1. According to the problem, we can define that madrix

A has size ax2, B has size bx5, C has size cx4.

And because D' is defined =) D will have size dxd.

 \bigcirc B.C is defined =) c = 5 (1)

=) B.C will have size bx4.

=) (B.C) will have size 4xb.

+ (B.C)T. D-1 is defined => d = b (2)

=) (B.C) · D 1 has size 4xd.

+ A + (BC)^T. D^{-1} is defined =) $\begin{cases} a = 4 & (3) \\ 2 = d & (4) \end{cases}$

With (1), (2), (3), (4) combined, we have: A_{4x2} , B_{2x5} , C_{5x4} , D_{2x2}

2. Because the order of M2 is 2x2=) The order of M
is 2x2 = The order of M

is 2x2. let M= ab ...

 $=) \begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix} = M^2 = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a^2 + bc & ab + bd \\ ca + cd & bc + d^2 \end{bmatrix}$

 $\Rightarrow \int a^{2} + bc = 1$ ab + bd = 2 ca + cd = 0 $bc + d^{2} = 4$ (1)

(2)

(3)

(4)

we have: $(bc+d^2)-(a^2+bc)=4-1$ Subtract (1) from (4)

(=) $d^2 - a^2 = 3$

(=) (d+a)(d-a)=3

=) dta +0

From (3), we have: c(a+d)=0

But at d \$0 => c=0
Substitute c=0 into (1) 8 (4), we get:
$$\begin{cases} a^2=1\\ d^2=4 \end{cases}$$

=> $\begin{cases} (a_1d)=(1/2) \Rightarrow a+d=3\\ (a_2d)=(1/2) \Rightarrow a+d=1\\ (a_3d)=(-1/2) \Rightarrow a+d=1\\ (a_3d)=(-1/2) \Rightarrow a+d=1\end{cases}$
From (2), we have: $b(a+d)=2$ (5)
Substitute each pair of (a_3d) into (5), we get: all the solutions for (a_3d) into (5), we get: all the solutions for (a_3d) into (5), we get: all the solutions for (a_3d) into (5), we get: all the solutions for (a_3d) into (5), we get: all the solutions for (a_3d) into (5), we get: all the solutions for (a_3d) into (5), we get: all the solutions for (a_3d) into (5), we get: all the possible matrices H so that $M^2 = 0$, we have all the possible matrices H so that $M^2 = 0$, we have $\begin{cases} 1 & 2\\ 0 & 2 \end{cases}$, $\begin{cases} -1 & 2\\ 0 & 2 \end{cases}$, \begin{cases}

(b) We have the orthogonal projection of
$$\vec{p}$$
 onto \vec{u} is:

$$\vec{p} \cdot \vec{u} \cdot \vec{v} = \frac{(\vec{u} \cdot \vec{v} \cdot \vec{v}) \cdot \vec{u}}{||\vec{v}||^2} \cdot \vec{v} \cdot \vec{u}$$

$$= \frac{(\vec{u} \cdot \vec{v} \cdot \vec{v}) \cdot (\vec{u} \cdot \vec{v})}{||\vec{v}||^2} \cdot \vec{u}$$

$$= \frac{(\vec{v} \cdot \vec{v}) \cdot (\vec{u} \cdot \vec{v})}{||\vec{v}||^2} \cdot \vec{u}$$

$$= \frac{(\vec{v} \cdot \vec{v}) \cdot \vec{v}}{||\vec{v}||^2} \cdot \vec{u}$$

$$= (os^2(6)) \cdot \vec{u} \quad (uith \theta is the angle between $\vec{u} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v}$
(a) if $\vec{u} = 3$, we have $\vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v}$$$

4.
(a) if
$$a = 3$$
, we have: $\begin{cases} x + 3y = 12 \\ x - y = 3 \end{cases}$ (2)

let $(A) - (2)$, we get: $(x + 3y) - (x - y) = 12 - 3$
(=)
$$(=) \qquad 4y \qquad = 9$$
(=)
$$(=) \qquad y \qquad = \frac{9}{4}$$

Substitute $y = \frac{9}{4}$ into (2), we get $x = \frac{9}{4} = 3$

Hence, the solution (x,y) to the system if a=3 is $(\frac{21}{4}, \frac{9}{4})$.

(b) We have:
$$\begin{cases} x_1 \text{ ay} = 12 \\ x - y = a \end{cases}$$
Let $(3) - (4)$, we get: $(x_1 \text{ ay}) - (x_2 \text{ - y}) = 12 - a$

$$(\Rightarrow) (a+1) \text{ y} = 42 - a$$
Hence, if $a+1=0$ (\$\Rightarrow a=1\$, we would have: $0.9 = 13$ (untradition) and this system of equations will have no solutions.

But if $a+1 \neq 0 \Rightarrow y = \frac{12-a}{a+1}$, and this system will have a solution.

Therefore, for this system of equations to have no solutions, $a=-1$.

(c) If there a solution with $y=2$, we have:
$$\begin{cases} x+2a=12 \\ x-2=a \end{cases}$$
(d)
$$\begin{cases} x+2a=12 \\ x-2=a \end{cases}$$
(e)
$$\begin{cases} x+2a=12 \\ x-2=a \end{cases}$$
(f)
$$\begin{cases} x+2a=12 \\ x-2=a \end{cases}$$
(g)
$$\begin{cases} x+2a=12 \\ x-2=a \end{cases}$$
(h)
$$\begin{cases} x+2a=12 \\ x-2=a \end{cases}$$
(e)
$$\begin{cases} x+2a=12 \\ x-2=a \end{cases}$$
(f)
$$\begin{cases} x+2a=12 \\ x-2=a \end{cases}$$
(g)
$$\begin{cases} x+2a=12 \\ x-2=a \end{cases}$$
(h)
$$\begin{cases} x+2a=12 \\ x-2=a \end{cases}$$
(a)
$$\begin{cases} x+2a=12 \\ x-2=a \end{cases}$$
(b)
$$\begin{cases} x+2a=12 \\ x-2=a \end{cases}$$
(c)
$$\begin{cases} x+2a=12 \\ x-2=a \end{cases}$$
(d)
$$\begin{cases} x+2a=12 \\ x-2=a \end{cases}$$
(e)
$$\begin{cases} x+2a=12 \\ x-2=a \end{cases}$$
(f)
$$\begin{cases} x+2a=12 \\ x-2=a \end{cases}$$
(g)
$$\begin{cases} x+2a=12 \\ x-2=a \end{cases}$$
(h)
$$\begin{cases} x+2a=12 \\ x-2=a \end{cases}$$

= -3.
$$\det \begin{bmatrix} b & e & h \\ a & d & g \end{bmatrix}$$
 = (-3)(-1). $\det \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix}$

Hence, det
$$\begin{bmatrix} b & e & -3h \\ a_{13}c & d_{13}f & -3g_{1} \end{bmatrix} = \begin{bmatrix} 18 \\ c & f & -3i \end{bmatrix}$$