EARLY DETECTION OF CHRONIC KIDNEY DISEASE USING MACHINE LEARNING

LITERATURE SURVEY

TEAM ID:	PNT2022TMID52708
TEAM	NAVEEN V
MEMBERS:	KAVIYARASAN R
	NAGADEEPAN G S
	NEHA S

S N O	YEA R	AUTHOR	JOURNA L NAME	TITLE	METHODOL OGY	LIMITATIO NS
1.	2018	María E. Rodríguez- Ortiz, Claudia Pontillo, Mariano Rodríguez, Petra Zürbig, Harald Mischak & Alberto Ortiz	Scientific report	Novel Urinary Biomarkers For Improved Prediction Of Progressive eGFR Loss In Early Chronic Kidney Disease Stages And In High Risk Individuals Without Chronic Kidney Disease	Support Vector Machine	It does not execute very well when the data set has more sound i.e.target classes are overlapping

2.	2015	Olivier J. Wouters, Donal J. O'Donoghue, James Ritchie,Panos G. Kanavos and Andrew S. Narva	NIH	Early chronic kidney disease: diagnosis, management and models of care	Classifiers	many of the classifications themselves are based on subjective judgments, which may or may not be shared by everyone participating.
3.	2018	L.Jerlin Rubini, Dr.P.Eswara n	Academia	Generating comparative analysis of early stage prediction of Chronic KidneyDisease	Logistic Regression	assumption of linearity between the dependent variable and the independent variables
4.	2020	Chin-Chuan Shih , Chi-Jie Lu , Gin-Den Chen 1,6 and Chi-Chang Chang 7	MDPI	Risk Prediction for Early Chronic Kidney Disease: Results from an Adult Health Examination Program of 19,270 Individuals	C4.5(Decision tree Algorithm),E LM	it gives poor results for larger distinct attributes.
5.	2018	Ahmed J. Aljaaf,Dhiya Al-Jumeily, Hussein M.Haglan,M ohamed Alloghani	IEEE	Early Prediction of Chronic Kidney Disease Using Machine Learning Supported by Predictive Analytics	Classifier Algorithm	they are largely unstable compared to other decision predictors.

6.	2016	Parul Sinha, Poonam Sinha	Academia	Comparative Study of Chronic Kidney Disease Prediction using KNN and SVM	Support Vector Machine, K-Nearest Neighbor	Doesn't work well with a large dataset.
7.	2021	Vijendra Singh , Vijayan K. Asari,Rajku mar Rajasekaran	MDPI	A Deep Neural Network for Early Detection and Prediction of Chronic Kidney Disease	K-Nearest Neighbor	Sensitive to outliers and missing values
8.	2019	S.Revathy, B.Bharathi, P.Jeyanthi, M.Ramesh	IJEAT	Chronic Kidney Disease Prediction using Machine Learning Models	Random Forest Algorithm,Su pport Vector Machine.	a large number of trees can make the algorithm too slow and ineffective for real-time predictions.
9.	2019	Njoud AbdullahAlma nsour Hajra Fahim Syed Nuha RadwanKhayat	Elsevier	Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study	SVM	Doesn't work well with a large dataset.
10	2021	Linta	IEEE	A	K-Means	K-means can

		Antony, Sami Azam, Eva Ignatious		Comprehensiv e Unsupervised Framework for Chronic Kidney Disease Prediction	Clustering	only handle numerical data.
11.	2021	Chaity Mondol,F. M. Javed Mehedi Shamrat Md. Robiul Hasan	MDPI	Early Prediction of Chronic Kidney Disease: A Comprehensiv e Performance Analysis of Deep Learning Models	O-LSTM	LSTMs take longer to train.LSTMs require more memory to train.LSTMs are easy to overfit.
12.	2021	Shamima Akter,Ahsa n Habib	IEEE	Comprehensiv e Performance Assessment of Deep Learning Models in Early Prediction and Risk Identification of Chronic Kidney Disease	ANN	exploding gradient problem.RNN s cannot be stacked up.Slow and Complex training procedures. Difficult to process longer sequences
13.	2020	Guozhen Chen,Cheng	IEEE	Prediction of	CNN	Overfitting, exploding

		uang Ding		Chronic Kidney Disease Using Adaptive Hybridized Deep Convolutional Neural Network on the Internet of Medical Things Platform		gradient, and class imbalance
14.	2019	R Devika; Sai Vaishnavi Avilala; V. Subramaniy aswamy	IEEE	Comparative Study of Classifier for Chronic Kidney Disease prediction using Naive Bayes, KNN and Random Forest	Naives Bayes,KNN	All predictors (or features) are independent, rarely happening in real life.
15.	2018	Vikas Chaurasia,S aurabh Pal	SSRN	Chronic Kidney Disease: A Predictive Model Using Decision Tree	Decision Tree	Overfitting Problem. Expensive. Independency between samples.