Problem 1:

Consider $\operatorname{Ind}(\partial D(a,r),a)$. Define $\theta:[0,1]\to\mathbb{R}$ by $x\to 2\pi x$. Note that θ satisfies $\gamma(t)-a=|\gamma(t)-a|\,e^{i\theta(t)}$, where $\gamma(t)=re^{2\pi t}+a$ From the definitions, we have

$$\operatorname{Ind}(\partial D(a,r), a) = \frac{1}{2\pi} (\theta(1) - \theta(0))$$
$$= \frac{1}{2\pi} (\theta(1) - \theta(0))$$

Problem 2:

Problem 3:

Problem 4:

Problem 5:

Problem 6:

Problem 7:

Problem 8:

Problem 9:

Consider f, holomorphic on some disk, Ω , centered at z. Consider $g(w) = \frac{f(w)}{w-z}$; then we have that $\int_{\partial Om} g(w)dw = 2\pi i \mathrm{Res}_z g$. (Note that g's only singu-

larity is at z.) Moreover, note that $g(w) = \frac{\sum\limits_{n=0}^{\infty} a_n (w-z)^n}{w-z}$. Thus, by the residue theorem, $\int\limits_{\partial\Omega} \frac{f(w)}{w-z} dw = f(z)$.

Problem 10:

Problem 11:

Problem 12:

Problem 13:

Problem 14:

Problem	15:	
Problem	16:	
Problem	17:	
Problem	18:	
Problem	19:	
Problem	20:	
Problem	21:	
Problem	22:	
Problem	23:	