Prova pratica Programmazione Lineare Intera

November 20, 2018

COGNOMI GRUPPO:

Parte 1 Si consideri una azienza che produce 3 prodotti base (P_1, P_2, P_3) e 2 prodotti premium (P_4, P_5) . Per la produzione di questi è necessaria la lavorazione su 3 macchine (A, B, C). Ogni prodotto deve essere lavorato su tutte le macchine. Nella seguente tabella sono riportati i minuti necessari alla lavorazione di 1 kg di ogni prodotto su ogni macchina, e i minuti disponibili per ogni macchina.

	_	_	-	_	-	minuti disponibili
\overline{A}	100	150	120	300	280	3500
B	180	160	110	300	290	4200
C	130	150	120	290	430	4300

Ogni quantità q_i prodotta non deve eccedere gli upper bound u_i espressi in g. Devono essere prodotti almeno 10000 g di prodotti di base e almeno 3000 g di prodotti premium. Il ricavo di ogni prodotto i è uguale a 0 se la corrispondente quantità $q_i = 0$, altrimenti è uguale a $p_i q_i - F_i$ se $q_i > 0$.

	P_1	P_2	P_3	P_4	P_5
\overline{u}	6000	6000	6000	4000	4000
p	3	16	10	60	65
F	130	500	450	1000	1400

Inoltre, la produzione deve soddisfare o i seguenti vincoli:

- la quantità di P_1 deve essere almeno pari al 25% della quantità totale prodotta;
- la quantità di prodotti premium deve essere almeno pari all'80% della quantità di prodotti base;

oppure i seguenti vincoli:

• la quantità di P_4 non può eccedere i 1000 g;

• la quantità di P_3 deve essere almeno pari a 5000 g.

Massimizzare il ricavo.

RICAVO OTTIMO:

Parte 2

Si vogliono attivare dei centri di servizio per servire le aree urbane di Latina, Velletri, Anzio e Aprilia. Ogni città i ha la possibilità di attivare un centro di servizio con una relativa capacità K_i , e ha una sua domanda di servizio d_i . I costi di collegamento tra una città ed una altra, le capacità e le domande sono riportati nella seguente tabella:

	Latina	Velletri	Anzio	Aprilia	K	d
Latina	1	10	10	10	1400	1000
Velletri	10	1	12	7	1300	800
Anzio	10	12	1	7	1000	800
Aprilia	10	7	7	1	900	700

Si possono attivare al massimo 3 centri su 4. Risolvere il problema di localizzazione attivando i centri e distribuendo la domanda sul territorio.

CENTRI DA ATTIVARE, DISTRIBUZIONE DOMANDA:

Variabili:			
Modello:			