Robust Risk-Aware Reinforcement Learning

Sebastian Jaimungal Silvana Pesenti Ye Sheng Wang Hariom Tatsat

sebastian.statistics.utoronto.ca

May 30, 2022

Department of Statistical Sciences University of Toronto

Reinforcement Learning

Figure 1: Directed graph representation of the stochastic control problem.

- Total reward $Z^{\theta} = \sum_{t=0}^{T-1} \gamma^t r_t$
- heta parameterise the policy: $a_t = \pi_{ heta}(t,x_t)$ or $a_t \stackrel{\mathbb{P}}{\sim} \pi_{ heta}(t,x_t)$

Standard RL: risk-neutral objective function of a cost

$$\min_{\boldsymbol{\theta}} \, \mathbb{E}\left[\boldsymbol{Z}^{\boldsymbol{\theta}}\right].$$

Risk-aware RL: *risk measure* ρ of the cost Z

$$\min_{\theta} \, \rho(Z^{\theta}) \quad \text{or} \quad \min_{\theta} \, \mathbb{E}\left[Z^{\theta}\right] \, \, \text{subj. to} \, \, \rho(Z^{\theta}) \leq R$$

Reinforcement Learning

Figure 1: Directed graph representation of the stochastic control problem.

- Total reward $Z^{\theta} = \sum_{t=0}^{T-1} \gamma^t r_t$
- heta parameterise the policy: $a_t = \pi_{ heta}(t, x_t)$ or $a_t \stackrel{\mathbb{P}}{\sim} \pi_{ heta}(t, x_t)$

Standard RL: risk-neutral objective function of a cost

$$\min_{\theta}\,\mathbb{E}\left[Z^{\theta}\right].$$

Risk-aware RL: *risk measure* ρ of the cost Z

$$\min_{\theta} \
ho(Z^{\theta})$$
 or $\min_{\theta} \ \mathbb{E}\left[Z^{\theta}
ight]$ subj. to $ho(Z^{\theta}) \leq R$

Reinforcement Learning

Figure 1: Directed graph representation of the stochastic control problem.

- Total reward $Z^{\theta} = \sum_{t=0}^{T-1} \gamma^t r_t$
- θ parameterise the policy: $a_t = \pi_{\theta}(t, x_t)$ or $a_t \stackrel{\mathbb{P}}{\sim} \pi_{\theta}(t, x_t)$

Standard RL: risk-neutral objective function of a cost

$$\min_{\theta} \, \mathbb{E}\left[Z^{\theta}\right].$$

Risk-aware RL: *risk measure* ρ of the cost Z

$$\min_{\theta} \,
ho(Z^{ heta}) \quad ext{or} \quad \min_{\theta} \, \mathbb{E}\left[Z^{ heta}
ight] \, \, ext{subj. to} \, \,
ho(Z^{ heta}) \leq R$$

- Agents often weigh outcomes unequally
- Probabilities of outcomes are often distorted
- Rank dependent expected utility (RDEU) / Yaari's dual Theory

$$\mathcal{R}_{\mathbf{g}}^{\mathbf{U}}[Y] := \int_{-\infty}^{0} \left\{ 1 - \mathbf{g}(\mathbb{P}(\mathbf{U}(Y) > y)) \right\} dy - \int_{0}^{+\infty} \mathbf{g}(\mathbb{P}(\mathbf{U}(Y) > y)) dy$$

- g is an increasing probability distortion
- **U** is a concave utility
- Helps explain the Allais paradox...
 - A: 61% chance to win \$1.2M OR 63% chance to win \$1M
 - B: 98% chance to win \$1.2M OR 100% chance to win \$1M
- U(x) = x, recovers distortion risk-measures
- g(s) = s, recovers expected utility
- g may be inverse-S shaped

- Agents often weigh outcomes unequally
- Probabilities of outcomes are often distorted
- Rank dependent expected utility (RDEU) / Yaari's dual Theory

$$\mathcal{R}_{\mathbf{g}}^{\mathbf{U}}[Y] := \int_{-\infty}^{0} \left\{ 1 - \mathbf{g}(\mathbb{P}(\mathbf{U}(Y) > y)) \right\} dy - \int_{0}^{+\infty} \mathbf{g}(\mathbb{P}(\mathbf{U}(Y) > y)) dy$$

- g is an increasing probability distortion
- **U** is a concave utility
- Helps explain the Allais paradox...
 - A: 61% chance to win \$1.2*M* OR 63% chance to win \$1*M*
 - B: 98% chance to win \$1.2M OR 100% chance to win \$1M
- U(x) = x, recovers distortion risk-measures
- g(s) = s, recovers expected utility
- g may be inverse-S shaped

- Agents often weigh outcomes unequally
- Probabilities of outcomes are often distorted
- Rank dependent expected utility (RDEU) / Yaari's dual Theory

$$\mathcal{R}_{\mathbf{g}}^{\mathbf{U}}[Y] := \int_{-\infty}^{0} \left\{ 1 - \mathbf{g}(\mathbb{P}(\mathbf{U}(Y) > y)) \right\} dy - \int_{0}^{+\infty} \mathbf{g}(\mathbb{P}(\mathbf{U}(Y) > y)) dy$$

- g is an increasing probability distortion
- **U** is a concave utility
- Helps explain the Allais paradox...
 - A: 61% chance to win \$1.2*M* OR 63% chance to win \$1*M*
 - B: 98% chance to win \$1.2M OR 100% chance to win \$1M
- U(x) = x, recovers distortion risk-measures
- g(s) = s, recovers expected utility
- g may be inverse-S shaped

- Agents often weigh outcomes unequally
- Probabilities of outcomes are often distorted
- Rank dependent expected utility (RDEU) / Yaari's dual Theory

$$\mathcal{R}_{\mathbf{g}}^{\mathbf{U}}[Y] := \int_{-\infty}^{0} \left\{ 1 - \mathbf{g}(\mathbb{P}(\mathbf{U}(Y) > y)) \right\} dy - \int_{0}^{+\infty} \mathbf{g}(\mathbb{P}(\mathbf{U}(Y) > y)) dy$$

- g is an increasing probability distortion
- **U** is a concave utility
- Helps explain the Allais paradox...
 - A: 61% chance to win \$1.2*M* OR 63% chance to win \$1*M*
 - B: 98% chance to win \$1.2M OR 100% chance to win \$1M
- U(x) = x, recovers distortion risk-measures
- g(s) = s, recovers expected utility
- g may be inverse-S shaped

- Agents often weigh outcomes unequally
- Probabilities of outcomes are often distorted
- Rank dependent expected utility (RDEU) / Yaari's dual Theory

$$\mathcal{R}_{\mathbf{g}}^{\mathbf{U}}[Y] := \int_{-\infty}^{0} \left\{ 1 - \mathbf{g}(\mathbb{P}(\mathbf{U}(Y) > y)) \right\} dy - \int_{0}^{+\infty} \mathbf{g}(\mathbb{P}(\mathbf{U}(Y) > y)) dy$$

- g is an increasing probability distortion
- **U** is a concave utility
- Helps explain the Allais paradox...
 - A: 61% chance to win \$1.2*M* OR 63% chance to win \$1*M*
 - B: 98% chance to win \$1.2M OR 100% chance to win \$1M
- U(x) = x, recovers distortion risk-measures
- g(s) = s, recovers expected utility
- g may be inverse-S shaped

- Agents often weigh outcomes unequally
- Probabilities of outcomes are often distorted
- Rank dependent expected utility (RDEU) / Yaari's dual Theory

$$\mathcal{R}_{\mathbf{g}}^{\mathbf{U}}[Y] := \int_{-\infty}^{0} \left\{ 1 - \mathbf{g}(\mathbb{P}(\mathbf{U}(Y) > y)) \right\} dy - \int_{0}^{+\infty} \mathbf{g}(\mathbb{P}(\mathbf{U}(Y) > y)) dy$$

- g is an increasing probability distortion
- **U** is a concave utility
- Helps explain the Allais paradox...
 - A: 61% chance to win \$1.2M OR 63% chance to win \$1M
 - B: 98% chance to win \$1.2*M* OR 100% chance to win \$1*M*
- U(x) = x, recovers distortion risk-measures
- g(s) = s, recovers expected utility
- g may be inverse-S shaped

- Agents often weigh outcomes unequally
- Probabilities of outcomes are often distorted
- Rank dependent expected utility (RDEU) / Yaari's dual Theory

$$\mathcal{R}_{\mathbf{g}}^{\mathbf{U}}[Y] := \int_{-\infty}^{0} \left\{ 1 - \mathbf{g}(\mathbb{P}(\mathbf{U}(Y) > y)) \right\} dy - \int_{0}^{+\infty} \mathbf{g}(\mathbb{P}(\mathbf{U}(Y) > y)) dy$$

- g is an increasing probability distortion
- **U** is a concave utility
- Helps explain the Allais paradox...
 - A: 61% chance to win \$1.2M OR 63% chance to win \$1M
 - B: 98% chance to win \$1.2M OR 100% chance to win \$1M
- U(x) = x, recovers distortion risk-measures
- g(s) = s, recovers expected utility
- g may be inverse-S shaped

- Agents often weigh outcomes unequally
- Probabilities of outcomes are often distorted
- Rank dependent expected utility (RDEU) / Yaari's dual Theory

$$\mathcal{R}_{\mathbf{g}}^{\mathbf{U}}[Y] := \int_{-\infty}^{0} \left\{ 1 - \mathbf{g}(\mathbb{P}(\mathbf{U}(Y) > y)) \right\} dy - \int_{0}^{+\infty} \mathbf{g}(\mathbb{P}(\mathbf{U}(Y) > y)) dy$$

- g is an increasing probability distortion
- **U** is a concave utility
- Helps explain the Allais paradox...
 - A: 61% chance to win \$1.2M OR 63% chance to win \$1M
 - B: 98% chance to win \$1.2*M* OR 100% chance to win \$1*M*
- U(x) = x, recovers distortion risk-measures
- g(s) = s, recovers expected utility
- g may be inverse-S shaped

- Agents often weigh outcomes unequally
- Probabilities of outcomes are often distorted
- Rank dependent expected utility (RDEU) / Yaari's dual Theory

$$\mathcal{R}_{\mathbf{g}}^{\mathbf{U}}[Y] := \int_{-\infty}^{0} \left\{ 1 - \mathbf{g}(\mathbb{P}(\mathbf{U}(Y) > y)) \right\} dy - \int_{0}^{+\infty} \mathbf{g}(\mathbb{P}(\mathbf{U}(Y) > y)) dy$$

- g is an increasing probability distortion
- **U** is a concave utility
- Helps explain the Allais paradox...
 - A: 61% chance to win \$1.2M OR 63% chance to win \$1M
 - B: 98% chance to win \$1.2M OR 100% chance to win \$1M
- U(x) = x, recovers distortion risk-measures
- g(s) = s, recovers expected utility
- g may be inverse-S shaped

Example: $\alpha - \beta$ risk measure

 $\qquad \qquad \alpha\text{-}\beta \text{ risk measure } \gamma(u) = \frac{1}{\eta} \left(p \, \mathbb{1}_{\{u \leq \alpha\}} + (1-p) \, \mathbb{1}_{\{u > \beta\}} \right)$

- α - β risk measure is U-shaped and contains several notable special cases
 - p=1 corresponds to the TVaR at level α
 - $p > \frac{1}{2}$ emphasises losses relative to gains
 - $p < \frac{1}{2}$ emphasises gains relative to losses

non-Robust Problem Setup

The risk-aware RL problems we address are

$$\inf_{\phi \in \varphi} \mathcal{R}_g^{U}[X^{\phi}] \tag{P}$$

For example:

ullet X^ϕ is the terminal wealth of a self-financing trading strategy with trading frictions

$$X^{\phi} = \int_0^T a(t, S_t, \phi) \ dS_t - c \int_0^T |a(t, S_t, \phi)| \ dt$$

with

$$dS_t = \kappa(\theta - S_t) + \sigma \, dW_t$$

non-Robust Problem Setup

The risk-aware RL problems we address are

$$\inf_{\phi \in \varphi} \mathcal{R}_g^U[X^\phi] \tag{P}$$

For example:

• X^{ϕ} is the terminal wealth of a self-financing trading strategy with trading frictions

$$X^{\phi} = \int_0^T a(t, S_t, \phi) \ dS_t - c \int_0^T |a(t, S_t, \phi)| \ dt$$

with

$$dS_t = \kappa(\theta - S_t) + \sigma \, dW_t$$

Example: Statistical Arbitrage

Robustification

 Models are often approximations of true dynamics... thus, we aim to robustify decisions by seeking over a Wasserstein Ball

$$d_{p}[X, Y] := \inf_{\chi \in \Pi(F_{X}, F_{Y})} \left(\int_{\mathbb{R}^{2}} |x - y|^{p} \chi(dx, dy) \right)^{\frac{1}{p}}$$
$$= \left(\int_{0}^{1} \left(F_{X}^{-1}(u) - F_{Y}^{-1}(u) \right)^{p} du \right)^{\frac{1}{p}}$$

$$\inf_{\phi \in \varphi} \sup_{\theta \in \vartheta_\phi} \mathcal{R}_g^{\mathcal{U}}[X^\theta] \;, \qquad \text{where} \qquad \vartheta_\phi := \left\{\theta \in \vartheta : d_\rho[X^\theta, X^\phi] \leq \varepsilon\right\} \ \, (\text{\mathbb{P}})$$

- The outer problem aims to optimise over strategies parametrised by ϕ
- The inner problem aims to robustify over alternates parametrised by heta
- We assume $X^{\theta} = H_{\theta}(X^{\phi}, Y)$, Y is other sources of randomness

$$\inf_{\phi \in \varphi} \sup_{\theta \in \vartheta_\phi} \mathcal{R}_g^{\textit{U}}[X^\theta] \;, \qquad \text{where} \qquad \vartheta_\phi := \left\{\theta \in \vartheta : \textit{d}_{\textit{p}}[X^\theta, X^\phi] \leq \varepsilon\right\} \ \, (\text{\mathbb{P}})$$

- The outer problem aims to optimise over strategies parametrised by ϕ
- The inner problem aims to robustify over alternates parametrised by heta
- We assume $X^{\theta} = H_{\theta}(X^{\phi}, Y)$, Y is other sources of randomness

$$\inf_{\phi \in \varphi} \sup_{\theta \in \vartheta_{\phi}} \mathcal{R}_{g}^{\textit{U}}[X^{\theta}] \;, \qquad \text{where} \qquad \vartheta_{\phi} := \left\{\theta \in \vartheta : \textit{d}_{\textit{p}}[X^{\theta}, X^{\phi}] \leq \varepsilon\right\} \ \, (\text{P})$$

- The outer problem aims to optimise over strategies parametrised by ϕ
- The inner problem aims to robustify over alternates parametrised by heta
- We assume $X^{\theta} = H_{\theta}(X^{\phi}, Y)$, Y is other sources of randomness

$$\inf_{\phi \in \varphi} \sup_{\theta \in \vartheta_\phi} \mathcal{R}_g^{\mathcal{U}}[X^\theta] \;, \qquad \text{where} \qquad \vartheta_\phi := \left\{\theta \in \vartheta : d_\rho[X^\theta, X^\phi] \leq \varepsilon\right\} \ \, (\text{P})$$

- The outer problem aims to optimise over strategies parametrised by ϕ
- The inner problem aims to robustify over alternates parametrised by $\boldsymbol{\theta}$
- We assume $X^{\theta}=H_{\theta}(X^{\phi},Y),\ Y$ is other sources of randomness

- Robust Risk-Aware Portfolio Allocation [PW07; EK18]
 - φ a probability simplex weights in traded assets (no short-selling)
 - $X^{\phi} = \phi^{\mathsf{T}} R$ total return
- Portfolio Optimisation within a Wasserstein Ball [PJ20]
 - φ is a singleton representing a reference portfolio
 - budget constraint on alternatives
 - Utility is linear, g arbitrary
- Robust Risk-Aware Statistical Arbitrage [CDJ17; LS21]
 - $\varphi = [-a, a]^{NT}$ buy/sell actions of each asset
 - $X^{\phi} = \sum_{i=1}^{T} q_i^{\phi \intercal} (X_i X_{i-1})$ total Profit & Loss
- Robust Barrier Option Hedging [CO11]
- Adversarial attacks

- Robust Risk-Aware Portfolio Allocation [PW07; EK18]
 - φ a probability simplex weights in traded assets (no short-selling)
 - $X^{\phi} = \phi^{\mathsf{T}} R$ total return
- Portfolio Optimisation within a Wasserstein Ball [PJ20]
 - $\ \ \, \varphi$ is a singleton representing a reference portfolio
 - budget constraint on alternatives
 - Utility is linear, g arbitrary
- Robust Risk-Aware Statistical Arbitrage [CDJ17; LS21]
 - $\varphi = [-a, a]^{NT}$ buy/sell actions of each asset
 - $X^{\phi} = \sum_{i=1}^{T} q_i^{\phi \intercal} (X_i X_{i-1})$ total Profit & Loss
- Robust Barrier Option Hedging [CO11]
- Adversarial attacks

- Robust Risk-Aware Portfolio Allocation [PW07; EK18]
 - φ a probability simplex weights in traded assets (no short-selling)
 - $X^{\phi} = \phi^{\mathsf{T}} R$ total return
- Portfolio Optimisation within a Wasserstein Ball [PJ20]
 - $\ \ \, \varphi$ is a singleton representing a reference portfolio
 - budget constraint on alternatives
 - Utility is linear, g arbitrary
- Robust Risk-Aware Statistical Arbitrage [CDJ17; LS21]
 - $\varphi = [-a, a]^{NT}$ buy/sell actions of each asset
 - $X^{\phi} = \sum_{i=1}^{T} q_i^{\phi \intercal} (X_i X_{i-1})$ total Profit & Loss
- Robust Barrier Option Hedging [CO11]
- Adversarial attacks

- Robust Risk-Aware Portfolio Allocation [PW07; EK18]
 - φ a probability simplex weights in traded assets (no short-selling)
 - $X^{\phi} = \phi^{\mathsf{T}} R$ total return
- Portfolio Optimisation within a Wasserstein Ball [PJ20]
 - $\ \ \, \varphi$ is a singleton representing a reference portfolio
 - budget constraint on alternatives
 - Utility is linear, g arbitrary
- Robust Risk-Aware Statistical Arbitrage [CDJ17; LS21]
 - $\varphi = [-a, a]^{NT}$ buy/sell actions of each asset
 - $X^{\phi} = \sum_{i=1}^{T} q_i^{\phi \intercal} (X_i X_{i-1})$ total Profit & Loss
- Robust Barrier Option Hedging [CO11]
- Adversarial attacks

- Robust Risk-Aware Portfolio Allocation [PW07; EK18]
 - φ a probability simplex weights in traded assets (no short-selling)
 - $X^{\phi} = \phi^{\mathsf{T}} R$ total return
- Portfolio Optimisation within a Wasserstein Ball [PJ20]
 - $\ \ \, \varphi$ is a singleton representing a reference portfolio
 - budget constraint on alternatives
 - Utility is linear, g arbitrary
- Robust Risk-Aware Statistical Arbitrage [CDJ17; LS21]
 - $\varphi = [-a, a]^{NT}$ buy/sell actions of each asset
 - $X^{\phi} = \sum_{i=1}^{T} q_i^{\phi \intercal} (X_i X_{i-1})$ total Profit & Loss
- Robust Barrier Option Hedging [CO11]
- Adversarial attacks

Augment Lagrangian

We employ the Augmented Lagrangian approach [BM14] for optimisation

$$L[\theta, \phi] = \mathcal{R}_g^U[X^{\theta}] + \lambda c[X^{\theta}, X^{\phi}] + \frac{\mu}{2} (c[X^{\theta}, X^{\phi}])^2,$$

- $c[X^{\theta}, X^{\phi}] := ((d_p[X^{\theta}, X^{\phi}])^p \varepsilon^p)_+$ is the p-Wasserstein distance error
- Update rules
 - $\lambda \leftarrow \lambda + \mu c[X^{\theta}, X^{\phi}]$
 - $\mu \leftarrow a \mu$, and a > 1

Augment Lagrangian

We employ the Augmented Lagrangian approach [BM14] for optimisation

$$L[\theta, \phi] = \mathcal{R}_g^{U}[X^{\theta}] + \lambda c[X^{\theta}, X^{\phi}] + \frac{\mu}{2} (c[X^{\theta}, X^{\phi}])^2,$$

- $c[X^{\theta}, X^{\phi}] := ((d_p[X^{\theta}, X^{\phi}])^p \varepsilon^p)_+$ is the *p*-Wasserstein distance error
- Update rules
 - $\lambda \leftarrow \lambda + \mu c[X^{\theta}, X^{\phi}]$
 - $\qquad \mu \leftarrow a \, \mu \text{, and } a > 1$

Augment Lagrangian

We employ the Augmented Lagrangian approach [BM14] for optimisation

$$L[\theta, \phi] = \mathcal{R}_g^U[X^{\theta}] + \lambda c[X^{\theta}, X^{\phi}] + \frac{\mu}{2} \left(c[X^{\theta}, X^{\phi}] \right)^2,$$

- $c[X^{\theta}, X^{\phi}] := ((d_p[X^{\theta}, X^{\phi}])^p \varepsilon^p)_+$ is the *p*-Wasserstein distance error
- Update rules
 - $\lambda \leftarrow \lambda + \mu c[X^{\theta}, X^{\phi}]$
 - $\mu \leftarrow a \mu$, and a > 1

- Policy gradient [SMSM00] aims to optimise by updating parameters by $\theta \leftarrow \theta + \eta \nabla_{\theta} \rho(Z^{\theta})$
- Risk-measures in the literature: (randomised policies)
 - Expected utility

$$abla_{ heta}
ho(Z^{ heta}) = \mathbb{E}^{\mathbb{P}} \left[
abla_{ heta} \log \pi_{ heta}(a|x) \Big|_{a=a^{ heta}} U(Z^{ heta}) \right]$$

$$\nabla_{\theta} \rho(Z^{\theta}) = \mathbb{E}^{\mathbb{P}^*} \left[\nabla_{\theta} \log \pi_{\theta}(a|x) \Big|_{a=a^{\theta}} \left(Z^{\theta} - \lambda^* \right) \right]$$

- Policy gradient [SMSM00] aims to optimise by updating parameters by $\theta \leftarrow \theta + \eta \nabla_{\theta} \rho(Z^{\theta})$
- Risk-measures in the literature: (randomised policies)
 - Expected utility

$$abla_{ heta}
ho(Z^{ heta}) = \mathbb{E}^{\mathbb{P}} \left[
abla_{ heta} \log \pi_{ heta}(a|x) \Big|_{a=a^{ heta}} U(Z^{ heta}) \right]$$

$$\nabla_{\theta} \rho(Z^{\theta}) = \mathbb{E}^{\mathbb{P}^*} \left[\nabla_{\theta} \log \pi_{\theta}(a|x) \Big|_{a=a^{\theta}} \left(Z^{\theta} - \lambda^* \right) \right]$$

- Policy gradient [SMSM00] aims to optimise by updating parameters by $\theta \leftarrow \theta + \eta \nabla_{\theta} \rho(Z^{\theta})$
- Risk-measures in the literature: (randomised policies)
 - Expected utility

$$\nabla_{\theta} \rho(Z^{\theta}) = \mathbb{E}^{\mathbb{P}} \left[\nabla_{\theta} \log \pi_{\theta}(a|x) \Big|_{a=a^{\theta}} \ U(Z^{\theta}) \right]$$

$$\nabla_{\theta} \rho(Z^{\theta}) = \mathbb{E}^{\mathbb{P}^*} \left[\nabla_{\theta} \log \pi_{\theta}(a|x) \big|_{a=a^{\theta}} \left(Z^{\theta} - \lambda^* \right) \right]$$

- Policy gradient [SMSM00] aims to optimise by updating parameters by $\theta \leftarrow \theta + \eta \nabla_{\theta} \rho(Z^{\theta})$
- Risk-measures in the literature: (randomised policies)
 - Expected utility

$$\nabla_{\theta} \rho(Z^{\theta}) = \mathbb{E}^{\mathbb{P}} \left[\nabla_{\theta} \log \pi_{\theta}(a|x) \Big|_{a=a^{\theta}} \ U(Z^{\theta}) \right]$$

$$\nabla_{\theta} \rho(Z^{\theta}) = \mathbb{E}^{\mathbb{P}^*} \left[\nabla_{\theta} \log \pi_{\theta}(a|x) \big|_{a=a^{\theta}} \left(Z^{\theta} - \lambda^* \right) \right]$$

Proposition (Inner Gradient Formula.)

Let X_c^{ϕ} denote the version of X^{ϕ} which makes (X^{θ}, X_c^{ϕ}) comonotonic. If g is left-differentiable, then

$$\nabla_{\theta} L[\theta, \phi] = \mathbb{E}\left[\left(U'\left(X^{\theta}\right) \gamma \left(F_{\theta}(X^{\theta}) \right) - p \Lambda \left| \Delta X_{c}^{\theta, \phi} \right|^{p-1} \operatorname{sgn}(\Delta X_{c}^{\theta, \phi}) \right) \frac{\nabla_{\theta} F_{\theta}(x)|_{x = X^{\theta}}}{f_{\theta}(X^{\theta})} \right]$$
(1)

- $\gamma \colon (0,1) \to \mathsf{R}_+$ is given by $\gamma(u) := \partial_- g(x)|_{x=1-u}$
- $\Lambda := (\lambda + \mu c[X^{\theta}, X^{\phi}]^p) \mathbb{1}_{d_p[X^{\theta}, X^{\phi}] > \varepsilon}$
- F_{θ} and f_{θ} are the cdf and pdf of X^{θ}
- G_{ϕ} and g_{ϕ} are the cdf and pdf of X^{ϕ} .

Proposition (Outer Gradient Formula.)

Let X_c^{ϕ} denote the version of X^{ϕ} which makes (X^{θ}, X_c^{ϕ}) comonotonic. If g is left-differentiable, then

$$\nabla_{\phi} L[\theta, \phi] = \mathbb{E}\left[U'(X^{\theta}) \gamma(F_{\theta}(X^{\theta})) \frac{\nabla_{\phi} F_{\theta}(x)|_{x=X^{\theta}}}{f_{\theta}(X^{\theta})} - \rho \Lambda |\Delta X_{c}^{\theta, \phi}|^{p-1} \operatorname{sgn}(\Delta X_{c}^{\theta, \phi}) \frac{\nabla_{\phi} G_{\phi}(x)|_{x=X^{\phi}}}{g_{\phi}(X^{\phi})}\right]$$
(2)

- $\gamma : (0,1) \to \mathsf{R}_+$ is given by $\gamma(u) := \partial_- g(x)|_{x=1-u}$

- F_{θ} and f_{θ} are the cdf and pdf of X^{θ}
- G_{ϕ} and g_{ϕ} are the cdf and pdf of X^{ϕ} .

Gradients

- Gradient Formulae require estimates of f_{θ}, g_{ϕ} and $\nabla_{\theta} F_{\theta}, \nabla_{\phi} F_{\phi}$
- Use kernel density approximations (KDE) to write, e.g., from a mini-batch of data $\{(x_{\theta}^{(1)}, x_{\phi}^{(1)}), \dots, (x_{\theta}^{(N)}, x_{\phi}^{(N)})\}$,

$$F_{\theta}(x) = \frac{1}{N} \sum_{i=1}^{N} \Phi_{h}(x - x_{\theta}^{(i)})$$

$$f_{\theta}(x) = \frac{1}{N} \sum_{i=1}^{N} \Phi'_{h}(x - x_{\theta}^{(i)})$$

$$\nabla_{\theta} F_{\theta}(x) = \frac{1}{N} \sum_{i=1}^{N} \Phi'_{h}(x - x_{\theta}^{(i)}) \nabla_{\theta} x_{\theta}^{(i)}$$

• $\nabla_{\theta} x_{\theta}^{(i)}, \nabla_{\phi} x_{\phi}^{(i)}$ computed through back-propagation

Gradients – Randomised Policies

- One may sample actions from policy distributions instead
- In this case, $a \sim \pi(a|x)$, and transitions $x_{t+1} \sim h(x|x_t, a_t)$
- In this case, we can show that, e.g.,

$$\nabla_{\phi} G_{\phi}(x) = \mathbb{E}\left[\sum_{t=0}^{T-1} \nabla_{\phi} \log \pi_{\phi}(a|x_t)|_{a=a_t^{\phi}} \mathbb{1}_{X^{\phi} \leq x}\right]$$

so that using a mini-batch of data we have

$$\nabla_{\phi} \hat{G}_{\phi}(x) = \frac{1}{N} \sum_{m=1}^{N} \sum_{t=0}^{T-1} \nabla_{\phi} \log \pi_{\phi}(a|x_{t}^{(m)})|_{a=a_{t}^{(m)}} \Phi(x_{T}^{(m)}) - x)$$

Algorithm

```
initialise networks \theta, \phi;
   initialise Lagrangian multipliers \lambda = 10 and \mu = 10;
3 for i \leftarrow 1 to N do
          for i \leftarrow 1 to M_1 do
 4
                Simulate mini-batch of (X^{\theta}, X^{\phi})
 5
                Estimate inner gradient \nabla_{\theta} L[\theta, \phi] using (1);
 6
                Update network \theta using a ADAM step;
 7
                Repeat until \mathcal{R}_{\gamma}^{U}[X^{\theta}] has not improved beyond tol;
 8
          Update multipliers: \lambda \leftarrow \lambda + \mu c(\theta^*) and \mu \leftarrow 2 \mu;
 9
          Simulate mini-batch of (X^{\theta}, X^{\phi});
10
          Estimate outer gradient \nabla_{\phi} L[\theta, \phi] using (2);
11
          Update network \phi using a ADAM step;
12
          Repeat until d_p[X^{\theta}, X^{\phi}] \leq \varepsilon and \mathcal{R}^{U}_{\gamma}[X^{\theta}] has not improved beyond tol;
13
```

Example: $\alpha - \beta$ risk measure

 $\qquad \qquad \alpha\text{-}\beta \text{ risk measure } \gamma(u) = \tfrac{1}{\eta} \left(p \, \mathbb{1}_{\{u \leq \alpha\}} + (1-p) \, \mathbb{1}_{\{u > \beta\}} \right)$

- α - β risk measure is U-shaped and contains several notable special cases
 - p=1 corresponds to the TVaR at level α
 - $p > \frac{1}{2}$ emphasises losses relative to gains
 - $p < \frac{1}{2}$ emphasises gains relative to losses

Example: Portfolio Optimisation

■ Asset returns have idiosyncratic risk $\zeta_i \sim \mathcal{N}(i \times 3\%, i \times 2.5\%)$ and systematic risk $\psi \sim \mathcal{N}(0\%, i \times 2.5\%)$

Example: Optimising against a Benchmark

- Investor has a benchmark dynamic trading strategy ϕ
- ullet Seek alternative strategies heta that lie within a Wasserstein ball that minimise the risk measure

Theorem ([PJ20])

The optimal quantile function is

$$g^*(u) := \left(F_{X_{\tilde{\lambda}}^{\sigma}}^{-1}(u) + \frac{1}{2\lambda_1} \left(\gamma(u) - \lambda_2 \, \xi(u)\right)\right)^{\uparrow} \,,$$

where $\lambda_1>0, \lambda_2\geq 0$ chosen to satisfy constraints. Moreover, the optimal terminal wealth is

$$X^* := g^*(V).$$

Example: Optimising against a Benchmark

Stochastic interest rate with constant elasticity of variance model

Figure 2: Terminal Value Distributions

Figure 3: Terminal Value Scatter Plot

Example: Option Hedging – Down and In Call

 $\mathfrak{p}=1-\mathsf{CVaR}$

Example: Option Hedging – Down and In Call

p = 0.75

Example: Option Hedging – Down and In Call

21/21

Contributions & Thanks

- Developed a general formulation for Robustifying Rank Dependent Expected Utility
- Obtained explicit gradients for inner and outer problems
- Solved some interesting real-world relevant examples

code: https://github.com/sebjai/robust-risk-aware-rl

paper: SIAM J. Fin. Math 13(1)
https://epubs.siam.org/doi/10.1137/21M144640X

Thank You for Your Attention!

http://sebastian.statistics.utoronto.ca

References

References

- [BM14] Ernesto G Birgin and José Mario Martínez. Practical augmented Lagrangian methods for constrained optimization. SIAM, 2014.
- [CDJ17] Álvaro Cartea, Ryan Donnelly, and Sebastian Jaimungal. Algorithmic trading with model uncertainty. SIAM Journal on Financial Mathematics, 8(1):635–671, 2017.
- [CO11] Alexander MG Cox and Jan Obloj. Robust hedging of double touch barrier options. SIAM Journal on Financial Mathematics, 2(1):141–182, 2011.
- [EK18] Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust optimization using the wasserstein metric: Performance guarantees and tractable reformulations. Mathematical Programming, 171(1):115–166, 2018.
- [LS21] Eva Lütkebohmert and Julian Sester. Robust statistical arbitrage strategies. Quantitative Finance, 21(3):379–402, 2021.
- [PJ20] Silvana Pesenti and Sebastian Jaimungal. Portfolio optimisation within a wasserstein ball. https://arxiv.org/abs/2012.04500, 2020.
- [PW07] Georg Pflug and David Wozabal. Ambiguity in portfolio selection. Quantitative Finance, 7(4):435-442, 2007.
- [SMSM00] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with function approximation. In Advances in neural information processing systems, pages 1057–1063, 2000.
- [TCGM15] Aviv Tamar, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor. Policy gradient for coherent risk measures. Advances in Neural Information Processing Systems, 28:1468–1476, 2015.