Uniformly elliptic PDEs

Question:

Consider the PDE

$$\inf_{a \in (-1,1)} \{ (1+a^2)u''(x) \} = 0 \tag{1}$$

on $x \in (-1,1)$. Is it uniformly elliptic?

Definition:

For $F: \Omega \times \mathbb{R}^n \times S^n \to \mathbb{R}$, where S^n is $n \times n$ symmetric matrices. We say F is uniformly elliptic (with the uniform ellipticity constants $0 < \lambda \leq \Lambda$) if

$$\mathcal{P}^{-}(X-Y) \le F(x,p,X) - F(x,p,Y) \le \mathcal{P}^{+}(X-Y) \tag{2}$$

for $x \in \Omega, p \in \mathbb{R}^n$ and $X, Y \in S^n$, where \mathcal{P}^+ and \mathcal{P}^- are Pucci's operators which defined as follows: for $X \in S^n$,

$$\mathcal{P}^+(X) := \max\{-\operatorname{trace}(AX) \mid \lambda I \le A \le \Lambda I \text{ for } A \in S^n\},\$$

$$\mathcal{P}^{-}(X) := \min\{-\operatorname{trace}(AX) \mid \lambda I \leq A \leq \Lambda I \text{ for } A \in S^{n}\}.$$

Solution:

For the PDE (1), we have

$$F(x, p, X) = \inf_{a \in (-1,1)} \{ (1 + a^2)X \},\$$

then

$$\begin{split} F(x,p,X) - F(x,p,Y) &= \inf_{a \in (-1,1)} \{ (1+a^2)(X-Y) \} \\ &= \sup_{a \in (-1,1)} \{ -(1+a^2)(X-Y) \}. \end{split}$$

For $0 < \lambda < \Lambda$, the Pucci's operators is

$$\mathcal{P}^+(X-Y) = \max\{-A(X-Y) \mid \lambda \le A \le \Lambda \text{ for } A \in \mathbb{R}\},\$$

$$\mathcal{P}^{-}(X - Y) = \min\{-A(X - Y) \mid \lambda \le A \le \Lambda \text{ for } A \in \mathbb{R}\}.$$

So, we need the condition for $\lambda \leq A \leq \Lambda$,

$$\mathcal{P}^{-}(X - Y) \le \sup_{a \in (-1,1)} \{ -(1 + a^{2})(X - Y) \} \le \mathcal{P}^{+}(X - Y).$$

For $\lambda \leq 1$ and $\Lambda \geq 2$, as $(1+a^2) \in [1,2)$, we have

$$\mathcal{P}^{-}(X-Y) \le F(x,p,X) - F(x,p,Y) \le \mathcal{P}^{+}(X-Y),$$

thus the PDE (1) is uniformly elliptic.