with

$$\rho(y, x, \eta') = \varphi(y, \eta') - \varphi(x, \eta') - (y - x)\varphi_x(x, \eta'),$$

 ρ vanishes at order ≥ 2 in y = x. For checking (3.10), we see

$$(3.11) Q(ae^{i\frac{\varphi}{h}}) = \int \int e^{i\frac{1}{h}((x'-y')\theta' + \varphi(y,\eta'))} \frac{q(x,\theta')}{(2\pi h)^{n-1}} a(y,\eta') dy' d\theta'.$$

a having compact support and φ being a symbol, one has $|\varphi'_y| \leq C'$ on $\operatorname{supp}(qa)$, so for $|\theta'| \geq C > 0$, large, the phase of (3.11) $H = (x' - y')\theta' + \varphi(y, \eta')$ satisfies

$$|H'_{u'}| \ge c(1+|\theta'|)$$
, for $|\theta'| \ge C > 0$, large

and if we split the integrand of (3.11) in $qa = \chi(\theta')qa + (1-\chi(\theta'))qa$, we integrate the second term by parts and obtain

$$Q(ae^{i\frac{\varphi}{h}}) = Q'_{\varphi}(a)e^{i\frac{\varphi}{h}} + R(a),$$

where Q'_{φ} is a \mathcal{G}^s symbol of order $\widetilde{S}^{m,k+1}_s$ having the expansion (3.10) by the stationary phase lemma as R(a) is an $\mathcal{O}_s(h^{\infty})$ remainder. It is easy to see in view of these arguments that $a_1 \in \widetilde{S}^{m-1,k}_s$. Moreover, it is to be observed that the above expansion is only a formal Gevrey 2s-1 symbol.

The microlocal invertibility of FIO reduces to the PDO case. We refer to [5] for a proof of the Gevrey elliptic result in classes S_s^m .

For proving Theorem 2, we rewrite (3.8) in the form

$$(hD_{x_1} + Q(x, hD_x; h))Fu = F(hD_{x_1} + Q')u,$$

close to $(x_0, \xi_0; x_0, \xi_0)$ for some PDO $Q'(x, hD_x; h)$ of bi-order (-1, 0) in using a left microlocal inverse of F close to (x_0, ξ'_0) . Indeed, we compute FF^* and F^*F , and one has writing $y = (x_1, y')$.

One has, following Eskin [8],

$$FF^*u(x,h) = \frac{1}{(2\pi h)^{n-1}} \iint e^{\frac{i}{h}(\varphi(x,\xi')-\varphi(y,\xi'))} a(x,\xi') \overline{a(y,\xi')} u(x_1,y') dy' d\xi',$$

 $\varphi(x,\xi')$ having been obtained in (3.6). We split the integral above into two terms. The first is a h-PDO, the second is a smoothing operator. First, we note that the map:

$$(x,y',\xi')\to (x,y',\Sigma(x,y',\xi')),$$

with

(3.13)
$$\Sigma(x, y', \xi') = \int_0^1 \varphi'_{x'}(x_1, y' + t(x' - y'), \xi') dt$$

is a \mathcal{G}^s -diffeo in a neighbourhood of (x_0, y_0', η_0') with $|x_1| \leq \delta$, $|x' - y'| \leq \delta$, $0 < \delta$ small, close to the identity.

Let $(x, y', \eta') \to (x, y', \Sigma^{-1}(x, y', \eta'))$ be an inverse map.

One has obviously $\varphi(x,\xi') - \varphi(y,\xi') = \Sigma(x,y',\xi')(x'-y')$, and

(3.14)
$$FF^*u(x,h) = K_1u(x,h) + K_2u(x,h),$$