Map-based component separation survey

Edgar Jaber

QUBIC - Data analysis Teleconf

3/12/2020

Introduction

- Working on parametric based component separation with the module FGBuster developed by Josquin Errard (from APC) et. al.
- ▶ Prior to this, I was confronted with the problem of working with QubicSkySim simulated maps
- ► The problems have been partially resolved however the results are not yet perfectly satisfying.

Bandpass in QSS

Before:

```
for i in range(Nf):
    nfreginteg = 5
    nus = np.linspace(nus edge[i], nus edge[i + 1], nfreqinteg)
    filter uK CMB = np.ones(len(nus), dtype=np.double)
    filter uK CMB normalized = utils.normalize weights(nus,
                                                   filter uK CMB)
    weights = 1. / filter uK CMB normalized
### Integrate through band using filter shape defined in weights
    themaps iqu = self.sky.qet emission(nus * u.GHz, weights=weights)
     sky[i, :, :] = np.array(themaps iqu.to(u.uK CMB,
               equivalencies=u.cmb equivalencies(nus in[i] *
                                                 u.GHz))).T
    ratio = np.mean(self.input cmb maps[0,:]/sky[i,:,0])
     print('Ratio to initial: ',ratio)
```

With 3 bands, Ratio to initial : ~ 1.05

After the correction ideas provided by Josquin

```
for i in range(Nf):
    nfreqinteg = 50
    freqs = np.linspace(nus_edge[i], nus_edge[i + 1], nfreqinteg)
    weights = np.ones(nfreqinteg)
    sky[i, :, :] = (self.sky.get_emission(freqs * u.GHz, weights) *
utils.bandpass_unit_conversion(freqs * u.GHz, weights, u.uK_CMB)).T
```

With 3 bands, Ratio to initial: ~ 0.9995

Explanations

- We suppose the filter is flat in Jy/sr, then in the get_emission() procedure it is converted to μK_{RJ} and we integrate on more subfrequencies.
- ▶ Finally the conversion to $\mu K_{\rm CMB}$ must be done with the utils.bandpass_unit_conversion() to take in account the usage of bandpass weights.

Maps

Back to FGBuster

- We have a procedure to simulate PySM maps, however this one does not integrate yet the bandpass, this has yet to come and understand
- ➤ To perform the CS, maps must be put at the same resolution, that of the lowest band
- lacktriangle It doesn't work with CMB yet, we don't get the expected $eta_{
 m dust}$
- But there are other aspects that I have not yet explored

QSS / PySM

Component separation

Residuals

