FONCTIONS POLYNÔMIALES DU SECOND DEGRÉ

OBJECTIFS 👌

- Être en mesure de vérifier qu'une valeur conjecturée est racine d'un polynôme de degré 2.
- Savoir factoriser, dans des cas simples, une expression du second degré.
- Utiliser la forme factorisée (en produit de facteurs du premier degré) d'un polynôme de degré 2 pour trouver ses racines et étudier son signe.
- Déterminer des éléments caractéristiques de la fonction $x \mapsto a(x-x_1)(x-x_2)$ (signe, extremum, allure de la courbe, axe de symétrie...).
- Savoir associer une parabole à une expression algébrique de degré 2, pour les fonctions de la forme $x \mapsto ax^2$, $x \mapsto ax^2 + c$ et $x \mapsto a(x x_1)(x x_2)$.

Définitions

1. Fonction du second degré

À RETENIR 99

Définition

On appelle **fonction polynômiale du second degré** (ou **fonction du second degré** pour abréger) toute fonction f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ où $a, b, c \in \mathbb{R}$ avec $a \neq 0$.

L'expression littérale $ax^2 + bx + c$ est un **polynôme de degré** 2.

EXEMPLE 🔋

La fonction carré $x \mapsto x^2$ est une fonction du second degré.

2. Racines

À RETENIR 99

Définition

Soit f une fonction du second degré. On appelle **racine** de f, tout nombre x vérifiant f(x) = 0. Une fonction du second degré admet au plus deux racines distinctes dans \mathbb{R} .

EXERCI	CE 1	-
EXERCI	CEL	1

 $\textcolor{red}{\bullet \text{Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonctions-second-degre/\#correction-1}}$

3. Forme développée, forme factorisée

À RETENIR 99

Définitions

Soit $f: x \mapsto ax^2 + bx + c$ une fonction du second degré.

- La forme $f(x) = ax^2 + bx + c$ est appelée **forme développée** de f.
- Si f admet deux racines x_1 et x_2 , alors on peut écrire $f(x) = a(x-x_1)(x-x_2)$. Cette dernière expression est appelée **forme factorisée** de f.

EXEMPLE 🔋

On définit une fonction f sur \mathbb{R} par $f(x) = x^2 + 2x + 1$. C'est une fonction du second degré (avec a = 1, b = 2 et c = 1). Comme $(x + 1)^2 = x^2 + 2x + 1$, on a:

- La forme factorisée de $f : f(x) = (x+1)^2 = (x+1)(x+1)$.
- La forme développée de $f: f(x) = x^2 + 2x + 1$.

EXERCICE 2

On définit une fonction f du second degré sur \mathbb{R} par $f(x) = x^2 - 4$.

- 1. Factoriser f(x).
- **3.** En déduire formes développées et factorisées de f.
 - **b.** Forme développée de f:

Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonctions-second-degre/#correction-2.

Courbe représentative

1. Orientation de la parabole

À RETENIR 99

Définition

Soit $f: x \mapsto ax^2 + bx + c$ une fonction du second degré. La courbe représentative de f, notée \mathscr{C}_f , est une **parabole**.

- Lorsque a > 0, on dit que la parabole \mathscr{C}_f est **tournée vers le haut** : elle forme un « sourire ».
- Lorsque a < 0, on dit que la parabole \mathscr{C}_f est **tournée vers le bas** : elle forme un « sourire inversé ».

EXERCICE 3

Pour chacune des fonctions du second degré ci-dessous, donner l'orientation de sa courbe représentative.

1.
$$f: x \mapsto 3x^2 + 2x + 1: \dots$$

2.
$$g: x \mapsto 1 - x^2:$$

1.
$$f: x \mapsto 3x^2 + 2x + 1:$$
 2. $g: x \mapsto 1 - x^2:$ **3.** $h: x \mapsto (1 - x)^2:$

2. Sommet, axe de symétrie

À RETENIR 99

Propriétés

Soit $f: x \mapsto ax^2 + bx + c$ une fonction du second degré.

- 1. Le sommet de la parabole \mathscr{C}_f a pour coordonnées $(\alpha;\beta)$ où $\alpha=-\frac{b}{2a}$ et $\beta=f(\alpha)$.
- **2.** La parabole \mathscr{C}_f admet un axe de symétrie vertical d'équation $x = -\frac{b}{2a}$.

EXERCICE 4

Après avoir esquissé la courbe représentative de la fonction $f: x \mapsto 4x^2 + 8x + 1$, déterminer le tableau de variation de f.

◆ Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonctions-second-degre/#correction-4.

3. Fonctions $x \mapsto ax^2 + c$

À RETENIR 99

Propriété

Soit $f: x \mapsto ax^2 + c$ une fonction du second degré (notons que le coefficient b est nul).

Propriété	Illustration	
L'axe de symétrie de f est la droite d'équation $x=0$. Plus a est proche de zéro, plus la courbe « s'écarte ». À l'inverse, plus le coefficient a s'éloigne de zéro, plus la courbe « se contracte ».	2	
La courbe représentative de $x\mapsto ax^2$ est symétrique à celle de $x\mapsto -ax^2$ par rapport à l'axe des abscisses.	$y = ax^2$ $-2 \qquad 0 \qquad y = -ax^2$	
La courbe représentative de f est la même que celle de $x\mapsto ax^2$, mais translatée de c unités de longueur vers le haut.	$y = ax^{2} + c$ $y = ax^{2}$ Translation de c vers e haut $-2 -1 1 2$	

EXERCICE 5

On a tracé ci-contre la courbe représentative de la fonction carré $x \mapsto x^2$. Tracer à main levée l'allure de la courbe représentative de la fonction $x \mapsto -3x^2 = 0.5$. Décrire les différentes étapes

Tracer à main levée l'allure de la courbe représentative de la fonction $x \mapsto -3x^2 - 0,5$. Décrire les différentes étapes. **Étape 1.**

Étape 2. Étape 3.

Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonctions-second-degre/#correction-5.

4. Lien avec les racines

À RETENIR 99

Propriété

Soit $f: x \mapsto ax^2 + bx + c$ une fonction du second degré. Alors, f admet deux racines x_1 et x_2 si et seulement si \mathscr{C}_f admet deux points d'intersection avec l'axe des abscisses.

Dans ce cas, les coordonnées de ces points d'intersection sont $(x_1;0)$ et $(x_2;0)$. De plus, l'axe de symétrie vertical de f a pour équation $x=\frac{x_1+x_2}{2}$.

EXERCICE 6

On définit une fonction f du second degré sur \mathbb{R} par $f(x) = 3x^2 - 9x - 30$.

3. Donner les tableaux de signes et de variation de f.

Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonctions-second-degre/#correction-6.