Kittel	3,
in ship.	The Lennard Jones Potential 13 given by VCR >= A 13 but its customary to write R12 R6,
	$V(R) = 4 \epsilon \left[\frac{6^{12}}{R^{12}} - \frac{6^4}{R^6} \right], \text{ find } \epsilon, \epsilon, \text{ show they}$
(Tanage	are unquely determined and explain the (significante) of this expression.
	Trivially solving for θ , ξ : $\begin{cases} 4 \xi \delta^{12} = A \\ 4 \xi \delta^{6} = B \end{cases}$
	$\frac{A}{B} = 6^6, 6 = \frac{A}{B} = \frac{1}{4} = \frac{B^2}{A}$
	The advantage of this approach is that the single parameter (allows one to easily see this potential algebraically is quadratic.
	Killel claims that 6, E can be obtained for from gas
1	shase data, so these values are independent of the
	attice type or any other solid-state properties, -specific
·	
E.	