DOCUMENT RESUME

ED 445 837 RC 021 786

AUTHOR Stabb, Mark

TITLE Ontario's Old Growth: A Learner's Handbook.

INSTITUTION Ancient Forest Exploration and Research, Toronto (Ontario).;

Canadian Nature Federation, Ottawa (Ontario).

SPONS AGENCY Environment Canada, Ottawa (Ontario).

ISBN ISBN-0-920342-15-9

PUB DATE 1996-00-00

NOTE 52p.; For teacher's manual, see RC 021 785. Sponsored by the

Environmental Partners Fund of Environment Canada and The

Richard Ivey Foundation.

AVAILABLE FROM Canadian Nature Federation, Suite 606, 1 Nicholas Street,

Ottawa, ON K1N 7B7, Canada; Tel: 800-267-4088 (\$7.00 plus

tax & shipping.

PUB TYPE Guides - Classroom - Learner (051)

EDRS PRICE MF01/PC03 Plus Postage.

DESCRIPTORS Botany; Conservation (Environment); *Ecology; Environmental

Education; Field Instruction; Foreign Countries; *Habitats;

*Observation; Outdoor Education; Plant Identification;

*Trees; Wildlife

IDENTIFIERS *Forests; *Ontario

ABSTRACT

This handbook was written in response to an identified need for more public information on Ontario's old growth forests. It is meant to be taken into old growth stands, where the learner can see, touch, and study the natural ingredients of old growth forests. Much of the handbook is a guide to forest history, helping the learner to discover first-hand the signs and artifacts of old growth and the forests of the past. Sources are alsoprovided for finding written historical information about local forests. The quide was written with the forests of Ontario and eastern North America in mind. An introductory section outlines general characteristics of old growth forests, discusses the value of such forests and why they need special attention, and describes the four ecological lives of a tree. The main section, on forest signs and field tips, provides a guide to observation in the woods and covers tree size and life expectancy, canopy gaps and forest regeneration, wildlife and their habitats, dead tree ecology, ecology of tree cavities, cavities as wildlife habitat, classification of log decay and related habitats, mounds and pits (microtopography), fallen tree history, looking at tree rings (dendrochronology), fire scars, and stumps as evidence of forest history. Useful written records include local histories, survey records, and natural resource reports and inventories. (Contains 22 references, illustrations, and an observation checklist.) (SV)

ONTARIO'S GROWTH **010**

A Learner's Handbook

"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

U.S. DEPARTMENT OF EDUCATION Office of Educational Research and improvement EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

This document has been reproduced as received from the person or organization ☐ Minor changes have been made to improve reproduction quality. originating it.

Points of view or opinions stated in this document do not necessarily represent official OERI position or policy.

BEST COPY AVAILABLE

ED 442 831

ONTARIO'S OLD GROWTH

A Learner's Handbook

PAPTEMAIRES DE L'ENVIRONNEMENT ENVIRONMENTAL PARTNERS FUND Environment Cenada **一** 十

Canadian Cataloguing in Publication Data

Stabb, M. (Mark)

Ontario's old growth: a learner's handbook

Includes bibliographical references.

ISBN 0-920342-15-9

1. Old growth forests—Ontario—Identification.

I, Yearington, Tim, 1965- II. Canadian Nature Federation. III. Title. SD387.043S83 1996 574.5'2642'09713 C96-900442-7

Additional copies of this field guide are available from the Canadjan Nature Federation, © 1996 Canadian Nature Federation and Ancient Forest Exploration and Research Nicholas Street, Suite 520, Ottawa, Ontario K1N 7B7.

Also available is Exploring Old Growth Forests — A Teacher's Manual.

For more information on the Canadian Nature Federation call 1-800-267-4088 or look for us on the World Wide Web at http://www.web.apc.org/~cnf

For Billy, Christoph, Nicole, Sawyer and Sophie

Text: Mark Stabb

Illustrations: Tim Yearington

Design and production: The HLR Publishing Group

Printing: Tri-Co Printing

♦ Over 55% recycled paper, including 10% post-consumer fiber.

ACKNOWLEDGEMENTS

his handbook was written in old growth forests. Both government response to an identified need for more public information on agencies and non-government conservation organizations have called for increased awareness and understanding of the importance of old growth ecosystems.

In particular, we were inspired by sory Committee who worked long and Ontario's Old Growth Policy Advihard to come up with important recommendations for the conservation and protection of Ontario's old growth —, from the northern boreal forests to the rich Carolinian woodands in the south.

This handbook is the product of many people's efforts. Thank you to ennene Powers who organized field trips and produced the original field manuals. Thanks also to the Ancient ream and the students and teachers the field techniques. We are also Omagaki Wilderness Centre and to Forest Exploration and Research field from Elliot Lake Secondary School grateful to the educators who participated in the field workshop at the Chris Lemicux who provided valuable and Espanola High School who tested comments on content and organiza-

book is based on the research of many biologists and forest ecologists who orests. It is largely their work that is The information in this handhave opened our eyes to the complex and awe-inspiring world of old growth interpreted here for a wider public audience. This project would not have been possible without the support of our sponsors. We would like to sincerely thank the Environmental Partners Fund of Environment Canada and The Richard Ivey Foundation for funding this project and sharing our vision for the conservation of old growth forests.

Caroline Schultz

DIRECTOR OF CONSERVATION PROGRAMS CANADIAN NATURE FEDERATION

TABLE OF CONTENTS

About This Guide 6

- The Ultimate Forest 8 Introducing Old Growth

The Four Lives of a Tree 10

Field Tips 12 Forest Signs and

Old Trees, Big Trees 12

Gaps and Regeneration 14

Old Forest Wildlife and Habitat 14

Dead Standing Trees 18 A Guide to Dead Trees 20 Tree Cavities 22

A Guide to Nest and Den Cavities 28

Logs and Down Woody Debris 30

A Guide to Logs 32

Mounds and Pits 34

Dead Wood I.D. 35 Fallen Tree History 36

Nurse Logs and Perched Trees 37

Looking at Tree Rings 38

Fire Scars and Charred Stumps 39

41 Paper Trails

41 Local Histories

41 Survey Records

43 Resource Reports

44 References and Further Reading

44 Technical Reports and Documents

45 Background Reading

45 Information for Families, Educators, Landowners, and Travellers

46 Old Forest Checklist

The Stump Forest 40

ABOUT THIS GUIDE

what lives in old growth forests. This handbook is different: It helps you understand why the plants, animals and other creatures live there. It is about habitat and forest history — big trees and old trees, trees past their prime, dead and dying trees, stumps and cavities. It is about downed logs and ripped-up root mounds, charred remnants of fierce fires and ancient relics of former forests.

Welcome to the Fascinating World of Old Growth

This handbook invites you to see, touch and study the natural ingredients of old growth forests: The Forest Signs and Field Tips section will help you spot old growth features in forests around you. Each feature has value to wildlife, plant growth, and the forest's future. And each helps set old growth apart from younger, managed forests.

Take this guide to search out old growth forests or to examine known and protected old growth stands. Or use it to scour woodlots and other managed forests for signs of old growth. Old growth remnants and old forest features add wildness and habitat to many forests. An Old Forest Checklist lets you keep track of your discoveries.

Exploring old growth gives natural history a whole new meaning. You get a hint of the ancient forests that people experienced centuries ago when old growth was much more common. You can mingle with veteran trees standing nobly among their younger offspring. You can touch ancestral trees that remain like crumbling ruins from an ancient civilization. Or you can rest on fallen, rotten logs that form the footing for healthy trees.

Much of the handbook is a guide to forest history, helping you discover first-hand the signs and artifacts of old growth and forests of the past. But it also includes a Paper Trails section to give you ideas of where you might find written historical information about forests in your area.

This guide was written with the forests of Ontario and Eastern North America in mind. The topics and tips apply mainly to deciduous and Oreat Lakes-St. Lawrence forests, but also to other old growth ecosystems like the Acadian forests of the Maritimes. In fact, the handbook is a collection of information from sources across North America. Use the References and Further Reading section to find out

Old growth and old forest features are natural parts of the landscape. But people have changed the nature of the forest, and now old growth is threatened and quite rare. Gladly, more people are realizing that protecting some old growth is an essential part of forest conservation. Groups and agencies across Canada have identified the need for information and education about old growth forests. And the best way to learn is through first-hand experience.

We hope this field guide inspires you to explore old growth forests and other forests all around you. Consider it a learner's guide to old growth. It will help you look at forests through different eyes, even forests that you already know quite well. When you study the parts of old growth, you learn more about forests as a whole. And you may come to appreciate and celebrate this ultimate stage of a forest — where trees enjoy old age and die natural deaths.

INTRODUCING OLD GROWTH THE ULTIMATE FOREST

(alias ancient forests, overmature forests, decadent stands, climax forests, primeval forests, virgin forests, pristine forests)

hat is an old growth forest? To answer this question, Ecologists discuss intricate food webs naturalists talk about wildlife and habitat. Foresters refer to big, old trees. and soil patterns. Old growth is all these things and more.

turbed. "Old" means that the forest's Old growth forests are those that age life span. "Undisturbed" means the are relatively old and relatively undisdominant trees are beyond their averforest is mostly free of logging or other human disturbances.

and the forest continues to grow into a it is where nature has taken its course fine old age. Old growth was common forests. Today logging is more likely to Old growth is the ultimate forest in the past, when fires, windstorms, disease and other natural forces determined the end of the line for trees and cut short the life of a forest at a younger age and earlier ecological stage.

Very old, unlogged forests differ they usually grow much larger. So do from younger, managed forests in many ways. Trees grow older, of course, and ties reach their peak in forest stands their remains — dead trees are larger, fallen logs are bigger. Old growth qualithat have had little logging or other disturbance by people.

whole forest better. But it does not give This handbook is about the ingredients of old growth. It is a guide to the parts, to help you understand the one definition for old growth because every forest is different. Each has its Site conditions like climate, soils, geology and the lay of the land vary from own mix of species and its own history. place to place.

Years have been spent trying to growth. In some ways this debate has distracted us from the heart of the issue come up with formal definitions for old - the need to conserve old forests.

Why Do Old Growth Forests Need Special Attention?

Old growth forests have many values to people and to ecosystems. Old growth stands are:

- benchmark sites for scientific research
 - sources of natural diversity on the land
- habitats for old forest species and natural sources of forest history inwildlife communities ormation
 - sites of natural ecological processes living manuals for how natural forests work

Stages of forest growth. Most forests are cut before they reach their natural old growth state.

This handbook focusses on ecology, tant social, cultural and economic out old growth forests also have imporsenefits to people.

ated by forests. Old forests and young orests each are important in their own Conservation today includes proecting all the biological diversity cre-

what type of forest, no matter where Forests that are young or mature are relatively common. Very old forests, on the other hand, are rare. No matter you are, older forests and their habitats are threatened.

Old growth forest remnants are also at risk. Elements of old growth that ant ecological services and enrich the exist in younger forests provide imporhabitats for wildlife. You may find some ingredients of old growth in almost every forest you explore. But, these remnants often do not survive standard logging activities.

BEST COPY AVAILABLE

The Four Lives of a Tree

Trees have an afterlife. In fact, you could say that trees have four lives the young tree, the mature tree, the dead standing tree, and the fallen tree.

The first life as a sapling and young maturity. A tree that survives this stage size. But death is inevitable, and so is tree is a struggle to survive and reach There it finds a place in the forest enters its second life as a mature tree. canopy and may reach its maximum the tree's afterlife.

When a tree is logged, it may return ucts. But when a tree dies a natural death in the forest, its body and influence live on, first as a dead standing as furniture, paper or other wood prod tree and then as a fallen log.

iving trees of all ages. These dead trees are not dead ends because they launch Fire, lightning, insect attack, disa new stage of forest life. Dead standing ease, flooding — death takes its toll on

for many wildlife species, from eagles trees (also called snags) are important and woodpeckers to bats and tiny in-

continues. Logs and dead branches Wind, storms or gravity eventually (also called down woody debris) can last over a hundred years on the ground. This debris is raw material for cycling and plant regeneration and is topple trees and their ecological life ecological processes such as nutrient also habitat for wildlife.

Old growth forests are places where Dead trees and fallen logs can easily last you can find all four ecological lives of a tree, with each life meaning something different to the forest ecosystem. as long in the forest as when the green tree was "alive," sometimes longer. A forest without dead trees and downed logs is in many ways like a house without any furniture. It is not complete without them. 🦚

founger Forest

- Smaller and younger trees
- Smaller canopy gaps

- Fewer large dead or broken trees
- Streams have less large woody debris Logs and woody debris uncommon

Streams crossed by large logs and debris

More large dead or broken trees Logs and woody debris common

More uprooted trees

Large canopy gaps

Less evidence of tip-up mounds

Trees branches along trunk

Trees with few branches to canon

· Large and/or old trees

Old Growth Forest

Canopy has many layers

- Canopy has fewer layers Fewer uprooted trees
- Species diversity affected by logging Logged regularly, old logging signs
- More disturbance and less woody debris means less water and soil retention

 Undisturbed soil and woody debris means greater water retention and soil retention

Ground hummocky from mounds and pits of fallen logs and root tip-ups

Natural free species diversity

Few signs of logging

Old growth forests are diverse habitats — from old trees and fallen logs to tumbling creeks.

Эгэ Growth Накрвож

OLD GROWTH HANDBOOK

FOREST SIGNS AND FIELD TIPS

est. Keep it with you on your regular travels through the woods or select a forest to examine for old growth features. Keep your eyes peeled for some or all of the old growth ingredients described on the following pages. You can use the Old Forest Checklist to keep track of your findings: The more signs you see, the closer your forest is to old growth.

Old Trees, Big Trees

When you think of old growth in eastern Ganada you might picture towering pines, massive yellow birches, maples and beech trees, or dark hemlock stands. Big, old trees are a good sign of old growth. Looking at them is the first step to understanding old growth ecology.

Tall, cathedral-like groves of trees strike awe into people. Big, old trees make great photos and they also make old growth. They create it by dying, by getting burnt to a crisp, or lightly toasted by fire. They build it when their tops get blown off, when they get poked full of holes by woodpeckers and when they collapse or get their roots yanked out during storms. And they help produce old growth by rotting to a juicy pulp on the forest floor.

Many of the old growth traits in this handbook are products of big, old trees. "Big" means beyond the typical size cut for timber, although bigger is not always better. If you can estimate heights and diameters of your trees, try comparing them to typical heights of trees that you can read about in tree field guides.

You may want to compare trees in your area to Ontario's all-star list: the Honour Roll of Trees. The Ontario Forestry Association prints a guide to the biggest specimens of each tree species in Ontario. The list is updated each year, and looks at the height, diameter and crown size of each tree. Copies of the Honour Roll can be obtained from the Ontario Forestry Association, 150 Consumers Road, Willowdale, Ontario M2J

When you find very big trees in a forest you have discovered new habitat conditions for plants, wildlife and regeneration. When you find a forest full of very old trees you are looking at an interesting and healthy ecosystem.

Old trees themselves, through their ages, growth rates, scars and wounds, are valuable recorders of history of the site. They are also a wealth of genetic diversity that is essential for future forest health.

The biggest trees are not always the oldest. A forest's productivity has a great influence on the size and age of

trees. For example, a moist well-drained slope grows bigger trees faster than a dry hilltop with shallow soils. Even within a group of similar-sized trees, ages can vary a lot. In one old growth stand in Algonquin Park, for example, white pine trees aged at around 450 years old ranged in size from 53 centimetres to 117 centimetres in diameter (at breast height).

In contrast, the scraggly, twisted cedars along the Niagara Escarpment, which might be only a dozen centimetres in diameter can be more than 1,000 years old. The gnarly white cedars cling to cliff faces, where they have survived fires and cutting long enough to be discovered by scientists in the 1980s.

If trees are given the chance they can reach a ripe old age (see opposite table). Except for birch and poplar, trees are often cut before they have completed half of their potential life span. If you can determine the average age of the trees you are examining, or the age of the oldest trees in your stand, try comparing them to the life expectancy table. This will give you an idea of how your stand measures up to the potential age of that tree species.

Counting tree rings is one way of studying tree ages. Trees lay down layers of wood in a yearly pattern that can be counted on cut trees, tree stumps and tree cores. The summertime spurt of light-coloured growth is followed by a darker layer indicating slower growth the rest of the year.

Common Life Expectancy of Trees in Old Growth Stands

Eastern hemlock	600+years
White pine	450+
Eastern white cedar	400+
Red pine	350+
Sugar maple	300+
Yellow birch	300+
White spruce	200+
Red oak	200+
Black spruce	200+
Poplar	150+
Jack pine	140+
White birch	80+

Source: Ontario Old Growth Policy Advisory Committee Final Report If trees have been cut recently, you can count rings on available logs or stumps to get an idea of the age of the stand. If you have access to a tree corer (also know as an increment boret) you can get age estimates from live trees. Or you can get information from Forest Resource Inventory maps for the area. These are available for viewing at Ontario Ministry of Natural Resources of

When examining a forest you may experience a number of familiar scenarios. In old woodlots, sugar bushes, or some managed forests, big old trees may be all that remain of old growth conditions. Dying and diseased trees get removed in favour of healthy vigourous ones. Dead trees get cut for

OLD GROWTH HANDBOOK

firewood or safety concerns. Large dead trees and logs become uncommon. Many landowners have the tradition of "cleaning up" woodlots by removing the dead wood.

In other cases, forests have been "high-graded." The biggest and best trees were harvested for timber, and no forestry work has been done since to revitalize the stand. Look for a stand with many old, trees of poor (timber) quality, full of broken or diseased parts and an interesting array of crooks, twists and bends in the trunk. Rot, cavities and big "holey" trees will be abundant. Foresters often target these stands for "improvement" — meaning defective trees are removed to make room for prime trees for timber.

Gaps and Regeneration

Hardwood forests are less susceptible to fire than, for example, forests of pine and poplar. When hardwood stands reach an old age, they can regenerate themselves through numerous small scale events. Large trees in old growth and mature stands create their own disturbance when they fall to the ground or get blown over. Young trees and other plants thrive in the light-filled gaps that result. Previously-suppressed trees get a chance to grow and reach the canopy right next to much older trees.

As canopy gaps become filled by younger trees, a stand of trees of all ages is created — a feature of many old growth forests. A multi-layered canopy

can also result. Different heights of trees that create different habitats for wildlife

Stands that grow up following fires or other major disturbances, such as land clearing, tend to have many trees of roughly the same age. Amid the new growth you might find a few "grand-daddy trees" that survived the earlier disturbance. Mature versions of these "even-aged stands" are on the verge of becoming old growth. Some pine stands may have trees of all ages, due to windthrow events or periodic light burning which kills only a few trees at a time. Up to 10 percent of the white pine forests may regenerate this way before another fire occurs.

Old Forest Wildlife and Habitat

Old growth forests are distinct habitats for wildlife. They have a diverse structure and thus many niches for wild creatures. Several species prefer old forests, and likely fare best in the ecological conditions that old growth provides.

Food supplies vary as forests age. Arboreal lichens, for example, slowly grow on trees over decades and are most abundant in mature and old growth forests. Tree seeds, including conifer and hardwood seeds, support small mammal communities and therefore their predators. Seed production increases as trees age and likely peaks just before a tree starts to decline.

Woody browse from shrubs, seed-ings and saplings are abundant in

young forests, but decline
as the forest matures. Although not an abundant
food source in old growth,
browse makes a comeback
in gaps created by fallen
trees.

Pileated Woodpeckers and American marten are considered indicators old forest conditions in many eastern forests. In boreal forests woodland caribou also depend on old forests, relying heavily on the arboreal lichen communities when thick snow covers the ground in winter.

The Pileated Woodrelies on large diameter ow trees for roosting, and logs to feed on. The Pileated seems to be on the trees for nesting, large hollarge dead trees or downed increase following a decline a century ago when pecker, Canada's largest, virgin forests were first cut. The birds may be adapting Still, old forests are prime rabitats, and when you see n Pileated Woodpecker you to younger forests and smaller woodlot habitats.

Pileated Woodpecker feeding on a dead pine with supercanopy trees on the horizon.

OLD GROWTH HANDBOOK

Ось Скомти Напрвоок

American martens are much more elusive creatures. If they live in the area you are lucky just to see their tracks. field guides will help you determine the Frapping records, mammal books or distribution. These tree-climbing weasels are very uncommon in younger forests and seem to prefer large unbroken tracts of old forest with big coniferous trees.

ogs for denning and search these same rrees while hunting. Cavity-dwelling Martens use large tree cavities or (under the snow) passages are also flying squirrels are important food cross old forests provide runways for marten. In winter, logs provide spaces readily used by small mammals. The items. Large diameter logs that crissof the matten, does not use habitat in that allow the marten to move around fisher, a larger relative and competitor beneath deep snow. These "subnivean' the same way.

Wildlife of old growth includes less you look under old logs or rocks on the conspicuous but still important organforest floor, you may find chunky black tles as indicators of the condition of a forest. Some species turn up only in old isms such as mosses, liverworts, lichens, fungi, insects and other invertebrates. If searchers are studying this group of beegrowth. They are just one tiny example of the unmeasured diversity of insects and micro-organisms of old growth insects called ground-beetles.

histories than others. A view from a Forests have long histories and within forests some trees have longer lake, ridge or cliff may show you trees poking up above the rest of its neighbours. Supercanopy trees, as they are called, are often used as nest sites for birds such as eagles and as sanctuary bears will send their young up these trees for refuge and will often bed down at the base of these trees. White pine is a typical supercanopy tree in forests trees for black bears. Female black Large-toothed aspen and tulip-tree to that are predominantly deciduous. the south are other examples.

When scanning the treetups, look dered and Cooper's Hawks are two rare Hawks, Broad-winged Hawks and Sharp-shinned Hawks. If you come know to encourage conservation of the and, inform the local office of the species that build large nests in very across an active nest, let the landowner Ministry of Natural Resources. Similar èrs are Northern Goshawks, Red-tailed nest site. If you find the nest on Crown nests may be used by ravens, crows, or big stick nests. The Red-shoul mature forests. Other large nest build Great Horned Owls and other large

The size and variety of dead trees, logs and other structures created by unlogged trees are special assets of old growth. Wildlife live in, around, on and under these features, and help make old growth habitats unique.

Don't be confused by squirrel nests

old growth conifer forest.

OLD GROWTH HANDROOK

17

BEST COPY AVAILABLE

OLD GROWTH HANDBOOK

arly seen in beech or oak trees. Bears or "bear nests." Squirrel nests tend to be out in the branches and look like big balls of leaves. Bear "nests" are regufeeding on acorns, beech nuts or other nefty seeds will climb to the treetops and pull in food-laden branches to their resting spot. Many branches break in this process and the resulting vile of sticks may resemble a nest

(alias stag, stub, chicot [pronounced cheeko], dead tree, cull tree, senescent tree, defective tree, rotten tree, cavity tree, den tree, hollow tree; roost tree, wildlife tree)

Dead Tree Ecology

Trees growing in old growth forests stretch the limits of their life support systems. Much like people, trees rarely die strictly of old age. In a tree's twilight years it is complications that push them over the edge. Old trees cannot fight disease or withstand attacks by insects of fungi as well as they once could. They are less efficient at gathering water and soil nutrients and at competing for light. Growth slows down, branches and roots wither and the trees struggle to fight gravity to keep a spot in the forest canopy.

The environment may also do them in. Winds, snows, floods or fire may cut short a tree's life at any time. Fire was once a major creator of new forests and hoardes of dead trees. The charred remains of former forests live on in many forests today. But output from fire's dead tree factory has been mostly shut down by fire suppression.

Lightning strikes are still the cause of many natural fires that will kill individual trees. Tall trees poking above the forest canopy or perched on hill-tops are especially vulnerable to lightning strikes. Look for spiral seams on tree trunks, evidence of earlier lightning strikes. The spiral is caused by the lightning following a twist in the wood.

Beaver feeding and flooding creates pockets of dead trees of all shapes and

sizes across the landscape. The dry skeletons of trees in beaver ponds stay standing for some time because the root systems are less prone to decay while underwater.

Black bears feeding on nuts or acorns and porcupines browsing on twigs and bark can kill parts of trees and aid in their decline. Yellow-bellied Sapsuckers can also cause some damage to trees, but contrary to common belief, woodpeckers are not a significant cause of death. When you see evidence of feeding and nesting, the trees are already dead, dying or in decline.

Young forests are chock full of small dead trees. Many young trees are naturally "thinned out" of young stands as they lose the race for light or nutrients with neighbouring trees. The result is many small diameter dead trees that soon fall to become small logs on the ground. After this natural carnage, middle-aged and nearly mature forests tend to produce fewer dead trees for a number of years.

Old forests increase dead tree production once again as large forest giants die while standing or crash to the ground, damaging surrounding trees. Old growth forests have a greater abundance and variety of large dead trees (snags) than younger or mature forests.

Decidious trees that die while standing often become rotten and hollow on the inside. The hard outer wood keeps the shell of the tree intact while the inside is available for nesting. Coniferous trees often decay from the outside in and are more likely to fall to pieces. Hard

snags last a good long time. Soft snags, such as punky poplars and birches, are common but crumble more quickly. Both types of snags are valuable to the forest. A diversity of dead trees means stability for parts of the wildlife community.

Not all causes of death are worth celebrating as natural events. Pollution and introduced insects such as gypsy moth cause the decline and death of many trees as well.

Dead Standing Trees and Wildlife

Dead trees naturally provide habitat for about 25 percent of all forest wild-life species. Great Blue Herons, Bald Eagles and Osprey nest at the tops of snags or in the dead tops of living trees such as white pine. All prefer trees near or above water. Dead branches are prime perching sites for birds. Flycatchers, kingfishers, hawks, eagles and other birds hunt from these sites.

As dead trees decay the protective bark begins to slough off. Several bar species as well as insects such as some butterflies roost under loose bark as do some birds. Brown Creepers seek these crevices, wedging plant material into the space to nest.

Fungi, moss, lichens and bacteria begin the process of decay even before a tree completely dies. Their mechanical and chemical activity breaks down the woody material, paving the way for entry and feeding by insects. Termites, carpenter ants and other insects chew into the wood to form galleries and

build nests. These insects then attract woodpeckers and other excavating birds and mammals. For more detail see the Tree Cavities section.

Woodpeckers are not considered songbirds, and if you have heard their calls you know why. They squawk, squeak and give harsh staccato cries. They also communicate by drumming. When you hear or see a woodpecker drilling like a jackhammer on the wood, the odds are the bird is making a territorial statement rather than a feeding noise. Woodpeckers making sporadic, irregular and softer whacking sounds are more likely digging for food.

Woodpeckers tend to drill or drum on dry, dead wood because it gives the best resonating sound. You can hear the difference yourself by knocking fresh branches together and comparing that to the sound produced by two dried branches. If you do this in the woods you might get a visit from a curious woodpecker.

BE CAREFUL AROUND DEAD TREES!

Dead trees may be very unstable and can fall down with only a gentle nudge. At ground level some snags may look like live trees if they still have their bark. A quick look at the foliage should tell you whether or not it is still alive. Workers in the forest industry are very aware of this danger and are required by legislation to cut down any trees that pose a threat where logging operations are occurring.

BEST COPY AVAILABLE

18

A Guide to Dead Trees

Dead trees are vital parts of wildlife habitat, providing food and nest sites as they decay and crumble to the ground. The stages below have been used to study dead trees in forests in different parts of North America.

FIELD SIGN	LIVE TREE with dead and dying branches or broken top	DECAY CLASS 1	DECAY CLASS 2	DECAY CLASS 3	DECAY CLASS 4	DECAY CLASS 5
TREE TOP	 Broken top or dead stub on tree top 	• Tree top intact and just recently dead	Tree top intact	Tree top intact	Top broken off	• Top broken to a stub.
BRANCHES 	 Many or most branches still alive About 25% of canopy dead 	Recently dead Fine branches still present.	Fine branches gone Less than half of large branches gone	More than half of large branches gone	All large branches gone	e All large branches gone
BARK	 Bark on trunk intact Bark on branches may be dead 	Bark mostly intact	Bark loosening	Bark usually falling off	Bark nearly gone	Bark and wood deteriorating
CAVITY NESTERS	Dead sections may be used by cavity nesters as per decay class Yellow-bellied Sapsucker may already be nesting in tree Dead parts of tree used as drumming and display sites for woodpeckers Pileated Woodpecker can excavate these living trees	Same as live tree with dead top Pileated Woodpecker strong excavator can use this tree	• Used for nesting and foraging sites for strong excavators like Pileated Woodpecker	The many modupositor	Downy Woodpecker for nesting sites and then by cavity nesters like	Used by weak excavators like chickadees as well as mice and chipmunks for nesting sites
OTHER WILDLIFE USE	Waterfront nesting sites Dead branches are comm Used by herons, raptors a	ion bereining 21fe2 (0) 01ff72	SUCIL AS EASIERN PROPRE A	hunting sites for sites for ha cadian Flycatcher and humi	wks, owls and perching bird mingbirds.	ds.

This system helps you see the differences in the dead trees around you and learn about their value to wildlife and the forest.

To not always fit neatly into categories such as the ones here. Tree tops, for example, often snap off creating a fresh, hard snag with little decay evident.

Tree Cavities

(alids tree holes, woodpecker holes, dens, hollows, roost holes, nest holes)

Cavity Ecology

Rotten, crumbling or dry as a bone, decrepit trees make a solid contribution to wildlife habitat — especially if someone pokes a hole in them. Tree cavities in both dead and live trees are prime homes and hideouts for about 15 percent of Ontario's wildlife — some are included in the table on page 29. Every forest has animals that rely on tree cavities. The large number and variety of tree cavities are important elements of old growth forests.

A perfectly healthy tree is a rare sight. Wounds, insect damage, rot or disease help shape trees from an early age. Before long, tree cavities form in dead or damaged trees.

• Weathering, fungus or microor-

- Weathering, fungus or microorganims can rot away wood, creating irregular natural cavities.
- Woodpeckers or other wildlife can excavate holes in decaying trees for food and nest sites.

Cavities made without the help of woodpeckers may be more abundant in the forest than actual woodpecker holes. But the solid holes and protected chambers made by woodpeckers often provide better conditions for nesting and den sites for wildlife.

Look for dead or broken branches, snapped tops or large open holes in live trees. Each indicates that parts of the trunk are rotten. If you see a tree with all three of these signs, half of its trunk

Cavities often form in knot holes and broken branch stubs.

could be decayed. Dead parts of live trees allow decay organisms to enter. This can create cavities without the help of woodpeckers. Wherever you find a natural cavity in a tree, the trunk could be rotten for a metre or more up or down the stem.

Certain fungi are signs of rot and potential cavities in live trees. The well-know Artist's conk and Tinder fungus are involved with rotting the outside wood (the sapwood). False Tinder fungus, on the other hand, is involved with rotting the inner wood (the heartwood) and is a good indicator of suitable conditions for cavities inside a tree.

Woodpeckers excavate round and oval nest toles in both live and dead trees.

A dozen species of wildlife in eastern Canada dig holes in trees for nest sites. Most are woodpeckers, but two species of chickadees and one nuthatch species also excavate cavities for nesting. It is helpful to get to know these species, because their work creates homes for a variety of other wildlife. Watch for the species and the holes presented on the following pages.

Woodpeckers drill through the bark and outside wood of a tree to get to softer, rotten heartwood at the core. It is possible that they detect this decay by listening as they peck at the trunk.

The birds do make false starts, but many of the round, deep, dark holes you see end in a nest chamber. Roughly-edged, irregular-shaped holes are more likely to be feeding sites. Smaller cavity-makers such as chickadees make homes in soft, punky trees.

Cavities and Wildlife

There are advantages to living in a hole. A tree cavity gives shelter from wind, rain or snow and is a stable environment in which to incubate eggs or raise young. Thick cavity walls also give protection from many predators. An astounding diversity of wildlife make cavities their home.

Ducks, flycatchers, warblers, wrens, thrushes, falcons, owls, mice, squirrels and even some weasels use natural cavities and abandoned woodpecker holes for nesting, resting, storing food or raising young. Honeybees and bumblebees also use cavities. As the years go by, a succession of wildlife species may used a single cavity.

All cavity trees are not created equal. Live trees with holes, for example, last longer in the forest than dead ones. As well, the larger the tree, the greater the variety of species that could make it a home. Pileated Woodpeckers, which regularly nest in trees with a diameter of 50 centimetres or more, would not use a fencepost-sized stub. But the small stub could be inhabited by a chickadee. Sapsuckers often nest in live trees with rotten cores while

58

OLD GROWTH HANDBOOK

23

Birds that create cavities with medium to large entrance holes.

Downy Woodpeckers tend to use dead rees.

Surrounding habitat is also important. A Pileated Woodpecker hole in a dead tree near the edge of a swamp may be used by a Wood Duck. A similar tree deeper in the forest may be used by a Saw-whet Owl. Place the same tree in a forest opening or clearing and it may attract an American Kestrel or Northern Flicker. If the hole were smaller, say the size made by a Hairy Woodpecker, the waterfront tenants could be Tree Swallows. The forest tenants could be northern or southern flying squirrels and in an opening or clearcut the hole could be home to bluebirds.

All cavity trees are valuable but those with multiple cavities of various sizes provide more habitat opportunities. Larger trees with large holes are less common and thus are in short supply—when you see them you are looking at a valuable piece of real estate for wildlife.

Many scientists, biologists, foresters and conservation agencies have worked on the question: "How many snags are needed for cavity-dwelling wildlife?" The larger trees, such as those 50 centimetres or more in diameter, are of greatest concern. A consistent number across the continent appears to be 5 to 10 large diameter cavity trees per hectare. A hectare is roughly the size of two football fields. If your forest has that many large cavity trees, as well as a larger number of smaller trees for feeding and nesting,

the needs of cavity-nesting wildlife will be mer. Old growth forests produce many cavity trees naturally. Managed forests can also produce large cavity trees when logging is planned carefully and with attention to habitat concerns.

Tree cavities are not used just as nest or den sites. Woodpeckers often excavate separate roosting holes in which to spend winter nights. Screech owls and other cavity dwellers also use holes for winter shelter. Flying squirrels may use holes as food caches, retreats from predators or inclement weather and even as private outhouses.

Hollow trees and large holes are prime roosting sites and escape cavities for wildlife.

Wildlife species use escape cavities as temporary shelters or to avoid predators and bad weather. Look for holes that are too large to protect nests with young, or which have rotten, irregular adverse.

"Church doors," large openings at the bases of trees, are readily visible escape cavities and potential den sites for porcupines and raccoons. Fungi often cause the "butt rot" at the base of these trees. You might try looking for one of the culprits — the shoestring fungus (Armillaria). It has a black network of shoelace-like segments that is often visible on dead wood and beneath peeling bark.

Woodpecker feeding cavities tend to be shallow and irregular in shape.

Woodpeckers hannner away at trees in search of beetles, carpenter ants, insect larvae and other organisms. This feeding leaves dead end holes, trenches or pockets in a trunk or branch. Feeding cavities are usually not round and lack the typical chambers that could hold a nest. Pileated Woodpeckers create deep rectangular feeding cavities and may riddle the tree with such holes. Forest workers have dubbed some of these trees "woodpecker pines." Other woodpeckers make irregular holes or patches by digging up and down the tree.

Even if a cavity gets filled with water it is of value. Some insects breed there and some animals, such as flying squirrels, that use the cavities as watering holes.

The Yellow-bellied Sapsucker is unique, creating lines and lines of holes in live trees to seek sap (and the insects the sap attracts). Their feeding, however, may kill parts of trees which are then used by other cavity-nesters.

Use the following guide to trace who made the holes you see, and the other species that you might find using them.

30

27

3 Suide to Nest and Den Cavities

ances to nest or den cavities are usually surrounded by sound wood and are large enough to allow iss by the animal but exclude its predators. The holes can be excavated or natural, farge or small. Since the area of use of use to observe cavities that are located high above the ground. Evidence of use includes a smooth, worn or lightly coloured entrance—resulting from repeated brushing by the animal — gnawing, fur or feathers, no spider webs, and nesting material protruding from entrance.

This guide is a rough breakdown of some of the birds and manimals that make and use tree cavities in forests in eastern Canada. Don't be too surprised if you find wildlife in cavities that do not conform to this summary. Nature is full of variety.

Note that larger holes are potential homes for more wildlife species than smaller holes. In general, animals tend to use holes similar to their body size, possibly a result of competition for cavities as nest or den sites.

CAVITY SIZE	CAVITY DETAILS AND DWELLERS
Smalf	 2.5 – 5.5 cm diameter hole size of a two-dollar coin to the size of a raquetball excavated by Downy Woodpecker, Yellow-bellied Sapsucker, Hairy Woodpecker, Black-capped Chickadee, Boreal Chickadee and Red-breasted Nuthatch small holes can be used by Tree Swallow, White-breasted Nuthatch, House Wren, Carolina Wren, Eastern Bluebird, European Starling and Prothonotary Warbler small dens for deer mouse, eastern chipmunk, red squirrel, northern flying squirrel
Medium	 5.5 — 10 cm diameter hole size of a hardball to the size of a grapefruit excavated by Northern Flicker, Red-headed Woodpecker. Red-bellied Woodpecker, Black-backed Woodpecker and Three-toed Woodpecker medium-sized holes can be used by all small hole-nesters (above), plus Wood Duck, Screech Owl, Boreal Owl, Saw-whet Owl, American Kestrel dens for all mammals above, plus grey squirrel
Large	 10 – 12.5 cm wide and 12 – 20 cm high size of paperback novel with rounded edges excavated by Pileated Woodpecker large holes can be used by all hole-nesters above, plus Common Goldeneye, Butflehead, Hooded Merganser, Barred Owl dens for larger mammals such as grey squirrel, raccoon, American marten
Extra Large	 round or irregular hole larger than 15 cm wide size of volleyball or larger usually created by decay rather than woodpeckers tend to be roost sites and escape cavities rather than nests

OLD GROWTH HANDBOOK

Log Ecology and Wildlife

A tree naturally falling to the ground is not a loss to the forest. The log and the disturbance it creates are more like a boom town.

Like a backhoe, the roots of a wind-thrown tree tear up the ground, exposing fresh soil in pockets throughout the forest (see the Mounds and Pits section). Young trees, shrubs and wildflowers thrive on the disturbed soil and the new-found light on the forest floor. Animals such as winter wrens, waterthrushes, mice and chipmunks use the tangled root mass as housing. If these tip-up mounds are near open areas, they may be used by groundhogs. Wrenched roots in forests often form the framework for black bear dens.

Snapped-off tree trunks lack the ripped-up root wad but they take on a dual personality — as both a log on the ground and as a hard snag. Trees may be held up by nearby trees and branches for some time. These trees dry out and decay more slowly as a result.

Once they hit the ground, insects move in. Bark beetles, armed with mandibles that can penetrate the tough outer bark, chew into the protein-rich sapwood. Carpenter ants, which do not eat wood, carve tunnels for their colonies. These insect pioneers pave the way for the next wave of immigrants — fungi, bacteria, and

other microscopic animals. Populations of nematodes, also known as roundworms, explode in rotting logs. Nematodes provide a food supply for mites and insects while higher up the food chain await predators such as woodpeckers and salamanders.

A spectacular array of mushrooms, slime moulds and shelf fungi live on logs. Their intricate structures are just a hint of the mass of tiny threads, called hyphae, that permeate the wood. Mosses and lichens also grow attached to woody debris. Many forest mosses grow only on bark or dead wood.

Old growth forests retain soil moisture because of the continual build up of logs and woody debris on the forest floor. A well-decomposed log acts as a water reservoir and nurturing oasis to some animals during dry spells and a stable environment for rooting of many plants.

Soggy logs provide moisture, protection from predators and a source of invertebrate food for salamanders. Eastern redback salamanders, which breath through their skin, are log specialists. Instead of using standing water, they lay their eggs in moist rotting wood. Ringneck snakes and smooth green snakes also lay their eggs within logs.

Ruffed grouse use dead logs and stumps as a stage to establish territories and attract a mate. Males broadcast their drumming sound by beating air between their wings. Lurge logs give the bird height to better project sound and scan for preda-

Rotten logs are moist environments for wildlife such as safamanders.

tors. Goshawks — who also happen to prey on grouse — often use logs and stumps as plucking perches. Mice, voles, marten and other manmals use the wocken straightaways of logs and large branches as travel paths.

Dead wood in water is also important. Logs and root masses along shore provide cover for small fish and in lakes are protective backdrops for many smallmouth hass nests. Ancient logs are preserved in waters all around you, especially cold lakes. Researchers have found water-logged hemlock trees that have lasted over a rhousand years after falling into the lake, and are looking at their growth rings to study climate and forest history.

Streams in old growth forests often have tumbling cascades that form when water flows over logs, branches and woody debris. The scaled-down

waterfalls, rapids and pools create micro-habitats for a diversity of aquatic life. The pools can be refuges for juvenile brook trout of lakes downstream. Ancient or old growth forests are known for their diverse, scenic streams with large amounts of woody debris.

As logs get recycled back to the soil, they pass through several stages of decay. Pine logs decay very slowly and may take 100 to 200 years to break down, while poplar and maple decay more quickly. The logs are important to wildlife habitat and the forest at each stage — so it is valuable to learn to identify some of the log variations.

The Guide to Logs on the following pages will help you identify some stages in the life of a log, and study the variety of log life.

36

3 Juide to Logs

Look at the different logs around the forest. Look at the different sizes and states of decay. As with snags, logs do not always conform to neat categories. Birch logs, for example, may be rotten mush on the inside, while the bark remains intact. The important point is that the log provides food and shelter for wildlife and substrate for plants as it decays.

OLD GROWTH HANDBOOK

Looking beneath logs is a good way to start studying the ecology of downed woody debris. But be careful. If you roll a log over to look beneath it, remember to roll it back. If the log is left rolled over, the moist micro-habitat will dry out and will take quite a while to recover.

LOG ETIQUETTE

Decay Class	Form and Shape of Log	Branches	Bark	Wood Moisture and Texture	Plant and Animal Habitat
Decay Class 1	Tree recently fallen, form still distinct Log round and rigid	May be elevated by branch stubs or ground	·• Bark intact	 Solid, rigid tree with dry, hard wood 	Little or no new plant growth on or
Decay Class 2	Form still distinct Log round Log supports weight of a person	Branches and branch stubs mostly gone	Bark loose but patches may still remain	Moist wood, beginning to soften Log somewhat rigid but sags	Some new moss, lichen, fungal and algal growth on parts of the log Grouse drumming and woodpecker foraging site foraging site
Decay Class 3	Log round but sags to conform with ground contours	 No branches 	 Trace of bark 	Wood breaks into large hard pieces Log does not fully support weight of person	• Tree seedlings and flowering plants begin to grow on fog ear foraging site (ants)
Decay Class 4	• Log round to oval • All of log on ground • Becoming meshed with soil	• No branches	• No bark	Wood breaks into small, soft and/or moist pieces	Log solt Nurse log for Iree seedlings Breeding site for snakes and salamanders
Decay Class 5	• Log rotten and covered with litter • Log oval or llattened • All of log on ground or beneath surface of ground or feat litter	• No branches	• No bark	Soft and powdery wood May not appear as fog at first glance	Nurse log for tree seedings Perched trees or seedlings may be only evidence of log Breeding site Grankes and salamanders

OLD GROWTH HANDBOOK

(alias microtopography)

If you vapourized all the live and mounds. Bedrock and rubble make some of these humps and hollows. But dead vegetation from a forest, you would reveal a landscape of craters and cially in old growth forests, is made by much of this "microtopography," espethe trees themselves.

Explore recent windfalls. The roots terial and create small craters. You can often see this material still stuck in the may yank up earth, rock and plant matangle of roots.

Wind and snowstorms commonly topple trees in every forest. Violent root entire stands. Wind gusts hitting snow-laden branches may knock down weakened roots or large wind-catching groups of trees. Individual trees with storms and tornadoes can break or upcrowns may fall on their own.

Canopy gaps left by uprooted trees are important to forests because they allow sunlight to reach the forest floor. The mounds and pits created over the ife of a forest (maybe hundreds or thousands of years) are also important -they add soil diversity and new sites or regeneration. Up to one half of the young and old mounds and pits from ind that the backhoe action of the orest floor could be covered with aprooted trees. People studying soil wrenched roots creates complex soil profiles with inverted earth layers.

Look for small craters or hummocks in your forest. They can be as wide as a

oed or a small room and up to a metre deep, depending on the size of the tree that fell over. Bowl-shaped pits are ikely caused by deep-rooted trees such as pine and hemlock. The presence of some large bowl-shaped pits in a young forest can be evidence of large pine, hemlock or hardwood forests of the low-rooting species such as spruce, fir past. Shallow pits created by the shaland beech are soon obliterared by vegetation growth and soil settling. Larger craters can last a long time.

Trees rarely grow in the bottom of nay be too deep for small seedlings to penetrate. The edges of mounds and these pits. Leaf litter collects there and pits, on the other hand, are good roothere, taking advantage of the lightng sites and trees often get established filled gap created by the fallen tree. These pits are rich microhabitats and support higher diversities of insects than the surrounding forest floor.

Second growth forests that grew up on abandoned farmland may not have phy. The till and plow would have flattened and mixed up the soil before much mound and pit microtopograthe land was abandoned. Managed formicrotopography through the action of eration. Old growth forests have highly diverse microtopography that creates ests may also have lost their natural heavy machinery used to prepare cutover areas for planting and tree regendiverse habitats for plants and inverte

the uprooting of a tree is a natural event that adds diversity to forest habitat.

Dead Wood I.D.

log or stump can be a challenge. A tree or at least help determine whether it is Identifying the species of a dead tree, guide will help you identify the species, coniferous or deciduous. Bark, branch and wood characteristics are good clues.

11

decay-resistant bark such as white Look for pieces of bark on the wood or on the ground nearby. Species with birch or eastern white cedar can be dles or seeds may also be found on the relatively easy to identify. Leaves, neeforest floor near recently fallen trees. Conifers like pines and hemlocks set Evidence of these branches may still be out branches in rings around the trunk. on the dead tree or downed log.

6666

the shiny purplish varnish shelf fungus If you are interested in fungi, your field guide may help you. For example, grows only on conifers and mainly on nemlock wood. The well-known artst's conk fungus grows mostly on dead nardwood trees.

If you are really curious and have no other clues, you can determine if the dead tree is coniferous of deciduous by inder a dissecting microscope. The looking at a thin slice of the wood wood must not be too rotten to do this. Coniferous wood is made up mostly of similar-sized cells (called tracheids) poplar, birches, beeches and cherries and looks something like a honeycomb. Deciduous trees such as maples, have wood with a mixture of differentrarenchyma) with more of a swiss cheese appearance. The wood of oaks, ishes, elms and hickories has very large sized cells (called vessels, fibres and pores concentrated in a band that can be visible to the naked eye.

The weight of the wood might also de a clue. Most deciduous trees have erous trees. There are variations of course -- poplar, a deciduous tree, has ight wood, while hemlock, a conifer, harder, heavier wood than most conif

OLD GROWTH HANDBOOK

OLD GROWTH HANDBOOK

Fallen Tree History

The collapse of a tree triggers a number of events that you can trace by examining the "scene of the crash." Your detective work may turn up the following:

• Injured bystanders. Falling trees may leave scars on nearby living trees as souvenirs of the event. The wounds often heal over but can become entry points for decay. This is good for cavity for damaged bark, shaved branches or creation but could spell the demise of the injured tree down the road. Look deformed wood to see which trees were

Falling trees leave casualties in their path.

they may uproot or snap trees in their path. Years after the event you can some of its neighbours. Look for broken logs. The direction of fallen logs may Domino effect. When large trees fall or dead trees in a swath around downed tell you the direction of the prevailing often tell where a fallen tree had killed winds as well.

• Bringing the house down. When over, they produce scattered openings lings that do not require large amounts single trees or small groups of trees fall throughout the forest that are important for regeneration. Size is crucial, Gaps created by single trees are most common. Small gaps in the canopy may be filled by the branches of nearby trees. Small gaps also allow tree seedof light, such as maple and beech, to Jourish.

In old growth forests, large trees can take out several other trees when they fall, creating larger gaps.

Look around any gap to see which tree or trees take advantage of the opening — are they young saplings or are mature neighbouring trees filling the space with their branches?

• Euthanasia or natural death? Was the downed tree has withered leaves the tree living or dead when it fell? If and fine branches it was probably alive over. A living tree with intact branches creates more damage to or only recently dead when it keeled nearby trees than dead trees, and therefore leave more evidence of their fall.

A fallen log

Squashed green branches or disturnance to fresh vegetation are clues that the tree fell recently. Recently fallen ogs may already be in a high stage of another clue that the tree could have decay if the tree was dead when it fell. Look at any fungi growing on the log. Wood rotting fungi such as shelf fungi that are now sideways had emerged from the trunk before the tree fell neen dead when it fell.

Nurse Logs and Perched Trees

Any gardener knows that fibrous material is a good soil conditioner. This also works in forests. Rotting logs eventually form a woody mulch valu-

able to soil life. Even before this stage, tree seedlings may already get a toehold n the log.

trees take advantage of "nurse logs." Yellow hirch, eastern hemlock, balsun fir, white birch and some other ogs, stumps and root mounds are free of deep litter and may protrude above the snow — both assets for some seeds Their lightweight seeds have a hard rime penetrating thick leaf litter. Old to germinate and start growing.

Logs are a rooting medium but are rootlets through the decaying wood to not a source of all the necessary nutrients. Seedlings, therefore, send small reach the soil. By the time the nurse

BEST COPY AVAILABLE

....the fourth life of a tree.

OLD GROWTH HANDBOOK

free seedlings often colonize rotten logs.

off the ground. Ground fires naturally logs (or stumps or tip-up mounds) destrong enough to hold the tree perched cay and subside, the roots may be But because fires are suppressed today, rooting on logs may be much more low birch by burning away leaf litter. crucial to them than it was in the past. Look for evidence of the former log or help species such as hemlock and yelstump under any perched trees you

You can estimate the size of the nurse log (or stump) by looking at the neight a tree is perched above the ground. As the stumps decay the trees are often left suspended at the height of germination. You can estimate when

means of getting accurate tree ages. If

you are able to examine a tree core, or

to look at recent stumps, you can look at growth rates and how they changed

over the years. Take some sandpaper to

the surface to get a better look at the

structure of the wood.

A spurt of large ring widths means the tree had some good

cate the early years of a stand of trees or a time when the tree was given more light and soil resources when a neighbouring

growing seasons. This can indi-

An increment horer is the best

beyond the amateur naturalist.

Yellow birch trees often start life on a log and remain "perched" when the old wood decays.

a log or stump became rotten enough longer.

"Dendrochronology" is a ten-dollar word for studying tree rings. Foresters

ree died. Look at adjacent trees

for gaps, fallen trees or other

signs to relate to the growth

rates of the trees.

to become a nurse log by the age of on stumps, the age of the live tree tells example, will rot away quickly while a perched trees or saplings growing on top. If perched trees started their lives you the stump was created at least that long ago. The age of the perched tree also tells you how long it is taking for the nurse log to decay. A poplar, for hemlock remains in place for much

Looking at Tree Rings (alias dendrochronology)

and pine which can withstand lighter ires. Tree cores often have fire scars. rely on accurate tree ages to help plan orest management. But trees can di-

rulge much more than just their age in ree rings. Scientists are turning more and more to tree ring studies as a source of information on climate change and orest history. The technique is not

he area. Researchers are using fire Counting those scars can give an scars (in tree cores and stumps) to compare the frequency of fires in the past dea of how often fire burned through with more recent times. With far fewer ires in the forest today, the mix and abundance of tree species and other dants is likely to change.

Charcoal or blackened wood may even be found in the soil by digging down below the litrer layer.

Fires of the past leave clues such as the charred remains of old stumps.

Fire Scars and Charred Stumps

Trees, logs or stumps may have blackened wounds from fires. The tree may have been wound. Scars of several fires can be found on trees such as oak the bark or created a small killed by a severe fire. Or a light ground fire may have charred

1111

OLD GROWTH HANDBOOK

ine Stump Forest

Searching for stumps is a way to inspect for past logging activity and to study its potential impact on the forest of today. Using the forest signs and field tips in this handbook along the way opens up a window to forest ecol-

northern parts of the province and oak the future of the forest more so than Old growth forests have not had much logging compared to other forests. Habitat conditions are different, chainsaws or axes. In early logging partly because nature has determined days, lumbermen selected huge specimens of white pine in the central and in the south for ship masts. Some of their stumps are still evident today.

Hemlock trees were eliminated from system.

of trees. These could be signs of ogging damage of the past. These wounds can injure and even kill some trees. 🅭

By looking for stumps you may be what is there now. Some trees sprout able to determine what was removed from the stand and compare it with from their own cut stumps and continue to live using the existing root many forests around the turn of the century for the tunning industry. In some places you can find more stumps than living hemlock trees or hemlock regeneration. Yellow birch was important for building planes in the Second noved from many farests. Stumps of American elm and American chestnur (in the south) also remain in many woods, reminders of their former status World War, and was selectively rein forests before disease nearly wiped them out.

Look for wounds at the base

111

PAPER TRAILS

ormer forests have left their mark on the land and the Forgive you an idea how and where to look for them. However, you can also turn est Signs and Field Tips in this manual o written records to better understand he early forests and forest history.

Local Histories

en to document the first European Local history books were often writsettlers' arrival in some areas. In Onario this often followed the era of neavy logging and widespread fires of the 1800s. There is great forest information in these histories.

1111111

foot long pine logs that were 36 inches Cut trees were often called "sticks" in those days. You can read about 60 4 teams of horses to haul out. You can the British Royal Navy. To qualify as a square and of 118 foot masts that took potential mast for the Royal Navy, a red or white pine had to be perfectly. still find some large old trees that bear the marks and stamps that identified them as Crown property destined for straight, with the first branches (knots) appearing not less than sixty feet above the ground.

Notes and photos of the logging days are full of stories of giant trees coming out ests helps you intagine what woodlands of local forests. Knowing the former forcan become if they are left uncut.

Old photos show you where massive fires rampaged in the 1800s. Many of

these fires were caused by people and and woody debris left over from logging activity. Those fires created conditions made worse by large amounts of slash that greatly affected the forests on the and today.

There are stories of a single pine tree The settlers' own experience with Often the first income settlers made from their land was from burning the ruge tree stumps to create potash for forest clearing can also tell you much. being used to build an entire house. fertilizing crop lands. Photos of early Iwellings surrounded by stumps can be revealing -- some buildings still remain, in various states of repair, surinally, local histories can also give you rounded by farmland or new forests. nints of where logging did not occur.

Early explorers often wrote journals that provide information on the stature of the forests — forests of gigantic trees, racts with large numbers of windblown rees, tangles of downed logs and great rees that were rotten from top to bortom. The explorers often provided their stands that the sun never penetrated, ade of deep forests, the cathedral-like perspectives in these notes as well dark, mossy, ponderous places, the soliilence of some stands. Their notes make nteresting reading.

Survey Records

Land often had to be surveyed before it was assigned to settlers or allocated

OLD GROWTH HANDROOK

much sought after. They sometimes In Ontario most original Crown surcally noted tree species along their survey lines. They generally listed the though there could have been a bias towards trees like pine which were identified, marked and measured "witness" trees. Witness trees were refer-Some corner posts and blazes on wittree species in order of abundance, alence points for corner posts and stakes. veyors working in the 1800s systematiness trees are still visible today.

You can try to roughly "reconstruct" the forest of the past using survey records and other detective work. Since distances were indicated between the entries of the surveyor's notes, you can roughly summarize how much of the line he traversed was covered by which tree species. This can give you a rough idea of how much of each forest was around over a broad area at the time of the survey over a broad area. Alternatively, you may wish to find out what was growing at a specific location.

This is interesting information for natural areas. Original surveys give you a baseline to compare with present or original records to plan restoration abandoned farmland back to trees. The andowners or people responsible for planting, using them to decide what type of forest to aim for when planting records do not tell you what ought to be there now because, after all, more than a hundred years have passed. But they do offer a snapshot in time that and perhaps make decisions on future Crown land still remain unsurveyed, a testimony more to the poor quality of uture forests. Some people work with will help people understand the land orest management. Some areas of the land for logging and settlement than to any oversight.

such as fires and windstorms.

Walking lot and concession lines esting tour. The forests you see can be quite similar or quite different from those of a century ago, depending on since. Oak forests on rocky ridges, for example, may once have been pine forests that were cut and hurnt (often with notes in hand makes for an interwhat has happened to the property repeatedly). Look for charred pine stumps in these stands.

stands and lowland forests may have The mix of species in hardwood changed little, with some notable exceptions. The widespread loss of American elm (white elm) is an example. The clm was decimated in many areas by the onslaught of the Dutch elm disease around a century ago. When you look at the old survey records and examine the dead trees still

in the forest, you come to appreciate ust how common the stately elm once was. In places like southern Ontario you may also find many notations of another lost species — the once abundant American chestnut.

Ontario residents can obtain copies of the original survey notes of most properties. Local Offices of the Ontario often have copies. MNR technicians still refer to the records when laying out timber harvesting plans or when Ministry of Natural Resources (MNR) resolving boundary disputes between Crown and private properties. You there may be a small fee. Contact the Information Officer at the Ontario must identify the appropriate lor and concession lines for the property and Ministry of Natural Resources, Survey Foronto, Ontario M7A 1W3. Records Office,

Resource Reports

(Logging and Fire History Reports, Cutover Maps, Forest Resource Inventory Informa-

If you are interested in the resource management history and old growth po-

Ministry of Natural Resources (MNR) tential of Ontario Crown forests, you offices. Cutover maps are usually comnight give the forestry staff a call to can find some information at local oiled to trace the history of cutting and silviculture work on Crown forests. You require before you head into the office. lave the lot and concession and other basic information available. You can the property in question. Besides this trace cutting for decades with this technique, learning what has happened on dents are a wealth of information that paper trail, local staff and long-time resithey might wish to provide.

compiled to show where burns have Fire history, maps have also been aken place over the last several decades. Long-term fire history takes more digging. Contact staff in the fire management section of your local MNR office for more information.

inventory period allows you to see if Forest resource inventory maps have been compiled for decades. Comparing maps of your area from each the forest has changed as a result of ogging or other disturbance.

FURTHER READING REFERENCES AND

Technical Reports and Documents

Ontario Ministry of Natural Resources

Old Growth Policy Advisory Committee. 1994. *Con*serving Ontario's Old Growth Forest Ecosystems. Final Report and Highlights and Recommendalions of Old Growth Forests Policy Advisory Committee, Toronto, Ontario.

M1-73, Macdonald Block, 900 Bay Street, Toronto, Ontario (Single copies of publications available at no charge from Min-Istry of Natural Resources, Natural Resources Information Cen-

Anderson, H. W. and J.A. Rice. 1993. A Tree-Marking Guide for the Tolerant Hardwoods Working *Group in Ontario*. Ontario Ministry of Natural Resources, Toronto. 227 pp. (Single copies available for \$27.50 from Ministry of Natural Resources, Natural Resources Information Centre, M1-73, Macdonald Block, 900 Bay Street, Toronto, Ontario M7A 2C1.) White, D. J. 1990. Preliminary Definitions and tarro. Contract report to Ontario Ministry of Natural Evaluation of Old-Growth Forest in Eastern On-Resources, Kemptville, Ontario. 60 pp.

Ontario Forest Research Institute (OFRI)

Ontario Forest Research Institute Research Report Series. Several recent titles reviewed for this handbook include studies of dendrochronology, ire history, forest disturbance and old growth.

Several important background documents and Forest Fragmentation and Biodiversity Project ifeld studies of old growth forests have been produced by the Forest Landscape Ecology Program. (Single copies of any of these reports available at no charge from Ministry of Natural Resources, Ontario Forest Research Institute P.O. Box 969, 1235 Queen Street East, Sault Ste, Marie, Ontario OLD GROWTH HANDBOOK

Eastern Ontario Model Forest (EOMF) Group

Keddy, C. 1994. Forest History of Eastern Ontario. EOMF Information Report No. 1, Brockville Ontario. 41 pp, plus appendices. Keddy, C. 1994. Forest Structure of Eastern North America. EOMF Information Report No. Brockville, Ontario. 39 pp., plus appendices.

Keddy, P. and C. Drummond, 1994. Ecological Properties for the Evaluation of Eastern Ontario forest Ecosystems. EOMF Report.

(Single copies of these publications are available at no charge from the Eastern Ontario Model Forest, P.O. Bag 2111, Kemp-Iville, Ontario KOG 110.)

Canadian Nature Federation

Canadian Nature Federation, 1996. An Ancient Forest Atlas of the Lake Temagami Site Region (Copies of the atlas are available from the Canadian Nature Federation.)

Ancient Forest Explorations and Research (AFER)

nary reports on old growth and ancient forests in Forest Landscape Baselines. Progress and sum-

Background Reading

cal Diversity. Prentice Hall, Englewood Cliffs, New Hunter, M.L. Jr. 1990. Wildlife, Forests, and Forestry: Principles of Managing Forests for Biologiersey. 370 pp. Kimmins, J.P. 1992. Balancing Act: Environmental Issues in Forestry. University of British Columbia ress, Vancouver. 244 pp. Maser, C. 1988. The Redesigned Forest. R. & E. Miles, San Pedro, California. 234 pp.

1984. The Seen and Unseen World of the Fallen free. USDA Forest Service Pacific Northwest Forest and Range Experiment Station General Technical Maser, C. and J. M. Trappe (technical editors). Report PNW-164.

ment in New England Northern Hardwoods. USDA Forest Service Northeastern Forest Experiment fubbs, C. H., DeGraaf, R. M., Yamasaki, M. and W. M. Healy. 1987. Guide to Wildlife Tree Manage-Station General Technical Report NE-118.

Educators and Travellers Information for Families, Landowners,

Exploring Old Growth Forests — A Teacher's Man-Canadian Nature Federation *ual.* 1996.

Ontario Old Growth Ecotom. Children's Fact Sheet.

Federation of Ontario Naturalists.

Home Sweet Hole. Family Supplement. 1989.

Old Growth Forests. Family Supplement. 1990.

(Copies available for \$1.00 each from Federation of Ontario Naturalists, 355 Lesmill Road, Don Mills, Ontario M3B 2WB.)

Council of Outdoor Educators

Quest for Cavities: A Hole-istic Simulation Game. Published in Pathways (COEO newsletter): Vol 2. No. 6. October 1990.

of Ontario (COEO)

Ancient Forests Exploration and Research (AFER)

Quinby, P. 1993. Ancient Forest Exploration Guide: A Field Guide to Selected Old-Growth Red and White Pine Forests in Ontario. Published by Ancient Forests Exploration and Research, Powassan, Ontario. 36 pp. Copies are available for \$4.95 from AFER at 39 Westmoreland Avenue, Toronto, Ontario M6H 228.)

Ontario Ministry of Natural Resources

Cavity Trees are Refuges for Wildlife. 1995.

Restoring Old-Growth Features to Managed Forests in Southern Ontario. 1996. Copies of these Extension Notes are available at no charge from the Eastern Ontario Model Forest, P.O. Bag 2111, Kemptville Ontario KOG 110.)

47

ims list is a summary of features and habitat you can expect to find in old growth forests. To some degree you can also find them as important ingredients of other forests.

OLD TREES, BIG TREES

AD HABIT, idead trees, cavity	Cles seen that use dead trees, cavity Cles seen that use dead trees, cavity TREES Absent Absent	OLD FOREST WILDLIFE AND HABITAT Species seen that use dead trees, cavily trees, logs or old forests SUPERCANOPY TREES Present Absent Species and Wildlife uso NURSE LOGS AND PERCHED TREES Present Absent Iree species
	Cles seen that use cles seen that use TREES Absent Absent	Present Absent Ages LOGS AND PERCHE

OLD FOREST WILDLIFE AND HABITAT

Species seen that use dead trees, cavity trees, logs or old lorests			
Species seen that use dead trees			

SUPERCANOPY TREES

Species and Wildlife use			
Absent			
Present	-		

NURSE LOGS AND PERCHED TREES

Tree species	
Absent	
Present	·

FIRE SCARS

		_
Tree species affected	•	
MUSELII		
1103011		

STUMPS

Tree species and sizes	
Absent	
Present	

DEAD STANDING TREES (SNAGS)

Small (Up to 10 cm dbh) 2 3 4 Medium (10 cm to 50 cm dbh) (more than 50 cm dbh) (more than 50 cm dbh) Large (more than 50 cm dbh) (more than 50 cm dbh) (more than 50 cm dbh)			(SOUND) CHARLES (SIMPO)	2/		
Small (Up to 10 cm dbh) Medium (10 cm to 50 cm dbh) Large (more than 50 cm dbh) Dead tree species (list)	Decay class	-	2	က	Þ	5
Medium (10 cm to 50 cm dbh) Large (more than 50 cm dbh) Dead tree species (list)	Small (Up to 10 cm dbh)					
Large (more than 50 cm dbh) Dead tree species (list)	Medium (10 cm to 50 cm dbh)					
Dead free Species (list)	Large (more than 50 cm dbh)					
	Dead tree species (list)					

TREE CAVITIES

Caulty June	Ē	what trees? (I	In what trees? (for example, pine maple etc.)	e maple e	tc.)
פמנול נאופ	Pine	Maple			
Small					
Medium					
Large					
Extra-large					
Escape cavities and roost trees					

LOGS AND DOWN WOODY DEBRIS

Decay class	_	2	ဗ	4	S.
Small (up to 50 cm wide)					
Large (more than 50 cm wide)					

About the Author

iving in Arnprior, Ontario. Mark has Mark Stabb is a writer and biologist la deep personal interest in forest contion. He has authored many popular servation and environmental educaarticles, government publications and technical reports on ecology and na ture conservation. He received the Ontario Forestry Association's White line Award for his education efforts.

calls "forest geriatrics" — the old, dying dients" make to forest habitat. He has, . Mark has a keen interest in what he and dead parts of the forest - and the contribution these "old growth ingrecavity-nesting wildlife and biodiversity conservation to a wide variety of audiences. Mark spends much of his spare given close to 100 presentations on time exploring forests and natural areas and hiking with his family

About the Artist

tario, Tim Yearington is a professional freelance illustrator now living character of old growth forests and is Originally from North Bay, On in the Ottawa Valley. He is truly fasing the ancient pine forests of the cinated by the majestic and primeval committed to its protection. He still spends much of his free time exploremagami area.

inspired by the dynamic elements within old, growth that he encounters during his own forest treks. His acrylic Much of Tim's personal artwork is paintings and sketches vividly depict the essence of "Ontario Old-Growth" which has evolved into a donsisten

wilderness has become woven into his Tim's personal love of forests and career as a visual communicator. His - helping to promote the protection of healthy environments and endangered ecosystems — has been used by invironment Canada, the Canadian Stream magazine and now the Canadian Nature Federation. He may be Parks and Wilderness Society, the Ontario Parks Association, Field and contacted at: Box 811, R.R. #3, Woodwork as an "environmental illustrator" lawn, Ontario KOA 3M0. Phone and

U.S. Department of Education

Office of Educational Research and Improvement (OERI)
National Library of Education (NLE)
Educational Resources Information Center (ERIC)

REPRODUCTION RELEASE

(Specific Document)

I. DOCUMENT IDENTIFICATION:				
Title: Ontario's Old Growth: A Learner's Handbook				
Author(s):				
Corporate Source:		Publication Date:		
monthly abstract journal of the ERIC system, Re and electronic media, and sold through the ER reproduction release is granted, one of the follow. If permission is granted to reproduce and disse	timely and significant materials of interest to the edu sources in Education (RIE), are usually made availal IC Document Reproduction Service (EDRS). Credit	ole to users in microfiche, reproduced paper copy, is given to the source of each document, and, if		
of the page. The sample sticker shown below will be affixed to all Level 1 documents PERMISSION TO REPRODUCE AND	The sample sticker shown below will be affixed to all Level 2A documents PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL IN	The sample sticker shown below will be affixed to all Level 2B documents PERMISSION TO REPRODUCE AND		
DISSEMINATE THIS MATERIAL HAS BEEN GRANTED BY	MICROFICHE, AND IN ELECTRONIC MEDIA FOR ERIC COLLECTION SUBSCRIBERS ONLY, HAS BEEN GRANTED BY	DISSEMINATE THIS MATERIAL IN MICROFICHE ONLY HAS BEEN GRANTED BY		
Sample Sample	Sample	sample——		
TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)	TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)	TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)		
Level 1	Level 2A	Level 2B		
		<u>†</u>		
Check here for Level 1 release, permitting reproduction and dissemination in microfiche or other ERIC archival media (e.g., electronic) and paper copy.	Check here for Level 2A release, permitting reproduction and dissemination in microfiche and in electronic media for ERIC archival collection subscribers only	Check here for Level 2B release, permitting reproduction and dissemination in microfiche only		
	nents will be processed as indicated provided reproduction quality pe eproduce is granted, but no box is checked, documents will be proce			
I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document as indicated above. Reproduction from the ERIC microfiche or electronic media by persons other than ERIC employees and its system				

contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries.

Sign

here,→

Director

Organization/Address: Ancient forest Exploration + Roseach

3476 Memorial Park Drive, RP#4

Pawassan, ONTARTO POH 120

Pawassan, ONTARTO POH 120

RC021/86

(over)

III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or, if you wish ERIC to cite the availability of the document from another source, please provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more stringent for documents that cannot be made available through EDRS.)

Publisher/Distributor:	
Address:	
Price:	
	RIGHT/REPRODUCTION RIGHTS HOLDER: y someone other than the addressee, please provide the appropriate name and
Name:	
Address:	· ·
V. WHERE TO SEND THIS FORM:	

ERIC/CRESS AT AEL

ARRIER STREET - RTH ELOOP

P O BOX 1348

Send this form to the following ERIC Clearinghouse HARLESTON WV 25325

phone: 800/624-9120

However, if solicited by the ERIC Facility, or if making an unsolicited contribution to ERIC, return this form (and the document being contributed) to:

> **ERIC Processing and Reference Facility** 1100 West Street, 2nd Floor

Laurel, Maryland 20707-3598

Telephone: 301-497-4080 Toll Free: 800-799-3742 FAX: 301-953-0263

e-mail: ericfac@inet.ed.gov WWW: http://ericfac.piccard.csc.com

PREVIOUS VERSIONS OF THIS FORM ARE OBSOLETE.