Anchor Node Placement for Localization in Wireless Sensor Networks

by

Benjamin Tatham

A Dissertation submitted to
the Faculty of Graduate Studies and Research
in partial fulfilment of
the requirements for the degree of
Master of Applied Science

Ottawa-Carleton Institute for Electrical and Computer Engineering

Department of Systems and Computer Engineering
Carleton University
Ottawa, Ontario, Canada
April 2009

Copyright © 2009 - Benjamin Tatham

The undersigned recommend to the Faculty of Graduate Studies and Research acceptance of the Dissertation

Anchor Node Placement for Localization in Wireless Sensor Networks

Submitted by ${f Benjamin\ Tatham}$ in partial fulfilment of the requirements for the degree of ${f Master\ of\ Applied\ Science}$

Thomas Kunz, Supervisor

V. Aitken, Department Chair

Carleton University 2009

Abstract

An abstract should be short and to the point.

This is the dedication...

Acknowledgments

I would like to acknowldege

Table of Contents

Abstract	iii
Acknowledgments	\mathbf{v}
Table of Contents	vi
List of Figures	vii
1 Introduction	1
1.1 Anchor Placement: Equal distribution along 45 Degree Axis	1
2 The Beginning of the Details	4
2.1 Section Heading	4
2.1.1 Sub-Section Heading	4
Appendix A Derivation of Some Nasty Equation	5
List of References	5

List of Figures

1.1	The random network used, showing the 6 position sets of anchors	2
1.2	Maximum, median, and minimum errors for various network conditions	2
1.3	The random network used, showing the 6 position sets of anchors	9
1 4	Maximum median and minimum errors for various network conditions	9

Chapter 1

Introduction

1.1 Anchor Placement: Equal distribution along45 Degree Axis

For the first round of testing, chosen more as an excercise in the simulation analysis package in MATLAB©, 4 anchor nodes are placed at the closest node the 45-degree axes, with increasing distance from the center. 1.1 shows the positions for each iteration.

The 2nd graph in 1.2 shows that the best localization performance is achieved when the 4 anchors are roughly midway between the center of the network and the corners.

The same test is repeated for a grid network layout instead of a random network layout.

Figure 1.1: The random network used, showing the 6 position sets of anchors.

Figure 1.2: Maximum, median, and minimum errors for various network conditions

Figure 1.3: The random network used, showing the 6 position sets of anchors.

Figure 1.4: Maximum, median, and minimum errors for various network conditions

Chapter 2

The Beginning of the Details

2.1 Section Heading

Sample section text.

New paragraph.

2.1.1 Sub-Section Heading

Sample text.

new paragraph.

Sub-Sub-Section Heading

Sample text.

Sorry no details available [?,?].

Appendix A

Derivation of Some Nasty Equation

Here is the derivation.