Bio144, 4./5. April 2019

Practical part 7: Exercise on linear algebra

1. Let us use the following matrices and vectors:

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 3 \\ 1 & 4 & 6 \end{bmatrix} , \quad \mathbf{B} = \begin{bmatrix} 0 & 3 & 6 \\ -1 & -1 & 0 \end{bmatrix} , \quad \boldsymbol{x} = \begin{bmatrix} -1 \\ 2 \\ -3 \end{bmatrix} , \quad \boldsymbol{y} = \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$$

Calculate all of the following expressions, if they are defined. Solve at least a)-d) by hand.

- a) $2 \cdot \mathbf{A}$
- b) **A** + **B**
- c) $\mathbf{A} \cdot \mathbf{B}^{\mathrm{T}}$
- d) $\mathbf{A} \cdot \mathbf{x}$

- $e) A \cdot B$
- $\mathbf{f})\;\mathbf{B}^{\mathrm{T}}\cdotoldsymbol{y}$
- $\mathbf{g}) \mathbf{A} \cdot \mathbf{A}^{\mathrm{T}}$
- $h) A^T \cdot A$

- i) $\boldsymbol{x}^{\mathrm{T}}\cdot\boldsymbol{x}$
- $\mathbf{j}) \; oldsymbol{x} \cdot oldsymbol{x}^{ ext{T}}$

R-hints:

- A matrix can be created for example as
 A <- matrix(c(4,2,3,1,4,6),byrow=TRUE,nrow=2)
- ullet t(A) corresponds to ${f A}^{\rm T}$.
- \bullet Make sure you understand the difference between $\mathbf{A} * \mathbf{B}$ and $\mathbf{A} \% * \% \mathbf{B}$.
- 2. a) Repeat the example given in slides 35–38 of lecture 6 using R.
 - b) Repeat the procedure from a) 100 times. In each iteration, store the estimated coefficient vector $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)$. Note that the estimates will be a bit different in each iteration, because another residual vector \mathbf{t} . \mathbf{e} is used.
 - c) Plot the histograms of the β s, the coefficients as a function of the simulation number, and scatterplots of $\hat{\beta}_1$ vs. $\hat{\beta}_0$, $\hat{\beta}_2$ vs. $\hat{\beta}_0$ and $\hat{\beta}_2$ vs. $\hat{\beta}_1$.

R-hints: The 100 simulations can be generated elegantly as follows:

• Generate an error matrix of dimension 5×100 . Each column contains the errors of one experiment:

t.E <- matrix(rnorm(500),ncol=...)</pre>

- Use t.E to generate the observations:
 t.y <- matrix(rep(t.y,100),nrow=5,byrow=F)
 - t.Y <- t.y + t.E
- Define a results matrix of dimension 3×100 that contains in each column the estimates $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)$ of an experiment, and fill it with the results of the

1

```
100 iterations, e.g.: r.coef <- matrix(NA,ncol=3, nrow=100) for (i in 1:100) { r.coef[i,] <- lm(t.Y[,i] \sim x1 + x2)$coefficients }
```