ML2016 HW1 Linear Regression

October 14, 2016

1 Linear regression function by Gradient Descent

1.1 Packages

```
import numpy as np
import pandas as pd
import random
import matplotlib.pyplot as plt
```

1.2 Define the loss function

```
def computeLoss(X, y, coef):
    y_hat = np.dot(X, coef)
    return sum((y - y_hat)**2) / len(y)
```

1.3 Main loop of gradient descent

```
iteration = 3000 # number of iteration
eta = 0.00001 # learning rate
loss_history = list()
random.seed(1002) # Randomly initialize coefficients
coef = [random.random()/100.0 for i in range(train_norm.shape[1])]
for ite in range(iteration):
    loss_history.append(computeLoss(train_norm, y, coef))
    temp = list()
    ## compute all gradients and the updated coefficients
    for i in range(train_norm.shape[1]):
        temp.append(coef[i] - \
                    alpha * sum((np.dot(train_norm, coef) - y) \
                                .multiply(train_norm.ix[:,i])))
    ## update all coefficients
    for i in range(train_norm.shape[1]):
        coef[i] = temp[i]
```

2 Method description

2.1 Preprocessing

I use **numpy** and **pandas** packages for data manipulation. First, I use the **pandas.melt** method to reshape the training data into a long one-value-per-row matrix. Second, I use a for loop to extract all possible 10-hour windows and build the complete one-record-per-row matrix with dimension (5652, 163) as shown below. The last column PM2.5_h10 contains all PM2.5 values in the 10-th hour of all 10-hour windows.

AMB_TEMP_h1	CH4_h1	CO_h1	 WS_HR_h9	PM2.5_h10
14.0	1.8	0.51	 0.5	30.0
14.0	1.8	0.15	 0.3	41.0
14.0	1.8	0.13	 0.8	44.0
13.0	1.8	0.12	 1.2	33.0
12.0	1.8	0.11	 2.0	37.0
	• • •	•••	 	

2.2 Data cleansing

Remove wrong (or strange) records that with any negative feature or outcome. For example, there are some records with AMB_TEMP < 0, which is not reasonable and should be discarded. This can be done by the following code snippet, in which train_all is the aforementioned 5652-by-163 matrix. The resulted train_clean is a 5300-by-163 matrix.

```
train_clean = train_all[(train_all >= 0).all(1)]
```

2.3 Spliting feature and outcome, normalization, and adding constant column

```
# Split features and outcome
y = pd.Series(train_clean.ix[:, train_clean.shape[1]-1])
del train_clean['y']
# Normalize (make all features to be zero-mean and unit-variance)
train_norm = (train_clean - train_clean.mean()) / train_clean.std()
# Add a column with all 1
train_norm.insert(loc = 0, column = 'intercept', value = 1)
```

3 Discussion on regularization

I also implement a polynomial regression, where the **squared** version of all 162 features are included to make a 5300-by-325 big feature matrix (including the first all-1 column). This matrix is also normalized.

Then, I try different regularizer (0, 0.1, 0.3, 1, 3, and 10) and run 5-fold cross validation with iteration number 400. The average training- and validation-error (mean-square-error) of $\lambda = 0$ (no regularization) and $\lambda = 1$ are shown below. It seems that $\lambda = 1$ gives a slightly smaller validation-error. If we run more and more iteration, there should be more improvement.

The implementation can be found in polynomial_regression_reg.py in the github repository.

λ	training	validation
0	33.6054	37.2652
1	33.6079	37.2573

4 Discussion on learning rate

Since there are totally 162 features in the linear regression formula, the gradient summation term sum((np.dot(train_norm, coef) - y).multiply(train_norm.ix[:,i])) will be relatively large in each iteration, and hance we need a relatively small learning rate.

As showed in the above figure, choosing learning rate to be 0.00001 seems to be adequate. The implementation can be found in learning_rate_adjustment.py in the github repository.