TRANSMITTAL

February 1, 2001

0300

8Please type a plus sign (+) inside this box

PTO/SB/21 (08-00)
Approved for use through 10/31/02. OMB 0651-0031
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. **Application Number**

Filing Date

FORM		First Named Inventor	Toshio HATA et al.	
		Examiner Name	To Be Assigned	
(to be used for all correspondence after initial filing)		Group Art Unit	To Be Assigned	
Total Number Of Pages In This Submission 39		Attorney Docket No.	299002051900	
ENCLOSURES (check all that apply)				
Fee Transmittal Form Fee Attached Amendment After Final Affidavits/declara Extension of Time Requ	Ast (for (for (for (for (for (for (for (for	signment Papers r an Application) awing(s) sensing-related Papers stition stition to Convert to a sovisional Application ower of Attorney, Revocation nange of Correspondence Accerminal Disclaimer		After Allowance Communication to Group Appeal Communication to Board of Appeals and Interferences Appeal Communication to Group (Appeal Notice, Brief, Reply Brief) Proprietary Information Status Letter Other Enclosures (please identify below): 1. Submission of Priority Documents (2 pages) 2. Return Receipt Postcard
Express Abandonment in Information Disclosure Street Form 1449 Certified Copy of Priority (36 pages) Response to Missing Palacomplete Application Response to Missing Palacomplete Application Response to Missing Palacomplete Application	Statement w/ y Documents arts/ sssing Parts	equest for Refund D, Number of CD(s)		
SIGNATURE OF APPLICANT, ATTORNEY OR AGENT Firm Morrison & Foerster, 755 Page Mill Road, Palo Alto, CA 94304 or Individual Name Thomas E. Ciotti, Reg. No. 21,013 Signature X. Listti:				
Date March 6, 2001				
CERTIFICATE OF MAILING BY "FIRST CLASS MAIL"				

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Assistant Commissioner for Patents, Washington, D.C. 20231, on March 6, 2001.

Valoue cakes Valerie L. Cohen

Burden Hours Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231.

CERTIFICATE OF MAILING BY "FIRST CLASS MAIL"

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Assistant Commissioner for Patents, Washington, D.C. 20231, on March 6, 2001.

Valoué Coles

Valerie Cohen

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In the application of:

Toshio HATA et al.

Serial No.:

09/775,838

Filing Date:

February 1, 2001

For:

NITRIDE GALLIUM COMPOUND

SEMICONDUCTOR LIGHT EMISSION

DEVICE

Examiner: To Be Assigned

Group Art Unit: To Be Assigned

SUBMISSION OF PRIORITY DOCUMENTS

Commissioner for Patents Washington, D.C. 20231

Dear Sir:

The attached filing papers claim priority under 35 U.S.C. § 119 on the basis of Japanese Patent Application No. 2000-025920 (filed February 3, 2000), a certified copy of said Japanese patent application was submitted at time of filing on February 1, 2001, thereby perfecting the priority claim.

In the unlikely event that the transmittal letter is separated from this document and the Patent Office determines that an extension and/or other relief is required, applicant petitions for

any required relief including extensions of time and authorizes the Assistant Commissioner to charge the cost of such petitions and/or other fees due in connection with the filing of this document to **Deposit Account No. 03-1952** referencing 299002051800. However, the Assistant Commissioner is not authorized to charge the cost of the issue fee to the Deposit Account.

Dated: March 6, 2001

Respectfully submitted,

By:

Thomas E. Ciotti

Registration No. 21,013

Morrison & Foerster LLP 755 Page Mill Road

Palo Alto, California 94304-1018

Telephone: (650) 813-5702 Facsimile: (650) 494-0792

日本国特許庁

PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application:

2000年 2月 3日

出願番号

Application Number:

特願2000-025920

シャープ株式会社

2001年 2月16日

特許庁長官 Commissioner, Patent Office

特2000-025920

【書類名】

特許願

【整理番号】

99J02935

【提出日】

平成12年 2月 3日

【あて先】

特許庁長官殿

【国際特許分類】

H01L 33/00

【発明者】

【住所又は居所】 大阪府大阪市阿倍野区長池町22番22号 シャープ株

式会社内

【氏名】

幡俊雄

【発明者】

【住所又は居所】

大阪府大阪市阿倍野区長池町22番22号 シャープ株

式会社内

【氏名】

山本 健作

【発明者】

【住所又は居所】 大阪府大阪市阿倍野区長池町22番22号 シャープ株

式会社内

【氏名】

森本 泰司

【特許出願人】

【識別番号】 000005049

【氏名又は名称】 シャープ株式会社

【電話番号】

06-6621-1221

【代理人】

【識別番号】

100102277

【弁理士】

【氏名又は名称】 佐々木 晴康

【電話番号】

06-6621-1221

【連絡先】

電話043-299-8466 知的財産権本部 東京

知的財産権部

【選任した代理人】

【識別番号】 100103296

【弁理士】

【氏名又は名称】 小池 隆彌

【選任した代理人】

【識別番号】 100073667

【弁理士】

【氏名又は名称】 木下 雅晴

【手数料の表示】

【予納台帳番号】 012313

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9902286

【包括委任状番号】 9703283

【包括委任状番号】 9703284

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 窒化ガリウム系化合物半導体発光素子

【特許請求の範囲】

【請求項1】 基板とn型電極と活性層を含む窒化ガリウム系化合物半導体積層構造とp型電極を有し、p型電極はp型透光性電極とp型用パッド電極を有する窒化ガリウム系化合物半導体発光素子において、n型電極はn型透光性電極を含むことを特徴とする窒化ガリウム系化合物半導体発光素子。

【請求項2】 前記n型透光性電極は、p型透光性電極よりも外側に位置することを特徴とする請求項1に記載の窒化ガリウム系化合物半導体発光素子。

【請求項3】 前記n型透光性電極は、p型透光性電極の周囲に形成されていることを特徴とする請求項2に記載の窒化ガリウム系化合物半導体発光素子。

【請求項4】 前記窒化ガリウム系化合物半導体積層構造はバッファ層とn型窒化ガリウム系化合物半導体層を有し、前記n型透光性電極は基板とバッファ層との側面及び、n型窒化ガリウム系化合物半導体側面のバッファ層近傍に形成されていることを特徴とする請求項2または3に記載の窒化ガリウム系化合物半導体発光素子。

【請求項5】 前記n型電極はn型用パッド電極を有し、前記p型電極はp型用パッド電極を有し、n型用パッド電極とp型用パッド電極は同一辺側に形成されていることを特徴とする請求項1から4のいずれかに記載の窒化ガリウム系化合物半導体発光素子。

【請求項6】前記n型電極はn型用パッド電極を有し、前記p型電極はp型 用パッド電極を有し、p型用パッド電極は前記窒化ガリウム系化合物半導体発光 素子の光出射面の中心部近傍に形成されていることを特徴とする請求項1から4 のいずれかに記載の窒化ガリウム系化合物半導体発光素子。

【請求項7】 前記n型透光性電極は金属薄膜あるいは酸化物半導体からなることを特徴とする請求項1から6のいずれかに記載の窒化ガリウム系化合物半導体発光素子。

【請求項8】 前記n型用パッド電極はショットキー性接触となる電極であることを特徴とする請求項6に記載の窒化ガリウム系化合物半導体発光素子。

【請求項9】 前記n型用パッド電極がPd/Au、Ni/Au、Pt/Au、Pt/Au、Pd/Ni/Au、Pd/Al、Ni/Al、Pt/Al、Pd/Ni/Al Al、Pd/Ni/All Ni/All Ni/All

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、可視光から紫外光領域にて発光する窒化ガリウム系化合物半導体発 光素子において、特に、外部発光効率を良好とする窒化ガリウム系化合物半導体 発光素子の電極構造に関する。

[0002]

【従来の技術】

図13は、従来の発光素子構造を示す例である。対角線上にワイヤーボンドするためのp型電極400とn型電極100を配置し、n型電極100には周縁電極200を接続し、p型電極400には透明電極300を接続している。周縁電極200は、四角い発光素子の外周縁に設けられ、透明電極300は、この周縁電極200の内側に配設されている窒化ガリウム系化合物半導体発光素子が例えば特開平10-163531号公報に開示されている。

[0003]

【発明が解決しようとする課題】

発光素子においては、活性層から発生した光は素子内部で基板側にも放射され、基板で反射した後に素子外部へと放射されていく。しかしながら、上記従来の技術の発光素子においては、p型電極と同一面側の周囲にn型電極が形成されているため、基板側から反射された光は素子外部に放射される際に前記n型電極により遮られることになり、それゆえに発光素子から発生される光を減少させていることになる。このため、発光素子から放射される全光出力を低下させていると

いう問題がある。

[0004]

【課題を解決するための手段】

本発明の窒化ガリウム系化合物半導体発光素子は、基板とn型電極と活性層を含む窒化ガリウム系化合物半導体積層構造とp型電極を有し、p型電極はp型透光性電極とp型用パッド電極を有する窒化ガリウム系化合物半導体発光素子において、n型電極はn型透光性電極を含むことを特徴とする。

[0005]

本発明の窒化ガリウム系化合物半導体発光素子は、前記n型透光性電極は、p型透光性電極よりも外側に位置することを特徴とする。

[0006]

本発明の窒化ガリウム系化合物半導体発光素子は、前記n型透光性電極は、p型透光性電極の周囲に形成されていることを特徴とする。

[0007]

本発明の窒化ガリウム系化合物半導体発光素子は、前記窒化ガリウム系化合物 半導体積層構造はバッファ層とn型窒化ガリウム系化合物半導体層を有し、前記 n型透光性電極は基板とバッファ層との側面及び、n型窒化ガリウム系化合物半 導体側面のバッファ層近傍に形成されていることを特徴とする。

[0008]

本発明の窒化ガリウム系化合物半導体発光素子は、前記n型電極はn型用パッド電極を有し、前記p型電極はp型用パッド電極を有し、n型用パッド電極とp型用パッド電極は同一辺側に形成されていることを特徴とする。

[0009]

本発明の窒化ガリウム系化合物半導体発光素子は、前記n型電極はn型用パッド電極を有し、前記p型電極はp型用パッド電極を有し、p型用パッド電極は前記窒化ガリウム系化合物半導体発光素子の光出射面の中心部近傍に形成されていることを特徴とする。

[0010]

本発明の窒化ガリウム系化合物半導体発光素子は、前記n型透光性電極は金属

薄膜あるいは酸化物半導体からなることを特徴とする。

[0011]

本発明の窒化ガリウム系化合物半導体発光素子は、前記n型用パッド電極はショットキー性接触となる電極であることを特徴とする。

[0012]

本発明の窒化ガリウム系化合物半導体発光素子は、前記n型用パッド電極がPd/Au、Ni/Au、Pt/Au、Pd/Ni/Au、Pd/Al、Ni/Al、Pt/Al、Pd/Ni/Au、Pd/Al、Ni/Al、Pt/Al、Pd/Ni/Al、Pd/酸化物半導体層、Ni/酸化物半導体層、Pt/酸化物半導体層、Pd/Ni/酸化物半導体層、Pd/酸化物半導体層、Pd/Ni/酸化物半導体層、Ni/酸化物半導体層、Pt/酸化物半導体層、Pd/Ni/酸化物半導体層、またはこれらの合金から形成されたことを特徴とする。

[0013]

本発明は上記問題点を鑑み成されたもので、従来のp型電極と同一面上の周囲に形成されたn型電極を有する発光素子において、前記n型電極が発生光に対して透明であるように構成されたことにある。前記n型電極は、金属の厚さを薄層化し金属薄膜を形成し発生光に対して透明にするか、発生光に対して透明で導電性を有する酸化物半導体層を形成することにある。前記n型電極の構成は、金属薄膜及び酸化物半導体層またはそれらの積層体からなり、かつ前記p型電極と同一面上の周囲に形成されたことを特徴としている。

[0014]

本発明のn型電極によれば発生光が基板側に放射され基板側にて反射された放射光は透明である前記n型電極を透過し外部へ放射される。このため、本発明の発光素子の外部発光効率が向上することになる。さらに、前記酸化物半導体とは紫外光から可視光領域において透過率が高く導電性を有しているものであり、例えば、ITO(Indium Tin Oxide)、CTO(Cadmium - doped Tin Oxide)系、AZO(Aluminium - doped Zinc Oxide)系等からなる。

[0015]

ここで、前記基板は、導電性基板例えばGaN、SiC、Si、GaAs、G

a P等、非導電性基板例えばサファイヤ等から成る。

[0016]

また、n型窒化ガリウム系化合物半導体層上面(光出射面側)に形成される本発明のn型電極の幅は5μmから100μmの範囲が好ましい。前記幅が5μmより小さいと形成が困難となり、前記幅が100μmより大きいと電極面積が大きくなり発生光を低減させ、さらに前記電極面積が大きいと1チップ自体の面積が大きくなり生産性がよくない。このために、n型窒化ガリウム系化合物半導体層上面に形成されるn型電極の幅は5μmから100μmの範囲が好ましい。

[0017]

【発明の実施の形態】

本発明を具体的な実施例に基づいて詳細に説明する。なお、本願明細書において、窒化ガリウム系半導体とは、例えば、 $In_xAl_yGa_{1-x-y}N$ ($0 \le x$, $0 \le y$, $x+y \le 1$) も含むものとする。

[0018]

(実施の形態1)

図1は、本発明の一実施例を示す上面の概略図である。少なくとも発光層を含む窒化ガリウム系化合物半導体層が積層された発光素子1000において、p型窒化ガリウム系化合物半導体層上にp型透光性電極4及びp型用パッド電極5が形成され、n型窒化ガリウム系化合物半導体層上にn型透光性電極1を前記p型透光性電極4の周囲にわたって形成し、前記n型透光性電極1上にn型用パッド電極3を形成している。2は電極が形成されていない領域である。

[0019]

次に、本実施例の作製方法を図8を基に詳細に説明する。

[0020]

まず第一に、例えば有機金属気相成長(以下MOCVDと記述する)法を用いて、サファイヤからなる基板10上に、A1Nからなるバッファ層20、n型窒化ガリウム系化合物半導体層30、n型窒化ガリウム系化合物半導体クラッド層40、窒化ガリウム系化合物半導体発光層50、p型窒化ガリウム系化合物半導体クラッド層60、p型窒化ガリウム系化合物半導体クラッド層60、p型窒化ガリウム系化合物半導体コンタクト層70を順次積

層する(図8(a))。

[0021]

次に、前記基板をMOCVD装置より取り出し、ドライエッチング法を用いて エッチングマスクとしてフォトレジストを用いてn型窒化ガリウム系化合物半導 体層30の露出面31を形成する(図8(b))。

[0022]

次に、p型窒化ガリウム系化合物半導体コンタクト層70上ほぼ全面にp型透 光性電極4としてNiを7nm形成する。次に、p型用パッド電極5として例えばAuを300nmを形成する(図8(c))。

[0023]

次に、露出させた n型窒化ガリウム系化合物半導体層 3 0 上に n型透光性電極 1 として前記 p型透光性電極 4 の周囲にわたって T i を厚さ 5 nm、幅 5 μm形成する。この際に、n型透光性電極 1 が p型窒化ガリウム系化合物半導体層 (p型窒化ガリウム系化合物半導体クラッド層、p型窒化ガリウム系化合物半導体コンタクト層)及び p型透光性電極 4 に接触しないように、電極が形成されていない領域 2 を設ける(図 8 (d))。さらに、前記 n型透光性電極 1 上に n型用パッド電極 3 として A 1 を 3 0 0 nm形成する(図 8 (e))。

[0024]

次に、ウエハーをスクライブまたはダイシング等により例えば500μmに分割し、窒化ガリウム系化合物半導体発光素子がチップとして作製される(図8(f))。

[0025]

作製された窒化ガリウム系化合物半導体発光素子の断面構成を図4に示している。さらに、図4はp型用パッド電極5、n型用パッド電極3にAuワイヤー80を形成し、外部から電流を供給することを示している。

[0026]

本実施の形態の発光素子は、順方向電流20mAにおいて光出力2mW、順方向電圧が3.2Vであった。

[0027]

ここで、電極用の金属形成には、電子ビーム蒸着法を用いた。さらに、前記電 極の形状形成にはよく知られているリフトオフ法を用いた。

[0028]

また、図1において、n型用パッド電極3、p型用パッド電極5は円状に図示しているが、例えば四角形状等でもよいことはいうまでもない。さらに、本実施の形態では前記n型透光性電極1はp型透光性電極4の周囲にわたって形成したが、p型用パッド電極5の外周部だけを除いた一部の領域にだけ形成してもよく、その発光特性に変化はなかった。これは、p型用パッド電極5の直下に電流を注入して発光させても、前記p型用パッド電極に発生光が遮られるためにp型用パッド電極5の外周部の近傍には前記n型透光性電極1を設けなくてもよいからである。

[0029]

(実施の形態2)

図2は、本発明の一実施例を示す上面の概略図である。少なくとも発光層を含む窒化ガリウム系化合物半導体層が積層された発光素子2000において、p型窒化ガリウム系化合物半導体層上にp型透光性電極4及びp型用パッド電極5が形成され、n型窒化ガリウム系化合物半導体層上にn型透光性電極6として透光性金属薄膜と酸化物半導体層の二層構造の電極を前記p型透光性電極4の周囲にわたって形成し、前記n型透光性電極6上にn型用パッド電極3を形成している

[0030]

窒化ガリウム系化合物半導体層の積層構造及び作製方法は、実施の形態1と同様とした。n型透光性電極6の金属薄膜としてTiを厚さ2nm、幅80μm形成、その上に酸化物半導体層としてITOを300nm形成したことにある。前記ITOをTi上に形成することにより、Tiを薄層化できるためn型透光性電極6の透過率を増加させることができ、外部発光効率を向上できる。前記Tiの透過率を上げるために薄層化することが考えられるが、薄層化による断線が生じる可能性があるが、本実施例の場合は、この上方にITOを厚く形成しているため、電気的に接触していることになり薄層化による断線等の問題が防止できる。

このため、透過率の大きな n型透光性電極 6 が形成可能となる。

[0031]

本実施の形態の発光素子は、順方向電流20mAにおいて光出力3.5mW、順方向電圧が3.3Vであった。

[0032]

ここで、本実施の形態では、n型透光性電極6上にn型用パッド電極3を形成しているが、n型用パッド電極3がなくてもよく直接にn型透光性電極6上に外部から電流を供給するためのAuワイヤー80を形成してもよい。この場合、n型用パッド電極3を形成する必要がなく製造方法がより簡単になるという利点も生じる。さらに、n型透光性電極6は酸化物半導体層だけで構成されていてもよく、さらに製造方法がより簡単になるという利点も生じる。

[0033]

(実施の形態3)

図3は、本発明の一実施例を示す上面の概略図である。少なくとも発光層を含む窒化ガリウム系化合物半導体層が積層された発光素子3000において、p型窒化ガリウム系化合物半導体層上にp型透光性電極4及びp型用パッド電極5が形成され、p型透光性電極4の周囲にn型透光性電極1が形成されている。2は電極が形成されていない領域である。

[0034]

次に、本発明の実施例を図9を基に詳細に説明する。まず第一に、例えばMOCVD法を用いて、導電性GaNからなる基板10上に、GaNからなるバッファ層20、n型窒化ガリウム系化合物半導体層30、n型窒化ガリウム系化合物半導体クラッド層40、窒化ガリウム系化合物半導体発光層50、p型窒化ガリウム系化合物半導体クラッド層60、p型窒化ガリウム系化合物半導体コンタクト層70を順次積層する(図9(a))。

[0035]

次に、前記基板をMOCVD装置より取り出し、ドライエッチング法を用いて エッチングマスクとしてフォトレジストを用いてn型窒化ガリウム系化合物半導 体層30の露出面31を形成する。(図9(b))。 [0036]

次に、p型窒化ガリウム系化合物半導体コンタクト層70上ほぼ全面にp型透光性電極4としてNiを10nm形成する。次に、p型用パッド電極5としてAuを300nmを形成する。次に、n型窒化ガリウム系化合物半導体層の露出面31上にn型透光性電極1として前記p型透光性電極4の周囲にわたってTiを5nm形成する。この際にp型窒化ガリウム系化合物半導体層(p型窒化ガリウム系化合物半導体クラッド層及びp型窒化ガリウム系化合物半導体コンタクト層)及びp型透光性電極4に接触しないように、電極が形成されていない領域2を設けている(図9(c))。

[0037]

次に、ウエハーをスクライブまたはダイシング等により例えば500μm角に分割し、チップ状とする。次に、基板側から基板10裏面及び側面、さらにバッファ層20とn型窒化ガリウム系化合物半導体層30の側面に対して前記n型透光性電極1のNiが側面で約5nmになるように形成する(図9(d))。

[0038]

さらに、前記n型透光性電極1上にn型用パッド電極7としてA1を300nm形成する(図9(e))。

[0039]

作製された窒化ガリウム系化合物半導体発光素子の断面構成を図5に示している。さらに、図5はp型用パッド電極5にAuワイヤー80を接続し、n型用パッド電極7はリードフレームのカップ状の底部に載置しAgペースト等で接続することにより外部から電流を供給することができることを示している。

[0040]

この本発明の発光素子は、順方向電流20mAにおいて光出力2mW、順方向電圧が3.2Vであった。

[0041]

本実施の形態のような導電性基板を用いた場合、従来の発光素子においては、 前記発光素子は導電性基板上に電極を形成し、前記基板とは反対側に形成された 電極から電流が供給される素子構造があった。この発光素子は、導電性基板上に 窒化ガリウム系化合物半導体層を積層する場合において、前記基板上に前記基板 と異種または同種からなる緩衝層を積層するが、この緩衝層は欠陥が多く欠陥準 位を含んでいる層あるいは高抵抗層となり、結晶性は不安定でしかも低品質であ る。このために、この層を通って電流が流れると電流が前記欠陥または欠陥準位 にトラップされるか、または高抵抗層のために電流が流れにくいために、前記発 光素子の順方向電圧が増加するまたは電流が均一に流れないという問題が生じる 。このため、前記緩衝層を含む発光素子においては、素子の順方向電圧が増加す るために信頼性に問題があり、導電性基板上に電極を形成し、前記基板とは反対 側に形成された電極から電流が供給される素子構造の構成には問題があった。そ こで、本実施の形態のような構造にすることによって、電流は緩衝層を通らずに 流れることができるため、上記のような問題は起こらない。

[0042]

また、従来の導電性基板上に形成された電極と、前記基板とは反対側に形成された電極から電流が供給する発光素子においては、前記発光素子のマウントが容易であるという利点を有しているが、上記のような問題点が発生する。そこで、本発明の発光素子においては、前記基板の裏面、側面及び前記基板に近い方に積層された導電性化合物半導体層上にn型電極を形成することによりさらに前記金属電極が金属を薄層化し透明でありまたは透明な酸化物半導体層を用いた構成にすることにある。本発明のn型電極によって発生光を遮ることはなく、本発明の導電性基板に形成されたn型電極を用いることにより基板側に放射された発生光が前記透明(透光とも記載する)金属電極及び透明酸化物半導体層から効率よく放射される。従って、従来の発光素子のような順方向電圧の増加はなく信頼性の良好な窒化ガリウム系化合物半導体発光素子が可能となる。

[0043]

ここで、基板に導電性基板を使用しているため前記n型透光性電極1は必ずし も基板の側面の全面に形成されていなくてもよく、n型用パッド電極7から供給 された電流が導電性基板を流れバッファ層20の近傍に形成されたn型透光性電 極1を通り均一にn型窒化ガリウム系化合物半導体層30に電流が注入されれば よいため、前記基板の側面において一部にn型透光性電極1が形成されていない 構成でもよい。ここで、電極用の金属形成には、例えば電子ビーム蒸着法を用いた。 さらに、前記電極の形状形成にはよく知られているリフトオフ法を用いた。

[0044]

(実施の形態4)

図6は、本発明の一実施例を示す断面の概略図である。導電性基板上に少なくとも発光層を含む窒化ガリウム系化合物半導体層が積層された発光素子4000において、p型窒化ガリウム系化合物半導体コンタクト層70上にp型透光性電極4及びp型用パッド電極5が形成されている。n型透光性電極として、金属薄膜透光性電極8と酸化物半導体層9が形成されている。この発光素子はp型用パッド電極5上にAuワイヤー80を形成し、リードフレームのカップ底部に載置し酸化物半導体層9とAgペースト等で電気的に接続し外部から電流を供給する

[0045]

窒化ガリウム系化合物半導体層の積層構造及び方法は、実施の形態3と同様とした。金属薄膜透光性電極8として、前記p型透光性電極4の周囲にわたってTiを2nm形成、酸化物半導体層9として、基板10の側面と裏面、バッファ層20の側面、n型窒化ガリウム系化合物半導体層30の側面にITOを300nm形成した。前記ITOを導電性基板裏面及び側面に形成することにより、透過率の大きなITO層9を通して基板に漏れ出した発生光を効率よく外部に放射させることができる。このため、実施の形態3よりもさらに外部発光効率を向上できる。

[0046]

本実施の形態の発光素子は、順方向電流20mAにおいて光出力4mW、順方向電圧が3.3Vであった。

[0047]

図7は、本実施の形態の他の応用実施例を示す断面の概略図である。少なくとも発光層を含む窒化ガリウム系化合物半導体層が積層された発光素子において、 p型窒化ガリウム系化合物半導体コンタクト層70上にp型厚膜電極41として Niが7nm、Auが1μm~10μm形成され、n型窒化ガリウム系化合物半 導体層30の側面、バッファ層20の側面、基板10の側面及び裏面上にITOからなる酸化物半導体層9を膜厚100nm形成している。酸化物半導体層9を基板裏面及び側面に形成することにより、透過率の大きな酸化物半導体層9を通して基板に漏れ出した発生光を効率よく外部に放射させることができる。このため、実施の形態3よりも外部発光効率を向上できる。さらに、この発光素子は酸化物半導体層9上にn型用パッド電極3を形成し、この上にAuワイヤー80を形成する。p型厚膜電極41側をリードフレームのカップ底部90に載置し、p型厚膜電極41とIn薄膜45等で電気的に接続し外部から電流を供給する。

[0048]

本実施例の発光素子は、リードフレームのカップ底部90に積層体側を載置しているため順方向電流100mAにおいても光出力の飽和は見られず、順方向電流20mAにおいて光出力6mW、順方向電圧が3.4Vであった。

[0049]

ここで、酸化物半導体層9上にn型用パッド電極3は形成しなくてもよく、直接にAuワイヤー80を酸化物半導体層9上に接続してもよく、より製造工程が 簡単になる。

[0050]

(実施の形態5)

図11は、本発明の一実施例を示す上面の概略図である。少なくとも発光層を含む窒化ガリウム系化合物半導体層が積層された発光素子5000において、p型窒化ガリウム系化合物半導体層上にp型透光性電極4及びp型用パッド電極5が形成され、n型窒化ガリウム系化合物半導体層上にn型透光性電極1として金属薄膜を前記p型透光性電極4の周囲の一部に形成し、前記n型透光性電極1上にn型用パッド電極31を形成していることを特徴としている。

[0051]

窒化ガリウム系化合物半導体層の積層構造及びその方法は、実施の形態1と同様とした。n型透光性電極1として例えばTiを厚さ3nm、幅7μm形成、その上にA1を4nm形成する。次にn型用パッド電極31としてPdを30nm、Auを400nm形成する。p型透光性電極4としてPdを4nm、その上に

p型用パッド電極5としてPdを30nm、Auを400nmを形成する。前記 n型用パッド電極31とp型用パッド電極5はほぼ一辺線上に配置されている。 n型透光性電極1は、p型用パッド電極5の近傍には形成されていないために発光パターンを均一にするために好ましい。p型用パッド電極5の近傍にn型透光性電極1を形成した場合は、p型用パッド電極5近傍でやや明るく発光し、発光パターンの輝度にややむらが発生していたが、前記p型用パッド電極5近傍にn型透光性電極1を形成しないことにより、発光パターンはさらに均一になった。 p型用パッド電極5の近傍にはn型用パッド電極31が形成されておらず、さらにまたn型用パッド電極31にPdあるいはAuを使用しているためにn型窒化ガリウム系化合物半導体層に対してショットキー性接触をしめすために外部から注入された電流は、前記PdとAuにて形成されたn型用パッド電極31を介してp型透光性電極4の周囲に形成されたn型透光性電極1に電流が注入される。

[0052]

ここで、前記n型用パッド電極31のショットキー性接触をしめすための材料としてNi/Au、Pd/Ni/Au、Pd/Al、Ni/AlPd/Ni/Al、Pd/ITO、Ni/ITO、Pt/ITO等等を用いても特に問題とはならない。

[0053]

本実施例の発光素子は、発光パターンはさらに均一になり順方向電流20mA において光出力3.0mW、順方向電圧が3.3Vであった。

[0054]

ここで、本実施の形態では、p型用パッド電極5ばかりでなくn型用パッド電極31の最上層にAuを使用した場合はワイヤーボンドが容易になった、p型用パッド電極5とn型用パッド電極31を同一材料を用いるために製造方法がより安定かつ生産性に優れるという利点も生じる。

[0055]

(実施の形態6)

図12は、本発明の一実施例を示す上面の概略図である。少なくとも発光層を含む窒化ガリウム系化合物半導体層が積層された発光素子6000において、p

型窒化ガリウム系化合物半導体層上にp型透光性電極4及びp型用パッド電極5が形成され、n型窒化ガリウム系化合物半導体層上にn型透光性電極6を前記p型透光性電極4の周囲にわたって形成し、前記n型透光性電極6上にn型用パッド電極31を形成し、p型用パッド電極5はn型透光性電極6から等間隔の位置に形成されていることを特徴としている。さらに、n型用パッド電極31としてPd、Ni、Auを形成することによりn型窒化ガリウム系化合物半導体層に対してショットキー性接触をしめすために外部から注入された電流は、前記Auにて形成されたn型用パッド電極31を介してp型透光性電極4の周囲に形成されたn型添光性電極1から電流が均一に注入される。

[0056]

窒化ガリウム系化合物半導体層の積層構造及び方法は、実施の形態1と同様と した。本実施の形態では、n型透光性電極6としてTiを厚さ30nm、幅40 μm、その上にITOを150nm形成した。n型用パッド電極31はPdを厚 さ20nm、Ni厚さ30nm、Auを400nm稈度形成した。同時にp型用 パッド電極5もPdを厚さ20nm、Ni厚さ30nm、Auを400nm程度 形成した。n型透光性電極6から等間隔になるようにp型用パッド電極5を形成 している。ここで、p型用パッド電極5の近傍にn型透光性電極6を形成した場 合は、 p 型用パッド電極 5 近傍で発光パターンの輝度にややむらが発生していた が、前記のようなn型透光性電極6に対して等間隔になるように前記p型用パッ ド電極5を形成することにより発光パターンはさらに均一になった。ここで、前 記n型用パッド電極31のショットキー性接触をしめすための材料としてNi/ Au、Pd/Ni/Au、Pd/A1、Ni/A1、Pd/Ni/A1等を用い ても特に問題とはならない。さらにp型用パッド電極5としてPt/Au、Pd /Au、Ni/Au、Pd/ITO、Ni/ITO、Pt/ITO等を用いても 特に問題とはならない。p型用パッド電極5の最上層にITO等を用いると発生 光を遮ることなく外部発光効率がさらに良好となるので好ましい。

[0057]

本実施例の発光素子は、発光パターンはさらに均一になり順方向電流20mA において光出力3mW、順方向電圧が3.1Vであった。ここで、図10に、本 発明の実施例にて作製した発光素子の光出力(実線)と従来構造の発光素子の光出力(点線)の比較を示している。本発明のn型周縁電極を薄膜化することにより発光出力は電流値20mAにおいて従来構造の約25%増となり外部発光効率の良好な発光素子が得られた。さらに、本発明の実施の形態5及び6によれば、外部発光効率の良好な発光素子とさらに発光パターンのより均一な発光素子が得られた。

[0058]

【発明の効果】

p型電極と同一面上の周囲あるいは基板裏面及び側面に形成されたn型電極が、透光性でありさらにオーミック接触である金属薄膜層または酸化物半導体層、それらの積層体からなる構成を有する窒化ガリウム系化合物半導体発光素子において、その発光素子の外部発光効率を向上させ、順方向電圧も低減でき、信頼性の優れた発光素子が得られる。

【図面の簡単な説明】

【図1】

実施の形態 1 の窒化ガリウム系化合物半導体発光素子の上面模式図である。

【図2】

実施の形態2の窒化ガリウム系化合物半導体発光素子の上面模式図である。

【図3】

実施の形態3の窒化ガリウム系化合物半導体発光素子の上面模式図である。

【図4】

実施の形態1の窒化ガリウム系化合物半導体発光素子の断面模式図である。

【図5】

実施の形態3の窒化ガリウム系化合物半導体発光素子の断面模式図である。

【図6】

実施の形態4の窒化ガリウム系化合物半導体発光素子の断面模式図である。

【図7】

実施の形態4の他の応用例の窒化ガリウム系化合物半導体発光素子の断面模式 図である。

【図8】

実施の形態1の窒化ガリウム系化合物半導体発光素子を作製模式図である。 【図9】

実施の形態3の窒化ガリウム系化合物半導体発光素子を作製模式図である。 【図10】

本発明の発光素子の光出力と従来構造の光出力の比較図である。

【図11】

実施の形態5の窒化ガリウム系化合物半導体発光素子の上面模式図である。

【図12】

実施の形態6の窒化ガリウム系化合物半導体発光素子の上面模式図である。

【図13】

従来の窒化ガリウム系化合物半導体発光素子の模式図である。

【符号の説明】

- 1 n型透光性電極
- 2 電極が形成されていない領域
- 3 n型用パッド電極
- 4 p型透光性電極
- 5 p型用パッド電極
- 6 n型透光性電極
- 10 基板
- 20 バッファ層
- 30 n型窒化ガリウム系化合物半導体層
- 40 n型窒化ガリウム系化合物半導体クラッド層
- 45 In薄膜
- 50 窒化ガリウム系化合物半導体発光層
- 60 p型窒化ガリウム系化合物半導体クラッド層
- 70 p型窒化ガリウム系化合物半導体コンタクト層
- 80 Auワイヤー
- 90 リードフレームのカップ底部

特2000-025920

1000 実施の形態1の発光素子 2000 実施の形態2の発光素子 3000 実施の形態3の発光素子 4000 実施の形態4の発光素子 5000 実施の形態5の発光素子

6000

実施の形態6の発光素子

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

[図5]

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【書類名】 要約書

【要約】

【課題】 p型電極の周囲または基板裏面及び側面に形成されたn型電極を有する窒化ガリムウ系化合物半導体発光素子において、外部発光効率を向上させた発光素子を得ることを目的とする。

【解決手段】 p型電極と同一面上の周囲または基板裏面及び側面に形成された n型電極が、透光性でありさらにオーミック接触である金属薄膜層または酸化物 半導体層、それらの積層体からなる構成を有する窒化ガリウム系化合物半導体発 光素子。

【選択図】 図1

出願人履歴情報

識別番号

[000005049]

1. 変更年月日

1990年 8月29日

[変更理由]

新規登録

住 所

大阪府大阪市阿倍野区長池町22番22号

氏 名

シャープ株式会社

(Translation)

PATENT OFFICE JAPANESE GOVERNMENT

This is to certify that the annexed is a true copy of the following application as filed with this Office.

Date of Application : February 3, 2000

Application Number : Patent Appln. No. 2000-025920

Applicant(s) : SHARP KABUSHIKI KAISHA

Wafer
of the
Patent
Office

February 16, 2001

Kozo OIKAWA

Commissioner, Patent Office Seal of Commissioner of the Patent Office

Appln. Cert. No.

Appln. Cert. Pat. 2001-3008363