

- Not every data can be fitted by a linear model
- ▶ We can measure a goodness of the fit in three ways
- Coefficient of Determination or R^2
- F-test
- t-test

Coefficient of Determination

$$R^2 = \frac{RegSS}{TSS} = 1 - \frac{RSS}{TSS}$$

- RSS: Residual Sums Squares
- ► TSS: Total Sums Squares

- If RSS = 0, $R^2 = 1$. This is a perfect fit.
- If RSS = TSS, $R^2 = 0$ means. This is the lowest R^2 could
 - be.

ightharpoonup The closer R^2 to 1, the better the fit.

lacksquare Some examples of \mathbb{R}^2

F-test

$$\begin{split} H_0: \beta_1 &= 0 \\ H_0: y &= \beta_0 + \epsilon \\ H_0: \text{The linear model is not a} \\ \text{good fit} \end{split}$$

$$\begin{split} H_{\alpha}:\beta_1 \neq 0 \\ H_{\alpha}:y = \beta_0 + \beta_1 x + \epsilon \\ H_{\alpha}: \text{The linear model is a good fit} \end{split}$$

$F = \frac{RegSS}{RSS/(n-2)}$

These are equivalent

- Larger F
- ► Larger Reg SS
- ► Smaller Residual SS (RSS)
- ► Smaller p-value
- More support for H_{α} or More useful the model

										•
									•	•
10-							: .	• :	*:	···
>			•						. :	•
5-		•								
		· · · · ·	• • •	•		•				
0 -	·:	••			•					
	ò				2	x	3			5

t-test

$$\begin{split} H_0: \beta_1 &= 0 \\ H_0: y &= \beta_0 + \epsilon \\ H_0: \text{The linear model is not a} \\ \text{good fit} \end{split}$$

$$\begin{split} H_{\alpha}: \beta_1 \neq 0 \\ H_{\alpha}: y = \beta_0 + \beta_1 x + \epsilon \\ H_{\alpha}: \text{The linear model is a good fit} \end{split}$$

$$t = \frac{\hat{\beta_1}}{sd(\hat{\beta_1})}$$

Relation between F-test, t-test and and R2

We have

$$F = t^2 = \frac{(n-2)R^2}{(1-R^2)}$$

$$\implies \frac{1}{F} = \left(\frac{1}{R^2} - 1\right) \cdot \frac{1}{n-2}$$

- ▶ This means when $R^2 \nearrow$, $\frac{1}{R^2} \searrow$, $\frac{1}{F} \searrow$ and $F \nearrow$.
- The p-values of F-test and t-test are the same.