Homework No. 1 – Vector Analysis Engineering Electromagnetics

- 1. If $\vec{A} = 4\hat{a}_x + 4\hat{a}_y 2\hat{a}_z$ and $\vec{B} = 3\hat{a}_x 1.5\hat{a}_y + \hat{a}_z$, find the angle (< 90°) between \vec{A} and \vec{B} .
- 2. (a) Find an equation for the plane that is perpendicular to the vector $\vec{A} = 2\hat{a}_x + 3\hat{a}_y + 6\hat{a}_z$ and passes through the end point (from the origin) of the vector $\vec{B} = \hat{a}_x + 5\hat{a}_y + 3\hat{a}_z$.
 - (b) What is the shortest distance from the origin to the plane?
- 3. If $\vec{A} = 10\hat{a}_{\rho}/\rho + 5\hat{a}_{\phi} + 2\hat{a}_{z}$ and $\vec{B} = 5\hat{a}_{\rho} + \cos\phi \,\hat{a}_{\phi} + \rho\hat{a}_{z}$,
 - (a) Find $\vec{A} \cdot \vec{B}$ at the point x = 1, y = 1, z = 1.
 - (b) Find $\vec{A} \times \vec{B}$ at the point x = 1, y = 1, z = 1.
- 4. Given the following vector in Cartesian coordinates, convert it to cylindrical coordinates. $\vec{A}=4\hat{a}_x+4\hat{a}_y-2\hat{a}_z$
- 5. Consider the following field: $\vec{A} = (x^2 + y^2)^{-1}(x\hat{a}_x + y\hat{a}_y)$
 - (a) Express the field in cylindrical coordinates. Note, all components must be from the cylindrical coordinate system.
 - (b) Evaluate \vec{A} at $\rho = 2$, $\phi = 0.2\pi$, and z = 5. Express this vector in both cylindrical and rectangular coordinate systems.