

# 设(X, Y) 服从如图区域 D上的均匀分布,

- (1) 求(X, Y) 的概率密度;
- (3) 求F(0.5, 0.5)



解:

$$(1) f(x,y) = \begin{cases} 1 & (x,y) \in D \\ 0 & others \end{cases}$$

$$S_G = \frac{1}{2} \times \frac{1}{2} \times 1 = \frac{1}{4}$$

$$(2)P\{Y<2X\} = \frac{\frac{1}{4}}{1} = \frac{1}{4}$$

$$S_3 = \frac{1}{2} \times 1 \times \frac{1}{2} = \frac{1}{4}$$

$$(3)F(0.5,0.5) = \frac{1}{4}$$





# 2. 边际分布、条件分布及统计独立性

#### 二维随机变量的边际分布

假设二维离散随机变量 $(\xi,\eta)$ 的概率分布为:

$$P(\xi = x_i, \eta = y_j) = p_{ij}, \quad i, j = 1, 2, \dots,$$

考虑

$$P(\xi = x_i) = P\{\bigcup_{j=1}^{\infty} (\xi = x_i, \eta = y_j) = \sum_{j=1}^{\infty} P(\xi = x_i, \eta = y_j)$$

记作
$$p_{i\bullet} = \sum_{i=1}^{\infty} p_{ij}$$
  $i = 1,2,\cdots$  构成 $\xi$ 的一个概率分布

称为边际分布列;同样,记

$$P_{\bullet j} = P(\eta = y_j) = \sum_{i=1}^{\infty} P(\xi = x_i, \eta = y_j) = \sum_{i=1}^{\infty} p_{ij}, j = 1, 2, \dots$$

也构成η的边际分布列。显然

$$\sum_{i=1}^{\infty} p_{i\bullet} = \sum_{j=1}^{\infty} p_{\bullet j} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_{ij} = 1$$

- 例 1.已知 10 件产品中有 3 件一等品, 5 件二等品, 2 件三等品。从这批产品中任取 4 件产品, 求其中一等品、二等品件数各自的分布律。
- 解:设*X*及*Y*分别是取出的 4 件产品中一等品及二等品的件数,则我们有

$$\begin{split} P(X=i,Y=j) &= \frac{C_3^i C_5^j C_2^{4-i-j}}{C_{10}^4}\,,\\ i=0,1,2,3; \qquad j=0,1,2,3,4; \qquad 4-i-j=0,1,2\\ \mathbb{RI} \quad i=0,1,2,3; \qquad j=0,1,2,3,4; \qquad i+j=2,3,4 \end{split}$$

| Y             |     |                  |                  |                  |     | $p_{iullet}$     |
|---------------|-----|------------------|------------------|------------------|-----|------------------|
| $X \setminus$ | 0   | 1                | 2                | 3                | 4   |                  |
|               |     |                  | 10               | 20               | 5   | 35               |
| 0             | 0   | 0                | 210              | 210              | 210 | $\overline{210}$ |
|               |     | 15               | 60               | 30               |     | 105              |
| 1             | 0   | $\overline{210}$ | $\overline{210}$ | $\overline{210}$ | 0   | $\overline{210}$ |
|               | 3   | 30               | 30               |                  | ,   | 63               |
| 2             | 210 | 210              | 210              | 0                | 0,  | $\overline{210}$ |
|               | 2   | _5               |                  |                  |     | 7                |
| 3             | 210 | 210              | 0                | 0                | 0   | 210              |
| $p_{ullet j}$ | _5_ | 50               | 100              | 50               | _5_ |                  |
|               | 210 | 210              | 210              | 210              | 210 | 1                |



#### 一等品件数X的分布律为:

| X            | 0   | 1   | 2   | 3   |
|--------------|-----|-----|-----|-----|
| $p_{iullet}$ | 35  | 105 | 63  | _7_ |
| ľ            | 210 | 210 | 210 | 210 |

#### 二等品件数Y的分布律为:

| Y             | 0   | 1   | 2   | 3   | 4   |
|---------------|-----|-----|-----|-----|-----|
| $p_{ullet i}$ | 5   | 50  | 100 | 50  | 5   |
| – <i>J</i>    | 210 | 210 | 210 | 210 | 210 |

注:边际分布不能全面反映联合分布的内含信息.

二维随机变量( $\xi$ , $\eta$ )关于 $\xi$ , $\eta$ 的边缘分布函数 $F_{\xi}(x)$ , $F_{\eta}(y)$ .

$$F_{\xi}(x) = P(\xi \leq x) = P(\xi \leq x, \eta < +\infty) = F(x, +\infty)$$

$$\exists F_{\xi}(x) = F(x, +\infty) = \lim_{y \to +\infty} F(x, y)$$

$$F_{\eta}(y) = P(\eta \leq y) = P(\xi < +\infty, \eta \leq y) = F(+\infty, y)$$

$$\exists F_{\eta}(y) = F(+\infty, y) = \lim_{x \to +\infty} F(x, y)$$

$$\mathbf{0} = F(-\infty, y)$$

$$\mathbf{0} = F(x, +\infty)$$

$$\mathbf{0} = F(x, +\infty)$$

$$\mathbf{0} = F(x, +\infty)$$

$$\mathbf{0} = F(x, +\infty)$$

#### 例1.已知(X,Y)的分布函数为

$$F(x,y) = \begin{cases} 1 - e^{-x} - xe^{-y} & 0 \le x \le y \\ 1 - e^{-y} - ye^{-y} & 0 \le y \le x \\ 0 & \sharp \Xi \end{cases}$$

求 $\mathbf{F}_{\mathbf{X}}(\mathbf{x})$ 与 $\mathbf{F}_{\mathbf{Y}}(\mathbf{y})$ 。

解: 
$$F_X(x) = F(x,\infty) = \begin{cases} 1 - e^{-x} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

$$F_Y(y) = F(\infty, y) = \begin{cases} 1 - e^{-y} - ye^{-y} & y \ge 0 \\ 0 & y < 0 \end{cases}$$

#### 连续型随机变量

1) 的边缘分布函数:

$$F_{\xi}(x) = F(x, +\infty) = \int_{-\infty}^{x} dx \int_{-\infty}^{+\infty} p(x, y) dy$$

2) 的边缘概率密度:

$$p_{\xi}(x) = \int_{-\infty}^{+\infty} p(x, y) dy$$

3)η的边缘分布:

$$F_{\eta}(y) = F(+\infty, y) = \int_{-\infty}^{y} dy \int_{-\infty}^{+\infty} p(x, y) dx$$

4)η的边缘概率密度:

$$p_{\eta}(y) = \int_{-\infty}^{+\infty} p(x, y) dx$$

例 2.设(X,Y)在以原点为中心,r为半径的圆域 R 上服 从均匀分布,求 X 及 Y 边缘概率密度。

解:已经求出 (X, Y) 的联合密度函数为

$$p(x,y) = \begin{cases} \frac{1}{\pi r^2}, & x^2 + y^2 \le r^2 \\ 0, & x^2 + y^2 > r^2 \end{cases}$$

$$p_X(x) = \int_{-\infty}^{\infty} p(x,y) dy$$

$$\stackrel{\text{l'}}{=} |x| \le r \text{l'},$$

$$2\sqrt{r^2 - x^2}$$

$$p_{X}(x) = \int_{-\sqrt{r^{2}-x^{2}}}^{\sqrt{r^{2}-x^{2}}} \frac{1}{\pi r^{2}} dy = \frac{2\sqrt{r^{2}-x^{2}}}{\pi r^{2}}$$

$$\stackrel{\text{def}}{=} |x| > r \text{Hell}, p_{X}(x) = 0$$

$$\therefore p_X(x) = \begin{cases} \frac{2\sqrt{r^2 - x^2}}{\pi r^2}, & |x| \leq r \\ 0, & |x| > r \end{cases}$$

同理,

$$p_{Y}(y) = \begin{cases} \frac{2\sqrt{r^{2} - y^{2}}}{\pi r^{2}}, & |y| \leq r \\ 0, & |y| > r \end{cases}$$

说明: (X,Y)的联合分布是均匀分布, 但边缘分布都不是均匀分布。





#### 例3.设(X,Y)的概率密度为

$$f(x, y) = \begin{cases} c & x^2 \le y < x \\ 0 & others \end{cases}$$



(1) 求常数c; (2) 求关于X的边缘概率密度

解:(1)由规范性 
$$\int_{0}^{1} dx \int_{r^{2}}^{x} c dy = 1 \implies c = 6$$

(2) 
$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \begin{cases} 0 & x < 0 \text{ or } x > 1 \\ x & \\ \int_{x^2}^{x} 6 dy = 6(x - x^2) & 0 \le x \le 1 \end{cases}$$

#### 条件分布

离散型随机变量的条件分布

$$P_{\xi|\eta}(x_i \mid y_j) = P(\xi = x_i \mid \eta = y_j)$$

$$= \frac{P(\xi = x_i, \eta = y_j)}{P(\eta = y_j)} = \frac{p_{ij}}{p_{\bullet j}}, \quad i = 1, 2, \cdots$$

$$= \frac{p_{ij}}{p_{\bullet j}} = \frac{1}{p_{\bullet j}}$$

显然 
$$\sum_{i} P_{\xi|\eta}(x_{i} | y_{j}) = \sum_{i} \frac{p_{ij}}{p_{\bullet j}} = \frac{1}{p_{\bullet j}} \sum_{i} p_{ij} = \frac{1}{p_{\bullet j}} \cdot p_{\bullet j} = 1$$

$$P_{\eta \mid \xi}(y_j \mid x_i) = P(\eta = y_j \mid \xi = x_i)$$

$$= \frac{P(\xi = x_i, \eta = y_j)}{P(\xi = x_i)} = \frac{p_{ij}}{p_{i\bullet}}, \quad j = 1, 2, \dots$$

显然 
$$\sum_{j} P_{\eta \mid \xi}(y_{j} \mid x_{i}) = \sum_{j} \frac{p_{ij}}{p_{i\bullet}} = \frac{1}{p_{i\bullet}} \sum_{j} p_{ij} = \frac{1}{p_{i\bullet}} \cdot p_{i\bullet} = 1$$

例1. 已知 10 件产品中有 3 件一等品, 5 件二等品, 2 件三等品。从这批产品中任取 4 件产品,已知其中有两件二等品,求其中一等品件数的概率分布;若其中一等品有一件,求其中二等品的概率分布。

解:设 X 及 Y 分别是取出的 4 件产品中一等品及二等品的件数,则我们有

$$\begin{split} P(X=i,Y=j) &= \frac{C_3^i C_5^j C_2^{4-i-j}}{C_{10}^4}\,,\\ i=0,1,2,3; \qquad j=0,1,2,3,4; \qquad 4-i-j=0,1,2\\ \mathbb{RP} \quad i=0,1,2,3; \qquad j=0,1,2,3,4; \qquad i+j=2,3,4 \end{split}$$







### 则(X, Y)联合分布律及边缘分布律为

| X             | 0   | 1   | 2   | 3   | 4   | $p_{iullet}$ |
|---------------|-----|-----|-----|-----|-----|--------------|
| 0             | 0   | 0   | 10  | 20  | _5_ | 35           |
| U             | U   | U   | 210 | 210 | 210 | 210          |
| 1             | 0   | 15  | 60  | 30  | 0   | 105          |
| 1             |     | 210 | 210 | 210 | U   | 210          |
| 2             | 3   | 30  | 30  | 0   | 0   | 63           |
| <b>4</b>      | 210 | 210 | 210 | U   | U   | 210          |
| 3             | 2 5 | _5_ | 0   | 0   | 0   | _7_          |
| 3             | 210 | 210 | U   | U   | U   | 210          |
| n             | _5_ | 50  | 100 | 50  | _5_ | 1            |
| $p_{ullet j}$ | 210 | 210 | 210 | 210 | 210 | 1            |

$$\text{III} \quad P(X=i \mid Y=2) = \frac{p_{i2}}{p_{\bullet 2}} = \frac{p_{i2}}{100/210} \text{ , } \quad i=0,1,2,3$$

$$P(Y=j \mid X=1) = \frac{p_{1j}}{p_{1\bullet}} = \frac{p_{1j}}{105/210}, \quad j=0,1,2,3,4$$

即:

| X                 | 0              | 1              | 2              | 3 |
|-------------------|----------------|----------------|----------------|---|
| $P(X=i \mid Y=2)$ | $\frac{1}{10}$ | <u>6</u><br>10 | $\frac{3}{10}$ | 0 |

| Y                 | 0 | 1             | 2             | 3             | 4 |
|-------------------|---|---------------|---------------|---------------|---|
| $P(Y=j \mid X=1)$ | 0 | $\frac{1}{7}$ | $\frac{4}{7}$ | $\frac{2}{7}$ | 0 |

#### 连续型随机变量的条件分布

- $1) p_n(y) > 0$ , 则在 $\eta = y$ 条件下,连续随机变量 $\xi$ 的条件分布函数记作 $F_{\xi|\eta}(x|y)$ 。
- ★注意: 由于 $P(\eta = y) = 0$ , 所以不能直接用条件 概率公式,而从区域上的分布概率入手。

设
$$P(y < \eta \le y + \Delta y) > 0$$
,

$$\iiint P(\xi \le x \mid y < \eta \le y + \Delta y)$$

$$\iint_{\mathbb{R}} P(\xi \leq x \mid y < \eta \leq y + \Delta y) \\
= \frac{P(\xi \leq x, y < \eta \leq y + \Delta y)}{P(y < \eta \leq y + \Delta y)} = \frac{\int_{y}^{y + \Delta y} dy \int_{-\infty}^{x} p(x, y) dx}{\int_{y}^{y + \Delta y} p_{\eta}(y) dy}$$

$$\lim_{N \to \infty} A = \lim_{N \to \infty} A =$$

由积分中值定理:

$$\int_{y}^{y+\Delta y} dy \int_{-\infty}^{x} p(x,y) dx = \int_{-\infty}^{x} p(x,y+\theta_{1}\cdot\Delta y) \Delta y dx$$

$$\int_{y}^{y+\Delta y} p_{\eta}(y) dy = p_{\eta}(y+\theta_{2}\cdot\Delta y) \cdot \Delta y \quad (0 < \theta_{1}, \theta_{2} < 1)$$

则

$$P(\xi \leq x \mid y < \eta \leq y + \Delta y) = \frac{\int_{-\infty}^{x} p(x, y + \theta_{1} \cdot \Delta y) dx}{p_{\eta}(y + \theta_{2} \cdot \Delta y)}$$

所以,  $F_{\xi\mid\eta}(x\mid y) = \lim_{\Delta y\to 0} P(\xi \leq x\mid y<\eta \leq y+\Delta y)$ 

$$=\frac{\int_{-\infty}^{x} p(x,y)dx}{p_{\eta}(y)}$$

 $F_{\xi|\eta}(x|y)$ 对 x 求导,得

$$p_{\xi|\eta}(x \mid y) = \frac{p(x,y)}{p_{\eta}(y)},$$

称  $p_{\xi|\eta}(x|y)$  为在  $\eta = y$  条件下,连续随机变量  $\xi$  的条件概率密度函数。

 $2) p_{\xi}(x) > 0$ ,则在 $\xi = x$ 的条件下,连续随机变量Y的条件分布函数:

$$F_{\eta\mid\xi}(y\mid x) = \frac{\int_{-\infty}^{y} p(x,y)dy}{p_{\xi}(x)} = \int_{-\infty}^{y} p_{\eta\mid\xi}(y\mid x)dy;$$

条件概率密度函数:

$$p_{\eta|\xi}(y\mid x) = \frac{p(x,y)}{p_{\xi}(x)}.$$

例 2.设(X,Y)在以原点为中心,r为半径的圆域R上服从均匀分布,求条件概率密度 $p_{X|Y}(x|y),p_{Y|X}(y|x)$ 

解: 已知联合概率密度为

$$p(x,y) = \begin{cases} \frac{1}{\pi r^2}, & x^2 + y^2 \le r^2 \\ 0, & x^2 + y^2 > r^2 \end{cases}$$

X,Y 的边缘分布密度分别为:

$$p_{X}(x) = \begin{cases} \frac{2\sqrt{r^{2} - x^{2}}}{\pi r^{2}}, & |x| \leq r \\ 0, & |x| > r \end{cases}$$

$$p_{Y}(y) = \begin{cases} \frac{2\sqrt{r^{2} - y^{2}}}{\pi r^{2}}, & |y| \leq r \\ 0, & |y| > r \end{cases}$$





$$p_{X|Y}(x \mid y) = \frac{p(x,y)}{p_{Y}(y)} = \begin{cases} \frac{1}{2\sqrt{r^{2} - y^{2}}}, & |x| \leq \sqrt{r^{2} - y^{2}} \\ 0, & |x| > \sqrt{r^{2} - y^{2}} \end{cases}$$

$$p_{Y|X}(y \mid x) = \frac{p(x,y)}{p_{X}(x)} = \begin{cases} \frac{1}{2\sqrt{r^{2} - x^{2}}}, & |y| \leq \sqrt{r^{2} - x^{2}} \\ 0, & |y| > \sqrt{r^{2} - x^{2}} \end{cases}$$

即: 在Y = y的条件下,X的条件分布是均匀分布; 在X = x的条件下,Y的条件分布是均匀分布。



例 3 (二维正态分布)设  $\mu_1$ ,  $\mu_2$ ,  $\sigma_1$ ,  $\sigma_2$ ,  $\rho$  为五个常数,且  $\sigma_1 > 0$ ,  $\sigma_2 > 0$ ,  $|\rho| \le 1$ ,随机变量  $(\xi, \eta)$  具有密度函数:

$$p(x, y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}$$

$$\times \exp\{-\frac{1}{2(1-\rho^{2})}\left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}} - 2\rho\frac{(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{(y-\mu_{2})}{\sigma_{2}^{2}}\right]\}$$

$$-\infty < x, y < +\infty$$

- (1) 求边际分布密度;
- (2) 求条件分布密度

解: (1) 
$$p_{\xi}(x) = \int_{-\infty}^{+\infty} p(x, y) dy$$

作变换 
$$\frac{x - \mu_1}{\sigma_1} = u$$
,  $\frac{y - \mu_2}{\sigma_2} = v$ , 则
$$p_{\xi}(x) = \frac{1}{2\pi\sigma_1\sqrt{1-\rho^2}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2(1-\rho^2)}[u^2 - 2\rho uv + v^2]} dv$$

注意到
$$u^2 - 2\rho uv + v^2 = (v - \rho u)^2 + (1 - \rho^2)u^2$$
, 故

$$p_{\xi}(x) = \frac{1}{2\pi\sigma_1 \sqrt{1-\rho^2}} \int_{-\infty}^{+\infty} e^{-\frac{(v-\rho u)^2}{2(1-\rho^2)}} \cdot e^{-\frac{u^2}{2}} dv$$

$$= \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{u^2}{2}} = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \qquad x \in (-\infty, +\infty)$$

即  $\xi \sim N(\mu_1, \sigma_1^2)$ ,类似地 $\eta \sim N(\mu_2, \sigma_2^2)$ 。 (2)条件密度函数:

$$\begin{split} & p_{\xi|\eta}(x\mid y) = \frac{p_{\xi\eta}(x,y)}{p_{\eta}(y)} \\ & = \frac{1}{\sqrt{2\pi}\sigma_{1}\sqrt{1-\rho^{2}}} \cdot \exp\{-\frac{1}{2(1-\rho^{2})} \left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}}\right] \\ & -2\rho\frac{(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}} + \rho^{2}\frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}} + \frac{(y-\mu_{2})^{2}}{2\sigma_{2}^{2}} \\ & = \frac{1}{\sqrt{2\pi}\sigma_{1}\sqrt{1-\rho^{2}}} \exp\{-\frac{1}{2\sigma_{1}^{2}(1-\rho^{2})} [x-(\mu_{1}+\rho\frac{\sigma_{1}}{\sigma_{2}}(y-\mu_{2}))]^{2}\} \end{split}$$

由对称性,另一个条件密度为:

$$p_{\eta \mid \xi}(y \mid x) = \frac{1}{\sqrt{2\pi}\sigma_2 \sqrt{1-\rho^2}} \exp\{-\frac{1}{2\sigma_2^2(1-\rho^2)} [y - (\mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x - \mu_1))]^2\}$$

例 5 (工作效率判断)为判断连续工作时间是否影响工作效率,对某厂 139 人进行调查,他们每天的连续工作时间可分为:6小时、8小时、10小时、12小时四种,他们的工作效率7可以按:低、中、高分为三类,得到统计数据如下:

| 71 / 1 — 7 C 7 — 1 1 — 1 7 O U V 1 3 X V I A P I — • |            |             |              |              |  |  |  |
|------------------------------------------------------|------------|-------------|--------------|--------------|--|--|--|
| $\xi$ $\eta$                                         | 低          | 中           | 高            | 总和           |  |  |  |
| 6<br>8                                               | 2 人<br>5 人 | 5人<br>30人   | 10 人<br>25 人 | 17人<br>60人   |  |  |  |
| 10<br>12                                             | 8人<br>10人  | 25 人<br>6 人 | 11 人<br>2 人  | 44 人<br>18 人 |  |  |  |
| 总和                                                   | 25 人       | 66人         | 48人          | 139人         |  |  |  |

如果以"工作效率属于中、高二类的概率大"作为评优标准,问每天连续工作几小时为最佳?

解:首先以不同的数值  $y_1$ ,  $y_2$ ,  $y_3$  代表工作效率的"低、中、高"三种不同状态,即  $\eta$  的取值范围为: $y_1$ ,  $y_2$ ,  $y_3$  ,然后再利用频率来近似概率,并列出  $(\xi,\eta)$  的二维联合分布表:

| $\xi$           | $y_1$ | $y_2$ | $y_3$ | $P(\xi = x_i)$ |
|-----------------|-------|-------|-------|----------------|
| 6               | 0.014 | 0.036 | 0.072 | 0.122          |
| 8               | 0.036 | 0.216 | 0.180 | 0.432          |
| 10              | 0.058 | 0.180 | 0.079 | 0.317          |
| 12              | 0.072 | 0.043 | 0.014 | 0.129          |
| $P(\eta = y_j)$ | 0.180 | 0.475 | 0.345 | 1              |

再把 " $\eta = y_2$ " 与 " $\eta = y_3$ " 合并为 " $\eta = y_4$ ", 得到 新的分布表:

| ξ     | $y_1$ | <i>y</i> <sub>4</sub> | ξ边缘分布 |
|-------|-------|-----------------------|-------|
| 6     | 0.014 | 0.108                 | 0.122 |
| 8     | 0.036 | 0.396                 | 0.432 |
| 10    | 0.058 | 0.259                 | 0.317 |
| 12    | 0.072 | 0.057                 | 0.129 |
| η 边 缘 | 0.180 | 0.820                 | 1     |
| 分布    |       |                       |       |

$$P(\eta = y_1 \mid \xi = 6) = \frac{P(\xi = 6, \eta = y_1)}{P(\xi = 6)} = \frac{0.014}{0.122} \approx 0.115$$

可得条件概率

| η                             | $y_1$ | $y_4$ |  |
|-------------------------------|-------|-------|--|
|                               |       |       |  |
| $P(\eta = y_j \mid \xi = 6)$  | 0.115 | 0.885 |  |
| $P(\eta = y_j \mid \xi = 8)$  | 0.083 | 0.917 |  |
| $P(\eta = y_j \mid \xi = 10)$ | 0.183 | 0.817 |  |
| $P(\eta = y_j \mid \xi = 12)$ | 0.558 | 0.442 |  |

当 $\xi = 8$ 时,条件概率 $P(\eta = y_4 | \xi = 8)$ 条件概率最大,达

到 0.917。故从管理角度看,把每天的连续工作时间定

为8小时是合适的。

#### 随机变量的独立性

定义:设 $(\xi_1, \xi_2, \dots, \xi_n)$ 为n维随机向量,若对任意的实

数 $x_1, x_2, x_n$ 成立乘法关系:

$$P(\xi_1 \le x_1, \xi_2 \le x_2, \dots \xi_n \le x_n)$$

$$= P(\xi_1 \le x_1) P(\xi_2 \le x_2) \dots P(\xi_n \le x_n)$$

即

$$F_{\xi_1\cdots\xi_n}(x_1,x_2,\cdots x_n) = \prod_{i=1}^n F_{\xi_i}(x_i)$$

则称 $\xi_1, \xi_2, \dots, \xi_n$ 间是相互独立的。

#### 1. 离散型随机变量的独立性

若随机变量 $\xi$ 与 $\eta$ 是独立的,则

a. 
$$P(\xi = x_i, \eta = y_j) = P(\xi = x_i) \cdot P(\eta = y_j),$$
  
 $i = 1, 2, \dots, j = 1, 2, \dots.$ 

**b.** 
$$P(\xi = x_i | \eta = y_j) = P(\xi = x_i),$$
  
 $P(\eta = y_j | \xi = x_i) = P(\eta = y_j)$ 

#### 2. 连续型随机变量的独立性

$$\mathbf{a.} \quad p(x,y) = p_{\xi}(x) \cdot p_{\eta}(y)$$

**b.** 
$$p_{\xi|\eta}(x \mid y) = p_{\xi}(x), p_{\eta|\xi}(y \mid x) = p_{\eta}(y)$$

例 1.已知 10 件产品中有 3 件一等品, 5 件二等品, 2 件三等品。从这批产品中任取 4 件产品,问: 其中一等品件数和二等品件数是否独立?

解:设 X 与 Y 分别是取出的 4 件产品中一等品与二等品的件数,已经求出联合分布律、边缘分布律为

| X             | 0                | 1   | 2   | 3   | 4   | $p_{iullet}$     |                           |
|---------------|------------------|-----|-----|-----|-----|------------------|---------------------------|
| 0             | 0                | 0   | 10  | 20  | 5   | 35               | $\therefore P\{X=0,Y=0\}$ |
| O .           |                  | Ü   | 210 | 210 | 210 | 210              | $\neq P\{X=0\}P\{Y=0\}$   |
| 1             | 0                | 15  | 60  | 30  | 0   | 105              | ()- ()                    |
| 1             |                  | 210 | 210 | 210 | U   | $\frac{1}{210}$  | :. X 与 Y 不 相              |
| 2             | 3                | 30  | 30  | 0   | 0   | 63               | •                         |
| 2             | $\overline{210}$ | 210 | 210 | U   | U   | $\frac{63}{210}$ | 互独立,即一、                   |
| 3             | 2                | 5   | 0   | 0   | 0   | 7                | 二等品的件数                    |
| 3             | $\overline{210}$ | 210 | 0   | 0   | 0   | $\overline{210}$ | 不相互独立。                    |
| n             | 5                | 50  | 100 | 50  | 5   | 1                |                           |
| $p_{ullet j}$ | 210              | 210 | 210 | 210 | 210 | 1                |                           |

#### 例 2. 设二维随机变量 $(\xi,\eta)$ 的联合分布列为



问其中的 $\alpha$ , $\beta$ 取什么值时 $\xi$ 与 $\eta$ 独立?

解: 由规范性可知 
$$1 = \frac{1}{6} + \frac{1}{9} + \frac{1}{18} + \frac{1}{3} + \alpha + \beta$$
,从而  $\beta = \frac{1}{3} - \alpha$ .

$$P(\xi = 1) = \frac{1}{6} + \frac{1}{9} + \frac{1}{18} = \frac{1}{3}$$

$$P(\xi = 2) = 1 - \frac{1}{3} = \frac{2}{3}$$

$$P(\eta = 1) = \frac{1}{6} + \frac{1}{3} = \frac{1}{2}$$

$$P(\eta = 2) = \frac{1}{9} + \alpha$$

$$P(\eta = 3) = \frac{7}{18} - \alpha$$

#### 联合分布列可补充为:

| $\eta$ $\xi$ | 1   | 2                      | 3                         |     |
|--------------|-----|------------------------|---------------------------|-----|
| 1            | 1/6 | 1/9                    | 1/18                      | 1/3 |
| 2            | 1/3 | α                      | $\frac{1}{3} - \alpha$    | 2/3 |
|              | 1/2 | $\frac{1}{9} + \alpha$ | $\frac{7}{18}$ – $\alpha$ | 1   |

根据独立性:  $P(\xi = 1, \eta = 2) = P(\xi = 1)P(\eta = 2)$ ,

$$\mathbb{EP} \qquad \frac{1}{9} = \frac{1}{3} \times (\frac{1}{9} + \alpha) \quad .$$

从中解出 $\alpha = \frac{2}{9}$ , 求出  $\beta = \frac{1}{3} - \alpha = \frac{1}{9}$ 

#### 例 3. 设(X,Y) 在以原点为中心,r 为半径的圆域 R上服从均匀分布,二维概率密度为:

$$p(x,y) = \begin{cases} \frac{1}{\pi r^2}, & x^2 + y^2 \le r^2 \\ 0, & x^2 + y^2 > r^2 \end{cases}$$
  
解: 已经求出  $X$ , 与  $Y$  是 否相 互 独 立 ?  
解: 已经求出  $X$ ,  $Y$  的边缘分布密度分别为:

$$p_{X}(x) = \begin{cases} \frac{2\sqrt{r^{2} - x^{2}}}{\pi r^{2}}, & |x| \leq r \\ 0, & |x| > r \end{cases}$$

$$p_{Y}(y) = \begin{cases} \frac{2\sqrt{r^{2} - y^{2}}}{\pi r^{2}}, & |y| \leq r \\ 0, & |y| > r \end{cases},$$

显然,  $p(x,y) \neq p_{y}(x)p_{y}(y)$ 

因此,X与Y不相互独立。

说明 (X,Y) 的 联 合 分布是均匀分 布,但边缘分布 都不是均匀分

## SAR

#### 设(X, Y)的概率密度为

$$f(x,y) = \begin{cases} cy & 0 < x < 1, 0 < y < x \\ 0 & others \end{cases}$$

(1) 求常数c. (2) 求关于X的和关于Y的边缘概率密度. 答: c = 6

$$f_X(x) = \begin{cases} \int_0^x 6y dy = 3x^2 & 0 < x < 1 \\ 0 & others \end{cases}$$

$$f_Y(y) = \begin{cases} \int_y^1 6y dx = 6y(1-y) & 0 < y < 1 \\ 0 & others \end{cases}$$