Predicting Fire Burn Occurrences

Lina Nguyen, Cole Bailey, Kevin Stewart

12/3/2021

Importing packages

library(tidyverse); library(tidyr); library(zoo); library(zoo); library(xts); library(tseries); library(astsa); library(lubridate); library(ggplot2); library(dplyr); library(fpp2); library(fpp2); library(fpp2); library(fpp2); library(ggplot2)

```
## - Attaching packages -
                                                                 tidyverse
1.3.1 —
## √ ggplot2 3.3.5
                                  0.3.4
                       √ purrr
## √ tibble 3.1.3
                       √ dplyr
                                  1.0.7
## √ tidyr
            1.1.3

√ stringr 1.4.0
## √ readr
             2.0.0
                       √ forcats 0.5.1
## -- Conflicts -
tidyverse_conflicts() —
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
##
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
##
##
       first, last
## Registered S3 method overwritten by 'quantmod':
     method
##
                       from
##
     as.zoo.data.frame zoo
##
## Attaching package: 'lubridate'
```

```
## The following objects are masked from 'package:base':
##
##
       date, intersect, setdiff, union
## - Attaching packages -
                                                                           fpp2
2.4 -
## √ forecast 8.15
                       √ expsmooth 2.3
## √ fma
                2.4
##
##
## Attaching package: 'fpp2'
## The following object is masked from 'package:astsa':
##
##
       oil
##
## Attaching package: 'tsibble'
## The following object is masked from 'package:lubridate':
##
       interval
##
## The following object is masked from 'package:zoo':
##
##
       index
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, union
## Loading required package: stats4
##
## Attaching package: 'sarima'
## The following object is masked from 'package:astsa':
##
##
       sarima
#loading the data file and seperating string values
df_fire <-</pre>
```

```
df_fire <-
read.csv("/Users/kevinstewart/Desktop/business_a/san_diego_fire_incident.csv"
, sep = ",")</pre>
```

#viewing data

```
head(df_fire)
```

```
fd problem_nature_agg_datasd_v1
X.1
## 1
                          agency type address city
problem
## 2
                                 Fire
                                          SAN DIEGO
                                                                      Ringing
Alarm
## 3
                                 Fire
                                          SAN DIEGO
                                                      Cardiac / Respiratory
Arrest
                                 Fire
                                          SAN DIEGO
## 4
                                                                  Assault/Rape
(L4)
## 5
                                 Fire
                                          SAN DIEGO
                                                           Assist PD - Ladder
Bldg
## 6
                                 Fire
                                          SAN DIEGO Back Pain (Non Traumatic)
(L4)
                               X.3
                                              X.4
##
               X.2
## 1 problem_count month_response year_response
                                 1
## 3
                                 9
                 1
                                             2001
## 4
                 2
                                 9
                                             2006
## 5
                 4
                                 9
                                             2006
## 6
                42
                                 9
                                             2006
```

correct colnames & and subsetting data based on year and most occurring problem

```
names(df_fire) <- df_fire %>% slice(1) %>%
unlist()
fire <- df_fire %>% slice(-1)
```

Mutate the data to month response

```
fire$problem count <- as.numeric(fire$problem count)</pre>
fire$month response <- as.numeric(fire$month response)</pre>
fire$year_response <- as.numeric(fire$year_response)</pre>
fire$problem <- as.factor(fire$problem)</pre>
# verify structure of data
str(fire)
## 'data.frame':
                   25138 obs. of 6 variables:
                         "Fire" "Fire" "Fire" "Fire" ...
## $ agency type
                   : chr
## $ address city : chr "SAN DIEGO" "SAN DIEGO" "SAN DIEGO" "SAN DIEGO"
## $ problem
                   : Factor w/ 485 levels ".Confined Space/Trench
Rescue",..: 329 111 70 77 84 88 97 100 103 119 ...
## $ problem_count : num 1 1 2 4 42 2 9 1 1 7 ...
## $ month response: num 1 9 9 9 9 9 9 9 9 ...
## $ year response : num 1900 2001 2006 2006 2006 ...
```

Verify the length and dimensions of the data

Viewing frequency of data

Number of Fire And EMS Dispatchment per Month


```
ggplot(data = fire) + geom_bar(col = 4,fill ="blue", mapping = aes(x =
year_response)) + ggtitle("Number of Fire And EMS Dispatchment per Year") +
xlab("Year") + ylab("Count") + scale_x_continuous(breaks =
scales::pretty_breaks(n = 16))
```

Number of Fire And EMS Dispatchment per Year

Number of Fire Burn And Incidences per Month

Number of Fire Burn And Explosions per Year

Looking at time series data

```
par(mfrow=c(3:2))
tsplot(fire[,4], ylab = "", xlab = "", type = "l", main = "Times Series Plot
of EMS Incidences", col = 4)
tsplot(fire[,4], xlab = "year_response", ylab = "Problem Count", main = "Time
Series Plot of Fire Burns and Explosions", type = "l", lwd=2, xlim = c(2006,
2021))
tsplot(fire[,4], xlab = "", ylab = "", main = "Time Series Plot of Problem
Count", type = "l", lwd=2, xlim = c(1,612))
```

Times Series Plot of EMS Incidencesime Series Plot of Fire Burns and Explo:

view data by individual fire incidents

tsplot(burns_fire\$month_response, main = "Time Series Plot of Fire Burns And
Explosions")

Time Series Plot of Fire Burns And Explosions

Logging the data graphically
tsplot(log(burns_fire\$month_response), main = "Time Series Plot of Logarithm
Fire Burns and Explosions")

Time Series Plot of Logarithm Fire Burns and Explos

the data shows that there is a there is also seasonality in the data which will need to be removed.

#viewing first variables of the burns month response data
head(burns_fire\$month_response)

[1] 2 5 6 7 8 9

graphically displaying month response and problem count
tsplot(fire\$month_response, main = "Time Series Plot of the Month")

tsplot(fire\$problem_count, main = "Time Series Plot of the Month Response and Problem Count")

me Series Plot of the Month Response and Problem

Declaring data as time series

Seasonal Plot: Change in Monthly Burn and Explosion I

ggsubseriesplot(ts_fire_b) +

ggtitle("Seasonal Plot: Monthly Seasonal Graph of Fire and Explosion
Incidences")+ ylab("Number of Burn Incidents")

#There shows that there is a spike in the winter to spring months and drastic decrease at the start of summer.

Looking at acf and pacf plot to check autocorrelation

head(acf2(burns_fire\$month_response,main = "ACF and PACF of Monthly Burns
and Explosions"))

#Differencing the data to obtain stationarity to remove trend and seasonality

```
diff_burns <- diff(diff(burns_fire$month_response))
tsplot(diff_burns)</pre>
```


acf and pacf plots
acf2(diff_burns, main = "ACF and PACF of Differenced Monthly Burns and
Explosions")

CF and PACF of Differenced Monthly Burns and Explo


```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] ## ACF -0.57 0.03 0.12 -0.24 0.28 -0.17 0.00 0.16 -0.19 0.09 0.02 - 0.20 ## PACF -0.57 -0.44 -0.19 -0.42 -0.19 -0.24 -0.29 -0.11 -0.09 -0.07 0.09 - 0.18 ## [,13] [,14] [,15] [,16] [,17] [,18] [,19] ## ACF 0.29 -0.17 0.03 0.07 -0.18 0.21 -0.15 ## PACF -0.03 -0.02 0.01 0.05 -0.02 0.07 0.04
```

Trying different AR models to find the best model

```
# Looking at ARIMA (1,1,1) model
ar1 <- arima(ts_fire_b, order = c(1,1,1))
ar1

##
## Call:
## arima(x = ts_fire_b, order = c(1, 1, 1))
##
## Coefficients:
## ar1 ma1
## 0.2231 -1.0000</pre>
```

```
## s.e. 0.1128 0.0378
##
## sigma^2 estimated as 9.518: log likelihood = -200.51, aic = 407.03
# AIC of 262.73
# ARIMA (2,0,0)
ar2 <- arima(ts_fire_b, order = c(2,0,0))
##
## Call:
## arima(x = ts_fire_b, order = c(2, 0, 0))
## Coefficients:
##
                   ar2
                       intercept
           ar1
##
        0.2350 -0.1365
                          6.5549
## s.e. 0.1123
                0.1117
                          0.3792
##
## sigma^2 estimated as 9.218: log likelihood = -199.87, aic = 407.74
# In viewing the data it appears that the data is best with differncing
ar3 <- arima(ts_fire_b, order = c(3,0,0))
ar3
##
## Call:
## arima(x = ts_fire_b, order = c(3, 0, 0))
## Coefficients:
##
           ar1
                   ar2
                           ar3
                               intercept
##
        0.2153 -0.1030
                       -0.1446
                                  6.5708
## s.e. 0.1121
                0.1134
                        0.1125
                                  0.3293
##
## sigma^2 estimated as 9.022: log likelihood = -199.05, aic = 408.11
ar4 <- arima(ts_fire_b, order =c(4,0,0))
ar4
##
## Call:
## arima(x = ts_fire_b, order = c(4, 0, 0))
##
## Coefficients:
##
           ar1
                   ar2
                           ar3
                                   ar4
                                        intercept
##
        0.1752 -0.1322
                       -0.0793
                               -0.2588
                                           6.5735
## s.e. 0.1097
                0.1110
                        0.1123
                                0.1125
                                           0.2558
##
## sigma^2 estimated as 8.432: log likelihood = -196.51, aic = 405.03
```

```
ar5 <- arima(ts_fire_b, order = c(5,0,0))
ar5
##
## Call:
## arima(x = ts_fire_b, order = c(5, 0, 0))
## Coefficients:
##
           ar1
                    ar2
                             ar3
                                     ar4
                                             ar5
                                                  intercept
        0.1876 -0.1275
                        -0.0715
##
                                -0.2706
                                                     6.5720
                                          0.0498
## s.e. 0.1132
                 0.1114
                          0.1136
                                  0.1156 0.1162
                                                     0.2681
##
## sigma^2 estimated as 8.41: log likelihood = -196.42, aic = 406.85
print(ar1);ar2;ar3;ar4;ar5
##
## Call:
## arima(x = ts_fire_b, order = c(1, 1, 1))
## Coefficients:
##
           ar1
                    ma1
##
        0.2231 -1.0000
## s.e. 0.1128
               0.0378
##
## sigma^2 estimated as 9.518: log likelihood = -200.51, aic = 407.03
##
## Call:
## arima(x = ts_fire_b, order = c(2, 0, 0))
##
## Coefficients:
##
           ar1
                    ar2 intercept
        0.2350 -0.1365
                            6.5549
##
                            0.3792
## s.e. 0.1123
                 0.1117
##
## sigma^2 estimated as 9.218: log likelihood = -199.87, aic = 407.74
##
## Call:
## arima(x = ts_fire_b, order = c(3, 0, 0))
##
## Coefficients:
##
           ar1
                    ar2
                             ar3
                                 intercept
##
        0.2153 -0.1030
                        -0.1446
                                    6.5708
## s.e. 0.1121
                 0.1134
                          0.1125
                                    0.3293
## sigma^2 estimated as 9.022: log likelihood = -199.05, aic = 408.11
```

```
##
## Call:
## arima(x = ts fire b, order = c(4, 0, 0))
## Coefficients:
##
           ar1
                    ar2
                            ar3
                                     ar4
                                          intercept
        0.1752 -0.1322
                        -0.0793
##
                                 -0.2588
                                             6.5735
## s.e. 0.1097
                 0.1110
                         0.1123
                                  0.1125
                                             0.2558
##
## sigma^2 estimated as 8.432: log likelihood = -196.51, aic = 405.03
##
## Call:
## arima(x = ts fire b, order = c(5, 0, 0))
##
## Coefficients:
##
           ar1
                    ar2
                            ar3
                                                 intercept
                                     ar4
                                             ar5
##
        0.1876 -0.1275
                         -0.0715
                                 -0.2706
                                          0.0498
                                                    6.5720
## s.e.
        0.1132
                 0.1114
                         0.1136
                                  0.1156 0.1162
                                                    0.2681
##
## sigma^2 estimated as 8.41: log likelihood = -196.42, aic = 406.85
# It is determined that an ARIMA model of (4,0,0) is the best model for
forecasting
```

Find the best arima model using a fit arima

```
# Determining best model
fit_ar <- auto.arima(diff_burns, stepwise = FALSE, approximation = FALSE,</pre>
trace = TRUE)
##
## ARIMA(0,0,0) with zero mean
                                    : 506.6855
## ARIMA(0,0,0) with non-zero mean : 508.793
## ARIMA(0,0,1) with zero mean
## ARIMA(0,0,1) with non-zero mean : Inf
## ARIMA(0,0,2) with zero mean
##
   ARIMA(0,0,2) with non-zero mean : Inf
## ARIMA(0,0,3) with zero mean
## ARIMA(0,0,3) with non-zero mean : Inf
## ARIMA(0,0,4) with zero mean
                                    : Inf
## ARIMA(0,0,4) with non-zero mean : Inf
##
   ARIMA(0,0,5) with zero mean
                                    : Inf
## ARIMA(0,0,5) with non-zero mean : Inf
##
   ARIMA(1,0,0) with zero mean
                                    : 478.2234
## ARIMA(1,0,0) with non-zero mean : 480.3899
   ARIMA(1,0,1) with zero mean
##
## ARIMA(1,0,1) with non-zero mean : Inf
## ARIMA(1,0,2) with zero mean : Inf
```

```
ARIMA(1,0,2) with non-zero mean : Inf
## ARIMA(1,0,3) with zero mean
## ARIMA(1,0,3) with non-zero mean : Inf
## ARIMA(1,0,4) with zero mean
                                : Inf
## ARIMA(1,0,4) with non-zero mean : Inf
##
   ARIMA(2,0,0) with zero mean
                                  : 463.2976
## ARIMA(2,0,0) with non-zero mean : 465.516
##
   ARIMA(2,0,1) with zero mean
                                  : Inf
## ARIMA(2,0,1) with non-zero mean : Inf
##
   ARIMA(2,0,2) with zero mean
                                  : Inf
## ARIMA(2,0,2) with non-zero mean : Inf
## ARIMA(2,0,3) with zero mean
                                : Inf
## ARIMA(2,0,3) with non-zero mean : Inf
## ARIMA(3,0,0) with zero mean
                                  : 462.9781
## ARIMA(3,0,0) with non-zero mean : 465.2571
## ARIMA(3,0,1) with zero mean
##
   ARIMA(3,0,1) with non-zero mean : Inf
## ARIMA(3,0,2) with zero mean
## ARIMA(3,0,2) with non-zero mean : Inf
## ARIMA(4,0,0) with zero mean
                               : 448.2129
## ARIMA(4,0,0) with non-zero mean : 450.521
##
   ARIMA(4,0,1) with zero mean
                                : Inf
## ARIMA(4,0,1) with non-zero mean : Inf
##
   ARIMA(5,0,0) with zero mean
                               : 448.8007
##
   ARIMA(5,0,0) with non-zero mean : 451.166
##
##
##
   Best model: ARIMA(4,0,0) with zero mean
# Confirming that an ARIMA (4,0,0) is the best fit model
```

#check residuals for the best model

```
#check residuals using forecast and a lag
forecast::checkresiduals(fit_ar, lag=12)
```

Residuals from ARIMA(4,0,0) with zero mean


```
##
##
    Ljung-Box test
##
## data: Residuals from ARIMA(4,0,0) with zero mean
## Q^* = 14.637, df = 8, p-value = 0.06659
##
## Model df: 4.
                  Total lags used: 12
# the best model based on forecasting and checking residuals
arima(burns_fire$month_response, order = c(4,0,0))
##
## Call:
## arima(x = burns_fire$month_response, order = c(4, 0, 0))
##
## Coefficients:
                                             intercept
##
                     ar2
                              ar3
                                        ar4
            ar1
##
         0.1752
                 -0.1322
                          -0.0793
                                   -0.2588
                                                6.5735
                                                0.2558
## s.e. 0.1097
                  0.1110
                           0.1123
                                    0.1125
## sigma^2 estimated as 8.432: log likelihood = -196.51, aic = 405.03
# print summary statistics
checkresiduals(fit_ar)
```

Residuals from ARIMA(4,0,0) with zero mean


```
##
##
    Ljung-Box test
##
## data: Residuals from ARIMA(4,0,0) with zero mean
## Q^* = 13.746, df = 6, p-value = 0.03261
##
## Model df: 4.
                  Total lags used: 10
print(summary(fit_ar))
## Series: diff_burns
## ARIMA(4,0,0) with zero mean
##
## Coefficients:
##
                      ar2
                                ar3
                                         ar4
             ar1
##
         -0.9945
                  -0.8816
                           -0.5776
                                     -0.4603
          0.1009
                   0.1372
                            0.1354
                                      0.1035
## s.e.
##
## sigma^2 estimated as 17.64: log likelihood=-218.68
## AIC=447.37
               AICc=448.21
                              BIC=459.09
##
## Training set error measures:
```

```
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set -0.1268859 4.089907 2.786639 NaN Inf 0.3383141 -0.07872935

#Get the standard deviation
std <- sqrt(17.64)
std
## [1] 4.2
```

In viewing the acf most of all the autocorrelation is removed from the model.

Dickey fuller Test to check for stationarity

```
adf.test(diff_burns)
## Warning in adf.test(diff_burns): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: diff_burns
## Dickey-Fuller = -7.0975, Lag order = 4, p-value = 0.01
## alternative hypothesis: stationary
#The stationarity is removed according to the dickey fuller test
```

We would reject the null, shows that we have stationarity.

Using arima to forecast monthly trends of fire incidents in San Diego

Forecasts from ARIMA(4,0,0) with zero mean

forecasting to look at most recent data
autoplot(f_cast, include = 48)

Forecasts from ARIMA(4,0,0) with zero mean


```
head(print(summary(f_cast)))
##
## Forecast method: ARIMA(4,0,0) with zero mean
## Model Information:
## Series: diff burns
## ARIMA(4,0,0) with zero mean
##
## Coefficients:
##
            ar1
                     ar2
                              ar3
                                       ar4
##
        -0.9945
                 -0.8816
                          -0.5776
                                   -0.4603
         0.1009
## s.e.
                  0.1372
                           0.1354
                                    0.1035
## sigma^2 estimated as 17.64: log likelihood=-218.68
## AIC=447.37 AICc=448.21 BIC=459.09
##
## Error measures:
                              RMSE
                                        MAE MPE MAPE
                                                          MASE
                                                                     ACF1
                       ME
## Training set -0.1268859 4.089907 2.786639 NaN Inf 0.3383141 -0.07872935
##
## Forecasts:
     Point Forecast Lo 80 Hi 80
                                                Lo 95 Hi 95
```

```
## 78
         -5.06772694 -10.4508388 0.3153849 -13.300486 3.165032
## 79
         7.26692522 -0.3251188 14.8589693 -4.344104 18.877955
## 80
         -7.35322034 -14.9672621 0.2608214 -18.997892 4.291452
         5.67460117 -2.0095082 13.3587106 -6.077230 17.426432
## 81
         -1.02554519 -8.7651319 6.7140415 -12.862222 10.811131
## 82
## 83
        -3.08055512 -11.1098465 4.9487363 -15.360297 9.199186
         4.07472804 -4.2437698 12.3932259 -8.647317 16.796773
## 84
## 85
         -3.35611585 -11.6813903 4.9691586 -16.088524 9.376293
## 86
         1.99676959 -6.3644246 10.3579638 -10.790573 14.784113
          0.03735123 -8.3614488 8.4361512 -12.807505 12.882207
## 87
## 88
         -1.73458611 -10.1829581 6.7137859 -14.655256 11.186084
          2.08358759 -6.4035933 10.5707685 -10.896435 15.063611
## 89
##
      Point Forecast
                          Lo 80
                                     Hi 80
                                                Lo 95
                                                         Hi 95
## 78
          -5.067727 -10.4508388 0.3153849 -13.300486 3.165032
## 79
           7.266925 -0.3251188 14.8589693 -4.344104 18.877955
## 80
          -7.353220 -14.9672621 0.2608214 -18.997892 4.291452
           5.674601 -2.0095082 13.3587106 -6.077230 17.426432
## 81
          -1.025545 -8.7651319 6.7140415 -12.862222 10.811131
## 82
          -3.080555 -11.1098465 4.9487363 -15.360297 9.199186
## 83
```