Instituto Tecnológico de Costa Rica

Programa de Capacitación Profesional en Ciencias de los Datos

Curso: Matemática para Ciencias de los Datos

Informe de Trabajo Práctico 1

Realizado por:

Felipe Alberto Mejías Loría, 201231682

María Mora,

Profesor:

Saúl Calderón Ramírez

Fecha: San José, Mayo 26, 2019

1. Traza de una matriz (20 puntos)

- 1. Implemente la función *calcularTrazaMatriz* la cual calcule la traza de una matriz usando únicamente operaciones básicas en pytorch (multiplicación, multiplicación por elemento, matriz identidad, etc.), prescindiendo de estructuras de repetición como el for el while.
 - a) Documente su correcto funcionamiento con matrices arbitrarias $A,B\in\mathbb{R}^{3x3}$ y haciendo el cálculo manual de su traza correspondiente.

Se calcula la tr(A):

$$tr(A) = \sum A_{i,i}$$

$$A = \left[\begin{array}{rrr} 1 & 5 & 2 \\ 0 & 1 & 2 \\ 3 & 1 & 0 \end{array} \right]$$

$$tr(A) = 1 + 1 + 0 = 2$$

2. Matriz Ortonormal (20 puntos)

1. Para la siguiente matriz:

$$A = s \left[\begin{array}{rrr} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & 2 \end{array} \right]$$

defina un valor de s
 que haga la matriz ortonormal, de forma que $U^T U = I = U U^T. \label{eq:union}$

Desarrollando la matriz A:

$$A = \begin{bmatrix} -s & 2s & 2s \\ 2s & -s & 2s \\ 2s & 2s & 2s \end{bmatrix}$$

La transpuesta de la matriz A es:

$$A^{T} = \begin{bmatrix} -s & 2s & 2s \\ 2s & -s & 2s \\ 2s & 2s & 2s \end{bmatrix}$$

Se debe cumplir que $A^TA = I = AA^T$:

$$A^{T}A = \begin{bmatrix} s^{2} + 4s^{2} + 4s^{2} & -2s^{2} - 2s^{2} + 4s^{2} & -2s^{2} + 4s^{2} + 4s^{2} \\ -2s^{2} - 2s^{2} + 4s^{2} & 4s^{2} + s^{2} + 4s^{2} & 4s^{2} - 2s^{2} + 4s^{2} \\ -2s^{2} + 4s^{2} + 4s^{2} & 4s^{2} - 2s^{2} + 4s^{2} & 4s^{2} + 4s^{2} + 4s^{2} \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 9s^{2} & 0 & 6s^{2} \\ 0 & 9s^{2} & 6s^{2} \\ 6s^{2} & 6s^{2} & 12s^{2} \end{bmatrix} = I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

De la multiplicación de A^TA , se observa como no existe un valor de s que logre generar la matriz identidad I. Por tanto, el ejercicio no presenta ninguna solución.

3. Matrices invertibles (20 puntos)

1. Con las matrices no singulares y por ende invertibles $A,X,Y\in\mathbb{R}^{nxn}$, suponga que:

$$XA = I_n$$

$$AY = I_n$$

Utilizando la siguiente propiedad:

$$A^{-1}A = I_n = AA^{-1} (1)$$

Si:

$$XA = I_n$$

$$\implies A = X^{-1}$$

Si $A = X^{-1}$,

$$\Longrightarrow XX^{-1} = I_n$$

Entonces, si $AY = I_n$, y con $A = X^{-1}$,

$$\Longrightarrow X^{-1}Y = I_n \tag{2}$$

Y para que (2) se cumpla, siguiendo la propiedad (1):

$$\Longrightarrow Y = X$$

$$\Longrightarrow X^{-1}X = I_n$$

4. Ecuación matricial (20 puntos)

1. Demuestre la siguiente ecuación matricial:

$$\left\|A\overrightarrow{x} - \overrightarrow{b}\right\|^2 + \left\|\overrightarrow{x}\right\|$$

con $\overrightarrow{x}\in\mathbb{R}^n$, $\overrightarrow{b}\in\mathbb{R}^m$ y $A\in\mathbb{R}^{mxn}$, se puede reescribir como sigue:

$$\overrightarrow{x}^T A^T A \overrightarrow{x} - 2 \overrightarrow{b}^T A \overrightarrow{x} + \overrightarrow{b}^T \overrightarrow{b} + \sqrt{\overrightarrow{x}^T \overrightarrow{x}}$$

En el espacio euclideano, el producto punto tiene la siguiente equivalencia:

$$\overrightarrow{v} \cdot \overrightarrow{w} = \|\overrightarrow{v}\| \cdot \|\overrightarrow{w}\| \cdot \cos(\theta)$$

Si $\theta = 0$, $\cos(\theta) = 1$:

$$\overrightarrow{v} \cdot \overrightarrow{w} = \|\overrightarrow{v}\| \cdot \|\overrightarrow{w}\|$$

$$\overrightarrow{x} \cdot \overrightarrow{x} = \|\overrightarrow{x}\|^{2}$$

$$\|\overrightarrow{x}\| = \sqrt{\overrightarrow{x} \cdot \overrightarrow{x}}$$

$$\|\overrightarrow{x}\| = \sqrt{\overrightarrow{x}^{T} \cdot \overrightarrow{x}}$$
(3)

Siguiendo la ecuación (3),

$$\|\overrightarrow{v}\|^2 = \overrightarrow{v}^T \cdot \overrightarrow{v}$$

Tomando $\overrightarrow{v} = A\overrightarrow{x} - \overrightarrow{b}$,

$$\begin{aligned} \left\| A\overrightarrow{x} - \overrightarrow{b} \right\|^2 &= (A\overrightarrow{x} - \overrightarrow{b})^T \cdot (A\overrightarrow{x} - \overrightarrow{b}) \\ &= (\overrightarrow{x}^T A^T - \overrightarrow{b}^T) \cdot (A\overrightarrow{x} - \overrightarrow{b}) \\ &= \overrightarrow{x}^T A^T A \overrightarrow{x} - \overrightarrow{x}^T A^T \overrightarrow{b} - \overrightarrow{b}^T A \overrightarrow{x} + \overrightarrow{b}^T \overrightarrow{b} \end{aligned}$$

Si: $(\overrightarrow{x}^T A^T \overrightarrow{b})^T = \overrightarrow{x}^T A^T \overrightarrow{b}$,

$$\Rightarrow \overrightarrow{b}^T A \overrightarrow{x}$$

$$\therefore \overrightarrow{x}^T A^T A \overrightarrow{x} - 2 \overrightarrow{b}^T A \overrightarrow{x} + \overrightarrow{b}^T \overrightarrow{b} + \sqrt{\overrightarrow{x}^T \cdot \overrightarrow{x}}$$