

## UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

## Centro Tecnológico Departamento de Engenharia Elétrica

## Princípios de Comunicações I (COD: ELE8541)

Prof. Responsável: Jair Silva (jair.silva@ufes.br)

A modulação em amplitude e em quadratura **QAM** (*Quadrature Amplitude Modulation*) analógica ilustrada no diagrama de blocos da Figura abaixo representa uma alternativa atraente para a geração de sinais **SSB-SC** cujo funcionamento baseia-se na transmissão de dois sinais com portadoras de mesma frequência, mas em quadratura de fase (**multiplexação em quadratura**). Pede-se para:

- a. Provar matematicamente que consegue-se recuperar os sinais de mensagem  $m_1(t)$  e  $m_2(t)$  nas duas saídas do receptor síncrono da Figura;
- b. Mostrar a existência indesejável da interferência cocanal  $I_1(t) = m_1(t)\cos\theta m_2(t)\sin\theta$  na saída do primeiro demodulador da Figura 4 quando um erro de fase  $\theta$  afeta a portadora de recepção tal que  $p_R(t) = 2\cos(2\pi f_c t + \theta)$ ;
- c. Rodar o script sobre multiplexação OFDM postado no clossroom.

d.

