## Обработка данных:

| a, MM                         | 470   | 430    | 390    | 340    | 300    | 250    | 200    | 150    |
|-------------------------------|-------|--------|--------|--------|--------|--------|--------|--------|
| $\varepsilon_a$               | 0.002 | 0.002  | 0.003  | 0.003  | 0.003  | 0.004  | 0.005  | 0.007  |
| $x_{\mathrm{ц}}$ , мм         | 432   | 395    | 358    | 311    | 275    | 230    | 183    | 137    |
| $arepsilon_{x_{f I}}$         | 0.002 | 0.003  | 0.003  | 0.003  | 0.004  | 0.004  | 0.005  | 0.007  |
| t, c                          | 32.41 | 31.749 | 31.326 | 30.864 | 30.639 | 30.626 | 31.573 | 33.861 |
| $\sigma_t$ , c                | 0.166 | 0.171  | 0.15   | 0.147  | 0.16   | 0.15   | 0.167  | 0.142  |
| $\varepsilon_t$               | 0.005 | 0.005  | 0.005  | 0.005  | 0.005  | 0.005  | 0.005  | 0.004  |
| T, c                          | 1.62  | 1.587  | 1.566  | 1.543  | 1.532  | 1.531  | 1.579  | 1.693  |
| $\sigma_T$ , c                | 0.008 | 0.009  | 0.007  | 0.007  | 0.008  | 0.007  | 0.008  | 0.007  |
| $\varepsilon_T$               | 0.005 | 0.005  | 0.005  | 0.005  | 0.005  | 0.005  | 0.005  | 0.004  |
| $g$ , $M/c^2$                 | 9.742 | 9.79   | 9.738  | 9.759  | 9.757  | 9.832  | 9.829  | 9.804  |
| $\sigma_g$ , m/c <sup>2</sup> | 0.107 | 0.113  | 0.102  | 0.104  | 0.113  | 0.111  | 0.121  | 0.112  |

Таблица 1: Вычисление ускорения свободного падения по формуле (1)

Теперь по этим результатам вычислим среднее ускорение свободного падения:

$$g = \frac{4\pi^2}{T^2} \cdot \frac{\frac{l^2}{12} + a^2}{(1 + \frac{m_{\text{пр}}}{m_{\text{ст}}})x_{\text{цм}}}$$
$$g = 9.781 \pm 0.110 \text{m/c}^2$$



Рис. 1: Линейная зависимость, иллюстрирующая формулу (3)

Исходя из метода наименьших квадратов: k=0.2678, значит, по формуле (4),  $g=9.701~{\rm m/c^2}$ 

1