MATH 60602 Analyse multidimensionnelle appliquée

Examen de pratique

Questionnaire

Examinateur: Léo Belzile

Instructions: L'examen est d'une durée de 180 minutes. Aucune documentation écrite n'est permise. L'utilisation d'un ordinateur ou de tout autre matériel électronique est interdit. Une calculatrice non programmable est autorisée.

La répartition des 50 points de l'examen se trouve dans la marge de droite.

Vous devez rendre ce **questionnaire** et le feuillet avec les annexes à la fin de l'examen.

Aide-mémoire

- Propriétés de l'exponentielle: $\exp(a+b) = \exp(a)\exp(b)$, $\exp(0) = 1$
- Propriétés du logarithme népérien: ln(ab) = ln(a) + ln(b), ln(1) = 0.
- sensibilité: $Pr(\hat{Y} = 1 \mid Y = 1)$, spécificité: $Pr(\hat{Y} = 0 \mid Y = 0)$, bonne classification: $Pr(\hat{Y} = Y)$.
- Critères d'information: $AIC = -2\ell(\widehat{\boldsymbol{\theta}}) + 2p$ et $BIC = -2\ell(\widehat{\boldsymbol{\theta}}) + \ln(n)p$ où $\widehat{\boldsymbol{\theta}} = \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \ell(\boldsymbol{\theta}), p = \dim(\boldsymbol{\theta}).$
- modèle de régression logistique: paramétrisation avec référence Y = k

$$\ln \left\{ \frac{\Pr(Y=j \mid \mathbf{X})}{\Pr(Y=k \mid \mathbf{X})} \right\} = \eta_j = \beta_{0j} + \beta_{1j} X_1 + \dots + \beta_{jp} X_p, \qquad j \neq k.$$

• modèle à risques proportionnels de Cox:

$$h(t; \mathbf{X}) = h_0(t) \exp(\beta_1 \mathbf{X}_1 + \dots + \beta_p \mathbf{X}_p).$$

Section réservée au correcteur

Question:	1	2	3	4	5	Total
Points:	13	7	10	8	12	50
Score:						

1ATH 60602	Examen de pratique	Questionnaire
La Société des transport comportement des usaş lectées lors de l'enquête	anements mensuels de transport en commun. Es de Montréal (STM) a mandaté la firme Léger pagers et usagères de transport en commun à Mont es sur $n = 1318$ personnes détentrices d'un abonn dères années sont les suivantes:	our faire un sondage sur le tréal. Les informations col-
 jeune de 12 à 17 ou e régulier (regulier) 65 ans et plus (65+). activite: variable b nmens: nombre de pa nmoisabo: nombre de 		
sociodémographiques o mensuel lors de l'enquê	durée des abonnements mensuels (nmoisabo) en collectées. Certaines personnes sondées sont to te; il n'y a aucune perte de suivi. ombien de personnes parmi les 1318 détiennent	oujours titulaires d'un titre
	jues présentées dans l' Annexe 1 , rapportez une es	•
	durée d'abonnement au sein de la population d ensuels. Si ce n'est pas possible, expliquez pourqu	_

[2]

Figure 1: Courbes de survie selon la clientèle.

1.3	Calculez le troisième quartile du temps d'abonnement pour les jeunes (c'est-à-dire, le temps à
	partir duquel 25% des personnes sont désabonnés).

jeune:	
regulier:	
• 65+:	
ustifiez votre réponse	e.
	éressés à savoir comment le profil de la clientèle affecte le temps de détensuels. Vous ajustez un modèle de Cox avec nmens, activite en stratifiant
le laisser-passer mens lientele. Les résulta	suels. Vous ajustez un modèle de Cox avec nmens, activite en stratifiant ats sont fournis dans l' Annexe 2 . ient pour nmens (en pourcentage d'augmentation ou de diminution du
le laisser-passer men Lientele. Les résulta nterprétez le coeffici	suels. Vous ajustez un modèle de Cox avec nmens, activite en stratifiant ats sont fournis dans l' Annexe 2 . ient pour nmens (en pourcentage d'augmentation ou de diminution du
le laisser-passer men Lientele. Les résulta nterprétez le coeffici	suels. Vous ajustez un modèle de Cox avec nmens, activite en stratifiant ats sont fournis dans l' Annexe 2 . ient pour nmens (en pourcentage d'augmentation ou de diminution du
le laisser-passer men Lientele. Les résulta nterprétez le coeffici	suels. Vous ajustez un modèle de Cox avec nmens, activite en stratifiant ats sont fournis dans l' Annexe 2 . ient pour nmens (en pourcentage d'augmentation ou de diminution du
le laisser-passer men Lientele. Les résulta nterprétez le coeffici	suels. Vous ajustez un modèle de Cox avec nmens, activite en stratifiant ats sont fournis dans l' Annexe 2 . ient pour nmens (en pourcentage d'augmentation ou de diminution du
le laisser-passer men Lientele. Les résulta nterprétez le coeffici	suels. Vous ajustez un modèle de Cox avec nmens, activite en stratifiant ats sont fournis dans l' Annexe 2 . ient pour nmens (en pourcentage d'augmentation ou de diminution du
le laisser-passer men Lientele. Les résulta nterprétez le coeffici	suels. Vous ajustez un modèle de Cox avec nmens, activite en stratifiant ats sont fournis dans l' Annexe 2 . ient pour nmens (en pourcentage d'augmentation ou de diminution du
le laisser-passer men Lientele. Les résulta nterprétez le coeffici	suels. Vous ajustez un modèle de Cox avec nmens, activite en stratifiant ats sont fournis dans l' Annexe 2 . ient pour nmens (en pourcentage d'augmentation ou de diminution du
le laisser-passer men Lientele. Les résulta nterprétez le coeffici	suels. Vous ajustez un modèle de Cox avec nmens, activite en stratifiant ats sont fournis dans l' Annexe 2 . ient pour nmens (en pourcentage d'augmentation ou de diminution du
le laisser-passer men Lientele. Les résulta nterprétez le coeffici	suels. Vous ajustez un modèle de Cox avec nmens, activite en stratifiant ats sont fournis dans l' Annexe 2 . ient pour nmens (en pourcentage d'augmentation ou de diminution du
le laisser-passer men Lientele. Les résulta nterprétez le coeffici	suels. Vous ajustez un modèle de Cox avec nmens, activite en stratifiant ats sont fournis dans l' Annexe 2 . ient pour nmens (en pourcentage d'augmentation ou de diminution du
le laisser-passer men Lientele. Les résulta nterprétez le coeffici	suels. Vous ajustez un modèle de Cox avec nmens, activite en stratifiant ats sont fournis dans l' Annexe 2 . ient pour nmens (en pourcentage d'augmentation ou de diminution du
le laisser-passer men Lientele. Les résulta nterprétez le coeffici	suels. Vous ajustez un modèle de Cox avec nmens, activite en stratifiant ats sont fournis dans l' Annexe 2 . ient pour nmens (en pourcentage d'augmentation ou de diminution du
le laisser-passer men Lientele. Les résulta nterprétez le coeffici	suels. Vous ajustez un modèle de Cox avec nmens, activite en stratifiant ats sont fournis dans l' Annexe 2 . ient pour nmens (en pourcentage d'augmentation ou de diminution du
le laisser-passer men Lientele. Les résulta nterprétez le coeffici	suels. Vous ajustez un modèle de Cox avec nmens, activite en stratifiant ats sont fournis dans l' Annexe 2 . ient pour nmens (en pourcentage d'augmentation ou de diminution du

[3]

	r Léger. Toutes le atisfait et 10 très	satisfait.			
.1 Quels sont	les objectifs de l	'analyse factori	elle exploratoire	?	
				ons et l'estimation	
				ons et l'estimatior adéquat de facte	
factorielle.					

[2]

À partir du mod	èle avec le nombre	e de facteurs choi	si, fournissez une	typologie des fac	cteurs.

10
?
[3]
[2]
[2]

Figure 2: Projection sur deux composantes principales des regroupements obtenus par la méthode hiérarchique avec la méthode des k-moyennes avec k=3 groupes. Chaque graphique représente une base de données imputées (parmi 100). Le numéro de groupe est indiqué dans la légende.

3.4 La Figure 2 montre le résultat de l'analyse de regroupements avec k=3 groupes pour deux des 100 bases de données imputées. Elle illustre le problème de **permutation des étiquettes**. Suggérez une approche pour combiner les résultats des 100 analyses afin d'avoir une seule segmentation des sujets. *Indication: la sortie du modèle est une étiquette de groupe* $(G_1, G_2, ..., G_k)$ pour chaque copie de la base de données.

[3]

	Le modèle avec le plus petit BIC est toujours meilleur ou équivalent au modèle qui a la plus
	petite valeur d'AIC.
2	L'avantage de la validation externe par rapport à la validation croisée est l'absence d'aléatoire: on obtient toujours la même mesure de performance ou d'erreur.
0	
3	Dans le cadre de la sélection de variables avec un ensemble de modèles linéaires candidats, on choisit celui qui a la plus petite erreur moyenne quadratique d'entraînement.
4	La mana (dans LACCO mala distribution and la mala distribution de conduction de conduc
.4	La procédure LASSO mène implicitement à une sélection de variables.

[2]

[2]

Question 5. Risque de défaillance et score de crédit

Le terme de score de crédit fait référence à l'utilisation de méthodes statistiques pour classifier des créditeurs en bon ou mauvais risques. Une banque décide de faire une analyse de ses dossiers de crédits (aux particuliers) afin de mieux comprendre les caractéristiques qui font qu'une personne à qui on a accordé un prêt remboursera ce dernier avant l'échéance (defaut=0) ou pas (defaut=1).

On dispose des variables explicatives suivantes:

- score: score de crédit, une valeur entre 300 et 850; un score plus élevé dénote un meilleur dossier de crédit.
- proprio: est-ce que la personne qui a un emprunt est propriétaire, oui (1) ou non (0).
- stabilite: variable catégorielle pour la stabilité de l'emploi, soit faible (faible), modérée (modere) ou élevée (eleve).
- tauxendet: taux d'endettement (en pourcentage)

On divise la base de données en deux (échantillons d'entraînement et de validation) pour évaluer de manière fiable la performance.

Les coefficients du modèle logistique ajusté, les tests de significativité globale des coefficients et le tableau du lift sont présentés dans l'**Annexe 4**.

olea	au du lift sont présentés dans l' Annexe 4 .
1 I	nterprétez l'effet du score de crédit sur le risque de défaut.
2 F	Rapportez le rapport de cote pour locataire versus propriétaire.
Г	
L	

e lift pour le m	odèle de prédiction	n est retourné dans	l' Annexe 4 . Interp	rétez le lift pour 30%.	_

[1]

[3]

5.5 Votre collègue a décidé de faire de la sélection de variable et obtient trois modèles. Il calcule un point de coupure optimal pour chaque modèle. Les tableaux qui suivent résument la performance des trois modèles sur l'échantillon de validation contenant n = 500 observations (pour rappel, une valeur de Y = 1 indique un **défaut** de paiement).

Tableau 1: Tableaux de classification pour les différents modèles proposés.

	Y = 1	Y = 0
$\widehat{Y} = 1$	2	8
$\hat{Y} = 0$	38	452
(a) Modèle	1

	Y = 1	Y = 0			
$\widehat{Y} = 1$	16	93			
$\widehat{Y} = 0$	24	367			
(b) Modèle 2					

	Y = 1	Y = 0			
$\widehat{Y} = 1$	30	40			
$\widehat{Y} = 0$	10	420			
(c) Modèle 3					

i.	Si vous cherchez à minimiser le taux de mauvaise classification, quel modèle est préférable?
	Justifiez votre réponse.

ii. La banque ne prêtera pas aux personnes qui sont identifiées comme mauvais créditeurs. Selon leur estimation, un prêt moyen permet un retour sur investissement de 2%, mais on perd en moyenne 10% si une personne ne le rembourse pas à échéance (autrement dit, il est cinq fois plus grave de classifier une observation comme bon créditeur alors que la personne fera défaut). Selon ce scénario, quel modèle est alors préférable? Justifiez votre réponse.

Annexe 1 - Estimation de la fonction de survie

```
library(survival)
km <- survfit(
  formula = Surv(time = nmoisabo, event = !abo_valide) ~ clientele,
  data = stm)
summary(km)</pre>
```

Tableau 1: Estimation du maximum de vraisemblance nonparamétrique de la fonction de survie (Kaplan–Meier) pour la clientèle jeune (sortie tronquée)

temps	nb à risque	nb d'échecs	survie	erreur-type
1	117	6	0.949	0.020
2	111	4	0.915	0.026
3	107	4	0.880	0.030
4	103	1	0.872	0.031
5	102	3	0.846	0.033
6	98	3	0.820	0.036
7	95	6	0.768	0.039
8	89	2	0.751	0.040
9	87	3	0.725	0.041
20	60	2	0.552	0.047
21	56	2	0.533	0.047
23	54	2	0.513	0.047
26	51	1	0.503	0.048
27	48	3	0.472	0.048
31	43	2	0.450	0.048
50	20	3	0.275	0.049
51	17	1	0.259	0.049
78	6	2	0.173	0.059
86	3	1	0.115	0.062

Tableau 2: Statistiques descriptives de la durée d'abonnement en fonction de la clientèle

clientèle	moyenne	médiane	écart-type	min	max
jeune	27.08	20	22.80	1	96
regulier	34.74	19	50.30	1	385
65+	16.48	12	18.25	1	183

Tableau 3: Statistiques descriptives de la survie des abonnements en fonction de la clientèle (nombre d'observation, nombre d'événements, moyenne restreinte et son erreur-type, médiane).

	nombre	événement	moyenne r.	erreur-type	médiane
jeune	117	78	71.00	19.78	27
regulier	309	184	73.37	8.59	36
65+	892	522	30.48	1.86	19

Annexe 2 - Modèle à risques proportionnels de Cox

Tableau 4: Estimations du modèle à risques proportionnels de Cox avec intervalles de confiance profilés à 95% pour les coefficients.

	coefficient	rapport de risque	erreur-type	borne inf.	borne sup.
nmens	-0.039	0.962	0.007	-0.053	-0.025
activite [non]	0.473	1.604	0.153	0.172	0.773

Annexe 3 - Modèle d'analyse factorielle pour sondage

```
hecmulti::ajustement_factanal(factors = 1:5, x = sondage_stm)
factanal(sondage_stm, factors = 3)
factanal(sondage_stm, factors = 4)
factanal(sondage_stm, factors = 5)
```

Tableau 5: Diagnostics pour la sélection du nombre de facteurs: critères d'information, valeur-*p* du test de rapport de vraisemblance pour le modèle saturé, nombre de paramètres de covariance et indicateur pour cas de (quasi)-Heywood.

k	AIC	BIC	valeur- <i>p</i>	nb par.	Heywood
1	5183.16	5317.94	$< 10^{-12}$	26	0
2	701.95	898.94	$< 10^{-12}$	38	0
3	-1039.54	-785.53	$< 10^{-12}$	49	0
4	-2062.68	-1756.83	0.019	59	0
5	-2070.94	-1718.44	0.374	68	0

Tableau 6: Estimés des chargements (multipliés par 100) pour les modèles à trois facteurs avec rotation varimax estimé à l'aide de la méthode du maximum de vraisemblance. Les chargements inférieurs à 0.2 sont omis.

	F1	F2	F3
fréquence de passage	82		29
correspondance entre lignes	82		44
temps de trajet	83		39
offre de service	90	21	
achalandage	88	21	28
accessibilité des installations	27	88	
propreté des installations		85	
confort des installations		90	
disponibilité des places assises	39	80	
service au guichet	34	22	83
sécurité lors des déplacements	28		78
tarification	43	30	62
offres de titres de transports	24	51	42

Tableau 7: Estimés des chargements (multipliés par 100) pour les modèles à quatre facteurs avec rotation varimax estimé à l'aide de la méthode du maximum de vraisemblance. Les chargements inférieurs à 0.2 sont omis.

	F1	F2	F3	F4
fréquence de passage	84		28	
correspondance entre lignes	84		33	27
temps de trajet	85		31	21
offre de service	90			
achalandage	89			
accessibilité des installations	28	89		
propreté des installations		82		33
confort des installations		90		
disponibilité des places assises	39	77		
service au guichet	39	20	71	31
sécurité lors des déplacements	31		89	
tarification	44	23	45	57
offres de titres de transports	21	42		79

Tableau 8: Estimés des chargements (multipliés par 100) pour les modèles à cinq facteurs avec rotation varimax estimé à l'aide de la méthode du maximum de vraisemblance. Les chargements inférieurs à 0.2 sont omis.

	F1	F2	F3	F4	F5
fréquence de passage	84		28		
correspondance entre lignes	84		33	27	
temps de trajet	85		31	21	
offre de service	90				
achalandage	89				
accessibilité des installations	28	91			
propreté des installations		81		34	
confort des installations		91			
disponibilité des places assises	39	76		21	
service au guichet	39		71	31	
sécurité lors des déplacements	31		89		
tarification	44	23	45	57	
offres de titres de transports	21	41		80	

Annexe 4 - risque de défaut de paiement

```
logist <- glm(
   formula = defaut ~ proprio * tauxendet + stabilite + score,
   data = scorecredit_entrainement,
   family = binomial(link = "logit"))
summary(logist)
confint(logist)
car::Anova(logist, type = 3)

pred_prob <- predict(
   object = logist,
   newdata = scorecredit_validation,
   type = "response")
hecmulti::courbe_lift(
   prob = pred_prob,
   resp = scorecredit_validation$defaut)</pre>
```

Tableau 9: Estimations du modèle logistique: coefficients et intervalles de confiance profilés à 95% pour les coefficients.

variable	coef.	exp(coef.)	borne inf.	borne sup.
const	0.1690	1.1841	-0.6480	0.9745
proprio	-0.7686	0.4636	-1.5561	0.0135
tauxendet	0.0077	1.0077	8000.0	0.0146
stabilite [élevée]	-0.3754	0.6870	-0.7120	-0.0506
stabilite [modérée]	-0.3624	0.6960	-0.6122	-0.1118
score	-0.0054	0.9946	-0.0066	-0.0042
proprio:tauxendet	0.0003	1.0003	-0.0073	0.0078

Tableau 10: Tests du rapport de vraisemblance (effets de type III).

	statistique	ddl	valeur- <i>p</i>
proprio	3.71	1	0.05
tauxendet	4.84	1	0.03
stabilite	9.23	2	0.01
score	78.46	1	< 0.001
proprio:tauxendet	0.01	1	0.94

Tableau 11: Tableau du lift.

pourcentage	hasard	modèle	lift
10%	4	9	2.25
20%	8	15	1.88
30%	12	20	1.67
40%	16	24	1.50
50%	20	25	1.25
60%	24	29	1.21
70%	28	35	1.25
80%	32	36	1.12
90%	36	38	1.06