For a natural number n consider the hyperplane

$$R_0^n = \left\{ x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n : \sum_{n=1}^n x_i = 0 \right\}$$

and the lattice $Z_0^n = \{ y \in R_0^n : \text{ all } y_i \text{ are integers} \}.$

Define the (quasi-)norm in \mathbb{R}^n by $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$ if $0 , and <math>||x||_{\infty} = \max_i |x_i|$.

a) Let $x \in R_0^n$ be such that

 $\max_{i} x_i - \min_{i} x_i \le 1.$

For every $p \in [1, \infty]$ and for every $y \in \mathbb{Z}_0^n$ prove that

$$||x||_p \le ||x+y||_p$$
.

b) For every $p \in (0,1)$, show that there is an n and an $x \in R_0^n$ with $\max_i x_i - \min_i x_i \le 1$ and $y \in Z_0^n$ such that

 $||x||_n > ||x + y||_n$