DM 2 : Électronique numérique Éléments de correction

N°	Elts de rép.	Pts	Note
1	recherches de tous les exercices	1	
2.	propreté de la copie	0.5	
3.	rendu pour le jour demandé	0.5	

N°	Elts de rép.	
01-13	Exercice : Numérisation avant stockage	
1	La plus petite duré mesurable est 10^{-9} s. C'est la précision maximale 1 ns	
2	La masse est l'ensemble de tous les points portés au même potentiel, choisi nul	
	par convention, c'est le point de référence des potentiels.	
3	graphe de fonction telle que $v_{S_A}=0$ V quand $u_2<0$ et $v_{S_A}=5$ V quand	
	$u_2 > 0$	
4	à $t = 0$ on a $u_1 = u$, u_2 et u_1 sont reliés par un pont diviseur de tension r - C ,	
	, $rC\frac{du_2}{dt} + u_2 = u_1$,, $u_2 = u\left(1 - e^{-t/\tau}\right)$ avec $\tau = rC$ Si $t_1 \ll \tau$ alors $u_2 = u\frac{t}{\tau}$ ou $\frac{du_2}{dt} = \frac{u_1}{\tau}$	
5	Si $t_1 \ll \tau$ alors $u_2 = u \frac{t}{\tau}$ ou $\frac{du_2}{dt} = \frac{u_1}{\tau}$	
6	Le bloc B est un intégrateur	
7	$u > 0$ donc $u_2 > 0$ donc $v_{S_A} = 5$ V	
8	à $t = t_1$ on a $u_2 = u \frac{t_1}{\tau}$, à $t > t_1$ on a $u_1 = -V_{ref}$ d'où (en supposant $t_2 \ll \tau$)	
	$u_2(t) = u \frac{t_1}{\tau} - V_{ref} \left(\frac{t - t_1}{\tau} \right) \left(\operatorname{car} \frac{du_2}{dt} = \frac{u_1}{\tau} \right)$. $t_1 + t_2$ est l'instant où u_2 devient	
	négatif soit $0 = u \frac{t_1}{\tau} - \frac{V_{ref}}{\tau} t_2$ donc $t_2 = \frac{ut_1}{V_{ref}}$	
9	u_1 fait un signal créneau entre u et $0, u_2$ fait un signal triangle entre 0 et u^{t_1}	
10	Le compteur commence à t_1 et avance de 1 tous les $\frac{1}{t_{ch}}$. A $t_2 + t_1$, il a avancé	
	$\det \lfloor t_2 f_{ck} \rfloor = s_N$	
11	$t_1 + t_{2,max} = 2t_1 = \frac{2(2^N - 1)}{f_{ck}}$ donc $t_m ax = 0.51$ µs donc $f_{tmin} = 2.0.10^6$ Hz	
	donc d'après le critère de Shannon $f_{signal} < 1,0 \text{ MHz}$	
12	si $u > V_i$ le comparateur i d'un potentiel de sortie au niveau haut (1) et si	
	$u < V_i$ au niveau bas (0), avec 7 comparateurs on a 8 niveaux de quantification	
	et 3 bits $u_N = \frac{s_N}{8} V_{ref}$	
13	Il faut $2^8 - 1 = 255$ comparateurs. Compromis entre rapidité, nombre de com-	
	posant, nombre de bit, adaptabilité	