COURSE 2

2.2. Lagrange interpolation

Let $[a,b] \subset \mathbb{R}$, $x_i \in [a,b]$, i=0,1,...,m such that $x_i \neq x_j$ for $i \neq j$ and consider $f:[a,b] \to \mathbb{R}$.

The Lagrange interpolation problem (LIP) consists in determining the polynomial P of the smallest degree for which

$$P(x_i) = f(x_i), i = 0, 1, ..., m$$
(1)

i.e., the polynomial of the smallest degree which passes through the distinct points $(x_i, f(x_i))$, i = 0, 1, ..., m.

Definition 1 A solution of (LIP) is called **Lagrange interpolation polynomial**, denoted by $L_m f$.

Remark 2 We have $(L_m f)(x_i) = f(x_i), i = 0, 1, ..., m.$

 $L_m f \in \mathbb{P}_m$ (\mathbb{P}_m is the space of polynomials of at most m-th degree).

The Lagrange interpolation polynomial is given by

$$(L_m f)(x) = \sum_{i=0}^{m} \ell_i(x) f(x_i),$$
 (2)

where by $\ell_i(x)$ denote the Lagrange fundamental interpolation polynomials.

We have

$$u(x) = \prod_{j=0}^{m} (x - x_j),$$

$$u_i(x) = \frac{u(x)}{x - x_i} = (x - x_0)...(x - x_{i-1})(x - x_{i+1})...(x - x_m) = \prod_{\substack{j=0\\j \neq i}}^{m} (x - x_j)$$

and

$$\ell_i(x) = \frac{u_i(x)}{u_i(x_i)} = \frac{(x - x_0)...(x - x_{i-1})(x - x_{i+1})...(x - x_m)}{(x_i - x_0)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_m)} = \prod_{\substack{j=0 \ j \neq i}}^m \frac{x - x_j}{x_i - x_j},$$
(3)

for i = 0, 1, ..., m.

Proposition 3 We also have

$$\ell_i(x) = \frac{u(x)}{(x - x_i)u'(x_i)}, \ i = 0, 1, ..., m.$$
(4)

Proof. We have $u_i(x) = \frac{u(x)}{x - x_i}$, so $u(x) = u_i(x)(x - x_i)$. We get $u'(x) = u_i(x) + (x - x_i)u'_i(x)$, whence it follows $u'(x_i) = u_i(x_i)$. So, as

$$\ell_i(x) = \frac{u_i(x)}{u_i(x_i)}$$

we get

$$\ell_i(x) = \frac{u_i(x)}{u'(x_i)} = \frac{u(x)}{(x - x_i)u'(x_i)}, \ i = 0, 1, ..., m.$$
 (5)

Theorem 4 The operator L_m is linear.

Proof.

$$L_{m}(\alpha f + \beta g)(x) = \sum_{i=0}^{m} \ell_{i}(x)(\alpha f + \beta g)(x_{i}) = \sum_{i=0}^{m} [\ell_{i}(x)\alpha f(x_{i}) + \ell_{i}(x)\beta g(x_{i})]$$

= $\alpha(L_{m}f)(x) + \beta(L_{m}g)(x)$,

SO

$$L_m(\alpha f + \beta g) = \alpha L_m f + \beta L_m g, \quad \forall f, g : [a, b] \to \mathbb{R} \text{ and } \alpha, \beta \in \mathbb{R}.$$

Example 5 1) Consider the nodes x_0, x_1 and a function f to be interpolated.

We have m = 1,

$$u(x) = (x - x_0)(x - x_1)$$

 $u_0(x) = x - x_1$
 $u_1(x) = x - x_0$

$$(L_1 f)(x) = l_0(x) f(x_0) + l_1(x) f(x_1)$$

$$= \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1),$$

which is the line passing through the given points $(x_0, f(x_0))$ and $(x_1, f(x_1))$.

Example 6 Find the Lagrange polynomial that interpolates the data in the following table and find the approximative value of f(-0.5).

$$\begin{array}{c|ccccc} x & -1 & 0 & 3 \\ \hline f(x) & 8 & -2 & 4 \\ \end{array}$$

Sol. We have m = 2. The Lagrange polynomial is

$$(L_2f)(x) = l_0(x)f(x_0) + l_1(x)f(x_1) + l_2(x)f(x_2).$$

u(x) = (x + 1)(x - 0)(x - 3) and it follows

$$l_0(x) = \frac{(x-0)(x-3)}{(-1-0)(-1-3)} = \frac{1}{4}x(x-3)$$

$$l_1(x) = \frac{(x+1)(x-3)}{(0+1)(0-3)} = -\frac{1}{3}(x+1)(x-3)$$

$$l_2(x) = \frac{(x+1)(x-0)}{(3+1)(3-0)} = \frac{1}{12}x(x+1),$$

The polynomial is

$$(L_2f)(x) = 2x(x-3) + \frac{2}{3}(x+1)(x-3) + \frac{1}{3}x(x+1).$$

and $(L_2f)(-0.5) = 2.25$.

Remark 7 Disadvantages of the form (2) of Lagrange polynomial: requires many computations and if we add or substract a point we have to start with a complete new set of computations.

Some calculations allow us to reduce the number of operations:

$$(L_m f)(x) = \frac{(L_m f)(x)}{1} = \frac{\sum_{i=0}^{m} l_i(x) f(x_i)}{\sum_{i=0}^{m} l_i(x)}.$$

Dividing the numerator and the denominator by

$$u(x) = \prod_{i=1}^{m} (x - x_i)$$

and denoting

$$A_i = \frac{1}{\prod_{j=0, j \neq i}^{m} (x_i - x_j)} = \frac{1}{u_i(x_i)}$$

one obtains

$$(L_m f)(x) = \frac{\sum_{i=0}^{m} \frac{A_i f(x_i)}{x - x_i}}{\sum_{i=0}^{m} \frac{A_i}{x - x_i}},$$
(6)

called the barycentric form of Lagrange interpolation polynomial.

Remark 8 Formula (6) needs half of the number of arithmetic operations needed for (2) and it is easier to add or substract a point.

The Lagrange polynomial generates the Lagrange interpolation formula

$$f = L_m f + R_m f,$$

where $R_m f$ denotes the remainder (the error).

Theorem 9 Let $\alpha = \min\{x, x_0, ..., x_m\}$ and $\beta = \max\{x, x_0, ..., x_m\}$. If $f \in C^m[\alpha, \beta]$ and $f^{(m)}$ is derivable on (α, β) then $\forall x \in (\alpha, \beta)$, there exists $\xi \in (\alpha, \beta)$ such that

$$(R_m f)(x) = \frac{u(x)}{(m+1)!} f^{(m+1)}(\xi). \tag{7}$$

Proof. Consider

$$F(z) = \begin{vmatrix} u(z) & (R_m f)(z) \\ u(x) & (R_m f)(x) \end{vmatrix}.$$

From hypothesis it follows that $F \in C^m[\alpha, \beta]$ and there exists $F^{(m+1)}$ on (α, β) .

We have

$$F(x) = 0, F(x_i) = 0, i = 0, 1, ..., m,$$

as

$$u(x_i) = \prod_{j=0}^{m} (x_i - x_j) = 0$$

and

$$(R_m f)(x_i) = f(x_i) - (L_m f)(x_i) = f(x_i) - f(x_i) = 0,$$

so F has m+2 distinct zeros in (α,β) . Applying successively the Rolle theorem it follows that: F has m+2 zeros in $(\alpha,\beta) \Rightarrow F'$ has at least m+1 zeros in $(\alpha,\beta) \Rightarrow ... \Rightarrow F^{(m+1)}$ has at least one zero in (α,β)

So $F^{(m+1)}$ has at least one zero $\xi \in (\alpha, \beta), F^{(m+1)}(\xi) = 0.$

We have

$$F^{(m+1)}(z) = \begin{vmatrix} u^{(m+1)}(z) & (R_m f)^{(m+1)}(z) \\ u(x) & (R_m f)(x) \end{vmatrix},$$

with

$$u(z) = \prod_{i=0}^{m} (z - z_i) \Rightarrow u^{(m+1)}(z) = (m+1)!,$$

and

$$(R_m f)^{(m+1)}(z) = (f - (L_m f))^{(m+1)}(z)$$

= $f^{(m+1)}(z) - (L_m f)^{(m+1)}(z) = f^{(m+1)}(z)$

(as, $L_m f \in \mathbb{P}_m$).

We have $F^{(m+1)}(\xi) = 0$, for $\xi \in (\alpha, \beta)$, so

$$F^{(m+1)}(\xi) = \begin{vmatrix} (m+1)! & f^{(m+1)}(\xi) \\ u(x) & (R_m f)(x) \end{vmatrix} = 0,$$

i.e.,
$$(m+1)!(R_m f)(x) = u(x)f^{(m+1)}(\xi)$$
,

whence
$$(R_m f)(x) = \frac{u(x)}{(m+1)!} f^{(m+1)}(\xi)$$
.

Corolar 10 If $f \in C^{m+1}[a,b]$ then

$$|(R_m f)(x)| \le \frac{|u(x)|}{(m+1)!} ||f^{(m+1)}||_{\infty}, \quad x \in [a,b]$$

where $\|\cdot\|_{\infty}$ denotes the uniform norm, and $\|f\|_{\infty} = \max_{x \in [a,b]} |f(x)|$.

Example 11 If we know that $\lg 2 = 0.301$, $\lg 3 = 0.477$, $\lg 5 = 0.699$, find $\lg 76$. Study the approximation error.

Example 12 Which is the limit of the error for computing $\sqrt{115}$ using Lagrange interpolation formula for $f(x) = \sqrt{x}$ and $x_0 = 100$, $x_1 = 121$ and $x_2 = 144$? Find the approximative value of $\sqrt{115}$.

The Aitken's algorithm

Let $[a,b] \subset \mathbb{R}$, $x_i \in [a,b]$, i=0,1,...,m such that $x_i \neq x_j$ for $i \neq j$ and consider $f:[a,b] \to \mathbb{R}$.

Usually, for a practical approximation problem, for a given function $f:[a,b]\to\mathbb{R}$ we have to find the approximation of $f(\alpha)$, $\alpha\in[a,b]$ with an error not greater than a given $\varepsilon>0$.

If we have enough information about f and its derivatives, we use the inequality $|(R_m f)(x)| \le \varepsilon$ to find m such that $(L_m f)(\alpha)$ approximates $f(\alpha)$ with the given precision.

We may use the condition $\frac{|u(x)|}{(m+1)!} \|f^{(m+1)}\|_{\infty} \leq \varepsilon$, but it should be known $\|f^{(m+1)}\|_{\infty}$ or a majorant of it.

A practical method for computing the Lagrange polynomial is **the Aitken's algorithm.** This consists in generating the table:

where

$$f_{i0} = f(x_i), \quad i = 0, 1, ..., m,$$

and

$$f_{i,j+1} = \frac{1}{x_i - x_j} \begin{vmatrix} f_{jj} & x_j - x \\ f_{ij} & x_i - x \end{vmatrix}, \quad i = 0, 1, ..., m; j = 0, ..., i - 1.$$

For example,

$$f_{11} = \frac{1}{x_1 - x_0} \begin{vmatrix} f_{00} & x_0 - x \\ f_{10} & x_1 - x \end{vmatrix}$$

$$= \frac{1}{x_1 - x_0} [f_{00}(x_1 - x) - f_{10}(x_0 - x)]$$

$$= \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1) = (L_1 f)(x),$$

so f_{11} is the value in x of Lagrange polynomial for the nodes x_0, x_1 . We have

$$f_{ii} = (L_i f)(x),$$

 $L_i f$ being Lagrange polynomial for the nodes $x_0, x_1, ..., x_i$.

So $f_{11}, f_{22}, ..., f_{ii}, ..., f_{mm}$ is a sequence of approximations of f(x).

If the interpolation procedure is convergent then the sequence is also convergent, i.e., $\lim_{m\to\infty}f_{mm}=f(x)$. By Cauchy convergence criterion it follows

$$\lim_{i \to \infty} |f_{ii} - f_{i-1,i-1}| = 0.$$

This could be used as a stopping criterion, i.e.,

$$|f_{ii} - f_{i-1,i-1}| \le \varepsilon$$
, for a given precision $\varepsilon > 0$.

Recommendation is to sort the nodes $x_0, x_1, ..., x_m$ with respect to the distance to x, such that

$$|x_i - x| \le |x_j - x|$$
 if $i < j$, $i, j = 1, ..., m$.

Example 13 Approximate $\sqrt{115}$ with precision $\varepsilon = 10^{-3}$, using Aitken's algorithm.