EEL762 Digital Communications, Semester I, 2006-2007 Major Examination - PART A

Name:	Entry No
45 marks, 120 minutes	
Notes	

- 1. Answers to PART A (Q1-Q8) are to be written only in the space provided after each question.
- 2. Answers should be very brief, to the point, and legible.
- 3. Answers without reasoning will not be given any credit.
- 1. (3 marks) A random process is defined by: $X(t) = N(t) + A\cos(2\pi f_0 t + \Theta)$ where Θ is a random variable that is uniformly distributed, f_0 and A are constants, and N(t) is a white process independent of Θ . What is the autocorrelation of X(t)? How will you find A from it? Is there any ambiguity in this estimate?

3. (2 marks) An anitpodal signal which is $\pm 1V$ is transmitted (equiprobable symbols). It is contaminated by additive white Gaussian noise n(t) with PSD $N_0/2$. A very simple receiver is used that simply samples the received wavefrom in the middle of the symbol interval, and makes a decision that the transmitted symbol is 1 if the sample is positive and -1 otherwise. Will such a receiver work? If so, what is its probability of bit error? If not, justify.

- 4. (2 marks) A transmitter transmits one of two wavefroms $s_1(t)$ and $s_2(t)$ in a symbol interval. The signal is contaminated by noise. A receiver computes $K_1 = \int |y(t) s_1(t)|^2 dt$ and $K_2 = \int |y(t) s_2(t)|^2 dt$ and decides that the symbol transmitted is $s_1(t)$ is K_1 is smaller than K_2 , and $s_2(t)$ otherwise. Is such a receiver optimal? If so justify. If not, how does it perform compared to an optimal receiver?
- 5. (2 marks) For an FSK modem we wish to use two frequencies: 177750 and 177850 Hz as the two tones. Is it possible to have symbol rate of 150 bits/second with these tones using a) coherent and h) non-coherent receivers? Justify.
- 6. (2 marks) The P(e) performance of a hinary-FSK system can be decreased when the separation between two tones is increased appropriately beyond 1/2T. Qualify.
- 7. (2 marks) Let $s_i(t) = \sum_{k=1}^N c_{i,k} p(t-kT)$, i = 1, 2 and let $\sum_{k=1}^N c_{1,k} c_{2,k}^{\bullet} = 0$. Under what conditions will $s_1(t)$ and $s_2(t)$ be orthogonal to each other over the interval $0 \le t \le NT$?

8. (2 marks) Consider the two waveforms $s_1(t)$ and $s_2(t)$ as choices for the waveform used in an binary antipodal signalling scheme. The BER performance (assuming an optimal receiver) of b) is superior to that of a). True/False? Justify.

