Układy oscylacyjne

AUTOR

1 Cel ćwiczenia.

Badanie odpowiedzi czasowej członu oscylacyjnego zgodnie z tabelą:

Przedział	Wybrana wartość ξ	Wykres biegunów	Wykres skokowy
$\xi < -1$	-1.5	Rysunek 2	Rysunek 3
$-1 < \xi < 0$	-0.2	Rysunek 4	Rysunek 9
$\xi = 0$	0	Rysunek 6	Rysunek 7
$0 < \xi < 1$	0.5	Rysunek 8	Rysunek 9
$1 < \xi$	1.5	Rysunek 10	Rysunek 11

2 Równanie

W ćwiczeniu badamy poniższe równanie:

$$\ddot{x}(t) + 2\xi\omega\dot{x}(t) + \omega^2x(t) = bu(t)$$

Gdzie(te parametry są stałe dla całego ćwiczenia):

 $\omega = 1.5$

b = 1

u = 0

Warunki początkowe zostały wyliczone z równania statycznego:

$$x(0) = \frac{bu}{\omega^2} \Rightarrow x(0) = 0 \Rightarrow \dot{x}(0) = 0$$

Schemat. 3

Schemat simulink:

$$\ddot{x} = -2\xi\omega\dot{x} - \omega^2x + bu$$

Rysunek 1: Schemat simulinka

Gdzie:

ts=1

 $\mathbf{u}0=0$

ud = 1 h00 = $h(0) = \frac{bu0}{w^2}$ h10= $\dot{h}(0) = 0$

4 Wykresy rozwiązań.

a) Przedział: $-1>\xi,$ Wartość: $\xi=-1.5$ Wykres biegunów:

Rysunek 2: Wykres biegunów, dla $\xi=-1.5$

Rysunek 3: Wykres skokowy, dla $\xi=-1.5$

b) Przedział: $-1 < \xi < 0,$ Wartość: $\xi = -0.2$ Wykres biegunów:

Rysunek 4: Wykres biegunów, dla $\xi=-0.2$

Rysunek 5: Wykres skokowy, dla $\xi=-0.2$

c) Przedział: $\xi=0,$ Wartość: $\xi=0$ Wykres biegunów:

Rysunek 6: Wykres biegunów, dla $\xi=0$

Rysunek 7: Wykres skokowy, dla $\xi=0$

d) Przedział: 0 < $\xi < 1,$ Wartość:
 $\xi = 0.5$ Wykres biegunów:

Rysunek 8: Wykres biegunów, dla $\xi=0.5$

Rysunek 9: Wykres skokowy, dla $\xi=0.5$

e) Przedział: 1 < ξ , Wartość: $\xi=1.5$ Wykres biegunów:

Rysunek 10: Wykres biegunów, dla $\xi=1.5$

Wykres odpowiedzi skokowej:

Rysunek 11: Wykres skokowy, dla $\xi=1.5$

5 Wnioski.

Ćwiczenie pokazuje wpływ wartości współczynnika ξ na równanie drugiego stopnia. Jak widać na wykresach po tym w jakim przedziale znajduje się ξ można stwierdzić stabilność lub niestabilność układu.

6 Załączniki

```
2 -
       clear;
 3 -
       close all;
       %x''+2*ksi*w*x'+w^2 * x=b*u
 4
       ksi=0.5;
 6 -
       w=1.5;
 8
       %parametru skoku
 9 –
       u0=0;
10 -
       du=1;
11 -
       ts=1;
       %warunki początkowe
12
       h00=(b*u0)/(w^2);
13 -
14 -
       h10=0;
       % Rozne wartosci ksi dla porownania
15
16 -
       ksi_all=[ksi];
17 -
       [t]=sim('main_schemat');
18 -
       figure;
19 -
       plot(t,x);
20 -
21
        % Obliczanie biegunow dla glownego ksi
22 -
       lambdal = -ksi*w+w*sqrt(ksi*ksi-1);
23 -
       lambda2 = -ksi*w-w*sqrt(ksi*ksi-1);
```

```
26
27
       %Petla ksi, dla narysowania biegunow
28 -
29
       %wartosci roznych ksi oraz kolory dla ich biegonow
30 -
       ksi_colors=["bo", "mo", "go", "ro"]
31 -
       hold on;
32 -
       grid on;
     for i=1:1:(length(ksi_all))
33 -
34 -
           lambda1 = -ksi_all(i)*w+w*sqrt(ksi_all(i)*ksi_all(i)-1);
           lambda2 = -ksi_all(i)*w-w*sqrt(ksi_all(i)*ksi_all(i)-1);
35 -
36
37 -
           plot(real(lambdal),imag(lambdal),ksi_colors(i));
38 -
           plot(real(lambda2),imag(lambda2),ksi_colors(i));
39
40 -
           line([0,(2*real(lambda1))],[0,0],'Color','k');
41 -
           line([0,(2*real(lambda2))],[0,0],'Color','k');
42
43 -
           line([0,-0.2*real(lambda1)],[0,0],'Color','k');
44 -
           line([0,-0.2*real(lambda2)],[0,0],'Color','k');
45
           line([0,0],[0,(2*imag(lambda1))],'Color','k');
46 -
47 -
           line([0,0],[0,(2*imag(lambda2))],'Color','k');
48 -
49 -
       legend('\xi ....');
```