Algeberska topologija Zapiski predavanj

2023/24

Povzetek

Dokument vsebuje zapiske predavanj predmeta Algeberska topologija v okviru študija prvega letnika magistrskega študija matematike na FNM.

Kazalo

1	Uvodna motivacija	4
2	Kategorije	4

1 Uvodna motivacija

Tekom matematične izobrazbe se spoznamo z mnogimi t. i. strukturami, ki tipično zavzamejo obliko »množica + nekaj«. Med njimi imamo tipično tudi preslikave, ki jim pogosto damo posebno ime. Naštejmo nekaj primerov. Prej

Ime	Oznaka	ime preslikav
Množice	M	preslikave oz. funkcije
Grupe	(G, \circ)	homomorfizmi grup
Abelove grupe	(G,+)	homomorfizmi Ab. grup
Polja	$(F,+,\cdot)$	homomorfizmi polj
Vektorski prostori nad poljem F	$(V,+,\cdot)$	linearne preslikave
Delno urejene množice	(P, \leqq)	naraščajoče funkcije
Linearno urejene množice	(L, \leqq)	naraščajoče funkcije
Metrični prostori	(X,d)	zvezne funkcije
Topološki prostori	(X,\mathcal{T})	zvezne funkcije

omenjene preslikave (na neki strukturi) lahko seveda tudi komponiramo. Za komponiranje velja, da obstajata leva in desna enota ter da je asociativno za preslikave, ki se ustrezno ujemajo z domenami in kodomenami (npr. za preslikave f, g in h mora, če želimo formirati $h \circ (g \circ f)$ veljati, da je kodomena f hkrati domena g ter da je kodomena g hkrati domena g. Posplošena obravnava lastnosti skupin določenih struktur nas privede do t. .i teorije kategorij.

2 Kategorije

Definicija 1: Razred $\mathcal C$ z delno binarno operacijo \circ je kategorija, če velja:

- C je unija disjunktnih razredov Ob(C) in Mor(C). Elementom Ob(C) pravimo objekti, elementom Mor(C) pa morfizmi.
- Za vsak $f \in \mathcal{M}or(\mathcal{C})$ sta enolično določena »začetek« in »konec«, ki sta oba objekta kategorije \mathcal{C} . Pišemo $f: X \to Y$.
- Za poljubna objekta $X, Y \in \mathcal{O}b(\mathcal{C})$ je $\mathcal{M}or_{\mathcal{C}}((X,Y)) = \{f \in \mathcal{M}or(\mathcal{C}); f : X \to Y\}$ množica (ne samo razred).
- Za poljubna morfizma $f:X\to Y$ in $g:Y\to Z$ je enolično definiran morfizem $g\circ f:X\to Z$ in velja:
 - 1. Za poljubne morfizme $f:X\to Y, g:Y\to Z$ in $h:Z\to W$ je $(h\circ g)\circ f=h\circ (g\circ f).$
 - 2. Za vsak $X \in \mathcal{O}b(\mathcal{C})$ obstaja enolično določen morfizem $1_X \in \mathcal{M}or_{\mathcal{C}}((X,X))$, z lastnostjo: $\forall f: X \to Y \land \forall g: Z \to X$ je $f \circ 1_X = f$ in $1_X \circ g = g$ (Za poljubna $Y, Z \in \mathcal{O}b(\mathcal{C})$).