Develop a program to create histograms for all numerical features and analyze the distribution of each feature. Generate box plots for all numerical features and identify any outliers. Use California Housing dataset.

```
# Import necessary libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Load the dataset from local storage
data = pd.read_csv("california_housing.csv")
# Display the shape of the dataset
print("Dataset shape:", data.shape)
# Display column names
print("Column Names:", data.columns.tolist())
# Display basic information about the dataset
print("\nDataset Information:\n")
print(data.info())
# Print the first 10 rows of the dataset
print("\nFirst 10 Rows of the Dataset:\n")
print(data.head(10))
# Generate Histograms for all numerical features
plt.figure(figsize=(12, 8))
data.hist(bins=30, figsize=(12, 8), edgecolor='black', color='skyblue')
plt.suptitle("Histograms of All Numerical Features", fontsize=16)
plt.show()
# Generate Box Plots to identify outliers
plt.figure(figsize=(12, 8))
for i, col in enumerate(data.columns):
  plt.subplot(3, 3, i+1)
  sns.boxplot(y=data[col], color='lightcoral')
  plt.title(col)
  plt.ylabel(")
  plt.tight_layout()
plt.suptitle("Box Plots of All Numerical Features", fontsize=16)
plt.show()
```

OUTPUT

Histograms of All Numerical Features

Develop a program to Compute the correlation matrix to understand the relationships between pairs of features. Visualize the correlation matrix using a heatmap to know which variables have strong positive/negative correlations. Create a pair plot to visualize pairwise relationships between features. Use California Housing dataset.

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Load the dataset

df = pd.read_csv("california_housing.csv")

Display basic information about the dataset

print(df.info())
print("\nFirst 5 Rows:")
print(df.head())

Compute the correlation matrix

correlation matrix = df.corr()

Visualize the correlation matrix using a heatmap

plt.figure(figsize=(10, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", linewidths=0.5)
plt.title("Correlation Matrix Heatmap")
plt.show()

Create a pair plot to visualize relationships between features

sns.pairplot(df, diag_kind='kde')
plt.show()

output

PAIRPLOTS

Develop a program to implement Principal Component Analysis (PCA) for reducing the dimensionality of the Iris dataset from 4 features to 2

import pandas as pd from sklearn.decomposition import PCA import matplotlib.pyplot as plt

Read the Iris dataset

data = pd.read_csv("Iris.csv")

Select the 4 feature columns (adjust the column names if necessary)

X = data[["SepalLengthCm", "SepalWidthCm", "PetalLengthCm", "PetalWidthCm"]]

Apply PCA to reduce to 2 components

pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)

Print the shape and the first few rows of the reduced data

print("Reduced data shape:", X_pca.shape)
print(X_pca[:5])

Optional: Plot the 2D PCA result

plt.scatter(X_pca[:, 0], X_pca[:, 1]) plt.xlabel("Principal Component 1") plt.ylabel("Principal Component 2") plt.title("PCA of Iris Dataset") plt.show()

Iris Dataset (Sample Records)

Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5	5	3.6	1.4	0.2	Iris-setosa
6	5.4	3.9	1.7	0.4	Iris-setosa
7	4.6	3.4	1.4	0.3	Iris-setosa
8	5	3.4	1.5	0.2	Iris-setosa
9	4.4	2.9	1.4	0.2	Iris-setosa
10	7	3.2	4.7	1.4	Iris-versicolor
11	6.4	3.2	4.5	1.5	Iris-versicolor
12	6.9	3.1	4.9	1.5	Iris-versicolor
13	5.5	2.3	4	1.3	Iris-versicolor
14	6.5	2.8	4.6	1.5	Iris-versicolor
15	5.7	2.8	4.5	1.3	Iris-versicolor
16	6.3	3.3	4.7	1.6	Iris-versicolor
17	4.9	2.4	3.3	1	Iris-versicolor
18	6.6	2.9	4.6	1.3	Iris-versicolor
19	5.2	2.7	3.9	1.4	Iris-versicolor
20	6.3	3.3	6	2.5	Iris-virginica
21	5.8	2.7	5.1	1.9	Iris-virginica
22	7.1	3	5.9	2.1	Iris-virginica
23	6.3	2.9	5.6	1.8	Iris-virginica
24	6.5	3	5.8	2.2	Iris-virginica
25	7.6	3	6.6	2.1	Iris-virginica
26	4.9	2.5	4.5	1.7	Iris-virginica
27	7.3	2.9	6.3	1.8	Iris-virginica
28	6.7	2.5	5.8	1.8	Iris-virginica
29	7.2	3.6	6.1	2.5	Iris-virginica

For a given set of training data examples stored in a .CSV file, implement and demonstrate the Find-S algorithm to output a description of the set of all hypotheses consistent with the training examples

import csv
Load CSV directly into data

with open('enjoysport.csv', 'r') as file:

data = list(csv.reader(file))

Initialize hypothesis with the first positive example

hypothesis = []

for example in data[1:]: # Skip header row

if example[-1].lower() == 'yes':

hypothesis = example[:-1]

break

Generalize hypothesis based on other positive examples

for example in data[1:]:

if example[-1].lower() == 'yes':

for i in range(len(hypothesis)):

if hypothesis[i] != example[i]:

hypothesis[i] = '?'

print("Final Hypothesis:", hypothesis)

Output:

Final Hypothesis: ['Sunny', 'Warm', '?', 'Strong', '?', '?']

Develop a program to implement k-Nearest Neighbour algorithm to classify the randomly generated 100 values of x in the range of [0,1]. Perform the following based on dataset generated.

- a. Label the first 50 points $\{x1, \dots, x50\}$ as follows: if $(xi \le 0.5)$, then $xi \in Class1$, else $xi \in Class1$
- b. Classify the remaining points, x51,....,x100 using KNN. Perform this for k=1,2,3,4,5,20,30

```
import numpy as np
from collections import Counter
```

```
# Generate 100 random values in [0, 1]
```

```
np.random.seed(42)
data = np.random.rand(100)
```

Split into training (first 50) and test (last 50)

```
train_x = data[:50]

test_x = data[50:]
```

Label training data

```
def knn_predict(train_x, train_y, test_val, k):
    distances = np.abs(train_x - test_val)
    sorted_idx = np.argsort(distances)
    nearest_labels = np.array(train_y)[sorted_idx][:k]
    return Counter(nearest_labels).most_common(1)[0][0]
```

 $train_y = ['Class1' \text{ if } x \le 0.5 \text{ else 'Class2' for } x \text{ in } train_x]$

```
k_{values} = [1, 2, 3, 4, 5, 20, 30]
```

```
for k in k_values: print(f"--- For k = \{k\} ---") predictions = [] for i, x in enumerate(test\_x, start=51): pred = knn\_predict(train\_x, train\_y, x, k) predictions.append(pred) print(f"Point x\{i\}: \{x:.4f\} -> Predicted: \{pred\}") counts = Counter(predictions) print(f"Summary for k = \{k\}: Class1 = \{counts['Class1']\}, Class2 = \{counts['Class2']\} \n")
```

Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
def kernel(point, xmat, k):
  m,n = np.shape(xmat)
  weights = np.mat(np.eye((m)))
  for j in range(m):
     diff = point - X[i]
     weights[j,j] = np.exp(diff*diff.T/(-2.0*k**2))
  return weights
def localWeight(point, xmat, ymat, k):
  wei = kernel(point,xmat,k)
  W = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
  return W
def localWeightRegression(xmat, ymat, k):
  m,n = np.shape(xmat)
  vpred = np.zeros(m)
  for i in range(m):
     ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
  return ypred
# load data points
data = pd.read csv('tips.csv')
bill = np.array(data.total_bill)
tip = np.array(data.tip)
#preparing the data
mbill = np.mat(bill)
mtip = np.mat(tip)
m= np.shape(mbill)[1]
one = np.mat(np.ones(m))
X = np.hstack((one.T,mbill.T))
#set k here
ypred = localWeightRegression(X,mtip,0.5)
SortIndex = X[:,1].argsort(0)
xsort = X[SortIndex][:,0]
fig = plt.figure()
ax = fig.add\_subplot(1,1,1)
ax.scatter(bill,tip, color='yellow')
ax.plot(xsort[:,1],ypred[SortIndex], color = 'black', linewidth=2)
plt.xlabel('Total bill')
plt.ylabel('Tip')
plt.show();
```

OUTPUT

Tips Data Set(Sample Records):

total_bill	tip	gender	smoker	day	time	size
16.99	1.01	Female	No	Sun	Dinner	2
10.34	1.66	Male	No	Sun	Dinner	3
21.01	3.5	Male	No	Sun	Dinner	3
23.68	3.31	Male	No	Sun	Dinner	2
24.59	3.61	Female	No	Sun	Dinner	4
25.29	4.71	Male	No	Sun	Dinner	4
8.77	2	Male	No	Sun	Dinner	2
26.88	3.12	Male	No	Sun	Dinner	4
15.04	1.96	Male	No	Sun	Dinner	2
14.78	3.23	Male	No	Sun	Dinner	2
10.27	1.71	Male	No	Sun	Dinner	2
35.26	5	Female	No	Sun	Dinner	4
15.42	1.57	Male	No	Sun	Dinner	2
18.43	3	Male	No	Sun	Dinner	4
14.83	3.02	Female	No	Sun	Dinner	2
21.58	3.92	Male	No	Sun	Dinner	2
10.33	1.67	Female	No	Sun	Dinner	3
16.29	3.71	Male	No	Sun	Dinner	3
16.97	3.5	Female	No	Sun	Dinner	3

Develop a program to demonstrate the working of Linear Regression and Polynomial Regression. Use Boston Housing Dataset for Linear Regression and Auto MPG Dataset (for vehicle fuel efficiency prediction) for Polynomial Regression.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
# Load Boston Housing data from local CSV
boston_df = pd.read_csv("BostonHousing.csv")
# Feature and target
X = boston df[['RM']]
                          # Average number of rooms,
# uses double square brackets to return the result as a DataFrame, not a Series.
y = boston_df['MEDV']
                            # Median house price
# Split the data
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
# Train the model
model = LinearRegression()
model.fit(X_train, y_train)
# Predict
y_pred = model.predict(X_test)
# Plot Linear Regression output
plt.scatter(X_test, y_test, color='blue', label='Actual Prices')
plt.plot(X test, y pred, color='red', linewidth=2, label='Predicted Prices')
plt.xlabel("Average number of rooms (RM)")
plt.ylabel("Median house value (MEDV)")
plt.title("Linear Regression - Boston Housing Dataset")
```

plt.legend()

```
plt.grid(True)
plt.show()
# Evaluate
print("\nLinear Regression Evaluation:")
print("Mean Squared Error:", mean_squared_error(y_test, y_pred))
print("R2 Score:", r2_score(y_test, y_pred))
# ------ POLYNOMIAL REGRESSION: Auto MPG Dataset ------
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline
# Load Auto MPG dataset from local CSV
auto_df = pd.read_csv("auto_mpg.csv")
auto df = auto df.dropna() # Drop missing values
# Feature and target
X = auto_df[['horsepower']]
y = auto\_df['mpg']
# Polynomial regression pipeline
poly model = make pipeline(PolynomialFeatures(degree=2), LinearRegression())
poly model.fit(X, y)
# Create input range with correct feature name to avoid warning
x_range = pd.DataFrame(np.linspace(X.min().values[0], X.max().values[0], 100), columns=["horsepower"])
# Predict
y poly pred = poly model.predict(x range)
# Plot Polynomial Regression output
plt.scatter(X, y, color='gray', alpha=0.5, label='Actual MPG')
plt.plot(x_range, y_poly_pred, color='green', linewidth=2, label='Polynomial Fit')
plt.xlabel("Horsepower")
plt.ylabel("Miles Per Gallon (MPG)")
plt.title("Polynomial Regression - Auto MPG Dataset")
plt.legend()
plt.grid(True)
plt.show()
```

OUTPUT

The model is suitable for **predictive purposes** when the trend is mostly linear and features like 'RM' are strong predictors.

2. Polynomial Regression – Auto MPG Dataset

Observation:

- The graph shows the relationship between **horsepower** and **miles per gallon** (MPG).
- The **gray dots** are actual data points; the **green curve** is the polynomial regression prediction (degree 2).

Boston Housing Dataset (Sample Records)

The data was collected as part of a **housing study** conducted by the U.S. Census Bureau. Each row corresponds to a **small geographic area** (not an individual house) with **aggregate or average values** for that tract.

CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98	24
0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6
0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.9	NA	36.2
0.02985	0	2.18	0	0.458	6.43	58.7	6.0622	3	222	18.7	394.12	5.21	28.7
0.08829	12.5	7.87	NA	0.524	6.012	66.6	5.5605	5	311	15.2	395.6	12.43	22.9
0.14455	12.5	7.87	0	0.524	6.172	96.1	5.9505	5	311	15.2	396.9	19.15	27.1
0.21124	12.5	7.87	0	0.524	5.631	100	6.0821	5	311	15.2	386.63	29.93	16.5
0.17004	12.5	7.87	NA	0.524	6.004	85.9	6.5921	5	311	15.2	386.71	17.1	18.9
0.22489	12.5	7.87	0	0.524	6.377	94.3	6.3467	5	311	15.2	392.52	20.45	15
0.11747	12.5	7.87	0	0.524	6.009	82.9	6.2267	5	311	15.2	396.9	13.27	18.9
0.09378	12.5	7.87	0	0.524	5.889	39	5.4509	5	311	15.2	390.5	15.71	21.7
0.62976	0	8.14	0	0.538	5.949	61.8	4.7075	4	307	21	396.9	8.26	20.4
0.63796	0	8.14	NA	0.538	6.096	84.5	4.4619	4	307	21	380.02	10.26	18.2
0.62739	0	8.14	0	0.538	5.834	56.5	4.4986	4	307	21	395.62	8.47	19.9
1.05393	0	8.14	0	0.538	5.935	29.3	4.4986	4	307	21	386.85	6.58	23.1
0.7842	0	8.14	0	0.538	5.99	81.7	4.2579	4	307	21	386.75	14.67	17.5
0.80271	0	8.14	0	0.538	5.456	36.6	3.7965	4	307	21	288.99	11.69	20.2

Develop a program to demonstrate the working of the decision tree algorithm. Use Breast Cancer Data set for building the decision tree and apply this knowledge to classify a new sample.

```
from sklearn.datasets import load_breast_cancer # To load dataset
from sklearn.tree import DecisionTreeClassifier # Decision Tree classifier
from sklearn.model_selection import train_test_split # To split data
from sklearn.metrics import accuracy score
                                                 # To check accuracy
# Step 1: Load the Breast Cancer dataset
data = load breast cancer()
# Step 2: Display the features and target names
print("Feature Names:\n", data.feature_names)
print("\nTarget Names:\n", data.target_names)
# Step 3: Separate features (X) and labels (y)
X = data.data
                # Features
v = data.target # Labels (0 = malignant, 1 = benign)
# Step 4: Split the data into training and testing sets (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Step 5: Create and train the Decision Tree classifier
model = DecisionTreeClassifier(random state=42)
model.fit(X_train, y_train)
# Step 6: Test the model on the test data
y_pred = model.predict(X_test)
# Step 7: Print the accuracy
accuracy = accuracy_score(y_test, y_pred)
print("\nAccuracy on test data:", round(accuracy * 100, 2), "%")
# Step 8: Classify a new (unseen) sample from the test set
new sample = X \text{ test}[0].reshape(1, -1) # Truly unseen sample
predicted_class = model.predict(new_sample)
# Step 9: Display the result
print("\nNew Sample Prediction (from test set):")
print("Predicted Class:", predicted_class[0])
print("Meaning:", "Malignant" if predicted_class[0] == 0 else "Benign")
```

Import necessary libraries

Output and Analysis:

Model Accuracy on Test Data: 94.74%

New Sample Prediction (from X_test[0]):

Predicted Class: 1 Meaning: Benign

The decision tree classifier achieved a high accuracy, demonstrating its effectiveness in distinguishing between malignant and benign tumors. The model successfully classified a truly unseen sample from the test set, ensuring it wasn't part of the training data. This validates the model's ability to generalize well to new data.

Develop a program to implement the Naive Bayesian classifier considering Olivetti Face Data set for training.

Compute the accuracy of the classifier, considering a few test data sets.

```
# Import necessary libraries
   import matplotlib.pyplot as plt
   from sklearn.datasets import fetch olivetti faces
   from sklearn.model_selection import train_test_split
   from sklearn.naive_bayes import GaussianNB
   from sklearn.metrics import accuracy_score
   # Load the Olivetti Faces dataset
   faces = fetch olivetti faces(shuffle=True, random state=42)
   X = faces.data
   y = faces.target
   # Display 10 sample face images with their labels
   fig, axes = plt.subplots(2, 5, figsize=(10, 5))
   for i, ax in enumerate(axes.flat):
      ax.imshow(X[i].reshape(64, 64), cmap='gray')
      ax.set_title(f"Person {y[i]}")
      ax.axis('off')
   plt.suptitle("Sample Images from Olivetti Faces Dataset")
   plt.tight_layout()
   plt.show()
   # Split the data into training and testing sets (80%-20%)
   X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
   # Train the Naive Bayes classifier
   model = GaussianNB()
   model.fit(X_train, y_train)
   # Make predictions and calculate accuracy
   y_pred = model.predict(X_test)
   accuracy = accuracy_score(y_test, y_pred)
   print("\nNaive Bayes Classifier Accuracy: {:.2f}%".format(accuracy * 100))
   # Visualize predictions
   fig, axes = plt.subplots(2, 5, figsize=(10, 5))
   for i, ax in enumerate(axes.flat):
      ax.imshow(X_test[i].reshape(64, 64), cmap='gray')
      ax.set title(f"Pred: {v pred[i]}\nActual: {v test[i]}")
      ax.axis('off')
   plt.suptitle("Predictions on Test Images")
   plt.tight_layout()
   plt.show()
```

Predictions on Test Images

Sample Images from Olivetti Faces Dataset

Develop a program to implement k-means clustering using Wisconsin Breast Cancer data set and visualize the clustering result.

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_breast_cancer
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
# Step 1: Load the Wisconsin Breast Cancer dataset
data = load breast cancer()
X = data.data
                     # Feature matrix (569 samples × 30 features)
# Step 2: Standardize the features (mean=0, std=1)
scaler = StandardScaler()
X scaled = scaler.fit transform(X)
# Step 3: Apply K-Means clustering with 2 clusters
kmeans = KMeans(n clusters=2, random state=42, n init=10)
clusters = kmeans.fit predict(X scaled)
# clusters is an array of 0s and 1s assigning each sample to one of two clusters
# Step 4: Reduce data to 2 principal components for visualization
pca = PCA(n\_components=2)
X pca = pca.fit transform(X scaled)
#X pca now has shape (569, 2), ready for 2D plotting
# Step 5: Transform cluster centroids into the same 2D PCA space
centroids original = kmeans.cluster centers
centroids pca = pca.transform(centroids original)
# Step 6: Plot the clustered data in 2D
plt.figure(figsize=(8, 6))
# Define user-friendly names for the two clusters
cluster_names = {0: "Cluster 1", 1: "Cluster 2"}
colors = ["yellow", "blue"]
for cluster_id, color in zip(cluster_names, colors):
  mask = (clusters == cluster id)
  plt.scatter(
    X_pca[mask, 0],
                           \#x = PC1
                      \# y = PC2
    X pca[mask, 1],
    c=color,
    alpha=0.6,
    edgecolor='k',
    label=cluster_names[cluster_id]
```

```
)
```

Step 7: Plot the centroids as black 'X' markers

```
plt.scatter(
centroids_pca[:, 0],
    centroids_pca[:, 1],
    marker='X',
    s=200,
    c='black',
    label="Centroids"
)
```

Step 8: Add titles and labels

plt.title("K-Means Clustering on Breast Cancer Data")
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.legend(loc="upper right")

Step 9: Display the plot

plt.tight_layout()
plt.show()

OUTPUT

