Software Development II Unit 4: Blackbox Testing Equivalence Class Testing

Markus Roggenbach

You will learn 2

You will learn

An advance blackboard testing technique

In particular, we look into

- how to partition the input domain
- how to choose representatives of each partition in order to obtain a test suite

Equivalence class testing

Boundary Value Testing ignores the output

Given a computational problem with 2 inputs of type byte, the testsuite will always exercise the SUT for the same inputs, namely

name	x	y	expected result
T1	-128	-4	
T2	-127	-4	
Т3	-4	- 4	
T4	126	-4	
T5	127	-4	
T6	-4	-128	
T7	-4	-127	
Т8	-4	126	
Т9	-4	127	

independent of what we respect as result:

$$x * y, x + y, x - y, x^y, \dots$$

In contrast: analysis triggered by the output

e.g.: tests should mirror elementary algebraic properties

Examples:

Multiplication:

• 1 *
$$x = x$$

•
$$0 * x = 0$$

Square function:

•
$$x^2 > 0 \ (x > 0)$$

•
$$x^2 > 0 \ (x < 0)$$

•
$$0^2 = 0$$

•
$$1^2 = 1$$

Rationale for equivalence class testing

Assumption:
The SUT will behave
"the same"
for certain classes of inputs.

If we cover all possible behaviours, the system is well tested.

Def: Equivalence relation

A relation $\sim \subseteq X*X$ on a set X is called an equivalence relation, if \sim is

- reflexive,
- symmetric, and
- is transitive.

Def: Partition

Def: Partition

A set P of nonempty sets is a partition of a set X if

- 1. The union of the elements of P is equal to X. (We say the elements of P cover X.)
- 2. The intersection of any two distinct elements of P is empty. (We say the elements of P are pairwise disjoint.)

Equivalence relation induced by a partition

Let P be a partition of a set X.

Definition:

Let $x, y \in X$.

Define a relation $\sim \subseteq X \times X$ by

 $x \sim y$ iff there exists $R \in P$ with $x, y \in R$.

Theorem: \sim is an equivalence relation.

Partion induced by equivalence relation

Let $\sim \subseteq X * X$ be an equivalence relation on a set X.

Definition:

For $x \in X$ define $\bar{x} := \{ y \in X \mid x \sim y \}$.

Theorem: $P := \{\bar{x} \mid x \in X\}$ is a partition of X.

Basic idea: weak normal equivalence class testing

Step 1 Define partitions for either the whole input domain or each variable

Step 2 Identify test cases by randomly choosing one element from each equivalence class — in case the whole input domain was partitioned: these are the test inputs — in case the domain of each variable was partitioned: combine these elements in such a way that for each class there is at least one test case.

Triangle Problem – an example where the whole input domain is partioned

```
R1 = \{(a,b,c) \mid \text{triangle with sides } a, b, \text{ and } c \text{ is equilateral.} \}

R2 = \{(a,b,c) \mid \text{triangle with sides } a, b, \text{ and } c \text{ is isosceles.} \}

R3 = \{(a,b,c) \mid \text{triangle with sides } a, b, \text{ and } c \text{ is scalene.} \}

R4 = \{(a,b,c) \mid \text{sides } a, b, \text{ and } c \text{ do not form a triangle.} \}
```

Test Case	$\mid a \mid$	b	c	expected output
WN1	5	5	5	equilateral
WN2	2	2	3	isosceles
WN3	3	4	5	scalene
WN4	4	1	53	not a triangle

Speed control (old exam question) – Computational Problem

SpeedControl:

Input: integers $0 \le l \le 70$ and $0 \le s \le 200$

Output: "under speed limit", if $s \leq l$

"marginally over speed limit ", if $l < s \le 1.05 * l$

"significantly over speed limit", otherwise

- 1. Define equivalence classes for the whole input domain according to the outcome of the computational problem **SpeedControl**.
- 2. Write a minimal test suite for Equivalence Class Testing.

Speed control: Equivalence Classes

- $C_1 = \{(l, s) \in \mathbf{Z} \times \mathbf{Z} \mid 0 \le l \le 70, \ 0 \le s \le 200, \ s \le l\}$
- $C_2 = \{(l, s) \in \mathbf{Z} \times \mathbf{Z} \mid 0 \le l \le 70, \ 0 \le s \le 200, \ l < s \le 1.05 * l\}$
- $C_3 = \{(l, s) \in \mathbf{Z} \times \mathbf{Z} \mid 0 \le l \le 70, \ 0 \le s \le 200, \ 1.05 * l < s\}$

Speed control: Test Suite

Name		S	expected output
T1	10	5	under speed limit
T2	50	52	marginally over speed limit
T3	50	60	significantly over speed limit

Keyboard driver (old exam question) – Computational Problem

For a keyboard driver it is necessary to classify keystrokes into "lowerCaseCharacter" (i.e. the characters "a", "b", . . . , "z"), "digit" (i.e. "0", "1", . . . , "9"), "rest".

KeystrokeType:

Input: character c of type char

Output: lowerCaseCharacter, if c is one of "a", "b", . . . , "z".

digit, if c is one of "0", "1", ..., "9".

rest, otherwise

- 1. Define the equivalence classes for the input domain char by partioning the whole input domain according to the outcome of the computational problem **KeystrokeType**.
- 2. Write a test suite for Equivalence Class Testing.

On the blackboard: Equivalence Classes & Test Suite

How to find the classes?

How to find the classes?

In the previous three examples always:

 demonstrate all possible outcomes of a classification problem

Later on:

Problem analysis

Notation for intervals 19

Notation for intervals

Over the numbers (reals, rationals, integers, naturals), the following set notations are often used:

- $\bullet [a,b] = \{x \mid a \le x \le b\}$
- $(a,b) = \{x \mid a < x < b\}$
- $\bullet [a,b) = \{x \mid a \le x < b\}$
- $(a,b] = \{x \mid a < x \le b\}$

Note: if b < a, then $[a, b] = \{\}$.

Illustration of Step 1 on a Computational Problem with two parameters

F:

Input: x and y

Output: ...

Assume that

- [a,b),[b,c](c,d] is a useful partition for x.
- \bullet [e, f), [f, g] is a useful partition for y.

with $a \leq b \leq c \leq d$ and $e \leq f \leq g$.

Illustration of Step 2 on a Computational Problem with two parameters

Then we need 3 test cases, e.g.,

Test Case	x	y	expected output
T1	а	е	
T2	b	f	
T3	d	f	

```
T1 covers [a,b) and [e,f).
```

T2 covers [b, c] and [f, g].

T3 covers (c, d] and [f, g].

What you have learned in this unit

Definitions

- Equivalence relation
- Partition
- Process of deriving a equivalence class testsuites as UML Activity
 Diagram

Theorems 24

Theorems

- Every equivalence relation gives rise to a partition.
- Every partition gives rise to an equivalence relation.

You should be able to explain by example

- Why equivalence class testing is useful in 'classification problems'
- How to design test suites for four variants of equivalence testing