次世代定序、生物資訊學與基因體醫學 NGS, bioinformatics and genomic medicine (Genom7009)

Human Reference Genome(s) & NGS quality FastQC (HW1)

Jacob Shujui Hsu 許書睿

國立臺灣大學醫學院基因體暨蛋白體醫學研究所 Graduate Institute of Medical Genomics and Proteomics

Genome Reference Consortium

- Main Builds (major)
 - GRCh37 (Feb 27, 2009)
 - GRCh38 (May 07,2014)
- Patches (minor)
 - GRCh37.p13 (June 28,2013)
 - GRCh38.p13 (March 01,2019)
 - GRCh38.p14 (February 03, 2023)
- Contigs
- GRch39? Telemore-to-Telomere?
- Genome graphs?
- Personal Genome Assembly

- Region containing alternate loci
- Region containing fix patches
- Region containing novel patches

Ideogram of the latest human assembly, GRCh38.p14

Incomplete human genome (~50% repeats)

• GRCh37 (hs37d5, d: decoy)

GRCh38 (hs38DH, D: decoy; H: Human leukocyte antigen)

Human Genome Reference(s)

GATK reference type	B37	HG19	GRCh37(GRC)
(.fasta) file/MD5	human_g1k_v37 human_g1k_v37_ <mark>decoy</mark>	ucsc.hg19	322
1b22b98cdeb4a9304cb5d48026a85128	1	chr1	chr1
a0d9851da00400dec1098a9255ac712e	2	chr2	chr2
23dccd106897542ad87d2765d28a19a1	4	chr4	chr4
1fa3474750af0948bdf97d5a0ee52e51	Υ		
6743bd63b3ff2b5b8985d8933c53290a	NC_007605		
c68f52674c9fb33aef52dcf399755519	MT "MADIAN	-X11 **	chrM
fdfd811849cc2fadebc929bb925902e5	3		
1e86411d73e6f00a10590f976be01623		chrY	chrY
641e4338fa8d52a5b781bd2a2c08d3c3		chr3	chr3
d2ed829b8a1628d16cbeee88e88e39eb		chrM	

Flavor	Source	Name	Unplaced contigs	Unlocalized contigs	Altemate loci	mitochondria	Epstein-Barr Virus	decoy sequences	Remarks
GRCH		GRCh37	No canonical name	No canonical name	No canonical name	Maintained by Mitomap, distributed for convenience	×	×	
UCSC	GRCh37	hg19	chrUn_gl000 212	chr1_gl00019 1_random	chr6_apd_ hap1	NC_001807 (from build 36)	×	×	Chromosome names start by "chr" PAR regions on chrY are hard masked
Ensembl	GRCh37. p13	Ensembl API release 75 Homo_sapiens.GR Ch37.75.dna.prima ry_assembly.fasta. gz	GL000211.1	GL000191.1	*	NC_012920.1 Revised Cambridge Reference Sequence (rCRS)	×	*	Chromosome named "1" to "22", "X", "Y" and "MT"
1000 genomes project phase I & III	GRCh37. p2	hs37 g1k_v37 b37 human_g1k_v37.fas ta.gz	GL000211.1	GL000191.1	×	NC_012920.1 Revised Cambridge Reference Sequence (rCRS)	×	×	"1" to "22", "X", "Y" and "MT"

Flavor	Source	Name	Unplaced contigs	Unlocalized contigs	Alternate loci	mitochondria	Epstein-Barr virus	decoy sequences	Remarks	
1000 genomes project phase II	GRCh37. p4	hs37d5 b37+decoy +herpes hs37d5.fa.gz	GL000211.1	GL000191.1	×	NC_012920.1 Revised Cambridge Reference Sequence (rCRS)	NC_00 7605	hs37d5 ss	pseudo-autosomal regions are hard-marked on Y chromosome	
Illumina MiSeq Reporter + BSO	hg19	hg19	×	×	×	NC_001807 (from build 36)	×	×	hg19 without unplaced/unlocaliz ed contigs nor alternate loci	
Ion Torrent	hg19	hg19	×	×	×	NC_012920.1 Revised Cambridge Reference Sequence (rCRS)	×	×	hg19 without unplaced/unlocaliz ed contigs nor alternate loci	
GATK Bundle	GRCh37. p2	b37 + decoy	GL000211.1	GL000191.1	*	NC_012920.1 Revised Cambridge Reference Sequence (rCRS)	×	hs37d5 ss	"1" to "22", "X", "Y" and "MT"	,

Mapping rate & Contigs

 A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing, Nature Communications (2015)

6	Re	Minutes		
	Total	Aligned	Uniquely aligned	CPU time
b37+d	2152793590 (100.0 %)	2112982704 (98.15 %)	2018366589 (93.76 %)	79348.8 (100.0 %)
b37	2152793590 (100.0 %)	2071267988 (96.21 %)	1996504352 (92.74 %)	92517.7 (116.6 %)
hg19r	2152793590 (100.0 %)	2058694644 (95.63 %)	1990780196 (92.47 %)	95894.3 (120.85 %)

Supplementary Table 16. Comparisons of reference genome build versions on alignment rates and alignment times. (All mapping was performed with Novoalign2.) Using a larger reference genome build leads to higher mapping rates and shorter mapping times.

Human Pangenome Reference Consortium (HPRC)

We Need More Than One Human Reference Genome (Video)

Further information

Graph genome

- Toward a better human genome reference
 - Complete (centromere, telomere, repeats, pseudogenes)
 - Representative (from all populations to each individuals ?)
 - Compatible (genomic coordinates, annotations)

科普文章:

- Human Genome Reference
- Demystifying the versions of GRCh38/hg38 Reference Genomes, how they are used in DRAGEN™ and their impact on accuracy

For reference genome(s)

- About 2-4% of WGS reads are not in reference genome, and personal SV may affect allele specific expression
- Current reference genome missed 8% of the real genomic regions. The next phase of HPRC is to have 350 sample which are expected to cover 99.94% variant with MAF > 1% in All of US
- HG002 diploid T2T is about to finished

GRCh38.p13 (2019 March)

T2T (**2022 March**) GRCh38.p14 (2023 February)

HPRC (2023 May)

GRCh38+HPRC (2024 ??)

GRCh37.p13 (2013 June)

HW1: FastQC (quality score)

- Pair-end WES
- Three dataset
 - A/B/C
- The Median value of quality score
 - x-axis: position in read (bp)
 - y-axis: Phred score
- The yellow box represents the inter-quartilε¹² range (25-75%)
- The upper and lower whiskers represent the 10% and 90% points
- The blue line represents the mean quality

FastQC report

- Pass
- Warning
- Failure

- Basic Statistics
- Per base sequence quality
- Per tile sequence quality
- Per sequence quality scores
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Adapter Content

Trim or not to trim adaptor? quality?

Trimmomatic: trim adaptor or by quality

DNA Technologies & Expression Analysis Core Laboratory

Home Getting Started Services Sample Submission & Forms Prices FAQ Shared Equipment News & Workshops

Accounts & Calendars Contact

When should I trim my Illumina reads and how should I do it?

Should I trim adapters from my Illumina reads?

This depends on the objective of your experiments.

In case you are sequencing for **counting applications** like <u>differential gene expression</u> (**DGE**) RNA-seq <u>analysis</u>, **ChIP-seq**, **ATAC-seq**, read trimming is generally not required anymore when using modern aligners. For such studies local aligners or pseudo-aligners should be used. Modern "local aligners" like STAR, BWA-MEM, HISAT2, will "soft-clip" non-matching sequences. Pseudo-aligners like Kallisto or Salmon will also not have any problem with reads containing adapter sequences.

However, if the data are used for <u>variant analyses</u>, <u>genome annotation or genome or transcriptome</u> <u>assembly</u> purposes, we recommend read trimming, including both, adapter and quality trimming.

search here ...

Go

Recent Posts

Holiday Schedule

Core operations resume in Phase 2 of the COVID response

DNA Technologies Core has to ramp down lab work

Adjusting DNA Tech Core operation to the COVID-19 guidelines

Join us for the PacBio Day Symposium —

Q Search Illumina.com

Products

Learn

Company

Support

Recommended Links (i)

What sequences do I use for adapter trimming?

03/31/21

When performing sequencing on an Illumina instrument, sequences corresponding to the library adapters can be present in the FASTQ files at the 3' end of the reads if the read length is longer than the insert size. To remove these sequences and prevent issues with downstream alignment, adapter trimming is an option in Illumina FASTQ generation pipelines. Sample sheets generated with Illumina Experiment Manager contain the necessary sequences in the Settings section for Illumina kits. Illumina kits in BaseSpace™ Sequence Hub Prep, BaseSpace Sequence Hub Instrument Run Setup, and Local Run Manager have adapter information built into the software. However, some third-party tools require the adapter sequence for trimming be specified separately. The recommended sequences to use for each Illumina kit are as follows.

Trim or Not to trim, this is the question

Table 2. Correlation of trimmed and untrimmed RNA-seq data with the TaqMan RT-PCR data

	100 bp PE		50 bp SE	
Method	UHRR	HBRR	UHRR	HBRR
No trimming + Subread	0.851	0.870	0.848	0.870
Trimmomatic–adapters and SW + Subread	0.850	0.870	0.848	0.869
Trimmomatic–adapters and MI + Subread	0.850	0.871	0.849	0.869
TrimGalore + Subread	0.850	0.870	0.849	0.869

Shown are the coefficients of Pearson correlation between log2 expression values of 949 genes measured by the TaqMan RT-PCR technique and their RNA-seq expression levels generated from using each method (log2-RPKM). '100 bp PE' in the table denotes the 100 bp paired-end SEQC dataset. First reads (R1 reads) in this dataset were extracted and truncated to 50 bp long to generate the 50bp single-end dataset used here ('50 bp SE').

SEQC project:
Universal Human Reference
RNA (UHRR) and Human Brain
Reference RNA (HBRR)

SW mode: a sliding window approach is used to remove read bases that have a low sequencing quality.

MI mode: a maximum information quality filtering approach is applied for removing low quality bases.

