Title

Correlation

Correlation is made of Co- (meaning "together"), and Relation

- Statistical procedure used to measure and describe the relationship between two variables
- ullet Range between +1 and -1
 - Positive when the values increase together
 - Negative when one value decreases as the other increases

. . .

Overview cont...

- +1 is a perfect positive correlation
- 0 is no correlation (independence)
- -1 is a perfect negative correlation

Uses

Use of Corelation

When two variables, let's call them X Y, are correlated, then one variable can be used to predict the other variable Example:IQ and perfomance...

Types

- Pearson product-moment correlation
 -When both variables, X and Y, are continuous
- **Point bi-serial correlation** When 1 variable is continuous and 1 is dichotomous
- Phi coefficient When both variables are dichotomous
- Spearman rank correlation When both variables are ordinal (ranked data)

Calculation of Correlation

defined as

$$r = S_{xy}/\sqrt{S_{xx}S_{yy}}$$
.

where

$$S_{xx} = \sum_{i=1}^{N} (x_i - \bar{x})^2$$
 (variance of x)

and

$$S_{xy} = \sum\limits_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$
 (covariance of x and y)

Output

> print(df)

	temp	icecrear
1	14.2	215
2	16.4	325
3	11.9	185
4	15.2	332
5	18.5	406
6	22.1	522
7	19.4	412
8	25.1	614
9	23.4	544
10	18.1	421
11	22.6	445
12	17.2	408

Corelation in R

> print(df)

	temp	${\tt icecream}$	${\tt deviationTemp}$	${\tt deviationIce}$	SSxy	SSxx	SSyy
1	14.2	215	-4.475	-187.416667	838.6895833	20.025625	35125.00694
2	16.4	325	-2.275	-77.416667	176.1229167	5.175625	5993.34028
3	11.9	185	-6.775	-217.416667	1472.9979167	45.900625	47270.00694
4	15.2	332	-3.475	-70.416667	244.6979167	12.075625	4958.50694
5	18.5	406	-0.175	3.583333	-0.6270833	0.030625	12.84028
6	22.1	522	3.425	119.583333	409.5729167	11.730625	14300.17361
7	19.4	412	0.725	9.583333	6.9479167	0.525625	91.84028
8	25.1	614	6.425	211.583333	1359.4229167	41.280625	44767.50694
9	23.4	544	4.725	141.583333	668.9812500	22.325625	20045.84028
10	18.1	421	-0.575	18.583333	-10.6854167	0.330625	345.34028
11	22.6	445	3.925	42.583333	167.1395833	15.405625	1813.34028
12	17.2	408	-1.475	5.583333	-8.2354167	2.175625	31.17361

- > print(sum.SSxy)
- [1] 5325.025
- > print(sum.SSxx)
- [1] 176.9825
- > print(sum.SSyy)
- [1] 174754.9

Corelation in R

```
> cor(df$temp,df$icecream)
```

```
[1] 0.9575066
```

> cor.test(df\$temp,df\$icecream)

Pearson's product-moment correlation

```
data: df$temp and df$icecream

t = 10.4986, df = 10, p-value = 1.016e-06

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.8515370 0.9883148

sample estimates:

cor

0.9575066
```

Diff btwn cor and cor.test The cor.test output also includes the point estimate reported by cor Cor.test has p-value and also CI

• !"Correlation Is Not Causation" ... When there is a correlation it does not mean that one

- The magnitude of a correlation depends upon many factors, including
 - Sampling (random and representative?)
 - Measurement of X and Y and Several other assumptions . . .

. . .

thing causes the other

Assumptions

- Normal Distribution for X and Y if not specifying the method - Use method="Spearman" for non-normal data.
- Linear relationship between X and Y
- Homoscedasticity homogeneity of variance/ uniformity of variance leveneTest() from car package is used to test this

