Banach 代数的应用

西安交通大学 陈昱坤 应数 91

2021年9月13日

目录

1	代数	C(X)	1
	1.1	Stone-Weierstrass 定理	1
	1.2	广义 Stone-Weierstrass 定理	3
2	代数	$C(\mathbb{T})$	5
	2.1	解析三角多项式	5
	2.2	Šilov 定理	7
	2.3	Wiener 定理	8

1 代数 C(X)

1.1 Stone-Weierstrass 定理

我们运用 Banach-Alaoglu 定理和 Krein-Milman 定理给出下面定理的绝妙证明.

定理 1 (Stone-Weierstrass). 设 X 是一个紧 Hausdorff 空间,C(X) 是其上的复值连续函数代数. 代数 A 是 C(X) 的含幺闭自伴子代数, 且 A 分离 X 中的点, 那么 A = C(X).

证明. 要证明 $\mathcal{A}=C(X)$, 只要证明 $\mathcal{A}^{\perp}:=\{\nu\in C(X)^{\star}\colon \nu(f)=0, \forall f\in\mathcal{A}\}=\{0\}$ 即可. 否则, 假设 $\mathcal{A}^{\perp}\neq\{0\}$. 那么这一空间在 w^{\star} -拓扑下是闭的, 并且

$$\mathcal{A}^{\perp} \cap \{ \nu \in C(X)^{\star} \colon \|\nu\| \le 1 \} \neq \varnothing.$$

根据 Banach-Alaoglu 定理, 在 w^* -拓扑下, $C(X)^*$ 中的闭单位球紧, 所以 $\mathcal{A}^{\perp} \cap \{\nu \in C(X)^*: \|\nu\| \leq 1\}$ 作为其闭子集也是紧的. 同时它也是凸的, 根据 Krein-Milman 定理, 它存在端点 μ . 这个端点满足 $\|\mu\| = 1$. 再由复测度版本的 Riesz 表现定理, 存在正则 Borel 复测度, 仍记为 μ , 使得 $|\mu|(X) = 1$, 并且

$$\mu(f) = \int_X f \mathrm{d}\mu.$$

我们通过证明 μ 实际上是 Dirac 测度来引出矛盾. 记测度 μ 的支撑集

$$K := \{x \in X : 对任意x的邻域U, |\mu|(U) > 0\}.$$

注意到, 对任意的 $y \notin K$, 存在开邻域 V, 使得 $V \cap K \neq \emptyset$, 故而 K 是闭的, 继而是紧的. 实际上, 由于 $y \notin K$, 所以存在它的邻域 V, 使得 $|\mu|(V) = 0$, 那么对任意的 $z \in V$, 都有 $z \notin K$.

1 代数 C(X)

进一步地, 由于 $|\mu|$ 是正则 Borel 测度, 所以对于开集 $X\setminus K$ 和任意的 $\varepsilon>0$, 存在紧集 $X_0\subset X\setminus K$, 使得

$$0 \le |\mu|(X \setminus K) < |\mu|(X_0) + \varepsilon,$$

对于任意的 $z \in X_0$, 存在一个邻域 U_z , 使得 $|\mu|(U_z)=0$. 而 $X_0 \subset \bigcup_{z \in X_0} U_z$, 根据紧性, 存在有限覆盖 $\{U_{z_1},U_{z_2},\cdots,U_{z_n}\}$. 所以

$$0 \le |\mu|(X_0) \le \sum_{i=1}^n |\mu|(U_{z_i}) = 0.$$

因而 $|\mu|(X_0) = 0$, 故而 $0 \le |\mu|(X \setminus K) < \varepsilon$, $\forall \varepsilon > 0$, 所以 $|\mu|(X \setminus K) = 0$. 当然, 这也说明了 K 是非空的. 任取 $x_0 \in K$, 如果存在 $y_0 \in K$ 且 $x_0 \ne y_0$. 由于代数 A 分离 X, 所以存在 $g \in A$, 使得 $g(x_0) \ne g(y_0)$. 取

$$f = \frac{|g - g(y_0)|^2}{\|g - g(y_0)\|^2 + 1},$$

那么 f 也分离 x_0, y_0 . 由于 $g - g(y_0) \in \mathcal{A}$, 所以其共轭也在 \mathcal{A} 中, 因此 $|g - g(y_0)|^2 \in \mathcal{A}$. 所以 $f \in \mathcal{A}$, 且 $0 \le f < 1$. 故而 f 和 1 - f 是 Borel 有界函数, 他们诱导出测度 $f\mu$, $(1 - f)\mu$, 不难证明 $f\mu$, $(1 - f)\mu \in \mathcal{A}^{\perp}$. 并且因为 $x_0 \in K$, $f(x_0) \ne f(y_0) = 0$, 所以存在 x_0 的邻域 U 和正数 ε , 使得 $|\mu|(U) > 0$, $f(x) > \varepsilon$, $\forall x \in U$, 因此

$$||f\mu|| = \int_X f \mathrm{d}|\mu| \ge \varepsilon \cdot |\mu|(U) > 0.$$

同理, $\|(1-f)\mu\| > 0$. 记 $\alpha = \|f\mu\|$, 则 $1-\alpha = \|(1-f)\mu\| > 0$, 所以 $0 < \alpha < 1$.

考虑如下分解:

$$\mu = f\mu + (1 - f\mu) = \alpha \frac{f\mu}{\|f\mu\|} + (1 - \alpha) \frac{(1 - f)\mu}{\|(1 - f)\mu\|}.$$

由于 μ 是端点, 所以有 $f\mu/\alpha = \mu$, 即 $(f - \alpha)\mu = 0$. 所以 $f = \alpha$, a.e. $|\mu|$. 又因为 f 是连续的, 所以 $f(x) = \alpha, \forall x \in K$. 这与 f 分离 x_0, y_0 矛盾. 所以 $K = \{x_0\}$.

由此, 得 $\mu = r\delta_{x_0}$, 所以

$$\mu(1) = \int_X 1 \mathrm{d}\mu = r = 0.$$

可见 $\mu = 0$, 这与 $\|\mu\| = 1$ 矛盾. 所以 $\mathcal{A}^{\perp} = \{0\}$, 即 $\mathcal{A} = C(X)$.

我们将含幺的条件去掉,来看不含幺的分离 X 的闭自伴子代数的行为.

为此, 我们证明如下引理

引理 1. 设 X 是赋范空间,Y 是 X^* 的子空间, 定义 $^\perp Y:=\{x\in X: f(x)=0, \forall f\in Y\}$. 如果 L 是 X 的子空间, 那么 $^\perp(L^\perp)=\overline{L}$.

证明. 显然有 $\overline{L} \subset {}^{\perp}(L^{\perp})$, 我们只要证明 ${}^{\perp}(L^{\perp}) \subset \overline{L}$ 即可. 假若不然, 存在 $x_0 \in {}^{\perp}(L^{\perp})$, 使得 $x_0 \notin \overline{L}$. 由于 \overline{L} 是 X 的真闭子空间, 根据 Hahn-Banach 定理, 存在线性泛函 $f \in X^*$, 使得 $f(y) = 0, \forall y \in \overline{L}$ 及 $f(x_0) = \operatorname{dist}(x_0, \overline{L}) > 0$. 这与 $x_0 \in {}^{\perp}(L^{\perp})$ 矛盾.

引理 2. 设 L 是赋范空间 X 的闭子空间, 若 $\dim X/L=1$, 则 $\dim L^{\perp}=1$.

证明. 取 $[e] = e + L \in X/L$, $||[e]||_{X/L} = 1$, 那么 $X/L = \operatorname{span}\{[e]\}$. 对任意的 $y \in X$, 都可以写成 $\lambda e + L$ 的形式. 根据定义对于任意的 $f \in L^{\perp}$, 满足 f(x) = 0, $\forall x \in L$. 因此 $f(y) = f(\lambda e + L) = \lambda f(e)$, 即 f 由其在 e 的取值唯一确定. 因此 $z \mapsto f_z$, $f_z(e) = z$ 是从 $\mathbb C$ 到 L^{\perp} 的线性同构. 故 $\dim L^{\perp} = 1$.

1 代数 C(X) 3

定理 2. 设 X 是紧 Hausdorff 空间,C(X) 是其上的复值连续函数代数,A 是 C(X) 的分离 X 的闭子伴子代数, 那么 A = C(X) 或者存在 $x_0 \in X$, 使得 $A = \{f \in C(X) : f(x_0) = 0\}$.

证明. 如果 $A \neq C(X)$, 那么取 $\tilde{A} = A + \mathbb{C}$. 则 \tilde{A} 是 C(X) 的分离 X 的含幺自伴闭子代数,故而 $\tilde{A} = C(X)$. 所以 $\dim C(X)/A = 1$,根据引理的结果,有 $\dim A^{\perp} = 1$. 取 $\mu \in A^{\perp}$,则对于有界 Borel 函数 $f \in A, f\mu \in A^{\perp}$. 所以存在 $\lambda \in \mathbb{C}$,使得 $(f - \lambda)\mu = 0$,所以 $f(x) = \lambda, \forall x \in K$,其中 K 是 μ 的支撑集.

这说明所有的 $f \in A$ 在 K 上取常数, 但是 A 分离 X, 所以 K 只能是单点集 $\{x_0\}$. 因此 $A^{\perp} = \mathbb{C}\delta_{x_0}$. 由于 A 是闭的, 所以

$$\mathcal{A} = {}^{\perp}(\mathcal{A}^{\perp}) = \{ f \in C(X) : f(x_0) = 0 \}.$$

当 X 是局部紧时, 我们通常考虑在无穷远处消失的连续函数代数 $C_0(X)$, 其定义为

$$C_0(X) := \{ f \in C(X) : \forall \varepsilon > 0,$$
存在紧集 $K \subset X,$ 使得当 $x \in X \setminus K, |f(x)| < \varepsilon \}.$

实际上, 令 X_{∞} 为 X 的单点紧致化. 那么

$$C_0(X) = \{ f \in C(X_\infty) : f(\infty) = 0 \}.$$

作为定理2的推论,有

定理 3 (局部紧空间版本的 Stone-Weierstrass 定理). 如果 X 是局部紧的,A 是 $C_0(X)$ 的分离 X 的闭自伴子代数,且对于每个 $x \in X$,存在 $f \in C_0(X)$,使得 f(x) = 0,那么 $A = C_0(X)$.

1.2 广义 Stone-Weierstrass 定理

在上一小节中, 我们证明了 C(X) 中的可分离 X 的含幺自伴闭子代数只能等于它自身. 现在, 我们去掉可分离 X 的条件, 来看这样的子代数的行为. 我们将证明, 这样的子代数也可以被视作某个紧 Hausdorff 空间上的复值连续函数代数, 并将其与原来的空间建立联系, 从而证明广义的 Stone-Weierstrass 定理.

设 A 是代数 C(X) 的含幺自伴闭子代数. 对于任意的 $x \in X$, 定义 $\varphi_x : C(X) \to \mathbb{C}$, $f \mapsto f(x)$, 它自然也是从 A 到 \mathbb{C} 的可乘线性泛函. 定义映射 $\eta : X \to M_A$, 容易证明它是连续的. "自伴"的条件在下面性质的证明中起关键作用:

性质 1. η 是满射.

证明. 固定 $\varphi \in M_A$, 对任意的 $f \in A$, 取 $K_f := \{x \in X : f(x) = \varphi(f)\}$. 由 f 的连续性可知, K_f 是闭的. 下面, 我们证明每个 K_f 都是非空的, 并且 $\{K_f : f \in A\}$ 满足有限交性质.

假如存在 f_1, \cdots, f_n , 使得

$$K_{f_1} \cap \cdots \cap K_{f_n} = \emptyset.$$

那么取

$$g = \sum_{i=1}^{n} |f_i - \varphi(f_i)|^2 = \sum_{i=1}^{n} (f_i - \varphi(f_i)) (\overline{f_i} - \overline{\varphi(f_i)}).$$

于是 $g \in \mathcal{A}(因为 \mathcal{A}$ 自伴), 并且 $g(x) \neq 0, \forall x \in X$. 因此, 存在 $\varepsilon > 0$, 使得 $1 \geq g/\|g\|_{\infty} \geq \varepsilon$, 所以 $\|1 - g/\|g\|_{\infty}\| < 1$. 因此 g 可逆, 所以 $\varphi(g) \neq 0$. 但是根据定义

$$\varphi(g) = \sum_{i=1}^{n} \varphi(f_i - \varphi(f_i)) \varphi((\overline{f_i} - \overline{\varphi(f_i)})) = \sum_{i=1}^{n} 0 \cdot (\overline{f_i} - \overline{\varphi(f_i)}) = 0.$$

1 代数 C(X) 4

矛盾. 所以 $\{K_f: f \in A\}$ 满足有限交性质. 根据 X 的紧性可知, $\bigcap_{f \in A} K_f \neq \emptyset$. 因此, 取 $x_0 \in \bigcap_{f \in A} K_f$, 则 $\varphi_{x_0}(f) = f(x_0) = \varphi(f), \forall f \in A$, 这说明 $\varphi_{x_0} = \varphi$, 即 $\eta(x_0) = \varphi$. 因而 η 是满的.

性质 2. A 上的 Gelfand 变换 Γ 是 A 到 $C(M_A)$ 上的等距同构.

证明. 由于 X 是紧的, 所以对任意的 f, 存在 $x_f \in X$, 使得 $|f(x_f)| = ||f||_{\infty}$. 所以

$$||f||_{\infty} \ge ||\Gamma f||_{\infty} = \sup_{\varphi \in M_{\mathcal{A}}} |(\Gamma f)(\varphi)| \ge |(\Gamma f)(\eta x_f)| = |f(x_f)| = ||f||_{\infty}.$$

所以 $\|\Gamma f\|_{\infty} = \|f\|_{\infty}$, 即 Γ 是等距, 所以是单射. 我们只要证明它是满射即可. 为此, 我们证明 $\Gamma(A)$ 是 $C(M_A)$ 的含幺自伴闭子代数, 且分离 M_A 中的点, 然后通过 Stone-Weierstrass 定理完成论证.

由于 Γ 等距, 所以它是闭映射, 所以 $\Gamma(A)$ 是闭的. 而 $1 \in A,\Gamma 1 = 1$, 所以 $\Gamma(A)$ 含幺. 对于任意的 $\varphi_1 \neq \varphi_2 \in M_A$, 存在 $x_1, x_2 \in X$, 使得 $\varphi_1 = \eta x_1, \varphi_2 = \eta x_2$. 注意到如果对任意的 $f \in A, f(x_1) = f(x_2)$, 那么 x_1, x_2 诱导相同的 A 上的可乘线性泛函, 所以 $\varphi_1 = \varphi_2$. 因此, 必定存在 $f \in A$, 使得 $(\Gamma f)(\varphi_1) = f(x_1) \neq f(x_2) = (\Gamma f)(\varphi_2)$, 即 $\Gamma(A)$ 可分离 M_A .

最后, 我们证明 $\Gamma(A)$ 自伴. 对任意的 $\varphi \in M_A$, 存在 $x \in X$, 使得 $\eta x = \varphi$, 所以对任意的 $f \in A$,

$$(\overline{\Gamma f})(\varphi) = \overline{(\Gamma f)(\varphi)} = \overline{(\Gamma f)(\eta(x))} = \overline{f(x)} = \overline{f}(x) = (\overline{\Gamma f})(\eta x) = \Gamma(\overline{f})(\varphi).$$

由于 $\overline{f} \in \mathcal{A}$, 所以 $\overline{\Gamma f} \in \Gamma(\mathcal{A})$, 所以 $\Gamma(\mathcal{A})$ 自伴.

最后, 根据 Stone-Weierstrass 定理, 有 $\Gamma(A) = C(M_A)$. 继而得出 Γ 是等距同构.

我们已经通过 η 建立起了 X 和 M_A 的联系. 注意到对任意的 $f \in C(M_A)$, 映射 $f \circ \eta \in C(X)$, 所以 η 其对应于一个映射 $\eta^* : C(M_A) \to C(X)$, $f \mapsto f \circ \eta$. 事实上, 对于任意的紧 Hausdorff 空间 X, Y 和连续满射 $\theta : X \to Y$, 都有如下性质成立:

性质 3. 由 θ 诱导的映射 $\theta^*: C(Y) \to C(X), f \mapsto f \circ \theta$ 是从 C(Y) 到 C(X) 的一个子代数的等距同构. 更进一步地, 这个子代数中的连续函数在 $\{\theta^{-1}(y): y \in Y\}$ 中的每个元素上取值为常数, 反之亦然.

证明. 对任意的 $f \in C(Y)$, 由于 Y 是紧的, 所以存在 $y_0 \in Y$, 使得 $|f(y_0)| = \sup_{y \in Y} |f(y)|$. 由于 θ 是满射, 所以存在 $x_0 \in X$, 使得 $\theta(x_0) = y_0$, 于是

$$||f||_{\infty} = \sup_{y \in Y} |f(y)| \ge \sup_{x \in X} |f(\theta(x))| \ge |f(\theta(x_0))| = |f(y_0)| = ||f||_{\infty}$$

又因为 $\|\theta^* f\|_{\infty} = \sup_{x \in X} |f(\theta(x))|$, 所以 θ^* 是等距, 因而是单射.

固定 $y \in Y, f \in C(Y)$, 则 $\theta^* f$ 在 $\theta^{-1}(y)$ 上取常数. 事实上, 对任意的 $x \in \theta^{-1}(y), (\theta^* f)(x) = f(\theta(x)) = f(y)$.

现在, 我们来证明相反的命题: 假如 $g \in C(X)$, 且在每个 $\{\theta^{-1}(y): y \in Y\}$ 的元素上取值为常数, 则存在 $f \in C(X)$, 使得 $\theta^*(f) = g$. 定义 $f(y) = g(x_y), x_y \in \theta^{-1}(y)$, 这一映射是良定义的, 我们只要验证 f 连续即可.

现在取 Y 中的网 $\{y_{\alpha}\}_{\alpha\in A}$, $\lim_{\alpha\in A}y_{\alpha}=y$. 在每个 $\theta^{-1}(y_{\alpha})$ 中选取 x_{α} , 于是得到网 $\{x_{\alpha}\}_{\alpha\in A}$. 由于空间 X 紧, 所以存在收敛子网 $\{x_{\alpha_{\beta}}\}_{\beta\in B}$, 记 $\lim_{\beta\in B}x_{\alpha_{\beta}}=x$.

根据 θ 的连续性, 有 $\theta(x) = \lim_{\beta \in B} \theta(x_{\alpha_{\beta}}) = \lim_{\beta \in B} y_{\alpha_{\beta}} = y$. 于是

$$\lim_{\beta \in B} f(y_{\alpha_{\beta}}) = \lim_{\beta \in B} g(x_{\alpha_{\beta}}) = g(x) = f(y).$$

我们证明 $\lim_{\alpha \in A} f(y_{\alpha}) = f(y)$. 否则, 假设对任意的邻域 V, 都存在无限个 y_{α} , 使得 $f(y_{\alpha}) \notin V$. 这些 y_{α} 构成 $\{y_{\alpha}\}_{\alpha \in A}$ 的一个子网, 记为 $\{y_{\alpha_{\lambda}}\}_{\lambda \in \Lambda}$. 其对应于某个 X 上的网 $\{x_{\alpha_{\lambda}}\}_{\lambda \in \Lambda}$. 根据紧性, 它有收敛子 网 $\{x_{\alpha_{\lambda\beta}}\}_{\beta \in B}$, 这一子网收敛于 x', 根据之前的论断, 有 $\theta(x') = y$ 且

$$\lim_{\beta \in B} f(y_{\alpha_{\beta\lambda}}) = f(y).$$

这与 $f(y_{\alpha}) \notin V$ 矛盾.

因此 $\lim_{\alpha \in A} f(y_{\alpha}) = f(y)$, 即 f 连续.

当 θ 是 $\eta: X \to M_A$ 时, 这个性质意味着有一个从 $C(M_A)$ 到 C(X) 的子代数的等距同构 η^* . 另一方面,Gelfand 变换提供了 A 到 $C(M_A)$ 的同构. 我们自然地问, $\eta^* \circ \Gamma: f \mapsto \Gamma f \mapsto \eta^*(\Gamma f)$ 是不是恒等映射. 事实上, 对任意的 $x \in X, \eta^*(\Gamma f)(x) = (\Gamma f)(\eta x) = f(x)$, 即 $\eta^*(\Gamma f) = f$, 这就证明了我们的猜测.

运用这一结果, 我们运用 η^* 来刻画 A 中元素的性质. 对于可乘线性泛函 φ , 和任意的 $x_1, x_2 \in \eta^{-1}(\varphi)$, 有 $\varphi_{x_1} = \varphi_{x_2}$. 这意味着对于任意的 $f \in A, f(x_1) = f(x_2)$. 因此, 在 X 上定义等价关系 \sim 为:

$$x_1 \sim x_2 \iff \forall f \in \mathcal{A}[f(x_1) = f(x_2)].$$

其对应于商集 $\Pi_{\mathcal{A}} := \{[x] : x \in X\}$, 其中 $[x] := \{y \in X : y \sim x\}$. 所以 $\eta^*(C(M_{\mathcal{A}})) = \{f \in C(X) : f$ 在每个[x]上取常数[x].

我们就证明了以下定理

定理 4 (广义 Stone-Weierstrass 定理)。 X 是一个紧 Hausdorff 空间,A 是 C(X) 的含幺闭自伴子代数。 那么 A 恰好就是那些在 Π_A 的元素上取常值的连续函数构成的集合。

当 A 分离 X 时, Π_A 中的元素为单点集, 这就回到了经典的 Stone-Weierstrass 定理.

上面已经讨论了不含幺、不分离 X 的闭子伴子代数的结构, 现在我们考虑不自伴的情形上. 令 A 是 C(X) 含幺闭子代数, 以及 \mathcal{B} 是包含它的最小的闭自伴子代数, 那么 \mathcal{B} 通过 Gelfand 变换等距同构于紧 Hausdorff 空间 Y 上的连续函数代数 C(Y), 其中 Y 是 \mathcal{B} 的极大理想空间. 所以 ΓA 是 C(Y) 的含幺闭子代数, 并且更重要的是, 它分离 Y 中的点. 因此, 我们更愿意研究作为 C(Y) 的子代数 ΓA 而非 C(X) 的子代数 A. 据此, 我们给出如下定义:

定义 1. 设 X 是紧 Hausdorff 空间, A 是 C(X) 的子集. 我们说 A 是一个函数代数, 如果 A 是 C(X) 的 分离 X 的含幺闭子代数.

2 代数 $C(\mathbb{T})$

现在, 我们考虑具体的紧 Hausdorff 空间 $\mathbb{T} := \{z \in \mathbb{C} : ||z|| = 1\}.$

2.1 解析三角多项式

对于 $n \in \mathbb{Z}$, 定义 $\chi_n(z) = z^n$. 于是 $\chi_0 = 1, \chi_{-n} = \overline{\chi_n}$, 并且 $\chi_m \chi_n = \chi_{m+n}, n, m \in \mathbb{Z}$. 集合

$$\mathscr{P} = \{ \sum_{n=-N}^{N} \alpha_n \chi_n : \alpha_n \in \mathbb{C} \}$$

中的元素称为三角多项式. 注意到 \mathscr{P} 是 $C(\mathbb{T})$ 的含幺自伴子代数, 且分离 \mathbb{T} , 所以它的闭包是 $C(\mathbb{T})$.

令 $\mathscr{P}_+ := \{\sum_{n=0}^N \alpha_n \chi_n : \alpha_n \in \mathbb{C}\}$, 其中的元素称为 **解析三角多项式**, 之所以称为"解析", 是因为它在整个复平面上都是解析的. 令 A 为 \mathscr{P}_+ 的一致闭包 (即在一致拓扑下的闭包), 那么 A 是一个函数代数. 我们将证明 $A \neq C(\mathbb{T})$. 为此, 我们证明 A 的极大理想空间不是 \mathbb{T} .

下面的引理是估计所需要的.

引理 3. 设 $\sum_{n=0}^{N} \alpha_n \chi_n \in \mathscr{P}_+, w \in \mathbb{C}$ 且 |w| < 1, 那么

$$\sum_{n=0}^{N} \alpha_n w^n = \frac{1}{2\pi} \int_0^{2\pi} (\sum_{n=0}^{N} \alpha_n \chi_n) (e^{it}) \frac{1}{1 - we^{-it}} dt.$$

证明. 注意到

$$\frac{1}{1 - we^{-it}} = \sum_{m=0}^{\infty} (we^{-it})^m$$

对 $t \in [0, 2\pi]$ 一致收敛. 所以

$$\frac{1}{2\pi} \int_0^{2\pi} (\sum_{n=0}^N \alpha_n \chi_n) (e^{it}) \frac{1}{1 - we^{-it}} dt = \frac{1}{2\pi} \sum_{n=0}^N \alpha_n \sum_{m=0}^\infty \int_0^{2\pi} e^{i(n-m)t} dt
= \sum_{n=0}^N \alpha_n w^n.$$

其中用到了

$$\int_0^{2\pi} e^{i(n-m)t} dt = \begin{cases} 2\pi, n = m, \\ 0, n \neq m. \end{cases}$$

现在,我们来考察 A 上的可乘线性泛函. 由于 $A \subset C(\mathbb{T})$,所以对任意的 $w \in \mathbb{T}$,赋值映射 $\varphi_w(f) = f(z)$, $f \in A$ 是可乘的. 我们想说明,对于 $w \in \mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$,"赋值"映射也是可乘的. 我们先来定义它: 对与任意的 $w \in \mathbb{D}$ 和 $f = \sum_{n=0}^N \alpha_n \chi_n \in \mathscr{P}_+$,定义 $\varphi_w(f) = \sum_{n=0}^N \alpha_n w^n$. 它对于 $f \in \mathscr{P}_+$ 而言自然是可乘的. 但由于 \mathscr{P}_+ 不完备,所以我们不能立刻得出 φ_w 在 \mathscr{P}_+ 上连续. 这时候,引理3提供了一个合适的估计:

$$|\varphi_w(\sum_{n=0}^N \alpha_n \chi_n)| = |\sum_{n=0}^N \alpha_n w^n| = |\frac{1}{2\pi} \int_0^{2\pi} (\sum_{n=0}^N \alpha_n \chi_n) (e^{it}) \frac{1}{1 - we^{-it}} dt|$$

$$\leq \frac{1}{2\pi} \|\sum_{n=0}^N \alpha_n \chi_n\|_{\infty} \int_0^{2\pi} \frac{1}{|1 - we^{-it}|} dt.$$

所以 φ_w 在 \mathcal{P}_+ 上有界, 因而是连续的. 所以我们将线性泛函 φ_w 延拓到 \mathcal{P}_+ 的闭包 A 上, 它给出了 A 上的可乘线性泛函.

设 $\overline{\mathbb{D}}:=\{z\in\mathbb{C}:|z|\leq 1\},M$ 是 A 的极大理想空间. 记 $\psi:\overline{\mathbb{D}}\to M,z\mapsto \psi(z)=\varphi_z$. 我们证明 ψ 是一个同胚, 为此, 我们证明一个引理.

引理 4. 设 Y 是赋范空间 X 的稠密子集, $\{\varphi_{\beta}\}_{\beta\in B}$ 是 X^* 中的一致有界网,并且 $\lim_{\beta\in B}\varphi_{\beta}(f)=\varphi(f), \forall f\in Y$. 则 $\{\varphi_{\beta}\}_{\beta\in B}$ 在 w^* -拓扑下收敛到 φ .

证明. 记 $U = \sup\{\|\varphi\|, \|\varphi_{\beta}\| : \beta \in B\}$. 对于给定的 $g \in X$ 和任意的 $\varepsilon > 0$, 存在 $f \in Y$, 使得 $\|f - g\| < \varepsilon/3U$.

由于 $\lim_{\beta \in B} \varphi_{\beta}(f) = \varphi(f)$, 所以存在 $\beta_0 \in B$, 使得当 $\beta \geq \beta_0$ 时,

$$|\varphi_{\beta}(f) - \varphi(f)| < \frac{\varepsilon}{3}.$$

所以

$$|\varphi_{\beta}(g) - \varphi(g)| \leq |\varphi_{\beta}(g) - \varphi_{\beta}(f)| + |\varphi_{\beta}(f) - \varphi(f)| + |\varphi(f) - \varphi(g)|$$

$$\leq ||\varphi_{\beta}|| ||f - g|| + \frac{\varepsilon}{3} + ||\varphi|| ||f - g|| < \varepsilon.$$

这就证明了 $\{\varphi_{\beta}\}_{\beta\in B}$ 在 w^* -拓扑下收敛到 φ .

定理 5. ψ 是一个同胚.

证明. 我们首先证明 ψ 是一个双射. 它显然是单的, 因为对于 $z_1 \neq z_2 \in \overline{\mathbb{D}}$, $\varphi_{z_1}(\chi_1) = z_1 \neq z_2 = \varphi_{z_2}(\chi_1)$, 因此 $\psi(z_1) = \varphi_{z_1} \neq \varphi_{z_2} = \psi(z_2)$.

我们证明它是满的. 注意到可乘线性泛函 $\varphi \in M$ 满足 $\|\varphi\| = 1$, 且 $\|\chi_1\| = 1$, 所以

$$|\varphi(\chi_1)| \le ||\varphi|| ||\chi_1|| = 1.$$

因此 $z = \varphi(\chi_1) \in \overline{\mathbb{D}}$. 由于 φ 是可乘线性泛函, 所以对于 $f = \sum_{n=0}^{N} \alpha_n \chi_n \in \mathscr{P}_+$, 有

$$\varphi(f) = \varphi(\sum_{n=0}^{N} \alpha_n \chi_n) = \sum_{n=0}^{N} \alpha_n [\varphi(\chi_1)]^n$$
$$= \sum_{n=0}^{N} \alpha_n z^n = \varphi_z(f).$$

因此在 A 的稠密子集 \mathscr{P}_+ 上, $\varphi=\varphi_z$. 根据连续性, 在 A 上, $\varphi=\varphi_z$. 这就证明了 ψ 是一个满射.

由于 ψ 是从紧 Hausdorff 空间到紧 Hausdoff 空间的双射, 故而只需要证明 ψ 连续, 即可说明 ψ 是同胚. 取 $\overline{\mathbb{D}}$ 上的网 $\{z_{\beta}\}_{\beta \in B}$, $\lim_{\beta \in B} z_{\beta} = z$. 对于任意的 $f = \sum_{n=0}^{N} \alpha_{n} \chi_{n} \in \mathscr{P}_{+}$,

$$\lim_{\beta \in B} \varphi_{z_{\beta}}(\sum_{n=0}^{N} \alpha_n \chi_n) = \lim_{\beta \in B} \sum_{n=0}^{N} \alpha_n z_{\beta}^n = \sum_{n=0}^{N} \alpha_n z^n = \varphi_z(\sum_{n=0}^{N} \alpha_n \chi_n).$$

由于网 $\{\varphi_{z_{\beta}}\}_{\beta\in B}$ 一致有界, 且 \mathscr{P}_{+} 在 A 上稠密, 所以根据引理 $4,\{\varphi_{z_{\beta}}\}_{\beta\in B}$ 在 w^{*} -拓扑下收敛于 φ_{z} . 这就证明了 ψ 是连续的. 故 ψ 是同胚.

2.2 Šilov 定理

让我们看元素 $\chi_1 \in A \subset C(\mathbb{T}).\chi_1$ 作为 $C(\mathbb{T})$ 中的元素,有 $\sigma_{C(\mathbb{T})}(\chi_1) = \mathbb{T}$.而 χ_1 作为 A 中的元素,有 $\sigma_A(\chi_1) = \overline{\mathbb{D}}$.于是 $\sigma_{C(\mathbb{T})}(\chi_1) \subset \sigma_A(\chi_1)$.这一事实本不足为奇,A 作为 $C(\mathbb{T})$ 的子代数,其中元素的"不可 逆程度"高于 $C(\mathbb{T})$,所以谱自然就大一些. 但令人惊奇的是, $\sigma_A(\chi_1)$ 的谱恰好像是填补了 $\sigma_{C(\mathbb{T})}$ 中的"洞",并且这一事实竟对于一般的 Banach 代数成立.

定理 6 (Šilov). 设 \mathcal{B} 是一个 Banach 代数, \mathcal{A} 是 \mathcal{B} 的含幺闭子代数, $x \in \mathcal{A}$. 那么

- (i) $\partial \sigma_{\mathcal{A}}(x) \subset \sigma_{\mathcal{B}}(x) \subset \sigma_{\mathcal{A}}(x)$.
- (ii) 如果 Ω 是 $\mathbb{C}\setminus\sigma_{\mathcal{B}}$ 的连通分支, 那么 $\Omega\cap\sigma_{\mathcal{A}}(x)=\emptyset$ 或者 $\Omega\subset\sigma_{\mathcal{A}}(x)$.

(iii) $\sigma_{\mathcal{A}}(x) = \sigma_{\mathcal{B}}(x) \cup \Omega_1 \cup \cdots \cup \Omega_n \cup \cdots$, 其中 Ω_i 是 $\mathbb{C} \setminus \sigma_{\mathcal{B}}(x)$ 的某些有界分支.

证明. (i) 显然有 $\sigma_{\mathcal{B}}(x) \subset \sigma_{\mathcal{A}}(x)$. 我们只要证明 $\partial \sigma_{\mathcal{A}}(x) \subset \sigma_{\mathcal{B}}(x)$. 不失一般性地, 我们证明若 $0 \in \partial \sigma_{\mathcal{A}}(x)$, 则 $0 \in \sigma_{\mathcal{B}}(x)$ 即可.

由于 $0 \in \partial \sigma_{\mathcal{A}}(x)$,所以存在 $\lambda_n \notin \sigma_{\mathcal{A}}(x)$,使得 $\lim_{n\to\infty} \lambda_n = 0$. 如果 $0 \notin \sigma_{\mathcal{B}}(x)$,那么 x 在 \mathcal{B} 中可逆. 再由逆运算的连续性,有 $(x - \lambda_n)^{-1} \to x^{-1}$. 所以 $x^{-1} \in \mathcal{A}$. 这说明 $0 \in \mathbb{C} \setminus \sigma_{\mathcal{A}}(x)$,而后者是一个开集,因此 $0 \notin \partial \sigma_{\mathcal{A}}(x)$,矛盾. 所以 $\partial \sigma_{\mathcal{A}}(x) \subset \sigma_{\mathcal{B}}(x)$.

- (ii) 若 Ω 是 $\mathbb{C}\setminus\sigma_{\mathcal{B}}$ 的一个有界连通分支, 那么令 $X=\Omega\cap\sigma_{\mathcal{A}}(x)$, 则 X 是 Ω 的闭子集.X 作为 Ω 的子空间, 有 $\partial_{\Omega}X\subset\partial\sigma_{\mathcal{A}}(x)\subset\sigma_{\mathcal{B}}(x)\subset\mathbb{C}\setminus\Omega$, 所以 $\partial_{\Omega}X=\varnothing$. 所以 $X=\varnothing$ 或者 $X=\Omega$.
- (iii) 将 $\sigma_{\mathcal{A}}(x)$ 写成若干连通分支之并, 由于 $\sigma_{\mathcal{B}}(x) \subset \sigma_{\mathcal{A}}(x)$, 所以 $\sigma_{\mathcal{B}}(x)$ 必定与某个连通分支相交, 再由 (ii), 命题成立.

2.3 Wiener 定理

考虑空间 $\ell^1(\mathbb{Z}) := \{f : \mathbb{Z} \to \mathbb{C} : \sum_{n=-\infty}^{\infty} |f(n)| < \infty \}$. 赋予其范数 $||f||_1 = \sum_{n=-\infty}^{\infty} |f(n)|$, 则 $\ell^1(\mathbb{Z})$ 是一个 Banach 空间. 次外, 赋予 $\ell^1(\mathbb{Z})$ 一个卷积的结构:

$$(f * g)(n) = \sum_{k=-\infty}^{\infty} f(n-k)g(k).$$

注意到

$$\sum_{n=-\infty}^{\infty} |(f * g)(n)| = \sum_{n=-\infty}^{\infty} |\sum_{k=-\infty}^{\infty} f(n-k)g(k)| \le \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} |f(n-k)||g(k)|$$
$$= \sum_{k=-\infty}^{\infty} |g(k)| \sum_{n=-\infty}^{\infty} |f(n-k)| = ||f||_1 ||g||_1.$$

所以 $(f*g) \in \ell^1(\mathbb{Z})$ 且 $||f*g||_1 \le ||f||_1 ||g||_1$, 即 $\ell^1(\mathbb{Z})$ 是一个 Banach 代数. 实际上, 它是一个含幺交换 Banach 代数. 定义

$$e_n(m) = \begin{cases} 1, n = m, \\ 0, n \neq m. \end{cases}$$

则 e_0 是 $\ell^1(\mathbb{Z})$ 的单位元. 并且 $e_n * e_m = e_{n+m}$.

考察 $\ell^1(\mathbb{Z})$ 的极大理想空间 M. 对于每个 $z \in \mathbb{T}$, 令 $\varphi_z : \ell^1(\mathbb{Z}) \to \mathbb{C}$, $f \mapsto \sum_{n=-\infty}^{\infty} f(n)z^n$. 我们证明 φ_z 是可乘线性泛函. $\varphi_z(e_0) = e_0(0)z^0 = 1$,

$$\varphi_z(f * g) = \sum_{n = -\infty}^{\infty} (f * g)(n)z^n = \sum_{n = -\infty}^{\infty} (\sum_{k = -\infty}^{\infty} f(n - k)g(k))z^n$$
$$= \sum_{n = -\infty}^{\infty} f(n - k)z^{n - k} \sum_{k = -\infty}^{\infty} g(k)z^k = \varphi_z(f)\varphi_z(g).$$

据此, 定义 $\psi: \mathbb{T} \to M, z \mapsto \varphi_z$.

定理 7. ψ 是一个同胚.

证明. 如果 $z_1, z_2 \in \mathbb{T}$, 且 $\varphi_{z_1} = \varphi_{z_2}$, 那么 $z_1 = \varphi_{z_1}(e_1) = \varphi_{z_2}(e_1) = z_2$. 所以 ψ 是单射. 如果 $\varphi \in M$, 取 $z = \varphi(e_1)$, 那么

$$1 = ||e_1||_1 \ge |\varphi(e_1)| = |z| = \frac{1}{|z^{-1}|} = \frac{1}{|\varphi(e_{-1})|} \ge \frac{1}{||e_{-1}||_1} = 1,$$

这说明 $z \in \mathbb{T}$. 于是 $\varphi(e_n) = z^n = \varphi_z(e_n), \forall n \in \mathbb{Z}$. 所以 $\varphi = \varphi_z = \psi(z)$, 即 ψ 是满射.

现在, 与之前相同, 我们只要证明 ψ 连续即可. 取 $\{z_{\beta}\}_{\beta\in B}$ 是 \mathbb{T} 中的收敛的网, 且 $\lim_{\beta\in B}z_{\beta}=z$. 因此, 对于 $f\in\ell^{1}(\mathbb{Z})$, 我们有

$$|\varphi_{z_{\beta}}(f) - \varphi_{z}(f)| \leq \sum_{|n| \leq N} |f(n)| |z_{\beta}^{n} - z^{n}| + \sum_{|n| > N} |f(n)| |z_{\beta}^{n} - z^{n}|$$

$$\leq ||f_{1}|| \sup_{|n| \leq N} |z_{\beta}^{n} - z^{n}| + 2 \sum_{|n| > N} |f(n)|.$$

因此对于任意的 $\varepsilon > 0$,取 N,使得当 n > N 时, $\sum_{|n|>N} |f(n)| < \varepsilon/4$,以及 $\beta_0 \in B$,使得当 $\beta \geq \beta_0$ 时, $\sup_{|n|leN} |z_\beta^n - z^n| < \varepsilon/2 ||f||_1$. 因此当 $\beta \geq \beta_0$ 时,

$$|\varphi_{z_{\beta}}(f) - \varphi(f)| < \varepsilon.$$

所以 ψ 连续.

该定理说明, 通过映射 ψ , 单位圆周 \mathbb{T} 与 $\ell^1(\mathbb{Z})$ 可以等同起来. 所以 $\ell^1(\mathbb{Z})$ 上的 Gelfand 变换 Γ : $\ell^1(\mathbb{Z}) \to C(\mathbb{T})$, 满足 $(\Gamma f)(z) = \sum_{n=-\infty}^{\infty} f(n)z^n, z \in \mathbb{T}$. 该级数对 $z \in \mathbb{T}$ 一致收敛且是绝对收敛的.

根据 Gelfand 定理, 我们有

$$\sigma(f) = \{ \sum_{n \in \mathbb{Z}} f(n)z^n : z \in \mathbb{T} \}, r(n) = \max_{z \in \mathbb{T}} |\sum_n f(n)z^n|.$$

设 $g \in \Gamma(\ell^1(\mathbb{Z}))$, 我们可以复现出 $f \in \ell^1(\mathbb{Z})$.

$$\frac{1}{2\pi} \int_0^{2\pi} g(e^{it}) e^{-int} dt = \frac{1}{2\pi} \int_0^{2\pi} (\Gamma f)(e^{it}) e^{-int} dt = \frac{1}{2\pi} \int_0^{2\pi} \sum_{m=-\infty}^{\infty} f(m) e^{i(m-n)t} dt
= \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} f(m) \int_0^{2\pi} e^{i(m-n)t} dt = f(n),$$

其中积分和求和交换次序是因为级数一致收敛. 由此可知, $\varphi\in\Gamma(\ell^1(\mathbb{Z}))$ 当且仅当 φ 具有绝对收敛的 Fourier 级数, 即

$$\sum_{n=-\infty}^{\infty} \left| \frac{1}{2\pi} \int_{0}^{2\pi} \varphi(e^{it}) e^{-int} dt \right| < \infty.$$

因此 $\Gamma(\ell^1(\mathbb{Z})) = W := \{f(z) = \sum_{n \in \mathbb{Z}} a_n z^n : ||f|| = \sum_n |a_n| < \infty\}$, 称为 Wiener 代数, 它通过 Gelfand 变换等距同构于 $\ell^1(\mathbb{Z})$.

下面, 我们给出 Wiener 定理的简单证明, 这是 Gelfand 理论的早期成果:

定理 8 (Wiener). 设 $f \in W$, 且 f 在 \mathbb{T} 上无零点, 则 $1/f \in W$.

证明. 设 $f \in W$, 则 $f = \sum_{n \in \mathbb{Z}} a_n z^n$, 那么 $\sigma(f) = \{\sum_{n \in \mathbb{Z}} a_n \xi^n : \xi \in \mathbb{T}\}$. 由于 f 在 \mathbb{T} 上无零点, 所以 $0 \notin \sigma(f)$, 所以 f 在 W 中可逆, 其逆 $1/f \in W$.