Espacios vectoriales

Matemáticas para las ciencias aplicadas II

Aquino Chapa Armando Abraham y Merino Peña Kevin Ariel 15 de febrero de 2020

1. Escribe el vector cero en $M_{3x4}(\mathbb{R})$

Definición 0.1 (Matriz). Una **Matriz** es un arreglo rectangular de elementos de un campo $\mathbb{F}(\mathbb{R})$ de la forma

$$A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$

A los elementos $a_{i,j}$ con $1 \le j \le n$ y $1 \le i \le m$ se les llama entradas de la matriz, a las matrices las denotamos por \mathbb{A} (letras mayúsculas) y al conjunto de las matrices de mn se les denota por $M_{m \times n}(\mathbb{F})$

De esta manera tenemos que el vector cero de la matriz de 3 renglones por 4 columnas es aquella cuyas entradas (todas) son 0 i. e.

2. Sea V el conjunto de todas las funciones diferenciables definidas en \mathbb{R} . Muestre que V es un espacio vectorial con las operaciones usuales de suma y multiplicación por un escalar para funciones.

Veamos que la derivada cumple las siguientes propiedades

$$(f(x) + g(x))' = \lim_{h \to 0} \frac{f(x+h) + g(x+h) - (f(x) + g(x))}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x) + g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= f'(x) + g'(x)$$

Así hemos probado que la derivada abre sumas

$$(cf(x))' = \lim_{h \to 0} \frac{cf(x+h) - cf(x)}{h}$$
$$= c \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= cf'(x)$$

De esta manera queda conolidado que en la función derivada, los escalares son sacados de la función

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{c - c}{h}$$

Esto se vale para cualquier constante, en particular el 0

3. Prueba que el conjunto de las funciones pares en \mathbb{R} es un espacio vectorial con suma y multiplicación por escalar usuales para funciones. Recuerde que una función es par si $\forall x \in Dom(f)$ entonces f(-x) = f(x)

Si tenemos en cuenta que f(-t) + g(-t) = f(t) + g(t) y que si tenemos constantes siempre ocurre que cf(-t) = cf(t) entonces ya hemos probado las dos primeras condiciones y para hallar el neutro basta con usar el 0 del cambo (\mathbb{R}) para notar que también lo manda al 0 vector.

4. Sea V el conjunto de pares ordenados de números reales. Si (a_1, a_2) y (b_1, b_2) son elementos de V y $\alpha \in \mathbb{R}$, definamos la suma y multiplicación escalar de la siguiente manera:

(i)
$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2b_2)$$

(ii)
$$\alpha(a_1, a_2) = (\alpha a_1, a_2)$$
.

¿Es V un espacio vectorial sobre \mathbb{R} con estas operaciones?

No puede ser un espacio vectorial porque si tenemos que

$$0(a_1, a_2) = (0, a_2)$$

para cumplir el cero vector, entonces se compliría para cualquier a_2 lo cual no es posible pues contradice la unicidad del cero.

5. Determinar cuales de los siguientes conjuntos son subespacios de \mathbb{R}^3 bajo las operaciones de suma y multiplicación por un escalar usual.

Basta con revisar si en cada caso se encuentra cerrado bajo la multiplicación escalar y bajo la adición, además que siempre contenga al o

- a) $W_1 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 | a_1 = 3a_2 \text{ y } a_3 = -a_2 \}$ Sí es linear porque lo satisface t(3, 1, -1)
- b) $W_2 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 | a_1 = a_3 + 2\}$ NO es linear porque no contiene al elemento neutro dentro del espacio vectorial.
- c) $W_3 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 | 2a_1 7a_2 + a_3 = 0\}$ Sí es linear pues lo satisface (2, -7, 1)
- d) $W_4 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 | a_1 4a_2 a_3 = 0\}$ Sí es linear pues lo satisface (1, -4, -1)
- 6. En cada caso diga si los vectores son generados por el conjunto ${\cal S}$

a)
$$(2,-1,1), S = \{(1,0,2), (-1,1,1)\}$$

Sea $\alpha_1, \alpha_2 \in \mathbb{R}$.

Entonces
$$(2, -1, 1) = \alpha_1(1, 0, 2) + \alpha_2(-1, 1, 1) = (\alpha_1, 0, 2\alpha_1) + (-\alpha_2, \alpha_2, \alpha_2) = \alpha_1 - \alpha_2, \alpha_2, 2\alpha_1 + \alpha_2.$$

Tenemos el siguiente sistema de ecuaciones:

$$\alpha_1 - \alpha_2 = 2$$

$$\alpha_2 = -1$$

$$2\alpha_1 + \alpha_2 = 1$$

Ahora:

$$\alpha_1 - (-1) = 2$$
$$\alpha_2 = -1$$
$$2\alpha_1 + \alpha_2 = 1$$

Al resolver el sistema, obtenemos:

$$\alpha_1 = 1$$

$$\alpha_2 = -1$$

$$1 = 1$$

Entonces:

$$1(1,0,2) + (-1)(-1,1,1) = (1,0,2) + (1,-1,-1) = (2,-1,1)$$

Cómo el sistema de ecuaciones si se satisface, el conjunto S SI genera al vector (2, -1, -1)

b)
$$(2, -1, 1, 3), S = \{(1, 0, 1, -1), (0, 1, 1, 1)\}$$

Sea $\alpha_1, \alpha_2 \in \mathbb{R}$.

Entonces: $(2, -1, 1, 3) = \alpha_1(1, 0, 1, -1) + \alpha_2(0, 1, 1, 1) = (\alpha_1, 0, \alpha_1, -\alpha_1) + (0, \alpha_2, \alpha_2, \alpha_2) = \alpha_1, \alpha_2, \alpha_1 + \alpha_2, -\alpha_1 + \alpha_2$. Tenemos el siguiente sistema de ecuaciones:

$$\alpha_1 = 2$$

$$\alpha_2 = -1$$

$$\alpha_1 + \alpha_2 = 1$$

$$-\alpha_1 + \alpha_2 = 3$$

Ahora:

$$\alpha_1 = 2$$

$$\alpha_2 = -1$$

$$2 - 1 = 1$$

$$-(-1) + 2 = 3$$

Por último:

$$\alpha_1 = 2$$

$$\alpha_2 = -1$$

$$1 = 1$$

$$3 = 3$$

Al resolver el sistema de ecuaciones verificamos si el conjunto S genera al vector. Entonces:

$$2(1,0,1,-1) + (-1)(0,1,1,1) = (2,0,2,-2) + (0,-1,-1,-1) = (2,-1,-1,-3)$$

Como el producto de los escalares por los elementos del conjunto S no forman al vector, podemos concluir que S NO genera a (2, -1, 1, 3).

c)
$$2x^3 - x^2 + x + 3$$
, $S = \{x^3 + x^2 + x + 1, x^2 + x + 1, x + 1\}$

Sean α_1 , α_2 y α_3 elementos del campo, si suponemos que $2x^3 - x^2 + x + 3$ es generado por S implicará que existen dichos 3 elementos $\cdot \cdot \ni \cdot$

$$2x^3 - x^2 + x + 3 = \alpha_1(x^3 + x^2 + x + 1) + \alpha_2(x^2 + x + 1) + \alpha_3(x + 1)$$

$$\alpha_1 x^3 + \alpha_1 x^2 + \alpha_1 x + \alpha_1 \tag{1}$$

$$\alpha_2 x^2 + \alpha_2 x + \alpha_2 \tag{2}$$

$$\alpha_3 x + \alpha_3 \tag{3}$$

Por lo que ocurre lo siguiente

$$2x^3 - x^2 + x + 3 = \alpha_1 x^3 + \alpha_1 x^2 + \alpha_1 x + \alpha_1 + \alpha_2 x^2 + \alpha_2 x + \alpha_2 + \alpha_3 x + \alpha_3$$

$$2x^{3} - x^{2} + x + 3 = \alpha_{1}x^{3} + \alpha_{1}x^{2} + \alpha_{1}x + \alpha_{1} + \alpha_{2}x^{2} + \alpha_{2}x + \alpha_{2} + \alpha_{3}x + \alpha_{3}$$
$$= x^{3}(\alpha_{3}) + x^{2}(\alpha_{2} + \alpha_{1}) + x(\alpha_{3} + \alpha_{2} + \alpha_{1}) + \alpha_{1} + \alpha_{2} + \alpha_{3}$$

$$\begin{aligned} \alpha_3 &= 2 \\ \alpha_2 &= -1 - \alpha_1 \\ \alpha_2 &= -1 - 2 \\ \alpha_2 &= -3 \end{aligned}$$

$$\mathbf{d}) \, \begin{pmatrix} 1 & 2 \\ -3 & 4 \end{pmatrix}, S = \left\{ \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \right\}$$