Prof. Dr. Ernst-Rüdiger Olderog Christopher Bischopink, M.Sc.

Ausgabe: 17.01.2020

Abgabe: 24.01.2020 bis 14^{00} Uhr in den Fächern im ARBI-Flur

12. Übung zu Grundlagen der Theoretischen Informatik

Aufgabe 51: Quiz (5 Punkte)

Für jede richtige Antwort gibt es einen Punkt, für jede falsche wird einer abgezogen. Minimal können 0 Punkte erreicht werden.

Wahr	Falsch
	\square a) Es existiert kein $i \in \mathbb{N}$, sodass $\mathbb{N} \prec \underbrace{\mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N}}_{i\text{-mal}}$
	\square c) Eine Sprache $L \subseteq B^*$ ist semi-entscheidbar, falls es eine Turingmaschine τ mit dem Eingabealphabet Σ gibt, sodass $L = \{w \in B^* \mid \exists v \in \Sigma^* : h_\tau(v) = w\}$ gilt. Alternativ ist es auch hinreichend, falls $L = \{v \in B^* \mid h_\tau(v) \text{ ist definiert}\}$ gilt.
	$\hfill \square$ d) Jedes semi-entscheidbare Problem ist auch entscheidbar .
	\square e) Eine nicht-leere Sprache L über A^* heißt rekursiv aufzählbar, falls es eine totale Funktion $\beta: \mathbb{N} \to A^*$ mit $L = \beta(\mathbb{N}) = \{\beta(1), \beta(2), \dots\}$ gibt.
	Aufgabe 52: Unentscheidbarkeit von DEEP THOUGHTS (5 Punkte) Wir stellen uns die Frage, ob wir entscheiden können, ob ein beliebiges Programm dieselbe Antwort wie DEEP THOUGHT liefert, wenn wir es auf die <i>ultimative Frage des Lebens, des Universums und dem ganzen Rest</i> (The Ultimate Question of Life, The Universe, and Everything) ¹ ansetzen.
	Etwas abstrakter können wir das Problem wie folgt formalisieren:
	Gegeben: Eine Turingmaschine τ . Frage: Berechnet τ , angesetzt auf die ultimative Frage (kodiert als 111111), den Wert 42?
	Definieren wir die Menge aller Turingmaschinen, welche diese Eingabe-Ausgabe-Kombination berechnet, als DTs = $\{bw_{\tau} \in B^* \mid h_{\tau}(111111) = 42\}$, ergibt sich das Problem als:
	Gegeben: $w \in B^*$.

Zeigen Sie nun durch eine geeignete Reduktion, dass DTs unentscheidbar ist. Die folgenden Schritte können dabei hilfreich sein.

a) Suchen Sie ein geeignetes und aus der Vorlesung bekanntes Problem X und entscheiden Sie, ob Sie von DTs oder auf DTs reduzieren wollen (DTs $\leq X$ oder $X \leq$ DTs).

Frage: Gilt $w \in DTs$?

¹The Hitchhiker's Guide to the Galaxy

b) Beschreiben Sie ein berechenbares Konstruktionsverfahren, mit dem Sie aus einer Turingmaschine τ eine Turingmaschine τ' erhalten, so dass Sie eine totale und berechenbare Funktion $f: B^* \to B^*$ mit

$$f(x) = \begin{cases} bw_{\tau'} & \text{falls } x = bw_{\tau} \text{ die Bin\"{a}rcodierung einer Turingmaschine } \tau \text{ ist} \\ x & \text{sonst} \end{cases}$$

erhalten, welche für die gewünschte Reduktion verwandt werden kann.

- c) Zeigen Sie, dass $w \in P_1 \Rightarrow f(w) \in P_2$ gilt. P_1 und P_2 sind dabei je nach Aufgabenteil a) mit X und DTs zu instantiieren.
- d) Zeigen Sie, dass $f(w) \in P_2 \Rightarrow w \in P_1$ gilt. *Hinweis:* Die Kontraposition der Aussage ist: $w \notin P_1 \Rightarrow f(w) \notin P_2$.
- e) Erklären Sie unter zuhilfenahme obiger Schritte, warum DTs unentscheidbar ist.

Aufgabe 53: Konstruktion eines (Semi)-Entscheiders (2+1+1+1 Punkte)
Gegeben sei die Sprache

$$L = \{c^{3n} \mid n \in \mathbb{N} \land n > 0\}$$

über dem Alphabet $\{c\}$.

- a) Zeigen Sie, dass L semi-entscheidbar ist, indem Sie eine Turingmaschine angeben, die ψ_L berechnet. Erläutern Sie die Funktionsweise der Turingmaschine.
- b) Wie müssen Sie die Turingmaschine verändern, um χ_L zu berechnen?
- c) Erläutern Sie ohne Angabe einer weiteren Turingmaschine, ob L Turing-akzeptierbar ist.
- d) Erläutern Sie ohne Angabe einer weiteren Turingmaschine, ob \bar{L} Turing-akzeptierbar ist.

Aufgabe 54: Vererbung von Eigenschaften (1+1+1+1+1 Punkte) Zeigen oder widerlegen Sie, dass für zwei Sprachen L_1 und L_2 folgende Eigenschaften gelten:

- a) Ist L_1 unentscheidbar und es gilt $L_1 \subseteq L_2$, dann ist L_2 auch unentscheidbar.
- b) Sind L_1 und L_2 Turing-akzeptierbar, dann ist auch $L_1 \cup L_2$ Turing-akzeptierbar.
- c) Ist L_1 entscheidbar und L_2 beliebig gewählt, dann ist $L_1 \cap L_2$ auch entscheidbar.

Geben Sie jeweils konkrete Sprachen L_1 und L_2 an, die die folgenden Eigenschaften besitzen. Begründen Sie außerdem kurz, warum sie die gewünschten Eigenschaften besitzen.

- d) L_1 ist rekursiv aufzählbar, L_2 ist nicht rekursiv aufzählbar und es gilt $L_1 \subseteq L_2$.
- e) L_1 ist nicht rekursiv aufzählbar, L_2 ist rekursiv aufzählbar und es gilt $L_1 \subseteq L_2$.

Hinweis: Dies ist der letzte bewertete Übungszettel.²

²was nicht bedeutet, dass der 13. Übungszettel nicht genauso gewissenhaft bearbeitet werden sollte ⊚!