Consistency and Admissibility Proof for Total Manhattan Distance Heuristic for Cube problem

Wang Xiyu

Simple Manhattan distance heuristic where onlt horizontal and vertical moves are allowed is trivial; each move costs 1, and each horizontal move will change the horizontal index by 1, so do vertical moves $1\ 2\ 3\ 4\ 4\ 1\ 2\ 3\ 2\ 3\ 4\ 1$

the largest possible manhatten diatance between a pair is $\lceil \frac{r}{2} \rceil + \lceil \frac{c}{2} \rceil$, therefore optimistically the max cost of one swap will be $\lceil \frac{r}{2} \rceil + \lceil \frac{c}{2} \rceil$. A generous upper bound to the total manhatten distance from the goal state will be $\frac{r \times c}{2} (\lceil \frac{r}{2} \rceil + \lceil \frac{c}{2} \rceil)$