

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

CNN Sensor Analytics with Hybrid-Float6 on Low-Power Resource-Constrained Embedded FPGAs.

Corresponding author: Yarib Nevarez (e-mail: nevarez@item.uni-bremen.de).

This work is funded by the Consejo Nacional de Ciencia y Tecnologia - CONACYT

ABSTRACT The use of artificial intelligence (AI) in sensor analytics applications is entering a new era based on the use of ubiquitous embedded connected devices. This transformation requires the adoption of design techniques that reconcile accurate results with sustainable system architectures. As such, maximizing computational efficiency given limited hardware and power resources is increasingly being considered, and as a result, reduced-precision inference has emerged as a viable alternative to the IEEE 754 full precision floating-point arithmetics. In this paper, we present the Hybrid-Float6 (HF6) quantization on shallow CNNs for sensor data analytics and its dedicated hardware design for low-power resource-constrained embedded FPGAs. This approach improves generalization by reducing over-fit on feature extraction. As dedicated hardware design, we propose a fully customizable tensor processor (TP) implementing a pipelined vector dot-product with HF6. This approach reduces energy consumption and resource utilization preserving inference accuracy. The proposed embedded hardware/software architecture is unified with TensorFlow Lite. We evaluate the applicability of our framework with a CNN-model and hardware design exploration for sensor analytics of anomaly localization based on regression in structural health monitoring (SHM). The embedded hardware/software framework is demonstrated on XC7Z007S as the smallest and most inexpensive Zyng SoC device. The TP achieves a peak runtime acceleration of 55X on Conv2D tensor operators, and power efficiency of 4.5 GFLOP/s/W with 55% of hardware resource utilization.

INDEX TERMS Convolutional neural networks, structural health monitoring, hardware accelerator, TensorFlow Lite, embedded systems, FPGA, custom floating-point

I. INTRODUCTION

THE constant research and the rapid evolution of machine learning (ML) techniques for sensor data analytics represent a promising landscape for edge computing and Internet-of-Things (IoT) endpoint applications. CNN-based models represent the essential building blocks in 2D pattern recognition tasks. Sensor-based applications such as mechanical fault diagnosis [1], [2], structural health monitoring (SHM) [3], human activity recognition (HAR) [4], hazardous gas detection [5] have been powered by CNN-based models in industry and academia.

There is an increasing demand to introduce on-chip AI-based analytics into the smart city and Industry 4.0 infrastructure [6]. In this line, the paradigm of edge computing provides new solutions by bringing intelligence closer to the data source. This approach preserves sensitive and private data on devices, and provides low latency, energy efficiency, and scalability compared to cloud services while reducing

the network bandwidth [7]. These solutions are boosted by advances in ML models, processing power, and big data.

CNN-based models, as one of the main types of artificial neural networks (ANNs), have been successfully used in sensor analytics with automatic feature learning from sensor data [8]–[11]. In this context, CNN models are applied for automatic feature learning, mostly, from 1D time series signals as well as for 2D time-frequency spectrograms. CNN models provide advantages over other methods, such as local dependency and scale invariance. However, these models represent compute-intensive and power-hungry tasks, particularly, for embedded systems.

Dedicated hardware architectures are typically required to enhance compute performance and power efficiency. In terms of computational throughput, graphics processing units (GPUs) offer the highest performance. In terms of power efficiency, ASIC and FPGA solutions are well known to be more energy efficient (than GPUs) [12]. As a result,

numerous commercial ASIC and FPGA accelerators have been proposed, targeting both high performance computing (HPC) for data-centers and embedded systems applications.

However, most FPGA accelerators have been implemented to target mid- to high-range FPGAs for compute costly CNN models such as AlexNet, VGG-16, and ResNet-18. The power supply demands, physical dimensions, air cooling and heat sink requirements, and in some cases their elevated price make these implementations unsustainable and not always feasible for resource-constrained applications.

Furthermore, to reduce the computational cost for CNN inference there are two types of research [13]: the first one is deep compression including weight pruning, weight quantization, and compression storage [14], [15]; the second type of research corresponds to a more efficient data representation, also known as quantization for dedicated circuit implementation. In this group, hardware implementations with customized 8-bit floating-point computation have been proposed [13], [16], [17]. However, these implementations are inadequate for embedded applications, since the target devices are high-end FPGA and PCIe architectures. While the aforementioned works have good accuracy with retraining, more aggressive data representations such as binary [18], ternary [19], and mixed precision (2-bit activations and ternary weights) [20] may suffer from great accuracy loss even with time-consuming retraining. The afforded mentioned limitations make these implementations inadequate for data analytics in low-power embedded applications.

In this paper, we present the Hybrid-Float6 quantization on shallow CNNs for sensor data analytics and its dedicated hardware design for low-power resource-constrained embedded FPGAs. The HF6 implements 6-bit floating-point quantization on the trainable parameters of convolution layers and keeps standard floating-point on feature maps. This approach improves generalization by reducing over-fit on feature extraction. As dedicated hardware design, we propose a parameterized tensor processor (TP) implementing a pipelined vector dot-product with HF6. This approach reduces energy consumption and resource utilization facilitating on-chip stationary weights on limited footprint devices. The proposed embedded hardware/software architecture is unified with TensorFlow Lite implementing delegate interface to accelerate Conv2D tensor operations. We evaluate the applicability of our framework with a CNN model and hardware design exploration for sensor analytics of anomaly localization based on regression for SHM. The embedded hardware/software framework is demonstrated on XC7Z007S as the smallest and most inexpensive Zynq SoC device, see Fig. 1. To the best of our knowledge, this is the first research addressing HF6 quantization approach on CNN models and its dedicated hardware implementation.

Our main contributions are as follows:

1) We present the Hybrid-Float6 quantization. This approach improves generalization by reducing over-fit on feature extraction. The HF6 is wrapped into the standard floating-point representation (IEEE 754) allowing arith-

FIGURE 1. The workflow of our approach on embedded FPGAs.

metics compatibility with standard hardware. Therefore, it can be beneficial for inference in other devices.

- We develop a hardware/software co-design framework targeting low-power, resource-limited embedded FP-GAs. This is a scalable architecture integrating Tensor-Flow Lite core library.
- 3) We present a customizable tensor processor (TP) as a dedicated hardware for HF6. This design computes *Conv2D* tensor operations employing a pipelined vector dot-product with parametrized on-chip memory utilization
- 4) We demonstrate the potential of our approach by addressing CNN model and hardware design exploration for sensor analytics of anomaly localization based on regression for SHM. We evaluate inference accuracy, compute performance, hardware resource utilization, and energy consumption.

The rest of the paper is organized as follows. Section II covers the related work; Section III introduces the background to *Conv2D* and *DepthwiseConv2D* tensor operations; Section IV describes the system design of the hardware/software architecture and the quantized aware training method; Section V presents the experimental results thorough a design exploration flow; Section VI concludes the paper.

This design exploration framework is available to the community as an open-source project at (hidden for double blinded review).

II. RELATED WORK

A. HARDWARE IMPLEMENTATIONS TARGETING RESOURCE-CONSTRAINED FPGAS

In the literature we find plenty of hardware architectures dedicated to CNN accelerators implemented in FPGA and ASIC designs. However the related work on low-power and resource-limited devices is reduced. To the best of our knowledge, two research papers have been reported hardware implementations targeting XC7Z007S as the smallest device from Zynq-7000 SoC Family.

In [22], Chang Gao et al., presented EdgeDRNN, a recurrent neural network (RNN) accelerator for edge inference. This implementation adopts the spiking neural network (SNN) inspired delta network algorithm to exploit temporal sparsity in RNNs. However, this hardware architecture is dedicated to RNNs.

In [23], Paolo Meloni et al., presented a CNN inference accelerator for compact and cost-optimized devices. This implementation uses fixed-point for processing light-weight CNN architectures with a power efficiency between 2.49 to 2.98 GOPS/s/W.

B. HYBRID CUSTOM FLOATING-POINT QUANTIZATION

Reference [24] proposed a mixed data representation with floating-point for weights and fixed-point for activations (e.g., outputs of a layer). Reference [25] developed an 8-bit floating-point quantization scheme, which needs an extra inference batch to compensate for the quantization error. However, Reference [24] and Reference [25] did not present a circuit design for their approaches.

1) FPGA implementations

Reference [16] implements 16-bit floating-point in contrast to the 32-bit commonly used for computing. However, this implementation is inadequate for embedded applications, since the target device is a PCIe architecture. The 8-bit floating-point is also tried in FPGA [13]. Another 8-bit arithmetic, called block floating-point (BFP), is also applied [17], where a parameter has its own mantissa but shares a same exponent for one data block.

III. BACKGROUND

A. CONV2D TENSOR OPERATION

The Conv2D tensor operation is described in **Eq.** (1), where h is the input feature map, W is the convolution kernel (known as filter), and b is the bias for the output feature map [26]. We denote Conv as Conv2D operator.

$$Conv(W,h)_{i,j,o} = \sum_{k,l,m}^{K,L,M} h_{(i+k,j+l,m)} W_{(o,k,l,m)} + b_o \quad (1)$$

IV. SYSTEM DESIGN

In this section we describe the system design as a hard-ware/software co-design framework for floating-point CNN acceleration targeting resource-limited FPGAs. This is a parameterized architecture that allows design exploration with TensorFlow Lite.

A. BASE EMBEDDED SYSTEM ARCHITECTURE

As a hardware/software co-design, the system architecture is an embedded CPU+FPGA platform. Fig. 2 illustrates the top-level hardware architecture. The TPs execute the low-level tensor operations delegated from the CPU. The TPs employ AXI-Lite interface for configuration and AXI-Stream interfaces via Direct Memory Access (DMA) for data movement from of-chip DDR memory. Each TP asserts an interrupt flag once the job/transaction is complete. Interrupt events are handled by the embedded CPU to collect results and start a new transaction. The hardware architecture can resize its resource utilization by modifying the number of TP instances prior to the hardware synthesis.

FIGURE 2. Base embedded system architecture.

FIGURE 3. Hardware architecture of the proposed tensor processor.

B. TENSOR PROCESSOR

The TP is a dedicated hardware module to compute tensor operations. The hardware architecture is described in **Fig.** 3. This architecture implements high performance off-chip communication with AXI-Stream, direct CPU communication with AXI-Lite, and on-chip storage utilizing BRAM. This hardware architecture is implemented with high-level synthesis (HLS). The tensor operations are implemented based on the C++ TensorFlow Lite micro kernels.

The TP is an extensible hardware module that executes low-level tensor operations. This implementation creates a cooperative hardware-software architecture. In this paper, we focus on the *Conv2D* tensor operator that executes inference of convolution layers.

1) Modes of operation

This accelerator has two modes of operation: *configuration* and *execution*.

- In configuration mode, the TP receives the tensor operation ID and hyperparameters: stride, dilation, padding, offset, activation, depth-multiplier, input shape, filter shape, bias shape, and output shape. Afterwards, the TP receives filter and bias tensors, which are locally stored in BRAM.
- In execution mode, the TP executes the tensor operator according to the hyperparameters given in the configuration mode. During execution, the input and output tensor-buffers are moved from/to the TF Lite memory regions via DMA.

2) Dot-product with with hybrid custom floating-point and logarithmic dot-product approximation

We optimize the floating-point computation adopting the dotproduct with hybrid custom floating-point and logarithmic approximation [21]. The hardware dot-product is illustrated in Fig. 4. This approach: (1) denormalizes input values, (2) executes computation with integer format for exponent and mantissa, and finally, (3) it normalizes the result into IEEE 754 format, see Fig. 5. Rather than a parallelized structure, this is a pipelined hardware design suitable for resource-limited devices. The latency in clock cycles of this hardware module is defined by Eq. (2) and Eq. (3), where N is the dot-product vector length. The latency equations are obtained from the general pipelined hardware latency formula: L = (N-1)II + IL, where II is the initiation interval (**Fig.** 5(a)), and IL is the iteration latency (**Fig.** 5(b)). Both II and IL are obtained from the high-level synthesis analysis. The logarithmic approximation removes the mantissa bit-field, which removes the mantissa multiplication and correction in clock cycle 3 and 4, respectively, see Fig. 5.

$$L_{custom} = N + 7 \tag{2}$$

$$L_{log} = N + 6 \tag{3}$$

As a design parameter, both the exponent and mantissa bitwidth of the weight/filter vector provides a tunable knob to trade-off between resource utilization and QoR [27]. These parameters must be defined before hardware synthesis.

3) On-chip memory utilization

The total on-chip memory utilization on the TP is defined by **Eq.** (4), where $Input_M$ is the input buffer, $Filter_M$ is the filter buffer, $Bias_M$ is the bias buffer, and V_M represents the local variables required for operation. The on-chip memory buffers are defined in bits. **Fig.** 3 illustrates the convolution operation utilizing the on-chip memory buffers.

$$TP_M = Input_M + Filter_M + Bias_M + V_M$$
 (4)

The memory utilization of *input buffer* is defined by Eq. (5), where K_H is the height of the convolution kernel, W_I is the width of the input tensor, C_I is the number of input channels, and $BitSize_I$ is the bit size of each input tensor element.

$$Input_M = K_H W_I C_I Bit Size_I \tag{5}$$

FIGURE 4. Dot-product hardware module with (a) standard floating-point and (b) Hybrid-Float6.

FIGURE 5. Pipelined hardware module for vector dot-product with hybrid custom floating-point, (a) exhibits the initiation interval of 1 clock cycle, and (b) presents the iteration latency of 8 clock cycles. I_H and I_F represent the input and filter buffer indexes, respectively.

The memory utilization of *filter buffer* is defined by Eq. (6), where K_W and K_H are the width and height of the convolution kernel, respectively; C_I and C_O are the number of input and output channels, respectively; and $BitSize_F$ is the bit size of each filter element.

$$Filter_M = C_I K_W K_H C_O Bit Size_F \tag{6}$$

The memory utilization of bias buffer is defined by Eq. (7), where C_O is the number of output channels, and $BitSize_B$

FIGURE 6. Design parameters for on-chip memory buffers on the TP.

is the bit size of each bias element.

$$Bias_M = C_O Bit Size_B$$
 (7)

As a design trade-off, **Eq.** (8) defines the capacity of output channels based on the given design parameters. The total on-chip memory TP_M determines the TP capacity.

$$C_O = \frac{TP_M - V_M - K_H W_I C_I Bit Size_I}{C_I K_W K_H Bit Size_F + Bit Size_B}$$
 (8)

The number formats implemented in the TP are defined by $BitSize_F$, $BitSize_B$ and $BitSize_I$. For example, a 5-bit custom floating-point format can be defined by 1-bit sign, 3-bit exponent and 1-bit mantissa. These are design parameters defined before hardware synthesis. This allows fine control of BRAM utilization, suitable for resource-limited devices.

C. QUANTIZED AWARE TRAINING

The quantize-aware training method is an iterative optimization. The custom CNN model is initially trained with early stop monitoring until minimal validation loss, then the CNN model is retrained including the quantization method implemented as a callback function on every batch end, see **Algorithm** 1. The quantization method maps the full precision filter and bias values to the closest representable quantized values, see **Algorithm** 2. The quantize-aware training method starts with a wide exponent size target (e.g. 5-bits) and gradually reduces the target size until the model drops to a given accuracy degradation threshold (e.g. 1%). We have observed that the exponent bit size plays a more predominant influence on the model accuracy than the mantissa bit size. The mantissa bit size can be set to the minimum (e.g. 1bit). This method quantizes the filter and bias tensors of the Conv2D and SeparableConv2D layers. This method is integrated in TensorFlow/Keras framework. The resulting quantized parameters are truncated and buffered in the onchip memory of the TP during configuration mode.

D. EMBEDDED SOFTWARE ARCHITECTURE

The software architecture is a layered object-oriented application framework written in C++, see **Fig.** 7. The main characteristics o the software layers are as follows:

```
Algorithm 1: Training method.
 input: MODEL as the CNN.
 input: E_{size} as the target exponent bit size.
 input: M_{size} as the target mantissa bits size.
 input: D_{train} as the training data set.
 input: D_{val} as the validation data set.
 input: Acc_d as the accuracy degradation threshold.
 input: Loop_{max} as the max quantization loop iterations.
 output: MODEL as the quantized CNN.
   Train(MODEL, D_{train}, D_{val}) // Regular training
   acc_i \leftarrow Evaluate(MODEL, D_{val}) // Benchmark
   acc_q \leftarrow 0, loop_c \leftarrow 0 // Initialize quantize training
   while (acc_q < acc_i - Acc_d) \land (loop_c < Loop_{max}) do
      // Iterative optimization
      callback \leftarrow Quantize(E_{size}, M_{size})
      Train(MODEL, D_{train}, D_{val}, callback)
```

 $acc_q \leftarrow Evaluate(MODEL, D_{val})$

 $loop_c \leftarrow loop_c + 1$

end while

FIGURE 7. Base embedded software architecture.

- Application: As the highest level of abstraction, this layer implements the embedded application logic with the ML library.
- Machine learning library: This layer consist of Tensor-Flow Lite micro. This offers a comprehensive high level API that allows ML inference. This provides delegate interfaces for custom hardware accelerators.
- Hardware abstraction layer: This layer consist of the hardware drivers to handle initialization and runtime operation of the TP and DMA.

V. EXPERIMENTAL RESULTS

The proposed hardware/software co-design framework is demonstrated on the MiniZed development board with a Zynq-7007S system-on-chip (SoC). This device integrates a single ARM Cortex-A9 processing system (PS) and programmable logic (PL) equivalent to Xilinx Artix-7 (FPGA) in a single chip [28]. The Zynq-7007S SoC architecture maps the custom logic and software in the PL and PS respectively as an embedded system.

end for

Algorithm 2: Custom floating-point quantization method.

```
input: MODEL as the CNN.
input: E_{size} as the target exponent bit size.
input: M_{size} as the target mantissa bits size.
input: STDM_{size} as the IEEE 754 mantissa bit size.
output: MODEL as the quantized CNN.
  for layer in MODEL do
     if layer is Conv2D or SeparableConv2D then
        filter, bias \leftarrow GetWeights(layer)
        for x in filter and bias do
          sign \leftarrow GetSign(x)
          exp \leftarrow GetExponent(x)
          full exp \leftarrow 2^{E_{size}-1} - 1 // Get full range value
          cman \leftarrow GetCustomMantissa(x, M_{size})
          leftman \leftarrow GetLeftoverMantissa(x, M_{size})
          if exp < -fullexp then
             x \leftarrow 0
          else if exp > fullexp then
             x \leftarrow (-1)^{sign} \cdot 2^{fullexp} \cdot (1 + (1 - 2^{-Msize}))
             if 2^{STDM_{size}-M_{size}-1}-1 < leftman then
                cman \leftarrow cman + 1 // Above halfway
                if 2^{M_{size}} - 1 < cman then
                   cman \leftarrow 0 // Correct mantissa overflow
                  exp \leftarrow exp + 1
                end if
             end if
             // Build custom quantized floating-point value
             x \leftarrow (-1)^{sign} \cdot 2^{exp} \cdot (1 + cman \cdot 2^{-M_{size}})
          end if
        end for
        SetWeights(layer, filter, bias)
     end if
```

In this platform, we implement the proposed hardware architecture to deploy the CNN model for SHM shown in Fig. 8. The CNN model is created, trained, and quantized using Keras/TensorFlow with Python on a desktop computer. The resulting model is converted to TensorFlow Lite, which is deployed on the MiniZed. The Zynq-7007S SoC performs the model inference with TensorFlow Lite core API running on the PS. The computational workload of the convolution layers is delegated to the TP on the PL.

For the evaluation of our approach, we address a design exploration by reviewing the computational latency, inference accuracy, resource utilization, and power dissipation. First, we benchmark the model inference on the embedded CPU, and then repeat the measurements on hardware processing units with standard floating-point computation. Afterwards, we evaluate our TP, addressing a design exploration with hybrid custom floating-point, as well as the hybrid logarithmic approximation. Finally, we present a discussion of the

TABLE 1. Inference on embedded CPU.

Layer	Latency (ms)
HX_IN	1.184
H1_CONV	4.865
H2_POOL	3.656
H3_CONV	20.643
H4_POOL	0.828
H5_FC	3.099
HY_OUT	0.004
TOTAL	34.279

TABLE 2. Performance of TP with standard floating-point (IEEE 754) computation.

Hardware n	napping	Cor	Computation schedule (ms)				
Layer	PU	t_s	t_{CPU}	t_{PU}	t_f		
HX_IN	Spike	0	0.056	0.370	0.426		
H1_CONV	Conv1	0.058	0.598	2.002	2.658		
H2 POOL	Pool1	0.658	0.126	1.091	1.875		
H2_POOL	Pool2	0.785	0.125	1.075	1.985		
H2 CONV	Conv2	0.911	0.280	3.183	4.374		
H3_CONV	Conv3	1.193	0.279	3.176	4.648		
H4_POOL	Pool3	1.473	0.037	0.481	1.991		
H5_FC	FC	1.512	0.101	1.118	2.731		
HY_OUT	CPU	1.615	0.004	0	1.619		

presented results.

A. PERFORMANCE BENCHMARK

1) Benchmark on embedded CPU

We examine the performance of the embedded CPU for inference with no hardware acceleration. In this case, the embedded software builds the CNN as a sequential model mapping the entire computation to the CPU (ARM Cortex-A9) at 666 MHz and a power dissipation of 1.658W.

The inference on the CPU achieves a latency of 40ms. The model is computed with standard floating-point arithmetic with no accuracy degradation. The latency and schedule of the CNN inference are displayed in **Tab.** 1 and **Fig.** 9 respectively.

2) Benchmark on tensor processor with standard floating-point computation

To benchmark the computation on hardware TP with standard floating-point, we implement the system architecture with one TP. In this case, the embedded software builds the CNN as a sequential model mapping *Conv2D* tensor operations to the TP at 200 MHz as clock frequency. The hardware mapping and the computation schedule of this deployment are displayed in **Tab.** 2 and **Fig.** 10.

The post-implementation resource utilization and power dissipation are shown in **Tab.** 3.

The TP instantiates an on-chip weight matrix of 52,000 entries, wish is sufficient to store $W \in \mathbb{R}^{5 \times 5 \times 2 \times 32}$ and $B \in \mathbb{R}^{5 \times 5 \times 32 \times 64}$ for weight and bias, respectively. In order to reduce BRAM utilization, we use a custom floating-point representation composed of 4-bit exponent and 4-bit mantissa. Each 8-bit entry is promoted to its standard floating-point representation for computation.

FIGURE 8. CNN model for case study.

FIGURE 9. Computation on embedded CPU.

FIGURE 10. Performance of TP with standard floating-point (IEEE 754) computation.

TABLE 3. Resource utilization and power dissipation with standard floating-point (IEEE 754) computation.

PU	LUT	FF	DSP	BRAM 18K	Power (mW)
Spike	2,640	4,903	2	2	38
Conv	2,765	4,366	19	37	89
Pool	2,273	3,762	5	3	59
FC	2,649	4,189	8	9	66

The implementation of dot-product with standard floating-point arithmetic (IEEE 754) utilizes proprietary multiplier and adder floating-point operator cores. Vivado HLS accomplishes floating-point arithmetic operations by mapping them onto Xilinx LogiCORE IP cores, these floating-point operator cores are instantiated in the resultant RTL [29]. In

this case, the implementation of the dot-product with the standard floating-point computation reuses the multiplier and adder cores already instantiated in other compute sections of the TP. The post-implementation resource utilization and power dissipation of the floating-point operator cores are shown in **Tab.** 4.

TABLE 4. Resource utilization and power dissipation of multiplier and adder floating-point (IEEE 754) operator cores.

Core operation	DSP	FF	LUT	Latency (clk)	Power (mW)
Multiplier	3	151	325	4	7
Adder	2	324	424	8	6

B. DESIGN EXPLORATION WITH HYBRID CUSTOM FLOATING-POINT AND LOGARITHMIC APPROXIMATION

In this section, we address a design exploration to evaluate our approach for inference using hybrid custom floating-point and logarithmic approximation. First, we examine the weight matrix of each convolution layer in order to determine the minimum requirements for numeric representation and memory storage. Second, we implement the TP using the minimal floating-point and logarithmic representation as design parameters. Finally, we evaluate the overall performance, inference accuracy, resource utilization, and power dissipation.

1) Parameters for numeric representation of weight matrix

We obtain information for the numerical representation of the synaptic weight matrices from their \log_2 -histograms presented in **Fig.** 11. These histograms show the distribution of weight values in each matrix. We observe that the minimum integer exponent value is -13. Hence, applying **Eq.** (??) and **Eq.** (??) to the given CNN, we obtain $E_{\min} = -13$ and $N_E = 4$, respectively. Therefore, 4-bits are required for the absolute binary representation of the exponents.

FIGURE 11. \log_2 -histogram of each synaptic weight matrix showing the percentage of matrix elements with given integer exponent.

For quality configurability, the mantissa bit-width is a knob parameter that is tuned by the designer. This procedure leverages the builtin error-tolerance of neural networks and performs a trade-off between resource utilization and QoR. In the following subsection, we present a case study with 1-bit mantissa corresponding to the custom floating-point approximation.

2) Design exploration for dot-product with hybrid custom floating-point approximation

For this design exploration, we use a custom floating-point representation composed of 4-bit exponent and 1-bit mantissa. This format is used for both the filter matrix and bias vectors of each convolution layer. The TP instantiates on-chip stationary both the filter matrix and bias vectors for X and Y entries of 6-bit (S1E4M1). The available memory size is large enough to store $W \in \mathbb{R}^{5 \times 5 \times 2 \times 32}$ and $W \in \mathbb{R}^{5 \times 5 \times 32 \times 64}$ for \vec{F} and \vec{b} , respectively. The hardware mapping and the computation schedule of this implementation are displayed in **Tab.** 6 and **Fig.** 12.

As shown in the computation schedule in **Tab.** 6 and **Fig.** 12, this implementation achieves a peak acceleration

FIGURE 12. Performance on processing units with hybrid custom floating-point approximation, (a) exhibits computation schedule, (b) presents cyclic computation schedule, and (c) shows the performance of *Conv2* from a previous computation cycle during the preprocessing of *H1_CONV* on the current computation cycle without bottleneck.

of 55x, and a power efficiency of 5.5 GFLOP/s/W. This configuration achieves an accuracy of 90.97% correct regressions on the 500 validation samples. This indicates an accuracy gain of 0.33%.

The post-implementation resource utilization and power dissipation are shown in **Tab.** 5.

TABLE 5. Resource utilization and power dissipation of processing units with hybrid custom floating-point approximation.

PU	LUT	FF	DSP	BRAM 18K	Power (mW)
Conv	3,139	4,850	19	25	82
FC	3,265	5,188	8	9	66

Design exploration for dot-product whit hybrid logarithmic approximation

As the most efficient setup and yet the worst-case quality configuration, we use a 4-bit integer exponent for logarithmic representation of \vec{F} and \vec{b} . The hardware mapping and the computation schedule of this implementation are displayed in **Tab.** 7 and **Fig.** 13. As shown in the computation schedule in **Tab.** 7 and **Fig.** 13, this implementation achieves a peak acceleration of 55X and a power efficiency of 5.5 GFLOPS/s/W. This quality configuration achieves an accuracy degradation 0.84% on correct regressions on the 500 validation samples.

The post-implementation resource utilization and power dissipation are shown in **Tab.** 8.

TABLE 6. Performance of hardware processing units with hybrid custom floating-point approximation.

Hardware n	napping	Computation schedule (ms)				
Layer	PU	t_s	t_{CPU}	t_{PU}	t_f	
HX_IN	Spike	0	0.055	0.307	0.362	
H1_CONV	Conv1	0.057	0.654	1.309	2.020	
H2 POOL	Pool1	0.713	0.131	1.098	1.942	
H2_POOL	Pool2	0.845	0.125	1.098	2.068	
H2 CONT	Conv2	0.972	0.285	1.199	2.456	
H3_CONV	Conv3	1.258	0.279	1.184	2.721	
H4_POOL	Pool3	1.538	0.037	0.484	2.059	
H5_FC	FC	1.577	0.091	0.438	2.106	
HY_OUT	CPU	1.669	0.004	0	1.673	

TABLE 7. Performance of hardware processing units with hybrid logarithmic approximation.

Hardware n	napping	Cor	Computation schedule (ms)				
Layer	Layer PU		t_{CPU}	t_{PU}	t_f		
HX_IN	Spike	0	0.055	0.264	0.319		
H1_CONV	Conv1	0.057	0.655	1.271	1.983		
H2 POOL	Pool1	0.714	0.130	1.074	1.918		
H2_POOL	Pool2	0.845	0.126	1.106	2.077		
H3 CONV	Conv2	0.973	0.285	1.179	2.437		
H3_CONV	Conv3	1.258	0.278	1.176	2.712		
H4_POOL	Pool3	1.538	0.037	0.488	2.063		
H5_FC	FC	1.577	0.091	0.388	2.056		
HY_OUT	CPU	1.669	0.004	0	1.673		

FIGURE 13. Performance of processing units with hybrid logarithmic approximation, (a) exhibits computation schedule, and (b) illustrates cyclic computation schedule.

C. RESULTS AND DISCUSSION

As a reference, the inference on embedded CPU using standard 32-bit floating-point achieves an accuracy gain of 0.3% with a latency of 3,450.28ms. As a second reference point, the inference on TP with standard floating-point presents a latency of 34.5ms, as result we get a 10.7×10^{-2} latency

TABLE 8. Resource utilization and power dissipation of processing units with hybrid logarithmic approximation.

PU	LUT	FF	DSP	BRAM 18K	Power (mW)
Conv	3,086	4,804	19	21	78
FC	3,046	4,873	8	8	66

enhancement.

As a demonstration of the proposed hardware/software architecture, the inference with TP using 5-bit custom floating-point (4-bit exponent, 1-bit mantissa) and 4-bit logarithmic (4-bit exponent) achieves $55.5\times$ latency enhancement. This results in an accuracy gain of 0.33% and degradation of 0.46%, respectively.

Regarding resource utilization and power dissipation, the TP with 5-bit custom floating-point has a 43.24% reduction of BRAM, and a 12.35% of improvement in energy efficiency over the standard floating-point implementation. However, the hybrid dot-product with custom floating-point does not reuse the available floating-point operator cores instantiated from other computational sections (see **Tab.** 4). Therefore, the logic required for the dot-product must be implemented, which is reflected as additional utilization of LUT and FF resources. The experimental results of the design exploration are summarized in **Tab.** 9. The platform implementations are summarized in **Tab.** 10, and their power dissipation breakdowns are presented in **Fig.** 14.

D. HARDWARE DESIGN EXPLORATION

To evaluate the methodology, we employ **Eq.** (8), giving the maximum hyper parameters from models A and B: $W_I = 32$, $C_I = 60$, $C_O = 120$, $K_W = K_H = 3$. For the number formats, $BitSize_I = 32$ -b, and $BitSize_F = BitSize_B = 6$ -bits. To determine V_M , we use HLS tool, which gives an estimate of 6 RAM blocks. The performance evaluation and the hardware resource utilization are displayed in **Tab. ??** and **Tab. 11**, respectively.

- 1) **XC7Z007S**: As a resource-limited FPGA, this device has a capacity of 14,400 LUTs and 1.8Mb of BRAM. This limitation allows to instantiate one TP with *Conv* due to its LUT capacity. With **Eq.** (4), we obtain a BRAM utilization of 789.84Kb. This implementation presents a peak runtime acceleration of $55 \times$ in model *A* at the tensor operation (3A) Conv with a power reduction of $808 \times$.
- 2) **XC7Z010**: This device has a capacity of 17,600 LUTs and 2.1Mb of BRAM. These resources allow to instantiate two TPs with *Conv*, and one TP with *Conv* and *DConv* engines. With **Eq.** (4), we obtain a BRAM utilization of 1,580Kb. This implementation presents a peak runtime acceleration of 105× in model *A* at the tensor operation (3A) *Conv* with a power reduction of 1121×. On model *B*, (6B) *Conv* presents a peak acceleration of 43.8×. The *DConv* tensor operator yields

TABLE 9. Experimental results

Dot-product implementation	PU	Post-in	plementa	ation reso	urce utilization	Power (mW)	ower (mW)Latency		Accuracy (%) ^e	
		LUT	FF	DSP	BRAM 18K		T_{SC} (ms)	Gain ^d	Noise 0%	50%
Standard floating-point computation ^a	Conv FC	2,765 2,649	4,366 4,189	19 8	37 9	89 66	3.18	10.7x	98.98	98.63
Hybrid custom floating-point approx ^b	Conv FC	3,139 3,265	4,850 5,188	19 8	25 9	82 66	1.67	20.5x	98.97	98.47
Hybrid logarithmic approximation ^c	Conv FC	3,086 3,046	4,804 4,873	19 8	21 8	78 66	1.67	20.5x	98.84	95.22

^a Reference with standard floating-point arithmetic (IEEE 754)

TABLE 10. Platform implementations.

Platform implementation	Post-implementation resource utilization				Power (W)	Clock (MHz)	Lateno	ey	Accuracy (%)f
	LUT	FF	DSP	BRAM 18K			T_{SC} (ms)	Gaine	, ,
Ref. [?] ^a	42,740	57,118	49	92	2.519	250	4.65	7.4x	99.02
This work (standard floating-point computation) ^b	39,514	56,036	82	180	2.420	200	3.18	10.7x	98.98
This work (hybrid custom floating-point approx) ^c	42,021	58,759	82	156	2.369	200	1.67	20.5x	98.97
This work (hybrid logarithmic approximation) ^d	41,060	57,862	82	148	2.324	200	1.67	20.5x	98.84

^a Reference architecture with homogeneous AUs using standard floating-point arithmetic (IEEE 754).

f Accuracy on 10,000 image test set with 1000 spikes.

FIGURE 14. Power dissipation breakdown of platform implementations, (a) Ref. [?] architecture with homogeneous AUs using standard floating-point arithmetic (IEEE 754), (b) reference architecture with specialized heterogeneous PUs using standard floating-point arithmetic (IEEE 754), (c) proposed architecture with hybrid custom floating-point approximation, and (d) proposed architecture with hybrid logarithmic approximation.

an acceleration of $6.75\times$, which is limited since the pipelined vector dot-product performs on channel wise.

TABLE 11. Hardware resource utilization and estimated power dissipation.

Device	ТР	Post-im	Post-implementation resource utilization						
		LUT	T FF DSP BRAM 36Kb		Power (W)				
XC7Z007S	1	7,939 55%	8,955 31%	20 30%	25 50%	1.44			
XC7Z010	2	13,542 77%	15,279 43%	36 45%	46 76%	1.880			

VI. CONCLUSIONS

In this paper, we present a design exploration framework for floating-point CNNs acceleration on low-power, resourcelimited embedded FPGAs. This design targets inexpensive IoT and near-sensor data analytic applications. We propose a scalable hardware architecture with customizable tensor processors integrated with TensorFlow Lite. The implemented hardware optimization realizes a pipelined vector dot-product using hybrid custom floating-point and logarithmic approximation with fully parametrized on-chip memory utilization. This approach accelerates computation, reduces energy consumption and resource utilization. We proposed a quantized-aware training method to maintain and increase inference accuracy with custom reduced floating-point formats. This approach is fundamentally more efficient compared to equivalent fixed-point number representations. Experimental results on XC7Z007S (MiniZed) and XC7Z010 (Zybo) demonstrate peak acceleration and power efficiency of 105X and 5.5 GFLOP/s/W, respectively.

REFERENCES

[1] G. Li, C. Deng, J. Wu, X. Xu, X. Shao, and Y. Wang, "Sensor data-driven bearing fault diagnosis based on deep convolutional neural networks and

^b Synaptic weight with number representation composed of 4-bit exponent and 1-bit mantissa.

^c Synaptic weight with number representation composed of 4-bit exponent

d Acceleration with respect to the computation on embedded CPU (ARM Cortex-A9 at 666 MHz) with latency $T_{SC}=34.28ms$.

e Accuracy on 10,000 image test set with 1000 spikes.

b Reference architecture with specialized heterogeneous PUs using standard floating-point arithmetic (IEEE 754).

^c Proposed architecture with specialized heterogeneous PUs using synaptic weight with number representation composed of 4-bit exponent and 1-bit mantissa.

d Proposed architecture with specialized heterogeneous PUs using synaptic weight with number representation composed of 4-bit exponent.

^e Acceleration with respect to the computation on embedded CPU (ARM Cortex-A9 at 666 MHz) with latency $T_{SC}=34.28ms$.

- s-transform," Sensors, vol. 19, no. 12, p. 2750, 2019.
- [2] F. Dong, X. Yu, E. Ding, S. Wu, C. Fan, and Y. Huang, "Rolling bearing fault diagnosis using modified neighborhood preserving embedding and maximal overlap discrete wavelet packet transform with sensitive features selection," *Shock and Vibration*, vol. 2018, 2018.
- [3] T. Nagayama and B. F. Spencer Jr, "Structural health monitoring using smart sensors," Newmark Structural Engineering Laboratory. University of Illinois at Urbana . . . , Tech. Rep., 2007.
- [4] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, "Deep learning for sensor-based activity recognition: A survey," *Pattern Recognition Letters*, vol. 119, pp. 3–11, 2019.
- [5] Y. C. Kim, H.-G. Yu, J.-H. Lee, D.-J. Park, and H.-W. Nam, "Hazardous gas detection for ftir-based hyperspectral imaging system using dnn and cnn," in *Electro-Optical and Infrared Systems: Technology and Applica*tions XIV, vol. 10433. International Society for Optics and Photonics, 2017, p. 1043317.
- [6] M. Lom, O. Pribyl, and M. Svitek, "Industry 4.0 as a part of smart cities," in 2016 Smart Cities Symposium Prague (SCSP). IEEE, 2016, pp. 1–6.
- [7] J. Chen and X. Ran, "Deep learning with edge computing: A review," Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.
- [8] T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj, "Real-time motor fault detection by 1-d convolutional neural networks," *IEEE Transactions* on *Industrial Electronics*, vol. 63, no. 11, pp. 7067–7075, 2016.
- [9] O. Janssens, V. Slavkovikj, B. Vervisch, K. Stockman, M. Loccufier, S. Verstockt, R. Van de Walle, and S. Van Hoecke, "Convolutional neural network based fault detection for rotating machinery," *Journal of Sound* and Vibration, vol. 377, pp. 331–345, 2016.
- [10] O. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, and D. J. Inman, "Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks," *Journal of Sound and Vibration*, vol. 388, pp. 154–170, 2017.
- [11] X. Guo, L. Chen, and C. Shen, "Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis," *Measure-ment*, vol. 93, pp. 490–502, 2016.
- [12] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong Gee Hock, Y. T. Liew, K. Srivatsan, D. Moss, S. Subhaschandra et al., "Can fpgas beat gpus in accelerating next-generation deep neural networks?" in Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2017, pp. 5–14.
- [13] C. Wu, M. Wang, X. Chu, K. Wang, and L. He, "Low-precision floating-point arithmetic for high-performance fpga-based cnn acceleration," ACM Transactions on Reconfigurable Technology and Systems (TRETS), vol. 15, no. 1, pp. 1–21, 2021.
- [14] S. Han, H. Mao, and W. J. Dally, "Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding," arXiv preprint arXiv:1510.00149, 2015.
- [15] S. Han, J. Pool, J. Tran, and W. Dally, "Learning both weights and connections for efficient neural network," *Advances in neural information* processing systems, vol. 28, 2015.
- [16] C. Mei, Z. Liu, Y. Niu, X. Ji, W. Zhou, and D. Wang, "A 200mhz 202.4 gflops@ 10.8 w vgg16 accelerator in xilinx vx690t," in 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2017, pp. 784–788.
- [17] X. Lian, Z. Liu, Z. Song, J. Dai, W. Zhou, and X. Ji, "High-performance fpga-based cnn accelerator with block-floating-point arithmetic," *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, vol. 27, no. 8, pp. 1874–1885, 2019.
- [18] M. Courbariaux, Y. Bengio, and J.-P. David, "Binaryconnect: Training deep neural networks with binary weights during propagations," *Advances in neural information processing systems*, vol. 28, 2015.
- [19] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio, "Neural networks with few multiplications," arXiv preprint arXiv:1510.03009, 2015.
- [20] P. Colangelo, N. Nasiri, E. Nurvitadhi, A. Mishra, M. Margala, and K. Nealis, "Exploration of low numeric precision deep learning inference using intel® fpgas," in 2018 IEEE 26th annual international symposium on field-programmable custom computing machines (FCCM). IEEE, 2018, pp. 73–80.
- [21] Y. Nevarez, D. Rotermund, K. R. Pawelzik, and A. Garcia-Ortiz, "Accelerating spike-by-spike neural networks on fpga with hybrid custom floating-point and logarithmic dot-product approximation," *IEEE Access*, 2021.
- [22] C. Gao, A. Rios-Navarro, X. Chen, S.-C. Liu, and T. Delbruck, "Edgedrnn: Recurrent neural network accelerator for edge inference," *IEEE Journal on Emerging and Selected Topics in Circuits and Systems*, vol. 10, no. 4, pp. 419–432, 2020.

- [23] P. Meloni, A. Garufi, G. Deriu, M. Carreras, and D. Loi, "Cnn hardware acceleration on a low-power and low-cost apsoc," in 2019 Conference on Design and Architectures for Signal and Image Processing (DASIP). IEEE, 2019, pp. 7–12.
- [24] L. Lai, N. Suda, and V. Chandra, "Deep convolutional neural network inference with floating-point weights and fixed-point activations," arXiv preprint arXiv:1703.03073, 2017.
- [25] S. O. Settle, M. Bollavaram, P. D'Alberto, E. Delaye, O. Fernandez, N. Fraser, A. Ng, A. Sirasao, and M. Wu, "Quantizing convolutional neural networks for low-power high-throughput inference engines," arXiv preprint arXiv:1805.07941, 2018.
- [26] I. Goodfellow, Y. Bengio, and A. Courville, *Deep learning*. MIT press, 2016.
- [27] J. Park, J. H. Choi, and K. Roy, "Dynamic bit-width adaptation in dct: An approach to trade off image quality and computation energy," *IEEE transactions on very large scale integration (VLSI) systems*, vol. 18, no. 5, pp. 787–793, 2009.
- [28] U. Xilinx, "Zynq-7000 all programmable soc: Technical reference manual," 2015.
- [29] J. Hrica, "Floating-point design with vivado hls," Xilinx Application Note, 2012.
- [30] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan, "Approximate computing and the quest for computing efficiency," in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 2015, pp. 1–6.

0 0