HR Data Analytics

A Summary Report

Libraries and Tools Used

Matplotlib

Seaborn

Pandas

Scikit-learn

Microsoft Excel

Jupyter Notebook

About the Data Set

- This is a data set with HR Data of employees for a certain firm.
- It has various columns with various details of the employees from various departments.
- These include values ranging from Numerical to Subjective attributes
- The data set has been visualized here and a model that predicts attrition based on this data set has also been implemented

Series of Steps

- Data Cleaning
- Getting the Data Set Mapped to Numerical Values
- Correlation and Visuals
- Relationships between Attributes
- Attrition Prediction Model

Data Cleaning

- Checking Null Values
 - Null Values removed using functionality under Pandas through Python
- Dropping Duplicates
 - Looking for duplicate columns and dropping them
- Dropping Columns with Redundant data
 - Columns with same data throughout all columns dropped

Data Cleaning

```
df.isnull().sum() # null values
```

```
# Dropping Duplicates
df = df.drop_duplicates()

# Removing null values
df = df.dropna()
```

Getting the Data Set Mapped to Numerical Values

- Columns which contain qualitative data need to be mapped at some points of the analysis
- When we want our model to generate accurate results and we do not want to lose the information through qualitative columns we often use this mapping

Examples

```
df['Attrition'] = df['Attrition'].map({'Yes': 1,
                                        'No': 0})
df['BusinessTravel'] = df['BusinessTravel'].map({'Non-Travel': 0,
                                                 'Travel_Rarely': 1,
                                                 'Travel_Frequently': 2})
df['Gender'] = df['Gender'].map({'Male': 1, 'Female': 0})
df['MaritalStatus'] = df['MaritalStatus'].map({'Married': 0,
                                                'Single': 1,
                                                'Divorced': 2})
df['OverTime'] = df['OverTime'].map({'Yes': 1,
                                     'No': 0})
```

Correlation and Visuals

- Correlation between numeric data attributes has been depicted here.
- The relationships and visual representation of some of the relevant information has also been done
- This includes count-plots, histograms, boxplots etc.
- Some of the codes is there in this presentation but the complete source code can be downloaded from the GitHub Repository
 - GitHub Repo

Overtime

Marital Status

Job Role

Gender

Education Field of Employees

Department

Business Travels of Employees

Education Level of Employees

Monthly Income of Employees

Number of Companies Worked

Job Satisfaction

Total Working Years Distribution

plt.show()

Comparison of Salary and Job Role

Comparison of Attritions under different Job Roles

plt.xticks(rotation = 90)

plt.show()

Attrition Prediction Model

- Algorithm used :- Random Forest Classification
- Target :- Attrition
- Accuracy 0.8639455782312925

```
# Assuming 'Attrition' is the target variable
X = df.drop(['Attrition','Department','EducationField', 'JobRole', 'Over18'], axis=1)#
X.fillna(0, inplace=True) # Fill missing values with 0 of each column
y = df['Attrition'] # Target variable
y.fillna(0, inplace=True) # Fill missing values with 0 of each column
```

```
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
```

```
# Making predictions
predictions = model.predict(X_test)
```

RandomForestClassifier
RandomForestClassifier(random_state=42)

Accuracy: 0.8639455782312925

Thank You!