

Demo-Logistic Regression

- We will be using the Heart Disease Dataset, with 303 rows and 13 attributes with a target column.
- In this example we will build a classifier to predict if a patient has heart disease of not.

	Α	7/B	i Pagat	D	Е	F	G	H 3/10	ra liPe	(a) J	K	L	М
1	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	target
2	63	1	3	145	233	1	0	150	0	2.3	0	0	1
3	37	1	2	130	250	0	1	187	0	3.5	0	0	1
4	41	0	1	130	204	0	0	172	0	1.4	2	0	1
5	56	1	1	120	236	0	1	178	0	0.8	2	0	1
6	57	0	0	120	354	0	1	163	1	0.6	2	0	1
7	57	1	0	140	192	0	1	148	0	0.4	1	0	1
8	56	0	1	140	294	0	0	153	0			16h 0	1
9	44	1	1	120	263	0	1	173	0	0	2	0	1
10	52	1	2	172	199	1	1	162	0	0.5	2	0	1
11	57	1	2	150	168	0	1	174	0	1.6	2	0	1
12	54	1	0	140	239	0	1	160	0	1.2	2	0	1
13	48	0	2	130	275	0	1	139	0	0.2	2	0	1
14	49	1	1	130	266	0	1	171	0	0.6	2	0	1
15	64	1	3	110	211	0	0	144	1	1.8	1	0	1
16	58	0	3	150	283	9 1		11.7	0	1	2	0	mia [[1
17	50	0	2	120	219	~ ° 0	SILLIF CI	158	0	1.6	1	-0	Sunam i
18	58	0	2	120	340	0	1	172	0	0	2	0	1
19	66	0	3	150	226	0	1	114	0	2.6	0	0	1
20	43	1	0	150	247	0	1	171	0	1.5	2	0	1

Loading the Heart dataset:

Having a glance at the dataset:

2	In [2]:	dataset

Having a look at the shape of the dataset:

2	In [31:	print(dataset.shape)	
3		_,,	White library	

	<u> Intellipaat</u>											Intellipact		
	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	target	
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	
1	37	1	2	130	250	0	1	187	0	3.5	0	0	1	
2	41	0	1	130	204	0	0	172	0	1.4	2	0	1	
3	56	1	1	120	236	0	1	178	0	0.8	2	0	1	
4	57	0	0	120	354	0		163	1	0.6	2	0	1	
5	57	1	0	140	192	0	1	148	0	0.4	1	0	1	
6	56	0	1	140	294	0	0	153	0	1.3	1	0	1	
7	44	1	1	120	263	0	1	173	0	0.0	2	0	1	
8	52	1	2	172	199	1	1	162	0	0.5	2	0	1	
9	57	1	2	150	168	0	1	174	0	1.6	2	0	1	
10	54	1	0	140	239	0	1	160	0	00 ¹ .2	2	0	1	

(303, 13)

Visualizing the change in the variables

In [4]: dataset['target'].value_counts()

1 165 0 138 Name: target, dtype: int64

IntelliPaat

Visualizing the change in the variables

In [5]: import matplotlib.pyplot as plt import seaborn as sns sns.countplot(x= 'target', data = dataset, palette = 'hls') plt.show()

Divide the data into independent and dependent variables:

```
In [6]: X = pd.DataFrame(dataset.iloc[:,:-1])
y = pd.DataFrame(dataset.iloc[:,-1])
```

ZntelliPaat

ZntelliPaat

Split the data into train and test set:

```
In [9]: # Import module to split dataset
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
```


Train the algorithm:

In [10]: # Import module for fitting
from sklearn.linear_model import LogisticRegression
Create instance (i.e. object) of LogisticRegression
logmodel = LogisticRegression()
logmodel.fit(X_train, y_train)

IntelliPaat

IntelliPaat

IntelliPaat

IntelliPaat

ZntelliPaat

IntelliPaat

ZntelliPaat

Predicting the test set results:

2 In [11]: y_pred = logmodel.predict(X_test)

<u> IntelliPaat</u>

IntelliPaat

Evaluating the Algorithm with ROC curve:

```
In [15]: from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
logit_roc_auc = roc_auc_score(y_test, logmodel.predict(X_test))
fpr, tpr, thresholds = roc_curve(y_test, logmodel.predict_proba(X_test)[:,1])
plt.figure()
plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' % logit_roc_auc)
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.savefig('Log_ROC')
plt.show()
```


ZntelliPaat