commitment

commitment scheme

				_	_ 4		•
┯.	116	`	\sim	$\neg \cap$	·C (ટડ	
	~`	_	\mathbf{v}	10			•

- → commit(x)
 → reveal(x) produces x with a "commitment" "opens" the commitment and reveals x

properties:

- → binding
- + non-mall-cability*
- commit (x) reveals nething of x

can't alter x

given commit (x) cont generate a commitment to a related volve. 1.e. commit (x+1)

* sometimes desired

<u>Pedersen</u> commitment

implementation setup:

- ⇒ choose p,q large primes s.t. p-1 divides q⇒ choose q as a generator of order q subgroup of \mathbb{Z}_p^* $q \in \mathbb{Z}_p^*$ s.t. $|\langle q \rangle| = q$ ⇒ choose at random $a \leftarrow \{1,2,...,q-1\}$ and let $h=q^a$

Note that h also generates (g) commitg, h (x):

for $x \in \mathbb{Z}_q$ ($x \in \{0,1,\dots,q-1\}$), choose at random $r \leftarrow \mathbb{Z}_q$. Output commitment $c = q^x h^r \mod p$

reveal (com): reveals x and c

receiver verifles that c=gxhr mad p

BOD Alice

- check that they

match x is not nec. -essanly Plaintext

NOte

has unconditional hiding since ACE(Q) AXEZQ, AXEZQis computationally binding (meaning an all-powerful adversary could open but not a computationally bounded one)