

# Introduction to DevOps & DevOps Philosophy





### Overview

Session 1

Introduction to DevOps & DevOps Philosophy

Session 2

Introduction to CI/CD (Continuous Integration / Continuous Delivery)

### Introduction round

- Current role, background and ambitions
- Hobbies / interests / life outside of work
- What do you hope to learn?



# Introduction to DevOps & DevOps Philosophy



# Learning objectives

Define the work of the **operations team** in the traditional sense, understand its tasks and the role in the software development lifecycle.

Discuss the **philosophy** beyond DevOps, emphasizing collaboration, automation, continuous improvement, and high efficiency in development and operations teams.

#### Schedule



Intro + theory

Introduction round + what is the operations team



Exercise

Manual deployments



Debrief + theory

Debrief exercise + challenges



**Exercise** 

Thought experiment



DevOps theory

Terms and if enough time small exercises + mini quiz

## Operations team



Responsible for maintaining IT infrastructure



Handles server setup, deployment and maintenance



Manages network configurations and security



Works separately from development teams



Reactive approach to issues



# Deploying software

Receive code from developers

Manually configure servers

Install dependencies and packages

Deploy code to production environment

### Exercise

Manually deploy a basic application with a frontend and backend to experience the work of the operations team first-hand.



# Debrief - Steps taken

- Server setup and configuration
- Installed dependencies manually
- Configured environment variables
- Deployed frontend and backend code
- Started application services

# Challenges



### Exercise

Thought experiment: scaling up



#### Debrief



Scaling up manually makes it very complex and time-consuming



Imaging having to manage all this



Can you feel the headache yet?

# What is DevOps?

- DevOps = Development + Operations
- A cultural movement, not just tools
- Unifies development and operation teams
- Focuses on collaboration and communication
- Enhances efficiency and quality





# DevOps principles

- Collaboration
- Shared goals and responsibilities
- Automation
- Continuous Integration/Continuous Delivery (CI/CD
- Infrastructure as Code (IaC)
- Monitoring and logging
- Continuous feedback

### Benefits of the software lifecycle



Faster time to market

- m
- Improved quality
- X

Enhanced collaboration and breaking down silos

В

Increased reliability

h

Automation reduces manual tasks

R

Continuous improvement

# Philosophy behind DevOps

People over processes and tools

P Embracing failure as learning

B Shared responsibility and ownership

R Customer-centric focus

Lean and agile principles

Culture of trust and transparency

### Business value of DevOps

- Faster delivery meets market demands
- Optimized resources reduce expenses
- Improved quality, less errors due to automation
- Customer satisfaction
- Competitive advantage
- Risk mitigation and early detection of issues
- Scalability





Key Practices DevOps



### Automation

- Automate repetitive tasks to free up human resources
- Implement CI/CD pipelines to streamline code integration and deployment
- Use automation tools such as Jenkins, GitHub Actions, GitLab CI/CD, CircleCi, Azure DevOps



### Benefits of automation

Consistency and standardized processes

Faster delivery cycles

Reduced errors



# Continuous improvement and feedback loops

Measure performance

Collect user feedback

Iterative improvements to implement changes on feedback

Tools like Prometheus, Grafana, ELK stack

# Benefits of continuous improvement and feedback loops

R Higher quality

Proactive issue resolution

Informed decision-making

# Collaboration between development and operations



Break down silos to foster cross-team interaction



Shared goals by aligning objectives and KPIs



Cross-functional teams that blend skills and expertise



Collaborative tools: Slack, Jira, Confluence

# Benefits of collaboration between development and operations

S Improved communication

Faster issue resolution

t Increased innovation



## The three ways of DevOps

First way - flow (systems thinking)

Optimize the entire system

Second way - feedback loops

Amplify feedback for continuous improvement

Third way - continuous learning and experimentation

Foster a culture of innovation and learning

### CALMS framework

- Culture: collaboration and trust
- Automation: streamline processes
- Lean: eliminate waste
- Measurement: data-driven decisions
- Sharing: knowledge and success stories

# DevOps maturity models

#### Levels of maturity:

- Initial (Ad Hoc)
- Managed
- Defined
- Measured
- Optimized





### DORA metrics

Deployment frequency

Lead time for changes

Mean time to recovery (MTTR)

Change failure rate

## Value stream mapping (VSM)

- What is VSM?
  - Visualizing the flow from idea to delivery
- Identifying bottlenecks
- Improving processes



# DevOps toolchains and ecosystems

#### Tool categories:

- Planning and collaboration
- Source code management
- Continuous integration/delivery
- Monitoring and logging

Integrations and ecosystems



### Exercise

Thought experiment: incorporating DevOps



# Deployment strategies



# Blue/green deployment



# Canary releases



# Rolling update



## Rolling update



## Rolling update



## Rolling update



### Feature toggles

- Let you adjust how a system works without needing to rewrite any code
- Allows features on or off as needed
- Useful for:
  - Testing new features on a specific user group
  - Quickly turning off a feature that causes issues



### Exercise

Choosing a deployment strategy for our application



### IaC and immutable infrastructure

laC: Infrastructure as code

Managing infrastructure with code

#### Immutable infrastructure

No changes after deployment

#### Tools:

- Terraform
- Ansible
- CloudFormation





### Git0ps

Git as the single source of truth

### Principles:

- Declarative descriptions
- Automated deployments

#### Tools:

- Flux
- Argo CD

### Site reliability engineering (SRE)

Applying software engineering to operations

#### Principles:

- Reliability
- Scalability
- Efficiency

#### Key concepts:

- Service Level Objectives (SLOs)
- Error Budgets



### Security in DevOps: DevSecOps

Integrating security into DevOps

#### Principles:

- Shift-left security
- Automation of security checks

#### Tools:

- Snyk
- OWASP ZAP



## What is the primary goal of DevOps in the software development lifecycle?

- {A} To eliminate the need for testing by automating deployments
- (B) To separate development and operations teams to increase specialization
- {C} To outsource operations tasks to third-party vendors
- To unify development and operations teams for enhanced collaboration and efficiency

# What is the primary goal of DevOps in the software development lifecycle?

- {A} To eliminate the need for testing by automating deployments
- (B) To separate development and operations teams to increase specialization
- {C} To outsource operations tasks to third-party vendors
- To unify development and operations teams for enhanced collaboration and efficiency

# Which of the following is NOT one of the Three Ways of DevOps?

- {A} Rigorous compliance enforcement
- {B} Amplify feedback loops
- (C) Continuous learning and experimentation
- {D} Flow (systems thinking)

# Which of the following is NOT one of the Three Ways of DevOps?

- **Rigorous compliance enforcement**
- {B} Amplify feedback loops
- (C) Continuous learning and experimentation
- {D} Flow (systems thinking)

## In the CALMS framework, what does the 'L' stand for?

- {A} Lean
- {B} Leadership
- {C} Learning
- {D} Lifecycle

## In the CALMS framework, what does the 'L' stand for?

- {A} Lean
- {B} Leadership
- {C} Learning
- {D} Lifecycle

# What is the purpose of Value Stream Mapping (VSM) in a DevOps context?

- {A} To create a hierarchy of team responsibilities
- {B} To design the user interface for applications
- {C} To visualize and analyze the flow of work to identify bottlenecks

{D} To map network infrastructure for security purposes

# What is the purpose of Value Stream Mapping (VSM) in a DevOps context?

- {A} To create a hierarchy of team responsibilities
- {B} To design the user interface for applications
- To visualize and analyze the flow of work to identify bottlenecks
- {D} To map network infrastructure for security purposes

Which deployment strategy involves running two identical production environments where one is live and the other is on standby, allowing for quick rollbacks?

- {A} Rolling update
- {B} Blue/Green deployment
- {C} Canary release

{D} Feature toggle deployment

Which deployment strategy involves running two identical production environments where one is live and the other is on standby, allowing for quick rollbacks?

- {A} Rolling update
- **Blue/Green deployment**
- {C} Canary release
- {D} Feature toggle deployment



Next up:

### Introduction to CI/CD



## Questions or suggestions?

maaikejvp@gmail.com

See you tomorrow!