16.317: Microprocessor Systems Design I

Spring 2013

Homework 3 Due **Friday**, 3/22/13

1. (30 points) As noted in class, the SETcc instruction can be used to combine multiple conditions together to create a compound conditional test. For example, the code below tests the condition ((A < B) && (C < D)), storing the result in DL:

MOV	AX,	Α
CMP	AX,	В
SETL	DL	
MOV	AX,	С
CMP	AX,	D
SETL	DH	
AND	DL,	DH

For each part of this problem, assume A, B, C, D, E, and F refer to signed integers stored in memory.

What compound condition is tested by each of the code sequences below?

MOV CMP SETLE CMP SETGE	AX, BL AX, BH	B E
OR	BL,	BH
MOV CMP SETE	ΣX	
MOV CMP SETNE	AX, AX, BH	A
AND CMP SETL	BL, AX, BH BL,	С
AND CMP SETZ OR	AX,	A

c.	MOV	AX,	A
	SUB	AX,	В
	CMP	AX,	C
	SETGE	BL	
	MOV	AX,	D
	ADD	AX,	E
	SUB	AX,	F
	SETNZ	BH	
	OR	BL,	BH

2. (15 points) The program that follows implements what is known as a delay loop.

```
MOV CX, 1000H

DLY: DEC CX

NOP ; NOP instruction does nothing

JNZ DLY

NXT: --- ---
```

- a. How many times does the JNZ DLY instruction get executed?
- b. Change the program so that JNZ DLY is executed just 17 times.
- c. Change the program so that JNZ DLY is executed 2^{32} times.
- 3. (15 points) Write a program that compares the elements of two arrays, A(I) and B(I). Each array contains 100 16-bit signed numbers. The comparison is to be done by comparing the corresponding elements of the two arrays until either two elements are found to be unequal or all elements of the arrays have been compared and found to be equal. Assume that the arrays start in the current data segment at offset addresses A000₁₆ and B000₁₆, respectively. If the two arrays are found to be unequal, save the offset of the first unequal element of A(I) in the memory location with offset C000₁₆; otherwise, write all 0s into this location.

16.317: Microprocessor Systems Design I Spring 2013

4. (40 points) Assume the 80386 is running in protected mode with the state given below. Note that each memory location shown contains a single segment descriptor.

Instructor: M. Geiger

Homework 3

 $\begin{array}{lll} \text{GDTR} = 001631 \text{A}00037 & \text{EDI} = 0000444 \text{A} \\ \text{LDTR} = 0010 & \text{EBX} = 0000 \text{F}000 \\ \text{DS} = 000 \text{E} & \text{EBP} = 0000 \text{F}010 \\ \text{ES} = 001 \text{R} & \text{EBP} = 0000 \text{F}010 \\ \end{array}$

ES = 001BSS = 0015

Memory	Address	Memory	Address
Base = 030010F0	00163170	Base = AC000000	00163198
Limit = 020F		Limit = 0317	
Base = 12300020	00163178	Base = 01610200	001631A0
Limit = 0007		Limit = 03F7	
Base = A0331010	00163180	Base = 00163170	001631A8
Limit = 0027		Limit = 0027	
Base = FE002200	00163188	Base = 00163180	001631B0
Limit = FFFF		Limit = 001F	
Base = 12340000	00163190	Base = 05000120	001631B8
Limit = 00FF		Limit = C00F	

What address does each of the following instructions access?

a. MOV DX, [40H] b. XOR ES:[DI], CX

c. BSF AX, WORD PTR [BX+100H]

d. ADD SS:[BP-16], AX