

Course > Week 10 > Practic... > Q1: Se...

Q1: Search

Problem 1: Search

Answer the following questions about the search problem shown above. Break any ties alphabetically.

Part 1

0.0/1.0 point (ungraded)

What path would breadth-first graph search return for this search problem?

$$ullet$$
 $S o G ullet$

$$\circ$$
 $S o A o C o G$

$$lacksquare S
ightarrow A
ightarrow C
ightarrow D
ightarrow G$$

	S o	$\cdot A$	\rightarrow	\boldsymbol{B}	\rightarrow	D	\rightarrow	G
--	------	-----------	---------------	------------------	---------------	---	---------------	---

Submit

You have used 0 of 1 attempt

1 Answers are displayed within the problem

Part 2

0.0/1.0 point (ungraded)

What path would uniform cost graph search return for this search problem?

$$ullet$$
 $S o A o C o G ullet$

$$igcup S
ightarrow A
ightarrow C
ightarrow D
ightarrow G$$

$$\bigcirc$$
 $S \rightarrow A \rightarrow B \rightarrow D \rightarrow G$

Submit

You have used 0 of 1 attempt

1 Answers are displayed within the problem

Part 3

0.0/1.0 point (ungraded)

What path would depth-first graph search return for this search problem?

$$\circ$$
 $S o G$

$$lacksquare S
ightarrow A
ightarrow C
ightarrow G$$

$$\bigcirc \hspace{0.1cm} S \to A \to C \to D \to G$$

$$ullet$$
 $S o A o B o D o G w$

Submit

You have used 0 of 1 attempt

1 Answers are displayed within the problem

Part 4

0.0/1.0 point (ungraded)

What path would A* graph search, using a consistent heuristic, return for this search problem?

$$\circ$$
 $S o G$

$$ullet$$
 $S o A o C o G w$

$$lacksquare S
ightarrow A
ightarrow C
ightarrow D
ightarrow G$$

$$igcup S
ightarrow A
ightarrow B
ightarrow D
ightarrow G$$

Submit

You have used 0 of 1 attempt

1 Answers are displayed within the problem

Consider the heuristics for this problem, shown in the table below. The search graph is repeated for your convenience.

State	h_1	h_2	
\boldsymbol{S}	5	4	
A	3	2	
\boldsymbol{B}	6	6	
\boldsymbol{C}	2	1	
D	3	3	
\boldsymbol{G}	0	0	

Part 5

0.0/1.0 point (ungraded) Is $m{h_1}$ admissible?

- Yes
- No

Submit

You have used 0 of 1 attempt

1 Answers are displayed within the problem

Part 6

0.0/1.0 point (ungraded)

Is h_1 consistent?

- Yes
- No

