

Engenharia de Software

Tecnologia de Software

Aula 1: Visão Geral

Fábio Levy Siqueira levy.siqueira@usp.br

Quem sou eu?

- Formação
 - Engenheiro de Computação (Poli-USP)
 - Mestrado e Doutorado em Engenharia de Software (Poli-USP)
- Professor
 - PECE desde 2006
 - Poli-USP (tempo parcial) desde 2014
- Consultor
- Áreas de pesquisa
 - Engenharia de requisitos
 - Métodos ágeis
 - Engenharia dirigida por modelos

Avaliação

- CritérioMédia = Exercícios + Trabalho
 - Exercícios
 - Feitos em aula (em geral, em grupo)
 - Trabalho
 - o Texto individual sobre um tema/abordagem de ES
 - (Mais detalhes no AlunoWeb)

Estrutura do curso

Aula	Data	Aula	Exercício
1	24/02	Visão geral	
2	03/03	Processos de software	
3	10/03	Engenharia de requisitos	X
4	17/03	Arquitetura e projeto	X
5	24/03	Implementação e teste	X
6	31/03	Métodos ágeis	
7	07/04	Gerência de projetos	X
8	14/04	Manutenção	X
9	28/04	Qualidade de software	X
10	??/??	Dívida técnica e pesquisa em ES	

Bibliografia básica

- BOURQUE, P.; FAIRLEY, R. E (eds.). SWEBOK: Guide to the Software Engineering Body of Knowledge. v.3. IEEE Computer Society. 2014.
 - https://www.computer.org/education/bodies-of-knowledge/software-engineering
- PFLEEGER, S. L.; ATLEE, J. M. **Software Engineering: Theory and Practice**. 4. ed. Prentice Hall, 2010.
- PRESSMAN, R.; MAXIM, B. Engenharia de Software: Uma Abordagem
 Profissional. 8. ed. AMGH, 2016.
- SOMMERVILLE, I. Engenharia de Software. 10. ed. Pearson, 2019.

Visão Geral

Engenharia de Software

- O que é Engenharia de Software?
 - Engenharia (IEEE 610, 1990)

A aplicação de uma abordagem <u>sistemática</u>, <u>disciplinada e quantificada</u> para estruturas, máquinas, produtos, sistemas ou processos.

• Software (IEEE 610, 1990)

Programas de computador, procedimentos e possivelmente a documentação associada e os dados relativos à operação de um sistema computacional.

Engenharia de Software

- O que é Engenharia de Software?
 - Definição (IEEE 610, 1990)
 - A. A aplicação de uma abordagem <u>sistemática</u>, <u>disciplinada e quantificada</u> para o desenvolvimento, a operação e a manutenção do software, isto é a <u>aplicação de engenharia ao software</u>
 - B. O estudo de abordagens como definido em (A)
 - 1º uso: 1968 em uma conferência da OTAN

- Ubiquidade do Software
- Mercado de TI (ABES, 2020)
 - Mundial: US\$ 2,368 trilhões
 - Brasil: US\$ 43 bilhões (10° mercado doméstico)
 - o Software: US\$ 10,056 bilhões
 - 5.519 empresas de software e produção de software

- Complexidade crescente (fevereiro 2021)
 - Kernel do Linux
 - MySQL
 - Firefox

Dificuldade em desenvolver software

(Standish Group, 1994; 2015)

Algumas razões para projetos de software falharem

- Custo da baixa qualidade de software nos EUA em 2020
 - US\$ 2,08 trilhões (estimativa)
 - Falhas operacionais de software: US\$ 1,56 trilhões
 - Envolve falhas de segurança
 - o Projetos de software sem sucesso: US\$ 0,26 trilhões

(CISC, 2021)

- Problemas causados por defeitos de software
 - Roubo de informações de crédito da Equifax (2017)
 - 143 milhões de registros roubados por Hackers
 - 50% dos norte americanos
 - WannaCry (2017)
 - o Ransomware: 230.000 computadores em 150 países
 - Impacto de US\$ 4 bilhões
 - Vulnerabilidade do Windows (já corrigida)
 - SISU (2019)
 - Instabilidade e usuários alegam acesso a dados de outros candidatos
 - 500.000 usuários simultâneos (?!?)

- Problemas causados por defeitos de software
 - Airbags da Nissan (2017)
 - 1 milhão de carros
 - Airbag não identifica adultos no banco de passageiro (e não infla)
 - 2 acidentes identificados
 - Boeing (2019)
 - o Defeito no software de simulador de voo: 737 MAX
 - Incapaz de reproduzir algumas situações de voo
 - o 300 mortes

- Importância da manutenção
 - 49% a 75% do custo do software é manutenção

(Grubb e Takang, 2003)

- Alguns problemas
 - Equipe diferente da de desenvolvimento (em geral)
 - Turnover da equipe de manutenção
 - Complexidade do Software
- Exemplo: Bug do milênio
 - Custo de correção estimado em US\$ 400 bilhões (corrigido)

(http://www.computerworld.com/s/article/9142555)

- Custo de corrigir defeitos aumenta com o tempo
 - Média do custo da indústria para corrigir um defeito

Abordagens de ES tendem a melhorar essa curva

- O que tem de diferente no software?
 - Não é um produto como outro?
 - O projeto de software não é similar/igual a outros projetos?

- Produto intangível
 - Não desgasta!
 - o Leis físicas e propriedade dos materiais não são relevantes
 - Hardware

- Produto intangível
 - Software

- Desenvolvido e não manufaturado
 - Necessidade de criatividade e disciplina
 - o Projeto e implementação tem uma arte envolvida
 - E as fábricas de software?
- Maioria do software é personalizado
 - Dificuldade de reuso
 - Frameworks e bibliotecas
 - Software de linha de produto
 - o (Forma mais geral do *software de prateleira*)

- Falta de uma "Teoria fundamental"
 - Entendimento da relação entre processo e produto
 - o Como desenvolver um determinado tipo de software?
 - Tipos de Software (Pressman e Maxim, 2016)
 - Software de sistemas
 - Ex.: drivers, SO
 - Software de aplicação
 - Ex.: automação
 - Software científico
 - Ex.: análise de DNA
 - Software embarcado
 - Ex.: impressora e TV

- Software de linha de produto
 - *Ex.*: pacote Office, ERPs
- Aplicações Web / Mobile
 - Ex.: loja virtual
- Software de IA
 - Ex.: jogos, reconhecimento de padrões

- Falta de uma "Teoria fundamental"
 - Diversidade de processos e métodos
 - Dificuldade de fazer previsões antes de construir o software
 - Iniciativas
 - Essence Kernel and Language for Software Engineering Methods (SEMAT)
 - SWEBOK (IEEE)
 - o Padrões (ISO e IEEE)
 - Código de Ética (ACM)
 - o Certificação (IREB, IIBA, Scrum Alliance, SAFe etc.)
 - Currículos de computação (ACM)
 - Diversas conferências e periódicos

- Evolução rápida de tecnologias
 - Necessidade de treinamento constante
 - Dificuldade de consolidar o corpo de conhecimento
 - Distância entre teoria e prática
- Aparente facilidade de fazer mudanças
 - Necessidade de mudanças!

- Falta de fronteiras
 - Dificuldade de distribuir o trabalho
 - Dificuldade de <u>comunicação</u>
 - Problemas para gerenciar a equipe

Mitos

- O único produto é o software
 - Necessidade de manuais, modelos, planos, etc.
 - o ...manutenção...
- Engenharia de Software é burocrática
 - …agilidade ≠ cada um faz o que quer…
- Não é possível <u>avaliar</u> o software antes de construí-lo
 - Controle e garantia da qualidade

Mitos

- "Bala de prata" da Engenharia de Software
 - Novo processo / Ferramenta / Método resolve tudo!
 - Não há uma bala de prata!
- Aumentar a equipe ajuda a terminar o projeto
 - Lei de Brooks

Adicionar pessoas a um projeto de software atrasado torna-o mais atrasado.

Mitos

- O trabalho acaba quando se entrega o software
 - E a manutenção?
- Terceirizar acaba com a preocupação
 - Acompanhamento é ainda necessário
 - ...nem sempre é mais barato terceirizar...

Desenvolvimento de software

- Na prática: como <u>desenvolver</u> software?
 - É só definir os requisitos e implementar?
 - o "Método ágil"

Por que não? O que impede / dificulta isso?

Desenvolvimento de software

Alguns fatores

Referências

- ABES. Mercado Brasileiro de Software: Panorama e Tendências. ABES, 2020.
- CISQ. The Cost of Poor Software Quality in the US: A 2020 Report. 2021.
- FORBES TECHNOLOGY COUNCIL. **14 Common Reasons Software Projects Fail (And How To Avoid Them)**. Disponível em: https://www.forbes.com/sites/forbestechcouncil/2020/03/31/14-common-reasons-software-projects-fail-and-how-to-avoid-them. 2020.
- GRUBB, P.; TAKANG, A. A. Software Maintenance: Concepts and Practice. 2. ed. World Scientific Pub Co, 2003.
- IEEE. IEEE Standard Computer Dictionary. IEEE 610. IEEE, 1990.
- KRUCHTEN, P. **Putting the "engineering" into "software engineering"**. Anais da Australian Software Engineering Conference. IEEE, 2004.
- STANDISH GROUP. The Chaos Report. Standish Group, 1994.
- STANDISH GROUP. The Chaos Report. Standish Group, 2015.