TIP8419 - Tensor Algebra Homework 8

Prof. André de Almeida andre@gtel.ufc.br

2019.2

High Order Order Orthogonal Iteration (HOOI)

Problem 1 For a third-order tensor $\mathcal{X} \in \mathbb{C}^{I \times J \times K}$ implement the higher order singular orthogonal iteration (HOOI) method, using the following prototype function:

$$[\mathcal{S}, \mathbf{U}^{(1)}, \mathbf{U}^{(2)}, \mathbf{U}^{(3)}] = hooi(\mathcal{X}) \tag{1}$$

Compare the results with the HOSVD algorithm.

Hint: Use the file "hosvd test.mat" to validate your result.

Problem 2 Consider the two third-order tensors $\mathcal{X} \in \mathbb{C}^{8\times 4\times 10}$ and $\mathcal{Y} \in \mathbb{C}^{5\times 5\times 5}$ provided in the data file "hosvd_denoising.mat". By using your HOOI prototype function, find a low multilinear rank approximation for these tensors, defined as $\tilde{\mathcal{X}} \in \mathbb{C}^{R_1 \times R_2 \times R_3}$ and $\tilde{\mathcal{Y}} \in \mathbb{C}^{P_1 \times P_2 \times P_3}$. Then, calculate the normalized mean square error (NMSE) between the original tensor and its approximation, i.e.,:

$$\mathrm{NMSE}(\tilde{\mathcal{X}}) = \frac{\|\tilde{\mathcal{X}} - \mathcal{X}\|_F^2}{\|\mathcal{X}\|_F^2}, \quad \mathrm{NMSE}(\tilde{\mathcal{Y}}) = \frac{\|\tilde{\mathcal{Y}} - \mathcal{Y}\|_F^2}{\|\mathcal{Y}\|_F^2}$$

<u>Hint</u>: The multilinear ranks of \mathcal{X} and \mathcal{Y} can be found by analysing the profile of the 1-mode, 2-mode and 3-mode singular values of these tensors.