

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

РАКУЛЬТЕТ	Специ	иальное машиностроен	ие
САФЕДРА	CM12«Технология рак	етно-космического маш	иностроения»
PA	СЧЕТНО-ПОЯСЬ	нительная з	АПИСКА
	к курсово	ОМУ ПРОЕКТ	y
	НА	ТЕМУ:	
Разра	ботка технологическо	го процесса сборки	бака наддува
Студент (CM1-91:	Новиков А.Р.	
•		_	(Подпись, дата)
Руководи	тель курсового проекта:	Ижутов М.Ю.	(Поличен деле)
			(Подпись, дата)

(Подпись, дата)

СОДЕРЖАНИЕ

1	Назначение узла, краткое описание его конструкции и анализ технических требований	
	на сборку	3
	1.1 Назначение узла	3
	1.2 Описание конструкции	3
	1.3 Технические требования, предъявляемые у узлу	3

1 Назначение узла, краткое описание его конструкции и анализ технических требований на сборку

1.1 Назначение узла

Бак наддува применяется конструкции топливных систем ракет с жидкостными ракетными двигателями. Он необходим для поддержания давления наддува в топливных баках с целью предотвращения кавитации.

1.2 Описание конструкции

Конструкция бака наддува состоит их четырех деталей:

- Полусфера нижняя
- Полусфера верхняя
- Фланец
- Штуцер

Толщина стенок полусфер составляет 6 мм. В ответственных местах имеется утолщение до 8 мм: У верхней полусферы — вблизи места соединения с фланцем, также у обеих полусфер — в месте их соединения. Полусферы имеют центровочную поверхность Ø526 мм для облегчения операции сборки. Фланец предназначен для соединения штуцера с верхней полусферой. Особенностью фланца являются его конические поверхности. Они обеспечивают легкость выполнения сварочных операций. Штуцер предназначен для соединения узла с остальными элементами топливной системы ракеты.

1.3 Технические требования, предъявляемые у узлу

Перечислим основные характеристики узла:

- рабочий продукт гелий
- номинальный объем 0.075 м^3
- материал титановый сплав ВТ14
- герметичность $1.0 \cdot 10^{-6}$ Вт

- рабочее давление 25 МПа
- срок эксплуатации не менее 10 лет

Исходя из условий эксплуатации, к узлу предъявляются следующие требования:

1. Сварные швы по ОСТ 26-1-87.

Данный отраслевой стандарт распространяется на сварные соединения в конструкциях из титана и титановых сплавов и устанавливает основные типы и конструктивные элементы сварных швов.

2. Категория сварного шва - І.

Поскольку сварной шов применяется в ответственном узле, хранящем гелий под высоким давлением, к нему предъявляются высокие требования качества.

3. Сварка электронно-лучевая по ГОСТ 3044-79.

Электронно-лучевая сварка обеспечивает высокий уровень чистоты сварочной ванны. Титан очень реактивен при высоких температурах и может легко взаимодействовать с кислородом, азотом и другими газами, что приводит к ухудшению механических свойств. Поскольку электронно-лучевая сварка проводится в вакууме, это предотвращает контакт титана с атмосферными газами, обеспечивая высокое качество сварного шва.

Также электронно-лучевая сварка обеспечивает глубокое проплавление при минимальной зоне температурного влияния. Это позволяет сваривать детали из титана с минимальными деформациями и внутренними напряжениями, а также уменьшает вероятность непровара.

Кроме того возможность точной фокусировки электронного пучка позволяет выполнять сварку с высокой точностью, что особенно важно для сложных и ответственных конструкций из титана.

4. Штамповка по ОСТ 92-1675-87.

Данный отраслевой стандарт распространяется на штамповку листовых деталей и заготовок из титановых сплавов. Он устанавливает требования к технологическим операциям изготовления листовых деталей и заготовок и схемы типовых технологических процессов.

Нормы прочности по ГОСТ Р 56514-2015.

Данный стандарт устанавливает нормы прочности для всех этапов эксплуатации автоматических одноразовых аппаратов (АКА), а также требования к определению нагрузок, расчетной проверке прочности, экспериментальной отработке прочности, контролю и подтверждению прочности на этапах экспериментальной отработки, летных испытаний

и эксплуатации АКА. Испытания на прочность являются обязательным для ответственных изделий в ракетно-космической техники.

6. Правила проведения пневмоиспытаний по РД 26-12-29-88, испытания на герметичность по ГОСТ 28517-90.

РД 26-12-29-88 «Правила проведения пневматических испытаний изделий на прочность и герметичность» устанавливает организацию и порядок проведения работ и общие требования безопасности при проведении пневматических испытаний, а также к устройству, размещению и эксплуатации стендов, установок и сооружений, предназначенных для этих целей.

ГОСТ 28517-90 «Масс-спектрометрический метод течеискания» устанавливает общие требования к контролю герметичности. Его применяют для проведении испытаний на герметичность при регистрации потоков в диапазоне от 10^{-14} до 10^{-2} Вт.

7. Рентгеноконтроль сварных швов по ГОСТ 7512-82.

Радиографический контроль применяют для выявления в сварных соединениях трещин, непроваров, пор, шлаковых, вольфрамовых, окисных и других включений. Его также применяют для выявления прожогов, подрезов, оценки величины выпуклости и вогнутости корня шва, недопустимых для внешнего осмотра.