- 1. What's a subnet? How does a network get IP address for itself (network part of address)?
- 2. What is Border Gateway Protocol (**BGP**)? What are the guidelines for its selection of routes?
- 3. Assume that the routing table of Router B in the network has the following items (these three columns are represented as "destination network", "distance", and the next router, respectively):

N_1	7	Α
N_2	2	C
N_6	8	F
N_8	4	E
No	4	F

Now B receives the routing information from C (these two columns are represented as "destination network" and "distance", respectively):

N_2	4
N_3	8
N_6	4
N_8	3
N_9	5

Please find the updated routing table of Router B according to the **Distance vector** algorithm:

$$D_{y}(y) = \min_{y} \{c_{yy} + D_{y}(y)\}$$

(Please show the detailed description of each step).

4. DIJKSTRA'S LINK-STATE ROUTING ALGORITHM:

Consider the graph on the left and the use of Dijkstra's algorithm to compute a least cost path from $\bf D$ to all destinations. Suppose that nodes $\bf C$ and $\bf E$ have already been added to $\bf N'$ (Figure 2).

What is the next node to be added to N'? (F, B or G?) What is the shortest distance from D to A? (Please use the Dijestra algorithm according to the problem-solving steps taught by the

*****Auxiliary information ******

Distance vector algorithm

Based on Bellman-Ford (BF) equation (dynamic programming):

Network Layer: 5-18

Dijkstra's link-state routing algorithm

```
1 Initialization:
2 N' = \{u\}
                                /* compute least cost path from u to all other nodes */
3 for all nodes v
     if v adjacent to u
                                /* u initially knows direct-path-cost only to direct neighbors */
5
       then D(v) = c_{u,v}
                               /* but may not be minimum cost!
6
     else D(v) = \infty
8 Loop
9 find w not in N' such that D(w) is a minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N':
        D(v) = \min \left( D(v), D(w) + c_{w,v} \right)
13 /* new least-path-cost to v is either old least-cost-path to v or known
14 least-cost-path to w plus direct-cost from w to v */
15 until all nodes in N'
```

Network Layer: 5-12