1^a Avaliação de Cálculo Numérico (Engenharia de Materiais)

Nome(a):

Data: 05 de Setembro de 2023

Prof: Dr. Diego Frankin de Souza Veras Sant'Ana

1) (1,0) pt) Considere as expansões em série de Taylor das funções sen $x \in \cos x$:

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

onde (!) denota o fatorial Utilize as expansões acima com os quatro termos para estimar $\sin^2(\pi/4) + \cos^2(\pi/4)$ e calcule o erro percentual com relação ao valor exato. OBS. Configure sua calculadora para operar em radianos. Utilize todos os dígitos da sua calculadora e utilize o valor de π da calculadora com todos os dígitos.

2) (1,0 pt) Represente na base binária o número decimal 29,75.

3) (1,0 pt) Considere as funções

$$f(x) = x^2 + x \ln x$$
 $g(x) = \cos(x^2) + \ln(x)$ $h(x) = \log_3(\cos x)$

Com base no Teorema de Bolzano, para qual(ou quais) das funções acima é garantido que haja pelo menos uma raiz no intervalo [0.5, 1.5]?

OBS.: Configure sua calculadora para operar em radianos. Apresente os cálculos que justifiquem sua resposta.

4) (2,0 pts) Com relação aos métodos numéricos de soluções de equações (obtenção de raízes) temos o método do ponto fixo (ou iteração linerar) que consiste em escrever a equação f(x)=0 como $x=\phi(x)$, onde ϕ é a chamada função de iteração. Considere a equação

$$e^x - 4x^2 = 0.$$

Esta equação possui duas soluções (duas raízes). Construa três funções de iteração diferentes para a equação acima e utilize o chute inicial $x_0=1$ em cada uma elas. Em cada caso, indique se o método converge ou não e, em caso de convergência, indique qual raíz é obtida.

5) Encontre a raiz da função $f(x) = x^2 + x e^x$ que esteja no intervalo [-0,75; -0,5] com precisão $\epsilon < 0,02$.

a) (1,0 pt) pelo método da bisseção.

b) (1,0 pt) pelo método da falsa posição.

6) (1,0 pt) Considere novamente a função da questão anterior, $f(x) = x^2 + x e^x$. Encontre a sua raíz pelo método de Newton-Raphson. Indique a estimativa inicial que for utilizada e escreva sua resposta considerando todos os dígitos da calculadora.

7) (2,0 pte) Uma matriz tridiagonal é uma matriz quadrada onde apenas os elementos da diagonal principal e as que estão acima e abaixo a ela são não-nulas. Sistemas lineares tridiagonais são de grande importância em Matemática Aplicada, pois surgem da solução numérica de Equações Diferenciais e sabe-se muito bem que os fenômenos da Natureza são descritos em grande parte por equações diferenciais. O sistema linear abaixo é tridiagonal e simétrico:

$$\begin{cases} 2,5x_1-x_2=0\\ -x_1+2,5x_2-x_3=0,95\\ -x_2+2,5x_3-x_4=1\\ -x_3+2,5x_4-x_5=0,95\\ -x_4+2,5x_5=0 \end{cases}$$

Escreva este sistema linear na forma matricial para visualizar a estrutura tridiagonal.

Resolva este sistema utilizando o método iterativo de Gauss-Siedel com 5 iterações. Opere com quatro casas decimais e arredondamento padrão. Considere o vetor $\vec{\mathbf{r}}_0 = (1,\ 1,\ 1,\ 1)$ como estimativa inicial. Não é necessário calcular o erro.

Hoje é um bom dia para ser um bom dia! Bom desempenho!!

Valor Aproximado:

$$Sen^2 E_A + cos^2 I E_A = (0.707106469)^2 + (0.707103214)^2$$

= 0,999994513

$$E_{600}$$
: $\frac{|0.999994513-1|}{|1|} = 5.48 \times 10^{-6}$

$$0.75 \times 2 = 1.50$$
 1 $0.50 \times 2 = 1.00$ 1

$$(0,75)_{10} = (0,11)_{2}$$

$$=$$
 $|(29,75)_{10} = (11101,11)_2$

03)
$$f(0.5) = -0.09657359$$

 $f(1.5) = 2.858197662$

f (0.5). f(1.5) < 0 Satisfaz o Leverna de Bolzano

$$\begin{cases} g(0,5) = 0.275765241 \\ g(1.5) = -0.222708514 \end{cases}$$

g(0.5).g(1.5) LO Satisfaz o feorema de Bolzano

$$h(0,5) = -0,118862838$$

$$h(1,5) = -2,411026785$$

Mas satisfaz o teoremo de Bolzano

Apenes as funções f(x) o g(x) tem garantie de existência de raiz no intervalo [0,5; 1,5]

ex -4x2=0

$$e^{x} = 4x^{2}$$

$$x = \ln 4x^{2}$$

$$p_{1}(x)$$

"somando x" $x + e^{x} - 4x^{2} = x$

com Xo=1, o método converse para

E1=4,306584728

com Xo=1, o método diverge

$$-4x^{2} = -e^{x}$$

$$x^{2} = e^{x}$$

$$x = \sqrt{e^{x}}$$

$$2$$

Com Xo=1, 0 método converse pura Éz=0,714836368

Digitalizado com CamScanner

$$O5$$
) a) $f(x)=x^2+xe^x$

α_i	Xi	bi	f(a;)	(1, t(x))	f(bi)	e110;
-0,75	-0,625	-0,5	+	+		,
-0,625	-0,5625	Hizilon-Si Mara hula	a chapresa d	ntrusi (10 81 a)	prario 13:00	Lon adjudent
-0,625	-0,5938	-0,5625	– Ce € P usta scFuito no Janusa Ce	S/N Caucais em vitrude c sica do Cols	tral do lear viços gerais Educación Fi	847,0c
-0,5338	-0,5781	-0,5625	+	t	-	0,027
-0,5781	-0,5703	-0,5625	+		_	0,0137
	>	E X X	(5 = -0 ₁	5703		

Caucala 10 de Agosto de 2007

bø)		et.	Atenciosamen			Inoso	2(0)				
α_i	Xi	bi	f(ai)	f(xi)	f(5;)	inc.	.*				
-0,75	-0.5510	-0,5	0,2082	-0.0140	-0,0533	-1,046					
	-0.5635	-0.5510	0,2082	-3,185×103	-0,0140	-111166	0,02218				
7 -0.75	-0,5663	-0,5635	0,2082		-3,186 ×10-3	-1,1334	4,9x10-3				
>											
-	05663										
$\Rightarrow \begin{cases} 9 \times 13 = -0.5663 \end{cases}$											

$$t_1(x) = 5x + e_x + xe_x$$
$$t_2(x) = x_5 + xe_x$$

regre de produto

$$x_{i+1} = x_i - \frac{x_i^2 + x_i e^{x_i}}{2x_i + e^{x_i} + x_i e^{x_i}}$$

$$X_{1} = \frac{X_{2}}{2.5}$$

$$X_{2} = \frac{0.95 + X_{1} + X_{3}}{2.5}$$

$$X_{3} = \frac{1 + X_{2} + X_{4}}{2.5}$$

$$X_{4} = \frac{0.95 + X_{3} + X_{5}}{2.5}$$

X5= X4

$$\frac{i=11}{X_1=0.376}$$

$$X_2=1.0008$$

$$X_3=1.27072$$

$$X_4=1.0884$$

$$X_5=0.4353$$

$$\frac{2-21}{2}$$
 $\frac{2-21}{2}$
 $\frac{2-21}{2}$

$$\frac{i=3}{X_1=0.4194}$$

$$\frac{1=41}{X_1=0.4194}$$

$$\frac{1=41}{X_1=0.419}$$

$$\frac{1=41}{X_2=1.0419}$$

$$\frac{1=41}{X_1=0.419}$$

$$\frac{1=41}{X_1=0.419}$$