PID Tuning

10 - Step Process

*** with Rate-Control Example ***

Step-by-step recipe for success

Each step demonstrated by example

- Current Driver Circuit (1st order system)
- Motor & Load (2nd order system)
- Optical Encoder with discretization error
- Typical u-controller with average clock speed

Copyright ©

Prof. Leo Stocco
Electrical & Computer Engineering
UBC

Step 1: System ID & Linearize

Break system into sub-systems

ID all signals

Develop model of each sub-system

- Most elec / mech systems can be APPROXIMATED as 2nd order system + gain
- Calculate Xfer Functions "G1, G2, ..." from Data Sheets (DS) & known values

If no data sheet, record step response at reasonable OPERATING POINT and APPROXIMATE:

- 0-order linear approximation
- 1st or 2nd order approximation
- Additional (3rd) poles if shape "unusual"

<u>Hint</u>

- Linear sub-system modeled by constant (gain)
- DELAY modeled by POLE
- Neglect non-linearities (discontinuities, noise, etc.)

Combine & compute Loop Gain (GH)

• Identify Poles & Zeros

Plot Root-Locus

Design Filter

- Generate sensor noise model
- Optimize P (filter pole location)

Generate Bode & Nyquist plot

• "margin" function shows Gm, Pm & X-over frequencies

Stable System:

- Positive margins
- Gm X-Over Freq > Pm X-Over Freq

Unstable System:

- Negative margins
- Gm X-Over Freq < Pm X-Over Freq

Choose SMALLER X-Over Freq

- Sytem is stable
- wx = Pm X-Over Freq = 1.84 rad/s

Add controller poles & zeros to Root-Locus

Controller Poles

- 1 Pole @ 0 (integrator)
- 1 Pole @ P (filter pole)

Controller Zeros

- 2x zeros
 - Mag = ½ the magnitude of right-most non-zero pole
 - Ang = 45 deg (reasonable value)

PID Controller

- Zeros must trap dominant poles
- Send less dominant poles along asymptotes
- · Stabilize by reducing zero Mag or Increasing zero Ang
- · Effectively shifts asymptote centre to left

Zoom in on Dominant Poles

- Filter pole is Non-Dominant (typical)
- Moves further to left as Gain increases

Generate Bode & Nyquist plots

- Unity gain (K=1)
- Find Ku = Gain Margin
- · Convert from dB to pure units

Step 7: Tune PID Gains

$$K = K_{U} \times 10\% = 73$$

$$K_{I} = \frac{KZ_{1}Z_{2}}{P}$$

$$K_{P} = \frac{K(Z_{1}+Z_{2}) - K_{I}}{P}$$

$$K_{D} = \frac{K - K_{P}}{P}$$

$$K_{D} = [1 \ 0.4 \ 1.4]$$

$$Step Response - PID #1 & #2$$

$$Z = 0.9 \not \pm 50^{\circ}$$

$$K = K_{U} \times 8\% = 53$$

$$Kpid = [1.2 \ 0.9 \ 1]$$

$$Kpid = [1 \ 0.4 \ 1.4]$$

Select reasonable K value

• $K = Ku * 10\% \rightarrow 50\%$

Plot step response

- Compute Gains Kpid = [Kp Ki Kd]
- · Apply gains and filter to PID controller

Adjust design parameters & repeat

- Z mag = wx * $10\% \rightarrow 100\%$
- $Z \text{ ang} = 0 \rightarrow 90 \text{ deg}$
- $K = Ku * 2\% \rightarrow 80\%$

Measure

- Rise Time (Tr)
- Peat Time (Tp)
- Settle Time (Ts)
- Over-Shoot or % Over-Shoot (OS)
- Gain Margin
- Phase Margin

If RCGs not satisfied, Re-Tune

Plot Root Locus

Ensure zeros are located as expected

• If not, check for calculation errors

Implement in Simulink

- Implement filters using Matlab code, not X-fer function block
- · Compare results
- Any difference = Software Bug

Port to Micro-Controller

- Implement filter in Micro-Controller
- Set PD gains in Micro-Controller
- Generate & measure step response (on test bench)
- Compare to simulated results (from Step 8)

If Simulation does not match Experiment

- Identify software bugs
- Identify modeling errors
- Go to Step 1

Fine-tune individual PD gains

- · Account for non-linearities
- Attempt to restore theoretical response (Step 9)
- Static friction & gravity are compensated by increasing Ki

Trade off:

- PID #1 → greater amplitude difference
- PID #2 → greater phase shift

"N" in Simulink PID block is "P" in these notes