#### Diode (Semiconductor pn-Junction)

## **Diode (Semiconductor pn-Junction)**

- 1. Introduction
- Operation Regions: Forward-Bias, Reverse-Bias, and Breakdown
- 3. Current-Voltage Characteristic
- 4. Modeling the Diode: Large-Signal Model and Small-Signal Model
- 5. The Diode Circuit(s): Rectifier and Voltage Regulator
- 6. Charge Stored and Capacitive Effect

## **Reference**

□ A.D. Sedra & K.C. Smith, "Microelectronic Circuits – Theory and Application", 5<sup>th</sup> Edition (International Version), Oxford University Press, Chapter 2. © Chor EF pn-2

#### **Diode** – Introduction (Structure)



silicon pn-junction diode



Simplified structure (active region) & circuit symbol of a semiconductor pn-junction.

The <u>diode</u> to be discussed is a <u>semiconductor</u> *pn*-junction.

- ☐ Made using a single crystal semiconductor (typically silicon), with impurities added to one side to contain many negative charge carriers (electrons), called an *n*-type semiconductor; and to the other side to contain many positive charge carriers (holes), called a p-type semiconductor.
- ☐ In a semiconductor, there are two types of charge carriers: electrons (with charge of -1.602×10<sup>-19</sup> C) and holes (with charge of +1.602×10<sup>-19</sup> C). This is in contrast to metals, which have only electrons.

### **Diode** – Introduction (Semiconductor)

- ☐ Semiconductors have electrical conductivities (or resistivity) between that of metals (conductors) and insulators.
- ☐ Unlike metal and insulator, a unique property of semiconductor is that impurities can be added (in a controlled manner) into it
  - to make it *n*-type or *p*-type, and
  - to change its conductivity (or resistivity) and carrier concentration.

|               | Material                                           | Typical Resistivity*<br>(Ω-cm)                                                                    | Typical Carrier<br>Concentration (cm <sup>-3</sup> )     |
|---------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Metal         | Copper<br>Gold<br>Aluminum<br>Stainless Steel 316) | 1.69×10 <sup>-6</sup><br>2.20×10 <sup>-6</sup><br>2.67×10 <sup>-6</sup><br>70-78×10 <sup>-6</sup> | ~10 <sup>23</sup> (electron)                             |
| Semiconductor | Germanium<br>Silicon<br>Gallium Arsenide           | 46<br>2.3×10 <sup>5</sup><br>10 <sup>8</sup>                                                      | Wide range up ~10 <sup>18-19</sup> (with impurity added) |
| Insulator     | Silicon Nitride<br>Silicon Dioxide<br>Polyimide    | 10 <sup>14</sup><br>10 <sup>14</sup> -10 <sup>16</sup><br>10 <sup>18</sup>                        | Negligible                                               |

<sup>\*</sup> Resistivity is reciprocal of conductivity. Temperature ~ 300 K (room temperature).

© Chor EF pn-4

#### **Diode** – Introduction (Semiconductor)

#### Circuit symbol of diode:



Simplified structure and circuit symbol of a semiconductor pn junction.



- ☐ The process of adding impurities to semiconductor is known as doping.
- ☐ Impurities added to semiconductor to make it *n*-type and *p*-type are <u>different</u>. For silicon (a group IV element)
  - p-type impurity is a group III element (Boron, Aluminium and Gallium).
  - n-type impurity is a group V element (Phosphorus, Arsenic and Antimony).
- □ The process of doping can also change a *p*-type semiconductor to *n*-type semiconductor, and vice versa. For <u>example</u>, by adding more *n*-type impurities to an originally *p*-type semiconductor, it can be changed to *n*-type. This allows the making of *pn*-junction, and transistors (BJT and MOSFET).

### **Diode** – Introduction (Origin of Current)

☐ Take note there are two types of charge carrier movement, leading to two types of current: drift and diffusion.



Charge carriers move/drift in the presence electric field. Carriers drift at a velocity proportional to the electric field.

Charge carriers diffuse owing to the difference in carrier concentration. The resulting diffusion current is proportional to the concentration gradient.

# **Diode** – Introduction (Carriers and Carrier Movement in Devices)

| Devices                                                          | Dominant<br>Carrier<br>Movement<br>Mechanism | Type of Carriers                                          |        |
|------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------|--------|
| Resistor                                                         | Drift                                        | ■ Electrons (Metal)                                       |        |
|                                                                  |                                              | <ul><li>Electrons and holes<br/>(Semiconductor)</li></ul> |        |
| Diode                                                            | Diffusion                                    | ■ Electrons and holes one side p                          | n-type |
| BJT (Bipolar Junction Transistor)                                | Diffusion                                    | ■ Electrons and holes                                     | ase )  |
| MOSFET (Metal Oxide<br>Semiconductor Field Effect<br>Transistor) | Drift                                        | <ul><li>Electrons (NMOS)</li><li>Holes (PMOS)</li></ul>   |        |

### **Diode** – Introduction (IV Characteristic)

Diode (semiconductor *pn*-junction) is the simplest (2-terminal) and most fundamental *nonlinear* circuit element.

- □ It allows a current flow through it easily in one direction (known as the forward direction, V > 0), but not in the opposite direction (known as the reverse direction, V < 0), except for the reverse breakdown region.</p>
- ☐ Unlike a resistor, which is a *linear* element that has a linear current-voltage relation.
- Diode can be used as a switch and in a rectifier circuit to convert ac into dc.



#### Diode (Semiconductor pn-Junction)

# **Diode (Semiconductor pn-Junction)**

- 1. Introduction
- Operation Regions: Forward-Bias, Reverse-Bias, and Breakdown
- 3. Current-Voltage Characteristic
- 4. Modeling the Diode: Large-Signal Model and Small-Signal Model
- 5. The Diode Circuit(s): Rectifier and Voltage Regulator
- 6. Charge Stored and Capacitive Effect

## Reference

□ A.D. Sedra & K.C. Smith, "Microelectronic Circuits – Theory and Application", 5<sup>th</sup> Edition (International Version), Oxford University Press, Chapter 2.

#### **Diode** – Forward Bias Operation



- Under forward-bias (V > 0), an external voltage is applied such that the p-type terminal is at a higher (positive) voltage with respect to the n-type terminal.
  - Forward current flows through the diode from the p-type to n-type side.
- □ The forward current remains small (≈ 0 practically) until the cut-in voltage, and increases quickly with a small increase in V thereafter.
- □ With a substantial forward current, the voltage drop across the diode lies in a narrow range.

### Diode – Reverse Bias Operation (Non-Breakdown Region)



- □ Under reverse-bias (V < 0), an external voltage is applied such that the p-type terminal is at a lower (or negative) voltage with respect to the n-type terminal.
  - Reverse current flows through the diode from the n-type to p-type side.
- $\square$  For reverse bias voltage magnitude,  $|V| = V_R \triangleleft V_Z$ , the breakdown voltage, reverse current is very small and can be treated practically as zero, meaning the diode is equivalent to an open circuit.

### Diode - Reverse Bias Operation (Breakdown Region)



- ☐ With an external voltage supply that reverse biases the diode,  $V_{DD} > V_Z$  (breakdown voltage), the diode reverse current is no longer ≈ 0, but can be very large, while its voltage is practically not changed and stays at  $-V_Z$ . This condition is known as breakdown.
- $\Box$  Under breakdown operating condition, the voltage across the pn junction diode is 'clamped' at  $-V_Z$ . Minus sign highlights that breakdown is a reverse biased condition.

### Diode - Reverse Bias Operation (Breakdown Region)



- Operation in the breakdown region does not destroy the diode, provided the current through it is kept below a certain level, such that the power dissipation  $(V \times I)$  is below what the diode can handle.
- While operating in the breakdown region, current can be limited by connecting a resistor, R, of suitable value in series with the pn junction diode -

$$I = \frac{V_{DD} - V_Z}{R}$$

#### Diode (Semiconductor pn-Junction)

# **Diode (Semiconductor pn-Junction)**

- 1. Introduction
- Operation Regions: Forward-Bias, Reverse-Bias, and Breakdown
- 3. Current-Voltage Characteristic
- 4. Modeling the Diode: Large-Signal Model and Small-Signal Model
- 5. The Diode Circuit(s): Rectifier and Voltage Regulator
- 6. Charge Stored and Capacitive Effect

## **Reference**

□ A.D. Sedra & K.C. Smith, "Microelectronic Circuits – Theory and Application", 5<sup>th</sup> Edition (International Version), Oxford University Press, Chapter 2.

#### Diode - Current-Voltage Characteristic



Current-voltage (IV) relationship of a "real" pn-junction diode -

$$I = I_S \left( e^{\frac{V}{nV_T}} - 1 \right)$$
 Letween [  $\sim$  ] (2.1)

- $\square$  *V* is the voltage across the diode: V > 0 for forward bias and V < 0 for reverse bias.
- I is the current flowing through the diode: I > 0 for forward bias and I < 0 for reverse bias.

  (fall more convenient)

  value when doing (a)culation)
- $\square$   $V_T$  is the thermal voltage,  $V_T = kT/q = 0.0259 \ V \approx 0.025 \ V$  at  $T = 300 \ K$ .

### Diode - Current-Voltage Characteristic



Current-voltage (IV) relationship of a "real" pn-junction diode -

$$I = I_S \left( e^{\frac{V}{nV_T}} - 1 \right) \tag{2.1}$$

- ☐ *n* is the exponential factor, and has a value between 1 and 2, depending on the material and physical structure of the semiconductor *pn*-junction.
  - For an ideal pn-junction diode, n = 1.
- $\square$   $I_S$  is the reverse saturation current, a parameter of the diode and it is a strong function of temperature. It increases with increasing temperature.

$$(\uparrow \uparrow, \uparrow I_s)$$

## Diode - Current-Voltage Characteristic (Forward Bias)



Current-voltage (IV) relationship of a "real" pn-junction diode -

$$I = I_S \left( e^{\frac{V}{nV_T}} - 1 \right) \tag{2.1}$$

□ For substantial forward bias (V > cut-in voltage > 0),  $e^{\frac{V}{nV_T}} \gg 1$  and

$$I = I_S \left( e^{\frac{V}{nV_T}} - 1 \right) \approx I_S e^{\frac{V}{nV_T}}$$
 | Lecome) much greater that (2.2a)

or 
$$V \approx nV_T \ln(I/I_S)^* \rightarrow \text{taking loge both sides}$$
 (2.2b)

<sup>\*</sup>A linear relation between V and ln(I).

### Diode - Current-Voltage Characteristic (Forward Bias)



Current-voltage (IV) relationship of a "real" pn-junction diode -

$$I = I_S \left( e^{\frac{V}{nV_T}} - 1 \right) \tag{2.1}$$

- ☐ Owing to the exponential *IV* relationship
  - I ≈ 0 for V < ~0.5 V (known as the cut-in voltage)</p>
  - For a fully conducting *pn*-junction diode (*V* > ~0.5 V and with substantial current flowing through), the voltage drop across it lies in a narrow range, ~0.6 to 0.8 V. ⇒+•k••9: 0-1 V

### **Diode** – Current-Voltage Characteristic (Reverse Bias)



Current-voltage (IV) relationship of a "real" pn-junction diode -

$$I = I_S \left( e^{\frac{V}{nV_T}} - 1 \right) \tag{2.1}$$

- In reverse bias, V<0, for |V|> a few times  $nV_T$ ,  $e^{\frac{V}{nV_T}}\ll 1$  and  $I=I_S\left(e^{\frac{V}{nV_T}}-1\right)\approx -I_S \text{ (for Non-breakdown region)}$
- Reverse current is a constant independent on V, having a magnitude of  $I_S$ , the reverse saturation current, a very small number (practically zero).
- N.B. Equation (2.1) does not predict the breakdown characteristic.

#### Diode (Semiconductor pn-Junction)

# **Diode (Semiconductor pn-Junction)**

- 1. Introduction
- Operation Regions: Forward-Bias, Reverse-Bias, and Breakdown
- 3. Current-Voltage Characteristic
- 4. Modeling the Diode: Large-Signal Model and Small-Signal Model
- 5. The Diode Circuit(s): Rectifier and Voltage Regulator
- 6. Charge Stored and Capacitive Effect

## Reference

□ A.D. Sedra & K.C. Smith, "Microelectronic Circuits – Theory and Application", 5<sup>th</sup> Edition (International Version), Oxford University Press, Chapter 2.



#### Why the need to model diode?

 $\square$  Consider the analysis of the above simple circuit shown, which uses a diode in forward bias. Assuming  $V_{DD} > 0.5 \ V$ , the IV characteristic of the diode is

$$I_D = I_S \left( e^{\frac{V_D}{nV_T}} - 1 \right) \approx I_S e^{\frac{V_D}{nV_T}}$$
 based on 15 16
$$(2.3)$$

 $\square$   $I_D$  and  $V_D$  are the current through the diode and voltage across the diode, respectively.



 $\square$   $I_D$  and  $V_D$  are also governed by the Kirchhoff Voltage Law (KVL) –

Load line: 
$$I_D = \frac{V_{DD} - V_D}{R}$$
 (2.4)

- ☐ Equation (2.4) is known as the load line of the circuit.
- $\square$   $I_D$  and  $V_D$  cannot be determined easily by solving equations (2.3) and (2.4) simultaneously, owing to the exponential IV characteristic of the pn-junction diode.
- ☐ They can be determined by the intersection of equations (2.3) and (2.4) graphically (as shown above).
- They can also be solved using a simple iterative procedure (see work example).

#### **Work Example** - Iterative Method

Determine the current  $I_D$  and voltage  $V_D$  of the circuit shown below by means of iteration for  $V_{DD}$  = 5 V and R = 1 k $\Omega$ . It is given that the diode has a current of 1 mA at a voltage of 0.6 V and that its voltage drop changes by 0.1 V for every decade change in current.

- $\square$   $I_D$  and  $V_D$  are governed by equations (2.3) and (2.4).
- $\square$  We need to find  $nV_T$  first in order to use the diode equation (2.3) in the iteration process.



take loge 
$$I_D \approx I_S e^{\frac{V_D}{nV_T}}$$
 ( $V_{DD}$ = 5 V  $\Rightarrow$  diode operates in substantial forward bias)  $\Rightarrow V_D \approx nV_T \ln(I_D/I_S)$ 

- $\Box$  Given that at  $V_D=0.6$  V,  $I_D=1$  mA  $\Rightarrow 0.6$  V =  $nV_T \ln(1$  mA/ $I_S$ )
- ৴ ক find orginal

  ☐ Subtracting the above two equations yields

$$V_{D} - 0.6 \text{ V} = nV_{T} \ln(I_{D}/I_{S}) - nV_{T} \ln(1 \text{ mA/}I_{S})$$

$$n V_{T} (\ln I_{0} - \ln I_{S}) - n V_{T} (\ln \ln A - \ln I_{S})$$

$$\Rightarrow V_{D} - 0.6 \text{ V} = nV_{T} \ln(I_{D}/1 \text{ mA})$$

$$= n V_{T} (\ln I_{0} - \ln I_{S} - \ln \ln A + \ln I_{S})$$

$$= n V_{T} (\ln I_{0} - \ln I_{M})$$

Given that  $V_D$  changes by 0.1 V for every decade change in  $I_D$ , i.e., for  $(V_D-0.6 \text{ V})=0.1 \text{ V}, I_D/1 \text{ mA}=10$ , leading to  $V_D-0.6 \text{ V}=nV_T \ln(I_D/1 \text{ mA}) \Rightarrow 0.1 = nV_T \ln(10)$   $\Rightarrow nV_T=0.043$ 

# The iteration process proceeds as follows -

- 1) We first assume  $V_D = V_{D0} = 0.7$  V, the mid voltage value of the range shown on slide pn-17 (~0.6 0.8 V), which is based on the diode characteristic, i.e., equation (2.3).
- equation (2.3).

  Next, substitute  $V_D = V_{D0} = 0.7$  V into equation (2.4), the KVL equation, we make an initially estimate for  $I_D (= I_{D0})$  –

$$I_{D0} = \frac{V_{DD} - V_{D0}}{R} = \frac{5 - 0.7}{1000} = 4.3 \text{ mA}$$

3) Using the estimated  $I_{D\theta}$  = 4.3 mA, a better estimate for  $V_D$  (=  $V_{D1}$ ) is obtained using the diode equation -

$$V_D - 0.6 \text{ V} = nV_T \ln(I_D/1 \text{ mA}) \Rightarrow V_{D1} - 0.6 \text{ V} = 0.043 \ln(4.3 \text{ mA}/1 \text{ mA})$$
  
  $\Rightarrow V_{D1} = 0.6627 \text{ V}$ 

4) Substitute  $V_{D1}$  = 0.6627 V into equation (2.4), a better estimate for  $I_D$  (=  $I_{D1}$ ) is obtained

$$I_{D1} = \frac{V_{DD} - V_{D1}}{R} = \frac{5 - 0.6627}{1000} = 4.3373 \text{ mA}$$

5) Thus, after the 1<sup>st</sup> iteration  $I_{D1}$  = 4.3373 mA and  $V_{D1}$  = 0.6627 V. The 2<sup>nd</sup> iteration proceeds in a similar manner, by repeating steps 3 and 4:

$$V_{D2} - 0.6 \text{ V} = 0.043 \ln(4.3373 \text{ mA/1 mA}) \Rightarrow V_{D2} = 0.6631 \text{ V}$$

$$I_{D2} = \frac{V_{DD} - V_{D2}}{R} = \frac{5 - 0.6631}{1000} = 4.3369 \text{ mA}$$

- 6)  $2^{\text{nd}}$  iteration yields  $I_{D2}$  = 4.3369 mA and  $V_{D2}$  = 0.6631 V, which are close to values obtained after the 1<sup>st</sup> iteration (less than 0.06% difference), hence further iterations are not necessary, as the values of  $V_D$  and  $I_D$  have converged.
- ☐ Take note that equations (2.3) and (2.4) are used alternately.



#### Why the need to model diode?

- □ For more complex circuits, the analysis by means of the graphical method may not be possible and the iterative method may be too tedious owing to the exponential *IV* characteristic of diode.
- □ To speed up circuit analysis, simpler model for the diode is used. This is at the expense of precise results.
- ☐ The forward bias diode exponential characteristic can be approximated by two straight lines: Line A with zero slope, and Line B with a slope  $1/r_D$ . This approximation is known as the piecewise-linear model.



#### Large-signal model

☐ The piecewise-linear model:

• 
$$i_D = 0$$
,  $v_D \le V_{DO}$  (Line A) (2.5)

• 
$$i_D = (v_D - V_{DO})/r_D$$
,  $v_D \ge V_{DO}$  (Line B) (2.6)

- $V_{DO}$  and  $r_D$  are model parameters. Choice of lines A and B (or  $V_{DO}$  and  $r_D$ ) is **not** unique.
- Closer approximation obtained by restricting the operation range.
- $\Box$  The ideal-diode model:  $V_{DO}=0$  and  $r_D=0$ .
- $\Box$  The constant-voltage-drop model:  $r_D=0$  and  $V_{DO}$  is usually taken as 0.7 V.



#### The large-signal model

- $\Box$  In the equivalent circuit of the piecewise-linear model of diode, an ideal diode model is included to restrict  $i_D$  flow in the forward bias direction only.
- ☐ The large signal model can be used to replace the diode in the dc (large signal) circuit analysis (see work example to follow).
- $\square$  Symbols for diode current and voltage have been replaced by  $i_D$  and  $v_D$ . They represent the 'total' current and voltage of a diode and will be elaborated in subsequent slides.

#### Work Example - Using Constant-Voltage-Drop Model (for 06 Analysis)

Determine the current  $I_D$  and voltage  $V_D$  of the circuit shown below for  $V_{DD}$  = 5 V and R = 1 k $\Omega$ . It is given that the diode has a current of 1 mA at a voltage of 0.6 V and that its voltage drop changes by 0.1 V for every decade change in current.

Since 
$$V_{DD}$$
 = 5 V, diode operates in substantial forward bias  $\Rightarrow V_D = V_{D0} \approx 0.7$  V (using the Constant-Voltage-Drop Model)  $I_D = \frac{V_{DD} - V_D}{R} \approx \frac{5 - 0.7}{1 \text{k}} = 4.3 \text{ mA}$  (by means of KVL equation)

- ☐ Errors incurred in comparison to results obtained using iterative method:
  - $I_D$ : 4.3 mA versus 4.3369 mA  $\Rightarrow$  -0.85% error
  - $V_D$ : 0.7 V versus 0.6631 V  $\Rightarrow$  +5.56% error
- ☐ Analysis is much easier using the constant-voltage-drop model for diode! At the expense of small error.

### **Diode** – Modeling the Diode - Small-Signal Model



#### **Small-signal operation**

- ☐ There are circuits with time varying signal in addition to the dc supply  $(V_{DD})$ , as shown in the circuit above, where  $v_{dd}(t)$  is an ac signal with a small amplitude. The circuit analysis is complicated owing to the non-linear nature of the diode.
- $lue{}$  Concept of small-signal operation: a small amplitude time varying signal, such as a small ac signal,  $v_{dd}(t)$ , can be considered as a small add-on to the dc supply,  $V_{DD}$ . Analysis of circuit can then be divided into two parts:
  - dc analysis consider only the effect of dc supply,  $V_{DD}$ .
  - ac (small signal) analysis consider only the effect of small ac signal,  $v_{dd}(t)$ .

The solutions are added together using superposition to give the total effect.

### Diode - Modeling the Diode (dc and ac symbols)



Notations for dc and ac values (examples)

- ☐ Total current:  $i_D = I_D + i_d$ Lower case symbol Capital subscript



# Small-signal operation AC signal

- **dc analysis**: The dc source,  $V_{DD}$ , is used to bias the diode to operate at a point on its forward IV characteristic,  $Q(I_D, V_D)$ , known as the bias point, around which the diode small ac signals,  $v_d(t)$  and  $i_d(t)$ , operate.
  - The dc bias point  $Q(I_D, V_D)$  can first be determined using the large-signal model, and in the **absence** of the small-signal ac source,  $v_{dd}(t)$ .
- $lue{}$  ac (small-signal) analysis: How do we analyze the diode small-signal operation around the bias point,  $Q(I_D, V_D)$ ?

### **Diode** – Modeling the Diode - Small-Signal Model



#### **Small-signal operation**

lacktriangle In the presence of  $V_{DD}$  and  $v_{dd}(t)$ , the total instantaneous diode voltage and current,  $v_D(t)$  and  $i_D(t)$ , are plotted above and given as follows -

$$v_D(t) = V_D + v_d(t)$$

$$i_D(t) = I_D + i_d(t)$$

$$> DC + AC signal$$

$$(2.7)$$

$$(2.8)$$

 $\sqcup V_D$  and  $I_D$  are the diode dc bias voltage and current, respectively. They are the values without the small-signal ac source  $v_{dd}(t)$  and are related as follows –

$$I_D \approx I_S e^{\frac{V_D}{nV_T}} \rightarrow \text{Pg 1}^{(2.9)}$$

### **Diode** – Modeling the Diode - Small-Signal Model



#### **Small-signal operation**

 $\square$  With small-signal source  $v_{dd}(t)$  applied, the total instantaneous current,  $i_D(t)$ , is

$$I_D(t) = I_S e^{\frac{v_D(t)}{nV_T}} = I_S e^{\frac{V_D + v_d(t)}{nV_T}} = I_S e^{\frac{V_D}{nV_T}} e^{\frac{v_d(t)}{nV_T}} = I_D e^{\frac{v_d(t)}{nV_T}}$$
(2.10)

Since  $v_{dd}(t)$  is a small-signal source,  $v_d(t)$  is expected to be small, known as the small-signal voltage of the diode; and for  $v_d(t) << nV_T$ ,

$$I_D(t) = I_D e^{\frac{v_d(t)}{nV_T}} \approx I_D \left[ 1 + \frac{v_d(t)}{nV_T} \right] = I_D + \frac{I_D}{nV_T} v_d(t)$$
 (2.11)

Note:  $e^x \approx 1 + x$ , for  $x \ll 1$ .

(4) hi



- ☐ From equation (2.11) for small  $v_{dd}(t)$ , the total instantaneous current,  $i_D(t)$ , is the sum (superposition) of two components: a dc  $I_D$ , and an ac  $\frac{I_D}{nV_T}v_d(t)$ .
- ☐ The total instantaneous diode current  $i_D(t)$  is also given by equation (2.8), hence the small-signal current of the diode,  $i_d(t)$ , is given by

 $\Box$   $r_d$  has the dimension of resistance and is called the diode small-signal resistance. (N.B.  $r_d$  is different from  $r_D$  in slide pn-26, a large-signal model parameter)

### Diode - Modeling the Diode - Small Signal Model

#### **Actual circuit**

#### **Small-signal equivalent circuit**



#### Small-signal model

☐ From equation (2.12) - diode small-signal current,  $i_d(t)$ , is directly and linearly related to its small-signal voltage,  $v_d(t)$ , via  $r_d$  (similar to a resistor) -

- $lue{}$  For small-signal operation (around a dc bias point), the diode can be replaced (or modeled) by a resistor,  $r_d$ , as shown in the circuit on the right above. There is no need for detailed calculation with time and the dc source,  $V_{DD}$ , is replaced by a short circuit (known as ac short).
  - Diode small-signal current can be determined using KVL:  $i_d(t) = \frac{v_{dd}(t)}{R+r_d}$
- $\Box$  The bias point  $I_D$  is needed to find  $r_d$ , as seen in equation (2.13):  $r_d = \frac{nV_T}{I_D}$ .

## Diode - Modeling the Diode - Small Signal Model

#### Small-signal equivalent circuit





#### Small signal model

- ☐ It has been seen that small-signal analysis can be performed separately from dc analysis with the diode modelled as a linear component resistor,  $r_d$ , and the dc source,  $V_{DD}$ , replaced by a short circuit.
- $lue{}$  From above IV characteristic the **slope** at the dc bias point  $Q(I_D, V_D)$  gives approximately the **inverse** of diode small-signal resistance,  $r_d$  -

- $\square$   $r_d$  is also known as the diode incremental resistance.
- $\Box$  In developing the small-signal model of diode (non-linear), we have a linear relationship between its small-signal voltage,  $v_d$ , and small-signal current,  $i_d$ .

#### Diode (Semiconductor pn-Junction)

# **Diode (Semiconductor pn-Junction)**

- 1. Introduction
- Operation Regions: Forward-Bias, Reverse-Bias, and Breakdown
- 3. Current-Voltage Characteristic
- 4. Modeling the Diode
- 5. The Diode Circuit(s): Rectifier and Voltage Regulator
- 6. Charge Stored and Capacitive Effect

## **Reference**

□ A.D. Sedra & K.C. Smith, "Microelectronic Circuits – Theory and Application", 5<sup>th</sup> Edition (International Version), Oxford University Press, Chapter 2.

### Diode - Diode Circuit(s): Half-Wave Rectifier



- During the positive half-cycles of  $v_S$ , current flows through the diode in the forward direction, hence  $v_o \cong v_S V_{D0}$  (>>  $i_D r_D$ ) where AC source amplitude is  $v_S$ .
- $\square$  During the negative half-cycles of  $v_S$ , the diode does not conduct, thus  $v_o = 0$ .
- $\square$  Although  $v_S$  alternates in polarity and has a zero average value,  $v_o$  is unipolar /unidirectional and has a finite average value or a dc component.
- $\Box$  Above circuit is known as a half-wave rectifier as it utilizes alternate half-cycles of input sinusoidal AC source  $v_S$ .

### Diode - Diode Circuit(s): Full-Wave Rectifier



#### Full-wave bridge rectifier

- ☐ Full-wave rectifier utilizes both positive and negative half-cycles of input signal.
- ☐ Four diodes connected in Wheatstone bridge configuration is used.
- $\square$  During the positive half-cycles of  $v_S$ , current conducts through diode  $D_1$ , load resistor R and diode  $D_2$ . In the meantime,  $D_3$  and  $D_4$  are reverse biased.
- $\square$  During the negative half-cycles of  $v_S$ , current conducts through diode  $D_3$ , load resistor R and diode  $D_4$ , while diode  $D_1$  and  $D_2$  are reverse biased.

### Diode - Diode Circuit(s): Voltage Regulator



#### Zener diode as a voltage reference

- Zener diodes are special diodes designed to operate in the breakdown region and they can be used in the design of voltage regulator (a circuit that provides a  $V_2$  constant dc voltage between its terminals). Zener diodes are specified with  $V_Z$ , the breakdown voltage.
- □ In the above circuit, as long as  $V_{DD} > V_Z$  (meaning Zener diode operates in the breakdown region), the voltage across the load  $R_L$  is kept constant (or regulated) at  $V_L = V_Z$  by the Zener diode. Note that  $I_Z \neq 0$ .
- ☐ Virtually replaced by specially designed ICs that perform voltage regulation much more effectively and greater flexibility.

#### Diode (Semiconductor pn-Junction)

# **Diode (Semiconductor pn-Junction)**

- 1. Introduction
- Operation Regions: Forward-Bias, Reverse-Bias, and Breakdown
- 3. Current-Voltage Characteristic
- 4. Modeling the Diode
- 5. The Diode Circuit(s): Rectifier and Voltage Regulator
- 6. Charge Stored and Capacitance Effect

## **Reference**

□ A.D. Sedra & K.C. Smith, "Microelectronic Circuits – Theory and Application", 5<sup>th</sup> Edition (International Version), Oxford University Press, Chapter 2.

### **Diode** – Charge Stored and Capacitive Effect

- $\square$  *pn*-junction exhibits capacitive effect, as there are charges stored within it and which is a function of the voltage applied across the *pn*-junction,  $v_D$ .
- As the charges stored do not vary linearly with  $v_D$ , unlike a parallel plate capacitor. Only small-signal capacitance (=  $dQ/dv_D$ ) can be defined for a pn-junction diode.
- ☐ At high-frequencies, capacitive effect must be included in the small-signal model of a pn-junction, as shown below -



### **Diode** – Topics Discussed

- □ Basics: Structure, semiconductor versus metal/insulator, n- versus psemiconductor, doping, drift versus diffusion current
- □ Operation regions: forward bias (below cut-in and substantial forward bias), reverse bias (non-breakdown & breakdown)
- $\Box$  IV characteristic:  $I_D = I_S \left( e^{\frac{V_D}{nV_T}} 1 \right)$
- $\Box$  Large signal model ( $r_D$ ,  $V_{D0}$ ) & dc large-signal analysis
- $\Box$  Small signal model (  $r_d = \frac{n V_T}{I_D}$  ) & ac small-signal analysis
- ☐ Rectifiers: half-wave versus full-wave rectifier
- ☐ Zener diode & voltage regulator
- ☐ Capacitive effect to be included at high-frequency.

© Chor EF

# Semiconductor pn-Junction Diodes Vs Vacuum Tube <u>Diodes</u>

#### Semiconductor pn-Junction Diodes -





#### Vacuum Diodes -





