# CO<sub>2</sub> Sensor Module – RX-9M



# **APPROVAL SHEET**

| MODEL NAME           | CO2 SENSOR MODULE (RX-9M) |
|----------------------|---------------------------|
| PART NUMBER          | EX-NN-24125UN5KA          |
| CUSTOMER NAME        | -                         |
| CUSTOMER PART NUMBER | -                         |
| DATE                 | 2020.09.03                |
| REMARK               | R00                       |
| SOFTWARE VERSION     | V00                       |
| SOFTWARE CHECKSUM    | 0xC6329                   |



### **EXSEN Inc.**

|           | Written | Reviewed | Approved |
|-----------|---------|----------|----------|
| Signature |         |          |          |
| Name      |         |          |          |
| Date      |         |          |          |

#### Customer

|           | Written | Reviewed | Approved |
|-----------|---------|----------|----------|
| Signature |         |          |          |
| Name      |         |          |          |
| Date      |         |          |          |

www.exsen.co.kr

# Sep. 2020



# **Contents**

| 1. REVISION NOTE                                                                 | 3  |
|----------------------------------------------------------------------------------|----|
| 2. DATA SHEET                                                                    | 4  |
| (1) Dimension                                                                    |    |
| (2) Sensor & electrical performance specification (T <sub>a</sub> = 25°C, 50%RH) | 5  |
| (3) Sensor Characteristic graph                                                  | 6  |
| 3. Terminal descriptions                                                         | 8  |
| 4. Communication descriptions                                                    | 9  |
| (1) Interface                                                                    |    |
| (2) Protocol                                                                     | 9  |
| 5 Cautions                                                                       | 10 |
| (1) Moisture, Gas-Proof Package                                                  | 10 |
| (2) Storage Conditions                                                           | 10 |
| (3) Handling                                                                     |    |
| (4) Initializing of sensor (warm-up)                                             |    |
| (5) Auto Calibration                                                             | 10 |
| (6) Temperature changing                                                         | 11 |
| Notice                                                                           | 12 |

Sep. 2020



## 1. REVISION NOTE

| Date       | Revision          | Page | Remark |  |
|------------|-------------------|------|--------|--|
| 2020-09-03 | INITIATE DOCUMENT | ALL  | REV.00 |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |
|            |                   |      |        |  |



## 2. DATA SHEET

| MODEL NAME          | CO2 SENSOR MODULE (RX-9M)                        |
|---------------------|--------------------------------------------------|
| PART NUMBER         | EX-NN-24125UN5KA                                 |
| DIMENSION           | 30 x 18 (mm <sup>2</sup> ) , 6.4(T, mm, w/o CNT) |
| CO2 DETECTION RANGE | 400~5,000 ppm                                    |
| COMMUNICATION       | UART                                             |
| ADDITION            | Carbon dioxide concentration display             |
| APPLICATION         | General Purpose                                  |

### (1) Dimension

• Small Sensor Module, 24.1 x 12 x 6.4 (L x W x H, mm)



Connector: Not specified. It depends on customer's requirement.

| General Tolerance (mm) |  |  |  |  |  |
|------------------------|--|--|--|--|--|
| Linear ±0.3            |  |  |  |  |  |
| Radius ±0.5            |  |  |  |  |  |

# Sep. 2020



# (2) Sensor & electrical performance specification (T<sub>a</sub> = 25°C, 50%RH)

| Pa      | rameters               | Condition                                | Symbol           | Min             | Тур                      | Max          | Unit |  |  |
|---------|------------------------|------------------------------------------|------------------|-----------------|--------------------------|--------------|------|--|--|
| Gas     | Target gas             | -                                        | $T_Gas$          | CO <sub>2</sub> |                          |              | -    |  |  |
| Data    | Sensor type            | -                                        | EC               |                 |                          |              |      |  |  |
|         | Detection range        | -                                        | $DD_R$           |                 | ppm                      |              |      |  |  |
|         | Resolution             | -                                        | $D_R$            |                 | 1                        |              | ppm  |  |  |
|         | Accuracy <sup>1)</sup> |                                          | D <sub>A</sub>   | -10             | After starting<br>15 min | 10           |      |  |  |
|         |                        | At Normal temp,<br>humidity,<br>pressure | D <sub>A3</sub>  | -25             | 3 min                    | 25           | %    |  |  |
|         |                        |                                          | D <sub>A10</sub> | -15             | 10 min                   | 15           |      |  |  |
| Time    | Response               | -                                        | $T_Res$          | 2min for 90     | % for diffusion sam      | pling method |      |  |  |
|         | Warm-up                | -                                        | T <sub>wu</sub>  | 1               | 3                        | -            | min  |  |  |
|         | Life-time              | -                                        | T <sub>LT</sub>  |                 | 10 years                 | 10 years     |      |  |  |
| Power   | Input                  | -                                        | V <sub>IN</sub>  | 4.5             | 5                        | 5.5          | V    |  |  |
|         | Current<br>Consumption | -                                        | $P_{A}$          | -               | 0.12                     | 0.15         | Α    |  |  |
|         | Warm-up<br>consumption | -                                        | $P_{W}$          | -               | 0.6                      | 0.8          | W    |  |  |
| Output  | Interface connections  | -                                        | O <sub>C</sub>   |                 | UART                     | UART         |      |  |  |
|         | Sampling<br>interval   | -                                        | $T_{SPL}$        |                 | 1                        |              | Hz   |  |  |
|         | Connector              | -                                        | CNT              |                 | Not specified            |              |      |  |  |
| Ambient | Operating Temp         | -                                        | $O_T$            | 0               | 25                       | 50           | °C   |  |  |
|         | Operating<br>Humidity  | No<br>condensing                         | Он               | 0               | -                        | 90           | %    |  |  |
|         | Storage Temp           | -                                        | $S_T$            | -40             | 25                       | 60           | °C   |  |  |
|         | Storage<br>Humidity    | Pack in<br>moisture proof<br>bag         | Sн               | 5               | -                        | 90           | %    |  |  |
| Ca      | libration              | -                                        | CAL              | Not req         | uired and Self mode      | e is ready   | -    |  |  |

Sensor requires to be exposed to fresh air from outdoor at least 1 minute per day. but you do not pay attention to handle this, if the room with windows is empty, air diffused from high concentration to low concentration naturally. It works like fresh air exposure.

<sup>2)</sup> Accuracy is defined after 2 days of continuous operation in home. If you want to use this to industrial like factory or agriculture, contact manufacturer.



## (3) Sensor Characteristic graph



Fig. 1 Accuracy by temperature



Fig. 2 Required aging time by storage time



Fig. 3 Accuracy by Humidity



Fig. 4 Fluctuation by temperature changing



Fig. 5 Accuracy while warming up



Fig. 6 Example of autocalibration

Sep. 2020



# 3. Terminal descriptions

- Connector

| Model name | Maker | Туре | Pin no | Pin to Pin |
|------------|-------|------|--------|------------|
| -          | -     | -    | -      | -          |

| Pin No. | Symbol | Description |
|---------|--------|-------------|
| 1       | VCC    | Supply, 5V  |
| 2 GND   |        | Ground      |
| 3       | Тх     | UART Tx     |
| 4       | Rx     | UART Rx     |

| 4 - UART Tx  | $^{\circ}$ | 0 | <b>©</b> | ۰ | 0 |        |   |   |
|--------------|------------|---|----------|---|---|--------|---|---|
| 3 - UART Rx  | $\circ$    | 0 | 0        |   | 0 |        | , |   |
| 2 - GND      | $\circ$    | 0 | 0        | 0 |   |        |   |   |
| 1 - VCC (5V) | $\circ$    | 0 | 0        |   | 0 |        |   |   |
|              |            |   |          | 0 | 0 | $\Box$ |   | / |

Sep. 2020



#### 4. Communication descriptions

#### (1) Interface

- UART

- Baud rate: 9600 bps

Check bit: NoneStop bit: 1 bit

### (2) Protocol

- Host Send (Read CO2 Conc.)

| Start byte 1 | Start byte 2 | Command | Parmeter 1 | Paremater 2 | CHKSUM<br>high | CHKSUM<br>low |
|--------------|--------------|---------|------------|-------------|----------------|---------------|
| 0x42         | 0x4d         | 0xe3    | 0x00       | 0x00        | 0x01           | 0x72          |

- Sensor Feed back (transmit CO2 Conc.)

| Start<br>byte<br>1 | Start<br>byte<br>2 | Command |      | CO2<br>High | CO2<br>Low | Cal_A<br>High | Cal_A<br>Low | Cal_B<br>High | Cal_B<br>Low | CHKSUM<br>high | CHKSUM<br>low |
|--------------------|--------------------|---------|------|-------------|------------|---------------|--------------|---------------|--------------|----------------|---------------|
| 0x42               | 0x4d               | 0x00    | 0x08 | 0x00        | 0x00       | 0x00          | 0x00         | 0x00          | 0x00         | 0x00           | 0x00          |

- Start byte 1, byte2 and command is constant value.
- CO2~Cal\_B value is variable.
- CO2 value is concentration of CO2, unit: ppm
- Conversion CO2 value = CO2\_High \* 256 + CO2\_low
- Cal\_A and Cal\_B is calibration number, it is not required to calculate CO2 Conc.
- CHKSUM byte is check sum value of uart protocol.
- CHKSUM\_High = (0x42 + 0x4d + 0x00 + 0x08 + CO2\_High + CO2\_Low + Cal\_A\_High + Cal\_A\_Low + Cal\_B\_High + Cal\_B\_Low) / 256;
- CHKSUM\_Low= (0x42 + 0x4d + 0x00+ 0x08 + CO2\_High + CO2\_Low + Cal\_A\_High + Cal\_A\_Low + Cal\_B\_High + Cal\_B\_Low) % 256;
- Example
- If CO2 value = 400 ppm, cal\_A = 300, cal\_B = 65.0

| Start<br>byte<br>1 | Start<br>byte<br>2 | Command |      | CO2<br>High | CO2<br>Low | Cal_A<br>High | Cal_A<br>Low | Cal_B<br>High | Cal_B<br>Low | CHKSUM<br>high | CHKSUM<br>low |
|--------------------|--------------------|---------|------|-------------|------------|---------------|--------------|---------------|--------------|----------------|---------------|
| 0x42               | 0x4d               | 0x00    | 0x08 | 0x01        | 0x90       | 0x01          | 0x2C         | 0x41          | 0x00         | 0x01           | 0x96          |

- If CO2 value = 1500 ppm, cal\_A = 250, cal\_B = 70.01

| Start<br>byte<br>1 | Start<br>byte<br>2 | Command |      | CO2<br>High | CO2<br>Low | Cal_A<br>High | Cal_A<br>Low | Cal_B<br>High | Cal_B<br>Low | CHKSUM<br>high | CHKSUM<br>low |
|--------------------|--------------------|---------|------|-------------|------------|---------------|--------------|---------------|--------------|----------------|---------------|
| 0x42               | 0x4d               | 0x00    | 0x08 | 0x05        | 0xDC       | 0x00          | 0xFA         | 0x46          | 0x01         | 0x02           | 0xB9          |

Sep. 2020



#### **5 Cautions**

#### (1) Moisture, Gas-Proof Package

When moisture or interfering gas is absorbed into the sensor module, it may cause malfunction. There is a possibility that may cause broad ppm tolerance of sensor. But normally sensor module can self-calibrated after 1 day. For this reason, the sensor module is used to keep moisture or interfering gas to minimum.

#### (2) Storage Conditions

- 1) Before/After opening the packing: The sensor module should be kept at 30°C or less and 60%RH or less. The sensor module should be used within a 3 months. When storing the sensor module the cap sealing tape is should be attached.
- 2) EXSEN sensor is sensitive to ambient condition while storing, if the sensor module exposed to air direct w/o cap sealing tape, the sensor module should be operated for 4 days after that the sensor self-calibrated at clean air.
- 3) Please avoid rapid transition in ambient temperature, humidity, interfering gas, especially in high humidity environments where condensation can occur.

#### (3) Handling

- 1) The sensor module is very sensitive to human touching. Don't touch the sensor pin w/o glove. It may occur the sensor malfunction.
- 2) The sensor module is temperature compensation device, so don't apply rapid transition in temperature by conduction, convection, radiation. rapid temperature transition can make sensor output ppm fluctuation.
- 3) The sensor could be damaged from high concentrated interfering gas. For example, ethanol Isopropyl alcohol or solvent to clean the PCB could be harm to sensor.
- 4) PCB coating solution or resin is harm to sensor. While curing to PCB coating, the resin outgas the interfering gas to sensor. It damages to sensor sensitivity. Occasionally, the damage works permanently. If the coating is required to use the sensor, seal the top of sensor firmly.

#### (4) Initializing of sensor (warm-up)

- 1) The sensor takes 3 minutes to initialize their internal components. The sensor is basically heating device. so, the initializing means warming up the device to sense the carbon dioxide.
- 2) The accuracy depends on the warming-up time. The sensor shows  $\pm 25\%$  deviation at 3 min after starting and  $\pm 15\%$  at 5min.

#### (5) Auto Calibration

- 1) The sensor is monitored their output by program of MCU. The MCU calibrate the baseline of sensor output by 1 day.
- 2) It is required to auto-calibrate, the sensor should be exposed to clean atmosphere at least 5 min/day. Because the sensor learns the baseline of clean air.

# Sep. 2020



- 3) The sensor shows reliable sensing data after 1 auto-calibration. Because storage condition of sensor could change the baseline of sensor at first. But this symptom is calibrated after 1 day by auto calibration.
- 4) After reliability test, the sensor should be exposed to clean air at least 3 days. The harmful environment change the sensor baseline. So give enough time to sensor to calibrate.

#### (6) Temperature changing

- 1) Rapid temperature changing makes signal fluctuation to sensor output. The fluctuation is stabilized soon when the temperature is stabilized.
- 2) The temperature changing is caused by convection, heat conduction, and thermal radiation.

3)



FIG. The convection model of temperature changing for sensor

#### output data, @400 ppm, Ambient Temp = 25°C

| FAN speed | T1 (s) | T2 (s) | T3 (s) | T4 (s) | Δppm (%) | P1 (%) | P2 (%) |
|-----------|--------|--------|--------|--------|----------|--------|--------|
| High      | 200    | 400    | 200    | 300    | 10       | 12     | 10     |
| Low       | 175    | 300    | 200    | 300    | 8        | 10     | 8      |

Sep. 2020



#### **Notice**

EXSEN Inc. (EXSEN) reserves the right to make changes to the products contained in this document to improve performance or for any other purpose, or to discontinue them without notice. Customers are advised to contact EXSEN to obtain the latest product information before placing orders or designing EXSEN products into systems.

EXSEN assumes no responsibility for the use of any products or circuits described in this document or customer product design, conveys no license, either expressed or implied, under any patent or other right, and makes no representation that the circuits are free of patent infringement. EXSEN further makes no claim as to the suitability of its products for any particular purpose, nor does EXSEN assume any liability arising out of the use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages.

EXSEN, the EXSEN logo are registered trademarks of EXSEN.