Sakarya Üniversitesi Bilgisayar Mühendisliği

Güz 2016 BSM307 İşaretler ve Sistemler Örnek Final Soruları

1. Aşağıda verilen periyodik x(t) işaretinin Fourier serisi açılımını bulunuz.

$$\omega_0 = \frac{\pi}{3} \ a_k = \begin{cases} \frac{1}{j\pi k} \left(\cos\left(\frac{2\pi}{3}k\right) - \cos\left(\frac{\pi}{3}k\right) \right) & , k \neq 0 \\ 0 & , k = 0 \end{cases}$$

2. Aşağıda verilen periyodik x(t) işaretinin Fourier serisi açılımını bulunuz.

$$\omega_0 = 2\pi \ a_k = \begin{cases} \frac{2}{\pi k} \sin\left(\frac{\pi}{2}k\right) & \text{, } k \text{ tek} \\ 0 & \text{, } k \text{ çift} \end{cases}$$

3. Temel frekansı $\omega_0=2\pi$ olarak verilen x(t) işaretinin Fourier seri katsayıları $a_0=1$, $a_1=a_{-1}=\frac{1}{4}$, $a_2=a_{-2}=\frac{1}{2}$ ve $a_3=a_{-3}=\frac{1}{3}$ tür. x(t) işaretini aşağıda spektrumları verilen sistemlere uyguladığımızda çıkışında elde edeceğimiz y(t) işaretinin temel frekansını ve Fourier seri katsayılarını yazınız.

a.

$$\rightarrow y(t)$$
 $\omega_0 = 2\pi \ a_0 = 1 \ a_1 = a_{-1} = \frac{1}{4}$

b.

$$\omega_0 = 4\pi \ a_1 = a_{-1} = \frac{1}{2}$$

c.

$$\omega_0 = 6\pi \ a_1 = a_{-1} = \frac{1}{3}$$

4. $x(t) = \begin{cases} 0 & , |t| > T_1 \\ \cos(\pi t) & , |t| \le T_1 \end{cases}$ sürekli zaman işaretin Fourier dönüşümünü bulunuz. $X(\omega) = \frac{1}{2}$

$$\frac{1}{\omega+\pi}\sin\bigl(T_1(\omega+\pi)\bigr)+\frac{1}{\omega-\pi}\sin\bigl(T_1(\omega-\pi)\bigr)$$

şeklinde verilen giriş işaretini

Her iki spektrum genliği 1 alınacak. $y(t) = \frac{\sin(\omega_0 t)}{\pi t}$

6. Spektrumu $X(\omega)$ olarak verilen x(t) işareti aşağıdaki sisteme uygulanmaktadır. ($\omega_c\gg 2\pi$) Buna göre:

a. $X_c(\omega)'$ yı bulun.

- **b.** $X_{tr}(\omega)'$ yı bulun.
 - **c.** $X_{rc}(\omega)'$ yı bulun.
 - **d.** $Y(\omega)'$ yı bulun.
- e. Sistem çıkışında x(t) işareti tekrar elde edilebilir mi? $y(t) = \frac{1}{4}x(t)$ bulunur. İşaret genliği daha küçük

olacak şekilde tekrar elde edilebilir.

7. $x_a(t) = e^{j\pi t} + e^{j2\pi t}$ olarak verilen analog işaret $T_s = \frac{2}{3}$ s. ile

örneklenmektedir. Örneklemeden sonra elde edilen $x_s(t)$ analog işareti frekans

spektrumu yanda verilen sistemden geçirilerek elde edilen y(t) işaretini bulunuz.

$$y(t) = 2\cos(\pi t) + 2\cos(2\pi t)$$

8. $T_S = \frac{1}{3}s$. periyotla örneklendiğinde $x(n) = (-1)^n$ ayrık zaman işareti veren üç ayrı anolog işaret bulunuz.

 $cos(3\pi t)$, $cos(9\pi t)$, $cos(15\pi t)$