and we will be done.

Since $\dim(E) \geq 2$, pick v to be any nonzero vector in \overrightarrow{E} such that u and v are linearly independent, and let us evaluate $\langle \overrightarrow{f}(u+v), \overrightarrow{f}(w) \rangle$ for any $w \in \overrightarrow{E}$. We have

$$\langle \overrightarrow{f}(u+v), \overrightarrow{f}(w) \rangle = \varphi_{u+v}(w)$$

$$= \rho(u+v)\langle u+v, w \rangle$$

$$= \rho(u+v)\langle u, w \rangle + \rho(u+v)\langle v, w \rangle$$

and

$$\langle \overrightarrow{f}(u+v), \overrightarrow{f}(w) \rangle = \langle \overrightarrow{f}(u) + \overrightarrow{f}(v), \overrightarrow{f}(w) \rangle$$

$$= \langle \overrightarrow{f}(u), \overrightarrow{f}(w) \rangle + \langle \overrightarrow{f}(v), \overrightarrow{f}(w) \rangle$$

$$= \rho(u) \langle u, w \rangle + \rho(v) \langle v, w \rangle,$$

so we get

$$\langle (\rho(u+v)-\rho(u))u+(\rho(u+v)-\rho(v))v,w\rangle=0 \text{ for all } w\in \overrightarrow{E},$$

which implies that

$$(\rho(u+v) - \rho(u))u + (\rho(u+v) - \rho(v))v = 0.$$

Since u and v are linearly independent, we must have

$$\rho(u+v) = \rho(u) = \rho(v).$$

This proves that $\rho(u)$ is a constant ρ independent of u, as claimed.

The converse is trivial.

Remark: Let $f \in GA(E)$ be an affine similarity of ratio ρ . If either $\rho \neq 1$ or $\rho = 1$ and $\overrightarrow{f} \in O(E)$ does not admit the eigenvalue 1, then f has a unique fixed point.

Indeed, we have $\overrightarrow{f} = \rho \overrightarrow{g}$ for some $\rho > 0$ and some linear isometry $\overrightarrow{g} \in \mathbf{O}(E)$, so for any origin $a \in E$, the point a + u is a fixed point of f iff

iff
$$f(a+u)=a+u$$
 iff
$$f(a)+\overrightarrow{f}(u)=a+u$$
 iff
$$\rho\overrightarrow{g}(u)=\overrightarrow{f(a)a}+u$$
 iff
$$(\overrightarrow{g}-\rho^{-1}\mathrm{id})(u)=\rho^{-1}\overrightarrow{f(a)a}.$$