

Varianta 035

Subjectul I

a) 8i. b) 1. c)
$$4\sqrt{3}$$
. d) 4,8. e) x-y+z = 4. f) x+y = 2.

Subjectul II

1. a) 4. b)
$$\hat{2}$$
. c) $\frac{9}{2}$. d) $A_4^3 = 24$. e) $\frac{4}{5}$.

2. a) 0. b)
$$(1-x)e^{-x}$$
. c) $e^x \ge ex$. d) $x = 2$, singurul punct de inflexiune. e) $\frac{e-2}{e}$

Subjectul III

- a) Avem $I_3 \cdot X = X \cdot I_3$, $(\forall) X \in M_3(\mathbb{C})$, deci $I_3 \in S$.
- b) Toti minorii de ordinal doi ai matricelor E_i , $i \in \{1,2,3\}$ sunt nuli ,deci rang $(E_i) = 1$, $\forall i \in \{1,2,3\}$.

c) Fie A =
$$\begin{pmatrix} a_1 a_2 a_3 \\ b_1 b_2 b_3 \\ c_1 c_2 c_3 \end{pmatrix} \in M_3(\mathbf{C}) . \text{Din A} \cdot \mathbf{E_i} = \mathbf{E_i} \cdot \mathbf{A} , \ (\forall) i \in \{1, 2, 3\} \text{ obtinem} :$$

$$a_2=a_3=b_1=b_3=c_1=c_2=0$$
 si $a_1=b_2=c_3$. Deducem ca exista $a\in \mathbb{C}$ astfel incat

 $A = aI_3.$

d) Fie $A \in S$. Rezulta ca $A \cdot X = X \cdot A$, $(\forall) X \in M_3(\mathbf{C})$. In particular $A \cdot \mathbf{E}_i = \mathbf{E}_i \cdot \mathbf{A}$, $(\forall) i \in \{1,2,3\}$. Din c) $\Rightarrow \exists \ a \in \mathbf{C}$ astfel incat $A = \mathbf{a} \ \mathbf{I}_3$, deci $\mathbf{S} \subset \{aI_3 | a \in \mathbf{C}\}$.

Cum
$$(aI_3)X = X(aI_3)$$
, $(\forall)X \in M_3(\mathbf{C})$ avem $\{aI_3 | a \in \mathbf{C}\} \subset \mathbf{S}$. Asadar $\mathbf{S} = \{aI_3 | a \in \mathbf{C}\}$.

- e) Se verifica axiomele inelului.
- f) Fie $a,b \in \mathbb{C}$ arbitrar alese asfel incat f(a) = f(b). Obtinem $aI_3 = bI_3$, deci a = b. Deducem ca functia f este injectiva. Surjectivitatea functiei f este evidenta.
- g) Presupunem ca functia g este bijectivă $\Rightarrow \exists X, Y \in \mathbf{M}_3(\mathbf{R})$ astfel incat $g(X) = O_3$ si $g(Y) = I_3$. Alegem A = X si $B = O_3 \Rightarrow g(O_3) = O_3$. Alegem A = Y si $B = I_3 \Rightarrow g(I_3) = I_3$. Fie $M = \{A \in \mathbf{M}_3(\mathbf{R}) | AX = XA, (\forall)X \in \mathbf{M}_3(\mathbf{R})\}$. Aratam ca g(M) = S.

Daca $A \in \mathbf{M}$ avem AX = XA. Rezulta ca $g(A) \cdot g(X) = g(X) \cdot g(A)$ si cum g este bijectiva $\Rightarrow g(A) \in \mathbf{S}$. Din $B \in \mathbf{S} \Rightarrow \exists A \in \mathbf{M}_3(\mathbf{R})$ astfel incat g(A) = B. Avem $g(A) \cdot Y = g(A) \cdot g(X) = Y \cdot g(A) = g(X) \cdot g(A)$ sau g(AX) = g(XA) sau AX = XA, deci $A \in \mathbf{M}$.

Fie functia $f: \mathbf{R} \to \mathbf{C}$, f(b) = a daca $g(bI_n) = aI_n$. Functia f este bijectiva si avem f(xy) = f(x)f(y). Fie $x \in \mathbf{R}$ cu proprietatea f(x) = i. Atunci $f(x^4) = i^4 = 1 = f(1)$, deci $x^4 = 1$ sau $x \in \{-1,1\}$. Dar f(1) = 1, iar f(-1) = -1, deci $f(x) \neq i$, fals.

Subjectul IV

a) Avem
$$f_1(x) = \int_0^x (t - \sin t) dt = \frac{x^2}{2} + \cos x - 1, (\forall) x \in \mathbf{R}$$
.

- b) $f_1(x) = x \sin x$, $(\forall)x \in \mathbf{R}$ si $f_1(x) = 1 \cos x \ge 0$, $(\forall)x \in \mathbf{R}$. Deducem ca functia f_1 este convexa pe \mathbf{R} .
- c) vezi varianta 45, subiectul IV, e).
- d) vezi varianta 45, subiectul IV, f).
- e) Din punctual d) $\Rightarrow f_{4n-1}(x) > 0, (\forall) n \in \mathbf{N}^*, (\forall) x \in [0, \infty).$

Deaiciobtinemcos
$$x < 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{x^{4n}}{(4n)!}, (\forall) n \in \mathbb{N}^*, (\forall) x \in [0, \infty)._{\text{Anal}}$$

og se arată că $\cos x > 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{x^{4n}}{(4n)!} - \frac{x^{4n+2}}{(4n+2)!}, (\forall) x \in [0, \infty).$

- f) vezi varianta 45, subiectul IV, g).
- g) Presupunem ca, $\cos 1 \in \mathbf{Q}$ si deci exista $p \in \mathbf{Z}, q \in \mathbf{N}^*$ astfel incat $\cos 1 = \frac{p}{q}$. Din e) \Rightarrow

$$1 - \frac{1}{2!} + \frac{1}{4!} - \dots + \frac{1}{(4n)!} - \frac{1}{(4n+2)!} < \cos 1 < 1 - \frac{1}{2!} + \frac{1}{4!} - \dots + \frac{1}{(4n)!}, (\forall) n \in \mathbf{N}^*.$$

In particular
$$1 - \frac{1}{2!} + \frac{1}{4!} - \dots + \frac{1}{(4q)!} - \frac{1}{(4q+2)!} < \frac{p}{q} < 1 - \frac{1}{2!} + \frac{1}{4!} - \dots + \frac{1}{(4q)!}$$
 si deci $-\frac{1}{(4q+2)!} < \frac{p}{q} - 1 + \frac{1}{2!} - \frac{1}{4!} + \dots - \frac{1}{(4q)!} < 0;$

Deducem ca
$$-1 < (4q+2)! \left(\frac{p}{q} - 1 + \frac{1}{2!} - \frac{1}{4!} + \dots - \frac{1}{(4q)!} \right) < 0$$
.

Cum
$$(4q+2)! \left(\frac{p}{q}-1+\frac{1}{2!}-\frac{1}{4!}+...-\frac{1}{(4q)!}\right) \in \mathbb{Z}$$
 obtinem o contradictie.