

TEST REPORT

FCC PART 15.247

Report Reference No. CTL1703037071-WF

Compiled by: (position+printed name+signature)

Tested by:

(position+printed name+signature)

Approved by: (position+printed name+signature)

Allen Wang (File administrators)

> Nice Nong (Test Engineer)

> > Ivan Xie (Manager)

Allen Wang

Product Name...... VoIP Wireless ATA

Model/Type reference FTA1101

Brand Name..... Flyingvoice

FCC ID 2AL9D-FTA1101

Applicant's name Flyingvoice Network Technology Co., Ltd

Room102, 1F East, Bldg 3#, Mingi Park, Pingshan, Xili, Nanshan Address of applicant

District, Shenzhen, China

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Address of Test Firm

Nanshan District, Shenzhen, China 518055

Test specification.....

FCC Part 15.247: Operation within the bands 902-928 MHz,

2400-2483.5 MHz and 5725-5850 MHz.

TRF Originator Shenzhen CTL Testing Technology Co., Ltd.

Master TRF Dated 2011-01

Date of Receipt May 02, 2017

Date of Test Date May 02, 2017–May 18, 2017

Data of Issue...... May 24, 2017

Result :: Positive

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

V1.0 Page 2 of 54 Report No.: CTL1703037071-WF

TEST REPORT

Test Report No. : CTL1703037071-WF May 24, 2017

Date of issue

Equipment under Test : VoIP Wireless ATA

Model /Type : FTA1101

Applicant : Flyingvoice Network Technology Co., Ltd

Address : Room102, 1F East, Bldg 3#, Minqi Park, Pingshan,

Xili, Nanshan District, Shenzhen, China

Manufacturer : Flyingvoice Network Technology Co., Ltd

Address : Room102, 1F East, Bldg 3#, Minqi Park, Pingshan,

Xili, Nanshan District, Shenzhen, China

Test result			Pass *	
	OF ASSET AS ASSET STORY	mat State Co. 15		

^{*} In the configuration tested, the EUT complied with the standards specified page 5.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

** Modified History **

Revisions	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2017-05-24	CTL1703037071-WF	Tracy Qi

	Table of Contents	Page
1. SU	MMARY	5
1.1.	TEST STANDARDS	5
1.2.	TEST DESCRIPTION	5
1.3.	Test Facility	6
1.4.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	6
1.5.	ENVIRONMENTAL CONDITIONS	7
1.6.	GENERAL DESCRIPTION OF EUT	7
2. DE	SCRIPTION OF TEST MODES AND TEST FREQUENCY	7
2.1.	EQUIPMENTS USED DURING THE TEST	9
2.2.	RELATED SUBMITTAL(S) / GRANT (S)	9
2.3.	Modifications	10
3. TES	ST CONDITIONS AND RESULTS	11
3.1.	CONDUCTED EMISSIONS TEST	11
3.2.	RADIATED EMISSIONS AND BAND EDGE	
3.3.	MAXIMUM CONDUCTED OUTPUT POWER	
3.4.	Power Spectral Density	22
3.5.	6dB Bandwidth	27
3.6.	Out-of-band Emissions	
3.7.	Antenna Requirement	48
4. TES	ST SETUP PHOTOS OF THE EUT	49
5. EX ⁻	TERNAL AND INTERNAL PHOTOS OF THE EUT	51

V1.0 Page 5 of 54 Report No.: CTL1703037071-WF

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

ANSI C63.4: 2014: –American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz

558074 D01 DTS Meas Guidance v04 : Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

KDB 662911: D01Emissions Testing of Transmitters with Multiple Outputs in the Same Band

1.2. Test Description

FCC PART 15.247		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.247(a)(2)	6dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Conducted Output Power	PASS
FCC Part 15.247(e)	Power Spectral Density	PASS
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

Chi Testing Technolos

V1.0 Page 6 of 54 Report No.: CTL1703037071-WF

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 22/EN 55022 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December 19, 2013.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

V1.0 Page 7 of 54 Report No.: CTL1703037071-WF

1.5. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

1.6. General Description of EUT

Product Name:	VoIP Wireless ATA		
Model/Type reference:	FTA1101		
Power supply:	AC 120V/60Hz		
WIFI			
Supported type:	802.11b/802.11g/802.11n(H20)/802.11n(H40)		
Modulation:	802.11b: DSSS 802.11g/802.11n(H20)/802.11n(H40): OFDM		
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz 802.11n(H40): 2422MHz~2452MHz		
Channel number:	802.11b/802.11g/802.11n(H20): 11 802.11n(H40): 7		
Channel separation:	5MHz		
Antenna type:	PCB Antenna: 2		
Antenna gain:	2.0dBi		

Note: 802.11b/802.11g have SISO mode only ;802.11n(H20)/802.11n(H40) have MIMO mode only Directional gain $=2+10\log 2=5.01dBi$

2. Description of Test Modes and Test Frequency

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing.

Operation Frequency WIFI:

<u> </u>			
Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	Tev8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		

Note: The line display in grey were the channel selected for testing

V1.0 Page 8 of 54 Report No.: CTL1703037071-WF

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Conducted Output Power	11b/DSSS	1 Mbps	1/6/11
Power Spectral Density 6dB Bandwidth	11g/OFDM	6 Mbps	1/6/11
Spurious RF conducted emission Radiated Emission 9kHz~1GHz&	11n(20MHz)/OFDM	6.5Mbps	1/6/11
Radiated Emission 1GHz~10th Harmonic	11n(40MHz)/OFDM	13.5 Mbps	3/6/9
	11b/DSSS	1 Mbps	1/11
Dand Edge	11g/OFDM	6 Mbps	1/11
Band Edge	11n(20MHz)/OFDM	6.5Mbps	1/11
Vist.	11n(40MHz)/OFDM	13.5 Mbps	3//9

Note: All tests performed with alternate AC power sulpply and DC power supply , recorded the worst case at AC mode

2.1. Equipments Used during the Test

Test Equipment Manufacturer		Model No.	Serial No.	Calibration Date	Calibration Due Date
ULTRA-ROADBAND ANTENNA	Sunol Sciences Corp.	JB1	A061713	2016/06/02	2017/06/01
EMI Test Receiver	R&S	ESCI	103710	2016/06/02	2017/06/01
Spectrum Analyzer	Agilent	E4407B	MY41440676	2016/05/21	2017/05/20
Controller	EM Electronics	Controller EM 1000	N/A	2016/05/21	2017/05/20
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2016/05/19	2017/05/18
Active Loop Antenna	Daze	ZN30900A	N/A	2016/05/19	2017/05/18
LISN	R&S	ENV216	3560.6550.1 2	2016/06/02	2017/06/01
LISN	R&S	ESH2-Z5	860014/010	2016/06/02	2017/06/01
ISN	FCC	F-071115-1 057-1-09	11229	2016/05/19	2017/05/18
Amplifier	Agilent	8349B	3008A02306	2016/05/19	2017/05/18
Amplifier	Agilent	8447D	2944A10176	2016/05/19	2017/05/18
Transient Limiter	SCHWARZCECK	VTSD 9561F	9666	2016/06/02	2017/06/01
Radio Communication Tester	R&S	CMU200	115419	2016/05/22	2017/05/21
Temperature/Humidit y Meter	Gangxing	CTH-608	02	2016/05/20	2017/05/19
SIGNAL GENERATOR	Agilent	E4421B	US40051744	2016/05/20	2017/05/19
Power Meter	Agilent	U2531A	TW53323507	2016/05/21	2017/05/20
Power Sensor	Agilent	U2021XA	MY5365004	2016/05/21	2017/05/20
Climate Chamber	ESPEC	EL-10KA	A20120523	2016/05/20	2017/05/19
High-Pass Filter	K&L	9SH10-270 0/X12750-O /O	N/A	2016/05/20	2017/05/19
High-Pass Filter	K&L	41H10-137 5/U12750-O /O	N/A	2016/05/20	2017/05/19
RF Cable	HUBER+SUHNE R	RG214	N/A	2016/05/20	2017/05/19

V1.0 Page 10 of 54 Report No.: CTL1703037071-WF

2.2. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AL9D-FTA1101 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.3. Modifications

No modifications were implemented to meet testing criteria.

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emissions Test

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Fraguenov rango (MHz)	Limit (dBuV)			
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL170503008_fin"

5,	/3/2017 2:39	PM						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.572000	51.60	10.2	56	4.4	QP	L1	GND
	0.578000	51.10	10.2	56	4.9	QP	L1	GND
	1.172000	37.80	10.3	56	18.2	QP	L1	GND
	1.178000	38.70	10.3	56	17.3	QP	L1	GND
	10.388000	44.80	10.6	60	15.2	QP	L1	GND
	10.952000	45.10	10.6	60	14.9	OP	T.1	GND

MEASUREMENT RESULT: "CTL170503008_fin2"

5/3/2017 2:3							
Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
	app.	42	aDp.	42			
0.578000	38.90	10.2	46	7.1	AV	L1	GND
0.908000	29.20	10.2	46	16.8	AV	L1	GND
1.184000	27.60	10.3	46	18.4	AV	L1	GND
2.768000	27.40	10.4	46	18.6	AV	L1	GND
10.682000	32.40	10.6	50	17.6	AV	L1	GND

SCAN TABLE: "Voltage (9K-30M)FIN"

Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL170503009 fin"

5/3/2017	2:42PM							
Freque:	ncy	Level	Transd	Limit	Margin	Detector	Line	PE
1	MHz	dΒμV	dB	dΒμV	dB			
0.572	000	51.80	10.2	56	4.2	QP	N	GND
0.854	000	39.50	10.2	56	16.5	QP	N	GND
1.154	000	42.20	10.3	56	13.8	QP	N	GND
1.166	000	44.00	10.3	56	12.0	QP	N	GND
1.214	000	40.80	10.3	56	15.2	QP	N	GND
2.582	000	35.90	10.4	56	20.1	QP	N	GND

MEASUREMENT RESULT: "CTL170503009_fin2"

3/2017 2:42	PM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.470000	34.80	10.2	47	11.7	AV	N	GND
0.572000	44.50	10.2	46	1.5	AV	N	GND
0.920000	34.00	10.3	46	12.0	AV	N	GND
1.274000	33.30	10.3	46	12.7	AV	N	GND
1.556000	31.90	10.3	46	14.1	AV	N	GND
2.012000	33.80	10.4	46	12.2	AV	N	GND
	Frequency MHz 0.470000 0.572000 0.920000 1.274000 1.556000	MHZ dBμV 0.470000 34.80 0.572000 44.50 0.920000 34.00 1.274000 33.30 1.556000 31.90	Frequency MHz dBμV dB 0.470000 34.80 10.2 0.572000 44.50 10.2 0.920000 34.00 10.3 1.274000 33.30 10.3 1.556000 31.90 10.3	Frequency MHz Level dBμV Transd dB dBμV Limit dBμV 0.470000 34.80 10.2 47 0.572000 44.50 10.2 46 0.920000 34.00 10.3 46 1.274000 33.30 10.3 46 1.556000 31.90 10.3 46	Frequency MHz dBμV dB Limit Margin dBμV dB dBμV dBμV	Frequency MHz dBμV dB Limit Margin Detector dBμV dB dBμV dB Detector dBμV dB dBμV dB Detector dBμV dBμV dB Detector dBμV dBμV dBμV dBμV dBμV dBμV dBμV dBμV	Frequency MHz Level Transd Limit Margin Detector Line dBμV dB dBμV dB Detector Line dBμV dB Detector Line 1.470000 34.80 10.2 47 11.7 AV N 0.572000 44.50 10.2 46 1.5 AV N 0.920000 34.00 10.3 46 12.0 AV N 1.274000 33.30 10.3 46 12.7 AV N 1.556000 31.90 10.3 46 14.1 AV N

3.2. Radiated Emissions and Band Edge

Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Rad	iated emission limits
(Meters)	Radiated (dBµV/m)

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	13	54.0	500

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

Ant. feed point 3 m 1-4 m Ground Plane

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Receiver

Amp.

Test Procedure

- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.

TEST RESULTS

Remark:

- 1. We tested three channels (lowest/middle/highest) of each mode and recorded worst case at 802.11b low channel for measurement below 1GHz.
- 2. We tested three channels (lowest/middle/highest) of each mode and recorded worst case at 802.11b mode above 1GHz.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

V1.0 Page 16 of 54 Report No.: CTL1703037071-WF

For 30MHz-1GHz

Horizontal

Transducer

SWEEP TABLE: "test (30M-1G)"
Short Description: Fi

Field Strength Stop Detector Meas. Start IF Frequency Time Bandw.

Frequency 1.0 GHz 30.0 MHz MaxPeak 300.0 ms 120 kHz

MEASUREMENT RESULT: "CTL170505303_red"

5/5/2017 9:42	2AM							
Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
30.000000	24.40	20.8	40.0	15.6		0.0	0.00	HORIZONTAL
144.460000	27.00	14.1	43.5	16.5		0.0	0.00	HORIZONTAL
169.680000	30.40	13.3	43.5	13.1		0.0	0.00	HORIZONTAL
249.220000	23.50	13.8	46.0	22.5		0.0	0.00	HORIZONTAL
542.160000	25.90	20.7	46.0	20.1		0.0	0.00	HORIZONTAL
918.520000	33.10	26.2	46.0	12.9		0.0	0.00	HORIZONTAL

Vertical

SWEEP TABLE: "test (30M-1G)"
Short Description: Fi Field Strength Start Detector Meas. Stop IF

Transducer Frequency Frequency Time Bandw. 30.0 MHz 1.0 GHz MaxPeak 300.0 ms 120 kHz JB1

Level [dBµV/m] 80 60 40 30 20 10 30M 40M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M 1G Frequency [Hz] x x x MES CTL170505302_red

MEASUREMENT RESULT: "CTL170505302 red"

5/5/2017 9:3	9AM							
Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
31.940000	36.10	19.2	40.0	3.9		0.0	0.00	VERTICAL
86.260000	34.10	9.0	40.0	5.9		0.0	0.00	VERTICAL
144.460000	35.00	14.1	43.5	8.5		0.0	0.00	VERTICAL
169.680000	35.80	13.3	43.5	7.7		0.0	0.00	VERTICAL
173.560000	27.10	13.0	43.5	16.4		0.0	0.00	VERTICAL
959.260000	35.90	26.6	46.0	10.1		0.0	0.00	VERTICAL

For 1GHz to 25GHz

802.11b Mode (above 1GHz)

Fred	Frequency(MHz):		2412			Polarity:		HORIZONTAL		
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction	
(MHz)	Level		(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor	
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)	
4824.00	58.43	PK	74	15.57	53.88	33.52	6.92	35.89	4.55	
4824.00	51.02	AV	54	2.98	46.47	33.52	6.92	35.89	4.55	
5128.15	50.36	PK	74	23.64	43.16	34.38	7.10	34.28	7.20	
5128.15		AV	54							
7236.00	48.79	PK	74	25.21	37.52	37.1	9.19	35.02	11.27	
7236.00		AV	54							

Fred	uency(MH	lz):	24	12		Polarity:		VERTICAL		
Frequency	Emission		Limit	Margin	Raw	Raw Antenna		Pre- amplifier	Correction	
(MHz)	Le	Level		(dB)	Value	Factor	Factor	(dB)	Factor	
	(dBu	ıV/m)			(dBuV)	(dB/m)	(dB)		(dB/m)	
4824.00	60.04	PK	74	13.96	55.49	33.52	6.92	35.89	4.55	
4824.00	52.81	AV	54	1.19	48.26	33.52	6.92	35.89	4.55	
5128.15	51.83	PK	74	22.17	44.63	34.38	7.10	34.28	7.20	
5128.15		AV	54	1		- (7/-			
7236.00	49.48	PK	74	24.52	38.21	37.1	9.19	35.02	11.27	
7236.00	1/	AV	54	KIT	FLT.	7	-			
		0)	NY	1	Link		E		-	

		The state of the s	111/-								
Fred	quency(MH	lz):	2437			Polarity:			HORIZONTAL		
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction		
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor		
	(dBu	ıV/m)			(dBuV)	(dB/m)	(dB)		(dB/m)		
4874.00	59.46	PK	74	14.54	53.22	33.59	6.95	34.3	6.24		
4874.00	51.21	AV	54	2.79	44.97	33.59	6.95	34.3	6.24		
5215.50	48.36	PK	74	25.64	40.76	34.56	7.15	34.11	7.60		
5215.50		AV	54			-0					
7311.00	48.53	PK	74	25.47	36.87	37.44	9.22	35	11.66		
7311.00		AV	54	2Stin	0-16						

Fred	Frequency(MHz):			37		Polarity:		VERTICAL		
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction	
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor	
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)	
4874.00	59.73	PK	74	14.27	53.39	33.59	6.95	34.2	6.34	
4874.00	52.01	AV	54	1.99	45.67	33.59	6.95	34.2	6.34	
5215.50	48.86	PK	74	25.14	41.96	34.07	7.05	34.22	6.90	
5215.50		AV	54							
7311.00	49.95	PK	74	24.05	38.29	37.44	9.22	35	11.66	
7311.00		AV	54							

Fred	Frequency(MHz):		2462			Polarity:	HORIZONTAL		
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	ıV/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
4924.00	59.39	PK	74	14.61	53.55	33.71	6.98	35.91	4.78
4924.00	49.45	AV	54	4.55	43.73	33.71	6.98	35.91	4.78
5235.50	51.08	PK	74	22.92	41.24	34.34	7.09	34.27	7.17
5235.50	-	AV	54	-			-		
7386.00	48.24	PK	74	25.76	37.4	37.61	9.25	34.98	11.88
7386.00		AV	54	-					

Frequency(MHz):		2462		Polarity:			VERTICAL		
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
4924.00	60.19	PK	74	13.81	55.41	33.71	6.98	35.91	4.78
4924.00	51.66	AV	54	2.34	46.88	33.71	6.98	35.91	4.78
5235.50	48.47	PK	74	25.53	41.3	34.34	7.09	34.27	7.17
5235.50		AV	54	-	-		-		
7386.00	48.92	PK	74	25.08	37.04	37.61	9.25	34.98	11.88
7386.00		AV	54						

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RMS detector is for AV value.

Note: 802.11b/802.11g Ant 1 Ant 2 SISO mode and 802.11n H20 &H40 MIMO mode all have been tested, only worse case 802.11b Ant 1 is reported

Results of Band Edges Test (Radiated)

Frequency(MHz):		24	12	Polarity:			HORIZONTAL		
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
2412.00	113.49	PK			80.1	28.78	4.61	0	33.39
2412.00	107.04	AV			73.65	28.78	4.61	0	33.39
2361.75	42.18	PK	74	31.82	9.1	28.52	4.56	0	33.08
2361.75		AV	54						
2390.00	60.07	PK	74	13.93	26.75	28.72	4.60	0	33.32
2390.00	52.36	AV	54	1.64	19.04	28.72	4.60	0	33.32
2400.00	61.12	PK	74	12.88	27.73	28.78	4.61	0	33.39
2400.00	52.96	AV	54	1.04	19.57	28.78	4.61	0	33.39

Frequency(MHz):			24	12	Polarity:		VERTICAL		
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
2412.00	114.05	PK	7) 🚄	COMES TO	80.66	28.78	4.61	0	33.39
2412.00	106.36	AV	X AN		72.97	28.78	4.61	0	33.39
2361.75	43.02	PK	74	30.98	9.94	28.52	4.56	0	33.08
2361.75		AV	54			77			
2390.00	60.94	PK	74	13.06	27.62	28.72	4.60	0	33.32
2390.00	51.18	AV	54	2.82	17.86	28.72	4.60	0	33.32
2400.00	62.32	PK	74	11.68	28.93	28.78	4.61	0	33.39
2400.00	52.91	AV	54	1.09	19.52	28.78	4.61	0	33.39

Frequency(MHz):		24	62		Polarity:		HORIZONTAL		
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
2462.00	114.06	PK	-	T	80.44	28.92	4.7	0	33.62
2462.00	108.91	AV		USTI	75.29	28.92	4.7	0	33.62
2483.50	43.14	PK	74	30.86	9.51	28.93	4.7	0	33.63
2483.50		AV	54	-			-		
2486.75	42.38	PK	74	31.62	8.74	28.94	4.71	0	33.64
2486.75		AV	54				-		
2500.00	43.55	PK	74	30.45	9.87	28.96	4.72	0	33.68
2500.00		AV	54				-		

Fred	μency(MH	z):	2462		Polarity:			VERTICAL	
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre- amplifier	Correction
(MHz)	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	(dB)	Factor
	(dBu	V/m)			(dBuV)	(dB/m)	(dB)		(dB/m)
2462.00	113.18	PK			79.56	28.92	4.7	0	33.62
2462.00	107.25	AV			73.63	28.92	4.7	0	33.62
2483.50	43.04	PK	74	30.96	9.41	28.93	4.7	0	33.63
2483.50		AV	54						
2486.75	44.18	PK	74	29.82	10.54	28.94	4.71	0	33.64
2486.75		AV	54				-		
2500.00	43.67	PK	74	30.33	9.99	28.96	4.72	0	33.68
2500.00		AV	54						

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RMS detector is for AV value.

Note: 802.11b/802.11g Ant 1 Ant 2 SISO mode and 802.11n H20 &H40 MIMO mode all have been tested, only worse case 802.11b Ant 1 is reported

3.3. Maximum Conducted Output Power

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

WIFI

Туре	Channel	PK Output power Ant1 (dBm)	PK Output power Ant2 (dBm)	Output power Total (dBm)	Limit (dBm)	Result
	01	16.04	16.39	1		
802.11b	06 🕥	16.11	16.44	10	30.00	Pass
	11	16.32	16.48	1		
	01	14.99	14.12	1 3		Pass
802.11g	06 🖊	14.96	14.10	10	30.00	
	11	14.17	14.19	1		
000 44 (UT00)	01	13.70	13.09	16.42		
802.11n(HT20) MIMO	06	13.74	12.98	16.39	30.00	Pass
IVIIIVIO	11	13.92	13.12	16.55		
802.11n(HT40) MIMO	03	12.76 051	12.99	15.89		
	06	12.98	12.98	15.99	30.00	Pass
	09	12.79	12.07	15.46		

Note: 1.The test results including the cable lose.

V1.0 Page 22 of 54 Report No.: CTL1703037071-WF

3.4. Power Spectral Density

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

Test Results

WIE

		Power	Power	Power		
T a		Spectral	Spectral	Spectral	Limit	Desult
Type	Channel	Density Ant1	Density Ant2	Density Total	(dBm/3KHz)	Result
		(dBm/3KHz)	(dBm/3KHz)	(dBm/3KHz)	,	
	01	-5.866	-5.494	U' T		
802.11b	06	-5.864	-5.753	1	8.00	Pass
	11	-5.788	-5.424	1		
	01	-11.896	-11.540	1		
802.11g	06	-11.294	-10.818	1	8.00	Pass
	11	-11.647	-11.462	1		
000 11n/UT20)	01	-11.371	-11.066	-8.21		
802.11n(HT20) MIMO	06	-10.178	-11.110	-7.61	8.00	Pass
IVIIIVIO	11	-9.800	-11.039	-7.37		
802.11n(HT40) MIMO	03	-14.874	-14.573	-11.71		
	06	-15.497	-14.541	-11.98	8.00	Pass
	09	-15.752	-13.664	-11.57		

Test plot as follows:

Ant1

Ant 2

V1.0 Page 27 of 54 Report No.: CTL1703037071-WF

3.5. 6dB Bandwidth

<u>Limit</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

WIFI

		VVIII			
Туре	Channel	6dB Bandwidth Ant1 (MHz)	6dB Bandwidth Ant2 (MHz)	Limit (KHz)	Result
	01	8.318	8.332		
802.11b	06	9.072	8.333	≥500	Pass
	(1)	7.910	7.707		
	01	15.11	15.11		Pass
802.11g	06	15.11	15.12	≥500	
	110	15.12	15,11		
	01	15.10	15.11		
802.11n(HT20)	06	15.11	16.00	≥500	Pass
	11	15.11	16.02		
802.11n(HT40)	03	35.07	35.09		
	06	35.08	35.10	≥500	Pass
	09	35.09	35.08		

Test plot as follows:

Ant 1

Ant 2

