Artificial Intelligence

AKA. AI

What is Al???

An magic sof mathematics.

Let's say, you have data like this.

X	Y
0	0
1	2
2	4
3	6

Can you approximate this function ???

\boldsymbol{x}	f(x) = 2x	f(x)
0	f(0) = 2(0)	0
1	f(1) = 2(1)	2
2	f(2) = 2(2)	4
3	f(3) = 2(3)	6

But, what if data are look like this ???

In my opinion, no need to care about this picture too much. That's enough to call that AI by its model name.

Types of Al

General Steps for Al

Dog

Aircraft

Earth

Epoch: 1

Epoch: 1

Epoch: n

Epoch: n

How Al can read our picture ???

Example Model

Linear Regression

Decision Tree

Deep Learning

Example Model

K-Means Clustering

Deep Learning

Loose: -10

Score: +10

Q-Learning

$$Q(s_t, a) = Q(s_t, a) + \alpha [R(s_t, a) + \gamma Q_{max}(s_{t+1}, a) - Q(s_t, a)]$$

Where:

s: State

a: Action

 γ : Discounting Rate \rightarrow [0,1]

 α : Learning Rate \rightarrow [0,1]

Markov Decision Process + Bellman Equation

How about Deep Learning ???

MLP (Multilayer perceptron)

(Sometimes we called Neural Network)

Universal Approximation Theorem

But, recently our world has new theorem for deep learning that's called KANs.

Kolmogorov-Arnold Networks

KAN: Kolmogorov-Arnold Networks

Ziming Liu^{1,4*} Yixuan Wang² Sachin Vaidya¹ Fabian Ruehle^{3,4}

James Halverson^{3,4} Marin Soljačić^{1,4} Thomas Y. Hou² Max Tegmark^{1,4}

¹ Massachusetts Institute of Technology

² California Institute of Technology

³ Northeastern University

⁴ The NSF Institute for Artificial Intelligence and Fundamental Interactions

Figure 0.1: Multi-Layer Perceptrons (MLPs) vs. Kolmogorov-Arnold Networks (KANs)

Types of Deep Learning

Mathematics

Basic Al Model

> Linear Regression

Decision Tree

K-Means Clustering

ANN

Deep Learning Tools