

Introduction aux réseaux de Pétri

CHIRAZ TRABELSI

trabelsi@esiea.fr

Et

ALEXANDRE BRIERE

briere@esiea.fr

Limites des machines d'états

- Problème de synchronisation et de parallélisme entre les modules d'un système
 - Exemple: Si on a un système avec deux machines à états et on veut que: l'état S2 soit parallèle à l'état S1, il faut gérer le parallélisme dans les deux machines à états ou bien faire une seule machine avec plusieurs états → explosion de combinatoire

• Solution: Utilisation d'un autre formalisme mathématique qui permet de gérer la synchronisation et le parallélisme entre différents modules du système → les réseaux de Petri

Limites des machines d'états

- Problème de synchronisation et de parallélisme entre les modules d'un système
 - Avantage des réseaux de Petri
 - Exemple: Un système de contrôle qui gère le fonctionnement de la machine, celui du stock et celui du chariot de transfert est plus facile à implémenter avec un réseau de Pétri qu'avec une ou plusieurs machines à états

Introduction aux réseaux de Pétri

• Le réseau de Petri est un autre modèle mathématique qui permet la modélisation des systèmes à

évènements discrets

- Les réseaux de Petri sont apparus en 1962, dans la thèse de doctorat de Carl Adam Petri.
 - Un réseau est un ensemble de
 - places
 - transitions
 - fonctions de sortie
 - fonctions d'entrée

Introduction aux réseaux de Pétri

- Utilisations
 - Informatique
 - Industrie
 - Biologie
 - Etc.

Informatique

Industrie

Biologie

- 2 types de nœuds
 - Les places

- Les transitions
- 2 types d'arcs orientés

• D'une transition vers une place

Un arc ne lie jamais deux places ou deux transitions

- Places: P1, P2,P7
- Transitions: T1, T2,T6
- P3 est une place de sortie de T2
- P3 est une place d'entrée de T3

Particularités

Le marquage

• A chaque instant t donné, chaque place P_i contient un nombre m_i de **jetons** ou **marques**.

- Le marquage d'un réseau de pétri est représenté par un vecteur M contenant des composantes m_n.
 - m_n marquage d'une place P_n

M=[1,1,0,0]

$$M=[2,0,1,1]$$

P1

P3

T1

P2

P4

Les RdPs marqués

- T est franchissable si chacune de ses places d'entrée contient au moins 1 jeton
- Quand T est franchissable, elle peut être franchie à un instant quelconque (on ne sait pas exactement à quel instant).
- Le franchissement est considéré sans durée.

Les RdPs marqués

- Le marquage M varie à chaque fois qu'une T est franchie.
- Quand une transition est franchie, on retire une marque à chacune de ses places d'entrée et on ajoute une marque à chacune des ses places de sortie.

Attention: il n'est pas obligatoire d'avoir la même somme de jetons avant et après le franchissement d'une transition.

Exemples

• Donner l'évolution des réseaux de Petri suivants une fois les transitions franchissables sont franchies

- Lorsque plusieurs T sont franchissables à un même instant t, une seule T est franchie à la fois
 - pas de simultanéité
 - choix arbitraire

T1 et T2 sont toutes les deux franchissables

Franchir T1 puis T2

Franchir T2 puis T1

Particularités

• Une T source est toujours validée

• Une T puit ne marque aucune place

• Le transfert:

- Une transition avec une place d'entrée et une place de sortie
- Utilisation: Indique une séquence

Exemple

esiea

Les éléments structurels

- La divergence en OU
 - Utilisation: **sélection** de séquences alternatives

- Si m1=1 \rightarrow une seule transition sera franchie \rightarrow ou exclusif
- Si m> 1 → on peut franchir les deux transitions plusieurs fois dans un ordre arbitraire, comme on peut franchir une seule transition plusieurs fois et ne jamais franchir l'autre

esiea ECOLE D'INGENIEURS DIL MONDE NUMERIQUE

Les éléments structurels

• La divergence en OU

Exemple avec m1>1 → 4 possibilités

T1 et T2 sont franchissables

T1 et T2 sont franchissables

Les éléments structurels

• La divergence en OU

Exemple avec un seul jeton: Partage de ressources (exclusion mutuelle)

- Exemple d'application: partage d'une imprimante entre deux processus
 - Le jeton dans cet exemple représente une ressource partagée telle qu'une imprimante
 - Les places P1 et P3 représentent deux processus en attente du jeton (imprimante) pour être exécutés (deux processus ne peuvent pas utiliser une imprimante en même temps)

esiea

Les éléments structurels

- La convergence en OU
 - Utilisation: Convergence de séquences alternatives

- Si m1>=1 et m2=0 \rightarrow T1 est franchie
- Si m1=0 et m2>=1 \rightarrow T2 est franchie
- Si m1>=1 et m2>=1 \rightarrow le choix de l'ordre de franchissement est arbitraire

• La convergence en OU

Exemple

Les éléments structurels

- La divergence en ET
 - Utilisation: Activation de **processus parallèles**

- Si m1=0 \rightarrow la transition n'est pas franchissable
- Si m1>= 1 \rightarrow la transition est franchie

Etat2 et Etat3 doivent être actifs en même temps

- → Ce n'est pas possible pour une machine à états
- → Pas d'équivalent en automate fini

Les éléments structurels

• La divergence en ET

esiea Ecole d'Ingenieurs PLANDE NUMERIORIE

Les éléments structurels

- La convergence en ET
 - Utilisation: **Synchronisation** de processus parallèles (permet de s'assurer que deux processus sont bien terminés)

- Si m1>=1 et m2>=1 \rightarrow la transition est franchie
- Si m1=0 ou m2=0 \rightarrow la transition n'est pas franchissable

Etat1 et Etat2 doivent être actifs en même temps

→ Pas d'équivalent en automate fini

Les éléments structurels

• La convergence en ET

Exemple

Attente de la fin du deuxième processus (avoir un jeton dans P20)

→ C'est la synchronisation

Fin du deuxième processus La transition T16 est franchissable L'exécution se poursuit à partir de P21

Eléments structurels (résumé)

Elément Structurel	Utilisation	Réseau de Pétri	Automate fini
Transfert	Séquence	P1 $P2$	Etat2
Divergence en OU	Sélection	P1 T2 P3	Etat1 Etat2 Etat3
Convergence en OU	Convergence après sélection	P1 P2 T1 T2	Etat1 Etat2
Divergence en ET	Activation de processus parallèles	P1 T1 P2 P3	Pas d'équivalent
Convergence en ET	Synchronisation de processus parallèles	P1 P2 T1 P3 Stèmes – 2A-S2	Pas d'équivalent

1) Donner le réseau de Petri qui modélise le comportement suivant:

« Action 1 » suivie d' « Action 2 »

1) Donner le réseau de Petri qui modélise le comportement suivant:

« Action 1 » suivie d' « Action 2 »

• Eléments utilisés: Le Transfert

2) Donner le réseau de Petri qui modélise le comportement suivant:

Si (a>b) alors Action1 Sinon Action2

• Indication: les conditions peuvent s'écrire sur les transitions

2) Donner le réseau de Petri qui modélise le comportement suivant:

Si (a>b) alors Action1 Sinon Action2

Eléments utilisés

- La divergence en OU
- La convergence en OU

Attention: ici on n'a pas utilisé un réseau de Petri autonome (de base) où les transitions franchissables sont franchies d'une manière arbitraire

On a utilisé un **réseau de Petri non autonome** dont le franchissement des transitions est conditionné par des évènements externes qui dépendent des variables a et b

3) Donner le réseau de Petri qui modélise le comportement suivant: Tant que (a>b) Action1

3) Donner le réseau de Petri qui modélise le comportement suivant: Tant que (a>b) Action1

Eléments utilisés

- La divergence en OU
- Le transfert

4) Donner le réseau de Petri qui modélise le comportement suivant: Pour i de 0 à n-1 faire Action1

4) Donner le réseau de Petri qui modélise le comportement suivant: Pour i de 0 à n-1 faire Action1

Eléments utilisés

- La divergence en OU
- Le transfert

- Concevez un réseau de Petri qui doit automatiser un distributeur de café à 15cts. Les pièces acceptées sont de 5 cts (E5) et 10 cts (E10). Les autres pièces sont retournées. La sortie s passera à 1 pour lancer la distribution du café, dès que l'utilisateur aura inséré une somme >= à 15 cts.
- Le système de rendu de monnaie n'est pas à gérer.
- Vous pouvez vous inspirer de l'implémentation en machine d'états

La solution en machine d'états

- Concevez un réseau de Petri qui doit automatiser un distributeur de café à 15cts. Les pièces acceptées sont de 5 cts (E5) et 10 cts (E10). Les autres pièces sont retournées. La sortie s passera à 1 pour lancer la distribution du café, dès que l'utilisateur aura inséré une somme >= à 15 cts.
- Le système de rendu de monnaie n'est pas à gérer.

Par rapport à la solution en machine d'états, ici on a ajouté une place supplémentaire pour servir le café

La solution en machine d'états

- Une machine d'états peut être modélisé par un réseau de Petri
- Le réseau de Petri est plus général qu'une machine à états

- Concevez un réseau de Petri qui doit automatiser un distributeur de café à 15cts. Les pièces acceptées sont de 5 cts (E5) et 10 cts (E10). Les autres pièces sont retournées. La sortie s passera à 1 pour lancer la distribution du café, dès que l'utilisateur aura inséré une somme >= à 15 cts.
- Le système de rendu de monnaie n'est pas à gérer.
- On suppose qu'on dispose d'une variable s qui permet de stocker la valeur de la somme des pièces entrées

Solution2 (variable pour la somme d'argent)

- Concevez un réseau de Petri qui doit automatiser un distributeur de café à 15cts. Les pièces acceptées sont de 5 cts (E=5) et 10 cts (E=10). Les autres pièces sont retournées. La sortie s passera à 1 pour lancer la distribution du café, dès que l'utilisateur aura inséré une somme >= à 15 cts.
- Le système de rendu de monnaie n'est pas à gérer.
- On suppose qu'on dispose d'**une variable s** qui permet de stocker la valeur de la somme des pièces entrées

Attention: Ici on suppose qu'on a une variable s qui donne la somme d'argent reçue.

Cette solution n'est donc valable que si on a cette variable.