CLOUD COMPUTING ARCHITECTURE LAB

NAME- SHUBHI DIXIT

BATCH-05

SAP ID- 500094571

Experiment 5: Attaching EBS to Amazon EC2 Linux and Windows Instance.

Ques 1: Differentiate between EBS, EFS and S3

storage of AWS?

Ans:

Storage Options	EBS	EFS	S3
Storage Type	Block storage for an	File system storage	Object storage.
	EC2 instance.	for multiple EC2	
		instances.	
Pricing	Pay for provisioning	Pay as you use	Pay as you use
	capacity		
T	TT' 1 C	G	G 1 711
Features	High performance	Strong consistency,	Can be accessible to
	for workloads of a	concurrent	any service or
	single EC2 instance.	accessibility, and file	person
		locking features.	
Use cases	Boot volumes,	Home directories,	Web applications,
	transactional and	database backups,	content
	NoSQL databases,	developer tools,	management,
	data warehousing &	container storage, big	photos, videos,
	ETL.	data analytics.	backups, big data.
Durability	Stored in a single	Stored across	Multiple AZs.
	AZ.	multiple AZs.	
Scalability	Scales both	Grow and shrink as	Limitless scalability.
	horizontally and	files are	
	vertically.	uploaded/deleted.	
Service endpoint	Within a VPC.	Within a VPC.	Within VPC,
			Without VPC (S3
			URL).

Ques 2: Write the uses cases where EBS (block storage) will be more useful than others.

Ans: Amazon Elastic Block Store (EBS) provides block level storage volumes for use with a single EC2 instance or multiple servers available in the same availability zone.

- EBS is best suited for scenarios where frequent IO operations (especially read andwrite) are required.
- If minimised disk latency is a need, EBS is best suited.
- EBS is also the best option for relational and NoSQL Databases.
- EBS is also comparatively a cost-effective storage.
- Where high availability (99.99%) is the demand, EBS is best suited.
- EBS supports data persistency because its data does not get deleted even if the EC2 instance is terminated.
- With EBS, data is well protected as point-in-time snapshots can be taken.
- It is also used for enterprise applications such as ERP systems, mail servers, middleware etc.

Step 1:- Create a windows EC2 instance

Step 3:- Select the volume created in step 2 and click on actions-> Attach volume and select the instance running

Step 4:- Connect to the instance created in step 1

Step 5:- Initially the attached storage is not visible in control panel , to initialize the disk we goto the disk manager (win + x + k)

Step 6:- Right click on the unallocated disk and click on initialize the disk

Step 7:- Right click on the unallocated disk and click on "new simple volume" and finish the Volume wizard

Step 8:- Click on finish and the new volume will get allocated

Step 9:- Terminate the instances and detach and delete the EBS volume

FOR LINUX SERVER-

Step 1:- Create a Linux EC2 instance

Step 2:- Go to Elastic block Store -> Volumes

Step 3:- Attach the volume created in step 2 to the instance created in step 1

Step 4:- Connect to the instance created in step 1 and type the command -> df -h

- → df -> df shows the amount of free space that is left on a file system
- → h -> Its an attribute that displays output in human readable form(in Gbs)

Step 5:- Use the command -> lsblk

→ lsblk ->lists information about all available or the specified block devices.

```
https://aws.amazon.com/amazon-linux-2/
16 package(s) needed for security, out of 16 available
Run "sudo yum update" to apply all updates.
[ec2-user@ip-172-31-38-180 ~]$ whoami
ec2-user
[ec2-user@ip-172-31-38-180 ~]$ df -h
                      Used Avail Use% Mounted on
Filesystem
                Size
                             474M
                                    0% /dev
devtmpfs
                474M
                          0
tmpfs
                483M
                          0
                             483M
                                    0% /dev/shm
tmpfs
                483M
                       408K
                             482M
                                    1% /run
tmpfs
                483M
                          0
                             483M
                                    0% /sys/fs/cgroup
                8.0G
                                   20% /
/dev/xvda1
                       1.6G
                             6.5G
                              97M
                                    0% /run/user/1000
tmpfs
                 97M
                          0
[ec2-user@ip-172-31-38-180 ~]$ sudo su
[root@ip-172-31-38-180 ec2-user]# lsblk
NAME
        MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
xvda
        202:0
                 0
                      8G
                          0 disk
                 0
∟xvda1 202:1
                      8G
                          0 part /
                          0 disk
xvdf
        202:80
                 0
                     25G
```

Step 6:- Use the command sudo su to run commands as root user sudo su

~ sudo su -> allows you to run programs as another user, by default the root user

```
[ec2-user@ip-172-31-38-180 ~]$ df -h
Filesystem
                Size
                     Used Avail Use% Mounted on
                474M
devtmpfs
                         0
                            474M
                                   0% /dev
tmpfs
                483M
                         0
                            483M
                                   0% /dev/shm
tmpfs
                483M 408K
                            482M
                                   1% /run
                                   0% /sys/fs/cgroup
tmpfs
                483M
                            483M
                         0
/dev/xvda1
                8.0G 1.6G
                            6.5G
                                  20% /
tmpfs
                 97M
                             97M
                                   0% /run/user/1000
                         0
[ec2-user@ip-172-31-38-180 ~]$ sudo su
[root@ip-172-31-38-180 ec2-user]# lsblk
```

Step 7:- Use the command

file -s /dev/xvdf

- **→** file-> determines the actual type of a file, no matter what its extension is.
- -s -> "s" indicates the file has the setuid bit set.

```
[root@ip-172-31-38-180 ec2-user] # file -s /dev/xvdf
'dev/xvdf: data
[root@ip-172-31-38-180 ec2-user]# [
```

Step 8:- Use the command

mkfs -t xfs /dev/xvdf

- **→** Mkfs -> makes a new file system on a specified device [everyting in linux is file
- XFS is a high-performing, journaling Linux file system
- "-t" tag formats the display of output on the terminal screen

```
[root@ip-172-31-38-180 ec2-user] # mkfs -t xfs /dev/xvdf
meta-data=/dev/xvdf
                                 isize=512 agcount=4, agsize=1638400 blks
                                 sectsz=512 attr=2, projid32bit=1
                                 crc=1 finobt=1, sparse=1, rmapbt=0
reflink=1 bigtime=0 inobtcount=0
                                 bsize=4096 blocks=6553600, imaxpct=25
data
                                 sunit=0 swidth=0 blks
                                 bsize=4096
                                               ascii-ci=0, ftype=1
naming
        =version 2
                                              blocks=3200, version=2
                                 bsize=4096
        =internal log
                                 sectsz=512
                                               sunit=0 blks, lazy-count=1
realtime =none
                                 extsz=4096
                                               blocks=0, rtextents=0
[root@ip-172-31-38-180 ec2-user]# □
  i-0a938786843ef5ae9 (linuxserver)
```

PublicIPs: 18.181.203.250 PrivateIPs: 172.31.38.180

Step 9:- Use the command

cd ~

- Cd command changes directory
- **→** ~ is used to exit the directory
- pwd returns the full path name

```
[root@ip-172-31-38-180 ec2-user]# ls
[root@ip-172-31-38-180 ec2-user]# mkdir test
[root@ip-172-31-38-180 ec2-user]# ls
test
[root@ip-172-31-38-180 ec2-user]# cd test
[root@ip-172-31-38-180 test]# pwd
/home/ec2-user/test
[root@ip-172-31-38-180 test]# cd ~
[root@ip-172-31-38-180 ~]# mkdir /apps/my-data/
```

Step 10:- Use the command

mkdir -p /apps/volume/new-volume

- mkdir allows the user to create directories
- -p will create parent directory first, if it doesn't exist

```
[root@ip-172-31-38-180 ~] # mkdir /apps/my-data/
mkdir: cannot create directory '/apps/my-data/': No such file or directory
[root@ip-172-31-38-180 ~] # mkdir -p /apps/volume/new-volume
[root@ip-172-31-38-180 ~] # ls
```

Step 11:- Use the command and then use the df command mount /dev/xvdf /apps/volume/new-volume

- → mount command is used to mount the filesystem found on a device to big tree structure(Linux filesystem) rooted at '/'
- its goes by syntax, mount device dir

```
[root@ip-172-31-38-180 ~]#
                            mount /dev/xvdf /apps/volume/new-volume
[root@ip-172-31-38-180 ~]#
                            df -h
Filesystem
                Size Used Avail Use% Mounted on
devtmpfs
                474M
                         0 474M
                                   0% /dev
                483M
                         0
                            483M
                                   0% /dev/shm
tmpfs
tmpfs
                483M
                      468K 482M
                                   1% /run
                            483M
tmpfs
                483M
                         0
                                   0% /sys/fs/cgroup
/dev/xvda1
                8.0G 1.6G
                            6.5G
                                  20% /
tmpfs
                 97M
                             97M
                                   0% /run/user/1000
                 97M
                             97M
tmpfs
                         0
                                   0% /run/user/0
/dev/xvdf
                 25G 211M
                             25G
                                   1% /apps/volume/new-volume
[root@ip-172-31-38-180 ~]#
  i-0a938786843ef5ae9 (linuxserver)
  PublicIPs: 18.181.203.250 PrivateIPs: 172.31.38.180
```

Step 12:- The new volume that was created in step 3 is attached and online as shown above

Step 13:- Terminate the instances and delete and detach the volumes

