











#### 24/7 Connected Services





are sent to the

technician.



Field technician checks the equipment and gives feedback on whether the action recommendations were accurate.

Equipment with 24/7 Connected Services send data about their operation and condition to the cloud.



# Challenge Introduction: A short journey into technician's life





Technician is Dispatched

Everything is working Fine!















# How can we improve the work of the technician with Machine Learning?





Where do you fit in this picture?









Predict if action

recommendation is necessary before dispatch!

> Cancel notification if unnecessary

> > That was unnecessary visit







Store feedback when visit was necessary or not

Let's use ML here to predict if the action recommendation will be necessary!

> echnician is Dispatched









This Elevator was indeed broken!







# Where do you fit in this picture?



Or can you rethink this entire process to reach our goal?



KONE Profile 2016 | Confidential | © KONE Corporation



# **Judging Criteria**

- This challenge awards a winner in two distinct categories:
  - Best Performing and Most Explainable Model
    - This category is judged based on your model's performance and how explainable the predictions are. Please elaborate on the latter part in your submission.
  - Out of the Box Thinking
    - You can win in this category by rethinking the whole service process or by creating a novel ML solution to the service action filtering problem.
- Judging in both categories as well as awarding the 1<sup>st</sup> prize is subjective and not based on any predefined formula





#### **Dataset Introduction**



train.csv

#### Train ML model

Historical action recommendation data with technician feedback (ground truth)



test.csv

#### Generate prediction

Historical action recommendation data without technician feedback from other groups equipment



submission\_example.csv

Submit prediction

## train.csv

115475 entries (rows) + a header row 13 columns: 12 features + 1 ground truth

#### **Equipment features**



| features           | definition                                                                                                                                                                              |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| equipment_id       | Unique equipment identifier                                                                                                                                                             |  |
| equipment_area     | Equipment that is geographically close to each other, belongs to the same equipment_area                                                                                                |  |
| equipment_category | Equipment category groups equipment with similar technical features together                                                                                                            |  |
| usage_type         | Equipment belonging to the same usage_type share a similar usage pattern.                                                                                                               |  |
| speed_category     | An ordinal variable, equipment belonging to the same speed_category have similar rated speed and equipment in speed_category 2 move faster than those in speed_category 1 etc           |  |
| load_category      | An ordinal variable, equipment belonging to the same load_category can carry similar rated load and equipment in load_category 2 carry more load than those in load_category 1 etc.     |  |
| floors_category    | An ordinal variable, equipment belonging to the same floor_category have similar number of floors and equipment in floor_category 2 have more floors than those in floor_category 1 etc |  |

### train.csv

## 115475 entries (rows) + a header row 13 columns: 12 features + 1 ground truth

#### Maintenance events



| features                        | definition                                                                                                            |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| CACA IA                         | Unique identifier of technician visiting the equipment. One case car contain multiple service action recommendations. |  |
| completion_date                 | Date when technician visited equipment                                                                                |  |
| action recommendation in        | Unique identifier of which service action recommendation was sent to the technician                                   |  |
| action recommendation type      | Type of service action recommendation. Different types of action recommendations are handled with separate processes. |  |
| Laction recommendation catedony | Category of service action recommendation based on what kind of monitoring hardware is installed on the equipment     |  |

## train.csv

115475 entries (rows) + a header row 13 columns: 12 features + 1 ground truth

#### Technician feedback

| column   | definition                                                                                     |  |
|----------|------------------------------------------------------------------------------------------------|--|
| feedback | Technician feedback whether service action recommendation was accurate (1) or unnecessary (0). |  |



### test.csv

# 29428 entries (rows)+ a header row 12 columns: 12 features

| features                       |  |  |
|--------------------------------|--|--|
| equipment_id                   |  |  |
| equipment_area                 |  |  |
| equipment_category             |  |  |
| speed_category                 |  |  |
| load_category                  |  |  |
| usage_type                     |  |  |
| floors_category                |  |  |
| case_id                        |  |  |
| completion_date                |  |  |
| action_recommendation_id       |  |  |
| action_recommendation_type     |  |  |
| action_recommendation_category |  |  |

#### Distinct equipment\_id



# submission\_example.csv

#### Submission criteria:

- Submission should have exactly 29428 entries + a header row (example has only 10 entries)
- The file should have exactly 3 columns:

```
case id
action_recommendation_id
feedback (contains your binary predictions: 1 for accurate, 0 for unnecessary)
```



⚠ N.B: Do not change the datatype of the columns or the column names. Invalid submission csv may lead to disqualification.

| case_id                            | action_recommendation_id | feedback |
|------------------------------------|--------------------------|----------|
| 9d54504e-c805-4859-b92e-a8df79732  | ar00000250               | 1        |
| 554e89db-0d65-44f1-a3cb-d79662cd1  | ar00000188               | 1        |
| 6cb91017-5e91-446b-9064-409758334  | ar00000005               | 1        |
| 496f3fe9-36a6-4b44-a686-5383584c4  | ar00000124               | 1        |
| f8189755-b79e-4114-8a2b-84e08a226  | ar00000250               | 1        |
| 7b7672dd-6e41-49dc-b70e-7e32e5d70  | ar0000060                | 0        |
| f6ce9a79-f7b8-461d-83a7-2a30e841d  | ar00000174               | 1        |
| 6bf48aee-a676-4e9d-9ffe-2213c75fe7 | ar0000018                | 1        |
| 2b424690-94a9-4b24-b2e7-b772a9f4c  | ar00000273               | 1        |
| e58245ba-a372-4916-b20f-4ee93c0c1  | ar00000174               | 1        |
| 328a282a-349e-4db3-a380-41e12679   | ar00000188               | 1        |
| 328a282a-349e-4db3-a380-41e12679   | ar00000250               | 1        |
| 5d4e7e78-ce86-4bb9-b99d-c18327818  | ar00000105               | 1        |
| 70f8070b-d1ed-491b-95fb-fbcb3ff223 | ar00000293               | 1        |

# F2 to evaluate "Best Performing Model"

$$F_2 = (1 + 2^2) \cdot \frac{\text{precision} \cdot \text{recall}}{(2^2 \cdot \text{precision}) + \text{recall}}$$

Cost of missing relevant action recommendation > cost of unnecessary service visits

Overview of streamlit app used by judges to evaluate model performance from submission csv





#### sky(scraper)-is-the-limit challenge

#### Result announcement

| leam name                                          |              |
|----------------------------------------------------|--------------|
| Upload submission                                  |              |
| Drag and drop file here Limit 200MB per file • CSV | Browse files |
| Process                                            |              |



# Come to our booth to get access to the dataset and ask questions

