SOURCES

SCRIPTS

 $\label{lem:master} \textbf{Github:} \underline{https://github.com/pat92fr/Carre92/tree/master/02\%20-\%20Logiciel\%20PC/03\%20-\%203DCNN\%20Pipeline}$

DATASET SOURCE

 $Onedrive: \underline{https://1drv.ms/u/s!AgPL1p8-kSaRg9JQD1uURRMgiD2Low?e=h9OGPs}$

Télécharger et décompresser les fichiers dataset_00n.rar

INSTALLATION

Le répertoire de travail doit contenir les éléments suivants :

	dataset_001	25/08/2019 23:27	Dossier de fichiers	
	dataset_002	03/09/2019 23:28	Dossier de fichiers	
	dataset_003	06/09/2019 20:12	Dossier de fichiers	
	dataset_004	06/09/2019 20:12	Dossier de fichiers	
	dataset_train_valid_3D	07/09/2019 09:49	Dossier de fichiers	
	model	04/09/2019 01:46	Dossier de fichiers	
	testset	04/09/2019 20:54	Dossier de fichiers	
	video	07/09/2019 08:43	Dossier de fichiers	
7	00_Labels.py	25/08/2019 23:07	Python File	7 Ko
7	01_Preview_Dataset.py	07/09/2019 08:33	Python File	1 Ko
7	02_Dataset_2_Video.py	07/09/2019 01:44	Python File	2 Ko
7	03_Build_3D_Dataset.py	07/09/2019 09:48	Python File	4 Ko
7	04_Train.py	07/09/2019 02:37	Python File	6 Ko
-	05_Predict_Dataset_2_Video.py	07/09/2019 15:07	Python File	4 Ko
-	05_Predict_Video.py	05/09/2019 23:04	Python File	10 Ko
7	my_constants.py	07/09/2019 01:57	Python File	1 Ko
7	my_datasettools.py	07/09/2019 02:40	Python File	4 Ko
7	my_modeltools.py	07/09/2019 03:09	Python File	3 Ko
-	my_parameters.py	07/09/2019 02:20	Python File	4 Ko
w	notice.docx	07/09/2019 15:56	Document Micros	283 Ko
æ	notice.pdf	07/09/2019 12:28	Adobe Acrobat D	311 Ko
	TODO.txt	07/09/2019 12:30	Document texte	1 Ko

Créer les dossiers manquants à la main, notamment « dataset_train_valid_3D », « model », et « video ».

FICHIER DE CONFIGURATION

Le fichier « my_parameters.py » contient toutes les données de configuration de toutes les étapes.

PROCEDURE

OUTIL DE VISUALISATION DES DATASET SOURCE (OPTIONNEL)

Lancer « 01_Preview_Dataset.py » pour visualiser l'ensemble des DATASET. La sortie standard affiche la valeur des commandes de DIRECTION et de GAZ pour chaque image. La fenêtre graphique affiche l'image prétraitées (filtrage flou + N&B) avec un repère (bleu) et la commande de direction (vert). La ligne pointillée bleue délimite la zone supérieure de l'image, éliminée avant traitement par le CNN.


```
C:\WINDOWS\py.exe
                                                                                ×
[0.004320163299872009, 0.16807553009267376]
0.0044732435739081545, 0.16808105664749678]
[0.00462478899070287, 0.16808652779039462]
[0.004774814979671817, 0.16809194407840516]
0.004923336814322996, 0.16809730606293766]
0.005070369613848074, 0.16810261428983023]
0.005215928344697155, 0.16810786929940655]
[0.00536002782213716, 0.16811307162653233]
[0.005502682711794015, 0.16811822180067085]
0.0056439075311788, 0.16812332034593813]
0.005783716651198043, 0.1681283677811574
0.00592212429764833, 0.16813336461991304]
0.0060591445526954, 0.16813831137060414]
0.006194791356337874, 0.1681432085364971]
0.0063290785078558166, 0.16814805661577814]
0.006462019667244264, 0.16815285610160488]
0.0065936283566318836, 0.16815760748215777]
0.006723917961684946, 0.16808379100166396]
0.006852901732996737, 0.16801071435034412]
0.006980592787462587, 0.1680168885653501]
0.007107004109640655, 0.16802300090176692]
0.007232148553098644, 0.16802905198110007]
0.0076701023577156946, 0.1680350424185858]
```

CONVERSION DES DATASET SOURCE EN UNE VIDEO (OPTIONNEL)

Lancer « 02_Dataset_2_Video.py » pour convertir l'ensemble des DATASET en un seul média. Le fichier est disponible dans le dossier « vidéo » sous le nom « dataset_preview.avi ». Le bandeau supérieur bleu correspond à la zone de l'image, éliminée avant traitement par le CNN.

CREATION DES DATASET 3D TRAIN-VALID (UNE SEULE FOIS)

Lancer « 03_Build_3D_Dataset.py » et patienter ! Les fichiers binaires contenant les séquences d'image (DATASET 3D) sont générés et stockés dans le dossier « dataset_train_valid_3D ».

Nom	Modifié le	Туре	Taille
Xtrain.bin.npy	07/09/2019 10:19	Fichier NPY	5 419 997 Ko
Xvalid.bin.npy	07/09/2019 10:19	Fichier NPY	285 272 Ko
Ttrain.bin.npy	07/09/2019 10:19	Fichier NPY	1 004 Ko
Yvalid.bin.npy	07/09/2019 10:19	Fichier NPY	53 Ko

La génération et l'augmentation des DATASET se basent sur les paramètres du fichier « my_parameters.py », notamment :

```
# picture sequence for CNN
depth = 6  ## default 6 frames processed by CNN
skip = 3  ## default 3 frames skiped between each pair of frames processed by CNN

# hyperparameters
hyp_train_valid_dataset_ratio = 0.05
```

Prérequis : optimiser/vérifier la configuration du swap. La taille des DATASET en mémoire dépasse 16Go.

APPRENTISSAGEDU 3D CNN (REPETER A CHAQUE CHANGEMENT DE PARAMETRES)

Lancer « 04_Train.py » et patienter ! Au lancement, l'architecture du CNN est affichée.

Layer (type)	Output	Shape	Param #
cropping3d_1 (Cropping3D)	(None,	6, 64, 160, 1)	0
lambda_l (Lambda)	(None,	6, 64, 160, 1)	0
conv3d_1 (Conv3D)	(None,	4, 20, 52, 16)	1216
max_pooling3d_1 (MaxPooling3	(None,	4, 10, 26, 16)	0
conv3d_2 (Conv3D)	(None,	2, 8, 24, 32)	13856
max_pooling3d_2 (MaxPooling3	(None,	2, 4, 12, 32)	0
flatten_l (Flatten)	(None,	3072)	0
dense_1 (Dense)	(None,	256)	786688
batch_normalization_1 (Batch	(None,	256)	1024
activation_1 (Activation)	(None,	256)	0
dropout_1 (Dropout)	(None,	256)	0
dense_2 (Dense)	(None,	128)	32896
batch_normalization_2 (Batch	(None,	128)	512
activation_2 (Activation)	(None,	128)	0
dropout_2 (Dropout)	(None,	128)	0
dense_3 (Dense)	(None,	2)	258
activation_3 (Activation)	(None,	2)	0
Total params: 836,450 Trainable params: 835,682 Non-trainable params: 768			

Pendant l'apprentissage, le cout et l'erreur est affichée pour les DATASET d'entrainement et de validation, à chaque fin d'EPOCH.

```
Epoch 1/50
- 124s - loss: 0.2308 - mean_squared_error: 0.1796 - val_loss: 0.0295 - val_mean_squared_error: 0.0291
Epoch 2/50
- 89s - loss: 0.0236 - mean_squared_error: 0.0234 - val_loss: 0.0217 - val_mean_squared_error: 0.0216
Epoch 3/50
- 89s - loss: 0.0202 - mean_squared_error: 0.0201 - val_loss: 0.0181 - val_mean_squared_error: 0.0179
Epoch 4/50
- 96s - loss: 0.0176 - mean_squared_error: 0.0174 - val_loss: 0.0159 - val_mean_squared_error: 0.0157
Epoch 5/50
- 96s - loss: 0.0156 - mean_squared_error: 0.0153 - val_loss: 0.0136 - val_mean_squared_error: 0.0133
Epoch 6/50
- 74s - loss: 0.0136 - mean_squared_error: 0.0132 - val_loss: 0.0115 - val_mean_squared_error: 0.0112
Epoch 7/50
- 75s - loss: 0.0118 - mean_squared_error: 0.0114 - val_loss: 0.0097 - val_mean_squared_error: 0.0093
Epoch 8/50
- 65s - loss: 0.0101 - mean_squared_error: 0.0097 - val_loss: 0.0082 - val_mean_squared_error: 0.0078
```

A la fin de l'apprentissage, le modèle et l'historique sont générés et stockés dans le dossier « model ».

L'apprentissage se base sur les paramètres du fichier « my_parameters.py », notamment :

```
# CNN parameters
### see build 3d cnn https://github.com/autorope/donkeycar/blob/dev/donkeycar/parts/keras.py
### Credit: https://github.com/jessecha/DNRacing/blob/master/3D CNN Model/model.py
conv_layers = [
     ('crop3D', picture_height_crop), ## do not change
     ('norm', 0),
                                                         ## do not change
     ('conv3D', 16, (3,5,5), (1,3,3)), ## filters, ('maxpooling3D', (1,2,2), (1,2,2)), ## size, stride
                                                       ## filters, kernel_size, stride
     ('conv3D', 32, (3,3,3), (1,1,1)),
     ('maxpooling3D', (1,2,2), (1,2,2)),
full_connected_hidden_layers= [
     (256, 'relu', 0.1),  ## default 256 units in 1srt hidden layer, 10% dropout (128, 'relu', 0.1)  ## default 128 units in 2nd hidden layer, 10% dropout
                                     ## default 256 units in 1srt hidden layer, 10% dropout
# hyperparameters
hyp train valid dataset ratio = 0.05
hyp_batch_size = 128
hyp_epoch = 50
hyp_1r = 0.0001
hyp_lr_decay = 0.0
hyp_12_regularization = 0.0001
hyp_min_delta=0.0002
hyp patience=10
```

Note: Les paramètres "conv_layers » et « full_connected_hidden_layers" sont à adapter en utilisant les mots clés: « conv3D », « maxpooling3D », « avgpooling3D », « dropout », « batchnorm » tirés de l'API Keras.

Note : Le paramètre « epoch » permet de limiter le nombre d'itération d'apprentissage.

Note : Le paramètre "Ir" correspond au "Learning Rate"

Note: Les paramètres « min_delta » et « patience » sont exploités par la fonction de « Early Stopping ».

PREDICTION APPLIQUEE AUX DATASET SOURCE (REPETER A CHAQUE APPRENTISSAGE)

Lancer « 05_Predict_Dataset_2_Video.py » pour convertir l'ensemble des DATASET en un seul média, incorporant à la fois la commande manuelle et la commande générée par le 3D CNN.

Nom	Date	Туре	Taille	Longueur
📤 dataset_prediction.avi	07/09/2019 15:22	AVI Video File (VLC)	86 049 Ko	00:11:25
🛕 dataset preview.avi	07/09/2019 08:51	AVI Video File (VLC)	85 488 Ko	00:11:25

Le fichier est disponible dans le dossier « vidéo » sous le nom « dataset_prediction.avi ». Le bandeau supérieur bleu correspond à la zone de l'image, éliminée avant traitement par le CNN. La ligne verte correspond à la commande manuelle de direction (DATASET source). La ligne rouge correspond à la commande automatique de direction (Prédiction donnée par le 3D CNN entrainné).

OUTILS DE VERIFICATION

VISUALISATION DE LA DISTRIBUTION DE LA COMMANDE DE DIRECTION

VISUALISATION DU VOLUME EN ENTREE DU 3D CNN