GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-IV

Course Title: Control Devices (Course Code: 4342001)

Diploma Programme in which this course is offered	Semester in which offered
Mechatronics Engineering	4 th Semester

1. RATIONALE

Due to labor crisis and high quality products in demand, now a day company move towards Automation. In automation there are lots of components are used. This course is intended to learn basic concept of automation and working of common components. Knowledge of this subject will lead to understanding working of sensors and actuators used in Mechatronics systems. Also this course offers the students deep thorough knowledge of Advanced Mechatronics system and also teach students how to build a particular Mechatronic System.

2. COMPETENCY

The course content should be taught with the aim to develop different types of skills so that students are able to acquire following competency.

- Select and operate Mechatronics system as per requirements.
- Selection of Various Sensors & Actuators as per requirements.

3. COURSE OUTCOMES (COs)

- Differentiate open loop and closed loop system
- Convert signals (ADC to DAC / DAC to ADC)
- Identify components in automation systems.
- Understand specification & Working of different types of sensors and actuators.
- Recognize role of various control devices in Mechatronics system.

4. TEACHING AND EXAMINATION SCHEME

Teachi	ng Sch	eme	Total Credits	Examination Scheme				
(In	Hours)	(CI+T/2+P/2)	Theory	Marks	Practical	Total	
L	Т	Р	С	CA	ESE	CA	ESE	Marks
2	0	2	3	30*	70	25	25	150

^{(*):} Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; **T** – Tutorial/Teacher Guided Theory Practice; **P** - Practical; **C** – Credit, **CA** - Continuous Assessment; **ESE** - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the COs. *These PrOs need to be attained to achieve the Cos.*

Sr.	Practical Outcomes (PrOs)	Unit	Approx.
No.		No.	Hrs.
			required
_ 1	To convert given Analog signal into Digital signal.	I	02
2	To convert given Digital signal into Analog signal.	II	02
3	To measure the different parameter like Accuracy, Repeatability and Resolution for L.V.DT.	III	04
4	To measure the different parameter like Accuracy, Repeatability and Resolution for Thermocouple.	III	04
5	To Plot various characteristic of Single Phase and Three Phase A.C. Motor.	IV	02
6	To control the speed of DC motor by PWM Method.	IV	04
7	Demonstrate Hydraulic actuator and its working.	IV	04
8	Demonstrate Pneumatic actuator and its working.	IV	04
	MINI PROJECT AND PRESENTATION on any one of the working of Mechatronics System used in: • Household applications		
9	Packaging systemsMaterial handling/ transfer systemsAutomobile systems	V	04
	Security systems		

Note

i. More Practical Exercises can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.

Notes:

- Term work report must not include any photocopy/i.e., printed manual/pages, litho, etc. It must be hand written / hand drawn by student only.
- Term work report content of each experience should also include following.
 - i. Experience description / data and objectives.
 - ii. Drawing of experience / setup with labels/nomenclature tocarry out the experience.
 - iii. The specifications of machines / equipments / devices / tools /instruments /items/elements which is / are used to carry outand to check experience.
 - iv. Process parameters / setup settings' values applied to

Control Devices Course Code: 4342001

carryout experience.

- Mini project and presentation topic/area has to be assigned to the student in the beginning of the term by batch teacher. This may be assigned individually or in the group of maximum 2 to 3 students.
- For 40 marks ESE, students are to be assessed for competencies achieved. Students should be given following tasks (any two).
 - v. Identify sensors.
 - vi. Convert signals
 - vii. Measure parameters like accuracy, resolution and repeatability ofthermocouple/ strain gauge / LVDT
 - viii. Control speed of DC motor.
 - ix. Explain role of control devices for given mechatronics system.
- The following are some **sample** 'Process' and 'Product' related skills (more may beadded/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency..

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Introduction to Control Devices	20
2	Signal processing & Concept of Aliasing & Nyquist Frequency	10
3	Various types of Sensors Concepts	30
4	Various types of actuators & control signals	25
5	Design any of one Mechatronics System	15
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

These major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practical in all institutions across the state.

Sr.	Equipment Name with Broad Specifications	PrO. No.
No.		
1	Trainer Kit of LVDT , Thermocouple with Connecting Wires	All
2	Hydraulic Pneumatic trainer Kit	All
3	RTD, Thermocouple (Temperature Sensor Kit)	All
4	DC Motor Cross sections	All

• AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfil the development of this coursecompetency.

- a) Follow safety practices.
- b) Practice good housekeeping.
- c) Demonstrate working as a leader/a team member.

- d) Maintain tools and equipment
- e) Follow ethical practices.

7. UNDERPINNING THEORY

Unit	Major Learning	Topics and Sub-topics		
Onic	Outcomes			
	1a. Compare open	1.1. Control devices-Meaning, need		
Unit – I	loopand close	andapplication.		
	loop system.	1.2. Open loop control		
INTRODUCTION	1b. Identify sinking	1.3. Closed loop control		
	andsourcing	1.4. Sinking and sourcing concept.		
	device.			
	2a. Explain Signal	2.1. Signal processing- Need and meaning		
	processing and	2.2. Data acquisition		
Unit –II	filtration and	2.3. Sampling		
2	Differentiate	2.4. Digitized signal		
SIGNAL	betweenAnalog	2.5. Sampling rate		
PROCESSING	and digital Signal.	2.6. Nyquist frequency		
	2b. Convert signals	2.7. Aliasing		
		2.8. Analog to digital signal conversion		
		2.9. Digital to analog signal conversion		
	3a. Identify and	3.1. Sensors- Need and classification.		
	select the	3.2. Important parameters (such as		
	different type of	sensitivity, linearity, range,		
	sensors based on	responsetime, accuracy,		
	given criteria.	repeatability, Resolution,		
	3b. Make the	threshold value etc.) Its		
	connection of	definitions and Importance in		
	sensors.	sensorSelection.		
Unit-III	3c. Explain working	3.3. Working and application of		
	ofdifferent type	sensingtechnique for following		
SENSORS	of sensors.	parameter.		
		i. Position and speed.		
		ii. Stress, strain.		
		iii. Temperature.		
		iv. Pressure.		
		v. Flow and level.		
		vi. Optical		
		vii. Object detection		
		3.4. Selection criteria for sensors		
		3.5. Common troubles and		
		remedies insensor operations.		

Control Devices Course Code: 4342001

	1 4 1 1 116	144 5 6 111			
	4a. Identify	4.1. Definition, need,			
Unit-IV	differenttypes	working, applications.			
	of actuator.	4.2. Electrical actuator (working			
ACTUATORS	4b. Make the	andapplication).			
	connectionswith	i. DC motors – series, shunt			
	actuators.	andcompound.			
	4c. Describe	ii. Ac Single-phase motor.			
	differenttypes of				
	electrical				
	motors used in				
	Mechatronics	iii. AC poly phase motor.			
	system.4d. Describe	iv. Servo Motor			
	the working of	v. Stepper motors.			
	different types of	4.3 Hydraulic & Pneumatic			
	hydraulic and	actuators(working and			
	pneumatic cylinder.	application)			
	4e. Identify and	i. Types of Cylinder.			
	interpretdifferent	ii. Direction control valve.			
	hydraulic and	4.4. Selection criteria.			
	pneumatic	4.5. Common troubles and remedies.			
	symbols.				
	5a. Explain working	5.1. Introduction.			
	and function of	5.2. Design steps and considerations			
	elements used in	5.3. Various mechatronics systems.			
Unit- V	Mechatronics	i. Being used in day-to-day life.			
Oine v	systems.	ii. Expected use in future.			
MECHATRONIC	.,	5.4. Working elements ,its functions			
SYSTEMS		and applications of following system.			
		i. Hydraulic robot arm.			
		ii. DC motor based bottle filling.			
		iii. Temperature sensing system.			
		5.5. Mechatronics systems, which			
		are inrecent trend			

The major underpinning theory is given below based on the higher level UOs of *Revised Bloom's taxonomy* that are formulated for development of the COs and competency. If required, more such UOs could be included by the course teacher to focus on attainment of COs and competency.

Note: The Unit Outcomes (UOs) need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

8. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title		Distribution of Theory Marks			rks
		Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Marks
I	Introduction	2	4	4	0	8
II	Signal processing.	2	2	3	3	8
III	Sensor	11	8	6	6	20
IV	Actuators	10	7	6	7	20
V	Mechatronics systems	3	1	5	8	14
Total		28	22	24	24	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) **Note**: This specification table provides general guidelines to assist students for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may slightly vary from above table.

9. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should perform following activities in group and prepare reports of about 5 pages for each activity. They should also collect/record physical evidences for their (student's) portfolio which may be useful for their placement interviews:

Sr	Activity
No	Activity
1	Prepare list of various mechatronics systems.
2	Study specifications and use of various sensors used in mechatronics system
3.	Study specifications and use of various actuators used in mechatronics system
4.	Identify alternative elements in mechatronics system
5.	Draw line diagram/ circuit of various mechatronics systems.
6.	Plot characteristics of motors.

10. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of thevarious outcomes in this course:

- Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- b) Guide students to take micro-projects.
- c) Blend the basic concepts with more specialized instruction
- d) Give at least 10 competitive problems for each course outcomes of this course
- e) Practice, practice and practice expose students to wide range of problems
- f) About 20% of the topics/sub-topics which are relatively simpler or descriptive in nature is to be given to the students for self-learning, but to be assessed using different assessment methods.
- g) Guide students on how to address issues on environment and sustainability using the knowledge of this course.

11. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based (group of 3 to 5). However, **in the fifth and sixth semesters**, the number of students in the group should **not exceed three**.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

Suggested List of Micro-Project Definition:-

- The Microproject should consists of using of Various Sensors & Actuators and they should use different types of ideas to make the system automatic.
- The Microproject Should be made with the help of Charts & Drawing Sheets with good sketch and labelling.
- The Microproject should be made with the use of different types of Hydraulic & Pneumatic Actuators.

12. SUGGESTED LEARNING RESOURCES

Sr.N o.	Title of Books	Author	Publication
1.	Robotics Control, Sensing, vision and intelligence	Ralph Gonzalez, C.S.G Lee, K.S. Fu	Tata Mc graw Hill Education
2	industrial Robotics	Roger N Nagel, M.P. Groover, N.G. Odrey, Michell Weiss	Tata Mc graw Hill Education
	Mechatronics- Electronics control systems in Mechanical and Electrical Engineering	W.Bolton Pearson	Tata Mc graw Hill Education
4.	Mechatronics	Ganesh Hegde	Jones & Bartlett

13. SUGGESTED LEARNING WEBSITES

- 1. www.nationalinstruments.com
 - 2. www.controldevices.com
 - 3. www.youtube.com
 - 4. www.sensors-research.com
 - 5. <u>www.sensormag.com</u>
 - 6. <u>www.honeywell.com</u>
 - 7. <u>www.nptel.com</u>

14. PO-COMPETENCY-CO MAPPING

Semester IV (Mechatronics	Control Devices						
Engg.)	POs						
Competency & Course Outcomes	PO1 Basic and Disci pline specif ic know ledge	PO2 Probl em analy sis	PO3 Design/ develop ment of solutio ns	PO4 Engineeri ng Tools, Experime ntation and Testing	PO5 Engineerin g practices for society, sustainabili ty and environme nt	PO6 Projec t Mana geme nt	PO7 Life- long learnin g
Competency Develop structured, modular and memory efficient programs in 'C'.							
Course Outcomes CO a) Differentiate open loop and closed loop system	2	1	-	1	-	-	2
CO b) Convert signals ADC to DAC / DAC to ADC)	2	2	2	2	-	-	2
CO c) Identify Components in Automation Systems	2	2	1	2	-	1	2
CO d) Understand specifications & working of different types of Sensors & Actuators.	2	2	2	2	_	-	1
CO e) Recognize role of Various Control Devices in Mechatronics Systems	2	2	2	3	-	3	2

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

> COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

Sr. No.	Name and Designation	Institute	Contact No.	Email
1.	Dr. R.D Patel (Head Mechanical Engg, Dept.)	B&B Institute of Technology ,V.V. Nagar	9825523982	rakeshgtu@gmail.com
2.	Prof. H G Tailor (Mechatronics Dept.)	B&B Institute of Technology ,V.V. Nagar	9408365148	tailor.harsh4@gmail.com

BOS Resource Persons

S. No.	Name and Designation	Department	Contact No.	Email
1.	Dr.S.H.Sundaran BOS Chairman HOD Mechanical Engg.	Government Polytechnic Ahmadabad	9227200147	gpasiraj@gmail.com
2.	Dr.R.D.Patel BOS Member HOD Mechanical Engg.	B.&B. Institute of Technology V V Nagar	9825523982	rakeshgtu@gmail.com
3.	Dr.Atul.S. Shah BOSMember Principal	B.V.Patel Institute of TechnologyBardoli	7567421337	Asshah97@yahoo.in