

Tartalom

- Egymásba ágyazott programozási tételek (a 7. előadás folytatása)
- > Tesztek előállítása
- Hibakeresés
- Hibajavítás
- Dokumentálás
- Programkészítési elvek

Egymásba ágyazott programozási tételek

- Független intervallum
 - ➤ Megszámolás ⊃ eldöntés 1
 - ➤ Megszámolás ⊃ eldöntés 2
 - ➤ Maximumkiválasztás ⊃ megszámolás
- Közös intervallum
 - ➤ Maximumkiválasztás ⊃ összegzés
 - ➤ Eldöntés ⊃ eldöntés

Egy egész számokat tartalmazó mátrixban hány olyan sor van, ami csak páros számokat tartalmaz?

	1	2 3		m=4
1	1	2	4	3
2	2	6	4	2
3	5	3	2	1
4	2	8	2	8
n=5	5	3	2	3

Megszámolásban (optimista) eldöntés

Egy egész számokat tartalmazó mátrixban hány olyan sor van, ami csak páros számokat tartalmaz?

Megszámolásban (optimista) eldöntés

Specifikáció:

- \triangleright Bemenet: $n, m: Eg\'{e}sz, x: T\"{o}mb(1...n, 1...m: Eg\'{e}sz)$
- ➤ Kimenet: db: Egész
- > Előfeltétel: n=n' és m=m' és x=x' és $n,m\geq 0$
- Vtófeltétel: Ef és $db = \sum_{i=1}^{n} 1$ csakpáros(i)
- ► Definíció: $csakpáros: Egész \rightarrow Logikai$

THENSIS DE ROLANDO E BOTTOS

Specifikáció:

- Vtófeltétel: Ef és $db = \sum_{i=1}^{n}$ 1 csakpáros(i)
- ➤ Definíció: csakpáros: Egész → Logikai

$$csakp\'aros(i) = \forall_{j=1}^{m} 2 | x[i,j]$$

$$db = \sum_{\substack{i=e\\T(i)}}^{u} 1$$

$$mind = \bigvee_{i=e}^{u} T(i)$$

3

2

Megszámolás					
eu	~	1 <i>n</i>			
T(i)	~	csakpáros(i)			

(Optimista) eldöntés					
mind ~ csakpáros(i)					
i	~	j			
eu	~	1 <i>m</i>			
T(i)	~	2 x[i,j]			

A belső tétel egy külön részfeladat

Specifikáció (csakpáros):

 \triangleright Bemenet: $n, m: Eg\acute{e}sz, x: T\"{o}mb(1...n, 1...m: Eg\acute{e}sz), i: Eg\acute{e}sz$

➤ Kimenet: csakpáros(i): Logikai

 \gt Előfeltétel: n=n' és m=m' és x=x' és i=i' és $n,m\geq 0$

 \gt Utófeltétel: *Ef* és *csakpáros*(i) = $\forall_{i=1}^{m} 2|x[i,j]$

(Optimista) eldöntés				
i	~	j		
eu	~	1 <i>m</i>		
T(i)	~	2 x[i,j]		

$$mind = \forall_{i=e}^{u} T(i)$$

(Optimista) eldöntés					
i	~	j			
eu	~	1 <i>m</i>			
T(i)	~	2 x[i,j]			

csakpáros(i:Egész): Logikai

```
j:=1

j≤m és 2|x[i,j]

j:=j+1

mind:=j>m

csakpáros:=mind
```


Egymást követő napokon délben megmértük a levegő hőmérsékletét. Állapítsuk meg, hogy melyik érték fordult elő leggyakrabban!

1	2	3	4	5	6	7	n=8
21	22	24	23	22	23	24	23

Maximumkiválasztásban megszámolás

Egymást követő napokon délben megmértük a levegő hőmérsékletét. Állapítsuk meg, hogy melyik érték fordult elő leggyakrabban!

Maximumkiválasztásban megszámolás

Specifikáció:

- \triangleright Bemenet: $n: Eg\'{e}sz, x: T\"{o}mb(1..n: Eg\'{e}sz)$
- > Kimenet: lgy: Egész
- \gt Előfeltétel: n=n' és x=x' és n>0
- \gt Utófeltétel: Ef és $(legt\"{o}bb, mxi) = Max_{i=1}^n h\acute{a}ny(i)$ és

$$lgy = x[mxi]$$

► Definíció: hány: Egés $z \rightarrow Eg$ ész, hány $(i) = \sum_{j=1}^{n}$ Horváth - Horváth - Szlávi - Zsakó: Programozás 9. előadás $x[i]=x^{\lceil 10/5 \rceil}$

Specifikáció:

$$(max\acute{e}rt, maxind) = Max_{i=e}^{u} f(i)$$

 \gt Utófeltétel: Ef és $(legt\"{o}bb, mxi) = Max_{i=1}^n h\acute{a}ny(i)$ és

$$lgy = x[mxi]$$

▶ Definíció: hány: Egész → Egész

$$h \acute{a} n y(i) = \sum_{j=1}^{n} 1$$
$$x[i] = x[j]$$

$$db = \sum_{\substack{i=e\\T(i)}}^{u} 1$$

Maximumkiválasztás				
maxért, maxind	~	legtöbb, mxi		
eu	~	1 <i>n</i>		
f(i)	~	hány(i)		

Megszámolás					
i	~	j			
eu	~	1 <i>n</i>			
T(i)	~	x[i] = x[j]			

Független intervallum

hány(i:Egész): Logikai

Közös intervallum

Keressük meg a t négyzetes mátrixnak azt az oszlopát, amelyben a főátlóbeli és a feletti elemek összege a

1	eor	nagy		h	h
_	5	lias,	y O		

	1	2	3	4	m=5
1	1,1	2	4	3	1
2	2	6,2	4	2	1
3	5	3	2	1	0
4	2	80	2	8	2
n=5	5	3	2	3	0

Maximumkiválasztásban összegzés

Közös intervallum

Keressük meg a t négyzetes mátrixnak azt az oszlopát, amelyben a főátlóbeli és a feletti elemek összege a legnagyobb!

Maximumkiválasztásban összegzés

Specifikáció:

- ➤ Bemenet: $n: Eg\'{e}sz, t: T\"{o}mb(1..n, 1..n: Val\'{o}s)$
- > Kimenet: maxoszlop: Egész
- \gt Előfeltétel: n=n' és t=t' és n>0
- \triangleright Utófeltétel: *Ef és (maxért, maxoszlop) = Max*_{i=1}ⁿ összeg(i)
- ▶ Definíció: összeg: Egész → Valós

Közös intervallum

$$\ddot{o}sszeg(i) = \sum_{j=1}^{i} t[j, i]$$

Közös intervallum

Specifikáció:

$$(max\'{e}rt, maxind) = Max^u_{i=e}f(i)$$

- \triangleright Utófeltétel: *Ef* és (maxért, maxoszlop) = $Max_{i=1}^n$ összeg(i)
- ▶ Definíció: összeg: Egész → Valós

$$\ddot{o}sszeg(i) = \sum_{j=1}^{i} t[j, i]$$

$$s = \sum_{i=e}^{u} f(i)$$

Maximumkiválasztás				
maxind	~	maxoszlop		
eu	~	1 <i>n</i>		
f(i)	~	összeg (i)		

Összegzés					
i	~	j			
eu	~	1 <i>i</i>			
f(i)	~	t[j,i]			

Közös intervallum


```
s:=0
i=e..u
s:=s+f(i)
```


Közös intervallum

Volt-e a lóversenyen olyan napunk, amikor úgy nyertünk, hogy a megelőző k napon mindig veszítettünk?

Eldöntésben (optimista) eldöntés

Közös intervallum

Volt-e a lóversenyen olyan napunk, amikor úgy nyertünk, hogy a megelőző k napon mindig veszítettünk?

Eldöntésben (optimista) eldöntés

Specifikáció:

ightharpoonup Bemenet: $n: Eg\'{e}sz, x: T\"{o}mb(1..n: Val\'{o}s), k: Eg\'{e}sz$

> Kimenet: van: Logikai

Közös intervallum

- \gt Előfeltétel: n=n' és x=x' és $n\geq 0$ és $k\geq 0$
- \rightarrow Utófeltétel: Ef és $van = \exists_{i=k+1}^{n} csupavesztés(t)$
- > Definíció: csupavesztés: Egész → Logikai

$$csupavesztés(i) = \forall_{i=i-k}^{i-1} x[i] > 0 és x[j] < 0$$

Közös intervallum

Specifikáció:

$$van = \exists_{i=e}^{u} T(i)$$

- \triangleright Utófeltétel: Ef és $van = \exists_{i=k+1}^{n} csupavesztés(i)$
- ▶ Definíció: csupavesztés: Egész → Logikai

$$csupavesztés(i) = \forall_{j=i-k}^{i-1} x[i] > 0 és x[j] < 0$$

$$mind = \forall u_{i=e} T(i)$$

Eldöntés			
eu	~	k+1n	
T(i)	~	csupavesztés (i)	

(Optimista) eldöntés
$$\begin{array}{c|ccc}
i & \sim & j \\
e..u & \sim & i-k..i-1 \\
T(i) & \sim & x[i] > 0 \text{ és } x[j] < 0
\end{array}$$

Közös intervallum

Eldöntés $e..u \sim k+1..n$ $T(i) \sim csupavesztés(i)$


```
(Optimista) eldöntés

i \sim j
e..u \sim i-k..i-1
T(i) \sim x[i] > 0 és x[j] < 0
```

```
i:=e
i≤u és T(i)
i:=i+1
mind:=i>u
```

csupavesztés(i:Egész): Logikai

```
j:=i-k

j≤i-1 és (x[i]>0 és x[j]<0)

j:=j+1

mind:=j>i-1

csupavesztés:=mind
```

Tesztelés

(folytatás)

Tesztek előállítása

Feladat (teszteléshez):

Egy repülőgéppel Európából Amerikába repültünk. Az út során X kilométerenként mértük a felszín tengerszint feletti magasságát (≥0). 0 magasságot ott mértünk, ahol tenger van, >0-t pedig ott, ahol szárazföld. Adjuk meg a szigeteket!

Tesztek előállítása

Specifikáció:

- > Bemenet: N∈N, Mag_{1,N}∈ \mathbb{Z}^N
- \triangleright Kimenet: $Db \in \mathbb{N}, K_{1,N}, V_{1,N} \in \mathbb{N}^{N}$
- > ...

Tesztelés:

> Kis tesztek a tesztelési elveknek megfelelően, például:

```
N=3, Mag=(1,0,1) \rightarrow nincs sziget
N=5, Mag=(1,0,1,0,1) \rightarrow egy "rövid" sziget
N=7, Mag=(1,0,1,0,1,0,1) \rightarrow több "rövid" sziget
N=7, Mag=(1,0,1,1,1,0,1) \rightarrow hosszabb sziget
```

> Hogyan készítünk nagy (hatékonysági) teszteket?

Szabályos tesztek

Generálhatunk "szabályos" teszteket (egyszerű ciklusokkal).

Például így:

_	Valtozo
N = 1000	i: Egész
1 4. 1000	

i=1..10

Mag[i]:=11-i

i=11..900

Mag[i]:=0

i=901..N

Mag[i]:=i-900

← Európa

← tenger

← Amerika

Kérdés:

hogyan illesszünk bele szigeteket sokféleképpen egyetlen programmal?

Válasz: véletlenszámokkal.

(alapok – véletlenszámok)

A **véletlenszám**okat a számítógép egy algoritmussal állítja elő egy kezdőszámból kiindulva.

$$\mathbf{x}_0 \to \mathbf{f}(\mathbf{x}_0) = \mathbf{x}_1 \to \mathbf{f}(\mathbf{x}_1) = \mathbf{x}_2 \to \dots$$

A "véletlenszerűséghez" megfelelő függvény és jó kezdőszám szükséges.

- > Kezdőszám: (pl.) a belső órából vett érték.
- ➤ Függvény (az ún. lineáris kongruencia módszernél): f(x) = (A*x+B) Mod M, ahol A, B és M a függvény belső konstansai.

(alapok – algoritmikus nyelv)

- Véletlenszám függvények:
 - \triangleright Véletlen (a..b) $\in \{a,...,b\}$, $a \le b \in \mathbb{Z}$
 - > Véletlen (N) $\in \{1,...,N\}, N \in \mathbb{N}$
 - \triangleright Véletlenszám \in [0,1) \subset R
- > Példa-feladat:

Hányszor (Db) kell dobni kockát az első <mark>6</mark>-osig?

(alapok – algoritmikus nyelv)

- > Véletlenszám függvények:
 - \triangleright Véletlen (a..b) $\in \{a,...,b\}$, $a \le b \in \mathbb{Z}$
 - > Véletlen (N) $\in \{1,...,N\}$, $N \in \mathbb{N}$
 - > Véletlenszám \in [0,1) \subset R
- > Példa-feladat:

Hányszor (Db) kell dobni kockát az első 6-osig?

"Cinkelt" kockával

> Val[i]: 1..i kijövetelének valószínűsége

Db:=1

Véletlenszám≥Val[<mark>6</mark>-1]

Db:=Db+1

0.2

Véletlen tesztek (alapok – C#)

Random egy véletlen értékeket szolgáltató oszt, amely Next függvényével lehet a következő véletle értéket képezni.

Random rnd=new Random();

 \triangleright Véletlen (a..b) $\in \{a,...,b\}$, $a \le b \in \mathbb{Z}$

v=rnd.Next(a,b);

> Véletlen (N) $\in \{1,...,N\}, N \in \mathbb{N}$

v=rnd.Next(N)+1;

> Véletlenszám \in [0,1) \subset R

v=rnd.NextDouble();

Véletlen tesztekhez használjunk véletlenszámokat! Például így:

	Változó
N:=1000	i:Egész
M:=Véletlen(9)	
i=1M	Európa
Mag[i]:=Véletlen(410)	← Európa
i=M+1900	
Véletlenszám<0.5	← tenger és szigetek
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	521 S CC11
i=901N	← Amerika
Mag[i]:=Véletlen(28)	

Rendezést is tartalmazó feladatoknál gyakori egy rendezetlen bemenet előállítása (1 és M közötti különböző N darab érték). Ha M "elég nagy" N-hez (M»N):

	i:I
volt:=(hamis,,hamis)	VO
i=1N	•••••
x[i]:=Véletlen(1M)	
volt[x[i]]	
volt[x[i]]:=igaz	

Változó i:Egész volt:Tömb[1..M: Logikai]

Rendezést is tartalmazó feladatoknál gyakori egy rendezetlen bemenet előállítása (1 és M közötti különböző N darab érték). Az M=N eset (keverés):

	Változó
x:=(1,2,,N)	i: Egész
i=1N-1	
j:=Véletlen(iN)	
Csere(x[i],x[j])	

Változó

i,db,

kell,

van:**Egész**

Rendezést is tartalmazó feladatoknál gyakori egy rendezetlen bemenet előállítása (1 és M közötti különböző N darab érték).

Az M>N eset:

db:=0; kell:=N	
van:=M	
i=1M	
Véletlenszám <kell td="" van<=""><td>N</td></kell>	N
db:=db+1; x[db]:=i; kell:=kell-1	
van:=van-1	

Hibajelenségek a tesztelés során...

- > hibás az eredmény,
- > futási hiba keletkezett,
- > nincs eredmény,
- részleges eredményt kaptunk,
- > olyat is kiír, amit nem vártunk,
- túl sokat (sokszor) ír,
- > nem áll le a program,
- > ...

Célja:

a felfedett hibajelenség okának, helyének megtalálása.

Elvek:

- > Eszközök használata előtt alapos végiggondolás.
- > Egy megtalált hiba a program más részeiben is okozhat hibát.
- A hibák száma, súlyossága a program méretével nemlineárisan (annál gyorsabban!) nő.
- Egyformán fontos, hogy *miért* nem *csinálja* a program, amit *várunk*, illetve, hogy *miért csinál* olyat, amit nem *várunk*.
- Csak akkor javítani, ha megtaláltuk a hibát!

Hibakeresési eszközök (folytatás):

- Változó-, memória-kiírás (<u>feltételes fordítás</u>)
- > Töréspont elhelyezése
- Lépésenkénti végrehajtás
- Adat-nyomkövetés
- Állapot-nyomkövetés (pl. paraméterekre vonatkozó előfeltételek, ciklus-invariánsok)
- > Postmortem nyomkövetés: hibától visszafelé

Hibakeresési módszerek

Célja:

- A bemenetnek mely része, amelyre hibásan működik a program?
- > Hol található a programban a hibát okozó utasítás?

Módszerfajták:

- 1. Indukciós módszer (hibásak körének bővítése)
- 2. Dedukciós módszer (hibásak körének szűkítése)
- 3. Hibakeresés hibától visszafelé
- 4. Teszteléssel segített hibakeresés (olyan teszteset kell, amely az ismert hiba helyét fedi fel)

Hibakeresési módszerek

Példa az indukciós módszerre:

Feladat: 1 és 99 közötti N szám kiírása betűkkel.

- > Tesztesetek: $N=8 \Rightarrow j\acute{o}$, $N=17 \Rightarrow j\acute{o}$, $N=30 \Rightarrow hib\acute{as}$.
- > Próbáljunk a hibásakból **általánosítani**: tegyük fel, hogy minden 30-cal kezdődőre rossz!
- > Ha beláttuk (teszteléssel), akkor próbáljuk tovább általánosítani, pl. tegyük fel, hogy minden 30 felettire rossz!
- ➤ Ha nem lehet tovább általánosítani, akkor tudjuk mit kell keresni a hibás programban.
- Ha nem ment az általánosítás, próbáljuk másképp: hibás-e minden 0-ra végződő számra!
- **>** ...

Hibakeresési módszerek

Példa a dedukciós módszerre:

Feladat: 1 és 99 közötti N szám kiírása betűkkel.

- > Tesztesetek: $N=8 \Rightarrow j\acute{o}$, $N=17 \Rightarrow j\acute{o}$, $N=30 \Rightarrow hib\acute{as}$.
- > Tegyük fel, hogy minden nem jóra hibás!
- > Próbáljunk a hibás esetek alapján szűkíteni: tegyük fel, hogy a 20-nál kisebbekre jó!
- > Ha beláttuk (teszteléssel), akkor szűkítsünk tovább, jó-e minden 39-nél nagyobbra?
- > Ha nem szűkíthető tovább, akkor megtaláltuk, mit kell keresni a hibás programunkban.
- Ha nem, szűkítsünk másképp: tegyük fel, hogy jó minden nem 0-ra végződő számra!
- **>** ...

Hibajavítás

Hibajavítás

Célja:

a megtalált hiba kijavítása.

Elvek:

- > A hibát kell javítani és nem a tüneteit.
- A hiba kijavítása a program más részében hibát okozhat (rosszul javítunk, illetve korábban elfedett más hibát).
- > Javítás után a tesztelés megismételendő!
- > A jó javítás valószínűsége a program méretével fordítva arányos.
- A hibajavítás a tervezési fázisba is visszanyúlhat (a módszertan célja: lehetőleg ne nyúljon vissza).

Dokumentálás

Dokumentációk

Fajtái:

> Programismertető-

Dőlten szedve, ami a beadandó komplex program estén a dokumentációból elhagyható.

- > Felhasználói dokumentáció
- > Fejlesztői dokumentáció
- > . .

Felhasználói dokumentáció

Tartalma:

- E nélkül be sem adható!
- > feladatszöveg (rövidített és részletes is)
- > futási környezet (szg.+or.+hw/sw-elvárások)

- Dőlten szedve, ami a beadandó komplex program estén a dokumentációból elhagyható.
- > használat leírása (telepítés, kérdések + lehetséges válaszok,...)
- > bemenő adatok, eredmények, szolgáltatások
- mintaalkalmazások példafutások
- > hibaüzenetek és a hibák lehetséges okai

Fejlesztői dokumentáció

E nélkül be sem adható!

Tartalma:

- > feladatszöveg, specifikáció
- > fejlesztői környezet (or.+fordító program, ...)
- > adatleírás (feladatparaméterek reprezentálása)
- > algoritmusok leírása, döntések (pl. tételekre utalás), más alternatívák, érvek, magyarázatok
- > kód, implementációs szabványok, ~ döntések
- > tesztesetek
- > hatékonysági mérések
- > fejlesztési lehetőségek

> szerző(k)

E nélkül be sem adható!

Értelmesen strukturálva.

Dőlten szedve, ami a beadandó komplex program estén a dokumentációból elhagyható.

Szerző

Név: Szabó Emerencia

ETR-azonosító: SZEKAAT.ELTE Neptun-azonosító: ESZ98A

Drótposta-cím: sze@elte.hu Kurzuskód: IP-08PAEG/77

Gyakorlatvezető neve: Kiss-József Alfréd

Feladatsorszám: 18

Programkészítési elvek

Programkészítési elvek

- ➤ Stratégiai elv: a problémamegoldás logikája a lépésenkénti finomítás.
- > Taktikai elvek: az algoritmuskészítés gondolati elvei a felülről lefelé kifejtéshez.
- > Technológiai elvek: algoritmus és kód módszertani kívánalmai.
- > Technikai elvek: kódolási technika.
- > Esztétikai, ergonómiai elvek: emberközelség.

Stratégiai elv: lépésenkénti finomítás

- Felülről–lefelé (top–down) = probléma–dekomponálás, –analizálás.
- > Alulról-felfelé (bottom-up) = probléma-szintézis.

Nem alternatívák!

1. szint

2. szint

3. szint

Taktikai elvek

- > Párhuzamos finomítás
- Döntések elhalasztása
- Döntések nyilvántartása
- ➤ Vissza az ősökhöz
- Nyílt rendszer felépítés (általánosítás)
- Adatok elszigetelése (pl. alprogramokba helyezéssel + paraméterezéssel + lokális adatok deklarálásával)
- > Párhuzamos ágak függetlensége
- > Szintenkénti teljes kifejtés

Technológiai elvek az algoritmus készítéshez

- >Struktúrák zárójelezése
- Bekezdéses struktúrák

Struktogram esetén ezek nyilvánvalóan teljesülnek

- >Értelmes utasítás-csoportosítás
- ➤ Kevés algoritmusleíró szabály definiálása, de azok szigorú betartása (pl. tétel → algoritmus)
- Beszédes azonosítók, kifejező névkonvenciók (pl. Hungarian Notation)

Technikai elvek a kódoláshoz

- Barátságosság (pl. kérdések, címek)
- ➤ Biztonságosság (pl. I/O-ellenőrzések)
- Kevés kódolási szabály definiálása, de azok következetes betartása (algoritmus és kód koherenciája; továbbá pl. amígos ciklusokhoz, I/O-hoz)
- ► Jól olvashatóság

Esztétikai/ergonómiai elvek

- > Lapokra tagolás, kiemelés, elkülönítés
- > Menütechnika
- > Ikontechnika, választás egérrel
- > Következetesség (beolvasás, kiírás, ...)
- > Hibafigyelés, hibajelzés, javíthatóság
- Súgó, tájékoztató
- > Ablakkezelés
- Értelmezési tartomány kijelzése
- Naplózás

Visszetekintés

- Egymásba ágyazott programozási tételek (a 7. előadás folytatása)
- Tesztek előállítása
- Hibakeresés
- Hibajavítás
- Dokumentálás
- Programkészítési elvek

