Лабораторная работа 16

Задачи оптимизации. Модель двух стратегий обслуживания

Дворкина Ева Владимировна

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы	7
	4.1 Постановка задачи	7
	4.2 Построение модели	7
	4.3 Оптимизация модели двух стратегий обслуживания	11
5	Выводы	19
Сг	писок литературы	20

Список иллюстраций

4.1	Модель первои стратегии обслуживания	8
4.2	Отчёт по модели первой стратегии обслуживания	9
4.3	Модель второй стратегии обслуживания	9
4.4	Отчет по модели второй стратегии обслуживания	10
4.5	Модель двух стратегий обслуживания с 1 пропускным пунктом	11
4.6	Отчёт по модели двух стратегий обслуживания с 1 пропускным	
	пунктом	12
4.7	Модель первой стратегии обслуживания с 3 пропускными пунктами	13
4.8	Отчёт по модели первой стратегии обслуживания с 3 пропускными	
	пунктами	13
4.9	Отчёт по модели первой стратегии обслуживания с 3 пропускными	
	U	14
	Модель первой стратегии обслуживания с 4 пропускными пунктами	14
4.11	Отчёт по модели первой стратегии обслуживания с 4 пропускными	
	·	15
4.12	Отчёт по модели первой стратегии обслуживания с 4 пропускными	
	пунктами	15
		16
4.14	Отчёт по модели второй стратегии обслуживания с 3 пропускными	
	пунктами	16
		17
4.16	Отчёт по модели второй стратегии обслуживания с 4 пропускными	
	пунктами	17

1 Цель работы

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.

2 Задание

Реализовать с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

3 Теоретическое введение

Пакет GPSS(General Purpose Simulation System — система моделирования общего назначения) предназначен для имитационного моделирования дискретных систем [1].

Имитационная модель в GPSS представляет собой последовательность текстовых строк, каждая из которых определяет правила создания, перемещения, задержки и удаления транзактов.

Транзакт — динамический объект, отождествляемый с заявкой на обслуживание, который перемещается между элементами системы.

4 Выполнение лабораторной работы

Использованы материалы из [2].

4.1 Постановка задачи

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ . Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a,b]. Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1. автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2. автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска. Исходные данные: $\mu=1$, 75 мин, a=1 мин, b=7 мин.

4.2 Построение модели

Целью моделирования является определение:

• характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего

времени пребывания автомобиля на пункте пропуска;

- наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля;
- оптимального количества пропускных пунктов.

В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем:

- коэффициенты загрузки системы;
- максимальные и средние длины очередей;
- средние значения времени ожидания обслуживания.

Для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель (рис. 4.1).

```
M Untited Model 2

GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

TEST LE (SOtcherl, QSOtcher2, Obsl 2; длина оч. 1<- длине оч. 2

TEST E QSOtcherl, QSOtcher2, Obsl 1; длина оч. 1= длине оч. 2

TERNSFER 0.5, Obsl 1, Obsl 2; длины очередей данны, выбираем произв. пункт пропуска
; моделирование работи пункта 1

Obsl 1 QUEUE Otcher1; присоединение к очереди 1

SEIZE рыпк1; занятие пункта 1

DEFART Otcher1; выход из очереди 1

ADVANCE 4,3; обслуживание на пункта 1

TERMINATE; автомобиль покидает систему
; моделирование работы пункта 2

Obsl 2 QUEUE Otcher2; присоединение к очереди 2

SEIZE рыпк1 2; занятие пункта 2

DEFART Otcher2; выход из очереди 2

ADVANCE 4,3; обслуживание на пункта 2

DEFART Otcher2; выход из очереди 2

ADVANCE 4,3; обслуживание на пункта 2

TERMINATE; автомобиль покидает систему
; задание условия остановки процедури моделирования

GENERATE 10080; генерация фиктивного транзвакта, указывающего на окончание рабочей недели
; 77 дней х 24 часа х 60 мин = 10000 мин)

TERMINATE 1; остановить моделирование

START 1; запуск процедуры моделирования
```

Рис. 4.1: Модель первой стратегии обслуживания

После запуска симуляции получим отчёт (рис. 4.2).

	• • •	суооо	Ta, Max UJ,	2025 02	:20:19				
	CTART	TIME		TIME -	LOCKE	FACILITIES	CTOD? CT		
		0.000	10080				0 STORAGE	25	
		.000	10080	.000	10	2	U		
		-							
	NAM OBSL 1	1E		VA	.000				
	OBSL 2				.000				
	OTHER1			10000					
	OTHER2			10000					
	PUNKT1			10001					
	PUNKT2			10002					
LABEL		T.OC	BLOCK TYPE	FNT	RY COUN	T CURRENT (OUNT RET	rry	
222			GENERATE		5853	(
			TEST		5853				
			TEST		4162				
			TRANSFER		2431				
OBSL 1			QUEUE		2928	38			
-			SEIZE		2541				
			DEPART		2541)	
		8	ADVANCE		2541				
		9	RELEASE		2540	() ()	
		10	TERMINATE		2540	() (
OBSL_2		11	QUEUE		2925	388)	
_			SEIZE		2537	() ()	
			DEPART		2537) (
			ADVANCE		2537		. (
			RELEASE		2536	(
			TERMINATE		2536	(
			GENERATE		1	(
		18	TERMINATE		1	() ()	
FACILITY		ENTRIES	UTIL. AV	E. TIME	AVAIL.	OWNER PENI	INTER E	RETRY	DELAY
PUNKT2		2537	0.996	3.95	7 1	5078	0	0	388
PUNKT1		2541	0.997	3.95	5 1	5079 (0	0	387
QUEUE		MAX C	ONT. ENTRY E	NTRY(0)	AVE.CO	NT. AVE.TI	IE AVE	. (-0)	RETRY
OTHER1		393	387 2928	12	187.09	8 644.10	7 646	.758	0
OTHER2		393	388 2925	12	187.11	4 644.83	3 647	7.479	0
FEC XN	PRI	BDT	ASSEM	CURREN	T NEXT	PARAMETE	VALU	JE	
5855	0	10081.	102 5855	0	1				
5079	0		517 5079	8	9				
5078	0	10083.	808 5078	14	15				
3070									

Рис. 4.2: Отчёт по модели первой стратегии обслуживания

Составим модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом (рис. 4.3, 4.4).

Рис. 4.3: Модель второй стратегии обслуживания

	GPS	S World	Simulation	Report -	Untitle	d Model 3.1	1.1	
		суббо	га, мая 03,	2025 03:0	0:56			
	START 0		END 1008					
	NAM OTHER PUNKT			VALU 10001.0 10000.0				
LABEL		1 2 3 4 5 6 7 8	BLOCK TYPE GENERATE QUEUE ENTER DEPART ADVANCE LEAVE TERMINATE GENERATE TERMINATE	57 57 50 50 50 50	19 19 51 51 51 49	0 668 0 0 2 0	0 0 0 0 0 0	
QUEUE OTHER		MAX C0	ONT. ENTRY 1	ENTRY(0) A 4 3	VE.CONT	. AVE.TIME 607.138	AVE.(-0) RE 607.562	TRY 0
STORAGE PUNKT							TIL. RETRY DEL	
5721	0	10080.4	ASSEM 466 5721 269 5051 431 5052 000 5722	0 5	1	PARAMETER	VALUE	

Рис. 4.4: Отчет по модели второй стратегии обслуживания

Составим таблицу по полученной статистике (табл. 4.1).

Таблица 4.1: Сравнение стратегий

Показатель	стратегия 1			стратегия 2
	пункт 1	пункт 2	в целом	
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,997	0,996	0,9965	1
Максимальная длина	393	393	786	668
очереди				
Средняя длина очереди	187,098	187,114	374,212	344,466
Среднее время ожидания	644,107	644,823	644,465	607,138

Сравнив результаты моделирования двух систем, можно сделать вывод о том,

что первая модель позволяет обслужить большее число автомобилей. Однако мы видим, что разница между обслуженными и поступившими автомобилями меньше для второй модели – значит, продуктивность работы выше. Также для второй модели коэффициент загрузки равен 1 – значит ни один из пунктов не простаивает. Максимальная длина очереди, средняя длина очереди и среднее время ожидания меньше для второй стратегии. Можно сделать вывод, что вторая стратегия лучше.

4.3 Оптимизация модели двух стратегий обслуживания

Изменим модели, чтобы определить оптимальное число пропускных пунктов (от 1 до 4). Будем подбирать под следующие критерии:

- коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5;
 0, 95];
- среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3;
- среднее время ожидания обслуживания не должно превышать 4 мин.

Для обеих стратегий модель с одним пунктом выглядит одинаково (рис. 4.5).

```
A Untitled Model 3

punkt STORAGE 1

GENERATE (Exponential(1,0,1.75)) ; прибытие автомобилей

QUEUE Other ; присоединение к очереди

ENTER punkt,1; занятие пункта

DEPART Other ; выход из очереди

ADVANCE 4,3; обслуживание на пункте

LEAVE punkt,1; освобождение пункта

TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования

GENERATE 1080; генерация фиктивного транзакта, указывающего на окончание рабочей недели

; (7 дней х 24 часа х 60 мин = 10080 мин)

TERMINATE 1; озановить моделирование

START 1; запуск процедуры моделирования
```

Рис. 4.5: Модель двух стратегий обслуживания с 1 пропускным пунктом

После симуляции получим следующий отчет (рис. 4.5).

1							
	GPS	S World Sim	ulation R	leport - (Jntitle	ed Model 3.	3.1
		суббота,	мая 03, 2	025 03:14	1:55		
	START	TIME	END T	IME BLO	CKS F	ACILITIES	STORAGES
	0	.000	10080.	000	9	0	1
	NAM	E		VALUE	₹		
	OTHER	_		10001.00			
	PUNKT			10000.00	00		
LABEL		LOC BLO	CK TYPE	ENTRY	COUNT	CURRENT CO	UNT RETRY
		1 GEN	ERATE	574	14	0	0
		2 QUE	UE	574	14	3233	0
		3 ENT	ER	251	11	0	0
		4 DEP	ART	251	11	0	0
			ANCE	251		1 0	0
		6 LEA		251		0	0
			MINATE				0
			ERATE		1		0
		9 TER	MINATE		1	0	0
OUEUE		MAX CONT.	ENTRY EN	TRY(0) AV	/E.CON	r. AVE.TIME	AVE.(-0) RETRY
OTHER							2839.313 0
STORAGE							TIL. RETRY DELAY
PUNKI		1 0	0 1	. 251.		1.000 1	.000 0 3233
FEC XN	PRI	BDT	ASSEM	CURRENT	NEXT	PARAMETER	VALUE
2512	0	10080.255	2512	5	6		
5746	0	10080.384	5746	0	1		
5747	0	20160.000	5747	0	8		

Рис. 4.6: Отчёт по модели двух стратегий обслуживания с 1 пропускным пунктом

В этом случае модель не проходит ни по одному из критериев, так как коэффициент загрузки, размер очереди и среднее время ожидания больше.

Построим модель для первой стратегии с 3 пропускными пунктами и получим отчет (рис. 4.7, 4.8, 4.9).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей TRANSFER 0.33, obs_new,obs_1 3; выбираем произв. пункт пропуска obs_new TRANSFER 0.5,obs_1 2,obs_2 2; моделирование работи пункта I obs_1 1 QUEUE other1; присоединение к очереди I selize punkt1; занятие пункта I DEFART Other1; присоединение к очереди I ADVANCE 4,3; обслуживание на пункте 1 RELEASE punkt1; освобождение пункта I TERMINATE; автомобиль покидает систему; моделирование работи пункта 2 obs_1 2 QUEUE other2; присоединение к очереди 2 obs_1 2 QUEUE other2; присоединение к очереди 2 obs_1 2 QUEUE other2; присоединение к очереди 2 obs_1 2 QUEUE other2; выход из очереди 2 obs_1 2 QUEUE other2; выход из очереди 2 obs_1 2 QUEUE other3; выход из очереди 2 obs_1 2 QUEUE other3; выход из очереди 2 obs_1 3 QUEUE other3; присоединение к очереди 3 obs_1 3 QUEUE other3; присоединение к очереди 2 obs_1 QUEUE other3; присоединение очереди 2 obs_1 QUEUE other3; присоединение объе о
```

Рис. 4.7: Модель первой стратегии обслуживания с 3 пропускными пунктами

	GPSS	World	Simula	ation	Repo	rt - Unti	tled Model	2.5.1	
		суббо	та, мая	03,	2025	03:27:57			
	START T	IME		END	TIME	BLOCKS	FACILITIES	STOR	RAGES
	0.0	000		10080	.000	23	3	()
	NAME OBSL 1					VALUE 4.000			
	OBSL 2					10.000			
	OBSL 3					16.000			
	OBS NEW					3.000			
	OTHER1				10	004.000			
	OTHER2				10	000.000			
	OTHER3				10	002.000			
	PUNKT1				10	005.000			
	PUNKT2				10	001.000			
	PUNKT3				10	003.000			
LABEL							NT CURRENT		
		1	GENERA TRANSE			5547 5547		0	0
								0	0
OBS_NEW OBSL 1		3	TRANSE	LK		3682 1853		1	0
OP2T_I			SEIZE			1852		0	0
		6	DEPART	-		1852		0	0
		7	ADVANO			1852		1	0
			RELEAS	_		1851		0	0
						1851		0	0
OBSL 2		10	QUEUE			1829		0	0
_		11	SEIZE			1829		0	0
		12	DEPART			1829		0	0
		13	ADVANO			1829		0	0
			RELEAS			1829		0	0
		15	TERMIN	NATE		1829		0	0
OBSL 3		16	QUEUE			1865		3	0
		17	SEIZE			1862		0	0
		18	DEPART			1862		0	0
		19	ADVANO			1862		1	0
		20	RELEAS	SE.		1861		0	0
		21	TERMIN	NATE		1861		0	0
		22	GENERA	ATE		1		0	0
		23	TERMIN	NATE		1		0	0

Рис. 4.8: Отчёт по модели первой стратегии обслуживания с 3 пропускными пунктами

FACILITY PUNKT2 PUNKT3 PUNKT1		ENTRIES 1829 1862 1852	UTIL. 0.717 0.740 0.727	AVE. TIM 3.9 4.0 3.9	2 1	OWNER F 0 5534 5546	PEND 0 0 0	INTER 0 0 0	RETRY 0 0 0	DELAY 0 3 1
QUEUE OTHER2 OTHER3 OTHER1		MAX CO 11 13 9	0 182 3 186	5 513	AVE.CON 1.112 1.134 0.929	. 6	TIME 5.126 5.132 5.055		8.482 8.458 7.075	RETRY 0 0 0
FEC XN 5549 5534 5546 5550	PRI 0 0 0 0		40 553 99 554	9 0 4 19 6 7	NT NEXT 1 20 8 22	PARAME	ETER	VAI	LUE	

Рис. 4.9: Отчёт по модели первой стратегии обслуживания с 3 пропускными пунктами

В этом случае среднее количество автомобилей в очереди меньше 3 и коэффициент загрузки в нужном диапазоне, но среднее время ожидания больше 4.

Построим модель для первой стратегии с 4 пропускными пунктами (рис. 4.10, 4.7, 4.12).

Рис. 4.10: Модель первой стратегии обслуживания с 4 пропускными пунктами

		суббо	га, мая	03,	2025	03:33:0	5		
	START TI			END	TIME	BLOCKS	FACILITIES	STO	
	0.0	100		10080	0.000	30	4		U
	NAME					VALUE			
	A					3.000			
	B OBSL 1					4.000			
	OBSL 2					11.000			
	OBSL 3					17.000			
	OBSL 4					23.000			
	OTHER1				100	06.000			
	OTHER2				100	004.000			
	OTHER3					002.000			
	OTHER4					000.000			
	PUNKT1 PUNKT2					07.000			
	PUNKT3					03.000			
	PUNKT4					01.000			
LABEL		TOC	BIOCK	TVDE		NTDV COL	JNT CURRENT	COUNT	DETDV
DADED		1	GENERA	TE		5622			0
		2	TRANSF			5622		0	ō
A			TRANSF			2831		0	0
В			TRANSF			2791		0	0
OBSL_1			QUEUE			1465		0	0
			SEIZE			1465		0	0
			DEPART			1465 1465		0	0
		9	RELEAS	F		1464		0	0
		10	TERMIN	ATE		1464		0	ō
OBSL 2			QUEUE			1366		0	0
_		12	SEIZE			1366		0	0
		13	DEPART			1366		0	0
			ADVANC			1366		0	0
			RELEAS			1366		0	0
OBSL 3			TERMIN OUEUE			1366 1378		0	0
0001_0			SEIZE			1378		0	0
			DEPART			1378		0	ō
			ADVANC			1378		0	0
			RELEAS			1378		0	0
			TERMIN			1378		0	0
OBSL_4			QUEUE			1413		0	0
		24	SEIZE DEPART			1413		0	0
			ADVANC	F		1413		1	0
		27	RELEAS			1412		0	0
			TERMIN			1412		0	ō
		29	GENERA	TE		1		0	0
		30	TERMIN	ATE		1		0	0

Рис. 4.11: Отчёт по модели первой стратегии обслуживания с 4 пропускными пунктами

FACILITY		ENTRIE	S UT	IL. I	AVE. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELAY
PUNKT4		1413	0	.557	3.971	. 1	5623	0	0	0	0
PUNKT3		1378	0	.545	3.989	1	0	0	0	0	0
PUNKT2		1366	0	.541	3.993	3 1	0	0	0	0	0
PUNKT1		1465	0	.584	4.018	1	5621	0	0	0	0
QUEUE		MAX	CONT.	ENTRY	ENTRY(0)	AVE.CON	T. AVE	E.TIME	. AVI	E. (-0)	RETRY
OTHER4		7	0	1413		0.415				5.325	
OTHER3		8	Ö	1378	655	0.345		2.527	,	4.816	0
OTHER2		6	0	1366	625	0.363		2.676	5	4.934	0
OTHER1		6	0	1465	590	0.492		3.385	5	5.667	0
FEC XN	PRI	BD	T	ASSEN	1 CURRENT	NEXT	PARA	METER	VAI	LUE	
5624	0	10080	.041	5624	0	1					
5621	0	10080	.398	5621	8	9					
5623	0	10082	.255	5623	26	27					
5625	0	20160	.000	5625	0	29					

Рис. 4.12: Отчёт по модели первой стратегии обслуживания с 4 пропускными пунктами

В этом случае все критерии выполнены, поэтому 4 пункта являются *оптимальным* количеством для первой стратегии.

Построим модель для второй стратегии с 3 пропускными пунктами и получим отчет (рис. 4.13, 4.14).

```
QUEUE Other : присоединение к очереди

ENTER рипкt, 1 : занятие пункте

QUEUE Other : присоединение к очереди

ENTER рипкt, 1 : занятие пункте

DEPART Other : выход из очереди

ADVANCE 4, 3 : обслуживание на пункте

LEAVE punkt, 1 : освобождение пункта

TERMINATE : автомобиль покидает систему

. задание условия остановки процедуры моделирования

CENERATE 1080 : генерация фиктивного транзакта, указывающего на окончание рабочей недели

; (7 дней х 24 часа х 60 мин = 10080 мин)

ТERMINATE 1 : остановить моделирование

START 1 : запуск процедуры моделирования
```

Рис. 4.13: Модель второй стратегии обслуживания с 3 пропускными пунктами

	GPS:	5 World	Simu	ılatio	n Repo	rt -	Untitl	ed Model	3.2.1		
		суббо	та, 1	иая 03	, 2025	03:1	3:08				
	START :	TIME		EN	D TIME	BLO	CKS F.	ACILITIES	S STO	RAGES	
				100	80.000		9	0		1	
	NAM	Ε				VALU					
	OTHER				10	001.0	00				
	PUNKT				10	000.0	00				
LABEL		LOC	BLO	CK TYP	E	ENTRY	COUNT	CURRENT	COUNT	RETRY	
		1	GENE	ERATE		56	83		0	0	
									0	0	
		7	TERM	INATE		56	80		0	0	
		8	GENE	ERATE MINATE			1		0	0	
		9	TERM	INATE			1		0	0	
QUEUE											
OTHER		12	0	5683	252	1	1.063	1.8	885	3.388	0
								. AVE.C			
PUNKT		3	0	0	3	568	3 1	2.243	0.74	8 0	0
FEC XN	PRI	BDT		ASSE	M CUR	RENT	NEXT	PARAMETI	ER .	VALUE	
	0										
	0										
5685	0	10082.	068	5685		0	1				
5684	0	10085.	592	5684		5	6				
5684 5686	0	10082. 10085. 20160.	000	5686		0	8				

Рис. 4.14: Отчёт по модели второй стратегии обслуживания с 3 пропускными пунктами

В этом случае все критерии выполняются, поэтому модель оптимальна.

Построим модель для второй стратегии с 4 пропускными пунктами и получим отчет (рис. 4.15, 4.16).

```
A Untitled Model 3

punkt STORAGE 4

GENERATE (Exponential(1,0,1.75)) ; прибытие автомобилей

QUEUE Other; присоединение к очереди

ENTER punkt,1; занятие пункта

DEPART Other; выход из очереди

ADVANCE 4,3; обслуживание на пункте

LEAVE punkt,1; особобождение пункта

TERMINATE; автомобиль покидает систему

; Задание условия остановки процедуры моделирования

GENERATE 10080; генерация фиктивного транзакта, указывающего на окончание рабочей недели

; (7 дней х 24 часа х 60 мин = 10080 мин)

TERMINATE 1; остановить моделирование

START 1; запуск процедуры моделирования
```

Рис. 4.15: Модель второй стратегии обслуживания с 4 пропускными пунктами

	GPSS	World	Simu	lation	Report -	- Untitl	ed Model	3.4.1		
		суббо	Ta, N	иая 03,	2025 03:	15:40				
	START I	IME		END	TIME BI	LOCKS F	STORAG	ES		
	0.	000		10080	0.000	9	0	1		
	NAME				VAI					
	OTHER				10001.					
	PUNKT				10000.	.000				
LABEL				CRATE		RY COUNT 5719	CURRENT	COUNT RE		
			OUEL			5719 5719		0	-	
		3		_	-	719		0		
			DEPA			719		0	•	
				ANCE		719		4		
			LEAV			715		0	0	
		7	TERM	MINATE	5	715		0	0	
		8	GENE	ERATE		1		0	0	
		9	TERM	MINATE		1		0	0	
OUEUE		мах с	ONT	FNTRY F	NTRY (O)	AVE CON	T AVF TT	MF AVE	.(-0) RET	ΒV
OTHER									1.431 0	
STORAGE		CAP.	REM.	MIN. MA	AX. ENTE	RIES AVL	. AVE.C.	UTIL. R	ETRY DELA	Y
PUNKT		4	0	0	4 57	719 1	2.253	0.563	0 0	
FEC XN	DDT	BDT		ASSEM	CHERENT	NEXT	PARAMETE	D VAT	IIF.	
5718					5	6	TANALLIL	IX VAL		
5717					5	_				
5719										
5721	0	10084.	393	5721	5 0	1				
5720					5					
	0			5722	_	8				

Рис. 4.16: Отчёт по модели второй стратегии обслуживания с 4 пропускными пунктами

Здесь все критерии выполнены при этом время ожидания и среднее число автомобилей меньше, чем в случае второй стратегии с 3 пунктами, однако и загрузка меньше. Можно сделать вывод, что 4 пропускной пункт излишне разгружает систему.

В результате анализа наилучшим количеством пропускных пунктов будет 3 при втором типе обслуживания и 4 при первом.

5 Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

Список литературы

- 1. Королькова А.В., Кулябов Д.С. Имитационное моделирование в GPSS [Электронный ресурс].
- 2. Королькова А.В., Кулябов Д.С. Лабораторная работа 16. Задачи оптимизации. Модель двух стратегий обслуживания [Электронный ресурс].