

Retrieval Models I – Boolean Retrieval

Lecture 6

CS 4250 - Web Search and Recommender Systems

1

Retrieval Models

- Provide a mathematical framework for defining the search process
 - includes explanation of assumptions
 - · basis of many ranking algorithms
- Progress in retrieval models has corresponded with improvements in effectiveness
- Sometimes trial and error
- Different theories about relevance

CS 4250 - Web Search and Recommender Systems

Relevance

- Complex concept that has been studied for some time
 - · Many factors to consider
 - People often disagree when making relevance judgments
- Retrieval models make various assumptions about relevance to simplify problem
 - e.g., topical vs. user relevance
 - e.g., binary vs. multi-valued relevance

CS 4250 - Web Search and Recommender Systems

3

Retrieval Model Overview

- Original models
 - Boolean retrieval
 - Vector Space model
- Probabilistic Models
 - BM25
 - Language models
- Combining evidence
 - Inference networks
 - · Learning to Rank

CS 4250 - Web Search and Recommender Systems

Boolean Retrieval

CS 4250 – Web Search and Recommender Systems

5

Boolean Retrieval

- Two possible outcomes for query processing
 - TRUE and FALSE
 - "exact-match" retrieval
- Query usually specified using Boolean operators
 - AND, OR, NOT
 - · proximity operators also used

CS 4250 - Web Search and Recommender Systems

Searching by Numbers

- Sequence of queries driven by number of retrieved documents
 - · e.g. "lincoln" search of news articles
 - president AND lincoln
 - president AND lincoln AND NOT (automobile OR car)
 - president AND lincoln AND biography AND life AND birthplace AND gettysburg AND NOT (automobile OR car)
 - president AND lincoln AND (biography OR life OR birthplace OR gettysburg) AND NOT (automobile OR car)
- Parentheses specify the order of operations
 - A OR (B AND C) does not equal (A OR B) AND C
- If query too broad, user adds AND constraints
- If query too narrow, user adds OR constraints

CS 4250 - Web Search and Recommender Systems

7

Examples

president AND lincoln would retrieve:

Ford Motor Company today announced that Darryl Hazel will succeed Brian Kelley as president of Lincoln Mercury.

What if we change it to:

president AND lincoln AND NOT (automobile OR car)

Would it retrieve

Lincoln's body departs Washington in a nine-car funeral train.

CS 4250 - Web Search and Recommender Systems

Boolean Retrieval

- Advantages
 - Results are predictable, relatively easy to explain
 - Many different features can be incorporated
 - Efficient processing since many documents can be eliminated from search
- Disadvantages
 - Effectiveness depends entirely on user
 - Simple queries usually don't work well (why?)
 - Complex queries are difficult (why?)

CS 4250 - Web Search and Recommender Systems

C

Binary Full-text Representation Document-term matrix

	а	aardvark	abacus	abba	able	 zoom
doc_I	I	0	0	0	0	 I
doc_2	0	0	0	0	1	 - 1
::	::	::	::	::	::	 0
doc_m	0	0	- 1	1	0	 0

- 1 = the word appears in the document at least once
- 0 = the word does not appear in the document
- Does not represent word frequency, order, or position information

Query: Jack AND Jill

- doc_1 Jack and Jill went up the hill
- doc_2 To fetch a pail of water.
- doc_3 Jack fell down and broke his crown,
- doc_4 And Jill came tumbling after.
- doc_5 Up Jack got, and home did trot,
- doc_6 As fast as he could caper,
- doc_7 To old Dame Dob, who patched his nob
- doc_8 With vinegar and brown paper.

CS 4250 - Web Search and Recommender Systems

11

Processing a Boolean Query

Query: Jack AND Jill

docid	text	Jack	Jill
doc_I	Jack and Jill went up the hill	_	1
doc_2	To fetch a pail of water.	0	0
doc_3	Jack fell down and broke his crown,	- 1	0
doc_4	And Jill came tumbling after.	0	1
doc_5	Up Jack got, and home did trot,	- 1	0
doc_6	As fast as he could caper,	0	0
doc_7	To old Dame Dob, who patched his nob	0	0
doc_8	With vinegar and brown paper.	0	0

Query: Jack AND Jill

	Jack	Jill	Jack AND Jill		
doc_I	I	1			
doc_2	0	0			
doc_3	I	0			
doc_4	0	1			
doc_5	- 1	0			
doc_6	0	0			
doc_7	0	0			
doc_8	0	0			

CS 4250 - Web Search and Recommender Systems

13

Processing a Boolean Query

Query: Jack AND Jill

	Jack	Jill	Jack AND Jill
doc_I	- 1	1	I
doc_2	0	0	0
doc_3	- 1	0	0
doc_4	0	I	0
doc_5	- 1	0	0
doc_6	0	0	0
doc_7	0	0	0
doc_8	0	0	0

CS 4250 – Web Search and Recommender Systems

Query: Jack OR Jill

	Jack	Jill	Jack OR Jill
doc_I	1	1	I
doc_2	0	0	0
doc_3	1	0	I I
doc_4	0	1	I
doc_5	1	0	I
doc_6	0	0	0
doc_7	0	0	0
doc_8	0	0	0

CS 4250 - Web Search and Recommender Systems

15

Processing a Boolean Query

Query: Jack AND (up OR down)

-,	,		(ap off down)
	иþ	down	Jack AND (up OR down)
doc_I	1	0	
doc_2	0	0	
doc_3	0	I	
doc_4	0	0	
doc_5	1	0	
doc_6	0	0	
doc_7	0	0	
doc_8	0	0	
	•		

CS 4250 – Web Search and Recommender Systems

Query: Jack AND (up OR down)

	иþ	down	up OR down	Jack	Jack AND (up OR down)
doc_I	I	0	I	I	I
doc_2	0	0	0	0	0
doc_3	0	- 1	I	I	I
doc_4	0	0	0	0	0
doc_5	1	0	I	I	1
doc_6	0	0	0	0	0
doc_7	0	0	0	0	0
doc_8	0	0	0	0	0
•			•	•	•

CS 4250 - Web Search and Recommender Systems

17

Processing a Boolean Query

• Query: Jack AND NOT Jill

	Jack	Jill	Jack AND NOT Jill
doc_I	I	1	
doc_2	0	0	
doc_3	1	0	
doc_4	0	1	
doc_5	1	0	
doc_6	0	0	
doc_7	0	0	
doc_8	0	0	

• Query: Jack AND NOT Jill

	Jack	Jill	NOT Jill	Jack AND NOT Jill		
doc_I	I	I				
doc_2	0	0				
doc_3	I	0				
doc_4	0	1				
doc_5	I	0				
doc_6	0	0				
doc_7	0	0				
doc_8	0	0				

19

Processing a Boolean Query

• Query: Jack AND NOT Jill

	Jack	Jill	NOT Jill	Jack AND NOT Jill
doc_I	I	I	0	0
doc_2	0	0	I	0
doc_3	1	0	1	I
doc_4	0	1	0	0
doc_5	I	0	1	I
doc_6	0	0	1	0
doc_7	0	0	1	0
doc_8	0	0	1	0

Fixed-length inverted list (Document-term matrix)

	а	aardvark	abacus	abba	able	 zoom
doc_I	I	0	0	0	0	 - 1
doc_2	0	0	0	0	I	 I
::	::	::	::	::	::	0
doc_m	0	0	- 1	1	0	 0

- Based on Zipf's law, this representation is not efficient
- There are lots of zeros

CS 4250 - Web Search and Recommender Systems

21

Variable length inverted list

а	aardvark	abacus	abba	able	 zoom
df=3421	df=22	df=19	df=2	df=44	df=1
	33	2	33	66	54
33	56	10	150	134	
45	86	15		176	
::	::	::		::	
1022	1011	231		432	

- Represent only the 1's
- Much more efficient

So far: Unranked Boolean

- Retrieve the set of documents that match the boolean query (an "exact-match" retrieval model)
- Returns results in no particular order (ordered by date? document ID? title?)
- This is problematic with large collections
 - requires complex queries to reduce the result set to a manageable size
- Can we do better?

CS 4250 - Web Search and Recommender Systems

23

Ranked Boolean

University	North	Carolina	UNC
df=6	df=4	df=3	df=5
1,4	1,4	1,4	1,4
10, 1	10, 5	10,5	10, 1
15, 2	16, 1	16, 1	16,4
16, 1	68, I		33, <mark>2</mark>
33, 5			56, 10
67,7			

- docid = document identifier
- tf = term frequency (# of times the term appears in the document)

Ranked Boolean

- Compute ranking scores based on term frequency
- Score computation:
 - A AND B: take the minimum frequency associated with expression A and expression B as the ranking score
 - A OR B: take the **sum** of frequencies associated with expression A and expression B

CS 4250 - Web Search and Recommender Systems

25

Ranked Boolean

• Query: (University AND North AND Carolina) OR UNC

University	North	Carolina	Result_I
df=6	df=4	df=3	count=3
1, 4	1,4	1,4	
10, 1	10, 5	10, 5	
15, 2	16, 1	16, 1	
16, 1	68, I		
33, 5			
68, 7			

- AND -> *min*
- OR -> **sum**

Ranked Boolean

• Query: (University AND North AND Carolina) OR UNC

University	North	Carolina	Result_I
df=6	df=4	df=3	count=3
1,4	1,4	1,4	1,4
10, 1	10, 5	10, 5	10, 1
15, 2	16, 1	16, 1	16, 1
16, 1	68, I		
33, 5			
68, 7			

- AND -> min
- OR -> *sum*

CS 4250 - Web Search and Recommender Systems

27

Ranked Boolean

• Query: (University AND North AND Carolina) OR UNC

UNC	Query
df=5	count=
1,4	
10, 1	
16,4	
33, 2	
56, 10	
	df=5 1, 4 10, 1 16, 4 33, 2

- AND -> min
- OR -> **sum**

Ranked Boolean

• Query: (University AND North AND Carolina) OR UNC

Result_I	UNC	Query
count=3	df=5	count=5
1,4	1,4	1,8
10, 1	10, 1	10,2
16, 1	16,4	16,5
	33, 2	33, 2
	56, 10	56, 10
		**

- AND -> min
- OR -> **sum**

CS 4250 - Web Search and Recommender Systems

29

Ranked Boolean

- Advantages:
 - same as unranked boolean: efficient, predictable, easy to understand, works well when the user knows what to look for
 - the user may be able to find relevant documents quicker and may not need to examine the entire result set
- Disadvantages:
 - same as unranked boolean: only works well when the user knows what to look for