MATH 250: TOPOLOGY I MIDTERM GUIDE

FALL 2025

The midterm exam will be held in-class on **Wednesday**, **October 8**, **2025**. It will start at 12:30 pm and end at 2:00 pm.

You <u>will</u> be allowed to look at any notes on paper that you wrote prior to the exam, and at the textbook (Munkres, *Topology*, 2nd Ed.). However, you will <u>not</u> be allowed to use electronic devices of any kind—including phones, computers, tablets, or other visual/audio devices—or any software.

WHAT COULD APPEAR

§12.

- definition of a topology
- definitions of the discrete, indiscrete, and finite-complement topologies on any set, and why these are topologies
- definition of the analytic topology on \mathbf{R}^n
- which of the above topologies on R are finer or coarser than others

§13.

- what it means for a collection of subsets of X to be a basis
- what it means for a basis to generate a given topology on X
- \bullet examples where different bases generate the same topology on X

§18.

- what it means for a map between topological spaces to be continuous
- how to check continuity of $f: X \to Y$ using a basis for the topology on Y
- what it means for topological spaces to be homeomorphic
- examples of homeomorphisms between distinct sets $(e.g., \mathbf{R} \text{ and } (0,1))$
- examples of continuous bijections that are not homeomorphisms

§16.

- definition of the subspace topology on $A \subseteq X$, given a topology on X
- ullet how the subspace topology on A is related to continuity of the inclusion map from A into X
- \bullet examples where some subset of A is open in A, but not in X

§15, 19.

- definition of a direct product of sets $\prod_{i \in I} X_i$
- why \mathbf{R}^n and \mathbf{R}^ω are examples of direct products of sets
- definitions of the box and product topologies on $\prod_{i \in I} X_i$, given a topology on X_i for each i

- which of the box or product topologies is finer than the other
- how the product topology on $\prod_{i \in I} X_i$ is related to continuity of the various projection maps $\operatorname{pr}_j \colon \prod_{i \in I} X_i \to X_j$
- the closures of \mathbf{R}^{∞} in the box and product topologies on \mathbf{R}^{ω} (PS 3, #3)

§20.

- definition of a metric
- \bullet definition of d-balls for a metric d, and of the topology they generate
- definitions of the euclidean and square metrics on \mathbf{R}^n and on \mathbf{R}^{∞}
- \bullet examples of different metrics on \mathbb{R}^n that generate the same topology
- definition of the uniform topology on \mathbf{R}^{ω} (PS 2, #11), and how it compares to the box topology (#12)

§17.

- \bullet definitions of the interior and closure of a subset A of a topological space X
- how to check that a point in X belongs to the closure of a subset A
- what it means for a sequence of points to converge to a given point
- definition of the Hausdorff property
- what the Hausdorff property implies for convergence of sequences

§22.

- definition of the quotient topology on a set Q, given a topology on X and a surjective map $f: X \to Q$
- how the quotient topology on Q is related to continuity of f
- examples of quotient spaces (e.g., constructed using equivalence relations)

§23-25.

- what it means for a topological space X to be connected, or for subsets $U, V \subseteq X$ to form a separation of X
- \bullet how connected subspaces of X interact with separations of X
- how connectedness interacts with continuous maps and finite products
- the fact that (analytic) **R** is connected
- \bullet why \mathbf{Q} is totally disconnected as a subspace of (analytic) \mathbf{R} , but not discrete
- definition of path-connectedness
- definitions of connected components and path components
- what it means to be locally connected or locally path connected
- examples of spaces that are disconnected but locally connected

\approx §26–27.

- open-covering definition of compactness
- the fact that (analytic) [0,1] is compact
- how compactness interacts with continuous maps and finite products

WHAT WE'LL HAVE COVERED BY THEN, BUT WILL NOT APPEAR

- ullet the evenly-spaced topology on ${f Z}$
- the countable-complement topology
- the axiom of choice
- equivalence/inequivalence of metrics (Problem Set 2, #10)
- convergence in the uniform topology on \mathbf{R}^{ω}
- the intermediate value theorem
- the topologist's sine curve

PRACTICE PROBLEMS

Try to hand-write a solution to each problem within 10–15 minutes. Throughout, **R** has the <u>analytic</u> topology unless otherwise specified.

On the exam, you will <u>not</u> need to use complete sentences, but the clearer your work, the more points you will earn.

Problem 1. Prove that the finite-complement topology on \mathbf{R} is coarser than the analytic topology.

Problem 2. Let \mathcal{B} be the collection of intervals in \mathbf{R} of the form [a,b) (where a < b). It turns out that \mathcal{B} is a basis. Show that the topology it generates is <u>strictly</u> finer than the analytic topology.

Problem 3. Give spaces X and Y and a continuous bijective map $f: X \to Y$ that is not a homeomorphism. You do not need to prove that f is continuous or bijective, but you should prove that it is not a homeomorphism.

Problem 4. Let $\mathcal{T}, \mathcal{T}'$ be topologies on X, with \mathcal{T} coarser than \mathcal{T}' .

- (1) If $f: X \to Y$ is continuous for \mathcal{T} , must f be continuous for \mathcal{T}' ? If not, give a counterexample.
- (2) If $g: Z \to X$ is continuous for \mathcal{T} , must g be continuous for \mathcal{T}' ? If not, give a counterexample.

Problem 5. Prove that if \mathcal{B} is a basis for a topological space X, and $A \subseteq X$, then

$$\{A \cap B \mid B \in \mathcal{B}\}$$

is a basis for the subspace topology on A.

Problem 6. Give an infinite subspace of \mathbf{R} whose (subspace) topology is discrete. Justify your answer.

Problem 7. Give \mathbf{R}^{ω} the box topology and $X_n = \{x \in \mathbf{R}^{\omega} \mid x_i = 0 \text{ for } i > n\}$ the subspace topology. Show that \mathbf{R}^n , in its product topology, is homeomorphic to X_n .

Problem 8. Show that the formula

$$\eta(x,y) = \min\{1, |x-y|\}$$

defines a metric η on \mathbf{R} .

Problem 9. Show that \mathbf{R}^{ω} in its product topology is Hausdorff.

Problem 10. Show that any subspace of a Hausdorff space is also Hausdorff.

Problem 11. For any space X, subspace $Y \subseteq X$, and subset $A \subseteq Y$, show that

$$\operatorname{Int}_{Y}(A) \supseteq \operatorname{Int}_{X}(A)$$
.

Are these sets always equal? (Yes/No)

Problem 12. Let $p: \mathbf{R} \to \mathbf{R}_{\geq 0}$ be the map p(x) = |x|. It turns out that

$$\mathcal{B} = \{ [0,c) \mid 0 < c \} \cup \{ (a,b) \mid 0 < a < b \}$$

is a subset of the quotient topology on $\mathbb{R}_{\geq 0}$ induced by p. Show that \mathcal{B} is actually a basis for this topology. *Hint:* Munkres Lemma 13.2.

Problem 13. View x = (0, 0, 0, ...) and y = (1, 2, 3, ...) as points of \mathbf{R}^{ω} . Is there a path from x to y in the box topology on \mathbf{R}^{ω} ? *Hint:* Is \mathbf{R}^{ω} connected?

Problem 14. View

$$X = \mathbf{R} - \{\frac{1}{n} \mid n = 1, 2, 3, \ldots\}$$

as a subspace of \mathbf{R} . Show that X is not locally connected. *Hint:* Show that the only connected open subset of X containing 0 is the set $\{0\}$, which isn't open.

Problem 15. Give examples of the following, with justification (possibly by citing theorems from lecture or Munkres):

- (1) A connected subspace of **R** that is not compact.
- (2) A compact subspace of **R** that is not connected.