Simplifying BRDF Acquisition

Dual Degree Project Presentation

What is BRDF?

Glossy/Specular Matte/Diffuse

Definition

The ratio of the outgoing radiance from a point on the material to the incoming irradiance for a given *incoming and outgoing angle pair* and specific to a certain *wavelength*

Why measure BRDF?

BRDF data

Laborious!

[5,6,7,8]

Objective 1/2

Problem Description

BRDF acquisition is expensive, requiring multiple hours (even days) for material capture. We need more efficient ways for BRDF capture.

This could be done using:

- a) Better data (smartly chosen angles)
- b) Better ways to represent data

For (a), we suggest using in-plane angles

For (b), existing BRDF representations suffice

Existing BRDF representations

Fan et al. "Neural layered BRDFs"

Input: Directions, Material-specific parameters

Output: BRDF

Contributions

- We demonstrate that, for varied isotropic materials, a small subset of *in-plane* angles is able to represent the entire BRDF range sufficiently.
- We also check the fit qualities of *existing* representations by progressively reducing the fitting BRDF data from 900 angle pairs to as little as six angle pairs.

Scope

Show that fitting in-plane angles is comparable to fitting baseline data

Test BRDF representations with reduced datasets

Data Description (MERL)

Publicly available dataset for 100 isotropic materials

BRDF datapoints in millions (tristimulus domain, baseline). Process takes roughly 3 hours per material

Granularity (polar and azimuthal angles):

• 10° intervals for incoming polar angle

• 1° intervals for outgoing polar angle

• 1° intervals for outgoing azimuthal angle

Data Description (MERL)

Picked materials with diverse optical properties: diffuse, light-specular, heavy-specular

Here, we have fixed incoming angle to -20° and varied the outgoing angle, querying the BRDF for each pair

Workflow

Parametric Representation

ABC model based on Microfacet theory

Parameter estimation: 9 total (k_d^{RGB}, A^{RGB}, B, C, *eta*) estimated using least squares optimization on BRDF data with a weighted L2 loss function.

ABC BRDF Model

$$f_r(\mathbf{l}, \mathbf{v}) = \frac{k_d}{\pi} + \frac{F(\theta_h)G(\mathbf{n} \cdot \mathbf{l}, \mathbf{n} \cdot \mathbf{v})S(\sqrt{1 - (\mathbf{n} \cdot \mathbf{h})})}{(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$$

(Geometric attenuation)

$$G = \min \left\{ 1, \frac{2 (\mathbf{n} \cdot \mathbf{h}) (\mathbf{n} \cdot \mathbf{v})}{(\mathbf{v} \cdot \mathbf{h})}, \frac{2 (\mathbf{n} \cdot \mathbf{h}) (\mathbf{n} \cdot \mathbf{l})}{(\mathbf{v} \cdot \mathbf{h})} \right\}$$

$$L_{\text{cus}}^{2} = \frac{1}{N} \sum_{n=1}^{N} (g_{\text{mea}} - g_{\text{pred}})^{2} \sin \theta_{r} \quad \left\{ 1 + \frac{\left[c \left(g + c \right) - 1 \right]^{2}}{\left[c \left(g - c \right) + 1 \right]^{2}} \right\}$$

$$g_{\text{mea}} = \ln(1 + \cos \theta_{i} f_{\text{mea}}) \quad \text{n: surface normal } \frac{\mathbf{c: v.h}}{\mathbf{g: } \eta^{2} + \mathbf{c^{2}-1}}$$

$$g_{\text{pred}} = \ln(1 + \cos \theta_{i} f_{\text{pred}}) \quad \text{n: outgoing angle } \frac{\mathbf{g: } \eta^{2} + \mathbf{c^{2}-1}}{\eta: \text{ index of refraction}}$$

In-plane vs Baseline (ABC Model)

Renderings (MERL)

Renderings (MERL)

BRDF plots

Tungsten carbide

Relative-rmse plots

Tungsten carbide

Relative-rmse =
$$\sqrt{\frac{1}{N} \sum_{n=1}^{N} (\frac{f_{\text{pred}} - f_{\text{mea}}}{f_{\text{mea}}})^2}$$

For a particular incoming directions, values are aggregated over all the outgoing directions and the three channels

Neural Layered BRDF

Inputs

- Incoming direction
- Outgoing direction
- Material-specific latent vector

Back-propagation

- For learning a new material
- Freeze ANN weights
- Optimize V_f using BRDF data

In-plane vs Baseline (NLB Model)

BRDF plots

Tungsten carbide

Relative-rmse plots

For a particular incoming directions, values are aggregated over all the outgoing directions and the three channels

Ablations

Progressively reduce dataset (DS1-DS4) from 900 angle pairs to 6 angle pairs

ABC parameters obtained through least squares optimization. NLB latent vector obtained using backprop shown earlier.

Dataset	θ_i interval	θ_r interval: Diffuse	θ_r interval: Glossy
DS1	5°	5°	1°
DS2	15°	10°	2°
DS3	30°	20°	3°

Dataset	Incoming angle (θ_i°)	Outgoing angle (θ_r°)	
DS4	30°	$-60^{\circ}, -20^{\circ}, 20^{\circ}, 28^{\circ}, 36^{\circ}, 60^{\circ}$	

Renderings (ABC Model)

BRDF and relative-rmse plots (ABC Model)

Renderings (NLB Model)

BRDF and relative-rmse plots (NLB Model)

ds4

0.7

Relative RMSE

0.2

Objective 2/2

Problem Description

Existing representations for BRDFs lie in the tristimulus domain. Premature wavelength compression of spectral data is required to fit any material which leads to loss of information.

Contribution:

We propose an MLP architecture that learns underlying BRDF trends using a subset training data and provides suitable estimates for unseen angles and wavelengths.

Spectral to RGB

Spectral BRDF matching

Input (normalized): Incoming angle, outgoing angle, wavelength

Output: BRDF value

Network: 3 layer MLP, 10 nodes each layer

Data Description (Packaging print)

BRDF measured for 31 wavelengths (390–730 nm at 10 nm intervals, in-plane)

Granularity (incident and viewing angles):

- 5° intervals for diffuse region
- 1° intervals for specular region.

Samples: Gold, Cyan, Magenta, Gonio

Spectral ANN results Cyan Sample

True value = 0.23 Model output = [0.207, 0.253]

Spectral ANN results Gold Sample

Spectral ANN results Gonio Sample

Summarizing

- For isotropic materials that were considered, we demonstrate the sufficiency of in-plane angles for material capture.
- Both physics-based and network-based models were used to show comparable results between the chosen in-plane angles and 256x larger baseline.
- The effect of data reduction on material capture was studied

Future work

- Extending this to materials with increasingly complex optical properties (anisotropy, spatial variance).
- A more exhaustive study could be conducted involving more representations.
- Think of adaptive strategies to pick "good" data instead of fixing a set of angles.

Acknowledgements

- My advisor: Prof. Sharat Chandran
- Collaborator: Prof. Aditya Sole, ColourLab, NTNU
- Prof. Parag Chaudhuri
- Pratik, Anant, and Akshat

Thank You!

References

- [1] https://www.sciencedirect.com/topics/engineering/bidirectional-reflectance-distribution-function
- [2] https://en.wikipedia.org/wiki/Bidirectional reflectance distribution function
- [3] https://snr.unl.edu/agmet/brdf/brdf-definition.asp
- [4] https://tips.clip-studio.com/en-us/articles/4405
- [5] https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4587766&tag=1
- [6] https://www.semanticscholar.org/paper/Image-Based-BRDF-Measurement-Including-Human-Skin-Marschner-Westin/c05c4b5238b8344d44de424811a4b2d8f6f99f48
- [7] https://x.com/keenanisalive/status/1526158057151111169
- [8] https://blog.yiningkarlli.com/2013/04/working-towards-importance-sampled-direct-lighting.html
- [9] https://www.projector1.com/color-gamut-rec-2020-vs-dci-p3-vs-adobe-rgb-vs-ntsc/
- [10] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5624368/
- [11] https://www.researchgate.net/figure/At-left-the-CIE-illuminant-D65-average-daylight-The-colors-show-the-spectral-bins-for_fig2_320108906
- [12] https://www.mcrl.co.jp/english/products/p_color_sp/detail/GCMS3B.html