河北省"五个一"名校联盟 2023 届高三年级联考(2022. 12)

数学试卷

命题单位: 石家庄市第一中学

(满分: 150分, 测试时间: 120分钟)

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1. 已知集合 $A = \{x \mid -1 < 2^x < 2, x \in R\}$,集合 $B = \{x \mid -1 < \log_2 x < 2, x \in R\}$,则集合 $A \cap B = ($

A.
$$\{x | 0 < x < 1\}$$
 B. $\{x | x < 1\}$ C. $\{x | \frac{1}{2} < x < 1\}$ D. $\{x | x < 4\}$

2. 已知(3+i)z=4+i, 其中i为虚数单位,则z的虚部是()

A.
$$\frac{13}{10}$$
 B. $-\frac{1}{10}$ C. $\frac{13}{10}i$ D. $-\frac{1}{10}i$

- 3. 已知 $p: x \neq 3$ 或 $y \neq 7$, $q: xy \neq 21$, 则 $p \neq q$ 的 ()
- A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件

4. 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$,左、右焦点分别为 F_1 、 F_2 ,O 为坐标原点,P 为右支上一点,

且 $|OP| = \sqrt{a^2 + b^2}$, O到直线 PF_2 的距离为b, 则双曲线C的离心率为(

A. 2 B.
$$\sqrt{5}$$
 C. $\sqrt{6}$ D. $2\sqrt{2}$

5. 已知
$$x > 0$$
, $y > 0$, 且 $xy = 1$, 则 $\frac{x^3 + 2}{x} + \frac{4y^3 + 1}{y}$ 的最小值为()

A.
$$2+2\sqrt{2}$$
 B. 4 C. $4+\sqrt{2}$ D. $4+2\sqrt{2}$

6.设异面直线 a,b 所成的角为 50° ,经过空间一定点 O 有且只有四条直线与直线 a,b 所成的角均为 θ ,则 θ 可以是下列选项中的()

A.
$$\frac{\pi}{6}$$
 B. $\frac{\pi}{3}$ C. $\frac{5\pi}{12}$ D. $\frac{\pi}{2}$ 7. 设 $a = \frac{12}{13}$, $b = \ln \frac{7}{4}$, $c = \sin \frac{4}{3}$, 那么以下正确的是())

A.
$$a > b > c$$
 B. $c > a > b$ C. $a > c > b$ D. $c > b > a$

8. 已知点列 P_n 在 \triangle ABC 内部, \triangle ABP_n 的面积与 \triangle ACP_n 的面积比为 $\frac{1}{3}$,在数列 $\left\{a_n\right\}$ 中, $a_1=1$,若存

在数列 $\left\{\lambda_{n}\right\}$ 使得对 $\forall n \in N^{*}$, $\overrightarrow{AP_{n}} = 3\lambda_{n}a_{n}\overrightarrow{AB} + (4\lambda_{n}a_{n-1} + 3\lambda_{n})\overrightarrow{AC}$ 都成立,那么 $a_{4} = ($)

- A. 15 B. 31 C
 - C. 63 D. 12
- 二、多项选择题:本大题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符合题目要求,全部选对得 5 分,部分选对得 2 分,有选错的得 0 分.》
- 9.下列说法错误的是()
- A. 甲乙丙丁四个人排队,事件 A: 甲不在排头,事件 B: 乙不在排尾,那么 $P(B|A) = \frac{7}{9}$;
- B. 若随机变量 ξ 服从二项分布 B(100,0.6) ,则 $P(\xi=0)=0.6^{100}$;
- C. 若随机变量 ξ 服从正态分布 N(100,64) ,则 $E\xi = 100, D\xi = 8$;
- D. E(4X+1) = 4E(X)+1, D(4X+1) = 16D(X)+1.
- 10. 已知函数 $f(x) = 2\sin(2x + \theta) + 1(0 < \theta < \pi)$,其一个对称中心为点 $(\frac{\pi}{6}, 1)$,那么以下正确的是 ()
- A. 函数 f(x) 的图像向右平移 $\frac{\pi}{12}$ 个单位后, 关于 y 轴对称;
- B. 函数 |f(x)| 的最小正周期为 $\frac{\pi}{2}$;
- C. 不等式 $f(x) \le 0$ 的解集是 $\left\{ x \middle| k\pi + \frac{\pi}{4} \le x \le k\pi + \frac{7\pi}{12}, k \in Z \right\}$;
- D. 当 $x \in \left[-\frac{\pi}{12}, 0 \right]$ 时, $f(x) + \frac{36}{\pi} x \ge 0$ 恒成立.
- 11.已知 x, y, z 均为正数, $a = \sqrt{x^2 + xy + y^2}$, $b = \sqrt{y^2 + yz + z^2}$, $c = \sqrt{x^2 + xz + z^2}$,则三元数组 (a, b, c) 可以是以下 ()
- A.(1,2,3)
- B.(3,4,9)
- C.(5,6,10)
- D.(7,8,13)

12. 已知等腰三角形 ABC, AC=BC=3, $AB=3\sqrt{3}$, D 为边 AB 上一点,且 $AD=\sqrt{3}$,沿 CD 把 \triangle ADC 向上折起, A 到达点 P 位置,使得二面角 P-CD-B 的大小为 $\frac{2\pi}{3}$,在几何体 PBCD 中,若其外接球半径为 R,其外接球表面积为 S ,那么以下正确的是()

A.
$$CD = \sqrt{3}$$
 B. $PB = \frac{3\sqrt{10}}{2}$ C. $R = 3$ D. $S = 39\pi$

三、填空题: 本题共 4 小题, 每小题 5 分, 其中 16 题第一空 2 分, 第二空 3 分, 共 20 分.

13.在
$$(x-\frac{1}{x^2})^9$$
的展开式中,常数项是第_____项.

14. 已知函数
$$f(x) = \lg(ax^2 - 6x + 5)$$
 的值域为 R , 那么 a 的取值范围是_____.

15.已知椭圆
$$\frac{x^2}{10} + \frac{y^2}{5} = 1$$
 上有不同的三点 A, B, C ,那么 $\triangle ABC$ 面积最大值是______.

16. 对
$$\forall x \in (0,+\infty)$$
 ,都有 $f(x) = x^3 + (e-2m)x^2 + x + e^x - e(\ln x + 1) \ge 0$ 恒成立,那么 m 的取值范围是______.

四、解答题:本题共 6 小题,第 17 题 10 分,第 18 \sim 22 题每题 12 分,共 70 分.解答应写出文字说明、证明过程或演算步骤.

17.已知数列 $\{a_n\}$, 其前n项和 $S_n = n^2 - 6n + 1$,

- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 若 $b_n = 2^n$, 求数列 $\left\{a_n b_n\right\}$ 的前n项和 T_n .

18. 已知在如图所示的三棱锥 A-BCD 中, BD=4, $BA=2\sqrt{3}$, $BC=2\sqrt{2}$, $\angle BAD=\angle BCD=\frac{\pi}{2}$, 面 BAD 上面 BCD,

- (1) 求棱 AC 的长度;
- (2) 求直线 CD 与平面 ABC 所成角的正弦值.

19.在三角形 ABC 中,若 $\sin^2 A + \sin^2 B + \sin^2 C = 2\sqrt{3} \sin A \sin B \sin C$,

- (1) 求角 A 的大小;
- (2) 如图所示, 若DB = 2, DC = 4, 求DA长度的最大值.

20. 甲、乙两人进行一次乒乓球比赛,约定先胜 4 局者获得这次比赛的胜利,比赛结束,假设在一局比赛中,甲、乙获胜的概率均为 0.5,且各局比赛结果相互独立,已知前两局比赛均为甲获胜,

- (1) 求甲获得这次比赛胜利的概率;
- (2) 设 ξ 表示从第 3 局开始到比赛结束所进行的局数,求 ξ 的分布列及数学期望.
- 21.已知函数 $f(x) = e^x$, $g(x) = -x^2$.
- (1) 若 $f(x) \ge ax + 1$ 恒成立,求a.
- (2) 若直线 l 与函数 f(x) 的图像切于 $A(x_1, y_1)$,与函数 g(x) 的图像切于 $B(x_2, y_2)$,求证: $x_1 + x_2 < \frac{1}{4}$.

22. 已知椭圆
$$C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$
,左、右焦点分别为 $F_1(-1,0)$ 、 $F_2(1,0)$,左、右顶点分别为 A 、 B ,

若 T 为椭圆上一点, $\angle F_1TF_2$ 的最大值为 $\frac{\pi}{3}$,点 P 在直线 x=4 上,直线 PA 与椭圆 C 的另一个交点为 M,直线 PB 与椭圆 C 的另一个交点为 N ,其中 M 、 N 不与左右顶点重合.

- (1) 求椭圆C的标准方程;
- (2) 从点 A 向直线 MN 做垂线, 垂足为 Q, 证明: 存在点 D, 使得 |DQ| 为定值.