Appendix: Can LLMs Effectively Simulate Human Learners? Teachers' Insights from Tutoring LLM Students

Table of Contents

ΑĮ	opendix: Can LLMs Effectively Simulate Human Learners? Teachers'	
In	sights from Tutoring LLM Students	1
1	Participant Information	9
2	Interview Questions	:
3	Statistical Tests on MathDial	6

1 Participant Information

Table 1: Participant demographics, teaching experience, and the number of dialogues with LLM students in MathDial [3].

ID	Age	Gender	Country of Resi- dence		tSubjects	Teaching Experi- ence	MathDial Dia- logues
							Count
P01	40–49	Female	UK	5–9	Primary school subjects, including mathematics	More than 15 years	50
P02	40-49	Female	Canada	10-14	Mathematics	11–15 years	40
P03	30-39	Female	UK	0-9	Primary school subjects, including mathematics	· ·	100
P04	40–49	Female	UK	5–9	Primary school subjects, including mathematics		70
P05	30-39	Female	UK	5–17	Mathematics, computer science, literature	U	19
P06	40–49	Female	UK	18+	Environmental science	More than 15 years	35
P07	20-29	Female	Canada	$5-14, \\ 18+$	Mathematics, chemistry	v	30
P08	40-49	Male	UK	18+	Mathematics (applied statistics)	More than 15 years	20
P09	50-59	Female	UK	10–17	Mathematics, English as a foreign language, literature	More than	25
P10	20-29	Female	Canada	5–17	Biochemistry, English as a foreign language	1–3 years	10
P11	50-59	Female	Canada	5–17	Mathematics, computer science	More than 15 years	10
P12	40-49	Male	UK	5-14	Primary school subjects,	U	5

2 Interview Questions

Table 2: Interview questions and their connection to preceding MathDial analysis and theoretical frameworks: Community of Inquiry (CoI) [2] and Scaffolding [6]

and theoretical frameworks. Community of inquiry (Co	1) [2] and Scanolding [0]
Qualitative and Quantitative Questions	Rationale
Question: In MathDial, how attentive were the students? Probes: Did it seem like the student was following what you were saying? If not, what were the examples when the student seemed like they didn't follow 1 you? Were there cases when the student contradicted themselves? How do these cases compare to your real life experience? Evaluation: How attentive the MathDial students felt like? 1 (Not at all) - 5 (Extremely)	Some participants mentioned in the feedback field that the student's messages were repetitive CoI framework: Social
 Question: How engaged are your students in math problem discussions? Probes: How much do they participate in conversation? How does it compare with the dialogues you had 2 in the study? Evaluation: How engaged were the MathDial students? 1 (Much less than your students) - 5 (Much more than your students) 	MathDial analysis: Compared to human- human educational datasets, the student in MathDial talks much more Col framework: Social presence
Question: Which interactions with MathDial students were frustrating for you? Probes: How similar were they to the real life teach-3 ing? How do you deal with these? Evaluation: How often were MathDial interactions	to have lower sentiment scores in conversations where the student inter-
Question: Did you adjust your teaching strategies in	often reveal part of the solution in conversations with non-typical interactions

work: Scaffolding theory

and Teaching presence

from CoI

ing strategies in MathDial?

1 (Not at all) - 5 (Extremely)

Table 2: Interview questions and their connection to preceding MathDial analysis and theoretical frameworks: Community of Inquiry (CoI) [2] and Scaffolding [6]

	and theoretical nameworks. Community of inquiry (Co	i) [2] and scanoraing [0]
	Qualitative and Quantitative Questions	Rationale
5	Question: What feedback do you give your students? Probes: How do they typically react to it? Were the student's reactions to feedback in MathDial similar to the typical reaction of your students? Evaluation: How realistic were students' reactions to feedback in MathDial? 1 (Not at all) - 5 (Extremely)	MathDial analysis: There was a cap on the number of messages teachers could send, so the feedback might have been rather limited Col framework: Teaching presence
6	Question: What emotions are common to your students due to math confusion? Probes: How closely was it represented in the Math-Dial study? How do you behave when the students convey emotions you listed? Evaluation: How realistic were students' emotions in MathDial? 1 (Not at all) - 5 (Extremely)	timent score of student ut- terances is distributed in- dependently of how typ- ical the student interac-
7	Question: What was the common reason of confusion in MathDial? Probes: How does it align with most common issues your students have? Evaluation: How realistic was students' confusion in MathDial? 1 (Not at all) - 5 (Extremely)	Some teachers assessed student's confusion as
8	Question: In real life teaching, how do you ensure the concept understanding? Probes: What do you usually do after the correct solution was found? Do you continue the problem discussion? If yes, how? Evaluation: It was easy to ensure understanding of students in MathDial 1 (Strongly disagree) - 5 (Strongly agree)	MathDial analysis: Mainly the teachers stopped the dialogue after the student has found the correct solution CoI framework: Cognitive presence

1 (Strongly disagree) - 5 (Strongly agree)

Table 2: Interview questions and their connection to preceding MathDial analysis and theoretical frameworks: Community of Inquiry (CoI) [2] and Scaffolding [6]

Qualitative and Quantitative Questions Rationale	
Question: In real life teaching, how do you handle overcomplicated solutions? Probes: For example, do you let them explore their solution further? Or do you try to guide them to an easier solution? Evaluation: How often were MathDial solutions overcomplicated? 1 (Never) - 5 (Almost always) MathDial LLM students times used more methods (e.g. ing variables) without them Col framework tive presence	e complex introduc- when the be solved

3 Statistical Tests on MathDial

Table 3: Results of statistical tests comparing distribution of numerical features in typical and non-typical interactions in MathDial. U-statistic [5] and p-value adjusted using Benjamini-Hochberg procedure [1] are provided, with significant results (adjusted p-value < 0.05) marked with an asterisk (*).

(a) Teacher-annotated and sentiment features

Feature	U-statistic	Adjusted p-value
Teacher-assessed cognition of LLM student	;	
Confusion authenticity		$7.47e-145^*$
Step of first error in solution	74669	7.02e-01
Counts of teacher-annotated teacher moves	8	
Revealing parts of solution	876991	6.93e-36*
Constraining to make progress	790520	3.75e-12*
Talking casually	600816	7.49e-04*
Generalizing aspects of problem	721417	3.52e-03*
Teacher sentiment scores		
Mean	605884	$3.52e-03^*$
Median	605894	$3.52e-03^*$
Minimum	606569	$3.52e-03^*$
Standard deviation	620603	3.62e-02*
Maximum	631284	1.46e-01
LLM student sentiment scores		
Minimum	615997	$1.77e-02^*$
Maximum	690558	2.97e-01
Mean	653972	7.41e-01
Median	655628	7.98e-01
Standard deviation	661922	8.96e-01

(b) Interaction and problem-related metrics

Feature	U-statistic	Adjusted p-value
Conversation characteristics		
Number of turns	920056	$5.24\mathrm{e}\text{-}46^*$
Conversation index	685230	4.61e-01
Ground-truth solution characteristics		
Number of words	638996	3.04e-01
Number of steps	650522	6.35 e-01
Math problem characteristics		
Order of the problem in session	648169	6.81e-01
Identifier	652030	7.02e-01
Sentiment score	660511	8.98e-01
Number of words	669497	8.98e-01
Arithmetic operation percentages in solution	on	
Addition	701925	7.25e-02
Subtraction	676748	6.73e-01
Multiplication	652588	6.73 e-01
Division	663954	9.77e-01

Table 4: Results of statistical tests comparing distribution of categorical features in typical and non-typical interactions in MathDial. χ^2 statistic [4] and p-value adjusted using Benjamini-Hochberg procedure [1] are provided, with significant results (adjusted p-value < 0.05) marked with an asterisk (*).

Feature	χ^2 statistic Ad	ljusted p-value		
Teacher-assessed cognition of LLM student				
Correctness of final answer	479.83	$1.28e-103^*$		
Error category (calculation or conceptual)	6.38	6.35 e-01		
Teacher and LLM student data				
Teacher identifier	358.66	$3.74e-33^*$		
Student's name (from prompt)	40.82	3.55e-02*		
Student's math struggle type (from prompt)	9.56	1.97e-01		
Student's gender (from prompt)	0.81	6.35 e-01		
Topics mentioned in math problem				
Time	0.15	8.68e-01		
Percent	0.09	8.96e-01		
Money	0.07	8.96e-01		
Age	0.03	8.96e-01		
Fractions	0.04	8.96e-01		

Bibliography

- [1] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological) **57**(1), 289–300 (1995)
- [2] Garrison, D.R.: E-learning in the 21st century: A community of inquiry framework for research and practice. Routledge (2016)
- [3] Macina, J., Daheim, N., Chowdhury, S.P., Sinha, T., Kapur, M., Gurevych, I., Sachan, M.: Mathdial: A dialogue tutoring dataset with rich pedagogical properties grounded in math reasoning problems. arXiv preprint arXiv:2305.14536 (2023)
- [4] McHugh, M.L.: The chi-square test of independence. Biochemia medica 23(2), 143–149 (2013)
- [5] McKnight, P.E., Najab, J.: Mann-whitney u test. The Corsini encyclopedia of psychology pp. 1–1 (2010)
- [6] Reiser, B.J.: Scaffolding complex learning: The mechanisms of structuring and problematizing student work. Journal of the Learning Sciences 13(3), 273–304 (2004). https://doi.org/10.1207/s15327809jls1303_2