# AI Systems Ontology: Relazione Progettuale

Autore: Leonardo Magliolo

Corso di: Semantic Web 2024/2025

Università di Torino - Facoltà di Informatica

### 1 Motivazioni

L'ontologia progettata per i sistemi di intelligenza artificiale costituisce uno strumento di ricerca avanzato per la rappresentazione della conoscenza, essenziale in ambito accademico e applicativo. La sua formalizzazione in OWL/SKOS permette di modellare in modo non ambiguo concetti chiave – ad esempio "modello", "metodo di apprendimento", "dominio applicativo" – e le relazioni fra essi, agevolando l'analisi comparativa di pubblicazioni scientifiche e dataset sperimentali.

Dal punto di vista della ricerca, l'ontologia abilita:

- Competency questions formalizzate e traducibili in query SPARQL ottimizzate, garantendo riproducibilità sperimentale e copertura del dominio;
- Inferenza automatica tramite reasoner OWL, che mette in luce relazioni implicite fra entità, supportando la scoperta di pattern non immediatamente evidenti nei dati di partenza.
- Ricerca semantica di informazioni: anziché limitarsi a stringhe testuali, i ricercatori possono interrogare il grafo con criteri di similarità concettuale o percorsi semantici, migliorando la pertinenza dei risultati e riducendo il rumore informativo.

Inoltre, l'ontologia è progettata per integrarsi con metodi NLP, consentendo di arricchire automaticamente il knowledge graph con entità e relazioni estratte da testi scientifici. Ciò abilita workflow ibridi in cui output di moduli NLP vengono mappati direttamente in triple RDF, accelerando la costruzione e l'aggiornamento della base di conoscenza.

Infine, l'allineamento con ontologie di dominio assicura la riusabilità e l'interoperabilità: gruppi di ricerca differenti possono estendere o integrare nuove conoscenze senza ricostruire da zero la struttura concettuale, favorendo collaborazioni e benchmarking su dataset comuni.

In sintesi, l'ontologia AI-oriented proposta costituisce un'infrastruttura di ricerca rigorosa, in cui formalismi ontologici, inferenza semantica e integrazione NLP concorrono a potenziare sia la qualità delle analisi bibliometriche sia la scoperta di nuove correlazioni scientifiche.

## 2 Requirements per la creazione dell'ontologia

## 2.1 Finalità generali

L'ontologia "AI Systems Ontology" è stata concepita per fornire una **rappresentazione semantica** rigorosa delle componenti chiave dei sistemi di intelligenza artificiale (paper, modelli, task, dataset, metodi, metriche), riducendo l'ambiguità terminologica e rendendo esplicite le relazioni formali tra entità. Tale codifica formale — realizzata in OWL/SKOS con namespace http://example.org/ai-ontology# — assicura:

- Espressività nel descrivere classi complesse (p. es. DeepLearningModel, HybridModel) e le loro proprietà strutturali e logiche;
- Inferibilità, grazie all'applicazione di un reasoner OWL, per estrarre relazioni implicite (p. es. implicazioni tra metodi e metriche di valutazione);
- Interoperabilità, mediante allineamenti (owl:equivalentClass, rdfs:subClassOf) con ontologie di settore.

### 2.2 Task specifici e contesto d'uso

L'ontologia è orientata a supportare principalmente tre task di ricerca e validazione:

- 1. Consultazione semantica interrogazione di knowledge graph via SPARQL per recuperare informazioni strutturate (es. elenco di paper che "employModel" con un certo "TrainingAlgorithm").
- 2. Reference e verifica validazione delle assunzioni sperimentali attraverso competency questions tradotte in query SPARQL riproducibili (es. conteggio delle istanze di SymbolicModel e verifica dell'allineamento con risorse esterne).
- 3. Estrazione e popolamento integrazione automatica di entità e relazioni estratte da testi scientifici (moduli NLP per Named Entity Recognition e Relation Extraction) per aggiornare dinamicamente la A-Box del grafo.

Il contesto di applicazione è un ambiente di ricerca accademica e industriale, in cui data scientist e knowledge engineer necessitano di un'infrastruttura semantica per analisi comparativa, audit dei workflow e produzione di report standardizzati.

### 2.3 Tipologia di utenti

- Ricercatori in intelligenza artificiale: necessitano di strumenti per formulare ipotesi, eseguire query complesse e confrontare approcci metodologici.
- Knowledge engineer e ontologi: hanno bisogno di estendere, allineare e validare strutture ontologiche secondo best practice OWL.
- Data curator e bibliometrici: utilizzano la codifica semantica per generare metriche di performance, visualizzazioni di trend e supportare processi di peer review e compliance normativa.

## 3 Descrizione del dominio

L'ontologia "AI Systems Ontology" è dedicata alla rappresentazione semantica del panorama della ricerca in Intelligenza Artificiale, con un focus sui principali artefatti scientifici (paper, autori, conferenze/riviste) e sugli elementi tecnici (task, metodi, modelli, dataset, metriche di valutazione) che ne costituiscono il contesto. In particolare, il dominio copre:

- Paper e loro metadati (titolo, data di pubblicazione, autori, venue) come unità di conoscenza primaria;
- Autori e venue (conferenze e riviste) per tracciare network di collaborazione e standard di divulgazione;
- Task (ad es. Computer Vision, Natural Language Processing), Method (classiche vs. deep learning), Model (simbolici, ibridi, reti neurali) e relativi TrainingAlgorithm, per descrivere le tecniche applicate;
- Dataset e Evaluation metrics (accuracy, F1-score, BLEU, ecc.) per caratterizzare la sperimentazione e i benchmark di performance.

Questa struttura semantica scaturisce dall'analisi di tassonomie esistenti come l'InnoGraph AI Taxonomy, che integra dati da Wikipedia, ACM CCS, CSO e altre fonti per offrire una visione olistica dei topic AI. Il dominio è stato ulteriormente raffinito tramite allineamenti a ontologie di settore (ad es. CSO per le aree di ricerca) e pattern di modellazione OWL che garantiscono coerenza logica e inferibilità.

La "The InnoGraph Artificial Intelligence Taxonomy" è stata utilizzata come punto di riferimento centrale nella progettazione dell'"AI Systems Ontology". In particolare, ha fornito l'ispirazione per:

Definire l'ampiezza del dominio, includendo metodi, modelli, task, dataset, metriche, pubblicazioni, autori e application areas.

Integrare più fonti esterne attraverso annotazioni SKOS, in modo da garantire interoperabilità con CSO, Wikipedia/CPC e altre tassonomie consolidate.

Segmentare metodi e modelli secondo la simili suddivisione (simbolici, ML tradizionale, deep learning) e gestire dataset e valutazioni con proprietà inverse, replicando lo schema di InnoGraph.

In sintesi, l'approccio di InnoGraph—ampio, multi-sorgente e semantico—ha guidato ogni decisione di design, rendendo la tassonomia un'ispirazione costante per la struttura e i contenuti dell'ontologia.

## 4 Competency Questions

### • Recupero direzionale

– Quali entità (paper, modelli, autori, task, ecc.) soddisfano una data relazione semantica (ad esempio: "impiegano un certo tipo di modello" o "sono pubblicati in una conferenza")?

### • Analisi quantitativa

— Qual è la distribuzione numerica di entità raggruppate per una proprietà di interesse (ad esempio: numero di paper per task, numero di paper per anno, numero di autori per venue)?

#### • Verifica di copertura

– Quali entità definite nel dominio non risultano collegate ad altre entità rilevanti (ad esempio: dataset non utilizzati, modelli non impiegati, task non affrontati)?

### • Pattern compositi

– Quali combinazioni di classi e proprietà ricorrono frequentemente nei documenti o nei grafi sperimentali (ad esempio: coppie modello-algoritmo di training, coppie metodo-metrica di valutazione)?

#### • Allineamento esterno

- Come si confrontano e si integrano le entità interne (paper, autori, modelli, dataset) con risorse esterne di riferimento (ad esempio: conferenze, repository)?

### 5 Documentazione sul dominio

#### 5.1 Struttura concettuale del dominio

Il dominio della ricerca in AI può essere descritto come una galassia di entità e relazioni che riflettono il ciclo di vita dell'innovazione scientifica. Gli elementi fondamentali di questo ecosistema includono:

- **Persone**: Ricercatori, autori di articoli, inventori di brevetti, sviluppatori di software, docenti universitari e leader di progetti.
- Organizzazioni: Università, centri di ricerca, aziende, startup, agenzie di finanziamento, consorzi e associazioni professionali.
- Risorse scientifiche: Articoli, capitoli di libro, tesi, presentazioni a conferenze, dataset e modelli AI pubblicati.
- Tecniche, modelli e algoritmi: Algoritmi, architetture, paradigmi di apprendimento (come machine learning, deep learning, reinforcement learning), metodi specifici (es. attenzione, regularizzazione), modelli di stato dell'arte (es. GPT-4, BERT, Efficient-Net, ResNet).
- Task e problemi: Problemi di classificazione, regressione, generazione di testo, riconoscimento di immagini, segmentazione, question answering, ecc.
- Ambiti applicativi: Domini verticali di applicazione come medicina, agricoltura di precisione, finanza, industria 4.0, trasporti autonomi, energia, legaltech, robotica, ecc.
- Software e infrastrutture: Framework (TensorFlow, PyTorch, Keras), librerie di supporto, piattaforme di condivisione di modelli (HuggingFace), ambienti di calcolo distribuito.
- Valutazione e benchmarking: Dataset di test, leaderboards, competizioni, metriche standardizzate di performance e robustezza.

## 5.2 Esempio concreto di entità e relazioni

Un esempio reale che illustra la complessità del dominio è l'articolo scientifico pubblicato su arXiv, associato a un modello disponibile su GitHub, validato tramite un benchmark su un dataset pubblico (ad esempio ImageNet), e citato in una challenge (come la ImageNet Large Scale Visual Recognition Challenge). In questo esempio, si evidenziano le seguenti relazioni:

- L'autore è affiliato a una università e ha rilasciato il codice su GitHub.
- Il modello è stato addestrato su un dataset pubblico e i risultati sono confrontati in una leaderboard internazionale.
- L'articolo è referenziato da altri lavori e può essere oggetto di brevetto o di ulteriore sviluppo da parte di aziende.

### 5.3 Fonti documentali e tassonomie di riferimento

- Wikipedia e DBpedia: Articoli, categorie e glossari che coprono tecniche, applicazioni, dataset, personalità di rilievo e storie dell'AI. Gli outline e le liste tematiche aiutano a navigare rapidamente fra le principali aree dell'AI.
- arXiv: Portale di preprint dove la quasi totalità della letteratura più recente viene pubblicata, con categorizzazioni tematiche (cs.AI, cs.LG, cs.CV, ecc.) che riflettono la suddivisione del dominio scientifico.
- PapersWithCode: Portale che collega pubblicazioni, codice sorgente, dataset e risultati di benchmarking.
- ACM CCS, Computer Science Ontology (CSO): Sistemi di classificazione e tassonomie che riflettono la struttura della ricerca in computer science e AI.
- Patent Classification Systems (es. Cooperative Patent Classification, CPC): Sistemi di classificazione che inquadrano le invenzioni AI rispetto ai loro ambiti applicativi industriali e tecnologici.

Esempi di schemi e dati reali:

```
Infobox di Wikipedia
```

| Nome modello = GPT-4

| Dataset di training = Common Crawl, Wikipedia, BooksCorpus

 ${\tt Dataset\ PapersWithCode}$ 

Task: Image Classification

Dataset: ImageNet
Model: ResNet-50

Score: Top-1 Accuracy 76.0%

Framework: PyTorch

Paper: "Deep Residual Learning for Image Recognition"

Repository: https://github.com/KaimingHe/deep-residual-networks

Estratto da arXiv (cs.AI)

Titolo: "A General Language Assistant as a Laboratory for Alignment"

Autori: John Smith, Jane Doe Categorie: cs.AI, cs.CL

Abstract: "We introduce a new framework for language model alignment con human prefer

Link: https://arxiv.org/abs/2302.12345

Tabella di classi di problemi (esempio schematico)

Macroarea Sottocategoria Esempio Task Dataset tipico

Computer Vision Image Classification Identificazione oggetti ImageNet, CIFAR Natural Language Question Answering Risposta a domande libere SQuAD, Natural Robotics Motion Planning Navigazione robotica KITTI, Waymo Protein Structure Bioinformatics Predizione struttura proteica AlphaFold 1

### 5.4 Standard e modelli di riferimento

Il dominio fa costantemente riferimento a una pluralità di tassonomie, classificazioni e sistemi di reference che servono a garantire interoperabilità, comparabilità dei risultati e chiarezza terminologica. Esempi rilevanti:

- ACM Computing Classification System: Classifica la letteratura scientifica secondo aree tematiche codificate.
- CSO (Computer Science Ontology): Tassonomia aggiornata automaticamente dalla letteratura scientifica.
- CPC (Cooperative Patent Classification): Classificazione dettagliata delle invenzioni brevettate in base alla loro natura tecnologica e applicativa.
- EuroSciVoc: Thesaurus europeo che classifica i progetti di ricerca secondo aree scientifiche e ingegneristiche, incluso l'AI.

Questi sistemi permettono di mappare le entità del dominio in modo coerente, facilitando l'allineamento e la federazione di dati fra fonti eterogenee.

## 5.5 Considerazioni sulla varietà e profondità del dominio

Il dominio della ricerca scientifica in AI si caratterizza per una notevole eterogeneità: i confini fra sottodiscipline sono sfumati e spesso emergono nuove aree interdisciplinari (es. AI per le neuroscienze, AI etica, explainable AI, AI generativa). Allo stesso tempo, la profondità delle specializzazioni consente una verticalizzazione molto marcata: dalla teoria alla pratica, dall'algoritmo generale al micro-task su dati specifici.

L'evoluzione continua delle metodologie, l'emergere di nuovi paradigmi (es. foundation models, few-shot learning, AI ibrida simbolica-connessionista) e l'intensa produzione scientifica richiedono strumenti strutturati e condivisi per rappresentare, organizzare e ricercare la conoscenza del dominio.

## 5.6 Esempio reale per la A-box

Caso d'uso: Un utente vuole scoprire quali sono i modelli di AI più utilizzati in ambito medico per la diagnostica su immagini radiologiche.

Esempio di dato:

• Task: Medical Image Classification

• Dataset: ChestX-ray14

• Modello: DenseNet-121

• Autore principale: Dr. Jane Doe

• Organizzazione: Stanford University

• Articolo di riferimento: "CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning"

• Score: AUC 0.84

Questa scheda, modellata come individuo nella A-box dell'ontologia, riflette la varietà delle entità e delle relazioni che compongono il dominio, e la necessità di mettere in relazione task, dataset, modelli, autori, organizzazioni e risultati.

## 6 OntOlogy Pitfall Scanner (OOPS)

OOPS riporta checklist vuota

### 7 Visualizzazione

Di seguito vengono presentate tre visualizzazioni chiave che illustrano rispettivamente la tassonomia delle classi, la struttura relazionale attorno alla classe Model e la struttura relazionale attorno alla classe Paper. Le immagini sono state salvate nella cartella images.

#### 7.1 Tassonomia delle classi

La Figura 1 mostra la gerarchia delle classi a partire da owl: Thing come radice. In alto, le classi di dominio più generali (ad esempio ApplicationArea, Author, Conference, Dataset, Evaluation, Journal), seguite dalle sottoclassi relative a Method e Model. Nello specifico:

- Method è suddivisa in HybridMethod, MachineLearningMethod e RuleBasedMethod.
   MachineLearningMethod si articola ulteriormente in DeepLearningMethod e TraditionalMLMethod, mentre RuleBasedMethod ha come sottoclasse SymbolicMethod.
- Model presenta analoghe suddivisioni: HybridModel, MachineLearningModel e RuleBasedModel. MachineLearningModel si distingue in DeepLearningModel e TraditionalMLModel, mentre RuleBasedModel presenta la sottoclasse SymbolicModel.
- Le classi "foglia" includono anche Paper, Repository, Task e TrainingAlgorithm.

Questa tassonomia aiuta a comprendere come le entità principali siano organizzate in aree tematiche coerenti e gerarchiche, facilitando l'uso di ragionatori OWL per l'inferenza sui sottoinsiemi e la coerenza logica.

### 7.2 Struttura relazionale della classe Model

Nella Figura 2 è rappresentata la classe Model al centro del grafo, con:

- I nodi corrispondenti alle sottoclassi dirette (HybridModel, MachineLearningModel, RuleBasedModel), ciascuna a sua volta collegata alle proprie sottoclassi (DeepLearningModel, TraditionalMLModel, SymbolicModel).
- Le proprietà oggetto principali: ad esempio, employsModel (utilizzata per collegare un Paper a un determinato Model) e la proprietà inversa isModelEmployedBy.
- Le relazioni di disgiunzione (annotate come owl:disjointWith) che separano classi semanticamente incompatibili (ad esempio, Model è disgiunta da Conference, Dataset, Evaluation, Journal, Paper, Task, Author, Repository, Method, Thing e Nothing).

Questa visualizzazione evidenzia come Model si collochi all'interno dell'ontologia, mostrando sia l'albero di sottoclassi che le principali proprietà relazionali con le altre classi di dominio.

## 7.3 Struttura relazionale della classe Paper

La Figura 3 mostra la classe Paper al centro, con:

- Alcune istanze di esempio (ad es. Paper1, Paper2, Paper3, ...) collegate tramite l'arco rdf:type alla classe Paper.
- Le relazioni verso le classi di dominio (quali Author, Model, Task, Conference, Dataset, Evaluation, Method), ciascuna marcata come owl:disjointWith rispetto a Paper. Ciò sottolinea come un'istanza di Paper non possa appartenere simultaneamente a nessuna di queste altre classi.
- Le frecce etichettate con predicate e type per illustrare le proprietà usate (ad esempio, hasTitle, hasAuthor, addressesTask, employsModel, publishedIn, hasDate, usesDataset, usesEvaluationMetric).

Questa mappa relazionale permette di comprendere rapidamente come gli articoli scientifici (Paper) si collegano a tutti gli altri elementi dell'ontologia, nonché quali proprietà semanticamente impattano la coerenza del grafo (tramite disjointness).

| Subject                                                                             | Predicate                             | Object                                                     |
|-------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------|
| :Author_AliceSmith :Author_AliceSmith :Author_BobRossi :Author_BobRossi             | a :hasTitle a :hasTitle               | :Author "Alice Smith" :Author "Bob Rossi"                  |
| :ComputerVisionClass<br>:ComputerVisionClass                                        | a<br>rdfs:label                       | :ApplicationArea<br>"Computer Vision"                      |
| :Task_ImageClassification<br>:Task_ImageClassification<br>:Task_ImageClassification | a<br>:hasTitle<br>:hasApplicationArea | :Task<br>"Image Classification"<br>:ComputerVisionClass    |
| :SGD<br>:SGD                                                                        | a<br>:hasTitle                        | :TrainingAlgorithm ${\rm ``SGD"}$                          |
| :ResNet50<br>:ResNet50                                                              | a<br>:usesTrainingAlgorithm           | :DeepLearningModel<br>:SGD                                 |
| :Paper1<br>:Paper1                                                                  | a<br>:hasTitle                        | :Paper<br>"Efficient ResNet50 for Image<br>Classification" |
| :Paper1                                                                             | :hasAuthor                            | :Author_AliceSmith,<br>:Author_BobRossi                    |
| :Paper1                                                                             | :publishedIn                          | :CVPR2023                                                  |
| :Paper1                                                                             | :hasDate                              | "2023-06-20"8sd:date                                       |
| :Paper1                                                                             | :addressesTask                        | $: {\tt Task\_ImageClassification}$                        |
| :Paper1                                                                             | :employsModel                         | :ResNet50                                                  |
| :Paper1                                                                             | :usesDataset                          | :ImageNet                                                  |
| :Paper1                                                                             | :hasEvaluation                        | :Accuracy, :Precision, :Recall                             |

Table 1: Esempio compatto di triple RDF rappresentate a livello dell'ontologia



Figure 1: Tassonomia delle classi principali nell'ontologia AI Systems Ontology.



Figure 2: Grafo delle relazioni principali con la classe Model.



Figure 3: Grafo delle relazioni principali con la classe Paper, incluse alcune istanze di esempio.

## 8 L'ontologia in formato Turtle

```
@prefix : <http://example.org/ai-ontology#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xml: <http://www.w3.org/XML/1998/namespace> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix vann: <http://purl.org/vann/> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@base <http://example.org/ai-ontology#> .
<http://example.org/ai-ontology> rdf:type owl:Ontology ;
                                                                             dc:creator "Leonardo Magliolo" ;
                                                                             dc:date "2024-03-25";
                                                                             dc:description "Ontology modeling AI systems, method
                                                                             dc:rights "CC BY 4.0";
                                                                             dc:title "Ontology of AI Systems"@en ;
                                                                             dcterms:license <a href="https://creativecommons.org/license">https://creativecommons.org/license</a>
                                                                             vann:preferredNamespacePrefix "ai" ;
                                                                             vann:preferredNamespaceUri "http://example.org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-org/ai-o
                                                                             rdfs:label "AI Systems Ontology"@en .
Annotation properties
### http://purl.org/dc/elements/1.1/creator
dc:creator rdf:type owl:AnnotationProperty .
### http://purl.org/dc/elements/1.1/date
dc:date rdf:type owl:AnnotationProperty .
### http://purl.org/dc/elements/1.1/description
dc:description rdf:type owl:AnnotationProperty .
### http://purl.org/dc/elements/1.1/rights
dc:rights rdf:type owl:AnnotationProperty .
### http://purl.org/dc/elements/1.1/title
dc:title rdf:type owl:AnnotationProperty .
```

```
### http://purl.org/dc/terms/license
dcterms:license rdf:type owl:AnnotationProperty .
### http://purl.org/vann/preferredNamespacePrefix
vann:preferredNamespacePrefix rdf:type owl:AnnotationProperty .
   http://purl.org/vann/preferredNamespaceUri
vann:preferredNamespaceUri rdf:type owl:AnnotationProperty .
### http://www.w3.org/2004/02/skos/core#closeMatch
skos:closeMatch rdf:type owl:AnnotationProperty .
### http://www.w3.org/2004/02/skos/core#exactMatch
skos:exactMatch rdf:type owl:AnnotationProperty .
### http://www.w3.org/2004/02/skos/core#narrowMatch
skos:narrowMatch rdf:type owl:AnnotationProperty .
Datatypes
### http://www.w3.org/2001/XMLSchema#date
xsd:date rdf:type rdfs:Datatype .
Object Properties
http://example.org/ai-ontology#addressesTask
:addressesTask rdf:type owl:ObjectProperty ;
            owl:inverseOf :isTaskAddressedBy ;
            rdfs:domain [ rdf:type owl:Class ;
                       owl:unionOf ( :Model
                                  :Paper
                     ];
            rdfs:range :Task ;
            rdfs:comment "Relates a paper or model to the task it addresses."@en ;
            rdfs:label "addresses task"@en .
```

```
### http://example.org/ai-ontology#applicationAreaOf
:applicationAreaOf rdf:type owl:ObjectProperty ;
                   owl:inverseOf :hasApplicationArea ;
                   rdfs:domain :ApplicationArea ;
                   rdfs:range :Task ;
                   rdfs:comment "Relates an application area to the tasks that belong
                   rdfs:label "application area of "@en .
### http://example.org/ai-ontology#authored
:authored rdf:type owl:ObjectProperty;
          owl:inverseOf :hasAuthor ;
          rdfs:domain :Author ;
          rdfs:range :Paper ;
          rdfs:comment "Relates an author to the papers they wrote. (Inverse of hasAu
          rdfs:label "authored"@en .
### http://example.org/ai-ontology#coAuthorOf
:coAuthorOf rdf:type owl:ObjectProperty ,
                     owl:SymmetricProperty ;
            rdfs:domain :Author ;
            rdfs:range :Author ;
            owl:propertyChainAxiom ( :authored
                                     :hasAuthor
            rdfs:comment "Two authors are co-authors if they have written the same page
            rdfs:label "co-author of"@en .
### http://example.org/ai-ontology#employsModel
:employsModel rdf:type owl:ObjectProperty ;
              owl:inverseOf :isModelEmployedBy ;
              rdfs:domain :Paper ;
              rdfs:range :Model ;
              rdfs:comment "Relates a paper to the model it employs."@en ;
              rdfs:label "employs model"@en .
### http://example.org/ai-ontology#hasApplicationArea
:hasApplicationArea rdf:type owl:ObjectProperty ;
                    rdfs:domain :Task ;
                    rdfs:range :ApplicationArea ;
                    rdfs:comment "Relates a task to its application area."@en ;
                    rdfs:label "has application area"@en .
```

```
### http://example.org/ai-ontology#hasAuthor
:hasAuthor rdf:type owl:ObjectProperty ;
           rdfs:domain :Paper ;
           rdfs:range :Author ;
           rdfs:comment "Relates a paper to its author(s)."@en ;
           rdfs:label "has author"@en .
### http://example.org/ai-ontology#hasAuthorList
:hasAuthorList rdf:type owl:ObjectProperty ;
               owl:inverseOf :isAuthorListOf ;
               rdfs:domain :Paper ;
               rdfs:range :AuthorList ;
               rdfs:comment "Relates a paper to its ordered list of authors."@en ;
               rdfs:label "has author list"@en .
### http://example.org/ai-ontology#hasEvaluation
:hasEvaluation rdf:type owl:ObjectProperty ;
               owl:inverseOf :isEvaluationOf ;
               rdfs:domain [ rdf:type owl:Class ;
                             owl:unionOf ( :Model
                                           :Paper
                           ];
               rdfs:range :Evaluation ;
               rdfs:comment "Relates a paper or model to its evaluation metric."@en ;
               rdfs:label "has evaluation"@en .
### http://example.org/ai-ontology#hasFirstNode
:hasFirstNode rdf:type owl:ObjectProperty ;
              owl:inverseOf :isFirstNodeOf ;
              rdfs:domain :AuthorList ;
              rdfs:range :AuthorListNode ;
              rdfs:comment "Relates an author list to its first node."@en ;
              rdfs:label "has first node"@en .
### http://example.org/ai-ontology#hasListAuthor
:hasListAuthor rdf:type owl:ObjectProperty ;
               owl:inverseOf :isListAuthorOf ;
               rdfs:domain :AuthorListNode ;
               rdfs:range :Author ;
               rdfs:comment "Relates a node in the list to the corresponding author."
               rdfs:label "has list author"@en .
```

```
### http://example.org/ai-ontology#hasMethod
:hasMethod rdf:type owl:ObjectProperty ;
           owl:inverseOf :isMethodOfModel ;
           rdfs:domain :Model ;
           rdfs:range :Method ;
           rdfs:comment "Relates a model to the method it implements."@en ;
           rdfs:label "has method"@en .
### http://example.org/ai-ontology#hasNextNode
:hasNextNode rdf:type owl:ObjectProperty ;
             owl:inverseOf :isPreviousNodeOf ;
             rdf:type owl:TransitiveProperty ;
             rdfs:domain :AuthorListNode ;
             rdfs:range :AuthorListNode ;
             rdfs:comment "Relates a node to the next node in the list."@en ;
             rdfs:label "has next node"@en .
### http://example.org/ai-ontology#hostsDataset
:hostsDataset rdf:type owl:ObjectProperty ;
              owl:inverseOf :isHostedBy ;
              rdfs:domain :Repository ;
              rdfs:range :Dataset ;
              rdfs:comment "Relates a repository to the datasets it hosts."@en ;
              rdfs:label "hosts dataset"@en .
### http://example.org/ai-ontology#isAuthorListOf
:isAuthorListOf rdf:type owl:ObjectProperty;
                rdfs:domain :AuthorList ;
                rdfs:range :Paper ;
                rdfs:comment "Relates an author list to the paper that owns it (inverse
                rdfs:label "is author list of "@en .
### http://example.org/ai-ontology#isDatasetUsedBy
:isDatasetUsedBy rdf:type owl:ObjectProperty;
                 owl:inverseOf :usesDataset :
                 rdfs:domain :Dataset ;
                 rdfs:range [ rdf:type owl:Class ;
                              owl:unionOf ( :Model
                                            :Paper
                            ] ;
                 rdfs:comment "Relates a dataset to the papers or models that rely on
                 rdfs:label "is dataset used by"@en .
```

```
### http://example.org/ai-ontology#isEvaluationOf
:isEvaluationOf rdf:type owl:ObjectProperty;
                rdfs:domain :Evaluation ;
                rdfs:range [ rdf:type owl:Class ;
                             owl:unionOf (:Model
                                            :Paper
                           ] ;
                rdfs:comment "Relates an evaluation metric to the paper or model it as
                rdfs:label "is evaluation of "@en .
### http://example.org/ai-ontology#isFirstNodeOf
:isFirstNodeOf rdf:type owl:ObjectProperty;
               rdfs:domain :AuthorListNode ;
               rdfs:range :AuthorList ;
               rdfs:comment "Relates an author list node to the list it is the first
               rdfs:label "is first node of"@en .
### http://example.org/ai-ontology#isHostedBy
:isHostedBy rdf:type owl:ObjectProperty;
            rdfs:domain :Dataset ;
            rdfs:range :Repository ;
            rdfs:comment "Relates a dataset to the repository that hosts it. (Inverse
            rdfs:label "is hosted by"@en .
### http://example.org/ai-ontology#isListAuthorOf
:isListAuthorOf rdf:type owl:ObjectProperty ;
                rdfs:domain :Author ;
                rdfs:range :AuthorListNode ;
                rdfs:comment "Relates a list node to the author it represents (inverse
                rdfs:label "is list author of "@en .
### http://example.org/ai-ontology#isMethodOfModel
:isMethodOfModel rdf:type owl:ObjectProperty ;
                 rdfs:domain :Method ;
                 rdfs:range :Model ;
                 rdfs:comment "Relates a method to the model that implements it. (Investigation)
                 rdfs:label "is method of model"@en .
### http://example.org/ai-ontology#isMethodUsedBy
```

:isMethodUsedBy rdf:type owl:ObjectProperty ;

```
owl:inverseOf :usesMethod ;
                rdfs:domain :Method ;
                rdfs:range [ rdf:type owl:Class ;
                             owl:unionOf ( :Model
                                            :Paper
                           ] ;
                rdfs:comment "Relates a method to the papers or models that employ it
                rdfs:label "is method used by"@en .
### http://example.org/ai-ontology#isModelEmployedBy
:isModelEmployedBy rdf:type owl:ObjectProperty ;
                   rdfs:domain :Model ;
                   rdfs:range :Paper ;
                   rdfs:comment "Relates a model to the papers that employ it. (Invers
                   rdfs:label "is model employed by"@en .
### http://example.org/ai-ontology#isPreviousNodeOf
:isPreviousNodeOf rdf:type owl:ObjectProperty ,
                           owl:TransitiveProperty ;
                  rdfs:domain :AuthorListNode ;
                  rdfs:range :AuthorListNode ;
                  rdfs:comment "Relates a node to the node that precedes it in the au
                  rdfs:label "is previous node of"@en .
### http://example.org/ai-ontology#isTaskAddressedBy
:isTaskAddressedBy rdf:type owl:ObjectProperty ;
                   rdfs:domain :Task ;
                   rdfs:range [ rdf:type owl:Class ;
                                owl:unionOf ( :Model
                                              :Paper
                              ];
                   rdfs:comment "Relates a task to the papers or models that address:
                   rdfs:label "is task addressed by"@en .
### http://example.org/ai-ontology#isTrainingAlgorithmOf
:isTrainingAlgorithmOf rdf:type owl:ObjectProperty ;
                       owl:inverseOf :usesTrainingAlgorithm ;
                       rdfs:domain :TrainingAlgorithm ;
                       rdfs:range :Model ;
                       rdfs:comment "Relates a training algorithm to the model it is
                       rdfs:label "is training algorithm of "@en .
```

```
### http://example.org/ai-ontology#publishedIn
:publishedIn rdf:type owl:ObjectProperty ;
             owl:inverseOf :publishes ;
             rdf:type owl:FunctionalProperty ;
             rdfs:domain :Paper ;
             rdfs:range [ rdf:type owl:Class ;
                          owl:unionOf ( :Conference
                                        :Journal
                        ];
             rdfs:comment "Relates a paper to its publication venue."@en ;
             rdfs:label "published in"@en .
### http://example.org/ai-ontology#publishes
:publishes rdf:type owl:ObjectProperty;
           rdfs:domain [ rdf:type owl:Class ;
                         owl:unionOf ( :Conference
                                       :Journal
                       ] ;
           rdfs:range :Paper ;
           rdfs:comment "Relates a conference or journal to the papers published with
           rdfs:label "publishes"@en .
### http://example.org/ai-ontology#usesDataset
:usesDataset rdf:type owl:ObjectProperty ;
             rdfs:domain [ rdf:type owl:Class ;
                           owl:unionOf ( :Model
                                         :Paper
                         ];
             rdfs:range :Dataset ;
             rdfs:comment "Relates a paper or model to the dataset it uses."@en ;
             rdfs:label "uses dataset"@en .
### http://example.org/ai-ontology#usesMethod
:usesMethod rdf:type owl:ObjectProperty;
            rdfs:domain [ rdf:type owl:Class ;
                          owl:unionOf ( :Model
                                        :Paper
                        ];
            rdfs:range :Method ;
            rdfs:comment "Relates a paper or model to the method it uses."@en ;
```

#### rdfs:label "uses method"@en .

```
### http://example.org/ai-ontology#usesTrainingAlgorithm
:usesTrainingAlgorithm rdf:type owl:ObjectProperty;
                    rdfs:domain :Model ;
                    rdfs:range :TrainingAlgorithm ;
                    rdfs:comment "Relates a model to the training algorithm it uses
                    rdfs:label "uses training algorithm"@en .
Data properties
### http://example.org/ai-ontology#hasDOI
:hasDOI rdf:type owl:DatatypeProperty ,
               owl:FunctionalProperty ;
       rdfs:domain :Paper ;
       rdfs:range xsd:string ;
       rdfs:comment "Each paper has at most one DOI."@en ;
       rdfs:label "has DOI"@en .
### http://example.org/ai-ontology#hasDate
:hasDate rdf:type owl:DatatypeProperty ,
                owl:FunctionalProperty ;
        rdfs:domain [ rdf:type owl:Class ;
                    owl:unionOf ( :Conference
                                 :Dataset
                                 :Evaluation
                                 :Journal
                                 :Paper
                  ];
        rdfs:range xsd:date ;
        rdfs:comment "Date of publication/event."@en ;
        rdfs:label "has date"@en .
### http://example.org/ai-ontology#hasName
:hasName rdf:type owl:DatatypeProperty ;
        rdfs:domain :Author ;
        rdfs:range xsd:string ;
        rdfs:comment "Nome completo dell'autore."@en ;
        rdfs:label "has name"@en .
```

```
### http://example.org/ai-ontology#hasTitle
:hasTitle rdf:type owl:DatatypeProperty ,
                owl:FunctionalProperty ;
        rdfs:domain [ rdf:type owl:Class ;
                     owl:unionOf ( :Dataset
                                  :Evaluation
                                  :Method
                                  :Model
                                  :Paper
                                  :Repository
                                  :Task
                                )
                   ];
        rdfs:range xsd:string ;
        rdfs:comment "Title of entity."@en ;
        rdfs:label "has title"@en .
### http://example.org/ai-ontology#ApplicationArea
:ApplicationArea rdf:type owl:Class;
               owl:equivalentClass [ rdf:type owl:Class ;
                                  owl:oneOf ( :ComputerVision
                                             :NaturalLanguageProcessing
                                 ];
               rdfs:comment """
          Enumerazione delle possibili aree applicative (es. CV, NLP).
       """@en ;
               rdfs:label "Application Area"@en .
### http://example.org/ai-ontology#Author
:Author rdf:type owl:Class ;
       rdfs:comment "Author of papers."@en ;
       rdfs:label "Author"@en ;
       skos:broadMatch <http://xmlns.com/foaf/0.1/Person> .
### http://example.org/ai-ontology#AuthorList
:AuthorList rdf:type owl:Class ;
          rdfs:comment "A list of authors in a specific order."@en ;
          rdfs:label "Author List"@en .
```

```
### http://example.org/ai-ontology#AuthorListNode
:AuthorListNode rdf:type owl:Class ;
                rdfs:comment "A node in the ordered author list."@en ;
                rdfs:label "Author List Node"@en .
### http://example.org/ai-ontology#ComputerVision
:ComputerVision rdf:type owl:Class ;
                rdfs:subClassOf :ApplicationArea .
### http://example.org/ai-ontology#Conference
:Conference rdf:type owl:Class ;
            rdfs:comment "Academic conference."@en ;
            rdfs:label "Conference"@en ;
            skos:exactMatch <http://swrc.ontoware.org/ontology#Conference> .
### http://example.org/ai-ontology#Dataset
:Dataset rdf:type owl:Class ;
         rdfs:subClassOf [ rdf:type owl:Restriction ;
                            owl:onProperty :hasTitle ;
                            owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger ;
                            owl:onDataRange xsd:string
                          ];
         rdfs:comment "Dataset used in AI."@en ;
         rdfs:label "Dataset"@en ;
         skos:exactMatch <http://schema.org/Dataset> .
### http://example.org/ai-ontology#DeepLearningMethod
:DeepLearningMethod rdf:type owl:Class;
                    rdfs:subClassOf :MachineLearningMethod ;
                    rdfs:comment "A method based on deep learning techniques."@en ;
                    rdfs:label "Deep Learning Method"@en .
### http://example.org/ai-ontology#DeepLearningModel
:DeepLearningModel rdf:type owl:Class ;
                   rdfs:subClassOf :MachineLearningModel ;
                   rdfs:comment "Deep learning neural networks."@en ;
                   rdfs:label "Deep Learning Model"@en ;
                    skos:broadMatch <a href="https://cso.kmi.open.ac.uk/topics/neural_networks">https://cso.kmi.open.ac.uk/topics/neural_networks</a>
### http://example.org/ai-ontology#Evaluation
:Evaluation rdf:type owl:Class;
            rdfs:comment "Evaluation metric."@en ;
```

### rdfs:label "Evaluation"@en .

```
### http://example.org/ai-ontology#HybridMethod
:HybridMethod rdf:type owl:Class;
              rdfs:subClassOf :Method ;
              rdfs:comment "A method integrating symbolic and sub-symbolic approaches
              rdfs:label "Hybrid Method"@en .
### http://example.org/ai-ontology#HybridModel
:HybridModel rdf:type owl:Class;
             rdfs:subClassOf :Model ;
             rdfs:comment "Hybrid AI models integrating symbolic and sub-symbolic."@e
             rdfs:label "Hybrid Model"@en ;
             skos:exactMatch <https://cso.kmi.open.ac.uk/topics/neurosymbolic_ai> .
### http://example.org/ai-ontology#Journal
:Journal rdf:type owl:Class ;
         rdfs:comment "Academic journal."@en ;
         rdfs:label "Journal"@en ;
         skos:exactMatch <http://swrc.ontoware.org/ontology#Journal> .
### http://example.org/ai-ontology#MachineLearningMethod
:MachineLearningMethod rdf:type owl:Class ;
                        rdfs:subClassOf :Method ;
                        rdfs:comment "A method employing machine learning techniques."
                        rdfs:label "Machine Learning Method"@en .
### http://example.org/ai-ontology#MachineLearningModel
:MachineLearningModel rdf:type owl:Class ;
                       owl:equivalentClass [ rdf:type owl:Restriction ;
                                              owl:onProperty :usesTrainingAlgorithm ;
                                              owl:someValuesFrom :TrainingAlgorithm
                                            ];
                       rdfs:subClassOf :Model ;
                       rdfs:comment "ML model trained by algorithms."@en ;
                       rdfs:label "Machine Learning Model"@en ;
                       skos:exactMatch <a href="mailto://cso.kmi.open.ac.uk/topics/machine_lear:">https://cso.kmi.open.ac.uk/topics/machine_lear:</a>
### http://example.org/ai-ontology#Method
:Method rdf:type owl:Class ;
        rdfs:comment "AI method used."@en ;
```

rdfs:label "Method"@en .

```
### http://example.org/ai-ontology#Model
:Model rdf:type owl:Class;
       rdfs:comment "Generic AI model."@en ;
       rdfs:label "Model"@en .
### http://example.org/ai-ontology#NaturalLanguageProcessing
:NaturalLanguageProcessing rdf:type owl:Class ;
                           rdfs:subClassOf :ApplicationArea .
### http://example.org/ai-ontology#Paper
:Paper rdf:type owl:Class;
       rdfs:subClassOf [ rdf:type owl:Restriction ;
                         owl:onProperty :hasAuthor ;
                         owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger ;
                         owl:onClass :Author
                       ];
       rdfs:comment "Research paper."@en ;
       rdfs:label "Paper"@en ;
       skos:narrowMatch <http://purl.org/ontology/bibo/Document> ;
       skos:exactMatch <http://purl.org/ontology/bibo/AcademicArticle> .
### http://example.org/ai-ontology#Repository
:Repository rdf:type owl:Class;
           rdfs:comment "Repository hosting resources."@en ;
            rdfs:label "Repository"@en .
### http://example.org/ai-ontology#RuleBasedMethod
:RuleBasedMethod rdf:type owl:Class ;
                 rdfs:subClassOf :Method ;
                 rdfs:comment "A method based on explicit rules."@en ;
                 rdfs:label "Rule-Based Method"@en .
### http://example.org/ai-ontology#RuleBasedModel
:RuleBasedModel rdf:type owl:Class;
                rdfs:subClassOf :Model ;
                rdfs:comment "AI model based on explicit rules."@en ;
                rdfs:label "Rule-Based Model"@en ;
                skos:narrowMatch <https://cso.kmi.open.ac.uk/topics/expert_knowledge>
```

### http://example.org/ai-ontology#SymbolicMethod

```
:SymbolicMethod rdf:type owl:Class;
                rdfs:subClassOf :RuleBasedMethod ;
                rdfs:comment "A method using symbolic approaches."@en ;
                rdfs:label "Symbolic Method"@en .
### http://example.org/ai-ontology#SymbolicModel
:SymbolicModel rdf:type owl:Class;
               rdfs:subClassOf :RuleBasedModel ;
               rdfs:comment "Symbolic AI models."@en ;
               rdfs:label "Symbolic Model"@en ;
               skos:narrowMatch <a href="https://cso.kmi.open.ac.uk/topics/knowledge_represen-">https://cso.kmi.open.ac.uk/topics/knowledge_represen-</a>
### http://example.org/ai-ontology#Task
:Task rdf:type owl:Class;
      rdfs:comment "AI task addressed."@en ;
      rdfs:label "Task"@en .
### http://example.org/ai-ontology#TraditionalMLMethod
:TraditionalMLMethod rdf:type owl:Class ;
                      rdfs:subClassOf :MachineLearningMethod ;
                      rdfs:comment "A method based on traditional machine learning (e.
                      rdfs:label "Traditional ML Method"@en ;
                      skos:narrowMatch <a href="https://cso.kmi.open.ac.uk/topics/machine_learner.">https://cso.kmi.open.ac.uk/topics/machine_learner.</a>
### http://example.org/ai-ontology#TraditionalMLModel
:TraditionalMLModel rdf:type owl:Class ;
                     rdfs:subClassOf :MachineLearningModel ;
                     rdfs:comment "Traditional ML algorithms."@en ;
                     rdfs:label "Traditional ML Model"@en ;
                     skos:narrowMatch <a href="https://cso.kmi.open.ac.uk/topics/machine_learn">https://cso.kmi.open.ac.uk/topics/machine_learn</a>
### http://example.org/ai-ontology#TrainingAlgorithm
:TrainingAlgorithm rdf:type owl:Class;
                    rdfs:comment "Algorithm for training models."@en ;
                    rdfs:label "Training Algorithm"@en .
Individuals
### http://example.org/ai-ontology#ComputerVision
:ComputerVision rdf:type owl:NamedIndividual .
```

```
### http://example.org/ai-ontology#ComputerVisionClass
:ComputerVisionClass rdf:type owl:NamedIndividual ,
                                                                     :ApplicationArea;
                                               rdfs:label "Computer Vision"@en .
### http://example.org/ai-ontology#NaturalLanguageProcessing
:NaturalLanguageProcessing rdf:type owl:NamedIndividual .
### http://example.org/ai-ontology#NaturalLanguageProcessingClass
:NaturalLanguageProcessingClass rdf:type owl:NamedIndividual ,
                                                                                              :ApplicationArea;
                                                                        rdfs:label "Natural Language Processing"@en .
Annotations
:ComputerVision rdfs:comment "Subset di ApplicationArea per Computer Vision."@en ;
                                    rdfs:label "Computer Vision"@en .
:NaturalLanguageProcessing rdfs:comment "Subset di ApplicationArea per NLP."@en ;
                                                             rdfs:label "Natural Language Processing"@en .
<https://cso.kmi.open.ac.uk/topics/expert_knowledge> rdfs:comment "Computer Science On
                                                                                                                        rdfs:label "Expert Knowledge (CS
<https://cso.kmi.open.ac.uk/topics/knowledge_representation> rdfs:comment "Computer Second Seco
                                                                                                                                           rdfs:label "Knowledge Re
<https://cso.kmi.open.ac.uk/topics/machine_learning> rdfs:comment "Computer Science On
                                                                                                                        rdfs:label "Machine Learning (CS
<https://cso.kmi.open.ac.uk/topics/neural networks> rdfs:comment "Computer Science On"
                                                                                                                      rdfs:label "Neural Networks (CSO)
<https://cso.kmi.open.ac.uk/topics/neurosymbolic_ai> rdfs:comment "Computer Science On
                                                                                                                         rdfs:label "Neuro-Symbolic AI (C
```

```
[ rdf:type owl:AllDisjointClasses ;
  owl:members ( :Author
                :Conference
                 :Dataset
                 :Evaluation
                :Journal
                 :Method
                :Model
                 :Paper
                :Repository
                :Task
              )
] .
[ rdf:type owl:AllDisjointClasses ;
  owl:members ( :DeepLearningMethod
                 :HybridMethod
                 :SymbolicMethod
                 :TraditionalMLMethod
              )
] .
[ rdf:type owl:AllDisjointClasses ;
  owl:members ( :DeepLearningModel
                 :HybridModel
                :SymbolicModel
                 :TraditionalMLModel
] .
     Generated by the OWL API (version 4.5.29.2024-05-13T12:11:03Z) https://github.com
```

## Flusso di Interazione con l'Utente

### 1. Descrizione generale

General axioms

L'interfaccia si rivolge a due tipologie di utenti:

• Ricercatore/Studente: vuole cercare paper, modelli e task all'interno dell'ontologia.

• Amministratore/Curatore: ha il permesso di aggiungere nuovi elementi (autori, paper, modelli, task) e di modificarne i metadati.

I principali *use case* sono:

- 1. Ricerca paper per autore o task: l'utente inserisce il nome di un autore o un titolo di task e ottiene in risposta l'elenco dei paper corrispondenti.
- 2. Navigazione gerarchica: l'utente esplora le aree applicative (Computer Vision, NLP, ecc.) per visualizzare i task e i modelli corrispondenti.
- 3. Inserimento/modifica dati (solo per Amministratore): aggiungere un nuovo paper con autore, data, task e modello associato.

## Schema di Interfaccia (Mockup senza Grafica)

1. Schermata di Login (solo Amministratore)

2. Menu Principale (Utente Normale)

|                           | I         | Ricerca Pape                             | er                           |         |
|---------------------------|-----------|------------------------------------------|------------------------------|---------|
| Digita Nome               | Autore    | : [                                      |                              | ]       |
| Oppure                    |           |                                          |                              | >>      |
| Seleziona 7               | Cask: [Di | ropdown che                              | mostra tutti                 | i Task] |
| [ Cerca                   | ] [       | Indietro                                 | ]                            |         |
| Risultati                 | della F   | Ricerca<br>                              |                              |         |
|                           | Ris       | sultati deli<br>                         | la Ricerca<br>               |         |
| Elenco Pape               | er trovat | ti:                                      |                              |         |
| Autori:                   | Alice Sr  | et50 for Ima<br>mith, Bob Ro<br>O Venue: |                              | ation"  |
| Autori:                   | Bob Ross  | ime Object I<br>si, Carla B:<br>1 Venue: | ianchi                       |         |
|                           | Giovann   | i Esposito                               | sformer Model<br>NeurIPS2023 | s"      |
| • • •                     |           |                                          |                              |         |
| Seleziona r<br>[ Indietro | -         | aper per ved                             | dere dettagli                | [ ]     |
| ${f V}$ isualizz          | azione    | Dettagli I                               | Paper                        |         |
|                           |           |                                          |                              |         |

| Data: 2023-06-20 | Venue: CVPR2023

| Task: Image Classification

|    | Mo | dello: ResNet50                     |   |
|----|----|-------------------------------------|---|
|    | Da | taset: ImageNet                     |   |
|    | Me | triche: Accuracy, Precision, Recall |   |
|    |    |                                     |   |
|    | [  | Indietro ai Risultati ]             |   |
|    | [  | Nuova Ricerca ]                     | l |
| +- |    | +                                   |   |

## Esempio di Interazione con Dati Reali

## Scenario: Ricerca Paper per Autore

1. Schermata iniziale (Utente Normale):

L'utente digita 1 e preme Invio.

2. Interfaccia di Ricerca (Per Autore):

| +    |                 | r         | +   |      |            |            |        |
|------|-----------------|-----------|-----|------|------------|------------|--------|
| 1    | Di <sub>{</sub> | gita Nome | Aut | ore: | [ Giovanni | Esposito ] | <br>   |
| <br> | [               | Cerca     | ]   | [    | Indietro   | ]          | ا<br>_ |

L'utente inserisce Giovanni Esposito e seleziona Cerca.

(Supponendo che nella base dati esista un solo autore "Giovanni Esposito" e i seguenti risultati:)

• Paper003: "Text Generation with Transformer Models" – 2023-05-20 – Venue: NeurIPS2023

• Paper010: "New Frontiers in Text Generation" – 2024-02-15 – Venue: NeurIPS2023

#### 3. Risultati della Ricerca:

L'utente digita 1 per vedere i dettagli di "New Frontiers in Text Generation".

#### 4. Visualizzazione Dettagli Paper:

A questo punto l'utente può scegliere di tornare indietro per consultare altri paper, oppure avviare una nuova ricerca.



Figure 4: Flowchart che illustra l'ipotetico schema di interazione con l'utente

## **Note Conclusive**

- Il flow chart mostra chiaramente la separazione tra utenti "Normali" e "Amministratori" e i percorsi logici di ricerca vs. gestione dati.
- Lo schema di interfaccia illustra con semplicità i mockup testuali, sufficienti per capire la disposizione dei campi e dei comandi senza ricorrere a elementi grafici.
- L'esempio di interazione con dati reali (autore "Giovanni Esposito") dimostra come il sistema invii query SPARQL, riceva risultati e li visualizzi in modo intuitivo.

## **Note Conclusive**

• Il flow chart mostra chiaramente la separazione tra utenti "Normali" e "Amministratori" e i percorsi logici di ricerca vs. gestione dati.

- Lo schema di interfaccia illustra con semplicità i mockup testuali, sufficienti per capire la disposizione dei campi e dei comandi senza ricorrere a elementi grafici.
- L'esempio di interazione con dati reali (autore "Giovanni Esposito") dimostra come il sistema invii query SPARQL, riceva risultati e li visualizzi in modo intuitivo.

## Sitografia

- Ontotext. "The InnoGraph Artificial Intelligence Taxonomy." https://www.ontotext.com/blog/the-innograph-artificial-intelligence-taxonomy/
- Computer Science Ontology (CSO). https://cso.kmi.open.ac.uk/home
- Wikipedia, "Artificial intelligence" (edizione inglese). https://en.wikipedia.org/wiki/Artificial\_intelligence
- Wikipedia, "Research" (edizione inglese). https://en.wikipedia.org/wiki/Research