

Airborne GLM Simulator

Fly's Eye GLM Simulator

Mason G. Quick, Richard J. Blakeslee, Hugh Christian, Mike Stewart, Scott Podgorny, David Corredor

Geostationay Lightning Mapper - 'Total' Lightning Optical Observations from Space

GOES-R

Potential GLM Coverage

Lightning Cluster Filter
Algorithm

- Early indication, tracking, monitoring of storm intensification
- More timely and accurate forecasts and warnings
- In-cloud lightning dominates severe storms
- Lightning "jump" identification
- Lightning climatology

Fly's Eye GLM Simulator (FEGS)

Objectives

- Calibration of the Optical Energy observed by GLM
 - Background radiance (day/night)
 - Signal radiance

- Validate GLM events while observing the same storms
 - location accuracy in space and time
- Determine GLM Detection Efficiency

Constraints

Spec	Requirement	Constraints	Determine	
Spatial	> GLM spatial	ER-2 flight	IFOV	18 deg
Resolution	resolution (8 x 8 km)	altitude	FOV	90 deg
		Cloud top height	Looking Angles	Δ 18 deg
		croud top neight	Resolution	2 x 2 km
Temporal	Resolve variation of	Previous	Sample Rate	100 kHz
Resolution	signal over GLM integration (2 ms)	measurements	Signal BW	≤ 50 kHz
			Disk Space	≥ 500 GB
			Memory	100 ms pre-
			Allocation	trigger
			Triggering	Optical or
				External
Sensitivity	Detect signals below GLM threshold	Background and Signal estimates	RMS Noise	≤ 1.5 nA

Design

• 5 extra spectral channels

– UV: 337 nm

– UV: 400 nm

- VV. 400 mm - NI: 500 nm

– N1. 300 mm– Hα: 660 nm

- N2: 675 nm

WideBand: 400-1000 nm

• Wide Angle Camera, normal frame rate

• Electric Field Change Meter

• High Energy Particle Detectors

National Aeronautics and Space Administration
National Space Science and Technology Center
Marshal Space Flight Center
Huntsville, Alabama

Huntsville, Alabama

www.nasa.gov

Copyright 2015. All rights reserved.

References

Steven J. Goodman, Richard J. Blakeslee, William J. Koshak, Douglas Mach, Jeffrey Bailey, Dennis Buechler, Larry Carey, Chris Schultz, Monte Bateman, Eugene McCaul Jr., Geoffrey Stano, The GOES-R Geostationary Lightning Mapper (GLM), *Atmospheric Research*, Volumes 125–126, May 2013, Pages 34-49, ISSN 0169-8095, http://dx.doi.org/10.1016/j.atmosres.2013.01.006.