REGRESJA LINIOWA

EKONOMETRIA WNE 2023/24

Sebastian Zalas

Uniwersytet Warszawski s.zalas@uw.edu.pl

20 listopada 2023

EKONOMETRIA

■ Teoria ekonomii + Metody statystyczne + Dane ekonomiczne

■ Najczęściej stosowane narzędzie ekonometryczne: **Metoda Najmniejszych Kwadratów** (MNK), również znana jako **regresja**. *ang. Ordinary Least Squares*, (OLS).

EKONOMETRIA

■ Teoria ekonomii + Metody statystyczne + Dane ekonomiczne

Najczęściej stosowane narzędzie ekonometryczne: Metoda Najmniejszych Kwadratów (MNK), również znana jako regresja. ang. Ordinary Least Squares, (OLS).

$Y \sim X$

$$\mathbb{E}[Y|X] = \beta_0 + \beta_1 X$$
$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- Y zmienna zależna
- X zmienna niezależna
- β₀ stała, parametr modelu
- lacksquare eta_1 współczynnik opisujący zależność X i Y, parametr modelu
- ε błąd losowy

$$Y \sim X$$

$$\mathbb{E}[Y|X] = \beta_0 + \beta_1 X$$

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- Y zmienna zależna
- X zmienna niezależna
- \blacksquare β_0 stała, parametr modelu
- β₁ współczynnik opisujący zależność *X* i *Y*, parametr modelu
- ε błąd losowy

$$Y \sim X$$

$$\mathbb{E}[Y|X] = \beta_0 + \beta_1 X$$

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- Y zmienna zależna
- X zmienna niezależna
- \blacksquare β_0 stała, parametr modelu
- lacksquare eta_1 współczynnik opisujący zależność X i Y, parametr modelu
- ε błąd losowy

$$Y \sim X$$

$$\mathbb{E}[Y|X] = \beta_0 + \beta_1 X$$

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- Y zmienna zależna
- X zmienna niezależna
- \blacksquare β_0 stała, parametr modelu
- \blacksquare β_1 współczynnik opisujący zależność X i Y, parametr modelu
- \blacksquare ε błąd losowy

$$Y \sim X$$

$$\mathbb{E}[Y|X] = \beta_0 + \beta_1 X$$

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- znamy Y oraz X
- nie znamy β_0 , $\beta_1 \Rightarrow$ jak je znaleźć?
- nie możemy ich wyznaczyć, ale możemy **oszacować**

$$Y \sim X$$

$$\mathbb{E}[Y|X] = \beta_0 + \beta_1 X$$

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- znamy Y oraz X
- nie znamy β_0 , $\beta_1 \Rightarrow \text{jak je znaleźć?}$
- nie możemy ich wyznaczyć, ale możemy **oszacować**

$$Y \sim X$$

$$\mathbb{E}[Y|X] = \beta_0 + \beta_1 X$$

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- znamy Y oraz X
- nie znamy β_0 , $\beta_1 \Rightarrow \text{jak je znaleźć?}$
- nie możemy ich wyznaczyć, ale możemy oszacować

PRZYKŁAD

PRZYKŁAD

PRZYKŁAD

METODA NAJMNIEJSZYCH KWADRATÓW

- **s**zukamy estymatorów: $\hat{\beta}_0 \longrightarrow \beta_0$ oraz $\hat{\beta}_1 \longrightarrow \beta_1$
- minimalizuje sumę kwadratów e; **reszt** (odchyleń) od danych:

$$\min \left\{ \sum_{i=1}^{n} e_i^2 \right\}$$

$$\min \left\{ \sum_{i=1}^{n} (y_i - (\hat{y}_i))^2 \right\}$$

$$\min_{\hat{\beta}_0, \hat{\beta}_1} \left\{ \sum_{i=1}^{n} (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)^2 \right\}$$

■ Korzystamy z warunków pierwszego rzędu.

► Dokładne rozwiązanie zadania minimalizacyjnego

METODA NAJMNIEJSZYCH KWADRATÓW

$$Y = \hat{\beta}_0 + \hat{\beta}_1 X + e$$

lacksquare estymator MNK parametru eta_1 , \hat{eta}_1

$$\hat{\beta}_1 = \frac{\sum_{i}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i}^{n} (x_i - \bar{x})^2} = \frac{S_{\chi, \gamma}}{S_{\chi}}$$

lacksquare estymator MNK wyrazu wolnego $eta_0,\,\hateta_0$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

estymator jest funkcją danych, więc sam jest zmienną losową.

OSZACOWANIE MODELU LINIOWEGO

$$Y = \hat{\beta}_0 + \hat{\beta}_1 X + e$$

- Y zmienna zależna
- X zmienna niezależna
- $\hat{\beta}_0$ oszacowanie stałej
- $\hat{\beta}_1$ oszacowanie parametru β_1
- *e* reszty

PREDYKCJA

$$Y = \hat{\beta}_0 + \hat{\beta}_1 X + e$$

 \hat{Y} wartości teoretyczne (dopasowane) zmiennej zależnej:

$$\hat{\gamma} = \hat{\beta}_0 + \hat{\beta}_1 X$$

e reszty:

$$e=Y-\hat{Y}=Y-(\hat{\beta}_0+\hat{\beta}_1X)$$

reszty $u \neq \varepsilon$ składnik losowy!

ZAPIS MACIERZOWY

$$y = X\beta + \varepsilon$$

- **X**_{$(n \times 2)$} obserwacje zm. niezależnej (objaśniającej)
- **y**_{$(n \times 1)$} obserwacje zm. zależnej (objaśnianej)
- \bullet $\epsilon_{(n\times 1)}$ wektor składników losowych
- lacksquare $eta_{(2 imes 1)}$ wektor parametrów eta_0 , eta_1 do oszacowania

ZAPIS MACIERZOWY

$$y = X\beta + \varepsilon$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} 1 & x_{1,1} \\ 1 & x_{2,1} \\ \vdots & \vdots \\ 1 & x_{n,1} \end{bmatrix}_{n \times 2} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}_{2 \times 1} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}_{n \times 1}$$

$$\mathbf{y} = \mathbf{X} \qquad \beta \qquad + \varepsilon$$

Możemy rozszerzyć model do wielu zmiennych

$$Y = \beta_0 + \beta_1 X_1 + \beta_1 X_2 + \dots + \beta_k X_k + \varepsilon$$
$$\mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \varepsilon$$

- *k* liczba zmiennych niezależnych (objaśniających)
- **X** $_{(n \times k+1)}$ obserwacje zm. niezależnych (objaśniających)
- **y**_{$(n \times 1)$} obserwacje zm. zależnej (objaśnianej)
- lacksquare $\epsilon_{(n \times 1)}$ wektor składników losowych
- lacksquare $eta_{(k+1\times 1)}$ wektor k+1 parametrów $eta_0, eta_1, eta_2, \ldots, eta_k$ do oszacowania

Możemy rozszerzyć model do wielu zmiennych

$$Y = \beta_0 + \beta_1 X_1 + \beta_1 X_2 + \dots + \beta_k X_k + \varepsilon$$
$$\mathbf{y} = \mathbf{X} \beta + \varepsilon$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} 1 & x_{1,1} & \dots & x_{1,k} \\ 1 & x_{2,1} & \dots & x_{2,k} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n,1} & \dots & x_{n,k} \end{bmatrix}_{n \times (k+1)} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}_{(k+1) \times 1} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}_{n \times 1}$$

$$\mathbf{y} = \mathbf{X} \qquad \beta + \varepsilon$$

$$y = X\beta + \varepsilon$$

wyznaczamy wektor reszt:

$$e = y - X\hat{\beta}$$

Aby wyznaczyć estymator MNK $\hat{\beta}$, minimalizujemy sumę kwadratów reszt:

$$\begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix} \begin{vmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{vmatrix} = e_1^2 + e_2^2 + \cdots + e_n^2 = \mathbf{e}' \mathbf{e}$$

Przekształćmy reszty:

$$e'e = (y - X\hat{\beta})'(y - X\hat{\beta})$$

$$= y'y - \hat{\beta}'X'y - y'X\hat{\beta} + \hat{\beta}'X'X\hat{\beta}$$

$$= y'y - 2\hat{\beta}'X'y + \hat{\beta}'X'X\hat{\beta}$$

Minimalizujemy sumę kwadratów reszt:

$$\min_{\hat{\boldsymbol{\beta}}} \left\{ \boldsymbol{y}' \, \boldsymbol{y} - 2 \hat{\boldsymbol{\beta}}' \boldsymbol{X}' \, \boldsymbol{y} + \hat{\boldsymbol{\beta}}' \boldsymbol{X}' \boldsymbol{X} \hat{\boldsymbol{\beta}} \right\}$$

Warunek pierwszego rzędu:

$$\frac{\partial \mathbf{e}' \mathbf{e}}{\partial \hat{\beta}} = -2\mathbf{X}' \mathbf{y} + 2\mathbf{X}' \mathbf{X} \hat{\beta} = 0$$

Przekształćmy reszty:

$$e'e = (y - X\hat{\beta})'(y - X\hat{\beta})$$

$$= y'y - \hat{\beta}'X'y - y'X\hat{\beta} + \hat{\beta}'X'X\hat{\beta}$$

$$= y'y - 2\hat{\beta}'X'y + \hat{\beta}'X'X\hat{\beta}$$

Minimalizujemy sumę kwadratów reszt:

$$\min_{\hat{\beta}} \left\{ \mathbf{y}' \mathbf{y} - 2\hat{\beta}' \mathbf{X}' \mathbf{y} + \hat{\beta}' \mathbf{X}' \mathbf{X} \hat{\beta} \right\}$$

Warunek pierwszego rzędu:

$$\frac{\partial \mathbf{e}' \mathbf{e}}{\partial \hat{\beta}} = -2\mathbf{X}' \mathbf{y} + 2\mathbf{X}' \mathbf{X} \hat{\beta} = 0$$

Przekształćmy reszty:

$$e'e = (y - X\hat{\beta})'(y - X\hat{\beta})$$

$$= y'y - \hat{\beta}'X'y - y'X\hat{\beta} + \hat{\beta}'X'X\hat{\beta}$$

$$= y'y - 2\hat{\beta}'X'y + \hat{\beta}'X'X\hat{\beta}$$

Minimalizujemy sumę kwadratów reszt:

$$\min_{\hat{\boldsymbol{\beta}}} \left\{ \boldsymbol{y}' \, \boldsymbol{y} - 2 \hat{\boldsymbol{\beta}}' \boldsymbol{X}' \, \boldsymbol{y} + \hat{\boldsymbol{\beta}}' \boldsymbol{X}' \boldsymbol{X} \hat{\boldsymbol{\beta}} \right\}$$

Warunek pierwszego rzędu:

$$\frac{\partial \mathbf{e}' \mathbf{e}}{\partial \hat{\beta}} = -2\mathbf{X}' \mathbf{y} + 2\mathbf{X}' \mathbf{X} \hat{\beta} = 0$$

Z warunku pierwszego rzędu otrzymujemy układ równań normalnych:

$$\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y}$$

Gdy $\textbf{\textit{X}}$ ma pełen rząd, $\textbf{\textit{X}}'\textbf{\textit{X}}$ jest dodatnio określona, odwracalna \Rightarrow układ równań ma jednoznaczne rozwiązanie

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

Wyznaczamy β̂:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\,\boldsymbol{y}$$

Z warunku pierwszego rzędu otrzymujemy układ równań normalnych:

$$X'X\hat{\beta} = X'y$$

Gdy $\textbf{\textit{X}}$ ma pełen rząd, $\textbf{\textit{X}}'\textbf{\textit{X}}$ jest dodatnio określona, odwracalna \Rightarrow układ równań ma jednoznaczne rozwiązanie

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

Wyznaczamy β̂:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\,\boldsymbol{y}$$

Z warunku pierwszego rzędu otrzymujemy układ równań normalnych:

$$X'X\hat{\beta} = X'y$$

Gdy $\textbf{\textit{X}}$ ma pełen rząd, $\textbf{\textit{X}}'\textbf{\textit{X}}$ jest dodatnio określona, odwracalna \Rightarrow układ równań ma jednoznaczne rozwiązanie

$$(X'X)^{-1}X'X\hat{\beta} = (X'X)^{-1}X'y$$

Wyznaczamy $\hat{\beta}$:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\,\boldsymbol{y}$$

PREDYKCJA - MODEL Z WIELOMA ZMIENNYMI

$$y = X\hat{\beta} + e$$

 \hat{y} wartości teoretyczne (dopasowane) zmiennej zależnej:

$$\hat{y} = X\hat{\beta}$$

e wektor reszt:

$$e = y - \hat{y} = y - X\hat{\beta}$$

Analiza Wariancji

Analiza wariancji (ANOVA) - metoda rozkładania zmienności jednej zmiennej jako funkcję kilku innych.

Chcemy zdekomponować wariancję y mając na uwadze, że z definicji $v_i = \hat{v}_i + e_i$

$$V[y] = V[\hat{y}] + V[e]$$
$$= V[\hat{y}] + V[e] + 2 \operatorname{Cov}[\hat{y}, e]$$
$$= V[\hat{y}] + V[e]$$

Analiza Wariancji

Całkowita wariancja (zmienność) zmiennej objaśnianej (*Total Sum of Squares*)

$$V[y] = \frac{1}{N} \sum_{i=1}^{N} (y_i - \bar{y})^2 = \frac{1}{N} TSS$$

Wariancja wartości dopasowanych (Explained Sum of Squares)

$$\mathbb{V}[\hat{y}] = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - \bar{y})^2 = \frac{1}{N} ESS$$

Wariancja reszt (Residual Sum of Squares)

$$V[e] = \frac{1}{N} \sum_{i=1}^{N} e_i^2 = \frac{1}{N} RSS$$

Uwaga: TSS = ESS + RSS.

WSPÓŁCZYNNIK DETERMINACJI R²

Kiedy oszacowaliśmy model, możemy zastanowić się w jaki sposób ocenić jego dopasowanie do danych $\Rightarrow R^2$

Korzystając z analizy wariancji, możemy zdefiniować R^2 :

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})}{\sum_{i=1}^{n} (y_{i} - \bar{y})}$$

$$= 1 - \frac{\sum_{i=1}^{n} e_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})}$$

$$= 1 - \frac{RSS}{TSS}$$

Interpretacja

R² to część wariancji zmiennej zależnej wyjaśnionej przez model

Współczynnik determinacji R^2

Cechy R^2 :

- nigdy nie zmniejszy się, jeśli w modelu pojawi się dodatkowa zmienna.
- $R^2 \in [0,1]$
- model musi zawierać wyraz wolny

 \bar{R}^2 - skorygowany R^2 :

$$\bar{R}^2 = 1 - \frac{n-1}{n-k-1}(1-R^2)$$

- \bar{R}^2 karze za dodawanie kolejnych zmiennych objaśniających
- \bar{R}^2 będzie zawsze mniejszy lub równy R^2 .
- nie ma standardowej interpretacji (takiej jak R²).

INTERPRETACJA PARAMETRÓW

Regresja

$$y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + \dots + e$$

ale

$$\mathbb{E}[y \mid \mathbf{x}] = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + \dots + e$$

funkcja warunkowej wartości oczekiwanej y względem x

Efekt cząstkowy \Longrightarrow jak marginalne zmiany x_j przeniosą się na y

$$\frac{\partial}{\partial x_i} \mathbb{E}[y \mid \mathbf{x}]$$

INTERPRETACJA PARAMETRÓW

Mamy oszacowany prosty linowy model:

$$y = \hat{\beta}_0 + \hat{\beta}_1 x + e$$

Efekt cząstkowy

$$\frac{\partial \mathbb{E}[y \mid x]}{\partial x} = \hat{\beta}_1$$

Interpretacja $\hat{\beta}_1$:

Jeśli x zmieni się o jednostkę, to y średnio zmieni się o $\hat{\beta}_1$ jednostek.

INTERPRETACJA PARAMETRÓW

Model z wieloma zmiennymi:

$$y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + \dots + e$$

Pochodna $\mathbb{E}[y \mid \mathbf{x}]$ względem zmiennej x_i :

$$\frac{\partial \, \mathbb{E}[\, y \mid \boldsymbol{x}]}{\partial x} = \hat{\beta}_j$$

Interpretacja $\hat{\beta}_j$

Jeśli x_j wzrośnie o jednostkę, to *y średnio wzrośnie* o $\hat{\beta}_j$ jednostek, *przy innych czynnikach niezmienionych* (czyli \mathbf{x}_{-j} , ceteris paribus)

INTERPRETACJA PARAMETRÓW

- eteris paribus przypadku pochodnej regresji, warunek dosłownie nie utrzymuje wszystkiego innego na stałym poziomie. Utrzymuje jako stałe tylko uwzględnione zmienne w $\mathbb{E}[y \mid x]$. Oznacza to, że pochodna regresji zależy od tego, które regresory są uwzględnione.
- pochodną regresji jest zmiana $\mathbb{E}[y \mid x]$, a nie zmiana rzeczywista wartości y dla konkretnej jednostki. Kuszące jest myślenie o pochodnej regresji jako o zmianie w rzeczywistej wartości y, ale nie jest to poprawna interpretacja.
- Przyczynowość!

Transformacja log(.)

► Czasami korzystamy z transformacji funkcją log() - dlaczego?

Spójrzmy na przykłady

zastosujmy log(płaca)

zastosujmy log(płaca) ⇒ wariancja płac↓

płace mają rozkład zbliżony do log-normalnego

▶ log(płace) mają rozkład zbliżony do normalnego

SPRZEDAŻ VS WYNAGRODZENIE CEO- CPS 1976

Wartości odstające (outliery) zaburzają obraz

SPRZEDAŻ VS WYNAGRODZENIE CEO- CPS 1976

▶ log() zmniejszają wpływ *outlierów* ⇒ <mark>obraz staje się klarowniejszy</mark>

Transformacja log(.)

Czasami korzystamy z transformacji funkcją log() - dlaczego?

- zmniejszamy wariancję zmiennych oraz wpływ wartości odstających outlierów
- zmieniamy rozkład zmiennej na zbliżony do r. normalnego
- chcemy mieć wygodną ekonomicznie interpretację elastyczności są często używane w ekonomii

INTERPRETACJA PARAMETRÓW

 zastosowanie log() ułatwia interpretację - możemy interpretować współczynniki jako (semi-)elastyczności

Interpretacja parametrów - podsumowanie

Specyfikacja	Zm. Oobjaśniana	Zm. objaśniająca	Interpretacja of β_1	komentarz
Level-level	y	x	$\Delta y = \beta_1 \Delta x$ $\Delta y = \frac{\beta_1}{100} \Delta x$ $\% \Delta y = (100 \beta_1) \Delta x$ $\% \Delta y = \% \Delta \beta_1 x$	standard
Level-log	y	log(x)		rzadziej spotykane
Log-level	log(<i>y</i>)	x		semi-elastyczność
Log-Log	log(<i>y</i>)	log(x)		elastyczność

KLUCZOWE POJĘCIA

- model linowy, metoda najmniejszych kwadratów, parametry, oszacowania, wartości dopasowane (teoretyczne), reszty, składnik losowy, MNK w zapisie macierzowym, minimalizacja sumy kwadratów reszt, estymator MNK, wariancja & kowariancja z próby (empiryczna), własności estymatora MNK (patrz zadanie 1 z listy), macierz X, zmienna zależna (objaśniania), zmienna niezależna (objaśniająca)
- ▶ analiza wariancji w modelu MNK, wariancja reszt, wariancja wartości teoretycznych, współczynnik determinacji - R² i własności , skorygowany R² i własności, efekt cząstkowy, interpretacja parametrów modelu linowym, log-linowym, lin-log, log-log, wartości odstające, elastyczność, semi-elastyczność

Pytania? Wątpliwości? Dziękuję!

e: s.zalas@uw.edu.pl

Metoda najmniejszych kwadratów polega na znalezieniu takich wartości $\hat{\beta}_0$, $\hat{\beta}_1$, które minimalizują sumę kwadratów reszt:

$$\min \sum_{i=1}^{n} (\hat{e_i})^2$$

$$\min_{\hat{\beta}_0, \hat{\beta}_1} \sum_{i=1}^{n} \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i \right)^2$$

Warunki pierwszego rzędu:

$$\frac{\partial W}{\partial \hat{\beta}_0} = \sum_{i=1}^{n} -2(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$
 (1)

$$\frac{\partial W}{\partial \hat{\beta}_1} = \sum_{i=1}^{n} -2x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$
 (2)

Przekształcimy równanie (1):

$$\sum_{i=1}^{n} y_i - \sum_{i=1}^{n} \hat{\beta}_0 - \sum_{i=1}^{n} \hat{\beta}_1 x_i = 0$$

zauważmy, że $n\bar{x} = \sum_{i}^{n} x_{i}$ oraz $n\bar{y} = \sum_{i}^{n} y_{i}$

$$n\bar{y} - n\hat{\beta}_0 - n\hat{\beta}_1\bar{x} = 0$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \tag{3}$$

otrzymaliśmy wzór na oszacowanie wyrazu wolnego.

Przekształćmy równanie (2):

$$\sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \hat{\beta}_{0} - \sum_{i=1}^{n} x_{i} \hat{\beta}_{1} x_{i} = 0$$

$$\sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} (\bar{y} - \hat{\beta}_{1} \bar{x}) - \sum_{i=1}^{n} x_{i} \hat{\beta}_{1} x_{i} = 0$$

$$\sum_{i=1}^{n} x_{i} y_{i} - n \bar{y} \bar{x} + \hat{\beta}_{1} n \bar{x}^{2} - \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} = 0$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - n \bar{y} \bar{x}}{\sum_{i=1}^{n} x_{i}^{2} - n \bar{x}^{2}}$$

$$(4)$$

Otrzymaliśmy wzór na oszacowanie $\hat{\beta}_1$, pokażemy że jest ono równe stosunkowi kowariancji x_i oraz y_i z próby, do wariancji x_i z próby.

Przekształcimy licznik równania (4). Pokażemy, że

$$\sum_{i=1}^{n} x_{i} y_{i} - n \bar{y} \bar{x} = \sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})$$

przekształcając prawą stronę:

$$= \sum_{i=1}^{n} (x_{i} y_{i} - x_{i} \bar{y} - y_{i} \bar{x} + \bar{x} \bar{y})$$

$$= \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \bar{y} - \sum_{i=1}^{n} y_{i} \bar{x} + \sum_{i=1}^{n} \bar{x} \bar{y}$$

$$= \sum_{i=1}^{n} x_{i} y_{i} - n \bar{x} \bar{y} - n \bar{x} \bar{y} + n \bar{x} \bar{y}$$

$$= \sum_{i=1}^{n} x_{i} y_{i} - n \bar{x} \bar{y}$$

Przekształcimy mianownik (4). Pokażemy, że

$$\sum_{i=1}^{n} x_i^2 - n\bar{x}^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

przekształcając prawą stronę:

$$= \sum_{i=1}^{n} (x_i^2 - 2x_i \bar{x} + \bar{x}^2)$$

$$= \sum_{i=1}^{n} x_i^2 - 2\bar{x} \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} \bar{x}^2$$

$$= \sum_{i=1}^{n} x_i^2 - 2n\bar{x}^2 + n\bar{x}^2$$

$$= \sum_{i=1}^{n} x_i^2 - n\bar{x}^2$$