AUTOMATA WITH OUTPUTS

TRANSDUCERS

Syed Faisal Ali
faisal.ali@nu.edu.pk
Computer Science E & F

SPRING 2025

TRANSDUCER

A transducer is a device or system that converts one form of input into another form of output. In the context of automata theory and formal languages, a transducer is typically a type of finite automaton that produces output along with processing input.

ANALYSIS

- In this transducer we can clearly found that some piece of information has already been given to us.
- Known as Parameters we known
- Also we need to find some of the parameters which we need to find consider as Unknown Parameters
- Before we start for input we know a clock 555 timer which can generate 0 and 1 as pulse train.
- For each 0 and 1 input the logical gates will generate some output which we can fill in the table to make Mealy or Moore Machine depending on our requirement.
- There are two nodes A and B from where we can change the states.

KNOWN PARAMETERS

- Input clock that generates 0 and 1.
- Node A and Node B for the combinations of [00, 01, 10, 11] which will be helpful for states, and consider as old states [q0, q1, q2, q3].
- Working of AND and OR logical gates
- I bit delay, means what ever the signal is at node A will be send to B in the next clock cycle.

UNKNOWN PARAMETERS

- Also we know the relationships as follows;
- New value of B will be old value of A due to DELAY means NEW B = OLD A
- NEW A = (input) NAND (old A OR old B)
- Output = (input) OR (old B)

STATES

- Now learn how we makes the states:
- We assume that A=0 and B=0, consider it as q0,
- When A = 0 and B = 1, consider it as q1
- When A=1 and B = 0, consider it as q2,
- And When A = I and B = I, consider it as q3

States	Node A	Node B
Q0	0	0
QI	0	1
Q2	Í	0
Q3	I	I

- We are interesting to find out what will be the next state so for that the input 0 and input 1.
- We will input the clock pulse for each state and find the new states values

STRATEGY TO SOLVE

- Now we need to use the three formulas which we have extracted from the transducer.
- NEW B = OLD A
- NEW A = (input) NAND (old A OR old B)
- Output = (input) OR (old B)
- We use above three formulas and the values of old A and old B using this table to find the new values.
- By doing this we can get the values of output and next state switching.
- So we need to calculate individually for each state with input 0 once then with input 1.

Input	States	Value of old A	Value of old B
0	Qo	0	1
I	Qo Qo	0	I
0	QI	0	1
I	QI	0	1
0	Q2	Ī	0
I	Q2	Ī	0
0	Q3	I	I
I	Q3	I	I

AT STATE QO, WHEN A = 0 AND B = 0 AND INPUT = 0

```
new B = old A = 0

new A = (input) NAND (old A OR old B)

= (0) NAND (0 OR 0)

= 0 NAND 0

= I

output = 0 OR0 = 0

The new state is q2 (since new A = I, new B = 0).
```


AT STATE QO, WHEN A = 0 AND B = 0 AND INPUT = 1

new B = old A = 0

new A = I NAND (0 OR 0) = I

output = I OR0 = I

The new state is q2 (since the new A = I and the new B = 0).

AT STATE QI, WHEN A = 0 AND B = 1 AND INPUT = 0

If we are in qI, and we receive the input 0:

new
$$B = old A = 0$$

new A = 0 NAND (0 OR I) = I

output = 0 OR I = I

The new state is q2.

AT STATE QI, WHEN A = 0 AND B = I AND INPUT = I

If we are in q1, and we receive the input 1:

new B = old A = 0

newA = I NAND (0 OR I) = 0

output = I OR I = I

The new state is qo.

AT STATE Q2, WHEN A = I AND B = 0 AND INPUT = 0

If we are in state q2 and we receive the input 0:

new B = old A = I

new A = 0 NAND (I OR0) = I

output = 0OR0 = 0

The new state is q3 (since new A = I, new B = I).

AT STATE Q2, WHEN A = I AND B = 0 AND INPUT = I

If we are in q2 and we receive the input 1:

newB = oldA = I

new A = I NAND (I OR 0) = 0

output = I OR0 = I

The new state is q1.

AT STATE Q3, WHEN A = I AND B = I AND INPUT = 0

- If we are in q3 and we receive the input 0:
- newB = oldA = 1
- new A = 0 NAND (I OR I) = I
- output = 0 OR I = I
- The new state is q3.

AT STATE Q3, WHEN A = I AND B = I AND INPUT = I

If we are in q3 and we receive the input 1:

new B = old A = I

new A = I NAND (I OR I) = 0

output = I OR I = I

The new state is q I

FINAL TRANSITION TABLE

Old State	After Input 0		After Input I	
	New State	Output	New State	Output
Q0	Q2	0	Q2	Ī
QI	Q2	I	Q0	I
Q2	Q3	0	QI	Ī
Q3	Q3	1	QI	I

- If we input two O's no matter which state we started from, we will get to state q3.
- From there the input string 011011 will cause the output sequence 111011.

