Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-229. Вариант 3

- 1. Пусть $z = \frac{3}{2} + \frac{3\sqrt{3}i}{2}$. Вычислить значение $\sqrt[4]{z^3}$, для которого число $\frac{\sqrt[4]{z^3}}{\sqrt{3} i}$ имеет аргумент $\frac{23\pi}{12}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(2+7i) + y(-10-6i) = -4+65i \\ x(-10+7i) + y(-3+2i) = 254+8i \end{cases}$$

- 3. Найти корни многочлена $-2x^6-30x^5-208x^4-708x^3-1466x^2-1758x-820$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=-1-2i, x_2=-5-4i, x_3=-2.$
- 4. Даны 3 комплексных числа: 23-15i, 25-13i, 19-30i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -\frac{1}{2} + \frac{\sqrt{3}i}{2}, z_2 = -\frac{1}{2} \frac{\sqrt{3}i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+4| < 3\\ |arg(z-2-5i)| < \frac{\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (0, 4, 5), b = (4, 7, 2), c = (-1, -3, -2). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-10, -3, 13) и плоскость P: -16x 6y 2z 4 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-3,8,-6), $M_1(-3,4,-7)$, $M_2(3,-2,-7)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -32x + 33y + 8z + 540 = 0 \\ -12x + 17y + 4z + 240 = 0 \end{cases} \qquad L_2: \begin{cases} -20x + 16y + 4z - 3732 = 0 \\ 5x + 6y + 11z - 411 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L_1 и L_2 .