Can 'machine learning' improve our understanding of non-response in Understanding Society and means of tacking it?

Stephen McKay, University of Lincoln
18 July 2019

Funding from University of Essex Fellowship.

Non-response (attrition)

- Model of non-response
 - Generally logistic regression, sometimes weighting class method (e.g. CHAID)
- Calculate probability of taking part in this wave, conditional on having been in the past wave
 - (non-monotone response patterns an issue)
- Generate a weight as inverse of the probability of taking part
- Tend to be looking at within-sample, not going beyond (esp with stepwise methods); not looking for interactions
- Class of 'machine learning' models are designed for prediction, though (arguably) less clear to understand

Different panel surveys use different variables

Understanding Society	GSOEP	BHPS	HILDA
Such as <mark>age</mark> ,	Household moved	Weighting class method	Age
Gender	Large city	(CHAID).	<mark>Sex</mark>
Marital status	Age (of head), female	Age	Marital status
Employment status	(head)	<mark>Sex</mark>	"ability of speak English"
Hh size	Separation/divorce	Employment status	Employment status
Presence of children	Change of interviewer; N-	Race	Hours worked
Hh spending on food	past-ints with interviewer	Qualifications	<mark>N kids</mark>
Consideration of use of	Low income	Organisational	Country of birth
environmental energy,	Item non-response on	membership	Highest education
Among others	income	Region	Health status
	Expect to lose job	Tenure	Relationship in household
	East Berlin	Cars	Likelihood of moving
		Consumer durables	Past moves

Data preparation

- Understanding Society (today w1-w2; have modelled all pairwise attrition)
- Combining xwavedat, indresp, hhresp, callrec datasets (about 1600 variables)
- Variables with <=20 unique values regarded as categorical, with 0/1 variables created (=about 7500 variables)
- Dropped variables with no/'low' variance (-> 1900 variables)
- Missing values (-11 -10 -9 -8 -7 -2 -1 UKHLS mostly) kept as values (vs impute)
 - May need more nuance some are "don't know", some are "valid skip"
- Sample divided into two equal groups (N=24,000 in each)
 - *Training* data to develop models
 - Validation (test) data to test models, on unseen data

Logistic regression model to predict non-response (person level, w1-w2)

```
Estimate Std. Error z value Pr(>|z|)
(Intercept)
                 5.372e-01
                             1.629e-01
                                          3.297 0.000976 ***
sex.2
                 1.377e-01
                             3.101e-02
                                         4.439 9.05e-06 ***
a dvage
                 4.040e-02
                             5.211e-03
                                         7.753 8.99e-15 ***
a_dvagesq
                 -4.008e-04
                             5.059e-05
                                        -7.922 2.33e-15 ***
                                        -3.635 0.000278 ***
hhoriq.7
                 -1.875e-01
                             5.158e-02
a_fihhmngrs1_dv -7.507e-06
                             5.422e-06
                                        -1.384 0.166208
a_tenure_dv.1
                 9.148e-02
                             4.606e-02
                                         1.986 0.047039 ×
                             5.558e-02
a_tenure_dv.3
                 -8.570e-02
                                        -1.542 0.123101
                             6.504e-02
a tenure dv.4
                -5.839e-02
                                        -0.898 0.369369
a_tenure_dv.6
                             5.934e-02
                 -3.060e-01
                                        -5.157 2.51e-07 ***
a_tenure_dv.7
                 -4.305e-01
                             6.476e-02
                                        -6.647 3.00e-11
                 -6.694e-02
                             4.331e-02
a ncars.0
                                        -1.546 0.122163
a_ncars.2
                 -2.628e-02
                             4.150e-02
                                        -0.633 0.526639
a_ncars.3
                 -2.286e-01
                             6.143e-02
                                        -3.721 0.000199 ***
a_gor_dv.2
                 -2.638e-02
                             6.614e-02
                                        -0.399 0.689962
a_gor_dv.3
                -2.068e-01
                             6.909e-02
                                        -2.994 0.002757 **
a_gor_dv.4
                 3.747e-03
                            7.336e-02
                                         0.051 0.959266
a_gor_dv.5
                 -2.501e-01
                             6.707e-02
                                        -3.729 0.000192 ***
a gor dv.6
                -1.003e-01
                             6.938e-02
                                        -1.445 0.148346
                             6.399e-02
a_gor_dv.7
                 -2.677e-01
                                        -4.184 2.86e-05 ***
a_gor_dv.8
                -1.165e-02
                             6.425e-02
                                        -0.181 0.856103
                 1.433e-01
                             7.607e-02
a_gor_dv.9
                                         1.883 0.059634
a_gor_dv.11
                 -3.633e-01
                             7.169e-02
                                        -5.068 4.03e-07 ***
a_finnow.1
                             7.567e-02
                 2.360e-01
                                         3.119 0.001817 ××
a_finnow.2
                 1.379e-01
                             7.148e-02
                                         1.929 0.053703
a_finnow.3
                 1.059e-01
                             7.050e-02
                                         1.502 0.133009
a_finnow.4
                 1.240e-01
                             7.935e-02
                                         1.563 0.117996
a_finfut.1
                 -3.857e-02
                             3.740e-02
                                        -1.031 0.302422
a_finfut.2
                             4.449e-02
                                         0.203 0.838792
                 9.052e-03
evermar dv.2
                             4.280e-02 -12.519
                 -5.358e-01
                                                < 2e-16 ***
generation.1
                 -4.670e-01
                             4.823e-02
                                        -9.684
                                                < 2e-16 ***
generation.2
                 -1.115e-01
                             5.418e-02
                                        -2.057 0.039640 ×
generation.3
                 1.182e-02
                             6.336e-02
                                         0.187 0.852026
a pno.2
                 1.422e-02
                             3.591e-02
                                         0.396 0.692008
a_pno.3
                 4.723e-02
                             6.242e-02
                                         0.757 0.449292
a_sf1.1
                 -3.620e-02 4.492e-02
                                        -0.806 0.420400
a_sf1.3
                 3.759e-02
                             4.026e-02
                                         0.934 0.350491
                             5.054e-02
a_sf1.4
                 -2.837e-02
                                        -0.561 0.574576
                             6.538e-02
a_sf1.5
                 -2.283e-01
                                        -3.493 0.000478 ***
```

Single decision tree for w1->w2 attrition

Random Forest – most important variables

- Home ownership
- Housing Benefit receipt
- Married (Ever)
- Any children
- Agreed to health linkage
- Intend to move
- Ethnic boost sample
- GHQ score

Researchers beware –
'nodesize' default is 1, bad
combination with an ID
variable or fine grained
variables like income

Xgboost – most important variables

Imar1y_dv (first marriage year) ch1by_dv (first child birth year) a_xpmove.2 (expect to move nxt yr) a_indpxus_xw (x-section adult wgt) a_flaglink.1 (health consent flag) a_hscost (house purchase price) a_hhresp_dv.3 (within-hh resp) a_nbrsnci_dv (N'hood cohesion) a_intnum (interviewer number) a_scdoby4 (year of birth) a_ivcoop.1 (respondent co-operative)	100.00 92.87 56.58 56.39 53.96 53.82 47.64 35.51 34.57 28.17 26.60	a_mvyr (year moved here) a_hhdenus_xw (x-section hh wgt) a_fihhmngrs_if (share imputed income) paid.1 (father ethnic group) a_fiyrdia (interest income) a_istrtdathh (int start: hours) a_susp.1 (suspicious respondent) a_plbornc (country of birth) a_hlphmwk8 (parents help w homework)	26.57 22.28 22.15 21.52 19.78 18.87 18.83 18.13 17.62

Predictive performance (mean sq error; correctly predicted)

Model	Training data	Held-out data	
Average (respondent)	0.190 (74%)	<mark>0.190</mark> (74%)	
Base logit (stepwise v similar, as is OLS)	0.179 (75%)	<mark>0.181</mark> (74%)	
Random Forest – same variables	0.151 (77%)	0.180 (75%)	
XGBoost – same variables	0.178 (75%)	0.180 (75%)	
Single decision tree – all variables	0.171 (76%)	0.179 (75%)	
Random Forest – all variables	0.123 (80%)	0.172 (75%)	
XGBoost – all variables	0.138 (80%)	<mark>0.163</mark> (77%)	

Predicted probabilities – on held-out data

Effect of weights

	W1	W1 after attrition	Logit-based weights	RF-based weights	Xgb-based weights
Is female (%)	55.5	56.6	55.6	56.2	55.6
Mean (age)	46.0	47.3	46.0	46.5	46.1
SE (age)	0.12	0.13	0.14	0.14	0.14
(also considered: region, rural, income, health, depression, politics,)					
Range of predicted probabilities			0.279 – 0.900	0.24 – 0.960	0.018 – 0.985
Range –respondents			0.311 - 0.900	0.40 - 0.960	0.164 – 0.985
Kish design effect			1.026	1.013	1.060

Conclusions

- ML methods will more closely fit the probability of attrition ... though not to any great extent on unseen data except best models with more features
- ML highlights some variables relating to 'para data' process of taking part and permissions – that might be further explored for all attrition models
- Distribution of weights from ML models may be more extreme (without truncating) than from standard statistical models
- Not (yet) found any advantages in terms of descriptive statistics with weights from ML models over existing practice

END

• Possible extra slides for que	estions.	

Predictions – ML with full dataset

Predicted rate of attrition: w1->w2

