Stat 532
In class midterm
10/18/2017

Name:	

- 1. Suppose you are interested in determining if MSU students hike more than an average of 10 days a year. To answer this question, you have data on twenty-one students that are randomly selected and polled on their hike behavior (number of days spent hiking).
 - (a) (4 points) How would you answer this question using classical statistics techniques?

(b) (4 points) How would you answer this question from a Bayesian viewpoint?

(c) (4 points) Describe the inferences that could be made in each case and highlight how they differ.

Short Answer Questions:

For the short answer questions please try to keep your answers to a maximum of 4-5 sentences.

1. (4 points) Given a data set, describe how you would verify that your prior and sampling model are reasonable.

2. (4 points) Describe the steps in conducting a Bayesian data analysis.

3. (4 points) What is the purpose of MCMC and how are MCMC samples used to make inferences?

Computational and Mathematical Questions:

1. (5 points) Assume you have data that can be modeled with a normal distribution. State appropriate priors such that you can implement a Gibbs sampler and then sketch out the algorithm. You do not need to derive the form of the full conditional distributions.

2. (5 points) Suppose you have a kernel of a normal distribution with

$$p(\tilde{\theta}|\tilde{y},X) \propto \exp\left[-\frac{1}{2}\left(\tilde{y}-X\tilde{\theta}\right)^T \Sigma^{-1}\left(\tilde{y}-X\tilde{\theta})\right)\right],$$

where X is a matrix. What are the mean and variance of this distribution for θ ? Note this is a regression setting with a uniform prior on θ .

3. (5 points) Suppose $y_1, \ldots, y_n \sim Bernoulli(\theta)$. You use a Uniform(0,1) prior for θ , what is the distribution for $p(\theta|y_1,\ldots,y_n)$? (Include the parameters in this distribution).

4. (5 points) Define a Highest Posterior Density region (HPD) and then, using the image and table below that shows the probability for each area, select the 90% HPD region in this setting. Note this should consist of a set of letters (e.g. {A, B, H}).

			_							
-	Area	Probability								
	A	15								
	3	18								
	C	10								
	D	7								
	E	6								
	F	Ч								
	6	18	· /							
	Н	2 Z								
			A	B	C	, D	F	, E	6	F)