The KKT condition is insufficient for guaranteeing a local minimizer.

Well, we know that even for a 1-D unconstrained problem the necessary $f'(x^*)=0$ condition does not guarantee x^* is a local (let alone global) minimizer.

minimizer. e.g. $f(x) = x^3$, f'(0) = 0 but 0 is not a local minimizer.

Note: f is not convex and f''(0) = 0 (2nd derivative test failed)

Two important results:

- (1) If the optimization problem is convex, then the KKT condition is sufficient to guarantee that x* is a global minimizer.
- (2) For general (nonconvex) problems, an additional second order condition guarantees that x* is a local minimizer. [Sec 12.5, NBW]

Convexity

Def: A set C = Rn is convex if: Y x, y ∈ C, t ∈ [0,1], (1-t)x+ty ∈ C.

Def: Let $C \subseteq \mathbb{R}^n$ be convex. A function $f: C \to \mathbb{R}$ is called convex if $f((1-t)x + ty) \le (1-t)f(x) + tf(y)$, $\forall x,y \in C$, $t \in [0,1]$

f is called concave if -f is convex.

Easy fact: intersection of convex sets is convex.

If $C_1, \dots, C_m : \mathbb{R}^n \to \mathbb{R}$ are concave, then each $\{x \in \mathbb{R}^n : C_i(x) \ge 0\}$ is convex, and so is $\mathbb{D} = \{x : C_i(x) \ge 0, \dots, C_m(x) \ge 0\} = \bigcap_{i=1}^n \{x \in \mathbb{R}^n : C_i(x) \ge 0\}.$

[Note: C: Rn -> R is convex -> {x: C:(x) >> 0} or {x: C:(x) == 0} is convex.]

Another easy fact: Any affine function $f(x) = a^{T}x + b$, $a \in \mathbb{R}^{n}$, $b \in \mathbb{R}$ is both convex and concave.

Thm (the gradient inequality) alocal property a global Let $f: \mathbb{R}^n \to \mathbb{R}$ be $C^1 \cdot f|_C$ is convex. Property f is a convex $\iff f(x) + \nabla f(x)^T (y-x) \leqslant f(y), \forall x,y \in C$. The proof is not hard, see [Becks] Thm 7.6.

Thm. Let f: Rn > R be C'. f | is convex.

 $\nabla f(x^*) = 0 \implies x^* \text{ is a global minimizer of } f: C \to \mathbb{R}$

Proof: By the gradient inequality, $f(z) \ge f(x^*) + \nabla f(x^*)^T (z-x^*)$ = $f(x^*)$. QED. Converse is not true, and that is the whole point of KKT!

Thm Same setting as above, but now f is C?

f is convex $\Leftrightarrow \nabla^2 f(x) \succcurlyeq 0 \ \forall x \in C$.

Corollary: fax = xTAx + 2bTx +c is convex (>> A>0.

KKT meets convexity

Let f, g_0 , ..., $g_m : \mathbb{R}^n \to \mathbb{R}$ be convex C' functions. $\Leftrightarrow -g_i(x) > 0$

Consider the convex optimization problem: minf(x) s.t. gi(x) <0, i=1..., m (x)

Thm: The KKT conditions are satisfied at $x^* \Rightarrow x^*$ is a global minimizer of (x).

Note: (=) requires a constraint qualification condition (=>) does not require CQ.

Proof: The KKT conditions for (x) at x* are gi(x*) ≤0,

$$\nabla f(x^*) = \sum_{i=1}^{\infty} \lambda_i^* \nabla (-g_i)^i (x^*) , \quad \chi_i^* > 0 , \quad \chi_i^* + g_i(x^*) = 0.$$

The function $S(x) = f(x) + \sum_{i=1}^{\infty} \lambda_{i}^{*} g_{i}(x) = L(x, 1^{*})$ is convex.

Also,
$$\nabla s(x^*) = \nabla f(x^*) + \sum_{i=1}^{m} \lambda_i^* \nabla g_i(x^*) \stackrel{\downarrow}{=} O$$

30, by convexity, x^* is a global minimizer of $g(\cdot)$ over \mathbb{R}^n .
Then $f(x^*) = f(x^*) + \sum_{i=1}^{m} \lambda_i^* g_i(x^*)$ ($\lambda_i^* g_i(x^*) = 0$, $\forall i$)
$$= g(x^*)$$

$$\leq g(x)$$

$$\leq g(x)$$

$$\leq f(x)$$
if x is feasible for (x) , as $g(x) \leq 0$. Q.E.D.

If you find this argument interesting or tricky, it is because it is.

In fact, there is a tricky connection of the result above to a seemingly unrelated topic called DUALITY.

Second Order Conditions {d: cixx√d≥0, i∈Ind(x*), cixx√d=0, i∈E}

If $d \in \mathcal{F}(x^*)$ is st. $\nabla f(x^*) d > 0$, we know $f(x^* + \epsilon d) > f(x^*)$, small $\epsilon > 0$.

If $d \in F(x^*)$ is st. $\nabla f(x^*)^T d = 0$, we cannot tell from 1st derivative information alone if $f \uparrow f$ or V when moving from x^* in direction d.

From now on:

Assume f and Ci, $i \in EUI$, are C^2 , so we can use and derivative information.

Recall our first two examples:

min
$$x_1 + x_2$$

S.t. $x_1^2 + x_2^2 - 1 = 0$

KKT pts:
$$x^* = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$$
 $x^* = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -2 \\ -2 \end{bmatrix}$ $\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$

$$T_{D}(x^*) = f(x^*) = \{d: \begin{bmatrix} 2 \\ 2 \end{bmatrix} d = 0\}$$
for both x^* .

min
$$x_1 + x_2$$

S.t. $1 - x_1^2 - x_2^2 \ge 0$

$$x^* = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

In the first example, KKT cannot distinguish local min from local max.

In the second example, KKT can rule out [] (thanks to the inequality).

But in both examples, KKT alone cannot decide if [1] is a local minimizer.

At a KKT point x^* , $\nabla f(x^*) = \sum_{i \in \mathcal{E}} \lambda_i^* \nabla c_i(x^*) + \sum_{i \in \mathcal{Z}} \lambda_i^* \nabla c_i(x^*)$

If $d \in \mathcal{F}(x^*)$, $\nabla f(x^*)^T d = \sum_{i \in \mathcal{E}} \lambda_i^* \nabla c_i (x^*)^T d + \sum_{i \in \mathcal{I}} \lambda_i^* \nabla c_i (x^*)^T d$

If $d \in F(x^*)$ is such that $\nabla c_i(x^*)^T d > 0$ for some $i \in T \cap A(x^*)$ with $\lambda_i^* > 0$ then $\nabla f(x^*)^T d > 0$.

no need to worry about such directions

So, the directions we do have to worry about are those in:

C(x*, x*):={wef(x*): Vci(x*) w=0, ied(x*)八九, xi*>0}

= \{ we \mathbb{R}^n : \nablaci(x*)^\tau = 0, \forall ie \text{and } \nablaci(x*)^\tau = 0, \forall ie \text{InA(x*) s.t. } \text{2*>0}\}

and \nablaci(x*)^\tau > 0, \forall ie \text{InA(x*) s.t. } \text{2*=0}\forall .

E.g. min
$$x_1^3 + x_2^2$$

St. $x_2 - 1 \ge 0$

$$\nabla f = \begin{bmatrix} 3x_1^2 \\ 2x_2 \end{bmatrix} \quad \nabla c_i = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

KKT conditions:
$$\begin{bmatrix} 3\chi^2 \\ 2\chi_2 \end{bmatrix} = \lambda_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \implies \chi_1 = 0$$

a come, not a subspace

$$\lambda_1(x_2-1)=0$$
 If $\lambda_1=0$, then $x_1=x_2=0 \leftarrow \text{not feasible}$.
 $x_2>1$ If $\lambda_1>0$, then $x_2=1$, and $\lambda_1=2$.

$$\chi^{*}:[0]$$
, $\chi^{*}=2$, $f(\chi^{*})=\{d:[0]^{T}d\geqslant 0\}=\{[d_{1}]:d_{2}\geqslant 0\}$.
the set of directions we need $C(\chi^{*},\chi^{*})=\{[d_{2}]:d_{2}=0\}$. \leftarrow not only a cone but to warry about also a subspace

Unlike our second example, x* is not a local minimizer.

E.g. min x1 S.t. x2≥0, 1-(x-1)2-x22≥0

$$x^* = [0]$$
, $\nabla f = [0]$, $\nabla c_1 = [0]$, $\nabla c_2(x^*) = [0]$.

$$\nabla f(x^*) = O \cdot \nabla c_1(x^*) + \frac{1}{2} \nabla c_2(x^*), \quad \Lambda^* = \begin{bmatrix} v_2 \\ v_2 \end{bmatrix}$$

$$\mathcal{C}(x^*, x^*) = \{ [\underset{w_2}{\circ}] : w_2 > 0 \} \in a \text{ cone, } \underbrace{not a}_{\text{SubSpace}}$$

This is also an example of non-strict complementarity. T

y. The only KKT point

Definition 12.5 (Strict Complementarity).

Given a local solution x^* of (12.1) and a vector λ^* satisfying (12.34), we say that the strict complementarity condition holds if exactly one of λ_i^* and $c_i(x^*)$ is zero for each index $i \in \mathcal{I}$. In other words, we have that $\lambda_i^* > 0$ for each $i \in \mathcal{I} \cap \mathcal{A}(x^*)$.

HW:

Consider max $x_1 + x_2 + x_3$ St. $x_1^2 + x_3^2 \le 1$ $x_2^2 + x_3^2 \le 1$

Determine the KKT point(s) x*.

Determine F(x*). Is it a subspace?

Determine C(x*, x*). Is it a subspace?

Is x* a local maximizer? (Hint: convexity.) **Theorem 12.5** (Second-Order Necessary Conditions).

Suppose that x^* is a local solution of (12.1) and that the LICQ condition is satisfied. Let λ^* be the Lagrange multiplier vector for which the KKT conditions (12.34) are satisfied. Then

$$w^T \nabla_{xx}^2 \mathcal{L}(x^*, \lambda^*) w \ge 0, \quad \text{for all } w \in \mathcal{C}(x^*, \lambda^*).$$
 (12.57)

Theorem 12.6 (Second-Order Sufficient Conditions).

Suppose that for some feasible point $x^* \in \mathbb{R}^n$ there is a Lagrange multiplier vector λ^* such that the KKT conditions (12.34) are satisfied. Suppose also that

$$w^T \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) w > 0$$
, for all $w \in \mathcal{C}(x^*, \lambda^*)$, $w \neq 0$. (12.65)

Then x^* is a strict local solution for (12.1).

Q: why shouldn't the condition be $W^T \nabla^2 f(x^*) W \ge 0$, $W \in C(x^*, \lambda^*)$?

A: With constraints, $\nabla f(x^*) \neq 0$ in general.

Key idea of the proofs:

originally, we just view it as a notational trick to write $\nabla f(x^*) = \sum_i \lambda_i^* \nabla c_i (x^*)$

 $\mathcal{L}(x, x) = f(x) - \sum_{i} x_{i} C_{i}(x^{*})$

At a KKT point x^* , x^* , x^* , x^* x^* x^* x^* y^* y^*

 $\mathcal{L}(x,^*) = f(x^*),$

For $W \in C(x^*, x^*) \subset F(x^*)$, from an argument from Step II of the proof of KKT,

 $\exists \exists k \in \Omega$, $t_k > 0$ st. $\lim_{k \to \infty} \frac{Zk - x^*}{t_k} = w \Leftrightarrow Zk - x^* = t_k w + o(t_k)$

And recall that such $\exists k$ is constructed to satisfy the nonlinear equations $Ci(\exists k) = \exists k \ \nabla Ci(x^*)^T w \ \forall i \in A(x^*).$

For such $z_R \approx x^*$, we have $\mathcal{L}(z_R, 1^*) = f(z_R) - \sum_{i \in z_U \in \mathcal{L}} 1^i c_i(z_R)$

= f(ZB) - the \(\sum_{i\index}\)\text{Vc:(cx*)\text{T}W}

 $\mathcal{L}(\mathbf{Z}_{\mathbf{k}}, \mathbf{\lambda}^*) = f(\mathbf{Z}_{\mathbf{k}})$

$$\int_{-\infty}^{\infty} f(z_{R}) = \int_{-\infty}^{\infty} f(x^{*}) + \nabla_{x} f(x^{*}, x^{*})^{T} (z_{R} - x^{*}) + \int_{-\infty}^{\infty} (z_{R} - x^{*})^{T} \nabla_{xx}^{2} f(x^{*}, x^{*}) (z_{R} - x^{*}) + o(t_{R}^{2})$$

So

$$f(z_R) = f(x^*) + \frac{1}{2} (z_R - x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R - x^*) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R^2) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R^2) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R^2) + o(t_R^2) - (x^*)^T \left[\sqrt{x_x} \mathcal{L}(x^*, x^*) \right] (z_R^2) + o(t_R^2) +$$

This explains why the Hessian of L(., 2*) is relevant

In contrast,
$$f(z_R) = f(x^*) + \frac{\nabla f(x^*)^T (z_{R-x^*})}{\uparrow} + \frac{1}{2} (z_{R-x^*})^T \nabla^2 f(x^*) (z_{R-x_R}) + o(t_R^2)$$
.

Armed with &, the rest of the proofs is essentially the same as the unconstrained case.

E.g. Again, consider min x_1+x_2 St $2-x_1^2-x_2^2 \geqslant 0$

 $\mathcal{L}(x,\lambda) = (x_1+x_2) - \lambda_1(2-x_1^2-x_2^2), \quad \nabla_{xx}^2 \mathcal{L}(x^*,\lambda^*) = \begin{bmatrix} 2\lambda_1^* & 0 \\ 0 & 2\lambda_1^* \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (we don't even need to restrict to the directions in $C(x^*,\lambda^*)$.) ≥ 0 .

By Thm 12.6, x*=[-1] is a strict local minimizer.)

[But since the optimization problem is convex, x* is also a global minimizer.]

Since it is an overkill to apply Thm 12.6 to the convex problem above, let's consider the non-convex problem:

E.g. min $-\frac{1}{10}(x_1-4)^2+x_1^2$ S.t. $x_1^2+x_2^2-1 \ge 0$ (neither f nor Ω is convex.)

Note: f is not bounded below on $\{x: x_1^2 + x_2^2 + 3i\}$, $\{([x_1]) \rightarrow -\infty, x_1 \rightarrow +\infty$.

Let's look for local minimizer (5).

$$\mathcal{L}(x,\lambda) = -\frac{1}{5}(x_{1}-4)^{2} + x_{2}^{2} - \lambda_{1}(x_{1}^{2} + x_{2}^{2} - 1)$$

$$\nabla_{x} \mathcal{L}(x,\lambda) = \begin{bmatrix} -\frac{1}{5}(x_{1}-4) - 2\lambda_{1}x_{1} \\ 2x_{2} - 2\lambda_{1}x_{2} \end{bmatrix}, \quad \nabla_{x}^{2} \mathcal{L}(x,\lambda) = \begin{bmatrix} -\frac{1}{5} - 2\lambda_{1} & 0 \\ 0 & 2 - 2\lambda_{1} \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ and } \lambda_{1}(x_{1}^{2} + x_{2}^{2} - 1) = 0$$

If
$$\lambda_1 = 0$$
, $\alpha = 4$, $\alpha_2 = 0$

If $\lambda_1 > 0$, $\alpha_1^2 + \alpha_2^2 = 1$, $-\frac{1}{5}(\alpha_1 - 4) - 2\lambda_1 \alpha_1 = 0$ and $(1 - \lambda_1)\alpha_2 = 0$

$$\lambda_1 = (1 - \alpha_1) + (1 - \alpha_2) + (1 - \alpha_3) + (1 - \alpha_4) + (1$$

[4] is clearly not a local min.

2nd KKT point:

$$\nabla_{xx}^2 \mathcal{L} \left(\frac{1}{11} \begin{bmatrix} 4 \\ \sqrt{105} \end{bmatrix}, 1 \right) = \begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix}$$

SO $W^T \nabla_{xx}^2 \mathcal{L}(x^*, \lambda^*) W = t^2 [\sqrt{105} - 4] [-2 0] [\sqrt{105}] = -2 \cdot (105) t^2 < 0$

By the necessity theorem, the second KKT pt cannot be a local minimizer.

3rd KKT point:

$$\nabla c_i(x^*) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
, $C(x^*, x^*) = \{ t [?] : t \in \mathbb{R} \}$

By the sufficiency theorem, the third KKT point is a local minimizer.

So we now have a satisfactory generalization of the f'=0, f''>0 conditions for 1-D unconstrained problems all the way to multi-dimensional optimization problems with equality and for inequality constraints.

Recall that for unconstrained multivariate problems f''>0 is replaced by the Condition:

 $\nabla^2 f(x^*) > 0$ (i.e. $w^T \nabla^2 f(x^*) w > 0 \forall w \in \mathbb{R}^n \setminus \{0\}$)

If we are in (say) n=100 dimension, how are we supposed to check this condition?

The spectral theorem tells out that this condition is equivalent to that all the eigenvalues of $\nabla^2 f(x^*)$ are positive.

Moreover, there are well-established techniques, implemented in sophistated software packages, for computing the eigenvalues of symmetric matrices.

There is no known polynomial (in n) time algorithm for Checking if a symmetric matrix A satisfies Bad news: 117 WTAW >O Mathematical Programming 39 (1987) 117-129 North-Holland SOME NP-COMPLETE PROBLEMS IN QUADRATIC AND NONLINEAR PROGRAMMING Katta G. MURTY* Department of Industrial and Operations Engineering, The University of Michigan, 1205 Beal Avenue, Ann Arbor, MI 48109-2117, USA Santosh N. KABADI** Faculty of Administration, University of New Brunswick, Fredericton, NB, Canada E3B 5A6 Received 13 December 1985 Revised manuscript received 9 March 1987 In continuous variable, smooth, nonconvex nonlinear programming, we analyze the complexity of checking whether (a) a given feasible solution is not a local minimum, and (b) the objective function is not bounded below on the set of feasible solutions. We construct a special class of indefinite quadratic programs, with simple constraints and integer data, and show that checking (a) or (b) on this class is NP-complete. As a corollary, we show that checking whether a given integer square matrix is not copositive, is NP-complete.

Key words: Nonconvex nonlinear programming, local minimum, global minimum, copositive

matrices, NP-complete.

Fortunately, under the LICQ and strict complementanty conditions, $C(x^*, x^*) = \{w : \nabla c_i(x^*)^T w = 0, \forall i \in A(x^*)\} \leftarrow \text{not only a cone, but a}$ Subspace with = null A(x*) dim = n-1A6x>1 = { Zu: u \(\mathbb{R}^{n-1\(\alpha(*))} \)} columns form a basis of null A(x*) rank Id(x*) nullity n-1d(x*) Then $W^T \nabla_{xx}^2 \mathcal{L}(x^*, x^*) W > 0 \quad \forall W \in \mathcal{C}(x^*, x^*)$ => ZTVxxX(x*, 1*)Z is positive semidefinite (=) all eigenvalues of Z^T√xx ∠(x*, 1*) Z are non-negative when $C(x^*, \lambda^*)$ is a subspace, standard linear algebra tools can be used to

check the 2nd order conditions.