Objektorientiertes Programmieren (OOP)

07-Rekursion

Dr. Marcel Tilly

Bachelor Wirtschaftsinformatik, Fakultät Informatik

Rekursion

Figure 1: Rekursion

Definition Eine *rekursive Funktion* ist eine Funktion, die sich selbst mit veränderten Argumenten wieder aufruft.

Idealerweise wird dadurch das Problem schrittweise vereinfacht bis es trivial zu lösen ist.

Begriff Rekursion in der Programmierung

Unter **Rekursion** versteht man in der Programmierung eine Methode (Funktion), die sich selbst direkt oder indirekt (über Zwischenaufrufe anderer Methoden) wiederaufruft.

- Üblicherweise verkleinern sich mit jedem Selbstaufruf einer Methode die übergebenen rekursionssteuernden Parameterwerte
- Häufig wird die Berechnung eines Funktionswertes f(n) ("großes Problem") auf die Berechnung des Funktionswertes f(n-1) ("kleineres Problem") zurückgeführt, bis triviale Probleme wie die Berechnung von f(1) oder f(0) entstehen
- ▶ direkter Selbstaufruf: $f(5) \rightarrow f(4) \rightarrow f(3) \rightarrow f(2)$...
- ▶ indirekter Selbstaufruf: $f(5) \rightarrow g(5) \rightarrow h(5) \rightarrow f(4) \rightarrow g(4)$...

Fakultät

$$n! = \begin{cases} 1 & \text{für n} = 1 \text{ (terminal)} \\ n \cdot (n-1)! & \text{für n} > 1 \text{ (rekursiv)} \end{cases}$$

Fakultät in Java (iterativ)

11

```
1 class Fakultaet {
2    static int fakultaet(int n) {
3         int faku =1;
4         // Iterative Berechnung
5         for(int i = 1; i<=n; i++)
6         {
7             faku *= i;
8         }
9         return faku;
10    }</pre>
```

Fakultät in Java (rekursiv)

11

Fakultät Rekursiv schematisch

Figure 2: Fakultät, center

Größter gemeinsamer Teiler (ggT)

Euklidischer Algorithmus:

Gesucht ist das gemeinsames *Maß* für die Längen a und b. Es muss möglich sein, die beiden Längen voneinander abzuziehen, bis das *gemeinsame Maß* übrig bleibt.

Figure 3: Euklidische Algorothmus, center

ggT Euklidischer Algorithmus in Java (iterativ)

Rekursion Kochrezept

- 1. Terminalfälle bestimmen. Wann ist die Lösung trivial?
- 2. Rekursionsfälle bestimmen. Wie kann ich das Problem auf ein kleineres runterbrechen?
- 3. Rekursion zusammensetzen: Brauche ich eine Hilfsmethode, wie muss die Signatur aussehen, wie müssen die Argumente beim rekursiven Aufruf verändert werden?

Größter gemeinsamer Teiler (ggT)

ggT in Java (rekursiv)

9

```
static int ggt(int a, int b) {

// Abbruchbedingung

if (b == 0)

return a;

// Rekursionsfall

if (a > b)

return ggt(a-b, b);

return ggt(a, b-a);
```

Fibonacci

$$\operatorname{fib}(n) = \begin{cases} 0 & \text{für } n = 0 \\ 1 & \text{für } n = 1 \\ \operatorname{fib}(n-1) + \operatorname{fib}(n-2) & \text{für } n > 1 \end{cases}$$

Figure 4: Fibonacci-Spirale, center

[Quelle: Wikipedia]

Fibonacci in Java (iterativ)

```
1 class Fibonacci {
2 static int fiblt(int n) {
```

x = y; y = z;z = x + y;

return x;

5

8

10 11 } int x = 0, y = 1, z = 1; for (int i = 0; i < n; i++) {

Fibonacci in Java (rekursiv)

```
1 class Fibonacci {
2    static int fibRek(int n) {
3       if (n == 0)
4         return 0;
5       else if (n == 1)
6         return 1;
7       else
8         return fibRek(n-1) + fibRek(n-2);
9       }
10 }
```

Diese einfache Implementierung hat aber einen Nachteil: Im Rekursionsfall wird die Methode gleich **zwei Mal** aufgerufen. Allein ein Aufruf von fib (70) benötigt bereits mehrere Sekunden bis Minuten zur Berechnung.

Fibonacci

```
1 \text{ fib}(5) \Rightarrow
 4 fib(4) + fib(3) \Rightarrow
 7 \text{ fib}(3) + \text{fib}(2) + \text{fib}(2) + \text{fib}(1) \Rightarrow
 8
 9
10
11
12 fib(2) + fib(1) + fib(1) + fib(0) + fib(1) + fib(0) + fib(1)
13
14
15 fib(1) + fib(0) + ...
```

Fibonacci mit Cache

```
static private Map<Integer, Integer> cache = new HashMap<>();
2
  static int fibCached(int n) {
       if (n = 0) return 0;
4
       else if (n = 1) return 1;
5
6
     // bereits ausgerechnet?
       else if (cache.containsKey(n)) return cache.get(n);
8
       else {
9
           int a = fibCached(n-1);
           int b = fibCached(n-2);
10
           if (!cache.containsKey(n-1))
11
               cache.put(n-1, a);
12
13
           if (!cache.containsKey(n-2))
               cache.put(n-2, b);
14
15
16
           return a + b;
17
18
```

Fibonacci mit Hilfsfunktion

Eine weitere Optimierung der obigen Rekursion wäre die Vorschrift genauer zu betrachten: ${\sf fib}(n) = {\sf fib}(n-1) + {\sf fib}(n-2).$

Ein Wert hängt also immer genau von seinen zwei Vorgängern ab.

Diese kann man nun auch als Argumente in einer **Hilfsfunktion** "mitschleifen".

```
1
       static int fibBesser(int n) {
2
           // initialisiere Terminalfälle
3
           return fibHilf(n, 0, 1);
4
5
       private static int fibHilf(int n, int a, int b) {
6
           if (n = 0) return a;
8
           else if (n = 1) return b;
           // angepasste Parameter!
9
           else return fibHilf(n-1, b, a+b);
10
11
```

Palindrom (iterativ)

Wir beginnen mit dem bereits bekannten Palindromproblem: Ist ein Wort (oder Satz) vorwärts wie rückwärts gelesen dasselbe?

```
class Palindrom {
    static boolean istPalindrom(String s) {
        for (int i = 0; i < s.length()/2; i++)
            if (s.charAt(i) != s.charAt(s.length()-1-i))
            return false;
    return true;
}</pre>
```

Palindrom (rekursiv)

```
class Palindrom {
       static boolean istPalindrom(String s) {
           if (s.length() < 2)
               // Leer und ein Zeichen sind immer Palindrom
 5
               return true:
           else if (s.charAt(0) != s.charAt(s.length() - 1))
               return false; // Oops.
           else
8
               // angenommen erster und letzter passen,
               // was ist mit dem Rest?
10
               return istPalindrom(
11
12
                   s.substring(1, s.length() -1));
13
14 }
```

Rekursion für Listen

Möchte man nun die Größe (size) der Liste bestimmen, so muss man wieder Terminal- und Rekursionsfälle betrachten.

- 1. Eine Liste welche kein erstes Element hat ist leer.
- Gibt es ein erstes Element, so kann man dieses Fragen wie lang es denn ist.
- Ein Element ist in jedem Fall mind. 1 lang; gibt es einen next Nachfolger, so muss man dazu noch die Länge des Nachfolgers addieren.

Rekursion für Listen in Java

```
1 class Liste<T> {
       Element first:
       public int size() {
5
           if (first = null) return 0; // Terminalfall 1
           else return first.size(); // Hilfsmethode!
6
8
       class Element {
          T value;
10
11
           Element next;
           int size() {
12
13
               if (next == null) return 1; // Terminalfall 3a
14
               else return 1 + next.size();
15
16
17
18 }
```

Rekursion für Bäume

Hier können wir z.B. die Größe (size) rekursiv definieren:

- 1. Terminalfall: Gibt es keinen Wurzelknoten, so ist der Baum leer.
- Rekursionsfall: Gibt es einen Wurzelknoten, so ist die Baumgröße mind. 1 (Terminalfall), sowie zusätzlich die Größe des linken und rechten Teilbaums (Rekursion, sofern vorhanden).

Rekursion für Bäume in Java

```
1 public class Baum<T extends Comparable<T>>> {
       class Element {
           T value:
3
4
           Element left, right;
           Element(T value) { this.value = value; }
5
           int size() {
6
               return 1 +
8
                   (left = null ? 0 : left.size()) +
9
                    (right = null ? 0 : right.size());
10
11
12
```

Element root:

int size() {

if (root = null) return 0;

else return root.size();

13

14

15

16

Arten der Rekursion

- ► Lineare Rekursion: genau ein rekursiver Aufruf, z.B. Fakultät.
- ▶ Repetetive Rekursion (Rumpfrekursion, engl. tail recursion): Spezialfall der linearen Rekursion, bei der der rekursive Aufruf die letzte Rechenanweisung ist. Diese Rumpfrekursionen können direkt in eine iterative Schleife umgewandelt werden (und umgekehrt). Beispiel: verbesserte Implementierung der Fibonacci Funktion.
- ➤ Kaskadenartige Rekursion: in einem Zweig der Fallunterscheidung treten *mehrere* rekursive Aufrufe auf, was ein lawinenartiges Anwachsen der Funktionsaufrufe mit sich bringt. Beispiel: einfache Implementierung der Fibonacci Funktion.
- ▶ Verschränkte Rekursion: Eine Methode f() ruft eine Methode g(), die wiederum f() aufruft.

Zusammenfassung

- ► Eine rekursive Methode ist eine Methode, die sich selbst wieder aufruft; charakteristisch sind die Abwesenheit von for und while, sowie klare if —else Anweisungen, welche Terminalvon Rekursionsfall unterscheiden.
- Bei kaskadenartigen Rekursionen, also mehr als ein rekursiver Aufruf pro Durchlauf, können je nach Problemstellung Caches die Berechnung enorm effizienter gestalten.
- ▶ **Repetitive Rekursion** ist wünschenswert, da diese effektiv als for bzw. while Schleife realisiert werden könnten.
- Für obige braucht man oft Variablen, welche die Zwischenergebnisse im rekursiven Aufruf codieren.