Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. It is very difficult to determine what are the most popular modern programming languages. There are many approaches to the Software development process. Programmable devices have existed for centuries. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Scripting and breakpointing is also part of this process. However, readability is more than just programming style. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. There exist a lot of different approaches for each of those tasks. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. It is usually easier to code in "high-level" languages than in "low-level" ones. It is usually easier to code in "high-level" languages than in "low-level" ones. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. Different programming languages support different styles of programming (called programming paradigms). Normally the first step in debugging is to attempt to reproduce the problem. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them.