Modeling the CD8+ T cell immune response to

influenza infection in adult and aged mice

- Benjamin Whipple^{1,2}, Tanya A. Miura^{2,3,4}, and Esteban A. Hernandez-Vargas^{1,2,4,*}
- ⁴ Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID, 83844, United States
- ⁵ ²Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID, 83844, United States
- ⁶ Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, United States
- ⁷ Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83844, United States
- *Corresponding author: esteban@uidaho.edu

A Supplemental Material

15

17

18

29

A.1 Preliminary Analysis of CTL Downregulation

One hypothesis of possible differences between the CTL response in young and aged mice is that adult mice have faster downregulation of CTL post viral clearance than adult mice. This hypothesis may help explain the worsened outcomes against IAV infection with age, as extended presence of CD8+ T cells can contribute to disease¹⁻³. As an initial test of this hypothesis we perform exploratory simple linear regression on the aged and adult CTL data.

We model the downregulation rates by the form $\log(T(t)) = \beta_0 + \beta_1 t$, where t represents days post infection and T(t) represents measured CTL counts at day t. The viral data is below the measured threshold on days 9 and 11 for adult and aged mice respectively, and so is assumed cleared after that time. As such, we restrict t to be greater than or equal to 9 and 11 for adult and aged mice respectively.

It is worth noting that the data is both sparse and unbalanced over the considered range, with there being many more samples in the adult group than the aged group. Specifically, there are 36 total observations for the adult group, balanced at 9 observations per day. However, there are only 7 total for the aged group, distributed as 3,2, and 2 samples on days 11, 15, and 19 respectively. As such, our data makes our model ill suited to traditional tests of significance.

In order to identify the degree of difference in slopes between the estimated groups, we utilize nonparametric bootstrapping of the data to conduct a nonparametric bayesian analysis. We generate 10000 resamples of the data by sampling with replacement from each time and age group the same number of time points observed originally. We then compute the least squares estimate of our linear model. This process has the effect of sampling the posterior of our parameters using an approximate, noninformative prior distribution of our data⁴. We present the predictions and β_1 posteriors of our bootstrapped models in figures A.1.1 and A.1.2 respectively.

We find evidence for a faster retraction of the CTL response in adults as presented in A.1.1 and A.1.2, as well as through

Figure A.1.1

Figure A.1.2

probability computation using the posterior. We can see in figure A.1.1 that the adult bootstrapped models generally have more negative slope than the aged bootstrapped models. Further, the plotted posterior distributions of β_1 shown in figure A.1.2 indicate that the adult rate posterior is dramatically more negative than the aged rate posterior. Finally, using the bootstrapped samples, we can approximate $\mathbb{P}(\beta_{1,adult} < \beta_{1,aged})$, which we find to be 0.997. We take this finding to be indicate that we should consider the possibility that there is a meaningful difference in the rate of CTL downregulation between the aged and adult groups.

A.2 Model Equations

Model	Expressions
MA1	$dV/dt = pV(1 - V/k_V) - c_V VT, dT/dt = s_T + rTV/(V + k_T) - d_T T$
MA2	$dV/dt = pV(1 - V/k_V) - c_V VT$, $dT/dt = s_T + rTV/(V + k_T) - c_T/(1 + V^2)T - d_T T$
MA3	$dV/dt = pV(1 - V/k_V) - c_V VT, dT/dt = s_T + rTV - d_T T$
MA4	$dV/dt = pV(1 - V/k_V) - c_V VT, dT/dt = s_T + rTV - c_T/(1 + V^2)T - d_T T$
MB1	$dU/dt = -\beta UV$, $dI/dt = \beta UV - d_ITI$, $dV/dt = pI - cV$, $dT/dt = s_T + rTV/(V + k_T) - d_TT$
MB2	$dU/dt = -\beta UV, dI/dt = \beta UV - d_{I}TI, dV/dt = pI - cV, dT/dt = s_{T} + rTV/(V + k_{T}) - c_{T}/(1 + V^{2})T - d_{T}T$
MB3	$dU/dt = -\beta UV$, $dI/dt = \beta UV - d_ITI$, $dV/dt = pI - cV$, $dT/dt = s_T + rTV - d_TT$
MB4	$dU/dt = -\beta UV, dI/dt = \beta UV - d_I TI, dV/dt = pI - cV, dT/dt = s_T + rTV - c_T/(1 + V^2)T - d_T T$
MC1	$dV/dt = pV(1 - V/k_V)/(1 + (KT)^2) - c_V VT, dT/dt = s_T + rTV/(V + k_T) - d_T T$
MC2	$dV/dt = pV(1 - V/k_V)/(1 + (KT)^2) - c_V VT, dT/dt = s_T + rTV/(V + k_T) - c_T/(1 + V^2)T - d_T T$
MC3	$dV/dt = pV(1 - V/k_V)/(1 + (KT)^2) - c_V VT, dT/dt = s_T + rTV - d_T T$
MC4	$dV/dt = pV(1 - V/k_V)/(1 + (KT)^2) - c_V VT, dT/dt = s_T + rTV - c_T/(1 + V^2)T - d_T T$
MD1	$dU/dt = -\beta UV, dI/dt = \beta UV - d_I TI, dV/dt = pI/(1 + (KT)^2) - cV, dT/dt = s_T + rTV/(V + k_T) - d_T T$
MD2	$\left \frac{dU}{dt} = -\beta UV, \frac{dI}{dt} = \beta UV - \frac{dI}{dt}, \frac{dV}{dt} = \frac{pI}{(1 + (KT)^2)} - \frac{cV}{dT}, \frac{dT}{dt} = \frac{s_T + rTV}{(V + k_T)} - \frac{c_T}{(1 + V^2)T} - \frac{dT}{dT} \right $
MD3	$dU/dt = -\beta UV, dI/dt = \beta UV - d_{I}TI, dV/dt = pI/(1 + (KT)^{2}) - cV, dT/dt = s_{T} + rTV - d_{T}T$
MD4	$dU/dt = -\beta UV, dI/dt = \beta UV - d_{I}TI, dV/dt = pI/(1 + (KT)^{2}) - cV, dT/dt = s_{T} + rTV - c_{T}/(1 + V^{2})T - d_{T}T$

Table A.2.1. Mathematical form of the 16 models considered.

37 A.3 Structural Identifiability Analysis

N	MA1		MA2		/IA3	MA4		
Parameters	Identifiability	Parameters	Identifiability	Parameters	Identifiability	Parameters	Identifiability	
k_T	✓	d_T	✓	s_T	✓	d_T	✓	
c_V	\checkmark	k_T	\checkmark	k_V	\checkmark	c_T	\checkmark	
d_T	\checkmark	c_V	\checkmark	T(t)	\checkmark	c_V	\checkmark	
k_V	\checkmark	p	\checkmark	r	\checkmark	k_V	\checkmark	
p	\checkmark	r	\checkmark	c_V	\checkmark	p	\checkmark	
T(t)	\checkmark	s_T	\checkmark	d_T	\checkmark	T(t)	\checkmark	
V(t)	\checkmark	k_V	\checkmark	V(t)	\checkmark	V(t)	\checkmark	
\dot{r}	\checkmark	T(t)	\checkmark	p	\checkmark	r	\checkmark	
s_T	\checkmark	V(t)	\checkmark			s_T	\checkmark	
		c_T	\checkmark					

Table A.3.1. Group A structural identifiability

N	MB1		MB2		/IB3	MB4		
Parameters	Identifiability	Parameters	Identifiability	Parameters	Identifiability	Parameters	Identifiability	
d_I	√	c_T	√	ST	√	c_T	✓	
V(t)	\checkmark	p		c	\checkmark	V(t)	\checkmark	
r	\checkmark	T(t)	\checkmark	I(t)		r	✓	
d_T	\checkmark	k_T	\checkmark	T(t)	\checkmark	d_I	✓	
c	\checkmark	β	\checkmark	β	\checkmark	c	\checkmark	
k_T	\checkmark	V(t)	\checkmark	d_I	\checkmark	d_T	\checkmark	
U(t)		d_I	\checkmark	U(t)		U(t)		
$\hat{\boldsymbol{\beta}}$	\checkmark	r	\checkmark	r	\checkmark	beta	\checkmark	
T(t)	\checkmark	s_T	\checkmark	V(t)	\checkmark	T(t)	\checkmark	
p		U(t)		p		p		
s_T	\checkmark	c	\checkmark	d_T	\checkmark	s_T	\checkmark	
I(t)		d_T	\checkmark			I(t)		
. /		I(t)				. ,		

Table A.3.2. Group B structural identifiability

N	MC1		MC2		ЛС 3	MC4		
Parameters	Identifiability	Parameters	Identifiability	Parameters	Identifiability	Parameters	Identifiability	
d_T	✓	ST	✓	d_T	✓	c_V	✓	
k_T	\checkmark	c_T	\checkmark	K	\checkmark	d_T	\checkmark	
c_V	\checkmark	d_T	\checkmark	c_V	\checkmark	c_T	\checkmark	
p	\checkmark	T(t)	\checkmark	k_V	\checkmark	p	\checkmark	
r	\checkmark	c_V	\checkmark	p	\checkmark	r	\checkmark	
s_T	\checkmark	K	\checkmark	T(t)	\checkmark	s_T	\checkmark	
k_V	\checkmark	k_T	\checkmark	V(t)	\checkmark	k_V	\checkmark	
T(t)	\checkmark	V(t)	\checkmark	r	\checkmark	T(t)	\checkmark	
V(t)	\checkmark	r	\checkmark	s_T	\checkmark	V(t)	\checkmark	
$\hat{K}^{'}$	\checkmark	p	\checkmark			$\hat{K}^{'}$	\checkmark	
		\hat{k}_V	\checkmark					

Table A.3.3. Group C structural identifiability

N	/ID1	N	MD2		/ID3	MD4		
Parameters	Identifiability	Parameters	Identifiability	Parameters	Identifiability	Parameters	Identifiability	
С	✓	K	✓	С	✓	С	✓	
p		β	\checkmark	V(t)	\checkmark	p		
T(t)	\checkmark	V(t)	\checkmark	r	\checkmark	T(t)	\checkmark	
k_T	\checkmark	c_T	\checkmark	d_I	\checkmark	d_T	\checkmark	
K	\checkmark	k_T	\checkmark	β	\checkmark	K	\checkmark	
V(t)	\checkmark	I(t)		$\overset{\cdot}{d}_{T}$	\checkmark	V(t)	\checkmark	
d_I	\checkmark	d_T	\checkmark	U(t)		c_T	\checkmark	
r	\checkmark	c	\checkmark	\hat{K}	\checkmark	r	\checkmark	
s_T	\checkmark	T(t)	\checkmark	T(t)	\checkmark	s_T	\checkmark	
U(t)		U(t)		p		U(t)		
$\hat{\boldsymbol{\beta}}$	\checkmark	p		s_T	\checkmark	$\hat{oldsymbol{eta}}$	\checkmark	
$\overset{\cdot}{d}_{T}$	\checkmark	d_I	\checkmark	I(t)		$\overset{\cdot}{d_I}$	\checkmark	
I(t)		s_T	\checkmark	. ,		I(t)		
. ,		r	\checkmark					

Table A.3.4. Group D structural identifiability

38 A.4 All Model Parameter Fits

39 A.4.1 Model Group A

	Model MA1 Parameters										
Parameter	Description	Units	Adult	Aged	Search Bounds	Reference	Notes				
p	Viral replication rate	d^{-1}	5.48	2.60	[1e-2,1e2]	5	-				
k_V	Carrying capacity of virus	(PFU/ml)			1.2e6 (fixed)	-	Determined from data				
c_V	Viral clearance rate	$d^{-1}cell^{-1}$	2.21e-6	1.84e-6	[1e-8,1e-4]	6					
s_T	Homeostatic CTL proliferation rate	$cell \cdot d^{-1}$	$d_T T(0)$	$d_T T(0)$	-	-	From steady state				
r	CTL proliferation rate	d^{-1}	0.274	99.9	[1e-4,1e2]	5,7					
k_T	CTL half saturation constant	(PFU/ml)	2.48e+3	2.50e+7	[1e1, 1e8]	8					
d_T	Base CTL clearance rate	d^{-1}	0.0775	1.00e-4	[1e-4,1e0]	8,9					

Table A.4.1. Model MA1 parameters

	Model MA2 Parameters										
Parameter	Description	Units	Adult	Aged	Search Bounds	Reference	Notes				
p	Viral replication rate	d^{-1}	5.46	3.08	[1e-2,1e2]	5	-				
k_V	Carrying capacity of virus	(PFU/ml)			1.2e6 (fixed)	-	Determined from data				
c_V	Viral clearance rate	$d^{-1}cell^{-1}$	2.16e-6	1.98e-6	[1e-8,1e-4]	6					
s_T	Homeostatic CTL proliferation rate	$cell \cdot d^{-1}$	$(d_T+c_T)T(0)$	$(d_T+c_T)T(0)$	-	-	From steady state				
r	CTL proliferation rate	d^{-1}	0.273	0.157	[1e-4,1e2]	5,7					
k_T	CTL half saturation constant	(PFU/ml)	2.21e+3	1e1	[1e1, 1e8]	8					
d_T	Base CTL clearance rate	d^{-1}	0.0757	1.36e-4	[1e-4,1e0]	8,9					
c_T	CTL downregulation rate	$(PFU/ml)d^{-1}$	7.02e-8	0.0612	[0,1e0]	-	Assumed similar to d_T				

Table A.4.2. Model MA2 parameters

	Model MA3 Parameters										
Parameter	Description	Units	Adult	Aged	Search Bounds	Reference	Notes				
p	Viral replication rate	d^{-1}	4.80	2.71	[1e-2,1e2]	5	-				
k_V	Carrying capacity of virus	(PFU/ml)			1.2e6 (fixed)	-	Determined from data				
c_V	Viral clearance rate	$d^{-1}cell^{-1}$	1.99e-6	2.05e-6	[1e-8,1e-4]	6					
s_T	Homeostatic CTL proliferation rate	$cell \cdot d^{-1}$	$d_TT(0)$	$d_T T(0)$	-	-	From steady state				
r	CTL proliferation rate	$d^{-1}(PFU/ml)^{-1}$	1.91e-6	4.28e-6	$[1e-4/k_V, 1e2/k_V]$	5,7	Bounds are scaled.				
d_T	Base CTL clearance rate	d^{-1}	1.00e-4	0.0146	[1e-4,1e0]	8,9					

Table A.4.3. Model MA3 parameters

	Model MA4 Parameters										
Parameter	Description	Units	Adult	Aged	Search Bounds	Reference	Notes				
P	Viral replication rate	d^{-1}	5.58	3.19	[1e-2,1e2]	5	-				
k_V	Carrying capacity of virus	(PFU/ml)			1.2e6 (fixed)	-	Determined from data				
c_V	Viral clearance rate	$d^{-1}cell^{-1}$	2.20e-6	2.10e-6	[1e-8,1e-4]	6					
s_T	Homeostatic CTL proliferation rate	$cell \cdot d^{-1}$	$(d_T+c_T)T(0)$	$(d_T+c_T)T(0)$	-	-	From steady state				
r	CTL proliferation rate	$d^{-1}(PFU/ml)^{-1}$	1.12e-6	3.43e-6	$[1e-4/k_V, 1e2/k_V]$	5,7	Bounds are scaled.				
d_T	Base CTL clearance rate	d^{-1}	1.00e-4	1.00e-4	[1e-4,1e0]	8,9					
c_T	CTL downregulation rate	$(PFU/ml)d^{-1}$	0.142	0.236	[0,1e0]	-	Assumed similar to d_T				

Table A.4.4. Model MA4 parameters

40 A.4.2 Model Group B

		M	odel MB1	Parameters			
Parameter	Description	Units	Adult	Aged	Search Bounds	Reference	Notes
β	Infection rate of uninfected cells	$(PFU/ml)^{-1}d^{-1}$	2.10e-5	1.77e-5	[1e-8,1e-4]	6	-
d_I	Clearance rate of infected cells	$cells^{-2}$	5.80e-7	4.39e-6	[1e-8,1e-4]	6	
p	Production rate of virus	d^{-1}			1e0	6	Fixed for structural identifiability.
c	Clearance rate of virus	d^{-1}	2.09	1.42	[1e-2,1e2]	6	
s_T	Homeostatic CTL proliferation rate	$cell \cdot d^{-1}$	$d_TT(0)$	$d_T T(0)$	-	-	From steady state
r	CTL proliferation rate	d^{-1}	0.599	.197	[1e-4,1e2]	5,7	
k_T	CTL half saturation constant	(PFU/ml)	5.48e+4	11.6	[1e1, 1e8]	8	
d_T	Base CTL clearance rate	d^{-1}	0.0572	9.19e-4	[1e-4,1e0]	8,9	

Table A.4.5. Model MB1 parameters

	Model MB2 Parameters										
Parameter	Description	Units	Adult	Aged	Search Bounds	Reference	Notes				
β	Infection rate of uninfected cells	$(PFU/ml)^{-1}d^{-1}$	2.08e-5	1.70e-5	[1e-8,1e-4]	6	-				
d_I	Clearance rate of infected cells	cells ⁻²	5.72e-7	4.74e-7	[1e-8,1e-4]	6					
p	Production rate of virus	d^{-1}			1e0	6	Fixed for structural identifiability.				
c	Clearance rate of virus	d^{-1}	2.05	12.2	[1e-2,1e2]	6					
s_T	Homeostatic CTL proliferation rate	$cell \cdot d^{-1}$	$(d_T+c_T)T(0)$	$(d_T+c_T)T(0)$	-	-	From steady state				
r	CTL proliferation rate	d^{-1}	4.18e-1	2.08e-1	[1e-4,1e2]	5,7					
k_T	CTL half saturation constant	(PFU/ml)	1.05e4	1.31e1	[1e1, 1e8]	8					
d_T	Base CTL clearance rate	d^{-1}	9.47e-2	1.00e-4	[1e-4,1e0]	8,9					
c_T	CTL downregulation rate	$(PFU/ml)d^{-1}$	1.62e-14	3.20e-6	[0,1e0]	-	Assumed similar to d_T				

Table A.4.6. Model MB2 parameters

		M	odel MB3	Parameters	3		
Parameter	Description	Units	Adult	Aged	Search Bounds	Reference	Notes
β	Infection rate of uninfected cells	$(PFU/ml)^{-1}d^{-1}$	2.08e-5	4.21e-5	[1e-8,1e-4]	6	-
d_I	Clearance rate of infected cells	$cells^{-2}$	5.77e-7	4.31e-7	[1e-8,1e-4]	6	
p	Production rate of virus	d^{-1}			1e0	6	Fixed for structural identifiability.
c	Clearance rate of virus	d^{-1}	2.05	11.6	[1e-2,1e2]	6	
S_T	Homeostatic CTL proliferation rate	$cell \cdot d^{-1}$	$d_T T(0)$	$d_T T(0)$	-	-	From steady state
r	CTL proliferation rate	$d^{-1}(PFU/ml)^{-1}$	3.13e-6	1.15e-5	$[1e-4/k_V, 1e2/k_V]$	5,7	Bounds are scaled.
d_T	Base CTL clearance rate	d^{-1}	0.0650	1.00e-4	[1e-4,1e0]	8,9	

Table A.4.7. Model MB3 parameters

	Model MB4 Parameters											
Parameter	Description	Units	Adult	Aged	Search Bounds	Reference	Notes					
β	Infection rate of uninfected cells	$(PFU/m1)^{-1}d^{-1}$	2.08e-5	4.21e-5	[1e-8,1e-4]	6	-					
d_I	Clearance rate of infected cells	cells ⁻²	5.74e-7	4.34e-7	[1e-8,1e-4]	6						
p	Production rate of virus	d^{-1}			1e0	6	Fixed for structural identifiability.					
c	Clearance rate of virus	d^{-1}	2.05	11.3	[1e-2,1e2]	6						
s_T	Homeostatic CTL proliferation rate	$cell \cdot d^{-1}$	$(d_T+c_T)T(0)$	$(d_T+c_T)T(0)$	-	-	From steady state					
r	CTL proliferation rate	$d^{-1}(PFU/ml)^{-1}$	3.13e-6	7.22e-6	$[1e-4/k_V, 1e2/k_V]$	5,7	Bounds are scaled.					
d_T	Base CTL clearance rate	d^{-1}	0.0648	1.00e-4	[1e-4,1e0]	8,9						
c_T	CTL downregulation rate	$(PFU/ml)d^{-1}$	9.95e-12	1.61e-1	[0,1e0]	-	Assumed similar to d_T					

Table A.4.8. Model MB4 parameters

41 A.4.3 Model Group C

	Model MC1 Parameters												
Parameter	Description	Units	Adult	Aged	Search Bounds	Reference	Notes						
p	Viral replication rate	d^{-1}	5.07 (4.31,6.48)	3.84	[1e-2,1e2]	5	-						
k_V	Carrying capacity of virus	(PFU/ml)			1.2e6 (fixed)	-	Determined from data						
c_V	Viral clearance rate	$d^{-1}cell^{-1}$	1.58e-6 (1.18e-6,2.90e-6)	6.87e-7	[1e-8,1e-4]	6							
s_T	Homeostatic CTL proliferation rate	$cell \cdot d^{-1}$	$d_TT(0)$	$d_T T(0)$	-	-	From steady state						
r	CTL proliferation rate	d^{-1}	0.278 (0.199,0.341)	0.198	[1e-4,1e2]	5,7							
k_T	CTL half saturation constant	(PFU/ml)	3.19e+3 (1.68e+3,1.29e+4)	1.08e1	[1e1, 1e8]	8							
d_T	Base CTL clearance rate	d^{-1}	0.0789 (0.0118,0.0952)	1.12e-4	[1e-4,1e0]	8,9							
K	Half saturation constant regulating V replication	$cell^{-1}$	2.33e-7 (1.84e-7,2.72e-7)	1.25e-6	[0,1e-4]	-	From observed CTL range.						

Table A.4.9. Model MC1 parameters

	Model MC2 Parameters												
Parameter	Description	Units	Adult	Aged	Search Bounds	Reference	Notes						
p	Viral replication rate	d^{-1}	4.76	3.78	[1e-2,1e2]	5	-						
k_V	Carrying capacity of virus	(PFU/ml)			1.2e6 (fixed)	-	Determined from data						
c_V	Viral clearance rate	$d^{-1}cell^{-1}$	1.23e-6	5.90e-7	[1e-8,1e-4]	6							
s_T	Homeostatic CTL proliferation rate	$cell \cdot d^{-1}$	$(d_T+c_T)T(0)$	$(d_T + c_T)T(0)$	-	-	From steady state						
r	CTL proliferation rate	d^{-1}	0.274	0.231	[1e-4,1e2]	5,7							
k_T	CTL half saturation constant	(PFU/ml)	2.73e3	1.17e2	[1e1, 1e8]	8							
d_T	Base CTL clearance rate	d^{-1}	7.70e-2	4.03e-4	[1e-4,1e0]	8,9							
c_T	CTL downregulation rate	$(PFU/ml)d^{-1}$	2.08e-6	3.19e-5	[0,1e0]	-	Assumed similar to d_T						
K	Half saturation constant regulating V replication	$cell^{-1}$	2.28e-7	1.36e-6	[0,1e-4]	-	From observed CTL range.						

 Table A.4.10.
 Model MC2 parameters

	Model MC3 Parameters											
Parameter	Description	Units	Adult	Aged	Search Bounds	Reference	Notes					
p	Viral replication rate	d^{-1}	4.72	21.1	[1e-2,1e2]	5	-					
k_V	Carrying capacity of virus	(PFU/ml)			1.2e6 (fixed)	-	Determined from data					
$ c_V $	Viral clearance rate	$d^{-1}cell^{-1}$	1.18e-6	4.50e-7	[1e-8,1e-4]	6						
s_T	Homeostatic CTL proliferation rate	$cell \cdot d^{-1}$	$d_T T(0)$	$d_T T(0)$	-	-	From steady state					
r	CTL proliferation rate	$d^{-1}(PFU/ml)^{-1}$	1.37e-5	1.38e-5	$[1e-4/k_V, 1e2/k_V]$	5,7	Bounds are scaled.					
d_T	Base CTL clearance rate	d^{-1}	1.00e-4	1.00e-4	[1e-4,1e0]	8,9						
K	Half saturation constant regulating V replication	$cell^{-1}$	4.03e-7	6.07e-6	[0,1e-4]	-	From observed CTL range.					

Table A.4.11. Model MC3 parameters

	Model MC4 Parameters												
Parameter	Description	Units	Adult	Aged	Search Bounds	Reference	Notes						
p	Viral replication rate	d^{-1}	5.11	4.47	[1e-2,1e2]	5	-						
k_V	Carrying capacity of virus	(PFU/ml)			1.2e6 (fixed)	-	Determined from data						
c_V	Viral clearance rate	$d^{-1}cell^{-1}$	1.39e-6	4.98e-7	[1e-8,1e-4]	6							
s_T	Homeostatic CTL proliferation rate	$cell \cdot d^{-1}$	$(d_T+c_T)T(0)$	$(d_T+c_T)T(0)$	-	-	From steady state						
r	CTL proliferation rate	$d^{-1}(PFU/ml)^{-1}$	9.27e-7	1.06e-5	$[1e-4/k_V, 1e2/k_V]$	5,7	Bounds are scaled.						
d_T	Base CTL clearance rate	d^{-1}	1.00e-4	1.00e-4	[1e-4,1e0]	8,9							
c_T	CTL downregulation rate	$(PFU/ml)d^{-1}$	0.126	9.32e-2	[0,1e0]	-	Assumed similar to d_T						
K	Half saturation constant regulating V replication	cell ^{−1}	2.86e-7	1.84e-6	[0,1e-4]	-	From observed CTL range.						

Table A.4.12. Model MC4 parameters

A.4.4 Model Group D

	Model MD1 Parameters											
Parameter	Description	Units	Adult	Aged	Search Bounds	Reference	Notes					
β	Infection rate of uninfected cells	$(PFU/ml)^{-1}d^{-1}$	2.23e-5	4.67e-5 (1.71e-5,6.54e-5)	[1e-8,1e-4]	6	-					
d_I	Clearance rate of infected cells	$cells^{-2}$	5.57e-7	4.50e-7 (3.51e-7,4.46e-6)	[1e-8,1e-4]	6						
p	Production rate of virus	d^{-1}			1e0	6	Fixed for structural identifiability.					
c	Clearance rate of virus	d^{-1}	2.17	12.3 (1.36,17.8)	[1e-2,1e2]	6						
s_T	Homeostatic CTL proliferation rate	$cell \cdot d^{-1}$	$d_T T(0)$	$d_TT(0)$	-	-	From steady state					
r	CTL proliferation rate	d^{-1}	4.18e-1	0.208 (0.171,0.325)	[1e-4,1e2]	5,7						
k_T	CTL half saturation constant	(PFU/ml)	1.05e4	12.0 (10.0,156)	[1e1, 1e8]	8						
d_T	Base CTL clearance rate	d^{-1}	9.47e-2	1.00e-4 (1.00e-4,0.0777)	[1e-4,1e0]	8,9						
K	Half saturation constant regulating V replication	$cell^{-1}$	1.29e-14	1.66e-7 (8.90e-11,1.54e-6)	[0,1e-4]	-	From observed CTL range.					

Table A.4.13. Model MD1 parameters

	Model MD2 Parameters											
Parameter	Description	Units	Adult	Aged	Search Bounds	Reference	Notes					
β	Infection rate of uninfected cells	$(PFU/ml)^{-1}d^{-1}$	2.23e-5	4.68e-5	[1e-8,1e-4]	6	-					
d_I	Clearance rate of infected cells	cells ⁻²	5.57e-7	4.50e-7	[1e-8,1e-4]	6						
p	Production rate of virus	d^{-1}			1e0	6	Fixed for structural identifiability.					
c	Clearance rate of virus	d^{-1}	2.17	12.3	[1e-2,1e2]	6						
s_T	Homeostatic CTL proliferation rate	$cell \cdot d^{-1}$	$(d_T + c_T)T(0)$	$(d_T + c_T)T(0)$	-	-	From steady state					
r	CTL proliferation rate	d^{-1}	4.18e-1	0.208	[1e-4,1e2]	5,7						
k_T	CTL half saturation constant	(PFU/ml)	1.05e4	12.5	[1e1, 1e8]	8						
d_T	Base CTL clearance rate	d^{-1}	9.47e-2	1.12 e-4	[1e-4,1e0]	8,9						
c_T	CTL downregulation rate	$(PFU/ml)d^{-1}$	1.75e-12	6.04e-6	[0,1e0]	-	Assumed similar to d_T					
K	Half saturation constant regulating V replication	cell ⁻¹	2.99e-12	1.67e-7	[0,1e-4]	-	From observed CTL range.					

Table A.4.14. Model MD2 parameters

	Model MD3 Parameters										
Parameter	Description	Units	Adult	Aged	Search Bounds	Reference	Notes				
β	Infection rate of uninfected cells	$(PFU/ml)^{-1}d^{-1}$	2.09e-5	2.31e-5	[1e-8,1e-4]	6	-				
d_I	Clearance rate of infected cells	cells ⁻²	5.86e-7	5.57e-7	[1e-8,1e-4]	6					
p	Production rate of virus	d^{-1}			1e0	6	Fixed for structural identifiability.				
c	Clearance rate of virus	d^{-1}	2.02	1.29	[1e-2,1e2]	6					
s_T	Homeostatic CTL proliferation rate	$cell \cdot d^{-1}$	$d_TT(0)$	$d_T T(0)$	-	-	From steady state				
r	CTL proliferation rate	$d^{-1}(PFU/ml)^{-1}$	3.12e-6	1.20e-5	$[1e-4/k_V, 1e2/k_V]$	5,7	Bounds are scaled.				
d_T	Base CTL clearance rate	d^{-1}	6.52e-2	1.00e-4	[1e-4,1e0]	8,9					
K	Half saturation constant regulating V replication	cell ⁻²	2.11e-12	2.52e-6	[0,1e-4]	-	From observed CTL range.				

Table A.4.15. Model MD3 parameters

	Model MD4 Parameters											
Parameter	Description	Units	Adult	Aged	Search Bounds	Reference	Notes					
β	Infection rate of uninfected cells	$(PFU/ml)^{-1}d^{-1}$	2.09e-5	2.09e-5	[1e-8,1e-4]	6	-					
d_I	Clearance rate of infected cells	$cells^{-2}$	5.86e-7	5.63e-6	[1e-8,1e-4]	6						
p	Production rate of virus	d^{-1}			1e0	6	Fixed for structural identifiability.					
c	Clearance rate of virus	d^{-1}	2.02	1.43	[1e-2,1e2]	6						
s_T	Homeostatic CTL proliferation rate	$cell \cdot d^{-1}$	$(d_T + c_T)T(0)$	$(d_T + c_T)T(0)$	-	-	From steady state					
r	CTL proliferation rate	$d^{-1}(PFU/ml)^{-1}$	3.12e-6	8.50e-6	$[1e-4/k_V, 1e2/k_V]$	5,7	Bounds are scaled.					
d_T	Base CTL clearance rate	d^{-1}	6.52e-2	1.00e-4	[1e-4,1e0]	8,9						
c_T	CTL downregulation rate	$(PFU/ml)d^{-1}$	5.82e-12	1.40e-1	[0,1e0]	-	Assumed similar to d_T					
K	Half saturation constant regulating V replication	$cell^{-2}$	1.99e-13	1.81e-6	[0,1e-4]	-	From observed CTL range.					

Table A.4.16. Model MD4 parameters

43 A.5 Fit Model Plots

Figure A.5.1. Group A Fits

Figure A.5.2. Group B Fits

Figure A.5.3. Group C Fits

Figure A.5.4. Group D Fits

A.6 Bootstrapped Predictions for the Selected Models

Figure A.6.1. Adult model (MC1) bootstrapped predictions

Figure A.6.2. Aged model (MD1) bootstrapped predictions

5 A.7 Posterior Probability Analysis of Compared Parameters

Bootstrap Distributions of CTL Proliferation Rates Adult r Aged r 15 0.20 0.25 0.30 0.35 r: CTL proliferation rate

Figure A.7.1. *r* posterior distributions

Figure A.7.2. k_T posterior distributions

Bootstrap Distributions of CTL Clearance Rate Adult d_T 175 Aged d_T 150 125 Freduency 75 75 50 25 0 0.02 0.04 0.00 0.06 0.08 0.10 d_T : CTL Clearance Rate

Figure A.7.3. d_T posterior distributions

46 A.8 Parameter Bootstrapping Scatterplots

Figure A.8.1. Bootstrapping scatterplot for the adult model (MC1)

MD1 Aged Bootstrapped Parameters Scatterplot 10^{-6} 10¹ 10-1 10-2 φ 10^{-3} 10⁻⁴ 3×10^{-1} 2 × 10⁻¹ 10² 10¹ 10^{-7} 10-9 10-11

Figure A.8.2. Bootstrapping scatterplot for the adult model (MD1)

10² 10⁻⁴

10⁰ 10¹

103

10-5 100

10-13

47 A.9 Parameter Practical Likelihood Analysis

Figure A.9.1

Aged Likelihood Profiles (MD1) 3.5 3.0 S.5 2.5 2.0 1.5 10⁻⁶ β 10-8 10-7 10-5 10-4 10-8 10-7 10-6 10-5 10-4 d_l 4.0 3.5 3.0 2.5 2.0 1.5 1.0 10-1 10⁰ 10¹ 10² 10⁻³ 10-1 10-2 10^{-4} 10^{-2} d_T 2.0 1.8 RMSLE 1.6 1.4 1.2 10⁻³ 10-2 10-1 10⁰ 10¹ 10² 10¹ 10⁴ 105 10⁶ 107 3.5 3.0 S.S 2.5 2.0 1.5 1.0 10-11 10-13 10-7

Figure A.9.2

A.10 Local Sensitivity Analysis

Model MC1 adult fit local sensitivity

Figure A.10.1

Model MD1 aged fit local sensitivity

Figure A.10.2

49 References

- 1. Zhou, J., Matsuoka, M., Cantor, H., Homer, R. & Enelow, R. I. Cutting edge: engagement of NKG2A on CD8+ effector T cells limits immunopathology in influenza pneumonia. *The J. Immunol.* **180**, 25–29 (2008).
- 52 Van De Sandt, C. E. et al. Human CD8+ T cells damage noninfected epithelial cells during influenza virus infection in vitro.
- 53 Am. J. Respir. Cell Mol. Biol. **57**, 536–546 (2017).
- 3. Xu, L. *et al.* Cutting edge: pulmonary immunopathology mediated by antigen-specific expression of TNF- α by antiviral CD8+ T cells. *The J. Immunol.* **173**, 721–725 (2004).
- 4. Hastie, T., Tibshirani, R., Friedman, J. H. & Friedman, J. H. The elements of statistical learning: data mining, inference,
 and prediction, vol. 2 (Springer, 2009).
- 58 Boianelli, A. et al. Modeling influenza virus infection: a roadmap for influenza research. Viruses 7, 5274–5304 (2015).
- 6. Hernandez-Vargas, E. A. et al. Effects of aging on influenza virus infection dynamics. J. Virol. 88, 4123–4131 (2014).
- 7. Zarnitsyna, V. I. *et al.* Mathematical model reveals the role of memory cd8 t cell populations in recall responses to influenza.
 Front. immunology 7, 165 (2016).
- 8. Myers, M. A. *et al.* Dynamically linking influenza virus infection kinetics, lung injury, inflammation, and disease severity.

 Elife 10, e68864 (2021).
- 9. McDonagh, M. & Bell, E. The survival and turnover of mature and immature CD8 T cells. *Immunology* 84, 514 (1995).