TAMK M. Lähteenmäki

Kone- ja tuotantotekniikka, Auto- ja kuljetustekniikka 10l111 10l131 K-12120 Elementtimenetelmän perusteet

Palautus 28.03.2013

LEVYRAKENTEEN FEM-LASKENTA

Työssä tarkastellaan kuvan mukaista levypalkkia. **Symmetria** on laskennassa **otettava huomioon** eli FEM - mallit tehdään palkin puolikkaalle. Palkin materiaali on teräs S355.

Lähtötiedot:

Harjoitustyö n:o 4

$$a =$$
____mm $c =$ ___mm $t =$ ___mm $b =$ ___mm $e = a/2$

Tehtävät:

- **1.** Määritä ANSYSin avulla sallittu kuormitus q_{sall} (MPa) siten, että palkin suurin VVEH vertailujännitys on korkeintaan puolet myötörajasta ja suurin resultanttisiirtymä on pienempi kuin (4e+2b+2c)/500. Käytä elementtiverkon luonnissa asetuksia Sizing > Relevance Center > Fine ja Advanced > Element Midside Nodes > Kept (jätä muut asetukset oletusarvoihinsa).
- **2.** Ratkaise palkin suurin VVEH vertailujännitys ja suurin resultanttisiirtymä kohdan 1. Fine + Kept asetusten lisäksi myös asetuksilla Coarse + Dropped, Coarse + Kept ja Fine + Dropped. Esitä tulokset taulukkoina ja kommentoi tuloksissa mahdollisesti olevia eroja.

Aseta palkin alareunan viivalle matkalle 2e tasojen 1, 2 ja 3 verkon tihennykset (Refinement) ja ratkaise palkin suurin VVEH – vertailujännitys ja suurin resultanttisiirtymä käyttäen verkkoasetuksia Fine + Kept. Esitä tulokset taulukkona ja kommentoi tuloksissa mahdollisesti olevia eroja.

Työselostus:

Harjoitustyöstä laaditaan työselostus, jonka tulee sisältää ainakin seuraavaa.

Kohta 1

- Mitoitettu kuva rakenteen puolikkaasta.
- Kuva mallinnuksessa käytetystä pintajaosta.
- Kuva tuennasta ja kuormituksesta q_{sall}.
- Kuva elementtiverkosta.
- Siirtymäkuva, kun $q = q_{sall}$.
- VVEH-vertailujännityskuva, kun q = q_{sall}

Kohta 2

- Lasketuista tapauksista saadut tulostaulukot.
- Tuloksien kommentointi.
- Kuvia ei tarvitse esittää.