Name:

Algebra II Examination 3

Dr. Paul Bailey Thursday, October 28, 2021

The examination contains five problems which are worth 20 points each, and two bonus problems worth an additional 20 points each, for a maximum of 100 points. Calculators and all other electronic devices are prohibited.

- ALL answers must the justified with appropriate words, sentences, and/or computations.
- DO NOT write a negative number inside a square root. Make appropriate use of the symbol i if necessary.
- Standard Form of a complex number is x + yi. Always write complex numbers in standard form.
- Standard Form of a polynomial is $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$; that is, with like terms combined, and in decreasing power order. Always write polynomials in standard form, unless otherwise indicated.

Prob 1	Prob 2	Prob 3	Prob 4	Prob 5	Bonus 1	Bonus 2	Total Score

Problem 1. (Definitions)

State the precise definition, as given in class, of the following concepts.

(a) Parabola

(b) Complex Number

(c) Monomial

(d) Degree of a Polynomial

(e) \mathbb{R}^2

Problem 2. (Solving Equations)

Find all real numbers x which satisfy the following equations. Using correct set notation, write the solution set.

(a)
$$7x + 5 = 3x + 17$$

(b)
$$4x^2 = 121$$

(c)
$$x^2 - 22x + 121 = 0$$

(d)
$$x^2 - 6x + 12 = 0$$

(e)
$$x^3 - 8x^2 + 15x = 0$$

Problem 3. (Complex Numbers)

Let z = 4 - 7i and w = 3 + 5i. Compute the following.

(a) z + w

(b) 3z - 2w

(c) |w|

(d) zw

(e) z/w

Problem 4. (Polynomials) Compute the following polynomials. Write the result in standard form.

(a)
$$(7x^3) \cdot (5x^2)$$

(b)
$$(3x+2)(x-5)$$

(c)
$$(3x^4 + 2x^2 - 3x + 7 + 6x^3) + (x^5 - x + 7x^2 - 3)$$

(d)
$$(x+2)(x-3)(x-5)$$

(e)
$$(x^3 - 4x^2 + 5x + 9)(x + 3)$$

Problem 5. (Graphing) Fill out the charts, and sketch the graph.

(a) Consider the linear function f(x) = 2(x+5) - 7. Find the slope-intercept form f(x) = mx + b of the function, and identify the numbers m and b. Find the slope, the y-intercept, and the x-intercept (if any) of the line. Graph the line and label these points.

Linear Function: f(x) = 2(x+5) - 7

Standard Form:

m: b:

Slope:

y-intercept:

x-intercept:

(b) Consider the quadratic function $f(x) = x^2 - 3x - 10$. Find the standard form $f(x) = ax^2 + bx + c$ and the shifted form $f(x) = a(x - h)^2 + k$. Identify the constants a, b, c, h, and k. Find the zeros, intercepts, and vertex. Graph the function and label these points.

Quadratic Function: $f(x) = x^2 - 3x - 10$

Standard Form:

Shifted Form:

a: b: c: h: k:

Discriminant:

Zeros:

y-intercept:

x-intercept(s):

Vertex:

Problem 6. (Bonus - Polynomial Division) Let
$$f(x) = x - 5$$
 and $g(x) = x^3 - 6x^2 + 3x + 10$.

(a) Divide f into g. Find the quotient and the remainder.

(b) Using part (a), find the zeros of g.

Problem 7. (Bonus - Conjugate Pairs)

Let z = 4 + 3i.

(a) Let $f(x) = x^2 + bx + c$ be a quadratic function with real coefficients such that f(z) = 0. Find b and c.

(b) Let $g(x) = ax^2 + bx + c$ be a quadratic function with real coefficients such that g(z) = 0 and g(0) = 75. Find a, b, and c.

(c) What did the supercomputer Deep Thought compute, after seven and a half million years of thought, to be the answer to the Ultimate Question of Life, the Universe, and Everything?