Cálculo Avanzado - 1er cuatrimestre 2013 Soluciones del segundo parcial

1) Primera resolución: Veamos que si $C \subseteq Z$ es cerrado, entonces $g^{-1}(C) \subseteq Y$ es cerrado.

Como $g \circ f$ es continua, entonces $(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C))$ es un subconjunto cerrado de X (que es compacto), y por lo tanto es compacto.

Como f es sobreyectiva, $f(f^{-1}(g^{-1}(C))) = g^{-1}(C)$ y por ser f continua además es compacto. Entonces es cerrado, como queríamos ver.

Segunda resolución: Sea $(y_n)_{n\in\mathbb{N}}\subseteq Y$ una sucesión tal que $y_n\to y$. Queremos ver que $g(y_n)\to g(y)$.

Ahora, como f es sobreyectiva, existe $(x_n)_{n\in\mathbb{N}}\subseteq X$ tal que $f(x_n)=y_n$ y por ser X compacto, x_n tiene una subsucesión convergente $x_{n_k}\to x$. Entonces, por un lado $f(x_{n_k})=y_{n_k}\to y$, y por el otro (usando la continuidad de f), $f(x_{n_k})\to f(x)$, así que debe ser y=f(x).

Por último, como $g \circ f$ es continua, $g \circ f(x_n) \to g \circ f(x)$, pero por lo anterior esto es lo mismo que $g(y_n) \to g(y)$, como queríamos.

2) a) Sea v un vector de E que no está en H, de modo que $E = H \oplus \langle v \rangle$. Como H es separable, existe $D \subset H$ denso y numerable. Sea \widetilde{D} el conjunto de los vectores de E que se pueden escribir en la forma x + qv, con $x \in D$ y $q \in \mathbb{Q}$. Es claro que \widetilde{D} es numerable, pues está en biyección con $D \times \mathbb{Q}$. Veamos que \widetilde{D} es denso. Sea $\varepsilon > 0$ y sea $w \in E$, queremos encontrar un elemento de \widetilde{D} que esté a distancia menor que ε de w.

Como $E = H \oplus \langle v \rangle$, existen $h \in H$ y $\lambda \in \mathbb{R}$ tales que $w = h + \lambda v$. Como D es denso en H, existe $x \in D$ tal que $||h - x|| < \frac{\varepsilon}{2}$; y como \mathbb{Q} es denso en \mathbb{R} , existe $q \in \mathbb{Q}$ tal que $|\lambda - q| < \frac{\varepsilon}{2||v||}$. Si ahora definimos $\widetilde{w} = x + qv$, resulta que $\widetilde{w} \in \widetilde{D}$, y por designaldad triangular

$$\|w-\widetilde{w}\| \leq \|h-x\| + \|\lambda v - qv\| = \|h-x\| + |\lambda - q| \cdot \|v\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Entonces $\widetilde{D} \subset E$ es denso y numerable, y por lo tanto, E es separable.

- b) Vimos en el ejercicio 7 de la práctica 9 que c_0 es un hiperplano de c, y en el ejercicio 2 de la práctica 8 que c_0 es separable. Entonces c es un espacio normado que contiene un hiperplano separable. Por lo probado en a), se deduce que c es separable.
- 3) Sabemos que T es continuo si y sólo si es acotado en la esfera unitaria, es decir si sup $||Tx|| < \infty$. Supongamos que esto no ocurre. Entonces, para cada $n \in \mathbb{N}$ existe $y_n \in E$ con $||y_n|| = 1$ tal que $||Ty_n|| > n$.

Sea $x_n = \frac{y_n}{\sqrt{n}}$. Entonces $||x_n|| = \left\|\frac{y_n}{\sqrt{n}}\right\| = \frac{||y_n||}{\sqrt{n}} = \frac{1}{\sqrt{n}} \to 0$, de modo que la sucesión (x_n) converge a 0. Sin embargo,

$$||Tx_n|| = ||T\left(\frac{y_n}{\sqrt{n}}\right)|| = ||\frac{Ty_n}{\sqrt{n}}|| = \frac{||Ty_n||}{\sqrt{n}} > \frac{n}{\sqrt{n}} = \sqrt{n},$$

de modo que la sucesión (Tx_n) no es acotada, contradiciendo las hipótesis del enunciado.

Por lo tanto, T es continuo.

4) Por un lado, por la desigualdad de Cauchy-Schwarz y la definición de la norma de un operador tenemos que

$$|\langle y, Tx \rangle| \le ||y|| ||Tx|| \le ||y|| ||T|| ||x||,$$

de donde

$$\sup_{\|x\|=\|y\|=1} |\langle y, Tx \rangle| \le \|T\|.$$

Por otro lado, afirmamos que para cualquier x tal que ||x|| = 1 se tiene sup $|\langle y, Tx \rangle| \ge ||Tx||$. Esto es claro si Tx = 0, pues en tal caso es $\langle y, Tx \rangle = 0$ ||y||=1

para todo y. Si $Tx \neq 0$, podemos considerar $y = \frac{Tx}{\|Tx\|}$, de donde

$$\sup_{\|y\|=1} |\langle y, Tx \rangle| \ge \left| \left\langle \frac{Tx}{\|Tx\|}, Tx \right\rangle \right| = \|Tx\|.$$

Ahora tomando supremo sobre todos los x de norma 1 deducimos

$$\sup_{\|x\|=\|y\|=1} |\langle y, Tx \rangle| \ge \sup_{\|x\|=1} \|Tx\| = \|T\|.$$

Entonces vale la igualdad.

5) Sea $x \in X$ arbitrario, y llamemos $x_n = T^n(x)$. Reemplazando y = T(x) en la condición del enunciado obtenemos que $\sum_{n=1}^{\infty} d(x_n, x_{n+1}) < \infty$. Veamos que esto implica que la sucesión (x_n) es de Cauchy. Como la serie $\sum_{n=1}^{\infty} d(x_n, x_{n+1})$ es convergente, dado $\varepsilon > 0$ existe un $n_0 \in \mathbb{N}$ tal que $\sum_{n=n_0}^{\infty} d(x_n, x_{n+1}) < \varepsilon$. Ahora, si $m > m' \geq n_0$, entonces por desigualdad triangular tenemos que

$$d(x_{m'}, x_m) \le d(x_{m'}, x_{m'+1}) + d(x_{m'+1}, x_{m'+2}) + \dots + d(x_{m-1}, x_m) \le \sum_{n=n_0}^{\infty} d(x_n, x_{n+1}) < \varepsilon.$$

Entonces (x_n) es una sucesión de Cauchy, y como el espacio X es completo, converge a un cierto punto $x^* \in X$. Veamos que x^* es un punto fijo de T: en efecto, basta notar que como T es una función continua,

$$T(x^*) = T\left(\lim_{n \to \infty} x_n\right) = \lim_{n \to \infty} T(x_n) = \lim_{n \to \infty} x_{n+1} = x^*.$$

Falta probar la unicidad. Si x e y son dos puntos fijos distintos de T, entonces para todo $n \in \mathbb{N}$ es $d(T^n(x), T^n(y)) = d(x, y) > 0$, y por lo tanto la serie $\sum_{n=1}^{\infty} d(T^n(x), T^n(y))$ no converge, contradiciendo la hipótesis del enunciado. Entonces el punto fijo es único.