machine learning ***** formulae and expressions

linear regression

hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_n$$

parameters:

$$\theta_0, \theta_1, \dots, \theta_n$$

cost function:

$$J(\theta_0, \theta_1, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

goal:

$$\min_{\theta_0,\theta_1,\dots,\theta_n} J(\theta_0,\theta_1,\dots,\theta_n)$$

partial derivative gradient descent for multivariate linear regression:

repeat until convergence {

$$\theta_{j} := \theta_{j} - a \frac{\partial}{\partial \theta_{j}} J(\theta)$$

$$\theta_{j} := \theta_{j} - a \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$
(update θ_{j} for $j = 0$ — n simultaneously)

(update θ_j for j = 0, ..., n simultaneously)

normal equation:

}

$$\theta = (X^T X)^{-1} X^T y$$

regularized multivariate linear regression:

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2 + \lambda \sum_{i=1}^{n} \theta_i^2 \right]$$
$$\min_{\theta} J(\theta)$$

regularized gradient descent for multivariate linear regression: (for all j)

repeat until convergence {

$$\theta_0 \coloneqq \theta_0 - a \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_0^{(i)}$$

$$\theta_j \coloneqq \theta_j - a \left[\frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_j^{(i)} + \frac{\lambda}{m} \theta_j \right]$$
(update θ_j for $j = \mathbf{X}$ 1, 2, 3 ..., n simultaneously)

alternative notation for θ_j update: $\theta_j \coloneqq \theta_j \left(1 - \alpha \frac{\lambda}{m}\right) - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)}\right) x_j^{(i)}$

regularized normal equation:

$$\theta = \left(X^T X + \lambda \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right)^{-1} X^T y$$

logistic regression

hypothesis:

$$h_{\theta}(x) = g(\theta^T X) \rightarrow g(z) = \frac{1}{1 + e^{-z}}$$

 $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T X}} \rightarrow \text{sigmoid/logistic function}$

interpretation:

$$h_{\theta}(x) = P(y = 1 | x : \theta)$$

cost function:

$$cost(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2}(h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$cost(h_{\theta}(x^{(i)}), y^{(i)}) = \begin{cases} -\log(h_{\theta}(x^{(i)})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x^{(i)})) & \text{if } y = 0 \end{cases}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

partial derivative gradient descent for multivariate logistic regression:

repeat until convergence {
$$\theta_j := \theta_j - a \frac{\partial}{\partial \theta_j} J(\theta)$$

$$\theta_j := \theta_j - a \frac{1}{m} \sum_{i=1}^m \left(h_\theta \big(x^{(i)} \big) - y^{(i)} \big) x_j^{(i)}$$
 (update θ_j for $j = 0, ..., n$ simultaneously) }
$$h_\theta(x) = \theta^T X \text{ to } h_\theta(x) = \frac{1}{1 + e^{-\theta^T X}}$$

regularized multivariate logistic regression:

$$J(\theta) = \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{i=1}^{u} \theta_{i}^{2}$$

regularized gradient descent for multivariate logistic regression: (for all j)

repeat until convergence {

$$\theta_0 \coloneqq \theta_0 - a \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j \coloneqq \theta_j - a \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \theta_j \right]$$
(update θ_j for $j = X$, 1, 2, 3 ..., n simultaneously)
$$h_\theta(x) = \theta^T X \text{ to } h_\theta(x) = \frac{1}{1 + e^{-\theta^T X}}$$

neural networks

backpropagation algorithm

gradient computation

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{i=1}^{K} y_k^{(i)} \log \left(h_{\theta}(x^{(i)}) \right)_k + \left(1 - y_k^{(i)} \right) \log \left(1 - \left(h_{\theta}(x^{(i)}) \right)_k \right) \right] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_1} \sum_{j=1}^{s_1+1} \left(\theta_{ji}^{(l)} \right)^2$$

$$\min_{\theta} J(\theta)$$

gradient checking

$$\frac{\partial}{\partial \theta} J(\theta) \approx \frac{J(\theta + \varepsilon) - (\theta - \varepsilon)}{2\varepsilon}$$

train · validation · test error

training error:

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}), y^{(i)})^2$$

cross validation error:

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} \left(h_{\theta} \left(x_{cv}^{(i)} \right), y_{cv}^{(i)} \right)^{2}$$

test error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} \left(h_{\theta} \left(x_{test}^{(i)} \right), y_{test}^{(i)} \right)$$

precision:

$$\frac{\text{true positives}}{\text{# predicted positives}} = \frac{\text{true positives}}{\text{true positives} + \text{false positives}}$$

recall:

$$\frac{\text{true positives}}{\text{# actual positives}} = \frac{\text{true positives}}{\text{true positives} + \text{false negatives}}$$

support vector machines

optimization objective:

$$\min_{\theta} \frac{1}{m} C \sum_{i=1}^{m} y^{(i)} \cot_{1}(\theta^{T} x^{(i)}) + (1 - y^{(i)}) \cot_{0}(\theta^{T} x^{(i)}) + \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2}$$

hypothesis output:

$$h_{\theta}x = \begin{cases} 1 \text{ if } \theta^T x \text{ is } \geq 0 \\ 0 \text{ otherwise} \end{cases}$$

decision boundary:

$$\min_{\theta} \frac{1}{2} \sum_{i=1}^{n} \theta_{i}^{2} = \frac{1}{2} (\theta_{1}^{2} + \theta_{2}^{2}) = \frac{1}{2} \left(\sqrt{\theta_{1}^{2} + \theta_{2}^{2}} \right)^{2} = \frac{1}{2} \|\theta\|^{2}$$

kernels

similarity:

$$f_1 = \text{similarity}(x, \ell^{(1)}) = \exp\left(-\frac{\|x - \ell^{(1)}\|^2}{2\sigma^2}\right) = \exp\left(-\frac{\sum_{j=1}^n \left(x_j - \ell_j^{(1)}\right)^2}{2\sigma^2}\right)$$

k-means algorithm

optimization objective:

$$J(c^{(1)}, ..., c^{(m)}, \mu_1, ..., \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_c^{(i)}||^2$$

anomaly detection algorithm

gaussian distribution:

$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$p(x) = \prod_{j=1}^{n} p(x_j; \mu_j, \sigma_j^2) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma^2} \exp\left(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2}\right)$$

multivariate gaussian distribution:

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)$$

recommender systems

optimization objective:

to learn $\theta^{(j)}$ (parameter for user j):

$$\min_{\theta^{(j)}} \frac{1}{2} \sum_{i: r(i,j) = 1} \left(\left(\theta^{(j)} \right)^T \left(x^{(i)} \right) - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^{n} \left(\theta_k^{(j)} \right)^2$$

to learn $\theta^{(1)}, \theta^{(2)}, ..., \theta^{(n_u)}$:

$$\min_{\theta^{(j)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j) = 1} \left(\left(\theta^{(j)} \right)^T (x^{(i)}) - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} \left(\theta_k^{(j)} \right)^2$$

simultaneous gradient descent update:

(for
$$k = 0$$
)
$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} \left(\left(\theta^{(j)} \right)^T \left(x^{(i)} \right) - y^{(i,j)} \right) x_k^{(i)}$$

(for $k \neq 0$)

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i: r(i,j) = 1} \left(\left(\theta^{(j)} \right)^T (x^{(i)}) - y^{(i,j)} \right) x_k^{(i)} + \lambda \, \theta_k^{(j)} \right)$$

collaborative filtering optimization algorithm:

given $\theta^{(1)}$, ..., $\theta^{(n_u)}$, to learn $x^{(i)}$:

$$\min_{x^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} \left(\left(\theta^{(j)} \right)^T \left(x^{(i)} \right) - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n \left(x_k^{(i)} \right)^2$$

given $\theta^{(1)}, ..., \theta^{(n_u)}$, to learn $x^{(1)}, ..., x^{(n_m)}$:

$$\min_{x^{(i)}, \dots, x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{i: r(i, j) = 1} \left(\left(\theta^{(j)} \right)^T \left(x^{(i)} \right) - y^{(i, j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n \left(x_k^{(i)} \right)^2$$

collaborative filtering algorithm:

given features $x^{(1)}$, ..., $x^{(n_m)}$, estimate parameters $\theta^{(1)}$, ..., $\theta^{(n_u)}$:

$$\min_{\theta^{(1),\dots,\theta^{(n_u)}}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} \left(\theta_k^{(j)} \right)^2$$

given parameters $\theta^{(1)}, \dots, \theta^{(n_u)}$, estimate features $x^{(1)}, \dots, x^{(n_m)}$:

$$\min_{x^{(1),\dots,x^{(m)}}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{i:r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n \left(x_k^{(j)} \right)^2$$

minimizing $x^{(1)}, ..., x^{(n_m)}$ and $\theta^{(1)}, ..., \theta^{(n_u)}$ simultaneously:

$$J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)})$$

$$= \frac{1}{2} \sum_{(i,i): r(i,i) = 1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n \left(x_k^{(j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^n \left(\theta_k^{(j)} \right)^2$$

collaborative filtering algorithm update:

$$x_k^{(i)} := x_k^{(i)} - \alpha \left(\sum_{j: r(i,j) = 1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right) \theta_k^{(j)} + \lambda x_k^{(i)} \right)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right) x_k^{(i)} + \lambda \, \theta_k^{(j)} \right)$$