אלגברה לינארית (2) תשע`ט 2018-2019 ⁻ סמסטר ב' - תרגיל 13

הנחיות: כתבו את הפתרון בכתב יד ברור, בצירוף שם (פרטי ומשפחה) ומספר ת.ז. יש לציין כותרת ברורה בראש הדף הכוללת את שם הנחיות: כתבו את הפתרון, כאשר השאלות בסדר עולה, והגישו אלקטרונית באתר הקורס עד ל־ 19.6.19 בשעה 21:00.

$\mathbb C$ או $\mathbb R$ או מהשדות את יציין $\mathbb F$ או $\mathbb F$ או לכל אורך תרגיל זה הסימון

- . V מרחב וקטורי ממימד סופי מעל $\mathbb F$ ו־ ו $\mathbb F$ ור בסיס של $B=(b_1,\dots,b_n)$ ו־ מרחב וקטורי ממימד סופי מעל ביחס ל־ (\cdot | \cdot) יחידה על $B=(b_1,\dots,b_n)$ יחידה על $B=(b_1,\dots,b_n)$
- 2. יהי V ממ`פ מעל $\mathbb R$ ממימד סופי ו־ V o V אופרטור אורתוגונלי לכסין. T: V o V ממימד סופי ו־ U ממימד מים ת"מרחב כי קיים תת"מרחב U של U כך ש" U כך ש" U כאשר U הוא השיקוף האורתוגונלי ביחס ל" (הוגדר בתרגיל 12 שאלה 5).
 - :3 ממימה של לינאריים. אופרטורים אופרטורים סופי די סופי סופי די ממימה אופרטורים מעל $S,T{:}\,V\to V$ וריים. ממימה מעל מי

.
$$(ST)^* = T^*S^*$$
 ב . $(S+T)^* = S^* + T^*$ א

- $(\mathrm{Im}(T))^{\perp}=\ker T^*$ ממים מעל $\mathbb T$ ממימד סופי ודV o V אופרטור לינארי. הוכיחו כי 4.

אלו מהטענות הבאות נכונות? אם הטענה נכונה, הוכיחו אותה. אם לא, הביאו דוגמה נגדית.

$$\ker(T^*) = \ker(T)$$
 (x

$$\ker(T^* \circ T) = \ker(T)$$
 (2

$$\ker(T \circ T^*) = \ker(T)$$
 (x

$$\dim \ker(T^*) = \dim \ker(T)$$
 (7

אלו מהטענות הבאות נכונות? אם הטענה נכונה, הוכיחו אותה. אם לא, הביאו דוגמה נגדית.

- א) אם T^* הפיך, אז גם T^* הפיך.
- ב) אם T^* אורתוגונלי/אוניטרי, אז בו T^* אורתוגונלי/אוניטרי.
- ג) אם T לכסין אורתוגונלית, אז גם T^* לכסין אורתוגונלית.
 - . ד) אם T^* לכסין, אז לכסין T^*
- . אופרטורים לינאריים $S,T{:}\,V \to V$ ממימד מימד $\mathbb F$ ממימ מעל ממ'פ מעל

אלו מהטענות הבאות נכונות? אם הטענה נכונה, הוכיחו אותה. אם לא, הביאו דוגמה נגדית.

- אוניטרים, או גם אורתוגונלים/אוניטרים, או אם אורתוגונלים/אוניטרים, או אם אורתוגונלים/אוניטרים, או
 - . צמוד לעצמו אז גם $S\circ T$ צמוד לעצמו ב) צמוד לעצמו ב
- R_U כי הוכיחו ל-U. ממ'פ מעל $\mathbb F$ ממימד סופי, יהי של תת־מרחב של V ויהי ויהי ע ויהי ויהי ע ממ'פ מעל $\mathbb F$ ממימד סופי, יהי ע תת־מרחב של אופרטור צמוד לעצמו.
 - . $T\circ T=T$ ממימד סופי ו־ $T\colon V o V$ אופרטור לינארי כך ש־ $\mathbb F$ ממימד ממימד ממימד ממימד אופרטור ממימד ממימד מיהי

. ${
m Im}T$ ובמקרה אה , $T=P_{{
m Im}T}$ הוכיחו כי T צמוד לעצמו אם"ם $\ker T$ ובמקרה ובמקרה הוכיחו (${
m Im}T$) ובמקרה האורתוגונלית על