Abel inequality, 117	cell proliferation, 301-2
abstract ergodic theorem, 81	Cesaro convergence, 27
acoustic feedback system, 139	of Frobenius-Perron operator, 65-6
adjoint operator, 43, 44	of Koopman operator, 68
almost everywhere (a.e.), 15, 33	Chandrasekhar-Münch equation, 214, 341,
almost sure convergence, 275	344
Anosov diffeomorphism, 51, 52, 71–2	change of variables
arcs, equivalent, 153	and asymptotic stability, 141-7
asymptotic periodicity, 86-90, 107, 131	in Lebesgue integral, 40-1
asymptotic stability, 95, 176	characteristic function, 5
of Chandrasekhar-Münch equation, 344	Chebyshev inequality, 104, 273
via change of variables, 141	Chebyshev polynomials, 145
of convex transformation, 129	classical solution of Fokker-Planck equation,
of expanding mappings on manifolds, 160	323
of fluid flow, 131	closed linear subspace, 83
of integral operators, 102, 105	compact support, 181
of integro-differential equations, 337–44	comparison series, 31
of Lorenz equations, 124	complete space, 30
of monotonically increasing transformation,	complete measure, 27
119, 123	conditional entropy, 255-6, 263-4
proof via lower-bound function, 96, 175	connected manifold, 156
of quadratic transformation, 142	constant of motion, 187
relation to conditional entropy, 264	constrictive Markov operator, 87–8
relation to exactness, 100	continuous semigroup, 169
relation to Liapunov function, 105, 329–30,	of contractions, 178
336–7	of contractions and infinitesimal operator,
relation to statistical stability, 95	200
of Rényi transformation, 119	and ordinary differential equations, 187-8
of stochastically perturbed systems, 280,	continuous stochastic processes, 294
287	continuous stochastic semigroup, 175
of strong repellor, 129	continuous time stochastic process, 221-2
of transformations on R, 148	continuous time system
automorphism, 74	and discrete time systems, 172, 219-20
,	ergodic, 171, 172
baker transformation, 48-50, 60-1, 74-5, 260	exact, 173, 297-302
relation to dyadic transformation, 50, 260	mixing, 172, 194–200
Birkhoff ergodic theorem	contracting operator, 34, 177
continuous time, 170	convergence
discrete time, 57	almost sure, 275
Boltzmann equation and entropy, 260	Cauchy condition for, 30
Borel measure, 14, 25–6	Cesaro, 27
on manifolds, 157	comparison series for, 31
Borel sets, 14	in different L^p spaces, 29
Borel σ -algebra, 14	in mean, 274
bounded variation, function of, 114-19	to set of functions, 87
Brownian motion	stochastic, 274
d-dimensional, 303	strong, 27
one-dimensional, 294	weak, 27
	weak Cesaro, 27
Cartesian product, 24	convex transformation, 128-30
Cauchy condition for convergence, 30	counterimage, 5
Cauchy-Hölder inequality, 23	counting measure, 14
Cauchy problem for Fokker-Planck equation,	counting process, 222
322	curvature, 199-200

cycle, 92	and Hamiltonian systems, 205
cyclical permutation, 92	and linear Boltzmann equation, 240-1
cylinder, 195, 298	illustrated, 63
	of motion on torus, 190–2
dense subset of densities, 99	necessary and sufficient conditions for, 53
density, 5, 10, 36	relation to mixing, exactness, and
of absolutely continuous measure, 36	K-automorphisms, 73
evolution of by Frobenius-Perron operator,	and rotational transformation, 56-7, 69-70,
38, 215–17	171–2
of random variable, 221	essential supremum, 23
derivative	Euler-Bernstein equations, 315
right lower, 111	events
strong, 181	elementary, 220
determinant of differential on manifold, 158	independent, 221
diffeomorphism, 52	mutually disjoint, 221
differential	exact Markov operator, 72, 93
determinant of, on manifold, 158	exact semidynamical system, 173
of transformation on manifold, 154	exact semidynamical system with continuous
differential delay equation as semidynamical	time, 297-302 exact semigroup of linear Boltzmann equation,
system, 164-5 differential equation as dynamical system, 164	241
discrete time stochastic process, 221–2	exact transformation, 62
discrete time system	exactness
and Poisson processes, 226-9	and entropy, 258, 262
as sampled semidynamical system, 219–20	illustrated, 65
embedded in continuous time system, 220	necessary and sufficient conditions for via
distance	Frobenius-Perron operator, 65-6, 194
between function and set of functions, 86-7	of r-adic transformation, 70
in L^p spaces, 22	relation to dynamical systems, 173
on manifold, 156	relation to ergodicity, mixing, and
dyadic transformation, 9, 61-2, 260	K-automorphisms, 62, 73, 76
related to baker transformation, 50	relation to statistical stability, 100-1, 143
dynamical system, 165	of transformations on torus, 162
and exactness, 173	expanding mappings, 158–62
ergodic, 171	6 . 6 . 6 75
mixing, 172	factor of transformation, 75
-1	finite measure space, 15
elementary events, 220	first return map, 219
endomorphism, 74	fixed point of Markov operator, 35
entropy, 249 conditional, 255	fluid flow, 131 Fokker–Planck equation
and exact transformations, 258, 260, 262	asymptotic stability of solutions, 330
and Frobenius-Perron operator, 257-60, 262	and Cauchy problem, 322
and Hamiltonian systems, 257–8	classical solution, 323
and invertible transformations, 257	derivation of, 318–22
and Liouville equation, 260	existence and uniqueness of solutions, 323-4
and Markov operators, 254-7	fundamental solution, 323
of reversible and irreversible systems, 260	generalized solution, 327
equivalent arcs on manifold, 153	for Langevin equation, 325, 332
ergodic Birkhoff theorem, 57, 170	and Liouville equation, 329
ergodic dynamical system, 171	for second-order system, 335
ergodic Markov operator, 72, 92	stationary solutions, 332, 333, 334, 336
ergodic semidynamical system, 171	for stochastic differential equations, 318
ergodic transformation, 53	and stochastic semigroups, 327
ergodicity	forced oscillator, 136-8
conditions for via Frobenius-Perron	Frobenius-Perron operator, 37, 173-4
operator, 55, 65-6, 86, 194	for Anosov diffeomorphism, 51–2
conditions for via Koopman operator, 54,	for baker transformation, 48–50
68, 189, 194, 204	for dyadic transformation, 9

and evolution of densities, 4-12, 38	independent random variables, 221, 266
for Hamiltonian system, 187-8	indicator function, 5
and invariant measure, 46, 189, 203	inequality
for invertible transformations, 42	Cauchy-Hölder, 23
and Koopman operator, 177	triangle, 22
and Liouville equation, 203	infinitesimal operator, 180
as Markov operator, 38	of continuous semigroup of contractions,
and ordinary differential equations, 185–7	200
for quadratic map, 7, 47	and differential equations, 181
for r-adic transformation, 9, 46	and ergodicity, 189
relation to entropy, 257–60, 262	and Frobenius-Perron operator, 185-7, 203
relation to ergodicity, 55, 65-6, 86, 194	and Hamiltonian systems, 187
relation to infinitesimal operator, 185-7	and Hille-Yosida theorem, 200
relation to Koopman operator, 43, 177,	illustrated by parabolic differential
215–17	equations, 208–9
relation to mixing, 65–6, 194	illustrated by heat equation, 208
and semidynamical systems, 173-4, 189	and invariant measure, 203
semigroups of, 173-4	and Koopman operator, 184-5, 204
support of, 39	and ordinary differential equations, 183-5
for transformations on R, 10, 38, 148	and partial differential equation, 182-3
for transformations on R^2 , 40	as strong derivative, 181
weak continuity of, 43-4	integrable function, 17
Fubini's theorem, 25	integral
function	Itô, 304–9
of bounded variation, 115	Lebesgue, 16–18
left lower semicontinuous, 111	stochastic, 305, 311
lower semicontinuous, 111	integro-differential equations, 213, 214,
	337, 341
support of, 34 fundamental solution of Fokker-Planck equa-	
	intermittency, 131
tion, 323–4	invariant measure, 45, 169
	and differential equations, 203
gas dynamics, 194–8, 244–7	and Frobenius-Perron operator, 46, 189
Gaussian density, 251, 286, 294, 303	and Hamiltonian systems, 204
Gaussian kernel, 176, 208, 214, 218, 324	and infinitesimal operators, 203
generalized solution of Fokker-Planck equa-	and Liouville's theorem, 203-4
tion, 327	for monotonic transformations, 132
geodesic, 199	invariant set, 53, 171
flow, 199	invertibility, 50, 62, 165, 257, 260
motion on, 198-200	Itô integral, 304–9
Gibbs canonical distribution function, 253	Itô sum, 305
Gibbs inequality, 249	•
gradient	Jacobian matrix, 41
of function, 152	Jensen inequality, 253
length of, 156	joint density function, 267
longin oi, 150	joint density randition, 207
Hahn-Banach theorem, 83	K-automorphism, 73-6
	· · · · · · · · · · · · · · · · · · ·
Hamiltonian, 187	and exactness, 76
system, 187, 192, 198, 204, 205, 257	and geodesic flows, 200
hat map, 142	and mixing, 76
Hausdorff space, 152	Kolmogorov automorphism, 73
heat equation, 176, 208	Kolmogorov equation, see Fokker-Planck
Henon map, 50	equation
Hille-Yosida theorem, 200	Koopman operator, 42–4, 177
homeomorphism, 152	and Anosov diffeomorphism, 71-2
	and motion on torus, 190-2
ideal gas, 194-8, 244-7	relation to ergodicity, 54, 68, 69-70, 189,
independent events, 221	190, 194, 204
independent increments, 222	relation to Frobenius-Perron operator, 43,
independent σ-algebras, 302	177, 215–17
• /	•

Koopman operator (cont.)	and parabolic equation, 326
relation to infinitesimal operators, 184–5,	properties of, 33
204	relation to entropy, 254–7
relation to mixing, 68, 194	semigroup of, 174
relation to ordinary differential equations,	stability property of, 34, 175
184–5	stationary density of, 36
and rotational transformation, 69-70	with stochastic kernel, 101, 217, 241
	and stochastic perturbation, 279, 284
Langevin equation, 315-17, 325-6, 332-3	strongly constrictive, 87–8
law of large numbers	weak continuity of, 43
strong, 276–7	weakly constrictive, 87
weak, 275	mathematical expectation, 269
Lebesgue dominated convergence theorem, 18	maximal entropy, 250-3
Lebesgue integral, 16-18	Maxwellian distribution, 336
on product spaces, 25	mean value
relation to Riemann integral, 19	of function, 114
Lebesgue measure, 27	of random variable, 269
Lebesgue monotone convergence theorem, 18	measurable function, 15
left lower semicontinuous function, 111	space of, 21
length of gradient on manifolds, 156	measurable set, 14
Liapunov function, 104-5, 108-9, 284,	measurable transformation, 36
287-8, 329-30, 336-7	measure, 14
linear abstract Boltzmann equation, 231	absolutely continuous, 36
linear Boltzmann equation, 228, 231, 241, 264	Borel, 14
linear subspace, 83	complete, 27
linear Tjon-Wu equation, 245	density of, 36
linearly dense set, 28	invariant, 45, 169
Liouville equation, 203–4, 260, 329	Lebesgue, 27
Liouville's theorem, 203	Wiener, 298–9
Lorenz equations, 124–5	measure-preserving transformation, 45, 169-70
lower-bound function, 96	measure space, 14
conditions for existence, 111–3, 159	finite, 15
relation to asymptotic stability, 96, 102, 175	normalized, 15
lower semicontinuous function, 111	probabilistic, 15 product of, 24
L^p , space adjoint to, 22 L^p distance, 22	σ -finite, 14
L^p norm, 21	metric, Riemannian, 155
L^p space, 21	mixing
complete, 30	of Anosov diffeomorphism, 71
	of baker transformation, 60
manifold, 151-8	of dyadic transformation, 61
connected, 156	dynamical system, 172
d-dimensional, 152	illustrated, 64
geodesic flow on, 199	Markov operator, 72, 94
Markov operator, 32	necessary and sufficient conditions for via
adjoint operator to, 44	Frobenius-Perron operator, 65, 66, 194
asymptotic periodicity, 86-90	necessary and sufficient conditions for via
asymptotic stability, 95	Koopman operator, 68, 194
constrictive, 87–8	relation to ergodicity, exactness, and K-
contractive property of, 34, 175	automorphisms, 62, 73, 76, 173
ergodic, 72, 92	semidynamical system, 172
exact, 72, 93	transformation, 59
fixed point of, 35	modulo zero equality, 34
and Frobenius-Perron operator, 38	moments of solutions, 325-6
and linear abstract Boltzmann equation,	managiningsing - start = 205
231, 232, 236, 238	nonanticipative σ-algebra, 305
lower-bound function for, 96	nonsingular semidynamical system, 173
mixing, 72, 94	nonsingular transformation, 36

nontrivial lower-bound function, 96	Riemannian metric, 155
norm in L^p , 21	right lower derivative, 111
norm of vector on manifold, 156	rock drilling, 138
normalized measure space, 15	rotation on circle, 56, 69, 171
normalized Wiener process, 294	rotation on torus, 190
one-dimensional Brownian motion, 294	sample path, 222
one-dimensional Wiener process, 294	scalar product, 23
operator	on manifolds, 155
constrictive, 87–8	semidynamical system, 168
contractive, 34, 175	semigroup
Frobenius-Perron, 37	of contracting operators, 177-8
infinitesimal, 180	of contractions, 178
Koopman, 42–4	of Frobenius-Perron operator, 173-4
Markov, 32	of Koopman operator, 177
resolvent, 201	of transformations, 169
oscillators, 136–8, 192	σ -algebra, 13
050Hato15, 150 6, 172	Borel, 14
200	of Borel sets, 14
parabolic equation, 326	independent, 302
parabolic transformation, see quadratic	nonanticipative, 305
transformation	trivial, 74
parabolicity condition, 323	σ -finite measure space, 14
paradox of weak repellor, 11, 126	simple function, 17
partition function, 253	space
phase space, 1, 163, 166	adjoint, 22
Phillip's perturbation theorem, 210	of measurable functions, 21
piecewise convex transformations, 128	space and time averages, 58, 170
piecewise monotonic mappings, 119, 123, 147	spectral decomposition theorem, 88
Poincaré map, 220	sphere bundle, 199
Poincaré recurrence theorem, 59	stability property of Markov operators, 34
Poisson bracket, 187	standard deviation, 272
Poisson processes, 222–6	state space, 1
probabilistic measure space, 15, 220	stationary density, 36
product measure, 24, 227	stationary independent increments, 222
product space, 24, 227	statistical stability, 95
proper cylinder, 195	relation to asymptotic stability, 95
	relation to exactness, 100-1
quadratic transformation, 1, 7, 47, 50, 142,	statistically stable transformation, construction
255	of, 143
	Stirling's formula, 235
r-adic transformation, 9, 46–7, 70	stochastic convergence, 274
Radon-Nikokym theorem, 20, 23	stochastic differential equations, 293, 313
random number generator, 147	relation to Fokker-Planck equation, 317-8
random variable, 221	stochastic integrals, 305, 311
density of, 221	stochastic kernel, 101, 217, 241
independent, 221, 266	stochastic perturbation
mathematical expectation of, 269	constantly applied, 282
mean value of, 269	randomly applied, 277
standard deviation of, 272	small, 277, 289
variance of, 271	stochastic processes, 221
randomly applied stochastic perturbation,	continuous time, 222
277-82	discrete time, 222
regular Itô sum, 305	with independent increments, 222
Rényi transformation, 119	with stationary independent increments, 222
resolvent operator, 201	stochastic semigroup, 174
Riemann integral, relation to Lebesgue	relation to Fokker-Planck equation, 327
integral, 19	Stratonovich sum, 308

strong convergence, 27	statistically stable, 95, 100-1
Cauchy condition for, 30	weakly mixing, 73
strong law of large numbers, 276	triangle inequality, 22
strong precompactness, 78	trivial set, 53, 171
conditions for, 79	trivial σ -algebra, 74
strong repellor, 128–31	uiviai o -aigeoia, 74
strongly constrictive Markov operator, 87	uniform parabolicity, 323
support, 34	unit volume function, 157
compact, 181	unit volume function, 137
and Frobenius-Perron operator, 39	variance
and Probenius—Ferron operator, 39	of function, 114
tongent energy 152	of random variable, 271
tangent space, 153 tangent vector, 153	of Wiener process, 295
tent map, 142	variation of function, 115
time and space averages, 58, 170	vector
torus, 162	norm of, 156
Anosov diffeomorphism on, 52	scalar product of, 155
d-dimensional, 190	space, 22
exact transformation on, 162	von Neumann series, 233
rotation on, 191	von reumann series, 255
	weak Cesaro convergence, 27
trace of dynamical system, 167	weak continuity, 43
trajectory, 166	weak continuity, 43 weak convergence, 27
versus density, 10 transformation	weak law of large numbers, 275
	weak precompactness, 78
asymptotically periodic, 131 convex, 128	weak repellor, paradox of, 11, 125
ergodic, 53, 171	weakly constrictive Markov operator, 87
exact, 62, 173	weakly mixing transformation, 73
factor of, 75	Wiener measure, 298–9
Frobenius-Perron operator for, 6, 37, 173	Wiener process
Koopman operator for, 42, 177	d-dimensional, 303
measurable, 36	normalized, 294–5
*	one-dimensional, 294
measure-preserving, 45 mixing, 59, 172	variance of, 295
nonsingular, 36	variance of, 275
	Yorke inequality, 118
piecewise monotonic, 119, 123, 147	Torke mequanty, 110