MONASH UNIVERSITY

DANIEL MENTIPLAY, DANIEL PRICE, CHRISTOPHE PINTE

PLANETS IN THE TW HYDRA DISC

PHANTOM WORKSHOP, JUNE 2018

DUST DYNAMICS IN PROTOPLANETARY DISCS

Dimensionless stopping time

St \ll 1 (µm grains):

Dust stuck to gas

St » 1 (cm+ grains):

Dust de-coupled from gas

St ~ 1 (mm/sub-mm grains):

Dust responds strongly via drag force

gas in sub-Keplerian orbit + dust in Keplerian orbit = dust drag

Credit: Testi+2014

THE NEAREST GAS-RICH PROTOPLANETARY DISC

- Distance: 60 pc (Gaia) ⇒ very close, cf. Taurus at 140 pc
- Age: ≈10 Myr ⇒ older than expected
- ▶ Disc mass (gas): ~ $10^{-4} 10^{-1} M_{\odot} \Rightarrow$ debate in literature
- ► Face-on: inclination ~7° ⇒ can see dust features (if there)

TW Hya: the nearest protoplanetary disc

Planet-disc interaction: gap opening

Drag resisted regime: gap opened by tidal torque alone

Low mass

0.1 M₂

gas

dust

Drag assisted regime: gap opened by tidal torque + drag

High mass

Dipierro+2016

Methods

Dust+gas hydro

Global 3d SPH - PHANTOM

Large dust grains – 2-fluid dust – one grain size per calc.

Embedded planets

Back reaction

Laibe+Price 2012

Radiative transfer

Post-processing - MCFOST

Camps 2013

Voronoi tessellation

Synthetic observations – molecular lines, dust thermal emission, scattered light

Pinte 2015

Disc model

Gas disc: 7.5×10^{-4} M $_{\odot}$ from 10–200 au with surface density $\Sigma \sim R^{-0.5}$

Dust: 100 µm to 1 cm, disc to 80 au

H/R (at R=10au) = 0.034

Resolution: 10^7 gas + 2.5×10^5 dust

 $\alpha \approx 10^{-3}$

Planets:

4-24 Earth-mass at 24 and 41 au

0.1–2 Jupiter-mass at 94 au

Gas and dust surface density

Gas $100 \, \mu \mathrm{m} \, \mathrm{dust}$

Gas and dust surface density

Dust continuum emission

CO integrated intensity

Scattered light: polarised intensity

Scattered light: azimuthally-averaged polarised intensity

Solid: 0.1 M_J

Dashed: 0.3 M_J

Dotted: 1.0 M_J

Dash-dotted: 2.0 M_J

Red: SPHERE data

≈ 0.3 M_J for 94 au planet

Results

Super-Neptune & super-Earth mass planets at 24 and 41 au

Saturn mass planet at 94 au

Summary

Global 3d dust+gas hydrodynamical simulations

- + Radiative transfer modeling and synthetic images
- → Interpret observations at multiple wavelengths

To do

Multiple large grains – correct back reaction, better synthetic observations

PHANTOM + MCFOST live – correct temperature profile