© 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing by the publisher.

For exclusive use of adopters of the book *Digital Design Principles and Practices*, Fourth Edition, by John F. Wakerly, ISBN 0-13-186389-4.

3e5.19 6.207

- 3e5.35 6.218 With the stated input combination, Y5_L is LOW and the other outputs are HIGH. We have the following cases:
 - (a) Negating G2A_L or G2B_L causes Y5_L to go HIGH within 18 ns.
 - (b) Negating G1 causes Y5_L to go HIGH within 26 ns.
 - (c) Changing A or C causes Y5_L to go HIGH within 27 ns (the change propagates through 3 levels of logic internally), and causes Y4_L or Y1_L respectively to go LOW within 41 ns (2 levels).
 - (d) Changing B causes Y5_L to go HIGH within 20 ns (2 levels), and causes Y7_L to go LOW within 39 ns (3 levels). The delays in the 'LS138 are very strange—the worst-case $t_{\rm pHL}$ for 3 levels is shorter than for 2 levels!

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing by the publisher.

For exclusive use of adopters of the book *Digital Design Principles and Practices*, Fourth Edition, by John F. Wakerly, ISBN 0-13-186389-4.

3e5.80 6.231

