Entailment of Constraints

Dr Paolo Guagliardo

dbs-lecturer@ed.ac.uk

Fall 2018

Implication of constraints

A set Σ of constraints **implies** (or **entails**) a constraint ϕ if

 ${\bf every}$ instance that satisfies Σ also satisfies ϕ

Notation: $\Sigma \models \phi$

Implication problem

Given Σ and ϕ , does Σ imply ϕ ?

Important because

- ▶ We never get the list of all constraints that hold in a database
- ► The given constraints may look fine, but imply some bad ones
- ► The given constraints may look bad, but imply only good ones

Axiomatization of constraints

Set of rules (axioms) to derive constraints

Sound every derived constraint is implied

Complete every implied constraint can be derived

Sound and complete axiomatization gives a procedure ⊢ such that

$$\Sigma \models \phi$$
 if and only if $\Sigma \vdash \phi$

Notation

Attributes are denoted by A, B, C, ...

If A and B are attributes, AB denotes the set $\{A,B\}$

Sets of attributes are denoted by X, Y, Z, ...

If X and Y are sets of attributes, XY denotes their union $X \cup Y$

If X is a set of attributes and A is an attribute,

 $XA \text{ denotes } X \cup \{A\}$

Armstrong's axioms

Sound and complete axiomatization for FDs

Essential axioms

Reflexivity: If $Y \subseteq X$, then $X \to Y$

Augmentation: If $X \to Y$, then $XZ \to YZ$ for any Z

Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$

Other axioms

Union: If $X \to Y$ and $X \to Z$, then $X \to YZ$

Decomposition: If $X \to YZ$, then $X \to Y$ and $X \to Z$

Closure of a set of FDs

Let F be a set of FDs

The closure F^+ of F is the set of all FDs implied by the FDs in F

Can be computed using Armstrong's axioms

Example

Closure of $\{A \rightarrow B, B \rightarrow C\}$ (blackboard)

Attribute closure

The closure $C_F(X)$ of a set X of attributes w.r.t. a set F of FDs is the set of attributes we can derive from X using the FDs in F (i.e., all the attributes A such that $F \vdash X \to A$)

Properties

- $ightharpoonup X \subseteq C_F(X)$
- ▶ If $X \subseteq Y$, then $C_F(X) \subseteq C_F(Y)$
- $C_F(C_F(X)) = C_F(X)$

Solution to the implication problem:

$$F \models Y \rightarrow Z$$
 if and only if $Z \subseteq C_F(Y)$

Closure algorithm

```
Input: a set F of FDs, and a set X of attributes Output: C_F(X), the closure of X w.r.t. F
```

- 1. unused := F
- 2. closure := X
- 3. while $(Y \to Z) \in \text{unused and } Y \subseteq \text{closure}$

```
\begin{aligned} \text{closure} &:= \text{closure} \cup Z \\ \text{unused} &:= \text{unused} - \{Y \to Z\} \end{aligned}
```

4. return closure

Example

Closure of A w.r.t. $\{AB \rightarrow C, A \rightarrow B, CD \rightarrow A\}$ (blackboard)

Keys, candidate keys, and prime attributes

Let R be a relation with set of attributes U and FDs F

$$X \subseteq U$$
 is a key for R if $F \models X \to U$

Equivalently, X is a key if $C_F(X) = U$ (why?)

Candidate keys

Keys X such that, for each $Y\subset X$, Y is not a key Intuitively, keys with a minimal set of attributes

Prime attribute: an attribute of a candidate key

Attribute closure and candidate keys

Given a set F of FDs on attributes U, how do we compute all candidate keys?

- 1. $ck := \emptyset$
- 2. $G := \mathsf{DAG}$ of the powerset 2^U of U
 - Nodes are elements of 2^U (sets of attributes)
 - ▶ There is an edge from X to Y if $X Y = \{A\}$
- 3. Repeat until G is empty:

Find a node X without children

if
$$C_F(X) = U$$
:

$$\mathsf{ck} := \mathsf{ck} \ \cup \{X\}$$

Delete X and all its ancestors from G else:

Delete X from G

Implication of INDs

Given a set of INDs, what other INDs can we infer from it?

Axiomatization

Reflexivity: $R[X] \subseteq R[X]$

Transitivity: If $R[X] \subseteq S[Y]$ and $S[Y] \subseteq T[Z]$, then $R[X] \subseteq T[Z]$

Projection: If $R[X,Y] \subseteq S[W,Z]$ with |X| = |W|,

then $R[X] \subseteq S[W]$

Permutation: If $R[A_1, \ldots, A_n] \subseteq S[B_1, \ldots, B_n]$,

then $R[A_{i_1}, \ldots, A_{i_n}] \subseteq S[B_{i_1}, \ldots, B_{1_n}]$, where i_1, \ldots, i_n is a permutation of $1, \ldots, n$

Sound and complete derivation procedure for INDs

FDs and INDs together

Given a set F of FDs and an FD f, we can decide whether $F \models f$

Given a set G of INDs and an IND g, we can decide whether $G \models g$

What about $F \cup G \models f$ or $F \cup G \models g$?

This problem is undecidable: no algorithm can solve it

What if we consider only keys and foreign keys?

The implication problem is still undecidable

Unary inclusion dependencies (UINDs)

INDs of the form $R[A] \subseteq S[B]$ where A,B are attributes

The implication problem for FDs and UINDs is decidable in PTIME

Further reading

Abiteboul, Vianu, Hull. Foundations of Databases. Addison-Wesley, 1995

- **Chapter 8 Functional Dependencies**
- Chapter 9 Inclusion Dependencies
 - ► Algorithm for checking implication of INDs
 - ▶ Proof that implication of INDs is PSPACE-complete
 - ► Undecidability proof for implication of FDs+INDs
 - Axiomatization for FDs+UINDs