Kontrolltöö

1. (5 p) Leida kõik täisarvud a, b, c, mille korral (a, b, c) = 10 ja [a, b, c] = 2020.

Viin antud arvud standardkujudele: $10 = 2 \cdot 5$, $2020 = 2^2 \cdot 5 \cdot 101$. Seega kõigi kolme arvu a, b ja cstandardkujud on $2^l \cdot 5 \cdot 101^k$, kus ühel arvul l=1, teisel arvul l=2 ja kolmandal $l \in \{1,2\}$, samuti ühel arvul k=0, teisel k=1 ja kolmandal $k\in\{0,1\}$. Seega on võimalikud kõik järgnevad kolmikud ja nende permutatsioonid ning kuna SÜT ja VÜK on määratud märgi tapsusega, sobivad kõigist nendest kolmikutest ka variandid, kus mingi kogus arvudest a, b ja c on asendatud nende vastandarvudega.

k	(0,0,1)	(0,1,1)	(0,1,0)	(1,0,0)	(1,0,1)	(1,1,0)
(1,1,2)	(10,10,2020)	(10,1010,2020)	(10,1010,20)	(1010,10,20)	(1010,10,2020)	(1010,1010,20)
(1,2,2)	(10,20,2020)	(10,2020,2020)	(10,2020,20)	(1010,20,20)	(1010, 20, 2020)	(1010,2020,20)

2. (8 p) Leida $F_{n+1}^2 \pmod{F_n}$ ja $F_n^2 \pmod{F_{n+1}}$, kus F_n on n. Fibonacci arv.

Fibonacci arvud lahti kirjutades saan $F_{n+1}^2=(F_{n-1}+F_n)^2=F_{n-1}^2+2F_{n-1}F_n+F_n^2\equiv F_{n-1}^2\pmod{F_n}$. Teise kuju vaatlemiseks vaatan arvu $F_n^2-F_{n-1}^2=(F_n-F_{n-1})(F_n+F_{n-1})$ ehk see arv jagub arvudega $F_n+F_{n-1}=F_{n+1}$ ja $F_n-F_{n-1}=F_{n-2}$ ning kui $F_{n+1}\mid F_n^2-F_{n-1}^2$, on see samaväärne kongruentsiga $F_n^2\equiv F_{n-1}^2\pmod{F_{n+1}}$ ning samuti teisest jaguvusest saab $F_n^2\equiv F_{n-1}^2\pmod{F_{n-2}}$. Seega olen leidnud kolm samasust: $F_{n+1}^2\equiv F_{n-1}^2\pmod{F_n}$, $F_n^2\equiv F_{n-1}^2\pmod{F_{n+1}}$ ja $F_n^2\equiv F_{n-1}^2\pmod{F_n}$. $\pmod{F_{n-2}}$.

Esimene leitud samaväärsuse põhjal on esimene leitav arv n=k puhul on sama, mis teine leitav arv n = k+1 puhul, kuna $F_{k+1}^2 \equiv F_{k-1}^2 \pmod{F_k}$, kus kongruentsi vasakpoolne arv on esimene leitav arv ning kui k asemele võtta k+1 saab $F_{k+2}^2 \equiv F_k^2 \pmod{F_{k+1}}$. Seega piisab vaid esimese arvu leidmisest. Väidan, et kui n on paarisarv, kehtib $F_{n+1}^2 \equiv 1 \pmod{F_n}$ ning kui n on paaritu, kehtib $F_{n+1}^2 \equiv -1$

Baas: väikeste n väärtuste puhul saab läbi vaadates, et $F_{n+1}^2 \pmod{F_n}$ on n=1 puhul 0 ehk 1, n=2puhul samuti 0 ehk sama mis -1, n=3 puhul tuleb 1

Samm paarisarvude jaoks: eeldan, et n on paarisarv ja $F_{n+1}^2 \equiv 1 \pmod{F_n}$. Siis asendades k=n+2, saab $F_{k-1}^2 \equiv 1 \pmod{F_{k-2}}$ ning kolmanda leitud samasuse põhjal $1 \equiv F_{k-1}^2 \equiv F_k^2 \pmod{F_{k-2}}$. Seejärel teen asenduse t=k+1 ning saan $1 \equiv F_{n+2}^2 \pmod{F_n}$

3. (7 p) Sõnastada ja tõestada teoreem τ - ja σ -funktsioonide arvutusvalemitest.

Teoreem: kui
$$n > 1$$
 ja $n = p_1^{k_1} \dots p_s^{k_s}$, siis $\tau(n) = (k_1 + 1) \dots (k_s + 1)$ ja $\sigma(n) = \frac{p_1^{k_1 + 1} - 1}{p_1 - 1} \cdot \dots \cdot \frac{p_s^{k_s + 1} - 1}{p_s - 1}$.

- 1. Lause 1.21 tõttu on jagajad arvud $p_1^{l_1}...p_s^{l_s}$, kus $0 \le l_i \le k_i$ iga i=1,...,s kohta. Aritmeetika põhiteoreemi tõttu on iga l väärtuste kombinatsiooni kohta täpselt üks arv ja iga l_i jaoks on $k_i + 1$
- erinevat väärtust ehk kokku on erinevaid võimalusi jagajate leidmiseks $(k_1+1)...(k_s+1)$. 2. Vaatleme korrutist $(1+p_1+p_1^2+...+p_1^{k_1})(1+p_2+...+p_2^{k_2})...(1+p_s+...+p_s^{k_s})$ vaatlen summat mis tekib, kui sulud avada. On näha, et sulud lahti tehes tekkiva summa igas liikmes on s tegurit, iga tegur vastavalt ühest sulust võetud. Seega on tekkivas summas igas liikmes s tegurit, iga teguri valimiseks on $k_i + 1$ võimalust, ehk tekkivate summa liikmete kogus on ülimalt $(k_1 + 1)(k_2 + 1)...(k_s + 1) = \tau(n)$. Teiselt poolt on iga n tegur esindatud selles summas, kuna kui võtta suvaline n tegur $p_1^{l_1}...p_s^{l_s}$, saab esimesest sulust võtta l_1 nda liikme, teisest l_2 nda liikme jne ning saada vastav tegur kätte. Seega on saadud summas kõik n tegurid ühe kordselt esindatud ehk summa on $\sigma(n)$. Kasutades geomeetrilise jada summa valemit saab ka lõpliku tulemuse $\sigma(n) = \frac{p_1^{k_1+1}-1}{p_1-1} \cdot \ldots \cdot \frac{p_s^{k_s+1}-1}{p_s-1}$.

1

saab ka lõpliku tulemuse
$$\sigma(n) = \frac{p_1^{k_1+1}-1}{n_1-1} \cdot \dots \cdot \frac{p_s^{k_s+1}-1}{n_s-1}$$
.