Medical Image Analysis Lecture 08

Image Registration II

Overview - Image Registration

- What is it?
- Motivation
- Formal Definition & Categorization
- Rigid Registration Methods
 - Feature Based: Procrustes Alignment
 - Surface Based: Iterative Closest Point
 - Intensity Based

Definition of Image Registration

• Find a mapping h(x) aligning an image ("moving") with a second image ("fixed") such that a defined similarity measure is maximized.

Registration - Features vs. Voxels

Feature Based Approach

Voxel Based Approach

Registration - Features vs. Voxels

Registration based on voxel similarity

- Registration based on geometrical features
 - requires the extraction of points, lines or surfaces
 - is affected by feature localization
- Registration based on voxel similarity measures
 - uses some measure derived directly from the intensity of the image voxels
 - assumes some form of relationship between the image intensities of both images if in registration
 - does not require any feature extraction

Registration based on voxel similarity

- Registration based on geometric features is independent of the modalities from which the features have been derived, if features are visible
- Registration based on voxel similarity measures must distinguish between
 - Single-modality registration:
 - CT-CT, MR-MR, PET-PET, etc
 - Multi-modality registration
 - MR-CT, MR-PET, CT-PET, etc

Registration based on voxel similarity

- Optimal transformation T is determined iteratively by minimizing a voxel-based dissimilarity measure C.
- Voxel-dissimilarity measure C is a function of
 - image A
 - target, reference, fixed
 - image B
 - source, moving
 - transformation T
 - rigid, affine, nonlinear

Transformations

Rigid

Translation

Rotation

Translation+Rotation

Affine & Projective

Shear

Projective

Non-rigid

- Elastic
- Splines
- Fluid

- ...

Similarity Metrics

- Used to measure the similarity between two images
- Depends on the type of images to register

- Similarity assumptions:
 - Identity: Single-modality, only differ by Gaussian noise
 - Linear: Single-modality, differ by constant intensity
 - Information Theoretic / Probabilistic:
 Multi-modality, intensity changing, related by some statistical or functional relationship

Single-modal image registration

Sum of Squared Differences (SSD)

$$C(x;T) = \frac{1}{N} \sum_{i} (I_A(x_i) - I_B(T(x_i)))^2$$
For all voxels i

- assumes an *identity* relationship between image intensities in both images
- optimal measure if the difference between both images is Gaussian noise
- sensitive to outliers -> use Sum of Absolute Differences (SAD)!

Sum of Squared Differences (SSD)

Matlab! intensity registration test

Difference after translation 0

Difference after translation -40

Difference after translation 20

Difference after translation -20

Difference after translation 40

Image overlap

Single-modal image registration

Normalized Cross Correlation (CC)

$$CC(x;T) = \frac{\sum \left[\left(I_A(x) - \mu_A \right) \left(I_B(T(x)) - \mu_B \right) \right]}{\sqrt{\sum \left(I_A(x) - \mu_A \right)^2 \sum \left(I_B(T(x)) - \mu_B \right)^2}}$$

- $-\mu_A$ average intensity in image A
- $-\mu_{\scriptscriptstyle B}$ average intensity in image B
- assumes a *linear* relationship between image intensities (I_B = a*I_A+b)
- useful if images have different intensity windows

Metrics

Matlab!
SimilarityMetrics
Movie

Registration basis: Image intensity

- Single-modal image registration
 - Image intensities are related by some simple function
 - identity: Use SSD or SAD
 - linear: Use CC
- Multi-modal image registration
 - Image intensities are related by some unknown function or statistical relationship
 - Relationship between intensities is not known a-priori
 - Relationship between intensities can be viewed by inspecting a 2D histogram or co-occurrence matrix

Multi-modality image registration

Multi-modality image registration

- Information theoretic point of view
- Look at two images combined

Same as reducing amount of information in combined image!

 Registration tries to maximize the amount of shared information in two images!

How do we measure information?

Given:

a set of distinct symbols

$$\left\{v_1, v_2, \dots, v_n\right\}$$

- events of randomly drawing a symbol v from this set
- a probability distribution p over the set
- Measure of information:
 - Metaphor: measure the "degree of surprise" of a random event
 - How much information do we gain, after a certain v has been drawn from the set?

How do we measure information?

$$\left\{v_1, v_2, \dots, v_n\right\}$$

- Drawing v_i from the set is done with probability p_i
- A highly improbable event surprises us, while an almost certain event gains us not much information!
- -> Measure of information (gain) depends on p!
- Define measure of information h:
 - For two unrelated events x,y the information gain from observing both is h(x,y) = h(x) + h(y)

How do we measure information?

$$\left\{v_1, v_2, ..., v_n\right\}$$

- Two unrelated events x,y also are statistically independent! p(x,y) = p(x)*p(y)
- The only possible definition for h using p is:
 h(x) = -log₂ p(x)
- Example: coin flip {v₁: head, v₂: tails}

$$- p(x=v_1) = p(x=v_2) = 0.5$$

$$- h(x=v_1) = -log_2 p(x) = -log_2 0.5 = 1$$

$$- h(x=v_2) = 1$$

Measuring information

- Now suppose we want to transmit value of random variable x over a communication channel:
 - Average amount of information transmitted is the expectation of h
 with respect to p

$$H(X) = \sum_{x} p(x)(-\log_2 p(x))$$
 Quantity known as entropy!

- Back to coin flip: $H(x) = 0.5 * h(x=v_1) + 0.5 * h(x=v_2) = 1 bit$
- What happens with non-equal probabilities?
- "Unfair Coin": $p(x=v_1) = 0.3$, $p(x=v_2) = 0.7$ $H(x) = 0.3 * -log_2(0.3) + 0.7 * -log_2(0.7) = 0.88$ bit

Distributions and Entropy

Q: How does a prob. distribution have to look like for H=0? How for H=max?

Images as probability distributions

Images can be viewed as (pixel-wise) grey level probability distributions

 marginal probability p(a) of any pixel having intensity a

Probability distribution of an image can be estimated using histograms

- Requires binning!
- 32 to 256 bins
- May be refined by Parzen Windowing

Images as probability distributions

Joint probability p(a, b) of a pixel having intensity a
in one image and intensity b in another image
(corresponding locations!)

Joint Histogram

How often does it occur that intensities a and b are located at the same location in the two images?

 $A \rightarrow n(a,b)$

MR/MR Histograms for increasing joint entropy

misregistered by 2mm

registered

misregistered by 5mm

MR/CT

Histograms for increasing joint entropy

registered

misregistered by 2mm

misregistered by 5mm

MR/PET

Histograms for increasing joint entropy

registered

misregistered by 2mm

misregistered by 5mm

Images as probability distributions

 Frequency of corresponding intensity pairs can be interpreted in terms of probabilities

$$p(a,b) = \frac{n(a,b)}{N}$$

is the joint probability of a voxel having greyvalue a in the first image and greyvalue b in the second image

$$p(a) = \sum_{b} p(a,b)$$

is the marginal probability of a voxel in the first image having greyvalue a

$$p(b) = \sum_{a} p(a,b)$$

is the marginal probability of a voxel in the second image having greyvalue b

Entropy (Shannon-Wiener)

$$H(A) = -\sum_{a} p(a) \log_2 p(a)$$

describes the average amount of information in image A.

- The information content of an image is maximal (in the information theoretic sense) if all intensities have equal probability.
- The information content of an image is minimal (in the information theoretic sense) if one intensity a has a probability of one, i.e. p(a) = 1.

Joint Entropy (Hill et al., 1994)

$$H(A,B) = -\sum_{a} \sum_{b} p(a,b) \log_2 p(a,b)$$

describes the average amount of information in the combined images A and B.

- If A and B are totally unrelated, the joint entropy will be the sum of the entropies of A and B
- If A and B are related, the joint entropy will be smaller, i.e.

$$H(A,B) \le H(A) + H(B)$$

Registration can be achieved my minimizing the joint entropy between both images

Interpretation of Joint Entropy

low joint entropy

high joint entropy

Joint Entropy Metric

Matlab! joint_histogram_ movie

- Joint Entropy is highly sensitive to the overlap of the two images
- Mutual Information (MI, Viola et al., 1995 and Collignon et al., 1995)

$$I(A,B) = H(A) + H(B) - H(A,B)$$

describes how well one image can be explained by another image (i.e. the reduction of uncertainty about A when knowing B).

 Mutual Information can be expressed in terms of marginal and joint probability distributions:

$$I(A,B) = \sum_{a} \sum_{b} p(a,b) \log_2 \frac{p(a,b)}{p(a)p(b)}$$

Voxel similarity based on information theory

- Mutual Information is still to a certain degree sensitive to the overlap of the two images
- Normalized Mutual Information (Studholme et al, 1999) H(A) + H(B)

 $I(A,B) = \frac{H(A) + H(B)}{H(A,B)}$

can be shown to be independent of the amount of overlap between images.

 Registration can be achieved by maximizing (Normalized) Mutual Information between both images (i.e. a similarity measure)

Registration Comparing Images

 (Dis-)Similarity Metric (S) computation needs discrete representations of two images

Registration Transformation

 Relation of the two coordinate systems depends on transformation T

Forward transformation

Coordinate system of image A mapped onto image B

How to calculate Forward transform?

- Forwards Mapping
- Inverse Mapping

How to calculate Forward transform?

- Forwards Mapping
 - Generate output image of same size as image B
 - Go over voxels of A, transform coordinate using T and put the intensity of voxel from A into transformed location in output
 - Compare output image and image B in coordinate frame of image B

Problem with Forward Mapping

- Output pixels with more than one hit: overlap
 - Value must be accumulated from overlapping pixels
- Output pixels with no hits: hole

How to calculate Forward transform?

- Inverse Mapping
 - Generate output image of same size as image A
 - Go over voxels of image A, transform coordinate using T, interpolate the intensity of voxel from B and put the interpolated value into same coordinate of output image
 - Compare output image and image A in coordinate frame of image A

Backwards (Inverse) Mapping

- Output pixels are mapped back onto the input image
- Scheme avoids any holes and overlaps in the output image because all pixels are scanned sequentially
- Output pixel value must be interpolated from a neighborhood in the input image

Registration in practice – Summary so far

- Calculate (dis-)similarity metric in fixed image coordinate frame!
- Registration frameworks use inverse mapping to interpolate moving image
- Transforms map points from fixed image space to moving image space (forward transform)
 x' = T(x)

Point in moving image space

Point in fixed image space

I will not register images in pixel space I will not register images in pixel spore I will not register images in pix

In principle the denomination of fixed & moving image is arbitrary

 In practice the moving image is the one that will be resampled into the fixed image coordinate system

256 x 256 pixels

Quiz #1

Images from the same patient

Moving Image?

Fixed Image?

PET

128 x 128 pixels

Reason: Resample higher resolution image!

MRI-T2

Quiz #2

What scale factor?

- a) 2.0
- b) 1.0
- c) 0.5

PET

256 x 256 pixels

128 x 128 pixels

I will not register images in pixel space I will not register images in pix

Optimization

- Optimization of voxel-similarity measures normally requires iterative techniques, i.e.
 - gradient descent
 - Gauss-Newton, Levenberg-Marquardt, BFGS
 - see Numerical Recipes for a description of various optimization schemes
- Global optimization schemes are not feasible for image registration (exhaustive search, genetic)
- Local optimization schemes are much more efficient but will get trapped in local optima
- ⇒ Registration has a limited capture range

Optimization (Maximization)

Optimization

Multi-resolution optimization

 Capture range can be increased by using multi-scale techniques:

Multi-resolution optimization

 Registration can be accelerated by using multi-resolution techniques:

Optimization of voxel-similarity measures

Optimization of voxel-similarity measures

Discussion

- Voxel-similarity registration is a powerful technique for automatic image registration
 - Range of voxel similarity measures exist, whose suitability depends on the imaging modality, the image quality, and the anatomy
- Information-theoretic methods are particularly suitable for multi-modal images
 - Joint intensity histograms are used to compute marginal and joint intensity probabilities

