UMWELT-PRODUKTDEKLARATION

nach ISO 14025 und EN 15804+A1

Deklarationsinhaber BASF SE

Herausgeber Institut Bauen und Umwelt e.V. (IBU)

Programmhalter Institut Bauen und Umwelt e.V. (IBU)

Deklarationsnummer EPD-BAS-20190113-IBA1-DE

Ausstellungsdatum 12.11.2019

Styrodur® BASF SE

www.ibu-epd.com | https://epd-online.com

1. Allgemeine Angaben

BASF SE Programmhalter IBU - Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Deutschland Deklarationsnummer EPD-BAS-20190113-IBA1-DE Diese Deklaration basiert auf den Produktkategorien-Regeln: Dämmstoffe aus Schaumkunststoffen, 06.2017 (PCR geprüft und zugelassen durch den unabhängigen Sachverständigenrat (SVR)) Ausstellungsdatum 12.11.2019 Gültig bis 11.11.2024 un leten Dipl. Ing. Hans Peters (Vorstandsvorsitzender des Instituts Bauen und Umwelt e.V.)

Styrodur®

Inhaber der Deklaration

BASF SE

Carl-Bosch-Straße 38 D-67056 Ludwigshafen

Deklariertes Produkt/deklarierte Einheit

Die Deklaration bezieht sich auf 1 m² einer 120 mm dicken XPS (extrudierter Polystyrolhartschaum)-Platte aus Styrodur® mit einem polymeren Flammschutzmittel (Polymer-FR), entsprechend 0,12 m³, mit einer mittleren Dichte von 32,5 kg/m³.

Gültigkeitsbereich:

Styrodur® wird zu 100% am Standort von BASF SE in Ludwigshafen hergestellt. Es wurden Daten aus dem Jahr 2017 verwendet.

Der Inhaber der Deklaration haftet für die zugrundeliegenden Angaben und Nachweise; eine Haftung des IBU in Bezug auf Herstellerinformationen, Ökobilanzdaten und Nachweise ist ausgeschlossen.

Die EPD wurde nach den Vorgaben der *EN 15804+A1* erstellt. Im Folgenden wird die Norm vereinfacht als *EN 15804* bezeichnet

Verifizierung

Die Europäische Norm EN 15804 dient als Kern-PCR

Unabhängige Verifizierung der Deklaration und Angaben gemäß ISO 14025:2010

intern

extern

Edrole

Dr. Eva Schmincke, Unabhängige/-r Verifizierer/-in

2. Produkt

Dr. Alexander Röder

2.1 Beschreibung des Unternehmens

(Geschäftsführer Instituts Bauen und Umwelt e.V.)

Die BASF SE mit Sitz in Ludwigshafen am Rhein ist der nach Umsatz weltweit größte Chemiekonzern. Mehr als 117.000 Mitarbeiter arbeiten in der BASF-Gruppe daran, zum Erfolg unserer Kunden aus nahezu allen Branchen und in fast allen Ländern der Welt beizutragen.

2.2 Produktbeschreibung/Produktdefinition

Styrodur® ist eine Dämmstoffplatte aus extrudiertem Polystyrolhartschaum (XPS) entsprechend der /EN 13164/, welche im Rohdichtenbereich von 28 bis 50 kg/m³ hergestellt wird. Styrodur® wird in unterschiedlichen Druckfestigkeitsstufen von 200 bis 700 kPa im Dickenbereich von 20 bis 300 mm geliefert.

Für das Inverkehrbringen des Produkts in der EU/EFTA (mit Ausnahme der Schweiz) gilt die Verordnung (EU) Nr. 305/2011 (CPR). Das Produkt benötigt eine Leistungserklärung unter Berücksichtigung der /ETA-17/0913/ vom 13. November 2017, Styrodur 3000 CS und die CE-Kennzeichnung.

Für die Verwendung gelten die jeweiligen nationalen Bestimmungen.

2.3 Anwendung

Anwendungsgebiete sind nach der /DIN 4108-10/ Wärmedämmung von Dach, Decke, Wand, Boden und Perimeter mit dort festgelegten Anforderungen an die physikalischen Eigenschaften: Perimeterdämmung der Bodenplatte, Perimeterdämmung der Kelleraußenwände, Flachdachdämmung nach dem Umkehrdachprinzip, Wärmedämmung von Fußböden, z. B. hochbelasteter Industriefußböden, Außenwanddämmung, als Kerndämmung in zweischaligem Mauerwerk, Innendämmung von Wänden, Innendämmung von Decken, Wärmedämmung von Steildächern oberhalb und unterhalb der Sparren.

2.4 Technische Daten

Leistungswerte des Produkts entsprechend der Leistungserklärung in Bezug auf dessen wesentliche Merkmale gemäß /ETA-17/0913/ vom 13. November 2017, Styrodur 3000 CS.

Bautechnische Daten

Bezeichnung	Wert	Einheit
Rohdichte	28 - 50	kg/m³
Wärmeleitfähigkeit nach /EN 12667/	0,032 -	W/(mK)
und /EN 13164/ Annex C	0,038	VV/(IIIIK)
Verformungsverhalten nach /EN 1605/	≤ 5	%
Druckspannung oder Druckfestigkeit	200 -	kPa
nach /EN 826/	700	KPa

Herstellung und CE-Kennzeichnung nach Produktnorm /EN 13164/. Anwendung nach bauaufsichtlicher Zulassung des DIBt (siehe Kapitel 8). Die Produkte werden kontrolliert und zertifiziert durch KEYMARK, FIW und TÜV Süd.

2.5 Lieferzustand

Länge: ab 1265 mm; Breite: 600 mm; Dicke: 20 –300 mm. Für diese Deklaration wird eine Dicke von 120 mm zugrunde gelegt.

2.6 Grundstoffe/Hilfsstoffe

Als Hauptrohstoff wird Standard Polystyrol (General Purpose Polystyrene - GPPS), CAS-Nr. 9003-53-6, mit 90 bis 95 Masse-% eingesetzt.

Dieses wird mit Hilfe eines Treibmittels mit ca. 8 Masse-% aufgeschäumt. Das Treibmittel besteht aus Kohlendioxid, CAS-Nr. 124-38-9, und halogenfreien Co-Treibmitteln. Zur Herstellung der Styrodur® Platten wird zusätzlich ein polymeres Flammschutzmittel (Polymer-FR) mit max. 3 Masse-% zugesetzt. Polymer-FR ist ein bromiertes Styrol-Butadien-Copolymerisat, CAS-Nr. 1195978-93-8, und unterliegt nicht den Bestimmungen der REACH-Verordnung für besonders besorgniserregende Stoffe.

Rohstoffe/Hilfsstoffe	Massenanteil
Polystyrol (GPPS)	90 - 95 %
Treibmittel	< 5 %
Flammschutzmittel	0,5 - 3 %
Additive (z. B. Farbstoffe)	< 1%

Das Produkt/mindestens ein Teilerzeugnis enthält Stoffe der ECHA-Liste der für eine Zulassung in Frage kommenden besonders besorgniserregenden Stoffe (16.07.2019) oberhalb von 0,1 Massen-%: nein.

Das Produkt/mindestens ein Teilerzeugnis enthält weitere CMR-Stoffe der Kategorie 1A oder 1B, die nicht auf der Kandidatenliste stehen, oberhalb von 0,1 Massen-% in mindestens einem Teilerzeugnis: nein.

Dem vorliegenden Bauprodukt wurden Biozidprodukte zugesetzt oder es wurde mit Biozidprodukten behandelt (es handelt sich damit um eine behandelte Ware im Sinne der Biozidprodukteverordnung (EU) Nr. 528/2012): nein.

Dem Extrusionsprozess werden Zusatzstoffe (wie z. B. Verarbeitungshilfsstoffe, Farbstoffe) unter 1 Masse-% zugeführt. Bei der Herstellung der Styrodur® Platten werden Polystyrol und die Co-Treibmittel aus Erdöl und -gas verwendet und sind daher an die Verfügbarkeit dieser Rohstoffe gekoppelt.

2.7 Herstellung

Styrodur® wird in einem kontinuierlichen Extrusionsprozess mit Dampf als Hauptenergieträger hergestellt. Polystyrol-Granulat wird zusammen mit den Hilfsstoffen im Extruder unter hohem Druck aufgeschmolzen. Das Treibmittel Kohlendioxid wird der Schmelze hinzugegeben und in ihr gelöst. Die Schmelze wird durch eine Breitschlitzdüse ausgetragen. Durch den Schaumdruck schäumt das Treibmittel die Schmelze auf. Dabei kühlt diese ab und das Polystyrol verfestigt sich. Es entsteht ein endloser Strang aus homogenem und geschlossenzelligem Polystyrolhartschaum. Dieser wird weiter abgekühlt und anschließend dimensioniert, besäumt und in einer 4- oder 6-Seitenverpackung mit Polyethylenfilm verpackt und palettiert. Durch die Verwendung von unterschiedlichen Düsen können Plattenstärken von 20 bis 300 mm produziert werden.

Produktionsabschnitte und -ausschüsse von Styrodur® werden direkt für die Produktion von neuen Platten wiederverwendet.

2.8 Umwelt und Gesundheit während der Herstellung

Bei der Herstellung von Styrodur® sind in allen Produktionsschritten zum Schutz der Gesundheit der Mitarbeiter keine weiteren Maßnahmen über die nationalen Arbeitsschutzvorschriften hinaus notwendig.

Für die Produktion von Dämmplatten mit Styrodur® werden keine ozonabbauenden Substanzen wie FCKW oder HFCKW als Treibmittel verwendet.

Der Produktionsstandort in Ludwigshafen ist nach der /ISO 9001/ und /ISO 14001/ zertifiziert.

2.9 Produktverarbeitung/Installation

Produkt- und anwendungsabhängige Einbauempfehlungen sind der Website <u>www.styrodur.de</u> zu entnehmen.

2.10 Verpackung

Die Verpackung besteht aus Polyethylen (PE)-Folien (0,09 kg PE-Folie für 0,12 m³ Produkt), diese sollen getrennt gesammelt und einer fachgerechten Entsorgung zugeführt werden. Polyethylen kann dann recycliert werden.

2.11 Nutzungszustand

Alle eingesetzten Stoffe sind im Einbauzustand alterungsbeständig und feuchtigkeitsresistent, wodurch die Dämmleistung sowie die mechanischen Eigenschaften während der gesamten Nutzungsdauer unverändert erhalten bleiben.

2.12 Umwelt und Gesundheit während der Nutzung

Styrodur® darf in direktem Kontakt mit Erdreich und Grundwasser verwendet werden. Bzgl. Belastungen für die Gesundheit bei der Verwendung von XPS für Innenraumdämmung siehe 7.1 VOC-Emissionen.

2.13 Referenz-Nutzungsdauer

Bei sachgerechtem Einbau übersteht Styrodur® die Nutzungsdauer der Baukonstruktion. Dies ist begründet in der mechanischen Festigkeit und Beständigkeit gegenüber Wassereinwirkung.

Die Referenzlebensdauer ist aufgrund des Ausschlusses von Modul B nicht relevant.

2.14 Außergewöhnliche Einwirkungen

Brand

Styrodur® Platten sind als Euroklasse E entsprechend der /EN 13501-1/ eingestuft.

Brandschutz

Bezeichnung	Wert
Baustoffklasse	E
Brennendes Abtropfen	-
Rauchgasentwicklung	-

Wasser

Styrodur® nimmt durch Unterwasserlagerung nur eine geringe Menge an Wasser auf (< 0,7 %). Die Wärmeleitfähigkeit von Styrodur® wird nur unwesentlich beeinflusst.

Mechanische Zerstörung

Nicht relevant für Styrodur® aufgrund seiner mechanischen Eigenschaften.

2.15 Nachnutzungsphase

Will man das volle Wiederverwendungspotential von Styrodur® ausnutzen, sollte die Verlegung möglichst so erfolgen, dass die Platten mit nur geringer oder keiner Beschädigung zurückgebaut werden können: Nichtverklebte Systeme, Trennlagen zwischen Dämmung und Beton, mechanische Befestigungen.

Auf Umkehrdächern wird Styrodur® lose verlegt und kann daher weitestgehend zerstörungsfrei vom Dach entfernt und auf einem anderen Dach wieder verlegt werden. Bei einem bestehenden konventionellen

Flachdach kann Styrodur® an Ort und Stelle verbleiben, wenn zur wärmedämmtechnischen Aufwertung daraus ein "Plusdach" wird.

Rückgebautes, wiederverwendbares Styrodur® aus mechanisch fixierten Anwendungen kann z. B. zur Dämmung von Kellerwänden oder nichttragenden Bodenplatten eingesetzt werden.

2.16 Entsorgung

Styrodur® kann mittels eines Lösemittelverfahrens recycelt werden. Das daraus gewonnene Polystyrol kann wieder für Bauanwendungen eingesetzt werden (https://polystyreneloop.org/). Diese Prozesse befinden sich noch in der Forschungs- und Entwicklungsphase und werden derzeit noch nicht praktiziert.

Am Ende des Lebenszyklus von Styrodur® kann dieses als zweite Option einer Verbrennung mit Energierückgewinnung zugeführt werden. Durch den hohen Heizwert von Polystyrol kann die in den Platten gebundene Energie in Müllverbrennungsanlagen mit Energierückgewinnung wieder genutzt werden.

Abfallschlüssel nach Abfallverzeichnis-Verordnung (/AVV/):17 06 04 Dämmmaterial mit Ausnahme desjenigen, das unter 17 06 01 und 17 06 03 fällt.

2.17 Weitere Informationen

Weitere Information finden Sie unter www.styrodur.de

3. LCA: Rechenregeln

3.1 Deklarierte Einheit

Diese Deklaration bezieht sich auf 1 m² Styrodur® mit einer Stärke von 120 mm, d. h. 0,12 m mit einer Dichte von 32,5 kg/m³ (Referenzprodukt). Dieses Produkt wurde gewählt, da es mengenmäßig das marktgängigste Produkt darstellt.

Deklarierte Einheit

Bezeichnung	Wert	Einheit
Deklarierte Einheit mit 120 mm	1	m ²
Dicke	'	111-
Rohdichte	32,5	kg/m³
Umrechnungsfaktor zu 1 kg	0,256	-
Flächengewicht	5	kg/m²
Schichtdicke	0,12	m

3.2 Systemgrenze

Typ der EPD: Cradle-to-Gate-mit Optionen

Die in der Lebenszyklusbewertung berücksichtigten Module sind:

- Rohstoffbereitstellung (A1)
- Transport zum Hersteller (A2)
- Herstellung (A3)
- Transporte zur Baustelle (A4)
- Montage (A5)
- Transport zur Abfallbehandlung (C2)
- Entsorgung (C4)
- Wiederverwendungs-, Verwertungs- oder Recyclingpotential (D)

Die Analyse des Produktlebenszyklus umfasst die Herstellung der Grundstoffe, den Transport der Grundstoffe, die Herstellung des Produkts und der Verpackungsmaterialien in den Modulen A1-A3. Der Transport des Produkts wird in Modul A4 und die Entsorgung der Verpackungsmaterialien im Modul A5 berücksichtigt. Zurückgewonnene Energien aus Verbrennungsprozessen werden in Modul D über die Systemgrenze hinaus deklariert.

Die Nutzenphase wird bei den Ökobilanzberechnungen nicht berücksichtigt.

Die End-of-Life-Modellierungen (EoL) umfassen den Transport bis zum Ende der Lebensdauer (C2) sowie die Entsorgung des Produktes durch Verbrennung (C4).

3.3 Abschätzungen und Annahmen

Alle In- und Outputs der Produktion von Granulat und Dämmplatten in Deutschland wurden bei der Berechnung berücksichtigt.

Generische Daten wurden für extern zugekaufte Rohstoffe von Lieferanten verwendet, da diese Materialien nicht von der BASF SE oder ihren Auftragnehmern produziert werden. Für die Module A2, A4, C2 und D wurden Annahmen getroffen.

Transportentfernungen von Rohstoffen zum Produktionsstandort (Modul A2) wurden anhand der Postanschriften der Lieferanten ermittelt. Modul A4

berücksichtigt eine LKW-Entfernung von 500 km (Euro 5, 17,3 t Nutzlast Kapazität, 22,5 % Auslastung), welche den deutschlandweiten Einsatz repräsentiert. Für Modul C2 ist eine Entfernung von 50 km per LKW (Euro 5, 17,3 t Nutzlast Kapazität, 22,5 % Auslastung) angenommen.

Gutschriften für die vermiedene Produktion von Elektrizität und Dampf in einem anderen Produktsystem durch die Verbrennungsprozesse wurden berücksichtigt (Modul D).

3.4 Abschneideregeln

Alle Primärdaten der Produktionsprozesse wurden berücksichtigt. Es wurden keine Abschneideregeln verwendet.

3.5 Hintergrunddaten

Um den Lebenszyklus der deklarierten Dämmplatte mit Styrodur® zu berechnen, wurde die Software /GaBi ts 8.7/ der thinkstep AG eingesetzt.

3.6 Datenqualität

Für die Lebenszyklusmodellierungen der betrachteten Produkte wurde die GaBi ts-Software: System für Lebenszyklus-Analysen und die GaBi ts-Datenbank verwendet. Die produzierten Mengen für 2017 wurden BASF SE-intern erhoben.

3.7 Betrachtungszeitraum

Die Berichtsperiode ist 2017. Alle internen Daten wurden für diesen Zeitraum gesammelt.

3.8 Allokation

Bei der Produktion von Dämmplatten mit Styrodur® entsteht ein Co-Produkt (Recyclate Green), welches mit Hilfe von ökonomischer Allokation berücksichtigt wurde.

Alle Gutschriften aus zurückgewonnener Energie aus Verpackungsabfällen und anderen Verbrennungsprozessen wurden Modul D zugeteilt.

3.9 Vergleichbarkeit

Grundsätzlich ist eine Gegenüberstellung oder die Bewertung von EPD-Daten nur möglich, wenn alle zu vergleichenden Datensätze nach *EN 15804* erstellt wurden und der Gebäudekontext bzw. die produktspezifischen Leistungsmerkmale berücksichtigt werden.

Nur Hintergrunddaten aus der /GaBi ts 8.7/-Software wurden in dieser Ökobilanz berücksichtigt, um die Vergleichbarkeit der Ergebnisse zu gewährleisten.

4. LCA: Szenarien und weitere technische Informationen

Die folgenden technischen Informationen sind Grundlage für die deklarierten Module oder können für die Entwicklung von spezifischen Szenarien im Kontext einer Gebäudebewertung genutzt werden, wenn Module nicht deklariert werden (MND). Die Werte beziehen sich auf die deklarierte Einheit von 1 m² (mit 120 mm Dicke).

Transport zu Baustelle (A4) mit LKW

Bezeichnung	Wert	Einheit
Transport Distanz	500	km
Auslastung (einschließlich Leerfahrten) *	22,5	%
Rohdichte der transportierten Produkte	32,5	kg/m ³
Volumen-Auslastungsfaktor	1	-
Nutzlast des LKW (EURO 5)	17,3	t
Liter Treibstoff (Diesel) unter maximaler Beladung	0,020	l/100 km

^{*} Die Auslastung wurde angepasst auf Grundlage der Dichte von Dämmplatten mit Styrodur®.

Montage (A5)

Im Modul A5 sind ausschließlich die Umweltauswirkungen bei der Entsorgung der Produktverpackung (Polyethylenfolie) berücksichtigt.

Lebensende (C1-C4)

Die Transportentfernung zur Entsorgung ist 50 km. Für das Ende des Lebenszyklus wird 100 % Verbrennung (Müllverbrennungsanlage mit R1-Wert < 0,6) mit Energierückgewinnung (Modul C4) berücksichtigt. Die Verbrennung von Dämmplatten führt unter deutschen Bedingungen zu Energiegutschriften, welche in Modul D betrachtet sind.

Wiederverwendung, Verwertung und/oder Recycling Potenziale (D)

Modul D umfasst die Gutschriften der Verbrennungsprozesse (Verbrennung XPS und Verpackungsmaterial), d. h. Gutschriften für Strom und Dampf. Die Gutschriften erfolgen über deutsche Durchschnittsdaten für elektrische und thermische Energie.

5. LCA: Ergebnisse

Die folgenden Tabellen zeigen die umweltrelevanten Ergebnisse nach /EN 15804/ für 1 m² Styrodur® Platte mit einer Dicke von 120 mm (fossil-basiert). Das EoL-Szenario ist in den Modulen C4 und D dargestellt und reflektiert die thermische Behandlung mit Energierückgewinnung.

ANGABE DER SYSTEMGRENZEN	(X = IN ÖKOBILANZ ENTHALTEN; MND = MODUL NICHT DEKLARIERT;
MNR = MODUL NICHT RELEVANT	

Produktionsstadiu m		Stadium der Errichtung des Bauwerks			Nutzungsstadium			Ent	sorgun	gsstadi	um	Gutschriften und Lasten außerhalb der Systemgrenze				
Rohstoffversorgung	Transport	Herstellung	Transport vom Hersteller zum Verwendungsort	Montage	Nutzung/Anwendung	Instandhaltung	Reparatur	Ersatz	Erneuerung	Energieeinsatz für das Betreiben des Gebäudes	Wassereinsatz für das Betreiben des Gebäudes	Rückbau/Abriss	Transport	Abfallbehandlung	Beseitigung	Wiederverwendungs-, Rückgewinnungs- oder Recyclingpotenzial
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Х	Х	Х	X	Х	MND	MND	MNR	MNR	MNR	MND	MND	MND	Х	MND	Х	Х

ERGEBNISSE DER ÖKOBILANZ – UMWELTAUSWIRKUNGEN nach EN 15804+A1: 1 m² Styrodur® Platte (Dicke: 120 mm)

Parameter	Einheit	A1-A3	A 4	A5	C2	C4	D
Globales Erwärmungspotenzial	[kg CO ₂ -Äq.]	9,85	0,35	0,27	0,04	13,18	-6,30
Abbaupotenzial der stratosphärischen Ozonschicht	[kg CFC11-Äq.]	1,46E-9	1,67E-16	4,69E-17	1,66E-17	2,09E-15	-1,32E-13
Versauerungspotenzial von Boden und Wasser	[kg SO ₂ -Äq.]	1,73E-2	9,81E-4	2,53E-5	9,75E-5	1,04E-3	-6,06E-3
Eutrophierungspotenzial	[kg (PO ₄) ³ -Äq.]	2,46E-3	2,38E-4	5,66E-6	2,37E-5	2,33E-4	-1,07E-3
Bildungspotenzial für troposphärisches Ozon	[kg Ethen-Äq.]	3,71E-2	-3,68E-4	1,61E-6	-3,66E-5	7,60E-5	-5,73E-4
Potenzial für die Verknappung abiotischer Ressourcen - nicht fossile Ressourcen	[kg Sb-Äq.]	9,47E-7	3,23E-8	5,25E-10	3,21E-9	2,23E-8	-1,40E-6
Potenzial für die Verknappung abiotischer Ressourcen - fossile Brennstoffe	[MJ]	335,40	4,71	0,04	0,47	1,70	-81,94

ERGEBNISSE DER ÖKOBILANZ – INDIKATOREN ZUR BESCHREIBUNG DES RESSOURCENEINSATZES nach EN 15804+A1: 1 m² Styrodur® Platte (Dicke: 120 mm)

Parameter	Einheit	A1-A3	A4	A5	C2	C4	D
Erneuerbare Primärenergie als Energieträger	[MJ]	7,35	0,29	0,01	0,03	0,35	-21,89
Erneuerbare Primärenergie zur stofflichen Nutzung	[MJ]	0,00	0,00	0,00	0,00	0,00	0,00
Total erneuerbare Primärenergie	[MJ]	7,35	0,29	0,01	0,03	0,35	-21,89
Nicht-emeuerbare Primärenergie als Energieträger	[MJ]	179,09	4,73	4,20	0,47	157,46	-91,57
Nicht-erneuerbare Primärenergie zur stofflichen Nutzung	[MJ]	159,76	0,00	-4 ,15	0,00	-155,61	0,00
Total nicht erneuerbare Primärenergie	[MJ]	338,85	4,73	0,05	0,47	1,85	-91,57
Einsatz von Sekundärstoffen	[kg]	0,00	0,00	0,00	0,00	0,00	0,00
Erneuerbare Sekundärbrennstoffe	[MJ]	0,00	0,00	0,00	0,00	0,00	0,00
Nicht-emeuerbare Sekundärbrennstoffe	[MJ]	0,00	0,00	0,00	0,00	0,00	0,00
Nettoeinsatz von Süßwasserressourcen	[m³]	3,13E-2	3,32E-4	5,87E-4	3,30E-5	2,49E-2	-1,18E-2

ERGEBNISSE DER ÖKOBILANZ –ABFALLKATEGORIEN UND OUTPUTFLÜSSE nach EN 15804+A1: 1 m² Styrodur® Platte (Dicke: 120 mm)

Till Styroddiw Flatte (Dicke. 120 Illill)							
Parameter	Einheit	A1-A3	A4	A5	C2	C4	D
Gefährlicher Abfall zur Deponie	[kg]	8,69E-5	2,68E-7	2,31E-10	2,66E-8	1,66E-9	-5,17E-8
Entsorgter nicht gefährlicher Abfall	[kg]	4,47E-2	3,34E-4	1,11E-3	3,32E-5	4,84E-2	-4,89E-2
Entsorgter radioaktiver Abfall	[kg]	7,55E-4	7,13E-6	1,36E-6	7,08E-7	6,04E-5	-3,81E-3
Komponenten für die Wiederverwendung	[kg]	0,00	0,00	0,00	0,00	0,00	0,00
Stoffe zum Recycling	[kg]	0,00	0,00	0,00	0,00	0,00	0,00
Stoffe für die Energierückgewinnung	[kg]	0,00	0,00	0,00	0,00	0,00	0,00
Exportierte elektrische Energie	[MJ]	0,00	0,00	0,50	0,00	20,16	0,00
Exportierte thermische Energie	[MJ]	0,00	0,00	1,14	0,00	46,50	0,00

Die umweltrelevanten Ergebnisse nach /EN 15804/ für 1 m² Dämmplatte (Dicke: 120 mm) hergestellt aus Styrodur® BMB (BMB = Biomassenbilanz-Ansatz basierend auf nachwachsenden Rohstoffen) sind in einer separaten EPD dargestellt.

6. LCA: Interpretation

Alle Wirkungskategorien werden maßgeblich von der Bereitstellung der Rohstoffe und der Produktion beeinflusst. Das im Produktionsprozess eingesetzte Polystyrol enthält bereits einen Großteil der Umweltbelastungen. Die Wirkungskategorie GWP wird zudem

maßgeblich durch den Verbrennungsprozess (C4) der Dämmplatte mit Styrodur® beeinflusst.

In den Wirkungskategorien GWP, Eutrophierungspotential (EP), Versauerungspotential (AP), Potential für die Verknappung von abiotischen

Ressourcen-nicht fossile Ressourcen (ADPe) und Potential für den abiotischen Abbau fossiler Brennstoffe (ADPf) liegt der Einfluss der Granulatproduktion auf das Ergebnis von A1-A3 zwischen 85 % und 97 %.

Das Ozonabbaupotential wird ausschließlich durch die Herstellung des Polystyrolgranulats verursacht.

Der Schäumungsprozess für das deklarierte Produkt hat ebenfalls einen Einfluss auf die Umweltauswirkungen der Module A1-A3. Insgesamt tragen die Emissionen von Ethanol während des Produktionsprozesses zu 90 % des photochemischen Oxidantenbildungspotentials (POCP) bei.

Die Transporte (A2, A4 und C2) haben im Vergleich zu den Beiträgen aus den anderen Bereichen einen geringen Einfluss auf alle Wirkungskategorien. Der Aufwand (Input von zusätzlicher Energie und Material) für das End-of-Life-Szenario (C4) und die daraus resultierenden Energiegutschriften in Form von Strom und Dampf aufgrund der Verbrennung in Modul D werden getrennt betrachtet. Dies führt zu negativen Werten in Modul D.

7. Nachweise

XPS-Produkte können für die Innenanwendung benutzt werden.

7.1 VOC-Emissionen

Styrodur® wurde zusammen mit XPS-Platten von neun weiteren europäischen Herstellern durch /Eurofins/ Product testing in Dänemark einer Emissionsprüfung unterzogen. Die getesteten Produkte wurden als konform zu den Anforderungen von /AgBB/ für die Nutzung im Innenraum eingestuft.

Bezeichnung	Wert	Einheit
TVOC (C6 - C16)	0 - 1000	μg/m³
Summe SVOC (C16 - C22)	0 - 100	μg/m³
R (dimensionslos)	0 - 1	-
VOC ohne NIK	0 - 100	μg/m³
Kanzaragana	nicht	ua/m3
Kanzerogene	detektiert	μg/m³

7.2 Auslaugung Untersuchungen zum Auslaugverhalten sind für Styrodur® nicht vorhanden.

8. Literaturhinweise

/AqBB/

Gesundheitliche Bewertung der Emissionen von flüchtigen organischen Verbindungen (VOC und SVOC) aus Bauprodukten, Ausschuss zur gesundheitlichen Bewertung von Bauprodukten, Status Mai 2010.

/AVV/

Abfallverzeichnis-Verordnung (AVV) vom 10. Dezember 2001 (BGBI. I S. 3379), die zuletzt durch Artikel 2 der Verordnung vom 17. Juli 2017 (BGBI. I S. 2644) geändert worden ist.

/DIN 4108-10/

DIN 4108-10:2015-12, Wärmeschutz und Energie-Einsparung in Gebäuden - Teil 10: Anwendungsbezogene Anforderungen an Wärmedämmstoffe -Werkmäßig hergestellte Wärmedämmstoffe.

/EN 1605/

DIN EN 1605:2013-05, Wärmedämmstoffe für das Bauwesen - Bestimmung der Verformung bei definierter Druck- und Temperaturbeanspruchung.

/EN 826/

DIN EN 826:2012-07, Wärmedämmstoffe für das Bauwesen - Bestimmung des Verhaltens bei Druckbeanspruchung.

/EN 13501-1/

DIN EN 13501-1:2010-01, Brandeinstufung von Bauprodukten und Bauelementen – Teil 1: Klassifizierung zur Verwendung von Daten aus der Reaktion auf Brandversuche.

/EN 13164/

DIN EN 13164: 2015-04, Wärmedämmstoffe für Gebäude - Werkmäßig hergestellte Produkte aus extrudiertem Polystyrolschaum (XPS) - Spezifikation.

/EN 12667/

DIN EN 12667:2001-05, Wärmetechnisches Verhalten von Baustoffen und Bauprodukten - Bestimmung des Wärmedurchlasswiderstandes nach dem Verfahren mit dem Plattengerät und dem Wärmestrommessplatten-Gerät - Produkte mit hohem und mittlerem Wärmedurchlasswiderstand.

/ETA-17/0913/

Europäische Technische Bewertung vom 13. November 2017, Berlin https://publikationen.dibt.de/shop/de/Cart/Details/ETA-17!0913

/Eurofins/

Eurofins Produkt Testing A/S, Smedeskovvej 38, 8464 Galten, Denmark; Juli 2011 Report No. G07310Crev.

/Foto Titelseite/

BASF SE

/GaBi ts 8.7/

Software und Datenbanken von GaBi ts 8.7, LBP, Universität Stuttgart und thinkstep AG.

/ISO 9001/

DIN EN ISO 9001:2008-12, Qualitätsmanagementsysteme – Anforderungen.

/ISO 14001/

DIN EN ISO 14001:2009-11, Umweltmanagementsysteme – Anforderungen mit Anleitung zur Anwendung.

/REACH-Verordnung (EC) Nr. 1907/2006/ Verordnung Nr. 1907/2006 des europäischen Parlaments und des Rates vom 18. Dezember 2006, Artikel 59 (1, 10).

Herausgeber

| Institut Bauen und Umwelt e.V. | Tel | +49 (0)30 3087748- 0 | Panoramastr.1 | Fax | +49 (0)30 3087748- 29 | 10178 Berlin | Mail | info@ibu-epd.com | www.ibu-epd.com | www.ibu-epd.com |

Programmhalter

Ersteller der Ökobilanz

 TÜV Rheinland LGA Products GmbH
 Tel
 +49 (0)911 655 5225

 Am Grauen Stein 29
 Fax
 +49 (0)911 655 5226

 51105 Köln
 Mail
 service@de.tuv.com

 Germany
 Web
 www.tuv.com

Inhaber der Deklaration

 BASF SE
 Tel
 +49 (0)621 60-0

 Carl-Bosch-Straße 38
 Fax
 +49 (0)621 60-42525

 67056 Ludwigshafen
 Mail
 global.info@basf.com

 Germany
 Web
 www.basf.com