Introduction to Recurrent Neural Networks (RNNs)

What are RNNs?

- •Special type of neural network designed for sequential data
- •Key characteristic: They have "memory" through hidden states that persist between time steps
- •Unlike feedforward networks, RNNs have cyclic connections

Why RNN?

• RNN's are specially designed for sequential data.

What is Sequential Data?

Data where order matters (past influences future)

Why RNN?

Examples:

- **Text:** "The cat sat on the ____" → next word depends on previous words.
- Time Series: Stock prices, weather data.
- Speech: Audio waveforms over time.

Why Not Feed forward Networks?

- Problem 1: No memory → treats inputs as independent.
 - Example: Feedforward network fails to predict "sky" in "The clouds are in the ___."

Problem 2: Fixed input size \rightarrow cannot handle variable-length sentences.

Real-World Applications

- Google Translate: Many-to-many RNNs (seq2seq).
- Text Generation: Predict next character (e.g., Shakespeare-style text).
- Stock Prediction: Time-series forecasting.
- Voice Assistants: Speech-to-text.

1. Time series prediction

2. Machine Translation

3. Text Generation

3. Text Prediction

Current Trends

- 1. Transformer Revolution
- •Many sequence tasks now use attention-based models
- •Transformers often outperform RNNs

2. Hybrid Approaches

- Combining RNNs with attention
- •Using RNNs as components in larger architectures

Roadmap

RNN Architecture

