## General Slicing By Cross Sections

The general relationship between volume and cross-sectional area.

**Example 1.** The base of a solid region is bounded by the curves x = 0, y = 0, and  $y = \sqrt{1 - x^2}$ . The cross sections perpendicular to the x axis are squares. Compute the volume of the region.

**Solution:** Lines in the xy-plane which are perpendicular to the x-axis are vertical, so the base of a typical x cross section will extend from y=0 to  $y=\sqrt{1-x^2}$ . Since each cross section will have area

$$A(x) = \left(\sqrt{1 - x^2} - 0\right)^2 = 1 - x^2.$$

To compute volume, we integrate dV = A(x)dx between x = 0 and x = 1, since these are the most extreme values of x found in our region. Therefore

$$V = \int_0^1 (1 - x^2) dx = x - \frac{x^3}{3} \Big|_0^1 = 1 - \frac{1}{3} = \frac{2}{3}.$$

**Example 2.** The base of a solid region is bounded by the curves y = 0,  $x = \sqrt{y}$ , and x = 1. The cross sections perpendicular to the y-axis are squares. Compute the volume of the region.

**Solution:** Lines in the xy-plane which are perpendicular to the y-axis are (horizontal  $\sqrt{\ }$  vertical), so the base of a typical y cross section will extend from the graph  $x = \boxed{\ } \sqrt{y}$  to the graph  $x = \boxed{\ } 1$ . The length of the base is the difference of x-coordinates (since all points on a slice have the same y-coordinate), so the length of the base is  $\boxed{1-\sqrt{y}}$ , giving the square an area of

$$A(y) = \boxed{(1 - \sqrt{y})^2}$$

(note that the answer is a function of y because different y cross sections will generally have different areas). To compute volume, we integrate dV = A(y)dy between y = 0 and y = 1, since these are the most extreme values of y found in our region (note that we can find the upper value y = 1 by solving for the intersection of the curves  $x = \sqrt{y}$  and x = 1). Therefore we integrate A(y)dy to conclude

$$V = \int_{\boxed{0}} \boxed{(1 - \sqrt{y})^2} dy = \boxed{\frac{1}{6}}.$$

Learning outcomes:

Author(s): Philip T. Gressman

**Exercise** 1 The base of a solid region is bounded by the curves x = 0,  $y = x^2$  and y = x. The cross sections perpendicular to the x-axis are squares. Compute the volume of the region.

- Possible x-coordinates of points in the base range from a minimum value of  $x = \boxed{0}$  up to a maximum of  $x = \boxed{1}$ .
- A typical square cross section has side length  $x x^2$  and area  $(x x^2)^2$ .
- To compute volume, integrate:

$$V = \int_{\boxed{0}}^{\boxed{1}} \boxed{(x - x^2)^2} d\boxed{x} = \boxed{\frac{1}{30}}.$$