EE901 PROBABILITY AND RANDOM PROCESSES

Module 10
RANDOM PROCESSES

Abhishek Gupta

ELECTRICAL ENGINEERING IIT KANPUR

1

Random Processes

- A random variable maps each outcome to a number.
- In other words, whenever we do the experiment, we observe a value of random variable (corresponding to the outcome)

• A random process maps each outcome to a waveform instead.

Random Processes

- A random process maps each outcome to a waveform instead.
- Every time we observe this random experiment, we see a waveform (instead of a single value as seen in random variable case)

Example: Measuring noise in a device.

Think of an underlying sample space.

Instead of observing the actual ω , we observe an electrical signal which uniquely depends on the outcome.

3

Random Processes

- Example: Let (Ω, F, P) be the probability space.
- Ω has only two outcomes ω_1 and ω_2 .
- Let $X_1(t)$ and $X_2(t)$ be two functions.
- · Using the map

$$\omega_1 \rightarrow X_1(t), \omega_2 \rightarrow X_2(t)$$

Define

$$X(\omega, t) = \begin{cases} X_1(t) & \text{if } \omega = \omega_1 \\ X_2(t) & \text{if } \omega = \omega_2 \end{cases}$$

 $\begin{array}{c} & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

• $X(\omega, t)$ represents a random process.

Random Processes

• Define a random process $X(\omega, t)$

$$X(\omega, t) = \begin{cases} X_1(t) & \text{if } \omega = \omega_1 \\ X_2(t) & \text{if } \omega = \omega_2 \end{cases}$$

- What is the probability that we see a sin curve?
- What is the probability that X(t) = 0 at $t = \pi/2$?

5

Random Process Interpretations

• Now, if we fix ω , say $\omega = \omega_1$

$$X(\omega,t) = X(\omega_1,t)$$
 = Deterministic Function

Assigning these deterministic functions to each outcome results in a RP.

• If we fix t, say $t = t_0$, then

$$X(\omega,t) = X(\omega,t_0) = \text{Random Variable}$$

- Collection of $(X(\omega,t))$ i.e. random variables for a set of multiple time values (either discrete or continuous) results in a random process.
- If we fix both $\omega = \omega_1$ and $t = t_0$, then

$$X(\omega,t) = X(\omega_1,t_0) = \text{Deterministic Number}$$

Continuous and Discrete Time RP

- For each outcome ω , the associated function $X(\omega,t)$ is called a sample path, realization, or trajectory.
- Let T =the range of t
- If T is uncountable \rightarrow Continuous time random process
- If T is countable \rightarrow Discrete time random process

7

Example: Signal with Random Phase

- Let a random process $X(\omega,t) = A\cos(2\pi f t + \Phi(\omega))$
- where $\Phi(\omega)$ is a RV with \sim Unif[0, 2π]
- If we change ω , $\Phi(\omega)$ will change,
- For each ω , we will get cos trajectory with different initial phase.

Example: Bernoulli Process

A Bernoulli process is a finite or infinite sequence of independent random variables $X_1, X_2, X_3 \cdots$ such that

For each i, the value of X_i is either 0 or 1 For all values of i, the probability that $X_i = 1$ is p.

Here,
$$T = \{1, 2, 3, \dots, n\}$$
.
 $X(\omega, t) = \{X(\omega, 1), X(\omega, 2), X(\omega, 3), \dots, X(\omega, n)\}$

where each of $X(\omega, k)$ is a Bernoulli RV with probability p.

All X_i 's independent and identically distributed.

9

Examples: Brownian motion

- Motion of a solid molecule in a liquid.
- Let $X(\omega, t)$ denotes the location of a molecule at time t.

Brownian Process

A Brownian Process W(t) is such that

$$W(0) = 0$$

It has Independent increments

i.e., let
$$t_1 \leq t_2 \leq t_3$$
 then,

$$W(t_2) - W(t_1)$$
 is independent of $W(t_3) - W(t_2)$

Let (s,t) be a time interval then,

 $\label{eq:Wt} W(t)-W(s) \mbox{ is a Gaussian with Mean 0 and Variance} \\ \sigma^2(t-s).$

It has continuous sample paths

11

Counting Process

- Each waveform consists of a random set of increment points
- At every increment point, the process value increases by a fixed amount.

