Karatsuba Square Root Algorithm in Detail

Sebastian Mesow

April 4, 2023

We implement the recursive Karatsuba Square Root Algorithm by Paul Zimmermann as described in the following two papers:

- 1. https://hal.inria.fr/inria-00072854/document
- 2. https://hal.inria.fr/inria-00072113/document

Hello Hello

- Hello Hello Hello Hello Hello
- Hello Hello Hello Hello Hello
- Hello Hello Hello Hello

Hello Hello

1 Implementation Function

1st-level Pseudo Code

Syntax: $S, R := SqrtRem_Impl(X)$

1. normalized input integer X

Preconditions:

- 1. Normalization Condition
 - with m the minimal length of X

 - 1.1. $X \ge \frac{B^m}{4}$ 1.2. $X < B^m$

Output:

- 1. square root S
- 2. square root remainder R

Postconditions:

- 1. Integer Square Root Condition:
 - 1.1. $S^2 < X$
 - 1.2. $(S+1)^2 > X$
- 2. Integer Square Root Remainder Condition: $S^2 + R = X$

Deduced Postconditions:

1. Upper Bound for Square Root:

$$-S^2 \leq X \wedge X < B^m \implies S^2 < B^m$$
 is equivalent to 1.1. $S < B^{\frac{m}{2}}$

- 2. Upper Bounds for Square Root Remainder
 - $-(S+1)^2 > X \iff S^2 + 2S + 1 > X \iff 2S+1 > X-S^2 \iff 2S \ge X-S^2$ and $S^2 + R = X \iff R = X-S^2$ implies

 - $-R \le 2S \wedge S < B^{\frac{m}{2}}$ implies
 - 2.2. $R < 2B^{\frac{m}{2}}$

Algorithm:

Statement	Comment
1. compute H, L such that	
$1.1. \ HL = N$	
1.2. $H \ge L$	
1.3. $X = X_{23}L^2 + X_1L + X_0$	
$\overline{2.\ S_p,R_p:=\mathtt{SqrtRem_Wrap}(X_{23})}$	
$\overline{3.\ Q,U:={\tt DivRem}(R_pL+X_1,2S_p)}$	
$4. R_t := UL + X_0 - Q^2$	
$5. S_t := S_p L + Q$	
6.	correct return values
6.1. if $R_t < 0$ then	
$6.1.1. \ R := R_t + 2S_t - 1$	
$6.1.2. \ S := S_t - 1$	
6.2. else	if $R_t \ge 0$
$6.2.1. \ R := R_t$	
$6.2.2. S := S_t$	

1.2 2nd-level Pseudo Code

 $\mathbf{Syntax:}\ S,R:=\mathtt{SqrtRem_Impl}(X)$

Input:

1. normalized input number X

Preconditions:

1. Normalization Condition

- with m the minimal length of X 1.1. $X \ge \frac{B^m}{4}$ 1.2. $X < B^m$

1.1.
$$X \geq \frac{B^{n}}{4}$$

Output:

- 1. square root S
- 2. square root remaninder R

${\bf Post conditions:}$

1. Integer Square Root Condition: 1.1. $S^2 \le X$ 1.2. $(S+1)^2 > X$

1.1.
$$S^2 \leq X$$

1.2.
$$(S+1)^2 > X$$

2. Integer Square Root Remainder Condition: $S^2 + R = X$

Algorithm:

Statement	Comment	
1. compute H, L such that		
$1.1. \ HL = N$		
$1.2. \ H \ge L$		
$1.3. \ X = X_{23}L^2 + X_1L + X_0$		
3.	$Q,U:=\mathtt{DivRem}(R_pL+X_1,2S_p)$	
	it holds $R_pL + X_1 = Q \cdot 2S_p + U$ it holds $Q < L$ (see research paper) it holds $U < 2S_p$	
$3.1. \ Q_t, U_t := \operatorname{DivRem}(R_pL + X_1, S_p)$		
	it holds $R_pL + X_1 = Q_tS_p + U_t$	
	it must will hold $R_pL + X_1 \stackrel{!}{=} Q \cdot 2S_p + U$	
$3.2. \ Q := \lfloor \frac{Q_t}{2} \rfloor$		

	$- \text{ it holds } 2Q = Q_t$ $- \text{ with } U := U_t \text{ it holds}$
	while $C:=C_t$ is liokes $R_pL+X_1=Q_tS_p+U_t$
	$R_p L + A_1 = Q_t S_p + U_t$ $= 2Q \cdot S_p + U_t$
	$=2Q \cdot S_p + C_t$ $= Q \cdot 2S_p + U$
	if Q_t is odd: - it holds $2Q + 1 = Q_t$ - with $U := U_t + S_p$ it holds
	$R_pL + X_1 = Q_tS_p + U_t$
	$= (2Q+1)S_p + U_t$
	$=2Q\cdot S_p+S_p+U_t$
	$= Q \cdot 2S_p + U$
3.3.	correct division remainder
3.3.1. if Q_t is odd then	
$3.3.1.1. \ U := U_t + S_p$	
3.3.2. else	if Q_t is even
$3.3.2.1.\ U := U_t$	
4.	$R_t := UL + X_0 - Q^2$
4.1. $Q_{sqr} := Q^2$	
4.2. $R_t := UL + X_0 - Q_{sqr}$	
5.	$S_t := SL + Q$
$5.1. S_t := S_p L + Q$	
6.	correct return values
6.1. if $R_t < 0$ then	
6.1.1.	$R := R_t + 2S_t - 1$
$6.1.1.1. \ R_{tt} := R_t + 2S_t$	
6.1.1.2. $R := R_{tt} - 1$	
6.1.2. $S := S_t - 1$	
6.2. else	if $R_t \ge 0$
6.2.1. $R := R_t$	
$6.2.2. \ S := S_t$	

if Q_t is even:

1.3 3rd-level Pseudo Code

 $\mathbf{Syntax:}\ S, rB^n + R_o := \mathtt{mpn_SqrtRem_Impl}(X, n)$

Input:

- 1. normalized input number X
- 2. the exact half of its minimal length n
 - Thus the minimal length of X must be even.

Preconditions:

- 1. Normalization Condition
 - with 2n the minimal length of X 1.1. $X \ge \frac{B^{2n}}{4}$ 1.2. $X < B^{2n}$

Output:

- 1. square root S
 - will have length n
- 2. square root remainder without its overflow bit R_o
 - will have length n
- 3. square root remainder overflow bit r

${\bf Post conditions:}$

1. Integer Square Root Condition:

- 1.1. $S^2 \le X$ 1.2. $(S+1)^2 > X$ 2. Integer Square Root Remainder Condition: $S^2 + rB^n + R_o = X$ 3. S has length n:
- - 3.1. $S \ge 0$ 3.2. $S < B^n$
- 4. R_o has length n: 4.1. $R_o \ge 0$ 4.2. $R_o < B^n$

Algorithm:

Statement	Comment
	compute H, L such that
1.	-HL=N
	$-H \geq L$
111: n	$-X = X_{23}L^2 + X_1L + X_0$ $L := B^l$
$\frac{1.1. \ l := \left\lfloor \frac{n}{2} \right\rfloor}{1.2. \ h := n - l}$	$H := B^h$
$1.2. \ H - H - t$	
	it holds $X_0 = X \mod L$ it holds $X_1 = \lfloor \frac{X}{L} \rfloor \mod L$
	it holds $X_{23} = \frac{X}{L^2}$
	X_0 has length l
	X_1 has length l
	X_{23} has the minimal length $2h$
2.	$S_p, R_p := \mathtt{SqrtRem_Wrap}(X_{23})$
	X_{23} is normalized:
	- Its most significant limb is equal to that of X .
21 0 11 1	- Its minimal length 2h is even.
2.1. $S_p, r_pH + R_{po} := $ mpn_SqrtRem_Impl (X_{23}, h)	
	S_p has length $h \iff S_p < H$
	R_{po} has length $h \iff R_{po} < H$
	$R_p = r_p H + R_{po}$
3.	$Q,U:={\tt DivRem}(R_pL+X_1,2S_p)$
3.1.	$Q_t, U_t := \mathtt{DivRem}(R_pL + X_1, S_p)$
	We do not have R_p at hand. Also R_p can be H and thus may have a minimal length of $h+1$, which would make things a bit more complicate. We only have at hand r_p and $R_{po} < N$ separated. Thus we
	like to execute something like DivRem $(R_{po}L + X_1, S_p)$.
	Suppose, we neglect the next subtraction. If $r_p = 1 \iff R_p \ge H$, then $R_{po} = R_p - H$ and
	$Q_t, U_t := \mathtt{DivRem}\left(R_{po}L + X_1, S_p ight)$
	$= \mathtt{DivRem}\left((R_p - H)L + X_1, S_p\right)$
	$\iff Q_t S_p + U_t = (R_p - H)L + X_1$
	$=R_{p}L-HL+X_{1}$
	$=R_{p}L+X_{1}-N$
	which is not desired. How can we manipulate the dividend R $L + X$.
	How can we manipulate the dividend $R_{po}L + X_1$, such that
	manageable side effect $+Q_tS_p + U_t = \text{manipulated}$?
	Observe:
	If we subtract S_pL from the dividend, then the quotient is smaller by L
	(manageable side effect).

	Observe: - Because $R_p \le 2S_p = S_p + S_p$ and $S_p < H$, is
	$R_p < S_p + H$ $\iff R_p - H < S_p$
	$\iff R_p - H - S_p = R_{po} - S_p < 0$ - At this subtraction occurs an underflow (+H). Thus $R_{po} - S_p$ is in
	reality $R_p - H - S_p + H = R_p - S_p$. Conclusion: - If $R_p \ge H \iff r_p = 1$, then we replace R_{po} by $R_{po} - S_p$ and the obtained quotient $q_t L + Q_{to}$ is smaller than the required quotient Q_t
	by L . - The $+H$ by the underflow propagates a borrow bit to the left and – as a nice side effect – mathematical precisely cancels r_p .
	Check of this Idea:
	$\begin{split} q_{t,ob}L + Q_{to}, U_t &:= \mathtt{DivRem}\left((R_p - S_p)L + X_1, S_p\right) \\ \iff (q_{t,ob}L + Q_{to})S_p + U_t &= (R_p - S_p)L + X_1 \\ &= R_pL - S_pL + X_1 \\ \iff (q_{t,ob}L + Q_{to})S_p + S_pL + U_t &= R_pL + X_1 \\ &= \left((q_{t,ob} + 1)L + Q_{to}\right)S_p + U_t \end{split}$
	$\iff (q_{t,ob}+1)L+Q_{to},U_t=\mathtt{DivRem}(R_pL+X_1,S_p)$
	$=: q_t L + Q_{to}, U_t$
3.1.1. if $r_p > 0$ then	
$3.1.1.1. \ R_{po} := R_{po} - S_p$	actually we would must also $r_p := 0$
	$R_{po}L + X_1$ has length $h + l = n$
$3.1.2. \ q_{t,ob}L + Q_{to}, U_t := \\ \text{mpn_DivRem}(R_{po}L + X_1, S_p)$	
	according to the postconditions of mpn_DivRem() - $Q_{to} < L$, because Q_{to} has length $l = n - h = (h + l) - h$ - $U_t < S_p \implies U_t < H$, because U_t has length h (same as the divisor S_p) - $q_{t,ob} = 0$ or 1
	If $r_p > 0 \iff r_p = 1 \iff R_p \ge H$, then the required q_t is bigger than the obtained $q_{t,ob}$ by 1.
$3.1.3. \ q_t := q_{t,ob} + r_p$	To reflect this in reality we, just add $r_p = 1$ to $q_{t,ob}$. If $r_p = 0 \iff R_p = R_{po}$, then the addition is useless.
	memorize $Q_t = q_t L + Q_{to}$
	memorize $q_t = 0$ or 1 or 2
	it holds
	$Q_t S_p + U_t = R_p L + X_1$
	$\iff (q_t L + Q_{to})S_p + U_t = (r_p H + R_{po})L + X_1$
3.2.	$Q := \lfloor \frac{Q_t}{2} \rfloor$
$3.2.1. \ Q_o := Q_{to} >> 1$	Q_o has length l , because Q_{to} has length l .
$3.2.2. \ Q_o[l-1] := \left((q_t \& 1) << (b-1) \right) \mid Q_o[l-1]$	The least significant bit of q_t as it shifts right floats into the most significant bit of the last limb of Q_o . Because Q_o has length l , the last limb is at index $l-1$. (zero-based index)
3.2.3. $q := q_t >> 1$	memorize $q = 0$ or 1.
	memorize $Q = qL + Q_o$
3.3.	correct division remainder
3.3.1. if $Q_{to} \& 1 = 1$ then	if Q_t is odd then
$3.3.1.1. \ uH + U_o := U_t + S_p$	$U := U_t + S_p$
3.3.2. else	if Q_t is even \iff if $Q_{to} \& 1 = 0$

3.3.2.1.	$U := U_t$
$3.3.2.1.1.\ U_o := U_t$	
$3.3.2.1.2. \ u := 0$	
	U_o has length $h \iff U_o < H$
	$R_t := UL + X_0 - Q^2$
4.1.	$Q_{sqr} := Q^2$
	Recap $Q \le L$ (see research paper) Thus either $q=0$ or $Q_o=0$ or both $=0$, but never together >0 . Thus always $qQ_o=0$.
	$Q^2 = (qL + Q_o)^2$
	$= qL^2 + 2qLQ_o + Q_o^2$
	$= qL^2 + Q_o^2$ $= aL^2 + Q_o^2$
	$=: qL^2 + Q_{o,sqr}$
	See how q remains the same in Q^2 .
$4.1.1. \ Q_{o,sqr} := Q_o^2$	see now q remains the same in Q.
ψ_0	$Q_{o,sqr}$ has length $2l$, because Q_o has length l .
	Q_o, sqr has length $2t$, because Q_o has length t . $Q_o < L \iff Q_o^2 < L^2$
	Memorize $Q_{sqr} = qL^2 + Q_{o,sqr}$
4.2.	$R_t := UL + X_0 - Q_{sqr}$
	$U_oL + X_0$ has length $n = h + l$.
	$R_t = (UL + X_0) - Q_{sqr}$
	$= r_t N + R_{to} := (uH + U_o)L + X_0 - qL^2 - Q_{o,sqr}$
	$= uHL - qL^2 + U_oL + X_0 - Q_{o,sqr}$
	$= uN - qL^2 + (U_oL + X_0) - Q_{o,sqr}$
$4.2.1. \ sub_borrow, R_{to} := \\ \texttt{mpn_sub_n}(U_oL + X_0, \ Q_{o,sqr}, \ 2l)$	$mpn_sub_n(X,Y,n)$ subtracts the n least significant limbs of X and Y . It leaves other limbs untouched. Thus a borrow is still returned.
	currently R_{to} has length $2l$
4.2.2.	assign borrows to their correct place
	r_t is has the meaning of a carry, but can be negative.
4.2.2.1. if $h = l$ then	\iff if n is even
	$U_oL + X_0$ has length $h + l = n$. $Q_{o,sqr}$ has length $2l = n$. Thus in this case $U_oL + X_1$ and $Q_{o,sqr}$ have the same length. Thus in this case sub_borrow goes into the carry r_t .
	(Thus not n but $2l$ is provided to $mpn_sub_n()$.)
	Because R_{to} has length $2l$, $-qL^2$ also goes into the carry r_t .
$4.2.2.1.1. r_t := u - sub_borrow - q$	
4.2.2.2. else	if $l+1=h \iff$ if n is odd
	$\begin{array}{l} U_oL+X_1 \text{ has length } h+l=n=2l+1 \ . \\ Q_{o,sqr} \text{ has length } 2l \ . \\ \text{So } U_oL+X_1 \text{ has one limb more than } Q_{o,sqr}. \\ \text{Thus to complete the subtraction } (U_oL+X_0)-Q_{o,sqr} \text{ the } sub_borrow \\ \text{must borrow from the last (and still untouched) limb of } U_oL+X_0 \text{ forming the last limb of } R_{to} \ . \\ \text{This may delivers the actual borrow.} \end{array}$
	Because R_{to} has length $2l$, $-qL^2$ also goes into the last (and still untouched) limb of $U_oL + X_0$ forming the last limb of R_{to} .
$4.2.2.2.1. \ actual_borrow, R_{to}[2l] := (U_oL + X_0)[2l] - sub_borrow - q$	The last limb of $U_oL + X_0$ is at index $2l$. (zero-based index)
$4.2.2.2.2. \ r_t := u - actual_borrow$	
	Now if r_t is negative, then this stands therefore, that $R_t = (UL + X_o) - Q^2$ is negative.

5.	$S_t := SL + Q$
5.1.	$S_t := S_p L + Q$
	$S_t := S_p L + Q$ $= s_t N + S_{to} := S_p L + Q L + Q_o$
	$-s_t N + S_{to} = S_p L + q L + Q_o$ $= s_t N + S_{to,high} L + Q_o := (S_p + q) L + Q_o$
	$-S_{t}N + S_{to,high}L + Q_{o} - (S_{p} + q)L + Q_{o}$
$5.1.1. \ s_t H + S_{to,high} := S_p + q$	Note: $N = HL \iff n = h + l$
	$S_{o,high}$ as length h , because S_p has length h .
$5.1.2. \ S_{to} := S_{to,high}L + Q_o$	
	S_{to} as length $n = h + l$, because $S_{to,high}$ has length h and Q_o has length l .
	We can only execute these statements after 3.3.1.1., because until including 3.3.1.1. S_p (and not $S_p + q$) is still required and S_p is stored at memory, which will become S_{to} here.
6.	correct return values
6.1. if $r_t < 0$ then	if $R_t < 0$ then
6.1.1.	$R := R_t + 2S_t - 1$
6.1.1.1.	$R_{tt} := R_t + 2S_t$
$6.1.1.1.1. \ r_{tt}N + R_{tto} := R_{to} + 2S_{to}$	R_{tto} has length n .
$6.1.1.1.2. \ r_{tt} := r_{tt} + 2s_t$	
6.1.1.2.	$R := R_{tt} - 1$
$6.1.1.2.1. temp_borrow, R_o := R_{tto} - 1$	return this R_o
$6.1.1.2.2. r := r_{tto} - temp_borrow$	return this r
6.1.2.	$S := S_t - 1$
6.1.2.1. $temp_borrow, S_o := S_{to} - 1$	
$6.1.2.2. \ s := s_t - temp_borrow$	
6.2. else	else if $R_t \ge 0 \iff$ else if $r_t \ge 0$
6.2.1. $R := R_t$	
$6.2.2. S := S_t$	

finally R_{to} has a length of n

- 6. correct return values: - lif $R_t < 0$ then - 1. if $r_t < 0$ then - 1. $R := R_t + 2S_t - 1$ - 1. $R_{tt} := R_t + 2S_t - 1$ - 1. $R_{tt} := R_t + 2S_t - 1$ - 1. $R_{tt} := R_t + 2S_t - 1$ - 1. $R_{tt} := R_t + 2S_t - 1$ - 1. $R_{tt} := R_t + 2S_t - 1$ - 1. $R_{tt} := R_t + 2S_t - 1$ - 2. $R := R_{tt} - 1 - 1$ - 1. $R_{tt} := R_t - 1$ - 2. $R_t := R_{tt} - 1$ - 2. $R_t := R_{tt} - 1$ - 2. $R_t := R_{tt} - 1$ - 2. $R_t := R_t - 1$ - 3. $R_t := R_t - 1$