1 Introduction aux Méthodes de Newton-Cotes

Les méthodes de Newton-Cotes sont une famille de formules de quadrature numérique (intégration numérique) basées sur l'évaluation de l'intégrande en des points équidistants. Elles constituent une généralisation des méthodes élémentaires d'intégration.

Definition 1.1 (Méthode de Newton-Cotes). On appelle méthode de Newton-Cotes d'ordre K la méthode élémentaire consistant à utiliser le polynôme d'interpolation d'ordre K, $P_K(x)$, associé aux K+1 points x_i équidistants :

$$x_i = \alpha + i \frac{\beta - \alpha}{K}, \quad i = 0, \dots, K$$

L'intégrale de la fonction f(x) est alors approchée par l'intégrale de ce polynôme :

$$\int_{\alpha}^{\beta} f(x)dx \approx \int_{\alpha}^{\beta} P_K(x)dx = \sum_{i=0}^{K} \omega_i f(x_i)$$

où les poids ω_i sont donnés par :

$$\omega_i = \int_{\alpha}^{\beta} L_i(x) dx = \int_{\alpha}^{\beta} \prod_{\substack{j=0\\j\neq i}}^{K} \frac{x - x_j}{x_i - x_j} dx$$

 $L_i(x)$ sont les polynômes de base de Lagrange.

2 Exemples de Formules et Cas Particuliers

L'ordre de la formule de Newton-Cotes est p. Cette formule est d'ordre K si K est impair, et d'ordre K+1 si K est pair. On n'utilise ces méthodes que pour K pair, sauf le cas K=1.

- Si K = 1 (2 points), on a la formule des trapèzes.
- Si K = 2 (3 points), on a la formule de Simpson.
- Si K = 4 (5 points), on a la formule de Boole-Villarceau. Par exemple, pour l'intervalle [0, 1]:

$$\int_0^1 f(x)dx \approx \frac{1}{90} \left[7f(0) + 32f\left(\frac{1}{4}\right) + 12f\left(\frac{1}{2}\right) + 32f\left(\frac{3}{4}\right) + 7f(1) \right]$$

(Note: ceci correspond à h = 1/4, et les coefficients généraux sont $\frac{2h}{45}(7f_0 + 32f_1 + 12f_2 + 32f_3 + 7f_4)$).

• Pour K = 6 (7 points), on a la formule de Hardy.

Pour $K \geq 8$, certains poids ω_i deviennent négatifs, ce qui rend les formules sensibles aux erreurs d'arrondi et peut entraîner une perte de précision.

3 Théorème et Erreur d'Intégration

Theorem 3.1. Soient $I(f) = \int_{\alpha}^{\beta} f(x) dx$ l'intégrale exacte et $I_K(f) = \sum_{i=0}^{K} \omega_i f(x_i)$ l'approximation par la méthode de Newton-Cotes. L'erreur d'intégration est $E(f) = I(f) - I_K(f)$. Supposons que la méthode d'intégration soit d'ordre $p \geq K$. Posons le noyau de Peano K(t) comme suit :

$$K(t) = E_x((x-t)_+^p) = \int_{\alpha}^{\beta} (x-t)_+^p dx - \sum_{i=0}^{K} \omega_i (x_i - t)_+^p$$

où $(u)_+^p = u^p$ si u > 0 et 0 sinon. Alors, pour toute fonction $f \in C^{p+1}([\alpha, \beta])$, on a :

$$E(f) = \frac{1}{p!} \int_{\alpha}^{\beta} K(t) f^{(p+1)}(t) dt$$

Si K(t) est de signe constant sur $[\alpha, \beta]$ (ce qui est le cas pour les méthodes de Newton-Cotes usuelles lorsque K n'est pas trop grand), alors il existe $c \in [\alpha, \beta]$ tel que :

$$E(f) = \frac{f^{(p+1)}(c)}{p!} \int_{\alpha}^{\beta} K(t)dt$$

On peut aussi écrire cela en utilisant l'erreur pour la fonction $x \mapsto x^{p+1}$:

$$E(f) = \frac{f^{(p+1)}(c)}{(p+1)!} E(x \mapsto x^{p+1})$$

En effet, $E(x\mapsto x^{p+1})=\int_{\alpha}^{\beta}K(t)\frac{d^{p+1}(t^{p+1})}{dt^{p+1}}\frac{1}{p!}dt=\int_{\alpha}^{\beta}K(t)\frac{(p+1)!}{p!}dt=(p+1)\int_{\alpha}^{\beta}K(t)dt$. Dans les méthodes de Newton-Cotes (pour K petit), le noyau de Peano K(t) a un signe constant.

4 Construction de Formules de Quadrature à Points Non Équidistants : Formule de Gauss-Legendre

On cherche s'il existe un meilleur choix des points x_1, \ldots, x_N (non nécessairement équidistants) dans $[\alpha, \beta]$ et des poids $\omega_1, \ldots, \omega_N$ pour que la formule de quadrature $\sum_{i=1}^N \omega_i f(x_i)$ soit exacte pour les polynômes de $\mathbb{R}_n[X]$ avec n le plus grand possible. Typiquement, pour N points, on peut atteindre un degré d'exactitude 2N-1.

Example 4.1 (Formule de Gauss-Legendre à 2 points). Cherchons une formule de la forme $\int_{-1}^{1} f(x)dx \approx \omega_1 f(x_1) + \omega_2 f(x_2)$. Nous avons 4 inconnues $(x_1, x_2, \omega_1, \omega_2)$. Nous imposons donc que la formule soit exacte pour les polynômes $1, x, x^2, x^3$.

$$\int_{-1}^{1} 1 \, dx = 2 = \omega_1 + \omega_2$$

$$\int_{-1}^{1} x \, dx = 0 = \omega_1 x_1 + \omega_2 x_2$$

$$\int_{-1}^{1} x^2 \, dx = \frac{2}{3} = \omega_1 x_1^2 + \omega_2 x_2^2$$

$$\int_{-1}^{1} x^3 \, dx = 0 = \omega_1 x_1^3 + \omega_2 x_2^3$$

La résolution de ce système donne : $x_1 = -1/\sqrt{3}$, $x_2 = 1/\sqrt{3}$ (racines du polynôme de Legendre $P_2(x) = \frac{1}{2}(3x^2 - 1)$). $\omega_1 = 1$, $\omega_2 = 1$. La formule est donc :

$$\int_{-1}^{1} f(x)dx \approx f(-1/\sqrt{3}) + f(1/\sqrt{3})$$

Cette formule est exacte pour les polynômes de degré ≤ 3 (car $2N-1=2\times 2-1=3$).

Example 4.2 (Formule de Gauss-Legendre à 3 points). On cherche $\int_{-1}^{1} f(x)dx \approx \omega_1 f(x_1) + \omega_2 f(x_2) + \omega_3 f(x_3)$. On impose l'exactitude pour les polynômes $1, x, x^2, x^3, x^4, x^5$ (degré $2N - 1 = 2 \times 3 - 1 = 5$).

On obtient que x_1, x_2, x_3 sont les racines du polynôme de Legendre de degré $3, P_3(x) = \frac{1}{2}(5x^3 - 3x)$:

$$x_1 = -\sqrt{3/5}, \quad x_2 = 0, \quad x_3 = \sqrt{3/5}$$

Les poids sont :

$$\omega_1 = 5/9, \quad \omega_2 = 8/9, \quad \omega_3 = 5/9$$

La formule est:

$$\int_{-1}^{1} f(x)dx \approx \frac{5}{9}f(-\sqrt{3/5}) + \frac{8}{9}f(0) + \frac{5}{9}f(\sqrt{3/5})$$

Proposition 4.3. Considérons la formule à N points $\int_{-1}^{1} P(x)dx \approx \sum_{i=1}^{N} \omega_i P(x_i)$ qui est exacte pour les polynômes de degré $\leq 2N-1$. Alors les abscisses x_1,\ldots,x_N sont les N racines du polynôme de Legendre de degré N, noté $L_N(x)$ (ou $P_N(x)$), défini par la relation de récurrence : $L_0(x) = 1$, $L_1(x) = x$

$$L_n(x) = \frac{1}{n} \left[(2n-1)xL_{n-1}(x) - (n-1)L_{n-2}(x) \right] \quad \text{pour } n \ge 2$$

Les poids ω_i sont donnés par :

$$\omega_i = \int_{-1}^{1} \prod_{\substack{j=1\\ i \neq i}}^{N} \frac{x - x_j}{x_i - x_j} dx, \quad i = 1, \dots, N$$

La formule de quadrature ainsi obtenue est appelée Formule de Gauss-Legendre.

4.1 Méthode de résolution pratique (pour 2 points)

Pour retrouver la formule à 2 points $\int_{-1}^{1} P(x)dx \approx \omega_1 f(x_1) + \omega_2 f(x_2)$: On considère le polynôme $\Pi_2(x) = (x - x_1)(x - x_2)$. Pour que la formule soit de Gauss, ce polynôme doit être orthogonal à tous les polynômes de degré inférieur à 2 sur [-1,1] avec un poids w(x) = 1.

1. Orthogonalité à $P_0(x) = 1$:

$$\int_{-1}^{1} (x - x_1)(x - x_2) dx = 0$$

$$\int_{-1}^{1} (x^2 - (x_1 + x_2)x + x_1 x_2) dx = 0$$

$$\left[\frac{x^3}{3} - (x_1 + x_2) \frac{x^2}{2} + x_1 x_2 x \right]_{-1}^{1} = 0$$

$$\frac{2}{3} + 2x_1 x_2 = 0 \Rightarrow x_1 x_2 = -1/3$$

2. Orthogonalité à $P_1(x) = x$:

$$\int_{-1}^{1} x(x - x_1)(x - x_2)dx = 0$$

$$\int_{-1}^{1} (x^3 - (x_1 + x_2)x^2 + x_1x_2x)dx = 0$$

$$\left[\frac{x^4}{4} - (x_1 + x_2)\frac{x^3}{3} + x_1x_2\frac{x^2}{2}\right]_{-1}^{1} = 0$$

$$-\frac{2}{3}(x_1 + x_2) = 0 \Rightarrow x_1 + x_2 = 0$$

Comme $x_1 + x_2 = 0$ et $x_1x_2 = -1/3$, le polynôme $(x - x_1)(x - x_2)$ est $x^2 - (x_1 + x_2)x + x_1x_2 = x^2 - 1/3$. Les racines de $x^2 - 1/3 = 0$ sont $x^2 = 1/3 \Rightarrow x_1 = -1/\sqrt{3}, x_2 = 1/\sqrt{3}$.

Pour trouver les poids $\omega_1,\omega_2,$ on utilise l'exactitude de la formule pour des polynômes simples :

1. Pour f(x) = 1:

$$\int_{-1}^{1} 1 dx = 2 = \omega_1 + \omega_2$$

2. Pour f(x) = x:

$$\int_{-1}^{1} x dx = 0 = \omega_1(-1/\sqrt{3}) + \omega_2(1/\sqrt{3})$$

De la deuxième équation, $0=(-\omega_1+\omega_2)/\sqrt{3}\Rightarrow \omega_1=\omega_2$. En substituant dans la première, $2=\omega_1+\omega_1=2\omega_1\Rightarrow \omega_1=1$. Donc $\omega_1=\omega_2=1$.

On retrouve bien la formule de Gauss-Legendre à 2 points.