Instructor: Prof. Justin M. Curry Office: ES 120C Email: jmcurry@albany.edu

Pre-Requisites: Calculus of Several Variables (AMAT 214) and Introduction to Proofs (AMAT 299).

Lecture Place and Times: ES 143 on MW 3:00-4:20pm

Office Hours Place and Times: Thurs 1:30-2:50 or by appt with Robby Green rgreen@albany.edu.

Course Texts:

• Probability by Pittman [Pit] is strongly recommended/required.

• Probability for the Enthusiastic Beginner by Morin [M] is recommended.

Course Topics: This course is meant to serve as a calculus-based introduction to probability that provides a foundation for statistics as covered in AMAT 363. Additionally, this course is meant to serve as preparation for the *Society of Actuaries* Exam P. The topics for the P exam are listed below, but I will follow my own selection of topics and spend more or less time focusing on topics that I think are important.

- (1) General Probability: set theory, Venn diagrams, sample space and events; definition of probability measure, basic axioms; addition and multiplication rules; independence versus mutually exclusive events; calculation of conditional probabilities; combinatorics; Bayes' theorem and law of total probability.
- (2) Univariate Random Variables: discrete and continuous univariate random variables (RVs) including binomial, negative binomial, geometric, hypergeometric, Poisson, uniform, exponential, gamma, normal, mixed distributions and their applications; PDFs and CDFs of these RVs; expectation/mean, mode, median, percentile and higher moments; variance, standard deviation, coefficient of variation; probability and moment generating functions; sums of independent RVs, such as Poisson and Normal; transforms.
- (3) Multivariate Random Variables: joint probability functions (PFs), PDFs, CDFs; conditional and marginal PFs, PDFs, CDFs and moments for these; covariance and correlation; transforms of multivariate RVs; probabilities and moments for linear combinations of RVs; central limit theorem.

Grading Schema: I grade "on a curve." In other words, I look at the distribution of final numerical grades—computed using the weighting described below—and try to determine clusters of students that deserve similar grades. Although it is theoretically possible that everyone could earn an A, experience suggests that typically 25-35% of students earn some variant of an A, 35-55% for B variants, 20-35% for C variants and typically $\leq 25\%$ for Ds and Es.

- 5% Participation and Attendance
- 15% Take Home Exam 1 Covers Lectures 1-8
- 20% Take Home Exam 2 Covers Lectures 9-17
- 25% Take Home Final Exam Cumulative, but biased towards Lectures 18-24
- 35% Lecture Worksheets

Attendance and Late/Missed Work Policy: Attendance is required, absent a reasonable excuse. Worksheets will be due one week after they're handed out. Worksheets that are handed in late, but before solutions are posted will be penalized $\approx 10\%$. Solutions are typically posted 10 days after the due date. Worksheets that are handed in after solutions are posted will be penalized $\approx 30\%$. The meaning of \approx is the closest integer number of points to this percentage of the total point value. No late exams will be accepted! All work must be handed in with the final exam on Tuesday May 10th, no later.

Policy on Academic Integrity and Collaboration: You are encouraged to collaborate on worksheets with your classmates and tutors, but do not post questions to online fora, such as Chegg. Unauthorized collaboration is strictly prohibited on take home exams. Cheating on exams will result in a Violation of Academic Integrity Report (VAIR) and an automatic zero for the exam in question!

The final exam will be due in class on Tuesday, May 10th from 3:30-5:30.

Monday		Wednesday	
Jan 24th	Lecture 1	Jan 26th	Lecture 2
Jan 31st	Lecture 3	Feb 2nd	Lecture 4
Due: WS 1		Due: WS 2	
Feb 7th	Lecture 5	Feb 9th	Lecture 6
Due: WS 3		Due: WS 4	
Feb 14th	Lecture 7	Feb 16th	Lecture 8
Due: WS 5		Handout Practice Exam 1, WS 6 due.	
Feb 21st		Feb 23rd	Lecture 9
Due: WS 7 \Diamond Take Home Exam 1 \Diamond		Due: WS 8	
Feb 28th	Lecture 10	Mar 2nd	Lecture 11
♠Exam 1 DUE♠		Due: WS 9	
Mar 7th	Lecture 12	Mar 9th	Lecture 13
Due: WS 10		Due: WS 11	
Mar 14th		Mar 16th	
$\heartsuit SPRING\ BREAK \heartsuit$		$\heartsuit SPRING\ BREAK \heartsuit$	
Mar 21st	Lecture 14	Mar 23rd	Lecture 15
Due: WS 12		Due: WS 13	
Mar 28th	Lecture 16	Mar 30th	Lecture 17
Due: WS 14		Handout Practice Exam 2, WS 15 due.	
Apr 4th		Apr 6th	Lecture 18
Due: WS 16 \Diamond Take Home Exam 2 \Diamond		Due: WS 17	
Apr 11th	Lecture 19	Apr 13th	Lecture 20
♠Exam 2 DUE♠		Due: WS 18	
Apr 18th	Lecture 21	Apr 20th	Lecture 22
Due: WS 19		Due: WS 20	
Apr 25th	Lecture 23	Apr 27th	Lecture 24
Due: WS 21		Due: WS 22	
May 2nd		May 4th	
Handout Practice Final, WS 23 due.		Due: WS 24 ♦ Take Home Final ♦	

The final exam will be due in class on Tuesday, May 10th from 3:30-5:30.