Al 5090: Stochastic Processes

LECTURE 07

SCRIBE: N. SRI KRISHNA CHAITANYA

28 JANUARY 2025

Contents

1	Borel-Cantelli Lemma	2
	1.1 Proof of the First Borel–Cantelli Lemma	
	1.2 Proof of the Second Borel–Cantelli Lemma	2
2	An Alternative Characterisation of Almost-Sure Convergence 2.1 Proof using Chebyshev's Inequality	3
3	Stronger Bound using Chernoff's Inequality	4
4	Example: Moving Rectangles	4
5	Explanation	5
6	Other Notions of Convergence	5

Notation

We are going to use the following notation throughout the document:

$$A_n$$
 i.o. $=\bigcap_{N=1}^{\infty}\bigcup_{k=N}A_k.$

This represents the limit supremum of a sequence of events, which will be useful in the discussions ahead.

1 Borel-Cantelli Lemma

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. The Borel–Cantelli Lemma is a fundamental result that describes conditions under which an event occurs infinitely often.

Lemma 1 (Borel-Cantelli Lemma).

1. Suppose $A_1, A_2, \ldots \in \mathscr{F}$ are such that $\sum_{i=1}^{\infty} \mathbb{P}(A_i) < +\infty$. Then,

$$\mathbb{P}(A_n \text{ i.o.}) = 0.$$

Thus, if the sum of probabilities of events is finite, then almost surely only finitely many of these events occur.

2. Suppose $A_1,A_2,\ldots\in\mathscr{F}$ are independent and satisfy $\sum_{i=1}^\infty\mathbb{P}(A_i)=+\infty$. Then,

$$\mathbb{P}(A_n \text{ i.o.}) = 1.$$

In this case, if the sum of probabilities of independent events diverges, then these events necessarily occur infinitely often with probability 1.

1.1 Proof of the First Borel-Cantelli Lemma

We define the event that infinitely many of the A_n occur as

$$\limsup_{n \to \infty} A_n = \bigcap_{m=1}^{\infty} \bigcup_{n > m} A_n.$$

By applying Boole's inequality, we get

$$\mathbb{P}\left(\bigcup_{n\geq m} A_n\right) \leq \sum_{n\geq m} \mathbb{P}(A_n).$$

Since $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$, the right-hand side tends to zero as $m \to \infty$, implying

$$\mathbb{P}\left(\limsup_{n\to\infty}A_n\right)=0.$$

Thus, the probability that infinitely many A_n occur is zero, proving the first part of the lemma.

1.2 Proof of the Second Borel-Cantelli Lemma

Now, assume that the events $\{A_n\}$ are independent and that

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = +\infty.$$

We want to show that

$$\mathbb{P}(A_n \text{ i.o.}) = 1.$$

The probability that only finitely many A_n occur is given by

 $\mathbb{P}(A_n^c \text{ for all but finitely many } n).$

Since the A_n are independent, we compute:

$$\mathbb{P}\left(\bigcap_{n=1}^{\infty} A_n^c\right) = \prod_{n=1}^{\infty} (1 - P(A_n)).$$

Using the standard result that

$$\prod_{n=1}^{\infty} (1 - P(A_n)) = 0 \quad \text{if} \quad \sum_{n=1}^{\infty} P(A_n) = \infty,$$

it follows that

$$P(A_n \text{ i.o.}) = 1.$$

This completes the proof.

For a more detailed proof, we refer the reader to [GS20, Ch. 7, Sec. 7.3].

2 An Alternative Characterisation of Almost-Sure Convergence

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of random variables and X a limiting random variable, all defined with respect to \mathscr{F} .

Proposition 1 (Almost Sure Convergence). *The following statements are equivalent:*

- 1. $X_n \xrightarrow{\text{a.s.}} X$ (which means X_n converges to X almost surely).
- 2. For every $\varepsilon > 0$,

$$\mathbb{P}(|X_n - X| \ge \varepsilon \text{ i.o.}) = 0.$$

This means that the probability of the sequence deviating from X by at least ε infinitely often is zero, for every $\varepsilon > 0$.

Proof. To show the equivalence, we use the following logical steps:

$$\begin{split} X_n & \xrightarrow{\text{a.s.}} X \quad \Longleftrightarrow \quad \mathbb{P}\left(\bigcap_{q \in \mathbb{Q}_+} \bigcap_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \left\{|X_n - X| < q\right\}\right) = 1 \\ & \iff \quad \mathbb{P}\left(\bigcup_{q \in \mathbb{Q}_+} \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \left\{|X_n - X| \ge q\right\}\right) = 0 \\ & \iff \quad \mathbb{P}\left(\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \left\{|X_n - X| \ge q\right\}\right) = 0 \quad \forall q \in \mathbb{Q}_+ \\ & \stackrel{(a)}{\iff} \quad \mathbb{P}\left(\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \left\{|X_n - X| \ge \varepsilon\right\}\right) = 0 \quad \forall \varepsilon > 0 \\ & \iff \quad \mathbb{P}\left(|X_n - X| > \varepsilon \text{ i.o.}\right) = 0 \quad \forall \varepsilon > 0. \end{split}$$

In the above sequence of steps, (a) follows from the fact that the set of rational numbers is dense in the set of real numbers; for a proof of this fact, see [Rud21, Theorem 1.20]. Thus, we have shown that almost sure convergence is equivalent to the given probability condition.

Consider the following example.

Example 1. Let X_1, X_2, \ldots be independent and identically distributed (i.i.d.) random variables following a Bernoulli distribution with a fixed probability $p \in (0,1)$:

$$X_i \sim Ber(p)$$
 i.i.d.

For each $n \in \mathbb{N}$, define the number of heads in the first n tosses as

$$S_n = \sum_{i=1}^n X_i = \# \text{Heads in first } n \text{ tosses.}$$
 (1)

We aim to show that:

$$\frac{S_n}{n} \xrightarrow{a.s.} p,$$
 (2)

which means that S_n/n converges almost surely to p.

2.1 Proof using Chebyshev's Inequality

Since X_1, X_2, \ldots are i.i.d. Bernoulli(p), we have:

$$\mathbb{E}[S_n] = \mathbb{E}\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n \mathbb{E}[X_i] = np.$$

Using variance properties:

$$Var(S_n) = \sum_{i=1}^n Var(X_i) = \sum_{i=1}^n p(1-p) = np(1-p).$$

Now, applying Chebyshev's inequality:

$$\mathbb{P}\left(\left|\frac{S_n}{n} - p\right| > \varepsilon\right) = \mathbb{P}\left(\left|S_n - np\right| > n\varepsilon\right). \tag{3}$$

By Chebyshev's inequality:

$$\mathbb{P}\left(|S_n - np| > n\varepsilon\right) \le \frac{\mathsf{Var}(S_n)}{n^2 \varepsilon^2} = \frac{np(1-p)}{n^2 \varepsilon^2} = \frac{p(1-p)}{n\varepsilon^2}.$$

Notice that the right-hand side of the above upper bound is not summable (as it exhibits 1/n decay). Therefore, the above bounding technique does not suffice to prove almost-sure convergence. We will need a "tighter" upper bound (one that is summable) to show almost-sure convergence.

3 Stronger Bound using Chernoff's Inequality

A stronger bound is given by Chernoff's inequality:

$$\mathbb{P}\left(\left|\frac{S_n}{n} - p\right| > \varepsilon\right) \le O(e^{-nc}) \text{ for some } c > 0. \tag{4}$$

This shows an exponentially fast decay, strengthening the convergence result. For details on how to derive such a bound, the reader is referred to Question 4 in this document. From (4), we note that

$$\sum_{n\in\mathbb{N}} \mathbb{P}\left(\left|\frac{S_n}{n} - p\right| > \varepsilon\right) < +\infty, \quad \forall \varepsilon > 0.$$

Hence, from the first part of Borel-Cantelli lemma, it follows that

$$\mathbb{P}\left(\left\{\left|\frac{S_n}{n}-p\right|>\varepsilon\right\} \text{ i.o.}\right)=0 \qquad \forall \varepsilon>0,$$

hence proving that $\frac{S_n}{n} \xrightarrow{a.s.} p$.

4 Example: Moving Rectangles

Suppose that $(\Omega,\mathscr{F},\mathbb{P})=([0,1],\mathcal{B}([0,1]),$ Uniform). Define a sequence of indicator functions:

$$X_1 = \mathbf{1}_{[0,1]}$$

$$\begin{split} X_2 &= \mathbf{1}_{[0,\frac{1}{2}]} \\ X_3 &= \mathbf{1}_{[\frac{1}{2},1]} \\ X_4 &= \mathbf{1}_{[0,\frac{1}{4}]} \\ X_5 &= \mathbf{1}_{[\frac{1}{4},\frac{1}{2}]} \\ X_6 &= \mathbf{1}_{[\frac{1}{2},\frac{3}{4}]} \\ X_7 &= \mathbf{1}_{[\frac{3}{3},1]}, \quad \text{and so on.} \end{split}$$

This sequence represents moving rectangles that shrink and shift over time. Notably, this sequence does not have a pointwise limit or an almost-sure limit.

5 Explanation

The reason why the sequence (X_n) has no pointwise or almost-sure limit is that for any given point $\omega \in [0,1]$, the indicator function $X_n(\omega)$ oscillates indefinitely between 0 and 1 without stabilizing to a fixed value. As n increases, the partitions become finer, and there is no single value to which $X_n(\omega)$ converges for any fixed $\omega \in [0,1]$.

This behavior prevents the sequence from having an almost-sure limit, since for any x, there is no stable long-term value. Moreover, this example illustrates the importance of considering different modes of convergence, which we will explore next.

6 Other Notions of Convergence

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition 2 (Convergence in Probability). A sequence of random variables $\{X_n\}_{n=1}^{\infty}$ converges in probability to X if:

$$\forall \varepsilon > 0, \qquad \lim_{n \to \infty} \mathbb{P}(\{|X_n - X| > \varepsilon\}) = 0.$$
 (5)

We write

$$X_n \xrightarrow{\mathsf{p}.} X$$
 (6)

to denote the fact that $\{X_n\}_{n=1}^{\infty}$ converges in probability to X.

Remark 1. The in-probability limit is only specified up to sets of zero probability. That is,

$$X_n \xrightarrow{\mathsf{p}.} X, \quad X_n \xrightarrow{\mathsf{p}.} Y \quad \Longrightarrow \quad \mathbb{P}(X = Y) = 1.$$
 (7)

Definition 3 (Mean-Squared Convergence). A sequence of random variables $\{X_n\}_{n=1}^{\infty}$ converges to X in mean-squared (m.s.) sense if $\mathbb{E}[X_n^2] < +\infty$ for all $n \in \mathbb{N}$, and

$$\lim_{n \to \infty} \mathbb{E}[(X_n - X)^2] = 0. \tag{8}$$

We write

$$X_n \xrightarrow{\mathsf{m.s.}} X \tag{9}$$

Page 5

to denote the fact that $\{X_n\}_{n=1}^{\infty}$ converges in mean-squared sense to X.

Remark 2. The mean-squared limit is specified uniquely only up to sets of probability 0, i.e., if $X_n \xrightarrow{\text{m.s.}} X$ and $X_n \xrightarrow{\text{m.s.}} Y$, then $\mathbb{P}(X = Y) = 1$.

Example 2. Consider the probability space $(\Omega, \mathscr{F}, \mathbb{P}) = ([0,1], \mathcal{B}([0,1]), \mathit{Unif})$. Suppose we define a sequence of random variables X_n as follows:

$$X_n(\omega) = \begin{cases} a_n, & \omega \in \left[0, \frac{1}{n}\right], \\ 0, & \text{otherwise,} \end{cases}$$

for some fixed sequence $\{a_n\}_{n\in\mathbb{N}}$ of real numbers. We analyze different forms of convergence for X_n :

1. If we take $a_n = n$, then

$$X_n \xrightarrow{a.s.} 0.$$

This is because, for each fixed ω , the event $\omega \in [0,1/n]$ occurs for finitely many n. Hence, beyond some finite n, we have $X_n(\omega) = 0$, ensuring almost-sure convergence to 0.

2. We examine mean-squared convergence by computing

$$\mathbb{E}[(X_n - 0)^2] = \mathbb{E}[X_n^2] = \int_0^1 X_n^2(\omega) d\omega.$$

For $a_n = n$,

$$\mathbb{E}[X_n^2] = \int_0^{1/n} n^2 d\omega = n^2 \cdot \frac{1}{n} = n \to \infty,$$

which shows that X_n does not converge in the mean-squared sense. Hence,

$$X_n \xrightarrow{a.s.} 0$$
, but $X_n \xrightarrow{m.s.} 0$.

This example illustrates that almost-sure convergence does not necessarily imply mean-squared convergence. In general,

$$X_n \xrightarrow{a.s.} 0 \quad \not\Rightarrow X_n \xrightarrow{m.s.} 0, \qquad \qquad X_n \xrightarrow{m.s.} 0 \quad \not\Rightarrow \quad X_n \xrightarrow{a.s.} 0.$$

Example 3. Consider the probability space $(\Omega, \mathscr{F}, \mathbb{P}) = ([0,1], \mathscr{B}([0,1]), \textit{Unif})$. Suppose the sequence of random variables satisfies the condition:

$$X_n = X_{n+3}, \quad \forall n \in \mathbb{N}.$$

This condition implies that X_n is a periodic sequence with period 3. We analyze the different forms of convergence:

1. Pointwise and Almost-Sure Convergences:

Because X_n repeats every three steps, there is no single limit function to which $X_n(\omega)$ converges as $n \to \infty$. Hence, X_n does not converge almost-surely or pointwise.

2. Mean-Squared and In-Probability Convergences:

Because X_n does not settle down to a single function, it does not converge in the mean-squared sense or in probability.

3. A key observation:

Despite the lack of convergence in the previous senses, the probability mass functions (PMFs) and cumulative distribution functions (CDFs) of X_1, X_2, X_3 are identical, thereby implying that there exists a non-trivial limit for the sequence of CDFs $\{F_{X_n}\}_{n\in\mathbb{N}}$. This observation motivates a new notion of convergence known as convergence in distribution (to be covered in the next lecture).

References

[GS20] Geoffrey Grimmett and David Stirzaker. Probability and Random Processes. Oxford University Press, 2020.

[Rud21] Walter Rudin. Principles of mathematical analysis. 2021.