Machine-Learning

An introduction

by: Estefany Suárez & Jake Vogel 29/06/2021

Machine Learning (ML)

Learn from experience

Follow instructions

Terminology

Terminology

ML algorithms learn a function to map X to Y create useful prediction representations of data X Unsupervised **Supervised Semi-supervised** Learning Learning Learning x, y $f: x \to y$ y = f(x)

Regression

Regression

$$f: x \to y$$
$$y = f(x)$$

$$y = ax^2 + bx + c$$

Typical ML Pipeline

Why cross-validation (CV)?

- Avoid overfitting
- Improve model generalizability

model

fitting

ML basic ingredients

$$f: x \to y$$
$$y = f(x)$$

- 2 Loss function $\longrightarrow MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- Optimization algorithm gradient descent

ML basic ingredients

1 Model (estimator) selection

linear regression

$$y = ax^2 + bx + c$$

polynomial regression

multi-layer perceptron (ANN)

2 Loss (cost) function

mean squared error = $\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$

mean absolute error = $\frac{1}{n}\sum_{i=1}^{n}|y_i - \hat{y}_i|$

 $\max \text{error} = \max(|y_i - \hat{y_i}|)$

explained var. = $1 - \frac{Var(y - \hat{y})}{Var(y)}$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})}$$

ML basic ingredients

Optimization algorithm for model parameters!

$$y = ax + b$$

$$Loss = f(\mathbf{a}, \mathbf{b})$$

Gradient Descent

Training data

 y_{train}

 $\chi_{\rm train}$

Initialize model parameters (a,b) randomly iterate between:

- 1) Estimate output
- $\widehat{\mathbf{y}}_i = a\mathbf{x}_i + \mathbf{b}$
- 2) Compute *loss*

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- 3) Compute the gradient
- 4) Update parameters (a,b)

There is a problem though ...

simple loss function

convoluted loss function

Me WANTS THE DATA

multiple training epochs!

Typical ML Pipeline

Model Validation

score function

mean squared error =
$$\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$$

mean absolute error =
$$\frac{1}{n}\sum_{i=1}^{n}|y_i-\widehat{y}_i|$$

$$\max \operatorname{error} = \max(|y_i - \widehat{y_i}|)$$

explained var. =
$$1 - \frac{Var(y - \hat{y})}{Var(y)}$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})}$$

We have yet another problem ...

BUT ... What if your data is very heterogeneous and the "outlier" samples/observations happen to be in the test set?

This would greatly affect the generalizability of your model!!!

Typical ML Pipeline

Why *kth*-fold CV?

- Provide a more accurate performance measure
 - [average, standard deviation, range]
- Model selection
- *Hyper*-parameter tuning

[k-fold] Cross-Validation (CV)

- 1. For each fold:
 - I. Train model parameters with training set
 - II. Evaluate training with <u>validation</u> set
- Based on <u>validation</u> set, select *optimal* model and hyper-parameters
- 3. Only at the very, very **END**, report error on <u>test</u> set

Diagnosing overfitting with *Learning Curves*

Bias-Variance Trade-Off

Bias-Variance Trade-Off

model complexity (~ number of features) learning epochs

Typical ML Pipeline

WHY DR?

- Curse of dimensionality (more features than samples)
- Intrinsic dimension may actually be small (redundante data)
- Extract "salient" features
- Remove noisy features
- VISUALIZATION!!!!

Tip 1: Dimensionality Reduction

- Compact representation of the data
- Maps input features into a lower dimensional space

e.g. If features are
$$X = [x_1, x_2, x_3, x_4]$$

then $Z = T(X) = [c_1x_1 + c_2x_2, x_3 * x_4]$

- Selection of a subset of input features
- Features are still in original space

e.g.
$$Z = S(X) = [x_2, x_3]$$

Tip 1: Dimensionality Reduction

Tip 2: Regularization

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p$$

Penalties on the *LOSS* function to prevent overfitting!

1) L1/Lasso: constrains parameters to be sparse

$$MSE = \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

2) L2/Ridge: constrains parameters to be small

$$MSE = \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Tip 3: Ensemble Methods

Sources of Bias

Туре	DO NOT	8	Sexy name	DO	
<i>k</i> -hacking	Try many k's in k-fold CV (or different training %) and report only the best		<i>k</i> -hacking	Pick k=10, repeat It many times (>200 or as many as possible!), and report the full distribution (NOT boxplots!)	
<i>metric</i> -hacking	Try different performetrics (e.g., accurate, e.g., report the b	uracy, F1, etc.) and	<i>m</i> -hacking	appropriate a metric for the AUC for	the most nd recognized problem (e.g., r binary cation)
feature/dataset-hacking	Try subsets of feat subsamples of da but report only t	itaset(s),	<i>d</i> -hacking	everything: a	report on Il analyses on tasets

Machine learning tools for neuroimaging ... in Python!

Classification

Classification

Support Vector Machine (SVM)

- Artificial Neural Networks
- Logistic regression
- Decision Trees
- Random Forests

probabilistic classifiers

Performance Metrics – Binary Classification

confusion matrix

score function

$$accuracy = \frac{T_p + T_n}{T_p + T_n + F_p + F_n}$$

$$precision = \frac{T_p}{T_p + F_p}$$

$$recall = \frac{T_p}{T_p + F_n}$$

$$accuracy = \frac{T_p}{T_p + F_n}$$

$$Appropriate when classes are imbalanced!$$

$$F1 \, score = \frac{2T_p}{2T_p + F_p + F_n}$$

Multiclass Prediction (≠ Multilabel Prediction)

		True class		
		CAT	DOG	BIRD
Predicted class	CAT	13	0	0
	DOG	0	10	6
	BIRD	0	0	9

- To extend a binary metric to multiclass problems, the data is treated as a collection of binary problems, one for each class.
- The binary metric is then averaged across the set of classes, each of which may be useful in some scenario.

Performance Metrics – Binary Classification

		True condition		
		POSITIVE	NEGATIVE	
icted	POSITIVE TRUE positive - T		FALSE positive - F_p (Type I error)	
Predicted condition	NEGATIVE	FALSE negative - F_n (Type II error)	TRUE negative - T_n	

Sensitivity (or recall)
$$TPR = \frac{T_p}{P} = \frac{T_p}{T_p + F_n}$$
 $FPR = \frac{F_p}{N} = \frac{F_p}{T_n + F_p}$ Specificity (or selectivity)

$$FNR = \frac{F_n}{P} = \frac{F_n}{T_p + F_n}$$
 $TNR = \frac{T_n}{N} = \frac{T_n}{T_n + F_p}$

Performance Metrics – Binary Classification

(probabilistic classifiers)

ROC curve

precision-recall curve

Clustering

K-means

Hierarchical clustering

Gaussian mixture models

Inference vs Prediction – Linear Model $\mathbf{Y} = \boldsymbol{\beta} \mathbf{X} + \boldsymbol{\epsilon}$

statistical inference

pattern recognition

Goal:

• Identify significant contributing variables (statistical null-hypothesis testing, *p*-values)

Uses:

- Scientific discovery. Ideal to uncover characteristics or true properties of the biological processes of the studied phenomenon.
- Useful to judge the individual relevance of each quantitative measure in impacting the response of interest.

Goal:

 Identify most predictive variable sets (out-of-sample prediction performance)

Uses:

- Pragmatic forecasting of biological processes.
- Tends to concern less regarding the data-generating process.

Diagnosing Features (≈ Interpretability)

Local Interpretable Model-Agnostic Explanations [LIME]

