PROJEKT SIŁOWNIKA PNEUMATYCZNEGO

Wykonali:

Bartosz Bańbor

Marcin Mikołajczyk

ZASADA DZIAŁANIA:

Zasada działania siłownika pneumatycznego opiera się na wykorzystaniu sprężonego powietrza jako medium roboczego do generowania ruchu mechanicznego. Siłowniki pneumatyczne przekształcają energię ciśnienia gazu w ruch liniowy lub obrotowy, w zależności od ich konstrukcji.

Gdy sprężone powietrze wchodzi przez otwór w pokrywie (2), działa na tłok (7), przesuwając tłoczysko (4) i widełki (6), pokonując siłę sprężyny (9).

Po odcięciu ciśnienia sprężyna (9) cofa tłok i tłoczysko do pozycji wyjściowej.

RYSUNEK ZŁOŻENIA

WYKAZ MATERIAŁÓW

15	Nakrętka	1	ISO 4032	Stal nierdzewna
14	Podkładka	1	ISO 7089	Stal nierdzewna
13	Śruba dwustronna	1	DIN 938	Stal nierdzewna
12	Nakrętka	1	ISO 4032	Stal ocynkowana
11	Podkładka	1	ISO 7089	\$tal ocynkowana
10	Pierścień uszczelniający	1	ISO 3061	Guma nitrylowa
9	Sprężyna	1	DIN 2095	Stal sprężynowa
8	Pokrywa	1		Aluminium
7	Tłok	1	-	Aluminium
6	Widełki	1	ISO 8133	Stal węglowa
5	Kołek	1	ISO 8734	Stal hartowana
4	Tłoczysko	1	_	Stal chromowana
3	Uszczelka	1	ISO 3061	Poliuretan
2	Pokrywa	1	_	Aluminium
1	C ylinder	1	-	Stal nierdzewna

RYSUNEK WYKONAWCZY POKRYWY

OBLICZENIA PASOWAŃ

Pasowanie tłoczysko- pokrywa

Ø16H8/h7

Wałek- es= 0 μm, ei=-18 μm

Otwór - ES= 27 μ m, EI = 0 μ m

Lmax= ES-ei=27 μ m- (-18 μ m)= 45 μ m

Lmin=EI-es= 0 µm-0 µm=0 µm

Pasowanie luźne

INTERPRETACJA GRAFICZNA

DLACZEGO TAKIE PASOWANIE?

Skorzystaliśmy z pasowań według stałego wałka, gdyż są one najczęściej stosowane przy konstrukcji maszyn. Potem szukaliśmy konkretnego pasowania, które w rezultacie da nam pasowanie luźne(Lmin,Lmax>0)

Ze względu na duży luz pomiędzy wnętrzem korpusu a tłoczyskiem, zmniejszyliśmy średnicę tłoczyska Ø69.2