Recap: Quadratisches Sieb

- Ziel: Faktorisierung einer gegebenen Zahl n
- Grundidee: x, y finden, so dass

$$x^2 = y^2 \pmod{n}$$
, und $x \neq y$, $x \neq -y \pmod{n}$

- \rightarrow ggT(x y, n) liefert einen Faktor von n
- Vorgehen (Skizze)
 - Bestimme eine Menge F von kleinen Primzahlen
 - 2 Finde Werte b_i , so dass $b_i^2 \pmod{n}$ nur aus Primfaktoren aus F besteht. $M := \text{Menge dieser } b_i$
 - § Finde $b_1, \ldots, b_r \in M$, gerade Zahlen $\alpha_0, \alpha_1, \ldots, \alpha_r \in \mathbb{Z}$, und Primfaktoren $p_1, \ldots, p_k \in F$ so dass $b_1^2 \cdot b_2^2 \cdots b_r^2 = (-1)^{\alpha_0} \cdot (p_1)^{\alpha_1} \cdots (p_k)^{\alpha_k}$

setze
$$x := b_1 \cdots b_r$$
, $y := (-1)^{\alpha_0/2} \cdot (p_1)^{\alpha_1/2} \cdots (p_k)^{\alpha_k/2}$

Schritt 2

Input: Zahl *n*, Faktorbasis *F*

- 1. Fixiere eine Menge S von "kleinen" Zahlen.
- 2. $m := \lfloor \sqrt{n} \rfloor$
- 3. **for** (jedes $x \in S$)
 - 3.1 Bestimme $q(x) := (m + x)^2 n$ end
- 4. **for** (jedes $p \in F$)
 - 4.1 Finde alle Einträge q(x), die durch p teilbar sind.
 - 4.2 Teile diese so oft wie möglich durch p.

end

return Einträge q(x), bei denen 1 herauskommt.

Umsetzung von Zeile 4.1: Zwei 'Anfangs-Einträge' finden, dann in Schritten der Länge p nach links und nach rechts gehen.

Zielsetzung

verbleibende Problemstellung:

'Anfangs-Einträge' q(x) finden, die durch p teilbar sind.

Beobachtungen

- 'durch p teilbar' bedeutet '= 0 (mod p)'.
- \Rightarrow Anfangs-Einträge lassen sich finden durch Lösen der Gleichung $q(x) = 0 \pmod{p}$
- Erinnerung: $q(x) = (m+x)^2 n$. Einsetzen ergibt Gleichung $(m+x)^2 = n \pmod{p}$

Lösungsverfahren für Gleichung: Wurzel ziehen! (Inhalt der heutigen Stunde)

ZHAW

Modulares Wurzelziehen

Alig. Form: gesucht sind Lösungen der Gleichung $x^2 = a \pmod{p}$

Wurzeln allgemein

• **Bem:** p steht im Folgenden für eine Primzahl ≥ 3 .

Beobachtung

$$\begin{array}{rcl}
 & 1^2 & = & (p-1)^2 \\
 & 2^2 & = & (p-2)^2 \\
 & 3^2 & = & (p-3)^2 \\
 & \vdots & \vdots \\
 & \left(\frac{p-1}{2}\right)^2 & = & \left(p-\frac{p-1}{2}\right)^2
 \end{array}$$

Folgerungen

Satz

Die Hälfte der Elemente von \mathbb{Z}_p^* hat eine Wurzel, die andere Hälfte nicht

Satz

Jedes Element aus \mathbb{Z}_p^* hat entweder 0 oder 2 Wurzeln.

Wurzeln allgemein

Kriterium (ohne Begründung)

Satz (Euler)

Für jedes $a \in \mathbb{Z}_p^*$ gilt

$$a^{\frac{p-1}{2}} \pmod{p} = \left\{ \begin{array}{ll} 1, & \text{falls } a \text{ eine Wurzel hat} \\ -1, & \text{falls } a \text{ keine Wurzel hat} \end{array} \right.$$

Notation

- Abkürzung für 'a hat eine Wurzel in \mathbb{Z}_p^* ': a ist QRp (quadratischer Rest modulo p)
- Abkürzung für 'a hat keine Wurzel in \mathbb{Z}_p^* ': a ist QRNp (quadratischer Nicht-Rest modulo p)

Algorithmus von Tonelli – Fall 1

Annahme: Gegeben ist ein Element $a \in \mathbb{Z}_p^*$ mit $a \in \mathsf{QRp}$.

Fall 1: $p = 3 \pmod{4}$

Beobachtung

Findet man ein **ungerades** u mit $a^{u} = 1 \pmod{p}$, so gilt

- $a^{u+1} = a$, und
- $a^{\frac{u+1}{2}}$ ist eine Wurzel von a.

Bestimmung einer Wurzel:

- Gemäss vorherigem Kriterium von Euler: $a^{\frac{p-1}{2}} = 1$.
- Da $p = 3 \pmod{4}$, ist $\frac{p-1}{2}$ ungerade.
- Einsetzen von $u = \frac{p-1}{2}$ gibt: $a^{\frac{\nu+1}{2}} = a^{\frac{p+1}{4}}$ ist Wurzel

Folgerung

Ist $p = 3 \pmod{4}$ so gilt für alle $a \in QRp$: $a^{\frac{p+1}{4}}$ ist eine Wurzel von a.

Aufgabe: Löse die Gleichung: $x^2 = 13 \pmod{23}$

Algorithmus von Tonelli – Grundidee für Fall 2

Fall 2: $p = 1 \pmod{4}$

Beobachtung

Findet man ein $h \in \mathbb{Z}_p^*$, ein **ungerades** u und ein **gerades** g mit $a^u h^g = 1 \pmod{p}$, so gilt

- $a^{u+1}h^g = a$, und
- $a^{\frac{\nu+1}{2}} \cdot h^{\frac{g}{2}}$ ist eine Wurzel von a.

Grundidee:

- h := irgendein Element ohne Wurzel ('quadratischer Nichtrest')
- gemäss dem Euler-Kriterium ist $a^{\frac{p-1}{2}} \cdot h^{p-1} = 1$.
- Halbiere die Exponenten der obigen Gleichung so lange, bis der Exponent von a ungerade wird.
 - (Sollte das Produkt -1 werden, erhöhe Exponenten von h um $\frac{p-1}{2}$. Dies entspricht einer Multiplikation mit -1.)

Algorithmus von Tonelli – Grundidee für Fall 2

Fall 2: $p = 1 \pmod{4}$ (Forts.) Beispiele:

- Gleichung: x² = 6 (mod 73).
 Algorithmus von Tonelli:
 - Setze *a* := 6.
 - Wähle (zum Beispiel) h = 5. (Da $5^{36} = -1 \pmod{73}$, ist 5 ein quadratischer Nichtrest.)
 - Einsetzen ergibt: $a^{\frac{p-1}{2}} \cdot h^{p-1} = 6^{36} \cdot 5^{72} = 1 \pmod{73}$.
 - Halbierung der Exponenten: $6^{18} \cdot 5^{36} = 1 \pmod{73}$.
 - Halbierung der Exponenten: $6^9 \cdot 5^{18} = 1 \pmod{73}$.
 - Einsetzen von u := 9 und g := 18 in der Beobachtung auf der vorherigen Folie ergibt:
 - $a^{\frac{\nu+1}{2}} \cdot h^{\frac{g}{2}} = 6^{\frac{9+1}{2}} \cdot 5^{\frac{18}{2}} = 6^5 \cdot 5^9 = 15 \pmod{73}$ ist eine Lösung.

Algorithmus von Tonelli – Grundidee für Fall 2

Fall 2: $p = 1 \pmod{4}$ (Forts.) Beispiele:

- Gleichung: $x^2 = 2 \pmod{73}$. Algorithmus von Tonelli:
 - Setze *a* := 2.
 - Wähle (zum Beispiel) h = 10. (10 ist quadratischer Nichtrest, da $10^{36} = -1 \pmod{73}$)
 - Einsetzen ergibt: $a^{\frac{p-1}{2}} \cdot h^{p-1} = 2^{36} \cdot 10^{72} = 1 \pmod{73}$.
 - Halbierung der Exponenten: $2^{18} \cdot 10^{36} = -1 \pmod{73}$.
 - Korrektur: $\frac{p-1}{2} = 36$. Addition im Exponenten ergibt: $2^{18} \cdot 10^{36+36} = 2^{18} \cdot 10^{72} = 1 \pmod{73}$
 - Halbierung der Exponenten: $2^9 \cdot 10^{36} = -1 \pmod{73}$
 - Korrektur: $2^9 \cdot 10^{36+36} = 2^9 \cdot 10^{72} = 1 \pmod{73}$
 - Einsetzen von u := 9 und g := 72 in der Beobachtung auf einer vorherigen Folie ergibt:

$$a^{\frac{\nu+1}{2}} \cdot h^{\frac{\sigma}{2}} = 2^{\frac{9+1}{2}} \cdot 10^{\frac{72}{2}} = 2^5 \cdot 10^{36} = 41 \pmod{73}$$
 ist eine Lösung.

Algorithmus von Tonelli – Fall 2

FINDEWURZEL(a, p) // a QRp; löse $x^2 = a \pmod{p}$ in \mathbb{Z}_p^*

1. Setze *h* auf einen beliebigen QNRp.

$$e_1 := \frac{p-1}{2}$$
 $e_2 := p-1$.

 $c := a^{e_1} \cdot h^{e_2} \pmod{p}.$

2. while $(2|e_1) // c == a^{e_1} \cdot h^{e_2} == 1 \pmod{p}$

$$e_1 := \frac{e_1}{2}; \qquad e_2 := \frac{e_2}{2}$$

if
$$(a^{e_1} \cdot h^{e_2} == -1 \pmod{p})$$

$$e_2 := e_2 + \frac{p-1}{2} // \text{ Mult. mit } h^{\frac{p-1}{2}} = -1 \pmod{p}$$

end

 $// a^{e_1} \cdot h^{e_2} == 1 \pmod{p}$ mit e_1 ungerade und e_2 gerade $\Rightarrow a^{e_1+1} \cdot h^{e_2} == a \pmod{p}$

3. **return** $x_{1,2} = \pm a^{\frac{e_1+1}{2}} \cdot h^{\frac{e_2}{2}} \pmod{p}$ end

Aufgabe

• Löse die Gleichung $x^2 = 18 \pmod{41}$