Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Пермский национальный исследовательский политехнический университет» Электротехнический факультет

Кафедра «Информационные технологии и автоматизированные системы»

Дисциплина: «Защита информации» Профиль: «Программная инженерия» Семестр 5

ОТЧЕТ

по лабораторной работе №1

Тема: «Шифры перестановки и замены»

Выполнил: студент группы РИС-19-16
Миннахметов Э.Ю.
Проверил: доцент кафедры ИТАС
Шереметьев В. Г
Дата

ЦЕЛЬ РАБОТЫ

Получить практические навыки по применению шифров перестановки и шифров простой замены.

ЗАДАНИЕ

Реализовать шифрование текстового сообщения, используя шифр Гронсфельда.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Шифр Гронсфельда — полиалфавитный подстановочный шифр создан графом Гронсвельдом (руководителем первой дешифровальной службы Германии) в XVII веке. Шифр можно считать усовершенствованием шифра Цезаря (надежность) и Виженера / Бофора (скорость).

	Α	В	С	D	Ε	F	G	Н	Ι	J	Κ	L	Μ	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z
0	Α	В	С	D	Е	F	G	Н	Τ	J	Κ	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z
1	В	С	D	Е	F	G	Н	Ι	J	Κ	L	Μ	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α
2	C	D	Е	F	G	Н	Ι	J	Κ	L	Μ	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В
3	D	Е	F	G	Н	Ι	J	Κ	L	Μ	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С
4	E	F	G	Н	Ι	J	Κ	L	Μ	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D
5	F	G	Н	Ι	J	Κ	L	Μ	N	О	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	С	D	Е
6	G	Н	Ι	J	Κ	L	Μ	Ν	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	Α	В	С	D	Е	F
7	Н	Ι	J	Κ	L	Μ	Ν	О	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	F	G
8	1	J	Κ	L	Μ	Ν	О	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н
9	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н	I

Рисунок 1 – Таблица Гронсфельда

Длина ключа (K) должна быть равной длине исходного текста. Для этого циклически записывают ключ до тех пор, пока его длина не будет соответствовать длине исходного текста.

Шифрование. Каждый символ M_i открытого текста M нужно на K_i (соответствующий символ ключа K) шагов сдвинуть вправо. Или пользуясь таблицей Гронсфельда (T_{xy} , где x — номер строки, а y — номер столбца и отсчет ведется с нуля): каждый символ C_i шифротекста C находится на пересечении столбца y, первый (заголовочный) символ которого равен соответствующему символу открытого текста M_i , и K_i -й (соответствующей цифры ключа) строки — (T_{Kiy}).

Дешифрование. Каждый символ (C_i) зашифрованного текста C нужно на K_i (соответствующий символ ключа K) шагов сдвинуть влево. Или пользуясь таблицей Гронсфельда (T_{xy} , где x — номер строки, а y — номер столбца и отсчет ведется с нуля): нужно в K_i (i-ая цифра ключа K) строке найти символ, который равен соответствующему символу шифротекста ($T_{Kiy} = C_i$), и первый (заголовочный) элемент столбца будет i-ый символ открытого текста.

ХОД РАБОТЫ

На рисунке 2 представлена форма, в первое поле которой вводится ключ шифрования, а во второе шифруемый текст, а в третьем выводится результат шифрования после нажатия на кнопку «Зашифровать». Если же требуется расшифровать, то шифротекст помещается в третье поле и уже требуется нажатие на кнопку «Расшифровать», а результат помещается во второе поле. Числа должны быть отделены между собой пробелом.

Рисунок 2 – Форма для шифрования.

Пример работы программы представлен на рисунке 3.

Рисунок 3 – Пример работы программы.

ПРИЛОЖЕНИЕ А

Листинг программы

```
class Code {
private:
  static QString alphabet;
  static ushort get(int i) {
    return alphabet[i].unicode();
  static bool check(const QChar &c, const QCharRef &a, const QCharRef &z) {
    ushort uc = c.unicode();
    return a.unicode() <= uc && uc <= z.unicode();</pre>
  }
  static bool check(const QChar &c) {
    return check(c, alphabet[0], alphabet[25]) ||
       check(c, alphabet[26], alphabet[51]) ||
       check(c, alphabet[52], alphabet[83]) ||
       check(c, alphabet[84], alphabet[115]);
  }
  static void index(int &i, const QChar &c, int begin, int end) {
    if(c \ge get(begin) \&\& c \le get(end)) {
      i = c.unicode() - get(begin) + begin;
   }
  }
  static QChar cry(const QChar &c, const int &term, bool decrypt = false) {
    int i;
    index(i, c, 0, 25);
    index(i, c, 26, 51);
    index(i, c, 52, 83);
    index(i, c, 84, 115);
    int temp = i + (decrypt? -1:1) * term;
    int size = alphabet.size();
    temp = temp < 0? temp + size : (temp >= size ? temp - size : temp);
    return alphabet.constData()[temp];
  std::vector<int>_code;
public:
  static QString alph() { return alphabet; }
  explicit Code(const QString &code) {
    for(auto i : code) {
      if(i >= QChar('0') && i <= QChar('9')) {
        _code.push_back(i.unicode() - QChar('0').unicode());
      }
   }
  }
  QString crypt(const QString &str, bool decrypt = false) {
    QString result;
    for(int i = 0, j = 0; i < str.size(); ++i) {
      result.append(check(str[i]) ? cry(str[i], _code[j], decrypt) : str[i]);
```