AE 5535 Non-ideal turbofan homework (1)

Consider a non-afterburning turbofan engine with engine parameters as given below.

If τ_{λ} = 7.3 (ratio of total enthalpy at burner exit to freestream enthalpy), M_0 = 2.0 (flight Mach number), π_{C} = 12 (compressor total pressure ratio), π_{fan} = 1.64 (fan total pressure ratio), and α = 3.6 (engine bypass ratio), find the specific thrust and specific fuel consumption of this engine.

 $T_0 = 220K$ (ambient temperature) $\pi_d = 1 - 0.015M_0^2$ (inlet total pressure drop)

 $e_c = 0.91$ (polytropic compressor efficiency) $\gamma_c = 1.4$ (ratio of specific heats upstream of burner)

 $\pi_b = 0.98$ (burner total pressure drop) $e_{fan} = 0.90$ (polytropic fan efficiency)

C_{P,c} = specific heat at constant pressure upstream of burner = 1000J/kgK (also thru fan stream)

 $\pi_N = \pi_{N'} = 0.99$ (primary and bypass nozzle total pressure drops)

 $e_T = 0.89$ (polytropic turbine efficiency) $y_t = 1.32$ (ratio of specific heats downstream of burner)

 $\eta_b = 0.99$ (burner efficiency) $h = 4.5 \times 10^7$ J/kg (fuel) (heating value of fuel)

C_{P,t} = specific heat at constant pressure downstream of burner = 1200 J/kgK

 $\eta_m = 0.99$ (mechanical efficiency – shaft)

 $P_9 = P_{9'} = P_0$ (both primary and bypass nozzles are ideally expanded)

If an efficiency/loss is not given, assume ideal for that particular efficiency/loss

Assigned: Feb 1, 2021

Due: Feb 5, 2021