

汇编语言与逆向工程 Assembly Language and Reverse Engineering

北京邮电大学付後松

- □一. 壳的概念
- □二. 脱壳的相关工具
- □三. 逆向分析

- □1 基础概念
- □2 壳的原理和分类
- □3 壳代码的运行流程
- □4 软件脱壳的概念

(1) 壳的概念

□1 基础概念

- "壳"就是专门压缩/加密的工具,通过在压缩/加密的过程中加入保护性代码,程序文件会失去原来的程序结构,改变代码的表现形式,增加被篡改和反编译的难度,达到保护程序内部逻辑的效果。
- -加壳
 - ▶对可执行文件进行压缩/加密的过程
- 脱壳
 - ▶对已经加壳后的程序进行解压缩/解密的过程

(1) 壳的概念

□2 壳的原理和分类

- (1) 压缩壳
 - ▶以减小软件体积和改变软件可执行代码的特征为目的
 - ▶压缩壳的主要目的对程序进行压缩,对程序的保护不是 该类壳的重点
 - ▶使用压缩壳可以帮助缩减 PE 文件的大小,隐藏了 PE 文件内部代码和资源,便于网络传输和保存
 - ▶目前兼容性较好的压缩壳主要有ASPack、UPX和 PECompact等

(1) 壳的概念

□2 壳的原理和分类

- (2) 加密壳
 - ▶以保护软件为目的,根据用户输入的密码用相应的加密 算法对原程序进行加密
 - ▶加密壳最主要的功能就是保护程序免受逆向分析,在加 壳中运用了多种防止代码逆向分析的技术
 - ▶加密壳被大量用于对安全性要求高,且对破解敏感的应用程序,同时也会有一些恶意应用通过加密壳来躲避杀毒软件的查杀
 - ▶目前常用的加密壳主要有ASProtect、EXECryptor、Armadillo以及Themida等

(1) 壳的概念

□3 壳代码的运行流程

- 壳代码的运行过程中,由于加壳过程中修改了原程序的执行文件结构,从而壳代码能比原程序逻辑更早的获得控制权
- 壳代码的运行流程
 - ▶(1)保存入口参数
 - ➤(2)获取所需要的API地址
 - ▶ (3) 解密原程序的各个区块的数据
 - ➤(4)初始化程序的IAT表
 - ▶ (5) 对重定位项进行处理
 - ▶ (6) 跳转到程序的原入口点

- (1) 保存入口参数
 - ▶ 売代码会先于源程序逻辑获得控制权,执行壳部分的代码势必会改变各个寄存器的值
 - ▶因此,需要先保存各寄存器的值,当壳代码执行完毕后, 再将寄存器的值恢复,并开始执行源程序的逻辑
 - ➤保存和恢复寄存器的值通常采用的是pushad/popad、pushfd/popfd指令
 - pushad: 将所有的32位通用寄存器压入堆栈,其入栈顺序 是:EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI
 - Pushfd:将32位标志寄存器EFLAGS压入堆栈

- (2) 获取所需要的API地址
 - ▶正常的程序导入表中存放了从外部加载的函数信息,其中包括DLL名称、函数名称、函数地址等
 - ▶为了防止从这些信息猜测出来程序的功能,外壳的导入表中只有GetProcAddress、GetModuleHandle和 LoadLibrary这几个函数
 - 利用函数LoadLibrary可以将DLL文件映射到进程的地址空间
 - 函数GetModuleHandleA(W)可以获得DLL模块句柄
 - 函数GetProcAddress可以获得指定函数的真实地址。
 - ▶利用这些信息可以动态获取API函数的真实地址,并调用 这些API函数,同时还隐藏了导入表中的函数信息

- (3)解密原程序的各个区块的数据
 - ▶加売过程一般都会对源程序的各个块进行加密,在壳执行完毕后,为了能正确执行源程序的代码,需要对加密后的各个块进行解密

- (4) 初始化程序的IAT表
 - ▶ 壳一般都修改了原程序文件的输入表,为了让源程序正常运行,外壳需要自己模仿Windows系统的工作来填充输入表中相关的数据
 - 输入表(导入表)是记录PE文件中用到的dll的集合,一个dll库在输入表中占用一个元素信息的位置,一个元素信息描述了该输入dll的具体信息
 - 导入的函数就是被程序调用,但其执行代码又不在程序中的函数,这些函数的代码位于一个或者多个dⅡ 中
 - PE 文件被装入内存时,Windows 装载器通过输入表才能将DLL 装入

- (4) 初始化程序的IAT表
 - ▶有些壳程序还会将IAT表中的数据填充为HOOK-API代码的 地址,这样程序在调用这些API时会先执行HOOK-API代码, 可以达到监控程序行为的目的
 - IAT(Import Address Table)导入地址表
 - PE 文件被装入内存时,Windows 装载器将DLL 装入,并将调用 函数的指令和函数实际所处的地址联系起来(动态连接)
 - 这就需要导入表完成,其中IAT导入地址表就指示函数实际地址。

- (5) 对重定位项进行处理
 - ▶程序在加载执行时,系统会按照文件声明中填写的地址, 将程序载入指定内存中,这个地址称为基址
 - ▶对于EXE文件,Window提供给程序的基址是400000h,在 这种情况下,重定位功能是不需要的
 - ▶为了使程序更小巧,有些加壳程序删除了重定位区块。 但对于DLL动态链接库这种需要动态加载的可执行文件, 需要对重定位区块重建,以保证正常运行

- (6) 跳转到程序的原入口点
 - ▶OEP: (Original Entry Point),程序的入口点,软件加壳就是隐藏了OEP(或者用了假的OEP), 只要找到程序真正的OEP,就可以立刻脱壳
 - > 当程序运行到OEP这个位置,程序控制权会交还给原程序,
 - 一般脱壳的步骤需要寻找这个OEP点

(1) 壳的概念

□4 软件脱壳的概念

为了分析某些程序的逻辑与函数行为,首先需要对程序壳进行脱壳处理,以暴露出其实际执行的功能代码。

□一. 壳的概念

□二. 脱壳的相关工具

□三. 逆向分析

(2) 脱壳的相关工具

- □1 查壳工具
- □2 内存Dump工具
- □3 输入表重建工具

- □1 查壳工具
 - Exeinfo PE
 - PEiD

(2) 脱壳的相关工具 — 查壳工具

Exeinfo PE

▶Exeinfo PE 是一款免费的Win32可执行程序检查器,可以 检测到加壳程序相关信息,该工具也是一款图形化工具

- 直接将要检测的程序拖入ExeinfoPE中即可,该工具 会将程序的关键信息展示出来
 - ▶包括程序入口点、程序入口点所在段、文件偏移以及关 注的加壳信息

- PEiD (PE Identifier)
 - ▶PEID是一款著名的查壳工具,能够查出来大多数的压缩 壳、加密壳以及程序的编译器等信息
 - ▶能够检测出来超过470种不同PE文件的签名信息

- ▶PEiD主界面同样会展示出来程序的入口点、入口点所在 段、文件偏移以及加壳信息等
- ▶可以看到下面程序的加壳信息为ASPack 2.12

(2) 脱壳的相关工具 — 查壳工具

- 如果需要查看程序的段信息,只需点击EP Section右 边的">"即可

(2) 脱壳的相关工具 — 查壳工具

- PEiD还支持简单的反汇编功能,点击下图所示的按 钮即可查看反汇编结果

- □2 内存Dump工具
 - 内存Dump原理
 - LordPE
 - OllyDump

- 内存Dump原理
 - ▶在执行到原程序入口点后,外壳程序已经将原程序的各个段以及导入表等数据都恢复完成
 - ▶为了能够调试分析该程序, 要把程序在内存空间的数据 都导出来,这就是Dump,生成的文件称为dump 文件
 - ▶要得到正在运行进程的内存数据,需要获取到进程的相关信息,然后在从该进程中读取内存数据并保存到文件中
 - ➤获取进程的信息可以采用Module32Next函数,该函数会返回一个指向MODULEENTRY32结构体的指针,利用该结构体中的modBaseAddr、modBaseSize、hModule等字段,再结合ReadProcessMemory函数可以从该进程中直接读取内存数据,实现内存Dump的功能

- OllyDump
 - ▶OllyDump为调试工具OllyDbg的一个插件,利用该插件可以完成内存Dump的功能
 - ➤依次点击OllyDbg中的Plugins→OllyDump→Dump debugged process,便可启动该插件

(2) 脱壳的相关工具 — 内存Dump工具

➤启动OllyDump后,可以手动输入Dump的起始地址、映像 大小、程序入口点等信息,同时可以选择是否修复导入 表等,点击Dump按钮即可完成内存Dump

011yDump - upx_demo.exe									
Start <u>A</u> ddress:		400000 2D550		<u>S</u> ize	Tree a	Get EIP as 0		D <u>u</u> mp Ca <u>n</u> cel	
Base of <u>C</u> ode:		27000		Base of <u>D</u> ata: 2E000			ca <u>n</u>		
▼ Fix Raw Size & Offset of Dump Image									
Section UPX0 UPX1 UPX2	Virtua 00026 00007 00007	000 7000	000	ual Offset 01000 27000 2E000	Raw Size 00026000 00007000 00001000	Raw Offset 00001000 00027000 0002E000	Charactaristi E0000080 E0000040 C0000040	cs	
▼ Rebuild Import Method1: Search JMP[API] CALL[API] in memory image Method2: Search DLL & API name string in dumped file									

(2) 脱壳的相关工具 — 输入表重建工具

□3 输入表重建工具

- 通过内存Dump的方式将程序的内存映像保存下来 之后,一般情况下是无法直接运行这个Dump下来 的程序的,一般的加密壳都会破坏掉源程序的输入 表,为了让程序正常运行,需要对输入表进行重建

(2) 脱壳的相关工具 — 输入表重建工具

□输入表修复原理

- PE文件在运行时一般都会用到从外部DLL导入的函数,在编译程序时是无法事先获得这些外部函数的真实地址的。
- 为了获得这些外部函数在内存中的地址,需要在程序装载时将这些函数的地址查询出来并保存起来
- PE文件中的输入表就是负责保存程序用到了哪些 DLL文件中的哪些函数,以及这些函数的真实地址

(2) 脱壳的相关工具 — 输入表重建工具

□输入表的结构

- 其中,保存函数真实地址的数据结构就是Import Address Table (IAT),外壳程序在处理的过程中会模拟Windows装载器来获取函数的真实地址并将其填充到IAT中,也就是说外壳程序处理完毕后,整个程序的内存中存在着一个完整的IAT

(2) 脱壳的相关工具 — 输入表重建工具

□输入表修复的原理

- 输入表修复的原理就是找到内存中存在的IAT,根据该IAT来重新构建一个完整的输入表结构
- 构建完成后,程序再次运行就能通过该结构正常填充IAT中的数据,使得程序正常运行

(2) 脱壳的相关工具 — 输入表重建工具

□ImportREC重建工具

- ImportREC是一款专业的输入表重建工具,可以根据内存中的IAT重新构建一个输入表
- 根据重建输入表的原理,需要读取目标进程的内存 并找到IAT,根据该IAT重新构建输入表中的其他数 据结构
- 使用ImportREC时,目标进程需要处于运行中

(2) 脱壳的相关工具 — 输入表重建工具

- □修复输入表的例子
 - 示例程序为upx_demo.exe,通过查壳工具可以知道是采用UPX加壳

(2) 脱壳的相关工具 — 输入表重建工具

- 首先需要找到程序的原始入口点(OEP)
 - ▶利用栈平衡原理(ESP守恒定律)
 - 加壳软件,必须保证外壳初始化的现场环境(寄存器)与原程 序的现场环境相同。
 - 加壳程序初始化时保存各寄存器的值,外壳执行完毕,再恢复 各寄存器内容,最后再跳到原程序执行。
 - 程序通常使用pushad/popad、pushfd/popfd指令来保存与恢复现场环境。

(2) 脱壳的相关工具 — 输入表重建工具

- 根据堆栈平衡原理,先执行完pushad指令后,在栈地址0x12FFA4处设置硬件访问断点(命令: hr 12FFA4)
 - ▶地址0x12ffa4就是在push ad指令执行后的栈顶地址,也就是说这个地址处存放的是某一个寄存器的指令
 - ▶设置断点hr 12ffa4以使程序在读取这个地址时会触发断点
 - ▶当程序读取这个值的时候,就说明程序已经执行完了壳程序的部分,所以触发断点的位置就在源程序入口处附近,这样就能快速的跟踪到程序入口

(2)脱壳的相关工具 — 输入表重建工具

- 利用堆栈平衡找OEP

(2) 脱壳的相关工具 — 输入表重建工具

- 按F9让程序运行,程序断在恢复保存的现场环境以后(即popad指令后),此操作结束后,程序会跳转至OEP
- 跳转到jmp

(2)脱壳的相关工具 — 输入表重建工具

- 找到程序入口点为0x4010B0,并使用Dump内存工具OllyDump将内存映像Dump到文件中(取消勾选重建输入表选项)

(2) 脱壳的相关工具 — 输入表重建工具

(2) 脱壳的相关工具 — 输入表重建工具

- 打开ImportREC工具,选中目标进程upx_demo.exe, 并将OEP处填为我们得到的0x10B0

(2) 脱壳的相关工具 — 输入表重建工具

点击按钮IATAutoSearch后工具就会查找内存中的IAT数据,如果出现"Found address which may be the Original IAT.Try'Get Import'",就说明输入的OEP起作用了

(2) 脱壳的相关工具 — 输入表重建工具

- 输入表中每一个DLL都有与之对应的IAT,一般情况下IAT之间的间隔为一个DWORD的0,但是有些情况下他们之间的间隔会发生变化,这样ImportREC不能获取完整的IAT表,只能获取到其中的第一份IAT,如果仅以此IAT进行重建,程序仍然不能正常运行,依次点击Get Import→Fix Dump,并选择最开始Dump下来的文件,会发现仍然不能正常运行

upx_dumpexe 遇到问题需要关闭。 抱歉。	我们对此引起的不便表示
如果您正处于进程当中,信息有可能	能丢失。
请将此问题报告给 Microsoft。 我们已经创建了一个错误报告,您 此报告视为保密的和匿名的。	可以将它发送给我们。我们将
要查看这个错误报告包含的数据,	请单击此处。
调试 (B)	发送错误报告(S) 「不发送(D)]

(2) 脱壳的相关工具 — 输入表重建工具

- 这时有两种方法来解决这个问题:依次填写剩余IAT的地址和大小到RVA(手工找),Size字段中,并点击"GetImport",重复该过程直到所有的IAT均搜索完毕即可;也可以修改Size字段,使其值足够覆

盖所有的IAT。这里通过X包含了所有IAT表,2000

输入表

Attach to an Active Process	
c:\reverse\upx_demo.exe (00000E1C)	▼ Pick DLL
Imported Functions Found	
ternel32.dll FThunk:0002A18C NbFunc:33 (decimal:51) valid:YES	Show Invalid
i user32.dll FThunk:0002A2AC NbFunc:1 (decimal:1) valid:YES	
	Show Suspect
	Auto Trace
	Auto Irace
	lear Import
	lear import
	-11
Log	-
33 (decimal:51) imported function(s).	
33 (decimal:51) imported function(s). IAT read successfully.	Clear Log
33 (decimal:51) imported function(s). IAT read successfully. Current imports: 2 (decimal:2) valid module(s) (added: +1 (decimal:+1))	
33 (decimal:51) imported function(s). IAT read successfully. Current imports:	
33 (decimal:51) imported function(s). IAT read successfully. Current imports: 2 (decimal:2) valid module(s) (added: +1 (decimal:+1))	0-4:
33 (decimal:51) imported function(s). IAT read successfully. Current imports: 2 (decimal:2) valid module(s) (added: +1 (decimal:+1)) 34 (decimal:52) imported function(s). (added: +1 (decimal:+1))	Options
33 (decimal:51) imported function(s). IAT read successfully. Current imports: 2 (decimal:2) valid module(s) (added: +1 (decimal:+1)) 34 (decimal:52) imported function(s) (added: +1 (decimal:+1)) IAT Infos needed New Import Infos (IID+ASCII+LOADER)	0-4:

(2) 脱壳的相关工具 — 输入表重建工具

- 最终修复后的PE文件正常运行

- □一. 壳的概念
- □二. 脱壳的相关工具
- □三. 逆向分析

- □1例题讲解
- □2简单壳的手动实现

- □以加了一层加密壳的例题来练习
 - 可以用工具PEiD来查看该程序被加了什么壳
 - 也可以用Exeinfo PE来查壳,结合两个工具来比较分析

(3) 逆向分析

- 没有查出壳,但查看程序的区段,发现除了.text 段、.rdata段、.data段之外,还多了一个奇怪 的.Shell段

(3) 逆向分析

- 用IDA加载程序,可以看到IDA只识别出了一个start

函数

- 根据栈平衡原理,可以清楚的知道这里的 pushad/popad指令是用来保存和恢复寄存器的值
- 这两条指令中间的代码片段,其实是在完成循环解密text段的内容
- -解密完后,通过jmp指令跳转到程序的真正入口处

(3) 逆向分析

- 用OD调试到程序的OEP处

```
🦖 OllyICE - EncryptShell.exe - [CPU - 主线程、模块 - EncryptS]
② 文件(P) 查看(Y) 调试(Q) 插件(P) 选项(T) 窗口(W) 帮助(H)
                                H H H
                                          TEMTWHC/KBR...S EF?
            ™ ×
00404F14
           55
                          push
                                  ebp
00404F15
           8BEC
                          MOV
                                  ebp, esp
00404F17
           6A FF
                          bush
00404F19
           68 78034100
                                  00410378
                          push
00404F1E
           68 E0A04000
                                  0040A0E0
                          push
00404F23
           64:A1 00000000 mov
                                  eax, dword ptr fs:[0]
00404F29
           50
                          push
00404F2A
           64:8925 000000 mov
                                  dword ptr fs:[0], esp
00404F31
           83EC 10
                                  esp, 10
00404F34
           53
                                  ebx
                          push
00404F35
           56
                                  esi
                          push
00404F36
                                  edi
           57
                          push
00404F37
           8965 E8
                          mov
                                  dword ptr [ebp-18], esp
00404F3A
           FF15 18004100
                          call
                                  dword ptr [<&KERNEL32.GetVersionkernel32.GetVersion
00404F40
           33D2
                          xor
                                  edx, edx
00404F42
           8AD4
                          mov
                                  dl, ah
00404F44
           8915 E0704100
                                  dword ptr [4170E0], edx
                          MOV
00404F4A
           8BC8
                          mov
                                  ecx, eax
00404F4C
           81E1 FF000000
                          and
                                  ecx, OFF
00404F52
           890D DC704100
                          mov
                                  dword ptr [4170DC], ecx
00404F58
           C1E1 08
                          sh1
                                  ecx, 8
00404F5B
           03CA
                          add
                                  ecx, edx
00404F5D
           890D D8704100
                                  dword ptr [4170D8], ecx
                          mov
00404F63
           C1E8 10
                          shr
                                  eax, 10
00404F66
           A3 D4704100
                          mov
                                  dword ptr [4170D4], eax
00404F6B
           6A 00
                          push
00404F6D
           E8 2B370000
                          call
                                  0040869D
00404F72
           59
                          pop
                                  ecx
00404F73
ebp=0012FFF0
Command
```


(3) 逆向分析

- 然后使用LordPE工具dump程序内存

(3) 逆向分析

- 保存为dump.exe

(3) 逆向分析

-接下来,需要用到 ImportREC修复程 序的IAT,将OEP填 为刚刚找到的入口 处相对地址(之前 自动找的是错误 的),即0x4F14, 并点击IAT自动搜 索,提示找到了 IAT地址

Import REConstructor v1.7e FINAL (C) 2001-2010 MackT/uCF	
附加到一个活动进程	0448
c:\documents and settings\administrator\桌面\reversebook\encryptshell.e	选择 DLL
找到的导入表函数	
	显示无效的
己发现一些信息!	显示可疑的
发现了可能是在原始 IAT 中的地址. 尝试'获取导入表'. (如果无效,尝试 RVA: 00010000 大小:000025F2)	
(80果尤数,会は、RVA: 00010000 大小:000025F2)	自动跟踪
	
日志	
正在分析进程 模块已加载: c:\windows\system32\ntdl1.dl1 模块已加载: c:\windows\system32\kernel32.dl1 获取已关联的模块完成. 映像基址:00400000 大小:00019200	清空日志
必需的 IAT 信息 新建导入表信息(IID+ASCII+加載器)	选项
OEP 00004F14	
RVA 00010000 大 000000E4	关于
C PANALO CENTRO	退出
載入树 保存树	S-1

(3) 逆向分析

- 点击"获取导入表",然后修正转储即可

(3) 逆向分析

- 脱完壳的程序能够正常运行说明我们脱壳成功,将程序拖入IDA静态分析,可以在main函数看到程序的关键逻辑

```
sub 4048BA(aPleaseInput);
120
     sub 4011D0(v63, 30, 10);
     v3 = strlen(v63);
122
     if ( U3 < 27 )
123
       qoto LABEL 14;
     for (i = 0; i < v3; ++i)
124
       v62[i] = (v63[i] >> 2) + ((v63[i] & 3) << 6);
125
     for ( j = 0; j < v3; ++j )
126
       v62[i] = *(&v8 + i);
127
128
     for (k = 0; k < v3; ++k)
129
130
       if ( 062[k] != *(&035 + k) )
131
         break;
132
133
     if ( k != U3 )
134
135 LABEL 14:
136
       sub 4048BA(aSorryYouAreWro);
137
       result = 0:
138
     }
139
     else
140
141
       sub_4048BA(aCorrectTheFlag);
142
       result = 0;
143
```


(3) 逆向分析

-程序一开始读取用户输入,并判断字符长度,如果小于27就输出错误。程序先将用户输入的字符串每个字符的高6位和低2位调换,然后与某个字符相异或,最后将加密后的输入数组与预先设定的check数组判断是否相等

(3) 逆向分析

] 编写的解题脚太

```
#include<stdio.h>
 #include<string.h>
 Int main(){
        unsignedcharcheck[]={137,40,169,72,145,100,197,104,50,20,
80,16,97,194,110,152,226,160,233,168,175,146,55,76,16,176,43};
        unsignedcharxor[]={25,125,189,93,79,52,18,188,126,79,76,
11,56,21,63,3,58,60,183,180,178,70,45,21,11,171,116};
        unsignedcharflag[30]={0};
        intlen,i;
        len=27;
        for (i=0; i<len; i++) {</pre>
                flag[i] = check[i] \(^x\)or[i];
                flag[i] = ((flag[i] & 0x3f) << 2) + (flag[i] >> 6);
        printf("The flag is: %s\n", (char*) flag);
        return0;
```


- □1例题讲解
- □2简单壳的手动实现

- □这道题的加密壳是怎么实现的?
- □我们将一步一步介绍如何实现一个简单的加密 壳
- □下面是源代码


```
#include <iostream>
#include <string.h>
usingnamespacestd;
Int main(){
           charinput[30];
           unsignedcharcheck[]={137,40,169,72,145,100,197,104,50,20,80,16,97,194,110,152,226,160,233,168,175,146,55,76,16,176,43};
           unsignedcharxor[]={25,125,189,93,79,52,18,188,126,79,76,11,56,21,63,3,58,60,183,180,178,70,45,21,11,171,116};
           unsignedcharresult[30];
           intlen,i;
           printf("Please input: ");
           cin.getline(input,30,'\n');
           len=strlen(input);
           if(len<27){</pre>
                       printf("Sorry, you are wrong!\n");
                        return0;
           }else{
                        for (i=0;i<len;i++) {</pre>
                                     result[i]=(input[i]>>2)+((input[i]&0x3)<<6);
                        for (i=0;i<len;i++) {</pre>
                                     result[i] = result[i]^xor[i];
                        for (i=0;i<len;i++) {</pre>
                                     if (result[i]!=check[i])
                                                  break;
                        if(i==len)
                                    printf("Correct! The flag is:%s\n",input);
                        else
                                     printf("Sorry, you are wrong!\n");
           return0;
```


(3) 逆向分析

- 用VC++6.0编译成release版本,点击LoadPE中PE Editor按钮,加载目标程序

(3) 逆向分析

- 可以看到程序加载的基址为0x400000,根据 EnrtyPoint可以计算出程序的入口地址为0x404F14。 点击Sections按钮

Basic PE Header In	formation			TOK TOK
EntryPoint:	00004F14	Subsystem:	0003	Save
ImageBase:	00400000	NumberOfSections:	0003	Save
SizeOfImage:	00019000	TimeDateStamp:	5AF9491C	Sections
BaseOfCode:	00001000	SizeOfHeaders:	00001000 ? +	Directories
BaseOfData:	00010000	Characteristics:	010F	FLC
SectionAlignment:	00001000	Checksum:	00000000 ?	TDSC
FileAlignment:	00001000	SizeOfOptionalHeader:	00E0	
Magic:	010B	NumOfRvaAndSizes:	00000010 + -	Compare

(3) 逆向分析

- 在弹出的界面中,右击选择增加区段

- -编辑增加的区段
 - ▶修改名称为".Shell",并且将虚拟大小和物理大小都设置成0x200(根据想添加的代码量确定),然后保存

(3) 逆向分析

- 由于添加了一个区段,所以整个映像文件大小更改了,需要再将sizeofimage从19000,修改为19200,否则程序无法运行

Basic PE Header In	nformation			OK
EntryPoint:	00004F14	Subsystem:	0003	Save
ImageBase:	00400000	NumberOfSections:	0004	5470
SizeOfImage:	00019200	TimeDateStamp:	5B024280	Sections
BaseOfCode:	00001000	SizeOfHeaders;	00001000 ? +	Directories
BaseOfData:	00010000	Characteristics:	010F	FLC
SectionAlignment:	00001000	Checksum:	00000000 ?	TDSC
FileAlignment:	00001000	SizeOfOptionalHeader:	00E0	2.000
Magic:	010B	NumOfRvaAndSizes:	00000010 + -	Compare

(3) 逆向分析

- 用010 Editor编辑程序,给新加的区段添加内容,依 次选择"Edit"->"Insert/Overwrite"->"Insert

Byte"

(3) 逆向分析

- 在弹出的界面里填写如下内容,然后保存即可

(3) 逆向分析

- 接下来,我们将程序拖入OD,使用快捷键"ctrl+g" 跳转到地址0x419000处,双击该地址处的汇编或按 空格按钮,编辑汇编指令,使其跳转到入口地址 0x404F14

💸 OllyICE - main.exe - [CPU - 主线程,模块 - main] 文件(P) 查看(V) 调试(D) 插件(P) 选项(T) 窗口(V) 帮助(H) ▶ II № +: DEMTWHC 00419000 - E9 OFBFFEFF jmp 〈模块入口点〉 00419005 00419006 0000 汇编于此处: 00419000 00419008 0041900A 0000 00404F14 00419000 0000 0041900E 00419010 0000 汇编 取消 ☑ 使用 NOP 埴充 00419012 aaaa 00419014 0000 byte ptr [eax], al 00419016 0000 add bute ptr [eax], al 00419018 add byte ptr [eax], al 0041901A byte ptr [eax], al

(3) 逆向分析

- 选中修改的区域, 右击选择"复制到可执行文件"- > "选择"

(3) 逆向分析

- 然后继续右击,选择"保存文件"

(3) 逆向分析

- 用LoadPE修改程序的入口地址,将其修改为.Shell段的虚拟地址,即0x19000

(3) 逆向分析

- 选择section,并且,选中text段,右击选择编辑, 修改text段的属性,将"Writeable"一项打勾

(3) 逆向分析

一这时可以试着运行一下程序,看看能不能正常运行,如果失败说明哪一下步骤错了,请重新来

```
em C:\Documents and Settings\Administrator\桌面\shell\main.exe
Please input:
```


(3) 逆向分析

- 继续用010 Editor编辑程序,并在
"Templates"中选择"PE Template",没有的话可以点击"Online Template Repository"去网上下载

(3) 逆向分析

- 选中text段,并点击"Hex Operations"按钮,即如图所示的加减号图标,选择"BinaryXor":

(3) 逆向分析

- 在operand操作数 填入0x24(即自 己定的准备XOR 的数值),即将 text段的每个字节 与0x24异或,点 击OK后保存

(3) 逆向分析

- 最后用OD载入 下的汇编代码

- 最后用OD载入,程序停在地址0x419000处,添加如

(3) 逆向分析

- 按照刚刚的方式保存即可,将修改后的程序拖入 IDA,可以看到只有一个start函数,并且程序能够 正常运行,说明已经成功的实现了一个简单的加密 壳。

谢 谢!