

20 Oct 2566

Sarun Gulyanon

Agenda

- Model Evaluation
- Case Study : Kaggle

1. Model Evaluation

Recap: Generalization

- The error rate on new cases is called the generalization error (or out-of-sample error)
- This value tells you how well your model will perform on instances it has never seen before.
- We can only estimate of this error.

Model Evaluation

- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Metrics for Performance Evaluation
 - ➤ How to evaluate the performance of a model?
- Methods for Model Comparison
 - ➤ How to compare the relative performance among competing models?

Test Set

Hold Off Evoluction

- How can we get an unbiased estimate of the accuracy of a learned model?
- Split data into two sets: training and test sets.
- Build model using the training set
- Evaluating model on the test set gives an estimation of generalization error

Test Set

- How can we get an unbiased estimate of the accuracy of a learned model?
- If the test-set labels influence the learned model in any way, accuracy estimates will be biased

Learning Curves

How does the accuracy of a learning method change as a function of

the training-set size?

 Plot accuracy against the training-set size.

Figure from Perlich et al. Journal of Machine Learning Research, 2003

Learning Curves

- Given training/test set partition
- For each sample size s, randomly select s instances from training set
- Learn model
- Evaluate model on test set to determine accuracy a
- plot (s, a) or repeat n times and plot (s, avg. accuracy and error bars)

Figure from Perlich et al. Journal of Machine Learning Research, 2003

Validation Set

• Suppose we want unbiased estimates of accuracy during the learning process (e.g., to choose the best level of decision-tree pruning)?

Fine-Tune Your Model

- Find the best hyperparameter for the model
- Grid Search = Search through all combinations of the parameters. (Scikit-Learn's GridSearch)
- 2. Randomized Search = evaluates a preset number of random combinations. (Scikit-Learn's RandomizedSearchCV)

https://medium.com/@cjl2fv/an-intro-to-hyper-parameter-optimization-using-grid-search-and-random-search-d73b9834ca0a

Limitations of Using a Single Training/Test Partition

- We may not have enough data to make sufficiently large training and test sets
 - A larger test set gives us more reliable estimate of accuracy (i.e. a lower variance estimate)
 - But... a larger training set will be more representative of how much data we actually have for learning process
- A single training set doesn't tell us how sensitive accuracy is to a particular training sample

Random Resampling

 We can address the second issue by repeatedly randomly partitioning the available data into training and set sets.

Stratified Sampling

- When randomly selecting training or validation sets, we may want to ensure that class proportions are maintained in each selected set.
- This can be done via stratified sampling: first stratify instances by class, then randomly select instances from each class proportionally

Cross Validation

- Partition data into n subsamples
- Iteratively leave one subsample out for the test set, train on the rest
- 10-fold CV is common,
- But smaller values of n are often used when learning takes time

iteration	train on	test on
1	s ₂ s ₃ s ₄ s ₅	S ₁
2	\mathbf{S}_1 \mathbf{S}_3 \mathbf{S}_4 \mathbf{S}_5	s_2
3	$\mathbf{S}_1 \ \mathbf{S}_2 \ \mathbf{S}_4 \ \mathbf{S}_5$	s_3
4	s ₁ s ₂ s ₃ s ₅	S ₄
5	$s_1 s_2 s_3 s_4$	s ₅

Cross Validation Example

- Leave-one-out cross validation, n = # instances
- CV makes efficient use of the available data for testing
- Whenever we use multiple training sets, we are evaluating a learning method as opposed to an individual learned model.

iteration	train on	test on	correct
1	$s_2 s_3 s_4 s_5$	s ₁	11 / 20
2	S ₁ S ₃ S ₄ S ₅	s_2	17 / 20
3	S ₁ S ₂ S ₄ S ₅	S ₃	16 / 20
4	S ₁ S ₂ S ₃ S ₅	S ₄	13 / 20
5	S ₁ S ₂ S ₃ S ₄	S ₅	16 / 20

Accuracy = 73/100 = 73%

Internal Cross Validation

 Instead of a single validation set, we can use cross-validation within a training set to select a model

Performance Measures

- Need a metric to measure/evaluate/compare classifiers and regressors.
- Evaluating classifier is trickier than evaluating a regressor.
 real work is continuous, discrete attributes are what we defined.
- Metrics
 - Classification: Accuracy, F1-score, precision/recall, ROC curve
 - Regression: MAE, RMSE, R²

Terminology

Accuracy

- The most simple metric for classification
- correctly predicted samples / total testing samples

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

Example:

Accuracy =
$$6/8 = 75\%$$

	Ground Truth	Prediction
1	Apple	Apple
2	Papaya	Papaya
3	Papaya	Papaya
4	Orange	Orange
5	Apple	Apple
6	Papaya	Orange
7	Apple	Apple
8	Banana	Papaya

Accuracy Issues

- Accuracy may not be useful measure in cases where:
 - ☐ There is a large class skew
 - ➤ Is 98% accuracy good if 97% of the instances are negative?
 - ☐ There are differential misclassification costs say, getting a positive wrong costs more than getting a negative wrong
 - Consider a medical domain in which a false positive results in an extraneous test but a false negative results in a failure to treat a disease

Confusion Matrix

- Or error matrix
- A table whose entry (A,B) indicates the number of times instances of class A are predicted as class B.

Precision and Recall

Frand Truth Cless

40

How many selected items are relevant?

How many relevant items are selected?

$$\frac{TP}{TP + FP}$$
 = Precision =

Recall =
$$\frac{TP}{TP + FN}$$

Example

- Automated system that diagnoses patients either he/she is unwell/normal—
- Here, Positives = Unwell

Precision =
$$\frac{TP}{TP + FP} = \frac{1}{1+3} = 0.25$$

Recall =
$$\frac{TP}{TP + FN} = \frac{1}{1+2} = 0.33$$

	Ground Truth	Prediction
1	Unwell 🗸	Unwell 🗸
2	Unwell 🗸	Normal
3	Unwell 🗸	Normal
4	Normal	Normal
5	Normal	Unwell√
6	Normal	Unwell
7	Normal	Unwell√
8	Normal	Normal

F1-Score

• F1 score = harmonic mean of precision and recall.

$$F_1 = \frac{2}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

- The harmonic mean gives much more weight to low values.
 - → Give high F1 score if both recall and precision are high.

Precision/Recall Tradeoff

- Assume a classifier is fixed and it assigns a score to each sample
- > threshold = positive, < threshold = negative
- High threshold = high precision, low recall
- Unfortunately, you can't have it both ways.

ROC Curve

- Receiver Operating Characteristic (ROC) curve
- For binary classifiers
- Plots the true positive rate (another name for recall) against the false positive rate for various threshold values.

$$\frac{\text{TPR}}{\text{PR}} = \frac{\text{TP}}{\text{P}} = \frac{\text{TP}}{\text{TP} + \text{FN}}$$
 $\frac{\text{FPR}}{\text{FP}} = \frac{\text{FP}}{\text{N}} = \frac{\text{FP}}{\text{FP} + \text{TN}}$

- TPR = probability of detection
- FPR = probability of false alarm
- http://arogozhnikov.github.io/RocCurve.html

ROC Curve Example

1	instance	confider positive	nce	correct class
(20 K	instance Ex 9	.99		+
90%	Ex 7	.98	TPR= 2/5, FPR= 0/5	+
	Ex 1	.72	TPR= 2/5, FPR= 1/5	-
わり	Ex 2	.70		+
(a` (Ex 6	.65	TPR= 4/5, FPR= 1/5	+
60 1	Ex 6 Ex 10	.51		-
307	Ex 3	.39	TPR= 4/5, FPR= 3/5	
Wi. 107.		.24	TPR= 5/5, FPR= 3/5	+
VOJ. COJ	Ex 4	.11		-
01	Ex 8	.01	TPR= 5/5, FPR= 5/5	_

AUC

- To compare classifiers, we need a number.
 - → Measure the area under the curve (AUC) of ROC.
- A perfect classifier will have ROC AUC = 1
- A purely random classifier will have ROC AUC = 0.5.
- To compute, one possible solution similar to Trapezoidal rule, divide regions at thresholds.

What about multiclass problem?

Demo: https://colab.research.google.com/ drive/1u9AEoqBkhZDtyvI82OgG4jskN 9qkF2L?usp=sharing

Multilabel Classification

- Classification task labelling each sample with x labels from n_classes possible classes, where x can be 0 to n_classes inclusive.
- Thus, comparable to running n_classes binary classification tasks
- Multilabel classifiers may treat the multiple classes simultaneously, accounting for correlated behavior among them.
- E.g., In diagnosis system, one patient may have multiple diseases.

RMSE

- A typical performance measure for regression problems.
- Measure the standard deviation of the errors the system makes in its predictions

RMSE(
$$\mathbf{X}, h$$
) = $\sqrt{\frac{1}{m}} \sum_{i=1}^{m} \left(h(\mathbf{x}^{(i)}) - y^{(i)} \right)^2$

- y = the expected output,
- X = data, m = no. of testing data and
- h = prediction function

MAE

- Or Average Absolute Deviation
- Another popular performance measure for regression problems

$$MAE(\mathbf{X}, h) = \frac{1}{m} \sum_{i=1}^{m} \left| h(\mathbf{x}^{(i)}) - y^{(i)} \right|$$

- Since errors are squared in RMSE so it gives a relatively high weight to large errors
 - → MAE is better when outliers are expected.

R^2

- Or coefficient of determination
- How well observed outcomes are replicated by the model ->
 The proportion of total variation of outcomes explained by the model.

$$R^2 = 1 - rac{SS_{ ext{res}}}{SS_{ ext{tot}}}$$

Total sum of squares

Residual sum of squares

$$SS_{
m tot} = \sum_i (y_i - ar{y})^2$$
 $SS_{
m res} = \sum_i (y_i - f_i)^2 = \sum_i e_i^2$ Observed data Observed data Observed data

https://en.wikipedia.org/wiki/Coefficient of determination

Multioutput Regression

- Predicts multiple numerical properties for each sample.
- Thus comparable to running n_output regression estimators
- Estimators that support multioutput regression may be faster.
- E.g., prediction of both wind speed and wind direction, in degrees, using data obtained at a certain location.
- Each sample would be data obtained at one location and both wind speed and direction would be output for each sample.

http://kejian1.cmatc.cn/vod/comet/dynamics/thermal_wind/navmenu.php_tab_1_page_11.2.1_type_text.htm

Comparing Learning Systems

 How can we determine if one learning system provides better performance than another

Example:

	reservation of tool colo				
System 1:	80%	50	75		99
System 2:	79	49	74		98
δ :	+1	+1	+1		+1

Accuracies on test sets

Notice that System 1 is always better than System 2

Hypothesis Testing

- Hypothesis testing (or test of significance) is a statistical method used to determine if there is enough evidence in a sample data to draw conclusions about a population.
- Given a claim, identify the
 - The null hypothesis (H_0) = the value of a population parameter (e.g., mean, or SD) is equal to some claimed value.
 - The alternative hypothesis (H_a) the parameter differs from H₀
- Standard test for testing the difference between population: paired t-test and sign test

Comparing Systems Using a Paired t-Test

- consider δ 's as observed values of a set of i.i.d. random variables
- H_0 : the 2 learning systems have the same accuracy
- H_a: one of the systems is more accurate than the other
- Use paired t-test to compute p-value or significance level that mean of δ 's would arise from null hypothesis
- If p-value is sufficiently small (typically < 0.05) then reject the null hypothesis

Comparing Systems Using a Paired t-Test

- Calculate the t statistic
- Determine the corresponding p-value, by looking up t in a table of values for the Student's t-distribution with n-1 degrees of freedom

$$t = \frac{\overline{\delta}}{\sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (\delta_i - \overline{\delta})^2}} \qquad \overline{\delta} = \frac{1}{n} \sum_{i=1}^{n} \delta_i$$

Comparing Systems Using a Paired t-Test

f(t)

- The null distribution of our t statistic looks like this
- The p-value indicates how far out in a tail our t statistic is
- If the p-value is sufficiently small, we reject the null hypothesis, since it is unlikely we'd get such a value by chance

for a two-tailed test, the p-value represents the probability mass in these two regions

Why Do We Use a Two-Tailed Test?

- A two-tailed test asks the question: is the accuracy of the two systems different?
- A one-tailed test asks the question: is system A better than system B?
- A priori, we don't know which learning system will be more accurate (if there is a difference) we want to allow that either one might be

Sign Test

- Test the null hypothesis that the median of a distribution is equal to some value.
- It is a non-parametric or "distribution-free" test = Don't assume that data comes from a particular distribution, like the normal distribution.
- Count "wins" for Algorithm A and B over the N test examples on which they disagree
- Let M be the larger of these counts
- What is probability under b(N,0.5) that either A or B would win at least M times? → Find p-value from binomial table.

2. Case Studies

Case Study: Kaggle

- Look at competition (maybe completed one) and notice:
 - Evaluation (Hold-out)
 - Metrics
 - How people get the solution (https://medium.com/kaggle-blog)
 - Interviews with Machine Learning Heroes (Kagglers + Practitioners + Researchers) (https://www.kaggle.com/discussions/general/76241)

OTTO – Multi-Objective Recommender System

- Build a multi-objective recommender system based on real-world ecommerce sessions
 - > predict e-commerce clicks, cart additions, and orders.
- https://www.kaggle.com/competitions/otto-recommender-system
- Evaluation: Evaluated on the first 20 predictions for each action type, and the three recall values are weight-averaged:

$$score = 0.10 \cdot R_{clicks} + 0.30 \cdot R_{carts} + 0.60 \cdot R_{orders}$$

$$R_{type} = rac{\sum_{i}^{N} |\{ ext{predicted aids}\}_{i,type} \cap \{ ext{ground truth aids}\}_{i,type}|}{\sum_{i}^{N} \min{(20,|\{ ext{ground truth aids}\}_{i,type}|)}}$$

American Express - Default Prediction

- Predict if a customer will default in the future
- https://www.kaggle.com/competitions/amex-default-prediction
- The evaluation metric (M) = the mean of two measures of rank ordering: Normalized Gini Coefficient (G) and default rate captured at 4% (D):

$$M = 0.5 \cdot (G+D)$$

Kaggle - LLM Science Exam

- Answer difficult science-based questions written by a Large Language Model (LLM).
- https://www.kaggle.com/competitions/kaggle-llm-science-exam
- Submissions are evaluated according to the Mean Average Precision
 @ 3 (MAP@3):

$$MAP@3 = rac{1}{U} \sum_{u=1}^{U} \sum_{k=1}^{min(n,3)} P(k) imes rel(k)$$

This competition uses a hidden test.

Store Sales - Time Series Forecasting

- Use machine learning to predict grocery sales
- https://www.kaggle.com/competitions/store-sales-time-seriesforecasting
- The evaluation metric for this competition is Root Mean Squared Logarithmic Error.

$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(1 + \hat{y}_i) - \log(1 + y_i))^2}$$

How to split train-test data for time-series

NFL Big Data Bowl

- How many yards will an NFL player gain after receiving a handoff?
- https://www.kaggle.com/competitions/nfl-big-data-bowl-2020
- Submissions will be evaluated on the Continuous Ranked Probability Score (CRPS)
 → Predict the probability that the team gains <= that many yards on the play

$$C = rac{1}{199N} \sum_{m=1}^{N} \sum_{n=-99}^{99} (P(y \leq n) - H(n-Y_m))^2$$

• Solution motivation: https://www.kaggle.com/c/nfl-big-data-bowl-2020/discussion/119400

Exercise: Binary Classification with a Software Defects Dataset

- https://www.kaggle.com/com petitions/playground-seriess3e23
- Predict defects in C programs given various attributes about the code.
- Feature description:

 https://www.kaggle.com/data
 sets/semustafacevik/software
 -defect-prediction

```
% 7. Attribute Information:
       1. loc
                           : numeric % McCabe's line count of code
       2. v(g)
                           : numeric % McCabe "cyclomatic complexity"
                           : numeric % McCabe "essential complexity"
       3. ev(g)
                           : numeric % McCabe "design complexity"
       4. iv(g)
                           : numeric % Halstead total operators + operands
                           : numeric % Halstead "volume"
       7. 1
                           : numeric % Halstead "program length"
                           : numeric % Halstead "difficulty"
       9. i
                           : numeric % Halstead "intelligence"
      10. e
                           : numeric % Halstead "effort"
      11. b
                           : numeric % Halstead
      12. t
                           : numeric % Halstead's time estimator
      13. 10Code
                           : numeric % Halstead's line count
      14. 10Comment
                           : numeric % Halstead's count of lines of comments
      15. 10Blank
                           : numeric % Halstead's count of blank lines
      16. 10CodeAndComment: numeric
      17. uniq_Op
                           : numeric % unique operators
      18. uniq_Opnd
                          : numeric % unique operands
      19. total_Op
                           : numeric % total operators
      20. total_Opnd
                           : numeric % total operands
      21: branchCount
                           : numeric % of the flow graph
                           : {false.true} % module has/has not one or more
      22. defects
                                                                     50
                                          % reported defects
```