Tactile graphics and Nemeth code for math and science: Student performance, difficulties, and implications

Val Morash

The Smith-Kettlewell Eye Research Institute

Amanda McKerracher

Vancouver Island University

Outline

- Overview of the larger study and goals
- Analysis 1: Tactile graphics & math
- Analysis 2: Shape familiarity
- Analysis 3: Nemeth & math performance

- Data from ~19 high-school students
 - Academically achieving: expect diploma by age 21
 - No additional learning disabilities
 - Used braille as main literacy medium
 - Located in CA or BC
 - 9 female
 - Average age 15.6 years (min 13, max 21)
 - Average onset 1.6 years
 (15 congenital, others: 1, 2, 5, 12 years)

Participants	Condition
5	Retinopathy of prematurity (ROP)
3	Anophthalmia or microphthalmia
2	Glaucoma
2	Retinal detachment
2	Unknown
2	Leber congenital amaurosis (LCA)
1	Norrie disease
1	Optic nerve hypoplasia (ONH)
1	Familial exudative vitreoretinopathy (FEVR)

- Tested on 26 measures
 - 11 math achievement (KeyMath braille)
 - 15 accessibility, exposure, and cognitive measures

- Tested on 26 measures
 - 11 math achievement (KeyMath braille)
 - 15 accessibility, exposure, and cognitive measures

KeyMath Math Assessments

Numeration

Rational Numbers

Geometry

Addition

Multiplication

Mental Computation

Measurement

Time and Money

Estimation

Interpreting Data

Problem Solving

Accessibility

Nemeth Code Math Notation

Tactile Graphics

Exposure

Shape Familiarity

Math-Related Language

Cognition

Working Memory

Fluid Reasoning

Processing Speed

Block Design

General Intelligence

Mental Rotation

Numeration

Rational Numbers

Geometry

Addition

Multiplication

Mental Computation Measurement Time and Money **Estimation**

Interpreting Data **Problem Solving**

Covered every major area of intelligence as specified by Cattell-Horn-Carroll intelligence theory.

Accessibility

Nemeth Code Math Notation

Tactile Graphics

Exposure

Shape Familiarity

Math-Related Language

Cognition

Working Memory Fluid Reasoning **Processing Speed Block Design** General Intelligence

Mental Rotation

Tactile Graphics Abilities

Math Achievement

- With tactile graphics
- Without tactile graphics

Questions:

- 1) Which tactile graphics are difficult?
- 2) Does tactile graphic performance predict math performance?

Measuring Tactile Graphics Abilities: Setting the Stage

Items 1-6

- 1. Cup and zipper
- 2. Bracelet and puzzle-piece
- 3. Scissors and key
- 4. Ball and cube
- 5. Toothbrush and comb
- 6. Crayon and spoon

Measuring Tactile Graphics Abilities: Setting the Stage

Items 1-6

Items 7-11

Setting the Stage for Tactile Understanding Kit (American Printing House for the Blind, 2004)

Measuring Math Achievement: KeyMath

A test with tactile graphics: Interpreting Data

A test without tactile graphics:
Addition

KeyMath Revised, (American Printing House for the Blind, 1996)

Results: Tactile Graphics

- Overall Accuracy: 80%
- Distribution of errors not due to chance (Person X^2) p = 0.002

Results: Tactile Graphics

- Overall Accuracy: 80%
- Distribution of errors not due to chance (Person X^2) p = 0.002

Results: Math Achievement

Overall Accuracy:

Addition (w/o TG): 82% Data (w/ TG): 54% p=0.006

Age Equivalence:

Addition (w/o TG): 11.6 y Data (w/ TG): 10.2 y p=0.034

Results: Tactile Graphics + Math

Addition:

r = 0.39, p = 0.26

Interpreting Data:

r = 0.64, p = 0.047

Summary

- Poorer performance on some TG items
 - May be associated with visual cues
- Poorer performance on math containing TG
 - Both in terms of accuracy & age equivalence
- TG performance predicts math performance
 - Only when math contains TGs

Tactile-Graphic Shape Familiarity

(congenitally blind participants only)

Question:

1) How well are students doing with TGs of simple shapes?

Circle

Rectangle

Triangle

Pentagon

Sighted Results

Sighted Results

Explicit instruction necessary for concrete-to-abstract shift.

Sighted Results

Explicit instruction necessary for concrete-to-abstract shift.

Know from other domains that informal experience w/ concepts prior to explicit instruction necessary for continued growth.

All Results

All Results

Lower than 2nd Grade Level

Typical & Atypical r = 0.69, p = 0.007 Typical & Non-Valid r = 0.14, p = 0.64 Atypical & Non-Valid r = -0.23, p = 0.42

Participants' (who are Blind) Results

No effect of Age or Gender on Accuracy – Only shape and type affect accuracy.

Table 1. Shape classification accuracy model results.				
Main Effect	Marginal F Test		<i>p</i> Value	
Age	F(1,11)	= 1.01	0.337	
Gender	F(1,11)	= 0.45	0.515	
Shape	F(3,132)	= 12.66	< 0.001 ***	
Type	F(2,132)	= 7.11	0.001 **	
Shape x Type	F(6,132)	= 4.24	<0.001 ***	
Shape x Gender	F(3,132)	= 1.04	0.376	
Type x Gender	F(2,132)	= 0.94	0.392	
Shape x Type x Gender	F(6,132)	= 1.18	0.319	
* p < 0.05, ** p < 0.01, *** p < 0.001				

All Results

Based on Tukey HSD test, worse (p < 0.05) with:

- Atypical shapes
- Atypical pentagons

Summary

- Participants were worse with:
 - Atypical shapes in terms of accuracy.
 - Non-valid shapes in terms of age-equivalence.
- Accuracy not predicted by age or gender.
- May reflect lower incidental exposure
 - Explicit instruction: concrete-to-abstract shift
 - Not sufficient for ongoing knowledge construction

Nemeth Abilities

Math Achievement

- Academic Nemeth Topic
 - Addition
- Academic Non-Nemeth Topic
 - Geometry
- Non-Academic Application
 - Time and Money

Question:

1) Does Nemeth performance predict math performance?

Measuring Nemeth Abilities

Items:

- 15 items reading Nemeth
- 15 items producing Nemeth (not discussed here)

Difficulty range:

- Easy: write numbers & simple expressions
- Medium: degree symbol, square roots, ratios, exponents
- Difficult: involve summation, null set, infinity symbols

Average accuracy: 70% (SD = 10%)

Measuring Math Achievement: KeyMath

- 1) Academic Nemeth Topic: Addition
- 2) Academic Non-Nemeth Topic: Geometry
- 3) Non-Academic Application: Time and Money

Measuring Math Achievement: KeyMath

Overall Summary / Concluding Thoughts

- Performance w/ simple TGs predicts performance with math TGs
- Poor performance w/ TGs may be due to lower incidental exposure – explicit instruction is not enough!
- Nemeth is related to math performance, including non-Nemeth academic math, but maybe not applications.

Thank you!

Val Morash

The Smith-Kettlewell Eye Research Institute

Amanda McKerracher

Simon Fraser University

Results will be posted at: www.valeriemorash.com

As they become available.