Techniques of Integration

Section 7.1-7.3

Outline

- Integration by Parts
- Trigonometric Integrals
- Trigonometric Substitution

Trigonometric Substitution

- In general, we can make a substitution of the form x=g(t) by using the Substitution Rule in reverse.
- To make our calculations simpler, we assume that g(t) has an inverse function; that is, g is one-to-one.
- In this case, $\int f(x)dx = \int f(g(t))g'(t)dt$

Trigonometric Substitution

In the following table we list trigonometric substitutions that are effective for the given radical expressions because of the specified trigonometric identities.

Trigonometric Substitution

Table of Trigonometric Substitutions

Expression	Substitution	Identity
$\sqrt{a^2-x^2}$	$x = a \sin \theta, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$	$1 - \sin^2\theta = \cos^2\theta$
$\sqrt{a^2 + x^2}$	$x = a \tan \theta, -\frac{\pi}{2} < \theta < \frac{\pi}{2}$	$1 + \tan^2\theta = \sec^2\theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$, $0 \le \theta < \frac{\pi}{2}$ or $\pi \le \theta < \frac{3\pi}{2}$	$\sec^2\theta - 1 = \tan^2\theta$

Integrals of $\int a^2 - x^2$

Ex: Compute $\int \int a^2 - x^2 dx$, where a>c is a constant.

Ex: Compute
$$\int \frac{dx}{(a^2-x^2)^{3/2}}$$
, where a>0 is a constant.

Ex: Compute $\int \frac{\sqrt{4-x^2}}{x^2} dx$.

Ex: Compute
$$\int_{\frac{1}{2}}^{\sqrt{3}} \frac{dx}{x \sqrt{1-x^2}}$$
.

Ex: Compute $\int \sqrt{-2x-x^2} dx$

Integrals of $\sqrt{a^2-x^2}$

$$2 dx = a \cos \theta d\theta$$

3
$$\sin \theta = \frac{x}{\alpha}$$
 $\cos \theta = \int_{1-\sin \theta}^{2} = \frac{1}{\alpha} \int_{0}^{2} x^{2}$

Integrals of 1 92+X2

$$2$$
 $dx = a sec 0 d0$

3
$$\tan \theta = \frac{x}{a}$$
, $\sec \theta = \int_{1+\tan \theta}^{1+\tan \theta} = \int_{1+(\frac{x}{a})^2}^{2} = \frac{1}{a} \int_{\alpha+x^2}^{\alpha}$

Ex: Compute $\int \frac{1}{\sqrt{4+x^2}} dx$.

Ex= Compute \ \frac{d \times \frac{\times 2}{\times^2 \sqrt{x^2 + q}}.

Ex: Compute $\int \int a_{+}^{2}x^{2} dx$, where aso is a constant.

$$Ex: \int \frac{dx}{\sqrt{x^2+2x+5}}$$

Integrals of
$$\int x^2 - a^2$$

Let
$$x = a \sec 0$$
, $0 \le 0 < \frac{\pi}{2}$, $\pi \le 0 < \frac{3}{2}\pi$, where $a > 0$. Then

$$1 \int x^2 - a^2 = \int a^2 (sec^2 0 - 1) = a tan 0$$

3)
$$Sec 0 = \frac{x}{a}$$
, $tan 0 = \int Sec^2 0 - 1 = \int (\frac{x}{a})^2 - 1 = \frac{1}{a} \int x^2 - a^2$

Ex: Compute $\int \frac{dx}{\sqrt{x^2-a^2}}$, where a>0 is a constant.

Ex = Compute
$$\int \frac{1}{e^{x} \sqrt{e^{2x}-1}} dx$$

Ex= Compute
$$\int \frac{\chi^3}{(\chi^2 - 1)^{3/2}} d\chi$$

$$Ex: \int \chi^2 \sqrt{\chi^6 - 1} d\chi$$

Review

- Write down the formula for integration by parts.
- How do we integrate the powers of $\sin x$ and $\cos x$? How do we integrate the powers of $\tan x$ and $\sec x$?
- When should we use the trigonometric substitution?