Анализ свойств ансамбля локально аппроксимирующих моделей

Исламов Рустем Ильфакович

Московский физико-технический институт

Консультант: Грабовой А. В. Эксперт: Стрижов В. В.

30 апреля 2020 г.

Цель работы — анализ свойств ансамбля локальных моделей

Задача

Аппроксимация выборки, порожденной несколькими источниками.

Предлагаемое решение

Построение универсальной модели в виде ансамбля локальных моделей.

Требования к универсальному аппроксиматору

- Локальные модели должны быть простыми.
- Локальные модели должны аппроксимировать разные подмножества объектов, т. е. быть независимыми.

Список литературы

- V. V. Strijov A. V. Grabovoy. Prior distribution choices for a mixture of experts. Machine learning and data analysis, 2020.
- Ohristopher M. Bishop. Pattern Recognition and Machine Learning. SPRINGER NATURE, 2011.
- Павлов К.В. Выбор многоуровневых моделей в задачах классификации, 2012.
- **1** Esen Y.S., Wilson J., Gader P.D. Twenty Years of Mixture of Experts. IEEE Transactions on Neural Networks and Learning Systems. 2012. Issues. 23. No 8. P. 1177-1193.

Постановка задачи построения ансмабля

Выборка

Матрица признаков $\mathbf{X} \in \mathbb{R}^{N \times n}$ и выборка $\mathfrak{D} = \{(\mathbf{x}_i, \mathbf{y}_i) : i \in \mathcal{I}\}.$

Гипотеза порождения данных

Выборка порождена K источниками. Это предположение индуцирует разибение множества индексов $\mathcal I$ на K непересекающихся подмножеств $\mathcal I_k$:

$$\mathcal{I} = \bigsqcup_{k=1}^{K} \mathcal{I}_k.$$

Разбиение $\mathcal I$ индуцирует разбиение выборки данных $\mathfrak D$ и множества объектов Ω :

$$\mathfrak{D} = \bigsqcup_{k=1}^K \mathfrak{D}_k, \qquad \Omega = \bigsqcup_{k=1}^K \Omega_k,$$

$$\mathfrak{D}_k = \{ (\mathbf{x}_i, \mathbf{y}_i) : i \in \mathcal{I}_k \}, \qquad \Omega_k = \{ \omega_i : i \in \mathcal{I}_k \}.$$

Ансамбль локальных моделей

Определение

Модель \mathbf{g}_k называется локальной, если она аппроксимирует подвыборку

$$\mathfrak{D}_k = \{ (\mathbf{x}_i, \mathbf{y}_i) : i \in \mathcal{I}_k \}.$$

В данной работе каждая локальная модель является линейной. Локальные модели объединены в ансамбль локальных моделей.

Определение

Ансамбль локальных моделей — мультимодель, определяющая правдоподобие веса π_k каждой локальной модели \mathbf{g}_k на признаковом описании объекта \mathbf{x} .

$$f = \sum_{k=1}^{K} \pi_k g_k(\mathbf{x}, \mathbf{w}_k), \qquad \pi_k(\mathbf{x}, \mathbf{V}) : \mathbb{R}^{n \times |\mathbf{V}|} \to [0, 1], \qquad \sum_{k=1}^{K} \pi_k(\mathbf{x}, \mathbf{V}) = 1,$$

где f — ансамбль локальных моделей,
 \mathbf{g}_k — локальная модель, π_k — шлюзовая функция,
 V — параметры шлюзовой функции.

Расстояние между локальными моделями

Определение

Расстояние между локальными моделями равно выборочному коэффициенту корреляции Пирсона на выборке ${\bf X}$ и вычисляется по формуле

$$\rho(\mathbf{g}_i, \mathbf{g}_j) = \frac{\sum\limits_{l=1}^{N} \left(\mathbf{X}_{il} - \overline{\mathbf{X}}_i\right) \left(\mathbf{X}_{jl} - \overline{\mathbf{X}}_j\right)}{\sqrt{\sum\limits_{l=1}^{N} \left(\mathbf{X}_{jl} - \overline{\mathbf{X}}_j\right)^2 \sum\limits_{l=1}^{N} \left(\mathbf{X}_{jl} - \overline{\mathbf{X}}_j\right)^2}},$$

 $X_{il}=(\mathbf{X}\mathbf{w}_i)_l, X_{jl}=(\mathbf{X}\mathbf{w}_j)_l, \overline{X}_i=\frac{1}{N}\sum_{l=1}^N X_{il}, \overline{X}_i=\frac{1}{N}\sum_{l=1}^N X_{il}, \mathbf{w}_i, \mathbf{w}_j$ — параметры локальных моделей $\mathbf{g}_i, \, \mathbf{g}_j.$

Цель введения расстояния

Локальные модели должны быть независимыми, расстояние между ними должно быть близко к нулю.

Базовый эксперимент

Цель базового эксперимента

Показать, что выборка, порожденная несколькими источниками, плохо аппроксимируется одной моделью.

Данные первого эксперимента

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \qquad \mathbf{X} = \begin{pmatrix} x_1 & 0 \\ 0 & x_2 \end{pmatrix}.$$

$$y_m = \alpha_m x_m + \varepsilon, \qquad \varepsilon \in \mathcal{N}(0, 1).$$

Данные второго эксперимента

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \qquad \mathbf{X} = \begin{pmatrix} x_1 & \varepsilon_1 \\ \varepsilon_2 & x_2 \end{pmatrix}.$$

$$y_m = \alpha_m x_m + \varepsilon,$$

$$\varepsilon_{1,2} \in \mathcal{N}(0,1), \qquad \varepsilon \in \mathcal{N}(0,1).$$

Результаты базового эксперимента

Ансамбль локальных моделей лучше аппроксимирует выборку, порожденную несколькими источниками.

Исследование расстояния между моделями на синтетической выборке

Выборка для эксперимента
$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \hat{\mathbf{X}} = \begin{pmatrix} x_1 & \varepsilon_1 \\ \varepsilon_2 & x_2 \end{pmatrix},$$
 где $\varepsilon_1, \varepsilon_2 \in \mathcal{N}(0, \sigma).$

При параметре шума σ меньшем порогового значения локальные модели практически одинаковы, при σ большем порога локальные модели независимы.

Исследование расстояния между моделями на реальных выборках

Выборка для эксперимента
$$\tilde{\mathbf{y}} = \begin{pmatrix} \mathbf{y}_b \\ \mathbf{y}_s \end{pmatrix} \in \mathbb{R}^{673}, \tilde{\mathbf{X}} = \begin{pmatrix} \mathbf{X}_b \\ \mathbf{X}_s & \mathcal{E} \end{pmatrix} \in \mathbb{R}^{673 \times 13}.$$

При увеличении параметра шума есть тенденция к уменьшению расстояния между локальными моделями, они становятся более независимыми.

Заключение

Полученные результаты

- Качество аппроксимации выборки, порожденной несколькими источниками, при использовании ансамбля локальных моделей выше, чем у одной модели
- При увеличении параметра шума модели становятся независимыми

Дальнейшие исследования

- Исследование оптимального количества локальных моделей в ансамбле
- Использование расстояния между локальными моделями как регуляризатор