

KP2182X

High Performance Quasi-Resonant Primary Side Regulation CV/CC Power Switch with Single Failure Protections

FEATURES

- Integrated with Power MOSFET
- High Efficiency Quasi-Resonant Primary Side Regulation (QR-PSR) Control
- High-Precision CC and CV Regulation
- Low Standby Power <75mW@265Vac
- Multi-Mode PSR Control
- Audio Noise Free Operation
- Fast Dynamic Response
- Optimized EMI Performance
- Built-in Cable Drop Compensation (CDC)
- Single Failure Protections for Power Supply
- Build in Protections:
 - Short Load Protection (FB SLP)
 - On-Chip Thermal Shutdown (OTP)
 - **■** FB Over Voltage Protection (FB OVP)
 - VDD OVP & UVP & Clamp
- Available with SOP-7/8, DIP-8 and ASOP-6 Package

APPLICATIONS

- Battery Chargers for Cellular Phones
- AC-DC Power Adapter

GENERAL DESCRIPTION

KP2182X is a family of high performance Quasi Resonant (QR) Primary Side Regulation (PSR) PWM power switch with high precision CV/CC control ideal for charger applications. At full load, the switch operates in quasi-resonant (QR) mode in the universal line voltage to optimize efficiency and thermal performance.

The IC can achieve audio noise free operation and optimized dynamic response. The built-in Cable Drop Compensation (CDC) function and line CC compensation can provide excellent CV, CC performance.

KP2182X integrates functions and protections of Under Voltage Lockout (UVLO), VDD over Voltage Protection (VDD OVP), Cycle-by-cycle Current Limiting (OCP), Short Load Protection (FB SLP), FB over Voltage Protection (FB OVP), On-Chip Thermal Shutdown, VDD Clamping, etc.

KP2182X also integrates single failure protections, which can ensure there is no damage to IC and no over voltage of output when IC pin open or short failure happens.

TYPICAL APPLICATION CIRCUIT

Pin Configuration

SOP-8

DIP-8

SOP-7

ASOP-6

Marking Information

XXXXXX: Wafer Lot Code
Y: Year Code
WW: Week Code, 01-52
ZZ: Serial Number, 01-99 or A0-ZZ
F. S: Control Number, 1-9 or A-Z a-

SOP-8

XXXXXX: Wafer Lot Code Y: Year Code

WW: Week Code, 01-52 ZZ: Serial Number, 01-99 or A0-ZZ

SOP-8

XXXXXX: Wafer Lot Code Y: Year Code WW: Week Code, 01-52 ZZ: Serial Number, 01-99 or A0-ZZ F, S: Control Number, 1-9 or A-Z, a-z

XXXXXX: Wafer Lot Code Y: Year Code WW: Week Code. 01-52

ZZ: Serial Number, 01-99 or A0-ZZ

SOP-7

XXXXXX: Wafer Lot Code Y: Year Code

WW: Week Code, 01-52

ZZ: Serial Number, 01-99 or A0-ZZ F, S: Control Number, 1-9 or A-Z, a-z

SOP-8

XXXXXX: Wafer Lot Code
Y: Year Code
WW: Week Code, 01-52
ZZ: Serial Number, 01-99 or A0-ZZ
F, S: Control Number, 1-9 or A-Z, a-z

ASOP-6

XXXXXX: Wafer Lot Code

Y: Year Code

WW: Week Code, 01-52

ZZ: Serial Number, 01-99 or A0-ZZ F, S: Control Number, 1-9 or A-Z, a-z

XXXXXX: Wafer Lot Code

Y: Year Code

WW: Week Code, 01-52

ZZ: Serial Number, 01-99 or A0-ZZ F, S: Control Number, 1-9 or A-Z, a-z

SOP-8

XXXXXX: Wafer Lot Code Y: Year Code WW: Week Code, 01-52

ZZ: Serial Number, 01-99 or A0-ZZ F, S: Control Number, 1-9 or A-Z, a-z

ASOP-6

Typical Output Power Table⁽¹⁾

Draduct	Daakasa	230VAC ± 15% ⁽²⁾	85-265VAC
Product	Package	Adapter ⁽³⁾	Adapter ⁽³⁾
KP21822M	SOP-8	15W	12W
KP21823	SOP-7	18W	15W
KP21824	SOP-7	21W	18W
KP21824L	SOP-8	21W	18W
KP21824M	SOP-8	21W	18W
KP21825C	SOP-8	24W	21W
KP21824L	ASOP-6	24W	21W
KP21827M	DIP-8	27W	24W
KP21827	ASOP-6	27W	24W

⁽¹⁾ The Max. output power is limited by junction temperature.

Pin Description

Pin Number ASOP-6	Pin Number SOP-8/DIP-8	Pin Number SOP-7	Pin Name	I/O ⁽⁴⁾	Description
1	2	7	GND	G	The Ground of the IC
2	1	1	VDD	Р	IC Power Supply Pin
3	-	3	NC	-	No Connect
4	3	2	FB	I	System Feedback and Demagnetization Detection Pin
5	4	4	cs	I	Current Sense Input Pin
6	5, 6, 7, 8	5,6	Drain	Р	The Power MOSFET Drain

⁽⁴⁾ I - Input; P - Power; G - Ground

^{(2) 230}VAC or 100/115VAC with voltage doublers.

⁽³⁾ Typical continuous power in a non-ventilated enclosed adapter with sufficient drain pattern as a heat sink at 50°C ambient.

Ordering Information

Part Number ⁽⁵⁾	Description
KP21822MSGA	SOP-8, Halogen free, in T&R, 4000Pcs/Reel
KP21823SGA	SOP-7, Halogen free, in T&R, 4000Pcs/Reel
KP21824SGA	SOP-7, Halogen free, in T&R, 4000Pcs/Reel
KP21824LSGA	SOP-8, Halogen free, in T&R, 4000Pcs/Reel
KP21824MSGA	SOP-8, Halogen free, in T&R, 4000Pcs/Reel
KP21825CSGA	SOP-8, Halogen free, in T&R, 4000Pcs/Reel
KP21827MDP	DIP-8, Pb free, 50Pcs/Tube
KP21824LWGA	ASOP-6, Halogen free, in T&R, 5000Pcs/Reel
KP21827WGA	ASOP-6, Halogen free, in T&R, 5000Pcs/Reel

(5) Suffix "A" - Tape&Reel

Block Diagram

Absolute Maximum Ratings(6)

Parameter	Parameter				
VDD DC Supply Voltage	-0.3 to 33	V			
VDD DC Clamp Current		5	mA		
Drain pin Voltage Range	-0.3 to 650	V			
FB Voltage Range	-0.7 to 5.5	V			
CS Voltage Range	-0.3 to 5.5	V			
Package Thermal ResistanceJunction to Amb	ient (SOP-7/8)	165	°C/W		
Package Thermal ResistanceJunction to Amb	ient (DIP-8)	105	,cW		
Package Thermal ResistanceJunction to Amb	ient (ASOP-6)	120	°C/W		
Maximum Junction Temperature		165	°C		
Storage Temperature Range		-40 to 165	°C		
Lead Temperature (Soldering, 10sec.)	260	°C			
ESD Capability, HBM (Human Body Model)	3	kV			
ESD Capability, CDM (Charged Device Model)		2	kV		
	KP21822M	2	А		
	KP21823	3	А		
	KP21824	2	А		
	KP21824M	4	А		
Maximum MOSFET Continuous Drain Current	KP21824L(SOP-8)	4	А		
	KP21825C	2.7	А		
	KP21827M	7	А		
	KP21824L(ASOP-6)	4	А		
	KP21827	3.5	А		
5	KP21822M	8	А		
	KP21823	12	А		
	KP21824	8	А		
	KP21824M	16	А		
Maximum MOSFET Pulse Drain Current	KP21824L(SOP-8)	16	А		
	KP21825C	8.1	А		
	KP21827M	28	А		
	KP21824L(ASOP-6)	16	Α		

Recommended Operation Conditions

Parameter	Value	Unit
Supply Voltage, VDD	9 to 25	V
Operating Junction Temperature	-40 to 125	°C

Electrical Characteristics (T_A= 25°C, VDD=10V, if not otherwise noted)

Symbol	Parameter	arameter Test Conditions Min T		Тур.	Max	Unit
Supply Volt	age Section (VDD Pin)	I				
I _{VDD_st}	Start-up current into VDD pin	VDD <vdd_on< td=""><td>0</td><td>0.5</td><td>15</td><td>μΑ</td></vdd_on<>	0	0.5	15	μΑ
I _{VDD_Op}	Operation Current ⁽⁷⁾		200	330	500	μΑ
V_{DD_ON}	VDD Under Voltage Lockout Exit	<u> </u>		16.7	17.5	V
V_{DD_OFF}	VDD Under Voltage Lockout Enter		6	7.3	8	V
$V_{\text{DD_OVP}}$	VDD OVP Threshold		25	27.5	30	V
V _{DD_Clamp}	VDD Zener Clamp Voltage	VDD Zener Clamp Voltage I(V _{DD}) > 8 mA		29.5	31.5	V
Control Fun	ection Section (FB Pin)					
V _{FBREF}	Internal Error Amplifier (EA) Reference Input	C	1.97	2.0	2.02	V
V _{FB_SLP}	Short Load Protection (SLP) Threshold ⁽⁷⁾	46		1		V
T _{FB_Short}	Short Load Protection (SLP) Debounce Time ⁽⁷⁾			50		ms
V _{FB_OVP}	FB Over Voltage Protection Threshold ⁽⁷⁾			2.6		V
T _{FB_OVP}	FB Over Voltage Protection Debounce Time			3		Cycle
	Demagnetization Company of Three hold	Upper Threshold		20		mV
V	Comparator Threshold (FB<1.4V)	Lower Threshold		-20		mV
Vfb_dem	Demagnetization	Upper Threshold		50		mV
	Comparator Threshold (FB>1.4V)	Lower Threshold		-170		mV
T _{on_max}	Maximum ON time ⁽⁷⁾			32		μs
	Landing Edge Disching T	Light Load ⁽⁷⁾	1.8	2	2.2	μs
Tblank	Leading Edge Blanking Time	Heavy Load ⁽⁷⁾	3.1	3.5	3.9	μs
$T_{\text{off_max}}$	Maximum OFF time ⁽⁷⁾		3.4	3.9	4.5	ms
F _{max}	Maximum Switching Frequency ⁽⁷⁾		90	100	110	kHz

CDC	Maximum Cable Drop Compensation, V _{cdc} / V _{out} ⁽⁷⁾			3		%
Current Ser	nse Input Section (CS Pin)					
T _{LEB}	CS Input Leading Edge Blanking Time			400		ns
V_{cs_max}	Maximum Current limiting threshold ⁽⁷⁾		755	785	815	mV
$V_{\text{cs_min}}$	Minimum Current limiting threshold ⁽⁷⁾		170	180	190	mV
T _{D_OC}	Over Current Detection and Control Delay			100		ns
CC Loop						
V _{CC_ref}	CC Loop Reference		0.33	0.34	0.35	V
On-Chip Thermal Shutdown						
T _{SD}	Thermal Shutdown ⁽⁷⁾		150	155	160	°C
T _{RC}	Thermal Recovery ⁽⁷⁾		120	125	130	°C
Power MOS	FET Section (Drain Pin)					
$V_{BR}^{(8)}$	Power MOSFET Drain Source Breakdown Voltage	10 .	650			V
		KP21822M		5.3	6.4	Ω
		KP21823		2.9	3.5	Ω
		KP21824		2.2	2.5	Ω
		KP21824M		2.2	2.6	Ω
R_{dson}	Static Drain-Source On Resistance	KP21824L(SOP-8)		2.6	3.1	Ω
		KP21825C		1.6	1.8	Ω
		KP21827M		1.2	1.4	Ω
	6	KP21824L(ASOP-6)		2.6	3.1	Ω
		KP21827		1.25	1.45	Ω

- (6) Stresses listed as the above "Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to maximum rating conditions for extended periods may remain possibility to affect device reliability.
- (7) Guaranteed by the Design.
- (8) For KP21824L(SOP-8/ASOP-6), MOSFET minimum drain to source breakdown voltage is 620V and the MOSFET can withstand 650V voltage spike with duration below 200ns.

Characterization Plots

V_{DD_ON} vs Temperature

V_{CC REF} vs Temperature

V_{DD OFF} vs Temperature

V_{FB_REF} vs Temperature

Operation Description

KP2182X is a high performance, multi-mode Quasi Resonant Primary Side Regulation (QR-PSR) power switch ideal for charger applications. At full load, the switch operates in quasi-resonant (QR) mode in the universal line voltage to optimize efficiency and thermal performance.

System Start-Up Operation

Before the IC starts to work, KP2182X consumes only I_{VDD_st} (typically 0.5 μ A) which allows a large value startup resistor to be used to minimize the standby power loss. When VDD reaches turn-on voltage V_{DD_ON} (typically 16.7V), KP2182X begins switching. The hold-up capacitor continues to supply VDD before the auxiliary winding of the transformer takes control.

PSR Constant Voltage Modulation (PSR-CV Mode)

In Primary Side Regulation (PSR) control, the output voltage is sensed on the auxiliary winding when transformer energy is transferred to the secondary side. Fig.2 illustrates the timing waveform of CV sampling signal, demagnetization signal in KP2182X. When the CV sampling process is over, the internal sample/hold (S&H) circuit captures the error signal and amplifies it through the internal Error Amplifier (EA). The output of EA is sent to the PSR CV Modulator (PSR-CVM) for high-precision CV regulation. The internal reference voltage V_{FBREF} is trimmed to be 2V.

Fig.2 also illustrates the equation for "demagnetization plateau",

$$V_{FB} = (V_O + V_F) \times \frac{Na}{Ns} \times \frac{R1}{R1 + R2}$$

where Vo and VF are the output voltage and diode forward voltage; R1 and R2 are the resistor divider connected from the auxiliary winding to FB Pin, Ns and Na are secondary winding and auxiliary winding respectively.

PSR Constant Current Modulation (PSR-CC Mode)

Referring to Fig.3 above, the primary peak current, transformer turns ratio, secondary demagnetization time (Tdem), and switching period (Tsw) determines the secondary average output current lout. Ignoring leakage inductance effects, the equation for average output current is shown in Fig.3.

In CC mode, the IC operates in QR mode and adjust $V_{\text{cc_ref}}$ automatically to achieve constant output current. The average output current can be expressed as:

$$I_{\text{CC_OUT}} \cong \frac{1}{2} \times N \times \frac{V_{\text{cc_ref}}}{R_{\text{cs}}}$$

In the equation above,

N----The turn ratio of primary side winding to secondary side winding.

Rcs---The sensing resistor connected between the power MOSFET source to GND.

Vcc_ref----CC Loop Reference.

Multi-Mode Control in CV Mode

To meet the tight requirement of average system efficiency and no-load power consumption, a hybrid of frequency modulation (FM) and amplitude modulation (AM) is adopted in KP2182X which is shown in the Fig 4.

At full load, the system operates in QR mode to optimize efficiency and thermal performance. The IC operates in FM+AM mode for high efficiency and audio noise reduction under normal and light load.

• Cable Drop Compensation (CDC)

In smart phone charger application, the battery is always connected to the adapter with a cable wire which can cause several percentages of voltage drop on the actual battery voltage. KP2182X integrates built-in cable drop compensation (CDC), which is proportional to the output power Pout to get a straight constant voltage output curve. The percentage of maximum compensation is 3% of V_o.

Line CC Compensation

The turn-off delay of MOSFET affects CC performance, and OCP value at high voltage input will be much larger than at low voltage input without compensation. KP2182X integrates built-in line CC compensation to achieve excellent line CC regulation.

Optimized Dynamic Response

The dynamic response performance is optimized to meet USB charge requirements.

Audio Noise Free Operation

As mentioned above, the multi-mode CV control with a hybrid of FM and AM can provide audio noise free operation from full load to zero load.

Single Failure Protections for Power Supply

KP2182X integrates single failure protections, including FB pull-up resistor open protection, FB pull-down resistor open protection, FB pull-down resistor short protection, output rectifier diode or SR short protection, transformer windings short protection, Rcs open protection and IC GND pin open protection. The IC will enter auto recovery protection mode once single failure occurs. This function can ensure there is no damage to IC and no over voltage of output.

Short Load Protection (FB SLP)

The output is sampled on FB pin and then compared with V_{FB_SLP} (typically 1V).

When sensed FB voltage is below V_{FB_SLP} and lasts for T_{FB_Short} (typically 50ms), the IC will enter into Short Load Protection (SLP) mode, in which the IC will enter into auto recovery protection mode.

• FB Over Voltage Protection (FB OVP)

When sensed FB voltage is above V_{FB_OVP} (typically 2.6V) and lasts for T_{FB_OVP} (typically 3 cycles), the IC will enter into FB Over Voltage Protection (FB OVP) mode, in which the IC will enter into auto recovery protection mode.

VDD Over Voltage Protection (OVP) and Zener Clamp

When VDD voltage is higher than V_{DD_OVP} (typically 27.5V), the IC will stop switching. This will cause VDD fall down to be lower than V_{DD_OFF} (typically 7.3V) and then the system will restart up again. An internal Zener clamp is integrated to prevent the IC from damage, and the clamp voltage is V_{DD_Clamp} (typically 29.5V).

On-Chip Thermal Shutdown (OTP)

When the IC temperature is over T_{SD} (typically 155°C), the IC shuts down. Only when the IC temperature drops to T_{RC} (typically 125°C), IC will restart.

Soft Totem-Pole Gate Driver

KP2182X has a soft totem-pole gate driver with optimized EMI performance. An internal 16V clamp circuit is added for power MOSFET gate protection.

Application Information

PCB Layout Guidelines

PCB design has a significant impact on the performance of power supply. It is recommended to refer to Figure 5 and Figure 6 when designing primary-side circuit.

- The main power loop(Loop1) should be as small as possible and the trace should be wide for better efficiency performance.
- 2. The snubber circuit Loop(Loop2) should be as small as possible.
- 3. Place VDD capacitor C3 close to the IC to ensure the VDD loop(Loop3) is small.
- The ground node of auxiliary winging should be connected directly to the negative node of the bus capacitor (Line1 as shown in Fig.5)
- 5. VDD capacitor C3 and FB pull-down resistor R5 should be connected directly to the IC GND pin firstly, and then connects them to the negative node of the bus capacitor with a single point (Line2 as shown in Fig.5)

Fig.6

Package Dimension

Cumala al	Dimensions i	n Millimeters	Dimensions in Inches		
Symbol	Min.	Max.	Min.	Max.	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.300	1.500	0.051	0.059	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.201	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270	(BSC)	0.050	(BSC)	
	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

Package Dimension

Cumbal	Dimensions i	n Millimeters	Dimensions in Inches		
Symbol	Min.	Max.	Min.	Max.	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.300	1.500	0.051	0.059	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.201	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270	(BSC)	0.050	(BSC)	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

Package Dimension

DIP-8

Comple al	Dimensions i	in Millimeters	Dimension	s in Inches	
Symbol	Min.	Max.	Min.	Max.	
А	3.600	4.150	0.142	0.163	
A1	0.510	**	0.020	-	
A2	3.150	3.400	0.124	0.134	
В	0.380	0.560	0.015	0.022	
B1	1.524 (BSC)		0.060 (BSC)		
С	0.200	0.350	0.008	0.014	
D	9.000	9.400	0.354	0.370	
E	6.200	6.500	0.244	0.256	
E1	7.620 (REF)		0.300	(REF)	
е	2.540 (BSC)		0.100	(BSC)	
	3.000	3.600	0.118	0.142	
E2	7.620	9.300	0.300	0.366	

Package Dimension

ASOP-6

Cumbal	Dimensions in Millimeters		Din	nensions in Inc	hes	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
А	1.050	1.150	1.250	0.041	0.045	0.049
а		0.200 (REF)			0.008 (REF)	
С	0.150	0.200	0.220	0.006	0.008	0.009
D	6.000	6.200	6.400	0.236	0.244	0.252
d1	1.250	1.300	1.350	0.049	0.051	0.053
d2	1.950	2.000	2.050	0.077	0.079	0.081
Е	3.700	3.900	4.100	0.146	0.154	0.161
e1	0.350	0.400	0.450	0.014	0.016	0.018
e2	1.550	1.600	1.650	0.061	0.063	0.065
HE	5.900	6.000	6.100	0.232	0.236	0.240
L	0.950	1.050	1.150	0.037	0.041	0.045
L1	0.400	-	0.800	0.016	-	0.031
			1:	2°		

Tape and Reel Information

Reel Dimensions (mm)					
Α	B (Inner Diameter)	W1	W2Max	Т	
330	100	12.4	18.4	1.5	

Tape Dimensions				
Symbol Dimensions (mm)		Symbol	Dimensions (mm)	
E	1.75±0.10	W	12.00±0.10	
F	5.50±0.10	Р	8.00±0.10	
P2	2.00±0.10	A0	6.60±0.10	
D	$1.50^{+0.1}_{-0}$	В0	5.30±0.10	
D1	1.55±0.05	K0	1.90±0.10	
P0	4.00±0.10			

Packing Quantity				
Package	Pcs/Reel	Reels/Box	Boxes/Carton	Pcs/Carton
SOP-7	4000	2	8	64000
SOP-8	4000	2	8	64000

Hoenitol

High Performance Quasi-Resonant Primary Side Regulation CV/CC Power Switch with Single Failure Protections

Tape and Reel Information

Reel Dimensions (mm)				
Α	B (Inner Diameter)	E	F	Т
330±2	100±1	16.9±0.5	12.7 ⁺² _{-0.5}	2.1±0.2

Tape Dimensions				
Symbol	Dimensions (mm)	Symbol	Dimensions (mm)	
A0	6.40±0.10	K1	1.50±0.10	
В0	6.60±0.10	Е	1.75±0.10	
K0	1.70±0.10	F	5.50±0.05	
P0	4.00±0.10	D0	1.55±0.05	
P1	8.00±0.10	D1	1.55±0.05	
P2	2.00±0.05	W	12.0±0.30	
A1	3.80±0.10			

Packing Quantity				
Package	Pcs/Reel	Reels/Box	Boxes/Carton	Pcs/Carton
ASOP-6	5000	2	5	50000

Disclaimer

Kiwi reserves the right to make any change to its product, datasheet or specification without any notice. Users shall obtain the latest information before placing an order. Kiwi herein makes no guarantee or warranty, expressed or implied, including without limitation the warranties of merchantability, fitness for any purpose or non-infringement of third party rights, nor does Kiwi convey any license or permission including without limitation the intellectual property rights of Kiwi or any third party. Users should warrant that third party intellectual property right or other right is not infringed when integrating Kiwi products into any application or in use. Kiwi will not assume any liability arising from any said application or use, and especially disclaim any liability including without limitation any consequential or incidental damage. Without written declaration, Kiwi products are not designed for use in surgical device implant into the body or other life sustain systems. This disclaimer supersedes the disclaimers in previous versions.

cotte cotte