Cheat Sheet **Pandas**

Pandas

A biblioteca Pandas foi construída sob o NumPy e fornece ferramentas de estruturas de dados e análise de dados fáceis de serem utilizadas com a linguagem de programação Python

Importe o Pandas com a seguinte convenção:

>>> import pandas as pd

Estruturas de Dados Pandas

// Series

Um array rotulado unidimensional capaz de guardar qualquer tipo de dado

>>> s = pd.Series([3, -5, 7, 4], index=['a', 'b', 'c', 'd'])

Uma estrutura de dados bidimensional rotulada com colunas de potenciais diferentes tipos

Colunas >		País	Capital	População
Index >		Bélgica Índia		11190846 1303171035
	2	Brasil	Brasília	207847528

>>> data = {'País': ['Bélgica', 'Índia', 'Brasil'], Capital': ['Bruxelas', 'Nova Delhi', 'Brasília'], 'População': [11190846, 1303171035, 207847528]} >>> df = pd.DataFrame(data,

columns=['País', 'Capital', 'População'])

Criando uma coluna nova

>>> df['Continente'] = ['Europa", Ásia', None] #Atribuindo valores através de uma lista

>>> df['Maisde100M'] = df['População'] > 100000000 #Atribuindo

valores através do cálculo de outra coluna

Deletando

>>> s.drop(['a', 'c']) #Para deletar valores das linhas (axis=0) >>> df.drop('País', axis=1) #Para deletar os valores de colunas(axis=1)

Ordenando

>>> df.sort index() #Para definir por rotulos junto do Axis >>> df.sort_values(by='País') #Para definir pelos valores juntamente

>>> df.rank() #Para atribuir ranks as entradas

// Ler e gravar em CSV

>>> pd.read_csv('file.csv', header=None, nrows=5)
>>> df.to_csv('myDataFrame.csv')

// Ler e gravar em Excel

>>> pd.read_excel('file.xlsx') >>> df.to_excel('dir/myDataFrame.xlsx', sheet_name='Sheet1')

Para ler múltiplas planilhas do mesmo arquivo:

>>> xlsx = pd.ExcelFile('file.xlsx') >>> df = pd.read_excel(xlsx, 'Sheet1')

// Ler e gravar em SQL ou tabelas de banco de dados

>>> from sqlalchemy import create_engine >>> engine = create engine('sqlite://:memory:')
>>> pd.read sql("SELECT * FROM minha_tabela;", engine) >>> pd.read_sql_table('minha_tabela', engine)

>>> pd.read_sql_query("SELECT * FROM minha_tabela;", engine)

read_sql() é uma conveniência wrapper around read_sql_table() e read_sql_query >>> df.to_sql('myDf', engine)

Filtros

// Selecionando um valor ou subconjunto

>>> df['País'][0] #pegando um valor

>>> df[1:] #Pegando um subconjunto do DatraFrame através de índice

>>> df['Capital'][1:] #Pegando um subconjunto de determinada coluna

>>> df[['País",Capital']] #Selecionando apenas determinadas colunas do DataFrame

>>> df head(2) #Primeiros 2 elementos

>>> df.tail(2) #Últimos 2 elementos

// Selecionando com operadores lógicos: loc e iloc

>>> df.iloc[0,0] #Usando índices

>>> df.iloc[0]['País'] #Usando índice e coluna

>>> df.loc[df['País'] == 'Brasil'] #Usando operadores lógicos com loc

>>> df.loc[df['População'] > 200000000]

>>> df.loc[~(df['População'] > 200000000)] #Negando um operador

lógico (resultado inverso)

>>> df.loc[(df['País'] == 'Brasil') | (df['Capital'] == 'Nova Delhi')]

#Usando vários operadores com a cláusula OR

// Selecionando com operadores lógicos: loc e iloc

>>> df.loc[(df['País'] == 'Brasil') & (df['População'] > 1000000)] #Usando

>>> df.loc[df['Continente'].isnull()] #Selecionando valores nulos

Consultando o Dataframe

vários operadores com a cláusula AND

df.shape #Retorna o número de colunas e linhas

df.info() #Retorna a estrutura do DataFrame

df.index #Retorna os valores do índice

df.columns #Retorna as colunas

df.describe() #Retorna dados estatísticos

df.count() #Conta o número de itens excluindo None ou Na

Transformando tipo de dado da coluna

>>> df['População'] = df['População'].astype(str) #transformando para str

>>> df['População'] = df['População'].astype(int) #transformando para inteiro

Funções de agregação

>>> df['População'].sum() #Somando valores da coluna

>>> df['População'].mean() #Média de valores da coluna

>>> df['População'].min() #Valores mínimos

>>> df['População'].max() #Valores máximos

Percorrendo um dataframe

#Usando for

for key, value in df.iterrows():

if value['País'] == 'Brasil':

print('Achamos o Brasil no índice '+str(key))

#Usando apply

def isBrasil(value):

if value == 'Brasil':

print('Achamos o Brasil')

df['País'].apply(lambda x: isBrasil(x))

Unindo dataframes

>>> pd.concat([df,df2]) #Unindo linhas (union do sal)

>>> pd.merge(df2,df3,how="inner",left_on='Capital',right_on='Cidade')

