Bevois: Aus
$$a^{p} \equiv_{p} a$$
 für $a \in \mathbb{N}_{0}$ folgt $(-a)^{p} \equiv_{p} - a$ für $p > 2$

Außerder gilt $(-a)^{2} \equiv_{2} a$
 $= a \equiv_{2} a - 2 \cdot a = -a$
 $= a =_{2} (-a)^{2} \equiv_{2} - a$

Es bleibt zu zeigen: $a^{p} \equiv_{p} a$ für $p \in P$, $a \in \mathbb{N}_{0}$.

Beweis durch helulition unch a .

1A: $a = 0^{n}$
 $0^{p} \equiv_{p} 0$

1S. $a =_{2} a +_{1}$ ". Für $a \in \mathbb{N}_{1} =_{p-1}$ gilt $a \in \mathbb{N}_{2} =_{1} =_{1}$

Für $a \in \mathbb{N}_{2} =_{2} =_{2} =_{2} =_{2}$
 $a \in \mathbb{N}_{3} =_{2} =_{3}$

 $a^{p} + {p \choose 1} \cdot a^{p-1} + \dots + {p \choose p-1} \cdot a^{n} + 1 - (a+1) = a^{p} + 1 - (a+1) = a^{p} - a^{p}$

$$(a+1)^{p}-(a+1)\equiv_{p}a^{p}-a \qquad (nach binanischer Lehrsatz)$$
Nach I.V. gilt $a^{p}\equiv_{p}a$ bzw. $a^{p}-a\equiv_{p}0$
Wegen Transitivität folgit $(a+1)^{p}-(a+1)\equiv_{p}0$ also
$$(a+1)^{p}\equiv_{p}a+1 \qquad q.e.d$$