Let us now briefly explain how to compute the constant e', and more generally, how to accurately estimate the coefficients u_0, u_1, \ldots, u_k in the singular expansion of U(z) to any fixed order k:

$$U(z) = u_0 + u_1 Z + \dots + u_k Z^k + o_{z \to \rho}(Z^k),$$

with $Z = \sqrt{1 - z/\rho}$. The first step is to estimate the coefficients in the singular expansion of $S_X(z)$, of the form

$$S_X(z) = c_0 + c_1 Z + \dots + c_k Z^k + o_{z \to \rho}(Z^k),$$

For any fixed m (with the notations $F^{[m]}(z,y), \rho^{[m]}, \tau^{[m]}$ introduced above), we let $y^{[m]} := \tau^{[m]} + c_1^{[m]}Z + c_2^{[m]}Z^2 + c_3^{[m]}Z^3 + \cdots + c_k^{[m]}Z^k$, and consider the equation

 $-y^{[m]} + F^{[m]}(\rho^{[m]} \cdot (1 - Z^2), y^{[m]}) = 0,$

which we expand order by order in Z, each coefficient $[Z^i]$ in $H:=-y^{[m]}+F^{[m]}(\rho^{[m]}\cdot(1-Z^2),y^{[m]})$ being a certain polynomial expression in $c_1^{[m]},\ldots,c_k^{[m]}$. As it turns out, the coefficient $[Z^0]H$ and $[Z^1]H$ are 0, the coefficient $[Z^2]H$ is of the form $\frac{1}{2}(c_1^{[m]})^2-a$ with $a\approx 1.46797$, which gives $c_1^{[m]}=-\sqrt{2a}\approx -1.71346$, and then for $3\leq i\leq k+1$ the coefficient $[Z^i]H$ is of the form $c_1^{[m]}c_{i-1}^{[m]}-P_i(c_1^{[m]},\ldots,c_{i-2}^{[m]})$ for a certain explicit polynomial P_i . This allows us to solve iteratively for the constants $c_2^{[m]},c_3^{[m]},\ldots$; we find $c_2^{[m]}\approx 1.45297,c_3^{[m]}\approx -0.33156$, etc, and we observe exponentially fast convergence as m increases.

Then, to obtain the coefficients u_i , we simply use the explicit expression $U(z) = G(z, S_X(z))$, which ensures that the singular expansion of U(z) is the same as the singular expansion of $S_X(z) \cdot \left(1 - \frac{z}{1-z} - \frac{1}{2}S_X(z)\right)$. Expanding order by order in Z, we find that each u_i is a polynomial expression in c_1, \ldots, c_i , which allows us to compute the u_i 's from the c_i 's, giving $e' = u_3 \approx 1.67688$.