데이터 통신

Part 2. 물리층

Chapter 3. 물리층 개요

3 **장 물리층 개요**

- ◆ 3.1 데이터와 신호
- ◆ 3.2 주기 아날로그 신호
- ◆ 3.3 디지털 신호
- ◆ 3.4 전송 장애
- ◆ 3.5 데이터 전송률의 한계
- ◆ 3.6 성 능
- ◆ 3.7 요 약

3.1 **데이터와 신호**

- ◆ 그림 3.1 : 연구기관에서 작업하는 과학자들의 시나리오
- ◆ Alice와 Bob간에 5개 레벨의 통신이 이루어짐
- ◆ 응용층, 전송층, 네트워크층, 데이터링크층 통신은 논리적
- ◆ 물리층 통신은 물리적
- ◆ 물리층 통신은 신호를 교환
- ◆ 데이터는 전송되고 수신되지만 매체는 신호로 변환
- ◆ 데이터와 데이터를 표현하는 신호는 아날로그 또는 디지털일 수 있음

물리층에서 통신

3.1.1 **아날로그와 디지털 데이터**

- ◆ 데이터는 아날로그 또는 디지털일 수 있음
- ◆ 아날로그 데이터는 연속적인 정보
- ◆ 아날로그 데이터 예는 사람의 목소리
- ◆ 디지털 데이터는 이산 값을 갖는 정보
- ◆ 디지털 데이터 예는 0과 1의 형태로 컴퓨터의 기억장치에 저장되 는 데이터

3.1.2 **아날로그와 디지털 신호**

- ◆ 신호도 아날로그나 디지털일 수 있음
- ◆ 아날로그 신호(analog signal)는 연속적인 파형
- ◆ 디지털 신호(digital signal)는 이산적이며 1, 0 과 같이 제한된 수 의 정의된 값만을 가질 수 있음
- ◆ 아날로그와 디지털 신호의 비교

3.1.3 **주기 신호와 비주기 신호**

- ◆ 주기 신호(Periodic signals)
 - 주기라는 연속적으로 반복된 패턴으로 구성
 - 사이클(cycle) 하나의 완성된 패턴
 - 신호의 주기(T)는 초 단위로 표현

- ◆ 비주기 신호(Aperiodic signals)
 - 시간에 따라 반복된 패턴이나 사이클이 없이 항상 변한다
 - 신호는 반복된 패턴이 없다

3.1.3 **주기 신호와 비주기 신호**

In data communications, we commonly use periodic analog signals and nonperiodic digital signals.

데이터 통신에서는 흔히 주기 아날로그 신호를 사용하거나 비주기 디지털 신호를 사용한다.

3.2 **주기 아날로그 신호**

- ◆ 싸인파(sine wave, 정현파)는 아날로그 주기 신호의 가장 기본적인 형태
- ◆ 단순 아날로그 신호(정현파)
- ◆ 정현파는 진폭, 주파수, 위상이라는 3가지 특성으로 표현

We discuss a mathematical approach to sine waves in Appendix E.

최대 진폭

- ◆ 전송하는 신호의 에너지에 비례하는 가장 큰 세기의 절대값
- ◆ 전기 신호의 경우, 최대 진폭은 전압(v)으로 측정
 - 위상과 주파수는 같지만 진폭이 서로 다른 두 신호.

a. A signal with high peak amplitude

주기와 주파수

- ◆ 주기(Period)와 주파수(Frequency)
 - 주기(T)
 - > 하나의 사이클을 완성하는데 필요한 시간(초 단위)
 - 주파수(f)
 - ▶ 주기의 역수(1 / t), 1초 동안 생성되는 신호 주기의 수
 - ▶ 주파수 = 1 / 주기, 주기 = 1 / 주파수
 - \rightarrow f = 1 / T , T = 1 / f

주기와 주파수는 서로 역이다.

$$f = \frac{1}{T}$$
 and $T = \frac{1}{f}$

◆ 진폭과 위상은 같지만 주파수가 서로 다른 신호.

12 periods in 1 s \rightarrow Frequency is 12 Hz

6 periods in 1 s \longrightarrow Frequency is 6 Hz

a. A signal with a frequency of 12 Hz

b. A signal with a frequency of 6 Hz

주기와 주파수

- ◆ 주기는 초 단위로 표시
- ◆ 주파수는 초당 사이클 수는 헤르츠(Hertz, Hz)로 표현
- ◆ 주기와 주파수 단위

Period		Frequency	
Unit	Equivalent	Unit	Equivalent
Seconds (s)	1 s	Hertz (Hz)	1 Hz
Milliseconds (ms)	$10^{-3} \mathrm{s}$	Kilohertz (kHz)	$10^3 \mathrm{Hz}$
Microseconds (μs)	$10^{-6} \mathrm{s}$	Megahertz (MHz)	10 ⁶ Hz
Nanoseconds (ns)	10 ⁻⁹ s	Gigahertz (GHz)	10 ⁹ Hz
Picoseconds (ps)	10^{-12} s	Terahertz (THz)	10^{12}Hz

가정에서 사용하는 전기의 주파수는 60 Hz 이다. 이 정현파의 주기는 다음과 같이 나타낼 수 있다:

$$T = \frac{1}{f} = \frac{1}{60} = 0.0166 \text{ s} = 0.0166 \times 10^3 \text{ ms} = 16.6 \text{ ms}$$

◆ 100 ms의 주기를 마이크로 초(µs)로 나타내어라.

- **♦** Solution
- ◆ 표 3.1에서 1 ms (1 ms 는 10⁻³ s) 와 1 s (1 s 는 10⁶ µs)와 대응되는 값을 찾는다. 다음과 같이 대입식을 만든다.

$$100 \text{ ms} = 100 \times 10^{-3} \text{ s} = 100 \times 10^{-3} \times 10^{6} \text{ } \mu\text{s} = 10^{2} \times 10^{-3} \times 10^{6} \text{ } \mu\text{s} = 10^{5} \text{ } \mu\text{s}$$

◆ 신호의 주기가 100 ms이다. 이의 주파수를 kilohertz로 나타내면?

- **♦** Solution
- ◆ 먼저, 100 ms를 seconds로 바꾼다, 그런 다음 주기로부터 주파수를 계산한다 (1 Hz = 10⁻³ kHz).

$$100 \text{ ms} = 100 \times 10^{-3} \text{ s} = 10^{-1} \text{ s}$$

$$f = \frac{1}{T} = \frac{1}{10^{-1}} \text{ Hz} = 10 \text{ Hz} = 10 \times 10^{-3} \text{ kHz} = 10^{-2} \text{ kHz}$$

주기와 주파수

주파수는 시간에 대한 신호의 변화율이다. 짧은 기간 내의 변화는 높은 주파수를 의미한다. 긴 기간에 걸친 변화는 낮은 주파수를 의미한다.

Frequency is the rate of change with respect to time. Change in a short span of time means high frequency. Change over a long span of time means low frequency.

만약 신호가 전혀 변화하지 않으면 주파수는 0이다. 신호가 순간적으로 변화하면 주파수는 무한대이다.

If a signal does not change at all, its frequency is zero. If a signal changes instantaneously, its frequency is infinite.

3.2.2 위상(phase)

- ◆ 시간 0 시에 대한 파형의 상대적인 위치
- ◆ 시간 축을 따라 앞뒤로 이동될 수 있는 파형에서 그 이동된 양
- ◆ 첫 사이클의 상태를 표시

◆ 진폭과 주파수는 같지만 위상이 서로 다른 정현파

위상

- ◆ 예제 3.6
 - 정현파는 시간 0 의 점에서 1/6 사이클 만큼 벗어나 있다.
 - 위상은 얼마인가?
- **♦** Solution
- ◆ 하나의 완전한 원은 360 도이다. 그러므로 원의 1/6은 다음과 같다.

$$\frac{1}{6} \times 360 = 60^{\circ} = 60 \times \frac{2\pi}{360} \text{ rad} = \frac{\pi}{3} \text{ rad} = 1.046 \text{ rad}$$

3.2.3 **파장** (wavelength)

- 단순 정현파의 주기 또는 주파수를, 전송 매체를 통과하는 전파속도 (propagation speed)와 연관
- 단순신호가 한 주기 동안 진행 할 수 있는 거리.

3.2.3 **파장** (wavelength)

- ◆ 파장은 전파속도와 주기가 주어지면 계산 가능
- 파장을 λ, 전파속도를 c(빛의 속도), 주파수를 f 라 하면

Wavelength = (propagation speed) x period = propagation speed/frequency

$$\lambda = \frac{c}{f}$$

◆ 진공에서 빛의 전파속도 3*10⁸ m/s, 빨간색 빛(주파수 = 4 * 10¹⁴)의 파 장은

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{4 \times 10^{14}} = 0.75 \times 10^{-6} m = 0.75 \mu m$$

3.2.4 **시간 영역과 주파수 영역**

- ◆ 시간 영역 도면(time-domain plot)
 - 시간에 대한 순간적인 진폭

- ◆ 주파수 영역 도면(frequency-domain plot)
 - 주파수에 대한 최대 진폭

정현파의 시간 영역과 주파수 영역

Amplitude

1 second (Frequency: 6 Hz)

Peak value: 5 V

Time

(s)

a. A sine wave in the time domain

Amplitude

b. The same sine wave in the frequency domain

시간 영역에서 완전한 정현파는 주파수 영역에서 뾰족점 하나로 나타낸다.

A complete sine wave in the time domain can be represented by one single spike in the frequency domain.

3개의 정현파 시간 영역과 주파수 영역

b. Frequency-domain representation

3.2.5 복합신호

단일 주파수 정현파는 데이터 통신에 유용하지 않다. 여러 개의 단일 정현파로 만들어진 복합 신호가 필요하다.

A single-frequency sine wave is not useful in data communications; we need to send a composite signal, a signal made of many simple sine waves.

3.2.5 복합신호

퓨리에 분석에 따라서, 임의의 복합 신호는 서로 다른 주파수, 진폭, 위상을 갖는 단순 정현파의 조합으로 나타낼 수 있다. 퓨리에 분석은 부록 D에 있다.

According to Fourier analysis, any composite signal is a combination of simple sine waves with different frequencies, amplitudes, and phases. Fourier analysis is discussed in Appendix D.

3.2.5 복합신호

복합 신호가 주기적이면, 이를 분해하면 이산 주파수를 갖는 정현파의 시리즈로 나뉘게 된다.

복합 신호가 비주기이면, 이를 분해하면 무한 개의 연속적인 주파수를 갖는 정현파들로 나뉜다.

- ◆ 그림 3.10는 주파수 f의 주기 복합 신호
- ◆ 데이터 통신에서 보는 전형적인 신호는 아니다.
- ◆ 각기 서로 다른 주파수를 갖는 3개의 신호로 볼 수 있다.
- ◆ 이 신호를 해석하면 신호를 어떻게 분해하는지를 이해할 수 있다.

복합 주기 신호의 시간 영역과 주파수 영역 분해 결과

a. Time-domain decomposition of a composite signal

b. Frequency-domain decomposition of the composite signal

→ 그림 3.12는 비주기 복합신호이다. 이것은 마이크로 폰이나 전화기를 통해 한 두 마디 말에 의해 만들어질 수 있다. 이 경우에 복합 신호는 주기적일 수 없는데, 이는 이것이 주기적이라면 같은 말을 정확하게 같은 목소리높이로 계속 반복해야 하기 때문이다.

비주기 신호의 시간영역과 주파수 영역

b. Frequency domain

3.2.6 대역목

◆ 복합신호에 포함된 주파수 영역

복합신호의 대역폭(bandwidth)은 신호에 포함된 최고 주파수와 최저 주파수의 차이이다.

The bandwidth of a composite signal is the difference between the highest and the lowest frequencies contained in that signal.

주기와 비주기 복합 신호의 대역폭

a. Bandwidth of a periodic signal

b. Bandwidth of a nonperiodic signal

Lab. of Information Security & Internet Applications

3.2.6 대역목

- ◆ 예제 3.10
 - 만약 주기 신호가 주파수 100, 300, 500, 700, 900Hz 를 갖는 5개의 정현파로 분해된다면, 그 대역폭은 얼마인가? 모든 구성요소가 10 볼트의 최대 진폭을 갖는다고 가정하고 스펙트럼을 그려라.

풀이> fh를 최고 주파수, fl을 최저 주파수라 하고, B는 대역폭이라 하자. B = fh - fl = 900 - 100 = 800 Hz 스펙트럼은 주파수 100, 300, 500, 700, 900 의 5 개 막대만을 갖는다.

대역폭

- ◆ 예제 3.11
 - 어떤 신호가 20Hz의 대역폭을 가지며, 최고 주파수는 60Hz이다. 가장 낮은 주파수는 얼마인가? 신호가 같은 진폭의 모든 정수 주파수를 포함할 때 스펙 트럼을 그려라.

풀이> fh를 최고 주파수, fl을 최저 주파수라 하고, B는 대역폭이라 하자.

$$B = f_h - f_l$$

$$20 = 60 - f_l$$

$$f_l = 60 - 20 = 40 \text{ Hz}$$

◆ 어떤 비주기 복합 신호의 대역폭이 200 kHz이며, 그 중간지점은 140 kHz이고, 최대 진폭은 20 V이다. 양 극단 의 주파수의 진폭은 0이다. 신호의 주파수 영역을 그려라.

♦ Solution

◆ 최소 주파수는 40 kHz 이고 최대 주파수는 240 kHz 이다. 다음 그림은 주 파수 영역과 대역폭을 보여준다.

- ◆ 비주기 복합 신호의 예: AM 라디오 방송국에서 보내는 신호
- ◆ 미국: 각 AM 방송국에 10kHz 대역폭 할당
- ◆ 전체 AM 방송국에 할당된 대역폭: 530kHz에서 1700kHz까지
- ◆ 5장에서 각 방송국에 10-kHz 대역폭 할당 이유 설명

- ◆ 비주기 복합 신호 또 다른 예:FM 방송국에서 송출되는 신호
- ◆ 미국: 각 FM 방송국에 200kHz 대역폭 할당
- ◆ 전체 FM 방송에 할당된 주파수 영역:88 MHz 에서 108 MHz 까지
- ◆ 5장에서 200kHz 대역폭 할당 이유 설명

- ◆ 비주기 복합 신호의 또 다른 예: 구식 아날로그 흑백 TV 신호
- ◆ TV 화면: 픽셀(pixel)들로 구성
- ◆ 해상도가 525 × 700이면, 화면당 367,500 픽셀
- ◆ 화면이 초당 30회 스캔하면, 초당 367,500 × 30 = 11,025,000 픽셀
- ◆ 최악의 경우는 매 픽셀마다 흑백이 바뀌는 것
- ◆ 사이클당 2 픽셀을 보낼 수 있음
- ◆ 초당 11,025,000 / 2 = 5,512,500 사이클이며, 또는 Hz로는 대역폭 5.5125 MHz 필요

3.3 디지털 신호

◆ 정보는 디지털 신호(digital signal)에 의해 표현될 수 있다. 예를 들면, 1은 양의 전압으로 0은 0 전압으로 부호화할 수 있다. 디지털 신호는 두 개의 레벨보다 더 많을 수 있다. 이 경우에, 각 레벨(준위)는 1 비트 이상을 보낼 수 있다.

◆ <u>이 절에서 논의할 주제:</u>

Bit Rate

Bit Length

Digital Signal as a Composite Analog Signal

Application Layer

2개의 준위와 4개의 준위를 갖는 신호.

◆ 디지털 신호가 8개의 준위를 가지고 있다. 각 준위당 몇 개의 비트가 필 요한가? 다음과 같이 계산할 수 있다.

Number of bits per level = $log_2 8 = 3$

각 신호 준위는 3 비트를 나타낸다.

◆ 디지털 신호가 9개의 준위를 갖는다. 각 준위당 몇 개의 비트 가 필요한가? 수식을 사용하여 비트 수를 계산하면 각 신호 준위 당 3.17개의 비트가 필요하다. 그러나 이 답은 실제적이 지 못하다. 준위당 비트 수는 정수이어야 하고, 2의 지수승이 어야 한다. 이 예에서는 4 비트가 하나의 준위를 나타낼 수 있 다.

3.3.1 비트율

- ◆ 비트율(bit rate)
 - 디지털 신호를 표현하는데 사용
 - 1초 동안 전송된 비트의 수
 - bps(bit per second)

◆ 텍스트 자료를 매 분당 100 페이지를 다운 받는다고 하자. 요구되는 채널 의 비트율은 얼마인가?

♦ Solution

◆ 각 페이지는 줄 당 80개의 문자로 된 24개의 줄로 되어있다. 한 문자 당 8 비트를 필요로 한다면 비트율은

 $100 \times 24 \times 80 \times 8 = 1,536,000 \text{ bps} = 1.536 \text{ Mbps}$

◆ 4장에서 보게 되겠지만, 디지털화된 음성 채널은 4 KHz 의 아날로그 음성 신호를 디지털화한 것이다. 최대 주파수의 두 배로 신호를 채집해야 한다(hertz당 2번의 채집). 각 표본은 8 비트를 필요로 한다. 요구되는 비트율은?

- **♦** Solution
- ◆ 다음과 같이 비트 율을 계산할 수 있다

 $2 \times 4000 \times 8 = 64,000 \text{ bps} = 64 \text{ kbps}$

Q 3.20

- ◆ 고선명도 HD(high-definition) TV 의 비트율은 얼마인가?
- **♦** Solution
- ◆ HDTV 는 고화질 화상 신호를 방송하기 위해 디지털 신호를 사용한다. HDTV 화면은 보통 16:9의 광폭 화면 비율을 갖는다. 화면 당 1920 * 1080 개의 픽셀(pixel)이 있으며, 화면은 초 당 30회 스캔한다. 하나의 컬러 픽셀은 24 비트가 필요하다.

TV 방송국은 압축을 통해 20 Mbps ~ 40 Mbps 로 비트율을 줄여 보낸다.

 $1920 \times 1080 \times 30 \times 24 = 1,492,992,000 \approx 1.5 \text{ Gbps}$

3.3.2 비트율

- ◆ 비트 길이(bit length)
 - 한 비트가 전송매체를 통해 차지하는 길이
 - Bit length = propagation speed x bit duration

3.3.3 복합 아날로그 신호로서의 디지털 신호

- ◆ 디지털 신호는 무한대의 주파수를 갖는 복합 신호
- ◆ 대역폭은 무한대
- ◆ 주기 및 비주기 디지털 신호의 시간 및 주파수 영역

b. Time and frequency domains of nonperiodic digital signal

3.3.4 **디지털 신호의 전송**

◆ 기저대역(baseband, 베이스밴드) 전송

◆ 광대역(wideband) 전송

기저대역(baseband) 전송

◆ 디지털 신호를 아날로그 신호로 바꾸지 않고 있는 그대로 채널을 통해 전송

기저대역 전송

- ◆ 저대역 통과 채널(low-pass channel)
- ◆ 주파수 0 부터 시작하는 대역폭을 갖는 채널

b. Low-pass channel, narrow bandwidth

기저대역 전송

- ◆ 경우 1: 넓은 대역폭(wide bandwidth) Low-pass 채널
 - 전용 매체를 사용하는 baseband 전송

- 약간의 오차는 추론으로 가능
- 동축이나 광섬유에서 사용
- LAN에 많이 사용

기저대역 전송

- ◆ 경우 2 : 제한된 대역폭(Limited bandwidth)을 가진 저대역 통과 채널
- ◆ 디지털 신호와 비슷한 모양의 아날로그 신호 사용
- ◆ 대략적 근사값(Rough approximation)
 - 비트율 N의 디지털 신호
 - 최대 신호 변화 개수의 최악의 시나리오: 0101010101···· 또는 1010101010 ····
 - 주파수 $\frac{N}{2}$ 의 아날로그 신호 필요
 - 요구 대역폭 $f = \frac{N}{2}$

최악의 경우에 대해 일차 조파를 이용한 디지털 신호 의 대략적 근사값

Digital: bit rate N

0 0 0

Digital: bit rate N

Analog: f = N/4, p = 90

Analog: f = N/2, p = 0

Analog: f = N/4, p = 0

Analog: f = 0, p = 0

보다 나은 근사값

- 보다 많은 수의 조파(harmonics) 이용
- 처음 3개의 조파를 이용한 디지털 신호의 시뮬레이션

Digital: bit rate N

Analog: f = N/2 and 3N/2

Analog: f = N/2, 3N/2, and 5N/2

기저대역 전송에서는, 요구 대역폭은 비트 율에 비례한다; 보다 빠르게 비트를 전송하기 위해서는 더 넓은 대역폭이 필요하다.

Table 3.2 Bandwidth requirements

Bit Rate	Harmonic 1	Harmonics 1, 3	Harmonics 1, 3, 5
n = 1 kbps	B = 500 Hz	B = 1.5 kHz	B = 2.5 kHz
n = 10 kbps	B = 5 kHz	B = 15 kHz	B = 25 kHz
n = 100 kbps	B = 50 kHz	B = 150 kHz	B = 250 kHz

3.22

◆ 1 Mbps 속도로 데이터를 베이스밴드 통신으로 전송하기 위해 필요한 저-대역 통과 채널의 요구 대역폭은?

♦ Solution

- ◆ 정확도에 따라 답은 달라진다.
 - a. 최소 대역폭은

B = bit rate /2, 또는 500 kHz.

- b. 보다 나은 결과를 1차 및 3차 조파를 사용하여 달성할 수 있으며 대역폭은 B = 3 × 500 kHz = 1.5 MHz.
- c. 더 나은 결과는 1차, 3차, 5차 조파를 사용하여 달성할 수 있으며 B = 5 × 500 kHz = 2.5 MHz.

◆ 대역폭이 100 kHz인 저-대역 통과 채널이 있다. 이 채널의 최대 비트 율은?

♦ Solution

◆ 1차 조파만을 사용할 수 있으면 최대 비트율을 얻을 수 있다. 비트율은 가용 대역폭의 2배, 즉 200 kbps이다.

광대역 전송(변조 이용)

- ◆ 디지털 신호를 전송하기 위해 아날로그 신호로 전환 사용
- ◆ 변조를 하면 띠대역 통과 채널 사용 전송
- ◆ 띠대역 통과(bandpass) 채널의 대역폭

가용 채널이 띠대역 통과 채널이라면 채널에 디지털 신호를 직접 보낼 수 없고 전송하기 전 에 신호를 아날로그 신호로 바꾸어야 한다.

띠대역 통과채널에서 전송을 위한 디지털 신호의 변조

- ◆ 변조를 이용한 광대역 전송 예: 가입자의 가정과 중앙전화국을 연결하는 전화선을 통해 컴퓨터의 데이터를 보내는 것.
- ◆ 이 회선은 제한된 대역폭(주파수 0에서 4 Khz)을 사용하여 음성(아날로 그 신호)을 전달하기 위해 설계된 것.
- ◆ 이 채널은 띠대역 통과 채널로 취급.
- ◆ 컴퓨터로부터 디지털 신호를 아날로그 신호로 변환해서 아날로그 신호를 보내고, 수신단에서는 그 반대로 변경하는 변환기 설치 가능한데, 이 변환기를 모뎀(modem)이라고 하며 5장에서 자세히 다룬다.

- ◆ 두 번째 예는 디지털 휴대전화.
- ◆ 디지털 휴대 전화는 아날로그 음성신호를 디지털 신호로 바꾼다(16장 참 조).
- ◆ 디지털 휴대전화기 서비스를 제공하는 회사에 할당된 대역폭은 매우 넓 지만, 변환 없이 디지털 신호를 보낼 수 없다.
- ◆ 이유는 전화를 거는 사람과 받는 사람 사이에는 띠대역 통과 채널만 사용해야 하기 때문.
- ◆ 따라서, 보내기 전에 디지털화된 음성을 복합 아날로그 신호로 변환해야 한다.

3.4 전송 장애

- 신호가 매체를 통해 전송할 때 생기는 장애

3.4.1 감소(attenuation)

- ◆ 에너지 손실을 의미
- ◆ 매체를 통해 이동할 때 매체의 저항을 이겨내기 위해 약간의 에너지가 손 실
- ◆ 증폭기를 이용하여 신호를 다시 증폭

감소(dB, decibel)

◆ 데시벨

- 신호의 손실된 길이나 획득한 길이를 나타내기 위해 사용
- 2개의 다른 점에서 두 신호 또는 하나의 신호의 상대적 길이를 측정
- 신호가 감쇠하면 음수, 증폭되면 양수

 $dB = 10 \log_{10}(p_2/p_1)$ *p₁과 p₂는 신호의 전력

◆ 신호가 전송매체를 통해 이동하고 있고 전력이 절반으로 줄었다고 하자. 이것은 P₂는 (1/2)P₁임을 의미한다. 이 경우에, 감쇠(전력손실)은 다음과 같이 계산할 수 있다

$$10 \log_{10} P_2/P_1 = 10 \log_{10} (0.5 P_1)/P_1 = 10 \log_{10} 0.5 = 10 \times (-0.3) = -3 \text{ dB.}$$

◆ 신호가 증폭기를 통해 이동하고 전력이 10배 늘었다고 상상해보자. 이것은 P₂ = 10 × P₁을 의미한다. 이 경우 증폭
 (전력 증가)은 다음과 같이 계산할 수 있다.

$$10 \log_{10} \frac{P_2}{P_1} = 10 \log_{10} \frac{10P_1}{P_1} = 10 \log_{10} 10 = 10(1) = 10 \text{ dB}$$

◆ 공학자가 신호의 길이 변화를 측정하는 데 데시벨을 사용하는 이유 중 하나는 단지 2개(직렬)의 점 대신 여러 점에 관하여 이야기할 때 데시벨 숫자가 더해지거나 빼질 수 있기 때문이다. 다음 그림에서 신호는 점 1 에서점 4까지의 긴 거리를 이동한다. 신호는 점 2에 도착한 시간에 의해 감쇠되고 점 2와 점 3 사이에서 증폭되었다가 다시 점 3과 점 4 사이에서 감쇠된다. 신호의 데시벨 결과를 구하기 위해 각 지점 사이에서 측정된 dB 값은 더하기만 하면 된다. 이 경우 데시벨은 다음처럼 계산될 수 있다.

◆ 가끔은 밀리와트(milliwatts) 단위로 신호의 전력을 재기 위해 데시벨을 사용하기도 한다. 이 경우에, dB_m으로 표기하며 dB_m = 10 log₁₀ P_m으로 계산되며, 여기서, P_m은 밀리와트로 표시된 전력이 된다. 만일 dB_m = -30이라면 신호의 전력을 계산하라.

- ◆ Solution
- ◆ 다음과 같이 신호의 전력을 계산할 수 있다.

$$dB_{\rm m} = 10\log_{10} \longrightarrow dB_{m} = -30 \longrightarrow \log_{10}P_{m} = -3 \longrightarrow P_{m} = 10^{-3}\,\mathrm{mW}$$

◆ 케이블에서의 손실은 보통 킬로미터 당 데시벨로 정의한다(dB/km). 만약 -0.3 dB/km 케이블의 시작점에서 전력이 2 mW이었다면, 5 km에서의 신호의 전력은 얼마인가?

♦ Solution

◆ 데시벨에 대한 케이블에서의 손실은 5 × (-0.3) = -1.5 dB이다. 전력은 다음과 같이 계산할 수 있다.

$$dB = 10 \log_{10} (P_2/P_1) = -1.5 \longrightarrow (P_2/P_1) = 10^{-0.15} = 0.71$$

$$P_2 = 0.71P_1 = 0.7 \times 2 \text{ mW} = 1.4 \text{ mW}$$

3.4.2 **일그건점**(distortion)

- ◆ 신호의 모양이나 형태가 변하는 것
- ◆ 반대되는 신호나 다른 주파수 신호로 만듬

At the sender

3.4.3 잡음(noise)

◆ 열잡음, 유도된 잡음, 혼선, 충격잡음 등의 여러 형태의 잡음

신호 대 잡음 비(SNR)

- ◆ SNR : signal-to-noise ratio
- ◆ 잡음과 신호 전력의 비율

$$-SNR = \frac{average\ signal\ power}{average\ noise\ power}$$

- ◆ SNR은 데시벨로 표시
- $SNR_{dB} = 10 log_{10}SNR$

SNR**의 두 가지 경우**: 높은 SNR**과 낮은** SNR

a. High SNR

b. Low SNR

◆ 신호의 전력이 10 mW 이고 잡음의 전력이 1 μW이다; SNR 과 SNR_{dB}의 값은 각각 얼마인가?

- **♦** Solution
- ◆ SNR과 SNR_{dB}의 값은 다음과 같이 계산할 수 있다:

$$SNR = (10,000 \mu w) / (1 \mu w) = 10,000 \quad SNR_{dB} = 10 \log_{10} 10,000 = 10 \log_{10} 10^4 = 40$$

잡음이 없는 SNR 과 SNR_{dB} 는 다음과 같다

SNR = (signal power)
$$/ 0 = \infty$$
 \longrightarrow SNR_{dB} = $10 \log_{10} \infty = \infty$

위의 값은 실제에서는 결코 달성할 수 없는 이상적인 값이다.

3.5 **데이터 전송률의 한계**

- ◆ 데이터 전송률의 세 요소
 - 가용 대역폭
 - 사용 가능한 신호 준위
 - 채널의 품질(잡음의 정도)

- ◆ 데이터 전송률을 계산하는 두 가지 이론적 수식
 - 나이퀴스트 수식(Nyquist bit rate): 잡음이 없는 채널에서 사용
 - 새논 수식(Shannon capacity) : 잡음이 있는 채널에서 사용

3.5.1 무잡음 채널 : 나이퀴스트 비트율

- ◆ 나이퀴스트 전송률
 - 잡음이 없는 채널의 경우 사용
 - 대역폭은 채널의 대역폭, L은 데이터를 나타내는 데 사용 한 신호준위의 개수, 전송률은 초당 비트수라고 할 때

전송률 = $2 \times \text{대역폭} \times \log_2 L$

• 신호 준위를 늘리면 신뢰도가 떨어질 수 있다.

3.5.1 **무잡음 채널 : 나이퀴스트 비트율**

예제 3.34

▶ 두 개의 신호 준위를 갖는 신호를 전송하는 3,000Hz 의 대역폭을 갖는 무잡음 채널이 있다. 최대 전송률은 다음과 같이 계산된다.

전송률 =
$$2 \times 3,000 \times \log_2 2 = 6,000$$
bps

• 예제 3.35

▶ 4개의 신호 준위(각 준위는 2비트를 나타낸다)를 사용하는 신호를 위의 예제와 동 일한 채널을 사용하여 보낸다고 하자. 최대 전송률은 다음과 같다.

- ◆ 잡음이 없는 20 kHz 대역폭을 갖는 채널을 사용하여 265 kbps 의 속도로 데이터를 전송해야 한다. 몇 개의 신호 준위가 필요한가?
- **♦** Solution
- ◆ 나이퀴스트 공식을 다음과 같이 사용할 수 있다:

 $\log_2 L = 6.625 \longrightarrow L = 2^{6.625} = 98.7 \text{ levels}$

한다. 128개의 준위를 사용하면 비트율은 280 kbps 이다. 64개의 준위를 사용하면 비트율은 240 kbps 이다.

3.5.2 잡음 있는 채널 : 섀논 용량

 잡음이 있는 채널에서의 최대 전송률을 결정하는 수식

대역폭은 채널의 대역폭, SNR은 신호에 대한 잡음 비율, 용량은 bps 단위의 채널 용량이라고 하면

용량 = 대역폭
$$\times log_2(1 + SNR)$$

3.5.2 잡음 있는 채널 : 섀논 용량

예제 3.37

- ▶ 신호 대 잡음의 비율 값이 거의 0인, 거의 잡음에 가까운 채널을 생각해보자. 다시 말해, 잡음이 너무 강해서 신호가 약해진다. 이 채널에 대한 용량을 계산하면 다음 과 같다.
- \rightarrow C = B log₂(1 + SNR) = B log₂(1 + 0) = B log₂(1) = B × 0 = 0
- ▶ 이것은 채널의 용량이 0이다. 대역폭은 고려되지 않았다. 다른 말로 하자면 이 채 널로는 어떤 데이터도 보낼 수 없다.

◆ 예제 3.38

 일반 전화선의 이론적인 최고 데이터 전송률을 계산할 수 있다. 전화선은 일반적으로 3,000Hz(300Hz에서 3,300Hz)의 대역폭을 갖는다. 신호 대 잡음의 비율이 보통 3,162(35dB)이다. 이 채널에 대한 용량을 계산하면 다음과 같다.

$$C = B log_2(1+SNR) = 3,000 log_2(1+3,162)$$

= 3,000 log₂(3,163)

$$C = 3,000 \times 11.62 = 34,860$$
bps

이는 전화선의 최대 비트율이 34,860 bps임을 의미한다.

신호-잡음 비는 보통 데시벨로 나타낸다. $SNR_{dB} = 36$ 이고 채널의 대역폭이 2 MHz 이다. 이론적인 채널 용량은 다음과 같이 계산할 수 있다

$$SNR_{dB} = 10 log_{10}SNR \longrightarrow SNR = 10^{SNR_{dB}/10} \longrightarrow SNR = 10^{3.6} = 3981$$

$$C = B \log_2(1 + \text{SNR}) = 2 \times 10^6 \times \log_2 3982 = 24 \text{ Mbps}$$

◆ 실용적인 목적으로 SNR 이 매우 높을 때, SNR과 SNR + 1 이 거의 같다고 볼 수 있다. 이 경우에 이론적인 채널 용량은 다음과 같이 간단화할 수 있다.

$$C = B \times \frac{\text{SNR}_{\text{dB}}}{3}$$

◆ 예를 들면, 앞 예의 이론적인 채널 용량은 다음과 같다

$$C = 2 \text{ MHz} \times (36/3) = 24 \text{ Mbps}$$

3.5.3 **두 가지 한계를 사용하기**

- ◆ 실제로는 어떤 신호 준위의 어떤 대역폭이 필요하진 알기 위해 두 가지 방 법을 모두 사용
 - 예제 3.41
 - ▶ 1 MHz의 대역폭을 갖는 채널이 있다. 이 채널의 SNR은 63이다. 적절한 전송률과 신호 준위는 무엇인가?
 - > 풀이> 우선 상한을 구하기 위해 새논 수식을 사용한다.
 C = B log₂(1 + SNR) = 10⁶log₂(1 + 63) = 10⁶log₂(64) = 6Mbps
 - ▶ 비록 섀논 수식으로부터 6Mbps의 전송률을 구했으나 이는 상한일 뿐이다. 더 나은 성능을 위해 조금 낮은 값, 예를 들어 4Mbps를 택한다. 그 후에 신호의 준위를 구하기 위해 나이퀴스트 식을 사용한다.

 $4Mbps = 2 \times 1 MHz \times log_2L$ L = 4

3.6 성능

◆ 네트워킹에서 중요한 이슈 중 하나가 네트워크의 성능(performance) 인데, 이것이 얼마나 좋은가? 이다. 이 절에서는 이 후의 장에서 필요한 용어들을 소개한다.

◆ Topics discussed in this section:

Bandwidth

Throughput

Latency (Delay)

Bandwidth-Delay Product

3.6.1 대역목

- ◆ 헤르츠 단위 대역폭
- ◆ 비트율 단위 대역폭

네트워킹에서, 용어 대역폭은 두 가지 의미로 사용한다.

- □ 첫째, 헤르쯔 단위의 대역폭은 복합 신호의 주파수 영역 이나 채널이 통과시킬 수 있는 주파수 영역을 말한다.
- □ 둘째, 비트율 단위의 대역폭은 채널 또는 링크의 비트 전송 속도를 말한다.

◆ 가입자 회선의 대역폭은 음성이나 데이터에 대해 4 KHz 이다. 이 회선을 사용하여 데이터를 전송하는 경우 디지털 신호를 아날로그로 바꾸어 최대 56,000 bps까지 전송 속도를 낼 수 있다.

◆ 전화회사가 회선의 품질을 개선하여 8 KHz까지 대역폭을 높 인다면 예 3.42에서 언급한 것처럼 같은 기술을 사용하여 112,000 bps 까지 보낼 수 있다.

3.6.2 처리율(throughput)

◆ 어떤 지점을 데이터가 얼마나 빨리 지나가는가를 측정

◆ 10 Mbps의 대역폭을 갖는 네트워크가 매분 평균 10,000 비트로 되어있는 12,000개의 프레임만을 통과시킨다. 이 네트워크의 처리율은 얼마인가?

- **♦** Solution
- ◆ 다음과 같이 처리율을 구할 수 있다.

Throughput =
$$\frac{12,000 \times 10,000}{60}$$
 = 2 Mbps

◆ 이 경우에 처리율은 대역폭의 거의 5분의 1 정도이다.

3.6.3 **지연**(delay, latency)

- ◆ 발신지에서 첫 번째 비트를 보낸 시간부터 전체 메시지가 목적지에 도착 할 때까지 걸린 시간
 - Latency = propagation time + transmission time + queuing Time + processing delay
- ◆ 전파시간(propagation time)
 - 비트가 발신지에서 목적지까지 이동하는데 걸리는 시간
 - 전파시간 = 거리/전파속도
 - 진공에서 빛의 전파 속도 = 3 x 10⁸ m/s

◆ 두 지점간의 거리가 12,000 km 이라면 전파 시간은 얼마인가? 전파 속도 는 케이블 속에서 2.4 × 10⁸ m/s 라고 가정한다.

- **♦** Solution
- ◆ 다음과 같이 전파시간을 계산할 수 있다.

Propagation time =
$$\frac{12,000 \times 1000}{2.4 \times 10^8} = 50 \text{ ms}$$

이 예는 발신지로부터 목적지까지 케이블이 있다면 한 비트가 대서양을 50 밀리 초 만에 건널 수 있다는 것을 보여준다.

전송시간(transmission time)

◆ 메시지를 전송하는데 걸리는 시간은 메시지 크기와 채널의 대역폭에 좌우

$$-전송시간 = \frac{메시지 크기}{대역폭}$$

◆ 네트워크의 대역폭이 1 Gbps이면 2.5 킬로바이트 메시지(전자메일)의 전파시간과 전송 시간은 얼마인가? 송신자와 수신자의 거리는 12,000 km이고 빛의 속도는 2.4 × 108 m/s이다.

♦ Solution

◆ 다음과 같이 전파 시간과 전송 시간을 계산할 수 있다:

Propagation time =
$$\frac{12,000 \times 1000}{2.4 \times 10^8} = 50 \text{ ms}$$

$$\frac{2.4 \times 10^8}{10^9} = 0.020 \text{ ms}$$

◆ 이 경우에, 메시지가 짧고 대역폭이 크기 때문에 주요 요소는 전파 시간이지 전송 시간이 아님을 유의하라. 전송시간은 무시될 수 있다.

◆ 네트워크 대역폭이 1 Mbps라면 5Mbyte 메시지(영상)의 전파 시간과 전송 시간은 얼마인가? 송신자와 수신자의 거리는 12,000 km 이고 빛의 속도는 2.4 × 108 m/s이다.

◆ Solution

◆ 우리는 다음과 같이 전파 시간과 전송 시간을 계산할 수 있다.

Propagation time =
$$\frac{12,000 \times 1000}{2.4 \times 10^8} = 50 \text{ ms}$$

Transmission time = $\frac{5,000,000 \times 8}{10^6} = 40 \text{ s}$

◆ 이 경우에, 메시지가 매우 크고 대역폭이 크지 않으므로 주요 요소는 전송 시간이지 전파 시간이 아니다. 전파 시간은 무시될 수 있다.

- ◆ 큐 시간(queuing time)
 - 중간 또는 종단 장치들이 메시지를 전송하기 까지 가지고 있는 시간

3.6.4 **대역목 지연 곱**

- ◆ 대역폭 지연 곱(bandwidth-Delay product)
 - bandwidth x delay
 - Case 1(대역폭 1bps 링크)

◆ Case 2(대역폭 5bps 링크)

GM 3.48

- ◆ 대역폭-지연 곱의 개념
 - 링크를 두 지점을 연결하는 파이프로 생각
 - 파이프 단면: 대역폭, 파이프 길이: 지연

대역폭-지연 곱은 링크를 채울 수 있는 비트의 개수를 의미한다.

3.6 **파형난조**

◆ 파형 난조(jitter)

서로 다른 데이터 패킷이 서로 다른 지연 시간을 갖게 되어 생기는 현상으로 수신자 쪽의 음성이나 화상처럼 시간에 민감한 응용 시스템이 겪는 문제

첫 번째 패킷 지연 20ms, 두 번째 지연 45ms, 세 번째 지연 40ms 인 패킷을 사용하는 실시간 응용은 파형난조 발생

하늘과 땅, On-line과 Off-line에서 Google을 피해 숨을 곳이 점점 더 줄어들고 있다.

