Odwzorowanie Gaussa-Krügera: układy współrzędnych płaskich stosowanych w Polsce

Autor: Julia Zapała Numer indeksu: 325710

grupa: GI II

1. Dane do zadania (na podstawie zadania 3)

Ø T	abela współrzędnych punkt	ów –	– 🗆 X
	Numer punktu	Szerokość geograficzna [° ' "]	Długość geograficzna [° ' "]
1		51 15 0.0	17 45 0.0
2		51 36 34.30649	17 45 0.0
3		51 36 2.36215	19 11 36.08424
4		51 14 28.0537	19 11 36.08424

2. Cel zadania

Celem zadania było przeliczenie współrzędnych geodezyjnych z zadania 3. na układ współrzędnych płaskich PL - 2000, PL-1992 i PL-LAEA, UTM i LCC, wykonanie redukcji długości i azymutu dla dwóch układów oraz obliczenie pól powstałych figur.

3. Wstęp teoretyczny

W geodezji definiujemy wiele układów odniesień, każdy z nich różni się od siebie i jest używany do różnych celów. Układ odniesienia to zbiór parametrów definiujących położenie układu współrzędnych w stosunku do bryły Ziemi poprzez wyznaczenie np. początku układu, skali i orientacji osi układu współrzędnych. Układ współrzędnych prostokątnych płaskich PL-2000 oparty jest na odwzorowaniu Gaussa-Krügera. Obszar Polski podzielony jest na 4 pasy południkowe, o szerokości 3° każdy, oznaczone odpowiednio numerami 5, 6, 7 i 8. Podobnie układ współrzędnych prostokątnych płaskich PL-1992 oparty jest na odwzorowaniu G-K. Obszar Polski objęty jest jednym pasem południkowym o szerokości 10°. Pierwszy z układów służy do opracowań w skalach większych od 1:10000 (np. mapy zasadniczej). Układ PL-1992 służy do opracowań w skali 1:10000 i skalach mniejszych oraz do tworzenia Topograficznej Bazy Danych.

4. Realizacja zadania

Zadanie zostało zrealizowane za pomocą programu napisanego w python. W celu przeliczenia współrzędnych posłużono się funkcją biblioteki *pyproj* oraz kodami EPSG (2177 dla układu PL-2000 (pas południkowy nr 6), 2180 dla układu PL-1992, 3035 dla PL-LAEA, 32633 dla UTM i 3034 dla LCC). W ten sposób otrzymano punkty w poszczególnych układach, które wykorzystano w dalszych obliczeniach. Dodatkowo punkty z układu PL-2000 i PL-1992 przeliczono na płaszczyznę odwzorowań G-K (przy przeliczaniu układu PL-2000 użyto pasa numer 6.) Następnie wykonano redukcję długości na powierzchni układu PL-2000 i PL-1992. Zaczęto od obliczenia długości odcinków między parami punktów za pomocą tw. Pitagorasa, dalej obliczono długości odcinka na płaszczyźnie G-K.

Obliczono redukcję, dzięki której było możliwe obliczenie długości odcinka na elipsoidzie. Wyniki porównano z odległościami z zadania 3. między punktami obliczonymi na podstawie współrzędnych geodezyjnych za pomocą zadania odwrotnego (funkcja inv). Kolejną częścią zadania było obliczenie redukcji azymutów w układzie PL-2000 i PL-1992. Zadanie rozpoczęto od obliczenia kąta kierunkowego dla par punktów. Następnie n apodstawie współrzędnych geodezyjnych policzono zbieżność południków γ. Obliczono redukcję azymutów i zsumowano otrzymane wyniki. Dodatkowo wyniki porównano z wynikami otrzymanymi w zadaniu 3. za pomocą algorytmu Vincentego. Na koniec policzono pole dla współrzędnych w każdym z omawianych układów za pomocą wzorów Gaussa. Pola porównano z polem otrzymanym w zadaniu 3.

5. Wykonanie zadania i wnioski

a) Przeliczenie współrzędnych geodezyjnych na układ współrzędnych płaskich PL-2000, PL-1992 i PL-LAEA, UTM i LCC

Przeliczenie współrzędnych rozpoczęto od wyboru odpowiednich kodów EPSG, a następnie użyto pętli do przeliczenia wartości. Otrzymane wyniki zostały przedstawione w tabelach poniżej.

+	+	++
1	Układ 2000	l I
Numan	t	l Uspákozadna V
Numer	Współrzędna X	Współrzędna Y
Punkt 1	5679490.733893	6482546.413918
Punkt 2	5719487.569540	6482682.861373
Punkt 3	5719145.585229	6582676.910712
Punkt 4	5679150.585573	6583328.212653
+	+	++

	Układ 1992	+
Numer	Współrzędna X 376664.446268	Współrzędna Y 412797 972976
Punkt 2	416634.337624	413469.754734
	414925.599780 374953.650138	513387.809870 513493.263049
+		·

i	Punkt na plaszczyźnie odwzorowania gk z układu 2000	i i
Numer Punkty 1 Punkty 2		 Współrzędna Y 983045.608430 983182.066392
Punkty 2 Punkty 3 Punkty 4	5719928.003990 5719585.993350 5679587.913842	1083183.815866 1083835.167961

+		
	Punkt na plaszczyźnie odwzorowania gk z układu 1992	
Numer	Współrzędna X	Współrzędna Y
Punkty 1	5680640.894895	-87273.218377
Punkty 2	5720638.784773	-86590.858867
Punkty 3	5718928.849975	13397.187902
Punkty 4	5678928.900369	13502.714949
+	- 	++

	Układ LAEA	++
Numer Punkt 1 Punkt 2 Punkt 3 Punkt 4	Współrzędna X 3155226.958240 3195037.445864 3205643.352429 3165909.990623	Współrzędna Y 4860936.561155 4856707.067642 4956038.154417 4961052.256946

	+ Układ UTM +	
Numer	Współrzędna X	Współrzędna Y
Punkt 1	691911.660576	5681219.462032
Punkt 2	690410.457271	5721193.230823
Punkt 3	790371.575005	5724957.662784
Punkt 4	792661.973999	5684997.506558
+	+	++

+	Układ LCC	++
Numer	Współrzędna X 2746790.990574	Współrzędna Y
Punkt 2	2785205.751989	4517513.593742
•	2795305.434595 2756977.044134	4613554.934487 4618348.254782
+		+ -

b) Wykonanie redukcji długości

Redukcję długości wykonano dla dwóch układów: PL-2000 i PL-1992. Za pomocą Tw. Pitagorasa zostały obliczone odpowiednie długości w odpowiednich układach, a następnie wykonano redukcję, której wyniki przedstawiono poniżej.

Odległość odcinka na elipsoidzie w układzie PL-200 [km]	
Odległość 1-2 39.523456	
Odległość 2-3	98.680484
Odległość 3-4	39.422600
Odległość 4 -1 99.464289	

Odległość odcinka na elipsoidzie w układzie PL-1992 [km]	
Odległość 1-2 39.975092	
Odległość 2-3	99.937678
Odległość 3-4	39.975077
Odległość 4 -1 100.724936	

Odległość odcinka z zadania 3. [km]	
Odległość 1-2 40.000000	
Odległość 2-3	100.000001
Odległość 3-4	40.000000
Odległość 4 -1	100.787744

Odległości we wszystkich układach różnią się od siebie, jednak są dość zbliżone do oczekiwanych wartości. Wskazuje to na poprawność obliczeń.

c) Wykonanie redukcji azymutu

Redukcję azymutów wykonano dla dwóch układów, PL-2000 i Pl-1992. Rozpoczęto od policzenia kąta kierunkowego, γ i δ . Wyniki zsumowano. Porównano je z azymutami otrzymanymi w zadaniu 3.

Azymuty układ PL-2000	
Azymut 1-2	0° 01' 41.77371''
Azymut 2-3	89° 54' 30.93779''
Azymut 3-4	179° 01' 52.45641"
Azymut 4-1	270° 11' 36.74951"

Azymuty układ PL-1992		
Azymut 1-2	0° 46' 47.8348"	
Azymut 2-3	90° 41' 33.69616"	
Azymut 3-4	179° 50' 36.10091"	
Azymut 4-1	270° 58' 23.31013"	

Azymuty z zadania 3.		
Azymut 1-2	0° 00' 00.0"	
Azymut 2-3	90° 00' 00.0''	
Azymut 3-4	180° 00' 00.0"	
Azymut 4-1	271° 07' 26.42735"	

Otrzymane azymuty różnią się od siebie, ale różnica ta jest niewielka. Wartości są zbliżone do oczekiwanych wyników.

d) Obliczenie pola powstałych figur

Na koniec z wykorzystaniem wzoru Gaussa obliczono pola powstałych figur we wszystkich z omawianych układach odniesień.

Układ	Pole [km²]
Pole z zadania 3.	4015.461980
PL-2000	4015.019343
PL-1992	4010.044671
Płaszczyzna odwzorowań G-K dla PL-2000	4015.637728
Płaszczyzna odwzorowań G-K dla PL-1992	4015.664633
PL-LAEA	4015.387798
UTM	4018.062640
LCC	3744.454671

Pola policzone w powyższych układach różnią się od siebie, jednak różnice są niewielkie. Wskazuje to na wiernopolowość odwzorowania prawie wszystkich układów. Jedynie układ LCC nie zachowuje wiernopolowości.

6. Kod źródłowy

```
from pyproj import Proj, transform, CRS, Transformer, Geod
import numpy as np
import math
from shapely.geometry import Point, Polygon from tabulate import tabulate
from geographiclib.geodesic import Geodesic
a = 6378137
e2 = 0.00669438002290
punkty = [(51.25, 17.75), (51.60952957952263, 17.75), (51.600656153534366, 19.193356733106977),
                  (51.2411260266428, 19.193356733106977)]
# transformacje punktów między układami
punkty_pl2000 = []
input_proj = CRS.from_epsg(4326)
output_proj = CRS.from_epsg(2177) # pas południkowy nr 6
for lon, lat in punkty:
     x, y = Transformer.from_proj(input_proj, output_proj).transform(lon, lat)
punkty_pl2000.append((x, y))

table_data = [(f"Punkt {i}", format(x, '.6f'), format(y, '.6f')) for i, (x, y) in enumerate(punkty_pl2000, start=1)]

table_headers = ["", "Układ 2000", ""]

table_data.insert(0, ("Numer", "Współrzędna x", "Współrzędna Y"))

print(tabulate(table_data, headers=table_headers, tablefmt="pretty"))
uklad_1992 = []
output_proj1 = CRS.from_epsg(2180)
for lon, lat in punkty:
x, y = Transformer.from_proj(input_proj, output_proj1).transform(lon, lat)
    uklad_1992.append((x, y))
table_data = [(f"Punkt {i}", format(x, '.6f'), format(y, '.6f')) for i, (x, y) in enumerate(uklad_1992, start=1)]
table_headers = ["", "Układ 1992", ""]
table_data.insert(0, ("Numer", "Współrzędna X", "Współrzędna Y"))
print(tabulate(table_data, headers=table_headers, tablefmt="pretty"))
```

```
m0_2000 = 0.999923
nr = 6
gk_2000=[]
 for i in range(len(punkty_pl2000)):
x_gk_2000 = punkty_pl2000[i][0]/m0_2000
y_gk_2000 = punkty_pl2000[i][1]/m0_2000-nr* 1000000 + 500000
gk_2000.append((x_gk_2000, y_gk_2000))
table_data = [(f"Punkty {i}", format(x_gk_2000, '.6f'), format(y_gk_2000, '.6f')) for i,
(x gk 2000, y gk 2000) in enumerate(gk 2000, start=1)]
table_headers = ["", "Punkt na plaszczyźnie odwzorowania gk z układu 2000", ""]
table_data.insert(0, ("Numer", "Współrzędna X", "Współrzędna Y"))
print(tabulate(table_data, headers=table_headers, tablefmt="pretty"))
m0_1992 = 0.9993
gk_1992=[]
 for i in range(len(uklad_1992)):
    x_gk_1992= (uklad_1992[i][0]+5300000)/0.9993
y_gk_1992= (uklad_1992[i][1]-500000)/0.9993
 y_gk_1992= (Unital_1992[1][1]-9000007(91999)
gk_1992.append((x_gk_1992), y_gk_1992))
table_data = [(f"Punkty {i}", format(x_gk_1992, '.6f'), format(y_gk_1992, '.6f')) for i,
 (x_gk_1992, y_gk_1992) in enumerate(gk_1992, start=1)]
table_headers = ["", "Punkt na plaszczyźnie odwzorowania gk z układu 1992", ""]
table_data.insert(0, ("Numer", "Współrzędna X", "Współrzędna Y"))
 print(tabulate(table_data, headers=table_headers, tablefmt="pretty"))
 output proj2 = CRS.from epsg(3035)
                       = []
 uklad laea
 for lon, lat in punkty:
     x, y = Transformer.from_proj(input_proj, output_proj2).transform(lon, lat)
uklad_laea.append((x, y))

table_data = [(f"Punkt {i}", format(x, '.6f'), format(y, '.6f')) for i, (x, y) in enumerate(uklad_laea, start=1)]

table_headers = ["", "Układ LAEA", ""]

table_data.insert(0, ("Numer", "Współrzędna X", "Współrzędna Y"))
 print(tabulate(table_data, headers=table_headers, tablefmt="pretty"))
 output proj3 = CRS.from_epsg(32633)
 uklad utm = []
 for lon, lat in punkty:
for ion, lat in punkty:
    x, y = Transformer.from_proj(input_proj, output_proj3).transform(lon, lat)
    uklad_utm.append((x, y))

table_data = [(f"Punkt {i}", format(x, '.6f'), format(y, '.6f')) for i, (x, y) in enumerate(uklad_utm, start=1)]

table_headers = ["", "Układ UTM", ""]

table_data.insert(0, ("Numer", "Współrzędna X", "Współrzędna Y"))

print(tabulate(table_data, headers=table_headers, tablefmt="pretty"))
 output_proj4 = CRS.from_epsg(3034)
 uklad lcc = []
 for lon, lat in punkty:
        x, y = Transformer.from_proj(input_proj, output_proj4).transform(lon, lat)
uklad_lcc.append((x, y))
table_data = [(f"Punkt {i}", format(x, '.6f'), format(y, '.6f')) for i, (x, y) in enumerate(uklad_lcc, start=1)]
table_headers = ["", "Układ LCC", ""]
table_data.insert(0, ("Numer", "Współrzędna X", "Współrzędna Y"))
 #readukcja długości odcinków
 #ukŁad 2000
d12 = ((punkty_pl2000[1][0] - punkty_pl2000[0][0])**2 + (punkty_pl2000[1][1] - punkty_pl2000[0][1])**2)**0.5
d23 = ((punkty_pl2000[2][0] - punkty_pl2000[1][0])**2 + (punkty_pl2000[2][1] - punkty_pl2000[1][1])**2)**0.5
d34 = ((punkty_pl2000[3][0] - punkty_pl2000[2][0])**2 + (punkty_pl2000[3][1] - punkty_pl2000[2][1])**2)**0.5
d41 = ((punkty_pl2000[0][0] - punkty_pl2000[3][0])**2 + (punkty_pl2000[0][1] - punkty_pl2000[3][1])**2)**0.5
 phi12 = (punkty_pl2000[1][0] + punkty_pl2000[0][0]) / 2.0
phi23 = (punkty_pl2000[2][0] + punkty_pl2000[1][0]) / 2.0
phi34 = (punkty_pl2000[3][0] + punkty_pl2000[2][0]) / 2.0
phi41 = (punkty_pl2000[0][0] + punkty_pl2000[3][0]) / 2.0
  posrednie = [phi12, phi23, phi34, phi41]
  R=[]
  for i in range(len(posrednie)):
         N_m = a / (1 - e2 * (np.sin(np.radians(posrednie[i]))**2))**0.5

M_m = a * (1 - e2) / ((1 - e2 * np.sin(np.radians(posrednie[i]))**2)**1.5)
                               * M_m)**0.5
          R_m = (N_m)
         R.append(R_m)
  sgk12 = d12 / 0.999923
  sgk23 = d23 / 0.999923
sgk34 = d34 / 0.999923
sgk41 = d41 / 0.999923
 r12 = sgk12 * (gk_2000[0][1]**2 + gk_2000[0][1] * gk_2000[1][1] + gk_2000[1][1]**2) / (6 * R[0]**2) 
r23 = sgk23 * (gk_2000[1][1]**2 + gk_2000[1][1] * gk_2000[2][1] + gk_2000[2][1]**2) / (6 * R[1]**2) 
r34 = sgk34 * (gk_2000[2][1]**2 + gk_2000[2][1] * gk_2000[3][1] + gk_2000[3][1]**2) / (6 * R[2]**2) 
r41 = sgk41 * (gk_2000[3][1]**2 + gk_2000[3][1] * gk_2000[0][1] + gk_2000[0][1]**2) / (6 * R[3]**2)
  selip12 = (sgk12 - r12) / 1000
  selip23 = (sgk23 - r23) / 1000
  selip34 = (sgk34 - r34) / 1000
  selip41 = (sgk41 - r41) /1000
  print('Długość odcinka 1-2 na elipsoidzie: {:.6f} km'.format(selip12))
 print('Długość odcinka 2-3 na elipsoidzie: {:.6f} km'.format(selip23))
print('Długość odcinka 3-4 na elipsoidzie: {:.6f} km'.format(selip34))
print('Długość odcinka 4-1 na elipsoidzie: {:.6f} km'.format(selip34))
```

```
#UkLad 1992
 phi12_1992 = (uklad_1992[1][0] + uklad_1992[0][0]) / 2.0
 phi23 1992 = (uklad_1992[2][0] + uklad_1992[1][0]) / 2.0
phi34_1992 = (uklad_1992[3][0] + uklad_1992[2][0]) / 2.0
phi41_1992 = (uklad_1992[0][0] + uklad_1992[3][0]) / 2.0
  posrednie_1992 = [phi12_1992, phi23_1992, phi34_1992, phi41_1992]
 R_1992=[]
N_m_1992 = a / (1 - e2 * (np.sin(np.radians(posrednie_1992[i]))**2))**0.5

M_m_1992 = a * (1 - e2) / ((1 - e2 * np.sin(np.radians(posrednie_1992[i]))**2)**1.5)
      R_m_{1992} = (N_m_{1992} * M_m_{1992})**0.5

R_{1992.append}(R_m_{1992})
 sgk12_1992 = d12_1992 / 0.999923
 sgk23_1992 = d23_1992 / 0.999923
sgk34_1992 = d34_1992 / 0.999923
 sgk41_1992 = d41_1992 / 0.999923
r12_1992 = sgk12_1992 * (gk_1992[0][1]**2 + gk_1992[0][1] * gk_1992[1][1] + gk_1992[1][1]**2) / (6 * R_1992[0]**2) r23_1992 = sgk23_1992 * (gk_1992[1][1]**2 + gk_1992[1][1] * gk_1992[2][1] + gk_1992[2][1]**2) / (6 * R_1992[1]**2) r34_1992 = sgk34_1992 * (gk_1992[2][1]**2 + gk_1992[2][1] * gk_1992[3][1] + gk_1992[3][1]**2) / (6 * R_1992[2]**2) r41_1992 = sgk41_1992 * (gk_1992[3][1]**2 + gk_1992[3][1] * gk_1992[0][1] + gk_1992[0][1]**2) / (6 * R_1992[3]**2)
 selip12_1992 = (sgk12_1992 - r12_1992) / 1000
selip23_1992 = (sgk23_1992 - r23_1992) / 1000
selip34_1992 = (sgk34_1992 - r34_1992) / 1000
selip41_1992 = (sgk41_1992 - r41_1992) / 1000
 print(end='\n')
print('Długość odcinka 1-2 na elipsoidzie: {:.6f} km 1992'.format(selip12_1992))
print('Długość odcinka 2-3 na elipsoidzie: {:.6f} km 1992'.format(selip23_1992))
print('Długość odcinka 3-4 na elipsoidzie: {:.6f} km 1992'.format(selip34_1992))
 print('Długość odcinka 4-1 na elipsoidzie: {:.6f} km 1992'.format(selip41_1992))
 print(end='\n')
 g = Geod(ellps='GRS80')
 s12\_inv = g.inv(punkty[0][1], punkty[0][0], punkty[1][1], punkty[1][0])[2]
s23_inv = g.inv(punkty[1][1], punkty[1][0], punkty[2][1], punkty[2][0])[2]
s34_inv = g.inv(punkty[2][1], punkty[2][0], punkty[3][1], punkty[3][0])[2]
s41_inv = g.inv(punkty[3][1], punkty[3][0], punkty[0][1], punkty[0][0])[2]
print('Długość odcinka 1-2 z zadania 3: {:.6f} km'.format(s12_inv /1000))
print('Długość odcinka 2-3 z zadania 3: {:.6f} km'.format(s23_inv / 1000))
print('Długość odcinka 3-4 z zadania 3: {:.6f} km'.format(s34_inv / 1000))
print('Długość odcinka 4-1 z zadania 3: {:.6f} km'.format(s41_inv / 1000))
print(end='\n')
 def deg2dms(dd):
      deg = int(np.trunc(dd))
      minutes = int(np.trunc((dd - deg) * 60))
seconds = round(((dd - deg) * 60 - minutes) * 60, 5)
       dms = [deg, abs(minutes), abs(seconds)]
      return dms
def vincenty(BA,LA,BB,LB):
      Parameters
      BA: szerokosc geodezyjna punktu A [RADIAN]
      LA : dlugosc geodezyjna punktu A [RADIAN]
      BB : szerokosc geodezyjna punktu B [RADIAN]
     LB : dlugosc geodezyjna punktu B [RADIAN]
      Returns
      sAB : dlugosc linii geodezyjnej AB [METR]
      A_AB : azymut linii geodezyjnej AB [RADIAN]
      A_BA : azymut odwrotny linii geodezyjne [RADIAN]
      b = a * np.sqrt(1-e2)
      f = 1-b/a
      dL = LB - LA
      UA = np.arctan((1-f)*np.tan(BA))
      UB = np.arctan((1-f)*np.tan(BB))
      while True:
           cos_sig = np.sin(UA)*np.sin(UB) + np.cos(UA) * np.cos(UB) * np.cos(L)
sig = np.arctan2(sin_sig,cos_sig)
sin_al = (np.cos(UA)*np.cos(UB)*np.sin(L))/sin_sig
            cos2_al = 1 - sin_al**2
           L = dL + (1-C)*f*sin_al*(sig+C*sin_sig*(cos2_sigm+C*cos_sig*(-1 + 2*cos2_sigm**2)))
            if abs(L-Lst)<(0.000001/206265):
                  break
```

```
u2 = (a^{**}2 - b^{**}2)/(b^{**}2) * cos2 al
      - 1/6 *B*cos2_sigm * (-3 + 4*sin_sig**2)*(-3+4*cos2_sigm**2)))
      sAB = b*A*(sig-d sig)
      return sAB, A_AB, A_BA
punkty2 = np.deg2rad(punkty2)
az12 = np.rad2deg(vincenty(punkty2[0][0], punkty2[0][1], punkty2[1][0], punkty2[1][1]))[1]
az23 = np.rad2deg(vincenty(punkty2[1][0], punkty2[1][1], punkty2[2][0], punkty2[2][1]))[1]
az34 = np.rad2deg(vincenty(punkty2[2][0], punkty2[2][1], punkty2[3][0], punkty2[3][1]))[1]
az41 = np.rad2deg(vincenty(punkty2[3][0], punkty2[3][1], punkty2[0][0], punkty2[0][1]))[1]
az41 += 360
print('Azymut odcinka 1-2 z zadania 3:', deg2dms(az12))
print('Azymut odcinka 2-3 z zadania 3:', deg2dms(az23))
print('Azymut odcinka 3-4 z zadania 3:', deg2dms(az34))
print('Azymut odcinka 4-1 z zadania 3:', deg2dms(az41))
#redukcia azymutów
#Układ 2000
az12_2000 = math.atan2(gk_2000[1][1] - gk_2000[0][1], gk_2000[1][0] - gk_2000[0][0])
az23_2000 = math.atan2(gk_2000[2][1] - gk_2000[1][1], gk_2000[2][0] - gk_2000[1][0])
az34_2000 = math.atan2(gk_2000[3][1] - gk_2000[2][1], gk_2000[3][0] - gk_2000[2][0])
az41_2000 = math.atan2(gk_2000[0][1] - gk_2000[3][1], gk_2000[0][0] - gk_2000[3][0])
gamma = []
for i in range(len(punkty)):
     punkty = np.deg2rad(punkty)
     lambda_0 = np.deg2rad(18)
b2 = a**2 * (1 - e2)
e2_prime = (a**2 - b2) / b2
     delta_lambda = punkty[i][1] - lambda_0
      t = math.tan(punkty[i][0])
      eta2 = e2_prime * math.cos(punkty[i][0])**2
      eta = math.sqrt(eta2)
     N = a / math.sqrt(1 - e2 * math.sin(punkty[i][0])**2)
     gamma_i = delta_lambda * math.sin(punkty[i][0]) + (delta_lambda**3 / 3) * math.sin(punkty[i][0])
* math.cos(punkty[i][0])**2 * (1 + 3 * eta**2 + 2 * eta**4)
+ (delta_lambda**5 / 15) * math.sin(punkty[i][0]) * math.cos(punkty[i][0])**4 * (2 - t**2)
      gamma.append(gamma_i)
A12_2000 = np.rad2deg(az12_2000) + np.rad2deg(gamma[0]) + np.rad2deg(theta12_2000)
A23_2000 = np.rad2deg(az23_2000) + np.rad2deg(gamma[1]) + np.rad2deg(theta23_2000)
A34_2000 = np.rad2deg(az34_2000) + np.rad2deg(gamma[2]) + np.rad2deg(theta34_2000)
A41_2000 = np.rad2deg(az41_2000) + np.rad2deg(gamma[3]) + np.rad2deg(theta41_2000)
A41_2000 += 360
print('Azymut odcinka 1-2 z układu 2000:', deg2dms(A12_2000))
print('Azymut odcinka 2-3 z układu 2000:', deg2dms(A23_2000))
print('Azymut odcinka 3-4 z układu 2000:', deg2dms(A34_2000))
print('Azymut odcinka 4-1 z układu 2000:', deg2dms(A41_2000))
#Układ 1992
az41_1992 = math.atan2(gk_1992[0][1] - gk_1992[3][1], gk_1992[0][0] - gk_1992[3][0])
 theta12_1992 = (gk_1992[1][0]-gk_1992[0][0])*(2*gk_1992[0][1] + gk_1992[1][1]) / (6 * R_1992[0]**2)
theta3_1992 = (gk_1992[3][0]-gk_1992[1][0])*(2*gk_1992[1][1] + gk_1992[2][1]) / (6 * R_1992[1]*2) theta34_1992 = (gk_1992[3][0]-gk_1992[2][0])*(2*gk_1992[2][1] + gk_1992[3][1]) / (6 * R_1992[2]**2) theta41_1992 = (gk_1992[0][0]-gk_1992[3][0])*(2*gk_1992[3][1] + gk_1992[0][1]) / (6 * R_1992[3]**2)
 A12_1992 = np.rad2deg(az12_1992) + np.rad2deg(gamma[0]) + np.rad2deg(theta12_1992)
A23_1992 = np.rad2deg(az32_1992) + np.rad2deg(gamma[1]) + np.rad2deg(theta23_1992) 
A34_1992 = np.rad2deg(az34_1992) + np.rad2deg(gamma[2]) + np.rad2deg(theta34_1992) 
A41_1992 = np.rad2deg(az41_1992) + np.rad2deg(gamma[3]) + np.rad2deg(theta41_1992)
 A41 1992 += 360
print('Azymut odcinka 1-2 z układu 1992:', deg2dms(A12_1992))
print('Azymut odcinka 2-3 z układu 1992:', deg2dms(A23_1992))
print('Azymut odcinka 3-4 z układu 1992:', deg2dms(A34_1992))
print('Azymut odcinka 4-1 z układu 1992:', deg2dms(A41_1992))
```

```
#Pnl e
punkty1 = [(51.25, 17.75), (51.60952957952263, 17.75), (51.600656153534366, 19.193356733106977),
              (51.2411260266428, 19.193356733106977)]
punkty_odwrotne = punkty1[::-1]
point_objects = [Point(lon, lat) for lat, lon in punkty_odwrotne]
polygon = Polygon(point_objects)
area, perimeter = g.geometry_area_perimeter(polygon)
area = area / 1000000
print('Pole z zadania 3: {:.6f} km²'.format(area))
def calculate_surface_area(points):
     n = len(points)
     area = 0
for i in range(n):
         xi, yi = points[i]
          xi_minus_1, yi_minus_1 = points[i-1] if i > 0 else points[n-1]
     xi_plus_1, yi_plus_1 = points[(i+1) % n]
area += xi * (yi_plus_1 - yi_minus_1)
wynik = abs(area) / 2
     return wynik / 1000000
print(end='\n')
area_pl2000 = calculate_surface_area(punkty_pl2000)
print('Pole w układzie 2000: {:.6f} km2'.format(area_pl2000))
area_1992 = calculate_surface_area(uklad_1992)
print('Pole w układzie 1992: {:.6f} km²'.format(area_1992))
area_gk_2000 = calculate_surface_area(gk_2000)
print('Pole na plaszczyźnie odwzorowania gk dla układu 2000: {:.6f} km²'.format(area_gk_2000))
area_gk_1992 = calculate_surface_area(gk_1992)
print('Pole na plaszczyźnie odwzorowania gk dla układu 1992: {:.6f} km²'.format(area_gk_1992))
area_laea = calculate_surface_area(uklad_laea)
print('Pole w ukladzie PL-LAEA: {:.6f} km2'.format(area_laea))
area_utm = calculate_surface_area(uklad_utm)
print('Pole w ukladzie PL-UTM: {:.6f} km²'.format(area_utm))
area_lcc = calculate_surface_area(uklad_lcc)
print('Pole w ukladzie PL-LCC: {:.6f} km2'.format(area_lcc))
```