11.2) Causality

Vitor Kamada

December 2019

Reference

Tables, Graphics, and Figures from

Computational and Inferential Thinking: The Foundations of Data Science

Adhikari & DeNero (2019): Ch 12.3 Causality

https://www.inferentialthinking.com/

Treating Chronic Back Pain

Foster, Clapp, and Jabbari (2001)

Randomized Controlled Trial (RCT)

Effect of Botulinum Toxin A

```
from datascience import *
path_data = 'https://github.com/data-8/textbook/raw/gh-pages/data/'
bta = Table.read_table(path_data + 'bta.csv')
```

Group	Result	Treatment	1
Control	1	Treatment	1
Control	1	Treatment	0
Control	0	Treatment	0

Proportion of Patients who had Pain Relief

$$H_0: p_t = p_c \text{ vs } H_A: p_t \neq p_c$$

```
import numpy as np
bta.group('Group', np.average)
```

Group	Result	average
Control		0.125
Treatment		0.6

Before Randomization

Imaginary ticket for each of the 31 participants

Potential Outcome

Potential Outcome

Outcome if assigned to to treatment group

Outcome if assigned control group

Potential Outcomes

Outcome if assigned to control group

The remaining 15 tickets show:

Outcome if assigned to treatment group

The remaining 15 tickets show:

```
observed_outcomes = Table.read_table(path_data + "observed_outcomes.csv")
observed_outcomes.show()
Group Outcome if assigned treatment Outcome if assigned control

Control Unknown 1

Control Unknown 0

Control Unknown 0
```

6/10

Test Statistic

$$|0.6 - 0.125| = 0.475$$

```
observed proportions = bta.group('Group', np.average).column(1)
observed distance = abs(observed proportions.item(∅) \
                       observed proportions.item(1))
```

0.475

```
def distance(table, label, group label):
    reduced = table.select(label, group_label)
    proportions = reduced.group(group label, np.average).column(1)
    return abs(proportions.item(1) - proportions.item(0))
distance(bta, 'Result', 'Group')
```

0.475

Shuffle Labels

Group	Result	Shuffled Label
Control	1	Control
Control	1	Control
Control	0	Treatment

```
distance(bta_with_shuffled_labels, 'Result', 'Shuffled Label')
```

0.2166666666666666

```
distance(bta_with_shuffled_labels, 'Result', 'Group') 0.475
```

Vitor Kamada ECO 7100 Econometrics I December 2019 8 / 10

Permutation Test

```
def one simulated distance(table, label, group label):
    shuffled labels = table.sample(with_replacement = False
                                      ).column(group label)
    shuffled table = table.select(label).with column(
        'Shuffled Label', shuffled labels)
    return distance(shuffled_table, label, 'Shuffled Label')
distances = make array()
repetitions = 20000
for i in np.arange(repetitions):
    new distance = one simulated distance(bta, 'Result', 'Group')
    distances = np.append(distances, new distance)
```

empirical_P = np.count_nonzero(distances >= observed_distance) / repetitions

0.0085

```
Table().with_column('Distance', distances).hist(bins = np.arange(0, 0.7, 0.1))
plots.scatter(observed_distance, 0, color='red', s=40)
plots.title('Prediction Under the Null Hypothesis')
print('Observed Distance', observed_distance)
print('Empirical P-value:', round(empirical_P, 4) *100, '%')
```


10 / 10