All 6 trig functions

Consider a unit circle with radius r=1 and $y/r=\sin\theta$ and $x/r=\cos\theta$. Extend the radius with the angle θ and then draw the vertical connector a and horizontal connector b. The original triangle with sides x, y, r is similar to the triangle with sides b, r, OQ.

$$x, y, r \sim r, a, OP, \sim b, r, OQ$$

By similar \triangle

$$a/r = y/x = tan \theta$$

But r=1 so

$$a = tan \theta$$

If you imagine a point moving around the circle a will get very large as $\theta \to \pi/2$, and in fact, becomes ∞ there.

The segment OP is (by similar \triangle) to a as

$$OP/a = r/y = 1/y = 1/\cos \theta = \sec \theta$$

The horizontal from the y-axis to Q is b. Consider θ near the top of the figure. By similar Δ , the relations we had were

$$x, y, r \sim r, a, OP, \sim b, r, OQ$$

$$r/b = y/x = tan \theta$$

since r = 1

$$b=r/tan~\theta=1/tan~\theta=\cot~\theta$$

Finally

$$r/OQ = 1/OQ = \sin \theta$$

$$OQ = 1/\sin \theta = \csc \theta$$

Note: the above diagram has an error, sine and cosine are switched. I have to find the original figure (or redraw) to change this.