BÀI TẬP TOÁN RỜI RẠC 2 - CHƯƠNG 4

Câu hỏi 1

Cho đồ thị $G = \langle V, E \rangle$ gồm 7 đỉnh được biểu diễn dưới dạng ma trận trọng số như sau

	1	2	3	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>	<mark>7</mark>
1	0	20	5	17	8	8	8
2	20	0	8	1	8	8	1
3	5	8	0	25	3	10	8
4	17	1	25	0	15	8	8
4 5 6	8	8	3	15	0	1	8
<mark>6</mark>	8	8	10	8	1	0	1
<mark>7</mark>	8	1	8	8	8	1	0

- a) Sử dụng thuật toán Dijkstra, tìm đường đi ngắn nhất xuất phát từ đỉnh 1 của đồ thị G đã cho, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán.
- b) Dựa trên kết quả a), tìm đường đi ngắn nhất từ đỉnh 1 đến đỉnh 7 của đồ thị G đã cho.

Câu hỏi 2

Cho đồ thị $G = \langle V, E \rangle$ gồm 7 đỉnh được biểu diễn dưới dạng ma trận trọng số như sau

	1	2	3	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>	<mark>7</mark>
1	0	10	15	20	60	1	8
2	8	0	3	8	8	8	30
3	8	8	0	25	1	8	45
<mark>4</mark>	8	10	25	0	35	8	8
<mark>5</mark>	8	2	3	8	0	1	3
<mark>6</mark>	8	8	1	1	8	0	25
<mark>7</mark>	8	1	8	30	8	1	0

- a) Sử dụng dụng thuật toán Dijkstra, tìm đường đi ngắn nhất từ đỉnh 7 đến đỉnh 4 của đồ thị G đã cho, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán.
- b) Sử dụng dụng thuật toán Dijkstra, tìm đường đi ngắn nhất từ đỉnh 1 đến đỉnh 5 của đồ thị G đã cho, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán.

<u>Câu hỏi 3</u> Cho đồ thị G = <V, E> gồm 7 đỉnh được biểu diễn dưới dạng ma trận trọng số như sau

	1	2	3	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>	<mark>7</mark>
1	0	15	8	8	8	1	39
2	8	0	2	8	8	8	8
<mark>3</mark>	8	8	0	2	10	8	8
<mark>4</mark>	8	7	8	0	8	8	5
<mark>5</mark>	8	-2	8	4	0	8	8
<mark>6</mark>	8	14	8	8	-5	0	20
<mark>7</mark>	2	2	8	8	8	8	0

- a) Sử dụng thuật toán Bellman-Ford, tìm đường đi ngắn nhất xuất phat từ đỉnh 1 của đồ thị G đã cho, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán
- b) Dựa trên kết quả a), tìm đường đi ngắn nhất từ đỉnh 1 đến đỉnh 7 của đồ thị G đã cho.

<u>Câu hỏi 4</u> Cho đồ thị $G = \langle V, E \rangle$ gồm 7 đỉnh được biểu diễn dưới dạng ma trận trọng số như sau

	1	2	3	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>	<mark>7</mark>
1	0	25	8	27	8	30	8
2	25	0	8	8	1	8	15
3	8	8	0	15	3	1	8
<mark>4</mark>	27	8	15	0	25	8	8
<mark>5</mark>	8	1	3	25	0	8	8
<mark>6</mark>	8	8	1	8	8	0	1
<mark>7</mark>	8	15	8	8	8	1	0

- a) Sử dụng thuật toán Bellman-Ford, tìm đường đi ngắn nhất xuất phat từ đỉnh 2 của đồ thị G đã cho, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán
- b) Dựa trên kết quả a), tìm đường đi ngắn nhất từ đỉnh 2 đến đỉnh 6 của đồ thị G đã cho.

	1	2	<mark>3</mark>	<mark>4</mark>	<u>5</u>	_ <mark>6</mark>
1	0	15	5	20	∞	∞
2	1	0	∞	17	10	∞
3	∞	∞	0	2	∞	50
4	15	1	∞	0	∞	70
<u>5</u>	20	30	∞	10	0	10
<mark>6</mark>	∞	18	∞	23	20	0

- a) Sử dụng thuật toán Floyd, tìm đường đi ngắn nhất giữa các đỉnh của đồ thị G đã cho, chỉ rõ kết quả tai mỗi bước thực hiện theo thuật toán
- b) Dựa trên kết quả a), tìm đường đi ngắn nhất giữa các cặp đỉnh (1, 2), (2, 1) và (3, 4) của đồ thị G đã cho.

<u>Câu hỏi 6</u> Cho đồ thị G = <V, E> gồm 7 đỉnh được biểu diễn dưới dạng ma trận trọng số như sau

	1	2	3	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>	<mark>7</mark>
1	0	15	∞	8	8	1	39
2	8	0	2	8	8	8	8
2 3	8	8	0	2	10	8	8
<mark>4</mark>	8	7	8	0	8	8	5
<mark>5</mark>	8	-2	8	4	0	8	8
<mark>6</mark>	8	14	8	8	-5	0	20
<mark>7</mark>	2	2	8	8	8	8	0

- a) Sử dụng thuật toán Floyd, tìm đường đi ngắn nhất giữa các đỉnh của đồ thị G đã cho, chỉ rõ kết quả tại mỗi bước thực hiện theo thuật toán
- b) Dưa trên kết quả a), tìm đường đi ngắn nhất giữa các cặp đỉnh (1, 2), (1, 6) và (5, 6) của đồ thi G đã cho.