

AERODYNAMICS

Graham Wilson

 $C_L VS \alpha_{(10M/S)}$

 $C_L VS \alpha_{(15M/S)}$

 $C_L VS \alpha_{(20M/S)}$

 C_{D} VS α (10M/S)

 $C_{\rm D}$ VS α (15M/S)

 $C_{\rm D}$ VS α _(20M/S)

ANALYSIS

10 m/s (Low Re)

• CL vs AoA Stall Angle: ~15° Max CL: ~0.95 Zero-lift AoA: -4°

• CL at $\alpha = 0^{\circ}$: 0.4

CD vs AoA
 Min CD: ~0.03
 CD at stall: 0.12

Gradual drag rise

15 m/s (Medium Re)

· CL vs AoA Stall Angle: ~15.5° Max CL: ~1.1

Zero-lift AoA: -4°

CL at $\alpha = 0^{\circ}$: 0.45

CD vs AoA
Min CD: ~0.025
CD at stall: 0.15

Sharper drag rise

· 20 m/s (High Re)

• CL vs AoA Stall Angle: ~16° Max CL: ~1.2 Zero-lift AoA: -4°

• CL at $\alpha = 0^{\circ}$: 0.5

· CD vs AoA

• Min CD: ~0.02

• CD at stall: 0.18

Most abrupt drag rise

ANALYSIS- REYNOLDS NUMBER EFFECTS

- Lift Characteristics
 Maximum CL increases with Reynolds number
 Stall angle slightly increases with Re
 Lift curve slope becomes steeper at higher Re
- Drag Characteristics
 Minimum CD decreases with increasing Re
 Drag rise at stall becomes more pronounced
 Lower drag across all AoA at higher Re

$C_L VS \overline{C}_{D(10M/S)}$

$C_LVSC_{D(15M/S)}$

$C_LVSC_{D(20M/S)}$

ANALYSIS- DRAG POLAR

• 10 m/s

• Min CD: 0.030

· CL at min CD: ~0.35

• α at min CD: 2-3°

• L/D max: ~12

• 15 m/s

• Min CD: 0.025

· CL at min CD: ~0.4

• α at min CD: 2-3°

• L/D max: ~15

• 20 m/s

• Min CD: 0.020

• CL at min CD: ~ 0.45

• α at min CD: 2-3°

L/D max: ~18

ANALYSIS- DRAG POLAR

- Minimum Drag Angle:
- Remains relatively constant at 2-3° across all Reynolds numbers
- More well-defined minimum at higher Reynolds numbers
- Drag Polar Shape:
- Lower minimum drag values at higher Reynolds numbers
- More distinct drag curve at higher Reynolds numbers
- · Better overall aerodynamic efficiency (L/D) at higher Re
- Performance Improvements:
- · 33% reduction in minimum drag from 10 m/s to 20 m/s
- Wider range of efficient operating CL values

$C_{L}/C_{D} \overline{VS} \alpha_{(10M/S)}$

$C_L/C_D VS \alpha_{(15M/S)}$

C_{L}/C_{D} VS $\alpha_{(20M/S)}$

ANALYSIS

Velocity (Re)	Max CL/CD	Optimal α	Characteristics
10 m/s (Low)	~15	5-6°	Sharp peak, rapid decline
15 m/s (Med)	~21	10°	Broader efficient range
20 m/s (High)	~29	15°	Widest efficient range

Reynolds Number Effects:

Higher Re → Better efficiency (max CL/CD ↑)

Higher Re → Larger optimal angle of attack

Higher Re → Broader range of efficient operation

Conclusion: Best performance at 20 m/s, $\alpha \approx 15^{\circ}$, achieving CL/CD ≈ 29 .

Higher Reynolds numbers improve boundary layer attachment and delay flow

separation