

21MES102L Engineering Graphics and Design School of Mechanical Engineering

Dr.R.SANTHANAKRISHANAN M.E., Ph.D., Associate Professor, Department of Mechanical Engineering, SRM IST, Kattankulathur.

Disclaimer

The content prepared in the presentation are from various sources, only used for education purpose. Thanks to all the sources.

21MES102L Engineering Graphic and Design

E4 a.Projection of Straight lines Inclined to Both Planesb. Projection of Planes Inclined to One Plane

Topics Covered

- ➤ Projection of Straight Lines Inclined to Both Planes by using Rotating Line method
- ➤ Projection of Plane Surfaces Perpendicular to one Plane and Parallel to other Plane
- ➤ Projection of Plane Surfaces Inclined to one Plane and Perpendicular to other Plane

Determination of True Length for the line Inclined to both the Planes

- ➤ Initial setup of workspace **Drafting & Annotation** Mode
 - ➤ Type UN or UNITS
 - Set the Precision for 0
 - ➤ Set the Units in Millimeters
- ➤ Type **LIMITS** Press Enter
 - Specify the Lower Left Corner as **0,0** Press Enter
 - Specify the Upper Right Corner as 210,297 Press Enter
- ➤ Type **ZOOM** Press Enter
- ➤ Type ALL Press Enter

- ➤ Use LINE command (ORTHO ON) draw the Reference line XY.
- ➤ Use **POINT** command to locate the **a**' & **a** ABOVE & BELOW the Reference line **XY**.
- ➤ Use LINE command (ORTHO ON) to draw a horizontal line from a' (Locus of a') & draw a horizontal line from a (Locus of a).

- ➤ Use LINE command (ORTHO OFF) From a' draw a line for a given inclination angle with HP & name the end point as b'.[a' b' is called as FRONT VIEW (FV)]
- ➤ Use LINE command (ORTHO OFF) from a draw a line for a given inclination angle with VP & name the end point as b [a b is called as TOP VIEW (T V)]
- ▶ Use LINE command (ORTHO ON) to draw a horizontal line from b' (Locus of b') & from b draw a horizontal line (Locus of b).

Determination of True Length for the line Inclined to both the Planes

- ▶ Use ARC command (Center Start End) draw an arc from b to intersect the Locus
 of a & name the intersecting point as b₁.
- ▶ Use LINE command (ORTHO ON) to draw a vertical line from b₁ to intersect the locus of b' & name the intersecting point as b₁'
- \triangleright Use LINE command (ORTHO OFF) draw a line from **a'** to **b**₁' [**a'b**₁' is called as TRUE LENGTH (TL)] of the straight line in HP.

- ➤ Use ARC command (Center Start End) draw an arc from b' to intersect the Locus of a' & name the intersecting point as b₂'.
- ➤ Use LINE command (ORTHO ON) to draw a vertical line from b₂' to intersect the locus of b & name the intersecting point as b₂
- \triangleright Use LINE command (ORTHO OFF) draw a line from **a** to **b**₂ [**a b**₂ is called as TRUE LENGTH (TL)] of the straight line in VP.
- ➤ Use **ANNOTATION** Tool bar (**DIM TOOL**) & Mark all the required dimensions.

Determination of Front View & Top View for the line Inclined to both the Planes

- ➤ Initial setup of workspace **Drafting & Annotation** Mode
 - ➤ Type UN or UNITS
 - > Set the Precision for 0
 - ➤ Set the Units in Millimeters
- ➤ Type **LIMITS** Press Enter
 - ➤ Specify the Lower Left Corner as **0,0** Press Enter
 - ➤ Specify the Upper Right Corner as **210,297** Press Enter
- ➤ Type **ZOOM** Press Enter
- ➤ Type ALL Press Enter

- ➤ Use LINE command (ORTHO ON) draw the Reference line XY.
- ➤ Use **POINT** command to locate the **a'** & **a** ABOVE & BELOW the Reference line **XY**.
- ➤ Use LINE command (ORTHO ON) to draw a horizontal line from a' (Locus of a') & from a draw a horizontal line (Locus of a).
- ➤ Use LINE command (ORTHO OFF) From a' draw a line for a given True Length (TL) & inclination angle with HP & name the end point as b₁'. [a'b₁' is True length of line in Front View]

- ➤ Use LINE command (ORTHO OFF) from a draw a line for a given True Length (TL) & inclination angle with VP & name the end point as b₂ [a b₂ is True length of line in Top View]
- ➤ Use LINE command (ORTHO ON) to draw a horizontal line from b₁'
 (Locus of b') & from b₂ draw a horizontal line (Locus of b).

Determination of Front View & Top View for the line Inclined to both the Planes

- \triangleright Use LINE command (ORTHO ON) to draw a vertical line downward from b_1 ' to intersect the locus of a & name the intersecting point as b_1
- ➤ Use ARC command (Center Start End) draw an arc from b₁ to intersect the Locus of b & name the intersecting point as b.
- ➤ Use LINE command (ORTHO OFF) draw a line from **a** to **b** [**a b** is called as TOP VIEW (TV) of the straight line.]

- ➤ Use LINE command (ORTHO ON) to draw a vertical line upwards from b₂ to intersect the locus of a' & name the intersecting point as b₂'
- \triangleright Use ARC command (Center Start End) draw an arc from b_2 ' to intersect the Locus of b' & name the intersecting point as b'.
- ➤ Use LINE command (ORTHO OFF) draw a line from a' to b' [a' b' is called as FRONT VIEW (FV) of the straight line in VP.]
- > Use ANNOTATION Tool bar (DIM TOOL) & Mark all the required dimensions.

PROJECTION OF PLANES

- ➤ A Plane figure has two dimensions, the Length and the Breadth.
- ➤ It may be of any Regular shape such as Triangular, Square, Pentagonal, Hexagonal, Circular etc.

Possible Locations of the Planes with respect to the Wall & Floor

- ➤ Plane parallel to wall and perpendicular to the floor.
- ➤ Plane parallel to floor and perpendicular to the wall.
- ➤ Plane perpendicular to both wall and floor.
- ➤ Plane inclined to wall and perpendicular to the floor.
- ➤ Plane inclined to floor and perpendicular to the wall.
- > Plane inclined to both wall and floor.

В

Plane Perpendicular to the floor (HP) and Parallel to the wall (VP).

Front view is a Square having True Shape and Size Top view is a line.

- Use LINE command ORTHO ON to draw the reference line XY
- ➤ Start with Front view use **LINE** command **ORTHO ON** to draw the Square for the given dimensions
- > Use **TEXT** command for naming the corners a', b', c' & d'
- ➤ Use LINE command **ORTHO ON** to draw vertical projection lines from corners of square **d'** & **c'** upto **XY** line
- > Extend the line downwards from **XY** for **d** mm given distance
- \triangleright Draw line between the projected lines & name the end points as $\mathbf{a}(\mathbf{d})$ & $\mathbf{b}(\mathbf{c})$
- ➤ Use **ANNOTATION** tool bar for marking the required dimensions.

Plane Perpendicular to the Wall (VP) and Parallel to the Floor (HP)

➤ A Square Plane **ABCD** having its Surface Perpendicular to **VP** and Parallel to **HP**.

➤ Top view is a Square having true Shape and Size Front view is a line.

- ➤ Initial setup of workspace **Drafting & Annotation** Mode
 - ➤ Type UN or UNITS
 - ➤ Set the Precision for **0**
 - ➤ Set the Units in Millimeters
- ➤ Type **LIMITS** Press Enter
 - ➤ Specify the Lower Left Corner as **0,0** Press Enter
 - Specify the Upper Right Corner as 210,297 Press Enter
- ➤ Type **ZOOM** Press Enter
- ➤ Type ALL Press Enter

- > Use LINE command ORTHO ON to draw the reference line XY
- ➤ Start with **Top view** use **LINE** command **ORTHO ON** to draw the Square for the given dimensions
- > Use **TEXT** command for naming the corners **a**, **b**, **c** & **d**
- ➤ Use LINE command ORTHO ON to draw vertical projection lines from corners of square d & c upto XY line
- Extend the line upwards from **XY** for **h** mm given distance
- ➤ Draw line between the projected lines & name the end points as a'(d') & b'(c') & use ANNOTATION tool bar for marking the required dimensions.

- ➤ A Square Plane **ABCD** having its Surface Perpendicular to both **HP** and **VP**.
- ➤ Side view of the Plane is a Square having True Shape and Size. Top and Front views are lines.

Plane Perpendicular to both the wall (VP) and to the floor (HP).

- ➤ Initial setup of workspace **Drafting & Annotation** Mode
 - ➤ Type UN or UNITS
 - ➤ Set the Precision for **0**
 - ➤ Set the Units in Millimeters
- ➤ Type **LIMITS** Press Enter
 - ➤ Specify the Lower Left Corner as **0,0** Press Enter
 - Specify the Upper Right Corner as 210,297 Press Enter
- ➤ Type **ZOOM** Press Enter
- ➤ Type ALL Press Enter

- ➤ Use LINE command ORTHO ON to draw the horizontal & vertical reference lines XY & X₁Y₁
- ➤ Start with Side view use **LINE** command **ORTHO ON** to draw the Square for the given dimensions
- > Use **TEXT** command for naming the corners a", b", c" & d"
- ➤ Use LINE command ORTHO ON to draw vertical projection lines upto XY line from corners of square d" & c" & draw horizontal projection lines upto X₁Y₁ line from corners of square d" & a"

- \triangleright Use ARC command (Center Start End) to draw arc from the Extended line XY to X_1Y_1 & use line command to extend the line from arc end for p distance
- > Draw line between the projected lines & name the end points as a (d) & b (c)
- \triangleright Use the LINE command to Project the lines from corners of square d" & a" upto X_1Y_1 & Extend for p mm distance from X_1Y_1
- Draw the line between the projected lines & name the end points as (a') b' & (d') c'
- Use ANNOTATION tool bar for marking the required dimensions.

Plane Inclined to Floor (HP) and Perpendicular to the Wall (VP).

- A Square Plane **ABCD** having its Surface Inclined to **HP** and Perpendicular to **VP**.
- \triangleright Front view is an Inclined line at θ & Top view is Smaller in Size

- ➤ Initial setup of workspace **Drafting & Annotation** Mode
 - ➤ Type UN or UNITS
 - ➤ Set the Precision for **0**
 - ➤ Set the Units in Millimeters
- ➤ Type **LIMITS** Press Enter
 - ➤ Specify the Lower Left Corner as **0,0** Press Enter
 - Specify the Upper Right Corner as 210,297 Press Enter
- ➤ Type **ZOOM** Press Enter
- ➤ Type ALL Press Enter

- > Use LINE command ORTHO ON to draw the horizontal reference lines XY
- ➤ Use LINE command from DRAW TOOL bar & (ORTHO ON) Start with Top view to get the True shape & draw the Square for the given side length .
- > Use **TEXT** command for naming the corners of the Square a, b, c, & d.
- ➤ Use LINE command ORTHO ON & from Top view draw projection lines from corners of the Square c & d upto reference line XY.
- ➤ Use LINE command ORTHO ON & draw lines connecting the projection & the points as (d') a' & b'(c') & this line is the Front view of the square lying on the floor.

Plane Inclined to Floor (HP) and Perpendicular to the Wall (VP).

- ➤ Use COPY command from MODIFY tool bar & copy the front view line & place right adjacent to the FRONT view.
- > Use **TEXT** command from **ANNOTATION** tool bar & name the points as $\mathbf{a_1'(d_1')} \& \mathbf{b_1'(c_1')}$
- ➤ Use **ROTATE** command from **MODIFY** tool bar & rotate the copied front view line for given inclination angle with respect to **HP**

Use LINE command ORTHO ON & project the lines from front view & top view.

- ➤ Use LINE command ORTHO OFF connect the intersecting points by mapping the points name to get the APPARENT shape of the square inclined for given angle with respect to HP.
- \triangleright Use **TEXT** command from **ANNOTATION** tool bar & name the points as $\mathbf{a_1}$, $\mathbf{b_1}$, $\mathbf{c_1}$ & $\mathbf{d_1}$
- > Use ANNOTATION tool bar for marking the required dimensions

Plane Inclined to Wall (VP) and Perpendicular to the Floor (HP).

- ➤ A square plane **ABCD** having its surface Inclined to **VP** and Perpendicular to **HP**.
- \triangleright Top view is an inclined line at Φ & Front view is smaller in size.

Plane Inclined to Wall (VP) and Perpendicular to the Floor (HP).

- > Use LINE command ORTHO ON to draw the horizontal reference lines XY
- ➤ Use LINE command from DRAW TOOL bar & (ORTHO ON) Start with Front view to get the True shape & draw the Square for the given side length .
- > Use **TEXT** command for naming the corners of the Square a', b', c', & d'.
- ➤ Use LINE command ORTHO ON & from Front view draw projection lines from corners of the Square c' & d' upto reference line XY.

- ➤ Use LINE command ORTHO ON & draw lines connecting the projection & the points as a(d) & b(c) & this line is the Top view of the square lying on the floor.
- ➤ Use **COPY** command from **MODIFY** tool bar & copy the Top view line & place right adjacent to the Top view.
- ➤ Use **TEXT** command from **ANNOTATION** tool bar & name the points as $\mathbf{a_1}(\mathbf{d_1}) \& \mathbf{b_1}(\mathbf{c_1})$
- ➤ Use **ROTATE** command from **MODIFY** tool bar & rotate the copied Top view line for given inclination angle with respect to **VP**

- ➤ Use **LINE** command **ORTHO ON** & project the lines from Front view & Top view.
- ➤ Use LINE command ORTHO OFF connect the intersecting points by mapping the points name to get the APPARENT shape of the square inclined for given angle with respect to VP.
- > Use **TEXT** command from **ANNOTATION** tool bar & name the points as $\mathbf{a_1}', \mathbf{b_1}', \mathbf{c_1}' \& \mathbf{d_1}'$
- Use ANNOTATION tool bar for marking the required dimensions

Hexagonal Plane Inclined to floor (HP) and Perpendicular to the wall (VP).

- ➤ Initial setup of workspace **Drafting & Annotation** Mode
 - ➤ Type UN or UNITS
 - > Set the Precision for 0
 - > Set the Units in Millimeters
- ➤ Type **LIMITS** Press Enter
 - ➤ Specify the Lower Left Corner as **0,0** Press Enter
 - Specify the Upper Right Corner as 210,297 Press Enter
- ➤ Type **ZOOM** Press Enter
- ➤ Type ALL Press Enter

- > Use LINE command ORTHO ON to draw the horizontal reference lines XY
- ➤ Use **POLYGON** command from **DRAW TOOL** bar & (**ORTHO ON**) Start with Top view to get the true shape & draw the Hexagonal polygon for the given side length.
- \triangleright Use **TEXT** command for naming the corners of the polygon p, q, r, s, t & u.
- ➤ Use LINE command ORTHO ON & from Top view draw projection lines from corners of the polygon p, u & t upto reference line XY.
- ➤ Use LINE command ORTHO ON & draw lines connecting the projection & the points as (p') q', r'(u') & s'(t') & this line is the Front view of the polygon lying on the floor.

- ➤ Use **COPY** command from **MODIFY** tool bar & copy the front view line & place right adjacent to the **FRON**T view.
- Use **TEXT** command from **ANNOTATION** tool bar & name the points as $(p_1') q_1', r_1'(u_1') \& s_1'(t_1')$
- ➤ Use **ROTATE** command from **MODIFY** tool bar & rotate the copied front view line for given inclination angle with respect to **HP**

s₁'(t₁')

>Use LINE command ORTHO ON & project the lines from $(p_1') q_1'$, $r_1'(u_1') s_1'(t_1')$ & Top view.

- ➤ Use LINE command ORTHO OFF connect the intersecting points by mapping the points name to get the APPARENT shape of the polygon resting on the floor with p q edge tilted for given angle with respect to HP.
- \triangleright Use **TEXT** command from **ANNOTATION** tool bar & name the points as $\mathbf{p_1} \ \mathbf{q_1} \ \mathbf{r_1} \ \mathbf{s_1} \ \mathbf{t_1} \ \mathbf{\&} \ \mathbf{u_1}$
- ➤ Use **ANNOTATION** tool bar for marking the required dimensions

REFERENCE BOOKS

- ➤ JEYAPOOVAN T, "ENGINEERING GRAPHICS AND DESIGN", 2023, Vikas Publishing House Pvt Ltd,
- ➤ K.V.NATARAJAN, "Engineering Graphics", 2015, Dhanalakshmi Publishers.