CTA-GPS with gammapy version almost 1.0

Quentin Remy

July 2020

XML -> gammapy models -> YAML and FITS

```
</source>
                                                                                                                name: LS 5039
<source name="LS 5039" type="PointSource">
                                                                                                                type: SkyModel
                                                                                                                spectral:
 <spectrum type="ExponentialCutoffPowerLaw">
                                                                                                                    type: ExpCutoffPowerLawSpectralModel
    <parameter name="Prefactor" value="2.48" error="0" scale="1e-18" min="1e-07" max="1000" free="1" />
                                                                                                                    parameters:
    <parameter name="Index" value="2.2" error="0" scale="-1" min="0" max="5" free="1" />
                                                                                                                    - {name: index, value: 2.2, unit: '', min: 0.0, max: 5.0, frozen: false, error: 0}
   <parameter name="CutoffEnergy" value="6.6" error="0" scale="1000000" min="0.01" max="1000" free="1" />
                                                                                                                    - {name: amplitude, value: 1.5996e-18, unit: cm-2 MeV-1 s-1, min: 1.0e-25,
    <parameter name="PivotEnergy" value="1" scale="1000000" min="0.01" max="1000" free="0" />
                                                                                                                        max: 1.0e-15, frozen: false, error: 0}
  </spectrum>
                                                                                                                    - {name: reference, value: 1000000.0, unit: MeV, min: 10000.0, max: 1000000000.0,
  <spatialModel type="PointSource">
                                                                                                                        frozen: true, error: 0}
    <parameter name="RA" value="276.5625" error="0" scale="1" min="-360" max="360" free="1" />
                                                                                                                    - {name: lambda_, value: 1.5151515151515152e-07, unit: MeV-1, min: 0.0001,
    <parameter name="DEC" value="-14.825" error="0" scale="1" min="-90" max="90" free="1" />
                                                                                                                       max: 1.0e-09, frozen: false, error: 0}
  </spatialModel>
                                                                                                                    - {name: alpha, value: 1.0, unit: '', min: .nan, max: .nan, frozen: true,
                                                                                                                        error: 0}
  <temporal type="PhaseCurve" file="phasecurve LS DC.fits" normalize="0">
    <parameter name="Normalization" value="1" scale="1" min="0" max="1000" free="0" />
                                                                                                                spatial:
                                                                                                                    type: PointSpatialModel
   <parameter name="MJD" value="51943.09" scale="1" min="0" max="100000" free="0" />
                                                                                                                    frame: icrs
    <parameter name="Phase" value="0" scale="1" min="0" max="1" free="0" />
                                                                                                                    parameters:
    <parameter name="F0" value="2.967711" scale="1e-06" min="0" max="1000" free="0" />
                                                                                                                    - {name: lon 0, value: 276.5625, unit: deg, min: -360.0, max: 360.0, frozen: false,
   <parameter name="F1" value="0" scale="1" min="0" max="1000" free="0" />
    <parameter name="F2" value="0" scale="1" min="0" max="1000" free="0" />
                                                                                                                    - {name: lat_0, value: -14.825, unit: deg, min: -90.0, max: 90.0, frozen: false,
  </temporal>
</source>
```

Missing models

- Broken-power-law (given as SmoothBrokenPowerLawSpectralModel with beta = 0.1 for now
- Piece-wise broken power law (ctool NodeFunction given as TemplateSpectralModel for now)
- Phase curve (returning mean spectrum instead)

Difference of conventions fixed case-by-case

Several missing unit in templates assumed to be default, user must check

Input/Output catalogue as FITS: in gammapy.catalogue?

🖈 Source_Name	Npred	TS 7	SpatialModel	GLON	GLAT	Radius	Width	SpectralModel	F_0.05-1TeV	F_1-100TeV	TemporalModel
HESS J1640-465	5858.354	10740.49	GaussianSpatialModel	338.2771	-0.00351	0.071666		ExpCutoffPowerLawSpe	9.179144944138073E-11	2.248657423459255E-12	
RCW 86	4959.837	10545.96	ShellSpatialModel	315.0927	-2.37651	0.151999	0.037999	ExpCutoffPowerLawSpe	3.105955076465605E-11	2.4430455488472225E-12	
Galactic Centre	5030.374	10403.79	PointSpatialModel	359.9442	-0.04616	0.0		ExpCutoffPowerLawSpe	6.493502957560793E-11	1.7038356402848676E-12	
composite_89	3439.444	10337.65	GaussianSpatialModel	51.24686	0.543028	0.029659		LogParabolaSpectralM		1.0958932329316329E-12	
pwn_134	2450.918	8403.256	GaussianSpatialModel	50.47818	1.842198	0.009999		LogParabolaSpectralM	2.935243020862899E-11	1.0846108082843142E-12	
<pre>2FHL_J0035.8+5949</pre>	1901.501	8081.818	PointSpatialModel	120.9719	-2.98122	0.0		PowerLawSpectralMode	1.2318021602730767E-10	3.1608730390042528E-12	
HESS J1708-443	6896.980	7631.951	GaussianSpatialModel	343.0646	-2.32954	0.289999		PowerLawSpectralMode	7.979999994134346E-11	4.158000332932232E-12	
■ MGRO J1908+06	10344.95	7549.803	GaussianSpatialModel	40.40084	-1.00098	0.340000		PowerLawSpectralMode	9.78005454399522E-11	3.7398899081775294E-12	
composite_304	4555.500	7107.78125	GaussianSpatialModel	55.89612	0.122399	0.087410		LogParabolaSpectralM	1.3269509623048403E-11	1.4000274464048834E-12	
HESS J1834-087	4964.926	6765.946	GaussianSpatialModel	23.26833	-0.32988	0.090000		PowerLaw2Spectra1Mod	1.3776900453787988E-10	1.810456081927092E-12	
■ HESS 11731_347	5765, 275	6718 845	ShellSnatialModel	353,5650	-0.62219	0.216000	0.054000	PowerLawSpectralMode	1.0261790722720932E-10	2.0011249601825654F-12	

GPS catalog production attempt in short

Datasets	Energies (TeV)	spectral margin	Offset max	binning	Spatial margin
SubTeV	0.05 – 1 10 bins/decade	2 extra bins	2.5°	0.06°	Sub-regions: 4° wider than from mask-fit 1° erosion of mask-fit from mask-safe
PosTeV	1 – 100 10 bins/decade	same	3.5°	0.03°	same

Backgrounds:

- irf: FoV-bkg (exclusion region from HGPS significance maps filtered by hysteresis initially)
- diffuse: Fermi-LAT extrapolated
- Significance with Rcorr={0.1°,0.2°} on each dataset used for seed detection
- Joint fit of the two datasets, modelling seeds as 2D Sersic + LogParabola (generic enough for classification then more specific models can be tested depending on the previous results)

Object Detection

- Filtered significance maps (gammapy + scikit-image)
 - -> Peak detection (gammapy)
 - -> Hough circle detection (scikit-image)
- * Known source and simulated sources association using surface overlap criterion
- Seeds classification and ranking for selection (scikit-learn)
- Seeds properties: additional information to help on model selection and initial parameters setup gammapy.catalog could include a seed catalog class with some of these functionality, in particular nesting information can be very useful

Spectral extraction for each seed or full maps

- MapDataset.to_spectrum_dataset slow because of https://docs.gammapy.org/dev/ modules/gammapy/maps/wcsnd.html#WcsNDMap.get_spectrum
- Instead convolution with kernel of seed size to extract counts and background, IndexMapEstimator: Similar approach can be used to produce spectral index maps, Could be useful for structures separation based on different spectral properties

Separation of few known source using hierarchical clustering on spectral index maps computed for Fermi-LAT maps

Models management

Most of the modeling and fitting steps are model management and parameter freezing/unfreezing Could propose some macro to perfom these faster, not built-in in gammapy, but as user-contributed scripts? (so we don't have to maintain that and encourage user exchanges)

For example merging sources outside maskfit as one background

```
# build local model, caching outside sources as bkgs
for m in tmp models:
    m.datasets names = []
for dataset in datasets:
    # bkg sources
    geom2d = dataset.mask fit.sum over axes().geom
    npred out = Map.from geom(dataset.counts.geom)
    for model in sources models:
        pos = model.position.galactic
        iy, ix = geom2d.coord to pix((pos.1, pos.b))
        ix = int(np.rint(ix))
        iy = int(np.rint(iy))
        if not np.any(dataset.mask fit.data[:, ix, iy]):
            # if center not in mask fit added to background sources
            npred_out.stack(dataset._evaluators[model]._npred_cached)
            # otherwise included in this dataset
            model.datasets names.append(dataset.name)
    if npred out.data.sum() != 0:
        name = "outer sources " + dataset.name
        filename = roidir + name + ".fits"
        npred out.write(filename, overwrite=True)
        bkg = BackgroundModel(
            npred_out,
            name=name,
            datasets names=[dataset.name],
            filename=filename,
        if freeze bkg sources:
            bkg.parameters.freeze all()
        else:
            bkg.tilt.frozen = True
        bkgs.append(bkg)
for m in tmp models:
    if m.datasets names == []:
        sources models.remove(m) # remove source that are bkg in all datasets
```

Fitting by group of over-lapping sources

```
for name, mgrp in mgroups.items():
   print(f"Nest: {name}: {len(mgrp)} objects")
   frozen params = []
   for m in datasets.models:
       if m in marp:
           #the source in the group are not frozen
           if m.name==name:
                #also release more parameters of the main object
                m.spatial model.eta.frozen = False
                m.spatial model.e.frozen = False
                m.spatial model.phi.frozen = False
       else:
            for p in m.parameters:
                if p.frozen == False:
                   p.frozen = True
                    frozen params.append(p)
   nfree = sum([not p.frozen for p in datasets.models.parameters])
   if optimize opts["backend"] == "minuit":
       results = Fit(datasets).run(optimize opts=optimize opts)
   else:
       optimize opts["maxfev"] = fevfree * nfree
       results = Fit(datasets).optimize(**optimize opts)
   print(results)
   # unfreeze parameters to retore previous status for next group
   for p in frozen params:
       p.frozen = False
```

Summary

- Missing models for ctools compatibility
- No real limitations:

Most of the extra functionalities needed can be built on top of gammapy or using other python module conjointly with gammapy (as scikit-image and scikit-learn)

- Spectral extraction and flux points require re-work to improve performance
- Iru_cache() in map.geom break usage of multiprocessing for example in mcmc_sampling cannot use more than one core
- How to encourage user contributions?