

Exercise 2: Comparing Collectives

William Won

Ph.D. Student, School of Computer Science Georgia Institute of Technology william.won@gatech.edu

Acknowledgments: Srinivas Sridharan (Facebook), Sudarshan Srinivasan (Intel)

Time (PDT)	Topic	Presenter
1:00 - 2:00	Introduction to Distributed DL Training	Tushar Krishna
2:00 – 2:20	Challenges on Distributed Training Systems	Srinivas Sridharan
2:20 – 3:30	Introduction to ASTRA-sim simulator	Saeed Rashidi
3:30 – 4:00	Coffee Break	
4:00 – 4:50	Hands-on Exercises on Using ASTRA-sim	William Won and Taekyung Heo
4:50 - 5:00	Closing Remarks and Future Developments	Taekyung Heo

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) https://astra-sim.github.io/tutorials/mlsys-2022

Attention: Tutorial is being recorded

Objective

- Familiarizing yourself more with ASTRA-sim scripts
 - Changing communication size
 - Executing multiple runs
- Comparing ASTRA-sim results
 - Different-sized All-Reduce collective
- Implementing different topologies
 - Running HalvingDoubling All-Reduce on Switch
 - Running Direct All-Reduce on FullyConnected

Changing Communication Size

Running 5 MB All-Reduce collective

Method 1: Change Workload Configuration

```
MICRO ← training loop

1 #layers

allreduce -1 1 NONE 0 1 ALLREDUCE 5242880 1
```

Meta	data		Forward		1	nput grad	l	V	Veight gra	d	Layer
Layer Name	(rsvd.)	Compute Time	Comm. Type	Comm. size	Compute Time	Comm. Type	Comm. Size	Compute Time	Comm. Type	Comm. Size	Delay
allreduce	-1	1	NONE	0	1	NONE	0	1	ALLREDUCE	5242880	1

Changing Communication Size

Running 5 MB All-Reduce collective

Method 2: Change ASTRA-sim Run Script

Executing Multiple Configurations

Run [1, 5, 10] MB All-Reduce (total 3 configurations) concurrently

```
"${BINARY}" \
                                     1MB All-Reduce
       --comm-scale="1" \
                                            3 total configurations
       --total-stat-rows=3 \
                                              index 0
       --stat-row=0
"${BINARY}" \
                                              5MB All-Reduce
       --comm-scale="5" \
       --total-stat-rows=3 \
                                              index 1
       --stat-row=1
"${BINARY}" \
                                              10MB All-Reduce
       --comm-scale="10" \
       --total-stat-rows=3 \
                                              index 2
       --stat-row=2
```

Executing Multiple Configurations

 Objective: All-Reduce of size [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] MB (total 11 configurations)

```
SIZES=(1 2 4 8 16 32 64 128 256 512 1024) Size: 1 - 1024 MB
for i in {0..10}; do
                                                        For-loop
    size=${SIZES[$i]}
    "${BINARY}" \
        --run-name="${size}" \
                                                        Run name: Size
        --network-configuration="${NETWORK}" \
        --system-configuration="${SYSTEM}" \
        --workload-configuration="${WORKLOAD}" \
        --comm-scale="${size}" \
                                                         All-Reduce Size
        --path="${RESULT DIR}/" \
        --total-stat-rows=11 \
                                                        11 Total configs
                                                        ith config
        --stat-row=$i
done
```

Running Experiment

 All-Reduce of size [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] MB (total 11 configurations)

```
$ cd exercise_2/
$ ./build.sh
$ ./exercise_2_1.sh
```

Understanding Results

result 1/tutorial_result.csv

Name	Total Time (us)	Compute Time (us)	Exposed Communication Time (us)	Total Message Size (MB)
1	45.681	0	45.681	1.75
2	62.761	0	62.761	3.5
4	96.921	0	96.921	7
8	165.297	0	165.297	14
16	302.077	0	302.077	28
32	575.609	0	575.609	56
64	1122.673	0	1122.673	112
128	2216.745	0	2216.745	224
256	4404.945	0	4404.945	448
512	8781.373	0	8781.373	896
1024	17534.229	0	17534.229	1792

Switch and FullyConnected Topology

- Switch topology
- HalvingDoubling All-Reduce
- 1 Link / NPU

FullyConnected(N)

- FullyConnected topology
- Direct All-Reduce
- (N-1) Links / NPU

Switch/FullyConnected Network

```
inputs/switch.json
                                        inputs/fullyconnected.json
                                          "dimensions-count": 1,
  "dimensions-count": 1,
                                          "topologies-per-dim": ["FullyConnected"],
  "topologies-per-dim": ["Switch"],
                                          "units-count": [8],
  "units-count": [8],
                                          "links-count": [7],
  "links-count": [1],
                                          "link-latency": [500],
  "link-latency": [500],
                                          "link-bandwidth : [50]
  "link-bandwidth": [50]
                     Switch topology
                                                             FullyConnected topology
          1 link/NPU
                                                   7 link/NPU
```

Configurations: System

inputs/switch.txt

```
endpoint-delay: 10

active-chunks-per-dimension: 1

preferred-dataset-splits: 4

boost-mode: 1

all-reduce-implementation: halvingDoubling

all-gather-implementation: halvingDoubling

reduce-scatter-implementation: halvingDoubling

all-to-all-implementation: direct

collective-optimization: localBWAware
```

HalvingDoubling collective algorithm

inputs/fullyconnected.txt

```
endpoint-delay: 10

active-chunks-per-dimension: 1

preferred-dataset-splits: 4

boost-mode: 1

all-reduce-implementation: direct

all-gather-implementation: direct

reduce-scatter-implementation: direct

all-to-all-implementation: direct

collective-optimization: localBWAware
```

Direct collective algorithm

Running Experiment

- Objective: Running
 - 1GB All-Reduce
 - On 8-NPU Ring, Switch, FullyConnected

```
exercise_2_2.txt
```

Running Experiment

- Objective: Running
 - 1GB All-Reduce
 - On 8-NPU Ring, Switch, FullyConnected

```
$ ./build.sh
$ ./exercise 2 2.sh
```

Understanding Results

result_2/tutorial_result.csv

Name	Total Time (us)	Compute Time (us)	Exposed Communication Time (us)	Total Message Size (MB)
Ring	17534.229	0	17534.229	1792
Switch	35026.693	0	35026.693	1792
FullyConnected	5004.925	0	5004.925	1792

Time (PDT)	Topic	Presenter
1:00 - 2:00	Introduction to Distributed DL Training	Tushar Krishna
2:00 – 2:20	Challenges on Distributed Training Systems	Srinivas Sridharan
2:20 – 3:30	Introduction to ASTRA-sim simulator	Saeed Rashidi
3:30 – 4:00	Coffee Break	
4:00 – 4:50	Hands-on Exercises on Using ASTRA-sim	William Won and Taekyung Heo
4:50 - 5:00	Closing Remarks and Future Developments	Taekyung Heo

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) https://astra-sim.github.io/tutorials/mlsys-2022

Attention: Tutorial is being recorded