B05. Složení atomu, chemické vazby, vlastnosti roztoků, teorie kyselin a zásad, plyny v medicíně, elektrolýza a typy elektrod, analytické metody.(Chemie pro bioinženýrství)

Složení atomu

- jádro: kladně nabité -> protony (p⁺ kladný náboj: e = 1,6·10⁻¹⁹ C) + neutrony (n⁰ neutrální náboj)
- obal: záporně nabitý -> elektrony (e⁻ záporný náboj: -e)
 - skládá se z <u>orbitalů</u> = oblast s největší pravděpodobností výskytu elektronu
 - valenční elektrony = elektrony ve vnější vrstvě obalu, mají největší energii
- jádro zaujímá jen nepatrnou část objemu atomu, ale je v něm soustředěna většina hmotnosti atomu (p⁺ a n⁰ mají přibližně 2000x větší hmotnost než e⁻)
- protonové číslo **Z** = počet protonů v jádře (u neutrálních atomů i počet elektronů v obalu)
- nukleonové číslo **A** = počet nukleonů (p⁺ a n⁰) v jádře
- neutronové číslo **N** = počet neutronů v jádře

$$A = Z + N$$

- jednotlivé prvky v Periodické soustavě prvků se liší počtem protonů v jádře
 - prvky do Z = 20 mají v jádře stejný počet p⁺ a n⁰
 - prvky se Z > 20 mají v jádře více n⁰ než p⁺

- <u>Hlavní kvantové číslo:</u> **n** = 1, ..., 7 (n = k, l, m, ... písmena jsou analogií k číslům)
 - udává energii e-, říká ve které vrstvě (slupce) se e- nachází
- <u>Vedlejší kvantové číslo:</u> *I* = 0, ..., n 1 (I = s, p, d, f...)
 - udává energii e⁻ (spolu s hl. kv. č.), říká v jakém typu orbitalu se e⁻ nachází
- Magnetické kvantové číslo: **m** = -l, ..., 0, ..., l
 - prostorová orientace orbitalu, celkem 2l+1 orientací pro každý typ orbitalu
- Spinové kvantové číslo: **s** = ± ½
 - určuje směr spinu e
- Typy orbitalů:
 - s² koule, obsahuje 1 e⁻ pár (2 e⁻ s opačným spinem)
 - p⁶ prostorová osmička, obsahuje 3 e⁻ páry
 - d¹⁰ obsahuje 5 e⁻ párů
 - f¹⁴ obsahuje 7 e⁻ páry

	n	ı	m	n+l
1s	1	0	0	1
2s	2	0	0	2
2p	2	1	-1,0,1	3
3s	3	0	0	3
3р	3	1	-1,0,1	4
3d	3	2	-2,-1,0,1,2	5
4s	4	0	0	4
4p	4	1	-1,0,1	5

Elektronové konfigurace

H: 1s ¹	Si: Ne 3s ² 3p ²
He: 1s ²	P: Ne 3s ² 3p ³
Li: 1s ² 2s ¹	S: Ne 3s ² 3p ⁴
Be: 1s ² 2s ²	CI: Ne 3s ² 3p ⁵
B: 1s ² 2s ² 2p ¹	Ar: Ne 3s ² 3p ⁶
C: 1s ² 2s ² 2p ²	K: Ar 3d ⁰ 4s ¹
N: 1s ² 2s ² 2p ³	Ca: Ar 3d ⁰ 4s ²
O: 1s ² 2s ² 2p ⁴	Sc: Ar 3d1 4s2
F: 1s ² 2s ² 2p ⁵	Ti: Ar 3d ² 4s ²
Ne: 1s ² 2s ² 2p ⁶	V: Ar 3d ³ 4s ²
Na: Ne 3s1	Cr: Ar 3d4 4s2
Mg: Ne 3s ²	Mn: Ar 3d ⁵ 4s ²
Al: Ne 3s ² 3p ¹	

4d				
4p				
4s	↑↓			
3d	1	1	↑	1
3р	↑↓	↑↓	↑↓	
3s	↑↓			
2p	↑↓	↑↓	↑↓	
2s	↑↓			•
1s	↑↓			

- konfigurace prvních 25 prvků

- šipky znázorňují e⁻, směr šipky znázorňuje spin e⁻

- při konfiguraci složitějších prvků si pomáháme prvky vzácných plynů: 10Ne, 18Ar ...

- He: 1s²

- 1 ... hl.kv.č. - slupka 1

- s ... vedl.kv.č - orbital typu s

- index 2 ... počet e v orbitalu

- Elektronová konfigurace (umístění e do orbitalů obalu)
 - <u>Výstavbový princip</u> (pravidlo minimální energie)
 - nejprve se zaplňují orbitaly s nižší energií (energie orbitalu = n + l)
 - Pauliho vylučovací princip
 - v atomu nemohou existovat dva e se stejnou čtveřicí kv. č. (alespoň v jednom se liší)
 - Hundovo pravidlo
 - v orbitalech se stejnou energií vznikají elektronové páry až po obsazení každého orbitalu jedním elektronem stejného spinu
 - n + l pravidlo
 - z orbitalů o stejném součtu n + l má nižší energii ten, který má nižší hl. kv. č.
- neutrální atom má stejný počet protonů a elektronů, př. C (uhlík)
- <u>kation</u> má v obalu méně e než p v jádře, př. Na (kation sodný), Ca²⁺(kation vápenatý)
 - atom "odštěpil" e po dodání ionizační energie
- <u>anion</u> má v obalu více e⁻ než p⁺ v jádře, př. O²-(anion oxidový), N³-(anion nitridový)
 - atom "přijal" e při uvolnění energie (elektronová afinita)
- prvky nejsnáze tvořící ionty (kation nebo anion):
 - jestliže iont má stabilnější elektronovou konfiguraci než neutrální atom
 - kationty se tvoří z atomů o větším poloměru (levá část Periodické tabulky)
 - anionty se tvoří z atomů o menším poloměru (pravá část Periodické tabulky)
- kationtem a aniontem jsou i molekuly, př. OH⁻(anion hydroxidový), H₃O⁺(kation oxoniový)
- Relativní atomová hmotnost a molekulová:
 - bezrozměrné číslo udávající kolikrát je hmotnost atomu (molekuly) větší než 1/12 hmotnosti atomu izotopu uhlíku 612C (~hmotnost 1 atomu vodíku H)
 - atomová hmotnostní konstanta: $m_u = m(_6^{12}C)/12 = 1,661 \cdot 10^{-27} \text{ kg}$
 - <u>relativní atomová hmotnost:</u> $A_r(X) = \frac{m_\chi}{m_\chi}[-]$
 - relativní molekulová hmotnost: $M_r = \sum\limits_i A_{ri}$ součet rel.at.hm. všech prvků v molekule
- <u>látkové množství n:</u> veličina vyjadřující počet molekul (atomů) v látce

$$n=\frac{m}{M}=\frac{N}{N_A}$$
 jednotky: **mol** (1 mol = množství látky obsahující 6,022·10²³ částic = počet molekul ve 12 g izotopu uhlíku $_6^{12}$ C)

- m ... hmotnost látky [g], M ... molární hmotnost [g·mol⁻¹] (pro výpočty je shodná s M_r)
- N ... počet částic v látce [-], N_A ... Avogadrova konstanta = 6,022·10²³ [-]

Chemické vazby

- silová interakce mezi atomy
- $\underline{\text{vazebná energie}}$ (\mathbf{E}_{v}) = energie, která se uvolní při vzniku vazby
- <u>disociační energie</u> = energie potřebná k rozštěpení vazby
- r vzdálenost jader, r₀ rovnovážná vzdálenost, délka chem vazby
- E potenc. energie soustavy dvou atomů, E₀ základní stav

Kovalentní vazba

- vzniká překryvem valenčních orbitalů a spojením 2 nepárových valenčních elektronů (každý z jiného atomu)
- podle počtu sdílených el. párů
 - <u>jednoduchá vazba</u>: vazbu tvoří jeden elektronový pár (nejm. vaz. E)
 - jedna vazba σ (elektronový pár je na spojnici atomových jader)
 - dvojná vazba: vazbu tvoří dva elektronové páry
 - jedna vazba σ a jedna vazba π (el. pár nad nebo pod spojnicí jader)
 - trojná vazba: vazbu tvoří tři elektronové páry (nejv. vaz. E)
 - jedna vazba σ a dvě vazby π
 - <u>aromatická vazba:</u> např. v benzenovém jádře, na vazbu připadá 1,5 c c elektronového páru (3 elektrony)
- podle typu vazby (na základě rozdílu elektronegativit ΔX atomů ve vazbě)
 (elektronegativita X je schopnost atomu přitahovat elektrony chemické vazby)
 Posun vazebných elektronových párů k atomu s větší elektronegativitou
 - nepolární: el. pár je uprostřed mezi atomy (ΔX < 0,4)
 - polární: el. pár je blíže elektronegativnějšímu atomu (0,4 < ΔX < 1,7)
 - iontová: elektronový pár je v obalu elektronegativnějšího atomu, vznikají ionty (kation kladný a anion - záporný) (ΔX > 1,7)

Donor-akceptorová vazba

- elektronový pár jednoho atomu (donor dárce) je sdílen oběma atomy (akceptor příjemce)
- má stejné vlastnosti jako kovalentní vazba (je silně polární), jen se liší vznikem

Kovová vazba

- překryv valenčních orbitalů, vznik delokalizované vazby
- valenční <u>elektrony</u> velkých atomů jsou málo přitahovány k jádru, "utrhnou se" a jsou <u>sdílené</u> všemi atomy
- kovové ionty obklopeny elektronovým plynem, energetické pásy
- je zodpovědná za vlastnosti kovů (vodivost, kujnost, tvárnost...)

Slabé vazebné interakce

- Vodíkové můstky: vodík jedné molekuly je vázán na silně elektronegativní atom jiné molekuly
 - př. voda (mezi kyslíkem a vodíkem různých molekul)
- Van der Waalsova síla: síly mezi dvěma molekulami
 - typy: Coulombická, indukční, disperzní

Hybridizace

- spojení několika orbitalů, spojené orbitaly mají stejnou energii
- <u>hybridní orbital **sp**</u> jeden orbital s, jeden p, vazebný úhel 180°, př. BeCl₂
- hybridní orbital sp² jeden orbital s, dva p, vazebný úhel 120°, př. BF₃
- hybridní orbital sp³ jeden orbital s, tři p, vazebný úhel 109,5° (čtyřstěn=tetraedr), př. CH₄

Postavení atomů v molekule

- Koordinační číslo = počet sousedních atomů vázaných chemickými vazbami k danému atomu
- Vaznost = počet vazebných elektronových párů, kterými je daný atom vázán ke všem sousedním atomům
- Oxidační číslo formální náboj vč. znaménka, který by měl atom (ion) po formálním rozdělení molekuly na jednotlivé atomy nebo ionty

vzorec	vaznost	koordinační číslo	oxidační číslo	F
N≡N	3/3	1/1	0	į
O=N-O-N=O	3/3	2/2	3	ľ
N=N=O	2/4	1/2	1	j
N=O	2	1	2	l
O=N-O	3	2	4	

Pravidla pro určování oxidačních čísel:

- 1. Součet oxidačních čísel v neutrální molekule = 0, u iontů e rovno nábojovému číslu iontu
- 2. Oxidační číslo jednoatomových i víceatomových molekul jednoho prvku = 0
 - 3. Pro atom vodíku je H¹ (mimo hydridy a H₂)
 - 4. Pro atom kyslíku je O^{-II} (mimo O₂ , OF₂ a skupiny -O–O-)

Vlastnosti roztoků

- roztok = homogenní (nebo zdánlivě homogenní) směs nejméně dvou látek (rozpouštěná látka, rozpouštědlo (v nadbytku)), částice látek jsou dokonale promísené a nereagují spolu
- pravé roztoky:
 - plynný: molekuly plynu rozptýleny v molekulách jiného plynu (př. vzduch)
 - kapalný: molekuly/ionty nízkomolekulárních látek rozptýleny v kapalině (př. sůl (NaCl) ve vodě)
 - pevný: atomy pevné látky rozptýleny mezi atomy jiné pevné látky (př. slitina kovů)

koloidní roztoky

molekuly organických látek nebo shluky anorganických molekul rozptýlené v kapalině (př. bílkoviny ve vodě)

Složení roztoků

- zlomky: (bezrozměrné, uvádí se v %, součet pro všechny složky v roztoku = 1) <u>hmotnostní w</u>_i = hmotnost i-té složky k celkové hmotnosti roztoku
 - <u>objemový φ</u>_i = objem i-té složky k celkovému objemu roztoku
 - molární x_i = počet molů i-té složky k celkovému počtu molů
- koncentrace: veličina vztažená na jednotku objemu (hmotnosti) $N_i = \frac{n_i v}{v} [val \cdot dm^{-3}]$ litru (dm³) roztoku
- normalita N_i: počet valů rozpuštěné látky v jednom litru roztoku
- molalita m_{i:} počet molů rozpuštěné látky v jednom kilogramu rozpouštědla
- $m_i = \frac{n_i}{m_{resm}} \quad [mol \cdot kg^{-1}]$
- Chemický ekvivalent formální v-tá část molekuly, která při dané chemické reakci odpovídá výměně jednoho atomu vodíku, jednoho protonu či jednoho elektronu.

$$\oint_{A} \frac{\upsilon_{A} A + \upsilon_{B} B \rightarrow \upsilon_{C} C + \upsilon_{D} D}{\upsilon_{A} + \upsilon_{B} B \rightarrow \upsilon_{C} C + \upsilon_{D} D}$$

$$\downarrow_{A} \frac{\upsilon_{A} A + \upsilon_{B} B \rightarrow \upsilon_{C} C + \upsilon_{D} D}{\upsilon_{A} + \upsilon_{A} + \upsilon_{A$$

- 1 val = $v \cdot 1$ mol
- aktivita: vlastnost, která popisuje chování (vlastnost) dané látky v porovnání s jejím chováním ve zvoleném standardním stavu (např. $a_i = c_i/c^{\Theta}$, $a_i = p_i/p^{\Theta}$)
 - aktivita látky, která je ve standardním stavu rovná 1
 - aktivita je poměr fungacit v aktuálním a standardním stavu (fungacita=veličina opravená na neideální chování)

nasycenost roztoků:

- nenasycený: je možné rozpustit více látky
- nasycený: není možné rozpustit více látky
- přesycený: obsahuje více rozpuštěné látky, než odpovídá daným podmínkám
- vzájemná mísitelnost (rozpustnost)
 - homogenní zcela rozpustný
 - heterogenní omezeně rozpustná (část látky se rozpustí, část ne)
 - heterogenní zcela nerozpustná

Vlastnosti kapalin/roztoků

- mezimolekulové síly vzájemný pohyb molekul
- vnitřní tření síly, které vznikají při pohybu kapaliny (a předmětů v kapalině) a působí proti jejímu pohvbu
- pseudokrystalická struktura, tvar podle nádoby
- Pascalův zákon = Tlak vyvolaný vnější silou, která působí na kapalinu v uzavřené nádobě je ve všech místech kapaliny stejný
- <u>Hydrostatický tlak</u> = tlak, který vzniká v kapalině její tíhou $p = h \cdot \rho \cdot g$

- S rostoucí teplotou
 - většina kapalin zvětšuje svůj objem: $V_t = V_0 (1 + \beta \Delta t)$
 - u většiny kapalin hustota klesá: $\rho_t = \rho_0 (1 \beta \Delta t)$
 - výjimka: anomálie vody nejmenší objem a největší hustota při 4 °C
- rovnováha na rozhraní plyn kapalina při každé teplotě dochází k odpařování i kondenzaci
 - sytá pára = při určitém tlaku a teplotě par se oba pochody vyrovnají
 - bod varu = tlak sytých par dosáhne vnějšího tlaku a kapalina se odpařuje v celém objemu

Raoultův zákon = parciální tlak p_A syté páry složky A nad roztokem je roven tlaku syté páry čisté složky A násobený jejím molárním zlomkem v kapalné fázi

přidáním rozpuštěné látky do čistého p-tenze par nad roztokem rozpouštědla způsobí snížení jejího $\frac{p_i^0$ tenze sytých par nad čistou tlaku syté páry

 $p_A = p_A^0 \cdot x_A$

 $p_B = p_B^0 \cdot x_B$

 $p = p_A + p_B = p_A^0 \cdot x_A + p_B^0 \cdot x_B$

složkou i

 p_i – parciální tenze par složky i nad roztokem

x_A – molární zlomek rozpouštědla

x_B – molární zlomek rozpuštěné látky Snížení teploty tání/tuhnutí

Ideální roztoky

T = konst

Zvýšení teploty varu

m_B – molalita látky B Povrchové napětí = síla působící v povrchu kapaliny kolmo na délkovou jednotku zvolenou v libovolném

směru

- při styku dvou kapalin mluvíme o mezipovrchovém napětí
- závisí na povrchových napětí obou kapalin
- je-li výsledné napětí
 - γ > 0 kapaliny se nemísí
 - kapaliny se mísí
- Povrchově-aktivní látky (tenzidy) snižují povrchové napětí vody

Povrchové napětí - smáčivost

 $0 < \alpha < 90^{\circ}$ smáčí povrch

 $180^{\circ} > \alpha > 90^{\circ}$ nesmáčí povrch

 $0 < cos\alpha < 1$

 $-1 < cos\alpha < 0$

Kapilární elevace

Kapilární deprese

Teorie kyselin a zásad

- Arheniova teorie:
 - kys = látky schopné odštěpit H⁺
 - zás = látky schopné odštěpit OH
- Brönsted-Lowryho teorie:
 - kyseliny = látky schopné odštěpit H⁺
 - zásady = látky schopné přijmout H⁺
- Lewisova teorie
 - kys = látky schopné přijmout el. pár
 - zás = látky schopné poskytnout el. pár
- používáme Brönsted-Lowryho teorii
 - konjugovaný pár: dvojice zásada kyselina lišící se o jeden proton H⁺
- amfolyt = látka, která se někdy chová jako kys, někdy jako zásada, záleží na prostředí ve kterém se nachází (jestli je kyselé/zásadité) - př. voda
- **pH** = záporný dekadický logaritmus koncentrace oxoniových kationtů (H_3O^+) ... v podstatě koncentrace H^+ , jenže ty se vážou na vodu $pH = -log(c_{H3O^+})$
 - kyseliny: pH ... 0 7
 - voda (neutrální): pH = 7
 - zásady: pH ... 7 14

Plyny v medicíně

Ideální plyny

- dokonalá stlačitelnost (vlastní objem molekul je zanedbatelný, vzdálenosti mezi částicemi jsou velké)
- nulové vnitřní tření (vzájemné silové působení mezi molekulami je zanedbatelné)
- molekuly jsou v neustálém chaotickém pohybu, mají velkou kinetickou energii
- molekuly se pohybují přímočaře a ke vzájemným interakcím dochází nahodile jen při vzájemným srážkám
- Stavová rovnice ideálního plynu: $p \cdot V = n \cdot R \cdot T$
 - p ... tlak [Pa], V ... objem [m³], n ... látkové množství [mol],
 - R ... univerzální plynová konstanta $R = 8,314 \text{ J·mol}^{-1} \cdot \text{K}^{-1}$, T ... teplota [K]

R...množství práce, kterou vykoná 1 mol plynu při změně teploty o 1K za norm. podmínek

Směsi ideálních plynů

- Parciální tlak p_i = tlak, při kterém by daný plyn byl, kdyby při dané teplotě sám zabíral celý objem soustavy $p_i = \frac{n_i^{RT}}{V} \qquad p_i = \chi_i \cdot p \qquad (\chi_i \text{ molární zlomek složky})$
- Daltonův zákon = Celkový tlak je součtem parciálních tlaků všech složek soustavy $p = \Sigma p_i$
- Parciální objem V_i $V_i = \frac{n_i RT}{p}$
- Amagatův zákon = Celkový objem směsi je dán je součtem parciálních objemů $V = \Sigma V_{,}$

Reálné plyny

- vlastní objem molekul je nezanedbatelný
- reálný plyn se dá stlačit pouze na objem kapaliny, která vznikne jeho zkapalněním
- molekuly reálného plynu na sebe silově působí a to zvláště při větším přiblížení
- reálné plyny mají vnitřní tření
- odchylky od ideálního chování se objevují hlavně při větších tlacích; při zřeďování plynu se blížíme k ideálnímu chování
- Korekce stavové rovnice
 - korekce na tlak výsledný tlak uvnitř plynu je zvětšený o kohezní tlak (p_i)

$$(p+p_i)=(p+\frac{a}{v^2})$$
 a...konst. Van der Waalse, $V_{\rm m}$...molární objem

korekce na objem - od výsledného objemu se odečte objem zkapalněného plynu

$$(V_m - b)$$

b...konst. (objem zkapalněného 1 molu plynu)

Stavová rovnice Van der Waalsova

$\begin{pmatrix} p + \frac{a \cdot n^2}{V^2} \end{pmatrix} \cdot (V - n \cdot b) = n \cdot R \cdot T$

 $R = 8,314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

Gibbsovo pravidlo fází

Rovnováha v jednosložkové soustavě

Katoda

Elektrolyzér

Oxid dusný N₂O - rajský plyn

- vlastnosti: menší hustota než vzduch, bezbarvý, nehořlavý, teplota varu -88 °C
- nasládlá vůně, inhalace vede k radostné náladě nebo spontánnímu smíchu
- použití: slabší anestetikum, nízká toxicita při nízké expozici, vynikající analgetikum
- N₂O: O₂ 1:1 při porodech, zubních zákrocích, akutní medicíně
- N₂O: O₂ 4:1 celková narkóza

Oxid uhličitý CO₂

- dýchací plyn, fotosyntéza, teplota sublimace -80 °C, suchý led, skleníkový efekt
- použití: lepší regenerace a prokrvení tkáně, uvolnění svalů, rozšíření kapilár, snížení bolesti
- karboxyterapie zavedení pod kůži, krátkodobé změny pH
- reakcí s Na⁺, Ca²⁺, K⁺ roste pH do zásaditých hodnot

Ozon O₃

- <u>účinky:</u> čistí tepny a žíly, normalizuje tvorbu hormonů a enzymů
- zlepšuje funkci mozku a paměti, oxiduje toxiny, likviduje volné radikály, podporuje proces uzdravování
- čistí krev a lymfu, pomáhá proti zánětům, snižuje bolest, utišuje nervy, zastavuje krvácení, předchází šokům, snižuje srdeční arytmie, předchází a léčí nakažlivé nemoci
- zabíjí viry a bakterie, proto se dříve využíval k dezinfekci místností (dnes UV lampy)

Elektrolýza a typy elektrod

Elektrolýza

- do elektrolytu (roztok/tavenina) vložíme elektrody připojené ke zdroji stejnosměrného elektrického proudu

vlivem působení proudu dochází k rozpadu elektrolytu (v roztoku jsou Anoda disociované ionty, které migrují k elektrodám) a chemickým změnám na elektrodách

- <u>elektrody:</u>
 - katoda (-): záporná elektroda, probíhá na ní redukce, přitahuje kationty
 - anoda (+): kladná elektroda, probíhá na ní oxidace, přitahuje anionty
- elektrolýza se využívá například k galvanickému pokovování předmětů (předmět se zapojí jako katoda, jako anoda se zapojí kov), čištění kovů, galvanickému leptání...
- opak elektrolýzy jsou chemické články (výroba elektrického proudu na základě elektrické vodivosti elektrolytů)

- elektrická vodivost elektrolytů:

- 1. Disociace na ionty: Iontová rovnováha, Stupeň disociace $K_x A_y \leftrightarrow x K^{y+} + y A^{x-}$
- Migrace iontů k elektrodám: transport náboje a hmoty difuze, driftová rychlost viskozita elektrolytu

3. Výměna nábojů na elektrodách: oxidace a redukce, elektrická dvojvrstva

- Faradayovy zákony

1. Faradayův zákon: hmotnost vyloučené látky na elektrodě je úměrná celkovému náboji, který prošel elektrolytem

-
$$m=A\cdot I\cdot t=A\cdot Q$$
 kde m ... hmotnost, I ... proud, t ... čas, Q ... náboj A ... elektrochemický ekvivalent látky $A=\frac{M}{z\cdot F}$

-
$$m=\frac{I\cdot t\cdot M}{z\cdot F}$$
 M ... molární hmotnost, F ... Faradayova konst $F=e\cdot N_A$ z ... nábojové číslo

- <u>2. Faradayův zákon:</u> (pro více různých látek) podíl hmotností dvou látek vyloučených z elektrolytu stejným nábojem je v poměru jejich chemických ekvivalentů (ekvivalentových hmotností)

$$- \quad m_{i} = \frac{\frac{M_{i} \cdot I \cdot t}{z_{i} \cdot F}, \frac{m_{1}}{m2} = \frac{M_{1}}{z_{1}} \cdot \frac{z_{2}}{M_{2}} = \frac{M_{ekv1}}{M_{ekv2}} \qquad \qquad \mathsf{M}_{\mathsf{ekv}} \dots \, \mathsf{ekvivalentov\acute{e}} \, \, \mathsf{hmotnosti}$$

- Měrná vodivost $\sigma = \frac{1}{\rho} [Sm^{-1}]$

- závisí na teplotě, při změně o 1°C se změní o 2%
- pro zředěné roztoky stoupá lineárně s koncentrací
- při středních koncentracích nabývá maxima
- při vysokých koncentracích opět klesá (zdůvodnění):
 - a) u silných elytů vzájemné ovlivňování iontů
 - b) u slabých elytů klesá α málo disociovaných molekul
- závisí na koncentraci zavádíme molární měrnou vodivost

- Molární měrná vodivost
$$\lambda = \frac{\sigma}{c} [Sm^2mol^{-1}]$$

- při zřeďování se mění změny v disociaci a interakci mezi ionty a molekulami rozpouštědla
 - a) silné elektrolyty (zcela disociovány) λ klesá s rostoucí koncentrací, závislost $\Lambda = f(\sqrt{c})$ je téměř lineární
 - b) slabé elektrolyty (koncentrace iontů dána stupněm disociace) α se ředěním zvětšuje \Rightarrow λ výrazně vzrůstá s klesající koncentrací
- u velmi zředěných roztoků (c ≤ 10⁻³ M) je vodivost elytu ovlivněna vodivostí samotného rozpouštědla

Driftová rychlost $v_D = \frac{dl}{dt} = b \cdot E$

Pohyblivost $b = \frac{v_D}{E}$

 $oldsymbol{v_D}$ – driftová rychlost $oldsymbol{E}$ – intenzita elektrického pole $oldsymbol{b}$ – pohyblivost iontů

 $Fe \leftrightarrow Fe^{2+} + e^{-}$

lontové rovnováhy na fázovém rozhraní

lontová rovnováha na fázovém rozhraní

Elektrická dvojvrstva

- rovnováha: kov x voda, potenciálový rozdíl
- vnitřní vrstva (nabitý povrch) součást pevné fáze na povrchu o tloušťce jednoho iontu (plocha nese el. náboj)
- vnější vrstva nabitý povrch přitahuje protiionty, které neutralizují jeho náboj
- výsledek působení elektrolytického rozpouštěcího tlaku a osmotického tlaku na rozhraní elektroda - elektrolyt

Zn

- Elektrolytický rozpouštěcí tlak síla, která uvolňuje kationty z kovu do roztoku
 - velký rozpouštěcí tlak méně ušlechtilé kovy
 - malý rozpouštěcí tlak ušlechtilé kovy
- Osmotický tlak tlak iontů kovu již přítomných v elektrolytu (působí proti rozpouštěcímu tlaku)
 - usazuje ionty z roztoku na elektrodu (do krystal. mřížky)
 - brání uvolňování kationtů z elektrody
- Méně ušlechtilý kov
 - kationty kovu přecházejí do elektrolytu
 - elektroda se nabíjí záporně přitahuje k sobě kationty z elektrolytu ⇒ vznik dvojvrstvy
- Ušlechtilý kov
 - kationty kovu z roztoku se vylučují na elektrodě
 - elektroda se nabíjí kladně přitahuje k sobě záporně nabité ionty ⇒ vznik dvojvrstvy
- Beketova řada kovů stupnice ušlechtilosti kovů udává na jaký potenciál (-,+) se daný kov v
 roztoku své soli nabíjí

Elektrický potenciál

 práce potřebná k přenesení náboje 1C z nekonečné vzdálenosti přes elektrolyt do vnitřku kovové elektrody

Elektrochemický potenciál

- celková práce potřebná k přenesení náboje 1C a jemu odpovídajícího množství hmoty
- nelze oddělit práci elektrickou a chemickou
- nosiči náboje ionty ⇒ přenos náboje a hmoty

Povrchové dipóly

 elektrony v kovu se uvolní a vytvoří na povrchu elektronovou vrstvu, která spolu s vnitřními kladnými ionty tvoří dipólový povrch kovu

Typy elektrod

- elektroda + elektrolyt = poločlánek
- <u>I. druhu (kationtové, aniontové)</u> = elektroda v roztoku svých iontů
 - kationtové: rovnováha nastává mezi kovem a jeho kationtem K⁺ + e⁻ ↔ K

- Vodíková elektroda (plynová) $Me \mid Me^{z+}$ $Me^{z+} + z e^{-} = Me$

- Chlórová elektroda

Chlórová elektroda $\mathit{Cl}_2 + 2 \ e^- \ \longleftrightarrow 2 \ \mathit{Cl}^- \qquad E = E^0 + \frac{\mathit{RT}}{2\mathit{F}} \cdot \ln \left(\frac{a_\mathit{Cl}^2}{a_\mathit{Cl}^2} \right) \quad a_\mathit{Cl2} = 1$

 $A + z e^- = A^{z-}$

 $A \mid A^{z-}$

- II. druhu = kovová elektroda pokryta svojí málo rozpustnou solí, která má společný iont v roztoku

svých iontů (Kalometová elektroda)

- Redox = platinový plíšek ponořený do roztoku obsahujícího ionty ve dvou oxidačních stupních

- elektroda se v roztoku oxidačního nebo redukčního činidla nabíjí, i když s ním nereaguje

$$Ox + z e^{-} = Red$$
 Petersonova rovnice
$$E_{Redox} = E_{Redox}^{0} + \frac{RT}{zF} \cdot ln\left(\frac{a_{ox}}{a_{red}}\right)$$
 Fero-feri elektroda
$$Fe^{3+}|Fe^{2+}$$

$$Fe^{3+} + e^{-} \leftrightarrow Fe^{2+}$$

$$E_{Redox} = E_{Redox}^{0} + \frac{RT}{F} \cdot ln\left(\frac{a_{Fe3+}}{a_{Fe2+}}\right)$$

- <u>Speciální: iontově selektivní elektrody</u> = membránové, skleněná elektroda (referenční)

- Elektrody pro snímání biologických signálů
 - povrchové plovoucí kovové elektrody (nejběžnější povrchové elektrody, např pro EKG, EEG atp.)
 - podpovrchové vpichové jehlové elektrody (např pro EMG), implantabilní elektrody (např pro kardiostimulátory)
 - *mikroelektrody* tenká kovová elektroda s izolovaným tělem nebo skleněná trubička s drátkem uvnitř (např pro snímání buněčných potenciálů)

Analytické metody

- metody, pomocí kterých zjišťujeme složení zkoumané látky, procentuální zastoupení jednotlivých složek, popřípadě vlastnosti látek
- s Pilarčíkovou jsme se bavili jen o Konduktometrii a Polarografii

Konduktometrie

- elektrochemická metoda
- měří se elektrická vodivost elektrolytů
- měření vodivostní nádobky s dvěma elektrodami
- použití střídavého napětí, aby nedocházelo k polarizaci elektrod
- Konduktometrie přímá: měření vodivosti, jehož cílem je stanovení koncentrace roztoků
 - Elektrická vodivost: $G = \frac{1}{R}[S]$
 - migrace iontů elektrolytu
 - Měrná vodivost: $\sigma = \frac{1}{\rho} [Sm^{-1}] \sigma = K \cdot G$
 - závisí na teplotě, při změně o 1°C se změní o 2% →měření za stálé teploty
 - při vysokých koncentracích klesá → roztoky musí být zředěné, ionty se nesmí vzájemně ovlivňovat
 - Molární měrná vodivost: $\lambda = \frac{\sigma}{c} [Sm^2 mol^{-1}]$
 - při zřeďování se mění změny v disociaci a interakci mezi ionty a molekulami rozpouštědla
- <u>Konduktometrická titrace:</u> měření změn vodivosti v závislosti na objemu přidávaného titračního činidla
 - metoda odměrné analýzy
 - závislost vodivosti roztoku na objemu přidávaného titračního činidla stanovení BE (bod ekvivalence)
 - Podmínky konduktometrické titrace:
 - volí se vyšší koncentrace titračního činidla, než jaká by odpovídala ekvivalentně koncentraci analyzovaného roztoku (aby se roztok nezřeďoval)
 - roztoky musí být dostatečně zředěné a titrace musí být prováděna za konstantní teploty
 - při titraci nesmí docházet ke změnám vodivosti titrovaného roztoku (splněno pro neutralizační, srážecí a komplexotvorné reakce)

Polarografie

- zvláštní případ elektrolýzy
- přístroj polarograf
- stejnosměrné napětí přiváděné na elektrochemický článek se mění s časem
- sleduje se závislost proudu procházejícího článkem na napětí, jímž je pracovní elektroda polarizována
- <u>Pomocná (referenční) elektroda</u> nepolarizovatelná (Hg dno)
- Pracovní (měřící) elektroda dokonale polarizovatelná RKE
 - složena z kapiláry (d = 0,08 mm) a zásobníku Hg
 - kapka (d = 1 mm), interval odkapávání 2-5 s
 - povrch elektrody se neustále obnovuje →reprodukovatelnost měření
 - elektrolýze podléhá jen malé množství látky (opakovatelné se stejným vzorkem)
 - kapilára ponořena do měřeného roztoku v polarografické nádobce
- <u>Depolarizátor</u> analyzovaná látka depolarizuje RKE
- Polarizovatelná elektroda
 - vlivem malých proudových hustot výrazně mění svůj potenciál
 - elektrody s malým povrchem, protékají velké proudy
- Nepolarizovatelná elektroda
 - prakticky nemění svůj potenciál vlivem procházejícího proudu
 - elektrody s velkým povrchem (II. druhu)

- Polarografická křivka závislost proudu na měřeném napětí
 - lze určit druh a koncentraci depolarizátoru
 - druh depolarizátoru určuje půlvlnový potenciál (odpovídá konkrétní látce)
 - koncentrace depolarizátoru úměrná výšce příslušné vlny (limitnímu difuznímu proudu I_d)
- I_d limitní difuzní proud určuje se porovnáním s referenční vlnou
 - všechny částice depolarizátoru, které se dostanou na povrch kapky na ni elektrochemicky zreagují
 - za konst. T je počet zreagovaných částic konstantní
- Využití:
 - v biologii, farmacii i biochemii
 - rozlišení složení velmi slabých roztoků
 - monitorování látek v životním prostředí
 - měření kyslíku v atmosféře, obsahu oxidu siřičitého v kouřových plynech, jedovatých kovů ve vodě
 - sledování rakoviny, zkoumání DNA i bílkovin