

**Universal Mobile Telecommunications System (UMTS);  
Physical channels and mapping of transport channels  
onto physical channels (TDD)  
(3G TS 25.221 version 3.1.1 Release 1999)**



---

Reference

DTS/TSGR-0125221U

---

Keywords

UMTS

***ETSI***

---

Postal address

F-06921 Sophia Antipolis Cedex - FRANCE

---

Office address650 Route des Lucioles - Sophia Antipolis  
Valbonne - FRANCETel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16  
Siret N° 348 623 562 00017 - NAF 742 C  
Association à but non lucratif enregistrée à la  
Sous-Préfecture de Grasse (06) N° 7803/88

---

Internet

secretariat@etsi.fr

Individual copies of this ETSI deliverable  
can be downloaded from  
<http://www.etsi.org>If you find errors in the present document, send your  
comment to: editor@etsi.fr

---

***Important notice***

This ETSI deliverable may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

---

***Copyright Notification***

No part may be reproduced except as authorized by written permission.  
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2000.  
All rights reserved.

---

## Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in SR 000 314: "*Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards*", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (<http://www.etsi.org/ipr>).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

---

## Foreword

This Technical Specification (TS) has been produced by the ETSI 3<sup>rd</sup> Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables. The mapping of document identities is as follows:

For 3GPP documents:

3G TS | TR nn.nnn "<title>" (with or without the prefix 3G)

is equivalent to

ETSI TS | TR 1nn nnn "[Digital cellular telecommunications system (Phase 2+) (GSM);] Universal Mobile Telecommunications System; <title>

For GSM document identities of type "GSM xx.yy", e.g. GSM 01.04, the corresponding ETSI document identity may be found in the Cross Reference List on [www.etsi.org/key](http://www.etsi.org/key)

---

# Contents

|                                                                               |    |
|-------------------------------------------------------------------------------|----|
| Foreword .....                                                                | 5  |
| 1 Scope.....                                                                  | 6  |
| 2 References.....                                                             | 6  |
| 3 Abbreviations.....                                                          | 6  |
| 4 Transport channels.....                                                     | 7  |
| 4.1 Transport channels.....                                                   | 7  |
| 4.1.1 Dedicated transport channels.....                                       | 7  |
| 4.1.2 Common transport channels.....                                          | 7  |
| 5 Physical channels.....                                                      | 8  |
| 5.1 Frame structure .....                                                     | 9  |
| 5.2 Dedicated physical channel (DPCH) .....                                   | 10 |
| 5.2.1 Spreading .....                                                         | 11 |
| 5.2.1.1 Spreading for Downlink Physical Channels .....                        | 11 |
| 5.2.1.2 Spreading for Uplink Physical Channels .....                          | 11 |
| 5.2.2 Burst Types .....                                                       | 11 |
| 5.2.2.1 Transmission of TFCI.....                                             | 12 |
| 5.2.2.2 Transmission of TPC .....                                             | 14 |
| 5.2.2.3 Timeslot formats.....                                                 | 14 |
| 5.2.2.3.1 Downlink timeslot formats.....                                      | 14 |
| 5.2.2.3.2 Uplink timeslot formats .....                                       | 15 |
| 5.2.2.3.3 Training sequences for spread bursts .....                          | 18 |
| 5.2.2.3.4 Midamble Transmit Power .....                                       | 19 |
| 5.2.4 Beamforming and Transmit Diversity.....                                 | 19 |
| 5.3 Common physical channels .....                                            | 20 |
| 5.3.1 Primary common control physical channel (P-CCPCH).....                  | 20 |
| 5.3.1.1 P-CCPCH Spreading .....                                               | 20 |
| 5.3.1.2 P-CCPCH Burst Types .....                                             | 20 |
| 5.3.1.3 P-CCPCH Training sequences.....                                       | 20 |
| 5.3.1.4 Block STTD antenna diversity for P-CCPCH .....                        | 20 |
| 5.3.2 Secondary common control physical channel (S-CCPCH).....                | 20 |
| 5.3.2.1 S-CCPCH Spreading .....                                               | 20 |
| 5.3.2.2 S-CCPCH Burst Types .....                                             | 20 |
| 5.3.2.3 S-CCPCH Training sequences.....                                       | 20 |
| 5.3.3 The physical random access channel (PRACH).....                         | 21 |
| 5.3.3.1 PRACH Spreading.....                                                  | 21 |
| 5.3.3.2 PRACH Burst Types .....                                               | 21 |
| 5.3.3.3 PRACH Training sequences .....                                        | 21 |
| 5.3.3.4 Association between Training Sequences and Channelisation Codes ..... | 22 |
| 5.3.4 The physical synchronisation channel (PSCH) .....                       | 23 |
| 5.3.5 Physical Uplink Shared Channel (PUSCH) .....                            | 24 |
| 5.3.6 Physical Downlink Shared Channel (PDSCH).....                           | 24 |
| 5.3.7 The Page Indicator Channel (PICH) .....                                 | 25 |
| 5.4 Beacon function of physical channels.....                                 | 25 |
| 5.4.1 Location of physical channels with beacon function.....                 | 25 |
| 5.4.2 Physical characteristics of the beacon function.....                    | 26 |
| 5.5 Midamble Allocation for Physical Channels .....                           | 26 |
| 5.5.1 Midamble Allocation for DL Physical Channels .....                      | 26 |
| 5.5.1.1 Midamble Allocation by signalling .....                               | 26 |
| 5.5.1.1.1 DL Physical Channels without TxDiversity/Beamforming .....          | 26 |
| 5.5.1.1.2 DL Physical Channels with TxDiversity/Beamforming .....             | 27 |
| 5.5.1.2 Midamble Allocation by default.....                                   | 27 |
| 5.5.2 Midamble Allocation for UL Physical Channels .....                      | 27 |

|                                                                |                                                                  |           |
|----------------------------------------------------------------|------------------------------------------------------------------|-----------|
| 6                                                              | Mapping of transport channels to physical channels .....         | 27        |
| 6.1                                                            | Dedicated Transport Channels.....                                | 28        |
| 6.2                                                            | Common Transport Channels .....                                  | 28        |
| 6.2.1                                                          | The Broadcast Channel (BCH).....                                 | 28        |
| 6.2.2                                                          | The Paging Channel (PCH).....                                    | 28        |
| 6.2.3                                                          | The Forward Channel (FACH).....                                  | 28        |
| 6.2.4                                                          | The Random Access Channel (RACH).....                            | 28        |
| 6.2.5                                                          | The Synchronisation Channel (SCH) .....                          | 29        |
| 6.2.6                                                          | Common Transport Channels for ODMA networks .....                | 29        |
| 6.2.7                                                          | The Uplink Shared Channel (USCH) .....                           | 29        |
| 6.2.8                                                          | The Downlink Shared Channel (DSCH) .....                         | 29        |
| <b>Annex A (Normative): Basic Midamble Codes.....</b>          |                                                                  | <b>30</b> |
| A.1                                                            | Basic Midamble Codes for Burst Type 1 and PRACH Burst Type ..... | 30        |
| A.2                                                            | Basic Midamble Codes for Burst Type 2.....                       | 35        |
| A.3                                                            | Association between Midambles and Channelisation Codes.....      | 40        |
| A.3.1                                                          | Association for Burst Type 1 and K=16 Midambles.....             | 40        |
| A.3.2                                                          | Association for Burst Type 1 and K=8 Midambles.....              | 41        |
| A.3.3                                                          | Association for Burst Type 1 and K=4 Midambles .....             | 41        |
| A.3.4                                                          | Association for Burst Type 2 and K=6 Midambles .....             | 42        |
| A.3.5                                                          | Association for Burst Type 2 and K=3 Midambles .....             | 43        |
| <b>Annex B (Informative): CCPCH Multiframe Structure .....</b> |                                                                  | <b>44</b> |
| <b>Annex C (informative): Change history.....</b>              |                                                                  | <b>46</b> |
| History.....                                                   |                                                                  | 47        |

---

## Foreword

This Technical Specification has been produced by the 3GPP.

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of this TS, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version 3.y.z

where:

- x the first digit:
  - 1 presented to TSG for information;
  - 2 presented to TSG for approval;
  - 3 Indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the specification;

---

## 1 Scope

The present document describes the characteristics of the physical channels and the mapping of the transport channels to physical channels in the TDD mode of UTRA.

---

## 2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies.

- [1] 3G TS 25.201: "Physical layer - general description"
- [2] 3G TS 25.211: "Physical channels and mapping of transport channels onto physical channels (FDD)"
- [3] 3G TS 25.212: "Multiplexing and channel coding (FDD)"
- [4] 3G TS 25.213: "Spreading and modulation (FDD)"
- [5] 3G TS 25.214: "Physical layer procedures (FDD)"
- [6] 3G TS 25.215: "Physical layer – Measurements (FDD)"
- [7] 3G TS 25.222: "Multiplexing and channel coding (TDD)"
- [8] 3G TS 25.223: "Spreading and modulation (TDD)"
- [9] 3G TS 25.224: "Physical layer procedures (TDD)"
- [10] 3G TS 25.225: "Physical layer – Measurements (TDD)"
- [11] 3G TS 25.301: "Radio Interface Protocol Architecture"
- [12] 3G TS 25.302: "Services Provided by the Physical Layer"
- [13] 3G TS 25.401: "UTRAN Overall Description"
- [14] 3G TS 25.402: "Synchronisation in UTRAN, Stage 2"

---

## 3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

|        |                                   |
|--------|-----------------------------------|
| BCH    | Broadcast Channel                 |
| CCPCH  | Common Control Physical Channel   |
| CCTrCH | Coded Composite Transport Channel |
| CDMA   | Code Division Multiple Access     |
| DPCH   | Dedicated Physical Channel        |
| DSCH   | Downlink Shared Channel           |
| FACH   | Forward Access Channel            |
| FDD    | Frequency Division Duplex         |
| FEC    | Forward Error Correction          |
| GP     | Guard Period                      |

|         |                                        |
|---------|----------------------------------------|
| GSM     | Global System for Mobile Communication |
| NRT     | Non-Real Time                          |
| ODCH    | ODMA Dedicated Transport Channel       |
| ODMA    | Opportunity Driven Multiple Access     |
| ORACH   | ODMA Random Access Channel             |
| OVSF    | Orthogonal Variable Spreading Factor   |
| P-CCPCH | Primary CCPCH                          |
| PCH     | Paging Channel                         |
| PDSCH   | Physical Downlink Shared Channel       |
| PDU     | Protocol Data Unit                     |
| PICH    | Page Indicator Channel                 |
| PRACH   | Physical Random Access Channel         |
| PSCH    | Physical Synchronisation Channel       |
| PUSCH   | Physical Uplink Shared Channel         |
| RACH    | Random Access Channel                  |
| RLC     | Radio Link Control                     |
| RF      | Radio Frame                            |
| RT      | Real Time                              |
| S-CCPCH | Secondary CCPCH                        |
| SCH     | Synchronisation Channel                |
| SFN     | Cell System Frame Number               |
| TCH     | Traffic Channel                        |
| TDD     | Time Division Duplex                   |
| TDMA    | Time Division Multiple Access          |
| USCH    | Uplink Shared Channel                  |

## 4 Transport channels

### 4.1 Transport channels

Transport channels are the services offered by layer 1 to the higher layers. A transport channel is defined by how and with what characteristics data is transferred over the air interface. A general classification of transport channels is into two groups:

- common channels (where there is a need for in-band identification of the UEs when particular UEs are addressed) and
- dedicated channels (where the UEs are identified by the physical channel)

General concepts about transport channels are described in 3GPP RAN TS25.302 (L2 specification).

#### 4.1.1 Dedicated transport channels

The Dedicated Channel (DCH) is an up- or downlink transport channel that is used to carry user or control information between the UTRAN and a UE.

Two types of dedicated transport channels have been identified:

- 1) Dedicated Channel (DCH)
- 2) ODMA Dedicated Transport Channel (ODCH)

#### 4.1.2 Common transport channels

Common transport channels are:

- 1) Broadcast Channel (BCH)

The Broadcast Channel (BCH) is a downlink transport channel that is used to broadcast system- and cell-specific information.

## 2) Paging Channel (PCH)

The Paging Channel (PCH) is a downlink transport channel that is used to carry control information to a mobile station when the system does not know the location cell of the mobile station.

## 3) Forward Access Channel(s) (FACH)

The Forward Access Channel (FACH) is a downlink transport channel that is used to carry control information to a mobile station when the system knows the location cell of the mobile station. The FACH may also carry short user packets.

## 4) Random Access Channel(s) (RACH)

The Random Access Channel (RACH) is an up link transport channel that is used to carry control information from mobile station. The RACH may also carry short user packets.

## 5) ODMA Random Access Channel (ORACH)

## 6) Synchronisation Channel (SCH)

## 7) Uplink Shared Channel (USCH)

The uplink shared channel (USCH) is a uplink transport channel shared by several UEs carrying dedicated control or traffic data.

## 8) Downlink Shared Channel (DSCH)

The downlink shared channel (DSCH) is a downlink transport channel shared by several UEs carrying dedicated control or traffic data.

## 5 Physical channels

All physical channels take three-layer structure with respect to timeslots, radio frames and system frame numbering (SFN), see [14]. Depending on the resource allocation, the configuration of radio frames or timeslots becomes different. All physical channels need guard symbols in every timeslot. The time slots are used in the sense of a TDMA component to separate different user signals in the time and the code domain. The physical channel signal format is presented in figure 1.

A physical channel in TDD is a burst, which is transmitted in a particular timeslot within allocated Radio Frames. The allocation can be continuous, i.e. the time slot in every frame is allocated to the physical channel or discontinuous, i.e. the time slot in a subset of all frames is allocated only. A burst is the combination of a data part, a midamble and a guard period. The duration of a burst is one time slot. Several bursts can be transmitted at the same time from one transmitter. In this case, the data part must use different OVSF channelisation codes, but the same scrambling code. The midamble part has to use the same basic midamble code, but can use different midambles.



**Figure 1: Physical channel signal format**

The data part of the burst is spread with a combination of channelisation code and scrambling code. The channelisation code is a OVSF code, that can have a spreading factor of 1, 2, 4, 8, or 16. The data rate of the physical channel is depending on the used spreading factor of the used OVSF code.

The midamble part of the burst can contain two different types of midambles: a short one of length 256 chips, or a long one of 512 chips. The data rate of the physical channel is depending on the used midamble length.

So a physical channel is defined by frequency, timeslot, channelisation code, burst type and Radio Frame allocation. The scrambling code and the basic midamble code are broadcast and may be constant within a cell. When a physical channel is established, a start frame is given. The physical channels can either be of infinite duration, or a duration for the allocation can be defined.

## 5.1 Frame structure

The TDMA frame has a duration of 10 ms and is subdivided into 15 time slots (TS) of  $2560*T_c$  duration each. A time slot corresponds to 2560 chips. The physical content of the time slots are the bursts of corresponding length as described in section 5.2.2.

Each 10 ms frame consists of 15 time slots, each allocated to either the uplink or the downlink (figure 2). With such a flexibility , the TDD mode can be adapted to different environments and deployment scenarios. In any configuration at least one time slot has to be allocated for the downlink and at least one time slot has to be allocated for the uplink.



**Figure 2: The TDD frame structure**

Examples for multiple and single switching point configurations as well as for symmetric and asymmetric UL/DL allocations are given in figure 3.



**Multiple-switching-point configuration (symmetric DL/UL allocation)**



**Multiple-switching-point configuration (asymmetric DL/UL allocation)**



**Single-switching-point configuration (symmetric DL/UL allocation)**



**Single-switching-point configuration (asymmetric DL/UL allocation)**

**Figure 3: TDD frame structure examples**

When operating ODMA at least one common timeslot has to be allocated for the ORACH. If large quantities of information have to be transferred between ODMA nodes then it is normal to use at least one timeslot for the ODCH (figure 4). As figure 4 shows, any timeslot in the TDD frame may potentially be used by the ODCH.

A common timeslot indicates a carrier-timeslot combination which can be used for transmission and reception by a group of mobiles operating ODMA.



**Figure 4: TDD frame structure example for ODMA operation**

## 5.2 Dedicated physical channel (DPCH)

The DCH or in case of ODMA networks the ODCH as described in section 4.1.1 are mapped onto the dedicated physical channel.

## 5.2.1 Spreading

Spreading is applied to the data part of the physical channels and consists of two operations. The first is the channelisation operation, which transforms every data symbol into a number of chips, thus increasing the bandwidth of the signal. The number of chips per data symbol is called the Spreading Factor (SF). The second operation is the scrambling operation, where a scrambling code is applied to the spread signal. Details on channelisation and scrambling operation can be found in [8].

### 5.2.1.1 Spreading for Downlink Physical Channels

Downlink physical channels shall use SF =16. Multiple parallel physical channels can be used to support higher data rates. These parallel physical channels shall be transmitted using different channelisation codes, see [8]. These codes with SF =16 are generated as described in [8].

Operation with a single code with spreading factor 1 is possible for the downlink physical channels.

### 5.2.1.2 Spreading for Uplink Physical Channels

The range of spreading factor that may be used for uplink physical channels shall range from 16 down to 1.

For multicode transmission a UE shall use a maximum of two physical channels per timeslot simultaneously. These two parallel physical channels shall be transmitted using different channelisation codes, see [8].

## 5.2.2 Burst Types

Two types of bursts for dedicated physical channels are defined: The burst type 1 and the burst type 2. Both consist of two data symbol fields, a midamble and a guard period. The bursts type 1 has a longer midamble of 512 chips than the burst type 2 with a midamble of 256 chips. Sample sets of midambles are given in section 5.2.3.1.

Because of the longer midamble, the burst type 1 is suited for the uplink, where up to 16 different channel impulse responses can be estimated. The burst type 2 can be used for the downlink and, if the bursts within a time slot are allocated to less than four users, also for the uplink.

Thus the burst type 1 can be used for

- uplink, independent of the number of active users in one time slot
- downlink, independent of the number of active users in one time slot

The burst type 2 can be used for

- uplink, if the bursts within a time slot are allocated to less than four users
- downlink, independent of the number of active users in one time slot

The data fields of the burst type 1 are 976 chips long, whereas the data fields length of the burst type 2 are 1104 chips long. The corresponding number of symbols depends on the spreading factor, as indicated in table 1 below. The guard period for the burst type 1 and type 2 is 96 chip periods long.

The bursts type 1 and type 2 are shown in figure 5 and figure 6. The contents of the burst fields are described in table 2 and table 3.

**Table 1: number of symbols per data field in bursts 1 and 2**

| Spreading factor (Q) | Number of symbols (N) per data field in Burst 1 | Number of symbols (N) per data field in Burst 2 |
|----------------------|-------------------------------------------------|-------------------------------------------------|
| 1                    | 976                                             | 1104                                            |
| 2                    | 488                                             | 552                                             |
| 4                    | 244                                             | 276                                             |
| 8                    | 122                                             | 138                                             |
| 16                   | 61                                              | 69                                              |

**Table 2: The contents of the burst type 1 fields**

| Chip number (CN) | Length of field in chips | Length of field in symbols |  | Contents of field |
|------------------|--------------------------|----------------------------|--|-------------------|
| 0-975            | 976                      | cf table 1                 |  | Data symbols      |
| 976-1487         | 512                      | -                          |  | Midamble          |
| 1488-2463        | 976                      | cf table 1                 |  | Data symbols      |
| 2464-2559        | 96                       | -                          |  | Guard period      |

**Figure 5: Burst structure of the burst type 1. GP denotes the guard period and CP the chip periods****Table 3: The contents of the burst type 2 fields**

| Chip number (CN) | Length of field in chips | Length of field in symbols |  | Contents of field |
|------------------|--------------------------|----------------------------|--|-------------------|
| 0-1103           | 1104                     | cf table 1                 |  | Data symbols      |
| 1104-1359        | 256                      | -                          |  | Midamble          |
| 1360-2463        | 1104                     | cf table 1                 |  | Data symbols      |
| 2464-2559        | 96                       | -                          |  | Guard period      |

**Figure 6: Burst structure of the burst type 2. GP denotes the guard period and CP the chip periods**

The two different bursts defined here are well-suited for the different applications mentioned above. It may be possible to further optimise the burst structure for specific applications, for instance for unlicensed operation.

### 5.2.2.1 Transmission of TFCI

Both burst types 1 and 2 provide the possibility for transmission of TFCI both in up- and downlink.

The transmission of TFCI is negotiated at call setup and can be re-negotiated during the call. For each CCTrCH it is indicated by higher layer signalling, which TFCI format is applied. Additionally for each allocated timeslot it is signalled individually whether that timeslot carries the TFCI or not. If a time slot contains the TFCI, then it is always transmitted using the first allocated channelisation code in the timeslot, according to the order in the higher layer allocation message.

The transmission of TFCI is done in the data parts of the respective physical channel, this means TFCI and data bits are subject to the same spreading procedure as depicted in [8]. Hence the midamble structure and length is not changed. The TFCI information is to be transmitted directly adjacent to the midamble, possibly after the TPC. Figure 7 shows the position of the TFCI in a traffic burst, if no TPC is transmitted. Figure 8 shows the position of the TFCI in a traffic burst, if TPC is transmitted.



**Figure 7: Position of TFCI information in the traffic burst in case of no TPC**



**Figure 8: Position of TFCI information in the traffic burst in case of TPC**

Two examples of TFCI transmission in the case of multiple DPCHs used for a connection are given in the figure 9 and figure 10 below. Combinations of the two schemes shown are also applicable. It should be noted that the SF can vary for the DPCHs not carrying TFCI information.



**Figure 9: Example of TFCI transmission with physical channels multiplexed in code domain**



**Figure 10: Example of TFCI transmission with physical channels multiplexed in time domain**

### 5.2.2.2 Transmission of TPC

Both burst types 1 and 2 for dedicated channels provide the possibility for transmission of TPC in uplink.

The transmission of TPC is negotiated at call setup and can be re-negotiated during the call. If applied, transmission of TPC is done in the data parts of the traffic burst. Hence the midamble structure and length is not changed. The TPC information is to be transmitted directly after the midamble. Figure 11 shows the position of the TPC in a traffic burst.

For every user the TPC information is to be transmitted once per frame. If the TPC is applied, then it is always transmitted using the first allocated channelisation code and the first allocated timeslot, according to the order in the higher layer allocation message. The TPC is spread with the same spreading factor (SF) and spreading code as the data parts of the respective physical channel.



**Figure 11: Position of TPC information in the traffic burst**

### 5.2.2.3 Timeslot formats

#### 5.2.2.3.1 Downlink timeslot formats

The downlink timeslot format depends on the spreading factor, midamble length and on the number of the TFCI bits, as depicted in the table 4a.

**Table 4a: Time slot formats for the Downlink**

| Slot Format # | Spreading Factor | Midamble length (chips) | N <sub>TFCI</sub> (bits) | Bits/slot | N <sub>Data/Slot</sub> (bits) | N <sub>data/data field</sub> (bits) |
|---------------|------------------|-------------------------|--------------------------|-----------|-------------------------------|-------------------------------------|
| 0             | 16               | 512                     | 0                        | 244       | 244                           | 122                                 |
| 1             | 16               | 512                     | 4                        | 244       | 240                           | 120                                 |
| 2             | 16               | 512                     | 8                        | 244       | 236                           | 118                                 |
| 3             | 16               | 512                     | 16                       | 244       | 228                           | 114                                 |
| 4             | 16               | 512                     | 32                       | 244       | 212                           | 106                                 |
| 5             | 16               | 256                     | 0                        | 276       | 276                           | 138                                 |
| 6             | 16               | 256                     | 4                        | 276       | 272                           | 136                                 |
| 7             | 16               | 256                     | 8                        | 276       | 268                           | 134                                 |
| 8             | 16               | 256                     | 16                       | 276       | 260                           | 130                                 |
| 9             | 16               | 256                     | 32                       | 276       | 244                           | 122                                 |
| 10            | 1                | 512                     | 0                        | 3904      | 3904                          | 1952                                |
| 11            | 1                | 512                     | 4                        | 3904      | 3900                          | 1950                                |
| 12            | 1                | 512                     | 8                        | 3904      | 3896                          | 1948                                |
| 13            | 1                | 512                     | 16                       | 3904      | 3888                          | 1944                                |
| 14            | 1                | 512                     | 32                       | 3904      | 3872                          | 1936                                |
| 15            | 1                | 256                     | 0                        | 4416      | 4416                          | 2208                                |
| 16            | 1                | 256                     | 4                        | 4416      | 4412                          | 2206                                |
| 17            | 1                | 256                     | 8                        | 4416      | 4408                          | 2204                                |
| 18            | 1                | 256                     | 16                       | 4416      | 4400                          | 2200                                |
| 19            | 1                | 256                     | 32                       | 4416      | 4384                          | 2192                                |

### 5.2.2.3.2 Uplink timeslot formats

The uplink timeslot format depends on the spreading factor, midamble length, the TPC presence and on the number of the TFCI bits. In the case that TPC is used, different amount of bits are mapped to the two data fields. The timeslot formats are depicted in the table 4b.

**Table 4b: Timeslot formats for the Uplink**

| Slot Format # | Spreading Factor | Midamble length (chips) | N <sub>TFCI</sub> (bits) | N <sub>TPC</sub> (bits) | Bits/slot | N <sub>Data/Slot</sub> (bits) | N <sub>data/data field(1)</sub> (bits) | N <sub>data/data field(2)</sub> (bits) |
|---------------|------------------|-------------------------|--------------------------|-------------------------|-----------|-------------------------------|----------------------------------------|----------------------------------------|
| 0             | 16               | 512                     | 0                        | 0                       | 244       | 244                           | 122                                    | 122                                    |
| 1             | 16               | 512                     | 4                        | 0                       | 244       | 240                           | 120                                    | 120                                    |
| 2             | 16               | 512                     | 8                        | 0                       | 244       | 236                           | 118                                    | 118                                    |
| 3             | 16               | 512                     | 16                       | 0                       | 244       | 228                           | 114                                    | 114                                    |
| 4             | 16               | 512                     | 32                       | 0                       | 244       | 212                           | 106                                    | 106                                    |
| 5             | 16               | 512                     | 0                        | 2                       | 244       | 242                           | 122                                    | 120                                    |
| 6             | 16               | 512                     | 4                        | 2                       | 244       | 238                           | 120                                    | 118                                    |
| 7             | 16               | 512                     | 8                        | 2                       | 244       | 234                           | 118                                    | 116                                    |
| 8             | 16               | 512                     | 16                       | 2                       | 244       | 226                           | 114                                    | 112                                    |
| 9             | 16               | 512                     | 32                       | 2                       | 244       | 210                           | 106                                    | 104                                    |
| 10            | 16               | 256                     | 0                        | 0                       | 276       | 276                           | 138                                    | 138                                    |
| 11            | 16               | 256                     | 4                        | 0                       | 276       | 272                           | 136                                    | 136                                    |
| 12            | 16               | 256                     | 8                        | 0                       | 276       | 268                           | 134                                    | 134                                    |
| 13            | 16               | 256                     | 16                       | 0                       | 276       | 260                           | 130                                    | 130                                    |
| 14            | 16               | 256                     | 32                       | 0                       | 276       | 244                           | 122                                    | 122                                    |
| 15            | 16               | 256                     | 0                        | 2                       | 276       | 274                           | 138                                    | 136                                    |
| 16            | 16               | 256                     | 4                        | 2                       | 276       | 270                           | 136                                    | 134                                    |
| 17            | 16               | 256                     | 8                        | 2                       | 276       | 266                           | 134                                    | 132                                    |
| 18            | 16               | 256                     | 16                       | 2                       | 276       | 258                           | 130                                    | 128                                    |
| 19            | 16               | 256                     | 32                       | 2                       | 276       | 242                           | 122                                    | 120                                    |
| 20            | 8                | 512                     | 0                        | 0                       | 488       | 488                           | 244                                    | 244                                    |
| 21            | 8                | 512                     | 4                        | 0                       | 488       | 484                           | 242                                    | 242                                    |
| 22            | 8                | 512                     | 8                        | 0                       | 488       | 480                           | 240                                    | 240                                    |
| 23            | 8                | 512                     | 16                       | 0                       | 488       | 472                           | 236                                    | 236                                    |
| 24            | 8                | 512                     | 32                       | 0                       | 488       | 456                           | 228                                    | 228                                    |
| 25            | 8                | 512                     | 0                        | 2                       | 488       | 486                           | 244                                    | 242                                    |
| 26            | 8                | 512                     | 4                        | 2                       | 488       | 482                           | 242                                    | 240                                    |
| 27            | 8                | 512                     | 8                        | 2                       | 488       | 478                           | 240                                    | 238                                    |
| 28            | 8                | 512                     | 16                       | 2                       | 488       | 470                           | 236                                    | 234                                    |
| 29            | 8                | 512                     | 32                       | 2                       | 488       | 454                           | 228                                    | 226                                    |
| 30            | 8                | 256                     | 0                        | 0                       | 552       | 552                           | 276                                    | 276                                    |
| 31            | 8                | 256                     | 4                        | 0                       | 552       | 548                           | 274                                    | 274                                    |
| 32            | 8                | 256                     | 8                        | 0                       | 552       | 544                           | 272                                    | 272                                    |
| 33            | 8                | 256                     | 16                       | 0                       | 552       | 536                           | 268                                    | 268                                    |
| 34            | 8                | 256                     | 32                       | 0                       | 552       | 520                           | 260                                    | 260                                    |
| 35            | 8                | 256                     | 0                        | 2                       | 552       | 550                           | 276                                    | 274                                    |
| 36            | 8                | 256                     | 4                        | 2                       | 552       | 546                           | 274                                    | 272                                    |
| 37            | 8                | 256                     | 8                        | 2                       | 552       | 542                           | 272                                    | 270                                    |
| 38            | 8                | 256                     | 16                       | 2                       | 552       | 534                           | 268                                    | 266                                    |
| 39            | 8                | 256                     | 32                       | 2                       | 552       | 518                           | 260                                    | 258                                    |
| 40            | 4                | 512                     | 0                        | 0                       | 976       | 976                           | 488                                    | 488                                    |
| 41            | 4                | 512                     | 4                        | 0                       | 976       | 972                           | 486                                    | 486                                    |
| 42            | 4                | 512                     | 8                        | 0                       | 976       | 968                           | 484                                    | 484                                    |
| 43            | 4                | 512                     | 16                       | 0                       | 976       | 960                           | 480                                    | 480                                    |
| 44            | 4                | 512                     | 32                       | 0                       | 976       | 944                           | 472                                    | 472                                    |
| 45            | 4                | 512                     | 0                        | 2                       | 976       | 974                           | 488                                    | 486                                    |
| 46            | 4                | 512                     | 4                        | 2                       | 976       | 970                           | 486                                    | 484                                    |
| 47            | 4                | 512                     | 8                        | 2                       | 976       | 966                           | 484                                    | 482                                    |

| Slot Format # | Spreading Factor | Midamble length (chips) | N <sub>TFCI</sub> (bits) | N <sub>TPC</sub> (bits) | Bits/slot | N <sub>Data/Slot</sub> (bits) | N <sub>data/data field(1)</sub> (bits) | N <sub>data/data field(2)</sub> (bits) |
|---------------|------------------|-------------------------|--------------------------|-------------------------|-----------|-------------------------------|----------------------------------------|----------------------------------------|
| 48            | 4                | 512                     | 16                       | 2                       | 976       | 958                           | 480                                    | 478                                    |
| 49            | 4                | 512                     | 32                       | 2                       | 976       | 942                           | 472                                    | 470                                    |
| 50            | 4                | 256                     | 0                        | 0                       | 1104      | 1104                          | 552                                    | 552                                    |
| 51            | 4                | 256                     | 4                        | 0                       | 1104      | 1100                          | 550                                    | 550                                    |
| 52            | 4                | 256                     | 8                        | 0                       | 1104      | 1096                          | 548                                    | 548                                    |
| 53            | 4                | 256                     | 16                       | 0                       | 1104      | 1088                          | 544                                    | 544                                    |
| 54            | 4                | 256                     | 32                       | 0                       | 1104      | 1072                          | 536                                    | 536                                    |
| 55            | 4                | 256                     | 0                        | 2                       | 1104      | 1102                          | 552                                    | 550                                    |
| 56            | 4                | 256                     | 4                        | 2                       | 1104      | 1098                          | 550                                    | 548                                    |
| 57            | 4                | 256                     | 8                        | 2                       | 1104      | 1094                          | 548                                    | 546                                    |
| 58            | 4                | 256                     | 16                       | 2                       | 1104      | 1086                          | 544                                    | 542                                    |
| 59            | 4                | 256                     | 32                       | 2                       | 1104      | 1070                          | 536                                    | 534                                    |
| 60            | 2                | 512                     | 0                        | 0                       | 1952      | 1952                          | 976                                    | 976                                    |
| 61            | 2                | 512                     | 4                        | 0                       | 1952      | 1948                          | 974                                    | 974                                    |
| 62            | 2                | 512                     | 8                        | 0                       | 1952      | 1944                          | 972                                    | 972                                    |
| 63            | 2                | 512                     | 16                       | 0                       | 1952      | 1936                          | 968                                    | 968                                    |
| 64            | 2                | 512                     | 32                       | 0                       | 1952      | 1920                          | 960                                    | 960                                    |
| 65            | 2                | 512                     | 0                        | 2                       | 1952      | 1950                          | 976                                    | 974                                    |
| 66            | 2                | 512                     | 4                        | 2                       | 1952      | 1946                          | 974                                    | 972                                    |
| 67            | 2                | 512                     | 8                        | 2                       | 1952      | 1942                          | 972                                    | 970                                    |
| 68            | 2                | 512                     | 16                       | 2                       | 1952      | 1934                          | 968                                    | 966                                    |
| 69            | 2                | 512                     | 32                       | 2                       | 1952      | 1918                          | 960                                    | 958                                    |
| 70            | 2                | 256                     | 0                        | 0                       | 2208      | 2208                          | 1104                                   | 1104                                   |
| 71            | 2                | 256                     | 4                        | 0                       | 2208      | 2204                          | 1102                                   | 1102                                   |
| 72            | 2                | 256                     | 8                        | 0                       | 2208      | 2200                          | 1100                                   | 1100                                   |
| 73            | 2                | 256                     | 16                       | 0                       | 2208      | 2192                          | 1096                                   | 1096                                   |
| 74            | 2                | 256                     | 32                       | 0                       | 2208      | 2176                          | 1088                                   | 1088                                   |
| 75            | 2                | 256                     | 0                        | 2                       | 2208      | 2206                          | 1104                                   | 1102                                   |
| 76            | 2                | 256                     | 4                        | 2                       | 2208      | 2202                          | 1102                                   | 1100                                   |
| 77            | 2                | 256                     | 8                        | 2                       | 2208      | 2198                          | 1100                                   | 1098                                   |
| 78            | 2                | 256                     | 16                       | 2                       | 2208      | 2190                          | 1096                                   | 1094                                   |
| 79            | 2                | 256                     | 32                       | 2                       | 2208      | 2174                          | 1088                                   | 1086                                   |
| 80            | 1                | 512                     | 0                        | 0                       | 3904      | 3904                          | 1952                                   | 1952                                   |
| 81            | 1                | 512                     | 4                        | 0                       | 3904      | 3900                          | 1950                                   | 1950                                   |
| 82            | 1                | 512                     | 8                        | 0                       | 3904      | 3896                          | 1948                                   | 1948                                   |
| 83            | 1                | 512                     | 16                       | 0                       | 3904      | 3888                          | 1944                                   | 1944                                   |
| 84            | 1                | 512                     | 32                       | 0                       | 3904      | 3872                          | 1936                                   | 1936                                   |
| 85            | 1                | 512                     | 0                        | 2                       | 3904      | 3902                          | 1952                                   | 1950                                   |
| 86            | 1                | 512                     | 4                        | 2                       | 3904      | 3898                          | 1950                                   | 1948                                   |
| 87            | 1                | 512                     | 8                        | 2                       | 3904      | 3894                          | 1948                                   | 1946                                   |
| 88            | 1                | 512                     | 16                       | 2                       | 3904      | 3886                          | 1944                                   | 1942                                   |
| 89            | 1                | 512                     | 32                       | 2                       | 3904      | 3870                          | 1936                                   | 1934                                   |
| 90            | 1                | 256                     | 0                        | 0                       | 4416      | 4416                          | 2208                                   | 2208                                   |
| 91            | 1                | 256                     | 4                        | 0                       | 4416      | 4412                          | 2206                                   | 2206                                   |
| 92            | 1                | 256                     | 8                        | 0                       | 4416      | 4408                          | 2204                                   | 2204                                   |
| 93            | 1                | 256                     | 16                       | 0                       | 4416      | 4400                          | 2200                                   | 2200                                   |
| 94            | 1                | 256                     | 32                       | 0                       | 4416      | 4384                          | 2192                                   | 2192                                   |
| 95            | 1                | 256                     | 0                        | 2                       | 4416      | 4414                          | 2208                                   | 2206                                   |
| 96            | 1                | 256                     | 4                        | 2                       | 4416      | 4410                          | 2206                                   | 2204                                   |
| 97            | 1                | 256                     | 8                        | 2                       | 4416      | 4406                          | 2204                                   | 2202                                   |

| Slot Format # | Spreading Factor | Midamble length (chips) | N <sub>TFCI</sub> (bits) | N <sub>TPC</sub> (bits) | Bits/slot | N <sub>Data/Slot</sub> (bits) | N <sub>data/data field(1)</sub> (bits) | N <sub>data/data field(2)</sub> (bits) |
|---------------|------------------|-------------------------|--------------------------|-------------------------|-----------|-------------------------------|----------------------------------------|----------------------------------------|
| 98            | 1                | 256                     | 16                       | 2                       | 4416      | 4398                          | 2200                                   | 2198                                   |
| 99            | 1                | 256                     | 32                       | 2                       | 4416      | 4282                          | 2192                                   | 2190                                   |

### 5.2.3 Training sequences for spread bursts

As explained in the section 5.2.1, two options are being considered for the spreading. The training sequences presented here are common to both options.

The training sequences, i.e. midambles, of different users active in the same time slot are time shifted versions of one single periodic basic code. Different cells use different periodic basic codes, i.e. different midamble sets. In this way a joint channel estimation for the channel impulse responses of all active users within one time slot can be done by one single cyclic correlation. The different user specific channel impulse response estimates are obtained sequentially in time at the output of the correlator. Following this principle it is shown hereafter how to derive the midambles from the periodic basic code.

Section 5.2.2 contains a description of the spread speech/data bursts. These bursts contain L<sub>m</sub> midamble chips, which are also termed midamble elements. The L<sub>m</sub> elements  $\underline{m}_i^{(k)}$ ; i=1,...,L<sub>m</sub>; k=1,...,K; of the midamble codes  $\underline{m}^{(k)}$ ; k=1,...,K; are taken from the complex set

$$\underline{V}_m = \{1, j, -1, -j\} \quad (1)$$

K is the maximum number of users, i.e. the available number of spreading codes per time slot.

The elements  $\underline{m}_i^{(k)}$  of the complex midamble codes  $\underline{m}^{(k)}$  fulfil the relation

$$\underline{m}_i^{(k)} = (j)^i \cdot m_i^{(k)} \quad m_i^{(k)} \in \{1, -1\}, i = 1, \dots, L_m; k = 1, \dots, K. \quad (2)$$

Hence, the elements  $\underline{m}_i^{(k)}$  of the complex midamble codes  $\underline{m}^{(k)}$  of the K users are alternating real and imaginary.

With W being the number of taps of the impulse response of the mobile radio channels, the L<sub>m</sub> binary elements  $m_i^{(k)}$ ; i=1,...,L<sub>m</sub>; k=1,...,K; of (2) for the complex midambles  $\underline{m}^{(k)}$ ; k=1,...,K; of the K users are generated according to the following method from a single periodic basic code

$$\mathbf{m} = (m_1, m_2, \dots, m_{L_m + (K'-1)W + \lfloor P/K \rfloor})^T \quad m_i \in \{1, -1\}, i = 1, \dots, (L_m + (K'-1)W + \lfloor P/K \rfloor). \quad (3)$$

$\lfloor x \rfloor$  denotes the largest integer smaller or equal to x, K' = K/2.

The elements  $m_i$ ; i=1,...,(L<sub>m</sub> + (K'-1)W +  $\lfloor P/K \rfloor$ ), of (3) fulfil the relation

$$m_i = m_{i-P} \text{ for the subset } i = (P+1), \dots, (L_m + (K'-1)W + \lfloor P/K \rfloor). \quad (4)$$

The P elements  $m_i$ ; i=1,...,P, of one period of m according to (3) are contained in the vector

$$\mathbf{m}_P = (m_1, m_2, \dots, m_P)^T. \quad (5)$$

With  $\mathbf{m}$  according to (3) the L<sub>m</sub> binary elements  $m_i^{(k)}$ ; i=1,...,L<sub>m</sub>; k=1,...,K; of (2) for the midambles of the first K' users are generated based on the following formula

$$m_i^{(k)} = m_{i+(K'-k)W} \quad i = 1, \dots, L_m; k = 1, \dots, K'. \quad (6)$$

The midambles for the second K' users are generated based on a slight modification of this formula introducing intermediate shifts

$$m_i^{(k)} = m_{i+(K-k)W+\lfloor P/K \rfloor} \quad i=1, \dots, L_m; k=K'+1, \dots, K. \quad (7)$$

Whether intermediate shifts are allowed in a cell is broadcast on the BCH.

In the following the term 'a midamble code set' or 'a midamble code family' denotes K specific midamble codes  $\underline{\mathbf{m}}^{(k)}$ ;  $k=1, \dots, K$ . Different midamble code sets  $\underline{\mathbf{m}}^{(k)}$ ;  $k=1, \dots, K$ ; are specified based on different periods  $\mathbf{m}_p$  according to (5).

In adjacent cells of the cellular mobile radio system, different midamble codes sets  $\underline{\mathbf{m}}^{(k)}$ ;  $k=1, \dots, K$ ; should be used to guarantee a proper channel estimation.

As mentioned above a single midamble code set  $\underline{\mathbf{m}}^{(k)}$ ;  $k=1, \dots, K$ ; consisting of K midamble codes is based on a single period  $\mathbf{m}_p$  according to (5).

In the Annex A the periods  $\mathbf{m}_p$  according to (5), i.e. the Basic Midamble Codes, which shall be used to generate different midamble code sets  $\underline{\mathbf{m}}^{(k)}$ ;  $k=1, \dots, K$ ; are listed in tables in a hexadecimal representation. As shown in table 5 always 4 binary elements  $m_i$  are mapped on a single hexadecimal digit.

**Table 5: Mapping of 4 binary elements  $m_i$  on a single hexadecimal digits**

| 4 binary elements $m_i$ | Mapped on hexadecimal digit |
|-------------------------|-----------------------------|
| -1 -1 -1 -1             | 0                           |
| -1 -1 -1 1              | 1                           |
| -1 -1 1 -1              | 2                           |
| -1 -1 1 1               | 3                           |
| -1 1 -1 -1              | 4                           |
| -1 1 -1 1               | 5                           |
| -1 1 1 -1               | 6                           |
| -1 1 1 1                | 7                           |
| 1 -1 -1 -1              | 8                           |
| 1 -1 -1 1               | 9                           |
| 1 -1 1 -1               | A                           |
| 1 -1 1 1                | B                           |
| 1 1 -1 -1               | C                           |
| 1 1 -1 1                | D                           |
| 1 1 1 -1                | E                           |
| 1 1 1 1                 | F                           |

As different Basic Midamble Codes are required for different burst formats, the Annex A shows the codes  $m_{PL}$  for burst type 1 and  $m_{PS}$  for burst type 2. It should be noted that the different burst types must not be mixed in the same timeslot of one cell.

### 5.2.3.1 Midamble Transmit Power

If in the downlink all users in one time slot have a common midamble, the transmit power of this common midamble is such that there is no power offset between the data part and the midamble part of the transmit signal within the time slot.

In the case of user specific midambles, the transmit power of the user specific midamble is such that there is no power offset between the data parts and the midamble part for this user within one slot.

### 5.2.4 Beamforming and Transmit Diversity

When DL beamforming or TX Diversity is used, at least that user to which beamforming/Tx Diversity is applied and which has a dedicated channel shall get one individual midamble according to chapter 5.2.3, even in DL.

## 5.3 Common physical channels

### 5.3.1 Primary common control physical channel (P-CCPCH)

The BCH as described in section 4.1.2 is mapped onto the Primary Common Control Physical Channel (P-CCPCH). The position (time slot / code) of the P-CCPCH is known from the Physical Synchronisation Channel (PSCH), see section 5.3.4.

#### 5.3.1.1 P-CCPCH Spreading

The P-CCPCH uses fixed spreading with a spreading factor SF = 16 as described in section 5.2.1.1. The P-CCPCH always uses channelisation code  $a_{Q=16}^{(k=1)}$ .

#### 5.3.1.2 P-CCPCH Burst Types

The burst type 1 as described in section 5.2.2 is used for the P-CCPCH. No TFCI is applied for the P-CCPCH.

#### 5.3.1.3 P-CCPCH Training sequences

The training sequences, i.e. midambles, as described in section 5.2.3 are used for the P-CCPCH. For those timeslots in which the P-CCPCH is transmitted, the midambles  $m^{(1)}$ ,  $m^{(2)}$ ,  $m^{(9)}$  and  $m^{(10)}$  are reserved for P-CCPCH in order to support Block STTD antenna diversity and the beacon function, see 5.3.1.4 and 5.4. The use of midambles depends on whether Block STTD is applied to P-CCPCH, see 5.3.1.4.

#### 5.3.1.4 Block STTD antenna diversity for P-CCPCH

Block STTD antenna diversity can be optionally applied for the P-CCPCH. Its support is mandatory for the UE. Two possibilities exist :

- If no antenna diversity is applied to P-CCPCH,  $m^{(1)}$  is used and  $m^{(2)}$  is left unused.
- If Block STTD antenna diversity is applied to P-CCPCH,  $m^{(1)}$  is used for the first antenna and  $m^{(2)}$  is used for the diversity antenna.

## 5.3.2 Secondary common control physical channel (S-CCPCH)

PCH and FACH as described in section 4.1.2 are mapped onto one or more secondary common control physical channels (S-CCPCH). In this way the capacity of PCH and FACH can be adapted to the different requirements.

#### 5.3.2.1 S-CCPCH Spreading

The S-CCPCH uses fixed spreading with a spreading factor SF = 16 as described in section 5.2.1.1.

#### 5.3.2.2 S-CCPCH Burst Types

The burst types 1 or 2 as described in section 5.2.2 are used for the S-CCPCHs. TFCI may be applied for S-CCPCHs.

#### 5.3.2.3 S-CCPCH Training sequences

The training sequences, i.e. midambles, as described in section 5.2.3 are used for the S-CCPCH.

### 5.3.3 The physical random access channel (PRACH)

The RACH or in case of ODMA networks the ORACH as described in section 4.1.2 are mapped onto one or more uplink physical random access channels (PRACH). In such a way the capacity of RACH and ORACH can be flexibly scaled depending on the operators need.

This description of the physical properties of the PRACH also applies to bursts carrying other signaling or user traffic if they are scheduled on a time slot which is (partly) allocated to the RACH or ORACH.

#### 5.3.3.1 PRACH Spreading

The uplink PRACH uses either spreading factor SF=16 or SF=8 as described in section 5.2.1.1. The set of admissible spreading codes for use on the PRACH and the associated spreading factors are broadcast on the BCH (within the RACH configuration parameters on the BCH).

#### 5.3.3.2 PRACH Burst Types

The mobile stations send the uplink access bursts randomly in the PRACH. The PRACH burst consists of two data symbol fields, a midamble and a guard period. The second data symbol field is shorter than the first symbol data field by 96 chips in order to provide additional guard time at the end of the PRACH time slot.

The precise number of collision groups depends on the spreading codes (i.e. the selected RACH configuration. The access burst is depicted in figure 10, the contents of the access burst fields are listed in table 8 and table 9.



**Figure 12: PRACH burst, GP denotes the guard period**

**Table 8: number of symbols per data field in PRACH burst**

| Spreading factor (Q) | Number of symbols in data field 1 | Number of symbols in data field 2 |
|----------------------|-----------------------------------|-----------------------------------|
| 8                    | 122                               | 110                               |
| 16                   | 61                                | 55                                |

**Table 9: The contents of the PRACH burst field**

| Chip number (CN) | Length of field in chips | Length of field in symbols | Contents of field |
|------------------|--------------------------|----------------------------|-------------------|
| 0-975            | 976                      | cf table 1                 | Data symbols      |
| 976-1487         | 512                      | -                          | Midamble          |
| 1488-2367        | 880                      | cf table 1                 | Data symbols      |
| 2368-2559        | 192                      | -                          | Guard period      |

#### 5.3.3.3 PRACH Training sequences

The training sequences, i.e. midambles, of different users active in the same time slot are time shifted versions of a single periodic basic code. The basic midamble codes used for PRACH bursts are the same as for burst type 1 and are shown in Annex A. The necessary time shifts are obtained by choosing either *all k=1,2,3,...,K'* (for cells with small radius) or *uneven k=1,3,5,...≤K'* (for cells with large radius). Different cells use different periodic basic codes, i.e. different midamble sets.

For cells with large radius additional midambles may be derived from the time-inverted Basic Midamble Sequence. Thus, the second Basic Midamble Code  $m_2$  is the time inverted version of Basic Midamble Code  $m_1$ .

In this way, a joint channel estimation for the channel impulse responses of all active users within one time slot can be performed by a maximum of two cyclic correlations (in cells with small radius, a single cyclic correlator suffices). The

different user specific channel impulse response estimates are obtained sequentially in time at the output of the cyclic correlators.

### 5.3.3.4 Association between Training Sequences and Channelisation Codes

For the PRACH there exists a fixed association between the training sequence and the channelisation code. The generic rule to define this association is based on the order of the channelisation codes  $\mathbf{a}_Q^{(k)}$  given by  $k$  and the order of the midambles  $\mathbf{m}_j^{(k)}$  given by  $k$ , firstly, and  $j$ , secondly, with the constraint that the midamble for a spreading factor  $Q$  is the same as in the upper branch for the spreading factor  $2Q$ . The index  $j=1$  or  $2$  indicates whether the original Basic Midamble Sequence ( $j=1$ ) or the time-inverted Basic Midamble Sequence is used ( $j=2$ ).

- For the case that all  $k$  are allowed and only one periodic basic code  $\mathbf{m}_1$  is available for the RACH, the association depicted in figure 13 is straightforward.
- For the case that only odd  $k$  are allowed the principle of the association is shown in figure 14. This association is applied for one and two basic periodic codes.



**Figure 13: Association of Midambles to Channelisation Codes in the OVSF tree for all  $k$**



**Figure 14: Association of Midambles to Channelisation Codes in the OVSF tree for odd  $k$**

### 5.3.4 The physical synchronisation channel (PSCH)

In TDD mode code group of a cell can be derived from the synchronisation channel. Additional information, received from higher layers on SCH transport channel, is also transmitted to the UE in PSCH in case 3 from below. In order not to limit the uplink/downlink asymmetry the PSCH is mapped on one or two downlink slots per frame only.

There are three cases of PSCH and P-CCPCH allocation as follows:

- Case 1) PSCH and P-CCPCH allocated in TS# $k$ ,  $k=0\dots14$
- Case 2) PSCH allocated in two TS: TS# $k$  and TS# $k+8$ ,  $k=0\dots6$ ; P-CCPCH allocated in TS# $k$ .
- Case 3) PSCH allocated in two TS, TS# $k$  and TS# $k+8$ ,  $k=0\dots6$ , and the P-CCPCH allocated in TS# $i$ ,  $i=0\dots6$ , pointed by PSCH. Pointing is determined via the SCH from the higher layers.

These three cases are addressed by higher layers using the SCCH in TDD Mode. The position of PSCH (value of  $k$ ) in frame can change on a long term basis in any case.

Due to this PSCH scheme, the position of PCCPCH is known from the PSCH.

Figure 15 is an example for transmission of PSCH,  $k=0$ , of Case 2 or Case 3.



**Figure 15: Scheme for Physical Synchronisation channel PSCH consisting of one primary sequence  $C_p$  and N=3 parallel secondary sequences in slot k and k+8**

(example for k=0 in Case 2 or Case 3)

As depicted in figure 15, the PSCH consists of a primary and three secondary code sequences with 256 chips length. The primary and secondary code sequences are defined in [8] chapter 7 'Synchronisation codes'. The secondary codes are transmitted either in the I channel or the Q channel, depending on the code group.

Due to mobile to mobile interference, it is mandatory for public TDD systems to keep synchronisation between base stations. As a consequence of this, a capture effect concerning PSCH can arise. The time offset  $t_{\text{offset}}$  enables the system to overcome the capture effect.

The time offset  $t_{\text{offset}}$  is one of 32 values, depending on the cell parameter, thus on the code group of the cell, cf. 'table 7 Mapping scheme for Cell Parameters, Code Groups, Scrambling Codes, Midambles and  $t_{\text{offset}}$ ' in [8]. The exact value for  $t_{\text{offset}}$ , regarding column 'Associated  $t_{\text{offset}}$ ' in table 7 in [8] is given by:

$$\begin{aligned} t_{\text{offset},n} &= n \cdot T_c \left\lfloor \frac{2560 - 96 - 256}{31} \right\rfloor \\ &= n \cdot 71T_c ; \quad n = 0, \dots, 31 \end{aligned}$$

Please note that  $\lfloor x \rfloor$  denotes the largest integer number less or equal to x and that  $T_c$  denotes the chip duration.

### 5.3.5 Physical Uplink Shared Channel (PUSCH)

For Physical Uplink Shared Channel (PUSCH) the burst structure of DPCH as described in section 5.2 shall be used. User specific physical layer parameters like power control, timing advance or directive antenna settings are derived from the associated channel (FACH or DCH). PUSCH provides the possibility for transmission of TFCI in uplink.

### 5.3.6 Physical Downlink Shared Channel (PDSCH)

For Physical Downlink Shared Channel (PDSCH) the burst structure of DPCH as described in section 5.2 shall be used. User specific physical layer parameters like power control or directive antenna settings are derived from the associated channel (FACH or DCH). PDSCH provides the possibility for transmission of TFCI in downlink.

To indicate to the UE that there is data to decode on the DSCH, three signalling methods are available:

- 1) using the TFCI field of the associated channel or PDSCH
- 2) using on the DSCH user specific midamble derived from the set of midambles used for that cell
- 3) using higher layer signalling.

When the midamble based method is used, the UE shall decode the PDSCH if the PDSCH was transmitted with the midamble indicated for the UE by UTRAN.

### 5.3.7 The Page Indicator Channel (PICH)

The Page Indicator Channel (PICH) is a physical channel used to carry the Page Indicators (PI). The PICH substitutes one or more paging sub-channels that are mapped on a S-CCPCH, see 6.2.2. The page indicator indicates a paging message for one or more UEs that are associated with it.

The page indicators of length  $L_{PI}=2$ ,  $L_{PI}=4$  or  $L_{PI}=8$  symbols are transmitted in a normal burst (type 1 or 2) as seen in figure 16. The number of page indicators  $N_{PI}$  per time slot is given by the number  $L_{PI}$  of symbols for the page indicators and the burst type. In Table 5 this number is shown for the different possibilities of burst types and PI lengths.

**Table 5 Number  $N_{PI}$  of PI per time slot for the different burst types and PI lengths  $L_{PI}$**

|              | $L_{PI}=2$ | $L_{PI}=4$ | $L_{PI}=8$ |
|--------------|------------|------------|------------|
| Burst Type 1 | 61         | 30         | 15         |
| Burst Type 2 | 69         | 34         | 17         |

The same burst type is used for the PICH in every cell. In case of  $L_{PI}=4$  or  $L_{PI}=8$ , one symbol in each data part adjacent to the midamble is left over. These symbols are filled by dummy bits that are transmitted with the same power as the PI. Figure 16 shows examples for the transmission of page indicators in the different burst types for  $L_{PI}=4$ .



**Figure 16: Example of PI Transmission in PICH bursts of different types for  $L_{PI}=4$**

## 5.4 Beacon function of physical channels

For the purpose of measurements, a beacon function shall be provided by particular physical channels.

### 5.4.1 Location of physical channels with beacon function

The location of the physical channels with beacon function is determined by the PSCH and depends on the PSCH allocation case, see 5.3.4:

- Case 1) All physical channels that are allocated to channelisation code  $a_{Q=16}^{(k=1)}$  and in TS#k, k=0....14 shall provide the beacon function.

Case 2) All physical channels that are allocated to channelisation code  $a_{Q=16}^{(k=1)}$  and in TS#k and TS#k+8, k=0...6, shall provide the beacon function.

Case 3) All physical channels that are allocated to channelisation code  $a_{Q=16}^{(k=1)}$  and in TS#i and TS#i+8, i=0...6, pointed by PSCH, shall provide the beacon function.

Note that by this definition the P-CCPCH always provides the beacon function.

## 5.4.2 Physical characteristics of the beacon function

The physical channels providing the beacon function

- are transmitted with reference power,
- are transmitted without beamforming,
- use burst type 1,
- use midamble  $m^{(1)}$  and  $m^{(2)}$  exclusively in this time slot and
- midambles  $m^{(9)}$  and  $m^{(10)}$  are always left unused in this time slot, if 16 midambles are allowed in that cell.

The reference power corresponds to the sum of the power allocated to both midambles  $m^{(1)}$  and  $m^{(2)}$ . Two possibilities exist:

- If no Block STTD antenna diversity is applied to P-CCPCH, all the reference power of any physical channel providing the beacon function is allocated to  $m^{(1)}$ .
- If Block STTD antenna diversity is applied to P-CCPCH, for any physical channel providing the beacon function midambles  $m^{(1)}$  and  $m^{(2)}$  are each allocated half of the reference power. Midamble  $m^{(1)}$  is used for the first antenna and  $m^{(2)}$  is used for the diversity antenna. Block STTD encoding is used for the data in P-CCPCH, see [9]; for all other physical channels identical data sequences are transmitted on both antennas.

## 5.5 Midamble Allocation for Physical Channels

In general, midambles are part of the physical channel configuration which is performed by higher layers.

Optionally, if no midamble is allocated by higher layers, a default midamble allocation shall be used. This default midamble allocation is given by a fixed association between midambles and channelisation codes, see annex A.3, and shall be applied individually to all channelisation codes within one time slot. Different associations apply for different burst types and cell configurations with respect to the maximum number of midambles.

## 5.5.1 Midamble Allocation for DL Physical Channels

For DL physical channels the midamble allocation depends on whether the midambles are signalled by higher layers or by default and whether TxDiversity/Beamforming is used.

### 5.5.1.1 Midamble Allocation by signalling

#### 5.5.1.1.1 DL Physical Channels without TxDiversity/Beamforming

If the midamble is part of the physical channel configuration, a common midamble shall be assigned to all physical channels in one time slot, except for physical channels providing the beacon function, see 5.4. When PDSCH physical layer signalling based on the midamble is used, each UE that may share the PDSCH shall get an individual midamble, see 5.3.6.

### 5.5.1.1.2 DL Physical Channels with TxDiversity/Beamforming

When DL beamforming or TX Diversity is used, each user to which TxDiversity/Beamforming is applied and which has a dedicated channel shall get one individual midamble, see 5.2.4.

### 5.5.1.2 Midamble Allocation by default

If no midamble is allocated by signalling, the UE shall derive the midamble from the associated channelisation code and shall use an individual midamble for each channelisation code, except for physical channels providing the beacon function, see 5.4. For each association between midambles and channelisation codes in annex A.3, there is one primary channelisation code associated to each midamble. A set of secondary channelisation codes is associated to each primary channelisation code. All the secondary channelisation codes within a set use the same midamble as the primary channelisation code to which they are associated.

Higher layers shall allocate the channelisation codes in a particular order. Primary channelisation codes shall be allocated prior to associated secondary channelisation codes. If midambles are reserved for the beacon function, all primary and secondary channelisation codes that are associated with the reserved midambles shall not be used.

Primary and its associated secondary channelisation codes shall not be allocated to different UE's.

In the case that secondary channelisation codes are used, secondary channelisation codes of one set shall be allocated in ascending order, with respect to their numbering.

## 5.5.2 Midamble Allocation for UL Physical Channels

If the midamble is part of the physical channel configuration, an individual midamble shall be assigned to all UE's in one time slot.

If no midamble is allocated by higher layers, the UE shall derive the midamble from the assigned channelisation code as for DL physical channels. If the UE changes the SF according to the data rate, it shall always vary the channelisation code along the lower branch of the OVSF tree.

## 6 Mapping of transport channels to physical channels

This section describes the way in which transport channels are mapped onto physical resources, see figure 17.

| Transport Channels | Physical Channels                                   |
|--------------------|-----------------------------------------------------|
| DCH                | Dedicated Physical Channel (DPCH)                   |
| ODCH*              |                                                     |
| BCH                | Primary Common Control Physical Channel (P-CCPCH)   |
| FACH               | Secondary Common Control Physical Channel (S-CCPCH) |
| PCH                |                                                     |
| RACH               | Physical Random Access Channel (PRACH)              |
| ORACH*             |                                                     |
| SCH                | Physical Synchronisation Channel (PSCH)             |
| USCH               | Physical Uplink Shared Channel (PUSCH)              |
| DSCH               | Physical Downlink Shared Channel (PDSCH)            |
|                    | Page Indicator Channel (PICH)                       |

\* in case of ODMA networks

Figure 17: Transport channel to physical channel mapping

## 6.1 Dedicated Transport Channels

A dedicated transport channel is mapped onto one or more physical channels. An interleaving period is associated with each allocation. The frame is subdivided into slots that are available for uplink and downlink information transfer. The mapping of transport blocks on physical channels is described in TS25.222 ("multiplexing and channel coding").



**Figure 19: Mapping of PDU onto the physical bearer**

For NRT packet data services, shared channels (USCH and DSCH) can be used to allow efficient allocations for a short period of time.

An ODCH is also mapped onto one or more sets of slots and codes within a TDD frame as shown in figure 4. The actual transmission mode (i.e. combination of slots, codes, TX power, interleaving depth etc.) chosen for a relay link will be negotiated between nodes prior to transmission. Several of these transmission mode parameters can be adapted during transmission due to changes in propagation and data traffic.

## 6.2 Common Transport Channels

### 6.2.1 The Broadcast Channel (BCH)

The BCH is mapped onto the P-CCPCH. The secondary SCH indicates in which timeslot a mobile can find the P-CCPCH containing BCH. If the broadcast information requires more resources than provided by the P-CCPCH, the BCH in P-CCPCH will comprise a pointer to additional S-CCPCH resources for FACH in which this additional broadcast information shall be sent.

### 6.2.2 The Paging Channel (PCH)

The PCH is mapped onto one or several S-CCPCHs so that capacity can be matched to requirements. The location of the PCH is indicated on the BCH. It is always transmitted at a reference power level.

To allow an efficient DRX, the PCH is divided into several paging sub-channels within the allocated multiframe structure. Examples of multiframe structures are given in the Annex B of this document. Each paging sub-channel is mapped onto 2 consecutive frames that are allocated to the PCH on the same S-CCPCH. Layer 3 information to a particular paging group is transmitted only in the associated paging sub-channel. The assignment of UEs to paging groups is independent of the assignment of UEs to page indicators.

### 6.2.3 The Forward Channel (FACH)

The FACH is mapped onto one or several S-CCPCHs. The location of the FACH is indicated on the BCH and both, capacity and location can be changed, if required. FACH may or may not be power controlled.

### 6.2.4 The Random Access Channel (RACH)

The RACH has intraslot interleaving only and is mapped onto PRACH. The same slot may be used for PRACH by more than one cell. Multiple transmissions using different spreading codes may be received in parallel. More than one slot per frame may be administered for the PRACH. The location of slots allocated to PRACH is broadcast on the BCH. The PRACH uses open loop power control. The details of the employed open loop power control algorithm may be different from the corresponding algorithm on other channels.

### 6.2.5 The Synchronisation Channel (SCH)

The SCH is mapped onto the PSCH as described in section 5.4.

### 6.2.6 Common Transport Channels for ODMA networks

The ORACH is used to transfer short probes or short protocol data units (PDU) between one or more nodes for routing and resource allocation control.

To limit the transmission time of short probe PDUs on the ORACH then this data should be transmitted as one burst on one code. That is, one probe burst should be transmitted on one  $2560*T_c$  timeslot (which as described in section 5.1 would be configured as an ORACH slot).

Since the ORACH is a common control channel used to transfer probes between one or more nodes a common fixed spreading factor should be adopted.

### 6.2.7 The Uplink Shared Channel (USCH)

The uplink shared channel is mapped on one or several PUSCH, see section 5.5.

### 6.2.8 The Downlink Shared Channel (DSCH)

The downlink shared channel is mapped on one or several PDSCH, see section 5.6.

---

## Annex A (Normative): Basic Midamble Codes

### A.1 Basic Midamble Codes for Burst Type 1 and PRACH Burst Type

In the case of burst type 1 (see section 5.2.2) or in the case of PRACH burst the midamble has a length of  $L_m=512$ , which is corresponding to:

$K'=8$ ;  $W=57$ ;  $P=456$ .

Depending on the possible delay spread cells are configured to use midambles which are generated from the Basic Midamble Codes (see table A-1)

- for all  $k=1,2,\dots,K$ ;  $K=2K'$  or
- for  $k=1,2,\dots,K'$ , only, or
- for odd  $k=1,3,5,\dots,\leq K'$ , only.

Depending on the cell size midambles for PRACH are generated from the Basic Midamble Codes (see table A-1)

- for  $k=1,2,\dots,K'$  or
- for odd  $k=1,3,5,\dots,\leq K'$ , only.

The cell configuration is broadcast on BCH.

The mapping of these Basic Midamble Codes to Cell Parameters is shown in TS25.223.

**Table A-1: Basic Midamble Codes  $m_p$  according to equation (5) from section 5.2.3 for case of burst type 1**

| Code ID    | Basic Midamble Codes $m_{PL}$ of length $P=456$                                                                         |
|------------|-------------------------------------------------------------------------------------------------------------------------|
| $m_{PL0}$  | 8DF65B01E4650910A4BF89992E48F43860B07FE55FA0028E454EDCD1F0A09A6F029668F55427<br>253FB8A71E5EF2EF360E539C489584413C6DC4  |
| $m_{PL1}$  | 4C63F9BC3FD7B655D5401653BE75E1018DC26D271AADA1CF13FD348386759506270F2F953E9<br>3A44468E0A76605EAE8526225903B1201077602  |
| $m_{PL2}$  | 8522611FFCAEB55A5F07D966036C852E7B15B893B3ABA9672C327380283D168564B8E1200F0E<br>2205AF1BB23A5867989785CFA2A6C131CFDC4   |
| $m_{PL3}$  | F58107E6B777C221999BDE9340E192DC6C31AB8AE85E70AA9BBEB39727435412A5A27C0EF7<br>3AB453ED0D28E5B032B94306EC1304736C91E922  |
| $m_{PL4}$  | 89670985013DFD2223164B68A63BD58C7867E97316742D3ABD6CBDA4FC4E08C0B0CBE44451<br>575C72F887507956BD1F27C466681800B4B016EE  |
| $m_{PL5}$  | FCDEF63500D6745CDB962594AF171740241E982E9210FC238C4DD85541F08C1A010F7B3161A<br>7F4DF19BAD916FD308AB1CED2A32538C184E92C  |
| $m_{PL6}$  | DB04CE77A5BA7C0E09B6D3551072B11A7A43B6A355C1D6FDCF725D587874999895748DD098<br>32ABC35CEC3008338249612E6FE5005E13B03103  |
| $m_{PL7}$  | D2F61A622D0BA9E448CD29587D398EF8CDC3B6582B6CDD50E9E20BF5FE2B3258041E14D608<br>21DC6725132C22D787CD5D497780D4241E3B420D  |
| $m_{PL8}$  | 7318524E62D806FA149ECC5435058A2B74111524B84727FE9A7923B4A1F0D8FCD89208F34BE<br>E5CADEB90130F9954BB30605A98C11045FF173D  |
| $m_{PL9}$  | 8E832B4FA1A11E0BF318E84F54725C8052E0D099EF0AF54BC342BEE44976C9F38DE701623C7<br>BF6474DF90D2E2222A4915C8080E7CD3EC84DAC  |
| $m_{PL10}$ | CFA5BAC90780876C417933C43103B55699A8AD51164E590AF9DA6AF0C18804E1F74862F00CE<br>7ECC899C85B6ABB0CAD5E50836AD7A39878FE2F  |
| $m_{PL11}$ | AD539094A19858A75458F1B98E286A4F7DC3A117083D04724CBE83F34102817C5531329CDB43<br>7FFF712241B644BDF0C1FEC8598A63C2F21BD7  |
| $m_{PL12}$ | BEB8483139529BDE23E42DA6AB8170DD0BFBB30CE28A4502FAF3C8EDA219B9A6D5B849D9C<br>9E4451F74E2408EA046061201E0C1D69CF48F3A94  |
| $m_{PL13}$ | C482462CA7846266060D21688BA00B72E1EC84A3D5B7194C8DA39E21A3CE12BF512C8AAB6A<br>7079F73C0D3E4F40AC55A4BCC453F1DFE3F6C82   |
| $m_{PL14}$ | 9663373935FD5C213AC58C0670206683D579D2526C05B0A81030DDF61A221D8A68EAD8D6F7A<br>A0D662C07C6DCD0115A54D39F03F7122B0675AC  |
| $m_{PL15}$ | 387397AE5CD3F2B3912C26B8F87CE82CEFEC55507DB08FB0C4CF2FD6858896201ACA726428<br>1D0298440DD3481E5E9DBB24C16F30EB7A22948A  |
| $m_{PL16}$ | AFe9266843C892571B6230D808788C63B9065EA3BDF687B92B8734A8D7099559FEA22C94165<br>76D0C087EB4503E87E356471B330182A24A3E6   |
| $m_{PL17}$ | 6E6C550A4CB74010F6C3E0328651DF421C456D9A5E8AE9D3946C10189D72B579184552EE3E7<br>99970969C870FE8A37B6C4BA890992103486DC0  |
| $m_{PL18}$ | D803CA71B6F99CFB3105D40F4695D61EB0B62E803F79302EE3D2A6BF12EA70D304B181E8B3<br>8B3B74F5022B67EB8109808C62532688C563D4BE  |
| $m_{PL19}$ | E599ED48D01772055DBE9D343A4EA5EABE643DA38F06904FC7523B08C4101F021B199AF759A<br>00D9AC298881D79413A77470992A75C771492D0  |
| $m_{PL20}$ | 9F30AC4162CE5D185953705F3D45F026F38E9B5721AEFE07370214D526A2C4B344B508B57BF<br>B2492320C05903C79CBEE08C6E7F218B57E14D6  |
| $m_{PL21}$ | B5971060DA84685B4D042ED0189FAF13C961B2EF61CC164E363B22AAB14AC8AF607906C1C6<br>E04F2054C687AA6741A9E70639857DA02B6FFFFFA |
| $m_{PL22}$ | 97135FC2226C4B4A5CBA5FCA3732763B87455F73A1148006F3DF214BD4C936D061E04045160<br>E2CE33B9CD09D08FDE2A37F4E998322B4401D27  |
| $m_{PL23}$ | 4D256D57C861B9791151A78D5299C56D116B6178B2A2D04BB95FB76540AF28341DC6EC4E7E<br>D3BF9E508478D9C8F44914805DA82429E1CF320E  |
| $m_{PL24}$ | 858EF5C84CE32D18D9ABA110EEA7474CF0CD70254D2928C3F4DFF6BB3A518587CADA190290<br>78AC90A8336C8178203BE3289E601F07D089CB64  |
| $m_{PL25}$ | 920A8796A511650AEF32F93DD3C39C624E07AE03CE8C96139973F54DCB9803C5164ADB502D<br>4FF561564D607037FCD172921F1982B102C3312C  |
| $m_{PL26}$ | 485C5DAE76B360A9C56E20B8422EA3E6ACF07CB093B5587CB0E6A5498A4714081EA98DBCD<br>B0482B26E0D097C0344473D233BEF3C8E440DEBF   |
| $m_{PL27}$ | 565A9D54EA789892B024F97E728E8EE112411942C48BD0C5BC8AA457D8DC9941F0F7424B386<br>43FFE6521CD306FBC56FE10F1428D4C245B5606  |
| $m_{PL28}$ | 5AEF2C0C2C378179A1AC36242E6B3EDB72C42D3624437674F8D51260C0898C201837CBA14E9<br>E23D1EF6451C4ACF27AB031F457A8A1BFD148AE  |
| $m_{PL29}$ | 87D8FE685417822A23D925307E6C11081ADAC4702BCCD9BE448E78984D109B50DEF5B7C58B<br>C71EA1F0A6826BA8AD1978843E7697F3E416AADA  |
| $m_{PL30}$ | 84802B72AF27B5BE724D1FB629E0E627BDB0D9061292562F98350C1D0C9D4B9D8E2BF71123C                                             |

| Code ID           | Basic Midamble Codes $m_{PL}$ of length $P=456$                                                                         |
|-------------------|-------------------------------------------------------------------------------------------------------------------------|
|                   | 82EBB161003AE9829E07244D78F19926F8847A2                                                                                 |
| m <sub>PL31</sub> | 8CCB5128238BCB088E30972D62792AEF02B9BBDDCAD68C9916C00BF91CBE788B0F03851FA<br>AF88605534FD73436C259D270B1013CB14226F658  |
| m <sub>PL32</sub> | 62F4E6FAC2BF1979CE6854AA2D33534BFB2F946519101A6589131C3640707D40E67ED804AF8<br>736AD213CAF5935741900061967E8285C27E34C  |
| m <sub>PL33</sub> | 4095E5B4EEAFCDF68A34B267EEA28D8444FA533900F41499E260D2E65C256A52E1DD5861F52<br>27C98E00687D107233F51A1167BCF72FB184654  |
| m <sub>PL34</sub> | 5630E9A79FCAD303404D9E5A802299162657AAC734761C6E90DA8BCE4F61A763E0BB48D3FE<br>B3F78468C828ABA4828DAD06E0F904CFD40421DC  |
| m <sub>PL35</sub> | CD12B24C0BCA8AAC1FCBF0500A3BC684A180E863D888F2506B48C68ECF17F76CB285991FB<br>A18EB6397211FAD002F482D57A258CD45DE3FF1A6  |
| m <sub>PL36</sub> | AFC2F2A50877286CD3405442730C45514F082D9EC296B367C0F64F04C4E0007DCA9E50BEED5<br>C102126E319ACBC64F1729272F2F72C9397029FE |
| m <sub>PL37</sub> | 18F89EE8589D20882A72A44DCCDF0050F0A3D88DBA6531614973D26905FDF41E3F779FF0648<br>E8AF1540928511BCF4C25D9C64AF34AC31B8965  |
| m <sub>PL38</sub> | F890D550F33F032ECD3A51FED427D634F64EB29AF1332A23CD961258E4BAED040E7B33691<br>8E250EC272A12816B9EBFFA1E0AE401185F08C10   |
| m <sub>PL39</sub> | ACE5DD61506047E80FB7D41BD3992DF4D7F18EB46CC145C0E9105428C2F8F299141F5D6669<br>1904A7DC2513A3B83994ACB1292246B32818FE9D  |
| m <sub>PL40</sub> | 150680FF900C9B46E1E24D54BE2238CB950A934E5CCDE9BC3939EB51CB0AE202B7D339EEC<br>2018B33A0AB9B63DA5D512D64FB58C0E51A1C82C2  |
| m <sub>PL41</sub> | 51A579EED2663A002D32D10A0753173612F4D5BA167D1807C61F25C4D42C063682E8E9DD019<br>F79D446A046EB3F75E50FEB228DC52F08E694B6  |
| m <sub>PL42</sub> | CDC644FE4C0C6897604F9D14D714123BF16FFF0E49F35F674908CA60653702FE27BCCA2A470<br>98453AF8661055C8C549EB6A951A8396AD4B94D  |
| m <sub>PL43</sub> | 750A10366C595373C5001CA3E4239764B1409D602CF6052B39BC6A3255A15FE06C782C4C5F8<br>47026A7E79838A2933A61C77BB6CBF5915B2DA5  |
| m <sub>PL44</sub> | B7490686D78E409082C4C48FE18D4C35429C20AADF96076B92FC4E85490664753DB0891A0B2<br>7FD849BB7FCA99E3B38F22F8C662852C0D35AA6  |
| m <sub>PL45</sub> | D86E1B575B47D23DA811806A54C231281F03317830E7BD305D3CAA7D6382A5233104CFD54D2<br>2DF9F34535E5B390D9040CF1375FEA44CEC29E2  |
| m <sub>PL46</sub> | 828655960C026EC67B683480992AC2ED2C43ABC606F5220C2945F373470BE7ED5BCCF7C1AA<br>0986BBCCC84F11F1658AA568FAA0A60C5F0B5BFA  |
| m <sub>PL47</sub> | D76230E02C8533653AAB99B288AA2ADE25A1C1BF28516C04239240EAF1EFC0B98974B51F886<br>861D8A1E9F5D62CFFEC309F071A9716B325101B  |
| m <sub>PL48</sub> | EA207662865B8A07D69648964DED818EE474A90B94473408871880E63EF0596B9FCFEC3C06B<br>86EA6AD2B06C91672EFB33C70241A5450B59B8A  |
| m <sub>PL49</sub> | 9CB5459549909835FAB22F0D99298C120ACF479F814CCE749079D40688F28101037762F125C7<br>76DA9C5FA1FCE0E76E452F8185354FDCDE94E2  |
| m <sub>PL50</sub> | 227506304AEC1D6F93569B51FDC3405A0F38194F65BE17163A3CB9827A35AECEA757D020FE2<br>49377ECD561428A38FEED004EC859C272563185  |
| m <sub>PL51</sub> | 96B9AEC9938910F0E533422A3977519B05CD4AD3909BC15A7502D48D49C124FA192A8E57027<br>CFEB11DF542010603CE5C9FDF8E626D4FBF8CF4  |
| m <sub>PL52</sub> | A6AAD06E095A9BE0BD9F8A2ED40C3CBDBAE91C700CBB778C8696CC06F3A675C16BDB2918<br>E5F2111005A8727206DC6A9684E05655185C398EEB  |
| m <sub>PL53</sub> | CD168D384A78DA172991AD333EE2A9880905AFE59E2A2A4AC4414C40F82874F98A3CBE7B44<br>F4C7F4710B35FD88AFC0399FAEB070EB9CA4D30A  |
| m <sub>PL54</sub> | 22016CA87AD1549174A8699DD65599697871091457E83E0912E7E77A06531C209394D283D18A<br>38662B73681DD9C5BF330FED978BDA7D487CA8  |
| m <sub>PL55</sub> | B9401B0843AA6F7827A13BD66C92287E8886C31EB5B90B82B472CCD6DA3D8D4FBF78B8F84<br>96DFA8252B06429D5DD17142F1C908ACCD70EA0C   |
| m <sub>PL56</sub> | E42B9EFDC5D09AC27B3C7DA28D02493A70521223B9D7A76A9D13E9C171017964D16A70C08E<br>AD02C3DC948889C23E365AFCF01BF20B89B0BF5C  |
| m <sub>PL57</sub> | 9DA0180168DB915E9F3597B59312198E1B5CC00D743C2ECB0DBAADA3E35A2465ED1EAA9D7<br>4734D49A313CE4DFF020D0760E3153DC485603943  |
| m <sub>PL58</sub> | B6C966619ECB98191D719C187C07BD503425650CAA3A2D1F2DF5212B1441D7A0C1D36A4C9C<br>2550240AD17CA43BB3943DFFFBF1E283D81299CC  |
| m <sub>PL59</sub> | DB0E8C41F08A03D477C1AA548799274C4BF3EB68F2636166FDC8D4B1E7132539930297E228B<br>A232BB5C279FA5ECA3AC10E24361AF050A453B8  |
| m <sub>PL60</sub> | 89BCE2DE2974EEBA833CF32F224C85A2891484478527DB48FA6ECEA84C5E288CC3914CB54A<br>DA0476278750187F68FBEA41017E1E58DF1A5A3D  |
| m <sub>PL61</sub> | 70A457D1314A278625443EEB52520815EC92CEF17417B97440DCB531BC1CE83212F63270418<br>D0FBDE71F6DB9E0EA8772E1E4535B6633E4425   |
| m <sub>PL62</sub> | C388460AD54B36C4452CF0433BD347100ACCC24C79C535AD3E1F23FE0425E93A044C553BFA                                              |

| Code ID    | Basic Midamble Codes $m_{PL}$ of length $P=456$                                                                    |
|------------|--------------------------------------------------------------------------------------------------------------------|
|            | 116E09AA4BB32F13CFA76FBA1BC17520F45EFD44                                                                           |
| $m_{PL63}$ | 0BAFCADCDF9AA2846681782CD3B90CA036A863C78EE1507620BC394D0C6804B4C97A15BC9C0D7B79E6892EA1BFF1A0DD9573A9213AB140D0D2 |
| $m_{PL64}$ | 833B0226789A62882FCD27A30885E67872B1A1C2FA484AD498011599DD57E8E2A07A560B47167AA5F60EF47177DBB1632D5387A2896348640B |
| $m_{PL65}$ | 8F52820323ABA5E6C6B465821B621600B980E59F53A599DA5646BA103214336836CF17E3386CE4FB2BC5F25CCB30CF7F500546828EC8786B8E |
| $m_{PL66}$ | E2E9A29C3C8207B9A4508FD2F667A159F068EEE8D00686F46EA904C3692C1D79DFF1B32E5103720D47B4B58AC35384A26087027E141B3126A8 |
| $m_{PL67}$ | 70E7C39FD2D3AE1DCE341699A544D801A8688A6EE47C5CB3630022147DDC06241FC5337A348A462B2472DEC5E104DD520ADA5114DB065D4B0D |
| $m_{PL68}$ | 9E3483CAB164BD053C4971D4D87494CC689033D589EF80E5453376E4A8DCC02183B98C36B0FF7DDC0AD07FCE8B4D5164371BD03A2110AD1247 |
| $m_{PL69}$ | 04DA1C649B0608938DAADD3FE920A4F681690C54505429DBDCDCF10067AB5714BCDDFE1F28692710F794765781C1D233344E119BEE8A8416DC |
| $m_{PL70}$ | 7A18D6D30BDF44410714C3DCA27D8F9EA8A542D87122205640B98313C91AD9A0B993A5A7BC3E035F93B88BBE6D4204BC82A9FA8D4C1A7618CF |
| $m_{PL71}$ | EB9525E10265A48733C8E0E77E459310112A71DCA680F68AC044B64BC0A31D02EEA0F7ACAAAB7F1E574E94FEA2D1301CB14B03263DA8122B76 |
| $m_{PL72}$ | E706C6ED2D6F89153835079BE0C6D45310845EF2F9F6C6AE91B7419810508BA501C0148BF09955BAD90D6391BA8EBA5CEFBD23221CC75143D7 |
| $m_{PL73}$ | DF071A10AC4120CD1431590BEDCFF9483CA7047B19590D035D309240BDB4264E9A3A2761402EC97FD8BC51B4AF32E37FBC47162A2357D18751 |
| $m_{PL74}$ | F0F952B2238139F46D8254D1A2C1C22A16BA71EC0C0C900ED1442452D7F44C798BC65FF40671B88074BA0B74C6510996EEAC495C5B49C37DEB |
| $m_{PL75}$ | 1C86BD82EDA81FD65418D3837B5552A853791456D93B06C62C650D86CFBEC269AFFD772763064062C03751B9428C6DA2E60383025F9E404B70 |
| $m_{PL76}$ | B390978DD2552C88AABA7838489A6F5A8E9C41E95FFA2215819BF8A5BFE39C8A706CC658E549E966611B843A1468406C41C09D1560BEDA4F1B |
| $m_{PL77}$ | 1A69EC9D053C7E84BAE7A48CCC71857D0C6B06D1065E3EA4633B133AA022B8104F6EE7C69B6184B746C8822958B0A16686F27C8A0E3B4FEAD  |
| $m_{PL78}$ | C95B2070816DC97C6D8DD2583263E73F9AAAFD13F0548D2EBD835824418F11E54111005FB713AB234BE412347358281C7DE331EDD21B8BEA52 |
| $m_{PL79}$ | 56D6408399F23C2ED85EE0F68111D69A91A3AD9A732AC57CA08F86CC28B3CF4E4B02EBBA0BCE5CAE5BACC4D52004070797C04093A84BB18DBA |
| $m_{PL80}$ | E662E7043867BE250764DA0596D34A582A619B408B505E6211DD6286E93A37F95B1EA680C0C5F3E777E3F71E8D75495D59043217FC0E222E16 |
| $m_{PL81}$ | 27D5E681C222297AD478A079EF12F1A98F744B66335303322EF8880B931FEBF8322F4302944E80BED468A0A516D410B183D863795992DA7DDB |
| $m_{PL82}$ | 5100336C05F9E5BF35201906C1C588858E0DAF56130DF5554B9AB21CA15311A90290624CD63E03F5EDA49DB7A0C32AB5F1CA427A2D5635FDA5 |
| $m_{PL83}$ | C696DC993BFAEA9A61B781B9C5C3F5CFAA4C8339D8B03A9B0387883D0482A41AC78D6522425959846E561D26A30FF79A205C801A85889736B2 |
| $m_{PL84}$ | D562297561AFF42D3168296C1153E4E39BE7B2EB0348BC704625AA08391235075EE0DE0A79AB03222FEDB27218C56F96EAC2F91CC8FCE64B12 |
| $m_{PL85}$ | DD0B6768FC01CC0A551F8ACC36907129623E975AB8B3FF58037F1859E2FA8C62C2D9D1E8506916029A2C3F8CAD9A26AE2CC652F48800859F5C |
| $m_{PL86}$ | 923920696EB3AB413786C4185482228BB83F6900D33A232D470BE198BBF086067B72613300C593B74251E2F079857ADBBCD86583A9DCAA6DC  |
| $m_{PL87}$ | B8EF30C797D8D2C4EF11244F137D806E556A436626D0115A621C92C34D166A68BCEDFA0040DA8FD6F987B1CD5C2AA1C1B045E64475F0F8DABD |
| $m_{PL88}$ | E1887001D414405ED6419E9EE1D1D346D924ED57ADF04B31B7948099976B2D1501A60DFFB287AD44C8783DF0C1EA5AA5D273D1389C8EA22DCC |
| $m_{PL89}$ | 8C2E379A58AA96748141CA84C35987905F984A49D3AD9BFF7807AC244C16C1DF74343C2E1F25514F5A0954CFBB3C92E25EF783136844998AC5 |
| $m_{PL90}$ | 78F8A99E0A54E27F51C0726FE7A11EB26B1E29FE65F55AC8AC58011465900B958488A90F6DF614A58431DC8B6C6B9A6F032EE0E0B1306EC4B4 |
| $m_{PL91}$ | 88F7A31B7B20E0F05CA26E729B4F8A1933962D7BD7BE3E1EB130B28C794C0B4D01CADE09006FF97E80117509733F3A9DC225413A0AE08CA662 |
| $m_{PL92}$ | BE4DFCEAC18905AC8D5DA27A794F88A4D3058D2EFA3B075A819DEAE688EAF8940A653ED7104E7B403D490F0A9030264E1F12B8922C75775E61 |
| $m_{PL93}$ | 5BA4B79FC4550234D8922963BF3537485E3C8745A5DB90D3E2E454B30FF61112F508155B7C2B3C4C628AF846240C2021ACDE547E5A41F666B8 |
| $m_{PL94}$ | 00556D35649F7610AB24A43C4F16D6AC0571FD126F11880C5CD72100D730E4E4D6BB73C33F8                                        |

| Code ID            | Basic Midamble Codes $m_{PL}$ of length $P=456$                                                                    |
|--------------------|--------------------------------------------------------------------------------------------------------------------|
|                    | 37FAF1072743B249ADA2E09598B1EB23F1180A7                                                                            |
| m <sub>PL95</sub>  | 7A0CC9F21BD69CF3023E944545C2176EF0D4F450B765C28359FB8A32137D043D0E5713E67B3F61320985D2C6106605081F87D2296321468A2F |
| m <sub>PL96</sub>  | DA669880995B0671201172BABFF141D5854A245E211879EF3038A7C84170DADBD368455F24653161E7886E15B253F93E3A3C568EFB17CDEB1A |
| m <sub>PL97</sub>  | 4E294E53D1661C1F6F748302A7723DA951C00FDB8BEBBF67A68710BA0F1A255DFB1627059D41A23D3961726DE6FEB10E5D209CC4505B209812 |
| m <sub>PL98</sub>  | 73385DF701414E144768A67EF72924B1653479E962FB1554B7E54BC5284D9B3E41C0C133F878972230721918AA425501B920B204FECE0C7F8A |
| m <sub>PL99</sub>  | F4492160805F258CE592DF4D1200566F81D173458D78EA3ABED79A14AF88170DB1D4A9A5931D2B80C58C27FE17D806E3E6A66CDAAD09F118D4 |
| m <sub>PL100</sub> | 44D562D9012D8B07B8F44596467C11A163982BB7EAEC184078B6B8CE46B5D7E17C39CEF576A025491183017FA09931D070B307B86524B03FF  |
| m <sub>PL101</sub> | FCAEEFCC49A13B4FFA12C0CC6A2B90CF4F57D78B1E98294B04675C2F0991661FDC61A452A247F8C29E0284AA21026F368307375AA2C3F1E12C |
| m <sub>PL102</sub> | C486DF0510DCAD5AB86E178A686D398E11A0ECFAC5A326C10129257E5456B22FB8E147E9190D9929A5DFFE44715FA47D62F04CFC9B1C201414 |
| m <sub>PL103</sub> | C10AF383DC708E257E15A8AB337BCE684A2F4AC7A22DC2C25C277F8E8D0858E79317CDDD9AA2EA6CBE604D24AC0945026103E7B4126FD361A4 |
| m <sub>PL104</sub> | A5C60A181148D9A931B2DDDB9D169648BA54F366B4EFAE88F6861909EE0F07C037EE349D0EC59A823286E366CA3943589EEA7F828C3728085F |
| m <sub>PL105</sub> | 96136AEBD5E28462B0421DF292BA899FFA660D80EA01620D2C7490E5347127884AA3C3D1FF44BCEE6C29EC589CDEF200C5742C5964F8B2B52  |
| m <sub>PL106</sub> | 40F63C04ACAD986255D1E16B769A6D4C11A1D075E804BDC0AC61923E9A67F5D7417756328072455F6E22B1C64E06F367D1B0808295C2D90E22 |
| m <sub>PL107</sub> | F4B82D413578C4888C5F002CF6D0E03778134A860436551FD57537E4CED334B3C9CEBACE615238271717AA762448B86FA53D2074BCE35658A7 |
| m <sub>PL108</sub> | BCCC92D72C920E685530591FC351743D1E23DE044BF81D32650406113E23ECC757FDE4E386B6E2E7195EE4969717A7BD0812AC312B33A54308 |
| m <sub>PL109</sub> | 6ED59DE0D44370A861CE2B42CF5E578E764A682AB5777905EE027D7160490EDC6C28989B23805AA697FCD215CB401BC5E4D430624C01B16192 |
| m <sub>PL110</sub> | DE80C0E273B92CC3C5034F7A20DB3914643C430B425C8B9249EAF73ACE8C3BCF17957242CF534D87A67D4DC0252275262E737F4095450CFA14 |
| m <sub>PL111</sub> | 9505C4FEF2A397D5059F4729D013292A8321FFFA929ACB0A210D0A13E13061227C44A68FBD8CE6B66CE3D783363CD039AB35EE52603E09B758 |
| m <sub>PL112</sub> | E8BE90D7F954B14D8002A4CAC20765ABEED80634498C836D79B0F9338DBC17B28F05CF4E79136779E1C55AA30B6215F890882887B3B53C23E2 |
| m <sub>PL113</sub> | 9F4B622C1358AE5468DC31E4B2CA320E5E20458C1DE5405BF4F9AD7D45A5BCAA39EC0626FFFC698C16A009CCCB7A18A64E85E70BA71731BA24 |
| m <sub>PL114</sub> | B91B2624843CF48299AFC2B1442570B41F28F578530D1E322E0B54282372131C71ACB924E70768A243EEC3200E7A5EBFA77111D9FB07FEA8AE |
| m <sub>PL115</sub> | 965F42DDA3A4650FE2F5103932B68F166FA424B9F0F7045311D962C2A9F66B9BC6C66FB480F9800354E0C54A72251071422CF1DFC44F94C00C |
| m <sub>PL116</sub> | 08ADCE48699FC30FA0788073BDAADB9177BBB4C1CED41F93085218364B8BAD8488561EF0FE1B0DDAA403C602494CB35697D62AA0A2B93A64CF |
| m <sub>PL117</sub> | 9A313BED80B1220D77C8ADA4B2E0B3D284A5120A94B741380923C78D3AD32BC3E71EC6EEA520E9D447D8727697598BB987F17506F482003ABD |
| m <sub>PL118</sub> | 24C9AD4C14EFEC002A3473FCAB04E492F2E269161A2960BA8AF09FD710B444A40C4E8B138418E62301E91FBA97AFDC58759A76D00F676736C7 |
| m <sub>PL119</sub> | 6514C7733711CE4942CD2123AB37186EB7FECB7E78ABB28744864942FCF4C0F810054AF55B1042EB53064F0857C61D85B2CF0D2DC5826AF22F |
| m <sub>PL120</sub> | B2C80CDC83E48C36BC6FDAB8661208EAD392F3A0571BE41DFAD765E744932ADEA50061E66C05498A5381B2A1F1B446587089DC4E4A2DF03D82 |
| m <sub>PL121</sub> | 639368BA75CC709A3D9F28EDA237E32C2017A9BF1E382045B9426AEE0A4049DCB4E1D7EBE4647B855212824557497CFA039885A3BA42F98F63 |
| m <sub>PL122</sub> | 6A70DDC17D0C8024B1C853F0C1948561EF32510151BE0C63BCA9171F20217891D1021EE72586CAFF557F8973336913A94A2A699B8740B054B8 |
| m <sub>PL123</sub> | 2E32E3A35CCD001172CE310B63B4E406126045A0FA3795BE3E3D9B56F72405FC94FD89946818BAECD24A61BABBBE2D23052AB01EF73CA0CF4A |
| m <sub>PL124</sub> | 829395C35205A480AC1351C25E234BF52D384A3DE1C5138A650A6F82F739757D812D9C38231AB9FD81AA0648B11F6F6113F9312C57624FC746 |
| m <sub>PL125</sub> | D98FFE19C0AAAAB0571A9075ECDFD3E7373F5255DC669116A8C6913F0123E598F930934C5F6A601C37C529C371A0C391B59AC5A9E286D04011 |
| m <sub>PL126</sub> | C1A108192BCE96C2430A63C189BB33856BE6B8B524703FCB205DAEF37EF544CD43CA09B618                                         |

| Code ID     | Basic Midamble Codes $m_{PL}$ of length $P=456$                                                                        |
|-------------|------------------------------------------------------------------------------------------------------------------------|
|             | 1B417398083FF2F781BA4AE89A5CA291DB928D71                                                                               |
| $m_{PL127}$ | 42568DF9F61849BF9E7DEE750604BE2E0BC16CC464B1CDE15015E01D6498E9F3E6D6950E58<br>24651F212BA0057CE9529B9CCAB88D8136B8545E |

## A.2 Basic Midamble Codes for Burst Type 2

In the case of burst type 2 (see section 5.2.2) the midamble has a length of  $L_m=256$ , which is corresponding to:

$K'=3$ ;  $W=64$ ;  $P=192$ .

Depending on the possible delay spread cells are configured to use midambles which are generated from the Basic Midamble Codes (see table A-2)

- for all  $k=1,2,\dots,K$ ;  $K=2K'$  or
- for  $k=1,2,\dots,K'$ , only.

The cell configuration is broadcast on BCH.

The mapping of these Basic Midamble Codes to Cell Parameters is shown in TS25.223.

**Table A-2: Basic Midamble Codes  $m_p$  according to equation (5) from section 6.2.3 for case of burst type 2**

| Code ID    | Basic Midamble Codes $m_{ps}$ of length $P=192$  |
|------------|--------------------------------------------------|
| $m_{PS0}$  | 5D253744435A24EF0ECC21F43AA5B8144FBDB348C746080C |
| $m_{PS1}$  | 9D7174187201B5CE0136B7A6D85D39A9DD8D4B00E23835E4 |
| $m_{PS2}$  | AE90B477C294E55D28467476C6011029CDE29B7325DF0683 |
| $m_{PS3}$  | BC8A44125F823E51E568641EC12A6C68EAFCFA2350E3233C |
| $m_{PS4}$  | 898B7317B830D207C9BC7B521D5715680824DC08347B2943 |
| $m_{PS5}$  | 466C7482C8827655BC13F479C7C1417290679A9841297C4A |
| $m_{PS6}$  | AC0734C27C7DC1B818A8492744290DFE866B0EBA62B0B56E |
| $m_{PS7}$  | 0A92106325B15A8C15FC3764724CE67A5056D50A77F9360E |
| $m_{PS8}$  | AE69F62E23035083E6094B89493D33E06FDB6532D473A280 |
| $m_{PS9}$  | B485D4E3614C9C373EA1365FA6FA890E9844084EBA90EB0C |
| $m_{PS10}$ | 66182885E2D28360D2FEAB842C65304FFC956CE8DC8A90C7 |
| $m_{PS11}$ | CC30A9B0A742FCC1E9A408415368391F1299AE3CB6509FE  |
| $m_{PS12}$ | 673928915886947F464FDDAAD29A07D182328EBC5839089A |
| $m_{PS13}$ | 4418861C14D62B46EE6D70D4BF05A3ED801A01BD6CDC5235 |
| $m_{PS14}$ | DAD62DC88F52F2D140062C2330BE6540E6F86192322AFB04 |
| $m_{PS15}$ | A2122BAF24529CEA9855FB43CE40923E7CA7B30D92E40702 |
| $m_{PS16}$ | 6C44AB41E11F54B0929DF65673BD231F92A380132D9F1712 |
| $m_{PS17}$ | 1DC2742E756CDA6421340D0087DD087A615E4B8688CB2F75 |
| $m_{PS18}$ | 2E0105328B56E9E07D9B5A62F38B08AF8D8C2817B54F3302 |
| $m_{PS19}$ | 88315EC30A94CA4EDB2C77079D9BD810A2E280B50DABB213 |
| $m_{PS20}$ | 440E0093D28CB2B2B0A95D18CEB4AB934C33FA45C1CFC7B0 |
| $m_{PS21}$ | CC9BF85D41A96A6EC314F9611D5E1C0672556C8850801BB4 |
| $m_{PS22}$ | 1ABEA04C99BC26972715F01957C0B6B959CC71CD88120817 |
| $m_{PS23}$ | EC5A33DA0BA4470442C5CB324A8E47B0A9F7968FC8108EE8 |
| $m_{PS24}$ | F82086290271DB446B5B1DC15D9BE96414B19B3D5E0F540C |
| $m_{PS25}$ | 11A1A790D6958FD3A9157DF1E05D1378248CA201EBCC7592 |
| $m_{PS26}$ | AA8564882231907BCE78092DC6C9DD4F5A0E4A34AFCFB809 |
| $m_{PS27}$ | 912EE2238212F87BC7CDA7F30441ED184A6AA954EC4D20C8 |
| $m_{PS28}$ | 2D200D8B8891B804673E380A1AF5AB875986E29D37D3FDC9 |
| $m_{PS29}$ | 75E086B6C818423491BF9D6365C52FD1C5E42A576E268170 |
| $m_{PS30}$ | 50ABDF27DA2A3701470186B699118E16DDB0D10F705607B1 |
| $m_{PS31}$ | 656C0692B4E22023590A906D2A74DFD471C883A7B1E0B3A2 |
| $m_{PS32}$ | C21FDACD09A3CDCE74C4794010A3E45769B142505C56A0E6 |
| $m_{PS33}$ | CD9392A87C2D4D7CE5801CDDA8A76339B6F900F008B290E2 |
| $m_{PS34}$ | 956426FEFD8B8D52073E87984E10C4D255064E1372C04A24 |
| $m_{PS35}$ | C4F4D6DF1B754AD6063FD10C331C1428ABB27B0700134B94 |
| $m_{PS36}$ | B65548082B34E9FAF43F33C4070F79099758CFD41B491A11 |
| $m_{PS37}$ | C8317EA111A82B04E78B88B864B1EF5D711BBEB4A0527036 |
| $m_{PS38}$ | 8FB7AD1188E8D1A5219845013672560FD38904E70537403B |
| $m_{PS39}$ | B41A324E0D80AA0598A8D391C1D7FFC82B4A075218E98EC3 |
| $m_{PS40}$ | 49A6350A62E208B011E86528B9A481A0E76D723F6675FF82 |

| Code ID            | Basic Midamble Codes $m_{PS}$ of length $P=192$  |
|--------------------|--------------------------------------------------|
| m <sub>PS</sub> 41 | C344C8C23C42A7B7442E6022E95AE4B08A4BFA786F35F911 |
| m <sub>PS</sub> 42 | 28F430CF67D69C9DF60E25656413BC5F932A022DB1406C44 |
| m <sub>PS</sub> 43 | 2FA5D70CF0FED4213F32116051450391C2A627D9B670C428 |
| m <sub>PS</sub> 44 | 959537D988FDD4F1360B4E84701AE5409229C30EDF8BC404 |
| m <sub>PS</sub> 45 | CDD2E0450F9EC12F81391AD4633CB29F315B4A0A890A9A22 |
| m <sub>PS</sub> 46 | 158776A20B4B82C563EC08F086830EA66DBD2DCCB4DF6026 |
| m <sub>PS</sub> 47 | 431FCACBE48208975950342709D11F19AD5FB047F3B440C9 |
| m <sub>PS</sub> 48 | 86B141AC571BA6B42653B12FF04D4F0E6C81F3EB608660A2 |
| m <sub>PS</sub> 49 | 86D297ABD34E8510F6CDB0EA617F1F1051C8799117B02211 |
| m <sub>PS</sub> 50 | 80B2D9530B34E781311D95CFA3857F277CC07014D324AF5A |
| m <sub>PS</sub> 51 | 2B607B93FD8B45601C1E574E14CFC6912C22AEC1045ADC49 |
| m <sub>PS</sub> 52 | D234C5C45E105A837E6DD74BC4E534523A20317BA0625A29 |
| m <sub>PS</sub> 53 | 768CCDB3E2A7A2B863128382590946B25472BE2BFFC40641 |
| m <sub>PS</sub> 54 | 3DA38212E0A987EE1F665D4E13C2AA4446E00A76C948A073 |
| m <sub>PS</sub> 55 | 09173135E4A2CFC8F2678750AB5257110906F013587BDE82 |
| m <sub>PS</sub> 56 | 522E070B266F35E99C1F3C42D2017F8E415550492B72F086 |
| m <sub>PS</sub> 57 | D63E4BD805262A3DEF05C7D86C422E5048921E5531784132 |
| m <sub>PS</sub> 58 | 564AF806E28131611E5F884229265D446A50E1E488EAFBBA |
| m <sub>PS</sub> 59 | A2603E009D3D30147727B750C35C62299AF754D3E4A54E1C |
| m <sub>PS</sub> 60 | 938504B02599D33E28246E4271C375AE81A3BBE8D3F8A920 |
| m <sub>PS</sub> 61 | 461516B2CAC6FC42A4B707CC6073BBE573C014892C811776 |
| m <sub>PS</sub> 62 | 29186DE4CCAAB2CD0100BB19EA595879D63F0F0CFA881AA5 |
| m <sub>PS</sub> 63 | A064B449CB784A91B803369CDC5EF61A670AAC044BA3E68  |
| m <sub>PS</sub> 64 | 8719C454D88FF5149DB943CB6CADA01D0B9664B357A18203 |
| m <sub>PS</sub> 65 | A27EC68720F00A714AA2C45A7EF232286984D7B193F5C916 |
| m <sub>PS</sub> 66 | AC8361676AB424E48F0789082B0CD2EFB8D2E627D041DD66 |
| m <sub>PS</sub> 67 | ABA1BEB0064733A0620906BF2B29C95883F069D7E4C35D39 |
| m <sub>PS</sub> 68 | 9E22EEDED47D92CA1D0B7530EC6062287BD83A04874AE00C |
| m <sub>PS</sub> 69 | 0BADEF288B20F5686C5DE3A71219AC2172054326BE831696 |
| m <sub>PS</sub> 70 | 953801EB2AF58C2F80E49A6CC46085CB554243E3B3BBC8C  |
| m <sub>PS</sub> 71 | 333A504C51C8FAC5025994565C3F600F154F64FAEF4EA484 |
| m <sub>PS</sub> 72 | A6583E19647662005474153A6F8DD88A473853E94B720CE7 |
| m <sub>PS</sub> 73 | 90ACAF707D18AF34F5848C58166830AF620ACDC1B2DFDDA8 |
| m <sub>PS</sub> 74 | 39C5C598A374EA82F3F83378258248DAD3808812DD0E74BB |
| m <sub>PS</sub> 75 | F79525DE694629346D73F6256CC0F140F82603197AAA1844 |
| m <sub>PS</sub> 76 | B8C2A8F139097699A693022E78588D4058DB0A65FF52F813 |
| m <sub>PS</sub> 77 | 449B50C2A52996FA5A828A907F30F9F460EE3D99930DF890 |
| m <sub>PS</sub> 78 | 62CEC9574D30184BCB4F94EECF0CC23D2D2A8D0003F0AA33 |
| m <sub>PS</sub> 79 | B56D258889703F76A0738EE3A7D355994159A4851833E198 |
| m <sub>PS</sub> 80 | 65894AA54C0F6C9A206521C9FC379A8AAF6E621C03CF849C |
| m <sub>PS</sub> 81 | 2D47F3414E30CC02C6835D95C9BA204488F0FFCB4852677D |
| m <sub>PS</sub> 82 | 12BE4DD8B906B584010F8A330AB67B278E8642FA33D51B68 |
| m <sub>PS</sub> 83 | BC928A90A4B10906CAEE638BF768E08542F48F1676006DF0 |

| Code ID             | Basic Midamble Codes $m_{PS}$ of length $P=192$  |
|---------------------|--------------------------------------------------|
| m <sub>PS</sub> 84  | 30C544E437C8ADA143566CD1BC4E9E7BA84139A08505C2F4 |
| m <sub>PS</sub> 85  | 84FD5B05506192B753FBA2C719B584E0EDA01814999867D2 |
| m <sub>PS</sub> 86  | 191F14DD00034E03AB5BB4342F1138B2CD33784E60CFD75A |
| m <sub>PS</sub> 87  | B8ACE7990B6A98A80A61162C4D2D5F88F24E8F7DE4207590 |
| m <sub>PS</sub> 88  | EC1DBE72E8EED0C61054FC2695422AC0AD2D888265B21AB0 |
| m <sub>PS</sub> 89  | 9A1B4CA467AB7E082AF4278E44D177EA78424508C23E8B08 |
| m <sub>PS</sub> 90  | 999EE541C608164AC975214F3A37A677FC2CA03E2C2A4B20 |
| m <sub>PS</sub> 91  | 1BDCC20265031432917A2EB828FB356A22DF9CB609C0F8F3 |
| m <sub>PS</sub> 92  | EB4A81859C93338B8A1B87C02C815AE09D765F6F2249B958 |
| m <sub>PS</sub> 93  | E6A5D1629F4CF09A1F280DE0C480D4C73B26ADE321A50AEE |
| m <sub>PS</sub> 94  | BAAB7286DD24C80B15A7958039B904F1CA83C310C8C7AFF2 |
| m <sub>PS</sub> 95  | 12220F72619E983717C68FFE1C4148F2354B7B1955B65620 |
| m <sub>PS</sub> 96  | A198706E24FAA08BD09EE392414816038E667BB34307D6B2 |
| m <sub>PS</sub> 97  | 30B3493B4C035881A7A722E4546527AAE787FA2C0893AC46 |
| m <sub>PS</sub> 98  | 5A7318126522843DCB7F00A2D9F9BA8F88963E4152BC923C |
| m <sub>PS</sub> 99  | 844844B0CACAB702C332CE2692B4166F4B0C63E62BF151BF |
| m <sub>PS</sub> 100 | B8297389526410313692F861DC60DA86A23607F7DDE24755 |
| m <sub>PS</sub> 101 | 6C1144CF8BC01538D655D29ED62DE6E74A3180EC905BF1E0 |
| m <sub>PS</sub> 102 | E9DB3221FACFC5C88691A7013EF09672A130D52C3413AAE2 |
| m <sub>PS</sub> 103 | 2FD0508615EC4CD4BF18ADD46D777078869130C8921A4F0E |
| m <sub>PS</sub> 104 | 40911B4E0525AC874228F6EF642E59154730CB187C7E417A |
| m <sub>PS</sub> 105 | 2034C6A027D4D850F5184AA64C3153231F4651B616BBFCF9 |
| m <sub>PS</sub> 106 | 57833235451525A1DFA213FCE0B419B6494BC7B99F488410 |
| m <sub>PS</sub> 107 | 6DC3D57F2E39158D036825F8804810D77CA1ECA610ECD894 |
| m <sub>PS</sub> 108 | F5C50DE43AA7B731CAB7683524021701F97650499A7070E4 |
| m <sub>PS</sub> 109 | F2184D2699785442E09FA22CC2D60A5A13FFF22AE660A470 |
| m <sub>PS</sub> 110 | EF0029DE0D79207205458CF4D7328E81A93518D93C9A74BD |
| m <sub>PS</sub> 111 | 9D6D8992482FB885AA5E878C3BA2045538B09886C23CDC2D |
| m <sub>PS</sub> 112 | C0A5AB67D1CEA126F6476C75443F0A11CBE749412EF03104 |
| m <sub>PS</sub> 113 | 1853A5C20CDF968C5A180D8EB5E72BF15517D06680D98412 |
| m <sub>PS</sub> 114 | 8CEA1223227ADF37D0DAAB320906E1C79029F480D25181A7 |
| m <sub>PS</sub> 115 | 5561038E96A658EF3EC665612FF92B064065D1ACC1F54812 |
| m <sub>PS</sub> 116 | C55A6263F08D664A1E53584560DFF5E611640D8281D9A843 |
| m <sub>PS</sub> 117 | 4386A8EA59124D043F29056A4598735A4FC7BC1119B90C1  |
| m <sub>PS</sub> 118 | D6571B20668BED50BD7C80388C162632BCB069AA67C7FC22 |
| m <sub>PS</sub> 119 | 4F9F09ABBC1391EC2CCA5359FB52250E533BF04324154106 |
| m <sub>PS</sub> 120 | 662659F42188C9453F6E6DF00C579627045DA1461A3A0EA5 |
| m <sub>PS</sub> 121 | 8DCC9274C0C2A9BA6096BF27FACA542CD01CA8653D60A80F |
| m <sub>PS</sub> 122 | 5C1210A1E50E505F6B73C90156C9D9F19AE2310BBD820DF0 |
| m <sub>PS</sub> 123 | B1E0A7CE26202E223D4FC06D5C9BBA4E5F6D98204D2D5286 |
| m <sub>PS</sub> 124 | DB506776958E34552F7E60E4B400D836153218F918E22FA6 |
| m <sub>PS</sub> 125 | ECAA60300439B2360B2AC3C43FB6241ACDE5055B295FA71C |
| m <sub>PS</sub> 126 | BF1E6D9AA9CA4AC092BE60500C77D0DC7A6A236520F86722 |

| Code ID     | Basic Midamble Codes $m_{PS}$ of length $P=192$  |
|-------------|--------------------------------------------------|
| $m_{PS127}$ | 051C5FA122845A30B4EC306B38016B45667C7754F92F13A0 |

## A.3 Association between Midambles and Channelisation Codes

The following mapping schemes apply for the association between midambles and channelisation codes if no midamble is allocated by higher layers. Secondary channelisation codes are marked with a (\*). These associations apply both for UL and DL.

### A.3.1 Association for Burst Type 1 and K=16 Midambles



**Figure A-1 Association of Midambles to Spreading Codes for Burst Type 1 and K=16**

### A.3.2 Association for Burst Type 1 and K=8 Midambles



**Figure A-2 Association of Midambles to Spreading Codes for Burst Type 1 and K=8**

### A.3.3 Association for Burst Type 1 and K=4 Midambles



**Figure A-3 Association of Midambles to Spreading Codes for Burst Type 1 and K=4**

### A.3.4 Association for Burst Type 2 and K=6 Midambles



**Figure A-4 Association of Midambles to Spreading Codes for Burst Type 2 and K=6**

### A.3.5 Association for Burst Type 2 and K=3 Midambles



**Figure A-5 Association of Midambles to Spreading Codes for Burst Type 2 and K=3**

Note that the association for burst type 2 can be derived from the association for burst type 1, using the following table:

| Burst Type 1 | m(1) | m(2) | m(3) | m(4) | m(5) | m(6) | m(7) | m(8) |
|--------------|------|------|------|------|------|------|------|------|
| Burst Type 2 | m(1) | m(5) | m(3) | m(6) | m(2) | m(4) | -    | -    |

---

## Annex B (Informative): CCPCH Multiframe Structure

In the following figures B.1 to B.3 some examples for Multiframe Structures on Primary and Secondary CCPCH are given. The figures show the placement of Common Transport Channels on the Common Control Physical Channels. Additional S-CCPCH capacity can be allocated on other codes and timeslots of course, e.g. FACH capacity is related to overall cell capacity and can be configured according to the actual needs. Channel capacities in the annex are derived using bursts with long midambles (Burst format 1). Every TrCH-box in the figures is assumed to be valid for two frames (see row 'Frame #'), i.e. the transport channels in CCPCHs have an interleaving time of 20msec.

The actual CCPCH Multiframe Scheme used in the cell is described and broadcast on BCH. Thus the system information structure has its roots in this particular transport channel and allocations of other Common Channels can be handled this way, i.e. by pointing from BCH.

**Physical channels ... (TDD)**

**45**

**TS 25.221 V1.0.1**



**Figure B.1: Example for a multiframe structure for CCPCHs that is repeated every 72th frame.**



**Figure B.2: Example for a multiframe structure for CCPCHs that is repeated every 72th frame, n=1...7**



**Figure B.3: Example for a multiframe structure for CCPCHs that is repeated every 72th frame.**

---

## Annex C (informative): Change history

| Change history |         |     |          |             |                                                                |
|----------------|---------|-----|----------|-------------|----------------------------------------------------------------|
| TSG RAN#       | Version | CR  | Tdoc RAN | New Version | Subject/Comment                                                |
| RAN_05         | -       | -   | RP-99591 | 3.0.0       | Approved at TSG RAN #5 and placed under Change Control         |
| RAN_06         | 3.0.0   | 001 | RP-99691 | 3.1.0       | Primary and Secondary CCPCH in TDD                             |
| RAN_06         | 3.0.0   | 002 | RP-99691 | 3.1.0       | Removal of Superframe for TDD                                  |
| RAN_06         | 3.0.0   | 006 | RP-99691 | 3.1.0       | Corrections to TS25.221                                        |
| RAN_06         | 3.0.0   | 007 | RP-99691 | 3.1.0       | Clarifications for Spreading in UTRA TDD                       |
| RAN_06         | 3.0.0   | 008 | RP-99691 | 3.1.0       | Transmission of TFCI bits for TDD                              |
| RAN_06         | 3.0.0   | 009 | RP-99691 | 3.1.0       | Midamble Allocation in UTRA TDD                                |
| RAN_06         | 3.0.0   | 010 | RP-99690 | 3.1.0       | Introduction of the timeslot formats to the TDD specifications |
| -              | 3.1.0   | -   | -        | 3.1.1       | Change history was added by the editor                         |
|                |         |     |          |             |                                                                |
|                |         |     |          |             |                                                                |
|                |         |     |          |             |                                                                |
|                |         |     |          |             |                                                                |
|                |         |     |          |             |                                                                |
|                |         |     |          |             |                                                                |
|                |         |     |          |             |                                                                |

---

## History

| <b>Document history</b> |              |             |
|-------------------------|--------------|-------------|
| V3.1.1                  | January 2000 | Publication |
|                         |              |             |
|                         |              |             |
|                         |              |             |
|                         |              |             |