Predicting Movie Total Gross after Opening Weekend

Project Luthor Exploration Subramanian Iyer

Data

Opening Gross

Number of Opening Theaters

Run Time

Average Opening Gross/Theater

Budget

Release Date

Distributor

Genre

Rating

Actor

Composer

Director

Writer

Discussion on Dropping

Distributor -170

Genre - 64

Rating - 7

Actor - 790

Composer - 147

Director - 735

Writer - 510

Rating Stats

	count	mean	std	
Rating				
G	65	9.296e+07	8.683e+07	
NC-17	4	7.734e+06	8.638e+06	
Not Yet Rated	2	2.084e+05	2.181e+05	
PG	419	8.317e+07	8.644e+07	
PG-13	1038	7.618e+07	9.263e+07	
R	1168	3.912e+07	4.597e+07	
Unrated	48	1.226e+06	3.314e+06	

Interactions!

Different Angle

Total Gross vs Average Opening Gross per Theater and Number of opening theaters

Interactions cont

Different Angle

OLS

-Degrees 1,2,3

-50 trials

-cross_eval score r^2, mse, mae

Best r^2: 0.8901418

Best MSE: 0.3631699

Best MAE: 0.3800509

Best Degree: 1

Ridge

Degrees 1,2,3

15 Trials

Same cross eval deal

Best r^2: 0.892322

Best MSE: 0.356912

Best MAE: 0.377386

Degree 2

Lasso

Degrees 1,2,3,4,5,6

Started at 50, eventually only 1 trial feasible

r^2: 0.876773

MSE: 0.409599

MAE: 0.416719

Degree 6

MIGHT have actually been the best

Elastic Net

Degrees 1,2,3,4,5,6

Started at 50, eventually only 1 trial feasible

r^2: 0.890463

MSE: 0.362286

MAE: 0.381408

Degree 6

MIGHT have actually been the best

Final Model

Features -> ^(1/18)

Dependent -> boxCoxed

Model -> Ridge

Degree -> 2

Performance

r^2, MSE, MAE values before not related to interpretable data

Test/Train Split, built Ridge Model with ^2/18 features, unboxcoxed the predictions to find these values to estimate real world performance:

r^2: 0.76156

MSE: 1.5157 quadrillion dollars squared

MAE: 17.008 million dollars

(Mean TDG in data set was 60.2573 million dollars, with std of 76.8676 million dollars)

Baseline

Vanilla Regression: TDG vs OG

Test r^2: -0.72616

MSE: 1.362196 quadrillion dollars squared

MAE: 20.5 million dollars

Average error is higher, but less extreme mistakes, and of course correlation isawful.

Residual Plot

Warnings

Don't use this when planning production, no causation should be inferred

Potential use: deciding whether to sell the rights and for how much after opening weekend

Potential reworks

- -More rigorous process to decide degree
- -More trials to pick model (VERY slow, so need lots of time)
- -More computing time- explore lasso and elastic net further
- -Perhaps can use classification techniques with regards to categorical variables that were dropped

Questions!

```
#OLS
MSEscores = []
Rscores = []
MAEscores = []
trials = 50
for degree in range(1,4):
    MSEscore = 0
    Rscore = 0
    MAEscore = 0
    for i in range(trials):
        est = make pipeline(PolynomialFeatures(degree), LinearRegression())
        MSEscore +=np.mean(-cross val score(est, X, y, cv=10, scoring='mean squared error'))
        Rscore += np.mean(cross val score(est, X, y, cv = 10, scoring = 'r2'))
        MAEscore += np.mean(-cross_val_score(est, X, y, cv = 10, scoring = 'mean absolute error'))
    MSEscore /= trials
    Rscore /= trials
    MAEscore /=trials
    MSEscores.append(MSEscore)
    Rscores.append(Rscore)
    MAEscores.append(MAEscore)
print (MSEscores)
print(Rscores)
print (MAEscores)
```

```
MSEscores = []
Rscores = []
MAEscores = []
trials = 15
for degree in range(1,4):
    MSEscore = 0
    Rscore = 0
    MAEscore = 0
    for i in range(trials):
        print(i)
        est = make pipeline(PolynomialFeatures(degree), RidgeCV(alphas = alphs, cv = 10))
        MSEscore +=np.mean(-cross val score(est, X, y, cv=10, scoring='mean squared error'))
        Rscore += np.mean(cross val score(est, X, y, cv = 10, scoring = 'r2'))
        MAEscore += np.mean(-cross val score(est, X, y, cv = 10, scoring = 'mean absolute error'))
    MSEscore /= trials
    Rscore /= trials
    MAEscore /=trials
    MSEscores.append(MSEscore)
    Rscores.append(Rscore)
    MAEscores.append(MAEscore)
print (MSEscores)
print(Rscores)
print (MAEscores)
```

alphs = [1 * 10**e for e in range(-8,3)]