Agglomeration Economies Urban Economics

Ignacio Sarmiento-Barbieri

Universidad de los Andes

October 8, 2025

Agenda

- 1 Motivation
- 2 Duranton and Overmar
- 3 Aside: A Primer on Density Estimation
 - Parametric vs nonparametric methods
 - Parametric Methods
 - Non-parametric methods
 - Non-parametric methods: The Histogram
 - Non-parametric methods: the naive estimator
 - Non-parametric methods: Rosenblatt-Parzen density estimation approach
- 4 Duranton and Overman: Again

Agglomeration Economies

▶ Why do we see such a remarkable clustering of human activity in a small number of urban areas?

Evidence of Agglomeration Economies

- ► Three strategies to identify agglomeration economies
 - 1 Show there is too much spatial concentration to be random (Duranton and Overman, 2005)
 - 2 Compare productivity over space (Greenstone et al., 2010)
 - 3 Compare wages and rents across space (Quantitative Spatial Models, Ahlfeldt et al, 2015)

Agenda

- Motivation
- 2 Duranton and Overman
- 3 Aside: A Primer on Density Estimation
 - Parametric vs nonparametric methods
 - Parametric Methods
 - Non-parametric methods
 - Non-parametric methods: The Histogram
 - Non-parametric methods: the naive estimator
 - Non-parametric methods: Rosenblatt-Parzen density estimation approach
- 4 Duranton and Overman: Again

Spatial Concentration

Extremes of Localization and Dispersion

(c) Other Agricultural and Forestry Machinery (SIC2932)

(d) Machinery for Textile, Apparel and Leather Production (SIC2954)

Spatial Concentration

Ambiguous Cases

Duranton & Overman Methodology

1 Select Relevant Establishments:

- Choose establishments based on industry and size.
- ➤ Consider different thresholds to assess robustness (e.g., include only those contributing to 90% of employment).

2 Compute Bilateral Distances:

- Calculate Euclidean distances between all pairs of establishments.
- ▶ Use Kernel Density Estimation (KDE) to estimate the density of these distances.

Spatial Concentration

K Density Estimates

(c) Other Agricultural and Forestry Machinery (SIC2932)

(d) Machinery for Textile, Apparel and Leather Production (SIC2954)

Figure 2. K-density, local confidence intervals and global confidence bands for four illustrative industries

Sarmiento-Barbieri (Uniandes) Agglomeration Economies October 8, 2025

Spatial Concentration

Ambiguous Cases

(a) Basic Pharmaceuticals (SIC2441)

(b) Pharmaceutical Preparations (SIC2442)

Duranton & Overman Methodology

4 Generate Counterfactuals:

- ▶ Randomly assign establishments to locations, maintaining the number of establishments and industrial concentration.
- ► Create 1,000 simulations to construct a baseline for comparison.

5 Statistical Significance:

- Compare actual densities with simulated counterfactuals to determine if localization is significant.
- ▶ Use local and global confidence intervals to assess statistical significance of localization.

6 Localization Metrics:

- **Define indices for localization** (γ) and dispersion (ψ) at each distance.
- ▶ Determine global localization or dispersion based on these indices over all distances.

Agenda

- 1 Motivation
- 2 Duranton and Overmar
- 3 Aside: A Primer on Density Estimation
 - Parametric vs nonparametric methods
 - Parametric Methods
 - Non-parametric methods
 - Non-parametric methods: The Histogram
 - Non-parametric methods: the naive estimator
 - Non-parametric methods: Rosenblatt-Parzen density estimation approach
- 4 Duranton and Overman: Again

Agenda

- 1 Motivation
- 2 Duranton and Overman
- 3 Aside: A Primer on Density Estimation
 - Parametric vs nonparametric methods
 - Parametric Methods
 - Non-parametric methods
 - Non-parametric methods: The Histogram
 - Non-parametric methods: the naive estimator
 - Non-parametric methods: Rosenblatt-Parzen density estimation approach
- 4 Duranton and Overman: Again

Univariate density estimation: parametric vs nonparametric methods

- ightharpoonup Let f = f(.) be the density function of the random variable X
- Let $x_1, x_2, ... x_n$ be a random sample of X. Then, $x_i \sim f$ iid
- ▶ How can we estimate the density in a particular point x_0 , then $f(x_0)$?

Agenda

- Motivation
- 2 Duranton and Overman
- 3 Aside: A Primer on Density Estimation
 - Parametric vs nonparametric methods
 - Parametric Methods
 - Non-parametric methods
 - Non-parametric methods: The Histogram
 - Non-parametric methods: the naive estimator
 - Non-parametric methods: Rosenblatt-Parzen density estimation approach
- 4 Duranton and Overman: Again

Parametric methods

ightharpoonup They assume a particular functional form for f.

Parametric methods

- ightharpoonup They assume a particular functional form for f.
- Example:

$$f(x_o) = \phi(x_o) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x_o - \mu}{\sigma}\right)^2\right]$$
 (1)

Agenda

- 1 Motivation
- 2 Duranton and Overman
- 3 Aside: A Primer on Density Estimation
 - Parametric vs nonparametric methods
 - Parametric Methods
 - Non-parametric methods
 - Non-parametric methods: The Histogram
 - Non-parametric methods: the naive estimator
 - Non-parametric methods: Rosenblatt-Parzen density estimation approach
- 4 Duranton and Overman: Again

Non-parametric methods

▶ They seek to estimate $f(x_o)$ without assuming a particular functional form, only assuming certain regularity conditions of the density (smoothness, differentiability)

A rudimentary non-parametric estimator: the histogram

The height of the bars is an estimator of the density at any point in the interval

$$\hat{f}(x_o) = \frac{Nber. obs interval}{n \times w}$$
 (2)

October 8, 2025

Histogram problems: (1) depends on starting point

Histogram problems: (2) depends on the bandwidth

Histogram problems: (2) depends on the bandwidth

Histogram problems: (3) is discontinuous at the ends of the interval

- Note that $\hat{f}(x_1) = \hat{f}(x_2)$
- ▶ But $\hat{f}(x_2 + \epsilon) = \frac{1}{4}\hat{f}(x_2)$ for any $\epsilon > 0$

Another non-parametric estimator: the naive estimator

Discrete case

- X is a discrete RV, iid
- ▶ Objective: estimate $Pr(X = x_o) = f(x_o)$
- ► The naive estimator comes from:

$$\hat{f}(x_o) = \frac{\# x_i = x_o}{n} = \frac{1}{n} \sum_{i=1}^n I(x_i = x_o)$$
(3)

Another non-parametric estimator: the naive estimator

Continuous case

- ▶ X is a continuous RV ($Pr(X = x_0)$) we evaluate the probability that X is "close" to x_0 .
- ▶ We say that x_i is close to x_0 if x_i belongs to the interval $(x_0 h, x_0 + h)$

The naive estimator

Notice:

- \triangleright Every possible point x_0 is the center of an interval
- ▶ Observations that are within that interval (less than one h away from x_0) are weighted by 1/2

The naive estimator

Notice:

- ▶ To estimate the density at points a, b and c we construct intervals around them
- ► Then, unlike what happens in the histograms, the intervals of the naive estimator overlap (the initial point no longer matters)

The naive estimator

Problems

▶ It depends on h: the larger the bandwidth, the more distant observations from x_o are used to estimate $f(x_o)$. The higher h, the smoother the estimated density (h=smoothing parameter)

- ▶ The weight 1/2I(.) is discontinuous at the limits of each interval, generating discontinuities in the estimated density.
- ▶ The weight treats observations very close to x_0 in the same way as others somewhat further away, as long as they belong to the interval of length 2h around x_0

- ► The kernel estimator is a generalization of the naive estimator that overcomes some of the deficiencies of the latter.
- ▶ The weight 1/2I(.) of the naive estimator is replaced by a new weight K(.):

$$\hat{f}(x_o) = \frac{1}{n \times h} \sum_{i=1}^n K\left(\frac{x_i - x_0}{h}\right) \tag{4}$$

Rosenblatt-Parzen density estimation approach

- ▶ The weights or kernels are known functions that satisfy:
 - $K(\phi) \geq 0$
 - $\int_{-\infty}^{\infty} K(\phi) d\phi = 1$
 - $(\phi) = K(-\phi)$

Example 1: rectangular or uniform kernel

$$K(\phi) = \begin{cases} \frac{1}{2} & |\phi| < 1\\ 0 & o.w. \end{cases}$$
 (5)

where $\phi = \frac{x_i - x_o}{h}$ In this case, the Kernels estimator matches the naive estimator. Note that the weight is similar to a uniform density function on the interval (-1, 1)

Example 1: rectangular or uniform kernel

October 8, 2025

Example 2: Gaussian kernel

► Gaussian

$$K(\phi) = \frac{1}{\sqrt{2}\pi} e^{-\phi^2/2}$$
 (6)

- ► The kernel function corresponds to the standard normal density function that satisfies the above assumptions.
- ▶ For this type of kernel, the density estimator is given by:

$$\hat{f}(x_o) = \frac{1}{n \times h} \sum_{i=1}^{n} \frac{1}{\sqrt{2}\pi} e^{-\left(\frac{x_i - x_o}{h}\right)^2/2}$$
 (7)

► Important: we don't assume normal distribution for any variable. The functional form is just used to weight the sample observations

Example 2: Gaussian kernel

October 8, 2025

Example 2: Gaussian kernel (smaller h)

October 8, 2025

Other Kernels

Kernel type	Formula	Support
Gaussian or normal	$\frac{1}{\sqrt{2\pi}}\exp(-\varphi^2/2)$	$\varphi \in (-\infty, \infty)$
Epanechnikov	$\frac{3}{4\sqrt{5}}(1-\frac{1}{5}\varphi^2)I(\varphi <\sqrt{5})$	$\varphi \in \left(-\sqrt{5}, \sqrt{5}\right)$
Epanechnikov modificado	$\frac{3}{4}(1-\varphi^2)I(\varphi <1)$	<i>φ</i> ∈ (-1, 1)
Triangular	$(1- \varphi)I(\varphi <1)$	$\varphi \in (-1, 1)$
Uniform or rectangular	$\frac{1}{2}I(\varphi <1)$	<i>φ</i> ∈ (-1, 1)

Properties: Bias

- ► The kernel estimator is generally biased.
- ► The approximate expression for the bias is given by:

$$bias[\hat{f}(x_o)] \approx \frac{h^2}{2} f''(x_o) \int_{-\infty}^{\infty} K(\phi) \phi^2 d\phi$$
 (8)

► The approximate expression for the asymptotic variance of the kernel estimator is given by:

$$variance[\hat{f}(x_o)] \approx \frac{1}{n \times h} f(x_o) \int_{-\infty}^{\infty} K^2(\phi) d\phi$$
 (9)

Bandwidth Selection

$$MSE(\hat{f}(x)) = Var(\hat{f}(x)) + \left(bias(\hat{f}(x))\right)^{2}$$
(10)

Bandwidth Selection

$$MSE(\hat{f}(x)) = Var(\hat{f}(x)) + \left(bias(\hat{f}(x))\right)^{2}$$
(10)

► We obtain a bandwidth which globally balances bias and variance by minimizing MSE with respect to h, i.e.,

$$h_{opt} = \left(\frac{\int K^2(z)dz}{(\int z^2 K(z)dz)^2 \int f'(x)^2 dx}\right)^{-1/5} n^{-1/5}$$
(11)

Bandwidth Selection

- ▶ There are two popular approaches to bandwidth selection,
 - 1 Rules-of-thumb,

The weighted average estimator or kernel method Rule-of-Thumb

- ▶ The rule-of-thumb for choosing the bandwidth makes assumtions about *f* and *K*
- ► For example: under a gaussian density and kernel

$$h_{opt} = 1.059\sigma n^{-1/5} \tag{12}$$

Bandwidth Selection

- ▶ There are two popular approaches to bandwidth selection,
 - 1 Rules-of-thumb,
 - 2 cross-validation methods,

Agenda

- Motivation
- 2 Duranton and Overmar
- 3 Aside: A Primer on Density Estimation
 - Parametric vs nonparametric methods
 - Parametric Methods
 - Non-parametric methods
 - Non-parametric methods: The Histogram
 - Non-parametric methods: the naive estimator
 - Non-parametric methods: Rosenblatt-Parzen density estimation approach
- 4 Duranton and Overman: Again

1 Select Relevant Establishments:

- Choose establishments based on industry and size.
- ➤ Consider different thresholds to assess robustness (e.g., include only those contributing to 90% of employment).

2 Compute Bilateral Distances:

- Calculate Euclidean distances between all pairs of establishments.
- ▶ Use Kernel Density Estimation (KDE) to estimate the density of these distances.

Density estimates

$$\hat{K}(d) = \frac{1}{n(n-1)h} \sum_{i=1}^{n-1} \sum_{j=1+1}^{n} K\left(\frac{d-d_{i,j}}{h}\right)$$
(13)

- $ightharpoonup d_{i,j}$ the observed distance between establishments i and j
- Gaussian kernel
- Section 3.4.2 of Silverman (1986): $h = 1.059\sigma n^{-1/5}$; $h = 0.79IQR\sigma n^{-1/5}$; $h = 0.79min\{\sigma, IQR/1.34\}n^{-1/5}$

3 Generate Counterfactuals:

- ▶ Randomly assign establishments to locations, maintaining the number of establishments and industrial concentration.
- ► Create 1,000 simulations to construct a baseline for comparison.

4 Statistical Significance and Localization Metrics

Local confidence intervals are constructed for each distance d by comparing the observed K-density, $\hat{K}(d)$, with the distribution of simulated K-densities from random assignments.

$$\bar{K}_A(d) = 5$$
th percentile of $\hat{K}_{sim}(d)$, (14)

$$\underline{\mathbf{K}}_{A}(d) = 95 \text{th percentile of } \hat{K}_{\text{sim}}(d),$$
 (15)

Interpretation:

- ▶ If $\hat{K}(d) > \bar{K}_A(d)$, it indicates significant **localization** at distance d.
- ▶ If $\hat{K}(d) < \underline{K}_A(d)$, it indicates significant **dispersion** at distance d.

4 Statistical Significance and Localization Metrics

Local confidence intervals are constructed for each distance d by comparing the observed K-density, $\hat{K}(d)$, with the distribution of simulated K-densities from random assignments. We can also define an index of localization:

$$\gamma_A(d) \equiv \max \left(\hat{K}_A(d) - \bar{K}_A(d), 0 \right), \tag{16}$$

as well as an index of dispersion:

$$\psi_A(d) \equiv \max\left(\bar{K}_A(d) - \hat{K}_A(d), 0\right). \tag{17}$$

Interpretation:

- ► To reject the hypothesis of randomness at distance d because of localization (dispersion), we only need $\gamma_A(d) > 0$ ($\psi_A(d) > 0$).
- ► The exact value of these two indices does not matter. However, the indices do indicate how much localization and dispersion there is at any level of distance.

4 Statistical Significance and Localization Metrics

Global confidence bands to make statements about the overall location patterns of an industry.

- ▶ Denote $\bar{K}_A(d)$ the upper confidence band of industry A.
- ▶ This band is hit by 5% of our simulations between 0 and 180 km.
- ► If

$$\hat{K}_A(d) > \bar{\bar{K}}_A(d)$$

for at least one $d \in [0, 180]$, this industry is said to exhibit **global localization** (at a 5% confidence level).

4 Statistical Significance and Localization Metrics

Global confidence bands to make statements about the overall location patterns of an industry.

- ► An industry which is very localized at short distances can show dispersion at larger distances.
- ▶ Then an industry is said to exhibit **global dispersion** (at a 5% confidence level) when

$$\hat{K}_A(d) < \underline{\underline{K}}_A(d)$$

for at least one $d \in [0, 180]$ and the industry does not exhibit localization.

4 Statistical Significance and Localization Metrics

We can also define an index of global localization:

$$\gamma_A(d) \equiv \max\left(\hat{K}_A(d) - \bar{\bar{K}}_A(d), 0\right),\tag{18}$$

as well as an index of global dispersion:

$$\psi_A(d) \equiv \begin{cases} \max\left(\underline{\underline{K}}_A(d) - \hat{K}_A(d), 0\right) \text{ if } \sum_{d=0}^{d=180} = 0\\ 0 \text{ o.w.} \end{cases}$$
 (19)

Spatial Concentration

(a) Basic Pharmaceuticals (SIC2441)

(b) Pharmaceutical Preparations (SIC2442)