Activation functions apply a nonlinear transformation and decide whether a neuron should be activated or not.

Activation Functions

Step Function

Sigmoid

TanH

ReLU

Leaky ReLU

Step Function

$$f(x) = \begin{cases} 1 & if \ x \ge \theta \\ 0 & otherwise \end{cases}$$

Sigmoid
$$f(x) = \frac{1}{1+e^{-x}}$$

TanH

$$f(x) = \frac{2}{1 + e^{-2x}} - 1$$

Leaky ReLU

$$S(y_i) = \frac{e^{y_i}}{\sum e^{y_i}}$$

$$f(y_i) = \frac{e^{y_i}}{\sum_k e^{y_k}}$$

output

- 1 Softmax function converts real values into probabilities.
- 2 It only used as output layer of neural network.
- 3 You can consider higher probability as actual output.

