AgaogluC 23122024-170918

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Источник колебаний с доступной мощностью 3.9 дБм и частотой 3840 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 131 дБн/Гц. Этот источник подключён к согласованному входу анализатора спектра. Какую мощность измерит анализатор спектра на частоте 3839.99995 МГц, если спектральная плотность мощности его собственных шумов равна минус 135 дБм/Гц, а полоса пропускания ПЧ установлена в положение 1 Гц?

- 1)-123 дБм
- 2)-124.7 дБм
- 3)-126.4 дБм
- 4) -128.1 дБм
- 5)-129.8 дБм
- 6) -131.5 дБм
- 7) -133.2 дБм
- 8) -134.9 дБм
- 9)-136.6 дБм

Для прямого синтеза заданной частоты использовались два источника колебаний, двойной балансный смеситель и полосовой фильтр. Нужная частота была получена преобразованием вверх с выделением верхней боковой с помощью полосового фильтра.

Один источник колебаний имеет частоту 2850 М Γ ц и спектральную плотность мощности фазового шума на отстройке 100 к Γ ц минус 137 д $\mathrm{Брад^2}/\Gamma$ ц . Спектральная плотность мощности фазового шума на отстройке 100 к Γ ц синтезированного колебания равна минус 132 д $\mathrm{Бh}/\Gamma$ ц, а частота его равна 7160 М Γ ц. Чему равна спектральная плотность мощности фазового шума второго колебания на отстройке 100 к Γ ц при описанном выше когерентном синтезе?

- 1)-139.4 дБн/Гц
- 2)-136.4 дБн/Гц
- 3)-135.8 дБн/Гц
- 4)-134.4 дБн/Гц
- 5)-133.4 дБн/Гц
- 6)-132.7 дБн/Гц
- 7) -132.1 дБн/Гц
- 8)-131.4 дБн/Гц
- 9) -129.7 дБн/Гц

Если цепь на рисунке 1 используется в качестве цепи обратной связи в кольце ФАПЧ, то вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 8.783 кГц на 5.7 дБ больше, чем вклад ГУН. Если исключить эту цепь и замкнуть кольцо, то на той же частоте отстройки вклад ОГ на 3.3 дБ больше, чем вклад ГУН. Известно, что C=7.9 нФ, а $R_1=2093$ Ом. Чему равно сопротивление другого резистора цепи обратной связи?

Рисунок 1 – Электрическая схема цепи обратной связи

- $1)1396\,O_{\rm M}$
- 2) 1419 O_M
- $3)1442\,\mathrm{OM}$
- $4)1465\,\mathrm{Om}$
- 5) 1488 Om
- 6) 1511 Ом
- $7)1534\,\mathrm{Om}$
- 8) $1557 \, \text{OM}$
- $9)1580 \, O_{\rm M}$

Источник колебаний и частотой 5950 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 152 дБн/Гц. Он был подключён к согласованному линейному усилителю с шумовой температурой плюс 1738 К. Выход усилителя подключён ко входу анализатор фазовых шумов. Какую спектральную плотность мощности измерит анализатор фазовых шумов на частоте отстройки 200 Гц, если с доступная мощность на выходе усилителя равна 2.4 дБм? Варианты ОТВЕТА:

- 1)-151.5 дБн/Гц
- 2)-152 дБн/Гц
- 3) -152.5 дБн/Гц
- 4)-153 дБн/Гц
- 5) -153.5 дБн/Гц
- 6)-154 дБн/Гц
- 7) -154.5 дБн/Гц
- 8) -155 дБн/Гц
- 9)-155.5 дБн/Гц

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 3). Коэффициент передачи цепи обратной связи частотно независим и равен 10^{-1} , а крутизна характеристики фазового детектора равна 1.1 В/рад. Частота колебаний опорного генератора (ОГ) 220 МГц. Частота колебаний ГУН 3000 МГц. Известно, что неприведённые спектральные плотности мощности фазовых шумов двух генераторов равны на частоте отстройки 3.7 МГц. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 20 дБ/декада, а фазовых шумов ГУН минус 30 дБ/декада. Также известно, что вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 27 кГц на 6.6 дБ меньше, чем вклад ГУН. Чему равна крутизна характеристики управления частотой ГУН?

Рисунок 2 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

- 1) 1.21 $M\Gamma_{II}/B$
- 2) 1.34 $M\Gamma_{II}/B$
- 3) $1.47 \text{ M}\Gamma_{\text{II}}/\text{B}$
- 4) 1.60 $M\Gamma_{II}/B$
- $5) 1.73 \ M\Gamma \mu/B$
- 6) 1.86 MΓ_{II}/B
- 7) 1.99 ΜΓ_Ц/B
- 8) $2.12 \text{ M}\Gamma_{\text{II}}/\text{B}$
- 9) 2.25 $M\Gamma_{II}/B$

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 3). Частота колебаний опорного генератора (ОГ) 40 МГц. Частота колебаний ГУН 1090 МГц. Известно, что спектральная плотность мощности фазовых шумов на частоте отстройки 1 Гц равна минус 103.3 дБн/Гц для ОГ и плюс 16 дБн/Гц для ГУН. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 10 дБ/декада, а фазовых шумов ГУН минус 30 дБ/декада.

Коэффициент передачи цепи обратной связи равен описывается формулой $A_0(1+(j\Omega\tau)^{-1})$, где $A_0=1.1336$, $\tau=173.5102$ мкс.

Крутизна характеристики управления частотой ГУН равна 1.4 МГц/В. Крутизна характеристики фазового детектора 0.7 В/рад.

Рисунок 3 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

На сколько дБ отличается спектральная плотность мощности фазовых шумов на частоте отстройки 20 кГц колебания той же выходной частоты, но полученного из опорного путём прямого синтеза? Варианты ОТВЕТА:

- 1) на минус 0.3 дБ
- 2) на минус 0.7 дБ
- 3) на минус 1.1 дБ
- 4) на минус 1.5 дБ
- на минус 1.9 дБ
- на минус 2.3 дБ

- 7) на минус 2.7 дБ
- 8) на минус 3.1 дБ
- 9) на минус 3.5 дБ