Статус: Релиз

### Краткое описание процессора Байкал-Т1

Редактор: Михаил Бессонов

Доступ: Публичный

### История изменений

| Версия | Дата     | Автор       | Описание                                                                                                                          |
|--------|----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 1.0    | 03.02.16 | М. Бессонов | Идентична публичному релизу версии 1.0 от 10.12.2015 на английском языке.                                                         |
| 2.0    | 17.08.16 | М. Бессонов | Обновлены домены питания и описание выводов, габаритный чертёж корпуса. Добавлена последовательность запуска и сброса процессора. |
| 2.1    | 16.09.16 | Р. Сергеев  | Добавлены разделы 6.3 Упаковка и 6.4 Профиль пайки в соответствии с релизом 2.0 от 12.09.2016 на английском языке                 |
| 2.2    | 07.02.17 | М. Бессонов | Обновлены рабочая частота и напряжения доменов питания для серийного изделия.                                                     |
| 2.3    | 11.10.18 | Ю. Антропов | Обновлен раздел 6.2 — добавлен чертеж крышки корпуса                                                                              |



Статус: Релиз

### Содержание

| 1 Введение                                                            | 5  |
|-----------------------------------------------------------------------|----|
| 1.1 Основные характеристики                                           | 5  |
| 1.2 Структурная схема процессора Байкал-Т1                            | 7  |
| 2 Логические блоки процессора Байкал-Т1                               | 8  |
| 2.1 Двухъядерный микропроцессорный кластер                            | 8  |
| 2.2 Подсистема памяти DDR3                                            | 9  |
| 2.3 Высокоскоростные интерфейсы ввода-вывода                          | 10 |
| 2.3.1 Подсистема 10Gb Ethernet (XGbE)                                 | 10 |
| 2.3.2 Подсистема Gb Ethernet (GMAC)                                   | 10 |
| 2.3.3 Подсистема PCI Express                                          | 11 |
| 2.3.4 Подсистема SATA                                                 | 11 |
| 2.3.5 Подсистема USB                                                  | 12 |
| 2.4 Низкоскоростные интерфейсы для подключения периферийных устройств | 12 |
| 2.4.1 Контроллер 32-bit GPIO                                          | 12 |
| 2.4.2 Контроллер 3-bit GPIO                                           | 13 |
| 2.4.3 Контроллер UART                                                 | 13 |
| 2.4.4 Контроллер SPI0 (Boot SPI)                                      | 13 |
| 2.4.5 Контроллеры SPI 1, 2                                            | 13 |
| 2.4.6 Контроллер I <sup>2</sup> C0                                    | 14 |
| 2.4.7 Контроллеры I <sup>2</sup> C 1, 2                               | 14 |
| 2.4.8 Программируемый сторожевой таймер (WDT)                         | 14 |
| 2.4.9 Таймеры                                                         |    |
| 2.4.10 Генератор тактовых импульсов                                   | 15 |
| 2.4.11 Контроллер загрузки                                            | 15 |
| 2.5 Средства отладки                                                  | 15 |
| 3 Электрические характеристики                                        | 17 |
| 3.1 Параметры электропитания                                          |    |
| 3.2 Вуольые тактовые сигналы                                          | 20 |



| 4 Процедуры запуска и сброса процессора                                  | 21 |
|--------------------------------------------------------------------------|----|
| 4.1 Процедура запуска процессора                                         | 21 |
| 4.2 Процедура сброса процессора                                          | 21 |
| 4.3 Выбор режима загрузки                                                | 24 |
| 5 Назначение выводов                                                     | 25 |
| 5.1 Перечень выводов                                                     | 25 |
| 6 Упаковка                                                               | 47 |
| 6.1 Информация о корпусе микросхемы                                      | 47 |
| 6.2 Механические размеры                                                 | 48 |
| 6.3 Упаковка                                                             | 49 |
| 6.4 Профиль пайки                                                        | 51 |
| 7 Поставляемое программное обеспечение                                   | 52 |
| 7.1 Минимальные системные требования                                     | 52 |
| 7.2 Содержимое комплекта BSP                                             | 52 |
| 8 О компании «Байкал Электроникс»                                        | 54 |
|                                                                          |    |
|                                                                          |    |
| Перечень таблиц                                                          |    |
| Таблица 1: Домены питания процессора Байкал-Т1                           | 17 |
| Таблица 2: Характеристики опорных тактовых сигналов процессора Байкал-Т1 | 20 |
| Таблица 3: Перечень выводов процессора Байкал-Т1                         | 26 |
| Таблица 4: Основные параметры корпуса процессора Байкал-Т1               | 47 |
| Таблица 5: Размеры корпуса микросхемы Байкал-Т1                          | 48 |
| Таблица 6: Рекомендованный профиль пайки для микросхемы Байкал-Т1        | 51 |
|                                                                          |    |
|                                                                          |    |
| Перечень рисунков                                                        |    |
| Рисунок 1 - Структурная схема процессора Байкал-Т1                       | 7  |
| Рисунок 2 - Подключение доменов питания 0,95/1,5/1,8 В                   | 18 |



| Рисунок 3 - Подключение доменов питания 0,90 В                                      | 19   |
|-------------------------------------------------------------------------------------|------|
| Рисунок 4 - Подключение контактов VPVT и GPVT                                       | 19   |
| Рисунок 5 - Последовательность запуска и сброса серийного процессора Байкал-Т1      | 22   |
| Рисунок 6 - Последовательность запуска и сброса тестовых образцов процессора Байка. | л-Т1 |
|                                                                                     | 23   |
| Рисунок 7 - Схематический чертёж корпуса микросхемы Байкал-Т1                       | 48   |
| Рисунок 8 - Схематический чертёж поддона для упаковки микросхемы Байкал-Т1          | 50   |
| Рисунок 9 - Профиль пайки для микросхемы Байкал-Т1                                  | 51   |



Статус: Релиз

### 1 Введение

Микросхема интегральная процессора Байкал-Т1 (далее Байкал-Т1) – это первый процессор в линейке многоядерных систем на кристалле от компании «Байкал Электроникс». Он оптимизирован для применения в коммуникационном и сетевом оборудовании, а также встроенных системах различного назначения и сочетает высокую производительность с низким энергопотреблением.

В состав Байкал-Т1 входит многопроцессорная двухъядерная система семейства MIPS32<sup>®</sup> Р5600, а также набор высокоскоростных интерфейсов для обмена данными и низкоскоростных для управления периферийными устройствами.

Микросхема Байкал-Т1 производится с использованием 28-нанометрового технологического процесса. Её энергопотребление не превышает 5 Вт.

#### 1.1 Основные характеристики

Основные характеристики процессора Байкал-Т1:

- Многопроцессорная система на основе двух ядер серии Р5600 с архитектурой MIPS32®;
  - Рабочая частота для серийных изделий (T1) до 1,2  $\Gamma\Gamma \mu^1$ ;
  - Кэш данных и кэш инструкций Уровня L1 размером 64 Кб;
  - Встроенный контроллер восьмиканального ассоциативного кэша L2 размером 1Мб (Coherence Manager Controller);
- Глобальный контроллер прерываний (Global Interrupt Controller, GIC), обеспечивающий одновременную поддержку до 128 обработчиков прерываний;
- Интерфейсы памяти:
  - 32-битный интерфейс модуля памяти DDR3-1600 с 8-битным кодом исправления ошибок;
  - ∘ Поддержка модулей памяти SDRAM размером до 8 ГБ;
- Шина PCI Express третьего поколения:
  - 4 тракта с пропускной способностью 8 Гбит/с каждый;
- Для закорпусированных кристаллов тестового микропроцессора версии «Байкал-Т» (с маркировкой «ТС-1» на корпусе) – до 1 ГГц.



- Контроллер 10Gb Ethernet:
  - ∘ Интерфейс 10G BASE KR/KX4;
- 2 контроллера 1Gb Ethernet (RGMII);
- Двухпортовый контроллер SATA поколения 3.1;
- Контроллер USB 2.0 (ULPI);
- Набор низкоскоростных интерфейсов:
  - ∘ 32-битный интерфейс GPIO;
  - 2 интерфейса UART;
  - 2 интерфейса SPI;
  - 2 интерфейса I<sup>2</sup>C;
  - 3 таймера на 50 МГц;
  - программируемый сторожевой таймер (WDT);
- Контроллер начальной загрузки:
  - Два режима начальной загрузки: со встроенного ПЗУ и из внешней флэш-памяти;
- Возможность отладки через:
  - интерфейс JTAG при помощи контроллера тест-порта TAP;
  - ∘ выделенный интерфейс EJTAG;
  - ∘ встроенный трассировщик PDTrace;
- Диапазон рабочих температур [0:+70°С]<sup>2</sup>;
- Размеры корпуса: 25х25 мм (576 выводов).



Статус: Релиз

#### 1.2 Структурная схема процессора Байкал-Т1

Структурная схема процессора Байкал-Т1 представлена на рисунке 1.



Рисунок 1 - Структурная схема процессора Байкал-Т1



Статус: Релиз

### 2 Логические блоки процессора Байкал-Т1

Структурная схема процессора Байкал-Т1 представлена на рисунке 1. Процессор включает в себя следующие логические блоки:

- Двухъядерный микропроцессорный кластер;
- Контроллер памяти;
- Высокоскоростные интерфейсы ввода-вывода;
- Низкоскоростные интерфейсы для подключения периферийных устройств;
- Подсистема отладки;
- Высокоскоростная внутрипроцессорная шина.

Логические блоки системы на кристалле взаимодействуют между собой с помощью высокоскоростной внутрипроцессорной шины. Она организована по принципу матричного переключателя и обеспечивает соединение входов с выходами по схеме «многие со многими». В глобальном адресном пространстве процессора Байкал-Т1 логические блоки идентифицируются своими адресами.

### 2.1 Двухъядерный микропроцессорный кластер

Байкал-Т1 базируется на многопроцессорной системе MIPS32 $^{\tiny{(8)}}$  P5600 Series Multiprocessing System (MPS). Особенностями процессора Байкал-Т1 являются:

- Два когерентных микропроцессорных ядра серии P5600 с архитектурой MIPS32<sup>®</sup>;
- Рабочая частота ядра серийных изделий до  $1,2 \Gamma \Gamma \mu^3$ ;
- Кэш данных и кэш инструкций Уровня L1 размером 64 Кб;
- Контроллер управления когерентностью со встроенным восьмиканальным ассоциативным кэшем L2 размером 1 Мб;
- Встроенная память 32 Кб для сбора данных от трассировщика PDTrace;
- Выделенный порт ЕЈТАС, поддерживающий отладку кода, исполняющегося на нескольких процессорах.

Для закорпусированных кристаллов тестового микропроцессора версии «Байкал-Т» (с маркировкой «ТС-1» на корпусе) – до 1 ГГц.

Статус: Релиз

#### 2.2 Подсистема памяти DDR3

Универсальный контроллер памяти DDR3 SDRAM с адаптером физического интерфейса PHY объединены в единую подсистему памяти. Она обладает следующими характеристиками:

- Контроллер памяти соответствует спецификации *JEDEC DDR3 SDRAM Specifications JESD79-3E*. Другие типы памяти, такие как DDR1 SDRAM, DDR2 SDRAM, SDR SDRAM, SBSRAM и асинхронная память, не поддерживаются.
- DDR3-1600, рабочая частота памяти составляет 800 МГц, соответственно, полоса пропускания 51,2 ГБ/с.
- 33-битные физические адреса расширяют адресное пространство до 8 ГБ.
- Поддерживаются два ранга памяти.
- Поддерживает модули памяти DDR3 с 1, 2, 4 и 8 банками.
- Поддерживает чипы SDRAM с шириной шины данных 8 или 16 бит (т. е., чипы с организацией ×8 и ×16).
- Поддерживает задержки CAS 5, 6, 7, 8, 9, 10, и 11 циклов.
- Поддерживает 8-битную контрольную сумму (ЕСС) на каждые 64 бита записываемых и считываемых данных без дополнительной задержки.
- Могут быть также использованы модели памяти, которые не поддерживают исправление ошибок.
- Зеркальное отображение адресов UDIMM **не** поддерживается.
- Характеристики, увеличивающие производительность системы:
  - динамическая диспетчеризация для оптимизации ширины полосы пропускания и времени ожидания;
  - буфера на чтение и запись в блоках ассоциативной памяти (32 на чтение и 32 на запись);
  - отложенная запись на шине SDRAM;
  - для максимальной эффективности работы SDRAM команды выполняются с изменением последовательности (не по порядку).

Статус: Релиз

#### 2.3 Высокоскоростные интерфейсы ввода-вывода

Система на кристалле Байкал-Т1 включает в себя контроллеры следующих высокоскоростных интерфейсов: 10Gb Ethernet (XGbE), два 1Gb Ethernet (GMAC), PCI Express, SATA и USB. Их функционал описан в данном разделе.

#### 2.3.1 Подсистема 10Gb Ethernet (XGbE)

Встроенный интерфейс XGbE соответствует стандарту IEEE 802.3-2008. Основные возможности подсистемы XGbE процессора Байкал-Т1 следующие:

- Полнодуплексный режим работы на скорости 10 Гбит/с;
- Встроенный контроллер прямого доступа к памяти (DMA);
- Программируемая длина кадра Ethernet: поддержка как стандартных кадров, так и кадров «jumbo» большого размера (расширяемых до 16 КБ);
- Поддержка управления потоком согласно стандарту IEEE 802.3 и приоритизация трафика;
- Вычисление контрольной суммы заголовка IPv4 на передаче и приёме;
- Вычисление контрольных сумм пакетов протоколов TCP, UDP и ICMP на передаче и приёме:
- Поддержка кадров с метками виртуальных сетей VLAN, обрабатываемых в соответствии со стандартом IEEE 802.1Q;
- Проверка 32-битным циклическим избыточным кодом (CRC) принимаемых и получаемых кадров;
- Поддержка стандарта энергосберегающего Ethernet (EEE).

#### 2.3.2 Подсистема Gb Ethernet (GMAC)

В процессор Байкал-Т1 встроены два идентичных контроллера 1Gb Ethernet, полностью отвечающие требованиям стандарта IEEE 802.3-2008. Их основными характеристиками являются:

- Интерфейс RGMII к адаптеру физического уровня РНҮ, поддерживающий скорости передачи данных 10/100/1000Мбит/с;
- Встроенный контроллер прямого доступа к памяти (DMA);

Статус: Релиз

• Поддержка стандарта энергосберегающего Ethernet (EEE).

#### 2.3.3 Подсистема PCI Express

В процессор Байкал-Т1 встроен головной коммутатор (Root Complex) шины PCI Express, поддерживающий соединение PCI шириной до четырёх трактов. Он отвечает требованиям спецификации PCIe base 3.0, revision 1.0. Интерфейс между ядром PCIe и адаптером физического уровня PHY соответствует спецификации PIPE Specification for PCIe bus version 4.0.

Контроллер PCIe поддерживает 3 протокольных уровня PCIe: уровень транзакций, канальный уровень и подуровень управления доступом к среде (MAC) физического уровня. Он также обеспечивает зависимую от приложения функциональность уровня транзакций PCIe, расположенного между логикой приложения и протокольными уровнями PCIe.

#### Основные характеристики:

- До 4-х трактов (Gen1 2,5 Гбит/с, Gen2 5,0 Гбит/с, Gen3 8,0 Гбит/с);
- 32 стоящих в очереди запроса;
- До 256 байт полезных данных;
- Максимальная длина запроса на чтение 256 байт;
- Автоматическое переключение трактов и автоматическое переключение полярности;
- Один виртуальный канал (VC);
- Различные классы трафика (TCs);
- Режим очереди с промежуточным хранением и пересылкой принимаемых пакетов уровня транзакций;
- Встроенный контроллер прямого доступа к памяти (DMA).

#### 2.3.4 Подсистема SATA

Подсистема Baikal-T Serial ATA (SATA) представляет собой блок с двумя хост-портами, соответствующими спецификациям SATA revision 3.1 и AHCI 1.3.

#### Главные особенности:

- Выполнение операций на скоростях 1,5, 3, или 6 Гбит/с;
- Соответствие спецификации ATA/ATAPI-7;
- Поддержка управления питанием;

Статус: Релиз

Встроенный контроллер прямого доступа к памяти (DMA).

#### 2.3.5 Подсистема USB

Процессор Байкал-Т1 обеспечивает функционал USB 2.0. Основные параметры:

- Порт USB 2.0 с 8-битным интерфейсом ULPI PHY на 60 МГц;
- Хост USB с поддержкой трёх режимов работы:
  - *low-speed* (1,5 Мбит/с);
  - ∘ full-speed (12 Мбит/с);
  - ∘ *high-speed* (480 Мбит/с).

## 2.4 Низкоскоростные интерфейсы для подключения периферийных устройств

Подсистема низкоскоростных интерфейсов процессора Байкал-Т1 включает в себя следующие логические блоки:

- 32-битный контроллер GPIO32;
- 3-битный контроллер GPIO3;
- 2 контроллера UART;
- 2 контроллера SPI;
- 2 контроллера I<sup>2</sup>C;
- 3 таймера;
- Программируемый сторожевой таймер (WDT);
- Генератор тактовой частоты;
- Контроллер начальной загрузки.

#### 2.4.1 Контроллер 32-bit GPIO

Подсистема для подключения низкоскоростных периферийных устройств включает в себя один 32-битный контроллер GPIO. Основные параметры:

- 32 независимо управляемых сигнала;
- 2 независимых регистра (регистр данных и регистр направления) для каждого сигнала;
- Независимый конфигурируемый режим прерывания для каждого сигнала;

Статус: Релиз

• Обобщенный статус всех прерываний, сообщаемый контроллеру прерываний.

#### 2.4.2 Контроллер 3-bit GPIO

Процессор содержит ещё один контроллер ввода-вывода GPIO, аналогичный описанному выше, но только на три контакта.

В последующих процессорах линейки Байкал-Т предполагается иное использование данных контактов, поэтому при разработке систем предпочтительно использовать контроллер GPIO32.

#### 2.4.3 Контроллер UART

Система располагает двумя идентичными контроллерами UART. Каждый из них обеспечивает следующую функциональность:

- Передача и приём пакетов в порядке очереди (FIFO) с размером буфера 16 байт;
- Наличие интерфейса для подключения канала прямого доступа к памяти (DMA) к контроллеру последовательного порта;
- Скорость передачи данных до 460,8 Кбит/с;
- Соответствие промышленному стандарту 16550.

#### 2.4.4 Контроллер SPI0 (Boot SPI)

Контроллер SPI0 предназначен для загрузки исполняемого кода из флеш-памяти с интерфейсом SPI после сброса процессора.

Не рекомендуется подключение к данному контроллеру никаких других устройств, так как это может вызвать проблемы с загрузкой.

#### 2.4.5 Контроллеры SPI 1, 2

Система располагает двумя идентичными контроллерами SPI. Каждый из них выполняет следующие функции:

- Обеспечивает интерфейс Motorola Serial Peripheral Interface (SPI);
- Выполняет роль ведущего устройства;
- Программируемые скорость передачи данных и разрядность слова данных на 25 МГц;
- Передача и приём пакетов в порядке очереди (FIFO) с размером буфера на 64 слова;
- Управление четырьмя сигналами slave select для выбора подчинённых устройств;



Статус: Релиз

- Обобщенный статус всех прерываний, сообщаемый контроллеру прерываний;
- Наличие интерфейса для подключения канала прямого доступа к памяти (DMA) к контроллеру последовательного порта.

#### 2.4.6 Контроллер I<sup>2</sup>C0

Данный контроллер обладает ограниченной функциональностью, в частности, не поддерживает прямой доступ к памяти (DMA). При разработке систем рекомендуется использовать контроллеры  $I^2C$  1 и 2, описанные в следующем разделе.

#### 2.4.7 Контроллеры I<sup>2</sup>C 1, 2

Система располагает двумя идентичными контроллерами  $I^2$ С. Каждый из них обеспечивает следующую функциональность:

- Скорость передачи данных от 0 до 100 Кбит/с в стандартном режиме работы;
- Работа в режиме ведущего и подчинённого устройств;
- Программируемая 7- или 10-битная адресация;
- Передача и приём пакетов в порядке очереди (FIFO) с размером буфера 8 байт;
- Работа по прерыванию или по опросу;
- Наличие интерфейса для подключения канала прямого доступа к памяти (DMA) к контроллеру последовательного порта.

#### 2.4.8 Программируемый сторожевой таймер (WDT)

Программируемый сторожевой таймер (WDT) обеспечивает обнаружение и реакцию микросхемы на зависания, вызванные программными ошибками или аппаратными сбоями. Программно можно конфигурировать следующие аспекты работы таймера WDT:

- интервал срабатывания, по истечении которого будет происходить одно из перечисленных ниже действий:
  - ∘ производится сброс системы;
  - о сначала генерируется прерывание, и если программа-обработчик не очистила это прерывание за второй такой же интервал времени, то производится сброс системы;
- период времени после срабатывания таймера, в течение которого сигнал сброса удерживается поднятым.

Статус: Релиз

#### 2.4.9 Таймеры

Три независимых таймера объединены в единый контроллер. Его функциональными особенностями являются:

- Программируемые тактовые частоты;
- Разрядность 32 бита;
- Независимые сигналы о статусе прерывания к системному контроллеру прерываний.

#### 2.4.10 Генератор тактовых импульсов

Генератор тактовых импульсов (CLK\_GEN) отвечает за генерацию допустимых тактовых сигналов для всех внутренних логических блоков микросхемы и за отключение логических блоков в целях энергосбережения.

#### 2.4.11 Контроллер загрузки

Контроллер загрузки (ВС) отвечает за начальную загрузку системы. Возможны два режима загрузки:

- Режим ROM mode из встроенного ПЗУ загружается технологическое программное обеспечение Baikal ROM Monitor для диагностики процессора.
- Режим FLASH mode код начального загрузчика операционной системы загружается из внешней флэш-памяти через интерфейс SPI0.

### 2.5 Средства отладки

В процессоре поддерживаются средства отладки и профилирования программного обеспечения (ПО):

- JTAG согласно стандарту IEEE-1149.1–2001, предназначен для контроля периферийных устройств;
- EJTAG соответствует MIPS EJTAG Specification, MIPS Technologies document MD00047. Интерфейс предназначен для интерактивной отладки и управлением исполнения кода, поддерживает работу одновременно с обоими ядрами процессора;
- PDtrace соответствует PDtrace $^{\text{TM}}$  Interface Specification, MIPS Technologies document MD00136. Интерфейс позволяет снимать трассу исполнения программы в реальном времени и записывать её в память для последующего анализа. Возможна как запись



Статус: Релиз

трассы в специализированную область памяти в составе микросхемы Байкал-Т1 с последующим её вычитыванием через интерфейс EJTAG, так и запись её во внешнюю память адаптера PDTrace. В трассу записываются содержимое счётчика команд, адреса, значения и количество использованных циклов для команд загрузки и сохранения, информация об успешных и неуспешных обращениях к кэш-памяти и т.д.



Статус: Релиз

### 3 Электрические характеристики

В данном разделе приведены электрические характеристики процессора Байкал-Т1.

**Примечание:** электрические характеристики и условия эксплуатации являются предварительными и могут впоследствии изменяться и уточняться без уведомления.

### 3.1 Параметры электропитания

Схема питания процессора Байкал-Т1 должна включать четыре изолированных источника напряжения и единую общую землю, как приведено в таблице 1.

Таблица 1: Домены питания процессора Байкал-Т1

| Обозначение | Подаваемое        | Ожидаемый максималь- | Приме- |
|-------------|-------------------|----------------------|--------|
| Ооозначение | напряжение, В     | ный ток, А           | чания  |
| VDD         | 0,95 (+/- 5%)     | 2,9                  |        |
| VPCI_09     | 0,95 (+/- 5%)     | 0,4                  | 1      |
| VXGB_09     | 0,95(+/- 5%)      | 0,6                  | 1      |
| VSATA_09    | 0,95 (+/- 5%)     | 0,08                 | 1      |
| VSATATX_09  | 0,95 (+/- 5%)     | 0,05                 | 1      |
| VDDR_15     | 1,5 (+/- 5%)      | 0,4                  |        |
| VPCI_15     | 1,5 (+/- 5%)      | 0,1                  | 2      |
| VXGB_15     | 1,5 (+/- 5%)      | 0,2                  | 2      |
| VDDIO_18    | 1,8 (+ 10%, - 7%) | 0,1                  |        |
| VSATA_18    | 1,8 (+ 10%, - 7%) | 0,04                 | 3      |
| VDDR_18     | 1,8 (+ 10%, - 7%) | 0,12                 | 3      |
| VPLLCORE_09 | 0,95 (+/- 5%)     | 0,01                 | 4, 6   |
| VPLLDDR_09  | 0,95 (+/- 5%)     | 0,01                 | 4, 6   |
| VPLLETH_09  | 0,95 (+/- 5%)     | 0,01                 | 4, 6   |
| VPLLPCIE_09 | 0,95 (+/- 5%)     | 0,01                 | 4, 6   |
| VPLLSATA_09 | 0,95 (+/- 5%)     | 0,01                 | 4, 6   |
| VPVT        | 1,8 (+10%, -7%)   |                      | 5      |
| GPVT        |                   |                      | 5      |
| VSS         | Земля             |                      |        |
| VSSIO       | VSS               |                      |        |
| VSSCORE_PLL | VSS               |                      | 4      |
| VSSDDR_PLL  | VSS               |                      | 4      |
| VSSETH_PLL  | VSS               |                      | 4      |
| VSSPCIE_PLL | VSS               |                      | 4      |
| VSSSATA_PLL | VSS               |                      | 4      |

Статус: Релиз

#### Примечания:

- 1) Может соединяться на плате с другими доменами питания с напряжением 0,95 В (например, VDD) с помощью банка конденсаторов (0,01 мкФ, 0,1 мкФ, 4,7 мкФ, 10 мкФ) и ферритового фильтра (MPZ1608S101ATAH0 или подобного), см. рисунок 2.
- 2) Может соединяться на плате с другими доменами питания с напряжением 1,5 В с помощью банка конденсаторов (0,01 мкФ, 0,1 мкФ, 4,7 мкФ, 10 мкФ) и ферритового фильтра (MPZ1608S101ATAH0 или подобного), см. рисунок 2.
- 3) Может соединяться на плате с другими доменами питания с напряжением 1,8 В с помощью ферритового фильтра (MPZ1608S101ATAH0 или подобного) и банка конденсаторов (0,01 мкФ, 0,1 мкФ, 4,7 мкФ, 10 мкФ) для VSATA\_18 или банка конденсаторов (0,1 мкФ, 0,1 мкФ, 0,1 мкФ, 1,0 мкФ, 10 мкФ) для VDDR\_18, см. рисунок 2.



Рисунок 2 - Подключение доменов питания 0,95/1,5/1,8 В

4) Может соединяться на плате с другими доменами питания PLL (и только PLL) с помощью двух ферритового фильтров (BLM15AX601SN1D или подобным) и двух шунтирующих конденсаторов ёмкостью 0,1 мкФ и 0,01 мкФ, см. рисунок 3. Конденсаторы должны размещаться как можно ближе к контактам микропроцессора Байкал-Т1.



Статус: Релиз



Рисунок 3 - Подключение доменов питания 0,95 В

5) VPVT может соединяться с источником питания платы напряжением 1,8 В с помощью банка конденсаторов (22 мкФ, 0,1 мкФ) и ферритового фильтра (BLM15AX601SN1D или подобного). Контакт GPVT не должен соединяться с питанием платы напрямую, см. рисунок 4.



Рисунок 4 - Подключение контактов VPVT и GPVT

6) Для закорпусированных кристаллов тестового микропроцессора версии «Байкал-Т» (с маркировкой «ТС-1» на корпусе, далее по тексту «тестовые образцы») подаваемое



Статус: Релиз

напряжение на указанных выводах VPLLCORE\_09, VPLLDDR\_09, VPLLETH\_09, VPLLPCIE\_09, VPLLSATA\_09 равно 0,9 В, в отличие от 0,95 В для серийных изделий («Байкал-Т1», с маркировкой «Т1» на корпусе).

#### 3.2 Входные тактовые сигналы

Характеристики опорных тактовых сигналов приведены в таблице 2.

Таблица 2: Характеристики опорных тактовых сигналов процессора Байкал-Т1

| Параметр                                       | Обозначение                     | Значение | Ед.изм. | Примечание                 |
|------------------------------------------------|---------------------------------|----------|---------|----------------------------|
| Частота опорного тактового<br>сигнала          | FREF                            | 25       | МГц     | -                          |
| Частота опорного тактового<br>сигнала XGbE PHY | XG_REF_CLKN,<br>XG_REF_CLKP     | 156,25   | МГц     | Дифферен-<br>циальная пара |
| Частота опорного тактового<br>сигнала РСІЕ РНҮ | PCIE_REF_CLKN,<br>PCIE_REF_CLKP | 100      | МГц     | Дифферен-<br>циальная пара |
| Частота опорного тактового<br>сигнала SATA PHY | SATA_REFCLKP,<br>SATA_REFCLKM   | 100      | МГц     | Дифферен-<br>циальная пара |

Статус: Релиз

### 4 Процедуры запуска и сброса процессора

#### 4.1 Процедура запуска процессора

Для запуска процессора должны быть выполнены следующие шаги.

- 1. Подача напряжения на домены питания VDD, VPLLCORE 09, VPLLDDR 09, VPLLETH\_09, VPLLPCIE\_09, VPLLSATA\_09, VPCI\_09, VSATA\_09, VSATATX\_09, VXGB\_09 (0,9 В и 0,95 В соответственно, см. таблицу 1).
- 2. Пауза не менее 20 мс.
- 3. Подача напряжения на домены питания VDDR\_15, VPCI\_15, VXGB\_15 (домены питания 1,5 В).
- 4. Подача напряжения домены питания VDDIO\_18, VDDR\_18, VSATA\_18 (домены питания 1,8 В).
- 5. Пауза не менее 100 мс.
- 6. К этому моменту тактовая частота, подаваемая на вход CLK25M\_IN, должна стабилизироваться на 25 МГц.

После выполнения описанной выше процедуры старта необходимо произвести сброс процессора, как описано в следующем разделе.

### 4.2 Процедура сброса процессора

Необходимым условием сброса процессора является наличие стабильной тактовой частоты 25 МГц, подаваемой на контакт CLK25M\_IN.

Процедура сброса отличается для серийного изделия (с маркировкой «Т1» на корпусе) и для закорпусированных кристаллов тестового микропроцессора версии «Байкал-Т» (с маркировкой «TC-1» на корпусе, далее по тексту «тестовые образцы»).

Для сброса (ресета, рестарта) серийного процессора должны быть одновременно выполнены следующие действия над входами RESET, EJ\_TRST\_N и TRSTN (см. рисунок 5):

- Держать сигнал RESET на высоком уровне не менее  $1 \, c$ , затем опустить его до низкого уровня.
- Держать сигнал EJ\_TRST\_N на низком уровне не менее 1 с, затем поднять его до



Статус: Релиз

высокого уровня.

• Держать сигнал TRSTN на низком уровне не менее **1 с**, затем поднять его до высокого уровня.



Рисунок 5 - Последовательность запуска и сброса серийного процессора Байкал-Т1

Для сброса *тестовых образцов* процессора требуется дополнительно опустить и поднять сигнал RESET. Соответственно, для этих микросхем требуется одновременно выполнить следующие действия над входами RESET, EJ\_TRST\_N и TRSTN (см. рисунок 6):

- Для сигнала RESET:
  - 1. держать на высоком уровне не менее 1 c;



- 2. опустить до низкого уровня и держать не менее 300 мс;
- 3. поднять до высокого уровня и держать не менее 300 мс;
- 4. опустить до низкого уровня.
- Держать сигнал EJ\_TRST\_N на низком уровне не менее **1 с**, затем поднять его до высокого уровня;
- Держать сигнал TRSTN на низком уровне не менее **1 с**, затем поднять его до высокого уровня.



Рисунок 6 - Последовательность запуска и сброса тестовых образцов процессора Байкал-Т1



Статус: Релиз

#### 4.3 Выбор режима загрузки

Режим загрузки выбирается с помощью подачи соответствующих напряжений на контакты BOOTCFG\_0 и BOOTCFG\_1 процессора на время всей процедуры сброса.

Текущая версия процессора поддерживает два режима загрузки:

- 1. основной, он же Flash Mode (программное обеспечение загружается из flash памяти через интерфейс SPIO);
- 2. отладочный, он же ROM Mode ( из встроенного ПЗУ загружается технологическое программное обеспечение Baikal ROM Monitor для диагностики процессора).

В обоих случаях на контакте BOOTCFG\_0 должно быть низкое напряжение (земля). Низкое напряжение (земля) на контакте BOOTCFG\_1 выбирает отладочный режим (загрузка монитора из ПЗУ), а высокое (VDD) – основной (загрузка рабочего ПО из внешней flash-памяти).



Статус: Релиз

### 5 Назначение выводов

Данная глава содержит назначение выводов микросхемы Байкал-Т1.

#### 5.1 Перечень выводов

Таблица 3 содержит перечень выводов процессора Байкал-Т1, включая источники питания и земли.

В таблице используются следующие сокращения:

- I: вход;
- О: выход;
- IO: вход/выход;
- Р: питание;
- G: земля;
- NC: не подсоединён.



Статус: Релиз

| Таблица 3: Перечень выводов процессора Байкал-Т1 |         |     |                                   |  |  |  |
|--------------------------------------------------|---------|-----|-----------------------------------|--|--|--|
| Название вывода                                  | Позиция | Тип | Описание                          |  |  |  |
| GMAC 1                                           |         |     |                                   |  |  |  |
| G0_CLK_RX_I                                      | P7      | I   | Тактовый сигнал приёмника RGMII   |  |  |  |
| G0_CLK_TX_I                                      | P6      | О   | Тактовый сигнал передатчика RGMII |  |  |  |
| G0_GP_IN                                         | N6      | I   | Вход общего назначения            |  |  |  |
| G0_GP_OUT                                        | N7      | О   | Выход общего назначения           |  |  |  |
| G0_MDC                                           | R5      | О   | Тактовый сигнал SMA               |  |  |  |
| G0_MDIO                                          | R6      | IO  | Данные SMA                        |  |  |  |
| G0_RCTL_I                                        | R4      | I   | Управление приёмом RGMII          |  |  |  |
| G0_RXD_I[0]                                      | P2      | I   | Принимаемые данные RGMII          |  |  |  |
| G0_RXD_I[1]                                      | P5      | I   | Принимаемые данные RGMII          |  |  |  |
| G0_RXD_I[2]                                      | P1      | I   | Принимаемые данные RGMII          |  |  |  |
| G0_RXD_I[3]                                      | R3      | I   | Принимаемые данные RGMII          |  |  |  |
| G0_TCTL_O                                        | N1      | О   | Управление передачей RGMII        |  |  |  |
| G0_TXD_O[0]                                      | N2      | О   | Передаваемые данные RGMII         |  |  |  |
| G0_TXD_O[1]                                      | N3      | О   | Передаваемые данные RGMII         |  |  |  |
| G0_TXD_O[2]                                      | N4      | О   | Передаваемые данные RGMII         |  |  |  |
| G0_TXD_O[3]                                      | N5      | О   | Передаваемые данные RGMII         |  |  |  |
| GMAC 2                                           |         |     |                                   |  |  |  |
| G1_CLK_RX_I                                      | W1      | I   | Тактовый сигнал приёмника RGMII   |  |  |  |
| G1_CLK_TX_I                                      | W2      | О   | Тактовый сигнал передатчика RGMII |  |  |  |
| G1_GP_IN                                         | Y1      | I   | Вход общего назначения            |  |  |  |
| G1_GP_OUT                                        | Y2      | О   | Выход GP                          |  |  |  |
| G1_MDC                                           | Y4      | О   | Тактовый сигнал SMA               |  |  |  |
| G1_MDIO                                          | Y3      | IO  | Данные SMA                        |  |  |  |
| G1_RCTL_I                                        | Y5      | I   | Управление приёмом RGMII          |  |  |  |
| G1_RXD_I[0]                                      | U4      | I   | Принимаемые данные RGMII          |  |  |  |
| G1_RXD_I[1]                                      | V6      | I   | Принимаемые данные RGMII          |  |  |  |
| G1_RXD_I[2]                                      | V4      | I   | Принимаемые данные RGMII          |  |  |  |
| G1_RXD_I[3]                                      | V5      | I   | Принимаемые данные RGMII          |  |  |  |



| Название вывода | Позиция | Тип | Описание                                               |
|-----------------|---------|-----|--------------------------------------------------------|
| G1_TCTL_O       | V2      | O   | Управление передачей RGMII                             |
| G1_TXD_O[0]     | T5      | O   | Передаваемые данные RGMII                              |
| G1_TXD_O[1]     | T6      | O   | Передаваемые данные RGMII                              |
| G1_TXD_O[2]     | U5      | О   | Передаваемые данные RGMII                              |
| G1_TXD_O[3]     | V1      | О   | Передаваемые данные RGMII                              |
| USB 2.0         |         |     |                                                        |
| ULPI_CLK        | K2      | I   | Тактовая частота ULPI                                  |
| ULPI_DATA[0]    | L1      | IO  | Данные ULPI                                            |
| ULPI_DATA[1]    | L2      | IO  | Данные ULPI                                            |
| ULPI_DATA[2]    | L5      | IO  | Данные ULPI                                            |
| ULPI_DATA[3]    | M5      | IO  | Данные ULPI                                            |
| ULPI_DATA[4]    | M6      | IO  | Данные ULPI                                            |
| ULPI_DATA[5]    | M7      | IO  | Данные ULPI                                            |
| ULPI_DATA[6]    | M3      | IO  | Данные ULPI                                            |
| ULPI_DATA[7]    | M4      | IO  | Данные ULPI                                            |
| ULPI_DIR        | K3      | I   | ULPI Data Bus Control                                  |
| ULPI_NXT        | K4      | I   | ULPI Next Data Control                                 |
| ULPI_STP        | L6      | О   | ULPI Stop Output Control                               |
| USB2_OVER       | K5      | I   | Индикация перегрузки корневого порта                   |
| USB2_VBUS       | L7      | О   | Управление питанием подключённого («downstream») порта |
| JTAG            |         |     |                                                        |
| TDI             | AB2     | I   | Test data in                                           |
| TDO             | AB1     | О   | Test data out                                          |
| TRSTN           | AA5     | I   | Test reset                                             |
| TMS             | AA2     | I   | Test mode select                                       |
| TCK             | AA1     | I   | Test clock                                             |
| EJTAG           |         |     |                                                        |
| EJ_DINT_IN      | A14     | I   | DINT input                                             |



| Название вывода | Позиция | Тип | Описание                                     |
|-----------------|---------|-----|----------------------------------------------|
| EJ_TDI          | C14     | I   | TDI/TDO daisy-chain                          |
| EJ_TMS          | B14     | I   | Test mode select (TMS)                       |
| EJ_TRST_N       | B13     | I   | Active-low test reset (TRST)                 |
| EJ_TCK          | A13     | I   | Test clock input (TCK)                       |
| EJ_TDO          | C13     | О   | TDO                                          |
| PD Trace        |         |     |                                              |
| TR_CLK          | F13     | О   | Trace clock output to probe                  |
| TR_DATA[0]      | A9      | O   | Данные трассировки для внешнего<br>отладчика |
| TR_DATA[1]      | B9      | O   | Данные трассировки для внешнего<br>отладчика |
| TR_DATA[10]     | C9      | O   | Данные трассировки для внешнего<br>отладчика |
| TR_DATA[11]     | A10     | О   | Данные трассировки для внешнего<br>отладчика |
| TR_DATA[12]     | C11     | О   | Данные трассировки для внешнего<br>отладчика |
| TR_DATA[13]     | B12     | О   | Данные трассировки для внешнего<br>отладчика |
| TR_DATA[14]     | E12     | О   | Данные трассировки для внешнего<br>отладчика |
| TR_DATA[15]     | A12     | О   | Данные трассировки для внешнего<br>отладчика |
| TR_DATA[2]      | C8      | О   | Данные трассировки для внешнего<br>отладчика |
| TR_DATA[3]      | E10     | О   | Данные трассировки для внешнего<br>отладчика |
| TR_DATA[4]      | E11     | О   | Данные трассировки для внешнего<br>отладчика |
| TR_DATA[5]      | D9      | О   | Данные трассировки для внешнего<br>отладчика |
| TR_DATA[6]      | B10     | О   | Данные трассировки для внешнего<br>отладчика |
| TR_DATA[7]      | F11     | О   | Данные трассировки для внешнего<br>отладчика |



| Название вывода | Позиция | Тип | Описание                                        |
|-----------------|---------|-----|-------------------------------------------------|
| TR_DATA[8]      | F12     | О   | Данные трассировки для внешнего<br>отладчика    |
| TR_DATA[9]      | D11     | О   | Данные трассировки для внешнего<br>отладчика    |
| TR_DM           | B11     | О   | Индикатор режима отладки для внешнего отладчика |
| TR_PROBE_N      | E13     | I   | PIB (clock/data) enable signal from probe       |
| TR_TRIGIN       | D13     | I   | Trigger input coming from probe                 |
| TR_TRIGOUT      | A11     | О   | Trigger output going to probe                   |
| SPI 0           |         | ·   |                                                 |
| SPI0_SS_N       | Н7      | О   | Выбор подчинённого устройства                   |
| SPI0_SCLK_OUT   | Н6      | О   | Тактовый сигнал                                 |
| SPI0_RXD        | J7      | I   | Принимаемые данные                              |
| SPI0_TXD        | J6      | О   | Передаваемые данные                             |
| SPI 1           |         |     |                                                 |
| SPI1_RXD        | F6      | I   | Принимаемые данные                              |
| SPI1_SCLK_OUT   | F2      | О   | Тактовая частота                                |
| SPI1_SS_N[0]    | F1      | О   | Выбор подчинённого устройства                   |
| SPI1_SS_N[1]    | G5      | О   | Выбор подчинённого устройства                   |
| SPI1_SS_N[2]    | G6      | О   | Выбор подчинённого устройства                   |
| SPI1_SS_N[3]    | G7      | О   | Выбор подчинённого устройства                   |
| SPI1_TXD        | F5      | О   | Передаваемые данные                             |
| SPI 2           |         | ·   |                                                 |
| SPI2_RXD        | Н5      | I   | Принимаемые данные                              |
| SPI2_SCLK_OUT   | H1      | О   | Тактовая частота                                |
| SPI2_SS_N[0]    | G4      | О   | Выбор подчинённого устройства                   |
| SPI2_SS_N[1]    | G1      | О   | Выбор подчинённого устройства                   |
| SPI2_SS_N[2]    | G2      | О   | Выбор подчинённого устройства                   |
| SPI2_SS_N[3]    | G3      | О   | Выбор подчинённого устройства                   |
| SPI2_TXD        | H2      | О   | Передаваемые данные                             |
| UART 0          |         |     |                                                 |



| Название вывода    | Позиция | Тип | Описание            |
|--------------------|---------|-----|---------------------|
| UART0_RXD          | J4      | I   | Принимаемые данные  |
| UART0_TXD          | J5      | О   | Передаваемые данные |
| UART 1             |         |     |                     |
| UART1_TXD          | J3      | О   | Передаваемые данные |
| UART1_RXD          | J2      | Ι   | Принимаемые данные  |
| I <sup>2</sup> C 0 |         |     |                     |
| I2C0_SDA           | AD4     | IO  | Данные              |
| I2C0_SCL           | AD5     | IO  | Тактовая частота    |
| $I^2C$ 1           |         |     |                     |
| I2C1_SDA           | K6      | IO  | Данные              |
| I2C1_SCL           | K7      | IO  | Тактовая частота    |
| $I^2C$ 2           |         |     |                     |
| I2C2_SDA           | K1      | IO  | Данные              |
| I2C2_SCL           | J1      | IO  | Тактовая частота    |
| GPIO 32            |         |     |                     |
| GPIO[0]            | F9      | IO  | Данные              |
| GPIO[1]            | F8      | IO  | Данные              |
| GPIO[10]           | D1      | IO  | Данные              |
| GPIO[11]           | C5      | IO  | Данные              |
| GPIO[12]           | C3      | IO  | Данные              |
| GPIO[13]           | C2      | IO  | Данные              |
| GPIO[14]           | B5      | IO  | Данные              |
| GPIO[15]           | B3      | IO  | Данные              |
| GPIO[16]           | E3      | IO  | Данные              |
| GPIO[17]           | B2      | IO  | Данные              |
| GPIO[18]           | C1      | IO  | Данные              |
| GPIO[19]           | A2      | IO  | Данные              |
| GPIO[2]            | F7      | IO  | Данные              |
| GPIO[20]           | A4      | IO  | Данные              |
| GPIO[21]           | B4      | IO  | Данные              |
| GPIO[22]           | A3      | IO  | Данные              |



| Название вывода | Позиция | Тип    | Описание                                                                      |
|-----------------|---------|--------|-------------------------------------------------------------------------------|
| GPIO[23]        | B6      | IO     | Данные                                                                        |
| GPIO[24]        | A6      | IO     | Данные                                                                        |
| GPIO[25]        | F10     | IO     | Данные                                                                        |
| GPIO[26]        | E8      | IO     | Данные                                                                        |
| GPIO[27]        | E7      | IO     | Данные                                                                        |
| GPIO[28]        | B7      | IO     | Данные                                                                        |
| GPIO[29]        | A7      | IO     | Данные                                                                        |
| GPIO[3]         | E6      | IO     | Данные                                                                        |
| GPIO[30]        | E9      | IO     | Данные                                                                        |
| GPIO[31]        | D8      | IO     | Данные                                                                        |
| GPIO[4]         | E5      | IO     | Данные                                                                        |
| GPIO[5]         | E4      | IO     | Данные                                                                        |
| GPIO[6]         | D5      | IO     | Данные                                                                        |
| GPIO[7]         | D3      | IO     | Данные                                                                        |
| GPIO[8]         | A5      | IO     | Данные                                                                        |
| GPIO[9]         | D2      | IO     | Данные                                                                        |
| GPIO3           |         |        |                                                                               |
| GPIO3[0]        | W7      | IO     | Данные                                                                        |
| GPIO3[1]        | W6      | IO     | Данные                                                                        |
| GPIO3[2]        | W5      | IO     | Данные                                                                        |
| BOOT CFG        |         |        |                                                                               |
| BOOTCFG_1       | AC4     | I      | Вход для выбора режима загрузки, подсоединять к VDD для загрузки из SPI flash |
| BOOTCFG_0       | AC3     | I      | Вход для выбора режима загрузки, подсоединять к земле                         |
| SYSTEM          |         |        |                                                                               |
| CLK25M_IN       | R2      | I      | PLL Reference Clock 25MHz IN                                                  |
| CLK25M_OUT      | R1      | О      | PLL Reference Clock 25MHz OUT                                                 |
| RESET           | T1      | I      | Перезагрузка системы                                                          |
| GPVT*           | G17     | Analog | Filter connection pin. Прямое подсоединение к источнику                       |



| Название вывода | Позиция | Тип | Описание                                          |
|-----------------|---------|-----|---------------------------------------------------|
|                 |         |     | питания платы недопустимо!                        |
| XGbE            |         |     |                                                   |
| XG_AMON         | Y8      | О   | Диагностический вывод РНҮ                         |
| XG_DMON         | W10     | О   | Диагностический вывод РНҮ                         |
| XG_DMONB        | W11     | О   | Диагностический вывод РНҮ                         |
| XG_RBIAS        | W8      | IO  | Подключение опорного резистора                    |
| XG_REF_CLKN     | AD8     | I   | Опорные тактовые импульсы (дифференциальная пара) |
| XG_REF_CLKP     | AC8     | I   | Опорные тактовые импульсы (дифференциальная пара) |
| XG_RXM[0]       | AD6     | I   | Данные, принимаемые по дифференциальной паре 0    |
| XG_RXM[1]       | AD7     | I   | Данные, принимаемые по дифференциальной паре 1    |
| XG_RXM[2]       | AD10    | I   | Данные, принимаемые по<br>дифференциальной паре 2 |
| XG_RXM[3]       | AD9     | I   | Данные, принимаемые по<br>дифференциальной паре 3 |
| XG_RXP[0]       | AC6     | I   | Данные, принимаемые по дифференциальной паре 0    |
| XG_RXP[1]       | AC7     | I   | Данные, принимаемые по дифференциальной паре 1    |
| XG_RXP[2]       | AC10    | I   | Данные, принимаемые по<br>дифференциальной паре 2 |
| XG_RXP[3]       | AC9     | I   | Данные, принимаемые по дифференциальной паре 3    |
| XG_TXM[0]       | AA6     | О   | Данные, передаваемые по дифференциальной паре 0   |
| XG_TXM[1]       | AA7     | О   | Данные, передаваемые по дифференциальной паре 1   |
| XG_TXM[2]       | AA10    | О   | Данные, передаваемые по дифференциальной паре 2   |
| XG_TXM[3]       | AA9     | О   | Данные, передаваемые по дифференциальной паре 3   |
| XG_TXP[0]       | Y6      | О   | Данные, передаваемые по                           |



| Название вывода | Позиция | Тип | Описание                                          |
|-----------------|---------|-----|---------------------------------------------------|
|                 |         |     | дифференциальной паре 0                           |
| XG_TXP[1]       | Y7      | О   | Данные, передаваемые по дифференциальной паре 1   |
| XG_TXP[2]       | Y10     | O   | Данные, передаваемые по дифференциальной паре 2   |
| XG_TXP[3]       | Y9      | O   | Данные, передаваемые по дифференциальной паре 3   |
| PCIe            |         |     |                                                   |
| PCIE_AMON       | AC5     | О   | Диагностический вывод РНҮ                         |
| PCIE_ATT_BUT    | AD20    | I   | Кнопка Attention нажата                           |
| PCIE_ATT_IND[0] | V17     | О   | Управление индикатором Attention                  |
| PCIE_ATT_IND[1] | T17     | О   | Управление индикатором Attention                  |
| PCIE_CMD_INT    | AA18    | I   | Hot-plug controller command completed interrupt   |
| PCIE_DMON       | W13     | О   | Диагностический вывод РНҮ                         |
| PCIE_DMONB      | W15     | О   | Диагностический вывод РНҮ                         |
| PCIE_INTRL_CTRL | V18     | О   | Electromechanical Interlock Control               |
| PCIE_INTRL_ENG  | W18     | I   | System Electromechanical Interlock<br>Engaged     |
| PCIE_MRL_SENS   | W16     | I   | Состояние датчика MRL                             |
| PCIE_PRES_ST    | AD19    | I   | Состояние детектора присутствия                   |
| PCIE_PWR_CTRL   | AA17    | О   | Управление контроллером питания                   |
| PCIE_PWR_FAULT  | AB18    | I   | Детектор сбоя питания                             |
| PCIE_PWR_IND[0] | Y18     | О   | Управление индикатором питания                    |
| PCIE_PWR_IND[1] | U17     | О   | Управление индикатором питания                    |
| PCIE_RBIAS      | W12     | IO  | Подключение опорного резистора                    |
| PCIE_REF_CLKN   | AD14    | I   | Опорные тактовые импульсы (дифференциальная пара) |
| PCIE_REF_CLKP   | AC14    | I   | Опорные тактовые импульсы (дифференциальная пара) |
| PCIE_RXM[0]     | AD12    | I   | Данные, принимаемые по дифференциальной паре 0    |
| PCIE_RXM[1]     | AD13    | I   | Данные, принимаемые по                            |



| Название вывода | Позиция | Тип | Описание                                           |
|-----------------|---------|-----|----------------------------------------------------|
|                 |         |     | дифференциальной паре 1                            |
| PCIE_RXM[2]     | AD15    | I   | Данные, принимаемые по дифференциальной паре 2     |
| PCIE_RXM[3]     | AD16    | I   | Данные, принимаемые по дифференциальной паре 3     |
| PCIE_RXP[0]     | AC12    | I   | Данные, принимаемые по дифференциальной паре 0     |
| PCIE_RXP[1]     | AC13    | I   | Данные, принимаемые по дифференциальной паре 1     |
| PCIE_RXP[2]     | AC15    | I   | Данные, принимаемые по дифференциальной паре 2     |
| PCIE_RXP[3]     | AC16    | I   | Данные, принимаемые по<br>дифференциальной паре 3  |
| PCIE_TXM[0]     | AA12    | О   | Данные, передаваемые по дифференциальной паре 0    |
| PCIE_TXM[1]     | AA13    | О   | Данные, передаваемые по дифференциальной паре 1    |
| PCIE_TXM[2]     | AA15    | О   | Данные, передаваемые по дифференциальной паре 2    |
| PCIE_TXM[3]     | AA16    | О   | Данные, передаваемые по<br>дифференциальной паре 3 |
| PCIE_TXP[0]     | Y12     | О   | Данные, передаваемые по дифференциальной паре 0    |
| PCIE_TXP[1]     | Y13     | O   | Данные, передаваемые по дифференциальной паре 1    |
| PCIE_TXP[2]     | Y15     | О   | Данные, передаваемые по дифференциальной паре 2    |
| PCIE_TXP[3]     | Y16     | O   | Данные, передаваемые по дифференциальной паре 3    |
| SATA            |         |     |                                                    |
| SATA_REFCLKP    | B20     | I   | Опорные тактовые импульсы (дифференциальная пара)  |
| SATA_REFCLKM    | A20     | I   | Опорные тактовые импульсы (дифференциальная пара)  |
| SATA_RESREF     | C19     | IO  | Reference Resistor                                 |



| Название вывода | Позиция | Тип | Описание                                        |
|-----------------|---------|-----|-------------------------------------------------|
| SATA_TXM[0]     | B18     | O   | Данные, передаваемые по дифференциальной паре 0 |
| SATA_TXP[0]     | A18     | О   | Данные, передаваемые по дифференциальной паре 0 |
| SATA_RXM[0]     | B19     | I   | Данные, принимаемые по дифференциальной паре 0  |
| SATA_RXP[0]     | A19     | I   | Данные, принимаемые по дифференциальной паре 0  |
| SATA_RXM[1]     | B17     | I   | Данные, принимаемые по дифференциальной паре 1  |
| SATA_RXP[1]     | A17     | I   | Данные, принимаемые по дифференциальной паре 1  |
| SATA_TXM[1]     | B16     | О   | Данные, передаваемые по дифференциальной паре 1 |
| SATA_TXP[1]     | A16     | O   | Данные, передаваемые по дифференциальной паре 1 |
| SATA_P0MPSWITCH | F15     | I   | Mechanical Presence Switch P0                   |
| SATA_P0CPPOD    | E15     | О   | Cold Presence Power-On Device P0                |
| SATA_P1CPPOD    | D15     | О   | Cold Presence Power-On Device P1                |
| SATA_P0CPDET    | C15     | I   | Cold Presence Detect P0                         |
| SATA_P1CPDET    | E14     | I   | Cold Presence Detect P1                         |
| SATA_P1MPSWITCH | D14     | I   | Mechanical Presence Switch P1                   |
| TEST            |         |     |                                                 |
| TEST            | F14     | I   | Подсоединять к земле                            |
| TSTSEL_1*       | U7      | I   | Подсоединять к VSS                              |
| TSTSEL_2*       | Т7      | I   | Подсоединять к VSS                              |
| TSTSEL_3*       | U3      | I   | Подсоединять к VSS                              |
| MBIST_CLK*      | R7      | I   | Подсоединять к VSS                              |
| DDR             |         |     |                                                 |
| DDR_A[0]        | K19     | О   | Адрес SDRAM                                     |
| DDR_A[1]        | K24     | О   | Адрес SDRAM                                     |
| DDR_A[10]       | H22     | О   | Адрес SDRAM                                     |
| DDR_A[11]       | M20     | О   | Адрес SDRAM                                     |



| Название вывода | Позиция | Тип | Описание                      |
|-----------------|---------|-----|-------------------------------|
| DDR_A[12]       | K18     | О   | Адрес SDRAM                   |
| DDR_A[13]       | M19     | О   | Адрес SDRAM                   |
| DDR_A[14]       | L20     | О   | Адрес SDRAM                   |
| DDR_A[15]       | J21     | О   | Адрес SDRAM                   |
| DDR_A[2]        | K22     | О   | Адрес SDRAM                   |
| DDR_A[3]        | M22     | О   | Адрес SDRAM                   |
| DDR_A[4]        | M18     | О   | Адрес SDRAM                   |
| DDR_A[5]        | P21     | О   | Адрес SDRAM                   |
| DDR_A[6]        | N19     | О   | Адрес SDRAM                   |
| DDR_A[7]        | P19     | О   | Адрес SDRAM                   |
| DDR_A[8]        | P20     | О   | Адрес SDRAM                   |
| DDR_A[9]        | M21     | О   | Адрес SDRAM                   |
| DDR_ATO         | V19     | IO  | Analog Test Output (test Pad) |
| DDR_BA[0]       | N22     | О   | Адрес банка SDRAM             |
| DDR_BA[1]       | J19     | О   | Адрес банка SDRAM             |
| DDR_BA[2]       | G20     | O   | SDRAM Bank Group              |
| DDR_CAS#        | J22     | О   | SDRAM CAS#                    |
| DDR_CK_N[0]     | M24     | О   | Тактовая частота SDRAM#       |
| DDR_CK_N[1]     | L22     | О   | Тактовая частота SDRAM#       |
| DDR_CK[0]       | M23     | О   | Тактовая частота SDRAM        |
| DDR_CK[1]       | L21     | О   | Тактовая частота SDRAM        |
| DDR_CKE[0]      | K23     | О   | SDRAM clock enable            |
| DDR_CKE[1]      | H20     | О   | SDRAM clock enable            |
| DDR_CS_N[0]     | H23     | O   | Выбор микросхемы SDRAM        |
| DDR_CS_N[1]     | J20     | О   | Выбор микросхемы SDRAM        |
| DDR_DM[0]       | AC22    | IO  | Маска данных SDRAM            |
| DDR_DM[1]       | W21     | IO  | Маска данных SDRAM            |
| DDR_DM[2]       | T22     | IO  | Маска данных SDRAM            |
| DDR_DM[3]       | F22     | IO  | Маска данных SDRAM            |
| DDR_DM[4]       | B22     | IO  | Маска данных SDRAM            |
| DDR_DQ[0]       | AA19    | IO  | Данные SDRAM                  |



| Название вывода | Позиция | Тип | Описание     |
|-----------------|---------|-----|--------------|
| DDR_DQ[1]       | AA22    | IO  | Данные SDRAM |
| DDR_DQ[10]      | V24     | IO  | Данные SDRAM |
| DDR_DQ[11]      | Y22     | IO  | Данные SDRAM |
| DDR_DQ[12]      | Y21     | IO  | Данные SDRAM |
| DDR_DQ[13]      | AA24    | IO  | Данные SDRAM |
| DDR_DQ[14]      | AA23    | IO  | Данные SDRAM |
| DDR_DQ[15]      | V21     | IO  | Данные SDRAM |
| DDR_DQ[16]      | V20     | IO  | Данные SDRAM |
| DDR_DQ[17]      | P23     | IO  | Данные SDRAM |
| DDR_DQ[18]      | P24     | IO  | Данные SDRAM |
| DDR_DQ[19]      | R21     | IO  | Данные SDRAM |
| DDR_DQ[2]       | AB23    | IO  | Данные SDRAM |
| DDR_DQ[20]      | T21     | IO  | Данные SDRAM |
| DDR_DQ[21]      | U24     | IO  | Данные SDRAM |
| DDR_DQ[22]      | U21     | IO  | Данные SDRAM |
| DDR_DQ[23]      | T20     | IO  | Данные SDRAM |
| DDR_DQ[24]      | G21     | IO  | Данные SDRAM |
| DDR_DQ[25]      | E21     | IO  | Данные SDRAM |
| DDR_DQ[26]      | E22     | IO  | Данные SDRAM |
| DDR_DQ[27]      | E20     | IO  | Данные SDRAM |
| DDR_DQ[28]      | F21     | IO  | Данные SDRAM |
| DDR_DQ[29]      | E24     | IO  | Данные SDRAM |
| DDR_DQ[3]       | AB24    | IO  | Данные SDRAM |
| DDR_DQ[30]      | E23     | IO  | Данные SDRAM |
| DDR_DQ[31]      | F20     | IO  | Данные SDRAM |
| DDR_DQ[32]      | A21     | IO  | Данные SDRAM |
| DDR_DQ[33]      | B24     | IO  | Данные SDRAM |
| DDR_DQ[34]      | B21     | IO  | Данные SDRAM |
| DDR_DQ[35]      | B23     | IO  | Данные SDRAM |
| DDR_DQ[36]      | D21     | IO  | Данные SDRAM |
| DDR_DQ[37]      | D24     | IO  | Данные SDRAM |



| Название вывода | Позиция | Тип | Описание                       |
|-----------------|---------|-----|--------------------------------|
| DDR_DQ[38]      | D23     | IO  | Данные SDRAM                   |
| DDR_DQ[39]      | D22     | IO  | Данные SDRAM                   |
| DDR_DQ[4]       | AD22    | IO  | Данные SDRAM                   |
| DDR_DQ[5]       | AA20    | IO  | Данные SDRAM                   |
| DDR_DQ[6]       | AD21    | IO  | Данные SDRAM                   |
| DDR_DQ[7]       | AA21    | IO  | Данные SDRAM                   |
| DDR_DQ[8]       | V22     | IO  | Данные SDRAM                   |
| DDR_DQ[9]       | V23     | IO  | Данные SDRAM                   |
| DDR_DQS_N[0]    | AC24    | IO  | Стробирующий импульс SDRAM#    |
| DDR_DQS_N[1]    | Y24     | IO  | Стробирующий импульс SDRAM#    |
| DDR_DQS_N[2]    | T24     | IO  | Стробирующий импульс SDRAM #   |
| DDR_DQS_N[3]    | F24     | IO  | Стробирующий импульс SDRAM#    |
| DDR_DQS_N[4]    | C24     | IO  | Стробирующий импульс SDRAM#    |
| DDR_DQS[0]      | AC23    | IO  | Стробирующий импульс SDRAM     |
| DDR_DQS[1]      | Y23     | IO  | Стробирующий импульс SDRAM     |
| DDR_DQS[2]      | T23     | IO  | Стробирующий импульс SDRAM     |
| DDR_DQS[3]      | F23     | IO  | Стробирующий импульс SDRAM     |
| DDR_DQS[4]      | C23     | IO  | Стробирующий импульс SDRAM     |
| DDR_DTO[0]      | P18     | О   | Digital Test Output (test Pad) |
| DDR_DTO[1]      | P17     | О   | Digital Test Output (test Pad) |
| DDR_ODT[0]      | H24     | О   | SDRAM On-Die termination       |
| DDR_ODT[1]      | P22     | О   | SDRAM On-Die termination       |
| DDR_RAM_RST_N   | T19     | О   | Перезагрузка SDRAM             |
| DDR_RAS#        | H21     | О   | SDRAM RAS#                     |
| DDR_VREF[0]     | H17     | IO  | IO ring VREFI net              |
| DDR_VREF[1]     | M17     | IO  | IO ring VREFI net              |
| DDR_VREF[2]     | E18     | IO  | IO ring VREFI net              |
| DDR_VREF[3]     | R18     | IO  | IO ring VREFI net              |
| DDR_VREF[4]     | U18     | IO  | IO ring VREFI net              |
| DDR_VREF[5]     | W19     | IO  | IO ring VREFI net              |
| DDR_VREFI_ZQ    | J18     | IO  | IO ring VREFI ZQ net           |



| Название вывода | Позиция | Тип | Описание                                       |
|-----------------|---------|-----|------------------------------------------------|
| DDR_WE#         | G19     | О   | SDRAM WE#                                      |
| DDR_ZQ          | J17     | IO  | ZQ Resistor (to external calibration resistor) |
| Питание         |         |     |                                                |
| VDD             | A1      | P   | Питание ядра                                   |
| VDD             | A15     | P   | Питание ядра                                   |
| VDD             | A22     | P   | Питание ядра                                   |
| VDD             | A8      | P   | Питание ядра                                   |
| VDD             | AB4     | P   | Питание ядра                                   |
| VDD             | AC1     | P   | Питание ядра                                   |
| VDD             | AC19    | P   | Питание ядра                                   |
| VDD             | AC20    | P   | Питание ядра                                   |
| VDD             | E1      | P   | Питание ядра                                   |
| VDD             | E16     | P   | Питание ядра                                   |
| VDD             | G10     | P   | Питание ядра                                   |
| VDD             | G11     | P   | Питание ядра                                   |
| VDD             | G12     | P   | Питание ядра                                   |
| VDD             | G13     | P   | Питание ядра                                   |
| VDD             | G14     | P   | Питание ядра                                   |
| VDD             | G15     | P   | Питание ядра                                   |
| VDD             | G16     | P   | Питание ядра                                   |
| VDD             | G22     | P   | Питание ядра                                   |
| VDD             | G8      | P   | Питание ядра                                   |
| VDD             | G9      | P   | Питание ядра                                   |
| VDD             | J10     | P   | Питание ядра                                   |
| VDD             | J11     | P   | Питание ядра                                   |
| VDD             | J12     | P   | Питание ядра                                   |
| VDD             | J13     | P   | Питание ядра                                   |
| VDD             | J14     | P   | Питание ядра                                   |
| VDD             | J15     | P   | Питание ядра                                   |
| VDD             | J16     | P   | Питание ядра                                   |



| Название вывода | Позиция | Тип | Описание     |
|-----------------|---------|-----|--------------|
| VDD             | Ј8      | P   | Питание ядра |
| VDD             | Ј9      | P   | Питание ядра |
| VDD             | L10     | P   | Питание ядра |
| VDD             | L11     | P   | Питание ядра |
| VDD             | L12     | P   | Питание ядра |
| VDD             | L13     | P   | Питание ядра |
| VDD             | L14     | P   | Питание ядра |
| VDD             | L15     | P   | Питание ядра |
| VDD             | L16     | P   | Питание ядра |
| VDD             | L8      | P   | Питание ядра |
| VDD             | L9      | P   | Питание ядра |
| VDD             | M1      | P   | Питание ядра |
| VDD             | N10     | P   | Питание ядра |
| VDD             | N11     | P   | Питание ядра |
| VDD             | N12     | P   | Питание ядра |
| VDD             | N13     | P   | Питание ядра |
| VDD             | N14     | P   | Питание ядра |
| VDD             | N15     | P   | Питание ядра |
| VDD             | N16     | P   | Питание ядра |
| VDD             | N8      | P   | Питание ядра |
| VDD             | N9      | P   | Питание ядра |
| VDD             | R10     | P   | Питание ядра |
| VDD             | R11     | P   | Питание ядра |
| VDD             | R12     | P   | Питание ядра |
| VDD             | R13     | P   | Питание ядра |
| VDD             | R14     | P   | Питание ядра |
| VDD             | R15     | P   | Питание ядра |
| VDD             | R16     | P   | Питание ядра |
| VDD             | R22     | P   | Питание ядра |
| VDD             | R8      | P   | Питание ядра |
| VDD             | R9      | P   | Питание ядра |



| Название вывода | Позиция | Тип | Описание             |
|-----------------|---------|-----|----------------------|
| VDD             | U10     | P   | Питание ядра         |
| VDD             | U11     | P   | Питание ядра         |
| VDD             | U12     | P   | Питание ядра         |
| VDD             | U13     | P   | Питание ядра         |
| VDD             | U14     | P   | Питание ядра         |
| VDD             | U15     | P   | Питание ядра         |
| VDD             | U16     | P   | Питание ядра         |
| VDD             | U8      | P   | Питание ядра         |
| VDD             | U9      | P   | Питание ядра         |
| VDD             | V3      | P   | Питание ядра         |
| VDD             | W22     | P   | Питание ядра         |
| VDDIO_18        | AB3     | P   | Питание ввода-вывода |
| VDDIO_18        | C10     | P   | Питание ввода-вывода |
| VDDIO_18        | C12     | P   | Питание ввода-вывода |
| VDDIO_18        | C4      | P   | Питание ввода-вывода |
| VDDIO_18        | C6      | P   | Питание ввода-вывода |
| VDDIO_18        | C7      | P   | Питание ввода-вывода |
| VDDIO_18        | F3      | P   | Питание ввода-вывода |
| VDDIO_18        | Н3      | P   | Питание ввода-вывода |
| VDDIO_18        | L3      | P   | Питание ввода-вывода |
| VDDIO_18        | P3      | P   | Питание ввода-вывода |
| VDDIO_18        | T3      | P   | Питание ввода-вывода |
| VDDIO_18        | W3      | P   | Питание ввода-вывода |
| VDDIO_18        | Y17     | P   | Питание ввода-вывода |
| VDDR_15         | AB22    | P   | Питание DDR          |
| VDDR_15         | C22     | P   | Питание DDR          |
| VDDR_15         | D20     | P   | Питание DDR          |
| VDDR_15         | F19     | P   | Питание DDR          |
| VDDR_15         | H19     | P   | Питание DDR          |
| VDDR_15         | J24     | P   | Питание DDR          |
| VDDR_15         | K21     | P   | Питание DDR          |



| Название вывода | Позиция | Тип | Описание                           |
|-----------------|---------|-----|------------------------------------|
| VDDR_15         | L19     | P   | Питание DDR                        |
| VDDR_15         | L24     | P   | Питание DDR                        |
| VDDR_15         | N18     | P   | Питание DDR                        |
| VDDR_15         | N21     | P   | Питание DDR                        |
| VDDR_15         | N24     | P   | Питание DDR                        |
| VDDR_15         | R20     | P   | Питание DDR                        |
| VDDR_15         | U20     | P   | Питание DDR                        |
| VDDR_15         | U23     | P   | Питание DDR                        |
| VDDR_15         | Y20     | P   | Питание DDR                        |
| VDDR_18         | A24     | P   | Питание DDR                        |
| VDDR_18         | AD24    | P   | Питание DDR                        |
| VDDR_18         | G24     | P   | Питание DDR                        |
| VDDR_18         | R24     | P   | Питание DDR                        |
| VDDR_18         | W24     | P   | Питание DDR                        |
| VPCI_09         | AB13    | P   | Питание PCIe PHY                   |
| VPCI_09         | AB16    | P   | Питание РСІе РНҮ                   |
| VPCI_09         | AA14    | P   | Питание РСІе РНҮ                   |
| VPCI_15         | Y14     | P   | Питание PCIe PHY IO                |
| VPLLCORE_09     | U1      | P   | Питание PLL ядра                   |
| VPLLDDR_09      | AD18    | P   | Питание PLL DDR                    |
| VPLLETH_09      | AD3     | P   | Питание PLL ETH                    |
| VPLLPCIE_09     | AD17    | P   | Питание PLL PCIe                   |
| VPLLSATA_09     | D17     | P   | Питание PLL SATA                   |
| VPVT*           | F17     | P   | Analog power for PVT sensor (1.8V) |
| VSATA_18        | C20     | P   | Питание SATA PHY                   |
| VSATAP_09       | C17     | P   | Питание SATA PHY                   |
| VSATATX_09      | C18     | P   | Питание SATA PHY                   |
| VXGB_09         | AB6     | P   | Питание XGbE PHY                   |
| VXGB_09         | AB10    | P   | Питание XGbE PHY                   |
| VXGB_09         | AB8     | P   | Питание XGbE PHY                   |
| VXGB_15         | AA8     | P   | Питание XGbE PHY IO                |



| Название вывода | Позиция | Тип | Описание |
|-----------------|---------|-----|----------|
| Земля           |         |     |          |
| VSS             | A23     | G   |          |
| VSS             | AA3     | G   |          |
| VSS             | AB12    | G   |          |
| VSS             | AB14    | G   |          |
| VSS             | AB15    | G   |          |
| VSS             | AB17    | G   |          |
| VSS             | AB19    | G   |          |
| VSS             | AB20    | G   |          |
| VSS             | AB21    | G   |          |
| VSS             | AB5     | G   |          |
| VSS             | AB7     | G   |          |
| VSS             | AB9     | G   |          |
| VSS             | AD2     | G   |          |
| VSS             | AD23    | G   |          |
| VSS             | B1      | G   |          |
| VSS             | B15     | G   |          |
| VSS             | B8      | G   |          |
| VSS             | C16     | G   |          |
| VSS             | C21     | G   |          |
| VSS             | E17     | G   |          |
| VSS             | E19     | G   |          |
| VSS             | E2      | G   |          |
| VSS             | F18     | G   |          |
| VSS             | G23     | G   |          |
| VSS             | H10     | G   |          |
| VSS             | H11     | G   |          |
| VSS             | H12     | G   |          |
| VSS             | H13     | G   |          |
| VSS             | H14     | G   |          |
| VSS             | H15     | G   |          |



| Название вывода | Позиция | Тип | Описание |
|-----------------|---------|-----|----------|
| VSS             | H16     | G   |          |
| VSS             | H18     | G   |          |
| VSS             | Н8      | G   |          |
| VSS             | Н9      | G   |          |
| VSS             | J23     | G   |          |
| VSS             | K10     | G   |          |
| VSS             | K11     | G   |          |
| VSS             | K12     | G   |          |
| VSS             | K13     | G   |          |
| VSS             | K14     | G   |          |
| VSS             | K15     | G   |          |
| VSS             | K16     | G   |          |
| VSS             | K20     | G   |          |
| VSS             | K8      | G   |          |
| VSS             | K9      | G   |          |
| VSS             | L18     | G   |          |
| VSS             | L23     | G   |          |
| VSS             | M10     | G   |          |
| VSS             | M11     | G   |          |
| VSS             | M12     | G   |          |
| VSS             | M13     | G   |          |
| VSS             | M14     | G   |          |
| VSS             | M15     | G   |          |
| VSS             | M16     | G   |          |
| VSS             | M2      | G   |          |
| VSS             | M8      | G   |          |
| VSS             | M9      | G   |          |
| VSS             | N17     | G   |          |
| VSS             | N20     | G   |          |
| VSS             | N23     | G   |          |
| VSS             | P10     | G   |          |



| Название вывода | Позиция | Тип | Описание |
|-----------------|---------|-----|----------|
| VSS             | P11     | G   |          |
| VSS             | P12     | G   |          |
| VSS             | P13     | G   |          |
| VSS             | P14     | G   |          |
| VSS             | P15     | G   |          |
| VSS             | P16     | G   |          |
| VSS             | P8      | G   |          |
| VSS             | P9      | G   |          |
| VSS             | R19     | G   |          |
| VSS             | R23     | G   |          |
| VSS             | T10     | G   |          |
| VSS             | T11     | G   |          |
| VSS             | T12     | G   |          |
| VSS             | T13     | G   |          |
| VSS             | T14     | G   |          |
| VSS             | T15     | G   |          |
| VSS             | T16     | G   |          |
| VSS             | Т8      | G   |          |
| VSS             | Т9      | G   |          |
| VSS             | U19     | G   |          |
| VSS             | U2      | G   |          |
| VSS             | U22     | G   |          |
| VSS             | V10     | G   |          |
| VSS             | V11     | G   |          |
| VSS             | V12     | G   |          |
| VSS             | V13     | G   |          |
| VSS             | V14     | G   |          |
| VSS             | V15     | G   |          |
| VSS             | V16     | G   |          |
| VSS             | V8      | G   |          |
| VSS             | V9      | G   |          |



| Название вывода | Позиция | Тип | Описание |  |
|-----------------|---------|-----|----------|--|
| VSS             | W14     | G   |          |  |
| VSS             | W20     | G   |          |  |
| VSS             | W23     | G   |          |  |
| VSS             | W9      | G   |          |  |
| VSS             | Y11     | G   |          |  |
| VSS             | Y19     | G   |          |  |
| VSSDDR_PLL      | AC18    | G   |          |  |
| VSSETH_PLL      | AC2     | G   |          |  |
| VSSCORE_PLL     | T2      | G   |          |  |
| VSSIO           | AA4     | G   |          |  |
| VSSIO           | D10     | G   |          |  |
| VSSIO           | D12     | G   |          |  |
| VSSIO           | D4      | G   |          |  |
| VSSIO           | D6      | G   |          |  |
| VSSIO           | D7      | G   |          |  |
| VSSIO           | F4      | G   |          |  |
| VSSIO           | H4      | G   |          |  |
| VSSIO           | L4      | G   |          |  |
| VSSIO           | P4      | G   |          |  |
| VSSIO           | T4      | G   |          |  |
| VSSIO           | W17     | G   |          |  |
| VSSIO           | W4      | G   |          |  |
| VSSPCIE_PLL     | AC17    | G   |          |  |
| VSSSATA_PLL     | D16     | G   |          |  |
| Зарезервирован  |         |     |          |  |
| NC              | U6      | NC  |          |  |
| NC              | AA11    | NC  |          |  |
| NC              | AB11    | NC  |          |  |
| NC              | AC11    | NC  |          |  |
| NC              | AC21    | NC  |          |  |
| NC              | AD1     | NC  |          |  |



Статус: Релиз

| Название вывода | Позиция | Тип | Описание |
|-----------------|---------|-----|----------|
| NC              | AD11    | NC  |          |
| NC              | D18     | NC  |          |
| NC              | D19     | NC  |          |
| NC              | F16     | NC  |          |
| NC              | G18     | NC  |          |
| NC              | K17     | NC  |          |
| NC              | L17     | NC  |          |
| NC              | R17     | NC  |          |
| NC              | T18     | NC  |          |
| VQPS            | V7      | NC  |          |

<sup>\* :</sup> не поддерживается в тестовых образцах Байкал-Т1, оставлять неподсоединённым.

#### 6 Упаковка

#### 6.1 Информация о корпусе микросхемы

Основные параметры корпуса приведены в таблице 4.

Таблица 4: Основные параметры корпуса процессора Байкал-Т1

| Параметр                                          | Значение                 |
|---------------------------------------------------|--------------------------|
| Размер корпуса                                    | 25 × 25 мм               |
| Количество контактов                              | 576                      |
| Шаг между контактами                              | 1 мм                     |
| Диаметр контакта                                  | $0.6 \pm 0.1 \text{ mm}$ |
| Толщина<br>(минимальная/номинальная/максимальная) | 2,80 / 3,05 / 3,30 мм    |

Статус: Релиз

#### 6.2 Механические размеры

Схематический чертёж корпуса (без строгого соблюдения масштаба) приведён на рисунке 7. Размеры, указанные на чертеже буквами, приведены в таблице 5.



Рисунок 7 - Схематический чертёж корпуса микросхемы Байкал-Т1

Таблица 5: Размеры корпуса микросхемы Байкал-Т1

| Обозначение | Размер (мм) | Примечание                                               |
|-------------|-------------|----------------------------------------------------------|
| L           | 25,0        | Длина корпуса                                            |
| L1          | 16,60±0,05  |                                                          |
| L2          | 18,60       |                                                          |
| L3          | 24,60±0,15  |                                                          |
| L4          | 23,0        | Расстояние между крайними контактами от центра до центра |
| W           | 25,0        | Ширина корпуса                                           |



| Обозначение | Размер (мм) | Примечание                                                      |
|-------------|-------------|-----------------------------------------------------------------|
| W1          | 16,60±0,05  |                                                                 |
| W2          | 18,60       |                                                                 |
| W3          | 24,60±0,15  |                                                                 |
| W4          | 23,0        |                                                                 |
| Н           | 2,8–3,3     | Толщина корпуса, включая контакты. Медианное значение – 3,05 мм |
| H1          | 1,15±0,15   | Толщина подложки                                                |
| H2          | 0,4–0,6     | Высота контактов                                                |
| Н3          | 0,50±0,05   | Толщина теплоотводящей крышки                                   |
| H4          | 0,80±0,05   |                                                                 |
| Н5          | 1,30±0,05   |                                                                 |
| D           | 0,6±0,1     | Диаметр контактов                                               |
| P           | 1,0         | Шаг между контактами                                            |

Чертёж крышки корпуса (без строгого соблюдения масштаба) приведён на рисунке 8



Рисунок 8 - Чертеж крышки корпуса микросхемы Байкал-Т1

Статус: Релиз

#### 6.3 Упаковка

Процессоры поставляются в поддоне (англ. *tray*, палете) в количестве 44 штук. Схематический чертёж поддона приведён на рисунке 9.



Рисунок 9 - Схематический чертёж поддона для упаковки микросхемы Байкал-Т1

Статус: Релиз

### 6.4 Профиль пайки

Рекомендованный температурный профиль для пайки микросхемы Байкал-Т1 приведён в таблице 6. Соответствующий график представлен на рисунке 10.

Таблица 6: Рекомендованный профиль пайки для микросхемы Байкал-Т1

| Температура                                 | Время            |
|---------------------------------------------|------------------|
| От комнатной температуры до 140°C           | 60–90 с          |
| От 140°C до 180°C                           | 60–120 с         |
| При температуре выше 183°C                  | 60–150 с         |
| Пиковая температура                         | 220°C ± 5°C      |
| Время в пределах 5°C от пиковой температуры | 10–20 с          |
| Скорость охлаждения                         | Не быстрее 6°С/с |



Рисунок 10 - Профиль пайки для микросхемы Байкал-Т1

Статус: Релиз

### 7 Поставляемое программное обеспечение

Этот раздел описывает содержимое доступного системным программистам Комплекта средств разработки программного обеспечения для микропроцессора Байкал-Т1 (Байкал-Т1 BSP).

#### 7.1 Минимальные системные требования

Для успешной установки и работы комплекта Байкал-Т1 BSP необходим ПК с архитектурой x86 разрядностью 64 бит, отвечающий следующим системным требованиям:

- OC Linux x86\_64;
- 2 Гб свободного дискового пространства;
- Должны быть установлены пакеты системных программ coreutils, parted, kpartx;
- Необходимы полномочия администратора (root), если требуется изменение образов файловой системы или настройка маршрутизации сетевых пакетов.

#### 7.2 Содержимое комплекта BSP

Комплект BSP содержит кросс-компилятор, редактор связей, отладчик, утилиты и системные библиотеки, достаточные для разработки системного и прикладного ПО, исполняемого процессором Байкал-Т1.

В составе пакета BSP поставляются средства для компиляции, сборки и отладки программных продуктов для платформы Байкал-Т1:

- Ядро ОС Linux: Linux-3.19.0 или новее, включающее изменения («заплатки») для платформы Байкал-Т1;
- Набор драйверов для периферийных устройств, контроллеры которых входят в состав микросхемы Байкал-Т1, в исходных кодах и в скомпилированном виде;
- Средства для кросс-компиляции на основе комплекса программ gcc из-под x86 для целевой архитектуры MIPS32®, в том числе отладчик gdb;
- Функциональный эмулятор процессора Байкал-Т1 на основе ПО с открытым кодом QEMU.

Скомпилированное ПО может исполняться как под эмулятором на платформе разработчика,

Статус: Релиз

так и на физической плате с процессором Байкал-Т1.

Комплект поставки может включать более новые версии программ и библиотек.

Статус: Релиз

### 8 О компании «Байкал Электроникс»

Компания «Байкал Электроникс» разрабатывает интегральные микросхемы, в первую очередь системы на кристалле, с использованием передовых технологий проектирования, компьютерного моделирования и верификации. Целевыми применениями наших продуктов являются энергоэффективные компьютерные системы и системы промышленной автоматизации с различными уровнями производительности и функциональностью. Обширный опыт компании «Байкал Электроникс» в области микросхем помогает пользователям её продукции сфокусировать усилия на разработке более высокоуровневых продуктов и систем. Мы стараемся помогать нашим клиентам в проектировании их изделий уровня печатной платы и сокращать их затраты времени и усилий на разработку в условиях жёсткой рыночной конкуренции.

#### Контакты:

143421, Московская область, Красногорский район, 26 км автодороги «Балтия», <u>бизнес-центр</u> <u>RigaLand</u>, блок Б, 2-й этаж

телефон: (495) 221-39-47

http://www.baikalelectronics.ru