도시 건축물 전력 프로슈머 발전시스템 (Building Energy Prosumer System)

1. 휴앤엔의 BEPS-PGM 목적과 목표

1) 목적

- ① 도시 에너지 패러다임 전환. ② 에너지 스마트 도시로 전환. ③ 도시 에너지 주체로 전환.

2] 목표

- ① BEPS-PGM 기반의 도시·블록·건축물의 전력 및 전기자가용 충전 전력 프로슈머 구현.
- ② 도시의 예측가능-잉여공간-안전환경-무한발전原-특정패턴-자가용을 활용한 자립형 도시 건축물 발전소 구현.
- ③ 융합: 공간 + 발전.
- ④ 전환: 도시 건축물과 자가용 → 전력 생산주체.

2. BEPS-PGM (Power Generation Module)

세계최초 특정목적패턴의 압력-발전 모듈&시스템.

- 1) 고집적 도시 건축물의 수직 주차장과 출입 자가용을 활용한 압력-발전 모듈&시스템.
- 2) 도시 건축물 전력 생산-공급-소비 일체형.
- 3) 압력-발전 전력을 공용전력과 전기자가용 충전전력으로 사용.

② 고집적 도시 건축물 수직 주차장의 잉여공간 · 환경.

③ 주차장 출입구와 층간 경사로 전후.

3. 도시 에너지 문제

1) 글로벌 도시 에너지 문제.

305,389,844 MWh

26,258,800 toe(2017)

- * 212.15% 143,947,021 MWh/year (2019 원전25기)
- * 11,496,255 MWh/year (2019 신고리3-88.4%,88.6%)

도시 건축물 에너지 비용

국가 에너지 비용

년간 전력비용

건축물 전력 설비 증설 비용

도시-블록 전력 인프라 구축비용

原 생산 비용

3. 도시 에너지 문제

- 3) 전기자가용 충전 전력 증가로 도시 건축물 년전력량-비용-피크전력 증가.
- 4) 도시-블록-건축물의 소비전력 증가는 발전原-공급망-설비인프라 증설 必.
 - ☆ 3040 초고층건축물 전기자가용 충전전력 문제.

- * 3.770 Parking x 5 Gate
- * 5,504,200 Vehicle/year (4.0)
- * 113,563,000 kwh/year (2018)
- * 28,390,750,000 원(250원/kwh)

2030 2035 2040 EV 50% 75% 100%

3. 도시 에너지 문제

5) 도시-블록-건축물 용도별 전력단가증가-발전原-인프라 증설 문제.

☆ 3040 대형아파트 전기자가용 충전전력 문제.

- * 11.500 Parking x 5 Gate
- 54.195.500 Vehicle/vear
- * 15.060 Vehicle/day (1.3) (1G-3.016)
- 35,178,000 kwh/year (2020)
- * 7,130,967,000 원(202원/kwh)

vear power

4.195.500V/year x 60% x 20kwh

* 35.178.000 7.387 백만원

peak power

11,500V/hour x 60% x 10kwh

* 73,016kwh

* 4.016

☆ 3040 대형백화점 전기자가용 충전전력 문제.

- * 839 Parking x 1 Gate
- * 1,600,000 Vehicle/year
- 4.383 Vehicle/day (5.2) (1G-4.383)
- 25,234,000 kwh/year (2014)
- * 6,308,500,000 원(250원/kwh)

vear power

1,600,000V/year x 60% x 20kwh

* 19,200,000 (78.09%) 4.800 백만원

* 25,234,000 6.308 백만원

 44.434.000kwh 11.108 백만원(250) peak power

839V/hour x 60% x 10kwh

* 9.050kwh

4.016

☆ 3040 대형전시몰 전기자가용 충전전력 문제 ❖ year power

- 2,648 Parking x 5 Gate
- * 3.000.000 Vehicle/vear
- * 8,219 Vehicle/day (3.1) (1G-1,643V)
- * 111,774,000 kwh/year (2016)
- * 27,943,500,000 원(250원/kwh)

3,000,000V/year x 60% x 20kwh

* 111.774.000 27.943 백만원

peak power 2.648V/hour x 60% x 10kwh

2040

28.648kwh

4. BEPS-PGM 솔루션

- 1) 예측가능-잉여공간-무한발전原-특정패턴-자가용을 활용한 메가와트급 자립형 도시 건축물 발전소 구현.
- 2) 고집적 도시 건축물의 수직 주차장 출입구-층간 경사로 전후에 PGM 구축.
- 3) 특정패턴으로 출입하는 특정하중 자가용을 무한반복발전原으로 활용한 압력-발전.
 - ① 고집적 도시 건축물 주차장 잉여 공간 · 환경.

② 특정목적이동 자가용의 수평패턴.

③ 도시 건축물 주차장의 수직 패턴

④ 자가용 특정하중 압력-발전.

☆ 647.072.000 발전-Cell.

Vehicle	Tire	PGM-Cell		
40,442,000	4	4		

5. BEPS-PGM 경쟁우위

☆ 세계최초 특정공간환경패턴 활용 압력-발전 모듈&시스템 원천기술 및 특허 보유.

1) 예측가능-친환경-무한발전原 활용

① 무한반복발전原 (Vehicle x 입출 x 4Tire)

(IN+OUT) (IN) (OUT) 3,0000 6.000V 3.000V * Dav * Year : 2.190.000V | 1.095.000V | 1.095.000V

② 발전타임 (3,000Vehicle)

- * 2.1 Vehicle/min = 3.000V / (24 x 60)
- * 2021 (8sec) : 400min \rightarrow 6.67hours (27.78%/day) * 2022 (16sec) : 800min \rightarrow 13.33hours (55.56%/dav)
- * 2023 (30sec)

3) 세계최초 분리형 압력-발전 모듈(특허).

2) 세계최초 반복하중압력-연속회전토크 전환 기술(특허).

- * 특정패턴하중
- 250~500 kgf/tire
- * \pm 10 kmh (1sec \rightarrow 2.7M)

4) 발전효율高 : 압력발전기술 + 풍력발전기술 융합

- $-500 \text{kgf/m}^2 \rightarrow 90.40 \text{m/sec}$
- $-250 \text{kgf/m}^2 \rightarrow 63.93 \text{m/sec}$

- * wind power
- -25m/sec $\rightarrow 38$ kgf/m²

6. BEPS-PGM 경제성

- 1) 저탄소-친환경-자립형-24h 버려지는 공간-환경-발전原 활용.
- 2) 발전주체: ① 건축물소유주 + 발전소소유주 ② 자가용 + 발전原(인센티브).
- 3) 6無: 발전부지無-발전原無-환경파괴無-환경오염無-원거리공급망無-사회적 갈등無.
- 4) 구축-유지-관리가 용이.
- 5) 구축비용-유지비용-관리비용 저렴.
 - ☆ BEPS-PGM-3000V 구축비용
- \star 전력절감비용(2년) 350백만원 + α
- * 700,800kwp x 250원/kwh = 175,200,000원/년

☆ BEPS-PGM-3000V

Vehicles in+out	kwp/day	kwp/year		
3,000 (6,000)	1,920	700,800		

* in+out : 0.64kwp

* In (0.32kwp) : 4PGMC x 4tire x 20wp * Out (0.32kwp) : 4PGMC x 4tire x 20wp * 44.44%

* 488.4백만원

* 2.930m²

* 1,576,800 kwp/year (1MWp x 24 x 365 x 18%)

* 발전부지: 6,600m²

* 구축비용 : 1,100 백만원

* 공급 인프라

7. HUNEN Team

☆ 새로운 도시 에너지 패러다임을 창조하는 기업.

- 1) 지하철 주행풍압 발전시스템 개발(2019, 특허).
- 2) 분리형-압전발전 모듈 개발(2020, 특허·PCT)
- 3) 도시 건축물 전력 프로슈머 발전시스템 개발(2021, 특허).

* Son Youngwoo CEO · CTO

* Park Eunhui coo

* Lee Jinwoo CDO

8. BEPS-PGM 비즈니스

- 1) 새로운 도시 · 블록 · 건축물 에너지 사업(BEPS-PGM 구축-운영-서비스).
- 2) 도시 건축물소유주 주도의 3040 도시 건축물 전력 자립사업.
- 3) 도시 건축물소유주 주도의 3040 전기자가용 충전전력 자립(협업)사업.

9. BEPS-PGM 비즈니스

☆ 3040 초고층건축물 전기자가용 충전전력 자립.

2030 2040 50% 100%

* 40,442,000Vehicle(IN+0UT) x 0.32kwp

: 5,504,200 V/year x 60 % x 20 kwh

- * 179,613,000 kwh/year
- * 44,903 백만원 (250/kwh)

* 66,050,000 (58.16%)

16,512 백만원

* 113,563,000 28,390 백만원 * 19.59 %

* 12,941,440 kwp

* PGM-25Module: 12,941,440 kwp

* 8,750 백만원

 m^2

- * 1 MWp (1,576,800 kwp) (1MWp x 24 x 365 x 18%)
- * 1,100 백만원
- * 8.21 MWp
- * 9,028 백만원 + 공급설비 인프라 비용.
- * 276,467 m²

10. 휴앤엔 매출 목표

1) 사업고도화 : ① 구축-유지관리-서비스 역량 강화 ② 도시-블록-건축물 단위 대리점 구축.

2) 조직역량강화: ① 연구-생산-인력 강화 ② 글로벌 협업파트너 네트워크 구축.

2) 기술고도화 : ① 글로벌 연구협업파트너 네트워크 구축 ② 발전효율고도화.

3) 국책실증사업: 정부주무부처와 국책실증사업 추진.

* 2022 : 20wp · 8sec

* 2023 : 40wp · 16sec

* 2024 : 80wp · 32sec

2022		모듈 (Units)		매출 (억)		영업이익 (억)				
		2023	2024	2025	2023	2024	2025	2023	2024	2025
Я					164.0	393.0	1,062.0	49.2	117.9	318.6
	구축	40	90	240	140.0	315.0	840.0	42.0	94.5	252.0
	유지관리	40	130	370	12.0	39.0	111.0	3.6	11.7	33.3
	부가서비스	40	130	370	12.0	39.0	111.0	3.6	11.7	33.3
					164.0	352.0	728.0	49.2	105.6	218.4
국내	구축	40	80	160	140.0	280.0	560.0	42.0	84.0	168.0
	유지관리	40	120	280	12.0	36.0	84.0	3.6	10.8	25.2
	부가서비스	40	120	280	12.0	36.0	84.0	3.6	10.8	25.2
					0.0	41.0	334.0	0.0	12.3	100.2
수출	구축		10	80	0.0	35.0	280.0	0.0	10.5	84.0
	유지관리		10	90	0.0	3.0	27.0	0.0	0.9	8.1
	부가서비스		10	90	0.0	3.0	27.0	0.0	0.9	8.1

휴앤엔은 에너지하베스팅 발전기술로 도시에너지패러다임 전환과 새로운도시에너지인류(삶)를 창조한다.

충청북도 청주시 청원구 오창읍 연구단지로 76, 충북테크노파크 본부관 319호

T. 043.212.9827

F. 043.212.9828

E. y2ksyw@gmail.com