Probabilidad y Análisis de Datos

Daniel Fraiman

Maestría en Ciencia de Datos, Universidad de San Andrés

1/22

PROBABILIDAD CONDICIONAL

Ejemplo

Tiro dos dados.

 $A = \{ \text{La suma es } <4 \},$

 $B = \{\text{El primer dado es un 1}\}.$

¿Cuál es la probabilidad de que el primer dado sea un 1 (B) sabiendo que la suma dio <4 (A)? \equiv ¿ $\mathbb{P}(B|A)$?

3/33

Probabilidad Condicional

¿Para el cálculo $\mathbb{P}(B|A)$ qué es lo que importa?

Probabilidad Condicional

Dado un espacio de probabilidad $(\Omega, \mathcal{F}, \mathbb{P})$, $A \in \mathcal{F}$, con $\mathbb{P}(A) > 0$, definimos para todo $B \in \mathcal{F}$

$$\mathbb{P}\left(B|A
ight) = rac{\mathbb{P}\left(B\cap A
ight)}{\mathbb{P}\left(A
ight)}.$$

5/33

Probabilidad Condicional: $\mathbb{P}(B|A) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)}$

Ejemplo: Tiro dos dados.

 $A = \{\text{La suma es } <4\}, B = \{\text{El primer dado es un 1}\}, \ \mathcal{E}^{\mathbb{P}}(B|A)$?

$$\bullet \ \mathbb{P}(A) \stackrel{equip}{=} \frac{\#A}{\#\Omega} = \frac{3}{36}$$

•
$$\mathbb{P}(B \cap A) \stackrel{equip}{=} \frac{\#A \cap B}{\#\Omega} = \frac{2}{36}$$

•
$$\mathbb{P}(B|A) \stackrel{def}{=} \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)} = \frac{2/36}{3/36} = 2/3$$

Probabilidad Condicional

La probabilidad condicional efectivamente es una probabilidad:

- 1. $\mathbb{P}(B|A) \geq 0$ para todo $B \in \mathcal{F}$.
- 2. $\mathbb{P}(\Omega|A) = 1$.
- 3. $\mathbb{P}\left(\bigcup_{i=1}^{\infty} B_i | A\right) = \sum_{i=1}^{\infty} \mathbb{P}\left(B_i / A\right)$ cuando los $B_i \cap B_j = \emptyset \ \forall i \neq j$.

Y por lo tanto también valen:

- (a) $\mathbb{P}(\emptyset|A) = 0$
- (b) $0 \leq \mathbb{P}(B|A) \leq 1$.
- (c) Si $B_1 \subseteq B_2 \to \mathbb{P}(B_1|A) \leq \mathbb{P}(B_2|A)$.
- (d) $\mathbb{P}\left(B^C|A\right) = 1 \mathbb{P}\left(B|A\right)$.
- (e) $\mathbb{P}(B_1 \cup B_2 | A) = \mathbb{P}(B_1 | A) + \mathbb{P}(B_2 | A) \mathbb{P}(B_1 \cap B_2 | A)$.

7/33

Probabilidad Condicional

Ejemplo

La probabilidad de que mañana llueve y llegue tarde es 1/100. El servicio meteorológico anuncia que la probabilidad de que mañana llueva es 1/50.

¿Cuál es la probabilidad de que llegue mañana tarde si llueve?

 $A=\{\text{ma\~na llueve}\}, B=\{\text{ma\~na llego tarde}\}, \mathbb{P}\left(A\cap B\right)=1/100$ y $\mathbb{P}\left(A\right)=1/50.$ $\mathbb{P}\left(B|A\right)$?

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)} = \frac{1/100}{1/50} = 1/2.$$

Probabilidad Condicional

A partir de la definición de probabilidad condicional salen tres reglas:

- 1. Regla de multiplicación (útil para $\mathbb{P}(A \cap B)$).
- 2. Regla de probabilidad total (útil para $\mathbb{P}(B)$).
- 3. Regla de Bayes (útil para $\mathbb{P}(A|B)$ inversa).

9/33

Probabilidad Condicional

Regla de multiplicación

$$\mathbb{P}(A \cap B) = \mathbb{P}(B|A)\,\mathbb{P}(A)$$

Ejemplo

El 60 % de los alumnos termina a tiempo la guía 1. El 80 % de los alumnos que no se atrasan con la primera guía realizan la guía 2 a tiempo. Mientras que el 70 % de los que no hicieron la guía 1 a tiempo, llegan a hacer la guía 2 a tiempo.

¿Qué porcentaje de los alumnos hace las guías 1 y 2 a tiempo? ¿Cuál es la probabilidad de que al elegir un alumno al azar este haya realizado las guías 1 y 2 a tiempo?

Regla de multiplicación: $\mathbb{P}(A \cap B) = \mathbb{P}(B|A)\mathbb{P}(A)$

Ejemplo

El 60 % de los alumnos termina a tiempo la guía 1. El 80 % de los alumnos que no se atrasan con la primera guía realizan la guía 2 a tiempo. Mientras que el 70 % de los que no hicieron la guía 1 a tiempo, llegan a hacer la guía 2 a tiempo.

¿Cuál es la probabilidad de que al elegir un alumno al azar este haya realizado las guías 1 y 2 a tiempo?

A ="Realiza la guía 1 a tiempo", B ="Realiza la guía 2 a tiempo" Pregunta: $\mathcal{P}(A \cap B)$?

Datos:

- $\mathbb{P}(A) = 0.6 \longleftrightarrow \mathbb{P}(A^C) = 0.4$
- $\mathbb{P}(B|A) = 0.8 \longleftrightarrow \mathbb{P}(B^C|A) = 0.2$
- $\mathbb{P}\left(B|A^C\right) = 0.7 \longleftrightarrow \mathbb{P}\left(B^C|A^C\right) = 0.3$

11/33

Regla de multiplicación: $\mathbb{P}(A \cap B) = \mathbb{P}(B|A) \mathbb{P}(A)$

A ="Realiza la guía 1 a tiempo", B ="Realiza la guía 2 a tiempo" Pregunta: $\mathcal{F}(A \cap B)$?

- Datos:
 - $\mathbb{P}(A) = 0.6 \longleftrightarrow \mathbb{P}(A^C) = 0.4$
 - $\mathbb{P}(B|A) = 0.8 \longleftrightarrow \mathbb{P}(B^C|A) = 0.2$
 - $\mathbb{P}(B|A^C) = 0.7 \longleftrightarrow \mathbb{P}(B^C|A^C) = 0.3$
- Respuesta: $\mathbb{P}(A \cap B) = \mathbb{P}(B|A)\mathbb{P}(A) = 0.8 \times 0.6 = 0.48$

13/33

15/33

17/33

19/33

Regla de probabilidad total

Dado un evento B y A_1,A_2,\ldots,A_n una partición disjunta de Ω ($\bigcup_{i=1}^n A_i = \Omega$ con $A_i \cap A_j = \emptyset$ para $i \neq j$) con $\mathbb{P}(A_i) > 0$ para $i = \{1, 2, \ldots, n\}$

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B|A_i) \, \mathbb{P}(A_i)$$

21/33

Regla de probabilidad total

Ejemplo

A ="Realiza la guía 1 a tiempo", B ="Realiza la guía 2 a tiempo" Pregunta: $\mathcal{F}(B)$?

- Datos:
 - $\mathbb{P}(A) = 0.6 \longleftrightarrow \mathbb{P}(A^C) = 0.4$
 - $\mathbb{P}(B|A) = 0.8 \longleftrightarrow \mathbb{P}(B^C|A) = 0.2$
 - $\mathbb{P}(B|A^C) = 0.7 \longleftrightarrow \mathbb{P}(B^C|A^C) = 0.3$
- Respuesta:

$$\mathbb{P}(B) = \mathbb{P}(B|A) \mathbb{P}(A) + \mathbb{P}(B|A^C) \mathbb{P}(A^C) = 0.8 \times 0.6 + 0.7 \times 0.4 = 0.76$$

Regla de probabilidad total

Ejemplo

A ="Realiza la guía 1 a tiempo", B ="Realiza la guía 2 a tiempo" $\mathcal{LP}(B)$?

$$\mathbb{P}(B) = \mathbb{P}(B|A) \,\mathbb{P}(A) + \mathbb{P}(B|A^C) \,\mathbb{P}(A^C) = 0.8 \times 0.6 + 0.7 \times 0.4 = 0.76$$

23/33

Probabilidad Condicional

Regla de Bayes (para problemas inversos)

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)} \quad (\text{ojo! } \mathbb{P}(A) > 0 \text{ y } \mathbb{P}(B) > 0)$$

• No se puede condicionar a un evento que no puede ocurrir $(\mathbb{P}(B) = 0)$

Demostración.

$$\mathbb{P}\left(A|B\right) \stackrel{def.}{=} \frac{\mathbb{P}\left(B \cap A\right)}{\mathbb{P}\left(B\right)} \stackrel{R.multipl.}{=} \frac{\mathbb{P}\left(B|A\right)\mathbb{P}\left(A\right)}{\mathbb{P}\left(B\right)}$$

Regla de Bayes

Regla de Bayes

Dado un evento B con $\mathbb{P}(B) > 0$, y A_1, A_2, \ldots, A_n una partición disjunta de Ω ($\bigcup_{i=1}^n A_i = \Omega$ con $A_i \cap A_j = \emptyset$ para $i \neq j$) con $\mathbb{P}(A_i) > 0$ para $i = \{1, 2, \ldots, n\}$

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(B|A_i) \mathbb{P}(A_i)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B|A_i) \mathbb{P}(A_i)}{\sum_{k=1}^{n} \mathbb{P}(B|A_k) \mathbb{P}(A_k)}$$

25/33

Regla de Bayes: $\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$

A ="Realiza la guía 1 a tiempo", B ="Realiza la guía 2 a tiempo" Pregunta: $\mathcal{P}(A|B)$?

- Datos:
 - $\mathbb{P}(A) = 0.6 \longleftrightarrow \mathbb{P}(A^C) = 0.4$
 - $\mathbb{P}(B|A) = 0.8 \longleftrightarrow \mathbb{P}(B^C|A) = 0.2$
 - $\mathbb{P}(B|A^C) = 0.7 \longleftrightarrow \mathbb{P}(B^C|A^C) = 0.3$
- Respuesta: $\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)} = \frac{0.8 \times 0.6}{0.8 \times 0.6 + 0.7 \times 0.4} = \frac{0.48}{0.76} \approx 0.63$

INDEPENDENCIA ENTRE EVENTOS

Independencia entre eventos

La independencia o no de los eventos (y las variables) es un tema bien relevante. Nos ayuda a clasificar un email como SPAM, a clasificar en forma automática a partir de una foto objetos, generar modelos para explicar ciertas variables, etc.

Independencia

Dos eventos A y B son independientes cuando uno no aporta información sobre el otro.

Independencia

Si $\mathbb{P}(B|A) = \mathbb{P}(B)$ entonces saber que ocurrió A no aporta información sobre las chances de que ocurra B.

29/33

Independencia entre eventos

Definición independencia

- Dos eventos A y B que pueden ocurrir son independientes si $\mathbb{P}(B|A) = \mathbb{P}(B)$.
- Dos eventos A y B que pueden ocurrir son dependientes si $\mathbb{P}(B|A) \neq \mathbb{P}(B)$.

Definición independencia equivalente

- Dos eventos A y B son independientes si $\mathbb{P}(B \cap A) = \mathbb{P}(B) \mathbb{P}(A)$.
- Dos eventos A y B son dependientes si $\mathbb{P}(B \cap A) \neq \mathbb{P}(B) \mathbb{P}(A)$.
- ¿Por qué esta definición es equivalente a la anterior?

Independencia entre eventos

Preguntas:

- Si A y B son disjuntos con $\mathbb{P}(A) > 0$ y $\mathbb{P}(B) > 0$, ¿son independientes o dependientes?
- Si $A \subseteq B$ y $B \neq \Omega$, ison independientes o dependientes?
- Si A y B son independientes, $A y B^C$ son independientes?
- Si A y B son independientes, $\lambda A^C y B^C$ son independientes?

31/33

Independencia entre eventos

Propiedades (las anteriores)

- Si A y B son disjuntos con $\mathbb{P}(A) > 0$ y $\mathbb{P}(B) > 0 \to A$ y B son dependientes.
- Si $A \subseteq B$ y $B \neq \Omega \rightarrow A$ y B son dependientes.
- Si A y B son independientes \leftrightarrow A y B^C son independientes.
- Si A y B son independientes $\leftrightarrow A^C y B^C$ son independientes.

Independencia entre eventos

Ejemplo

Exp: Tiro 2 dados secuencialmente.

$$A = \{ \text{ El primer dado es un 4} \}, \qquad B = \{ \text{ La suma es 6} \}.$$

 λA y B son independientes?

Ejemplo

Exp: Tiro 2 dados secuencialmente.

$$A = \{ \text{ El primer dado es un 4} \}, \qquad C = \{ \text{ La suma es 7 } \}.$$

¿A y C son independientes?

• Explique por qué *B* brinda información sobre *A* y *C* no la brinda.