Inventory Intelligence: Advanced Inventory Stock Analysis

By: Luis Mireles

Technical Summary of Inventory Demand Forecasting and Optimization Methods

- 1. I start by loading libraries such as pandas ,numpy ,matplotlib ,pmdarima ,scipy ,matplotlib ,statsmodels.
- 2. I read the dataset from the CSV file and convert the 'InvoiceDate' column to a datetime format.
- 3. I filter out rows and compute the frequency of each StockCode.
- 4. I identify the most common StockCode and filter the dataset to only include transactions with this StockCode.
- 5. I compute the mean and standard deviation of the quantity and filter out outliers (values greater than 3 standard deviations away from the mean).
- 6. I aggregate the data on a weekly basis, calculating the sum of quantity for each week.
- 7. I determine if a given period is seasonal by checking if its quantity is greater than 2 standard deviations away from the mean demand.
- 8. I check the stationarity of the time series data and apply differencing if necessary.
- 9. I calculate the autocorrelation function (ACF), partial autocorrelation function (PACF), and Ljung-Box Q (LBQ) values.
- 10. I find the best (p, d, q) combination for the ARIMA model based on the Akaike Information Criterion (AIC).
- 11. I fit the ARIMA model with the best order and compare it to an ARIMA model with seasonality and an ARIMA model with a manually chosen order.

- 12. I forecast the demand for the next two weeks using the ARIMA model with seasonality.
- 13. I calculate the safety stock and reorder point based on historical demand and recommend an inventory management strategy.
- 14. I plot the historical and forecasted demand, along with the upper and lower bounds of the forecasted demand.
- 15. Inventory Stock Analysis Executive Summary is created.

The output of this code provides valuable insights and recommendations for inventory management, which can help businesses optimize their stock levels and reduce costs.

Copyright (c) 2023. Luis Mireles. All Rights Reserved.

Unauthorized copying, modification, distribution, or use of this software or any part of it, without the express written permission of the copyright owner, is strictly prohibited. This software is provided by the copyright holder "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright owner or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

```
import pandas as pd
import numpy as np
import warnings
import matplotlib.pyplot as plt
from statsmodels.tsa.stattools import adfuller, acf, pacf, q_stat
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from pmdarima.arima import auto_arima
from statsmodels.tsa.arima.model import ARIMA
from scipy.stats import chi2
import matplotlib.dates as mdates
```

```
from statsmodels.tsa.statespace.sarimax import SARIMAX
print("\n\n" + "INVENTORY STOCK ANALYSIS".center(100))
print("\n\n" + "BY: LUIS MIRELES".center(100))
file path = '/Users/fernando/Desktop/Code/Sources/Copy of online retail II.csv'
data = pd.read csv(file path, encoding='ISO-8859-1')
data['InvoiceDate'] = pd.to datetime(data['InvoiceDate'])
warnings.filterwarnings("ignore")
data = data[data['Quantity'] > 0]
stockcode counts = data.groupby('StockCode')['StockCode'].count().reset index(name='count')
most common stockcode = stockcode counts.loc[stockcode counts['count'].idxmax()]
print(f"\n\nThe most common StockCode is:\n {most common stockcode['StockCode']} with a count of {most common stockcode is:\n {most 
data = data[data['Quantity'] > 0]
data = data[data['StockCode'] == most common stockcode['StockCode']]
mean = data['Quantity'].mean()
std = data['Quantity'].std()
# Filtering out any values greater than 3 standard deviations away from the mean (outliers)
data = data[data['Quantity'] < mean + 3*std]</pre>
# Aggregating data on weekly
weekly data = data.groupby(pd.Grouper(key='InvoiceDate', freq='W'))['Quantity'].sum().reset index()
weekly data.columns = ['ds', 'y']
mean demand = weekly data['y'].mean()
std demand = weekly data['y'].std()
# Seasonality considerations
def is seasonal period(row):
         return (row['y'] > (mean demand + 2 * std demand)) or (row['y'] < (mean demand - 2 * std demand))
weekly data['seasonal'] = weekly data.apply(is seasonal period, axis=1)
```

```
print("\n\n WEEKLY DATA WITH SEASONAL COLUMN: \n", weekly data)
# Check for stationarity and apply differencing if necessary
def adf test(series):
    result = adfuller(series)
    print(f'ADF Statistic: {result[0]}')
    print(f'p-value: {result[1]}')
print(f"Length of weekly data: {len(weekly data)}")
# print(weekly data)
adf test(weekly data['y'])
weekly data['y diff'] = weekly data['y'].diff().dropna()
adf test(weekly data['y diff'].dropna())
# Computing the ACF, PACF, and Ljung-Box Q (LBQ) table
lags = 20
acf values = acf(weekly data['y diff'].dropna(), nlags=lags)
pacf values = pacf(weekly data['y diff'].dropna(), nlags=lags, method='ols')
lbq values, lbq pvalues = q stat(acf_values[1:], len(weekly data['y diff'].dropna()))
# Autocorrelation table
acf table = pd.DataFrame({'Lag': range(1, lags + 1), 'ACF': acf values[1:], 'T': acf values[1:] * np.sqrt
print("\nAutocorrelation Table:")
print(acf table)
plot acf(weekly data['y diff'].dropna())
plt.show()
# Partial Autocorrelation table
pacf table = pd.DataFrame({'Lag': range(1, lags + 1), 'PACF': pacf values[1:], 'T': pacf values[1:] * np
print("\nPartial Autocorrelation Table:")
print(pacf table)
plot pacf(weekly data['y diff'].dropna())
plt.show()
# Time Series
plt.figure(figsize=(12, 6))
plt.plot(weekly data['ds'], weekly data['y'], label='Daily Quantity Sold')
```

```
plt.xlabel('Date')
plt.ylabel('Quantity Sold')
plt.title('Time Series Plot of Daily Quantity Sold')
plt.legend()
plt.show()
# Function to calculate the AIC of an ARIMA model
def arima aic(p, d, q, data):
    try:
       model = ARIMA(data, order=(p, d, q))
       model fit = model.fit()
       return model fit.aic
    except ValueError:
       return float('inf')
# Finding the best (p, d, q) combination for the ARIMA model based on AIC
min aic = float('inf')
best order = None
for p in range(5):
    for d in range(2):
       for q in range(5):
           current_aic = arima_aic(p, d, q, weekly_data['y'])
           if current aic < min aic:</pre>
               min aic = current aic
               best order = (p, d, q)
print(f"\nBest ARIMA Model: ARIMA{best order} with AIC: {min aic}")
# Alternatively, use the auto arima function to find the best (p, d, q) combination
best auto arima model = auto arima(weekly data['y'], seasonal=True, stepwise=True, suppress warnings=True
print("\n\n Auto Arima Function: \n:", best auto arima model.summary())
#dead model seasonality not being calculated properly, did standard deviations method instead for seasonal
# acf values, ci, qstat, pvalues = acf(weekly data['y diff'].dropna(), nlags=52, alpha=0.05, qstat=True,
```

```
# acf = pd.Series(acf values)
# seasonality check = acf[acf.abs() == acf.abs().max()].index[0]
# print("\nSeasonality Check:", seasonality check)
# SARIMA model
# model = SARIMAX(weekly data['y'], order=best order, seasonal order=(0, 1, 0, seasonality check), enforce
# results = model.fit()
# forecast = results.forecast(steps=2)
# forecast df = pd.DataFrame({'ds': pd.date range(start=weekly data['ds'].max(), periods=2, freq='W'), 'y
# forecast data = pd.concat([weekly data, forecast df], axis=0)
# plt.figure(figsize=(12, 6))
# plt.scatter(forecast df['ds'], forecast df['y'], label='Forecasted')
# plt.plot(weekly data['ds'], weekly data['y'], label='Actual')
# plt.xlabel('Date')
# plt.ylabel('Quantity Sold')
# plt.title('Scatter Plot of Forecasted vs Actual Quantity Sold')
# plt.legend()
# plt.show()
#for individual control the own order model is present based on visual analysis of ACF & PACF
own order = (2,2,1)
print("\n\n Best Order on SelfCheck: \n",own order)
print("\n\n Best Order on AutoCheck: \n", best order)
# ARIMA MODELS
best arima model = ARIMA(weekly data['y'], order=best order)
best arima fit = best arima model.fit()
arima model with seasonal = ARIMA(weekly data['y'], order=best order, exog=weekly data['seasonal'])
```

```
arima fit with seasonal = arima model with seasonal.fit()
own arima model = ARIMA(weekly data['y'], order = own order)
own arima fit = own arima model.fit()
# Residuals for each
residuals = best arima fit.resid
own residuals = own arima fit.resid
seasonal residuals = arima fit with seasonal.resid
# All plots of the ACF of the residuals
plt.figure()
plot acf(residuals)
plt.title("ACF of Residuals(Simple ARIMA)")
plt.show()
plt.figure()
plot acf(own residuals)
plt.title("ACF of Residuals(OWN)")
plt.show()
plt.figure()
plot acf(seasonal residuals)
plt.title("ACF of Residuals(Seasonal)")
plt.show()
#Table calues for all 3
residuals acf = acf(residuals, nlags=lags)[1:]
lbg test values, lbg test pvalues = q stat(residuals acf, len(residuals))
lbq test table = pd.DataFrame({'Lag': range(1, lags + 1), 'ACF': residuals acf, 'LBQ': lbq test values,
print("\nLjung-Box Test and ACF on Residuals(Simple Arima):")
print(lbq test table)
residuals acf own = acf(own residuals, nlags=lags)[1:]
lbg test values own, lbg test pvalues own = g stat(residuals acf own, len(own residuals))
lbq test table own = pd.DataFrame({'Lag': range(1, lags + 1), 'ACF': residuals acf own, 'LBQ': lbq test v
```

```
print("\nLjung-Box Test and ACF on Residuals(OWN):")
print(lbq test table own)
residuals acf s = acf(seasonal residuals, nlags=lags)[1:]
lbg test values s, lbg test pvalues s = g stat(residuals acf s, len(seasonal residuals))
lbq test table s = pd.DataFrame({'Lag': range(1, lags + 1), 'ACF': residuals acf s, 'LBQ': lbq test value
print("\nLjung-Box Test and ACF on Residuals(Seasonal):")
print(lbq test table s)
################################
# arima fit with seasonal
# best arima fit
# own arima fit
#Forecast
future steps = 2
exog insert = weekly data.loc[weekly data.index[-future steps:], 'seasonal']
forecast = arima fit with seasonal.forecast(steps=future steps, exog= exog insert)
# forecast = arima fit with seasonal.forecast(steps=2)
date range = pd.date range(weekly data['ds'].iloc[-1] + pd.Timedelta(weeks=1), periods=forecast.shape[0],
# Combine the date range and forecast
forecast demand = pd.DataFrame({'ds': date range, 'yhat': forecast})
forecast demand['yhat'] = forecast demand['yhat'].clip(lower=0)
# Inventory Optimization Strategy
safety stock = 1.5 * weekly data['y'].std() # Assuming 1.5 times the standard deviation of historical de
order point = 2 * weekly data['y'].mean() # Assuming 2 week lead time
print("\n\n" + "INVENTORY STOCK ANALYSIS REPORT".center(100))
print("\n\n" + "BY: LUIS MIRELES".center(100))
print("\n\n\nltem: ", {most common stockcode['StockCode']})
print("Safety Stock: {:.0f}".format(safety stock))
print("Reorder Point: {:.0f}".format(order point))
inventory level = order point - forecast demand['yhat'].sum()
print("Projected Inventory Level after 2 weeks: {:.0f}".format(inventory level))
```

```
if inventory level <= safety stock:</pre>
    order quantity = order point + safety stock - inventory level
    print("Place an order for: {:.0f}".format(order quantity))
else:
    print("No need to place an order in the next 2 weeks.")
print("\n\n Forecast Demand: \n", forecast demand)
# Plots
forecast demand weekly = forecast demand
recent data = weekly data.tail(10)
plt.figure(figsize=(12, 6))
plt.plot(weekly data['ds'], weekly data['y'], label='Historical Demand', marker='o', linestyle='--')
plt.plot(forecast demand weekly['ds'], forecast demand weekly['yhat'], label='Forecasted Demand', marker=
plt.scatter(recent data['ds'], recent data['y'])
for index, row in forecast demand weekly.iterrows():
    plt.annotate(
        f"{row['yhat']:.0f}",
        (row['ds'], row['yhat']),
        textcoords="offset points",
        xytext=(0, 5),
        ha='center',
       fontsize=9,
        color='blue'
plt.title('Historical & Forecasted Demand')
plt.xlabel('Date')
plt.ylabel('Demand')
plt.legend()
ax = plt.qca()
ax.xaxis.set major formatter(mdates.DateFormatter('%m/%d/%y'))
plt.show()
# lower and upper bounds for forecasted demand based on residuals
r build = arima fit with seasonal.resid
std build = 0.5* np.std(r build)
forecast demand upper = forecast demand.copy()
```

```
forecast demand upper['yhat'] += std build
forecast demand_lower = forecast_demand.copy()
forecast demand lower['yhat'] -= std build
print("Upper:", forecast demand upper['yhat'])
print("Lower:", forecast demand lower['yhat'])
forecast demand weekly = forecast_demand
recent data = weekly data.tail(10)
plt.figure(figsize=(12, 6))
plt.scatter(recent data['ds'], recent data['y'], label='Historical Demand')
plt.scatter(forecast demand weekly['ds'], forecast demand weekly['yhat'], label='Forecasted Demand')
plt.plot(recent data['ds'], recent data['y'])
plt.plot(forecast demand['ds'], forecast demand['yhat'])
plt.plot(forecast demand['ds'], forecast demand upper['yhat'], label='Upper Bound')
plt.plot(forecast demand['ds'], forecast demand lower['yhat'], label='Lower Bound')
plt.plot([recent data['ds'].iloc[-1], forecast demand['ds'].iloc[0]], [recent data['y'].iloc[-1], forecast
for index, row in forecast demand weekly.iterrows():
    plt.annotate(
        f"{row['yhat']:.0f}",
        (row['ds'], row['yhat']),
        textcoords="offset points",
        xytext=(0, 5),
        ha='center',
        fontsize=9,
        color='blue'
plt.title('Recent Historical & Forecasted Demand')
plt.xlabel('Date')
plt.ylabel('Demand')
plt.legend()
ax = plt.gca()
ax.xaxis.set major formatter(mdates.DateFormatter('%m/%d/%y'))
plt.show()
```

INVENTORY STOCK ANALYSIS

BY: LUIS MIRELES

The most common StockCode is: 85123A with a count of 2270.

WEEKLY DATA WITH SEASONAL COLUMN:

***	DITTILL VI	TIH DDM	DOMINE COLOR
	ds	У	seasonal
0	2010-12-05	986	False
1	2010-12-12	1045	False
2	2010-12-19	1024	False
3	2010-12-26	198	False
4	2011-01-02	0	True
5	2011-01-09	973	False
6	2011-01-16	389	False
7	2011-01-23	661	False
8	2011-01-30	541	False
9	2011-02-06	586	False
10	2011-02-13	517	False
11	2011-02-20	365	False
12	2011-02-27	401	False
13	2011-03-06	380	False
14	2011-03-13	454	False
15	2011-03-20	465	False
16	2011-03-27	365	False
17	2011-04-03	582	False
18	2011-04-10	374	False
19	2011-04-17	474	False
20	2011-04-24	492	False
21	2011-05-01	375	False
22	2011-05-08	1144	True
23	2011-05-15	873	False
24	2011-05-22	783	False
25	2011-05-29	418	False
26	2011-06-05	628	False

27	2011-06-12	389	False
28	2011-06-19	389	False
29	2011-06-26	236	False
30	2011-07-03	259	False
31	2011-07-10	258	False
32	2011-07-17	683	False
33	2011 - 07 - 24	719	False
34	2011-07-31	300	False
35	2011-08-07	441	False
36	2011-08-14	466	False
37	2011-08-21	296	False
38	2011-08-28	373	False
39	2011-09-04	394	False
40	2011-09-11	440	False
41	2011-09-18	658	False
42	2011-09-25	705	False
43	2011-10-02	402	False
44	2011-10-09	165	False
45	2011-10-16	679	False
46	2011-10-23	231	False
47	2011-10-30	444	False
48	2011-11-06	712	False
49	2011-11-13	575	False
50	2011-11-20	1322	True
51	2011-11-27	898	False
52	2011-12-04	726	False
53	2011-12-11	649	False
Ler	ngth of weel	kly_data: 5	4
ADF	Statistic	: -5.501740	915673518
p-v	value: 2.06	39275366591	57e-06
ADF	Statistic	: -10.61240	7962191611
~ .	72]110	05101066117	11Eo 10

11 p-value: 5.7885184966447445e-19

Autocorrelation Table:

	Lag	ACF	Т	LBQ	LBQ p-value
0	1	-0.384791	-2.801323	8.300145	0.003964
1	2	-0.071967	-0.523928	8.596175	0.013595
2	3	0.069334	0.504762	8.876438	0.030980
3	4	-0.128026	-0.932041	9.851510	0.043005

4	5	0.077777	0.566228	10.218881	0.069266
5	6	-0.079130	-0.576074	10.607229	0.101301
6	7	-0.009801	-0.071353	10.613317	0.156398
7	8	-0.022780	-0.165841	10.646931	0.222518
8	9	0.115979	0.844341	11.538072	0.240620
9	10	0.107388	0.781798	12.319849	0.264220
10	11	-0.179982	-1.310290	14.568119	0.203134
11	12	0.038665	0.281486	14.674409	0.259727
12	13	-0.000930	-0.006771	14.674472	0.328113
13	14	-0.079994	-0.582365	15.152759	0.367793
14	15	0.129045	0.939464	16.430195	0.354051
15	16	-0.171981	-1.252043	18.760427	0.281282
16	17	0.185865	1.353115	21.557665	0.202334
17	18	-0.008573	-0.062409	21.563786	0.251929
18	19	-0.011257	-0.081950	21.574650	0.305934
19	20	-0.126474	-0.920742	22.987591	0.289404

Partia	1	Autocorrel	Lation	Table
La	g	PACF		T
0	1	-0.385152	-2.803	3951
1	2	-0.262081	-1.907	7981
2	3	-0.097261	-0.708	3074
3	4	-0.205982	-1.499	9571
4	5	-0.060423	-0.439	9887
5	6	-0.150833	-1.098	3079
6	7	-0.159027	-1.157	7737
7	8	-0.217692	-1.584	1824
8	9	-0.007340	-0.053	3434
9 1	0	0.223697	1.628	3539
10 1	1	-0.063003	-0.458	3669
11 1	2	-0.063888	-0.465	5110
12 1	3	-0.013915	-0.101	L303
13 1	4	-0.156399	-1.138	3599
14 1	5	0.019167	0.139	9538
15 1	6	-0.210597	-1.533	3168
16 1	7	0.173251	1.261	L284
17 1	8	0.126248	0.919	9099
18 1	9	-0.007592	-0.055	5269
19 2	0	-0.390957	-2.846	5213

Time Series Plot of Daily Quantity Sold

Best ARIMA Model: ARIMA(1, 1, 1) with AIC: 746.4759921392756 Performing stepwise search to minimize aic

ARIMA(2,0,2)(0,0,0)[0] intercept : AIC=inf, Time=0.08 sec ARIMA(0,0,0)(0,0,0)[0] intercept : AIC=759.197, Time=0.01 sec ARIMA(1,0,0)(0,0,0)[0] intercept : AIC=756.578, Time=0.02 sec ARIMA(0,0,1)(0,0,0)[0] intercept : AIC=757.055, Time=0.03 sec ARIMA(0,0,0)(0,0,0)[0]: AIC=846.684, Time=0.00 sec ARIMA(2,0,0)(0,0,0)[0] intercept : AIC=758.573, Time=0.03 sec ARIMA(1,0,1)(0,0,0)[0] intercept : AIC=758.683, Time=0.03 sec ARIMA(2,0,1)(0,0,0)[0] intercept : AIC=760.551, Time=0.04 sec : AIC=776.166, Time=0.01 sec ARIMA(1,0,0)(0,0,0)[0]

Best model: ARIMA(1,0,0)(0,0,0)[0] intercept

Total fit time: 0.260 seconds

Auto Arima Function:

: SARIMAX Results							
Dep. Varial	 ble:		y No.	Observations	 :	54	
Model:	SA	ARIMAX(1, 0,)) Log	Likelihood		-375.289	
Date:	Sa	at, 06 May 20	23 AIC			756.578	
Time:		22:22:	39 BIC			762.545	
Sample:			0 HQIC			758.880	
		- !	54				
Covariance	Type:	Oj	pg				
========							
	coef	std err	Z	P> z	[0.025	0.975]	
intercept	387.1800	78.423	4.937	0.000	233.473	540.887	
ar.L1	0.2919	0.118	2.474	0.013	0.061	0.523	
sigma2	6.358e+04	1.2e+04	5.297	0.000	4.01e+04	8.71e+04	
Ljung-Box (L1) (Q): 0.01 Jarqu				Jarque-Bera	(JB):		8.90
<pre>Prob(Q):</pre>			0.91	Prob(JB):			0.01
Heteroskedasticity (H):			0.78	Skew:			0.85
Prob(H) (tr	wo-sided):		0.61	Kurtosis:			4.02

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Best Order on SelfCheck:
(2, 2, 1)

Best Order on AutoCheck:

(1, 1, 1)
<Figure size 640x480 with 0 Axes>

<Figure size 640x480 with 0 Axes>

<Figure size 640x480 with 0 Axes>

Ljung-Box Test and ACF on Residuals(Simple Arima):

	Lag	ACF	LBQ	LBQ p-value
0	1	0.002745	0.000430	0.983460
1	2	0.028978	0.049263	0.975669
2	3	-0.098087	0.619737	0.891900
3	4	-0.184038	2.668185	0.614793
4	5	0.144237	3.952100	0.556333
5	6	-0.145587	5.287419	0.507513
6	7	0.009840	5.293649	0.624176
7	8	-0.005590	5.295703	0.725554
8	9	0.097907	5.939874	0.745921
9	10	0.062986	6.212527	0.797103

10	11	-0.146901	7.730157	0.737253
11	12	-0.029865	7.794373	0.800986
12	13	-0.057973	8.042256	0.840837
13	14	-0.072920	8.444249	0.864923
14	15	0.045422	8.604226	0.897286
15	16	-0.118718	9.725800	0.880550
16	17	0.138745	11.299108	0.840599
17	18	-0.035012	11.402081	0.876522
18	19	-0.049882	11.617066	0.901335
19	20	-0.127028	13.052220	0.875132
Lju				siduals(OWN):
	Lag	ACF	LBQ	
0			0.191614	0.661577
1		-0.062199	0.416594	0.811966
2	3	-0.268252	4.683341	0.196508
3	4	-0.243690	8.274921	0.082011
4		0.153637	9.731646	0.083206
5	6	-0.136283	10.901749	0.091461
6	7	0.034243	10.977192	0.139617
7	8	0.012981	10.988269	0.202365
8	9	0.167759	12.879482	0.168136
9	10	0.101635	13.589414	0.192557
10	11	-0.134695	14.865304	0.188747
11		-0.044174	15.005803	0.241119
12	13	-0.036985	15.106693	0.300740
13	14	-0.044803	15.258448	0.360719
14		0.078249	15.733211	0.400001
15		-0.072263	16.148770	0.442627
16	17	0.210118	19.757113	0.286841
17	18	0.015834	19.778174	0.345446
18	19	-0.045258	19.955150	0.397282
19	20	-0.186099	23.035423	0.287059
		_		
Lju				siduals(Seasonal):
	Lag	ACF	LBQ	LBQ p-value
0	1	0.017325		0.895882
1	2			0.990757
2	3	-0.111667	0.757942	0.859498

3	4	-0.226982	3.873908	0.423339
4	5	0.134099	4.983680	0.417875
5	6	-0.119879	5.889048	0.435733
6	7	0.027747	5.938584	0.546939
7	8	-0.004092	5.939685	0.653988
8	9	0.117782	6.871918	0.650453
9	10	0.061966	7.135818	0.712564
10	11	-0.149476	8.707114	0.648907
11	12	-0.008919	8.712841	0.727242
12	13	-0.064179	9.016636	0.771686
13	14	-0.066535	9.351309	0.807909
14	15	0.044528	9.505048	0.849666
15	16	-0.082369	10.044959	0.864270
16	17	0.112181	11.073486	0.852718
17	18	-0.022758	11.116992	0.889326
18	19	-0.030063	11.195079	0.917102
19	20	-0.165529	13.632055	0.848651

INVENTORY STOCK ANALYSIS REPORT

BY: LUIS MIRELES

Item: {'85123A'}
Safety Stock: 399
Reorder Point: 1085

Projected Inventory Level after 2 weeks: -24

Place an order for: 1508

Forecast Demand:

ds yhat 54 2011-12-18 566.252890 55 2011-12-25 542.626451

Historical & Forecasted Demand

Upper: 54 711.831350

55 688.204911

Name: yhat, dtype: float64 Lower: 54 420.674430

55 397.047991

Name: yhat, dtype: float64

Inventory Stock Analysis Executive Summary

By: Luis Mireles

The purpose of this analysis is to forecast the demand for the most frequently sold item (StockCode: 85123A) over the next two weeks and provide inventory management recommendations based on the results.

Key Findings:

The historical demand data was analyzed, and the forecast for the next two weeks was generated using an ARIMA model with seasonal adjustments.

The safety stock level was determined as 1.5 times the standard deviation of historical demand, and the reorder point was set at twice the average weekly demand, assuming a 2-week lead time.

Based on the forecast, the **projected inventory level after two weeks is -24**. Given the **safety stock** of **399** and **reorder point** of **1085**, it is recommended to order **1508** in the next two weeks. **Demand for next two weeks is estimated to be 566 and 543.**

The forecasted demand and its upper and lower bounds are visualized in the provided plots, showing the historical and forecasted demand over time. This analysis enables better inventory management and ensures that the stock levels are maintained within the desired range to minimize stockouts and overstocking.

Please note that the demand forecast and inventory recommendations are subject to change with updated data and adjustments to the model parameters. Regular monitoring and analysis are advised to maintain optimal inventory levels.