Time-series Analysis Notes

Nong Minh $Hieu^1$

 1 School of Physical and Mathematical Sciences, Nanyang Technological University (NTU - Singapore)

Contents

1	Introduction	2
	1.1 Time-series definitions	2
	1.2 Trend model	
	1.3 Trend + Seasonality model	3
	1.4 Modelling seasonality using dummy variables	4
	1.5 Autocorrelation & autocorrelation function (ACF)	5
2	Stationary time-series 2.1 Strict vs. Weak stationarity	
A	List of Definitions	7
В	Important Theorems	7
\mathbf{C}	Important Corollaries	7
D	Important Propositions	7
E	References	8

1 Introduction

1.1 Time-series definitions

Definition 1.1 (Time series).

A time-series is a sequence of observations of time-indexed random variables $(X_t)_{t\geq 0}$. Typically, A time-series consists of three components.

- Trend (T_t) .
- Cycle (C_t) .
- $Seasonal(S_t)$.

Finally, there is a random error (residual) term (R_t) . Note that for the sake of this course, we will hardly consider the cycle (C_t) term.

Definition 1.2 (Multiplicative & Additive models).

The components of a time-series can be combined either additively or multiplicatively:

- Additive model: $X_t = T_t + C_t + S_t + R_t$.
- Multiplicative model: $X_t = T_t \times C_t \times S_t \times R_t$.

1.2 Trend model

Definition 1.3 (Trend model). _

A trend model is defined as:

$$X_t = T_t + R_t$$

Remark: Consider the linear trend:

$$T_t = \beta_0 + \beta_1 t, \quad \beta_1 \neq 0$$

We can then estimate the time-series $(X_t)_{t\geq 0}$ using the following methods:

• Method 1 : Least square estimate the trend component T_t by minimizing the sum squared error

$$SSE = \sum_{t>0} (X_t - T_t)^2$$

 \bullet \mathbf{Method} $\mathbf{2}$: Eliminate the trend component via differencing operator.

Definition 1.4 (Differencing operator).

We define the first difference operator ∇ by:

$$\nabla X_t = X_t - X_{t-1} = (I - B)X_t$$

Where I is the identity operator and B is the backward shift operator:

$$BX_t = X_{t-1}, \ B^i X_t = X_{t-i}$$

The ith order differencing operator is:

$$\nabla^i X_t = \nabla(\nabla^{i-1} X_t)$$

Note that $\nabla^0 X_t = I$.

Proposition 1.1: Binomial formula for $\nabla^n X_t$

Given a time-series $(X_t)_{t\geq 0}$, we can write the differenced data to the n^{th} order as followed:

$$\nabla^n X_t = \sum_{k=0}^n \binom{n}{k} (-1)^k B^k X_t = \sum_{k=0}^n \binom{n}{k} (-1)^k X_{t-k}$$

As a result, we can write:

$$X_{t} = \nabla^{n} X_{t} - \sum_{k=1}^{n} \binom{n}{k} (-1)^{k} X_{t-k}$$

Proof (Proposition 1.1).

Using the Binomial theorem, we have:

$$\nabla^{n} X_{t} = (I - B)^{n} X_{t}$$

$$= \sum_{k=0}^{n} \binom{n}{k} (I)^{n-k} (-B)^{k} X_{t} \quad (Binomial \ theorem)$$

$$= \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} B^{k} X_{t}$$

$$= \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} X_{t-k}$$

$$= X_{t} + \sum_{k=1}^{n} \binom{n}{k} (-1)^{k} X_{t-k}$$

$$\implies X_{t} = \nabla^{n} X_{t} - \sum_{k=1}^{n} \binom{n}{k} (-1)^{k} X_{t-k}$$

 \Box .

1.3 Trend + Seasonality model

Definition 1.5 (Trend + Seasonality model). ______ The model that displays both trend and seasonality is defined as:

$$X_t = T_t + S_t + R_t$$

There are two types of seasonality:

- Constant seasonality: degree of seasonality does not depend on time.
- Varying (increasing) seasonality: degree of seasonality depends on time.

Remark: When the time-series displays increasing seasonality, it is a common practice to transform the data so that the series display constant seasonality.

Definition 1.6 (Box-Cox transformation). _

For some $\lambda > 0$, the Box-Cox transformation is defined as:

$$z_t = \frac{x_t^{\lambda} - 1}{\lambda}$$

Proposition 1.2: Box-Cox as $\lambda \to 0$

As $\lambda \to 0$, $z_t \to \log(x_t)$.

Proof (Proposition 1.2).

We can write:

$$\lim_{\lambda \to 0} e^{z_t} = \lim_{\lambda \to 0} \lim_{n \to \infty} \left(1 + \frac{z_t}{n} \right)^n$$

$$= \lim_{\lambda \to 0} \left(1 + \lambda z_t \right)^{1/\lambda} \quad \left(\text{Letting } n = \frac{1}{\lambda} \right)$$

$$= \lim_{\lambda \to 0} \left(1 + (x^{\lambda} - 1) \right)^{1/\lambda} = x_t$$

$$\implies \lim_{\lambda \to 0} z_t = \log(x_t)$$

 \Box .

1.4 Modelling seasonality using dummy variables

Definition 1.7 (Dummy variables for seasonality). _

The seasonal factor (supposing that there are L seasons) expressed using dummy variables can be written as:

$$S_t = \beta_1^{(s)} D_1(t) + \dots + \beta_{L-1}^{(s)} D_{L-1}(t)$$

Where we have:

$$D_k(t) = \begin{cases} 1, & \text{if } t \text{ belongs to season } k \\ 0, & \text{otherwise} \end{cases}$$

We can write the time-series whose seasonality is modelled using dummy variables as:

$$X_t = T_t + \sum_{k=1}^{L-1} \beta_k^{(s)} D_k(t) + R_t$$

Remark: Take a time-series with linear trend and seasonality modelled using dummy variables as an example. Suppose that we have 4 seasons, the time-series will take the form:

$$X_{t} = \underbrace{\beta_{0} + \beta_{1}t}_{T_{t}} + \underbrace{\beta_{1}^{(s)}D_{1}(t) + \beta_{2}^{(s)}D_{2}(t) + \beta_{3}^{(s)}D_{3}(t)}_{S_{t}} + R_{t}$$

We can estimate the parameters $\beta = \left(\beta_0, \beta_1, \beta_1^{(s)}, \beta_2^{(s)}, \beta_3^{(s)}\right)$ the same way we do for linear regression models:

$$\hat{\beta} = \left(X^T X\right)^{-1} \left(X^T y\right), \quad X \in \mathbb{R}^{T \times 5}$$

Where T is the length of the time-series.

1.5 Autocorrelation & autocorrelation function (ACF)

Definition 1.8 (Autocovariance & Autocorrelation functions). Given a time-series $(X_t)_{t\geq 0}$, the autocovariance $\gamma(h)$ and autocorrelation $\rho(h)$ are defined as followed:

$$\gamma(h) = Cov(X_{t+h}, X_t)$$
$$\rho(h) = \frac{\gamma(h)}{Var(X_t)} = \frac{\gamma(h)}{\gamma(0)}$$

When we are given a set of observations $(x_t)_{t=1}^n$, we can estimate γ, ρ by using their sample counterparts:

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-h} (x_{t+h} - \overline{x})(x_t - \overline{x})$$

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)} = \frac{\sum_{t=1}^{n-h} (x_{t+h} - \overline{x})(x_t - \overline{x})}{\sum_{t=1}^{n} (x_t - \overline{x})^2}$$

We have the following useful identities:

- $\gamma_0 = Var(X_t)$.
- $\gamma_k = \gamma_{-k}$ (symmetric).
- $\rho_0 = 1$.
- $\rho_k = \rho_{-k}$ (symmetric).

2 Stationary time-series

2.1 Strict vs. Weak stationarity

- $Mean: \mu(t) = \mathbb{E}[X_t], t \in T.$
- Covariance: $\gamma(t,s) = Cov(X_t, X_s), t, s \in T$.
- Variance: $\sigma^2(t) = \gamma(t,t) = Var(X_t), t \in T.$

Definition 2.2 (Strict stationarity).

A time-series is said to be **strictly stationary** if, $\forall n \in \mathbb{Z}_+, h \in \mathbb{N}$, we have:

$$(X_1,\ldots,X_n)\stackrel{d}{\simeq}(X_{1+h},\ldots,X_{n+h})$$

Meaning the two tuples are equal in distribution.

Remark: Note that in practice, strict stationarity is often hard to achieve. Hence, we have some relaxed conditions for stationarity.

Definition 2.3 (Weak stationarity).

A time-series $(X_t)_{t\geq 0}$ is said to be **weakly stationary** if the following two conditions are met:

- $\mu(t)$ does not depend on t.
- $\gamma(t,h)$ does not depend on t for all $h \in \mathbb{N}$.

2.2 Moving Average - MA(q) model

Definition 2.4 (White noise). A process $(Z_t)_{t \in T}$ is called **white noise** if it satisfies:

- $Cov(Z_t, Z_s)$ for all $s \neq t$.
- $Var(Z_t) = \sigma^2, \ \forall t \in T.$

We denote that $Z_t \sim WN(0, \sigma^2)$.

Definition 2.5 (MA(q) model).

A List of Definitions			
1.1 Definition (Time series)	2		
	2		
	2		
	2		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3		
	4		
	4		
	5		
	5		
	6		
	6		
	6		
()	6		
	6		
2.5 Definition ($\mathbf{WA}(\mathbf{q})$ model)	J		
B Important Theorems			
C Important Corollaries			
D Important Propositions			
1.1 Binomial formula for $\nabla^n X_t$	3		
1.2 Box-Cox as $\lambda \to 0$	4		

E References

References

- [1] Rick Durrett. *Probability: Theory and Examples.* 4th. USA: Cambridge University Press, 2010. ISBN: 0521765390.
- [2] Erhan undefinedinlar. *Probability and Stochastics*. Springer New York, 2011. ISBN: 9780387878591. DOI: 10.1007/978-0-387-87859-1. URL: http://dx.doi.org/10.1007/978-0-387-87859-1.
- [3] Wikipedia. Vitali set Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/w/index.php?title=Vitali%20set&oldid=1187241923. [Online; accessed 24-December-2023]. 2023.