日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

1998年 5月22日

出 願 番 号 Application Number:

平成10年特許願第141379号

[ST. 10/C]:

Applicant(s):

[JP1998-141379]

出 願 人

アベンティス ファーマ株式会社

CERTIFIED COPY OF PRIORITY DOCUMENT

BEST AVAILABLE COPY

2004年 4月22日

特許庁長官 Commissioner, Japan Patent Office 今井康夫

【書類名】 特許願

【整理番号】 DOJ-5124

【提出日】 平成10年 5月22日

【あて先】 特許庁長官 殿

【国際特許分類】 A61K

【発明の名称】 新規な骨誘導活性を有する単量体蛋白質およびそれらか

らなる軟骨・骨疾患の予防および治療薬

【請求項の数】 10

【発明者】

【住所又は居所】 埼玉県川越市南台一丁目3番地2 ヘキスト・マリオン

・ルセル株式会社創薬研究所内

【氏名】 木村 道夫

【発明者】

【住所又は居所】 埼玉県川越市南台一丁目3番地2 ヘキスト・マリオン

・ルセル株式会社創薬研究所内

【氏名】 河合 伸治

【発明者】

【住所又は居所】 埼玉県川越市南台一丁目3番地2 ヘキスト・マリオン

・ルセル株式会社創薬研究所内

【氏名】 村木 祥文

【発明者】

【住所又は居所】 埼玉県川越市南台一丁目3番地2 ヘキスト・マリオン

・ルセル株式会社創薬研究所内

【氏名】 勝浦 美枝子

【特許出願人】

【識別番号】 596124690

【氏名又は名称】 ヘキスト・マリオン・ルセル株式会社

【代理人】

【識別番号】 100091731

【弁理士】

【氏名又は名称】 高木 千嘉

【電話番号】

03-3261-2022

【選任した代理人】

【識別番号】 100080355

【弁理士】

【氏名又は名称】 西村 公佑

【手数料の表示】

【予納台帳番号】 015565

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9712131

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 新規な骨誘導活性を有する単量体蛋白質およびそれらからなる軟骨・骨疾患の予防および治療薬

【特許請求の範囲】

【請求項1】 $TGF-\beta$ スーパーファミリーに属する蛋白質の二量体形成に係わるシステインを他のアミノ酸に置き換えたアミノ酸配列を有する単量体蛋白質。

【請求項2】 他のアミノ酸がセリン、スレオニン、アラニン、バリンからなる群から選ばれるアミノ酸である請求項1の単量体蛋白質。

【請求項3】 他のアミノ酸がアラニンである請求項1または2の単量体蛋白質。

【請求項4】 配列表配列番号1記載のアミノ酸配列を有する単量体蛋白質。

【請求項5】 請求項1ないし4のいずれかに記載の単量体蛋白質を発現し うるDNA配列を含むプラスミドで形質転換した大腸菌、酵母、昆虫細胞、哺乳 動物細胞を用いて発現させる製造方法。

【請求項6】 請求項1ないし4のいずれかに記載の単量体蛋白質を有効成分とする軟骨・骨疾患の予防または治療剤。

【請求項7】 軟骨・骨疾患が骨粗鬆症である請求項6記載の軟骨・骨疾患の予防または治療剤。

【請求項8】 軟骨・骨疾患が変形性関節症または、骨関節炎である請求項6記載の軟骨・骨疾患の治療剤。

【請求項9】 軟骨・骨疾患が骨折である請求項6記載の軟骨・骨疾患の治療剤。

【請求項10】 軟骨・骨疾患が歯根・歯槽の欠損である請求項6記載の軟骨・骨疾患の治療剤。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、 $TGF-\beta$ スーパーファミリーに属する蛋白質の二量体形成に係わるシステインを他のアミノ酸に置き換えたアミノ酸配列を有する単量体蛋白質に関する。また、本発明は上記単量体蛋白質を発現しうるDNA配列を含むプラスミドで形質転換した大腸菌を用いて上記蛋白質を大量かつ高純度で製造する方法に関する。また、本発明は前記単量体蛋白質からなる軟骨・骨疾患の予防または治療剤に関する。

[0002]

【従来の技術】

現在、骨疾患の予防ないし治療剤としては、エストロゲン、カルシトニン、ビタミンD3とその誘導体およびビスホスホン酸誘導体などが知られている。また最近になって $TGF-\beta$ スーパーファミリーに属する骨誘導因子(Bone morphog enetic protein:以降BMPと呼ぶ)でBMP-2からBMP-14等の一連の蛋白質に骨誘導の作用のあることが報告されている。

さらにGDF-5あるいはヒトMP52と称される蛋白質に骨誘導の作用があることが報告されている(W093/16099, W095/04819, W094/15949 およびNature, vol. 368, 1994、p.639-643)。成熟型ヒトMP52はN末端にアラニンを有する120残基からなる蛋白質であると考えられており、そのアミノ酸配列はこれらの特許出願に記載されている。

[0003]

これらの蛋白質は、天然には一個所ジスルヒド結合を有するホモダイマーとして存在する。また、それらの組み換え体蛋白質の製造に関してもそれらのホモダイマーあるいはヘテロダイマーで行われ活性をもった蛋白質が得られている。たとえば、ヒトMP52に関しては特開平9-031098で報告されている。ところで $TGF-\beta$ スーパーファミリーの受容体には2つの型が知られており、それぞれ I 型受容体、II 型受容体と呼ばれている。これら骨誘導因子(二量体)を含む $TGF-\beta$ スーパーファミリーの受容体を介しての細胞内シグナル伝達に関してはこれらの因子が I 型受容体とII 型受容体の両方に同時に結合することが必要であり、さらにはそれらがI 組以上集まって多量体を形成し、細胞内シグナル伝達が行われていると考えられており(I Bone, vol. I 19, I 1996, I 1956 569-574)、こ

の多量体形成には因子が二量体であることが重要であろうと考えられているが、 単量体での活性は未だ確認されていない。さらに、これら単量体としての組み換 え体での製造は未だ行われていない。

$[0\ 0\ 0\ 4\]$

【発明が解決しようとする課題】

本発明者らは、ヒトMP52単量体を大腸菌を使って遺伝子工学的手法により大量に製造することを試みた。すなわちMP52単量体分子間のジスルヒド結合に関与している配列表配列番号1のアミノ酸配列83番のシステイン残基をアラニンに換わるようにコドンを変換した119残基よりなる配列表配列番号1のアミノ酸配列をコードするDNA配列のプラスミドを構築した。さらに、このプラスミドを導入した大腸菌を用いてヒトMP52単量体を大量発現させ、さらにはリフォールディングをおこない、配列表配列番号1の蛋白質を単量体として高純度で極めて収率よく生産することを見出した。

[0005]

驚くべきことに、従来二量体としてのみ骨誘導活性を有すると考えられていたにもかかわらず、この単量体は、いくつかの細胞株(MC3T3-E1, ATDC5)に対し骨細胞への分化誘導活性を有することが確認された。その分化誘導活性は重量濃度あたりその二量体に比べ2倍の分化誘導活性を示すことを確認し、本発明を完成した。

[0006]

すなわち、本発明は、 $TGF-\beta$ スーパーファミリーに属する蛋白質の二量体形成に係わるシステインを他のアミノ酸に置き換えたアミノ酸配列を有する単量体蛋白質、これらの単量体蛋白質の製造方法、及びこれらの単量体蛋白質の一種または二種以上を含有してなる軟骨・骨疾患の予防または治療用の医薬品組成物に関する。

[0007]

本発明は、 $TGF - \beta$ スーパーファミリーに属する蛋白質の二量体形成に係わるシステインを他のアミノ酸に置き換えたアミノ酸配列を有する単量体蛋白質に関する。本発明における $TGF - \beta$ スーパーファミリーとはBMP - 2、BMP

-4、BMP-5、BMP-6、BMP-7、BMP-12、BMP-13、BMP-14、ヒトMP52、GDF-5、GDF-6、GDF-7等がある。置き換えられるべき他のアミノ酸は、アミノ酸側鎖の大きさを考慮してアラニン、スレオニン、セリン、バリンからなる群から選ばれるアミノ酸であればどれでもよい。最も好ましいアミノ酸はアラニンである。

[0008]

本発明は、配列表配列番号1記載のアミノ酸配列を有する単量体蛋白質に関する。詳細には、この単量体蛋白質は分子間にジスルヒド結合を有する二量体ヒトMP52の分子間ジスルヒド結合に関与する配列表配列番号1のアミノ酸配列83番のシステインをアラニンに置き換えた蛋白質である。本発明で得られる単量、体蛋白質はその二量体蛋白質より2倍の分化誘導活性を有する。

[0009]

また、本発明は、上記単量体蛋白質を発現しうるDNA配列を含むプラスミドで形質転換した大腸菌、酵母、昆虫細胞、哺乳動物細胞を用いて発現させる製造方法に関する。詳細には、本発明は、配列表配列番号1で示されるヒトMP52由来の119残基のタンパク質を大腸菌を用いて産生する製造方法に関する。すなわち、本発明は、配列表配列番号1で示されるヒトMP52由来の119残基のアミノ酸配列で83番目のシステインをアラニンに換えた配列をコードするDNA配列のN末端にメチオニンをコードするDNAを含有するプラスミドの構築に関する。ヒトMP52cDNAは、WO93/16099記載のcDNAを含んだプラスミドベクターを鋳型DNAとして、成熟型部分のみをポリメラーゼ連鎖反応(PCR法)を用いて増幅した。ここで用いるPCR法とは通常核酸DNAまたはRNAの微量断片を米国特許番号4,683,195に記載されている方法で増殖することを意味する。

[0010]

本発明は、配列表配列番号1で示されるアミノ酸配列をコードするDNA配列のN末端にメチオニンをコードするDNAを含有するプラスミドを構築し、そのプラスミドを大腸菌に形質転換し、その大腸菌を培養することよって得られるインクルージョンボディを可溶化し、精製することによって変性単量体蛋白質を得

た。これを活性をもつ蛋白質に再生(リホールディング)し、さらにこれを精製し配列表配列番号1の単量体蛋白質の製造方法に関する。すなわち、本発明の単量体蛋白質は大腸菌インクルージョンボディーを可溶化した後SP-Sepharose FFカラム(ファルマシア社)およびSuperdex 200pgカラム(ファルマシア社)によりMP52変性単量体蛋白質を得た。それからリホールディングを行った後逆相HPLCのRESOURCE RPCカラム(ファルマシア社)を通すことにより精製された本単量体蛋白質を得る。得られた本単量体蛋白質の物理化学的性質はN末端アミノ酸配列、アミノ酸組成および電気泳動による分析で解析する。

$[0\ 0\ 1\ 1]$

本発明の単量体蛋白質の生物学的活性は、すでにヒトMP52二量体において アルカリフォスファターゼ活性を上昇させる効果がみいだされている2種類の骨 芽細胞株を用いてその分化誘導活性により評価した。重量濃度で比較すると本発 明の単量体蛋白質は従来の二量体蛋白質に比べ2倍の活性を示した。

$[0\ 0\ 1\ 2]$

また、本発明は、配列表配列番号1で示されるアミノ酸配列を有効成分とする 軟骨・骨疾患の予防または治療剤に関する。詳細には、本発明の単量体蛋白質は 分化誘導活性すなわち軟骨・骨誘導活性を有すると考えられるため、骨粗鬆症、 先天性軟骨・骨疾患、変形性膝関節症・変形性股関節症等の変形性関節症または 、骨関節炎、半月損傷等の軟骨損傷、外傷・腫瘍摘出等による骨・軟骨欠損部の 再生、骨・軟骨欠損、骨折、軟骨形成不全症・軟骨発育不全症・軟骨無形成症・ 口蓋裂・骨形成不全症等の先天性軟骨・骨疾患、さらには、歯根・歯槽の欠損等 の予防および治療剤に関する。

さらに本発明の蛋白質は軟骨・骨誘導活性を有すると考えられるため美容外科 の骨移植の治療等に用いることが出来る。これらの治療には、獣医外科の領域も 含まれる。

[0013]

全身投与方法としては静脈内、筋肉内および腹腔内投与が可能であり、静脈内 投与の場合は通常の静脈内注射の他点滴静注が可能である。

注射用製剤としては、例えば注射用粉末製剤とすることができる。その場合は

適当な水溶性賦形剤例えばマンニトール、ショ糖、乳糖、マルトース、ブトウ糖 、フルクトース等の一種または二種以上を加えて水で溶解し、バイアルまたはア ンプルに分注した後凍結乾燥し密封して製剤とすることができる。

$[0\ 0\ 1\ 4]$

局所投与方法としてはその部位の軟骨・骨あるいは歯の表面をコラーゲンペースト、フィブリンのりまたは他の接着剤を用いて本蛋白質で覆う方法がある。これらのうち骨移植に用いる骨は天然骨の他、従来用いられる人工骨にも利用できる。人工骨とは金属、セラミックス、ガラス等の天然素材または人工無機質素材で出来た骨を意味する。人工無機質素材として好ましくはハイドロキシアパタイトがあげられる。例えば、人工骨の内部材料に金属そしてその外側の材料にハイドロキシアパタイトを使用する。さらに、本蛋白質は骨再構築を促進するために癌性骨組織にも投与出来る。また、軟骨移植にも利用可能である。

$[0\ 0\ 1\ 5]$

投与量については、本蛋白質の作用に影響する様々な要因、たとえば、形成が望まれる骨・軟骨の重量、骨・軟骨損傷の部位及びその状態、患者の年齢、性別、感染の重症度、投与時間および他の臨床要因を考慮して担当医が決定する。また、用量は本蛋白質との再構成に用いる担体の種類によって変動し得る。一般的に、投与量は、支持体との組成物として使用するとき、所望の骨・軟骨湿重量当たり、本単量体蛋白質として約 $10\sim10^6$ ナノグラム、注射剤として局所及び全身性に適用するとき、患者1人当たり $0.1\sim10^4$ マイクログラムを一週間に一度から一日に一度の頻度で投与することが好ましい。

$[0\ 0\ 1\ 6]$

骨・軟骨再生に対して既知の成長因子例えばインスリン様成長因子 I (insuli n-like growth factor-I) 等を同時適用することにより相乗効果が期待できる。

このように $TGF-\beta$ スーパーファミリーに属する蛋白質のシステインを置換した単量体、および単量体としての工業的な規模での製造は未だ報告されておらず、軟骨・骨誘導活性を有する軟骨・骨疾患治療剤として有効である。さらに本発明の単量体蛋白質はその2量体蛋白質に比べ重量あたりの活性が2倍あり、軟骨・骨疾患治療剤の有効量を半分にすることができる。このことは $TGF-\beta$ ス

ーパーファミリーに属する前述の骨誘導因子の製造にも応用できる。

 $[0\ 0\ 1\ 7]$

【実施例】

以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例により限定されるものではない。

[0018]

実施例1 単量体ヒトMP52発現ベクターの製作

(1) 変異型ヒトMP52成熟型部分の単離

ヒトMP52の単量体は、二量体を形成すると考えられているシステイン残基を別のアミノ酸残基に改変し、ヒトMP52単量体が二量体を形成しないようにして作製した。本発明では、WO96/33215の配列表配列番号1記載のプロリンから始まる成熟型ヒトMP52の83番目のシステインのコドン(TGC)をアラニンのコドン(GCC)に変換した。

アミノ酸残基の置換は、Current Protocols in Molecular Biology (John Wiley & Sons, Inc.) に記載されたポリメラーゼ連鎖反応 (PCR) による変異法 (section 8.5) を参考にし、目的の変異が導入されたPCRプライマー (順方向) を用いることにより行なった。使用したPCRプライマーの配列は、順方向プライマーとして配列番号 2 および逆方向プライマーとして配列番号 3 に記載した。

PCRは、WO96/33215に記載されたヒトMP52発現ベクター(pK 0T245)を鋳型DNA(10ナノグラム)として、同じ試験管内で、順方向および 逆方向プライマーそれぞれ10ピコモル、dNTP(0.4ミリモル)、MgCl₂(2.5ミリモル)をLA Taq DNA ポリメラーゼ(5U、宝酒造株式会社、カタログ番号RR013A)と共に加えることにより行なった。反応は、変性(94℃、1分間)、プライマーアニーリング(55℃、1分間)、およびプライマー伸長(72℃、2分間)から成る各サイクルを30サイクル行なった。PCR生成物は、制限酵素NcoIとHindIIIで消化後、1.5%低融点アガロース(FMC BioProducts社、カタログ番号5170B)中で電気泳動により分離し、目的の約170塩基対から成るDNA断片を精製した。

[0019]

単量体ヒトMP52発現ベクター(pKOT279)は、上記の手法で変異を導入し たNcoI-HindIIIのDNA断片を、WO96/33215に記載された ヒトMP52発現ベクター(pKOT245)を改造したヒトMP52発現ベクター(p KOT277) のN c o I — H i n d III領域と交換することにより構築した。具体的 には、WO96/33215に記載されたヒトMP52発現ベクター(pKOT245)のターミネーター下流に存在するMP52とは逆方向に転写されるlacZプ ロモーターを除去したヒトMP52発現ベクター(pKOT277)を構築し、このM P 5 2 発現ベクター(pKOT277)を制限酵素N c o I と H i n d IIIで消化後、1 .5%低融点アガロース(FMC BioProducts社、カタログ番号5170B)中で電気泳 動により分離し、目的の約2717塩基対から成るDNA断片を精製した。この DNA断片と変異を導入した約170塩基対のDNA断片をDNA Ligation Kit (宝酒造株式会社、カタログ番号6021)を用いて連結させ、単量体MP52発現べ クターを構築(pKOT279、2.9kb)し、工業技術院生命工学工業技術研究所に平成 10年2月5日に寄託した(受託番号微工研寄第FERM P-16625号)。作製した 本発明の単量体MP52発現ベクターの塩基配列は、DNAシークエンサー(フ ァルマシア社、ALF)を用いて、目的の変異が導入されていることと生産され るヒトMP52の塩基配列(変異を導入した場所以外の配列)に誤りがないこと を確認した。

(2) 形質転換

形質転換は、Kushnerらの塩化ルビジウム法(Genetic Engineering, p. 17, El sevier(1978))に従った。即ち、pKOT279を宿主大腸菌W3110Mへ上記の手法に従い移入し、本発明の蛋白質発現大腸菌とした。

$[0\ 0\ 2\ 0]$

実施例2 培養

(1) 培養

本発明の蛋白質発現大腸菌を改変SOC培地(Bacto tryptone 20g/L、Bacto yeast extract 5g/L、NaCl 0.5g/L、MgCl₂ 0.95g/L、Glucose 3.6g/L)で 前培養し、生産用培地(Bacto tryptone 20g/L、Citric acid 4.3g/L、K₂HPO₄

(2) 大腸菌封入体の調製

上記方法により得られた培養液を高圧ホモジナイザー(LAB40-10RBFI, APV・ゴーリン社)に560barで3回通すことにより菌体を破砕し、遠心して封入体を含む沈殿を回収した。

[0021]

実施例3 精製

(1) 大腸菌封入体の可溶化

回収した封入体を1M尿素と5mM EDTAを含む20mM Tris-HC1緩 衝液(pH8.3)で2回洗浄後、3000xgで30分間、4℃で遠心し、得ら れた沈殿を8M尿素、50mM NaC1、64mM DTT及び5mM EDTAを含 む20mM Tris-HC1緩衝液(pH8.3)で超音波をかけながら可溶化し た。

(2)変性単量体蛋白質の精製

その可溶化液を20000xgで30分間、4℃で遠心し、その上清を回収した。得られた上清を20mM Tris-HC1緩衝液、pH8.3、6M尿素、10mM DTT、1mM EDTAで平衡化したSP-Sepharose FF(ファルマシア社)に通し、同溶液で洗浄後、0.4M食塩を含む同溶液で溶出させた。溶出液を20m

M Tris-HCl緩衝液、pH8.3、6M尿素、0.5M食塩、1mM EDT A、10mM DTTで平衡化したSuperdex 200pg (ファルマシア社) でゲル濾過を行い、単一な変性単量体蛋白質を得た。

(3) 再生(リホールディング)

上記で得られた変性単量体蛋白質の溶液に 9 倍量の 50 nM Na-Glycine 緩衝液 p H 9.8、0.5 M g L g L g M g C H A P S、g mM g S S G (酸化型グルタチオン)を加えた後撹拌し g 20時間、g C でリホールディングを行った。

(4) 活性をもつ単量体蛋白質の精製

リホールディングされた試料を $1.4\,\mathrm{mM}$ N a H₂P O₄で $2.8\,\mathrm{ff}$ 高 税限を行った。沈殿を $3.0.0\,\mathrm{rg}$ 2 0分ので集めた後、 $0.0\,\mathrm{5}\,\mathrm{mg}$ T F A に溶解した。その溶液を $0.0\,\mathrm{5}\,\mathrm{mg}$ T F A で平衡化しておいた逆相 H P L C のRESOURCE RPCカラム(ファルマシア社)に通し、 $0.0\,\mathrm{5}\,\mathrm{mg}$ T F A、 $0\,\mathrm{mg}$ 5 0 %アセトニトリルグラジェントにより溶出した。溶出液は吸光光度計を用い $2.8\,\mathrm{mg}$ 0 nmの吸光度によりモニターし、精製された本発明の単量体蛋白質画分を得た。これに $5\,\mathrm{mg}$ N a O H を p H $6.5\,\mathrm{mg}$ 5 $7.5\,\mathrm{mg}$ 同間になるように加え等殿点沈殿をおこなった。沈殿を $1.0,0.0\,\mathrm{mg}$ 1 0時間の遠心で集めた後、 $1.0\,\mathrm{mg}$ 2 mLになるように溶解させ本発明の活性をもつ単量体蛋白質を得た。

(イ) アミノ酸組成分析

上記で得られた精製された本発明の単量体蛋白質のアミノ酸組成をアミノ酸分析機により調べた。

(ウ) 電気泳動による分析

上記で得られた精製された本発明の単量体蛋白質の分子量を非還元条件下のSDS-PAGEにより確認したところ、約14KDaの分子量を示した。

上記(ア)、(イ)および(ウ)に示された結果より、本発明の単量体蛋白質は N末端が単一に配列表配列番号 1 で示す P r o から始まる 1 1 9 残基からなる単量体蛋白質であることが解った。

[0022]

実施例4 生物学的活性の測定

マウス胚細胞由来の軟骨細胞様に分化する A T D C 5 (RIKEN GENE BANK, RCB 0565) と、ラット由来の骨芽細胞様性格を持つM C 3 T 3 - E 1 (RIKEN GENE B ANK, RCB1126) の 2 種類の培養細胞株を用いた、上記蛋白質のアルカリフォスファターゼ亢進活性を指標として、その分化誘導活性として評価した。結果を図 2 に示す。

ATDC5は5%牛胎児血清を含むDF培地(Gibco社)に、ROB-C26は10%牛胎児血清を含むMEM- α -培地(Gibco社)に1mlあたり1万個の濃度で懸濁し、24ウェルプレートに1ウェルあたり1mlずつ撒き、5%CO₂、37℃にて3日間培養した。

その後、血清未添加のMEM $-\alpha$ -培地で細胞をリンスし、0.3%牛アルブミンを含むMEM $-\alpha$ -培地にて段階希釈した天然型2量体または単量体蛋白質を1ウェルあたり0.5 ml加え、分化誘導を開始した。3 日間培養を行った後、 細胞をPBS(20 mMリン酸緩衝液、150 mM NaCl、pH7.4)で2 回洗い、250 μ lの細胞溶解液(0.2%NP-40、1 mM MgCl $_2$)を加え2 時間 37 \mathbb{C} に置いた。その後、破砕された細胞を含む細胞溶解液全量をマイクロチューブに移し遠心(10,000 回転、5 分間)後の上清をアッセイに用いた。

酵素活性の測定は0.1 M glycine buffer, pH10.4, 1mM ZuCl₂、1mM MgCl₂中に溶解した終濃度10mMのp-nitrophenyl phosphateを基質として、

その分解生成物であるp-nitrophenol (pNp) の405nmにおける吸光度の上昇をみることで行った。

吸光度の上昇を 2 分ごとに 4 0 分間モニターし直線性のみられる範囲のデータからアルカリフォスファターゼ活性 (μ M pNp/min) を算出した。

また、同じ上清についてBCA protein assay kit (ファルマシア社) を用いて タンパク濃度を求め、蛋白質あたりのアルカリフォスファターゼ活性をnmol pNp/min/mg proteinとして表記した。

[0023]

【発明の効果】

ヒトMP52由来の配列表配列番号1のアミノ酸配列を有する単量体蛋白質は

その二量体に比べ骨芽細胞株に対し2倍の分化誘導活性を有し、軟骨・骨疾患の 予防または治療剤として有用である。さらに本発明の単量体蛋白質の1アミノ酸 の改変はシステインを減らすことから、大腸菌を用いた大量かつ純粋な単量体蛋 白質の製造をより容易にする可能性がある。

[0024]

【配列表】

配列番号:1

配列の長さ:119

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

フラグメント型:N末端フラグメント

起源:

生物名:ヒト (Homo sapiens)

組織の種類:ヒト胎児

配列の特徴:

存在位置:

他の情報:プロリンから始まる成熟型MP52の83番目のシステインのコドン

をアラニンに変換したMP52アミノ酸配列。

配列:

CCA CTA GCA ACT CGT CAG GGC AAG CGA CCC AGC AAG AAC CTT AAG GCT 48

Pro Leu Ala Thr Arg Gln Gly Lys Arg Pro Ser Lys Asn Leu Lys Ala

5 10 15

CGC TGC AGT CGG AAG GCA CTG CAT GTC AAC TTC AAG GAC ATG GGC TGG 96

Arg Cys Ser Arg Lys Ala Leu His Val Asn Phe Lys Asp Met Gly Trp

20 25 30

GAC GAC TGG ATC ATC GCA CCC CTT GAG TAC GAG GCT TTC CAC TGC GAG 144

Asp Asp Trp Ile Ile Ala Pro Leu Glu Tyr Glu Ala Phe His Cys Glu

35 40 45

GGG CTG TGC GAG TTC CCA TTG CGC TCC CAC CTG GAG CCC ACG AAT CAT 192

Gly Leu Cys Glu Phe Pro Leu Arg Ser His Leu Glu Pro Thr Asn His

50 55 60

GCA GTC ATC CAG ACC CTG ATG AAC TCC ATG GAC CCC GAG TCC ACA CCA 240

Ala Val Ile Gln Thr Leu Met Asn Ser Met Asp Pro Glu Ser Thr Pro

65

75

80

CCC ACC GCC TGT GTG CCC ACG CGA CTG AGT CCC ATC AGC ATC CTC TTC 288

Pro Thr Ala Cys Val Pro Thr Arg Leu Ser Pro Ile Ser Ile Leu Phe

85

70

90

95

ATT GAC TCT GCC AAC AAC GTG GTG TAT AAG CAG TAT GAG GAC ATG GTC 336

Ile Asp Ser Ala Asn Asn Val Val Tyr Lys Gln Tyr Glu Asp Met Val

100

105

110

GTG GAG TCG TGT GGC TGT AGG

357

Val Glu Ser Cys Gly Cys Arg

115

[0025]

配列番号:2

配列の長さ:39

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸

起源:なし

生物名:なし

組織の種類:なし

配列の特徴:変異導入用順方向PCRプライマー

配列:

CATGCCATGG ACCCCGAGTC CACACCACCC ACCGCCTGT

39

[0026]

配列番号:3

配列の長さ:37

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸

起源:なし

生物名:なし

組織の種類:なし

配列の特徴:変異導入用逆方向PCRプライマー

配列:

CCCAAGCTTG CATGCCTGCC GGTCGACTAC CTACAGC

37

【図面の簡単な説明】

【図1】

実施例1 (2) で得られた本発明の蛋白質の発現ベクター (pKOT279) のプラスミドマップである。

【図2】

図2は実施例4で得られた本発明単量体蛋白質とヒトMP52二量体の骨芽細胞分化誘導活性を比較したグラフであり、(A)はMC3T3-E1細胞における活性を、(B)はATDC5細胞における活性を示す。図2において、白丸は本発明単量体蛋白質の活性を、黒丸はヒトMP52二量体の活性をそれぞれ示す

【書類名】 図面

【図1】

【図2】

【要約】

【課題】 軟骨・骨疾患の予防または治療に有効な単量体蛋白質を提供することを目的とする。

【解決手段】 上記目的はTGF-βスーパーファミリーに属する蛋白質の二量体形成に係わるシステインを他のアミノ酸に置き換えたアミノ酸配列を有する単量体蛋白質によって達成される。この単量体蛋白質は相当する二量体蛋白質に比べて、骨芽細胞株に対し2倍の分化誘導活性を有する。置き換えられるべき他のアミノ酸としては、セリン、スレオニン、アラニン、バリンなどが挙げられ、特にアラニンが好ましい。上記蛋白質は、それを発現しうるDNA配列を含むプラスミドで形質転換した大腸菌、酵母、昆虫細胞、哺乳動物細胞を用いて製造される。

【選択図】 なし

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】

【識別番号】 596124690

【住所又は居所】 東京都港区赤坂二丁目17番51号

【氏名又は名称】 ヘキスト・マリオン・ルセル株式会社

【代理人】 申請人

【識別番号】 100091731

【住所又は居所】 東京都千代田区麹町一丁目10番地 麹町広洋ビル

すばる特許事務所

【氏名又は名称】 高木 千嘉

【選任した代理人】

【識別番号】 100080355

【住所又は居所】 東京都千代田区麹町一丁目10番地 麹町広洋ビル

すばる特許事務所

【氏名又は名称】 西村 公佑

【書類名】

物件提出書

【提出日】

平成10年5月25日

【あて先】

特許庁長官 殿

【事件の表示】

【出願番号】

平成10年特許願第141379号

【発明の名称】

新規な骨誘導活性を有する単量体蛋白質およびそれらか

らなる軟骨・骨疾患の予防および治療薬

【提出者】

【事件との関係】

特許出願人

【識別番号】

5 9 6 1 2 4 6 9 0

【氏名又は名称】 ヘキスト・マリオン・ルセル株式会社

【代理人】

【識別番号】

1 0 0 0 9 1 7 3 1

【弁理士】

【氏名又は名称】

高木 千嘉

【電話番号】

03 - 3261 - 2022

【提出する物件】

【物件名】

受託証(写)

杏式 7

19809600180

受 託 証

通知番号 : 10 生寄文 第 218 号

通知年月日: 平成 10年 2月 16日

ヘキスト・マリオン・ルセル株式会社 研究 開発本部創薬研究所 所長 松石 哲郎 殿

1. 微生物の表示
(会託者が付した識別のための表示)
pxot 27g BK-MP011-1

FERM P- 16625

2. 科学的性質及び分類学上の位置

1個の微生物には、次の事項を記載した文音が添付されていた。

科学的性質

分類学上の位置

3. 受額及び受託

当所は、平成 10年 2月 5日に受額した1個の微生物を受託する。

ページ: 1/E

【書類名】

職権訂正データ

【訂正書類】

物件提出書

<認定情報・付加情報>

【提出者】

【識別番号】

596124690

【住所又は居所】

東京都港区赤坂二丁目17番51号

【氏名又は名称】

ヘキスト・マリオン・ルセル株式会社

【代理人】

申請人

【識別番号】

100091731

【住所又は居所】

東京都千代田区麹町一丁目10番地 麹町広洋ビル

すばる特許事務所

【氏名又は名称】

高木 千嘉

【提出された物件の記事】

【提出物件名】

受託証(写) 1

特願平10-141379

出願人履歴情報

識別番号

[596124690]

1. 変更年月日

1998年 1月26日

[変更理由]

名称変更

住 所

東京都港区赤坂二丁目17番51号

氏 名

ヘキスト・マリオン・ルセル株式会社

2. 変更年月日

2000年 2月 1日

[変更理由]

名称変更

住 所 名

東京都港区赤坂二丁目17番51号 アベンティス ファーマ株式会社