

IIC2213 — Lógica para ciencia de la computación — 1' 2023

TAREA 6

Publicación: Martes 6 de junio.

Entrega: Lunes 19 de junio hasta las 23:59 horas.

Indicaciones

- Cada pregunta tiene 6 puntos (+1 base) y la nota de la tarea es el promedio de las preguntas.
- La solución debe estar escrita en L^ATEX. No se aceptarán tareas escritas de otra forma.
- La tarea es individual, pudiendo discutirla con sus pares. Toda referencia externa debe citarse.

Objetivos

- Aplicar LPO al contexto de consultas en bases de datos.
- Aplicar conceptos de teorías.

Pregunta 1: Aplicación de LPO a consultas

Sea $\mathcal{L} = \{R_1, \dots, R_k\}$ un vocabulario relacional, i.e. que solo contiene símbolos de relaciones. Una \mathcal{L} -fórmula se dice **consulta conjuntiva** si es de la forma

$$\varphi(x_1,\ldots,x_n) = \exists z_1 \cdots \exists z_m \bigwedge_{1 \le i \le k} R_i(\bar{y}_i)$$

donde \bar{y}_i es una tupla de variables en $\{x_1,\ldots,x_n\}\cup\{z_1,\ldots z_m\}$ y cuyo largo es igual a la aridad de R_i .

Para una \mathcal{L} -estructura \mathfrak{A} con dominio A y una consulta conjuntiva $\varphi(x_1,\ldots,x_n)$ sobre el mismo vocabulario, se define la evaluación de φ en \mathfrak{A} como la relación

$$\varphi(\mathfrak{A}) = \{(a_1, \dots, a_n) \in A^n \mid \mathfrak{A} \models \varphi(a_1, \dots, a_n)\}$$

El resultado puede visualizarse como las tuplas entregadas por una consulta a una base de datos cuyas tablas están representadas por la interpretación $R_i^{\mathfrak{A}}$ de cada relación. Cuando la consulta es una \mathcal{L} -oración, le llamamos **consulta conjuntiva booleana** y su evaluación $\varphi(\mathfrak{A})$ es simplemente verdadera o falsa e indica si $\mathfrak{A} \models \varphi$. Además, una **consulta conjuntiva completa** es aquella que no tiene variables cuantificadas, i.e. son todas libres.

Para los incisos (a), (b) y (c), considere $\mathcal{L} = \{R, S\}$ con R y S símbolos de relaciones binaria y ternaria, respectivamente. Sea además una estructura $\mathfrak{A} = \langle A, R^{\mathfrak{A}}, S^{\mathfrak{A}} \rangle$ tal que

$R^{\mathfrak{A}}$		$S^{\mathfrak{A}}$		
		Saariaho	Finlandia	Helsinki
Petrushka	Stravinsky	Stravinsky	Rusia	Oranienbaum
L'Amour de loin	Saariaho	Sibelius	Finlandia	Hämeenlinna
El amor brujo	De Falla			
Le sacre du printemps	Stravinsky	Respighi	Italia	Bologna
Le sacre du printemps	Duavilisky	Albéniz	España	Camprodon

(a) Construya una consulta conjuntiva que entregue la siguiente evaluación

 $\varphi(\mathfrak{A}) = \{ (\text{Petrushka}, \text{Rusia}), (\text{L'Amour de loin}, \text{Finlandia}), (\text{Le sacre du printemps}, \text{Rusia}) \}$

- (b) Construya una consulta conjuntiva completa en $\mathfrak A$ e indique su resultado.
- (c) Contruya una consulta conjuntiva booleana que sea verdadera en \mathfrak{A} .

Dado un vocabulario relacional $\mathcal{L} = \{R, S\}$ con símbolos de relaciones R y S de aridad n y m respectivamente, y dada una \mathcal{L} -estructura $\mathfrak{A} = \langle A, R^{\mathfrak{A}}, S^{\mathfrak{A}} \rangle$, decida si es posible construir consultas conjuntivas que entreguen como evaluación los conjuntos de los incisos (d), (e) y (f). En caso negativo, justifique qué le falta a la definición de consultas conjuntivas y proponga una extensión adecuada.

- (d) Proyección de la *i*-ésima columna de $R^{\mathfrak{A}}$: conjunto con los valores de la *i*-ésima coordenada de las tuplas de $R^{\mathfrak{A}}$ (sin repetidos).
- (e) Selección por valor de la *i*-ésima columna de $R^{\mathfrak{A}}$: conjunto de tuplas de $R^{\mathfrak{A}}$ tales que el valor de la *i*-ésima coordenada es exactamente $v \in A$, para v fijo.
- (f) Cross join de $R^{\mathfrak{A}}$ y $S^{\mathfrak{A}}$: conjunto de tuplas de tamaño n+m tales que las primeras n coordenadas corresponden a alguna tupla de $R^{\mathfrak{A}}$, y las últimas m a alguna tupla de $S^{\mathfrak{A}}$.

Solución P1.

Aquí va mi solución

Pregunta 2: Teorías

Sea \mathcal{L} un vocabulario.

- (a) Sea $\mathfrak A$ una $\mathcal L$ -estructura y Σ una teoría sobre el mismo vocabulario, tal que $\mathrm{Th}(\mathfrak A)\subseteq \Sigma$. Demuestre que $\mathrm{Th}(\mathfrak A)=\Sigma$.
- (b) Sea $\mathfrak{A}_1,\dots,\mathfrak{A}_k$ una secuencia de $\mathcal{L}\text{-estructuras}.$ Se define

$$\operatorname{Th}(\mathfrak{A}_1,\dots,\mathfrak{A}_k)=\{\varphi\mid \mathfrak{A}_i\models\varphi \text{ para cada }i\in\{1,\dots,k\}\}$$

Es decir, es el conjunto de \mathcal{L} -oraciones satisfechas simultáneamente por todas las \mathcal{L} -estructuras mencionadas. Demuestre que $\mathrm{Th}(\mathfrak{A}_1,\ldots,\mathfrak{A}_k)$ es una teoría.

Solución P2.

Aquí va mi solución