# First Work in Progress

October 2, 2017

#### Abstract

work plan, problems and partial results

# 1 Introduction

The work has been divided in the following parts:

- 1. Data collection
- 2. Calibration
- 3. Dynamic Programming (DP) Algorithm
- 4. Validation
- 5. Comparisons (CPPI, constant-mix)
- 6. Extensions and ideas

## 2 Details

In this section we present what has been done so far

## 2.1 Data collection

The three asset classes (money, bond and equity market) are represented by the following indexes:

- 1. iShares Short Treasury Bond ETF (Money Market)
- 2. BlackRock US Government Bond (Bond Market)
- 3. S&P 500 (Equity Market)

Data were downloaded from Yahoo finance (temporary solution, Thomson Reuters will be used for the final work). Time-series have either a daily or weekly frequency

#### 2.2 Calibration

**Gaussian model** Asset class returns follow a Gaussian distribution ( $w_{k+1} \sim N(\mu, \Sigma)$ ), the calibration consists of estimating  $\mu$  and  $\Sigma$  from the data

Mixture model Two possible approaches: EM (Expectation Maximization) and MM (Method of Moments). The references for the first are ([1]) while for the second are ([8], [9]). I went for EM since it's already implemented in Matlab. The drowback is that it is not possible to impose an unique correlation matrix or unimodality.

## 2.3 DP Algorithm

The general Stochastic Reachability theory is presented following [4]. The financial application of the algorithm is implemented following [2]. The first draft of the code can be found here: https://github.com/skiamu/Thesis.

As an example, we chose the following parameters:

- 1. 2-years investment, quarterly rebalancing policy (N=8)
- 2. target set as in [3]

The biggest challenge was the V@R constraint: Let's define the portfolio loss as  $L = L(k, k+1) := -(x_{k+1} - x_k)$ , using the relation  $x_{k+1} = x_k(1 + u_k^T w_{k+1})$  we get

$$L = -x_k(u_k^T \cdot w_{k+1})$$

or if we want to express the loss in return's terms we have

$$L = -(u_k^T \cdot w_{k+1})$$

. In the Gaussian case we have that  $L \sim \mathcal{N}(\underbrace{-u^T \mu}_{\mu_p}, \underbrace{u^T \Sigma u}_{\sigma_p^2})$  then

$$V@R_{1-\alpha}^{\Delta} = \mu_p + z_{1-\alpha}\sigma_p$$

where  $\Delta$  is the time horizon (in this case is the rebalancing period, 3 months). In the **Mixture case** we need the property that linear combinations of (multivariate) Gaussian mixture are still (univariate) Gaussian mixture (see [5]). Therefore we have

$$\mathcal{P}(L \le V@R_{1-\alpha}^{\Delta}) = 1 - \alpha \quad \Rightarrow \quad \mathcal{P}(-u^T w_{k+1} \le V@R_{1-\alpha}^{\Delta}) = 1 - \alpha$$

since <sup>1</sup>

$$u^T w_{k+1} \sim p_{u^T w_{k+1}}(z) = \sum_{i=1}^n \lambda_i \phi_{(\mu_i, \sigma_i)}(z)$$

<sup>&</sup>lt;sup>1</sup>the function  $\phi_{(\mu_i,\sigma_i)}(z)$  is the normal density with mean  $\mu_i = u^T \delta_i$  and variance  $\sigma_i^2 = u^T V_i u$  where  $\delta_i$  and  $V_i$  are mean vector and covariance matrix of the mixture components

by integration we get the CDF

$$F_{u^T w_{k+1}}(z) = \sum_{i=1}^n \lambda_i \Phi_{(\mu_i, \sigma_i)}(z)$$

hence

$$\mathcal{P}(-u^T w_{k+1} \le V @ R_{1-\alpha}^{\Delta}) = \mathcal{P}(u^T w_{k+1} \ge -V @ R_{1-\alpha}^{\Delta})$$
$$= 1 - F_{u^T w_{k+1}}(-V @ R_{1-\alpha}^{\Delta}))$$
$$= 1 - \alpha$$

and finally

$$F_{u^T w_{k+1}}(-V@R_{1-\alpha}^{\Delta}) \le \alpha$$

**Remark 1** Let's suppose we want to impose a monthly V@R constraint,  $V@R^{1m}_{99} = 7\%$ . First we need to convert this V@R specification into our time horizon  $\Delta = 3m$ . Using the compound rule we have

$$V@R_{1-\alpha}^{3m} = (1 + V@R_{1-\alpha}^{1m})^3 - 1$$

and then impose the above relation.

#### 2.4 partial results

The target sets were approximated in the following way:  $X_k \approx [0.5, 1.9]$   $k = 1, \ldots, 7$  and  $X_8 \approx [(1+\theta)^2, 1.9]$ . The discretization step  $\eta = 10^{-3}$ ,  $\theta = 7\%$ ,  $V@R_{99}^{1m} = 7\%$ .

**Remark 2** The results is very sensitive to the VaR constraint, the target return  $\theta$  and the distributions of the asset classes. Another method for imposing the VaR constraint can be found in (e.g. [6]).

**Remark 3** Another problem is the following: if the parameters are not carefully chosen it may happen that  $J(x_0) > 1$ .

Here we report the allocations maps for different time instants:



Figure 1: 3-months-square-root scaling rule was used of converting the VaR

#### 2.5 Validation

not started yet. Simulation only at the final period or at every time step? discuss paper on mixture simulation ( I took a look at [7] ).

#### 2.6 Comparison

not started yet

#### 2.7 Extensions

- Levy model for the return  $w_{k+1}$  (plus the associated calibration and simulation problem)
- transaction costs
- return estimation
- Python implementation for better performance
- ..

#### 3 What next

- complete Comparison and Validation
- improve the code from any point of view
- study papers on Stochastic Hybrid System ([10]) for possible extensions
- ...

# References

- [1] A. McNeil, R. Frey, P. Embrechts, *Quantitative Risk Management*, Princeton University Press, 2005.
- [2] G.Pola, G.Pola, A Stochastic Reachability Approach to Portfolio Construction in Finance Industry, 2012.
- [3] G.Pola, Optimal Dynamic Asset Allocation in a Non-Gaussian World
- [4] G.Pola, J.Lygeros, M.D. Di Benedetto, Invariance in Stochastic Dynamical Control Systems
- [5] I.Buckley, D.Saunders, L.Seco, Portfolio optimization when asset returns have a Gaussian mixture distribution, European Journal of Operational Research, 2005

- [6] David G. Luenberger, *Investment Science*, Oxford University Press, 2013 second edition
- [7] Jin Wang, Generating daily change in market variables using a multivariate mixture of normal distribution 2001
- [8] B.G.Linsay, P.Basak, Multivariate Normal Mixture: A Fast Method of Moments, Journal of the American Statistical Association, 1993
- [9] K.Fukunaga, T.Flick, Estimation of the Parameters of a Gaussian Mixture Using the Method of Moments, 1983
- [10] A.Abate,M.Prandini,J.Lygeros,S.Sastry, Probabilistic reachability and safety for controlled discrete time a Automatica, 2007