CS M51A Logic Design of Digital Systems Winter 2021

Some slides borrowed and modified from:

M.D. Ercegovac, T. Lang and J. Moreno, Introduction to Digital Systems.

Sequential System Implementation

State-transition function
$$s(t+1) = G(s(t), x(t))$$
 Output function $z(t) = H(s(t), x(t))$

MEALY AND MOORE MACHINES

Mealy machine

$$z(t) = H(s(t), x(t))$$

$$s(t+1) = G(s(t), x(t))$$

Moore machine

$$z(t) = H(s(t))$$

$$s(t+1) = G(s(t), x(t))$$

MEALY AND MOORE MACHINES

MEALY AND MOORE MACHINES

How to implement the state register?

SR Latch with NOR gates

• SR Latch with NOR gates

Functional Description of SR Latch

S	R	Q	\overline{Q}	
0	0	Q	\overline{Q}	Latch state (no change)
				Reset state
				Set state
1	1	?	?	Undefined

. .

Functional Description of SR Latch

• Advantages:

- Can "remember" value
- Natural "reset" and "set" signals
 (SR=01 is "reset" to 0, SR=10 is "set" to 1)

• Disadvantages:

- SR=11 input has to be avoided
- No notion of a clock or change at discrete points in time yet

The D Latch

$$\begin{array}{|c|c|c|c|c|c|} \hline C & D & \text{Next state of } Q \\ \hline 0 & X & \text{No change} \\ 1 & O & O = O & (Passet) \\ \hline \end{array}$$

1 0
$$Q = 0$$
 (Reset)
1 1 $Q = 1$ (Set)

1 1
$$Q = 1$$
 (Set)

Graphical example:

The D Flip-Flop

• We want state to be affected only at discrete points in time; a master-slave design achieves this.

• Graphical example:

D Flip-Flop

Clicker Question

Flipflops

Which of the following is a trace of *QI* and *QE* of a D-flipflop for the given D and Clock traces?

Clicker Question

Question on previous midterm:

How many bits can you store in one flipflop? Circle one.

1 2 4 8 16

A) 1

B) 2

C) 4

D) 8

E) 16

Flip-Flop: Master-Slave

PS = Q(t)	D(t)		
	0	1	
0	0	1	
1	0	1	
	NS =	=Q(t+1)	

$$Q(t+1) = D(t)$$

Flip-Flop

Flip-Flop: Master-Slave

TIMING PARAMETERS OF A BINARY CELL

CHARACTERISTICS OF A CMOS D flip-flop

Delays						
t_{pLH}	t_{pHL}	t_{su}	t_h	t_w		
[ns]	[ns]	[ns]	[ns]	[ns]		
0.49 + 0.038L	0.54 + 0.019L	0.30	0.14	0.2		

L: output load of the flip-flop

TIMING CHARACTERISTICS OF SEQUENTIAL NETWORKS

• NETWORK SET-UP TIME: $t_{su}^x(net) = d1^x + t_{su}(cell)$

TIMING FACTORS

• NETWORK HOLD TIME: $t_h(net) = t_h(cell)$

TIMING FACTORS (Cont.)

• NETWORK PROPAGATION DELAY: $t_p(net) = t_p(cell) + d2$

ANALYSIS OF CANONICAL SEQUENTIAL NETWORKS

 $\begin{array}{ccc} {\sf State\ transition} & Y_0 &= \\ & Y_1 &= \end{array}$

Output $z_0 = z_1 =$

• STATE-TRANSITION AND OUTPUT FUNCTIONS:

PS	Input	
$y_1 y_0$	$x = 0 \ x = 1$	
00		
01		
10		
11		
	Y_1Y_0	$z_1 z_0$
	NS	Output

• CODES:

\boldsymbol{x}	x	$z_1 z_0$	z	y_1y_0	s
0	a	00	\overline{c}	00	S_0
1	b	01	d		S_1
		10	e	10	S_2
		_ 11	f	11	S_3

HIGH-LEVEL SPECIFICATION:

Input: $x(t) \in \{a, b\}$

Output: $z(t) \in \{c, d, e, f\}$

State: $s(t) \in \{S_0, S_1, S_2, S_3\}$

Initial state: $s(0) = S_2$

Functions: The state-transition and output functions

PS	x(t) = a	x(t) = b	
$\overline{S_0}$	S_1	S_3	d
S_1	S_3	S_0	f
S_2	S_2	S_1	c
S_3	S_0	S_2	e
	N	\overline{S}	z(t)

State Diagram

PS	x(t) = a	x(t) = b	
S_0	S_1	S_3	d
S_1	S_3	S_0	f
S_2	S_2	S_1	c
S_3	S_0	S_2	e
	N	S	z(t)

PROPAGATION DELAY x to z_0 :

For x changes $0 \rightarrow 1$ and z_0 changes $1 \rightarrow 0$

CLK

