







Deva sir

**Previous Class Summary:** 

(1)

Li Identification of regular languages

# Topics to be covered Today:



L> Closure properties closure Types of operations

Infinite language

To Domains for Infinite languages It so for tegular languages

I for nonregular languages



closure (operation)

s not closed Some 2 elements of NI



(D, \*) is closed

$$\begin{array}{c}
D \rightarrow \text{ set of languages} \\
+L_1 \in D, +L_2 \in D
\end{array}$$

$$\begin{array}{c}
\text{Set of finite languages} \\
-\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1$$

(Set of finite language), U)

Finite UFinite Toped

· { & , a, a b b } · { & , a, a b b } · { w | w ∈ da, 6 }\*, | w | ≤ 10 }





Closed

Closed

Proofities

Plagerties

Not closed

Legiste example

require

| Dornain: Set of   |                                                                        |
|-------------------|------------------------------------------------------------------------|
|                   | closed/Not closed  Fin = I Fin = Inf                                   |
| 1) Union          | Fin UFin > Fin                                                         |
| 2 Intersection    | Fin N Fin > Fin                                                        |
| ***(3) complement | Fin Always Infinite                                                    |
| 4 Difference      | Fin-Fin A Fin                                                          |
| (5) Concation     | Fin. Fin => Fin                                                        |
| (6) kleene star   | (Fin ) F) may or may                                                   |
| (7) Subset        | Substof finite set a) finite set  Reversal of finite set to finite set |
| (8) Reversal      | Reversal of finite let.                                                |

Pw

Closure Properties Dornain: Set of Infinite languages

| operties          | closed/Not | $a^{\dagger} = \{ \epsilon \}$                        |
|-------------------|------------|-------------------------------------------------------|
|                   |            | Inf U Inf - Infinite                                  |
| 1) Union          |            |                                                       |
| 2) Intersection   | $\times$   | Inf () Inf () Need not be Inf                         |
| (3) complement    | X          | Inf > Need not be Inf                                 |
| (G) Difference    | X          | Inf - Inf => Need not be Inf                          |
| (5) Concatenation |            | Inf. Inf inf                                          |
| (6) Kleene Star   |            | (Inf)* => Inf<br>Subset of Inf Set => Need not be Inf |
| (7) Subset        | X          | Subset of Inf set =) (reca)                           |
| 8 Reversal        |            | Reversal of Inf => Inf                                |

# Closure Properties for regular languages:

- 1) Union
- 2) Intersection
- (3) Complement
- 4) Difference
- (5) Concatenation
- 6 Reversal
- 7) Kleene Star
- (8) Kleene plus
- Subset
- (10) Symmetric Difference

- (1) Substitution
- (12) Homomorphism
- (13) &-free Homomorphism (20) Sc cond Half (L)
- (14) Inverse Homomorphism (21) one-third(L)
- (IS) Prefix (L)
- (6) Suffix
- (17) Substaina
- (18) Quotient

Remember Not closed operations; for regulars

- (9) Half (L)= = (L)

- (22) Middle 3 (L)
- (3) Last -3(L)

- 24) Finite Union
- (S) Finite Intersection
- (26) Finite Difference
- 27) Finite Concatenation
- 20) Finite Subset
- (29) Finite Substitution
- (30) Infinite Union
- (31) Infinite Intersection
- 3) Infinite Difference
- (3) Infinite Concatenation
- Infinite Subset
- Infinite Substitution



(1) 
$$L_1 = a^*$$
 $L_2 = b^*$ 
 $L_1 \cup L_2 = a^* + b^* + \epsilon$ 
 $L_2 = b^*$ 
 $L_4 \cup L_2 = a^* + b^* + \epsilon$ 
 $L_4 \cup L_2 = a^* + b^* + \epsilon$ 
 $L_4 \cup L_2 = a^* + b^* + \epsilon$ 

(2) 
$$L_1 = \alpha^*$$
 $L_2 = (\alpha + b)^*$ 
 $L_2 = (\alpha + b)^*$ 

Drosts:

DUSE Reg ENJ,

2) UR RGs

3) USC FAS (FA, X FAZ)

4) USe E-NFA



(5) If 
$$L_1 = \phi$$
,  $L_2 = \tilde{\alpha}\tilde{b}$  then  $L_1 \cup L_2$  is North

(6) If 
$$L_1 = a^*b^*$$
,  $L_2 = a^*b^*$  then  $L_1 \cup L_2 : s = \sqrt{b^*}$ 



50 LIULZ is regular then Lis may or may not regular

(8) If LIULZ is non regular than Lis may or may not roular

9 If Lis res, and lz is reg => Liulzis regulat

(10) If Lis norregular, and Lz is norreg to LiULz is zonor solution

i) {and U dans to reg (z\*)

norregular romany

ii) dans U land to norregular (and)



- (I) If Lis frite and Lz is regular then

  Liulz is Regular language

  (may or may not be finite)
- (12) If L, is Infinite and L2 is regular then
  L, UL2 is Always infinite (need not be regular)



Ly closed for regular languages

Reg, 1 Reg => Always Regular

1) 
$$L_1 = 0$$
 $L_2 = 0$ 
 $L_2 = 0$ 
 $L_3 = 0$ 
 $L_4 = 0$ 
 $L_5 = 0$ 
 $L$ 



ML, =L2



3) 
$$L_1 = \frac{4}{4}$$
  $\frac{1}{12}$   $\frac{1}{12}$  is  $\frac{4}{12}$ 

4) 
$$L_1 = (a+b)^* = \sum_{i=1}^* c_i + \sum_{j=1}^* c_j + \sum_{j=1}^*$$



3) Complement:

Losed for Regulars

Reg > Always Regular

$$\bigcirc L = \varphi \implies \widehat{L}^*$$

Proof:

LADFA

DFA

T



(4) Difference Lyclosed for regulars

(2) 
$$L_1 = \sum_{j=1}^{\infty} l_2 = Any \Rightarrow l_1 - l_2 = \overline{l_2}$$



T) 
$$L_1 = \phi$$
,  $L_2 = Any$   $\Rightarrow$   $L_1 \cdot L_2 = \phi$   $L_2 \cdot L_1 = \phi$ 

3) 
$$L_1 = \alpha$$
,  $L_2 = (a+b)^* \Rightarrow L_1 L_2 = \alpha^* \cdot (a+b)^* = (a+b)^* = L_2$ 
 $L_2 L_1 = (a+b)^* \cdot \alpha^* = (a+b)^* = L_2$ 



L> closed for regulars



8) Kleene plus Ly closed for regular

I) If L is regular is also regular

I) If L' is regular is L may or may not be regular

# Summary





