Package 'greed'

April 29, 2019

Type Package
Title greed: clustering and model selection for graphs and counts data
Version 1.0
Date 2019-02-27
Author Etienne Come
Maintainer Etienne Come <etienne.come@ifsttar.fr></etienne.come@ifsttar.fr>
Description Greed enable the clustering of networks and counts data matrix such as document/term matrix with different type of generative models. Model selection and clustering is performed in combination by optimizing the Integrated Classification Likelihood (which is equivalent to minimizing the description length). Their are four models availables: SBM degree corected SBM, Mixture of Multinomials, Multivariate mixture of poisson. The optimization is performed thanks to a combination of greedy local search and a genetic algorithm.
License GPL
Depends R (>= 2.10)
Imports Rcpp (>= 1.0.0), Matrix, future, listenv, ggplot2, graphics, methods, stats,rARPACK
LinkingTo Rcpp, RcppArmadillo
Suggests testthat, knitr, rmarkdown, igraph
VignetteBuilder knitr
RoxygenNote 6.1.1
Collate 'RcppExports.R' 'models_classes.R' 'fit_classes.R' 'cleanpath.R' 'genetic_alg.R' 'hybrid_alg.R' 'alg_classes.R' 'dcsbm.R' 'generator.R' 'greed.R' 'misc.R' 'mm.R' 'mreg.R' 'multistart_alg.R' 'plot.R' 'sbm.R'
R topics documented:
algs-classes 2 cut,icl_path-method 2 fits-classes 3 fit_greed 4

2 algs-classes

it_greed_path	5
raphbalance	. 6
reed	. 6
reed_cond	7
m_post	. 8
m_post_add	. 8
m_post_del	. 9
m_post_del1	. 9
m_post_merge	10
nodels-classes	10
odelinklab	12
llot,dcsbm_fit,missing-method	12
ost_probs	13
rint,icl_path-method	14
dcsbm	14
mm	15
mreg	16
sbm	17
how,icl_path-method	18
pectral	18

algs-classes

Optimization algorithm classes

Description

Optimization algorithm classes

alg An S4 class to represent an abstract optimisation algorithm.

gree An S4 class to represent a greedy algorithm extends alg class with multiple start.

seed An S4 class to represent a greedy algorithm extends $\verb"alg"$ class with initialization with spectral clustering and or k-means.

genetic An S4 class to represent a hybrid genetic/greedy algorithm extends ${\tt alg}$ class.

genetic An S4 class to represent a hybrid genetic/greedy algorithm extends alg class.

Slots

```
name Name of the algorithm

nb_start number of random starts (default to 10)

pop_size size of the solutions populations (default to 10)

nb_max_gen maximal number of generation to produce (default to 4)

pop_size size of the solutions populations (default to 10)

nb_max_gen maximal number of generation to produce (default to 4)
```

cut,icl_path-method 3

```
cut, icl_path-method
```

Cut cut a path to a desired number of cluster

Description

Cut cut a path to a desired number of cluster

Usage

```
## S4 method for signature 'icl_path'
cut(x, K)
```

Arguments

x A an icl_path solutionK Desired number of cluster

Value

an icl_path obejct with the desired number of cluster

Methods (by class)

• icl_path: method to cut a fit to a desired number of cluster

fits-classes

Clustering solutions classes

Description

Clustering solutions classes

icl fit

An S4 abstract class to represent an icl fit of a clustering model.

• slots: name, K, icl, cl, count

icl_path

An S4 class to represent a hierachical path of solution.

• slots: path, tree, ggtree, logalpha

dcsbm fit

An S4 class to represent a fit of a stochastick block model that extend icl_fit.

• slots: name, K, icl, cl, obs_stats, model

4 fits-classes

dcsbm_path

An S4 class to represent a hierarchical path of solutions for a DC-SBM model that extend dcsbm_fit-class and icl_path-class.

• slots: name, K, icl, cl, obs_stats, model, path, tree, ggtree, logalpha mm fit

An S4 class to represent an icl fit of a mixture of multinomials model that extend icl_fit.

• slots: name, K, icl, cl, obs_stats, model

mm_path

An S4 class to represent a hierarchical path of solutions for a mixture of mutinomials model that extend $mm_fit-class$ and $icl_path-class$.

• slots: name, K, icl, cl, obs_stats, model, path, tree, ggtree, logalpha mreg_fit

An S4 class to represent an icl fit of a mixture of multinomials model that extend icl_fit.

• slots: name, K, icl, cl, obs_stats, model

mreg_path

An S4 class to represent a hierachical path of solutions for a Mixture of Regression model that extend mreg_fit-class and icl_path-class.

• slots: name, K, icl, cl, obs_stats, model, path, tree, ggtree, logalpha sbm_fit

An S4 class to represent a fit of a stochastick block model that extend icl_fit.

• slots: name, K, icl, cl, obs_stats, model

sbm_path

An S4 class to represent a hierarchical path of solutions for a SBM model that extend $sbm_fit-class$ and $icl_path-class$.

• slots: name, K, icl, cl, obs_stats, model, path, tree, ggtree, logalpha

Slots

name of the fit

 $\ensuremath{\mathsf{K}}$ a numeric vector of length 1 which correspond to the number of clusters

icl a numeric vector of length 1 which store the the icl value

cl a numeric vector of length N which store the clusters labels

obs_stats a list to store the observed statistics of the model needed to compute ICL.

train_hist a data.frame to store training history (format depends on the used algorithm used).

path a list of merge moves describing the hierachie of merge followed to complete totaly the merge path.

fit_greed 5

```
tree a tree representation of the merges.

ggtree a data.frame for easy ploting of the dendogram

logalpha a numeric value which corresponds to the starting value of log(alpha).

model an icl_model to store the model fitted

model an icl_model to store the model fitted
```

fit_greed

fit_greed_init

Description

fit_greed_init

Usage

```
fit_greed(model, data, clt, type = "both", nb_max_pass = 50L,
   verbose = FALSE)
```

Arguments

model icl_model

data list with clustering data (fileds depend on model type)

clt cluster labels 0,...,K-1

type merge, swap, none, or both (default)

nb_max_pass maximum number of pass for greedy swap verbose boolean for verbose mode default to false

Value

a model_fit object

fit_greed_path

Description

fit_greed_path

Usage

```
fit_greed_path(data, init_fit)
```

6 greed

Arguments

data list with clustering data depnds on model type init_fit initial fit object

Value

a model_path object

graphbalance

graph_balance

Description

graph_balance

Usage

```
graphbalance(x)
```

Arguments

Х

a sbm_fit-class object to be plot

Value

a ggplot2 graph

greed

greed

Description

Greed enable the clustering of networks and counts data such as document/term matrix with different model. Model selection and clustering is performed in combination by optimizing the Integrated Classification Likelihood (which is equivalent to minimizing the description length). Their are four models availables:

- Stochastic Block Model (directed)
- Degree corected Stochastic Block Model (directed)
- Mixture of Multinomials
- Multivariate mixture of poissons

The optimization is performed thanks to a combination of greedy local search and a genetic algorithm. The main entry point is the greed function to perfom the clustering.

greed_cond 7

Usage

```
greed(X, K = 20, model = find_model(X), alg = methods::new("hybrid"),
    verbose = FALSE)
```

Arguments

X data to cluster sparseMatrix or matrix

K Desired number of clustermodel a dcsbm, sbm or mm model

alg an optimisation algorithm hybrid, mutlistarts, seed or genetic

verbose boolean for verbose mode

Value

an icl_path object

greed_cond greed_cond

Description

greed_cond

Usage

```
greed_cond(X, y, K = 20, model = find_model_cond(X, y),
    alg = methods::new("hybrid"), verbose = FALSE)
```

Arguments

X covariable datay target variable

K Desired number of cluster

model an mreg model

an optimisation algorithm hybrid, mutlistarts, seed or genetic

verbose boolean for verbose mode

Value

an icl_path object

8 lm_post_add

lm_post lm_post	
-----------------------	--

Description

lm_post

Usage

```
lm_post(X, y, regu, a0, b0)
```

Arguments

X	data matrix of covariates Nxd
У	target Nx1

regu prior precision parameter

a0 prior parameter b0 prior parameter

Description

lm_post_add

Usage

```
lm_post_add(current, X, y, regu, a0, b0)
```

Arguments

current	gaussian linear model to update
X	data matrix of covariates Ntxd

y target Ntx1

regu prior precision parameter

a0 prior parameter b0 prior parameter lm_post_del 9

lm_post_del

Description

 lm_post_del

Usage

```
lm_post_del(current, X, y, regu, a0, b0)
```

Arguments

current gaussian linear model to update
X data matrix of covariates Ntxd

y target Ntx1

regu prior precision parameter

a0 prior parameter b0 prior parameter

 $lm_post_del1 \hspace{1cm} lm_post_del1$

Description

lm_post_del1

Usage

```
lm_post_del1(current, X, y, regu, a0, b0)
```

Arguments

current gaussian linear model to update
X data matrix of covariates 1xd

y target 1x1

regu prior precision parameter

a0 prior parameter b0 prior parameter

10 models-classes

 $lm_post_merge \qquad \qquad lm_post_merge$

Description

lm_post_merge

Usage

```
lm_post_merge(current_k, current_l, regu, a0, b0)
```

Arguments

current_k gaussian linear model to merge
current_l gaussian linear model to merge
regu prior precision parameter

a0 prior parameter b0 prior parameter

models-classes

Clustering models classes

Description

Clustering models classes

icl_model

An S4 class to represent an abstract clustering model

• slots: name, alpha

dcsbm

An S4 class to represent a stochastick block model that extends icl_model class.

• slots: name, alpha, a0, b0

mm

An S4 class to represent a mixture of multinomial also known has mixture of unigrams that extends icl_model class.

• slots: name, alpha, beta

mreg

An S4 class to represent a mixture of multinomial also known has mixture of unigrams that extends icl_model class.

models-classes 11

```
• slots: name, alpha, reg, a0, b0
```

shm

An S4 class to represent a stochastick block model that extends icl_model class.

```
• slots: name, alpha, a0, b0
```

Slots

name a character vector

- alpha a numeric vector of length 1 which define the parameters of the dirichlet over the cluster proportions (default to 1)
- a 0 a numeric vector of length 1 which define the parameters of the beta prior over the edges (default to 1)
- b0 a numeric vector of length 1 which define the parameters of the beta prior over the non-edges (default to 1)
- beta a numeric vector of length 1 which define the parameters of the beta prior over the counts (default to 1)
- reg a numeric vector of length 1 which define the variance parameter of the normal prior over the regression parameters (default to 0.1)
- a0 a numeric vector of length 1 which define the parameter a0 of the inverse gamma over the regression noise variance parameters (default to 1)
- b0 a numeric vector of length 1 which define the parameter b0 of the inverse gamma prior over the regression noise variance parameters (default to 1)
- a 0 a numeric vector of length 1 which define the parameters of the beta prior over the edges (default to 1)
- b0 a numeric vector of length 1 which define the parameters of the beta prior over the non-edges (default to 1)

Examples

```
new("dcsbm")
new("mm", alpha=1, beta=1)
new("mreg")
new("mreg", alpha=1, reg=5, a0=0.5, b0=0.5)
new("sbm")
new("sbm", a0=0.5, b0=0.5, alpha=1)
```

nodelinklab

nodelinklab

Description

nodelinklab

Usage

```
nodelinklab(sol, labels, s = 0)
```

Arguments

```
sol mm_path-class object to be plot labels a vector of cluster labels s threeshold for links
```

Value

```
a ggplot2 graph
```

Description

Main methods to explore clusterings results visualy.

Usage

```
## S4 method for signature 'dcsbm_fit,missing'
plot(x, type = "blocks")

## S4 method for signature 'dcsbm_path,missing'
plot(x, type = "blocks")

## S4 method for signature 'mm_fit,missing'
plot(x, type = "blocks")

## S4 method for signature 'mm_path,missing'
plot(x, type = "blocks")

## S4 method for signature 'mreg_fit,missing'
plot(x, type = "blocks")
```

post_probs 13

```
## S4 method for signature 'mreg_path,missing'
plot(x, type = "blocks")

## S4 method for signature 'sbm_fit,missing'
plot(x, type = "blocks")

## S4 method for signature 'sbm_path,missing'
plot(x, type = "blocks")
```

Arguments

```
x icl_fit-class object to be ploted
```

type type of desired graphics: tree,pathy, blocks, nodelink, front

Value

a ggplot2 object to visualize the results

post_probs post_probs

Description

post_probs

Usage

```
post_probs(model, data, clt)
```

Arguments

 $\verb|model| icl_model|$

data list with clustering data (fileds depend on model type)

clt cluster labels in 1,..,K

14 rdcsbm

```
print,icl_path-method
```

print print an icl_path object

Description

print print an icl_path object

Usage

```
## S4 method for signature 'icl_path'
print(x)
```

Arguments

x icl_path-class object to print

rdcsbm Generate graph adjacency matrix using a degree corrected SBM

Description

rmm returns a count matrix and the cluster labels generated randomly unsig a Mixture of Multinomial model.

Usage

```
rdcsbm(N, pi, mu, betain, betaout)
```

Arguments

N	A numeric value the size of the graph to generate
pi	A numeric vector of length K with clusters proportions. Must sum up to 1.
mu	A numeric matrix of dim $K \times K$ with the connectivity pattern to generate, elements in $[0,1]$.
betain	A numeric vector of length N which specify the in-degree correction will be normalized per cluster during the generation.
betaout	A numeric vector of length N which specify the out-degree correction will be normalized per cluster during the generation.

Details

It take the sample size, cluster proportions and emission matrix, and as input and sample a graph accordingly together with the clusters labels.

rmm 15

Value

A list with fields:

• x: the count matrix as a dgCMatrix

• K: number of generated clusters

• N: number of vertex

• cl: vector of clusters labels

• pi: clusters proportions

• mu: connectivity matrix

• betain: normalized in-degree parameters

• betaout: normalized out-degree parameters

rmm

Generate graph adjacency matrix using a Multinomial Mixture

Description

rmm returns a count matrix and the cluster labels generated randomly unsig a Mixture of Multinomial model.

Usage

```
rmm(N, pi, mu, lambda)
```

Arguments

N	A numeric value the size of the graph to generate
pi	A numeric vector of length K with clusters proportions. Must sum up to 1.
mu	A numeric matrix of dim k x D with the clusters patterns to generate, all elements

in [0,1].

lambda A numeric value which specify the expectation for the row sums.

Details

It take the sample size, cluster proportions and emission matrix, and as input and sample a graph accordingly together with the clusters labels.

16 rmreg

Value

A list with fields:

- x: the count matrix as a dgCMatrix
- K: number of generated clusters
- N: number of vertex
- cl: vector of clusters labels
- pi: clusters proportions
- mu: connectivity matrix
- lambda: expectation of row sums

rmreg

Generate X and y with a mixture of regression model

Description

rmreg returns an X matrix, a y vector and the cluster labels generated randomly unsig a Mixture of regression model.

Usage

```
rmreg(N, pi, mu, sigma, X = cbind(matrix(stats::rnorm(N * (nrow(mu) -
1)), N, nrow(mu) - 1), rep(1, N)))
```

Arguments

N	A numeric value the size of the graph to generate
pi	A numeric vector of length K with clusters proportions (must sum up to 1)
mu	A numeric matrix of dim K x d with the regression parameters
sigma	A numeric of length 1 with the target conditional variance
X	A matrix of covariate

Details

It take the sample size, cluster proportions and regression parameters matrix and variance as input accordingly

rsbm 17

Value

A list with fields:

- X: the covariate matrix
- y: the target feature
- K: number of generated clusters
- N: sample size
- cl: vector of clusters labels
- pi: clusters proportions
- mu: regression parameters
- sigma: conditional variance

rsbm

Generate graph adjacency matrix using a SBM

Description

rsbm returns the adjacency matrix and the cluster labels generated randomly unsing a Stochastick Block Model.

Usage

```
rsbm(N, pi, mu)
```

Arguments

N A numeric value the size of the graph to generate

pi A numeric vector of length K with clusters proportions. Must sum up to 1.

mu A numeric matrix of dim K x K with the connectivity pattern to generate. elements in [0,1].

Details

This function take graph size, cluster proportions and connectivity matrix as input and sample a graph accordingly together with the clusters labels.

Value

A list with fields:

- x: the graph adjacency matrix as a dgCMatrix
- K: number of generated clusters
- N: number of vertex
- cl: vector of clusters labels
- pi: clusters proportions
- mu: connectivuty matrix

18 spectral

Examples

```
simu = rsbm(100, rep(1/5, 5), diag(rep(0.1, 5))+0.001)

x = simu$x

x1 = simu$c1
```

```
show, icl_path-method
```

show show an icl_path object

Description

show show an icl_path object

Usage

```
## S4 method for signature 'icl_path'
show(object)
```

Arguments

object

icl_path-class object to print

spectral

spectral Regularized spectral clustering nips paper 2013

Description

spectral Regularized spectral clustering nips paper 2013

Usage

```
spectral(X, K)
```

Arguments

X An adjacency matrix in sparse format

K Desired number of cluster

Value

cl Vector of clsuter labels