Package 'hetid'

June 22, 2025

```
Title Identification Through Heteroskedasticity a La Lewbel (2012)
Version 0.1.0
Author Fernando Duarte [aut, cre]
     (<https://orcid.org/0000-0002-8495-6936>)
Maintainer Fernando Duarte <fernando_duarte@brown.edu>
Description Implements the identification through heteroskedasticity
     method of Lewbel (2012) for time-series models with endogenous
     regressors. Provides tools for estimation and inference when
     traditional instruments are not available.
License MIT + file LICENSE
URL https://fernando-duarte.github.io/heteroskedasticity_identification/,
     https://github.com/fernando-duarte/heteroskedasticity_identification
BugReports
     https://github.com/fernando-duarte/heteroskedasticity_identification/issues
Depends R (>= 4.1)
Imports boot,
     dplyr,
     furrr,
     future,
     ggplot2,
     gmm,
     parallel,
     purrr,
     rlang,
     stats,
     tidyr,
     tsmethods,
     xts
Suggests AER,
     covr.
     curl (>= 5.0.0),
     desc,
     goodpractice,
     haven,
     ivreg,
     jsonlite,
```

2 Contents

knitr,

lintr,
oysteR,
pkgdepends,
REndo ($>= 2.4.0$),
rmarkdown,
RStata,
sandwich,
testthat $(>= 3.0.0)$,
tsgarch,
tsmarch, uuid,
withr,
ZOO
VignetteBuilder knitr
Config/build/vignette-compression both
Config/Needs/website pkgdown
Config/testthat/edition 3
Config/testthat/parallel true
Encoding UTF-8
Language en-US
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2
••
Contents
Contents
adjust_se_for_df
analyze_bootstrap_results
analyze_main_results
analyze_sample_size_results
analyze_sensitivity_results
calculate_lewbel_bounds
compare_gmm_2sls
compare_rigobon_methods
create_default_config

 create_prono_config
 13

 ensure_stata_packages
 14

 extract_se_ivreg
 14

 extract_se_lm
 14

 fit_diagonal_garch_prono
 15

 generate_all_plots
 16

 generate_all_seeds
 17

 generate_hetid_test_data
 17

 generate_lewbel_data
 18

 generate_prono_data
 20

 generate_rigobon_data
 21

 generate_seed_matrix
 22

 get_critical_value
 23

А		01
ex	verity_iewoci_assumptions	61
	validate_rigobon_assumptions	58 59
	summary.lewbel_gmm	57
	run_single_prono_simulation	56
	run_single_lewbel_simulation	
	run_sensitivity_analysis	
	run_sample_size_analysis	
	run_rigobon_estimation	
	run_rigobon_demo	
	run_rigobon_analysis	
	run_prono_monte_carlo	
	run_prono_demo	
	run_main_simulation	
	run_lewbel_monte_carlo	
	run_lewbel_demo	
	run_bootstrap_demonstration	
	rigobon_triangular_moments	
	rigobon_simultaneous_moments	
	rigobon_gmm	
	replicate_prono_table2	
	prono_triangular_moments	
	prono_gmm	
	prono_diagonal_garch	
	print_simulation_summary	
	print.lewbel_gmm	
	plot_sample_size_consistency	
	plot_het_sensitivity	
	plot_first_stage_f_dist	
	plot_estimator_distributions	
	plot_bootstrap_ci	
	lewbel_triangular_moments	
	lewbel_simultaneous_moments	
	lewbel_sim	
	lewbel_gmm	
	hetid_opt	
	has_stata	
	has_rstata	
	has_rendo	
	has_haven	
	has_curl	
	1 1	0.4

Description

Adjust standard errors for degrees of freedom

Usage

```
adjust_se_for_df(se, n, k, df_adjust = "asymptotic")
```

Arguments

se Asymptotic standard error

n Sample size

k Number of parameters

df_adjust Character string: "asymptotic" (default) or "finite"

Value

Adjusted standard error

analyze_bootstrap_results

Analyze Bootstrap Results

Description

Analyzes and displays bootstrap standard error results for identified sets.

Usage

```
analyze_bootstrap_results(results_main, bootstrap_demo, config, verbose = TRUE)
```

Arguments

results_main Data.frame. Main simulation results.

bootstrap_demo Data.frame. Bootstrap demonstration results.

config List. Configuration object created by create_default_config or related con-

figuration functions.

verbose Logical. Whether to print progress messages (default: TRUE).

Value

A data.frame with bootstrap examples.

Note

For enhanced table formatting in verbose output, install the knitr package.

analyze_main_results 5

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
results_main <- run_main_simulation(config, seeds)
bootstrap_demo <- run_bootstrap_demonstration(config, seeds)
bootstrap_analysis <- analyze_bootstrap_results(
    results_main, bootstrap_demo, config
)
## End(Not run)</pre>
```

analyze_main_results Analyze Main Simulation Results

Description

Provides analysis of the main Monte Carlo simulation results, including performance metrics for point estimators and set identification.

Usage

```
analyze_main_results(results, config, verbose = TRUE)
```

Arguments

results Data.frame. Results from run_main_simulation().

config List. Configuration object created by create_default_config or related con-

figuration functions.

verbose Logical. Whether to print progress messages (default: TRUE).

Value

A list containing summary tables and statistics.

Note

For enhanced table formatting in verbose output, install the knitr package.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
results <- run_main_simulation(config, seeds)
analysis <- analyze_main_results(results, config)
## End(Not run)</pre>
```

```
analyze_sample_size_results

Analyze Sample Size Results
```

Description

Analyzes consistency of estimators across different sample sizes.

Usage

```
analyze_sample_size_results(results_by_n, config, verbose = TRUE)
```

Arguments

results_by_n Data.frame. Results from run_sample_size_analysis().

config List. Configuration object created by create_default_config or related con-

figuration functions.

verbose Logical. Whether to print progress messages (default: TRUE).

Value

A data.frame with sample size analysis.

Note

For enhanced table formatting in verbose output, install the knitr package.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
results_by_n <- run_sample_size_analysis(config, seeds)
size_analysis <- analyze_sample_size_results(results_by_n, config)
## End(Not run)</pre>
```

```
analyze_sensitivity_results
```

Analyze Sensitivity Results

Description

Analyzes sensitivity of results to heteroscedasticity strength.

```
analyze_sensitivity_results(results_by_delta, config, verbose = TRUE)
```

Arguments

```
results_by_delta
```

Data.frame. Results from run_sensitivity_analysis().

config List. Configuration object created by create_default_config or related con-

figuration functions.

verbose Logical. Whether to print progress messages (default: TRUE).

Value

A data.frame with sensitivity analysis.

Note

For enhanced table formatting in verbose output, install the knitr package.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
results_by_delta <- run_sensitivity_analysis(config, seeds)
sensitivity_analysis <- analyze_sensitivity_results(
   results_by_delta, config
)
## End(Not run)</pre>
```

calculate_lewbel_bounds

Calculate Set Identification Bounds for Lewbel Estimator

Description

Computes set identification bounds for the endogenous parameter under a relaxed covariance restriction. Optionally computes bootstrap standard errors for the bounds.

```
calculate_lewbel_bounds(
  data,
  tau,
  compute_se = FALSE,
  b_reps = .hetid_const("DEFAULT_BOOTSTRAP_REPS"),
  df_adjust = "asymptotic"
)
```

Arguments

data	Data.frame. Dataset containing Y1, Y2, Xk, Z variables.
tau	Numeric. Relaxation parameter for covariance restriction ($0 \le tau \le 1$). When $tau = 0$, gives point identification.
compute_se	Logical. Whether to compute bootstrap standard errors (default: FALSE).
b_reps	Integer. Number of bootstrap replications if compute_se = TRUE (default: 100).
df_adjust	Character. Method for degrees of freedom adjustment:
	• "asymptotic": No adjustment (default)

• "finite": Finite sample adjustment using HC2 formula

Details

Note: This parameter currently only affects the interpretation of bootstrap SEs, not the bounds calculation itself.

Under the relaxed assumption $|Corr(Z, \epsilon_1 \epsilon_2)| \le tau |Corr(Z, \epsilon_2^2)|$, the parameter gamma_1 is set-identified. The bounds are computed as the real roots of a quadratic equation in gamma_1.

Value

A list containing:

- bounds: Numeric vector of length 2 with lower and upper bounds
- se: Numeric vector of length 2 with bootstrap standard errors (if requested)

References

Lewbel, A. (2012). Using heteroscedasticity to identify and estimate mismeasured and endogenous regressor models. Journal of Business & Economic Statistics, 30(1), 67-80. doi:10.1080/07350015.2012.643126

Examples

```
## Not run:
params <- list(
    beta1_0 = 0.5, beta1_1 = 1.5, gamma1 = -0.8,
    beta2_0 = 1.0, beta2_1 = -1.0,
    alpha1 = -0.5, alpha2 = 1.0, delta_het = 1.2
)
# TODO: Update generate_lewbel_data call if its return columns change to
# snake_case
data <- generate_lewbel_data(1000, params)

# Point identification (tau = 0)
bounds_point <- calculate_lewbel_bounds(data, tau = 0)

# Set identification with bootstrap SE
bounds_set <- calculate_lewbel_bounds(
    data,
    tau = 0.2, compute_se = TRUE, b_reps = 100
)

## End(Not run)</pre>
```

compare_gmm_2sls 9

compare_gmm_2sls

Compare GMM and 2SLS Estimates for Lewbel Model

Description

Compares GMM estimates with traditional 2SLS (Lewbel) estimates for the triangular system.

Usage

```
compare_gmm_2sls(
  data,
  y1_var = "Y1",
  y2_var = "Y2",
  x_vars = "Xk",
  add_intercept = TRUE,
  true_gamma1 = NA_real_,
  gmm_args = list(),
  tsls_sim_config = list(),
  verbose = TRUE
)
```

Arguments

data	Data frame containing all required variables. Must include the dependent variables and any exogenous regressors specified in the model.
y1_var	Character. Name of the first dependent variable (default: "Y1").
y2_var	Character. Name of the second dependent variable/endogenous regressor (default: "Y2").
x_vars	Character vector. Names of exogenous variables (default: "Xk"). For 2SLS via run_single_lewbel_simulation, it assumes a single "Xk" if default simulation parameters are used. For GMM, can be multiple. This function will try to match behavior. If multiple x_vars are given, the 2SLS part might be less comparable if its underlying data generating process assumes one X.
add_intercept	Logical. Whether to add an intercept for GMM (default: TRUE). 2SLS via run_single_lewbel_simulation typically includes an intercept.
true_gamma1	Numeric. Optional true value of gamma1 for bias calculation.
gmm_args	List. Additional arguments passed to lewbel_gmm.
tsls_sim_confi	g
	List. Parameters to override in the default config for run_single_lewbel_simulation. The sample_size will be set to nrow(data). lewbel_x_vars in this config should match x_vars here.
verbose	Logical. Whether to print progress messages (default: TRUE).

Value

A data frame comparing estimates, standard errors, and test statistics.

See Also

 ${\tt lewbel_gmm}\ for\ GMM\ estimation.\ run_single_lewbel_simulation\ for\ 2SLS\ estimation.$

Examples

```
## Not run:
# Generate data
params_dgp <- list(</pre>
 beta1_0 = 0.5, beta1_1 = 1.5, gamma1 = -0.8,
 beta2_0 = 1.0, beta2_1 = -1.0,
 alpha1 = -0.5, alpha2 = 1.0, delta_het = 1.2
data_comp <- generate_lewbel_data(1000, params_dgp) # Generates Y1, Y2, Xk, Z</pre>
# Compare (assuming Xk is the exogenous variable for both)
comparison <- compare_gmm_2sls(data_comp, true_gamma1 = params_dgp$gamma1)</pre>
print(comparison)
# Example with multiple X for GMM, 2SLS might be less direct comparison
params_multi <- list(</pre>
  beta1_0 = 0.5, beta1_1 = c(1.5, 0.2), gamma1 = -0.8,
  beta2_0 = 1.0, beta2_1 = c(-1.0, 0.3),
  alpha1 = -0.5, alpha2 = 1.0, delta_het = 1.2
\label{eq:data_multi_x <- generate_lewbel_data(1000, params_multi, n_x = 2) \# Y1,Y2,X1,X2,Z1,Z2} \\
comparison_multi <- compare_gmm_2sls(data_multi_x,</pre>
  x_{vars} = c("X1", "X2"),
  true_gamma1 = params_multi$gamma1,
  tsls_sim_config = list(
    lewbel_x_vars = c("X1", "X2") # Hypothetical
    # Note: run_single_lewbel_simulation's internal
    \mbox{\tt\#} Data generating process might not easily map to this if it assumes 1 \mbox{\tt Xk}.
    # This part is more illustrative for GMM side.
print(comparison_multi)
## End(Not run)
```

compare_rigobon_methods

Compare Rigobon with Other Methods

Description

Compares Rigobon's regime-based identification with OLS and standard Lewbel identification (if applicable).

```
compare_rigobon_methods(
  data,
  true_gamma1 = NULL,
  methods = c("OLS", "Rigobon", "Lewbel"),
  verbose = TRUE
)
```

create_default_config 11

Arguments

data Data.frame. Must contain required variables for all methods.

true_gamma1 Numeric. Optional. True value of the endogenous parameter.

methods Character vector. Methods to compare (default: c("OLS", "Rigobon", "Lew-

bel")).

verbose Logical. Whether to print progress messages (default: TRUE).

Value

A data frame comparing the methods with columns for estimates, standard errors, bias (if true value provided), and method-specific diagnostics.

References

Rigobon, R. (2003). Identification through heteroskedasticity. Review of Economics and Statistics, 85(4), 777-792. doi:10.1162/003465303772815727

See Also

run_rigobon_estimation, run_single_lewbel_simulation

Examples

```
## Not run:
# Generate data with known true parameter
params <- list(
   beta1_0 = 0.5, beta1_1 = 1.5, gamma1 = -0.8,
   beta2_0 = 1.0, beta2_1 = -1.0,
   alpha1 = -0.5, alpha2 = 1.0,
   regime_probs = c(0.4, 0.6),
   sigma2_regimes = c(1.0, 2.5)
)
data <- generate_rigobon_data(1000, params)

# Compare methods
comparison <- compare_rigobon_methods(data, true_gamma1 = params$gamma1)

## End(Not run)</pre>
```

 $\verb|create_default_config|| \textit{Create Default Configuration for Lewbel Monte Carlo Simulations}|$

Description

Creates a comprehensive configuration list with all parameters needed for running Lewbel (2012) Monte Carlo simulations.

12 create_default_config

```
create_default_config(
      num_simulations = .hetid_const("DEFAULT_NUM_SIMULATIONS"),
      main_sample_size = .hetid_const("DEFAULT_MAIN_SAMPLE_SIZE"),
      sample_sizes = .hetid_const("DEFAULT_SAMPLE_SIZES"),
      delta_het = 0.8,
      delta_het_values = c(0.4, 0.8, 1.2),
      n_reps_by_n = .hetid_const("DEFAULT_BOOTSTRAP_REPS"),
      n_reps_by_delta = .hetid_const("DEFAULT_BOOTSTRAP_REPS"),
      bootstrap_reps = .hetid_const("DEFAULT_BOOTSTRAP_REPS"),
      bootstrap_subset_size = .hetid_const("DEFAULT_BOOTSTRAP_SUBSET_SIZE"),
      bootstrap_demo_size = .hetid_const("DEFAULT_BOOTSTRAP_DEMO_SIZE"),
      beta1_0 = 0.5,
      beta1_1 = 1.5,
      gamma1 = -0.8,
      beta2_0 = 1,
      beta2_1 = -1
      alpha1 = -0.5,
      alpha2 = 1,
      tau_set_id = 0.2,
      endog_var_name = "Y2",
      exog_var_names = "Xk",
      df_adjust = "asymptotic"
Arguments
    num_simulations
                     Integer. Number of main simulation runs (default: 1000).
    main_sample_size
                     Integer. Primary sample size for main results (default: 1000).
    sample_sizes
                     Integer vector. Sample sizes for consistency analysis (default: c(500, 1000,
                     2000)).
    delta_het
                     Numeric. Heteroscedasticity strength parameter (default: 1.2).
    delta_het_values
                     Numeric vector. Delta values for sensitivity analysis (default: c(0.4, 0.8, 1.2)).
    n_reps_by_n
                     Integer. Replications per sample size (default: 100).
    n_reps_by_delta
                     Integer. Replications per delta value (default: 100).
   bootstrap_reps Integer. Number of bootstrap replications (default: 100).
   bootstrap_subset_size
                     Integer. Size of bootstrap subset (default: 10).
   bootstrap_demo_size
                     Integer. Size of bootstrap demo (default: 5).
   beta1_0
                     Numeric. Intercept for first equation (default: 0.5).
                     Numeric. Slope for first equation (default: 1.5).
   beta1_1
                     Numeric. True value of the endogenous parameter (default: -0.8).
    gamma1
   beta2_0
                     Numeric. Intercept for second equation (default: 1.0).
                     Numeric. Slope for second equation (default: -1.0).
    beta2_1
```

create_prono_config 13

```
alpha1 Numeric. Factor loading for first error (default: -0.5).

alpha2 Numeric. Factor loading for second error (default: 1.0).

tau_set_id Numeric. Tau parameter for set identification (default: 0.2).

endog_var_name Character. Name of endogenous variable (default: "Y2").

exog_var_names Character. Name of exogenous variable (default: "Xk").

df_adjust Character. Degrees of freedom adjustment method (default: "asymptotic"). Options: "asymptotic", "finite".
```

Value

A list containing all configuration parameters.

Examples

```
## Not run:
config <- create_default_config()
config$gamma1 # -0.8

# Custom configuration
custom_config <- create_default_config(
   num_simulations = 500,
   gamma1 = -0.5
)

## End(Not run)</pre>
```

create_prono_config
Create default configuration for Prono simulations

Description

Creates configuration matching Prono (2014) with returns in percent.

Usage

```
create_prono_config(n = 500, k = 1, ...)
```

Arguments

n	Sample size
k	Number of exogenous variables

... Additional parameters to override defaults

Value

Configuration list with parameters scaled for percent returns

14 extract_se_lm

ensure_stata_packages Helper to ensure Stata packages are installed

Description

Helper to ensure Stata packages are installed

Usage

```
ensure_stata_packages()
```

extract_se_ivreg

Extract adjusted standard errors from ivreg model

Description

Extract adjusted standard errors from ivreg model

Usage

```
extract_se_ivreg(model, df_adjust = "asymptotic")
```

Arguments

model An ivreg model object

df_adjust Character string: "asymptotic" (default) or "finite"

Value

Named vector of adjusted standard errors

 ${\tt extract_se_lm}$

Extract adjusted standard errors from lm model

Description

Extract adjusted standard errors from lm model

Usage

```
extract_se_lm(model, df_adjust = "asymptotic")
```

Arguments

model An lm model object

df_adjust Character string: "asymptotic" (default) or "finite"

Value

Named vector of adjusted standard errors

```
fit_diagonal_garch_prono
```

Diagonal GARCH Implementation for Prono (2014) Method

Description

This file implements the bivariate diagonal GARCH model used in Prono (2014) for heteroskedasticity-based identification. Uses the modern tsmarch package which replaces the deprecated rmgarch.

Usage

```
fit_diagonal_garch_prono(
  data,
  garch_order = c(1, 1),
  ar_ma_order = c(1, 1),
  verbose = TRUE
)
```

Arguments

data Data frame with Y1 (portfolio) and Y2 (market) returns

garch_order GARCH(p,q) order, default c(1,1)

ar_ma_order ARMA order for conditional covariances, default c(1,1)

verbose Logical. Print fitting progress

Value

List containing:

fit The fitted multivariate GARCH model sigma2_sq Conditional variance of Y2 (market) sigma12 Conditional covariance between Y1 and Y2

residuals Matrix of standardized residuals spec Model specification object

References

Prono, T. (2014). "The Role of Conditional Heteroskedasticity in Identifying and Estimating Linear Triangular Systems, with Applications to Asset Pricing Models That Include a Mismeasured Factor." Journal of Applied Econometrics. Fit Bivariate Diagonal GARCH Model (Prono Specification)

Fits a bivariate diagonal GARCH model to portfolio and market returns following Prono's exact specification.

Prono, T. (2014). The Role of Conditional Heteroskedasticity in Identifying and Estimating Linear Triangular Systems, with Applications to Asset Pricing Models That Include a Mismeasured Factor. Journal of Applied Econometrics, 29(5), 800-824. doi:10.1002/jae.2387

See Also

prono_diagonal_garch for complete estimation fit_dcc_garch_fallback for fallback implementation 16 generate_all_plots

```
generate_all_plots Generate All Simulation Plots
```

Description

Generates all visualization plots for the Lewbel simulation results.

Usage

```
generate_all_plots(
  results_main,
  results_by_n,
  results_by_delta,
  bootstrap_examples,
  config,
  verbose = TRUE
)
```

Arguments

Value

A list of ggplot2 objects.

Examples

```
## Not run:
# Run full simulation
config <- create_default_config()
seeds <- generate_all_seeds(config)
results_main <- run_main_simulation(config, seeds)
results_by_n <- run_sample_size_analysis(config, seeds)
results_by_delta <- run_sensitivity_analysis(config, seeds)
bootstrap_demo <- run_bootstrap_demonstration(config, seeds)
bootstrap_examples <- analyze_bootstrap_results(
    results_main, bootstrap_demo, config
)

plots <- generate_all_plots(
    results_main, results_by_n, results_by_delta,
    bootstrap_examples, config
)</pre>
```

generate_all_seeds 17

```
## End(Not run)
```

generate_all_seeds

Generate All Seeds for Lewbel Simulation

Description

Pre-generates all seeds needed for different parts of the Lewbel simulation to ensure reproducibility across parallel execution.

Usage

```
generate_all_seeds(config)
```

Arguments

config

List. Configuration object created by create_default_config or related configuration functions.

Value

A list containing seed vectors/matrices for different simulation parts.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
names(seeds) # "main", "by_n", "by_delta", "bootstrap_demo"
## End(Not run)</pre>
```

```
generate_hetid_test_data
```

Generate consistent test data for all comparisons

Description

Generate consistent test data for all comparisons

Usage

```
generate_hetid_test_data(n = .hetid_const("N_DEFAULT"), seed = 42)
```

Arguments

```
n Integer. Number of observations to generate (default: 1000).
```

seed Integer. Random seed for reproducibility (default: 42).

generate_lewbel_data

Value

A data.frame with test data for Lewbel identification.

generate_lewbel_data Generate Data for Lewbel (2012) Triangular Model

Description

Creates a dataset based on the triangular model with single-factor error structure that satisfies Lewbel's identifying assumptions. The data generating process uses a common factor structure for the errors to ensure the covariance restriction $\text{Cov}(Z, \epsilon_1 \epsilon_2) = 0$ is satisfied.

Usage

generate_lewbel_data(n_obs, params, n_x = 1)

Arguments

n_obs

Integer. Sample size.

params

List. Parameters for the data generating process containing:

- beta1_0, beta1_1: Parameters for first equation (beta1_1 can be a vector for multiple X)
- beta2_0, beta2_1: Parameters for second equation (beta2_1 can be a vector for multiple X)
- gamma1: Endogenous parameter (key parameter of interest)
- alpha1, alpha2: Factor loadings for common factor U
- delta_het: Heteroscedasticity strength parameter

 n_x Integer. Number of exogenous X variables to generate (default: 1). If $n_x > 1$, beta 1_1 and beta 2_1 should be vectors of length n_x .

Details

The triangular model consists of two equations:

$$Y_1 = X'\beta_1 + \gamma_1 Y_2 + \epsilon_1$$
$$Y_2 = X'\beta_2 + \epsilon_2$$

where Y_1 is the outcome variable, Y_2 is the endogenous regressor, X is a vector of exogenous variables, and (ϵ_1, ϵ_2) are the structural errors.

The error structure follows a single-factor model:

$$\epsilon_1 = \alpha_1 U + V_1$$

$$\epsilon_2 = \alpha_2 U + V_2$$

where U, V_1, and V_2 are mutually independent, and heteroskedasticity is introduced through the variance of V 2.

For single X ($n_x = 1$), the data generating process is:

generate_lewbel_data 19

```
• Z_raw ~ Uniform(0, 1)
```

- $X = Z_raw$
- $Z = Z_{raw} mean(Z_{raw})$ (centered for use as instrument)
- $V_2|Z_raw \sim N(0, 0.5 + 2Z_raw)$ (variance equals $0.5 + 2Z_raw$)

For multiple X ($n_x > 1$), the original specification is used:

```
• X \sim N(0, 1)
```

- $Z = X^2 E[X^2]$
- $V_2 \sim N(0, \exp(\delta Z))$

Value

A data.frame with columns Y1, Y2, epsilon1, epsilon2, and:

```
• If n x = 1: Xk, Z
```

• If $n_x > 1$: X1, X2, ..., Z1, Z2, ... (one Z per X)

References

Lewbel, A. (2012). Using heteroscedasticity to identify and estimate mismeasured and endogenous regressor models. Journal of Business & Economic Statistics, 30(1), 67-80. doi:10.1080/07350015.2012.643126

See Also

verify_lewbel_assumptions for testing the assumptions, run_single_lewbel_simulation for using this data in simulations

Examples

```
## Not run:
# Single X variable (backward compatible)
params <- list(
   beta1_0 = 0.5, beta1_1 = 1.5, gamma1 = -0.8,
   beta2_0 = 1.0, beta2_1 = -1.0,
   alpha1 = -0.5, alpha2 = 1.0, delta_het = 1.2
)
data <- generate_lewbel_data(1000, params)

# Multiple X variables
params_multi <- list(
   beta1_0 = 0.5, beta1_1 = c(1.5, 3.0), gamma1 = -0.8,
   beta2_0 = 1.0, beta2_1 = c(-1.0, 0.7),
   alpha1 = -0.5, alpha2 = 1.0, delta_het = 1.2
)
data_multi <- generate_lewbel_data(1000, params_multi, n_x = 2)

## End(Not run)</pre>
```

20 generate_prono_data

generate_prono_data

Prono (2014) Heteroskedasticity-Based Identification with GARCH

Description

This file implements the Prono (2014) procedure for using conditional heteroskedasticity (GARCH) to generate instruments for identification in triangular systems with endogenous regressors.

Usage

```
generate_prono_data(
    n = 500,
    beta1 = c(0.05, 0.01),
    beta2 = c(0.097, -0.005),
    gamma1 = 1,
    k = 1,
    garch_params = list(omega = 0.2, alpha = 0.1, beta = 0.85),
    sigma1 = 1.5,
    rho = 0.3,
    seed = NULL
)
```

Arguments

n	Sample size
beta1	Coefficient vector for X in first equation (portfolio return equation). Default $c(0.05,0.01)$ gives realistic portfolio returns in percent.
beta2	Coefficient vector for X in second equation (market return equation). Default $c(0.097, -0.005)$ gives mean market excess return of 0.097% matching Prono.
gamma1	Coefficient on Y2 in first equation (the "beta" in asset pricing)
k	Number of exogenous variables (excluding constant)
garch_params	List with GARCH parameters: omega, alpha, beta. Default values give realistic volatility clustering for weekly returns.
sigma1	Standard deviation of epsilon1 in percent (portfolio idiosyncratic risk)
rho	Correlation between epsilon1 and epsilon2 (endogeneity)
seed	Random seed

Value

Data frame with generated variables (Y1 and Y2 are in percent)

References

Prono, T. (2014). "The Role of Conditional Heteroskedasticity in Identifying and Estimating Linear Triangular Systems, with Applications to Asset Pricing Models That Include a Mismeasured Factor." Journal of Applied Econometrics, 29(5), 800-824. Generate time series data for Prono's triangular model

Generates data matching Prono (2014) asset pricing application with returns in percent (like the original paper).

Prono, T. (2014). The Role of Conditional Heteroskedasticity in Identifying and Estimating Linear Triangular Systems, with Applications to Asset Pricing Models That Include a Mismeasured Factor. Journal of Applied Econometrics, 29(5), 800-824. doi:10.1002/jae.2387

See Also

run_single_prono_simulation for running a single simulation create_prono_config for default configuration run_prono_monte_carlo for Monte Carlo analysis

generate_rigobon_data Generate Data for Rigobon (2003) Regime-Based Model

Description

Creates a dataset based on the triangular model with regime-specific heteroskedasticity following Rigobon (2003). This is a special case of Lewbel's method where heteroskedasticity drivers are discrete regime indicators.

Usage

generate_rigobon_data(n_obs, params, n_x = 1)

Arguments

n_obs

Integer. Sample size.

params

List. Parameters for the data generating process containing:

- beta1_0, beta1_1: Parameters for first equation
- beta2_0, beta2_1: Parameters for second equation
- gamma1: Endogenous parameter (key parameter of interest)
- alpha1, alpha2: Factor loadings for common factor U
- regime probs: Vector of regime probabilities (must sum to 1)
- sigma2_regimes: Vector of variance multipliers for each regime (length must match regime_probs)

n_x

Integer. Number of exogenous X variables to generate (default: 1).

Details

The triangular model is:

$$Y_1 = \beta_{1,0} + \beta_{1,1}X + \gamma_1Y_2 + \epsilon_1$$
$$Y_2 = \beta_{2,0} + \beta_{2,1}X + \epsilon_2$$

The error structure follows Rigobon's regime heteroskedasticity:

$$\epsilon_1 = \alpha_1 U + V_1$$

$$\epsilon_2 = \alpha_2 U + V_2$$

where V_2 has variance that depends on the regime:

$$Var(V_2|regime = s) = \sigma_{2,s}^2$$

22 generate_seed_matrix

Value

A data.frame with columns Y1, Y2, epsilon1, epsilon2, regime, and:

- If $n_x = 1$: Xk, plus Z1, Z2, ... (one centered dummy per regime)
- If $n_x > 1$: X1, X2, ..., plus Z1, Z2, ... (one centered dummy per regime)

References

Rigobon, R. (2003). Identification through heteroskedasticity. Review of Economics and Statistics, 85(4), 777-792. doi:10.1162/003465303772815727

See Also

generate_lewbel_data for continuous heteroskedasticity drivers

Examples

```
## Not run:
# Two-regime example (e.g., pre/post policy change)
params <- list(</pre>
  beta1_0 = 0.5, beta1_1 = 1.5, gamma1 = -0.8,
  beta2_0 = 1.0, beta2_1 = -1.0,
 alpha1 = -0.5, alpha2 = 1.0,
  regime_probs = c(0.4, 0.6), # 40% in regime 1, 60% in regime 2
  sigma2\_regimes = c(1.0, 2.5) # Variance is 2.5x higher in regime 2
data <- generate_rigobon_data(1000, params)</pre>
# Three-regime example
params_3reg <- list(</pre>
  beta1_0 = 0.5, beta1_1 = 1.5, gamma1 = -0.8,
 beta2_0 = 1.0, beta2_1 = -1.0,
  alpha1 = -0.5, alpha2 = 1.0,
  regime_probs = c(0.3, 0.4, 0.3),
  sigma2\_regimes = c(0.5, 1.0, 2.0)
data_3reg <- generate_rigobon_data(1000, params_3reg)</pre>
## End(Not run)
```

generate_seed_matrix Generate Seed Matrix for Reproducible Parallel Simulations

Description

Pre-generates seeds for reproducible parallel simulations to ensure consistent results across different computing environments.

```
generate_seed_matrix(base_seed, n_experiments, n_reps_each)
```

get_critical_value 23

Arguments

base_seed Integer. Base seed for random number generation.

n_experiments Integer. Number of experiments (rows in matrix).

n_reps_each Integer. Number of replications per experiment (columns).

Value

A matrix of seeds with dimensions n_experiments x n_reps_each.

Examples

```
## Not run:
seeds <- generate_seed_matrix(123, 3, 100)
dim(seeds) # 3 x 100
## End(Not run)</pre>
```

get_critical_value

Get critical value for confidence intervals

Description

Get critical value for confidence intervals

Usage

```
get_critical_value(
   n,
   k,
   alpha = .hetid_const("ALPHA_DEFAULT"),
   df_adjust = "asymptotic"
)
```

Arguments

n Sample size
k Number of parameters
alpha Significance level (default 0.05)
df_adjust Character string: "asymptotic" (default) or "finite"

Value

Critical value

24 has_rendo

get_stata_path

Get the actual Stata executable path

Description

Get the actual Stata executable path

Usage

```
get_stata_path()
```

has_curl

Check if curl is available

Description

Check if curl is available

Usage

has_curl()

has_haven

Check if haven is available

Description

Check if haven is available

Usage

has_haven()

has_rendo

Check if REndo is available

Description

Check if REndo is available

Usage

has_rendo()

has_rstata 25

has_rstata

Check if RStata is available

Description

Check if RStata is available

Usage

has_rstata()

has_stata

Check if Stata is available via RStata

Description

Check if Stata is available via RStata

Usage

has_stata()

hetid_opt

Get hetid package options with fallback to constants

Description

This function retrieves user-configurable options for the hetid package. If a user hasn't set a specific option, it falls back to the default value stored in the package's internal constants environment.

Usage

hetid_opt(option_name)

Arguments

option_name

Character. Name of the option to retrieve. Supported options include:

- display_digits: Number of digits for displaying results
- alpha_level: Significance level for statistical tests
- weak_f_threshold: F-statistic threshold for weak instruments
- parallel_offset: Offset for parallel processing workers
- bootstrap_reps: Number of bootstrap replications

Value

The option value. Returns the user-set value if available, otherwise returns the default from the constants environment.

26 lewbel_gmm

Examples

```
# Get default display digits
hetid_opt("display_digits")

# Set a custom value
options(hetid.display_digits = 6)
hetid_opt("display_digits")

# Reset to default
options(hetid.display_digits = NULL)
hetid_opt("display_digits")
```

 ${\tt lewbel_gmm}$

Estimate Lewbel Model using GMM

Description

Main function to estimate Lewbel's heteroskedasticity-based identification model using Generalized Method of Moments (GMM).

Usage

```
lewbel_gmm(
  data,
  system = c("triangular", "simultaneous"),
  y1_var = "Y1",
  y2_var = "Y2",
  x_vars = "Xk",
  z_vars = NULL,
  add_intercept = TRUE,
  gmm_type = c("twoStep", "iterative", "cue"),
  initial_values = NULL,
  vcov = c("HAC", "iid", "cluster"),
  cluster_var = NULL,
  compute_se = TRUE,
  verbose = FALSE,
  ...
)
```

Arguments

data	Data frame containing all required variables. Must include the dependent variables and any exogenous regressors specified in the model.
system	Character. Type of system: "triangular" or "simultaneous" (default: "triangular"). Note: Simultaneous systems require strong identification conditions either many regimes (4+) or large variance differences across regimes for numerical stability.
y1_var	Character. Name of the first dependent variable (default: "Y1").
y2_var	Character. Name of the second dependent variable/endogenous regressor (default: "Y2").

lewbel_gmm 27

x_vars	Character vector. Names of exogenous variables (default: "Xk").
z_vars	Character vector. Names of heteroskedasticity drivers (default: NULL).
add_intercept	Logical. Whether to add an intercept to the exogenous variables (default: TRUE).
gmm_type	Character. GMM type: "twoStep", "iterative", or "cue" (default: "twoStep").
initial_values	Numeric vector. Initial parameter values (default: NULL, uses OLS).
vcov	Character. Type of variance-covariance matrix: "HAC", "iid", or "cluster" (default: "HAC").
cluster_var	Character. Variable name for clustering if vcov = "cluster" (default: NULL).
compute_se	Logical. Whether to compute standard errors (default: TRUE). Passed to gmm call.
verbose	Logical. Whether to print progress messages (default: TRUE).
	Additional arguments passed to gmm().

Details

This function implements Lewbel's (2012) heteroskedasticity-based identification using the GMM framework. The method exploits heteroskedasticity in the error terms to generate valid instruments for endogenous regressors.

For simultaneous equation systems, identification becomes more challenging. The system requires sufficient variation in heteroskedasticity patterns to distinguish between the bidirectional effects. In practice, this means you need either many distinct heteroskedasticity regimes or very large differences in variance across existing regimes.

Value

An object of class "gmm" containing estimation results.

References

Lewbel, A. (2012). Using heteroscedasticity to identify and estimate mismeasured and endogenous regressor models. Journal of Business & Economic Statistics, 30(1), 67-80. doi:10.1080/07350015.2012.643126

See Also

lewbel_triangular_moments, lewbel_simultaneous_moments for moment condition functions. rigobon_gmm for regime-based heteroskedasticity identification. prono_gmm for GARCH-based heteroskedasticity identification. compare_gmm_2sls for comparing GMM with 2SLS estimates. run_single_lewbel_simulation for 2SLS implementation.

Examples

```
## Not run:
# Generate example data
set.seed(123)
n <- 1000
params <- list(
  beta1_0 = 0.5, beta1_1 = 1.5, gamma1 = -0.8,
  beta2_0 = 1.0, beta2_1 = -1.0,
  alpha1 = -0.5, alpha2 = 1.0, delta_het = 1.2
)</pre>
```

28 lewbel_sim

```
data <- generate_lewbel_data(n, params)

# Estimate triangular system
gmm_tri <- lewbel_gmm(data, system = "triangular")
summary(gmm_tri)

# Estimate simultaneous system
gmm_sim <- lewbel_gmm(data, system = "simultaneous")
summary(gmm_sim)

# Compare with 2SLS
tsls_result <- run_single_lewbel_simulation(1, c(params, sample_size = n))
cat("2SLS estimate:", tsls_result$tsls_gamma1, "\n")
cat("GMM estimate:", coef(gmm_tri)["gamma1"], "\n")</pre>
## End(Not run)
```

lewbel_sim

Simulated Lewbel Test Data

Description

A simulated dataset for testing Lewbel (2012) identification methods. This dataset contains a triangular system with endogeneity and heteroskedasticity suitable for testing the hetid package functions.

Usage

lewbel_sim

Format

A data frame with 1000 rows and 5 variables:

- id Observation identifier
- y Dependent variable (Y1 in the triangular system)
- P Endogenous regressor (Y2 in the triangular system)
- X1 First exogenous regressor
- X2 Second exogenous regressor

Details

The data was generated using the following triangular system:

$$y = 0.5 + 1.5 \cdot X1 + 3.0 \cdot X2 - 0.8 \cdot P + \epsilon_1$$

$$P = 1.0 - 1.0 \cdot X1 + 0.7 \cdot X2 + \epsilon_2$$

The error structure follows a single-factor model with heteroskedasticity:

$$\epsilon_1 = -0.5 \cdot U + V_1$$
$$\epsilon_2 = 1.0 \cdot U + V_2$$

where
$$V_2 \sim N(0, \exp(1.2 \cdot Z))$$
 with $Z = X2^2 - E[X2^2]$.

Source

Simulated data using generate_lewbel_data() function

References

Lewbel, A. (2012). Using heteroscedasticity to identify and estimate mismeasured and endogenous regressor models. Journal of Business & Economic Statistics, 30(1), 67-80. doi:10.1080/07350015.2012.643126

```
lewbel_simultaneous_moments
```

Define GMM Moment Conditions for Lewbel Simultaneous System

Description

Creates the moment function for GMM estimation of a simultaneous equations system using Lewbel's heteroskedasticity-based identification.

Usage

```
lewbel_simultaneous_moments(
    theta,
    data,
    y1_var,
    y2_var,
    x_vars,
    z_vars,
    add_intercept,
    z_sq
)
```

Arguments

theta	Numeric vector. Parameters: c(beta1, gamma1, beta2, gamma2).
data	Data frame containing all required variables. Must include the dependent variables and any exogenous regressors specified in the model.
y1_var	Character. Name of the first dependent variable (default: "Y1").
y2_var	Character. Name of the second dependent variable/endogenous regressor (default: "Y2").
x_vars	Character vector. Names of exogenous variables (default: "Xk").
z_vars	Character vector. Names of heteroskedasticity drivers (default: NULL).
add_intercept	Logical. Whether to add an intercept to the exogenous variables.
z_sq	Logical. Whether to include squared terms in the Z matrix for simultaneous equations.

Details

For the simultaneous system:

$$Y_1 = X'\beta_1 + \gamma_1 Y_2 + \epsilon_1$$

$$Y_2 = X'\beta_2 + \gamma_2 Y_1 + \epsilon_2$$

The moment conditions are the same as the triangular system. Note: Requires gamma1 * gamma2 != 1 for identification.

Value

Matrix of moment conditions (n x q).

References

Lewbel, A. (2012). Using heteroscedasticity to identify and estimate mismeasured and endogenous regressor models. Journal of Business & Economic Statistics, 30(1), 67-80. doi:10.1080/07350015.2012.643126

See Also

lewbel_gmm for the main GMM estimation function. lewbel_triangular_moments for triangular system moments.

lewbel_triangular_moments

Define GMM Moment Conditions for Lewbel Triangular System

Description

Creates the moment function for GMM estimation of a triangular system using Lewbel's heteroskedasticity-based identification.

```
lewbel_triangular_moments(
    theta,
    data,
    y1_var,
    y2_var,
    x_vars,
    z_vars,
    add_intercept
)
```

Arguments

theta	Numeric vector. Parameters to estimate: c(beta1, gamma1, beta2).
data	Data frame containing all required variables. Must include the dependent variables and any exogenous regressors specified in the model.
y1_var	Character. Name of the first dependent variable (default: "Y1").
y2_var	Character. Name of the second dependent variable/endogenous regressor (default: "Y2").
x_vars	Character vector. Names of exogenous variables (default: "Xk").
z_vars	Character vector. Names of heteroskedasticity drivers (default: NULL, uses centered \boldsymbol{X}).
add_intercept	Logical. Whether to add an intercept to the exogenous variables.

Details

For the triangular system:

$$Y_1 = X'\beta_1 + \gamma_1 Y_2 + \epsilon_1$$

$$Y_2 = X'\beta_2 + \epsilon_2$$

The moment conditions are:

- $E[X \times \epsilon_1] = 0$
- $E[X \times \epsilon_2] = 0$
- $E[Z \times \epsilon_1 \times \epsilon_2] = 0$

where Z = g(X) is a mean-zero transformation of X.

Value

Matrix of moment conditions (n x q).

References

Lewbel, A. (2012). Using heteroscedasticity to identify and estimate mismeasured and endogenous regressor models. Journal of Business & Economic Statistics, 30(1), 67-80. doi:10.1080/07350015.2012.643126

See Also

 ${\tt lewbel_gmm}\ for\ the\ main\ GMM\ estimation\ function.\ {\tt lewbel_simultaneous_moments}\ for\ simultaneous\ system\ moments.$

plot_bootstrap_ci

Create Bootstrap Confidence Intervals Plot

Description

Creates a plot showing set identification bounds with bootstrap confidence intervals.

Usage

```
plot_bootstrap_ci(bootstrap_examples, config)
```

Arguments

```
bootstrap_examples

Data.frame. Bootstrap examples with standard errors.

config List. Configuration object containing true parameter values.
```

Value

A ggplot2 object or NULL if insufficient data.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
results_main <- run_main_simulation(config, seeds)
bootstrap_demo <- run_bootstrap_demonstration(config, seeds)
bootstrap_examples <- analyze_bootstrap_results(
    results_main, bootstrap_demo, config
)
p5 <- plot_bootstrap_ci(bootstrap_examples, config)
if (!is.null(p5)) print(p5)
## End(Not run)</pre>
```

```
plot_estimator_distributions
```

Create Distribution Plot of Estimators

Description

Creates a density plot comparing the distributions of OLS and 2SLS estimators.

```
plot_estimator_distributions(results_clean, config)
```

plot_first_stage_f_dist 33

Arguments

results_clean Data.frame. Cleaned simulation results.

config List. Configuration object containing true parameter values.

Value

A ggplot2 object.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
results <- run_main_simulation(config, seeds)
results_clean <- na.omit(results)
p1 <- plot_estimator_distributions(results_clean, config)
print(p1)
## End(Not run)</pre>
```

```
plot_first_stage_f_dist
```

Create First-Stage F Distribution Plot

Description

Creates a histogram of first-stage F-statistics with weak instrument threshold.

Usage

```
plot_first_stage_f_dist(results_clean, config = NULL, weak_iv_pct = NULL)
```

Arguments

results_clean Data.frame. Cleaned simulation results.

config List. Optional. Configuration object (not currently used).

weak_iv_pct Numeric. Percentage of simulations with weak instruments.

Value

A ggplot2 object.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
results <- run_main_simulation(config, seeds)
results_clean <- na.omit(results)
weak_iv_pct <- mean(results_clean$first_stage_F <
    .hetid_const("WEAK_INSTRUMENT_F_THRESHOLD")) * 100</pre>
```

```
p4 <- plot_first_stage_f_dist(results_clean, weak_iv_pct)
print(p4)
## End(Not run)</pre>
```

Description

Creates a boxplot showing 2SLS performance by heteroscedasticity strength.

Usage

```
plot_het_sensitivity(results_by_delta, config)
```

Arguments

```
results_by_delta
```

Data.frame. Results from sensitivity analysis.

config

List. Configuration object containing true parameter values.

Value

A ggplot2 object.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
results_by_delta <- run_sensitivity_analysis(config, seeds)
p3 <- plot_het_sensitivity(results_by_delta, config)
print(p3)
## End(Not run)</pre>
```

```
plot_sample_size_consistency
```

Create Sample Size Consistency Plot

Description

Creates a boxplot showing 2SLS estimate consistency across sample sizes.

```
plot_sample_size_consistency(results_by_n, config)
```

print.lewbel_gmm 35

Arguments

```
results_by_n Data.frame. Results from sample size analysis.

config List. Configuration object containing true parameter values.
```

Value

A ggplot2 object.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
results_by_n <- run_sample_size_analysis(config, seeds)
p2 <- plot_sample_size_consistency(results_by_n, config)
print(p2)
## End(Not run)</pre>
```

print.lewbel_gmm

Print Method for Lewbel GMM

Description

Print Method for Lewbel GMM

Usage

```
## S3 method for class 'lewbel_gmm'
print(x, ...)
```

Arguments

x An object of class "lewbel_gmm".... Additional arguments passed to print.gmm.

```
print_simulation_summary
```

Print Simulation Summary

Description

Prints a comprehensive summary of simulation findings.

```
print_simulation_summary(analysis = NULL, config = NULL, verbose = TRUE)
```

Arguments

analysis List. Optional. Analysis results object containing simulation metrics.

config List. Optional. Configuration object (not currently used).

verbose Logical. Whether to print progress messages (default: TRUE).

Examples

```
## Not run:
print_simulation_summary()
## End(Not run)
```

prono_diagonal_garch Run Prono Estimation with Diagonal GARCH

Description

Complete Prono estimation using proper diagonal GARCH specification

Usage

```
prono_diagonal_garch(
  data,
  method = c("2sls", "gmm"),
  garch_order = c(1, 1),
  verbose = TRUE
)
```

Arguments

data Data frame with Y1, Y2, and X variables

method Character. Either "2sls" or "gmm"

garch_order GARCH(p,q) order verbose Print progress

Value

List with estimation results

References

Prono, T. (2014). The Role of Conditional Heteroskedasticity in Identifying and Estimating Linear Triangular Systems, with Applications to Asset Pricing Models That Include a Mismeasured Factor. Journal of Applied Econometrics, 29(5), 800-824. doi:10.1002/jae.2387

See Also

 $\label{lem:condition} fit_diagonal_garch_prono\ for\ GARCH\ fitting\ run_single_prono_simulation\ for\ 2SLS\ estimation\ prono_gmm\ for\ GMM\ estimation$

prono_gmm 37

Examples

```
## Not run:
# Time-consuming example with diagonal GARCH
data <- generate_prono_data(n = 500)
result <- prono_diagonal_garch(data, method = "2sls")
## End(Not run)</pre>
```

prono_gmm

GMM Estimation for Prono (2014) GARCH-Based Identification

Description

Implementation of GMM estimation for Prono's (2014) heteroskedasticity-based identification strategy using GARCH models.

Usage

```
prono_gmm(
   data,
   system = "triangular",
   y1_var = "Y1",
   y2_var = "Y2",
   x_vars = NULL,
   garch_order = c(1, 1),
   fit_garch = TRUE,
   add_intercept = TRUE,
   gmm_type = "twoStep",
   vcov = "HAC",
   initial_values = NULL,
   compute_se = TRUE,
   verbose = TRUE,
   ...
)
```

data	Data frame containing all variables.
system	Character. Either "triangular" (default).
y1_var	Character. Name of the first dependent variable (default: "Y1").
y2_var	Character. Name of the second dependent variable (default: "Y2").
x_vars	Character vector. Names of exogenous variables.
garch_order	GARCH(p,q) order (default: $c(1,1)$).
fit_garch	Logical. Whether to fit GARCH model (default: TRUE).
add_intercept	Logical. Whether to add an intercept (default: TRUE).
gmm_type	Character. GMM type: "onestep", "twoStep" (default), "iterative", or "cue".
vcov	Character. Variance-covariance matrix type: "iid", "HAC" (default), or "cluster".

```
initial_values Numeric vector. Initial parameter values (optional).

compute_se Logical. Whether to compute standard errors (default: TRUE).

verbose Logical. Whether to print progress messages (default: TRUE).

Additional arguments passed to gmm::gmm.
```

An object of class "prono_gmm" containing GMM estimation results.

References

Prono, T. (2014). The Role of Conditional Heteroskedasticity in Identifying and Estimating Linear Triangular Systems, with Applications to Asset Pricing Models That Include a Mismeasured Factor. Journal of Applied Econometrics, 29(5), 800-824. doi:10.1002/jae.2387

See Also

prono_triangular_moments for moment conditions. run_single_prono_simulation for 2SLS estimation.

```
prono_triangular_moments
```

Define GMM Moment Conditions for Prono Triangular System

Description

Creates the moment function for GMM estimation of a triangular system using Prono's GARCH-based identification.

Usage

```
prono_triangular_moments(
    theta,
    data,
    y1_var,
    y2_var,
    x_vars,
    garch_order = c(1, 1),
    add_intercept = TRUE
)
```

theta	Numeric vector. Parameters to estimate: c(beta1, gamma1, beta2).
data	Data frame containing the variables.
y1_var	Character. Name of the first dependent variable (default: "Y1").
y2_var	Character. Name of the second dependent variable/endogenous regressor (default: "Y2").
x_vars	Character vector. Names of exogenous variables.
garch_order	GARCH(p,q) order for conditional variance estimation.
add_intercept	Logical. Whether to add an intercept to the exogenous variables.

Matrix of moment conditions (n x q).

References

Prono, T. (2014). The Role of Conditional Heteroskedasticity in Identifying and Estimating Linear Triangular Systems, with Applications to Asset Pricing Models That Include a Mismeasured Factor. Journal of Applied Econometrics, 29(5), 800-824. doi:10.1002/jae.2387

See Also

prono_gmm for the main GMM estimation function. run_single_prono_simulation for 2SLS estimation.

```
replicate_prono_table2
```

Replicate Prono's Table II Results

Description

Run Monte Carlo simulation matching Prono's exact specification

Usage

```
replicate_prono_table2(
 n_{sim} = 1000,
 n_{obs} = 500,
 config = create_prono_config(n = n_obs),
 use_diagonal_garch = TRUE,
  verbose = TRUE
)
```

Arguments

```
Number of simulations
n_sim
n_obs
                 Sample size per simulation
                 Configuration from create_prono_config()
config
use_diagonal_garch
                 Use diagonal GARCH (TRUE) or univariate (FALSE)
verbose
                 Print progress
```

Value

List with results data frame and summary statistics matching Prono's Table II

References

Prono, T. (2014). The Role of Conditional Heteroskedasticity in Identifying and Estimating Linear Triangular Systems, with Applications to Asset Pricing Models That Include a Mismeasured Factor. Journal of Applied Econometrics, 29(5), 800-824. doi:10.1002/jae.2387

40 rigobon_gmm

See Also

run_prono_monte_carlo for standard Monte Carlo create_prono_config for configuration

Examples

```
## Not run:
# Replication of Prono Table II (time-consuming)
# Uses 1000 simulations to match paper results
results <- replicate_prono_table2(n_sim = 1000, n_obs = 500)
## End(Not run)</pre>
```

rigobon_gmm

GMM Estimation for Rigobon (2003) Regime-Based Identification

Description

Implementation of GMM estimation for Rigobon's (2003) heteroskedasticity-based identification strategy using regime changes.

Usage

```
rigobon_gmm(
  data,
  system = "triangular",
  y1_var = "Y1",
  y2_var = "Y2",
  x_vars = "Xk",
  regime_var = "regime",
  add_intercept = TRUE,
  gmm_type = "twoStep",
  vcov = "HAC",
  initial_values = NULL,
  verbose = TRUE,
  ...
)
```

data	Data frame containing all variables.
system	Character. Either "triangular" (default) or "simultaneous". Note: Simultaneous systems require many regimes (4+) and large variance differences across regimes for numerical stability and identification.
y1_var	Character. Name of the first dependent variable.
y2_var	Character. Name of the second dependent variable.
x_vars	Character vector. Names of exogenous variables.
regime_var	Character. Name of the regime indicator variable.
add_intercept	Logical. Whether to add an intercept.

```
gmm_type Character. GMM type.

vcov Character. Variance-covariance matrix type.

initial_values Numeric vector. Initial parameter values.

verbose Logical. Whether to print progress messages (default: TRUE).

... Additional arguments passed to gmm::gmm.
```

An object of class "rigobon_gmm" containing GMM estimation results.

References

Rigobon, R. (2003). Identification through heteroskedasticity. Review of Economics and Statistics, 85(4), 777-792.

```
rigobon_simultaneous_moments
```

Define GMM Moment Conditions for Rigobon Simultaneous System

Description

Creates the moment function for GMM estimation of a simultaneous equations system using Rigobon's regime-based identification.

Usage

```
rigobon_simultaneous_moments(
    theta,
    data,
    y1_var,
    y2_var,
    x_vars,
    regime_var,
    add_intercept = TRUE
)
```

theta	Numeric vector. Parameters to estimate.
data	Data frame containing the variables.
y1_var	Character. Name of the first dependent variable.
y2_var	Character. Name of the second dependent variable.
x_vars	Character vector. Names of exogenous variables.
regime_var	Character. Name of the regime indicator variable.
add_intercept	Logical. Whether to add an intercept.

Details

WARNING: Simultaneous systems with regime-based identification are numerically challenging. They require many regimes (4+) with substantial variance differences for reliable estimation. The system may be singular or near-singular with insufficient heteroskedasticity variation.

Value

Matrix of moment conditions.

References

Rigobon, R. (2003). Identification through heteroskedasticity. Review of Economics and Statistics, 85(4), 777-792.

```
rigobon_triangular_moments
```

Define GMM Moment Conditions for Rigobon Triangular System

Description

Creates the moment function for GMM estimation of a triangular system using Rigobon's regime-based identification.

Usage

```
rigobon_triangular_moments(
    theta,
    data,
    y1_var,
    y2_var,
    x_vars,
    regime_var,
    add_intercept = TRUE
)
```

Arguments

theta	Numeric vector. Parameters to estimate.	
data	Data frame containing the variables.	
y1_var	Character. Name of the first dependent variable.	
y2_var	Character. Name of the second dependent variable.	
x_vars	Character vector. Names of exogenous variables.	
regime_var	Character. Name of the regime indicator variable.	
add_intercept	Logical. Whether to add an intercept.	

Value

Matrix of moment conditions.

References

Rigobon, R. (2003). Identification through heteroskedasticity. Review of Economics and Statistics, 85(4), 777-792.

```
run_bootstrap_demonstration
```

Run Bootstrap Demonstration

Description

Runs a separate demonstration of bootstrap standard errors for set identification bounds.

Usage

```
run_bootstrap_demonstration(config, seeds, verbose = TRUE)
```

Arguments

config List. Configuration object created by create_default_config or related con-

figuration functions.

seeds List. Seeds for reproducibility, typically generated by generate_all_seeds.

verbose Logical. Whether to show progress information during execution (default: TRUE).

Value

A data.frame containing bootstrap demonstration results.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
bootstrap_results <- run_bootstrap_demonstration(config, seeds)
## End(Not run)</pre>
```

run_lewbel_demo

Run Quick Lewbel Monte Carlo Demo

Description

Runs a quick demonstration of the Lewbel Monte Carlo simulation with reduced parameters for faster execution.

Usage

```
run_lewbel_demo(num_simulations = 100, verbose = TRUE)
```

Arguments

```
num_simulations
Integer. Number of simulations to run (default: 100).

verbose Logical. Whether to print progress messages (default: TRUE).
```

Value

Results from run_lewbel_monte_carlo() with reduced parameters.

References

Lewbel, A. (2012). Using heteroscedasticity to identify and estimate mismeasured and endogenous regressor models. Journal of Business & Economic Statistics, 30(1), 67-80. doi:10.1080/07350015.2012.643126

See Also

```
run_lewbel_monte_carlo
```

Examples

```
## Not run:
# Quick demo with 50 simulations
demo_results <- run_lewbel_demo(50)

# Silent demo
demo_results <- run_lewbel_demo(100, verbose = FALSE)
## End(Not run)</pre>
```

```
run_lewbel_monte_carlo
```

Run Complete Lewbel (2012) Monte Carlo Simulation

Description

Executes a comprehensive Monte Carlo simulation to evaluate the performance of Lewbel's (2012) heteroscedasticity-based identification strategy. This is the main function that orchestrates all simulation components.

Usage

```
run_lewbel_monte_carlo(
  config = NULL,
  run_verification = TRUE,
  run_bootstrap_demo = TRUE,
  run_sample_analysis = TRUE,
  run_sensitivity = TRUE,
  generate_plots = TRUE,
  verbose = TRUE
```

Arguments

```
config If NULL, uses default configuration.

run_verification
Logical. Whether to run assumption verification (default: TRUE).

run_bootstrap_demo
Logical. Whether to run bootstrap demonstration (default: TRUE).

run_sample_analysis
Logical. Whether to run sample size analysis (default: TRUE).

run_sensitivity
Logical. Whether to run sensitivity analysis (default: TRUE).

generate_plots
Logical. Whether to generate visualization plots (default: TRUE).

verbose
Logical. Whether to print progress messages (default: TRUE).
```

Details

This function runs a complete Monte Carlo evaluation including:

- Verification of Lewbel's identifying assumptions
- Main simulation comparing OLS vs 2SLS (Lewbel) estimators
- Bootstrap demonstration for set identification bounds
- · Sample size consistency analysis
- · Sensitivity analysis to heteroscedasticity strength
- · Comprehensive result analysis and visualization

The simulation uses parallel processing for efficiency and includes proper seed management for reproducibility.

Value

A list containing:

- config: Configuration used
- results_main: Main simulation results
- results_by_n: Sample size analysis results (if run)
- results_by_delta: Sensitivity analysis results (if run)
- bootstrap_demo: Bootstrap demonstration results (if run)
- analysis: Summary analysis
- plots: Visualization plots (if generated)

References

Lewbel, A. (2012). Using heteroscedasticity to identify and estimate mismeasured and endogenous regressor models. Journal of Business & Economic Statistics, 30(1), 67-80. doi:10.1080/07350015.2012.643126

See Also

```
run_single_lewbel_simulation, calculate_lewbel_bounds
```

46 run_main_simulation

Examples

```
## Not run:
# Run with default settings
results <- run_lewbel_monte_carlo()

# Run with custom configuration
custom_config <- create_default_config(
    num_simulations = 500,
    gamma1 = -0.5,
    delta_het = 1.5
)

results <- run_lewbel_monte_carlo(custom_config)

# Run only main simulation without extras
results <- run_lewbel_monte_carlo(
    run_bootstrap_demo = FALSE,
    run_sample_analysis = FALSE,
    run_sensitivity = FALSE
)

## End(Not run)</pre>
```

run_main_simulation

Run Main Lewbel Monte Carlo Simulation

Description

Executes the main Monte Carlo simulation to evaluate the performance of Lewbel's (2012) heteroscedasticity-based identification strategy.

Usage

```
run_main_simulation(config, seeds, verbose = TRUE)
```

Arguments

config List. Configuration object created by create_default_config or related con-

figuration functions.

seeds List. Seeds for reproducibility, typically generated by generate_all_seeds.

verbose Logical. Whether to show progress information during execution (default: TRUE).

Value

A data frame containing results from all simulation runs.

```
## Not run:
config <- create_default_config(num_simulations = 100)
seeds <- generate_all_seeds(config)
results <- run_main_simulation(config, seeds)</pre>
```

run_prono_demo 47

```
## End(Not run)
```

run_prono_demo

Run Prono demonstration

Description

Run Prono demonstration

Usage

```
run_prono_demo(n = 500, print_results = TRUE)
```

Arguments

```
n Sample size
print_results Whether to print results
```

Value

Results from single simulation (invisibly)

References

Prono, T. (2014). The Role of Conditional Heteroskedasticity in Identifying and Estimating Linear Triangular Systems, with Applications to Asset Pricing Models That Include a Mismeasured Factor. Journal of Applied Econometrics, 29(5), 800-824. doi:10.1002/jae.2387

See Also

run_single_prono_simulation for the underlying simulation create_prono_config for configuration run_prono_monte_carlo for full Monte Carlo analysis

```
## Not run:
# Quick demonstration with reduced sample size
run_prono_demo(n = 200, print_results = TRUE)
## End(Not run)
```

run_prono_monte_carlo Run Prono Monte Carlo simulation

Description

Run Prono Monte Carlo simulation

Usage

```
run_prono_monte_carlo(
  config,
  n_sims = 1000,
  parallel = FALSE,
  n_cores = NULL,
  progress = TRUE
)
```

Arguments

config	Configuration list
n_sims	Number of simulations
parallel	Whether to use parallel processing
n_cores	Number of cores for parallel processing
progress	Whether to show progress bar

Value

Data frame with simulation results

References

Prono, T. (2014). The Role of Conditional Heteroskedasticity in Identifying and Estimating Linear Triangular Systems, with Applications to Asset Pricing Models That Include a Mismeasured Factor. Journal of Applied Econometrics, 29(5), 800-824. doi:10.1002/jae.2387

See Also

 ${\tt run_single_prono_simulation}\ for\ single\ simulation\ create_prono_config\ for\ configuration\ setup$

```
## Not run:
# Time-consuming Monte Carlo simulation
# For actual research, use n_sims = 1000+
config <- create_prono_config(n = 500)
mc_results <- run_prono_monte_carlo(config, n_sims = 100)
## End(Not run)</pre>
```

run_rigobon_analysis 49

```
run_rigobon_analysis Rigobon (2003) Regime-Based Heteroskedasticity Identification
```

Description

This file implements the Rigobon (2003) procedure for using discrete regime indicators to generate instruments for identification in triangular systems with endogenous regressors. The method exploits heteroskedasticity across different regimes (e.g., policy periods, market conditions).

Usage

```
run_rigobon_analysis(
  n_obs = .hetid_const("N_DEFAULT"),
  params = NULL,
  data = NULL,
  regime_var = "regime",
  endog_var = "Y2",
  exog_vars = "Xk",
  verbose = TRUE,
  return_all = FALSE
)
```

Arguments

n_obs	Integer. Sample size (default: 1000).
params	List. Parameters for data generation. If NULL, uses default parameters suitable for demonstration.
data	Data.frame. Optional. Pre-existing data with regime indicators. If provided, skips data generation.
regime_var	Character. Name of regime variable in data (default: "regime").
endog_var	Character. Name of endogenous variable (default: "Y2").
exog_vars	Character vector. Names of exogenous variables (default: "Xk").
verbose	Logical. Whether to print progress messages (default: TRUE).
return_all	Logical. Whether to return all intermediate results (default: FALSE).

Details

The Rigobon method is a special case of Lewbel's (2012) approach where the heteroskedasticity drivers are discrete regime indicators rather than continuous functions of exogenous variables. Run Complete Rigobon Analysis

This is the main function that performs a complete Rigobon (2003) heteroskedasticity-based identification analysis. It combines data generation, estimation, and diagnostic testing in a single workflow.

50 run_rigobon_demo

Value

A list containing:

- estimates: Data frame comparing OLS and Rigobon 2SLS estimates
- diagnostics: Heteroskedasticity test results and first-stage F-stats
- data: The data used (generated or provided)
- models: Fitted model objects (if return_all = TRUE)

References

Rigobon, R. (2003). "Identification Through Heteroskedasticity." The Review of Economics and Statistics, 85(4), 777-792.

Rigobon, R. (2003). Identification through heteroskedasticity. Review of Economics and Statistics, 85(4), 777-792. doi:10.1162/003465303772815727

See Also

generate_rigobon_data, run_rigobon_estimation, validate_rigobon_assumptions

Examples

```
## Not run:
# Quick analysis with default parameters
results <- run_rigobon_analysis()

# Custom parameters for stronger identification
params <- list(
    beta1_0 = 0.5, beta1_1 = 1.5, gamma1 = -0.8,
    beta2_0 = 1.0, beta2_1 = -1.0,
    alpha1 = -0.5, alpha2 = 1.0,
    regime_probs = c(0.3, 0.7),
    sigma2_regimes = c(1.0, 3.0) # Large difference in variances
)
results <- run_rigobon_analysis(n_obs = 2000, params = params)

# Using existing data
# Assume you have data with a regime indicator
results <- run_rigobon_analysis(data = my_data, regime_var = "period")
## End(Not run)</pre>
```

 $\verb"run_rigobon_demo"$

Run Rigobon (2003) Identification Demo

Description

Demonstrates Rigobon's regime-based heteroskedasticity identification method with example data and analysis.

run_rigobon_demo 51

Usage

```
run_rigobon_demo(
  n_obs = .hetid_const("N_DEFAULT"),
  n_regimes = 2,
  verbose = TRUE
)
```

Arguments

n_obs Integer. Sample size (default: 1000).n_regimes Integer. Number of regimes (default: 2).verbose Logical. Whether to print progress messages (default: TRUE).

Value

A list containing:

• data: Generated data

• params: True parameters used

• results: Estimation results

• comparison: Comparison of OLS vs Rigobon estimates

References

Rigobon, R. (2003). Identification through heteroskedasticity. Review of Economics and Statistics, 85(4), 777-792. doi:10.1162/003465303772815727

See Also

```
{\tt generate\_rigobon\_data, run\_rigobon\_estimation}
```

```
## Not run:
# Basic two-regime demo
demo <- run_rigobon_demo()

# Three-regime example with larger sample
demo_3reg <- run_rigobon_demo(n_obs = 2000, n_regimes = 3)

# Silent demo
demo_quiet <- run_rigobon_demo(verbose = FALSE)

## End(Not run)</pre>
```

```
run_rigobon_estimation
```

Run Rigobon (2003) Regime-Based Estimation

Description

Implements Rigobon's heteroskedasticity-based identification using discrete regime indicators. This is a wrapper around the Lewbel estimation framework that automatically constructs instruments from regime dummies.

Usage

```
run_rigobon_estimation(
  data,
  endog_var = "Y2",
  exog_vars = "Xk",
  regime_var = "regime",
  df_adjust = "asymptotic",
  return_diagnostics = FALSE
)
```

Arguments

```
data Data.frame. Must contain Y1, Y2, X variables, and regime indicator.

endog_var Character. Name of endogenous variable (default: "Y2").

exog_vars Character vector. Names of exogenous variables (default: "Xk").

regime_var Character. Name of regime indicator variable (default: "regime").

df_adjust Character. Degrees of freedom adjustment: "asymptotic" or "finite" (default: "asymptotic").

return_diagnostics
    Logical. Whether to return additional diagnostic information (default: FALSE).
```

Details

The function:

- 1. Creates centered dummy variables for each regime
- 2. Estimates first-stage residuals
- 3. Constructs instruments as (centered regime dummy) * (first-stage residual)
- 4. Performs 2SLS estimation using all regime-based instruments

This implements the procedure described in Rigobon (2003) for identification through heteroskedasticity across discrete regimes.

If return_diagnostics = FALSE: A list with:

- ols: OLS estimates and standard errors
- tsls: 2SLS estimates and standard errors using Rigobon instruments
- first_stage_F: Vector of F-statistics for each instrument

If return_diagnostics = TRUE: Additionally returns:

- instruments: Matrix of generated instruments
- regime_props: Proportion of observations in each regime
- · heteroskedasticity_test: Test for regime-based heteroskedasticity

References

Rigobon, R. (2003). Identification through heteroskedasticity. Review of Economics and Statistics, 85(4), 777-792. doi:10.1162/003465303772815727

See Also

generate_rigobon_data for generating regime-based data

```
## Not run:
# Generate Rigobon-style data
params <- list(</pre>
 beta1_0 = 0.5, beta1_1 = 1.5, gamma1 = -0.8,
 beta2_0 = 1.0, beta2_1 = -1.0,
 alpha1 = -0.5, alpha2 = 1.0,
  regime_probs = c(0.4, 0.6),
  sigma2\_regimes = c(1.0, 2.5)
data <- generate_rigobon_data(1000, params)</pre>
# Run Rigobon estimation
results <- run_rigobon_estimation(data)</pre>
print(results$tsls$estimates)
# With diagnostics
results_diag <- run_rigobon_estimation(data, return_diagnostics = TRUE)</pre>
print(results_diag$heteroskedasticity_test)
## End(Not run)
```

```
run\_sample\_size\_analysis \\ \textit{Run Sample Size Analysis}
```

Description

Analyzes the consistency of estimators across different sample sizes.

Usage

```
run_sample_size_analysis(config, seeds, verbose = TRUE)
```

Arguments

config List. Configuration object created by create_default_config or related con-

figuration functions.

seeds List. Seeds for reproducibility, typically generated by generate_all_seeds.

verbose Logical. Whether to show progress information during execution (default: TRUE).

Value

A data frame containing results for different sample sizes.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
size_results <- run_sample_size_analysis(config, seeds)
## End(Not run)</pre>
```

```
run_sensitivity_analysis
```

Run Sensitivity Analysis

Description

Analyzes sensitivity of results to heteroscedasticity strength.

Usage

```
run_sensitivity_analysis(config, seeds, verbose = TRUE)
```

Arguments

config List. Configuration object created by create_default_config or related con-

figuration functions.

seeds List. Seeds for reproducibility, typically generated by generate_all_seeds. verbose Logical. Whether to show progress information during execution (default: TRUE).

A data frame containing results for different heteroscedasticity parameters.

Examples

```
## Not run:
config <- create_default_config()
seeds <- generate_all_seeds(config)
sensitivity_results <- run_sensitivity_analysis(config, seeds)
## End(Not run)</pre>
```

```
run_single_lewbel_simulation
```

Run Single Lewbel Simulation

Description

Executes a single Monte Carlo simulation run comparing OLS, 2SLS (Lewbel), and set identification approaches for estimating the endogenous parameter.

Usage

```
run_single_lewbel_simulation(
    sim_id,
    params,
    endog_var = "Y2",
    exog_vars = "Xk",
    compute_bounds_se = FALSE,
    return_models = FALSE,
    df_adjust = "asymptotic"
)
```

Arguments

sim_id Integer. Simulation run identifier.

params List. Parameters for data generation and estimation.

endog_var Character. Name of endogenous variable (default: "Y2").

exog_vars Character vector. Names of exogenous variables (default: "Xk").

compute_bounds_se

Logical. Whether to compute bootstrap SE for bounds (default: FALSE).

return_models Logical. Whether to return the fitted model objects (default: FALSE).

df_adjust Character. Method for degrees of freedom adjustment:

- "asymptotic": No adjustment (default)
- "finite": Finite sample adjustment using HC2 formula

If return_models = FALSE: A data.frame with one row containing simulation results including OLS and 2SLS estimates, coverage indicators, first-stage F-statistic, and identification bounds. If return_models = TRUE: A list containing:

- · results: The data.frame described above
- models: A list with ols_model, first_stage_model, tsls_model
- · data: The generated data

References

Lewbel, A. (2012). Using heteroscedasticity to identify and estimate mismeasured and endogenous regressor models. Journal of Business & Economic Statistics, 30(1), 67-80. doi:10.1080/07350015.2012.643126

See Also

calculate_lewbel_bounds for set identification

Examples

```
## Not run:
config <- create_default_config()</pre>
params <- list(</pre>
  sample_size = config$main_sample_size,
  beta1_0 = config$beta1_0, beta1_1 = config$beta1_1, gamma1 = config$gamma1,
  beta2_0 = config$beta2_0, beta2_1 = config$beta2_1,
  alpha1 = config$alpha1, alpha2 = config$alpha2,
  delta_het = config$delta_het, tau_set_id = config$tau_set_id,
  bootstrap_reps = config$bootstrap_reps
)
result <- run_single_lewbel_simulation(1, params)</pre>
# With models
result_with_models <- run_single_lewbel_simulation(</pre>
  1, params,
  return_models = TRUE
## End(Not run)
```

run_single_prono_simulation

Run single Prono simulation with GARCH-based instruments

Description

Run single Prono simulation with GARCH-based instruments

Usage

```
run_single_prono_simulation(config, return_details = FALSE)
```

summary.lewbel_gmm 57

Arguments

```
config Configuration list with simulation parameters return_details If TRUE, return detailed results
```

Value

List with estimation results including gamma1_true, gamma1_ols, gamma1_iv, standard errors, biases, F-statistic, and optionally full model objects

References

Prono, T. (2014). The Role of Conditional Heteroskedasticity in Identifying and Estimating Linear Triangular Systems, with Applications to Asset Pricing Models That Include a Mismeasured Factor. Journal of Applied Econometrics, 29(5), 800-824. doi:10.1002/jae.2387

See Also

generate_prono_data for data generation run_prono_monte_carlo for Monte Carlo analysis prono_gmm for GMM estimation

summary.lewbel_gmm

Summary Method for Lewbel GMM

Description

Summary Method for Lewbel GMM

Usage

```
## S3 method for class 'lewbel_gmm'
summary(object, ...)
```

Arguments

object An object of class "lewbel_gmm".

... Additional arguments passed to summary.gmm.

```
validate_rigobon_assumptions
```

Validate Rigobon Assumptions

Description

Tests whether the data satisfies the key assumptions required for Rigobon's (2003) identification strategy.

Usage

```
validate_rigobon_assumptions(
  data,
  regime_var = "regime",
  exog_vars = "Xk",
  verbose = TRUE
)
```

Arguments

data Data.frame. Must contain Y1, Y2, regime, and X variables.

regime_var Character. Name of regime variable (default: "regime").

exog_vars Character vector. Names of exogenous variables.

verbose Logical. Whether to print progress messages (default: TRUE).

Details

The function tests three key assumptions:

- 1. Heteroskedasticity across regimes in at least one equation
- 2. The covariance restriction (centered regime dummies uncorrelated with error product)
- 3. Constant covariance between errors across regimes

Value

A list containing test results:

- regime_heteroskedasticity: Test for different variances across regimes
- covariance_restriction: Test that Cov(Z, e1*e2) = 0
- constant_covariance: Test that Cov(e1, e2) is constant across regimes
- all_valid: Logical indicating if all assumptions are satisfied

References

Rigobon, R. (2003). Identification through heteroskedasticity. Review of Economics and Statistics, 85(4), 777-792. doi:10.1162/003465303772815727

Examples

```
## Not run:
# Generate test data
params <- list(
   beta1_0 = 0.5, beta1_1 = 1.5, gamma1 = -0.8,
   beta2_0 = 1.0, beta2_1 = -1.0,
   alpha1 = -0.5, alpha2 = 1.0,
   regime_probs = c(0.4, 0.6),
   sigma2_regimes = c(1.0, 2.5)
)
data <- generate_rigobon_data(1000, params)
# Validate assumptions
validation <- validate_rigobon_assumptions(data)
## End(Not run)</pre>
```

verify_lewbel_assumptions

Verify Lewbel's Key Identifying Assumptions

Description

Tests whether the data generating process satisfies the key assumptions required for Lewbel's (2012) identification strategy. This includes testing the covariance restriction and instrument relevance condition.

Usage

```
verify_lewbel_assumptions(
  data = NULL,
  config = NULL,
  n_obs = 10000,
  params = NULL,
  verbose = TRUE
)
```

data	Data.frame. Optional. Pre-generated data to verify (alternative to n_obs/params).
config	List. Optional. Configuration object (used with data parameter).
n_obs	Integer. Sample size for verification (default: 10000, used with params).
params	List. Parameters for the data generating process (same format as generate_lewbel_data).
verbose	Logical. Whether to print progress messages (default: TRUE).

Details

The function tests:

- Assumption A2: Cov(Z, $\epsilon_1 \epsilon_2$) = 0 (covariance restriction)
- Assumption A3: $Cov(Z, \epsilon_2^2) != 0$ (instrument relevance)
- Endogeneity: $Cov(\epsilon_1, \epsilon_2) != 0$

Can be called in two ways:

- 1. verify_lewbel_assumptions(data, config) using pre-generated data
- 2. verify_lewbel_assumptions(n_obs = 10000, params = params) generating new data

Value

Invisibly returns a list with verification results and data.

References

Lewbel, A. (2012). Using heteroscedasticity to identify and estimate mismeasured and endogenous regressor models. Journal of Business & Economic Statistics, 30(1), 67-80. doi:10.1080/07350015.2012.643126

See Also

generate_lewbel_data for generating data that meets assumptions

```
## Not run:
config <- create_default_config()
params <- list(
  beta1_0 = config$beta1_0, beta1_1 = config$beta1_1, gamma1 = config$gamma1,
  beta2_0 = config$beta2_0, beta2_1 = config$beta2_1,
  alpha1 = config$alpha1, alpha2 = config$alpha2,
  delta_het = config$delta_het
)
verify_lewbel_assumptions(params = params)
## End(Not run)</pre>
```

Index

* datasets	plot_bootstrap_ci,32
lewbel_sim, 28	plot_estimator_distributions, 32
	plot_first_stage_f_dist, 33
adjust_se_for_df, 3	plot_het_sensitivity, 34
analyze_bootstrap_results, 4	plot_sample_size_consistency, 34
<pre>analyze_main_results, 5</pre>	print.lewbel_gmm, 35
analyze_sample_size_results, 6	print_simulation_summary, 35
analyze_sensitivity_results, 6	prono_diagonal_garch, 15, 36
	prono_gmm, 27, 36, 37, 39, 57
calculate_lewbel_bounds, 7, 45, 56	prono_triangular_moments, 38, 38
compare_gmm_2sls, 9, 27	
compare_rigobon_methods, 10	replicate_prono_table2,39
create_default_config, 4-7, 11, 17, 43, 46,	rigobon_gmm, 27, 40
54	rigobon_simultaneous_moments,41
create_prono_config, 13, 21, 40, 47, 48	rigobon_triangular_moments,42
_,	<pre>run_bootstrap_demonstration, 43</pre>
ensure_stata_packages, 14	<pre>run_lewbel_demo, 43</pre>
extract_se_ivreg, 14	<pre>run_lewbel_monte_carlo, 44, 44</pre>
extract_se_lm, 14	run_main_simulation,46
,	run_prono_demo, 47
<pre>fit_dcc_garch_fallback, 15</pre>	run_prono_monte_carlo, 21, 40, 47, 48, 57
fit_diagonal_garch_prono, 15, 36	run_rigobon_analysis,49
_	run_rigobon_demo,50
<pre>generate_all_plots, 16</pre>	run_rigobon_estimation, <i>11</i> , <i>50</i> , <i>51</i> , <i>52</i>
generate_all_seeds, 17, 43, 46, 54	run_sample_size_analysis, 54
generate_hetid_test_data, 17	run_sensitivity_analysis, 54
generate_lewbel_data, 18, 22, 60	run_single_lewbel_simulation, 9, 11, 19
generate_prono_data, 20, 57	27, 45, 55
generate_rigobon_data, 21, 50, 51, 53	run_single_prono_simulation, 21, 36, 38
generate_seed_matrix, 22	39, 47, 48, 56
get_critical_value, 23	, , ,
get_stata_path, 24	<pre>summary.lewbel_gmm, 57</pre>
0	
has_curl, 24	validate_rigobon_assumptions, 50 , 58
has_haven, 24	verify_lewbel_assumptions, 19,59
has_rendo, 24	
has_rstata, 25	
has_stata, 25	
hetid_opt, 25	
•	
lewbel_gmm, 9, 26, 30, 31	
lewbel_sim, 28	
<pre>lewbel_simultaneous_moments, 27, 29, 31</pre>	
lewbel_triangular_moments, 27, 30, 30	