Chapitre 17

Fractions rationnelles

17	Fractions rationnelles	1
	17.2 Addition, multiplication et produit par un scalaire	2
	17.10Degré d'une fraction	2
	17.13Propriété du degré	2
	17.19Théorème	3

17.2 Addition, multiplication et produit par un scalaire

Soit $\frac{P}{Q}$ et $\frac{R}{S}$ deux fractions rationnelles et soit $\lambda \in \mathbb{K}$. On pose

$$\frac{P}{Q} + \frac{R}{S} = \frac{PS + QR}{QS}, \ \frac{P}{Q} \times \frac{R}{S} = \frac{PR}{QS} \text{ et } \lambda \times \frac{P}{Q} = \frac{\lambda P}{Q}.$$

Montrons que l'addition est bien définie.

Soit $\frac{P_1}{Q_1} = \frac{P}{Q}$ et $\frac{R}{S}$ dans $\mathbb{K}(X)$. Montrons que :

$$\frac{PS + QR}{OS} = \frac{P_1S + Q_1R}{O_1S}$$

On a:

$$(PS + QR)Q_1S - (P_1S + Q_1R)QS = S^2(\underbrace{PQ_1 - P_1Q}_{=0}) + RS(\underbrace{QQ_1 - Q_1Q}_{=0})$$

On raisonne de la même manière pour $\frac{R}{S} = \frac{R_1}{S_1}$ et ainsi, l'opération est bien définie.

17.10Degré d'une fraction

Soit $F = \frac{P}{Q}$ une fraction. On pose $\deg(F) = -\infty$ si F = 0 et $\deg(F) = \deg(P) - \deg(Q)$ sinon. Le degré d'une fraction est donc un élément de $\mathbb{Z} \cup \{-\infty\}$.

Si
$$\frac{P_1}{Q_1} = \frac{P}{Q}$$
, alors:

$$P_1Q = PQ_1$$

$$\operatorname{donc} \ \operatorname{deg}(P_1Q) = \operatorname{deg}(PQ_1)$$

$$\operatorname{donc} \ \operatorname{deg}(P_1) + \operatorname{deg}(Q) = \operatorname{deg}(P) + \operatorname{deg}(Q_1) \ (\mathbb{K} \ \operatorname{int\`egre})$$

$$\operatorname{donc} \ \operatorname{deg}(P_1) - \operatorname{deg} Q_1 = \operatorname{deg}(P) - \operatorname{deg}(Q)$$

17.13 Propriété du degré

Soit F et G deux fractions rationnelles. On a

$$\deg(F+G) \le \max(\deg(F), \deg(G))$$
 et $\deg(F \times G) = \deg(F) + \deg(G)$.

On retrouve les mêmes propriétés que pour les polynômes.

Soit
$$F = \frac{P}{Q}$$
 et $G = \frac{R}{S}$.

$$\begin{split} \deg(F+G) &= \deg(\frac{PS+QR}{QS}) \\ &= \deg(PS+QR) - \deg(QS) \\ &\leq \max(\deg(PS), \deg(QR)) - \deg(QS) \\ &= \max(\deg(PS) - \deg(QS), \deg(QR) - \deg(QS)) \\ &= \max\left(\deg\left(\frac{P}{Q}\right), \deg\left(\frac{R}{Q}\right)\right) \\ &= \max(\deg(F), \deg(G)) \end{split}$$

17.19 Théorème

Théorème 17.19

Soit F et G deux fractions rationnelles. Si les fonctions rationnelles \tilde{F} et \tilde{G} sont égales sur une partie infinie $\mathcal{D}_F \cap \mathcal{D}_G$ alors les fractions rationnelles sont égales, i.e. F = G.

On note
$$F = \frac{P}{Q}$$
 et $G = \frac{R}{S}$ avec $P \wedge Q = 1$ et $R \wedge S = 1$. On a :

$$\forall x \in \mathcal{D} \subset \mathcal{D}_F \cap \mathcal{D}_G, \tilde{F}(x) = \tilde{G}(x)$$

Soit:

$$\forall x \in \mathcal{D}, \tilde{P(x)} \times \tilde{S(x)} = \tilde{R(x)} \times \tilde{Q(x)}$$

Comme \mathcal{D} est infini, d'après le théorème de rigidité, PS=RQ, donc F=G.