Números complejos

1. i. a. 3 – 6i b.
$$1 + \frac{5}{2}i$$
 c. $\frac{9}{2} + 4i$ d. $3 + \frac{3}{2}i$

3. a.
$$z_1 = \sqrt[6]{2} \left(\cos \frac{\pi}{12} + i \operatorname{sen} \frac{\pi}{12} \right)$$
, $z_2 = \sqrt[6]{2} \left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i \right)$, $z_3 = \sqrt[6]{2} \left(\cos \frac{17}{12} \pi + i \operatorname{sen} \frac{17}{12} \pi \right)$
b. $z_1 = 2$, $z_2 = -2$, $z_3 = 2i$, $z_4 = -2i$
c. $z_1 = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$, $z_2 = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$
d.

$$z_{1} = \cos\frac{\pi}{10} + i \operatorname{sen}\frac{\pi}{10}, \ z_{2} = i, \ z_{3} = \cos\frac{9}{10}\pi + i \operatorname{sen}\frac{9}{10}\pi, \ z_{4} = \cos\frac{13}{10}\pi + i \operatorname{sen}\frac{13}{10}\pi, \ z_{5} = \cos\frac{17}{10}\pi + i \operatorname{sen}\frac{17}{10}\pi$$

$$e. \ [(1+2i) + (3-4i)](2-i)^{2} = 2(2-i)^{3}$$

$$f. \ (1+3i) / (3-i) = i$$

g.
$$(1+i)^{14} = 128e^{\frac{7}{2}\pi i}$$

h. $i^{84} = 1$
i. $(-i)^{35} = i$
j. $z_1 = -2i$, $z_2 = 2i$

4. a.
$$S = \{1, 2\}$$

b. $S = \{-2, 1 + \sqrt{3}i, 1 - \sqrt{3}i\}$
c. $S = \{\sqrt[4]{2}e^{\frac{5}{12}\pi i}, \sqrt[4]{2}e^{\frac{11}{12}\pi i}, \sqrt[4]{2}e^{\frac{17}{12}\pi i}, \sqrt[4]{2}e^{\frac{23}{12}\pi i}\}$
d. $S = \{\sqrt[12]{2}e^{\frac{\pi}{24}i}, \sqrt[12]{2}e^{\frac{3}{8}\pi i}, \sqrt[12]{2}e^{\frac{17}{24}\pi i}, \sqrt[12]{2}e^{\frac{25}{24}\pi i}, \sqrt[12]{2}e^{\frac{11}{8}\pi i}, \sqrt[12]{2}e^{\frac{41}{24}\pi i}\}$
e. $S = \{3, 3i, -3, -3i\}$
f. $S = \{-2, 2, 1 + 2i, 1 - 2i\}$

Polinomios

5. i.
$$p(x) + r(x) = -x^3 + 6x - 2$$
 ii, $q(x) - r(x) = x^3 + x^2 - 5x + 3$ iii. $p(x)q(x) = x^3 + x$ iv. $p(x) + 2r(x) - q(x) = -2x^3 - x^2 + 11x - 5$

6. i. a)
$$\sigma(p_1) = \{-1, 0, 1\}$$
 b) En Q[t], R[t] y C[t]: $p_1(t) = t(t-1)(t+1)$ ii. a) $\sigma(p_2) = \{0(\text{doble}, 1\}$ b) En Q[t], R[t] y C[t]: $p_2(t) = -t^2(t-1)$ iii. a) $\sigma(p_3) = \{-\sqrt{2}, \sqrt{2}, \sqrt{2}i, -\sqrt{2}i\}$ b) En Q[t]: $p_3(t) = (t^2-2)(t^2+2)$ En R[t]: $p_3(t) = (t-\sqrt{2})(t+\sqrt{2})(t^2+2)$ En C[t]: $p_3(t) = (t-\sqrt{2})(t+\sqrt{2})(t-\sqrt{2}i)(t+\sqrt{2}i)$ iv. a) $\sigma(p_4) = \{-3, -2, 0, 2, 3\}$ b) En Q[t], R[t] y C[t]: $p_4(t) = t(t-2)(t+2)(t-3)(t+3)$

v. a)
$$\sigma(p_1 + p_2) = \{0, 1\}$$

b) En Q[t], R[t] y C[t]:
$$(p_1+p_2)(t) = t(t-1)$$

vi. a)
$$\sigma(p_1p_2) = \{0(\text{triple}, 1(\text{doble}, -1)\}$$

b) En Q[t], R[t] y C[t]:
$$(p_1p_2)(t) = -t^3(t-1)^2(t+1)$$

i.

7. a.
$$a = \frac{1}{5}$$
, $\sigma(p) = \{2, -1\}$

b.
$$a = -\frac{253}{6}$$
, $b = \frac{223}{3}$

8. a.
$$c(w) = w$$
, $r(w) = 25w^2 - 1$

b.
$$c(u) = 0$$
, $r(u) = u^3 - 25u$

c.
$$c(t) = t^4 - t^2 + t + 1$$
, $r(t) = -t^2 + 2t - 1$

d.
$$c(t) = t^6 + t^4 + t^2 + 1$$
, $r(t) = 0$.

e.
$$c(x) = 3x + 15$$
, $r(x) = 0$

9. a.
$$p(t) = \frac{1}{9}(t+3)(t+1)(t-1)(t-3)$$

b.
$$q(t) = \frac{1}{48}(t+3)^2(t+2)t^2(t-2)^2(t-3)$$

c.
$$r(t) = \frac{1}{4}(t+2)(t+1)^2(t-1)^2(t-2)$$

d.
$$s(t) = -\frac{1}{9}(t+2)^2(t+1)t^2(t-2)^2$$

10.

En R[t] y C[t]: $p(t) = (t-1)^2(t-2)(t-3)$

ii. En R[t]:
$$p(t) = (t^2 - 2t + 5)(t - 1)(t - 2)$$
 En C[t]: $p(t) = (t - (1 + 2i))(t - (1 - 2i))(t - 1)(t - 2)$

iii. En R[t] y C[t]:
$$p(t) = t(t-1)(t+1)(t-2)(t+2)$$

iv. En R[t] y C[t]:
$$p(t) = t(t-1)(t-2)(t-3)(t-4)$$

v. En R[t]:
$$p(t) = -2.(t^2 + 4)(t - 3)$$
 En C[t]: $p(t) = -2.(t - 2i)(t + 2i)(t - 3)$

vi. En R[t] y C[t]:
$$p(t) = -3t^3(t+2)^2(t-2)^2$$