4484 - Box Relations

Asia - Wuhan - 2009/2010

There are n boxes C_1 , C_2 ,..., C_n in 3D space. The edges of the boxes are parallel to the x, y or z-axis. We provide some relations of the boxes, and your task is to construct a set of boxes satisfying all these relations.

There are four kinds of relations $(1 \le i, j \le n, i)$ is different from j):

- I i j: The intersection volume of C_i and C_j is positive.
- \times *i j*: The intersection volume is zero, and any point inside C_i has smaller *x*-coordinate than any point inside C_i .
- Y ij: The intersection volume is zero, and any point inside C_i has smaller y-coordinate than any point inside C_i .
- Z *i j*: The intersection volume is zero, and any point inside C_i has smaller z-coordinate than any point inside C_i .

Input

There will be at most 30 test cases. Each case begins with a line containing two integers n ($1 \le n \le 1,000$) and R ($0 \le R \le 100,000$), the number of boxes and the number of relations. Each of the following R lines describes a relation, written in the format above. The last test case is followed by n = R = 0, which should not be processed.

Output

For each test case, print the case number and either the word `POSSIBLE' or `IMPOSSIBLE'. If it's possible to construct the set of boxes, the *i*-th line of the following *n* lines contains six integers x_1 , y_1 , z_1 , x_2 , y_2 , z_2 , that means the *i*-th box is the set of points (x, y, z) satisfying $x_1 - x - x_2$, $y_1 - y - y_2$, $z_1 - z - z_2$. The absolute values of x_1 , y_1 , z_1 , z_2 , z_2 , should not exceed 1,000,000.

Print a blank line after the output of each test case.

Sample Input

- 3 2
- I 1 2 X 2 3
- 3 3
- Z 1 2 Z 2 3
- Z 3 1
- 1 0
- 0 0

Sample Output

```
Case 1: POSSIBLE
0 0 0 2 2 2
1 1 1 3 3 3
8 8 8 9 9 9

Case 2: IMPOSSIBLE
Case 3: POSSIBLE
0 0 0 1 1 1
```

Wuhan 2009-2010

Problemsetter: Wenbin Tang