclic carbocyclic aryl such as phenyl

or phenyl mono-, di- or tri-substituted by C_1 - C_{10} -alkoxy, hydroxy, carbocyclic or heterocyclic aryl-lower alkoxy, C_3 - C_7 -cycloalkyl-lower alkyl, carbocyclic or heterocyclic aryl-lower alkyl or C_3 - C_7 -cycloalkyl-lower alkyl)-thio, lower alkyloxy-lower alkoxy, halogen, lower alkyl, cyano, nitro, trifluoromethyl, lower alkyl-(sulfinyl or sulfonyl), amino or mono- or di-lower alkylamino; or Ar is phenyl substituted on adjacent carbon atoms by C_1 - C_2 -alkylenedioxy or oxy- C_2 - C_3 -alkylene; or Ar is heterocyclic monocyclic aryl such as thienyl or thienyl substituted by lower alkyl; the other symbols have meaning as defined; pharmaceutically acceptable prodrug derivatives thereof; and pharmaceutically acceptable salts thereof.

Further preferred are the compounds of formula I wherein Ar is phenyl which is unsubstituted or mono-, di- or trisubstituted by C_1 - C_{10} -alkoxy, hydroxy; by phenyl-lower alkoxy wherein phenyl is unsubstituted or substituted by lower alkyl, lower alkoxy, halogen or trifluoromethyl; by heterocyclic aryl-lower alkoxy wherein heterocyclic aryl is selected from pyridyl, tetrazolyl, triazolyl, thiazolyl, thienyl, imidazolyl and quinolinyl, each unsubstituted or mono- or disubstituted by lower alkyl or halogen; by C_3 - C_7 -cycloalkyl-lower alkoxy, (lower alkyl, phenyl-lower alkyl or C_3 - C_7 -cycloalkyl-lower alkyl)-thio, lower alkyloxy-lower alkoxy, halogen, lower alkyl, cyano, nitro, trifluoromethyl, lower alkyl-(sulfinyl or sulfonyl), amino, mono- or di-lower alkylamino or, on adjacent carbon atoms, by C_1 - C_2 -alkylenedioxy or oxy- C_2 - C_3 -alkylene; or Ar is thienyl, isoxazolyl or thiazolyl each of which is unsubstituted or mono- or di-substituted by lower alkyl;

R is hydrogen, lower alkyl, phenyl-lower alkyl wherein phenyl is unsubstituted or substituted by lower alkyl, lower alkoxy, halogen or trifluoromethyl; phenyl which is unsubstituted or mono-, di- or tri-substituted by lower alkoxy, hydroxy, halogen, lower alkyl, cyano, nitro, trifluoromethyl, lower alkyl-(thio, sulfinyl or sulfonyl), amino, mono- or di-lower alkylamino or, on adjacent carbon atoms, by C₁-C₂-alkylenedioxy or oxy-C₂-C₃-alkylene; or a heterocyclic aryl radical selected from pyridyl, tetrazolyl, triazolyl, thiazolyl, thiazolyl, imidazolyl and quinolinyl, each unsubstituted or mono- or disubstituted by lower alkyl or halogen; biphenylyl which is unsubstituted or substituted by lower alkoxy, halogen, trifluormethyl or cyano; biphenylyl-lower alkyl wherein biphenylyl is unsubstituted or substituted by lower alkyl, lower alkoxy, halogen, trifluormethyl or cyano; (pyridyl, thienyl, quinolinyl or thiazolyl)-lower alkyl, trifluormethyl, C₃-C₇-cycloalkyl, C₃-C₇-cycloalkyl-lower alkyl, (oxa or thia)-C₃-C₆-cycloalkyl, [(oxa or thia)-C₃-C₆-cycloalkyl, hydroxy-lower alkyl, lower alkyl, piperazino or N-phenyl-lower alkylpiperazino)-lower alkyl or (morpholino, thiomorpholino, piperidino, piperidino, piperidyl) or N-lower alkylpiperidyl)-lower alkyl;

R₁ is hydrogen, lower alkyl; phenyl-lower alkyl wherein phenyl is unsubstituted or substituted by lower alkyl, lower alkoxy, halogen, trifluoromethyl or, on adjacent carbon atoms, by C₁-C₂-alkylenedioxy or oxy-C₂-C₃-alkylene; phenyl which is unsubstituted or substituted by lower alkyl, lower alkoxy, halogen or trifluoromethyl; pyridyl, thienyl, biphenylyl-lower alkyl; heterocyclic aryl-lower alkyl wherein heterocyclic aryl is selected from thiazolyl, pyrazolyl, pyridyl, imidazolyl and tetrazolyl each unsubstituted or substituted by lower alkyl; trifluoromethyl, C₃-C₇-cycloalkyl-lower alkyl, hydroxy-lower alkyl, lower alkanoyloxy-lower alkyl, lower alkyl, (phenyl or pyridyl)-lower alkoxy-lower alkyl, lower alkyl-(thio, sulfinyl or sulfonyl)-lower alkyl, (amino, mono- or dilower alkylamino)-lower alkyl, (N-lower alkyl-piperazino or N-phenyl-lower alkylpiperazino)-lower alkyl, (morpholino, thiomorpholino, piperidino, pyrrolidino, piperidyl or N-lower alkylpiperidyl)-lower alkylpiperazino, morpholino, thiomorpholino, piperidino, pyrrolidino or N-alkylpiperidyl)-lower alkyl; piperidyl or N-lower alkylpiperidyl; R₂ is hydrogen or lower alkyl;

(b) or wherein R and R_1 together with the chain to which they are attached form a 1,2,3,4-tetrahydro-isoquinoline, piperidine, oxazolidine, thiazolidine or pyrrolidine ring, each unsubstituted or mono- or di-substituted by lower alkyl; and Ar and R_2 have meaning as defined under (a);

(c) or wherein R₁ and R₂ together with the carbon atom to which they are attached form a ring system selected from C₃-C₇-cycloalkane which is unsubstituted or substituted by lower alkyl; oxa-cyclohexane, thia-cyclohexane, indane, tetralin and piperidine which is unsubstituted or substituted on nitrogen by lower alkanoyl, di-lower alkylamino-lower alkanoyl, lower alkoxycarbonyl, (morpholino, thiomorpholino or piperidino)-carbonyl, lower alkyl, (phenyl or pyridyl)-lower alkyl, (carboxy, lower alkoxycarbonyl, benzyloxycarbonyl, aminocarbonyl or mono- or di-lower alkylaminocarbonyl)-lower alkyl or by lower alkylsulfonyl; and Ar and R have meaning as defined under (a);

wherein the term "lower" refers to organic radicals with up to and including 7 carbon atoms;

or a pharmaceutically acceptable prodrug derivative thereof selected from such hydroxamic acids in which the CONHOH group is derivatized in form of an O-acyl or an O-benzyl derivative, in which O-benzyl derivative the benzyl group is unsubstituted or mono-, di- or tri-substituted by substituents selected from lower alkyl, lower alkoxy, amino, nitro, halogen and trifluoromethyl;

or a pharmaceutically acceptable salt thereof.

25

30

35

45

55

Especially preferred are the compounds of formula I wherein Ar is phenyl which is unsubstituted or mono-, di- or trisubstituted by C₁-C₇-alkoxy, hydroxy, phenyl-lower alkoxy, C₃-C₇-cycloalkyl-lower alkoxy, lower alkyloxy-lower alkoxy,

halogen, lower alkyl, cyano, nitro, trifluoromethyl, lower alkyl-(sulfinyl or sulfonyl), amino, mono- or di-lower alkylamino or, on adjacent carbon atoms, by C_1 - C_2 -alkylenedioxy or oxy- C_2 - C_3 -alkylene; or Ar is thienyl, isoxazolyl or thiazolyl each of which is unsubstituted or mono- or di-substituted by lower alkyl;

R is hydrogen, lower alkyl, phenyl-lower alkyl; phenyl which is unsubstituted or mono-, di- or tri-substituted by lower alkoxy, hydroxy, halogen, lower alkyl, trifluoromethyl, or, on adjacent carbon atoms, by C_1 - C_2 -alkylenedioxy or oxy- C_2 - C_3 -alkylene; or a heterocyclic aryl radical selected from pyridyl, thiazolyl and quinolinyl, each unsubstituted or mono- or disubstituted by lower alkyl; biphenylyl-lower alkyl; (pyridyl or thienyl)-lower alkyl, trifluormethyl, C_3 - C_7 -cycloalkyl, C_3 - C_7 -cycloalkyl-lower alkyl, (oxa or thia)- C_3 - C_6 -cycloalkyl, [(oxa or thia)- C_3 - C_6 -cycloalkyl-lower alkyl, hydroxy-lower alkyl, (N-lower alkyl-piperazino or N-phenyl-lower alkylpiperazino)-lower alkyl or (morpholino, thiomorpholino, piperidino, pyrrolidino, piperidyl or N-lower alkylpiperidyl)-lower alkyl;

R₁ is hydrogen, lower alkyl; phenyl-lower alkyl wherein phenyl is unsubstituted or substituted by lower alkyl, lower alkoxy, halogen, trifluoromethyl or, on adjacent carbon atoms, by C₁-C₂-alkylenedioxy; biphenylyl-lower alkyl; heterocyclic aryl-lower alkyl wherein heterocyclic aryl is selected from thiazolyl, pyrazolyl, pyridyl, imidazolyl and tetrazolyl each unsubstituted or substituted by lower alkyl; C₃-C₇-cycloalkyl, C₃-C₇-cycloalkyl-lower alkyl, hydroxy-lower alkyl, (phenyl or pyridyl)-lower alkoxy-lower alkyl, lower alkyl-(thio, sulfinyl or sulfonyl)-lower alkyl, (amino, mono- or di-lower alkylamino)-lower alkyl, (N-lower alkyl-piperazino or N-phenyl-lower alkylpiperazino)-lower alkyl, (morpholino, thiomorpholino, piperidino, pyrrolidino, piperidyl or N-lower alkylamino, N-lower alkylpiperazino, morpholino, thiomorpholino, pyrrolidino or N-alkylpiperidyl)-lower alkyl; piperidyl or N-lower alkylpiperidyl; R₂ is hydrogen or lower alkyl;

(b) or wherein R and R_1 together with the chain to which they are attached form a thiazolidine or pyrrolidine ring, each unsubstituted or mono- or di-substituted by lower alkyl; and Ar and R_2 have meaning as defined under (a); (c) or wherein R_1 and R_2 together with the carbon atom to which they are attached form a ring system selected from C_3 - C_7 -cycloalkane which is unsubstituted or substituted by lower alkyl; oxa-cyclohexane, thia-cyclohexane and pip-

C₃-C₇-cycloalkane which is unsubstituted or substituted by lower alkyl; oxa-cyclohexane, thia-cyclohexane and piperidine which is unsubstituted or substituted on nitrogen by lower alkanoyl, di-lower alkylamino-lower alkanoyl, lower alkoxycarbonyl, (morpholino, thiomorpholino or piperidino)-carbonyl, lower alkyl, (phenyl or pyridyl)-lower alkyl, (carboxy, lower alkoxycarbonyl, aminocarbonyl or mono- or di-lower alkylaminocarbonyl)-lower alkyl or by lower alkylsulfonyl; and Ar and R have meaning as defined under (a);

a pharmaceutically acceptable prodrug derivative thereof; or a pharmaceutically acceptable salt thereof.

A particular embodiment of the invention relates to the compounds of formula II

wherein

10

15

20

25

30

35

45

50

55

R is hydrogen, lower alkyl, carbocyclic aryl-lower alkyl, carbocyclic aryl, heterocyclic aryl, biaryl, biaryl-lower alkyl, heterocyclic aryl-lower alkyl, mono- or poly-halo-lower alkyl, C_3 - C_7 -cycloalkyl, C_3 - C_7 -cycloalkyl-lower alkyl, (oxa or thia)- C_3 - C_6 -cycloalkyl-lower alkyl, hydroxy-lower alkyl, acyloxy-lower alkyl, lower alkyl-(thio, sulfinyl or sulfonyl)-lower alkyl, (amino, mono- or di-lower alkylamino)-lower alkyl, acylamino-lower alkyl-piperazino or N-carbocyclic or heterocyclic aryl-lower alkylpiperazino)-lower alkyl, or (morpholino, thiomorpholino, piperidino, pyrrolidino or N-lower alkylpiperidyl)-lower alkyl;

R₁ is hydrogen, lower alkyl, carbocyclic aryl-lower alkyl, carbocyclic aryl, heterocyclic aryl, biaryl, biaryl-lower alkyl, heterocyclic aryl-lower alkyl, mono- or poly-halo-lower alkyl, C₅-C₇-cycloalkyl, C₅-C₇-cycloalkyl-lower alkyl, hydroxy-lower alkyl, acyloxy-lower alkyl, lower alkyl, lower alkyl, lower alkyl-thio, sulfinyl or sulfonyl)-lower alkyl, (amino, mono- or di-lower alkylamino)-lower alkyl, (N-lower alkyl-piperazino or N-carbocyclic or heterocyclic aryl-lower alkylpiperazino)-lower alkyl, (morpholino, thiomorpholino, piperidino, piperidyl or N-lower alkylpiperidyl)-lower alkyl, piperidyl, N-lower alkylpiperidyl, or acylamino-lower alkyl represented by R₃-CONH-lower alkyl;

R₂ is hydrogen;

10

25

R₃ in R₃-CONH-lower alkyl is lower alkyl, carbocydic or heterocyclic aryl, di-lower alkylamino, N-lower alkylpiperazino, morpholino, thiomorpholino, piperidino, pyrrolidino, N-alkylpiperidyl, or (di-lower alkylamino, N-lower alkylpiperazino, morpholino, thiomorpholino, piperidino, pyrrolidino, pyrrolidino, pyridyl or N-lower alkylpiperidyl)-lower alkyl;

 R_4 is hydrogen, lower alkoxy, hydroxy, carbocyclic or heterocyclic aryl-lower alkoxy, lower alkylthio or carbocyclic or heterocyclic aryl-lower alkylthio, lower alkyloxy-lower alkoxy, halogen, trifluoromethyl, lower alkyl, nitro or cyano;

R₅ is hydrogen, lower alkyl or halogen;

or R_4 and R_5 together on adjacent carbon atoms represent methylenedioxy, ethylenedioxy, oxyethylene or oxypropylene;

wherein the term "carbocyclic aryl" means phenyl; phenyl that is mono-, di- or tri-substituted by one, two or three radicals selected from lower alkyl, lower alkoxy, hydroxy, halogen, cyano, trifluoromethyl, lower alkylenedioxy and oxy-C₂-C₃-alkylene; or 1- or 2-naphthyl;

wherein the term "heterocyclic aryl" means pyridyl, quinolinyl, isoquinolinyl, benzothienyl, benzofuranyl, benzofuranyl, benzofuranyl, benzothiopyranyl, furanyl, pyrrolyl, thiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, thienyl, or any said radical substituted by lower alkyl or halogen;

wherein the term "lower" refers to organic radicals with up to and including 7 carbon atoms;

or a pharmaceutically acceptable prodrug derivative thereof selected from such hydroxamic acids in which the CONHOH group is derivatized in form of an O-acyl or an O-benzyl derivative, in which O-benzyl derivative the benzyl group is unsubstituted or mono-, di- or tri-substituted by substituents selected from lower alkyl, lower alkoxy, amino, nitro, halogen and trifluoromethyl;

or a pharmaceutically acceptable salt thereof.

Another preferred embodiment of the invention relates to the compounds of formula II wherein R and R_1 together with the chain to which they are attached form an 1,2,3,4-tetrahydro-isoquinoline, piperidine, thiazolidine or pyrrolidine ring; and R_2 , R_4 and R_5 have meaning as defined above; pharmaceutically acceptable prodrug derivatives as defined above; and pharmaceutically acceptable salts thereof. Such compounds correspond to compounds of formula la wherein Ar is optionally substituted phenyl as defined above.

Another preferred embodiment of the invention relates to the compounds of formula II wherein R₁ and R₂ together with the carbon atom to which they are attached form a ring system selected from cyclohexane, cyclopentane, oxacy-clohexane, thiacyclohexane, indane, tetralin, piperidine or piperidine substituted on nitrogen by acyl, lower alkyl, carbo-cyclic or heterocyclic aryl-lower alkyl or by lower alkylsulfonyl; and R, R₄ and R₅ have meaning as defined above; pharmaceutically acceptable prodrug derivatives as defined above; and pharmaceutically acceptable salts thereof. Such compounds correspond to compounds of formula Ib wherein Ar is optionally substituted phenyl as defined above.

Particularly preferred are the compounds of formula III

wherein R represents lower alkyl, trifluoromethyl, C_5 - C_7 -cycloalkyl, (oxa or thia)- C_4 - C_5 -cycloalkyl, biaryl, carbocyclic monocyclic aryl or heterocyclic monocyclic aryl; R_1 represents hydrogen, lower alkyl, C_5 - C_7 -cycloalkyl, monocyclic carbocyclic aryl, carbocyclic aryl-lower alkyl, lower alkyl, lower alkyl, lower alkyl, lower alkyl, lower alkyl, lower alkyl-(thio, sulfinyl or sulfonyl)-lower alkyl, di-lower alkylamino-lower alkyl, (N-lower alkylpiperazino, morpholino, thiomorpholino, piperidino or pyrrolidino)-lower alkyl or R_3 -CONH-lower alkyl; R_3 represents lower alkyl, carbocyclic aryl, heterocyclic aryl, di-lower alkylamino, N-lower alkylpiperazino, morpholino, thiomorpholino, piperidino, pyrrolidino, N-alkylpiperidyl, or (di-lower alkylamino, N-lower alkylpiperazino, morpholino, thiomorpholino, piperidino, pyrrolidino or N-alkylpiperidyl)-lower alkyl; R_4 represents lower alkoxy or carbocyclic or heterocyclic aryl-lower alkoxy;

wherein the term "carbocyclic aryl" means phenyl; phenyl that is mono-, di- or tri-substituted by one, two or three radicals selected from lower alkyl, lower alkoxy, hydroxy, halogen, cyano, trifluoromethyl, lower alkylenedioxy and oxy-C2-

C₃-alkylene; or 1- or 2-naphthyl;

wherein the term "carbocyclic monocyclic aryl" means phenyl; phenyl that is mono-, di- or tri-substituted by one, two or three radicals selected from lower alkyl, lower alkoxy, hydroxy, halogen, cyano, trifluoromethyl, lower alkylenedioxy and oxy-C₂-C₃-alkylene;

wherein the term "heterocyclic aryl" means pyridyl, quinolinyl, isoquinolinyl, benzothienyl, benzofuranyl, benzopyranyl, benzothiopyranyl, furanyl, pyrrolyl, thiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, thienyl, or any said radical substituted by lower alkyl or halogen;

wherein the term "heterocyclic monocyclic aryl" means pyridyl, furanyl, pyrrolyl, thiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, thienyl, or any said radical substituted by lower alkyl or halogen;

wherein the term "lower" refers to organic radicals with up to and including 7 carbon atoms;

or a pharmaceutically acceptable prodrug derivative thereof selected from such hydroxamic acids in which the CON-HOH group is derivatized in form of an O-acyl or an O-benzyl derivative, in which O-benzyl derivative the benzyl group is unsubstituted or mono-, di- or tri-substituted by substituents selected from lower alkyl, lower alkoxy, amino, nitro, halogen and trifluoromethyl;

or a pharmaceutically acceptable salt thereof.

Further preferred are compounds of formula III wherein R represents monocyclic carbocyclic aryl or monocyclic heterocyclic aryl; R_1 and R_4 have meaning as defined above; pharmaceutically acceptable prodrug derivatives; and pharmaceutically acceptable salts thereof.

More particularly preferred are said compounds of formula III wherein R represents heterocyclic monocyclic aryl selected from tetrazolyl, triazolyl, thiazolyl, imidazolyl and pyridyl, each unsubstituted or substituted by lower alkyl; or R represents phenyl or phenyl substituted by lower alkyl, lower alkoxy, halogen or trifluoromethyl; R₁ represents lower alkyl, cyclohexyl, or R₃-CONH-lower alkyl wherein R₃ represents (di-lower alkylamino, N-lower alkylpiperazino, morpholino, thiomorpholino, piperidino, pyrrolidino or N-alkylpiperidyl)-lower alkyl; and R₄ represents lower alkoxy or phenyl-lower alkoxy; or a pharmaceutically acceptable prodrug derivative thereof; or a pharmaceutically acceptable salt thereof

A further preferred embodiment relates to said compounds of formula III wherein R represents 2-, 3- or 4-pyridyl or phenyl; R_1 represents C_1 - C_4 -alkyl, cyclohexyl or R_3 -CONH- C_1 - C_4 -alkyl wherein R_3 represents di- C_1 - C_4 -alkylamino- C_1 - C_4 -lower alkyl; and R_4 represents lower alkoxy; or a pharmaceutically acceptable prodrug derivative thereof; or a pharmaceutically acceptable salt thereof.

Particularly preferred are said compounds of formula III wherein R represents 3-pyridyl or 4-pyridyl; R₁ represents isopropyl or cyclohexyl; and R₄ represents lower alkoxy; or a pharmaceutically acceptable prodrug derivative thereof; or a pharmaceutically acceptable salt thereof.

The invention relates especially to the specific compounds described in the examples, pharmaceutically acceptable prodrug derivatives thereof and pharmaceutically acceptable salts thereof, and in particular to the specific compounds described in the examples and pharmaceutically acceptable salts thereof.

Pharmaceutically acceptable prodrug derivatives are those that may be convertible by solvolysis or under physiological conditions to the free hydroxamic acids of the invention and represent such hydroxamic acids in which the CONHOH group is derivatized in form of an O-acyl or an optionally substituted O-benzyl derivative. Preferred are the optionally substituted O-benzyl derivatives.

The compounds of the invention depending on the nature of the substituents, possess one or more asymmetric carbon atoms. The resulting diastereoisomers and enantiomers are encompassed by the instant invention.

Preferred are the compounds of the invention wherein the asymmetric carbon in the above formulae (to which are attached R₁ and/or R₂) corresponds to that of a D-aminoacid precursor and is assigned the (R)-configuration.

The general definitions used herein have the following meaning within the scope of the present invention, unless otherwise specified.

The term "lower" referred to above and hereinafter in connection with organic radicals or compounds respectively defines such as branched or unbranched with up to and including 7, preferably up to and including 4 and advantageously one or two carbon atoms.

A lower alkyl group is branched or unbranched and contains 1 to 7 carbon atoms, preferably 1-4 carbon atoms, and represents for example methyl, ethyl, propyl, butyl, isopropyl or isobutyl.

A lower alkoxy (or alkyloxy) group preferably contains 1-4 carbon atoms, advantageously 1-3 carbon atoms, and represents for example ethoxy, propoxy, isopropoxy, or most advantageously methoxy.

Halogen (halo) preferably represents chloro or fluoro but may also be bromo or iodo.

Mono- or poly-halo-lower alkyl represents lower alkyl preferably substituted by one, two or three halogens, preferably fluoro or chloro, e.g. trifluoromethyl or trifluoroethyl.

Prodrug acyl derivatives are preferably those derived from an organic carbonic acid, an organic carboxylic acid or a carbamic acid.

An acyl derivative which is derived from an organic carboxylic acid is, for example, lower alkanoyl, phenyl-lower alkanoyl or unsubstituted or substituted aroyl, such as benzoyl:

An acyl derivative which is derived from an organic carbonic acid is, for example, alkoxycarbonyl, especially lower alkoxycarbonyl, which is unsubstituted or substituted by carbocyclic or heterocyclic aryl or is cycloalkoxycarbonyl, especially C₃-C₇-cycloalkyloxycarbonyl, which is unsubstituted or substituted by lower alkyl.

An acyl derivative which is derived from a carbamic acid is, for example, amino-carbonyl which is substituted by lower alkyl, carbocyclic or heterocyclic aryl-lower alkylene or lower alkylene interrupted by O or S.

Prodrug optionally substituted O-benzyl derivatives are preferably benzyl or benzyl mono-, di-, or tri-substituted by e.g. lower alkyl, lower alkoxy, amino, nitro, halogen and/or trifluoromethyl.

Carbocyclic aryl represents monocyclic or bicyclic aryl, for example phenyl or phenyl mono-, di- or tri-substituted by one; two or three radicals selected from lower alkyl, lower alkoxy, hydroxy, halogen, cyano, trifluoromethyl, lower alkylenedioxy and $oxy-C_2-C_3$ -alkylene; or 1- or 2-naphthyl. Lower alkylenedioxy is a divalent substituent attached to two adjacent carbon atoms of phenyl, e.g. methylenedioxy or ethylenedioxy. $Oxy-C_2-C_3$ -alkylene is also a divalent substituent attached to two adjacent carbon atoms of phenyl, e.g. oxyethylene or oxypropylene. An example for oxy- C_2-C_3 -alkylene-phenyl is 2,3-dihydrobenzofuran-5-yl.

Preferred as carbocyclic aryl is phenyl or phenyl monosubstituted by lower alkoxy, halogen, lower alkyl or trifluoromethyl, especially phenyl or phenyl monosubstituted by lower alkoxy, halogen or trifluoromethyl, and in particular phenyl.

Heterocyclic aryl represents monocyclic or bicyclic heteroaryl, for example pyridyl, quinolinyl, isoquinolinyl, benzothienyl, benzofuranyl, benzofuranyl, benzothiopyranyl, furanyl, pyrrolyl, thiazolyl, oxazolyl, isoxasolyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, thienyl, or any said radical substituted, especially mono- or di-substituted, by e.g. lower alkyl or halogen. Pyridyl represents 2-, 3- or 4-pyridyl, advantageously 2-or 3-pyridyl. Thienyl represents 2- or 3-thienyl, advantageously 2-thienyl. Quinolinyl represents preferably 2-, 3- or 4-quinolinyl, advantageously 2-quinolinyl. Isoquinolinyl represents preferably 1-, 3- or 4-isoquinolinyl. Benzopyranyl, benzothiopyranyl represent preferably 3-benzopyranyl or 3-benzothiopyranyl, respectively. Thiazolyl represents preferably 2- or 4-thiazolyl, advantageously 4-thiazolyl. Triazolyl is preferably 1-, 2- or 5-(1,2,4-triazolyl). Tetrazolyl is preferably 5-tetrazolyl. Imidazolyl is preferably 4-imidazolyl.

Preferably, heterocyclic aryl is pyridyl, quinolinyl, pyrrolyl, thiazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrrazolyl, imidazolyl, thienyl, or any said radical substituted, especially mono- or di-substituted, by lower alkyl or halogen; and in particular pyridyl.

Biaryl is preferably carbocyclic biaryl, e.g. biphenyl, namely 2, 3 or 4-biphenyl, advantageously 4-biphenyl, each optionally substituted by e.g. lower alkyl, lower alkyl, halogen, trifluoromethyl or cyano.

C₃-C₇-Cycloalkyl represents a saturated cyclic hydrocarbon optionally substituted by lower alkyl which contains 3 to 7 ring carbons and is advantageously cyclopentyl or cyclohexyl optionally substituted by lower alkyl.

(Oxa or thia)- C_3 - C_6 -cycloalkyl represents a saturated cyclic radical wherein 1 or 2, preferably 1, oxygen or sulfur atom(s) and 3-6, preferably 4-5, carbon atoms form a ring, e.g. tetrahydropyranyl, tetrahydrofuranyl, tetrahydrothiopyranyl or tetrahydrothienyl.

Oxa-cyclohexane means tetahydropyran, and thia-cyclohexane means tetrahydrothiopyran.

Carbocyclic aryl-lower alkyl represents preferably straight chain or branched aryl-C₁-C₄-alkyl in which carbocyclic aryl has meaning as defined above, e.g. benzyl or phenyl-(ethyl, propyl or butyl), each unsubstituted or substituted on phenyl ring as defined under carbocyclic aryl above, advantageously optionally substituted benzyl.

Heterocyclic aryl-lower alkyl represents preferably straight chain or branched heterocyclic aryl- C_1 - C_4 -alkyl in which heterocyclic aryl has meaning as defined above, e.g. 2-, 3- or 4-pyridylmethyl or (2-, 3- or 4-pyridyl)-(ethyl, propyl or butyl); or 2-or 3-thienylmethyl or (2- or 3-thienyl)-(ethyl, propyl or butyl); 2-, 3- or 4-quinolinylmethyl or (2-, 3- or 4-quinolinyl)-(ethyl, propyl or butyl); or 2- or 4-thiazolylmethyl or (2- or 4-thiazolyl)-(ethyl, propyl or butyl).

Cycloalkyl-lower alkyl represents e.g. (cyclopentyl- or cyclohexyl)-(methyl or ethyl).

Biaryl-lower alkyl represents e.g. 4-biphenylyl-(methyl or ethyl).

45

Acyl is derived from an organic carboxylic acid, carbonic acid or carbamic acid.

Acyl represents e.g. lower alkanoyl, carbocyclic aryl-lower alkanoyl, lower alkoxycarbonyl, aroyl, di-lower alkylaminocarbonyl or di-lower alkylamino-lower alkanoyl. Preferably, acyl is lower alkanoyl.

Acylamino represents e.g. lower alkanoylamino or lower alkoxycarbonylamino.

Acylamino-lower alkyl in R and R₁ is R₃-CONH-lower alkyl in which R₃ represents e.g. lower alkyl, lower alkoxy, aryl-lower alkyl, aryl-lower alkoxy, carbocyclic or heterocyclic aryl, di-lower alkylamino, N-lower alkylpiperazino, morpholino, thiomorpholino, piperidino, pyrrolidino, N-alkylpiperidyl, or (di-lower alkylamino, N-lower alkylpiperazino, morpholino, thiomorpholino, piperidino, pyrrolidino, pyridyl or N-lower alkylpiperidyl)-lower alkyl.

Lower alkanoyl represents e.g. C₁-C₇-alkanoyl including formyl, and is preferably C₂-C₄-alkanoyl such as acetyl or propionyl.

Aroyl represents e.g. benzoyl or benzoyl mono- or di-substituted by one or two radicals selected from lower alkyl, lower alkoxy, halogen, cyano and trifluoromethyl; or 1- or 2-naphthoyl; and also e.g. pyridylcarbonyl.

Lower alkoxycarbonyl represents preferably C₁-C₄-alkoxycarbonyl, e.g. ethoxycarbonyl.

Lower alkylene represents either straight chain or branched alkylene of 1 to 7 carbon atoms and represents pref-

erably straight chain alkylene of 1 to 4 carbon atoms, e.g. a methylene, ethylene, propylene or butylene chain, or said methylene, ethylene, propylene or butylene chain mono-substituted by C_1 - C_3 -alkyl (advantageously methyl) or disubstituted on the same or different carbon atoms by C_1 - C_3 -alkyl (advantageously methyl), the total number of carbon atoms being up to and including 7.

Esterified carboxyl is for example lower alkoxycarbonyl or benzyloxycarbonyl.

30

Amidated carboxyl is for example aminocarbonyl, mono- or di-lower alkylaminocarbonyl.

Pharmaceutically acceptable salts of the acidic compounds of the invention are salts formed with bases, namely cationic salts such as alkali and alkaline earth metal salts, such as sodium, lithium, potassium, calcium, magnesium, as well as ammonium salts, such as ammonium, trimethyl-ammonium, diethylammonium, and tris-(hydroxymethyl)-methylammonium salts.

Similarly acid addition salts, such as of mineral acids, organic carboxylic and organic sulfonic acids e.g. hydrochloric acid, methanesulfonic acid, maleic acid, are also possible provided a basic group, such as pyridyl, constitutes part of the structure.

The compounds of the invention exhibit valuable pharmacological properties in mammals including man and are particularly useful as inhibitors of matrix-degrading metalloproteinase enzymes (=metalloproteinases).

Matrix-degrading metalloproteinases, such as gelatinase, stromelysin and collagenase, are involved in tissue matrix degradation (e.g. collagen collapse) and have been implicated in many pathological conditions involving abnormal connective tissue and basement membrane matrix metabolism, such as arthritis (e.g. osteoarthritis and rheumatoid arthritis), tissue ulceration (e.g. corneal, epidermal and gastric ulceration), abnormal wound healing, periodontal disease, bone disease (e.g. Paget's disease and osteoporosis), tumor metastasis or invasion, as well as HIV-infection (as reported in J. Leuk. Biol. 52 (2): 244-248, 1992).

As the compounds of the invention are inhibitors of stromelysin, gelatinase and/or collagenase activity and inhibit matrix degradation, they are particularly useful in mammals as agents for the treatment of e.g. osteoarthritis, rheumatoid arthritis, corneal ulceration, periodontal disease, tumor metastasis, progression of HIV-infection and HIV-infection related disorders.

Illustrative of the matrix degrading metalloproteinase inhibitory activity, compounds of the invention prevent the degradation of cartilage caused by exogenous or endogenous stromelysin in mammals. They inhibit e.g. the stromelysin-induced degradation of aggrecan (large aggregating proteoglycan), link protein or type 1X collagen in mammals.

Beneficial effects are evaluated in pharmacological tests generally known in the art, and as illustrated herein.

The above-cited properties are demonstrable in <u>in vitro</u> and <u>in vivo</u> tests, using advantageously mammals, e.g. rats, guinea pigs, dogs, rabbits, or isolated organs and tissues, as well as mammalian enzyme preparations. Said compounds can be applied in vitro in the form of solutions, e.g. preferably aqueous solutions, and in vivo either enterally or parenterally, advantageously orally, e.g. as a suspension or in aqueous solution. The dosage in vitro may range between about 10⁻⁵ molar and 10⁻¹⁰ molar concentrations. The dosage in vivo may range, depending on the route of administration, between about 0.1 and 50 mg/kg.

One test to determine the inhibition of stromelysin activity is based on its hydrolysis of Substance P using a modified procedure of Harrison et al (Harrison, R.A., Teahan J., and Stein R., A semicontinuous, high performance chromatography based assay for stromelysin, Anal. Biochem. 180, 110-113 (1989)). In this assay, Substance P is hydrolyzed by recombinant human stromelysin to generate a fragment, Substance P 7-11, which can be quantitated by HPLC. In a typical assay, a 10 mM stock solution of a compound to be tested is diluted in the assay buffer to 50 µM, mixed 1:1 with 8 µg recombinant human stromelysin (mol. wt. 45-47 kDa, 2 Units; where 1 Unit produces 20 mmoles of Substance P 7-11 in 30 minutes) and incubated along with 0.5mM Substance P in a final volume of 0.125 ml for 30 minutes at 37°C. The reaction is stopped by adding 10 mM EDTA and Substance P 7-11 is quantified on RP-8 HPLC. The IC₅₀ for inhibition of stromelysin activity and Ki are calculated from control reaction without the inhibitor. Typically, Ki values of from 10 to 200 nM are obtained.

Stromelysin activity can also be determined using human aggrecan as a substrate. This assay allows the confirmation <u>in-vitro</u> that a compound can inhibit the action of stromelysin on its highly negatively-charged natural substrate, aggrecan (large aggregating prtoeoglycan). Within the cartilage, proteoglycan exists as an aggregate bound to hyaluronate. Human proteoglycan aggregated to hyaluronate is used as an enzyme substrate. The assay is set up in 96-well microtiter plates allowing rapid evaluation of compounds. The assay has three major steps:

- 1) Plates are coated with hyaluronate (human umbilical chord, 400 ug/ml), blocked with BSA (5 mg/ml), and then proteoglycan (human articular cartilage D1 chondroitinase ABC digested, 2 mg/ml) is bound to the hyaluronate. Plates are washed between each step.
- 2) Buffers + inhibitor (1 to 5,000 nM) + recombinant human stromelysin (1-3 Units/well) are added to wells. The plates are sealed with tape and incubated overnight at 37°C. The plates are then washed.
- 3) A primary (3B3) antibody (mouse lgM, 1:10,000) is used to detect remaining fragments. A secondary antibody, peroxididase-linked anti-lgM, is bound to the primary antibody. OPD is then added as a substrate for the peroxidase and the reaction is stopped with sulfuric acid. The lC_{50} for inhibition of stromelysin activity is graphically derived and

Ki is calculated.

Collagenase activity is determined as follows: ninety six-well, flat-bottom microtiter plates are first coated with bovine type I collagen (35 ug/well) over a two-day period at 30°C using a humidified and then dry atmosphere; plates are rinsed, air dried for 3-4 hours, sealed with Saran wrap and stored in a refrigerator. Human recombinant fibroblast collagenase and a test compound (or buffer) are added to wells (total volume = 0.1 ml) and plates are incubated for 2 hours at 35°C under humidified conditions; the amount of collagenase used per well is that causing approximately 80% of maximal digestion of collagen. The incubation media are removed from the wells, which are then rinsed with buffer, followed by water. Coomasie blue stain is added to the wells for 25 minutes, removed, and wells are again rinsed with water. Sodium dodecyl sulfate (20% in 50% dimethylformamide in water) is added to solubilize the remaining stained collagen and the optical density at 570 nM wave length is measured. The decrease in optical density due to collagenase (from that of collagen without enzyme) is compared to the decrease in optical density due to the enzyme in the presence of test compound, and percent inhibition of enzyme activity is calculated. IC₅₀'s are determined from a range of concentrations of inhibitors (4-5 concentrations, each tested in triplicate), and K₁ values are calculated.

The effect of compounds of the invention in-vivo can be determined in rabbits. Typically, four rabbits are dosed orally with a compound up to four hours before being injected intra-articularly in both knees (N=8) with 40 Units of recombinant human stromelysin dissolved in 20 mM Tris, 10 mM CaCl₂, and 0.15 M NaCl at pH 7.5. Two hours later the rabbits are sacrificed, synovial lavage is collected, and keratan sulfate (KS) and sulfated glycosaminoglycan (S-GAG) fragments released into the joint are quantitated. Keratan sulfate is measured by an inhibition ELISA using the method of Thonar (Thonar, E.J.-M.A., Lenz, M.E., Klinsworth, G.K., Caterson, B., Pachman, L.M., Glickman, P., Katz, R., Huff, J., Keuttner, K.E. Quantitation of keratan sulfate in blood as a marker of cartilage catabolism, Arthr. Rheum. 28, 1367-1376 (1985)). Sulfated glycosaminoglycans are measured by first digesting the synovial lavage with streptomyces hyaluronidase and then measuring DMB dye binding using the method of Goldberg (Goldberg, R.L. and Kolibas, L. An improved method for determining proteoglycan synthesized by chondrocytes in culture. Connect. Tiss. Res. 24, 265-275 (1990)). For an i.v. study, a compound is solubilized in 1 ml of PEG-400, and for a p.o. study, a compound is administered in 5 ml of fortified corn starch per kilogram of body weight.

The compounds of formula I can be prepared e.g. by condensing a carboxylic acid of formula IV,

$$\begin{array}{c|cccc}
R & & & & & \\
O & R_1 & CH_2O & & & \\
II & I & I & II & & \\
HO-C & -C & -N-S & -Ar & & & \\
& & & II & & \\
R_2 & & O & & &
\end{array}$$
(IV)

or a reactive functional derivative thereof, wherein R, R_1 , R_2 and R_3 and R_4 having meaning as defined in claim 1, with hydroxylamine of formula R_4 ,

optionally in protected form, or a salt thereof;

35

40

and, if necessary, temporarily protecting any interfering reactive group(s), and then liberating the resulting compound of the invention; and, if required or desired, converting a resulting compound of the invention into another compound of the invention, and/or, if desired, converting a resulting free compound into a salt or a resulting salt into a free compound or into another salt; and/or separating a mixture of isomers or racemates obtained into the single isomers or racemates; and/or, if desired, resolving a racemate into the optical antipodes.

In starting compounds and intermediates which are converted to the compounds of the invention in a manner described herein, functional groups present, such as amino, carboxyl and hydroxy groups, are optionally protected by conventional protecting groups that are common in preparative organic chemistry. Protected amino, carboxyl and hydroxy groups are those that can be converted under mild conditions into free amino and hydroxy groups without the molecular framework being destroyed or other undesired side reactions taking place.

The purpose of introducing protecting groups is to protect the functional groups from undesired reactions with reaction components under the conditions used for carrying out a desired chemical transformation. The need and choice of protecting groups for a particular reaction is known to those skilled in the art and depends on the nature of the functional group to be protected (hydroxy group, amino group, etc.), the structure and stability of the molecule of which the substituent is a part and the reaction conditions.

Well-known protecting groups that meet these conditions and their introduction and removal are described, for

example, in J.F.W. McOmie, "Protective Groups in Organic Chemistry", Plenum Press, London, New York, 1973, T. W. Greene, "Protective Groups in Organic Synthesis", Wiley, New York, 1991.

In the processes cited herein, reactive functional derivatives of carboxylic acids represent, for example, anhydrides especially mixed anhydrides, acid halides, acid azides, lower alkyl esters and activated esters thereof. Mixed anhydrides are preferably such from pivalic acid, or a lower alkyl (ethyl, isobutyl) hemiester of carbonic acid; acid halides are for example chlorides or bromides; activated esters for example succinimido, phthalimido or 4-nitrophenyl esters; lower alkyl esters are for example the methyl or ethyl esters.

Also, a reactive esterified derivative of an alcohol in any of the reactions cited herein represents said alcohol esterified by a strong acid, especially a strong inorganic acid, such as a hydrohalic acid, especially hydrochloric, hydrobromic or hydroiodic acid, or sulphuric acid, or by a strong organic acid, especially a strong organic sulfonic acid, such as an aliphatic or aromatic sulfonic acid, for example methanesulfonic acid, 4-methylbenzenesulfonic acid or 4-bromobenzenesulfonic acid. A said reactive esterified derivative is especially halo, for example chloro, bromo or iodo, or aliphatically or aromatically substituted sulfonyloxy, for example methanesulfonyloxy, 4-methylbenzenesulfonyloxy (tosyloxy).

In the above processes for the synthesis of compounds of the invention can be carried out according to methodology generally known in the art for the preparation of hydroxamic acids and derivatives thereof.

The synthesis according to the above process (involving the condensation of a free carboxylic acid of formula IV with an optionally hydroxy protected hydroxylamine derivative of formula V can be carried out in the presence of a condensing agent, e.g. 1,1'-carbonyldiimidazole, or N-(dimethylaminopropyl)-N'-ethylcarbodiimide or dicyclohexylcarbodiimide with or without 1-hydroxybenzotriazole in an inert polar solvent, such as dimethylformamide or dichloromethane, preferably at room temperature.

The synthesis involving the condensation of a reactive functional derivative of an acid of formula IV as defined above, e.g. an acid chloride or mixed anhydride with optionally hydroxy protected hydroxylamine, or a salt thereof, in presence of a base such as triethylamine can be carried out, at a temperature ranging preferably from about - 78°C to +75°C, in an inert organic solvent such as dichloromethane or toluene.

Protected forms of hydroxylamine (of formula V) in the above process are those wherein the hydroxy group is protected for example as a t-butyl ether, a benzyl ether or tetrahydropyranyl ether. Removal of said protecting groups is carried out according to methods well known in the art, e.g. hydrogenolysis or acid hydrolysis. Hydroxylamine is preferably generated in situ from a hydroxylamine salt, such as hydroxylamine hydroxhloride.

The starting carboxylic acids of formula IV can be prepared as follows:

An amino acid of formula VI

30

35

55

wherein R₁ and R₂ have meaning as defined herein, is first esterified with a lower alkanol, e.g. methanol, in the presence of e.g. thionyl chloride to obtain an aminoester which is treated with a reactive functional derivative of the appropriate arylsulfonic acid of the formula VII

wherein Ar has meaning as defined hereinabove, e.g. with the arylsulfonyl chloride, in the presence of a suitable base such as triethylamine using a polar solvent such as tetrahydrofuran, toluene, acetonitrile to obtain a compound of the formula VIII

wherein R_1 , R_2 and Ar have meaning as defined herein and R_6 is a protecting group, e.g. lower alkyl. Treatment thereof with a reactive esterified derivative of the alcohol of the formula IX

wherein R has meaning as defined herein, such as the halide, e.g. the chloride, bromide or iodide derivative thereof, in the presence of an appropriate base, such as potassium carbonate or sodium hydride, in a polar solvent such as dimethylformamide. The resulting compound corresponding to an ester of a compound of formula IV can then be hydrolyzed to the acid of formula IV, using standard mild methods of ester hydrolysis, preferably under acidic conditions. For compounds of formula Ia (wherein R and R₁ of formula I are combined) the starting materials are prepared by treating a carboxylic acid of formula X

$$\begin{array}{c|cccc}
CH_2 & CH_2 \\
CH_2 & CH_2 \\
C & CH_2 \\
R_2 & CH_2
\end{array}$$

or an ester thereof, wherein R₂ and X have meaning as defined above, with a reactive functional derivative of a compound of the formula ArSO₃H (VII) under conditions described for the preparation of a compound of formula VIII.

The starting materials of formula VI, VII, IX and X are either known in the art, or can be prepared by methods well-known in the art or as described herein.

The above-mentioned reactions are carried out according to standard methods, in the presence or absence of diluent, preferably such as are inert to the reagents and are solvents thereof, of catalysts, condensing or said other agents respectively and/or inert atmospheres, at low temperatures, room temperature or elevated temperatures (preferably at or near the boiling point of the solvents used), and at atmospheric or super-atmospheric pressure. The preferred solvents, catalysts and reaction conditions are set forth in the appended illustrative examples.

The invention further includes any variant of the present processes, in which an intermediate product obtainable at any stage thereof is used as starting material and the remaining steps are carried out, or the process is discontinued at any stage thereof, or in which the starting materials are formed in situ under the reaction conditions, or in which the reaction components are used in the form of their salts or optically pure antipodes.

Compounds of the invention and intermediates can also be converted into each other according to methods generally known per se.

The invention also relates to any novel starting materials and processes for their manufacture.

Depending on the choice of starting materials and methods, the new compounds may be in the form of one of the possible isomers or mixtures thereof, for example, as substantially pure geometric (cis or trans) isomers, optical isomers (antipodes), racemates, or mixtures thereof. The aforesaid possible isomers or mixtures thereof are within the purview of this invention.

Any resulting mixtures of isomers can be separated on the basis of the physico-chemical differences of the constituents, into the pure geometric or optical isomers, diastereoisomers, racemates, for example by chromatography and/or fractional crystallization.

Any resulting racemates of final products or intermediates can be resolved into the optical antipodes by known methods, e.g. by separation of the diastereoisomeric salts thereof, obtained with an optically active acid or base, and liberating the optically active acidic or basic compound. The hydroxamic acids or carboxylic acid intermediates can thus be resolved into their optical antipodes e.g. by fractional crystallization of d- or I-(alpha-methylbenzylamine, cinchonidine, cinchonine, quinine, quinidine, ephedrine, dehydroabietylamine, brucine or strychnine)-salts.

Finally, acidic compounds of the invention are either obtained in the free form, or as a salt thereof.

Acidic compounds of the invention may be converted into salts with pharmaceutically acceptable bases, e.g. an aqueous alkali metal hydroxide, advantageously in the presence of an ethereal or alcoholic solvent, such as a lower alkanol. From the solutions of the latter, the salts may be precipitated with ethers, e.g. diethyl ether. Resulting salts may be converted into the free compounds by treatment with acids. These or other salts can also be used for purification of the compounds obtained.

In view of the close relationship between the free compounds and the compounds in the form of their salts, whenever a compound is referred to in this context, a corresponding salt is also intended, provided such is possible or appropriate under the circumstances.

The compounds, including their salts, can also be obtained in the form of their hydrates, or include other solvents used for their crystallization.

The pharmaceutical compositions according to the invention are those suitable for enteral, such as oral or rectal, transdermal and parenteral administration to mammals, including man, to inhibit matrix-degrading metalloproteinases,

and for the treatment of disorders responsive thereto, comprising an effective amount of a pharmacologically active compound of the invention, alone or in combination, with one or more pharmaceutically acceptable carriers.

The pharmacologically active compounds of the invention are useful in the manufacture of pharmaceutical compositions comprising an effective amount thereof in conjunction or admixture with excipients or carriers suitable for either enteral or parenteral application. Preferred are tablets and gelatin capsules comprising the active ingredient together with a) diluents, e.g. lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and/or glycine, b) lubricants, e.g. silica, talcum, stearic acid, its magnesium or calcium salt and/or polyethyleneglycol; for tablets also c) binders e.g. magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and or polyvinylpyrrolidone; if desired d) disintegrants, e.g. starches, agar, alginic acid or its sodium salt, or effervescent mixtures; and/or e) absorbants, colorants, flavors and sweeteners. Injectable compositions are preferably aqueous isotonic solutions or suspensions, and suppositories are advantageously prepared from fatty emulsions or suspensions. Said compositions may be sterilized and/or contain adjuvants, such as preserving, stabilizing, wetting or emulsifying agents, solution promoters, salts for regulating the osmotic pressure and/or buffers. In addition, they may also contain other therapeutically valuable substances. Said compositions are prepared according to conventional mixing, granulating or coating methods, respectively, and contain about 0.1 to 75 %, preferably about 1 to 50 %, of the active ingredient.

Suitable formulations for transdermal application include an effective amount of a compound of the invention with carrier. Advantageous carriers include absorbable pharmacologically acceptable solvents to assist passage through the skin of the host. Characteristically, transdermal devices are in the form of a bandage comprising a backing member, a reservoir containing the compound optionally with carriers, optionally a rate controlling barrier to deliver the compound of the skin of the host at a controlled and predetermined rate over a prolonged period of time, and means to secure the device to the skin.

Suitable formulations for topical application, e.g. to the skin and eyes, are preferably aqueous solutions, ointments, creams or gels well-known in the art.

The pharmaceutical formulations contain an effective matrix-degrading metalloproteinase inhibiting amount of a compound of the invention as defined above either alone, or in combination with another therapeutic agent, e.g. an anti-inflammatory agent with cyclooxygenase inhibiting activity, each at an effective therapeutic dose as reported in the art. Such therapeutic agents are well-known in the art.

Examples of antiinflammatory agents with cyclooxygenase inhibiting activity are diclofenac sodium, naproxen, ibuprofen, and the like.

In conjunction with another active ingredient, a compound of the invention may be administered either simultaneously, before or after the other active ingredient, either separately by the same or different route of administration or together in the same pharmaceutical formulation.

The dosage of active compound administered is dependent on the species of warm-blooded animal (mammal), the body weight, age and individual condition, and on the form of administration. A unit dosage for oral administration to a mammal of about 50 to 70 kg may contain between about 25 and 250 mg of the active ingredient.

The following examples are intended to illustrate the invention and are not to be construed as being limitations thereon. Temperatures are given in degrees Centrigrade. If not mentioned otherwise, all evaporations are performed under reduced pressure, preferably between about 15 and 100 mm Hg (= 20-133 mbar). The structure of final products, intermediates and starting materials is confirmed by standard analytical methods, e.g. microanalysis and spectroscopic characteristics (e.g. MS, IR, NMR). Abbreviations used are those conventional in the art.

Example 1:

(a) N-(t-Butyloxy)-2(R)-[[4-methoxybenzenesulfonyi](3-picolyl)amino]-3-methylbutanamide (4.1 g, 9.13 mmol) is dissolved in dichloroethane (150 mL) containing ethanol (0.53ml, 9.13 mmol) in a round bottom flask, and the reaction is cooled to -10°C. Hydrochloric acid gas (from a lecture bottle) is bubbled through for 30 minutes. The reaction is sealed, allowed to slowly warm to room temperature, and stirred for 2 days. The solvent is reduced to 1/3 volume by evaporation and triturated with ether. The mixture is filtered, filter cake removed, and dried in vacuo to provide N-hydroxy-2(R)-[[4-methoxybenzenesulfonyi](3-picolyl)amino]-3-methylbutanamide hydrochloride as a white solid, m.p. 169-170°C (dec), and having the following structure:

50

The starting material is prepared as follows:

10

20

25

30

35

40

45

50

55

To a solution of D-valine (15.0 g, 128.0 mmol) in 1:1 dioxane/ water (200 mL) containing triethylamine (19.4 g, 192.0 mmol) at room temperature is added 4-methoxybenzenesulfonyl chloride (29.0 g, 141.0 mmol), and the reaction mixture is stirred at room temperature overnight. The mixture is then diluted with methylene chloride, washed with 1N aqueous hydrochloric acid and water. The organic layer is washed again with brine, dried (Na₂SO₄), and the solvent is evaporated to provide N-[4-methoxybenzenesulfonyl]-(D)-valine as a crude product. A solution of this crude product (15.0 g) in toluene (100 mL) containing N,N-dimethylformamide di-t-butyl acetal (50 mL, 206.5 mmol) is heated to 95°C for 3 hours. The solvent is then evaporated. The crude product is purified by • silica gel chromatography (30% ethyl acetate/hexanes) to provide N-[4-methoxybenzenesulfonyl]-(D)-valine t-butyl ester.

To a solution of N-[4-methoxybenzenesulfonyl]-(D)-valine t-butyl ester (4.38 g, 13.0 mmol) in dimethylformamide (200 mL) is added 3-picolyl chloride hydrochloride (2.3 g, 14.0 mmol) followed by potassium carbonate (17.94 g, 130.0 mmol). The reaction mixture is stirred at room temperature for 2 days. The mixture is then diluted with water and extracted with ethyl acetate. The combined organic extracts are washed with brine, dried (Na₂SO₄), and the solvent is evaporated. The crude product is purified by silica gel chromatography (ethyl acetate) to give t-butyl 2(R)-[N-[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-methylbutanoate.

t-Butyl 2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-methylbutanoate (5.3 g, 12.2 mmol) is dissolved in methylene chloride (150 mL) and cooled to -10°C. Hydrochloric acid gas is bubbled into the solution for 10 minutes. The reaction mixture is then sealed, warmed to room temperature and stirred for 4 hours. The solvent is then evaporated to provide 2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-methylbutanoic acid hydrochloride.

2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-methylbutanoic acid hydrochloride (5.0 g, 12.06 mmol), 1-hydroxybenzotriazole (1.63 g, 12.06 mmol), 4-methylmorpholine (6.6 mL, 60.31 mmol), and O-t-butylhydroxylamine hydrochloride (54.55 g, 36.19 mmol) are dissolved in methylene chloride (200 mL). N-[Dimethylaminopropyl]-N'-ethylcarbodiimide hydrochloride (3.01 g, 15.68 mmol) is added, and the reaction is stirred overnight. The reaction is then diluted with water and extracted with methylene chloride.

The combined organic extracts are washed with brine, dried (Na₂SO₄), and the solvent is evaporated. The crude product is purified by silica gel chromatography (2% methanol/methylene chloride) to give N-(t-butyloxy)-2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-methylbutanamide.

- (b) L-tartaric acid salt, m.p. 114-116°C.
- (c) Methanesulfonic acid salt, m.p. 139-141.5°C.
- (d) Maleic acid salt, m.p. 133-134°C.

Example 2: The following compounds are prepared similarly to Example 1:

- a) N-Hydroxy-2(S)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-methylbutanamide hydrochloride, m.p. 170.5-171°C, by starting the synthesis with L-valine, and carrying out the subsequent steps as described above.
- (b) N-hydroxy-2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-4-methylpentanamide hydrochloride, m.p. 128-129°C.

The first two steps are carried out as described in example 1, except the synthesis was started with D-leu-

cine. The alkylation step is different, as described below.

10

15

20

30

35

.50

55

To a solution of t-butyl 2(R)-[[4-methoxybenzenesulfonyl]amino]-4-methylpentanoate (10.0 g, 27.92 mmol) in dimethylformamide (250 mL) at room temperature is added 3-picolyl chloride hydrochloride (4.81 g, 29.32 mmol) followed by sodium hydride (2.79 g, 69.80 mmol, 60% in oil). The reaction mixture is stirred at room temperature for 48 hours. The mixture is quenched with water and extracted with ethyl acetate. The combined organic extracts are washed with brine, dried (Na₂SO₄), and the solvent is evaporated. The crude product is purified by silica gel chromatography (45% ethyl acetate/hexanes) to provide t-butyl 2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-4-methylpentanoate.

All of the following steps are carried out as described above in example 1.

- (c) N-Hydroxy-2(R)-[[4-methoxybenzenesulfonyl](6-chloropiperonyl)amino]-4-methylpentanamide, m.p. 85-87°C, by starting the synthesis with D-leucine and alkylating with 6-chloropiperonyl chloride (= 6-chloro-3,4-methylenedioxy-benzylchloride) in the third step.
- (d) N-Hydroxy-2(R)-[[4-methoxybenzenesulfonyl](piperonyl)amino]-4-methylpentanamide, m.p. 145-147°C, by starting the synthesis with D-leucine and alkylating with piperonyl chloride (= 3,4-methylenedioxy-benzylchloride) in the third step.
- (e) N-Hydroxy-2(R)-[[4-methoxybenzenesultonyl](2-picolyl)amino]-4-methylpentanamide, m.p. 89-90°C, by starting the synthesis with D-leucine and alkylating with 2-picolyl chloride in the third step.
- (f) N-Hydroxy-2(R)-[[4-methoxybenzenesulfonyl](2-picolyl)amino]-3-methylbutanamide hydrochloride, m.p. 140-142°C, by starting the synthesis with D-valine and alkylating with 2-picolyl chloride in the third step.
- (g) N-Hydroxy-2(R)-[[4-methoxybenzenesulfony]](3-picolyl)amino]-4,4-dimethylpentanamide hydrochloride, m.p. 130-150°C (slow melt), by starting the synthesis with D-t-butylalanine and alkylating with 3-picolyl chloride in the third step.
- (h) N-Hydroxy-2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-2-cyclohexylacetamide hydrochloride, m.p. 149.5-152.0°C, by starting the synthesis with (D)-cyclohexylglycine hydrochloride.

The starting amino acid is prepared as follows:

- (D)-phenylglycine (10.0 g, 66.2 mmol) is suspended in 2N hydrochloric acid (100 mL) containing platinum (IV) oxide hydrate (267 mg). The mixture is shaken in a Parr hydrogenation apparatus for 24 hours under a hydrogen pressure of 50 psi. The resultant suspended crystalline material, (D)-cyclohexylglycine hydrochloride, was used without further purification.
- (i) N-Hydroxy-2(R)-[[(2,3-dihydrobenzofuran)-5-sulfonyl](3-picolyl)amino]3-methylbutanamide hydrochloride, m.p. 150.0-153.0°C, by starting the synthesis with 2,3-dihydrobenzofuran-5-sulfonyl chloride.

The starting sulfonyl chloride is prepared as follows:

- 2,3-dihydrobenzofuran (6.0 g, 49.94 mmol) is added over 20 minutes to chlorosulfonic acid (29.09 g, 249.69 mmol) at -20 $^{\circ}$ C. The reaction mixture is quenched by addition of ice followed by water (20 mL). The mixture is then extracted with ethyl acetate. The combined organic estracts are washed with brine, dried (Na₂SO₄), and the solvent is evaporated. The crude product is purified by silica gel chromatography (30% ethyl acetate/hexane) to give 2,3-dihydrobenzofuran-5-sulfonyl chloride (3.3 g).
- (j) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](3-picolyl)-amino]-3-m ethylbutanamide hydrochloride, m.p. 139.5-142°C, by starting the synthesis with DL-valine.
- (k) N-Hydroxy-2(R)-[[4-ethoxybenzenesulfonyl](3-picolyl)-amino]-3-methylbutanamide hydrochloride, $[\alpha]_D^{25}$ =+34.35 (c=5.84, CH₃OH).
- (I) N-Hydroxy-2(R)-[[4-methoxybenzenesulfonyl](2-picolyl)amino]-2-cyclohexylacetamide hydrochloride, m.p. 127-140°, by starting the syntheses with (D)-cyclohexylglycine hydrochloride, and carrying out the subsequent steps as described above.
- (m) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](2-methylthiazol-4-ylmethyl)amino]-2-cyclohexylacetamide hydrochloride, m.p. 137-139°C, using 4-chloromethyl-2-methylthiazole in the alkylation step.
- (n) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](2-quinolinylmethyl)amino]-2-cyclohexylacetamide hydrochloride, m.p. 121-123°C, using 2-chloromethylquinoline hydrochloride in the alkylation step.
- Example 3: 2(R)-[[4-Methoxybenzenesulfonyl](benzyl)amino]-4-methylpentanoic acid (4.38 g, 11.2 mmol) is dissolved in methylene chloride (56.0 mL). To this solution is added oxalyl chloride (1.95 mL, 22.4 mmol) and dimethylformamide (0.86 mL, 11.2 mmol), and the reaction is stirred at room temperature for 90 minutes. Meanwhile, in a separate flask, hydroxylamine hydrochloride (3.11 g, 44.8 mmol) and triethylamine (9.36 mL, 67.1 mmol) are stirred in tetrahydrofuran (50.0 mL) and water (3.5 mL) at 0°C for 15 minutes. After 90 minutes, the methylene chloride solution is added in one portion to the second flask, and the combined contents are stirred for three days as the flask gradually warms up to room temperature. The reaction is then diluted with acidic water (pH=-3), and extracted several times with ethyl acetate. The combined organic layers are dried (Na₂SO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (1% methanol/methylene chloride) to give N-hydroxy-2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-4-methylpentanamide, m.p. 48-52°C.

The starting material is prepared as follows:

10

20

25

30

35

50

55

(D)-leucine (7.1 g, 53.9 mmol) is dissolved in dioxane (60.0 mL) and water (60.0 mL). To this solution is added triethylamine (11.3 mL, 80.9 mmol) and 4-methoxybenzenesulfonyl chloride (12.25 g, 59.3 mmol), and the reaction is stirred at room temperature overnight. The reaction is then diluted with methylene chloride and washed successively with 2.5N hydrochloric acid, water, and brine. The organic phase is dried (Na₂SO₄), and the solvent is evaporated to give N-[4-methoxybenzenesulfonyl]-(D)-leucine, which is used without further purification.

N-[4-methoxybenzenesulfonyl]-(D)-leucine (14.0 g, 46.5 mmol) is dissolved in toluene (100.0 mL), and heated to 90°C. N,N-Dimethylformamide di-t-butyl acetal (45.0 mL, 186.0 mmol) is added dropwise over 20 minutes, and then the reaction is kept at 90°C for another 2 hours. After cooling back down, the reaction is diluted with ethyl acetate and washed successively with saturated sodium bicarbonate, water, and brine. The organic phase is dried (Na₂SO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (20% ethyl acetate/hexane) to give N-[4-methoxybenzenesulfonyl]-(D)-leucine t-butyl ester.

To a suspension of sodium hydride (0.68 g, 14.1 mmol) in dimethylformamide (60.0 mL), is added N-[4-methoxybenzenesulfonyl]-(D)-leucine t-butyl ester (5.02 g, 14.06 mmol) in dimethylformamide (10.0 mL). After stirring at room temperature for 20 minutes, benzyl bromide (1.67 mL, 14.06 mmol) is added, and the reaction is stirred overnight at room temperature. The reaction is then partitioned between ethyl acetate and acidic water (pH=5), the organic layer is dried (Na₂SO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (10% ethyl acetate/hexane) to give t-butyl 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-4-methylpentanoate.

t-Butyl 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-4-methylpentan oate (5.38 g, 12.02 mmol) is dissolved in methylene chloride (100.0 mL). Hydrochloric acid gas (from a lecture bottle) is bubbled through the solution for 20 minutes. The reaction is sealed and stirred overnight at room temperature. The solvent is then evaporated to give 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-4-methylpentanoic acid. Example 4: The following compounds are prepared similarly to example 3:

- (a) N-Hydroxy-2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-2-phenylacetamide, m.p. 128-129°C, by starting the synthesis with (D)-phenylglycine, and carrying out the subsequent steps as described in example 3.
- (b) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](benzyl)amino]-2-t-butylacetamide, m.p. 69-73°C, by starting the synthesis with t-butylglycine, and carrying out the subsequent steps as described in example 3.
- (c) N-Hydroxy-2(R)-[[4-methoxybenzenesulfonyl](4-fluorobenzyl)amino]-4-methylpentanamide, m.p. 48-51°C, by starting the synthesis with (D)-leucine, and carrying out the subsequent steps as described in example 3, with the exception that 4-fluorobenzyl bromide is used in place of benzyl bromide.
- (d) N-Hydroxy-2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-3-methylbutanamide, m.p. 179-180°C, by starting the synthesis with (D)-valine, and carrying out the subsequent steps as described in example 3.
- (e) N-Hydroxy-2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-4,4-dimethylpentanamide, by starting the synthesis with (D)-neopentylglycine, and carrying out the subsequent steps as described in example 3.
- (f) N-Hydroxy-2(R)-[[4-methoxybenzenesulfonyl(benzyl)amino]-3-hydroxypropanamide, m.p. 65°, by starting the synthesis with (D)-serine, and carrying out the subsequent steps as described in example 3.

Example 5: 3-[4-Methoxybenzenesulfonyl]-5,5-dimethylthiazolidine-4(S)-carboxylic acid (2.0 g, 6.0 mmol) is dissolved in methylene chloride (30.0 mL). To this solution is added oxalyl chloride (1.1 mL, 12.1 mmol) and dimethylformamide (0.50 mL, 6.0 mmol), and the reaction is stirred at room temperature for 2 hours. Meanwhile, in a separate flask, hydroxylamine hydrochloride (1.74 g, 25.0 mmol) and triethylamine (5.0 mL, 36.0 mmol) are stirred in tetrahydrofuran (25.0 mL) and water (2.0 mL) at 0°C for 15 minutes. After 2 hours, the methylene chloride solution is added in one portion to the second flask, and the combined contents are stirred overnight as the flask gradually warms up to room temperature. The reaction is then diluted with acidic water (pH=~3), and extracted several times with ethyl acetate. The combined organic layers are dried (Na₂SO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (60% ethyl acetate/hexane) to give N-hydroxy-3-[4-methoxybenzenesulfonyl]-5,5-dimethylthiazolidine-4(S)-carboxamide, m.p. 68-71°C.

The starting material is prepared as follows:

(D)-5,5-Dimethylthiazolidine-4-carboxylic acid (1.0 g, 6.2 mmol) is dissolved in dioxane (10.0 mL) and water (10.0 mL). To this solution is added triethylamine (1.3 mL, 9.3 mmol) and 4-methoxybenzenesulfonyl chloride (1.41 g, 6.82 mmol), and the reaction is stirred at room temperature for three days. The reaction is then diluted with ethyl acetate and washed successively with 2.5N hydrochloric acid, water, and brine. The organic phase is dried (Na₂SO₄), and the solvent is evaporated to give 3-[4-methoxybenzenesulfonyl]-5,5-dimethylthiazolidine-4(S)-carboxylic acid, which is used without further purification.

Example 6: 1-[4-Methoxybenzenesulfonyl]-pyrrolidine-2(R)-carboxylic acid (1.12 g, 3.93 mmol) is dissolved in methylene chloride (40.0 mL). To this solution is added oxalyl chloride (0.69 mL, 7.85 mmol) and dimethylformamide (0.30 mL, 3.93 mmol), and the reaction is stirred at room temperature for 30 minutes. Meanwhile, in a separate flask, hydroxylamine hydrochloride (1.1 g, 15.7 mmol) and triethylamine (3.3 mL, 23.5 mmol) are stirred in

tetrahydrofuran (20.0 mL) and water (4.0 mL) at 0°C for 15 minutes. After 30 minutes, the methylene chloride solution is added in one portion to the second flask, and the combined contents are stirred overnight as the flask gradually warms up to room temperature. The reaction is then diluted with acidic water (pH=~3), and extracted several times with ethyl acetate. The combined organic layers are dried (MgSO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (50% ethyl acetate/hexane) to give N-hydroxy-1-[4-methoxybenzenesulfonyl]-pyrrolidine-2(S)-carboxamide, m.p. 163.5-165.5°C.

The starting material is prepared as follows:

10

15

20

25

30

35

40

45

50

55

(D)-proline (0.78g, 6.77 mmol) is suspended in methylene chloride (25.0 mL). To this solution is added triethylamine (1.13 mL, 8.12 mmol) and 4-methoxybenzenesulfonyl chloride (1.4 g, 6.77 mmol), and the reaction is stirred at room temperature for two days. The reaction is then diluted with methylene chloride and washed successively with 1N hydrochloric acid, water, and brine. The organic phase is dried (MgSO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (10% methanol/ethyl acetate) to give 1-[4-methoxybenzenesultonyl]-pyrrolidine-2(R)-carboxylic acid.

Example 7: N-(t-Butyloxy)-2-[[4-methoxybenzenesulfonyi](benzyl)amino]-2-[2-(4-morpholino)ethyl]acetamide (2.65 g, 5.1 mmol) is dissolved in methylene chloride (30.0 mL) and ethanol (1.0 mL) in a glass sealed tube, and the reaction is cooled to 0°C. Hydrochloric acid gas (from a lecture bottle) is bubbled through the solution for 20 minutes, and then the tube is sealed and kept at room temperature for 3 days. After that time, the solvent is removed, and the reaction is partitioned between ethyl acetate and saturated sodium bicarbonate. The organic phase is dried (Na₂SO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (2% methanol/methylene chloride) to give N-hydroxy-2-[[4-methoxybenzenesulfonyl](benzyl)amino]-2-[2-(4-morpholino)ethyl]acetamide m.p. 56-60°C.

The starting material is prepared as follows:

N-(2-chloroethyl)morpholine hydrochloride (12.0 g) is dissolved in water (200 mL) and made basic with ammonium hydroxide (100.0 mL) to a pH=~11. The aqueous layer is then extracted several times with ether, the combined organic layers are dried (Na₂SO₄), and the solvent is evaporated to yield an oil which is used immediately.

Diethyl acetamidomalonate (11.4 g, 57.08 mmol) is added to a freshly prepared solution of sodium ethoxide in ethanol (made from Na (1.32 g, 57.1 mmol) added to ethanol (34.0 mL)), and the reaction is refluxed for 30 minutes. The reaction is then adjusted to 55°C, and potassium iodide (0.14 g, 0.8 mmol) and dimethylformamide (0.2 mL) are added. Finally, the N-(2-chloroethyl)morpholine (8.9 g, 59.6 mmol) prepared above is added in ethanol (14.0 mL), and the reaction is maintained at 55°C for 24 hours.

The reaction is diluted with ethyl acetate and filtered through Celite to remove salts. The filtrate is evaporated, and then partitioned between ethyl acetate and brine. The organic layer is dried (Na₂SO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (first 50% ethyl/acetate, then 5% methanol/methylene chloride) to give diethyl [2-(4-morpholino)ethyl]acetamidomalonate.

Diethyl [2-(4-morpholino)ethyl]acetamidomalonate (8.0 g, 25.6 mmol) is dissolved in ethanol (128.0 mL). Sodium hydroxide (4.55 mL of a 6N aqueous solution, 27.35 mmol) is added, and the reaction is stirred at room temperature for 24 hours. The ethanol is then evaporated, and the residue is diluted up in water, washed several times with ether, and then the aqueous phase is acidified with concentrated hydrochloric acid to pH=~5. The solution is evaporated to dryness, then suspended in toluene (300.0 mL) and refluxed for 3 hours. After cooling to room temperature, the reaction is diluted with chloroform (300.0 mL), and the mixture is filtered through Celite. The filtrate is evaporated to give ethyl 2-(acetamido)-2-[2-(4-morpholino)ethyl]acetate.

Ethyl 2-(acetamido)-2-[2-(4-morpholino)ethyl]acetate (4.2 g, 16.28 mmol) is dissolved in 6N hydrochloric acid (100.0 mL), and the reaction is refluxed for 4.5 hours. The water is then evaporated, and the product is azeotroped dry using toluene to give 2-amino-2-[2-(4-morpholino)ethyl]acetic acid dihydrochloride.

2-Amino-2-[2-(4-morpholino)ethyl]acetic acid dihydrochloride (4.0 g, 15.33 mmol) is dissolved in a solution of methanol (100.0 mL) and acetyl chloride (5.0 mL), and the reaction is refluxed for 24 hours. The solvent is then evaporated to give methyl 2-amino-2-[2-(4-morpholino)ethyl]acetate dihydrochloride.

Methyl 2-amino-2-[2-(4-morpholino)ethyl]acetate dihydrochloride (6.0 g, 21.82 mmol) is dissolved in chloroform (110.0 mL) and triethylamine (9.12 mL, 65.46 mmol). To this solution is added 4-methoxybenzenesulfonyl chloride (4.51 g, 21.82 mmol), and the reaction is refluxed for 4 hours. After cooling, the reaction is diluted with more chloroform, washed with saturated sodium bicarbonate, the organic layer is dried (Na₂SO₄), and the solvent is evaporated to give methyl 2-(4-methoxybenzenesulfonyl)amino-2-[2-(4-morpholino)ethyl]acetate.

To a suspension of sodium hydride (1.03 g, 21.5 mmol) in dimethylformamide (108.0 mL), is added methyl 2-(4-methoxybenzenesulfonyl)amino-2-[2-(4-morpholino)ethyl]ac etate (8.0 g, 21.5 mmol) in dimethylformamide (10.0 mL). After stirring at room temperature for 30 minutes, benzyl bromide (2.56 mL, 21.5 mmol) is added, and the reaction is stirred overnight at room temperature. The reaction is then partitioned between ethyl acetate and acidic water (pH=~5), the organic layer is dried (Na₂SO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (3% methanol/methylene chloride) to give methyl 2-[[4-methoxybenzenesulfonyl](benzyl)amino]-2-[2-(4-morpholino)ethyl]acetate.

::

Methyl 2-[[4-methoxybenzenesulfonyl](benzyl)amino]-2-[2-(4-morpholin o)ethyl]acetate (7.33 g, 15.86 mmol) is dissolved in methanol (80.0 mL). To this solution is added sodium hydroxide (17.5 mL of a 1N aqueous solution, 17.5 mmol), and the reaction is stirred at room temperature for 8 hours. The reaction is then acidified to pH=~3 using 2.5N hydrochloric acid, and then the solvent is evaporated. The residue is suspended in ethanol, the inorganic salts are filtered away, and the filtrate is evaporated to give 2-[[4-methoxybenzenesulfonyl](benzyl)amino]-2-[2-(4-morpholino)ethyl]acetic acid hydrochloride.

2-[[4-Methoxybenzenesulfonyl](benzyl)amino]-2-[2-(4-morpholino)ethyl]acetic acid hydrochloride (4.24 g, 8.75 mmol), 1-hydroxybenzotriazole (1.34 g, 8.75 mmol), 4-methylmorpholine (3.85 mL, 35.02 mmol), and O-t-butylhydroxylamine hydrochloride (1.10 g, 8.75 mmol) are dissolved in methylene chloride (44.0 mL), and the reaction is cooled to 0°C. To this solution is added N-[dimethylaminopropyl]-N'-ethylcarbodiimide hydrochloride (3.35 g, 17.5 mmol), and the reaction is allowed to warm up to room temperature and stir overnight. The reaction is diluted with more methylene chloride, and the organic layer is washed with saturated sodium bicarbonate, brine, dried (MgSO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (2% methanol/methylene chloride) to give N-(t-butyloxy)-2-[[4-methoxybenzenesulfonyl](benzyl)amino]-2-[2-(4-morpholino)ethyl]acetamide.

Example 8: The following compounds are prepared similarly to example 7:

10

15

20

25

30

35

40

45

50

- (a) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](isobutyl)amino]-2-[2-(4-morpholino)ethyl]acetamide, m.p. 62-64°C, using isobutyl bromide in the alkylation step in place of benzyl bromide.
- (b) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](2-picolyl)amino]-2-[2-(4-morpholino)ethyl]acetamide dihydrochloride, m.p. 195-197°C, using 2-picolyl chloride in the alkylation step in place of benzyl bromide.
- (c) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-2-[2-(4-morpholino)ethyl]acetamide dihydrochloride, m.p. >210°C, using 3-picolyl chloride in the alkylation step in place of benzyl bromide.
- (d) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](2-methylthiazol-4-ylmethyl)amino]-2-[2-(4-morpholino)ethyl]acetamide dihydrochloride, m.p. 180°C, using 4-chloromethyl-2-methylthiazole in the alkylation step in place of benzyl bromide.
- (e) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](benzyl)amino]-2-[2-(4-thiomorpholino)ethyl]acetamide, m.p. 50-52°C, by starting the synthesis with N-(2-chloroethyl)thiomorpholine, and carrying out the subsequent steps as described in example 7.
- (f) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](benzyl)amino]-2-[2-methylthiazol-4-ylmethyl]acetamide m.p. 79-81°C, by starting the synthesis with 4-chloromethyl-2-methylthiazole hydrochloride, and carrying out the subsequent steps as described in example 7.
- (g) N-Hydroxy-2-[[4-methoxybenzenesulfonyf](benzyl)amino]-2-[6-chloropiperonyl]acetamide, m.p. 70-74°C, by starting the synthesis with 6-chloropiperonyl chloride, and carrying out the subsequent steps as described in example 7.
- (h) N-Hydroxy-2-[[4-methoxybenzenesulfonyi](benzyl)amino]-2-[(1-pyrazolyl)methyl]acetamide, m.p. 130-131°C, by starting the synthesis with β-pyrazol-1-yl-alanine (prepared following the procedure of J. Am. Chem. Soc., 110, p. 2237 (1988)), and carrying out the subsequent steps as described in example 7.
- (i) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-2-[3-picolyl]acetamide dihydrochloride, m.p. >220°C, by starting the synthesis with 3-picolyl chloride, and carrying out the subsequent steps as described in example 7, but in addition, using 3-picolyl chloride in the alkylation step in place of benzyl bromide in example 7.
- (j) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](benzyl)amino]-2-[(1-methyl-4-imidazolyl)methyl]acetamide hydrochloride, m.p. >200°C, by starting the synthesis with N-τ-methylhistidine dihydrochloride (prepared following the procedure of Recueil, 97, p.293 (1978)), and carrying out the subsequent steps as described in example 7.
- (k) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](isobutyl)amino]-2-[(1-methyl-4-imidazolyl)methyl]acetamide hydrochloride, m.p. 194-195°C, by starting the synthesis with N-τ-methylhistidine dihydrochloride and carrying out the subsequent steps as described in example 7, using isobutyl iodide in the alkylation step in place of benzyl bromide.
- (I) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-2-[(1-methyl-4-imidazolyl)methyl]acetamide hydrochloride, m.p. >220°C, by starting the synthesis with N-τ-methylhistidine dihydrochloride and carrying out the subsequent steps as described in example 7, using 3-picolyl chloride in the alkylation step in place of benzyl bromide.
- (m) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](2-picolyl)amino]-2-[(1-methyl-4-imidazolyl)methyl]acetamide hydrochloride, m.p. 162-164°C, by starting the synthesis with N-τ-methylhistidine dihydrochloride and carrying out the subsequent steps as described in example 7, using 2-picolyl chloride in the alkylation step in place of benzyl bromide.
- (n) N-hydroxy-2-[[4-methoxybenzenesulfonyl](2-methylthiazol-4-ylmethyl)amino]-2-[(1-methyl-4-imida-

zolyl)methyl]acetamide hydrochloride, m.p. 160-163°C, by starting the synthesis with N-τ-methylhistidine dihydrochloride and carrying out the subsequent steps as described in example 7, using 4-chloromethyl-2-methylthiazole in the alkylation step in place of benzyl bromide.

(o) N-hydroxy-2-[[4-methoxybenzenesulfonyi](piperonyl)amino]-2-[(1-methyl-4-imidazolyl)methyl]acetamide hydrochloride, m.p. 195°C, by starting the synthesis with N-τ-methylhistidine dihydrochloride and carrying out the subsequent steps as described in example 7, using piperonyl chloride in the alkylation step in place of benzyl bromide.

Example 9:

10

15

20

25

30

35

45

50

55

(a) Methyl 2-[[4-methoxybenzenesulfonyl](benzyl)amino]propionate (2.1 g, 6.01 mmol) is dissolved in methanol (20.0 mL). To this solution is added hydroxylamine hydrochloride (0.84 g, 12.0 mmol), followed by the addition of sodium methoxide (7.0 mL of a 4.37M solution). The reaction is stirred overnight at room temperature. The reaction is worked up by first removing all the solvent, and partitioning between ethyl acetate/hexane (2/1) and saturated sodium bicarbonate. The aqueous phase is extracted well with ethyl acetate/hexane, the combined organic layers are dried (MgSO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (ethyl acetate) to give N-hydroxy-2-[[4-methoxybenzenesulfonyl](benzyl)amino]propionamide, m.p. 149-151°C.

The starting material is prepared as follows:

D,L-Alanine (27.0 g, 300.0 mmol) is dissolved in a solution of methanol (100.0 mL) saturated with HCl gas, and the reaction is refluxed for 2 hours. The solvent is then evaporated, and the residue triturated with ethyl acetate to give alanine methyl ester hydrochloride.

Alanine methyl ester hydrochloride (7.0 g, 50.0 mmol) is dissolved in methylene chloride (100.0 mL) and triethylamine (20.0 mL, 143.0 mmol). To this solution is added 4-methoxybenzenesulfonyl chloride (10.3 g, 50.0 mmol), and the reaction is stirred at room temperature briefly. The reaction is made basic with 1N sodium hydroxide, and washed with methylene chloride. The combined organic layers are dried (Na₂SO₄), and the solvent is evaporated. Hexane is added to the residue and the precipitate is collected to give N-[4-methoxybenzenesulfonyl]-alanine methyl ester.

To a suspension of sodium hydride (0.60 g, 11.0 mmol) in dimethylformamide (20.0 mL), is added N-[4-methoxybenzenesulfonyl]-alanine methyl ester (2.6 g, 10.0 mmol) in dimethylformamide (10.0 mL). After stirring at room temperature for 30 minutes, benzyl bromide (1.22 mL, 10.0 mmol) is added, and the reaction is stirred for two hours at room temperature. The reaction is then partitioned between ether and brine, the organic layer is dried (Na₂SO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (20% ether/hexanes) to give methyl 2-[[4-methoxybenzenesulfonyl](benzyl)amino]-propionoate.

(b) Similarly prepared is N-hydroxy-2-[[4-methoxybenzenesulfonyi](benzyl)amino]-4-thiomethylbutyramide, m.p. 104-106°C, by starting the synthesis with D,L-methionine, and carrying out the subsequent steps as described above.

Example 10: A solution of methyl 2-[[4-methoxybenzenesulfonyl](benzyl)amino]-4-(methylsulfonyl)butyrate (900 mg, 2.0 mmol), sodium methoxide previously generated from sodium metal spheres (100.0 mg, 4.5 mmol), and hydroxylamine hydrochloride (280.0 mg, 4.0 mmol) is refluxed for 2 days. The mixture is cooled to room temperature, concentrated in vacuo, diluted with water, acidified with citric acid, and extracted with ethyl acetate. The combined organic extracts are dried (MgSO₄) and and the solvent is evaporated. The product is purified by silica gel chromatography (ethyl acetate) to give N-hydroxy-2-[[4-methoxybenzenesulfonyl](benzyl)amino]-4-(methylsulfonyl)butyramide, [M+1]=157.

The starting material is prepared as follows:

To a solution of racemic methionine methyl ester (1.98 g, 10.0 mmol) in methylene chloride (25 mL) containing triethylamine (2.0 mL, 14.3 mmol) is added 4-methoxybenzenesulfonyl chloride (2.1 g, 10.2 mmol). After stirring for 2 hours at room temperature, the mixture is diluted with 1 N hydrochloric acid. The organic layer is removed and the aqueous layer is extracted with ether. The combined organic layers are washed with brine, dried (MgS0₄), and and the solvent is evaporated. The concentrated solution is triturated with ether, and the product is collected by filtration to give methyl 2-[[4-methoxybenzenesulfonyl]amino]-4-(thiomethyl)butyrate.

To a solution of methyl 2-[[4-methoxybenzenesulfonyl]amino]-4-(thiomethyl)butyrate (2.1 g, 6.2 mmol) in dimethylformamide (15 mL) containing potassium carbonate (4.0 g, 29.0 mmol) is added benzyl bromide (1.5 mL, 12.6 mmol). The reaction mixture is stirred for 1 hour at room temperature. The mixture is quenched with water and extracted with ether. The organic extracts are washed with brine, dried (MgSO₄), and and the solvent is evaporated. The product is purified by silica gel chromatography (30% ethyl acetate/nexanes) to give methyl 2-[[4-methoxybenzenesulfonyl](benzyl)amino]-4-(thiomethyl)butyrate.

A solution of methyl 2-[[4-methoxybenzenesulfonyl](benzyl) amino]-4-(thiomethyl)butyrate (925.0 mg, 2.17

mmol) in 25% peracetic acid (5 mL) is stirred overnight at room temperature. The mixture is concentrated in vacuo, diluted with water, and extracted with ethyl acetate. The combined organic extracts are dried (MgSO₄) and the solvent is evaporated to give methyl 2-[[4-methoxybenzenesulfonyl](benzyl)amino]-4-(methylsulfonyl)butyrate.

Example 11:

10

15

20

25

45

50

55

(a) To a solution of 2R-[[(4-methoxybenzene)sulfonyl](benzyl)amino]-propionic acid (1.04 g, 2.98 mmol) in methylene chloride (50 mL) containing dimethylformamide (230 mL, 2.98 mmol) at room temperature is added oxalyl chloride (520 mL, 5.96 mmol) over 5 minutes dropwise. The mixture is stirred for 30 minutes at room temperature, then added to a pre-formed mixture of hydroxylamine hydrochloride (828 mg, 11.92 mmol) and triethylamine (2.5 mL, 17.9 mmol) in tetrohydrofuran (20 mL)/water (1.5 mL) at 0°C. The reaction mixture is stirred for 45 minutes at 0°C then slowly warmed to room temperature for 15.5 hours. The mixture is acidified with 1N hydrochloric acid and extracted with methylene chloride. The combined organic extracts are washed with brine, dried (MgS0₄), and the solvent is evaporated. The crude product is recrystallized from diethyl ether/ethyl acetate (1:1) to give N-hydroxy-2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-propionamide, m.p. 127-129°C.

The starting material is prepared as follows:

To a solution of D-alanine methyl ester hydrochloride (3.0 g, 21.5 mmol) in methanol (10 mL) is added benzaldehyde (2.3 mL, 22.6 mmol). The reaction mixture is stirred at room temperature for 3 hours. The solvent is then evaporated. To the resultant residue is added acetic acid (15 mL) and methanol (1 mL) followed by portionwise addition of sodium cyanoborohydride (1.35 g, 21.5 mmol) at room temperature. The mixture is stirred overnight, and then the solvent is evaporated. The remaining residue is diluted with water (75 mL) and basified with Na_2CO_3 . The mixture is extracted with ethyl acetate (3x75 mL). The combined organic extracts are washed with brine (50 mL), dried (Na_2SO_4), and the solvent is evaporated to give N-benzyl-D-alanine methyl ester

To a solution of N-benzyl-D-alanine methyl ester (~2 g) in methylene chloride (40 mL) containing triethylamine (2.47 mL, 17.7 mmol) is added 4-methoxybenzenesulfonyl chloride (2.44 g, 11.8 mmol). The reaction mixture is stirred overnight at room temperature. The mixture is acidified with 1N HCl and extracted with methylene chloride. The combined organic extracts are washed with brine, dried (Na₂SO₄), and the solvent is evaporated. The crude product is purified by silica gel chromatography (10%->20% ethyl acetate/hexanes) to provide methyl 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino] propionate.

To a solution of methyl 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino] propionate (1.05 g, 2.89 mmol) in tetrahydrofuran (60 mL) at room temperature is added 1N aqueous sodium hydroxide (8.6 mL, 8.67 mmol). The reaction mixture is stirred for 19 hours at room temperature. The tetrahydrofuran is then evaporated. The remaining residue is acidified with 1N hydrochloric acid and extracted with ethyl acetate. The combined organic extracts are washed with brine, dried (Na₂SO₄), and the solvent is evaporated to give 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino] propionic acid.

(b) Similarly prepared is N-hydroxy-2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-2-benzylacetamide, [M+1] = 441, by starting with (R)-phenylalanine, and carrying out the previously described steps.

Example 12:

(a) To a solution of N-(t-butyloxy)-2(R)-[[4-methoxybenzenesulfonyl(benzyl)amino]-6-(N,N-dimethylamino)-hexamide (2.13 g, 4.21 mmol) in 1,2-dichloroethane (140 mL) is added ethanol (250 mL, 4.21 mmol). The solution is cooled to -10°C and hydrogen chloride gas is bubbled in for 30 minutes. The reaction mixture is then sealed and allowed to warm to room temperature, stirring for 2 days. At this time point, the reaction mixture is cooled to -10°C and hydrogen chloride gas is bubbled in for an additional 30 minutes. The reaction mixture is sealed, warmed to room temperature, and stirred for 24 hours. The mixture is reduced in volume by 1/2 in vacuo and triturated with ether. The mother liquid is removed and the remaining white solid is dried in vacuo to provide N-hydroxy-2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-6-(N,N-dimethylamino)-hexanamide hydrochloride salt, m.p. 175-177°C.

The starting material is prepared as follows:

To a solution of ϵ -N-CBZ-(R)-lysine methylester hydrochloride (15.0 g, 45.10 mmol) in methylene chloride (250 mL) containing triethylamine (15.72 mL, 112.75 mmol) is added 4- methoxybenzenesulfonyl chloride (10.25 g, 49.61 mmol) at 0°C. The reaction mixture is warmed to room temperature and stirred overnight. The reaction mixture is diluted with methylene chloride and washed with 1 N hydrochloric acid. The organic layer is washed with brine, dried (Na₂SO₄), and concentrated in vacuo to yield a yellow oil. The product is purified by silica gel chromatography (50% ethyl acetate/hexanes) to give methyl 2(R)-[[4-methoxybenzenesulfonyl]amino]-6-(N-benzylcarbamoyl) hexanoate.

To a solution of methyl 2(R)-[[4-methoxybenzenesulfonyl]amino]-6-(N-benzylcarbamoyl) hexanoate (12.4

::

g, 26.5 mmol) in dimethylformamide (100 mL) is added potassium carbonate (7.5 g, 52 mmol) and benzyl bromide (3.3 mL, 28.0 mmol), and the reaction is stirred for 24 hours at room temperature. The mixture is partitioned between water and 50% diethyl ether/ethyl acetate. The aqueous layer is removed and extracted with 50% diethyl ether/ethyl acetate. The combined organic layers are washed with brine, dried (MgSO₄) and the solvent is evaporated. The crude product is purified by silica gel chromatography (50% ethyl acetate/hexanes) to give methyl 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-6-(N-benzylcarbamoyl) hexanoate.

To a solution of methyl 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-6-(benzylcarbamoyl) hexanoate (8.61 g, 15.53 mmol) in 95% ethanol (150 mL) is added 1N hydrochloric acid (15.5 mL, 15.53 mmol) followed by 10% Pd/C (4.0 g). The reaction mixture is stirred at room temperature under 1 atmosphere of hydrogen gas for 2 hours. The mixture is filtered through Celite and the solvent is evaporated to provide methyl 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-6-aminohexanoate.

To a solution of methyl 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-6-aminohexanoate (5.05 g, 12.02 mmol) in refluxing formic acid (120 mL) containing sodium formate (2.45 g, 36.07 mmol) is added 37% aqueous formaldehyde (2.70 mL, 36.07 mmol). While continuing to reflux the reaction mixture, three more aliquots of 37% aqueous formaldehyde (2.70 mL, 36.07 mmol) each aliquot) are added at 10 minute intervals. The mixture is concentrated in vacuo to yield a yellow oil. The crude product is purified by silica gel chromatography (10:1:0.5; ethylacetate/methanol/ammonium hydroxide) to provide methyl 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-6-(N,N-dimethylamino) hexanoate. This procedure is repeated and the combined product is used in the next reaction.

To a solution of methyl 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-6-(N,N-dimethylamino) hexanoate (4.55 g, 10.7 mmol) in tetrahydrofuran (100 mL) is added 1N aqueous lithium hydroxide (20 mL, 20.33 mmol). The reaction mixture is stirred at room temperature overnight. The reaction mixture is directly concentrated to dryness in vacuo to give the lithium salt of 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-6-(N,N-dimethylamino) hexanoic acid.

To a solution of 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-6-(N,N-dimethylamino) hexanoic acid lithium salt (4.42 g, 10.18 mmol) in methylene chloride (100 mL) containing N- methylmorpholine (6.73 mL, 61.06 mmol), 1-hydroxybenzotriazole monohydrate (1.64 g, 10.687 mmol) and O-t-butylhydroxyl amine hydrochloride (1.41 g, 11.20 mmol) is added N-[dimethylaminopropyl]-N'-ethylcarbodiimide hydrochloride (3.90 g, 20.36 mmol) at 0°C. The reaction mixture is allowed to warm to room temperature and stirring is continued overnight. The mixture is diluted with methylene chloride, washed with saturated sodium bicarbonate, then with brine, dried (Na₂SO₄) and the solvent is evaporated. The crude product is purified by silica gel chromatography (10:1:0.5 ethyl acetate/methanol/ammonium hydroxide) to provide N-(t-butyloxy)-2(R)-[[4-methoxybenzenesultonyl](benzyl)amino]-6-(N,N-dimethylamino) hexanamide.

(b) Similarly prepared is N-hydroxy-2-(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-6-(N,N-dimethyl-amino)-hexanamide dihydrochloride, m.p. 179-180°C.

The first step is carried out as described above. The alkylation step is carried out as follows:

To a solution of methyl 2(R)-[[4-methoxybenzenesulfonyl]amino]-6-(benzylcarbamoyl)-hexanoate (10.48 g, 22.43 mmol) in dimethylformamide (220 mL) at 0°C is added 3-picolyl chloride hydrochloride (3.86 g, 23.55 mmol) followed by sodium hydride (2.24 g, 56.07 mmol, 60% in oil). The reaction mixture is warmed to room temperature and stirred for 24 hours. The reaction mixture is quenched with water and extracted with ethyl acetate. The combined organic extracts are washed with brine, dried (Na₂SO₄), and the solvent is evaporated. The crude product is purified by silica gel chromatography (75% ethyl acetate/hexanes) to provide methyl 2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-6-(benzylcarbamoyl) hexanoate.

All of the following steps are carried out as described above.

(c) Similarly prepared is N-hydroxy-2(R)-[[4-methoxybenzenesulfonyl](2-picolyl)amino]-6-(N,N-dimethyl-amino)-hexanamide dihydrochloride, m.p. 134-136°C, by alkylating with 2-picolyl chloride in the second step and carrying out the subsequent steps as described above.

Example 13: N-(t-Butyloxy)-2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-6-[(N,N-dimethylglycyl)amino] hexanamide (2.17 g, 3.86 mmol) is dissolved in dichloroethane (12 mL) containing ethanol (0.22 mL, 3.86 mmol), and the reaction is cooled to -10°C. Hydrochloric acid gas is bubbled through this solution for 30 minutes. The reaction is sealed, warmed to room temperature and stirred for 2 days. The solvent is reduced to 1/2 volume by evaporating solvent, and triturated with ether. The resulting solid is removed and dried in vacuo to provide N-hydroxy-2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-6-[(N,N-dimethylglycyl)amino] hexanamide hydrochloride, m.p. 105-108°C.

The starting material is prepared as follows:

5

10

15

20

25

30

35

40

50

55

To a solution of methyl 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-6-amino hexanoate hydrochloride (7.5 g, 16.44 mmol) in methylene chloride (170 mL) is added 1-hydroxybenzotriazole monohydrate (2.64 g, 1726 mmol), N-methylmorpholine (5.44 mL, 49.34 mmol), and N,N-dimethylglycine (1.86 g, 18.08 mmol), and the reac-

tion is coled to 0°C. N-[dimethylaminopropyl]-N'-ethylcarbodiimide hydrochloride (6.30 g, 32.88 mmol) is added at 0°C. The reaction mixture is warmed to room temperature and stirred overnight. The mixture is diluted with methylene chloride and washed with saturated aqueous sodium bicarbonate, and then with brine. The organic layer is dried (Na₂SO₄), filtered, and and the solvent is evaporated. The crude product is purified by silica gel chromatography (10/0.5/0.5 ethyl acetate/methanol/ammonium hydroxide) to provide methyl 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-6-[(N,N-dimethylglycyl)amino] hexanoate (6.04 g).

To a solution of methyl 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-6-[(N,N-dimethylglycyl)amino] hexanoate (3.95 g, 7.82 mmol) in tetrahydrofuran (75 mL) at 0°C is added 1N lithium hydroxide (15.64 ml, 15.64 mmol). The reaction mixture is warmed to room temperature and stirred overnight. The tetrahydrofuran is removed and the remaining aqueous layer is acidified with 1N hydrochloric acid. The mixture is evaporated to dryness to yield 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-6-[(N,N-dimethylglycyl)amino] hexanoic acid hydrochloride.

To a solution of 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-6-[(N,N-dimethylglycyl)amino] hexanoic acid hydrochloride (4.12 g, 7.82 mmol) in methylene chloride (78 mL) and dimethylformamide (5 mL) is added 1-hydroxybenzotriazole monohydrate (1.26 g, 8.21 mmol), N-methylmorpholine (2.58 ml, 23.45 mmol), and O-t-buty-hydroxylamine hydrochloride (1.08 g, 8.60 mmol). The reaction is cooled to 0°C, and N-[dimethylaminopropyl]-N'-ethylcarbodiimide hydrochloride (3.0 g, 15.64 mmol) is added. The reaction mixture is warmed to room temperature and stirred overnight. The mixture is then diluted with methylene chloride and washed with saturated aqueous sodium bicarbonate, and then with brine. The organic layer is dried (Na₂SO₄), filtered, and and the solvent is evaporated. The crude product is purified by silica gel chromatography (10/0.5/0.5 ethyl acetate/methanol/ammonium hydroxide) to provide N-(t-butyloxy)-2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-6-[(N,N-dimethylglycyl)amino] hexanamide.

Example 14:

10

15

20

25

35

40

45

50

55

(a) To a solution of 4-[[4-methoxybenzenesulfonyl](benzyl)amino]-4-carboxy-tetrahydrothiopyran (413.0 mg, 1.0 mmol) in methylene chloride (10 mL) containing dimethylformamide (80.0 mg, 1.1 mmol) is added a 2N solution of oxalyl chloride in methylene chloride (1.0 ml, 2.0 mmol) at -10°C. The mixture is allowed to warm to 20°C for 30 minutes. This mixture is added to a pre-stirred mixture of hydroxylamine hydrochloride (280.0 mg, 4.0 mmol) in tetrahydrofuran (10 ml)/water (1 ml) containing triethylamine (650.0 mg, 6.0 mmol) at 0°C dropwise. The reaction mixture is allowed to slowly warm to room temperature and stirring is continued for 1.5 days. The reaction is worked up by partitioning between 1 N hydrochloric acid and ethyl acetate. The aqueous layer is removed and repeatedly extracted with ethyl acetate. The combined organic layers are dried (Na₂SO₄) and the solvent is evaporated. The crude product is purified by silica gel chromatography (2% methanol/methylene chloride) to give 4-[N-hydroxy-carbamoyl]-4-[[4-methoxybenzenesulfonyl](benzyl)amino]-tetrahydrothiopyran, m.p. 179-181°C.

The starting material is prepared as follows:

A solution of tetrahydrothiopyran-4-one (4.64 g, 40.0 mmol) in methanol (10 mL) is added to a mixture of sodium cyanide (2.0 g, 40.0 mmol) and ammonium chloride (2.36 g, 44.0 mmol) in water (8 mL). The reaction mixture is heated to reflux for 14 hours. The mixture is diluted with water, basified with potassium carbonate, and extracted with diethyl ether. The organic extract is dried (MgSO₄) and filtered. The solution is acidified with hydrochloric acid saturated with methylene chloride. The resulting precipitate is filtered off providing 4-amino-4-cyano-tetrahydrothiopyran hydrochloride salt.

A solution of 4-amino-4-cyano-tetrahydrothiopyran (5.4 g, 30.3 mmol) in 6N aqueous hydrochloric (250 mL) acid is heated to reflux for 24 hours. The mixture is triturated by addition of methanol/toluene, and filtered. To the crude product, 4-amino-4-carboxytetrahydrothiopyran is added 40 ml of methanol followed by careful addition of thionyl chloride (3.0 ml, 41.1 mmol). The reaction mixture is heated to reflux for 12 hours, cooled to room temperature, and concentrated in vacuo to a reduced volume. The remaining mixture is triturated with ethyl acetate/diethyl ether, and the product is collected by filtration, to give 4-amino-4-carbomethoxy-tetrahydrothiopyran hydrochloride.

To a solution of 4-amino-4-carbomethoxy-tetrahydrothiopyran hydrochloride (3.1 g, 15.0 mmol) in methylene chloride (75 mL) containing triethylamine (3.5 g, 330.0 mmol) is added 4-methoxybenzenesulfonyl chloride (4.1 g, 20.0 mmol) at room temperature. The reaction mixture is stirred at room temperature for 18 hours. The mixture is diluted with water and the organic layer is removed. The aqueous layer is extracted with diethyl ether and the organic extracts are washed with brine, dried (MgSO₄) and the solvent is evaporated. The product is purified by silica gel chromatography (50% ethylacetate/hexanes) to provide 4-[[4-methoxybenzenesulfo-nyl]amino]-4-carbomethoxy-tetrahydrothiopyran.

To a solution of 4-[[(4-methoxybenzene)sulfonyl]amino]-4-carbomethoxy-tetrahydrothiopyran (690.0 mg, 2.0 mmol) in dimethylformamide (20 mL) at 0°C is added sodium hydride (100.0 mg, 2.5 mmol, 60% in oil) and benzyl bromide (0.5ml, 4.2 mmol). The reaction mixture is allowed to warm to room temperature and stirred for 16 hours. The mixture is quenched by addition of water and extracted with 50% ethyl acetate/diethyl ether. The

combined organic extracts are dried (MgSO₄), filtered, and the solvent is evaporated. The product is purified by silica gel chromatography (50% diethyl ether/hexanes) to provide 4-[[4-methoxybenzenesulfonyl](benzyl)amino]-4-carbomethoxy-tetrahydrothiopyran.

To a solution of 4-[[4-methoxybenzenesulfonyl](benzyl)amino]-4-carbomethoxytetrahydrothiopyran (800.0 mg, 1.9 mmol) in methanol (50 mL) is added 1 N sodium hydroxide (25 mL). The mixture is heated to reflux for 10 hours, and then solid sodium hydroxide is added (3.0 g, excess) and refluxing is continued for 18 hours. The mixture is concentrated to a volume of approximately 30 mL and acidified with citric acid (pH=5). The mixture is partitioned between ethyl acetate and water. The organic layer is removed, washed with brine, dried (MgSO₄), and the solvent is evaporated to give 4-[[4-methoxybenzenesulfonyl](benzyl)amino]-4-carboxytet-rahydrothiopyran.

- (b) Similarly prepared is 4-[N-hydroxycarbamoyl]-4-[[4-methoxybenzenesulfonyl](benzyl)amino]-tetrahydropyran, m.p. 137-140°C, by starting with tetrahydropyran-4-one in the first step, and carrying out the subsequent steps as described above.
- (c) Similarly prepared is 1-[N-hydroxy-carbamoyl]-1-[[4-methoxybenzenesulfonyl](benzyl)amino]-cyclohexane, m.p. 149-151°C, by using commercially available 1-aminocyclohexanecarboxylic acid in the second step, and carrying out the subsequent steps as described above.
- (d) Similarly prepared is 1-[N-hydroxy-carbamoyl]-1-[[4-methoxybenzenesulfonyl](benzyl)amino]-cyclopentane, m.p. 67.0-68.0°C, by using commercially available 1-aminocyclopentane carboxylic acid in the second step, and carrying out the subsequent steps as described above.
- (e) Similarly prepared is 1-[N-hydroxy-carbamoyl]-1-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-cyclohexane, m.p. 115°C, by using 1-aminocyclohexanecarboxylic acid in the second step, alkylating 1-[carbomethoxy]-1-[[(4-methoxybenzene)sulfonyl]amino]-cyclohexane with 3-picolyl chloride in the third step, and carrying out the other steps as described above.
- (f) Similarly prepared is 1-[N-hydroxy-carbamoyl]-1-[[4-methoxybenzenesulfonyl](3-picolylamino]-cyclopropane hydrochloride, m.p. 205-207°C, starting with 1-amino-1-cyclopropanecarboxylic acid.

Example 15: 4-[N-t-Butyloxycarbamoyl]-4-[[4-methoxybenzenesulfonyl](benzyl)amino]-1-[benzyl]piperidine is dissolved in dichloroethane (60 mL) and ethanol (1.0 mL) in a glass sealed tube. Hydrochloric acid gas (from a lecture bottle) is bubbled through the solution for 30 minutes at -10°C. The tube is sealed, gradually warmed to room temperature, and stirred overnight. At this point, hydrochloric acid gas is again bubbled through the reaction mixture as done previously and stirred at room temperature for an additional 24 hours. The reaction mixture is reduced to 1/3 volume in vacuo and triturated with diethyl ether. The solid is filtered off and dried in vacuo to provide 4-[N-hydroxy-carbamoyl]-4-[[4-methoxybenzenesulfonyl](benzyl)amino]-1-[benzyl]-piperidine, m.p. 135.5-142°C.

The starting material is prepared as follows:

5

10

15

20

25

30

35

45

50

55

A mixture of N-carboethoxy-4-piperidone (88.6 g, 517.2 mmol), sodium cyanide (30.0 g, 612.1 mmol) in water (54 mL), ammonium chloride (34.0 g, 635.5 mmol) in water (72 mL), and ammonium hydroxide (76 ml) is heated to 60-65°C for 5 hours, and then stirred at room temperature overnight. The resulting solid is filtered off, dissolved in methylene chloride, and washed with a small amount of brine. The organic layer is dried (MgSO₄), concentrated in vacuo to 1/2 volume, and triturated with hexane. The resulting precipate is collected by filtration and dried under vacuum, to give N-carboethoxy-4-amino-4-cyanopiperidine.

A solution of N-carboethoxy-4-amino-4-cyanopiperidine (82.0 g) in water (700 mL) containing concentrated hydrochloric acid (800 mL) is stirred at room temperature for 4 days. The solvent is then evaporated to give 4-amino-4-carboxypiperidine dihydrochloride.

Into a heterogeneous mixture of 4-amino-4-carboxypiperidine dihydrochloride (61.0 g, 0.34 mmol) in methanol (600 mL) is bubbled hydrogen chloride gas at room temperature. The reaction mixture is concentrated to dryness in vacuo, dissolved in 1,4-dioxane (200 mL), and concentrated in vacuo. The residue is redissolved in methanol (1600 mL) into which hydrogen chloride gas is bubbled for 45 minutes. The reaction mixture is refluxed for 18 hours. Most of the solvent is then evaporated, the product is collected by filtration, and washed with ethyl acetate to give 4-amino-4-carbomethoxypiperidine dihydrochloride.

To a mixture of 4-amino-4-carbomethoxypiperidine dihydrochloride (6.60 g, 28.7 mmol) and potassium carbonate (18.8 g, 143.5 mmol) in dioxane/water (350 ml/176 ml) at 0°C is added di-t-butyl-dicarbonate (8.14 g, 37.31 mmol) in dioxane (60 mL) over 2 hours. The reaction mixture is warmed to room temperature and stirred for 8 hours. To this mixture is added a solution of 4- methoxybenzenesulfonyl chloride (7.71 g, 37.31 mmol) in dioxane (60 mL) at 0°C. The reaction mixture is stirred at room temperature overnight. An additional portion of 4- methoxybenzenesulfonyl chloride (7.71 g, 37.31 mmol) in dioxane (60 mL) is added to the mixture at 0°C. The reaction mixture is allowed to warm to room temperature and stirred overnight. The mixture is concentrated in vacuo, diluted with water, and extracted with ethyl acetate. The aqueous layer is removed, saturated with sodium chloride, and reextracted with ethyl acetate. The combined extracts are dried (MgSO4), and the solvent is evaporated. The crude product is purified by silica gel chromatography (50% ethylacetate/hexane) to provide 4-[[4-methoxybenzenesulfo-

nyl]amino]-1-[(t-butoxycarbonyl]-4-[carbomethoxy]-piperidine, contaminated with a small amount of 4-methoxyben-zene-sulfonic acid.

To a solution of 4-[[4-methoxybenzenesulfonyl]amino]-1-[(t-butoxycarbonyl]-4-[carbomethoxy]-piperidine (4.0 g, 9.30 mmol) in dimethylformamide (150 mL) at 0°C is added sodium hydride (1.12 g, 28.0 ml, 60% in oil) followed by benzyl bromide (4.8 g, 28.0 mmol). The reaction mixture is allowed to warm to room temperature for 1 hour. The mixture is quenched with water and extracted with diethyl ether. The organic extract is dried (MgSO₄) and the solvent is evaporated. The crude product is purified by silica gel chromatography (50% ethyl acetate/hexanes) to provide 4-[[4-methoxybenzenesulfonyl](benzyl)amino]-1-[(t-butoxycarbonyl]-4-[carbomethoxy] piperidine.

To a solution of 4-[[4-methoxybenzenesulfonyi](benzyl)amino]-1-[(t-butoxycarbo nyi]-4-(carbomethoxy]-piperidine (1.8 g, 3.47 mmol) in ethyl acetate (10 mL) is added a hydrogen chloride gas saturated methylene chloride solution (15 mL). The reaction mixture is stirred for 4 hours at room temperature. The mixture is concentrated in vacuo to give 4-[[4-methoxybenzenesulfonyi](benzyl)amino]-4-[carbomethoxy]-piperidine.

To a solution of 4-[[4-methoxybenzenesulfonyl](benzyl)amino]-4-[carbomethoxy]- - piperidine (1.0 g, 2.39 mmol) in dimethylformamide (160 mL) is added sodium hydride (287.0 mg, 7.18 mmol, 60% in oil) at 0°C, followed by benzyl bromide (450.0 mg, 2.63 mmol). The reaction mixture is slowly warmed to room temperature and stirred overnight. The mixture is quenched with water and extracted with ethyl acetate. The combined organic layers are washed with brine, dried (Na $_2$ SO $_4$) and the solvent is evaporated to give 4-[[4-methoxybenzenesulfonyl](benzyl)amino]-1-[benzyl]-4-[carbomethoxy]-piperidin e.

A heterogeneous mixture of 4-[[4-methoxybenzenesulfonyl](benzyl)amino]-1-[benzyl]-4-[carbomethoxy]-piperidine (1.2 g, 2.26 mmol) in 50% aqueous sodium hydroxide (10 mL) and methanol (50 mL) is heated to reflux for 16 hours. The methanol is evaporated and the residue is neutralized with 4 N hydrochloric acid. The aqueous solution is extracted with ethyl acetate. The combined organic extracts are dried (NaSO₄) and the solvent is evaporated to give 4-[[4-methoxybenzenesulfonyl](benzyl)amino]-1-[benzyl]-4-[carboxy]-piperidine.

To a mixture of 4-[[4-methoxybenzenesulfonyl](benzyl)amino]-1-[benzyl]-4-[carboxy]-piperidine (850.0 mg, 1.64 mmol) in methylene chloride (100 mL) containing N-methylmorpholine (0.6 ml, 5.48 mmol) and O-t-butylhydroxyl amine hydrochloride (620.0 mg, 4.94 mmol) is added N-[dimethylaminopropyl]-N'-ethylcarbodiimide hydrochloride (1.1 g, 5.74 mmol). The reaction mixture is stirred overnight at room temperature. The mixture is diluted with water and extracted with methylene chloride. The combined organic extracts are dried (Na₂SO₄) and the solvent is evaporated. The crude product is purified by silica gel chromatography (ethyl acetate) to provide 4-[N-t-butyloxy-carbamoyl]-4-[[4-methoxybenzenesulfonyl](benzyl)amino]-1-[benzyl]-piperidine.

Alternately, 4-[[4-methoxybenzenesulfonyl]amino]-1-[(t-butoxycarbonyl]-4-carbomethoxy]-piperidine is first hydrolyzed with sodium hydroxide to 4-[[4-methoxybenzenesulfonyl]amino]-1-[(t-butoxycarbonyl]-4-[carboxy]-piperidine. Treatment with O-t-butylhydroxylamine under conditions described above gives 4-[N-t-butyloxy-carbamoyl]-4-[[4-methoxybenzenesulfonyl](benzyl)amino]-1-[t-butoxycarbonyl]-piperidine. Reaction with 1N hydrochloric acid in ethyl acetate yields 4-[N-t-butyloxy-carbamoyl]-4-[[4-methoxybenzenesulfonyl](benzyl)amino]-piperidine, which is treated with benzyl bromide as described above.

Similarly prepared, starting from 4-[[4-methoxybenzenesulfonyl(benzyl)amino]-4-[carbomethoxy]-piperidine, are the following:

- (a) 4-[N-Hydroxy-carbamoyl]-4-[[4-methoxybenzenesulfonyl](benzyl)-amino]-1-[dimethylaminoacetyl]-piperidine hydrochloride, m.p. 145°C;
- (b) 4-[N-Hydroxy-carbamoyl]-4-[[4-methoxybenzenesulfonyl(benzyl)-amino]-1-[3-picolyl]-piperidine dihydrochloride, m.p. 167°C;
- (c) 4-[N-Hydroxy-carbamoyl]-4-[[4-methoxybenzenesulfonyl](benzyl)-amino]-1-(carbomethoxymethyl]-piperidine hydrochloride, m.p. 183.5-185°C;
- (d) 4-[N-Hydroxy-carbamoyl]-4-[[4-methoxybenzenesulfonyl](benzyl)-amino]-piperidine trifluoroacetate;
- (e) 4-[N-Hydroxy-carbamoyl]-4-[[4-methoxybenzenesulfonyl](benzyl)-amino]-1-[t-butoxycarbonyl]-piperidine;
- (f) 4-[N-Hydroxycarbamoyl]-4-[[4-methoxybenzenesulfonyl](benzyl)-amino]-1-[methylsulfonyl]-piperidine;
- (g) 4-[N-Hydroxycarbamoyl]-4-[[4-methoxybenzenesulfonyl](benzyl)amino]-1-[methyl]piperidine hydrochloride, m.p. 185.5-187°C;
- (h) 4-[N-Hydroxycarbamoyl]-4-[[methoxybenzenesulfonyl](benzyl)amino]-1-[morpholinocarbonyl]piperidine, m.p. 89-91°C;
- (i) 4-[N-Hydroxycarbamoyl]-4-[[4-methoxybenzenesulfonyl](benzyl)amino]-1-[4-picolyl]piperidine dihydrochloride, m.p. 168°C.

Example 16: Ethyl 2-[[4-methoxybenzenesulfonyl](benzyl)amino]acetate (11.20 g, 30.9 mmol) is dissolved in methanol (100 mL). To this solution is added hydroxylamine hydrochloride (4.31 g, 62.0 mmol), followed by the addition of sodium methoxide, freshly prepared from sodium (2.14 g, 93.0 mmol) dissolved in methanol (55 mL). The reaction is stirred overnight at room temperature. The reaction is worked up by partitioning between dilute hydrochloric

24

55

50

10

15

20

25

30

35

40

45

.

acid (pH=~3) and ethyl acetate. The aqueous phase is extracted well with ethyl acetate, the combined organic layers are dried (Na₂SO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (75 % ethyl acetate/ hexane) to give N-hydroxy-2-[[4-methoxybenzenesulfonyl](benzyl)amino]-acetamide, m.p. 112-114°C.

The starting material is prepared as follows:

5

10

15

20

25

30

35

40

50

55

Benzylamine (16.0 mL, 145.2 mmol) is dissolved in chloroform (110 mL), and the solution is cooled to 0°C. To this solution is added 4-methoxybenzenesulfonyl chloride (10.0 g, 48.4 mmol). The reaction is stirred at room temperature for 1 hour, and then refluxed for 1 hour. After cooling back to room temperature, the reaction is washed three times with 4N hydrochloric acid (200 mL), twice with water (100 mL), once with brine (50 mL), then dried (Na₂SO₄), and the solvent is evaporated to give N-[4-methoxybenzenesulfonyl]-benzylamine.

Sodium hydride (1.56 g of a 50 % oil dispersion, 33.0 mmol) is suspended in tetrahydrofuran (85 mL). To this is added a solution of N-[4-methoxybenzenesulfonyl]-benzylamine (9.0 g, 32.5 mmol) also in tetrahydrofuran (85 mL), and the reaction is stirred for 30 minutes at room temperature. Then ethyl bromoacetate (5.40 mL, 48.8 mmol) is added, and the reaction is stirred overnight at room temperature. The reaction is quenched with a small amount of water, and all the solvent is removed. The crude mixture is partitioned between ethyl acetate and water, the aqueous phase is extracted several times with ethyl acetate, the combined organic layers are dried (Na₂SO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (30% ethyl acetate/hexane) to give ethyl 2-[[4-methoxybenzenesulfonyl](benzyl)amino]acetate.

Example 17: The following compounds are prepared similarly to Example 16:

- (a) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](isobutyl)amino]acetamide, m.p. 133-134°C, by coupling isobutylamine with 4-methoxybenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (b) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](cyclohexylmethyl)amino]acetamide, m.p. 145-146°C, by coupling cyclohexanemethylamine with 4-methoxybenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (c) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](cyclohexyl)amino]acetamide, m.p. 148-149°C, by coupling cyclohexylamine with 4-methoxybenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (d) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](phenethyl)amino]acetamide, m.p. 137-138°C, by coupling phenethylamine with 4-methoxybenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (e) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](3-methylbutyl)amino]acetamide, m.p. 108°C, by coupling 1-amino-3-methylbutane with 4-methoxybenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (f) N-Hydroxy-2-[[4-methoxybenzenesulfonyi](sec-butyl)amino]acetamide, m.p. 138°C, by coupling (sec)-butylamine with 4-methoxybenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (g) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](tert-butyl)amino]acetamide, m.p. 150-151°C, by coupling (tert)-butylamine with 4-methoxybenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (h) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](4-fluorobenzyl)amino]acetamide, m.p. 115-119°C, by coupling 4-fluorobenzylamine with 4-methoxybenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (i) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](4-chlorobenzyl)amino]acetamide, m.p. 121-123°C, by coupling 4-chlorobenzylamine with 4-methoxybenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (j) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](isopropyl)amino]acetamide, m.p. 139-141°C, by coupling isopropylamine with 4-methoxybenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (k) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](4-methylbenzyl)amino] acetamide, m.p. 133-135°C, by coupling 4-methylbenzylamine with 4-methoxybenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (I) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](3-phenyl-1-propyl)amino]acetamide by coupling 3-phenyl-1-propylamine with 4-methoxybenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (m) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](4-phenylbutyl)amino]acetamide, m.p. 109-112°C, by coupling 4-phenylbutylamine with 4-methoxybenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.

- (n) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](2-cyclohexylethyl)amino]acetamide, m.p. 143-144°C, by coupling 2-cyclohexylethylamine with 4-methoxybenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (o) N-Hydroxy-2-[[4-methoxybenzenesulfonyi](4-phenylbenzyl)amino]acetamide by coupling 4-phenylbenzylamine with 4-methoxybenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (p) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](2,2,2-trifluoroethyl)amino]acetamide, m.p. 142-143°C, by coupling 2,2,2-trifluoroethylamine with 4-methoxybenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (q) N-Hydroxy-2-[[benzenesulfonyl](isobutyl)amino]acetamide, m.p. 130-131°C, by coupling isobutylamine with benzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.

10

15

20

25

30

35

40

45

55

- (r) N-Hydroxy-2-[[4-trifluoromethylbenzenesulfonyl](isobutyl)amino]acetamide, m.p. 130-131°C, by coupling isobutylamine with 4-trifluoromethylbenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (s) N-Hydroxy-2-[[4-chlorobenzenesulfonyl](isobutyl)amino]acetamide, m.p. 126-127°C, by coupling isobutylamine with 4-chlorobenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (t) N-Hydroxy-2-[[4-methylbenzenesulfonyl](isobutyl)amino]acetamide, m.p. 138-140°C, by coupling isobutylamine with 4-methylbenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (u) N-Hydroxy-2-[[4-fluorobenzenesulfonyl](isobutyl)amino]acetamide, m.p. 144-146°C, by coupling isobutylamine with 4-fluorobenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (v) N-Hydroxy-2-[[2-thiophenesulfonyl](isobutyl)amino]acetamide by coupling isobutylamine with 2-thiophenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (w) N-Hydroxy-2-[[benzenesulfonyl](benzyl)amino]acetamide, m.p. 90-93°C, by coupling benzylamine with benzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (x) N-Hydroxy-2-[[4-nitrobenzenesulfonyl](isobutyl)amino]acetamide, m.p. 128-130°C, by coupling isobutylamine with 4-nitrobenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (y) N-Hydroxy-2-[[4-(tert)-butylbenzenesulfonyl](isobutyl)amino]acetamide, m.p. 113-114°C, by coupling isobutylamine with 4-(tert)-butylbenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
- (z) N-Hydroxy-2-[[4-methylsulfonylbenzenesulfonyl](isobutyl)amino]acetamide, m.p. 159-161°C, by coupling isobutylamine with 4-methylsulfonylbenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
 - (aa) N-Hydroxy-2-[[3-trifluoromethylbenzenesulfonyl](isobutyl)amino]acetamide m.p. 140-141°C, by coupling isobutylamine with 3-trifluoromethylbenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
 - (bb) N-Hydroxy-2-[[2,4,6-trimethylbenzenesulfonyl](isobutyl)amino]acetamide, m.p. 142-143°C, by coupling isobutylamine with 2,4,6-trimethylbenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
 - (cc) N-Hydroxy-2-[[2,5-dimethoxybenzenesulfonyl](isobutyl)amino]acetamide, m.p. 50-53°C, by coupling isobutylamine with 2,5-dimethoxybenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
 - (dd) N-Hydroxy-2-[[3,4-dimethoxybenzenesulfonyl](isobutyl)amino]acetamide, m.p. 146-148°C, by coupling isobutylamine with 3,4-dimethoxybenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
 - (ee) N-Hydroxy-2-[[2,4,6-triisopropylbenzenesulfonyl](isobutyl)amino]acetamide, m.p. 131-133°C, by coupling isobutylamine with 2,4,6-triisopropylbenzenesulfonyl chloride in the first step, and carrying out the subsequent steps as described above.
 - (ff) N-Hydroxy-2-[[3,5-dimethylisoxazole-4-sulfonyl(benzyl)amino)acetamide, m.p. 140°C, by coupling benzylamine with 3,5-dimethylisoxazole-4-sulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.
 - (gg) N-Hydroxy-2-[[2,4-dimethylthiazole-5-sulfonyl(benzyl)amino]acetamide, m.p. 55°C, by coupling benzylamine with 2,4-dimethylthiazole-5-sulfonyl chloride in the first step, and carrying out the subsequent steps as described in example 16.

Example 18: Ethyl 2-[[4-methoxybenzenesulfonyl](4-methoxybenzyl)amino]acetate (0.90 g, 2.3 mmol) is dissolved in methanol (20 mL). To this solution is added hydroxylamine hydrochloride (0.80 g, 11.5 mmol), followed by the addition of sodium methoxide (5.2 mL of a 2.67M solution). The reaction is stirred overnight at room temperature. The reaction is worked up by partitioning between dilute hydrochloric acid (pH=~3) and ethyl acetate. The aqueous phase is extracted well with ethyl acetate, the combined organic layers are washed with brine, dried (Na₂SO₄), and the solvent is evaporated. The product is recrystallized from ether/ethyl acetate to give N-hydroxy-2-[[4-methoxybenzenesulfonyl](4-methoxybenzyl)amino]acetamide, m.p. 134-135.5°C.

The starting material is prepared as follows:

Glycine ethyl ester hydrochloride (31.39 g, 225.0 mmol) is dissolved in dioxane (150 mL) and water (150 mL), triethylamine (69.0 mL, 495.0 mmol) is added, and the solution is cooled to 0°C. To this solution is added 4-methoxybenzenesulfonyl chloride (51.15 g, 248.0 mmol) over 10 minutes. The reaction is warmed to room temperature and stirred overnight. The next day the mixture is reduced to one-half volume by evaporating solvent, diluted with 1N sodium hydroxide, and extracted well with ether. The combined organic layers are washed with brine, dried (Na₂SO₄), and the solvent is evaporated. The product is recrystallized from ether/ethyl acetate/hexanes to give ethyl 2-[[4-methoxybenzenesulfonyl]amino]acetate.

To a suspension of sodium hydride (0.906 g, 22.67 mmol) in dimethylformamide (50.0 mL), is added ethyl 2-[[4-methoxybenzenesulfonyl]amino]acetate (4.13 g, 15.11 mmol) and 4-methoxybenzyl chloride (2.17 mL, 15.87 mmol), and the reaction is stirred overnight at room temperature. The reaction is cooled to 0°C, quenched with 1N hydrochloric acid, and extracted well with ether. The combined organic layers are washed with brine, dried (Na₂SO₄), and the solvent is evaporated. The product is recrystallized from ether/hexanes to give ethyl 2-[[4-methoxybenzenesulfonyl](4-methoxybenzyl)amino]acetate.

Example 19: The following compounds are prepared similarly to example 18:

- (a) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](2-picolyl)amino]acetamide, m.p. 138.5-139.5°C, by alkylating ethyl 2-[[4-methoxybenzenesulfonyl]amino]acetate with 2-picolyl chloride in the second step, and carrying out the other steps as described in example 18.
- (b) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](3-picolyl)amino]acetamide, m.p. 144-145°C, by alkylating ethyl 2-[[4-methoxybenzenesulfonyl]amino]acetate with 3-picolyl chloride in the second step, and carrying out the other steps as described in example 18.
- (c) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](piperonyl)amino]acetamide, m.p. 143-144°C, by alkylating ethyl 2-[[4-methoxybenzenesulfonyl]amino]acetate with piperonyl chloride in the second step, and carrying out the other steps as described in example 18.
- (d) N-Hydroxy-2-[[4-methoxybenzenesulfonyl](2-piperidinylethyl)amino]acetamide, m.p. 120-122°C, by alkylating ethyl 2-[[4-methoxybenzenesulfonyl]amino]acetate with N-(2-chloroethyl)-piperidine in the second step, and carrying out the other steps as described in example 18.

Example 20:

5

10

15

20

25

30

35

50

55

(a) N-(t-Butyloxy)-2-[[4-methoxybenzenesulfonyi](2-quinolinylmethyl)amino]acetamide (1.15g, 2.42 mmol) is dissolved in methylene chloride (30.0 mL) and ethanol (0.20 mL) in a glass sealed tube. Hydrochloric acid gas (from a lecture bottle) is bubbled through the solution for 20 minutes, and then the tube is sealed and stands at room temperature overnight. The next day, additional hydrochloric acid gas is bubbled through the solution for 20 minutes, more ethanol (0.20 mL) is added, and then the tube is sealed and stands at room temperature for two days. After that time, the solvent is removed. The product is purified by silca gel chromatography (5% to 15% methanol/methylene chloride with ~1% ammonium hydroxide) to give N-hydroxy-2-[[4-methoxybenzenesulfonyi](2-quinolinylmethyl)amino]acetamide, m.p. 177-178°C.

The starting material is prepared as follows:

To a suspension of sodium hydride (0.84 g, 35.0 mmol) in dimethylformamide (120.0 mL), is added ethyl 2-[[4-methoxybenzenesulfonyl]amino]acetate (3.19 g, 11.67 mmol) and 2-(chloromethyl)quinoline (2.62 g, 12.26 mmol), and the reaction is stirred for three days at room temperature. Then, additional NaH (0.46 g, 11.67 mmol) is added, and the reaction is heated to 50° C for 5 hours. The reaction is cooled to 0° C, quenched with water, and extracted well with ether. The combined organic layers are washed with brine, dried (Na₂SO₄), and the solvent is removed to give ethyl 2-[[4-methoxybenzenesulfonyl](2-quinolinylmethyl)amino]acetate.

Ethyl 2-[[4-methoxybenzenesulfonyl](2-quinolinylmethyl)amino]acetate (4.0g, 9.63 mmol) is dissolved in tetrahydrofuran (70.0 mL). To this solution is added lithium hydroxide (18.0 mL of a 1N aqueous solution, 18.0 mmol), and the reaction is stirred at room temperature overnight. The tetrahydrofuran is evaporated, the reaction is then acidified to pH =~3 using 1N hydrochloric acid, and extracted well with ethyl acetate.

The combined organic layers are dried (Na₂SO₄), and the solvent is evaporated to give 2-[[4-methoxyben-zenesulfonyl](2-quinolinylmethyl)amino]acetic acid hydrochloride.

2-[[4-methoxybenzenesulfonyl](2-quinolinylmethyl)amino]acetic acid hydrochloride (1.49 g, 3.35 mmol), 1-hydroxybenzotriazole (0.539 g, 3.52 mmol), 4-methylmorpholine (1.55 mL, 14.9 mmol), and O-t-butylhydroxyl amine hydrochloride (0.464 g, 3.70 mmol) are dissolved in methylene chloride (50.0 mL), and the reaction is cooled to 0°C. To this solution is added N-[dimethylaminopropyl]-N'-ethylcarbodiimide hydrochloride (1.35 g, 7.04 mmol), and the reaction is allowed to warm up to room temperature and stir overnight. The reaction is diluted with more methylene chloride, and the organic layer is washed with saturated sodium bicarbonate, brine, dried (MgSO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (1% methanol/methylene chloride) to give N-(t-butyloxy)-2-[[4-methoxybenzenesulfonyl](2-quinolinylmethyl)amino]acetamide.

(b) Similarly prepared is N-hydroxy-2-[[4-methoxybenzenesulfonyl](4-picolyl)amino]-acetamide hydrochloride, m.p. 193°C, by alkylating ethyl 2-[[4-methoxybenzenesulfonyl]amino]acetate with 4-picolyl chloride in the second step, and carrying out the other steps as described above.

Example 21:

10

15

20

25

30

35

45

50

55

(a) 2-[[4-Methoxybenzenesulfonyl](6-chloropiperonyl)amino]acetic acid (1.87 g, 4.51 mmol) is dissolved in methylene chloride (45.0 mL). To this solution is added oxalyl chloride (0.784 mL, 9.02 mmol) and dimethylformamide (0.35 mL, 4.51 mmol), and the reaction is stirred at room temperature for 60 minutes. Meanwhile, in a separate flask, hydroxylamine hydrochloride (1.25 g, 18.04 mmol) and triethylamine (3.77 mL, 27.06 mmol) are stirred in tetrahydrofuran (20.0 mL) and water (5.0 mL) at 0°C for 15 minutes. After 60 minutes, the methylene chloride solution is added in one portion to the second flask, and the combined contents are stirred overnight as the flask gradually warms up to room temperature. The reaction is then diluted with acidic water (pH =~3), and extracted several times with ethyl acetate. The combined organic layers are dried (Na₂SO₄), and the solvent is evaporated. The product is recrystallized from ethyl acetate/methanol/acetone to give N-hydroxy-2-[[4-methoxybenzenesulfonyl](6-chloropiperonyl)amino] acetamide, m.p. 168-169°C.

The starting material is prepared as follows:

To a suspension of sodium hydride (1.08 g, 27.06 mmol) in dimethylformamide (180.0 mL), is added ethyl 2-[[4-methoxybenzenesulfonyl]amino]acetate (4.93 g, 18.04 mmol) and 6-chloropiperonyl chloride (3.88 g, 19.0 mmol), and the reaction is stirred overnight at room temperature. The reaction is cooled to 0°C, quenched with 1N hydrochloric acid, and extracted well with ether. The combined organic layers are washed with brine, dried (Na₂SO₄), and the solvent is evaporated. The product is recrystallized from ether/hexanes to give ethyl 2-[[4-methoxybenzenesulfonyl](6-chloropiperonyl)amino]acetate.

Ethyl 2-[[4-methoxybenzenesulfonyl](6-chloropiperonyl)amino]acetate (2.12g, 4.79 mmol) is dissolved in tetrahydrofuran (40.0 mL). To this solution is added lithium hydroxide (10.0 mL of a 1N aqueous solution, 10.0 mmol), and the reaction is stirred at room temperature overnight. The tetrahydrofuran is evaporated, the reaction is then acidified to pH =~3 using 1N hydrochloric acid, and extracted well with ethyl acetate. The combined organic layers are dried (Na₂SO₄), and the solvent is evaporated to give 2-[[4-methoxybenzenesulfonyl](6-chloropiperonyl)amino]acetic acid.

- (b) Similarly prepared is N-hydroxy-2-[[4-methoxybenzenesulfonyl](3,4,5-trimethoxybenzyl)amino]acetamide, m.p. 116-118°C, by alkylating ethyl 2-[[4-methoxybenzenesulfonyl]amino]acetate with 3,4,5-trimethoxybenzyl chloride in the second step, and carrying out the other steps as described above.
- (c) Similarly prepared is N-hydroxy-2-[[4-methoxybenzenesulfonyl](3-methoxybenzyl)amino]acetamide, m.p. 118-119°C, by alkylating ethyl 2-[[4-methoxybenzenesulfonyl]amino]acetate with 3-methoxybenzyl chloride in the second step, and carrying out the other steps as described above.

Example 22: Ethyl 2-[[4-methoxybenzenesulfonyl](2-[4-morpholino]ethyl)amino]acetate (7.1 g, 18.4 mmol) is dissolved in ethanol (100 mL), followed by the addition of sodium spheres (1.1 g). To this solution is added hydroxylamine hydrochloride (2.47 g, 35.5 mmol). The reaction is refluxed overnight. The reaction is worked up by removing most of the solvent, and partitioning between saturated sodium bicarbonate and ethyl acetate. The aqueous phase is extracted well with ethyl acetate, the combined organic layers are washed with brine, dried (MgSO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (80% ethyl acetate/16% methanol/4% acetic acid). The solvent is removed to give the product containing residual acetic acid. The product is partitioned between ethyl acetate and water (pH = 7.1), the organic phase is dried (MgSO₄), and the solvent is concentrated and then triturated with ether to give N-hydroxy-2-[[4-methoxybenzenesulfonyl](2-[4-morpholino]ethyl)amino]acetamide, m.p. 108-112°C.

The starting material is prepared as follows:

Ethyl 2-[[4-methoxybenzenesulfonyl]amino]acetate (13.7 g, 50.0 mmol) is dissolved in ethanol (500 mL), followed by the addition of sodium spheres (2.5 g, 109.0 mmol). To this solution is added N-(2-chloroethyl)morpholine hydrochloride (10.0 g, 53.7 mmol), the reaction is stirred at room temperature for 2 hours, and then refluxed for 1.5

: :

hours. The reaction is partitioned between ethyl acetate and brine. The aqueous phase is extracted well with ethyl acetate, the combined organic layers are dried (MgSO₄), and the solvent is evaporated to give ethyl 2-[[4-methoxy-benzenesulfonyl](2-[4-morpholino]ethyl)amino]acetate.

Example 23: N-Hydroxy-2-[[4-aminobenzenesulfonyl](isobutyl)amino]acetamide, m.p. 50-55°C, is obtained by hydrogenation of N-hydroxy-2-[[4-nitrobenzenesulfonyl](isobutyl)amino]acetamide (see example 17x), m.p. 128-130°, using 10% palladium on carbon.

The starting material is prepared according to example 16 by coupling isobutylamine and 4-nitrobenzenesulfonyl chloride in the first step thereof.

Example 24: N-Hydroxy-2-[[4-dimethylaminobenzenesulfonyl](isobutyl)amino]acetamide, m.p. 127-129°C, is obtained by methylation of N-hydroxy-2-[[4-aminobenzenesulfonyl](isobutyl)amino]acetamide using the procedure from Synthesis p. 709, 1987.

Example 25: Ethyl 2-[[4-hexyloxybenzenesulfonyl](isobutyl)amino]acetate (1.22 g, 3.05 mmol) is dissolved in methanol (15 mL). To this solution is added hydroxylamine hydrochloride (0.43 g, 6.11 mmol), followed by the addition of sodium methoxide, freshly prepared from sodium (0.35 g, 15.3 mmol) dissolved in methanol (5 mL). The reaction is stirred for 36 hours at room temperature. The reaction is worked up by partitioning between dilute hydrochloric acid (pH=~3) and ethyl acetate. The aqueous phase is extracted well with ethyl acetate, the combined organic layers are dried (Na₂SO₄), and the solvent is evaporated. The product is crystallized from hexnae/ethyl acetate and collected by filtration to give N-hydroxy-2-[[4-hexyloxybenzenesulfonyl](isobutyl)amino]acetamide, m.p. 108-110°C.

The starting material is prepared as follows:

5

10

15

20

35

40

45 .

50

55

A solution of ethanethiol (15 mL) and methylene chloride (15 mL) is cooled to 0°C. Aluminum trichloride (9.62 g, 72.2 mmol) is added (the solution turns green), and the reaction is warmed to room temperature. Ethyl 2-[[4-methoxybenzenesulfonyl](isobutyl)amino]acetate (4.75 g, 14.44 mmol) is added in methylene chloride (5 mL), and the reaction is stirred for 3.5 hours at room temperature. The reaction is then slowly quenched with water, and the crude reaction is partitioned between water and methylene chloride. The aqueous layer is extracted well with methylene chloride, the combined organic layers are dried (Na₂SO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (25% to 50% ethyl acetate/hexane) to give ethyl 2-[[4-hydroxybenzene-sulfonyl](isobutyl)amino]acetate.

Ethyl 2-[[4-hydroxybenzenesulfonyl](isobutyl)amino]acetate (1.0 g, 3.17 mmol) is dissolved in dimethylformamide (16 mL). Cesium carbonate (1.03 g, 3.17 mmol) is added, followed by 1-iodohexane (0.47 mL, 3.17 mmol), and the reaction is stirred overnight at room temperature. The reaction is then partitioned between water and ethyl acetate, the aqueous layer is extracted well with ethyl acetate, the combined organic layers are dried (Na₂SO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (10% ethyl acetate/hexane) to give ethyl 2-[[4-hexyloxybenzenesulfonyl](isobutyl)amino]acetate.

Example 26: The following compounds are prepared similarly to example 25:

- (a) N-Hydroxy-2-[[4-ethoxybenzenesulfonyl](isobutyl)amino]acetamide,by using ethyl iodide in the cesium carbonate alkylation step, and carrying out the subsequent steps as described in example 25.
- (b) N-Hydroxy-2-[[4-butyloxybenzenesulfonyl](isobutyl)amino]acetamide, m.p. 125-127°C, by using iodobutane in the cesium carbonate alkylation step, and carrying out the subsequent steps as described in example 25.
- (c) N-Hydroxy-2-[[4-(3-methyl)butyloxybenzenesulfonyl](isobutyl)amino]acetamide, m.p. 93-96°C, by using 1-iodo-3-methylbutane in the cesium carbonate alkylation step, and carrying out the subsequent steps as described in example 25.
- (d) N-Hydroxy-2-[[4-heptyloxybenzenesulfonyl](isobutyl)amino]acetamide, m.p. 120-123°C, by using 1-iodo-heptane in the cesium carbonate alkylation step, and carrying out the subsequent steps as described in example 25.
- (e) N-Hydroxy-2-[[4-(cyclohexylmethoxy)benzenesulfonyl](isobutyl)amino]acetamide, m.p. 75-80°C, by using cyclohexylmethyl bromide in the cesium carbonate alkylation step, and carrying out the subsequent steps as described in example 25.
- (f) N-Hydroxy-2-[[4-isopropyloxybenzenesulfonyl](isobutyl)amino]acetamide, m.p. 65-66°C, by using isopropyl bromide in the cesium carbonate alkylation step, and carrying out the subsequent steps as described in example 25.
- (g) N-Hydroxy-2-[[4-ethoxyethoxybenzenesulfony]](isobutyl)amino]acetamide, m.p. 111-114°C, by using 2-bromoethyl ethyl ether in the cesium carbonate alkylation step, and carrying out the subsequent steps as described in example 25.

Example 27:

(a) N-(t-butyloxy)-2-[[4-methoxybenzenesulfonyl](benzyl)amino]-2-[(2-methyl-5-tetrazolyl)methyl]acetamide

(0.77 g, 1.55 mmol) is dissolved in methylene chloride (2.0 mL) and ethanol (0.1 mL) in a glass sealed tube, and the reaction is cooled to 0°C. Hydrochloric acid gas (from a lecture bottle) is bubbled through the solution for 20 minutes, and then the tube is sealed at room temperature for 3 days. After that time, the solvent is removed, and the reaction is partitioned between ethyl acetate and saturated sodium bicarbonate. The organic phase is dried (Na₂SO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (2% methanol/methylene chloride) to give N-hydroxy-2-[[4-methoxybenzenesulfonyl](benzyl)amino]-2-[(2-methyl-5-tetrazolyl)methyl]acetamide, m.p. 72-75°C.

The starting material is prepared as follows:

15

20

25

30

D-asparagine (13.2 g, 100.0 mmol) is dissolved in dioxane (75.0 mL) and water (125.0 mL), triethylamine (21.0 mL, 150.0 mmol) is added, and the solution is cooled to 0°C. To this solution is added 4-methoxybenzenesulfonyl chloride (22.7 g, 110.0 mmol) over 10 minutes. The reaction is warmed to room temperature and stirred for 3 days. The precipitate is then filtered off, the filtrate is acidified to pH=~4, and extracted well with ethyl acetate. A first crop of pure product precipitates from the ethyl acetate and is collected by filtration. A second crop is obtained by evaporating off the ethyl acetate, and rinsing the solid obtained with water to remove inorganic salts. The two crops are combined to give N-[4-methoxybenzenesulfonyl]-(D)-asparagine.

N-[4-methoxybenzenesulfonyl]-(D)-asparagine (10.1 g, 33.3 mmol) is dissolved in dimethylformamide (167.0 mL). Cesium carbonate (5.43 g, 16.66 mmol) is added, followed by the addition of methyl iodide (2.22 mL, 33.3 mmol), and the reaction is stirred overnight. The reaction is then diluted with saturated ammonium chloride (366.0 mL), and extracted well with ethyl acetate. The combined organic extracts are washed with brine, dried (Na₂SO₄), and the solvent is evaporated. The crude product is recrystallized from toluene to provide N-[4-methoxybenzenesulfonyl]-(D)-asparagine methyl ester.

To a suspension of N-[4-methoxybenzenesulfonyl]-(D)-asparagine methyl ester (8.54 g, 27.0 mmol) in methylene chloride (47.0 mL) is added pyridine (10.9 mL, 135.0 mmol). Para-toluenesulfonyl chloride (10.3 g, 54.0 mmol) is added, and the reaction mixture is allowed to stand without stirring at room temperature overnight. The next day, saturated sodium bicarbonate is added (125.0 mL), and the mixture is stirred for 1 hour. The mixture is then diluted with water and extracted well with ethyl acetate. The combined organic extracts are washed with brine, dried (Na₂SO₄), and the solvent is evaporated. The crude product is recrystallized from 20% tetrahydrofuran/methanol to provide methyl 2(R)-[[4-methoxybenzenesulfonyl]amino]-4-cyano-propionate.

To a suspension of sodium hydride (0.93 g, 23.2 mmol) in dimethylformamide (95.0 mL), is added methyl 2(R)-[[4-methoxybenzenesulfonyl]amino]-4-cyano-propionate (6.92 g, 23.2 mmol) in dimethylformamide (10.0 mL). After stirring at room temperature for 20 minutes, benzyl bromide (3.1 mL, 25.5 mmol) is added, and the reaction is stirred overnight at room temperature. The reaction is then partitioned between ethyl acetate and acidic water (pH=~5), the organic layer is dried (Na₂SO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (40% ethyl acetate/hexane) to give methyl 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-4-cyano-propionate.

To a solution of methyl 2(R)-[[4-methoxybenzenesulfonyl] (benzyl)amino]-4-cyano-propionate (1.34 g, 3.47 mmol) in dimethylformamide (5.4 mL) is added triethylamine hydrochloride (0.95 g. 6.93 mmol) and sodium azide (0.45 g, 6.93 mmol). The reaction is stirred at 110°C overnight. The next day, the solvent is evaporated, the residue is acidified with 1N hydrochloric acid (16.0 mL), and extracted well with ethyl acetate. The combined organic extracts are washed with brine, dried (Na₂SO₄), and the solvent is evaporated to yield methyl 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-2-[(5-tetrazolyl)methyl]acetate.

This crude tetrazole is dissolved in dimethylformamide (17.4 mL). Cesium carbonate (0.56 g, 1.73 mmol) is added, followed by the addition of methyl iodide (0.23 mL, 3.47 mmol), and the reaction is stirred overnight. The reaction is then diluted with brine and extracted well with ethyl acetate. The combined organic extracts are washed with brine, dried (Na₂SO₄), and the solvent is evaporated. The product is purified by silica gel chromatography (40% ethyl acetate/hexane) to give separately the two regioisomers: methyl 2(R)-[[4-methoxybenzenesulfonyi](benzyl)amino]-2-[(1-methyl-5-tetrazolyl)methyl]acetate (0.50 g); and methyl 2(R)-[[4-methoxybenzenesulfonyi](benzyl)amino]-2-[(2-methyl-5-tetrazolyl)methyl]acetate.

Methyl 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-2-[(2-methyl-5 - tetrazolyl)methyl]acetate (1.0 g, 2.27 mmol) is dissolved in tetrahydrofuran (11.3 mL) and water (11.3 mL). To this solution is added lithium hydroxide hydrate (0.095 g, 2.27 mmol), and the reaction is stirred at room temperature for 2 hours. The reaction is then acidified to pH= \sim 3 using 1N hydrochloric acid, and extracted well with ethyl acetate. The combined organic extracts are washed with brine, dried (Na₂SO₄), and the solvent is evaporated to provide 2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-2-[(2-methyl-5-tetrazolyl)methyl]acetic acid (0.96 g).

2(R)-[[4-methoxybenzenesulfonyl](benzyl)amino]-2-[(2-methyl-5-tetrazolyl)methyl]acetic acid (0.96 g, 2.24 mmol), 1-hydroxybenzotriazole (0.30 g, 2.24 mmol), 4-methylmorpholine (0.86 mL, 7.89 mmol), and O-t-butyl-hydroxylamine hydrochloride (0.30 g, 2.24 mmol) are dissolved in methylene chloride (75.0 mL). N-[dimethyl-aminopropyl]-N'-ethylcarbodiimide hydrochloride (0.86 g, 4.48 mmol) is added, and the reaction is stirred

.

overnight. The reaction is then diluted with water and extracted with methylene chloride. The combined organic extracts are washed with brine, dried (Na₂SO₄), and the solvent is evaporated. The crude product is purified by silica gel chromatography (50% ethyl acetate/hexane) to give N-(t-butyloxy)-2-[[4-methoxybenzenesulfo-nyl](benzyl)amino]-2-[(2-methyl-5-tetrazolyl)methyl]acetamide.

- (b) Similarly prepared is the other tetrazole regioisomer, N-hydroxy-2-[[4-methoxybenzenesulfonyf](benzyl)amino]-2-[(1-methyl-5-tetrazolyl)methyl]acetamide, m.p. 92-96°C, by completing the synthesis as described above.
- (c) Similarly prepared is N-hydroxy-2-[[4-methoxybenzenesulfonyl](benzyl)amino]-2-[(5-tetrazolyl)methyl]acetamide, m.p. 91-94°C, by completing the synthesis as described above, except trityl chloride is used to protect the tetrazole ring in place of methyl iodide.
- (d) Similarly prepared is N-hydroxy-2-[[4-methoxybenzenesulfonyl](4-phenylbenzyl)amino]-2-[(5-tetrazolyl)methyl]acetamide, m.p. 184°C, by completing the synthesis as described above, except 4-chloromethyl-biphenyl is used in place of benzyl bromide in the alkylation step.

Example 28: Oxalyl chloride (106 mL, 1.22 mol) is added over 1 hour to dimethylformamide (92 mL) in methylene chloride (1250 mL) at 0°C. To this is added a solution of 2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-methylbutanoic acid hydrochloride (248 g, 0.6 mol) in dimethylformamide (450 mL) over 1 hour, maintaining the temperature at 0°C. This solution is stirred an additional 2 hours at room temperature, and then added dropwise to a mixture of hydroxylamine (460 g of a 50% aqueous solution, 6.82 mol) in tetrahydrofuran (2400 mL). The reaction is stirred an additional 3 hours at 5°C, and then at room temperature overnight. The reaction mixture is filtered, the organic layer is collected, and the solvent is evaporated. The crude product is re-dissolved in methylene chloride (2 L), washed with water (2 X 1 L), saturated sodium bicarbonate (4 X 1 L), brine (1 L), dried (Na₂SO₄), and the solvent is evaporated. The product is dissolved in ethyl acetate (700 mL) and diluted with ether (1400 mL) to induce precipitation. The pure product is collected by filtration to provide N-hydroxy-2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-methylbutanamide. After conversion to the hydrochloride salt, a white solid is obtained, m.p. 169-170°C (dec).

The starting material is prepared as follows:

5

10

15

20

25

30

35

40

45

50

55

To a solution of D-valine (2000 g, 17.09 mol) in water (16.9 L) and acetone (9.5 L), cooled to 5° C, is added triethylamine (4769 mL, 34.22 mol), and the reaction is stirred for 30 minutes. Then a solution of 4-methoxybenzenesulfonyl chloride (3524 g, 18.48 mol) in acetone (7.4 L) is added over 30 minutes, and the reaction is stirred at room temperature overnight. Most of the acetone is evaporated off, and the pH is adjusted to pH=8.25 with 6N sodium hydroxide. The crude product is washed with toluene (2 X 10 L), and then the pH is re-adjusted to pH=2.2 with 6N hydrochloric acid. The mixture is then extracted with methylene chloride (3 X 12 L), the combined organic layers are washed with 2N hydrochloric acid, water, dried (Na₂SO₄), and the solvent is evaporated to provide N-[4-methoxybenzenesulfonyl]-(D)-valine.

To a solution of N-[4-methoxybenzenesulfonyl]-(D)-valine (8369 g, 29.13 mol) in methanol (30 L) at 5°C is added thionyl chloride (2176 mL, 29.7 mol) over 2.5 hours. After stirring for 3 hours at 5°C, the reaction is stirred for 36 hours at room temperature. Most of the solvent is evaporated, and the crude product is dissolved in toluene (80 L). The toluene layer is then washed with water (20 L), saturated sodium bicarbonate (20 L), water again (20 L), 2N hydrochloric acid (20 L), brine (20 L), dried (Na₂SO₄), and the solvent is evaporated. The solid obtained is dissolved in ethyl acetate (8 L) and heptane (16 L) is added to induce crystallization. The precipitated product is collected by filtration to provide methyl 2(R)-[[4-methoxybenzenesulfonyl]amino]-3-methylbutanoate.

To a solution of methyl 2(R)-[[4-methoxybenzenesulfonyl]amino]-3-methylbutanoate (1662 g, 5.52 mol) in dimethylformamide (10.9 L) is added 3-picolyl chloride hydrochloride (947.3 g, 5.77 mol) followed by powdered potassium carbonate (2409.9 g, 17.36 mol). The reaction mixture is stirred at room temperature for 2 days. At that time, additional quantities of 3-picolyl chloride hydrochloride (95 g) and powdered potassium carbonate (241 g) are added, and the reaction is stirred for 3 more days. The solids are then filtered away, the crude product is poured into water (22 L), and the pH is adjusted to pH=8 with 6N sodium hydroxide. This solution is extracted well with toluene (4 X 10 L), the combined organic layers are washed with water (2 X 12 L), and then with 6N hydrochloric acid (3 X 1600 mL). This aqueous layer is then re-adjusted to pH=8 with 6N sodium hydroxide, extracted with toluene (4 X 10 L), dried (Na₂SO₄), and the solvent is evaporated. The oil obtained is re-dissolved in ethyl acetate (12 L), cooled to 5°C, and to this is added methanolic HCl (834 mL). After stirring for 2 hours, the precipitated product is collected by filtration to give methyl 2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-methylbutanoate hydrochloride.

Methyl 2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-methylbutanoate hydrochloride (7164 g, 16.7 mol) is added to a solution of water (27 L) and concentrated hydrochloric acid (9 L), and heated to 120°C for 3 days. After cooling down to room temperature, charcoal (350 g) is added, stirring is continued for 45 minutes, the reaction is filtered, and the solvent is evaporated. The crude solid is re-dissolved in methanol (7.1 L) and ethyl acetate (73 L), and cooled to 3°C for 2 hours. The precipitated product is collected by filtration to give 2(R)-[[4-methoxybenze-

٠.

nesulfony[](3-picolyl)amino]-3-methylbutanoic acid hydrochloride.

Example 29: N-Benzyloxy-2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-methylbutanamide (see example 29a) is reacted with hydrogen in the presence of 10% palladium on charcoal catalyst at room temperature and atmospheric pressure to yield N-hydroxy-2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-methylbutanamide. After conversion to the hydrochloride salt, a white solid is obtained, m.p. 169-170°C (dec).

(a) The N-(benzyloxy) substituted prodrug derivative of the above compound is prepared as follows:

2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-methylbutanoic acid hydrochloride is reacted with O-benzylhydroxylamine hydrochloride under conditions described for reaction with O-t-butylhydroxylamine hydrochloride to yield N-(benzyloxy)-2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-methyl-butanamide, m.p. 74.5-76°C.

(b) The corresponding N-(4-methoxybenzyloxy) substituted prodrug derivative, N-(4-methoxybenzyloxy)-2(R)-[[4-methoxybenzenesulfonyf](3-picolyl)amino]-3-methyl-butanamide, is prepared as follows:

2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-methylbutanoic acid hydrochloride (2.41 g, 5.82 mmol), 1-hydroxybenzotriazole (0.786 g, 5.82 mmol), 4-methyl-morpholine (1.9 mL, 17.46 mmol), and O-(4-methoxybenzyl)hydroxylamine (1.78 g, 11.63 mmol) (prepared according to Pol. J. Chem. 55, 1163-1167 (1981)) are dissolved in methylene chloride (55 mL). N-[dimethylaminopropyl]-N'-ethylcarbodiimide hydrochloride (1.45 g, 7.57 mmol) is added, and the reaction is stirred overnight. The reaction is then diluted with water and extracted with methylene chloride. The combined organic extracts are washed with brine, dried (Na $_2$ SO $_4$), and the solvent is evaporated. The crude product is purified by silica gel chromatography (ethyl acetate followed by 5% methanol/ethyl acetate) to give N-(4-methoxybenzyloxy)-2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-methylbutanamide, m.p. 45-53°C.

Similarly prepared are: (c) the N-(2,4-dimethoxybenzyloxy)-substituted prodrug derivative, N-(2,4-dimethoxybenzyloxy)-2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-methyl-butanamide, m.p. 45-60°C; (d) the N-(2-methoxybenzyloxy)-substituted prodrug derivative, N-(2-methoxybenzyloxy)-2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-methyl-butanamide m.p. 46-56°C.

Example 30: N-(t-Butyloxy)-2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3(R)-(3-picolyloxy)butanamide (1.3 g, 2.4 mmol) is dissolved in methylene chloride (50 mL) containing ethanol (0.14 mL, 2.4 mmol) in a round bottom flask, and the reaction is cooled to -10°C. Hydrochloric acid gas (from a lecture bottle) is bubbled through for 20 minutes. The reaction is sealed, allowed to slowly warm to room temperature, and stirred for two days. The solvent is reduced to 1/3 the volume by evaporation and the residue is triturated with ether. The mixture is filtered, the fiter cake is removed and dried in vacuo to provide N-hydroxy-2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3(R)-(3-picolyloxy)-butanamide dihydrochloride as a white solid; $[\alpha]_D^{25}$ =+35.26° (c=5.58, DMSO).

The starting material is prepared as follows:

To a solution of D-threonine (5.0 g, 0.042 mol) in water (50 mL) and dioxane (50 mL) containing triethylamine (8.9 mL, 0.063 mol) at room temperature is added 4-methoxybenzenesulfonyl chloride (9.54 g, 0.046 mol). The reaction mixture is stirred overnight at room temperature. Most of the dioxane is evaporated off, and the pH is adjusted to pH=2 with 1N HCl. The mixture is then extracted with ethyl acetate. The combined organic extracts are washed with brine, dried (Na₂SO₄), and concentrated in vacuo to provide N-[4-methoxybenzenesulfonyl]-(D)-threonine.

N-[4-methoxybenzenesulfonyl]-(D)-threonine (4.0 g. 13.84 mmol), 1-hydroxybenzotriazole (1.87 g. 13.84 mmol), 4-methylmorpholine (7.9 mL, 69.2 mmol), and O-t-butylhydroxylamine hydrochloride (5.22 g. 41.52 mmol) are dissolved in methylene chloride (100 mL). To this solution is added N-[dimethylaminopropyl]-N'-ethylcarbodiimide hydrochloride (3.45 g. 17.99 mmol), and the reaction is stirred overnight. The mixture is then diluted with water and extracted with methylene chloride. The combined organic extracts are washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The crude product is purified by silica gel chromatography (ethyl acetate) to give N-(t-butyloxy)-2(R)-[[4-methoxybenzenesulfonyl]-amino]-3(R)-hydroxybutanamide.

To a solution of N-(t-butyloxy)-2(R)-[[4-methoxybenzenesulfonyl]amino]-3(R)-hydroxybutanamide (3.04 g, 8.44 mmol) in dimethylformamide (150 mL) is added 3-picolyl chloride hydrochloride (1.45 g, 8.87 mmol) followed by potassium carbonate (11.65 g, 84.4 mmol). The reaction mixture is stirred at room temperature overnight, then heated to 45°C for 5 hours. An additional amount of 3-picolyl chloride hydrochloride (692.0 mg, 4.23 mmol) is added at this point. The reaction mixture is stirred at 45°C for 10 hours. The reaction mixture is diluted with water and extracted with ethyl acetate. The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The crude product is purified by silica gel chromatography (ethyl acetate, then 5% methanol/methylene chloride) to give N-(t-butyloxy)-2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3(R)-(3-picolyloxy)butanamide.

Example 31:

15

20

25

40

(a) N-(t-Butyloxy)-2(R)-[[4-methoxybenzenesulfonyl](4-picolyl)amino]cyclohexylacetamide (1.9 g, 3.9 mmol) is dissolved in dichloroethane (50 mL) containing ethanol (0.21 ml, 3.9 mmol) in a round bottom flask, and the reaction is cooled to - 10°C. Hydrochloric acid gas (from a lecture bottle) is bubbled through for 30 minutes. The reaction is sealed, allowed to slowly warm to room temperature, and stirred for 4 days. The solvent is reduced to 1/3 volume by evaporation and triturated with ether. The mixture is filtered, filter cake removed, and dried in vacuo to provide N-hydroxy-2(R)-[[4-methoxybenzenesulfonyl](4-picolyl)amino]-2-cyclohexylacetamide hydrochloride as a white solid, m.p. 154.5-156°C.

The starting material is prepared as follows:

5

10

15

20

25

30

35

45

55

To a solution of D-cyclohexylglycine hydrochloride (10.4 g, 53.7 mmol) in 1:1 dioxane/water (200 mL) containing triethylamine (37.0 g, 366.0 mmol) at room temperature is added 4-methoxybenzenesulfonyl chloride (15.0 g, 73.0 mmol), and the reaction mixture is stirred at room temperature overnight. The mixture is then diluted with methylene chloride, washed with 1N aqueous hydrochloric acid and water. The organic layer iswashed again with brine, dried (Na₂SO₄), and the solvent is evaporated to provide N-[4-methoxybenzenesulfonyl]-(D)-cyclohexylglycine as a crude product. A solution of this crude product in toluene (200 mL) containing N,N-dimethylformamide di-t-butyl acetal (48.5 mL, 200.0 mmol) is heated to 95°C for 3 hours. The solvent is then evaporated. The crude product is purified by silica gel chromatography (30% ethyl acetate/hexanes) to provide N-[4-methoxybenzenesulfonyl](D)-cyclohexylglycine t-butyl ester.

To a solution of N-[4-methoxybenzenesulfonyl]-(D)-cyclohexylglycine t-butyl ester (2.0 g, 4.1 mmol) in dimethylformamide (100 mL) is added 4-picolyl chloride hydrochloride (0.74 g, 4.5 mmol) followed by potassium carbonate (5.61 g, 40.7 mmol). The reaction mixture is stirred at room temperature for 4 days. The mixture is then diluted with water and extracted with ethyl acetate. The combined organic extracts are washed with brine, dried (Na₂SO₄), and the solvent is evaporated. The crude product is purified by silica gel chromatography (ethyl acetate) to give t-butyl 2(R)-[[4-methoxybenzenesulfonyl](4-picolyl)amino]-2-cyclohexylacetate.

t-Butyl 2(R)-[[4-methoxybenzenesulfonyl](4-picolyl)amino]-cyclohexyla cetate (2.0 g, 4.2 mmol) is dissolved in methylene chloride (80 mL) and cooled to -10°C. Hydrochloric acid gas is bubbled into the solution for 10 minuntes. The reaction mixture is then sealed, warmed to room temperature and stirred overnight. The solvent is then evaporated to provide 2(R)-[[4-methoxybenzenesulfonyl](4-picolyl)amino]-2-cyclohexylacetic acid hydrochloride.

2(R)-[[4-Methoxybenzenesulfonyl](4-picolyl)amino]-cyclohexylacetic acid hydrochloride (1.8 g, 4.2 mmol), 1-hydroxybenzotriazole (0.65 g, 4.81 mmol), 4-methyl-morpholine (2.4 mL, 24.04 mmol), and O-t-butylhydroxylamine hydrochloride (1.81 g, 14.4 mmol) are dissolved in methylene chloride (100 mL). N-[dimethylaminopropyl]-N'-ethylcarbodiimide hydrochloride (1.2 g, 6.25 mmol) is added, and the reaction is stirred overnight. The reaction is then diluted with water and extracted with methylene chloride. The combined organic extracts are washed with brine, dried (Na₂SO₄), and the solvent is evaporated. The crude product is purified by silica gel chromatography (5% methanol/methylene chloride) to give N-(t-butyloxy)-2(R)-[[4-methoxybenzenesulfonyl](4-picolyl)amino]-2-cyclohexylacetamide.

(b) Similarly prepared is N-hydroxy-2(R)-[[4-methoxybenzenesulfonyl](2-(2-pyridyl)ethyl)amino]-2-cyclohexylacetamide, m.p. 131.5-134.0°C.

The first two steps are carried out as described above. A Mitsunobu step is substituted for the alkylation step as described below.

To a stirring solution of N-[4-methoxybenzenesulfonyl]-(D)-cyclohexylglycine-t-butyl ester (2.0 g, 5.25 mmol) in tetrahydrofuran (50 mL) is added triphenylphosphine (4.13 g, 15.75 mmol) and 2-(2-hydroxyethyl)-pyridine (646.0 mg, 5.25 mmol) followed by diethyl azodicarboxylate (2.28 g, 13.1 mmol). The reaction mixture is stirred at room temperature for 48 hours. The mixture is concentrated directly in vacuo. The crude mixture is applied to a column of silica gel (30% ethylacetate/hexane) to provide t-butyl 2(R)-[N-[4-methoxybenzenesul-tonyl](2-(2-pyridyl)ethyl)amino]- 2-cyclohexylacetate.

All of the subsequent steps are carried out as described under (a).

- (c) Similarly prepared is N-hydroxy-2(R)-[[4-methoxybenzenesulfonyl](3-(3-pyridyl)propyl)amino]-2-cyclohexy-lacetamide, m.p. 136.0-138°C, by using 3-pyridinepropanol in the Mitsunobu step, and carrying out the subsequent steps as described above.
- (d) Similarly prepared is N-hydroxy-2(R)-[[4-methoxybenzenesulfonyl](2-methylpyrid-5-ylmethyl)amino]-2-cyclohexylacetamide, m.p. 156.5-157.0°C, by using 6-methyl-3-pyridinemethanol (prepared as in J. Org. Chem. 53 3513 (1988)) in the Mitsunobu step, and carrying out the subsequent steps as described above.
- (e) Similarly prepared is N-hydroxy-2(R)-[[4-methoxybenzenesulfonyf](4-tetrahydropyranmethyl)amino]-2-cyclohexylacetamide, m.p. 75.0-87.0°C, by using 4-(hydroxymethyl)tetrahydropyran (prepared as in Okrytiya. Izobret. 82 (1985)) in the Mitsunoba step, and carrying out the subsequent steps as described above.

Example 32: N-(t-Butyloxy)-2(R)-[(4-methoxybenzenesulfonyl)(benzyl)amino]-2-(4-N-methylpiperidinyl)acetamide (733.0 mg, 1.46 mmol) is dissolved in methylene chloride (60 mL) containing ethanol (67.0 mg, 146 mmol), and the

٠.

reaction is cooled to - 10°C. Hydrochloric acid gas (from a lecture bottle) is bubbled through for 15 minutes. The reaction is sealed, allowed to slowly warm to room temperature, and stirred for 6 days. The solvent is reduced to 1/3 volume by evaporation and triturated with ether. The mixture is filtered, filter cake removed, and dried in vacuo to provide N-hydroxy-2(R)-[(4-methoxybenzenesulfonyl)(benzyl)amino]-2-(4-N-methylpiperidinyl)acetamide hydrochloride as a light tan solid, m.p. >160°C (dec).

The starting material is prepared as follows:

10

15

20

25

40

45

50

To a solution of ethyl 4-pyridylacetate (11.17 g, 67.62 mmol) in 2N hydrochloric acid (100 mL) is added platinum (IV) oxide (275 mg). The mixture is shaken in a Parr hydrogenation apparatus for 60 hours under a hydrogen pressure of 50 psi (= 3.45 bar). The reaction mixture is basified to pH 8-9 with saturated aqueous sodium carbonate and then washed with methylene chloride. The aqueous layer is concentrated in vacuo providing sodium 4-piperidyl acetate as a white solid. To a solution of the crude product (5.0 g, 30.3 mmol) in 3:1 water/dioxane (200 mL) at 0°C is added a solution of di-tert-butyldicarbonate (6.38 g, 29.3 mmol) in dioxane (25 mL) in one portion. The cloudy reaction mixture is warmed to room temperature and stirred overnight. The mixture is then filtered, cooled to 0°C and acidified with cold 6N hydrochloric acid (pH=2-3). This solution is extracted with ethyl acetate. The combined organic layers are dried (Na₂SO₄), and the solvent is evaporated to provide N-t-BOC-piperidine-4-acetic acid as a white crystalline solid.

To a solution of N-t-BOC-piperidine-4-acetic acid (4.67 g, 19.22 mmol) in tetrahydrofuran at -78°C is added triethylamine (2.53 g, 24.99 mmol) followed by pivaloyl chloride (2.55 g, 21.14 mmol). The resulting white slurry is stirred at -78°C for 15 minutes, warmed to 0°C for 45 minutes, then recooled to -78°C. In a separate flask, (R)-(+)-4-benzyl-2-oxazolidinone (4.09 g, 23.1 mmol) is dissolved in tetrahydrofuran (50 mL) and 1 M n-butyl lithium in hexanes (14.4 mL, 23.06 mmol) is added dropwise at -78°C. The solution is added via cannula to the aforementioned white slurry at -78°C. The reaction mixture is stirred at -78°C for 15 minutes, then warmed to room temperature over 2.5 hours. The mixture is quenched with saturated aqueous sodium carbonate and the tetrahydrofuran is evaporated in vacuo. The remaining aqueous layer is diluted with water and extracted with ethyl acetate. The combined organic extracts are washed with brine, dried (Na₂SO₄), and the solvent is evaporated under vacuum. The product is purified by silica gel chromatography (75% to 50% hexane/ethyl acetate) to give 3-[2-(N-t-BOC-4-piperidinyl)-1-oxoethyl]-4(R)-(benzyl)-2-oxazolidinone.

To a solution of 3-[2-(N-t-BOC-4-piperidinyl)-1-oxoethyl]-4(R)-(benzyl)-2-oxazolidinone (7.54 g, 18.76 mmol) in tetrahydrofuran (175 mL) at -78°C is added a 0.5 M solution of potassium bis (trimethylsilylamide in toluene (37.5 mL, 18.76 mmol) dropwise. After stirring for 20 minutes at -78°C, a pre-cooled solution of trisylazide (7.25 g, 23.4 mmol) in tetrahydrofuran (55 mL) is added via cannula at -78°C. The mixture is stirred for 15 minutes at -78°C, then acetic acid 3.38 g, 56.28 mmol) is added followed by immediate warming to room temperature through immersion in a water bath. The reaction mixture is stirred for 1.5 hours at room temperature. The tetrahydrofuran is removed under vacuum and the resulting residue is partitioned between saturated aqueous sodium carbonate and ethyl acetate. The aqueous layer is removed and extracted with ethyl acetate. The combined organic extracts are washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The product is purified by silica gel chromatography (30% to 50% ethyl acetate/hexanes) to give 3-[2-(R)-azido-2-(N-t-BOC-4-piperidinyl)-1-oxoethyl]-4(R)-(benzyl)-2-oxazolidinone.

To a solution of 3-[2-(R)-azido-2-(N-BOC-4-piperidinyl)-1-oxoethyl]-4(R)-(benzyl)-2-oxazolidinone (5.84 g, 13.17 mmol) in 3:1 tetrahydrofuran/water/200 mL) at 0°C is added 30% aqueous hydrogen peroxide (5.12 mL, 52.67 mmol) followed by lithium hydroxide monohydrate (1.11 g, 26.34 mmol). The reaction mixture is stirred at 0°C for 1 hour. The mixture is quenched by addition of sodium sulfite (7.1 g) at 0°C. The tetrahydrofuran is removed in vacuo and the remaining aqueous layer is further diluted with water. This aqueous layer is then washed with methylene chloride and acidified with 1N hydrochloric acid. The resulting acidic aqueous layer is extracted with ethyl acetate. The combined organic extracts are dried (Na₂SO₄) and concentrated in vacuo to provide crude 2-(R)-azido-2-(N-t-BOC-4-piperidinyl)acetic acid.

To a pre-stirred solution of tin (II) chloride (3.14 g, 16.55 mmol) in methanol (100 mL) at 0°C is added 2-(R)-azido-2-(N-t-BOC-4-piperidinyl)acetic acid (2.35 g, 8.27 mmol) in methanol (25 mL) dropwise. The reaction mixture is stirred at 0°C for 10 minutes then warmed to room temperature overnight. The methanol is removed in vacuo to provide crude R-(N-t-BOC-4-piperidinyl) glycine, which is used directly in the next reaction without purification. The crude product from the above reaction is dissolved in 2:1 dioxane/water (120 mL) and triethylamine (7.53 g, 74.43 mmol) and cooled to 0°C. To this mixture is added 4-methoxybenzenesulfonyl chloride (2.22 g, 10.75 mmol) and then the reaction mixture is warmed to room temperature overnight. The dioxane is removed in vacuo and the residue is partitioned between dilute aqueous sodium bicarbonate and ethyl acetate. The basic aqueous layer is removed, acidifed with 1 N hydrochloric acid, and extracted with ethyl acetate. The resulting emulsion is passed through a celite pad washing with ethyl acetate. The organic filtrate is dried (Na₂SO₄) and concentrated in vacuo to provide 2(R)-[(4-methoxybenzenesulfonyl)amino]-2-(N-t-BOC-4-piperidinyl) acetic acid as crude product.

A solution of crude 2(R)-[(4-methoxybenzenesulfonyl)amino]-2-(N-1-BOC-4-piperidinyl)-acetic acid (2.88 g) in dimethylformamide (60 mL) containing N,N-dicyclohexylamine (1.22 g, 6.73 mmol) and benzyl bromide (1.15 g,

6.73 mmol) is stirred at room temperature for 3.5 hours. To this same reaction mixture is again added benzyl bromide (1.26 g, 7.4 mmol) followed by potassium carbonate (6.5 g, 47.11 mmol). The reaction mixture is stirred over the weekend at room temperature. The mixture is diluted with water and extracted with ethylacetate. The combined organic extracts are washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The crude product is purified by silica gel chromatography (15% to 25% ethyl acetate/hexanes) to provide benzyl 2(R)-[(4-methoxybenzenesulfonyl)(benzyl)-amino]-2-(N-t-BOC-4-piperidinyl)acetate.

A solution of benzyl 2(R)-[(4-methoxybenzenesulfonyl)(benzyl)amino]-2-(N-t-BOC-4-piperidinyl) acetate (2.0 g. 3.3 mmol) in dichloromethane (50 mL) is cooled to 0°C and hydrochloric acid gas (from a lecture bottle) is bubbled through for 10 minutes. The reaction mixture is warmed to room temperature over 30 minutes. The solvent is removed in vacuo to yield benzyl 2(R)-[(4-methoxybenzenesulfonyl)(benzyl)amino]-2-(N-t-BOC-4-piperidinyl) acetate hydrochloride as a white foam.

To a solution of benzyl 2(R)-[(4-methoxybenzene sulfonyl)(benzyl)amino]-2-(N-t-BOC-4-piperidinyl) acetate hydrochloride salt (1.28 g, 2.35 mmol) heated to reflux is added sodium formate (480.0 mg, 7.06 mmol) and formaldehyde (0.57 mL, 7.06 mmol). The reaction mixture is refluxed for 10 minutes, then two additional aliquots of formaldehyde (0.57 mL, 7.06 mmol) are added at 10 minute intervals. The reaction mixture is refluxed for an additional 3 hours. The formic acid is removed in vacuo and the residue is partioned between saturated aqueous sodium bicarbonate and ethyl acetate. The basic aqueous layer is further extracted with ethyl acetate. The combined organic extracts are washed with brine, dried (Na₂SO₄) and concentrated in vacuo to provide benzyl 2(R)-[(4-methoxybenzenesulfonyl)benzyl)amino]-2-(4-N-methylpiperidinyl) acetate as a crude product. A solution of this crude product (1.23 g) in 3N HCI (40 mL) is refluxed at 120°C for 2 days. The mixture is concentrated in vacuo to provide acid as a crude product. To a solution of this crude product (1.08 g) in methylene chloride (75 mL) is added 1hydroxybenzotriazole (0.312 g, 2.31 mmol), 4-methylmorpholine (1.64 g, 16.17 mmol), O-t-butylhydroxylamine hydrochloride (870.0 mg, 6.93 mmol), followed by N-[dimethylaminopropyt]-N'-ethylcarbodiimide hydrochloride (576.0 mg, 3.0 mmol). The reaction mixture is stirred at room temperature overnight. The reaction is then diluted with water and extracted with methylene chloride. The combined organic extracts are washed with brine, dried (Na₂SO₄), and the solvent is evaporated. The crude product is purified by silica gel chromatography (3% to 7% methanol/methylene chloride containing 0.5% ammonium hydroxide) to give N-(t-butyloxy)-2(R)-[(4-methoxybenzenesulfonyl)(benzyl)aminol-2-(4-N-methylpiperidinyl)acetamide.

Example 33: Preparation of 3000 capsules each containing 25 mg of the active ingredient, for example, N-hydroxy-2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-methylbutanamide hydrochloride:

Active ingredient	75.00 g
Lactose	750.00 g
Avicel PH 102 (microcrystalline cellulose)	300.00 g
Polyplasdone XL (polyvinylpyrrolidone)	30.00 g
Purified water	q.s.
Magnesium stearate	9.00 g

The active ingredient is passed through a No. 30 hand screen.

The active ingredient, lactose, Avicel PH 102 and Polyplasdone XL are blended for 15 minutes in a mixer. The blend is granulated with sufficient water (about 500 mL), dried in an oven at 35°C overnight, and passed through a No. 20 screen.

Magnesium stearate is passed through a No. 20 screen, added to the granulation mixture, and the mixture is blended for 5 minutes in a mixer. The blend is encapsulated in No. 0 hard gelatin capsules each containing an amount of the blend equivalent to 25 mg of the active ingredient.

Claims

1. A compound of the formula I

55

50

10

15

20

25

30

35

(a) wherein

10

15

20

35

40

45

55

Ar is carbocyclic or heterocyclic aryl:

R is hydrogen, lower alkyl, carbocyclic aryl-lower alkyl, carbocyclic aryl, heterocyclic aryl, biaryl-lower alkyl, heterocyclic aryl-lower alkyl, mono- or poly-halo-lower alkyl, C_3 - C_7 -cycloalkyl, C_3 - C_7 -cycloalkyl, lower alkyl, (oxa or thia)- C_3 - C_6 -cycloalkyl, [(oxa or thia)- C_3 - C_6 -cycloalkyl]-lower alkyl, hydroxylower alkyl, acyloxy-lower alkyl, lower alkyl, lower alkyl-(thio, sulfinyl or sulfonyl)-lower alkyl, (amino, mono- or di-lower alkylamino)-lower alkyl, acylamino-lower alkyl, (N-lower alkyl-piperazino or N-carbocyclic or heterocyclic aryl-lower alkylpiperazino)-lower alkyl, or (morpholino, thiomorpholino, piperidino, pyrrolidino, piperidyl)-lower alkyl;

 R_1 is hydrogen, lower alkyl, carbocyclic aryl-lower alkyl, carbocyclic aryl, heterocyclic aryl, biaryl-lower alkyl, heterocyclic aryl-lower alkyl, mono- or poly-halo-lower alkyl, C_3 - C_7 -cycloalkyl, C_3 - C_7 -cycloalkyl-lower alkyl, hydroxy-lower alkyl, acyloxy-lower alkyl, lower alkoxy-lower alkyl, (carbocyclic or heterocyclic aryl)-lower alkoxy-lower alkyl, lower alkyl-(thio, sulfinyl or sulfonyl)-lower alkyl, (amino, mono- or di-lower alkylamino)-lower alkyl, (N-lower alkyl-piperazino or N-carbocyclic or heterocyclic aryl-lower alkyl-piperazino)-lower alkyl, (morpholino, thiomorpholino, piperidino, pyrrolidino, piperidyl or N-lower alkyl-piperidyl)-lower alkyl, acylamino-lower alkyl, piperidyl or N-lower alkyl-piperidyl;

R₂ is hydrogen or lower alkyl;

(b) or wherein R and R_1 together with the chain to which they are attached form a 1,2,3,4-tetrahydro-isoquino-line, piperidine, oxazolidine, thiazolidine or pyrrolidine ring, each unsubstituted or substituted by lower alkyl; and Ar and R_2 have meaning as defined under (a);

(c) or wherein R₁ and R₂ together with the carbon atom to which they are attached form a ring system selected from C₃-C₇-cycloalkane which is unsubstituted or substituted by lower alkyl; oxa-cyclohexane, thia-cyclohexane, indane, tetralin, piperidine or piperidine substituted on nitrogen by acyl, lower alkyl, carbocyclic or heterocyclic aryl-lower alkyl, (carboxy, esterified or amidated carboxy)-lower alkyl or by lower alkylsulfonyl; and Ar and R have meaning as defined under (a);

wherein the term "carbocyclic aryl" means phenyl; phenyl that is mono-, di- or tri-substituted by one, two or three radicals selected from lower alkyl, lower alkoxy, hydroxy, halogen, cyano, trifluoromethyl, lower alkylene-dioxy and oxy-C₂-C₃-alkylene; or 1- or 2-naphthyl;

wherein the term "heterocyclic aryl" means pyridyl, quinolinyl, isoquinolinyl, benzothienyl, benzofuranyl, benzofuranyl, benzofuranyl, furanyl, pyrrolyl, thiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, thienyl, or any said radical substituted by lower alkyl or halogen;

wherein the term "lower" refers to organic radicals with up to and including 7 carbon atoms;

or a pharmaceutically acceptable prodrug derivative thereof selected from such hydroxamic acids in which the CONHOH group is derivatized in form of an O-acyl or an O-benzyl derivative, in which O-benzyl derivative the benzyl group is unsubstituted or mono-, di- or tri-substituted by substituents selected from lower alkyl, lower alkoxy, amino, nitro, halogen and trifluoromethyl;

or a pharmaceutically acceptable salt thereof.

2. A compound according to claim 1 of the formula la

wherein X represents methylene or 1,2-ethylene each unsubstituted or substituted by lower alkyl, or X represents oxygen, sulfur, or 1,2-phenylene; Ar and R₂ have meaning as defined in claim 1; or a pharmaceutically acceptable prodrug derivative thereof as defined in claim 1; or a pharmaceutically acceptable salt thereof.

5 3. A compound according to claim 1 of the formula lb

$$HO-N-C \xrightarrow{CH_2} C \xrightarrow{CH_2} C \xrightarrow{N} S \xrightarrow{R} Ar \qquad (Ib)$$

wherein Y is a direct bond, C_1 - C_4 -straight chain alkylene optionally substituted by lower alkyl, CH_2OCH_2 , CH_2SCH_2 , 1,2-phenylene, CH_2 -1,2-phenylene or $CH_2N(R_6)$ - CH_2 in which R_6 represents hydrogen, lower alkanoyl, di-lower alkylamino-lower alkanoyl, aroyl, carbocyclic aryl-lower alkyl, lower alkyl, carbocyclic or heterocylic aryl-lower alkyl, (carboxy, esterified or amidated carboxy)-lower alkyl or lower alkylsulfonyl; Ar and R have meaning as defined in claim 1; or a pharmaceutically acceptable prodrug derivative thereof as defined in claim 1; or a pharmaceutically acceptable salt thereof.

35 4. A compound according to claim 3 of the formula Ic

$$\begin{array}{c|c}
 & R \\
 & | \\
 & CH_2 & O \\
 & | & | \\
 & | & | \\
 & N - S - Ar \\
 & | & | \\
 & O \\
 & & O
\end{array}$$
(Ic)

in which Y represents oxygen, sulfur, a direct bond, methylene or methylene substituted by lower alkyl, or NR_6 ; R_6 represents hydrogen, lower alkanoyl, di-lower alkylamino-lower alkanoyl, carbocyclic aryl-lower alkanoyl, lower alkyl, carbocyclic or heterocyclic aryl-lower alkyl, (carboxy, esterified or amidated carboxy)-lower alkyl or lower alkylsulfonyl; Ar and R have meaning as defined in claim 1; or a pharmaceutically acceptable prodrug derivative thereof as defined in claim 1; or a pharmaceutically acceptable salt thereof.

5. A compound of formula I

55

45

50

5

10

20

25

wherein Ar is phenyl which is unsubstituted or mono-, di- or tri-substituted by C_1 - C_{10} -alkoxy, hydroxy; by phenyl-lower alkoxy wherein phenyl is unsubstituted or substituted by lower alkyl, lower alkoxy, halogen or trifluoromethyl; by heterocyclic aryl-lower alkoxy wherein heterocyclic aryl is selected from pyridyl, tetrazolyl, triazolyl, thiazolyl, thiazolyl, and quinolinyl, each unsubstituted or mono- or disubstituted by lower alkyl or halogen; by C_3 - C_7 -cycloalkyl-lower alkoxy, (lower alkyl, phenyl-lower alkyl or C_3 - C_7 -cycloalkyl-lower alkyl)-thio, lower alkyloxy-lower alkoxy, halogen, lower alkyl, cyano, nitro, trifluoromethyl, lower alkyl-(sulfinyl or sulfonyl), amino, mono- or di-lower alkylamino or, on adjacent carbon atoms, by C_1 - C_2 -alkylenedioxy or oxy- C_2 - C_3 -alkylene; or Ar is thienyl, isoxazolyl or thiazolyl each of which is unsubstituted or mono- or di-substituted by lower alkyl;

R is hydrogen, lower alkyl, phenyl-lower alkyl wherein phenyl is unsubstituted or substituted by lower alkyl, lower alkoxy, halogen or trifluoromethyl; phenyl which is unsubstituted or mono-, di- or tri-substituted by lower alkoxy, hydroxy, halogen, lower alkyl, cyano, nitro, trifluoromethyl, lower alkyl-(thio, sulfinyl or sulfonyl), amino, mono- or di-lower alkylamino or, on adjacent carbon atoms, by C₁-C₂-alkylenedioxy or oxy-C₂-C₃-alkylene; or a heterocyclic aryl radical selected from pyridyl, tetrazolyl, triazolyl, thiazolyl, thienyl, imidazolyl and quinolinyl, each unsubstituted or mono- or disubstituted by lower alkyl or halogen; biphenylyl-lower alkyl wherein biphenylyl is unsubstituted or substituted by lower alkoxy, halogen, trifluormethyl or cyano; biphenylyl-lower alkyl wherein biphenylyl is unsubstituted or substituted by lower alkyl, lower alkoxy, halogen, trifluormethyl or cyano; (pyridyl, thienyl, quinolinyl or thiazolyl)-lower alkyl, trifluormethyl, C₃-C₇-cycloalkyl, C₃-C₇-cycloalkyl-lower alkyl, (oxa or thia)-C₃-C₆-cycloalkyl, [(oxa or thia)-C₃-C₆-cycloalkyl]-lower alkyl, hydroxy-lower alkyl, lower alkanoyloxy-lower alkyl, lower alkoxy-lower alkyl, lower alkyl-(thio, sulfinyl or sulfonyl)-lower alkyl, (amino, mono- or di-lower alkylamino)-lower alkyl, lower alkanoylamino-lower alkyl, (N-lower alkyl-piperazino or N-phenyl-lower alkyl-piperazino)-lower alkyl or (morpholino, thiomorpholino, piperidino, pyrrolidino, piperidyl or N-lower alkyl-piperidyl)-lower alkyl;

R₁ is hydrogen, lower alkyl; phenyl-lower alkyl wherein phenyl is unsubstituted or substituted by lower alkyl, lower alkoxy, halogen, trifluoromethyl or, on adjacent carbon atoms, by C₁-C₂-alkylenedioxy or oxy-C₂-C₃-alkylene; phenyl which is unsubstituted or substituted by lower alkyl, lower alkoxy, halogen or trifluoromethyl; pyridyl, thienyl, biphenylyl-lower alkyl; heterocyclic aryl-lower alkyl wherein heterocyclic aryl is selected from thiazolyl, pyrazolyl, pyridyl, imidazolyl and tetrazolyl each unsubstituted or substituted by lower alkyl; trifluoromethyl, C₃-C₇-cycloalkyl, C₃-C₇-cycloalkyl-lower alkyl, hydroxy-lower alkyl, lower alkanoyloxy-lower alkyl, lower alkoxy-lower alkyl, (phenyl or pyridyl)-lower alkoxy-lower alkyl, lower alkyl-piperazino or N-phenyl-lower alkyl, (amino, mono- or di-lower alkylamino)-lower alkyl, (N-lower alkyl-piperazino or N-phenyl-lower alkylpiperazino)-lower alkyl, (morpholino, thiomorpholino, piperidino, piperidyl or N-lower alkylpiperidyl)-lower alkyl, lower alkylpiperazino, morpholino, thiomorpholino, piperidino, pyrrolidino or N-alkylpiperidyl)-lower alkyl; piperidyl or N-lower alkylpiperidyl;

R₂ is hydrogen or lower alkyl;

15

20

25

30

- (b) or wherein R and R₁ together with the chain to which they are attached form a 1,2,3,4-tetrahydro-isoquinoline, piperidine, oxazolidine, thiazolidine or pyrrolidine ring, each unsubstituted or mono- or di-substituted by lower alkyl; and Ar and R₂ have meaning as defined under (a);
- (c) or wherein R_1 and R_2 together with the carbon atom to which they are attached form a ring system selected from C_3 - C_7 -cycloalkane which is unsubstituted or substituted by lower alkyl; oxa-cyclohexane, thia-cyclohex-

ane, indane, tetralin and piperidine which is unsubstituted or substituted on nitrogen by lower alkanoyl, di-lower alkylamino-lower alkanoyl, lower alkoxycarbonyl, (morpholino, thiomorpholino or piperidino)-carbonyl, lower alkyl, (phenyl or pyridyl)-lower alkyl, (carboxy, lower alkoxycarbonyl, benzyloxycarbonyl, aminocarbonyl or mono- or di-lower alkylaminocarbonyl)-lower alkyl or by lower alkylsulfonyl; and Ar and R have meaning as defined under (a);

wherein the term "lower" refers to organic radicals with up to and including 7 carbon atoms; or a pharmaceutically acceptable prodrug derivative thereof selected from such hydroxamic acids in which the CONHOH group is derivatized in form of an O-acyl or an O-benzyl derivative, in which O-benzyl derivative the benzyl group is unsubstituted or mono-, di- or tri-substituted by substituents selected from lower alkyl, lower alkoxy, amino, nitro, halogen and trifluoromethyl;

or a pharmaceutically acceptable salt thereof.

6. A compound of formula I according to claim 5 wherein Ar is phenyl which is unsubstituted or mono-, di- or tri-substituted by C₁-C₇-alkoxy, hydroxy, phenyl-lower alkoxy, C₃-C₇-cycloalkyl-lower alkoxy, lower alkyloxy-lower alkoxy, halogen, lower alkyl, cyano, nitro, trifluoromethyl, lower alkyl-(sulfinyl or sulfonyl), amino, mono- or di-lower alkylamino or, on adjacent carbon atoms, by C₁-C₂-alkylenedioxy or oxy-C₂-C₃-alkylene; or Ar is thienyl, isoxazolyl or thiazolyl each of which is unsubstituted or mono- or di-substituted by lower alkyl;

R is hydrogen, lower alkyl, phenyl-lower alkyl; phenyl which is unsubstituted or mono-, di- or tri-substituted by lower alkoxy, hydroxy, halogen, lower alkyl, trifluoromethyl, or, on adjacent carbon atoms, by C_1 - C_2 -alkylenedioxy or oxy- C_2 - C_3 -alkylene; or a heterocyclic aryl radical selected from pyridyl, thiazolyl and quinolinyl, each unsubstituted or mono- or disubstituted by lower alkyl; biphenylyl-lower alkyl; (pyridyl or thienylylower alkyl, trifluormethyl, C_3 - C_7 -cycloalkyl, C_3 - C_7 -cycloalkyl-lower alkyl, (oxa or thia)- C_3 - C_6 -cycloalkyl, hydroxy-lower alkyl, (N-lower alkyl-piperazino or N-phenyl-lower alkyl-piperazino)-lower alkyl or (morpholino, thiomorpholino, piperidino, piperidyl or N-lower alkylpiperidyl)-lower alkyl;

R₁ is hydrogen, lower alkyl; phenyl-lower alkyl wherein phenyl is unsubstituted or substituted by lower alkyl, lower alkoxy, halogen, trifluoromethyl or, on adjacent carbon atoms, by C₁-C₂-alkylenedioxy; biphenylyl-lower alkyl; heterocyclic aryl-lower alkyl wherein heterocyclic aryl is selected from thiazolyl, pyrazolyl, pyridyl, imidazolyl and tetrazolyl each unsubstituted or substituted by lower alkyl; C₃-C₇-cycloalkyl, C₃-C₇-cycloalkyl-lower alkyl, hydroxy-lower alkyl, (phenyl or pyridyl)-lower alkoxy-lower alkyl, lower alkyl-(thio, sulfinyl or sulfonyl)-lower alkyl, (amino, mono- or di-lower alkylamino)-lower alkyl, (N-lower alkyl-piperazino or N-phenyl-lower alkylpiperazino)-lower alkyl, (morpholino, thiomorpholino, piperidino, pyrrolidino, piperidyl or N-lower alkylpiperidyl)-lower alkylpiperazino, morpholino, thiomorpholino, piperidino, pyrrolidino or N-alkylpiperidyl)-lower alkylpiperidyl)-lower alkylpiperidyl) or N-lower alkylpiperidyl;

R₂ is hydrogen or lower alkyl;

(b) or wherein R and R_1 together with the chain to which they are attached form a thiazolidine or pyrrolidine ring, each unsubstituted or mono- or di-substituted by lower alkyl; and Ar and R_2 have meaning as defined under (a);

(c) or wherein R₁ and R₂ together with the carbon atom to which they are attached form a ring system selected from C₃-C₇-cycloalkane which is unsubstituted or substituted by lower alkyl; oxa-cyclohexane, thia-cyclohexane and piperidine which is unsubstituted or substituted on nitrogen by lower alkanoyl, di-lower alkylamino-lower alkanoyl, lower alkoxycarbonyl, (morpholino, thiomorpholino or piperidino)-carbonyl, lower alkyl, (phenyl or pyridyl)-lower alkyl, (carboxy, lower alkoxycarbonyl, aminocarbonyl or mono- or di-lower alkylaminocarbonyl)-lower alkyl or by lower alkylsulfonyl; and Ar and R have meaning as defined under (a); a pharmaceutically acceptable prodrug derivative thereof as defined in claim 5; or a pharmaceutically acceptable salt thereof.

7. A compound of the formula II

55

50

10

15

20

25

30

wherein

10

15

20

25

35

50

55

R is hydrogen, lower alkyl, carbocyclic aryl-lower alkyl, carbocyclic aryl, heterocyclic aryl, biaryl-lower alkyl, heterocyclic aryl-lower alkyl, mono- or poly-halo-lower alkyl, C_3 - C_7 -cycloalkyl, C_3 - C_7 -cycloalkyl-lower alkyl, (oxa or thia)- C_3 - C_6 -cycloalkyl, [(oxa or thia)- C_3 - C_6 -cycloalkyl]-lower alkyl, hydroxy-lower alkyl, acyloxy-lower alkyl, lower alkyl, lower alkyl, lower alkyl, lower alkyl, lower alkyl, (N-lower alkyl-piperazino) or N-carbocyclic or heterocyclic aryl-lower alkylpiperazino)-lower alkyl, or (morpholino, thiomorpholino, piperidino, pyrrolidino or N-lower alkylpiperidyl)-lower alkyl;

R₁ is hydrogen, lower alkyl, carbocyclic aryl-lower alkyl, carbocyclic aryl, heterocyclic aryl, biaryl-lower alkyl, heterocyclic aryl-lower alkyl, heterocyclic aryl-lower alkyl, mono- or poly-halo-lower alkyl, C₅-C₇-cycloalkyl-lower alkyl, hydroxy-lower alkyl, acyloxy-lower alkyl, lower alkyl, lower alkyl-(thio, sulfinyl or sulfonyl)-lower alkyl, (amino, mono- or di-lower alkylamino)-lower alkyl, (N-lower alkyl-piperazino or N-carbocyclic or heterocyclic aryl-lower alkylpiperazino)-lower alkyl, (morpholino, thiomorpholino, piperidino, pyrrolidino, piperidyl or N-lower alkylpiperidyl)-lower alkyl, piperidyl, N-lower alkylpiperidyl, or acylamino-lower alkyl represented by R₃-CONH-lower alkyl;

R₂ is hydrogen;

R₃ in R₃-CONH-lower alkyl is lower alkyl, carbocyclic or heterocyclic aryl, di-lower alkylamino, N-lower alkylpiperazino, morpholino, thiomorpholino, piperidino, pyrrolidino, N-alkylpiperidyl, or (di-lower alkylpiperazino, morpholino, thiomorpholino, piperidino, pyrrolidino, pyridyl or N-lower alkylpiperidyl)-lower alkyl;

R₄ is hydrogen, lower alkoxy, hydroxy, carbocyclic or heterocyclic aryl-lower alkoxy, lower alkylthio or carbocyclic or heterocyclic aryl-lower alkylthio, lower alkyloxy-lower alkoxy, halogen, trifluoromethyl, lower alkyl, nitro or cyano;

R₅ is hydrogen, lower alkyl or halogen;

or R_4 and R_5 together on adjacent carbon atoms represent methylenedioxy, ethylenedioxy, oxyethylene or oxypropylene;

wherein the term "carbocyclic aryl" means phenyl; phenyl that is mono-, di- or tri-substituted by one, two or three radicals selected from lower alkyl, lower alkoxy, hydroxy, halogen, cyano, trifluoromethyl, lower alkylene-dioxy and oxy-C₂-C₃-alkylene; or 1- or 2-naphthyl;

wherein the term "heterocyclic aryl" means pyridyl, quinolinyl, isoquinolinyl, benzothienyl, benzofuranyl, benzofuranyl, benzothiopyranyl, furanyl, pyrrolyl, thiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, thienyl, or any said radical substituted by lower alkyl or halogen;

wherein the term "lower" refers to organic radicals with up to and including 7 carbon atoms;

or a pharmaceutically acceptable prodrug derivative thereof selected from such hydroxamic acids in which the CONHOH group is derivatized in form of an O-acyl or an O-benzyl derivative, in which O-benzyl derivative the benzyl group is unsubstituted or mono-, di- or tri-substituted by substituents selected from lower alkyl, lower alkoxy, amono, nitro, halogen and trifluoromethyl;

or a pharmaceutically acceptable salt thereof.

8. A compound of formula II

wherein

5

10

15

20

25

30

35

45

50

55

R and R₁ together with the chain to which they are attached form a 1,2,3,4-tetrahydro-isoquinoline, piperidine, thiazolidine or pyrrolidine ring;

R₂ is hydrogen;

 R_4 is hydrogen, lower alkoxy, hydroxy, carbocyclic or heterocyclic aryl-lower alkoxy, lower alkylthio or carbocyclic or heterocyclic aryl-lower alkylthio, lower alkyloxy-lower alkoxy, halogen, trifluoromethyl, lower alkyl, nitro or cyano;

R₅ is hydrogen, lower alkyl or halogen;

or R_4 and R_5 together on adjacent carbon atoms represent methylenedioxy, ethylenedioxy, oxyethylene or oxypropylene;

wherein the term "carbocyclic aryl" means phenyl; phenyl that is mono-, di- or tri-substituted by one, two or three radicals selected from lower alkyl, lower alkoxy, hydroxy, halogen, cyano, trifluoromethyl, lower alkylenedioxy and oxy-C₂-C₃-alkylene; or 1- or 2-naphthyl;

wherein the term "heterocyclic aryl" means pyridyl, quinolinyl, isoquinolinyl, benzothienyl, benzofuranyl, benzotyranyl, benzothiopyranyl, furanyl, pyrrolyl, thiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, thienyl, or any said radical substituted by lower alkyl or halogen;

wherein the term "lower" refers to organic radicals with up to and including 7 carbon atoms;

or a pharmaceutically acceptable prodrug derivative thereof selected from such hydroxamic acids in which the CONHOH group is derivatized in form of an O-acyl or an O-benzyl derivative, in which O-benzyl derivative the benzyl group is unsubstituted or mono-, di- or tri-substituted by substituents selected from lower alkyl, lower alkoxy, amino, nitro, halogen and trifluoromethyl;

or a pharmaceutically acceptable salt thereof.

9. A compound of formula II

wherein

R is hydrogen, lower alkyl, carbocyclic aryl-lower alkyl, carbocyclic aryl, heterocyclic aryl, biaryl-lower alkyl, heterocyclic aryl-lower alkyl, mono- or poly-halo-lower alkyl, C_3 - C_7 -cycloalkyl, C_3 - C_7 -cycloalkyl-lower alkyl, (oxa or thia)- C_3 - C_6 -cycloalkyl, [(oxa or thia)- C_3 - C_6 -cycloalkyl]-lower alkyl, hydroxy-lower alkyl, acyloxy-lower alkyl, lower alkyl, lower alkyl-(thio, sulfinyl)-lower alkyl, (amino, mono- or di-lower alkylamino)-lower alkyl, acylamino-lower alkyl, (N-lower alkyl-piperazino or N-carbocyclic or heterocyclic aryl-lower alkylpiperazino)-lower alkyl, or (morpholino, thiomorpholino, piperidino, pyrrolidino or N-lower alkylpiperidyl)-lower alkyl;

R₁ and R₂ together with the carbon atom to which they are attached form a ring system selected from

cyclohexane, cyclopentane, oxacyclohexane, thiacyclohexane, indane, tetralin, piperidine or piperidine substituted on nitrogen by acyl, lower alkyl, carbocyclic or heterocyclic aryl-lower alkyl or by lower alkylsulfonyl;

 R_4 is hydrogen, lower alkoxy, hydroxy, carbocyclic or heterocyclic aryl-lower alkoxy, lower alkylthio or carbocyclic or heterocyclic aryl-lower alkylthio, lower alkyloxy-lower alkoxy, halogen, trifluoromethyl, lower alkyl, nitro or cyano;

R₅ is hydrogen, lower alkyl or halogen;

or R_4 and R_5 together on adjacent carbon atoms represent methylenedioxy, ethylenedioxy, oxyethylene or oxypropylene;

wherein the term "carbocyclic aryl" means phenyl; phenyl that is mono-, di- or tri-substituted by one, two or three radicals selected from lower alkyl, lower alkoxy, hydroxy, halogen, cyano, trifluoromethyl, lower alkylenedioxy and oxy-C₂-C₃-alkylene; or 1- or 2-naphthyl;

wherein the term "heterocyclic aryl" means pyridyl, quinolinyl, isoquinolinyl, benzothienyl, benzoturanyl, benzoturanyl, benzothiopyranyl, furanyl, pyrrolyl, thiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, thienyl, or any said radical substituted by lower alkyl or halogen;

wherein the term "lower" refers to organic radicals with up to and including 7 carbon atoms;

or a pharmaceutically acceptable prodrug derivative thereof selected from such hydroxamic acids in which the CONHOH group is derivatized in form of an O-acyl or an O-benzyl derivative, in which O-benzyl derivative the benzyl group is unsubstituted or mono-, di- or tri-substituted by substituents selected from lower alkyl, lower alkoxy, amino, nitro, halogen and trifluoromethyl;

or a pharmaceutically acceptable salt thereof.

10. A compound of formula III

10

20

25

30

45

50

55

wherein R represents lower alkyl, trifluoromethyl, C_5 - C_7 -cycloalkyl, (oxa or thia)- C_4 - C_5 -cycloalkyl, biaryl, carbocyclic monocyclic aryl or heterocyclic monocyclic aryl; R_1 represents hydrogen, lower alkyl, C_5 - C_7 -cycloalkyl, monocyclic carbocyclic aryl-lower alkyl, heterocyclic aryl-lower alkyl, lower alkyl, lower alkyl, lower alkyl-(thio, sulfinyl or sulfonyl)-lower alkyl, di-lower alkylamino-lower alkyl, (N-lower alkylpiperazino, morpholino, thiomorpholino, piperidino or pyrrolidino)-lower alkyl or R_3 -CONH-lower alkyl; R_3 represents lower alkyl, carbocyclic aryl, heterocyclic aryl, di-lower alkylamino, N-lower alkylpiperazino, morpholino, thiomorpholino, piperidino, pyrrolidino, N-alkylpiperidyl, or (di-lower alkylamino, N-lower alkylpiperazino, morpholino, thiomorpholino, piperidino, pyrrolidino or N-alkylpiperidyl)-lower alkyl; R_4 represents lower alkoxy or carbocyclic or heterocyclic aryl-lower alkoxy;

wherein the term "carbocyclic aryl" means phenyl; phenyl that is mono-, di- or tri-substituted by one, two or three radicals selected from lower alkyl, lower alkoxy, hydroxy, halogen, cyano, trifluoromethyl, lower alkylenedioxy and oxy-C₂-C₃-alkylene; or 1- or 2-naphthyl;

wherein the term "carbocyclic monocyclic aryl" means phenyl; phenyl that is mono-, di- or tri-substituted by one, two or three radicals selected from lower alkyl, lower alkoxy, hydroxy, halogen, cyano, trifluoromethyl, lower alkylenedioxy and oxy-C₂-C₃-alkylene;

wherein the term "heterocyclic aryl" means pyridyl, quinolinyl, isoquinolinyl, benzothienyl, benzofuranyl, benzofuranyl, benzofuranyl, benzofuranyl, furanyl, pyrrolyl, thiazolyl, isoxazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, thienyl, or any said radical substituted by lower alkyl or halogen;

wherein the term "heterocyclic monocyclic aryl" means pyridyl, furanyl, pyrrolyl, thiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, thienyl, or any said radical substituted by lower alkyl or halogen; wherein the term "lower" refers to organic radicals with up to and including 7 carbon atoms;

or a pharmaceutically acceptable prodrug derivative thereof selected from such hydroxamic acids in which the CONHOH group is derivatized in form of an O-acyl or an O-benzyl derivative, in which O-benzyl derivative the benzyl group is unsubstituted or mono-, di- or tri-substituted by substituents selected from lower alkyl, lower alkoxy, amino, nitro, halogen and trifluoromethyl;

or a pharmaceutically acceptable salt thereof.

- 11. A compound of formula III according to claim 10 wherein R represents heterocyclic monocyclic aryl selected from tetrazolyl, triazolyl, imidazolyl and pyridyl, each unsubstituted or substituted by lower alkyl; or R represents phenyl or phenyl substituted by lower alkyl, lower alkoxy, halogen or trifluoromethyl; R₁ represents lower alkyl, cyclohexyl, or R₃-CONH-lower alkyl wherein R₃ represents (di-lower alkylamino, N-lower alkylpiperazino, morpholino, thiomorpholino, piperidino, pyrrolidino or N-alkylpiperidyl)-lower alkyl; and R₄ represents lower alkoxy or phenyl-lower alkoxy; or a pharmaceutically acceptable prodrug derivative thereof as defined in claim 10; or a pharmaceutically acceptable salt thereof.
- 12. A compound of formula III according to claim 10 wherein R represents 2-, 3- or 4-pyridyl or phenyl; R₁ represents C₁-C₄-alkyl, cyclohexyl or R₃-CONH-C₁-C₄-alkyl wherein R₃ represents di-C₁-C₄-alkylamino-C₁-C₄-lower alkyl; and R₄ represents lower alkoxy; or a pharmaceutically acceptable prodrug derivative thereof as defined in claim 10; or a pharmaceutically acceptable salt thereof.
- 13. A compound of formula III according to claim 10 wherein R represents 3-pyridyl or 4-pyridyl; R₁ represents isopropyl or cyclohexyl; and R₄ represents lower alkoxy; or a pharmaceutically acceptable prodrug derivative thereof as defined in claim 10; or a pharmaceutically acceptable salt thereof.
 - 14. A compound according to any one of claims 1-13 wherein the asymmetric carbon to which is attached R₁ is assigned the (R)-configuration.
 - 15. A compound according to claim 1 which is N-hydroxy-2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-3-meth-ylbutanamide, a pharmaceutically acceptable prodrug derivative thereof as defined in claim 11 or a pharmaceutically acceptable salt thereof.
- 25 16. A compound according to claim 11 which is N-hydroxy-2(R)-[[4-methoxybenzenesulfonyi](3-picolyl)amino]-3-meth-ylbutanamide or a pharmaceutically acceptable salt thereof.
 - 17. A compound according to claim 11 which is N-hydroxy-2(R)-[[4-methoxybenzenesulfonyl](3-picolyl)amino]-2-cyclohexylacetamide or a pharmaceutically acceptable salt thereof.
 - 18. A compound according to claim 11 which is N-hydroxy-2(R)-[[4-methoxybenzenesulfonyf](benzyl)amino]-4-methyl-pentanamide or a pharmaceutically acceptable salt thereof.
- 19. A compound according to claim 11 which is N-hydroxy-2(R)-[[4-methoxybenzenesulfonyi](benzyl)amino]-6-[(N,N-dimethylglycyl)amino] hexanamide hydrochloride or a pharmaceutically acceptable salt thereof.
 - 20. A pharmaceutical composition comprising a compound according to any one of claims 1 to 19 and a pharmaceutically acceptable carrier.
- 40 21. A compound according to any one of claims 1 to 19 for use in a method for the therapeutic treatment of the animal or human body.
 - 22. A compound according to any one of claims 1 to 19 for use in the treatment of stromelysin and collagenase dependent conditions.
 - 23. The use of a compound according to any one of claims 1 to 19 for the manufacture of a pharmaceutical composition.
- 24. The use of a compound according to any one of claims 1 to 19 for the manufacture of a pharmaceutical composition for the treatment of stromelysin and collagenase dependent conditions.
 - 25. A process for the preparation of a compound of formula I according to claim 1, which comprises condensing a carboxylic acid of formula IV,

55

$$\begin{array}{c|cccc}
R & & & & \\
O & R_1 & CH_2O & \\
II & I & I & I & \\
HO-C-C-N-S-Ar & & & II \\
R_2 & O & & &
\end{array} (IV)$$

10

15

20

or a reactive functional derivative thereof, wherein R, R_1 , R_2 and Ar having meaning as defined in claim 1, with hydroxylamine of formula V,

NH₂-OH

(V)

(I)

optionally in protected form, or a salt thereof; and, if necessary, temporarily protecting any interfering reactive group(s), and then liberating the resulting compound of the invention; and, if required or desired, converting a resulting compound of the invention into another compound of the invention, and/or, if desired, converting a resulting free compound into a salt or a resulting salt into a free compound or into another salt; and/or separating a mixture of isomers or racemates obtained into the single isomers or racemates; and/or, if desired, resolving a racemate into the optical antipodes.

Patentansprüche

1. Verbindung der Formel I

30

35

45

50

55

(a) worin

.

Ar carbocyclisches oder heterocyclisches Aryl bedeutet;

R Wasserstoff, Niederalkyl, carbocyclisches Arylniederalkyl, carbocyclisches Aryl, heterocyclisches Aryl, Biaryl, Biarylniederalkyl, heterocyclisches Arylniederalkyl, Mono- oder Polyhalogenniederalkyl, C₃-C₇-Cycloalkyl, C₃-C₇-Cycloalkyl, C₃-C₇-Cycloalkyl, I(Oxa- oder Thia-)-C₃-C₆-cycloalkyl]niederalkyl, Hydroxyniederalkyl, Acyloxyniederalkyl, Niederalkyl, Niederalkyl, Niederalkyl, Niederalkyl, Acyloxyniederalkyl, Niederalkyl, Acyloxyniederalkyl, Niederalkyl, Acyloxyniederalkyl, (N-Niederalkyl), I(N-Niederalkyl), I(N-Niederalkyl), I(N-Niederalkyl), I(Norpholino-, Thiomorpholino-, Piperidino-, Pyrrolidino-, Piperidyl- oder N-Niederalkyl) iniederalkyl darstellt;

R₁ Wasserstoff, Niederalkyl, carbocyclisches Arylniederalkyl, carbocyclisches Aryl, heterocyclisches Arylniederalkyl, Carbocyclisches Arylniederalkyl, Mono- oder Polyhalogenniederalkyl, C₃-C₇-Cycloalkyl, C₃-C₇-Cycloalkylniederalkyl, Hydroxyniederalkyl, Acyloxyniederalkyl, Niederalkoxyniederalkyl, (carbocyclisches oder heterocyclisches Aryl-)niederalkoxyniederalkyl, Niederalkyl(-thio-, -sulfinyl- oder sulfonyl-)niederalkyl, (Amino-, Mono- oder Diniederalkylamino-)niederalkyl, (N-Niederalkylpiperazino-oder N-carbocyclisches oder heterocyclisches Arylniederalkylpiperazino-)niederalkyl, (Morpholino-, Thiomorpholino-, Piperidino-, Pyrrolidino-, Piperidyl- oder N-Niederalkylpiperidyl-)niederalkyl, Acylaminoniederalkyl, Piperidyl oder N-Niederalkylpiperidyl darstellt;

R₂ Wasserstoff oder Niederalkyl darstellt;

(b) oder, worin R und R₁ zusammen mit der Kette, an die sie gebunden sind, einen 1,2,3,4-Tetrahydroisochinolin-, Piperidin-, Oxazolidin-, Thiazolidin- oder Pyrrolidinring bilden, jeweils unsubstituiert oder mit Niederalkyl substituiert; und Ar und R₂, die unter (a) definierten Bedeutungen aufweisen;

(c) oder, worin R₁ und R₂ zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, ein Ringsystem bilden, ausgewählt aus C₃-C₇-Cycloalkan, das unsubstituiert oder mit Niederalkyl substituiert ist; Oxacyclohexan, Thiacyclohexan, Indan, Tetralin, Piperidin oder Piperidin, am Stickstoffatom mit Acyl, Niederalkyl, carbocyclischem oder heterocyclischem Arylniederalkyl, (Carboxy-, verestertem oder amidiertem Carboxy-)niederalkyl oder mit Niederalkylsulfonyl substituiert; und Ar und R die unter (a) definierte Bedeutung aufweisen:

wobei der Ausdruck "carbocyclisches Aryl" Phenyl; Phenyl, das mit ein, zwei oder drei Resten, ausgewählt aus Niederalkyl, Niederalkoxy, Hydroxy, Halogen, Cyano, Trifluormethyl, Niederalkylendioxy und Oxy-C₂-C₃-alkylen, mono-, di- oder trisubstituiert ist; oder 1- oder 2-Naphthyl darstellt;

wobei der Ausdruck "heterocyclisches Aryl" Pyridyl, Chinolinyl, Isochinolinyl, Benzothienyl, Benzofuranyl, Benzothiopyranyl, Furanyl, Pyrrolyl, Thiazolyl, Oxazolyl, Isoxazolyl, Triazolyl, Tetrazolyl, Pyrazolyl, Imidazolyl, Thienyl oder einen dieser mit Niederalkyl oder Halogen substituierten Reste bedeutet;

wobei der Ausdruck "nieder" organische Reste mit bis zu und einschließlich 7 Kohlenstoffatomen betrifft;

oder ein pharmazeutisch verträgliches Prodrugderivat davon, ausgewählt aus solchen Hydroxamsäuren, worin die Gruppe CONHOH in Form eines O-Acyl- oder eines O-Benzylderivats derivatisiert ist, wobei in dem O-Benzylderivat die Benzylgruppe unsubstituiert oder mit Substituenten, ausgewählt aus Niederalkyl, Niederalkoxy, Amino, Nitro, Halogen und Trifluormethyl, mono-, di- oder trisubstituiert ist;

oder ein pharmazeutisch verträgliches Salz davon.

2. Verbindung nach Anspruch 1 der Formel la

10

15

20

25

30

35

45

50

55

worin X Methylen oder 1,2-Ethylen, jeweils unsubstituiert oder mit Niederalkyl substituiert, wiedergibt oder X Sauerstoff, Schwefel oder 1,2-Phenylen wiedergibt; Ar und R₂, die wie in Anspruch 1 definierte Bedeutung aufweisen; oder ein pharmazeutisch verträgliches Prodrugderivat davon, wie in Anspruch 1 definiert; oder ein pharmazeutisch verträgliches Salz davon.

3. Verbindung nach Anspruch 1 der Formel Ib

worin Y eine direkte Bindung, geradkettiges C₁-C₄-Alkylen, gegebenenfalls substituiert mit Niederalkyl, CH₂OCH₂, CH₂SCH₂, 1,2-Phenylen, CH₂-1,2-Phenylen oder CH₂N(R₆)CH₂ darstellt, worin R₆ Wasserstoff, Niederalkanoyl, Diniederalkylaminoniederalkanoyl, Aroyl, carbocyclisches Arylniederalkanoyl, Niederalkyl, carbocyclisches oder heterocyclisches Arylniederalkyl, (Carboxy-, verestertes oder amidiertes Carboxy-)niederalkyl oder Niederalkylsulfonyl darstellt; Ar und R die in Anspruch 1 definierte Bedeutung aufweisen; oder ein pharmazeutisch verträgliches Prodrugderivat davon, wie in Anspruch 1 definiert; oder ein pharmazeutisch verträgliches Salz davon.

4. Verbindung nach Anspruch 3 der Formel Ic

worin Y' Sauerstoff, Schwefel, eine direkte Bindung, Methylen oder Methylen, substituiert mit Niederalkyl, oder NR₆ darstellt, wobei R₆ Wasserstoff, Niederalkanoyl, Diniederalkylaminoniederalkanoyl, carbocyclisches Arylniederalkanoyl, Niederalkyl, carbocyclisches oder heterocyclisches Arylniederalkyl, (Carboxy-, verestertes oder amidiertes Carboxy-)niederalkyl oder Niederalkylsulfonyl darstellt; Ar und R die in Anspruch 1 definierte Bedeutung aufweisen; oder ein pharmazeutisch verträgliches Prodrugderivat davon, wie in Anspruch 1 definiert; oder ein pharmazeutisch verträgliches Salz davon.

5. Verbindung der Formel I

25

35

55

worin Ar Phenyl, das unsubstituiert oder mit C₁-C₁₀-Alkoxy, Hydroxy; mit Phenylniederalkoxy, worin Phenyl unsubstituiert oder mit Niederalkyl, Niederalkoxy, Halogen oder Trifluormethyl substituiert ist; mit heterocyclischem Arylniederalkoxy, worin heterocyclisches Aryl ausgewählt ist aus Pyridyl, Tetrazolyl, Triazolyl, Thiazolyl, Thiazolyl, Imidazolyl und Chinolinyl, jeweils unsubstituiert oder mit Niederalkyl oder Halogen mono- oder disubstituiert; mit C₃-C₇-Cycloalkylniederalkoxy, (Niederalkyl-, Phenylniederalkyl- oder C₃-C₇-Cycloalkylniederalkyl-)thio, Niederalkyloxyniederalkoxy, Halogen, Niederalkyl, Cyano, Nitro, Trifluormethyl, Niederalkyl(-sulfinyl oder -sulfonyl), Amino, Mono- oder Diniederalkylamino oder an benachbarten Kohlenstoffatomen, mit C₁-C₂-Alkylendioxy oder Oxy-C₂-C₃-alkylen, mono-, di- oder trisubstituiert ist; oder Ar Thienyl, Isoxazolyl oder Thiazolyl, jeweils unsubstituiert oder mit Niederalkyl mono- oder disubstituiert, darstellt;

R Wasserstoff, Niederalkyl, Phenylniederalkyl, worin Phenyl unsubstituiert oder mit Niederalkyl, Niederalkoxy, Halogen oder Trifluormethyl substituiert ist; Phenyl, das unsubstituiert oder mit Niederalkoxy, Hydroxy, Halogen, Niederalkyl, Cyano, Nitro, Trifluormethyl, Niederalkyl(-thio, -sulfinyl oder -sulfonyl), Amino, Mono- oder Diniederalkylamino oder an benachbarten Kohlenstoffatomen mit C₁-C₂-Alkylendioxy oder Oxy-C₂-C₃-alkylen mono-, di- oder trisubstituiert ist; oder einen heterocyclischen Arylrest, ausgewählt aus Pyridyl, Tetrazolyl, Triazolyl, Thiazolyl, Thienyl, Imidazolyl und Chinolinyl, jeweils unsubstituiert oder mit Niederalkyl oder Halogen mono- oder disubstituiert; Biphenylyl, das unsubstituiert oder mit Niederalkyl, Niederalkoxy, Halogen, Trifluormethyl oder Cyano substituiert ist; (Pyridyl-, Thienyl-, Chinolinyl- oder Thiazolyl-)niederalkyl, Trifluormethyl, C₃-C₇-Cycloalkyl-jniederalkyl, (Oxa- oder Thia-)-C₃-C₆-cycloalkyl-jniederalkyl, Hydroxyniederalkyl, Niederalkanoyloxyniederalkyl, Niederalkyl, Niederalkylpiperazino- oder N-Phenylniederalkyl piperazino-)niederalkyl oder (Morpholino-, Thiomorpholino-, Piperidino-, Pyrrolidino-, Piperidyloder N-Niederalkylpiperidyl-)niederalkyl darstellt;

R₁ Wasserstoff, Niederalkyl, Phenylniederalkyl, worin Phenyl unsubstituiert oder mit Niederalkyl, Niederalkoxy, Halogen, Trifluormethyl oder an benachbarten Kohlenstoffatomen, mit C₁-C₂-Alkylendioxy oder Oxy-C₂-C₃-alkylen substituiert ist; Phenyl, das unsubstituiert oder mit Niederalkyl, Niederalkoxy, Halogen oder Trifluormethyl substituiert ist; Pyridyl, Thienyl, Biphenylylniederalkyl, heterocyclisches Arylniederalkyl, worin

heterocyclisches Aryl ausgewählt ist aus Thiazolyl, Pyrazolyl, Pyridyl, Imidazolyl und Tetrazolyl, jeweils unsubstituiert oder mit Niederalkyl substituiert; Trifluormethyl, C₃-C₇-Cycloalkyl, C₃-C₇-Cycloalkylniederalkyl, Hydroxyniederalkyl, Niederalkanoyloxyniederalkyl, Niederalkoxyniederalkyl, (Phenyl- oder Pyridyl-)niederalkoxyniederalkyl, Niederalkyl(-thio-, -sulfinyl- oder -sulfonyl-)niederalkyl, (Amino-, Mono- oder Diniederalkylamino-)niederalkyl, (N-Niederalkylpiperazino- oder N-Phenylniederalkylpiperazino-)niederalkyl, (Morpholino-, Thiomorpholino-, Piperidino-, Pyrrolidino-, Piperidyl- oder N-Niederalkylpiperidyl-)niederalkyl, Niederalkylpiperazino-, Morpholino-, Thiomorpholino-, Piperidino-, Pyrrolidino- oder N-Alkylpiperidyl-)niederalkyl; Piperidyl oder N-Niederalkylpiperidyl darstellt;

R₂ Wasserstoff oder Niederalkyl darstellt;

10

15

30

50

55

(b) oder, worin R und R₁ zusammen mit der Kette, an die sie gebunden sind, einen 1,2,3,4-Tetrahydroisochinolin-, Piperidin-, Oxazolidin-, Thiazolidin- oder Pyrrolidinring bilden, jeweils unsubstituiert oder mit Niederalkyt mono- oder disubstituiert; und Ar und R₂, die unter (a) definierte Bedeutung aufweisen;

(c) oder, worin R₁ und R₂ zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, ein Ringsystem bilden, ausgewählt aus C₃-C₇-Cycloalkan, das unsubstituiert oder mit Niederalkyl substituiert ist; Oxacyclohexan, Thiacyclohexan, Indan, Tetralin und Piperidin, das unsubstituiert oder am Stickstoffatom mit Niederalkanoyl, Diniederalkylaminoniederalkanoyl, Niederalkoxycarbonyl, (Morpholino-, Thiomorpholino- oder Piperidino-)carbonyl, Niederalkyl (Phenyl- oder Pyridyl-)niederalkyl, (Carboxy-, Niederalkoxycarbonyl-, Benzyloxycarbonyl-, Aminocarbonyl- oder Mono- oder Diniederalkylaminocarbonyl-)niederalkyl oder mit Niederalkylsulfonyl substituiert ist; und Ar und R die unter (a) definierte Bedeutung aufweisen:

wobei der Ausdruck "nieder" sich auf organische Reste mit bis zu und einschließlich 7 Kohlenstoffatomen bezieht;

oder ein pharmazeutisch verträgliches Prodrugderivat davon, ausgewählt aus solchen Hydroxamsäuren, worin die Gruppe CONHOH in Form eines O-Acyl- oder eines O-Benzylderivates derivatisiert ist, wobei in dem O-Benzylderivat die Benzylgruppe unsubstituiert oder mit Substituenten, ausgewählt aus Niederalkyl, Niederalkoxy, Amino, Nitro, Halogen und Trifluormethyl, mono-, di- oder trisubstituiert ist;

oder ein pharmazeutisch vertragliches Salz davon.

6. Verbindung der Formel I nach Anspruch 5, worin Ar Phenyl, das unsubstituiert oder mit C₁-C₇-Alkoxy, Hydroxy, Phenylniederalkoxy, C₃-C₇-Cycloalkylniederalkoxy, Niederalkyloxyniederalkoxy, Halogen, Niederalkyl, Cyano, Nitro, Trifluormethyl, Niederalkyl(-sulfinyl oder -sulfonyl), Amino, Mono- oder Diniederalkylamino oder an benachbarten Kohlenstoffatomen, mit C₁-C₂-Alkylendioxy oder Oxy-C₂-C₃-alkylen mono-, di- oder trisubstituiert ist, darstellt; oder Ar Thienyl, Isoxazolyl oder Thiazolyl, jeweils unsubstituiert oder mit Niederalkyl mono- oder disubstituiert, darstellt;

R Wasserstoff, Niederalkyl; Phenylniederalkyl; Phenyl, das unsubstituiert oder mit Niederalkoxy, Hydroxy, Halogen, Niederalkyl, Trifluormethyl oder an benachbarten Kohlenstoffatomen, mit C₁-C₂-Alkylendioxy oder Oxy-C2-C3-alkylen mono-, di- oder trisubstituiert ist; oder einen heterocyclischen Arylrest, ausgewählt aus Pyridyl, Thiazolyl und Chinolinyl, jeweils unsubstituiert oder mit Niederalkyl mono- oder disubstituiert; Biphenylyl; Biphenylylniederalkyl; (Pyridyl- oder Thienyl-)niederalkyl, Trifluormethyl, C3-C7-Cycloalkyl, C alkylniederalkyl, (Oxa- oder Thia-)-C3-C6-cycloalkyl, [(Oxa- oder Thia-)-C3-C6-cycloalkyl]niederalkyl, Hydroxyniederalkyl, (N-Niederalkylpiperazino- oder N-Phenylniederalkylpiperazino-)niederalkyl oder (Morpholino-, Thiomorpholino-, Piperidino-, Pyrrolidino-, Piperidyl- oder N-Niederalkylpiperidyl-)niederalkyl darstellt; R₁ Wasserstoff, Niederalkyl; Phenylniederalkyl, worin Phenyl unsubstituiert oder mit Niederalkyl, Niederalkoxy, Halogen, Trifluormethyl oder an benachbarten Kohlenstoffatomen, mit C₁-C₂-Alkylendioxy substituiert ist; Biphenylylniederalkyl; heterocyclisches Arylniederalkyl, worin heterocyclisches Aryl ausgewählt ist aus Thiazolyl, Pyrazolyl, Pyridyl, Imidazolyl und Tetrazolyl, jeweils unsubstituiert oder mit Niederalkyl substituiert; C3-C7-Cycloalkyl, C3-C7-Cycloalkylniederalkyl, Hydroxyniederalkyl, (Phenyl- oder Pyridyl-)niederalkoxyniederalkyl, Niederalkyl(-thio-, -sulfinyl- oder -sulfonyl-)niederalkyl, (Amino-, Mono- oder Diniederalkylamino-)niederal-(N-Niederalkylpiperazinooder N-Phenylniederalkylpiperazino-)niederalkyl, Thiomorpholino-, Piperidino-, Pyrrolidino-, Piperidyl- oder N-Niederalkylpiperidyl-)niederalkyl, Niederalkanoylaminoniederalkyl, R₃-CONH-Niederalkyl, worin R₃ (Diniederalkylamino-, N-Niederalkylpiperazino-, Morpholino-, Thiomorpholino-, Piperidino-, Pyrrolidino- oder N-Alkylpiperidyl-)niederalkyl; Piperidyl oder N-Niederalkylpiperidyl wiedergibt, darstellt;

R₂ Wasserstoff oder Niederalkyl darstellt;

- (b) oder, worin R und R₁ zusammen mit der Kette, an die sie gebunden sind, einen Thiazolidin- oder Pyrrolidinring, jeweils unsubstituiert oder mit Niederalkyl mono- oder disubstituiert, bilden und Ar und R₂, die unter (a) definierte Bedeutung aufweisen;
- (c) oder, worin R₁ und R₂ zusammen mit den Kohlenstoffatom, an das sie gebunden sind, ein Ringsystem bil-

den, ausgewählt aus C₃-C₇-Cycloalkan, das unsubstituiert oder mit Niederalkyl substituiert ist; Oxacyclohexan, Thiacyclohexan und Piperidin, das unsubstituiert oder am Stickstoffatom mit Niederalkanoyl, Diniederalkylaminoniederalkanoyl, Niederalkoxycarbonyl, (Morpholino-, Thiomorpholino- oder Piperidino-)carbonyl, Niederalkyl, (Phenyl- oder Pyridyl-)niederalkyl, (Carboxy-, Niederalkoxycarbonyl-, Aminocarbonyl- oder Mono- oder Diniederalkylaminocarbonyl-)niederalkyl oder mit Niederalkylsulfonyl substituiert ist; und Ar und R die unter (a) definierte Bedeutung aufweisen;

ein pharmazeutisch verträgliches Prodrugderivat davon, wie in Anspruch 5 definiert, oder ein pharmazeutisch verträgliches Salz davon.

7. Verbindung der Formel II

15

20

25

30

35

40

45

50

55

worin

R Wasserstoff, Niederalkyl, carbocyclisches Arylniederalkyl, carbocyclisches Aryl, heterocyclisches Aryl, Biarylniederalkyl, heterocyclisches Arylniederalkyl, Mono- oder Polyhalogenniederalkyl, C₃-C₇-Cycloalkyl, C₃-C₇-Cycloalkyl, (Oxa- oder Thia-)-C₃-C₆-cycloalkyl, ((Oxa- oder Thia-)-C₃-C₆-cycloalkyl-]niederalkyl, Hydroxyniederalkyl, Acyloxyniederalkyl, Niederalkyl, Niederalkyl, Niederalkyl-Iniederalkyl, Oxa- oder -sulfonyl-)niederalkyl, (Amino-, Mono- oder Diniederalkylamino-)niederalkyl, Acylaminoniederalkyl, (Niederalkylpiperazino-)niederalkyl oder (Morpholino-, Thiomorpholino-, Piperidino-, Pyrrolidino- oder N-Niederalkylpiperidyl-)niederalkyl darstellt; R₁ Wasserstoff, Niederalkyl, carbocyclisches Arylniederalkyl, carbocyclisches Aryl, heterocyclisches Aryl, Biaryl, Biarylniederalkyl, heterocyclisches Arylniederalkyl, Mono- oder Polyhalogenniederalkyl, C₅-C₇-Cycloalkyl, C₅-C₇-Cycloalkyl, Niederalkyl, Niederalkyl, Niederalkyl, Niederalkyl, Niederalkyl, Niederalkyl, Niederalkyl, Niederalkylpiperazino- oder N-carbocyclisches oder heterocyclisches Arylniederalkylpiperazino-)niederalkyl, (Morpholino-, Thiomorpholino-, Piperidino-, Pyrrolidino-, Piperidyl- oder N-Niederalkylpiperidyl-)niederalkyl, Piperidyl, N-Niederalkylpiperidyl oder Acylaminoniederalkyl, wiedergegeben durch R₃-CONH-Niederalkyl, darstellt; R₂ Wasserstoff darstellt;

 R_3 in R_3 -CONH-Niederalkyl Niederalkyl, carbocyclisches oder heterocyclisches Aryl, Diniederalkylamino, N-Niederalkylpiperazino, Morpholino, Thiomorpholino, Piperidino, Pyrrolidino, N-Alkylpiperidyl oder (Diniederalkylamino-, N-Niederalkylpiperazino-, Morpholino-, Thiomorpholino-, Piperidino-, Pyrrolidino-, Pyridyl- oder N-Niederalkylpiperidyl-)niederalkyl darstellt;

R₄ Wasserstoff, Niederalkoxy, Hydroxy, carbocyclisches oder heterocyclisches Arylniederalkoxy, Niederalkytthio oder carbocyclisches oder heterocyclisches Arylniederalkytthio, Niederalkyloxyniederalkoxy, Halogen, Trifluormethyl, Niederalkyl, Nitro oder Cyano darstellt;

R₅ Wasserstoff, Niederalkyl oder Halogen darstellt;

oder $\rm R_4$ und $\rm R_5$ zusammen an benachbarten Kohlenstoffatomen Methylendioxy, Ethylendioxy, Oxyethylen oder Oxypropylen darstellen;

wobei der Ausdruck "carbocyclisches Aryl" Phenyl; Phenyl, das mit ein, zwei oder drei Resten, ausgewählt aus Niederalkyl, Niederalkoxy, Hydroxy, Halogen, Cyano, Trifluormethyl, Niederalkylendioxy und Oxy- C_2 -alkylen, mono-, di- oder trisubstituiert ist; oder 1- oder 2-Naphthyl bedeutet;

wobei der Ausdruck "heterocyclisches Aryl" Pyridyl, Chinolinyl, Isochinolinyl, Benzothienyl, Benzofuranyl, Benzothiopyranyl, Furanyl, Pyrrolyl, Thiazolyl, Oxazolyl, Isoxazolyl, Triazolyl, Triazolyl, Pyrazolyl, Imidazolyl, Thienyl oder einen mit Niederalkyl oder Halogen substituierten Rest bedeutet;

wobei der Ausdruck "nieder" sich auf organische Reste mit bis zu und einschließlich 7 Kohlenstoffatomen bezieht:

oder ein pharmazeutisch verträgliches Prodrugderivat davon, ausgewählt aus solchen Hydroxamsäuren, worin die Gruppe CONHOH in Form eines O-Acyl- oder eines O-Benzylderivats derivatisiert ist, wobei in dem O-Benzylderivat die Benzylgruppe unsubstituiert oder mit Substituenten, ausgewählt aus Niederalkyl,

Niederalkoxy, Amino, Nitro, Halogen oder Trifluormethyl, mono-, di- oder trisubstituiert ist; oder ein pharmazeutisch verträgliches Salz davon.

8. Verbindung der Formel II

5

10

15

20

25

30

45

50

55

worin

R und R₁ zusammen mit der Kette, an die sie gebunden sind, einen 1,2,3,4-Tetrahydroisochinolin-, Piperidin-, Thiazolidin- oder Pyrrolidinring bilden;

R₂ Wasserstoff darstellt;

R₄ Wasserstoff, Niederalkoxy, Hydroxy, carbocyclisches oder heterocyclisches Arylniederalkoxy, Niederalkylthio oder carbocyclisches oder heterocyclisches Arylniederalkylthio, Niederalkyloxyniederalkoxy, Halogen, Trifluormethyl, Niederalkyl, Nitro oder Cyano darstellt;

R₅ Wasserstoff, Niederalkyl oder Halogen darstellt;

oder R_4 und R_5 zusammen an den benachbarten Kohlenstoffatomen Methylendioxy, Ethylendioxy, Oxyethylen oder Oxypropylen darstellen;

wobei der Ausdruck "carbocyclisches Aryl" Phenyl; Phenyl, das mit ein, zwei oder drei Resten, ausgewählt aus Niederalkyl, Niederalkoxy, Hydroxy, Halogen, Cyano, Trifluormethyl, Niederalkylendioxy und Oxy-C₂-C₃-alkylen, mono-, di- oder trisubstituiert ist; oder 1- oder 2-Naphthyl bedeutet;

wobei der Ausdruck "heterocyclisches Aryl" Pyridyl, Chinolinyl, Isochinolinyl, Benzothienyl, Benzofuranyl, Benzopyranyl, Benzothiopyranyl, Furanyl, Pyrrolyl, Thiazolyl, Oxazolyl, Isoxazolyl, Triazolyl, Tetrazolyl, Pyrazolyl, Imidazolyl, Thienyl oder einen dieser mit Niederalkyl oder Halogen substituierten Reste bedeutet;

wobei der Ausdruck "nieder" sich auf organische Reste mit bis zu und einschließlich 7 Kohlenstoffatomen bezieht;

oder ein pharmazeutisch verträgliches Prodrugderivat davon, ausgewählt aus solchen Hydroxamsäuren, worin die Gruppe CONHOH in Form eines O-Acyl oder eines O-Benzylderivats derivatisiert ist, wobei in dem O-Benzylderivat die Benzylgruppe unsubstituiert oder mit Substituenten, ausgewählt aus Niederalkyl, Niederalkoxy, Amino, Nitro, Halogen und Trifluormethyl, mono-, di- oder trisubstituiert ist;

oder ein pharmazeutisch verträgliches Salz davon.

9. Verbindung der Formel II

worin

R Wasserstoff, Niederalkyl, carbocyclisches Arylniederalkyl, carbocyclisches Aryl, heterocyclisches Aryl, Biarryl, Biarrylniederalkyl, heterocyclisches Arylniederalkyl, Mono- oder Polyhalogenniederalkyl, C₃-C₇-Cycloalkyl, C₃-C₇-Cycloalkyl, [(Oxa- oder Thia-)-C₃-C₆-cycloalkyl, [(Oxa- oder Thia-)-C₃-C₆-cycloalkyl, Niederalkyl, Niederalkyl, Niederalkyl, Niederalkyl, Niederalkyl, Niederalkyl, Niederalkyl, (Niederalkyl, Oxa- oder Diniederalkyl, Niederalkyl, Acylaminoniederalkyl, (Niederalkyl, Niederalkyl, (Niederalkyl, Oxa- oder Diniederalkyl, Niederalkyl, Oxa- oder Diniederalkyl, (Niederalkyl, Oxa- oder Diniederalkyl, Oxa- ode

Niederalkylpiperazino- oder N-carbocyclisches oder heterocyclisches Arylniederalkylpiperazino-)niederalkyl oder (Morpholino-, Thiomorpholino-, Piperidino-, Pyrrolidino- oder N-Niederalkylpiperidyl-)niederalkyl darstellt; R₁ und R₂ zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, ein Ringsystem bilden, ausgewählt aus Cyclohexan, Cyclopentan, Oxacyclohexan, Thiacyclohexan, Indan, Tetralin, Piperidin oder Piperidin, substituiert am Stickstoffatom mit Acyl, Niederalkyl, carbocyclischem oder heterocyclischem Arylniederalkyl oder mit Niederalkylsulfonyl;

R₄ Wasserstoff, Niederalkoxy, Hydroxy, carbocyclisches oder heterocyclisches Arylniederalkoxy, Niederalkylthio oder carbocyclisches oder heterocyclisches Arylniederalkylthio, Niederalkyloxyniederalkoxy, Halogen, Trifluormethyl, Niederalkyl, Nitro oder Cyano darstellt;

R₅ Wasserstoff, Niederalkyl oder Halogen darstellt;

oder R_4 und R_5 zusammen mit den benachbarten Kohlenstoffatomen Methylendioxy, Ethylendioxy, Oxyethylen oder Oxypropylen wiedergeben;

wobei der Ausdruck "carbocyclisches Aryl" Phenyl, Phenyl, das mit ein, zwei oder drei Resten, ausgewählt aus Niederalkyl, Niederalkoxy, Hydroxy, Halogen, Cyano, Trifluormethyl, Niederalkylendioxy und Oxy-C₂-C₃-alkylen mono-, di- oder trisubstituiert ist; oder 1- oder 2-Naphthyl bedeutet;

wobei der Ausdruck "heterocyclisches Aryl" Pyridyl, Chinolinyl, Isochinolinyl, Benzothienyl, Benzoturanyl, Benzothiopyranyl, Furanyl, Pyrrolyl, Thiazolyl, Oxazolyl, Isoxazolyl, Triazolyl, Tetrazolyl, Pyrazolyl, Imidazolyl, Thienyl oder einen dieser mit Niederalkyl oder Halogen substituierten Reste bedeutet;

wobei der Ausdruck "nieder" sich auf organische Reste mit bis zu und einschließlich 7 Kohlenstoffatomen bezieht:

oder ein pharmazeutisch verträgliches Prodrugderivat davon, ausgewählt aus solchen Hydroxamsäuren, worin die Gruppe CONHOH in Form eines O-Acyl- oder eines O-Benzylderivats derivatisiert ist, wobei in dem O-Benzylderivat die Benzylgruppe unsubstituiert oder mit Substituenten, ausgewählt aus Niederalkyl, Niederalkoxy, Amino, Nitro, Halogen und Trifluormethyl, mono-, di- oder trisubstituiert ist;

oder ein pharmazeutisch verträgliches Salz davon.

10. Verbindung der Formel III

10

15

20

25

30

35

50

55 -

worin R Niederalkyl, Trifluormethyl, C₅-C₇-Cycloalkyl, (Oxa- oder Thia-)-C₄-C₅-cycloalkyl, Biaryl, carbocyclisches monocyclisches Aryl oder heterocyclisches monocyclisches Aryl wiedergibt; R₁ Wasserstoff, Niederalkyl, C₅-C₇-Cycloalkyl, monocyclisches carbocyclisches Aryl, carbocyclisches Arylniederalkyl, heterocyclisches Arylniederalkyl, Niederalkyl, Niederalkyl, Niederalkyl, Niederalkyl, Niederalkyl, Oder -sulfinyl- oder -sulfinyl-)niederalkyl, Diniederalkylaminoniederalkyl, (N-Niederalkylpiperazino-, Morpholino-, Thiomorpholino-, Piperidino- oder Pyrrolidino-)niederalkyl oder R₃-CONH-Niederalkyl wiedergibt; R₃ Niederalkyl, carbocyclisches Aryl, heterocyclisches Aryl, Diniederalkylamino, N-Niederalkylpiperazino, Morpholino, Thiomorpholino, Pyrrolidino, N-Alkylpiperidyl oder (Diniederalkylamino-, N-Niederalkylpiperazino-, Morpholino-, Thiomorpholino-, Piperidino-, Pyrrolidino- oder N-Alkylpiperidyl-)niederalkyl wiedergibt; R₄ Niederalkoxy oder carbocyclisches oder heterocyclisches Arylniederalkoxy wiedergibt;

wobei der Ausdruck "carbocyclisches Aryl" Phenyl; Phenyl, das mit ein, zwei oder drei Resten, ausgewählt aus Niederalkyl, Niederalkoxy, Hydroxy, Halogen, Cyano, Trifluormethyl, Niederalkylendioxy und Oxy-C₂-C₃-alkylen, mono-, di- oder trisubstituiert ist; oder 1- oder 2-Naphthyl bedeutet;

wobei der Ausdruck "carbocyclisches monocyclisches Aryl" Phenyl, Phenyl, das mit ein, zwei oder drei Resten, ausgewählt aus Niederalkyl, Niederalkoxy, Hydroxy, Halogen, Cyano, Trifluormethyl, Niederalkylendioxy und Oxy-C2-C3-alkylen, mono-, di- oder trisubstituiert ist, bedeutet;

wobei der Ausdruck "heterocyclisches Aryl" Pyridyl, Chinolinyl, Isochinolinyl, Benzothienyl, Benzofuranyl, Benzothiopyranyl, Furanyl, Pyrrolyl, Thiazolyl, Oxazolyl, Isoxazolyl, Triazolyl, Tetrazolyl, Pyrazolyl, Imidazolyl, Thienyl oder einen dieser mit Niederalkyl oder Halogen substituierten Reste bedeutet;

wobei der Ausdruck "heterocyclisches monocyclisches Aryl" Pyridyl, Furanyl, Pyπolyl, Thiazolyl, Oxazolyl, Isoxazolyl, Triazolyl, Tetrazolyl, Pyrazolyl, Imidazolyl, Thienyl oder einen dieser mit Niederalkyl oder Halogen sub-

stituierten Reste bedeutet:

25

wobei der Ausdruck "nieder" sich auf organische Reste mit bis zu und einschließlich 7 Kohlenstoffatomen bezieht:

oder ein pharmazeutisch verträgliches Prodrugderivat davon, ausgewählt aus solchen Hydroxamsäuren, worin die Gruppe CONHOH in Form eines O-Acyl- oder eines O-Benzylderivats derivatisiert ist, wobei in dem O-Benzylderivat die Benzylgruppe unsubstituiert oder mit Substituenten, ausgewählt aus Niederalkyl, Niederalkoxy, Amino, Nitro, Halogen und Trifluormethyl, mono-, di- oder trisubstituiert ist;

oder ein pharmazeutisch verträgliches Salz davon.

- 11. Verbindung der Formel III nach Anspruch 10, worin R heterocyclisches monocyclisches Aryl, ausgewählt aus Tetrazolyl, Triazolyl, Imidazolyl und Pyridyl, jeweils unsubstituiert oder mit Niederalkyl substituiert, wiedergibt; oder R Phenyl oder Phenyl, substituiert mit Niederalkyl, Niederalkoxy, Halogen oder Trifluormethyl, wiedergibt; R₁ Niederalkyl, Cyclohexyl oder R₃-CONH-Niederalkyl wiedergibt, worin R₃ (Diniederalkylamino-, Niederalkylpiperazino-, Morpholino-, Thiomorpholino-, Piperidino-, Pyrrolidino- oder N-Alkylpiperidyl-)niederalkyl wiedergibt und R₄ Niederalkoxy oder Phenylniederalkoxy wiedergibt; oder ein pharmazeutisch verträgliches Prodrugderivat davon, wie in Anspruch 10 definiert, oder ein pharmazeutisch verträgliches Salz davon.
 - 12. Verbindung der Formel III nach Anspruch 10, worin R 2-, 3- oder 4-Pyridyl oder Phenyl wiedergibt; R₁ C₁-C₄-Alkyl, Cyclohexyl oder R₃-CONH-C₁-C₄-Alkyl wiedergibt, worin R₃ Di-C₁-C₄-alkylamino-C₁-C₄-niederalkyl wiedergibt; und R₄ Niederalkoxy wiedergibt; oder ein pharmazeutisch verträgliches Prodrugderivat davon, wie in Anspruch 10 definiert; oder ein pharmazeutisch verträgliches Salz davon.
 - 13. Verbindung der Formel III nach Anspruch 10, worin R 3-Pyridyl oder 4-Pyridyl wiedergibt; R₁ Isopropyl oder Cyclohexyl wiedergibt; und R₄ Niederalkoxy wiedergibt; oder ein pharmazeutisch verträgliches Prodrugderivat davon, wie in Anspruch 10 definiert; oder ein pharmazeutisch verträgliches Salz davon.
 - 14. Verbindung nach einem der Ansprüche 1-13, worin das asymmetrische C-Atom, an das R₁ gebunden ist, der (R)-Konfiguration zuzuordnen ist.
- 15. Verbindung nach Anspruch 1, die N-Hydroxy-2(R)-[[4-methoxybenzolsulfonyl](3-picolyl)amino]-3-methylbutanamid oder ein pharmazeutisch verträgliches Prodrugderivat davon, wie in Anspruch 11 definiert, oder ein pharmazeutisch verträgliches Salz davon darstellt.
- 16. Verbindung nach Anspruch 11, die N-Hydroxy-2(R)-[[4-methoxybenzolsulfonyl](3-picolyl)amino]-3-methylbutanamid oder ein pharmazeutisch verträgliches Salz davon darstellt.
 - Verbindung nach Anspruch 11, die N-Hydroxy-2(R)-[[4-methoxybenzolsulfonyt](3-picolyl)amino]-2-cyclohexylacetamid oder ein pharmazeutisch verträgliches Salz davon darstellt.
- 40 18. Verbindung nach Anspruch 11, die N-Hydroxy-2(R)-[[4-methoxybenzolsulfonyl](benzyl)amino]-4-methylpentanamid oder ein pharmazeutisch verträgliches Salz davon darstellt.
 - Verbindung nach Anspruch 11, die N-Hydroxy-2(R)-[[4-methoxybenzolsulfonyf](benzyl)amino]-6-[(N,N-dimethylglycyl)amino]hexanamidhydrochlorid oder ein pharmazeutisch verträgliches Salz davon darstellt.
 - Pharmazeutische Zusammensetzung, umfassend eine Verbindung nach einem der Ansprüche 1 bis 19 und einen pharmazeutisch verträglichen Träger.
- 21. Verbindung nach einem der Ansprüche 1 bis 19 zur Verwendung in einem Verfahren zur therapeutischen Behandlung des tierischen oder menschlichen K\u00f6rpers.
 - 22. Verbindung nach einem der Ansprüche 1 bis 19 zur Verwendung bei der Behandlung von Stromelysin und Collagenase-abhängigen Zuständen.
- 23. Verwendung einer Verbindung nach einem der Ansprüche 1 bis 19 zur Herstellung einer pharmazeutischen Zusammensetzung.
 - 24. Verwendung einer Verbindung nach einem der Ansprüche 1 bis 19 zur Herstellung einer pharmazeutischen Zusammensetzung für die Behandlung von Stromelysin und Collagenase-abhängigen Zuständen.

25. Verfahren zur Herstellung einer Verbindung der Formel I nach Anspruch 1, umfassend Kondensieren einer Carbonsäure der Formel IV

oder eines reaktiven funktionellen Derivats davon, worin R, R₁, R₂ und Ar die in Anspruch 1 definierte Bedeutung aufweisen, mit Hydroxylamin der Formel V

gegebenenfalls in geschützter Form oder einem Salz davon

und falls erforderlich, vorübergehendes Schützen der störenden reaktiven Gruppe(n) und anschließend Freisetzen der erhaltenen Verbindung der Erfindung und falls erforderlich oder gewünscht, Umwandeln der erhaltenen Verbindung der Erfindung in eine andere Verbindung der Erfindung und/oder falls gewünscht, Umwandeln einer erhaltenen freien Verbindung in ein Salz oder eines erhaltenen Salzes in eine freie Verbindung oder in ein anderes Salz und/oder Trennen eines Gemisches von Isomeren oder Racematen in die einzelnen Isomeren und Racemate; und/oder falls erwünscht, Auftrennen eines Racemats in die optischen Antipoden.

Revendications

10

15

20

30

35

45

50

55

1. Composé de formule l

(a) où

Ar est un aryle carbocyclique ou hétérocyclique ;

R est un hydrogène, alkyle inférieur, (aryle carbocyclique)-alkyle inférieur, aryle carbocyclique, aryle hétérocyclique, biaryle, biaryl-alkyle inférieur, (aryle hétérocyclique)-alkyle inférieur, mono- ou polyhaloalkyle inférieur, cycloalkyle C_3 - C_7 , (cycloalkyle C_3 - C_7)-alkyle inférieur, (oxa ou thia)-cycloalkyle C_3 - C_6]-alkyle inférieur, hydroxy-alkyle inférieur, acyloxy-alkyle inférieur, (alcoxy inférieur)-alkyle inférieur, (alkyle inférieur)-(thio, sulfinyl- ou sulfonyl)-alkyle inférieur, (amino, mono- ou dialkylamino inférieur)-alkyle inférieur, acylamino-alkyle inférieur, (N-alkylpipérazino inférieur ou N-(aryle carbocyclique ou hétérocyclique)-alkylpipérazino inférieur)-alkyle inférieur, ou (morpholino, thiomorpholino, pipéridino, pipéridyl ou N-alkylpipéridyl inférieur)-alkyle inférieur,

R₁ est un hydrogène, alkyle inférieur, (aryle carbocyclique)-alkyle inférieur, aryle carbocyclique, aryle hétérocyclique, biaryle, biaryl-alkyle inférieur, (aryle hétérocyclique)-alkyle inférieur, mono- ou polyhaloalkyle inférieur, cycloalkyle C₃ - C₇, (cycloalkyle C₃ - C₇)-alkyle inférieur, hydroxy-alkyle inférieur, acyloxy-alkyle inférieur, (alcoxy inférieur)-alkyle inférieur, (aryle carbocyclique ou hétérocyclique)-(alcoxy inférieur)-alkyle inférieur, (alkyle inférieur)-(thio, sulfinyl ou sulfonyl)-alkyle inférieur, (amino, mono- ou dialkylamino inférieur)-alkyle inférieur, [(N-alkylpipérazino inférieur ou N-(aryle carbocyclique ou hétérocyclique)-alkylpipérazino inférieur]-alkyle inférieur, (morpholino, thiomorpholino, pipéridino, pyrrolidino, pipéridyl ou N-alkylpipéridyle inférieur)-alkyle inférieur, acylamino-alkyle inférieur, pipéridyl- ou N-

alkylpipéridyle inférieur,

10

15

20

25

30

35

40

45

50

55

R₂ est un hydrogène ou un alkyle inférieur,

ou (b) où R et R₁ forment ensemble avec la chaîne à laquelle ils sont fixés un cycle 1,2,3,4-tétrahydroisoquinoléine, pipéridine, oxazolidine, thiazolidine ou pyrrolidine, chacun étant non substitué ou substitué par un alkyle inférieur ; et Ar et R₂ ont les significations données en (a) ;

ou (c) où R_1 et R_2 avec l'atome de carbone auquel ils sont fixés, forment un système cyclique choisi parmi les cycloalcanes $C_{3.7}$ qui sont non substitués ou substitués par un alkyle inférieur ; oxa-cyclohexane, thia-cyclohexane, indane, tétraline, pipéridine ou pipéridine substitués sur l'azote par un acyle, alkyle inférieur, (aryle carbocyclique ou hétérocyclique)-alkyle inférieur, (carboxy, carboxy estérifié ou amidé)-alkyle inférieur, ou par un alkylsulfonyle inférieur ; et R et R ont les significations données en (a) ;

où le terme "aryle carbocyclique" représente un phényle ; un phényle qui est mono-, di- ou tri-substitué par un, deux ou trois radicaux choisis parmi les alkyle, alcoxy inférieur, hydroxy, halogène, cyano, trifluorométhyle, alkylènedioxy inférieur, ou oxyalkylène C₂₋₃ ; ou 1- ou 2-naphtyle ;

où le terme "aryle hétérocyclique" représente les pyridyle, quinoléinyle, isoquinoléinyle, benzothiényle, benzothiényle, benzoturanyle, benzothiopyranyle, furanyle, pyrrolyle, thiazolyle, oxazolyle, isoxazolyle, triazolyle, tétrazolyle, pyrazolyle, imidazolyle, thiényle, ou l'un quelconque desdits radicaux substitué par un alkyle inférieur ou un halogène;

où le terme "inférieur" concerne des radicaux organiques ayant jusqu'à sept atomes de carbone compris ;

ou un précurseur de médicament pharmaceutiquement acceptable qui en dérive, choisi parmi les acides hydroxamiques où le groupe CONHOH est transformé sous la forme d'un dérivé O-acylé ou O-benzylé, où le dérivé O-benzylé le groupe benzyle est non substitué ou mono-, di- ou tri-substitué par des substituants choisis parmi un alkyle inférieur, alcoxy inférieur, amino, nitro, halogène et trifluorométhyle;

ou un de ses sels pharmaceutiquement acceptables.

2. Composé selon la revendication 1, de formule la

où X représente un méthylène ou 1,2-éthylène, chacun étant non substitué ou substitué par un alkyle inférieur, ou X représente un oxygène, un soufre, ou 1,2-phénylène; Ar et R₂ ont les significations données à la revendication 1; ou un précurseur de médicament pharmaceutiquement acceptable qui en dérive, comme c'est défini à la revendication 1; ou un de ses sels pharmaceutiquement acceptables.

3. Composé selon la revendication 1, de formule lb

$$HO-N-C \xrightarrow{CH_2} C \xrightarrow{R} \begin{matrix} CH_2 & O \\ I & I \\ I & S \\ CH_2 & C \\ CH_2 & O \end{matrix}$$
(1b)

où Y est une liaison simple, un alkylène à chaîne droite C₁₋₄ éventuellement substitué par un alkyle inférieur, CH₂OCH₂, CH₂SCH₂, 1,2-phénylène, CH₂-1,2-phénylène ou CH₂N(R₆)-CH₂ où R₆ représente un hydrogène, alcanoyle inférieur, (dialkylamino inférieur)-alcanoyle inférieur, aroyle, (aryle carbocyclique)-alcanoyle inférieur, alkyle inférieur, (aryle carbocyclique ou hétérocyclique)-alkyle inférieur, (carboxy, carboxy estérifié ou amidé)-alkyle inférieur ou alkylsulfonyle; Ar et R ont les significations déjà données à la revendication 1; ou un précurseur

de médicament pharmaceutiquement acceptable qui en dérive comme c'est défini à la revendication 1 ; ou un de ses sels pharmaceutiquement acceptables.

4. Composé selon la revendication 3, de formule lo

$$\begin{array}{c|c}
O & CH_2 & O \\
 & CH_2 & O \\
 & I & II \\
 & N - S - Ar
\end{array}$$
(Ic)

où Y' représente un oxygène, un soufre, une liaison directe, un méthylène ou méthylène substitué par un alkyle inférieur, ou NR₆; R₆ représente un hydrogène, alcanoyle inférieur, (dialkylamino inférieur)-alcanoyle inférieur, aroyle, (aryle carbocyclique)-alcanoyle inférieur, alkyle inférieur, (aryle carbocyclique ou hétérocyclique)-alkyle inférieur, (carboxy, carboxy estérifié ou amidé)-alkyle inférieur ou alkylsulfonyle; Ar et R ont les significations déjà données à la revendication 1; ou un précurseur de médicament pharmaceutiquement acceptable qui en dérive comme c'est défini à la revendication 1; ou un de ses sels pharmaceutiquement acceptables.

Composé de formule I

15

20

25

35

40

45

50

55

où Ar est un phényle qui est non substitué ou mono-, di- ou tri-substitué par un alcoxy C_{1-10} , un hydroxy ; par un phényl-alcoxy inférieur où le phényle est non substitué ou substitué par un alkyle inférieur, alcoxy inférieur, halogène ou trifluorométhyle, par un aryle hétérocyclique-alcoxy inférieur où l'aryle hétérocyclique est choisi parmi les pyridyle, tétrazolyle, triazolyle, thiazolyle, thiényle, imidazolyle et quinoléinyle, chacun étant non substitué ou mono- ou di-substitué par un alkyle inférieur ou un halogène ; par un cycloalkyle C_{3-7} -alcoxy inférieur, (alkyle inférieur, phényl-alkyle inférieur ou cycloalkyle C_{3-7} -alkyle inférieur)-thio, alkyloxy inférieur-alcoxy inférieur, halogène, alkyle inférieur, cyano, nitro, trifluorométhyle, alkyle inférieur-(sulfinyle ou sulfonyle), amino, mono- ou di-alkylamino inférieur ou, sur des atomes de carbone adjacents, par un alkylènedioxy C_{1-2} ou un oxyalkylène C_{2-3} ; ou Ar est un thiényle, isoxazolyle ou thiazolyle dont chacun est non substitué ou mono- ou di-substitué par un alkyle inférieur;

R est un hydrogène, alkyle inférieur, phényl-alkyle inférieur, où le phényle est non substitué ou substitué par un alkyle inférieur, alcoxy inférieur, halogène ou trifluorométhyle; phényle qui est non substitué ou mono-, diou tri-substitué par un alcoxy inférieur, hydroxy, halogène, alkyle inférieur, cyano, nitro, trifluorométhyle, alkyle inférieur-(thio, sulfinyle ou sulfonyle), amino, mono- ou di-alkylamino inférieur ou, sur des atomes de carbone adjacents, par un alkylènedioxy $C_{1.2}$ ou un oxyalkylène $C_{2.3}$; ou un radical aryle hétérocyclique choisi parmi les pyridyle, tétrazolyle, triazolyle, thiazolyle, thiényle, imidazolyle, et quinoléinyle, chacun étant non substitué ou mono- ou di-substitué par un alkyle inférieur ou halogène; biphénylyle qui est non substitué ou substitué par un alkyle inférieur, alcoxy inférieur, alcoxy inférieur où le biphénylyle est non substitué ou substitué par un alkyle inférieur, alcoxy inférieur, halogène, trifluorométhyle ou cyano; (pyridyl, thiényl, quinoléinyl ou thiazolyl)-alkyle inférieur, trifluorométhyle, cycloalkyle $C_{3.7}$, cycloalkyle $C_{3.7}$ -alkyle inférieur, (oxa ou thia)-cycloalkyle $C_{3.6}$ -alkyle inférieur, hydroxy-alkyle inférieur, alcanoyloxy inférieur-alkyle inférieur, alcoxy inférieur-alkyle inférieur, alkyle inférieur-alkyle inférieur. (hydroxy-alkyle inférieur, (amino, mono- ou dialkylamino)-alkyle inférieur, alcanoylamino inférieur-alkyle inférieur, (N-alkylpipéraino inférieur ou N-phényl-alkylpipéraino inférieur)-alkyle inférieur (morpholino, pipéridyl ou N-alkylpipéridyle inférieur)-alkyle inférieur.

R₁ est un hydrogène, alkyle inférieur ; phényl-alkyle inférieur où le phényle est non substitué ou substitué par

5

10

15

20

25

30

40

45

50

un alkyle inférieur, alcoxy inférieur, halogène, trifluorométhyle ou, sur des atomes de carbone adjacents, par un alkylenedioxy C_{1-2} ou oxyalkylène C_{2-3} ; le phényle qui est non substitué ou substitué par un alkyle inférieur, alcoxy inférieur, halogène ou trifluorométhyle; pyridyle, thiényle, biphénylyle, biphénylyl-alkyle inférieur; aryle hétérocyclique-alkyle inférieur où on choisit l'aryle hétérocyclique parmi les thiazolyle, pyrazolyle, pyridyle, imidazolyle et tétrazolyle, chacun étant non substitué ou substitué par un alkyle inférieur; trifluorométhyle, cycloalkyle C_{3-7} , cycloalkyle C_{3-7} -alkyle inférieur, hydroxy-alkyle inférieur, alcanoyloxy inférieur-alkyle inférieur, alcoxy inférieur-alkyle inférieur, (phényl ou pyridyl)-alcoxy inférieur-alkyle inférieur, alkyle inférieur, (heinyl ou pyridyl)-alcoxy inférieur-alkyle inférieur, (N-alkylpipérazino inférieur ou N-phénylalkylpipérazino inférieur)-alkyle inférieur, (morpholino, thiomorpholino, pipéridyle inférieur)-alkyle inférieur, alcanoylamino inférieur-alkyle inférieur; R_3 -CONH-alkyle inférieur où R_3 représente (dialkylamino inférieur, N-alkylpipérazino inférieur, morpholino, thiomorpholino, pyrrolidino ou N-alkylpipéridyl)-alkyle inférieur, pipéridyl ou N-alkylpipéridyle inférieur; R_2 -est un hydrogène ou un alkyle inférieur; ou

(b) où R et R₁ forment ensemble avec la chaîne à laquelle ils sont fixés un cycle 1,2,3,4-tétrahydroisoquinoléine, pipéridine, oxazolidine, thiazolidine ou pyrrolidine, chacun étant non substitué ou mono- ou di-substitué par un alkyle inférieur; et Ar et R₂ ont les significations données en (a);

(c) où R₁ et R₂ forment avec l'atome de carbone auquel ils sont fixés un système cyclique choisi parmi les cycloalcanes C₃₋₇ qui sont non substituées ou substituées par un alkyle inférieur; oxa-cyclohexane, thia-cyclohexane, indane, tétraline et pipéridine, qui est non substitué ou substitué sur l'azote par un alcanoyle inférieur, dialkylamino inférieur-alcanoyle inférieur, alcoxycarbonyle inférieur, (morpholino, thiomorpholino ou pipéridino)-carbonyle, alkyle inférieur, (phényl ou pyridyl)-alkyle inférieur, (carboxy, alcoxycarbonyl, benzyloxycarbonyl, aminocarbonyl ou mono- ou di-alkylaminocarbonyle inférieur)-alkyle inférieur ou par un alkylsulfonyle inférieur; et Ar et R ont les significations données en (a);

où le terme "inférieur" concerne les radicaux organiques ayant jusqu'à 7 atomes de carbone inclus ; ou un précurseur de médicament pharmaceutiquement acceptable qui en dérive choisi parmi les acides hydroxamiques où le groupe CONHOH est transformé sous forme d'un dérivé 0-acylé ou 0-benzylé, dans lequel le dérivé 0-benzylé a un groupe benzyle qui est non substitué ou mono-, di- ou tri-substitué par des substituants choisis parmi un alkyle inférieur, alcoxy inférieur, amino, nitro, halogène et trifluorométhyle; ou un de ses sels pharmaceutiquement acceptables.

6. Composé de formule I selon la revendication 5, où Ar est un phényle qui est non substitué ou mono-, di- ou tri-substitué par un alcoxy C₁₋₇, hydroxy, phényl-alcoxy inférieur, cycloalkyle C₃₋₇-alcoxy inférieur, alkyloxy inférieur-alcoxy inférieur, halogène, alkyle inférieur, cyano, nitro, trifluorométhyle, alkyle inférieur-(sulfinyle ou sulfonyle), amino, mono- ou di-alkylamino inférieur ou, sur des atomes de carbone adjacents, par un alkylènedioxy C₁₋₂ ou oxyalkylène C₂₋₃; ou Ar est un thiényle, isoxazolyle ou thiazolyle dont chacun d'entre eux est non substitué ou mono- ou di-substitué par un alkyle inférieur;

R est un hydrogène, alkyle inférieur, phényl-alkyle inférieur ; le phényle est non substitué ou mono-, di- ou tri-substitué par un alcoxy inférieur, hydroxy, halogène, alkyle inférieur, trifluorométhyle, ou, sur des atomes de carbone adjacents, par un alkylènedioxy C_{1-2} ou oxyalkylène C_{2-3} ; ou un radical aryle hétérocyclique choisi parmi les pyridyle, thiazolyle, et quinoléinyle, chacun étant non substitué ou mono- ou di-substitué par un alkyle inférieur ; biphénylyl-alkyle inférieur ; (pyridyl ou thiényl)-alkyle inférieur, trifluorométhyle, cycloalkyle C_{3-7} , cycloalkyle C_{3-7} -alkyle inférieur, (oxa ou thia)-cycloalkyle C_{3-6} . [(oxa ou thia)-cycloalkyle C_{3-6} . [(oxa ou thia)-cycloalkyle inférieur)-alkyle inférieur ou (morpholino, thiomorpholino, pipéridino, pyrrolidino, pipéridyle ou N-alkylpipéridyle inférieur)-alkyle inférieur;

R₁ est un hydrogène, alkyle inférieur ; phényl-alkyle inférieur, où le phényle est non substitué ou substitué par un alkyle inférieur, alcoxy inférieur, halogène, trifluorométhyle ou, sur les atomes de carbone adjacents, par un alkylènedioxy C₁₋₂; biphénylyl-alkyle inférieur ; aryle hétérocyclique-alkyle inférieur où l'aryle hétérocyclique est choisi parmi les thiazolyle, pyrazolyle, pyridyle, imidazolyle et tétrazolyle, chacun étant non substitué ou substitué par un alkyle inférieur ; cycloalkyle C₃₋₇, cycloalkyle C₃₋₇-alkyle inférieur, hydroxy-alkyle inférieur, (phényl ou pyridyl)-alcoxy inférieur-alkyle inférieur, alkyle inférieur-(thio, sulfinyl ou sulfonyl)-alkyle inférieur, (amino, mono- ou di-alkylamino inférieur)-alkyle inférieur, (N-alkylpipérazino inférieur ou N-phénylalkylpipérazino inférieur)-alkyle inférieur, (morpholino, thiomorpholino, pipéridino, pipéridyl, ou N-alkylpipéridyle inférieur)-alkyle inférieur, alcanoylamino inférieur-alkyle inférieur ; R₃-CONH-alkyle inférieur où R₃ représente (di-alkylamino inférieur, N-alkylpipérazino inférieur, morpholino, thiomorpholino, pipéridino, pyrrolidino ou N-alkylpipéridyl)-alkyle inférieur ; pipéridyle ou N-alkylpipéridyle inférieur ; R₂ est un hydrogène ou un alkyle inférieur;

:

ou (b) où R et R₁ forment ensemble avec la chaîne à laquelle ils sont fixés, un cycle thiazolidine ou pyrrolidine, chacun étant non substitué ou mono- ou di-substitué par un alkyle inférieur ; et Ar et R₂ ont les significations données pour (a) ;

ou (c) où R_1 et R_2 , avec l'atome de carbone auquel ils sont fixés, forment un système cyclique choisi parmi les cycloalcanes C_{3-7} , qui sont non substituées ou substituées par un alkyle inférieur ; oxa-cyclohexane, thiacyclohexane et pipéridine qui est non substitué ou substitué sur l'azote par un alcanoyle inférieur, di-alkylamino inférieur-alcanoyle inférieur, alcoxycarbonyle inférieur, (morpholino, thiomorpholino ou pipéridino)-carbonyle, alkyle inférieur, (phényl ou pyridyl)-alkyle inférieur, (carboxy, alcoxycarbonyle inférieur, aminocarbonyle ou mono- ou di-alkylaminocarbonyle inférieur)-alkyle inférieur ou par un alkylsulfonyle inférieur ; et R0 et R1 ont les significations données en (a) ;

un précurseur de médicament pharmaceutiquement acceptable qui en dérive tel que défini à la revendication 5 ; ou un de ses sels pharmaceutiquement acceptables.

7. Composé de formule II

οù

15

20

25

30

35

40

45

50

55

R est un hydrogène, alkyle inférieur, (aryle carbocyclique)-alkyle inférieur, aryle carbocyclique, aryle hétérocyclique, biaryle, biaryl-alkyle inférieur, (aryle hétérocyclique)-alkyle inférieur, mono- ou polyhaloalkyle inférieur, cycloalkyle C_3 - C_7 , (cycloalkyle C_3 - C_7)-alkyle inférieur, (oxa ou thia)-cycloalkyle C_3 - C_6 , [(oxa ou thia)-cycloalkyle C_3 - C_6]-alkyle inférieur, hydroxy-alkyle inférieur, acyloxy-alkyle inférieur, (alcoxy inférieur)-alkyle inférieur, (alkyle inférieur)-(thio, sulfinyl- ou sulfonyl)-alkyle inférieur, (amino, mono- ou dialkylamino inférieur)-alkyle inférieur, acylamino-alkyle inférieur, (N-alkylpipérazino inférieur ou N-(aryle carbocyclique ou hétérocyclique)-alkylpipérazino inférieur)-alkyle inférieur, ou (morpholino, thiomorpholino, pipéridino, pipéridyl ou N-alkylpipéridyl inférieur)-alkyle inférieur,

 R_1 est un hydrogène, alkyle inférieur, aryle carbocyclique-alkyle inférieur, aryle carbocyclique, aryle hétérocyclique, biaryle, biaryl-alkyle inférieur, aryle hétérocyclique-alkyle inférieur, mono- ou poly-haloalkyle inférieur, cycloalkyle C_{5-7} , cycloalkyle C_{5-7} -alkyle inférieur, hydroxy-alkyle inférieur, acyloxy-alkyle inférieur, alcoxy inférieur-alkyle inférieur, alkyle inférieur-(thio, sulfinyl ou sulfonyl)-alkyle inférieur, (amino, mono- ou di-alkylamino inférieur)-alkyle inférieur, (N-alkylpipérazino inférieur ou aryle carboxylique ou hétérocyclique-alkylpipérazino inférieur)-alkyle inférieur, (morpholino, thiomorpholino, pipéridino, pyrrolidino, pipéridyl ou N-alkylpipéridyle inférieur)-alkyle inférieur, pipéridyle, N-alkylpipéridyle inférieur, ou acylamino-alkyle inférieur, représenté par R_3 -CONH-alkyle inférieur;

R₂ est un hydrogène;

 R_3 dans R_3 -CONH-alkyle inférieur est un alkyle inférieur, aryle carbocyclique ou hétérocyclique, di-alkylamino, N-alkylpipérazino inférieur, morpholino, thiomorpholino, pipéridino, pyrrolidino, N-alkylpipéridyle, ou (di-alkylamino inférieur, N-alkylpipérazino inférieur, morpholino, thiomorpholino, pipéridino, pyrrolidino, pyridyl ou N-alkylpipéridyle inférieur)-alkyle inférieur;

 R_4 est un hydrogène, alcoxy inférieur, hydroxy, aryle carbocyclique ou hétérocyclique-alcoxy inférieur, alkylthio inférieur ou aryle carbocyclique ou hétérocyclique-alkylthio inférieur, alkyloxy inférieur-alcoxy inférieur, halogène, trifluorométhyle, alkyle inférieur, nitro ou cyano ;

R₅ est un hydrogène, alkyle inférieur ou halogène ;

ou R_4 et R_5 ensemble sur des atomes de carbone adjacents, représentent un méthylènedioxy, éthylènedioxy, oxyéthylène ou oxypropylène ;

où le terme "aryle carbocylique" représente un phényle ; le phényle est mono-, di- ou tri-substitué par un, deux ou trois radicaux choisis parmi un alkyle inférieur, alcoxy inférieur, hydroxy, halogène, cyano, trifluo-rométhyle, alkylènedioxy inférieur et oxyalkylène C_{2-3} ; ou 1- ou 2-naphtyle;

où le terme "aryle hétérocyclique" représente les pyridyle, quinoléinyle, isoquinoléinyle, benzothiényle, benzoturanyle, benzothiopyranyle, furanyle, pyrrolyle, thiazolyle, oxazolyle, isoxazolyle, triazo-

lyle, tétrazolyle, pyrazolyle, imidazolyle, thiényle, ou l'un quelconque desdits radicaux substitués par un alkyle inférieur ou un halogène;

où le terme "inférieur" concerne des radicaux organiques ayant jusqu'à 7 atomes de carbone compris ; ou un précurseur de médicament pharmaceutiquement acceptable qui en dérive choisi parmi les acides hydroxamiques, où le groupe CONHOH est transformé sous la forme d'un dérivé O-acylé ou d'un dérivé O-benzylé, où dans le dérivé O-benzylé, le groupe benzyle est non-substitué ou mono- di- ou tri-substitué par des substituants choisis parmi un alkyle inférieur, alcoxy inférieur, amino, nitro, halogène et trifluorométhyle ; ou un de ses sels pharmaceutiquement acceptables.

10 8. Composé de formule II

5

15

20

25

30

35

45

50

55

οù

R et R_1 ensemble avec la chaîne à laquelle ils sont fixés, forment un cycle 1,2,3,4-tétrahydroisoquinoléine, pipéridine, thiazolidine ou pyrrolidine ;

R₂ est un hydrogène;

 R_4 est un hydrogène, alcoxy inférieur, hydroxy, aryle carbocyclique ou hétérocyclique-alcoxy inférieur, alkylthio inférieur ou aryle carbocyclique ou hétérocyclique-alkylthio inférieur, alkyloxy inférieur-alcoxy inférieur, halogène, trifluorométhyle, alkyle inférieur, nitro ou cyano;

R₅ est un hydrogène, alkyle inférieur ou halogène ;

ou R_4 et R_5 représentent ensemble sur des atomes de carbone adjacents, un méthylènedioxy, éthylènedioxy, oxyéthylène ou oxypropylène ;

où le terme "aryle carbocylique" représente un phényle ; le phényle qui est mono-, di- ou tri-substitué par 1, 2 ou 3 radicaux choisis parmi un alkyle inférieur, alcoxy inférieur, hydroxy, halogène, cyano, trifluorométhyle, alkylènedioxy inférieur ou oxyalkylène C_{2-3} ; ou 1- ou 2-naphtyle;

où le terme "aryle hétérocyclique" représente les pyridyle, quinoléinyle, isoquinoléinyle, benzothiényle, benzothienyle, benzothiopyranyle, furanyle, pyrrolyle, thiazolyle, oxazolyle, isoxazolyle, triazolyle, tétrazolyle, pyrazolyle, imidazolyle, thiényle, ou l'un quelconque desdits radicaux substitués par un alkyle inférieur ou un halogène;

où le terme "inférieur" concerne les radicaux organiques ayant jusqu'à 7 atomes de carbone compris ; ou un précurseur de médicament pharmaceutiquement acceptable qui en dérive choisi parmi les acides hydroxamiques, où le groupe CONHOH est transformé sous la forme d'un dérivé O-acylé ou d'un dérivé O-benzylé, où dans le dérivé O-benzylé, le groupe benzyle est non-substitué ou mono- di- ou tri-substitué par des substituants choisis parmi un alkyle inférieur, alcoxy inférieur, amino, nitro, halogène et trifluorométhyle ; ou un de ses sels pharmaceutiquement acceptables.

9. Composé de formule II

οù

R est un hydrogène, alkyle inférieur, (aryle carbocyclique)-alkyle inférieur, aryle carbocyclique, aryle hétérocyclique, biaryl-alkyle inférieur, (aryle hétérocyclique)-alkyle inférieur, mono- ou polyhaloalkyle inférieur, cycloalkyle C_3 - C_7 , (cycloalkyle C_3 - C_7)-alkyle inférieur, (oxa ou thia)-cycloalkyle C_3 - C_6]-alkyle inférieur, hydroxy-alkyle inférieur, acyloxy-alkyle inférieur, (alcoxy inférieur)-alkyle inférieur, (alkyle inférieur)-(thio, sulfinyl- ou sulfonyl)-alkyle inférieur, (amino, mono- ou dialkylamino inférieur)-alkyle inférieur, acylamino-alkyle inférieur, (N-alkylpipérazino inférieur ou N-(aryle carbocyclique ou hétérocyclique)-alkylpipérazino inférieur)-alkyle inférieur, ou (morpholino, thiomorpholino, pipéridino, pipéridyl ou N-alkylpipéridyl inférieur)-alkyle inférieur,

R₁ et R₂ avec l'atome de carbone auquel ils sont fixés, forment un système cyclique choisi parmi les cyclohexane, cyclopentane, oxacyclohexane, thiacyclohexane, indane, tétraline, pipéridine ou pipéridine substituée sur l'azote par un acyle, alkyle inférieur, aryle carbocyclique ou hétérocyclique-alkyle inférieur ou par un alkysulfonyle inférieur;

R₄ est un hydrogène, alcoxy inférieur, hydroxy, aryle carbocyclique ou hétérocyclique-alcoxy inférieur, alkylthio inférieur ou aryle carbocyclique ou hétérocyclique-alkylthio inférieur, alkyloxy inférieur-alcoxy inférieur, halogène, trifluorométhyle, alkyle inférieur, nitro ou cyano;

R5 est un hydrogène, alkyle inférieur ou halogène ;

ou R_4 et R_5 ensemble sur des atomes de carbone adjacents, représentent des méthylènedioxy, éthylènedioxy, oxyéthylène ou oxypropylène ;

où le terme "acyle carbocyclique" représente un phényle ; un phényle qui est mono-, di- ou tri-substitué par 1, 2 ou 3 radicaux choisis parmi un alkyle inférieur, alcoxy inférieur, hydroxy, halogène, cyano, trifluorométhyle, alkylènedioxy inférieur, et oxyalkylène C_{2-3} ; ou 1- ou 2-naphtyle;

où le terme "aryle hétérocyclique" représente les pyridyle, quinoléinyle, isoquinoléinyle, benzothiényle, benzothiényle, benzothiopyranyle, furanyle, pyrrolyle, thiazolyle, oxazolyle, isoxazolyle, triazolyle, tétrazolyle, pyrazolyle, imidazolyle, thiényle, ou l'un quelconque desdits radicaux substitué par un alkyle inférieur ou un halogène;

où le terme "inférieur" concerne des radicaux organiques qui ont jusqu'à 7 atomes de carbone inclus; ou un précurseur de médicament pharmaceutiquement acceptable qui en dérive choisi parmi les acides hydroxamiques, où le groupe CONHOH est transformé sous la forme d'un dérivé O-acylé ou d'un dérivé O-benzylé, où dans le dérivé O-benzylé, le groupe benzyle est non-substitué ou mono- di- ou tri-substitué par des substituants choisis parmi un alkyle inférieur, alcoxy inférieur, amino, nitro, halogène et trifluorométhyle; ou un de ses sels pharmaceutiquement acceptables.

10. Composé de formule III

10

15

25

30

35

45

où R représente un alkyle inférieur, trifluorométhyle, cycloalkyle C_{5-7} , (oxa ou thia)-cycloalkyle C_{4-5} , biaryle, aryle monocyclique carbocyclique ou aryle monocyclique hétérocyclique; R_1 représente un hydrogène, alkyle inférieur, cycloalkyle C_{5-7} , aryle carbocyclique monocyclique, aryle carbocyclique-alkyle inférieur, aryle hétérocyclique-alkyle inférieur, alcoxy inférieur-alkyle inférieur, alkyle inférieur, alkyle inférieur-(thio, sulfinyl ou sulfonyl)-alkyle inférieur, di-alkylamino inférieur-alkyle inférieur, (N-alkylpipérazino inférieur, morpholino, thiomorpholino, pipéridino, ou pyrrolidino)-alkyle inférieur, ou R_3 -CONH-alkyle inférieur; R_3 représente un alkyle inférieur, aryle carbocyclique, aryle hétérocyclique, di-alkylamino inférieur, N-alkylpipérazino inférieur, morpholino, thiomorpholino, pipéridino, pyrrolidino, ou N-alkylpipéridyl)-alkyle inférieur; R_4 représente un alcoxy inférieur, ou un aryle carbocyclique ou hétérocyclique-alcoxy inférieur;

où le terme "aryle carbocydique" représente un phényle ; un phényle qui est mono-, di- ou tri-substitué par 1, 2, ou 3 radicaux choisis parmi un alkyle inférieur, alcoxy inférieur, hydroxy, halogène, cyano, trifluorométhyle, alkylènedioxy inférieur et oxyalkylène C₂₋₃; ou 1- ou 2-naphtyle;

où le terme "aryle monocyclique carbocyclique" représente un phényle; un phényle qui est mono-, di- ou trisubstitué par 1, 2 ou 3 radicaux choisis parmi un alkyle inférieur, alcoxy inférieur, hydroxy, halogène, cyano, trifluo-

rométhyle, alkylènedioxy inférieur et oxyalkylène C2-3;

5

10 -

15

20

où le terme "aryle hétérocyclique" représente les pyridyle, quinoléinyle, isoquinoléinyle, benzothiényle, benzothiopyranyle, furanyle, pyrrolyle, thiazolyle, oxazolyle, isoxazolyle, triazolyle, tétrazolyle, pyrazolyle, imidazolyle, thiényle, ou l'un quelconque desdits radicaux substitué par un alkyle inférieur ou un halogène;

où le terme "aryle monocyclique hétérocyclique" représente les pyridyle, furanyle, pyrrolyle, thiazolyle, oxazolyle, isoxazolyle, triazolyle, tétrazolyle, pyrazolyle, imidazolyle, thiényle, ou l'un quelconque desdits radicaux substitué par un alkyle inférieur ou un halogène;

où le terme "inférieur" concerne des radicaux organiques qui ont jusqu'à 7 atomes de carbone inclus ;

ou un précurseur de médicament pharmaceutiquement acceptable qui en dérive choisi parmi les acides hydroxamiques, où le groupe CONHOH est transformé sous la forme d'un dérivé O-acylé ou d'un dérivé O-benzylé, où dans le dérivé O-benzylé, le groupe benzyle est non-substitué ou mono- di- ou tri-substitué par des substituants choisis parmi un alkyle inférieur, alcoxy inférieur, amino, nitro, halogène et trifluorométhyle;

ou un de ses sels pharmaceutiquement acceptables.

- 11. Composé de formule III selon la revendication 10, où R représente un aryle monocyclique hétérocyclique choisi parmi les tétrazolyle, triazolyle, thiazolyle, imidazolyle, et pyridyle, chacun étant non substitué ou substitué par un alkyle inférieur; ou R représente un phényle ou phényle substitué par un alkyle inférieur, alcoxy inférieur, halogène, ou trifluorométhyle; R₁ représente un alkyle inférieur, cyclohexyle, ou R₃CONH-alkyle inférieur où R₃ représente un (di-alkylamino inférieur, N-alkylpipérazino inférieur, morpholino, thiomorpholino, pipéridino, pyrrolidino, ou N-alkylpipéridyl)-alkyle inférieur; et R₄ représente un alcoxy inférieur ou phényl-alcoxy inférieur; ou un précurseur de médicament pharmaceutiquement acceptable qui en dérive, tel que c'est défini à la revendication 10; ou un de ses sels pharmaceutiquement acceptables.
- 25 12. Composé de formule III selon la revendication 10, où R représente un 2-, 3- ou 4-pyridyle ou un phényle ; R₁ représente un alkyle C₁₋₄, cyclohexyle ou R₃-CONH-alkyle C₁₋₄ où R₃ représente un dialkylamino C₁₋₄-alkyle inférieur C₁₋₄; et R₄ représente un alcoxy inférieur ; ou un précurseur de médicament pharmaceutiquement acceptable qui en dérive, tel que c'est défini à la revendication 10 ; ou un de ses sels pharmaceutiquement acceptables.
- 30 13. Composé de formule III selon la revendication 10, où R représente un 3-pyridyle ou 4-pyridyle; R₁ représente un isopropyle ou cyclohexyle; et R₄ représente un alcoxy inférieur; ou un précurseur de médicament pharmaceutiquement acceptable qui en dérive, tel que c'est défini à la revendication 10; ou un de ses sels pharmaceutiquement acceptables.
- 35 14. Composé selon l'une quelconque des revendications 1 13, où le carbone asymétrique auquel est fixé R₁ a la configuration (R).
 - 15. Composé selon la revendication 1, qui est le N-hydroxy-2(R)-[[4-méthoxybenzènesulfonyl](3-picolyl)-amino]-3-méthylbutanamide, un précurseur de médicament pharmaceutiquement acceptable qui en dérive, comme c'est défini à la revendication 11, ou un de ses sels pharmaceutiquement acceptables.
 - 16. Composé selon la revendication 11, qui est le N-hydroxy-2(R)-[[4-méthoxybenzènesulfonyl](3-picolyl)amino]-3-méthylbutanamide ou un de ses sels pharmaceutiquement acceptables.
- 45 17. Composé selon la revendication 11, qui est le N-hydroxy-2(R)-([4-méthoxybenzènesulfonyl](3-picolyl)amino]-2-cyclohexylacétamide ou un de ses sels pharmaceutiquement acceptables.
 - 18. Composé selon la revendication 11, qui est le N-hydroxy-2(R)-[[4-méthoxybenzènesulfonyi](benzyl)amino]-4-méthylpentanamide ou un de ses sels pharmaceutiquement acceptables.
 - 19. Composé selon la revendication 11, qui est le N-hydroxy-2(R)-[[4-méthoxybenzènesulfonyl](benzyl)-amino]-6-[(N,N-diméthylglycyl)amino]hexanamide chlorhydrate ou un de ses sels pharmaceutiquement acceptables.
- 20. Composition pharmaceutique comprenant un composé selon l'une quelconque des revendications 1 à 19, et un véhicule pharmaceutiquement acceptable.
 - 21. Composé selon l'une quelconque des revendications 1 à 19, à utiliser dans une méthode de traitement thérapeutique du corps animal ou humain.

Application #: Filing Date: Invent r:

Not Yet Assigned 11/03/2003 KLINGLER, et al. Docket number: DEAV2002/0070US NP

EP 0 606 046 B1

- 22. Composé selon l'une quelconque des revendications 1 à 19, à utiliser dans le traitement des conditions dépendant de la stromélysine et de la collagénase.
- 23. Utilisation d'un composé selon l'une quelconque des revendications 1 à 19 à la préparation d'une composition pharmaceutique.
- 24. Utilisation d'un composé selon l'une quelconque des revendications 1 à 19 pour préparer une composition pharmaceutique pour le traitement des conditions dépendant de la stromélysine et de la collagénase.
- 25. Procédé de préparation d'un composé de formule I, selon la revendication 1, qui comprend de condenser un acide carboxylique de formule IV,

ou un de ses dérivés fonctionnels réactifs, où R, R1, R2 et Ar ont les significations données à la revendication 1, avec l'hydroxylamine de formule V,

$$NH_2$$
-OH (V)

éventuellement sous forme protégée, ou un de ses sels ;

5

15

20

25

35

45

50

55

et, si nécessaire, protéger temporairement tout groupe réactif pouvant interférer, et alors libérer le composé résultant de l'invention ; et, si c'est requis ou souhaité, convertir un composé obtenu de l'invention en un autre composé de l'invention, et/ou, si c'est souhaité, convertir un composé libre obtenu en un sel ou un sel obtenu en un composé libre ou dans un autre sel ; et/ou séparer un mélange d'isomères ou de racémates obtenu en les isomères ou racémates individuels ; et/ou, si c'est souhaité, résoudre un racémate en ses antipodes optiques.