NATIONAL INSTITUTE OF TECHNOLOGY, JAMSHEDPUR SPRING SEMESTER: 2022-23

Department of Mathematics

END SEMESTER EXAMINATION, APRIL 2023

code: MA3201 27-04-2023

Semester: 2nd

Course Title: Numerical Methods

Branch: MCA urse Instructor (Name of the Faculty):

Dr. Hari Shankar Prasad

Day: Thursday

puration: 03 Hours (A-Shift, Time: 9.30 AM To 12.30 PM)

Max. Marks: 50

instructions:

- (a) Answer to all the Six (6) questions.
- (b) Marks of the questions are indicated in the right-hand margin.
- (c) Missing data, if any, may be assumed suitably.
 - 1. (a) Define the rate of convergence of the iterative methods for finding the root of an algebraic and transcendental equations and, find the rate of convergence of Regula-Falsi method. [5]
 - (b) Define the Orthogonality and Orthonormality of a set of functions $g_k(x)$, k = 1, 2, 3, ..., n with respect to the weight function w(x) which are valid over an interval [a, b], where n is a positive integer. Show that $g_k(x) = \frac{\sin kx}{\sqrt{\pi}}$, k = 1, 2, 3, ... are orthonormal set of functions on $-\pi \le x \le \pi$. [5]
 - (a) Write the Gram-Schmidt orthogonalization process for generating orthogonal polynomials which are defined over an interval [a, b] with respect to the weight function w(x).
 - (b) Obtain the least square approximation of second degree for the function $f(x) = \sin x$ on $[0, \frac{\pi}{2}]$ with [5] respect to the weight function w(x) = 1.
 - 3. (a) Obtain the natural cubic spline approximation for the function y(x) defined by the data:

x	0	1	2	3
v(x)	1	2	33	244

y(2.5) and y'(2.5). and hence determine the value of

[5]

[5]

[6]

(b) Derive Newton divided difference interpolation polynomial and hence obtain the

missing values in the	ne tollowin	g table:			
minoring , many	x	0	1	2	3
	f(x)	11	3		55

gives the velocity v of a particle at time t:

The following to	aute gr	VOS tire i ere	1			10	12	
(+ (appoints)	0	2	4	6	8	10	12	
t (seconds)				24	(0	94	136	Sec. of
v(m/sec.) 4	4	6	16	34	60	194	130	
				The state of the s				

Find the distance moved by the particle in 12 seconds using Simpson's 1/3rd and 3/8th rule's of Integration respectively.

/5. Define the initial value problems and find the value of y(0.1) and y(0.2) using the Runge-Kutta method of order four with h = 0.1, given that $\frac{dy}{dx} = xy + y^2$, y(0) = 1.

6. Given that $\frac{dy}{dx} = \frac{1}{2}(y - x^2)$, y(0) = 1, h = 0.2, compute the values of y(0.2), y(0.4), and y(0.6)using Taylor's series method of order three first, and then, evaluate the value of y(0.8) using Milne's [8] Predictor-Corrector method.

END