1 Convexity

TBD.

2 Spectral Graph Theory

We assume the graph has n vertices and m edges.

2.1 Courant-Fischer Theorem

1. **Eigenvalue version**: Let A be a symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$, then

$$\lambda_i = \min_{\substack{\text{subspace } W \subseteq \mathbb{R}^n \\ \dim(W) = i}} \max_{\substack{x \in W \\ x \neq \mathbf{0}}} \frac{x^\top A x}{x^\top x} = \max_{\substack{\text{subspace } W \subseteq \mathbb{R}^n \\ \dim(W) = n + 1 - i}} \min_{\substack{x \in W \\ x \neq \mathbf{0}}} \frac{x^\top A x}{x^\top x}.$$

2. **Eigenbasis version**: Let *A* be a symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ and corresponding orthonormal eigenvectors x_1, \ldots, x_n , then

$$\lambda_i = \min_{\substack{x \perp x_1, \dots x_{i-1} \\ x \neq \mathbf{0}}} \frac{x^\top A x}{x^\top x} = \max_{\substack{x \perp x_{i+1}, \dots x_n \\ x \neq \mathbf{0}}} \frac{x^\top A x}{x^\top x}.$$

Note that we also have $\lambda_i = \frac{x_i^\top A x_i}{x_i^\top x_i}$.

Applying Courant-Fischer theorem, we have $\lambda_2 x^\top x \le x^\top L x \le \lambda_n x^\top x$ for all $x \perp 1$, as 1 is the eigenvector of L corresponding to eigenvalue 0. For connected graphs, $\lambda_2 > 0$.

2.2 PSD Order (Loewner Order)

Defined only for symmetric matrices: $A \le B$ iff for all $x \in \mathbb{R}^n$, we have $x^\top Ax \le x^\top Bx$. We also define $G \le H$ for two graphs G and H iff $L_G \le L_H$. We always have $G \ge H$ if H is a subgraph of G.

Properties:

- 1. If $A \leq B$ and $B \leq C$, then $A \leq C$.
- 2. If $A \leq B$, then $A + C \leq B + C$ for any symmetric C.
- 3. If $A \leq B$ and $C \leq D$, then $A + C \leq B + D$.
- 4. If A > 0 and $\alpha \ge 1$, then $\frac{1}{\alpha}A \le A \le \alpha A$.
- 5. If $A \leq B$, then $\lambda_i(A) \leq \lambda_i(B)$ for all *i*. Proof by Courant-Fischer theorem. The converse is not true.

 2. **Any unit-weight graph** *G*: Define the diameter *D* of a graph *G* to be the maximum length of the shortest paths

2.3 Bounding the λ_2 and λ_n

2.3.1 Test Vector Method

Since $\lambda_2 \leq \frac{y^\top L y}{y^\top y}$ for any $y \perp 1$, we can upper bound the λ_2 by any **test vector** y. Similarly, we can lower bound the λ_n by test vectors by $\lambda_n \geq \frac{y^\top L y}{v^\top v}$.

- 1. For a complete graph K_n , $L = nI 11^{\top}$ and for any $x \perp 1$ we have $x^{\top}Lx = nx^{\top}x$. Therefore, $\lambda_2(K_n) = \cdots = \lambda_n(K_n) = n$ and any $x \perp 1$ is an eigenvector.
- 2. For a path graph P_n , let x(i) = n + 1 2i be the test vector which satisfies $x \perp 1$, we get $\lambda_2(P_n) \leq \frac{12}{n^2}$. Let x(1) = -1, x(n) = 1 and x(i) = 0 for other i to be the test vector, we get $\lambda_n(P_n) \geq 1$.
- 3. For a complete binary tree T_n (depth equals zero for a single root), let x(i) = 0 for all non-leaf nodes, x(i) = -1 for even-numbered leaf nodes and x(i) = 1 for odd-numbered

leaf nodes be the test vector, we get $\lambda_n(T_n) \ge 1$. Let x(1) = 0, x(i) = 1 for the left subtree of the root and x(i) = -1 for the right subtree of the root be the test vector, we get $\lambda_2(T_n) \le \frac{2}{n-1}$.

2.3.2 Consequences of PSD Order

Since $x^{\top}(D-A)x = \sum_{(u,v)} w(u,v)(x(u)-x(v))^2 \geq 0$ and $x^{\top}(D+A)x = \sum_{(u,v)} w(u,v)(x(u)+x(v))^2 \geq 0$, we have $D \geq A$ and $D \geq -A$. In addition, we have $D \leq (\max D_{i,i})I$. Therefore, we have $L = D-A \geq 2D \geq (2\max D_{i,i})I$, which implies $\lambda_n \leq 2\max D_{i,i}$ for any graph. For unit-weight graphs, this means $\lambda_n \leq 2\max \deg (v)$. The bound is tight for a single-edge graph.

To get lower bounds of $\lambda_2(H)$, we first establish $f(n)H \ge G$ for some G with known lower bounds on $\lambda_2(G)$. Usually $G = K_n$ because $\lambda_2(K_n) = n$. Then it follows that $\lambda_2(H) \ge \lambda_2(G)/f(n)$.

- 1. **Path Graph** P_n : Let $G_{i,j}$ denote a unit-weight graph consisting of one edge (i,j) and P_n be the path graph connecting 1 and n. Then $(n-1)P_n \geq G_{1,n}$. Proof follows from applying Cauchy-Schwartz for $\delta_i := x(i+1)-x(i)$. For weighted paths, we have $G_{1,n} \leq \left(\sum_{i=1}^{n-1} \frac{1}{w_i}\right)\sum_{i=1}^{n-1} w_i G_{i,i+1}$. Applying path inequality, we have $K_n = \sum_{i < j} G_{i,j} \leq \sum_{i < j} (j-i)P_{i,j} \leq \sum_{i < j} (j-i)P_n \leq n^3 P_n$, which implies $\lambda_2(P_n) \geq \lambda_2(K_n)/n^3 = 1/n^2$.
- 2. **Any unit-weight graph** G: Define the diameter D of a graph G to be the maximum length of the shortest paths between any two nodes. Let $G_{i,j}^s$ be the shortest path from i to j. Applying path inequality, we have $K_n = \sum_{i < j} G_{i,j} \le \sum_{i < j} DG \le n^2 DG$, which implies $\lambda_2(G) \ge \frac{1}{nD}$.
- 3. Complete Binary Tree T_n : Define G_e be the single-edge graph with edge e, and $T_{i,j}$ be the unique path between i and j. Applying the weighted path inequality, we have $K_n = \sum_{i < j} G_{i,j} \leq \sum_{i < j} \left(\left(\sum_{e \in T^{i,j}} \frac{1}{w(e)} \right) \left(\sum_{e \in T^{i,j}} w(e) G_e \right) \right) \leq \left(\max_{i < j} \sum_{e \in T^{i,j}} \frac{1}{w(e)} \right) \left(\sum_{i < j} \sum_{e \in T^{i,j}} w(e) G_e \right)$. For e connecting level i and i+1 for $i \in [d-1]$, we set $w(e) = 2^i$. Then $\max_{i < j} \sum_{e \in T^{i,j}} \frac{1}{w(e)} \leq 4$. Since the number of occurrence of e in $T^{i,j}$ for any i < j is upper bounded by $n^2 2^{-i}$, we have $\sum_{i < j} \sum_{e \in T^{i,j}} w(e) G_e \leq \sum_e w(e) n^2 2^{-i} G_e = \sum_e n^2 G_e = n^2 T_n$. Therefore, $K_n \leq 4n^2 T_n$, which implies $\lambda_2(T_n) \geq \frac{1}{4n}$.