句法分析

孙栩 信息科学技术学院

xusun@pku.edu.cn

提纲

□上下文无关文法

- □ 自上而下 与 自下而上
- CKY算法

□ 概率上下文无关文法

□ 依存文法

- □ 投射 与 非投射
- □图方法
- □局部分类方法

提纲

□上下文无关文法

- □ 自上而下 与 自下而上
- CKY算法
- □ 概率上下文无关文法
- □ 依存文法
 - □ 投射 与 非投射
 - □图方法
 - □局部分类方法

句法分析(Syntactic Parsing)

■ 给定一个句子,输出其正确的句法结构树

上下文无关文法 (CFG)

- N 是非终结符集合
- Σ 是终结符集合
- *R* 是一个规则集合
 - 比如一个规则是 $A\rightarrow β$, 其中 A 是非终结符,而β可以 是非终结符或终结符
- S 是一个特殊非终结符,代表树结构的根节点, 称为 *start symbol*

CFG举例

语法规则

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → **Pronoun**

NP → **Proper-Noun**

NP → **Det Nominal**

Nominal → Noun

Nominal → **Nominal Noun**

Nominal → **Nominal PP**

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

PP → **Prep NP**

词汇规则

Det \rightarrow the | a | that | this

Noun \rightarrow book | flight | meal | money

Verb \rightarrow **book** | **include** | **prefer**

Pronoun \rightarrow I | he | she | me

Proper-Noun → **Houston** | **NWA**

 $Aux \rightarrow does$

 $Prep \rightarrow from \mid to \mid on \mid near \mid through$

从句法分析看句子是怎么生成的

从句法分析的角度来看,一个句子是从根节点开始递归生成句法规则的一个过程,直到最后只有终结符存在。

两大类方法: 自上而下句法分析 自下而上句法分析

句法分析举例

book that flight

自上而下 vs. 自下而上

■ 自上而下方法的结果总是一个完整的句法树,但是 有可能无法匹配实际的句子

■ **自下而上**方法总是能够匹配实际的句子,但是有可能不是一个完整的句法树

■ 采用动态规划的方法,这两种方法都可以实现**O**(*n*³) 的句法分析复杂度,n是句子长度

动态规划的句法分析方法

■ CKY (Cocke-Kasami-Younger) 算法是基于自底 向上的动态规划句法分析方法

- Earley算法是基于自顶向下的句法分析方法
- Chart算法在图表(chart)里面保存了完整的短语信息,可以把自顶向下和自底向上的方法结合起来

CKY方法

■乔姆斯基范式

- 首先,CKY方法需要把不规则语法转换成**乔姆斯基范式** (Chomsky normal form, CNF)
- 在乔姆斯基范式里,一个生成规则必须生成2个非终结符, 或者1个终结符

乔姆斯基范式转换

原始语法

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → **Pronoun**

NP → **Proper-Noun**

 $NP \rightarrow Det Nominal$

Nominal → **Noun**

Nominal → **Nominal Noun**

Nominal → **Nominal PP**

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

PP → **Prep NP**

乔姆斯基范式

 $S \rightarrow NP VP$

 $S \rightarrow X1 VP$

 $X1 \rightarrow Aux NP$

 $S \rightarrow book \mid include \mid prefer$

 $S \rightarrow Verb NP$

 $S \rightarrow VP PP$

 $NP \rightarrow I \mid he \mid she \mid me$

NP → **Houston** | **NWA**

 $NP \rightarrow Det Nominal$

Nominal → book | flight | meal | money

Nominal → **Nominal Noun**

Nominal → **Nominal PP**

 $VP \rightarrow book \mid include \mid prefer$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

PP → **Prep NP**

Book	the	flight	through	Houston
S, VP, Verb, Nominal,		S VP		
Noun	None			
		NP		
	Det			
		Nominal, Noun		

Book	the	flight	through	Houston
S, VP, Verb, Nominal, Noun	None	S VP	None	
	Det	NP	None	
		Nominal, Noun	None	
			Prep	

Book	the	flight	through	Houston
S, VP, Verb, Nominal, Noun	None	S VP	None	
	Det	NP	None	
		Nominal, Noun	None	
			Prep <	P P
				NP ProperNoun

Book	the	flight	through	Houston
S, VP, Verb, Nominal, Noun	None	S VP	None	
	Def	NP	None	NP
		Nominal, Noun	None	Nominal
			Prep	PP
				NP ProperNoun

Book	the	flight	through	Houston
S, VP, Verb,≤ Nominal,		S		
Noun	None		None	- S VP
	Det	NP	None	ХP
		Nominal, Noun	None	Nominal
			Prep	PP
				NP ProperNoun

Book	the	flight	through	Houston
S, VP, Verb, Nominal,		S VP		- VP
Noun	None		None	\$ VP
		NP	None	NP
	Det		None	
		Nominal, Noun	None	Nominal
			Prep	V PP
				NP ProperNoun

Book	the	flight	through	Houston
S, VP, Verb, Nominal, Noun	None	S VP	None	- S VP S VP
	Det	NP	None	NP
		Nominal, Noun	None	Nominal
			Prep	↓ PP
				NP ProperNoun

CKY (recognition)的复杂度

- 总共有 (n(n+1)/2) = O(n²) 个单元格
- 总体的时间复杂度是 O(n³)
- 分析得到的句法树(parse tree)是基于乔姆斯基 范式的

■ 有必要的话,可以用一个后处理过程把乔姆斯基范 式转换回原来的语法规则结构

总结

- ■自动句法分析有助于计算机理解句子的意思
 - John ate the spaghetti with meatballs with chopsticks.
 - How did John eat the spaghetti?
 - What did John eat?

动态规划算法可以在3次方时间内计算一棵句法树, 或指数时间内计算所有的句法树

- ■问题: 只是单纯的输出符合规则的句法树,无法确定哪个句法树的概率最大
 - ■解决方法:基于概率的句法分析

提纲

□上下文无关文法

- □ 自上而下 与 自下而上
- CKY算法
- □ 概率上下文无关文法 ←

□ 依存文法

- □ 投射 与 非投射
- □图方法
- □局部分类方法

基于概率的句法分析

- 使用概率模型对每个句法树赋予一个概率信息
 - ■通过概率信息消解句法分析中的歧义现象
 - 在标注好的树库的基础上,实现有监督学习
 - 也可以实现无监督学习,但是目前的无监督学习效果比较 有限
- 基于概率的上下文无关文法 (Probabilistic Context Free Grammar, PCFG)
 - 基于概率的上下文无关文法(PCFG)是上下文无关文法 (CFG)的概率版本
 - ■每个生成规则都带有概率信息

PCFG举例

语法规则	概率	词汇规则
$S \rightarrow NP VP$ $S \rightarrow Aux NP VP$ $S \rightarrow VP$ $NP \rightarrow Pronoun$ $NP \rightarrow Proper-Noun$ $NP \rightarrow Det Nominal$ $Nominal \rightarrow Noun$ $Nominal \rightarrow Nominal Noun$ $Nominal \rightarrow Nominal PP$ $VP \rightarrow Verb$ $VP \rightarrow Verb$ $VP \rightarrow VP PP$ $VP \rightarrow VP PP$ $VP \rightarrow VP PP$ $VP \rightarrow VP PP$	0.8 0.1 + 1.0 0.2 0.2 + 1.0 0.6 0.3 0.2 + 1.0 0.5 0.2 0.5 + 1.0 0.3 1.0	Det → the a that this $0.6 \ 0.2 \ 0.1 \ 0.1$ Noun → book flight meal money $0.1 \ 0.5 \ 0.2 \ 0.2$ Verb → book include prefer $0.5 \ 0.2 \ 0.3$ Pronoun → I he she me $0.5 \ 0.1 \ 0.1 \ 0.3$ Proper-Noun → Houston NWA $0.8 \ 0.2$ Aux → does 1.0 Prep → from to on near through $0.25 \ 0.25 \ 0.25 \ 0.1 \ 0.2 \ 0.2$

计算句法树、句子的概率

- 独立性假设
- ■概率相乘

计算句法树、句子的概率

■ 挑选概率最大的句法树作为句法分析的结果

计算句法树、句子的概率

■ 也可以计算句子本身的概率,句子本身的概率是其 所有句法树概率之和

P("book the flight through Houston") =

$$P(D_1) + P(D_2) = 0.0000216 + 0.00001296$$

 $= 0.00003456$

三个主要的PCFG 任务

- 观测概率 (Observation likelihood)
 - ■用于对句子排序等
- 最大概率句法树 (Most likely derivation)
 - ■找出最大概率句法树

- 最大似然训练 (Maximum likelihood training)
 - 基于训练数据训练一个句法分析器

PCFG: 最大概率的句法树

■ 可以使用维特比(Viterbi)算法确定最大可能的句法树

PCFG: 最大概率的句法树

■ 可以使用维特比(Viterbi)算法确定最大可能的句法树

基于概率的CKY算法 (Probabilistic CKY)

■ 在原来的CKY算法的基础上加入概率信息

■ 当转换为乔姆斯基范式的时候,需要重新设置概率 信息从而保证原有的概率分布

基于概率的乔姆斯基范式转换

原始语法规则		乔姆斯基范式	
$S \rightarrow NP VP S \rightarrow Aux NP VP$	0.8 0.1	$S \rightarrow NP VP S \rightarrow X1 VP$	0.8 0.1
$S \rightarrow VP$	0.1	X1 → Aux NP S → book include prefer	1.0
$S \rightarrow V\Gamma$	U. I	0.01 0.004 0.006	
		$S \rightarrow Verb NP$ $S \rightarrow VP PP$	0.05 0.03
$NP \rightarrow Pronoun$	0.2	$NP \rightarrow I \mid he \mid she \mid me$	0.00
NP → Proper-Noun	0.2	0.1 0.02 0.02 0.06 NP → Houston NWA	
1		0.16 .04	
$NP \rightarrow Det Nominal$	0.6	NP → Det Nominal	0.6
Nominal \rightarrow Noun	0.3	Nominal → book flight meal money	
		0.03 0.15 0.06 0.06	
Nominal → Nominal Noun	0.2	Nominal → Nominal Noun	0.2
Nominal \rightarrow Nominal PP	0.5	Nominal → Nominal PP	0.5
$VP \rightarrow Verb$	0.2	$VP \rightarrow book \mid include \mid prefer$	
		0.1 0.04 0.06	
$VP \rightarrow Verb NP$	0.5	$\mathbf{VP} \rightarrow \mathbf{Verb} \ \mathbf{NP}$	0.5
$VP \rightarrow VP PP$	0.3	$\mathbf{VP} \rightarrow \mathbf{VP} \ \mathbf{PP}$	0.3
$PP \rightarrow Prep NP$	1.0	$PP \rightarrow Prep NP$	1.0

84

Book	the	flight	through	Houston
S:.01, VP:.1, Verb:.5 Nominal:.03 Noun:.1	None			
	Det:.6	NP:.6*.6*.15 =.054		
		Nominal:.15 Noun:.5		

Book	the	flight	through	Houston
S :.01, VP:.1, Verb:.5 < Nominal:.03 Noun:.1	None	S:.05*.5*.054 =.00135 VP:.5*.5*.054 =.0135		
	Det:.6	NP:.6*.6*.15 =.054		
		Nominal:.15 Noun:.5		

Book	the	flight	through	Houston
S:.01, VP:.1, Verb:.5		S:.05*.5*.054 =.00135		
Nominal:.03 Noun:.1	None	VP:.5*.5*.054 =.0135	None	
	Det:.6	NP:.6*.6*.15 =.054	None	
		Nominal:.15 Noun:.5	None	
			Prep:.2	

Book	the	flight	through	Houston
S:.01, VP:.1, Verb:.5 Nominal:.03		S:.05*.5*.054 =.00135		
Noun:.1	None	VP:.5*.5*.054 =.0135	None	
	Det:.6	NP:.6*.6*.15 =.054	None	
		Nominal:.15 Noun:.5	None	
			Prep:.2 ←	PP:1.0*.2*.16 =.032
				NP:.16 PropNoun:. 8

Book	the	flight	through	Houston
S:.01, VP:.1, Verb:.5 Nominal:.03		S:.05*.5*.054 =.00135		
Noun:.1	None	VP:.5*.5*.054 =.0135	None	
	Det:.6	NP:.6*.6*.15 =.054	None	
		Nominal:.15 Noun:.5	None	Nominal: .5*.15*.032 =.0024
			Prep:.2	PP:1.0*.2*.16 =.032
				NP:.16 PropNoun:. 8

Book	the	flight	through	Houston
S:.01, VP:.1, Verb:.5 Nominal:.03 Noun:.1	None	S:.05*.5*.054 =.00135 VP:.5*.5*.054	None	
Noull1	Det:.6	=.0135 NP:.6*.6*.15 =.054	None	NP:.6*.6* .0024 =.000864
		Nominal:.15 Noun:.5	None	Nominal: .5*.15*.032 =.0024
			Prep:.2	PP:1.0*.2*.16 =.032
				NP:.16 PropNoun:. 8

Book	the	flight	through	Houston
S :.01, VP:.1, Verb:.5		S:.05*.5*.054 =.00135		S:.05*.5*
Nominal:.03 Noun:.1	None	VP:.5*.5*.054 =.0135	None	.000864
	Det:.6	NP:.6*.6*.15 =.054	None	V NP:.6*.6* .0024 =.000864
		Nominal:.15 Noun:.5	None	Nominal: .5*.15*.032 =.0024
			Prep:.2	PP:1.0*.2*.16 =.032
				NP:.16 PropNoun:. 8

Book	the	flight	through	h Houston
S:.01, VP:.1, Verb:.5 Nominal:.03 Noun:.1	None	S:.05*.5*.054 =.00135 VP:.5*.5*.054 =.0135	None	S:.03*.0135* .032 =.00001296 S:.0000216
	Det:.6	NP:.6*.6*.15 =.054	None	NP:.6*.6* .0024 =.000864
		Nominal:.15 Noun:.5	None	Nominal: .5*.15*.032 =.0024
			Prep:.2	PP:1.0*.2*.16 =.032
				NP:.16 PropNoun:. 8

PCFG: 观测概率的计算(Observation Likelihood)

- 类似于序列标注问题中的观测概率的计算方法—前向算法(Forward algorithm),可以使用 Inside algorithm 这个算法进行动态规划计算观测概率
 - 把Viterbi算法的max计算改为sum计算
- 可以使用PCFG作为一个语言模型,从而对句子的概率 进行计算,用于语音识别、机器翻译等

PCFG: 观测概率的计算(Observation Likelihood)

Probabilistic CKY Parser for Inside Computation

Book	the	flight	through	Houston
S:.01, VP:.1, Verb:.5		S:.05*.5*.054 =.00135		S:00001296
Nominal:.03 Noun:.1	None	VP:.5*.5*.054 =.0135	None	S:.0000216
	Det:.6	NP:.6*.6*.15 =.054	None	NP:.6*.6* .0024 =.000864
		Nominal:.15 Noun:.5	None	Nominal: .5*.15*.032 =.0024
			Prep:.2	PP:1.0*.2*.16 =.032
				NP:.16 PropNoun:. 8

PCFG: 观测概率的计算(Observation Likelihood)

Probabilistic CKY Parser for Inside Computation

Book	the	flight	through	Houston	1
S :.01, VP:.1, Verb:.5 Nominal:.03 Noun:.1	None	S:.05*.5*.054 =.00135 VP:.5*.5*.054 =.0135	None	S: .00001296 +.0000216 =.00003456	计算观测概率
	Det:.6	NP:.6*.6*.15 =.054	None	NP:.6*.6* .0024 =.000864	
		Nominal:.15 Noun:.5	None	Nominal: .5*.15*.032 =.0024	
			Prep:.2	PP:1.0*.2*.16 =.032	
				NP:.16 PropNoun:. 8	

PCFG: 有监督学习(Supervised Training)

- 给定了训练数据的话(一般是标注好的树库tree bank), PCFG的有监督学习相对比较简单
 - 可以通过相对频率来计算

PCFG: 有监督学习(Supervised Training)

- ■可以从树库收集语法规则
- 语法规则对应的概率可以通过相对频率来计算

$$P(\alpha \to \beta \mid \alpha) = \frac{\text{count}(\alpha \to \beta)}{\sum_{\gamma} \text{count}(\alpha \to \gamma)} = \frac{\text{count}(\alpha \to \beta)}{\text{count}(\alpha)}$$

句法分析的效果打分

- 句法分析器给出了预测的句法树之后,可以计算句法树和已 经标注好的句法树的相似度
- 假设 P 是系统输出的句法树, 假设 T 是标注好的句法树:
 - 召回率(Recall) = (#P中正确的元素) / (#T中正确的元素)
 - **准确率(Precision)** = (#P中正确的元素) / (#P中总的元素)
- F值(F-score, F1)是召回率和准确率之间的调和平均数 (harmonic mean)

目前好的句法分析系统在标准数据集上可以达到90%以上的Precision, Recall, F-score

句法分析的效果打分

Recall = 10/12 = 83.3% Precision = 10/12 = 83.3% F₁ = 83.3%

基于重排序的句法分析(re-ranking parser)

概率句法分析总结

■ 通过概率信息,消解句法分析中的歧义,得到最大概率的句法分析树等

■通过标注好的树库,可以学习到概率句法分析器

■现有的概率句法分析技术已经有很高的准确度

进一步阅读/学习

□参考书

- □《统计自然语言处理》第8章:句法分析
 - 8.1 句法结构分析概述
 - Page 179 184
 - 8.2 基于PCFG的基本分析方法
 - Page 184 192

提纲

□上下文无关文法

- □ 自上而下 与 自下而上
- CKY算法
- □ 概率上下文无关文法

□ 依存文法

- □ 投射 与 非投射
- □图方法
- □局部分类方法

句法分析器的种类

□输出的类别

□ 传统句法分析模式(如之前讲的上下文无关文法**CFG**、**PCFG**), 依存分析模式

依存分析

- □ 依存句法分析(Dependency-based grammar parsing)
 - □ 根据依存语法规则G, 给定一个输入字符串 $x \in \Sigma^*$, 计算 x 的依存句法树 y
- □ 也有依存篇章分析(Dependency-based text parsing)

依存语法(Dependency Grammar)

□ 依存语法

- 依存语法 (Dependency grammar, DG) 是相对比较晚出现的语法分析 理论,核心是基于依存句法关系,可以追溯到Lucien Tesnière提出的相 关依存句法理论
- □ 基本思想: 用若干基于词对的非对称依存箭头来刻画句法结构

□ 依存关系

- □ 依存句法关系是以动词为依存结构的核心的,一般把动词作为依存关系的头节点(head)
- □ 依存结构取决于头节点 (head) 和附属节点 (dependents)之间的依存关系、类别

□ 动词为中心的思想

□ 给定一个句子,认为所有的句法单元(e.g. 词)要么直接或者间接地依赖于某个动词

□ 依存语法的优点

- 很适合对词序比较自由、灵活的语言进行句法结构分析
- □ 适合捕捉长距离的句法结构依存关系

□ 有向图(Directed graphs)

- □ V代表节点的集合(词)
- **□** *E* 代表箭头的集合(依存关系)
- □ L 代表 E 的类别集合(依存关系的类别)

□ 举例:

依存结构表达的信息和 传统的话语结构句一样。 可以表达更长距离的信息 息依存关系

怎么确定头结点(head, H)和其依赖节点(dependent, D)

- □一些比较通用的判断原则:
 - 1. H 决定了依存关系的类别
 - 2. H决定了依存关系的语义的类别; D 只是对语义信息进行了一定的补充
 - 3. H 在结构上是必须的; D 在结构上不是必须的

□ 依存结构的一些限制条件

- □ 单头结点(single-head)
 - 对于任何一个节点/词,其只能有最多一个头节点
- □ 联通图(connectedness)
 - 没有完全独立的节点/词
- □ 无环图(acyclicity)
 - 依存结构不会存在环形
- □ 可选: 投射性(projectivity)
 - 没有交叉的依存箭头
 - 也就是依存结构是嵌套的、局部的
 - 这主要是为了高效率的依存句法分析算法,为了实现动态规划
 - 这是可选的,不是必须的。也有非投射性的依存语法、对应的算法

□ 依存句法分析其实也是树状结构!

依存句法分析的相关算法

□主要的依存句法分析算法

- □ 图方法(Graph-Based Parsing)
 - 用动态规划算法寻找全局最优的句法树
 - 3次方复杂度
- □ 局部分类方法(Deterministic parsing)
 - 用局部分类方法寻找局部最优的句法树
 - ■线性复杂度

□ 图方法1: Cocke-Kasami-Younger (CKY)算法

动态规划+分治法

□ 图方法1: Cocke-Kasami-Younger (CKY)算法

初始化

$$C[i][i][i] = 0.0$$
, for all $0 \le i \le n$

递归计算

$$C[s][t][i] = \max_{s \le q < t, s \le j \le t} \begin{cases} C[s][q][i] + C[q+1][t][j] + \lambda_{(w_i, w_j)} & \text{if } j > i \\ C[s][q][j] + C[q+1][t][i] + \lambda_{(w_i, w_j)} & \text{if } j < i \end{cases}$$

- □ 图方法1: Cocke-Kasami-Younger (CKY)算法
- □ 时间复杂度O (n^5)
- 口改进: Eisner动态规划算法

- □ 图方法1: Cocke-Kasami-Younger (CKY)算法
- □ 时间复杂度O (n^5)
- 口改进: Eisner动态规划算法

Eisner(S, Γ, λ)

Sentence $S = w_0 w_1 \dots w_n$

Arc weight parameters $\lambda_{(w_i,w_i)} \in \lambda$

- Instantiate $E[n][n][2][2] \in \mathbb{R}$
- Initialization: E[s][s][d][c] = 0.0 for all s, d, c
- for m : 1..n
- for *s* : 1..*n*
- t = s + m
- if t > n then break

% Create subgraphs with c=1 by adding arcs (step a-b in figure 4.5)

- $E[s][t][0][1] = \max_{s < q < t} (E[s][q][1][0] + E[q+1][t][0][0] + \lambda_{(w_t, w_s)})$
- 8 $E[s][t][1][1] = \max_{s \le q < t} (E[s][q][1][0] + E[q+1][t][0][0] + \lambda_{(w_s, w_t)})$

% Add corresponding left/right subgraphs (step b-c in figure 4.5)

- $E[s][t][0][0] = \max_{s \le q < t} (E[s][q][0][0] + E[q][t][0][1])$
- $E[s][t][1][0] = \max_{s < q \le t} (E[s][q][1][1] + E[q][t][1][0])$ 10

时间复杂度O(n^3)

□主要思路

- □ 类似一个滑动窗口的方法,一步一步进行局部分类,最后 获得句法树
- □ 无法获得全局最优的句法树,但是速度快,线性复杂度

□代表方法

- □ Shift-reduce句法分析算法
 - Standard (Kudo, Matsumoto, Yamada)
 - Arc-eager (Nivre)

举例

1. 输入序列

- □ 输入的词序列,也就是待分析的句子
- □ 逐步压入分析堆栈,直到词序列为空
- □ 输入序列为空的时候,分析完成,获得依存句法树

2. 分析堆栈

- □ 分析堆栈里面代表的是部分分析好的句法结构
- □ 堆栈的顶部是局部分类的"活跃部分"
- □ 输入序列为空的时候, 堆栈中获得最后的完整句法分析树

Shift-Reduce算法的步骤

- □ 2类主要的步骤:
 - □ Shift步骤
 - 把元素从输入队列shift到堆栈
 - □ Reduce步骤
 - 在堆栈内分析依存结构

怎么定义特征(feature)

■为了在堆栈进行准确的分类

- ■句法或者语义类别
- 时态、数字、大小写信息
- ■词性信息

...

Feature stem	Value
syntactic class of item at position 1	noun
semantic class of item at position 1	relative-temporal-interval
semantic class of object of item at position -1	monetary-quantity
tense of item at position -1	past tense
np-vp agreement of items at position -2 and -1	true
subcat affinity of 1 to -1 relative to -2	positive

依存句法分析的准确度

- □图方法
 - □ 目前能达到93%以上
- □局部分类方法
 - □ 目前能达到91%以上

依存句法分析的优点

□ 优点:

- □ 依存关系和实际的语义关系比较接近,有助于对句子的语义方面的理解
- □ 依存关系的定义相对比较简单,有助于高效率的句法分析
- 因为能够有效建模长距离依赖关系,依存句法更适合词序列比较自由、灵活的语言

进一步阅读/学习

□参考书

- □《统计自然语言处理》第8章:句法分析
 - 8.9 依存语法理论简介
 - 8.10 依存句法分析
 - 8.11 依存分析器性能评价
 - 8.12 短语结构与依存结构之间的关系
 - Page 220 240

