Algèbre et théorie de Galois

Corrigé de la Feuille d'exercices 8

Exercice 1. C'est une sous-extension de $\mathbf{Q}[e^{2i\pi/7}]/\mathbf{Q}$ qui a pour degré 6. Soit $\zeta = e^{2i\pi/7}$, et $\alpha = \cos(\frac{2\pi}{7}) = \frac{\zeta+\zeta^{-1}}{2}$. On a des inclusions $\mathbf{Q} \subseteq \mathbf{Q}[\alpha] \subseteq \mathbf{Q}[\zeta]$; l'equation $\zeta^2 - 2\alpha\zeta + 1 = 0$ montre que $[\mathbf{Q}[\zeta]: \mathbf{Q}[\alpha]] \leq 2$. Le degré de l'extension $\mathbf{Q}[\zeta]/\mathbf{Q}[\alpha]$ ne peut pas être égal à 1 car $\mathbf{Q}[\alpha]$ inclus dans \mathbf{R} contrairement à $\mathbf{Q}[\zeta]$.

L'extension $\mathbf{Q}[\zeta]/\mathbf{Q}[\alpha]$ est donc de degré 2, et $\mathbf{Q}[\alpha]/\mathbf{Q}$ est de degré 3.

On peut également prouver que $\mathbf{Q}[\alpha]$ est le sous-corps de $\mathbf{Q}[\zeta]$ fixé par la conjugaison complexe, et retrouver le résultat par la correspondance de Galois.

Exercice 2.

- (i) Cours (sous ces hypothèses le polynôme est premier avec sa dérivée).
- (ii) On le montre par récurrence sur N en utilisant la formule de factorisation

$$\overline{X^N - 1} = \prod_{d \mid N} \overline{\Phi}_d(X)$$

qui passe à la réduction modulo p. En effet, c'est clair pour N=1. En géneral, dire qu'une racine N-ième n'est pas primitive signifie qu'elle est d'ordre d < N divisant N, et donc racine de $\overline{\Phi}_d(X)$. On obtient donc le résultat.

(iii) On factorise en produit de polynômes irréducibles dans $\mathbf{F}_p[X]$:

$$\overline{\Phi}_N = P_1 \dots P_q$$
.

Comme $\overline{\phi}_N$ est séparable (car X^N-1 l'est), les P_i sont distincts. Pour x une racine de P_i , les autres racines de P_i sont ses conjugués sur \mathbf{F}_p . Le groupe de Galois du corps de décomposition de $\overline{\Phi}_N$ étant engendré par le morphisme de Frobenius, les racines de P_i sont les $x^{(p^k)}$ avec $k \geq 0$. Comme x est primitive, c'est un élément d'ordre N dans $(\mathbf{F}_p)^*$. On a donc $x^{(p^k)} = x$ si et seulement si $p^k \equiv 1 \mod N$. Or le plus petit k > 0 tel que $p^k \equiv 1 \mod N$ est l'ordre M de p dans le groupe des inversibles de $\mathbf{Z}/N\mathbf{Z}$. Donc P_i a M racines. Comme il est séparable, il est de degré M.

(iv) Φ_N est irréductible dans $\mathbf{F}_p[X]$ si et seulement si g=1 ce qui équivaut à $M=\deg(\Phi_N)=\phi(N)$. Comme $(\mathbf{Z}/N\mathbf{Z})^*$ est d'ordre $\phi(N)$, la condition équivaut à p engendre $(\mathbf{Z}/N\mathbf{Z})^*$.

(v) On a

$$X^4 + 1 = \Phi_8(X)$$

irréductible dans $\mathbf{Q}[X]$. Mais le groupe

$$(\mathbf{Z}/8\mathbf{Z})^* = \{1, 3, 5, 7\}$$

n'est pas cyclique (les éléments qui le composent sont d'ordre 1 ou 2). Donc pour tout nombre p > 2 premier, son image dans $(\mathbf{Z}/8\mathbf{Z})^*$ ne peut engendrer le groupe. D'après (iv), la réduction modulo p de $X^4 + 1$ est donc réductible. Pour p = 2, on a une factorisation $X^4 + 1 = (X + 1)^4$.

Exercice 3.

(i) Le groupe de Galois de l'extension cyclotomique étant commutatif, tous ses sous-groupes sont distingués.

(ii) L'extension $\mathbf{Q}[\sqrt[3]{2}]$ n'est pas galoisienne sur \mathbf{Q} car le conjugué $j\sqrt[3]{2}$ de $\sqrt[3]{2}$ n'appartient pas à cette extension. D'après (i), ce n'est donc pas une sous-extensions d'une extension cyclotomique.

Exercice 4.

Il s'agit de la Proposition 6.4.1 du cours.

Exercice 5.

(i) On a

$$\Phi_{p^r}(X) = \frac{X^{p^r} - 1}{X^{p^{r-1}} - 1} = 1 + X^{p^{r-1}} + \dots + X^{(p-1)p^{r-1}}.$$

On note que

$$\Phi_6(X) = (X^6 - 1)(X^2 - 1)^{-1}(X^2 + X + 1)^{-1} = X^2 - X + 1$$

a un coefficient négatif.

(ii) Le degré de l'extension cyclotomique est $\Phi(12) = 4$. Les corps de décomposition K_3 , K_4 respectivement de $\Phi_3(X)$ et de $\Phi_4(X)$ forment des sous-extensions de degré 2. On regarde les projections sur les quotients par $\operatorname{Gal}(K/K_3)$ et $\operatorname{Gal}(K/K_4)$, ce qui donne un morphisme Φ du groupe de Galois vers $(\mathbf{Z}/2\mathbf{Z}) \times (\mathbf{Z}/2\mathbf{Z})$. Le sous corps engendré par K_3 et K_4 est K. Donc un élément dans le noyau du morphisme Φ est l'identité et Φ est injectif. Par cardinalité on obtient un isomorphisme.

Exercice 6.

- (i) Puisque S_n est engendré par les transpositions, il suffit de montrer que toute transposition (j,k) avec k > j peut être écrite comme composition de transpositions de la forme (i,i+1). Pour cela, on observe que $\sigma = (k-1,k)(k-2,k-1)\cdots(j,j+1) = (k,k-1,\ldots,j+1,j)$. De manière analogue on a $\sigma' = (j,j+1)(j+1,j+2)\cdots(k-2,k-1) = (j,j+1,\ldots,k-2,k-1)$, et donc $\sigma'\sigma = (j,k)$.
- (ii) D'après la partie précédente il suffit de prouver que, étant donné $1 \le i \le n-1$, la transposition (i,i+1) peut s'exprimer à l'aide de $(1,\ldots,n)$ et (1,2). Or, on a $(i,i+1)=(1,\ldots,n)^{i-1}(1,2)(1,\ldots,n)^{-(i-1)}$.
- (iii) En réordonnant les entiers $\{1,\ldots,n\}$ on peut supposer que $c=(1,\ldots,n)$ et que le support Supp(b) de b est $\{2,\ldots,n\}$. En choisissant un entier convenable k et raisonnant comme dans la partie précédente on obtient une transposition $a'=c^{-k}ac^k$ dont le support Supp(a') n'est pas contenu dans $\{2,\ldots,n\}$, c'est-à-dire que $a'(1) \neq 1$. De manière similaire, pour un entier l convenable on a que $b^{-l}a'b^l=(1,2)$, et la partie (ii) permet donc de conclure.
- (iv) On rappelle que le groupe A_n est le noyau du morphisme signature $S_n \to \{\pm 1\}$. Il consiste donc de ces permutations qui peuvent s'écrire comme composition d'un nombre pair de transpositions. Tout 3-cycle étant composition de deux transpositions, les 3-cycles sont bien des éléments de A_n . Il reste à démontrer que toute composition non triviale de deux transpositions est engendrée par des 3-cycles. Cela est immédiat, car si les deux transpositions ont supports non disjoints on a (i, k)(i, j) = (i, j, k); si elles ont supports disjoints on a (i, j)(k, l) = (i, j, k)(j, k, l).