Assignment 2 - Triangulation and Linear Programming

Duy Pham - 0980384 Mazen Aly - 0978251 Pattarawat Chormai - 0978675

November 20, 2015

1

- \bullet Given a simple polygon P a with n vertices.
- Perform triangulation on P.
- Construct the dual graph G of P.
- Find a root node R of G whose degree is 1.
- Perform LabelNumberOfChildNodes(G, R).
- Select the node v_i whose label is n where $n = max(label_i, 0 < i < n \text{ and } label_i \leq \lfloor 2n/3 \rfloor)$
- Find the diagonal line corresponding to the edge between v_i and its parent.

Correctness

The first case is when we can pick the node with the exact label, that is $\lfloor 2n/3 \rfloor$. In this case, one polygon that the algorithm returns has exactly $\lfloor 2n/3 \rfloor + 2$ vertices. The other polygon has exactly $\lfloor n/3 \rfloor + 2$ vertices. Hence the algorithm is correct.

The second case is when we cannot find the exact label, so we have to find the closest node v^* , whose label is the maximum one that is less than $\lfloor 2n/3 \rfloor$. In this case, there is 2 branches starting from the parent of v^* . Hence, the label of the parent of v^* is the sum of the labels of its 2 children, and it is greater than $\lfloor 2n/3 \rfloor$. Therefore, if v^* is the maximum value between the 2 children, then the label of v^* is greater than $\lfloor n/3 \rfloor$. That is,

$$n/3 \le label(v^*) < 2n/3$$

Algorithm 1 LabelNumberOfChildNodes

```
 \begin{aligned} & \textbf{Require:} \text{ a dual graph } G \text{ and a node } v_i \\ & \textbf{Label } v_i \text{ as } Visited \\ & \textbf{if } degree(v_i) > 1 \textbf{ then} \\ & NumNodes = 0 \\ & \textbf{for } \text{ Each neighbor } v_j \text{ of } v_i \textbf{ do} \\ & \textbf{if } v_j \text{ is not } Visited \textbf{ then} \\ & NumNodes = NumNodes + LabelNumberOfChildNodes(}G, v_j) \\ & \textbf{end if} \\ & \textbf{end for} \\ & label_i = 1 + NumNodes \\ & \text{Return } label_i \\ & \textbf{else} \\ & label_i = 1 \\ & \text{Return } label_i \\ & \textbf{end if} \end{aligned}
```

So if we cut by the edge between v^* and its parent, the neither of the 2 polygons has more than |2n/3| + 2 vertices. Then the algorithm is correct.

Running Time

- Performing triangulation on P takes $O(n \log n)$
- Constructing the dual graph G of P takes O(n)
- Finding a root node R of G whose degree is 1 takes O(n)
- Performing LabelNumberOfChildNodes(G,R) takes O(n) because we traverse each node only once.
- Selecting the appropriate node v_i take O(n).
- Finding the diagonal line corresponding to the edge between v_i and its parent takes constant time.

Thus, the algorithm performs in $O(n \log n)$