SSIE 660: Stochastic Systems Dr. Sung H. Chung Note 16 Chapter 7. Renewal Theory - Cont'd

Relationship between m(t), mean number of renewals by time t, and $E[S_{N(t)+1}]$, the expected time of the first renewal after t.

- Let $g(t) = E[S_{N(t)+1}].$
- The first renewal occurs by time *x*. That is,

$$X_1 = x$$

• Conditioning on the time of the first renewal,

$$g(t) = \int_0^\infty E[S_{N(t)+1}|X_1 = x]f_{X_1}(x)dx$$

$$g(t) = \int_0^t [x + g(t - x)] f_X(x) dx + \int_t^\infty x f_X(x) dx = \int_0^\infty x f_X(x) dx + \int_0^t g(t - x) f_X(x) dx$$

$$= E[x] + \int_0^t g(t - x) f_X(x) dx$$

Renewal equation:

Renewal equation:

$$\frac{\partial(t-x)}{\partial t} = \frac{\partial f(t)}{\partial t} + \frac$$

L) proposition 7.2

$$Y(t) =$$
 time from t until the next orrival $S_{N(t)+1} =$ to $Y(t) =$

Taking expectations:

$$g(t) = E[S_{N(t)+1}] = t + E[Y(t)] = M(m(t)+1]$$

$$M(t) = \frac{1}{t} + \frac{1}{t} + \frac{1}{t} \cdot \frac{1}{t}$$

$$M(t) = \frac{1}{t} + \frac{1}{t} + \frac{1}{t} \cdot \frac{1}{t}$$

$$M(t) = \frac{1}{t} + \frac{1}{t} + \frac{1}{t} \cdot \frac{1}{t}$$

$$M(t) = \frac{1}{t} + \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$$

$$M(t) = \frac{1}{t} + \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$$

$$M(t) = \frac{1}{t} + \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$$

$$M(t) = \frac{1}{t} + \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$$

$$M(t) = \frac{1}{t} + \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$$

$$M(t) = \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$$

$$M(t) = \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$$

$$M(t) = \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$$

$$M(t) = \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$$

$$M(t) = \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$$

$$M(t) = \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$$

$$M(t) = \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$$

$$M(t) = \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$$

$$M(t) = \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$$

$$M(t) = \frac{1}{t} \cdot \frac{1}{t} \cdot$$

Example 2. Consider the renewal process whose inter-arrival distribution is the convolution of two exponentials. Find m(t). do this by determining F(t): $F(t) = 1 - e^{-\mu_i \cdot Ct}$: Y(t): remaining f(t). $F = F_1 * F_2$ $F(t) = \int_{-\infty}^{\infty} f(t-7) d7$ nenewal = new machine Figure: euch machine has two compo.

euch machine has two compo.

initially 1se compo is used.

then 2nd. after 2nd fails. 1st component 2nd component and then machine will be put. (renewal) $[EX] = M = \frac{1}{M_{\bullet}} + \frac{1}{M_{\bullet}}$ E[Y(t)] = E[remains] life of the machine pare] Figure: 2nd component working at t.

working w/ prob. pc+)

Now the problem is to find p(t): Figure: Prob [1 st component is employed at t] • Let us define a stochastic process $\{X(t), t \ge 0\}$ such that $X(t) = \begin{cases} 1 & \text{if component 1 is employed at } t \\ 2 & \text{if component 2 is employed at } t \end{cases}$ if ise is still in use : remany life is elitims

 $E[f(+1)] = \left(\frac{1}{n!} + \frac{1}{n^2}\right) p(-1) + \frac{1}{n!} (-p(+1))$

If ind is being used:

• What 'stochastic process' does X(t) follow? Innous time Harbor Chain

• Consider the following problem:

• We found $P_{00}(t)$ and $P_{10}(t)$ (We could also find $P_{01}(t)$ and $P_{11}(t)$)

$$P_{00}(t) = \frac{\mu}{\mu + \lambda} + \frac{\lambda}{\mu + \lambda} e^{-(\mu + \lambda)t}, \quad P_{10}(t) = \frac{\mu}{\mu + \lambda} - \frac{\mu}{\mu + \lambda} e^{-(\mu + \lambda)t}$$

$$E[Y(t)] = \frac{1}{M_2} + \frac{1}{M_1} \left[\frac{M_2}{M_1 + M_2} + \frac{M_1}{M_1 + M_2} e^{-(M_1 + M_2)t} \right]$$

$$= \frac{1}{M_2} + \frac{M_2}{M_1 (M_1 + M_2)} + \frac{1}{M_1 + M_2} e^{-(M_1 + M_2)t}$$

$$M(\pi(t)) + 1 = t + G[Y(t)]$$

$$M(t) = \frac{t}{\lambda} - 1 + \frac{E[Y(t)]}{\lambda}$$

$$M(t) = \frac{t}{\lambda} - 1 + \frac{E[Y(t)]}{\lambda}$$

$$M(t) = \frac{t}{\lambda} + \frac{t}{\lambda}$$

$$m(+) = \pm \frac{\mu_{1}\mu_{2}}{\mu_{1}+\mu_{2}} - 1 + \frac{\mu_{1}\mu_{2}}{\mu_{1}+\mu_{2}}\mu_{2} + \frac{\mu_{2}}{\mu_{1}(\mu_{1}+\mu_{2})(\mu_{1}+\mu_{2})(\mu_{1}+\mu_{2})} + \frac{\mu_{1}\mu_{2}}{(\mu_{1}+\mu_{2})^{2}} = -(\mu_{1}+\mu_{2})^{2} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{1}\mu_{2} \\ \mu_{1}+\mu_{2} & \mu_{1}\mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{1}\mu_{2} \\ \mu_{1}+\mu_{2} & \mu_{1}\mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{1}\mu_{2} \\ \mu_{1}+\mu_{2} & \mu_{1}\mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{1}\mu_{2} \\ \mu_{1}+\mu_{2} & \mu_{1}\mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{1}\mu_{2} \\ \mu_{1}+\mu_{2} & \mu_{1}\mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{1}\mu_{2} \\ \mu_{1}+\mu_{2} & \mu_{1}\mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{1}\mu_{2} \\ \mu_{1}+\mu_{2} & \mu_{1}\mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{1}\mu_{2} \\ \mu_{1}+\mu_{2} & \mu_{1}\mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{1}\mu_{2} \\ \mu_{1}+\mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{1}\mu_{2} \\ \mu_{1}+\mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{1}\mu_{2} \\ \mu_{1}+\mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{1}\mu_{2} \\ \mu_{1}+\mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{1}\mu_{2} \\ \mu_{1}+\mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{1}\mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{2}\mu_{2} \\ \mu_{2} & \mu_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}\mu_{2} & \mu_{$$

Renewal Reward Process

- A reward is received each time a renewal occurs. Specifically, a reward of R_n is received at the time of the n^{th} renewal.
- R_n , $n \ge 1$ are independent and identically distributed.
- But R_n may depend on X_n , the length of the n^{th} renewal interval.
- The total reward earned by time t is R(t).

$$R(t) = \sum_{n=1}^{N(t)} R_n$$

• Let $E[R] = E[R_n]$ and $E[X] = E[X_n]$.

Proposition 3. *If* $E[R] < \infty$ *and* $E[X] < \infty$ *, then*

1. with probability 1,
$$\lim_{t\to\infty} \frac{R(t)}{t} = \frac{E[R]}{E[X]}$$

2.
$$\lim_{t\to\infty} \frac{E[R(t)]}{t} = \frac{E[R]}{E[X]}$$

Proof.
$$\frac{R(t)}{t} = \frac{\sum_{n=1}^{N(t)} R_n}{t} = \left(\frac{\sum_{n=1}^{N(t)} R_n}{N(t)}\right) \left(\frac{N(t)}{t}\right)$$

$$= \left(\frac{\sum_{n=1}^{N(t)} R_n}{N(t)}\right)$$

$$= \left(\frac$$

and by proposition 7.1

$$\frac{\mathcal{N}^{(+)}}{t} \rightarrow \frac{1}{m} = \frac{1}{E[T]} \text{ as } t \rightarrow \infty$$

Remark:

- 1. If we say that a cycle is completed every time a renewal occurs, then Proposition 3 states that the long-run average reward per unit time is equal to the expected reword corred during a cycle divided in the expected le of a cycle 2. This result is valid when the reward is earned gradually throughout the renewal the expected length
- cycle, also.

Example 4 (A Car Buying Model). The life time of a car is continuous random variable having a distribution H and probability density h. Mr. Brown has a policy that he buys a new car as soon as his old one either breaks down or reaches age of T years. Suppose that a new car costs C_1 dollars and also that an additional cost of C_2 dollars is incurred whenever Mr. Brown's car breaks down. Under the assumption that a used car has no resale value, what is Mr. Brown's long-run average cost?

Find opened T to minimize the long-run overage cost. Renewal = Brown buying a new cor a cycle completes every time Brown Luying a new car long-run average cost = E[cost per cycle]

[un.+ time = E[length of r cycle] y = life of the car ~ hrey) in yet cycle Congoh = 1 Cost C, +C2 (ii) y >T y -> cycle length: T E[length of naple] = STy. Hursdy + STTHursdy length (+ if 45t = (Ty hy(y) dy + TC1-H4Ct)) E [Cost for cycle] = C, P[y)T]+(C, + S)P[y = T] = C, (P[y)] + P[y \ T]) + C, P[y \ T]

.: Mr Brown's long-run average cost will be

Now, suppose that hey) ~ uniform(0,10) herey) = 10

$$C_1 = 3k$$
 $C_2 = \frac{C}{2}K$

$$C_1 = 3k$$
 $C_2 = \frac{1}{2}K$ $H(T) = \int_0^T \frac{1}{10} dy$

if
$$t \leq 10$$
, then $3 + \frac{1}{2}(7/0) = \frac{7}{10}$.

$$\frac{1}{10} \text{ Jdy} + 7 \text{ C(-} \frac{7}{10})$$

$$= \frac{3 + \frac{T}{20}}{T^{2} | 20 + (\omega T - T^{2}) | 10} = \frac{60 + T}{20T - T^{2}}$$

let
$$g(\tau) = \frac{60 + T}{20T - T^2}$$
 $g'(\tau) = \frac{(20T - T^2) - (60 + T)(20 - 2T)}{(20T - T^2)^2}$

$$-) \quad T^2 + 120 T - 1200 = 0$$

$$t = 9.25$$
 -129.25