: «Tight-Binding & our" - who is overlap مرای ۱۰ ساستوی ما حاسیتوی انتهی است. H = Hatom + DU Hyn= Hatomyn+ Du(r) yn وقرق تیان وره ای است درنتیم سابع موج بلوخ اس Hoystar + riter = eik. Ry (1) いばれーしば تركس على از الماييستال التي ديو المست بورة تام موج مقبط بوخ را الج توكندراري، extraction = E eiker yriteril ~ > D ∪(1)≈ . Ψ_κ(γ) ≠ . عام موج را برها ایک بره برکست مط از اوریتال های این سط بهدیا ، به رابره برا می تواع سطو دها كردتيمًا ادرستال الحرك نسسة ولي سيران ما نزدك هستند Ynik = E eikir pir-ry (wanner-function) مِن مَل السِيّال على الرسيا: / Ψ total Ψ (T) dr = / Ψ (T) H atom Ψ (T) dr + / Ψ (T) Δ (T) Ψ (T) dr ان دورا ازهم کم کسنے > EIKI Z J Y " in eikir by (it-r) die Em T J Y in eikir by y it-r) die استعاده از تقریب (LCAO) ؛ (Linear Combination of atomic, Orchitals)

14(M)=(A ak+BBK) 10) αK(,) = BK), = · : επρ -- 10 $H_{\kappa}|\Psi(\kappa)\rangle = E|\Psi(\kappa)\rangle$ عبد مل من الركرد، رك () الراو دهن $\begin{pmatrix} \circ & \mathcal{J}_{AB}^{*}(\kappa) \\ \mathcal{J}_{(K)} & \circ \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = E \begin{pmatrix} A \\ B \end{pmatrix}$ fall = -t = c-ikte مه تبديل جه بدفع بدفع بدفع بدفع ماراد حال تنادر $E_{S}(K) = St(3 + 2\cos(\frac{\sqrt{3} k_{A}a}{2} + \frac{k_{y}a}{2}) + 2\cos(\frac{\sqrt{3} k_{A}a}{2} - \frac{k_{y}a}{2}) + 2\cos(k_{y}a)/2$ $= St(3 + 4\cos(\frac{\sqrt{3} k_{A}a}{2})\cos(\frac{k_{y}a}{2}) + 4\cos(\frac{k_{y}a}{2} - \frac{k_{y}a}{2}) + 2\cos(k_{y}a)/2$ $= St(3 + 4\cos(\frac{\sqrt{3} k_{A}a}{2})\cos(\frac{k_{y}a}{2}) + 4\cos(\frac{k_{y}a}{2} - \frac{k_{y}a}{2}) + 2\cos(k_{y}a)/2$ مرداستای مید الکترین است درست میداد الکترین است درست الکترین است الکترین است درست الکترین است درست الکترین است « برانای عدر موج های مقتلف بهای توان نوارهای ناند گرافینی متفاوی دان. دلاء ما در ب توارو کلیزو با انصراف X از n دروع به نفوذ توریمی به مکان مای داخل و ک مساحتار بالويؤار كالعن حالص : 3/4/ 25/-الم المحل حالم € کین وت اسباسی ح $E\phi_n = H_{nn}\phi_{n+} + H_{n,n-1}\phi_{n-1} + H_{n,n+1}\phi_{n+1}$ Φn= φ. e ikna & $E\phi_{o} = H_{nn}\phi_{o} + H_{n_{2n-1}}\phi_{o}e^{-ik_{\Delta}} + H_{n_{2n+1}}e^{ik_{\Delta}}\phi_{o}$

H tot = Hn,n+ Hn, n+1+Hn,n-1

				20							_			_		(2-		
	1	1	2	3	4	5	6					r':	2 - tc-1	43-	4-	5-	6. 7	
	,	E	-t	0	0	o	0						-66		•	0	0	
H ",,																		
	2 -	-t	E.	-t	0						2	0	0	o	0	•		
							-											
				,	,						7					_		
	3	0	-t	E'.	-t	0	0			Hn,n	.=		•	•	•		-	
	n=									h,n	-1			, iki	Δ.		1	
	4	0	0	+1	F.	_t	0				4		0	-te iki	•	•	۰	
				- 0	C	-0	٥											
	5	0	0		t-	E.	-t				5	0	•		•	0	-te	
	2	0	U	0	-0	C												ľ
	6	0	0	0	0	-t	E,				6	·	o	0	۵	۰	•	
	0 r																_	
Hnor				7			5	6				1 [E.	2	i+e-ik	3	4	5	6
		. 14	2+	2+	4+		5,	9			,	E.	-4(140) •	۰	0	0
	1	0	o	•		0	0	0					1140					
											2	-t(1+	cara)	E.	-t.'		_	
	2 3	teik	ca	ø	٥	•	٠							-	- 4	·		۰
		-(0	٥			•		1			3	ь		-t'	ϵ'	_t'()	+AKA	
											3			-t	C,	-00	+0).	١
	_		a	0	_t'	ika	1			H _{to} -	+ =							
	3	0	ů	0	-0	U	•	0		1,40	٠.,				1/1 -ik	Δ.		
	1+1							1			4	6		٠.	_t(1+ēik	`) E,	, -t	
	4	σ	0	0		6	0	0										
	- (**)										5	0		0	٠ _	4 –	-1	Ka
	5		U	•		0	0									C E	-t(1+ex))
	,										6			•				
		_				. +	teika				G	L		0	0	0 _	t (1+8)	E.
	6	٠,	٠	•		b -0		٦.										
						1:4												
$H_{tot} = H_{n,n+}H_{n,n+1} + H_{n,n-1}$																		
									5				· Wat well					