EA721 - Princípios de Controle e Servomecanismos

20. Semestre de 2003 - 3a. Prova - Prof. Paulo Valente

RA: Nome: Ass.:

01. Considere o sistema

$$\ddot{x} = u$$
, $x(0) = 1$, $\dot{x}(0) = 0$.

Obtenha a representação de estados na forma $\dot{x}=Ax+Bu$, y=Cx, definindo como variáveis de estado e de saída $x_1=x$, $x_2=\dot{x}$ e $y=x_1$. Determine $y(t),\ t\geq 0$, supondo que u(t)=1(t) (degrau unitário).

2. Considere o sistema representado pela equação de estado

$$\dot{x} = Ax + Bu = \begin{bmatrix} 1 & -2 \\ 10 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u.$$

Assuma que a entrada é do tipo

$$u = -Kx$$
, $K = [k_1 \quad k_2]$,

em que k_1 e k_2 são os ganhos de realimentação de estados do sistema. Determine a região do plano $k_1 \times k_2$ na qual o sistema em malha fechada é assintoticamente estável.

3. Considere o sistema de terceira ordem

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -3 & -5 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u.$$

Projete um controlador por realimentação de estados, isto é, determine a matriz de ganhos de realimentação $K=\begin{bmatrix}k_1&k_2&k_3\end{bmatrix}$, de tal forma que o polinômio característico do sistema em malha fechada seja

$$(s^2 + 2\xi\omega_n s + \omega_n^2)(s + 3\xi\omega_n),$$

com ξ e ω_n tais que a máxima sobre-elevação ($M_p=e^{(-\xi/\sqrt{1-\xi^2})\pi}\times 100$) e o tempo de acomodação ($t_s=4/(\xi\omega_n)$) do sistema em malha fechada sejam inferiores a 5% e 1 s, respectivamente. Observação: não use a fórmula canônica de Ackermann.

4. Considere o sistema

$$y^{(3)} + 6\ddot{y} + 11\dot{y} = 6u.$$

Obtenha a representação do sistema na forma $\dot{x}=Ax+Bu,\,y=Cx,$ definindo como variáveis de estado $x_1=y$ (saída do sistema), $x_2=\dot{y}$ e $x_3=\ddot{y}$. Determine se o sistema é a) controlável, b) observável e c) assintoticamente estável, justificando suas conclusões.

5. Considere o sistema de terceira ordem

$$\dot{x} = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 0 & -3 \\ 0 & 1 & -5 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} u, \quad y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} u.$$

Projete um observador de ordem completa, isto é, determine a matriz de ganhos de observador $L = \begin{bmatrix} l_1 & l_2 & l_3 \end{bmatrix}^T$, de forma a alocar todos os pólos do observador em -3. Observação: não use a fórmula canônica de Ackermann.