

Применение метода КАБАРЕ для треугольных плоских ячеек в среде openFoam

Зайцев М.А.

Применение poly cell

Применение метода КАБАРЕ для треугольных плоских ячеек в среде openFoam

Содержание:

- Математическое моделирование методом КАБАРЕ для уравнений Навье -Стокса
- Разработка алгоритма для треугольных ячеек
- Результаты вычислений

Решенные задачи:

- Задача о вихре
- Задача об обратной ступеньке
- Задача о составном профиле

Постановка задачи сжимаемого газа

$$\frac{\partial}{\partial t}\rho + \frac{\partial}{\partial x_{i}}\rho u_{i} = 0;$$

$$\frac{\partial}{\partial t}\rho u_{j} + \frac{\partial}{\partial x_{i}}\rho u_{i}u_{j} + \frac{\partial}{\partial x_{j}}p = \frac{\partial}{\partial x_{i}}\sigma_{ij}; \quad i, j = 1, ..., 3;$$

$$\frac{\partial}{\partial t}\rho E + \frac{\partial}{\partial x_{i}}\rho u_{i}E + \frac{\partial}{\partial x_{i}}\rho u_{i}p = \frac{\partial}{\partial x_{j}}u_{i}\sigma_{ij};$$

$$\sigma_{ij} = \nu\rho\left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} - \frac{2}{3}\delta_{ij}\frac{\partial u_{k}}{\partial x_{k}}\right);$$

$$p = \rho(\gamma - 1)(E - u_{i}u_{i}).$$

openFoam phase 1

```
Ideal gas
r=r-dt2*fvc::surfaceIntegrate(rnews*(mesh.Sf() & unews));
e=(e*r-dt2*fvc::surfaceIntegrate((mesh.Sf() & unews)*(rnews*Cv*tnews+pnews)))/r
u=(u*r-dt2*fvc::surfaceIntegrate((mesh.Sf() & unews)*unews*rnews+pnews*mesh.Sf()))/r
+dt2*fvc::laplacian(nu, u);
```

Вычисления в ячейках (Phase 1 & 3)

vol<Type>Field: p,U,T – conservative cell variables

surface<Type>Field: Ps,Us,Ts - flux face variables

Face Normal: mesh.Sf()

Phase 1-3

Cell B (Backward)

Cell F (Foward)

thermodynamicProperties

```
nu nu [0 2 -1 0 0 0 0] 0.8929001e-06;
kappa kappa [0 2 -1 0 0 0 0] 1e-06;
Rofon Rofon [1 -3 0 0 0 0 0] 997.2;
g g [0 1 -2 0 0 0 0] (0 0 -9.81);
// Thermal expansion coefficient
beta beta [0 0 0 -1 0 0 0] 0.65e-4;
// Reference temperature
TRef TRef [0 0 0 1 0 0 0] 292;
```

Вычисления инвариантов

$$I_{+} = u - \frac{p}{\rho c}$$

$$I_{-} = u + \frac{p}{c}$$

Eigen values are equal positive and negative values of wave velocity. Zero eigen value is for Y and Z velocity.

OpenFOAM formulation:

Time loop

Phase 1;

Phase 2;

Phase 3;

Loop end

Phase 2 is external function.

Boundaries are OpenFOAM

codedMixed type.

Граневые вычисления

c - invariant value, l - distance to opposite face, indices b и f are for backward and forward face invariant value, cb и cf are for backward and forward cell invariant value, csb и csf are for backward and forward cell invariant value on intermediate time step.

$$I_{+}^{\text{max}} = \max(I, I_b, I_{cb}) + 2(I_{csb} - I_{cb}) + c \frac{\Delta t}{l} (I - I_b)$$

$$I_{+}^{\min} = \min(I, I_b, I_{cb}) + 2(I_{csb} - I_{cb}) + c \frac{\Delta t}{l} (I - I_b)$$

$$I_{+}^{new} = \begin{cases} I_{+}^{\text{max}} & 2I_{csb} - I_{b} > I_{+}^{\text{max}} \\ 2I_{csb} - I_{b} & I_{+}^{\text{min}} <= 2I_{csb} - I_{b} <= I_{+}^{\text{max}} \\ I_{+}^{\text{min}} & 2I_{csb} - I_{b} < I_{+}^{\text{min}} \end{cases}$$

$$\begin{split} I_{-}^{\text{max}} &= \max(I, I_{f}, I_{cf}) + 2(I_{csf} - I_{cf}) + c\frac{\Delta t}{l}(I_{f} - I) \\ I_{-}^{\text{min}} &= \min(I, I_{f}, I_{cf}) + 2(I_{csf} - I_{cf}) + c\frac{\Delta t}{l}(I_{f} - I) \\ I_{-}^{\text{mew}} &= \begin{cases} I_{-}^{\text{max}} & 2I_{csb} - I_{b} > I_{-}^{\text{max}} \\ 2I_{csf} - I_{f} & I_{-}^{\text{min}} <= 2I_{csb} - I_{b} <= I_{-}^{\text{max}} \\ I_{-}^{\text{min}} & 2I_{csb} - I_{b} < I_{-}^{\text{min}} \end{cases} \end{split}$$

New velocity values -half summ of invariants with indices "+" and "-". Pressure - half difference, multiplied by factor ρc.

Трансформация треугольной сетки в poly mesh

Вычисление в фиктивной противоположной грани

$$u_{if} = 2u_{icf} - (u_{icf} + u_{ib})/2, i = 1,..3$$

$$\rho_f = 2\rho_{cf} - (\rho_{cf} + \rho_{cb})/2$$

$$E_f = 2E_{cf} - (E_{cf} + E_{cb})/2$$

$$p = \rho(\gamma - 1)(E - u_i u_i)$$

Задача о вихре

Вид сетки

модуль скорости

280000 ячеек

Задача о ступеньке

Вид завихренности

Задача о составном профиле

450000 ячеек

Задача о составном профиле (анимация завихренности и акустического давления)

Сравнение с экспериментом по распределению давления на профиле

Синяя линия - CABARET

Сравнение с экспериментом по PSD

(b) Sensor S10

Frequency [Hz]

(d) Sensor S13

Orange line - CABARET

Параллельные вычисления и масштабируемость

Step number	Processor number	Cell number	Cell number	Performance (processor time	Total time,
			per	per single step	sec
			processor	for single cell),	
				μs	
14109	128	12962	102	21.69719	31.83
14109	64	12962	204	13.28509	38.13
14109	32	12962	409	8.17008	47.37
14109	16	12962	818	6.382148	72.62
14109	8	12962	1636	5.470367	125.3
14109	4	12962	818	4.699517	214.55
28395	256	57762	232	15.96	101.65
28395	128	57762	455	10.17	130.12
28395	64	57762	911	7.35	187.91
28395	32	57762	1823	6.65	341.42

Выводы

Реализация метода Кабаре для ячеек poly для сжимаемой жидкости имеет хорошие диссипативные свойства алгоритма. Скорость счета сопоставима со скоростью счета по другим программам, реализующими метод Кабаре.