# Born-Again Multi-Task Networks for Natural Language

# Content

- 1. Introduction
- 2. Related Work
- 3. Methods
- 4. Experiments
- 5. Results
- 6. Discussion and Conclusion

# 1. Introduction

teacher

undent

Knowledge distillating

multi-task

Bert 49

Tencher Ameling

- Knowledge Distillation 을 이용해서 Single Task model ->teach -> Multi Task Model
- Multi-task model BERT Fine Tuning해서 standard single task와 multi-task 보다 좋은 결과 가져
- Contribution:
  - 새로운 Teacher Annealing 제안

#### Multi-Task Learning

#### Multi-Task Learning

Multi-Task Learing 이란 여러 학습 과제를 동시에 해결하는 기계학습의 한 종류입니다. 예컨대 같은 학습말뭉치로 **개체명** 인식(Named Entity Recognition)과 품사분류(Part-Of-Speech Tagging)를 동시에 수행하는 뉴럴네트워크를 만들 수 있습니다. 아래 그림을 먼저 볼까요?





위 그림의 두 네트워크는 마지막에 붙어있는 **소프트맥스 계층(Softmax Layer)**만 제외하면 완전히 동일합니다. 다만  $S_1$ 의 소프트맥스 확률값은 NER,  $S_2$ 는 포스태깅 과제를 수행하면서 나오는 스코어라는 점에 유의할 필요가 있습니다. 위와 같은 Multi-Task Learining 네트워크에서는 아래 수식처럼 역전파시  $S_1$ 의 그래디언트와  $S_2$ 의 그래디언트가 동일한 네트워크에 함께 전달되면서 학습이 이뤄지게 됩니다.

 $\delta^{total} = \delta^{NER} + \delta^{POS}$  7 1064 func

### Knowledge Distillation

Softmax Output = Knowledge = Soft Label

ex) arrentle



| cow              | dog | cat | car  |
|------------------|-----|-----|------|
| 0                | 1   | 0   | 0    |
|                  |     |     |      |
| cow              | dog | cat | car  |
| 10 <sup>-6</sup> | .9  | .1  | 10-9 |
|                  |     |     |      |
| cow              | dog | cat | car  |
| .05              | .3  | .2  | .005 |
|                  |     |     |      |

original hard targets

output of geometric ensemble

softened output of ensemble

Comparison with the 'hard label' and the 'soft label

Tencher 7

studen

mure information

#### 1. Introduction Teacher Annealing Task 1 Task 1 Labels Model $\lambda$ Task 2 Task 2 Multi-Task Model Labels Model distill $\operatorname{train}$ Task kTask kModel Labels

Figure 1: An overview of our method.  $\lambda$  is increased linearly from 0 to 1 over the course of training.

# 2. Related Work

- Big Ensemble모델에서 Knowledge 를 distillation 해서 Small Network에 적용시킬 수 없을까?(Resource가 너무 많이 들어감)
- Reinforcement Learning 사용 기가에 Iewing
- Machine Translate 사용
- 일반모델 보다 Knowledge를 Distillation 해서 학습된 Model이 하는게 더 좋음
  - 모델 성능향상 기대



## 3. Method

- 3.1 Multi-Task Setup
  - Basic BERT 사용
  - Classification Task Case
    - Softmax Function 사용
  - Regression Task Case
    - Sigmoid Activation 사용
  - Multi-task model
    - Example of different tasks are shuffled together, even within minibatche
  - Single-task model
    - Training. Single-task training is performed as in Devlin et al. (2019).
      - acob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In *NAACL-HLT*.

## 3. Method

- 3.2 Knowledge Distillation
  - Born-Again Network( teacher, student same Network Architecture)
    - Classification Task: Cross Entropy Function > 1044 Function
    - Regression Task: L2 Distance Function

$$\mathcal{L}(\theta) = \sum_{x_{\tau}^{i}, y_{\tau}^{i} \in \mathcal{D}_{\tau}} \ell(y_{\tau}^{i}, f_{\tau}(x_{\tau}^{i}, \theta))$$

$$\mathcal{L}(\theta) = \sum_{x_{\tau}^{i}, y_{\tau}^{i} \in \mathcal{D}_{\tau}} \ell(f_{\tau}(x_{\tau}^{i}, \theta'), f_{\tau}(x_{\tau}^{i}, \theta))$$

## 3. Method

- 3.2 Knowledge Distillation
  - single-task models to teach a multi-task model with parameters θ:

$$\mathcal{L}(\theta) = \sum_{\tau \in \mathcal{T}} \sum_{x_{\tau}^{i}, y_{\tau}^{i} \in \mathcal{D}_{\tau}} \ell(f_{\tau}(x_{\tau}^{i}, \theta_{\tau}), f_{\tau}(x_{\tau}^{i}, \theta))$$
Annealing

Annealing

Tencher

Tencher

Tencher

Tencher

- Teacher Annealing
  - Mixes the Teacher Prediction with the Gold Label
  - λ is linearly increased from 0 to 1 throughout training

$$\ell(\lambda y_{\tau}^{i} + (1-\lambda)f_{\tau}(x_{\tau}^{i}, \theta_{\tau}), f_{\tau}(x_{\tau}^{i}, \theta))$$

# 4. Experiment

- consists of 9 natural language understanding tasks on English data.
  - REE, MNLI, QNLI, MRPC, QQP, STS, SST-2, CoLA, WNLI
- Dataset
  - 단순 Shuffling (X)
  - Bowman et al. (2018)
    - Alex Wang, Amapreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. 2019. GLUE: A multi-task benchmark and analysis plat- form for natural language understanding. In *ICLR*.
  - task  $\tau$  is proportional to  $|D\tau| 0.75$ .
  - 아주 큰 데이터 셋의 분포가 많아지는 것을 방지

# 4. Experiment

- Layerwise-learning-rate trick
  - Input과 가까운 Layer수록 General feature 이므로 Learning Rate가 더 작도록)
- For single-task models, we use the same hyperparameters as in the original BERT experiments except we pick a layerwise- learning-rate decay  $\alpha$  of 1.0 or 0.9 on the dev set for each task.

• For multi-task models, we train the model for longer (6 epochs instead of 3) and with a larger batch size (128 instead of 32), using  $\alpha = 0.9$  and a learning rate of 1e-4. All models use the BERT-Large pre-trained weights.

| Model                        | Avg.    | $\mathbf{CoLA}^{\mathbf{a}}$ $ \mathcal{D}  = 8.5 \mathbf{k}$ |               | MRPC <sup>c</sup> 3.7k | <b>STS-B</b> <sup>d</sup> 5.8k | <b>QQP</b> <sup>e</sup> 364k | MNLI <sup>f</sup><br>393k | QNLI <sup>g</sup><br>108k | RTE <sup>h</sup> 2.5k |
|------------------------------|---------|---------------------------------------------------------------|---------------|------------------------|--------------------------------|------------------------------|---------------------------|---------------------------|-----------------------|
| Single                       | 84.0    | 60.6                                                          | 93.2          | 88.0                   | 90.0                           | 91.3                         | 86.6                      | 92.3                      | 70.4                  |
| Multi                        | 85.5    | 60.3                                                          | 93.3          | 88.0                   | 89.8                           | 91.4                         | 86.5                      | 92.2                      | 82.1                  |
| Single→Single                | 84.3    | <b>61.7</b> **                                                | 93.2          | <b>88.7</b> *          | 90.0                           | 91.4                         | 86.8**                    | <b>92.5</b> ***           | 70.0                  |
| $Multi \rightarrow Multi$    | 85.6    | 60.9                                                          | 93.5          | 88.1                   | 89.8                           | <b>91.5</b> *                | 86.7                      | 92.3                      | 82.0                  |
| $Single {\rightarrow} Multi$ | 86.0*** | 61.8**                                                        | <b>93.6</b> * | 89.3**                 | 89.7                           | <b>91.6</b> *                | <b>87.0</b> ***           | 92.5***                   | <b>82.8</b> *         |

Dataset references: <sup>a</sup>Warstadt et al. (2018) <sup>b</sup>Socher et al. (2013) <sup>c</sup>Dolan and Brockett (2005) <sup>d</sup>Cer et al. (2017) <sup>e</sup>Iyer et al. (2017) <sup>f</sup>Williams et al. (2018) <sup>g</sup>constructed from SQuAD (Rajpurkar et al., 2016) <sup>h</sup>Giampiccolo et al. (2007)

Table 1: Comparison of methods on the GLUE dev set. \*, \*\*, and \*\*\* indicate statistically significant (p < .05, p < .01, and p < .001) improvements over both Single and Multi according to bootstrap hypothesis tests.<sup>3</sup>

### • GLUE Reader Board

| Model                                                   | GLUE score |
|---------------------------------------------------------|------------|
| BERT-Base (Devlin et al., 2019)                         | 78.5       |
| BERT-Large (Devlin et al., 2019)                        | 80.5       |
| BERT on STILTs (Phang et al., 2018                      | 8) 82.0    |
| MT-DNN (Liu et al., 2019b)                              | 82.2       |
| Span-Extractive BERT on STILTs (Keskar et al., 2019)    | 82.3       |
| Snorkel MeTaL ensemble (Hancock et al., 2019)           | 83.2       |
| MT-DNN <sub><math>KD</math></sub> * (Liu et al., 2019a) | 83.7       |
| BERT-Large + BAM (ours)                                 | 82.3       |

Table 2: Comparison of test set results. \*MT-DNN $_{KD}$  is distilled from a diverse ensemble of models.

|   | Rank | Name                       | Model                                  | URL      | Score | CoLA | SST-2 | MRPC      | STS-B     | QQP       | MNLI-m | MNLI-mm | QNLI | RTE  | WNLI | A    |
|---|------|----------------------------|----------------------------------------|----------|-------|------|-------|-----------|-----------|-----------|--------|---------|------|------|------|------|
|   | 1    | Facebook Al                | RoBERTa                                |          | 88.5  | 67.8 | 96.7  | 92.3/89.8 | 92.2/91.9 | 74.3/90.2 | 90.8   | 90.2    | 98.9 | 88.2 | 89.0 | 48.7 |
|   | 2    | XLNet Team                 | XLNet-Large (ensemble)                 | <b>Z</b> | 88.4  | 67.8 | 96.8  | 93.0/90.7 | 91.6/91.1 | 74.2/90.3 | 90.2   | 89.8    | 98.6 | 86.3 | 90.4 | 47.5 |
| + | 3    | Microsoft D365 AI & MSR AI | MT-DNN-ensemble                        | <b>♂</b> | 87.6  | 68.4 | 96.5  | 92.7/90.3 | 91.1/90.7 | 73.7/89.9 | 87.9   | 87.4    | 96.0 | 86.3 | 89.0 | 42.8 |
|   | 4    | GLUE Human Baselines       | GLUE Human Baselines                   | <b>Z</b> | 87.1  | 66.4 | 97.8  | 86.3/80.8 | 92.7/92.6 | 59.5/80.4 | 92.0   | 92.8    | 91.2 | 93.6 | 95.9 |      |
| + | 5    | 王玮                         | ALICE large ensemble (Alibaba DAMO N   |          | 86.3  | 68.6 | 95.2  | 92.6/90.2 | 91.1/90.6 | 74.4/90.7 | 88.2   | 87.9    | 95.7 | 83.5 | 80.8 | 43.9 |
|   | 6    | Stanford Hazy Research     | Snorkel MeTaL                          | <b>Z</b> | 83.2  | 63.8 | 96.2  | 91.5/88.5 | 90.1/89.7 | 73.1/89.9 | 87.6   | 87.2    | 93.9 | 80.9 | 65.1 | 39.9 |
|   | 7    | XLM Systems                | XLM (English only)                     | <b>Z</b> | 83.1  | 62.9 | 95.6  | 90.7/87.1 | 88.8/88.2 | 73.2/89.8 | 89.1   | 88.5    | 94.0 | 76.0 | 71.9 | 44.7 |
|   | 8    | 张倬胜                        | SemBERT                                | <b>♂</b> | 82.9  | 62.3 | 94.6  | 91.2/88.3 | 87.8/86.7 | 72.8/89.8 | 87.6   | 86.3    | 94.6 | 84.5 | 65.1 | 42.4 |
|   | 9    | Kevin Clark                | BERT + BAM                             | <b>Z</b> | 82.3  | 61.5 | 95.2  | 91.3/88.3 | 88.6/87.9 | 72.5/89.7 | 86.6   | 85.8    | 93.1 | 80.4 | 65.1 | 40.7 |
|   | 10   | Nitish Shirish Keskar      | Span-Extractive BERT on STILTs         | <b>Z</b> | 82.3  | 63.2 | 94.5  | 90.6/87.6 | 89.4/89.2 | 72.2/89.4 | 86.5   | 85.8    | 92.5 | 79.8 | 65.1 | 28.0 |
|   | 11   | Jason Phang                | BERT on STILTs                         | <b>Z</b> | 82.0  | 62.1 | 94.3  | 90.2/86.6 | 88.7/88.3 | 71.9/89.4 | 86.4   | 85.6    | 92.7 | 80.1 | 65.1 | 28.0 |
| + | 12   | Jacob Devlin               | BERT: 24-layers, 16-heads, 1024-hidden | <b>Z</b> | 80.5  | 60.5 | 94.9  | 89.3/85.4 | 87.6/86.5 | 72.1/89.3 | 86.7   | 85.9    | 92.7 | 70.1 | 65.1 | 39.€ |
|   | 13   | Neil Houlsby               | BERT + Single-task Adapters            | <b>Z</b> | 80.2  | 59.2 | 94.3  | 88.7/84.3 | 87.3/86.1 | 71.5/89.4 | 85.4   | 85.0    | 92.4 | 71.6 | 65.1 | 9.2  |
|   | 14   | Zhuohan Li                 | Macaron Net-base                       | <b>♂</b> | 79.7  | 57.6 | 94.0  | 88.4/84.4 | 87.5/86.3 | 70.8/89.0 | 85.4   | 84.5    | 91.6 | 70.5 | 65.1 | 38.7 |
|   | 15   | Linyuan Gong               | StackingBERT-Base                      | <b>♂</b> | 78.4  | 56.2 | 93.9  | 88.2/83.9 | 84.2/82.5 | 70.4/88.7 | 84.4   | 84.2    | 90.1 | 67.0 | 65.1 | 36.€ |

### Single-Task Fine-Tuning

| Model                    | Avg. Score |
|--------------------------|------------|
| Multi                    | 85.5       |
| +Single-Task Fine-Tuning | +0.3       |
| Single→Multi             | 86.0       |
| +Single-Task Fine-Tuning | +0.1       |

Table 3: Combining multi-task training with single-task fine-tuning. Improvements are statistically significant (p < .01) according to Mann-Whitney U tests.<sup>3</sup>

### Ablation Study

| Model                                 | Avg. Score |
|---------------------------------------|------------|
| Single→Multi                          | 86.0       |
| No layer-wise LRs                     | -0.3       |
| No task sampling                      | -0.4       |
| No teacher annealing: $\lambda = 0$   | -0.5       |
| No teacher annealing: $\lambda = 0.5$ | -0.3       |

Table 4: Ablation Study. Differences from Single $\rightarrow$ Multi are statistically significant (p < .001) according to Mann-Whitney U tests.<sup>3</sup>

# 6. Conclusion

- Multi-Task model 정확도 향상이 어렵다
- 비슷한 Task에 대한 정확도는 높음
- 계속적으로 knowledge Distillation연구 필요
  - DataSet이 작은 경우(Data에 Label이 많이 없다)에 활용도 높음
- Active Learning, Mento-net과 연관
  - Labeling된 데이터가 많이 없고, 작은 데이터 셋에서 어떻게하면 좀더 효과적으로 학습 할 수 있을지 고민
- RL Meta Learning과 잘 융합

# Q&A

# Thank you