1. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-\bar{x} $
162	6.5	6.5
158	2.5	2.5
153	-2.5	2.5
157	1.5	1.5
158	2.5	2.5
145	-10.5	10.5
======	=======	=======
$\sum x = 933$		$\sum x - \bar{x} = 26$
$\bar{x} = 155.5$		

We are ready for the formula.

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{26}{6}$$

2. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
55	2.5	6.25
51	-1.5	2.25
55	2.5	6.25
49	-3.5	12.25
=======	======	=======
$\sum_{\bar{X}} x = 210$ $\bar{x} = 52.5$		$\sum (x - \bar{x})^2 = 27$

We are ready for the formula.

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{27}{4 - 1}}$$
$$= \sqrt{9}$$