NATIONAL UNIVERSITY OF SINGAPORE

SEMESTER 2, 2022/2023

MA2001 Linear Algebra

Homework Assignment 1

1. Consider the following linear system

$$\begin{cases} 4x_1 + 2x_2 + 4x_3 = 0 \\ 5x_1 + 4x_2 = 1 \\ 4x_1 + x_2 + 2x_3 = 5. \end{cases}$$

- (i) In every row-echelon form of the augmented matrix corresponding to the given linear system, how many pivot columns are there?
- (ii) How many arbitrary parameters are needed to describe a general solution for the given linear system?
- (iii) How many solutions are there for the given linear system?
- (iv) Find the solution of the linear system.

Solution. The augmented matrix is $\mathbf{A} = \begin{pmatrix} 4 & 2 & 4 & 0 \\ 5 & 4 & 0 & 1 \\ 4 & 1 & 2 & 5 \end{pmatrix}$. Apply Gaussian elimination:

$$A \xrightarrow[R_3-R_1]{} \begin{pmatrix} 4 & 2 & 4 & 0 \\ 0 & \frac{3}{2} & -5 & 1 \\ 0 & -1 & -2 & 5 \end{pmatrix} \xrightarrow[S]{} \xrightarrow{R_3+\frac{2}{3}R_2} \begin{pmatrix} 4 & 2 & 4 & 0 \\ 0 & \frac{3}{2} & -5 & 1 \\ 0 & 0 & -\frac{16}{3} & \frac{17}{3} \end{pmatrix} = \mathbf{R}.$$

All row-echelon form of A have the same pivot and non-pivot columns. The answer is on R.

- (i) R has 3 pivot columns, which are the columns corresponding to the variables x_1, x_2, x_3 .
- (ii) The system has 0 arbitrary parameter.
- (iii) Note that the last column is non-pivot. The system has a unique solution.
- (iv) One may solve the system using back-substitution, or apply Gauss-Jordan elimination.

$$R \xrightarrow{\frac{1}{4}R_1} \begin{pmatrix} 1 & \frac{1}{2} & 1 & 0 \\ 0 & 1 & -\frac{10}{3} & \frac{2}{3} \\ 0 & 0 & 1 & -\frac{17}{16} \end{pmatrix} \xrightarrow{R_1 - R_3} \begin{pmatrix} 1 & \frac{1}{2} & 0 & \frac{17}{16} \\ 0 & 1 & 0 & -\frac{23}{8} \\ 0 & 0 & 1 & -\frac{17}{16} \end{pmatrix} \xrightarrow{R_1 - \frac{1}{2}R_3} \begin{pmatrix} 1 & 0 & 0 & \frac{5}{2} \\ 0 & 1 & 0 & -\frac{23}{8} \\ 0 & 0 & 1 & -\frac{17}{16} \end{pmatrix}.$$

So the solution is
$$x_1 = \frac{5}{2}$$
, $x_2 = -\frac{23}{8}$, $x_3 = -\frac{17}{16}$.

2. Let $A = \begin{pmatrix} a & b \\ 3 & d \end{pmatrix}$, where a, b, d are real constants. If $A^{T} = -A$, find the value of a + b + d.

Solution.
$$A^{T} = -A \Leftrightarrow \begin{pmatrix} a & 3 \\ b & d \end{pmatrix} = \begin{pmatrix} -a & -b \\ -3 & -d \end{pmatrix} \Leftrightarrow \begin{cases} a = -a \\ 3 = -b \\ b = -3 \end{cases} \Leftrightarrow \begin{cases} a = 0 \\ b = -3 \text{ So } a + b + d = -3. \ \Box \\ d = 0. \end{cases}$$

3. Let
$$\mathbf{A} = \begin{pmatrix} -1 & 2 & -1 \\ 1 & 0 & 2 \\ 0 & 1 & -1 \end{pmatrix}$$
.

- (i) Find det(A).
- (ii) Find $\det(\mathbf{A} 2\mathbf{I})$.
- (iii) Find adj(A).
- (iv) Find A^{-1} .

Solution. (i)
$$\det(\mathbf{A}) = \begin{bmatrix} -1 & 2 & -1 \\ 0 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 2 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & -\frac{3}{2} \end{bmatrix} = (-1)(2)(-\frac{3}{2}) = 3.$$

(ii)
$$A - 2I = \begin{pmatrix} -3 & 2 & -1 \\ 1 & -2 & 2 \\ 0 & 1 & -3 \end{pmatrix}$$
. So

$$\det(\boldsymbol{A} - 2\boldsymbol{I}) \xrightarrow{R_2 + \frac{1}{3}R_1} \begin{vmatrix} -3 & 2 & -1 \\ 0 & -\frac{4}{3} & \frac{5}{3} \\ 0 & 1 & -3 \end{vmatrix} \xrightarrow{R_3 + \frac{3}{4}R_2} \begin{vmatrix} -3 & 2 & -1 \\ 0 & -\frac{4}{3} & \frac{5}{3} \\ 0 & 0 & -\frac{7}{4} \end{vmatrix} = (-3)(-\frac{4}{3})(-\frac{7}{4}) = -7.$$

(iii)
$$\mathbf{adj}(\mathbf{A}) = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} \begin{vmatrix} 0 & 2 \\ 1 & -1 \end{vmatrix} & -\begin{vmatrix} 2 & -1 \\ 1 & -1 \end{vmatrix} & \begin{vmatrix} 2 & -1 \\ 0 & 2 \end{vmatrix} \\ -\begin{vmatrix} 1 & 2 \\ 0 & -1 \end{vmatrix} & \begin{vmatrix} -1 & -1 \\ 0 & -1 \end{vmatrix} & -\begin{vmatrix} -1 & -1 \\ 1 & 2 \end{vmatrix} \\ \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} & -\begin{vmatrix} -1 & 2 \\ 1 & 0 \end{vmatrix} & \begin{vmatrix} -1 & 2 \\ 1 & 0 \end{vmatrix} \end{pmatrix} = \begin{pmatrix} -2 & 1 & 4 \\ 1 & 1 & 1 \\ 1 & 1 & -2 \end{pmatrix}.$$

(iv)
$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A) = \begin{pmatrix} -\frac{2}{3} & \frac{1}{3} & \frac{4}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \end{pmatrix}$$
.

4. Let A be a square matrix such that det(A) = 2. Find the number of solutions of the linear system Ax = 0.

Solution. Since $det(A) = 2 \neq 0$, A is an invertible matrix. Hence, Ax = 0 has a unique (the trivial) solution.

5. Consider the following linear system:

$$\begin{cases} ax + y + z = a^3 \\ x + ay + z = 1 \\ x + y + az = a, \end{cases}$$

where *a* is a real constant. Find the conditions on *a* such that

- (i) the system has no solution;
- (ii) the system has a unique solution;
- (iii) the system has infinitely many solutions.

Solution. Consider the augmented matrix and apply Gaussian elimination.

$$\begin{pmatrix}
a & 1 & 1 & a^{3} \\
1 & a & 1 & 1 \\
1 & 1 & a & a
\end{pmatrix}
\xrightarrow{R_{1} \leftrightarrow R_{2}}
\begin{pmatrix}
1 & a & 1 & 1 \\
a & 1 & 1 & a^{3} \\
1 & 1 & a & a
\end{pmatrix}
\xrightarrow{R_{2} - aR_{1}}
\begin{pmatrix}
1 & a & 1 & 1 \\
0 & 1 - a^{2} & 1 - a & a^{3} - a \\
0 & 1 - a & a - 1 & a - 1
\end{pmatrix}$$

$$\xrightarrow{R_{2} \leftrightarrow R_{3}}
\begin{pmatrix}
1 & a & 1 & 1 \\
0 & 1 - a & a - 1 & 1 - a \\
0 & 1 - a^{2} & 1 - a & a^{3} - a
\end{pmatrix}$$

$$\xrightarrow{R_{3} - (1 + a)R_{2}}
\begin{pmatrix}
1 & a & 1 & 1 \\
0 & 1 - a & a - 1 & a - 1 \\
0 & 0 & (1 - a)(2 + a) & (1 - a)^{2}(1 + a)
\end{pmatrix}.$$

- (i) If a = -2, the matrix is reduced to $\begin{pmatrix} 1 & -2 & 1 & 1 \\ 0 & 3 & -3 & -3 \\ 0 & 0 & 0 & 9 \end{pmatrix}$, and the linear system has no solution.
- (ii) If $a \ne 1$ and $a \ne -2$, then linear the system has a unique solution.
- (iii) If a = 1, the matrix is reduced to $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, and the linear system has infinitely many solutions (with 2 arbitrary parameters).
- **6.** Let $A = \begin{pmatrix} b & b & 1 \\ a & -a & 0 \\ a-2 & a+1 & 0 \end{pmatrix}$. Find the condition on a and b such that A is invertible.

Solution. Expand along the 3rd column:

$$\det(\mathbf{A}) = \begin{vmatrix} a & -a \\ a-2 & a+1 \end{vmatrix} = a(a+1) - (a-2)(-a) = 2a^2 - a.$$

Then

A is invertible
$$\Leftrightarrow$$
 det(**A**) = $2a^2 - a \neq 0 \Leftrightarrow a \neq 0$ and $a \neq 1/2$.

7. Let A and B be square matrices of order 3 such that

$$\boldsymbol{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \boldsymbol{B}.$$

Find a sequence of 3 elementary row operations which, when applied to A, yields B.

Solution. It is given that $B \xrightarrow{R_1 - R_2} \bullet \xrightarrow{R_1 \leftrightarrow R_3} \bullet \xrightarrow{2R_3} A$. Hence,

$$A \xrightarrow{\frac{1}{2}R_3} \bullet \xrightarrow{R_1 \leftrightarrow R_3} \bullet \xrightarrow{R_1 + R_2} B.$$

8. Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. Prove that if A has a zero row, then AB has a zero row.

Proof. Let $A = (a_{ij})$ and $B = (b_{ij})$. Assume that the i^{th} row of A is a zero row, i.e., $a_{ik} = 0$ for all k = 1, ..., n. Then for any j = 1, ..., p, the (i, j)-entry of AB is

$$\sum_{k=1}^{n} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{in} b_{nj} = 0.$$

Hence, the i^{th} row of AB is also a zero row.

9. Let A and B be square matrices of order n. Prove that if A is singular, then AB is singular.

Proof. If A is singular, then det(A) = 0. Hence, det(AB) = det(A) det(B) = 0, and it follows that AB is singular.

Alternatively, assume that AB is invertible with inverse C, then A(BC) = (AB)C = I, which contradicts the assumption that A is singular. Hence, AB is singular.

10. Write down a nonzero 3×3 matrix $A^2 = 0$.

Solution. For example, let
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & a \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 with $a \neq 0$. Then $\mathbf{A}^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

11. Give an example of a 2×2 matrix which is not the product of elementary matrices.

Solution. A square matrix is singular ⇔ it is not the product of elementary matrices.

Let
$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Then \mathbf{A} is singular \Leftrightarrow det $(\mathbf{A}) = ad - bc = 0$. For example, $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. \square

12. Prove that if A and B be a symmetric matrices of the same order, then $A + B = (A + B)^{T}$.

Proof. If A and B are symmetric, then $A^{T} = A$ and $B^{T} = B$. Hence,

$$(\boldsymbol{A} + \boldsymbol{B})^{\mathrm{T}} = \boldsymbol{A}^{\mathrm{T}} + \boldsymbol{B}^{\mathrm{T}} = \boldsymbol{A} + \boldsymbol{B}.$$

Alternatively, let $A = (a_{ij})$ and $B = (b_{ij})$, then $a_{ij} = a_{ji}$ and $b_{ij} = b_{ji}$. So

$$(i, j)$$
-entry of $(A + B)^{\mathrm{T}} = (j, i)$ -entry of $A + B$
$$= a_{ji} + b_{ji} = a_{ij} + b_{ij}$$
$$= (i, j)$$
-entry of $A + B$.

Hence,
$$(\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A} + \mathbf{B}$$
.

- 13. Let k be a scalar and A be a nonzero matrix such that $A^{T} = kA$. Prove that
 - (i) \boldsymbol{A} is a square matrix.
 - (ii) k = 1 or k = -1.
 - *Proof.* (i) Suppose A is an $m \times n$ matrix. Then A^T is $n \times m$ and kA is $m \times n$. It follows that m = n, i.e., A is a square matrix.
 - (ii) $A = (A^{T})^{T} = (kA)^{T} = kA^{T} = k(kA) = k^{2}A$, i.e., $(1 k^{2})A = 0$. Since $A \neq 0$, we must have $1 - k^{2} = 0$, i.e., k = 1 or k = -1.