Tarea 2 - Operaciones matemáticas básicas Curso de Física Computacional

M. en C. Gustavo Contreras Mayén

1. La viscosidad cinemática μ_k del agua varía con la temperatura T de la siguiente manera:

Interpolar μ_k para $T = 10^{\circ}, 30^{\circ}, 60^{\circ}$ y 90° .

2. La siguiente tabla muesta como la densidad relativa ρ del aire varía con la altitud h. Calcula la densidad relativa del aire en 10.5 km.

$$h(km)$$
0
1.525
3.050
4.575
6.10
7.625
9.150

 ρ
1
0.8617
0.7385
0.6292
0.5328
0.4481
0.3741

- 3. Encuentra todas las raíces positivas de las siguientes ecuaciones mediante el método de bisección, con una tolerancia de 0.001.
 - a) $\tan(x) x + 1 = 0;$ $0 < x < 3\pi$

$$< x < 3\pi$$

b) $\sin(x) - 0.3 \exp(x) = 0;$ x > 0

c)
$$-x^3 + x + 1 = 0$$

d)
$$16x^5 - 20x^3 + x^2 + 5x - 0.5 = 0$$

4. Determina las raíces de las siguientes ecuaciones mediante el método de la falsa posición modificada:

a)
$$f(x) = 0.5 \exp(\frac{x}{3}) - \sin(x);$$
 $x > 0$

b)
$$g(x) = \log(1+x) - x^2$$

$$c) f(x) = \exp(x) - 5x^2$$

d)
$$h(x) = x^3 + 2x - 1 = 0$$

e)
$$f(x) = \sqrt{x+2}$$

- 5. Encuentra las raíces de las ecuaciones del problema (3) mediante el método de Newton-Raphson, con una tolerancia de 0.0001
- 6. Identifica el intervalo para las raíces de las siguientes ecuaciones y calcula despúes las raíces mediante el método de la secante, con una tolerancia de 0.001:

a)
$$0.1x^3 - 5x^2 - x + 4 + \exp(-x) = 0$$

b)
$$\ln(x) - 0.2x^2 + 1 = 0$$

c)
$$x + \frac{1}{(x+3)x} = 0$$

7. Usando una aproximación por diferencias finitas de orden $O(h^2)$, calcula f'(2.36) y f''(2.36), a partir de los datos:

x	2.36	2.37	2.38	2.39
f(x)	0.85866	0.86289	0.86710	0.87129

8. Dados los siguientes datos

X	0.84	0.92	1.00	1.08	1.16
f(x)	0.431711	0.398519	0.367879	0.339596	0.312486

Calcula f''(1) con la mayor precisión posible.

9. La palanca AB de longitud R=90 mm está girando con velocidad angular constante $d\theta/dt=5000$ rev/min.

La posición del pistón C como se muestra, varía con el ángulo θ

$$x = R\left(\cos\theta + \sqrt{2.5^2 - \sin^2\theta}\right)$$

Escribe un programa en python que calcule mediante diferenciación numérica la aceleración del pistón en $\theta = 0^{\circ}, 5^{\circ}, 10^{\circ}, \dots, 180^{\circ}$.

10. Las estaciones de radar A y B están separadas por una distancia a=500 m; rastrean el avión C registrando los ángulos α y β en intervalos de un segundo. Si hay tres lecturas sucesivas

Figura 1: Estaciones de radar y el avión.

Calcula la velocidad v del avión y el ángulo de subida γ en t=10 segundos. Las coordenadas del avión las tomamos de

 $x = a \frac{\tan \beta}{\tan \beta - \tan \alpha} \qquad \qquad y = a \frac{\tan \alpha \tan \beta}{\tan \beta - \tan \alpha}$

- 11. Obtén la aproximación por diferencias centrales de f''(x) de orden $O(h^4)$ aplicando la extrapolación de Richardson a la aproximación por diferencias centrales de orden $O(h^2)$.
- 12. Obtén la primera aproximación por diferencias centrales para $f^4(x)$ a partir de la serie de Taylor.
- 13. Usa la regla del trapecio recursiva para evaluar

$$\int_0^{\frac{\pi}{4}} \ln(1+\tan(x))dx$$

Explica tus resultados.

14. La siguiente tabla indica la potencia P propocionada por las ruedas de un carro como función de la velocidad v. Si la masa del carro es m=2000 kg, calcula el tiempo Δt necesario para que el carro acelere de 1 m/s a 6 m/s. Usa la regla del trapecio para integrar. Tip:

$$\Delta t = m \int_{1s}^{6s} \left(\frac{v}{P}\right) dv$$

que se puede obtener de la ley de Newton F = m/(dv/dt) y por la definición de potencia, P = Fv.

15. La siguiente tabla proporciona el empuje F del arco como función del desplazamiento x. Si la cuerda tiene un desplazamiento de 0.5 m, calcula la velocidad de una flecha de 0.075 kg, cuando sale del arco. Tip: la energía cinética de la flecha es igual al trabajo hecho al estirar la cuerda, que es:

$$m\frac{v^2}{2} = \int_0^{0.5m} F dx$$

x (m)	0.00	0.05	0.10	0.15	0.20	0.25
F(N)	0	37	71	104	134	161

x (m)	0.30	0.35	0.40	0.45	0.50
F(N)	185	207	225	239	250

Figura 2: Flecha para el ejercicio

16. El período de un péndulo de longitud L es $\tau = 4\sqrt{\frac{L}{g}}h(\theta_0)$, donde g es la aceleración debida a la gravedad, θ_0 , representa la amplitud angular y

$$h(\theta_0) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - \sin^2\left(\frac{\theta_0}{2}\right)\sin^2\theta}}$$

Calcular $h(15^\circ)$, $h(30^\circ)$ y $h(45^\circ)$; compara esos valores con $h(0^\circ)=\frac{\pi}{2}$ (la aproximación usada para pequeñas amplitudes)

17. La fórmula de Debye para la capacidad calorífica C_v de un sólido, es $C_v = 9Nkg(u)$, donde

$$g(u) = u^3 \int_0^{1/u} \frac{x^4 e^x}{(e^x - 1)} dx$$

los términos de la ecuación son:

N = Número de partículas en el sólido

k = Constante de Boltzmann

T =temperatura absoluta

 $u = \frac{T}{\Theta_D}$

 $\Theta_D = \text{Temperatura de Debye}$

Calcular g(u) para u = 0 a 1.0 en intervalos de 0.05, grafica los resultados.

18. Una masa m está unida a un resorte de longitud b y rigidez k. Se puede demostrar que la aceleración de la masa es $\ddot{x} = -f(x)$, donde

$$f(x) = \mu g + \frac{k}{m}(\mu b + x) \left(1 - \frac{b}{\sqrt{b^2 + x^2}}\right)$$

Si la masa se libera del reposo en x=b, y la velocidad en x=0 está dada por

$$v_0 = \sqrt{2\int_0^b f(x)dx}$$

Figura 3: Masa unida a un resorte.

Calcular mediante integración numérica el valor de v_0 , usando m=0.8 k, b=0.4 m, $\mu=0.3, k=80$ N/m y g=9.81 m/s^2 .

19. Las integrales de Fresnel

$$C(w) = \int_0^w \cos\left(\frac{\pi u^2}{2}\right) du$$

$$S(w) = \int_0^w \sin\left(\frac{\pi u^2}{2}\right) du$$

son la base de la teoría de la difracción óptica. Calcula las integrales para $-3.5 \le w \le 3.5$, genera una gráfica de S(w) contra C(w), las curvas obtenidas se les llama espial de Cornu.