Lebesgue Integration

March 25, 2022

Preface

Goal

In this section, we will introduce the general theory of integration of a function with respect to a general measure, as introduced by Lebesgue. This is referred to as *integration*, abstract integration, or Lesbesgue integration.

Integration

Intuition

Folland summarizes the difference between the Riemann and Lebesgue approaches thus: "to compute the Riemann integral of f, one partitions the domain [...] into subintervals", while in the Lebesgue integral, "one is in effect partitioning the range of f" (folland1999real).

Intuition

The figure below compares how the Reimann and Lesbesgue approaches would approximate the area under the curve of a function $f: \mathbb{R} \to \mathbb{R}$.

What differences do you see?

One Difference – Grouping values adaptively

Since Lebesgue partitions the range and not the domain, it can *group* values adaptively when computing the area under the curve as the sum over n contributions.

The Lebesgue definition makes it possible to calculate integrals for a broader class of functions.

For example, consider the *Dirichlet function*, which is 0 where its argument is irrational and 1 otherwise. The Reimann integral is undefined, because the upper sum and lower sum don't converge as the partition gets finer.

One Difference – Grouping values adaptively

Lebesgue summarized his approach to integration in a letter to Paul Montel:

I have to pay a certain sum, which I have collected in my pocket. I take the bills and coins out of my pocket and give them to the creditor in the order I find them until I have reached the total sum. This is the Riemann integral. But I can proceed differently. After I have taken all the money out of my pocket I order the bills and coins according to identical values and then I pay the several heaps one after the other to the creditor. This is my integral.

The insight is that one should be able to rearrange the values of a function freely, while preserving the value of the integral. This process of rearrangement can convert a very pathological function into one that is "nice" from the point of view of integration

A second difference - Liberation from intervals

We can integrate over arbitrary regions, that aren't necessarily intervals.

Consider:

$$\int_{x: \text{ some condition on } \times \text{ holds}} f$$

A third difference - arbitrary measure

The Reimann approach implicitly assumes that sets in the domain have sizes that are given by Lesbesgue measure $(\mu(A) = |A|)$, whereas the Lesbesgue approach allows sets in the domain to have sizes given by any arbitrary measure μ .

Two-dimensional example

Suppose we want to find a mountain's volume (above sea level).

- The Riemann approach: Divide the base of the mountain into a grid of 1 meter squares. Measure the altitude of the mountain at the center of each square.
- The Lebesgue approach: Draw a contour map of the mountain, where adjacent contours are 1 meter of altitude apart.

Notation

Let (Ω, \mathcal{F}) be a measurable space, fixed throughout the discussion.

In this section, we define integral of a measurable function h on (Ω, \mathcal{F}) against arbitrary measure μ . The integral can be written as:

$$\int_{\Omega} h \ d \mu \ , \qquad \int_{\Omega} h(\omega) \ d \mu(\omega) \ , \quad \text{or} \quad \int_{\Omega} h(\omega) \mu(d \omega)$$

h is measurable if the inverse image of every measurable set is measurable.

Integrals of simple functions

Definition

Let h be simple, say $h = \sum_{i=1}^{r} y_i I_{A_i}$ where the A_i are disjoint sets in \mathcal{F} . Then

$$\int_{\Omega} h \, d \, \mu \, := \sum_{i=1}^{r} y_i \, \mu(A_i). \tag{0.1}$$

Note: The integral of a simple function exists whenever ∞ and $-\infty$ do not both appear in the sum.

Example: Integrating the Dirichlet function (see notes).

Integrals of non-negative Borel measurable functions

Definition

If h is non-negative Borel measurable, we define

$$\int_{\Omega} h \ d \ \mu \ = \sup \left\{ \int_{\Omega} s \ d \ \mu \ : s \quad \text{simple,} \quad 0 \le s \le h \right\}$$

The integral of a non-negative Borel measurable function always exists (although it may take on the value $+\infty$).

Integrals of arbitrary Borel measurable functions

Let h be an arbitrary Borel measurable function. We will express an arbitrary Borel measurable function as as the difference of two non-negative Borel measurable functions.

We can define the integral of h by

$$\int_{\Omega} h \ d \mu \ = \int_{\Omega} h^+ \ d \mu \ - \int_{\Omega} h^- \ d \mu$$

The integral of an arbitrary non-negative Borel function exists so long as it does not take the form $+\infty-\infty$.