Reproducing Kernel Hilbert Space

Ergan Shang, Yan Chen

USTC

November 27, 2022

Overview

- Priliminary
- Reproducing kernel Hilbert Space
 - Constructing from a kernel
 - Abstract Version
- 3 Mercer's theorem and consequences
- Operations on RKHS
 - Sums of RKHS
 - Tensor products
- Interpolation and Fitting
 - Function interpolation
 - Fitting via kernel ridge regression
- 6 Distances between probability measures

Overview

- Priliminary
- 2 Reproducing kernel Hilbert Space
- Mercer's theorem and consequences
- Operations on RKHS
- Interpolation and Fitting
- 6 Distances between probability measures

Basics of Functional Analysis

Theorem 12.5 (Riesz representation theorem)

let L be a bounded linear functional on a Hilbert space. Then there exists a unique $g \in \mathcal{H}$ such that $L(f) = \langle f, g \rangle_{\mathcal{H}}$ for all $f \in \mathcal{H}$. And we refer to g as the representer of the functional L.

Also recall the definitions of inner product and Hilbert space.

Overview

- Priliminary
- 2 Reproducing kernel Hilbert Space
 - Constructing from a kernel
 - Abstract Version
- Mercer's theorem and consequences
- Operations on RKHS
- Interpolation and Fitting
- 6 Distances between probability measures

PSD kernel function

Definition 12.6

A symmetric bivariate function $\mathcal{K}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is positive semidefinite (PSD) if for all integers $n \geq 1$ and elements $\{\mathbf{x}_i\}_{i=1}^n \subset \mathcal{X}$, the $n \times n$ matrix with elements $\mathcal{K}_{ij} = \mathcal{K}(\mathbf{x}_i, \mathbf{x}_i)$ is positive semidefinite.

12.7 Let $\mathcal{X} = \mathbb{R}^d$, we define $\mathcal{K}(\mathbf{x}, \mathbf{x}') = \langle \mathbf{x}, \mathbf{x}' \rangle$. Then with $\{\mathbf{x}_i\}_{i=1}^n \subset \mathbb{R}^d$, we have

$$\boldsymbol{\alpha}^{\top} \mathcal{K} \boldsymbol{\alpha} = \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} \langle \boldsymbol{x}_{i}, \boldsymbol{x}_{j} \rangle = \left\| \sum_{i=1}^{n} \alpha_{i} \boldsymbol{x}_{i} \right\|_{2}^{2} \geq 0.$$

Polynomials kernels and Feature maps

12.8 We let $\mathcal{K}(\mathbf{x}, \mathbf{z}) = (\langle \mathbf{x}, \mathbf{z} \rangle)^2$, so that

$$\mathcal{K}(\mathbf{x}, \mathbf{z}) = \sum_{j=1}^{d} x_j^2 z_j^2 + 2 \sum_{i < j} x_i x_j z_i z_j.$$

Setting $D=d+\binom{d}{2}$, and define **feature mapping** $\phi:\mathbb{R}^d\to\mathbb{R}^D$ with entries

$$\phi(\mathbf{x}) = \begin{bmatrix} x_j^2, & \text{for } j = 1, 2, \cdots, d \\ \sqrt{2}x_i x_j, & \text{for } i < j \end{bmatrix}.$$

As a result, we can write $\mathcal{K}(\mathbf{x}, \mathbf{z}) = \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle_{\mathbb{R}^D}$, which is PSD followed by the last example.

Feature maps

12.10 Consider the Fourier basis $\phi_j(x) = \sin\left(\frac{(2j-1)\pi x}{2}\right)$ and $\langle \phi_j, \phi_k \rangle = \int_0^1 \phi_j(x) \phi_k(x) dx = \delta_{jk}$. Given some sequence $\{\mu_j\}_{j=1}^\infty$ with $\sum_{j=1}^\infty \mu_j < \infty$, we let the feature map as

$$\Phi(x) := (\sqrt{\mu_1}\phi_1(x), \sqrt{\mu_2}\phi_2(x), \cdots).$$

By constrcution

$$\|\Phi(x)\|^2 = \sum_{j=1}^{\infty} \mu_j \phi_j^2(x) \le \sum_{j=1}^{\infty} \mu_j < \infty \Rightarrow \Phi(x) \in \ell^2(\mathbb{N}).$$

Therefore, we define $\mathcal{K}(x,z) = \langle \Phi(x), \Phi(z) \rangle_{\ell^2(\mathbb{N})} = \sum_{j=1}^{\infty} \mu_j \phi_j(x) \phi_j(z)$ is a PSD kernel.

Gaussian kernel

- 12.9 Choose $\mathcal{X} \subset \mathbb{R}^d$ and consider Gaussian kernel $\mathcal{K}(\mathbf{x},\mathbf{z}) = \exp\left(-\frac{\|\mathbf{x}-\mathbf{z}\|_2^2}{2\sigma^2}\right)$. In order to prove it is a PSD, we can first expand exp into polynomials and by first proving product of PSD is also a PSD, and then limit of summation of PSD is also a PSD. To be specific,
 - (1) Let $\mathcal{K}(x,z)$ is PSD, then the polynomials $P(\mathcal{K}(x,z))$ is also a PSD, where $P(x) = \sum_{i=0}^{n} a_i x^i$.
 - (2) We consider $\mathcal{K}(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{\|\mathbf{z}\|_2^2}{2\sigma^2}\right) \cdot \exp\left(\langle \mathbf{x}, \mathbf{z} \rangle / \sigma^2\right) \cdot \exp\left(-\frac{\|\mathbf{z}\|_2^2}{2\sigma^2}\right)$.

We only need to prove $\mathcal{K}(x,y) = \mathcal{K}_1(x,y)\mathcal{K}_2(x,y)$ is a PSD whenever \mathcal{K}_1 and \mathcal{K}_2 are PSDs. By Linear Algebra, we let $C = A^\top A$ and $D = B^\top B$ where $c_{ij} = \mathcal{K}_1(x_i,x_j)$ and $d_{ij} = \mathcal{K}_2(x_i,x_j)$. By defining $A = (a_1,\cdots,a_n)$ and $B = (b_1,\cdots,b_n)$, we have $c_{ij} = \sum_k a_{ik}a_{jk}$ and $d_{ij} = \sum_\ell b_{i\ell}b_{j\ell}$. By denoting $e_{ij} = \mathcal{K}_1(x_i,x_j)\mathcal{K}_2(x_i,x_j)$, we calculate

$$\mathbf{u}^{\top} E \mathbf{u} = \sum_{i,j} u_i u_j e_{ij} = \sum_{i,j} \sum_{k,\ell} u_i u_j a_{ik} a_{jk} b_{i\ell} b_{j\ell}$$

$$= \sum_{k,\ell} \left(\sum_i u_i a_{ik} b_{i\ell} \right) \left(\sum_i u_j a_{jk} b_{j\ell} \right) = \sum_{k,\ell} \left(\sum_{i=1}^{l} u_i a_{ik} b_{i\ell} \right)^2 \ge 0.$$

Outline

- Priliminary
- Reproducing kernel Hilbert Space
 - Constructing from a kernel
 - Abstract Version
- Mercer's theorem and consequences
- Operations on RKHS
- Interpolation and Fitting
- 6 Distances between probability measures

Constructing from a PSD

We propose the RKHS constructed from a PSD has the following property

$$\langle f, \mathcal{K}(\cdot, \mathbf{x}) \rangle_{\mathcal{H}} = f(\mathbf{x}) \quad \forall f \in \mathcal{H},$$

which is known as the kernel reproducing property. Given functions of form $f(\cdot) = \sum_{j=1}^{n} \alpha_{j} \mathcal{K}(\cdot, x_{j})$ and $\bar{f} = \sum_{k=1}^{\bar{n}} \bar{\alpha}_{k} \mathcal{K}(\cdot, \bar{x}_{k})$, by the linearity of inner product, we have

$$\langle f, \bar{f} \rangle = \sum_{j=1}^{n} \sum_{k=1}^{\bar{n}} \alpha_j \bar{\alpha}_k \mathcal{K}(x_j, \bar{x}_k),$$

and moreover, this kind of inner product satisfies the reproducing property by

$$\langle f, \mathcal{K}(\cdot, x) \rangle = \sum_{j=1}^{n} \alpha_{j} \mathcal{K}(x_{j}, x) = f(x).$$

Explicit Version

Theorem 12.11

Given any PSD \mathcal{K} , there is a unique Hilbert space \mathcal{H} in which the kernel satisfies the reproducing property. It is known as the reproducing kernel Hilbert space associated with \mathcal{K} .

Proof:

About the sensibility of inner product, we only need to prove $\|f\|_{\mathcal{H}}^2 = 0$ iff f = 0. We suppose that $\langle f, f \rangle_{\tilde{\mathcal{H}}} = \sum_{i,j=1}^n \alpha_i \alpha_j \mathcal{K}(x_i, x_j) = 0$, then by arbitrarily choosing $a \in \mathbb{R}$, we have

$$0 \leq \|a\mathcal{K}(\cdot,x) + \sum_{i=1}^n \alpha_i \mathcal{K}(\cdot,x_i)\|^2 = a^2 \mathcal{K}(x,x) + 2a \sum_{i=1}^n \alpha_i \mathcal{K}(x,x_i).$$

Since $\mathcal{K}(x,x) \geq 0$ and $a \in \mathbb{R}$ is arbitrary, we have $f(x) = \sum_{i=1}^{n} \alpha_i \mathcal{K}(x,x_i) = 0$.

Proof

Then we need to make a complete inner product space, i.e. the Hilbert space. Assuming $\{f_n\}_{n=1}^{\infty}$ is a Cauchy sequence, then $\{f_n(x)\}_{i=1}^{\infty}\subset\mathbb{R}$ is a Cauchy sequence, so that we define $f(x)=\lim_{n\to\infty}f_n(x)$ and also $\|f\|_{\mathcal{H}}:=\lim_{n\to\infty}\|f_n\|_{\tilde{\mathcal{H}}}$. To verify it is well-defined, we have to prove that when the Cauchy sequence $\{g_n\}_{n=1}^{\infty}$ in $\tilde{\mathcal{H}}$ such that $\lim_{n\to\infty}g_n(x)=0\quad\forall x\in\mathcal{X}$, we also have $\lim_{n\to\infty}\|g_n\|=0$. Otherwise, there is a subsequence such that $\lim_{n\to\infty}\|g_n\|^2=2\epsilon>0$, so that for m,n large enoug, we have $\|g_n\|^2\geq\epsilon$ and $\|g_m\|^2\geq\epsilon$ and also $\|g_n-g_m\|\leq\epsilon/2$. Then we write $g_m(\cdot)=\sum_{i=1}^{N_m}\alpha_i\mathcal{K}(\cdot,x_i)$. By reproducing property,

$$\langle g_m, g_n \rangle = \sum_{i=1}^{N_m} \alpha_i \langle \mathcal{K}(\cdot, x_i), g_n \rangle = \sum_{i=1}^{N_m} \alpha_i g_n(x_i) \to 0.$$

Ву

$$||g_n - g_m||^2 = ||g_n||^2 + ||g_m||^2 - 2\langle g_n, g_m \rangle,$$

we get contradiction.

| ←□ ト ←□ ト ← 亘 ト | 亘 |

Proof

Finally, we prove the uniqueness. Suppose that $\mathbb G$ is another Hilbert space with $\mathcal K$ being its kernel. Since $\mathbb G$ is complete and closed under linear operations, we have $\mathcal H\subset\mathbb G$, so that $\mathbb G=\mathcal H\oplus\mathcal H^\perp$. Let $g\in\mathcal H^\perp$ and noting $\mathcal K(\cdot,x)\in\mathcal H$, then $g(x)=\langle\mathcal K(\cdot,x),g\rangle_{\mathbb G}=0$. We conclude that $\mathcal H^\perp=\{0\}$, thus $\mathcal H=\mathbb G$.

Outline

- Priliminary
- Reproducing kernel Hilbert Space
 - Constructing from a kernel
 - Abstract Version
- Mercer's theorem and consequences
- Operations on RKHS
- Interpolation and Fitting
- 6 Distances between probability measures

Abstract Version

Observing that $f(x) = \langle f, \mathcal{K}(\cdot, x) \rangle$, we can view $\mathcal{K}(\cdot, x)$ as the evaluation function $L_x : \mathcal{H} \to \mathbb{R}$ that performs $f \mapsto f(x)$. By Riesz representation theorem, it means all evaluation functions in RKHS are bounded. A direct question is that how large the class of Hilbert space where the evaluation functions are bounded is?

Definition 12.12

A reproducing kernel Hilbert space \mathcal{H} is a Hilbert space of real-valued functions on \mathcal{X} such that for each $x \in \mathcal{X}$, the evaluation functional $L_x : \mathcal{H} \to \mathbb{R}$ is bounded, i.e., there exists some $M < \infty$ such that $|L_x(f)| \leq M||f||$ for all $f \in \mathcal{H}$.

RKHS Construction

Theorem 12.13

Given and Hilbert space $\mathcal H$ in which the evaluation functionals are all bounded, there is a unique PSD kernel $\mathcal K$ that satisfies the reproducing property.

Proof:

By Riesz representation theorem, there exists some element $R_x \in \mathcal{H}$ such that $f(x) = L_x(f) = \langle f, R_x \rangle$ for all $f \in \mathcal{H}$. We define \mathcal{K} via $\mathcal{K}(x,z) = \langle R_x, R_z \rangle$. We only need to show it is positive semidefinite. In fact

$$\boldsymbol{\alpha}^{\top} \boldsymbol{\kappa} \boldsymbol{\alpha} = \sum_{j,k=1}^{n} \alpha_{j} \alpha_{k} \mathcal{K}(x_{j}, x_{k}) = \left\langle \sum_{j=1}^{n} \alpha_{j} R_{x_{j}}, \sum_{j=1}^{n} \alpha_{j} R_{x_{j}} \right\rangle = \left\| \sum_{j=1}^{n} \alpha_{j} R_{x_{j}} \right\|_{\mathcal{U}}^{2} \geq 0.$$

Proof

It remains to prove the reproducing property: by

$$\mathcal{K}(y,x) = \langle R_y, R_x \rangle = R_x(y)$$

, we can see that $\mathcal{K}(\cdot,x)=R_x(\cdot)$, then by definition

$$f(x) = \langle f, R_x \rangle = \langle f, \mathcal{K}(\cdot, x) \rangle,$$

which is the reproducing property.

Finally, if there exists another kernel $\tilde{\mathcal{K}}$ satisfying the properties above, we can see

$$\begin{split} \mathcal{K}(x,x') &= \langle \mathcal{K}(\cdot,x), \mathcal{K}(\cdot,x') \rangle = \langle \mathcal{K}(\cdot,x), \tilde{\mathcal{K}}(\cdot,x') \rangle \\ &= \langle \tilde{\mathcal{K}}(\cdot,x), \tilde{\mathcal{K}}(\cdot,x') \rangle = \tilde{\mathcal{K}}(x,x') \quad \forall x,x' \in \mathcal{X}. \end{split}$$

Examples

12.14 We let $\mathcal{K}(x,z) = \langle x,z \rangle$ and $f(x) = \sum_j \alpha_j \mathcal{K}(x,x_j)$, thus

$$f(x) = \langle f, \mathcal{K}(\cdot, x) \rangle = \left\langle \sum_{j} \alpha_{j} \mathcal{K}(\cdot, x_{j}), \mathcal{K}(\cdot, x) \right\rangle = \sum_{j} \alpha_{j} \mathcal{K}(x, x_{j})$$
$$= \sum_{j} \alpha_{j} \langle x, x_{j} \rangle = \left\langle x, \sum_{j} \alpha_{j} x_{j} \right\rangle.$$

It means the evaluation functional has the form $z \mapsto \langle z, \sum_{i=1}^n \alpha_i x_i \rangle$, i.e., $f_{\beta}(\cdot) = \langle \cdot, \beta \rangle$ and the inner product in RKHS is formed by $\langle f_{\beta}, f_{\beta'} \rangle_{\mathcal{H}} = \langle \beta, \beta' \rangle$.

Examples

12.16 (A simple Sobolev space) Consider the functions

 $\mathbb{H}^1[0,1]:=\{f\colon [0,1]\to \mathbb{R}|f(0)=0, \text{and } f \text{ is absolutely continuous with } f'\in L^2[0,1]\}.$

The inner product is defined as $\langle f,g\rangle:=\int_0^1f'(z)g'(z)dz$. In order to prove it is an RKHS, we claim its representer of evaluation: $R_x(z)=\min\{x,z\}\Rightarrow R_x'(z)=\mathbb{I}_{[0,x]}(z)$. We can calculate

$$\langle f, R_x \rangle = \int_0^1 f'(z) R'_x(z) dz = \int_0^x f'(z) dz = f(x)$$

by absolutely continuous.

Also by the process of the proof of theorem 12.13, we know that the PSD $\mathcal{K}(x,z) = \langle R_x, R_z \rangle = \int_0^1 \mathbb{I}_{[0,x]}(t) \mathbb{I}_{[0,z]}(t) dt = \langle \mathbb{I}_{[0,x]}, \mathbb{I}_{[0,z]} \rangle_{L^2[0,1]}$, therefore providing a Gram representation, leading to positive semidefinite. We conclude that $\mathcal{K}(x,z) = \min\{x,z\}$ is the unique PSD kernel.

RMK

RMK: RKHS ensures that convergence of a sequence of functions in RKHS implies pointwise convergence, which means: if we let $f_n \to f^*$ in $\mathcal H$ norm, we have

$$|f_n(x) - f^*(x)| = |\langle f_n - f^*, R(\cdot, x) \rangle| = |L_x(f_n - f^*)| \le ||L_x|| ||f_n - f^*|| \to 0.$$

12.15 ($L^2[0,1]$ is not an RKHS) Consider the sequence of functions $f_n(x) = x^n$ and since $\int_0^2 f_n^2(x) dx = \frac{1}{2n+1} \to 0$. Therefore, $||f_n||_{\mathcal{H}} \to 0$. However, $f_n(1) \equiv 1$, thus not pointwise convergent.

Overview

- Priliminary
- 2 Reproducing kernel Hilbert Space
- 3 Mercer's theorem and consequences
- Operations on RKHS
- Interpolation and Fitting
- 6 Distances between probability measures

Motivations

12.18 (PSD matrices) Let $\mathcal{X} = [d]$ be equipped with Hamming metric, i.e. $P(\{j\}) = 1$ be the counting measure on this discrete space. Define a PSD kernel $\mathcal{K}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with the matrix $\mathcal{K} = (\mathcal{K}_{ij}) = (\mathcal{K}(i,j))_{i,j=1}^n$. Define the integral operator as

$$T_{\mathcal{K}}(f)(x) = \int_{\mathcal{X}} \mathcal{K}(x, z) f(z) dP(z) = \sum_{z=1}^{d} \mathcal{K}(x, z) f(z).$$

By Linear Algebra Theory, we have

$$K = \sum_{i=1}^d \mu_j \mathbf{v}_j \mathbf{v}_j^{ op}.$$

Notations

Let $\mathbb P$ be a non-negative measure over a compact metric space $\mathcal X$, and consider the function class $L^2(\mathcal X;\mathbb P)$ with the usual squared norm

$$||f||_{L^{(\mathcal{X};\mathbb{P})}}^2 = \int_{\mathcal{X}} f^2(x) d\mathbb{P}(x).$$

Given a PSD kernel, we define a linear operator

$$T_{\mathcal{K}}(f)(x) := \int_{\mathcal{X}} \mathcal{K}(x,z) f(z) d\mathbb{P}(z).$$

We assume that

$$\int_{\mathcal{X}\times\mathcal{X}} \mathcal{K}^2(x,z) d\mathbb{P}(x) d\mathbb{P}(z) < \infty, \tag{*}$$

which is squuared integral, then we have

$$\|T_{\mathcal{K}}(f)\|_{L^{2}(\mathcal{X})}^{2} = \int_{\mathcal{X}} \left(\int_{\mathcal{X}} \mathcal{K}(x, y) f(y) d\mathbb{P}(x) \right)^{2} d\mathbb{P}(y) \leq \|f\|_{L^{1}(\mathcal{X})}^{2} \int_{\mathcal{X} \times \mathcal{X}} \mathcal{K}^{2}(x, y) d\mathbb{P}(x) d\mathbb{P}(y),$$

which implies the operator $T_{\mathcal{K}}$ is a bounded operator on $L^2(\mathcal{X})$.

Mercer's Theorem

Theorem 12.20

Suppose that \mathcal{X} is compact, the kernel function \mathcal{K} is continuous and positive semidefinite, and satisfies the Hilbert-Schmidt condition*. Then there exists a sequence of eigenfunctions $(\phi_j)_{j=1}^{\infty}$ that form an orthonormal basis of $L^2(\mathcal{X}; \mathbb{P})$, and non-negative eigenvalues $(\mu_j)_{j=1}^{\infty}$ such that

$$T_{\mathcal{K}}(\phi_j) = \mu_j \phi_j.$$

Moreover, the kernel function has the expansion

$$\mathcal{K}(x,z) = \sum_{j=1}^{\infty} \mu_j \phi_j(x) \phi_j(z),$$

where the convergence of the infinite series holds absolutely and uniformly.

The original Mercer's theorem is related to the spectral of compact operators in advanced Functional Analysis.

Examples

We define a mapping $\Phi: \mathcal{X} \to \ell^2(\mathbb{N})$ via

$$x \mapsto \Phi(x) := (\sqrt{\mu_1}\phi_1(x), \sqrt{\mu_2}\phi_2(x), \cdots).$$

By construction, we have $\|\Phi(x)\|_{\ell^2(\mathbb{N})}^2 = \sum_{j=1}^\infty \mu_j \phi_j^2(x) = \mathcal{K}(x,x) < \infty$, which indeeed $\Phi \in \ell^2(\mathbb{N})$. Moreover,

$$\langle \Phi(x), \Phi(z) \rangle = \sum_{j=1}^{\infty} \mu_j \phi_j(x) \phi_j(z) = \mathcal{K}(x, z) < \infty,$$

thus providing a PSD kernel.

12.22 $\mathcal{K}(x,z) = (1+xz)^2$ over $[-1,1]^2$, which is equipped with Lebesgue measure. Given a function $f: [-1,1] \to \mathbb{R}$, we have

$$\int_{-1}^{1} \mathcal{K}(x,z) f(z) dz = \left(\int_{-1}^{1} f(z) dz \right) + \left(2 \int_{-1}^{1} z f(z) dz \right) x + \left(\int_{-1}^{1} z^{2} f(z) dz \right) x^{2}.$$

So that we let the eigenfunctions be $f(x) = a_0 + a_1x + a_2x^2$.

Examples

We only need to solve the linear system

$$\begin{bmatrix} 2 & 0 & 2/3 \\ 0 & 4/3 & 0 \\ 2/3 & 0 & 2/5 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \mu \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}.$$

12.23 (Eigenfunctions for a first-order Sobolev space) The PSD takes the form $\mathcal{K}(x,z) = \min\{x,z\}$. We calculate $T_{\mathcal{K}}(\phi) = \mu \phi$, which means

$$\int_0^x z\phi(z)dz + \int_x^1 x\phi(z)dz = \mu\phi(x) \quad \forall x \in [0,1].$$

Then we take derivatives twice obtaining $\mu \phi''(x) + \phi(x) = 0$. By the definition of $\mathbb{H}^1[0,1]$, we know $\phi(0)=0$, so that $\phi(x)=\sin(x/\sqrt{\mu})$. Taking x=1 in the equation above to get $\int_0^1 z\phi(z)dz = \mu\phi(1)$, we deduce that

$$\phi_j(t) = \sin \frac{(2j-1)\pi t}{2}$$
 $\mu_j = \left(\frac{2}{(2j-1)\pi}\right)^2$ $j = 1, 2, \cdots$.

Corollary

Corollary 12.26

Consider a kernel satisfying the conditions of Mercer's Theorem with associated eigenfunctions $(\phi_j)_{j=1}^{\infty}$ and non-negative eigenvalues $(\mu_j)_{j=1}^{\infty}$. It induces the reproducing kernel Hilbert space

$$\mathcal{H} = \{ f = \sum_{j=1}^{\infty} \beta_j \phi_j | \text{for some } (\beta_j)_{j=1}^{\infty} \in \ell^2(\mathbb{N}) \text{ with } \sum_{j=1}^{\infty} \frac{\beta_j^2}{\mu_j} < \infty \},$$

along with inner product

$$\langle f, g \rangle_{\mathcal{H}} := \sum_{j=1}^{\infty} \frac{\langle f, \phi_j \rangle \langle g, \phi_j \rangle}{\mu_j},$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product in $L^2(\mathcal{X}; \mathbb{P})$.

Proof

RMK: This Cor shows that the RKHS associated with a Mercer kernel is isomorphic to an infinite-dimensional ellipsoid contained with $\ell^2(\mathbb{N})$ -namely

$$\mathcal{E} = \left\{ (\beta_j)_{j=1}^{\infty} \in \ell^2(\mathbb{N}) | \sum_{j=1}^{\infty} \frac{\beta_j^2}{\mu_j} \leq 1 \right\}.$$

Proof:

We only need to verify that $\mathcal H$ has the reproducing property with respect to the given kernel. By Mercer's theorem, we have

$$\mathcal{K}(\cdot,x) = \sum_{j=1}^{\infty} \mu_j \phi_j(\cdot) \phi_j(x)$$
, so that $\beta_j = \mu_j \phi_j(x)$. Moreover,

$$\sum_{j=1}^{\infty} \frac{\beta_j^2}{\mu_j} = \sum_{j=1}^{\infty} \mu_j \phi_j^2(x) = \mathcal{K}(x, x) < \infty,$$

so that $\mathcal{K}(\cdot, x) \in \mathcal{H}$.

Proof

Let us now verify the reproducing property. By the orthonormality of ϕ_j , we have $\langle \mathcal{K}(\cdot, x), \phi_j \rangle = \mu_j \phi_j(x)$. Thus, for any $f \in \mathcal{H}$, we have

$$\langle f, \mathcal{K}(\cdot, x) \rangle = \sum_{j=1}^{\infty} \frac{\langle f, \phi_j \rangle \langle \mathcal{K}(\cdot, x), \phi_j \rangle}{\mu_j} = \sum_{j=1}^{\infty} \langle f, \phi_j \rangle \phi_j(x) = f(x),$$

where the last equality is by the orthonormality of $(\phi_j)_{j=1}^{\infty}$.

Overview

- Priliminary
- 2 Reproducing kernel Hilbert Space
- Mercer's theorem and consequences
- Operations on RKHS
 - Sums of RKHS
 - Tensor products
- Interpolation and Fitting
- 6 Distances between probability measures

Outline

- Priliminary
- 2 Reproducing kernel Hilbert Space
- Mercer's theorem and consequences
- Operations on RKHS
 - Sums of RKHS
 - Tensor products
- Interpolation and Fitting
- 6 Distances between probability measures

Sums of reproducing kernels

Given two Hilbert spaces \mathbb{H}_1 and \mathbb{H}_2 of functions defined on domains \mathcal{X}_1 and \mathcal{X}_2 , respectively, consider the space

$$\mathbb{H}_1 + \mathbb{H}_2 := \{ f_1 + f_2 \mid f_j \in \mathbb{H}_j, j = 1, 2 \},$$

corresponding to the set of all functions obtained as sums of pairs of functions from the two spaces.

Proposition 12.27

Suppose that \mathbb{H}_1 and \mathbb{H}_2 are both *RKHS*s with kernels \mathcal{K}_1 and \mathcal{K}_2 , respectively. Then the space $\mathbb{H} = \mathbb{H}_1 + \mathbb{H}_2$ with norm

$$\|f\|_{\mathbb{H}}^2 := \min_{\substack{f = f_1 + f_2 \ f_1 \in \mathbb{H}_1, f_2 \in \mathbb{H}_2}} \left\{ \|f_1\|_{\mathbb{H}_1}^2 + \|f_2\|_{\mathbb{H}_2}^2
ight\}$$

is an RKHS with kernel $\mathcal{K} = \mathcal{K}_1 + \mathcal{K}_2$.

Proof of Proposition 12.27

• Consider the direct sum $\mathbb{F} := \mathbb{H}_1 \oplus \mathbb{H}_2$ of the two Hilbert spaces; it is the Hilbert space $\{(f_1, f_2) \mid f_j \in \mathbb{H}_j, j = 1, 2\}$ of all ordered pairs, and

$$\|(f_1, f_2)\|_{\mathbb{F}}^2 := \|f_1\|_{\mathbb{H}_1}^2 + \|f_2\|_{\mathbb{H}_2}^2.$$

 $\langle (f_1, f_2), (g_1, g_2) \rangle_{\mathbb{F}} = \langle f_1, g_1 \rangle_{\mathbb{H}_1} + \langle f_2, g_2 \rangle_{\mathbb{H}_2}.$

The linear operator $L: \mathbb{F} \to \mathbb{H}$ defined by $(f_1, f_2) \mapsto f_1 + f_2$.

• The nullspace $\mathbb{N}(L)$ of this operator is a subspace of \mathbb{F} , and we claim that it is closed. Consider some sequence $((f_n,-f_n))_{n=1}^\infty$ contained within the nullspace $\mathbb{N}(L)$ that converges to a point $(f,g) \in \mathbb{F}$. By the definition of the norm, this convergence implies that $f_n \to f$ in \mathbb{H}_1 (and hence pointwise) and $-f_n \to g$ in \mathbb{H}_2 (and hence pointwise). Overall, we conclude that f = -g, meaning $(f,g) \in \mathbb{N}(L)$.

Proof of Proposition 12.27

• Verifying the space $\mathbb H$ with the inner product is a Hilbert space. Let $\mathbb N^\perp$ be the orthogonal complement of $\mathbb N(L)$ in $\mathbb F$, and let $L_\perp: \mathbb N^\perp(L) \to \mathbb H$ be the restriction of L to $\mathbb N^\perp$. Since this map is a bijection between $\mathbb N^\perp$ and $\mathbb H$, we may define an inner product on $\mathbb H$ via

$$\langle f,g\rangle_{\mathbb{H}}:=\left\langle L_{\perp}^{-1}(f),L_{\perp}^{-1}(g)\right\rangle_{\mathbb{F}}.$$

• Check that $\mathbb H$ is an RKHS with kernel $\mathcal K=\mathcal K_1+\mathcal K_2$, and that the norm $\|\cdot\|^2_{\mathbb H}$ takes the given form (12.19).

Proof of Proposition 12.27

• Since the functions $\mathcal{K}_1(\cdot,x)$ and $\mathcal{K}_2(\cdot,x)$ belong to \mathbb{H}_1 and \mathbb{H}_2 , respectively, the function $\mathcal{K}(\cdot,x)=\mathcal{K}_1(\cdot,x)+\mathcal{K}_2(\cdot,x)$ belongs to \mathbb{H} . For a fixed $f\in\mathbb{F}$, let $(f_1,f_2)=L_{\perp}^{-1}(f)\in\mathbb{F}$, and for a fixed $x\in\mathcal{X}$, let $(g_1,g_2)=L_{\perp}^{-1}(\mathcal{K}(\cdot,x))\in\mathbb{F}$. Since $(g_1-\mathcal{K}_1(\cdot,x),g_2-\mathcal{K}_2(\cdot,x))$ must belong to $\mathbb{N}(L)$, it must be orthogonal (in \mathbb{F}) to the element $(f_1,f_2)\in\mathbb{N}^{\perp}$. Consequently, we have $\langle (g_1-\mathcal{K}_1(\cdot,x),g_2-\mathcal{K}_2(\cdot,x)),(f_1,f_2)\rangle_{\mathbb{F}}=0$, and hence $\langle f_1,\mathcal{K}_1(\cdot,x)\rangle_{\mathbb{H}_1}+\langle f_2,\mathcal{K}_2(\cdot,x)\rangle_{\mathbb{H}_2}=\langle f_1,g_1\rangle_{\mathbb{H}_1}+\langle f_2,g_2\rangle_{\mathbb{H}_2}$

Since $\langle f_1, \mathcal{K}_1(\cdot, x) \rangle_{\mathbb{H}_1} + \langle f_2, \mathcal{K}_2(\cdot, x) \rangle_{\mathbb{H}_2} = f_1(x) + f_2(x) = f(x)$, we have established that \mathcal{K} has the reproducing property.

 $=\langle f,\mathcal{K}(\cdot,x)\rangle_{\mathbb{H}}.$

Proof of Proposition 12.27

• Let us verify that the norm $\|f\|_{\mathbb{H}} := \|L_{\perp}^{-1}(f)\|_{\mathbb{F}}$ that we have defined is equivalent to the definition (12.19). For a given $f \in \mathbb{H}$, consider some pair $(f_1, f_2) \in \mathbb{F}$ such that $f = f_1 + f_2$, and define $(v_1, v_2) = (f_1, f_2) - L_{\perp}^{-1}(f)$. We have

$$||f_{1}||_{\mathbb{H}_{1}}^{2} + ||f_{2}||_{\mathbb{H}_{2}}^{2} \stackrel{\text{(i)}}{=} ||(f_{1}, f_{2})||_{\mathbb{F}}^{2} \stackrel{\text{(ii)}}{=} ||(v_{1}, v_{2})||_{\mathbb{F}}^{2} + ||L_{\perp}^{-1}(f)||_{\mathbb{F}}^{2}$$

$$\stackrel{\text{(iii)}}{=} ||(v_{1}, v_{2})||_{\mathbb{F}}^{2} + ||f||_{\mathbb{H}}^{2},$$

where step (i) uses the definition (12.22) of the norm in \mathbb{F} , step (ii) follows from the Pythagorean property, as applied to the pair $(v_1,v_2)\in\mathbb{N}(L)$ and $L_{\perp}^{-1}(f)\in\mathbb{N}^{\perp}$, and step (iii) uses our definition of the norm $\|f\|_{\mathbb{H}}$. Consequently, we have shown that for any pair f_1,f_2 such that $f=f_1+f_2$, we have

$$||f||_{\mathbb{H}}^2 \le ||f_1||_{\mathbb{H}_1}^2 + ||f_2||_{\mathbb{H}_2}^2$$

with equality holding if and only if $(v_1, v_2) = (0, 0)$, or equivalently $(f_1, f_2) = L_{\perp}^{-1}(f)$. This establishes the equivalence of the definitions.

First-order Sobolev space and constant functions

Consider the kernel functions on $[0,1] \times [0,1]$ given by $\mathcal{K}_1(x,z) = 1$ and $\mathcal{K}_2(x,z) = \min\{x,z\}$. They generate the reproducing kernel Hilbert spaces

$$\mathbb{H}_1 = \text{span}\{1\} \quad \text{ and } \quad \mathbb{H}_2 = \mathbb{H}^1[0,1],$$

$$\mathbb{H}^1[0,1] = \{f \colon [0,1] \to \mathbb{R} \mid \textit{f}(0) = 0, \text{ and } \textit{f} \text{ is abs. cts. with } \textit{f}' \in \textit{L}^2[0,1]\}.$$

where span $\{1\}$ is the set of all constant functions, and $\mathbb{H}^1[0,1]$ is the first-order Sobolev space.

- Note that $\mathbb{H}_1 \cap \mathbb{H}_2 = \{0\}$, since f(0) = 0 for any element of \mathbb{H}_2 .
- The RKHS with kernel $\mathcal{K}(x,z)=1+\min\{x,z\}$ consists of all functions

$$ar{\mathbb{H}}^1[0,1]:=\{f\colon [0,1] o\mathbb{R}\mid f ext{ is absolutely continuous with } f\in L^2[0,1]\}$$
 .

equipped with the squared norm $\|f\|_{\mathbb{H}^1[0,1]}^2 = f^2(0) + \int_0^1 (f'(z))^2 dz$.

Higher-order Sobolev spaces and polynomial space

For an integer $\alpha \geq 1$, consider the kernel functions on $[0,1] \times [0,1]$ given by

$$\mathcal{K}_1(x,z) = \sum_{\ell=0}^{\alpha-1} \frac{x^{\ell}}{\ell!} \frac{z^{\ell}}{\ell!} \quad \text{ and } \quad \mathcal{K}_2(x,z) = \int_0^1 \frac{(x-y)_+^{\alpha-1}}{(\alpha-1)!} \frac{(z-y)_+^{\alpha-1}}{(\alpha-1)!} dy.$$

The first kernel generates an RKHS \mathbb{H}_1 of polynomials of degree $\alpha-1$, the second kernel generates the α -order Sobolev space $\mathbb{H}_2=\mathbb{H}^{\alpha}[0,1]$.

Higher-order Sobolev spaces and polynomial space

- Any function $f \in \mathbb{H}^{\alpha}[0,1]$ satisfies $f^{(\ell)}(0) = 0$ for $\ell = 0, 1, \dots, \alpha 1$, but it is not hold in \mathbb{H}_1 . Consequently, $\mathbb{H}_1 \cap \mathbb{H}_2 = \{0\}$ holds.
- The sum of kernel

$$\mathcal{K}(x,z) = \sum_{\ell=0}^{\alpha-1} \frac{x^{\ell}}{\ell!} \frac{z^{\ell}}{\ell!} + \int_0^1 \frac{(x-y)_+^{\alpha-1}}{(\alpha-1)!} \frac{(z-y)_+^{\alpha-1}}{(\alpha-1)!} dy.$$

- The Hilbert space $\mathbb{H}^{\alpha}[0,1]$ of all functions that are α -times differentiable almost everywhere, with $f^{(\alpha)}$ Lebesgue-integrable.
- As we verify in Exercise 12.15, the RKHS norm takes the form

$$||f||_{\mathbb{H}}^2 = \sum_{\ell=0}^{\alpha-1} \left(f^{\ell}(0)\right)^2 + \int_0^1 \left(f^{\alpha}(z)\right)^2 dz.$$

everywhere, with $f^{(\alpha)}$ Lebesgue-integrable.

Exercise 12.15

For \mathbb{H}_1 , we show that the inner product is given by

$$\langle f,g
angle_{\mathbb{H}_1} = \sum_{\ell=0}^{\alpha-1} f^{(\ell)}(0)g^{(\ell)}(0)$$

then the norm of \mathbb{H}_1 is given by

$$\|f\|_{\mathbb{H}_1} = \langle f, f \rangle_{\mathbb{H}_1} = \sum_{\ell=0}^{\alpha-1} \left(f^{(\ell)}(0) \right)^2.$$

Consider a polynomial of degree $\alpha - 1$: $f(x) = \sum_{\ell=0}^{\alpha-1} a_{i}x^{\ell}$. Then,

$$f(x) = \sum_{\ell=0}^{\alpha-1} \frac{x^{\ell}}{\ell!} f^{(\ell)}(0) \stackrel{(*)}{=} \langle \mathcal{K}_1(x,\cdot), f \rangle_{\mathbb{H}_1}$$

where equality (*) follows from the observation that

$$\left. \left(\frac{\mathrm{d}}{\mathrm{d}z} \right)^{\ell} \mathcal{K}_1(x,z) \right|_{z=0} = \frac{x^{\ell}}{\ell!}.$$

Additive models

• \mathbb{H}_j be a reproducing kernel Hilbert space, $f: \mathbb{R}^d \to \mathbb{R}$, where $f_j \in \mathbb{H}_j$, to overcome the curse of dimensionality, consider the additive decomposition

$$f(x_1,\ldots,x_d)=\sum_{j=1}^d f_j(x_j),$$

where $f_i : \mathbb{R} \to \mathbb{R}$ is a univariate function for the j th coordinate.

- Since $\mathbb{H}_j \cap \mathbb{H}_k = \{0\}$ for all $j \neq k$, the associated Hilbert norm takes the form $\|f\|_{\mathbb{H}}^2 = \sum_{j=1}^d \|f_j\|_{\mathbb{H}_j}^2$.
- When the expansion functions are chosen to be mutually orthogonal, functional ANOVA decompositions as following

$$f(x_1,...,x_d) = \sum_{j=1}^d f_j(x_j) + \sum_{j \neq k} f_{jk}(x_j,x_k) + \cdots$$

Outline

- Priliminary
- 2 Reproducing kernel Hilbert Space
- Mercer's theorem and consequences
- Operations on RKHS
 - Sums of RKHS
 - Tensor products
- Interpolation and Fitting
- 6 Distances between probability measures

Tensor products

Consider two separable Hilbert spaces \mathbb{H}_1 and \mathbb{H}_2 of functions, say with domains \mathcal{X}_1 and \mathcal{X}_2 , respectively. They can be used to define a new Hilbert space, denoted by $\mathbb{H}_1 \otimes \mathbb{H}_2$, known as the tensor product of \mathbb{H}_1 and \mathbb{H}_2 . Consider the set of functions $h: \mathcal{X}_1 \times \mathcal{X}_2 \to \mathbb{R}$ that have the form

$$\{h=\sum_{j=1}^n f_jg_j\mid ext{for some } n\in\mathbb{N} ext{ and such that } f_j\in\mathbb{H}_1, g_j\in\mathbb{H}_2 ext{ for all } j\in[n]\}.$$

If $h=\sum_{j=1}^n f_jg_j$ and $\widetilde{h}=\sum_{k=1}^m \widetilde{f_k}\widetilde{g}_k$ are two members of this set, we define their inner product

$$\langle h, \widetilde{h} \rangle_{\mathbb{H}} := \sum_{i=1}^{n} \sum_{k=1}^{m} \left\langle f_{j}, \widetilde{f}_{k} \right\rangle_{\mathbb{H}_{1}} \left\langle g_{j}, \widetilde{g}_{k} \right\rangle_{\mathbb{H}_{2}}.$$

Proposition 12.31

Suppose that \mathbb{H}_1 and \mathbb{H}_2 are reproducing kernel Hilbert spaces of real-valued functions with domains \mathcal{X}_1 and \mathcal{X}_2 , and equipped with kernels \mathcal{K}_1 and \mathcal{K}_2 , respectively. Then the tensor product space $\mathbb{H}=\mathbb{H}_1\otimes\mathbb{H}_2$ is an RKHS of real-valued functions with domain $\mathcal{X}_1\times\mathcal{X}_2$, and with kernel function

$$\mathcal{K}\left(\left(x_{1},x_{2}\right),\left(x_{1}^{\prime},x_{2}^{\prime}\right)\right)=\mathcal{K}_{1}\left(x_{1},x_{1}^{\prime}\right)\mathcal{K}_{2}\left(x_{2},x_{2}^{\prime}\right).$$

Proof of Proposition 12.31

The Schur product theorem states that the Hadamard product of two positive definite matrices is also a positive definite matrix, then $\mathcal K$ is a positive semidefinite function.

By definition of the tensor product space $\mathbb{H}=\mathbb{H}_1\otimes\mathbb{H}_2$, for each pair $(x_1,x_2)\in\mathcal{X}_1\times\mathcal{X}_2$, the function $\mathcal{K}\left((\cdot,\cdot),(x_1,x_2)\right)=\mathcal{K}_1\left(\cdot,x_1\right)\mathcal{K}_2\left(\cdot,x_2\right)$ is an element of the tensor product space \mathbb{H} . Let $f=\sum_{j,k=1}^n\alpha_{j,k}\phi_j\psi_k$ be an arbitrary element of \mathbb{H} . We have

$$\langle f, \mathcal{K}((\cdot, \cdot), (x_1, x_2)) \rangle_{\mathbb{H}} = \sum_{j,k=1}^{n} \alpha_{j,k} \langle \phi_j, \mathcal{K}_1(\cdot, x_1) \rangle_{\mathbb{H}_1} \langle \psi_k, \mathcal{K}_2(\cdot, x_2) \rangle_{\mathbb{H}_2}$$
$$= \sum_{j,k=1}^{n} \alpha_{j,k} \phi_j(x_1) \psi_k(x_2) = f(x_1, x_2),$$

thereby verifying the reproducing property.

Overview

- Priliminary
- 2 Reproducing kernel Hilbert Space
- Mercer's theorem and consequences
- Operations on RKHS
- Interpolation and Fitting
 - Function interpolation
 - Fitting via kernel ridge regression
- 6 Distances between probability measures

Outline

- Priliminary
- 2 Reproducing kernel Hilbert Space
- Mercer's theorem and consequences
- Operations on RKHS
- Interpolation and Fitting
 - Function interpolation
 - Fitting via kernel ridge regression
- 6 Distances between probability measures

Function interpolation by kernel

Suppose that we observe n samples of an unknown function $f^*: \mathcal{X} \to \mathbb{R}$, say of the form $y_i = f^*(x_i)$ for $i = 1, 2, \ldots, n$, where the design sequence $\{x_i\}_{i=1}^n$ is known to us.

By minimizing RKHS norm, it can be formulated as an optimization problem Hilbert space,

choose
$$\widehat{f} \in \arg\min_{f \in \mathbb{H}} \|f\|_{\mathbb{H}}$$
 such that $f(x_i) = y_i$ for $i = 1, 2, \dots, n$. (1)

Function interpolation

Proposition 12.32

Let $\mathbf{K} \in \mathbb{R}^{n \times n}$ be the kernel matrix defined by the design points $\{x_i\}_{i=1}^n$. The convex program (1) is feasible if and only if $y \in \text{range } (\mathbf{K})$, in which case any optimal solution can be written as

$$\widehat{f}(\cdot) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \widehat{\alpha}_{i} \mathcal{K}(\cdot, x_{i}), \quad \text{where } \mathbf{K} \widehat{\alpha} = y/\sqrt{n}.$$

• The kernel matrix $\mathbf{K} \in \mathbb{R}^{n \times n}$ with entries $K_{ii} = \mathcal{K}(x_i, x_i) / n$.

Proof of Proposition 12.32

For a given vector $\alpha \in \mathbb{R}^n$, define the function $f_{\alpha}(\cdot) := \frac{1}{\sqrt{n}} \sum_{i=1}^n \alpha_i \mathcal{K}(\cdot, x_i)$, and consider the set $\mathbb{L} := \{f_{\alpha} \mid \alpha \in \mathbb{R}^n\}$. Note that for any $f_{\alpha} \in \mathbb{L}$, we have

$$f_{\alpha}(x_j) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \alpha_i \mathcal{K}(x_j, x_i) = \sqrt{n}(\mathbf{K}\alpha)_j,$$

where $(\mathbf{K}\alpha)_j$ is the j th component of the vector $\mathbf{K}\alpha \in \mathbb{R}^n$.

- The function $f_{\alpha} \in \mathbb{L}$ satisfies the interpolation condition if and only if $\mathbf{K}\alpha = y/\sqrt{n}$.
- " \Leftarrow " If $y \in \text{range}(\mathbf{K})$, $f_{\alpha} \in \mathbb{L}$ satisfies the interpolation condition.
- " \Rightarrow " Note that $\mathbb L$ is a finite-dimensional (hence closed) linear subspace of $\mathbb H$. Consequently, any function $f\in\mathbb H$ can be decomposed uniquely as $f=f_{\alpha}+f_{\perp}$, where $f_{\alpha}\in\mathbb L$ and f_{\perp} is orthogonal to $\mathbb L$. Using this decomposition and the reproducing property, we have

$$y_j = f(x_j) = \langle f, \mathcal{K}\left(\cdot, x_j\right) \rangle_{\mathbb{H}} = \langle f_{\alpha} + f_{\perp}, \mathcal{K}\left(\cdot, x_j\right) \rangle_{\mathbb{H}} = f_{\alpha}\left(x_j\right),$$
 where $\mathcal{K}\left(\cdot, x_j\right) \in \mathbb{L}$, and $\|f_{\alpha} + f_{\perp}\|_{\mathbb{H}}^2 = \|f_{\alpha}\|_{\mathbb{H}}^2 + \|f_{\perp}\|_{\mathbb{H}}^2$, deduce $f_{\perp} = 0$.

Advantages

The third optimality result is in the context of quasi-interpolation, i.e.,

Theorem (Optimality III)

Suppose $K \in C(\Omega \times \Omega)$ is a strictly positive definite kernel and suppose that $\mathbf{x} \in \Omega$ is fixed. Let $\hat{u}_j(\mathbf{x}), j = 1, \dots, N$, be the values at \mathbf{x} of the cardinal basis functions for interpolation with K. Then

$$\left| f(\mathbf{x}) - \sum_{j=1}^{N} f(\mathbf{x}_j) \ u_j^{\star}(\mathbf{x}) \right| \leq \left| f(\mathbf{x}) - \sum_{j=1}^{N} f(\mathbf{x}_j) \ u_j \right|$$

for all choices of $u_1, \ldots, u_N \in \mathbb{R}$.

 The cardinal form of the kernel interpolant is more accurate (as measured by the pointwise error) than any other linear combination of the data.

Experiments

Figure 12.1 Exact interpolation of n = 11 equally sampled function values using RKHS methods. (a) Polynomial kernel $\mathcal{K}(x, z) = (1 + xz)^{12}$. (b) First-order Sobolev kernel $\mathcal{K}(x, z) = 1 + \min\{x, z\}$.

Outline

- Priliminary
- 2 Reproducing kernel Hilbert Space
- Mercer's theorem and consequences
- Operations on RKHS
- Interpolation and Fitting
 - Function interpolation
 - Fitting via kernel ridge regression
- 6 Distances between probability measures

Fitting via kernel ridge regression

Consider a noisy observation model

$$y_i = f^*(x_i) + w_i, \quad \text{for } i = 1, 2, \dots, n,$$

where the coefficients $\{w_i\}_{i=1}^n$ model noisiness or disturbance in the measurement model.

• Transforming the model to the optimization problem

$$\min_{f\in\mathbb{H}}\|f\|_{\mathbb{H}}$$
 such that $\frac{1}{2n}\sum_{i=1}^n (y_i-f(x_i))^2\leq \delta^2$,

where $\delta > 0$ is some type of tolerance parameter.

• Alternatively, we might minimize the mean-squared error subject to a bound on the Hilbert radius of the solution, say

$$\min_{f\in\mathbb{H}}\frac{1}{2n}\sum_{i=1}^n (y_i-f(x_i))^2 \quad \text{ such that } \|f\|_{\mathbb{H}}\leq R.$$

for an appropriately chosen radius R > 0.

Fitting via kernel ridge regression (KRR)

 Both of these problems are convex, and so by Lagrangian duality, they can be reformulated in the penalized form

$$\widehat{f} = \arg\min_{f \in \mathbb{H}} \left\{ \frac{1}{2n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda_n ||f||_{\mathbb{H}}^2 \right\}.$$
 (2)

Here, for a fixed set of observations $\{(x_i, y_i)\}_{i=1}^n$, the regularization parameter $\lambda_n \geq 0$ is a function of the tolerance δ or radius R.

Fitting via kernel ridge regression (KRR)

Consider the kernel matrix $\mathbf{K} \in \mathbb{R}^{n \times n}$ with entries $K_{ij} = \mathcal{K}\left(x_i, x_j\right)/n$.

Proposition 12.33

For all $\lambda_n > 0$, the kernel ridge regression estimate (2) can be written as

$$\widehat{f}(\cdot) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \widehat{\alpha}_{i} \mathcal{K}(\cdot, x_{i}), \qquad (3)$$

where the optimal weight vector $\widehat{\alpha} \in \mathbb{R}^n$ is given by

$$\widehat{\alpha} = (\mathbf{K} + \lambda_n \mathbf{I}_n)^{-1} \frac{y}{\sqrt{n}}.$$
 (4)

Proof of Proposition 12.33

- Similar as the proof of Proposition 12.32, any optimal solution must be expressed as the sum of kernel (3).
- It remains to prove the specific form (4) of the optimal $\widehat{\alpha}$. Given a function f of the form (3), for each j = 1, 2, ..., n, we have

$$f(x_j) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \alpha_i \mathcal{K}(x_j, x_i) = \sqrt{n} e_j^{\mathrm{T}} \mathbf{K} \alpha,$$

where $e_j \in \mathbb{R}^n$ is the canonical basis vector with 1 in position j, and we have recalled that $K_{ji} = \mathcal{K}\left(x_j, x_i\right)/n$. Then,

$$\|f\|_{\mathbb{H}}^{2} = \frac{1}{n} \left\langle \sum_{i=1}^{n} \alpha_{i} \mathcal{K}\left(\cdot, x_{i}\right), \sum_{j=1}^{n} \alpha_{j} \mathcal{K}\left(\cdot, x_{j}\right) \right\rangle_{\mathbb{H}} = \alpha^{T} \mathbf{K} \alpha.$$

Proof of Proposition 12.33

• Substituting these relations into the cost function, we have

$$\frac{1}{n}\|y - \sqrt{n}\mathbf{K}\alpha\|_2^2 + \lambda\alpha^{\mathrm{T}}\mathbf{K}\alpha = \frac{1}{n}\|y\|_2^2 + \alpha^{\mathrm{T}}\left(\mathbf{K}^2 + \lambda\mathbf{K}\right)\alpha - \frac{2}{\sqrt{n}}y^{\mathrm{T}}\mathbf{K}\alpha.$$

In order to find the minimum of this quadratic function, we compute the gradient of α and set it equal to zero, thereby

$$\mathbf{K}(\mathbf{K} + \lambda \mathbf{I}_n) \alpha = \mathbf{K} \frac{\mathbf{y}}{\sqrt{n}}.$$

Thus, we see that the vector $\widehat{\alpha}$ previously defined in equation (4) is optimal.

Experiments

Figure 12.2 Illustration of kernel ridge regression estimates of function $f^*(x) = \frac{3x}{2} - \frac{9}{9}x^2$ based on n = 11 samples, located at design points $x_i = -0.5 + 0.10(i - 1)$ over the interval [-0.5, 0.5]. (a) Kernel ridge regression estimate using the second-order polynomial kernel $\mathcal{K}(x, z) = (1 + xz)^2$ and regularization parameter $\lambda_n = 0.10$. (b) Kernel ridge regression estimate using the first-order Sobolev kernel $\mathcal{K}(x, z) = 1 + \min\{x, z\}$ and regularization parameter $\lambda_n = 0.10$.

Overview

- Priliminary
- 2 Reproducing kernel Hilbert Space
- Mercer's theorem and consequences
- Operations on RKHS
- Interpolation and Fitting
- 6 Distances between probability measures

Measure mean discrepancies

Let \mathscr{F} be a class of functions $f: \mathcal{X} \to \mathbb{R}$ that are integrable with respect to \mathbb{P} and \mathbb{Q} . We can then define the quantity

$$ho_{\mathscr{F}}(\mathbb{P},\mathbb{Q}):=\sup_{f\in\mathscr{F}}\left|\int f(d\mathbb{P}-d\mathbb{Q})
ight|=\sup_{f\in\mathscr{F}}\left|\mathbb{E}_{\mathbb{P}}[f(X)]-\mathbb{E}_{\mathbb{Q}}[f(Z)]\right|.$$

- For any choice of function class \mathscr{F} , this always defines a pseudometric, meaning that $\rho_{\mathscr{F}}$ satisfies all the metric properties, except that there may exist pairs $\mathbb{P} \neq \mathbb{Q}$ such that $\rho_{\mathscr{F}}(\mathbb{P},\mathbb{Q}) = 0$.
- \bullet When ${\mathscr F}$ is sufficiently rich, then $\rho_{\mathscr F}$ becomes a metric, known as an integral probability metric.

Kolmogorov metric (non-RKHS function classes)

Suppose that $\mathbb P$ and $\mathbb Q$ are measures on the real line. For each $t\in\mathbb R$, let $\mathbb I_{(-\infty,t]}$ denote the $\{0,1\}$ -valued indicator function for the event $\{x\leq t\}$, and consider the function class $\mathscr F=\left\{\mathbb I_{(-\infty,t]}\mid t\in\mathbb R\right\}$. We then have

$$\rho_{\mathscr{F}}(\mathbb{P},\mathbb{Q}) = \sup_{t \in \mathbb{R}} |\mathbb{P}(X \le t) - \mathbb{Q}(X \le t)| = ||F_{\mathbb{P}} - F_{\mathbb{Q}}||_{\infty},$$

where $F_{\mathbb{P}}$ and $F_{\mathbb{Q}}$ are the cumulative distribution functions of \mathbb{P} and \mathbb{Q} , respectively. Thus, this choice leads to the Kolmogorov distance between \mathbb{P} and \mathbb{Q} .

Total variation distance (non-RKHS function classes)

Consider the class $\mathscr{F}=\{f\colon \mathcal{X}\to\mathbb{R}\mid \|f\|_\infty\leq 1\}$ of real-valued functions bounded by one in the supremum norm. With this choice, we have

$$ho_{\mathscr{F}}(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\infty} \leq 1} \left| \int f(d\mathbb{P} - d\mathbb{Q}) \right|.$$

In Exercise 3.13, we established that

$$\mathsf{TV}(\mathbb{P},\mathbb{Q}) = \sup_{f:\mathcal{X} \to [0,1]} \int f(p-q) \mathrm{d}\mu.$$

Therefore,

$$2\operatorname{\mathsf{TV}}(\mathbb{P},\mathbb{Q}) = \sup_{f:\mathcal{X}\to[-1,1]} \int f(p-q) \mathrm{d}\mu = \sup_{\|f\|_\infty \le 1} \int f(p-q) \mathrm{d}\mu,$$

this metric corresponds to (two times) the total variation distance

$$\rho_{\mathscr{F}}(\mathbb{P},\mathbb{Q}) = 2 \sup_{A \subset \mathcal{X}} |\mathbb{P}(A) - \mathbb{Q}(A)|,$$

where the supremum ranges over all measurable subsets of \mathcal{X} .

Kernel means discrepancy (KMD)

Given an RKHS with kernel function \mathcal{K} , consider the pseudometric

$$\rho_{\mathbb{H}}(\mathbb{P},\mathbb{Q}) := \sup_{\|f\|_{\mathbb{H}} \leq 1} \left| \mathbb{E}_{\mathbb{P}}[f(X)] - \mathbb{E}_{\mathbb{Q}}[f(Z)] \right|.$$

Define a mean embedding $\mu_{\mathbb{P}}(t) = \langle \mu_{\mathbb{P}}, \mathcal{K}(t, \cdot) \rangle_{\mathbb{H}} = \mathbb{E}_{\mathsf{x}} \mathcal{K}(t, \mathsf{x}).$

$$\rho_{\mathbb{H}}^{2}(\mathbb{P}, \mathbb{Q}) = \left(\sup_{\|f\|_{\mathbb{H}} \leq 1} |\mathbb{E}_{\mathbb{P}}[f(X)] - \mathbb{E}_{\mathbb{Q}}[f(Z)]|\right)^{2} \\
= \left(\sup_{\|f\|_{\mathbb{H}} \leq 1} \langle \mu_{\mathbb{P}} - \mu_{\mathbb{Q}}, f \rangle_{\mathbb{H}}\right)^{2} = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathbb{H}}^{2} \tag{5}$$

Then this pseudometric as a kernel means discrepancy (KMD),

$$\rho_{\mathbb{H}}^{2}(\mathbb{P},\mathbb{Q}) = \mathbb{E}\left[\mathcal{K}\left(X,X'\right) + \mathcal{K}\left(Z,Z'\right) - 2\mathcal{K}(X,Z)\right],$$

where $X, X' \sim \mathbb{P}$ and $Z, Z' \sim \mathbb{Q}$ are all mutually independent random vectors.

KMD for linear kernel

Let us compute the KMD for the linear kernel $\mathcal{K}(x,z) = \langle x,z \rangle$ on \mathbb{R}^d . Letting \mathbb{P} and \mathbb{Q} be two distributions on \mathbb{R}^d with mean vectors $\mu_p = \mathbb{E}_{\mathbb{P}}[X]$ and $\mu_q = \mathbb{E}_{\mathbb{Q}}[Z]$, respectively, we have

$$\begin{split} \rho_{\mathbb{H}}^{2}(\mathbb{P}, \mathbb{Q}) &= \mathbb{E}\left[\left\langle X, X' \right\rangle + \left\langle Z, Z' \right\rangle - 2\langle X, Z \rangle\right] \\ &= \left\|\mu_{p}\right\|_{2}^{2} + \left\|\mu_{q}\right\|_{2}^{2} - 2\left\langle\mu_{p}, \mu_{q}\right\rangle \\ &= \left\|\mu_{p} - \mu_{q}\right\|_{2}^{2}. \end{split}$$

The KMD is a pseudometric for the linear kernel.

KMD for polynomial kernel

Let us consider the homogeneous polynomial kernel of degree two, namely $\mathcal{K}(x,z)=\langle x,z\rangle^2$. For this choice of kernel, we have

$$\mathbb{E}\left[\mathcal{K}\left(X,X'\right)\right] = \mathbb{E}\left[\left(\sum_{j=1}^{d} X_{j} X_{j}'\right)^{2}\right] = \sum_{i,j=1}^{d} \mathbb{E}\left[X_{i} X_{j}\right] \mathbb{E}\left[X_{i}' X_{j}'\right] = \|\Gamma_{\rho}\|_{F}^{2},$$

where $\Gamma_p \in \mathbb{R}^{d \times d}$ is the second-order moment matrix with entries $[\Gamma_p]_{ij} = \mathbb{E}\left[X_i X_j\right]$. Similarly, we have $\mathbb{E}\left[\mathcal{K}\left(Z,Z'\right)\right] = \|\Gamma_q\|_F^2$, where Γ_q is the second-order moment matrix for \mathbb{Q} . Finally, similar calculations yield that

$$\mathbb{E}[\mathcal{K}(X,Z)] = \sum_{i,j=1}^{d} \left[\Gamma_{p} \right]_{ij} \left[\Gamma_{q} \right]_{ij} = \langle \langle \Gamma_{p}, \Gamma_{q} \rangle \rangle$$

where $\langle\langle\cdot,\cdot\rangle\rangle$ denotes the trace inner product between symmetric matrices. Putting together the pieces, we conclude that

$$\rho_{\mathbb{H}}^{2}(\mathbb{P},\mathbb{Q}) = \|\Gamma_{p} - \Gamma_{q}\|_{F}^{2}.$$

KMD for a first-order Sobolev kernel

Let us now consider the KMD induced by the kernel function $\mathcal{K}(x,z) = \min\{x,z\}$, defined on the Cartesian product $[0,1] \times [0,1]$. the kernel function generates the first-order Sobolev space

$$\mathbb{H}^{1}[0,1] = \left\{ f \colon \mathbb{R}[0,1] \to \mathbb{R} \mid f(0) = 0 \text{ and } \int_{0}^{1} (f'(x))^{2} dx < \infty \right\},$$

with Hilbert norm $||f||_{\mathbb{H}^1[0,1]}^2 = \int_0^1 (f'(x))^2 dx$. With this choice, we have

$$\rho_{\mathbb{H}}^2(\mathbb{P},\mathbb{Q}) = \mathbb{E}\left[\min\left\{X,X'\right\} + \min\left\{Z,Z'\right\} - 2\min\{X,Z\}\right].$$

Thank you!