# Lecture 4: Extending Newton's method

COMP5930M Scientific Computation

# Today

Recap

Secant method

A more robust algorithm

Next

# Recap

We have seen two basic methods for scalar nonlinear equations

Bisection

Robust, slow, requires valid starting bracket



Newton
 Fast, unreliable, requires derivative,
 requires good initial guess



We would like the best features of both

## The Secant Method

Replace the derivative required by Newton's Method with a numerical approximation

$$\frac{dF}{dx}(x_n) \approx \frac{F(x_n + \delta) - F(x_n)}{\delta}$$

Secant method:

$$x_{n+1} = x_n - \frac{\delta F(x_n)}{F(x_n + \delta) - F(x_n)}$$

## The Secant Method

Replace the derivative required by Newton's Method with a numerical approximation

$$\frac{dF}{dx}(x_n) \approx \frac{F(x_n + \delta) - F(x_n)}{\delta}$$

Secant method:

$$x_{n+1} = x_n - \frac{\delta F(x_n)}{F(x_n + \delta) - F(x_n)}$$

Issues:

- ightharpoonup Choosing  $\delta$
- ► Convergence rate?
- ▶ Effect on the overall algorithm

## The Secant Method

Replace the derivative required by Newton's Method with a numerical approximation

$$\frac{dF}{dx}(x_n) \approx \frac{F(x_n + \delta) - F(x_n)}{\delta}$$

Secant method:

$$x_{n+1} = x_n - \frac{\delta F(x_n)}{F(x_n + \delta) - F(x_n)}$$

Issues:

- ▶ Choosing  $\delta$
- Convergence rate?
- Effect on the overall algorithm

## Numerical derivatives

- ▶ Allowing for finite-precision arithmetic we can show that the optimal value of  $\delta \propto \sqrt{eps}$
- ▶ eps is the machine precision, typically  $10^{-16}$ , which gives roughly  $10^{-8}$  accuracy for the derivative
- In practice  $\delta = 10\sqrt{eps}$  is often a default value

# In practice

- ► The previous method requires an additional function evaluation at each step inefficient
- ▶ Instead use  $F(x_{n-1})$ , the previous iterate

$$\frac{dF}{dx}(x_n) \approx \frac{F(x_n) - F(x_{n-1})}{x_n - x_{n-1}}$$

- Less accurate ( $\delta$  larger) but more efficient
- Requires two data points to start the algorithm

## Secant method

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{F(x_n) - F(x_{n-1})}F(x_n)$$

- lacktriangle Order of convergence can be shown to be  $q=rac{\sqrt{5}+1}{2}pprox 1.618$
- ► The performance in practice is similar to Newton's method
- Still lacks robustness

Combine the advantages of bisection and Newton/secant

#### Algorithm outline:

- 1. Define an initial bracket  $[x_0, x_1]$  s.t.  $F(x_0)F(x_1) < 0$ .
- 2. If  $|F(x_0)| < |F(x_1)|$  we swap their order,  $x_0 \leftrightarrow x_1$ . Take a step with the secant method:

$$x_2 = x_1 - \frac{x_1 - x_0}{F(x_1) - F(x_0)}F(x_1).$$

Combine the advantages of bisection and Newton/secant

#### Algorithm outline:

- 1. Define an initial bracket  $[x_0, x_1]$  s.t.  $F(x_0)F(x_1) < 0$ .
- 2. If  $|F(x_0)| < |F(x_1)|$  we swap their order,  $x_0 \leftrightarrow x_1$ . Take a step with the secant method:

$$x_2 = x_1 - \frac{x_1 - x_0}{F(x_1) - F(x_0)}F(x_1).$$

3a. If  $x_2 \in [x_0, x_1]$  define a new bracket  $[x_0, x_2]$  or  $[x_2, x_1]$  depending on if  $F(x_0)F(x_2) \le 0$  or  $F(x_2)F(x_1) < 0$ .

# Combine the advantages of bisection and Newton/secant

#### Algorithm outline:

- 1. Define an initial bracket  $[x_0, x_1]$  s.t.  $F(x_0)F(x_1) < 0$ .
- 2. If  $|F(x_0)| < |F(x_1)|$  we swap their order,  $x_0 \leftrightarrow x_1$ . Take a step with the secant method:

$$x_2 = x_1 - \frac{x_1 - x_0}{F(x_1) - F(x_0)}F(x_1).$$

- 3a. If  $x_2 \in [x_0, x_1]$  define a new bracket  $[x_0, x_2]$  or  $[x_2, x_1]$ depending on if  $F(x_0)F(x_2) < 0$  or  $F(x_2)F(x_1) < 0$ .
- 3b. If  $x_2 \notin [x_0, x_1]$  reject  $x_2$  and use one step of the bisection method to define a new bracket

Combine the advantages of bisection and Newton/secant

#### Algorithm outline:

- 1. Define an initial bracket  $[x_0, x_1]$  s.t.  $F(x_0)F(x_1) < 0$ .
- 2. If  $|F(x_0)| < |F(x_1)|$  we swap their order,  $x_0 \leftrightarrow x_1$ . Take a step with the secant method:

$$x_2 = x_1 - \frac{x_1 - x_0}{F(x_1) - F(x_0)}F(x_1).$$

- 3a. If  $x_2 \in [x_0, x_1]$  define a new bracket  $[x_0, x_2]$  or  $[x_2, x_1]$  depending on if  $F(x_0)F(x_2) \le 0$  or  $F(x_2)F(x_1) < 0$ .
- 3b. If  $x_2 \notin [x_0, x_1]$  reject  $x_2$  and use one step of the bisection method to define a new bracket
  - 4. Test if converged. If not, increment *n* and iterate from 2.

## Combine the advantages of bisection and Newton/secant



- 1. Define an initial bracket  $[x_0, x_1]$  s.t.  $F(x_0)F(x_1) < 0$ .
- 2. If  $|F(x_0)| < |F(x_1)|$  we swap their order,  $x_0 \leftrightarrow x_1$ . Take a step with the secant method:

$$x_2 = x_1 - \frac{x_1 - x_0}{F(x_1) - F(x_0)}F(x_1).$$

- 3a. If  $x_2 \in [x_0, x_1]$  define a new bracket  $[x_0, x_2]$  or  $[x_2, x_1]$  depending on if  $F(x_0)F(x_2) \le 0$  or  $F(x_2)F(x_1) < 0$ .
- 3b. If  $x_2 \notin [x_0, x_1]$  reject  $x_2$  and use one step of the bisection method to define a new bracket
  - 4. Test if converged. If not, increment p and iterate from 2.

### Comments

Requires a search for an initial bracket



- Will use (fast) secant whenever possible
- Will use robust (slow) bisection whenever secant appears unreliable
- The basis for Matlab's fzero() function

# Summary

- Scalar nonlinear equations can be solved in a robust way
- ► The initial guess (or bracket) is often a bigger challenge

#### Next week

Systems of nonlinear equations