Capítulo 3. VARIÁVEIS DO TIPO REAL

OBJETIVOS DO CAPÍTULO

- Conceitos de: variáveis do tipo real, tradução de expressões algébricas em FORTRAN, mistura de variáveis do tipo inteiro com real, prioridade nas operações matemáticas
- Operadores matemáticos básicos
- Comando do FORTRAN: REAL

3.1 programa03c.f90

Para inicializar as atividades deste capítulo, deve-se executar:

- 1) No Windows: Start, Programs, Fortran PowerStation 4.0, Microsoft Developer Studio
- 2) Neste capítulo será usado um projeto já existente, no caso o projeto do fim do capítulo 2. Para abri-lo, deve-se executar o seguinte no Fortran:
 - a) File, Open Workspace
 - b) Indicar o diretório do projeto chamado programa03
 - c) Selecionar o arquivo que tem o nome do projeto e extensão mdp, no caso programa03.mdp
 - d) Na subjanela do lado esquerdo do Fortran, **clicar** sobre o sinal + ao lado do nome do projeto; deverá aparecer o nome do último programa-fonte que foi inserido neste projeto
 - e) Clicar sobre o nome do programa-fonte
 - f) **Edit, Cut** para retirar o programa-fonte do projeto. Este comando não deletará o programa-fonte. Ele apenas o retirará do projeto. Quando se quiser, ele poderá ser inserido no projeto novamente, bastando para isso selecionar o programa-fonte desejado dentro do seu diretório e usar o comando Insert, Files into Project.
- 3) No Fortran, seguindo o procedimento apresentado na seção 1.7 do capítulo 1, **criar e inserir** no projeto chamado programa03 o programa-fonte programa03c.f90
- 4) Conforme é mostrado na Figura 3.1, dentro do espaço de edição do Fortran, na subjanela maior, **copiar** exatamente o texto em vermelho mostrado na Tabela 3.1.
- 5) Comentários sobre o programa:
 - a) Nos capítulos 1 e 2 foram usados os comandos WRITE, END, INTEGER e READ da linguagem FORTRAN. No programa03c.f90 há um novo comando: REAL. Ele é usado para definir variáveis do tipo real, isto é, variáveis que podem guardar ou armazenar na memória do computador números reais, positivos ou negativos, como 1.0, -1.0, 1.1, 3.1416 ou -0.003.

- b) No FORTRAN, números reais são representados com o sinal de ponto para separar a parte inteira da decimal. Deve-se lembrar que em português se usa a vírgula com este fim.
- c) A linha **REAL** A define a variável A como sendo do tipo real. Este comando reserva um espaço na memória do computador, utilizando o nome ou rótulo A para armazenar um valor real. As demais linhas do programa já foram comentadas no capítulo 2.

Tabela 3.1 Programa03c.f90.

```
REAL A

WRITE(*,*) "Entre com o valor de A ="

READ(*,*) A

WRITE(*,*) "Valor de A = ", A

END
```


Figura 3.1 Programa03c.f90.

- 6) Executar **Build**, **Compile** para compilar o programa
- 7) Gerar o programa-executável fazendo **Build**, **Build**.
- 8) Ao se executar o programa, através de **Build, Execute**, surge uma janela, mostrada na Figura 3.2, dentro da qual tem-se:
 - a) Na primeira linha, o comentário Entre com o valor de A, resultado do comando write (*,*)

 "Entre com o valor de A" do programa.

- b) Na segunda linha, o programa pára e fica aguardando que seja fornecido o valor da variável A, resultado do comando READ (*,*) A do programa. Para que o programa continue sua execução é necessário digitar o valor 1 para a variável A, por exemplo, e, em seguida, clicar na tecla enter.
- c) Na terceira linha, o comentário Valor de A = e o valor da variável A, resultado do comando WRITE(*,*) "Valor de A = ", A do programa. Deve-se notar que foi fornecido um valor inteiro para a variável A, no caso 1. Mas o resultado do programa mostra o valor 1.000000 porque a variável A é do tipo real.
- d) Na quarta linha, a frase Press any key to continue. Como diz este aviso, basta clicar em qualquer tecla para continuar. Ao se fazer isso, a execução do programa é encerrada.

Figura 3.2 Resultado da execução do programa03c.f90 com A = 1.

9) Executar novamente o programa, através de **Build, Execut**e, com A = -0.0031. <u>Junto a um número</u> real, a letra E é usada para representar números muito grandes ou muito pequenos através da chamada notação científica ou exponencial. Desta forma, o valor -3.100000E-03 da variável A, mostrado na Figura 3.3, significa -3.1x10⁻³, que é igual a -0.0031.

Figura 3.3 Resultado da execução do programa03c.f90 com A = -0.0031.

10) Executar novamente o programa, através de **Build, Execute**, com A = 1.0E+2. <u>Pode-se fornecer</u> dados ao programa usando a notação científica ou exponencial, como no exemplo mostrado na Figura 3.4, onde A = 1.0E+2 = 1.0x10² = 100 = 1.0E2 = 1E2.

Figura 3.4 Resultado da execução do programa03c.f90 com A = 1.0E+2.

3.2 programa03d.f90

- 1) Nesta seção será usado um projeto já existente, no caso o projeto da seção anterior. Portanto, deve-se executar o seguinte no Fortran:
 - a) Clicar sobre o nome do programa-fonte
 - b) Edit, Cut para retirar o programa-fonte do projeto.
- 2) No Fortran, seguindo o procedimento apresentado na seção 1.7 do capítulo 1, **criar e inserir** no projeto chamado programa03 o programa-fonte programa03d.f90
- 3) Dentro do espaço de edição do Fortran, na subjanela maior, **copiar** exatamente o texto em vermelho mostrado na Tabela 3.2.

Tabela 3.2 Programa03d.f90.

```
INTEGER D
REAL A, B, C

WRITE(*,*) "Entre com o valor de A ="
READ(*,*) A

D = A
B = 1 / D
C = 1.0 / D

WRITE(*,*) "Valor de D = ", D
WRITE(*,*) "Valor de B = ", B
WRITE(*,*) "Valor de C = ", C
END
```

- 4) Executar Build, Compile para compilar o programa
- 5) Gerar o programa-executável fazendo Build, Build.

- 6) Ao se executar o programa, através de **Build**, **Execute**, surge uma janela, mostrada na Figura 3.5, dentro da qual tem-se:
 - a) Na primeira linha, o comentário Entre com o valor de A, resultado do comando write (*,*)

 "Entre com o valor de A" do programa.
 - b) Na segunda linha, o programa pára e fica aguardando que seja fornecido o valor da variável A, resultado do comando READ (*,*) A do programa. Para que o programa continue sua execução é necessário digitar o valor 2.9 para a variável A, por exemplo, e, em seguida, clicar na tecla enter.
 - c) Nas linhas seguintes, os resultados das variáveis D, B e C.

Figura 3.5 Resultado da execução do programa03d.f90.

- 7) Comentários sobre os resultados do programa03d.f90 mostrados na Figura 3.5:
 - a) Na linha D = A do programa, o valor da variável real A é atribuído à variável inteira D. Portanto, apenas a parte inteira do número A é passada à variável D, desprezando-se a parte decimal.
 - b) Na linha **B** = **1** / **D** do programa, o resultado da divisão do número 1 (inteiro) pela variável inteira D é atribuído à variável real B. Conforme visto no capítulo 2, <u>o valor que resulta de um cálculo envolvendo dois números inteiros também é um número inteiro, que corresponde à parte inteira do número real equivalente ao cálculo realizado. Portanto, o resultado de 1 dividido por 2 (variável D) resulta em 0.5, que é um número real. Mas como o cálculo envolve dois números inteiros, a parte inteira do número real 0.5 é 0, que é o resultado da variável B mostrado na Figura 3.5. Assim, apenas a parte inteira da divisão 1 / D é passada à variável real B, desprezando-se a parte decimal.</u>
 - c) Na linha c = 1.0 / D do programa, o resultado da divisão do número 1.0 (real) pela variável inteira D é atribuído à variável real C. Neste caso, o cálculo envolve a divisão de um número real (1.0) por um número inteiro (D). O resultado da variável C mostrado na Figura 3.5 é igual a 0.5, que é um número real. Isso ocorre porque o valor que resulta de um cálculo envolvendo um número inteiro e um número real é um número real.

3.3 programa03e.f90

- 1) Nesta seção será usado um projeto já existente, no caso o projeto da seção anterior. Portanto, deve-se executar o seguinte no Fortran:
 - a) Clicar sobre o nome do programa-fonte
 - b) Edit, Cut para retirar o programa-fonte do projeto.
- 2) No Fortran, seguindo o procedimento apresentado na seção 1.7 do capítulo 1, **criar e inserir** no projeto chamado programa03 o programa-fonte programa03e.f90
- 3) Dentro do espaço de edição do Fortran, na subjanela maior, **copiar** exatamente o texto em vermelho mostrado na Tabela 3.3.

Tabela 3.3 Programa03e.f90.

```
REAL A, B, C, D, E, F, G
WRITE(*,*) "Entre com o valor de A"
READ (*,*) A
WRITE(*,*) "Entre com o valor de B"
READ(*,*) B
C = A + B
D = B - A
E = A * B
F = A / B
G = A ** B
WRITE(*,*) "A = ", A
WRITE(*,*) "B = ", B
WRITE(*,*) "A + B = ", C
WRITE(*,*) "B - A = ", D
WRITE(*,*) "A * B = ", E
WRITE(*,*) "A / B = ", F
WRITE(*,*) "A ** B = ", G
END
```

- 4) Executar Build, Compile para compilar o programa
- 5) Gerar o programa-executável fazendo **Build**, **Build**.
- 6) Ao se executar o programa, através de **Build, Execute**, surge uma janela, mostrada na Figura 3.6, dentro da qual tem-se:

- a) Na primeira linha, o comentário Entre com o valor de A, resultado do comando write (*,*)
 "Entre com o valor de A" do programa.
- b) Na segunda linha, o programa pára e fica aguardando que seja fornecido o valor da variável A, resultado do comando READ (*,*) A do programa. Para que o programa continue sua execução é necessário digitar o valor 1.5 para a variável A, por exemplo, e, em seguida, clicar na tecla enter.
- c) Na terceira linha, o comentário Entre com o valor de B, resultado do comando write (*,*)

 "Entre com o valor de B" do programa.
- d) Na quarta linha, o programa pára e fica aguardando que seja fornecido o valor da variável B, resultado do comando READ (*,*) B do programa. Para que o programa continue sua execução é necessário digitar o valor 0.4 para a variável B, por exemplo, e, em seguida, clicar na tecla enter.
- e) Nas linhas seguintes, os resultados das variáveis C, D, E, F e G.

```
C:\marchi\graduacao\2004_1\TM_102\p...  

Entre com o valor de A
1.5

Entre com o valor de B
0.4
A = 1.500000
B = 4.00000E-01
A + B = 1.900000
B - A = -1.100000
A * B = 6.000000E-01
A / B = 3.750000
A *** B = 1.176079

Press any key to continue_
```

Figura 3.6 Resultado da execução do programa03e.f90.

- 7) **Analisar** cada resultado mostrado na Figura 3.6 comparando-o com o valor esperado obtido de um cálculo mental ou com o uso de uma calculadora.
- 8) **Executar** novamente o programa com outros valores para A e B. Analisar cada novo resultado comparando-o com o valor esperado obtido de um cálculo mental ou com o uso de uma calculadora.

3.4 ESCALA DE PRIORIDADES ENTRE OS OPERADORES MATEMÁTICOS

Na linguagem FORTRAN, as operações matemáticas são executadas numa sequência lógica de acordo com uma escala de prioridades entre elas, que é apresentada na Tabela 3.4. Além disso são consideradas as regras descritas na Tabela 3.5. É importante conhecer estas prioridades e regras para se fazer corretamente a tradução de expressões algébricas em expressões na linguagem FORTRAN, dentro

de um programa-fonte. Alguns exemplos de expressões algébricas são apresentados abaixo nas Equações (3.1) a (3.8).

Tabela 3.4 Escala de prioridades entre os operadores matemáticos básicos em FORTRAN.

Prioridade	Símbolo	Nome do símbolo	Operação
1 ^a	()	Parênteses	Qualquer
2ª	**	Duplo asterisco	Potenciação
3ª	*	Asterisco	Multiplicação
	/	Barra	Divisão
4 ^a	+	Sinal mais	Adição
	_	Sinal menos	Subtração

Tabela 3.5 Regras adotadas nas operações matemáticas em FORTRAN.

Item	Regra
1	No caso de operações matemáticas que têm a mesma prioridade (multiplicação e divisão ou
	adição e subtração), executa-se primeiro o cálculo mais à esquerda
2	Parênteses são usados para que os cálculos sejam executados na ordem que se deseja. Com eles,
	a ordem de execução é do parênteses mais interno para o mais externo.
3	Com duas ou mais potenciações consecutivas, a ordem de execução é da direita para a esquerda.
4	O valor que resulta de um cálculo envolvendo dois números inteiros também é um número
	inteiro, que corresponde à parte inteira do número real equivalente ao cálculo realizado.
5	Uma operação envolvendo um número real com um número inteiro resulta num número real.
6	A atribuição de um número real a uma variável do tipo inteiro resulta num número inteiro que
	trunca a parte decimal do número real.
7	A atribuição de um número inteiro a uma variável do tipo real resulta num número real.
8	Quando se somam ou se subtraem dois números com magnitudes muito diferentes, é possível
	que o valor menor seja desprezado. A isso se denomina de erro de arredondamento ou de
	truncamento.
9	Espaços em branco entre variáveis, sinais de igualdade, parênteses, números ou operadores
	matemáticos não interferem no resultado dos cálculos. Eles têm apenas função estética.

$$H_1 = A + B - C (3.1)$$

$$H_2 = A + \frac{B}{C} \tag{3.2}$$

$$H_3 = \frac{A + B}{C} \tag{3.3}$$

$$H_4 = A + \frac{B}{C}D \tag{3.4}$$

$$H_5 = A + \frac{B}{CD} \tag{3.5}$$

$$H_6 = A + BC^D (3.6)$$

$$H_9 = (C^3)^2 (3.7)$$

$$H_{10} = \frac{1}{3}\sqrt{B^3} \tag{3.8}$$

3.5 programa03f.f90

- Nesta seção será usado um projeto já existente, no caso o projeto da seção 3.3 deste capítulo.
 Portanto, deve-se executar o seguinte no Fortran:
 - a) Clicar sobre o nome do programa-fonte
 - b) Edit, Cut para retirar o programa-fonte do projeto.
- 2) No Fortran, seguindo o procedimento apresentado na seção 1.7 do capítulo 1, **criar e inserir** no projeto chamado programa03 o programa-fonte programa03f.f90
- 3) Dentro do espaço de edição do Fortran, na subjanela maior, **copiar** exatamente o texto em vermelho mostrado na Tabela 3.6.
- 4) Comentários sobre o programa:
 - a) Nas duas primeiras linhas é usado o comando REAL para definir as variáveis do tipo real do programa. <u>Num mesmo programa, pode-se usar um ou mais comandos REAL ou INTEGER.</u>
 - b) A linha READ (*,*) A, C, B, D do programa é usada para ler os valores de quatro variáveis. <u>Um</u> único comando READ pode ser usado para a leitura de diversos valores que são atribuídos a diversas variáveis, que têm que estar separadas por vírgula.
 - c) As expressões em FORTRAN para as variáveis H1 a H6, H9 e H10 correspondem respectivamente às expressões algébricas dadas pelas Equações (3.1) a (3.8).

```
REAL A, C, B, D
REAL H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12
WRITE(*,*) "Entre com os valores de A, C, B e D"
READ(*,*) A, C, B, D
H1 = A + B - C
H2 = A + B / C
H3 = (A + B) / C
H4 = A + B / C * D
H5 = A + B / (C * D)
H6 = A + B * C ** D
H7 = A + (B * (C ** D))
H8 = 1.0 + 1.0E-10
H9 = C ** 3 ** 2
H10 = (1.0 / 3) * ((B**3) ** (1 / 2.0))
H11 = (1.0 / 3.0) * ( (B**3) ** (1.0 / 2.0) )
H12 = (1 / 3) * ((B**3) ** (1 / 2))
WRITE(*,*) "H1 = ", H1
WRITE(*,*) "H2 = ", H2
WRITE(*,*) "H3 = ", H3
WRITE (*,*) "H4 = ", H4
WRITE(*,*) "H5 = ", H5
WRITE(*,*) "H6 = ", H6
WRITE(*,*) "H7 = ", H7
WRITE(*,*) "H8 = ", H8
WRITE(*,*) "H9 = ", H9
WRITE(*,*) "H10 = ", H10
WRITE(*,*) "H11 = ", H11
WRITE(*,*) "H12 = ", H12
END
```

- d) A expressão em FORTRAN para a variável H7 corresponde à expressão algébrica dada pela Equação (3.6).
- e) As expressões em FORTRAN para as variáveis H11 e H12 correspondem à expressão algébrica dada pela Equação (3.8). Porém, na expressão de H12 são usados apenas números inteiros nas divisões.
- f) A expressão em FORTRAN para a variável H8 corresponde a uma simples soma de dois números reais, um muito pequeno em relação ao outro.
- 5) Executar **Build**, **Compile** para compilar o programa
- 6) Gerar o programa-executável fazendo **Build**, **Build**.
- 7) Ao se executar o programa, através de **Build**, **Execute**, surge uma janela, mostrada na Figura 3.7, dentro da qual tem-se:

```
Entre com os valores de A, C, B e D

1, 2, 3, 4

H1 = 2.000000

H2 = 2.500000

H3 = 2.000000

H4 = 7.000000

H5 = 1.375000

H6 = 49.000000

H7 = 49.000000

H8 = 1.000000

H9 = 512.000000

H10 = 1.732051

H11 = 1.732051

H12 = 0.000000E+00

Press any key to continue
```

Figura 3.7 Resultado da execução do programa03f.f90.

- a) Na primeira linha, o comentário Entre com os valores de A, C, B e D, resultado do comando WRITE(*,*) "Entre com os valores de A, C, B e D" do programa.
- b) Na segunda linha, o programa pára e fica aguardando que sejam fornecidos os valores da variáveis A, C, B e D, resultado do comando READ (*,*) A, C, B, D do programa. Para que o programa continue sua execução é necessário digitar quatro valores. Cada valor digitado será atribuído respectivamente a uma das quatro variáveis, na mesma seqüência. Há várias formas de se entrar com diversos valores para um único comando READ: digitando tudo na mesma linha, com cada valor separado por vírgula ou espaço em branco; digitando cada valor e, em seguida, clicando na tecla enter; ou misturas das três formas anteriores. A primeira forma foi usada no exemplo da Figura 3.7 para se entrar com os valores 1, 2, 3 e 4, respectivamente, para as variáveis A, C, B e D.
- c) Nas linhas seguintes, os resultados das variáveis H1 a H12.

- 8) **Analisar** cada resultado mostrado na Figura 3.7 comparando-o com o valor esperado obtido de um cálculo mental ou com o uso de uma calculadora. Para tanto, devem ser consideradas a escala de prioridades da Tabela 3.4 e as regras descritas na Tabela 3.5.
- 9) **Executar** novamente o programa com outros valores para as variáveis A, C, B e D. Analisar cada novo resultado comparando-o com o valor esperado obtido de um cálculo mental ou com o uso de uma calculadora.
- 10) Para concluir o uso do Fortran e do Windows, deve-se executar os passos mostrados na seção 2.8 do capítulo 2.

3.6 EXERCÍCIOS

Exercício 3.1

Escrever as expressões em linguagem FORTRAN que correspondem às seguintes expressões algébricas, onde A, B e L são números reais e I e J são números inteiros:

$$A = \frac{\sqrt{B} + 5}{100}$$

b)
$$A = \frac{1}{10} + \sqrt[3]{B}$$

c)
$$L = \frac{1}{3-I} \sqrt{I^2 + \frac{1}{J^3}}$$

d)
$$L = \frac{1}{1 + \frac{1}{I}} \left(I^2 + \frac{J}{I^3 - 2} \right)^{\frac{1}{3}}$$

Para verificar se a resposta de cada item está correta, basta implementar a expressão em FORTRAN num programa e comparar seu resultado com o valor obtido com uma calculadora para a expressão algébrica correspondente. Os dois resultados devem ser iguais. Isso também vale para o próximo exercício.

Exercício 3.2

Escrever as expressões algébricas que correspondem às seguintes expressões em linguagem FORTRAN:

a)
$$A = ((B^{**}(1.0/2)) + 5) / 100$$

b)
$$A = (1.0/10) + (B^{**}(1/3.0))$$

- c) L = (1.0/(3.0-I)) * (((I**2) + (1.0/(J**3))) ** (1.0/2))
- d) L = (1.0 / (1.0 + (1.0/I))) * (((I**2) + (J/((I**3) 2)))) ** (1.0/3))

Exercício 3.3

- 1) Editar um programa-fonte em FORTRAN para executar o seguinte algoritmo (passos):
 - a) ler três números reais
 - b) calcular a média aritmética deles
 - c) escrever os valores lidos e o valor da média aritmética juntamente com comentários para identificá-los
- 2) Compilar o programa-fonte
- 3) Gerar o programa-executável
- 4) Executar o programa com os valores 1.0, 2.5 e -3.7. Em seguida, analisar o resultado da média fornecido pelo programa comparando-o com o valor esperado obtido com uma calculadora.
- 5) Repetir o item 4 para os valores 10, -1E+3 e 2E-1.

Exercício 3.4

- 1) Editar um programa-fonte em FORTRAN para executar o seguinte algoritmo (passos):
 - a) ler o primeiro valor (real) de uma progressão aritmética (P.A.), denotado por A1
 - b) ler a diferença (número real) entre dois termos subsegüentes da P.A., denotada por D
 - c) ler o número (inteiro) de termos da P.A., denotado por N
 - d) calcular o valor (real) do último termo da P.A., denotado por AN
 - e) calcular a soma de todos os termos da P.A., denotado por SN
 - f) escrever os três valores lidos e os dois calculados juntamente com comentários para identificá-los
- 2) Compilar o programa-fonte
- 3) Gerar o programa-executável
- 4) Executar o programa para A1 = 1.3, D = 3.9 e N = 5. Os resultados devem ser AN = 16.9 e SN = 45.5.