Задачи на проверку гипотез

Введение в DS на УБ и МиРА

1 Задачи с вариантами ответа (кандидаты в квиз)

- 1. При проверке гипотезы о равенстве средних p-value оказалось равно 0.04. Выберите верный вариант.
 - (а) Основная гипотеза не отвергается на любом разумном уровне значимости.
 - (b) Основная гипотеза не отвергается на уровне значимости 1%.
 - (с) Основная гипотеза не отвергается на уровне значимости 5%.
 - (d) Основная гипотеза не отвергается на уровне значимости 10%.
- 2. Проверяется гипотеза о равенстве средних против двусторонней альтернативы. Пусть при верной H_0 $Z \sim \mathcal{N}(0,1)$. Чему примерно равно соответствующее p-value, если
 - (a) $Z_{obs} = -15$?
 - (b) $Z_{obs} = 0$?
 - (c) $Z_{obs} = 1.96$?
 - (d) $Z_{obs} = 7$?
- 3. Пусть X_1, \ldots, X_N выборка независимых одинаково распределённых нормальных величин, $X_i \sim \mathcal{N}(\mu, \sigma^2)$. Предположим, что N=1000. Проверяется гипотеза $\mu=2$ против двусторонней альтернативы. На выбор есть всего два теста: Z-тест и t-тест. Выберите все верные варианты.
 - (a) Тестовая статистика может иметь распределение t_{1000} .
 - (b) Тестовая статистика может иметь распределение t_{500} .
 - (c) Тестовая статистика может иметь распределение, очень похожее на $\mathcal{N}(0,1)$.
 - (d) Тестовая статистика может иметь распределение, очень похожее на $\mathcal{N}(1000,2)$.
- 4. Определите тип ошибки (I или II рода) по описанию ситуации.
 - (а) Мобильный робот врезался в стену. Нулевая гипотеза: впереди нет препятствия.
 - (b) Сканер отпечатка пальца не дал согласие на разблокировку системы для зарегистрированного пользователя. Нулевая гипотеза: пользователь есть в базе.
- 5. Будет ли отвергнута гипотеза о независимости при использовании χ^2 -критерия согласия Пирсона на уровне значимости 5%, если

(a)
$$\chi^2_{obs} = 1$$
?

(b)
$$\chi_{obs}^2 = 50$$
?

(c)
$$\chi_{obs}^2 = 100$$
?

В каждом случае нарисуйте картинку.

2 Задачи с открытым ответом (для тренировки техники проверки гипотез)

1. Рассмотрим выборку независимых одинаково распределённых нормальных случайных величин

$$X = [3, 12, 4, 18, 9, 2, 15],$$

 $X_i \sim \mathcal{N}(\mu, \sigma^2).$

(а) Проверьте гипотезу

$$\begin{cases} H_0: \mu = 3, \\ H_1: \mu \neq 3 \end{cases}$$

на уровне значимости 5%.

- (b) Постройте 90%-ый доверительный интервал для μ .
- 2. Рассмотрим выборку независимых одинаково распределённых нормальных случайных величин

$$X = [3, 12, 4, 18, 9, 2, 15],$$

 $X_i \sim \mathcal{N}(\mu, 9).$

(а) Проверьте гипотезу

$$\begin{cases} H_0: \mu = 3, \\ H_1: \mu \neq 3 \end{cases}$$

на уровне значимости 10%.

- (b) Постройте 95%-ый доверительный интервал для μ .
- 3. Рассмотрим выборку независимых одинаково распределённых случайных величин X_1, \ldots, X_{200} , где $X_i \sim \mathcal{N}(\mu, \sigma^2)$. Оказалось, что

$$\sum_{i=1}^{200} X_i = 20, \ \sum_{i=1}^{200} X_i^2 = 500.$$

- (a) Найдите \bar{X} и $\hat{\sigma}^2$.
- (b) Проверьте гипотезу

$$\begin{cases} H_0: \mu = 2, \\ H_1: \mu \neq 2 \end{cases}$$

на уровне значимости 1%.

(c) Постройте 95%-ый доверительный интервал для μ и при помощи него проверьте гипотезу из предыдущего пункта (уже на новом уровне значимости).

- (d) **(пункт со звёздочкой)** Запишите интеграл, при помощи которого можно рассчитать *p*-value для полученной статистики. Посчитайте этот интеграл при помощи Wolfram Alpha. Убедитесь, что результаты проверки совпадают с предыдущими двумя пунктами.
- 4. **(хитрая задача)** Рассмотрим выборку независимых одинаково распределённых случайных величин X_1 , . . . , X_{10} . Известно, что распределение X_i не является нормальным. Проверьте гипотезу $H_0: \mathbb{E}(X_i) = 3$ против двусторонней альтернативы на уровне значимости 5%.
- 5. **(хитрая задача)** Рассмотрим выборку независимых одинаково распределённых случайных величин Бернулли

$$X = [0, 1, 1, 0, 1, 0, 1],$$

 $X_i \sim \text{Bern}(p).$

Проверьте гипотезу $H_0: p=0.3$ против двусторонней альтернативы на уровне значимости 5%.

- 6. Рассмотрим выборку независимых одинаково распределённых бернуллевских случайных величин X_1 , . . . , X_{500} , где $X_i \sim \mathrm{Bern}(p)$. Оказалось, что в этой выборке ровно 300 единиц и 200 нулей.
 - (a) Найдите \hat{p} и оценку дисперсии X_i .
 - (b) Проверьте гипотезу

$$\begin{cases} H_0: p = 0.5, \\ H_1: \mu \neq 0.5 \end{cases}$$

на уровне значимости 5%.

- (с) Постройте 99%-ый доверительный интервал для p.
- 7. Рассмотрим две выборки случайных величин X_1, \ldots, X_{20} , где $X_i \sim \mathcal{N}(\mu_X, 1)$ и Y_1, \ldots, Y_{20} , где $Y_i \sim \mathcal{N}(\mu_Y, 2)$. Будем предполагать, что случайные величины внутри выборок независимы и одинаково распределены, а выборки независимы между собой. Оказалось, что

$$\sum_{i=1}^{20} X_i = 10, \ \sum_{i=1}^{20} X_i^2 = 350,$$
$$\sum_{i=1}^{20} Y_i = 15, \ \sum_{i=1}^{20} Y_i^2 = 400,$$

Проверьте гипотезу

$$\begin{cases} H_0: \mu_X = \mu_Y, \\ H_1: \mu_X \neq \mu_Y \end{cases}$$

на уровне значимости 5%.

8. Рассмотрим две выборки случайных величин X_1, \ldots, X_{200} , где $X_i \sim \mathcal{N}(\mu_X, \sigma_X^2)$ и Y_1, \ldots, Y_{200} , где $Y_i \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$. Будем предполагать, что случайные величины внутри выборок независимы и одинаково

распределены, а выборки независимы между собой. Оказалось, что

$$\sum_{i=1}^{200} X_i = 10, \ \sum_{i=1}^{200} X_i^2 = 350,$$
$$\sum_{i=1}^{200} Y_i = 15, \ \sum_{i=1}^{200} Y_i^2 = 400,$$

Проверьте гипотезу

$$\begin{cases} H_0: \mu_X = \mu_Y, \\ H_1: \mu_X \neq \mu_Y \end{cases}$$

на уровне значимости 10%.

9. Рассмотрим две выборки случайных величин X_1, \ldots, X_{25} , где $X_i \sim \mathcal{N}(\mu_X, \sigma_X^2)$ и Y_1, \ldots, Y_{25} , где $Y_i \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$. Будем предполагать, что случайные величины внутри выборок независимы и одинаково распределены, а выборки независимы между собой. Также будем предполагать, что $\sigma_X = \sigma_Y = \sigma$. Оказалось, что

$$\sum_{i=1}^{25} X_i = 10, \ \sum_{i=1}^{25} X_i^2 = 350,$$
$$\sum_{i=1}^{25} Y_i = 15, \ \sum_{i=1}^{25} Y_i^2 = 400,$$

Проверьте гипотезу

$$\begin{cases} H_0: \mu_X = \mu_Y, \\ H_1: \mu_X \neq \mu_Y \end{cases}$$

на уровне значимости 1%.

10. Рассмотрим выборку объектов из нормального распределения до и после проведения некоторого эксперимента. Выборку ДО обозначим как X, а выборку ПОСЛЕ обозначим как Y. Известно, что

$$X = [10, 15, 20, 18, 15, 20],$$

$$Y = [13, 13, 21, 22, 14, 25],$$

$$X_i \sim \mathcal{N}(\mu_X, \sigma),$$

$$Y_i \sim \mathcal{N}(\mu_Y, \sigma),$$

Проверьте гипотезу

$$\begin{cases} H_0: \mu_X = \mu_Y, \\ H_1: \mu_X \neq \mu_Y \end{cases}$$

на уровне значимости 10%.

11. На уровне значимости 10% проверьте гипотезу о том, существует ли зависимость между продолжением образования после окончания школы и типом местности, где выпускник окончил школу. В исследовании принимали участие по 100 школ из каждого типа местности.

	Не продолжил образование	Среднеспециальное образование	Высшее образование
Местность 1	40	40	20
Местность 2	30	50	20

12. (сложная) Компания «Голден Альп» тестирует два новых вкуса шоколада: с орешками и солёной карамелью. Фокус-группа разбивают на две непересекающиеся части: N_1 человек пробуют шоколад с орешками, а N_2 — с солёной карамелью. Каждый участник пробует лишь один тип шоколада и одобряет или не одобряет опробованный вкус. Пусть X_1 — число человек, одобривших шоколад с орешками, а X_2 — одобривших шоколад с солёной карамелью. Будем предполагать, что $X_1 \sim \text{Bin}(N_1, p_1), X_2 \sim \text{Bin}(N_2, p_2)$. Руководство компании «Голден Альп» хочет узнать, есть ли основание полагать, что один вкус шоколада предпочитается другому.

По результатам эксперимента оказалось, что $N_1=N_2=500,\,X_1=400,\,X_2=390.$ Сформулируйте гипотезу, которая позволит ответить на вопрос компании, и проверьте её на уровне значимости 5%.