

ÁLGEBRA LINEAL Y GEOMETRÍA I Gloria Serrano Sotelo Daniel Hernández Serrano Departamento de MATEMÁTICAS

TEMA 4. CÁLCULO TENSORIAL.

Índice

Tensores.	1
1.1. Tensores covariantes de orden p contravariantes de orden q .	1
1.2. Producto tensorial.	2
1.3. Expresión en coordenadas. Base, dimensión y cambio de base.	4
1.4. Calculo tensorial avanzado.	7
2. Tensores covariantes.	9
2.1. Tensores covariantes simétricos y hemisimétricos.	9
2.2. Producto exterior de formas lineales.	10
2.3. Tensores hemisimétricos en coordenadas. Base de $\Omega_p(E)$.	10
2.4. Contracción interior de un vector e y un tensor $T_p \in T_p(E)$.	11
3. Morfismos inducidos en la capa tensorial.	12
3.1. Morfismo inducido en el espacio de tensores covariantes.	12
3.2. Determinante de un endomorfismo.	16
3.3. Producto vectorial.	17
4. Problemas propuestos.	18

1. Tensores.

1.1. Tensores covariantes de orden p contravariantes de orden q.

Definición 1.1. Un tensor p veces covariante q veces contravariante (tensor de tipo (p,q)) sobre un k-espacio vectorial E es una aplicación multilineal

$$E \times \stackrel{p)}{\dots} \times E \times E^* \times \stackrel{q)}{\dots} \times E^* \xrightarrow{T_p^q} k$$

 $(e_1, \dots, e_p, \omega_1 \dots \omega_q) \mapsto T_p^q(e_1, \dots, e_p, \omega_1 \dots \omega_q)$

Representaremos por $T_n^q(E)$ el conjunto de los tensores de tipo (p,q) sobre E.

Proposición 1.2. $T_n^q(E)$ es un k-espacio vectorial con las operaciones:

$$(T_p^q + \bar{T}_p^q)(e_1, \dots, e_p, \omega_1 \dots \omega_q) = T_p^q(e_1, \dots, e_p, \omega_1 \dots \omega_q) + \bar{T}_p^q(e_1, \dots, e_p, \omega_1 \dots \omega_q)$$

• Multiplicación de un tensor por un escalar

$$(\lambda T_p^q)(e_1,\ldots,e_p,\omega_1\ldots\omega_q)=\lambda T_p^q(e_1,\ldots,e_p,\omega_1\ldots\omega_q)$$

Ejemplo 1.3.

- $T_1^0(E) = \{E \xrightarrow{\omega} k \text{ lineales}\} = E^*$ $T_0^1(E) = \{E^* \xrightarrow{e} k \text{ lineales}\} = E^{**} \simeq E$
- $T_1^1(E) = \{E \times E^* \xrightarrow{T_1^1} k \text{ bilineales}\}$ se identifica con $\operatorname{End}_k E$ por la fórmula:

$$T_1^1(e,\omega) = \omega(T(e))$$
, siendo $T_1^1 \in T_1^1(E), T \in \operatorname{End}_k E$

- $T_2^0(E) = \{E \times E \xrightarrow{T_2} k \text{ bilineales}\} = \{\text{M\'etricas sobre } E\}$
- $T_0^2(E) = \{E^* \times E^* \xrightarrow{T^2} k \text{ bilineales}\} = \{\text{M\'etricas sobre } E^* \text{ (m\'etricas contravariadas)}\}$
- Por convenio $T_0^0(E) = k$

Producto tensorial. 1.2.

Dados tensores $T_p^q \in T_p^q(E)$ y $T_r^s \in T_r^s(E)$ se define su producto tensorial $T_p^q \otimes T_r^s$ como el tensor de $T_{p+r}^{q+s}q(E)$ dado por:

$$(T_p^q \otimes T_r^s)(e_1, \dots, e_p, e_{p+1}, \dots, e_{p+r}, \omega_1 \dots \omega_q, \omega_{q+1}, \dots, \omega_{q+s}) =$$

$$= T_p^q(e_1, \dots, e_p, \omega_1 \dots \omega_q) \cdot T_r^s(e_{p+1}, \dots, e_{p+r}, \omega_{q+1}, \dots, \omega_{q+s})$$

Propiedades

- (a) Asociativa $T_p^q \otimes (T_r^s \otimes T_m^t) = (T_p^q \otimes T_r^s) \otimes T_m^t$
- (b) La aplicación

$$T_p^q(E) \otimes T_r^s(E) \to T_{p+r}^{q+s} q(E)$$

 $(T_p^q, T_r^s) \mapsto T_p^q \otimes T_r^s$

es bilineal, es decir:

$$(\lambda T_p^q + \mu \bar{T}_p^q) \otimes T_r^s = \lambda (T_p^q \otimes T_r^s) + \mu (\bar{T}_p^q \otimes T_r^s)$$
$$T_p^q \otimes (\lambda T_r^s + \mu \bar{T}_r^s) = \lambda (T_p^q \otimes T_r^s) + \mu (T_p^q \otimes \bar{T}_r^s)$$

El producto tensorial no es conmutativo

Ejemplo 1.4.

- $\lambda \otimes T_p^q = \lambda T_p^q$ pues $T_0^0(E) = k$. $\omega \otimes \omega' \in T_2^0(E) : (\omega \otimes \omega')(u, v) = \omega(u)\omega'(v)$ $\omega \otimes e \in T_1^1(E) : (\omega \otimes e)(u, \omega') = \omega(u)e(\omega') = \omega(u)\omega'(e)$
- $\bullet \ \omega \otimes \omega' \otimes \omega'' \in T_3^0(E) : (\omega \otimes \omega' \otimes \omega'')(u, v, v') = \omega(u)\omega'(v)\omega''(v')$
- $\bullet \ \omega \otimes \omega' \otimes e \in T^1_2(E) : (\omega \otimes \omega' \otimes e)(u, v, \omega'') = \omega(u)\omega'(v)\omega''(e)$
- $e \otimes e' \in T_0^2(E) : (e \otimes e')(\omega, \omega') = e(\omega)e'(\omega') = \omega(e')\omega'(e')$

Así, en general

$$\omega_1 \otimes \ldots \omega_p \in T_p^0(E), \quad e_1 \otimes \ldots e_q \in T_0^q(E), \quad \omega_1 \otimes \ldots \omega_p \otimes e_1 \otimes \ldots e_q \in T_p^q(E)$$

1.2.1. $Problem as \ resueltos.$

- **1.1.** Sea $\{e_1, e_2, e_3\}$ una base del \mathbb{R} -espacio vectorial E y $\{\omega_1, \omega_2, \omega_3\}$ su base dual.
 - (a) Calcula la matriz asociada a la métrica $\omega \otimes \omega'$ respecto de la base $\{e_1, e_2, e_3\}$ de E, siendo $\omega = \omega_1 - \omega_2 + 2\omega_3$ y $\omega' = \omega_1 + \omega_3$.
 - (b) Calcula, respecto de la base $\{e_1, e_2, e_3\}$, la matriz asociada al endomorfismo que el tensor $\theta \otimes e$ define, siendo $\theta = 2\omega_1 + 3\omega_3$ y $e = 2e_1 - e_2$.

(a) Calculemos los coeficientes g_{ij} de $\omega \otimes \omega' \in T_2^0(E)$ en la base $\{e_1, e_2, e_3\}$: Solución. Como $g_{ij} = (\omega \otimes \omega')(e_i, e_j) = \omega(e_i)\omega'(e_j)$, se tiene:

$$g_{11} = 1 = g_{13}, \ g_{21} = -1 = g_{23}, \ g_{12} = 0 = g_{22} = g_{32}, \ g_{31} = 2 = g_{33}$$

Así,
$$G = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & -1 \\ 2 & 0 & 2 \end{pmatrix}$$
 es la expresión matricial de $T_2 = \omega \otimes \omega'$ en la base

Observemos que la expresión de $\omega \otimes \omega'$ en función de todos los productos tensoriales que se pueden formar con dos cualesquiera de las formas lineales $\{\omega_1, \omega_2, \omega_3\}$ es:

$$\omega \otimes \omega' = (\omega_1 - \omega_2 + 2\omega_3) \otimes (\omega_1 + \omega_3)$$

= $\omega_1 \otimes \omega_1 + \omega_1 \otimes \omega_3 - \omega_2 \otimes \omega_1 - \omega_2 \otimes \omega_3 + 2\omega_3 \otimes \omega_1 + 2\omega_3 \otimes \omega_3$,

y vemos que
$$\omega \otimes \omega' = \sum_{i,j=1}^{3} g_{ij} \omega_i \otimes \omega_j$$
, con $(g_{ij}) = G$.

En el próximo apartado probaremos que $\{\omega_i \otimes \omega_j\}_{1 \leq i,j \leq 3}$ forman una base del espacio vectorial $T_2^0(E)$.

(b) $\theta \otimes e \in T_1^1(E)$ define el endomorfismo $E \xrightarrow{T} E$ cuya matriz asociada $A = (a_{ij})$ en la base $\{e_1, e_2, e_3\}$ viene dada por:

$$a_{ij} = \omega_i(T(e_i)) = T_1^1(e_i, \omega_i) = (\theta \otimes e)(e_i, \omega_i) = \theta(e_i)\omega_i(e)$$

Y resulta que
$$A = \begin{pmatrix} 4 & 0 & 6 \\ -2 & 0 & -3 \\ 0 & 0 & 0 \end{pmatrix}$$
 es la expresión matricial del tensor $\theta \otimes e$.

La expresión de $\theta \otimes e$ en función de los productos tensoriales que se pueden formar con las formas $\{\omega_1, \omega_2, \omega_3\}$ y los vectores $\{e_1, e_2, e_3\}$ es:

$$\theta \otimes e = (2\omega_1 + 3\omega_3) \otimes (2e_1 - e_2) = 4\omega_1 \otimes e_1 - 2\omega_1 \otimes e_2 + 6\omega_3 \otimes e_1 - 3\omega_3 \otimes e_2$$

Así, si escribimos
$$\theta \otimes e = \sum_{i,j=1}^3 a_i^j \, \omega_i \otimes e_j$$
 es $a_i^j = a_{ji}$.

1.2. Sea $\{e_1, e_2, e_3, e_4\}$ una base del \mathbb{R} -espacio vectorial E y $\{\omega_1, \omega_2, \omega_3, \omega_4\}$ su base dual. Sean $\omega = 2\omega_2 - \omega_4$, $\omega' = \omega_1 - 3\omega_2$, $e = e_1 + e_2 + e_4$, $e' = 2e_2 + e_3$. Calcula el escalar $(\omega \otimes \omega' \otimes \omega)(e, 2e + e', e - e')$.

Solución.

$$(\omega \otimes \omega' \otimes \omega)(e, 2e+e', e-e') = \omega(e)\omega'(2e+e')\omega(e-e') = 1 \cdot (-10) \cdot (-3) = 30.$$

1.3. En \mathbb{R}^3 se consideran las funciones f(x, y, z) = 2x - y + z y g(x, y, z) = 2y - z. Cacula la expresión matricial y tensorial de $f \otimes g$.

Solución. Si $\{e_1, e_2, e_3\}$ es la base de \mathbb{R}^3 en la que se escriben las coordenadas $\{x, y, z\}$, las formas lineales f y g se expresan en su base dual $\{\omega_1, \omega_2, \omega_3\}$ por

$$f = 2\omega_1 - \omega_2 + \omega_3$$
, $g = 2\omega_2 - \omega_3$,

y se tiene:

$$f \otimes g = (2\omega_1 - \omega_2 + \omega_3) \otimes (2\omega_2 - \omega_3) = 4\omega_1 \otimes \omega_2 - 2\omega_1 \otimes \omega_3 - 2\omega_2 \otimes \omega_2 + \omega_2 \otimes \omega_3 + 2\omega_3 \otimes \omega_2 - \omega_3 \otimes \omega_3$$
y su expresión matricial es $G = \begin{pmatrix} 0 & 4 & -2 \\ 0 & -2 & 1 \\ 0 & 2 & -1 \end{pmatrix}$.

Observa que, en coordenadas:

$$(f \otimes g)((x, y, z), (x', y', z')) = f(x, y, z)g(x', y', z') = 4xy' - 2xz' - 2yy' + yz' + 2zy' - zz'$$

1.3. Expresión en coordenadas. Base, dimensión y cambio de base.

Representaremos por VR_n^p el conjunto de las variaciones con repetición de los índices $1, \ldots, n$ tomados de p en p.

Teorema 1.5. Sea $\{e_1, \ldots, e_n\}$ una base de E y $\{\omega_1, \ldots, \omega_n\}$ su base dual. Los tensores de tipo (p,q) $\{\omega_{i_1} \otimes \cdots \otimes \omega_{i_p} \otimes e_{j_1} \otimes \cdots \otimes e_{j_q}\}$ donde $(i_1 \ldots i_p) \in VR_n^p$ y $(j_1 \ldots j_q) \in VR_n^q$, forman una base del k-espacio vectorial de los tensores $T_p^q(E)$.

Por tanto, la dimensión de este espacio es:

$$\dim_k T_p^q(E) = n^p \cdot n^q = n^{p+q}$$

y la expresión en coordenadas de un tensor $T_p^q \in T_p^q(E)$ es:

$$T_p^q = \sum_{\substack{(i_1 \dots i_p) \in VR_n^p \\ (j_1 \dots j_q) \in VR_n^p}} \lambda_{i_1 \dots i_p}^{j_1 \dots j_q} (\omega_{i_1} \otimes \dots \otimes \omega_{i_p} \otimes e_{j_1} \otimes \dots \otimes e_{j_q})$$

Demostración.

■ Generan

Sea $T_p^q \in T_p^q(E)$ tal que $T_p^q(e_{i_1}, \dots, e_{i_p}, \omega_{j_1}, \dots, \omega_{j_q}) = \lambda_{i_1 \dots i_p}^{j_1 \dots j_q}$. El tensor

$$(*) = \sum_{\substack{(i_1 \dots i_p) \in VR_n^p \\ (j_1 \dots j_q) \in VR_n^q}} \lambda_{i_1 \dots i_p}^{j_1 \dots j_q} (\omega_{i_1} \otimes \dots \otimes \omega_{i_p} \otimes e_{j_1} \otimes \dots \otimes e_{j_q})$$

coincide con T_p^q sobre cualquier familia $(e_{h_1}, \ldots, e_{h_p}, \omega_{k_1}, \ldots, \omega_{k_q})$, en efecto:

$$(*)(e_{h_1}, \dots, e_{h_p}, \omega_{k_1}, \dots, \omega_{k_q}) = \sum_{\substack{k_1 \dots k_q \\ h_1 \dots h_p}} \lambda_{i_1 \dots i_p}^{j_1 \dots j_q} \omega_{i_1}(e_{h_1}) \dots \omega_{i_p}(e_{h_p}) \omega_{k_1}(e_{j_1}) \dots \omega_{k_q}(e_{j_q})$$

■ Son linealmente independientes

Si $\sum \lambda_{i_1...i_p}^{j_1...j_q}(\omega_{i_1} \otimes \cdots \otimes \omega_{i_p} \otimes e_{j_1} \otimes \cdots \otimes e_{j_q}) = 0$, aplicando a cualquier familia $(e_{h_1}, \ldots, e_{h_p}, \omega_{k_1}, \ldots, \omega_{k_q})$ resulta que $\lambda_{h_1...h_p}^{k_1...k_q} = 0$.

Ejemplo 1.6.

■ Una base de $T_2^0(E)$ es $\{\omega_i \otimes \omega_j\}_{1 \leq i,j \leq n}$ y la expresión en coordenadas de $T_2 \in T_2^0(E)$ es

$$T_2 = \sum_{i,j} g_{ij} \, \omega_i \otimes \omega_j$$

• Una base de $T_1^1(E)$ es $\{\omega_i \otimes e_j\}_{1 \leq i,j \leq n}$ y la expresión en coordenadas de $T_1^1 \in T_1^1(E)$ es

$$T_1^1 = \sum_{i,j} a_i^j \, \omega_i \otimes e_j$$
, con $a_i^j = a_{ji}$ y $A = (a_{ij})$ la matriz del endomorfismo asociado

■ Una base de $T_3^0(E)$ es $\{\omega_i \otimes \omega_j \otimes \omega_k\}_{1 \leq i,j,k \leq n}$ y la expresión en coordenadas de $T_3 \in T_3^0(E)$ es

$$T_3 = \sum_{i,j} \lambda_{ijk} \, \omega_i \otimes \omega_j \otimes \omega_k$$

■ Una base de $T_2^1(E)$ es $\{\omega_i \otimes \omega_j \otimes e_k\}_{1 \leq i,j,k \leq n}$ y la expresión en coordenadas de $T_2^1 \in T_2^1(E)$ es

$$T_2^1 = \sum_{i,j,k} \lambda_{i,j}^k \, \omega_i \otimes \omega_j \otimes e_k$$

Notación de Einstein

El convenio de sumación de Einstein suprime el símbolo de sumatorio para aquellos índices que aparecen repetidos en una fórmula. Por ejemplo,

$$\sum_{i} a_i b_{ij} = a_i b_{ij}; \quad \sum_{k,l} a_{kl} b_l = \sum_{k} a_{kl} b_l$$

Con este convenio la expresión de un tensor T_p^q en coordenadas respecto de una base $\{e_i\}$ de E y su dual $\{\omega_i\}$ de E^* es:

$$T_p^q = \lambda_{i_1 \dots i_p}^{j_1 \dots j_q} \, \omega_{i_1} \otimes \dots \otimes \omega_{i_p} \otimes e_{j_1} \otimes \dots \otimes e_{j_q}$$

o bien, sobreentendiendo la base, podremos escribir simplemente sus componentes o coordenadas $(\lambda_{i_1...i_p}^{j_1...j_q})$ para expresar el tensor T_p^q .

Así, se tienen las siguientes expresiones tensoriales en coordenadas para vectores , formas lineales, endomorfismos, formas bilineales y algunos otros tipos de tensores:

■ Tensores contravariantes de orden 1 sobre $E: T_0^1(E) = E$

$$e \in E : \quad e = x^i e_i \quad \text{\'o} \quad (x^i)$$

■ Tensores covariantes de orden 1 sobre E: $T_1^0(E) = E^*$

$$\omega \in E^*$$
: $\omega = p_i \omega_i$ ó (p_i)

■ Tensores covariantes de orden 1 y contravariantes de orden 1: $T_1^1(E) = \operatorname{End}_k E$

$$T_1^1 = a_i^j \omega_i \otimes e_j$$
 ó (a_i^j)

■ Tensores covariantes de orden 2: $T_2(E) = \{\text{métricas sobre } E\}$

$$T_2 = g_{ij}\omega_i \otimes \omega_j$$
 ó (g_{ij})

• Tensores covariantes de orden 2 y contravariantes de orden 1: $T_2^1(E)$

$$T_2^1 = \lambda_{ij}^k \omega_1 \otimes \omega_j \otimes e_k$$
 ó (λ_{ij}^k)

 \blacksquare Tensores covariantes de orden 3 y contravariantes de orden 2: $T_3^2(E)$

$$T_3^2 = \lambda_{ijk}^{lm} \omega_1 \otimes \omega_j \otimes \omega_k \otimes e_l \otimes e_m \quad \text{\'o} \quad (\lambda_{ijk}^{lm})$$

■ Tensores covariantes de orden 4 (y contravariantes de orden 0): $T_4(E)$

$$T_4 = \lambda_{ijkl}\omega_1 \otimes \omega_i \otimes \omega_k \otimes \omega_l$$
 ó (λ_{ijkl})

Cambio de base en el espacio de tensores.

Los cambios de base en los espacios de tensores se deducen de los cambios de base en el espacio y en su dual.

En los casos de los $T_1^0(E) = E^*$, $T_0^1(E) = E$, $T_1^1(E) = \operatorname{End}_k(E)$, $T_2^0(E) = \{\operatorname{M\'etricas} \text{ sobre } E\}$ y $T_0^2(E) = \{\operatorname{M\'etricas} \text{ sobre } E^*\}$ se tienen las correspondientes fórmulas matriciales del cambio de base para el dual, el espacio, los endomorfismos y las métricas. Para el resto, no hay fórmula matricial, pero no es difícil calcular los nuevos coeficientes de los tensores utilizando las propiedades del producto tensorial. Pongamos algún ejemplo:

Ejemplo 1.7. Sea $\{e_1, e_2, e_3\}$ una base de E y $\{\omega_1, \omega_2, \omega_3\}$ su base dual. Considérese la nueva base $\{\bar{e}_1 = e_1 + e_2, \bar{e}_2 = e_2 + e_3, \bar{e}_3 = e_1 + e_2 + e_3\}$ de E. Calculemos la expresión de los tensores

$$T_1^1 = \omega_1 \otimes e_1 + 2\omega_1 \otimes e_2 + \omega_1 \otimes e_3 + \omega_2 \otimes e_2 - 2\omega_2 \otimes e_3 - \omega_3 \otimes e_1$$

$$T_2 = 2\omega_1 \otimes \omega_2 + \omega_1 \otimes \omega_3 - 3\omega_2 \otimes \omega_1 - \omega_3 \otimes \omega_2 + \omega_3 \otimes \omega_3$$

$$T_2^1 = \omega_1 \otimes \omega_1 \otimes e_1$$

en la nueva base.

Sea $B = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ la matriz del cambio de base en E y representemos por $\{\bar{\omega}_1, \bar{\omega}_2, \bar{\omega}_3\}$

la base dual de la base $\{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$. Se tiene:

(a) La matriz del endomorfismo que T_1^1 define es

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 1 & -2 & 0 \end{pmatrix}$$

y de la fórmula del cambio de base para endomorfismos se obtiene

$$\bar{A} = B^{-1}AB = \begin{pmatrix} 2 & -3 & -4 \\ 4 & -4 & -5 \\ -1 & 2 & 4 \end{pmatrix}$$

Así la expresión de ${\cal T}_1^1$ en la base nueva es

$$T_1^1 = 2\bar{\omega}_1 \otimes \bar{e}_1 + 4\bar{\omega}_1 \otimes \bar{e}_2 - 1\bar{\omega}_1 \otimes \bar{e}_3 - 3\bar{\omega}_2 \otimes \bar{e}_1 - 4\bar{\omega}_2 \otimes \bar{e}_2 + 2\bar{\omega}_2 \otimes \bar{e}_3 - 4\bar{\omega}_3 \otimes \bar{e}_1 - 5\bar{\omega}_3 \otimes \bar{e}_2 + 4\bar{\omega}_3 \otimes \bar{e}_3$$

(b) La expresión matricial de T_2 , es decir, la matriz G de la métrica en la base inicial es

$$G = \begin{pmatrix} 0 & 2 & 1 \\ -3 & 0 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

y el cambio de base para métricas da

$$\bar{G} = B^t G B = \begin{pmatrix} 1 & 3 & 6 \\ -2 & 0 & -3 \\ -4 & 3 & 0 \end{pmatrix}$$

Luego la expresión de T_2 en la nueva base es:

$$T_2 = \bar{\omega}_1 \otimes \bar{\omega}_1 + 3\bar{\omega}_1 \otimes \bar{\omega}_2 + 6\bar{\omega}_1 \otimes \bar{\omega}_3 - 2\bar{\omega}_2 \otimes \bar{\omega}_1 - 3\bar{\omega}_2 \otimes \bar{\omega}_3 - 4\bar{\omega}_3 \otimes \bar{\omega}_1 + 3\bar{\omega}_3 \otimes \bar{\omega}_2$$

(c) Observemos en primer lugar que las coordenadas de los vectores e_1, e_2, e_3 en la nueva base $\{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ vienen dadas por las columnas de la matriz inversa del cambio de base B^{-1} , luego resulta

$$e_1 = \bar{e}_2 + \bar{e}_3$$
, $e_2 = -\bar{e}_1 - \bar{e}_2 + \bar{e}_3$, $e_3 = \bar{e}_1 + 2\bar{e}_2 - \bar{e}_3$

Análogamente, como la matriz B^* de cambio de base en el dual cumple que $(B^*)^{-1} = B^t$ se obtiene

$$\omega_1 = \bar{\omega}_1 + \bar{\omega}_3$$
, $\omega_2 = -\bar{\omega}_1 + \bar{\omega}_2 + \bar{\omega}_3$, $\omega_3 = \bar{\omega}_2 + \bar{\omega}_3$

Sustituyendo en T_2^1 se obtiene su expresión en la base nueva

$$T_2^1 = (\bar{\omega}_1 + \bar{\omega}_3) \otimes (\bar{\omega}_1 + \bar{\omega}_3) \otimes (\bar{e}_2 + \bar{e}_3) = \bar{\omega}_1 \otimes \bar{\omega}_1 \otimes \bar{e}_2 + \bar{\omega}_1 \otimes \bar{\omega}_3 \otimes \bar{e}_2 + \bar{\omega}_3 \otimes \bar{\omega}_1 \otimes \bar{e}_2 + \bar{\omega}_1 \otimes \bar{\omega}_3 \otimes \bar{e}_2 + \bar{\omega}_1 \otimes \bar{\omega}_1 \otimes \bar{e}_3 + \bar{\omega}_1 \otimes \bar{\omega}_3 \otimes \bar{e}_3 + \bar{\omega}_3 \otimes \bar{\omega}_1 \otimes \bar{e}_3 + \bar{\omega}_1 \otimes \bar{\omega}_1 \otimes \bar{\omega}_1 \otimes \bar{e}_3 + \bar{\omega}_1 \otimes \bar{\omega}_$$

Generalicemos el procedimiento del apartado (c) a un tensor T_p^q cualquiera, para obtener una fórmula que nos permita calcular sus componentes en el nuevo sistema de coordenadas en función de las componentes iniciales y los coeficientes de la matriz de cambio de base.

Sean $\{e_1, \ldots, e_n\}$ una base de E y $\{\omega_1, \ldots, \omega_n\}$ su base dual. Consideremos una nueva base $\{\bar{e}_1, \ldots, \bar{e}_n\}$ y su correspondiente base dual $\{\bar{\omega}_1, \ldots, \bar{\omega}_n\}$ y sea B la matriz del cambio de base definido por el isomorfismo identidad $E = \langle \bar{e}_i \rangle \xrightarrow{I_B} E = \langle e_i \rangle$ y $B^* = B^{t-1}$ la matriz de cambio de base en el dual E^* .

Con las notaciones tensoriales anteriores se tiene:

$$B = (b_i^j); \quad B^{-1} = (c_i^j); \quad (B^*)^{-1} = B^t = (b_j^i); \quad e_j = c_j^l \bar{e}_l; \quad \omega_i = b_k^i \bar{\omega}_k$$

y resulta:

$$\begin{split} T_p^q &= \lambda_{i_1 \dots i_p}^{j_1 \dots j_q} \, \omega_{i_1} \otimes \dots \otimes \omega_{i_p} \otimes e_{j_1} \otimes \dots \otimes e_{j_q} = \\ &= \lambda_{i_1 \dots i_p}^{j_1 \dots j_q} \, b_{k_1}^{i_1} \bar{\omega}_{k_1} \otimes \dots \otimes b_{k_p}^{i_p} \bar{\omega}_{k_p} \otimes c_{j_1}^{l_1} \bar{e}_{l_1} \otimes \dots \otimes c_{j_q}^{l_q} \bar{e}_{l_q} = \\ &= \lambda_{i_1 \dots i_p}^{j_1 \dots j_q} \, b_{k_1}^{i_1} \dots b_{k_p}^{i_p} \, c_{j_1}^{l_1} \dots c_{j_q}^{l_q} \, \bar{\omega}_{k_1} \otimes \dots \otimes \bar{\omega}_{k_p} \otimes \bar{e}_{l_1} \otimes \dots \otimes \bar{e}_{l_q} \end{split}$$

De modo que si representamos por $\bar{\lambda}_{k_1...k_p}^{l_1...l_q}$ las nuevas coordenadas del tensor T_p^q , se obtiene la siguiente relación:

$$\bar{\lambda}_{k_1\dots k_p}^{l_1\dots l_q} = \lambda_{i_1\dots i_p}^{j_1\dots j_q} b_{k_1}^{i_1}\dots b_{k_p}^{i_p} c_{j_1}^{l_1}\dots c_{j_q}^{l_q}$$

1.4. Calculo tensorial avanzado.

1.4.1. Contracción de índices en tensores.

Contraeremos un índice covariante i con un índice contravariante j, para obtener a partir de un tensor T_p^q un tensor T_{p-1}^{q-1} que representaremos por $c_i^j(T_p^q)$.

Elijamos, como siempre, una base $\{e_1, \ldots, e_n\}$ de E y $\{\omega_1, \ldots, \omega_n\}$ su base dual, y recordemos que $\omega_i(e_i) = \delta_{ij}$.

Comencemos con algún ejemplo:

Ejemplo 1.8. Dado el tensor $T_1^1 = a_j^i \omega_i \otimes e_j$, vamos a contraer su único índice covariante con el índice contravariante para obtener un T_0^0 , es decir, un escalar:

$$c_1^1(a_i^i\omega_i\otimes e_j)=a_i^i\omega_i(e_j)=a_i^i\delta_{ij}=a_i^i$$

y según la notación de Einstein:

$$c_1^1(\sum_{ij} a_j^i \omega_i \otimes e_j) = \sum_i a_i^i$$

Es decir, la contracción c_1^1 del tensor (a_i^i) es el escalar $a_1^1 + \cdots + a_n^n$.

Ejemplo 1.9. Hagamos la contracción del primer índice contravariante con el segundo covariante del tensor $T_3^2 = \lambda_{ijk}^{lm} \omega_i \otimes \omega_j \otimes \omega_k \otimes e_l \otimes e_m$.

$$c_j^l(T_3^2) = \lambda_{ijk}^{lm} \,\omega_i \otimes \omega_j(e_l) \otimes \omega_k \otimes e_m = \lambda_{ijk}^{lm} \,\delta_{jl} \,\omega_i \otimes \omega_k \otimes e_m = \lambda_{ilk}^{lm} \,\omega_i \otimes \omega_k \otimes e_m$$

Por tanto.

la contracción c_j^l del tensor $T_3^2=(\lambda_{ijk}^{lm})$ es el tensor $T_2^1=(\alpha_{ik}^m)$ dado por $\alpha_{ik}^m=\sum_l \lambda_{ilk}^{lm}$.

Definición 1.10. En general, definimos la **contracción** del índice contravariante j_r con el covariante i_s del tensor $T_p^q = \lambda_{i_1...i_p}^{j_1...j_q} \omega_{i_1} \otimes \cdots \otimes \omega_{i_p} \otimes e_{j_1} \otimes \cdots \otimes e_{j_q}$ por:

$$c_{i_s}^{j_r}(T_p^q) = \lambda_{i_1 \dots i_p}^{j_1 \dots j_q} \, \delta_{i_r j_s} \, \omega_{i_1} \otimes \dots \otimes \widehat{\omega}_{i_s} \otimes \dots \otimes \omega_{i_p} \otimes e_{j_1} \otimes \dots \otimes \widehat{e_{j_r}} \otimes \dots \otimes e_{j_q}$$

donde la notación $\widehat{\omega}_{i_s}$ y $\widehat{e_{j_r}}$ significa que en la expresión no está ni ω_{i_s} ni e_{j_r} . Se puede demostrar fácilmente que $c_{i_s}^{j_r}(T_p^q)$ no depende de la base elegida y, por tanto, $c_{i_s}^{j_r}$ define una aplicación lineal entre los espacios de tensores $T_p^q(E)$ y T_{p-1}^{q-1} :

$$T_p^q(E) \xrightarrow{c_{is}^{j_r}} T_{p-1}^{q-1}$$

$$T_p^q \mapsto c_{is}^{j_r}(T_p^q)$$

1.4.2. Subir y bajar índices de tensores en un espacio métrico no singular.

Supongamos en este caso que nuestro espacio vectorial E está dotado de una métrica T_2 irreducible.

Como T_2 es irreducible la polaridad $E \xrightarrow{\phi_{T_2}} E^*$ es un isomorfismo, luego permite "identificar" vectores con formas lineales, de manera que a cada vector $e \in E$ le corresponde la forma lineal $\omega = \phi_{T_2}(e)$ y a cada forma lineal $\omega \in E^*$ le corresponde el vector $e = \phi_{T_2}^{-1}(\omega)$, definidos por $\omega(e') = T_2(e, e')$ para cada $e' \in E$.

Sea $G = (g_{ij})$ la matriz de T_2 en la base $\{e_1, \ldots, e_n\}$ de E y sea $\{\omega_1, \ldots, \omega_n\}$ la base dual. Recordando que la matriz de la polaridad coincide con G^t , se tiene:

$$\phi_{T_2}(e_j) = \sum_i g_{ji}\omega_i; \quad \phi_{T_2}^{-1}(\omega_i) = \sum_j g^{ij}e_j, \quad \text{siendo } (g^{ij}) = G^{-1}.$$

Es decir, vía la polaridad identificamos el vector e_j con la forma lineal $g_{ji}\omega_i$ y la forma lineal ω_i con el vector $g^{ij}e_j$.

Vamos a transformar el tensor $T_p^q = \lambda_{i_1 \dots i_p}^{j_1 \dots j_q} \omega_{i_1} \otimes \dots \otimes \omega_{i_p} \otimes e_{j_1} \otimes \dots \otimes e_{j_q}$ en un tensor T_{p-1}^{q+1} "subiendo el índice covariante i_r ", lo que expresaremos por $\sigma_{i_r}(T_p^q) = T_{p-1}^{q+1}$ y consistirá en sustituir la forma lineal ω_{i_r} por el vector $g^{i_r j_r} e_{j_r}$ con el que se identifica por la polaridad. Módulo permutaciones de los vectores e_j en el producto tensorial $e_{j_1} \otimes \dots \otimes e_{j_q} \otimes e_{j_r}$, se tiene:

$$\sigma_{i_r}(T_p^q) = \lambda_{i_1 \dots i_p}^{j_1 \dots j_q} g^{i_r j_r} \omega_{i_1} \otimes \dots \otimes \widehat{\omega}_{i_r} \otimes \dots \omega_{i_p} \otimes e_{j_1} \otimes \dots \otimes e_{j_q} \otimes e_{j_r}$$

Análogamente, transformamos el tensor $T_p^q = \lambda_{i_1 \dots i_p}^{j_1 \dots j_q} \omega_{i_1} \otimes \dots \otimes \omega_{i_p} \otimes e_{j_1} \otimes \dots \otimes e_{j_q}$ en un tensor T_{p+1}^{q-1} "bajando el índice contravariante j_s ", $\beta^{j_s}(T_p^q)$, sustituyendo el vector e_{j_s} por la forma lineal $g_{j_s i_s} \omega_{i_s}$ y reordenar los productos tensoriales:

$$\beta^{j_s}(T_p^q) = \lambda_{i_1 \dots i_p}^{j_1 \dots j_q} g_{j_s i_s} \, \omega_{i_1} \otimes \dots \omega_{i_p} \otimes \omega_{i_s} \otimes e_{j_1} \otimes \dots \otimes \widehat{e}_{j_s} \otimes \dots \otimes e_{j_q}$$

Ejemplo 1.11. Vamos a escribir la expresión covariante del tensor T_3^1 de componentes λ_{ijk}^l , es decir, vamos a calcular las coordenadas μ_{ijkr} del tensor covariante de orden 4, T_4 , obtenido de T_3^1 bajando su índice contravariante:

$$T_3^1 = \lambda_{ijk}^l \, \omega_i \otimes \omega_j \otimes \omega_k \otimes e_l \,; \quad e_l = g_{lr} \omega_r$$

$$T_4 = \beta^l (T_3^1) = \lambda_{ijk}^l \, g_{lr} \, \omega_i \otimes \omega_j \otimes \omega_k \otimes \omega_r = \mu_{ijkr} \, \omega_i \otimes \omega_j \otimes \omega_k \otimes \omega_r$$

Esto es, $\mu_{ijkr} = \lambda_{ijk}^l g_{lr}$.

 T_3^1 podría ser el tensor de curvatura de una variedad riemanniana X (que ya estudiaréis más adelante, de momento pensad en ellas como espacios que localmente son como un espacio euclídeo, pero que globalmente podrían ser distintos, por ejemplo una superficie en \mathbb{R}^3), dado en cada punto $x \in X$ por:

 $R_3^1 = \lambda_{ijk}^l dx_i \otimes dx_j \otimes dx_k \otimes \frac{\partial}{\partial x_l}$; $R_4 = \lambda_{ijk}^l g_{lr} dx_i \otimes dx_j \otimes dx_k \otimes dx_r$ su forma covariante (Los coeficientes λ_{ijk}^l quedan, de momento, sin definir).

En este caso, $T_2 = (g_{ij})$ es una métrica simétrica y definido positiva sobre el espacio tangente a X en x, $\mathcal{T}_x(X)$.

El espacio tangente $\mathcal{T}_x(X)$ es un espacio vectorial que admite como base los vectores velocidad $\frac{\partial}{\partial x_i}$ en las direcciones de los ejes del sistema de coordenadas diferenciable $\{x_1, \ldots, x_n\}$ (coordenadas curvilíneas) y su espacio vectorial dual, o espacio cotangente, está generado por las diferenciales en x:

$$\mathcal{T}_x(X) = \langle \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \rangle; \quad \mathcal{T}_x(X)^* = \langle dx_1, \dots, dx_n \rangle; \quad T_2 = g_{ij} \, dx_i \otimes dx_j$$

Observa que T_2 es euclídea y si $\{x_1, \ldots, x_n\}$ son coordenadas cartesianas la base $\{\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}\}$ es ortonormal, es decir, $T_2 = dx_i \otimes dx_i$.

Puedes intentar, como ejercicio, expresar el tensor métrico T_2 en coordenadas cilíndricas y también en coordenadas esféricas. Aprovechando esto, también puedes calcular la expresión del vector gradiente de una función definida en X, en coordenadas cartesianas, cilíndricas y esféricas.

Recuerda que el gradiente de una función $f(x_1,\ldots,x_n)$ define en cada punto $x\in X$ el único vector $\operatorname{grad} f \in \mathcal{T}_x(X)$ asociado a la forma lineal $\operatorname{d} f = \frac{\partial}{\partial x_i} \operatorname{d} x_i$ por la polaridad de la métrica $T_2, \, \phi_{T_2}(grad \, f) = df.$

2. Tensores covariantes.

Tensores covariantes simétricos y hemisimétricos.

Representaremos por $T_p(E)$ el k-espacio vectorial de los $T_p^0(E)$ de los tensores covariantes de orden p.

Si $\{e_1,\ldots,e_n\}$ una base de E y $\{\omega_1,\ldots,\omega_n\}$ su base dual, se tiene:

$$T_p(E) = \left\langle \{\omega_{i_1} \otimes \cdots \otimes \omega_{i_p}\}_{(i_1 \dots i_p) \in VR_n^p} \right\rangle$$

■ Un tensor $T_p \in T_p(E)$ es **simétrico** si para cualesquiera vectores e_1, \ldots, e_p se verifica:

$$T_p(e_1, \dots e_i \dots e_j \dots, e_p) = T_p(e_1, \dots e_j \dots e_i \dots, e_p)$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

• Un tensor $T_p \in T_p(E)$ es **hemisimétrico** si para cualesquiera vectores e_1, \ldots, e_p se verifica:

$$T_p(e_1, \dots e_i \dots e_j \dots, e_p) = -T_p(e_1, \dots e_j \dots e_i \dots, e_p)$$

Observemos que los tensores covariantes de orden 2 simétricos coinciden con las métricas simétricas y los hemisimétricos con las métricas hemisimétricas.

Proposición 2.1. (Caracterización de los tensores hemisimétricos) $(ch(k) \neq 2)$

 $T_p \in T_p(E)$ es hemisimétrico si y sólo si $T_p(e_1, \ldots, e_p) = 0$ cuando algún vector de los $\{e_1,\ldots,e_p\}$ está repetido.

Demostración.

 \Longrightarrow Si T_p es hemisimétrico se cumple:

$$T_p(e_1, \dots e_1, e_p) = -T_p(e_1, \dots e_1, e_p),$$

luego $T_p(e_1, \ldots, e, \ldots, e_p) = 0$ \longleftarrow Si $T_p(e_1, \ldots, e_1, \ldots, e_p) = 0$ cualesquiera que sean $e_1, \ldots, e_p \in E$, de la multili-

nealidad de T_p se sigue:

$$0 = T_{p}(e_{1}, \dots e_{i} + e_{j} \dots e_{i} + e_{j} \dots, e_{p}) = T_{p}(e_{1}, \dots e_{i} \dots e_{i} \dots, e_{p}) + T_{p}(e_{1}, \dots e_{i} \dots e_{j} \dots, e_{p}) + T_{p}(e_{1}, \dots e_{i} \dots e_{j} \dots, e_{p}) + T_{p}(e_{1}, \dots e_{j} \dots e_{i} \dots, e_{p}) + T_{p}(e_{1}, \dots e_{j} \dots e_{j} \dots, e_{p}) = 0$$

$$0 = T_{p}(e_{1}, \dots e_{i} \dots e_{j} \dots, e_{p}) + T_{p}(e_{1}, \dots e_{j} \dots e_{i} \dots, e_{p})$$

$$0 = T_{p}(e_{1}, \dots e_{i} \dots e_{j} \dots, e_{p}) + T_{p}(e_{1}, \dots e_{j} \dots e_{i} \dots, e_{p})$$

Corolario 2.2. Si T_p es hemisimétrico se cumple:

 $T_p(e_1,\ldots,e_p)=0$ para cualesquiera vectores e_1,\ldots,e_p linealmente dependientes

2.2. Producto exterior de formas lineales.

Dadas formas lineales $\omega_1, \ldots, \omega_p \in E^*$ se define su producto exterior $\omega_1 \wedge \cdots \wedge \omega_p$ como el tensor covariante de orden p dado por

$$\omega_1 \wedge \cdots \wedge \omega_p = \sum_{\sigma \in S_p} (\operatorname{Sig} \sigma) \omega_{\sigma(1)} \otimes \cdots \otimes \omega_{\sigma(p)}$$

donde S_p representa el grupo simétrico de índice p (grupo de las permutaciones de p elementos) y $Sig \sigma$ es el signo de la permutación $\sigma \in S_p$.

Ejemplo 2.3.

$$\omega_{1} \wedge \omega_{2} = \omega_{1} \otimes \omega_{2} - \omega_{2} \otimes \omega_{1}$$

$$\omega \wedge \theta = \omega \otimes \theta - \theta \otimes \omega$$

$$\omega_{1} \wedge \omega_{2} \wedge \omega_{3} = \omega_{1} \otimes \omega_{2} \otimes \omega_{3} - \omega_{1} \otimes \omega_{3} \otimes \omega_{2} - \omega_{2} \otimes \omega_{1} \otimes \omega_{3} + \omega_{2} \otimes \omega_{3} \otimes \omega_{1} + \omega_{3} \otimes \omega_{1} \otimes \omega_{2} - \omega_{3} \otimes \omega_{2} \otimes \omega_{1}$$

Propiedades del producto exterior

- (a) $\omega_1 \wedge \cdots \wedge \omega_p$ es un tensor hemisimétrico.
- (b) $\omega_1 \wedge \cdots \wedge \omega_p = (\operatorname{Sig} \sigma)\omega_{\sigma(1)} \wedge \cdots \wedge \omega_{\sigma(p)}$ para todo $\sigma \in \operatorname{S}_p$.
- (c) $\omega_1 \wedge \cdots \wedge \omega_p = 0$ si alguna ω_i está repetida.
- (d) $\omega_1 \wedge \cdots \wedge \omega_p = 0$ si alguna ω_i es combinación lineal de las otras.

Ejemplo 2.4. Utilizaremos las propiedades para hacer los cálculos más sencillos. Si $\omega = \omega_1 - \omega_2 + \omega_3$, $\omega' = 3\omega_2 - \omega_3$, $\omega'' = \omega_1 + \omega_2$, se tiene, por ejemplo:

- $\omega \wedge \omega' = (\omega_1 \omega_2 + \omega_3) \wedge (3\omega_2 \omega_3) = 3\omega_1 \wedge \omega_2 \omega_1 \wedge \omega_3 2\omega_2 \wedge \omega_3$
- $\omega \wedge \omega' \wedge \omega'' = (3\omega_1 \wedge \omega_2 \omega_1 \wedge \omega_3 2\omega_2 \wedge \omega_3) \wedge (\omega_1 + \omega_2) = -\omega_1 \wedge \omega_2 \wedge \omega_3$
- $\bullet \omega \wedge \omega'' \wedge \omega' = -\omega \wedge \omega' \wedge \omega'' = \omega_1 \wedge \omega_2 \wedge \omega_3$

2.3. Tensores hemisimétricos en coordenadas. Base de $\Omega_p(E)$.

Sea E un k-espacio vectorial de dimensión n.

Llamaremos p-formas sobre E a los tensores covariantes de orden p que son hemisimétricos y representaremos por $\Omega_p(E)$ el conjunto de ellas. Es inmediato comprobar que $\Omega_p(E)$ es un subespacio vectorial de E.

Teorema 2.5.

Para todo $p \leq n$, $\Omega_p(E)$ es un k-espacio vectorial de dimensión

$$\dim_k \Omega_p(E) = \binom{n}{p}$$

Si p > n es $\Omega_p(E) = 0$.

Es más, para cada $p \leq n$, si $\{e_1, \ldots, e_n\}$ es una base de E y $\{\omega_1, \ldots, \omega_n\}$ su base dual, los $\binom{n}{n}$ tensores hemisimétricos $\{\omega_{i_1} \wedge \cdots \wedge \omega_{i_p}\}_{i_1 < \cdots < i_p}$ forman una base de $\Omega_p(E)$.

Ejemplo 2.6. Sea $\{e_1, e_2, e_3\}$ una base de E y $\{\omega_1, \omega_2, \omega_3\}$ su base dual.

$$\Omega_1(E) = \langle \omega_1, \omega_2, \omega_3 \rangle = E^*, \quad \dim_k \Omega_1(E) = 3$$

$$\Omega_2(E) = \langle \omega_1 \wedge \omega_2, \omega_1 \wedge \omega_3, \omega_2 \wedge \omega_3 \rangle, \quad \dim_k \Omega_2(E) = \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 3$$

$$\Omega_3(E) = \langle \omega_1 \wedge \omega_2 \wedge \omega_3 \rangle, \quad \dim_k \Omega_3(E) = \begin{pmatrix} 3 \\ 3 \end{pmatrix} = 1$$

$$\Omega_p(E) = 0, \text{ para todo } p > 3$$

- 2.4. Contracción interior de un vector e y un tensor $T_p \in T_p(E)$.
 - Dado $T_p \in T_p(E)$ y $e \in E$, ieT_p es el tensor de orden p-1 definido por

$$(ieT_p)(e_2,\ldots,e_p) = T_p(e,e_2,\ldots,e_p)$$

Observa que $ieT_p = c_1^1(e \otimes T_p)$ (véase la Definición 1.10), es decir, ieT_p coincide con la contracción del índice contravariante del vector e con el primer índice covariante del tensor T_p .

Si T_p es hemisimétrico también ieT_p lo es.

Comportamiento frente a productos tensoriales y exteriores

$$ie(\omega_1 \otimes \cdots \otimes \omega_p) = \omega_1(e)(\omega_2 \otimes \cdots \otimes \omega_p)$$
$$ie(\omega_1 \wedge \cdots \wedge \omega_p) = \sum_{j=1}^p (-1)^{j-1} \omega_j(e)(\omega_1 \wedge \cdots \wedge \widehat{\omega_j} \wedge \cdots \wedge \omega_p)$$

Ejemplo 2.7. Sea $\{e_1, e_2, e_3\}$ una base de E y $\{\omega_1, \omega_2, \omega_3\}$ su base dual. Dados $\omega = -\omega_1 + 2\omega_3$, $\omega' = \omega_2 + \omega_3$, $\omega'' = \omega_1 + \omega_2$, $e = e_1 + 2e_2 + 3e_3$, calculemos las coordenadas de los siguientes tensores en las bases de p-formas correspondientes:

(a)
$$ie(\omega_1 \wedge \omega_2) = \omega_1(e)\omega_2 - \omega_2(e)\omega_1 = \omega_2 - 2\omega_1 = (-2, 1, 0) \in T_1(E) = E^*$$

$$ie(\omega_1 \wedge \omega_2 \wedge \omega_3) = \omega_1(e)\omega_2 \wedge \omega_3 - \omega_2(e)\omega_1 \wedge \omega_3 + \omega_3(e)\omega_1 \wedge \omega_2$$
$$= \omega_2 \wedge \omega_3 - 2\omega_1 \wedge \omega_3 + 3\omega_1 \wedge \omega_2 = (3, -2, 1) \in \Omega_2(E)$$

- (c) $ie(\omega \otimes \omega') = \omega(e)\omega' = 5(\omega_2 + \omega_3) = (0, 5, 5) \in T_1(E)$
- (d) $ie(\omega \wedge \omega'') = \omega(e)\omega'' \omega''(e)\omega = 5\omega'' 3\omega = (8, 5, -6) \in T_1(E)$
- (e) $ie(\omega \wedge \omega' \wedge \omega'') = ie(-\omega_1 \wedge \omega_2 \wedge \omega_3) = -ie(\omega_1 \wedge \omega_2 \wedge \omega_3) = (-3, 2, -1) \in \Omega_2(E)$, pues $\omega \wedge \omega' \wedge \omega'' = -\omega_1 \wedge \omega_3 \wedge \omega_2 + 2\omega_3 \wedge \omega_2 \wedge \omega_1 = \omega_1 \wedge \omega_2 \wedge \omega_3 2\omega_1 \wedge \omega_2 \wedge \omega_3 = -\omega_1 \wedge \omega_2 \wedge \omega_3$
- 2.4.1. Problema resuelto. Sea $\{e_1, e_2, e_3\}$ una base de E y $\{\omega_1, \omega_2, \omega_3\}$ su base dual.
 - (a) Calcula la expresión del tensor hemisimétrico de orden 2 asociado a la matriz

$$\begin{pmatrix}
0 & 1 & -2 \\
-1 & 0 & 1 \\
2 & -1 & 0
\end{pmatrix}$$

y calcula también su restricción al subespacio de ecuación x + 2y - z = 0 respecto del sistema de coordenadas definido por la base $\{e_1, e_2, e_3\}$.

- (b) Sean $\omega = -\omega_1 + \omega_2 \omega_3$, $\omega' = 2\omega_2 \omega_3$, $\omega'' = \omega_2 + \omega_3$. Calcula la 2-forma $\omega \wedge \omega'$ y la 3-forma $\omega \wedge \omega' \wedge \omega''$.
- (c) Dados $\Omega_2' = \omega_1 \wedge \omega_2 + 2\omega_2 \wedge \omega_3$, $e = 3e_1 e_2 + e_3$ y $\theta = \omega_1 3\omega_2 + 5\omega_3$ calcula la 1-forma $ie\Omega_2'$ y la 3-forma $\Omega_2' \wedge \theta$.

Solución. (a) En la base $\{\omega_1 \wedge \omega_2, \omega_1 \wedge \omega_3, \omega_2 \wedge \omega_3\}$ de $\Omega_2(E)$ la expresión del tensor es:

$$\Omega_2 = \omega_1 \wedge \omega_2 - 2\omega_1 \wedge \omega_3 + \omega_2 \wedge \omega_3$$

Calculemos una base del subespacio V:

$$V = \{(x, y, x + 2y) : x, y \in \mathbb{R}\} = \langle v_1 = (1, 0, 1), v_2 = (0, 1, 2) \rangle$$

Se tiene:

$$\begin{split} \Omega_2(v_i, v_i) &= 0 \text{, para } 1 \leq i \leq 3 \text{, pues } \Omega_2 \text{ es hemisimétrico} \\ \Omega_2(v_1, v_2) &= -\Omega_2(v_2, v_1) = (\omega_1 \wedge \omega_2)(v_1, v_2) - 2(\omega_1 \wedge \omega_3)(v_1, v_2) + (\omega_2 \wedge \omega_3)(v_1, v_2) \\ &= \omega_1(v_1)\omega_2(v_2) - \omega_2(v_1)\omega_1(v_2) - 2\omega_1(v_1)\omega_3(v_2) + 2\omega_3(v_1)\omega_1(v_2) + \\ &+ \omega_2(v_1)\omega_3(v_2) - \omega_3(v_1)\omega_2(v_2) = \\ &= 1 - 0 - 4 + 0 + 0 - 1 = -4 \end{split}$$

Luego la expresión matricial de la resticción de Ω_2 a V, $\Omega_{2|V}$, es $\begin{pmatrix} 0 & -4 \\ 4 & 0 \end{pmatrix}$.

Si $\{\theta_1, \theta_2\}$ es la base dual de $\{v_1, v_2\}$, $\{\theta_1 \wedge \theta_2\}$ es una base de $\Omega_2(V)$, y en esta base $\Omega_2|V \in \Omega_2(V)$ se expresa así:

$$\Omega_{2|V} = -4\theta_1 \wedge \theta_2$$
.

$$\omega \wedge \omega' = (-\omega_1 + \omega_2 - \omega_3) \wedge (2\omega_2 - \omega_3) = -2\omega_1 \wedge \omega_2 + \omega_1 \wedge \omega_3 + \omega_2 \wedge \omega_3$$

$$\omega \wedge \omega' \wedge \omega'' = (-2\omega_1 \wedge \omega_2 + \omega_1 \wedge \omega_3 + \omega_2 \wedge \omega_3) \wedge (\omega_2 + \omega_3) = -2\omega_1 \wedge \omega_2 \wedge \omega_3 + \omega_1 \wedge \omega_3 \wedge \omega_2 =$$

$$= -3\omega_1 \wedge \omega_2 \wedge \omega_3$$

$$ie\Omega'_2 = ie(\omega_1 \wedge \omega_2) + 2ie(\omega_2 \wedge \omega_3) = \omega_1(e)\omega_2 - \omega_2(e)\omega_1 + 2\omega_2(e)\omega_3 - 2\omega_3(e)\omega_2 = 3\omega_2 - \omega_1 - 2\omega_3 - 2\omega_2 = -\omega_1 + \omega_2 - 2\omega_3$$

$$\Omega'_2 \wedge \theta = (\omega_1 \wedge \omega_2 + 2\omega_2 \wedge \omega_3) \wedge (\omega_1 - 3\omega_2 + 5\omega_3) = 5\omega_1 \wedge \omega_2 \wedge \omega_3 + 2\omega_2 \wedge \omega_3 \wedge \omega_1 = 7\omega_1 \wedge \omega_2 \wedge \omega_3$$

3. Morfismos inducidos en la capa tensorial.

3.1. Morfismo inducido en el espacio de tensores covariantes.

Toda aplicación lineal $E \xrightarrow{f} \bar{E}$ induce una aplicación entre los espacios de tensores covariantes de orden p

$$T_p(\bar{E}) \xrightarrow{f^{*p}} T_p(E)$$

definida por:

$$(f^{*_p}\bar{T}_p)(e_1,\ldots,e_p) = \bar{T}_p(f(e_1),\ldots,f(e_p))$$

cualesquiera que sean $\bar{T}_p \in T_p(\bar{E})$ y $e_1,\ldots,e_p \in E$.

Este morfismo verifica:

- (a) f^{*_p} es lineal.
- (b) $f^{*_1} = f^*$, siendo $\bar{E} \xrightarrow{f^*} E$ el morfismo traspuesto.
- (c) Deja invariantes los subespacios de tensores simétricos y hemisimétricos, esto es, induce morfismos

$$S_p(\bar{E}) \xrightarrow{f^{*p}} S_p(E), \quad \Omega_p(\bar{E}) \xrightarrow{f^{*p}} \Omega_p(E)$$

(d) Conmuta con productos tensoriales y productos exteriores:

$$f^{*p}(\bar{\omega}_1 \otimes \bar{\omega}_p) = f^*(\bar{\omega}_1) \otimes \cdots \otimes f^*(\bar{\omega}_p)$$
$$f^{*p}(\bar{\omega}_1 \wedge \bar{\omega}_p) = f^*(\bar{\omega}_1) \wedge \cdots \otimes f^*(\bar{\omega}_p)$$

(e)
$$(f \circ q)^{*_p} = q^{*_p} \circ f^{*_p}$$

En particular, si V es un subespacio de E y $V \stackrel{i}{\hookrightarrow} E$ es la inclusión natural, la **restricción** de un tensor $T_p \in T_p(E)$ al subespacio V viene dado por

$$T_{p|_{V}} = i^{*_{p}} T_{p}$$

Ejemplo 3.1. Sea $\{e_1, e_2, e_3\}$ una base de E y $\{\omega_1, \omega_2, \omega_3\}$ su base dual. Calculemos la restricción de los tensores

$$T_3 = \omega_1 \otimes \omega_2 \otimes \omega_2 - \omega_1 \otimes \omega_1 \otimes \omega_3$$

$$\Omega_2 = \omega_1 \wedge \omega_2 - 2\omega_1 \wedge \omega_3 + \omega_2 \wedge \omega_3$$

al plano de ecuación $\pi \equiv x+y-z=0$ respecto del sistema de coordenadas que la base $\{e_1,e_2,e_3\}$ define.

Una base del plano π es $\{v_1 = (1, 0, 1), v_2 = (0, 1, 1)\}.$

Respecto de las bases $\{v_1, v_2\}$ y $\{e_1, e_2, e_3\}$ la matriz de la inclusión natural $\pi \stackrel{i}{\hookrightarrow} E$ es $(i) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$. De modo que si representamos por $\{\theta_1, \theta_2\}$ la base dual de $\{v_1, v_2\}$ se tiene que $i^*\omega_1 = \theta_1$, $i^*\omega_1 = \theta_2$, $i^*\omega_1 = \theta_1 + \theta_2$ (Recuerda que la matriz de i^* es la traspuesta de (i). Así, resulta:

$$T_{3|_{\pi}} = i^{*_3}T_3 = i^*\omega_1 \otimes i^*\omega_2 \otimes i^*\omega_2 - 2i^*\omega_1 \otimes i^*\omega_1 \otimes i^*\omega_3 =$$

$$= \theta_1 \otimes \theta_2 \otimes \theta_2 - 2\theta_1 \otimes \theta_1 \otimes (\theta_1 + \theta_2) = \theta_1 \otimes \theta_2 \otimes \theta_2 - 2\theta_1 \otimes \theta_1 \otimes \theta_1 \otimes \theta_1 \otimes \theta_1 \otimes \theta_2$$

$$\Omega_{2|_{\pi}} = i^{*_2}\Omega_2 = i^*\omega_1 \wedge i^*\omega_2 - 2i^*\omega_1 \wedge i^*\omega_3 + i^*\omega_2 \wedge i^*\omega_3 =$$

$$= \theta_1 \wedge \theta_2 - 2\theta_1 \wedge (\theta_1 + \theta_2) + \theta_2 \wedge (\theta_1 + \theta_2) = \theta_1 \wedge \theta_2 - 2\theta_1 \wedge \theta_2 + \theta_2 \wedge \theta_1 =$$

$$= -2\theta_1 \wedge \theta_2$$

Este último cálculo se puede efectuar matricialmente:

$$\Omega_{2|_{\pi}} = i^{*_2}\Omega_2 = (i)^t \cdot (\Omega_2) \cdot (i) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & 1 \\ 2 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix}$$

3.1.1. Problemas resueltos.

3.1. Sea $\{e_1, e_2, e_3\}$ una base de E y $\{\omega_1, \omega_2, \omega_3\}$ su base dual y considérese la aplicación lineal $E^* \xrightarrow{f} E$ definida por

$$f(\omega_1) = e_1 + 3e_2$$
, $f(\omega_2) = e_1 - e_2 + 2e_3$, $f(\omega_3) = e_2 + e_3$

Calcula la matriz asociada al morfismo inducido $\Omega_2(E) \xrightarrow{f^{*2}} \Omega_2(E^*)$ indicando claramente las bases en las que se expresa.

Solución. Si $E^* \xrightarrow{f^*} E^{**} \simeq E$ es el morfismo traspuesto de f su matriz respecto de las bases dadas es $A^t = \begin{pmatrix} 1 & 3 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$, siendo A la matriz de f. Luego:

$$f^*(\omega_1) = e_1 + e_2$$
, $f^*(\omega_2) = 3e_1 + e_3$, $f^*(\omega_3) = 2e_2 + e_3$.

La base de $\Omega_2(E)$ es $\{\omega_1 \wedge \omega_2, \omega_1 \wedge \omega_3, \omega_2 \wedge \omega_3\}$ y la de $\Omega_2(E^*)$ es $\{e_1 \wedge e_2, e_1 \wedge e_3, e_2 \wedge e_3\}$, y se tiene:

$$f^{*2}(\omega_{1} \wedge \omega_{2}) = f^{*}(\omega_{1}) \wedge f^{*}(\omega_{2}) = (e_{1} + e_{2}) \wedge (3e_{1} + e_{3}) = e_{1} \wedge e_{3} + 3e_{2} \wedge e_{1} + e_{2} \wedge e_{3} =$$

$$= -3e_{1} \wedge e_{2} + e_{1} \wedge e_{3} + e_{2} \wedge e_{3} = (-3, 1, 2)$$

$$f^{*2}(\omega_{1} \wedge \omega_{3}) = f^{*}(\omega_{1}) \wedge f^{*}(\omega_{3}) = (e_{1} + e_{2}) \wedge (2e_{2} + e_{3}) = 2e_{1} \wedge e_{2} + e_{1} \wedge e_{3} + e_{2} \wedge e_{3} =$$

$$= (2, 1, 1)$$

$$f^{*2}(\omega_{2} \wedge \omega_{3}) = f^{*}(\omega_{2}) \wedge f^{*}(\omega_{3}) = (3e_{1} + e_{3}) \wedge (2e_{2} + e_{3}) = 6e_{1} \wedge e_{2} + 3e_{1} \wedge e_{3} + 2e_{3} \wedge e_{2} =$$

$$= 6e_{1} \wedge e_{2} + 3e_{1} \wedge e_{3} - 2e_{2} \wedge e_{3} = (6, 3, -2)$$

Luego la matriz de
$$f^{*_2}$$
 es $\begin{pmatrix} -3 & 2 & 6 \\ 1 & 1 & 3 \\ 2 & 1 & -2 \end{pmatrix}$

- **3.2.** Sea $E \xrightarrow{f} E$ la aplicación lineal definida por f(x, y, z) = (x + z, -x + 2y + z, y + z).
 - (a) Calcula en este sistema de coordenadas las matrices de los morfismos inducidos sobre los espacios de tensores hemisimétricos de orden 2 y 3, respectivamente:

$$\Omega_2(E) \xrightarrow{f^{*2}} \Omega_2(E) , \quad \Omega_3(E) \xrightarrow{f^{*3}} \Omega_3(E)$$

(b) Calcula la matriz de la aplicación lineal

$$\Omega_2(E) \xrightarrow{T} E^*$$
 $\theta_2 \mapsto i\bar{e}(f^{*2}\theta_2)$

siendo $\bar{e} = (1, 1, -1)$.

Solución. Si $\{e_1, e_2, e_3\}$ es la base de E en la que están expresadas las coordenadas y $\{\omega_1, \omega_2, \omega_3\}$ es su base dual, la base de $\Omega_2(E)$ es $\{\omega_1 \wedge \omega_2, \omega_1 \wedge \omega_3, \omega_2 \wedge \omega_3\}$ y la de $\Omega_3(E)$

es
$$\{\omega_1 \wedge \omega_2 \wedge \omega_3\}$$
. La matriz de f es $A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ y por tanto $f^*(\omega_1) = \omega_1 + \omega_3$,

 $f^*(\omega_2) = -\omega_1 + 2\omega_2 + \omega_3, f^*(\omega_3) = \omega_2 + \omega_3.$

(a) Calculemos la matriz de f^{*2} respecto de la base $\{\omega_1 \wedge \omega_2, \omega_1 \wedge \omega_3, \omega_2 \wedge \omega_3\}$:

$$f^{*2}(\omega_{1} \wedge \omega_{2}) = f^{*}\omega_{1} \wedge f^{*}\omega_{2} = (\omega_{1} + \omega_{3}) \wedge (-\omega_{1} + 2\omega_{2} + \omega_{3}) =$$

$$= 2\omega_{1} \wedge \omega_{2} + 2\omega_{1} \wedge \omega_{3} - 2\omega_{2} \wedge \omega_{3} = (2, 2, -2)$$

$$f^{*2}(\omega_{1} \wedge \omega_{3}) = f^{*}\omega_{1} \wedge f^{*}\omega_{3} = (\omega_{1} + \omega_{3}) \wedge (\omega_{2} + \omega_{3}) =$$

$$= \omega_{1} \wedge \omega_{2} + \omega_{1} \wedge \omega_{3} - \omega_{2} \wedge \omega_{3} = (1, 1, -1)$$

$$f^{*2}(\omega_{2} \wedge \omega_{3}) = f^{*}\omega_{2} \wedge f^{*}\omega_{3} = (-\omega_{1} + 2\omega_{2} + \omega_{3}) \wedge (\omega_{2} + \omega_{3}) =$$

$$= -\omega_{1} \wedge \omega_{2} - \omega_{1} \wedge \omega_{3} - \omega_{2} \wedge \omega_{3} = (-1, -1, 1)$$

luego la matriz de f^{*2} es

$$(f^{*2}) = \begin{pmatrix} 2 & 1 & -1 \\ 2 & 1 & -1 \\ -2 & -1 & 1 \end{pmatrix}$$

Calculemos ahora la matriz de f^{*3} respecto de la base $\{\omega_1 \wedge \omega_2 \wedge \omega_3\}$. Se tiene:

$$f^{*3}(\omega_1 \wedge \omega_2 \wedge \omega_3) = f^*\omega_1 \wedge f^*\omega_3 \wedge f^*\omega_3 = (\omega_1 + \omega_3) \wedge (\omega_1 + 2\omega_2 + \omega_3) \wedge (\omega_2 + \omega_3) =$$
$$= 2\omega_1 \wedge \omega_2 \wedge \omega_3 + \omega_3 \wedge \omega_1 \wedge \omega_2 = 3\omega_1 \wedge \omega_2 \wedge \omega_3 = (3)$$

Luego, la matriz de f^{*3} es (3).

Observemos que la aplicación lineal f^{*3} es una homotecia de razón 3.

(b) Respecto de las bases $\{\omega_1 \wedge \omega_2, \omega_1 \wedge \omega_3, \omega_2 \wedge \omega_3\}$ de $\Omega_2(E)$ y $\{\omega_1, \omega_2, \omega_3\}$ de E^* y usando los cálculos de (a) la matriz de T es:

$$T(\omega_{1} \wedge \omega_{2}) = i\bar{e}f^{*2}(\omega_{1} \wedge \omega_{2}) = i\bar{e}(2\omega_{1} \wedge \omega_{2} + 2\omega_{1} \wedge \omega_{3} - 2\omega_{2} \wedge \omega_{3}) =$$

$$= 2\omega_{1}(\bar{e})\omega_{2} - 2\omega_{2}(\bar{e})\omega_{1} + 2\omega_{1}(\bar{e})\omega_{3} - 2\omega_{3}(\bar{e})\omega_{1} - 2\omega_{2}(\bar{e})\omega_{3} + 2\omega_{3}(\bar{e})\omega_{2} = 0$$

$$T(\omega_{1} \wedge \omega_{3}) = i\bar{e}f^{*2}(\omega_{1} \wedge \omega_{3}) = i\bar{e}(\omega_{1} \wedge \omega_{2} + \omega_{1} \wedge \omega_{3} - \omega_{2} \wedge \omega_{3}) = 2\omega_{2}$$

$$T(\omega_{2} \wedge \omega_{3}) = i\bar{e}f^{*2}(\omega_{2} \wedge \omega_{3}) = i\bar{e}(-\omega_{1} \wedge \omega_{2} - \omega_{1} \wedge \omega_{3} - \omega_{2} \wedge \omega_{3}) = -2\omega_{2} - 2\omega_{3}$$

$$y \text{ se obtiene } (T) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & 0 & -2 \end{pmatrix}.$$

- **3.3.** Sea $\{e_1, e_2, e_3\}$ una base de E y $\{\omega_1, \omega_2, \omega_3\}$ su base dual. Considérese la 3-forma $\Omega_3 = \omega_1 \wedge \omega_2 \wedge \omega_3$.
 - (a) Expresa en coordenadas la aplicación lineal ϕ y comprueba que es un isomorfismo:

$$E \xrightarrow{\phi} \Omega_2(E)$$
$$e \mapsto ie\Omega_3$$

- (b) Calcula las coordenadas del único vector V tal que $iv\Omega_3=\omega\wedge\omega'$ siendo $\omega=a\,\omega_1+b\,\omega_2+c\,\omega_3$, $\omega'=a'\,\omega_1+b'\,\omega_2+c'\,\omega_3$
- Solución. (a) Se calcula la matriz de ϕ en las bases $\{e_1, e_2, e_3\}$ de E y $\{\omega_1 \wedge \omega_2, \omega_1 \wedge \omega_3, \omega_2 \wedge \omega_3\}$ de $\Omega_2(E)$:

$$\phi(e_1) = ie_1\Omega_3 = ie_1(\omega_1 \wedge \omega_2 \wedge \omega_3) = \omega_1(e_1)\omega_2 \wedge \omega_3 - \omega_2(e_1)\omega_1 \wedge \omega_3 + \omega_3(e_1)\omega_2 \wedge \omega_3 = \omega_2 \wedge \omega_3 = (0, 0, 1)$$

$$\phi(e_2) = ie_2\Omega_3 = ie_2(\omega_1 \wedge \omega_2 \wedge \omega_3) = -\omega_1 \wedge \omega_3 = (0, -1, 0)$$

$$\phi(e_3) = ie_3\Omega_3 = ie_3(\omega_1 \wedge \omega_2 \wedge \omega_3) = \omega_1 \wedge \omega_2 = (1, 0, 0)$$

Se obtiene: $(\phi) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ y como $\det(\phi) = 1 \neq 0$ la aplicación lineal ϕ es un

isomorfismo.

Así, en coordenadas ϕ se escribe:

$$E \xrightarrow{\phi} \Omega_2(E)$$
$$(a, b, c) \mapsto (c, -b, a)$$

(b) Como ϕ es un isomorfismo dada una 2-forma $\omega \wedge \omega'$ existe un único vector $v \in E$ tal que $\phi(v) = \omega \wedge \omega'$.

Las coordenadas de $\omega \wedge \omega'$ en la base $\{\omega_1 \wedge \omega_2, \omega_1 \wedge \omega_3, \omega_2 \wedge \omega_3\}$ de $\Omega_2(E)$ son $\omega \wedge \omega' = (a\omega_1 + b\omega_2 + c\omega_3) \wedge (a'\omega_1 + b'\omega_2 + c'\omega_3) = (ab' - ba', ac' - ca', bc' - cb').$

Si (x, y, z) son las coordenadas de v en la base $\{e_1, e_2, e_3\}$ de E, matricialmente $\phi(v) = \omega \wedge \omega'$ se escribe:

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} ab' - ba' \\ ac' - ca' \\ bc' - cb' \end{pmatrix}$$

y se obtiene

$$v = (x, y, z) = (bc' - cb', -(ac' - ca'), ab' - ba')$$

Determinante de un endomorfismo.

Sea E un k-espacio vectorial de dimensión n y T un endomorfismo de E. El morfismo inducido sobre los tensores hemisimétricos de orden n

$$\Omega_n(E) \xrightarrow{T^{*n}} \Omega_n(E)$$

es una homotecia, pues $\dim_k \Omega_n(E) = 1$.

Definición 3.2. Se llama determinante de T a la razón de esta homotecia, esto es:

$$T^{*n}\theta_n = \det T \cdot \theta_n$$
, cualquiera que sea $\theta_n \in \Omega_n(E)$.

Propiedades

- (a) $\det(T \circ \bar{T}) = \det T \cdot \det \bar{T}$
- (b) Si $\{e_1, \ldots, e_n\}$ es una base de E y $\{\omega_1, \ldots, \omega_n\}$ es su base dual:

$$\det T = (\omega_1 \wedge \cdots \wedge \omega_n)(T(e_1), \dots, T(e_n))$$

- (c) T es un automorfismo si y sólo si det $T \neq 0$.
- $(d) \det T = \det T^*$
- (e) det $T = \sum_{\sigma \in S_n} (\operatorname{Sig} \sigma) a_{1,\sigma(1)} \cdot \cdots \cdot a_{n,\sigma(n)}$, siendo $A = (a_{ij})$ la matriz de T en la base

Demostración.

$$(a) \det(T \circ \bar{T})\theta_n = (T \circ \bar{T})^{*_n}(\theta_n) = (\bar{T}^{*_n} \circ T^{*_n})(\theta_n) = \bar{T}^{*_n}(T^{*_n})(\theta_n)) = \bar{T}^{*_n}(\det T \cdot \theta_n) = \det \bar{T} \cdot \det T \cdot \theta_n$$

(b)

$$[T^{*_n}(\omega_1 \wedge \dots \wedge \omega_n)](e_1, \dots, e_n) = (\det T \cdot \omega_1 \wedge \dots \wedge \omega_n)(e_1, \dots, e_n)$$
$$(\omega_1 \wedge \dots \wedge \omega_n)(T(e_1), \dots, T(e_n)) = \det T \cdot (\omega_1 \wedge \dots \wedge \omega_n)(e_1, \dots, e_n) = \det T$$

(c) Si T es un automorfismo existe T^{-1} tal que $T \circ T^{-1} = Id$, luego $\det T \cdot \det T^{-1} = 1$ y por tanto $\det T \neq 0$.

Como det $T \neq 0$, de (b) se sigue que $(\omega_1 \wedge \cdots \wedge \omega_n)(T(e_1), \ldots, T(e_n)) \neq 0$ luego $T(e_1), \ldots, T(e_n)$ son linealmente independientes y en consecuencia T es inyectivo y así biyectivo.

(d)

$$\det T^* \stackrel{(b)}{=} (e_1 \wedge \cdots \wedge e_n)(T^*(\omega_1) \dots T^*(\omega_n)) = \sum_{\sigma \in S_n} (\operatorname{Sig} \sigma) e_{\sigma(1)}(T * \omega_1) \dots e_{\sigma(n)}(T * \omega_n) =$$

$$= \sum_{\sigma \in S_n} (\operatorname{Sig} \sigma) \omega_1(T e_{\sigma(1)} \dots \omega_n(T e_{\sigma(n)}) = \sum_{\sigma^{-1} \in S_n} (\operatorname{Sig} \sigma^{-1}) \omega_{\sigma^{-1}(1)}(T e_1) \dots \omega_{\sigma^{-1}(n)}(T e_n) =$$

$$= \sum_{\tau \in S_n} (\operatorname{Sig} \tau) \omega_{\tau(1)}(T e_1) \dots \omega_{\tau(n)}(T e_n) = (\omega_1 \wedge \dots \wedge \omega_n) [(T e_1), \dots, T (e_n)) \stackrel{(b)}{=}$$

$$= \det T$$

(e)
$$\det T = (\omega_1 \wedge \dots \wedge \omega_n)(T(e_1), \dots, T(e_n)) = \sum_{\sigma \in S_n} (\operatorname{Sig} \sigma) \omega_1(T(e_{\sigma(1)}) \cdots \omega_n(T(e_{\sigma(n)})) = \sum_{\sigma \in S_n} (\operatorname{Sig} \sigma) a_{1,\sigma(1)} \cdots a_{n,\sigma(n)}$$

Definición 3.3. Se define el determinante de una matriz cuadrada A como el determinante de su endomorfismo asociado.

De las propiedades anteriores se sigue:

- (a) $\det(A \cdot \bar{A}) = \det A \cdot \det \bar{A}$
- (b) A es invertible si y sólo si $\det A \neq 0$.
- (c) $\det A = \det A^t$
- (d) det A = 0 si y sólo si sus columnas (o filas) son linealmente independientes.

Se pueden demostrar fácilmente todas las propiedades clásicas del determinante utilizando las propiedades de los tensores hemisimétricos.

3.3. Producto vectorial.

Sea (E, T_2) un \mathbb{R} -espacio eclídeo de dimensión 3 y sea $\{u_1, u_2, u_3\}$ una base ortonormal de E.

Tres vectores linealmente independientes $\{e_1, e_2, e_3\}$ de E definen un volumen:

Volumen =
$$|\det(e_1, e_2, e_3)| = |\det B|$$
, siendo B la matriz del cambio de base.

Si G es la matriz de la métrica euclídea T_2 en la base $\{e_1, e_2, e_3\}$, como la matriz de T_2 en la base ortonormal es I, de la fórmula del cambio de base para métricas $G = B^t I B$ se sigue:

$$\det G = \det(B^t I B) = (\det B)^2 \implies |\det B| = \sqrt{\det G}$$

Definición 3.4. En el sistema de coordenadas definido por la base $\{e_1, e_2, e_3\}$ de E se llama 3-forma de volumen al tensor hemisimétrico

$$\Omega_3 = \sqrt{\det G} \ \omega_1 \wedge \omega_2 \wedge \omega_3$$
, donde $\{\omega_1, \omega_2, \omega_3\}$ es la base dual de $\{e_1, e_2, e_3\}$.

Como hemos visto en el problema resuelto 3.3 la aplicación $E \xrightarrow{\phi} \Omega_2(E)$ dada por $\phi(e) = ie\Omega_3$ es un isomorfismo y su expresión en coordenadas respecto de una base $\{e_1, e_2, e_3\}$ de E es:

$$E \xrightarrow{\phi} \Omega_2(E)$$

$$(a, b, c) \mapsto \sqrt{\det G}(c, -b, a), \text{ donde ahora } \Omega_3 = \sqrt{\det G} \ \omega_1 \wedge \omega_2 \wedge \omega_3.$$

Así podemos definir:

Definición 3.5. Dados dos vectores $e, e' \in E$ su producto vectorial es el único vector $e \times e' \in E$ tal que

$$\phi(e \times e') = i(e \times e')\Omega_3 = \omega \wedge \omega',$$

siendo $\omega=ieT_2,\,\omega'=ie'T_2$ las formas lineales asociadas a la polaridad euclídea

Producto vectorial en coordenadas respecto de una base ortonormal

Si $\{e_1, e_2, e_3\}$ es una base ortonormal de E, $e = ae_1 + be_2 + ce_3$ y $e' = a'e_1 + b'e_2 + c'e_3$ se tiene:

$$\begin{split} T_2 &= I, \quad G = I, \quad \Omega_3 = \omega_1 \wedge \omega_2 \wedge \omega_3 \\ \omega &= ieT_2 = a\,\omega_1 + b\,\omega_2 + c\,\omega e_3, \quad \omega' = ie'T_2 = a'\,\omega_1 + b'\,\omega_2 + c'\,\omega e_3 \\ \omega \wedge \omega' &= \left(bc' - cb', -(ac' - ca'), ab' - ba'\right), \text{ en coordenadas respecto de la base de } \Omega_2(E). \end{split}$$

Luego, en coordenadas respecto de una base ortonormal se tiene:

$$(a,b,c) \times (a',b',c') = (bc'-cb', -(ac'-ca'), ab'-ba') = \begin{vmatrix} e_1 & e_2 & e_3 \\ a & b & c \\ a' & b' & c' \end{vmatrix}$$

4. Problemas propuestos.

- **4.1.** Sea $\{e_1, e_2, e_3\}$ una base de E y $\{\omega_1, \omega_2, \omega_3\}$ su base dual. Construye bases de los espacios de tensores covariantes de órdenes 2 y 3 respectivamente, $T_2(E)$ y $T_3(E)$. Construye también bases para los espacios de tensores hemisimétricos $\Omega_2(E)$ y $\Omega_3(E)$.
- **4.2.** Sea $\{e_1, e_2, e_3\}$ una base de E y $\{\omega_1, \omega_2, \omega_3\}$ su base dual. Escribe, respecto de la base de $T_2(E)$, la expresión tensorial de la métrica de matriz $G = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 2 & 0 \\ 3 & 0 & -1 \end{pmatrix}$ en esa base.
- **4.3.** Averigua si los tensores

$$T_2 = 2\omega_1 \otimes \omega_1 + 3\omega_1 \otimes \omega_3 + 2\omega_2 \otimes \omega_2 + 3\omega_3 \otimes \omega_1$$

$$\bar{T}_2 = \omega_1 \otimes \omega_2 + 4\omega_1 \otimes \omega_3 - \omega_2 \otimes \omega_1 - 4\omega_3 \otimes \omega_2$$

son simétricos o hemisimétricos. Si alguno es hemisimétrico exprésalo en función de los productos exteriores de la base de los tensores hemisimétricos.

- **4.4.** ¿Existe algún tensor hemisimétrico no nulo de orden cuatro en un espacio vectorial de dimensión tres?
- **4.5.** Sea $\{e_1, e_2, e_3\}$ una base de E y $\{\omega_1, \omega_2, \omega_3\}$ su base dual. Escribe la forma cuadrática asociada al tensor

$$T_2 = \omega_1 \otimes \omega_1 - \omega_1 \otimes \omega_3 + \omega_2 \otimes \omega_2 + \omega_2 \otimes \omega_3 - \omega_3 \otimes \omega_1 + \omega_3 \otimes \omega_2$$

y encuentra un nuevo sistema de coordenadas en el que ésta se pueda expresar como sumas y restas de cuadrados.

4.6. Sea $\{e_1, e_2, e_3, e_4\}$ una base de E y $\{\omega_1, \omega_2, \omega_3, \omega_4\}$ su base dual. Dada la métrica

$$T_2 = \omega_1 \otimes \omega_1 + \omega_2 \otimes \omega_2 - \omega_2 \otimes \omega_3 - \omega_3 \otimes \omega_2 - \omega_4 \otimes \omega_4$$

Calcula su restricción al hiperplano de ecuación x-y+z+t=0 y su expresión respecto de la base dual de la base $\{\bar{\omega}_1=\omega_3-\omega_1,\bar{\omega}_2=\omega_1+\omega_3,\bar{\omega}_3=\omega_4+\omega_2,\bar{\omega}_4=\omega_2+\omega_1\}.$

4.7. Si $\{e_1, e_2, e_3\}$ es una base de E y $\begin{pmatrix} 2 & -1 & 3 \\ 0 & 1 & 1 \\ -1 & 2 & 2 \end{pmatrix}$ es la matriz de un endomorfismo T de

E en esa base, calcula la expresión en coordenadas del tensor (1,1) asociado.

4.8. Sea $\{e_1,e_2,e_3\}$ una base de Ey $\{\omega_1,\omega_2,\omega_3\}$ su base dual. Calcula las restricciones de los tensores

$$T_3 = \omega_1 \otimes \omega_2 \otimes \omega_3 - \omega_2 \otimes \omega_1 \otimes \omega_1 \quad \Omega_2 = \omega_1 \wedge \omega_2 - \omega_2 \wedge \omega_3$$

al plano de ecuación x + y + z = 0.

- **4.9.** Sea $\{e_1, e_2, e_3\}$ una base de E y $\{\omega_1, \omega_2, \omega_3\}$ su base dual.
 - (a) Calcula la expresión del tensor hemisimétrico de orden 2 asociado a la de matriz $\begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & 1 \\ 2 & -1 & 0 \end{pmatrix}.$
 - (b) Sean $\omega = \omega_1 + \omega_2 \omega_3$, $\omega' = 2\omega_2 ? \omega_3$, $\omega'' = \omega_2 + \omega_3$. Calcula la expresión de los tensores hemisimétricos $\omega \wedge \omega'$, $\omega \wedge \omega' \wedge \omega''$
- **4.10.** Sea $\{e_1, e_2, e_3\}$ una base de E y $\{\omega_1, \omega_2, \omega_3\}$ su base dual. Demuestra que la métrica $T_2 = 2\omega_1 \otimes \omega_1 + \omega_1 \otimes \omega_2 + \omega_1 \otimes \omega_3 + \omega_2 \otimes \omega_1 + \omega_2 \otimes \omega_3 + \omega_3 \otimes \omega_1 + \omega_3 \otimes \omega_2 + 2\omega_3 \otimes \omega_3$ es irreducible y calcula las coordenadas del único vector $e \in E$ cuya imagen por la polaridad asociada a T_2 es la forma lineal $\omega = \omega_1 + \omega_2 + 2\omega_3$.

4.11. Sea $\{e_1, e_2, e_3, e_4\}$ una base de E y $\{\omega_1, \omega_2, \omega_3, \omega_4\}$ su base dual. Sea f el endomorfismo de E definido por:

$$f(e_1) = e_2 + e_3$$
, $f(e_2) = e_1$, $f(e_3) = e_3 + e_4$, $f(e_4) = e_1 - e_2$

(a) Calcula los endomorfismos inducidos

$$\Omega_3(E) \xrightarrow{f^{*3}} \Omega_3(E), \quad \Omega_4(E) \xrightarrow{f^{*4}} \Omega_4(E)$$

- (b) Dadas las formas lineales $\omega = \omega_1 2\omega_3$, $\omega' = \omega_1 \omega_1 + \omega_4$, calcula la restricción de los tensores $\omega \otimes \omega'$ y $\omega \wedge \omega'$ al subespacio $V = \langle e_1 e_2, e_2 + e_3 e_4 \rangle$.
- **4.12.** Calcula la expresión de la métrica T_2 dada en coordenadas cartesianas por $T_2 = dx \otimes dx + dy \otimes dy + dz \otimes dz$, en coordenadas cilíndricas y esféricas, y obtén en ambos casos bases ortonormales.
- **4.13.** Calcula la expresión del producto vectorial en coordenadas cartesianas, cilíndricas y esféricas.
- **4.14.** Calcula la expresión del gradiente de una función en coordenadas cartesianas, cilíndricas y esféricas.
- **4.15.** Calcula el gradiente de la función $f(x, y, z) = 2x^2 + y^2 + 4z^2 1$ en el punto P = (1, 1, 2).
- **4.16.** Calcula el plano tangente a las siguientes superficies de \mathbb{R}^3 en el punto que se indica:
 - (a) $x^2 + y^2 9z^2 = 1$ en el punto P = (3, 1, 1).
 - (b) $x^2 + y^2 = z$ en el punto P = (0, 1, 1).
 - (c) $\frac{x^2}{2} + \frac{y^2}{4} + \frac{z^2}{2} = 1$ en el punto P = (1, 0, 1).

Identifica y representa cada una de las superficies anteriores.