

SE-12 Etude de phénomènes spatiaux : modèles basés-agents Exemples de modèles

Thomas Favre-Bulle (ALICE) André Ourednik (Chôros)

MÉCANISMES RÉTROACTIFS DE SÉGRÉGATION, ENTRE UNE SOCIÉTÉ URBAINE ET SON ESPACE

Step 1

Thomas C. Schelling 1978

Ourednik (2007).
« Mécanismes rétroactifs de ségrégation, entre une société urbaine et son espace : Un modèle basé agents » in Revue Internationale de Géomatique, 17(2):183-206.

individus

• couples avec n enfants

- départ du domicile familial
- les enfants héritent de 50% de la fortune des parents, qu'ils se répartissent entre eux

«seuil de classe» = x % de la richesse moyenne de tous les individus

1° simulation — En l'absence d'un mécanisme d'impôts, avec $T(c_1) = 40\%$, $T(c_2) = 70\%$ et K = 110%:

2^e **simulation** — En l'absence d'un mécanisme d'impôts, avec $T(c_1) = 40\%$, $T(c_2) = 70\%$ et K = 110% — soit avec des paramètres initiaux identiques à ceux de la lère simulation :

- Chaque quartier q a besoin, pour fonctionner, d'une somme proportionnelle à sa population
- Pour arriver à cette somme, le taux d'imposition I() est calculé en fonction de la somme des richesses
- Conséquence: taux d'imposition moins élevé dans les quartiers concentrant une population plus riche

 $3^{\rm e}$ simulation — Avec le mécanisme d'impôts actif. Les autres paramètres sont identiques à ceux des simulations précédentes (T(c_1) = 40%, T(c_2) = 70% et K = 110%). Une forte inégalité des quartiers par rapport à leurs taux d'imposition a été enregistrée pour cette dernière : I(q_{11}) = 6.9%, I(q_{12}) = 12.2%, I(q_{21}) = 7.3% , I(q_{22}) = 12.3%

4° **simulation** — Avec les paramètres identiques à celle de la figure précédente [3e sim.]. Nous voyons que la concentration de la population « riche » ne s'est développée, ici, que dans le seul quartier q_{11} . $I(q_{11}) = 5.9\%$, $I(q_{12}) = 11.9\%$, $I(q_{21}) = 11.9\%$, $I(q_{22}) = 11.3\%$:

Exercice

- Ouvrez le modèle SegregCell_applet.nlogo
- Exécutez le modèle.
- Observez l'influence des paramètres sur la ségrégation.

Ourednik, A., & Dessemontet, P. (2007). «Interaction maximization and the observed distribution of urban populations: An agent-based model of humanity's metric condition» in *Proceedings of the 15th European Colloquium on Theoretical and Quantitative Geography (ECTQG'07)* (pp. 291-296)

LES LIMITES DE LA DENSIFICATION AU NÉOLITHIQUE

http://ourednik.info/urbanization_mc

La "révolution néolithique"

Childe, V. Gordon (1936) Man Makes Himself. Watts and Co., London.

- νέος + λίθος, « nouvelle pierre », « âge de la pierre polie »
- Période de l' s'étendant de la fin du Paléolithique (« pierre ancienne », « pierre taillée ») à l'âge moderne
- 10'000 av. J. C. (période interglaciaire de l'Holocène)
- Du nomadisme à la sédentarité
- Émergences:
 - Agriculture et stockage de la nourriture (silos et fortifications)
 - Roue et traction animale (augmentation de la capacité de transport)
 - Écriture (conservation et diffusion de l'information)
 - Hiérarchie sociale complexe
 - Croissance démographique
 - Division sociale du travail (spécialisation)

La "révolution néolithique"

Childe, V. Gordon (1936) Man Makes Himself. Watts and Co., London.

Pourquoi y a-t-il des villes?

- Les populations concentrées ont des avantages par rapport aux populations dispersées
 - Usage plus efficace des aptitudes humaines
 - Spécialisation et division sociale du travail
 - Economie d'échelle
 - Meilleur usage des ressources naturelles
 - Innovation, y compris en termes de production agricole
 - Sécurité militaire
 - Contexte plus différencié stimulant le développement individuel
 - Champ de choix plus vaste
 - Modèles plus nombreux de l'être-soi

Pourquoi n'y a-t-il pas un seule ville?

Pourquoi les premières phases de l'urbanisation n'ont-elles pas mené à l'émergence d'une seule ville dense?

Hypothèse

Hypothèse culturelle: des divergences idéologiques séparent les populations en groupes distincts.

Hypothèse matérialiste: *Une concentration urbaine totale présenterait un problème d'approvisionnement*

Il y une friction spatiale, limitant les interactions entre les producteurs de ressources premières et les spécialistes urbains.

Modèle basé agents: 3 éléments

- Champs de ressources
- Centres urbains
- Acteurs
 - A producteurs agricoles
 - S spécialistes urbains

A – agriculteurs

- Acteurs dont l'intérêt est la dispersion maximale (exploitation d'un maximum de terrain agricole)
- Non avantagés par la densité mais
 - avantagés par le contact avec les spécialistes urbains (connaissance technique > augmentation du rendement du sol) [Jane Jacobs 1970]
 - stimulés à la production par les biens de consommations proposés par la ville

S – citadins

- Habitent dans les villes. Directement avantagés par la densité:
 - partage des moyens de production
 - partage des connaissances propres à leurs activités
 - efficacité marchande de la position centrale
- Dépendent des producteurs agricoles (A)
- Augmentent la productivité agricole
 - en développant des outils et des techniques plus efficaces
 - en produisant des biens de consommation, stimulant la production agricole

L'espace du modèle

3 paramètres (variables globales)

- portée globale *R* ∈ [0, 54]
 - À quelle distance de la ville (mesurée en largeur de champ) une ville peut-elle puiser des ressources?
 - Modélise la capacité de surmonter la friction spatiale. Est inversement proportionnel aux coûts de transport des produits bruts vers la ville et des produits manufacturés vers la campagne.

renouvellement des ressources

- N_A : la population locale des agriculteurs
- N_S : population des spécialistes urbains dans le rayon R
- $G \in [0,4]$: renouvellement de base des ressources (paramètre)
 - simule l'environnement biologique: structure du sol, conditions climatiques, type de ressource exploitée : *e.g.*, *G*(cueillette/chasse) < *G*(blé) < *G*(pommes de terre) < *G*(riz))

 $N_A G \varepsilon \left(a + \frac{1}{1 + e^{-N_S} \frac{(E-b)}{c}} \right)$

- $E \in [0,400]$: l'effet des spécialistes urbains sur la production (paramètre)
- ε: effet stochastique.
- {a, b, c}: « constantes » stochastiques (variant autour d'une moyenne)

Exercices

- Ouvrir le modèle « cities-based-demography-patchesonly3.nlogo »
- Tester les paramètres prédéfinis et les paramètres manuels
- Discuter des effets des paramètres sur la concentration/diffusion de la population dans l'espace

Bon rendement, grand rayon d'action :

- > une population globale large
- > un système hautement stable
- > l'apparition de grandes villes (~3) Pop. urbaine: 33%

Bon rendement, faible rayon d'action :

- > population globale large
- > système hautement stable
- > 25 à 30 petites villes. Pop. urbaine: 2%

Mauvais rendement, rayon d'action moyen, effet spécialiste moyen :

- > système plus chaotique, plus grande amplitude de variation de la concentration.
- > 5 à 10 petites villes, Pop. urbaine: ~15%

Sol aride, rayon d'action moyen, effet spécialiste élevé :

- > comportement chaotique dans lequel de légères variations stochastiques peuvent mener à la disparition de la communauté entière
- > système social incapable de survivre sans les spécialistes urbains
- > un faible nombre (3 à 5) de très petites villes