Série 4

- **Exercice 1.** 1. Montrer que tout sous-groupe d'un groupe commutatif est distingue.
 - 2. Soit $\phi: G \to H$ un morphisme montrer que si G est commutatif alors $\mathrm{Im}(G)$ est commutatif.

Exercice 2. soit G un groupe et $A \subset G$ un sous-ensemble.

- 1. Montrer que l'intersection de tous les sous-groupes de G contenant A est un sous-groupe de G (pourquoi cette intersection n'est pas faite sur un ensemble vide.) On note ce sous-groupe $\langle A \rangle$ et on l'appelle sous-groupe engendre par A.
- 2. Montrer que $\langle A \rangle$ est le plus petit sous-groupe contenant A.
- 3. On suppose que $G = \langle A \rangle$. Soit $\phi : G \to H$ un morphisme de groupes. Montrer que si

$$A \subset \ker \phi$$

alors ϕ est le morphisme trivial $\phi \equiv e_H$ (ie. $\forall g \in G, \phi(g) = e_H$).

- 4. Montrer qu'un morphisme de groupe $\phi: G \to H$ est completement determine par ses valeurs prises au differentes elements de A (si deux morphismes ϕ, ϕ' coincidents pour tous les elements de A alors $\phi = \phi'$).
- Démonstration. 1. First, we prove a more general fact. Let $\{H_i\}_{i\in I}$ be any family of subgroups of a given group $(G,\cdot,(-)^{-1})$. Then $H=\cap_{i\in I}H_i$ is a subgroup. It suffices to show that for any $h,h'\in H$ we have $h'\cdot h^{-1}\in H$; this condition implies easily that the neutral element, inverses and products of elements of H belong H. By the definition of H, we see that the elements h and h' belong to H_i for every $i\in I$. The sets H_i are subgroups of H and therefore $h'\cdot h^{-1}\in H_i$ for every $i\in I$. This means that $h'\cdot h^{-1}\in \cap_{i\in I}H_i=H$ which finishes the proof. To conclude, we apply the fact to the family of all subgroups containing A.
 - 2. We remark that the set of subgroups is ordered by inclusion, that is, a subgroup $H \subset G$ is smaller than a subgroup $H' \subset G$ if and only if $H \subset H'$. We need to prove that $\langle A \rangle$ is contained in every subgroup of G containing A. Let H be a such subgroup. By definition, the group $\langle A \rangle$ is the intersection $\cap_{i \in I} H_i$ of all subgroups H_i containing A. This means that there exists an $i \in I$ such that $H = H_i$. Then clearly $\langle A \rangle = \cap_{i \in I} H_i \subset H_i = H$.

- 3. First, we observe that the homomorphism $\phi \colon G \to H$ is trivial if and only if $G = \ker \phi$. By assumptions, we know that $A \subset \ker \phi$ which by the previous part of the exercise implies that $G = \langle A \rangle \subset \ker \phi$. Of course $\ker \phi \subset G$ and therefore $\ker \phi = G$.
- 4. We consider the set $\text{Eq}(\phi, \phi') = \{g \in G : \phi(g) = \phi'(g)\}$. For every $g, g' \in \text{Eq}(\phi, \phi')$ we see that

$$\phi(g' \cdot g^{-1}) = \phi(g') \cdot \phi(g^{-1}) = \phi(g') \cdot \phi(g)^{-1} = \phi'(g') \cdot \phi'(g)^{-1} = \phi'(g' \cdot g^{-1}),$$

since ϕ and ϕ' are group homomorphisms. This means that $\text{Eq}(\phi, \phi')$ is a subgroup of G containing A, and therefore $G = \text{Eq}(\phi, \phi')$ which proves the claim.

Exercice 3. soit G un groupe et $g \in G$. Pour $n \in \mathbb{Z}$ on definit

$$g^{n} = \begin{cases} e_{G} & \text{si } n = 0\\ g \star \cdots \star g \text{ (n fois)}, & \text{si } n \geqslant 1\\ g^{-1} \star \cdots \star g^{-1}(|n| \text{ fois)}, & \text{si } n \leqslant -1 \end{cases}$$

et on pose

$$g^{\mathbb{Z}} = \{g^n, \ n \in \mathbb{Z}\}.$$

1. Montrer que l'application

$$g: \begin{array}{ccc} \mathbb{Z} & \mapsto & G \\ n & \mapsto & q^n \end{array}$$

est un morphisme de groupe.

- 2. Montrer que $g^{\mathbb{Z}} = \langle \{g\} \rangle$.
- 3. On suppose que G est fini de cardinal |G|=p premier. Montrer que pour tout $g\neq e_G$ on a

$$G = a^{\mathbb{Z}}$$
.

(On pourra considerer le morphisme d'inclusion $g^{\mathbb{Z}} \hookrightarrow G$.)

4. Montrer que G est commutatif.

Exercice 4. On considere l'application exponentielle (reelle)

$$\exp: x \in \mathbb{R} \mapsto \exp(x) = e^x$$
.

- 1. Montrer que exp un isomorphisme du groupe additif $(\mathbb{R}, +)$ vers le groupe multiplicatif $(\mathbb{R}_{>0}, \times)$. Quel est l'isomorphisme inverse?
- 2. Soit $\phi: (\mathbb{R}, +) \mapsto (\mathbb{R}_{>0}, \times)$ un morphisme de groupes. On suppose de plus que l'application $x \mapsto \phi(x)$ est continue et on pose $a = \phi(1)$. Soit $\lambda = \log a$, on va demontrer que $\phi(x) = \exp(\lambda x)$

- Montrer que pour tout $n \in \mathbb{Z}$, on a $\phi(n) = \exp(\lambda n)$.
- Montrer que pour tout $x \in \mathbb{R}$ et $n \in \mathbb{Z}$, $n \neq 0$, on a $\phi\left(\frac{x}{n}\right) = \phi(x)^{1/n}$. En deduire que pour tout $q \in \mathbb{Q}$, on a $\phi(q) = \exp(\lambda q)$
- Conclure (utiliser le fait que tout nombre reel est la limite d'une suite de nombres rationnels).
- Démonstration. 1. In order to prove that $\exp: (\mathbb{R}, +) \to (\mathbb{R}_{>0}, \times)$ is an isomorphism it suffices to prove that $\exp(a + b) = \exp(a) \times \exp(b)$ which is clear.
 - 2. We divide our proof in three steps suggested in the exercise.
 - First, we prove $\phi(n) = \exp(\lambda n)$ for $n \in \mathbb{Z}_{\geq 0}$. This follows by induction with respect to the parameter n using the relation

$$\phi(n+1) = \phi(n) \times \phi(1) = \exp(\lambda n) \times \exp(\lambda) = \exp(\lambda(n+1)).$$

To extend the relation for all elements $n \in \mathbb{Z}$ we just observe that $1 = \phi(0) = \phi(n) \times \phi(-n)$.

— Again using induction, we observe that $\phi(ny) = \phi(y)^n$ for every $n \in \mathbb{Z}$. Setting $y = \frac{x}{n}$ and taking the *n*-th root, we obtain

$$\phi(\frac{x}{n}) = \left(\phi(\frac{x}{n})^n\right)^{1/n} = \phi(n \cdot \frac{x}{n})^{1/n} = \phi(x)^{1/n}.$$

For every $q \in \mathbb{Q}$, such that $q = \frac{m}{n}$ for $m, n \in \mathbb{Z}$, we take x = m to see that $\phi(\frac{m}{n}) = \phi(m)^{1/n} = \exp(\lambda m)^{1/n} = \exp(\lambda q)$.

— To conclude, we take a number $x \in \mathbb{R}$ and a sequence of rational numbers $q_n \in \mathbb{Q}$ such that $\lim_{n\to\infty} q_n = x$. Since continuity allows us to exchange taking limits and operations ϕ and exp, we may compute as follows

$$\phi(x) = \phi(\lim_{n \to \infty} q_n) = \lim_{n \to \infty} \phi(q_n) = \lim_{n \to \infty} \exp(\lambda q_n) = \exp(\lambda \lim_{n \to \infty} q_n) = \exp(\lambda x).$$