III. CLAIM AMENDMENTS

- 1. (Currently Amended) A method of loading at least one file $(F_{\frac{1}{2}})$ or a part ("clip") $-(C_{\frac{1}{2}})$ thereof from a unit -(FU) comprising files $-(F_{\frac{1}{2}})$ or clips $-(C_{\frac{1}{2}})$ thereof over an interface -(IF) to a data-processing unit -(DU), the method comprising:
 - determining joint probabilities— (JP_{\pm}) of at least two files (F_{\pm}) —or clips— (C_{\pm}) —thereof, which joint probabilities express probabilities with which one moves to said files (F_{\pm}) —or clips— (C_{\pm}) —thereof:

characterized by

- determining energy consumptions (W_{\pm}) —caused by the loading of said at least two files— (F_{\pm}) or clips— (C_{\pm}) thereof over the interface—(IF);
- forming a loading order for said files— (F_{\pm}) or clips— (C_{\pm}) thereof as a function of said joint probabilities— (JP_{\pm}) ;
- determining a value for maximum energy consumption—(EC_{MAX}), the value expressing the greatest allowed energy consumption caused by said loading; and
- loading files— (F_\pm) or clips— (C_\pm) thereof in said loading order and determining total energy consumption— (ΣW_\pm) caused by the loading until the value of said total energy consumption (ΣW_\pm) —exceeds the value of the maximum energy consumption (EC_{MAX}) .

2. (Currently Amended) A method according to claim 1,

characterized by the method further comprising:

determining loading probabilities— (LP_{\pm}) of said files— (F_{\pm}) or clips— (C_{\pm}) thereof as a function of said joint probabilities (JP_{\pm}) .

3. (Currently Amended) A method according to claim 2,

characterized by the method further comprising:

determining loading probability functions— (fLP_{\pm}) of said files (F_{\pm}) —or clips thereof as a function of the loading probabilities— (LP_{\pm}) .

4. (Currently Amended) A method according to claim 2,

characterized by the method further comprising:

determining loading probability functions— (fLP_{\pm}) of said files (F_{\pm}) —or clips— (C_{\pm}) thereof as a function of the loading probabilities— (LP_{\pm}) and the energy consumptions— (W_{\pm}) caused by the loading.

5. (Currently Amended) A method according to any one of the preceding claimsclaim 1,

characterized bythe method comprising:

- redetermining the value of said energy consumptions— (W_{\pm}) , maximum energy consumption— $(EC_{MP,\pm})$ —and joint probabilities (JP_{\pm}) —periodically.
- 6. (Currently Amended) A method according to any one of the preceding claimsclaim 1,

characterized by the method comprising:

redetermining the values of said maximum energy consumption $\frac{\text{(EC}_{\text{MAX}})}{\text{according to the interface}}$ in question.

7. (Currently Amended) A method according to claim 35 or 6,

characterized by the method comprising:

- updating the values of said loading probabilities— (LP_\pm) and loading probability functions— (fLP_\pm) as a response to said determination.
- 8. (Currently Amended) A method according to any one of the preceding claimsclaim 1,

characterized by the method comprising:

loading at least one file— (F_{\pm}) or a clip— (C_{\pm}) thereof over said interface—(IF) alternatively from a server—(S) to a terminal—(T) or from a first memory component—(100) to a second memory component—(102).

9. (Currently Amended) A method according to any one of the preceding claims

characterized by the method comprising:

- loading at least one file (F_{\pm}) or a clip- (C_{\pm}) thereof over said interface-(IF) alternatively from a first terminal- (T_{\pm}) to a second terminal- (T_{\pm}) over a local network interface-(LIF).
- 10. (Currently Amended) A method according to any one of the preceding claimsclaim 1,

characterized by the method comprising:

- loading at least one file— (F_{\pm}) or a clip— (C_{\pm}) thereof from a mass memory component—(830)—to another memory component—(836)—over an internal interface.
- 11. (Currently Amended) A method of loading at least one file (F_{\pm}) —or a clip (C_{\pm}) —thereof from a unit (FU)—comprising files (F_{\pm}) —or clips (C_{\pm}) —thereof over an interface (IF)—to a data-processing unit—(DU), the method comprising:
 - determining joint probabilities— (JP_{\pm}) of at least two files (F_{\pm}) —or clips— (C_{\pm}) thereof, which joint probabilities express probabilities with which one moves to said files (F_{\pm}) —or clips— (C_{\pm}) thereof:

characterized by

- forming a loading order for said files— (F_{\pm}) or clips— (C_{\pm}) thereof as a function of said joint probabilities— (JP_{\pm}) ;
- determining a threshold value—(TH), which expresses a value, which the value determined as a function of the joint probability of the file—(F_{\pm}) or a clip—(G_{\pm}) thereof must at least reach in order for the file—(F_{\pm}) or a clip—(G_{\pm}) thereof to be loaded; and
- loading files— (F_\pm) or clips— (C_\pm) thereof in said loading order and comparing the values determined as functions of the joint probabilities of the files— (F_\pm) or clips— (C_\pm) thereof with the threshold value—(TH) until the value determined as the function of the joint probability— (JP_\pm) of the file— (F_\pm) or a clip— (C_\pm) thereof is smaller than the threshold value (TH).
- 12. (Currently Amended) A system for loading at least one file (F_{\pm}) or a clip (C_{\pm}) thereof from a unit (FU) comprising files (F_{\pm}) or clips (C_{\pm}) thereof over an interface (IF) to a data-processing unit (DU), wherein the system comprises comprising:
 - means for determining joint probabilities— (JP_{\pm}) of at least two files— (F_{\pm}) or clips— (C_{\pm}) thereof, which joint probabilities express probabilities with which one moves to said files— (F_{\pm}) or clips thereof (C_{\pm}) -r;

characterized in that the system comprises

- means for determining the energy consumption (W_{\pm}) —caused by the loading of said at least two files (F_{\pm}) —or clips (C_{\pm}) —thereof;
- means for determining the loading order of said files (F_{\pm}) —or clips (C_{\pm}) —thereof as a function of said joint probabilities (JP_{\pm}) ;
- means for determining the value of maximum energy consumption (EC_{MAX}), which expresses the greatest allowed energy consumption caused by said loading; and
- means for loading files (F_{\pm}) —or clips (C_{\pm}) —thereof and determining the total energy consumption (ΣW_{\pm}) —caused by the loading of the files (F_{\pm}) —or clips (C_{\pm}) —thereof, the means being arranged to load files (F_{\pm}) —or clips (C_{\pm}) —thereof until the value of the total energy consumption (ΣW_{\pm}) exceeds the value of the maximum energy consumption— (ΣW_{\pm}) .
- 13. (Currently Amended) A system according to claim 12, wherein

characterized in that

- at least part of said means is executed as a program code of a driver—(DR) comprised by the system.
- 14. (Currently Amended) A device for loading at least one file (F_{\pm}) or a clip— (C_{\pm}) thereof from a unit—(FU) comprising files (F_{\pm}) or clips— (C_{\pm}) thereof over an interface—(IF), wherein the device comprisesing:

means for determining joint probabilities— (JP_{\pm}) of at least two files— (F_{\pm}) or clips— (C_{\pm}) thereof, which joint probabilities express probabilities with which one moves to said files— (F_{\pm}) or clips— (C_{\pm}) thereof:

characterized in that the device comprises

- means for determining the energy consumptions— (W_{\pm}) caused by the loading of said at least two files— (F_{\pm}) or clips— (C_{\pm}) thereof;
- means for determining the loading order of said files— (F_{\pm}) or clips— (C_{\pm}) thereof as a function of said joint probabilities (JP_{\pm}) ;
- means for determining the value of maximum energy consumption $\frac{(EC_{MAX})}{(EC_{MAX})}$, which expresses the greatest allowed energy consumption caused by said loading; and
- means for requesting files— (F_{\pm}) or clips— (C_{\pm}) thereof and determining the total energy consumption— (ΣW_{\pm}) caused by the loading, the means being <u>arranged</u>—<u>configured</u> to load files (F_{\pm}) or clips— (C_{\pm}) thereof until the value of said total energy consumption— (ΣW_{\pm}) exceeds the value of the maximum energy consumption— (ΣW_{\pm}) .
- 15. (Currently Amended) A device for forming the loading order of at least two files— (F_{\pm}) or clips— (C_{\pm}) thereof for loading functionality performed over an interface—(IF), wherein

characterized in that the device comprises:

means for determining the energy consumption— (W_{\pm}) caused by the loading of said at least two files— (F_{\pm}) or clips— (C_{\pm}) thereof, and

means for determining the loading order of said files— (F_{\pm}) or clips— (C_{\pm}) thereof as a function of said joint probabilities (JP_{\pm}) .

16. (Currently Amended) A device for controlling the loading of at least two files $(F_{\frac{1}{2}})$ —or clips— $(C_{\frac{1}{2}})$ thereof performed over an interface—(IF), wherein

characterized in that the device comprises:

means for determining the value of maximum energy consumption $\frac{(EC_{MAX})}{(EC_{MAX})}$, which expresses the greatest allowed energy consumption caused by said loading, and for determining the total energy consumptions $\frac{(\Sigma W_{\pm})}{(E_{\pm})}$ caused by the loading of said files $\frac{(F_{\pm})}{(F_{\pm})}$ or clips $\frac{(C_{\pm})}{(E_{\pm})}$ thereof until the value of said total energy consumption $\frac{(\Sigma W_{\pm})}{(EC_{MAX})}$.

17. (Currently Amended) A device according to any of claims 14 - 16claim 14,

characterized in that the device further comprises:

proxy functionality, which is <u>configured</u> to transmit at least one file (F_{\pm}) —or a clip (C_{\pm}) —thereof to another

data-processing unit $\frac{(DU)}{}$ as a response to a request from the data-processing unit $\frac{}{}$ $\frac{}}{}$ $\frac{}{}$ $\frac{$

18. (Currently Amended) A software product for loading at least one file— (F_{\pm}) or a clip— (C_{\pm}) thereof from a unit—(FU) comprising files— (F_{\pm}) or clips (C_{\pm}) —thereof over an interface—(IF) to a data-processing unit—(DU), wherein the software product comprisesing:

a software code for determining joint probabilities— (JP_{\pm}) of at least two files— (F_{\pm}) or clips— (C_{\pm}) thereof, with which probabilities one moves to said files— (F_{\pm}) or clips— (C_{\pm}) thereof,

characterized in that said software product comprises:

- a software code for determining the energy consumptions $\overline{(W_{\pm})}$ caused by said at least two files $\overline{(F_{\pm})}$ or clips $\overline{(G_{\pm})}$ thereof,
- a software code for forming the loading order of said files (F_{\pm}) —or clips (C_{\pm}) —thereof as a function of said joint probabilities— (JP_{\pm}) ;
- a software code for determining the value of the maximum energy consumption—(ECMAN), which expresses the greatest allowed energy consumption caused by said loading; and
- a software code for loading files— (F_{\pm}) or clips— (C_{\pm}) thereof and determining the total energy consumption— (ΣW_{\pm}) —caused by the loading of said files— (F_{\pm}) —or clips— (C_{\pm}) —thereof until

the value of said total energy consumption— (ΣW_{\pm}) exceeds the value of the maximum energy consumption— (EC_{MAX}) .

19. (Currently Amended) A software product for forming the loading order of at least two files— (F_{\pm}) or clips— (C_{\pm}) thereof for loading functionality to be performed over an interface (IF), wherein

characterized in that said software product comprises:

- a software code for determining the energy consumptions— (W_{\pm}) of said at least two files— (F_{\pm}) or clips— (C_{\pm}) thereof; and
- a software code for forming the loading order of said files (F_{\pm}) —or clips (C_{\pm}) —thereof as a function of said joint probabilities— (JP_{\pm}) .
- 20. (Currently Amended) A software product for controlling the loading of at least two files— (F_{\pm}) or clips— (C_{\pm}) thereof to be performed over an interface—(IF), wherein

characterized in that the software product comprises:

- a software code for determining the value of the maximum energy consumption— (ECMAX), which expresses the greatest allowed energy consumption caused by said loading; and
- a software code for loading files— (F_{\pm}) or clips— (C_{\pm}) thereof and determining the total energy consumption— (ΣW_{\pm}) caused by the loading of said files— (F_{\pm}) or clips— (C_{\pm}) thereof until

the value of said total energy consumption (ΣW_{\pm}) exceeds the value of the maximum energy consumption (EC_{MAX}) .

21. (New) A method according to claim 4, the method comprising:

updating the values of said loading probabilities and loading probability functions as a response to said determination.