EE2026 Project Report 2019

Lab Session: Thursday PM

Member 1: Member 2:

Name: March Phua Hsiao Meng
Matriculation No: A0183219A
Name: Suther David Samuel
Matriculation No: A0182488N

No.	Feature	Owner	FPGA Input Used	Feature Description	Display (Figures)
1	Basic Voice Visualizer	Team	SW0	When SW0 = 0, the VGA displays a 20kHz ramp wave. When SW0 = 1, the VGA will display a voice waveform	Fig. 1
2.A.	Volume Indicator	Marc	N.A.	{LED11, LED10, LED9, LED8, LED7, LED6, LED5, LED4, LED3, LED2, LED1, LED0} is varied based on the amplitude of the of the voice waveform. This is done by passing in the sound wave from the voice capturer module into the counter. Using certain threshold values, we light up the LEDs. {AN0, AN1} is toggled at high frequency to display the intensity of the sound from 0 to 12 7-Segment display is used to display the digits 0 to 12	Fig. 2
2В.	Basic Scope Displays on VGA	Samuel	SW1,btnL, btnR, btnU, btnD, btnC	Grid Lines (crosses) are drawn at every 80 th pixel along the horizontal axis and 64 th pixel along the vertical axis using VGA_VERT_COORD and VGA_HORZ_COORD Ticks are drawn at every 16 th pixel horizontally and every 8 th pixel vertically with every vertical coordinate within 508 and 516 and every horizontal coordinate within 652 and 628 using	Fig. 3

VGA_HORZ_COORD and VGA_VERT_COORD

Background is drawn at every pixel that does not satisfy the ticks, axes and grid conditions based on VGA_HORZ_COORD and VGA_VERT_COORD

Voice Captured Waveform is drawn in the middle of the screen

When SW1 is on, the current view is frozen.

When SW1 is off, the task view is unfrozen.

When btnL is pressed, the colour of the axes are changed

When btnR is pressed, the color of sub-gridlines are changed

When btnC is pressed, the background colour is changed

When btnU is pressed, the voice capture waveform colour changes

When btnD is pressed, the ticks colour changes

There are 5 colors for each of the components and hence by pressing the different buttons, different combinations could be achieved.

SW2 can be used to toggle the display of gridlines.

SW3 can be used to toggle the display of the ticks.

SW4 can be used to toggle the display of the axes.

SW5 can be used to toggle the display of the background.

				SW6 can be used to toggle the display of the sound wave.	
3	Menu Screen	Team	SW15	This switch toggles between the task and our special features. It serves to inform the user that our special feature includes a sound visualizer as well as a sound-based game. Help option is also available to display all available options to the user. The text is the menu screen is implemented using Derek-X-Wang/VGA-Text-Generator from GitHub. ^[1]	Fig . 4
4	Sound amplitude dependent color changing game	Team	SW15 and SW14	This displays the sound waveform. Here, the sound wave changes color depending on the amplitude of the sound detected. The background color, grid color, axes color, ticks colors can be changed or even disabled as usual just like in the task.	Fig. 5
5	Volume Bar	Marc	SW15 and SW14 and SW12	Displays horizontal square bars of gradual gradient colors (green to yellow to red) to display the volume amplitude. This updates at 5Hz, the same frequency as the LEDs and the 7seg.	Fig. 6
6	Piano - square grid waveform	Marc	SW15 and SW14 and SW7	Horizontal color changing piano square grid waveforms are displayed here to represent the sound wave. This is a sound wave visualization. The higher the amplitude, the higher the bars. This feature is implemented by taking the sound amplitude at larger intervals.	Fig. 7
7	Circular Splat waveform	Marc	SW15 and SW14 and SW6	A circular splat waveform representative of the sound is displayed. This is another form of sound wave visualization.	Fig. 8
8	Rainbow Display	Samuel	SW15 and SW14 and SW9	Generates a nice rainbow based on the amplitude of the sampled sound wave. This is implemented by having semi-circles of rainbow colors overlaying one another. Each ring shows up when the sound reaches a particular level. The rainbow is representative of the sound intensity and refreshes at 5Hz frequency.	Fig. 9

9	Pre-set waves	Team	SW15, SW14, SW11 and	When SW15, SW14 and SW11 are switched on, preset waves are generated.	Fig. 10
			btnC, btnU, btnL, btnR, btnD	-Triangular waveforms -Jaw shaped waveform (rising) - Square Waveforms -Jaw-shaped (falling) waveforms	
				-btnC can be used to switch among these waveforms	
				-btnU can be used to increase the frequency	
				-btnD can be used to decrease the frequency	
				-btnR can be used to increase the amplitude	
				-btnL can be used to decrease the amplitude	
				This preset wave can also be passed into our sound visualizer to study waves and hence could be used as an education tool for	
10	Game	Team	SW15, SW14 and SW13	students. When SW15, SW14 and SW13 are switch on, our mini game is activated. A spaceship will move left to right and right to left continuously at the bottom of the screen. 4 blocks of different colors are generated at the top of the screen and they start to move towards the bottom towards the player's territory. When the player makes a noise, a bullet of a certain color corresponding to the intensity of the sound is generated. The objective is for the player to hit the targets with the bullets. However, the target is only destroyed if the bullet color matches the target color. If any of the target enters the player's territory, the player loses and the	Fig. 11

				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
				game immediately ends. If the player successfully destroys a block, another block generates at the top of the screen. Each time the player successfully destroys a	
				block, a point is added.	10
11	Shaded Wave with amplifier	Samuel	SW15, SW14, SW6, btnU and btnD	The entire displacement of the selected wave (sound wave or preset wave) with respect to the horizontal axis is now shaded. This is another visualization of the wave.	Fig. 12
				-btnU and btnD are used to amplify and diminish the waves respectively. This allows for the user to visualize softer waves in greater detail by amplifying it.	
12	Block Waves	Team	SW15, SW 14, SW8 and SW6	-When SW15, SW14, SW8 and SW6 are turned on, a block wave is generated about the horizontal axis.	Fig. 13
			btnU and btnD	-This effect is achieved by combining Samuel's shaded wave and Marc's Piano wave effects showing that combinations of sound visualizations are possible in our system. The amplification functionality could be applied on this wave as well with btnU to amplify and btnD to diminish the wave.	
				-Behind the scenes, this is achieved by first applying the piano waveform to the sound wave. The shading effect is then applied to this waveform to achieve the block waves.	
13	Circular Waveform	Team	SW15, SW14, SW11, SW7	- Another complex example of how sound visualization features can be combined to achieve new features.	Fig. 14
			btnR, btnU, btnD, btnL and btnC	- When SW15, SW14, SW11 and SW7 are turned on and the square preset waveform is selected, 4 circles appear on the screen. Changing the frequency changes the size of the squares making up the circles.	

14	Piano -Image Waveform	Team	SW15, SW14, Sw11 and Sw8	-By changing the amplitude of the preset wave, the circles can be made to move out away from each other or in towards each other -When SW15, SW14, SW11 and SW8 are switched on, and btnC is pressed until square waveform is selected, a piano kind of shape is displayed on the screen.	Fig. 15
				-When SW15, SW14, SW11 and SW8 are switched on, and btnC is pressed until Jaw-tooth waveform is selected, it creates a jaw-toothed waveform	
				-When SW15, SW14, SW11 and SW8 are switched on, and btnC is pressed until triangle waveform is selected, running mountains waveforms are created on the screen	
				-This is an example of how different wave combinations can result in unique visualizations in our implementation. Also, the amplitude and frequency of these waveforms can be controlled	
15	Sound Visualizations credits overlay screen	Team	SW15, SW14 and SW10	A small overlay screen with green border and black background displays the text "EE2026 Sound Visualizations by Marc and Samuel".	
16	Help Menu	Team	SW15 and SW12	 -When SW15 and SW12 are turned on, a help menu is displayed -Help menu displays the various switches needed to activate the various waveform and the game. 	Fig. 16

EE2026 Project report

Appendix

References:

[1] VGA Text Generator: https://github.com/Derek-X-Wang/VGA-Text-Generator was used for all the texts used in our project

Feedback:

Marc Phua	Suther David Samuel			
1. What did you like most/least about the project				
Like most: Programming a game on Verilog	Most liked: Playing around with the sound			
and seeing it work was very satisfying.	wave and background to achieve the			
	different effects and also combining			
	different effects to achieve totally new			
Least: As Verilog's programming	effects.			
methodology is very different from the				
other computer programming languages	Least: A good portion of the time we spent			
such as C, it required a lot of hardcoding for	on the project was just wasted waiting for			
the game.	bitstream to be generated.			
2. How would you suggest the overall project assignment be improved?				
-	One mic could be given to each person so			
	that both of the team members could work			
	with the soundwave independently for			
	their individual components.			
	Since we only had one mic per team			
	member, for our group, we decided to			
	generate our own waveform so that we			
	could work independently.			
3. Any other constructive feedback/suggestions are welcome				
-	-			