

(19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(10) **DE 102 97 729 T5** 2005.07.07

(12

Veröffentlichung

der internationalen Anmeldung mit der (87) Veröffentlichungs-Nr.: WO 03/099421

in deutscher Übersetzung (Art. III § 8 Abs. 2 IntPatÜG)

(21) Deutsches Aktenzeichen: 102 97 729.1

(86) PCT-Aktenzeichen: PCT/US02/16322

(86) PCT-Anmeldetag: 22.05.2002

(87) PCT-Veröffentlichungstag: 04.12.2003

(43) Veröffentlichungstag der PCT Anmeldung in deutscher Übersetzung: 07.07.2005

(71) Anmelder:

Plug Power, Inc., Latham, N.Y., US

(74) Vertreter.

Samson & Partner, Patentanwälte, 80538 München

.

(51) Int Cl.7: **B01D 53/48**B01D 53/52, B01J 8/00, B01J 19/00, C07C 7/00, C07C 7/12, C07C 7/13, C10L 3/00, C10L 3/06, C10L 3/10

.

(72) Erfinder

Lieftink, Dick J., Utrecht, NL; Witt, Ellart K. de, Utrecht, NL; Kinderen, Johannes M. der, Twello, NL

(54) Bezeichnung: Gasreinigungssystem

(57) Hauptanspruch: Verfahren zur Entfemung von Schwefel-Verbindungen aus einem Gasstrom, welches umfasst: Entfemen einer Odoriermittel-Komponente eines Gases in einem ersten Schritt durch In-Konktakt-Bringen des Gases mit einem ersten Material; und

Entfernen von H₂S aus dem Gas in einem zweiten Schritt durch In-Kontakt-Bringen des Gases mit einem zweiten Material, das von dem ersten Material verschieden ist. 100-

STRÖMENLASSEN VON GAS DURCH ERS-TES MATERIAL, UM ODORIERMITTEL ZU ENTFERNEN

102

STRÖMENLASSEN VON GAS DURCH ZWEI-TES MATERIAL, UM H₂S ZU ENTFERNEN eine Vielfalt von Kohlenwasserstoffgas-Zusammensetzungen beschreiben kann, die in großem Maß schwanken können, z.B. gemäß der Geographie, Temperatur, Jahreszeit usw. Zum Beispiel können einige Quellen von Naturgas typisch etwa 75 % CH₄, 15 % Ethan (C₂H₈) und 5 % andere Kohlenwasserstoffe, wie Propan (C₃H₈) und Butan (C₄H₁₀), enthalten. In den U.S.A. kann Naturgas aus städtischen Energieversorgungsunternehmen die folgende allgemeine Zusammensetzung enthalten: 94 % Methan (CH₄); 3,2 % Ethan (C₂H₈); 0,7 % Propan (C₃H₈); 2,6 CO₂ + N₂; 0,25 ~ 1 Grains [1 Grain = 0,648 g]/100 ft³ [1 ft = 0,3048 m] Schwefelwasserstoff (H₂S); 1,0 – 10 Grains/100 ft³ Mercaptane; 10–20 Grains/100 ft³ Gesamt-Schwefel.

[0009] Methan ist ein farbloses, geruchloses Gas mit einem großen Verteilungsschwankungsbereich in der Natur. Methan ist nicht toxisch, wenn es eingeatmet wird, aber es kann ein Ersticken durch Verringerung der eingeatmeten Konzentration an Sauerstoff hervorrufen. Aus diesem Grund werden gewöhnlich Spurenmengen von zu riechenden organischen Schwefel-Verbindungen dem Naturgas zugesetzt, um für einen nachweisbaren Geruch zu sorgen (z. B. um Gaslecks leicht nachweisbar zu machen). Derartige Verbindungen werden im Allgemeinen als "Odoriermittel" bezeichnet. Man wird anerkennen, dass ein Odoriermittel jede Verbindung bezeichnet, die einem Gas zugesetzt wird, um das Gas für Menschen durch den Geruch nachweisbar zu machen. Typische Odoriermittel-Mischungen umfassen Tertiärbutvlmercaptan, (CH₃)₃CSH, und Dimethylsulfid, CH₃-S-CH₃. Zusätzliche Verbindungen können ebenfalls verwendet werden: Tetrahydrothiophen (THT oder "Thiophane"); Isopropylmercaptan; Propylmercaptan; und Methylethylsulfid. Zusätzliche Komponenten können auch im Naturgas vorliegen, wie Carbonylsulfid (COS), Schwefelkohlenstoff (CS2) usw. Ähnlich können auch Propan-Brennstoffe eine Mischung von Komponenten enthalten.

[0010] Die Schwefel-Verbindungen, die mit Naturgas, Propan und anderen Brennstoffen verbunden sind (z. B. H,S, COS), können Brennstoffzellen-Katalysatoren sowie die Brennstoff-Verarbeitungseinrichtungs-Katalysatoren abbauen. Aus diesem Grund schließen Brennstoffzellen-Systeme, die derartige Ströme verwenden, im Allgemeinen ein Entschwefelungsverfahren ein, um Schwefel-Verbindungen aus derartigen Strömen zu entfernen. Viele andere Verfahren erfordern ebenfalls die Entschwefelung von Gas oder Flüssigkeitsströmen, entweder um Katalysatoren zu schützen oder aus anderen Gründen. Beispielsweise kann Schwefel aus Verbrennungstreibstoffen entfernt werden, um die Bildung von Schwefeldioxid und anderen Abgaskomponenten zu verhindern, welche sauren Regen verursachen.

[0011] Es gibt einen anhaltenden Bedarf an einer

Anordnung und/oder Technik, um Gasströme zu entschwefeln und eines oder mehrere der oben erörterten Probleme anzusprechen.

-Zusammenfassung

[0012] Allgemein stellt die Erfindung Verfahren und zugehörige Vorrichtungen zur Entfernung eines Odoriermittels und von Schwefel-Verbindungen aus einem Gasstrom, wie Naturgas, bereit (z.B. die Entfernung von derartigen Verbindungen auf weniger als 50 Teile pro Milliarde). Als Beispiele werden derartige Systeme typisch von Brennstoff-Verarbeitungseinrichtungssystemen benötigt, die so angepasst sind, dass sie Naturgas in Reformat zur Verwendung in Brennstoffzellen-Systemen überführen, wo das Odoriermittel und die Schwefelverbindungen anderenfalls die Brennstoff-Verarbeitungseinrichtung und die Brennstoffzellen-Katalysatoren vergiften könnten. Systeme gemäß der vorliegenden Erfindung beruhen auf der Verwendung von mindestens zwei Filtrationsstufen, so dass die Odoriermittel-Entfernungsfunktion von der allgemeinen Entfernung von H2S getrennt ist. Dies ermöglicht vorteilhaft, dass die Größe und Ausrüstung jeder Stufe für eine spezifische Anwendung maßgeschneidert ist. Einige Ausführungsformen stellen auch modulare Systeme bereit, welche ermöglichen, dass einzelne Stufen unabhängig ersetzt werden, wenn sie mit Odoriermittel und Schwefel-Verbindungen gesättigt werden. Andere Merkmale und Vorteile werden hierin beschrieben.

[0013] Während beispielsweise Zeolith und aktivierte Kohlenstoff-Materialien häufig verwendet werden, um Odoriermittel und Schwefel-Verbindungen aus Naturgas zu filtern, neigt das Naturgas (manchmal als "Energieversorgungsgas" bezeichnet) beispielsweise in einigen Gebieten Europas dazu, Konzentrationen an Carbonylsulfid (COS) und anderen Komponenten zu enthalten, die nicht von Zeolithen und aktiviertem Kohlenstoff absorbiert werden. In derartigen Systemen kann ein zweites Material, wie Nickeloxid, erforderlich sein, um Materialien wie COS zu entfernen. Derartige Materialien sind im Vergleich zu herkömmlicheren Absorbenzien, wie Zeolithen und aktivierter Kohle, typisch teurer. Jedoch sind in Gebieten, wo schwierig zu absorbierende Komponenten, wie COS, vorhanden sind, die Konzentrationen im Allgemeinen immer noch niedrig genug, dass nur geringe Mengen der teuren Absorbenzien erforderlich sind (als Beispiel, um ein Jahr Lebenszeit als Filter für eine gegebene Brennstoff-Verarbeitungseinrichtungsanwendung zu erzielen). Da COS-Absorbenzien auch dazu tendieren, für die Absorption von Odoriermitteln und H2S geeignet zu sein, ist es vorteilhaft, ein weniger teures Material in einer ersten Absorptionsstufe zu verwenden, um Odoriermittel und H₂S zu entfernen, um die Menge an sekundären Absorbenzien, die für die anderen vorhandenen Schwefel-Verbindungen (z.B. COS) erforderlich sind, einzusparen. Gases durch ein erstes Material, um Odoriermittel-Komponenten aus dem Gas zu entfernen; und (102) Strömenlassen des Gases durch ein zweites Material, um H₂S aus dem Gas zu entfernen. Alternativ ist mit Bezug auf <u>Flg. 2</u> ein Flussdiagramm eines weiteren Verfahrens zur Entfernung von Schwefel-Verbindungen aus einem Gasstrom gemäß der vorliegenden Erfindung gezeigt, welches die Schritte umfasst: (200) Strömenlassen des Gases durch ein erstes Material, um Odoriermittel-Komponenten aus dem Gas zu entfernen; (202) Strömenlassen des Gases durch einen COS-Hydrolyse-Katalysator, um COS in dem Gas in H₂S zu überführen; und (204) Strömenlassen des Gases durch ein drittes Material, um H₂S aus dem Gas zu entfernen.

[0025] Mit Bezug auf Flo. 3 ist ein schematisches Diagramm einer Vorrichtung 300 zur Entfernung von Schwefel-Verbindungen aus einem Gasstrom gezeigt. Das System 300 umfasst ein Gefäß 301 mit einem Einlass 302 und einem Auslass 304. Das Gefäß 301 umfasst ein erstes Abteil 306, das ein erstes Material enthält, und ein zweites Abteil 308, das ein zweites Material enthält. Ein Gas wie Naturgas aus Energieversorgungsunternehmens-Leitung wird durch einen Einlass 302 eingespeist. Das Gas strömt in dem Gefäß 301 nach oben und tritt durch den Auslass 304 aus. Als Beispiel kann der Auslass 304 mit dem Einlass einer Brennstoff-Verarbeitungseinrichtung verbunden sein, die so angepasst ist, dass sie Naturgas in Reformat zur Verwendung in einer Brennstoffzelle überführt. Jedoch wird man anerkennen, dass die Erfindung nicht notwendigerweise auf diese Anwendung beschränkt ist (z.B. kann sie auch verwendet werden, um andere Arten von Gasen zu entschwefeln, und für andere Anwendungen).

[0026] Das erste Material im Abteil 302 ist ein Material, das zur Absorption von Odoriermittel-Verbindungen aus dem Gas geeignet ist. Wenn als Beispiel das Gas Methan ist und Odoriermittel auf Schwefel-Basis enthält, kann das erste Material ein Zeolith vom Typ X oder aktivierter Kohlenstoff sein, beispielsweise entweder in Monolith- oder Pelletform. Da es auch erforderlich sein kann, COS und andere Verbindungen zu entfernen, die nicht durch das erste Material absorbiert werden, ist das zweite Material in dem zweiten Abteil 308 als zweite Filtrationsstufe vorgesehen. Beispielsweise sind Nickel-Materialien (z.B. NiO) geeignete Materialien. Das zweite Material kann auch ein anderer Zeolith sein. Wenn beispielsweise CO, in dem Gasstrom anwesend ist und ein Zeolith vom Typ X als erstes Material verwendet wird, kann das CO₂ in den Poren des Zeoliths mit H₂S unter Bildung von COS reagieren. Um eine derartige COS-Bildung zu verhindern, kann ein Zeolith als das zweite Material gewählt werden, der eine ausreichend kleine Porengröße aufweist (z.B. kleiner als 10 Angström), um zu verhindern, dass CO2 absorbiert wird.

[0027] Wie zuvor erwähnt, besteht ein Aspekt der Erfindung darin, dass es mit mehreren Filtrationsstufen möglich sein kann, einzelne Gefäßabteile oder Materialien (z.B. bei Wartungsintervallen) zu ersetzen, ohne dass das gesamte Entschwefelungsgefäß ersetzt werden muss. Die einzelnen Abteile und/oder die Kapazität der Materialmengen, die in dem Gefäß vorgesehen sind, können auch für eine gegebene Anwendung maßgeschneidert werden. Ein weiteres Merkmal der Erfindung kann eine elektrische Heizung einschließen, die mit dem ersten Material verbunden ist, um das erste Material bei einem Kaltstart (z.B. unter 20 °C oder 0 °C als Beispiele) aufzuwärmen. Man wird anerkennen, dass die Wirksamkeit verschiedener Materialien, Gaskomponenten zu absorbieren, bei relativ niedrigen Temperaturen verringert sein kann. Ohne eine derartige Anordnung kann die Anfahrzeit eines Systems verzögert sein, während sich das Entschwefelungsbett mit dem Rest des Systems aufwärmt.

[0028] Als weiteres Beispiel kann ein Kaltstart-Modul (nicht gezeigt) mit irgendeinem der hierin beschriebenen Systeme (z.B. 300, 400, 500) verbunden sein. In einem derartigen Kaltstart-Modul kann eine elektrische Heizung betätigt werden, um Wärme an ein Adsorptionsmaterial zu liefern, das nur während des Anfahrens verwendet wird. Beispielsweise kann eine geringe Menge eines hoch aktiven weniger temperaturabhängigen Materials, wie Nickel, in dem Kaltstart-Modul verwendet werden. Die Menge muss nur relativ gering sein, da das Kaltstart-Modul nur während des Anfahrens verwendet wird. Wenn das System eine gewünschte Temperatur erreicht, kann der Gasstrom an dem Kaltstart-Modul vorbeigeleitet werden. In einigen Ausführungsformen ist das in dem Kaltstart-Modul verwendete Material aktiv genug, so dass eine elektrische Heizung nicht erforderlich ist.

[0029] Mit Bezug auf Fig. 4 ist ein schematisches Diagramm einer weiteren Vorrichtung 400 zur Entfernung von Schwefel-Verbindungen aus einem Gasstrom gezeigt. Das System 400 umfasst ein Gefäß 401 mit einem Einlass 402 und einem Auslass 404. Das Gefäß 401 schließt ein erstes Abteil 406, das ein erstes Material enthält, ein zweites Abteil 408, das ein zweites Material enthält, und ein drittes Abteil 410 ein, das ein drittes Material enthält. In dieser Ausführungsform strömt das Gas (in diesem Beispiel Methan) durch den Einlass 402 und durch das Material 406, bei dem es sich um ein Bett aus Zeolith-Pellets handelt, welche die Odoriermittel-Komponenten des Gases (Mercaptane, THT usw.) entfernen. Das Gas, das Wasserdampf enthält, strömt in das Material 408, das ein COS-Hydrolyse-Katalysator ist (das COS wird unter Erzeugung von H2S mit Wasser umgesetzt: COS + H₂O → CO₂ + H₂S). Ein geeigneter COS-Hydrolyse-Katalysator ist der SCOS-Katalysator, der von Elf Atofina erhältlich ist. Andere geeignete Materialien umfassen Titandioxid, Zirconiumdioxid,

- 8. Verfahren nach Anspruch 7, weiter umfassend: Erwärmen eines dritten Materials auf eine Temperatur von mehr als 10 °C, wobei das dritte Material so angepasst ist, dass es H₂S adsorbiert; und Strömenlassen des Gases durch das dritte Material vor dem In-Kontakt-Bringen des Gases mit dem ersten Material.
- 9. Verfahren nach Anspruch 1, weiter umfassend: Strömenlassen des Gases aus dem zweiten Material durch ein viertes Material, das so angepasst ist, dass es eine sichtbare Anzeige eines H₂S-Nachweises bereitstellt.
- 10. Verfahren nach Anspruch 1, weiter umfassend:

Aufrechterhalten des ersten Materials bei einer ersten Temperatur; und

Aufrechterhalten des zweiten Materials bei einer zweiten Temperatur, wobei die erste Temperatur von der zweiten Temperatur verschieden ist.

11. Verfahren nach Anspruch 1, weiter umfassend:

Absorbieren der Odoriermittel-Komponente in das erste Material; und

Ersetzen des ersten Materials durch frisches erstes Material, während das zweite Material nicht ersetzt wird.

12. Verfahren nach Anspruch 1, weiter umfassend

Absorbieren von $\rm H_2S$ in das zweite Material; und Ersetzen des zweiten Materials durch frisches zweites Material, während das erste Material nicht ersetzt wird.

13. Verfahren nach Anspruch 1, weiter umfassend:

Strömenlassen des Gases durch ein Kaltstart-Material, das Nickel umfasst, während eines Schritts des Anfahrens des Systems;

Vorbeileiten des Gases weg von dem Kaltstart-Material, wenn eine Temperatur des ersten Materials auf ein vorbestimmtes Niveau ansteigt.

14. Vorrichtung zur Entfernung von Schwefel-Verbindungen aus einem Gasstrom, umfassend: ein erstes Material und ein zweites Material; eine Leitung mit einem Einlass und einem Auslass, wobei die Leitung eine Fluidkommunikation von dem Einlass zu dem ersten Material bereitstellt, die Leitung eine Fluidkommunikation von dem ersten Material zu dem zweiten Material bereitstellt und die Leitung eine Fluidkommunikation von dem zweiten Material zu dem Auslass bereitstellt;

wobei das erste Material für die Absorption einer Odoriermittel-Verbindung geeignet ist und wobei das zweite Material für die Absorption von H₂S geeignet ist.

- 15. Vorrichtung nach Anspruch 14, in der das erste Material einen Zeolith umfasst.
- 16. Vorrichtung nach Anspruch 14, in der das erste Material und das zweite Material verschiedene Substanzen sind.
- 17. Vorrichtung nach Anspruch 14, in der die Odoriermittel-Verbindung ein Material umfasst, das aus der Gruppe ausgewählt ist, die Tetrahydrothiophen, Tertiärbutylmercaptan, Isopropylmercaptan, Propylmercaptan, Dimethylsulfid und Methylethylsulfid umfasst.
- 18. Vorrichtung nach Anspruch 14, in der das zweite Material ein COS-Hydrolyse-Katalysator ist.
- 19. Vorrichtung nach Anspruch 18, in der der COS-Hydrolyse-Katalysator ein Material umfasst, das aus der Gruppe ausgewählt ist, die Titandioxid, Zirconiumdioxid, Thoriumdioxid, Lanthanoidenoxid, Aluminiumoxid, Cerdioxid, Molybdänoxid, Vanadiumoxid, Manganoxid, Cobaltoxid, Eisenoxid und Nickeloxid umfasst.
- 20. Vorrichtung nach Anspruch 19, weiter umfassend ein drittes Material, das so angepasst ist, dass es einen Strom des Gasstroms aus dem zweiten Material empfängt, wobei das dritte Material ein Zeolith-Material mit einer mittleren Porengröße von weniger als 10 Angström ist.
- 21. Vorrichtung nach Anspruch 14, weiter umfassend eine elektrische Heizung, die so angepasst ist, dass sie selektiv das erste Material erwärmt.
- 22. Vorrichtung zur Entfernung von Schwefel-Verbindungen aus einem Gasstrom, umfassend: eine erste Stufe und eine zweite Stufe;

eine Leitung mit einem Einlass und einem Auslass, wobei die Leitung eine Fluidkommunikation von dem Einlass zu der ersten Stufe, von der ersten Stufe zu der zweiten Stufe und von der zweiten Stufe zu dem Auslass bereitstellt;

wobei die erste Stufe ein Zeolith-Material umfasst; und

wobei die zweite Stufe ein Material umfasst, das aus der Gruppe ausgewählt ist, die H₂S-Absorbenzien und COS-Hydrolyse-Katalysatoren umfasst.

23. Vorrichtung nach Anspruch 22, in der die erste Stufe lösbar mit der Leitung verbunden ist und in der die zweite Stufe lösbar mit der Leitung verbunden ist.

Es folgt ein Blatt Zeichnungen