

REPLACEMENT SHEET

FIG. 1

FIG. 2

FIG. 3

REPLACEMENT SHEET

Argument Map in DNA Strand ssarv2
from the '/v/lib/6mers' file.
Translation shown at open reading frames.

!-----
mboll-1 mboll-1 !----- !----- !----- !----- !----- !-----
binI binI aval-2 bgIII narI xmnl pstI
binI scal sacI afIII sacI
ecor5 hindIII

!-----
hindIII ahalIII pstI bstXI ahalIII apal
mboll-1 ava3 ahalIII hindIII mboll-1 avr2
mboll-1 sphI
pvull
pstI
pvull
tthIIII-2

!-----
mboll-2 mboll-1 mboll-1 scal ava3 tthIIII-2
mboll-1 bstXI ahalIII tthIIII-2
mboll-1 ball ecor5
bgIII bstXI
mboll-1 binI

!-----
binI bstXI mboll-1 ahalIII kpnl mboll-1
tthIIII-2 pvull mboll-1
hpaI ahalIII mboll-1
av3

!-----
kpnl mboll-1 bstXI mboll-1 afIII hindIII
scal pvull xmnl scal ahalIII mboll-1
ava3 ball
xbal binI

FIG. 4A

REPLACEMENT SHEET

```

!-----!-----!-----!-----!-----!-----!-----!
ndel avr2           avr2   mboll-1  ecor1  avr2   mboll-1
scal                         binI    aflll   ncol   mboll-1  xbal   sacl
                             avr2
                             ncol
!-----!-----!-----!-----!-----!-----!-----!
scal   mboll-1        ndel   binI   mboll-1  stu1   mboll-1
mboll-1                      ahalll  scal   mboll-1
                                bglll
                                pvull
!-----!-----!-----!-----!-----!-----!-----!
mboll-1        mstII   mboll-2   mboll-1  mstII   binI
mboll-1        mstII   mboll-1   mboll-1  binI   avr2
                                mboll-1
!-----!-----!-----!-----!-----!-----!-----!
mboll-1        aval-2   pstl    mboll-1  aval-1   ahal11
mboll-1        mboll-1
mboll-1        mboll-1
mboll-1        bglll
mboll-2
!-----!-----!-----!-----!-----!-----!-----!
ecor5   aval-2   pvull
mboll-1        bglll
binI      scal    sacl
                           aflll
                           hindlll

```

FIG. 4B

REPLACEMENT SHEET

1 CTGGAAGGGCTAATTGGTCCAAAGAACAGACAAGAGATCCTGATCTGTGGATCTACCACAC
 GACCTTCCCATTAAACCAGGGTTCTTCTGTTCTAGGAACCTAGACACCTAGATGGTGTG
 26 mbol1, 50 bin1,

63 ACAAGGCTACTTCCCTGATTGGCAGAATTACACACCAGGGCCAGGGATCAGATATCCACT
 TGTTCGATGAAGGGACTAACCGTCTTAATGTGTGGTCCCCTAGTCTATAGGTGA
 107 bin1, 113 ecor5,

123 GACCTTGATGGTGCTCAAGCTAGTACCAAGCTTAGTACGCCAGAGAAGGTAGAACAGGGCAA
 CTGGAAACCTACCACGAAGTTGATCATGGTCAACTCGGTCTTCCATCTCTCCGGTT
 172 mbol1,

183 TGAAGGAGAGAACAAACAGCTTGTACACCCATGAGCCTGCATGGGATGGAGGACGGGA
 ACTTCCCTCTTGTGTCGAACAATGTGGGATACTCGGACGTACCCCTACCTCTGCCT

243 GAAAGAAGTGTAGTGTGGAGGTTGACAGCAAACATGACATTTCATCACATGGCCCCGAGA
 CTTCTTCACAATCACACCTCAAACGTGCGTTGATCGTAAAGTAGTGTACCGGGCTCT
 296 aval,

303 GCTGCATCCGGAGTACTACAAAGACTGCTGACATCGAGCTTCTACAAGGGACTTCCGC
 CGACGTAGGCCTCATGATGTTCTGACGACTGTAGCTCGAAAGATGTTCCCTGAAAGGCG
 314 scal1,

363 TGGGGACTTCCAGGGAGGCCTGGCCTGGCGGGACTGGGAGTGGCGTCCCTCAGATGC
 ACCCTGAAAGGTCCCTCCGCACCGGACCCCTGACCCCTCACCGCAGGGAGTCTACG

423 TGCATATAAGCAGACTGCTTTGCCTGTACTGGGTCTCTGGTTAGACAGATCTGAG
 ACGTATATTGCTGACGAAAACGGACATGACCCAGAGAGACCAATCTGGCTAGACTC
 474 bgl11,

483 CCTGGGAGCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAGCTTGCCTT
 GGACCCCTCGAGAGACCGATTGATCCCTGGGTGACGAATTGGAGTTATTTCGAACGGAA
 488 sac1, 518 af111, 532 hind111,

543 GAGTGCTTCAAGTAGTGTGCCCCGTCTGTGTGACTCTGGTAACTAGAGATCCCTCA
 CTCACGAAGTTCATCACACACGGCAGACAACACACTGAGACCATTGATCTAGGGAGT

603 GACCTTTAGTCAGTGTGGAAAAATCTCTAGCAGTGGCGCCCGAACAGGGACGCGAAAG
 CTGGGAAAATCAGTCACACCTTTAGAGATCGTCAACCGGGCTTGTCCCTGCGCTTTC
 639 nar1,

663 CGAAAGTAGAACCAAGAGGGAGCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGCACAG
 GCTTCATTTGGTCTCCCTCGAGAGAGCTGCGTCTGAGCCGAACGACTTCGCGCGTGT
 680 sac1,

723 CAAGAGGCAGGGGCGGCAGTGGTAGTACGCCATTGGACTAGCGGAGGCTAGAAC
 GTTCTCCGCTCCCCGCCGCTGACCACTCATGCGGTTAAAAACTGATGCCCTCCGATCTTC
 MetGlyAlaArgAlaSerValLeuSerGlyGlyGluLeuAspLysTrpGlu GAG

783 GAGAGAGAGATGGGTGCGAGAGCGTCGGTATTAGCGGGGGAGAATTAGATAAAATGGGAA
 CTCTCTCTACCCACGCTCTCGCAGCCATAATTGCCCCCTTTAATCTATTACCCCT

FIG. 4C

REPLACEMENT SHEET

843 LysIleArgLeuArgProGlyGlyLysLysTyrLysLeuLysHisIleValTrpAla
 AAAATTCCGTTAACGGCCAGGGGGAAAGAAAAAATATAAGTTAAAACATATAGTATGGGCA
 TTTAAGCCAATTCCGGTCCCCCTTCTTTTATATTCAATTGTATATCATAACCGT

 903 SerArgGluLeuGluArgPheAlaValAsnProGlyLeuLeuGluThrSerGluGlyCys
 AGCAGGGAGCTAGAACGATTTCGAGTCATCCTGGCCTGTTAGAAACATCAGAAGGCTGC
 TCGTCCCTCGATCTTGCTAACGCTAGTTAGGACCGGACAATCTTGTAGTCTTCCGAC
 959 pst1,

 963 ArgGlnIleLeuGlyGlnLeuGlnProSerLeuGlnThrGlySerGluGluLeuArgSer
 AGACAAATATTGGGACAGCTACAGCCATCCCTCAGACAGGATCAGAAGAACTTAGATCA
 TCTGTTATAACCCTGTCATGTCGGTAGGGAAGTCTGTCTAGTCTTGAATCTAGT
 1002 binI, 1008 mboll,

 1023 LeuTyrAsnThrValAlaThrLeuTyrCysValHisGlnArgIleAspValLysAspThr
 TTATATAATACAGTAGCAACCTCTATTGTGTACATCAAAGGATAGATGTAAGAACACC
 AATATATTATGTCATCGTTGGGAGATAACACATGTAGTTCCATCTACATTTCTGTGG

 1083 LysGluAlaLeuGluLysIleGluGluGluGlnAsnLysSerLysLysLysAlaGlnGln
 AAGGAAGCTTAGAGAAGATAGAGGAAGAGCAAAACAAAGTAAGAAAAAGGCACAGCAA
 TTCCCTCGAAATCTCTCTATCTCCTCTCGTTTGTCTTCAATTCTTTCCGTGTCGTT
 1087 hindIII, 1097 mboll, 1107 mboll, p25

 1143 AlaAlaAlaAlaAlaGlyThrGlyAsnSerSerGlnValSerGlnAsnTyrProIleVal
 GCAGCAGCTGCAGCTGGCACAGGAAACAGCAGCCAGGTAGCCAAAATTACCCCTATAGTG
 CGTCGTCGACGTCGACCGTGTCCCTTGTGTCGGTCCAGTCGGTTTAATGGGATATCAC
 1147 puv11, 1150 pst1, 1153 puv11, 1156 tthIII,

 1203 GlnAsnLeuGlnGlyGlnMetValHisGlnAlaIleSerProArgThrLeuAsnAlaTrp
 CAGAACCTACAGGGGCAAATGGTACATCAGGCCATATCACCTAGAACCTTAAATGCATGG
 GTCTGGATGTCGGTACCATGTAGTCCGGTATAGTGGATCTGAAATTACGTACC
 1250 aha111, 1255 ava3,

 1263 ValLysValValGluGluLysAlaPheSerProGluValIleProMetPheSerAlaLeu
 GTAAAAGTAGTAGAAGAAAAGGCTTCAGCCCAGAAGTAATACCATGTTTCAGCATTA
 CATTTTCATCATCTTCTTTCCGAAAGTCGGTCTTCATTATGGGTACAAAGTCGTAAT
 1275 mboll,

 1323 SerGluGlyAlaThrProGlnAspLeuAsnThrMetLeuAsnThrValGlyGlyHisGln
 TCAGAAGGAGCCACCCCACAAGATTAAACACCATGCTAACACACAGTGGGGGACATCAA
 AGTCTCTCGGTGGGTGTTCTAAATTGTGGTACGATTGTGTCACCCCTGTAGTT
 1346 aha111,

 1383 AlaAlaMetGlnMetLeuLysGluThrIleAsnGluGluAlaAlaGluTrpAspArgVal
 GCAGCCATGAAATGTTAAAGAGACTATCAATGAGGAAGCTGCAGAATGGGATAGAGTG
 CGTCGGTACGTTACAATTCTGATAGTTACTCCTCGACGTCTACCCCTATCTCAC
 1423 pst1,

 1443 HisProValHisAlaGlyProIleAlaProGlyGlnMetArgGluProArgGlySerAsp
 CATCCAGTGCATGCAGGGCTATTGCACCAAGGCCAAATGAGAGAACCAAGGGAAAGTGA
 GTAGGTACGTACGTCCGGATAACGTGGTCCGGTTACTCTGGTCCCGTCACTG
 1451 sph1,

FIG. 4D

REPLACEMENT SHEET

1503 IleAlaGlyThrThrSerThrLeuGlnGluGlnIleGlyTrpMetThrAsnAsnProPro
 ATAGCAGGAACACTACTAGTACCCCTCAGGAACAAATAGGATGGATGACAAATAATCCACCT
 TATCGTCCTTGATGATCATGGAAAGTCCTGTTATCCTACCTACTGTTATTAGGTGGA

1563 IleProValGlyGluleTyrLysArgTrpIleIleLeuGlyLeuAsnLysIleValArg
 ATCCCAGTAGGGAGAAATCTATAAAAGATGGATAATCCTGGGATTAAATAAAATAGTAAGA
 TAGGGTCATCCTCTTGTAGATATTTCTACCTATTAGGACCCATAATTATTTATCATTCT

1623 MetTyrSerProThrSerIleLeuAspIleArgGlnGlyProLysGluProPheArgAsp
 ATGTATAGCCCTACCAGCATTCTGGACATAAGACAAGGACCAAAGGAACCCCTTAGAGAT
 TACATATCGGGATGGTCGTAAGACCTGTATTCTGGTCTGGTTCTGGAAATCTCTA

1636 bstXI,

1683 TyrValAspArgPheTyrLysThrLeuArgAlaGluGlnAlaSerGlnAspValLysAsn
 TATGTAGACCGGTTCTATAAAACTCTAAGAGCCGAAAGCCTCACAGGATGTAAGAAAAT
 ATACATCTGGCAAGATATTTGAGATTCTGGCTTGTCAAGTGTCTACATTTTA

1720 hindIII,

1743 TrpMetThrGluThrLeuLeuValGlnAsnAlaAsnProAspCysLysThrIleLeuLys
 TGGATGACAGAAACCTTGTGTCAAAATGCAAACCCAGATTGTAAGACTATTTAAAAA
 ACCTACTGTCTTGGAACACCAGGTTTACGTTGGTCTAACATTCTGATAAAATTTT

1796 aha111,

1803 AlaLeuGlyProAlaAlaThrLeuGluGluMetMetThrAlaCysGlnGlyValGlyGly
 GCATTGGGACCAGCAGCTACACTAGAAGAAATGATGACAGCATGTCAGGGAGTGGGGGA
 CGTAACCCCTGGTCGATGTGATCTTCTTACTACTGTCGTACAGTCCTCACCCCCCT

1827 mbol1,

1863 ProGlyHisLysAlaArgVALLeuAlaGluAlaMetSerGlnVALThrAsnProAlaAsn
 CCCGGCCATAAAAGCAAGAGTTTGGCTGAAGCCATGAGCCAAGTAACAAATCCAGCTAAC
 GGGCCGGTATTCGTTCTCAAAACCGACTTCGGTACTCGGTTATTGTTAGGTCGATTG

p18

1923 IleMetMetGlnArgGlyAsnPheArgAsnGlnArgLysThrValLysCysPheAsnCys
 ATAATGATGCAGAGAGGCATTTAGGAACCAAAGAAAGACTGTTAAGTGTTCATTGT
 TATTACTACGTCTCCGTTAAATCCTGGTTCTTGACAATTACAAGTTAAC

1983 GlyLysGluGlyHisIleAlaLysAsnCysArgAlaProArgLysLysGlyCysTrpArg
 GGCAAAGAAGGGCACATAGCCAAAATTGCAAGGGCCCTAGGAAAAGGGCTGTTGGAGA
 CCGTTCTCCGTATCGGTTAAACGTCCGGGATCCTTTCCGACAACCTCT

2014 apa1, 2019 avr2,

2043 CysGlyArgGluGlyHisGlnMetLysAspCysThrGluArgGlnAlaAsnPheLeuGly
 TGTGGAAGGGAGGGACACCAAATGAAAGATTGCACTGAGAGACAGGCTAATTTTTAGGG
 ACACCTTCCTTCTGTGGTTACTTCTAACGTGACTCTGTCCGATTAAAAATCCC

2102 mbol1,

2103 LysIleTrpProSerTyrLysGlyArgProGlyAsnPheLeuGlnSerArgProGluPro
 AAGATCTGGCCTTCTACAAGGGAGGCCAGGGATTTCAGAGCAGACCAAGGCCA
 TTCTAGACCGGAAGGGATGTTCCCTCCGGTCCCTAAAGAAGTCTCGTCTGGTCTCGGT

2104 bg111, 2141 mbol1,

FIG. 4E

REPLACEMENT SHEET

2163 ThrAlaProProGluGluSerPheArgPheGlyGluGluLysThrThrProSerGlnLys
 ACAGCCCCACCAGAAGAGAGCTCAGGTTGGGGAGGAGAAAACAACCTCCCTCTCAGAAC
 TGTCGGGGTGGT_xCTCTCGAACGTCAAACCCCTCCTCTTGAGGGAGAGTCTTC
 2175 mb011,
 2223 GlnGluProIleAspLysGluLeuTyrProLeuThrSerLeuArgSerLeuPheGlyAsn
 CAGGAGCCGATAGACAAGGAACTGTATCCTTAACCTCCCTCAGATCACTCTTGGCAAC
 GTCCCTGGCTATCTGTTCTGACATAGGAAATTGAAGGGAGTCTAGTGAGAAACCGTTG
 2283 AspProSerSerGlnOC
 GACCCCTCGTCACAATAAGGATAGGGGGGCAACTAAAGGAAGCTCTATTAGATAACAGGA
 CTGGGGAGCAGTGTATTCCATCCCCCGTTGATTTCCTCGAGATAATCTATGTCTC
 2342 GCAGATGATACAGTATTAGAAGAAATGAATTGCCAGGAAAATGAAACCAAAATGATA
 MetAsnLeuProGlyLysTrpLysProLysMetIle
 CGTCTACTATGTCTAAAT_xCTTCTTACTTAAACGGTCCTTACCTTGGTTTACTAT
 2360 mb011, 2375 bstXI,
 2402 GlyGlyIleGlyGlyPheIleLysValArgGlnTyrAspGlnIleProValGluIleCys
 GGGGGAATTGGAGGTTTATCAAAGTAAGACAGTACGATCAGATACCTGTAGAAATCTGT
 CCCCTTAACCTCCAAAATAGTTCATCTGTCTAGTCTATGGACATCTTAGACA
 2462 GlyHisLysAlaIleGlyThrValLeuValGlyProThrProValAsnIleIleGlyArg
 GGACATAAAGCTATAGGTACAGTATTAGTAGGGACCTACACCTGTCAACATAATTGGAAGA
 CCTGTATTCGATATCCATGTCTAAATCATCCTGGATGTGGACAGTTGTATTAAACCTCT
 2517 mb011,
 2522 AsnLeuLeuThrGlnIleGlyCysThrLeuAsnPheProIleSerProIleGluThrVal
 AATCTGTTGACTCAGATTGGTTGACTTTAAATTCCCCTTACCTGCTATTGAAACTGTA
 TTAGACAACTGAGTCTAACCAACATG_xAAATTAAAGGGTAATCAGGATAACTTGACAT
 2548 ahal11, 2577 tthIII1,
 2582 ProValLysLeuLysProGlyMetAspGlyProLysValLysGlnTrpProLeuThrGlu
 CCAGTAAAATTAAAGCAGGAATGGATGGCCAAAAGTTAACGAAATGGCCATTGACAGAA
 GGTCTTTAATTTCGGTCCTTACCTACCGGGTTTCAATTGTT_xACCGGTAACGTGCT
 2627 ball, 2639 mb011,
 2642 GluLysIleLysAlaLeuValGluIleCysThrGluMetGluLysGluGlyLysIleSer
 GAAAAAAATAAAAGCATAGTAGAGATATGTACAGAAATGGAAAAGGAAGGGAAAATTCA
 CTTTTTATTTCGTAATCATCTCTACATGTCTTACCTTTCCCTTAAAGT
 2702 LysIleGlyProGluAsnProTyrAsnThrProValPheAlaIleLysLysAspSer
 AAAATTGGGCCTGAAAATCCATACAATACTCCAGTATTGCTATAAGAAAAAGACAGT
 TTTAACCCGGACTTTAGGTATGTTAGGTCATAAACGATAATTCTTTCTGTC
 2759 scal,
 2762 ThrLysTrpArgLysLeuValAspPheArgGluLeuAsnLysArgThrGlnAspPheTrp
 ACTAAATGGAGAAAATAGTAGATTTCAGAGAACCTAATAAGAAACTCAAGACTTCTGG
 TGATTACCTTTGATCATCTAAAGTCTTGAATTATTTCTTGAGTTCTGAAGACC
 2822 GluValGlnLeuGlyIleProHisProGlnGlyOC
 GAAGTTCAAGTCTTATGGTGTGGCGTCCAAATTCTTTAGTCATTGTCAT

FIG. 4F

REPLACEMENT SHEET

2882 TTGGATGTGGGTGATGCATACTTTCAGTCCCTAGATAAAGACTTAGAAAGTATACTG
AACCTACACCCACTACGTATGAAAAGTCAAGGGATCTATTCTGAAATCTTCATATGAC
2895 ava3,

2943 CATTACCATACTAGTATAAACATGAGACACCAGGGATTAGATATCAGTACAATGTGG
GTAATGGTATGGATCATATTGTTACTCTGGTCCCTAATCTATAGTCATGTTACACC
2985 ecor5,

3003 LeuProGlnGlyTrpLysGlySerProAlaIlePheGlnSerSerMetThrLysIleLeu
CTGCCACAGGGATGGAAAGGATCACAGCAATATTCAAAGTAGCATGACAAAAATCTTA
GACGGTGTCCCTACCTTCTAGTGGTCGTATAAGGTTCATCGTACTGTTTTAGAAT
3003 tthIIII, 3006 bstXI, 3021 binI,

3063 GluProPheArgLysGlnAsnProAspIleValIleTyrGlnTyrMetAspAspLeuTyr
GAGCCTTTAGAAAAACAGAACATCCAGACATAGTTATCTATCAATACATGGATGATTGTAT
CTCGGAAAATCTTTGTCTTAGGTCTGTATCAATAGATAGTTATGTACCTACTAAACATA

3123 ValGlySerAspLeuGluIleGlyGlnHisArgThrLysIleGluGluLeuArgGlnHis
GTAGGATCTGACTTAGAAATAGGGCAGCATAGAACAAAAATAGAGGAACGTGAGACAGCAT
CATCCTAGACTGAATCTTATCCCGTCGTATCTGTTTTATCTCCTTGACTCTGTCGA
3126 binI, 3171 tthIIII,

3183 LeuLeuArgTrpGlyPheThrThrProAspLysLysHisGlnLysGluProProPheLeu
CTGTTGAGGTGGGGATTACACACCCAGACAAAAACATCAGAAAGAACCTCCATTCTT
GACAACCTCCACCCCTAAATGGTGTGGCTGTTTTGTAGTCTTCTTGAGGTAAGGAA
3234 bstXI,

3243 TrpMetGlyTyrGluLeuHisProAspLysTrpThrValGlnProIleMetLeuProGlu
TGGATGGGTTATGAACCTCCATCCTGATAAAATGGACAGTACAGCCTATAATGCTGCCAGAA
ACCTACCCAAATACTTGAGGTAGGACTATTACCTGTATGTCGGATATTACGACGGTCTT

3303 LysAspSerTrpThrValAsnAspIleGlnLysLeuValGlyLysLeuAsnTrpAlaSer
AAAGACAGCTGGACTGTCAATGACATACAGAAGTTAGTGGAAATTGAATTGGCAAGT
TTCTGTCGACCTGACAGTTACTGTATGTCATACCCCTTTAACCTAACCGTTCA
3308 pvuI,

3363 GlnIleTyrAlaGlyIleLysValLysGlnLeuCysLysLeuLeuArgGlyThrLysAla
CAGATTATGCAGGGATTAAAGTAAAGCAGTTATGTAACCTCTAGAGGAACAAAGCA
GTCTAAATACGTCCTAAATTCTTCGTCAATACATTGAGGAATCTCTGGTTCTCGT

3423 LeuThrGluValIleProLeuThrGluGluAlaGluLeuGluLeuAlaGluAsnArgGlu
CTAACAGAAGTAATACCAACTAACAGAAGAAGCAGAGCTAGAACTGGCAGAAAACAGGGAG
GATTGTCTTCATTATGGTATTGTCTTCTCGTCTCGATCTGACCGTCTTGTCCCTC
3447 mboll,

3483 IleLeuLysGluProValHisGluValTyrTyrAspProSerLysAspLeuValAlaGlu
ATTCTAAAAGAACCACTACATGAAGTATATTGACCCATCAAAGACTTAGTAGCAGAA
TAAGATTTCTGGTCATGACTTCATATAACTGGTAGTTCTGAATCATCGTCTT

3543 IleGlnLysGlnGlyGlnGlyGlnTrpThrTyrGlnIleTyrGlnGluProPheLysAsn
ATACAGAAGCAGGGCAAGGCCATGGACATATCAAATTATCAAGAGGCCATTAAAAAT
TATGTCTCGTCCCCGTTCCGGTTACCTGTATAGTTAAATAGTTCTCGGTAATTTTA
3594 ahal11,

FIG. 4G

REPLACEMENT SHEET

3603 LeuLysThrGlyLysTyrAlaArgMetArgGlyAlaHisThrAsnAspValLysGlnLeu
 CTGAAACAGGAAAGTATGCAAGGATGAGGGGTGCCAACACTAATGATG^AAAACAGTTA
 GACTTTGTCTTCATACTCCCCACGGGTGTGATTACTACATTGTCAT
 3659 hpa1,
 3663 ThrGluAlaValGlnLysValSerThrGluSerIleValIleTrpGlyLysIleProLys
 ACAGAGGCAGTGCAAAAAGTATCCACAGAAAGCATAGTAATATGGGAAAGATTCTAA
 TGTCTCGTCACGTTTCATAGGTGTCTTCGTATCATTATACCCCTTCTAAGGATT
 3723 PheLysLeuProIleGlnLysGluThrTrpGluAlaTrpTrpMetGluTyrTrpGlnAla
 TTTAAACTACCCATACAAAAGGAAACATGGGAAGCATGGTGGATGGAGTATTGGCAAGCT
 AAATTGATGGGTATGTTCTTGTACCCCTCGTACCACCTACCTCATAACCGTCGA
 3723 ahal11,
 3783 ThrTrpIleProGluTrpGluPheValAsnThrProProLeuValLysLeuTrpTyrGln
 ACCTGGATTCTGAGTGGGAGTTGTCAATACCCCTCCCTAGTGAAATTATGGTACCA
 TGGACCTAAGGACTCACCCCTAAACAGTTATGGGGAGGGAAACTTAATAACCATGGTC
 3835 kpn1,
 3843 LeuGluLysGluProIleValGlyAlaGluThrPheTyrValAspGlyAlaAlaAsnArg
 TTAGAGAAAGAACCCATAGTAGGAGCAGAAACTTCTATGTAGATGGGCAGCTAATAGG
 AATCTCTTCTGGGTATCATCCTCGTCTTGTAAAGATACTACCCCGTCGATTATCC
 3903 GluThrLysLeuGlyLysAlaGlyTyrValThrAspArgGlyArgGlnLysValValSer
 GAGACTAAATTAGGAAAAGCAGGATATGTTACTGACAGAGGAAGACAAAAAGTTGTC
 CTCTGATTTATCCTTCTCGTCTATAACATGACTGTCCTCTGTTTCAACAGAGG
 3943 mboll,
 3963 IleAlaAspThrThrAsnGlnLysThrGluLeuGlnAlaIleHisLeuAlaLeuGlnAsp
 ATAGCTGACACAACAAATCAGAAGACTGAATTACAAGCAATTCTAGCTTGCAGGAT
 TATCGACTGTGTTAGTCTCTGACTTAATGTTCTGTTAAGTAGATCGAACGTCCTA
 3983 mboll,
 4023 SerGlyLeuGluValAsnIleValThrAspSerGlnTyrAlaLeuGlyIleIleGlnAla
 TCGGGATTAGAAGTAAACATAGTAACAGACTCACAAATATGCATTAGGAATCATTCAAGCA
 AGCCCTAACCTTCATTGTATCATTGTCTGAGTGT^ATACGTAATCCTTAGTAAGTC
 4060 ava3,
 4083 GlnProAspLysSerGluSerGluLeuValSerGlnIleIleGluGlnLeuIleLysLys
 CAACCAGATAAGAGTGAATCAGAGTTAGTCAGTCAAATAATAGAGCAGTTAATAAAAAG
 GTTGGTCTATTCTCACTTAGTCTCAATCAGTCAGTTATTATCTCGTCAATTATTTTC
 4143 GluLysValTyrLeuAlaTrpValProAlaHisLysGlyIleGlyGlyAsnGluGlnVal
 GAAAAGGTCTACCTGGCATGGGACCAGCACACAAAGGAATTGGAGGAAATGAACAGTA
 CTTTCCAGATGGACCCTACCCATGGTCGTGTTCTTAACCTCCTTACTTGTTCAT
 4163 kpn1,
 4203 AspLysLeuValSerAlaGlyIleArgLysValLeuPheLeuAsnGlyIleAspLysAla
 GATAAAATTAGTCAGTGCTGGAATCAGGAAAGTACTATTTGAATGGAATAGATAAGGCC
 CTATTTAATCAGTCACGACCTTAGTCCTTACGATAAAAACCTACCTTATCTATTCCGG
 4232 scal,

FIG. 4H

REPLACEMENT SHEET

4263 GlnGluGluHisGluLysTyrHisSerAsnTrpArgAlaMetAlaSerAspPheAsnLeu
 CAAGAAGAACATGAGAAATATCACAGTAATTGGAGAGCAATGGCTAGTGATTAAACCTG
 GTTCTTCTTGTACTCTTATAGTGTCACTAACCTCTCGTTACCGATCACTAAAATTGGAC
 4266 mboll,

4323 ProProValValAlaLysGluIleValAlaSerCysAspLysCysCysGlnLeuLysGlyGlu
 CCACCTGTAGTAGCAAAGAAATAGTAGCCAGCTGTGATAATGTCAGCTAAAGGAGAA
 GGTGGACATCATCGTTCTTATCATCGGTCGACACTATTTACAGTCGATTTCCTCTT
 4352 pnull,

4383 AlaMetHisGlyGlnValAspCysSerProGlyIleTrpGlnLeuAspCysThrHisLeu
 GCCATGCATGGACAAGTAGCTAGTCCAGGAATATGGCAACTAGATTGTACACATCTA
 CGGTACGTACCTGTTCATCTGACATCAGGTCTTATACC GTT GATCTAACATGTGTA
 4386 ava3, 4410 bstXI, 4439 xbaI,

4443 GluGlyLysIleIleLeuValAlaValHisValAlaSerGlyTyrIleGluAlaGluVal
 GAAGGAAAAATTATCCTGGTAGCAGTTAGTCCAGGAATATAGAAGCAGAAGTT
 CTTCCTTTAAAGGACCATCGTCAAGTACATCGGTACCTATATCTCGTCCAA
 4497 xmn1,

4503 IleProAlaGluThrGlyGlnGluThrAlaTyrPheLeuLeuLysLeuAlaGlyArgTrp
 ATTCCAGCAGAGACAGGGCAGGAACAGCATATTTCTCTAAATTAGCAGGAAGATGG
 TAAGGTCGTCTCTGTCCGTCTTGTGTATAAAAGAGAATTAAATCGTCCTTCTACC
 4555 mboll, 4560 ball,

4563 ProValLysThrIleHisThrAspAsnGlySerAsnPheThrSerThrThrValLysAla
 CCAGTAAAAACAATACATACAGACAATGGCAGCAATTTCACCAGTACTACGGTTAAGGCC
 GGTCATTTGTATGTATGTCTGTTACCGTGTAAAGTGGTATGATGCCATTCCGG
 4605 scal,

4623 AlaCysTrpTrpAlaGlyIleLysGlnGluPheGlyIleProTyrAsnProGlnSerGln
 GCCTGTTGGTGGGCAGGGATCAAGCAGGAATTGGCATTCCCTACAATCCCCAAAGTC
 CGGACAACCACCGTCCCTAGTTCGTCTAAACGTAAGGGATGTTAGGGGTTTCAGTT
 4639 binI,

4683 GlyValValGluSerMetAsnAsnGluLeuLysLysIleIleGlyGlnValArgAspGln
 GGAGTAGTAGAATCTATGAATAATGAATTAAAGAAAATTATAGGACAGGTAAAGAGATCAG
 CCTCATCATCTTAGATACTTATTACTTAATTCTTTAATATCCTGTCCATTCTCTAGTC

4743 AlaGluHisLeuLysThrAlaValGlnMetAlaValPheIleHisAsnPheLysArgLys
 GCTGAACACCTTAAGACAGCAGTACAAATGGCAGTATTCACAATTAAAGAAAA
 CGACTTGGGAATTCTGTGTCACTGTTACCGTCATAAGTAGGTGTAAATTTCTTT
 4752 alf11, 4791 ahall11,

4803 GlyGlyIleGlyGlyTyrSerAlaGlyGluArgIleValAspIleIleAlaThrAspIle
 GGGGGGATTGGGGGATACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATA
 CCCCCCTAACCCCTATGTCACGTCCCTTCTTATCATCTGTATTATCGTTGTCTGTAT

4863 GlnThrLysGluLeuGlnLysGlnIleThrLysIleGlnAsnPheArgValTyrTyrArg
 CAAACTAAAGAAACTACAAAAGCAAATTACAAAATTCAATTTCGGGTTTATTACAGG
 GTTGATTCTGTGTTAGTTAAGTTAAAAGCCAAATAATGTCC

FIG. 41

REPLACEMENT SHEET

4923 AspAsnLysAspProLeuTrpLysGlyProAlaLysLeuLeuTrpLysGlyGluGlyAla
 GACAACAAAGATCCCCTTGGAAAGGACCAGCAAAGCTCTGGAAAGGTGAAGGGGGCA
 CTGTTGTTCTAGGGAAACCTTCCTGGCGTTCGAAGAGACCTTCACTTCCCCGT

4956 hindIII,

4983 ValValIleGlnAspAsnSerAspIleLysValValProArgArgLysAlaLysIleIle
 GTAGTAATAACAGATAATAGTGACATAAAAGTAGTGCCAGAAGAAAAGCAAAAATCATT
 CATCATTATGTTCTATTACTGTATTTCATCACGGTTCTCTTTGTTAGTAA

5023 mbolI,

5043 MetGluAsnArgTrpGlnValMetIleValTrpGlnValAspArgMetArgIle
 ArgAspTyrGlyLysGlnMetAlaGlyAspAspCysValAlaSerArgGlnAspGluAsp
 AGGGATTATGGAAAAACAGATGGCAGGTGATGATTGTGGCAAGTAGACAGGATGAGGGAT
 TCCCTAACCTTTGTCTACCGTCCACTACTAACACACCGTCATCTGCCACTCCTA

5103 ArgTreTrpLysSerLeuValLysHisHisMetTyrIleSerLysLysAlaLysGlyTrp
 AM
 TAGAACATGGAAAAGTTAGTAAAACACCATATGTATATTCAAAGAAAGCTAAAGGATGG
 ATCTTGTACCTTTCAAATCATTTGTGGTACATATAAAAGTTCTTCGATTTCTTAC

5131 ndeI,

5163 PheTyrArgHisHisTyrGluSerThrHisProArgValSerSerGluValHisIle
 TTTTATAGACATCACTATGAAAGTACTCATCCAAGAGTAAGTTCAGAAGTACACATC
 AAAATATCTGTAGTGTACATTCTGAGTAGGTTCTCATTCAAGTCTCATGTGTAG

5185 scalI,

5221 ProLeuGlyAspAlaLysLeuValIleThrThrTyrTrpGlyLeuHisThrGlyGluArg
 CCCCTAGGGGATGCTAAATTGGTAATAACACATATTGGGGTCTGCATACAGGAGAAAGA
 GGGGATCCCCTACGATTAAACCATTATTGTTGATAACCCCAGACGTATGTCCTTTCT

5223 avr2,

5281 GluTrpHisLeuGlyGlnGlyValAlaIleGluTrpArgLysLysLysTyrSerThrGln
 GAATGGCATTGGGCCAGGGAGTCGCCATAGAATGGAGGAAAAGAAATATAGCACACAA
 CTTACCGTAAACCGGTCCCTCAGCGGTATCTTACCTCCTTTCTTATATCGTGTGTT

5341 ValAspProGlyLeuAlaAspGlnLeuIleHisLeuHisTyrPheAspCysPheSerGlu
 GTAGACCCCTGGCCTAGCAGACCAACTAATTCACTGCATTATTGATTGTTTTCAGAA
 CATCTGGGACCGGATCGTCTGGTGTAAAGTAGACGTAAACAAACTAACAAAAAGCTT

5401 SerAlaIleLysAsnAlaIleLeuGlyTyrArgValSerProArgCysGluTyrGlnAla
 TCTGCTATAAAAATGCCATTAGGATAAGAGTTAGTCTAGGTGTGAATATCAAGCA
 AGACGATATTTCACGGTATAATCCTATATCTCAATCAGGATCCACACTTATAGTCGT

5440 avr2,

5461 GlyHisAsnLysValGlySerLeuGlnTyrLeuAlaLeuAlaLeuIleThrProLys
 GGACATAACAAGGTAGGATCTCTACAATACTTGGCACTAGCAGCATTAAACACCAAAA
 CCTGTATTGTTCCATCCTAGAGATGTTAGAACCGTGATCGTCGTAAATTATTGTGGTTT

5476 binI,

5521 LysThrLysProProLeuProSerValLysLysLeuThrGluAspArgTrpAsnLysPro
 AAGACAAAGCCACCTTGCCTAGTGTAAAGAAACTGACAGAGGATAGATGGAACAAGCCC
 TTCTGTTCGGTGGAAACGGATCACAATTCTTGACTGTCTCCTATCTACCTTGTTCGGG

FIG. 4J

REPLACEMENT SHEET

5581 GlnLysThrLysGlyHisArgGlySerHisThrMetAsnGlyHisAM
 CAGAAGACCAAGGGCACAGAGGGAGCCATACAATGAATGGACTAGAGCTTTAGAGG
 GTCTTCTGGTCCCAGGTCTCCCTCGGTATGTTACCTGTGATCTGAAAATCTCC

5583 mbo11,

5641 AGCTTAAGAGAGAACGCTGTTAGACATTTCTAGGCCATGGCTCCATAGCTTAGGACAAAT
 TCGAATTCTCTTCGACAATCTGAAAAGGATCCGGTACCGAGGTATCGAATCCTGTTA

5643 af111, 5670 avr2, 5676 ncol,

5701 ATATCTATGAAACTTATGGGGATACTTGGGCAGGAGTGGAAAGCCATAATAAGAATTCTGC
 TATAGATACTTGAATACCCCTATGAACCCGTCTCACCTCGGTATTATTCTTAAGACG

5752 ecor1,

5761 AACAACTGCTTTATTCACTTCAGAATTGGGTGTCAACATAGCAGAACATAGGCATTATTC
 TTGTTGACGACAAATAAGTAAAGTCTTAACCCACAGTTGATCGTCTTATCCGTAATAAG

5821 AACAGAGGAGAGCAAGAAGAAATGGAGCCAGTAGATCCTAATCTAGAGCCTGGAAAGCAT
 TTGTCCTCTCGTTCTTACCTCGGTATCTAGGATTAGATCTCGGACCTCGTA

5836 mbo11, 5862 xba1,

5881 CCAGGAAGTCAGCCTAGGACTGCTGTAACAATTGCTATTGAAAAAGTGGCTTTCAT
 GGTCTTCAGTCGGATCCTGACGAACATTGTTAACGATAACATTTCACAACGAAAGTA

5893 avr2,

5941 TGCTACCGCGTGTTCACAAGAAAAGGCTAGGCATCTCCTATGGCAGGAAGAACGGAGA
 ACGATGCGCACAAAGTGTCTTCCGAATCCGTAGAGGATACCGTCTTCTCGCCTCT

5945 mlu1, 5988 mbo11,

6001 CAGCGACGAAGAGCTCCTCAGGACAGTCAGACTCATCAAGCTTCTATCAAAGCAGTAA
 GTCGCTCTCGAGGAGTCCTGTCAGTCTGAGTAGTTGAAGAGATAGTTCGTCATT

6008 mbo11, 6011 sac1, 6016 mstII, 6038 hindIII,

6061 GTAGTAAATGTAATGCAATCTTACAAATATTAGCAATAGTATCATTAGTAGTAGCA
 CATCATTACATTAGTTAGAAATGTTATAATCGTTATCATAGTAATCATCATCGT

6121 ATAATAGCAATAGTTGTGGACCATAGTACTCATAGAATATAGGAAAATATTAAGACAA
 TATTATCGTTATCAACACACCTGGTATCATGAGTATCTTATATCCTTTATAATTCTGTT

6147 sca1,

6181 AGAAAATAGACAGATTAATTGATAGAATAAGAGAAAAAGCAGAACAGCTGGCAATGAAA
 TCTTTATCTGTCTAACTATCTTATTCTCTTCTGTCTGTACCGTTACTTT

MetLys ENV

6222 mbo11,

6241 ValLysGlyThrArgArgAsnTyrGlnHisLeuTrpArgTrpGlyThrLeuLeuLeuGly
 GTGAAGGGGACCAGGAGGAATTATCAGCACTTGTGGAGATGGGGCACCTTGCTCCTGGG
 CACTTCCCTGGTCTCCTTAATAGTCGTAAACACCTCTACCCGTGGAACGAGGAACCC

6301 MetLeuMetIleCysSerAlaThrGluLysLeuTrpValThrValTyrTyrGlyValPro
 ATGTTGATGATCTGTAGTGCTACAGAAAAATTGTGGGTACAGTTATTATGGAGTACCT
 TACAACACTAGACATCACGATGTCTTTAACACCCAGTGTCAAATAACCTCATGGA

FIG. 4K

REPLACEMENT SHEET

6361 ValTrpLysGluAlaThrThrLeuPheCysAlaSerAspAlaArgAlaTyrAspThr
 GTGTGGAAAGAAGCAACTACCACTCTATTGTGCATCAGATGCTAGAGCATATGATA
 CACACCTTCTCGTTGAGATAAAACACGTAGTCTACGATCTCGTATACTATGT
 6410 ndel,
 GluValHisAsnValTrpAlaThrHisAlaCysValProThrAspProAsnProGlnGlu
 6421 GAGGTACATAATGTTGGCCACACATGCTGTACCCACAGACCCCAACCCACAAGAA
 CTCCATGTATTACAAACCCGGTGTGTACGACACATGGGTGTCTGGGTTGGTCTT
 ValValLeuGlyAsnValThrGluAsnPheAsnMetTrpLysAsnAsnMetValGluGln
 6481 GTAGTATTGGGAAATGTGACAGAAAATTAAACATGTGGAAAAATAACATGGTAGAACAG
 CATCATAACCCTTACACTGTCTTTAAAATTGTACACCTTTATTGTACCATCTGTC
 MetGlnGluAspIleIleSerLeuTrpAspGlnSerLeuLysProCysValLysLeuThr
 6541 ATGCAGGAGGATATAATCAGTTATGGGATCAAAGCCTAAAGCCATGTGAAAATTAAAC
 TACGTCTCCTATATTAGTCAAATAC^{CC}TAGTTGGATTTCGGTACACATTAAATTGG
 6567 binI,
 ProLeuCysValThrLeuAsnCysThrAspLeuGlyLysAlaThrAsnThrAsnSerSer
 6601 CCACTCTGTGTTACTTTAAATTGCACTGATTGGGAAGGCTACTAATACCAATAGTAGT
 GGTGAGACACAATGA^{AA}TTAACGTGACTAAACCCCTCCGATGATTATGGTTATCATCA
 6615 ahal11,
 AsnTrpLysGluGluIleLysGlyGluIleLysAsnCysSerPheAsnIleThrThrSer
 6661 AATTGGAAAGAAGAAATAAAAGGAGAAATAAAACTGCTCTTCAATATCACCACAAGC
 TTAAACCTT^{CT}CTTATTTCCTCTTATTGGTACGAGAAAGTTAGTGGTCTCG
 6670 mbo11,
 IleArgAspLysIleGlnLysGluAsnAlaLeuPheArgAsnLeuAspValValProIle
 6721 ATAAGAGATAAGATTCA^GAAAAGAAAATGCACTTTTCGTAACCTGATGTAGTACCAATA
 TATTCTCTATTCTAACGTCTTACGTGAAAAGCATTGGAACTACATCATGGTTAT
 AspAsnAlaSerThrThrAsnTyrThrAsnTyrArgLeuIleHisCysAsnArgSer
 6781 GATAATGCTAGTACTACTACCAACTATACCAACTATAGGTTGATACATTGTAACAGATCA
 CTATTACGATCATGATGATGGTTGATATGGTTGATATCCAACATATGTAACATTGTCTAGT
 6790 scal,
 ValIleThrGlnAlaCysProLysValSerPheGluProIleProIleHisTyrCysThr
 6841 GTCATTACACAGGCC^TGTCCAAAGGTATCATTGAGCCAATTCCCATA^CATTATTGTACC
 CAGTAATGTGTC^{CG}GGACAGGTTCCATAGTAAACTCGGTTAAGGGTATGTAATAACATGG
 6851 stu1,
 ProAlaGlyPheAlaIleLeuLysCysAsnAsnLysThrPheAsnGlyLysGlyProCys
 6901 CGGGCTGGTTTGCGATTCTAAAGTGTAAATAATAAAACGTTCAATGGAAAAGGACCATGT
 GGCCGACCAAAACGCTAACGATTACATTATTGGCAAGTTACCTTCTGGTACA
 ThrAsnValSerThrValGlnCysThrHisGlyIleArgProIleValSerThrGlnLeu
 6961 ACAAAATGTCAGCACAGTACAATGTACACATGGAATTAGGCCAATAGTGTCAACTCAACTG
 TGTTTACAGTCGTGTCATGTTACATGTGACCTTAATCCGGTTATCACAGTTGAGTTGAC
 LeuLeuAsnGlySerLeuAlaGluGluValValIleArgSerAspAsnPheThrAsn
 7021 CTGTTAAATGGCAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTGACAATTTCACGAA
 GACAATTACCGTCAGATCGTCTTCCATCATTAA^{CT}AGACTGTTAAAGTGCTTG
 7042 mbo11, 7045 mbo11, 7060 bg111,

FIG. 4L

REPLACEMENT SHEET

7081 AsnAlaLysThrIleIleValGlnLeuAsnGluSerValAlaIleAsnCysThrArgPro
 AATGCTAAAACCATAATTAGTACAGCTGAATGAATCTGTAGCAATTAACTGTACAAGACCC
 TTACGATTTGGTATTATCATGTCGACTTACTTAGACATCGTTATTGACATGTTCTGGG
 7102 pnull,

 7141 AsnAsnAsnThrArgLysSerIleTyrIleGlyProGlyArgAlaPheHisThrThrGly
 AACAAACAATAACAGAAAAAGTATCTATATAGGACCAGGGAGAGCATTCTACAAACAGGA
 TTGTTGTTATGTTCTTTCTAGATAATATCCTGGTCCCTCTCGTAAAGTA1GTTGCCT
 7199 mb011,

 7201 ArgIleIleGlyAspIleArgLysAlaHisCysAsnIleSerArgAlaGlnTrpAsnAsn
 AGAATAATAGGAGATATAAGAAAAGCACATTGTAACATTAGTAGAGCACAATGGAATAAC
 TCTTATTATCCTCTATATTCTTGTAACTTGTAATCATCTCGTGTACCTTATTG

 7261 ThrLeuGluGlnIleValLysLysLeuArgGluGlnPheGlyAsnAsnLysThrIleVal
 ACTTTAGAACAGATAGTTAAAAAAATTAAAGAGAACAGTTGGGAATAATAAAACAATAGTC
 TGAAATCTGTCTATCAATTTTAATTCTCTGTCAAACCCATTATTATTTGTTATCAG

 7321 PheAsnGlnSerSerGlyGlyAspProGluIleValMetHisSerPheAsnCysArgGly
 TTAAATCAATCCTCAGGAGGGGACCCAGAAATTGTAATGCACAGTTTAATTGTAGAGGG
 AAATTAGTTAGGAGTCCTCCCTGGGTCTTAACTTACGTGTCAAAATTAAACATCTCCC
 7331 mstII,

 7381 GluPhePheTyrCysAsnThrThrGlnLeuPheAsnAsnThrTrpArgLeuAsnHisThr
 GAATTTTTCTACTGTAATAACACACAACGTTAAATAACATGGAGGTAAATCACACT
 CTTAAAAAGATGACATTATGTTGTTGACAAATTATTATGTACCTCCAATTAGTGTGA

 7441 GluGlyThrLysGlyAsnAspThrIleIleLeuProCysArgIleLysGlnIleIleAsn
 GAAGGAACTAAAGGAATGACACAATCATACTCCCAGTGAATAAAACAAATTATAAAC
 CTTCCTTGATTTCTTACTGTGTTAGTATGAGGGTACATCTTATTGTTAAATTG

 7501 MetTrpGlnGluValGlyLysAlaMetTyrAlaProProIleGlyGlnIleSerCys
 ATGTGGCAGGAAGTAGGGAAAAGCAATGTATGCCCTCCATTGGAGGACAAATTAGTTGT
 TACACCGTCCTCATCTTGTACATACGGGGAGGGTAACCTCTGTTAAATCAACA

 7561 SerSerAsnIleThrGlyLeuLeuLeuThrArgAspGlyGlyThrAsnValThrAsnAsp
 TCATCAAATATTACAGGGCTGCTATTAAACAAGAGATGGTGGTACAAATGTAACATGAC
 AGTAGTTATAATGTCCCAGCATAATTGTTCTTACACCACATGTTACATTGATTACTG

 7621 ThrGluValPheArgProGlyGlyAspMetArgAspAsnTrpArgSerGluLeuTyr
 ACCGAGGTCTTCAGACTGGAGGAGGAGATATGAGGGACAATTGGAGAAGTGAATTATAT
 TGGCTCCAGAAGTCTGGACCTCCTCTATACTCCCTGTTACCTCTTACCTTAATATA
 7628 mb011,

 7681 LysTyrLysValIleLysIleGluProLeuGlyIleAlaProThrLysAlaLysArgArg
 AAATATAAAGTAATAAAATTGAACCATTAGGAATAGCACCCACCAAGGCAAGAGAAAGA
 TTTATATTCATTATTTAACTGGTAATCCTTATCGTGGTGGTCCGTTCTCTTCT
 7736 mb011,

 7741 ValValGlnArgGluLysArgAlaValGlyIleValGlyAlaMetPheLeuGlyPheLeu
 GTGGTGCAGAGAGAAAAAGAGCAGTGGGAATAGTAGGAGCTATGTTCTGGTTCTTG
 CACCACGTCTCTCTTCTCGTACCCATTATCATCCTCGATAACAAGGAACCCAAGAAC

 7801 GlyAlaAlaGlySerThrMetGlyAlaValSerLeuThrLeuThrValGlnAlaArgGln
 GGAGCAGCAGGAAGCACTATGGGCGCAGTGTCAATTGACGCTGACGGTACAGGCCAGACAA
 CCTCGTCGTCCTCGTACCCCGCGTACAGTAACTGCGACTGCCATGTCGGTCTGTT

FIG. 4M

REPLACEMENT SHEET

7861 LeuLeuSerGlyIleValGlnGlnGlnAsnAsnLeuLeuArgAlaIleGluAlaGlnGln
 TTATTGTCTGGTATAGTGCACACAGCAGAACAAATTGCTGAGGGCTATTGAGGCGCAACAA
 AATAACAGACCATATCACGTTGTCGTTAAACGACTCCGATAACTCCGCGTTGTT

 7921 HisLeuLeuGlnLeuThrValTrpGlyIleLysGlnLeuGlnAlaArgValLeuAlaVal
 CATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAGTCCTGGCTGTG
 GTAGACAACGTTGAGTGTCAAGACCCCGTAGTTGTCGAGGTCCGTTCTCAGGACCGACAC

 7981 GluArgTyrLeuArgAspGlnGlnLeuLeuGlyIleTrpGlyCysSerGlyLysLeuIle
 GAAAGATACTTAAGGGATCAACAGCTCTAGGGATTGGGGTTGCTCTGGAAAACCTCATT
 CTTCTATGGATTCC[^]CTAGTTGTCGAGGATCCCTAAACCCCAACGAGACCTTTGAGTAA

 7989 mstII, 7995 binI, 8007 avr2,

 8041 CysThrThrAlaValProTrpAsnAlaSerTrpSerAsnLysSerLeuGluAspIleTrp
 TGCAACACTGCTGTGCCCTGGAAATGCTAGTTGGAGTAATAATCTCTGGAAAGACATTGG
 ACGTGGTGACGACACGGAACCTACGATCACCTCATTATTAGAGAC[^]TTCTGTAAACC

 8089 mbolI,

 8101 AspAsnMetThrTrpMetGlnTrpGluArgGluIleAspAsnTyrThrAsnThrIleTyr
 GATAACATGACCTGGATGCAGTGGAAAGAGAAATTGACAATTACACAAACACAATATAC
 CTATTGACTGGACCTACGTCAACCTTCTTTACTGTTAATGTGTTGTATATG

 8161 ThrLeuLeuGluGluSerGlnAsnGlnGlnGluLysAsnGluGlnGluLeuLeuGluLeu
 ACCTTACTTGAAGAACGAGAACGAGAACAAAGAAAAGAATGAACAAGAATTATTAGAATTG
 TGGAATGAACTTCTTAGCGTCTGGTTCTTTCTTACTTGTCTTAATAATCTAAC

 8170 mbolI,

 8221 AspLysTrpAlaSerLeuTrpAsnTrpPheSerIleThrAsnTrpLeuTrpTyrIleLys
 GATAAGTGGGCAAGTTGTGGAATTGGTTAGCATAACAAACTGGCTGTGGTATATAAAG
 CTATTCCCCGTTCAAACACCTAACCAATCGTATTGTTGACCGACACCATATATTC

 8281 IlePheIleMetIleValGlyGlyLeuValGlyLeuArgIleValPheAlaValLeuSer
 ATATTCTATAATGATAGTAGGAGGCTGGTAGGTTAAGAATAGTTTTGCTGTGCTTCT
 TATAAGTATTACTATCATCCTCCGAACCATCAAATTCTTATCAAAAACGACACGAAAGA

 8341 IleValAsnArgValArgGlnGlyTyrSerProLeuSerPheGlnThrArgLeuProVal
 ATAGTGAATAGAGTTAGGAGGACTCACCATGTCATTGAGACCCGCCCTCCCAGTC
 TATCACTTATCTCAATCCGTCCCTATGAGTGGTAACAGTAAAGTCTGGGCGGAGGGTCAG[^]

 8400 aval,

 8401 ProArgGlyProAspArgProAspGlyIleGluGluGluGlyGlyGluArgAspArgAsp
 CCGAGGGGACCCGACAGGCCGACGGGAATCGAAGAAGAAGGTGGAGAGAGAGACAGAGAC
 GGCTCCCTGGGCTGTCCGGCTGCCTAGCTTCTCACCTCTCTGTCTGCTCTG

 8431 mbolI, 8434 mbolI,

 8461 ArgSerValArgLeuValAspGlyPheLeuAlaLeuIleTrpGluAspLeuArgSerLeu
 AGATCCGTTGATTAGTGGATGGATTCTTAGCACTTATCTGGGAAGATCTGCGGAGCCTG
 TCTAGGCAAGCTAACCTACCTAACGTAAGAATCGTAAGACCC[^]TTCTAGACGCCCTCGGAC

 8503 mbolI, 8505 bgI,

 8521 CysLeuPheSerTyrArgArgLeuArgAspLeuLeuLeuIleAlaAlaArgThrValGlu
 TGCCTCTTCAGCTACCGCCGCTTGAGAGACTTACTCTGATTGCAGCGAGGACTGTGGAA
 ACGGAGAAGTCGATGGCGCGAACCTCTGAATGAGAAACTAACGTCGCTCTGACACCTT

 8525 mbolI,

FIG. 4N

REPLACEMENT SHEET

8581 IleLeuGlyHisArgGlyTrpGluAlaLeuLysTyrTrpTrpSerLeuLeuGlnTyrTrp
 ATTCTGGGGCACAGGGGTGGGAAGCCCTCAAATATTGGTGGAGTCTCCTGCAGTATTGG
 TAAGACCCCGTGTCCCCACCCCTCGGGAGTTATAACCACCTCAGAGGACGTCAAAAC
 8629 pst1,

8641 IleGlnGluLeuLysAsnSerAlaValSerTrpLeuAsnAlaThrAlaIleAlaValThr
 ATTCAGGAACATAAGAATAGTGTCTAGCTGGCTAACGCCACAGCTATAGCAGTAAC
 TAAGTCCTTGATTTCTTATCACGACAATCGACCGAGTTGCGGTGTCGATATCGTCATTGA

8701 GluGlyThrAspArgValIleGluValAlaGlnArgAlaTyrArgAlaIleLeuHisIle
 GAGGGGACAGATAGGGTTATAGAAGTAGCACAAAGAGCTTATAGAGCTATTCTCACATA
 CTCACCTGTCTATCCAAATATCTCATCGTGTTCCTCGAAATATCTCGATAAGAGGTGTAT

8761 HisArgArgIleArgGlnGlyLeuGluArgLeuLeuLeuOC MetGlyGlyLysTrpSer
 CATAGAAGAATTAGACAGGGCTTGGAAAGGCTTTGCTATAAGATGGGTGGCAAGTGGTCA
 GTAT_{CTT}CTTAATCTGCCCCAACCTTCCGAAACGATATTCTACCCACCGTTACCAAGT
 8765 mbo11,

8822 LysArgSerMetGlyGlyTrpSerAlaIleArgGluArgMetArgArgAlaGluProArg
 AAACGTAGTATGGGTGGATGGTCTGCTATAAGGGAAAGAATGAGACGAGCTGAGCCACGA
 TTTGCATCATACCCACCTACCAGACGATATTCCCTTACTCTGCTGACTCGGTGCT

8882 AlaGluProAlaAlaAspGlyValGlyAlaValSerArgAspLeuGluLysHisGlyAla
 GCTGAGGCCAGCAGCAGATGGGTGGAGCAGTATCTGAGACCTGGAAAAACATGGAGCA
 CGACTCGGTCGTCGTCTACCCACCCCTCGTCA_{AG}GCTCTGGACCTTTGTACCTCGT
 8883 tthIII1, 8916 aval xhol,

8942 IleThrSerSerAsnThrAlaAlaThrAsnAlaAspCysAlaTrpLeuGluAlaGlnGlu
 ATCACAAAGTAGCAATAACAGCAGCTACTAATGCTGATTGTGCCTGGCTAGAACGACAAGAG
 TAGTGTTCATCGTTATGTCGTCGATGATTACGACTAACACGGACCGATCTCGTGTTC
 9002 GluGluGluValGlyPheProValArgProGlnValProLeuArgProMetThrTyrLys
 GAGGAAGAGGTGGGTTTCCAGTCAGACCTCAGGTACCTTTAACGACCAATGACTTACAAG
 CTCCTTCTCCACCCAAAAGGTCAGTCTGGAGTCCATGGAAATTCTGGTTACTGAATGTT
 9005 mbo11, 9029 mstII, 9034 kpn1,

9062 AlaAlaLeuAspIleSerHisPheLeuLysGluLysGlyLeuGluGlyLeuIleTrp
 GCAGCTTAGATATTAGCCACTTTAAAGAAAAGGGGGACTGGAAGGGCTAATTGG
 CGTCGAAATCTATAATCGGTGAA_AATTCTTTCCCCCTGACCTCCGATTAAACC
 9085 aha111,

9122 SerGlnArgArgGlnGluIleLeuAspLeuTrpIleTyrHisThrGlnGlyTyrPhePro
 TCCCAGGAAAGACAAGAGATCCTGATCTGTGGATCTACCACACACAAGGCTACTCCCT
 AGGGTTCTCTGTTCTAGGAAC_TAGACACCTAGATGGTGTGTTCCGATGAAGGG
 9129 mbo11, 9153 binI,

9182 AspTrpGlnAsnTyrThrProGlyProGlyIleArgTyrProLeuThrPheGlyTrpCys
 GATTGGCAGAATTACACACCCAGGGCCAGGGATCAGATATCCACTGACCTTGGATGGTGC
 CTAACCGTCTTAATGTTGGTCCGGTCC_ATAGTCTAGGTGACTGGAAACCTACCAAC
 9210 binI, 9216 ecor5,

FIG. 4O

REPLACEMENT SHEET

9242 PheLysLeuValProValGluProGluLysValGluGluAlaAsnGluGlyGluAsnAsn
TTCAAGCTAGTACCACTGGAGCCAGAGAAGGTAGAAGAGGGCCAATGAAGGGAGAGAACAAAC
AAGTTCGATCATGGTCAACTCGGTCTTCCAT^{CTTCTCCGGTTACTTCCTCTTTGTTG}
9275 mb011,

9302 SerLeuLeuHisProMetSerLeuHisGlyMetGluAspAlaGluLysGluValLeuVal
AGCTTGTTACACCCATGAGCCTGCATGGGATGGAGGACGCGGAGAAAGAAGTGTAGTG
TCGAACAATGTGGGATACTCGGACGTACCCCTACCTCCTCGGCCCTTTCTCACAAATCAC

9362 TrpArgPheAspSerLysLeuAlaPheHisHisMetAlaArgGluLeuHisProGluTyr
TGGAGGTTTGACAGCAAACTAGCATTCACTACATGGCCCAGAGAGCTGCATCCGGAGTAC
ACCTCCAAACTGTCGTTGATCGTAAAGTAGTGTACCGGGCTCTGACGTAGGCCTCATG
9399 aval, 9417 scal,

9422 TyrLysAspCysOP
TACAAAAGACTGCTGACATCGAGCTTCTACAAGGGACTTCCGCTGGGACTTTCCAGGG
ATGTTTCTGACGACTGTAGCTGAAAGATGTTCCCTGAAAGGCGACCCCTGAAAGGTCCC

9482 AGGCGTGGCCTGGGGGGACTGGGGAGTGGCGTCCCTCAGATGCTGCATATAAGCAGCTG
TCCGCACCGGACCCGGCTGACCCCTCACCGCAGGGAGTCTACGACGTATATTCTCGAC
9536 pvu11,

9542 CTTTTGCTGTACTGGGTCTCTCTGGTAGACCAGATCTGAGCCTGGAGCTCTGGC
GAAAAACGGACATGACCCAGAGAGACCAATCTGGTCTAGACTCGGACCCCTGAGAGACCG
9576 bg111, 9590 sac1,

9602 TAACTAGGGAACCCACTGCTTAAGCCTCAATAAGCTTGCCTGAGTGCTCAAGTAGTG
ATTGATCCCTGGGTGACGAATT^{CGGAGTTATTCGAACGGAACTCACGAAGTT}CATCAC
9620 af111, 9634 hind111,

9662 TGTGCCCGTCTGTTGACTCTGGTAACTAGAGATCCCTCAGACCCCTTGTAGTCAGTG
ACACGGGCAGACAACACACTGAGACCATTGATCTAGGGAGTCTGGAAAATCAGTCAC

9722 TGGAAAAATCTCTAGCAG
ACCTTTTAGAGATCGTC

FIG. 4P

REPLACEMENT SHEET

U3 →

-453 CTGGAAGGGCTAATTGGTCCAAAGAACAGACAAGAGATCCTGATCTGTGGATCTACAC
ACACAAGGCTACTTCCTGATTGGCAGAATTACACACCAGGGCCAGGGATCAGATATCCA

-333 CTGACCTTGGATGGTCTCAAGCTAGTACCACTGAGGCCAGAGAACGGTAGAAGAGGCC
AATGAAGGAGAGAACAAACAGCTTGTACACCCATGAGCCTGCATGGGATGGAGGACGCG L

-214 GAGAAAGAACAGTGTAGTGTGGAGGTTGACAGCAAACTAGCATTCATCACATGGCCCGA T
GAGCTGCATCCGGAGTACTACAAAGACTGCTGACATCGAGCTTCTACAAGGGACTTCCG

-93 CTGGGGACTTCCAGGGAGGCCTGGGCTGGGGACTGGGAGTGGCGTCCCTCAGATG R

CTGCATATAAGCAGCTGCTTTGCCTGTACTG ←U3 R →
28 CCTGGGAGCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAGCTTGCCTT

←R U5→
GAGTGCTTCA AGTAGTGTGTGCCGTCTGTTGTGACTCTGGTAACTAGAGATCCCTCA

148 GACCCTTTAGTCAGTGTGGAAAAATCTCTAGCAG ←U5
GCGAAAGTAGAACCAAGAGGAGCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGCACAG

268 CAAGAGGCAGGGCGCGACTGGTAGTACGCCATTGGACTAGCGGAGGCTAGAAC 17
MetGlyAlaArgAlaSerValLeuSerGlyGlyGluLeuAspLysTrpGlu
GAGAGAGAGATGGGTGCGAGAGCGTCGGTATTAGCGGGGGAGAATTAGATAATGGGAA

LysIleArgLeuArgProGlyGlyLysLysTyrLysLeuLysHisIleValTrpAla
388 AAAATTGGTTAAGGCCAGGGGAAAGAAAAATATAAGTTAAACATATAGTATGGGCA 57
SerArgGluLeuGluArgPheAlaValAsnProGlyLeuLeuGluThrSerGluGlyCys
AGCAGGGAGCTAGAACGATTGCGAGTCATCCCTGGCTGTTAGAAACATCAGAAGGCTGC

ArgGlnIleLeuGlyGlnLeuGlnProSerLeuGlnThrGlySerGluGluLeuArgSer
508 AGACAAATATTGGGACAGCTACAGCCATCCCTCAGACAGGATCAGAAGAACTTAGATCA 97
LeuTyrAsnThrValAlaThrLeuTyrCysValHisGlnArgIleAspValLysAspThr
TTATATAATACAGTAGCAACCCTTATTGTGTACATCAAAGGATAGATGTAAAAGACACC

LysGluAlaLeuGluLysIleGluGluGluGlnAsnLysSerLysLysLysAlaGlnGln
628 AAGGAAGCTTAGAGAACGAGATAGAGGAAGAGCAAAACAAAGTAAGAAAAGGCACAGCAA 137
AlaAlaAlaAlaAlaGlyThrGlyAsnSerSerGlnValSerGlnAsnTyrProIleVal
GCAGCAGCTGCAAGCTGGCACAGGAAACAGCAGCCAGGTCAAGCCAAAATTACCTATAGTG

GlnAsnLeuGlnGlyGlnMetValHisGlnAlaIleSerProArgThrLeuAsnAlaTrp
748 CAGAACCTACAGGGCAAATGGTACATCAGGCCATATCACCTAGAACTTTAAATGCATGG 177
ValLysValValGluGluLysAlaPheSerProGluValIleProMetPheSerAlaLeu
GTAAAAGTAGTAGAAGAAAAGGCTTCAGCCAGAAGTAATACCATGTTTACGCATTA

SerGluGlyAlaThrProGlnAspLeuAsnThrMetLeuAsnThrValGlyGlyHisGln
868 TCAGAAGGAGCCACCCCACAAGATTAAACACCATGCTAACACAGTGGGGGACATCAA

FIG. 5A

REPLACEMENT SHEET

	AlaAlaMetGlnMetLeuLysGluThrIleAsnGluGluAlaAlaGluTrpAspArgVal	217	G
	GCAGCCATGCAAATGTTAAAAGAGACTATCAATGAGGAAGCTGCAGAATGGGATAGAGTG		
988	HisProValHisAlaGlyProIleAlaProGlyGlnMetArgGluProArgGlySerAsp CATCCAGTGCATGCAGGGCCTATTGCACCAGGCCAAATGAGAGAACCAAGGGAAAGTGAC		A
	IleAlaGlyThrThrSerThrLeuGlnGluGlnIleGlyTrpMetThrAsnAsnProPro ATAGCAGGAACTACTAGTACCCCTCAGGAACAAATAGGATGGATGACAATAATCCACCT	257	
1108	IleProValGlyGluIleTyrLysArgTrpIleIleLeuGlyLeuAsnLysIleValArg ATCCCAGTAGGAGAAATCTATAAAAGATGGATAATCCTGGGATTAAATAAAATAGTAAGA		G
	MetTyrSerProThrSerIleLeuAspIleArgGlnGlyProLysGluProPheArgAsp ATGTATAGCCCTACCAGCATTCTGGACATAAGACAAGGACCAAAGGAACCCCTTAGAGAT	297	
1228	TyrValAspArgPheTyrLysThrLeuArgAlaGluGlnAlaSerGlnAspValLysAsn TATGTAGACCGGTTCTATAAAACTCTAAGAGGCCAACAGCTTCACAGGATGTAAAAAAAT		
	TrpMetThrGluThrLeuLeuValGlnAsnAlaAsnProAspCysLysThrIleLeuLys TGGATGACAGAAACCTTGGTCCAAAATGCAAACCCAGATTGTAAGACTATTTAAAAA	337	
1348	AlaLeuGlyProAlaAlaThrLeuGluGluMetMetThrAlaCysGlnGlyValGlyGly GCATTGGGACCAGCAGCTACACTAGAAGAAATGATGACAGCATGTCAGGGAGTGGGGGGA		
	ProGlyHisLysAlaArgValLeuAlaGluAlaMetSerGlnValThrAsnProAlaAsn CCCAGGCCATAAAGCAAGAGTTTGGCTGAAGGCCATGAGCCAAGTAACAAATCCAGCTAAC	377	
1468	IleMetMetGlnArgGlyAsnPheArgAsnGlnArgLysThrValLysCysPheAsnCys ATAATGATGCAGAGAGGCAATTAGAACCAAAGAAAGACTGTTAAGTGTTCATTGT		
	GlyLysGluGlyHisIleAlaLysAsnCysArgAlaProArgLysLysGlyCysTrpArg GGCAAAGAAGGGCACATAGCCAAAATTGCAGGGCCCCTAGGAAAAAGGGCTTTGGAGA	417	
	CysGlyArgGluGlyHisGlnMetLysAspCysThrGluArgGlnAlaAsnPheLeuGly PhePheArgG		
1588	TGTGGAAGGGAGGACACAAATGAAAGATTGCACTGAGAGACAGGCTAATTTTAGGG LysIleTrpProSerTyrLysGlyArgProGlyAsnPheLeuGlnSerArgProGluPro IuAspLeuAlaPheLeuGlnGlyLysAlaArgGluPheSerSerGluGlnThrArgAla AAGATCTGGCCTTCTACAAGGGAGGCCAGGGAAAGGGCTTCAGAGCAGACCAGAGCCA	457	
	457	23	
1708	ThrAlaProProGluGluSerPheArgPheGlyGluGluLysThrThrProSerGlnLys AsnSerProThrArgArgGluLeuGlnValTrpGlyGlyGluAsnAsnSerLeuSerGluA ACAGCCCCACCCAGAAGAGAGCTTCAGGTTGGGAGGAGAAAACAACCTCCCTCTCAGAAC		P
	GlnGluProIleAspLysGluLeuTyrProLeuThrSerLeuArgSerLeuPheGlyAsn IaGlyAlaAspArgGlnGlyThrValSerPheAsnPheProGlnIleThrLeuTrpGln CAGGAGCCGATAGACAAGGAAGTGTATCCTTAACCTCCCTCAGATCACTCTGGCAAC	497	
		63	O
1828	AspProSerSerGlnOC ArgProLeuValThrIleArgIleGlyGlyGlnLeuLysGluAlaLeuLeuAspThrGlyA GACCCCTCGTACAATAAGGATAGGGGGCAACTAAAGGAAGCTTATTAGATAACAGGAG		L
	IaAspAspThrValLeuGluGluMetAsnLeuProGlyLysTrpLysProLysMetIle CAGATGATACTAGTATTAGAAGAAATGAATTGCCCCAGGAAACCAAAATGGAAACCAAAATGATAG	103	
1948	GlyGlyIleGlyGlyPheIleLysValArgGlnTyrAspGlnIleProValGluIleCysG GGGAATTGGAGGTTTATCAAAGTAAGACAGTACGATCAGATACTGTAGAAATCTGTG		

FIG. 5B

REPLACEMENT SHEET

1yHisLysAlaIleGlyThrValLeuValGlyProThrProValAsnIleIleGlyArg 143
 GACATAAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGTCAACATAATTGGAAGAA
 AsnLeuLeuThrGlnIleGlyCysThrLeuAsnPheProIleSerProIleGluThrValP
 2068 ATCTGTTGACTCAGATTGGTTACTTTAAATTCCCCATTAGTCCTATTGAAACTGTAC
 roValLysLeuLysProGlyMetAspGlyProLysValLysGlnTrpProLeuThrGlu 183
 CAGTAAAATTAAAGCCAGGAATGGATGGCCCAAAGTTAACATGGCCATTGACAGAAG
 GluLysIleLysAlaLeuValGluIleCysThrGluMetGluLysGluGlyLysIleSerL
 2188 AAAAATAAAAGCATTAGTAGAGATATGTACAGAAATGGAAAAGGAAGGGAAAATTCAA
 ysIleGlyProGluAsnProTyrAsnThrProValPheAlaIleLysLysLysAspSer 223
 AAATTGGGCCTGAAAATCCATACAATACTCCAGTATTGCTATAAAGAAAAAGACAGTA
 ThrLysTrpArgLysLeuValAspPheArgGluLeuAsnLysArgThrGlnAspPheTrpG
 2308 CTAAATGGAGAAAATAGTAGATTTCAGAGAACTTAATAAAAGAACTCAAGACTTCTGGG
 luValGlnLeuGlyIleProHisProAlaGlyLeuLysLysLysSerValThrVal 263
 AAGTTCAAGTTAGGAATACCACACCCCGCAGGGTTAAAAAGAAAAATCAGTAACAGTAT
 LeuAspValGlyAspAlaTyrPheSerValProLeuAspLysAspPheArgLysTyrThrA
 2428 TGGATGTGGGTGATGCATACTTTCAAGTCCCTAGATAAAGACTTAGAAAGTATACTG
 laPheThrIleProSerIleAsnAsnGluThrProGlyIleArgTyrGlnTyrAsnVal 303
 CATTACCATACCTAGTATAAACAAATGAGACACCAGGGATTAGATATCAGTACAATGTGC
 LeuProGlnGlyTrpLysGlySerProAlaIlePheGlnSerSerMetThrLysIleLeuG
 2548 TGCCACAGGGATGGAAAGGATCACAGCAATATTCCAAGTAGCATGACAAAAATCTTAG
 luProPheArgLysGlnAsnProAspIleValIleTyrGlnTyrMetAspAspLeuTyr 343
 AGCCTTTAGAAAACAGAAATCCAGACATAGTTATCTATCAATACATGGATTTGTATG
 ValGlySerAspLeuGluIleGlyGlnHisArgThrLysIleGluGluLeuArgGlnHisL
 2668 TAGGATCTGACTTAGAAATAGGGCAGCATAGAACAAAAATAGAGGAACGTGAGACAGC
 euLeuArgTrpGlyPheThrThrProAspLysLysHisGlnLysGluProProPheLeu 383
 TGTTGAGGTGGGGATTACACACCAGACAAAAAACATCAGAAAGAACCTCCATTCTTT
 TrpMetGlyTyrGluLeuHisProAspLysTrpThrValGlnProIleMetLeuProGluL
 2788 GGATGGGTTATGAACTCCATCCTGATAAATGGACAGTACAGCCTATAATGCTGCCAGAAA
 ysAspSerTrpThrValAsnAspIleGlnLysLeuValGlyLysLeuAsnTrpAlaSer 423
 AAGACAGCTGGACTGTCAATGACATACAGAAGTTAGTGGAAAATTGAATTGGCAAGTC
 GlnIleTyrAlaGlyIleLysValLysGlnLeuCysLysLeuLeuArgGlyThrLysAlaL
 2908 AGATTATGCAGGGATTAAAGTAAAGCAGTTATGAAACTCCTTAGAGGAACCAAAGCAC
 euThrGluValIleProLeuThrGluGluAlaGluLeuGluAlaGluAsnArgGlu 463 P
 TAACAGAAGTAATACCACTAACAGAAGCAGAGCTAGAACTGGCAGAAAACAGGGAGA
 IleLeuLysGluProValHisGluValTyrTyrAspProSerLysAspLeuValAlaGluI
 3028 TTCTAAAAGAACCACTGACATGAAGTATATTGACCCATCAAAAGACTTAGCAGAAAA
 leGlnLysGlnGlyGlnGlyGlnTrpThrTyrGlnIleTyrGlnGluProPheLysAsn 503 O
 TACAGAACAGGGCAAGGCCATGGACATATCAAATTATCAAGAGCCATTAAAAATC
 LeuLysThrGlyLysTyrAlaArgMetArgGlyAlaHisThrAsnAspValLysGlnLeuT
 3148 TGAAAACAGGAAAGTATGCAAGGATGAGGGTGCCCACACTAATGATGAAACAGTTAA
 hrGluAlaValGlnLysValSerThrGluSerIleValIleTrpGlyLysIleProLys 543 L
 CAGAGGCAGTGCAAAAGTATCCACAGAAAGCATAGTAATATGGGAAAGATTCTAAAT

FIG. 5C

REPLACEMENT SHEET

PheLysLeuProIleGlnLysGluThrTrpGluAlaTrpTrpMetGluTyrTrpGlnAlaT
 3268 TAAACTACCCATACAAAAGGAAACATGGGAAGCATGGTGGATGGAGTATTGGCAAGCTA
 hrTrpIleProGluTrpGluPheValAsnThrProProLeuValLysLeuTrpTyrGln 583
 CCTGGATTCCCTGAGTGGGAGTTGTCAATACCCCTCCCTAGTGAAATTATGGTACCACT
 LeuGluLysGluProIleValGlyAlaGluThrPheTyrValAspGlyAlaAlaAsnArgG
 3388 TAGAGAAAGAACCCATAGTAGGAGCAGAAACTTCTATGTAGATGGGCAGCTAATAGGG
 IuThrLysLeuGlyLysAlaGlyTyrValThrAspArgGlyArgGlnLysValValSer 623
 AGACTAAATTAGGAAAAGCAGGATATGTTACTGACAGAGGAAGACAAAAGTTGTCTCCA
 IleAlaAspThrThrAsnGlnLysThrGluLeuGlnAlaIleHisLeuAlaLeuGlnAspS
 3508 TAGCTGACACAACAAATCAGAAGACTGAATTACAAGCAATTCTAGCTTGCAGGATT
 erGlyLeuGluValAsnIleValThrAspSerGlnTyrAlaLeuGlyIleIleGlnAla 663
 CGGGATTAGAAGTAAACATAGTAACAGACTCACAAATATGCATTAGGAATCATTCAAGCAC
 GlnProAspLysSerGluSerGluLeuValSerGlnIleIleGluGlnLeuIleLysLysG
 3628 AACCAGATAAGAGTGAATCAGAGTTAGTCAGTCAAATAATAGAGCAGTTAATAAAAAGG
 IuLysValTyrLeuAlaTrpValProAlaHisLysGlyIleGlyGlyAsnGluGlnVal 703
 AAAAGGTCTACCTGGCATGGTACAGCACACAAAGGAATTGGAGGAAATGAACAGTAG
 AspLysLeuValSerAlaGlyIleArgLysValLeuPheLeuAsnGlyIleAspLysAlaG
 3748 ATAATTAGTCAGTGCTGGAATCAGGAAAGTACTATTTTGAAATGGAATAGATAAGGCC
 InGluGluHisGluLysTyrHisSerAsnTrpArgAlaMetAlaSerAspPheAsnLeu 743
 AAGAAGAACATGAGAAATATCACAGTAATTGGAGAGCAATGGCTAGTGATTTAACCTGC
 ProProValValAlaLysGluIleValAlaSerCysAspLysCysGlnLeuLysGlyGluA
 3868 CACCTGTAGTAGCAAAGAAATAGTAGCCAGCTGTGATAATGTCAGCTAAAGGAGAAG
 laMetHisGlyGlnValAspCysSerProGlyIleTrpGlnLeuAspCysThrHisLeu 783
 CCATGCATGGACAAAGTAGACTGTAGTCCAGGAATATGGCAACTAGATTGTACACATCTAG
 GluGlyLysIleIleLeuValAlaValHisValAlaSerGlyTyrIleGluAlaGluValI
 3988 AAGGAAAAATTATCCTGGTAGCAGTTCATGTAGCCAGTGGATAATAGAACAGAAGTTA
 leProAlaGluThrGlyGlnGluThrAlaTyrPheLeuLeuLysLeuAlaGlyArgTrp 823
 TTCCAGCAGAGACAGGGCAGGAAACAGCATATTTCTTAAATTAGCAGGAAGATGGC
 ProValLysThrIleHisThrAspAsnGlySerAsnPheThrSerThrThrValLysAlaA
 4108 CAGTAAAAACAATACATACAGACAATGGCAGCAATTTCACCAGTACTACGGTTAAGGCCG
 IaCysTrpTrpAlaGlyIleLysGlnGluPheGlyIleProTyrAsnProGlnSerGln 863
 CCTGTTGGTGGGCAGGGATCAAGCAGGAATTGGCATTCCCTACAATCCCCAAAGTCAG
 GlyValValGluSerMetAsnAsnGluLeuLysLysIleIleGlyGlnValArgAspGlnA
 4228 GAGTAGTAGAATCTATGAATAATGAATTAAAGAAAATTAGGACAGGTAAAGAGATCAGG
 IaGluHisLeuLysThrAlaValGlnMetAlaValPheIleHisAsnPheLysArgLys 903
 CTGAACACCTTAAGACAGCAGTACAAATGGCAGTATTCCACAATTAAAAGAAAAG
 GlyGlyIleGlyGlyTyrSerAlaGlyGluArgIleValAspIleIleAlaThrAspIleG
 4348 GGGGGATTGGGGGATACAGTGCAGGGAAAGAAATAGTAGACATAATAGCAACAGACATAC
 InThrLysGluLeuGlnLysGlnIleThrLysIleGlnAsnPheArgValTyrTyrArg 943
 AAACTAAAGAACTACAAAAGCAAATTACAAAAATTCAAAATTTCGGTTTATTACAGGG

FIG. 5D

REPLACEMENT SHEET

AspAsnLysAspProLeuTrpLysGlyProAlaLysLeuLeuTrpLysGlyGluGlyAlaV
 4468 ACAACAAAGATCCCTTGGAAAGGACCAGCAAAGCTCTGGAAAGGTGAAGGGGCAG
 a1ValIleGlnAspAsnSerAspIleLysValValProArgArgLysAlaLysIleIle 983
 TAGTAATAACAAGATAATAGTGACATAAAAGTAGTGCCAGAAGAAAAGCAAAAATCATTA
 ArgAspTyrGlyLysGlnMetAlaGlyAspAspCysValAlaSerArgGlnAspGluAspA
 4588 GGGATTATGGAAAACAGATGGCAGGTGATGATTGTGGCAAGTAGACAGGATGAGGATT
 M
 AGAACATGGAAAAGTTAGTAAAACACCATATGTATATTCAAAGAAAGCTAAAGGATGG
 4708 TTTTATAGACATCACTATGAAAGTACTCATCCAAGAGTAAGTCAGAAGTACACATCCCC
 CTAGGGGATGCTAAATTGTAATAACAACATATTGGGTCTGCATACAGGAGAAAGAGAA
 4828 TGGCATTGGGCCAGGGAGTCGCCATAGAATGGAGGAAAAGAAATATAGCACACAAGTA
 GACCCTGGCTAGCAGACCAACTAATTCTGCATTATTTGATTGTTTCAGAATCT
 4948 GCTATAAAAATGCCATATTAGGATATAGAGTTAGTCCTAGGTGTGAATATCAAGCAGGA
 CATAACAAGGTAGGATCTCTACAATACTTGGCACTAGCAGCATTATAACACCAAAAAAG
 5068 ACAAAAGCCACCTTGCCTAGTGTAAAGAAACTGACAGAGGATAGATGGAACAAGCCCCAG
 AAGACCAAGGGCCACAGAGGGAGCCATACAATGAATGGACACTAGAGCTTTAGAGGAGC
 5188 TTAAGAGAGAAGCTGTTAGACATTTCTAGGCCATGGCTCCATAGCTTAGGACAATATA
 TCTATGAAACTTATGGGATACTTGGCAGGAGTGGAGCCATAATAAGAATTCTGCAAC
 5308 AACTGCTGTTATTCAATTCAAAGATTGGGTGTCAACATAGCAGAAATAGGCATTATTCAAC
 AGAGGAGAGCAAGAAGAAATGGAGCCAGTAGATCCTAATCTAGAGCCCTGGAAGCATTCA
 5428 GGAAGTCAGCCTAGGACTGCTGTAACAATTGCTATTGTAAGGAAAGTGTGCTTCATTGC
 TACCGTGTTCACAAGAAAAGGCTAGGCATCTCTATGGCAGGAAGAAGCGGAGACAG
 5548 CGACGAAGAGCTCCTCAGGACAGTCAGACTCATCAAGCTCTATCAAAGCAGTAAGTA
 GTAAATGTAATGCAATCTTACAAATATTAGCAATAGTATCATTAGTAGTAGCAATA
 5668 ATAGCAATAGTTGTGGACCATAGTACTCATAGAATATAGGAAAATATTAAGACAAAGA
 MetLysVal 3
 AAATAGACAGATTAATTGATAGAATAAGAGAAAAAGCAGAAGACAGTGGCAATGAAAGTG
 LysGlyThrArgArgAsnTyrGlnHisLeuTrpArgTrpGlyThrLeuLeuLeuGlyMet
 5788 AAGGGGACCAGGAGGAATTATCAGCACTTGTGGAGATGGGGCACCTGCTCCTGGGATG
 LeuMetIleCysSerAlaThrGluLysLeuTrpValThrValTyrTyrGlyValProVal
 TTGATGATCTGTAGTGCTACAGAAAAATTGTGGGTACAGTTATTATGGAGTACCTGTG 43
 TrpLysGluAlaThrThrLeuPheCysAlaSerAspAlaArgAlaTyrAspThrGlu
 5908 TGAAAAGAAGCAACTACCACTCTATTTGTGCATCAGATGCTAGAGCATATGATAACAGAG
 ValHisAsnValTrpAlaThrHisAlaCysValProThrAspProAsnProGlnGluVal
 GTACATAATGTTGGGCCACACATGCCTGTGACCCACAGACCCCCAACCCACAAGAAGTA 83

FIG. 5E

REPLACEMENT SHEET

6028 ValLeuGlyAsnValThrGluAsnPheAsnMetTrpLysAsnAsnMetValGluGlnMet
 GTATTGGGAAATGTGACAGAAAATTTAACATGTGGAAAAATAACATGGTAGAACAGATG
 GlnGluAspIleIleSerLeuTrpAspGlnSerLeuLysProCysValLysLeuThrPro 123
 CAGGAGGATATAATCAGTTATGGGATCAAAGCCTAAAGCCATGTGTAAAATTAAACCCCA
 LeuCysValThrLeuAsnCysThrAspLeuGlyLysAlaThrAsnThrAsnSerSerAsn
 6148 CTCTGTGTTACTTAAATTGCACTGATTGGGGAAAGGCTACTAATACCAATAGTAGTAAT
 TrpLysGluGluIleLysGlyGluIleLysAsnCysSerPheAsnIleThrThrSerIle 163
 TGGAAAGAAGAAATAAAAGGAGAAATAAAAAACTGCTCTTCATATCACCAACAAGCATA
 ArgAspLysIleGlnLysGluAsnAlaLeuPheArgAsnLeuAspValValProIleAsp
 6268 AGAGATAAGATTCAAGAAAGAAAATGCACCTTCGTAAACCTTGATGTAGTACCAATAGAT
 AsnAlaSerThrThrAsnTyrThrAsnTyrArgLeuIleHisCysAsnArgSerVal 203
 AATGCTAGTACTACTACCAACTATACCAACTATAGGTTGATACATTGTAACAGATCAGTC
 IleThrGlnAlaCysProLysValSerPheGluProIleProIleHisTyrCysThrPro
 6388 ATTACACAGGCCGTGCCAAAGGTATCATTGAGCCAATTCCCACACATTATTGTACCCCG
 AlaGlyPheAlaIleLeuLysCysAsnAsnLysThrPheAsnGlyLysGlyProCysThr 243 E
 GCTGGTTTGCATTCTAAAGTGTAAATAATAAAAGCTCAATGGAAAAGGACCATGTACA
 AsnValSerThrValGlnCysThrHisGlyIleArgProIleValSerThrGlnLeuLeu
 6508 AATGTCAGCACAGTACAATGTACACATGGAATTAGGCCAATAGTGTCAACTGCTG
 LeuAsnGlySerLeuAlaGluGluGluValValIleArgSerAspAsnPheThrAsnAsn 283 N
 TTAAATGGCAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTGACAATTACGAACAAT
 AlaLysThrIleIleValGlnLeuAsnGluSerValAlaIleAsnCysThrArgProAsn
 6628 GCTAAAACCATAATAGTACAGCTGAATCTGTAGCAATTAACTGTACAAGACCCAC
 AsnAsnThrArgLysSerIleTyrIleGlyProGlyArgAlaPheHisThrThrGlyArg 323 V
 AACAAATAAGAAAAGTATCTATATAGGACCAGGGAGAGCATTCAACACAGGAAGA
 IleIleGlyAspIleArgLysAlaHisCysAsnIleSerArgAlaGlnTrpAsnAsnThr
 6748 ATAATAGGAGATATAAGAAAAGCACATTGTAACATTAGTAGAGCACAATGGAATAACACT
 LeuGluGlnIleValLysLysLeuArgGluGlnPheGlyAsnAsnLysThrIleValPhe 363
 TTAGAACAGATAGTTAAAAATTAAAGAGAACAGTTGGGATAATAAAACAATAGTCTT
 AsnGlnSerSerGlyGlyAspProGluIleValMetHisSerPheAsnCysArgGlyGlu
 6868 AATCAATCCTCAGGAGGGGACCCAGAAATTGTAATGCACAGTTAAATTGTAGAGGGGAA
 PhePheTyrCysAsnThrThrGlnLeuPheAsnAsnThrTrpArgLeuAsnHisThrGlu 403
 TTTTCTACTGTAATACAACACAACAGTTAAATACATGGAGGTTAACACTGAA
 GlyThrLysGlyAsnAspThrIleIleLeuProCysArgIleLysGlnIleIleAsnMet
 6988 GGAACTAAAGGAAATGACACAATCATACTCCCATGTAAGATAAAACAAATTATAAACATG
 TrpGlnGluValGlyLysAlaMetTyrAlaProProIleGlyGlyGlnIleSerCysSer 443
 TGGCAGGAAGTAGGAAAAGCAATGTATGCCCTCCATTGGAGGACAAATTAGTTGTTCA
 SerAsnIleThrGlyLeuLeuLeuThrArgAspGlyGlyThrAsnValThrAsnAspThr
 7108 TCAAATATTACAGGGCTGCTATTAAACAAGAGATGGTGGTACAAATGTAACATAATGACACC
 GluValPheArgProGlyGlyGlyAspMetArgAspAsnTrpArgSerGluLeuTyrLys 483
 GAGGTCTTCAGACCTGGAGGAGGAGATATGAGGGACAATTGGAGAAGTGAATTATAAAA

FIG. 5F

REPLACEMENT SHEET

TyrLysValIleLysIleGluProLeuGlyIleAlaProThrLysAlaLysArgArgVal
 7228 TATAAAGTAATAAAAATTGAACCATTAGGAATAGCACCCACCAAGGCAAAGAGAAGAGTG
 ValGlnArgGluLysArgAlaValGlyIleValGlyAlaMetPheLeuGlyPheLeuGly 523
 GTGCAGAGAGAAAAAGAGCAGTGGGAATAGTAGGAGCTATGTTCCCTGGGTTCTGGGA
 AlaAlaGlySerThrMetGlyAlaValSerLeuThrLeuThrValGlnAlaArgGlnLeu
 7348 GCAGCAGGAAGCACTATGGGCGCAGTGTCAATTGACGCTGACGGTACAGGCCAGACAATT
 LeuSerGlyIleValGlnGlnAsnAsnLeuLeuArgAlaIleGluAlaGlnGlnHis 563
 TTGTCTGGTATAGTGCACAGCAGAACAAATTGCTGAGGGCTATTGAGGCGAACAAACAT
 LeuLeuGlnLeuThrValTrpGlyIleLysGlnLeuGlnAlaArgValLeuAlaValGlu
 7468 CTGTTGCAACTCACAGCTGGGCATCAAGCAGCTCCAGGCAAGAGTCCTGGCTGTGGAA
 ArgTyrLeuArgAspGlnGlnLeuLeuGlyIleTrpGlyCysSerGlyLysLeuIleCys 603
 AGATACCTAACGGATCAACAGCTCCTAGGGATTGGGTTGCTCTGGAAAACTCATTG
 ThrThrAlaValProTrpAsnAlaSerTrpSerAsnLysSerLeuGluAspIleTrpAsp
 7588 ACCACTGCTGTGCCTTGGATGCTAGTTGGAGTAATAATCTCTGGAAAGACATTGGGAT
 AsnMetThrTrpMetGlnTrpGluArgGluIleAspAsnTyrThrAsnThrIleTyrThr 643
 AACATGACCTGGATGCAGTGGAAAGAGAAATTGACAATTACACAAACACAATACACC
 LeuLeuGluGluSerGlnAsnGlnGlnGluLysAsnGluGlnGluLeuLeuGluLeuAsp
 7708 TTACTTGAAAGATCGCAGAACACAAGAAAAGAATGAACAAGAATTATTAGAATTGGAT
 LysTrpAlaSerLeuTrpAsnTrpPheSerIleThrAsnTrpLeuTrpTyrIleLysIle 683
 AAGTGGGCAAGTTGTGGATTGGTTAGCATAACAAACTGGCTGTGGTATATAAGATA
 PheIleMetIleValGlyGlyLeuValGlyLeuArgIleValPheAlaValLeuSerIle E
 7828 TTCATAATGATAGTAGGAGGCTGGTAGGTTAAGAATAGTTTGCTGTGCTTCTATA
 ValAsnArgValArgGlnGlyTyrSerProLeuSerPheGlnThrArgLeuProValPro 723
 GTGAATAGAGTTAGGCAGGGATACTCACCATGTCATTTCAGACCCGCCTCCCAGTCCCG N
 ArgGlyProAspArgProAspGlyIleGluGluGluGlyGluArgAspArgAspArg
 7948 AGGGGACCCGACAGGCCGACGGAAATCGAAGAAGGTGGAGAGAGACAGAGACAGA
 SerValArgLeuValAspGlyPheLeuAlaLeuIleTrpGluAspLeuArgSerLeuCys 763 V
 TCCGTTGATTAGTGGATGGATTCTTAGCATTCTGGGAAGATCTGCGGAGCCTGTGC
 LeuPheSerTyrArgArgLeuArgAspLeuLeuIleAlaAlaArgThrValGluIle
 8068 CTCTTCAGCTACCGCCGCTTGAGAGACTTACTCTGATTGCTAGCGAGGACTGTGGAAATT
 LeuGlyHisArgGlyTrpGluAlaLeuLysTyrTrpTrpSerLeuLeuGlnTyrTrpIle 803
 CTGGGGCACAGGGGGTGGAAAGCCCTCAAATATTGGTGGAGTCTCCTGCAGTATTGGATT
 GlnGluLeuLysAsnSerAlaValSerTrpLeuAsnAlaThrAlaIleAlaValThrGlu
 8188 CAGGAACTAAAGAATAGTGCTTAGCTGGCTAACGCCACAGCTATAGCAGTAACGAG
 GlyThrAspArgValIleGluValAlaGlnArgAlaTyrArgAlaIleLeuHisIleHis 843
 GGGACAGATAGGGTTATAGAAGTAGCACAAGAGCTTATAGAGCTATTCTCCACATACAT
 ArgArgIleArgGlnGlyLeuGluArgLeuLeuLeuOC
 8308 AGAAGAATTAGACAGGGCTTGGAAAGGCTTTGCTATAAGATGGGTGGCAAGTGGTCAA
 ACGTAGTATGGGTGGATGGTCTGCTATAAGGGAAAGAATGAGACGAGCTGAGCCACGAGC

FIG. 5G

REPLACEMENT SHEET

8428 TGAGCCAGCAGCAGATGGGTGGGAGCAGTATCTGAGACCTGGAAAAACATGGAGCAAT

CACAAGTAGCAATAACAGCAGCTACTAATGCTGATTGTGCCTGGCTAGAACAGACAAGAGGA

8548 GGAAGAGGTGGGTTTCAGTCAGACCTCAGGTACCTTAAGACCAATGACTTACAAGGC

AGCTTAGATATTAGCCACTTTAAAAGAAAAGGGGGGA ^{U3}→ CTGGAAGGGCTAATTGGT

8667 CCCAAAGAACAGAGATCCTTGATCTGGATCTACACACACACAGGCTACTTCCCTG

ATTGGCAGAATTACACACCAGGGCCAGGGATCAGATATCCACTGACCTTGGATGGTCT

8787 TCAAGCTAGTACCACTGAGCCAGAGAAGGTAGAAGAGGCCAATGAAGGAGAGAACACA

GCTTGTACACCATGAGCCTGCATGGGATGGAGGACGCCAGAAAGAAGTGTAGTGT

8907 GGAGGTTGACAGCAAACCTAGCATTACATGGCCCGAGAGCTGCATCCGGAGTACT

ACAAAGACTGCTGACATCGAGCTTCTACAAGGGACTTCCGCTGGGACTTCCAGGGA

9027 GGCCTGGCCTGGCGGGACTGGGAGTGGCGTCCCTCAGATGCTGCATATAAGCAGCTGC

TTTTGCCTGTACTG ^{← U3 R →} GGTCTCTGGTAGACCAGATCTGAGCCTGGAGCTCTGGC

9146 TAACTAGGGAACCCACTGCTTAAGCCTCAATAAGCTTGCCTGAGTGCTTCA ^{← R U5 →} AGTAGT

GTGTGCCGTCTGTTGTGACTCTGGTAACTAGAGATCCCTCAGACCCCTTAGTCAGT

9265 GTGGAAAAATCTCTAGCAG ^{← U5}

FIG. 5H

REPLACEMENT SHEET

FIG. 6

REPLACEMENT SHEET

FIG. 7

REPLACEMENT SHEET

ptac 5 Promotor	Met Ile Val ATG ATCGTA
-----------------	---------------------------

*

```

748 GlnAsnLeuGlnGlyGlnMetValHisGlnAlaIleSerProArgThrLeuAsnAlaTrp
    CAGAACCTGCAGGGCAAAATGGTACATCAGGCCATATCACCTAGAACCTTAAATGCATGG
    ValLysValValGluGluLysAlaPheSerProGluValIleProMetPheSerAlaLeu 181
    GTAAAAGTAGTAGAAGAAAAGGCTTCAGCCCAGAAGTAATAACCATGTTTCAGCATT
868 SerGluGlyAlaThrProGlnAspLeuAsnThrMetLeuAsnThrValGlyGlyHisGln
    TCAGAAGGAGCCACCCCACAAGATTAAACACCATGCTAACACACAGTGGGGGACATCAA
    AlaAlaMetGlnMetLeuLysGluThrIleAsnGluGluAlaAlaGluTrpAspArgVal 221
    GCAGCCATGCAAATGTTAAAAGAGACTATCAATGAGGAAGCTGCAGAATGGGATAGAGTG
988 HisProValHisAlaGlyProIleAlaProGlyGlnMetArgGluProArgGlySerAsp
    CATCCAGTGCATGCAGGGCCTATTGCACCAGGCCAAATGAGAGAACCAAGGGGAAGTGAC
    IleAlaGlyThrThrSerThrLeuGlnGluGlnIleGlyTrpMetThrAsnAsnProPro 261
    ATAGCAGGAACTACTAGTACCCCTTCAGGAACAAATAGGATGGATGACAAATAATCCACCT
1108 IleProValGlyGluIleTyrLysArgTrpIleIleLeuGlyLeuAsnLysIleValArg
    ATCCCAGTAGGAGAAATCTATAAAAGATGGATAATCCTGGGATTAAATAAAATAGTAAGA
    MetTyrSerProThrSerIleLeuAspIleArgGlnGlyProLysGluProPheArgAsp 301
    ATGTATAGCCCTACCAGCATTCTGGACATAAGACAAGGACCAAGGGACCCCTTAGAGAT
    TyrValAspArgPheTyrLysThrLeuArgAlaGluGlnAlaSerGlnAspValLysAsn
    TATGTAGACCGGTTCTATAAAACTCTAACAGGCCAACAGCTTCACAGGATGTAAAAAAAT
    TrpMetThrGluThrLeuLeuValGlnAsnAlaAsnProAspCysLysThrIleLeuLys 341
    TGGATGACAGAACCTTGGTCCAAATGCAAACCCAGATTGTAAGACTATTTAAAAA
1348 AlaLeuGlyProAlaAlaThrLeuGluGluMetMetThrAlaCysGlnGlyValGlyGly
    GCATTGGGACCAGCAGCTACACTAGAAGAAATGATGACAGCATGTCAGGGAGTGGGGGA
    ProGlyHisLysAlaArgValLeu Stop Stop
    CCCGGGCATAAAGCAAGAGTTTGATAG
    ptac 5

```

FIG. 8

REPLACEMENT SHEET

	ptac 5 Promotor	MetIleVal 141
		ATGATCGTA
748	GlnAsnLeuGlnGlyGlnMetValHisGlnAlaIleSerProArgThrLeuAsnAlaTrp CAGAACTGCAGGGGCAAATGGTACATCAGGCCATATCACCTAGAACCTTAAATGCATGG	
868	ValLysValValGluGluLysAlaPheSerProGluValIleProMetPheSerAlaLeu GTAAAAGTAGTAGAAGAAAAGGCTTCAGCCCAGAAGTAATAACCATGTTTCAGCATTAG 181 G	
988	SerGluGlyAlaThrProGlnAspLeuAsnThrMetLeuAsnThrValGlyGlyHisGln TCAGAAGGAGCCACCCACAAGATTAAACACCATGCTAACACAGTGGGGGACATCAA 221 A	
1108	AlaAlaMetGlnMetLeuLysGluThrIleAsnGluGluAlaAlaGluTrpAspArgVal GCAGGCCATGCAAATGTTAAAAGAGACTATCAATGAGGAAGCTGCAGAACATGGATAGAGTG 261	
1228	HisProValHisAlaGlyProIleAlaProGlyGlnMetArgGluProArgGlySerAsp CATCCAGTGCATGCAGGGCTATTGCACCAGGCCAAATGAGAGAACCAAGGGGAAGTGAC 301 A	
1348	IleAlaGlyThrThrSerThrLeuGlnGluGlnIleGlyTrpMetThrAsnAsnProPro ATAGCAGGAACTACTAGTACCCCTTCAGGAACAAATAGGATGGATGACAAATAATCCACCT 341 G	
1468	IleProValGlyGluIleTyrLysArgTrpIleIleLeuGlyLeuAsnLysIleValArg ATCCCAGTAGGAGAAATCTATAAAAGATGGATAATCCTGGATTAAATAAAATAGTAAGA 381	
1588	MetTyrSerProThrSerIleLeuAspIleArgGlnGlyProLysGluProPheArgAsp ATGTATAGCCCTACCAAGCATTCTGGACATAAGACAAGGACCAAAGGAACCCCTTAGAGATG 421	
1708	TyrValAspArgPheTyrLysThrLeuArgAlaGluGlnAlaSerGlnAspValLysAsn TATGTAGACCAGGTTCTATAAAACTCTAAGAGCGAACAGCTCACAGGATGTAAGGATGAAAAAAT 461	
	TrpMetThrGluThrLeuLeuValGlnAsnAlaAsnProAspCysLysThrIleLeuLys TGGATGACAGAACCTTGGTCCAAATGCAAACCCAGATTGTAAGACTATTTAAAAA 501	
	AlaLeuGlyProAlaAlaAlaThrLeuGluGluMetMetThrAlaCysGlnGlyValGlyGly GCATTGGGACCAGCAGCTACACTAGAAGAAATGATGACAGCATGTCAGGGAGTGGGGGGA 63	
	ProGlyHisLysAlaArgValLeuAlaGluAlaMetSerGlnValThrAsnProAlaAsn CCCAGGCCATAAAGCAAGAGTTTGGCTGAAGCCATGAGCCAAGTAACAAATCCAGCTAAC 63	
	IleMetMetGlnArgGlyAsnPheArgAsnGlnArgLysThrValLysCysPheAsnCys ATAATGATGCAGAGAGGCAATTAGGAACCAAAGAAAGACTGTTAAGTGTTCATTG 63	
	GlyLysGluGlyHisIleAlaLysAsnCysArgAlaProArgLysLysGlyCysTrpArg GGCAAAGAAGGGCACATGCCAAATTGCAGGGCCCTAGGAAAAAGGGCTGGAGA 63	
	CysGlyArgGluGlyHisGlnMetLysAspCysThrGluArgGlnAlaAsnPheLeuGly TGTGGAAGGGAGGACACCAAATGAAAGATTGCACTGAGAGACAGGCTAATTAGGG 63	
	LysIleTrpProSerTyrLysGlyArgProGlyAsnPheLeuGlnSerArgProGluPro IuAspLeuAlaPheLeuGlnGlyLysAlaArgGluPheSerSerGluGlnThrArgAla 23	
	AAGATCTGGCCTCCTACAAGGGAGGCCAGGGAAATTCTCAGAGCAGACCAGAGCCA 63	
	ThrAlaProProGluGluSerPheArgPheGlyGluGluLysThrThrProSerGlnLys AsnSerProThrArgArgGluLeuGlnValTrpGlyGlyGluAsnAsnSerLeuSerGluA 63	
	ACAGCCCCACCAGAAGAGAGCTTCAGGTTGGGGAGGAGAAAACAACCTCCCTCTCAGAAC 63	
	GlnGluProIleAspLysGluLeuTyrProLeuThrSerLeuArgSerLeuPheGlyAsn IaGlyAlaAspArgGlnGlyThrValSerPheAsnPheProGlnIleThrLeuTrpGln 63	
	CAGGAGCCGATAGACAAGGAACTGTATCCTTAACCTCCCTCAGATCACTCTGGCAAC 63	

FIG. 9A

REPLACEMENT SHEET

AspProSerSerGlnOC
 ArgProLeuValThrIleArgIleGlyGlyGlnLeuLysGluAlaLeuLeuAspThrGlyA
 1828 GACCCCTCGTCACAATAAGGATAGGGGGCAACTAAAGGAAGCTCTATTAGATACAGGAG

 IaAspAspThrValLeuGluGluMetAsnLeuProGlyLysTrpLysProLysMetIle 103
 CAGATGATACTAGTATTAGAAGAAATGAATTGCCAGGAAATGGAAACCAAAAATGATAG

 GlyGlyIleGlyGlyPheIleLysValArgGlnTyrAspGlnIleProValGluIleCysG
 1948 GGGGAATTGGAGGTTTATCAAAGTAAGACAGTACGATCAGATACCTGTAGAAATCTGTG
 lyHisLysAlaIleGlyThrValLeuValGlyProThrProValAsnIleIleGlyArg 143
 GACATAAAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGTCAACATAATTGGAAGAA

 AsnLeuLeuThrGlnIleGlyCysThrLeuAsnPheProIleSerProIleGluThrValP
 2068 ATCTGTTGACTCAGATTGGTTGACTTTAAATTCCCCATTAGTCCTATTGAAACTGTAC
 roValLysLeuLysProGlyMetAspGlyProLysValLysGlnTrpProLeuThrGlu 183
 CAGTAAAATTAAAGCCAGGAATGGATGGCCAAAAGTTAAGCAATGCCATTGACAGAAG

 GluLysIleLysAlaLeuValGluIleCysThrGluMetGluLysGluGlyLysIleSerI
 2188 AAAAATAAAAGCATTAGTAGAGATATGTACAGAAATGGAAAAGGAAGGGAAAATTCAA
 ysIleGlyProGluAsnProTyrAsnThrProValPheAlaIleLysLysLysAspSer 223
 AAATTGGGCCTGAAAATCCATACAATACTCCAGTATTGCTATAAAGAAAAAGACAGTA

 ThrLysTrpArgLysLeuValAspPheArgGluLeuAsnLysArgThrGlnAspPheTrpG
 2308 CTAATGGAGAAAATAGTAGATTTCAGAGAACCTAATAAAAGAACCTAACAGACTCTGGG
 luValGlnLeuGlyIleProHisProAlaGlyLeuLysLysLysSerValThrVal 263
 AAGTTAGTTAGGAATACCACACCCCGCAGGGTTAAAAAGAAAAATCAGTAACAGTAT

 LeuAspValGlyAspAlaTyrPheSerValProLeuAspLysAspPheArgLysTyrThrA
 2428 TGGATGTGGGTATGCATACTTTAGTTCCCTAGATAAGACTTTAGAAAGTATACTG
 IaPheThrIleProSerIleAsnAsnGluThrProGlyIleArgTyrGlnTyrAsnVal 303
 CATTACCATACCTAGTATAACAAATGAGACACCAGGGATTAGATATCAGTACAATGTGC

 LeuProGlnGlyTrpLysGlySerProAlaIlePheGlnSerSerMetThrLysIleLeuG
 2548 TGCCACAGGGATGGAAAGGATCACCAAGCAATATTCAAAGTAGCATGACAAAAATCTTAG
 luProPheArgLysGlnAsnProAspIleValIleTyrGlnTyrMetAspAspLeuTyr 343
 AGCCTTTAGAAAACAGAATCCAGACATAGTTATCTATAACATGGATGATTGTATG

 ValGlySerAspLeuGluIleGlyGlnHisArgThrLysIleGluGluLeuArgGlnHisL
 2668 TAGGATCTGACTTAGAAATAGGGCAGCATAAGAACAAAAATAGAGGAACGTGAGACAGCATC
 euLeuArgTrpGlyPheThrThrProAspLysLysHisGlnLysGluProProPheLeu 383
 TGTTAGGTGGGGATTACCAACACCAGACAAAAACATCAGAAAGAACCTCCATTCTTT

 TrpMetGlyTyrGluLeuHisProAspLysTrpThrValGlnProIleMetLeuProGluL
 2788 GGATGGGTTATGAACTCCATCCTGATAATGGACAGTACAGCCTATAATGCTGCCAGAAA
 ysAspSerTrpThrValAsnAspIleGlnLysLeuValGlyLysLeuAsnTrpAlaSer 423
 AAGACAGCTGGACTGTCAATGACATACAGAAGTTAGTGGAAAATTGAATTGGCAAGTC

 GlnIleTyrAlaGlyIleLysValLysGlnLeuCysLysLeuLeuArgGlyThrLysAlaL
 2908 AGATTATGCAGGGATTAAAGTAAAGCAGTTATGTAAACTCCTTAGAGGAACCAAAGCAC
 euThrGluValIleProLeuThrGluGluAlaGluLeuGluLeuAlaGluAsnArgGlu 463 P
 TAACAGAAGTAATACCACTAACAGAAGCAGAGCTAGAACTGGCAGAAAACAGGGAGA O
 L

FIG. 9B

REPLACEMENT SHEET

IleLeuLysGluProValHisGluValTyrTyrAspProSerLysAspLeuValAlaGluI
3028 TTCTAAAAGAACCAAGTACATGAAGTATATTATGACCCATCAAAAGACTTAGTAGCAGAAA
IeGlnLysGlnGlyGlnGlyGlnTrpThrTyrGlnIleTyrGlnGluProPheLysAsn 503
TACAGAACGCAGGGGCAAGGCCAATGGACATATCAAATTATCAAGAGCCATTAAAAATC
LeuLysThrGlyLysTyrAlaArgMetArgGlyAlaHisThrAsnAspValLysGlnLeuT
3148 TGAAAACAGGAAAGTATGCAAGGATGAGGGGTGCCACACTAATGATGTAAAACAGTT
hrGluAlaValGluLysValSerThrGluSerIleValIleTrpGlyLysIleProLys 543
ptac 5

FIG. 9C

REPLACEMENT SHEET

ARV GAG p16 - synthetic Parts A and B

5' arv 234 3'
 MetGlnArgGlyAsnPheArgAsnGlnArgLysThrValLysCysPheAsnCysGlyLys
 TATTATGCAAAGAGGTAACTTCAGGAATCAAAGAAAGACCGTTAAGTGGTCAACTGTGGTAAG
 ATAATACGTTCTCCATTGAAGTCCTTAGTTCTTCTGGCAATTACAAAGTTGACACCATTC
 3' ^ arv 235 5'
 10 mn11, 23 hinfl,

 63 GluGlyHisIleAlaLysAsnCysArgAlaProArgLysLysAlaCysTrpArgCysGly
 GAAGGTACATCGCTAAGAACTGTAGAGCTCAAGAAAAGAAGGCTTGGAGATGTGGT
 CTTCCAGTGTAGCGATTCTGACATCTCGAGGTTCTTCCGAACAACCTCTACACCA
 76 dde1, 88 ban2 hgiA hgiJ11 sac1 sdul, 89 alu1,

 123 ArgGluGlyHisGlnMetLysAspCysThrGluArgGlnAlaAsnPheLeuGlyLysIle
 AGAGAAGGTACCAAATGAAGGACTGTACCGAAAGACAAGCTAACCTCTGGGTAAGATC
 TCTCTTCCAGTGGTTACTTCCTGACATGGCTTCTGTTGATTGAAGAACCCATTCTAG
 129 bstE2, 131 hph, 148 rsal, 161 alu1, 178 bgl11 xho2, 179
 sau3a,

 183 TrpProSerTyrLysGlyArgProGlyAsnPheLeuGlnSerArgProGluProThrAla
 TGGCCATCTTACAAGGGTAGACCAGGTAACTCTTGCAATCCAGACCAGAACCAACCGCT
 ACCGGTAGAATGTTCCCCTGGTCCATTGAAGAACGTTAGGTCTGGTCTGGTTGGCGA
 183 bal1 cfr1 hael, 184 hael11, 199 accl, 204 apyl ecor11 sc
 rF1,

 243 ProProGluGluSerPheArgPheGlyGluGluLysThrThrProSerGlnLysGlnGlu
 CCACCTGAAGAAAGTTCAAGGTTGGTCAAGGAAAGACCACCCATCTCAAAAGCAAGAA
 GGTGGA~~C~~TTCTTCAAAGCCAAGCCACTTCTTTCTGGTGGGGTAGAGTTCTGGTCT
 249 mbol1, 267 hph, 270 mbol1,

 303 ProIleAspLysGluLeuTyrProLeuThrSerLeuArgSerLeuPheGlyAsnAspPro
 CCAATCGACAAGGAATTGTACCCATTGACCTTTGAGATCCTGGTCAACGATCCC
 GGTT~~A~~GCTGTTCTTAACATGGGTAAC~~T~~GGAGAAACT~~T~~AGGAACAAGCCATTGCTAGGG
 307 taq1, 320 rsal, 331 mn11, 339 xho2, 340 sau3a, 357 sau3a,
 361 mn11, 362 aval xhol,

 363 SerSerGlnOP AM
 TCGAGGCCAATGATAG
 AG~~C~~TCGGTTACTATCAGCT
 363 taq1, 377 accl hind11 sal1

FIG. 10

REPLACEMENT SHEET

PYK Promoter

**MetSer
ATGTCT**

ArgIleAspCysSerAlaThrGluLysLeuTrpValThrValTyrTyrGlyValProVal 51
AGAACATCGAT GTAGTGCTACAGAAAAATTGTGGGTACAGTTATTATGGAGTACCTGTG
 TrpLysGluAlaThrThrThrLeuPheCysAlaSerAspAlaArgAlaTyrAspThrGlu
 5908 TGGAAAGAAGCAACTACCACTCTATTGTGCATCAGATGCTAGAGCATATGATAACAGAG
 ValHisAsnValTrpAlaThrHisAlaCysValProThrAspProAsnProGlnGluVal 91
 GTACATAATGTTGGGCCACACATGCCTGTGTACCCACAGACCCCCAACCCACAAGAAGTA
 ValLeuGlyAsnValThrGluAsnPheAsnMetTrpLysAsnAsnMetValGluGlnMet
 6028 GTATTGGAAATGTGACAGAAAATTAAACATGTGGAAAAAACATGGTAGAACAGATG
 GlnGluAspIleIleSerLeuTrpAspGlnSerLeuLysProCysValLysLeuThrPro 131
 CAGGAGGGATATAATCAGTTATGGGATCAAAGCCTAAAGCCATGTGTAAAATTACCCCCA
 LeuCysValThrLeuAsnCysThrAspLeuGlyLysAlaThrAsnThrAsnSerSerAsn
 6148 CTCTGTGTTACTTTAAATTGCACTGATTGGGAAGGCTACTAATACCAATAGTAGTAAT
 TrpLysGluGluIleLysGlyGluIleLysAsnCysSerPheAsnIleThrThrSerIle 171
 TGGAAAGAAGAAATAAAAGGAGAAATAAAAAGCTGCTTTCAATATCACCAAGCATA
 ArgAspLysIleGlnLysGluAsnAlaLeuPheArgAsnLeuAspValValProIleAsp
 6268 AGAGATAAGATTCAAGAAAGAAATGCACTTTTCGTAAACCTTGATGTAGTACCAATAGAT
 AsnAlaSerThrThrAsnTyrThrAsnTyrArgLeuIleHisCysAsnArgSerVal 211
 AATGCTAGTACTACTACCAACTATACCAACTATAGGTTGATACATTGTAACAGATCAGTC
 IleThrGlnAlaCysProLysValSerPheGluProIleProIleHisTyrCysThrPro
 6388 ATTACACAGGCCGTGCCAAAGGTATCATTGAGCCAATTCCCATACATTATTGTACCCCG
 AlaGlyPheAlaIleLeuLysCysAsnAsnLysThrPheAsnGlyLysGlyProCysThr 251
 GCTGGTTTGCATTCTAAAGTGTAAATAAAACGTTCAATGGAAAAGGACCATGTACA

FIG. 11A

REPLACEMENT SHEET

6508 AsnValSerThrValGlnCysThrHisGlyIleArgProIleValSerThrGlnLeuLeu
 AATGTCAGCACAGTACAATGTACACATGGAATTAGGCCAATAGTGTCAACTCAACTGCTG
 LeuAsnGlySerLeuAlaGluGluGluValValIleArgSerAspAsnPheThrAsnAsn 291
 TTAAATGGCAGTCTAGCAGAAGAAGAGGTAGTAATTAGATCTGACAATTTCACGAACAAT
 AlaLysThrIleIleValGlnLeuAsnGluSerValAlaIleAsnCysThrArgProAsn
 GCTAAAACCATAATAGTACAGCTGAATCTGTAGCAATTAACTGTACAAGACCCAAC
 AsnAsnThrArgLysSerIleTyrIleGlyProGlyArgAlaPheHisThrThrGlyArg 331
 ACAACATACAAGAAAAAGTATCTATATAGGACCAGGGAGAGCATTCTACAAACAGGAAGA
 IleIleGlyAspIleArgLysAlaHisCysAsnIleSerArgAlaGlnTrpAsnAsnThr
 ATAATAGGAGATATAAGAAAAGCACATTGTAACATTAGTAGAGCACAATGGAATAACACT
 LeuGluGlnIleValLysLysLeuArgGluGlnPheGlyAsnAsnLysThrIleValPhe 371
 TTAGAACAGATAGTTAAAAAATTAAGAGAACAGTTGGGATAATAAAACAATAGTCTT
 AsnGlnSerSerGlyGlyAspProGluIleValMetHisSerPheAsnCysArgGlyGlu
 6868 AATCAATCCTCAGGAGGGGACCCAGAAATTGTAATGCACAGTTTAATTGTAGAGGGAA
 PhePheTyrCysAsnThrThrGlnLeuPheAsnAsnThrTrpArgLeuAsnHisThrGlu 411 E
 TTTTCTACTGTAATACACAACTGTTAATAATACATGGAGGTTAAATCACACTGAA
 GlyThrLysGlyAsnAspThrIleIleLeuProCysArgIleLysGlnIleIleAsnMet
 6988 GGAACATAAGGAAATGACACAATCATACTCCCAGTGAGATAAAACAAATTATAAACATG
 TrpGlnGluValGlyLysAlaMetTyrAlaProProIleGlyGlyGlnIleSerCysSer 451 N
 TGGCAGGAAGTAGGAAAAGCAATGTATGCCCTCCCATTGGAGGACAAATTAGTTGTTCA
 SerAsnIleThrGlyLeuLeuLeuThrArgAspGlyGlyThrAsnValThrAsnAspThr
 7108 TCAAATATTACAGGGCTGCTATTAAACAAGAGATGGTGGTACAAATGTAACATGACACC
 GluValPheArgProGlyGlyAspMetArgAspAsnTrpArgSerGluLeuTyrLys 491 V
 GAGGTCTTCAGACCTGGAGGAGGATATGAGGGACAATTGGAGAAGTGAATTATATAAA
 TyrLysValIleLysIleGluProAsnSerValSer
 7228 TATAAAGTAATAAAATTGAACCAATTCGGTATCTTGA PYK Terminator

FIG. 11B

REPLACEMENT SHEET

Nucleotide positions relative to Figure 5.

	1	AGGXAAACAG:::ATGAT:GA:AAGGCACAAGAAGAACATGAGAAAATATCACAGTAATTGG TCCXTTGTC:::TACTA:CT:TTCCGTGTT <u>CT</u> CTTG <u>T</u> ACTCTTATAGTGTCA <u>TT</u> AACC <u>32</u> mbo11, <u>38</u> nla111,
3820	62	ArgAlaMetAlaSerAspPheAsnLeuProProValValAlaLysGluIleValAlaSer AGAGCCATGGCTAGTGA <u>TTT</u> AACCTGCCAC <u>CTG</u> TAGTAGC <u>AAA</u> AGAAATAGTAGGCCAGC TCT <u>CGG</u> TACCGATCACT <u>AAA</u> ATTGGACGGTGGACATCAT <u>G</u> TTT <u>C</u> TTATCAT <u>CGG</u> <u>TC</u> <u>66</u> ncol, <u>67</u> nla111, <u>118</u> nspBII pvu11, <u>119</u> alu1,
3880	122	CysAspLysCysGlnLeuLysGlyGluAlaMetHisGlyGlnValAspCysSerProGly TGTGATA <u>AA</u> ATGTCAG <u>CT</u> AAA <u>AGG</u> GAGAAGCCATGC <u>AT</u> GG <u>AC</u> AA <u>AG</u> TAG <u>AC</u> T <u>G</u> TAG <u>TC</u> CAG <u>GA</u> AC <u>AC</u> T <u>AT</u> TT <u>AC</u> AG <u>T</u> CG <u>AT</u> TT <u>CC</u> CT <u>TC</u> GG <u>T</u> AC <u>G</u> T <u>AC</u> CT <u>G</u> TT <u>C</u> AT <u>T</u> GC <u>AC</u> AT <u>C</u> AG <u>GT</u> C <u>CT</u> <u>135</u> alu1, <u>151</u> nla111, <u>152</u> nsil ava3, <u>155</u> nla111, <u>164</u> acc1, <u>1</u> <u>76</u> apyl bstXI ecor11 scrF1,
3940	182	IleTrpGlnLeuAspCysThrHisLeuGluGlyLysIleIleLeuValAlaValHisVal ATATGGCA <u>ACT</u> AG <u>TT</u> GTAC <u>AC</u> AT <u>CT</u> AG <u>AA</u> GG <u>AA</u> AA <u>TT</u> AT <u>CC</u> GT <u>AG</u> C <u>AT</u> GT <u>TA</u> TAT <u>AC</u> CG <u>TT</u> GT <u>AT</u> CT <u>AA</u> AT <u>GT</u> GT <u>AG</u> AT <u>CT</u> CC <u>TT</u> TT <u>AA</u> TA <u>AG</u> GC <u>AC</u> AT <u>CG</u> T <u>CA</u> <u>AG</u> <u>T</u> AC <u>AT</u> <u>198</u> rsal, <u>205</u> xba1, <u>223</u> apyl ecor11 scrF1, <u>236</u> nla111,
4000	242	AlaSerGlyTyrIleGluAlaGluValIleProAlaGluThrGlyGlnGluThrAlaTyr GCCAGTGG <u>AT</u> AT <u>AT</u> AG <u>AG</u> C <u>AG</u> A <u>AG</u> TT <u>AT</u> CC <u>AG</u> C <u>AG</u> AC <u>AG</u> GG <u>GC</u> AG <u>GG</u> <u>AA</u> AC <u>AG</u> C <u>AT</u> CG <u>GT</u> C <u>AC</u> CT <u>AT</u> AT <u>AT</u> CT <u>TC</u> GT <u>CT</u> CA <u>AT</u> AG <u>GT</u> CG <u>TC</u> CT <u>GT</u> CC <u>CG</u> T <u>CC</u> TT <u>GT</u> CG <u>T</u> ATA <u>263</u> xmn1,
4060	302	PheLeuLeuLysLeuAlaGlyArgTrpProValLysThrIleHisThrAspAsnGlySer TT <u>TC</u> CT <u>TT</u> AA <u>AA</u> TT <u>AG</u> C <u>AG</u> GA <u>AG</u> AT <u>GG</u> CC <u>AG</u> T <u>AA</u> AA <u>CA</u> AT <u>AC</u> A <u>CA</u> AT <u>GG</u> GC <u>AG</u> AA <u>AG</u> GA <u>AT</u> TT <u>TA</u> AT <u>CG</u> <u>TC</u> <u>TT</u> CT <u>AC</u> CG <u>GT</u> CA <u>TT</u> TT <u>GT</u> TT <u>AT</u> GT <u>TC</u> GT <u>TT</u> AC <u>CG</u> TC <u>GT</u> <u>321</u> mbo11, <u>326</u> ball cfr1 hae1, <u>327</u> hae111, <u>357</u> bbv fnu4h1,
4120	362	AsnPheThrSerThrThrValLysAlaAlaCysTrpTrpAlaGlyIleLysGlnGluPhe A <u>AT</u> TC <u>CC</u> AG <u>CT</u> ACT <u>AC</u> GG <u>TT</u> AG <u>GG</u> CC <u>GC</u> CT <u>GT</u> GG <u>GT</u> GG <u>GC</u> AG <u>GG</u> <u>AT</u> CA <u>AG</u> C <u>AG</u> GA <u>AT</u> TT <u>AA</u> AG <u>GT</u> GG <u>TC</u> AT <u>GT</u> GC <u>CA</u> AT <u>TC</u> <u>CC</u> GG <u>AC</u> AA <u>CC</u> AC <u>CC</u> GT <u>CC</u> <u>XX</u> TA <u>GG</u> TC <u>GT</u> CC <u>TT</u> AAA <u>366</u> hph, <u>371</u> scal, <u>372</u> rsal, <u>385</u> hae111, <u>386</u> fnu4h1 nsb11, <u>4</u> <u>05</u> bin1, <u>406</u> dpn1 sau3a,
4180	422	GlyIleProTyrAsnProGlnSerGlnGlyValValGluSerMetAsnAsnGluLeuLys GG <u>C</u> AT <u>TC</u> <u>CC</u> CT <u>AC</u> A <u>AT</u> CC <u>CC</u> AA <u>AG</u> GT <u>CA</u> AG <u>GG</u> AG <u>AT</u> GA <u>AA</u> AT <u>CT</u> AT <u>GA</u> AA <u>AT</u> GA <u>AT</u> AA <u>AG</u> CC <u>GT</u> AA <u>GG</u> GA <u>AT</u> GT <u>TT</u> AG <u>GG</u> GT <u>TC</u> AG <u>TT</u> CC <u>CT</u> CA <u>TC</u> <u>AT</u> CT <u>TA</u> GA <u>AT</u> CT <u>TT</u> ACT <u>TA</u> AT <u>TT</u> TC <u>423</u> bsm1, <u>458</u> hinf1,
4240	482	LysIleIleGlyGlnValArgAspGlnAlaGluHisLeuLysThrAlaValGlnMetAla AA <u>AA</u> AT <u>AT</u> AG <u>GG</u> AC <u>AG</u> GT <u>AA</u> GG <u>AG</u> AT <u>CA</u> GG <u>CT</u> GA <u>AC</u> AC <u>CT</u> TA <u>AG</u> AC <u>AG</u> C <u>AG</u> T <u>AC</u> AA <u>AT</u> GG <u>CA</u> TT <u>TT</u> AA <u>AT</u> AT <u>CC</u> GT <u>CC</u> AT <u>TC</u> <u>TC</u> AG <u>TC</u> CG <u>AC</u> TT <u>GT</u> GG <u>AA</u> TT <u>CT</u> GT <u>CG</u> <u>TC</u> AT <u>GT</u> TT <u>AC</u> CG <u>GT</u> <u>503</u> dpn1 sau3a, <u>518</u> af111, <u>530</u> rsal,
4300	542	ValPheIleHisAsnPheLysArgLysGlyGlyIleGlyGlyTyrSerAlaGlyGluArg GT <u>AT</u> TC <u>CC</u> CA <u>CA</u> AT <u>TT</u> AA <u>AA</u> AG <u>AA</u> AG <u>GG</u> GG <u>AT</u> TT <u>GG</u> GG <u>GA</u> TA <u>CG</u> GT <u>GC</u> AG <u>GG</u> GG <u>AA</u> AG <u>GA</u> CA <u>TA</u> AG <u>GT</u> AG <u>GT</u> GT <u>AA</u> AT <u>TT</u> CT <u>TT</u> CC <u>CC</u> CT <u>TA</u> AC <u>CC</u> CT <u>AT</u> GT <u>TC</u> AC <u>GT</u> CC <u>CC</u> TT <u>TC</u> <u>547</u> fok1, <u>557</u> aha111,

FIG. 12A

REPLACEMENT SHEET

4360	IleValAspIleIleAlaThrAspIleGlnThrLysGluLeuGlnLysGlnIleThrLys
	602 ATAGTAGACATAATAGCAACAGACATACAAACTAAAGAACTACAAAAGCAAATTACAAAAA
	TAT <u>C</u> ATCTGTATTATCGTTGTCTGTATGTTGATTTCTGATGTTTCGTTAACATGTTTT
	605 acc1,
4420	IleGlnAsnPheArgValTyrTyrArgAspAsnLysAspProLeuTrpLysGlyProAla
	662 ATTCAAAATTTCTGGGTTTATTACAGGGACAACAAAGATCCCCTTGGAAGGACCAGCA
	TAAGTTTAAAGCCCAAATAATGTCCTGTT <u>CT</u> AGGGGAAACCTTCTGGTCGT
	697 xho2, 698 dpn1 sau3a, 713 asu1 ava2,
4480	LysLeuLeuTrpLysGlyGluGlyAlaValValIleGlnAspAsnSerAspIleLysVal
	722 AAGCTTCTCTGGAAAGGTGAAGGGCAGTAGTAATA <u>CAAGATAATAGTGACATAAAAGTA</u>
	<u>TT</u> CGAAGAGACCTTCCACTCCCCGT <u>CATCAT</u> TATGTTCTATTATCACTGTATTTCAT
	722 hind111, 723 alu1, 737 hph,
4540	ValProArgArgLysAlaLysIleIleArgAspTyrGlyLysGlnMetAlaGlyAspAsp
	782 GTGCCAAGAAGAAAAGCAAAATCATTAGGGATTATGGAAAACAGATGGCAGGTGATGAT
	<u>CACGGTT</u> CTTCTTTCTGTTTAGTAATCCCTAACCTTTGTCTACCGT <u>CC</u> ACTACTA
	789 mboll, 833 hph,
4600	CysValAlaSerArgGlnAspGluAspAM
	842 TGTGTGGCAAGTAGACAGGATGAGGATTAGTCGACGGAATTCTTTAGTAAAACACC
	ACACACCGTT <u>CATCTGTC</u> ACTCCTAAC <u>TAGCTGCCT</u> AAAGAAATCATTGTGG
	852 acc1, 859 fok1, 863 mn11, 871 acc1 hind11 sal1, 872 taq1
	, 878 ecor1,

FIG. 12B

REPLACEMENT SHEET

FIG. 13

REPLACEMENT SHEET

FIG. 14

REPLACEMENT SHEET

SOD

MetAlaThrLysAlaValCysValLeuLysGlyAspGlyProValGlnGlyIleIleAsn
 1 CATGGCGACGAAGGCCGTGTGCGTCTGAAGGGCGACGGCCCAGTGCAGGGCATCATCAAT
 CGCTGCTTCGGCACACGACACTTCCGCTGCCGGGTACGTCCCCTAGTAGTTA

PheGluGlnLysGluSerAsnGlyProValLysValTrpGlySerIleLysGlyLeuThr
 62 TTGAGCAGAAGGAAAGTAATGGACCACTGAAGGTGTGGGGAAAGCATTAAAGGACTGACT
 AAGCTCGTCTTCCTTCATTACCTGGTCACTCCACACCCCTCGTAATTCTGACTGA

GluGlyLeuHisGlyPheHisValHisGluPheGlyAspAsnThrAlaGlyCysThrSer
 122 GAAGGCCCTGCATGGATTCCATGTTCATGAGTTGGAGATAATAACAGCAGGCTGTACCAGT
 CTTCCGGACGTACCTAACGGTACAAGTACTCAAACCTCTATTATGTCGTCCGACATGGTCA

AlaGlyProHisPheAsnProLeuSerArgLysHisGlyGlyProLysAspGluGluArg
 182 GCAGGGTCCTCACTTAATCCTCTATCCAGAAAACACGGTGGGCCAAAGGATGAAGAGAGG
 CGTCCAGGAGTGAAATTAGGAGATAGGTCTTGTGCCACCCGGTTCTACTTCTCTCC

HisValGlyAspLeuGlyAsnValThrAlaAspLysAspGlyValAlaAspValSerIle
 242 CATGTTGGAGACTTGGGCAATGTGACTGCTGACAAAGATGGTGTGGCCGATGTGTCTATT
 GTACAACCTCTGAACCCGTTACACTGACGACTGTTCTACCACACCCGGTACACAGATAA

GluAspSerValIleSerLeuSerGlyAspHisCysIleIleGlyArgThrLeuValVal
 302 GAAGATTCTGTGATCTCACTCTCAGGAGACCATTGCATCATTGCCGCACACTGGTGGTC
 CTTCTAACAGACACTAGAGTGAGAGTCCTCTGGTAACGTAGTAACCGCGTGTGACCAACAG

HisGluLysAlaAspAspLeuGlyLysGlyAsnGluGluSerThrLysThrGlyAsn
 362 CATGAAAAAGCAGATGACTTGGGCAAAGGTGGAAATGAAGAAAGTACAAAGACAGGAAAC
 GTACTTTTCGTCTACTGAACCCGTTCCACCTTACTTCTTCTGTTCTGTCCTTGT

ENV 5B

AlaGlySerArgLeuAlaCysGlyValIleGlyIleAlaMetAlaIleGluAlaGlnGln
 422 GCTGGAAAGTCGTTGGCTTGTGGTGTAAATTGGGATGCCATGGCTATCGAAGCTAACAA
 CGACCTTCAGCAAACCGAACACACATTAAACCCCTAGCGGTACCGATAGCTCGAGTTGTT

HisLeuLeuGlnLeuThrValTrpGlyIleLysGlnLeuGlnAlaArgValLeuAlaVal
 482 CACTTGCTGCAGTTGACCGTTGGGTATCAAGCAGTGCAGGCTAGAGTTGGCTGTT
 GTGAACGACGTCAACTGGCAAACCCCATAGTTGTCAACGTCCGATCTCAAAACCGACAA

GluArgTyrLeuArgAspGlnGlnLeuLeuGlyIleTrpGlyCysSerGlyLysLeuIle
 542 GAAAGATACTTGAGAGATCAACAATTGTTGGGTATCTGGGGTTGTTCTGGTAAGTTGATT
 CTTCTATGAACTCTCTAGTTGTTAACAAACCCATAGACCCCCAACAGACCATTCAACTAA

CysThrThrAlaValProTrpAsnAlaSerTrpSerAsnLysSerLeuGluAspIleTrp
 602 TGTACCACCGCTGTCCTGGAACGCTCTGGCTAACAGTCTTGGAAAGACATCTGG
 ACATGGTGGCGACAAGGGACCTTGCAGAAGAACCCAGATTGTTAGAAACCTCTGTAGACC

AspAsnMetThrTrpMetGlnTrpGluArgGluIleAspAsnTyrThrAsnThrIleTyr
 662 GACAACATGACCTGGATGCAATGGGAAAGAGAAATCGACAACACCAACACCACATCTAC
 CTGTTGACTGGACCTACGTTACCCCTCTTAGCTGTTGATGTGGTTGGTAGATG

ThrLeuLeuGluGluSerGlnAsnGlnGlnGluLysAsnGluGlnGluLeuLeuGluLeu
 722 ACCTTGGGAGGAATCTCAAAACCAACAAAGAAAAGAACGAAACAAGAACGAAATTGTTGGAAATTG
 TGGAAACACCTCTTAGAGTTGGTTGTTCTTGTGTTAACACCTTAAC

AspLysTrpAlaSerLeuTrpAsnTrpPheSerIleThrAsnTrpAM
 782 GACAAGTGGGCAAGCTGTGGAACTGGTCTCTATCACCAACTGGTAG
 CTGTTCACCCGTTGAACACCTTGACCAAGAGATAGTGGTTGACCATCAGCT

Translated Mol. Weight = 30414.22

FIG. 15

REPLACEMENT SHEET

FIG. 16A

REPLACEMENT SHEET

FIG. 16B

REPLACEMENT SHEET

FIG. 17

REPLACEMENT SHEET

FIG. 18

REPLACEMENT SHEET

FIG. 19

REPLACEMENT SHEET

FIG. 20

REPLACEMENT SHEET

FIG. 21

REPLACEMENT SHEET

C <u>1</u> <u>ATG CCT ATA GTG CAG AAT CTG CAG GGG CAA ATG GTA CAT CAG</u>	<u>10</u> <u>Met Pro Ile Val Gln Asn Leu Gln Gly Gln Met Val His Gln</u>
<u>20</u> <u>Ala Ile Ser Pro Arg Thr Leu Asn Ala Trp Val Lys Val Val Glu</u> <u>GCC ATA TCA CCT AGA ACT TTA AAT GCT TGG GTA AAA GTA GTA GAA</u>	
<u>30</u> <u>Glu Lys Ala Phe Ser Pro Glu Val Ile Pro Met Phe Ser Ala Leu</u> <u>GAA AAG GCT TTC AGC CCA GAA GTA ATA CCC ATG TTT TCA GCA TTA</u>	
<u>40</u> <u>Ser Glu Gly Ala Thr Pro Gln Asp Leu Asn Thr Met Leu Asn Thr</u> <u>TCA GAA GGA GCC ACC CCT CAA GAT TTA AAC ACC ATG CTA AAC ACA</u>	
<u>50</u> <u>Val Gly Gly His Gln Ala Ala Met Gln Met Leu Lys Glu Thr Ile</u> <u>GTG GGG GGA CAT CAA GCA GCC ATG CAA ATG TTA AAA GAG ACT ATC</u>	
<u>60</u> <u>Asn Glu Glu Ala Ala Glu Trp Asp Arg Val His Pro Val His Ala</u> <u>AAT GAG GAG GCT GCC GAA TGG GAT AGA GTG CAT CCA GTG CAT GCA</u>	
<u>70</u> <u>Gly Pro Ile Ala Pro Gly Gln Met Arg Glu Pro Arg Gly Ser Asp</u> <u>GGG CCT ATT GCA CCA GGC CAA ATG AGA GAA CCA AGG GGA AGT GAC</u>	
<u>80</u> <u>100</u>	

FIG. 22A

REPLACEMENT SHEET

Ile Ala Gly Thr Thr Ser Thr Leu Gln Glu Gln Ile Gly Trp Met
110
ATA GCA GGA ACT ACT AGT ACC CTT CAG GAA CAA ATA GGA TGG ATG

Thr Asn Asn Pro Pro Ile Pro Val Gly Glu Ile Tyr Lys Arg Trp
120
ACA AAT AAT CCA CCT ATC CCA GTA GGA GAA ATC TAT AAA AGA TGG

Ile Ile Leu Gly Leu Asn Lys Ile Val Arg Met Tyr Ser Pro Thr
140
ATA ATC CTG GGA TTA AAT AAA ATA GTA AGA ATG TAT AGC CCT ACC

Ser Ile Leu Asp Ile Arg Gin Gly Pro Lys Glu Pro Phe Arg Asp
150
AGC ATT CTG GAC ATA AGA CAA GGA CCA AAG GAA CCC TTT AGA GAT

Tyr Val Asp Arg Phe Tyr Lys Thr Leu Arg Ala Glu Gln Ala Ser
170
TAT GTA GAC CGG TTC TAT AAA ACT CTA AGA GCC GAA CAA GCT TCA

Gln Asp Val Lys Asn Trp Met Thr Glu Thr Leu Leu Val Gln Asn
180
CAG GAT GTA AAA AAT TGG ATG ACA GAA ACC TTG TTG GTC CAA AAT

Ala Asn Pro Asp Cys Lys Thr Ile Leu Lys Ala Leu Gly Pro Ala
200
GCA AAC CCA GAT TGT AAG ACT ATT TTA AAA GCA TTG GGA CCA GCA

Ala Thr Leu Glu Glu Met Met Thr Ala Cys Gln Gly Val Gly Gly
210
GCT ACA CTA GAA GAA ATG ATG ACA GCA TGT CAG GGA GTG GGG GGA

Pro Gly His Lys Ala Arg Val Leu OP
230 232
CCC GGG CAT AAA GCA AGA GTT TTG TGA TAG

Translated Mol. Weight = 25700.75

FIG. 22B

REPLACEMENT SHEET

FIG. 23

REPLACEMENT SHEET

SOD-->
MetAlaThrLysAla
ATGGCTACAAAGGCT
TACCGATGTTCCGA

1383 ValCysValLeuLysGlyAspGlyProValGlnGlyIleIleAsnPheGluGlnLysGlu
GTTTGTTTGAAGGGTGACGGGCCAGTTCAAGGTATTATAACTTCGAGCAGAAGGAA
CAAACACAAAACCTCCCACGTGCCGGGTCAGTTCCATAATAATTGAAGCTCGTCTTCCTT

1443 SerAsnGlyProValLysValTrpGlySerIleLysGlyLeuThrGluGlyLeuHisGly
AGTAATGGACCACTGAAGGTGTGGGGAAAGCATTAAAGGACTGACTGAAGGCCTGCATGGG
TCATTACCTGGTCACTTCCACACCCCTCGTAATTCTGACTGACTTCCGGACGTACCT

1503 PheHisValHisGluPheGlyAspAsnThrAlaGlyCysThrSerAlaGlyProHisPhe
TTCCATGTTCATGAGTTGGAGATAATACAGCAGGCTGTACCAGTGCAGGTCTCACTT
AAGGTACAAGTACTCAAACCTCTATTATGTCGTCCGACATGGTCACGTCCAGGAGTGAAC

1563 AsnProLeuSerArgLysHisGlyGlyProLysAspGluGluArgHisValGlyAspLeu
AATCCTCTATCCAGAAAACACGGTGGGCCAAGGATGAAGAGAGGCATGTTGGAGACTTG
TTAGGAGATAGGTCTTTGTGCCACCCGGTTCTACTTCTCTCGTACAACCTCTGAAC

1623 GlyAsnValThrAlaAspLysAspGlyValAlaAspValSerIleGluAspSerValIle
GGCAATGTGACTGCTGACAAGATGGTGTGCCGATGTGTCTATTGAAGATTCTGTGATC
CCGTTACACTGACGACTGTTCTACCACACCGGCTACACAGATAACTTCTAAGACACTAG

1683 SerLeuSerGlyAspHisCysIleIleGlyArgThrLeuValValHisGluLysAlaAsp
TCACTCTCAGGAGACCATTGCATCATGGCCGACACTGGTGGTCCATGAAAAAGCAGAT
AGTGAGAGTCCTCTGGTAACGTAGTAACCGGCGTGTGACCACCAAGGTACTTTCTGCTA

1743 AspLeuGlyLysGlyGlyAsnGluGluSerThrLysThrGlyAsnAlaGlySerArgLeu
GACTTGGGAAAGGTGGAAATGAAGAAAGTACAAAGACAGGAAACGCTGGAAAGTCGTTG
CTGAACCCGTTCCACCTTACTTCTTATGTTCTGCTTGCACCTCAGCAAAC

linker --> p31 -->

1803 AlaCysGlyValIleGlyIleAlaGlnAsnSerGlyValGlyAlaMetAlaMetAlaSer
GCTTGTGGTGTAAATTGGGATGCCAGAATTCAAGGTGTTGGAGCCATGCCATGGCTAGT
CGAACACCACATTAACCTAGCGGGTCTTAAGTCCACAAACCTCGGTACCGGTACCGATCA

1863 AspPheAsnLeuProProValValAlaLysGluIleValAlaSerCysAspLysCysGln
GATTTAACCTGCCACCTGTAGTAGCAGGAAATAGTAGCCAGCTGTGATAATGTCAG
CTAAAATTGGACGGTGGACATCATCGTTCTTATCATCGGTGACACTATTACAGTC

1923 LeuLysGlyGluAlaMetHisGlyGlnValAspCysSerProGlyIleTrpGlnLeuAsp
CTAAAAGGAGAAAGCCATGCATGGACAAGTAGACTGTAGTCCAGGAATATGGCAACTAGAT
GATTTCCCTTCGGTACGTACCTGTTCATCTGACATCAGGTCCCTATACCGTTGATCTA

FIG. 24A

REPLACEMENT SHEET

1983 CysThrHisLeuGluGlyLysIleIleLeuValAlaValHisValAlaSerGlyTyrIle
 TGTACACATCTAGAAGGAAAAATTATCCTGGTAGCAGTCATGTAGCCAGTGGATATATA
 ACATGTGTAGATCTTCCTTTAAAGGACCATCGTCAAGTACATCGGTACCTATATAT

 2043 GluAlaGluValIleProAlaGluThrGlyGlnGluThrAlaTyrPheLeuLeuLysLeu
 GAAGCAGAAGTATTCCAGCAGAGACAGGGCAGGAAACAGCATATTTCTCTAAAATTA
 CTTCGTCTCAATAAGTCGTCTGTCCCGTCCTTGTGTATAAAAGAGAATTTAAAT

 2103 AlaGlyArgTrpProValLysThrIleHisThrAspAsnGlySerAsnPheThrSerThr
 GCAGGAAGATGGCCAGTAAAAACAATAACAGACAATGGCAGCAATTTCACCAAGTACT
 CGTCCTTCTACCGGTCACTTTGTATGTATGTCTGTAAACCGTAAGGGATGTTA

 2163 ThrValLysAlaAlaCysTrpTrpAlaGlyIleLysGlnGluPheGlyIleProTyrAsn
 ACGGTTAACGGCCGCCTGTTGGTGGCAGGGATCAAGCAGGAATTGGCATTCCCTACAAT
 TGCCAATTCCGGCGGACAACCACCCGTCCTAGTCGTCTAAACCGTAAGGGATGTTA

 2223 ProGlnSerGlnGlyValValGluSerMetAsnAsnGluLeuLysLysIleIleGlyGln
 CCCCAAAGTCAGGAGTAGTGAATCTATGAATAATGAATTAAAGAAAATTAGGACAG
 GGGGTTTCAGTCCCTCATCATCTTAGATACTTATTACTTAATTCTTTAATATCCTGTC

 2283 ValArgAspGlnAlaGluHisLeuLysThrAlaValGlnMetAlaValPheIleHisAsn
 GTAAGAGATCAGGCTGAACACCTTAAGACAGCAGTACAAATGGCAGTATTCACTCCACAAT
 CATTCTCTAGTCCGACTTGTGGATTCTGTGTATGTTACCGTCATAAGTAGGTGTTA

 2343 PheLysArgLysGlyGlyIleGlyGlyTyrSerAlaGlyGluArgIleValAspIleIle
 TTTAAAAGAAAAGGGGGGATTGGGGGATACAGTGCAGGGAAAGAATAGTAGACATAATA
 AAATTCTTTCCCCCTAACCCCCCTATGTCACGTCCCCTTCTTATCATCTGTATTAT

 2403 AlaThrAspIleGlnThrLysGluLeuGlnLysGlnIleThrLysIleGlnAsnPheArg
 GCAACAGACATACAAACTAAAGAACTACAAAAGCAAATTACAAAAATTCAAAATTTCGG
 CGTTGTCTGTATGTTGATTCTTGATGTTTCGTTAATGTTTAAGTTTAAAGGCC

 2463 ValTyrTyrArgAspAsnLysAspProLeuTrpLysGlyProAlaLysLeuLeuTrpLys
 GTTATTACAGGGACAACAAAGATCCCCTTGGAAAGGACCAGCAAAGCTCTGGAAA
 CAAATAATGTCCCTGTTCTAGGGGAAACCTTCTGGTCGTTCAAGAGACCTT

 2523 GlyGluGlyAlaValValIleGlnAspAsnSerAspIleLysValValProArgArgLys
 GGTGAAGGGGCAGTAGTAAACAGATAATAGTGACATAAAAGTAGTGCCAGAAGAAAA
 CCACTTCCCCGTCACTATTATGTTCTATTACTGTATTTCATCACGGTTCTTCTT

 2583 AlaLysIleIleArgAspTyrGlyLysGlnMetAlaGlyAspAspCysValAlaSerArg
 GCAAAAATCATTAGGGATTATGGAAAACAGATGGCAGGTGATGATTGTGGCAAGTAGA
 CGTTTTAGTAATCCCTAACCTTTGTCTACCGTCACTACTAACACACCGTTCATCT

 2643 GlnAspGluAspAM
 CAGGATGAGGATTAG
 GTCCTACTCCTAAC

FIG. 24B

REPLACEMENT SHEET

FIG. 25

REPLACEMENT SHEET

Sequence of SOD/env-4

SOD -→

Met Ala Thr Lys Ala Val Cys Val Leu Lys Gly Asp Gly Pro Val Gln Gly Ile Ile Asn
 1 CATGGCGACGAAGGCCGTGCGTGCCTGAAGGGCGACGGCCAGTGCAGGGCATCATCAAT
 CGCTGCTTCGGCACACGCACGACTTCCGCTGCCGGTCACGTCCCGTAGTAGTTA
 Phe Glu Gln Lys Glu Ser Asn Gly Pro Val Lys Val Trp Gly Ser Ile Lys Gly Leu Thr
 62 TTCGAGCAGAAGGAAAGTAATGGACCAGTGAAGGTGTGGGAAGCATTAAAGGACTGACT
 AAGCTCGTCTCCTTCATTACCTGGTCACCTCCACACCCCTCGTAATTCTGACTGA
 Glu Gly Leu His Gly Phe His Val His Glu Phe Gly Asp Asn Thr Ala Gly Cys Thr Ser
 122 GAAGGCCTGCATGGATTCCATGTTCATGAGTTGGAGATAATACAGCAGGCTGTACCAAGT
 CTTCCGGACGTACCTAACAGTACTCAAACCTCTATTATGTCGTCCGACATGGTCA
 Ala Gly Pro His Phe Asn Pro Leu Ser Arg Lys His Gly Pro Lys Asp Glu Glu Arg
 182 GCAGGTCCTCACTTAATCCTCTATCCAGAAAACACGGTGGGCCAAAGGAATGAAGAGAGG
 CGTCCAGGAGTGAAATTAGGAGATAGGTCTTGTGCCACCCGGTTCTACTTCTCTCC
 His Val Gly Asp Leu Gly Asn Val Thr Ala Asp Lys Asp Gly Val Ala Asp Val Ser Ile
 242 CATGTTGGAGACTTGGCAATGTGACTGCTGACAAAGATGGTGTGGCCGATGTGTCTATT
 GTACAACCTCTGAACCCGTTACACTGACGACTGTTCTACCACACCGGCTACACAGATAA
 Glu Asp Ser Val Ile Ser Leu Ser Gly Asp His Cys Ile Ile Gly Arg Thr Leu Val Val
 302 GAAGATTCTGTGATCTCACTCTCAGGAGACCATTCGCATCATTGGCCGCACACTGGTGGTC
 CTTCTAACAGACACTAGAGTGAGAGTCCTCTGGTAACGTAGTAACCGGGGTGACCAACAG
 His Glu Lys Ala Asp Asp Leu Gly Lys Gly Asn Glu Glu Ser Thr Lys Thr Gly Asn
 362 CATGAAAAAAGCAGATGACTTGGGCAAAGGTGGAAATGAAGAAAGTACAAAGACAGGAAAC
 GTACTTTTCGTCTACTGAACCCGTTCCACCTTACTTCTTCTATGTTCTGTCCTTG

Env4 -→

Ala Gly Ser Arg Leu Ala Cys Gly Val Ile Glu Ile Ala Met Glu Val Val Ile Arg Ser
 422 GCTGGAAGTCGTTGGCTTGTGGTGTAAATTGGGATGCCATGGAGGTAGTAATTAGATCT
 CGACCTTCAGCAAACCGAACACCATTAACCTAGCGGTACCTCCATCTTACATTAATCTAGA
 Asp Asn Phe Thr Asn Asn Ala Lys Thr Ile Ile Val Gln Leu Asn Glu Ser Val Ala Ile
 482 GACAATTTACGAACAATGCTAAACCATAATAGTACAGCTGAATGAATCTGTAGCAATT
 CTGTTAAAGTGTGTTACGATTTGGTATTATCATGTCGACTTACTAGACATCGTTAA
 Asn Cys Thr Arg Pro Asn Asn Asn Thr Arg Lys Ser Ile Tyr Ile Gly Pro Gly Arg Ala
 542 AACTGTACAAGACCCAACAACAATACAAGAAAAAGTATCTATATAGGACCAGGGAGAGCA
 TTGACATGTTCTGGGTTGTTATGTTCTTTCTAGATATATCCTGGTCCCTCGT

FIG. 26A

REPLACEMENT SHEET

602 PheHisThrThrGlyArgIleIleGlyAspIleArgLysAlaHisCysAsnIleSerArg
TTTCATAACAACAGGAAGAATAATAGGAGATATAAGAAAAGCACATTGTAACATTAGTAGA
AAAGTATGTTGTCCTTATTATCCTCTATATTCTTCGTGTAACATTGTAATCATCT

662 AlaGlnTrpAsnAsnThrLeuGluGlnIleValLysLysLeuArgGluGlnPheGlyAsn
GCACAATGGAATAAACACTTTAGAACAGATAGTTAAAAAAATTAAAGAGAACAGTTGGGAAT
CGTGTACCTTATTGTGAAATCTGTCTATCAATTTTAATTCTCTGTCAAACACCCTTA

722 AsnLysThrIleValPheAsnGlnSerSerGlyGlyAspProGluIleValMetHisSer
AATAAAAACAATAGTCTTAATCAATCCTCAGGAGGGGACCCAGAAAATTGTAATGCACAGT
TTATTTGTTATCAGAAATTAGTTAGGAGTCTCCCCCTGGGTCTTAACATTACGTGTCA

782 PheAsnCysArgGlyGluPhePheTyrCysAsnThrThrGlnLeuPheAsnAsnThrTrp
TTTAATTGTAGAGGGGAATTTTCTACTGTAATACAACACAACACTGTTAATAATACATGG
AAATTAAACATCTCCCTTAAAGATGACATTATGTTGTTGACAATTATTATGTAC

842 ArgLeuAsnHisThrGluGlyThrLysGlyAsnAspThrIleIleLeuProCysArgIle
AGGTTAAATCACACTGAAGGAACTAAAGGAAATGACACAATCATACTCCCATGTAGAATA
TCCAATTAGTGTGACTTCCTGATTTCTTACTGTGTTAGTATGAGGGTACATCTTAT

902 LysGlnIleIleAsnMetTrpGlnGluValGlyLysAlaMetTyrAlaProProIleGly
AAACAAAATTATAAACATGTGGCAGGAAGTAGGAAAAGCAATGTATGCCCTCCCATTGGA
TTTGTAAATATTGTACACCGTCCTCATCCTTCTGTTACATACGGGGAGGGTAACCT

962 GlyGlnIleSerCysSerSerAsnIleThrGlyLeuLeuLeuThrArgAspGlyGlyThr
GGACAAAATTAGTTGTTCATCAAATATTACAGGGCTGCTATTAAACAAGAGATGGTGGTACA
CCTGTTAATCAACAAGTAGTTATAATGTCCCAGCATAATTGTTCTTACCAACCATG

1022 AsnValThrAsnAspThrGluValPheArgProGlyGlyAspMetArgAspAsnTrp
AATGTAACAAATGACACCGAGGTCTCAGACCTGGAGGAGGAGATATGAGGGACAATTGG
TTACATTGATTACTGTGGCTCCAGAAGTCTGGACCTCCCTCTATAACTCCCTGTTAAC

1082 ArgSerGluLeuTyrLysTyrLysValIleLysIleGluProLeuGlyIleAlaProThr
AGAAGTGAATTATATAAAATATAAGTAATAAAAATTGAAACCTAGGAATAGCACCCACC
TCTTCACTTAATATATTATATTCAATTAACTTGTGTAATCCTTATCGTGGTGG

1142 LysAlaLysArgArgValValGlnArgGluLysArgOP OP
AAGGCAGGAGAGAGTGGTGCAGAGAGAAAAAGATGATGAAGCTTG
TTCCGTTCTCTCACCACTGTCTCTTTTACTACTTCGAACAGCT

FIG. 26B

REPLACEMENT SHEET

FIG. 27

REPLACEMENT SHEET

FIG. 28

REPLACEMENT SHEET

FIG. 29

REPLACEMENT SHEET

A	B	C	D	E	F
					— 200,000
					— 92,500
					— 68,000
					— 43,000
					— 25,700
					— 18,400
					— 12,300

FIG. 30

REPLACEMENT SHEET

FIG. 31A

FIG. 31B