Aufgabenblatt 12

Wenn Sie sich für das Niveau A der Übungen entschieden haben, brauchen Sie nur die ersten drei der folgenden Aufgaben zu bearbeiten.

Aufgabe 1. (Matrixmultiplikation) Seien $A = \begin{pmatrix} 7 & -4 \\ -5 & 3 \\ 0 & 0 \end{pmatrix}$ und $B = \begin{pmatrix} 3 & 4 & -1 \\ 5 & 7 & 0 \end{pmatrix}$.

- (a) Rechnen Sie nach, dass BA = E und $AB \neq E$ ist.
- (b) Zeigen Sie, dass es keine Matrix C vom Typ 2×3 gibt mit AC = E.

Hinweis zu (b): Versuchen Sie die Spalten von C zu konstruieren, indem Sie passende lineare Gleichungssysteme lösen, bis Sie auf einen Widerspruch stossen. (4 Punkte)

Aufgabe 2. (Inverse einer Matrix) Berechnen Sie die Inversen der Matrizen

$$A = \begin{pmatrix} 2 & 5 \\ 4 & 8 \end{pmatrix}$$
 und $B = \begin{pmatrix} 1 & 0 & -2 \\ 7 & 4 & 3 \\ 6 & 3 & 1 \end{pmatrix}$. Überprüfen Sie Ihr Resultat durch eine Probe!

Lösen Sie nun die folgenden linearen Gleichungssysteme

$$A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \end{pmatrix}$$
 und $B\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$. (5 Punkte)

Aufgabe 3. (Determinanten) Berechnen Sie auf möglichst ökonomische Art die Determinanten der folgenden Matrizen:

(a)
$$\begin{pmatrix} 0 & -\sqrt{6} & 0 \\ \sqrt{2} & 10 & 0 \\ -1 & 5\pi & \sqrt{3} \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 4 & 0 & 3 \\ 2 & 0 & 7 & -1 \\ 3 & 0 & -2 & 1 \\ 0 & 6 & 1 & -4 \end{pmatrix}$ (c) $\begin{pmatrix} 2 & 7 & 0 & 3 \\ 0 & 2 & 0 & 0 \\ 6 & -3 & 4 & 0 \\ 1 & 5 & -1 & 1 \end{pmatrix}$ (5 Punkte)

Aufgabe 4. (Eigenschaften der Determinantenfunktion) Gehen wir davon aus, die Determinante einer 3×3 -Matrix sei (wie im Skript) durch Entwicklung nach der ersten Spalte definiert. Rechnen Sie nun nach, dass für jede 3×3 -Matrix A folgendes gilt:

- (a) Durch Entwicklung nach der zweiten Spalte erhält man dasselbe Resultat.
- (b) Durch Entwicklung nach der ersten Zeile erhält man dasselbe Resultat.
- (c) Vertauscht man die ersten beiden Zeilen von A, dann bleibt der Betrag der Determinante gleich, aber das Vorzeichen ändert sich. (3 Punkte)

Aufgabe 5. (Bandmatrizen) Für $n \in \mathbb{N}$ bezeichne A_n eine $n \times n$ -Matrix, die nur in drei Diagonalen Einträge ungleich Null hat, und zwar folgende:

$$A = \begin{pmatrix} 2 & -1 & & & 0 \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ 0 & & & -1 & 2 \end{pmatrix}$$

Beweisen Sie durch vollständige Induktion: $\det A_n = n + 1$. (3 Punkte)

Und hier noch zwei Verständnisfragen zur Selbstkontrolle:

Frage 1. (Lineare Gleichungssysteme in zwei Variablen) Sei A eine $m \times 2$ -Matrix ohne Nullzeilen. Welche der folgenden Aussagen über ein lineares Gleichungssystem mit Koeffizientenmatrix A sind korrekt?

- (a) Ist m=1, kann man die Lösungsmenge als eine Gerade in der Ebene \mathbb{R}^2 auffassen.
- (b) Ist m=2, dann ist die Lösungsmenge die Schnittmenge von zwei Geraden in der Ebene.
- (c) Ist m=2, dann ist die Lösung eindeutig bestimmt.
- (d) Zwei verschiedene Geraden in der Ebene sind parallel genau dann, wenn der Rang der entsprechenden Koeffizientenmatrix gleich 1 ist.

Frage 2. (Rechenregeln für Matrizen) Welche der folgenden Aussagen sind korrekt?

- (a) $\det(\lambda A) = \lambda \det(A)$ für alle 3×3 -Matrizen A und alle Skalare λ .
- (b) det(A + B) = det(A) + det(B) für alle $n \times n$ -Matrizen A, B.
- (c) $(AB)^{-1} = B^{-1}A^{-1}$ für alle invertierbaren $n \times n$ -Matrizen A, B.

(d) Für die Matrizen
$$A=\begin{pmatrix}1&2\\0&1\end{pmatrix}$$
 und $B=\begin{pmatrix}1&0\\2&1\end{pmatrix}$ gilt $AB=BA$.

Abgabe der Aufgaben: Donnerstag, den 9. Dezember 2021, bis 12.30 Uhr als .pdf via ADAM bei Ihrem Tutor bzw. Ihrer Tutorin.