Linear Algebra and Geometry 1

Systems of equations, matrices, vectors, and geometry

Normal equations of planes in the 3-space

Hania Uscka-Wehlou, Ph.D. (2009, Uppsala University: Mathematics)
University teacher in mathematics (Associate Professor / Senior Lecturer) at Mälardalen University, Sweden

Straight lines in \mathbb{R}^2

(m,b)-equation: y=mx+b where $m=\frac{\Delta y}{\Delta x}$ is the slope

All straight lines in the plane can be described by ax + by + c = 0

Such equations are called normal equations

Straight lines in \mathbb{R}^2

(m,b)-equation: y=mx+b where $m=\frac{\Delta y}{\Delta x}$ is the slope

Straight lines in \mathbb{R}^2

(m,b)-equation: y=mx+b where $m=\frac{\Delta y}{\Delta x}$ is the slope

Straight lines in \mathbb{R}^2

(m,b)-equation: y=mx+b where $m=\frac{\Delta y}{\Delta x}$ is the slope

Straight lines in \mathbb{R}^2

(m,b)-equation: y=mx+b where $m=\frac{\Delta y}{\Delta x}$ is the slope

Straight lines in \mathbb{R}^2

(m,b)-equation: y=mx+b where $m=\frac{\Delta y}{\Delta x}$ is the slope

Straight lines in \mathbb{R}^2

(m,b)-equation: y=mx+b where $m=\frac{\Delta y}{\Delta x}$ is the slope

Straight lines in \mathbb{R}^2

(m,b)-equation: y=mx+b where $m=\frac{\Delta y}{\Delta x}$ is the slope

Straight lines in \mathbb{R}^2

(m,b)-equation: y=mx+b where $m=\frac{\Delta y}{\Delta x}$ is the slope

All planes in the 3-space can be described by ax + by + cz + d = 0

Such equations are called normal equations

All planes in the 3-space can be described by ax + by + cz + d = 0

Such equations are called normal equations

