Algorytmy optymalizacji dyskretnej

Lista 2

Aleksandra Czarniecka (272385)

listopad 2024

1 Metoda bisekcji

1.1 Opis problemu

Celem zadania jest napisanie funkcji rozwiązującej równanie f(x) = 0 metodą bisekcji.

function mbisekcji
(f, a::Float64, b::Float64, delta::Float64, epsilon::Float64) Dane:

- f funkcja f(x) zadana jako anonimowa funkcja,
- a, b końce przedziału początkowego,
- delta, epsilon dokładności obliczeń.

Wyniki:

- \bullet r przybliżenie pierwiastka równania f(x)=0,
- v wartość f(r),
- it liczba wykonanych iteracji,
- err sygnalizacja błędu:
 - 0 brak błędu,
 - 1 funkcja nie zmienia znaku w przedziale [a, b].

1.2 Rozwiązanie

Metoda bisekcji to algorytm znajdowania pierwiastków równania f(x)=0. Metoda opiera się na Twierdzeniu Darboux i działa na funkcjach ciągłych. Działa na zasadzie iteracyjnego dzielenia na pół przedziału, w którym funkcja zmienia znak (czyli f(a)f(b)<0). Wiemy wtedy, że funkcja na pewno przecina oś OX na przedziałe [a,b]. W każdym kroku oblicza się wartość funkcji w punkcie środkowym przedziału $c=\frac{a+b}{2}$. Jeśli f(c)=0, znaleziono pierwiastek, a jeśli nie, to wybiera się tę połowę przedziału, gdzie funkcja zmienia znak. Proces powtarza się, aż wartość funkcji w środku przedziału będzie wystarczająco bliska zera.

Rysunek 1: Graficzne przedstawienie metody bijekcji (rysunek ze slajdów z wykładu).

Pseudokod algorytmu przedstawiony na wykładzie.

```
Algorithm 1: Algorytm metody bisekcji
```

```
Dane: f, a, b, \delta, \epsilon
    Wyniki: r, v, it, err
 1 u \leftarrow f(a), v \leftarrow f(b);
 e \leftarrow b - a;
   // sprawdzamy jeden bit reprezentujący znak liczby, zamiast nieprecyzyjnie liczyć f(a) \cdot f(b)
 4 if sgn(u) = sgn(v) then
    return Nothing, Nothing, Nothing, 1;
 6 k \leftarrow 1;
    while true do
        // obliczanie środka przedziału unikając błędów numerycznych, które mogą powstać przy wzorze \frac{a+b}{2}
 8
        e \leftarrow e/2;
 9
10
        c \leftarrow a + e;
        w \leftarrow f(c);
11
12
        if |e| < \delta or |w| < \epsilon then
         return c, w, k, 0;
13
        if sgn(w) \neq sgn(u) then
14
           b \leftarrow c, v \leftarrow w;
15
16
17
         a \leftarrow c, u \leftarrow w;
        k \leftarrow k + 1;
18
```

1.3 Wyniki i ich interpretacja

Wszystkie testy przeprowadzone są dla wartości $\delta = \epsilon = 10^{-5}$.

- Normalny przykład: Testuje standardowe działanie metody bisekcji dla funkcji $f(x) = x^2 4$ w przedziale [1.0, 3.0]. Oczekiwany wynik to x = 2.0. Sprawdzane są następujące warunki:
 - -f(x) w znalezionym punkcie spełnia warunek dokładności ($|f(x)| \le \epsilon$),
 - Znalezione rozwiązanie x mieści się w dopuszczalnym błędzie δ względem oczekiwanego wyniku (|x- poprawnyWynik $| \leq \delta$),
 - Brak błędu metody (err = 0).
- Przedział bez zmiany znaku: Test sprawdza sytuację, w której w przedziale [3.0, 4.0] funkcja $f(x) = x^2 4$ nie zmienia znaku. Oczekiwane wyjście to:
 - Brak wyniku (x = Nothing i f(x) = Nothing),
 - Brak iteracji (it = Nothing),

- Kod błędu metody err równy 1.
- Pierwiastek w połowie przedziału: Testuje przypadek, gdzie pierwiastek funkcji $f(x) = x^2 4$ leży dokładnie w środku przedziału [1.0, 3.0]. Oczekiwane wyniki to:
 - Znaleziony pierwiastek x = 2.0,
 - f(x) = 0.0,
 - Tylko jedna iteracja (it = 1),
 - Brak błędu (err = 0).

1.4 Wnioski

Wszystkie testy przeszły, zatem algorytm działa prawidłowo.

2 Metoda Newtona (stycznych)

2.1 Opis problemu

Celem zadania jest napisanie funkcji rozwiązującej równanie f(x) = 0 metodą Newtona (metodą stycznych).

function mstycznych(f, pf, x0::Float64, delta::Float64, epsilon::Float64, maxit::Int) Dane:

- f, pf funkcja f(x) oraz jej pochodna f'(x) zadane jako anonimowe funkcje,
- x0 przybliżenie początkowe,
- delta, epsilon dokładności obliczeń,
- maxit maksymalna dopuszczalna liczba iteracji.

Wyniki:

- r przybliżenie pierwiastka równania f(x) = 0,
- v wartość f(r),
- it liczba wykonanych iteracji,
- err sygnalizacja błędu:
 - 0 metoda zbieżna,
 - 1 nie osiągnięto wymaganej dokładności w maxit iteracji,
 - 2 pochodna bliska zeru.

2.2 Rozwiązanie

Metoda Newtona jest metodą iteracyjną, która wymaga znajomości pochodnej funkcji f(x), zatem funkcja musi być różniczkowalna w otoczeniu szukanego pierwiastka. Naturalnie pochodna funkcji f(x) nie może być równa zeru w żadnym punkcie iteracji, ponieważ wymagana jest jej wartość w obliczeniach. Przy spełnieniu tych założeń iteracyjnie oblicza się kolejne przybliżenia pierwiastka za pomocą wzoru:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Metoda ta zbiega bardzo szybko (zbieżność kwadratowa) w pobliżu pierwiastka, ale może nie działać dobrze, jeśli początkowe przybliżenie x_0 jest daleko od pierwiastka lub f(x) jest bliskie zeru.

Metoda Newtona opiera się na wykorzystaniu stycznej do krzywej f w punkcie x_n . Punkt przecięcia tej stycznej z osią OX (czyli miejsce, gdzie y=0) staje się następnym przybliżeniem pierwiastka.

Rysunek 2: Graficzne przedstawienie metody Newtona (rysunek ze slajdów z wykładu).

Pseudokod algorytmu przedstawiony na wykładzie.

```
Algorithm 2: Algorytm metody Newtona
```

```
Dane: f, pf, x_0, \delta, \epsilon, maxit
    Wyniki: r, v, it, err
 v \leftarrow f(x_0);
 2 if |v| < \epsilon then
    return x_0, v, 0, 0;
 4 for k \leftarrow 1 to maxit do
       pfx \leftarrow f'(x_0);
        if |pfx| < eps(Float64) then
 6
          return x_0, v, k, 2;
 7
        x_1 \leftarrow x_0 - v/pfx;
        v \leftarrow f(x_1);
 9
        if |x_1 - x_0| < \delta or |v| < \epsilon then
10
         return x_1, v, k, 0;
        x_0 \leftarrow x_1;
12
13 return x_0, fx, maxit, 1;
```

2.3 Wyniki i ich interpretacja

Wszystkie testy przeprowadzone są dla wartości $\delta = \epsilon = 10^{-5}$.

- Normalny przykład: Test sprawdza standardowe działanie metody Newtona dla funkcji $f(x) = x^3 8$ i jej pochodnej $f'(x) = 3x^2$, z początkowym przybliżeniem $x_0 = 1.5$. Oczekiwane wyniki to:
 - -f(x) w znalezionym punkcie spełnia warunek dokładności ($|f(x)| \le \epsilon$),
 - Znalezione rozwiązanie x mieści się w dopuszczalnym błędzie δ względem oczekiwanego wyniku (|x- poprawnyWynik $| \leq \delta$),
 - Brak błędu metody (err = 0).
- Pochodna równa 0 w przybliżeniu początkowym: Testuje sytuację, gdzie pochodna funkcji $f(x) = x^2 x$, f'(x) = 2x 1 wynosi 0 dla początkowego przybliżenia $x_0 = 0.5$. Wynik:
 - Brak rozwiązania,
 - Kod błędu metody err równy 2.
- Metoda wpada w cykl: Funkcja $f(x) = x^3 2x + 2$ oraz jej pochodna $f'(x) = 3x^2 2$ są użyte do pokazania przypadku, gdzie metoda Newtona wpada w cykl dla początkowego przybliżenia $x_0 = 0.0$. Wyniki:
 - Funkcja f(x) nie spełnia warunku dokładności ($|f(x)| > \epsilon$),

- Znalezione rozwiązanie x nie zbliża się do oczekiwanej wartości w granicach δ $(x 0.0 > \delta)$,
- Liczba iteracji osiąga maksymalną wartość (it = 31),
- Kod błędu err równy 1.

2.4 Wnioski

Wszystkie testy przeszły, zatem algorytm działa prawidłowo.

3 Metoda siecznych

3.1 Opis problemu

Celem zadania jest napisanie funkcji rozwiązującej równanie f(x) = 0 metodą siecznych.

 $function\ msiecznych(f,\ x0::Float64,\ x1::Float64,\ delta::Float64,\ epsilon::Float64,\ maxit::Int)$ Dane:

- f funkcja f(x) zadana jako anonimowa funkcja,
- x0, x1 przybliżenia początkowe,
- delta, epsilon dokładności obliczeń,
- maxit maksymalna dopuszczalna liczba iteracji.

Wyniki:

- r przybliżenie pierwiastka równania f(x) = 0,
- v wartość f(r),
- it liczba wykonanych iteracji,
- err sygnalizacja błędu:
 - 0 metoda zbieżna,
 - 1 nie osiągnięto wymaganej dokładności w maxit iteracji.

3.2 Rozwiązanie

Metoda siecznych to wariant metody Newtona, który nie wymaga znajomości pochodnej funkcji. Zamiast tego aproksymuje pochodną za pomocą różnicy ilorazowej między dwiema ostatnimi iteracjami:

$$x_{n+1} = x_n - f(x_1) \cdot \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}.$$

Metoda wymaga ciągłości funkcji oraz dwóch początkowych przybliżeń x_0 i x_1 (przy czym $f(x_0) \neq f(x_1)$). Metoda zakłada, że funkcja jest dostatecznie "dobrze zachowująca się" (brak punktów przegięcia czy skokowych zmian w zachowaniu). Jest bardziej uniwersalna niż metoda Newtona, ale może być wolniejsza, ponieważ zbieżność jest nadliniowa, a nie kwadratowa.

Metoda siecznych opiera się na przybliżeniu pochodnej f'(x) za pomocą różnicy ilorazowej:

$$f'(x) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}.$$

Punkt przecięcia się siecznej łączącej punkty $(x_{n-1}, f(x_{n-1}) i (x_n, f(x_n)) z$ osią OX (czyli miejsce, gdzie y = 0) staje się następnym przybliżeniem pierwiastka x_{n+1} .

Rysunek 3: Graficzne przedstawienie metody siecznych (rysunek ze slajdów z wykładu).

Pseudokod algorytmu przedstawiony na wykładzie.

```
Algorithm 3: Algorytm metody siecznych
```

```
Data: f, x0, x1, \delta, \epsilon, maxit
    Result: r, v, it, err
 1 fx0 \leftarrow f(x0);
    fx1 \leftarrow f(x1);
 \mathbf{3} for k \leftarrow 1 to maxit do
        if |fx0| > |fx1| then
          x0 \leftrightarrow x1, fx0 \leftrightarrow fx1;
 5
         s \leftarrow (x1 - x0)/(fx1 - fx0);
 6
         x1 \leftarrow x0, \, fx1 \leftarrow fx0;
 7
        x0 \leftarrow x0 - fx0 * s;
         fx0 \leftarrow f(x0);
 9
         if |x1-x0| < \delta or |fx0| < \epsilon then
10
             return x0, fx0, k, 0;
11
12 return x0, fx0, maxit, 1;
```

3.3 Wyniki i ich interpretacja

Wszystkie testy przeprowadzone są dla wartości $\delta = \epsilon = 10^{-5}$.

- Normalny przykład: Testuje działanie metody siecznych dla funkcji $f(x) = x^2 9$ w przedziale początkowym [2.0, 4.0]. Oczekiwany wynik to x = 3.0. Weryfikowane są następujące warunki:
 - -f(x) w znalezionym punkcie spełnia warunek dokładności ($|f(x)| \le \epsilon$),
 - Znalezione rozwiązanie x mieści się w dopuszczalnym błędzie δ względem oczekiwanego wyniku (|x- poprawnyWynik $|\leq \delta$),
 - Brak błędu metody (err = 0).
- Funkcja równa zero w punkcie zerowym: Test pokazuje sytuację, w której funkcja $f(x) = x^2$ ma zerową wartość w przedziale początkowym [-2.0, 2.0]. Wyniki:
 - Brak wyniku (x = "not a number" i f(x) = "not a number"),
 - Maksymalna liczba iteracji (it = 20),
 - Kod błędu metody err równy 1.

3.4 Wnioski

Wszystkie testy przeszły, zatem algorytm działa prawidłowo.

4 Wyznaczenie pierwiastka równania

4.1 Opis problemu

Problemem zadania jest wyznaczenie pierwiastka równania $sin(x) - (\frac{1}{2}x)^2 = 0$ za pomocą trzech zaimplementowanych wcześniej metod, tj:

- 1. bisekcji z przedziałem początkowym [1.5,2] i $\delta = \frac{1}{2}10^{-5}$, $\epsilon = \frac{1}{2}10^{-5}$,
- 2. Newtona z przybliżeniem początkowym $x_0=1$ i $\delta=\frac{1}{2}10^{-5},\,\epsilon=\frac{1}{2}10^{-5},$
- 3. siecznych z przybliżeniami początkowym $x_0=1,\,x_1=2$ i $\delta=\frac{1}{2}10^{-5},\,\epsilon=\frac{1}{2}10^{-5}.$

4.2 Rozwiązanie

Rozwiązanie zadania polega na wywołaniu zaimplementowanych metod w poprzednim zadaniu, w podany sposób:

- mbisekcji $(sin(x) (\frac{1}{2}x)^2$, 1.5, 2.0, $\frac{1}{2}10^{-5}$, $\frac{1}{2}10^{-5}$)
- $mstycznych(sin(x) (\frac{1}{2}x)^2, cos(x) \frac{x}{2}, 1.5, \frac{1}{2}10^{-5}, \frac{1}{2}10^{-5}, 20)$
- msiecznych($sin(x)-(\frac{1}{2}x)^2$, 1.0, 2.0, $\frac{1}{2}10^{-5}$, $\frac{1}{2}10^{-5}$, 20)

4.3 Wyniki i ich interpretacja

Rysunek 4: Wykres funkcji $sin(x) - (\frac{1}{2}x)^2 = 0$.

Metoda	Przybliżenie pierwiastka r	f(r)	Liczba iteracji	Kod błędu
bisekcji	1.9337539672851562	-2.7027680138402843e-7	16	0
Newtona	1.933753779789742	-2.2423316314856834e-8	4	0
siecznych	1.933753644474301	1.564525129449379e-7	4	0

Tabela 1: Wyniki wyznaczania pierwiastka równania $sin(x) - (\frac{1}{2}x)^2 = 0$.

Wyniki otrzymane w programie Wolfram Alpha: 1.93375.

Wszystkie zastosowane metody zwróciły kod błędu równy 0, co oznacza brak wystąpienia błędów i ostrzeżeń podczas obliczeń. Uzyskane wartości przybliżeń pierwiastka dla każdej z metod są podobne, zgadzają się do szóstego miejsca po przecinku oraz mieszczą się w akceptowalnych granicach określonych przez δ i ϵ . Warto jednak zwrócić uwagę na różnice w wartościach funkcji obliczonych dla tych przybliżeń – różnice te mogą osiągać różne rzędy wielkości. Można także zauważyć, że metoda bisekcji wykonała cztery razy więcej iteracji niż pozostałe metody.

4.4 Wnioski

Wszystkie metody poprawnie zrealizowały zadanie, a różnice w wynikach przybliżeń mieszczą się w akceptowalnych granicach. Najlepszy wynik, zarówno pod względem dokładności, jak i efektywności, osiągnęliśmy jednak za pomocą metody Newtona. Metoda siecznych również okazała się szybka. Natomiast metoda bisekcji jest pomocna niezależnie od podanych parametrów.

5 Znajdowanie wartości zmiennej x

5.1 Opis problemu

Problemem zadania jest znalezienie wartośći zmiennej x, dla której przecinają się wykresy funkcji y = 3x i $y = e^x$ za pomocą wcześniej zaimplementowanej metody bisekcji. Wymagana dokładność obliczeń wynosi: $\delta = 10^{-4}$, $\epsilon = 10^{-4}$.

5.2 Rozwiązanie

Rozwiązanie polega na znalezieniu takiej wartości x, dla której $e^x = 3x$. Zatem możemy stworzyć funkcję $f(x) = e^x - 3x$, dla której musimy znależć miejsca zerowe za pomoca wywołania zaimplementowanej wcześniej metody bisekcji.

Do wywołania należy dobrać odpowiedni przedział przeszukiwania. Sprawdźmy co się dzieje dla $x \le 0$. Wtedy łatwo zauważyć, że f(x) > 0. Zatem przedział $(-\infty, 0]$ można odrzucić. Dla x = 1, f(x) < 0, gdyż $e^1 \approx 2.718 < 3 \cdot 1$. Natomiast dla x = 4 otrzymujemy $e^4 > 2^4 = 16 > 12 = 3 \cdot 4$, więc znowu f(x) > 0.

W związku z tym rozpatrujemy dwa przedziały: [0,1] oraz [1,4]

5.3 Wyniki i ich interpretacja

Rysunek 5: Wykres funkcji $f(x) = e^x - 3x$.

Przedział	Przybliżenie pierwiastka r	f(r)	Liczba iteracji	Kod błędu
[0.0, 1.0]	0.619140625	9.066320343276146e-5	9	0
[1.0, 4.0]	1.51214599609375	-1.7583570236290313e-5	14	0

Tabela 2: Wyniki wyznaczania pierwiastka równania $e^x - 3x = 0$ dla dobrze dobranych przedziałów.

Wyniki otrzymane w programie Wolfram Alpha: 0.619061 oraz 1.51213.

Otrzymane wyniki dla źle dobranych przedziałów $[-10^{38}, 1]$ oraz $[1, 10^{38}]$:

Przedział	Przybliżenie pierwiastka r	f(r)	Liczba iteracji	Kod błędu
$[-10^{27}, 1.0]$	-9.860761315262648e-5	-1.0001972200878761	103	0
$[1.0, 10^{27}]$	1.5121679427147419	-5.1304670852125867e-5	102	0

Tabela 3: Wartości przybliżenia pierwiastka równania $e^x - 3x = 0$ dla źle dobranych przedziałów.

Można zauważyć, że przy dobrze dobranym przedziale liczba iteracji algorytmu jest zdecydowanie mniejsza, a wartość pierwiastka bliższa prawdziwemu.

5.4 Wnioski

Wybór zbyt dużego przedziału prowadzi do działań na dużych liczbach i błędów związanych z precyzją arytmetyki. Zatem prawidłowe dobranie początkowych parametrów problemu jest kluczowe. W związku z tym ważna jest dokładna analiza problemu, czyli zapoznanie się z zachowaniem funkcji f. Dzięki niej można ograniczyć obszary poszukiwań, co ułatwia zadanie znaczącą redukcją liczb wymaganych iteracji algorytmu. Sprawia to także, że uzyskujemy dokładniejsze wyniki.

6 Znajdowanie miejsc zerowych

6.1 Opis problemu

Problemem zadania jest znalezienie miejsca zerowego funkcji $f_1(x) = e^{1-x} - 1$ oraz $f_2(x) = xe^{-x}$ za pomocą wcześniej zaimplementowanych metod bisekcji, Newtona i siecznych. Wymagana dokładność obliczeń wynosi: $\delta = 10^{-5}$, $\epsilon = 10^{-5}$. Przedział i przybliżenia początkowe należy odpowiednio dobrać.

Należy również sprawdzić co się stanie, gdy w metodzie Newtona dla f_1 wybierzemy $x_0 \in (1, \infty]$, a dla f_2 wybierzemy $x_0 > 1$ i czy można wybrać $x_0 = 1$ dla f_2 .

6.2 Rozwiązanie

Rozwiązanie zadania polega na wywołaniu zaimplementowanych w poprzednim zadaniu metod na dwóch funkcjach f_1 oraz f_2 . Z wykresu funkcji f_1 można zauważyć, że wraz ze wzrostem x staje się płaski, zatem zbliża pochodną do 0, co może powodować problemu obliczeń w metodach Newtona i siecznych. Natomiast funkcja f_2 około x=1 ma maksimum lokalne, zatem w tym punkcie metoda Newtona będzie nieużyteczna. Dodatkowo funkcja ta dla dużych x przyjmuje wartości bliskie zera, co może powodować traktowanie całych odcinków jako miejsc zerowych przez każdą z metod. Na podstawie tej analizy zostaną przeprowadzone testy dla różnych dobranych parametrów.

6.3 Wyniki i ich interpretacja

Rysunek 6: Wykres funkcji $f_1(x) = e^{1-x} - 1$ (zielony) oraz $f_2(x) = xe^{-x}$ (czarny).

(a) $f(x) = e^{1-x} - 1$, miejsce zerowe dla x = 1

Metoda	Dane	Przybliżenie pierwiastka r	f(r)	Liczba iteracji	Kod błędu
bisekcji	[0.0, 2.0]	1.0	0.0	1	0
bisekcji	[0.0, 2.1]	0.9999961853027345	3.814704541582614e-6	17	0
bisekcji	[0.0, 1.0e6]	1.0000067630433478	-6.763020478417481e-6	33	0
bisekcji	$[-10^{27}, 10^{27}]$	1.0000044568840734	-4.456874141411937e-6	106	0

Tabela 4: Wyniki wyznaczania pierwiastka funkcji f_1 metodą bisekcji.

Metoda bisekcji jest najbardziej skuteczna, gdy pierwiastek znajduje się w środku przedziału. Mniejsze przedziały prowadzą do szybszej zbieżności, ale metoda radzi sobie także z dużymi przedziałami, oczywiście przy większej ilości iteracji.

Metoda	Dane	Przybliżenie pierwiastka r	f(r)	Liczba iteracji	Kod błędu
Newtona	$x_0 = -1024.0$	NaN	NaN	20	1
Newtona	$x_0 = -100.0$	-80.0	1.5060973145850306e35	20	1
Newtona	$x_0 = -10.0$	0.999999998781014	1.2189871334555846e-10	15	0
Newtona	$x_0 = -1.0$	0.9999922654776594	7.734552252003368e-6	5	0
Newtona	$x_0 = 1.0$	1.0	0.0	0	0
Newtona	$x_0 = 2.0$	0.9999999810061002	1.8993900008368314e-8	5	0
Newtona	$x_0 = 10.0$	NaN	NaN	20	1
Newtona	$x_0 = 100.0$	100.0	-1.0	1	2
Newtona	$x_0 = 1024.0$	1024.0	-1.0	1	2

Tabela 5: Wyniki wyznaczania pierwiastka funkcji f_1 metodą Newtona.

Metoda Newtona charakteryzuje się szybszą zbieżnością w porównaniu z metodą bisekcji, jednak jej skuteczność silnie zależy od wyboru wartości początkowej. Zbyt duże wartości dodatnie lub ujemne x_0 mogą prowadzić do rozbieżności.

Analiza wyników wskazuje, że metoda Newtona działa szybko i efektywnie w przypadku, gdy $|x_0| < 1$, zapewniając precyzyjne przybliżenie pierwiastka. Jednak gdy x_0 jest znacznie mniejsze od rzeczywistego pierwiastka,

wartość pochodnej f'(x) może stać się bardzo duża, co powoduje problemy z dokładnością obliczeń numerycznych.

Dla $x_0 = 1$ metoda nie wymaga żadnych iteracji, natomiast dla $x_0 > 1$ obserwuje się znaczące różnice w zbieżności. Gdy x_0 znajduje się blisko 1, wartość f'(x) jest bardzo mała, co prowadzi do spowolnionej zbieżności. W przypadku wartości x_0 znacznie większych od pierwiastka, pochodna staje się ekstremalnie mała, co uniemożliwia zbieżność i generuje błędy numeryczne (err = 1 lub err = 2).

Metoda	Dane	Przybliżenie pierwiastka r	f(r)	Liczba iteracji	Kod błędu
siecznych	[0.0, 2.0]	1.0000017597132702	-1.7597117218937086e-6	6	0
siecznych	[0.0, 2.1]	0.9999999880129666	1.1987033365912225e-8	7	0
siecznych	[0.1, 1024.0]	NaN	NaN	20	1
siecznych	[1.1, 1024.0]	1.1	-0.09516258196404048	2	0
siecznych	[-1024.0, 1024.0]	1024.0	-1.0	1	0
siecznych	$[-10^{27}, -1.0]$	-1.0	6.38905609893065	1	0

Tabela 6: Wyniki wyznaczania pierwiastka funkcji f_1 metodą siecznych.

Metoda siecznych lepiej radzi sobie z nieoptymalnymi wartościami początkowymi niż metoda Newtona, dając poprawne wyniki dla szerokich przedziałów. Problemy występują, gdy jedna z wartości początkowych jest dużą liczbą ujemną, co prowadzi do niemal pionowej siecznej i kończy iterację po jednym kroku (różnica między kolejnymi przybliżeniami jest mniejsza od wymaganej dokładności). Podobnie, gdy początkowe wartości są bliskie sobie, sieczna staje się niemal pozioma, a metoda rozbiega się.

(b) $f(x) = xe^{-x}$, miejsce zerowe dla x = 0

Metoda	Dane	Przybliżenie pierwiastka r	f(r)	Liczba iteracji	Kod błędu
bisekcji	[0.0, 2.0]	7.62939453125e-6	7.62933632381113e-6	18	0
bisekcji	$[-10^{27}, 10^{27}]$	0.0	0.0	1	0
bisekcji	[0.0, 2.1]	8.0108642578125e-6	8.010800084123387e-6	18	0
bisekcji	[0.0, 1.0e6]	500000.05	0.0	1	0
bisekcji	$[-10^{27}, 10^{17}]$	4.179237187112514e16	0.0	34	0

Tabela 7: Wyniki wyznaczania pierwiastka funkcji f_2 metodą bisekcji.

Metoda bisekcji jest bardzo skuteczna, ale w tym przypadku funkcja zaczyna przyjmować wartości bardzo bliskie zeru, choć nigdy nie osiąga tej wartości. W arytmetyce IEEE 754 nie da się zapisać coraz mniejszych liczb w nieskończoność – po pewnym momencie są one zaokrąglane do zera. Dlatego dla niektórych przedziałów metoda zwraca pierwiastki znacznie odbiegające od wartości rzeczywistej. Problemem jest tutaj ograniczona precyzja obliczeń numerycznych, a nie metoda.

Metoda	Dane	Przybliżenie pierwiastka r	f(r)	Liczba iteracji	Kod błędu
Newtona	$x_0 = -1024.0$	NaN	NaN	20	1
Newtona	$x_0 = -100.0$	-80.21919260199935	-5.533895786593711e36	20	1
Newtona	$x_0 = -10.0$	-3.784424932490619e-7	-3.784426364678097e-7	16	0
Newtona	$x_0 = -1.0$	1.0	0.36787944117144233	1	2
Newtona	$x_0 = 1.0$	14.398662765680003	8.03641534421721e-6	10	0
Newtona	$x_0 = 2.0$	14.398662765680003	8.03641534421721e-6	10	0
Newtona	$x_0 = 10.0$	14.380524159896261	8.173205649825554e-6	4	0
Newtona	$x_0 = 100.0$	100.0	3.7200759760208363e-42	0	0
Newtona	$x_0 = 1024.0$	1024.0	0.0	0	0

Tabela 8: Wyniki wyznaczania pierwiastka funkcji f_2 metodą Newtona.

Kiedy początkowa wartość x_0 jest znacznie mniejsza od pierwiastka, metoda Newtona prowadzi do błędów. Jeśli x_0 jest mniejsze od 0, ale stosunkowo bliskie pierwiastkowi, metoda działa poprawnie. Natomiast dla $x_0=0$ nie wykonuje się żadnych iteracji. W przedziale $0 < x_0 < 1$ metoda Newtona poprawnie zbiega do pierwiastka.

Dla $x_0 = 1$, gdzie pochodna f'(1) = 0, pojawia się błąd err = 2. Jeżeli $x_0 > 1$, ale bardzo bliskie tej wartości, metoda zaczyna się rozbiegać, coraz bardziej oddalając się od pierwiastka. Proces zatrzymuje się dopiero, gdy osiągnięte zostanie pierwsze rozwiązanie spełniające warunek $|v| < \epsilon$. W sytuacji, gdy x_0 jest znacznie większe od pierwiastka, metoda kończy działanie niemal od razu, zwracając x_0 , ponieważ warunek $|v| < \epsilon$ jest spełniony już na początku.

Metoda	Dane	Przybliżenie pierwiastka r	f(r)	Liczba iteracji	Kod błędu
siecznych	[0.0, 2.0]	2.3230523266763964 e-6	2.323046930110552e-6	5	0
siecznych	[0.0, 2.1]	0.0	0.0	1	0
siecznych	[0.1, 1024.0]	1024.0	0.0	1	0
siecznych	[1.1, 1024.0]	1024.0	0.0	1	0
siecznych	[-1024.0, 1024.0]	1024.0	0.0	1	0
siecznych	$[-10^{27}, -1.0]$	-1.0	-2.718281828459045	1	0

Tabela 9: Wyniki wyznaczania pierwiastka funkcji f_2 metodą siecznych.

Dla bliskich przybliżeń pierwiastka metoda siecznych działa poprawnie - jeśli jedno z przybliżeń jest równe pierwiastkowi, to zostanie on zwrócony. Gdy jednak początkowe przybliżenia są znacznie oddalone od pierwiastka, metoda siecznych może zwrócić wynik znacząco odbiegający od prawdziwego. W takich przypadkach istnieje ryzyko, że metoda nie zdąży zbiec do właściwego rozwiązania.

6.4 Wnioski

Metody bisekcji, Newtona i siecznych nie dają pełnej gwarancji poprawności, jednak są w miarę skuteczne. Ich wydajność zależy od charakterystyki funkcji i dobranych parametrów początkowych (szczególnie w metodzie Newtona i siecznych, ze względu na ich lokalną zbieżność). Metoda bisekcji jest najstabilniejsza, metoda Newtona najszybsza przy dobrym wyborze x_0 , a metoda siecznych dobrze radzi sobie z różnorodnymi punktami startowymi.