6.3 More Practice with the Quotient of Two Functions

To find the quotient of two functions, we need to divide the y-coordinates with the same x-coordinates.

For the functions f and g, $\frac{f}{g}$ is defined by $\frac{f}{g} = \left\{ \left(x, \frac{f(x)}{g(x)} \right) \middle| \frac{f(x)}{g(x)} \text{ is defined} \right\}$

Note: The quotient of two functions may not be a function due to possible Holes and V.A.(s)

- > The Domain of $\frac{f}{g}$ = Domain of $f\cap D$ omain of g, for which $g(x)\neq 0$ = $\left\{x\epsilon R\big|x\epsilon D_f\cap D_g,g(x)\neq 0\right\}$
- Ex 1) Given $f = \{(-5,1), (-3,1), (0,1), (1,1), (2,1), (4,1)\}$ and $g = \{(-5,6), (-4,5), (-3,4), (0,1), (1,0), (3,-2), (4,-3)\}$
- a) Find the domain of f + g

b) Find the domain of f-g

c) Find the domain of fg

d) Find the domain of $\frac{f}{g}$

- e) List $\frac{f}{g}$
- Ex 2) Let f(x) = x + 2 and $g(x) = x^2 3x 10$.
 - a) Determine the equation of $h(x) = \frac{f(x)}{g(x)}$
 - b) Sketch a graph of the combined function
- -10 -8 -6 -4 -2 2 4 6 8 10 -4 --6 --8 -
- c) State the domain and range of h(x)

Ex 3) Let $f(x) = x^3 - 7x - 6$ and $g(x) = x^2 + 3x + 2$. a) Determine the quotient function $\left(\frac{f}{g}\right)(x)$

- b) Determine the domain of the quotient function
- c) Make a sketch of the quotient function

Practice: Quotient of Functions of Different Families

Given $f(x) = \sin(x)$ and $g(x) = \cos(x)$.

- a) Complete the table below
- b) Graph the functions on the same set of axes. Be as accurate as possible!
- c) Sketch $h(x) = \frac{f(x)}{g(x)}$ on the grid below. Be as accurate as possible!

x	$f(x) = \sin(x)$	$g(x) = \cos(x)$	$h(x) = \frac{f(x)}{g(x)}$

Warm Up

1. Given the graphs of f and g, graph fg and $\frac{f}{g}$ using different colours on the grid to the right.

Label any V.A. if needed.				
x	fg(x)	$\frac{f}{g}(x)$		
-10		3		
-8				
-6				
-4				
-2				
0				
2				
4				
6				
8				
10				

- 2. Using the signs (+ or -) of f and g, determine when:
 - a. (fg)(x) > 0
 - b. (fg)(x) < 0
 - $c. \quad (\frac{f}{g})(x) > 0$
 - $d. \quad (\frac{f}{g})(x) < 0$