O Teorema da Função Inversa e Aplicações

Maria Verônica Bartmeyer * Licenciatura em Matemática - UEPG

veronicabartmeyer@gmail.com

Prof. Marciano Pereira (Orientador)

Departamento de Matemática e Estatística - UEPG

marciano@uepg.br

Palavras-chave: Teorema da Função Inversa, Método das Características.

Resumo:

O Teorema da Função Inversa é um dos principais resultados da Análise. Entre suas aplicações, citamos o Teorema da Função Implícita, o Teorema Fundamental da Álgebra, a Forma Local de Submersões, a continuidade C^k da inversão de aplicações lineares e o Método das Características para resolução de EDPs de primeira ordem, o qual será tratado neste trabalho. A demonstração deste teorema é feita com a utilização dos métodos da Análise Matemática em \mathbb{R}^n e, para sua extensão aos espaços vetoriais normados, utiliza-se também métodos da Análise Funcional.

O enunciado do Teorema da Função Inversa em \mathbb{R}^n é como segue:

Teorema 1 (Teorema da Função Inversa) Seja $\Omega \subset \mathbb{R}^n$ aberto $e f : \Omega \to \mathbb{R}^n$ função de classe C^1 tal que $J_f(x_0) \neq 0$. Então existe $\delta_0 > 0$ tal que

- a) f é injetora em $U = B_{\delta_0}(x_0)$;
- b) V = f(U) é aberto;
- c) $f^{-1}: V \to U$ é de classe C^1 e $[(f^{-1})'(f(x_0))] = [f'(x_0)]^{-1}$.

Para demonstrá-lo, são necessárias quatro etapas, as quais estão descritas abaixo: *Etapa 1*: Para mostrar que existe $\delta_0 > 0$ tal que f é injetora em $B_{\delta_1}(x_0)$, demonstrar que $f(x+h) \neq f(x)$ se δ é suficientemente pequeno.

Etapa 2: Em seguida, mostrar que existe $\delta_2 > 0$ tal que $f(B_{\delta_2}(x_0))$ é aberto.

Etapa 3: Tomando $U=B_{\delta_2}(x_0)$ e V=f(U), provar então que $f^{-1}:V\to U$ é diferenciável

Etapa 4: Verificar por fim, que $f^{-1}: V \to U$ é de classe C^1 .

^{*}Bolsista do Programa de Iniciação Científica e Mestrado PICME.

Como um exemplo de aplicação, o teorema da função inversa garante a validade da mudança de coordenadas no Método das Características. Ele consiste no pontochave desse método, pois com uma mudança apropriada de coordenadas, podemos trocar o problema de resolver uma equação diferencial parcial de primeira ordem pela resolução de um sistema de equações diferenciais ordinárias. O método das características é utilizado para a solução do seguinte

Problema: Seja γ uma curva de \mathbb{R}^2 parametrizada por $\gamma:I\to \Omega$, onde I é um intervalo de \mathbb{R} e Ω um aberto de \mathbb{R}^2 . Sejam $a,b,c\colon \Omega\to\mathbb{R}$ funções dadas. Determinar uma função $\varphi(x,y)$ solução da equação

$$a(x,y)\frac{\partial \varphi}{\partial x} + b(x,y)\frac{\partial \varphi}{\partial y} = c(x,y),$$

cujos valores sobre a curva γ são prescritos, isto é, $\varphi(\gamma(\xi)) = \varphi_0(\xi)$ onde $\varphi_0: I \to \mathbb{R}$ é uma função dada.

Por outro lado, pode-se estender o teorema da Função Inversa a espaços de Banach de dimensão infinita. Para isso substituimos a condição " $J_f(x_0) \neq 0$ " por " $f'(x_0)$ invertível", mas antes vejamos a definição de derivada num contexto mais geral.

Definição (Derivada) Para X, W espaços vetoriais normados e $U \subset X$ aberto, dizemos que uma aplicação $f: U \to W$ é diferenciável em $x_0 \in U$ se existe uma aplicação linear e contínua, denotada por $f'(x_0): X \to W$ que será chamada a derivada de f em x_0 , tal que

$$\lim_{x \to x_0} \frac{||f(x) - f(x_0) - f'(x_0)(x - x_0)||_W}{||x - x_0||_X} = 0.$$

Nesta definição, $f'(x_0)(x-x_0)$ denota o valor da aplicação linear $f'(x_0)$ aplicada no vetor $(x-x_0)$ partencente a X e assim $f'(x_0)(x-x_0)$ pertence a W.

Exemplo Consideremos $f:(0,1)\to\mathbb{R}$ dada por $f(x)=x^3$. Então, se x_0 pertence ao intervalo (0,1), sabemos do Cálculo 1 que $f'(x_0)=3x_0^2$ é uma aplicação linear de \mathbb{R} em \mathbb{R} . Vamos verificar se a definição de derivada é satisteita para $x_0=\frac{1}{2}$, donde $f'(\frac{1}{2})=\frac{3}{4}$, ou seja, a transformação linear e contínua $f'(x_0)=T$ em que $T:\mathbb{R}\to\mathbb{R}$, $T(x)=\frac{3}{4}x$. De fato,

$$\lim_{x \to \frac{1}{2}} \frac{||f(x) - f(\frac{1}{2}) - f'(\frac{1}{2})(x - \frac{1}{2})||_{W}}{||x - \frac{1}{2}||_{X}} = \lim_{x \to \frac{1}{2}} \frac{|x^{3} - (\frac{1}{2})^{3} - \frac{3}{4}(x - \frac{1}{2})|}{|x - \frac{1}{2}|} =$$

$$= \lim_{x \to \frac{1}{2}} \frac{|x^{3} - \frac{1}{8} - \frac{3x}{4} + \frac{3}{8}|}{|x - \frac{1}{2}|} = \lim_{x \to \frac{1}{2}} \frac{|x^{3} - \frac{3x}{4} + \frac{1}{4}|}{|x - \frac{1}{2}|} = \lim_{x \to \frac{1}{2}} \frac{|(x - \frac{1}{2})(x^{2} + \frac{x}{2} - \frac{1}{2})|}{|x - \frac{1}{2}|} =$$

$$= \lim_{x \to \frac{1}{2}} \frac{|x - \frac{1}{2}||x^{2} + \frac{x}{2} - \frac{1}{2}|}{|x - \frac{1}{2}|} = \lim_{x \to \frac{1}{2}} |x^{2} + \frac{x}{2} - \frac{1}{2}| = 0.$$

Teorema 2 (Extensão do Teorema da Função Inversa para Espaços de Banach) Seja W um espaço de Banach, $\Omega \subset W$ aberto e $f:\Omega \to W$ função de classe C^1 tal que $f'(x_0)$ é invertível. Então existe $U\subset \Omega$ uma vizinhança aberta de x_0 tal que

a)
$$V = f(U)$$
 é aberto em W :

Referências:

- [1] ANDRADE, Doherty. **O Teorema da Função Inversa e da Função Implícita**. Publicação Eletrônica. Disponível em: http://www.dma.uem.br/kit/arquivos/arquivos-pdf/inversa.pdf. Acesso em: 31 agosto 2018.
 - [2] CIPOLATTI, Rolci. Cálculo Avançado I. Rio de Janeiro: UFRJ/IM, 2002.
- [3] DOMINGUES, Hygino H. **Espacos Métricos e Introdução à Topologia**. São Paulo: Atual, 1982.
- [4] KREYSZIG, Erwin. **Introductory functional analysis with applications**. Normed Spaces. Banach Spaces. 1^a ed. John Wiley Sons, 1978.
 - [5] LEWIS, David W. Matrix Theory. Singapore: World Cientific, 1991.
- [6] LIMA, Elon L. **Análise no Espaço** \mathbb{R}^n . Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada, 2002.
- [7] MORIYA, Alex Issamu. **Os Teoremas de Funções Inversa e Implícita e suas Aplicações**. 2011. 60 f. Dissertação (Mestrado) Curso de Programa de Pósgraduação em Matemática, Universidade Tecnológica Federal do Paraná, Campo Mourão, 2011.
- [8] NETO, Antônio C. M. **Tópicos de Matemática Elementar Volume 3 Introdução** à **Análise**. **A Concavidade de uma Função** 2ª ed. SBM, 2013.
- [9] TEZOTO, Leandro. **Sobre o Teorema da Função Inversa**. 37f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) Instituto de Geociências e Ciência Exatas, Universidade Estadual Paulista, Rio Claro, 2014.