Measurements of CKM angle γ in LHCb

Martin Tat, on behalf of the LHCb collaboration

University of Oxford

Beauty 2023, Clermont-Ferrand

3rd-7th July 2023

Introduction to γ and CP violation

- ullet CPV in SM is described by the Unitary Triangle, with angles lpha, eta, γ
- The angle $\gamma = \arg\Bigl(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\Bigr)$ is very important:
 - Negligible theoretical uncertainties: Ideal SM benchmark
 - Accessible at tree level: Indirectly probe New Physics that enter loops
 - Ompare with a global CKM fit: Is the Unitary Triangle a triangle?

(a) Tree level: $\gamma = (72.1^{+5.4}_{-5.7})^{\circ}$

(b) Loop level: $\gamma = \left(65.5^{+1.1}_{-2.7}\right)^{\circ}$

CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005)

Sensitivity through interference

Measure γ through interference effects in $B^{\pm} \to DK^{\pm}$

- ullet Superposition of D^0 and $ar{D^0}$
 - ullet Consider $D^0/ar{D^0}$ decays to the same final state, such as $D o K^+K^-$
- $b o u \bar{c}s$ and $b o c \bar{u}s$ interference o Sensitivity to γ $\mathcal{A}(B^-) = \mathcal{A}_B \left(\mathcal{A}_{D^0} + r_B e^{i(\delta_B \gamma)} \mathcal{A}_{\bar{D^0}} \right)$ $\mathcal{A}(B^+) = \mathcal{A}_B \left(\mathcal{A}_{\bar{D^0}} + r_B e^{i(\delta_B + \gamma)} \mathcal{A}_{D^0} \right)$

Multi-body D decays

This talk: Focus on multi-body *D* decays, where interference effects vary across phase space

- ullet Hadronic parameters r_D and δ_D are functions of phase space
- Compare yields of B^+ and B^- and determine the asymmetry in local phase space regions

Multi-body D decays

- Measurements of the amplitude-averaged δ_D , c_i and s_i , have been measured directly at CLEO-c and BESIII
 - CLEO: Phys. Rev. **D82** (2010) 112006
 - BESIII: Phys. Rev. **D101** (2020) 112002
- ullet The value of γ obtained will be model independent
- Single most precise measurement: $\gamma = \left(68.7^{+5.2}_{-5.1}\right)^{\circ}$
 - JHEP **02** (2021) 0169

Neutral B decays

This method may be generalised to neutral B decays:

$$B^0 o (K_S^0 h^+ h^-)_D (K^+ \pi^-)_{K^*}$$

Neutral B decays

- Non-zero bin asymmetries are observed:
 - Large asymmetries are seen
 - Some bins have opposite asymmetries
- Measured *CP*-violating observables:
 - $x_{\pm} \equiv r_{B^0} \cos(\delta_{B^0} \pm \gamma)$
 - $y_{\pm} \equiv r_{B^0} \sin(\delta_{B^0} \pm \gamma)$

Neutral B decays

- \bullet Measured value of γ is consistent with world average and will be an important contribution to the combination
 - $gamma = (49 \pm 20)^{\circ}$
 - $r_{B^0} = 0.27 \pm 0.07$
 - $\delta_{B^0} = (236 \pm 19)^\circ$

Phase-space binned analysis of $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D K^{\pm}$

We can also consider more complicated multi-body decays: $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D K^{\pm}$

- Phase space is 5-dimensional...
- ...use an amplitude model to determine an efficient binning scheme!

Phase-space binned analysis of $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D K^{\pm}$

arXiv:2301.10328

- Clear bin asymmetries are seen, and the non-trivial distribution is driven by the change in strong phases across phase space
- ullet While the interpretation of γ require charm inputs, the observed bin asymmetries are model independent

Phase-space integrated analysis of $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_DK^{\pm}$

Additionally, one can measure the phase-space integrated asymmetries and measure additional *CP*-violating observables

arXiv:2301.10328

Phase-space integrated analysis of $B^{\pm} \rightarrow [K^{+}K^{-}\pi^{+}\pi^{-}]_{D}K^{\pm}$

This measurement is performed on both $B^\pm \to [K^+K^-\pi^+\pi^-]_D K^\pm$ and $B^\pm \to [\pi^+\pi^-\pi^+\pi^-]_D K^\pm$

CP-violating observable	Fit results
$A_K^{KK\pi\pi}$	$0.095 \pm 0.023 \pm 0.002$
${\cal A}_\pi^{KK\pi\pi}$	$-0.009 \ \pm 0.006 \ \pm 0.001$
$A_{K}^{\pi\pi\pi\pi}$	$0.061\ \pm0.013\ \pm0.002$
$A_\pi^{\pi\pi\pi}$	$-0.0082 \pm 0.0031 \pm 0.0007$
$R_{C\!P}^{KK\pi\pi}$	$0.974 \ \pm 0.024 \ \pm 0.015$
$R_{CP}^{\pi\pi\pi\pi}$	$0.978 \pm 0.014 \pm 0.010$

Interpretation of γ

Combine phase-space binned and integrated results to obtain γ :

$$\gamma = (116^{+12}_{-14})^{\circ}$$

These results are model dependent, and will be updated once BESIII strong-phase inputs are available

Summary and conclusion

Work in progress!

Summary and conclusion

Thanks for your attention!