

Development Project in Machine Learning

BENDOU Yassir BENGHABRIT IIyas OULED ATTOU Hafsa

Contents

Introduction
Datasets
Preprocessing and data cleaning
Feature Selection
Model Selection
Hyper-parameter tuning
Model Test
Process Automation
Good programming practices
Conclusion
Appendix : Github repository, Code and Documentation

Introduction

This report presents the results of the mini-project in the class « Introduction to Machine Learning ».

In the following we show in detail the automation pipeline we have built which consists of data cleaning, feature selection, model selection, hyper-parameter tuning and model testing. We have automated our work in a way which allows for the user to pick any kind of model with any desired parameters and test its performance.

Datasets

We have two provided datasets. Both of them are meant for classification purposes. The first dataset is the Chronic kidney disease dataset and the second one is the banknote authentication dataset.

Chronic kidney disease dataset:

In this study, the chronic kidney disease dataset is data collected in a hospital in India over a period of about two months. The dataset is noisy and therefore needs cleaning.

The data are blood tests and other measures (Red blood cell count, hypertension, anemia...) of 400 patients (one row per patient). The first 25 columns are for the measures and the last one is to classify whether the patient has kidney disease or not.

	id	age	bp	sg	al	SU	rbc	pc	pcc	ba	 pcv	wc	rc	htn	dm	cad	appet	pe	ane	classification
155	155	50.0	70.0	1.020	3.0	0.0	abnormal	normal	present	present	 36	4700	NaN	no	no	no	good	no	no	ckd
262	262	55.0	80.0	1.020	0.0	0.0	normal	normal	notpresent	notpresent	 43	7200	5.4	no	no	no	good	no	no	notckd
236	236	65.0	80.0	NaN	NaN	NaN	NaN	NaN	notpresent	notpresent	 25	NaN	NaN	yes	yes	yes	good	yes	no	ckd
228	228	60.0	70.0	NaN	NaN	NaN	NaN	NaN	notpresent	notpresent	 NaN	NaN	NaN	yes	no	no	good	no	no	ckd
297	297	53.0	60.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	 45	7700	5.2	NaN	NaN	NaN	good	no	no	notckd

Figure 1: A sample of 5 rows of the dataset

	id	age	bp	sg	al	su	bgr	bu	sc	sod	pot	hemo
count	400.000000	391.000000	388.000000	353.000000	354.000000	351.000000	356.000000	381.000000	383.000000	313.000000	312.000000	348.000000
mean	199.500000	51.483376	76.469072	1.017408	1.016949	0.450142	148.036517	57.425722	3.072454	137.528754	4.627244	12.526437
std	115.614301	17.169714	13.683637	0.005717	1.352679	1.099191	79.281714	50.503006	5.741126	10.408752	3.193904	2.912587
min	0.000000	2.000000	50.000000	1.005000	0.000000	0.000000	22.000000	1.500000	0.400000	4.500000	2.500000	3.100000
25%	99.750000	42.000000	70.000000	1.010000	0.000000	0.000000	99.000000	27.000000	0.900000	135.000000	3.800000	10.300000
50%	199.500000	55.000000	80.000000	1.020000	0.000000	0.000000	121.000000	42.000000	1.300000	138.000000	4.400000	12.650000
75%	299.250000	64.500000	80.000000	1.020000	2.000000	0.000000	163.000000	66.000000	2.800000	142.000000	4.900000	15.000000
may	399 000000	90,000,000	180 000000	1.025000	5,000,000	5 000000	490,000000	391 000000	76.000000	163 000000	47 000000	17 800000

Figure 2: Statistics to describe the data overall

The disease attained 62,5% (250 patients)of the population while the 37,5% (150 patients) left remains unattained as we show in the table below

```
: 100*data['classification'].value_counts()/len(data)

ckd 62.5
notckd 37.5
Name: classification, dtype: float64

data['classification'].value_counts()|

ckd 250
notckd 150
Name: classification, dtype: int64
```

Figure 3: Rate of the positive population

Banknote dataset

We have a dataset of 4 features and 1372 samples. The features are extracted from images taken of genuine and forged banknotes for inspection. The last column Class is for classification.

	variance	skewness	curtosis	entropy	class
354	3.5458	9.37180	-4.03510	-3.95640	0
221	2.4196	6.46650	-0.75688	0.22800	0
214	4.1962	0.74493	0.83256	0.75300	0
383	3.8117	10.14570	-4.04630	-4.56290	0
934	-1.6176	1.09260	-0.35502	-0.59958	1

Figure 4: A sample of 5 rows of the dataset

	variance	skewness	curtosis	entropy	class
count	1372.000000	1372.000000	1372.000000	1372.000000	1372.000000
mean	0.433735	1.922353	1.397627	-1.191657	0.444606
std	2.842763	5.869047	4.310030	2.101013	0.497103
min	-7.042100	-13.773100	-5.286100	-8.548200	0.000000
25%	-1.773000	-1.708200	-1.574975	-2.413450	0.000000
50%	0.496180	2.319650	0.616630	-0.586650	0.000000
75%	2.821475	6.814625	3.179250	0.394810	1.000000
max	6.824800	12.951600	17.927400	2.449500	1.000000

Figure 5: Statistics to describe the data overall

762(almost 55,54%) banknotes are classified as authentic and the remaining 610 as non authentic.

Figure 6: Rate of the genuine banknotes

Preprocessing and data cleaning

For each dataset, the first steps to do were their cleaning and preprocessing. It consists of making the data exploitable to train the model on.

Data Cleaning:

By cleaning we mean replacing the miss-filled values with the correct ones, defining the right types of the dataset's variables, dropping some useless columns for the posterior treatment such as 'id' columns and encoding the output variable.

We found in the datasets some values that were miss-filled such as the ones containing '\t' or a space ' 'due to some bad filling by the data collectors. Such cases of values disturb the treatment of the data afterward. We then dealt with these cases by replacing those parts of the values with an empty string '.

We also had some boxes with '?' that we considered as empty boxes and replaced them with NaN values so that we can treat them after just like the other empty values.

Figure 7: Cleaning of miss filled values

An important task at this stage was to define the type of the variables in the data so that we can perform on the right transformations in the next step of preprocessing. We then defined the type of numerical columns as floats in order to differentiate them from the categorical ones.

In the datasets, we also remarked the presence of some columns that should be dropped such as the 'id' columns. In fact, this column doesn't bring new information to the data and has a value that changes from one sample of the data to the other which brings a very high variance that we shouldn't take into consideration in the modelisation.

One last task in the cleaning of the data was to encode the output variable so that the training can once again be done.

Preprocessing:

In the preprocessing of the data, the goal was to transform the data in a shape that a model can train on. To do so we need to replace missing values, encode the features, center and normalize the data.

We began by replacing the missing values. To do so we need to define two different strategies for replacing, one for the numerical variables and the other one for the categorical ones. The most used ones are the replacing with the mean of the other values for numerical variables and the most frequent value for the categorical features.

Figure 8: Replacing of missing values (NaN)

The encoding of the categorical features is also necessary to let the training be possible. A model should surely train on data that contain only numerical values. Since the categorical features that we have in both datasets contain at most two modalities, we chose to encode with the preprocessing function in scikit-learn OrdinalEncoder.

рс	р	rbc		рсс	рс	rbc
1.0	1.0	1.0		notpresent	normal	normal
1.0	1.0	1.0		notpresent	normal	normal
1.0	1.0	1.0		notpresent	normal	normal
0.0	0.0	1.0		present	abnormal	normal
1.0	1.0	1.0	\Rightarrow	notpresent	normal	normal

Figure 9: Encoding of categorical features

Finally, we need to center and normalize the numerical features so that the training can become faster and more efficient. To do so we used the preprocessing function StandardScaler.

Feature Selection

In order to compress our features and remove linearity between them, we use the PCA algorithm. We fix the threshold ratio of the variance explained to 95% as shown if the plot below for the kidney disease dataset:

Figure 10: Cumulative variance per number of components

We only need 15 components to explain 95% of the variance of our dataset. We then use the coefficients of projections of our dataset on the principal components for the model training. The number of components is automatically selected for any dataset as long as the cut-off variance has been fixed.

Model Selection

Since the goal is to perform a binary classification on the datasets, the models chosen to do so were the classification models.

We selected five different classifiers: SVM, LogisticRegression, SGDClassifier, DecisionTreeClassifier, AdaBoostClassifier and RandomForestClassifier, and we let the user the possibility to choose the model with whom perform the training and classification. The model put by default is SVM.

A grid-search will be launched on this model to tune the parameters and a cross-validation will be done on its training.

Hyper-parameter tuning

Each model has some hyper-parameters that should be tuned so that it performs in the best way. To tune the hyper-parameters of a model, the combinaison allowing to have the best score should be chosen.

We define for every model that we mentioned earlier a set of many possible combinations.

Figure 11: grid search options

Then we run a grid-search to define the best combinaison among them to take.

Grid-Search:

We define all possible combinations to have among the possible set of parameters defined for the selected model. Then for each combination we do a cross-validation to compute a training score on the training data performed by the model with this combination of parameters.

We look then for the combination attending the maximum cross-validation score and we keep the corresponding hyperparameters.

Model Test

In this section, we will compare the performance of the different models that we used using the F1 score on the test datasets as a metric. The following table summarizes the results after running a gridsearch on the hyper-parameters:

Model	F1 Score (kidney dataset)	F1 Score (banknote dataset)
Support Vector Machine	99.11%	93.59%
Logistic Regression	100%	91.59%
Stochastic Gradient Descent Classifier	99.1%	84.77%
Decision Tree	100%	97.04%
Random Forest	99.11%	96.55%
AdaBoost Classifier	99.11%	94.07%

Table 1: Comparison of different models on the two datasets

We can see that the models struggle more on the banknote dataset and perform very well on the kidney dataset which has a lot of features. Surprisingly on the banknote dataset, the decision tree algorithm beats all the other models, while the random Forest and adaboost come second and third. One of the reasons that the Random Forest and the AdaBoost Classifier don't perform as well as the DecisionTree could be the lack of enough samples for the two models which induce a certain bias.

Process Automation

Our entire code has been written in two scripts, src/main.py which is our main script and src/utils.py which contains all the functions for the cleaning, the preprocessing, the training and the predicting. The functions work on both datasets and are modular, meaning each function has only one functionality.

The two datasets are stored in "data" folder and are fetched each time we run main.py

Figure 12: Tree of the project source

Using a parser, our code has different options for the user to select from and can be triggered by running the command "python main.py" in "src" folder. In order to see the different possible scenarios, we can run "python main.py -h" which outputs the following:

```
(venv2) PS C:\Users\Yassir\Documents\TAFs\mce\mini-projet-ml-mce\src> python .\main.py -h
usage: main.py [-h] [--model MODEL] [--dataset DATASET] [--parameters KEY=VAL [KEY=VAL ...]] [--pca PCA]
              [-v CUT_OFF_VARIANCE]
Main-Code
optional arguments:
  -h, --help
                        show this help message and exit
  --model MODEL, -m MODEL
                        model to run on the dataset, options are {'SVC', 'LogisticRegression', 'SGDClassifier',
                        'RandomForestClassifier', 'AdaBoostClassifier'}
 --dataset DATASET, -d DATASET
                        dataset type, options are {'kidney', 'banknote'}, default is 'kidney'
 --parameters KEY=VAL [KEY=VAL ...], -p KEY=VAL [KEY=VAL ...]
                        model paramaters, dictionary of the parameters and their values, example for SVC : -p
                        kernel=rbf C=10 degree=2 gamma=auto
                       Apply PCA, if True applies PCA algorithm
 --pca PCA
 -v CUT_OFF_VARIANCE, --cut_off_variance CUT_OFF_VARIANCE
                       PCA cut-off variance or the threshold ratio of explained variance. Default is 0.95
(venv2) PS C:\Users\Yassir\Documents\TAFs\mce\mini-projet-ml-mce\src> |
```

Figure 13: running the code with different parameters

An example would be to run the following command:

"python main.py -m=LogisticRegression -d=banknote --pca=True -v=0.98 -p kernel=rbf C=10 gamma=auto"

This command will run the code with a LogisticRegression with the following parameters (rbf kernel, C=10 and gamma='auto') on the banknote dataset. The data will also be transformed using PCA.

Another example is the following command: "python main.py -m=AdaBoostClassifier --pca=False"

This command will run the code with an AdaBoost Classifier on the kidney dataset (default dataset). The code will not run PCA algorithm and the code will also run a gridsearch to find the best parameters since the parameters were not specified by the user.

The output of the code is the score (F1 score) on the validation set and on the test set. If the user didn't specify the model parameters, we also return the best parameters found by the grid search.

```
(venv2) PS C:\Users\Yassir\Documents\TAFs\mce\mini-projet-ml-mce\src> python .\main.py
params None
kidney dataset : Extracting data...
Cleaning data
number of features selected : 15
Chosen model and its different possible parameters: {'model': <class 'sklearn.svm._classes.SVC'>, 'parameters'
: {'kernel': ['linear', 'rbf', 'sigmoid', 'poly'], 'C': [1, 10], 'degree': [2, 3], 'gamma': ['scale', 'auto']}}
running grid search to find the best parameters for the kidney dataset
Best parameters for SVC are {'kernel': 'rbf', 'C': 1, 'degree': 2, 'gamma': 'scale'}.
Best Score is 0.9849636554686217
Training with parameters : {'kernel': 'rbf', 'C': 1, 'degree': 2, 'gamma': 'scale'}
Cross Validation Score : 98.5%
F1 score on test data : 99.11%
```

Figure 14: Output of the code

Figure 8 shows a screenshot of the code's output. In the output we can see that the Support Vector Machine model was run on the kidney disease dataset. The best parameters were

{'kernel': 'rbf', 'C': 1, 'degree': 2, 'gamma': 'scale'} with **98.5%** F1 score on the cross validation and **99.11%** score on the test accuracy.

Good programming practices

In this project, we tried our best to follow good programming practices such as factorising the code. For example, there is only one main part that calls all the needed functions only once, no matter the values of the parameters and whether they are given before executing the py file or not. We also followed modular programming where the main module is well structured and each coded function serves only one purpose. Moreover, we chose convenient non confusing names for our variables to facilitate their manipulation and smooth the flow of the code at each phase. Besides, we commented each line of the code that may seem ambiguous to a non contributor to the project to explain what is done clearly. We organised the comments to be interpreted by Sphinx to generate proper documentation which we included in the README.md file at the source of the project.

Conclusion

To conclude, we have built an end to end pipeline which allows a user to train a model and get its score on one of the two given datasets. We've used different coding techniques and collaboration techniques. Git has been a very important tool in our project and we have learnt how to manage a Machine Learning project remotely during this exercise.

Appendix

Github repository:

We collaborated on the project using github repository where we made commits that we agreed on at every progress we achieved. Sometimes, we would not push immediately until we discussed the matter in person.

The code is available on github at : https://github.com/ybendou/mini-projet-ml-mce
The following screenshot is the git log of our repository

```
(venv2) PS C:\Users\Yassir\Documents\TAFs\mce\mini-projet-ml-mce> git log --pretty=format:'%h %ad, message: %s'
9c27f61 Mon Dec 7 13:56:53 2020 +0100, message: Removing sphinx doc from README.md and adding it to the report
1c51ab5 Sun Dec 6 21:47:37 2020 +0100, message: Adding sphinx documentation support and generating documentation 0298b40 Sun Dec 6 20:52:12 2020 +0100, message: Update README.md
f50e814 Sun Dec 6 20:38:27 2020 +0100, message: Small fix on the SGDClassifier parameters
53b8acf Sun Dec 6 19:50:50 2020 +0100, message: adding small feature to the main
f159821 Sun Dec 6 19:27:28 2020 +0100, message: Fixing PCA feature selection and Adding sphinx documentation format
b5f4f07 Sun Nov 29 14:18:36 2020 +0100, message: Merge branch 'main' of https://github.com/ybendou/mini-projet-ml-mce in
to main
clab493 Sun Nov 29 14:17:36 2020 +0100, message: Creating main file and src folder and factorizing the code in the main
bad9282 Sun Nov 29 13:03:08 2020 +0100, message: Commenting the functions
8f3ce74 Tue Nov 24 23:19:14 2020 +0100, message: Adding training/croos_validation and grid search
ae74885 Tue Nov 24 23:08:46 2020 +0100, message: removing files to fix conflict
00df090 Tue Nov 24 21:08:33 2020 +0100, message: Adding Feature Selection/PCA
179c410 Mon Nov 23 19:01:07 2020 +0100, message: reorganizing the files
7373a5e Mon Nov 23 18:56:06 2020 +0100, message: preprocessing functions
3d196c9 Mon Nov 23 18:54:07 2020 +0100, message: Small modification on cleaning function
7ed192b Mon Nov 23 18:29:13 2020 +0100, message: Adding cleaning function
e088ec3 Mon Nov 23 17:13:09 2020 +0100,
                                         message: Adding jupyter notebook explore1
7allabf Mon Nov 23 17:12:04 2020 +0100,
                                         message: adding a notebook to explore data
6eb1ca0 Mon Nov 23 17:07:41 2020
                                  +0100.
                                         message: adding colomn names to banknote dataset
b4e7966 Mon Nov 23 17:04:25 2020 +0100, message: First push, creating the project template and adding the data
196308a Tue Nov 10 14:15:24 2020 +0100, message: Initial commit
```

Figure 15:logs of the git repository

Code:

We have two files: main.py and utils.py which we joined to this document. We also join a documentation of the different functions which we generate using sphinx, a powerful tool to generate documentation from python scripts.