MATH50003 Numerical Analysis

II.1 Integers

Part II: Representing Numbers

How do computers compute with numbers?

Why are there errors, eg. in divided differences?

Can we understand and bound these errors?

Simplified Model of a Computer

How do computers compute?

Memory

Address (64-bits)	Data (8-bits)
000000	11010101
000001	00011101
000010	10011001
:	•
111111	11001110

Mathematical model CPUs work on *p*-bits at a time

Cores take (1x or 2x) *p*-bits and return p-bits.

Operations are

$$f: \mathbb{Z}_{2^p} \to \mathbb{Z}_{2^p}$$
 or $f: \mathbb{Z}_{2^p} \times \mathbb{Z}_{2^p} \to \mathbb{Z}_{2^p}$

for
$$\mathbb{Z}_m := \{0, 1, ..., m-1\}$$

But how to handle ∞-cardinality sets integers/reals?

Limitations

- Memory is finite
- All operations work on p-bits at a time
- No such thing as throwing an error
- Any operation that manipulates more than p-bits must be a composition of simpler functions

Part II

Representing Numbers

- 1. Integers via modular arithmetic
- 2. Reals via floating point
- 3. Floating point arithmetic and bounding errors
- 4. Interval arithmetic for rigorous computations

II.1 Integers via modular arithmetic

How do we represent integers using only p-bits?

Definition 4 (binary format). For $B_0, \ldots, B_p \in \{0, 1\}$ denote an integer in binary format by:

$$\pm (B_p \dots B_1 B_0)_2 := \pm \sum_{k=0}^p B_k 2^k$$

Example 3 (integers in binary)

II.1.1 Unsigned (non-negative) integers

Use p-bits as first p digits of a non-negative number

Arithmetic operations are replaced with modular analogues, where $m=2^p$:

$$x \oplus_m y := (x + y) \pmod{m}$$

 $x \ominus_m y := (x - y) \pmod{m}$
 $x \otimes_m y := (x * y) \pmod{m}$

Example 4 (arithmetic with 8-bit unsigned integers)

Example 5 (overflow with 8-bit unsigned integers)

II.1.2 Signed integers via Two's complement

How do we deal with negative numbers?

If the first bit is 0 the number is interpreted the same as an unsigned integer.

If the first bit is 1 the number is treated as negative. This is done by subtracting 2^p .

Definition 5 (Shifted mod). Define for $y = x \pmod{2^p}$

$$x \text{ (mod}^{s} 2^{p}) := \begin{cases} y & 0 \le y \le 2^{p-1} - 1 \\ y - 2^{p} & 2^{p-1} \le y \le 2^{p} - 1 \end{cases}$$

Example 7 (addition of 8-bit signed integers)

Example 8 (signed overflow with 8-bit signed integers)

Example 9 (multiplication of 8-bit signed integers)

II.1.3 Hexadecimal format

Numbers are sometimes printed in base-16

Unsigned integers are printed in Hexadecimal/base-16.

This is because base-16 is a power of 2: each digit corresponds to 4 bits.

Hex Digits

Digit	Value
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
a	10
b	11
С	12
d	13
е	14
f	15

Example 10 (Hexadecimal number)

Let's explore in code.