opg &
$$u = e^{-\omega^2 e^2 t} \cdot \cos(\omega x)$$

We insert it into the heat

e quation, $du = c^2 \frac{d^2u}{dx^2}$
 dt
 $c^2 \cdot dx$
 dt
 $c^2 \cdot dx$
 dt
 $e^{-\omega^2 e^2 t} \cdot \cos(\omega x) = c^2 \frac{d^2u}{dx} \cdot e^{-\omega^2 e^2 t} \cdot \cos(\omega x)$
 $-\omega^2 e^2 e \cdot \cos(\omega x) = e^2 \cdot dx \cdot e^{-\omega^2 e^2 t} \cdot \omega \cdot -\sin(\omega x)$