

Organização de Computadores Sistema de Interconexão

Professor: Francisco Ary

- Como já sabemos, um computador é constituído basicamente por:
 - processador;
 - memória; e
 - dispositivo de entrada e de saída.

 O comportamento funcional de um computador consiste na troca de sinais (dados, comunicação) entre seus componentes.

- Necessidade de um meio que possibilite a comunicação;
 - sistema de interconexão.

 Com já sabemos, a função básica de um computador é processar e armazenar dados ou instruções (executar programas);

- Basicamente, o funcionamento do computador acontece em três etapas:
 - lê ou buscar uma instrução na memória para ser executada pelo processador;
 - executar a instrução (processar);e
 - mostra o resultado (saída ou resposta).
 - Essa etapas são cíclicas, ou seja, ciclo de busca, execução e resultado;

 Basicamente, cada um dos componentes necessita realizar as seguintes trocas de sinais:

- Uma estrutura de interconexão deve obedecer aos seguintes tipos de comunicação:
 - Memória para o processador:
 - o processador lê instruções e dados da memória;
 - Processador para a memória:
 - o processador escreve na memória;
 - E/S para o processador:
 - o processador lê dados dos dispositivos de E/S;
 - Processador para E/S:
 - o processador envia dados para o dispositivo de entrada e saída;

- Entre os meios de interconexão destaca-se o barramento;
 - meio de comunicação compartilhado, ou seja, os dispositivos (componentes) usam os mesmo canal para se comunicar;
- desta forma, é necessário algum tipo de controle para evitar sobreposição entre os dispositivos;
 - de tal forma que, somente um dispositivo por vez use o meio.

- Arbitragem ou controle do barramento:
 - Centralizada:
 - um único dispositivo de hardware controlando o acesso ao barramento;
 - Distribuída:
 - cada módulo pode reivindicar o barramento;
 - lógica de controle em todos os módulos

- Um barramento é constituído por vários caminhos de comunicação. Também chamada de linhas de comunicação;
 - quanto mais linhas mais rápida a comunicação;
 - cada linha é capaz de levar uma posição da linguagem binária;
 - assumindo 1 ou 0 em cada ciclo;

- Largura do barramento:
 - quanto maior, maior será o desempenho do sistema; ou seja
 - quanto mais largo, maior o número de bits transferidos por vez;
- Largura do barramento de endereços
 - quanto maior, maior a capacidade de armazenamento do sistema;
 - Exemplos: memória de 32 bits, capacidade máxima 4
 Gbs

- Estrutura do barramento:
 - constituído de vários caminhos(linhas) de comunicação.
 - Divididos em:
 - Caminho de dados;
 - Caminho de endereço;
 - Caminho de controle.

- Cada caminho recebe um função em particular:
 - Caminho de dados:
 - onde os dados trafegam;
 - o conjunto dos caminhos constitui-se no barramento de dados;
 - cada caminho de dados pode transmitir 1 bit por vez;
 - o barramento de dados normalmente é constituído por vários caminhos;

- Cada caminho recebe um função em particular:
 - Caminho de dados (continuação):
 - normalmente é constituído por 8, 16, 32, 64 ou ainda 128 caminhos;
 - a quantidade de caminho é chamado de largura do barramento de dados, que representa a quantidade de dados que o barramento pode transmitir por vez;

- Cada caminho recebe um função em particular:
 - Caminho de endereço:
 - usada para identificar a origem e o destino dos dados no barramento;
 - Caminho de controle:
 - usadas para controla o acesso ao barramento; ou seja
 - se um dispositivo já estiver usando o barramento o outro terá que esperar;

15

- Fisicamente um caminho é constituído por condutores elétricos(fios);e
 - o barramento por um conjunto de condutores;

 Como o barramento é compartilhado, se muitos dispositivos estiverem conectados ao barramento o desempenho é prejudicado;

- O barramento torna-se um grande gargalo, quando vários dispositivos estão a ele conectados;
 - Barramento compartilhado
 - Exemplo: PCI, USB, AGP;

- Hierarquia de barramento:
 - Para melhorar o problema do gargalo foi criado uma divisão hierárquica:
 - Barramento de sistema;
 - memória principal;
 - barramento de alta velocidade;
 - placa de vídeo;
 - barramento de expansão;
 - baixa velocidade
 - » fax modem, som

Hierarquia de barramento:

 Embora existam vários tipos de barramentos, poucos parâmetros podem ser empregados para classificá-los e diferenciá-los:

Tipo	Largura do barramento
Dedicado	Endereço
Multiplexado	Dados
Método de arbitração	Tipo de transferência de dados
Centralizado	Leitura
Distribuído	Escrita
Sincronização	Ler-modificar-escrever
Síncrona	Leitura-após-escrita
Assíncrona	Bloco

- Referente ao tipo
 - Dedicado:
 - função fixa, cada caminho executa apenas sua função
 - vantagem: altas taxas de transferência;
 - desvantagem: aumento do tamanho e custo do sistema.
 - Multiplexado:
 - os caminhos são compartilhados em tempos definidos;
 - vantagem: economia de espaço e custo;
 - desvantagem: módulos com circuitos mais complexos

Métodos de arbitração

– Centralizado:

 Um árbitro (módulo separado ou parte do processador) é responsável por alocar tempo de utilização do barramento a cada módulo do sistema.

– Distribuído:

 Não existe controle central. Cada módulo do sistema contém uma lógica de controle de acesso e os módulos agem de forma conjunta para compartilhar o barramento.

- Sincronização
 - modo pelo qual os eventos nesse barramento são coordenados:
 - síncrona: determinado pelo relógio. Uma transmissão de um 1 ou um 0 é chamada de ciclo de barramento.
 - assíncrona: a ocorrência de um evento no barramento depende de um evento ocorrido anteriormente.

22

- Capacidade do barramento:
 - taxa de transferência em MBytes;
 - obtida através do cálculo:
 - -Tx(MBytes) = número de linhas (bits p/ clock) x velocidade (clock, hz) x capacidade de transmissão por clock / 8
 - » Exemplo: barramento PCI dos anos 90:
 - Tx(MB) = 32 bits x 33 Mhz x 1 / 8
 - » Tx(MB) = 132 MB (taxa teórica)

- Exemplo de barramento:
 - Barramento PCI (do inglês, Peripheral Component Interconnect):
 - desenvolvido pela Intel em 1990;
 - tornou-se um barramento padrão para interconexão de dispositivos;
 - a ultima atualização permitiu o uso de 64 caminhos de dados, com taxa de transferência aproximada de 528MB/s ou 5,224Gbps;

- Exemplo de barramento:
 - Barramento PCI (continuação):
 - o sucesso deu-se não só pela sua velocidade mais também por sua simplicidade e baixo custo;
 - usado principalmente para interconectar os seguintes componentes: Placa de vídeo, Placa de som, Placa de rede e outros;

- Exemplo de barramento:
 - Barramento DDR (do inglês, Double-Data-Rate):
 - Origem anos 2000;
 - permite que dois dados sejam transferidos ao mesmo tempo;
 - » Por exemplo: 0 e 1;
 - DDR2
 - Inicio 2003
 - » transmite quatro dados por ciclo de clock
 - DDR3
 - Início 2007
 - » transmite oito dados por ciclo de clock

- Exemplo de barramento:
 - Barramento AGP (do inglês, Accelerated Graphics Port):
 - AGP, meados de 1997
 - AGP x1
 - » trabalha a 32 bits e tem clock de 66 MHz, o que equivale a uma taxa de transferência de dados de até 266 MB;
 - modos de operação: x1; x2; x4 e x8
 - » determina quantos bits são transmitidos por ciclo de clock;

- Exemplo de barramento:
 - Barramento PCI-e ou PCI-Express (do inglês,
 Peripheral Component Interconnect Express):
 - início anos 2004;
 - uso de caminhos dedicados bidirecional
 - modos de operação:
 - x1; x2; x4; x16; x32
 - » quantidade de caminhos
 - 32 ou 64 bits
 - podem operar a 2.5 Ghz no PCI-e v1.0 ou até 8.0 Ghz v3.0:

- Exemplo de barramento:
 - Barramento USB (do inglês, Universal Serial Bus):
 - início nos anos de 1996;
 - barramento padrão para conexão de periféricos externo;
 - Hot PnP (Hot Plug em Play);
 - taxa de transferência de dados 600 MB, na versão 3.0;

Exemplo de barramento:

- Pesquisem sobre os seguintes parâmetros Dos barramentos;
 DDR: 2, 3,..., e PCI-E:
- Trabalho valendo 2 pontos
 - Dicas para iniciar sua pesquisa:
 - Biblioteca do campus e ainda sites da internet. Dicas de sites:
 - http://www.infowester.com/barramentos.php
 - http://www.hardware.com.br/guias/memoria-ram/
 - http://www.clubedohardware.com.br/artigos/barramento-agp/367
 - http://www.hardware.com.br/livros/hardware/agp.html
 - http://www.infowester.com/pciexpress.php
 - http://www.hardware.com.br/guias/placas-mae-barramentos/pciexpress.html
 - http://www.infowester.com/usb.php
 - http://www.clubedohardware.com.br/artigos/barramento-usb-20/468

Revisão da Aula

Leitura recomendada: Livro Hardware, o Guia Definitivo (Online) http://www.hardware.com.br/livros/hardware/