Chapter 3 Network Layer

ET4230 - 20112

TS. Trần Quang Vinh BM. Kỹ thuật Thông tin Viện Điện tử - Viễn thông Đại học Bách Khoa Hà Nội vinhtq@mail.hut.edu.vn

Chương 3: Nội dung

- Các giao thức định tuyến trên mạng Internet
 - Phân cấp trong định tuyến
 - Định tuyến nội vùng (Intra-domain): RIP, OSPF
 - Định tuyến liên vùng (Inter-domain): BGP

Định tuyến trong mạng Internet

- Internet thực hiện định tuyến có phân tầng (hierarchical routing):
 - Internet được phân thành các hệ tự trị AS (Autonomous System)
 - Mỗi AS được quản trị riêng biệt bởi các quản trị mạng
 - Trong một AS: sử dụng một giao thức định tuyến nội miền (interior gateway protocol)
 - Giữa các AS: sử dụng giao thức định tuyến liên miền (exterior gateway protocol)

Hệ tự trị

■ Mỗi hệ tự trị có một số hiệu riêng – AS number (ASN - 16 bits hay 32 bits)

```
2914 NTT-COMMUNICATIONS-2914 - NTT America, Inc.
3491 BTN-ASN - Beyond The Network America, Inc.
4134 CHINANET-BACKBONE No.31, Jin-rong Street
6453 GLOBEINTERNET Teleglobe America Inc.
24087 VNGT-AS-AP Vietnam New Generation Telecom
24066 VNNIC-AS-VN Vietnam Internet Network Information
Center
```

17981 CAMBOTECH-KH-AS ISP Cambodia

4

Hệ tự trị (tiếp...)

■ ASN được cấp phát bởi IANA (Internet Assigned Numbers Authority)

Phân loại các giao thức định tuyến

- Trong một AS: sử dụng một giao thức định tuyến nội miền IGP (interior gateway protocol)
- Giữa các AS: sử dụng giao thức định tuyến liên miền EGP (exterior gateway protocol)

EGP và IGP

Định tuyến nội vùng

- Intra-AS routing = Interior Gateway Routing (IGP)
- Các giao thức định tuyến nội vùng thông dụng:
 - RIP (Routing Information Protocol)
 - OSPF (Open Shortest Path First)
 - IGRP (Interior Gateway Routing Protocol) Chỉ sử dụng cho các router của Cisco

RIP

■ Đặc điểm:

- RIP Routing Information Protocol
- Là giao thức định tuyến theo vector khoảng cách sử dụng thuật toán Bellman-Ford phân tán
- Được phát triển lần đầu dưới hệ điều hành BSD Unix năm 1982
- Trước đây được sử dụng rộng rãi, hiện nay ít được sử dụng
- Khoảng cách là số chặng tới mạng đích
- Số chặng tối đa: 15 chặng
 - nếu số lượng hop để đến đích > 15 thì gói dữ liệu sẽ bị hủy bỏ

RIP (tiếp...)

■ Trao đổi thông tin:

- Định kỳ
 - Các vector khoảng cách được trao đổi định kỳ 30s
 - Mỗi thông điệp chứa tối đa 25 mục
 - Trong thực tế, nhiều thông điệp được sử dụng
- Sự kiện
 - Gửi thông điệp cho nút hàng xóm mỗi khi có thay đổi
 - Nút hàng xóm sẽ cập nhật bảng chọn đường của nó

Các bộ đếm thời gian:

- Update timer
 - Dùng để trao đổi thông tin cứ 30s
- Invalid timer
 - Khởi tạo lại mỗi khi nhận được thông tin chọn đường
 - Nếu sau 180s không nhận được thông tin -> trạng thái hold-down
- Hold down timer
 - Giữ trạng thái hold-down trong 180s
 - Chuyển sang trạng thái down
- Flush timer
 - Khởi tạo lại mỗi khi nhận được thông tin chọn đường
 - Sau 240s, xóa mục tương ứng trong bảng chọn đường

RIP (tiếp...)

<u>Định dạng bản tin RIP (RIP Message Format)</u>

RIPv1 Message Format

RIPv1 (RFC 1058)

- Hoạt động: Sử dụng 2 loại bản tin:
 - Request message
 - Được gửi đi lúc khởi động bởi mỗi giao diện
 - Y/c tất cả hàng xóm gửi bảng định tuyến
 - Response message
 - Bản tin trả lời được gửi đến router ra yêu cầu có chứa bảng định tuyến
- Sử dụng dịch vụ UDP trên cống 520
- Hỗ trợ định tuyến trong các mạng đánh địa chỉ IP có phân lớp (classful)
 - Bản tin cập nhật: chỉ cần thông tin mạng đích, khoảng cách tới mạng đích

RIPv1 (RFC 1058)

■ RIPv1 Format

Comparing RIPv1 and RIPv2 Message Formats

RIPv2 (RFC 2453)

- Hỗ trợ định tuyến trong cả mạng đánh địa chỉ không phân lớp (classless)
 - →Bản tin cập nhật: thông tin mạng đích, subnet mask của mạng đích, khoảng cách tới mạng đích
 - Cung cấp chức năng xác thực: Clear text and MD5

Ví dụ 1

Xác định bảng định tuyến cho mỗi router trong mạng sau

Solution

Dest. Hop Next	Dest. Hop Next	Dest. Hop Next	Dest. Hop Next
130.10.0.0 1	130.10.0.0 1	130.10.0.0 2 195.2.5.1	130.10.0.0 2 1 30.11.0.2
130.11.0.0 1 —————————————————————————————	130.11.0.0 2 130.10.0.2 195.2.4.0 1 ———	130.11.0.0 3 195.2.5.1 195.2.4.0 2 195.2.5.1	130.11.0.0 1 —————————————————————————————
195.2.5.0 2 130.10.0.1 195.2.5.0 2 130.10.0.1	195.2.5.0 1	195.2.5.0 1	195.2.5.0 3 130.11.0.2
195.2.6.0 3 130.10.0.1	195.2.6.0 2 1 95.2.5.2	195.2.6.0 1	195.2.6.0 4 130.11.0.2
205.5.5.0 2 130.11.0.1 205.5.6.0 2 130.11.0.1	205.5.6.0 3 130.10.0.2 205.5.6.0 3 130.10.0.2	205.5.5.0 4 195.2.5.1 205.5.6.0 4 195.2.5.1	205.5.5.0 1 ———
R1 Table	R2 Table	R3 Table	R4 Table

Interior Gateway Routing Protocol (IGRP)

- Cisco proprietary IP routing protocol
- Advertises up to five metrics for each route
 - Bandwidth: describes the constrained link speed (weakest link in the route)
 - Delay: cumulative number (route over 10 Fast Ethernets includes 100 Mbps * 10)

So sánh RIP và IGRP

Feature	RIP-1	RIP-2	IGRP
Update timer for full updates	30 seconds	30 seconds	90 seconds
Metric	Hop count	Hope count	Bandwidth and delay (also can include reliability, load, and MTU)
Supports VLSM	No	Yes	No
Infinite metric value	16	16	4,294,967,295
Convergence	Slow	Slow	Slow

OSPF

■ Đặc điểm:

- OSPF Open Shortest Path First
- Thông tin về trạng thái liên kết LSA (link state advertisement) được quảng bá trên toàn AS
- Với các AS lớn: OSPF được phân cấp thành nhiều miền OSPF nhỏ
- Các router sử dụng thuật toán Dijkstra để thiết lập bảng định tuyến
- Khoảng cách (giá): 100Mbps/dung lượng kênh

OSPF (tiếp...)

■ Phân vùng trong OSPF:

- Trong việc chọn đường, tại sao phải chia mạng thành các vùng nhỏ hơn?
- Nếu có quá nhiều router
 - Thông tin trạng thái liên kết được truyền nhiều lần hơn
 - Phải liên tục tính toán lại
 - Cần nhiều bộ nhớ hơn, nhiều tài nguyên CPU hơn
 - Lượng thông tin phải trao đổi tăng lên
 - Bảng chọn đường lớn hơn

OSPF (tiếp...)

■ Quan hệ giữa ASes, backbones, và areas

OSPF (tiếp...)

- ABR Area border routers: Quản lý 1 vùng và kết nối đến các vùng khác
- ASBR Autonomous system boundary router: Nối đến các AS khác
- BR backbone routers: thực hiện định tuyến OSPF trong vùng backbone
- Internal Router Thực hiện định tuyến OSPF bên trong một vùng

Các kiểu bản tin OSPF

OSPF Hello packet

Chức năng

- Dùng để khám phá các Neighbor
- Dùng để quảng cáo các tham số mà hai Router phải chấp nhận trước khi chúng trở thành các Neighbor của nhau
- Đảm bảo thông tin hai chiều giữa các Neighbor
- Các gói Hello hoạt động như các Keepalive giữa các Neighbor
- Dùng để bầu cử DR và BDR trong mạng Broadcast và Nonbroadcast Multiaccess (NBMA)

RIP và OSPF - So sánh

	RIP	OSPF
Đặc điểm	 Router bình đẳng Cấu hình dễ dàng Mạng cỡ nhỏ 	Phân câpCấu hình phức tạpMạng cỡ vừa và lớn
Khả năng mở rộng	Không	Có
Độ phức tạp tính toán	Nhỏ	Lớn
Hội tụ	Chậm	Nhanh
Trao đổi thông tin	Bảng chọn đường	Trạng thái liên kết
Giải thuật	Distant vector	Link-state
Cập nhật hàng xóm	30s	10s (Hello packet)
Đơn vị chi phí	Số nút mạng	Băng thông

Định tuyến liên miền

- BGP (Border Gateway Protocol): giao thức định tuyến liên miền thông dụng nhất hiện nay → BGP-4
- Đặc điểm của BGP
 - Không sử dụng DV hay LSA → sử dụng vector đường dẫn (path vector)
 - Lựa đường đi tốt nhất dựa trên một tập hợp các thuộc tính (ATTRIBUTE)
 - BGP uses the services of TCP on port 179
 - BGP supports classless addressing and CIDR

■ eBGP và iBGP:

- External BGP vs. Internal BGP
- Phân tán thông tin chọn đường
 - → (1) 3a gửi tới 1c bằng eBGP
 - (2) 1c gửi thông tin nội bộ tới (1b, 1d, ...) trong AS1 bằng iBGP
 - ▶ (3) 2a nhận thông tin từ 1b bằng eBGP

- Áp dụng chính sách định tuyến với BGP:
 - Khi các router gửi và nhận thông tin chọn đường:
 - BGP có thể đặt các chính sách
 - Cho đường vào
 - Cho đường ra
- Các bản tin BGP:
 - Open: Thiết lập một phiên BGP giữa 2 router
 - Keep Alive: Bắt tay theo chu kỳ
 - Notification: Hủy bỏ phiên BGP sau khi trao đổi thông tin
 - Update: cập nhật các tuyến mới hoặc hủy bỏ các tuyến cũ

- Bản tin cập nhật: chứa các thuộc tính của tuyến
- Thuộc tính của tuyến: → được sử dụng để chọn đường tối ưu khi có nhiều tuyến cùng đi đến một đích
 - ORIGIN
 - Nguồn của thông tin (IGP/EGP/incomplete)
 - ▶ AS_PATH
 - NEXT_HOP
 - MED (MULTI_EXIT_DISCRIMINATOR)
 - ▶ LOCAL_PREF
 - ATOMIC_AGGREGATE
 - AGGREGATOR
 - COMMUNITY

Bài tập

■ Bài tập 1

- Cho bảng định tuyến tại router R1
- R1 sẽ gửi gói đến mạng nào khi nhận được các gói tin có địa chỉ đích như sau:
 - **192.138.32.1**
 - ▶ 192.138.32.100

dest. network/subnet mask	next hop
192.138.32.0/26	10.1.1.1
192.138.32.0/24	10.1.1.2
192.138.32.0/19	10.1.1.3

Bài tập (tiếp...)

■ Bài tập 2

- Công ty A xây dựng một mạng LAN bao gồm 1000 host được nhóm theo kiểu supernet. Trước tiên quản trị mạng của công ty này phải yêu cầu ISP B cung cấp một dải địa chỉ IP thuộc lớp C.Công ty A có thể chọn một vài địa chỉ nằm trong dải sau:
 - Lựa chọn 1 gồm 5 địa chỉ: dải 200.1.15.0, 200.1.16.0, 200.1.17.0, 200.1.18.0, 200.19.0.
 - Lựa chọn 2 gồm 5 địa chỉ: 215.3.31.0, 215.3.32.0, 215.3.33.0, 215.3.34.0, 215.3.35.0
- Hãy trình bày cách thực lựa chọn địa chỉ và tìm supernet mask tương ứng

Bài tập (tiếp...)

■ Bài tập 3

- Cho một mạng cục bộ thuộc công ty A được phân địa chỉ 220.130.15.0. Mạng này được chia thành 7 mạng nhỏ:
 - Mạng thứ nhất và 2 có 62 host
 - Mạng thứ 3 và 4 có 30 host
 - Mạng thứ 5, 6, 7 mỗi mạng có 14 host
- Hãy thiết kế mạng này

Tài liệu tham khảo

- Internetworking with TCP/IP, Vol 1, Douglas Comer, Prentice Hall Computer
- Networking: a top-down approach featuring the Internet, James F. Kurose, Keith W. Ross, Addison Wesley, 4thed, 2006
- Computer Networks, Andrew S. Tanenbaum, Prentice Hall, 4th Edition
- Computer Networks, Nick McKeown, Stanford University

IP Version 6 Goals

- Support billions of hosts
- Reduce routing table size
- Simplify protocol
- Better security
- Attention to type of service
- Aid multicasting
- Roaming host without changing address
- Allow future protocol evolution
- Permit coexistence of old, new protocols

IP Version 6 (1)

The IPv6 fixed header (required).

IP Version 6 (2)

Extension header	Description	
Hop-by-hop options	Miscellaneous information for routers	
Destination options	Additional information for the destination	
Routing	Loose list of routers to visit	
Fragmentation	Management of datagram fragments	
Authentication	Verification of the sender's identity	
Encrypted security payload	Information about the encrypted contents	

IPv6 extension headers

IP Version 6 (3)

Next header	0	194	4	
Jumbo payload length				

The hop-by-hop extension header for large datagrams (jumbograms).

IP Version 6 (4)

The extension header for routing.