Lecture 6

Multiple Linear Regression II

Reading: Chapter 12

STAT 8020 Statistical Methods II September 8, 2020

> Whitney Huang Clemson University

- **1** General Linear Test
- 2 Review: Multicollinearity
- **3** Variable Selection Criteria

Multiple Linear Regression II
CLEMS N

Notes

Notes

Coefficient of Determination

ullet Coefficient of Determination R^2 describes proportional of the variance in the response variable that is predictable from the predictors

$$R^2 = \frac{\mathsf{SSR}}{\mathsf{SST}} = 1 - \frac{\mathsf{SSE}}{\mathsf{SST}}, \quad 0 \leq R^2 \leq 1$$

- $\bullet \ R^2$ usually increases with the increasing p, the number of the predictors
 - Adjusted $R^2,$ denoted by $R_{\rm adj}^2=1-\frac{{\rm SSE}/(n-p)}{{\rm SST}/(n-1)}$ attempts to account for p

General Linear Test Review: Multicollinearity Variable Selection Criteria

Notes			

R^2 vs. $R^2_{ m adj}$ Example

Suppose the true relationship between response Y and predictors (X_1,X_2) is

$$Y = 5 + 2X_1 + \varepsilon,$$

where $\varepsilon \sim$ N(0, 1) and X_1 and X_2 are independent to each other. Let's fit the following two models to the "data"

```
\begin{aligned} & \text{Model 1: } Y = \beta_0 + \beta_1 X_1 + \varepsilon^1 \\ & \text{Model 2: } Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon^2 \end{aligned}
```

Question: Which model will "win" in terms of R^2 ?

Model 1 Fit

```
> summary(fit1)
```

Signif. codes: 0 '***' 0.01 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8393 on 28 degrees of freedom Multiple R-squared: 0.8313, Adjusted R-squared: 0.8253 F-statistic: 138 on 1 and 28 DF, p-value: 2.467e-12

Notes

Notes

Model 2 Fit

> summary(fit2)

Regression II	
CLEMS#N	

General Linear Test

Review: Multicollinearity Variable Selection Criteria

Notes			

R^2 : Model 1 vs. Model 2

Notes

R^2_{adj} : Model 1 vs. Model 2

Ν	lotes				
_					
-					
-					
_					
_					

General Linear Test

- Comparison of a "full model" and "reduced model" that involves a subset of full model predictors
- Consider a full model with k predictors and reduced model with ℓ predictors ($\ell < k$)
- Test statistic: $F^* = \frac{\operatorname{SSE}(\mathsf{R}) \operatorname{SSE}(F)/(k-\ell)}{\operatorname{SSE}(F)/(n-k-1)} \Rightarrow$ Testing H_0 that the regression coefficients for the extra variables are all zero
 - $\bullet \ \, \text{Example 1: } X_1, X_2, \cdots, X_{p-1} \text{ vs. intercept only} \Rightarrow \\ \text{Overall F test}$
 - Example 2: $X_j, 1 \leq j \leq p-1$ vs. intercept only \Rightarrow t test for β_i
 - $\bullet \ \, \mathsf{Example 3:} \, X_1, X_2, X_3, X_4 \mathsf{ vs.} \\ X_1, X_3 \Rightarrow H_0: \beta_2 = \beta_4 = 0$

Regression II
CLEMS#N
General Linear Test

Notes			

Species Diversity on the Galapagos Islands Revisited: Full Model

> summary(gala_fit2)

```
Multiple Linear Regression II

CLEMS CONTROL OF THE STATE OF THE STATE
```

Notes

Species Diversity on the Galapagos Islands Revisited: Reduce Model

> summary(gala_fit1)

Call:

lm(formula = Species ~ Elevation)

Residuals:

Min 1Q Median 3Q Max -218.319 -30.721 -14.690 4.634 259.180

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 78.66 on 28 degrees of freedom Multiple R-squared: 0.5454, Adjusted R-squared: 0.5291 F-statistic: 33.59 on 1 and 28 DF, p-value: 3.177e-06

Perform a General Linear Test

- $H_0: \beta_{\text{Area}} = 0$ vs. $H_a: \beta_{\text{Area}} \neq 0$
- \bullet $F^* = \frac{(173254 169947)/(2-1)}{169947/(30-2-1)} = 0.5254$
- ullet P-value: P[F>0.5254]=0.4748, where $F\sim {\sf F}(1,27)$

> anova(gala_fit1, gala_fit2)

Analysis of Variance Table

Model 1: Species ~ Elevation Model 2: Species ~ Elevation + Area Res.Df RSS Df Sum of Sq F Pr(>F) 1 28 173254 2 27 169947 1 3307 0.5254 0.4748

CLEMS#1
General Linear
Test Review:

Review: Multicollinearity Variable Selection

notes			

P-value Calculation

P-value is the shaped area under the under the density curve

Another Example of General Linear Test: Full Model

```
> full <- lm(Species ~ Area + Elevation + Nearest + Scruz + Adjacent,
    data = gala)
> anova(full)
Analysis of Variance Table
Response: Species

Df Sum Sq Mean Sq F value Pr(>F)

Area 1 145470 145470 39.1262 1.826e-06 ***
Elevation 1 65664 65664 17.6613 0.0003155 ***
Nearest 1 29 29 0.0079 0.9300674
Scruz 1 14280 14280 3.8408 0.0617324 .
Adjacent 1 66406 66406 17.8609 0.0002971 ***
   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Notes

Notes

Another Example of General Linear Test: Reduced Model

> reduced <- lm(Species ~ Elevation + Adjacent) > anova(reduced) Analysis of Variance Table
Response: Species
Df Sum Sq Mean Sq F value Pr(>F)
Elevation 1 207828 207828 56.112 4.662e-08 ***
Adjacent 1 73251 73251 19.777 0.0001344 ***
Residuals 27 100003 3704
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Multiple Linear Regression II
CLEMS N
General Linear Test

Notes			

Perform a General Linear Test

• $H_0: \beta_{\text{Area}} = \beta_{\text{Nearest}} = \beta_{\text{Scruz}} \text{ vs.}$ H_a : at least one of the three coefficients $\neq 0$

•
$$F^* = \frac{(100003 - 89231)/(5-2)}{89231/(30-5-1)} = 0.9657$$

• P-value: P[F > 0.9657] = 0.425, where $F \sim F(3, 24)$

```
> anova(reduced, full)
Analysis of Variance Table
```

Model 1: Species ~ Elevation + Adjacent

Model 2: Species ~ Area + Elevation + Nearest + Scruz + Adjacent Res.Df RSS Df Sum of Sq F Pr(>F)

27 100003 24 89231 3 10772 0.9657 0.425

Notes

Notes

Multicollinearity

Multicollinearity is a phenomenon of high inter-correlations among the predictor variables

- ullet Numerical issue \Rightarrow the matrix $oldsymbol{X}^Toldsymbol{X}$ is nearly singular
- Statistical issue
 - ullet β 's are not well estimated
 - Spurious regression coefficient estimates
 - ullet R^2 and predicted values are usually OK

Example

Consider a two predictor model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

We can show

$$\hat{\beta}_{1|2} = \frac{\hat{\beta}_1 - \sqrt{\frac{\hat{\sigma}_Y^2}{\hat{\sigma}_{X_1}^2}} r_{X_1,X_2} r_{Y,X_2}}{1 - r_{X_1,X_2}^2},$$

where $\hat{\beta}_{1|2}$ is the estimated partial regression coefficient for X_1 and $\hat{\beta}_1$ is the estimate for β_1 when fitting a simple linear regression model $Y \sim X_1$

Multiple Linear Regression II
CLEMS N
Review: Multicollinearity

Notes			

An Simulated Example

Suppose the true relationship between response Y and predictors (X_1,X_2) is

$$Y = 4 + 0.8X_1 + 0.6X_2 + \varepsilon,$$

where $\varepsilon \sim {\rm N}(0,1)$ and X_1 and X_2 are positively correlated with $\rho=0.95.$ Let's fit the following models:

- $\bullet \ \, \mathsf{Model} \ \, \mathsf{1:} \ \, Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$
- $\bullet \ \mathsf{Model 2:} \ Y = \beta_0 + \beta_1 X_1 + \varepsilon_1$
- Model 3: $Y = \beta_0 + \beta_2 X_2 + \varepsilon_2$

Scatter Plot: X_1 vs. X_2

Notes

Notes

Model 1 Fit

Notes

Model 2 Fit

Notes

Notes

Model 3 Fit

Variable Selection

- What is the appropriate subset size?
- What is the best model for a fixed size?

Multiple Linear Regression II	
CLEMS N	
Review: Multicollinearity	
6.24	

Notes

Mallows' C_p Criterion

$$\begin{split} (\hat{Y}_i - \mu_i)^2 &= (\hat{Y}_i - \mathbf{E}(\hat{Y}_i) + \mathbf{E}(\hat{Y}_i) - \mu_i)^2 \\ &= \underbrace{(\hat{Y}_i - \mathbf{E}(\hat{Y}_i))^2}_{\text{Variance}} + \underbrace{(\mathbf{E}(\hat{Y}_i) - \mu_i)^2}_{\text{Bias}^2}, \end{split}$$

where $\mu_i = \mathrm{E}(Y_i|X_i=x_i)$

- Mean squared prediction error (MSPE): $\sum_{i=1}^{n} \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^{n} (E(\hat{Y}_i) - \mu_i)^2$
- ullet C_p criterion measure:

$$\begin{split} \Gamma_p &= \frac{\sum_{i=1}^n \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^n (\mathbf{E}(\hat{Y}_i) - \mu_i)^2}{\sigma^2} \\ &= \frac{\sum \mathsf{Var}_{\mathsf{pred}} + \sum \mathsf{Bias}^2}{\mathsf{Var}_{\mathsf{error}}} \end{split}$$

Notes				

C_p Criterion

- ullet Do not know σ^2 nor numerator
- $\bullet \ \mbox{Use MSE}_{X_1,\cdots,X_{p-1}} = \mbox{MSE}_{\mbox{\scriptsize F}}$ as the estimate for σ
- For numerator:
 - \bullet Can show $\sum_{i=1}^n \sigma_{\hat{Y}_i}^2 = p\sigma^2$
 - Can also show $\sum_{i=1}^{n} (\mathbf{E}(\hat{Y}_i) - \mu_i)^2 = \mathbf{E}(\mathsf{SSE}_\mathsf{F}) - (n-p)\sigma^2$

$$\Rightarrow C_p = \frac{\mathrm{SSE} - (n-p)\mathrm{MSE_F} + p\mathrm{MSE_F}}{\mathrm{MSE_F}}$$

C_p Criterion Cont'd

Recall

$$\Gamma_p = \frac{\sum_{i=1}^n \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^n (\mathbf{E}(\hat{Y}_i) - \mu_i)^2}{\sigma^2}$$

- When model is correct $E(C_p) \approx p$
- When plotting models against p
 - $\bullet \ \ {\rm Biased \ models \ will \ fall \ above \ } C_p = p$
 - $\bullet \ \ {\hbox{Unbiased models will fall around line}} \ C_p = p \\$
 - ${\color{red} \bullet}$ By definition: C_p for full model equals p

				e L				
\mathbb{C}								V
J N	-1	٧	Ε	R	S	- 1	T	Y

Notes

Adjusted \mathbb{R}^2 Criterion

Adjusted R^2 , denoted by $R^2_{\rm adj}$, attempts to take account of the phenomenon of the R^2 automatically and spuriously increasing when extra explanatory variables are added to the model.

$$R_{\rm adj}^2 = 1 - \frac{{\rm SSE}/(n-p-1)}{{\rm SST}/(n-1)}$$

- ullet Choose model which maximizes $R^2_{
 m adj}$
- Same approach as choosing model with smallest

Variable Selection Criteria

Predicted Residual Sum of Squares PRESS Criterion

- For each observation i, predict Y_i using model generated from other n-1 observations
- $PRESS = \sum_{i=1}^{n} (Y_i \hat{Y}_{i(i)})^2$
- Want to select model with small PRESS

NI	a t	1	0

Notes

Other Approaches

Akaike's information criterion (AIC)

$$n\log(\frac{\mathsf{SSE}_k}{n}) + 2k$$

Bayesian information criterion (BIC)

$$n\log(\frac{\mathsf{SSE}_k}{n}) + k\log(n)$$

• Can be used to compare non-nested models

Notes			