Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space

Yunbum Kook¹, Yin Tat Lee^{2,3}, Ruoqi Shen², Santosh S. Vempala¹

¹Georgia Institute of Technology ²University of Washington ³Microsoft Research

Sampling from Constrained Distributions

• **CRHMC*:** A package to sample from ill-conditioned, non-smooth, constrained distributions up to very high dimension efficiently.

Sample from

 $\frac{d\pi(x)}{dx} \propto \exp(-f(x)) \ s. \ t. \ Ax = b, x \in K.$ Can be skewed for convex f and convex body K.

Constrained space

Method: Run a Markov chain with stationary distribution π until convergence.

Challenges:

- A naïve algorithm will not maintain the constraints $Ax = b, x \in K$.
- The mixing time can depend on the condition number of K.
- How to leverage the sparsity inherent in A?

Example:

Human Metabolic Network with 8,399 reactions and 13,543 metabolites.

Results:

- Popular sampling packages such as STAN and Pyro cannot move at all.
- ACHR takes >3 years per sample.
- CHRR (Coordinate Hit-and-Run) takes 8 hours per sample.
- Our algorithm takes 31 sec per sample.

Our package has been incorporated into the COBRA toolbox.

Metabolic networks

Riemannian Hamiltonian Monte Carlo

Hamiltonian Monte Carlo

- Define the *Hamiltonian*: $H(x,v) = f(x) + \frac{1}{2}||v||^2$,
- Repeat the following until convergence:
- Draw $v_0 \sim \mathcal{N}(0, I)$
- Solve the *Hamiltonian Eqs.* (ODE) with initial condition (x, v_0) and step size h: dx ∂H dv ∂H
- The stationary distribution is $\propto \exp(-H(x,v))$.

Constrained Riemannian Hamiltonian Monte Carlo (CRHMC)

Use the local geometry of the density function

$$H(x,v) = f(x) + \frac{1}{2}v^{\mathsf{T}}M(x)^{\dagger}v + \frac{1}{2}\log\operatorname{pdet}M(x).$$
Local me

* In RHMC, the velocity v_0 is drawn from $\mathcal{N}(0, M(x))$. Using a carefully chosen M, RHMC can maintain the constraints and achieve a mixing time independent of the condition number.

(1) Equality constraints

To maintain c(x) = 0 (ex. c(x) = Ax - b), we want $d \qquad dx_t \qquad \partial H(x_t, t)$

 $\frac{d}{dt}c(x_t) = Dc(x_t) \cdot \frac{dx_t}{dt} = Dc(x_t) \cdot \frac{\partial H(x_t, v_t)}{\partial v_t} = Dc(x_t) \cdot M(x)^{\dagger}v = 0.$

A natural choice is the orthogonal projection to Null(Dc(x)):

$$Q(x) = I - Dc(x)^{\mathsf{T}} (Dc(x)Dc(x)^{\mathsf{T}})^{-1} Dc(x).$$

(2) Inequality constraints

For general convex body K, we can use a *self-concordant barrier*, a function defined on K such that $\phi(x)$ is self-concordant and $\phi(x) \to \infty$ as $x \to \partial K$. Using the barrier ϕ , we employ the local metric defined by $g(x) = \nabla^2 \phi(x)$.

The choice of metric $M = Q(x)^{T}g(x)Q(x)$ satisfies both constraints.

Computation

- The computation of $\frac{\partial H}{\partial x}$ and $\frac{\partial H}{\partial v}$ may involve dense matrix inverse. We introduce an efficient algorithm for the problem when K is a product of convex bodies K_i , each with small dimension.
- Traditional integrators such as Leapfrog don't work. We use Implicit Midpoint Method.

(See the paper and arXiv:2210.07219 for more details.)

Euclidean Metric

Riemannian Metric

Experiments

Settings. We performed experiments on the Standard DS12 v2 model from MS Azure cloud, which has a 2.1GHz Intel Xeon Platinum 8171M CPU and 28GB memory.

Comparison. We used as a baseline the Coordinate Hit-and-Run (CHAR) implemented in two different languages. The former is Coordinate Hit-and-Run with Rounding (CHRR) written in MATLAB [1] and the latter is the same algorithm (CDHR) with an R interface and a C++ library, VolEsti [2]. Popular sampling packages such as STAN and Pyro were not included in the experiments as they do not support constrained-based models.

Bio Model	Vars (n)	nnz	CRHMC	CHRR	CDHR
ecoli	95	291	0.0098	0.0365	0.0022
cardiac_mit	220	228	0.0100	0.0059	0.0005
Aci_D21	851	1758	0.4257	0.6884	0.2974
Aci_MR95	994	2859	0.9624	2.0668	0.5237
Abi_49176	1069	2951	0.9608	1.9395	0.9622
Aci_20731	1090	2946	0.1540	2.3014	1.1086
Aci_PHEA	1561	4640	0.3701	12.06	-
iAF1260	2382	6368	4.4355	3687.2	-
iJO1366	2583	7284	4.1608	70.5	35.556
Recon1	3742	8717	0.7184	208.5	-
Recon2	7440	19791	2.6116	10445*	-
Recon3	13543	48187	31.114	29211*	-

LP Model	Vars (n)	nnz	CRHMC	CHRR	CDHR
israel	316	2519	0.1186	1.2224	0.4426
gfrd_pnc	1160	2393	0.2199	40.988	18.468
25fv47	1876	10566	0.8159	199.9	-
pilot_ja	2267	11886	1.3490	5059*	-
sctap2	2500	7334	0.6752	520.2	-
ship081	4363	9434	0.6258	6512	-
cre_a	7248	17368	2.2205	30455*	-
woodw	8418	23158	2.0689	30307*	-
80bau3b	12061	22341	11.881	47432*	-
ken_18	154699	295946	1616.3	-	-

Figure 1: Sampling time per effective sample of CRHMC and the competitors.

Figure 2: Mixing rate and sampling time of CRHMC and the competitors.

Figure 3: Mixing rate and sampling time on structured polytopes including hybercubes, simplices, and Birkhoff polytopes. To the best of our knowledge, this is the first demonstration that it is possible to sample such a large model.

Reference [1] Hulda S Haraldsdóttir, Ben Cousins, Ines Thiele, Ronan MT Fleming, and Santosh Vempala. Chrr: coordinate hit-and-run with rounding for uniform sampling of constraint-based models. Bioinformatics, 33(11):1741–1743, 2017.

[2] Apostolos Chalkis and Vissarion Fisikopoulos. volEsti: Volume approximation and sampling for convex polytopes in R. arXiv preprint arXiv:2007.01578, 2020. **Acknowledgement** This work was supported in part by NSF awards DMS-1839116, DMS-1839323, CCF-1909756, CCF-2007443 and CCF-2134105.