The tool we will use to work with probabilistic reasoning is called a **Bayesian Network**. This consists of two major components:

- 1. Directed Acyclic Graph shows casualty
- 2. Numbers/Nodes represent probability

Notation:

- \bullet Variable X
- Value x
- Variable Probability Distribution Pr(x) = Pr(X=x)
- Set of Variables X
- \bullet Instantiation x
- World Probability Distribution Pr(X) = truth table

Remember that if $Pr(\alpha|\beta, \gamma) = Pr(\alpha|\gamma)$, then $\alpha \& \beta$ are independent given γ We can apply the same idea to sets of variables:

X and Y are independent given Z if $\Pr(x|y,\,z) = \Pr(x|z)$ We write this as $I(X,\,Z,\,Y)$

Consider the following:

Logic

The alarm is triggered by burglary or earthquake. A radio report is caused by an earthquake. A call from the neighbor may come post-alarm.

Independence

R & C are independent given A — I(R, A, C)E & B are independent — $I(E, \phi, B)$

This can be much more efficient than a table.

The independence and parameters uniquely identify the graph.

We introduce a few terms:

- Descendants(V) the nodes reachable by V Descendants(E) = $\{R, A, C\}$ & Descendants(B) = $\{A, C\}$ & Descendants(X) = $\{\}$
- \bullet Non-Descendants (V) — the nodes unreachable from V, excluding the self & parents Non-descendants (A) = {R} & Non-descendants (E) = {B}

We call these independence statements the Marcovion Assumptions

≡ all the defined independence statements of a Bayesian Network

These are of the form I(V, Parents(V), Non-Descendants(V))

 $Marcov(G) = \{ I(C, A, BE), I(R, E, ABC), I(A, BE, R), I(B, \phi, ER), I(E, \phi, B) \}$

We can parametrize the structure by assigning weight to the connections.

 $0 \quad 1 \quad 1$

0

		A	В	$\theta_{B A}$	A	С	$\theta_{C A}$
A	θ_A	1	1	0.2	1	1	0.8
1 (0.6	1	0	0.8	1	0	0.2
0 0	0.4	0	1	0.75	0	1	0.1
		0	0	0.25	0	0	0.9
		,					

С	Е	$\theta_{E C}$
1	1	0.7
1	0	0.3
0	1	0
0	0	1

 $0.8 \\ 0.2$

0 1

Note that $Pr(\neg d, b, \neg c) = \theta_{\{} \neg d|b, \neg c\}$

Consider an arbitrary row abcde

 $Pr(abcde) = \theta_a \ \theta_{b|a} \ \theta_{c|a} \ \theta_{d|bc} \ \theta_{e|c} = 0.7$

 $Pr(ab\neg cd\neg e) = \theta_a \ \theta b|a \ \theta_{\neg c|a} \ \theta_{d|b\neg c} \ \theta_{\neg e|c} = 0.216$

 $Pr(\neg(abcde)) = \theta_{\neg a} \ \theta_{\neg b|\neg a} \ \theta_{\neg c|\neg a} \ \theta_{\neg d|\neg b\neg c} \ \theta_{\neg e|\neg c} = 0.09$

We can evaluate the independence of any two nodes are independent given a third by

Deseperation

This uses an expansion on Markov's much more efficient than probability theory. If setting Z blocks paths $x\rightarrow y$, x & y are d-separated given Z There are three ways for a node to be connected in a path, treated as follows:

- sequential $\equiv \rightarrow w \rightarrow$ is blocked iff $w \in \mathbf{Z}$
- divergent $\equiv \leftarrow w \rightarrow$ is blocked iff $w \in \mathbf{Z}$
- convergent $\equiv \to w \leftarrow$ is blocked iff w & Decendants(w) $\notin \mathbf{Z}$

We can clarify by giving an example:

