DTIC FILE COPY'

AFOEHL REPORT 90-188EQ00086KEF

Source Emission Testing of the Rail Shop Media Blast Booth HIII AFB UT

ROBERT J. O'BRIEN, Capt, USAF, BSC

OCTOBER 1990

Final Report

Distribution is unlimited; approved for public release

AF Occupational and Environmental Health Laboratory (AFSC) **Human Systems Division Brooks Air Force Base, Texas 78235-5501**

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated, or in any way supplied the drawing, specifications, or other data, is not to be regarded by implication, or otherwise, as in any manner licensing the holder or any other person or corporation; or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

The Public Affairs Office has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nations.

This report has been reviewed and is approved for publication.

Air Force installations may direct requests for copies of this report to: Air Force Occupational and Environmental Health Laboratory (AFOEHL) Library, Brooks AFB TX 78235-5501.

Other Government agencies and their contractors registered with the DTIC should direct requests for copies of this report to: Defense Technical Information Center (DTIC), Cameron Station, Alexandria VA 22304-6145.

Non-Government agencies may purchase copies of this report from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161

Robert & O'Brien

ROBERT J. O'BRIEN, Capt, USAF, BSC Consultant, Air Quality Function

fluin & Brane

EDWIN C. BANNER III, Col, USAF, BSC Chief, Environmental Quality Division

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burgen for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

Fallaction of information including suggestion	ind completing and reviewing the collection of i ns for reducing this burden, to Washington Hea 02-4302, and to the Office of Management and	idduatters Setuices Difectorate for I	fing this burden estimate or any other aspect of this information Operations and Reports, 1215 Jefferson ct (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave bla	onk) 2. REPORT DATE October 1990	3. REPORT TYPE AND Final	DATES COVERED
4. TITLE AND SUBTITLE Source Emission Test Blast Booth, Hill AF	ing of Rail Shop Media B UT		5. FUNDING NUMBERS
6. AUTHOR(S)	······································		
Robert J. O'Brien, Ca	apt, USAF, BSC		
7. PERFORMING ORGANIZATION I	NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
AF Occupational and I Brooks AFB TX 78235	Environmental Health La -5501	aboratory	AFOEHL Report 90-188EQ00086KEF
9. SPONSORING/MONITORING AC	GENCY NAME(S) AND ADDRESS(ES	7	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
Same as Blk 7			AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES			· · · · · · · · · · · · · · · · · · ·
12a. DISTRIBUTION / AVAILABILITY	STATEMENT		12b. DISTRIBUTION CODE
Statement A. Unlimi	ted, approved for publ	ic release	
13. ABSTRACT (Maximum 200 wor	·ds)		
conducted source emis Booth at Hill AFB. I Air Quality required	testing for approval (iculates on the Ra on 29 and 30 Aug 9 order compliance.	ail Shop Media Blast 90. The Utah Bureau of
Particulate emissions Action is recommended	s were above the emiss ^a d to bring the media bi	ion limits allowed last booth into co	d by the State of Utah. ompliance.<
14. SUBJECT TERMS Source Emission Testi	ing Media Blast Boot	th Hill	15. NUMBER OF PAGES 59
Particulates	16. PRICE CODE		
Air Pollution 17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFIC	ATION 20. LIMITATION OF ABSTRACT
OF REPORT Unclassified	OF THIS PAGE Unclassified	OF ABSTRACT Unclassified	SAR

CONTENTS

			Page
	SF 298 Illust	rations	i iv
I.	INTROD	UCTION	1
II.	DISCUS	SION	2
III.	CONCLU	SIONS	6
IV.	RECOMM	6	
	Refere	nces	8
	Append	ix	
	A B C D E F	Request Letter Personnel Information State Regulations Calibration Data Field Data Acetone & Distilled Water Blank Results and Particulate Emissions Calculations	9 13 17 23 33
	Distri	bution List	55

Acces	sion For	
NTIS	GRALI	8
DTIC	TAB	
Unann	ounced	ā
Justi	fication	
By		
Distr	ibution/	
Avai	lability	Codes
	Avail an	10/0
Dist	Specia	1
١	1	
7/		
r		
	L	

Illustrations

Figure	Title	Page
1	Media Blast Booth Facility	2
2	Grab Sampling Train	4
3	ORSAT Apparatus	4
4	Particulate Sampling Train	5
Table	Stack Emissions Test Results	6

I. INTRODUCTION

On 29 & 30 Aug 1990, stationary compliance testing for particulate emissions was accomplished on the Toole Army Depot Media Blast Booth at Hill AFB by the Air Quality Function, Environmental Quality Division, Air Force Occupational and Environmental Health Laboratory (AFOEHL). This survey was requested by HQ Ogden ALC/EM via HQ AFLC/SGBE to satisfy Utah Air Conservation Regulation emission testing requirements. The request letter is found in Appendix A. Personnel involved with on-site testing are listed in Appendix B.

II. DISCUSSION

A. Background

Section 3.4.1, Utah Air Conservation Regulations, requires emissions testing of all sources with established emissions limitations at least once every five years. The media blast booth, last tested in 1983, was required to be retested by 11 Sep 1990 as directed in a Utah Bureau of Air Quality letter to Toole Army Depot dated 14 Feb 1990.

B. Site Description

The media blast booth is a 60' by 21' by 26' high facility located at the Hill AFB Rail Shop, adjacent to building 1701. Blasting is performed an average of 15 hours per week using aluminum oxide grit media. During media blasting, suspended particles are drawn out of the facility and through a connecting bag house. The fan, located on the cleanside of the bag house, then exhausts the cleaned air through a stack attached to the side of the media blast booth. A photograph of the exhaust stack is shown in Figure 1. Also during blasting, those particles landing on the floor of the media blast booth will fall through a grate and be carried to a cyclone where the large and small particles are separated. The larger particles are reused for media blasting while the smaller particles are exhausted through the bag house. The cyclone is located in the control room attached to the back-side of the media blast booth. The control equipment is manufactured by FARR (Model 3) and the bag house filters used are disposable Ten-K paper cartridges.

C. Applicable Standards

The source testing standards for particulate and visible emissions are defined in Utah Bureau of Air Quality Approval Order dated 13 Sep 1983. These standards are found in Appendix C of this report and summarized below.

1. Particulate Emissions: The outlet particulate loading shall not exceed 0.02 grains per dry standard cubic foot (gr/dscf) nor 5.31 pounds per hour (1b/hr).

Figure 1. Media Blast Booth, Hill AFB UT

- 2. Visible Emissions: No visible emissions from any point shall exceed 40% opacity.
 - D. Sampling Methods and Procedures

Particulate emissions testing was conducted in accordance with Environmental Protection Agency (EPA) Methods 1 through 5 found in Appendix A to Title 40, Code of Federal Regulations, Part 60 (40 CFR 60) as dictated by Utah Bureau of Air Quality Approval Order dated 13 Sep 1983. Three sampling runs, 62.5 minutes each, were conducted and the results averaged to determine a final emission rate.

The media blast booth facility has a 31.5 inch by 45.75 inch rectangular stack. Five sampling ports exist on the 45.75 inch side of the stack. The port holes are on the same horizontal plane located 10.92 feet downstream and 3.08 feet upstream from any flow disturbance. With an effective inside diameter of 3.11 feet, sampling ports are greater than one half duct diameters upstream and two duct diameters downstream from any flow

disturbance. Based on this information and the type of sample (particulate), twenty-five traverse points (5x5 matrix) were used to collect a representative particulate sample.

Prior to the first sample run on the stack, cyclonic flow was determined by using the Type S pitot tube and measuring the stack gas rotational angle at each point along the center traverse. Flow conditions are considered acceptable when the arithmetic mean average of the rotational angles is 20 degrees or less. Measurements show the stack air flow to be within acceptable limits. A preliminary velocity pressure traverse was also accomplished before the first sample run.

A grab sample for ORSAT analysis (measures oxygen and carbon dioxide for stack gas molecular weight determination) was taken during the first sampling run. ORSAT sampling and analysis equipment are shown in Figures 2 and 3. Flue gas moisture content, needed for determination of flue gas molecular weight, was obtained during particulate sampling.

Particulate samples were collected using the sampling train shown in Figure 4. The train consisted of a button-hook probe nozzle, heated glass-lined probe, heated glass-fiber filter, impingers, and a pumping and metering device. The probe nozzle was sized prior to the sample run so that the gas stream could be sampled isokinetically, (i.e., the velocity at the nozzle tip was the same as the stack gas velocity at each point sampled). Flue gas velocity pressure was measured at the nozzle tip using a Type S pitot tube connected to a 10-inch inclined-vertical manometer. Type K thermocouples were used to measure flue gas as well as sampling train temperatures. The probe liner was heated to minimize moisture condensation. The heated filter was used to collect particulates. The impinger train (first, third, and fourth impingers - modified Greenburg-Smith type; second impinger - standard Greenburg-Smith design) was used as a condenser to collect stack gas moisture. The pumping and metering system was used to control and monitor the sample gas flow rate. Equipment calibration data is presented in Appendix D.

Front half particulate matter (material collected on sampling train surfaces up to and including the filter) was determined for compliance purposes according to the procedures specified in EPA Method 5. Although not used in the emission calculations, back half particulate matter (material collected on sampling train surfaces after the filter) was determined at the request of the Utah Bureau of Air Quality. The method used for determining back half particulate catch is found in Appendix C. Field data from particulate sampling is presented in Appendix E. Emission calculations were accomplished using the "Source Test Calculation and Check Programs for Hewlett-Packard 41 Calculators" (EPA-340/1-85-018) developed by the EPA Office of Air Quality Planning and Standards, Research Triangle Park NC. Resulting emission calculations are presented in Appendix F.

 $\begin{tabular}{lll} Visible emission (opacity) readings were performed by the Utah Bureau of Air Quality. \end{tabular}$

E. Results

The table provides particulate emission test results for the media blast booth.

Figure 2. Grab Sampling Train

Figure 4. Particulate Sampling Train

Stack Emission Test Results

Run #	Average % Isokinetic Sampling Rate	Sample Volume (dscf)	Stack Gas Flow Rate (dscf/min)	Particula (lb/hr)	ite Emissions (gr/dscf)
1	100.63	79.214	36,385	13.45	0.04
2	99.33	77.020	35,842	18.41	0.06
3	95.75	72.738	35,114	13.32	0.04
			Average	= 15.06	0.05

Note: dscf = dry standard cubic foot

dscf/min = dry standard cubic foot per minute

1b/hr = pounds per hour

gr/dscf = grains per dry standard cubic foot

III. CONCLUSIONS

The booth exceeded the Utah Bureau of Air Quality particulate emission standard of 0.02 gr/dscf in all three runs. Possible reasons for the excessive particulate emissions include:

- 1. The type of bag house filters used may not be adequate for this type of operation. For example, low permeable filters should be used when the particles being filtered are predominately small and the static electric charge of the filters should be opposite that of the particles.
- 2. The velocity of the exhaust gas passing through the bag house may be greater than required. The higher the velocity, the greater the amount of particulate matter passing through the filters will be.
 - 3. A leak may have developed within the bag house filters.
- 4. Excessive blasting pressure and/or overly fine blasting media may increase the amount of small particles being generated.

IV. RECOMMENDATIONS

An evaluation of the entire media blast facility, including emission controls, needs to be performed. This evaluation includes the following:

1. Since the facility was below the same standards when last tested in 1983, determine if any operational and/or equipment modifications have been made since that time.

- 2. Determine if the proper bag house filters are used for this operation, e.g., evaluate filter material, construction, permeability, and static electric charge.
- 3. Determine if a slower velocity 'fan speed) can be used to effectively draw particulates through the bag house.
- 4. Routinely inspect the bag house filters to ensure optimum performance.
- 5. Evaluate actual blasting parameters, e.g., media type, media size, blasting pressure.

The media blast booth will need to be retested following your evaluation and implementation of corrective measures. AFOEHL will remain active in supporting the base's present and future needs.

References

- 1. Code of Federal Regulations. Vol 40, Parts 53-60, The Office of the Federal Register National Archives and Records Service, General Services Administration, Washington DC, July 1989.
- 2. Quality Assurance Handbook for Air Pollution Measurement Systems Volume III, Stationary Source Specific Methods, U.S. Environmental Protection Agency, EPA-600/4-77-027-b, Research Triangle Park, North Carolina, December 1984.
- 3. Source Test Calculation and Check Programs for Hewlett-Packard 41 Calculators, U.S. Environmental Protection Agency, EPA-340/1-85-018, Research Triangle Park, North Carolina, May 1987.

APPENDIX A Request Letter

TO STATE OF THE ST

DEPARTMENT OF THE AIR FORCE HEADQUARTERS OGDEN AIR LOGISTICS CENTER (AFLC) HILL AIR FORCE BASE, UTAH 84056-5999

29 MAY 1990

ATTN OF

to

EM

Stack Test for Particulate Emissions - Media Blast Booth, Bldg 1701

HQ AFLC/SGBE USAF OEHL/CC IN TURN

- 1. Atch 1 is Utah Bureau of Air Quality's letter requiring that the media blast booth stack in building 1701, Rail Shop, be tested for particulate emissions using EPA Test Method 5. This test is to be conducted prior to 11 Sept 90. Atch 2 is the State Approval Order (Air Permit) stipulating air emissions limit not to exceed 0.02 Grains/DSCF or 5.31 lbs/hr.
- 2. Media blast booth in Rail Shop is used for grit blasting locomotive & generators using aluminum oxide grit media. Blast booth is equipped with media recovery/recycle, classifier cyclone, dust collector, an exhaust fan and a stack. Dust collector filter elements were last changed 7 May 90. The stack is rectangular measuring approximately 42" X 37" and 24' high. Five (5) sample ports each 5" diameter are provided frample ports elevation is about 20' above grade. Rail Shop will provide access scaffolding to sample ports.
- 3. Request OEHL support in performing this test to demostrate compliance with the permit conditions. Our point of contact is Jay Gupta, OO-ALC/EME, AV 458-7651.

James R. Van Orman

JAMES R. VAN ORMAN
Director of Environmental Management

2 Atch

1. State's letter 14 Feb 90

2. Approval Order 13 Sept 83

cc: USAF Hospital Hill/SGB

1st Ind, SGBE

0 6 JUN 1990

TO: USAF OEHL/CC

I believe this to be an important requirement; however, this is an Army facility. Request your support, if possible.

JONI JOYCE, Lt Col, USAF, BSC Chief, Environmental Quality Office of the Command Surgeon

APPENDIX B
Personnel Information

1. AFOEHL Test Team

Maj Ramon Cintron-Ocasio, Chief, Air Quality Branch Capt Paul T. Scott, Consultant, Air Quality Meteorologist Capt Ronald Vaughn, Consultant, Air Quality Branch Capt Robert O'Brien, Consultant, Air Quality Branch Sgt Stanley Dabney, Technician, Environmental Quality

AFOEHL/EQA Brooks AFB TX 78235-5501

Phone: DSN 240-3305 Commercial (512) 536-3305

2. Hill AFB on-site representatives

Mr Jay Gupta 00-ALC/EME
Mr Steve Rasmuson 00-ALC/EME
DSN 458-7651
COM (801) 777-7651

COM (801) ///-/051

Mr Andy Golson SDSTE-MAI-R
Mr Parley Tingey SDSTE-MAI-R
DSN 458-5913
COM (801) 777-5913

3. State of Utah representative

Colleen Delaney 288 North 1460 West

P.O. Box 16690

Salt Lake City UT 84116-0690

COM (801) 538-6722

Appendix C State Regulations

.d. Matheson

nes O. Mason, M.D., Dr.P.H. Executive Director 801-533-6111

DIVISIONS

Community Health Services Environmental Health Family Health Services Health Care Financing

> (i OFFICES

Auministrative Services
Community Health Nursing
Sanagement Flanning
Meakar Examiner
State Health Laboratory

STATE OF UTAL. DEPARTMENT OF HEALTH DIVISION OF ENVIRONMENTAL HEALTH

150 West North Temple, P.O. Box 2500, Salt Lake City, Utah 84110-2500

Kenneth Lee Alkema, Director Room 474 801-533-6121

September 13, 1983 533-6108

Larry Fisher Tooele Army Depot Tooele, Utah 84074

RE: Approval Order for Sandblasting Room (Bldq. 1701), Tooele County

Dear Mr. Fisher:

On August 6, 1983, the Executive Secretary published a notice of intent to approve baghouse controls for the sandblasting room in Building 1701, Tooele County. The 30 day public comment period has expired, and no comments were received.

This air quality approval order authorizes the baghouse controls and sandblasting operation as proposed in your notice of intent dated June 16, 1983, with the following operating conditions:

- 1. All emission control equipment shall be properly installed, maintained, and operated as proposed in the notice of intent dated June 16, 1983.
- 2. No visible emissions from any point shall exceed 40% opacity.
- 3. The baghouse shall be stack tested within 180 days of startup. EPA test methods 1 5 shall be used. The outlet particulate loading shall not exceed 0.02 gain/dscf nor 5.31 lb/hr. A pretest conference shall be held between the Bureau of Air Quality, Tooele Army Depot, and the tester.
- 4. The Executive Secretary shall be notified upon startup as an initial compliance inspection is required.

Sincerely,

元的

Brent C. Bradford Executive Secretary Utah Air Conservation Committee

MRK/ads

cc: EPA Region VIII (J. Philbrook)
Tooele County Health Dept.

3830

ATCH-2

- 3.3.6 Exemptions and Waivers. Exemptions and waivers from the requirements of this paragraph 3.3 may be made by the Committee to the extent permitted under Federal Law.
- 3.3.7 Reconstruction. A reconstructed source will be treated as a new source for purposes of section 3.3 if it otherwise meets the definition of a major source. Reconstruction will be presumed where the fixed capital cost of the new components exceeds 50 percent of the fixed capital cost of a comparable entirely new stationary source. Fixed capital cost means the capital needed to provide all the depreciable components.
 - 3.4 Emission Testing
- 3.4.1 Emission testing will be required of all sources with established emission limitations at least once every five years. Sources approved in accordance with Section 3.1 will be tested within six months of start-up. Sources for which emission limitations are established pursuant to Section 3.2.1 which do not require modification will be tested within one year of the effective date of these regulations. In addition, if the Executive Secretary has reason to believe that an applicable emission limitation is being exceeded (i.e., through visible emission observations and monitoring data, etc.) he may require the owner or operator to perform such emission testing as is necessary to determine actual compliance status. The Committee may grant exceptions to the mandatory testing requirements of this paragraph 3.4.1 which are not inconsistent with the purposes of these regulations.
- 3.4.2 At least 30 days prior to conducting any emission testing required under any part of these regulations, the owner or operator shall notify the Executive Secretary of the date, time and place of such testing and, if determined necessary by the Executive Secretary, the owner or operator shall attend a pretest conference
- 3.4.3 All tests shall be conducted while the source is operating at the maximum production or combustion rate at which such source will be operated. During the tests, the source shall burn fuels or combustion of fuels, use raw materials, and maintain process conditions representative of normal operations, and shall operate under such other relevant conditions as the Executive Secretary shall specify.

- 3.4.4 The Executive Secretary may reject emissions test data if they are determined to be incomplete, inadequate, not representative of operating conditions specified for the test, or if the State was not provided an opportunity to have an observer present at the test.
- 3.5 Emissions Industry. The owner or operator of a stationary source of air pollution which emits 25 tons per year or more of air contaminant must submit a report of emission to the Executive Secretary at least annually. Emission inventory reports shall include the rate and period of emission, specific plant source of air pollution, composition of air contaminant, type and efficiency of air pollution control equipment and other information necessary to quantify operation, pollution emission and evaluate pollution control.
- 3.6 Prevention of Significant Deterioration of Air Quality (PSD)
- 3.6.1. Area Designations. All areas of the State shall be designated as Class I, II, or III.
- a. Pursuant to section 162(a) of the federal Clean Air Act the following areas are designated as mandatory Class I:
 - (1) Arches National Park
 - (2) Bryce Canyon National Park
 - (3) Canyonlands National Park
 - (4) Capitol Reef National Park
 - (5) Zion National Park
- b. Pursuant to section 162(b) of the federal Clean Air Act, all other areas of the State are designated as Class II unless redesignated as provided in section 3.6.2 or are designated as non-attainment areas.
 - 3.6.2 Area Redesignation.
- a. Within the restrictions and requirements of this paragraph, the Committee may submit to the Governor for decision a recommendation to redesignate areas from any class to any other class.
- b. In accordance with Section 162(a) of the Clean Air Act, areas designated as Class I under paragraph 3.6.1(a) may not be redesignated.
- c. In accordance with Section 164(a) of the Clean Air Act, the following areas may be redesignated only as Class I or II.
- (1) An area which as of August 7, 1977, exceeded 10,000 acres in size and was a national monument, a national primitive area, a national preserve, a national recreation area, a national wild and scenic river, a national wildlife refuge, a national lakeshore or seashore; and

- (2) A national park or national wilderness area established after August 7, 1977, which exceeds 10,000 acres in size.
- d. Except as provided in paragraphs 3.6.2.b, c, and f, the Committee may submit to the Governor for decision a recommendation to redesignate areas of the State as Class III if:
- (1) There has been compliance with the requirements of paragraphs 3.6.2.e;
- (2) Such redesignation will not cause, or contribute to, concentrations of any air pollutant which exceed any maximum allowable increase permitted under the classification of any other area or any national ambient air quality standard; and
- (3) Any permit application for any major source or major modification which could receive an approval order only if the area in question were redesignated as Class III, and any material submitted as part of that notice of intent were available, insofar as practicable, prior to any public hearing or redesignation.

In accordance with Section 164 of the Clean Air Act, redesignations to Class III may be approved by the Governor only after consultation with appropriate committees of the legislature and if units of local government representing a majority of the residents of the proposed area to be redesignated enact ordinances concurring in the redesignation.

- e. Prior to submittal to the Governor of a recommendation to redesignate any area:
- (1) Notice shall be published in each daily newspaper in the affected area and written notice shall be made to local government units, other states, Indian governing bodies, Federal Land Managers whose lands may be affected by the proposed redesignation and public hearings shall be conducted in the affected areas. Such notice shall be made at least 30 days prior to the public hearing and include a statement of the availability of the discussion outlined in paragraph 3.6.2.e(2). Prior to the issuance of a notice under this paragraph respecting the redesignation of any Federal lands, a written notice shall be given to the appropriate Federal lands, a written notice shall be given to the appropriate Federal Land Manager who shall be afforded opportunity (not to exceed 60 days) to confer with the Committee respecting the redesignation and to submit written comments and recommendations. In recommending redesignation of any area with respect to which a Federal Land Manager

schedule. Compliance must be achieved as expeditiously as practicable but no later than December 31, 1983 or such later date as may be specified by Congress or EPA under the Clean Air Act.

4.10 Abrasive Blasting.

4.10.1 Visible Emission Standards,

a. No person shall, if he complies with performance standards outlined in Section 4.10.3 or if he is not located in an area of nonattainment for particulates, discharge into the atmosphere from any abrasive blasting any air contaminant for a period or periods aggregating more than three minutes in any one hour which is a shade or density darker than 40% opacity.

b. No person shall, if he is not complying with an applicable performance standard in Section 4.10.3 and is in an area of nonattainment, discharge into the atmosphere from any abrasive blasting any air contaminant for a period or periods aggregating more than three minutes in any one hour which is of a shade or density no darker than 20% opacity.

4.10.2 Visible Emission Evaluation Iechniques. Visible emission evaluation of abrasive blasting operations shall be conducted in accordance with the

following provisions:

- a. Emissions from unconfined blasting shall be read at the densest point of the emission after a major portion of the spent abrasive has fallen out, at a point not less than five feet nor more than twenty-five feet from the impact surface from any single abrasive blasting nozzle.
- b. Emissions from unconfined blasting employing multiple nozzles shall be judged as a single source unless it can be demonstrated by the owner or operator that each nozzle, evaluated separately, meets the emission and performance standards provided for in this Section 4.10.
- c. Emissions from contined blasting shall be read at the densest point after the air contaminant leaves the enclosure.
 - 4.10.3 Performance Standards,
- a. To satisfy the requirements of Section 4.10.1, any abrasive blasting operation may use at least one of the following performance standards:
 - (1) Confined blasting;
 - (2) Wet abrasive blasting;
 - (3) Hydroblasting; or
- (4) Unconfined blasting using abrasives as defined in Section 4.10.3.b.

- b. Abrasives. Abrasives used for dry unconfined blasting referenced in paragraph 4.10.3.a shall comply with the following performance standards:
- (1) Before blasting the abrasive shall not contain more than 1% by weight material passing a #70 U.S. Standard sieve.
- (2) After blasting the abrasive shall not contain more than 1.8% by weight material 5 micron or smaller.

Abrasives reused for dry unconfined blasting are exempt from b(2), but must conform with b(1).

c. Abrasive Certification. Sources using the performance standard of Section 4.10.3.a(4) to meet the requirements of Section 4.10.1 must demonstrate they have obtained abrasives from persons which have certified (submitted test results) to the Executive Secretary at least annually that such abrasives meet the requirements of Section 4.10.3.b.

4.11

Regulation for the Control of Fluorides from Existing Plants.

- a. The owner or operator of the Chevron Chemical Company Phosphate Fertilizer Plant located in the Wasatch Front Air Quality Control Region shall not after July 1, 1983, discharge, or cause the discharge of fluoride into the atmosphere in excess of the following:
- 1. Wet Process Phosphoric Acid Plants. The fluoride emissions exclusive of tank farm emissions shall not exceed 148 g/metric ton of equivalent P₂O₃ feed.

2. Superphosphoric Acid Plants. Total fluoride emissions shall not exceed 5 g/metric ton of equivalent P₂O₃ feed.

- 3. Ammonium Phosphate Plants. Total fluoride emissions shall not exceed 508 g/metric ton of equivalent total product.
- b. Prior to the commencement of operation of any existing Triple Superphosphate Plant or Granular Triple Superphosphate Storage Facility located in the Wasatch Front Air Quality Control Region, Chevron shall submit a notice of intent to the Executive Secretary and obtain appropriate emission limitations.
- c. Within 180 days following the effective date of this section, the owner or operator of the Chevron Phosphate Fertilizer Plant shall conduct testing to determine compliance with the emission limitations listed in subparagraphs a 1-3.

- d. Compliance with the emission limitations shall be determined as follows:
- 1. Emissions from all sources in the plant or process for which compliance is being demonstrated with potential emissions greater than .2 pounds per day fluoride shall be included in the demonstration of compliance.
- 2. All tests shall be conducted while the source is operating at the maximum rate at which such source will be operated. During the tests, the source shall use raw materials and maintain process conditions representative of normal operations and such other relevant conditions as the Executive Secretary shall specify.

3. Fluoride shall be measured according to Method 13A or 13B, Appendix A, Part 60, Title 40, of the Code of Federal Regulations.

4. Flow rates shall be measured according to Method 1, Appendix A, Part 60, Title 40, of the Code of Federal Regulations.

5. Fugitive emissions from the sources covered in this Section 4.11 shall be estimated using methods and procedures which have been approved in advance by

the Executive Secretary.

6. The Executive Secretary will be notified at least 30 days prior to the testing of any source

- 7. Analysis, calculations, and preliminary results of all testing shall be made available to the Executive Secretary during any testing period.
- 8. Reports of all compliance testing must be submitted within 30 days of the completion of such testing unless otherwise approved by the Executive Secretary.

9. Records of all compliance testing shall be kept for a period of two years following such testing.

e. Subsequent emissions testing shall be conducted in accordance with Section 3.4 of these regulations.

4.12 — National Emission Standards for Hazardous Air Pollutants.

The provisions of 40 Code of Federal Regulations (CFR) Part 61, National Emission Standards for Hazardous Air Pollutants, are incorporated into these regulations by reference. References in 40 CFR Part 61 to "the Administrator" shall refer to the Executive Secretary of the Committee. See Appendix C.

Scott M. Matheson Governor

STATE OF UTAH DEPARTMENT OF HEALTH

DIVISION OF ENVIRONMENTAL HEALTH

150 West North Temple, P.O. Box 2500, Salt Lake City, Utah 84110

Alvin E. Rickers, Director Room 426 801-533-6121

III
James O. Mason, M.D., Dr.P.H.
Executive Director
801-533-6111

DIVISIONS

Community Health Services
Environmental Health
Family Health Services
Health Care Financing
and Standards

OFFICES

Administrative Services
Health Planning and
Policy Development
Medical Examiner
State Health Laboratory

533-6108.

October 19, 1981

Utah Method for Analyzing the EPA Method 5 Back Half Particulate

In paragraph 4.1.3 of EPA Method 5, insert "distilled" before the word water and add to the end of the paragraph the following: "Take a volume of distilled water equal to the volume of water charged to the impingers directly from the container used to fill the impingers and place it in a clean sample container, cap the container and label "back half water blank"".

After following the procedure of paragraph 4.2 Method 5 transfer the impinger water from the graduated cylinder or (if the moisture determination was made gravametrically) directly from the impingers to a clean sample container. Mark liquid level, cap and label the container "back half water". Then rinse the first three impingers and connecting glassware including the back half of the filter holder, with acetone. Place the rinse in another sample container, mark liquid level, cap and label "back half wash".

When the evaporation of the back half wash is to begin follow the procedure called for container #2 in paragraph 4.3 of Method 5. The same procedure is to be followed for the back half water except that the water should be evaporated in an oven in which the air temperature is held at 105°C rather than at ambient temperature. The back half water blank should be determined by the same procedure used for the acetone blank listed in paragraph 4.3 and 6.6 and 6.7 of Method 5. Back half particulate is the sum of the weights of the residues of the back half water and back half acetone rinse minus the water and acetone blanks.

Back half particulate is not to be added to the front half particulate captured in the probe and filter. Back half particulate should be reported separately and not used to determine compliance with State regulations.

11

Appendix D Calibration Data

METER BOX CALIBRATION DATA AND CALCULATION FORM

(English units)

Pre Hel

Date 13			Jue = 5, Ø		eter box				2
Barometric	pressure	$P_{b} = 30$	0,12 in.	Hg C	alibrate	d by _	Scett	Y Va	ughn
Orifice manometer	Gas v Wet test meter	Dry gas meter	Wet test meter	emperat Dry Inlet	gas met Outlet	er	Time		
setting (ΔΗ), in. Η ₂ Ο	(V _w),	(V _d),	(t _w), °F	(t _d), °F	(t _d), °F	(t _d),	(Θ), min	Yi	ΔΗ@ in. H ¹ ₂ O
0.5	5	4.984	79 85 542.0	79 88 5435	76 81536,5	541.¢	13.1	1,0001	DESE 1.948
1.0	5	5.006			81 81 541.6			0.9987	1.932
1.5	10	10,080	82 542.0	89 94 5515	815175	547.0	15.0	0.9976	1.908
2.0	10	10.225	\$2 542.5	94 97555	84 545	550,75	13 [0.9871	1.932
3.0	10	10,175	\$ 543 4	97/0585	86547	552.75	10.7	0.9932	1.928
4.0	10	10.280		100560	10	54.5	9.2	0.9838	1.8747
							Avg	0.993	1.924
								.415	, 26.4
ΔH, in. μ ₂ 0 13.6	$Y_i = \frac{1}{V_d}$	$\frac{V_w P_b(t_d)}{P_b + \frac{\Delta H}{13.6}}$	+ 460)) (t _o + 460	— ДН@))	$= \frac{0.0}{P_b}$	317 ΔΗ + 460	<u>))</u> [-	v + 460	<u>9</u>
0.5 0.0368	Y = (5\)30	1,12 × 541) 4 × (30.1568×	542.0)		- (30,12) - (30,12)		(547 (5)	(31)]2	- 247 1.748

(غ) ـ بي (5) 1.0 (0.0737)

0.110

0.147

0.221

0.294

1.5

2.0

3.0

4.0

Quality Assurance Handbook M4-2.3A (front side)

5425)(31)

(543×10.7)

 $^{^{\}rm a}$ If there is only one thermometer on the dry gas meter, record the temperature under ${\rm t}_{\rm d}$.

POSTTEST DRY GAS METER CALIBRATION DATA FORM (English units)

V, Pb (td + 460) Plant Pest Hill AFB $\sqrt[N_d]{\binom{P_b}{13.6}}$ 0. 993 Pretest Y 1.0145 1.0117 10129 setting, Vacuum in. Hg Date 20 Sef 40 Meter box number 1/4/ ech 2 **(**) 70.55 Time 10.57 min Dry gas meter, number Average 545.75 445 547.75 Dry gas meter Outlet Temperature 74 Inlet in. Hg 538.5 537.5 43 Wet test (t.) 534 = 29.43 Dry gas meter (V_d) , ft 9.942 4.89 Barometric pressure, P Gas volume Test number One Wet test meter 20 20 10 manometer (AR), in. H₂0 setting, Orifice m m , 0 ر د د

a If there is only one thermometer on the dry gas meter, record the temperature under ${f t}_{f d}$ where

1.0130

¥

 $V_{\rm w} = 6as$ volume passing through the wet test meter, ft.

 $V_d = Gas$ volume passing through the dry gas meter, ft³.

 $_{
m o}$ = Temperature of the gas in the wet test meter, $^{
m o}$ F.

= Temperature of the inlet gas of the dry gas meter, °F.

= Temperature of the outlet gas of the dry gas meter, oF.

 t_d = Average temperature of the gas in the dry gas meter, obtained by the average of t_d and t_d , of. $\Delta H = Pressure differential across orifice, in. <math>H_20$.

= Ratio of accuracy of wet test meter to dry gas meter for each run.

= Average ratio of accuracy of wet test meter to dry gas meter for all three runs; 0.993 ± 0,04965 tolerance = pretest Y ± 0.05 Y.

0.4 +34 (- Ypest -> 1.0+27

P_b = Barometric pressure, in, Hg.

 $\theta = \text{Time of calibration run, min.}$

Quality Assurance Handbook M4-2.41

TYPE S PITOT TUBE INSPECTION DATA FORM

Quality Assurance Handbook M2-1.7

STACK TEMPERATURE SENSOR CALIBRATION DATA FORM

IMPINGER Date 19/20 Oct 88 D6 Thermocouple number Ambient temperature 26 °C Barometric pressure 29.175 in. Hg Calibrator GMRISON/ Reference: mercury-in-glass MBS other Thermocouple Reference Temperature_C Reference thermometer potentiometer Sourceb difference point number a temperature, temperature, (specify) 0 1CR 0 0.6 0.6 BATH ROOM 26 0.5 TEMP 25.5

 $\begin{bmatrix}
(\text{ref temp, } ^{\circ}\text{C} + 273) - (\text{test thermom temp, } ^{\circ}\text{C} + 273) \\
& \text{ref temp, } ^{\circ}\text{C} + 273
\end{bmatrix}$ 100<1.5%.

* MUST BE WITHIN I'C OFREF

Quality Assurance Handbook M2-2.10

^aEvery 30°C (50°F) for each reference point.

 $^{^{\}mathrm{b}}$ Type \rightarrow f calibration system used.

STACK TEMERATURE SENSOR CALIBRATION DATA FORM

STACK

Date	Oct 88	T	nermocouple numb	er <u> </u>	
Ambient temperature °C Barometric pressure 29.232 in. Hg					
Calibrator	GARRISON/	Reference: n	mercury-in-glass	NBS	
	SCOTT		other	· •	
Reference point number	Source (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference, %	
O°	ICE BATH	0.3	0.6	0.1	
100°	BOILING WATER	98.9	100.6	0.5	
_	GLYCFRA	174.0	177.2	0.7	

^aEvery 30°C (50°F) for each reference point.

 $\begin{bmatrix}
\frac{\text{(ref temp, °C + 23)} - (\text{test thermom temp, °C + 273})}{\text{ref temp, °C + 273}}
\end{bmatrix}$ 100<1.5%

Quality Assurance Handbook M2-2.10

b_{Type} of calibration system used.

STACK TEMPERATURE SENSOR CALIBRATION DATA FORM

STACK

Date 19	0488	Th	nermocouple numb	er <u>P7</u>	
Ambient temperature°C Barometric pressure 29.232 in. Hg					
Calibrator	GARRISON/ SCOTT	Reference: mercury-in-glass MBS			
	3007)		ther		
Reference point number	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference, %	
00	ICE BATH	0.3	0.3		
100°	BOILING WATER	98.9	100.6	0.5	
_	GLYCEROL	174.6	177.8	0.7	

^aEvery 30°C (50°F) for each reference point.

b_{Type} of calibration system used.

 $\begin{bmatrix}
(\text{ref temp, } ^{\circ}\text{C} + 273) - (\text{test thermom temp, } ^{\circ}\text{C} + 273) \\
& \text{ref temp, } ^{\circ}\text{C} + 273
\end{bmatrix}$ 100<1.5%

Quality Assurance Handbook M2-2.10

STACK TEMPERATURE SENSOR CALIBRATION DATA FORM

NUTECH #Z Date 3 JAN 89 Thermocouple number INLET OUTLET Ambient temperature 26 °C Barometric pressure _____ in. Hg Calibrator GARRESON Reference: mercury-in-glass #STM 63F other Reference Thermocouple Temperature_b Reference thermometer potentiometer Source^a temperature, temperature, difference, point number (specify) INLET HOT WHELL 43 43.5 BATH ROOM 26 26 TEMP DUTLET HO WATER BATH ROOM TEMP

Type of calibration system used. $b \left[\frac{\text{(ref temp, °C + 273) - (test thermom temp, °C + 273)}}{\text{ref temp, °C + 273}} \right] 100 \le 1.5\%.$

Quality Assurance Handbook M5-2.5 ** INVST BE WITHIN 3°C OF REFERENCE

NOZZLE CALIBRATION DATA FORM

Date 29 A 49	90° ·	Calib	orated by _	Pout s.	<u>+ </u>
Nozzle identification number	D ₁ , mm (in.)	Nozzle Diam	mm (in.)	ΔD, b	D c
#1	0,252	0, 252	C. 253	0,001	C. 252
	. :				·
		·			

where:

aD_{1,2,3}, = three different nozzles diameters, mm (in.); each diameter must be within (0.025 mm) 0.001 in.

b $\Delta D = \text{maximum difference between any two diameters, mm (in.)}$ $\Delta D \leq (0.10 \text{ mm}) \ 0.004 \text{ in.}$

 $D_{avg} = average of D_1, D_2, and D_3.$

Stask themo PI Interested P7

Quality Assurance Handbook M5-2.6

Appendix E Field Data

						1 E 7 G O 7 G 7 G 7	* 5 5 17 5					
				PARI	ш _	SAMPLING DAIA) SHEE!					۲.>
RUN NUMBER	, 1	SCHEMA	SCHEMATIC OF STACK CROSS SECTION	K CROSS S	ECTION	EQUATIONS				AMBIENT TEMP	<u>a</u>	
	*					OR = OF + 460	O					оғ
DATE		-				. (,			STATION PRESS		
ファイス	ري م ح ح					H = 5130	5130.Fd.Cp.A 2			30.	^,	in Hg
PLANT									L	HEATER BOX TEMP	TEMP	
Bend Hast Facility		Bla 1.20				1	1		1	,		OF
BASE			うたっと	-L		10+0	Chack D	/,< - '	2/2.4	PROBE HEATER SETTING	ER SETTING	
イニキトひ	ا ا		<u> </u>			, - -	Į.	,				
SAMPLE BOX A	K III O K III O K		-4.4.a			Piche	ひ くっきじ	(2) / 12 Hy 14 - C/C.		PROBE LENGTH		
											~	UI
METER BOX NUMBER	-	-{				1251				NOZZLE AREA	₹	1,71
17.71	(· ' ' ' ' ' '					7. 6. (10	7. K. Check (10 10 1)	in cofact		1.25.2		Ī
E > / 3 > -			\ \ \ \				, ,			c b		
ပိ			* * * * * * * * * * * * * * * * * * *			Pitot Chec	eck rost) c ha		DRY GAS FRACTION (Fd)	CTION (Fd)	
	-		STACK TEMP	TEMP		ORIFICE	GAS	GAS M	GAS METER TEMP		SAMP! F	OFCNION
TRAVERSE	SAMPLING	CSTATION CONTRACTOR		į	VELOCITY	OIFF.	SAMPLE	2	-	<u> </u>	BOX	OUTLET
NUMBER		Am 1120)	(oE)	(1.S) (0.R.)	(Vp)	PRESS.	VOLUME (cu ft) 3/	(4°)	(Tm)		TEMP (0F)	TEMP (0F)
_	3.5		15.		7,1	1.1.7	1-4	3	-	1/2	1.8.1	
τ.	ř		7ं∂		۲, ۲	16.01		7.		() 25 ≥	308	
r	7.,		6.7		7 7	165	(50.50	50		67 366	230	
	7.0		\r \r 2		7.7	7.74	6.67.2	1,525	'`	70 2631	35.11	74
7	13.5		77		2.C	131	66 5.27	j.		77 355	34.7	11
,	15		37		<u>ن</u>	7.13	66.1.13	7.5		72 254	3/6	٧,
7	175		70		4. 8.	8 35	1.73.12	7,4			3//2	7 (
2	20		و. د		37	8 11	67730	70,	• •	7.7 255		5.2
٠	12.5		100		(.9	2 2 2	08151	7	-		34.7	5.6
J	- 1		3		7.7	27	685.83	7			24.7	ŝë
=	17.	3 U	77		0.75		737	7	. 7		34%	50
7.7	Ţ		7		(, 3	50.0		7,		1	_+	1,2
۲ -	4,500		ار ان ان		7, 1	(-53	7		1	7	-4	1/
7, 1		7	337		5.7	7.03	31, 11, 3		, 1	225	-+	/, ¢,
۲,	۲, ۲		و		7.7	7.0.5	165.71	76	'\	1	13/1/2	10
1	1/10		7,1		رد رد	ال س ت	765.8	c.			17.6	ر / ²
-	42.5	۲۲	7.1		. 10	3.7.	768.43	ic ic	'	76 366	758	ý.3
32	1, 1,	61.	73		. کات	3,50	7 10.15	ري اک			1241	1/5
7-	11.55	• ^	71		, 15	4,33	713.85	73	4	75 F	175	1/4
70	2 0	7	7.0		.77	3.58	1/2:011	8.7				12
	543	3	7.5		2	1.31	7:5:27	22	-	+		5.6
* * *	25		72		176	1.56	730.68	in a	+	655 60	356	47
4	ı	,	/k		χ,	1,1,1	7.2.4	187	-	S S S	-	
OEML PORM	<u>«</u>									ı I		

				DADT	AND ATE CA	PADTICITY AT SAMPLING DATA SHEET	CHEET					17.
				LARI	ICULA I E 3A	MI LING DAIA	3115.				ı	, C
RUN NUMBER	I	SCHEMA	SCHEMATIC OF STACK CROSS SECTION	CK CROSS SI	ECTION	EQUATIONS				AMBIENT TEMP	ТЕМР	
	; ;					$^{\circ}R = ^{\circ}F + 460$	-					OF
DATE						•				STATION PRESS	PRESS	
						H = 5130	P. A . G	Tm Vp	L	4		in Hg
2						_ <u>_</u> _	- 7	Ls.		HEATER BOX	BOX	!
BASE		-								PROBE H	PROBE HEATER SETTING	oF.
		·							_			
SAMPLE BOX NUMBER	UMBER								1	PROBE LENGTH	ENGTH	
												in
METER BOX NUMBER	MBER									NOZZLE	AREA (A)	
Qw/Qm										Co		sq ft
,										_		
ಲೆ									1	DRY GAS	DRY GAS FRACTION (Fd)	
TRAVERSE	SN I I I I I	1 Gran	STACK TEMP	TEMP	VELOCITY	ORIFICE	GAS	GAS	GAS METER TEMP	 	SAMPLE	IMPINGER
POINT	TIME (min)	PRESEGRE (# H20)	(OF)	(Ts)	HEAD (Vp)	DIFF. PRESS.	SAMPLE	z	AVG (Tm)	out	BOX	OUTLET
		•				(H)	(S E)	(oF)	+	7	٦	(OF)
1-1	ړ د	- اخ	1,7		1/, ,	54.71	\sim	10 m	1	1	100 JS 1	5.0
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		','		14:4	(.78	10 5 95.1	\perp	+	<u>ال</u> ا	411200	350
			KLF T.	17 1		1H : 6.9.			1			
						1		1115	1 1 1 1 1 1	1,10		
						3	898 61=16	+-	-	-		
					1 75	15 = 21.	3 o 3 c					
										+		
										-		
						-				+		
									+	-		
1 1												
DEHI. FORM	18										7	

	AIR POL	LUTION PARTIC	ULATE AN	ALYTIC	AL DATA	
BASE		DATE	10		RUN NUMBER	
HIII AFB		29 Aug	70		# 1	
BUILDING NUMBER	10		SOURCE N		ist Facili	ty Vent
1.			CULATES			
	ITEM		WEIGHT	INI	TIAL WEIGHT	WEIGHT PARTICLES
FILTER NUMBER		0.4	294	ړ ر	916	0.1378
ACETONE WASHING Half Filter)	5S (Probe, Front	95.5	791		4438	acetone rinse=1.7mg
BACK HALF (II nee	not included total weigh					0. 0222 0. -214
		Total W	leight of Parti	culates Col	lected	0,2214 am
11.		MV.	TER			
	ITEM	FINAL V		INI	FIAL WEIGHT (gm)	WEIGHT WATER (@m)
IMPINGER 1 (H20)		162	ml	え	00	- 38
IMPINGER 2 (H20)		210	m İ	a	00	10
IMPINGER 3 (Dry)		10	ml	()	10
IMPINGER 4 (SIlica C	Gel)	219.39 200		うじ	19.3	
·			eight of Water	Collected		1. 3 am
III.	ANALYSIS	GASES ANALYSIS 2	ANAL	.YSIS 3	ANALYSIS	AVERAGE
VOL % CO ₂	0	0	0			0
vol 5.02	19,4	19.4	19.	4		19.4
VOL % CO						
VOL 5 N2						
		Vol % N ₂ = (100% - %	CO ₂ - % O ₂ - 9	% CO)		

				PART	PARTICULATE SA	SAMPLING DATA SHEET	SHEET					7,
RUN NUMBER		SCHEMA	SCHEMATIC OF STACK CROSS		SECTION	EQUATIONS				AMBIENT TEMP	TEMP	-
7 #		· -				30 - a0	c					0
DATE						N H 400	2		•	STATION PRESS	I PRESS	
27 Aux	26	- 1					5130-Fd-Cp.A 2	T _m :		30,	6/	in Hg
	-					# E		Ts vọ	<u> </u>	HEATER	HEATER BOX TEMP	
Bud Hast	blast facility Bld, 170	170				ļ	ı	•				9F
BASE HIGEIZ	ัน -	<u> </u>	,			Pitot Check	. ا	, u (c Kay	PROBE +	PROBE HEATER SETTING	N.C
SAMPLE BOX NUMBER	JMBER	T	- stac i	J				-	. 1	PROBE LENGTH	ENGTH	
			<u> </u>			1, 24071		- C + 1.7.1	ا رکور ک			* # •
METER BOX NU		,	'' }			7			-	NOZZLE	4	17,4
# <u>0</u> /#0	butecl. F	1					ر				553	अपेन्ड
;;;)			γ			1 6/10 (1600)	ここせてとして	1 (;) 1	1000	·,	2 3 3	
Çŷ		mete. 1	s. her			Philipach	(* *		`	DRY GAS	DRY GAS FRACTION (Fd)	(p.
TRAVERSE	SAMPLING	STATIC	STACK	TEMP	VELOCITY	ORIFICE	GAS	GAS	GAS METER TEMP	45	SAMPLE	IMPINGER
POINT	TIME (min)	PRESSURE (in H20)	(0F)	(Ts) (oR)	HEAD (Vp)	DIFF. PRESS. (H)	SAMPLE VOLUME (cu ft)	N. (P.)	AVG (Tm) (OR)	OUT (oF)	BOX TEMP (0F)	OUTLET TEMP (OF)
	12.25405						728.505	L	H			
_	7.5	,	1/2		32	1.81	730.48			シジ	214 273	59
7	5		47		.23	1.4.7	72.25	96		53		.5.9
۲	75		6		140	1.83	734.15	31	7	٠. چ.	245 .237	₹:9
1	7 (Ķ	3)		1/10	3.11	736.3	33		-1	344 236	က
5	1,5,5	5	753		.37	1.34	738.13	1/2	, 1		21/6 21/5	:29
3	15	7	77		.70	3.3/	740.30	_ '1-		7	246 JUS	00
7	175	4	200		٥٠.	3.65	7-1/0/1	43			17 23	0,5
30	70	7	200		- 2/2,	3.1/2	24571	36	7			5.0
	2	17	200		3	4.47	148 43	75			-1-	50
2	4 .	311	273		13	7.67	25/1.175	E 17	7	+	+	\$ C
1.2	3.	7	138	+	3	6.04	1.	0,1	1	1	27, 752	57
13	43.5	33	44		1,11	6.52	-J ·	106	'	Τ,	-	1/2
1.1	34,	70	23		4.1	25 5	1.	201	1		1.	<i>₹ 9</i>
15	37.6	10	- X		1,7	651	7011005	_	1		-	1.00
7,6	1.1	B	X o		1.5	i. i	77.	101	7		<u> '</u>	63
١٦	42.5	17	7.3		1.8	8.47		107				79
33/	1,5		32		1.7	6.1.5		108			$\overline{}$	64
1 , 1			200	+	ά	05.50	115.487	801	,	2 36	8/2 35c	750
٦,٠		1	09	1	1.6	6,50	788.17	177	7	3	1.	5.7
7	27.2		70/2		•	7,77	21.10	5,3	5		小	10
OFU! FORM	7.5	7			¥, *	11 57	1, 1, 1, 1, 1	× 2		7	56.278	79
	X-											

				PARTI	CULATE SAN	PARTICULATE SAMPLING DATA SHEET	SHEET				4/2
PLANT BASE SAMPLE BOX NUMBER WETER BOX NUMBER CO	TH CNUMBER	SCHEMA	SCHEMATIC OF STACK CROSS SECTION	CK CROSS SE	NO.T.O.	EQUATIONS $^{\circ}R = ^{\circ}F + 460$ $H = \begin{bmatrix} 5130 \cdot 1 \\ \end{bmatrix}$	Co Co 2	Tr. Vp	STATION HEATER PROBE L NOZZLE CP CP	AMBIENT TEMP STATION PRESS HEATER BOX TEMP PROBE HEATER SETTING PROBE LENGTH NOZZLE AREA (A) Cp DRY GAS FRACTION (Fd)	oF oF in
TRAVERSE POINT NUMBER 25	SAMPLING TIME (min) 575 (1,0	STATIC PRESSURE (in H20)	(OF) 76 76 78 78	(Ts)	VELOCITY HEAD (Vp) 2.0 2.0 1.35	ORIFICE DIFF. PRESS. (H) 1, 5 / 1, 5 / 2, 8/2	SAMPLE VOLUNE (QL ft) 799 68 82 3 54 82 3 54 82 3 54	GAS METER IN AVG (OF) (OR) (1/0) (1/0) (1/0)	(P)	SAMPLE BOX TEMP (OF) 2 5 3 2 4 6 ++++25 +++24	IMPINGER OUTLET TEMP (OF) (3) (2)
	Hosa (5)	Brian on	foint 5	2 Stor to	sched 1 is	10 13 13/8		P575	11 14	77.8	
OEHL FORM	18	Film	Ortic valvo:	Dife P	ressure f	10 10 11 11 11 11 11 11 11 11 11 11 11 1	77-11		7.7.		

	AIR POL	LUTION PARTIC	ULATE AN	ALYTICA	L DATA	
HILL AFB		27 Aug	90		RUN NUMBER	
BUILDING NUMBER			Bead		Facility	Vent
1.	ITEM	FINAL	WEIGHT		TIAL WEIGHT	WEIGHT PARTICLES
FILTER NUMBER		0.5	070	0.3	£ 73	0.2197
ACETONE WASHING Hall Filter)	S (Probe, Front	93.70	53	93.	6250	0. 0.794
BACK HALF (if need	not included total weigh					0,0209
		Total !	Weight of Parti	culates Col	lected	0,2991 am
п.		WA	TER			
	ITEM	FINAL (8	WEIGHT m)	INIT	IAL WEIGHT	WEIGHT WATER (@m)
IMPINGER 1 (H20)		180	ml	2	00	- 70
IMPINGER 2 (H20)		202	ml	$\frac{1}{2}$	00	2
IMPINGER 3 (Dry)			3ml		C'	3
IMPINGER 4 (Silica Gel)		219	219.89		C C	19.8
	Total W	Total Weight of Water Collected			4.8 em	
111.		GASE	S (Dry)			
ITEM	ANALYSIS 1	ANALYSIS 2	•	YS15 3	ANALYSIS 4	AVERAGE
VOL ". CO ₂						
VOL * 02						
VOL % CO						
VOL % N ₂						
		Vel % N ₂ = (100% - %	CO2-%O2-	% CO)		

10. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	SCHEMATIC OF STACK CROSS SECTION STACK CROSS SECTION STACK TEMP ACLO (TIC STACK TEMP (OF) (OF) (OF) (OF) (OF) (OF) (OF)	CITY	130-Fd.	1 I IN HOLD	e A	STATION PRE	AMBIENT TEMP	0 0 0 0 0
AM9 10 AM6 FR NUMBER CCA # 2 CCA #	(OF)	VELOCITY	OR = OF + 460 H = \begin{bmatrix} 5130. \text{Fd.CP} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	۷.	STATIC	N PRE 55	स् ।
Aug 10 ALS Fils 1701 ALE R NUMBER CCh # > C	STACK TE	VELOCITY	H = \[\frac{5130.Fd.Cp.}{C_0} \] Pre-sampling to Probe @ \(\delta \); \(\delta \)	14 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	۰. ۷	3 7	C. 144 P.	i Ha
AFR NUMBER ALF FAC: 1/4 Y ALF R AUMBER CCA # >- CCA	(OF)	VELOCITY	Pre-sampling to Pre-sampling to Prole @ 111; Fort Sampling	15 Hg 1	L. Vp	-	0001	5
AFR NUMBER (MIN) (MER) (MIN) (STACK TE	VELOCITY	Pre-sampling to Probe @ lift Fort Simpling Fort S	12 K.		HEATE	HEATER BOX TEMP	
SAMPLING TIME (MIII) (MIII) (MIII) (MIII) (MIII) (MIII) (MIIII) (MIIII) (MIIII) (MIIII) (MIIIII) (MIIIIII) (MIIIIIIIIII	STACK TE	VELOCITY	Frote @ lift Fort Similary First Similary First Conference ORIFICE SPECE	1	را علا	1		oF
SAMPLING PRE (min) (my 2 5 0 12 5 12 5 12 5 12 5 12 5 12 5 12	STACK TE	VELOCITY	Frole @ 1817 Fort Sandler) Frole @ 15 Brole @ 15 ORIFICE SA	H H 3	2		PROBE HEALFR SETTING	
TER BOX NUMBER WATCLA # > Om RAVERSE SAMPLING PRE	STACK TE	VELOCITY	Fort Simpling Fitt - of E Wolfe & IS ORIFICE SA SA SA SA SA SA SA SA SA S	.	اب :	PROBE	PROBE LENGTH	
TER BOX NUMBER V.1 tc. Ch. # >	(OF)	VELOCITY	Fest Sampling Fig. 1 - 0. Kg Prole 2 15 ORIFICE SA	t/	ة. آ		77	U1
MAVERSE SAMPLING PRE POINT (min) (mi	(OF)	VELOCITY	Fort Employ Fitt - O.K. Profe 2 12 ORIFICE SA	Q'		NOZZI	NOZZLE AREA (A) diq	
PAVERSE SAMPLING PRE-POINT TIME (JR. 12 12 12 12 12 12 12 12 12 12 12 12 12	STACK TEN	VELOCITY	الوه ،	Ų.		ڻ	73 50	sq ft
RAVERSE SAMPLING PRE PRE PRIME PRE PRE PRE PRE PRE PRE PRE PRE PRE PR	STACK TE	VELOCITY	لوج				tx.0	
SAMPLING TIME PRE (min) (min) (yr) 2	(oF)	VELOCITY		15,00 110	1. ok	DRY G	DRY GAS FRACTION (Fd)	
TIME PRE (min) (min) (pg ((oF)	HEAD	_	GAS	GAS METER	TEMP	SAFPLE	MPINGER
2.5.0 7.5.0 15.0			PRESS. VO	SAMPLE VOLUME (Qu ft)	IN AVG (Tm)	OUT (0F)	BOX TEMP (0F)	OUTLET TEMP (OF)
2. 0 7. 5. 0 1. 5. 0 1. 5. 0 1. 5. 0 1. 5. 0 1. 5. 0 2. 2. 5 2. 2. 5 2. 2. 5 2. 2. 5 3. 7. 5 4. 6 4. 6 4. 6 4. 6 4. 6 4. 7. 7 4. 8 3. 7. 7 4. 8 4.			12	71.08	╀			
2.5 12 12 12 12 12 12 12 12 12 12 12 12 12	ŠI) : ব	44762	ر ز	k0	1)	11.7 747	じせ
	\$0	7	154/62 377	3,8	32	78	187 EX	ンサ
15.0 15.0 15.0 10.0 10.0 10.0 10.0 10.0	80	2,2	8 77 700	47	2	73	243 279	21
15.0 17 17 17 17 17 17 17 1	8/		× 7 7 6 5	~	90	79		3.5
2. 5. 4. 5. 5. 4. 5. 5. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	c 3	5	X (X C. X 0 0	- t	7,7	XX	797 647	7 7 7
2 0.0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- X	×	F × 1 9 1	21/2	90	4/		1,1
2. 5. 12. 2. 5. 12. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	8/	1.7	77/6/189		16	13		25
2.5. 2. 2. 3.0. 3.0. 3.0. 3.0. 3.0. 3.0. 3.	8	1.8	17/157	6.7	47	82	1	09
3.2.5 3.2.5 3.5.6 3.7.7 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	787	4.8	- C	8	1,	4	- !	60
3.2.5 3.5 3.7.5 4.0 4.1.5 4.1.	× ×	(,)	4.80	1 5 3	93	45	_	ر ا ا
37.5 13 4.0 4.0 4.0 4.5 4.0 4.0		51'	10 400	***	9+	35	14. 100	4 7 7
37.5			6191		95	~	_	4
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		1.35	-	3. 3.7	47	× 4	1. 1	25
4.5	•	9, 0		2, 2,	- t	;5;],ç	1	7.5
J	18	0.65	ال	8.74	40	_ 1	247 - 48	25
	X X X	0.15	2.47) C	4.5	× >	١,	17
	9.7	0.77	36	(,) 3	x		24.2 ± 0.8	î
5772	۲ ۸		7	3	96	ζ¢.		とな
OFHI FORM 18	X	0. 4	1.73	+0.1	4.5	87	35 252	2.5

PLANT DATE DATE BASE SAMPLE BOX NUMBER CO CO TRAVENSE SAM METER BOX NUMBER AL 3 E C L 2 5 L 4 C D 7 C L 5 L 6 L 7 L 7 L 6 L 6 L 7 L 7 L 6 L 7 L 7	SAMPLING TIME (min) \$\cappa_{\cappa\cappa_{\cappa_{\cappa_{\cappa_{\cappa\cappa_{\cappa_{\cappa\cappa_{\cappa_{\cappa_{\cappa_{\cappa\cappa_{\cappa\cappa_{\cappa\cappa_{\cappa\cappa\cappa\cappa_{\cap\cappa\cappa\cappa\cappa\cappa\cappa\cappa\cappa\cappa\cappa\capp	STATIC PRESSURE (IN 1120)	SCHEMATIC OF STACK CROSS SECTION SURE (SURE) (OF) (OR) (OR) (VELOS SURE (OF) (OR) (OR) (OR) (OR) (OR) (OR) (OR) (OR	R CROSS SE (Ts) (OR) (OR)	SAMPLING DATA EQUATIONS ORIFICE ORIF	SHEET Co GAS SAMPLE VOLUME (ALL US 944 06 445, 925	17 . vp 18 18 18 18 18 18 18 1	AMBIENT TEMI STATION PRESS HEATER BOX TEMP HEATER BOX TEMP PROBE LENGT (PRO	In Hg OF In In Sq ft Sq ft Sq ft COF COF STEMP COF STEMP
OFNI FORM	18								

	AIR POI	LUTIO	ON PARTICU	LATE ANA	LYTICA	L DATA		
BASE		DATE		- "		RUN NUMBER		
HILL AFIS		3	9 Aug 90)		#3		
BUILDING NUMBER			•	1		0 . (,
170 (Beac	(Blas	st Facilit	y Van	ı /
1.			PARTIC	ULATES				
	ITEM		FINAL W		INI	TIAL WEIGHT (gm)	WEIGH	T PARTICLES
FILTER NUMBER			0.39	14		1576	0,1	098
ACETONE WASHING Half Filter)	S (Probe, Front		105.15	509	105	. 0507	1	rinsc= 1,4 mg
BACK HALF (II need	ood) not included total weight						0, 0	233
			Cotal We	eight of Partic	ulates Coll	ected	0, 2	.086 gm
11.			WAT	ER				
	ITEM		FINAL W		INIT	IAL WEIGHT (gm)	WEI	GHT WATER (gm)
IMPINGER 1 (H20)			169	mi	Ą	CO ml	- 3	1
IMPINGER 2 (H20)			228	ml	Ş	CC m)	2	8
IMPINGER 3 (Dry)				m/	· 	0		
IMPINGER 4 (Silica G	Gel)		220g 300 g		٦	0		
•			To≒l Weight of Water Collected		1	g gar		
III.			GASES	(Dry)				
ITEM	ANALYSIS		ANALYSIS 2	ANAL	YSIS 3	ANALYSIS 4		AVERAGE
vo∟ % co ₂								
VOL ~ 02								
VOL 5 00								
VOL % N2								
		Vol % I	N ₂ = (100% - % (CO ₂ - % O ₂ -	% CO)		····	

	PR	ELIMINARY SURVEY DATA (Stack Geometry	
BASE Hill AFB		Bend Blast	Facility Bldg 1701
29 Aug 9 (SAMPLING TEAM RFOEHI	Facility Bldg 1701 L/EQA
SOURCE TYPE AND MA	KE Facility 1	INSIDE STACK DIAMETER	
SOURCE NUMBER	,	Inside STACK DIAMETER L= 31,5" W= 45.3	15" he = 37.3 Areu = 10.0 Ft"
RELATED CAPACITY		TYPE F	IJ/A
DISTANCE FROM OUTSI	DE OF NIPPLE TO IN	ISIDE DIAMETER	Inches
NUMBER OF TRAVERSI	S	NUMBER OF POINTS/TRAVERSE	
	LO	CATION OF SAMPLING POINTS A	LONG TRAVERSE
POINT	PERCENT OF DIAMETER	DISTANCE FROM INSIDE WALL (Inches)	TOTAL DISTANCE FROM OUTSIDE OF NIPPLE TO SAMPLING POINT (Inches)
	1/15	3.15	6,15
	3 /10	9.45	12.45
}	1/1	15.75	19.75
4	7/10	22.15	25.05
\$	2 / 1g	28,35	31, 35
			
······································			
			

OEHL FORM 15

44

	_	YEY DATA SHEET NO. 2 emperature Traverse)	
HILL AFB		29 fug 90	Particular Residential Particular State (1997)
	Blast Facility	Bid. 170 (· · · · · · · · · · · · · · · · · · ·
INSIDE STACK DIAMETER	45 75" D = 37	Arm = 10 : 6+2	Inches
INSIDE STACK DIAMETER L = \$1.5" W = STATION PRESSURE 30	17	7.7.4. 17.0.1.	
STACK STATIC PRESSURE	15 91		In Hg
SAMPLING TEAM			In H20
TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20	× Vp	STACK TEMPERATURE (OF)
	1.0	12	70
7	1, 2	-3	
در)	11	3	
:1	1, 6	3-	
5	1.5	0	
	F15 65	RC FM = 38	1
	fle Fim = ;	3-1	
	Fre Part	634	
1,5512	Pia = 0.19	. ' 4	
	AVERAGE		
AEMI FORM 1/			

Appendix F
Acetone & Distilled Water Blank Results
and Particulate Emissions Calculations

BLANK ANALYTICAL DATA FORM

Plant H, I AFB, UT.
Sample location Rail Shup bldg 1701 - Media Blust Buth
Relative humidity
Liquid level marked and container sealed
Density of acetone (ρ_a) g/mi
Blank volume (V _a) mj
Date and time of wt 750 1600 Gross wt 97142,1 mg
Date and time of wt 10 Sep 90 0800 Gross wt 97141, 9 mg
Average gross wt 47141.0 mg
Tare wt 97140.5 mg
Weight of blank (mab)1.5_ mg
$C_{a} = \frac{m_{ab}}{V_{a} \rho_{a}} = \frac{(1.5)}{(450)(0.78i)} = 0.0042 mg/g$ Mote: In no case should a blank residue greater than 0.01 mg/g (or 0.001% of the blank weight) be subtracted from the sample weight.
Filter number
Date and time of wt Gross wt mg
Date and time of wt mg
Average gross wt mg
Tare wt mg
Difference wt mg
Note: Average difference must be less than ±5 mg or 2% of total sample weight whichever is greater. Remarks
Signature of analyst Robert D. Vibring

Quality Assurance Handbook M5-5.4

BLANK ANALYTICAL DATA FORM

Plant Hill AFB UT	 			
Sample location Media Blast Boots	ot Rail	541p bl	19 1701	
Relative humidity				
Liquid level marked and containe	r sealed			
Density of $\frac{d \cdot s^{\frac{1}{2} \cdot l(q)} h_{\bullet} 0}{\text{acetone}} (\rho_{a})$			1, 0	g/ml
Blank volume (V _a)			500	ml
Date and time of wt 11 509 98			t <u>987337</u>	mg
Date and time of wt 13 500 %	0745	Gross w	t <u>98733.7</u>	mg
·	Average	gross w	t <u>987337</u>	mg
		Tare w	t <u>987325</u>	mg
Weig	ht of bla	ank (mab)	mg
$C_a = \frac{m_{ab}}{V_a \rho_a} = \frac{1}{(1 + \frac{1}{2})^n}$	(1.2) :	= 0,0024	mg/g
a v _a p _a (500)	(1.0)		
Note: In no case should a blank	residue	greater	than 0.01 m	a/a
(or 0.001% of the blank weight) weight.				
weight.		acted fro		
weight.	be subtra	nber	om the sampl	e
weight. <u>Filters</u> F	be subtra ilter nur Gross	mber	om the sampl	mg
Weight. Filters Date and time of wt Date and time of wt	ilter nur Gross Gross	mbers wts	om the sampl	e mg mg
Weight. Filters F Date and time of wt Date and time of wt	ilter nur Gross Gross	mbers wts wts	om the sample	mg mg mg
Weight. Filters Date and time of wt Date and time of wt Aver	ilter nur Gross Gross	mber s wt s wt s wt s wt	om the sampl	mg mg mg
Weight. Filters Date and time of wt Date and time of wt Aver	ilter nur Gross Gross age gross Tare ifference	mbers wts wts wts wts wts wts wts wts wts	om the sample	mg mg mg mg
Weight. Filters F Date and time of wt Date and time of wt Aver Note: Average difference must b	ilter nur Gross Gross age gross ifference e less the	mbers wts wts wts wts wts wts wts wts wts	om the sample	mg mg mg mg
Weight. Filters Date and time of wt Date and time of wt Aver Note: Average difference must be sample weight whichever is great	ilter nur Gross Gross age gross ifference e less the	mbers wts wts wts wts wts wts wts wts wts	om the sample	mg mg mg mg
Weight. Filters Date and time of wt Date and time of wt Aver Aver Note: Average difference must be sample weight whichever is great Remarks	ilter nur Gross Gross age gross Tare ifference e less ther.	mbers wts wts wts wts wts wts and ±5 mg	om the sample	mg mg mg mg
Weight. Filters Date and time of wt Date and time of wt Aver Note: Average difference must be sample weight whichever is great	ilter nur Gross Gross age gross Tare ifference e less ther.	mbers wts wts wts wts wts wts and ±5 mg	om the sample	mg mg mg mg

Quality Assurance Handbook M5-5.4

ipgM *pEi	THE EX		
RUH MUMBER		* VOL MTR 970 = 79,214	
0ή€		STN PPES ABS = 30.02	
	PI'S.	VOL HOH GAS = 0.0€	
METER BOY YO	.	% MOISTURE = 0.00	
,9976	₽ 111.	MOL DRY G43 = 0.999	
3E1749 F agan	3 [::	X NITROGEN = 80.60	
5.8500 - 885 PRESS 1	- '-	MOL W7 2RY = 28.78	
- 548 (521) 78,1988	ş.	MOL WT WET = 28.77 VELOCITY FPS = 60.51	
#ERES MOL 7		VELUGATIONS - DULLIST STACK AREA = 10.00	
75.8688	p jw	STACK ACTA = 10.00 STACK ACTA = 36,304.	
MIR TEMP FO		* STACK BSCFM = 36 385.	
31,0000	ទ ុក	% ISOKIMETIC = 100.63	
5 374ER 349		1 10201 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
REMOVER BEFORE			
DRY GAS METER ?		END OF FIELD DATA	
<u>ភ</u> ិ, ស្តីស៊ីស៊ីប៊	5.11 5.11		
STATES MOR IN 7			
9168	50		
STACK TEMP.			
70.0000	pg.		
ML. MATER ? 1.3000	9 []]	MPO9: *MPO9SFE	ſ
1.3555			•
		RUN NUMBER	
847 % = 1,5		985	
- · · · · · · · · · · · · · · · · · · ·		ਜ਼ ਜ	ų.V.
[#구] 첫 위[는 후 했다]		VOL MTR STD_?	
			ŲN
1 a0s≠0.1		STACK DSCFM ?	
			UH
		FRONT 1/2 MG C 221.48 P	Ųħ.
* 1651 : .V.		BACK 1/2 MC 9	• "
ତୁ, ଶୁଁତିନ୍ତି • • • ୦ ୧୯୯	etų ∗		11:
1.0793EN7 19.4689	g _{ij} i	210.	•
	* •		
ନ୍ଦ୍ର ଜ୍ୟୁତିଶ୍ର	pijk,	F GR/DSCF = 0.94	
· 新史 紅 GTHEFF	-	F MG/MMM = 98.70	
2,0936	\$.	F CB/HF = 13.45	
		F KS/HR = 6,10	
Mily ≠29,78			
May WETHER, TT			
ASET FORE T			
90RT PSTS 1 34,8836	Fok		
25,000 - 7]解 附[5]			
	3 1.		
900018 119 P	t .		
,3530	₹ ⁴ 14.		
STE DIA INCHI			
	P.W.		
99E4 35 ET 1			
12.0000	FUH		

	****** Ca		
RUN NUMBER TWO		* VOL MTP STD = 77.000	
METER BOX Y?	PUA	STK PRES ABS = 30.12 VOL HOH GAS = 0.23	
,993 DELTA 87		% MOISTURE = 0.29 MOL DRY GRS = 0.997	
5,990 BAR PRESS 0 30,190		% NITROGEM = 80.60 MOL NT DPY = 29.78 MOL NT NET = 28.74	
METER VOL 2 79.9458		**************************************	
MTR TEMP F7 97.0000	_	STACK ACEM = 36.584. * STACK DSCEM = 35.842.	
% OTHER GAS REMOVED BEFORE DRY GAS METER ?		% ISOKINETIC = 99.33	
0.0000 STATIC HOW IN ?		END OF FIELD DATA	
9100 STACK TEMP.			
81.0000 ML. WATER 2		ueau	
4,9996	<u>RPM</u>	XPOM "MASSF:	-Ç"
SAT 1 = 3.5		RUM NUMBER TNO	
			?!!\ <u>\</u>
IMP, % 408 = 0.5			ŊE
4 HOH=0,3		STACK DSCFM ? 35,842.00 P FRONT 1/2 MG ?	Ųk,
% 0022 0.0000	무무목	— ···•	ĮΙλ
A 389933KO 19,4698	유 (* 통원:		ijŊ.
4 00 0 0.0006	PUA.	F GR/ISCF = 0,06	
MOS WT STHERT 0.0000	<u>Ř</u> ite	F NG/MMH = 137.14 F LB/HF = 18.41	
택배는 #20,72 배발 성동7#13,74		F KG/HR = 8.35	
SORT PSTS 1	50		
34,9944 TIME MIN 5			
62,5000 M02715 pjp n nena	श्रीहरू इस्स्		
,2529 1877 DIA (1834 O			
AREA 30 FT 1 10,0000	RIM RIA		
1성 , 전명편 법	W 1.734		

· · · · · · · · · · · · · · · · · · ·	578 5°		
RUN NUMBER THREE METER BOX VI .9930 DELTA H? 5.6300 SAR PRESS ? 29.9800 METER VOL ? 74.8400 MIR TEMP F? 88.0000 NOTHER GAS REMOVED BEFORE DRY GAS METER ? 0.0000 STATIC HOH IN ?9100 STACK TEMP.	- 17 - 17 - 17 - 17 - 17 - 17 - 17 - 17	* VOL MTR STI = 72.738 STK PRES ASS = 29.91 VOL HOW GAS = 0.85 % MOISTUPE = 1.15 MOL DRY GAS = 0.988 % NITROGEN = 80.60 MOL WT DRY = 28.78 MOL WT WET = 28.65 VELOCITY FPS = 60.68 STACK APEA = 10.00 STACK DSCFM = 35.114. % ISOKINETIC = 95.75 END OF FIELD DATA	
ML. WATER ? 18.8888	EST. Est		
10.0000	투성		
		XROM *MRSS	FLO:
S47 % = 3.6		PUN NUNSER	
		THREE	
]MR. % H0a = 1.2			RUN
% S0F=1,2		MOL MTR STD ? 72.738	₽ UN
g. ***		STACK DSCFM ?	.
ୀ ୧୯୭୯ ଜ୍ୟୁନ୍ତର	후ÿk	35,11 4. 00 FRONT 1/2 MG ?	Pijk
1 0079ENT 19,4000	P 185,	208.60 BACK 1/2 Mg 2	RIF
\$ 00 D		0.99	RUP:
ଟ.୭୫୧୧ - MGL ଭୂଲ ୧୯୯୧	₽ _€ °.		
ğ. 989ê	Dijik)	F GR/DSCF = 0,04	
MWW =28.78 MW WET=28.65		F MG/MMM = 101.27 F LB/MR = 13.32 F KG/MR = 6.04	
34,736 7	유년 ¹		
TIME MIN 7 52.5000	0 ∰9		
MODDLE DIA 1 .2520	유명의		
SIK DIE INCH 3			
GREA 30 FT 1	Pigs.		
10,0002	Pijit		

Distribution List

	Copies
HQ AFSC/SGPB Andrews AFB DC 20334-5000	1
HQ USAF/SGPA Bolling AFB DC 20332-6188	1
HQ AFLC/SGBE Wright-Patterson AFB OH 45433-5001	2
7100 CSW Med Cen/SGB APO New York 09220-5300	1
Det 1, AFOEHL APO San Francisco 96274-5000	1
USAFSAM/TSK Brooks AFB TX 78235-5301	1
USAFSAM/ED/EDH/EDZ Brooks AFB TX 78235-5301	1 ea
Defense Technical Information Center (DTIC) Cameron Station Alexandria VA 22304-6145	2
HSD/XA Brooks AFB TX 78235-5000	1
HQ USAF/LEEV Bolling AFB DC 20330-5000	1
HQ AFESC/RDV Tyndall AFB FL 32403-6001	1
USAF Hospital Hill/SGB Hill AFB UT 84056-5300	1
HQ Ogden ALC/EM Hill AFB UT 84056-5000	4