REMINDER ON FUNCTIONS

Given any two sets S and T, a function from S to T, written $f: S \to T$, is a "rule" that assigns to each element $s \in S$ a unique element $t \in T$. The set S is called the *domain* of f. We will generally consider functions from some set of real numbers to \mathbb{R} . We often specify functions by formulas; when we do this the take the domain to be the set of all real numbers for which the formula evaluates to a unique real number. In particular,

$$f(x) = 2x + 2$$
 and $g(x) = \frac{2x^2 - 2}{x - 1}$

are *not* the same function, even though their values agree for all $x \neq 1$, since their domains are different.

LIMITS OF FUNCTIONS

Definition 17.1: Let S be a subset of \mathbb{R} . Let $f: S \to \mathbb{R}$ be a function, and a and L be real numbers. We say that *the limit of* f *as* x *approaches* a *is* L provided:

for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $0 < |x - a| < \delta$, then x is in the domain of f and $|f(x) - L| < \varepsilon$.

If this happens, we write $\lim_{x\to a} f(x) = L$ to denote this.

- (1) Unpackaging parts of the definition.
 - (a) Describe $\{x \in \mathbb{R} \mid 0 < |x-2| < 1\}$ as a union of two open intervals.
 - (b) For a general $a \in \mathbb{R}$ and $\delta > 0$, describe $\{x \in \mathbb{R} \mid 0 < |x a| < \delta\}$ as a union of two open intervals.
 - (c) Focusing on the "domain" part of the definition, if the limit of f as x approaches a is L, then f must at least be defined (where?).
- (2) The $\varepsilon \delta$ game.
 - (a) Player 0 starts by graphing a function f (like a familiar one from calculus) and specifies an x-value a and a y-value L that (based on previous calculus knowledge) they think makes $\lim_{x\to a} f(x) = L$ **true**. [The graph should be large.]
 - (b) Player 1 choses an ε . This is how close we would like our function to be to L. Thus, ε goes up and down from L (corresponding to $|f(x) L| < \varepsilon$). Draw horizontal dotted lines with y-values $L \varepsilon$ and $L + \varepsilon$. [The ε should be large enough for people to see and have room to work in the picture.]
 - (c) Player 2 must find a δ such that every $x \in (a \delta, a) \cup (a, a + \delta)$ is
 - \bullet in the domain of f, and
 - has an output f(x) within $(L \varepsilon, L + \varepsilon)$.

Draw vertical dotted lines for the x-values $a-\delta$ and $a+\delta$. [Everyone in the team can assist player 2!]

- (d) Repeat with the same graph, players 1& 2 switching roles (and a new ε).
- (3) Draw the graph of $g(x) = \frac{2x^2 2}{x 1}$. Play the $\varepsilon \delta$ game with this function, a = 1 and L = -3. What happens?

Here's a real definition: a function from S to T is a subset $G \subset S \times T$ of ordered pairs of elements of S and T with the property that for all $s \in S$ there is a unique $t \in T$ such that $(s,t) \in G$; we write f(s) for this element t.

- (4) Consider the function $g(x) = \frac{2x^2 2}{x 1}$. It is true that $\lim_{x \to 1} g(x) = 4$.
 - (a) I claim that for $\varepsilon=3$, the choice $\delta=1.5$ "works" to make the rest of the definition true. Verify this.
 - (b) Find a δ that "works" for $\varepsilon = 1$.
 - (c) Find a δ that "works" for $\varepsilon = 1/2$.
 - (d) Find a δ that "works" for $\varepsilon > 0$.
- (5) Consider the function $g(x) = \frac{2x^2 2}{x 1}$. It is not true that $\lim_{x \to 1} g(x) = -3$. I claim that for $\varepsilon = 1$, there is no choice of $\delta > 0$ that "works" to make the rest of the definition true. Verify this.
- (6) Repackage your work from (4) to *prove* that $\lim_{x\to 1} g(x) = 4$.
- (7) Repackage your work from (5) to *disprove* that $\lim_{x\to 1} g(x) = -3$. (Warning: Until we prove something else, the conclusion of (6) is irrelevant to this problem... prove what?)