3. Bildcodierung und Kompression

Quellen:

EVC_Skriptum_CV, p.15 bis EVC_Skriptum_CV, p.19

Digitales Bild-Dateienformat

Kontinuierliche vs. digitale Daten

- Wenn eine Zahl unendlich viele mögliche Werte annehmen kann, spricht man von kontinuierlichen oder analogen Daten
- Computer können mit analogen Daten nicht direkt arbeiten
- Daher müssen diese Daten digitalisiert werden, um sie für den Computer bearbeitbar zu machen
- Dieser Umwandlungsprozess erfolgt z.B. beim Scannen von Fotos oder beim Fotografieren mit digitalen Kameras

Digitale Bilder

- Ein digitales Bild ist eine numerische Repräsentation eines zweidimensionalen Bildes
- Das Bild kann entweder aus Vektorbeschreibungen oder einem Raster bestehen
- Rasterbild: Ein Raster von diskreten Werten (Pixel), bei dem jeder Bildpunkt mit seinem Helligkeitswert oder Farbwert gespeichert wird
- Vektorbild: Der Bildinhalt wird in geometrischen Objekten dargestellt und die Rasterung erfolgt erst bei der Darstellung auf einem Endgerät (z.B. Display oder Drucker)

Speicherung von Bilddaten

Digitale Bildinformationen müssen in einem Bilddatenformat abgespeichert werden

- In der Frühzeit der digitalen Bildverarbeitung (bis etwa 1985) gab es eine große Anzahl unterschiedlicher Dateiformate, was zu vielen notwendigen Konvertierungsprogrammen führte
- Heute gibt es standardisierte Dateiformate, die den Austausch von Bilddaten erleichtern und die langfristige Lesbarkeit f\u00f6rdern

Speichergröße eines Rasterbildes

- Ein Rasterbild enthält ein Pixelraster, das für jede Rasterzelle eine bestimmte Anzahl an Bits zur Farbgebung bereitstellt – dies entspricht der Farbtiefe
- Ein Bild mit LxN (L Zeilen und N Spalten), 2B (B = Anzahl der Bits pro Rasterzelle), c
 Farbkomponenten kann unkomprimiert als:
 - L x N x B x c gespeichert werden
 - Beispiel: Bei einer Bildgröße von 1024x768, 3 Farbkomponenten (RGB) und 256 (28)
 Graustufen ergibt sich:
 - $1024 \times 768 \times 3 \times 8 = 18,87 \text{ MBit} \rightarrow 2,36 \text{ MByte}$
- Bilddatengröße korreliert positiv mit der Anzahl der Pixel und der Farbtiefe (Bits pro Pixel)
- Prüfungs-ähnliches Beispiel dazu:
 - Wie viel Speicherplatz benötigt man für die Speicherung des Bildinhaltes bei einem RGB Farbbild der Größe 1.024x768, wenn pro Farbkanal 4.096 verschiedene Werte kodiert werden sollen?

Size = LxNxBxc

- 1.024x768 = **786.432** Pixel
- 4.096 = 2¹² => **12** Bit/Pixel
- RGB = 3 Farbkanäle
- \Rightarrow **786.432** · **12** · **3** = 28.311.552 Bit
- \Rightarrow 28.311.552 : **8** = 3.538.944 Byte
- \Rightarrow 3.538.944 : **1.024** = **3.456** KiloByte (KB)

Raster-Bildformate

Raw-Bildformat

- Raw-Bildformat ermöglicht es, auf die tatsächlich von der Kamera aufgenommenen Bilddaten zuzugreifen
- Speichert für jeden Pixel den entsprechenden Farbwert ohne Nachbearbeitung (bei 1-Chip-Kameras werden Rot-, Grün- und Blauwerte entsprechend dem CFA-Muster gespeichert)
- RAW-Format stellt kein "richtiges" Farbbild dar, da 2/3 der Farbinformation interpoliert werden müssen

Muss zur farbigen Anzeige umgewandelt werden

Konventionelle Raster-Bildformate

- Beispiele f
 ür konventionelle Raster-Bildformate:
 - Bitmap (BMP)
 - Portable Network Graphics (PNG)
- Ein modernes Raster-Bildformat ist in der Lage, zweidimensionale digitale Bilder beliebiger Breite, Höhe und Auflösung abzuspeichern

Struktur von Rasterbilddateien

- Eine Rasterbilddatei besteht aus Strukturen fixer Größe (Header) und variabler Größe (bildabhängig)
- Die Strukturen erscheinen in einer vordefinierten Sequenz
 - Beispiel: BMP: Der Bitmap File Header speichert allgemeine Informationen über die Bitmap-Datei (14 Bytes)
- Metainformationen werden in jedem individuellen Dateiformat gespeichert

Vektor-Bildformate

- Vektor-Bildformat beinhaltet eine geometrische Beschreibung, die problemlos für jede gewünschte Anzeigegröße gerendert werden kann
- Rasterisierung: An einem bestimmten Punkt müssen alle Vektorgrafiken rasterisiert werden, um auf einem digitalen Bildschirm angezeigt werden zu können
 - siehe: 5. Rasterisierung

Plotter und Vektordaten

Plotter sind Drucker, die Vektordaten zum Zeichnen von Grafiken verwenden

Computer Graphics Metafile (CGM)

- CGM ist ein freier und offener internationaler Standard für die Speicherung von 2D-Vektorzeichnungen, Rasterbildern und Text
- Der Standard wird in Bereichen wie technische Illustration, Kartografie, Visualisierung und elektronische Publikationen verwendet
- Alle grafischen Elemente werden in Quelltextdateien spezifiziert, die anschließend zu einer Binärdatei oder Textdarstellung kompiliert werden
- CGM stellt Instrumente für den Austausch von Grafikdaten bei der Darstellung zweidimensionaler grafischer Informationen zur Verfügung, unabhängig von einer bestimmten Anwendung, Plattform, System oder Gerät

Windows-Metafile (WMF)

- WMF wurde 1990 entwickelt
- WMF ermöglicht den Datenaustausch zwischen Anwendungen und beinhaltet sowohl Vektorgrafiken als auch Bitmap-Komponenten

Bildkompression

- Ziel der Bildkompression: Reduzierung irrelevanter und redundanter Bildinformationen, um die Daten effizient zu speichern oder zu übertragen.
- Arten der Kompression:
 - Verlustfrei (lossless): Keine Daten gehen verloren, Bildqualität bleibt erhalten. Wird oft für medizinische Bilder, technische Zeichnungen oder Comics verwendet.
 - Verlustbehaftet (lossy): Daten gehen verloren, jedoch oft unmerklich. Wird für natürliche Bilder wie Fotografien verwendet, da es die Dateigröße stark reduziert.
- Verlustbehaftete Kompression:
 - Produziert kompressionsartefakte bei niedriger Bitrate.
 - In vielen Fällen als visuell verlustfrei bezeichnet, wenn der Verlust für den menschlichen Betrachter nicht wahrnehmbar ist.

Verlustfreie Datenkompression

 Erlaubt eine exakte Rekonstruktion der Originaldaten. Wird in Bereichen genutzt, in denen die vollständige Datenintegrität wichtig ist (z. B. bei medizinischen Daten oder technischen Zeichnungen).

Prozess der Kompression

- 1. Erstellung eines statistischen Modells der Eingabedaten.
- 2. Abbildung der Daten auf eine Bitreihe, wobei häufig vorkommende Daten kürzere Bitfolgen erzeugen als seltene.

Run Length Encoding (RLE)

- Ein grundlegender Kompressionsalgorithmus, der Datenwiederholungen speichert.
- Beispiel: Eine lange Sequenz gleicher Farben (z. B. bei Icons, Linienzeichnungen).
- Nachteil: Für natürliche Bilder, die keine langen Wiederholungssequenzen haben, kann es zu einer Vergrößerung der Dateigröße führen.
- Entropiecodierung: Sie erstellt kurze Codes für häufige Symbole und lange Codes für seltene Symbole. Dies reduziert die durchschnittliche Länge der Codes und verbessert die Kompression.

Huffman-Codierung

- Binärbaum: Wird erstellt, bei dem die Blätter die Symbole und deren Wahrscheinlichkeit (Häufigkeit) enthalten. Die Knoten sind entweder Blätter oder interne Knoten.
- Codeerstellung:
 - 1. Beginnt mit den Blättern, die die Häufigkeit jedes Symbols enthalten.
 - 2. Zwei Knoten/Blätter mit den geringsten Wahrscheinlichkeiten werden zu einem neuen Knoten zusammengeführt. Der neue Knoten erhält eine Wahrscheinlichkeit, die der Summe der beiden Kinder entspricht.
 - 3. Der Vorgang wird wiederholt, bis nur noch ein Knoten übrig bleibt der Huffman Tree.

 Ziel: Der Huffman Tree ermöglicht die effiziente Zuordnung von binären Codes zu Symbolen, wobei häufige Symbole kürzere Codes erhalten und seltene Symbole längere.

Lempel-Ziv (LZ) Kompressionsverfahren

Das Lempel-Ziv (LZ) Kompressionsverfahren basiert auf der Wiederholung von Daten und speichert diese Wiederholungen als Referenzen in einer Tabelle.

- Codierung:
 - 8-Bit Datensequenzen werden als 12-Bit Code komprimiert.
 - Codes 0-255 repräsentieren einzelne Zeichen (1-Zeichen-Sequenzen).

- Codes 256-4059 repräsentieren Sequenzen, die in einer Tabelle gespeichert sind.
- Kompressionsprozess:
 - Tabelle initialisieren: Alle 1-Zeichen-Strings werden zu Beginn als Einträge in der Tabelle gespeichert.
 - 2. Längster String finden: Der längste String W, der mit den aktuellen Eingabedaten übereinstimmt, wird identifiziert.
 - 3. Tabellenindex ausgeben: Der Index für W wird ausgegeben, und der String W wird vom Input entfernt.
 - 4. Neuen String hinzufügen: Der neue String W + das nächste Symbol wird zur Tabelle hinzugefügt.
 - 5. Wiederholen: Der Prozess geht weiter, bis das gesamte Eingabedaten verarbeitet sind.
- Ziel: Der Algorithmus reduziert die Daten, indem häufig wiederholte Sequenzen als Referenzen gespeichert werden, anstatt sie mehrfach abzulegen.

Bildformate die Verlustfreie Kompression verwenden:

GIF (Graphics Interchange Format):

- Einführung: 1987 von CompuServe.
- Farbe: Unterstützt bis zu 256 Farben (8 Bit pro Pixel) aus dem 24-Bit RGB Farbraum.
- Verwendung: Besonders geeignet für kleine Bilder (z. B. Icons) und Animationen.
- Einschränkungen: Weniger geeignet für Fotografien aufgrund der begrenzten Farbpalette.

PNG (Portable Network Graphics):

- Entwicklung: Entwickelt als Verbesserung und Ersatz für GIF.
- Farbe: Unterstützt 24-Bit RGB oder 32-Bit RGBA (mit Transparenz) sowie Graustufen.
- Kompression: Verlustfreie Kompression mittels PKZIP.
- Verwendung: Besonders für den Webbereich geeignet, aber nicht für hochqualitative Druckgrafiken.
- Farbräume: Unterstützt nur RGB, keine CMYK.

TIFF (Tagged Image File Format):

- Verwendung: Beliebt bei Grafikern, Fotografen, Verlagen und Wissenschaftlern.
- Unterstützung: Kann Graustufenbilder, Indexbilder und Vollfarbenbilder speichern.
- Besonderheit: Kann mehrere Bilder mit unterschiedlichen Eigenschaften in einer Datei speichern.
- Kompression: Unterstützt verschiedene Kompressionsverfahren (z. B. LZW, ZIP, JPEG, CCITT).
- Verwendung: Wird häufig für Dokumentenarchivierung, wissenschaftliche Anwendungen und in der Digitalfotografie verwendet.

Verlustbehaftete Datenkompression

- Prinzip: Entfernungen von Datenteilen, die für das menschliche Wahrnehmungssystem nicht oder nur schwer erkennbar sind.
- Ziel: Die Daten werden so komprimiert, dass möglichst wenig Qualität verloren geht, aber die Dateigröße erheblich reduziert wird.
- Transformation: Daten werden in eine neue Domäne umgewandelt, die die relevanten Informationen effizienter darstellt.

JPEG-Kompression:

- Entwickelt: Von der Joint Photographic Experts Group (JPEG), 1990 als ISO-Standard etabliert.
- Ziel: Durchschnittliche Datenreduktion von 1:16, ideal für fotografische Bilder.

Codierungsprozess in JPEG:

1. Farbraumkonversion und Downsampling:

- Das Bild wird von RGB (Rot, Grün, Blau) in den YCbCr-Farbraum umgewandelt, wobei Y die Helligkeit (Luminanz) und Cb sowie Cr die Farbinformationen (Chrominanz) darstellen.
- Downsampling der Chrominanzkanäle (Cb und Cr) erfolgt, da das menschliche Auge weniger empfindlich auf Farbdetails als auf Helligkeitsdetails reagiert.

2. Kosinustransformation und Quantisierung:

- Das Bild wird in 8x8 Blöcke unterteilt, und für jeden Block wird eine diskrete Kosinustransformation (DCT) durchgeführt, um die Frequenzen des Bildes zu berechnen.
- Die resultierenden Spektralkoeffizienten werden quantisiert, wobei hohe Frequenzen stärker reduziert werden, da diese weniger zur Wahrnehmung der Bildschärfe beitragen.

3. Verlustfreie Kompression:

 Nach der Quantisierung wird der Datenstrom mittels verlustfreier Kompression (z.B. Lauflängenkodierung oder Huffman-Kodierung) weiter komprimiert, um die Dateigröße zu minimieren, ohne zusätzliche Informationen zu verlieren.

Das JPEG-Verfahren nutzt also wahrnehmungspsychologische Erkenntnisse zur Reduktion von Bilddaten und ermöglicht eine hohe Kompressionsrate bei gleichzeitig guter Bildqualität.

Diskrete Cosinus Transformation (DCT)

DCT (Diskrete Kosinustransformation):

- Die DCT ist eine Variante der Fouriertransformation, die Signale (hier Bildpixel) in Cosinuswellen unterschiedlicher Frequenz und Amplitude zerlegt.
- Ziel: Frequenz- und Amplitudenverteilung der Bildpixel sichtbar zu machen, um zu verstehen, welche Bildteile hohe oder niedrige Frequenzen enthalten.

Abbildung 21: Die DCT ist eine Variation der Fouriertransformation.

• Formel für die 2D-DCT (für einen 8x8 Block):

$$F(u,v) = lpha(u) \cdot lpha(v) \sum_{x=0}^7 \sum_{y=0}^7 f(x,y) \cos\left(rac{(2x+1)u\pi}{16}
ight) \cos\left(rac{(2y+1)v\pi}{16}
ight)$$

- u und v: Horizontale bzw. vertikale Ortsfrequenz ($0 \le u, v < 8$).
- f(x,y): Pixelwert am Punkt (x,y).
- F(u,v): DCT-Koeffizient, der das Signal in Frequenzkomponenten zerlegt.
- $\alpha(u)$ und $\alpha(v)$: Skalierungsfaktoren zur Wahrung der Orthonormalität.

JPEG-Kompression:

- Quantisierung: Die zentrale Methode der verlustbehafteten Kompression bei JPEG. Jeder DCT-Koeffizient wird durch einen vordefinierten Quantisierungswert geteilt und auf den nächsten Integer gerundet.
 - Häufige Quantisierungswerte: Niedrige Frequenzen erhalten kleinere
 Quantisierungswerte (präziser), während hohe Frequenzen größere Werte erhalten
 (weniger präzise), da das menschliche Auge weniger empfindlich gegenüber hohen
 Frequenzen ist.
 - Das führt dazu, dass hochfrequente Komponenten auf 0 gerundet werden und niedrigere Frequenzen eine hohe Genauigkeit behalten.
- Ergebnis: Die Quantisierung reduziert die Bildgröße, indem sie unnötige Bilddetails entfernt, insbesondere bei den hohen Frequenzen.
 - Visuell kann die Kompression das Bild auf ein Fünftel seiner Originalgröße reduzieren, ohne dass große visuelle Qualitätseinbußen sichtbar werden.

Kompressionsartefakte:

 Bei zu starker Kompression (zu hoher Quantisierung) können Blockartefakte auftreten, da das Bild in 8x8-Blöcke unterteilt wird und hohe Frequenzen unzureichend dargestellt

werden.

- Schwächen:
 - JPEG zeigt Schwächen bei abrupten Übergängen (wie Kanten oder Text).
 - Blockbildung: Bei sehr starker Kompression können die 8x8 Blöcke sichtbar werden, was das Bild unnatürlich erscheinen lässt.

Optimierung für natürliche Bilder:

 JPEG wurde speziell für natürliche fotografische Bilder entwickelt und ist nicht ideal für Computergrafiken oder Bilder mit scharfen Kanten, bei denen die Blockbildung besonders auffällt.

Video Kompression

- Ziel: Reduzierung der Redundanz in Videodaten, um die Datenmenge zu verringern und effizienter zu speichern oder zu übertragen.
- Kombination aus r\u00e4umlicher Bildkompression (\u00e4hnlich wie bei Bildern) und zeitlicher Bewegungskompensation (bezieht sich auf die Bewegung zwischen den Frames).

Techniken:

- 1. Verlustbehaftete Kompression:
 - Entfernt große Mengen an Daten, aber der visuelle Unterschied ist oft kaum erkennbar.
 - Es gibt einen Kompromiss zwischen Videoqualität, Kompressionsaufwand und den Systemanforderungen.
- 2. Räumliche Bildkompression:
 - Komprimiert das Bild innerhalb eines einzelnen Frames (ähnlich wie JPEG).
- 3. Zeitliche Bewegungskompensation:
 - Verwendet Makroblöcke (quadratische Bildausschnitte), die Unterschiede zwischen Frames messen.
 - Bei viel Bewegung im Video müssen mehr Daten codiert werden, da mehr Pixel sich zwischen den Frames ändern.

Interframe- und Intraframe-Kompression:

- Interframe-Kompression:
 - Verwendet Frames davor und danach (B/P-Frames) zur Kompression.
 - Beispiel: Ein Frame wird nur dann gespeichert, wenn sich etwas verändert hat, ansonsten wird er durch ein Referenzbild ersetzt.
- Intraframe-Kompression:
 - Komprimiert nur den aktuellen Frame (ähnlich wie Bildkompression, z.B. JPEG).

Video-Kompressionstechniken:

- 1. Veränderungen innerhalb eines Frames: Wenn sich ganze Makroblöcke eines Frames verändern, kann der Kompressor Anweisungen wie Verschieben, Rotieren oder Aufhellen an den Dekompressor senden, um die Veränderung zu rekonstruieren.
- 2. Interframe-Kompression: Komprimiert Bereiche, die sich nicht verändert haben, durch einfachen Verweis auf den vorherigen Frame.

MPEG-Kompression:

- MPEG (Moving Picture Experts Group) ist eine weit verbreitete Technik zur Video- und Audiokompression.
- Asymmetrisch: Codierung ist algorithmisch komplexer als Dekodierung (Vorteil im Broadcasting, da viele billige Dekodierer und wenige teure Codierer benötigt werden).

MPEG-Standards:

1. MPEG-1:

- Entwickelt für Video CDs, SVCDs und DVDs mit niedriger Videoqualität.
- Ziel war es, Film und Ton auf die Bitrate einer Compact Disc zu kodieren.

2. MPEG-2:

- Unterstützt Zeilensprungverfahren (Interlaced) und High Definition Auflösung.
- Wichtig für digitales Fernsehen, Kabelsignale und DVDs.

3. MPEG-4:

- Bietet effizientere Codierung und eignet sich auch für Computergrafik-Applikationen.
- Wird neben MPEG-2 auch für Blu-ray Discs verwendet.