

Unit 4: Rule Generation (Apriori Algorithm) + Evaluation of Recommender Systems

Gowri Srinivasa

Department of Computer Science and Engineering

Apriori Algorithm for Frequent Itemset Generation

Method:

- Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

Rule Generation

Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \to L - f$ satisfies the minimum confidence requirement If $\{A,B,C,D\}$ is a frequent itemset, candidate rules:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB

If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

Rule Generation

How to efficiently generate rules from frequent itemsets? In general, confidence does not have an anti-monotone property $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

But confidence of rules generated from the same itemset has an anti-monotone property e.g., L = {A,B,C,D}:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Candidate rule is generated by merging two rules that share the same prefix in the rule consequent

Prune rule D=>ABC if its subset AD=>BC does not have high confidence

Support and Confidence

$$support(A \Rightarrow B) = P(A \cup B)$$

 $confidence(A \Rightarrow B) = P(B|A).$

$$confidence(A \Rightarrow B) = P(B|A) = \frac{support(A \cup B)}{support(A)} = \frac{support_count(A \cup B)}{support_count(A)}$$

Minimum support (minsup)

- Note that the itemset support defined is sometimes referred to as relative support, whereas the occurrence frequency is called the absolute support.
- If the relative support of an itemset / satisfies a prespecified minimum support threshold (i.e., the absolute support of / satisfies the corresponding minimum support count threshold), then / is a frequent itemset.
- The set of frequent k-itemsets is commonly denoted by L_k

Applying multiple minimum support

```
How to apply multiple minimum support?
    MS(i): minimum support for item i
    e.g.: MS(Milk)=5\%, MS(Coke)=3\%,
          MS(Broccoli)=0.1%, MS(Salmon)=0.5%
    MS({Milk, Broccoli}) = min (MS(Milk), MS(Broccoli))
                                = 0.1\%
    Challenge: Support is no longer anti-monotone
                          Support(Milk, Coke) = 1.5% and
          Suppose:
                           Support(Milk, Coke, Broccoli) = 0.5%
         {Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is frequent
Order the items according to their minimum support (in ascending order)
          MS(Milk)=5\%, MS(Coke)=3\%,
    e.g.:
           MS(Broccoli)=0.1%, MS(Salmon)=0.5%
    Ordering: Broccoli, Salmon, Coke, Milk
```

Need to modify Apriori such that:

 L_1 : set of frequent items F_1 : set of items whose support is \geq MS(1) where MS(1) is min_i(MS(i)) C_2 : candidate itemsets of size 2 is generated from F_1 instead of L_1

Multiple minimum support and modified Apriori

PES UNIVERSITY

Order the items according to their minimum support (in ascending order)

e.g.: MS(Milk)=5%, MS(Coke)=3%,

MS(Broccoli)=0.1%, MS(Salmon)=0.5%

Ordering: Broccoli, Salmon, Coke, Milk

Need to modify Apriori such that:

L₁: set of frequent items

 F_1 : set of items whose support is $\geq MS(1)$

where MS(1) is min_i(MS(i))

C₂: candidate itemsets of size 2 is generated from F₁ instead of L₁

Modifications to Apriori: In traditional Apriori, A candidate (k+1)-itemset is generated by merging two frequent itemsets of size k

The candidate is pruned if it contains any infrequent subsets of size k Pruning step has to be modified:

Prune only if subset contains the first item

e.g.: Candidate={Broccoli, Coke, Milk} (ordered according to minimum support) {Broccoli, Coke} and {Broccoli, Milk} are frequent but {Coke, Milk} is infrequent Candidate is not pruned because {Coke, Milk} does not contain the first item, i.e., Broccoli.

Evaluation of an association rule

Contingency table for $X \rightarrow Y$

	Y	Υ	
Х	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	T

$$f_{10}$$
: support of X and \overline{Y}

$$f_{01}$$
: support of X and Y

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

Limitation of Confidence

	Coffee	Not Coffee	
Tea	15	5	20
Not Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 0.75 (75% of those who drink tea also drink coffee) but P(Coffee) = 0.9 (90% of the people in our sample drink coffee (most of them do!))

- ⇒ Although confidence is high, rule is misleading
- ⇒ P(Coffee|NotTea) = 0.9375 (more interesting/ meaningful that nearly 94% of those who do not drink tea, drink coffee)
- \Rightarrow One is more likely to drink coffee if they do not drink tea (than if they do drink tea)

Computing Confidence

- In confidence of rule equation A => B can be easily derived from the support counts of A and AuB.
- That is, once the support counts of A, B, and A ∪B are found, it is straightforward to
 derive the corresponding association rules A =>B and B =>A and check whether they
 are strong.
- Thus, the problem of mining association rules can be reduced to that of mining frequent itemsets.

Continuous and Categorical Attributes

Session Id	Country	Session Length (sec)	Number of Web Pages viewed	Gender	Browser Type	Buy
1	USA	982	8	Male	ΙE	No
2	China	811	10	Female	Netscape	No
3	USA	2125	45	Female	Mozilla	Yes
4	Germany	596	4	Male	ΙE	Yes
5	Australia	123	9	Male	Mozilla	No

{Number of Pages \in [5,10) \land (Browser=Mozilla)} \rightarrow {Buy = No}

Transform categorical attribute into asymmetric binary variables Introduce a new "item" for each distinct attribute-value pair

Example: replace Browser Type attribute with

Browser Type = Internet Explorer

Browser Type = Mozilla

Browser Type = Mozilla

Handling of Categorical Attributes

Potential Issues

Example: attribute country has more than 200 possible values

Many of the attribute values may have very low support

Potential solution: Aggregate the low-support attribute values

What if distribution of attribute values is highly skewed?

Example: 95% of the visitors have Buy = No

Most of the items will be associated with (Buy=No) item

Potential solution: drop the highly frequent items

Multiple minimum support also comes in handy in both cases

Handling of Continuous Attributes

Different kinds of rules:

Age \in [21,35) \wedge Salary \in [70k,120k) \rightarrow Buy Salary \in [70k,120k) \wedge Buy \rightarrow Age: μ =28, σ =4

Different methods:

Discretization-based

Statistics-based (mean, median, standard deviation, etc.)

Non-discretization based minApriori (concept hierarchy)

Discretization-based

Unsupervised:

Equal-width binning Equal-depth binning Clustering

Supervised:

Attribute values, v

Class	V ₁	V ₂	V ₃	V ₄	V ₅	V ₆	V ₇	V ₈	V 9
Anomalous	0	0	20	10	20	0	0	0	0
Normal	150	100	0	0	0	100	100	150	100
	bin ₁ bin ₂					 bi	n ₃		

Evaluation – objective measures

- #	Measure	Formula
1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
2	Goodman-Kruskal's (λ)	$\frac{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
3	Odds ratio (α)	$P(A,B)P(\overline{A},\overline{B})$
4	Yule's Q	$\frac{P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB})-P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha-1}{\alpha+1}$
	•	$\frac{P(A,B)P(\overline{AB})+P(A,\overline{B})P(\overline{A},B)}{\sqrt{P(A,B)P(\overline{AB})}-\sqrt{P(A,\overline{B})P(\overline{A},B)}} = \alpha+1$
5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$
6	Kappa (κ)	$\frac{\stackrel{\bullet}{P(A,B)} + \stackrel{\bullet}{P(\overline{A},\overline{B})} - \stackrel{\bullet}{P(A)} \stackrel{\bullet}{P(A)} \stackrel{\bullet}{P(B)} - \stackrel{\bullet}{P(\overline{A})} \stackrel{\bullet}{P(\overline{B})}}{1 - \stackrel{\bullet}{P(A)} \stackrel{\bullet}{P(B)} - \stackrel{\bullet}{P(A)} \stackrel{\bullet}{P(A_i,B_j)}}{\sum_{i} \sum_{j} \stackrel{\bullet}{P(A_i,B_j)} \log \frac{\stackrel{\bullet}{P(A_i,B_j)}}{\stackrel{\bullet}{P(A_i)} \stackrel{\bullet}{P(B_j)}}}$
7	Mutual Information (M)	$\sum_{i} \sum_{j} P(A_{i}, B_{j}) \log \frac{P(A_{i}, B_{j})}{P(A_{i}) P(B_{j})}$
8	J-Measure (J)	$\frac{\min(-\sum_{i} P(A_{i}) \log P(A_{i}), -\sum_{j} P(B_{j}) \log P(B_{j}))}{\max\left(P(A, B) \log(\frac{P(B A)}{P(B)}) + P(A\overline{B}) \log(\frac{P(\overline{B} A)}{P(\overline{B})}),\right.}$
°	J-Ivieabure (J)	
		$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(A B)}{P(A)})$
9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right)$
		$-P(B)^2 - P(\overline{B})^2$,
		$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
		$-P(A)^2 - P(\overline{A})^2$
10	(- <i>/</i>	P(A,B)
11	Confidence (c)	$\max(P(B A), P(A B))$
12	Laplace (L)	$\max\left(rac{NP(A,B)+1}{NP(A)+2},rac{NP(A,B)+1}{NP(B)+2} ight)$
13	Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$
14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
15	cosine (IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
17	Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$

It is sufficient if we understand the idea behind the measures and are able to use some of these, such as, support, confidence, lift (or interest), phi-coefficient to evaluate a confidence rule or test for independence of (or correlation) between itemsets

Evaluation – subjective measures

PES UNIVERSITY ONLINE

Objective measure:

Rank patterns based on statistics computed from data e.g., 21 measures of association (support, confidence, Laplace, Gini, mutual information, Jaccard, etc).

Subjective measure:

Rank patterns according to user's interpretation

A pattern is subjectively interesting if it contradicts the expectation of a user (Silberschatz & Tuzhilin)

A pattern is subjectively interesting if it is actionable (Silberschatz & Tuzhilin)

Interestingness via unexpectedness

Need to model expectation of users (domain knowledge)

- + Pattern expected to be frequent
- Pattern expected to be infrequent
- Pattern found to be frequent
- Pattern found to be infrequent
- **Expected Patterns**
- Unexpected Patterns

Need to combine expectation of users with evidence from data (i.e., extracted patterns)

Additional References

R1 Data Mining: Concepts and Techniques by Han, Kamber and Pei (Morgan Kaufman)

Introduction to Data Mining by Tan, Steinbach and Kumar (Pearson – First Edition) Chapters 6 and 7

Recommender Systems – The Textbook by Charu C. Agarwal (Chapter 7)

THANK YOU

Gowri Srinivasa

Professor,
Department of Computer Science
gsrinivasa@pes.edu