X-type matrix

Ren Koike, ren.ko1139@gmail.com March 28, 2023

1 DESCRIPTION

The X matrix type which contains integers is a square matrix that can contain nonzero entries only in their two diagonals. It doesn't store the zero entries but the entries that can be nonzero in a sequence. Implement as methods: getting and setting the entry located at index (i, j), setting a new matrix, adding and multiplying two matrices, and printing the matrix (in a square shape). The example of X matrix (3x3):

$$X = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 0 \\ 4 & 0 & 5 \end{bmatrix} \tag{1.1}$$

2 X TYPE MATRIX

2.1 Set of values

$$X(n) = \{a \in \mathbb{R}^{n \times n} | \forall i, j \in [1..n], 2 \not | n \land n \ge 3 : (i \ne j \land i + j \ne n + 1) \Rightarrow a[i, j] = 0\}$$

2.2 OPERATIONS

- 1. Getting an entry Getting the entry of the ith column and jth row $(i, j \in [1..n])$: e := a[i, j].
- Sum of two matrices: c := a + b. The matrices have the same size.
- 3. Multiplication Multiplication of two matrices: c := a * b. The matrices have the same size.

2.3 REPRESENTATION

Only the diagonals of the $n \times n$ matrix has to be stored. For example, if n = 3,

$$\mathbf{a} = \begin{bmatrix} a_{11} & 0 & a_{13} \\ 0 & a_{22} & 0 \\ a_{31} & 0 & a_{33} \end{bmatrix} \Leftrightarrow v = < a_{11}, a_{13}, a_{22}, a_{31}, a_{33} >$$

Only a one-dimension array (v) is needed, with the help of which any entry of the diagonal matrix can be get:

$$\mathbf{a}[i,j] = \begin{cases} v[Index(i,j)] & \text{if } i=j \text{ or } i+j=n+1 \\ 0 & \text{otherwise.} \end{cases}$$
 *Index function helps to calculate the corresponding index of the vector from i, j.

2.4 IMPLEMENTATION

1. Getting an entry

Getting the entry of the ith column and jth row $(i, j \in [1..n])$ e := a[i, j] where the matrix is represented by $v, 1 \in n$, and n stands for the size of the matrix can be implemented as

2. Sum

The sum of matrices a and b (represented by arrays t and u) goes to matrix c (represented by array u), where all of the arrays have to have the same size.

$$\forall i \in [0..n-1] : u[i] := v[i] + t[i]$$

3. Multiplication

The product of matrices a and b (represented by arrays t and u) goes to matrix c (represented by array u), where all of the arrays have to have the same size. $\forall i,j \in [0..n-1]: u[Index(i,j)] := \sum_{k=0}^{n-1} v[Index(i,k)] * t[Index(k,j)]$

$$\forall i, j \in [0..n-1] : u[Index(i,j)] := \sum_{k=0}^{n-1} v[Index(i,k)] * t[Index(k,j)]$$

3 TESTING

3.1 TESTING THE OPERATIONS (BLACK-BOX)

- Creating, reading, and writing matrices of different size.
 - 0, 1, 3, 4, 5 matrix
- Getting and setting an entry

- Getting and setting an entry in the diagonal
- Getting and setting an entry outside the diagonal
- Illegal index, indexing a 0-size matrix
- Copy constructor
 - Creating matrix b based on matrix a, comparing the entries of the two matrices.
 Then, changing one of the matrices and comparing the entries of the two matrices.
- Sum of two matrices, command c := a + b.
 - With matrices of different size (size of a and b differs, size of c and a differs)
 - Checking the commutativity (a + b == b + a)
 - Checking the associativity (a + b + c == (a + b) + c == a + (b + c))
 - Checking the neutral element (a + 0 == a, where 0 is the null matrix)
- Multiplication of two matrices, command c := a * b.
 - With matrices of different size (size of a and b differs, size of c and a differs)
 - Checking the commutativity (a * b == b * a)
 - Checking the associativity (a * b * c == (a * b) * c == a * (b * c))
 - Checking the neutral element (a * 0 == 0, where 0 is the null matrix)
 - Checking the identity element (a * 1 == a, where 1 is the identity matrix)
 - 3.2 TESTING BASED ON THE CODE (WHITE-BOX)
- 1. Creating an extreme-size matrix (-1, 0, 999).
- 2. Generating and catching exceptions.