Estimation des quantiles d'une loi de Pareto Bootstrap et rééchantillonnage

Clara CHAMPAGNE, Benjamin DONNOT, Matthieu PLUNTZ

ENSAE Paristech - 3A

4 mai 2015

Structure

- 1 Introduction
- 2 Approche non paramétrique
- 3 Approche paramétrique
- 4 Conclusion

Loi de Pareto

La loi de Pareto a pour fonction de répartition :

$$F(x) = 1 - \left(\frac{c}{x}\right)^{eta} \; \mathsf{pour} \; x > c, \; c \; \mathsf{connu}$$

inférieurs à eta. Elle appartient au domaine d'attraction de Fréchet -a distribution ne possède de moments que pour les ordres (distributions à queues lourdes).

Loi de Pareto

Figure: Densité de la loi de Pareto pour c=1 et différents paramètres de forme (β) .

Loi de Pareto : une loi très asymétrique

Si $\beta \le 3$: $k_3(\beta)$ n'est pas défini.

Si $\beta > 3$, on a :

$$k_3(\beta) = \frac{2(1+\beta)}{\beta-3} \sqrt{\frac{\beta-2}{\beta}}$$

Ainsi $k_3(5)\simeq 4.6$ et $k_3(4)\simeq 7.1$ et $k_3(3.01)\simeq 348.7$!

Quantile empirique : comportement asymptotique

$$\sqrt{n}[\hat{F}_n^{-1}(q) - F^{-1}(q)] \sim \mathcal{N}\left(0, \frac{q(1-q)}{[f(F^{-1}(q))]^2}\right)$$

- dénominateur de la variance asymptotique qui explose pour les quantiles élevés
- densité de la loi inconnue dans sa version empirique
- convergence perturbée par l'asymétrie de la distribution

Quantile empirique : bootstrap nail peu performant

Convergence à l'ordre 1 :

$$Pr\left[\sqrt{n}\frac{F_n^{*-1}(q) - F_n^{-1}(q)}{S_n} \le x\right] - Pr\left[\sqrt{n}\frac{F_n^{-1}(q) - F^{-1}(q)}{S_n} \le x\right] = O(n^{-1/4})$$

La condition de Cramer n'est pas vérifiée, et f_n n'existe pas : le bootstrap n'est pas valide au second ordre

Une distribution Bootstrap assez particulière

Figure: Quantile à 75%

 ∞

Une distribution Bootstrap assez particulière

Figure: Quantile à 90%

Conclusion

Une distribution Bootstrap assez particulière

Figure: Quantile à 99/100

Conclusion

Approche non paramétrique

Quantile empirique : amélioration par bootstrap lissé

issage gaussien :

 $(N_1,...,N_n)\sim \mathcal{N}(0,1),\,(\tilde{X}_1^*,...,\tilde{X}_n^*)$ tirés indépendamment dans \hat{F}_n , et $X_i^*=\tilde{X}_i^*+h_nN_i,\,(i=1...n)$. On répète B fois cette opération.

$$Pr\left[\sqrt{n}\frac{F_n^{*-1}(q) - F_n^{-1}(q)}{S_n} \le x\right] - Pr\left[\sqrt{n}\frac{F_n^{-1}(q) - F^{-1}(q)}{S_n} \le x\right] = O(n^{-3/4})$$

Si *h*_n bien choisi

Introduction

ENSAE Paristech - 3A

Distribution "Smooth Bootstrap"

Figure: Quantile à 75%

Conclusion

Approche non paramétrique

Introduction

Distribution "Smooth Bootstrap"

<u>6</u>

Figure: Quantile à 90%

Introduction

Distribution "Smooth Bootstrap"

Figure: Quantile à 99/100

Estimation des quantiles d'une loi de Pareto

Conclusion

Quantile empirique : comparaison des approches

	valeur théorique	IC Oracle	IC Asympt.	IC Naif	IC Lisse
750/	c	1.76	1.76	1.8	1.81
0/.67	7	[1.41, 2.11]	[1.62, 2.04]	[1.61, 2.04]	[1.62, 2.09]
/000	77 0	2.66	2.66	2.62	2.62
90%	2.10	[1.13, 4.19]	[2.17, 3.76]	[2.04, 3.45]	[2.07, 3.38]
-	Ç	6.57	6.57	6.05	60.9
pseudo max	Π	[-44.2, 57.33]	[4.02, NA]	[3.45, 8.64]	[3.46, 8.71]

Table: Quantiles estimés et intervalles de confiance à 95% par les différentes méthodes (n =100)

Retour sur le paramètre β

Figure: $\beta = 2$

%06

Figure: $\beta=4$

Estimateur du maximum de vraisemblance

$$\frac{1}{\widehat{eta}_{\mathcal{MV}}} = \frac{1}{n} \sum_{i=1}^{n} \log \frac{X_i}{c}$$

Bootstrap paramétrique

- ① On calcule l'estimateur $\beta_{MV}(X)$
- ② On simule B échantillons de taille n et de même loi :

$$\forall b = 1, ..., B, \ X^{*b} = (X_{1^b}^*, ..., X_{n^b}^*) \sim Pareto(\widehat{\beta}_{MV}(X))$$

3 On calcule le quantile empirique $Q(q)_b$ de chacun de ces échantillons. On obtient ainsi un échantillon de taille *b* d'estimateurs du quantile empirique.

Bootstrap paramétrique

Figure: Quantile à 75%

Introduction

Conclusion

Bootstrap paramétrique

Figure: Quantile à 90%

Introduction

Bootstrap paramétrique

Figure: Quantile à 99/100

	Quantile théorique	IC Oracle	IC Asympt.	IC B. param. (MV)
750/	C	1.76	1.76	1.83
0/C/	7	[1.41, 2.11]	[1.69, 1.83]	[1.59, 2.14]
/000	2 16	2.66	2.66	2.72
9070	3.10	[1.13, 4.19]	[2.47, 2.84]	[2.14, 3.54]
-	5	6.57	6.57	6.72
pseudo-max	OT	[-44.2, 57.33]	[4.88, 8.25]	[3.59, 14.25]

Table: Quantiles estimés et intervalles de confiance à 95% par les différentes méthodes (n = 100)

Estimation des quantiles d'une loi de Pareto

Estimateur Hill

Estimateur de Hill

$$X_{(1)},...,X_{(k-1)} \sim Pareto(\beta,c=X_{(k)})$$

avec $X_{(1)},...,X_{(k)}$ les k plus grandes valeurs de l'échantillon $X^{(n)}$

$$\forall \ q>1-\frac{k}{n}, \ \widehat{Q(q)}_{k,H}=X_{(k)}\left(\frac{n}{k}(1-q)\right)^{-\frac{1}{\widehat{\beta}_{k,H}}}$$

Bootstrap naïf avec estimateur de Hill

On réalise B tirages avec remise parmi $(X_1,...,X_n)$ d'un échantillon de *n* observations : $\forall b = 1, ..., B, \ X^{*b} = (X^*_{1^{(b)}}, ..., X^*_{n^{(b)}})$, et pour chacun de ces échantillons on calcule :

$$\widehat{Q(q)}_b = \widehat{Q(q)}_{MV}(X^{*b})$$

Bootstrap naïf sur le quantile estimé par Hil

Figure: Quantile à 75%

Conclusion

Bootstrap naïf sur le quantile estimé par Hil

Figure: Quantile à 90%

Conclusion

Bootstrap naïf sur le quantile estimé par Hil

Figure: Quantile à 99/100

	Quantile théorique	IC Oracle	IC Asympt. (Hill)	IC Hill
750/	C	1.76	1.76	1.82
0/C/	٧	[1.41, 2.11]	[1.69, 1.82]	[1.75, 1.89]
/000	2,7	2.66	2.66	2.61
0/ 06	07.0	[1.13, 4.19]	[2.5, 2.82]	[2.23, 3.11]
	Ç	6.57	6.57	6.65
pseudo max	OT	[-44.2, 57.33]	[5.17, 7.97]	[4.1, 10.79]

Table: Quantiles estimés et intervalles de confiance à 95% par les différentes méthodes (n = 100)

Conclusion

Conclusion

Résultats principaux

- Médiocrité du bootstrap naif
- Améliorations par lissage pour les quantiles "peu élevés"
- Estimateur de Hill permet de s'affranchir des problèmes de Utilisation la forme paramétrique de la loi très pertinente

spécification

Quantiles élevés d'une loi à queue lourde \Rightarrow l'estimateur de Hill est plus fiable que les approches non paramétriques

Conclusion

Merci de votre attention

Bootstrap naïf sur le quantile estimé par MV

Figure: Quantile à 75%

Estimation des quantiles d'une loi de Pareto

Bootstrap naïf sur le quantile estimé par MV

Figure: Quantile à 90%

Conclusion

Bootstrap naïf sur le quantile estimé par MV

Figure: Quantile à 99/100

Bootstrap naïf sur le quantile estimé par MV

	Quantile théorique	IC Oracle	IC Asympt.	IC bootstrap naïf
760/	C	1.76	1.76	1.84
0/C/	V	[1.41, 2.11]	[1.69, 1.83]	[1.66, 2.05]
/000	2, 0	2.66	2.66	2.76
90/06	3.10	[1.13, 4.19]	[2.47, 2.84]	[2.32, 3.3]
	5	6.57	6.57	7.7
шах	OT	[-44.2, 57.33]	[4.88, 8.25]	[5.39, 10.92]

Table: Quantiles estimés et intervalles de confiance à 95% par les différentes méthodes (n = 100)