JEE MAINS 2023 April 13 - Shift 1

EE24BTECH11061 - Rohith Sai

INTEGER TYPE

- 1) The sum to 20 terms of the series $2.2^2 3^2 + 2.4^2 5^2 + 2.6^2 \dots$ is equal to
- 2) Let the mean of the data

X	1	3	5	7	9
Frequency (f)	4	24	28	α	8

TABLE 2

be 5. If m and σ^2 are respectively the mean deviation about the mean and the variance of the data, then $\frac{3\alpha}{m+\sigma^2}$ is equal to

- 3) Let α be the constant term in the binomial expansion of $\left(\sqrt{x} \frac{6}{x^{\frac{3}{2}}}\right)^n$, $n \le 15$. If the sum of the coefficients of the remaining terms in the expansion is 649 and the coefficient of x^{-n} is $\lambda \alpha$, then λ is equal to
- 4) Let $\omega = z\overline{z} + k_1z + k_2\iota z + \lambda(1+\iota)$, $k_1, k_2 \in \mathbb{R}$. Let $Re(\omega) = 0$ be the circle of radius 1 in the first quadrant touching the line y = 1 and the y-axis. If the curve $Im(\omega) = 0$ intersects C at A and B, then $30(AB)^2$ is equal to
- 5) Let $\mathbf{a} = 3i + j k$ and $\mathbf{c} = 2i 3j + 3k$. If **b** is a vector such that $\mathbf{a} = \mathbf{b} \times \mathbf{c}$ and $|\mathbf{b}|^2 = 50$, then $|72 |\mathbf{b} + \mathbf{c}|^2|$ is equal to
- 6) Let m_1 and m_2 be the slopes of the tangents drawn from the point $\mathbf{P}(4,1)$ to the hyperbola $H: \frac{y^2}{25} \frac{x^2}{16} = 1$. If \mathbf{Q} is the point from which the tangents drawn to H have slopes m_1 and m_2 , and they make positive intercepts α and β on the x-axis, then $\frac{\langle \mathbf{PQ} \rangle^2}{\alpha\beta}$ is equal to
- 7) Let the image of the point $\left(\frac{5}{3}, \frac{5}{3}, \frac{8}{3}\right)$ in the plane x-2y+z-2=0 be **P**. If the distance of the point $\mathbf{Q}(6, -2, \alpha)$, $\alpha > 0$, from **P** is 13, then α is equal to
- 8) Let for $x \in \mathbb{R}$, $S_0(x) = x$, $S_k(x) = C_k x + k \int_0^x S_{k-1}(t)$, dt where $C_0 = 1$, $C_k = 1 \int_0^1 S_{k-1}(x)$, dx, k = 1, 2, 3, ... Then $S_2(3) + 6C_3$ is equal to
- 9) If $S = \{x \in \mathbb{R} : \sin^{-1}\left(\frac{x+1}{\sqrt{x^2+2x+2}}\right) \sin^{-1}\left(\frac{x}{\sqrt{x^2+1}}\right) = \frac{\pi}{4}\}$, then $\sum_{x \in \S} \left(\sin\left(\left(x^2+x+5\right)\frac{\pi}{2}\right)\right) \left(\cos\left(\left(x^2+x+5\right)\right)\pi\right)$ is equal to
- 10) The number of seven digit positive integers formed using the digits 1, 2, 3 and 4 only and sum of the digits equal to 12 is