Metodi e Modelli Matematici per l'Intelligenza Artificiale

Giovanni Norbedo

2024-2025

Indice

Numeri complessi	
Numeri complessi in forma trigonometrica	
Numeri complessi in forma esponenziale	
Potenze e radici di numeri complessi	
Esponenziale complesso	
Funzioni trigonometriche complesse	
Logaritmo complesso	
Funzioni complesse di variabile reale	
Funzioni periodiche	
Definizione funzione periodica	
Osservazione	
Notazione	
Osservazione	
Energia di una funzione	
Lemma	
Armoniche elementari	

Numeri complessi

```
z^2 = -1 \text{ ha due soluzioni: } i \text{ e} - i i^2 = -1 z := x + iy \quad x, y \in \mathbb{R} \mathbb{C} := \{z = x + iy \mid x, y \in \mathbb{R}\} \mathbb{R} \subset \mathbb{C} x = \Re(z) \text{ parte reale di } z y = \Im(z) \text{ parte immaginaria di } z z = x + iy = \Re(z) + i\Im(z) z = x + iy \leftrightarrow (x, y) \text{ isometria tra } \mathbb{C} \in \mathbb{R}^2 \overline{z} = x - iy \text{ coniugato di } z \text{ (simmetria rispetto all'asse reale)} \overline{\overline{z}} = z \overline{z + w} = \overline{z} + \overline{w} \overline{z \cdot w} = \overline{z} \cdot \overline{w} \Re(z) = \frac{z + \overline{z}}{2i} \Im(z) = \frac{z - \overline{z}}{2i} |z| = \sqrt{z \cdot \overline{z}} = \sqrt{x^2 + y^2} \in \mathbb{R} \text{ modulo di } z, \text{ rappresentabile come la norma euclidea di } (x, y) \in \mathbb{R}^2
```

Numeri complessi in forma trigonometrica

atan2(y,x) restituisce l'angolo compreso nell'intervallo $[-\pi,\pi]$ tra l'asse reale positivo e il punto (x,y)

$$atan2(y,x) = \begin{cases} \arctan\left(\frac{y}{x}\right) & \text{se } x > 0 \\ \arctan\left(\frac{y}{x}\right) + \pi & \text{se } x < 0, y \ge 0 \\ \arctan\left(\frac{y}{x}\right) - \pi & \text{se } x < 0, y < 0 \end{cases}$$

$$\frac{\pi}{2} & \text{se } x = 0, y > 0$$

$$-\frac{\pi}{2} & \text{se } x = 0, y < 0$$

$$\text{non definito} & \text{se } x = 0, y = 0$$

$$z \simeq (x, y) \in \mathbb{R}^2 \setminus \{0\}$$

Quindi
$$\exists ! (\rho, \theta) \in (0, +\infty) \times [-\pi, \pi)$$
 tali che $z = \rho(\cos(\theta) + i\sin(\theta))$

$$P: (0,\infty) \times [-\pi,\pi) \to \mathbb{R}^2 \setminus \{0\}$$
$$(\rho,\theta) \mapsto \left(x(\rho,\theta), y(\rho,\theta)\right) = (\rho\cos(\theta), \rho\sin(\theta))$$

$$\rho = |z| = \sqrt{x^2 + y^2}$$

$$\tan(\theta) = \frac{y}{x}$$

$$P^{-1}: \mathbb{R}^2 \setminus \{0\} \to (0, \infty) \times [-\pi, \pi)$$
$$(x, y) \mapsto \left(\rho(x, y), \theta(x, y)\right) = \left(\sqrt{x^2 + y^2}, atan2(y, x)\right)$$

 $z = x + iy = \rho \cos(\theta) + i\rho \sin(\theta) = \rho(\cos(\theta) + i\sin(\theta))$ forma trigonometrica di z

Numeri complessi in forma esponenziale

$$i^{1} = i, \quad i^{2} = -1, \quad i^{3} = -i, \quad i^{4} = 1, \quad i^{5} = i, \dots$$

$$i^{4k+l} = i^{4k} \cdot i^{l} = 1 \cdot i^{l} = i^{l} \quad \forall k, l \in \mathbb{Z}$$

Con l'espanzione in serie di Taylor $e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$, si ha che

$$e^{i\theta} = \sum_{m=0}^{+\infty} \frac{(i\theta)^m}{m!} = \sum_{n=0}^{+\infty} \frac{(i\theta)^{2n}}{(2n)!} + \sum_{n=0}^{+\infty} \frac{(i\theta)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{+\infty} \frac{(-1)^n \theta^{2n}}{(2n)!} + i \sum_{n=0}^{+\infty} \frac{(-1)^n \theta^{2n+1}}{(2n+1)!} = \cos(\theta) + i \sin(\theta)$$

quindi
$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Un cerchio di raggio 1 centrato nell'origine del piano complesso, è una sfera unitaria complessa $\mathbb{S}^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ ha degli elementi che possono essere scritti come $z = e^{i\theta}$ con $\theta \in [-\pi, \pi)$, ossia

$$\mathbb{S}^1 = \{e^{i\theta} \mid z = e^{i\theta}, \theta \in [-\pi,\pi)\}$$

Notiamo che
$$\overline{e^{i\theta}} = \overline{\cos(\theta) + i\sin(\theta)} = \cos(\theta) - i\sin(\theta) = \cos(-\theta) + i\sin(-\theta) = e^{-i\theta}$$

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
$$\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$
$$\mathbb{C}^* = \mathbb{C} \setminus \{0\}$$

Potenze e radici di numeri complessi

$$\begin{split} z^n &= \rho^n (e^{i\theta})^n = \rho^n e^{in\theta} \\ w^n &= z \\ z &= \rho e^{i\theta} \in w = r e^{is} \\ \begin{cases} \rho &= r^n \\ e^{i\theta} &= e^{ins} \end{cases} \\ s &= \frac{\theta + 2k\pi}{n} \quad k \in \mathbb{Z} \\ \sqrt[n]{z} &= \sqrt[n]{\rho} e^{i\frac{\theta + 2k\pi}{n}} \quad k = 0, 1, \dots, n-1 \end{split}$$

Esponenziale complesso

$$e^z = e^{x+iy} = e^x \cdot e^{iy} = e^x(\cos(y) + i\sin(y)) \in \mathbb{C}^*$$

Funzioni trigonometriche complesse

$$\cos(z) := \frac{e^{iz} + e^{-iz}}{2} \quad \sin(z) := \frac{e^{iz} - e^{-iz}}{2i}$$

$$\cosh(z) := \frac{e^z + e^{-z}}{2} \quad \sinh(z) := \frac{e^z - e^{-z}}{2}$$

Logaritmo complesso

$$z = |z|e^{i\operatorname{Arg}z} = |z|e^{i(\operatorname{Arg}z + 2k\pi)}$$
 $k \in \mathbb{Z}$

$$\log(z) = \log(|z|e^{i(\mathrm{Arg}z + 2k\pi)}) = \log(|z|) + i(\mathrm{Arg}z + 2k\pi) \quad \forall k \in \mathbb{Z}$$

Pertanto il logaritmo complesso non è univoco (come la radice complessa).

Esempio:
$$\log(-1) = \log(1) + i(\text{Arg}(-1) + 2k\pi) = i\pi + i2k\pi = i(2k+1)\pi$$
 $k \in \mathbb{Z}$

Funzioni complesse di variabile reale

Una funzione $f: I \subset \mathbb{R} \to \mathbb{C}$ è del tipo f(x) = u(x) + iv(x) con $u, v: I \subset \mathbb{R} \to \mathbb{R}$.

Si ha che: - f è continua se u e v sono continue

- f è derivabile se u e v sono derivabili e f'(x) = u'(x) + iv'(x) - f è integrabile in [a,b] se u e v sono integrabili in [a,b] e $\int_a^b f(x) dx = \int_a^b u(x) dx + i \int_a^b v(x) dx$

Funzioni periodiche

Sia $f: \mathbb{R} \to \mathbb{C}, p \in [1, +\infty)$ diciamo che f è localmente p-integrabile se $\forall K \in \mathbb{R}$, cioè K compatto incluso in \mathbb{R} , si ha che

$$\int_{K} |f(x)|^{p} \, dx < +\infty$$

- Se p=1 diciamo che f è localmente integrabile
- Se p = 2 diciamo che f è localmente quadrato integrabile

Definizione funzione periodica

Una funzione $f: \mathbb{R} \to \mathbb{C}$ è periodica di periodo T > 0 se $\forall x \in \mathbb{R}$ si ha che f(x+T) = f(x).

La quantità $\frac{1}{T}$ è detta frequenza della funzione f, mentre $\omega := 2\pi \cdot \frac{1}{T}$ è detta frequenza angolare.

Osservazione

Una funzione f periodica di periodo T > 0 è univocamente determinata dalla restrizione $f \mid_{[\alpha,\alpha+T]} \forall \alpha \in \mathbb{R}$. Denoteremo con $[-\frac{T}{2},\frac{T}{2})$ l'intervallo di lunghezza T centrato nell'origine, detto periodo fondamentale.

Notazione

Fissato $p \in [1, +\infty), T > 0$ e $\mathbb{X} \in \{\mathbb{R}, \mathbb{C}\}$, indicheremo con $L^p([-\frac{T}{2}, \frac{T}{2}]; \mathbb{X}) := L^p_{\mathbb{X}}(T)$ l'insieme delle funzioni $f : \mathbb{R} \to \mathbb{X}$ T-periodiche, localmente p-integrabili. Per semplicità notazionale: $L^p := L^p_{\mathbb{C}}(T)$.

L'insieme
$$L^p_{\mathbb{X}}(T)$$
 dotato della norma $\|f\|_{L^p_{\mathbb{X}}(T)}:=\left(\int_{-\frac{T}{2}}^{\frac{T}{2}}|f(x)|^p\,dx\right)^{\frac{1}{p}}$ è uno $spazio\ normato.$

Osservazione Giovanni Norbedo

Una funzione è detta localmente integrabile se è integrabile su ogni intervallo limitato. Mentre una funzione è detta localmente p-integrabile se $|f|^p$ è integrabile su ogni intervallo limitato, cioè $\int_{[a,b]} |f(x)|^p dx < +\infty$, $\forall [a,b] \subset \mathbb{R}$.

Uno spazio normato è uno spazio vettoriale dotato di una norma, cioè una funzione che associa ad ogni vettore un numero reale non negativo, tale che: - $\|x\| \ge 0 \quad \forall x \in V$ - $\|x\| = 0 \iff x = 0$ - $\|\alpha x\| = |\alpha| \|x\| \quad \forall \alpha \in \mathbb{R}$ - $\|x + y\| \le \|x\| + \|y\| \quad \forall x, y \in V$

Osservazione

Notiamo che la norma associata allo spazio $L^2_{\mathbb{C}}(T)$ è canonicamente indotta dal prodotto scalare su $L^2_{\mathbb{C}}(T)$ definito come $\langle f \mid g \rangle := \int_{-T}^{\frac{T}{2}} f(x) \overline{g(x)} \, dx$.

Energia di una funzione

Sia $f = u + iv : \mathbb{R} \to \mathbb{C}$, T-periodica, localmente quadrato integrabile, definiamo come energia di f la quantità $||f||_2^2 := ||f||_{L^2}^2 := \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(x)|^2 dx = \int_{-\frac{T}{2}}^{\frac{T}{2}} (u^2(x) + v^2(x)) dx$.

Lemma

Sia T > 0, si ha che $L^2_{\mathbb{C}}(T) \subset L^1_{\mathbb{C}}(T)$.

Si dimostra applicando la disuguaglianza di Cauchy-Schwarz.

$$||f||_{L^{1}} = \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(x)| \, dx = \langle |f| \mid 1 \rangle \le ||1||_{L^{2}} ||f||_{L^{2}} = \int_{-\frac{T}{2}}^{\frac{T}{2}} 1 \cdot |f(x)| \, dx = \sqrt{T} ||f||_{L^{2}}$$

La disuguaglianza di Cauchy-Schwarz afferma che $|\langle f \mid g \rangle| \leq ||f|| ||g||$.

Armoniche elementari

Consideriamo le tre famiglie di funzioni:

$$\begin{split} \mathcal{A}_{\mathbb{R}} &:= \left\{ \frac{a_0}{2}, a_n \cos(n\omega x), b_n \sin(n\omega x) \mid n \in \mathbb{N} \setminus \{0\}, a_0, a_n, b_n \in \mathbb{R} \right\} \\ \mathcal{A}_{\mathbb{C}} &:= \left\{ c_n e^{in\omega x} \mid n \in \mathbb{Z}, c_n \in \mathbb{C} \right\} \\ \overline{\mathcal{A}}_{\mathbb{R}} &:= \left\{ A_0, A_n \cos(n\omega x + \varphi_n), A_n \sin(n\omega x + \varphi_n) \mid n \in \mathbb{N} \setminus \{0\}, A_0 \in \mathbb{R}, A_n \geq 0, \varphi_n \in [-\pi, \pi) \right\} \end{split}$$

esse sono dette armoniche elementari.

Le fami