Software Architecture — Project Assignment

Dr. Lei Yang

Email: sely@scut.edu.cn

Tel.: 15622183718

Background

- Performance
 - Scheduling
- Allocation Structure
 - Module to file
 - Module to hardware resource
 - Module to human resources

Computation Partitioning

 Computation partitioning decomposes application software into a set of modules, and decides which modules are executed locally, and which parts are offloaded onto the remote server or cloud

1. Computation Partitioning a simple example

Optimal Partitioning 0.28 + 0.55 + 0.84 + 0.2 + 0.3 + 0.2 + 0.15 + 0.1 + 0.31 = 2.93

Local Execution: 0.28 + 0.55 + 0.55 + 0.86 + 0.55 + 0.44 + 0.28 = 3.51

Remote Execution: 1.89 + 0.1 + 0.2 + 0.2 + 0.3 + 0.2 + 0.15 + 0.1 + 0.31 = 3.45

MCC System Model

Issues in Computation Partitioning

Application Modeling

- How to represent the structure of application: 3 major approaches
 - Procedure calls
 - Application: a set of procedures
 - Function-centric & synchronous
 - Service invocation
 - Application: a service invocation graph
 - Message-centric & asynchronous
 - Dataflow
 - Application: a directed acyclic graph
 - Edge represents the flow of data; Node is the processing function onto the data

Cost Modeling

- Estimate the execution cost of each component in the application and weigh the cost of offloading against the potential gain
 - Execution cost can be measured by one or the weighted summation of the following metrics:
 - execution time (local and remote)
 - energy consumption
 - data transferred over the network
- Profiling is an approach to collecting and estimating the cost of application components
 - Prediction-based profiling
 - Model-based profiling

Optimization

- Obtain optimal partition of the computation can be solved either online or offline
 - Online optimization solves the optimization on the fly for each execution of an application.
 - Offline optimization calculates the optimal partitions under different device and network status in offline phase
 - Search the most matched partition given the measurements of the device and network status
 - Avoid the overhead of solving optimization, but need abundant offline test cases
- Optimization can be solved at the mobile side or cloud side

Distributed Execution

- Execute the partitioned computation components over mobile devices and cloud fabric.
- Three execution approaches
 - Client server communication method
 - Virtual machine migration

Client Server Communication

- RPC and RMI
- Require pre-installation on servers, and prone to network disconnection

- [1] J.Flinn. Balancing performance, energy, and quality in pervasive computing. ICDCS'02
- [2] R. Balan. Tactics-based remote execution for mobile computing. Mobisys'03

Virtual Machine Migration

- Do not need pre-installation on clouds
- Code changes are not required for execution on clouds
- Using VM Migration is heavyweight
- e.g., MAUI [1], Cloudlet [2], CloneCloud[3], ThinkAir [4]

- [1] Maui: making smartphones last longer with code offload. MobiSys'10
- [2] Clonecloud: elastic execution between mobile device and cloud. Euro Sys'11
- [3] The case for VM-basedcloudlets in mobile computing, IEEE Pervasive Computing 2009.
- [4] ThinkAir: Dynamic resource allocation and parallel execution in cloud for mobile code offloading. Infocom'12

References

- Optimizing the performance of dataflow applications in throughput
 - "A framework for partitioning and execution of data stream applications in mobile cloud computing". *IEEE SIGMETRICS PER 2013*.
- Optimizing the performance of workflow application in execution time
 - "Run Time Application Repartitioning in Dynamic Mobile Cloud Environments", IEEE Trans. On Cloud Computing, 2016

Project Assignment

- Part A Select one mobile application to implement and test its performance on the mobile device. The selected application should be compute-intensive and latency sensitive. Examples include but are not limited to:
 - hand gesture recognition,
 - face recognition,
 - image based object recognition,
 - augmented reality,
 - OCR and etc.

Project Assignment

- Part B Please analyze the module structure of the application, and try to partition the modules between the mobile device and a remote server (or cloud). Test the performance of the application under various partitioning, and show via experiments what are the factors and how do they impact the performance of application.
- Part C Based on the test results above, try to develop a system/component that supports the dynamic partitioning of the application in the run time.

Score Criterias

- Required to finish at least part A and B.
 - Part A: 60 points; Part B: 90 points; Part C: 100 points.
- Final deliverables for scoring
 - Final Report (60%)
 - Demonstration (40%)

Final Report

- Content of the final report should include:
 - Title
 - Abstract
 - Introduction
 - [Main Body]: application; performance metric and measurement; computation partitioning; system design, architecture;
 - Experiments and results: state the experiment purposes, environment settings, and results with figures or tables
 - Conclusions
 - References

Final Report

- The module structure of the application should be included in your report
- Measure the application performance under as many settings as possible, i.e., different partitioning, network connections (WiFi or 4G), bandwidth, mobile devices, or input data
- Beyond the experiment results, what are the insights you want to provide
- If Part C is finished, the component-andconnector structure the system is required

Demonstrations

- Each group has 10 minutes to demonstrate the system and results
- Design the demonstration procedures, and make sure it proceeds smoothly and logically
 - A checklist indicating what you will demonstrate is required
- Debugging the demonstrations at least 10
 times in advance, and make sure no failures
 occur

Time Schedule

- Send group information to <u>sely@scut.edu.cn</u> on 25/Oct/2018
 - 所有小组成员姓名和学号,组长的Email和手机
- Each group submits a confirmation report to my email sely@scut.edu.cn on 8/Nov/2017. The report shows what application you select to implement, and the module structure of the application source codes.
- Each group submits a mid-term progress report by 29/Nov/2017 via emails
- Each group emails the draft of project report and source code to me before 25/Dec/2017.
- Demonstration is tentatively arranged on 27/Dec/2017.
- The *final version of the report* should be submitted within one week after the demonstration (3/Jan/2017).