$11n_{146} (K11n_{146})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 9u^{21} - 99u^{20} + \dots + 8b + 344, \ 63u^{21} - 461u^{20} + \dots + 16a + 368, \ u^{22} - 9u^{21} + \dots + 80u - 16 \rangle \\ I_2^u &= \langle -u^{11} + 4u^9 + u^8 - 7u^7 - 2u^6 + 8u^5 + 4u^4 - 6u^3 - 5u^2 + b + 2u + 3, \ u^{14} + 2u^{13} + \dots + 2a - 4, \\ u^{15} - 5u^{13} - u^{12} + 12u^{11} + 3u^{10} - 19u^9 - 7u^8 + 21u^7 + 11u^6 - 16u^5 - 12u^4 + 8u^3 + 7u^2 - 2u - 2 \rangle \\ I_3^u &= \langle -34116957547a^7u^2 + 99566701011a^6u^2 + \dots + 1815673106251a + 882543035301, \\ 3a^7u^2 + 7a^6u^2 + \dots - 56a + 65, \ u^3 + u^2 - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 61 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 9u^{21} - 99u^{20} + \dots + 8b + 344, 63u^{21} - 461u^{20} + \dots + 16a + 368, u^{22} - 9u^{21} + \dots + 80u - 16 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{63}{16}u^{21} + \frac{461}{16}u^{20} + \dots + \frac{229}{2}u - 23 \\ -\frac{9}{8}u^{21} + \frac{98}{8}u^{20} + \dots + 175u - 43 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{27}{16}u^{21} + \frac{241}{16}u^{20} + \dots + \frac{323}{2}u - 41 \\ \frac{53}{8}u^{21} - \frac{423}{8}u^{20} + \dots - 356u + 79 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 9u^{21} - \frac{557}{8}u^{20} + \dots - \frac{1413}{4}u + \frac{135}{2} \\ -\frac{7}{8}u^{21} + \frac{31}{8}u^{20} + \dots - \frac{225}{2}u + 38 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.0625000u^{21} + 2.06250u^{20} + \dots + 41.2500u - 11.5000 \\ \frac{19}{4}u^{21} - \frac{79}{2}u^{20} + \dots - \frac{623}{2}u + 75 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{27}{16}u^{21} - \frac{241}{16}u^{20} + \dots - \frac{323}{2}u + 40 \\ -\frac{53}{8}u^{21} + \frac{423}{8}u^{20} + \dots + 357u - 79 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.0625000u^{21} + 2.06250u^{20} + \dots + 41.2500u - 11.5000 \\ \frac{17}{2}u^{21} - \frac{271}{4}u^{20} + \dots - \frac{865}{2}u + 99 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.0625000u^{21} + 2.06250u^{20} + \dots + 41.2500u - 11.5000 \\ \frac{17}{2}u^{21} - \frac{271}{4}u^{20} + \dots - \frac{865}{2}u + 99 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-\frac{39}{2}u^{21} + \frac{301}{2}u^{20} + \dots + 914u 202$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{22} - 9u^{21} + \dots + 80u - 16$
c_2	$u^{22} + 11u^{21} + \dots + 1408u + 256$
c_3, c_6, c_9	$u^{22} + 18u^{20} + \dots - 3u - 1$
c_4, c_{11}	$u^{22} - 6u^{20} + \dots + 4u - 1$
<i>C</i> ₅	$u^{22} + 12u^{21} + \dots + 672u + 64$
c ₈	$u^{22} - 12u^{21} + \dots - 64u + 8$
c_{10}	$u^{22} + u^{21} + \dots - 2u^2 - 10$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{22} - 11y^{21} + \dots - 1408y + 256$
c_2	$y^{22} + y^{21} + \dots - 663552y + 65536$
c_3, c_6, c_9	$y^{22} + 36y^{21} + \dots + 9y + 1$
c_4, c_{11}	$y^{22} - 12y^{21} + \dots - 66y + 1$
	$y^{22} - 26y^{21} + \dots - 273920y + 4096$
<i>c</i> ₈	$y^{22} - 2y^{21} + \dots + 224y + 64$
c_{10}	$y^{22} + 19y^{21} + \dots + 40y + 100$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.066710 + 0.226222I		
a = -0.351526 + 0.307053I	-2.44040 + 0.11720I	-7.20404 - 1.75445I
b = -0.539318 + 0.910382I		
u = -1.066710 - 0.226222I		
a = -0.351526 - 0.307053I	-2.44040 - 0.11720I	-7.20404 + 1.75445I
b = -0.539318 - 0.910382I		
u = 1.039800 + 0.529986I		
a = 0.729503 + 1.140060I	0.80566 - 4.34766I	-4.70703 + 6.76579I
b = -0.827030 + 0.144364I		
u = 1.039800 - 0.529986I		
a = 0.729503 - 1.140060I	0.80566 + 4.34766I	-4.70703 - 6.76579I
b = -0.827030 - 0.144364I		
u = 0.392350 + 0.705715I		
a = -1.47104 - 0.61591I	1.86600 + 2.08328I	1.28577 - 1.87912I
b = 0.989758 + 0.677091I		
u = 0.392350 - 0.705715I	1 00000 0 00000 1	4 00555 4 050407
a = -1.47104 + 0.61591I	1.86600 - 2.08328I	1.28577 + 1.87912I
b = 0.989758 - 0.677091I		
u = 0.583477 + 1.050930I	44 00040 . = 000407	4.45040 0.445047
a = 0.954459 + 0.738545I	11.22610 + 7.92016I	-1.17318 - 3.44504I
b = -1.41570 - 0.82771I $u = 0.583477 - 1.050930I$		
	11 00010 7 000107	1 15010 . 0 145045
a = 0.954459 - 0.738545I	11.22610 - 7.92016I	-1.17318 + 3.44504I
$\frac{b = -1.41570 + 0.82771I}{u = 0.498409 + 0.620816I}$		
·	9.40749 0.909007	0.250044 + 0.5762507
a = -1.379510 + 0.247291I	2.40742 - 0.20200I	-0.358944 + 0.576250I
b = 0.877040 - 0.154406I $u = 0.498409 - 0.620816I$		
	9.40749 + 0.909007	0.250044 0.5760501
a = -1.379510 - 0.247291I	2.40742 + 0.20200I	-0.358944 - 0.576250I
b = 0.877040 + 0.154406I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.091100 + 0.568772I		
a = 1.66508 + 1.05767I	-0.17078 - 6.97976I	-0.36212 + 5.29220I
b = -1.084320 + 0.882593I		
u = 1.091100 - 0.568772I		
a = 1.66508 - 1.05767I	-0.17078 + 6.97976I	-0.36212 - 5.29220I
b = -1.084320 - 0.882593I		
u = 0.520231 + 1.151080I		
a = 0.694248 + 0.193737I	10.39030 - 0.61941I	1.005762 + 0.209971I
b = -1.102170 - 0.272719I		
u = 0.520231 - 1.151080I		
a = 0.694248 - 0.193737I	10.39030 + 0.61941I	1.005762 - 0.209971I
b = -1.102170 + 0.272719I		
u = 1.154680 + 0.769733I		
a = -1.41430 - 0.79322I	9.4240 - 14.4970I	-3.20540 + 7.40924I
b = 1.38480 - 1.09712I		
u = 1.154680 - 0.769733I		
a = -1.41430 + 0.79322I	9.4240 + 14.4970I	-3.20540 - 7.40924I
b = 1.38480 + 1.09712I		
u = 1.21138 + 0.80873I		
a = -0.770380 - 0.556560I	8.24676 - 6.35399I	-2.34309 + 5.14871I
b = 0.946982 - 0.664925I		
u = 1.21138 - 0.80873I		
a = -0.770380 + 0.556560I	8.24676 + 6.35399I	-2.34309 - 5.14871I
b = 0.946982 + 0.664925I		
u = -1.46566 + 0.12857I		
a = 0.213752 + 0.149488I	2.91041 + 4.96923I	-3.04819 - 6.01952I
b = 0.844485 + 0.429706I		
u = -1.46566 - 0.12857I		
a = 0.213752 - 0.149488I	2.91041 - 4.96923I	-3.04819 + 6.01952I
b = 0.844485 - 0.429706I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.492053		
a = -0.403784	-0.825428	-11.7690
b = -0.296446		
u = 1.57389		
a = 0.163193	-7.90371	-59.0100
b = 0.147402		

$$II. \\ I_2^u = \langle -u^{11} + 4u^9 + \dots + b + 3, \ u^{14} + 2u^{13} + \dots + 2a - 4, \ u^{15} - 5u^{13} + \dots - 2u - 2 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{11} - 4u^{9} - u^{8} + 7u^{7} + 2u^{6} - 8u^{5} - 4u^{4} + 6u^{3} + 5u^{2} - 2u - 3 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u^{14} - u^{13} + \dots - \frac{7}{2}u + 2 \\ -u^{14} + 5u^{12} + \dots - 5u - 3 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{5}{2}u^{14} - \frac{23}{2}u^{12} + \dots + \frac{9}{2}u - 5 \\ u^{14} + 2u^{13} + \dots + 4u + 5 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{3}{2}u^{14} + u^{13} + \dots - \frac{7}{2}u + 2 \\ 4u^{14} + 3u^{13} + \dots + 12u + 5 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{14} - u^{13} + \dots - \frac{7}{2}u + 1 \\ -u^{14} + 5u^{12} + \dots - 4u - 3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{3}{2}u^{14} + u^{13} + \dots - \frac{7}{2}u + 2 \\ 4u^{14} + 4u^{13} + \dots + 11u + 7 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{3}{2}u^{14} + u^{13} + \dots - \frac{7}{2}u + 2 \\ 4u^{14} + 4u^{13} + \dots + 11u + 7 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-8u^{14} - 11u^{13} + 37u^{12} + 56u^{11} - 69u^{10} - 119u^9 + 89u^8 + 182u^7 - 56u^6 - 195u^5 - 6u^4 + 135u^3 + 41u^2 - 48u - 22$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{15} - 5u^{13} + \dots - 2u - 2$
c_2	$u^{15} + 10u^{14} + \dots + 32u + 4$
c_3, c_9	$u^{15} + 4u^{13} + \dots + u - 1$
c_4, c_{11}	$u^{15} + 2u^{13} + \dots + 4u - 1$
<i>C</i> ₅	$u^{15} - 11u^{14} + \dots + 73u - 25$
<i>C</i> ₆	$u^{15} + 4u^{13} + \dots + u + 1$
	$u^{15} - 5u^{13} + \dots - 2u + 2$
c ₈	$u^{15} - 7u^{14} + \dots + 3u^2 - 1$
c_{10}	$u^{15} + u^{14} + \dots + 2u + 2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{15} - 10y^{14} + \dots + 32y - 4$
c_2	$y^{15} - 2y^{14} + \dots - 8y - 16$
c_3, c_6, c_9	$y^{15} + 8y^{14} + \dots + 11y - 1$
c_4, c_{11}	$y^{15} + 4y^{14} + \dots + 14y - 1$
<i>C</i> 5	$y^{15} - 19y^{14} + \dots + 4329y - 625$
c ₈	$y^{15} - 3y^{14} + \dots + 6y - 1$
c_{10}	$y^{15} + 7y^{14} + \dots + 39y^2 - 4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.945062 + 0.354082I		
a = 0.565133 + 0.388167I	-3.02280 + 1.54146I	-6.80860 + 0.33073I
b = 0.570749 + 1.243190I		
u = 0.945062 - 0.354082I		
a = 0.565133 - 0.388167I	-3.02280 - 1.54146I	-6.80860 - 0.33073I
b = 0.570749 - 1.243190I		
u = -0.573037 + 0.772166I		
a = 0.944181 - 0.805222I	0.37010 - 2.03676I	-5.30954 + 3.27219I
b = -0.884792 + 0.570619I		
u = -0.573037 - 0.772166I		
a = 0.944181 + 0.805222I	0.37010 + 2.03676I	-5.30954 - 3.27219I
b = -0.884792 - 0.570619I		
u = 0.869875 + 0.302392I		
a = 0.175063 + 0.651509I	-2.66889 - 4.30403I	-6.64337 + 8.95164I
b = -0.271019 + 1.145180I		
u = 0.869875 - 0.302392I		
a = 0.175063 - 0.651509I	-2.66889 + 4.30403I	-6.64337 - 8.95164I
b = -0.271019 - 1.145180I		
u = 0.867167 + 0.769940I		
a = -0.507277 - 0.120829I	7.81854 - 2.90716I	-1.49116 + 2.36324I
b = -0.266261 - 1.191970I		
u = 0.867167 - 0.769940I		
a = -0.507277 + 0.120829I	7.81854 + 2.90716I	-1.49116 - 2.36324I
b = -0.266261 + 1.191970I		
u = -1.042710 + 0.599702I		
a = -1.70977 + 0.73314I	-1.08562 + 7.20573I	-9.25026 - 7.69565I
b = 1.015990 + 0.881908I		
u = -1.042710 - 0.599702I		
a = -1.70977 - 0.73314I	-1.08562 - 7.20573I	-9.25026 + 7.69565I
b = 1.015990 - 0.881908I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.173890 + 0.354715I		
a = 0.415207 + 1.215040I	2.75922 + 3.34728I	-2.20513 - 3.30365I
b = 0.613391 - 0.103361I		
u = -1.173890 - 0.354715I		
a = 0.415207 - 1.215040I	2.75922 - 3.34728I	-2.20513 + 3.30365I
b = 0.613391 + 0.103361I		
u = -0.691226 + 0.240625I		
a = 3.57976 + 0.40015I	4.67692 - 0.80845I	3.56798 - 2.11727I
b = -0.934484 - 0.438009I		
u = -0.691226 - 0.240625I		
a = 3.57976 - 0.40015I	4.67692 + 0.80845I	3.56798 + 2.11727I
b = -0.934484 + 0.438009I		
u = 1.59751		
a = 0.0753958	-7.82532	43.2800
b = 0.312857		

III.
$$I_3^u = \langle -3.41 \times 10^{10} a^7 u^2 + 9.96 \times 10^{10} a^6 u^2 + \dots + 1.82 \times 10^{12} a + 8.83 \times 10^{11}, \ 3a^7 u^2 + 7a^6 u^2 + \dots - 56a + 65, \ u^3 + u^2 - 1 \rangle$$

(i) Arc colorings

$$\begin{aligned} a_1 &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_7 &= \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_2 &= \begin{pmatrix} 1 \\ u^2 \end{pmatrix} \\ a_3 &= \begin{pmatrix} -u^2 + 1 \\ u^2 \end{pmatrix} \\ a_5 &= \begin{pmatrix} 0.00955622a^7u^2 - 0.0278888a^6u^2 + \dots - 0.508573a - 0.247202 \end{pmatrix} \\ a_8 &= \begin{pmatrix} -u \\ u^2 + u - 1 \end{pmatrix} \\ a_4 &= \begin{pmatrix} -0.0226730a^7u^2 + 0.00671494a^6u^2 + \dots - 0.167214a + 0.361442 \\ 0.0365923a^7u^2 - 0.106197a^6u^2 + \dots + 0.254915a - 0.349774 \end{pmatrix} \\ a_{11} &= \begin{pmatrix} -0.0136970a^7u^2 + 0.167653a^6u^2 + \dots - 0.128713a + 0.671444 \\ 0.0545800a^7u^2 - 0.0709107a^6u^2 + \dots - 0.318374a - 0.618795 \end{pmatrix} \\ a_9 &= \begin{pmatrix} -0.0337296a^7u^2 + 0.0695256a^6u^2 + \dots + 0.243004a + 1.20707 \\ -0.0280221a^7u^2 + 0.0695256a^6u^2 + \dots + 0.701359a - 0.906712 \end{pmatrix} \\ a_6 &= \begin{pmatrix} -0.0381529a^7u^2 + 0.0571347a^6u^2 + \dots + 0.560725a + 0.216812 \\ 0.0365923a^7u^2 - 0.106197a^6u^2 + \dots + 0.543004a + 1.20707 \\ -0.0419144a^7u^2 + 0.0898677a^6u^2 + \dots + 0.243004a + 1.20707 \\ -0.0419144a^7u^2 + 0.0898677a^6u^2 + \dots + 0.243004a + 1.20707 \\ -0.0419144a^7u^2 + 0.0898677a^6u^2 + \dots + 0.243004a + 1.20707 \\ -0.0419144a^7u^2 + 0.0898677a^6u^2 + \dots + 0.243004a + 1.20707 \\ -0.0419144a^7u^2 + 0.0898677a^6u^2 + \dots + 0.243004a + 1.20707 \\ -0.0419144a^7u^2 + 0.0898677a^6u^2 + \dots + 0.243004a + 1.20707 \\ -0.0419144a^7u^2 + 0.0898677a^6u^2 + \dots + 1.22012a - 0.592528 \end{pmatrix} \end{aligned}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= -\frac{\frac{1164454014992}{3570132856135}a^7u^2 + \frac{1180088464472}{3570132856135}a^6u^2 + \dots - \frac{4943997575288}{3570132856135}a - \frac{7861314901686}{3570132856135}a^6u^2 + \dots - \frac{4943997575288}{3570132856135}a - \frac{7861314901686}{3570132856135}a^6u^2 + \dots - \frac{4943997575288}{3570132856135}a^6u^2 + \dots - \frac{494399757528}{3570132856135}a^6u^2 + \dots - \frac{494399757528}{3570132856135}a^6u^2 + \dots - \frac{494399757528}{35701$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7	$(u^3 + u^2 - 1)^8$
c_2	$(u^3 + u^2 + 2u + 1)^8$
c_3, c_6, c_9	$u^{24} - u^{23} + \dots - 276u + 1133$
c_4, c_{11}	$u^{24} - 3u^{23} + \dots - 54u + 59$
<i>C</i> ₅	$(u^4 - 3u^3 + u^2 + 2u + 1)^6$
<i>c</i> ₈	$(u^4 + u^3 + u^2 + 1)^6$
c_{10}	$u^{24} - u^{23} + \dots - 3286u + 2677$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7	$(y^3 - y^2 + 2y - 1)^8$
c_2	$(y^3 + 3y^2 + 2y - 1)^8$
c_3, c_6, c_9	$y^{24} + 27y^{23} + \dots + 64316y + 1283689$
c_4, c_{11}	$y^{24} + 3y^{23} + \dots - 3152y + 3481$
	$(y^4 - 7y^3 + 15y^2 - 2y + 1)^6$
<i>c</i> ₈	$(y^4 + y^3 + 3y^2 + 2y + 1)^6$
c_{10}	$y^{24} + 15y^{23} + \dots + 16368400y + 7166329$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 + 0.744862I		
a = -0.921360 - 0.219493I	8.16994 + 1.41302I	1.33649 + 1.92930I
b = 0.902902 - 0.539690I		
u = -0.877439 + 0.744862I		
a = 0.504527 - 0.969052I	1.168190 - 0.335841I	-2.31698 - 0.41465I
b = -1.196950 + 0.472705I		
u = -0.877439 + 0.744862I		
a = -0.779487 + 0.866165I	1.168190 - 0.335841I	-2.31698 - 0.41465I
b = 0.685429 - 0.020892I		
u = -0.877439 + 0.744862I		
a = 0.051447 + 1.254950I	8.16994 + 4.24323I	1.33649 - 7.88819I
b = 1.53802 - 1.79281I		
u = -0.877439 + 0.744862I		
a = 1.42701 - 0.08967I	1.16819 + 5.99209I	-2.31698 - 5.54425I
b = -0.947309 - 0.408550I		
u = -0.877439 + 0.744862I		
a = -1.58305 + 0.33835I	1.16819 + 5.99209I	-2.31698 - 5.54425I
b = 1.28710 + 1.00044I		
u = -0.877439 + 0.744862I		
a = 1.04688 - 1.38550I	8.16994 + 4.24323I	1.33649 - 7.88819I
b = -0.605985 - 0.603603I		
u = -0.877439 + 0.744862I		
a = 1.87343 - 0.34348I	8.16994 + 1.41302I	1.33649 + 1.92930I
b = -1.01797 - 2.02902I		
u = -0.877439 - 0.744862I		
a = -0.921360 + 0.219493I	8.16994 - 1.41302I	1.33649 - 1.92930I
b = 0.902902 + 0.539690I		
u = -0.877439 - 0.744862I		
a = 0.504527 + 0.969052I	1.168190 + 0.335841I	-2.31698 + 0.41465I
b = -1.196950 - 0.472705I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 - 0.744862I		
a = -0.779487 - 0.866165I	1.168190 + 0.335841I	-2.31698 + 0.41465I
b = 0.685429 + 0.020892I		
u = -0.877439 - 0.744862I		
a = 0.051447 - 1.254950I	8.16994 - 4.24323I	1.33649 + 7.88819I
b = 1.53802 + 1.79281I		
u = -0.877439 - 0.744862I		
a = 1.42701 + 0.08967I	1.16819 - 5.99209I	-2.31698 + 5.54425I
b = -0.947309 + 0.408550I		
u = -0.877439 - 0.744862I		
a = -1.58305 - 0.33835I	1.16819 - 5.99209I	-2.31698 + 5.54425I
b = 1.28710 - 1.00044I		
u = -0.877439 - 0.744862I		
a = 1.04688 + 1.38550I	8.16994 - 4.24323I	1.33649 + 7.88819I
b = -0.605985 + 0.603603I		
u = -0.877439 - 0.744862I		
a = 1.87343 + 0.34348I	8.16994 - 1.41302I	1.33649 - 1.92930I
b = -1.01797 + 2.02902I		
u = 0.754878		
a = 0.906952 + 0.366540I	-2.96939 + 3.16396I	-8.84625 - 2.56480I
b = 0.273354 + 1.242580I		
u = 0.754878		
a = 0.906952 - 0.366540I	-2.96939 - 3.16396I	-8.84625 + 2.56480I
b = 0.273354 - 1.242580I		
u = 0.754878		
a = 0.322520 + 1.369380I	-2.96939 - 3.16396I	-8.84625 + 2.56480I
b = -0.500853 + 1.057020I		
u = 0.754878		
a = 0.322520 - 1.369380I	-2.96939 + 3.16396I	-8.84625 - 2.56480I
b = -0.500853 - 1.057020I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.754878		
a = -2.39656 + 0.93888I	4.03235 - 1.41510I	-5.19277 + 4.90874I
b = 1.240420 + 0.312627I		
u = 0.754878		
a = -2.39656 - 0.93888I	4.03235 + 1.41510I	-5.19277 - 4.90874I
b = 1.240420 - 0.312627I		
u = 0.754878		
a = -3.45231 + 0.29460I	4.03235 - 1.41510I	-5.19277 + 4.90874I
b = -0.158156 - 0.540866I		
u = 0.754878		
a = -3.45231 - 0.29460I	4.03235 + 1.41510I	-5.19277 - 4.90874I
b = -0.158156 + 0.540866I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing	
c_1	$((u^3 + u^2 - 1)^8)(u^{15} - 5u^{13} + \dots - 2u - 2)(u^{22} - 9u^{21} + \dots + 80u - 16)$	
c_2	$((u^3 + u^2 + 2u + 1)^8)(u^{15} + 10u^{14} + \dots + 32u + 4)$ $\cdot (u^{22} + 11u^{21} + \dots + 1408u + 256)$	
c_3, c_9	$(u^{15} + 4u^{13} + \dots + u - 1)(u^{22} + 18u^{20} + \dots - 3u - 1)$ $\cdot (u^{24} - u^{23} + \dots - 276u + 1133)$	
c_4, c_{11}	$(u^{15} + 2u^{13} + \dots + 4u - 1)(u^{22} - 6u^{20} + \dots + 4u - 1)$ $\cdot (u^{24} - 3u^{23} + \dots - 54u + 59)$	
c_5	$((u^4 - 3u^3 + u^2 + 2u + 1)^6)(u^{15} - 11u^{14} + \dots + 73u - 25)$ $\cdot (u^{22} + 12u^{21} + \dots + 672u + 64)$	
c_6	$(u^{15} + 4u^{13} + \dots + u + 1)(u^{22} + 18u^{20} + \dots - 3u - 1)$ $\cdot (u^{24} - u^{23} + \dots - 276u + 1133)$	
c ₇	$((u^3 + u^2 - 1)^8)(u^{15} - 5u^{13} + \dots - 2u + 2)(u^{22} - 9u^{21} + \dots + 80u - 16)$	
<i>c</i> ₈	$((u^4 + u^3 + u^2 + 1)^6)(u^{15} - 7u^{14} + \dots + 3u^2 - 1)$ $\cdot (u^{22} - 12u^{21} + \dots - 64u + 8)$	
c_{10}	$(u^{15} + u^{14} + \dots + 2u + 2)(u^{22} + u^{21} + \dots - 2u^{2} - 10)$ $\cdot (u^{24} - u^{23} + \dots - 3286u + 2677)$	

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7	$((y^3 - y^2 + 2y - 1)^8)(y^{15} - 10y^{14} + \dots + 32y - 4)$ $\cdot (y^{22} - 11y^{21} + \dots - 1408y + 256)$
c_2	$((y^3 + 3y^2 + 2y - 1)^8)(y^{15} - 2y^{14} + \dots - 8y - 16)$ $\cdot (y^{22} + y^{21} + \dots - 663552y + 65536)$
c_3,c_6,c_9	$(y^{15} + 8y^{14} + \dots + 11y - 1)(y^{22} + 36y^{21} + \dots + 9y + 1)$ $\cdot (y^{24} + 27y^{23} + \dots + 64316y + 1283689)$
c_4, c_{11}	$(y^{15} + 4y^{14} + \dots + 14y - 1)(y^{22} - 12y^{21} + \dots - 66y + 1)$ $\cdot (y^{24} + 3y^{23} + \dots - 3152y + 3481)$
c_5	$((y^4 - 7y^3 + 15y^2 - 2y + 1)^6)(y^{15} - 19y^{14} + \dots + 4329y - 625)$ $\cdot (y^{22} - 26y^{21} + \dots - 273920y + 4096)$
c_8	$((y^4 + y^3 + 3y^2 + 2y + 1)^6)(y^{15} - 3y^{14} + \dots + 6y - 1)$ $\cdot (y^{22} - 2y^{21} + \dots + 224y + 64)$
c_{10}	$(y^{15} + 7y^{14} + \dots + 39y^2 - 4)(y^{22} + 19y^{21} + \dots + 40y + 100)$ $\cdot (y^{24} + 15y^{23} + \dots + 16368400y + 7166329)$