人工智能研究简史

整理 丁家琦

1931年

奧地利数学家库尔特·哥德尔(Kurt Gödel)证明,在一套足够有效的一致形式系统中,总存在不能通过系统的公理及其导出的定理所证明或证伪的命题,这就是著名的哥德尔不完备性定理。为了证明这一点,他不得不着手建立起一套基于整数的普适编程语言,因此也被称为"理论计算机科学之父"。

1950年

阿兰·图灵提出了 用来检验机器的智 能是否与人类相 当的"图灵测试" (Turing test): 如果 一台机器能够与人 类展开对话 (通过 电传设备)而不能 被辨别出其机器身 份, 那么就称这台 机器具有智能。同 年,科幻作家艾萨 克·阿西莫夫(Isaac Asimov)提出"机 器人三定律"、为 人工智能的设计与 制造提供了准则。

1956年

艾伦·纽厄尔(Allen Newell)、J·C·肖(J.C. Shaw)和赫伯特·A·西蒙(Herbert A. Simon,中文名为司马贺)开发出了一个叫做"逻辑理论家"(Logic Theorist)的程序,能够证明《数学原理》中前52个定理中的38个,其中某些证明甚至比原著更加新颖和精巧。

1958年

约翰·麦卡锡发明了Lisp编程语言。 Lisp语言不仅广泛用于人工智能领域, 更对计算机编程语言产生了深远影响。

1964年

第一届人工智能会议的参与者之一,数学家雷·所罗门诺夫(Ray Solomonof)引入了通用的贝叶斯推理与预测方法,奠定了人工智能的数学理论基础。

1936年

英国数学家阿兰·图 灵(Alan Turing)发表 了一篇著名的论文,证 明只用一种对 0 和 1 两 个数进行处理的通用 计算机,就可以实现任 何以演算式表达的数 学问题。这种机器被 称为"图灵机"(Turing machine),成为现代计 算机的理论基础。

1952年

来自IBM的阿瑟·塞缪 尔(Arthur Samuel)开发 出了足以挑战具有相当 水平的业余爱好者的西 洋跳棋(checkers)程序。

在美国达特茅斯学院 召开,标志着人工智 能领域正式诞生。参 会者包括约翰·麦卡 锡(John McCarthy)、 马文·明斯基(Marvin Minsky)等,这些人 后来都成了人工智能 领域的领军人物。

美国国防部高级研究计划局(后来的 DARPA)给麻省理 工学院、卡内基梅 隆大学的人工智能 研究组投入了大量 的经费,人工智能 研究进入热潮。

1963年

当时还是麻省 理工学院博士 生的丹尼尔·博 布 罗 (Daniel Bobrow) 用 Lisp 语言设计的程 序 STUDENT 可 以理解人类语 (英语)、它能 解高中程度的 代数应用题。

1967年

形势一片大好,明斯基充满信心 地表示,人工智能问题将在一代 人的时间内被彻底解决。

1981年

日本经济产业省拨款 8.5 亿美元用以研发第五代计算机项目,在当时叫做人工智能计算机。其目标是制造出能够与人对话、翻译语言、解释图像,且能像人一样推理的机器。随后,英国、美国也纷纷响应,开始向信息技术领域的研究提供大量资金。

1987年

人工智能硬件设备遭遇了突然的挫败,起因在于苹果和IBM公司设计的一系列台式计算机性能稳步提升,逐渐赶上了人工智能设备,除此上了外还有价格优势,以至于没人选择人工智能设备了。由于人工智能安际的发展并未达到预期,上世纪80年代末到90年代初,人工智能研究再次陷入低谷。

1997年

IBM公司开发的国际 象棋程序"深蓝"(Deep Blue)击败了当时的 国际象棋世界冠军加 里·卡斯帕罗夫(Garry Kasparov),引起全世 界的关注。"深蓝"在 1秒内能计算2亿种 可能的位置,可搜索 并估计随后的12步 棋。

2011年

1973年

20世纪70年代初,人工 智能陷入寒冬。英国数 学家詹姆斯·莱特希尔 (James Lighthill) 爵士针 对英国的人工智能研究撰 写了一份报告, 称人工智 能最多只能在棋类游戏上 达到比较有经验的业余选 手水平, 永远无法胜任常 识推理和人脸识别这样的 工作。这导致英国政府大 幅缩减了对人工智能研究 的投资,同时 DARPA 也 对美国人工智能研究现状 感到失望, 取消了对卡内 基梅隆大学语音识别项 目的每年300万美元的资 助。到1974年,全球鲜 见对人工智能研究的资助 项目。

1982年

物理学家约翰·霍普菲尔德(John Hopfield)证明,使用神经网络可以让计算机以崭新的方式学习并处理信息;差不多同一时候,戴维·鲁梅哈特(David Rumelhart)推广了早先由保罗·韦尔博斯(Paul Werbos)发明的反向传播算法(backpropagation algorithm)。这一系列成果使神经网络这一概念在上世纪80年代中期得以复兴。

1994年

2006年

2016年

由谷歌旗下 DeepMind 公司研发的人工智能围棋程序 AlphaGo以4:1的比分战胜世界冠军李世石,震惊了世界。围棋因其局面复杂,被认为是机器最难战胜人类的领域,但 AlphaGo 通过深度学习和神经网络技术给机器赋予了"直觉",以及自我学习的能力,最终征服了围棋,不仅成为人工智能史上的又一里程碑,也让我们对人工智能的未来充满信心。 word版下载: http://www.ixueshu.com

免费论文查重: http://www.paperyy.com

3亿免费文献下载: http://www.ixueshu.com

超值论文自动降重: http://www.paperyy.com/reduce_repetition

PPT免费模版下载: http://ppt.ixueshu.com

阅读此文的还阅读了:

1. 《时间简史》和《时间简史》"刻奇"

- 2. 意识研究简史
- 3. 肥胖研究简史
- 4. 《未来简史》
- 5. 我的交友简史1/我的交友简史2
- 6. 趣话轴对称的研究简史
- 7. 灵感思维研究简史(中)
- 8. 趣话轴对称的研究简史
- 9. iPS细胞研究简史
- 10. 天花研究简史
- 11. 地球宇宙地位研究简史
- 12. 《理工高教研究》期刊简史
- 13. 基因组研究简史
- 14. 人工智能 和人机大战简史
- 15. 数千人现场聆听,上百万观众观看视频分享大数据和人工智能浪潮下的未来进化——《未来简史》作者尤瓦尔·赫拉利、微
- 16. 《时间简史》和《时间简史》"刻奇"
- 17. 人工智能研究简史
- 18. 行动研究简史
- 19. 从《时间简史》到《我的简史》
- 20. 量子纠缠研究简史
- 21. 量子引力研究简史
- 22. 大脑暗能量研究简史
- 23. 灵感思维研究简史(下)
- 24. 音符的简史
- 25. 《安全简史》

- 26. 《从〈时间简史〉到〈我的简史〉》(2015年9月)
- 27. 外摩擦研究简史
- 28. 南方宋墓的发现简史和研究综述
- 29. 人工智能和人机大战简史
- 30. 衰老研究简史
- 31. 多重宇宙研究简史
- 32. 微博客的新闻应用研究简史
- 33. 桑树的分类及研究简史
- 34. "聪明药"研究简史
- 35. 灵感思维研究简史(上)
- 36. 人工智能和人机大战简史
- 37. 《北戴河碱业工人简史》研究
- 38. 人工智能研究简史
- 39. 现代的家庭研究简史(上)
- 40. 智力研究简史
- 41. 宇宙暴胀研究简史
- 42. 人工智能时代 机关事务的未来在哪里? ——《未来简史》《人工智能》等书籍读后感
- 43. 恒星坍缩奇点研究简史
- 44. 光遗传学研究简史
- 45. 人工智能设计,从研究到实践
- 46. 人类体毛进化研究简史
- 47. 《萨迦格言》英译简史及英译特色研究
- 48. 人工智能研究进展
- 49. 粒子加速器研究简史
- 50. 灵感思维研究简史