《光的干涉》内容概要

理论内容总结:

♣ § 2.1 概述

♣ § 2.2 光波的叠加和干涉

↓ § 2.3 分波前干涉---杨氏干涉实验

♣ § 2.4 其他分波前干涉装置

↓ § 2.5 分振幅干涉---薄膜干涉的一般问题

♣ § 2.6 等倾干涉

♣ § 2.7 等厚干涉

↓ § 2.8 薄膜干涉应用举例

↓ § 2.9 迈克耳孙干涉仪和马赫德尔干涉仪

↓ § 2.10 光场的空间相干性和时间相干性

练习题总结

- → 两个独立的点光源,甚至同一光源的不同部位发出的波列 之间没有固定的相位关系,因此不会产生干涉现象。
- → 相干叠加的三要素: 两列波的频率相同,振动方向相同、相位差恒定。
- ◇ 实现三要素的条件——光场中的任意两点的要求:要求光场中的任意两点的横向距离不能太大,即都位于相干孔径角内;两点的纵向光程差也不能太长,应小于波列长度,又称相干长度 L_c,这样的两点才会相干。

光场中两点的横向距离: $\frac{d}{R} = \frac{\lambda}{b} = \theta_0 \rightarrow b = \frac{\lambda}{d}R$

光场中两点的纵向距离:为光波列的长度 $L_c = rac{\lambda^2}{\Delta \lambda}$

图 2-24 测定光源的角直径

 \diamondsuit 合振动的振幅为: $A^2 = A_1^2 + A_2^2 + 2A_1A_2\cos\delta$,强度为 $I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\delta$

其中相位差为: $\delta = \frac{2\pi}{\lambda}(n_2r_2 - n_1r_1) - (\varphi_2 - \varphi_1)$

◇ 获得相干光源有两类办法:

第一类

分波前干涉

总原则:杨氏双缝实验,光程差: $\Delta = \frac{x}{D}d(-\frac{\lambda}{2})$

杨	光路图		光			
氏		源				
双		\ IP				
缝	光程差	光程差: $\Delta = \frac{x}{D}d$ S_1 / r_1				
实		2	0'			
验			S = 0			
			\sim \sim \sim \sim			
			E			
			$r_2 - r_1$			
	条纹	HII ()	. D			
	位置	明 红: x _k	$=k\lambda\cdot\frac{D}{d},k=0,\pm 1,\pm 2,\cdots$			
	条纹	D				
	间距	$\Delta x = \lambda \frac{D}{d}$				
		а				
	图案	均匀分布、	明暗相间的双曲面状(接近直线状)			
	特点)m/) /	* I I I I I I I I I I I I I I I I I I I			
	应用		尊片厚度、介质折射率 □ ○ ● □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □			
	拓展	复色光点 光源	① 零级亮纹位置相同,波长越长条纹间距越大 ② 远处各种彩色条纹交错重叠而不显条纹。			
) UVA	波长为 $\lambda + \Delta \lambda/2$ 的 k 级明纹与波长为 $\lambda - \Delta \lambda/2$ 的			
			$k+1$ 级明纹重合: $k = \frac{\lambda - (\Delta \lambda/2)}{\lambda^2} \approx \frac{\lambda}{\lambda^2}$			
			$\Delta\lambda$ $\Delta\lambda$			
		光源偏离	即光源关于两个次光源不对称,其中 R 是光源到			
		对称轴向	两个小孔的垂直距离。			
		上移动 ξ	$D\xi$			
			条纹整体向下平移 $rac{D\xi}{R}$,其它不变			
		用狭缝光	将双缝看成是由许多双孔组成的。			
		源作实验	增强了干涉效果,亮的条纹 <mark>更亮</mark> ; <mark>条纹变直</mark> 。			
		具有一定	它们彼此有一定的平移,幕上的强度是这些干涉			
		宽度 b 的	强度非相干叠加的结果。			
		光源:看	$I_{\text{max}} - I_{\text{min}}$			
		成许多不	干涉条纹的衬比度: $\gamma = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}}$			
		相干的点 光源,每	шал шш			
		一点光源	当条纹的移动 $\Delta x' = b \frac{D}{R}$ 小于条纹间距			
		在幕上形				
		成一套干				
		// 4				

- ◇ 分振幅干涉,又称薄膜干涉
- ◇ 薄膜可以是任意介质膜,如玻璃、油膜,也可以是两个玻璃片所夹的空气薄膜。
- → 薄膜上下两个表面上的反射光相遇,在满足相干条件时(所有的这样一对反射光线的光程差相等) 形成干涉条纹:
- 1、点光源 S,发出的两条光线是相干的。干涉定域在全空间
- 2、扩展光源---有一定大小的光源

仅当两条反射光线皆来自同一条入射光线,是其在薄膜上下两个表面上的反射光,且不同光源 点发出的入射光平行的情况下,光程差才恒定。

对于均匀薄膜,干涉定域在无限远;对于厚度非均匀薄膜,干涉定域在膜的近旁。

♦ 光程差: $\Delta = 2n_2h\cos\gamma \pm \frac{\lambda}{2}$ (玻璃、油膜等,+;玻璃片所夹的空气薄膜,-。)

۲۰۰۰	र्ग भूभ रा	1	
综	光路图	1	N. Aba a D
述	光线1,2 ⇔ P		
	<u>点光源</u> s		
			图 2-11 海膜干涉的光程差
	原理	薄膜上下	两个表面上的反射光相遇,在满足相干条件时(所有
		的这样一	-对反射光线的光程差相等)形成干涉条纹
	干涉	点光源	发出的两条光线是相干的。干涉定域在全空间
	定域	扩展光	仅当两条反射光线皆来自同一条入射光线,是其在
		源	薄膜上下两个表面上的反射光,且不同光源点发出
			的入射光平行的情况下,光程差才恒定。
			对于均匀薄膜,干涉定域在无限远; 对于厚度非均
			匀薄膜,干涉定域在膜的近旁。
	光程	玻璃、	1
	差	油膜等	$\Delta = 2n_2h\cos\gamma + \frac{\lambda}{2}$
		玻璃片	
		所夹的	$\Delta = 2n_2h\cos\gamma - \frac{\lambda}{2}$
		空气薄	2
		膜	

等	光路图	<u> </u>			
(7	7U## E	4	r _{sk}		
干			P		
涉			直光源		
			n_1 n_2 n_2 n_3 n_4 n_2 n_3 n_4 n_4 n_5 n_4 n_5 n_5		
			n_3 \nearrow B		
	特点	薄膜的扩	f射率和厚度都均匀		
	干涉	扩展光	无限远		
	定域	源			
	干涉		入射倾角相同的光线组成了一个圆,故等倾干涉的		
	条纹 的特		条纹形状是一系列同心圆环		
	征	干涉条	λ		
	ш	纹位置	亮纹: $\Delta_k = 2n_2h\cos\gamma_k \pm \frac{\lambda}{2} = k\lambda \Rightarrow \gamma_k$		
		级次分 布	γ $→$ k \uparrow 中心级次最大,外沿级次逐渐降低		
		条纹间距	$d\gamma = \gamma_{k+1} - \gamma_k = -\frac{\lambda}{2n_2 h \sin \gamma}$ 内稀疏外密集		
		条纹移 动规律	$h \uparrow \rightarrow \cos \gamma_k \downarrow \rightarrow \gamma_k \uparrow$ 从中心冒出向边缘移		
		应用	测厚度: 从中心冒出 m 个条纹, 增 $\Delta h = m \lambda/2$		
等厚干	光路图		▲人眼		
涉	平行光				
	特点 薄膜的厚度不均匀,单色扩展光源垂直入射				
	干涉	扩展光	膜的近旁		
	定域	源			
			雅屋, 6004654651 0000 000 000 000 000 000 000 000 000		
	干涉	干涉条	膜厚 h 相同的连线为同级干涉条纹		

的特 征 教 公 位置	ı	Т	
### ### ### ### ### ### ### ##	的特 征		亮纹: $\Delta_k = 2n_2h_k\cos\gamma \pm \frac{\lambda}{2} = k\lambda \Rightarrow h_k$
距 $\Delta h = \frac{\lambda}{2n_2}$ 条纹移 膜厚度变化,为保持光程差不变,条纹原来厚度方向			薄→k 小;厚→k 大。
$ \Delta h = \frac{\lambda}{2n_2} $			相邻亮纹或暗纹之间的厚度差(要求厚度连续变化)
		距 	$\Delta h = \frac{\lambda}{2n_2}$
中顿 光路图 λ			
中顿 光路图 λ		应用	测平凸透镜的曲率半径、细丝直径、平整度等
特点 一个曲率很大的平凸透镜放在一个平面玻璃板上,形成一个厚度不均匀的空气薄膜;平行单色光垂直入射;中心处始终是暗点	, ,,,		$\lambda \downarrow \downarrow \downarrow \downarrow$
特点 一个曲率很大的平凸透镜放在一个平面玻璃板上,形成一个厚度不均匀的空气薄膜,平行单色光垂直入射,中心处始终是暗点			R R
形成一个厚度不均匀的空气薄膜,平行单色光垂直入射,中心处始终是暗点			n_2 n_3
域区域 明或暗 圆环半 径		特点	形成一个厚度不均匀的空气薄膜; 平行单色光垂直
圆环半 $\Delta = \begin{cases} k\lambda & \to r_k = \sqrt{(k+\frac{1}{2})R\lambda}, k = 0,1,2,3,\cdots \\ (k+\frac{1}{2})\lambda & \to r_k = \sqrt{(k+1)\lambda R}, k = 0,1,2,3,\cdots \end{cases}$ $\Delta = 2h - \frac{\lambda}{2} = \Delta(h), R^2 = (R-h)^2 + r^2 \Rightarrow 0$			空气层处
$(\Delta = 2h - \frac{\lambda}{2} = \Delta(h), R^2 = (R - h)^2 + r^2 \Rightarrow)$ 级次分 中心附近级次较低,外沿级次较高 布 条纹移 当上凸形玻璃板平行上移时,条纹环向中心陷入。 动规律 因为第 k 级条纹环对应的厚度 d _k 是确定的		圆环半	$\Delta = \begin{cases} k\lambda & \rightarrow r_k = \sqrt{(k+\frac{1}{2})R\lambda}, k = 0,1,2,3,\cdots \end{cases}$
级次分 中心附近级次较低,外沿级次较高 布 条纹移 当上凸形玻璃板平行上移时,条纹环向中心陷入。 动规律 因为第 k 级条纹环对应的厚度 d _k 是确定的 应用		15	
布 条			$(\Delta = 2h - \frac{\lambda}{2} = \Delta(h), R^2 = (R - h)^2 + r^2 \Rightarrow)$
动规律 因为第 k 级条纹环对应的厚度 d _k 是确定的			中心附近级次较低,外沿级次较高
		条纹移	当上凸形玻璃板平行上移时,条纹环向中心陷入。
应用 测平凸透镜的曲率半径 $R = \frac{r_{k+m}^2 - r_k^2}{m\lambda}$		动规律	因为第 k 级条纹环对应的厚度 d _k 是确定的
		应用	测平凸透镜的曲率半径 $R = \frac{r_{k+m}^2 - r_k^2}{m\lambda}$

	l	T	
		光路图	$\lambda\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow$
	劈尖		n_1
	干涉		n_2
			,
			n the state of the
			θ η η η η η η
			$D \longrightarrow D$
		条纹形	平行棱边的直线
		状	
		级次分	靠棱边→k 小;远离棱边→k 大
		布	THE TOTAL TO
		条纹间	
			₩似真效或噬效之原斑关 Λ
		距	相邻亮纹或暗纹之厚度差 $\Delta h = \frac{\lambda}{2n} = \frac{\lambda}{2}$
			$\wedge h = \lambda - \lambda$
			条纹间距: $l \approx \frac{\Delta h}{\theta} = \frac{\lambda}{2n_2\theta} = \frac{\lambda}{2\theta}$
			$0 2n_20 20$
		条纹移	玻璃板平行上移,条纹向梭边移动.
		动规律	増大θ,条纹也向梭边移动.
薄	增透	作用	消反射、增透
膜	膜		
于	100	原理	增透膜必须满足两个条件:
			一是反射的两束光光强(或振幅)相等,
应			$n_2 = \sqrt{n_1 n_3}$ 。 一般 $n_1 = 1$ (空气) , $n_3 = 1.52$ (玻
用			 璃)。 n ₂ = 1.38 (氟化镁 MgF ₂)。
			另一个条件是两束光的光程差满足干涉相消,
			$\Delta = 2n_2h = \frac{\lambda}{2}$ 。通常是对黄绿光 $\lambda = 5500\mathrm{A}$ 干涉
			$\frac{\Delta - 2n_2n - \frac{1}{2}}{2}$ 。 他币定则 央球儿儿 $- 3500$ A 10
			相消,因此增透膜看起来呈紫红色。
	增反	原理	要求降低透射率,提高反射率,使反射光达到干涉
	膜		极大。靠单膜做不到,需要镀多层膜。

l	I	
迈克	光路图	空 与层
耳逊		M ₁ 上下可调 /
干涉		競象 M ' / / / / / / / / / / / / / / / / / /
仪		镜家 M 222 122 1
		2
		平行光 G_1 G_2 M_2
		S.
		$\frac{1}{\lambda}$
		半透半反膜 2′
		<u>₩</u>
		<mark></mark>
	leri wini	
	原理	是光路分开的薄膜干涉。 M_2 是 M_2 关于 G_1 的半透
		膜的虚像。
		当 M ₁ 、M ₂ 严格平行时,是等倾干涉,干涉条纹
		定域于无限远,条纹为同心圆环,当平移 M ₁ 使间
		距变大时,圆圈一个个从中心冒出来。
		当 M ₁ 、M ₂ 不平行时,是等厚干涉,干涉条纹定
		域于薄膜的近旁,条纹为平行直线状,当平移 M ₁
		使间距或夹角变大时,条纹向交线方向移动,每移
		过一个条纹,厚度改变 $\lambda/2$ 。
	优点	使相干的两光路分开,从而可在一支光路中插入其
	J - J	它装置进行研究,发光的波长相当稳定,可作为长
		度的自然标准
	्रा सम्बद्धाः	及即日於你任
马赫	光路图	实验箱
- 曾		C ₂
德尔		M_2
干涉		E
仪		
		-
		S
		G ₁ C ₁ A ¹ M ₁
		图 2-22 马赫-曾德尔于涉仪光路
		1k #2
	原理	当有高速气流进入实验箱 C₂时,两束相干光造成的
		光程差可形成干涉条纹,可用相机在处将它拍摄下
		来。 当高速气流进入实验箱 C2 时,引起空气密度的
		 局域变化,从而引起折射率的局部变化,引起干涉
		条纹的移动。用高速相机短时间连续拍摄可记录干
		涉条纹的移动。
		少宋 纹的移列。
		10
		干涉条纹的移动数: $\Delta m = \frac{1}{\lambda} \int [n'(x,y,z) - n] ds$.
		λ -
		测出飞行器模型周围各点干涉条纹移动数,可计算
		出折射率的变化和密度的变化,从而计算出气流的

		压力分布、温度分布、流速场分布等等。
	优点及	优点: 使相干的两光路彻底分开,并可使干涉条纹
	缺点	定域于之间的任意位置;干涉计量本身十分精密,
		无需引入测量探头和其它部件,不会干扰气体的流
		动。
		缺点: 只能研究二维和轴对称气流; 大型光学平面
		和平行平面的磨制十分困难。