KU	APPS						
/12	/18						

Bayview Secondary School Mathematics Department – Course Code: MDM4U1 Unit 5 Probability Distribution Assessment for Learning

Instruction:

- Round all answers to 4 decimal places unless otherwise indicated.
- Show all necessary steps and work in a logical sequence to demonstrate the chain of thought to obtain full marks.

KNOWLEDGE/UNDERSTANDING

Short answer questions. Please write your final answer in the table provided, you do not need to provide steps in this section. [Total 12 marks: 1 mark each]

	Questions	Final Answers
1.	Calculate the z-score of $x = 79$ for a population approximated with a mean of 81 and standard deviation of 36.	
2.	A coin is flipped 50 times. You win each time a tail appears. Calculate the probability of getting 26 wins.	
3.	5 numbers, ranging from 1 to 5, are placed in a purple hat. You are to choose one number from the hat. Determine the expected value of the chosen number.	
4.	An ordinary die is thrown five times. If X represents the number of times a	three is rolled,
	a. Determine the type of distribution modeled in this situation.	
	b. What is the probability of success?	
	c. What is the expectation?	
	d. What is P(5)?	
	e. What is the probability that exactly two 3's turn up?	
5.	A box contains 6 white balls and 5 purple balls. 4 balls are randomly withdr	rawn without being replaced.
	a. What type of distribution is modeled in this situation?	
	b. Write an expression for the probability function $P(X)$ used to determine the probability of choosing x white marbles.	
	c. What is the expected number of white balls selected?	
	d. What is the probability that zero white balls will be chosen?	

APPLICATION

6.	Suppose the time periods that people wait in line at a particular bank are normally distributed with a mean of 10 minutes and a standard deviation of 3 minutes. Calculate the probability that a person will wait: * concluding statements are not required									
a)	less than 13 minutes	2								
b)	more than 15 minutes	2								
c)	between 6 minutes and 11 minutes	2								
d)	either more than 15 minutes or less than 13 minutes	1								

7.	A single card is selected from a standard deck of 52 cards. The card is noted and replaced. If the process is repeated a total number of six times, calculate the probability that a face card is selected more than three times.
8.	A random sample of 1000 elevators was tested. Calculate the probability of observing 27 or more defectives assuming that the elevators' average reliability is 0.98.
9.	Slick decided to pick up some spare spending money using a game that he designed. The game is based on the roll of a six-sided fair die. The player rolls a "n". If n is a prime number, then player must pay Slick $\$2^n$, but if n is not a prime number, Slick must pay the player $\$n^2$. Construct a probability distribution table and determine the expected value of the game. Interpret this value. What should Slick charge to make this game fair? Explain.

Probability distribution:

Expected Value:

$$E(X) = \sum_{i=1}^{n} x_i P(x_i)$$

Hypergeometric Distribution:

istribution:
$$P(x) = \frac{\binom{a}{x}\binom{n-a}{r-x}}{\binom{n}{r}}$$

$$E(X) = \frac{ra}{n}$$

Binomial Distribution:

$$P(x) = \binom{n}{x} p^x q^{n-x}$$
$$E(X) = np$$

z-score:

$$z = \frac{x - \overline{x}}{s}$$

Normal Approximation for Binomial Distribution:

$$\overline{x} = np$$
 $\sigma = \sqrt{npq}$

7	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09		0.00	0.04	0.00	0.00	0.04	0.05	0.00	0.07	0.00	0.00
- 2.9	20000				0.0016						Z		0.01								
- 2.8					0.0023						0.0		0.5040								
-2.7					0.0031						0.1		0.5438								
- 2.6					0.0041						0.2		0.5832								
- 2.5					0.0055						0.3		0.6591								
- 2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064	0.4	-	0.6950								
- 2.3				Activities (des)	0.0096	0.0000000000000000000000000000000000000					0.5		0.7291								
- 2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110	0.7		0.7611								
- 2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143	0.8		0.7910								
- 2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183	0.9		0.8186								
	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233	1.0	0.0227	0.8438								
	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294	1.1		0.8665								
	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367	1.2		0.8869								
	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455	1.3		0.9049								
	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985		0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379		0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
- 0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
- 0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148	2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
- 0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
- 0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
- 0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121	2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
- 0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
- 0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859		0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247	2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641	2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986

