Markov Chains

Course by Alexey Naumov and Sergey Samsonov, HSE, 2022

Contents

1	Lecture 1					
	1.1	Conditional expectation	3			
	1.2	Markov kernels	4			
	1.3	Markov chains	6			
2	Lecture 2					
	2.1	Examples of Markov chains	7			
		2.1.1 Example 1. Finite-state	7			
		2.1.2 Example 2. Random walk	8			
		2.1.3 Example 3. Langevin dynamics (LD, ULA)	8			
		2.1.4 Example 4. Reinforcement learning	8			
	2.2	Action on measures	9			
	2.3	Tensor product of kernels	10			
3	Seminar 1					
	3.1	Discrete state-space Markov Chains	10			
	3.2	Tensor product	10			
	3.3	Classification of the states	11			
4	Lecture 3					
	4.1	Kolmogorov's strong law of large numbers	12			
	4.2		13			
	4.3	Total variation distance	14			
	4.4	Kantorovich Wasserstein distance	14			
	4.5	Exponential convergence in total variation for ergodic transition matrices	14			
5	Sen	ninar 2	15			
	5.1	Recurrent and non-recurrent	15			
	5.2	Invariant measure	16			
	5.3	Detailed balance condition	17			
	5.4	Invariant distribution	18			
6	Lecture 4					
	6.1	Reversibility property	18			
	6.2	Metropolis-Hastings algorithm.				
		6.2.1 Example 1				

7	Lect	ture 5	21	
	7.1	φ -irreducibility. Aperiodicity. Ergodicity of φ -irreducible and aperiodic chain	21	
	7.2	Coupling construction	23	
	7.3	Drift condition	23	
	7.4	Small set and drift condition	23	
	7.5	i-SIR algorithm	24	
8	Lect	ture 6	24	
	8.1	Ergodicity	24	
	8.2	Central Limit Theorem		
	8.3	Martingales	26	
9	Lect	ture 7	28	
	9.1	CLT for arbitrary initial distribution	28	
	9.2	Diffusion process example	29	
	9.3	Witch hat example	31	
10	10 Lecture 28 Jan (?8?)			
11	11 Seminar Jan 28			

1 Lecture 1

1.1 Conditional expectation

Definition 1. Let (Ω, \mathcal{F}, P) be a probability space; $G \subseteq \mathcal{F}$ is a σ -algebra; ξ is a random variable, such that $\mathbb{E}|\xi| < \infty$. Then **conditional expectation** $\mathbb{E}(\xi|G)$ is a random variable, such that:

1. $\mathbb{E}(\xi|G)$ is G-measurable.

2.
$$\forall A \in G \int_A \mathbb{E}(\xi|G)(w)P(dw) = \int_A \xi(w)P(dw) = \mathbb{E}(\xi I_A)$$

Definition 2. Let (Ω, \mathcal{F}, P) be a probability space; ξ, η are random variables. Then **conditional expectation of** ξ **with respect to random variable** η is $\mathbb{E}(\xi|\eta) = \mathbb{E}(\xi|\sigma_{\eta})$, where $\sigma_{\eta} = \eta^{-1}(B), B \in \mathcal{B}(\mathbb{R})$.

We know that any function, which is measurable with respect to σ_{η} , can be represented as a Borel function from η , i.e there exists a Borel function $g: \mathbb{R} \to \mathbb{R}$, such that $\mathbb{E}(\xi|\eta) = g(\eta)$ P-a.s..

Definition 3. Let $G \subseteq \mathcal{F}$ be a σ -algebra. Then $\forall A \in \mathcal{F}$ conditional probability of event A with respect to G $P(A|G)(w) = \mathbb{E}(I_A|G)(w)$.

Let us substitute Def. 3 into Def. 1:

$$\forall A \in \mathcal{F}, \forall B \in G \int_{B} P(A|G)(w)P(dw) = \int_{B} I_{A}P(dw) = P(A \cap B).$$

If P(A|G) is constant on B, then for $G = \{\emptyset, \Omega, B, \overline{B}\}$ we receive $P(A|B) \cdot P(B) = P(A \cap B)$. Let us derive the definition for $\mathbb{E}(\xi|\eta = y)$, where $y \in \mathbb{R}$, ξ, η are random variables on (Ω, \mathcal{F}, P) . By Def. 2:

$$\forall A \in \sigma_{\eta} : \int_{A} \xi(w) P(dw) = \int_{A} \mathbb{E}(\xi|\eta) P(dw) = \int_{\{w: \eta(w) \in B\}} \mathbb{E}(\xi|\eta) P(dw),$$

where B is a Borel set, which equals to $\eta(A)$. Then

$$\int\limits_{\{w:\eta(w)\in B\}}\mathbb{E}(\xi|\eta)P(dw)=\int\limits_{\{w:\eta(w)\in B\}}g(\eta(w))P(dw)=\int\limits_{B}g(x)P_{\eta}(dx),$$

where P_{η} is the distribution of η . On the last step we have changed the variable in the Lebesgue integral.

Definition 4. $\mathbb{E}(\xi|\eta=y)$ is a Borel function from $y \ g(y) : \mathbb{R} \to \mathbb{R}$:

$$\forall B \in \mathcal{B}(\mathbb{R}) \int_{\{w: n(w) \in B\}} \xi(w) P(dw) = \int_{B} g(x) P_{\eta}(dx).$$

Note that this function is P_{η} -a.s. unique by Radon-Nikodym theorem.

Definition 5.
$$P(A|\eta = y) = \mathbb{E}(I_A|\eta = y) \ \forall A \in \mathcal{F}.$$

Substituting Def. 5 into Def. 4: $P(A \cap \{\eta(w) \in B\}) = \int_{B} P(A|\eta = y) P_{\eta}(dy)$.

If we fix y in the last definition, we will receive a probability distribution. If it is defined only on B with zero measure, its value is not fixed. Let us look at some examples.

Example. Let η be a random variable with a countable number of values $(x_k)_{k=1}^{\infty}$, $P(\eta = x_k) = p_k > 0$, $\sum_{k=1}^{\infty} p_k = 1$. Then

$$P(A|\eta = x_k) = \frac{P(A \cap \{w | \eta(w) = x_k\})}{p_k},$$

because

$$\int_{B} P(A|\eta = y)P_{\eta}(dy) = \sum_{x_k \in B} P(A|\eta = x_k)p_k.$$

Note that when $y \neq x_k \ P(A|\eta = y)$ can be defined in any way, because it is defined only on the set of measure zero.

Example. Let $\forall B \in \mathcal{B}(\mathbb{R}^2)$ $P((\xi, \eta) \in B) = \int_B f_{\xi,\eta}(x,y) dx dy$, $f_{\eta}(y) = \int_{\mathbb{R}} f_{\xi,\eta}(x,y) dx$. Note that 2 absolutely continuous random variables always have joint distribution. However, it is not always absolutely continuous (e.g. distribution of (ξ, ξ) if ξ is a normal random variable). We can say that

$$f_{\xi|\eta}(x|y) = \begin{cases} \frac{f_{\xi,\eta}(x,y)}{f_{\eta}(y)} & \text{if } f_{\eta}(y) > 0\\ 0 & \text{if } f_{\eta}(y) = 0 \end{cases}$$

Note that it is not important what we put in the second case. To prove that formula we have to check that

$$\forall A \in \mathcal{B}(\mathbb{R}) \ P(\{w|\xi(w) \in A\}|\eta=y) = \int_A f_{\xi|\eta}(x|y)dx,$$

i.e. we have to check that

$$\int_{B} P(\{w|\xi(w)\in A\}|\eta=y)P_{\eta}(dy) = \int_{A\times B} f_{\xi,\eta}(x,y)dxdy.$$

Using Fubini's theorem and the fact that $P_{\eta}(dy) = f_{\eta}(y)dy$, since η is absolutely continuous, we receive that the left part equals to

$$\int_{B} \left(\int_{A} \frac{f_{\xi,\eta}(x,y)}{f_{\eta}(y)} dx \right) f_{\eta}(y) dy,$$

which, in turn, equals to the right part.

1.2 Markov kernels

Let η be a random variable defined on probability space (Ω, \mathcal{F}, P) . Then $P(A|\eta = y)$ is define $\forall y \in \mathbb{R}$. Is it a measure? We know that $P(A|\eta = y) \geqslant 0$. From the linearity of conditional expectation we also have finite additivity. However, we have to check σ -additivity, i.e. we have to check if $P(\bigcup_{i=1}^{\infty} A_i|\eta = y) = \sum_{i=1}^{\infty} P(A_i|\eta = y)$ for $A_i \cap A_j = \emptyset$. It turns out that this equality holds true, but only P_{η} -a.s. To prove this, we have to represent the left part as

 $\mathbb{E}(I_{\bigcup_{i=1}^{\infty}A_i}|\eta=y)$. Then we can introduce $B_n=\bigcup_{i=1}^nA_i, B_n\uparrow\bigcup_{i=1}^{\infty}A_i$. Then $I_{B_n}\uparrow I_{\bigcup_{i=1}^{\infty}A_k}$. After that, using Lebesgue dominated theorem, we can show that $\mathbb{E}(I_{B_n}|\eta=y)\to\mathbb{E}(I_{\bigcup_{i=1}^{\infty}A_k}|\eta=y)$.

As the equality holds only P_{η} -a.s., there is a problem: for any sequence of sets A_i there will be its own set of measure 0, where the equality does not hold. As the number of sequences of A_i has the cardinality of the continuum, we can not just remove all these sets of measure zero. Therefore, $P(A|\eta = y)$ is not a measure. Hence we have to define regular conditional probabilities.

Definition 6. Let (Ω, \mathcal{F}, P) be a probability space; (E, Σ) and (G, J) are measurable spaces. Then the function $N : E \times J \to [0, 1]$ is a **probability kernel** (or **Markov kernel**), if:

- $N(x,\cdot)$ is a probability measure on (G,J) for any fixed $x\in E$;
- $N(\cdot, B)$ is Σ -measurable for any $B \in J$ (i.e. it is a measurable map $(E, \Sigma) \to ([0, 1], \mathcal{B}([0, 1]))$.

If $(E, \Sigma) = (G, J)$, then N is a probability kernel on (E, Σ) .

Definition 7. Let (Ω, \mathcal{F}, P) be a probability space; $\xi \to (E, \Sigma), \eta \to (G, J)$. Then probability kernel N is a **regular conditional probability of** η **given** ξ , if

$$\forall A \in \Sigma, B \in J \ P(\xi \in A, \eta \in B) = \int_A N(x, B) P_{\xi}(dx).$$

The idea of introducing this entity is to define something similar to $P(A|\eta = y)$, so that it would be a measure. Now we have to understand when this regular conditional probability exists and if it is unique. But first let us look at an example.

Example. Let ξ, η be independent random variables. Then $N(x, B) = P_{\eta}(B)$, because $P(\xi \in A, \eta \in B) = P(\xi \in A)P(\eta \in B)$. It is clear that N satisfies both properties from Def. 6. Note that if we have a Markov kernel, it coincides with regular conditional probability P_{η} -a.s..

Now let us think about **uniqueness** of N. Let there be two probability kernels N, N': $E \times J \to [0, 1]$. Then

$$\forall B \in J \int_A N(x,B) P_{\xi}(dx) = \int_A N'(x,B) P_{\xi}(dx),$$

because by definition both parts equal to $P(\xi \in A, \eta \in B)$. Recall that if ξ, η are G-measurable, then

$$\forall A \in G \int_A \xi P(dw) \leqslant \int_A \eta P(dw) \Rightarrow \xi \leqslant \eta \text{ P-a.s.}.$$

Using this fact and previously derived equality of integrals, we get

$$N(x,B) \geqslant 0 \Rightarrow N(x,B) - N'(x,B) = 0 P_{\xi}$$
-a.s..

Note that, again, for a set with zero measure P_{ξ} , the kernel can be defined arbitrarily, but this time it has to satisfy the first property of a probability kernel, i.e. be a measure. To conclude, all that we know about the uniqueness is

$$\forall B \in J \ N(x,B) = N'(x,B) \ P$$
-a.s..

The next point in question is **existence** of a probability kernel. Here we can say that if (G, J) is a complete separable (there exists a dense countable subset) metric space and J is its Borel σ -algebra, then there exists regular conditional distribution $N: E \times J \to [0, 1]$.

1.3 Markov chains

Definition 8. Let (Ω, \mathcal{F}, P) be a probability space. Then $(x_t)_{t \in T}$ is a **random process**, if all x_t are random variables.

Definition 9. Let $T = \mathbb{N}$, i.e. consider time to be discrete. Then let us define $\mathcal{F}_k^x = \sigma(x_0, \dots x_k)$ as a σ -algebra, where all $x_i, i \leq k$ are measurable. Then $(\mathcal{F}_k^x)_{k=0}^{\infty}$ is a **natural filtration**, associated with $(x_t)_{t \in T}$.

Definition 10. Let $\mathcal{F}_k \subseteq \mathcal{F}$ be σ -algebras. Then $\{\mathcal{F}_k\}_{k=0}^{\infty}$ is a **filtration**, if $\mathcal{F}_k \subseteq \mathcal{F}_{k+1} \ \forall k \in \mathbb{N}$.

Definition 11. $(x_k)_{k=0}^{\infty}$ is Markov chain, if

$$P(x_{k+1} \in A | \mathcal{F}_k^x) = P(x_{k+1} \in A | x_k) \text{ } P\text{-a.s.}.$$

An equivalent definition: for any bounded measurable function φ

$$\mathbb{E}(\varphi(x_{k+1})|\mathcal{F}_k^x) = \mathbb{E}(\varphi(x_{k+1}|x_k)) P$$
-a.s..

Theorem 1. The following statements are equivalent:

- 1. (x_k) is a Markov chain
- 2. For any y, which is $\sigma(x_j, j \ge k+1)$ -measurable, such that $\mathbb{E}|y| < \infty$ it is true that $\forall k \ \mathbb{E}(y|\mathcal{F}_k^x) = \mathbb{E}(y|x_k)$, where \mathcal{F}_k^x is a natural filtration. Note that here nothing will change if we include x_k into σ -algebra.
- 3. $\forall y, \text{ which is } \sigma(x_j, j \geqslant k+1)\text{-measurable}, \ \forall z, \text{ which is } \mathcal{F}_k^x\text{-measurable}, \ \forall k \ \mathbb{E}(yz|x_k) = \mathbb{E}(y|x_k)|_{\mathbb{R}}) \ P\text{-a.s.}, \text{ where } \mathcal{F}_k^x \text{ is a natural filtration}.$

Definition 12. Let Q be a Markov kernel on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, f(x) is a bounded measurable functions. Let us define

$$Qf(x) = \int_{\mathbb{R}} f(y)Q(x, dy).$$

Note that by definition Q(x, dy) is a measure.

Remark. If a Markov chain is homogeneous, $\mathbb{E}(f(x_{k+1})|x_k=x)=Qf(x)$.

Lemma. Qf(x) is measurable and bounded: $||Qf||_{\infty} \leq ||f||_{\infty}$.

Sketch of proof. Let $f \ge 0$, $f_n \uparrow f$, f_n are simple functions. Then we can use Lebesgue dominated theorem and get that $Qf(x) = \lim_{n \to \infty} Qf_n(x)$, which is measurable.

$$\forall x \in \mathbb{R} \mid \int_{\mathbb{R}} f(y)Q(x,dy) \mid \leqslant \int_{\mathbb{R}} |f(y)|Q(x,dy) \leqslant ||f||_{\infty},$$

because $|f(y)| \leq ||f||_{\infty}$.

Definition 13. Let ν be a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Then

$$\nu Q(B) = \int_{\mathbb{R}} \nu(dy) Q(y, B).$$

Lemma. νQ is a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Definition 14. Let Q be a Markov kernel on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Then $Q^{\otimes n}$ is a Markov kernel on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$, such that \forall bounded measurable $f: \mathbb{R}^n \to \mathbb{R}$

$$Q^{\otimes n} f(y) = \int_{\mathbb{R}^n} f(x_1, \dots, x_n) Q(y, dx_1) Q(x_1, dx_2) \dots Q(x_{n-1}, dx_n).$$

Definition 15. Let ν be a probability measure, Q is a Markov kernel. Then

$$\nu \otimes Q(A \times B) = \int_A \nu(dy)Q(y,B).$$

Remark. $\nu \otimes Q$ is a measure on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$.

Remark.

$$Q^{\otimes n}(y, A_1 \times \ldots \times A_n) = \int_{A_1 \times \ldots \times A_n} Q(y, dx_1) Q(x_1, dx_2) \ldots Q(x_{n-1} dx_n).$$

Definition 16. Let (Ω, \mathcal{F}, P) be a probability space; $(x_k)_{k=0}^{\infty}, x_k : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Then $(x_k)_{k=0}^{\infty}$ is a **time-homogeneous Markov chain** with Markov kernel Q, if

$$P(x_{k+1} \in A | x_k) = Q(x_k | A) P$$
-a.s..

Note that $P(x_{k+1} \in A | x_k) = P(x_{k+1} \in A | \mathcal{F}_k^x)$.

Theorem 2. (x_k) is a time-homogeneous Markov chain with Markov kernel Q and initial distribution $\nu \Leftrightarrow P(x_0 \in A_0, \dots x_n \in A_n) = \nu \times Q^{\otimes n}(A_0 \times A_1 \times \dots \times A_n) \ \forall A_0, \dots, A_n \in \mathbb{R}.$

2 Lecture 2

2.1 Examples of Markov chains

At the previous lecture we introduced a concept of a Markov chain, let's now consider several examples:

2.1.1 Example 1. Finite-state

Let X = [1, 2, ..., r] be a final state Markov chain, then Markov kernel $P(x, A) = \sum_{y \in A} P_{xy}$. Notice, that in final case, kernel can be represented as a transition matrix. For example, let the chain be:

then, the transition matrix will be:

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2}\\ 0 & 0 & 1 \end{bmatrix}$$

2.1.2 Example 2. Random walk

Consider $x_{k+1} = x_k + \xi_{k+1}$, where

- ξ_{k+1} i.i.d. random variables, and $\xi \perp \mathcal{F}_k$ independent
- $\xi \stackrel{i.i.d.}{\sim} Q$ some probability space

 $Q = N(0, \sigma^2), x_{k+1} | x_k \sim N(x_k, \sigma^2)$. Then, if we fix $x = x_k$, the probability of transition to the set A is:

$$P(x,A) = \frac{1}{\sqrt{(2\pi)\sigma}} \int_A exp(-\frac{(y-x)^2}{2\sigma^2}) dy$$

2.1.3 Example 3. Langevin dynamics (LD, ULA)

Consider
$$x_{k+1} = x_k - \gamma U(x_k) + \sqrt{2\gamma} \xi_{k+1}$$

 ξ_{k+1} - i.i.d., $\xi_{k+1} \perp x_k$ (meaning $\xi_{k+1} \perp \sigma(x_k)$) $\xi_{k+1} \sim N(0, I)$ γ - some positive constant.

It represents discretization of continious Langevin dynamics: $dX_{+} = -\nabla U(x_{+})dt + \sqrt{2}dW_{+}$ Without the last term it is very similar to SGD. By discretization of dt when $\gamma \to 0$, it converges to continious case.

$$\pi(x) = e^{-U(x)}/z_d \Rightarrow \int \pi(x)dx = 1$$

where d is a dimension.

Example. Let $U(x) = x^2/2$ then the kernel is just a normal distribution. Therefore we know z_d . Usually, z_d is unknown, but in Langevin dynamics it is not necessary, we need only the gradient:

$$e^{-U(x)}/z_d = e^{-U(x)-\log(z_d)}$$

With some conditions, for example if U and gradient are Lipschitz functions:

$$Law(X_k) \to \pi_{\gamma} \approx \pi \text{ when } \gamma \approx 0$$

When X_k is fixed, the kernel:

$$P(x,A) = \frac{1}{\sqrt{4\pi\gamma}} \int_A \exp\left(-\frac{(y-x+\gamma\nabla U(x))^2}{4\gamma}\right) dy$$
, when $d=1$

2.1.4 Example 4. Reinforcement learning

Let's consider an extension of Markov chain - Markov decision process. It is a Markov chain, with added so called actions and rewards.

In this case Ω is (S, A), where S - state space, A - action space. Consider only finite case. $(S_k)_{k\geqslant 0}$ - sequence of states. At each state the action is taken with probability $\pi(\cdot|S)$ called **policy** or **strategy**.

$$S_{k+1} \sim P(\cdot|s_k = s, A_k = a) = P(s,a|\cdot)$$

Example from finance:

Let s_k - current amount of money, $a_k \in [0,1]$ - share of invested money, p - probability of winning, (1-p) - probability of losing. $P(\xi_{k+1}=1)=p=1-P(\xi_{k+1}=-1)$

$$S_{k+1} = s_k (1 + \xi_{k+1} A_k)$$

$$P^{\pi}(s_{k+1} \in \{s\} | s_k = s) = \sum_{a \in A} P(s_k, a | \{s'\}) \pi(a | s_k)$$

It can be shown, that it is a Markov kernel on $(S, \sigma(S))$.

Definition 17. Markov decision process (MDP) is a tuple of 4 elements (S, A, P_a, R_a) , where:

- 1. S state space is a set of states
- 2. A action space is a set of states
- 3. $P_a(s,s')$ probability that action a in state s at time t will lead to state s' at time t+1
- 4. $R_a(s,s')$ is the immediate reward (or expected immediate reward) received after transitioning from state s to state s', due to action a

2.2 Action on measures

 $\mu P(A) = \int_{\mathcal{X}} \mu(dx) P(x,A)$ - action on measures.

Where P(A) - is distribution of Markov chain at 1st step. $x_0 \sim \mu P_{\mu}(X_1 \in A)$

To simulate Markov chain, we need to fix initial distribution, from which X_0 and the kernel were picked.

$$Pf(x) = \int f(y)P(x,dy), \quad X = [1,2,...,r]$$

In discrete case: $P_{\mu}(x_1 = j) = \sum_{k \in X} \mu(k) P(k)$

 $Pf(j) = \sum_{k \in X} f(k)P(j,k)$ - expectation with respect to measure P.

$$\mu(f) = \int f(y)\mu(dy)$$

$$P^{n}(x,A) = \int_{X} P(x,dy)P^{n-1}(y,A)$$

$$P^{2}(x,A) = \int_{X} P(x,dy)P(y,A)$$

$$P^{2}(i,j) = \sum_{k \in X} P(i,k)P(k,j) = [P^{2}]_{ij}$$

$$A = \{j\}$$

Choose $\mu = \delta_x P_{\delta_x}(x_n \in A) = P^n(x, A)$

$$P_{\mu}(x_n \in A) = \mu P^n(A)$$

Definition 18. Markov chain is called **homogeneous Markov chain** in the case if the kernel remains constant.

Remark. In principal, the kernel can be changed, for example: decreasing step of Langevin.

2.3Tensor product of kernels

$$P \otimes Pf(x) = \int_{x \times x} f(y,z) P(x,dy) P(y,dz)$$
$$f: X^2 \to \mathbb{R}$$
$$f(y,z) = I(y \in A, z \in B)$$
$$P \otimes Pf(x) = P_{\delta_x}(X_1 \in A, X_2 \in B)$$
$$\int_{A \times B} P(x,dy) P(y,dz)$$

Or just $\mu P \otimes Pf(x)$

3 Seminar 1

3.1Discrete state-space Markov Chains

Let S - finite or countable state space; $(X_k)_{k=0}^{\infty}$; $X_k \in S$ (if $|S| < \infty$, $S = \{1,2,...,n\}$); where $(X_k)_{k=0}^{\infty}$ defined on (Ω, \mathcal{F}, P)

$$P(X_{k+1} \in A | \mathcal{F}_k) = P(X_k, A)$$

It is enough to define $p_{ij} = P(X_{k+1} = j \mid X_k = i)$. In this case $P(i, A) = \sum_{j \in A} p_{ij}$; $P(i,S) = 1 \implies \sum_{i} p_{ij} = 1$

Let
$$P = (p_{ij}) \in \mathbb{R}^{|S| \times |S|}, p_{ij} \geqslant 0$$

Let $P = (p_{ij}) \in \mathbb{R}^{|S| \times |S|}, p_{ij} \ge 0$ $\sum_{j \in S} p_{ij} = 1 \ \forall i \text{ - row-stochastic matrix.}$

Any measure μ on S: $\mu = (\mu_i)_{i \in S}$ - vector of length |S|.

$$\mu P(A) = \sum_{j \in A} \sum_{i \in S} \mu_i p_{ij} = \sum_{j \in A} \mu P \quad \forall A \subseteq S$$

$$P^n(i,j) = \sum_{j_1, \dots, j_{n-1} \in S} p_{ij_1} p_{j1} p_{j2} \dots p_{j_{n-1}j} = (P^n)_{ij}$$

$$f: S \to \mathbb{R}, \ f = (f_i)_{i \in S} = (f(i))_{i \in S}$$

$$Pf(i) = \int_S P(i, dy) f(y) = \sum_{j \in S} p_{ij} f_j = (Pf)_i$$

3.2Tensor product

Remark. Act on measures is left multiplication, and act on functions - is right multiplication.

Define:

$$\mu \otimes P^{\otimes n}(A_0, ...,) := \sum_{i_a \in A} \mu \otimes P^{\otimes n}(i_0, ..., i_n)$$
$$P_{\mu}(X_0 \in A_0, X_1 \in A_1, ..., X_n \in A_n)$$

3.3 Classification of the states

Definition 19. State *i* is **connected** with *j*, if $\exists n_1, n_2 : P_{ij}^{(n_1)} > 0, P_{ij}^{(n_1)} > 0; n_1, n_2 \ge 0$

Remark. Note, if $i \longleftrightarrow j; j \longleftrightarrow k \Rightarrow i \longleftrightarrow k$

Lemma. S can be divided into non-intersecting communicating classes w.r.t. the relation \longleftrightarrow . Then communicating class $C_i = \{i, j \in \delta : i \longleftrightarrow j\}$.

Definition 20. Communicating class C_i is **closed**, if any $j \in S : i \to j$ belongs to $C_i \to j$, if $\exists n_1 : P_{ij}^{(n_1)} > 0, n_1 \in \mathbb{N}$.

Definition 21. Transition matrix P is called **irreducible**, if it has only one communicating class S (and it has to be closed).

Example. Consider the following chain:

In this case, communicating classes are: $\{1,2,6,7\}$ (closed); $\{3\}$ (not closed); $\{4,5\}$ (closed). $\pi P^n \to ?$, $n \to \infty$ $\pi P = \pi$, $\pi = \delta_3 = (0,0,1,0,0,0,0)$

So, starting from the state 3 and then going to the left, we forever stuck in the 1st communicating class.

Definition 22. State $i \in S$ is **recurrent**, if $P_{S_i}(i \text{ is visited } \infty \text{ many times}) = 1$

Definition 23. State $i \in S$ is **non-recurrent**, if $P_{S_i}(i \text{ is visited finitely many times}) = 1$

Lemma. Every state $i \in S$ is either recurrent or non-recurrent.

Proof. Define:

- $V := \sum \mathbb{I}\{X_n = i\}$
- Also let random variable $\tau_i := \inf\{n \ge 1 : X_n = i\}$
- $p_i := P_{s_i}(\tau_i < 0) = P(\tau_i < \infty | X_0 = i)$

Then

$$P_{\delta_i}(V_i = \infty) = P_{\delta_i} \left(\bigcap_{k=1}^{\infty} \{V_i \geqslant k\} \right) = \lim_{k \to \infty} P_{\delta_i}(V_i \geqslant k)$$

$$P(V_i > 1) = p_i = P_{\delta_i}(\tau_i < \infty)$$

We need to prove $P_{\delta_i}(V_i > k) = p_i^k$

$$\begin{split} P_{\delta_i}(V_i > 2) &= \sum_{k \geqslant 1} \sum_{m \geqslant 1} P_{\delta_i}(X_0 = i, X_1 \neq i, ..., X_k = i, X_{k+1} \neq i, ..., X_{k+m} = i) = \\ &\sum_{k \geqslant 1} \sum_{m \geqslant 1} P_{\delta_i}(X_{k+1} \neq i, ..., X_{k+m} = i \mid X_0 = i, ..., X_1 \neq i, ..., X_k = i) P_{\delta_i}(x_0 = i, x_1 \neq 0, ..., x_k = i) \\ &\sum_{k \geqslant 1} \sum_{m \geqslant 1} P_{\delta_i}(X_{k+1} \neq i, X_{k+m} = i \mid X_k = i) P_{\delta_i}(\tau_i = k) = \\ &\sum_{k \geqslant 1} \sum_{m \geqslant 1} P_{\delta_i}(\tau_i = m) P_{\delta_i}(\tau_i = k) = \\ &\left(\sum_{m \geqslant 1} P_{\delta_i}(\tau_i = m)\right) \left(\sum_{k \geqslant 1} P_{\delta_i}(\tau_i = k)\right) = p_i^2 \\ &P_{\delta_i}(V_i = \infty) = \lim_{k \to \infty} p_i^k = \begin{cases} 1 & \text{if } p_i = 1 \\ 0 & \text{otherwise} \end{cases} \end{split}$$

4 Lecture 3

4.1 Kolmogorov's strong law of large numbers

Suppose $x_j, j \ge 0$ are independent and identically distributed with π as an invariant probability. The law of large numbers will hold, i.e.

$$Law(x_j) = \pi, \forall f : \pi(f) < \infty$$

$$\frac{1}{n} \sum_{i=0}^{n-1} f(x_i) \xrightarrow[n \to \infty]{a.s} \pi(f) = \int_X f(x) \pi(dx)$$

Example: We will need numerical method to solve the integral since $X = \mathbb{R}^5$ or any higher dimensions. The points are in a grid and we should take the points with high probability (classic Monte-Carlo method). It takes a d-dimensional ball B, then its volume can be estimated as the following:

$$B^{d}(r) \approx r^{d}$$

$$B^{d}(1) \approx 1$$

$$B^{d}(0.99) \approx (0.99)^{d} \approx 0 (d >> 1)$$

Considering the d-dimensional sphere S:

$$S^{d-1}$$

$$x_j \sim \mathbb{N}(0,1); j = 1,...,d$$

$$\theta = \frac{(x_1,...,x_d)}{\sqrt{x_1^2 + ... + x_d^2}} \sim U(S^{d-1}) \text{ (check!)}$$

$$X \sim \mathbb{N}(0,\Sigma)$$

$$Y \sim \mathbb{N}(0,I), Y_1,...,Y_d \stackrel{i.i.d.}{\sim} \mathbb{N}(0,1)$$

$$X = \Sigma^{\frac{1}{2}} Y$$

Check how to sample from normal distribution.

Aim: Sampling from distribution π , we need to find Markov kernel P such that (X,x) – state space

$$\forall \xi \in P_1(X) : Law_{\xi}(X_N) = \xi P^N \approx \pi$$

or

$$\xi P^N \xrightarrow{N \to \infty} \pi$$

where P_1 - probability distribution on (X,x), N - burn-in period.

$$d(\xi P^N, \pi) \leqslant \Sigma(X, \xi)$$

4.2 Invariant

 π is invariant with respect to (w.r.t) P if

$$\pi P = \pi$$

$$\pi P = Law_{\pi}(X_1) = Law_{\pi}(X_0)$$

$$\pi P^2 = (\pi P)P = \pi P = P$$

where $\pi P^2 = Law_{\pi}(x_2), \pi = Law_{\pi}(x_0).$

Assume that we can start from $\pi(\xi = \pi)$ and π is invariant w.r.t. P

$$Law_{\pi}(x_i) = \pi$$

 $x_0, x_1, ..., x_N \sim \pi$, but x_j are all dependent.

$$x_0 \sim \xi(\cdot)$$

$$x_1 \sim P(x_0, \cdot)$$

$$x_2 \sim P(x_1, \cdot)$$

$$Law_{\xi}(x_N) \approx \pi$$

How to construct kernel P?

Proposition: Let $(x_k)_{k\geq 0}$ is a Markov chain with kernel P and initial distribution π . $(x_k)_{k\geq 0}$ is stationary iff $\pi P = \pi$

Stationary

$$Law(x_n, x_{n+1}, ..., x_{n+k}) = (x_0, ..., x_k)$$

window won't change

Proof

1) $(x_k)_{k\geqslant 0}$ stationary.

$$\pi = Law_{\pi}(x_0) = Law_{\pi}(x_1) = \pi P$$

2)
$$\pi P = \pi$$

$$Law_{\pi}(x_n, x_{n+1}, ..., x_{n+k}) = \pi P^n \otimes P^{\otimes k} = \pi \otimes P^{\otimes k} \text{(independent of n)}$$

4.3 Total variation distance

$$d(\xi P^{n}, \pi) \leq ?$$

$$X = [1,...,r]$$

$$\sum_{j:\xi(j) \geqslant \mu(j)} (\xi(j) - \mu(\xi)) = \sum_{j=1}^{r} |\xi(j) - \mu(j)| \text{ (check!)}$$

$$d_{TV}(\xi,\mu) = \frac{1}{2} \sum_{j=1}^{r} |\xi(j) - \mu(j)| = \frac{1}{2} \sup_{A \subseteq X} |\xi(A) - \mu(A)| \text{ (check!)}$$

$$= \frac{1}{2} \sup_{f:X \to [-1,1]} \left| \int_{X} f d\xi - \int_{f} d\mu \right|$$

We can take test function f and test the distance.

4.4 Kantorovich Wasserstein distance

$$W_{d,p}(\xi,\mu) = \left\{ \inf_{\zeta \in \pi(\xi,\mu)} \int_{X \times X} d^p(x,y) \zeta(dx,dy) \right\}^{\frac{1}{p}}$$

The quatity $W_{d,p}(\xi,\mu)$ is called the *Kantorovich Wasserstein distance* between two probability measures ξ and μ .

where d - metric; $\pi(\xi,\mu)$ coupling of ξ and μ :

$$\zeta(X,A) = \mu(A)$$

$$\zeta(A,X) = \xi(A)$$

$$d(x,y) = 1_{\{x \neq y\}} \Rightarrow \text{Total variation} \rightarrow \text{Kantorovich distance 1}$$

$$d(x,y) = \|x-y\|_2 \rightarrow \text{Kantorovich distance 2}$$

4.5 Exponential convergence in total variation for ergodic transition matrices

Take arbitrary kernel Q:

$$d_{TV}(\xi Q, \mu Q) = \sum_{j \in J} (\xi Q(j) - \mu Q(j)) = \left[J := \{ j : \xi Q(j) \geqslant \mu Q(j) \} \right] =$$

$$= \sum_{j \in J} \sum_{k \in X} \{ \xi(k)Q(k,j) - \mu(k)Q(k,j) \} \leq \sum_{k:\xi(k)\geqslant\mu(k)} (\xi(k) - \mu(k)) \sum_{j \subset X} Q(k,j) = d_{TV}(\xi,\mu)$$

$$\exists a > 0 : Q(k,j) \geqslant a > 0 \forall k,j \in X$$

$$\text{Take } Q = P^s \Rightarrow \exists s \in \mathbb{N} : P^s(i,j) \geqslant a > 0 \ \forall i,j \in X$$

$$\xi_n := \xi_0 P^n$$

$$d_{TV}(\xi_n, \xi_{n+k}) = d_{TV}(\xi P^n, \xi P^{n+k}) \leqslant (1-a)d_{TV}(\xi P^{n-s}, \xi P^{n+k-s}) \leqslant$$

$$\leqslant (1-a)^m d_{TV}(\xi P^{n-sm}, \xi P^{n+k-sm}) \leqslant (1-a)^m$$

$$m: 0 < n - sm < s$$
 If $n \to \infty, k \to \infty \Rightarrow m \to \infty$
$$\Rightarrow \pi := \lim_{n \to \infty} \xi P^n \to \text{Limiting point of Cauchy sequence}$$

$$\pi P = \lim_{n \to \infty} \xi P^n P = \lim_{n \to \infty} \xi P^{n+1} = \pi$$

$$\exists \ \pi_1 \neq \pi_2$$

$$\pi_1 P = \pi_1, \pi_2 P = \pi_2$$

$$d_{TV}(\pi_1, \pi_2) = d_{TV}(\pi_1 P, \pi_2 P) \leqslant (1 - a) d_{TV}(\pi_1, \pi_2) \Rightarrow \pi_1 = \pi_2$$

$$d_{TV}(\xi P^n, \pi) = d_{TV}(\xi P^n, \pi P^n) \leqslant (1 - a)^m d_{TV}(\xi P^{n - ms}, \pi P^{n - ms}) \leqslant (1 - a)^m \leqslant (1 - a)^{\frac{n}{s} - 1} = (1 - a)^{-1}(\beta)^n$$

$$\beta = (1 - a)^{\frac{1}{s}} < 1$$

If $s >> 1 \Rightarrow \beta \rightarrow 1 \Rightarrow$ convergence can be very slow

5 Seminar 2

5.1 Recurrent and non-recurrent

Example

 $\pi P = \pi \Rightarrow \lambda P^n \to \pi, n \to \infty$, where $\lambda \in \mathbb{R}^{|s|}$ – initial distribution

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\pi P = \pi \Rightarrow \pi = \left(\frac{1}{2}, \frac{1}{2}\right)$$
-invariant

$$\lambda P^n = \begin{cases} (\lambda_1, \lambda_2), n = 2k \\ (\lambda_2, \lambda_1), n = 2k + 1 \end{cases}$$

P - irreducible, not ergodic

$$\lambda = (\lambda_1, \lambda_2)$$

$$P_{i,i}^{(m)} > 0 \Rightarrow (\xi P^n, \pi) \leqslant c. \rho^{\lceil \frac{n}{m} \rceil}$$

Definition 24. State $i \in S$ is recurrent, if $P(V_i = \infty | x_0 = i) = 1$

$$V_i = \sum_{n=0}^{\infty} I\{x_n = i\}$$

 $i \in S$ is non-recurrent, if $P(V_i = \infty | x_0 = i) = 0$

Each state $i \in S$ is either recurrent, or non-recurrent

$$\tau_i := \inf n \geqslant 1, x_n = i; g_i = P(\tau_i < \infty | x_0 = i)$$
$$P(V_i > k | x_0 = i) = g_i^k$$

Corollary. State $i \in S$ is recurrent, if $\sum_{n \geq 0} P_{ii}^{(n)} = \infty$ State $i \in S$ is non recurrent, if $\sum_{n \geq 0} P_{ii}^{(n)} < \infty$ where $P_{ii}^{(n)} := P(x_n = i | x_0 = i)$ Proof

$$\underbrace{E[V_i|x_0=i]}_{=\sum_{k=1}^{\infty}kP(V_i=k)} = \underbrace{\sum_{k=0}^{\infty}P(V_i\geqslant k|x_0=i)}_{=\sum_{l=k}^{\infty}P(V_i=l)} = \sum_{k=0}^{\infty}g_i^k = \begin{cases} \infty; g_i=1\\ \frac{1}{1-g_i}; g_i<1 \end{cases}$$

$$E[V_i|x_0 = i] = E\left[\sum_{n=0}^{\infty} I\{x_n = i\} | x_0 = i\right] = \sum_{n=0}^{\infty} p_{ii}^{(n)}$$

Corollary. If i is recurrent/non-recurrent, $j \leftrightarrow i \Rightarrow j$ is also recurrent/non-recurrent. Proof

$$\exists r: p_{ij}^{(r)} > 0; s: p_{ji}^{(s)} > 0$$

$$p_{ii}^{(n+r+s)} \geqslant p_{ij}^{(r)} p_{jj}^{(n)} p_{ji}^{(s)}$$

$$p_{jj}^{(n+r+s)} \geqslant \underbrace{p_{ji}^{(s)}}_{>0} p_{ii}^{(n)} \underbrace{p_{ij}^{(r)}}_{>0}$$

Hence, $p_{jj}^{(n)}$ and $p_{ii}^{(n)}$ converge or do not converge simultaneously.

5.2Invariant measure

Theorem 3. Let the transition matrix P be irreducible and recurrent (it has 1 communicating class, which is irreducible and recurrent). Then there exists invariant measure $(\mu(i))_{i\in S}$ where $0 \leq \mu(i) < \infty; \mu P = \mu; \mu - invariant measure; \mu is unique up to proportionality constant.$

Corollary. Either
$$\sum_{i \in S}^{\infty} \mu(i) = \infty$$
 for any invariant μ or $\sum_{i \in S}^{\infty} \mu(i) < \infty$
P is null recurrent

Proof J.K. Norris. lecture 8

Example. Random walk on \mathbb{Z}

- i) irreducibility: $\exists j > i : p_{ij}^{(j-i)} = p^{(j-i)} > 0$
- ii) recurrent

If state 0 is recurrent?

Proof

$$\sum_{n=0}^{\infty} P_{00}^{(n)} = \sum_{k=0}^{\infty} \frac{(2k)!}{(k!)^2} p^k (1-p)^k \sim c \sum_{k=0}^{\infty} \frac{1}{\sqrt{k}} \underbrace{(4p(1-p))^k}_{<1}$$

$$\sim \begin{cases} c \sum_{k=0}^{\infty} \frac{1}{\sqrt{k}} g^k, g < 1, \text{ for } p \neq \frac{1}{2} \\ c \sum_{k=0}^{\infty} \frac{1}{\sqrt{k}} = \infty, \text{ for } p = \frac{1}{2} \end{cases}$$
$$P_{00}^{(n)} = \begin{cases} 0, n = 2k + 1 \\ C_{2k}^k p^k (1 - p)^k, n = 2k \end{cases}$$

 $p = \frac{1}{2} \Leftrightarrow \text{recurrent}; p \neq \frac{1}{2} \Leftrightarrow \text{non-recurrent};$

iii) invariant distributions: $(\pi(i))_{i\in\mathbb{Z}}$ is invariant $\Leftrightarrow \pi p = \pi$

$$(\pi p)_j = \pi (j-1)p + \pi (j+1)(1-p) \quad \pi(j) = \pi_j$$
$$\pi_j = \pi_{j-1}p + \pi_{j+1}(1-p); j \in \mathbb{Z}$$
$$\pi_{j+1}(1-p) - \pi_j + \pi_{j-1}p = 0$$

Characteristic polynomial:

$$\lambda^{2}(1-p) - \lambda + p = 0$$
$$\lambda_{1} = 1$$
$$\lambda_{2} = \frac{p}{1-p}, p \neq \frac{1}{2}$$

Hence $\pi_j = c_1 \lambda_1^j + c_2 \lambda_2^j = c_1 + c_2 \left(\frac{p}{1-p}\right)^j; c_1, c_2 - \text{constants}$

$$\pi_j \geqslant 0 \Rightarrow c_1 \geqslant 0; c_2 \geqslant 0$$

$$\pi_j = 1; \forall j \in \mathbb{Z}$$
or $\pi_j = \left(\frac{p}{1-p}\right)^j; \forall j \in \mathbb{Z}$

 $p = \frac{1}{2}$: $\pi_j = c_1 + c_2 j$; $c_1, c_2 -$ constants; $\pi_j \geqslant 0 \Rightarrow c_2 = 0, c_1 > 0$ So, in this case $\pi_j = c > 0 -$ unique invariant measure (up to proportionality). Null recurrent Markov Chain.

5.3 Detailed balance condition

Definition 25. $P \in \mathbb{R}^{|s| \times |s|}; \pi \in \mathbb{R}^{|s|}; \pi \geq 0$ is in detailed balance with P, if

$$\underbrace{\pi_i P_{ij}}_{=P_{\pi}(x_0=i, x_1=j)} = \underbrace{\pi_j P_{ji}}_{=P_{\pi}(x_0=j, x_1=i)}, \forall (i,j) \in S \times S$$

Lemma. If π is in detailed balance with $P \Rightarrow \pi$ is invariant, that is $\pi P = \pi$

Proof

$$(\pi P)_j = \sum_{i \in S} \pi_i P_{ij} = \sum_{i \in S} \pi_j P_{ji} = \pi_j \underbrace{\left(\sum_{i \in S} P_{ji}\right)}_{=1} = \pi_j$$

Example. (Random walk)

$$\pi_i P_{i,i+1} = \pi_{i+1} P_{i+1,i}$$

$$\pi_i P = \pi_{i+1} (1-P)$$

$$\pi_{i+1} = \left(\frac{P}{1-P}\right) \pi_i \Rightarrow \pi_i = \left(\frac{P}{1-P}\right)^i \text{-in detailed balance with P}$$

5.4 Invariant distribution

$$G = (V,E); |V| < \infty, A = (a_{ij}); a_{ij} \geqslant 0; A = A^{\top}; a_{ij} = a_{ji}$$
$$P_{ij} = \frac{a_{ij}}{\sum_{j \in V} a_{ij}}, \forall (i,j) \in V \times V; \sum_{j \in V} a_{ij} > 0, \forall i \in V$$

Find invariant distribution.

$$\pi_i P_{ij} = \pi_j P_{ji} \Rightarrow \pi_i \frac{a_{ij}}{\sum_{j \in V} a_{ij}} = \pi_j \frac{a_{ji}}{\sum_{i \in V} a_{ji}}$$

$$\Rightarrow \pi_i (\sum_{i \in V} a_{ji}) = \pi_j (\sum_{j \in V} a_{ij})$$

$$\pi_i = \frac{\sum_{j \in V} a_{ij}}{\sum_i \sum_j a_{ij}} - \text{invariant distribution}$$

6 Lecture 4

6.1 Reversibility property

Definition 26. A kernel P is reversible w.r.t. ξ if $\xi \otimes P(A \times B) = \xi \otimes P(B \times A)$, $\forall A, B \in X$ If X is finite:

$$\xi(i)P(i,j) = \xi(j)P(j,i)$$

$$\mathbb{E}_{\xi}[f(x_0,x_1)] = \int_{X\times X} f(x_0,x_1)\xi(dx_0)P(x_0,dx_1) =$$

$$= \int_{X\times X} f(x_0,x_1)\xi(dx_1)P(x_1,dx_0) = \int_{X\times X} f(x_1,x_0)\xi(dx_0)P(x_0,dx_1) = \mathbb{E}_{\xi}[f(x_1,x_0)]$$

Proposition. Let $\xi \in P_1(x)$ and P is reversible w.r.t. ξ . Then ξ is invariant.

$$\xi P(A) = \xi(A)$$

Proof.

$$\xi P(A) = P_{\xi}(x_1 \in A) = P_{\xi}(x_0 \in X, x_1 \in A) = \xi \otimes P(X \times A) = \xi \otimes P(A \times X) = P_{\xi}(x_0 \in A, x_1 \in X) = P_{\xi}(x_0 \in A) = \xi(A)$$

If sampling from π is difficult then it is possible to find an approximation such that:

$$\pi(dx) = \frac{\tilde{dx}}{Z_d}; Z_d = \int_{Y} \tilde{\pi}(dx)$$

From Bayesian statisticas $(Y_1, \ldots Y_N), \pi_0(\theta)$

$$P(\theta|Y) = \frac{\prod_{j=1}^{r} P(Y|\theta)\pi_0(\theta)}{\int \prod_{j=1}^{r} P(Y|\theta)\pi_0(\theta)\theta}$$

6.2 Metropolis-Hastings algorithm.

In this case is necessary to find a kernel P such that:

- i) $\pi P = \pi$
- ii) $d_{\pi r}(\mu P^n, \pi) \to 0 \text{ as } n \to \infty$
- iii) $X_0 \sim \mu \rightarrow \text{it is easy, e.g. take } \mu = \delta_x \text{ or } \mu \sim \mathcal{N}(0,I), \ x|j \sim P(x|j-1,\cdot)$

Definition 27. (Metropolis-Hastings algorithm) Take an easy to sample kernel Q(x,dy) = q(x,y)dy, for a fixed X_0 and assume that $X_0, X_1, \ldots X_k$ were already sampled and we need to sample X_{k+1} , then we sample:

$$Y_{k+1} \sim Q(x_k, \cdot)$$

$$Y_{k+1} = \begin{cases} Y_{k+1}; \text{ with probability } \alpha(X_k, Y_{k+1}) \text{(Accept proposal)} \\ X_k; \text{ with probability } 1 - \alpha(X_k, Y_{k+1}) \text{(Reject proposal)} \end{cases}$$

$$\alpha(x,y) = \min\left(1, \frac{\pi(y)q(y,x)}{\pi(x)q(x,y)}\right) = \min\left(1, \frac{\tilde{\pi}(y)q(y,x)}{\tilde{\pi}(x)q(x,y)}\right)$$

6.2.1 Example 1

Let's consider the kernel q(x,y) = q(y,x), e.g. $q(x,y) = \bar{q}(|x-y|)$ and $Y_{k+1} = X_k + \xi_{k+1}$, $\xi_{k+1} \sim \bar{q}$, and the bimodal distribution in Figure 1.

 Y_{k+1} X_k

Figure 1.a: High probability state to lower.

Figure 1.b: Low probability state to higher.

Figure 1: Bimodal distributions

Considering the example of a bimodal distribution, the probability of moving from a high probability state to another with a lower one is (Figure 1.a):

$$\alpha(X_k, Y_{k+1}) = \min\left(1, \frac{\pi(y)q(y,x)}{\pi(x)q(x,y)}\right) = \frac{\pi(y)q(y,x)}{\pi(x)q(x,y)}$$

While for the opposite case (Figure 1.b), the probability is $\alpha = 1$.

It is also possible to get the following scenario where it is not possible to move from one mode to the other one (a common problem in GANs).

In Figure 2 all the samples will be taken from a single mode, and the model will get stuck, to avoid this problem is necessary to pick a good initial point and a good kernel.

Figure 2: Mode Collapse

Definition 28. (Langevin algorithm)

$$dY_t = -\nabla U(Y_t)dt + \sqrt{2}dW_t$$
$$\pi(dx) = e^{-U(x)}$$
$$\text{Law}(Y_t) \to \pi$$

The Unaltered Langevin Algorithm (ULA) is:

$$Y_t = Y_t - \gamma \nabla U(Y_t) + \sqrt{2\gamma} \xi_{t+1}$$

where $\xi_{t+1} \overset{i.i.d.}{\sim} \mathcal{N}$

$$\text{Law}_{y_0}(Y_t) \xrightarrow{\text{u.s.c.}} \tilde{\pi}_{\gamma} \approx \Pi_{\gamma \to 0}$$

$$Y_{t+1} = X_t - \gamma \nabla U(X_t) + \sqrt{2}\xi_{t+1}$$

$$\text{Law}_{X_0}X_t \to \pi$$

Considering a kernel of M.H.

$$P(x,A) = \int_A q(x,y)\alpha(x,y)dy + \int_X (1 - \alpha(x,y))q(x,y)dy$$

for a initial point $\delta_x(A)$, considering the terms of the sum as (1) and (2), respectively.

Checking reversibility:

$$q(x,y)\alpha(x,y) = \min\{(\pi(x)q(x,y); \pi(y)q(x,y)\} = q(y,x)\alpha(y,x)$$
$$\int_{X\times X} \pi(dx)P(x,y)f(x,y) = \int_{X\times X} P(y,dx)f(x,y)$$

(1)
$$\int_{X\times X} \pi(x)q(x,y)\alpha(x,y)f(x,y)dxdy = \int_{X\times X} \pi(y)q(y,x)\alpha(y,x)f(x,y)dxdy$$
$$= \int_{X\times X} \pi(x)q(x,y)\alpha(x,y)f(x,y)dxdy$$

(2)

$$\int_{X \times X} \pi(x)q(x,y)(1-\alpha(x,y))q(x,y)\tau_x(dy)f(x,y)dx = \int_X \pi(x)q(x,y)(1-\alpha(x,x))q(x,x)f(x,x)$$

$$= \int_{X \times X} \pi(y)q(x,y)(1-\alpha(y,x))q(y,x)\delta_y(dx)f(y,x)dxdy$$

7 Lecture 5

7.1 φ -irreducibility. Aperiodicity. Ergodicity of φ -irreducible and aperiodic chain

Example. Then, the transition matrix will be:

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Where $\pi_0 = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$, $\pi_0 P = \pi_0$. $P_{\delta_{x_1}}(x_n = 3) \nrightarrow \pi_0(3)$, as $n \to \infty$. But if we take $\pi_1 = (\frac{1}{2}, \frac{1}{2}, 0)$, still $\pi_1 P = \pi_1$, but it convergences to π_1 .

Definition 29. Markov chain is φ -irreducible if \exists δ -finite measure φ on (X,Ω) such, that for $\forall A \in \Omega$ with $\varphi(A) > 0$ and $\forall x \in X$ and $\exists n = n(x,A)$ such that $P^n(x,A) > 0$.

Example.
$$q \in C(X^2), q > 0$$
 $\pi(A) = \int_A \pi(x)\lambda(dx), \lambda(dx) = dx.$

We want to find φ , which will prove φ -irreducibility.

Let's try $\varphi = \pi$ and fix $A : \pi(A) > 0$. There $\exists B_R(0) : A_R = A \cap B_R(0)$ and $\pi(A_R) > 0$. Now A_R is limited and $\forall x \in \Omega$:

$$\inf_{y \in A_R} \{ \min\{q(x,y), q(y,x)\} \ge \varepsilon \} > 0$$

$$\begin{split} &P(x,A) \geq P(x,A_R) \geq \int_{A_R} q(x,y) \alpha(x,y) dy \\ & \text{Middle of formula} \\ &\geq \varepsilon \int_{A_R^1} 1 \cdot \lambda(dy) + \varepsilon \int_{A_R^2} \frac{\pi(y)}{\pi(x)} \lambda(dy) = \varepsilon \cdot \lambda(A_R^1) + \frac{\varepsilon}{\pi(x)} \pi(A_R^2) > 0 \end{split}$$

Example. Then, the transition matrix will be:

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Where
$$\varphi = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$
.
Let's take $A : \varphi(A) > 0$ and $\forall x \exists n : P^n(x, A) > 0$.
If $A = 3, x = 1, \Longrightarrow$ for $n = 2P^2(1,3) = 1$.
 $\pi = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$
 $\pi P = \pi$
 $P_{\delta_{x_1}}(x_n = 3) \nrightarrow \pi(3)$

Definition 30. Markov kernel P with invariant distribution π is **aperiodic** if $\nexists d \geq 2$ and $\nexists x_1, ..., x_d$ such that $X_j \cap X_k = 0, \ X = X_1 \coprod ... \coprod X_d$,

$$\forall x \in X_i, P(x, X_{i+1}) = 1$$
 and

$$\forall x \in X_d, P(x, X_1) = 1 \text{ and } \pi(x_i) > 0$$

Example. Let $X = X_1 \coprod X_2$: $\pi(x_i) > 0$,

$$X_{i_R} = X_i \cap B_{R_i}(0)$$
, and $\pi(x_{i_{R_i}}) > 0$

 $\forall x \in X_i$:

$$\inf_{y \in x_{i_{R_{\varepsilon}}}} \{ \min\{q(x,y), q(y,x)\} \ge \varepsilon \} > 0$$

$$P(x, X_1) \ge P(x, x_{1_{R_1}}) \ge \int_{x_{1_{R_1}}} q(x, y)\alpha(x, y)\lambda(dy) > 0$$

then $P(x, X_2) \neq 1 \Rightarrow$ Chain is aperiodic.

$$d_{TV}(\mu, \nu) = \|\mu - \nu\|_{TV} = \sup_{f: X \to [0, 1]} \left| \int_{x} f d\mu - \int_{x} f d\nu \right|$$

Theorem 4. If

- (X,Ω) be such set that Ω is countable generated σ -algebra (Borel σ -algebra, $X\subseteq R^d$).
- $\exists \pi : \pi P = \pi$
- φ -irreducible and aperiodic

Then
$$\lim_{n\to\infty} \|\sigma_x P^n - \pi\|_{TV} = 0$$

Example.

$$\widetilde{\pi}(x) = \frac{1}{1+x^2}, Q(x,\cdot) = U[x-1, x+1]$$

UGE(uniformly geometrically ergodic):

$$\exists C, \rho : \|\delta P^n - \pi\|_{TV} < C\rho^n$$

GE(geometrically ergodic):

$$\exists M : X \to [0,\infty] : |\delta_x P^n - \pi|_{TV} \le M(x)^n,$$

$$M(x) < \infty, \pi - \text{a.s.}$$

A subset $C \subseteq X$ is small $((n_0, \varepsilon, \nu)$ -small) if $\exists n_0 \in N, \varepsilon > 0$, and probability measure ν on (X, Ω) such that

$$P^{n_0}(x,A) \ge \varepsilon \nu(A), \forall x \in C, \forall A \in \Omega$$

(minorisation condition)

Example. Example of ε , ν construction:

$$\varepsilon_{n_0} = \sum_{y \in X} \inf_{x \in C} P^{n_0}(x, y) > 0$$

$$\nu(y) = \frac{1}{\varepsilon_{n_0}} \inf_{x \in C} P^{n_0}(x, y)$$

$$\|\mu - \nu\|_{TV} = \sup_{A} |\mu(A) - \nu(A)| \le P(X \ne Y)$$

where $X \sim \mu, Y \sim \nu$

7.2 Coupling construction

Let's say $x_0 = x, x_0' \sim \pi$ and we have pair (x_n, x_n') .

- 1. if $x_n = x'_n$, then $x_{n+1} = x'_{n+1} \sim P(x_n, \cdot)$ (i.e. further they will be equal)
- 2. else if $(x_n, x'_n) \in C \times C$, with probability $\varepsilon : x_{n+n_0} = x'_{n+n_0} \sim \nu(\cdot)$, else with probability 1ε : $x_{n+n_0} \sim \frac{1}{1-\varepsilon} [P(x_n, \cdot) \varepsilon \nu(\cdot)], \ x'_{n+n_0} \sim \frac{1}{1-\varepsilon} [P(x'_{n+1}, \cdot) \varepsilon \nu(\cdot)]$
- 3. else $x_{n+1} \sim P(x_n, \cdot), x'_{n+1} \sim P(x'_n, \cdot)$

Example. $P_x(X_n \in A) = \delta_x P^n(A)$ $P_{\pi}(X'_n \in A) = \pi P^n(A) = \pi(A)$ $\|P^n(x,\cdot) - \pi(\cdot)\|_{TV} \le P(X_n \ne X'_n) \le (1-\varepsilon)^{\frac{n}{n_0}}$

7.3 Drift condition

Definition 31. P satisfies drift condition if $\exists b > 0, \lambda \in (0,1)$, and $V: X \to [1,\infty)$ such that $PV(x) \leq \lambda V(x) + b\mathbb{1}_C(x)$, $PV(x) = \int_Y V(y)P(x,dy)$.

Then: $\pi(PV) \leq \lambda \pi(V) + b\pi(C)$. If we integrate and take into account that $P\pi = \pi$: $\pi(V) \leq \lambda \pi(V) + b \Rightarrow \pi(V) \leq \frac{b}{1-\lambda}$

7.4 Small set and drift condition

 $\exists \rho \in (0,1)$ and C > 0 such, that:

$$\sup_{|f| \le V} |\int f(y)P^n(x,dy) - \int f(y)\pi(dy)| \le CV(x)\rho^n$$

Definition 32. Let P be Markov kernel on (X,F), ξ,ξ' — probability measures on (X,F). Then **Dobrushin coefficient** is

$$\Delta(P) := \sup_{\xi \neq \xi'} \frac{\|\xi P - \xi' P\|_{TV}}{\|\xi - \xi'\|_{TV}}$$

Definition 33. P is called **Uniformly Geometrically ergodic (UGE)** if $\exists m \in N : \Delta(P^m) < 1$, where $\Delta(P^m) := \sup_{\xi \neq \xi'} \frac{\|\xi P^m - \xi' P^m\|_{TV}}{\|\xi - \xi'\|_{TV}}$

Lemma. P is $UGE \Rightarrow \forall \xi \|\xi P^n - \pi\|_{TV} \leq \zeta \{\Delta(P^m)\}^{\left[\frac{n}{m}\right]}$, where $\zeta = \max_{0 \leq k \leq m-1} \|\xi P^k - \pi\|_{TV} \leq 1$

Proof.
$$\|\xi P^n - \pi\|_{TV} = \{\text{as } \pi \text{ is invariant}\} = \|\xi P^n - \pi P^n\|_{TV} = \|\xi P^{n-m} P^m - \pi P^{n-m} P^m\|_{TV} \le \Delta(P^m) \|\xi P^{n-m} - \pi P^{n-m}\|_{TV} \le \{\Delta(P^m)\}^{\left[\frac{n}{m}\right]} \cdot \|\xi P^k - \pi\|_{TV}, k < m$$

Definition 34. Space X is (m,ε) -small, if \exists probability measure ν such that $\forall A \in \mathcal{F}$:

$$P^m(x,A) \ge \varepsilon \cdot \nu(A), \forall x \in X$$

Lemma. If X is (m,ε) -small, $\Delta(P^m) \leq 1 - \varepsilon$.

Lemma. In (1) it is enough to take $\xi = \delta_x, \xi' = \delta_x', x \neq x'$ (Moulines)

$$\begin{split} \|S_x - S_{x'}\|_{TV} &= 1, x = x' \\ P^m(x,A) \geq \varepsilon \cdot \nu(A) \\ P^m(x,A) &= \varepsilon \cdot \nu(A) + \mu(A); \ \mu(A) \geq 0, \ mu(\cdot) \text{ - non-negative measure} \\ \widetilde{\mu}(A) &:= \frac{1}{1-\varepsilon}\mu(A) - \text{probability measure} \\ P^m(x,A) &= \varepsilon \cdot \nu(A) + \widetilde{\mu}'(A) \cdot (1-\varepsilon); \ \widetilde{\mu}, \widetilde{\mu}' - \text{probability measures.} \\ \|P^m(x,\cdot) - P^m(x',\cdot)\|_{TV} &= \|S_x P^m - S_x P^m\|_{TV} = \sup_{A \in \mathcal{F}} |P^n(x,A) - P^n(x',A)| = (1-\varepsilon) \cdot \sup_{A \in \mathcal{F}} |\widetilde{\mu}(A) - \widetilde{\mu}'(A)| < 1-\varepsilon \end{split}$$

Theorem 5. (Metropolis-Hastings) $\pi(x) \sim \mathcal{N}(0,1) - target \ distribution.$ $\lambda(x|y) \sim \mathcal{N}(y,\sigma^2), \ \sigma^2 \ll proposal$ $x_0 = z - very \ large$ $\|S_z P^n - \pi\|_{TV} \leq c \cdot \rho^n \cdot v(z)$

7.5 i-SIR algorithm

(iterated sequential importance resampling)

We want to generate from π , have access to samples from λ , where $\pi(x), \lambda(x) > 0, \forall x \in \mathbb{R}^d$ densities with respect to Lebesgue measure.

$$\pi(x) = \frac{\widetilde{\pi}(x)}{\int \widetilde{\pi}(y)dy}, \ \widetilde{\pi}$$
 - known, $\int \widetilde{\pi}(y)dy$ - unknown. On step k :

- X_k current observation
- Generate N-1 i.i.d. observations from λ : $y_1^k = x_k, y_2^k, ..., y_N^k \sim \text{i.i.d.}$ from λ .

$$\bullet \text{ Compute } w_i^k := \frac{\frac{\tilde{\pi}(y_i^k)}{\lambda(y_i^k)}}{\sum\limits_{j=1}^N \frac{\pi(y_j^k)}{\lambda(y_j^k)}} = \frac{\omega(y_i^k)}{\sum\limits_{j=1}^N (y_j^k)}; \, \omega(x) := \frac{\pi(x)}{\lambda(x)}$$

- Choose $I_k \leftarrow Catw_i^k$; $X_{k+1} := y_{I_k}^k$
- Re-iterate

8 Lecture 6

8.1 Ergodicity

Definition 35. Markov kernel P is **uniformly geometrically ergodic** if it admits unique invariant distribution π and $||\xi P^n - \pi||_{TV} \leq \zeta \rho^n$ for some constant ζ (independent of ξ), $0 < \rho < 1$ and any probability measure ξ .

Definition 36. Markov kernel P is **V-geometrically ergodic** if $\exists V : X \to [1, +\infty)$, such that $\forall x \in X | |\delta_x P^n - \pi||_V \leq c\rho^n V(x)$ where c is a constant and $0 < \rho < 1$.

Definition 37. Let μ is signed measure, then $||\mu||_V = \frac{1}{2} \sup_{\|f\|_V \le 1} \left[\int f(x) \mu(dx) \right]$.

Example.
$$V(X) \equiv 1 \Rightarrow ||\mu||_V = ||\mu||_{TV} = \frac{1}{2} \sup_{|f| < 1} \left[\int f(x) \mu(dx) \right].$$
 If $\mu = \xi - \xi'$, ξ , ξ' are probability measures, then $||\mu||_{TV} = \frac{1}{2} \sup \left[\int f(x) \xi(dx) - \int f(x) \xi'(dx) \right] = \sup_{A \in \mathcal{F}} |\xi(A) - \xi'(A)|.$

Example. For
$$f: X \to \mathbb{R}$$
 define $||f||_V = \sup_{x \in X} \frac{|f(x)|}{V(x)}$.
 Let $f: ||f||_V < \infty, (X_k)_{k=0}^{\infty}$, Law $(X_0) = \xi, \xi P^n(f) = E_{\xi}[f(X_n)]$, then

$$|E_{\xi}[f(X_n)] - \pi(f)| = |\xi P^n(f) - \pi(f)| = \left| \left[\int \xi(dx) \left[\int P^n(x, dx) f(y) \right] \right] - \pi(f) \right| \leqslant$$

$$\leqslant |\text{Jensen}| \leqslant \int_X \left| \int_X P^n(x, dx) f(y) - pi(f) |\xi(dx)| \leqslant 2||f||_V c \rho^n \xi(V) \xrightarrow[n \to \infty]{} 0.$$

Remark. $\xi(V)$ can be large.

Definition 38. Drift condition: C is small set (w.r.t. P), then $\int P(x,dx)V(y) = PV(x) \le$ $\lambda V(x) + b\mathbb{I}\{x \in C\}, 0 < \lambda < 1, b \text{ is a constant.}$

Let π be invariant distribution of P, then $\pi(V) \leqslant \lambda \pi(V) + b$ and $\pi(V) \leqslant \frac{b}{1-\lambda}$.

8.2 Central Limit Theorem

Let X_1, \ldots, X_n are i.i.d., (Ω, \mathcal{F}, P) is probability space, $0 < \text{Var} X_i < \infty$, then

•
$$\xrightarrow[n]{X_1 + \dots + X_n} \xrightarrow[n \to \infty]{P\text{-a.s.}} E[X_1]$$

• CLT:
$$\frac{X_1 + \cdots + X_n - nE[X_1]}{\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, \sigma^2), \ \sigma^2 = \text{Var}X_1$$

 $\frac{\sum_{i=1}^{n} f(x_i)}{n} \to \hat{\pi}_n(f)$ to estimate $\pi(f)$, then asymptotic confidence interval from CLT. So we can do MCMC.

$$(X_k)_{k=0}^{\infty}$$
 is MC with kernel P, π is invariant distribution of P . $||\xi P^k - \pi||_{TV} \xrightarrow[k \to \infty]{} 0$ (Law $(X_k) \xrightarrow[k \to \infty]{} \pi$ in TV norm).

$$\frac{1}{\sqrt{n}} \left(\sum_{k=0}^{n-1} \{ f(X_k) - \pi(f) \} \right) \xrightarrow{d} \mathcal{N}(0, \sigma_{\text{asympt}}^2) \text{ where } \sigma_{\text{asympt}}^2 \neq \text{Var}[f(X_1)].$$

$$\sigma_{\text{asympt}}^2 \text{ should not depend on } \xi!$$

Example. $(X_k)_{k=0}^{\infty}$ is MC with kernel P, π is invariant distribution of P, f is bounded function, then

$$S_n = \frac{1}{\sqrt{n}} \left(\sum_{k=0}^{n-1} \left\{ f(X_k) - \pi(f) \right\} \right)$$

$$\operatorname{Var}_{\pi}[S_n] = \frac{1}{n} \left[\operatorname{Var}_{\pi} \left(\sum_{k=0}^{n-1} \left\{ f(X_k) - \pi(f) \right\} \right) \right] =$$

$$= \frac{1}{n} \left[n \operatorname{Var}_{\pi}[f] + \sum_{l=1}^{n-1} 2(n-l)\rho^{(l)}(f) \right] = \operatorname{Var}_{\pi}[f] + 2 \sum_{l=1}^{n-1} \frac{n-l}{n} \rho^{(l)}(f)$$

due to $Cov_{\pi}(f(X_k), f(X_{k+l})) = E_{\pi}[(f(X_k) - \pi(f))(f(X_{k+l}) - \pi(f)) = E_{\pi}[(f(X_0) - \pi(f))(f(X_l) - \pi(f))]$ $\pi(f))] = \rho^{(l)}(f).$

(1) Suppose that $\sum_{l=1}^{\infty} |\rho^{(l)}(f)| < \infty$. Under **(1)**:

$$\operatorname{Var}_{\pi}(S_n) \xrightarrow[n \to \infty]{} \operatorname{Var}_{\pi}(f) + 2 \sum_{l=1}^{\infty} \rho^{(l)}(f)$$

$$\sigma_{\text{asympt}}^2 = \text{Var}_{\pi}(f) + 2\sum_{l=1}^{\infty} \rho^{(l)}(f)$$

$$\left| \sum_{l=1}^{n-1} \left(1 - \frac{l}{n} \right) \rho^{(l)}(f) - \sum_{l=1}^{\infty} \rho^{(l)}(f) \right| \leq \left| \sum_{l=1}^{\infty} \rho^{(l)}(f) \right| + \left| \sum_{l=1}^{n} \frac{l}{n} \rho^{(l)}(f) \right| \leq \left| \sum_{l=1}^{\infty} \rho^{(l)}(f) \right| + \left| \sum_{l=1}^{n} \frac{l}{n} \rho^{(l)}(f) \right| + \left| \sum_{l=1}^{n} \frac{l}{n} \rho^{(l)}(f) \right| + \left| \sum_{l=1}^{n} \frac{l}{n} \rho^{(l)}(f) \right| \xrightarrow[n \to \infty]{} \frac{n^{1/4}}{n^{3/4}} ||f||_{\infty}^{2}$$

due to $\left|\sum_{l=1}^{\infty} \rho^{(l)}(f)\right| \xrightarrow[n \to \infty]{} 0, \left|\sum_{l=\lceil 4\sqrt{n}\rceil+1}^{n} \frac{l}{n} \rho^{(l)}(f)\right| \xrightarrow[n \to \infty]{} 0.$ How to verify that $\sum_{l=1}^{\infty} |\rho^{(l)}(f)| < \infty$?

Example. Let $(X_k)_{k=0}^{\infty}$ be a UGE chain, f is bounded $(\forall \xi : ||\xi P^n - \pi||_{TV} \leq \zeta \rho^n)$.

$$|\rho^{(l)}(f)| = \left| E_{\pi} \Big[\{ f(X_0) - \pi(f) \} \{ f(X_l) - \pi(f) \} \Big] \right| = \left| E_{\pi} \Big[f(X_0) \{ f(X_l) - \pi(f) \} \Big] \right| =$$

$$= \left| \int f(y) \left\{ \int P^l(y, dz) f(z) - \pi(f) \right\} \pi(dy) \right|$$

due to $E_{\pi}[\pi(f)\{f(X_l) - \pi(f)\}] = 0.$

$$E_{\pi} \left[f(X_0) \{ f(X_l) - \pi(f) \} \right] = E_{\pi} \left[E \left[f(X_0) \{ f(X_l) - \pi(f) \} | X_0 \right] \right] = E_{\pi} \left[f(X_0) E \left[f(X_l) - \pi(f) | X_0 \right] \right] =$$

$$= \int f(y) E \left[f(X_l) - \pi(f) | X_0 = y \right] \pi(dy) = E \left[f(X_l) | X_0 = y \right] = P^l f(y) = \int P^l(y, dz) f(dz).$$

Therefore, we have

$$|\rho^{(l)}(f)| \leqslant \int |f(y)| \left| \int P^{l}(y, dz) f(z) - \pi(f) \right| \pi(dy) \leqslant 2 \int |f(y)| \cdot ||\delta_{y} P^{l} - \pi||_{TV} \cdot ||f||_{\infty} \pi(dy) \leqslant$$

$$\leqslant 2 \int |f(y)| \zeta \rho^{l} ||f||_{\infty} \pi(dy) \leqslant 2 \zeta \rho^{l} ||f||_{\infty}^{2}.$$

Remember that $||\mu||_{TV} = \frac{1}{2} \sup_{|f| \leq 1} \int f(x) \mu(dx)$.

Hence, under UGE we have

$$\sum_{l=1}^{\infty} |\rho^{(l)}(f)| < \infty.$$

8.3 Martingales

Definition 39. $(X_k)_{k=0}^{\infty}$ on (Ω, \mathcal{F}, P) , $(\mathcal{F}_k)_{k=1}^{\infty}$ is a filtration, $\forall i : \mathcal{F}_i \subseteq \mathcal{F}_{i+1}, \mathcal{F}_i \subseteq \mathcal{F}$ and $\forall k : E|X_k| < \infty$. Then $\{X_k\}$ is called a martingale if $E[X_n|\mathcal{F}_{n-1}] = X_{n-1}$, P-a.s.

Remark. Usually $\mathcal{F}_k = \sigma(X_0, \dots, X_k)$.

Example. Let X_0, \ldots, X_n be i.i.d., $E|X_i| < \infty$, $S_n = \sum_{i=0}^n \{X_i - \mu\}$, $\mathcal{F}_k = \sigma(X_0, \ldots, X_k)$ where $\mu = EX_1$, then $\{S_n\}_{n=0}^{\infty}$ is a matringale. Why?

$$E[S_n|\mathcal{F}_{n-1}] = E[\sum_{i=0}^{n-1} \{X_i - \mu\} + X_n - \mu|\mathcal{F}_{n-1}] = S_{n-1} + E[X_n - \mu|\mathcal{F}_{n-1}] = S_{n-1}$$

due to $E[X_n - \mu | \mathcal{F}_{n-1}] = E[X_n - \mu] = 0.$

Definition 40. Given a Markov kernel P with invariant distribution π and a bounded function f, a function \hat{h} is called a solution to Poisson equation if:

(2)
$$\forall x \in X : \hat{h}(x) - P\hat{h}(x) = f(x) - \pi(f) \text{ where } P\hat{h}(x) = \int P(x, dy)\hat{h}(y).$$

Theorem 6. Let P satisfy UGE and $||f||_{\infty} < \infty$. Then:

$$\hat{h}(x) = \sum_{k=0}^{\infty} \left\{ P^k f(x) - \pi(f) \right\}$$

will be solution to Poisson equation (2).

Proof.

$$\forall x : |\hat{h}(x)| \leqslant \sum_{k=0}^{\infty} |P^k f(x) - \pi(f)| \leqslant 2||f||_{\infty} \sum_{k=0}^{\infty} ||S_k P^k - \pi||_{TV} \leqslant \frac{2||f||_{\infty} \zeta}{1 - \rho}.$$

$$\hat{h}(x) - P\hat{h}(x) = \sum_{k=0}^{\infty} \{P^k f(x) - \pi(f)\} - P\left\{\sum_{k=0}^{\infty} P^k f - \pi(f)\right\}(x) =$$

$$= \sum_{k=0}^{\infty} \{P^k f(x) - \pi(f)\} - \sum_{k=1}^{\infty} \{P^k f(x) - \pi(f)\} = f(x) - \pi(f).$$

Theorem 7. Let P satisfy UGE and let f be bounded $||f||_{\infty} < \infty$. Then:

$$\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \left\{ f(X_k) - \pi(f) \right\} \xrightarrow{P_{\pi}} \mathcal{N} \left(0, \sigma^2(f) \right).$$

Remark. Convergence in P_{π} means convergence in distribution under $\text{Law}(X_0) = \pi$.

Proof. Let $\hat{h}(x)$ be a solution of (2):

$$\hat{h}(x) = \sum_{k=0}^{\infty} \left\{ P^k f(x) - \pi(f) \right\}.$$

Then:

$$\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \left\{ f(X_k) - \pi(f) \right\} = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \left\{ \hat{h}(X_k) - P\hat{h}(X_k) \right\} =$$

$$= \frac{1}{\sqrt{n}} \sum_{k=1}^{n-1} \left\{ \hat{h}(X_k) - P\hat{h}(X_{k-1}) \right\} + \frac{1}{\sqrt{n}} \left(\hat{h}(X_0) - P\hat{h}(X_{n-1}) \right)$$

due to $E[\hat{h}(X_k) - P\hat{h}(X_{k-1})|X_{k-1}] = P\hat{h}(X_{k-1}) - P\hat{h}(X_{k-1}) = 0.$ Let $R_1 = \frac{1}{\sqrt{n}} \left(\hat{h}(X_0) - P\hat{h}(X_{n-1})\right)$. $R_1 \to 0$ in probability:

$$P(|R_1| > \varepsilon) \leqslant \frac{1}{\sqrt{n\varepsilon}} E\left[\left|\hat{h}(X_0)\right| + \left|P\hat{h}(X_{n-1})\right|\right] \leqslant \frac{4\xi ||f||_{\infty}^2}{\sqrt{n\varepsilon}(1-\rho)} \xrightarrow[n\to\infty]{} 0 \quad \forall \text{ fixed } \varepsilon > 0.$$

$$S_l = \sum_{l=1}^{l-1} \left\{\hat{h}(X_{k-1}) + \hat{h}(X_{k-1})\right\} \Rightarrow E\left[S_l | \mathcal{F}_{l-1}\right] = S_{l-1}$$

where $\mathcal{F}_{l-1} = \sigma(X_0, ..., X_{l-1})$

$$E[S_{l}|\mathcal{F}_{l-1}] = S_{l-1} + E[\hat{h}(X_{l}) - P\hat{h}(X_{l-1})|\mathcal{F}_{l-1}] = S_{l-1} + E[\hat{h}(X_{l}) - P\hat{h}(X_{l-1})|X_{l-1}] = S_{l-1}.$$

Lemma. Let (Z_n, \mathcal{F}_n) : $E[Z_n | \mathcal{F}_{n-1}] = 0$, $\forall n : E|Z_n|^2 < \infty$, $Z_k = \hat{h}(X_k - P\hat{h}(X_{k-1}))$.

•
$$\frac{1}{n} \sum_{j=1}^{n} E[Z_j^2 | \mathcal{F}_{j-1}] \xrightarrow{P} \sigma^2$$

•
$$\frac{1}{n} \sum_{k=1}^{n} E\left[Z_k^2 \mathbb{I}\{|Z_k| > \varepsilon \sqrt{n}\}\right] \xrightarrow{P} 0$$

Then:

$$\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} Z_k \xrightarrow{d} \mathcal{N}(0, \sigma^2).$$

Proof. (Cor. E.4.2. in Markov Chains, Douc et. al.)

(3)
$$\frac{1}{n} \sum_{k=1}^{n} E[(\hat{h}(X_k) - P\hat{h}(X_{k-1}))^2 | \mathcal{F}_{k-1}] \xrightarrow{P} ?$$

$$E[(\hat{h}(X_k) - P\hat{h}(X_{k-1}))^2 | \mathcal{F}_{k-1}] = E[(\hat{h}(X_k) - P\hat{h}(X_{k-1}))^2 | X_{k-1}] = \tilde{h}(X_{k-1}).$$

 $|\hat{h}(X_k) - P\hat{h}(X_{k-1})| \leq 2||\hat{h}||_{\infty} \Rightarrow \tilde{h}$ can be chosen to be bounded.

$$(3) = \frac{1}{n} \sum_{k=1}^{n} \tilde{h}(X_{k-1}) = \pi(\tilde{h}) + \frac{1}{n} \sum_{k=1}^{n} \left\{ \tilde{h}(X_{k-1}) - \pi(\tilde{h}) \right\}.$$

$$\frac{1}{n} \sum_{k=1}^{n} \left\{ \tilde{h}(X_{k-1}) - \pi(\tilde{h}) \right\} = \operatorname{Var}_{\pi} \left(\frac{1}{n} \sum_{k=1}^{n} \left\{ \tilde{h}(X_{k-1}) - \pi(\tilde{h}) \right\} \right) \xrightarrow[n \to \infty]{} 0.$$

$$\operatorname{Var}_{\pi} \left[\frac{1}{n} \sum_{k=1}^{n} \left\{ \tilde{h}(X_{k-1}) - \pi(1) \right\} \right] = \frac{1}{n} \left[\sigma_{\text{asympt}}^{2}(\tilde{h}) + o(1) \right] \xrightarrow[n \to \infty]{} 0.$$

We have CLT with variance given by $\pi(\tilde{h})$: $E_{\pi}[\tilde{h}(X_l)] = E_{\pi}[(\hat{h}(X_1) - P\hat{h}(X_0))^2] = E_{\pi}[\hat{h}^2(X_1) + (P\hat{h}(X_0))^2 - 2\hat{h}(X_1)Ph(X_0)].$

Example.

$$E_{\pi} [\hat{h}(X_{1}) P \hat{h}(X_{0})] = E_{\pi} [(P \hat{h}(X_{0}))^{2}] = E_{\pi} [\hat{h}^{2}(X_{0})] - E_{\pi} [(P \hat{h}(X_{0}))^{2}] =$$

$$= E_{\pi} [(f(X_{0}) - \pi(f)) [\hat{h}(X_{0}) + P \hat{h}(X_{0})]] = \operatorname{Var}_{\pi} [f] + 2 \sum_{l=1}^{\infty} E_{\pi} [(f(X_{0}) - \pi(f)) (f(X_{l}) - \pi(f))].$$

9 Lecture 7

9.1 CLT for arbitrary initial distribution

Theorem 8. Assume that $||\xi P^n - \xi' P^n||_{TV} \to 0$ as $n \to \infty$ for arbitrary probability measures ξ , ξ' and

$$\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} h(X_k) \xrightarrow{P_{\xi}} \mu.$$

Then, if h is bounded,

$$\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} h(X_k) \xrightarrow{P'_{\xi}} \mu.$$

28

Remark. If $\exists \pi$ — invariant distribution for P such that $\forall \xi \mid |\xi P^n - \pi||_{TV} \to 0$, then

$$||\xi P^n - \xi' P^n||_{TV} = ||\xi P^n - \pi + \pi - \xi' P^n||_{TV} \le ||\xi P^n - \pi||_{TV} + ||\pi - \xi' P^n||_{TV} \to 0.$$

Proof. Let us prove using convergence of characteristic functions. Take

$$\varphi_{\xi,n}(t) = E_{\xi} \left[\exp \left(it \sum_{k=0}^{n-1} h(X_k) / \sqrt{n} \right) \right]$$

and

$$\varphi_{\mu}(t) = E_{x \sim \mu}[\exp(itx)].$$

Then we have $\varphi_{\xi,n}(t) \to \varphi_{\mu}(t)$ as $n \to \infty$. Take $\mathcal{F}_m = \sigma(X_0, \ldots, X_m)$. Then

$$E\left[E\left[\exp\left(it\sum_{k=0}^{n-1}h(X_k)/\sqrt{n}\right)\middle|\mathcal{F}_m\right]\right] =$$

$$=E\left[\exp\left(it\sum_{k=0}^{m}h(X_k)/\sqrt{n}\right)E\left[\exp\left(it\sum_{k=m+1}^{n-1}h(X_k)/\sqrt{n}\right)\middle|X_m\right]\right] =$$

$$=E\left[\exp\left(it\sum_{k=0}^{m}h(X_k)/\sqrt{n}\right)g(X_m)\right] = E\left[g(X_m)\right] + E\left[\left(\exp\left(it\sum_{k=0}^{m}h(X_k)/\sqrt{n}\right) - 1\right)g(X_m)\right] =$$

$$=E\left[g(X_m)\right] + R_{m,n}(\xi)$$

Take $m = n^{1/3}$, then

$$\left| \frac{it}{\sqrt{n}} \sum_{k=0}^{m} h(X_k) \right| \le \frac{t(m+1)||h||_{\infty}}{\sqrt{n}} \to 0 \text{ as } n \to \infty.$$

Hence, since $|g| \leq 1$ almost surely, $R_{m,n}(\xi)$ goes to 0 as n goes to infinity. Now we do the same for ξ' and get $\varphi_{\xi',n}(t) = E_{\xi'}[g(X_m)] + R_{m,n}(\xi')$. Finally,

$$|\varphi_{\xi,n}(t) - \varphi_{\xi',n}(t)| \le |E_{\xi}[g(X_m)] - E_{\xi'}[g(X_m)]| + |R_{m,n}(\xi)| + |R_{m,n}(\xi')| \le$$

$$\le 2||\xi P^m - \xi' P^m||_{TV} + |R_{m,n}(\xi)| + |R_{m,n}(\xi')| \to 0 \text{ as } n \to \infty.$$

Thus $\varphi_{\xi',n}(t) \to \varphi_{\mu}(t)$ as $n \to \infty$.

9.2 Diffusion process example

Take $X_{k+1} = (1 - \gamma)X_k + \sqrt{2\gamma}\xi_{k+1}$, where ξ_k are i.i.d. standard normal variables and $0 < \gamma < 1$.

• It is not hard to see that the invariant distribution π for this chain will be normal with 0 mean and the following variance:

$$var X_{k+1} = (1 - \gamma)^2 var X_k + 2\gamma$$
$$\sigma^2 = (1 - \gamma)^2 \sigma^2 + 2\gamma$$
$$\sigma^2 = \frac{1}{1 - \gamma/2}$$

• The kernel will be

$$P(x,A) = P(X_{k+1} \in A | X_k = x) = \frac{1}{\sqrt{4\pi\gamma}} \int_A \exp\left(-\frac{(y - (1 - \gamma)x)^2}{4\gamma}\right) dy$$

• Take $V(x) = 1 + x^2$. Then we can check drift condition:

$$PV(x) = E[X_1^2 + 1|X_0 = x] = 1 + E\left[((1 - \gamma)x + \sqrt{2\gamma}\xi_1)^2\right] = 1 + (1 - \gamma)^2 x^2 + 2\gamma =$$
$$= (1 - 2\gamma + \gamma^2)(1 + x^2) + 4\gamma - \gamma^2$$

Thus for $\lambda = (1 - 2\gamma + \gamma^2) < 1$ and $b = 4\gamma - \gamma^2$ we have $PV(x) \le \lambda V(x) + b$.

• Now we check small set condition for balls of radius R.

$$P(x, A) \ge \varepsilon \nu(A)$$
 for any $x \in \{V(x) \le R\}$

How to pick ε and ν ?

$$P(x,A) = \frac{1}{\sqrt{4\pi\gamma}} \int_A \exp\left(-\frac{(y - (1 - \gamma)x)^2}{4\gamma}\right) dy =$$

$$= \frac{1}{\sqrt{4\pi\gamma}} \exp\left(\frac{-(1 - \gamma)^2 x^2}{4\gamma}\right) \int_A \exp\left(-\frac{y^2 - 2(1 - \gamma)xy}{4\gamma}\right) dy \ge$$

$$\ge \frac{1}{\sqrt{4\pi\gamma}} \exp\left(\frac{-(1 - \gamma)^2 R^2}{4\gamma}\right) \int_A \exp\left(-\frac{y^2 + 2\sqrt{R}(1 - \gamma)|y|}{4\gamma}\right) dy$$

• And now we look at the convergence. We have

$$X_{k+m} = (1 - \gamma)^m X_k + \sum_{\ell=1}^m (1 - \gamma)^{m-\ell} \sqrt{2\gamma} \xi_{k+\ell}$$
$$cov_{\delta_0}(X_k, X_{k+m}) = (1 - \gamma)^m Var_{\delta_0}(X_k)$$

Take $X_0 = 0$. Then

$$X_k = \sum_{\ell=1}^k (1 - \gamma)^{k-\ell} \sqrt{2\gamma} \xi_\ell \sim \mathcal{N}(0, \sigma_k^2)$$

$$\sigma_k^2 = 2\gamma \sum_{\ell=1}^k (1 - \gamma)^{2(k-\ell)} = \frac{2\gamma - 2\gamma (1 - \gamma)^{2k}}{1 - (1 - \gamma)^2}$$

$$\sigma_\infty^2 = 2\gamma \sum_{\ell=1}^\infty (1 - \gamma)^{2(k-\ell)} = \frac{2\gamma}{1 - (1 - \gamma)^2} = \frac{1}{1 - \gamma/2}$$

Then, to bound $||\delta_0 P^k - \pi||_{TV}$, we need to understand what is the total variation distance for normal distributions. Here we use google link and see that this distance between $\mathcal{N}(0, \sigma^2)$ and $\mathcal{N}(0, \sigma^2(1+\varepsilon))$ is at most $C|\varepsilon|$ where C>0 is some positive constant. In our case we have $\sigma_k^2/\sigma_\infty^2 = 1 - (1-\gamma)^{2k}$, thus

$$||\delta_0 P^k - \pi||_{TV} \le C(1 - \gamma)^{2k}$$

(maybe I forgot square root somewhere, but seems right to me)

9.3Witch hat example

For some very small ε take

$$\pi_a(x) = \begin{cases} 1, & \text{if } x \in [a, a + \varepsilon] \\ \varepsilon, & \text{if } x \in [0, 1] \setminus [a, a + \varepsilon] \end{cases}$$

Then the normalized density will be $\pi(x) = \frac{1}{2\varepsilon - \varepsilon^2} \pi_a(x)$. Let us apply Metropolis Hastings algorithm with uniform proposal: given x_k , the point y_{k+1} is drawn from U[0,1]. Then we have

$$\alpha(x_k, y_{k+1}) = \min\left(1, \frac{\pi(y_{k+1})}{\pi(x_k)}\right)$$

Such chain turns out to be UGE. To prove this, we will prove small set condition

$$P(x,A) = \int_{0}^{1} \alpha(x,y)I\{y \in A\}dy + I\{x \in A\} \int_{0}^{1} (1 - \alpha(x,y))dy \ge \int_{0}^{1} \alpha(x,y)I\{y \in A\}dy = \int_{0}^{1} \min\left(1, \frac{\pi(y_{k+1})}{\pi(x_k)}\right)I\{y \in A\}dy \ge \varepsilon\nu(A)$$

where $\nu(A)$ is U[0,1], and ε is the same as in the definition of $\pi(x)$.

However, such sampling algorithm will not work well in practice, despite being UGE.

Lecture 28 Jan (?8?) 10

Consider $X_j \stackrel{\text{i.i.d.}}{\sim} P_{data}, j \in \{1, \dots, n\}$. Usually P_{data} is unknown, and we have three common problems.

- estimate P_{data} , i.e., get $\hat{P_{data}}$;
- sample from P_{data} , i.e., sample from P_{data} ;
- for $f \in L_2(P_{data})$, $\int f^2(x)P_{data}(x)dx < \infty$, estimate $P_{data} = \int f(x)P_{data}(x)dx$

KDE: Kernel Density Estimation

 $\hat{P_{data}}(x) = \frac{1}{n} \sum_{j=1}^{n} K_h(X_j - x)$, where $K_h(y)$ - kernel. KDE suffers from curse of dimensionality. It usually works well for up to 3 dimensions.

For $X_j \overset{\text{i.i.d.}}{\sim}, \theta \in \Theta \subseteq \mathbb{R}^d$ we have $p(X|\theta), \pi_0(\theta)$ - prior distributions of X and on Θ . Then the posterior is

$$p(\theta|X_1,\dots,X_n) = \frac{\prod_{j=1}^n P(X_j|\theta)\pi_0(\theta)}{\int_{\Theta} \prod_{j=1}^n P(X_j|\theta)\pi_0(\theta)d\theta}$$

For $d \ge 4$ we again have curse of dimensionality. Still, we can do this easily up to normalising constant. Hence

$$\mathbb{E}_{\theta \sim p(\cdot|X_1,\dots,X_n)} [f(\theta)] = \int_{\Omega} f(y) p(y|X_1,\dots,X_n) dy,$$

which even for $f(\theta) = \theta$ is going to be quite hard.

Generative Adversarial Nets (GANs)

Generator: $G \in \mathbb{G}: Z \to X, Z \subseteq \mathbb{R}^m, X \subseteq \mathbb{R}^n$, where Z is the latent space, and X are, e.g., images; usually $m \leq n$.

We sample in the latent space; some prior, e.g., $\mathcal{N}(0,1)$: $z \sim p_0, G(z)$ - "fake" images.

Discriminator: $D \in \mathbb{D} : X \to [0, 1].$

How do we train it?

Vanilla GAN: $\mathcal{L}(G, D) = \mathbb{E}_{x \sim p_{data}} \left[log(D(x)) \right] + \mathbb{E}_{z \sim p_0} \left[1 - log(D(G(z))) \right] \rightarrow \min_{G \in \mathbb{G}} \max_{D \in \mathbb{D}}$

Wasserstein GAN: $\mathcal{L}(G, D) = \mathbb{E}_{x \sim p_{data}} \left[log(D(x)) \right] + \mathbb{E}_{z \sim p_0} \left[1 - log(D(G(z))) \right] \rightarrow \min_{G \in \mathbb{G}} \max_{D \in \mathbb{D}}$

where $D \in \text{Lip}(1)$; $W_1(\xi, \eta) = \sup_{f \in \text{Lip}(1)} |\int f d\xi - \int dd\eta|$.

Denote the density of new objects as $P_G \sim G(z)$; fix $G \in \mathbb{G}$.

Then if $P_G \approx P_{data}$, $D^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_G(x)} \approx \frac{1}{2}$. For $d^* = logit(D^*)$, $\frac{p_{data}(x)}{p_{data}(x) + p_G(x)} = \frac{1}{1 + P_G/P_{data}} = \frac{1}{1 + \exp{-d^*(x)}} \Rightarrow p_{data}(x) = p_G(x) \cdot \exp{d^*(x)}$ is the true density.

In reality we have $D(x) \approx D^*(x)$, $d(x) = logit D(x) \Rightarrow \hat{p}_d ata(x) = p_G(x) e^{d(x)}/Z$, where Z is the unknown normalising constant, i.e., it is not the true density. When $D \approx D^* \Rightarrow \hat{p}_{data} \approx$ p_{data} . This is called an Energy Based Model (EBM).

Monte-Carlo Methods

With Monte-Carlo (MC) is is a little bit easier as we assume we can draw from various ("simple-to-draw") distributions well.

Take
$$X_j \stackrel{\text{i.i.d.}}{\sim} \pi$$
, e.g., $\pi = p_{data}, \pi = \hat{p}_{data}$.
Aim: $\pi(f) = \int f\pi(x)dx = \int f\pi(dx)$.
 $\hat{\pi}(f) = \frac{1}{N} \sum_{j=0}^{N-1} f(X_j) \stackrel{\text{a.s.}}{\rightarrow} \pi(f)$ as $N \to \infty$ if $\pi(f) < \infty$.
Kolmogorov's SLLN. For a d -dimensional case we define

Kolmogorov's SLLN. For a d-dimensional case we can get too many partial sums to calculate. With MC we basically choose the points for integration smarter, where the density is the highest. However for d >> 1 MC will not be looking at points of highest density.

Importance Sampling (IS)

 $X \subseteq \mathbb{R}^d$, λ - easy to sample distribution (proposal).

$$\pi(f) = \int_X f(x)\pi(x)dx = \int \frac{\pi(x)}{\lambda(x)}\lambda(x)dx = \lambda(fw),$$

where $w(x) = \frac{\pi(x)}{\lambda(x)}$

$$\hat{\pi}(f) = \frac{1}{N} \sum_{j=1}^{N} f(Y_j) w(Y_j), Y_j \overset{\text{i.i.d.}}{\sim} \lambda \lambda(fw) < \infty \Rightarrow \hat{\pi}(f) \overset{\text{a.s.}}{\rightarrow} \pi(f) (\text{SLLN})$$

Q: how to choose optimal λ ?

$$\operatorname{Var}_{\lambda}[f(Y_0, w(Y_0))] = \mathbb{E}_{\lambda}[f^2(Y_0)w^2(Y_0)] - \mathbb{E}_{\lambda}^2[f(Y_0)w(Y_0)] = \pi^2(f)$$

$$\mathbb{E}_{\lambda}\left[f^{2}w^{2}\right] \geqslant |\text{Jensen ineq.}| \geqslant \mathbb{E}_{\lambda}\left(f|w\right)^{2} \stackrel{*}{=} \left(\int |f|\pi(x)dx\right)^{2}$$

$$\operatorname{Var}_{\lambda}\hat{\pi}(f) = \frac{1}{N} \operatorname{Var}_{\lambda} \left[f(Y_0) w(Y_0) \right]$$

(*) we cannot really integrate $\lambda^*(x) = \frac{|f(x)|\pi(x)}{\int |f(x)|\pi(x)dx}$

11 Seminar Jan 28

Generating from π

- Rejection sampling: we want to generate from $\pi(\cdot)$, π is completely known
- Choose p(x) density, s.t. we can sample from $p(\cdot)$, and

$$\sup_{x} \frac{\pi(x)}{p(x)} \leqslant M; M < \infty$$

$$\exists \nu : \pi << \nu; p << \nu \text{(abs. constant.)}$$

 $\pi(x) \leqslant M \cdot p(x), \forall x \in \mathbb{R}, \text{ const. } M > 1$

Algorithm:

- sample $y \sim p$
- sample $\mathcal{U}[0,1]$ independent of y
- if $\mathcal{U} \leqslant \frac{\pi(y)}{Mp(y)} \Rightarrow$ accept y; else reject

What should we ensure for the procedure to be correct?

Theorem: Let $\mathcal{F}(x) = P_{\pi}(x \leq t)$ - cdf of density π . Then

$$P\left(y \leqslant y | \mathcal{U} \leqslant \frac{\pi(y)}{Mp(y)}\right) = \mathcal{F}(t).$$

Proof:

$$\frac{P\left(y \leqslant y, \mathcal{U} \leqslant \frac{\pi(y)}{Mp(y)}\right)}{P\left(\mathcal{U} \leqslant \frac{\pi(y)}{Mp(y), y \in \mathbb{R}}\right)} = \frac{\int_{-\infty}^{t} \int_{0}^{\frac{\pi(x)}{Mp(x)}} p(x) dx du}{\int_{-\infty}^{+\infty} \int_{0}^{\frac{\pi(x)}{Mp(x)}} p(x) dx du} = \frac{\int_{-\infty}^{t} \frac{\pi(x)}{Mp(x)} p(x) dx}{\int_{-\infty}^{+\infty} \frac{\pi(x)}{Mp(x)} p(x) dx}$$

$$= \frac{\int_{-\infty}^{t} \frac{\pi(x)}{M} dx}{\int_{-\infty}^{+\infty} \frac{\pi(x)}{M} dx} = F(t) \blacksquare$$

$$\bullet P(\text{Accept}) = P(\mathcal{U} \leqslant \frac{\pi(y)}{Mp(y)}) = \int_{-\infty}^{+\infty} \int_{0}^{\frac{\pi(x)}{Mp(x)}} p(x) dx du = \int_{-\infty}^{+\infty} \frac{\pi(x)}{Mp(x)} p(x) dx = \frac{1}{M}$$

thus $M^* = \sup_x \frac{\pi(x)}{p(x)}$. An upper bound is fine even though you will be rejecting more often than you wish. Underestimating M will yield biased results. \bullet if $\pi(x) = \frac{\tilde{\pi}(x)}{Z}$, Z is unknown \Rightarrow you can try to estimate Z then use rejection sampling.

$$\int_{-\infty}^{+\infty} \frac{\tilde{\pi}(x)}{Z \cdot M \cdot p(x)} p(x) dx = \frac{1}{M} \Rightarrow \int_{-\infty}^{+\infty} \frac{\tilde{\pi}(x)}{p(x)} dx = Z$$
$$\hat{Z}_N = \frac{1}{N} \sum_{i=1}^{N} \frac{\tilde{\pi}(y_i)}{p(y_i)}, \text{ where } y_i \sim p(\cdot);$$

• run rejection sampling for $\pi(x) = \frac{\tilde{\pi}(x)}{\hat{Z}}$.

- if $d \in [2, 10] \Rightarrow$ rejection sampling is fine;
- if $\pi(x)$ bounded, compact support \Rightarrow sample from $\pi(x)$ using the proposal $\mathcal{U}(K)$ uniform over K.

Example:

$$y \sim B(\alpha, \beta) \Leftrightarrow \pi_y(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}, \ x \in [0, 1].$$

Example:

$$\pi(x) = \frac{1}{\sqrt{2\pi}} \exp{-\frac{x^2}{2}}; p(x) = \frac{1}{4} \exp{-\frac{|x|}{2}}, x \in \mathbb{R}^1$$

$$M = \sup_{x} \frac{\pi(x)}{p(x)} = \sup_{x} \left(\frac{4}{\sqrt{2\pi}} \exp{-\frac{x^2}{2}} + \frac{|x|}{2} \right) = \left\{ x = \frac{1}{2}, \text{ symmetric, take } x \geqslant 0 \right\} = \frac{4}{\sqrt{2\pi}e^{\frac{1}{8}}} = \sqrt{\frac{8}{\pi}}e^{\frac{1}{8}} \approx 1.8e^{\frac{1}{8}}$$

 $M \approx 0.56; x \in \mathbb{R}^d \Rightarrow M_d = M^d;$ acceptance probability: $(0.56)^d$.

Good story but unfortunately for small dimensions only.

Example: when IS is useless

You want to estimate
$$P(|x| \ge 4) = \mathbb{E}\left[\mathbf{1}\{|x| \ge 4\}\right], x \sim \mathcal{N}(0, 1).$$

Usual Monte-Carlo estimate: $\mathbb{E}\left[\mathbf{1}\{|x| \ge 4\}\right] \leftarrow \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}\{|x_i| \ge 4\}.$
You will get 0. Great approach in terms of absolute error, bad in terms of relative error.
IS: $g(y) \sim \mathcal{N}(5, 1)$ - proposal; $\mathbb{E}\left[\mathbf{1}\{|x| \ge 4\}\right] \leftarrow \frac{1}{N} \sum_{i=1}^{N} \frac{\mathbf{1}\{|x_i| \ge 4\}p(y_i)}{g(y_i)}$, where $p(\cdot) \sim \mathcal{N}(0, 1), y_i \sim g(\cdot)$

 $\frac{p(x)}{q(x)}\mathbf{1}\{|x| \geqslant 4\}$ is quite small.