Unsupervised Data Mining: From Batch to Stream Mining Algorithms

Prof. Dr. Stefan Kramer Johannes Gutenberg-Universität Mainz

Outline

- Condensed representations: closed and free sets
- FP-trees and FP-growth

Condensed Representations: Closed and Free Sets

Condensed Representations: Motivation

- Problem of APriori-like approaches: computing frequent itemsets intractable in *dense* and *highly correlated Boolean* data (remember: exponential in the worst-case)
- Distinction: *sparse* and *dense* dataset
- Condensed representations: remove redundancy and provide more interesting patterns to the end-user

Multiples Uses of Frequent Itemsets

... Based on Condensed Representations

Condensed representations of Knowledge frequent sets Rules Patterns Similarities Interpretation and evaluation Clusters Boolean data Data mining

... Based on Condensed Representations

Condensed representations of Knowledge frequent sets Rules Patterns 6 Similarities Interpretation and evaluation Clusters FS Boolean data Data mining

The "Closure" Evaluation Function

 The closure of X is the maximal superset of X that has exactly the same frequency as X (!)

closure(X, r) = items(objects(X, r), r)

Α	В	С	D
1	0	1	0
1	1	1	0
0	1	1	1
0	1	0	1
1	1	1	0

closure($\{A\}$, r) = $\{A,C\}$

Note:

 $A \Rightarrow C$ has confidence 1.0

Closed Sets

 X is a closed set iff X = closure(X, r). It is a maximal set of items that support exactly the same transactions.

Α	В	С	D
1	0	1	0
1	1	1	0
0	1	1	1
0	1	0	1
1	1	1	0

```
{A,C} is closed {A,B} is not closed
```

$$C_{Close}(S)$$

- How about the empty set?
- Closedness is not an anti-monotonic property!

Closed Sets

 X is a closed set iff X = closure(X, r). It is a maximal set of items that support exactly the same transactions.

Α	В	С	D
1	0	1	0
1	1	1	0
0	1	1	1
0	1	0	1
1	1	1	0

Frequent (MinSupport = 2)

A:3, B:4, C:4, D:2,

AB:2, AC:3, BC:3, BD:2,

ABC:2

Frequent closed:

B:4, C:4,

AC:3, BC:3, BD:2, ABC:2

Closed Sets

Α	В	С	D
1	0	1	0
1	1	1	0
0	1	1	1
0	1	0	1
1	1	1	0

Frequent:

A:3, B:4, C:4, D:2,

AB:2, AC:3, BC:3, BD:2,

ABC:2

Frequent closed:

B:4, C:4,

AC:3, BC:3, BD:2, ABC:2

Α	В		В	D	
1	0		0	0	
1	1	?	1	0	?
0	1		1	1	
0	1		1	1	
1	1		1	0	

Possible: confidence 1.0 (logical) rules:

$$A \rightarrow C, D \rightarrow B, AB \rightarrow C$$

Properties of the Closure

- $X \subseteq closure(X)$
- closure(closure(X)) = closure(X)
- $Y \subseteq X \Rightarrow closure(Y) \subseteq closure(X)$

Using Closed Sets

closure({ABC})={ABC}

Comparison with Maximally Specific Itemsets and Borders

- With borders/version spaces: possible to generate all solution patterns
- With frequent closed sets: possible to generate all solution patterns along with their frequencies

Closed Sets and How to Use Them

When S is frequent, choose the frequent closed set X s.t. $S \subseteq X$ that has the maximal support and return freq(S,r) = freq(X,r)

Example Frequent Closed Sets

1	ABCD	
2	AC	
3	AC	
4	ABCD	
5	ВС	
6	ABC	

```
16 frequent sets
```

1 maximal frequent set

5 frequent closed sets

C, AC, BC, ABC, ABCD

$$A \rightarrow C$$
, $B \rightarrow C$, $AB \rightarrow C$, $ABD \rightarrow C$, etc.

Minimum frequency threshold = 2

Example: Closed Sets?

EMPTY(6) B(4) C(6) A(5)D(2)AB(3) AC(5) AD(2) BC(4) BD(2) CD(2) ABC(3) ABD(2) ACD(2) BCD(2)

ABCD(2)

Example: Closed Sets!

EMPTY(6)

Free Sets

- An itemset X is called free if every proper subset of X has a frequency strictly greater than that of X.
- In other words, X is a free set iff there is no logical (confidence 1.0) rule that holds between any of its subsets
- Free sets are special cases of δ -free sets (see next slides), closed sets are the closures of free sets

Α	В	С	D	(HOW about t	the empty set:)
1	0	1	0		
1	1	1	0	CA D 2 : C	5.4. 6.3. 1. 6
0	1	1	1	{A,B} is free	{A,C} is not free
0	1	0	1	C_ (S)	(anti-monotonic!)
1	1	1	0	$C_{Free}(S)$	(unci-monocome:)

Example: Free Sets?

EMPTY(6)

Example: Free Sets

Closed and Free Sets

Closures and δ -Closures

closure(A)={ABC}

closure({ABC})={ABC}

 $B,C \in closure_{\delta}(A)$

δ-Freeness 1

- A δ -free-set is such that there is no δ -strong rule that holds between any of its subsets
- $X \Rightarrow_{\delta} Y$ is δ -strong if it has at most δ exceptions

Α	В	С	D	{A,B} is free, I	but not 1-free
1	0	1	0	(11,0) 15 11 66, 1	out not i net
1	1	1	0	$C_{\delta ext{-free}}(S)$	(anti-monotonic)
0	1	1	1		
0	1	0	1		
1	1	1	0		

δ-Freeness 2

- ...is (as, e.g., the minimum frequency constraint) *anti-monotonic!* Any subset of a delta-free itemset is also delta-free
- Any superset of a non-delta-free itemset is also non-delta-free
- ...provides a condensed representation: frequent free itemsets are less numerous than frequent itemsets while providing almost the same information

APriori Can Be Used to Solve Any Anti-Monotonic Constraint

Most important modification here from:

$$\mathcal{F}_{l}(r) := \{ X \in \mathcal{C}_{l} \mid \mathit{fr}(X, r) \geq \mathit{min_fr} \};$$

to:

$$\mathcal{F}_l(r) := \{X \in \mathcal{C}_l \mid \mathit{fr}(X,r) \geq \mathit{min_fr} \text{ and }$$

$$\mathit{fr}(X,r) \neq \mathit{fr}(Y,r) \text{ for all } Y \subset X\};$$

Discovery of All Frequent Closed Sets

- Find all frequent free sets in the described manner
- Compute closures of frequent free sets from the database
 - determine transactions, where they occur, and intersect them

Examples of Condensed Representations

1	ABCD	
2	AC	
3	AC	
4	ABCD	
5	ВС	
6	ABC	

```
16 frequent sets
```

1 maximal frequent set

Frequent closed sets

C, AC, BC, ABC, ABCD

Frequent free sets

 \emptyset , A, B, D, AB

Frequent 1-free sets

 \emptyset , B, D

Minimum frequency threshold = 2

Example Closed and Free Sets

Different Search Strategies: FP-Trees

Motivation for FP-Growth

- Long patterns require many candidates to be tested (2^{size} -2)
- Database scans are expensive
- Idea: compress large database in a compact data structure, the so-called *FP-tree*, and extract information from that tree
- This is not done in one step: divide-andconquer method to create smaller and smaller sub-databases and FP-trees
- This is called the *pattern growth* methodology

Construction of FP-Tree

TID	Items bought	(ordered) frequent items	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	$min_support = 0.5$
300	$\{b, f, h, j, o\}$	$\{f, b\}$	
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$	

Steps:

- Scan DB once, find frequent 1-itemset (single item pattern)
- Order frequent items in frequency descending order
- 3. Scan DB again, construct FP-tree

Advantages

- Preserves relevant information for frequent pattern mining (long patterns are not broken; also note: infrequent information eliminated)
- What is size of data structure?
- Claims that compression takes place and expensive database scans are not repeated

Mining Frequent Patterns Using FP-Tree

- Divide-and-conquer method:
 - For each node in the FP-tree, construct its conditional pattern-base, and then its conditional FP-tree
 - Recursively mine *conditional FP-trees* until the tree is either *empty* or only a *path*.
 - If it is only a path, then enumerate all subsets as frequent patterns.

Construction of Conditional FP-Tree

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

Step 1: From FP-Tree to Conditional Pattern Base

- Starting at the frequent header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item
- Accumulate all of transformed prefix paths of that item to form a conditional pattern base

Creating Conditional Pattern Bases

Item	Conditional pattern-base	Conditional FP-tree
р	{(fcam:2), (cb:1)}	{(c:3)} p
m	{(fca:2), (fcab:1)}	{(f:3, c:3, a:3)} m
b	{(fca:1), (f:1), (c:1)}	Empty
а	{(fc:3)}	{(f:3, c:3)} a
С	{(f:3)}	{(f:3)} c
f	Empty	Empty

Frequent Pattern Growth

- Pattern growth property
 - Let α be a frequent itemset in DB, B be α 's conditional pattern base, and β be an itemset in B. Then $\alpha \cup \beta$ is a frequent itemset in DB iff β is frequent in B.
- "abcdef" is a frequent pattern, if and only if
 - "abcde" is a frequent pattern, and
 - "f" is frequent in the set of transactions containing "abcde"

Step 3: Recursively Mine Conditional FP-Tree

Single FP-Tree: Path Generation

- Suppose an FP-tree T has a single path P
- The complete set of frequent pattern of T can be generated by enumeration of all the combinations of the sub-paths of P

m-conditional FP-tree

Summary of Frequent Pattern Growth

- FP-growth is an order of magnitude faster than APriori if main memory is sufficient
- Han et al. claim: "no candidate generation, no candidate testing"
- Quite compact and useful data structure
- Eliminate repeated database scan
- Basic operation is counting and FP-tree building

(Sub-)Algorithm FP-Growth

```
procedure FP_growth(Tree, \alpha)
       if Tree contains a single path P then
           for each combination (denoted as \beta) of the nodes in the path P
(2)
               generate pattern \beta \cup \alpha with support_count = minimum support count of nodes in \beta;
(3)
        else for each a_i in the header of Tree {
(4)
           generate pattern \beta = a_i \cup \alpha with support\_count = a_i.support\_count;
(5)
           construct \beta's conditional pattern base and then \beta's conditional FP_tree Tree_{\beta};
(6)
           if Tree_{\beta} \neq \emptyset then
(7)
               call \mathsf{FP\_growth}(\mathit{Tree}_{\beta}, \beta); \}
(8)
```