IIS-SQDA Notes

zxm

- high-dimensional setting, $\log p = O(n^{\gamma}), 0 < \gamma < 1$
- nonlinear classification
- interaction screening
- model:
 - predictor vector $Z = (Z_1, \dots, Z_p)^T$
 - class label $\Delta \sim Binom(1, \pi)$, that is, prior

$$\Pr(\Delta = 1) = \pi = \pi_1, \Pr(\Delta = 0) = 1 - \pi = \pi_2.$$

 $-z^{(k)} \sim \mathcal{N}_p(\mu_k, \Sigma_k), k = 1, 2, z = \Delta z^{(1)} + (1 - \Delta)z^{(2)}, \text{ that is, likelihood}$

$$f_k(z) = \frac{1}{(2\pi)^{p/2} |\Sigma_k|^{1/2}} \exp\left(-\frac{1}{2} (z - \mu_k)^T \Sigma_k^{-1} (x - \mu_k)\right), k = 1, 2.$$

- Bayes rule: to maximize *posterior*, that is

$$z_{new} \to \arg\max_k f_k(z)\pi_k$$
.

More precisely,

$$z_{new} \to \text{ class 1 iff } Q(z) > 0,$$

where

$$Q(z) = \frac{1}{2}z^{T}(\Omega_{2} - \Omega_{1})z + (\Omega_{1}\mu_{1} - \Omega_{2}\mu_{2})^{T}z + \zeta$$

where precision matrices $\Omega_k = \Sigma_k^{-1}$, $\zeta = \frac{1}{2} \left(-\mu_1^T \Omega_1 \mu_1 + \mu_2^T \Omega_2 \mu_2 + \log \frac{|\Omega_1|}{|\Omega_2|} \right) + \log \frac{\pi}{1-\pi}$.

- **LDA**: assumes $\Sigma_1 = \Sigma_2 = \Sigma$ (easily violated). Then

$$Q(z) = (\mu_1 - \mu_2)^T \Sigma^{-1} \left(z - \frac{\mu_1 + \mu_2}{2} \right) + \log \frac{\pi}{1 - \pi}.$$

- estimates: plug in $\pi = \frac{n_1}{n}$, $\mu_k = \hat{\mu}_k$, $\Sigma_k = \hat{\Sigma}_k$, $\Sigma = \hat{\Sigma}$ (pooled sample covariance matrix)
- Why use screening?
 - 1. p > n, LDA and QDA inapplicable due to singularities of sample covariance matrices
 - 2. noise accumulation
 - 3. computational cost, e.g. 1000 main effects \Rightarrow 500,500 interactions
- sparsity assumption
- IIS-SQDA
 - 1. **Stage I**: IIS (Innovated Interaction Screening):
 - transforming the original p-dimensional feature vector
 - 2. Stage II: SQDA (Sparse Quadratic Discriminant Analysis):
 - further selecting important interactions and main effects, and
 - simultaneously conducting classification
 - 3. Sure Screening Property
 - 4. $classification\ error < oracle\ classification\ error + smaller\ order\ term$
- Competitive methods
 - 1. Mai et al., DSDA, reformulationg the LDA problem as a penalized least squares regression
 - 2. Penalized Logistic Regression

IIS

- Goal: to find the index set \mathcal{I} of interaction variables
- Let $\Omega = \Omega_2 \Omega_1$ and $\delta = \Omega_1 \mu_1$ and assume $\mu_2 = 0$. Then Q(z) becomes

$$Q(z) = \frac{1}{2}z^T\Omega z + \delta^T z + \zeta.$$

• Decomposition of \mathcal{I} :

$$\begin{split} \mathcal{I} &= \{1 \leq j \leq p : Z_j Z_l \text{ is an active interaction for some } 1 \leq l \leq p \} \\ &= \{1 \leq j \leq p : \Omega_{jl} \neq 0 \text{ for some } 1 \leq l \leq p \} \\ &= \mathcal{A}_1 \cup \mathcal{A}_2 \\ &= \{j : (\widetilde{\Sigma}_1)_{jj} \neq 0 \} \cup \{j : (\widetilde{\Sigma}_2)_{jj} \neq 0 \}, \end{split}$$

where

$$\widetilde{\Sigma}_1 = \Omega_1 \Sigma_2 \Omega_1 - \Omega_1 = Var(\Omega_1 z^{(2)}) - Var(\Omega_1 z^{(1)})$$

and

$$\widetilde{\Sigma}_2 = \Omega_2 - \Omega_2 \Sigma_1 \Omega_2 = Var(\Omega_2 z^{(2)}) - Var(\Omega_2 z^{(1)}).$$

- Oracle-assisted IIS.
 - data points $\{(z_i^T, \Delta_i)\}_{i=1}^n$

$$-n_1 = \sum_{i=1}^n \Delta_i, n_2 = n - n_1$$

- data matrix $Z = (z_1, \ldots, z_n)^T$
- transformed data matrix $\tilde{Z} = Z\Omega_1$, $\dot{Z} = Z\Omega_2$
- test statistics

$$\widetilde{D}_{j} = \log \widetilde{\sigma}_{j}^{2} - \sum_{k=1}^{2} \frac{n_{k}}{n} \log \left[\left(\widetilde{\sigma}_{j}^{(k)} \right)^{2} \right]$$

$$\check{D}_j = \log \check{\sigma}_j^2 - \sum_{k=1}^2 \frac{n_k}{n} \log \left[\left(\check{\sigma}_j^{(k)} \right)^2 \right]$$

for $j = 1, \ldots, p$, where

- * $\widetilde{\sigma}_j^2$: pooled sample variance for \widetilde{Z}_j
- * $\check{\sigma}_j^2:$ pooled sample variance for \check{Z}_j
- * $\left(\widetilde{\sigma}_{j}^{(k)}\right)^{2}$: with-in sample variance for \widetilde{Z}_{j}
- * $\left(\check{\sigma}_{j}^{(k)}\right)^{2}$: with-in sample variance for \check{Z}_{j}
- denote

 $\widehat{\mathcal{A}}_1 = \{j : \widetilde{D}_j \text{ greater than some threshold in } (cn^{-\kappa}, 2cn^{-\kappa})\}$

 $\widehat{\mathcal{A}}_2 = \{j : \widecheck{D}_j \text{ greater than some threshold in } (cn^{-\kappa}, 2cn^{-\kappa})\}$

where $0 < 2\kappa < 1 - \gamma$. Then with probability tending to 1,

$$\widehat{\mathcal{A}}_k = \mathcal{A}_k$$
.

- IIS with unknown precision matrices.
 - replace Ω_k with acceptable estimator $\widehat{\Omega}_k$
 - denote

 $\widehat{\mathcal{A}}_1 = \{j: \widetilde{D}_j \text{ greater than some threshold in } (cn^{-\kappa} + T_{n,p}, 2cn^{-\kappa} - T_{n,p})\}$

 $\widehat{\mathcal{A}}_2 = \{j : \widecheck{D}_j \text{ greater than some threshold in } (cn^{-\kappa} + T_{n,p}, 2cn^{-\kappa} - T_{n,p})\}$

where $T_{n,p} = o(n^{-\kappa})$. Then with probability tending to 1,

$$\widehat{\mathcal{A}}_k = \mathcal{A}_k$$
.

SQDA

• $d = |\widehat{\mathcal{I}}| = |\widehat{\mathcal{A}}_1 \cup \widehat{\mathcal{A}}_2|$, cardinality

•
$$\tilde{p} = 1 + p + C_d^2 + d = 1 + p + \frac{d(d+1)}{2}$$

• augmented feature $X=(1,Z_1,\ldots,Z_p,Z_{j_1}^2,\ldots,Z_{j_d}^2,Z_{j_1}Z_{j_2},\ldots)^T\in\mathbb{R}^{\tilde{p}},\,j_1,\ldots,j_d\in\widehat{\mathcal{I}}$

• logistic regression model:

$$\log \frac{\Pr(\Delta = 1|x)}{\Pr(\Delta = 0|x)} = X^T \theta$$

Thus,

$$\Pr(\Delta = 1|x) = \frac{\exp(X^T \theta)}{1 + \exp(X^T \theta)} = 1 - \Pr(\Delta = 0|x).$$

• negative log-likelihood function (logistic loss function):

$$\ell_n(\theta) = -\log \prod_{i=1}^n \frac{\exp(x_i^T \theta)^{\Delta_i}}{1 + \exp(x_i^T \theta)}$$
$$= \sum_{i=1}^n \left[-\Delta_i x_i^T \theta + \log \left(1 + \exp(x_i^T \theta) \right) \right]$$

• penalty function: elastic net penalty

$$pen(\theta) = \lambda_1 \|\theta\|_1 + \lambda_2 \|\theta\|_2^2$$

• regularization problem:

$$\widehat{\theta} \in \arg\min_{\theta \in \mathbb{R}^{\widehat{p}}} \left[\frac{1}{n} \ell_n(\theta) + pen(\theta) \right]$$

• classification: LDA or QDA (based on whether interaction terms survived from screening and variable selection)