Алгебра. КТ. Осенний семестр

І. Алгебраические системы и алгебраические операции. Группы

1. Являются ли алгебраическими системами следующие объекты:

a) $\langle \mathbb{Q}_{>0}, \sqrt{} \rangle$; 6) $\langle \mathbb{R}_{>0}, \sqrt{} \rangle$; B) $\langle \mathbb{N}, - \rangle$; Γ) $\langle \mathbb{Z}, : \rangle$; A) $\langle \mathbb{Q}, : \rangle$; e) $\langle \mathbb{Q} \setminus \{0\}, : \rangle$?

- 2. Относительно каких операций, заданных на множестве \mathbb{Z} , замкнуты множества $2\mathbb{Z}$ и $2\mathbb{Z}+1$? Рассмотрите бинарные операции: сложение, умножение, взятие НОДа; а также унарные операции: взятие противоположного элемента, удвоение, утроение.
- 3. Найдите все конечные подсистемы алгебраических систем:

а) $\langle \mathbb{Z}, f \rangle$, где f — унарная операция удвоения;

б) $\langle \mathbb{Z}, \cdot \rangle$;

- в) (X, f), где X множество точек плоскости, f тернарная операция, сопоставляющая трём точкам A, B, C точку пересечения медиан треугольника АВС (возможно, вырожденного).
- 4. Ассоциативна ли операция * на множестве M, если:

a) $M = \mathbb{N}, \, x * y = x^y;$

б) $M = \mathbb{N}, x * y = HO\Delta(x, y);$

B) $M = \mathbb{N}, x * y = 2xy;$

r) $M = \mathbb{Z}$, x * y = x - y;

д) $M = \mathbb{Z}, x * y = x^2 + y^2;$

e) $M = \mathbb{R}$, $x * y = \sin x \cdot \sin y$;

 $(x) M = \mathbb{R} \setminus \{0\}, \ x * y = x \cdot y^{\frac{x}{|x|}}$?

5. Составьте таблицу Кэли для операций на множестве $M = \{1, 2, 3, 4\}$:

a) $a * b = \min\{2a, b\};$

6) $a * b = a + b - \max\{a, b\}$.

Являются ли операции коммутативными? Имеют ли они нейтральный элемент?

6. На множестве M определена операция * по правилу x*y=x. Докажите, что $\langle M, * \rangle$ является полугруппой. Что можно сказать о её нейтральных и обратимых элементах? В каких случаях она является группой?

- 7. Какие из указанных структур являются группами:
 - a) $\{\{-1, 1\}, \cdot\};$
 - 6) $\langle \mathbb{Z}_6, \cdot \rangle$.
 - в) множество степеней данного ненулевого вещественного числа с натуральными показателями относительно умножения;
 - г) множество всех непрерывных монотонно возрастающих функций из [0,1] в [0,1], для которых $f(0)=0,\,f(1)=1,\,$ относительно операции композиции;
 - д) функции $x,\;-x,\;\frac{1}{x},\;-\frac{1}{x}$ на $\mathbb{R}\setminus\{0\}$ относительно операции композиции;
 - е) множество $\mathscr{P}(M)$ всех подмножеств некоторого множества M относительно операции симметрической разности $A \triangle B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (B \cap A)$? Какие из групп являются абелевыми?
- 8. Составьте таблицу Кэли для:
 - а) группы симметрий правильного треугольника;
 - б) множества функций $x,\ 1-x,\ \frac{1}{x},\ \frac{x-1}{x},\ \frac{x}{x-1},\ \frac{1}{1-x}$ на $\mathbb{R}\setminus\{0,\ 1\}$ с операцией композиции. Убедитесь, что эта структура является группой.

Абелевы ли эти группы? Сравните их таблицы Кэли.

- 9. Докажите, что если в группе выполнено тождество $x^2=e$, то эта группа абелева.
- 10. Докажите, что любая группа третьего порядка абелева.
- 11.* Каждой паре вещественных чисел x и y поставлено в соответствие некоторое число x*y. Найдите 2024 * 2025, если известно, что для любых трёх чисел x,y и z выполнены тождества: x*x=0 и x*(y*z)=(x*y)+z.
- 12* На доске написано 2024 числа:

$$1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{2024}.$$

За один ход требуется стереть любые два числа a и b и вместо них написать число a+b+ab. Сделано 2023 хода и на доске осталось одно число. Какое это число может быть? Укажите все варианты.