Esercizi parsing bottom-up

A.Marchetti Spaccamela 2021

goto-graph (diagramma transizioni): altro esempio

Riconsideriamo la grammatica

```
S \rightarrow E

E \rightarrow T;

E \rightarrow T + E

T \rightarrow id

T \rightarrow (E)
```


Inizio: metti produzione da simbolo iniziale

```
S \rightarrow E

E \rightarrow T;

E \rightarrow T + E

T \rightarrow id

T \rightarrow (E)
```

```
S \rightarrow . E
E \rightarrow . T;
E \rightarrow . T + E
```

Chiudi su E

```
S \rightarrow E

E \rightarrow T;

E \rightarrow T + E

T \rightarrow id

T \rightarrow (E)
```


Completa la chiusura includendo T

```
S \rightarrow E

E \rightarrow T;

E \rightarrow T + E

T \rightarrow id

T \rightarrow (E)
```

```
S \rightarrow . E
E \rightarrow . T;
E \rightarrow . T + E
T \rightarrow . id
T \rightarrow . (E)
```

Scelgo la prima produzione (reduce) Sposto il punto

 s_2 $S \rightarrow E$.

La produzione è completata (abbiamo il . alla fine)

Avanzo in input (shift)
Sposto il punto
Il punto è alla fine non devo
fare chiusura

Continuo in modo analogo da s0 con E→T. e E→ T. + E ottengo (non devo chiudere perché dopo il punto simboli terminali)

 $S \rightarrow E$ $E \rightarrow T$; $E \rightarrow T + E$ $T \rightarrow id$ $T \rightarrow (E)$

Continuo in modo analogo da E→T. +E ottengo (ricorda faccio chiusura)

Nota stato s5 molto simile a s0 ma non identico

 $S \rightarrow E$ $E \rightarrow T$; $E \rightarrow T + E$ $T \rightarrow id$ $T \rightarrow (E)$

NOTA: gli stati s0 e s5 sono quasi identici s5 non ha $S \rightarrow .E$ s0 non ha $E \rightarrow T + .E$ Usiamo la notazione punto per cui $E \rightarrow T + .E$ è diversa da $E \rightarrow T + .E$ (che a sua volta è uno degli stati di s0)

$$S \rightarrow E$$

 $E \rightarrow T$;
 $E \rightarrow T + E$
 $T \rightarrow id$
 $T \rightarrow (E)$

con $E \rightarrow T + . E$ ottengo s6

Con $T \rightarrow .id$ ottengo s1 T→id. stato già trovato

diagramma transizioni: abbiamo finito?

diagram Abbiamo finito la costruzione quando

abbiamo considerato per ogni stato tutte le possibili transizioni in corrispondenza a ciascuna produzione associata allo stato tenendo conto della notazione punto ed escludendo quelle che nella parte destra finiscono con il punto)

Questo è vero per s0? NO MANCA (!! id

diagramma transizioni finale

Analisi:

