Universidad Nacional de Río Negro Física III B - 2018

Unidad 02

Clase U02 C01 - 06

Cont Primer Principio

Cátedra Asorey

Web github.com/asoreyh/unrn-f3b

YouTube https://goo.gl/nNhGCZ

Contenidos: Termodinámica, alias F3B, alias F4A

En resumen...

- Tengo n moles de un gas de una cierta atomicidad
- El gas se encuentra en un estado "A"
- ¿Cuánto calor necesito para cambiar su temp. en ΔΤ?
 - Transformación a V=cte: $Q=C_V n \Delta T$
 - Transformación a P=cte: $Q = C_D n \Delta T$

Atomicidad	C _v	C _P	γ
Monoatómico	3/2 R	5/2 R	5/3
Biatómico	5/2 R	7/2 R	7/5
Triatómico	6/2 R	8/2 R	4/3

El signo de Q coincide con ΔT

Q>0 → Calor entregado por el medio al sistema Q<0 → Calor entregado por el sistema al medio

Ley de Dulong-Petite

$$E_{K} = \sum_{i=1}^{N} \left[\frac{1}{2} m \left(v_{x,i}^{2} + v_{y,i}^{2} + v_{z,i}^{2} \right) + \frac{1}{2} k_{ef} \left(x_{i}^{2} + y_{i}^{2} + z_{i}^{2} \right) \right]$$

- ¿Grados de libertad?
 - v_x , v_y , v_z , x, y, $z \leftarrow 6$
- Equipartición: ½ kT
- Energía interna:

$$U = \frac{6}{2}NkT = 3nRT$$

Calor específico:

$$Q = \Delta U = Cn\Delta T \rightarrow C = 3R$$

Sistema termodinámico

- Sistema termodinámico: contenido total de energía, en cualquiera de sus formas (incluyendo la masa), que se encuentra en una región macroscópica del espacio.
 - Variables de estado termodinámicas que definen al sistema → temperatura, energía interna, presión, entropía, ...

- Sistema en equilibrio
 - Las variables de estado no cambian con el tiempo
- Fuera de equilibrio
 - Transferencia "lenta" de energía

Cambios de fase

- El cambio de fase de un sistema termodinámico implica que algunas de las características de esa fase cambian. Requiere un intercambio de energía
 - Fusión: sólido (baja energía cinética) a líquido (alta energía cinética)

 Solidificación: inverso. ¿Flujo de energía?

 ¿Sentido de ese intercambio?

Calor latente

- Calor latente: calor liberado o absorbido por un sistema termodinámico durante una transformación a temperatura constante (latente = escondido, 1762 J. Black)
 - Calor de fusión: sólido a líquido
 - Calor de vaporización: líquido a gas
- Ehrenfest: Calor latente ↔ transformación de fase de primer orden
- Cambio de fase → temperatura del sistema permanece constante

Calor latente específico

- Propiedad intensiva L: calor requerido para cambiar completamente de fase a una determinada cantidad de substancia (usualmente en masa)
- Calor requerido para cambiar de fase una masa m:

$$L \stackrel{\text{def}}{=} \frac{Q}{m} \rightarrow Q = mL$$

- Agua: valores anormalmente altos (¡puentes H!). ¡Usos!
 - Fusión (a 273K): 334 kJ/kg, vaporización (a 373K): 2257 kJ/kg
 - Transpiración, Refrigeración, ¿rocío?...

Calor latente versus calor sensible

Abr 05, 2018

H. Asorey - F3B+F4A 2018

En el episodio anterior...

Una transformación representa al cambio de estado del gas

Calor específico cantidad de calor para que un mol de sust. cambie su temperatura en 1 K

$$P_{A} = P_{B} - A \frac{1}{V_{A}} \frac{B}{V_{B}}$$

$$C = \frac{Q}{n \Delta T}$$

$$U = \frac{3}{2} R n T$$

Energía interna

Si T cambia, habrá un cambio en la energía interna del gas

$$\Delta U = \frac{3}{128} R n \Delta T$$
Abr 05, 2018

Primer principio de la termodinámica

Nada se gana, nada se pierde, todo se transforma

 La conservación de la energía para un sistema termodinámico se expresa de la siguiente forma

Primer principio de la termodinámica

Q= Calor cedido al sistema (signo de ΔT)

 ΔU = Cambio de la energía interna del sistema (signo de ΔT)

W = Trabajo realizado por el sistema (signo de ΔV)

Nueva transformación

- Vimos transformaciones a P=cte (isobara) y V=cte (isocora)
 - Isobara:

•
$$\Delta U = a/2 n R \Delta T$$

•
$$Q = \Delta U + W$$

• W = O

socora:

•
$$Q = C_V n \Delta T$$

•
$$Q = \Delta U$$

- ¿Cómo será una expansión isotérmica?
 - Baño térmico (p. ej.: Atmósfera, Océano, ...)
 - Reservorio de calor a una temperatura T dada
 - Puede ceder o absorber calor sin que T se vea afectada
 - Un sistema en contacto con un baño → evolución isotérmica

Transformación Isotérmica, T=cte

Si $T = \text{cte pV} = nRT \rightarrow p V = \text{cte}$

Abr 05, 2

Transformación isotérmica

El gas se encuentra en el estado "B"
 Evoluciona en forma isotérmica (baño térmico a T_B=T_C)
 El gas finaliza en el estado "C"

Transformación isotérmica

En resumen.... Il

Isobara:

- W = p ∆V
- $\Delta U = (z/2) n R \Delta T$
- $Q = \Delta U + W$

Isoterma:

- W = n R T ln (V_f / V_i)
- ∆U = O
- $Q = \Delta U + W \rightarrow Q = W$

• socora:

- W = O
- $Q = C_V n \Delta T$
- $Q = \Delta U$

Adiabática

 Próximamente en los mejores cines de su barrio

Recordemos y

• Índice adiabático:

$$\gamma = \frac{C_p}{C_V}$$

- z es la atomicidad del gas: z=3,5,6 para un gas mono, bi y triatómico respectivamente)
- Luego →

$$\gamma = \frac{C_p + R}{C_v} \rightarrow \gamma = 1 + \frac{R}{C_v}$$

$$\gamma = 1 + \frac{R}{Z} \rightarrow \gamma = 1 + \frac{2}{a}$$

$$\frac{z}{2}R$$

Otra forma de escribir γ :

 $\gamma = \frac{z+2}{z}$

Último caso: No hay intercambio de calor

- No hay intercambio de calor con el medio
 - Recipiente muy aislado (calorímetro); ó
 - Transformación muy rápida (abriendo una Coca Cola)
- En este caso: Q = O ← Transformación Adiabática
- Q = $\Delta U + W \rightarrow O = \Delta U + W \rightarrow W = -\Delta U$
- En una expansión adiabática, el trabajo se realiza a costa de la energía interna del gas
- Expansión adiabática → Brusco descenso de T
 Y viceversa: en una compresión adiabática, todo el trabajo se convierte en energía interna (Zonda)

El zonda: efecto Föhn

Abr 05, 2018

H. Asorey - F3B+F4A 2018

El primer principio dice:

- Q=0 → W = ∆U → límite: dW = -dU → p dV=-dU
- Pero dU = (z/2) d (n R T) y por la ec. Estado, nRT=pV:

$$dU = \left(\frac{z}{2}\right) d(pV) \Rightarrow dU = \left(\frac{z}{2}\right) (dpV + pdV)$$

$$-pdV - \left(\frac{z}{2}\right) pdV = \left(\frac{z}{2}\right) V dp \Rightarrow -\left(\frac{z+2}{2}\right) pdV = \left(\frac{z}{2}\right) V dp$$

$$-\left(\frac{z+2}{z}\right) pdV = V dp \Rightarrow -\gamma pdV = V dp$$

$$-\gamma \left(\frac{dV}{V}\right) = \frac{dp}{P}$$

H. Asorey - F3B+F4A 2018

Integrando ambos lados:

$$-\gamma \int_{V_{i}}^{V_{f}} \frac{dV}{V} = \int_{P_{i}}^{P_{f}} \frac{dP}{P}$$

$$-\gamma \ln \left(\frac{V_{f}}{V_{i}}\right) = \ln \left(\frac{P_{f}}{P_{i}}\right)$$

$$\ln \left(\frac{V_{i}}{V_{f}}\right)^{\gamma} = \ln \left(\frac{P_{f}}{P_{i}}\right)$$

$$\left(\frac{V_{i}}{V_{f}}\right)^{\gamma} = \left(\frac{P_{f}}{P_{i}}\right)$$

Transformación Adiabática

$$P_i V_i^{\gamma} = P_f V_f^{\gamma} \rightarrow P V^{\gamma} = cte \rightarrow T V^{\gamma-1} = cte$$

Curvas adiabáticas

H. Asorey - F3B+F4A 2018

Adiabáticas vs isotermas

- Se aproximan asintóticamente a los ejes
- Cada adiabática intersecta a una isoterma en un único punto (volveremos...)
- Las adiabáticas son isentrópicas (volveremos...)

Abr 05, 2018

H. Asorey - F3B+F4A 2018

Trabajo adiabático

Según el primer principio y teniendo en cuenta Q=0:

$$W = -\Delta U \rightarrow W = -\frac{z}{2} nR\Delta T \rightarrow W = -\frac{z}{2} nR(T_f - T_i)$$

$$W = -\frac{z}{2} (P_f V_f - P_i V_i)$$

$$W = -\left(\frac{P_f V_f - P_i V_i}{\gamma - 1}\right)$$

Sucesión de transformaciones

Cuadro de estados

Estado	р	V	Т	n
A 1	p _A	V _A	T _A	n _A
B. 2	$p_B = 3p_A$	V _B =V _A	T _B	n _A
C 3	p _c =p _A	V _c	$T_{c}=T_{B}$	n _A
$\rightarrow A$	p _A	V _A	T _A	n _A

- Identificar los datos en el problema
- Determinar datos faltantes con las transformaciones
- Calcular datos faltantes con ec. de estado → pV=nRT

Cuadro de transformaciones

Transf	Q	W	ΔU
1: isocora	= ΔU	0	=(a/2) n R ($T_B - T_A$)
2: isoterma	= W	=nRT In(V _C /V _A)	0
3: isobara	= ∆U+W	$=P(V_A-V_C)$	$=(a/2) n R (T_A - T_C)$

- Identificar aquellos valores que no cambian en cada transformación
- Dejar el calor Q para el final (evita confusiones)
- En un ciclo ∆U_{total} = O ← El gas vuelve a su estado inicial U_f = U_i