Machine Learning 2 – Group ESHG Assignment 07

Willi Gierke, Arik Elimelech, Mehmed Halilovic, Leon Sixt
 June 9, 2017

Exercise 1: Weighted Degree Kernels (30 P)

We would like to implement a classifier for genes sequences (a sequence of symbols $\{A,C,T,G\}$). The weighted degree kernel is proposed for such task and is defined as:

$$k(x,x') = \sum_{m=1}^{M} \beta_m \sum_{n=1}^{N-m+1} I(u_{m,n}(x) = u_{m,n}(x')).$$

where $u_{m,n}(x)$ is a string of length m which starts at position n in sequence x, and $\beta_m \geq 0$. The symbol I(.) denotes the indicator function which returns 1 if the input argument is true and 0 otherwise.

x AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTC	AACCATTTTGAG
#1-mers	111
#2-mers	H
#3-mers	1
TACCTAATTATCAAATTAAATTCACTCTCACTCTCATCCA	AACCCACAACTC

(a) Show that k is a positive semi-definite kernel. That is, show that

$$\sum_{i=1}^{K} \sum_{j=1}^{K} \alpha_i \alpha_j k(x_i, x_j) \ge 0$$

for all inputs x_1, \dots, x_K and choice of real numbers $\alpha_1, \dots, \alpha_K$.

- (b) Give a feature map associated to this kernel for the special case M=1.
- (c) Give a feature map associated to this kernel for the special case M=2 with $\beta_1=0$ and $\beta_2=1$.

Exercise 2: Programming (70 P)

Download the programming files on ISIS and follow the instructions.