

Развитие на ПП електроника. Производство на ПП (Si)

"Не е важно да знаеш всичко, важното е да знаеш къде да го намериш" Алберт Айнщайн

- □1938 → Schottky развива теорията на рп-прехода
- □1947 → Bardeen, Brattain и Shockley откриват биполярния транзистор
- □1954 → Поява на първия Si-транзистор (Texas Instruments)
- □1958 → Поява на първия тиристор (General Electric)
- □1958 → Jack Kilby и Gordon Moore откриват интегралната схема
- □1971 → Поява на първия микропроцесор (Intel 4004, TI MS1802NC)
- ■2002 → Мах. интеграция при памети и процесори
- □(Pentium 4, 0,13 mm, 4,0 GHz, 42 милиона транзистори)
- ■2020 Apple в новия си процесор **M1**, 5nm ,16 млрд. транзистори, което е с 35% повече от процесорите A14, които са в новите модели iPhone и iPad.

Първият транзистор(1947)

Bardeen, Brattain, Shockley

Скица на патента

1948: Патент за транзисторен ефект и транзисторен усилвател John Bardeen, Walter H. Brattain, William B. Shockley (Bell Telephone Laboratories, New York)

Microprocessor	Year of Introduction	Transistors
4004	1971	2,300
8008	1972	2,500
8080	1974	4,500
8086	1978	29,000
Intel286	1982	134,000
Intel386™ processor	1985	275,000
Intel486 [™] processor	1989	1,200,000
Intel® Pentium® processor	1993	3,100,000
Intel® Pentium® II processor	1997	7,500,000
Intel® Pentium® III processor	1999	9,500,000
Intel® Pentium® 4 processor	2000	42,000,000
Intel® Itanium® processor	2001	25,000,000
Intel® Itanium® 2 processor	2003	220,000,000
Intel® Itanium® 2 processor (9MB cache)	2004	592,000,000

Quad-Core + GPU Core i7 2011 1,160,000,000 32 nm 2012 3,100,000,000, 32 nm

Zen 2 AMD: passing at 7 nm (95 MTr / mm2)

Intel® Pentium® 4 Processor

Intel® Itanium® Processor

Пясък, кварц (SiO2)

Ge руда

От пясъка (кварц), който е предимно SiO2

Слънчеви елементи (КПД ~ 14%, но много по-евтини)

Монокристален силиции:

Микроелектронни компоненти (диоди, транзистори...)

Слънчеви елементи (КПД ~16%)

1- Поликристален Si, 2-Монокристален Si, 3-полирани шайби, 4-опаковани шайби, 5- компоненти

Процесът на производството е много сложен

- □ Съвместяване на знания от различни области
 - ✓ Физика
 - **V** Xumus
 - ✓ Електротехника
 - ✓ Фина механика
- Сравнително малко производители разполагат с цялостната технология

Поликристален Si (първа фаза)

Кварцовият пясък се стопява при 2100 °C

- След редукция с въглерод
 - > технически силиции (Si)
- □ Най-често по електрохимичен път
 - > Потапят се коксови електроди в стопилката

- Чистотата на Si е около 98 % (примеси Fe, Al, Ca, Ti, C)
 - Това е твърде малко за нуждите на микроелектрониката

Редукция с въглерод

Поликристален Si – (втора фаза)

- □ Суровината се смила до размер около 0,1 мм диаметър
- □ За пречистване се добавя хлороводород
 - > Trichlorsilan
- □ Течността се дестилира
 - > Отделят се другите Si-съединения
 - чист Trichlorsilan (течен)

Производство на трихлорсилан

Поликристален Si - (трета фаза)

- □ Trichlorsilan (газообразен) се третира с водород
 - Поликристален Si с чистота 99, 9999999 %
 - Si се отлага върху много тънки нишки от чист Si
 - > Получават се пръчки с диаметър 20 cm и 2 m дължина
- □ Най-често следва раздробяване

> SiHCl3 + 2 H2 --- 3 Si + 8 HCl + SiCl4

Редукция с водород

Монокристален Si

Изтегляне от стопилка (полския учен Ян Чохралски) 90 %

Монокристален Si

Изтегляне на разтопената зона 10 %

Монокристален Si

диаметър 20 (30) cm и дължина до 2 m

Обработка на монокристалния Si

Шлифоване до необходимия диаметър

Нарязване на шайби с деб. ~ 0,5 mm

Обработка на шайбите

Лепинговане (процес на обработка на материалите, при която две повърхности се трият една в друга със свободен абразив между тях), заобляне на ръбовете, почистване, ецване, полиране, докато по повърхността не останат дефекти.

Готова шайба (300 mm)

Siltronic, 2001 r.

Шайба с интегрални схеми

След нарязване, интегралните схеми (чиповете) се монтират в корпус

Монтаж на интегралните схеми

- Центриране на чиповете
- Бондиране
- Пресоване на пластмасовия корпус

Бондиране

□ Под бондиране се разбира свързването на съответните точки от чипа с изводите посредством тънък проводник

Wire bonding

Производство на чист силиции - видео

https://youtu.be/aWVywhzuHnQ

https://youtu.be/Q5paWn7bFg4

https://www.youtube.com/watch?v=_VMYPLXnd7E

https://www.vesti.bg/bulgaria/v-telefona-vi-ima-ot-bialoto-zlato-koe-e-to-6101801