Initial Conditions:

Air fraction in tank:

α = 0.5 ---

Tank pressure:

 $p_0 = 200$

 $\Delta \alpha =$

Volume increment:

200 kPa (gage) 0.02 ---

compute reference parameters:

Calculated Parameters:

Jet area:

 $A_i = 7.07E-06 \text{ m}^2$

Tank volume:

 $V_1 = 9.62E-05 \text{ m}^3$

Initial air volume:

 $V_0 = 4.81E-05 \text{ m}^3$

Initial water mass:

 $M_0 = 0.0481$ kg

(These are used in the spreads heet below.)

Then decrease the water fraction in the tank by Da:

Calculated Results:

Water Fraction, V_/V _t ()	Gage Pressure, p (kPa)	Water Mass, M _w (kg)	let Speed	amiat	Interval, Δt	Current: Time, t (s)	"Rocket" Accel., a (m/s ²)	"Rocket" Speed, U (m/s)
0.50	200	0.0481	20.0	0.141	0	0	48.7	0
0.48	184 0.0461	19.2		0.0139	0.0139	47.5	0.668	

The computation is made as follows :

- (1) Decrease & by Dd
- (e) Compute p from $p = p_0(\frac{1}{4})^n$ $p = (200 + 101.325) kPa(\frac{1.50}{0.52})^{1.4} - 101.325 = 183.9 kPa(gage)$
- (3) Use Bernoulli to calculate jet speed

- (4) calculate water mass using &.
- (5) Use conservation of mass to compute mass flow rate

(6) Use the average mass flow rate during the interval to approximate At:

$$\Delta t = \frac{\Delta m}{dml_{dt}} = \frac{\Delta m}{m} = (0.0481 - 0.0461) kg_* \frac{5}{0.138 \, kg} = 0.01449 \, s^*$$

(7) Use momentum to compute acceleration (note M = Mw+ Me):

(8) Finally use average acceleration to get speed

U = Vo + ast = 0 + 48.1 m x 0.0139 s = 0.669 m/s*

^{*} Note effect of roundoff error.