Лабораторная работа 3.2.4 Свободные колебания в электрическом контуре

Кагарманов Радмир Б01-106 14 сентября 2022 г. **Цель работы:** исследование свободных колебаний в электрическом колебательном контуре.

В работе используется: генератор импульсов, электронное реле, магазин сопротивлений, магазин ёмкостей, катушка индуктивности, электронный осциоллограф, универсальный измерительный мост.

Рис. 1: Экспериментальная установка

Экспериментальная установка

На рис. 1 приведена схема установки для исследования свободных колебаний в контуре, содержащем постоянную индуктивность L с активным сопротивлением R_L , а также переменные сопротивление R и ёмкость C, выбираемые из соответствующих магазинов. Картина колебаний напряжения на ёмкости наблюдается на экране двухканального осциоллографа. Выходные разъёмы схемы и входы каналов осциоллографа собраны на отдельной панели Π .

Для периодического возбуждения колебаний в контуре используется генератор импульсов. С выхода генератора сигналы поступают на колебательный контур через электронное реле, которое содержит диодный тиристор и ограничительный резистор.

Обработка результатов

Измерим идуктивность L и сопротивление R_L катушки в зависимости от частоты.

ν, Гц	L , м Γ н	R_L , Om
50	139	20
1000	134	28
5000	135	48

Таблица 1: Некоторые параметры катушки индуктивности

$$L = 136 \pm 2 \text{ мГн}$$

1. В таблице 2 и на рис. 2 представлено сравнение экспериментальных значений периодов с теоретическими, которые считаются по формуле X:

$$T = 2\pi\sqrt{LC} \tag{1}$$

С, мкФ	t, мс	σ_t , MC	N периодов	T_{prac} , MC	T_{theor} , MC	σ_T , MC
0,02	5,00	0,25	5	0,33	0,33	0,02
0,1	5,00	0,25	2	0,72	0,74	0,05
0,2	5,00	0,25	4	1,03	1,05	0,07
0,3	5,00	0,25	3	1,26	1,28	0,09
0,4	5,00	0,25	5	1,44	1,48	0,10
0,5	5,00	0,25	4	1,60	1,66	0,11
0,6	5,00	0,25	4	1,75	1,81	0,12
0,7	5,00	0,25	3	1,87	1,96	0,13

Таблица 2: Таблица данных измерения периода свободных колебаний и сравнение с теорией

Рис. 2: Зависимость Т(С).

Видим, что экспериментальные значения близки к теоретическим.

2.

$$R_{\text{kdht}} = 4\pi\nu_0 L = 8,73 \text{kOm}$$

Для этих значений L и C рассчитаем декремент затухания для каждого сопротивления из интервала $(0,1-0,3)R_{ ext{крит}}$. Из этих данных по формуле

$$R_{\text{крит}} = R_{\Sigma} \sqrt{\left[\frac{2\pi}{\theta}\right]^2 + 1}$$

находим $R_{\text{крит}}$ запишем все в таблицу.

R, Ом	U_1 , дел	σ_{U_1} , дел	U_2 , дел	σ_{U_2} , дел	θ	$\sigma_{ heta}$	$R_{\text{крит}}$, Ом	$\sigma_{R_{crit}}$, Om
700	6,66	0,33	1,00	0,05	0,474	0,034	9300	651
750	4,60	0,23	1,00	0,05	0,509	0,036	9283	650
1000	6,60	0,33	0,90	0,05	0,660	0,047	9567	670
1250	5,60	0,28	1,00	0,05	0,805	0,057	9831	688
1500	4,80	0,24	0,60	0,03	1,040	0,074	9181	643
1750	6,60	0,33	0,60	0,03	1,200	0,084	9324	653

Таблица 3: Таблица измерения $R_{\text{крит}}$

В итоге мы получаем $R_{\text{крит}} = 9,414 \pm 0,220$ кОм.

Экспериментальный результат сильно отличается от теоретического. Скорее всего это изза того, что в описании работы было написано, использовать $L\approx 200~{\rm M}\Gamma$ н для подсчёта $R_{\rm крит}$. А при измерении нашей катушки индуктивность получилась $L=139~{\rm M}\Gamma$ н.

3. Рассмотрим свободные колебания на фазовой плоскости, для этого подключим место соединения катушки индуктивности и магазина сопротивлений к выходу X и включим на осциллографе канал X-Y. В итоге мы получаем картинку на экране как на рисунке ниже. Для фазовой диаграммы для двух значений посчитаем так же декремент затухания

Рис. 3: Фазовая диаграмма для свободных колебаний

R, Om	U_1 , дел	U_2 , дел	n	θ	σ_{θ}
750	0,6	3,9	4	0,468	0,033
2150	1	3,8	1	1,335	0,093

Таблица 4: Декремент затухания для фазовой диаграммы

4. Добротность можно найти по формуле

$$Q = \frac{\pi}{\theta}$$

Найдем ее для $R_{min}=750~{
m Om}$ из графика и фазовой диаграммы. Итоговые результаты запишем в таблицу.

Так же добротность можно найти и из теоретических соображений по формуле

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Результаты так же занесем в таблицу, и в итоге мы получаем эту таблицу со всеми данными из данного эксперимента, по которой мы можем сравнить все полученные значения Мы не вычислили θ для R=2150 Ом через график и спираль. Для R=750 Ом

	L_{coil} , м Γ н	R_{crit} , кОм			Q		
	L_{coil} , MI H	Teop.	Подбор	Граф.	Teop.	Граф.	Спираль
R_{max}	136 ± 2	8 73	9,36	$9,28 \pm 0,65$	6,95	$6,17 \pm 0,43$	$6,71 \pm 0,47$
R_{min}		0,73	9,30	-	-	=	-

Таблица 5: Итоговые результаты эксперимента

видно, что спираль ближе к теории.

Вывод: выполнив данную лабораторную работу, мы исследовали свободные колебания в электрическом контуре. Нашли $R_{\text{крит}}$, логарифмический декремент затухания θ и добротность Q разными методами. Некоторые значения не сходятся с теорией.