Discovering Metrics and Scale Space Preliminary Examination

Brittany Terese Fasy

Duke University, Computer Science Department

26 July 2010

Questions

1 Tight Bound: Is the inequality

$$|\ell_1 - \ell_2| \leq \frac{4}{\pi} \cdot (\kappa_1 + \kappa_2) \cdot \mathcal{F}(\gamma_1, \gamma_2)$$

a tight bound for curves in \mathbb{R}^n for n > 3?

- 2 Simultaneous Scale Space: What happens if multiple agents are diffusing at the same time?
- 3 Understanding V_q : Does there exist a stability result for V_q ?

Part 1

My Inequality

For curves γ_1 and γ_2 ,

$$|\ell_1 - \ell_2| \leq \frac{4}{\pi} \cdot (\kappa_1 + \kappa_2) \cdot \mathcal{F}(\gamma_1, \gamma_2)$$

B. Fasy (Duke CS) Prelim 26 July 2010 4 / 46

A curve is a continuous map $\gamma_i \colon \mathbb{S}^1 \to \mathbb{R}^n$.

B. Fasy (Duke CS) Prelim 26 July 2010 5 / 46

A curve is a continuous map $\gamma_i \colon [0,1] \to \mathbb{R}^n$, such that $\gamma_i(0) = \gamma_i(1)$.

B. Fasy (Duke CS) Prelim 26 July 2010 5 / 46

A curve is a continuous map $\gamma_i : I \to \mathbb{R}^n$, such that $\gamma_i(0) = \gamma_i(1)$.

B. Fasy (Duke CS) Prelim 26 July 2010 5 / 46

Inscribed Polygons

A curve is a continuous map $\gamma_i : I \to \mathbb{R}^n$, such that $\gamma_i(0) = \gamma_i(1)$.

$$\operatorname{mesh}(P) = \max_{0 < i < m} (t_{i+1} - t_i)$$

Arc Length

$$\ell_i = \ell(\gamma_i) = \int_0^1 ||\gamma_i'(t)|| dt$$
 $\ell(P) = \sum_j \ell(e_j)$

Arc Length

$$\ell_i = \ell(\gamma_i) = \int_0^1 ||\gamma_i'(t)|| dt$$
 $\ell(P) = \sum_i \ell(e_i)$

Lemma

If P^k is a sequence of polygons inscribed in a smooth closed curve γ such that $\operatorname{mesh}(P^k)$ goes to zero, then

$$\ell(\gamma) = \lim_{k \to \infty} \ell(P^k).$$

Curvature

Let $x \in I$.

Let r_x denote the radius of the best approximating circle of $\gamma_i(x)$. Then, the total curvature is:

$$\kappa_i = \kappa(\gamma_i) = \int_0^1 1/r_x \, dx.$$

Turning Angle

Curvature

Let $x \in I$.

Let r_x denote the radius of the best approximating circle of $\gamma_i(x)$. Then, the total curvature is:

$$\kappa_i = \kappa(\gamma_i) = \int_0^1 1/r_x dx.$$

$$\kappa(P) = \sum_i \alpha_i.$$

Curvature

Let $x \in I$.

Let r_x denote the radius of the best approximating circle of $\gamma_i(x)$.

Then, the total curvature is:

$$\kappa_i = \kappa(\gamma_i) = \int_0^1 1/r_x dx.$$

$$\kappa(P) = \sum_i \alpha_i.$$

Lemma

If P^k is a sequence of polygons inscribed in a smooth closed curve γ such that $\operatorname{mesh}(P^k)$ goes to zero, then

$$\kappa(\gamma) = \lim_{k \to \infty} \kappa(P^k).$$

The Fréchet Distance

$$\mathcal{F}(\gamma_1, \gamma_2) = \inf_{\alpha \colon \mathbb{S}^1 \to \mathbb{S}^1} \max_{t \in \mathbb{S}^1} (\gamma(t) - \gamma(\alpha(t)))$$

Man and Dog

The Fréchet Distance

$$\mathcal{F}(\gamma_1,\gamma_2) = \inf_{\alpha \colon \mathbb{S}^1 \to \mathbb{S}^1} \max_{t \in \mathbb{S}^1} (\gamma(t) - \gamma(\alpha(t)))$$

The Fréchet Distance

$$\mathcal{F}(\gamma_1, \gamma_2) = \inf_{lpha \colon \mathbb{S}^1 o \mathbb{S}^1} \max_{t \in \mathbb{S}^1} \left(\gamma(t) - \gamma(lpha(t))
ight)$$

Lemma

If P^k and Q^k are sequences of polygons inscribed in smooth closed curves γ_1 and γ_2 such that $\operatorname{mesh}(P^k)$ and $\operatorname{mesh}(Q^k)$ go to zero, then

$$\mathcal{F}(\gamma_1, \gamma_2) = \lim_{k \to \infty} \mathcal{F}(P^k, Q^k).$$

My Inequality

For curves γ_1 and γ_2 ,

$$|\ell_1 - \ell_2| \leq \frac{4}{\pi} \cdot (\kappa_1 + \kappa_2) \cdot \mathcal{F}(\gamma_1, \gamma_2)$$

B. Fasy (Duke CS) 26 July 2010 15 / 46

Two Related Theorems

• [Cha62, F50] For a closed curve contained in a disk of radius r in \mathbb{R}^n ,

$$\ell_i \leq r \cdot \kappa_i$$
.

• [CSE07] For two closed curves in \mathbb{R}^n ,

$$|\ell_1 - \ell_2| \leq rac{2 \, \operatorname{vol}(\mathbb{S}^{n-1})}{\operatorname{vol}(\mathbb{S}^n)} \cdot (\kappa_1 + \kappa_2 - 2\pi) \cdot \mathcal{F}(\gamma_1, \gamma_2).$$

Questions

1 Tight Bound: Is the inequality

$$|\ell_1 - \ell_2| \leq \frac{4}{\pi} \cdot (\kappa_1 + \kappa_2) \cdot \mathcal{F}(\gamma_1, \gamma_2)$$

- a tight bound for curves in \mathbb{R}^n for n > 3?
- 2 Simultaneous Scale Space: What happens if multiple agents are diffusing at the same time?
- 3 Understanding V_q : Does there exist a stability result for V_q ?

Part 2

Scale Space

Scale Space

Scale Space

The Gaussian

$$G_1(x,t) = \frac{1}{(\sqrt{2\pi}t)}e^{-\frac{x^2}{2t^2}}$$

$$G_n(x,t) = \frac{1}{(\sqrt{2\pi}t)^n} e^{-\frac{|x|^2}{2t^2}}$$

This is the fundamental solution to the Heat Equation:

$$\frac{\partial u}{\partial t}(x,t)-\triangle u(x,t)=0.$$

Gaussian Convolution

$$\mathsf{Blur}(y,t,h_0) = \int_{x \in \mathbb{R}^n} G_n(x-y,t) h_0(x) \, dy$$

Homotopy

 $H \colon \mathbb{M} \times I \to \mathbb{R}$ is a continuous function such that

$$H(x,0)=f(x)$$

$$H(x,1)=g(x)$$

23 / 46

Discrete Homotopy

 $H: \operatorname{vert}(K) \times \{0, 1, \dots, \tau\} \to \mathbb{R}$ is a discrete function such that

$$H(x,0) = f(x)$$

$$H(x,\tau) = g(x)$$

B. Fasy (Duke CS)

23 / 46

Discrete Homotopy

 $H \colon K \times I_{\tau} \to \mathbb{R}$ is a discrete function such that

$$H(x,0)=f(x)$$

$$H(x,\tau)=g(x)$$

and the value at a general point $(x,t) \in \mathbb{M} \times I_{\tau}$ is determined by linear interpolation.

 $H(\cdot, 1)$

$$H(\cdot, 0)$$

B. Fasy (Duke CS) Prelim 2

23 / 46

Heat Equation Homotopy

Let $f(x), g(x) : \mathbb{R}^2 \to \mathbb{R}$.

Let $h_0(x) = f(x) - g(x)$.

Then:

$$H(y,t) = h_t(y) = \operatorname{Blur}(y,t,h_0) = \int_{x \in \mathbb{R}^n} G_n(x-y,t)h_0(x) dy$$

is the solution to the heat equation with initial condition $H(x,0) = h_0(x)$.

Heat Equation Homotopy

Let $f(x), g(x) : \mathbb{R}^2 \to \mathbb{R}$.

Let $h_0(x) = f(x) - g(x)$.

Then:

$$H(y,t) = h_t(y) = \operatorname{Blur}(y,t,h_0) = \int_{x \in \mathbb{R}^n} G_n(x-y,t)h_0(x) dy$$

is the solution to the heat equation with initial condition $H(x,0) = h_0(x)$.

We define the Heat Equation Homotopy as:

$$H(x,t) := h_t(x) + g(x).$$

Questions

1 Tight Bound: Is the inequality

$$|\ell_1 - \ell_2| \le \frac{4}{\pi} \cdot (\kappa_1 + \kappa_2) \cdot \mathcal{F}(\gamma_1, \gamma_2)$$

- a tight bound for curves in \mathbb{R}^n for n > 3?
- 2 Simultaneous Scale Space: What happens if multiple agents are diffusing at the same time?
- 3 Understanding V_a : Does there exist a stability result for V_a ?

Color Images

Color Images

Proportion Set

A proportion set for the RGB image is the set of pixels that have the same ratios of colors. For example, the boundaries in the following images depict where 4*blue = 3*green:

t = 100

t = 1000

Questions

1 Tight Bound: Is the inequality

$$|\ell_1 - \ell_2| \le \frac{4}{\pi} \cdot (\kappa_1 + \kappa_2) \cdot \mathcal{F}(\gamma_1, \gamma_2)$$

- a tight bound for curves in \mathbb{R}^n for n > 3?
- 2 Simultaneous Scale Space: What happens if multiple agents are diffusing at the same time?
- 3 Understanding V_a : Does there exist a stability result for V_a ?

Part 3

Persistence Diagrams

A set of points in \mathbb{R}^2 that describe the changing homology of the sublevel sets of a function

Stacking the Persistence Diagrams

We stack the diagrams so that $Dgm_p(h_t)$ is drawn at height z = t.

Stacking the Persistence Diagrams

Then, we match the diagrams using a linear time algorithm [CSEM].

Vineyards

- The path of an off-diagonal point is called a *vine*. A vine is represented by a function $s: I_{\tau} \to \mathbb{R}^3$.
- The collection of vines is called a vineyard.
- Matching of $Dgm_p(f)$ and $Dgm_p(g)$ is obtained by looking at the endpoints of the vines.

Another Representation of a Vineyard

[Movie]

Total Movement in a Vineyard

For a vine s, we can compute the weighted distance traveled by a point in the persistence diagrams. Then, we sum this distance over all vines in the vineyard V.

$$D_s = \int_0^1 \omega_{s(t)} \cdot \frac{\partial s(t)}{\partial t} dt$$

$$V_q(H) = \left(\sum_{s \in V} D_s^q\right)^{1/q}$$

Total Movement in a Vineyard

For a vine s, we can compute the weighted distance traveled by a point in the persistence diagrams. Then, we sum this distance over all vines in the vineyard V.

$$D_s = \sum_{i \in \{1,2,..., au\}} \omega_s(i) \cdot ||s(t_i) - s(t_{i-1})||_{\infty}$$

$$V_q(H) = \left(\sum_{s \in V} D_s^q\right)^{1/q}$$

Questions

1 Tight Bound: Is the inequality

$$|\ell_1 - \ell_2| \le \frac{4}{\pi} \cdot (\kappa_1 + \kappa_2) \cdot \mathcal{F}(\gamma_1, \gamma_2)$$

- a tight bound for curves in \mathbb{R}^n for n > 3?
- 2 Simultaneous Scale Space: What happens if multiple agents are diffusing at the same time?
- 3 Understanding V_q : Does there exist a stability result for V_q ?

Related Metrics

Let A = Dgm(f) and B = Dgm(g). We find a bijection between A and B by minimizing some quantity, such as:

- Bottleneck Distance
- Wasserstein Distance

Bottleneck Matching

The bottleneck cost of a matching is the maximum L_{∞} distance between matched points:

$$W_{\infty}(P) = \max_{(a,b)\in P} ||a-b||_{\infty}.$$

We seek to minimize the bottleneck distance over all perfect matchings:

$$W_{\infty}(A,B) = \min_{P} \{W_{\infty}(P)\}.$$

Wasserstein Matching

The Wasserstein cost is measures the cumulative distance as follows:

$$W_q(P) = \left(\sum_{(a,b)\in P} ||a-b||_{\infty}^q\right)^{1/q}.$$

We seek to minimize the Wasserstein distance over all perfect matchings:

$$W_q(A,B) = \min_{P} \{W_q(P)\}.$$

Related Stability Results

We say that the matching of persistence diagrams is *stable* if the cost of the matching is bounded by some reasonable function of $||f - g||_{\infty}$.

• [CSEH] The Bottleneck Distance is stable for monotone Functions $f, g: \mathbb{M} \to \mathbb{R}$.

$$W_{\infty}(A,B) \leq ||f-g||_{\infty}$$

• [CSEHM10] The Wasserstein Distance is stable for tame Lipschitz Functions with bounded degree *k* total persistence.

$$W_q(A, B) \leq C^{1/q} ||f - g||_{\infty}^{1 - k/q}$$

Related Stability Results

We say that the matching of persistence diagrams is *stable* if the cost of the matching is bounded by some reasonable function of $||f - g||_{\infty}$.

• [CSEH] The Bottleneck Distance is stable for monotone Functions $f, g: \mathbb{M} \to \mathbb{R}$.

$$W_{\infty}(A,B) \leq ||f-g||_{\infty}$$

• [CSEHM10] The Wasserstein Distance is stable for tame Lipschitz Functions with bounded degree *k* total persistence.

$$W_q(A, B) \le C^{1/q} ||f - g||_{\infty}^{1-k/q}$$

• Is the Vineyard Metric stable too?

$$V_a(f,g) \le ???$$

Preliminary Findings

Let
$$A={\sf Dgm}(f)$$
 and $B={\sf Dgm}(g).$
$$W_1(A,B) \le V_1(f,g)$$

$$W_\infty(A,B) \le V_\infty(f,g)$$

Questions

1 Tight Bound: Is the inequality

$$|\ell_1 - \ell_2| \le \frac{4}{\pi} \cdot (\kappa_1 + \kappa_2) \cdot \mathcal{F}(\gamma_1, \gamma_2)$$

- a tight bound for curves in \mathbb{R}^n for n > 3?
- 2 Simultaneous Scale Space: What happens if multiple agents are diffusing at the same time?
- 3 Understanding V_q : Does there exist a stability result for V_q ?

Questions

1 Tight Bound: Is the inequality

$$|\ell_1 - \ell_2| \leq \frac{4}{\pi} \cdot (\kappa_1 + \kappa_2) \cdot \mathcal{F}(\gamma_1, \gamma_2)$$

a tight bound for curves in \mathbb{R}^n for n > 3?

3 Understanding V_q : Does there exist a stability result for V_q ?

Thank You

- My adviser, Herbert Edelsbrunner
- My committee: Hubert Brey, John Harer, and Carlo Tomasi
- Those who read my prelim document and provided comments, including Michael Kerber and Amit Patel.
- Michelle Phillips (for making the graphics of dog and person)
- Everyone here!

Questions?

References

- David Cohen-Steiner and Herbert Edelsbrunner, Inequalities for the Curvature of Curves and Surfaces, Found. Comput. Math. 7 (2007), no. 4, 391–404.
- David Cohen-Steiner, Herbert Edelsbrunner, and John Harer, *Stability of persistence diagrams*, 2005, pp. 263–271.
- David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Yuriy Mileyko, *Lipschitz Functions have L_p-Stable Persistence*, Found. Comput. Math. **10** (2010), no. 2, 127–139.
- David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov, *Vines and Vineyards by Updating Persistence in Linear Time*, 2006, pp. 119–126.
 - Istvan Fáry, *Sur Certaines Inégalités Géométriques*, Acta Sci. Math. (Szeged) **12** (1950), no. aa, 117–124.