Explore Fitness Functions in GA for Solving Sudoku Puzzles

Group Members: Cao Yang, Chen Chen, Tang Yunhe, Wang Jiacheng

Content

- Introduction
- Analysis
- Design
- Evaluation

Introduction

- ► Goal: Explore influence that fitness function have on performance of genetic algorithm in solving Sudoku problem.
- Key word: Fitness function
- Experiment:
 - Propose several fitness functions
 - ► Apply them to solve Sudoku problem
 - Evaluate the results

Motivation

- ► Why GA?
 - ▶ GA has proposed for many years, not preferred for practice.
 - ► Reasons: 1. not suitable for certain problem
 - 2. computational complexity
 - 3. converge local optima
- Why Fitness Function?
 - ▶ Key to GA: To a large extend fitness function determine the converge rate and evolve direction.
- Why Sudoku?
 - ▶ Easy to implement and model, existed work on similar topic for comparison

Procedure for Solving Sudoku Puzzle

- Initial settings
- While no one meets the criterion:
 - Select 2 parent samples
 - Crossover
 - Mutation
 - ► Add 2 child samples into population
 - ► Eliminate 2 samples from population

Procedure for Solving Sudoku Puzzle

- Some Experimental Parameters:
 - ► Population size : 150
 - ► Number of child Candidates/Parents: 2
 - ► Crossover Rate: 0.3
 - ► Mutation Rate: 0.3
 - ► Tournament Size : 3

Initial Setting

► Satisfy the rule in sub-block : no more than one of any numeral

		9			4	8	9	7
2	1	7			2	1	7	9
			2		5	3	6	2
	6	4	1	·	1	6	4	1

▶ 150 samples are generated

Parent Samples Selection

► Tournament size = 3; Parents = 2.

Crossover

$$h_1(1) h_2(1) h_3(1)$$

Child 1

Parent 2

2	2
2	2
2	2
	2

$$g_1(2)$$

$$g_{3}(2)$$

$$h_1(2) h_2(2) h_3(2)$$

2	2	1
2	2	1
2	2	1

In this case:

$$g_1(1) > g_1(2)$$

$$g_2(1) < g_2(2)$$

•••

$$h_1(1) < h_1(2)$$

$$h_2(1) < h_2(2)$$

Child 2

Crossover rate = 0.3

Mutation

Mutation rate = 0.3

More About Mutation

Parent: Child = 1:1

Number of child candidates = 2

Parent : Child = 1 : 3 Then select best child

Why we propose this fitness function? In order to compare the influence on the performance of GA.

Fitness Function #1

▶ Base on: The sum of each row or column is 45.

$$f = \sum_{i=1}^{9} g_i(x) + \sum_{j=1}^{9} h_j(x), g_i(x) = \left| 45 - \sum_{j=1}^{9} x_{ij} \right|, h_j(x) = \left| 45 - \sum_{i=1}^{9} x_{ij} \right|$$

Weakness:

2	1	3	4
3	4	1	2
3	4	2	1
2	1	4	3

- ► Modification: assistance function h: number of conflicts in whole matrix
- ► F1 = a * f + b * h, where a + b = 1. If F1 == 0, solution is found.

Fitness Function #2

- Motivation: Instead of checking conflicts in whole matrix, we use another assistance function.
 - ▶ Base on: The factorial of each row or column is 9!.

$$y = \sum_{i=1}^{9} g_i(x) + \sum_{j=1}^{9} h_j(x), g_i(x) = \left| 9! - \prod_{j=1}^{9} x_{ij} \right|, h_j(x) = \left| 9! - \prod_{i=1}^{9} x_{ij} \right|$$

ightharpoonup F2 = a * f + b * y, where a + b = 1. If F2 == 0, solution is found.

Fitness Function #3

- Motivation : Consider each row or column as a vector.
- For optimization solution, if we sort each row, it's a vector like:
 - <1, 2, 3, 4, 5, 6, 7, 8, 9>
- Calculate Euclidean distance by the <u>Pythagorean formula</u>:

Improvement

- Problem A: Inefficient calculation of fitness function.
 - cache the score, avoid repeated calculation.
- Problem B: Stuck into local optima.
 - ► Random elimination
- Problem C: Early converge.
 - Increase mutation to in increase diversity

Result

Fitness function	Count	Average	Time cost
Traditional function	20/20	2356	2.78
F1(SUM)	5/20	2842	3.17
F2(SUM&PRODUCT)	17/20	6362	8.37
F3(VECTOR)	18/20	3054	4.29

