

Our country, our future

525/1

S6 CHEMISTRY

Exam 30

PAPER 1

DURATION: 2 HOUR 45 MINUTES

INSTRUCTIONS

Attempt all questions in section A and six questions in section B

SECTION A

Both lithium and magnesium exhibit diagonal relationship (a) What is meant by the term diagonal relationship
(b) State two properties in which lithium and magnesium resemble.

More exams? browse: digitaltears.co.ug For consultations call: +256 776 802709

(c) Name two other pairs of elements that show diagonal relationship.								
• • • •								
• • • •								
2.	The enthalpies of combu	ustion of some substances are given below						
	Substance	ΔH combustion/kJmol ⁻¹						
	Hydrogen	- 285.9						
	Graphite	- 393.5						
	Ethanol	- 1366.7						
		<u> </u>						
	Calculate the enthalp	py of formation of ethanol.						
••••	•••••		• • • •					
••••	•••••		• • • •					
• • • •			••••					
••••			•••					
••••	•••••		• • • •					
			••••					
•••••			••••					
·····	C1-4-41-6-11							
3.	(a) $CH_2 = CH_2$	organic reactions and in each case name the main organic produ CO,H ₂	.Ct					
		Heat/high pressure						
		N. OH.						
	(b) CH ₃ CH ₂ CONH ₂	$\frac{\text{NaOH(aq)}}{\text{Br}_2(\text{aq})} \rightarrow$						
		D12(aq)						
	(c) CH ₃ OH	$\frac{\text{HCOOH}}{\text{Conc H}_2\text{SO}_4, \text{warm}}$						
		Conc H ₂ SO ₄ , warm						
4.	A gas x diffuses four tin	nes as rapidly as sulphur dioxide under the same conditions	• • • •					
••	Calculate the density of							
		dioxide at a given temperature and pressure is 2.88 x 10 ³ g/m ³)						

5.	(a) State conditions under which osmotic pressure laws are valid.
٥.	
	(b) The osmotic pressure of an aqueous solution of a non-electrolyte containing $8.15g$ per $1.5 dm^3$ of solution is 7.093×10^4 Nm $^{-2}$ at 25° C. Calculate the freezing point of solution.
	1.5dm of solution is 7.093 x 10 Nm 2 at 25 °C. Calculate the freezing point of solution. (cryscopic constant ($K_{\rm f}$) of water is 1.86 °C per 1000g mol $^{-1}$)
	(cryscopic constant (K _f) of water is 1.86°C per 1000g mol ⁻¹)
	(cryscopic constant (K _f) of water is 1.86°C per 1000g mol ⁻¹)
	(cryscopic constant (K _f) of water is 1.86°C per 1000g mol ⁻¹)
	1.5dm° of solution is 7.093 x 10° Nm° at 25°C. Calculate the freezing point of solution. (cryscopic constant (K _f) of water is 1.86°C per 1000g mol ⁻¹)
	1.5dm° of solution is 7.093 x 10° Nm° at 25°C. Calculate the freezing point of solution. (cryscopic constant (K _f) of water is 1.86°C per 1000g mol ⁻¹)
	1.5dm° of solution is 7.093 x 10° Nm° at 25°C. Calculate the freezing point of solution. (cryscopic constant (K _f) of water is 1.86°C per 1000g mol ⁻¹)
	1.5dm° of solution is 7.093 x 10° Nm° at 25°C. Calculate the freezing point of solution. (cryscopic constant (K _f) of water is 1.86°C per 1000g mol ⁻¹)

6.	(a) Complete the following nuclear reactions by writing balanced equations
·.	22
	(i) $\frac{23}{11}$ Na \longrightarrow + β Balanced Equation:
	(ii)+ $\alpha \longrightarrow \frac{13}{7}N + \frac{1}{0}n$
	Balanced equation:
	225 1 05
	(iii) $\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Balanced equation:
	(b) The half life of a radioactive sample is 529 minutes. After 30 minutes the activity of was found to be 285 counts per second. Calculate the initial activity of sample.

7.	Name the class of compounds that is distinguished by the following reagents in each case state what is observed when each of the compounds in the class is reacted with the reagent(s) (a) aqueous sodium hydroxide and acidified silver nitrate - class of compounds
••	- observations,
•••	
	(b) Anhydrous zinc chloride and concentrated hydrochloric acid Class of compounds)
	Observations
• • •	
•••	
•••	
• • •	
• • •	
•••	
8.	 (a) Name the reagent that can be used to distinguish between Ca²⁺ and Mg²⁺ ions. State what is observed when the aqueous solution of each ion is separately treated with the reagent. Reagent(s)

•••••	
Observati	ion(s)
(b) A soli 51.22% o	d inorganic sulphate contains 9.76% of magnesium 13.00% of sulphur and f water
(i)	Determine the empirical formula of the compound.
(ii)	Hence determine the molecular formula of the compound (the molecular mass of compound is 245)
•••••	

••••	
•••	
••••	
(c)	Name the reagent(s) that can be used to confirm the ions present in the compound. In
	each case state what is observed.
• • •	
••••	
•••	
• • •	
••••	
9. A	is a black powder, when fused with a mixture of potassium hydroxide and potassium
ni	trate and then treated with water yields a green solution. The green solution turns purple
	hen acidified with dilute sulphuric acid
	(a) identify the compound A and the ions responsible the green and purple color of
	solution(s)
	(i) A:
	/''\' ' 1 .'
	(ii)ion in green solutions.
	(iii) ion in purple solution
	(b) Write an ionic equation to show the reaction leading to the formation of a purple
	solution,
	bolution,
• • • • • • • • • • • • • • • • • • • •	

SECTION B:

10.	By means of equa	ations only an	d reaction of	condition show	how the follow	ing conversions
	can be effected					

(a)	 \sim	_		from						

(b) CH ₂ OH	from	Br	
• • • • • • • • • • • • • • • • • • • •			

(c)	CH ₃ C	COOH	from	CH ₃ OH							
	•••••					•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 	• • • •
	• • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 	
				•••••	•••••		•••••	•••••		 	

11. The data below are for elements P,Q,R and S which belong to the same group in the periodic table.

Element	First ionization energy/kJmol ⁻¹	Mpt/°C
P	495	920
Q	580	2300
R	790	1610
S	1255	-20

(a) Which of the element(s) P,Q,R and S is a metal? Give a reason for your answer
(b) State the type of bonding and structure of the oxides of elements P and S.
(c) The second, third and fourth ionization energies of element Q are 1500, 7700 and 10,500 kJmol $^{-1}$ respectively.
To what group in the periodic table does Q belong? .Give reasons for your answer

For consultations call: +256 776 802709

12. (a)	Explain the principle of solvent extraction
()	
. ,	50cm³ of 1.5M ammonia solution was shaken with 50cm³ of trichloromethane in a separating funnel. After the layers had settled, 20cm³ of trichloromethane layer was pipetted and titrated with 0.05M hydrochloric acid. 22.9cm3 of the acid were required for complete neutralization. Write the expression for the partition coefficient (KD) for ammonia between water and trichloromethane.
	(i) Calculate the partition coefficient (KD) (State any assumptions made)

	(d) Explain why small portions of solvent is preferred to large portions in solvent extraction of solute.
	(a) Complete combustion of 7.50g of an organic compound Y containing carbon, hydrogen and oxygen gave 17.8g of carbon dioxide and 9.27g of water. Determine the empirical formula of Y.
• • • •	
• • • •	
•••••	(b) When vaporized at 760mmHg and 400k, 0.225g of Y occupies 100cm ³
	(i) Calculate the molar mass of Y.

For consultations call: +256 776 802709

• • • • • • • • • • • • • • • • • • • •		
	(ii)	Deduce the molecular formula of Y
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •		
	····	
	(iii)	Write down the structural formulae and systematic names of five isomers of Y
• • • • • • • • • • • • • • • • • • • •		
••••••	•••••	
• • • • • • • • • • • • • • • • • • • •		
potassiı	um dich	ned isomers of Y in b(iii) above does not react with acidified solution of aromate (VII), but reacts readily with a mixture of anhydrous zinc chloride and hydrochloric acid to form a turbid solution within 0 – 5 minutes.
and con	icciitiat	ed hydrochione deid to form a taroid solution within 0 3 minutes.
(i)	identify	y Y
	• • • • • • • • •	
(ii)	Write e	equation and indicate the mechanism for conversion of Y to an alkene.
• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •	

14. (a) Silver carbonate is sparingly soluble in water Write

More exams? browse: digitaltears.co.ug

For consultations call: +256 776 802709

(i) the equation for solubility of silver carbonate in water.
(ii) the expression for Ksp(solubility product) for silver carbonate
(b)The solubility of silver carbonate ate 15°C is 0.03g dm ⁻³ Calculate the solubility product of silver Carbonate at 15°C.
(c) State what would happen to the solubility of silver carbonate when a 0.1M solution of silver nitrate is added to the saturated solution. Explain your answer.
15. (a) What is meant by the term bond energy?
(b) The bond energy of $C = O$, $C - H$, $C - O$, $C - C$ and $O - H$ bonds respectively are 743, 412, 360, 348 and 463. Calculate the enthalpy change for the reaction below
$(CH_3)_2 C = O + HCN (CH_3)_2 CCN$ $ O - H$

	• • • • •								• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •							• • • • • • • • • •	
	•••••				•••••			•••••		
									• • • • • • • • • •	
									• • • • • • • • • • • • • • • • • • • •	
										•••••
	••••	•••••	•••••				•••••	•••••		• • • • • • • • • • • • • • • • • • • •
									• • • • • • • • •	
(c) For	each	of the fol	lowing con	npou	nds sta	ite the typ	e of bondi	ng and struc	ture adoj	oted
	Co	mpound			Bond	ing type		Structure		
	Iod									
	Ca	lcium fluo	ride							
	Sil	icon (IV)	oxide							
16 The	tah	la halow sl	nows the m	altin	a noin	ts of parid	od thraa ala	mants		
10. 1110	iau	ie below si	iows the in	Citiii	g pom	is of perio	od tillee ele	ements		
Elemen		Na	Mg		<u> </u>	Si	P 217	S	Cl	Ar
Mpt /°C		371	923	9	933	1680	317	392	172	84
Exp (i)		why: magnesiun	n has a hiol	ner m	nelting	point the	n sodium		(3	marks)
(i) magnesium has a higher melting point than sodium. (3 m										
	•••••									
(ii) Silicon has the highest melting point (3)				marks)						
` /			C		01				`	,
									• • • • • • • • • •	
									• • • • • • • • • • • • • • • • • • • •	

More exams? browse: digitaltears.co.ug For consultations call: +256 776 802709

(iii)	Sulphur has a higher melting point than phosphorus	(3 marks)
17. 2.0g c	of phosphorus raise the boiling point of 37.4g carbon disulphide by 1.00 calculate the molar mass of phosphorus in carbon disulphide	3°C
	(Kb for carbon disulphide = 2.35°C mol ⁻¹ 1000g ⁻¹)	
(b) Hence determine the molecular formula of phosphorus in carbon disu	ipnide.

(i) Stat	e any two assumptions made in the calculation in (a) above
	(ii) comment on the result in (a) above.

<u>End</u>