Multi-kompártmentový přístup ke kvantifikaci objemové rychlosti přísunu zdrojů radonu do budov s využitím měřené intenzity větrání pomocí techniky indikačních plynů

Michal Šesták

6. května 2019

Osnova

Úvod

Radon (Co to je, proc je nebezpecny, jeho dcery, co ovlivnuje jeho prisun do bytu, jak se meri, obrana proti nemu)

Rovnice

Model

Měření průtoků vzduchů

Radon

Alphas from ²²² Rn (3.8235 d <i>3</i>)				
Eα (keV)) :	Ια (%)		
4827 4		~0.0005		
4987 1		0.078		
5489.52 30		99.92 1		
Gammas from ²²² Rn (3.8235 d 3)				
Eγ (keV)	Ιγ (%)	Decay mode		
511 2	0.076	α		

[1]

Radon

Rovnice

$$\dot{a}_{i} = \frac{1}{V_{i}} \left(\sum_{j=1}^{n} a_{j} k_{ji} - \sum_{j=1}^{n} a_{i} k_{ij} - (\lambda + k_{i}) a_{i} + Q_{i} \right)$$
(1)

a_i	koncentrace radonu v i-té zóně	$[Bq/m^3]$
V_i	objem <i>i-</i> té zóny	$[m^3]$
k _{ij}	objemový průtok vzduchu z <i>i-</i> té zóny do <i>j-</i> té zóny	[m ³ /hod]
λ	přeměnová konstanta radonu	[1/hod]
k_i	výměna vzduchu <i>i-</i> té zóny	[1/hod]
Q_i	přísun radonu do <i>i-</i> té zóny	[Bq/hod]

Rovnice

$$V_i \dot{a}_i = \sum_{j=1}^n a_j k_{ji} - \sum_{j=1}^n a_i k_{ij} - (\lambda + k_i) a_i + Q_i \qquad \text{první varianta}$$
 (2)

$$V_{i}\dot{a}_{i} = \sum_{j=1}^{n+1} a_{j}k_{ji} - \sum_{j=1}^{n+1} a_{i}k_{ij} - \lambda a_{i} + Q_{i}$$
 druhá varianta (3)

- · druhá varianta v případě blízkosti uranových hald atd.
- · rovnovážný stav:

$$0 = \sum_{j=1}^{n} a_j k_{ji} - \sum_{j=1}^{n} a_i k_{ij} - (\lambda + k_i) a_i + Q_i$$
 (4)

Měření průtoků vzduchu mezi zónami

- · indikační plyny = perfluorokarbony
 - · netoxické, inertní, čisté, bezbarvé, nehořlavé a neradioaktivní plyny.
 - v přírodě se nevyskytují
- · N zón = minimálně N tracerů
- vyvíječe
- integrální detektory

Detektor

Modelový příklad 1

Fig. 10. One week averaged airflow rates and gas generation rates.

[2]

Modelový příklad 2

Reference

FROŇKA, Aleš; MOUČKA, Ladislav. Základní fyzikální principy - fyzika radonu (prezentace kurzy ZOZ srpen 2018). 2018.

OKUYAMA, Hiroyasu; ONISHI, Yoshinori; TANABE, Shin-ichi; KASHIHARA, Seiichi. Statistical data analysis method for multi-zonal airflow measurement using multiple kinds of perfluorocarbon tracer gas. Building and Environment. 2009, roč. 44, č. 3, s. 546–557. ISSN 0360-1323. Dostupnė z DOI: https://doi.org/10.1016/j.buildenv.2008.04.014.

SHINOHARA, Naohide; KATAOKA, Toshiyuki; TAKAMINE, Koichi; BUTSUGAN, Michio; NISHIJIMA, Hirokazu; GAMO, Masashi. Modified Perfluorocarbon Tracer Method for Measuring Effective Multizone Air Exchange Rates. International journal of environmental research and public health. 2010, roč. 7, s. 3348–58. Dostupné z DOI: 10.3390/ijerph7093348.

JÍLEK, Karel; FROŇKA, Aleš. CERTIFIKOVANÁ METODIKA, Metodika stanovení výměny vzduchu ve vnitřním ovzduší budov s využítím pasivních integrálních měřídel indikačních plynů (pro potřeby SÚJB). 2016.