Diszkrét matematika II Polinomok témakör jegyzete

Készült Burcsi Péter előadásai és Harrison-Juhász Zsófia gyakorlatai alapján

Sárközi Gergő, 2021-22-1. félév Nincsen lektorálva!

Tartalomjegyzék

1.	Gyűrű, Test, integritási tartomány	3
	1.1. Gyűrű $(R, +, *)$	3
	1.2. Integritási tartomány	3
	1.3. Egységelemes Integritási Tartomány (EIT)	3
	1.4. Test	3
2.	Polinom	4
	2.1. Polinom foka	4
	2.2. Összeadás, szorzás $R[x]$ -en	4
	2.3. Maradékos osztás tétele	5
	2.4. Polinom osztás a gyakorlatban	5
	2.4.1. Bizonyításhoz hasonlóan, rekurzívan	5
	2.4.2. Horner táblázat	5
3.	Gyöktényező kiemelése, következményei	6
	3.1. Gyöktényező kiemelése	6
	3.2. Gyökök száma max a polinom fokszáma	6
	3.3. Polinomok egyenlősége több behelyettesítés alapján	6
	3.4. Lagrange interpoláció	7
4.	Többváltozós polinomok	7
5.	Egység (más fogalom, mint az egységelem)	7
6.	Felbonthatatlan (irreducibilis) polinomok	8
	6.1. Algebra alaptétele C-ben	8
	6.2. Irreducibilis \mathbb{R} -ben	
	6.3. Irreducibilis \mathbb{Z}_p -ben, \mathbb{Q} -ban, \mathbb{Z} -ben	8

6.4. Felbonthatóság és gyökök kapcsolata test felett	. 8
Modulo polinom	9
7.1. Véges testek	. 9
Elem rendje, gyűrű karakterisztikája	9
8.1. Elem additív rendje	. 9
8.2. Gyűrű karakterisztikája	. 9
Algebrai derivált	10
.Gyökök multiplicitása	10
10.1. Algebrai deriválttal összefüggés	. 10
9	
.Euklideszi algoritmus polinomokkal	11
<u>-</u>	. 11
.Hibakorlátozó kódolás	12
12.1. Alapfogalmak	. 12
12.3. Singleton-korlát	. 13
12.3.2. Következmény	. 13
.ZH 2 összefoglaló	15
	. 15
13.3. Gyokok muniphenasa	. 10
13.5. Gyökök multiplicitása	
•	7.1. Véges testek Elem rendje, gyűrű karakterisztikája 8.1. Elem additív rendje 8.2. Gyűrű karakterisztikája Algebrai derivált Gyökök multiplicitása 10.1. Algebrai deriválttal összefüggés 10.2. LNKO-val, algebrai deriválttal összefüggés 10.3. Számolása Horner táblázattal Euklideszi algoritmus polinomokkal 11.1. Euklideszi algoritmus a gyakorlatban 11.2. Kétváltozós diofantikus egyenletek Hibakorlátozó kódolás 12.1. Alapfogalmak 12.2. t-hibajelző, t-hibajavító kód 12.3. Singleton-korlát 12.3.1. Tétel 12.3.2. Következmény 12.3.3. Reed-Solomon kód 12.4. Hamming-korlát 12.4.1. Tétel 12.4.2. Következmény ZH 2 összefoglaló 13.1. Gyűrű, integritási tartomány, test 13.2. Polinom alapok 13.3. Horner-elrendezés (Horner táblázat) 13.4. Felbonthatatlan (irreducibilis) polinomok

1. Gyűrű, Test, integritási tartomány

1.1. Gyűrű (R, +, *)

- \bullet Példa: $\mathbb{Z},\,\mathbb{Q},\,\mathbb{R},\,\mathbb{C},\,\mathbb{Z}_m$ (mod m
 maradékosztályok gyűrűje)
- +: R-en művelet
 - asszociatív, kommutatív
 - létezik nullelem: 0 (a + 0 = 0 + a = a)
 - minden elemnek van inverze (a a = 0)
- *: R-en művelet
 - asszociatív
 - nem feltétlenül kommutatív (pl. mátrixok miatt: ott nem azok)
- *, +: * disztributív +-ra: x * (y + z) = x * y + x * z

1.2. Integritási tartomány

- Példa: \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_p ahol p egy prím
- Egy R gyűrű integritási tartomány, ha:
 - legalább 2 eleme van
 - szorzás kommutatív

1.3. Egységelemes Integritási Tartomány (EIT)

- Integritási tartomány, ahol létezik $1 \in R$: a * 1 = 1 * a = a
- Van +, *, -: ahogy megszoktuk, pl.: $ax = ay \implies a = 0 \lor x = y$

1.4. Test

- Gyakorlatilag: egy E.I.T. ahol van osztás
- $\bullet \ \forall a \in R : a \neq 0 \implies \exists a^{-1} : a * a^{-1} = 1$
- pl.: \mathbb{Q} , \mathbb{R} , \mathbb{Z}_p ahol p prím
- Minden f polinom elosztható maradékosan bármely $g \neq 0$ polinommal

2. Polinom

- Egy R gyűrű feletti polinomokon olyan $(f_0, f_1, f_2, ...)$ végtelen sorozatokat értünk, ahol $f_j \in R$ és $\exists n \in \mathbb{N} : j > n \implies f_j = 0$
- Példa: $6 + 5x + 2x^2 + 3x^4 \rightarrow (6, 5, 2, 0, 3, 0, 0, 0, ...)$
- \bullet R feletti polinomok halmaza: R[x] (x: polinomok határozatlanja)
 - Ha R E.I.T., akkor R[x] is E.I.T.
- Polinomfüggvény: $f \in R \to R$, $f(r) = f_0 + f_1 * r + ... + f_{deg(f)} * r^{deg(f)}$

2.1. Polinom foka

- polinom foka (deg f): legnagyobb n amelyre $f_n \neq 0$
 - a fok $-\infty$, ha f = (0, 0, 0, ...)
- főegyüttható: f_n ahol $n = \deg f$
- konstans tag: f_0
- f lineáris, ha deg $f \leq 1$
- f konstants, ha deg $f \leq 0$

2.2. Összeadás, szorzás R[x]-en

- $f = (f_0, f_1, f_2, ...)$ és $g = (g_0, g_1, ...)$
- $f + g = (f_0 + g_0, f_1 + g_1, ...)$
 - $deg(f+g) \le max(deg(f), deg(g))$
- f * g = h ahol: $h_k = \sum_{i+j=k} f_i * g_j$
 - Példa: $f=(2,0,1,3,0,\ldots)$ és $g=(7,-2,3,0,\ldots)$ $f*g=(?,2*3+0*-2+1*7,\ldots)=(?,f_0*g_2+f_1*g_1+f_2*g_0,\ldots)$
 - $\deg(f * g) \le \deg(f) + \deg(g)$
 - * egyenlő, ha R egy integritási tartomány: $f_{\deg(f)} * g_{\deg(g)} \neq 0$

2.3. Maradékos osztás tétele

- Legyen R egy E.I.T. és $f, g \in R[x]$ és $n = \deg f$ és $m = \deg g$
- Ha $\exists g_m^{-1}$ (van reciproka a főegyütthatónak)
- Akkor $\exists ! g, r \in R[x] : f = g * q + r \land \deg r < \deg g$
- Egyértelműség bizonyítása:
 - Legyen $f = g * q_1 + r_1 = g * q_2 + r_2$
 - Ebből következik: $g * (q_1 q_2) = r_2 r_1$
 - Fokokra áttérve: $\deg g + \deg(q_1 q_2) = \deg(r_2 r_1)$
 - Ha $q_1 \neq q_2$: a bal oldal $\geq \deg g$, a jobb oldal $< \deg g$
 - Tehát $(q_1 = q_2) \implies (g * 0 = 0) \implies (r_r r_2 = 0)$
- Létezés bizonyítása:

–
$$q = f_n * g_m^{-1} * x^{n-m} + q^*$$
 (ahol q^* ugyan ez f^* -gal)

$$-f^* = f - g * f_n * g_m^{-1} * x^{n-m} = g * q^* + r^*$$

- Rekurzió alapesete: ha $\deg f < \deg g$ akkor q=0 és r=f
- f fokszáma csökken, deg f^* < deg f belátása: $f_n^* = f_n * x^n g * f_n * g_m^{-1} * x^{n-m} = f_n * x^n f_n * x^n = 0$

2.4. Polinom osztás a gyakorlatban

2.4.1. Bizonyításhoz hasonlóan, rekurzívan

- $\bullet\,$ rekurzívan $f\text{-}\mathrm{ből}$ mindig kivonjuk $g*f_n*g_m^{-1}*x^{n-m}\text{-}\mathrm{ot}$
- megállunk, ha deg $f < \deg g$, ekkor r = f
- $\bullet \ q = \sum f_n * g_m^{-1} * x^{n-m}$

2.4.2. Horner táblázat

•
$$f = (x - c) * q + r$$
 ahol $\deg r \le 0$ (azaz $g = x - c$ és $\deg g = 1$)

	f_n	f_{n-1}	f_{n-2}	 f_0	
c	×	$c_1 = f_n$	$c_2 = c_1 * c + f_{n-1}$	 $c_n = c_{n-1} * c + f_1$	$c_{n+1} = \dots = f(c)$

3. Gyöktényező kiemelése, következményei

3.1. Gyöktényező kiemelése

- Ha R egy E.I.T. és $f \in R[x]$ és f(c) = 0
- Akkor $\exists q \in R[x] : f = q * (x c)$
- Bizonyítás:
 - -f osztása x-c-vel: f=q*(x-c)+r
 - $-\deg r < \deg x c = 1 \implies r \text{ konstans}$
 - -c gyök $\implies 0 = f(c) = q * (c c) + r \implies r = 0$

3.2. Gyökök száma max a polinom fokszáma

- Legyen R egy E.I.T. (!!!) és $f \in R[x]$ és deg f = n
- \bullet Ekkor f-nek max n gyöke van
- Bizonyítás: (indukcióval)
 - $-n=0 \implies f(x)=r \implies \text{nincs gy\"{o}k ha } r \neq 0$
 - * ha r=0 akkor f=0 azaz $\deg f=-\infty$
 - indukciós lépés: $\exists c \text{ gy\"{o}k} \implies f = (x c) * q$
 - * x c az 1 gyök
 - * $\deg q = n 1$, indukciós feltevés alapján max n 1 gyöke van
 - * $1 + \max n 1 = \max n$, tehát készen vagyunk

3.3. Polinomok egyenlősége több behelyettesítés alapján

- Legyen R egy E.I.T. és legyen R-nek legalább n+1 eleme (pl. végtelen)
- Ha deg $f_1 \leq n$ és deg $f_2 \leq n$ és $\forall r \in R : f_1(r) = f_2(r)$
- Akkor $f_1 = f_2$ (azaz az együtthatók és tehát a fokszámok megegyeznek)
- Bizonyítás: tegyük fel, hogy $f_1 \neq f_2$
 - $-\ f_1 f_2 \neq 0$ és $\deg f_1 f_2 \leq n \implies \max n$ gyöke van (előző tétel)
 - Tehát $(f_1 f_2)(r)$ nem lehet nulla n+1 helyen, azaz ellentmondás

3.4. Lagrange interpoláció

- Legyen R egy test és $\deg f \leq n$
- Ha n+1 helyen ismerem f(r) értékét: $y_i=f(x_i) \quad (i=1..n+1)$
- Akkor f egyértelműen megadható polinomok egyenlősége tétel miatt: $\exists! f \in R[x] : \forall i \in [1, n+1] : f(x_i) = y_i$
- Bizonyítás:
 - Legyen $l_i(x) = (\prod_{j=0 \land i \neq j}^n (x x_j)) / (\prod_{j=0 \land i \neq j}^n (x_i x_j))$
 - Ekkor $l_i(x)$ akkor 1 ha i = j egyébként mindig 0
 - Így ez megoldás: $f(x) = \sum_{i=0}^{n} y_i * l_i(x)$

4. Többváltozós polinomok

- pl.: $4x^2 + 3xy + 2y + 1$
- $R[x_1, x_2, ..., x_n] = R[x_1][x_2]...[x_n]$

5. Egység (más fogalom, mint az egységelem)

- Egy együttható egység, ha R minden elemének osztója.
 - Ekvivalens megfogalmazás: egység, ha létezik multiplikatív inverze
- Egy polinom egység, ha minden polinomnak az osztója.
 - Test feletti polinomgyűrű: pontosan a nemnulla konstans polinomok.
- Gyűrűelemet egységgel szorozva annak osztói, többszörösei nem változnak.
- Egy EIT két elemét asszociáltaknak nevezzük, ha egymás egységszeresei.
 - Ez egy ekvivalencia (reflexív, szimmetrikus, tranzitív) reláció.

6. Felbonthatatlan (irreducibilis) polinomok

- $f \in R[x]$ irreducibilis, ha:
 - $-f \neq 0$ és f nem egység
 - $-f = g * h \implies g$ egység vagy h egység
- Példa irreducibilis-ra \mathbb{Q} -ban: $(x^2+1)=\frac{1}{2}*(2x^2+2)$ $(\frac{1}{2}$ egység)
- Példa nem irreducibilis-ra: $(x^2 1) = (x 1)(x + 1)$
- Test felett minden elsőfokú polinom felbonthatatlan.

6.1. Algebra alaptétele C-ben

- Ha $f \in \mathbb{C}[x]$ és $\deg f \geq 1$ akkor létezik f-nekgyöke
- Nem bizonyítjuk, nagyon nehéz
- Következmény: C-ben irreducibilis ⇔ elsőfokú polinom

6.2. Irreducibilis \mathbb{R} -ben

- \mathbb{R} -ben azok és csak azok az f polinomok irreducibilisak, amik:
 - $-\deg f=1$
 - $\deg f = 2 \text{ és } f = ax^2 + bx + c \text{ és } b^2 4ac < 0$

6.3. Irreducibilis \mathbb{Z}_p -ben, \mathbb{Q} -ban, \mathbb{Z} -ben

- Tétel bizonyítás nélkül
- Minden $n \geq 1$ -re létezik n-ed fokú irreducibilis polinom

6.4. Felbonthatóság és gyökök kapcsolata test felett

- van gyöke ⇔ létezik első fokú faktora (osztója)
- $\bullet \ \deg f \geq 2$ és van gyöke \implies felbontható
- $\bullet \ \deg f = 2 \vee \deg f = 3$: felbontható \Leftrightarrow van gyöke

7. Modulo polinom

- Létezik ilyen
- Elvégzem a műveletet, elosztom a modulo-val és a maradékot veszem
- Ha f irreducibilis, akkor mod f egy test
- \mathbb{C} : mintha $mod\ i^2 + 1$ -ben számolnánk
- Euklideszi algoritmussal megoldható pl. $(3+2x)*g \equiv 1 \mod x^2+1$ $(3+2x)^{-1} \equiv \frac{4}{13}*(-\frac{1}{2}x+\frac{3}{4}) \mod x^2+1$

7.1. Véges testek

- Alkalmazás: kódolás, hibajavítás
- Véges test: egyszerre $mod\ p\ (p\ {\rm prím})$ és $mod\ f\ ({\rm deg}\ f=n)$
- \bullet Ekkor p^n elemű (elemszámú) testről beszélünk
- pl.: $(2x+1)(x+2) \equiv 2x \pmod{3}, \mod x^2+1$ $3^2 = 9 \text{ elem: } \{0,1,2,x,x+1,x+2,2x,2x+1,2x+2\}$

8. Elem rendje, gyűrű karakterisztikája

8.1. Elem additív rendje

- Legyen R egy gyűrű és $0 \neq r \in R$
- r rendje a legkisebb olyan n egész, amelyre n * r = 0
- pl.: Z_7 -ben 3 rendje 7 mert $7 * 3 = 21 \mod 7 = 0$
- Nullosztómentes gyűrűben az összes nemnulla elem rendje megegyezik.

8.2. Gyűrű karakterisztikája

- \bullet char(R): nullosztómentes R gyűrű karakterisztikája
 - -char(R) = 0 ha R elemeinek közös rendje nem véges
 - -egyébként $\operatorname{char}(R)=R$ elemeinek közös additív rendje
- Példa: $char(\mathbb{Z}_p) = p$ ha p prím
- Példa: $char(\mathbb{Z}) = char(\mathbb{Q}) = char(\mathbb{R}) = char(\mathbb{C}) = 0$

9. Algebrai derivált

- Legyen $f \in R[x]$ ahol R test és $f = a_0 + a_1x + a_2x^2 + ... + a_nx^n$
- Ekkor az algebrai derivált: $f' = a_1 + 2a_2x + 3a_3x^2 + \dots + n * a_nx^{n-1}$ $-f' = \sum_{k=0}^n k * f_k * x^{k-1}$

10. Gyökök multiplicitása

- c min. k-szoros gyök: $\exists q: f = (x-c)^k * q$
- \bullet c pontosan k-szoros gyök: c k-szoros gyök, de nem k+1-szeres

10.1. Algebrai deriválttal összefüggés

- f-nek a c k-szoros gyöke $\implies f'$ -nek c min. (k-1)-szeres gyöke
- Bizonyítás:

$$\begin{array}{ll} - \ f = (x-c)^k * q \\ - \ f' = ((x-c)^k * q)' = \text{nem biz} = ((x-c)^k)' * q + (x-c)^k * q' = \\ = k * (x-c)^{k-1} * q + (x-c)^k * q' = (x-c)^{k-1} * (k * q + (x-c) * q') \end{array}$$

- $\bullet\;$ Ez a tétel "min" helyett "pontosan"-nal akkor működik, ha $char(R)\not\mid k$
 - pl. \mathbb{R} esetén, mivel $char(\mathbb{R}) = 0 \not\mid k \text{ (minden } k \neq 0)$

10.2. LNKO-val, algebrai deriválttal összefüggés

- $LNKO(f,f')=d=1 \implies f$ -nek nincs többszörös gyöke
- $\operatorname{char}(R) = 0 \implies d$ gyökei f legalább kétszeres gyökei

10.3. Számolása Horner táblázattal

- Egy Horner táblázatot újrahasználhatunk
 - − Mindig kevesebb oszlop kell, ezért mindig eggyel több ×-ot rakunk
 - Minden (pl. a maradék) azonos oszlopban van
- Az előző eredmény mindig az új osztandó polinom
- Addig írunk új sort, amíg a maradék 0

11. Euklideszi algoritmus polinomokkal

- Legyen R egy test és $f, g \in R[x]$
- Ha d = LNKO(f, g) akkor
 - -d|f és d|g (d közös osztó)
 - $\forall h : (h|f) \land (h|g) \implies h|d \quad (d \text{ a legnagyobb})$
- A legnagyobb közös osztó egészek körében sem volt egyértelmű (x, -x)és polinomok esetén sem az.
- Bővített euklideszi algoritmus is jó: LNKO(f,g) = d = f * u + g * v

11.1. Euklideszi algoritmus a gyakorlatban

- Egységgel be szabad szorozni, az nem változtat az eredményen.
- Egymást követő osztások:
 - $-f,g,r_1,r_2,...$ kettesével osztása megadja a következőt
 - $-1:: f/g \implies f = g * q_1 + r_1$
 - $-2:: g/r_1 \implies g = r_1 * q_2 + r_2$
 - $-3:: r_1/r_2 \implies r_1 = r_2 * q_3 + r_3$
- Addig osztunk, amíg a maradék 0 nem lesz. Ekkor az utolsó $\neq 0$ maradék a megoldás (LNKO).

- pl.:
$$r_2 \neq 0 \land r_3 = 0 \implies LNKO(f,g) = d = r_2$$

• Bővített euklideszi algoritmus: pontosan úgy, mint skalárokkal

11.2. Kétváltozós diofantikus egyenletek

- Legyen f * u + g * v = h
- Bővített euklideszivel ki kell számolni: $f*u'+g*v'=d=\gcd(f,g)$
 - Itt is pontosan akkor oldható meg, ha d|h
- Megoldások, ahol $w \in R[x]$ egy tetszőleges polinom:

$$-u_{w}=u_{0}+\frac{g}{d}w$$
 ahol $u_{0}=u'*\frac{h}{d}$

$$-v_w=v_0-\frac{f}{d}w$$
 ahol $v_0=v'*\frac{h}{d}$

12. Hibakorlátozó kódolás

12.1. Alapfogalmak

- $\bullet~\Sigma$ az ábécé, azaz egy rögzített véges halmaz
 - -n hosszú szavak halmaza: Σ^n
- ullet Hamming-távolság $2\,n$ hosszú szó között: pozíciók száma, ahol különböznek
 - Szóhalmaz távolsága: min{ bármely 2 szavának távolsága }
- Kód: Σ^n részhalmaza (azaz bizonyos n hosszú szavak)
 - Kódszó: kód egy eleme
- Szándék: küldeni kívánt szó (ezt alakítjuk kódszóvá)
- Dekódolás: üzenethez legközelebbi kódszó kiválasztása

12.2. t-hibajelző, t-hibajavító kód

- t-hibajelző kód: max t helyen sérült üzenetnél észreveszi, hogy sérült
 - -d távolságú kód $\implies d-1$ hibát jelez
 - Bizonyítás: távolság $d \implies d-1$ változás nem adhat új kódszót
- t-hibajavító kód: max t helyen sérül üzenetnek tudja az eredeti kódszavát
 - dtávolságú kód $\implies \left\lfloor \frac{d-1}{2} \right\rfloor$ hibát javít
 - Bizonyítás:
 - * Legyen w az eredeti kódszó, w' a sérült, w_2 egy másik kódszó
 - * Kiindulás: $distance(w, w') \leq \lfloor \frac{d-1}{2} \rfloor$
 - * Legyen $distance(w', w_2) = x$
 - * Be kell látni: $\lfloor \frac{d-1}{2} \rfloor < x$
 - * $distance(w, w_2) \ge d \implies x + \lfloor \frac{d-1}{2} \rfloor \ge d$
 - * Átrendezve: $x \ge \lfloor \frac{d+1}{2} \rfloor > \lfloor \frac{d-1}{2} \rfloor$
- Példa béna, pazarló kódra: n-szeres ismétlés \implies kód távolsága n

12.3. Singleton-korlát

12.3.1. Tétel

- Legyen
 - $Q=|\Sigma|$ az abécé mérete
 - c a kódszavak száma
 - -n a kódszavak hossza
 - d a kód távolsága
- Állítás: $c \leq Q^{n-d+1} = Q^{n-(d-1)}$
- Bizonyítás
 - A kód távolsága $d \implies d-1$ változtatás nem adhat új kódszót
 - Változtassuk az összes kódban az utolsó d-1 betűt ugyan arra
 - Így is páronként különböznek, szóval el is hagyható a d-1 betű
 - Szóval max annyi kódszó van, hogy a kódszavakat d-1 betűvel rövidítve is páronként különbözik mindegyik

12.3.2. Következmény

- Hibajavító betűk száma $\geq d-1$
 - Azaz legalább ennyivel kell a szándéknál több betűt használni
- MDS-kód: egyenlőség áll fenn a Singleton-korlát tételében

12.3.3. Reed-Solomon kód

- Egy MDS-kód
- Működés
 - $-\Sigma = \{f \in R\}$ ahol R egy véges test
 - Szándék: f polinom együtthatói
 - Kód: f * g
 - -g kódpolinom d-1 fokú
- ullet Tétel: g gyökei páronként különböznek $\Longrightarrow d$ távolságú a kód

12.4. Hamming-korlát

12.4.1. Tétel

- Legyen
 - $Q=|\Sigma|$ az abécé mérete
 - -c a kódszavak száma
 - -n a kódszavak hossza
 - -t hibát javít a kód ($\implies 2t+1$ vagy 2t+2 távolságú)
- Állítás: $c * \sum_{k=0}^{t} {n \choose k} * (Q-1)^k \le Q^n$
 - -Szummán belül: kódszótól pontosan ktávolságra hány kódszó van
 - Válasz: $\binom{n}{k}$ = "hol változtatok" * "mire változtatok" = $(Q-1)^k$
 - Szóval a szumma: kódszótól $\leq t$ távolságra lévő szavak száma
 - $-Q^n$ pedig az ábécéből kirakható n hosszú szavak száma.
- Bizonyítás
 - A szumma eredményében "megszámolt" szavak diszjunktak különböző "kiindulási" kódszó esetén, hiszen t hibát javít a kód.
 - Így a (diszjunkt halmazok száma) * (diszjunkt halmaz mérete)
 nem lehet nagyobb, mint a lehetséges szavak száma.

12.4.2. Következmény

• Perfekt kód: egyenlőség áll fenn a Hamming-korlát tételében

13. ZH 2 összefoglaló

13.1. Gyűrű, integritási tartomány, test

- Gyűrű: * disztributív +-ra, + asszoc. és kommutatív, * asszoc. és ∃0
- Integritási tartomány: gyűrű, * kommutatív, nullosztómentes (pl. \mathbb{Z}_{prim})
- E.I.T.: integritási tartomány, ∃1
- Test: E.I.T. ahol van osztás $(\forall a \neq 0 : \exists a^{-1})$ (pl. $\mathbb{Q}, \mathbb{Z}_{prim}$)
- Gyűrű elem (additív) rendje: legkisebb n egész, hogy n* az elem = 0
- char(R): I.T. elemeinek (megegyező) rendje (pl. $char(\mathbb{Z}_{prim}) = prim$)
 - char(R) = 0 ha az elemek rendje nem véges, pl. $char(\mathbb{Z}), char(\mathbb{Q})$

13.2. Polinom alapok

- $f = f_0 + ... + f_{\deg f} * x^{\deg f}$ ahol $\deg f = \operatorname{legnagyobb} n$ ahol $f_n \neq 0$ - $f = 0 \implies \deg f = -\infty$
- $\deg f + g \le \max(\deg f, \deg g)$
- $\deg f * g \leq \deg f + \deg g$ (egyenlő, ha R egy I.T, azaz nullosztómentes)
- Maradékos osztás: $f = g * q + r \wedge \deg r < \deg q$: $(R \operatorname{egy E.I.T}, \exists g_{\deg g}^{-1})$
 - Bizonyítások: egyértelműség: fokszámmal; létezés: rekurzióval
 - Gyakorlatban: rekurzióval, $f^* = f g * f_{\deg f} * g_{\deg g}^{-1} * x^{\deg f \deg g}$
 - * Alapeset, megállás: $\deg f < \deg g$ (ekkor r = f)
 - * $q = \sum f_{\deg f} * g_{\deg g}^{-1} * x^{\deg f \deg g}$ (ahol f persze változik)
- Gyökök: c gyök ha f(c) = 0, ekkor f = q * (x c)
 - Ha R egy E.I.T. akkor f-nek legfeljebb deg f darab gyöke van
- Egység: mindennek az osztója (polinom egység, ha ∀ polinomnak osztója)
 - R egy test: pontosan nemnulla konstans polinomok az egységek
 - Gyűrűelem egységgel szorzása: osztói, többszörösei nem változnak.
 - Egy gyűrű elemei asszociáltak, ha egymás egységszeresei
- Algebrai derivált: $f' = \sum_{k=0}^{\deg f} k * f_k * x^{k-1}$

13.3. Horner-elrendezés (Horner táblázat)

	f_n	f_{n-1}	f_{n-2}	 f_0	
c	×	$c_1 = f_n$	$c_2 = c_1 * c + f_{n-1}$	 $c_n = c_{n-1} * c + f_1$	$c_{n+1} = \dots = f(c)$

13.4. Felbonthatatlan (irreducibilis) polinomok

- $f \neq 0$ irreducibilis ha nem egység és $f = g * h \implies g$ vagy h egység
- Test felett: $\deg f = 1 \implies f$ irreducibilis
- C-ben: irreducibilis ⇔ elsőfokú polinom (algebra alaptétele C-ben)
- \mathbb{Z}_{prim} , \mathbb{Q} , \mathbb{Z} : minden $n \geq 1$ -re létezik n-ed fokú irreducibilis polinom

13.5. Gyökök multiplicitása

- c legalább k-szoros gyök $\implies \exists q: f = (x-c)^k * q$
- f-nek a c k-szoros gyöke $\implies f'$ -nek c min. (k-1)-szeres gyöke
 - Bizonyítás: $f = (x-c)^k * q$ deriválása (szorzat deriváltja azonosság)
 - "min" helyett "pontosan" ha $char(R) \nmid k \text{ (mert pl. } char(\mathbb{R}) = 0)$
- $char(R) = 0 \implies LNKO(f, f')$ gyökei az f legalább kétszeres gyökei

13.6. (Bővített) euklideszi algoritmus

- Test felett működik; nem egyértelmű: egységgel részeredményeket megszorozhatjuk
- Gyakorlatban: f, g, r_1, r_2, \dots kettesével osztása megadja a következőt
- Ugyan úgy megy, mint skalárokkal; utolsó nemnulla az eredmény

13.7. Kétváltozós diofantikus egyenletek

- u, v = ? és f * u + g * v = h és f * u' + g * v' = d = gcd(f, g)
- Megoldható $\Leftrightarrow d|h$
- Megoldások, ahol $w \in R[x]$ tetszőleges:
 - $-u_w = u_0 + \frac{g}{d}w$ ahol $u_0 = u' * \frac{h}{d}$
 - $-v_w = v_0 \frac{f}{d}w$ ahol $v_0 = v' * \frac{h}{d}$