

INSTITUTO DE INGENIERÍA MATEMÁTICA Y COMPUTACIONAL

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

IMT3410: Métodos para ecuaciones diferenciales

Clase 11

Manuel A. Sánchez 2024.09.25

Métodos de diferencias finitas

Métodos de diferencias finitas

Un método numérico clásico para resolver problemas de valores de frontera es el método de diferencias finitas, el cual reemplaza de forma directa los operadores diferenciales, o derivadas, por expresiones de **diferencias finitas** e impone una version discreta del problema en algunos puntos o grilla del dominio. Esta discretización da origen a un sistema lineal o no lineal de ecuaciones con solución la aproximación en los puntos de la grilla.

Vamos a considerar esquemas de una grilla o malla uniforme de un intervalo finito (a, b), esto es:

$$\{x_n\}_{n=0}^{N+1}: \qquad a = x_0 < x_1 < \ldots < x_N < x_{N+1}, \quad x_n = a + nh; \ h = \frac{b-a}{N+1}$$

Definimos funciones de grilla $u \in \Gamma_h[a, b]$ como $u : \{x_n\} \mapsto \mathbb{R}^{N+1}$.

Ecuaciones lineales de segundo orden

Consideraremos el problema de Sturm-Liouville

$$L(y) = r(x), \quad a \le x \le b, \qquad L(y) := -y'' + p(x)y' + q(x)y$$

con condiciones de frontera simples

$$y(a) = \alpha, \ y(b) = \beta.$$

Asumimos que existen constantes positivas \bar{p} , q y \bar{q} tales que

$$|p(x)| \le \overline{p}, \quad 0 < q \le q(x) \le \overline{q}, \quad a \le x \le b.$$

Operador de diferencias finitas: Definimos para una función de grilla $u \in \Gamma_h[a, b]$

$$(L_h u)_n = -\frac{u_{n+1} - 2u_n + u_{n-1}}{h^2} + p(x_n) \frac{u_{n+1} - u_{n-1}}{2h} + q(x_n)u_n$$
, para $n = 1, 2, ..., N$.

Error de truncación

Definición

Para toda función suficientemente suave v definida sobre [a,b] y operador diferencial L y operador de diferencias finitas L_h asociado a la grilla $\{x_n\}$ definimos el **error de truncación** T_h por

$$(T_h v)_n = (L_h v)_n - (L v)(x_n), \quad n = 1, 2, ..., N$$

Tenemos que, para el operador asociado al problema de Sturm Liouville tenemos, para $v \in C^4([a,b])$

$$(T_h v)_n = -\frac{h^2}{12} \left(v^{(4)}(\xi_1) - 2p(x_n)v^{(3)}(\xi_2) \right), \quad \xi_1, \xi_2 \in [x_n - h, x_n + h],$$

o si $v \in C^6([a,b])$

$$(T_h v)_n = -\frac{h^2}{12} \left(v^{(4)}(x_n) - 2p(x_n)v^{(3)}(x_n) \right) + \mathcal{O}(h^4), \quad h \to 0.$$

Estabilidad

Definición

Decimos que un operador de diferencias L_h es **estable** si existe una constante M, independiente de h, tal que para h suficientemente pequeño, tenemos para toda función de grilla $v = \{v_n\}$

$$||v||_{\infty} \le M \left(\max\{|v_0|, |v_{N+1}|\} + ||L_h(v)||_{\infty} \right)$$

Donde

$$\|v\|_{\infty} = \max_{0 \le n \le N+1} |v_n|, \quad \|L_h(v)\|_{\infty} = \max_{1 \le n \le N} |(L_h v)_n|$$

Es el operador de nuestro operador de diferencias estable?

Teorema, operador estable

Teorema

Si $h\bar{p} \le 2$, entonces el operador L_h (aprox. S-L) es estable. En efecto, la constante de estabilidad $M=\max\{1,1/q\}$

Ver ejemplo numérico de cuando las condiciones de estabilidad no se satisface

Demostración

Reescribirmos el operador de diferencias por

$$\frac{h^2}{2}(L_h v)_n = a_n v_{n-1} + b_n v_n + c_n v_{n+1}, \quad n = 1, 2, ..., N$$

donde

$$a_n = -rac{1}{2}\left(1 + rac{1}{2}hp(x_n)
ight), \quad b_n = 1 + rac{1}{2}h^2q(x_n), \quad c_n = -rac{1}{2}\left(1 - rac{1}{2}hp(x_n)
ight).$$

Por el supuesto del teorema, tenemos que $\frac{1}{2}h|p(x_n)| \leq \frac{1}{2}h\bar{p} \leq 1$, y así $a_n \leq 0$, $c_n \leq 0$ y

$$|a_n| + |c_n| = \frac{1}{2} \left(1 + \frac{1}{2} h p(x_n) \right) + \frac{1}{2} \left(1 - \frac{1}{2} h p(x_n) \right) = 1$$

Demostración continuación

Además, tenemos que $b_n \geq 1 + \frac{1}{2}h^2q$. Observemos que

$$b_n v_n = -a_n v_{n-1} - c_n v_{n+1} + \frac{1}{2} h^2 (L_h v)_n,$$

Entonces, se sigue que

$$\left(1 + \frac{1}{2}h^2\underline{q}\right)|v_n| \le \|v\|_{\infty} + \frac{1}{2}h^2\|L_hv\|_{\infty}, \quad n = 1, 2, ..., N$$

Observe que, si $||v||_{\infty} = \max\{|v_0|, |v_{N+1}|\}$, esto es se alcanca en uno de estos valores, entonces M = 1.

Por otro lado, si v alcanza el máximo en el interior, esto es, $||v||_{\infty} = |v_{n_0}|$, $1 \le n_0 \le N$, se sigue

$$\left(1 + \frac{1}{2}h^2\underline{q}\right)|v_{n_0}| \le |v_{n_0}| + \frac{1}{2}h^2||L_hv||_{\infty}, \quad n = 1, 2, ..., N$$

lo que implica que

$$||v||_{\infty} = |v_{n_0}| \leq \frac{1}{q} ||L_h v||_{\infty}.$$

Métodos de diferencias finitas

Una aproximación por diferencias finitas del problema de Sturm Liouville es la función de grilla $u = \{u_n\}$ solución del problema:

$$(L_h u)_n = r(x_n), \quad n = 1, ..., N, \quad u_0 = \alpha, \ u_{N+1} = \beta$$

Sistema lineal asociado: (demuestre que la matriz es estrictamente diagonal dominante)

$$\begin{bmatrix} b_{1} & c_{1} & 0 & \dots & 0 \\ a_{2} & b_{2} & c_{2} & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & a_{N-1} & b_{N-1} & c_{N-1} \\ 0 & \dots & 0 & a_{N} & b_{N} \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \\ \vdots \\ u_{N-1} \\ u_{N} \end{bmatrix} = \frac{1}{2}h^{2} \begin{bmatrix} r(x_{1}) \\ r(x_{2}) \\ \vdots \\ r(x_{N-1}) \\ r(x_{N}) \end{bmatrix} - \begin{bmatrix} a_{1}\alpha \\ 0 \\ \vdots \\ 0 \\ c_{N}\beta \end{bmatrix}$$

Métodos de diferencias finitas

Teorema

Asuma que L_h es estable. Entonces, el problema de diferencias finitas tiene una única solución o equivalentemente la matriz de diferencias finitas es no singular.

Demostración. Observe que el problema homogéneo asociado, esto es, r(x) = 0 y $\alpha = \beta = 0$ pueden sólo tener la solución trivial dado que $L_h u = 0$ y $u_0 = u_{N+1} = 0$, lo que implica, por la condición de estabilidad que $u_n = 0$, n = 0, 1, ..., N + 1.

Aproximación

Teorema

Si $h\bar{p} \leq 2$, entonces

$$||u - y||_{\infty} \le M ||T_h y||_{\infty}, \quad M = \max\{1, 1/q\}$$

donde $u = \{u_n\}$ es la solución de diferencias finitas, $y = \{y_n = y(x_n)\}$ es la función de grilla inducida por la solución exacta y(x) del problema y T_h el error de truncación. Si $y \in C^4([a,b])$, entonces

$$||u-y||_{\infty} \le \frac{1}{12} h^2 M \left(||y^{(4)}||_{\infty} + 2\bar{p} ||y^{(3)}||_{\infty} \right)$$

Demostración

Sea $v_n := u_n - y(x_n)$. De

$$L_h u_n = r(x_n), u_0 = \alpha, u_{N+1} = \beta$$

 $L_y(x_n) = r(x_n), y(x_0) = \alpha, y(x_{N+1}) = \beta$

obtenemos que

$$(L_h v)_n = (L_h u)_n - (L_h y)_n = r(x_n) - [(Ly)(x_n) + (L_h y)_n - (Ly)(x_n)] = r(x_n) - r(x_n) - (T_h y)_n = -(T_h y)_n$$

de modo que

$$||L_h v||_{\infty} = ||T_h y||_{\infty}.$$

Sabemos que L_h es estable con la constante de estabilidad M. Dado que $v_0 = v_{N+1} = 0$, se sigue que $\|v\|_{\infty} \le M\|L_hv\|_{\infty} = M\|T_hy\|_{\infty}$, lo que demuestra la primera afirmación. La segunda afirmación se sigue directamente de la estimación del error de truncación.

Teorema de aproximación

Otra forma de escribir el teorema anterior es la siguiente.

Teorema

Sean $p, q \in C^2([a, b])$, $y \in C^6([a, b])$, $y h\bar{p} \leq 2$. Entonces,

$$u_n - y(x_n) = h^2 e(x_n) + \mathcal{O}(h^4), \quad n = 0, 1, ..., N + 1,$$

donde e(x) es la solución de

$$Le = \theta(x), \quad a \le x \le b; \quad e(a) = 0, \ e(b) = 0,$$

con
$$\theta(x) = \frac{1}{12}(y^{(4)}(x) - 2p(x)y^{(3)}(x).$$

Demostración

Observe que $\theta(x) \in C^2([a,b])$, $\theta(x) = \frac{1}{12}(y^{(4)}(x) - 2p(x)y^{(3)}(x)$, y así $e(x) \in C^4([a,b])$. Sea $\tilde{v}_n := \frac{1}{h^2}(u_n - y(x_n))$. Demostraremos que $\tilde{v}_n = e(x_n) + \mathcal{O}(h^2)$.

Desde la demostración del Teorema anterior, tenemos

$$L_h \tilde{v}_n = -\frac{1}{h^2} T_h y_n.$$

Desde la estimación de T_h tenemos para v = y,

$$(L_h \tilde{v})_n = \theta(x_n) + O(h^2).$$

Además,

$$(L_h e)_n = (Le)(x_n) + (L_h e)_n - (Le)(x_n) = \theta(x_n) + (T_h e)_n.$$

Dado que $e \in C^4[a, b]$, tenemos que $T_h e_n = O(h^2)$. De donde

$$L_h v_n = O(h^2)$$
, donde $v_n = \tilde{v}_n - e(x_n)$.

Dado que $v_0 = v_{N+1} = 0$ y L_h es estable, se sigue que $|v_n| < M ||L_h v||_1 = O(h^2)$.

Observación

Una aplicación del teorema anterior es el método de corrección de diferencias debido a L. Fox. Una corrección de diferencias es cualquier cantidad E_n tal que

$$E_n = e(x_n) + O(h^2), \quad n = 1, 2, ..., N.$$

Entonces se sique del teorema que

$$u_n - h^2 E_n = y(x_n) + O(h^4),$$

es decir, $\hat{u}_n = u_n - h^2 E_n$ es una aproximación mejorada con orden de exactitud $O(h^4)$. La idea de Fox es construir una corrección de diferencias E_n aplicando el método de diferencias básico al problema de valor en la frontera $Le = \theta(x)$ en el que $\theta(x_n)$ es reemplazado por una aproximación de diferencias adecuada Θ_n :

$$(L_h E)_n = \Theta_n, \quad n = 1, 2, \dots, N; \quad E_0 = 0, \quad E_{N+1} = 0.$$

Haciendo $v_n = E_n - e(x_n)$, encontramos

$$(L_h v)_n = (L_h E)_n - (L_h e)_n = \Theta_n - \theta(x_n) + O(h^2).$$

Observación continuación

Dado que $v_0 = v_{N+1} = 0$, la estabilidad entonces implica

$$|v_n| = |E_n - e(x_n)| \le M \|\Theta - \theta\|_{\infty} + O(h^2),$$

por lo que para que se cumpla, todo lo que necesitamos es asegurarnos de que

$$\Theta_n - \theta(x_n) = O(h^2), \quad n = 1, 2, \dots, N.$$

Esto se puede lograr reemplazando las derivadas en la definición de $\theta(x)$ por aproximaciones de diferencias adecuadas.

Una segunda versión de estabilidad

Método de diferencias finitas: Poisson en 1-D

En una dimensión tenemos que la ecuación de Poisson en una dimensión toma la siguiente forma

$$\begin{cases} -u''(x) = r(x), x \in (0,1) \\ u(0) = \alpha \\ u(1) = \beta \end{cases}$$

Por lo cual, usando diferencias finitas vemos que

$$\begin{cases}
-\frac{1}{h^2}(u_{n-1}-2u_n+u_{n+1})=r(x_n), & 1 \leq n \leq N, \\
u_0=\alpha \\
u_n=\beta
\end{cases}$$

Método de diferencias finitas: Poisson en 1-D

El cual, puede ser reescrito de la forma

$$A_{1d}\mathbf{u} = \mathbf{b}$$

donde $\mathbf{u} = [u_1, u_2, ..., u_N]^{\top}$, y

$$A_{1d} = \frac{1}{h^2} \begin{bmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & -1 & 2 & -1 \\ 0 & \cdots & 0 & -1 & 2 \end{bmatrix} \quad \mathbf{y} \quad \mathbf{b} = \begin{bmatrix} r(x_1) \\ r(x_2) \\ \vdots \\ r(x_{n-2}) \\ r(x_{n-1}) \end{bmatrix} - \frac{1}{h^2} \begin{bmatrix} \alpha \\ 0 \\ \vdots \\ 0 \\ \beta \end{bmatrix}$$

Error de truncación local.

Para este caso, tenemos que el error de truncación viene dado por la siguiente expresión

$$(T_h u)_n = -\frac{1}{h^2} (u(x_{n-1}) - 2u(x_n) + u(x_{n+1})) - r(x_n), \quad 1 \le n \le N$$

y usando series de Taylor vemos que

$$(T_h u)_n = -rac{1}{12}h^2u^{(4)}\left(x_n
ight) + \mathcal{O}\left(h^4
ight) = \mathcal{O}\left(h^2
ight), \quad ext{cuando } h o 0$$

Error Global: Observemos que si $v_n = u_n - y(x_n)$, entonces

$$-\frac{1}{h^2}(v_{n-1}-2v_n+v_{n+1})=-(T_hy)_n, \quad 1\leq n\leq N, \qquad (A_{1d}\mathbf{v}=-T_h\mathbf{y})$$

y $v_0 = v_{N+1} = 0$. Desde aquí podemos interpretar estas ecuaciones como una discretización de la ecuación

$$e''(x) = -\tau(x), \quad x \in [a, b], \quad e(0) = e(1) = 0.$$

Error de truncación

Como la función $\tau(x) \approx \frac{1}{12} h^2 u^{(4)}(x)$ entonces al integrar dos veces en la ecuación diferencial obtenemos

$$e(x) \approx -\frac{1}{12}h^2u'' + \frac{1}{12}h^2\left(u''(0) + x\left(u''(1) - u''(0)\right)\right) \sim \mathcal{O}\left(h^2\right).$$

Esto indica que si **resolvemos** las ecuaciones de diferencias entonces tenemos una buena aproximación de la solución de la ecuación de la ecuación diferencial.

Estabilidad.

Para trabajar la estabilidad denotemos por $A^h = A_{1d}$; $\mathbf{v}^h = \mathbf{v}$; $T^h = T_h \mathbf{y}$, el súper índice, denota una dependencia de h. De esta forma,

$$A^h \mathbf{v}^h = -T^h \implies \mathbf{v}^h = -\left(A^h\right)^{-1} T^h \implies \|\mathbf{v}^h\| \le \|\left(A^h\right)^{-1}\| \|T^h\|$$

Entonces para $\left\|\mathbf{v}^h\right\|\sim\mathcal{O}\left(h^2\right)$ necesitamos $\left\|\left(A^h\right)^{-1}\right\|\leq C.$

Definición

Suponga que un método de diferencias finitas para un problema de valores de frontera lineal tiene una forma matricial $A^h \mathbf{u}^h = \mathbf{b}^h$, para h tamaño de malla. Decimos que el método es estable si $\left(A^h\right)^{-1}$ existe para todo h suficientemente pequeño y existe una constante C, independiente de h, tal que

$$\|(A^h)^{-1}\| \leqslant C \quad \forall h < h_0.$$

Consistencia y convergencia

Definición

Decimos que el método de diferencias finitas es **consistente** con la ecuación diferencial y las condiciones de frontera si

$$||T^h|| \longrightarrow 0$$
 cuando $h \longrightarrow 0$.

Decimos que el método de diferencias finitas es convergente si

$$\|\mathbf{v}^h\| \longrightarrow 0$$
 cuando $h \longrightarrow 0$.

Teorema (Teorema fundamental de métodos de diferencias finitas)

Si el método de diferencias finitas es consistente y estable entonces es convergente.

Estabilidad en la norma 2.

Definicion de norma 2:

$$\|\mathbf{x}\|_2 = \left(\sum_{n=1}^N |x_n|^2\right)^{1/2}, \qquad \|A\|_2 = \max_{\mathbf{x} \neq 0} \frac{\|A\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$$

Para matrices cuadradas la norma 2 corresponde a

$$\|A\|_2 = \sqrt{\lambda_{\max}(A^*A)} = \sigma_{\max}(A), \quad \text{sim\'etricas } \|A\|_2 = \rho(A) := \max_{1 \le n \le N} |\lambda_n|$$

y para la matriz inversa (simétrica) tenemos la identidad

$$\left\|A^{-1}\right\|_{2} = \rho\left(A^{-1}\right) = \max_{1 \leq n \leq N} \left|\lambda_{n}^{-1}\right| = \left(\min_{1 \leq n \leq N} \left|\lambda_{n}\right|\right)^{-1}.$$

Entonces, ara demostrar estabilidad necesitamos mostrar que los valores propios de A están acotados por abaio cuando $h \to 0$.

Manuel A. Sánchez 26/41

Estabilidad en la norma 2.

Ejercicio: Para $h = \frac{1}{N+1}$ los N valores propios de A_{1d} son

$$\lambda_n = \frac{2}{h^2}(\cos(n\pi \cdot h) - 1), n = 1, \dots, N$$

y los vectores propios \mathbf{u}^n asociados a λ_n son

$$u_n^j = \sin(n\pi jh).$$

Así, se satisface que A^h u $^n = \lambda_n$ u n , n = 1, ..., N

Estabilidad en la norma 2

El menor valor propio en magnitud de A^h es

$$\lambda_{1} = \frac{\pi}{h^{2}}(\cos(\pi h) - 1)$$

$$= \frac{2}{h^{2}} \left(-\frac{1}{2!}\pi^{2}h^{2} + \frac{1}{4!}\pi^{4}h^{4} + O(h^{6}) \right)$$

$$= -\pi^{2} + O(h^{2})$$

el cual esta acotado lejos de cero cuando $h \rightarrow 0$. Por lo tanto el método es estable v

$$\left\|\mathbf{v}^h\right\|_2 \sim rac{1}{\pi^2} \left\|T^h\right\|_2.$$

Estabilidad en la norma 2

Además, observe que el vector propio \mathbf{u}^n es cercano a la **función propia** del operador diferencial de la ecuación. Para el sistema,

Problema de autovalores del Laplaciano
$$\begin{cases} y'' = \mu y \\ y(0) = 0 \\ y(1) = 0 \end{cases}$$

Entonces las funciones propias y valores propios son

$$y^n(x) = \sin(n\pi x); \quad \mu_n = -n^2\pi^2, \quad n \in \mathbb{Z}.$$

Los valores propios de A^h , λ_n son aproximaciones de \mathbf{u}^n , pero tenemos

$$\lambda_n = \frac{2}{h^2} \left(-\frac{1}{2} n^2 \pi^2 h^2 + \frac{1}{4!} n^4 \pi^4 h^4 + \ldots \right) = \mu_n + \mathcal{O}(h^2).$$

Ecuaciones de segundo orden no lineales

Ecuaciones de segundo orden no lineales

Una extensión natural no lineal del problema lineal de segundo orden es

$$Ky = 0$$
, $y(a) = \alpha$, $y(b) = \beta$,

donde el operador de segundo orden K es no lineal: $Ky \equiv -y'' + f(x, y, y')$, y f(x, y, z) es una función de clase C^1 definida en $[a, b] \times \mathbb{R} \times \mathbb{R}$ (no lineal en y y/o z). Analogamente al caso lineal, hacemos la suposición

$$|f_z| \leq \bar{p}, \quad 0 < q \leq f_y \leq \bar{q} \quad \text{en} \quad [a, b] \times \mathbb{R} \times \mathbb{R}.$$

Entonces, por el Teorema existencia y unicidad de problemas de segundo orden, este problema tiene una solución única.

Usamos nuevamente la aproximación de diferencias más simple K_h a K_s

$$(K_h u)_n = -\frac{u_{n+1} - 2u_n + u_{n-1}}{h^2} + f\left(x_n, u_n, \frac{u_{n+1} - u_{n-1}}{2h}\right)$$

Error de truncamiento

Definimos el error de truncamiento, para cualquier función suave v en [a, b], por

$$(T_h v)_n \equiv (K_h v)_n - (K v)(x_n), \quad n = 1, 2, \dots, N.$$

Si $v \in C^4[a, b]$, entonces por el teorema de Taylor, aplicado en $x = x_n$, $y = v(x_n)$, $z = v'(x_n)$,

$$(T_h v)_n = -\frac{v(x_n + h) - 2v(x_n) + v(x_n - h)}{h^2} + v''(x_n)$$

$$+ f\left(x_n, v(x_n), \frac{v(x_n + h) - v(x_n - h)}{2h}\right) - f(x_n, v(x_n), v'(x_n))$$

$$= -\frac{h^2}{12}v^{(4)}(\xi_1) + f_z(x_n, v(x_n), z_n) \left(\frac{v(x_n + h) - v(x_n - h)}{2h} - v'(x_n)\right)$$

$$= -\frac{h^2}{12}v^{(4)}(\xi_1) + f_z(x_n, v(x_n), z_n) \frac{h^2}{6}v^{(3)}(\xi_2),$$

donde $\xi_i \in [x_n - h, x_n + h]$, i = 1, 2, y $z_n \in [v'(x_n), (2h)^{-1}(v(x_n + h) - v(x_n - h))]$. Así,

$$(T_h v)_n = -\frac{h^2}{12} [v^{(4)}(\xi_1) - 2f_z(x_n, v(x_n), z_n)v^{(3)}(\xi_2)].$$

Manuel A. Sánchez 32/41

Estabilidad

Dado que K_h es no lineal, la definición de estabilidad necesita ser ligeramente modificada.

Definición

Decimos que el operador de diferencias K_h estable si para h suficientemente pequeño, y para cualquier dos funciones de malla $v = \{v_n\}$, $w = \{w_n\}$, existe una constante M tal que

$$\|v-w\|_{\infty} \leq M\left(\max\{\|v_0-w_0\|,\|v_{N+1}-w_{N+1}\|\}+\|K_hv-K_hw\|_{\infty}\right), \quad v,w \in \Gamma_h[a,b].$$

Observe que si K_h es lineal, esto se reduce a la definición anterior, ya que v-w, al igual que v, es una función de malla arbitraria.

Teorema, operador estable

Teorema

Si $h\bar{p} \le 2$, entonces K_h es estable. De hecho, la designaldad de estabilidad se cumple con $M = \max(1, 1/q)$.

Demostración. Ejercicio.

El método de diferencias finitas

El método de diferencias finitas ahora toma la siguiente forma:

$$(K_h u)_n = 0, \quad n = 1, 2, ..., N; \quad u_0 = \alpha, \quad u_{N+1} = \beta.$$

Este es un sistema de N ecuaciones **no lineales** en las N incógnitas u_1, u_2, \ldots, u_N . **Ejercicio:** Muestre que el error del método satisface que:

$$||u-y||_{\infty} \leq M||T_hy||_{\infty},$$

y que

$$||u-y||_{\infty} \le \frac{1}{12} h^2 M \left(||y^{(4)}||_{\infty} - 2\bar{p} ||y^{(3)}||_{\infty} \right)$$

Manuel A. Sánchez 35/41

El método de diferencias finitas

El método de diferencias finitas ahora toma la siguiente forma:

$$(K_h u)_n = 0, \quad n = 1, 2, ..., N; \quad u_0 = \alpha, \quad u_{N+1} = \beta.$$

Este es un sistema de N ecuaciones **no lineales** en las N incógnitas u_1, u_2, \ldots, u_N . **Ejercicio:** Muestre que el error del método satisface que:

$$||u-y||_{\infty} \leq M||T_hy||_{\infty},$$

y que

$$||u-y||_{\infty} \leq \frac{1}{12}h^2M\left(||y^{(4)}||_{\infty} - 2\bar{p}||y^{(3)}||_{\infty}\right)$$

Cuando tiene una solución única?

Existencia y unicidad

Para mostrar que el método tiene una solución única, escribimos el sistema en forma de punto fijo y aplicamos el principio de mapeo de contracción. Introducimos un parámetro de relajación $\omega \neq -1$ y escribimos

$$u = \mathbf{g}(u), \quad \mathbf{g}(u) = u - \frac{1}{1+\omega} \frac{1}{2} h^2 K_h u; \quad u_0 = \alpha, \quad u_{N+1} = \beta.$$

Aquí $\mathbf{g}: R^{N+2} \to R^{N+2}$, con $\mathbf{g} = [g_0, g_1, ..., g_N, g_{N+1}]^\top$, definiendo $g_0(u) = \alpha$, $g_{N+1}(u) = \beta$. Queremos mostrar que g es un mapeo de contracción en R^{N+2} si h satisface la condición $h\bar{p} \le 2$ y ω se elige adecuadamente. Esto probará la existencia y unicidad de la solución.

Dadas dos funciones de malla $v = \{v_n\}, w = \{w_n\},$ podemos escribir

$$g_n(v) - g_n(w) = \frac{1}{1+\omega} [a_n(v_{n-1} - w_{n-1}) + (1+\omega - b_n)(v_n - w_n) + c_n(v_{n+1} - w_{n+1})], \quad 1 \le n \le N;$$

$$\bigvee g_0(v) - g_0(w) = 0, g_{N+1}(v) - g_{N+1}(w) = 0.$$

Existencia y unicidad, demostración

Aqui

$$a_n = \frac{1}{2} \left(1 + \frac{1}{2} h f_z(z_n, y_n, z_n) \right), \quad b_n = 1 + \frac{1}{2} h^2 f_y(x_n, \bar{y}_n, \bar{z}_n), \quad c_n = \frac{1}{2} \left(1 - \frac{1}{2} h f_z(x_n, y_n, z_n) \right)$$

con \bar{y}_n, \bar{z}_n son valores intermedios apropiados. Como $h\bar{p} \leq 2$, tenemos que

$$a_n \geq 0$$
, $c_n \geq 0$, $a_n + c_n = 1$.

Si asumimos que: $\omega \geq \frac{1}{2}h^2\bar{q}$, entonces tenemos

$$1+\omega-b_n\geq 1+\omega-\left(1+rac{1}{2}h^2ar{q}
ight)=\omega-rac{1}{2}h^2ar{q}\geq 0.$$

Además, como

$$0 \leq 1 + \omega - b_n \leq 1 + \omega - \left(1 + \frac{1}{2}h^2\underline{q}\right) = \omega - \frac{1}{2}h^2\underline{q}$$

Existencia y unicidad, demostración

tenemos que

$$|g_n(v)-g_n(w)| \leq \frac{1}{1+\omega} \left(a_n+\omega-\frac{1}{2}h^2\underline{q}+c_n\right) \|v-w\|_{\infty} = \frac{1}{1+\omega} \left(1+\omega-\frac{1}{2}h^2\underline{q}\right) \|v-w\|_{\infty}.$$

Esto es

$$\|\mathbf{g}(\mathbf{v}) - \mathbf{g}(\mathbf{w})\|_{\infty} \le \gamma(\omega) \|\mathbf{v} - \mathbf{w}\|_{\infty}$$

donde $\gamma(\omega) = 1 - \frac{h^2 q/2}{1 + \omega} < 1$, lo que muestra que g es una contracción.

Ejemplo ecuación no lineal

Ejercicio: La ecuación del péndulo de masa y largo unitario.

$$\theta''(x) = -\sin(\theta(x)), \quad x \in [0, T], \quad \theta(0) = \alpha, \theta(T) = \beta$$

Ejercicios

- □ Escriba el método de punto fijo (o de iteración sucesiva) para el problema de segundo orden no lineal con diferencias finitas.
- ☐ Escriba el método de Newton para el problema de segundo orden no lineal con diferencias finitas.

Manuel A. Sánchez 40/41

INSTITUTO DE INGENIERÍA Matemática y computacional

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE