CS 5/7350 - Test#3 November 30, 2022

Name: Bingying Liang
ID: 48999397

- 1. [8 pts] Answer the following questions:
 - (a) A program requires 1000s to process an input size of C = 7 and S = 700. If the running time is $\Theta(C * S)$ about how long would it take to process an input size of C=14 and S=700?

Solution: 2000s

(b) A program requires 1000s to process an input size of C = 7 and S = 700. If the running time is $\Theta(C*S)$ about how long would it take to process an input size of C=7 and S=1400?

Solution: 2000s

(c) A program requires 1000s to process an input size of C = 7 and S = 700. If the running time is $\Theta(C+S)$ about how long would it take to process an input size of C=7 and S=1400?

Solution: $\frac{1407}{707} \times 1000 \approx 1990.99s$

(d) A program requires 1000s to process an input size of C = 7 and S = 700. If the running time is $\Theta(C*S^2)$ about how long would it take to process an input size of C=7 and S=1400?

Solution: 4000s

(e) A program requires 1000s to process an input size of C = 7 and S = 700. If the running time is $\Theta(2^{CS})$ about how long would it take to process an input size of C=7 and S=1400?

Solution: $2^{4900} \times 1000s$

2. [6 pts] Use the DGT algorithm discussed in class to determine how to represent the value 689 using the number system $\beta = 5$, $D = \{-1, 0, 2, 3, 6\}$. Show your work.

∴ Ī6023Ī

3. [8 pts] Give the asymptotic running time supported by the following tables:

a.	n	time (ms)	b	n	time (ms)	С	n	time (ms)	d	n	time (ms)
	1	1		1	2		1	3		2	3
	2	4		2	4		2	48		3	4.754888
	3	27		3	12		3	243		4	6
	4	256		4	48		4	768		5	6.965784
	5	3125		5	240		5	1875		6	7.754888
	6	46656		6	1440		6	3888		7	8.422065
	7	823543		7	10080		7	7203		8	9
	8	16777216		8	80640		8	12288		9	9.509775
	9	3.87E+08		9	725760		9	19683		10	9.965784
	10	1E+10		10	7257600		10	30000		11	10.37829
	11	2.85E+11		11	79833600		11	43923		12	10.75489

- (a) $\Theta(n^n)$
- (b) n!
- (c) n^4
- (d) $\log_2(n)$
- 4. [10 pts] Consider the following NP completeness questions. Answer them with the best answer of "some" "all" "none" or "unknown"
 - (a) Which Problems in P are also in NP? ("some" "all" "none" or "unknown")

Solution: all

(b) Which Problems in NP are also in P? ("some" "all" "none" or "unknown")

Solution: unknown

(c) Which Problems in NP-Hard are also in NP? ("some" "all" "none" "unknown")

Solution: some

(d) Which Problems in NP-Hard are also in NP-Complete ("some" "all" "none" or "unknown")

Solution: some

(e) The set of problems matching question (c) is exactly the same as the set of problems matching question (d) (true or false)

Solution: true

(f) If someone can solve an NP-Hard problem in Polynomial Time, then all NP problems can be solved in polynomial time. (true or false)

Solution: true

(g) If someone can solve an NP-Complete problem in Polynomial Time, then all NP and all NP-Complete problems can be solved in polynomial time. (true or false)

Solution: true

(h) At least 1 NP problem can be solved in polynomial time? (True or False)

Solution: true

(i) Which NP-Hard Problems are also NP-Complete? ("some" "all" "none" or "unknown")

Solution: some

(j) To show a problem is NP-Complete, you must show it is NP and that a solver for that problem can also solve some other NP-Complete problem with polynomial extra time. (True or False)

Solution: true

5. [8 pts] Set up a table to compute the length of the Longest Common Subsequence for the following two strings:

Solution: 5

- 6. [6 pts] Two people need to establish a secret key for encrypting communications. They agree to use a Diffie-Hellman key exchange with a modulus of 11 and decide on 2 as the base. Person A chooses a random value of 9 and performs the appropriate computations. Person B chooses a random value of 3 and performs the appropriate computations:
 - (a) What is the value Person A sends to Person B

Solution: 6

(b) What is the value Person B sends to Person A

Solution: 8

(c) What is the shared secret key between Person A and Person B

Solution: 7

7. [8 pts] You have 5 different dice. The table for the summation of the dice is listed below for die 1,2 and 3. Die #4 has 4 sides of values {1, 2, 3, 4} and Die #5 has 4 sides of values {-1, -1, 0, 0}.

(a) Fill in the table for Die 4 and Die 5.

	1	1,2	1,4,3	1,213,4	1, 6, 5,4,5
0	0	0	0	0	0
1	1	1	0	0	0
2	2	4	2	0	Ψ
3	2	7	11	7	130
4	1	7	28	N.	801
5	0	4	43	7	250
6	0	1	43	72	418
7	0	0	28	1X	J74
8	0	0	11	142	\$34
9	0	0	2	N	418
10	0	0	0	Jφ	250
11	0	0	0	41	108
12	0	0	0	13) o
13	0	0	0	2	

- (b) How many sides and of what values is Die #1? 6 sides, value is 1, 2, 2, 3, 3, 4
- (c) What is the probability of rolling a 6 with these dice?

Solution:

$$\frac{418}{(2+11+28+43+43+28+11+2)\times 4\times 4} = \frac{418}{168\times 16} = \frac{418}{2688} \approx 0.156$$

8. [10 pts] Determine a Huffman encoding for each symbol in a message that contains:

(a) How many bits are in the entire message if each symbol is encoded with 3 bits?

Solution: 192 bits

(b) How many bits are in the entire Huffman coded message?

Solution: 162 bits

(c) How much entropy is in the entire message (Give a number)?

Solution: 158.35 bits

9. [6 pts] Argue that the problem of sorting an array of numbers is just as hard or possibly harder (within $\Theta(1)$) than the problem of finding a median of an array of numbers.

Solution: Since we can use a solver for problem of finding a median of array of numbers by sorting an array of numbers, Problem of sorting an array of numbers is just as hard or possibly harder (within $\Theta(1)$) than the problem of finding a median of an array of numbers: sorting array + pick the median($\Theta(1)$)

- 10. [5 pts] A rooted tree has an
 - (a) In-order Traversal of X Q K H N F M W B Y G P D S Z
 - (b) Pre-Order Traversal of G M H Q X K N F Y M B P D Z S

Draw the Tree

- 11. [9 pts] A complete bi-partite graph $B_{j,k}$ is a graph which has j vertices in one partition and k vertices in another partition and all possible edges are present. Answer the following questions:
 - (a) For which values of j and k does $B_{j,k}$ have an Euler Tour?

Solution: even j and even k.

(b) For which values of j and k is $B_{j,k}$ two-colorable?

Solution: all

(c) For which values of j and k is $B_{j,k}$ a tree?

Solution: j or k = 1

(d) If every edge of tree of $B_{j,k}$ has a weight of w, what is the weight of the minimum spanning tree of $B_{j,k}$

Solution: (j + k - 1) w

(e) If every edge of tree of $B_{j,k}$ has a weight of w, what is the maximum flow between the two partitions of $B_{j,k}$

Solution: jkw

(f) For which values of j and k does $B_{j,k}$ have a Hamiltonian Cycle?

Solution: j = k

- 12. [10 pts] Consider an RSA encryption system that has a public key of 1109 for the value of e and 2881 for the value of the modulus n. A message was encrypted with this key and this encrypted message has the value 2.
 - (a) [6 pts] With a quantum computer, you were able to factor the modulus 2881 into the product of two primes: 43*67. Using this information, determine the private key. Be sure to show your table for the Extended Euclidian Algorithm

Solution: d = 5; private = (5, 2881)

(b) [2 pts] What is the unencrypted message?

Solution: 32

- 13. [6 pts] Answer the Following:
 - (a) $-3 \mod 7 =$

Solution: 4

(b) 1/3 mod 11 =

Solution:

$$(\frac{1}{3} \times 3) \mod 11 = 1$$

 $(4 \times 3) \mod 11 = 1$
 $(\frac{1}{3}) \mod 11 = 4$

(c) $-(1/3) \mod 13 =$

Solution:

$$\left(-\frac{1}{3} \times 3\right) \mod 13 = -1 \mod 13 = 12$$

 $(4 \times 3) \mod 13 = 12$
 $-\frac{1}{3} \mod 13 = 4$

(d) $2^{122} \mod 11 =$

Solution:

$$2^{122} \mod 11 = 2 \times 2^{121} \mod 11$$

= $2 \times (2^{11})^{11} \mod 11$
= $2 \times (2^{11} \mod 11)^{11} \mod 11$
= $2 \times 2^{11} \mod 11$
= 2×2
= 4

(e) $1\bar{4}$ base $8 = ____$ base 10.

Solution:

$$1 \times 8^{1} + (-4) \times 8^{0} = 8 - 4 = 4$$

(f) A message has 160 symbols in it. The symbol Z occurs 10 times. How much entropy does each 'Z' contain in the message?

Solution:

$$\log_2 \frac{1}{\frac{10}{160}} = \log_2(16) = \log_2(2^4) = 4$$

(g) What is the length of the longest common subsequence of the two strings: AABBB-BCC and ZZBBBBYY

Solution: 4

(h) What are the maximum number of swaps might be necessary to insert an element into a heap that has 16 elements in it already?

Solution:

$$log_2(16) = 4$$

(i) What is 2 + 2?

Solution: 4