M. Abdoullatuf Collège Sainte Jeanne d'Arc

Année scolaire 2025-2026

Table des matières

Ι	No	ombres et Calculs				
1			relatifs (1)	9		
	1.1		uction:	9		
	1.2		ls : Définition et Représentation	9		
		1.2.1	La droite graduée	9		
		1.2.2	Distance à zéro	9		
		1.2.3	Nombres opposés	9		
	1.3	Multip	dication et division	10		
2	Thé	orème	de Pythagore et sa réciproque	11		
	2.1	Introd	uction	11		
	2.2		té d'approche : découverte par manipulation	11		
	2.3	Définit	tions et vocabulaire	11		
	2.4	Le thé	orème de Pythagore	12		
		2.4.1	Énoncé du théorème	12		
		2.4.2	Démonstration par la méthode des aires	12		
	2.5	Applic	ations du théorème de Pythagore	13		
		2.5.1	Calculer la longueur de l'hypoténuse	13		
		2.5.2	Calculer la longueur d'un côté de l'angle droit	13		
	2.6	La réci	iproque du théorème de Pythagore	14		
		2.6.1	Énoncé de la réciproque	14		
		2.6.2	Utilisation de la réciproque	14		
	2.7	Applic	ations et résolution de problèmes	15		
		2.7.1	Problèmes de la vie courante	15		
		2.7.2	Utilisation de la calculatrice	16		
		2.7.3	Calculs exacts et valeurs approchées	16		
	2.8	Théore	ème de Pythagore dans l'espace	16		
		2.8.1	Distance dans un pavé droit	16		
	2.9	Compé	étences travaillées et automatismes	16		
		2.9.1	Compétences du socle commun	16		
		2.9.2	Automatismes à acquérir	17		
	2.10	Exerci	ces d'entraînement	17		
		2.10.1	Exercices de base	17		
		2.10.2	Exercices d'approfondissement	17		
	2.11		té avec les TICE	17		
		2.11.1	Utilisation d'un logiciel de géométrie dynamique	18		
	2.12		avec d'autres notions mathématiques	18		
			Distance entre deux points dans un repère	18		
			Équations et théorème de Pythagore	18		

	1	
3	.2 Puissances de 10	
4	Racines carrées 1.1 Définition et propriétés	23
5	Nombres premiers et divisibilité 1.1 Nombres premiers	25
II	Organisation et Gestion de Données	27
6	Proportionnalité 1.1 Reconnaissance d'une situation de proportionnalité	29
	.2 Pourcentages et échelles	29 29 29
7	.2 Pourcentages et échelles	29
7	2.2 Pourcentages et échelles	29 29 31 31 31
	Pourcentages et échelles Échelle Diagrammes circulaires Caractéristiques de position Probabilités Vocabulaire des probabilités Calcul de probabilités Événements particuliers	29 29 31 31 31 33 33 33

TABLE DES MATIÈRES

10	Équations	39
	10.1 Résolution d'équations du premier degré	
	10.2 Équations avec fractions	
	10.3 Problèmes se ramenant à une équation	40
IV	Fonctions	41
11	Notion de fonction	43
	11.1 Dépendance entre deux grandeurs	43
	11.2 Représentation graphique	43
	11.3 Fonctions linéaires	43
\mathbf{V}	Géométrie	45
12	Théorème de Pythagore	47
		47
	12.2 Réciproque du théorème de Pythagore	
	12.3 Applications géométriques	47
13	Théorème de Thalès	49
	13.1 Configuration de Thalès	49
	13.2 Réciproque du théorème de Thalès	49
	13.3 Applications	49
14	Trigonométrie	51
	14.1 Cosinus d'un angle aigu	
	14.2 Sinus et tangente	
	14.3 Utilisation de la calculatrice	51
15	Transformations: Translation	53
	15.1 Définition et propriétés	53
	15.2 Propriétés de conservation	53
	15.3 Construction de l'image d'une figure	53
16	Agrandissement et réduction	5 5
	16.1 Effet sur les longueurs, aires et volumes	55
	16.2 Applications	55
\mathbf{V}	I Grandeurs et Mesures	57
17	Aires et volumes	5 9
	17.1 Volume de la pyramide et du cône	59
	17.2 Conversions d'unités composées	59

VI	Ι.	Algorithmique et Programmation	61
		orithmique	63
	18.1	Instructions conditionnelles	63
	18.2	Boucles	63
	18.3	Variables	63
19	Prog	grammation	65
	19.1	Variables et calculs	65
	19.2	Construction de figures géométriques	65
	19.3	Structures de contrôle	66
\mathbf{A}	Forr	nulaire	67
	A.1	Formules de géométrie	67
	A.2	Propriétés numériques	67
		Trigonométrie	
В	Mét	hodologie	69
	B.1	Comment rédiger une démonstration	69
	B.2	Comment résoudre un problème	69
	В.3	Comment construire une figure	69
	B.4	Comment utiliser la calculatrice	69

Première partie Nombres et Calculs

Nombres relatifs (1)

1.1 Introduction:

Les nombres relatifs sont utilisés dans de nombreuses situations de la vie quotidienne : pour mesurer des températures, des altitudes, des soldes bancaires, ou pour se repérer dans le temps. Ils nous permettent de décrire des quantités qui peuvent être positives (au-dessus de zéro) ou négatives (en dessous de zéro).

1.2 Rappels : Définition et Représentation

Définition: Nombre relatif

Un nombre relatif est un nombre qui peut être positif, négatif ou nul.

1.2.1 La droite graduée

Un nombre relatif est repéré par son signe (+ ou -) et sa distance à zéro. Sur une droite graduée, le point de référence est l'origine (0).

- Les nombres positifs sont à droite de 0.
- Les nombres négatifs sont à gauche de 0.

1.2.2 Distance à zéro

La distance à zéro d'un nombre relatif est la distance qui le sépare de 0 sur la droite graduée. C'est un nombre **toujours positif**.

Exemple

La distance à zéro de +6 est 6. La distance à zéro de -4,5 est 4,5.

1.2.3 Nombres opposés

Deux nombres sont **opposés** s'ils ont la **même distance à zéro** mais des **signes différents**. Leur somme est toujours égale à 0.

CHAPITRE 1. NOMBRES RELATIFS (1)

Exemple

L'opposé de +7 est -7. L'opposé de -2,3 est +2,3.

Propriété : Additionner deux nombres de MÊME SIGNE

Pour additionner deux nombres relatifs de même signe :

- On garde le signe commun.
- On additionne leurs distances à zéro.

Exemple

```
(+5)+(+9)=+14 (Le signe commun est +, et 5+9=14) (-7)+(-3)=-10 (Le signe commun est -, et 7+3=10) (-1,5)+(-4)=-5,5
```

1.3 Multiplication et division

Méthode : Règle des signes

- Le produit de deux nombres de même signe est positif
- Le produit de deux nombres de signes contraires est négatif

Théorème de Pythagore et sa réciproque

2.1 Introduction

Le théorème de Pythagore est l'un des théorèmes les plus célèbres et les plus utiles de la géométrie. Il porte le nom de Pythagore, mathématicien et philosophe grec du VI^e siècle avant J.-C., bien que cette relation ait été découverte par plusieurs civilisations antérieures (Babyloniens, Égyptiens, Chinois).

Ce théorème établit une relation fondamentale entre les côtés d'un triangle rectangle et trouve de nombreuses applications dans la vie courante : architecture, navigation, cartographie, sport, etc.

Problématique du chapitre : Comment calculer des longueurs dans un triangle rectangle ? Comment déterminer si un triangle est rectangle ?

2.2 Activité d'approche : découverte par manipulation

Objectif : Découvrir la relation entre les aires des carrés construits sur les côtés d'un triangle rectangle.

Matériel : Papier quadrillé, ciseaux, règle graduée

Consigne:

- 1. Construire plusieurs triangles rectangles sur papier quadrillé
- 2. Construire un carré sur chacun des trois côtés
- 3. Compter le nombre de carreaux de chaque carré
- 4. Chercher une relation entre ces trois nombres

Constat : Pour tout triangle rectangle, l'aire du carré construit sur l'hypoténuse est égale à la somme des aires des carrés construits sur les deux autres côtés.

2.3 Définitions et vocabulaire

Définition: Triangle rectangle

Triangle ayant un angle droit (90°).

CHAPITRE 2. THÉORÈME DE PYTHAGORE ET SA RÉCIPROQUE

Définition: Hypoténuse

Côté opposé à l'angle droit dans un triangle rectangle. C'est le plus long côté du triangle.

Définition : Côtés de l'angle droit

Les deux côtés qui forment l'angle droit.

2.4 Le théorème de Pythagore

2.4.1 Énoncé du théorème

Propriété : Théorème de Pythagore

Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.

Formulation mathématique:

Si ABC est un triangle rectangle en A, alors : $BC^2 = AB^2 + AC^2$

2.4.2 Démonstration par la méthode des aires

Considérons un carré de côté (a+b) contenant quatre triangles rectangles identiques de côtés a, b et d'hypoténuse c.

Figure 2.1 – Configuration 1

FIGURE 2.2 – Configuration 2

Configuration 1: Aires = $(a + b)^2 = 4 \times \frac{ab}{2} + c^2 = 2ab + c^2$

Configuration 2: Aires = $(a+b)^2 = 4 \times \frac{ab}{2} + a^2 + b^2 = 2ab + a^2 + b^2$

Comme l'aire est la même dans les deux configurations :

$$c^2 = a^2 + b^2$$

Ce qui démontre le théorème de Pythagore.

2.5 Applications du théorème de Pythagore

2.5.1 Calculer la longueur de l'hypoténuse

Méthode : Calculer la longueur de l'hypoténuse

Pour calculer la longueur de l'hypoténuse d'un triangle rectangle :

- 1. Identifier le triangle rectangle et ses côtés
- 2. Repérer l'hypoténuse (côté opposé à l'angle droit)
- 3. Appliquer la formule : hypoténuse $^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2$
- 4. Calculer la racine carrée du résultat

Exemple

Un triangle ABC est rectangle en A. AB=6 cm et AC=8 cm. Calculer BC.

Solution:

- Le triangle est rectangle en A, donc BC est l'hypoténuse
- D'après le théorème de Pythagore : $BC^2 = AB^2 + AC^2$
- $-BC^2 = 6^2 + 8^2 = 36 + 64 = 100$
- $-BC = \sqrt{100} = 10 \text{ cm}$

2.5.2 Calculer la longueur d'un côté de l'angle droit

Méthode: Calculer la longueur d'un côté de l'angle droit

Pour calculer la longueur d'un côté de l'angle droit :

- 1. Identifier la longueur de l'hypoténuse et celle de l'autre côté de l'angle droit
- 2. Appliquer la formule : hypoténuse² = $cote_1^2 + cote_2^2$
- 3. Isoler le côté inconnu : $côté^2 = hypoténuse^2$ autre $côté^2$
- 4. Calculer la racine carrée du résultat

CHAPITRE 2. THÉORÈME DE PYTHAGORE ET SA RÉCIPROQUE

Exemple

Un triangle DEF est rectangle en D. DE = 5 cm et EF = 13 cm. Calculer DF.

Solution:

- Le triangle est rectangle en D, donc EF est l'hypoténuse
- D'après le théorème de Pythagore : $EF^2 = DE^2 + DF^2$
- $-13^2 = 5^2 + DF^2$
- $-169 = 25 + DF^2$
- $-DF^2 = 169 25 = 144$
- $-DF = \sqrt{144} = 12 \text{ cm}$

2.6 La réciproque du théorème de Pythagore

2.6.1 Énoncé de la réciproque

Propriété: Réciproque du théorème de Pythagore

Si, dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle.

2.6.2 Utilisation de la réciproque

Objectif: Déterminer si un triangle est rectangle en connaissant les longueurs de ses trois côtés.

Méthode : Démontrer qu'un triangle est rectangle

Pour démontrer qu'un triangle est rectangle :

- 1. Identifier le plus grand côté du triangle
- 2. Calculer le carré de sa longueur
- 3. Calculer la somme des carrés des deux autres côtés
- 4. Comparer les résultats :
 - Si égalité : le triangle est rectangle
 - Si inégalité : le triangle n'est pas rectangle

Exemple

Un triangle a pour côtés 9 cm, 12 cm et 15 cm. Est-il rectangle ?

Solution:

- Le plus grand côté mesure 15 cm
- $-15^2 = 225$
- $--9^2 + 12^2 = 81 + 144 = 225$
- Puisque $15^2 = 9^2 + 12^2$, le triangle est rectangle
- L'angle droit est opposé au côté de 15 cm

Exemple

Un triangle a pour côtés 7 cm, 8 cm et 10 cm. Est-il rectangle?

Solution:

- Le plus grand côté mesure 10 cm
- $-10^2 = 100$
- $-7^2 + 8^2 = 49 + 64 = 113$
- Puisque $100 \neq 113$, le triangle n'est pas rectangle

2.7 Applications et résolution de problèmes

2.7.1 Problèmes de la vie courante

Exercice 1 - L'échelle

Une échelle de 4 m est appuyée contre un mur. Son pied est à 1,5 m du mur. À quelle hauteur le sommet de l'échelle touche-t-il le mur?

Solution:

- Triangle rectangle : mur, sol, échelle
- Hypoténuse : échelle = 4 m
- Un côté : distance au mur = 1,5 m
- Autre côté : hauteur =?

$$h^2 + 1, 5^2 = 4^2$$

$$h^2 + 2,25 = 16$$

$$h^2 = 13,75$$

$$h = \sqrt{13,75} \approx 3,7 \text{ m}$$

CHAPITRE 2. THÉORÈME DE PYTHAGORE ET SA RÉCIPROQUE

Exercice 2 - Vérification d'équerrage

Un maçon vérifie qu'un angle est droit en mesurant les côtés d'un triangle formé par deux murs et une diagonale. Il mesure : 3 m, 4 m et 5 m. L'angle est-il droit ? Solution :

- Plus grand côté : 5 m
- $-5^2 = 25$
- $-3^2 + 4^2 = 9 + 16 = 25$
- Égalité vérifiée ⇒ l'angle est droit

2.7.2 Utilisation de la calculatrice

Compétence : Utiliser la touche / (racine carrée) de la calculatrice.

Exemple : Calculer $\sqrt{75}$

$$--\sqrt{75} = \sqrt{25 \times 3} = \sqrt{25} \times \sqrt{3} = 5\sqrt{3} \approx 8,66$$

2.7.3 Calculs exacts et valeurs approchées

Calcul exact : $\sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2}$ cm

Valeur approchée : $\sqrt{50} \approx 7,07$ cm (arrondi au centième)

2.8 Théorème de Pythagore dans l'espace

2.8.1 Distance dans un pavé droit

Problème : Calculer la longueur de la diagonale d'un pavé droit. Pour un pavé droit de dimensions a, b et c, la diagonale d vérifie :

$$d^2 = a^2 + b^2 + c^2$$

Exemple

Pavé droit de dimensions 6 cm \times 8 cm \times 5 cm

$$d^2 = 6^2 + 8^2 + 5^2 = 36 + 64 + 25 = 125$$

$$d=\sqrt{125}=5\sqrt{5}\approx 11,18~\mathrm{cm}$$

2.9 Compétences travaillées et automatismes

2.9.1 Compétences du socle commun

- Chercher : Identifier un triangle rectangle, choisir la bonne méthode
- Modéliser : Traduire un problème concret en calcul mathématique
- Représenter : Faire un schéma, coder une figure
- Raisonner: Justifier qu'un triangle est ou n'est pas rectangle
- Calculer : Effectuer des calculs avec des radicaux
- Communiquer : Rédiger une solution complète

2.9.2 Automatismes à acquérir

- Reconnaître un triangle rectangle
- Identifier l'hypoténuse
- Appliquer le théorème direct ou sa réciproque
- Utiliser la calculatrice pour les racines carrées
- Connaître les "triplets pythagoriciens" usuels : (3;4;5), (5;12;13), (8;15;17)

2.10 Exercices d'entraînement

2.10.1 Exercices de base

Exercice 3

Calculs directs:

- a) Triangle rectangle : côtés 3 cm et 4 cm. Calculer l'hypoténuse.
- b) Triangle rectangle : hypoténuse 10 cm, un côté 6 cm. Calculer l'autre côté.

Exercice 4

Réciproque : Les triangles suivants sont-ils rectangles?

a) Côtés : 7 cm, 24 cm, 25 cmb) Côtés : 6 cm, 7 cm, 8 cm

2.10.2 Exercices d'approfondissement

Exercice 5

Problème du terrain

Un terrain rectangulaire mesure 40 m sur 30 m. Calculer la longueur de sa diagonale.

Exercice 6

Navigation

Un bateau part d'un port et navigue 12 km vers l'est puis 5 km vers le nord. À quelle distance se trouve-t-il du port?

Exercice 7

Architecture

Pour vérifier qu'un mur est perpendiculaire au sol, un architecte place un point A sur le mur à 3 m du sol, un point B au pied du mur, et un point C sur le sol à 4 m de B. Si AC = 5 m, le mur est-il perpendiculaire au sol?

2.11 Activité avec les TICE

2.11.1 Utilisation d'un logiciel de géométrie dynamique

Objectif : Vérifier le théorème de Pythagore avec GeoGebra ou similaire Consignes :

- 1. Construire un triangle rectangle ABC
- 2. Construire les carrés sur chaque côté
- 3. Afficher les aires des trois carrés
- 4. Modifier la forme du triangle et observer
- 5. Conjecture sur la relation entre ces aires

2.12 Liens avec d'autres notions mathématiques

2.12.1 Distance entre deux points dans un repère

Le théorème de Pythagore permet de calculer la distance entre deux points dans un repère orthonormé.

Si $A(x_A,y_A)$ et $B(x_B,y_B)$ sont deux points dans un repère orthonormé, alors la distance AB est donnée par :

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Exemple

Calculons la distance entre les points A(2,3) et B(6,7) dans un repère orthonormé. En appliquant le théorème de Pythagore :

$$AB^{2} = (6-2)^{2} + (7-3)^{2} = 4^{2} + 4^{2} = 16 + 16 = 32$$
$$AB = \sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2}$$

La distance entre A et B est $4\sqrt{2}$ unités.

2.12.2 Équations et théorème de Pythagore

Le théorème de Pythagore conduit souvent à des équations qu'il faut résoudre pour trouver des longueurs.

Exemple

Dans un triangle rectangle ABC rectangle en A, on sait que AB = x cm, AC = (x + 3) cm et BC = 17 cm. Déterminons la valeur de x.

D'après le théorème de Pythagore :

$$BC^{2} = AB^{2} + AC^{2}$$

$$17^{2} = x^{2} + (x+3)^{2}$$

$$289 = x^{2} + x^{2} + 6x + 9$$

$$289 = 2x^{2} + 6x + 9$$

$$2x^{2} + 6x - 280 = 0$$

$$x^{2} + 3x - 140 = 0$$

En factorisant : (x - 10)(x + 14) = 0

Les solutions sont x = 10 et x = -14.

Comme une longueur ne peut pas être négative, nous avons x = 10 cm.

Donc AB = 10 cm et AC = 13 cm.

2.13 Pour aller plus loin

2.13.1 Histoire des mathématiques

- Les tablettes babyloniennes (Plimpton 322)
- La démonstration par le président Garfield
- Les différentes démonstrations du théorème (plus de 300 connues)

2.13.2 Généralisation

- Théorème de Pythagore généralisé (loi des cosinus)
- Théorème de Pythagore dans l'espace à n dimensions

2.13.3 Applications modernes

- GPS et géolocalisation
- Graphisme 3D et jeux vidéo
- Architecture et ingénierie

2.14 Synthèse du chapitre

Ce qu'il faut retenir :

- 1. **Théorème de Pythagore :** Dans un triangle rectangle, hypoténuse $^2 = \cot \hat{e}_1^2 + \cot \hat{e}_2^2$
- 2. **Réciproque :** Si dans un triangle, le carré du plus grand côté égale la somme des carrés des deux autres, alors le triangle est rectangle

CHAPITRE 2. THÉORÈME DE PYTHAGORE ET SA RÉCIPROQUE

- 3. **Applications :** Calcul de longueurs, vérification d'angles droits, résolution de problèmes concrets
- 4. **Méthodes :** Identification du triangle rectangle, application des formules, utilisation de la calculatrice

Liens avec d'autres chapitres:

- Racines carrées (chapitre précédent)
- Trigonométrie (chapitre à venir)
- Géométrie dans l'espace
- Fonctions (distance entre deux points dans un repère)

Puissances

3.1 Puissances d'exposant positif

Définition : Puissance

Soit a un nombre et n un entier positif non nul. On définit $a^n = \underbrace{a \times a \times \ldots \times a}_{n \text{ facteurs}}$

Exemple

$$2^3 = 2 \times 2 \times 2 = 8$$

 $5^2 = 5 \times 5 = 25$

3.2 Puissances de 10

Propriété: Notation scientifique

Tout nombre décimal non nul peut s'écrire sous la forme $a \times 10^n$ où $1 \le |a| < 10$ et n est un entier relatif.

Exemple

$$1234 = 1,234 \times 10^{3}$$
$$0,00056 = 5,6 \times 10^{-4}$$

3.3 Propriétés des puissances

Propriété : Règles de calcul

Pour tous nombres a et b non nuls et tous entiers m et n:

$$--a^m \times a^n = a^{m+n}$$

$$-\frac{a^m}{a^n} = a^{m-n}$$

$$--(a^m)^n = a^{m \times n}$$

$$- (a \times b)^n = a^n \times b^n$$

$$-- \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

3.4 Puissances d'exposant négatif

Définition: Puissance d'exposant négatif

Pour tout nombre a non nul et tout entier positif $n: a^{-n} = \frac{1}{a^n}$

Exemple

$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

$$10^{-2} = \frac{1}{10^2} = \frac{1}{100} = 0,01$$

Racines carrées

4.1 Définition et propriétés

Définition : Racine carrée

La racine carrée d'un nombre positif a est le nombre positif dont le carré est égal à a. On la note \sqrt{a} .

Exemple

$$\sqrt{16} = 4 \operatorname{car} 4^2 = 16$$

 $\sqrt{25} = 5 \operatorname{car} 5^2 = 25$

4.2 Propriétés des racines carrées

Propriété : Propriétés fondamentales

Pour tous nombres positifs a et b:

$$- \sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$$

$$-\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}} \text{ (si } b \neq 0)$$

$$-\sqrt{a^2} = |a|$$

4.3 Simplification des racines carrées

Méthode: Simplifier une racine carrée

Pour simplifier \sqrt{a} :

- 1. Décomposer a en produit de facteurs premiers
- 2. Regrouper les facteurs par paires
- 3. Extraire les racines carrées des carrés parfaits

CHAPITRE 4. RACINES CARRÉES

Exemple

Simplifions $\sqrt{72}$:

$$-72 = 2^3 \times 3^2 = 2^2 \times 2 \times 3^2$$

$$--\sqrt{72} = \sqrt{2^2 \times 2 \times 3^2} = \sqrt{2^2} \times \sqrt{3^2} \times \sqrt{2}$$

$$-\sqrt{72} = 2 \times 3 \times \sqrt{2} = 6\sqrt{2}$$

4.4 Calculs avec les racines carrées

Propriété : Addition et soustraction

On ne peut additionner ou sous traire que des racines carrées de même radicande : $\sqrt{a}+\sqrt{a}=2\sqrt{a}$

Exemple

$$\sqrt{3} + \sqrt{3} = 2\sqrt{3}$$

 $\sqrt{5} + \sqrt{3}$ ne peut pas être simplifié

Nombres premiers et divisibilité

5.1 Nombres premiers

Définition : Nombre premier

Un nombre premier est un entier naturel qui admet exactement deux diviseurs : 1 et lui-même.

Exemple

Les nombres premiers inférieurs à 20 sont : 2, 3, 5, 7, 11, 13, 17, 19.

5.2 Décomposition en facteurs premiers

Méthode : Décomposition

Pour décomposer un nombre en produit de facteurs premiers, on divise successivement par les nombres premiers dans l'ordre croissant.

Exemple

Décomposons 84 en facteurs premiers :

- $-84 \div 2 = 42$
- $-42 \div 2 = 21$
- $-21 \div 3 = 7$
- $-7 \div 7 = 1$

Donc $84 = 2^2 \times 3 \times 7$

5.3 Divisibilité

Définition: Diviseur

Un nombre a est diviseur d'un nombre b s'il existe un entier k tel que $b = a \times k$.

CHAPITRE 5. NOMBRES PREMIERS ET DIVISIBILITÉ

Propriété : Critères de divisibilité

- Un nombre est divisible par 2 s'il se termine par 0, 2, 4, 6 ou 8
- Un nombre est divisible par 3 si la somme de ses chiffres est divisible par 3
- Un nombre est divisible par 5 s'il se termine par 0 ou 5
- Un nombre est divisible par 9 si la somme de ses chiffres est divisible par 9

Deuxième partie Organisation et Gestion de Données

Proportionnalité

6.1 Reconnaissance d'une situation de proportionnalité

Définition: Proportionnalité

Deux grandeurs sont proportionnelles si l'on peut passer de l'une à l'autre en multipliant par un nombre constant appelé coefficient de proportionnalité.

Exemple

Le prix payé est proportionnel au nombre d'objets achetés. Si 3 objets coûtent $15\mathfrak{C}$, alors 6 objets coûtent $30\mathfrak{C}$.

6.2 Pourcentages et échelles

Définition : Pourcentage

Un pourcentage est une fraction dont le dénominateur est 100.

Méthode: Calculer un pourcentage

Pour calculer p% d'un nombre $a:\frac{p}{100}\times a$

Exemple

Calculer 15% de 200€ : $\frac{15}{100}\times 200=0, 15\times 200=30$ €

6.3 Échelle

Définition : Échelle

L'échelle d'une carte ou d'un plan est le rapport entre une distance sur le document et la distance réelle correspondante.

CHAPITRE 6. PROPORTIONNALITÉ

Exemple

Sur une carte à l'échelle 1 :50000, 1 cm sur la carte représente 50000 cm = 500 m en réalité.

Statistiques

7.1 Médiane

Définition : Médiane

La médiane d'une série statistique est la valeur qui partage cette série ordonnée en deux parties de même effectif.

Exemple

Pour la série : 2, 4, 7, 8, 9, 12, 15

La médiane est 8 (4 valeurs avant, 4 valeurs après).

7.2 Diagrammes circulaires

Définition: Diagramme circulaire

Un diagramme circulaire (ou camembert) représente les effectifs ou les fréquences d'une série statistique par des secteurs angulaires.

Méthode: Construire un diagramme circulaire

- 1. Calculer les angles correspondant à chaque effectif
- 2. Tracer les secteurs avec les angles calculés
- 3. Ajouter les légendes

7.3 Caractéristiques de position

Définition : Moyenne

La moyenne d'une série statistique est la somme de toutes les valeurs divisée par l'effectif total.

CHAPITRE 7. STATISTIQUES

Exemple

Pour la série : 12, 15, 18, 20, 25 La moyenne est : $\frac{12+15+18+20+25}{5} = \frac{90}{5} = 18$

Probabilités

8.1 Vocabulaire des probabilités

Définition: Expérience aléatoire

Une expérience aléatoire est une expérience dont on ne peut pas prévoir le résultat à l'avance.

Définition : Événement

Un événement est un ensemble de résultats possibles d'une expérience aléatoire.

Exemple

Lancer un dé est une expérience aléatoire.

"Obtenir un nombre pair" est un événement.

8.2 Calcul de probabilités

Propriété: Probabilité d'un événement

La probabilité d'un événement est un nombre compris entre 0 et 1.

Définition : Probabilité

La probabilité d'un événement A est : $P(A) = \frac{\text{nombre de cas favorables}}{\text{nombre de cas possibles}}$

Exemple

Dans un jeu de 32 cartes, la probabilité de tirer un as est : $P(as) = \frac{4}{32} = \frac{1}{8} = 0,125$

8.3 Événements particuliers

Définition : Événement certain

Un événement certain a une probabilité égale à 1.

Définition : Événement impossible

Un événement impossible a une probabilité égale à 0.

Exemple

Dans un jeu de 32 cartes :

- "Tirer une carte" est un événement certain (P=1)
- "Tirer un 10 de trèfle" est un événement impossible (P=0)

Troisième partie Calcul Littéral et Équations

Calcul littéral

9.1 Expressions littérales

Définition: Expression littérale

Une expression littérale est une expression mathématique dans laquelle un ou plusieurs nombres sont remplacés par des lettres.

Exemple

2x + 3, $3a^2 - 2b + 1$, 5(x + 2) sont des expressions littérales.

9.2 Développement et factorisation

Propriété : Distributivité

$$k(a+b) = ka + kb$$
 et $k(a-b) = ka - kb$

Exemple

$$3(x+2) = 3x + 6$$

$$2(a-5) = 2a-10$$

9.3 Double distributivité

Propriété: Double distributivité

$$(a+b)(c+d) = ac + ad + bc + bd$$

Exemple

$$(x+2)(x+3) = x^2 + 3x + 2x + 6 = x^2 + 5x + 6$$

9.4 Identités remarquables

Propriété : Identités remarquables

$$-(a+b)^2 = a^2 + 2ab + b^2$$

$$- (a-b)^2 = a^2 - 2ab + b^2$$

$$- (a+b)(a-b) = a^2 - b^2$$

Exemple

$$(x+4)^2 = x^2 + 8x + 16$$

$$(2x-3)^2 = 4x^2 - 12x + 9$$

$$(x+2)(x-2) = x^2 - 4$$

Équations

10.1 Résolution d'équations du premier degré

Définition : Équation

Une équation est une égalité dans laquelle intervient un nombre inconnu, généralement représenté par une lettre.

Méthode: Résolution d'une équation

Pour résoudre une équation, on peut ajouter ou soustraire un même nombre aux deux membres, ou multiplier ou diviser les deux membres par un même nombre non nul.

Exemple

Résolvons l'équation 2x + 3 = 11:

- -2x + 3 = 11
- -2x+3-3=11-3 (on soustrait 3 aux deux membres)
- -2x = 8
- $\frac{2x}{2} = \frac{8}{2}$ (on divise par 2 les deux membres)
- -x = 4

La solution est x = 4.

10.2 Équations avec fractions

Méthode: Résoudre une équation avec fractions

- 1. Réduire au même dénominateur
- 2. Multiplier les deux membres par ce dénominateur
- 3. Résoudre l'équation obtenue

CHAPITRE 10. ÉQUATIONS

Exemple

Résolvons $\frac{x}{2} + \frac{x}{3} = 5$:

$$-\frac{3x}{6} + \frac{2x}{6} = 5$$

$$-\frac{5x}{6} = 5$$

$$-5x = 30$$

$$-x = 6$$

10.3 Problèmes se ramenant à une équation

Méthode : Résoudre un problème

- 1. Choisir l'inconnue
- 2. Traduire le problème par une équation
- 3. Résoudre l'équation
- 4. Vérifier la solution

Exemple

Un nombre augmenté de 5 est égal au double de ce nombre diminué de 3. Quel est ce nombre ?

Solution:

— Soit x ce nombre

$$-x+5=2x-3$$

$$-x+5-x=2x-3-x$$

$$-5 = x - 3$$

$$-5+3=x-3+3$$

$$-8 = x$$

Le nombre cherché est 8.

Quatrième partie Fonctions

Notion de fonction

11.1 Dépendance entre deux grandeurs

Définition: Fonction

Une fonction est un processus qui, à un nombre, associe un autre nombre.

Exemple

La fonction qui à un nombre associe son double : f(x) = 2x

11.2 Représentation graphique

Définition: Courbe représentative

La courbe représentative d'une fonction f est l'ensemble des points de coordonnées (x; f(x)).

Méthode: Tracer une courbe

- 1. Calculer quelques valeurs de la fonction
- 2. Placer les points correspondants
- 3. Relier les points par une courbe

11.3 Fonctions linéaires

Définition: Fonction linéaire

Une fonction linéaire est une fonction de la forme f(x) = ax où a est un nombre fixé

Propriété: Représentation graphique

La courbe représentative d'une fonction linéaire est une droite passant par l'origine.

CHAPITRE 11. NOTION DE FONCTION

Exemple

La fonction f(x) = 3x est une fonction linéaire.

Cinquième partie Géométrie

Théorème de Pythagore

12.1 Énoncé et démonstration

Propriété : Théorème de Pythagore

Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.

12.2 Réciproque du théorème de Pythagore

Propriété: Réciproque

Si, dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle.

12.3 Applications géométriques

Exemple

Calculer la diagonale d'un carré de côté 5 cm.

$$- d^2 = 5^2 + 5^2 = 25 + 25 = 50$$

$$-d = \sqrt{50} = 5\sqrt{2} \text{ cm}$$

Théorème de Thalès

13.1 Configuration de Thalès

Propriété: Théorème de Thalès

Si deux droites sécantes sont coupées par deux droites parallèles, alors elles déterminent des segments proportionnels.

Exemple

Dans la configuration de Thalès : $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$

13.2 Réciproque du théorème de Thalès

Propriété: Réciproque

Si deux droites sécantes sont coupées par deux droites et si les segments déterminés sur l'une sont proportionnels aux segments déterminés sur l'autre, alors les deux droites sont parallèles.

13.3 Applications

Méthode : Calculer une longueur avec Thalès

- 1. Identifier la configuration de Thalès
- 2. Écrire l'égalité des rapports
- 3. Calculer la longueur cherchée

Trigonométrie

14.1 Cosinus d'un angle aigu

Définition : Cosinus

Dans un triangle rectangle, le cosinus d'un angle aigu est le rapport de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.

Exemple

Dans un triangle rectangle ABC rectangle en A : $\cos(\widehat{B}) = \frac{AB}{BC}$

14.2 Sinus et tangente

Définition: Sinus

Le sinus d'un angle aigu est le rapport de la longueur du côté opposé sur la longueur de l'hypoténuse.

Définition: Tangente

La tangente d'un angle aigu est le rapport de la longueur du côté opposé sur la longueur du côté adjacent.

14.3 Utilisation de la calculatrice

Méthode: Calculer un angle

Pour calculer un angle connaissant son cosinus :

- 1. Utiliser la touche \cos^{-1} ou arccos
- 2. Entrer la valeur du cosinus
- 3. Lire l'angle en degrés

Transformations: Translation

15.1 Définition et propriétés

Définition: Translation

Une translation est une transformation qui fait glisser tous les points d'une figure dans la même direction, dans le même sens et sur la même distance.

Exemple

La translation de vecteur \vec{AB} transforme tout point M en un point M' tel que $\vec{MM'} = \vec{AB}$.

15.2 Propriétés de conservation

Propriété : Propriétés de la translation

Une translation conserve :

- Les longueurs
- Les angles
- Les aires
- Le parallélisme
- L'alignement

15.3 Construction de l'image d'une figure

Méthode: Construire l'image par translation

- 1. Construire l'image de quelques points caractéristiques
- 2. Relier ces points pour former l'image de la figure

Agrandissement et réduction

16.1 Effet sur les longueurs, aires et volumes

Propriété: Agrandissement

Dans un agrandissement de rapport k > 1:

- Les longueurs sont multipliées par k
- Les aires sont multipliées par k^2
- Les volumes sont multipliés par k^3

Propriété : Réduction

Dans une réduction de rapport k avec 0 < k < 1:

- Les longueurs sont multipliées par k
- Les aires sont multipliées par k^2
- Les volumes sont multipliés par k^3

16.2 Applications

Exemple

Un cube de côté 2 cm est agrandi avec un rapport 3.

- Nouveau côté : $2 \times 3 = 6$ cm
- Nouvelle aire : $24 \times 3^2 = 216 \text{ cm}^2$
- Nouveau volume : $8 \times 3^3 = 216 \text{ cm}^3$

Sixième partie Grandeurs et Mesures

Aires et volumes

17.1 Volume de la pyramide et du cône

Propriété : Volume d'une pyramide

 $V=\frac{1}{3}\times {\rm Aire}$ de la base × hauteur

Propriété: Volume d'un cône

$$V = \frac{1}{3} \times \pi \times r^2 \times h$$

17.2 Conversions d'unités composées

Méthode : Convertir des unités

- 1. Identifier les unités à convertir
- 2. Utiliser les relations entre unités
- 3. Effectuer les calculs

Exemple

Convertir 2,5 m³ en dm³ : 2,5 m³ = 2,5 × 1000 = 2500 dm³

Septième partie Algorithmique et Programmation

Algorithmique

18.1 Instructions conditionnelles

Définition: Instruction conditionnelle

Une instruction conditionnelle permet d'exécuter des actions différentes selon qu'une condition est vraie ou fausse.

Exemple

Si x > 0 alors afficher "positif" sinon afficher "négatif ou nul"

18.2 Boucles

Définition: Boucle

Une boucle permet de répéter un ensemble d'instructions un nombre déterminé de fois.

Exemple

Pour i de 1 à 5 :

- Afficher i
- Fin pour

18.3 Variables

Définition : Variable

Une variable est un emplacement mémoire qui peut contenir une valeur qui peut changer.

CHAPITRE 18. ALGORITHMIQUE

Exemple

 $\begin{array}{l} x \leftarrow 5 \text{ (affectation)} \\ y \leftarrow x + 3 \text{ (calcul)} \end{array}$

Programmation

19.1 Variables et calculs

Définition : Variable en programmation

Une variable en programmation est un nom qui désigne une valeur stockée en mémoire.

Exemple

```
En Python:
x = 5
y = x + 3
print(y) # Affiche 8
```

19.2 Construction de figures géométriques

Méthode : Programmer une figure

- 1. Définir les coordonnées des points
- 2. Tracer les segments ou courbes
- 3. Ajouter les étiquettes

Exemple

```
Programme pour tracer un carré:

import turtle

for i in range(4):

   turtle.forward(100)

   turtle.right(90)
```

19.3 Structures de contrôle

Définition : Structure conditionnelle

Permet d'exécuter du code selon qu'une condition est vraie ou fausse.

Exemple

```
if x > 0:
    print("Positif")
else:
    print("Négatif ou nul")
```

Annexe A

Formulaire

A.1 Formules de géométrie

- Aire du rectangle : $A = L \times l$
- Aire du triangle : $A = \frac{b \times h}{2}$
- Volume du pavé droit : $V = L \times l \times h$
- Volume de la pyramide : $V = \frac{1}{3} \times A_{\text{base}} \times h$
- Volume du cône : $V = \frac{1}{3} \times \pi \times r^2 \times h$
- Théorème de Pythagore : $a^2 + b^2 = c^2$ (triangle rectangle)
- Théorème de Thalès : $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$

A.2 Propriétés numériques

- $--a^m \times a^n = a^{m+n}$
- $--(a^m)^n = a^{m \times n}$
- $--\sqrt{a\times b} = \sqrt{a}\times \sqrt{b}$
- $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$
- $(a+b)^2 = a^2 + 2ab + b^2$
- $(a-b)^2 = a^2 2ab + b^2$
- $(a+b)(a-b) = a^2 b^2$

A.3 Trigonométrie

- $\cos(\alpha) = \frac{\text{côté adjacent}}{\text{hypoténuse}}$
- $\sin(\alpha) = \frac{\text{côté opposé}}{\text{hypoténuse}}$
- $\tan(\alpha) = \frac{\text{côté opposé}}{\text{côté adjacent}}$

Annexe B

Méthodologie

B.1 Comment rédiger une démonstration

- 1. Énoncer clairement ce que l'on veut démontrer
- 2. Rappeler les hypothèses
- 3. Utiliser les propriétés et théorèmes appropriés
- 4. Conclure clairement

B.2 Comment résoudre un problème

- 1. Lire attentivement l'énoncé
- 2. Identifier les données et l'inconnue
- 3. Choisir la méthode appropriée
- 4. Effectuer les calculs
- 5. Vérifier le résultat

B.3 Comment construire une figure

- 1. Analyser l'énoncé et identifier les éléments à construire
- 2. Faire un croquis à main levée
- 3. Construire les éléments dans un ordre logique
- 4. Vérifier que la construction respecte les conditions

B.4 Comment utiliser la calculatrice

- 1. Identifier l'opération à effectuer
- 2. Choisir les bonnes touches
- 3. Vérifier l'ordre des opérations
- 4. Interpréter le résultat