- **1.** 5 V_{pk} is equivalent to:
 - a. $7.07 V_{pk-pk}$
 - b. $10 V_{pk-pk}$
 - c. 2.5 V_{pk-pk}
 - d. $25 V_{pk-pk}$
- **2.** 20 V_{pk} is equivalent to:
 - a. $14.14 V_{rms}$
 - b. 28.28 V_{rms}
 - c. $10 V_{rms}$
 - d. $40 V_{rms}$
- 3. V(t) = 5*sin(377t + 30°)

What is the peak value of V(t)?

- a. $3.53 V_{pk}$
- b. 2.5 V_{pk}
- c. 5 V_{pk}
- d. $7.07 V_{pk}$
- 4. At 1 kHz, a 10 μ F capacitor has a reactance of:
 - a. $6.28 \text{ m}\Omega$
 - b. 15.9 Ω
 - c. 159 kΩ
 - d. 159 Ω
- 5. At 60 Hz, a 22 mH inductor has a reactance of:
 - a. 8.3 Ω
 - b. $8.3 k\Omega$
 - c. 1.32 Ω
 - d. $121 \text{ m}\Omega$

- 6. See the phasor diagram to the right. What component(s) compose Z_T ?
 - a. Resistor
 - b. Inductor
 - c. Capacitor
 - d. Resistor and Inductor
 - e. Resistor and Capacitor
 - f. Inductor and Capacitor

- 7. As frequency increases, the reactance of a capacitor will:
 - a. Decrease
 - b. Increase
 - c. Remain the same
 - d. It depends on other factors within the circuit
- 8. At DC, an ideal inductor looks like:
 - a. A resistor
 - b. A capacitor
 - c. An open circuit
 - d. A short circuit

For questions 9 thru 16, express your answer in both rectangular and polar form. Read these questions carefully!

9.
$$(6 \angle 40^\circ) + (8 - 2j) =$$

10.
$$(8 \angle 10^{\circ}) - (7 \angle -10^{\circ}) =$$

11.
$$(5 - 8j) * (5 \angle 8^\circ) =$$

12.
$$[(-10 + j) + (4 \angle 33^\circ)] / (-8 \angle 72^\circ) =$$

13.
$$[(-41 \angle -98^\circ) - (83 - 74j)] * [(96 \angle 53^\circ) - (64 \angle -84^\circ)] =$$

14. [
$$(-93 - 66j) + 10j + (37j + 51)$$
] = [$(75 \angle -37^\circ) - (-47 \angle -5^\circ) - (15 \angle 4^\circ)$]

15.
$$[(-65 \angle 7') + (-78 + 13j) + (42 \angle -21^\circ)] * [(-5j + 94) * (-8 + 29j)]$$
 = $[(14 \angle -82^\circ) + (94 \angle -55^\circ) - (-23j + 86)]$

Questions 17 thru 19 are based on the circuit above.

- *17.* What is the total impedance of the series circuit?
 - a. $(30.68 \angle -48^{\circ}) \Omega$
 - b. $(20.73 \angle 90^{\circ}) \Omega$
 - c. (22.58 ∠ -90°) Ω
 - d. $(1.841 \angle -90^{\circ}) \Omega$
- **18.** If the applied voltage is $(8 \angle 15^{\circ})$ V, what is the current?
 - a. (261 ∠ 63°) mA
 - b. (386 ∠ -75°) mA
 - c. (354 ∠ 105°) mA
 - d. (4.35 ∠ 105°) A
- **19.** What is V_L?
 - a. (90.1 ∠ -165°) V
 - b. (7.35 ∠ 105°) V
 - c. (8.0 ∠ -75°) V
 - d. (5.41 ∠ 63°) V

Questions 20 and 21 are based on the circuit above.

20. What is the total impedance of the circuit?

- a. $(620 \angle -40.7^{\circ}) \Omega$
- b. $(813 \angle 54.7^{\circ}) \Omega$
- c. (537 ∠ 28.9°) Ω
- d. $(259 \angle 90^{\circ}) \Omega$

21. If the applied voltage is $(120 \angle 0^{\circ})$ V, what is the voltage across the resistor?

- a. (876 ∠ -28.9°) mV
- b. (105 ∠ -28.9°) V
- c. (148 ∠ 61.1°) V
- d. (90.4 ∠ -28.9°) V

Questions 22 thru 27 are based on the circuit above.

22. What is the total impedance seen by the source?

23. What is E_s?

24. What is I_c ?

25. Draw the Thévenin equivalent circuit (voltage source and series impedance).

26. What load placed across terminals *a* and *b* would dissipate the most power?

27. How much average power would the load you selected in the previous question dissipate?

Questions 28 thru 30 are based on the circuit above.

28. What is the Thévenin impedance of the circuit external to points *a* and *b*?

29. Draw the Norton equivalent circuit for 100 kHz (current source with completely parallel components)

30. If a 1kΩ resistor is placed across terminals a and b, how much average power will be dissipated?

- **31.** Do you want a cookie?
 - a. Yes
 - b. No
 - c. Not sure
 - d. Depends on what kind of cookie

Changelog:

- 1. For question 19, the correct answer was not listed originally. It has been added.
- 2. For the circuit on page 8, a value for the source has been added (necessary to answer question 30).