Geometry

Homework 1

Daniel Halmrast

April 15, 2018

Problem 1

Suppose M is a complete Riemannian manifold of dimension n, and suppose there exist constants a>0 and $c\geq 0$ such that for all pairs of points and all minimizing geodesics $\gamma(s)$ parameterized by arc length s, joining these points, we have

$$R(\gamma'(s)) \ge a + \partial_s f$$

where f is a function of s and $|f(s)| \leq c$ along γ . Prove that M is compact.

Proof. To show M is compact, we just need to show M is bounded. That is, there is some number N such that d(p,q) < N for all $p,q \in M$.

So, suppose for a contradiction that

<++>