

Centro de Instrução Almirante Wandenkolk - CIAW Instituto Tecnológico de Aeronáutica - ITA

Curso de Aperfeiçoamento Avançado em Sistemas de Armas

SAB: Simulação e Controle de Artefatos Bélicos

Referenciais

Jozias **Del Rios** Cap Eng

delriosjdrvgs@fab.mil.br

S (12) 98177-9921

AA-811 SIMULAÇÃO E CONTROLE DE ARTEFATOS BÉLICOS

Referenciais

Autor: Jozias **DEL RIOS** — rev. 02.jun.2016

TÓPICOS

<u>Referenciais</u>

- 1. Referencial Inercial
- 2. Referencial heliocêntrico **ICRF**
- 3. Referencial geocêntrico ECI
- 4. Referencial geocêntrico **ECEF**
- 5. Geodésia do planeta Terra
- 6. Aceleração da Gravidade
- 7. Referencial local **NED**
- 8. Referencial do Corpo
- 9. Referencial Aerodinâmico

OBJETIVO

Estudaremos os **Referenciais**(Origem, Orientação, Comportamento e
Sistema de Coordenadas)

utilizados para navegação terrestre e
simulação de veículos aeroespaciais.

REFERENCIAIS: DEFINIÇÃO

Motivação:

Em 2D e 3D, equações se escrevem simplificadamente se posicionadas e alinhadas em certas posições e orientações...

Cada <u>referencial</u> deve definir:

- Posição e Velocidade da origem
- Orientação dos eixos ortonormais
- Opções de Sistema de coordenadas
- Comportamento no tempo:
 - Aceleração da origem
 - Rotação dos eixos

REFERENCIAL INERCIAL

Referencial Inercial: é aquele que **não** acelera e **não** gira

- > A velocidade da origem é CONSTANTE.
- > Os eixos de orientação tem direções FIXAS.
- > Vale as três leis de Newton:
 - Não apresenta forças fictícias.

Importa para um referencial ser inercial:

Aceleração e Rotação

Importa para o Sistema de Coordenadas, também: Origem e Velocidade

REFERENCIAL PSEUDO-INERCIAL

Pelo Princípio da Relatividade Geral:

O espaço-tempo é curvo, logo:

→ Nenhum referencial é verdadeiramente inercial.

Aproximação: referencial considerado como inercial dependendo da duração e das escalas do problema analisado:

- > Tempo total de simulação (míssil ar-ar vs. satélite vs. sonda)
- Magnitude das acelerações lineares e velocidades angulares
 - > Tolerância aos erros acumulados.

ICRF: International CELESTIAL Reference Frame

Origem: baricentro do Sistema Solar (Sol, 8 planetas, etc.)

Orientação: fixada no mapa com a <u>direção</u> de 212 astros distantes (quasares) de boa estabilidade e sem ambiguidade.

Coincide com o sistema ECI na época J2000 (01/01/2000 12h).

Coordenadas: esféricas (longitude/latitude galáctica e distância)

<u>Uso</u>: veículos interplanetários e corpos celestes

ICRF não exibe rotação mensurável por instrumentos:

Sol viaja com 220 km/s distante 2,3.10²⁰ m do centro da galáxia:

$$\Rightarrow$$
 $\omega_{\text{Sol/Galáxia}} = \text{V/R} \cong 10^{-15}\,\text{rad/s}$

EQUADOR CELESTIAL e ECLÍPTICA

ECI: <u>Earth-Centered</u> <u>Inertial</u>

Orientação:

X_{ECI}: direção do Sol no equinócio vernal

• Z_{ECI}: polo norte geométrico

Origem: Fixo geocêntrico

Coordenadas: esféricas

- α: right ascension
- δ : declination
- r: distância ao centro

<u>Uso</u>: satélites, sondas, **ICBM**s

Órbita terrestre desprezada:

$$\omega_{\mathsf{Terra/Sol}} \cong 2.10^{-7}\,\mathsf{rad/s}$$

PONTO DO EQUINÓCIO VERNAL

Equinócio Vernal: posição do SOL quando cruza a Linha do Equador.

Contido na interseção dos planos equatorial e eclíptico -> X_{ECI}

ECEF: <u>Earth-Centered</u> — <u>Earth-Fixed</u>

Orientação:

• X_{FCFF}: cruzamento linha do equador e meridiano de Greenwich

• Z_{ECEF}: polo norte geométrico

Origem: Fixo geocêntrico (CM)

<u>Coordenadas:</u> cartesianas ou esféricas (**LLA** ou <u>geocêntricas</u>)

- λ: Longitude
- φ ': Latitude geocêntrica
- r: Distância **geocêntrica**

<u>Uso</u>: aviões, mísseis de cruzeiro $\omega_F = 7,2921151467.10^{-5} \text{ rad/s}$

CONVERSÃO: ECEF Geocêntrico / ECI (cartesianos)

Mesma origem fixa geocêntrica.

Mesmo eixo Z alinhado com o eixo de rotação do planeta.

A <u>rotação</u> ao redor do eixo Z converte os referenciais:

$$\begin{cases} X_{ECEF} = X_{ECI} \cos(\omega_E t - \lambda_0) - Y_{ECI} \sin(\omega_E t - \lambda_0) \\ Y_{ECEF} = X_{ECI} \sin(\omega_E t - \lambda_0) + Y_{ECI} \cos(\omega_E t - \lambda_0) \\ Z_{ECEF} = Z_{ECI} \end{cases}$$

 λ_0 é relacionado ao ponto vernal: **GHA**: Greencwich Hour Angle Por simplicidade, a orientação do **ECI** é atribuída no momento do lançamento do veículo (arbitrária).

ÓRBITA E ROTAÇÃO DA TERRA

"Quantas voltas a Terra faz ao redor de si mesma em um ano?"

- <u>Tempo Solar</u>: a direção do SOL marca o dia:
 - 24 horas (86 400 segundos) por dia.
 - 365,242 190 402 dias por ano.

ÓRBITA E ROTAÇÃO DA TERRA

"Quantas voltas a Terra faz ao redor de si mesma em um ano?"

- <u>Tempo Solar</u>: a direção do SOL marca o dia:
 - 24 horas (86 400 segundos) por dia.
 - 365,242 190 402 dias por ano.
- <u>Tempo Sideral</u>: rotação da Terra no referencial **ECI**:
 - 23h 56min 4,0916seg por dia
 - 1 volta a mais por ano! (366,24)

$$\omega_{\rm E} = \frac{2\pi}{86164,0916} = 7,292115.10^{-5} \text{ rad/s}$$

GEODÉSIA: DATUM WGS 84

Terra não é esférica. Aproxima-se de um elipsoide de revolução

Elipsoide de Referência de equipotencial gravitacional:

WGS 84: **World Geodetic System** (1984 → rev 2004)

Semieixo maior: a = 6378137,0 m

Achatamento: f = 1/298, 257223563 = (a - b)/a

Semieixo menor: $b = a \cdot (1-f) = 6356752,3142 \text{ m}$

Excentricidade: $e = \sqrt{f \cdot (2-f)} \implies e^2 = (a^2 - b^2)/a^2$

Cte. Gravitacional: $G = 6,673.10^{11} \, \text{[m}^3/\text{kg s}^2 \, \text{]}$

Massa da Terra: $M_E = 5,9733328.10^{24} \text{ kg}$

Produto GM: $GM = 3986004,418.10^8 [m^3/s^2]$

Rotação da Terra: $\omega_{e/i} = 7292115.10^{-11} \, \text{rad/s}$

GEODÉSIA: <u>L</u>ONGITUDE <u>L</u>ATITUDE <u>A</u>LTITUDE

Mapas e **GPS**:

Latitude Geocêntrica \varphi'

Latitude Geodésica φ

Altitude Elipsoidal h

$$\frac{\tan \varphi'}{\tan \varphi} = 1 - e^2 \frac{R_N}{R_N + h}$$

$$\mathbf{r} = \mathsf{R}_\mathsf{N} \cdot \mathsf{cos}\,\boldsymbol{\varphi}$$

Raio de Curvatura Local:

$$R_{N} = R_{N} \left(\varphi \right) = \frac{a}{\sqrt{1 - e^{2} \operatorname{sen}^{2} \varphi}}$$

CONVERSÃO ECEF GEODÉSICO/GEOCÊNTRICO

Coordenadas Geocêntricas Cartesianas (ECEF): (X, Y, Z)

Coordenadas Geocêntricas (**ECEF**): (λ, φ', r)

Coordenadas Geodésicas (ECEF): L L A: (\lambda, \phi, h)

$$\begin{bmatrix} X_{ECEF} \\ Y_{ECEF} \\ Z_{ECEF} \end{bmatrix} = \begin{bmatrix} r \cdot \cos \varphi' \cdot \cos \lambda \\ r \cdot \cos \varphi' \cdot \sin \lambda \\ r \cdot \sin \varphi' \end{bmatrix} = \begin{bmatrix} (R_N + h) \cdot \cos \varphi \cdot \cos \lambda \\ (R_N + h) \cdot \cos \varphi \cdot \sin \lambda \\ ((1 - e^2)R_N + h) \cdot \sin \varphi \end{bmatrix}$$

ACELERAÇÃO DA GRAVIDADE
$$F = \frac{G \cdot M_E \cdot m}{r^2} = \frac{G \cdot M_E \cdot m}{(h + R_E)^2}$$

Se constante, assuma latitude 45°32'33" do padrão ISA:

$$g_0 = 9,80665 \text{ m/s}^2$$

Nos referenciais ECEF, NED e FRD some a aceleração fictícia de **Coriollis** (causada pela rotação da Terra):

$$\vec{a}_{\text{Coriollis}} = 2 \vec{\omega}_{\text{E}} \times \vec{v}$$

Força Peso é a atração gravitacional **menos** a aceleração centrípeta necessária para produzir o movimento circular:

$$|\vec{W} = m \cdot \vec{g}| \qquad \vec{g} = -\hat{r} \cdot (G \cdot M_E \cdot r^{-2}) - \vec{\omega}_E \times (\vec{\omega}_E \times \vec{r})$$

CENTRO DE **G**RAVIDADE

Força Peso atua sobre o Centro de Gravidade (CG):

- » Forças gravitacionais atuam <u>distribuidamente</u> em todo o volume do corpo, variando módulo e direção.
- » Por simplicidade, considera-se um **CG** que <u>concentre</u> toda a força gravitacional que o corpo sofre.
- » **CG** se afasta do **CM**, em <u>corpos extensos</u>:
 - » Então a gravidade realiza torque.
- » Para nossas aplicações, CG está no CM.

MODELO GRAVITACIONAL MSL: EGM 96

EGM 96: Earth Gravitational Model (1996)

Coeficientes: **WGS84**=32K **EGM96**=130K **EGM2008**=4,6M

ACELERAÇÃO DA GRAVIDADE: LATITUDE

Variação com Latitude: Ellipsoidal Gravity Formula (WGS84)

$$g_{Equador} = g_e = 9,7803253359 \text{ m/s}^2$$

$$g_{polos} = g_p = 9.8321849378 \text{ m/s}^2$$

$$g(\varphi) = g_e \cdot \left(\frac{1 + k \cdot \text{sen}^2 \varphi}{\sqrt{1 - e^2 \cdot \text{sen}^2 \varphi}} \right)$$

$$k = \frac{b \cdot g_p}{a \cdot g_e} - 1$$

A aceleração centrífuga é responsável por 2/3 da variação.

ACELERAÇÃO DA GRAVIDADE: ALTITUDE

Varia quadraticamente com a Altitude... 30kft $\approx -0.3\%$

» aproximado por uma série de Taylor (WGS 84):

$$g(h, \varphi) = g(\varphi) \cdot \left[1 - \left(1 + f + \frac{\omega_E^2 a^2 b}{G \cdot M_E} - 2 f sen^2 \varphi \right) \cdot \frac{2h}{a} + \frac{3h^2}{a^2} \right]$$

» Ou linearmente:

$$\Delta g = \frac{G \cdot M_E}{(R_E + h)^2} - \frac{G \cdot M_E}{R_E^2} \approx \frac{2 G \cdot M_E}{R_E^3} \cdot h$$

$$h \ll R_E = \sqrt{a \cdot b}$$
 \Rightarrow $g = g(\varphi) - 3,086.10^{-6} \cdot h$

REFERENCIAL NED: <u>N</u>orth-<u>E</u>ast-<u>D</u>own

Orientação: sempre nivelado (tangente ao solo):

• X_{NFD}: North: polo norte verdadeiro (eixo)

• Y_{NED}: **East**: complete a base ortogonal

Z_{NED}: Down: direção da vertical (elipsoide)

Origem: (alternativas)

- a) Fixo no ponto de lançamento
- b) Centro do veículo
- c) Fixo no solo, altitude zero

ESF: Earth-Surface-Fixed

Sistema de Coordenadas: cartesiano

Alternativa: **ENU** (East-North-Up)

REFERENCIAL DE NAVEGAÇÃO

Referencial **NED** posicionado sempre no centro do corpo.

Relação entre as velocidades **NED** e coordenadas **LLA**:

$$\dot{\lambda} = \frac{v_{\text{east}}}{(R_{\text{N}} + h) \cdot \cos \varphi} \qquad \dot{\varphi} = \frac{v_{\text{north}}}{R_{\text{M}} + h} \qquad \dot{h} = -v_{\text{down}}$$

$$\dot{oldsymbol{\phi}} = rac{\mathsf{v}_{\mathsf{north}}}{\mathsf{R}_{\mathsf{M}} + \mathsf{h}}$$

$$\dot{h} = -v_{down}$$

Raio de Curvatura Normal

$$R_{N} = \frac{a}{\sqrt{1 - e^{2} \operatorname{sen}^{2} \varphi}}$$

Raio de Curvatura do Meridiano

$$R_{N} = \frac{a}{\sqrt{1 - e^{2} \sin^{2} \phi}}$$
 $R_{M} = \frac{a(1 - e^{2})}{(\sqrt{1 - e^{2} \sin^{2} \phi})^{3}}$

CONVERSÃO NED / ECEF

<u>DE</u>: **ECEF** em coord. esféricas geocêntrico ou geodésico

PARA: **NED** em coordenadas cartesianas

Duas rotações sucessivas:

Eixo Z de acordo com a longitude

Eixo Y de acordo com a latitude

$$\begin{bmatrix} X_{\text{NED}} \\ Y_{\text{NED}} \\ Z_{\text{NED}} \end{bmatrix} = \begin{bmatrix} -\operatorname{sen}\boldsymbol{\varphi} \cdot \cos\boldsymbol{\lambda} & -\operatorname{sen}\boldsymbol{\varphi} \cdot \operatorname{sen}\boldsymbol{\lambda} & \cos\boldsymbol{\varphi} \\ -\operatorname{sen}\boldsymbol{\lambda} & \cos\boldsymbol{\lambda} & 0 \\ -\cos\boldsymbol{\varphi} \cdot \cos\boldsymbol{\lambda} & -\cos\boldsymbol{\varphi} \cdot \operatorname{sen}\boldsymbol{\lambda} & -\operatorname{sen}\boldsymbol{\varphi} \end{bmatrix} \begin{bmatrix} X_{\text{ECEF}} \\ Y_{\text{ECEF}} \\ Z_{\text{ECEF}} \end{bmatrix}$$

REFERENCIAL DO CORPO FRD: <u>Forward-Right-Down</u>

Orientação:

- X_{FRD}: **Forward**: eixo longitudinal arbitrário do veículo (simetria)
- Y_{FRD}: Right: completa a base ortogonal
- Z_{FRD}: **Down**: tal que o plano X-Z forme um plano de simetria

Origem: alternativas:

- a) Centro de Massa do veículo (após a queima de combustível)
- b) ponto arbitrário do veículo (body)

Sistemas de Coordenadas: cartesiano

Representação de Orientações FRD: (6DoF)

- a) Ângulos de Euler (ψ , θ , φ) c) Quaternions (4 escalares)
- b) Matriz de Rotação 3x3 (**DCM**) d) Eixo-Ângulo (Rodrigues)

VELOCIDADES DO CORPO

Na literatura técnica, é muito comum representar por letras:

- <u>Velocidades lineares</u> (nas direções do eixo do corpo **FRD**):
 - u: para frente (X_{FRD})
 - v: para a direita (Y_{FRD})
 - w: para baixo (Z_{FRD})
- Velocidades angulares (rotação ao redor dos eixo do corpo):
 - p: velocidade de rolamento no eixo longitudinal (*clockwise*)
 - q: velocidade de arfagem (cabrada, levantar o nariz)
 - r: velocidade de guinada (virar à direita)

VELOCIDADE AERODINÂMICA

Um corpo imerso em fluído (ar) sofre forças devido ao deslocamento <u>relativo</u> a esse fluído.

Velocidade do corpo: \vec{v}_b

Velocidade do vento: \vec{v}_{w}

Velocidade aerodinâmica: $\vec{v}_a = \vec{v}_b - \vec{v}_w$

Velocidade do Vento:

direção e intensidade de deslocamento da massa de ar no local

Velocidade Aerodinâmica:

é a velocidade do veículo <u>relativa</u> à velocidade do ar do local

REFERENCIAL AERODINÂMICO (Aer)

Orientação: (apropriado para aviões, com duas asas simétricas)

- X_{Aer}: direção da velocidade aerodinâmica
- Y_{Aer}: completa a base ortogonal
- Z_{Aer} : perpendicular à X_{Aer} e contido no plano $X-Z_{FRD}$

Origem: ponto arbitrário do veículo (consulte seu aerodinamicista)

	Ângulo de ataque (AOA):	a_{Aer}
	Ângulo de derrapagem (AOS):	eta_{Aer}
Mísseis:	Ângulo de ataque total:	σ_{Aer}
	Ângulo de rolamento aerodinâmico:	$oldsymbol{arphi}_{Aer}$

REFERENCIAIS CORPO E AERODINÂMICO

