ECE 65: Components & Circuits Lab

Lecture 5

Zener Diode

Reference notes: sections 2.1-2.8

Sedra & Smith (7th Ed): sections 4.3-4.4

Saharnaz Baghdadchi

Course map

2. Diodes

Other types of diodes

Light-emitting diode (LED)

 $V_{D0} = 1.7 - 1.9 \text{ V}$

Made specially to operate in the reverse breakdown region.

Useful as a "reference" voltage in many circuits.

Zener Diode piecewise-linear model

Diode ON: $v_D = V_{D0}$ and $i_D \ge 0$

Diode OFF: $i_D = 0$ and $-V_Z < v_D < V_{D0}$

Zener: $v_D = -V_Z$ and $i_D \le 0$

ON:

OFF: + VD

Zener: \underbrace{i}_{D}

Zener Diode piecewise-linear model

Assume Zener diode with $V_D=0.7 \, \text{V}$ and $V_Z=5 \, \text{V}$.

- A) When $0 \langle V_1 V_2 \langle 0.7 \rangle$, diode is forward-biased, but it's not on, yet $\Longrightarrow i_D = 0$
- B When $-5 \ \langle V_1 V_2 \ \langle 0 \rangle$, diode is reverse_biased, but it's not in the Zener region, so it's Off. $\implies i_D = 0$
- When $V_1 V_2 = 0.7$, diode is forward-biased and it's $0N \implies i_D > 0$ and $V_D = V_{D_0} = 0.7 \text{ V}$.
- When $V_1 V_2 = -5 V$, diode is in Zener region, it conducts, $i_0 \leqslant 0$ and $V_D = -V_Z = -5 V$

Example:

In the following circuit, find i_L and v_L for $v_S=10~V$. For what range of v_S and R_L the Zener diode will be in the Zener region and the circuit can operate as a voltage regulator? ($V_Z=3~V,V_{D0}=0.7~V$)

Assume the diode is in the Zener region:
$$V_{D} = -V_{Z}, \quad i_{D} < 0$$

$$V_{L} = V_{Z} = 3V$$

$$i_{L} = \frac{V_{L}}{I_{K}} = \frac{3V}{I_{K}} = 3mA, \quad i_{L} = 3mA$$

$$i_{S} = \frac{V_{S} + V_{D}}{R_{S}} = \frac{10 \text{ V} - 3 \text{ V}}{1 \text{ K}}$$

$$i_{S} = 7 \text{ mA}$$

$$i_{D} = i_{L} - i_{S} = 3 \text{ mA} - 7 \text{ mA}$$

$$= -4 \text{ mA} < 0$$

when the diode is in the Zener region, is <0.

$$i_0 = i_L - i_s \leq 0$$
 $\longrightarrow i_s > i_L$

$$V_{L} = V_{Z} , \qquad \dot{U}_{L} = \frac{V_{L}}{R_{L}} = \frac{V_{Z}}{K_{L}}$$

$$\dot{U}_{S} = \frac{V_{S} - V_{Z}}{K_{S}}$$

$$i_s = \frac{V_s - V_z}{K_s}$$

$$\left(\frac{V_{s}-V_{z}}{R_{s}}>,\frac{V_{z}}{R_{L}}\right)$$

$$\frac{v_s}{R_s} \gg v_z \left(\frac{1}{R_L} + \frac{1}{R_s} \right) \longrightarrow v_s \gg \frac{v_z \left(1 + \frac{R_s}{R_L} \right)}{R_s}$$

$$\frac{\frac{V_{5/V_{Z}-1}}{R_{s}}}{\frac{1}{R_{s}}} \rightarrow \frac{1}{R_{L}} \rightarrow \frac{R_{s}}{\frac{V_{5/V_{Z}-1}}{V_{2}}}$$

Lecture 5 reading quiz

In the following circuit, find V_R for $V_S = +5 \ V$ and $V_S = -5 \ V$. Assume $V_Z = 3 \ V$ and $V_{Do} = 0.7 \ V$.

Discussion question 1.

In the below circuit find the range of v_i for which D_1 is ON and D_2 is in the Zener region. Calculate v_{out} .

Are there any other possible states at which D_1 and D_2 can operate? Assume $V_{D0} = 0.7 V$ and $V_Z = 5 V$.

Extra activity: find v_{out} for all ranges of v_i (solve the circuit parametrically).

Clicker question 1:

What is the range of v_i for which both diodes are ON? Assume $V_Z=4\ V$ and $V_{Do}=0.7\ V$.

A.
$$v_i \geqslant 2.1 \text{ V}$$

B.
$$v_i \geqslant 1.4 \text{ V}$$

C.
$$v_i \geqslant 0.7 \text{ V}$$

D. Both diodes cannot be ON simultaneously.