ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

МАТЕМАТИКА

29 август 2022 г.

ОБЩООБРАЗОВАТЕЛНА ПОДГОТОВКА

ВАРИАНТ 1

ЧАСТ 1 (Време за работа: 90 минути)

Отговорите на задачите от 1. до 20. включително отбелязвайте в листа за отговори!

- 1. Ako $\log_3 x = \frac{1}{4}$, to x e:
- A) $3^{\frac{1}{4}}$ B) 3^{4}
- Γ) $\left(\frac{1}{3}\right)^4$
- **2.** Множеството от решенията на неравенството $2^x < -4$ е:
- A) \emptyset
- B) $(-\infty; -4)$ B) $\left(-\infty; -\frac{1}{4}\right)$ $\Gamma\left(\frac{1}{4}; +\infty\right)$
- 3. Даден е успоредник *ABCD*. Ако $\overrightarrow{AB} = \overrightarrow{a}$ и $\overrightarrow{AD} = \overrightarrow{b}$, то $\frac{1}{2}\overrightarrow{BD} + \overrightarrow{AC}$ е равно на:
- A) $\frac{3}{2}\vec{a} + \frac{1}{2}\vec{b}$ B) $2\vec{a}$

- Γ) $2\vec{b}$
- 4. Точка A е от графиката на функцията $y = 5^x + 2 \lg x$. Ако абсцисата на тази точка е равна на 1, то ординатата ѝ е:
- A) 2
- Б) 5
- B) 7
- Г) невъзможно да се определи
- **5.** Дефиниционното множество на функцията $y = 2^{\frac{1}{x}}$ е:
- A) $(2; +\infty)$
- \mathbf{B}) $(0;+\infty)$
- B) $(-\infty; +\infty)$ Γ) $(-\infty; 0) \cup (0; +\infty)$

А) 3 и 7	Б) 4 и 5	В) 4 и 7	Г) 3 и 5
7. Числената сто	ойност на израза $-\sqrt[3]{}$	$\sqrt{-125} - (2\sqrt[3]{-2})^3$ e:	
A) - 3	Б) 17	B) 21	Γ) 11
8. Броят на коре	ените на уравнениет	$\mathbf{e} \mathbf{o} \ \frac{x-1}{x} \sqrt{x^2 + 2x} = 0 \ \mathbf{e} $:
A) 0	Б) 1	B) 2	Γ) 3
9. Числената сто	ойност на израза 🛚 [с	$0g_{\sqrt{5}}\frac{1}{25\sqrt{5}}-5.5^{\log_5 16-1}$	e:
A) – 21	Б) – 9	B) – 80	Γ) – 70
10. Броят на реш	енията на системата	$\begin{vmatrix} x^2 + y^2 = 5 \\ x^4 + x^2 y^2 = 20 \end{vmatrix}$ e:	
A) 1	Б) 2	B) 3	Γ) 4
11. Множеството	от стойностите на ф	рункцията <i>у</i> = <i>x</i> ² – 4	3a $x \in [-1;3]$ e:
A) $[-2;2]$	Б) [-4;0]	B) [-4;5]	Γ) [-3;5]
	нкциите $f(x) = 2x + 3$ и графиките на двет		
A) $a = 2$; $b = 7$	Б) $a = 2$; $b = 0$	B) $a = -2$; $b = 7$	$\Gamma) \ a = -2; \ b = 0$
	$a_2, a_3,$ е геометр	ична прогресия, з	а която $a_1 = \frac{1}{4}$ и
A) -1	Б) 2	B) 3	Γ) $-$ 1 или 3

6. Модата и медианата на извадката 5, 4, 4, 8, 3, 7, 3, 4, 9, 11, 6 са съответно:

14. $ABCDA_1B_1C_1D_1$ е правилна четириъгълна призма. Диагоналът BD_1 сключва с долната основа ъгъл 45°. Ако $DD_1 = 6$ cm, то обемът на призмата е равен на:

- A) $36\sqrt{2} \text{ cm}^3$
- Б) $72\sqrt{2} \text{ cm}^3$
- B) 108 cm^3
- Γ) 216 cm³
- 15. С цифрите 0, 1, 2 и 4 са записани всички възможни трицифрени числа с различни цифри. Каква е вероятността при избор на едно от тези числа, това число да е нечетно или по-малко от 200?
- A) $\frac{2}{9}$
- Б) $\frac{4}{9}$
- B) $\frac{1}{3}$
- Γ) $\frac{5}{9}$
- 16. Числената стойност на израза $3 \cdot \frac{\operatorname{tg}\left(-\frac{\pi}{4}\right) + \operatorname{cotg}\left(-\frac{2\pi}{3}\right)}{\sin \pi + \cos(-4\pi)}$ е:

- A) $\sqrt{3}-3$ B) $3(\sqrt{3}-3)$ Γ) $3(\sqrt{3}+3)$
- 17. На чертежа окръжност k с център C се допира до раменете на $\angle pOq = 90^\circ$ в точки A и B. През точка P от дъгата \widehat{AB} е построена допирателна към k, която пресича раменете на ъгъла Op^{\rightarrow} и Oq^{\rightarrow} съответно в точки M и N.

Отношението на периметрите $\frac{P_{OACB}}{P_{OMN}}$ е равно на:

- A) 4:1
- Б) 3:1
- B) 3:2
- Γ) 2:1
- 18. В правоъгълен $\triangle ABC (< C = 90^\circ)$ ъглополовящата на < BAC пресича височината CD в точка F и $CF=3\sqrt{2}$ cm , $DF=\sqrt{2}$ cm . Лицето на $\triangle ABC$ е равно на:

 - A) 72 cm^2 B) $36\sqrt{2} \text{ cm}^2$ B) $18\sqrt{2} \text{ cm}^2$ Γ) 18 cm^2

- 19. Върху единичната окръжност k(O; r = 1) е взета точка M(0;1). Построена е точка $N \in k$, така, че ориентираният $\not \propto MON = -\frac{3\pi}{2} rad$. Координатите на N са:

 - A) (-1;0) B) $(0;-\frac{3\pi}{2})$ B) (0;-1) Γ) $\left(-\frac{3\pi}{2};0\right)$
- 20. Равнините α и β се пресичат в правата l . Точката $M \in \alpha$ и разстоянието от M до l е 10 cm, а разстоянието от M до β е $5\sqrt{3}$ cm. Ъгълът между равнините α и β е:
 - A) 30°
- Б) 45°
- B) 60°
- Γ) 90°

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

МАТЕМАТИКА

29 август 2022 г.

ОБЩООБРАЗОВАТЕЛНА ПОДГОТОВКА

ВАРИАНТ 1

ЧАСТ 2 (Време за работа: 150 минути)

Пълните решения с необходимите обосновки на задачите от 21. до 23. включително запишете в листа за отговори!

21. Дадени са уравненията:

(1)
$$|x^2 + 7x + 10| = 2$$

(2)
$$25^x + 10.5^{x-1} - 3 = 0$$

(3)
$$x^2\sqrt{2-x} = 9\sqrt{2-x}$$

- а) Решете уравненията (1), (2) и (3).
- б) Намерете средноаритметичното на корените на трите уравнения.
- 22. За 20-членна аритметична прогресия е известно, че за сумите $A=a_1+a_3+...+a_{17}+a_{19} \quad \text{(сборът на членовете с нечетни номера) и}$ $B=a_2+a_4+...+a_{18}+a_{20} \quad \text{(сборът на членовете с четни номера) са в сила равенствата } B-A=110 \quad \text{и} \sqrt{B}-\sqrt{A}=\sqrt{10} \ .$

Да се намерят:

- a) $A \cup B$;
- б) първият член a_1 и разликата d на прогресията.
- 23. Дадена е отсечка MN с дължина 2 cm и точка K, лежаща на нея. Нека S_1 е лицето на равнобедрен правоъгълен триъгълник с хипотенуза MK, а S_2 е лицето на квадрат с дължина на страната KN.
 - а) Ако MK = x, да се изрази сбора $S_1 + S_2$ като функция на x.
 - б) Намерете дължината на катета на правоъгълния триъгълник, когато сборът $S_1 + S_2$ е най-малък.

ФОРМУЛИ

Квадратно уравнение

$$ax^2 + bx + c = 0$$
, $a \neq 0$ $D = b^2 - 4ac$ $x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$ при $D \geq 0$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
 Формули на Виет: $x_1 + x_2 = -\frac{b}{a}$ $x_1x_2 = \frac{c}{a}$

Квадратна функция

Графиката на $y = ax^2 + bx + c$ е парабола с връх точката $\left(-\frac{b}{2a}; -\frac{D}{4a}\right)$

Корен. Степен и логаритъм

Комбинаторика

Брой на пермутациите на n елемента: $P_n = n.(n-1)...3.2.1 = n!$

Брой на вариациите на n елемента k -ти клас: $V_n^k = n.(n-1)...(n-k+1)$

Брой на комбинациите на n елемента k -ти клас: $C_n^k = \frac{V_n^k}{P_k} = \frac{n.(n-1)...(n-k+1)}{k.(k-1)...3.2.1}$

Прогресии

Аритметична прогресия:
$$a_n = a_1 + (n-1)d$$
 $S_n = \frac{a_1 + a_n}{2}n = \frac{2a_1 + (n-1)d}{2}n$

Геометрична прогресия:
$$a_n = a_1.q^{n-1}$$
 $S_n = a_1 \frac{q^n - 1}{q - 1}, q \neq 1$

Формула за сложна лихва:
$$K_n = Kq^n = K \left(1 + \frac{p}{100}\right)^n$$

Вероятности

Вероятност за настъпване на събитието A:

$$p\left(A\right)=\frac{\textit{брой на благоприятните случаи}}{\textit{брой на възможните случаи}}\,,\quad 0\leq p\left(A\right)\leq 1$$

Вероятност на сбор от събития:

$$P(A \cup B) = P(A) + P(B)$$
, ако A и B са несъвместими

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Вероятност на противоположно събитие:

 $P(\overline{\mathbf{A}}) = 1 - P(A)$, където $\overline{\mathbf{A}}$ е противоположното на събитието A

Условна вероятност:
$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \ P(B) > 0$$

Теорема за умножение на вероятности:

$$P(A \cap B) = P(A)P(B|A) = P(B) P(A|B), P(A) > 0, P(B) > 0$$

Формула на Бернули:
$$P_n(k) = C_n^k . p^k . q^{n-k}$$
, $k = 0, 1, 2, ..., n$

Теорема за умножение на вероятности на независими събития $P(A \cap B) = P(A)P(B)$

Събитията A и B са независими ако P(A/B) = P(A)

Статистика

Средна аритметична стойност: ср. ар. = $\frac{a_1 + a_2 + \dots + a_n}{n}$ $(n \in N)$

Средна геометрична стойност: ср. геом. = $\sqrt[n]{a_1.a_2.a_3...a_n}$ $(n \in N)$ $(a_i > 0, \forall i)$

Средна хармонична стойност: ср. харм. = $\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}$ $(n \in N)$ $(a_i \neq 0, \forall i)$

Претеглена средна стойност

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{k} x_i n_i$$

 n_i — относителна честота

п-обем на извадката

Зависимости в триъгълник и успоредник

Правоъгълен триъгълник:
$$c^2 = a^2 + b^2$$
 $S = \frac{1}{2}ab = \frac{1}{2}ch_c$ $a^2 = a_1c$ $b^2 = b_1c$ $h_c^2 = a_1b_1$ $r = \frac{a+b-c}{2}$ $\sin \alpha = \frac{a}{c}$ $\cos \alpha = \frac{b}{c}$ $\tan \alpha = \frac{a}{b}$ $\cot \alpha = \frac{b}{a}$

$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$
 $b^2 = a^2 + c^2 - 2ac\cos\beta$ $c^2 = a^2 + b^2 - 2ab\cos\gamma$

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$$

Формула за медиана:

$$m_a^2 = \frac{1}{4}(2b^2 + 2c^2 - a^2) \qquad m_b^2 = \frac{1}{4}(2a^2 + 2c^2 - b^2) \qquad m_c^2 = \frac{1}{4}(2a^2 + 2b^2 - c^2)$$

Формула за ъглополовяща:
$$\frac{a}{b} = \frac{n}{m}$$

$$l_c^2 = ab - mn$$

Формула за диагоналите на успоредник:
$$d_1^2 + d_2^2 = 2a^2 + 2b^2$$

Формули за лице

Триъгълник:
$$S = \frac{1}{2}ch_c \qquad S = \frac{1}{2}ab\sin\gamma \qquad \qquad S = \sqrt{p(p-a)(p-b)(p-c)}$$

$$S = pr S = \frac{abc}{4R}$$

Успоредник:
$$S = ah_a$$
 $S = ab\sin\alpha$ Трапец: $S = \frac{a+b}{2}h$

Четириъгълник:
$$S = \frac{1}{2} d_1 d_2 \sin \varphi$$

Описан многоъгълник: S = pr

Тригонометрични функции

α°	0°	30°	45°	60°	90°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sinα	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tgα	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	-
cotga	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

	$-\alpha$	90°-α	90°+α	180° – α
sin	$-\sin \alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$
cos	$\cos \alpha$	$\sin \alpha$	$-\sin \alpha$	$-\cos \alpha$
tg	$-\operatorname{tg}\alpha$	$\cot g \alpha$	$-\cot g \alpha$	$-\operatorname{tg}\alpha$
cotg	$-\cot g \alpha$	tgα	$-tg\alpha$	$-\cot g \alpha$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
 $\cos(\alpha \pm \beta) = \cos \alpha \cdot \cos \beta \mp \sin \alpha \cdot \sin \beta$

$$tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha tg\beta} \qquad cotg(\alpha \pm \beta) = \frac{\cot \alpha \cdot \cot \beta \mp 1}{\cot \beta \pm \cot \alpha}$$

$$\sin 2\alpha = 2\sin \alpha \cos \alpha \qquad \qquad \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

$$tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}$$

$$\cot 2\alpha = \frac{\cot^2 \alpha - 1}{2\cot \alpha}$$

$$\sin^2\alpha = \frac{1}{2}(1-\cos 2\alpha)$$

$$\cos^2\alpha = \frac{1}{2}(1+\cos 2\alpha)$$

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} \qquad \qquad \sin \alpha - \sin \beta = 2\sin \frac{\alpha - \beta}{2}\cos \frac{\alpha + \beta}{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} \qquad \cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$

$$1 - \cos \alpha = 2\sin^2 \frac{\alpha}{2}$$

$$1 + \cos \alpha = 2\cos^2 \frac{\alpha}{2}$$

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\sin \alpha \sin \beta = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta)) \qquad \cos \alpha \cos \beta = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$\sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha + \beta) + \sin(\alpha - \beta))$$

Ръбести и валчести тела:

Призма:

$$S = Ph$$

$$S_1 = S + 2B$$

$$V = Bh$$

Пирамида:

$$S = \frac{Pa}{2}$$

$$S_1 = S + B$$

$$V = \frac{Bh}{3}$$

Прав кръгов цилиндър:

$$S = 2\pi rh$$

$$S_1 = 2\pi rh + 2\pi r^2$$

$$V = \pi r^2 h$$

Прав кръгов конус:

$$S = \pi r l$$

$$S_1 = \pi r l + \pi r^2$$

$$V = \frac{\pi r^2 h}{3}$$

Сфера и кълбо:

$$S = 4\pi r^2$$

$$V = \frac{4}{3}\pi r^3$$

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

МАТЕМАТИКА

29 август 2022 г.

ОБЩООБРАЗОВАТЕЛНА ПОДГОТОВКА

ВАРИАНТ 1

Ключ с верните отговори

No	Отговор	Брой точки
1.	A	2
2.	A	2
3.	Б	2
4.	Б	2
5.	Γ	2
6.	Б	3
7.	В	3
8.	В	3
9.	A	3
10.	Γ	3
11.	В	3
12.	A	3
13.	Γ	3
14.	В	3
15.	Γ	3
16.	A	3
17.	Γ	3
18.	Б	3
19.	A	3
20.	В	3
21.	a) (1) $x = \left\{ \frac{-7 \pm \sqrt{17}}{2}; -4; -3 \right\}$	15
	(2) $x = 0$ (3) $x = \{-3; 2\}$ 6) $-\frac{15}{7}$	
	$6) - \frac{15}{7}$	
22.) 4 250 B 260	15
22.	a) $A = 250$, $B = 360$ 6) $a_1 = -74$, $d = 11$	13
23.	a) $f(x) = \frac{5}{4}x^2 - 4x + 2$	15
	6) $a_1 = -74$, $d = 11$ a) $f(x) = \frac{5}{4}x^2 - 4x + 2$ 6) $\frac{4\sqrt{2}}{5}$ cm	

Задача 21.

Решение:

a) (1)
$$|x^2 + 7x + 10| = 2 \Leftrightarrow x^2 + 7x + 10 = 2 \cup x^2 + 7x + 10 = -2$$

 $x^2 + 7x + 8 = 0 \cup x^2 + 7x + 12 = 0$
 $x = \frac{-7 \pm \sqrt{17}}{2} \cup x = \{-4; -3\} \Leftrightarrow x = \left\{\frac{-7 \pm \sqrt{17}}{2}; -4; -3\right\}$

(2) Полагане
$$y = 5^x > 0$$

$$25^{x} + 10.5^{x-1} - 3 = 0 \Leftrightarrow \begin{vmatrix} y^{2} + 2y - 3 = 0 \\ y > 0 \end{vmatrix}$$

$$\begin{vmatrix} y = \{-3, 1\} \\ y > 0 \end{vmatrix} \Leftrightarrow y = 1 \Leftrightarrow 5^x = 1 \Leftrightarrow x = 0$$

(3)
$$x^2 \sqrt{2-x} = 9\sqrt{2-x} \Leftrightarrow (x^2-9)\sqrt{2-x} = 0$$

$$\begin{vmatrix} x \in (-\infty; 2) \\ x^2 - 9 = 0 \end{vmatrix} \cup |x = 2 \Leftrightarrow \begin{vmatrix} x \in (-\infty; 2) \\ x = \pm 3 \end{vmatrix} \cup |x = 2 \Leftrightarrow x = \{-3; 2\}$$

$$\mathbf{6)} \ \frac{\frac{-7-\sqrt{17}}{2} + \frac{-7+\sqrt{17}}{2} - 4 - 3 + 0 - 3 + 2}{7} = -\frac{15}{7}$$

Примерни критерии за оценяване и точки по критериите, съпътстващи решението:

a) (1) $x = \left\{ \frac{-7 \pm \sqrt{17}}{2}; -4; -3 \right\}$	4точки
(2) Полагане $y = 5^x > 0$ и получаване $x = 0$	4 точки
$(3) x = \{-3; 2\}$	4 точки
6) $-\frac{15}{7}$	3 точки

Задача 22.

Решение:

а) Намиране на стойностите на A и B от равенствата B-A=110 и $\sqrt{B}-\sqrt{A}=\sqrt{10}$ I начин. От $B-A=\underbrace{\left(\sqrt{B}-\sqrt{A}\right)}_{\overline{A}\overline{D}}\Big(\sqrt{B}+\sqrt{A}\Big)=110$ се намира $\sqrt{B}+\sqrt{A}=\frac{110}{\sqrt{10}}=11\sqrt{10}$.

Чрез събиране и изваждане на равенствата $\begin{vmatrix} \sqrt{B} - \sqrt{A} = \sqrt{10} \\ \sqrt{B} + \sqrt{A} = 11\sqrt{10} \end{vmatrix}$ се получава $\sqrt{B} = 6\sqrt{10}$, $\sqrt{A} = 5\sqrt{10}$, от които се намира B = 360 и A = 250.

II начин. Заместване на B = A + 110 в равенството $\sqrt{B} - \sqrt{A} = \sqrt{10}$ и решаване на ирационалното уравнение $\sqrt{A + 110} = \sqrt{A} + \sqrt{10} \Leftrightarrow A + 110 = A + 2\sqrt{10A} + 10 \Leftrightarrow \Leftrightarrow \sqrt{10A} = 50 \Leftrightarrow 10A = 2500 \Leftrightarrow A = 250$. Тогава B = A + 110 = 360.

6) Сумите
$$A$$
 и B са с по 10 члена и $A=\frac{a_1+a_{19}}{2}.10=\frac{a_1+a_1+18d}{2}.10=10\left(a_1+9d\right),$
$$B=\frac{a_2+a_{20}}{2}.10=\frac{a_1+d+a_1+19d}{2}.10=10\left(a_1+10d\right).$$

За a_1 и d се получава системата

$$\begin{vmatrix} 10(a_1 + 10d) = 360 \\ 10(a_1 + 9d) = 250 \end{vmatrix} \Leftrightarrow \begin{vmatrix} a_1 + 10d = 36 \\ a_1 + 9d = 25 \end{vmatrix} \Leftrightarrow d = 11, \ a_1 = -74$$

Следователно $a_1 = -74$, d = 11.

Примерни критерии за оценяване и точки по критериите, съпътстващи решението:

а) Намиране на $A = 250$		5 точки	
Намиране на $B = 360$		5 точки	
	$10(a_1 + 10d) = 360$ $10(a_1 + 9d) = 250$	3 точки	
Намиране на решенията $a_1 = -74$, $d = 11$		2 точки	

Задача 23.

Решение:

а) Ако $MK = x \Rightarrow NK = 2 - x$ и $x \in (0,2)$.

Нека катетът на триъгълника е $a \Rightarrow 2a^2 = x^2 \Rightarrow a = \frac{x}{\sqrt{2}}$ и $S_1 = \frac{x^2}{4}$

$$S_2 = (2-x)^2 \Rightarrow S_1 + S_2 = \frac{5}{4}x^2 - 4x + 4$$

б) Търси се най-малката стойност на функцията $f(x) = \frac{5}{4}x^2 - 4x + 4$ при $x \in (0,2)$

Квадратната функция достига своя минимум при $x = \frac{8}{5}$ и $\frac{8}{5} \in (0,2)$ $\Rightarrow a = \frac{8}{5\sqrt{2}} = \frac{4\sqrt{2}}{5}$

Примерни критерии за оценяване и точки по критериите, съпътстващи решението:

a) $S_1 = \frac{x^2}{4}$	6 точки
$S_2 = (2-x)^2 \Rightarrow S_1 + S_2 = \frac{5}{4}x^2 - 4x + 4$	3 точки
б) Търсене на най-малката стойност на $f(x) = \frac{5}{4}x^2 - 4x + 4$ при $x \in (0,2)$	3 точки
$x = \frac{8}{5} \text{ M } \frac{8}{5} \in (0,2) \implies a = \frac{8}{5\sqrt{2}} = \frac{4\sqrt{2}}{5}$	3 точки