선택 알고리즘

한국기술교육대학교 컴퓨터공학부 김상진

교육목표

- 선택 문제(selection problem)
 - 특정 순서에 있는 값을 찾는 문제
 - ullet 정렬되어 있지 않은 리스트에서 k번째 요소 찾기
 - 예) [3, 4, 2, 8, 7, 1, 5, 6]에서 3번째 요소는?
 - 선택 문제는 정렬보다 쉬운 문제
 - 선택 문제의 하한과 반대자 논법(adversary argument)
 - 제한적 선택 문제 (찾는 위치 고정)
 - 최댓값과 최솟값 동시 찾기 문제
 - 두 번째로 큰 수 찾기 문제: 토너먼트 알고리즘
 - 중간값 찾기 문제
- 빠른 정렬에서 사용한 pivot을 기준으로 분할하는 방법을 활용하여 선형 시간 확률적 선택 알고리즘을 만들 수 있음
- 결정적 선택 알고리즘은?
 - ◎ 선형 시간 결정적 선택 알고리즘도 만들 수 있음

선택 문제

- igodelight 입력. n개의 서로 다른 수로 구성된 배열 A
- 출력. k번째 작은 수
- 정렬되어 있지 않은 리스트에서 k번째 요소 찾기
- 예) n번째 요소(가장 큰 값 찾기)
 - n 1번 비교 필요
 - 이보다 적게 비교하여 찾을 수 없음
- 예) 첫 번째 요소(가장 작은 값 찾기)
 - ◎ n − 1번 비교 필요
 - 이보다 적게 비교하여 찾을 수 없음
- 정렬한 후에 찾기: *O*(*n* log *n*)
- $lacksymbol{0}$ 실제 선택 문제는 정렬 문제보다 쉬운 문제이며, $oldsymbol{o}(n)$ 으로 해결할 수 있음

max := A[1]

for i = 2 to n do

if max < A[i] then

 $max \coloneqq A[i]$

- 선택 문제를 해결하는 알고리즘을 살펴보기 전에 선택 문제가 필요한 비교의 하한(최악의 경우 필요한 비교 수)을 알아보고자 함
 - 하한을 만족하는 알고리즘을 만들 수 있는지 살펴봄

3/36

선택 문제 하한과 반대자 논법 (1/2)

- 반대자 논법(adversary argument)
 - 친구와 추측 게임: 내가 선택한 1 ~ 100 사이의 수를 맞추는 게임
 - 친구가 질문을 많이 하도록 유도하기 위해 수를 선택하지 않고 진행함
 - 목표는 친구가 질문을 가장 많이 하도록 유도함
 - 예) 10보다 크니?
 - 질문을 많이 하도록 유도하기 위해서는 답은 예
 - 50보다 큰지 여부를 묻는 것이 가장 이득임
 - 답변에 일관성을 위해 부득이하게 결정해야 할 때 정함
 - 이 방법을 이용하면 선택 문제의 비교 하한을 구할 수 있음

선택 문제 하한과 반대자 논법 (2/2)

- 선택 문제의 비교 하한: 최악의 경우 필요한 비교 수
 - 어떤 입력이 최악의 경우에 해당하는지 알아야 비교 하한을 찾을 수 있음
 - 반대자 논법을 이용하면 최악의 경우에 해당하는 입력을 만들 수 있음
 - 이 논법은 어떤 결정을 해야 할 때 가장 일을 많이 하도록 유도함
 - 이 분석은 특정 알고리즘을 분석하는 것이 아니라 문제 해결하기 위해 필요한 비교 하한을 찾는 것임
- 비교 하한을 찾으면 그 다음 비교 하한으로 문제를 해결할 수 있는 알고리즘을 찾는 것임

5/36

최댓값과 최솟값을 동시에 (1/5)

- $lacksymbol{lack}$ 최댓값과 최솟값을 각각 찾는 비용의 비교 하한은 n-1임
 - 이를 응용하여 최댓값을 찾은 후 이것을 제외하고 나머지에서 최솟값을 찾으면 총 2n 3번의 비교가 필요함
 - 하지만 이보다 더 효과적으로 할 수 있다는 것을 직관적으로 알 수 있음
 - 두 값을 비교할 때 그 결과를 최댓값과 최솟값을 찾을 때 동시에 활용할 수 있음
- ullet n개의 서로 다른 수로 구성된 리스트에서 x가 최댓값, y가 최솟값임을 알기 위해 필요한 정보는?
 - - 총 2n-2개의 정보가 필요함 \leftarrow 이 정보를 몇 번의 비교로 얻을 수 있을까?
- 참고. 정보와 비용은 다른 것임. 두 요소를 비교하면 하나는 winner,
 하나는 loser가 되므로 2개를 정보를 얻을 수 있음. 항상 비교를 통해 우리가 필요한 2개의 정보를 얻을 수 있는 것은 아님

최댓값과 최솟값을 동시에 (2/5)

● 반대자 전략

요소 상태	의미
W	한 번도 진 적이 없고, 최소 한 번 이상 이겼음
L	한 번도 이긴 적이 없고, 최소 한 번 이상 졌음
WL	최소 한 번 이상 이긴 적도 있고, 진 적도 있음
N	비교에 한 번도 참여한 적이 없음

비교하는 두 요소 a, b의 상태	adversary response	새 상태	새 정보
N, N W, N, or WL, N L, N W, W L, L W, L or WL, L or W, WL WL, WL	a>b a>b a <b a>b a>b a>b 일관성 유지</b 	W, L W, L or WL, L L, W W, WL WL, L no change no change	2 1 1 1 0 0

- 리스트 요소의 값은 진행(비교할 때마다)하면서 확정함
- 진행 과정에서 일관성이 유지되면 바꿀 수 있음

7/36

최댓값과 최솟값을 동시에 (3/5)

ullet 예) n=6: 2n-2=10개 정보, 이 예에서 사용한 비교 횟수는 8

비교	а		b		(С		d		е		F	정보
-1112	상태	값	상태	값	상태	값	상태	값	상태	값	상태	값	경포
a, b	w	10	L	5	N		N		N		N		2
a, e	w	10							L	3			3
c, d					W	12	L	6					5
c, f					W	12					L	9	6
c, a	W	15			WL	12							7
b, d			L	5			WL	6					8
e, f									WL	3	L	1	9
b, f			WL	5							L	1	10

최댓값과 최솟값을 동시에 (3/5)

ullet 예) n=6: 2n-2=10개 정보, 이 예에서 사용한 비교 횟수는 7

비교	a	3	k)	((d		9	1	f	정보
- 11 <u>11</u> 2	상태	값	상태	값	상태	값	상태	값	상태	값	상태	값	영포
a, b	W	10	L	5									2
c, d					W	8	L	4					4
e, f									W	7	L	3	6
a, c	w				WL								7
b, d			WL				L						8
a, e	W								WL				9
d, f							WL				L		10

- 가장 최선의 전략
- 반대자 전략을 알고 있으면 그것을 활용하는 알고리즘을 만들 수 있음

9/36

최댓값과 최솟값을 동시에 (4/5)

- 정리. n개의 서로 다른 수로 구성된 리스트에서 최댓값과 최솟값을 비교만을
 이용하여 찾기 위해 필요한 최소 비교 수는 3n/2-2임
- 증명)
 - $lacksymbol{lack}$ 가정. n은 짝수
 - 2개 정보를 얻을 수 있는 유일한 경우는 N과 N의 비교
 - lacksquare 총 n/2개 존재 \Longrightarrow n개 정보 획득
 - 그다음 비교에서는 최대 1개 정보만 얻을 수 있음
 - igodeant 총 필요한 정보 2n-2
 - $lacksymbol{lack}$ n-2번 비교가 추가로 필요
 - 총 비교는 $\frac{n}{2} + n 2 = \frac{3n}{2} 2$
 - n이 홀수이면? $\frac{n-1}{2} + n 1 = \frac{3n}{2} \frac{3}{2}$

최댓값과 최솟값을 동시에

● 알고리즘

```
max, min \coloneqq 0, 0

if A[1] < A[2] then

max, min \coloneqq A[2], A[1]

else

max, min \coloneqq A[1], A[2]

i \coloneqq 3

while i \le n-1 do

if A[i] < A[i+1] then

if A[i] < min then min \coloneqq A[i]

if A[i+1] > max then max \coloneqq A[i+1]

else

if A[i] > max then min \coloneqq A[i+1]

if A[i] > max then min \coloneqq A[i+1]

if A[i] > max then max \coloneqq A[i+1]

if A[i] > max then max \coloneqq A[i+1]

if A[i] > max then max \coloneqq A[i+1]
```

● 홀수이면? max, min := A[1], A[1] i := 2//

• $\left(\frac{n-1}{2}\right) \times 3 = \frac{3}{2}n - \frac{3}{2}$

11/36

두 번째로 큰 수 찾기 (1/4)

- n개의 서로 다른 수로 구성된 리스트에서 두 번째로 큰 수 찾기
 - $lacksymbol{lack}$ 최댓값을 찾은 후(n-1), 남은 것에서 다시 최댓값을 찾으면(n-2) 총 2n-3번의 비교로 두 번째로 큰 수를 찾을 수 있음
 - 최댓값과 최솟값을 동시에 찾는 방법을 활용하면 더 효과적으로 찾을 수 있음
 - 두 번째로 큰 수의 특징
 - 최댓값 외에 또 다른 값에 진 값은 두 번째로 큰 수가 될 수 없음
 - 최댓값을 찾는 과정에서 위와 같은 수를 제거함
 - 예) a, b, c, d, e
 - a, b: W, L
 - a, c: W, L
 - a, d: WL, W
 - d, e: W, L
 - max: d, second max는 a 아니면 e

두 번째로 큰 수 찾기 (2/4)

- 이 방법의 문제?
 - 비교 과정에서 b와 c를 배제해야 한다는 것을 어떻게 구현?
 - 더 심각한 문제: 이전 예에서 a가 max이면 배제할 것이 없음
- 토너먼트 방법:

13/36

두 번째로 큰 수 찾기 (3/4)

- 알고리즘
 - $lacksymbol{lack}$ 토너먼트를 통해 \max 찾기: n-1번 비교
 - ullet n이 2의 거듭제곱이라고 가정하면 총 $\log n$ 라운드 진행
 - 1회전 $\frac{n}{2}$, 2회전 $\frac{n}{2^2}$, ..., 최종 $\frac{n}{2^{\log n}} = 1$

- $lacksymbol{lack}$ max에 진 값들만 이용하여 second max 찾기: $[\log n]-1$
- 총 비용: n + [log n] 2
- 정리. 이 비용이 두 번째로 큰 수를 찾는 하한임
 - 증명) 반대자 논법을 이용하여 증명 가능

두 번째로 큰 수 찾기 (4/4)

- 구현 방법
 - 방법 1. 토너먼트
 - 방법 2. max에 진 요소들: 각 값마다 패자 리스트 유지
- 토너먼트 예) [3, 7, 5, 13]
 - $lacksymbol{lack}$ 준비 2n-1크기의 배열, n-1위치부터 원래 값을 순서 대로 저장

	3	7	5	13
--	---	---	---	----

● 뒤에서부터 2개씩 토너먼트를 진행함

13	7	13	3	7	5	13
			ı	ı		

- 첫 번째 색인에 위치한 것이 최댓값
- 다시 아래로 내려가면서 최댓값에 진 것들 중에 최댓값을 찾음
- n이 홀수이어도 동일하게 진행함

13 13 11 13 3 7 11 6 13

15/36

이진 힙 모습

중간값에 대한 하한 (1/7)

- ◎ 입력. n개(홀수)의 서로 다른 수로 구성된 배열 A
- 출력. (n + 1)/2번째 수
- 반대자 논법을 사용하여 최악의 경우 필요한 비교 수를 알아보자
 - 알고리즘은 비교 기반임
- ullet 어떤 값이 중간값임을 확신하기 위해서는 이 값과 나머지 모든 값과의 관계를 알아야 함 (최소 n-1개 비교 필요)
 - 이 임의 x가 주어졌을 때 x > median 또는 x < median인지 알아야 함
 - 이것을 그래프로 표현하면 옆 트리 형태처럼 표현됨 (간선: 두 노드의 비교 결과)
 - 위에 있는 노드일 수록 큰 값임
- 필요한 n-1개 비교 외에 얼마나 많은
 불필요한 비교하도록 반대자가 유도할 수 있을까?
 - 이것을 알 수 있으면 비교 하한을 계산할 수 있음

17/36

중간값에 대한 하한 (2/7)

- 특정 값이 중간값임을 알게 해주는 비교를 핵심(crucial) 비교라 하고,
 그 외에 모든 비교를 비핵심(non-crucial) 비교라 하자.
- x와 y의 비교
 - 핵심 비교: x와 중간값과의 관계를 형성하는 비교
 - $y \ge median$ 에 대해 x > y
 - $y \le median$ 에 대해 x < y
 - 이 전 슬라이드에 제시된 트리에 있는 모든 간선은 핵심 비교임
 - ◎ 비핵심 비교:
- 반대자의 전략은 비교가 비핵심 비교가 되도록 답을 해야 함
 - 비핵심 비교가 되면 값을 수정하여 알고리즘의 답을 틀리게 할 수 있음

중간값에 대한 하한 (3/7)

- 알고리즘 입장
 - 예) a와 b의 비교
 - 어느 값이 크고 작은지는 알 수 있음
 - 중간값에 대해서는 어떤 정보도 알 수 없음
 - 이 비교 후 다음 비교는 어떤 것을?
 - 예) a와 b, b와 c를 비교한 후 d는 어떤 것과 비교하는 것이 유리하나?

b

d

C

- a와 비교하여 a보다 작으면, c와 비교하여 c보다 크면 유익한 정보이지만 꼭 이 결과를 줄 것인지 알 수 없음
- 알고리즘은 두 요소를 비교하였을 때 이 비교가 핵심 비교일지 비핵심 비교인지는 나중에 알게 됨

19/36

중간값에 대한 하한 (4/7)

- 반대자 전략
 - 중간값으로 사용할 값 결정 (위치는 결정하지 않음)
 - 어떤 위치에 있는 요소를 처음으로 비교하면 그 위치에 값을 할당하고 답변함
 - 모두 할당되어 있지 않으면 하나는 중간값보다 큰 값, 하나는 중간값보다 작은 값을 할당함
 - 하나는 할당되어 있고, 다른 하나는 할당되어 있지 않으면 비핵심 비교가 되도록 할당함
 - 예) a = 15, median = 9일 때 a와 b를 비교하면 b에 9보다 작은 값을 할당함. 반대자는 지금까지 비교 결과의 일관성을 유지한 상태에서 b에 할당된 값을 바꾸어 알고리즘의 선택을 틀리게 만들 수 있음
 - \bigcirc $\frac{n-1}{2}$ 보다 많은 수를 중간값보다 크게 또는 작게 할당할 수 없음
 - 값이 할당되지 않은 요소가 하나 남으면 그 위치에 중간값을 할당함
 - 항상 답변은 기존 답변과 일관성을 계속 유지해야 함

중간값에 대한 하한 (5/7)

● 반대자 전략 수행을 위해 각 요소의 상태를 다음과 같이 유지함

요소 상태	의미
L	중간값보다 큰 값이 할당된 요소 (Large)
S	중간값보다 작은 값이 할당된 요소 (Small)
N	아직 한 번도 비교에 참여하지 않은 요소

● 반대자의 전략 요약

비교	전략
N, N	S, L 또는 L, S
L, N or N, L	N에 중간값보다 작은 값 할당
S, N or N, S	N에 중간값보다 큰 값 할당

- 이 전략을 수행하는 중에 $\frac{n-1}{2}$ 개의 요소가 L 또는 S가 되면 이 전략을 사용하지 않고 일관성이 유지되도록 새 요소에 값을 할당함
- ◎ 제시한 반대자 전략은 모두 비핵심 비교임

21/36

중간값에 대한 하한 (6/7)

예) n = 5: 중간값 12

	а		b		С		d		е	
	상태	값	상태	값	상태	값	상태	값	상태	값
a, b	L	15	S	3						
c, d					L	13	S	5		12

	а		b		С		(t	е	
	상태	값	상태	값	상태	값	상태	값	상태	값
a, b	L	15	S	3						
b, c					L	13				
c. d							S	5		12

- 사용한 비교는 모두 비핵심 비교임
- 이 이후 비교는 핵심 또는 비핵심일 수 있음

중간값에 대한 하한 (7/7)

- 반대자가 얼마나 많은 비핵심 비교를 하도록 유도할 수 있나?
 - 각 비핵심 비교는 최대 1개의 요소를 L로 만듦
 - $lacksymbol{lack}$ 반대자는 $rac{n-1}{2}$ 개의 요소가 L 또는 S가 될 때까지 자유롭게 값 할당이 가능함
- ullet 알고리즘은 처음에 $\frac{n-1}{2}$ 개의 N들 간의 비핵심 비교를 할 수 있음
 - $lacksymbol{lack}$ 따라서 최소 $rac{n-1}{2} + n 1$ 개 비교가 필요함
 - igodeant 중간값을 알기 위한 최소 비교 n-1개
 - \bigcirc $\frac{n-1}{2}$ 개의 비핵심 비교를 하도록 유도 가능
 - 이 비교를 통해 중간값을 찾을 수 있다는 것은 아님. 이보다 적게 비교하면 찾을 수 없다는 뜻임
- 실제 알고리즘은? 분할 정복은 어때?
 - 어떤 값을 기준으로 그것보다 작은 것과 큰 것으로 분할할 수 있다면

23/36

선택 문제 알고리즘

- 최댓값, 최솟값과 같은 특정 i번째 수는 그 문제 전용 알고리즘으로 해결하면 더 효과적임
- 선택하고자 하는 위치와 무관한 효율적인 알고리즘은?
 - 선형이 가능하다고 언급하였음
 - ◎ 정렬하는 것은 배제함
 - igoplus 여러 위치($\log n$ 위치 이상)를 동시에 찾아야 한다면 정렬하는 것이 더 효과가 있을 수 있음
 - 모든 요소를 정렬하지 않지만 정렬하는 과정을 이용하면 효과적으로 찾을 수 있지 않을까?
 - 특히, 빠른 정렬의 분할 알고리즘을 활용하면 ...
 - ◎ 확률적 알고리즘
 - 정렬하는 것 또는 정렬하는 과정을 이용하는 것 모두 주어진 입력에 대한 수정이 불가피함

확률적 선택 알고리즘

- 빠른 정렬의 분할 방법을 이용하여 선형 알고리즘을 만들어보자.
 - 예) 5번째 요소를 찾고 싶음
 - 랜덤 피봇을 선택하여 1차 분할함
 - 피봇이 3번째 위치함
 - 5번째 요소는 어디에?

- 와우. 빠른 정렬을 하는데 양쪽을 재귀해야 하는 것이 아니라 한쪽만...그러면 빠른 정렬보다 성능이 더 좋을 수밖에
- pseudocode

RSelect(A, left, right, i)

if left = right then return A[left]
pLoc := partition(A, left, right)
if pLoc = i then return A[pLoc]
else if pLoc > i then
 return RSelect(A, left, pLoc − 1, i)
else return RSelect(A, pLoc + 1, right, i)

25/36

확률 선택 알고리즘의 시간복잡도

- Select 알고리즘에서 피봇이 가장 최악으로 선택되는 경우 시간 복잡도는? $O(n^2)$
- 거꾸로 피봇이 가장 최선으로 선택되는 경우 시간복잡도는?
 - 중간값을 피봇으로 선택한 경우
 - $T(n) \leq T\left(\frac{n}{2}\right) + O(n)$
 - igodeant 도사정리 경우 2에 해당함. 따라서 T(n) = O(n)임
 - $lacksymbol{lack}$ 빠른 정렬 분석을 생각해보면 RSelect가 평균적으로 O(n)임을 알 수 있음

수학적 분석

- $lacksymbol{lack}$ 참고. RSelect은 재귀 호출 밖에서 $\leq cn$ 연산 수행, (c>0): O(n)
 - 대부분 비용은 partition 비용
- RSelect의 특징
 - 매번 하나의 재귀 호출만 있음
 - 각 재귀호출마다 처리하는 입력의 크기는 작아짐
 - 이 크기를 이용하여 이 함수의 진행 정도를 측정하여 분석함 (트리의 높이)
- 표기법
 - ullet phase j: 현재 다루는 배열의 크기가 $\left(\frac{3}{4}\right)^{j+1}$ n에서 $\left(\frac{3}{4}\right)^{j}$ n 사이
 - (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
 - 가장 바깥 RSelect 호출은 phase 0에 있음
 - 피봇의 선택마다 phase가 증가하지 않을 수 있음
 - 특정 phase를 skip할 수 있음

27/36

수학적 분석

- 알고리즘의 시간복잡도
- 25 ~ 75 split을 주는 피봇을 선택하면 항상 다음 phase로 이동
 - 이와 같은 피봇을 선택할 확률은 50%
- $igoplus E[X_i] \leq$ 동전 던지기에서 앞면이 나올 때까지 던진 수의 기댓값
- N: 동전 던지기에서 앞면이 나올 때까지 던진 수를 나타내는 확률변수

 - \bullet $E[X_i] \leq 2$
- $E\left[cn\sum_{\text{phase }j}X_{j}\cdot\left(\frac{3}{4}\right)^{j}\right] = cn\sum_{\text{phase }j}\left(\frac{3}{4}\right)^{j}\cdot E\left[X_{j}\right]$ $= 2cn\sum_{\text{phase }j}\left(\frac{3}{4}\right)^{j} \leq 2cn\cdot\left(\frac{1}{1-\frac{3}{4}}\right) \leq 8cn = O(n)$

선형시간 결정적 선택 알고리즘 (1/3)

- 확률적 선택 알고리즘에서 가장 최선의 피봇은 중간값임
- 이 피봇을 결정적 방법으로 찾을 수 있으면 선형시간 결정적 선택 알고리즘을 만들 수 있음
 - 핵심 생각. median of medians???
- findMedians 알고리즘

findMedians(A, left, right)

size := right - left + 1

if $size \le 5$ then sort A[left ... right] and return median of A logically divide A[left ... right] into size/5 groups of size 5 each sort each group using $O(n \log n)$ sorting algorithm

copy n/5 medians into new array C return findMedians(C, left, left + size/5)

- in-place로 이것을 구현해야 함.
- 어떻게???
- 새 배열 C를 사용하지 않고 구현하고, 피봇 값은 최종적으로 left 위치에
- 참고. 매우 유명한 컴퓨터공학자들이 고안한 알고리즘임 (1973)이 알고리즘을 고안한 5명 중 4명이 Turing Award를 받았음

Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald Rivest, Robert E. Tarjan

29/36

선형시간 결정적 선택 알고리즘 (2/3)

	3	11	7	12	8	2	1	10	6	15	9	5	13	14	4
3	1	1 7	7 1	2	8	2	1	10	6	15	9	5	13	3 14	4
						<u> </u>									
	3	7	8	11	12	1	2	6	10	15	4	5	9	13	14
Γ	0	C	0	44	40	4	_	—	40	45	4	_		42	44
L	8	6	9	111	12	<u> </u>			10	15	4	5	3	13	14
	8	6	9	11	12	1	2	7	10	15	4	5	3	13	14

findMedians(A, left, right)

```
begin, j \coloneqq left, 0

while begin \le right do

end \coloneqq begin + 4

if end > right then end \coloneqq right

mid \coloneqq begin + (end - begin)/2

sort(A, begin, end)

swap(A[left + j], A[mid])

begin += 5

++j
```

```
DSelect(A, left, right, i)
size \coloneqq right - left + 1
If size = 1 \ then \ return \ A[left]
findMedians(A, left, right)
If size > 5 \ then
DSelect(C, left, left + size/5 - 1, left + size/10)
swap(A[left], A[left + size/10])
pLoc \coloneqq partition(A, left, right)
if \ pLoc = i \ then \ return \ p
else \ if \ pLoc > i \ then
return \ DSelect(A, left, pLoc - 1, i)
else \ return \ DSelect(A, pLoc + 1, right, i)
```


31/36

DSelect 분석 (1/5)

- $lacksymbol{0}$ DSelect의 시간 복잡도는 O(n)임
 - RSelect와 시간 복잡도가 같지만 RSelect가 더 우수함
- findMedians부터 생각해보자
 - 5개 요소를 정렬하는 비용은? 선형 시간??? 정렬하는데???
 - Why?
 - 5개 요소를 정렬하는데 120연산 이하가 소요된다고 가정
 - 합병 정렬을 생각하면 120 연산 이하임을 알 수 있음
 - 보통은 삽입 정렬을 사용함
 - findMedians의 비재귀 부분의 비용

$$0 \le \left(\frac{n}{5}\right) \cdot 120 = 24n = O(n)$$
 $\frac{n}{5}$: 소그룹의 수

DSelect 분석 (2/5)

- OSelect 비용: $T(n) \le T\left(\frac{n}{5}\right) + T(?) + cn$
 - S 중간값의 중간값을 구하기 위한 DSelect 재귀비용: $T\left(\frac{n}{5}\right)$
 - 분할 정복을 위한 DSelect 재귀비용??? T(?)

33/36

DSelect 분석 (3/5)

- OSelect 두 번째 재귀는 $\leq \frac{7}{10}n$ 임
 - Why?

 - x_i : k개의 median들 중에 i번째로 작은 수 [6 8 13 15 17]
 - 피봇: x_{k/2}
 - 입력 배열의 요소들 중 30%은 이 피봇보다 작음 (반대도 성립)
 - 마음으로는 충분히 이해됨

DSelect 분석 (4/5)

- $T(n) \leq T\left(\frac{n}{5}\right) + T\left(\frac{7}{10}n\right) + cn$
 - Guess-and-check 방법으로 $T(n) \leq ln = O(n)$ 임을 증명
 - 귀납법으로...

35/36

DSelect 분석 (5/5)

- DSelect
 - T(1) = 1
 - $T(n) \leq cn + T\left(\frac{n}{5}\right) + T\left(\frac{7}{10}n\right)$
- $T(n) \le cn + T\left(\frac{n}{5}\right) + T\left(\frac{7}{10}n\right) \le 10cn$
 - ◎ 귀납법으로 증명
 - 귀납 출발. 성립
 - igodeant 귀납 가정. $T(k) \leq 10ck, \forall k < n$
 - 귀납 단계.
 - $T(n) \le cn + T\left(\frac{n}{5}\right) + T\left(\frac{7}{10}n\right) \le cn + 10c\left(\frac{n}{5}\right) + 10c\left(\frac{7}{10}n\right)$ = cn(1+2+7) = 10cn