Math 1540 Spring 2023 - Homework 2

Instructions: This assignment is worth twenty points. Please complete the following problems assigned below. Submissions with insufficient explanation may lose points due to a lack of reasoning or clarity. If you are handwriting your work, please ensure it is readable and well-formatted for the grader.

Be sure when uploading your work to assign problems to pages. Problems with pages not assigned to them may not be graded.

Textbook Problems: 55, 56, 61, 62

Additional Problems:

- 1. Let f(x) be in F[x] where F is a field. Show that f has no repeated roots if and only if (f, f') = 1.
- 2. Let E/F be a field extension of F. Prove that $(f,g)_F = (f,g)_E$ for any two polynomials $f(x),g(x) \in F[x]$.
- 3. Recall Eisenstein's Criterion says that if you have a polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, and a prime p dividing each a_i for $0 \le i < n$, but p doesn't divide a_n and p^2 doesn't divide a_0 , then f(x) is irreducible in $\mathbb{Q}[x]$. Using Eisenstein's criterion, show that $x^n m$ is irreducible in $\mathbb{Q}[x]$ provided m is square-free, and $n \ge 2$.
- 4. Prove that $x^4 + 6x^3 + 12x^2 + 6x + 1$ is irreducible over $\mathbb{Q}[x]$.