$1 \quad \text{Normal distribution} (1, \, 2)$

• n = 100, m = 100

	mean(x)	median(x)	$\frac{x_1 + x_n}{2}$
σ_t	0.200	0.251	0.589
σ_p	0.193	0.258	0.594
Δ	0.007	0.007	0.004

• n = 10000, m = 100

	mean(x)	median(x)	$\frac{x_1 + x_n}{2}$
σ_t	0.020	0.025	0.417
σ_p	0.021	0.026	0.398
Δ	0.001	0.001	0.019

2 Uniform distribution(1, 5)

• n = 100, m = 100

	mean(x)	median(x)	$\frac{x_1 + x_n}{2}$
σ_t	0.115	0.200	0.028
σ_p	0.120	0.214	0.028
Δ	0.005	0.014	0.000

• n = 10000, m = 100

	mean(x)	median(x)	$\frac{x_1 + x_n}{2}$
σ_t	0.012	0.020	0.000
σ_p	0.010	0.018	0.000
Δ	0.001	0.002	0.000

3 Laplace distribution(5, 6)

• n = 100, m = 100

	mean(x)	median(x)	$\frac{x_1 + x_n}{2}$
σ_t	0.849	0.600	5.692
σ_p	0.683	0.503	5.438
Δ	0.166	0.097	0.255

• n = 10000, m = 100

	mean(x)	median(x)	$\frac{x_1 + x_n}{2}$
σ_t	0.085	0.060	5.692
σ_p	0.085	0.062	4.947
Δ	0.001	0.002	0.745

4 Conclusions

• Практические значения близки к теоретическим.

При увеличениии значения n в 100 раз все оценки распределений уменьшаются, однако, оценка полусуммы минимума и максимума вариационного ряда распределения Лапласа не уменьшается, следовательно, для данного распределения эта оценка не является состоятельной.

• С точки зрения квадратичного риска лучшая оценка:

для нормального распределения — выборочное среднее, для равномерного распределения — полусумма минимума и максимума, для распределения Лапласа — выборочная медиана.