### Learning and Training in Quantum Environments

Mohsen Heidari CS Department, Indiana University



Quantum Computing System Lecture Series Dec. 2022



## **Evolution of Quantum Computing**

**Early suggestions of QC:** 1980s Manin '80, Feynman '82, Benioff '82 1990s Models of QC and first Q algorithms: Deutsch and Jozsa Shor's factoring algorithm Grover's search algorithm, Simon, Bernstein and Vazirani quantum perceptron by Lewenstein Early 2-qubit QC 1997 Shor's algorithm on a 7-qubit QC for factoring 15 2001 Beyond 100 qubits [IBM] 2021 ~2024 Beyond 1000 qubits [IBM] Fault tolerant QCs ????



IBM: Osprey 433-qubit (2022)



**AMAZON** 

**RAYTHEON BBN** 



**QUNASYS** 





**IQM QUANTUM COMPUTERS** 

**NORTHROP GRUMMAN** 



TRAPPED ION

## Quantum Computer



Quantum gates  $\equiv$  logical gates in classical computers

- Input: qubits
- Output: classical



Quantum algorithm generates a probability of possible outcomes

## Why Quantum Computing?

#### Speed ups classical problems:

- Integer factoring → NP
  - Best known classical algorithm  $2^{O(d^{1/3})}$
  - Shor's algorithm  $O(d^3) \rightarrow BQP$  complexity class.
  - → breaking RSA encryption
- Simon's problem:  $\Omega(2^{n/2}) \rightarrow \Omega(n)$  query complexity
- Bernstein-Vazirani, Deutsch-Jozsa, ...
- Polynomial speedups in several problems:



Grover's search algorithm:  $O(\sqrt{N})$ 

Classical search: O(N)



- Best known classical (field sieve)
- Shor's algorithm

Source: IBM

## Why Quantum Computing?

#### Leveraging quantum data

- Directly operating on quantum states of physical systems
  - Optical systems, sensors with quantum effects, ...
  - Not accessible to classical computers.
- Simulating quantum physical processes
  - Exponentially hard for classical computers as  $dim = 2^q$
- Wide range of applications:
  - Simulations in chemistry
    - Drug discovery, material design (batteries, solar panels), ...
    - Faster and cheaper prototyping than physically making and testing
  - Quantum many-body systems
  - Phonic circuits
  - Social sciences



Better catalyst for fertilizer production (2% of global CO<sub>2</sub> emission)

Source: Microsoft Research

#### Problems that could be solved by



## Why Quantum Computing?

#### **Enhancing learning models**

- Exploring larger classes of probability distributions because of entanglement.
- Quantum machine learning.



Source: Google Research

## Challenges

- **Qubit decoherence:** interactions with the environment.
- Coherence time needs to be much longer than gate operations time.
- Infidelity: quantum operations are erroneous (NISQ era).
- **Scalability**: number of qubits (entangled) in the device.
- **Speed:** number of operations per second

#### Need Both Quality and Quantity



Source: Google Research

## Approaches

- Hardware:
  - Higher fidelity quantum operations
  - Longer coherence time
- Quantum Error Correcting Codes
  - Fault tolerant QCs
- Algorithms on NISQ devices
  - Handling the challenges with the algorithms
  - Infidelities as extra sources of noise/randomness
  - One-shot approach for dealing with no-cloning and state collapse

#### **Outline:**

Part 1: Introduction

Part 2: Learning with quantum computers

Part 3: Band-limited QNNs

### Postulate 1: Quantum State

#### Classical bit

- belongs to  $\{0,1\}$ , either 0 or 1.
- Can make several copies

#### Qubit

- Lives in Hilbert Space ( $\mathbb{C}^2$ )
- In superposition of  $|0\rangle$  and  $|1\rangle$ :

$$|\phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

- Each qubit doubles the dimension:
  - d qubits live in  $\mathbb{C}^D$ , where  $D = 2^d$
- Impossible to clone a qubit







### Quantum State

- Quantum state contains everything we can possibly know about a quantum system.
- More general than qubits → Hilbert Space
- For this talk, we simply assume states are qubits  $\rightarrow$   $\mathbb{C}^D$
- A qubit is represented by a complex vector  $(\alpha, \beta) \in \mathbb{C}^2$ 
  - Unite norm:  $|\alpha|^2 + |\beta|^2 = 1$
- Dirac's Notation:

$$|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix} \qquad |1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$$

• Superposition state:  $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ 



**Bloch Sphere** 

## Postulate 2: Evolution of Quantum Systems

- An isolated (closed) quantum systems evolves only through a unitary transformation.
- State at time  $t_1$ :  $|\psi(t_1)\rangle$
- State at time  $t_2$ :  $|\psi(t_2)\rangle$

$$|\psi(t_2)\rangle = U(t_1, t_2)|\psi(t_1)\rangle$$

- Unitary transformations:  $U^t U = U U^t = I$ Hadamard matrix:  $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
- Unitary → reversible

### Reversible Gates

- Quantum gates must be reversible. → reversible logic!
- The input and output dimension should match!

| $\mathbf{a}_1$ | $\mathbf{a}_2$ | $a_1$ AND $a_2$ |
|----------------|----------------|-----------------|
| 0              | 0              | 0               |
| 0              | 1              | 0               |
| 1              | 0              | 0               |
| 1              | 1              | 1               |
|                |                |                 |





| input  | output | input |
|--------|--------|-------|
| х у    | x y+x  | ху    |
| 0  0   | 0}  0} | 0 0   |
| 0  1   | 0  1   | 0 1   |
| 1   0  | 1>  1> | 1 0   |
| 1>  1> | 1   0  | 1 1   |

### Postulate 3: Quantum Measurements

- Quantum measurements gives us classical information about quantum systems
  - Example: position of an electron, polarization of a photon.
- Typically appear at the end of a quantum computer to output a classical answer.
- Quantum measurements change the state itself.

$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$$
qubit
quantum state

quantum state
has collapsed

 $|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$ 
qubit
quantum state
has collapsed

Measurement output is probabilistic!

### Postulate 3: Quantum Measurements

- Reading qubits destroys them:
  - Good for security and privacy
  - Bad for computation and learning





Quantum algorithm generates a probability of possible outcomes

### Consequences

- State collapse has important consequences:
  - Measurements change the state
- Uncertainty Principle:
  - Some observables cannot be measured simultaneously!
  - Example: position and momentum of an electron!
- In quantum ML, we can measure either training loss or the gradient!
  - Even the gradient's components may not be simultaneously measurable.

$$\nabla L\left(\vec{\theta}\right) = \left(\frac{\partial L}{\partial \theta_1}, \frac{\partial L}{\partial \theta_2}, \dots, \frac{\partial L}{\partial \theta_m}\right)$$

#### **Outline:**

Part 1: Introduction

Part 2: Learning with quantum computers

Part 3: Band-limited QNNs

#### **Machine Learning**

#### Classical Machine Learning - CML



# Quantum Machine Learning - QML Quantum data 1



#### **Processing methods**



#### **Applications**



## Types of Learning



#### Problems that could be solved by



### Quantum ML

- × No-cloning of training samples.
- × Measuring destroys the samples.
- × Uncertainty Principle:
  - Gradient and training loss cannot be measured simultanec
- ❖ Stochasticity: the training loss is random.
- ✓ Entanglement: more powerful patterns
- ✓ Exponential state space: richer models!
  - ✓ 300 qubit → dim =  $2^{300}$
- ✓ Quantum Data not accessible to classical.

#### Problems that could be solved by



## Optimization and Training

#### • Applications:

- Dynamical simulations,
- Finding ground states (condensed matter, ...),
- Photonic circuits, ...
- Machine learning (classification, generative models, ...),
- Combinatorial optimization.
- Iterative optimization
- Quantum-classical hybrid approach
- Prior works:
  - QAOA (Farhi, Goldstone, and Gutmann '14),
  - Gradient approximation (Farhi and Neven '18 Rebentrost et al., '18),
  - Other variational algorithms (Peruzzo et al '14, McClean et al '16), ...



$$\vec{a}^* = \operatorname{argmin}_{\vec{a} \in \mathcal{D}} L(\vec{a})$$

### QNNs

#### Classical Neural Networks





**Activation function** 



- QNNs are network of small quantum circuits as activation functions, as in CNNs.
- Input: qubits, output: classical
- Measurements at the output layer → making the decision
- Quantum perceptron (Lewenstein 1994, Tothet al. 1996).
- Applications in classical/quantum machine learning:
- (Schuld et al. 2014, 2020) (Mitarai et al. 2018) (Farhi and Neven 2018) (Torrontegui and Garcia-Ripoll 2018) (Beer et al. 2020), ...

### Problem Formulation

- Parametrized circuit as a unitary operator  $U(\vec{a})$ .
- Fixed measurement at the end:  $\mathcal{M} = \{M_{\hat{y}} : \hat{y} \in \mathcal{Y}\}$
- Quantum states with classical attributes
  - Training samples:  $\{(\rho_i, y_i)\}_{i=1}^n$  generated randomly
    - $\rho_i$ : state of d qubits  $\rightarrow$  dim =  $2^d$
    - *y<sub>i</sub>*: the true outcome
- Expected Loss:



Example: misclassification probability



$$\vec{a}^* = \arg\min_{\vec{a} \in \mathcal{D}} L(\vec{a})$$

output

### Gradient-Based Methods

- Iterative method to find the local minimum  $f: \mathbb{R}^n \to \mathbb{R}$
- If f is convex local min = global min
- Studied extensively even for non-convex functions.

#### **Gradient Descent:**

- 1. Initial point  $\vec{w}_0$
- 2. Gradient at each step  $\nabla f(\vec{w}_t)$
- 3. Update rule  $\vec{w}_{t+1} = \vec{w}_t \eta_t \nabla f(\vec{w}_t)$
- 4. Go to step 2



### Gradient Descent in Quantum

- Quantum operation  $U(\vec{a})$  with parameters  $\vec{a}=(a_1,a_2,...,a_c)$
- Expected loss at iteration *t*:

$$L(\vec{a}, \rho_t, y_t) = \sum_{\hat{y}} \ell(y_t, \hat{y}) \operatorname{tr} \left\{ M_{\hat{y}} U(\vec{a}) \rho_t U(\vec{a})^{\dagger} \right\}$$

• Update rule if gradient was known:

$$\vec{a}_{t+1} = \vec{a}_t - \eta_t \nabla L(\vec{a}_t, \rho_t, y_t)$$



But  $L(\vec{a}, \rho, y)$  is unknown!

- 1) We cannot "see" the samples (state-collapse)
- 2) The loss is random (stochasticity of quantum measurements)

### Derivative of the loss

Parametrized unitary:

$$U(\vec{a}) = \exp\{i \sum_{S} a_{S} \sigma^{S}\}\$$

• Expected Loss:

$$L(\vec{a}, \rho, y) = \sum_{\hat{v}} \ell(y, \hat{y}) \operatorname{tr} \{ M_{\hat{y}} U(\vec{a}) \rho_{y} U(\vec{a})^{\dagger} \}$$

• Derivative of the loss:

$$\frac{\partial L(\vec{a}, \rho, y)}{\partial a_{s}} = \sum_{\hat{y}} \ell(y, \hat{y}) \operatorname{tr} \left\{ M_{\hat{y}} \frac{\partial \left( U(\vec{a}) \rho U(\vec{a})^{\dagger} \right)}{\partial a_{s}} \right\}$$

$$= \sum_{\hat{y}} \ell(y, \hat{y}) \operatorname{tr} \left\{ M_{\hat{y}} i \left( \sigma^{s} U(\vec{a}) \rho U(\vec{a})^{\dagger} - U(\vec{a}) \rho U(\vec{a})^{\dagger} \sigma^{s} \right) \right\}$$

$$= \sum_{\hat{y}} \ell(y, \hat{y}) \operatorname{tr} \left\{ M_{\hat{y}} \left( \sigma^{s} \rho^{out} - \rho^{out} \sigma^{s} \right) \right\} \longleftarrow \text{Unknown!}$$



- State  $\rho$  is unknown
- Output is random
- Asymmetric

## Gradient-based training

- Approximations with several copies of each sample (Farhi and Neven '18, Rebentrost et al., '18).
- $O(\frac{c \log c}{\epsilon^2})$  copies per-sample needed for approximation error up to  $\epsilon$ .
- $O(\frac{Tc \log c}{\epsilon^2})$  copies for training a device with c parameters in T iterations.
- Fewer copies? What about no-cloning?

#### Our work:

- Can we do the gradient-based training without copying states?
- Yes: designing a circuit to measure the derivative
- (MH, Grama and Szpankowski): Randomized QSGD with O(T) samples without the need for exact copies.

### Idea: one-shot measurement

Step 1: Qubit Embedding:  $\rho^{out} \otimes |+\rangle\langle+|$ 

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

Step 2: Controlled Rotations

$$V_{s} = \exp\left\{\frac{i\pi}{4}\sigma^{s}\right\} \otimes |0\rangle\langle 0| + \exp\left\{-\frac{i\pi}{4}\sigma^{s}\right\} \otimes |1\rangle\langle 1|$$

Step 3: Measurement:

$$\mathcal{N} = \mathcal{M} \otimes \{|0\rangle\langle 0|, |1\rangle\langle 1|\}$$
 Outcome:  $(\tilde{y}, b)$ 

Step 4: Classical processing:

$$z_t = -2(-1)^b \ell(y_t, \tilde{y})$$

$$\frac{\partial L(\vec{a}, \rho, y)}{\partial a_s} = \sum_{\hat{y}} \ell(y, \hat{y}) \operatorname{tr} \{ M_{\hat{y}} (\sigma^s \rho^{out} - \rho^{out} \sigma^s) \}$$

#### Output qubit



Circuit for measuring the derivative of per-sample loss

### Idea

**Lemma:** The derivative measurement is unbiased

$$\mathbb{E}[Z|\rho,y] = \frac{\partial L(\vec{a},\rho,y)}{\partial a_s}$$

#### What about Gradient?

- Randomized approach
- Each time randomly select a component of  $\vec{a} = (a_1, a_2, ..., a_c)$ , say  $a_s$
- Measure the derivative and create a vector  $\vec{Z} = (0,0,...,0,Z_t,0,...0)$

**Theorem:** The gradient measurement satisfies

$$\mathbb{E}\left[\vec{Z}\middle|\rho,y\right] = \frac{1}{c}\nabla L(\vec{a},\rho,y)$$

## Update Rule

One-shot gradient update:

$$\vec{a}_{t+1} = \vec{a}_t - \eta_t \vec{Z}_t$$

- Not an accurate estimate of the gradient at each point.
- But pushing the system statistically in the direction of the gradient over a time interval.
- Potentially handle any other unbiased sources of noise or randomness (NISQ)

**Theorem (Convergence Rate):** Suppose that the loss function is bounded by  $\gamma \in \mathbb{R}$  and is convex. Then, after T iterations of the randomized QSGD with learning rate  $\eta = \frac{1}{2\gamma\sqrt{T}}$ :

$$|\mathbb{E}[L(\vec{a}_{ave}, \rho, y)] - L(\vec{a}^*)| \le \frac{2\gamma c}{\sqrt{T}}$$

where  $\vec{a}_{ave} = \frac{1}{T} \sum_t \vec{a}_t$  and c is the number of parameters.

## Comparison to Gradient Approximation

Comparison for a fixed number of sample/copies, say n.

- *c*: number of parameters.
- The randomized QSGD has excess loss  $O(\frac{c}{\sqrt{n}})$ .
- The gradient approximation algorithm using exact copies has excess loss  $O\left(\frac{\sqrt{c \log c}}{\epsilon \sqrt{n}}\right)$ , where  $\epsilon \ll 1$ .
- $\rightarrow$  Faster convergence with randomized QSGD when  $\frac{\log c}{c} = O(\epsilon^2)$

### Numerical Results

- Binary classification of quantum states
- Dataset: (Mohseni, Steinberg, and Bergou 2004) (Chen et al. 2018) (Patterson et al. 2021) (Li, Song, and Wang 2021)
- Pure vs Mixed State
  - Pure states with label y = 0:

$$\rho_0(u) = |\phi_u\rangle\langle\phi_u|, \qquad u \sim unif([0,1])$$

• Mixed states with label y = 1:

$$\rho_{1}(v) = \frac{1}{2} (|\psi_{+v}\rangle\langle\psi_{+v}| + |\psi_{-v}\rangle\langle\psi_{-v}|), \qquad v \sim unif([0,1])$$



- Each sample is either:
  - $\rho_0(u)$ , with prob  $p = \frac{1}{3}$
  - $\rho_1(v)$ , with prob  $(1-p) = \frac{2}{3}$

### Numerical Results

#### Randomized QSGD with gradient measuring



|     | QSGD    | Known gradient  | Lower-bound |
|-----|---------|-----------------|-------------|
| Acc | 91% ± 1 | $93.48\% \pm 1$ | 93.51% ± 1  |

## Entangled vs Separable



- A random unknown quantum state generated that is either:
  - $\rho_0$ : maximally entangled qubit, generated with probability  $p = \frac{1}{2}$
  - $\rho_1$ : *separable* qubit, generated with probability  $(1-p) = \frac{1}{2}$



$$U_{\ell,j}(\vec{a}_{(\ell,j)}) = \exp\{i(a_0I + a_1X + a_2Y + a_3Z)\}$$

### Numerical Results



Holevo-Helstrom Theoretical Lower Bound



### **Outline:**

Part 1: Introduction

Part 2: Learning with quantum computers

Part 3: Band-limited QNNs

### QNNs

### Challenges:

- Scalability & exponential parameters as  $dim = 2^q$
- Barren Plateau issue: certain random QNNs structures do not lead to learning as gradient vanishes everywhere.

#### This Work:

- New approach: band-limited QNNs
- Controlling the number of parameters with bandwidth limitation.
- Training with randomized QSGD



### The Notion of Bandwidth

- "Bandwidth" in classical learning:
  - Based on the Fourier expansion for functions on the Boolean cube.
  - Studied in computational learning (O'Donnell '14), (Wolf, '08), ...
  - Characterizing the non-linear complexity of Boolean functions.
  - A proxy to derive learning-theoretic bounds.
  - Supervised and unsupervised feature selection [ICMl'21, ISIT'21]
  - Information theory [ISIT'19]

## Boolean Fourier Expansion

Monomials:

#### Standard Fourier on the Boolean Cube:

Any bounded  $g:\{+1,-1\}^d \to \mathbb{R}$  is uniquely written as:

$$g(\mathbf{x}) = \sum_{S \subseteq [d]} \mathbf{g}_{S} \, \mathbf{\chi}_{S}(\mathbf{x})$$

### Fourier Coefficients:

$$g_{\mathcal{S}} = \frac{1}{2^d} \sum_{\mathbf{x}} g(\mathbf{x}) \chi_{\mathcal{S}}(\mathbf{x}) \qquad \chi_{\mathcal{S}} = \prod_{j \in \mathcal{S}} x_j$$

E.g., Logical  $\mathbf{OR}$  on two  $\{\pm 1\}$  bits:

$$OR(x_1, x_2) = \frac{1}{2} + \frac{1}{2}x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_1x_2$$

- Bandwidth for a Boolean function?
- Influence of k-element groups of inputs:

$$W_k = \sum_{S: k-\text{element}} g_S^2$$



# Comparison with the Fourier Transform

How does the concept of bandwidth different from the standard Fourier analysis?

#### **Classical Fourier Transform**





### Fourier Expansion on Boolean Cube



$$f(x^d) = x_1$$

$$g(x^d) = x_1 \oplus x_2 \oplus \cdots \oplus x_d$$

## New Connections to Machine Learning

- Machine learning with *feature selection:* 
  - Selecting a subset of features in the dataset while maintaining the same level of accuracy.
- A Fourier measure of features' redundancy and relevancy to the label.
- → Our work: probabilistic Fourier expansion:

Gram-Schmidt-Type Orthogonalization [ISIT'21]:

- Creating an empirically orthogonal basis.
- A measure of the effective dimension of dataset.

$$\tilde{\psi}_{\mathcal{S}_i} \equiv \chi_{\mathcal{S}_i} - \sum_{j=1}^{i-1} \langle \psi_{\mathcal{S}_j}, \chi_{\mathcal{S}_i} \rangle_D \psi_{\mathcal{S}_j},$$

$$\psi_{\mathcal{S}_i} \equiv \begin{cases} \frac{\tilde{\psi}_{\mathcal{S}_i}}{\|\tilde{\psi}_{\mathcal{S}_i}\|_{2,D}} & \text{if } \|\tilde{\psi}_{\mathcal{S}_i}\|_{2,D} > 0\\ 0 & \text{otherwise.} \end{cases}$$

### **Probabilistic Fourier Expansion**

• Binary input with arbitrary distribution  $X^d \sim D_X$ .



### Numerical Results

### Unsupervised Feature Selection:

|         |      | _   | V X | Australian | Musk | ALL AML |
|---------|------|-----|-----|------------|------|---------|
|         |      |     | 54  | 14         | 166  | 7128    |
| Samples | 9298 | 203 | 581 | 690        | 467  | 72      |

|                            | S1                           | S2                         | <b>S</b> 3 | USPS                         | Covertype                  | Australian                          | Musk                              | ALL AML                             | Lung                                |
|----------------------------|------------------------------|----------------------------|------------|------------------------------|----------------------------|-------------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|
| No FS                      | 77.9                         | 75.0                       | 87.0       | 97.3                         | 75.6                       | 84.9                                | 92.2                              | 94.3                                | 94.6                                |
| UFFS k                     | 11                           | 12                         | 11         | 93                           | 34                         | 12                                  | 35                                | 39                                  | 114                                 |
| UFFS<br>LS<br>MCFS<br>UDFS | 80.3<br>55.1<br>56.6<br>64.0 | <b>76.8</b> 61.2 59.0 60.6 |            | 97.0<br>95.6<br>93.9<br>80.8 | <b>76.9</b> 72.8 72.3 72.0 | <b>85.1</b><br>85.4<br>84.8<br>84.9 | <b>85.7</b><br>84.5<br>84.2<br>80 | <b>97.1</b><br>97.2<br>95.9<br>86.2 | <b>94.6</b><br>93.6<br>94.1<br>92.6 |

Validation acc. on a SVM with radial kernel.

### Supervised Feature Selection:



## Back to The Quantum

#### Classical Fourier Transform

$$f(x) = \int F(\omega)e^{2\pi i x \omega} d\omega$$

$$F(\omega) = \int f(x)e^{-2\pi ix\omega} dx$$

### Fourier Expansion on Boolean Cube

$$g(x^{d}) = \sum_{S \subseteq [d]} g_{S} \psi_{S}(x^{d})$$
$$g_{S} = \mathbb{E}_{D}[g(X^{d})\psi_{S}(X^{d})]$$

$$g_{\mathcal{S}} = \mathbb{E}_{D}[g(X^{d})\psi_{\mathcal{S}}(X^{d})]$$

### **Quantum Fourier Transform**

Shor's algorithm

$$|x\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega_N^{xk} |k\rangle$$



## Pauli Decomposition

### Elementary Pauli operators (with the identity):

$$\sigma^0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Any operator *A* on the Hilbert space of *d* qubits admits the decomposition

$$A = \sum_{\mathbf{s} \in \{0,1,2,3\}^d} \mathbf{a_s} \, \sigma^{s_1} \otimes \sigma^{s_2} \otimes \cdots \otimes \sigma^{s_d}$$

where  $a_s \in \mathbb{C}$  are the Pauli/Fourier coefficients and given by  $a_s = \frac{1}{2d} tr\{A\sigma^s\}$ .



### Back to the Quantum

#### Classical Fourier

$$f(x) = \int F(\omega)e^{2\pi i x \omega} d\omega$$

$$F(\omega) = \int f(x)e^{-2\pi i x \omega} dx$$

### Fourier Expansion on Boolean Cube

$$g(x^{d}) = \sum_{S \subseteq [d]} g_{S} \psi_{S}(x^{d})$$
$$g_{S} = \mathbb{E}_{D}[g(X^{d})\psi_{S}(X^{d})]$$

### **Quantum Fourier Transform**

• Shor's algorithm

$$|x\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega_N^{xk} |k\rangle$$

### Pauli Decomposition

$$A = \sum_{s} a_{s} \sigma^{s}$$

$$a_{s} = \frac{1}{2^{d}} tr \{A\sigma^{s}\}$$

### Band-limited QNN

- Each QP is of the form  $U(a) = \exp\{iA\}$  acting on a small subsystem.
- Coordinate of that subsystem: J
- $\rightarrow$  the Fourier expansion of *A* is zero outside of  $\mathcal{J}$ :

$$A = \sum_{\mathbf{s}: s_j = 0, \forall j \notin \mathcal{J}} a_{\mathbf{s}} \, \sigma^{s_1} \otimes \sigma^{s_2} \otimes \cdots \otimes \sigma^{s_d}$$

- Bandwidth parameter:  $|\mathcal{J}| \leq k$ .
- Number of parameters:  $c_{QNN} = m4^k$ , with m number of QPs.
- Expressive power of band-limited QNNs:

**Theorem (AAAI'22):** With k = 2 and enough QPs any quantum measurement (predictor) can be implemented.

# Entangled vs Separable



 $y_i$ :

- A random unknown quantum state generated that is either:
  - $\rho_0$ : maximally entangled qubit, generated with probability  $p = \frac{1}{2}$
  - $\rho_1$ : *separable* qubit, generated with probability  $(1-p) = \frac{1}{2}$



$$U_{\ell,j}(\vec{a}_{(\ell,j)}) = \exp\{i(a_0I + a_1X + a_2Y + a_3Z)\}$$

### Numerical Results



Holevo-Helstrom Lower Bound

