Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Academic year 2021-2022 (Even Sem)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Date	29 th June 2022	Maximum Marks	50					
Course Code	18CS43	Duration	120 Min					
Sem IV Semester Test-I								
DESIGN & ANALYSIS OF ALGORITHMS								

Sl. No.	PART A	M	BT	CO
1	In empirical analysis the quadratic efficiency class of the algorithm will have what type of graph	1	2	2
2	State the basic operation in the Tower of Hanoi Problem	1	1	1
3	For an input size of 15 elements, how many times the basic operation will be executed in selection sort.	1	2	2
4	Write the recurrence to denote the worst case of Quicksort	1	2	2
5	The algorithm like Quick sort does not require extra memory for carrying out the sorting procedure. This technique is called	1	1	1
6	If $T(n) = 7T(n/3) + n^2$, then by master method $T(n) =$	1	3	2
7	Find the number of swaps done to sort the following elements in alphabetical order using Bubble Sort EXAMPLE	2	3	3
8	<pre>What is the time complexity of following code void fun() { for(i=1,i<=n;i++) for(j=1;j<=i²;j++) for(k=1;k<=n/2;k++)</pre>	2	3	3
	PART B			
1a	Discuss with a neat flow chart the algorithm design and analysis process.	6	2	1
1b	For the algorithm to find the largest element in a list of n numbers, indicate (i) a natural size metric for its inputs (ii) its basic operation (iii) whether the basic operation count can be different for inputs of the same size:	4	3	1
2a	Write a recursive Tower of Hanoi and analyze its efficiency by writing the recurrence relation.	6	3	2
2b	Illustrate the general plan to analyze the efficiency of non-recursive algorithm.	4	1	2
3a	With an algorithm discuss the efficiency of selection sort.	6	2	2

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

3b	Compare the orders of growth using limits: i) ½ n(n-1) and n² ii) n! and 2 ⁿ	4	3	3
4a	Write the partition algorithm used in quicksort. Apply the same to sort the elements 5 3 1 9 8 2 4 7. Draw the recursive call tree.	6	3	3
4b	Discuss the efficiency of quicksort.	4	2	2
5a	Apply Strassen's algorithm to compute the matrix multiplication of A1 and B1 matrix. $A1 = \begin{bmatrix} 3 & 2 \\ 5 & 6 \end{bmatrix} B1 = \begin{bmatrix} 5 & 6 \\ 1 & 3 \end{bmatrix}$	6	4	4
5b	Write a pseudocode for a divide-and-conquer algorithm for finding the position of the largest element in an array of n numbers.	4	3	2

Course Outcomes:

COURSE OUTCOMES

- 1. Understand and explore the asymptotic runtime complexity of algorithms by using mathematical relations.
- 2. Select and apply appropriate design techniques to solve real world problems.
- 3. Estimate the computational complexity of different algorithms.
- 4. Apply the efficient algorithm design approaches in a problem specific manner.

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

Marks	Particulars		CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Distribution	Test	Max Marks	14	28	14	04	06	20	30	04	-	-
