# Support Session

Wednesdays from 13:00 to 14:00.

Venue: TB 318+

The support session is another opportunity (in addition to the office hours)

for you to get your questions answered by tutors.

### Mid-Semester Examination

Wednesday 3<sup>rd</sup> November from 13:30 to 14:30.

Confirm your venue from CPSO

Topics covered would be those topics treated in Seminars 1 to 4

Revision Materials would be made available on Moodle, and you would be informed when they are live



#### Please make sure you bring a permissible calculator to the examination

#### Permissible Calculator CASIO fx-82E family

fx - 82ES PLUS



fx - 82ES PLUS 2nd edition



fx - 82ES PLUS A



# Lecture 4

Topics covered in this lecture session

- 1. Inverse Trigonometric functions.
- 2. Expressing  $a\cos x + b\sin x$  in the form  $r\cos(\theta x)$ .



The graph of the sine function over  $\mathbb{R}$ , indicates that it is not one-one however, if we restrict the domain to  $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ , then sine function is one-one and its inverse exists.



It is denoted by  $\sin^{-1}$  or  $\arcsin$  and is defined by

$$y = \sin x \quad \Leftrightarrow \quad x = \sin^{-1} y \qquad ; \quad -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$



| Inverse<br>Function        | Domain of Inverse function  ≡ Range of Trigonometric function | Range of Inverse function i.e. Restricted Domain for Trigonometric function | Graph of Inverse<br>Trigonometric function                                                                                    |
|----------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $\cos^{-1} x$ or $\arccos$ | [-1, 1]                                                       | $[0,\pi]$                                                                   | $\frac{x}{2} \cos^{-1} x$                                                                                                     |
| $\sin^{-1} x$ or $\arcsin$ | [-1, 1]                                                       | $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$                                 | $\frac{\frac{a}{2}}{\frac{a}{4}} \qquad \sin^{-1} x$ $\frac{\frac{a}{4}}{\frac{a}{4}} \qquad \frac{\frac{a}{4}}{\frac{a}{4}}$ |



| Inverse<br>Function        | Domain of Inverse function  ≡ Range of Trigonometric function | Range of Inverse function i.e. Restricted Domain for Trigonometric function | Graph of Inverse<br>Trigonometric function |
|----------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------|
| $\tan^{-1} x$ or $\arctan$ | $\mathbb{R}$                                                  | $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$                                 | tan <sup>-1</sup> x                        |
| $\sec^{-1} x$ or $\arccos$ | $\mathbb{R}-(-1,1)$                                           | $[0,\pi]-\left\{\frac{\pi}{2}\right\}$                                      |                                            |



| Inverse<br>Function                         | Domain of Inverse function<br>≡ Range of Trigonometric<br>function | Range of Inverse function i.e. Restricted Domain for Trigonometric function | Graph of Inverse<br>Trigonometric function |
|---------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------|
| $\cos e^{-1}x$ or $\operatorname{arccosec}$ | $\mathbb{R}-(-1,1)$                                                | $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\}$                           | cosec <sup>-1</sup> x                      |
| $\cot^{-1} x$ or $\operatorname{arccot}$    | $\mathbb R$                                                        | $(0,\pi)$                                                                   | cot <sup>-1</sup> x                        |





Reference Angle  $\theta \in (0, 2\pi)$ 

#### Restricted domain for Inverse Trigonometric functions

$$[0,\pi]$$
, used for  $\cos^{-1}$ 



$$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$
, used for  $\sin^{-1}$ 



$$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$
, used for  $\tan^{-1}$ 



#### Find the values of:

$$(i)$$
  $\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ 

$$(ii)$$
  $\tan^{-1}\left(\frac{-1}{\sqrt{3}}\right)$ 

$$(iii)$$
  $\sin^{-1}\left(\sin\left(\frac{7\pi}{4}\right)\right)$ 





#### Question 4-N36-Q1

Solve 
$$\cos^{-1}\left(\cos\left(\frac{14\pi}{3}\right)\right) - \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

 $A \frac{\pi}{2}$ 

 $B \pi$ 

C  $2\pi$ 



$$r \cos(\theta - x)$$

Sometimes it is important to express

$$f(x) = a \cos x + b \sin x$$
 in the form  $r \cos(\theta - x)$ ,

so as to

- determine the range of f;
- find the period of f;
- sketch the graph of the function f.



$$r \cos(\theta - x)$$

The Method: Let 
$$a = r \cos \theta$$
  
 $b = r \sin \theta$ 

where  $\theta$  and r are to be determined.

- Squaring and adding  $\Rightarrow$   $a^2+b^2=r^2$   $\Rightarrow$   $r=\sqrt{a^2+b^2}$
- Dividing the second equation by the first equation, gives

$$\frac{r\sin\theta}{r\cos\theta} = \frac{b}{a}$$
  $\Rightarrow$   $\tan\theta = \frac{b}{a}$  (from which  $\theta$  can be found)



$$r \cos(\theta - x)$$

Thus, 
$$f(x) = a \cos x + b \sin x$$

 $= r\cos\theta\cos x + r\sin\theta\sin x$ 

 $= r \left[ \cos \theta \cos x + \sin \theta \sin x \right]$ 

 $= r\cos(\theta - x)$  or  $r\cos(x - \theta)$ 

because,  $\cos(-\theta) = \cos\theta$ 



$$r \cos(\theta - x)$$

1. Prove that 
$$\cos 2x - \sqrt{3}\sin 2x = 2\cos\left(2x + \frac{\pi}{3}\right)$$
.

- 2. Express  $\sin x \sqrt{3}\cos x$  in the form  $R\sin(x-\alpha)$ , where R>0 and  $0<\alpha<\pi/2$ .
  - Hence (i) sketch the graph of  $y = f(x) = \sin x \sqrt{3}\cos x$ ;
    - (ii) find the range of f;
    - (iii) find the period of f.



$$r \cos(\theta - x)$$

- 1. Prove that  $\cos 2x \sqrt{3}\sin 2x = 2\cos\left(2x + \frac{\pi}{3}\right)$ .
- 2. Express  $\sin x \sqrt{3}\cos x$  in the form  $R\sin(x-\alpha)$ , where R>0 and  $0<\alpha<\pi/2$ .
  - Hence (i) sketch the graph of  $y = f(x) = \sin x \sqrt{3}\cos x$ ;
    - (ii) find the range of f;
    - (iii) find the period of f.



$$r \cos(\theta - x)$$

- 1. Prove that  $\cos 2x \sqrt{3}\sin 2x = 2\cos\left(2x + \frac{\pi}{3}\right)$ .
- 2. Express  $\sin x \sqrt{3}\cos x$  in the form  $R\sin(x-\alpha)$ , where R>0 and  $0<\alpha<\pi/2$ .
  - Hence (i) sketch the graph of  $y = f(x) = \sin x \sqrt{3}\cos x$ ;
    - (ii) find the range of f;
    - (iii) find the period of f.



Question 4-N36-Q2

Express  $4 \sin x - 3 \cos x$  in the form  $r \sin(x - \alpha)$ 

A 
$$5\sin(x + 45.00^{\circ})$$

B 
$$5\sin(x - 30.00^{\circ})$$

C 
$$5\sin(x + 36.87^{\circ})$$

### Suggested Reading

Foundation Algebra by P. Gajjar.

(Chapter 6)