

Cost function

Tumor_Size X	Tumor_Texture X	Tumor_Area × ₃	Tumor_Compactness	Target
1.600662	0.730988	1.370365	2.890064	0 (Benign)
1.767906	2.450270	4.791903	0.00000	1 (Malignant)
0.851814	0.000000	0.731659	3.306370	0 (Benign)
2.244562	3.098886	2.217667	3.788212	1 (Malignant)
4.149168	2.124404	0.00000	5.051919	1 (Malignant)
2.463678	0.102427	0.718578	2.826321	1 (Malignant)
0.000000	2.465510	2.930389	3.088816	0 (Benign)
2.872880	1.603829	1.692938	2.826498	1 (Malignant)
1.106042	3.931754	4.882092	1.526860	0 (Benign)
1.119333	2.777160	3.469510	2.269244	0 (Benign)

- **Tumor_Size:** Size of the tumor in mm (continuous).
- Tumor_Texture: Texture (smoothness or roughness of the tumor area, continuous).

TRAINING SET

- **Tumor_Area:** The area of the tumor in mm² (continuous).
- Tumor_Compactness: How compact the tumor is (calculated as Compactness=((Perimeter)² / Area) − 1).

SQUARED ERROR COST

$$J(\vec{v},b)^2 = \frac{1}{m} \left[\frac{1}{2} \left(f_{\vec{v},b}(\vec{x}^{(i)}) - \vec{y}^{(i)} \right)^2 \right]$$

Loss
$$L(f\vec{J}_{,b}(\vec{X}^{(i)}), \vec{Y}^{(i)})$$

Linear Regression

Logistic Regression $f \vec{v}_{,b}(\vec{x}) = \frac{1}{1 + e^{-i\vec{v}_{,b}}\vec{x}_{+b}}$ $J(\vec{w}, 3) \uparrow \sqrt{1 + e^{-i\vec{v}_{,b}}\vec{x}_{+b}}$

LOGISTIC LOSS FUNCTION

$$L(f_{\vec{L},b}(\vec{x}^{(i)}), y^{(i)}) = \begin{cases} -log(f_{\vec{L},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 1\\ -log(1 - f_{\vec{L},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

LOGISTIC LOSS FUNCTION

COST

$$\mathcal{J}(\vec{w},b) = \frac{1}{m} \sum_{j=1}^{m} L(f\vec{x},b(x^{(i)}), y^{(i)})$$

SIMPLIFIED LOSS FUNCTION

$$L(f_{x,b}(\vec{x}^{(i)}), y^{(i)}) = -Y^{(i)} log(f_{x,b}(\vec{x}^{(i)}) - (1-Y^{(i)}) log(1-f_{x,b}(\vec{x}^{(i)}))$$

$$J(\vec{v},b) = \frac{1}{m} \sum_{j=1}^{m} [L(f_{\vec{v},b}(\vec{x}^{(j)}), \gamma^{(i)})]$$

$$= -\frac{1}{n} \sum_{i=1}^{m} \left[x^{(i)} lg(f_{i),b}(\vec{x}^{(i)}) + (1-x^{(i)}) log(1-f_{i),b}(\vec{x}^{(i)}) \right]$$

Maximum Likelihood

SIMPLIFIED COST FUNCTION

GRADIENT DESCENT

Repeat {
$$W_{j} = W_{j} - \sqrt{\frac{\lambda}{\delta W_{j}}} \int (\sqrt{x}, b) \sqrt{\frac{\lambda}{\delta W_{j}}} \int$$

Simultaneous update

GRADIENT DESCENT (LOGISTIC REGRESSION)

	Linear Regression	Logistic Regression
(L) Loss	S.E. (7-ÿ) ²	M. L. (Log.)
(J)Cost	S.S.E.	M.L. M.L. Mog Nici
f	₩. ₹ + b	$Z = \overrightarrow{w}.\overrightarrow{x} + b$ $f = \partial(2) = \frac{1}{1 + e^{-2}}$