9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 24

This listing of claims will replace all prior versions, and listings, of claims in the application:

- Claim 1 (original): An image sensing apparatus having a distance measuring unit, comprising:
- an image sensing element to form an object image which enters via a photographing optical system;
- a distance measuring unit to measure distances to a

 plurality of points within a photographing frame using an

 optical path different from an optical path of

 photographing optical system;
 - a determination unit to determine a relationship between a distance measuring result of the distance measuring unit and a drive amount of the photographing optical system, on the basis of the distance measuring result upon measuring a distance to a first point of the plurality of points by the distance measuring unit and a change in contrast of the object image formed at a position corresponding to the first point on the image sensing element when a focal point position of the photographing optical system has changed; and
 - a control unit to control the focal point position of the photographing optical system, on the basis of a distance measuring result of the distance measuring unit at a second point of the plurality of points, which is different from the first point and the relationship determined by the determination unit.
- Claim 2 (original): The image sensing apparatus
- 2 according to claim 1, wherein the distance measuring unit
- 3 comprises:

- 4 a distance calculation unit to calculate distances 5 to objects present at the plurality of points by 6 detecting image signals of the objects present at the plurality of points; and 7 8 a setting unit to set a highest-contrast point of 9 plurality of points as the first point, and to set a 10 point corresponding to the nearest distance to the object 11 calculated by the distance calculation unit as the second 12 point. 1 Claim 3 (original): The image sensing apparatus according to claim 1, wherein the distance measuring unit 2 3 comprises a principal object detection unit to detect a 4 location of a principal object from the plurality of points, and 5 6 the determination unit comprises a setting unit to 7 set a point where the principal object is present as the 8 second point. 1 Claim 4 (original): The image sensing apparatus 2 according to claim 3, wherein the principal object 3 detection unit detects a point, at which the distance 4 measuring result indicates a nearest distance, of the 5 plurality of points as the point where the principal 6 object is present.
- 1 Claim 5 (original): The image sensing apparatus
- 2 according to claim 1, wherein the distance measuring unit
- 3 measures distances to objects present at the plurality of
- 4 points by a passive or active method.

1 Claim 6 (withdrawn): The image sensing apparatus 2 according to claim 1, wherein the distance measuring unit 3 comprises a principal object detection unit to detect a 4 principal object on the basis of the distance measuring 5 result, and the determination unit comprises a setting 6 unit to set, as the first point, a point corresponding to 7 a distance near a current focal point position of a 8 photographing lens of the distance measuring results at 9 the plurality of points, and to set a point where the 10 principal object is present as the second point.

Claims 7-15 (canceled)

- Claim 16 (original): An image sensing apparatus having a distance measuring unit, comprising:
- 3 an image sensing element;
- 4 a photographing optical system to form an object
 5 image on an imaging surface of the image sensing element;
- 6 a drive unit to change a focal point position of the 7 photographing optical system;
- 8 an image processing unit to generate image data from 9 an output signal of the image sensing element;
- a distance measuring optical system having an optical path different from an optical path of the photographing optical system;
- a distance measuring unit to measure a distance at a specific point of an object field via the distance measuring optical system; and
- a CPU connected to the drive unit, the image
 processing unit, and the distance measuring unit, the CPU
 determining a position error of the photographing optical
 system with respect to a distance measuring result of the

20	distance measuring unit, on the basis of the distance
21	measuring result to the specific point obtained by the
22	distance the distance measuring unit and a change in
23	contrast of the image data obtained upon changing the
24	focal point position of the photographing optical system
25	by controlling the drive unit.
1	Claim 17 (original): The image sensing apparatus
2	according to claim 16, wherein the distance measuring
3	unit measures the distance by detecting an image signal
4	of an object present at the specific point.
1	Claim 18 (original): The image sensing apparatus
2	according to claim 16, wherein the distance measuring
3	unit has a plurality of specific points, and
4	the CPU determines the position error at a
5	highest-contrast point of the plurality of specific
6	points.
1	Claim 19 (original): A method of controlling an image
2	sensing apparatus, which has a distance measuring unit to
3	measure an object distance via a distance measuring
4	optical system different from an optical path of a
5	photographing optical system, comprising:
6	measuring an object distance at a specific point of
7	an object field via the distance measuring optical
8	system;
9	searching for a highest-contrast lens position while
10	displacing the photographing optical system; and
11	calculating position error information of the
12	photographing optical system on the basis of the measured
13	object distance and the searched lens position.

object distance and the searched lens position.

- Claim 20 (original): The method according to claim 19,
- 2 further comprising: determining a focal point adjustment
- 3 position of the photographing optical system on the basis
- 4 of a new object distance measured by the distance
- 5 measuring unit, and the position error information.