# **Chapter-6**

# **Regular Expressions**

#### Regular Expression (RE)

A RE is a string that can be formed according to the following rules:

- 1. ø is a RE.
- 2.  $\varepsilon$  is a RE.
- 3. Every element in  $\Sigma$  is a RE.
- 4. Given two REs  $\alpha$  and  $\beta$ , $\alpha\beta$  is a RE.
- 5. Given two REs  $\alpha$  and  $\beta$ ,  $\alpha$  U  $\beta$  is a RE.
- 6. Given a RE  $\alpha$ ,  $\alpha$ \* is a RE.
- 7. Given a RE  $\alpha$ ,  $\alpha$ + is a RE.
- 8. Given a RE  $\alpha$ , ( $\alpha$ ) is a RE.

if  $\Sigma = \{a,b\}$ , the following strings are regular expressions:  $\emptyset$ ,  $\varepsilon$ , a,b,  $(a\ U\ b)^*$ ,  $abba\ U\ \varepsilon$ .

#### Semantic interpretation function L for the language of regular expressions:

- 1. L  $(\emptyset) = \emptyset$ , the language that contains no strings.
- 2. L ( $\varepsilon$ ) = { $\varepsilon$ }, the language that contains empty string.
- 3. For any  $c \in \Sigma$ ,  $L(c) = \{c\}$ , the language that contains single character string c.
- 4. For any regular expressions  $\alpha$  and  $\beta$ , L ( $\alpha\beta$ ) = L ( $\alpha$ ) L ( $\beta$ ).
- 5. For any regular expressions  $\alpha$  and  $\beta$ , L ( $\alpha$  U  $\beta$ ) = L ( $\alpha$ ) U L ( $\beta$ ).
- 6. For any regular expression  $\alpha$ , L  $(\alpha^*) = (L(\alpha))^*$ .
- 7. For any regular expression  $\alpha$ , L  $(\alpha+)$  = L  $(\alpha\alpha^*)$  = L  $(\alpha)$  (L  $(\alpha)$ )\*
- 8. For any regular expression  $\alpha$ , L (( $\alpha$ )) = L ( $\alpha$ ).

#### **Analysing Simple Regular Expressions**

1.L( 
$$(a \cup b)*b) = L((a \cup b)*)L(b)$$
  
=  $(L((a \cup b)))*L(b)$ 

```
= (L(a) U L(b))*L(b)
=(\{a\} U \{b\})*\{b\}
= \{a,b\}*\{b\}
```

(a U b)\*b is the set of all strings over the alphabet {a, b} that end in b.

2. L( ((a U b) (a U b))a(a U b)\*)

$$= L(((a U b)(a U b)))L(a) L((a U b)*)$$

$$= L((a U b)(a U b)) \{a\} (L((a U b)\})*$$

$$= L((a U b))L((a U b)) \{a\} \{a,b\}*$$

$$= \{a,b\} \{a,b\} \{a\} \{a,b\}*$$

• ((a U b)(a U b))a(a U b)\* is

 $\{xay : x \text{ and } y \text{ are strings of a's and b's and } | xl = 2\}.$ 

#### Finding RE for a given Language

1.Let  $L = \{w \in \{a, b\}^*: |w| \text{ is even}\}.$  $L = \{aa,ab,abba,aabb,ba,baabaa,-----\}$   $RE = ((a \cup b)(a \cup b))^* \text{ or } (aa \cup ab \cup ba \cup bb)^*$ 

- 2. Let  $L = \{w \in \{a, b\}^*: w \text{ starting with string abb}\}$ .  $L = \{abb, abba, abbb, abbab-----\}$  $RE = abb(a U b)^*$
- 3. Let  $L = \{w \in \{a, b\}^*: w \text{ ending with string abb}\}$ .

$$L = \{abb,aabb,babb,ababb-----\}$$
  
 $RE = (a U b)*abb$ 

- 4.  $L = \{w \in \{0, 1\}^* : w \text{ have } 001 \text{ as a substring}\}.$   $L = \{\underline{001}, \underline{1001}, \underline{0001}01, \dots\}$  $RE = (0 \ U \ 1)^*001(0 \ U \ 1)^*$
- 5.  $L = \{w \in \{0, 1\}^* : w \text{ does not have } 001 \text{ as a substring}\}.$   $L = \{0,1,010,110,101,----\}$  $RE = (1 \ U \ 01)^*0^*$

6. L =  $\{w \in \{a, b\}^* : w \text{ contains an odd number of a's}\}$ .

$$L = \{a,aaa,ababa,bbaaaaba-----\}$$
  
 $RE = b*(ab*ab*)* a b* or b*ab*(ab*ab*)*$ 

- 7.  $L = \{w \in \{a, b\}^* : \#a(w) \mod 3 = 0\}.$   $L = \{aaa,abbaba,baaaaaa,---\}$  $RE = (b^*ab^*ab^*a)^*b^*$
- 8. Let  $L = \{w \in \{a, b \}^*: \#a(w) \le 3\}$ .  $L = \{a,aa,ba,aaab,bbbabb,-----\}$  $RE = b^*(a \cup \epsilon)b^*(a \cup \epsilon)b^*(a \cup \epsilon)b^*$
- 9. L = {w  $\in$  {0, 1}\* : w contains no consecutive 0's} L={0,  $\epsilon$ ,1,01,10,1010,110,101,-----} RE = (0 U  $\epsilon$ )(1 U 10)
- 10. L = {w  $\in$  {0, 1}\* : w contains at least two 0's} L={00,1010,1100,0001,1010,100,000,----} RE = (0 U 1)\*0(0 U 1)\*0(0 U 1)\*
- 11.L = {  $a^nb^m / n > = 4$  and m <= 3} RE= (aaaa)a\*( $\epsilon$  U b U bb U bbb)
- 12.L = {  $a^nb^m / n \le 4$  and  $m \ge 2$ } RE= ( $\epsilon$  U a U aa U aaa U aaaa)bb(b)\*
- 13. L = {  $a^{2n}b^{2m} / n >= 0$  and m >= 0} RE= (aa)\*(bb)\*
- 14.  $L = \{ a^n b^m : (m+n) \text{ is even} \}$  (m+n) is even when both a's and b's are even or both odd.RE = (aa)\*(bb)\* U a(aa)\*b(bb)\*

#### Three operators of RE in precedence order(highest to lowest)

- 1. Kleene star
- 2. Concatenation
- 3. Union

Eg: (a U bb\*a) is evaluated as (a U (b(b\*)a))

#### Kleene's Theorem

#### **Theorem 1**:

Any language that can be defined by a regular expression can be accepted by some finite state machine.

#### Theorem 2:

Any language that can be accepted by a finite state machine can be defined by some regular expressions.

Note: These two theorems are proved further.

#### Buiding an FSM from a RE

### **Theorem 1:** For Every RE, there is an Equivalent FSM.

**Proof**: The proof is by construction.

We can show that given a RE  $\alpha$ ,

we can construct an FSM M such that  $L(\alpha) = L(M)$ .

#### Steps:

1. If  $\alpha$  is any  $c \in \Sigma$ , we construct simple FSM shown in Figure(1)



Figure (1)

2. If  $\alpha$  is any  $\emptyset$ , we construct simple FSM shown in Figure(2).



Figure (2)

3. If  $\alpha$  is  $\varepsilon$ , we construct simple FSM shown in Figure (3).



Figure (3)

4. Let  $\beta$  and  $\gamma$  be regular expressions.

If L( $\beta$ ) is regular,then FSM M1 = (K1,  $\Sigma$ ,  $\delta$ 1, s1, A1).

If L( $\gamma$ ) is regular,then FSM M2 = (K2,  $\Sigma$ ,  $\delta$ 2, s2, A2).

If  $\alpha$  is the RE  $\beta$  U  $\gamma$ , FSM M3=(K3,  $\Sigma$ ,  $\delta$ 3, s3, A3) and

 $L(M3)=L(\alpha)=L(\beta) U L(\gamma)$ 

 $M3 = (\{S3\} \cup K1 \cup K2, \sum, \delta3, s3, A1 \cup A2), \text{ where}$ 

 $\delta 3 = \delta 1 \text{ U } \delta 2 \text{ U } \{ ((S3, \epsilon), S1), ((S3, \epsilon), S2) \}.$ 



 $\alpha = \beta U \gamma$ 

5. If  $\alpha$  is the RE  $\beta\gamma$ , FSM M3=(K3,  $\sum$ ,  $\delta$ 3, s3, A3) and L(M3)=L( $\alpha$ )=L( $\beta$ )L( $\gamma$ )
M3 = (K1 U K2,  $\sum$ ,  $\delta$ 3, s1, A2), where

 $\delta 3 = \delta 1 \cup \delta 2 \cup \{ ((q, \varepsilon), S2) : q \in A1 \}.$ 



6. If  $\alpha$  is the regular expression  $\beta^*$ , FSM M2 = (K2,  $\Sigma$ ,  $\delta$ 2 s2, A2) such that L (M2) = L ( $\alpha$ )) = L ( $\beta$ )\*.

$$M2 = ({S2} \ U \ K1, \Sigma, \delta2,S2,{S2} \ U \ A1)$$
, where  $\delta2 = \delta1 \ U \{((S2, ε),S1)\} \ U \{((q, ε),S1):q \in A1\}$ .



 $\alpha = \beta^*$ 

## Algorithm to construct FSM, given a regular expression $\alpha$

**regextofsm**( $\alpha$ : regular expression) =

Beginning with the primitive subexpressions of  $\alpha$  and working outwards until an FSM for an of  $\alpha$  has been built do: Construct an FSM as described in previous theorem.

#### **Building an FSM from a Regular Expression**

1. Consider the regular expression (b U ab )\*.





#### An FSM for a



An FSM for ab



An FSM for (b U ab)



An FSM for (b U ab)\*

2. Construct FSM for the RE (b(a U b)b)\*



## 3. Construct FSM for the RE bab U a\*



# FSM for RE = $(a^* U b^*c^*)^*$



#### **Building a Regular Expression from an FSM**

Building an Equivalent Machine M



#### **Algorithm for FSM to RE(heuristic)**

fsmtoregexheuristic(M: FSM) =

- 1. Remove from M-any unreachable states.
- 2. No accepting states then return the RE ø.
- 3. If the start state of M is has incoming transitions into it, create a new start state s.
- 4. If there is more than one accepting state of M or one accepting state with outgoing transitions from it, create a new accepting state.
- 5. M has only one state, So L (M) = {  $\epsilon$  } and return RE  $\epsilon$ .
- 6. Until only the start state and the accepting state remain do:
  - 6.1. Select some state rip of M.
  - 6.2. Remove rip from M.
  - 6.3. Modify the transitions. The labels on the rewritten transitions may be any regular expression.
- 7. Return the regular expression that labels from the start state to the accepting state.

#### Example 1 for building a RE from FSM

Let M be:



**Step 1**:Create a new start state and a new accepting state and link them to M After adding new start state 4 and accepting state 5



**Step 2**: let rip be state 3



After removing rip state 3

1-2-1:ab U aaa\*b

1-2-5:a

**Step 3**: Let rip be state 2

After removing rip state 2



4-1-5: (ab U aaa\*b)\*(a U ε)

**Step 4**: Let rip be state 1

After removing rip state 1



RE = (ab U aaa\*b)\*(a U ε)

ulse.com

#### Theorem 2: For Every FSM, there is an equivalent regular expression

Statement: Every regular language can be defined with a regular expression.

**Proof**: By Construction

Let FSM M =  $(K, \sum, \delta, S, A)$ , construct a regular expression  $\alpha$  such that  $L(M) = L(\alpha)$ 

#### **Collapsing Multiple Transitions**



Delete and replace by {C1 U C2 U C3......U Cn}

If any of the transitions are missing, add them without changing L(M) by labeling all of the new transitions with the RE  $\emptyset$ .



Select a state rip and remove it and modify the transitions as shown below.

Consider any states p and q.once we remove rip,how can M get from p to q?

Let R(p,q) be RE that labels the transition in M from P to Q.Then the new machine M' will be removing rip,so R'(p,q)

$$R'(p,q) = R(p,q) U R(p,rip)R(rip,rip)*R(rip,q)$$

Ripping States out one at a time

$$R'(1,3) = R(1,3) U R(1,rip)R(rip,rip)*R(rip,3)$$
  
=  $R(1,3) U R(1,2)R(2,2)*R(2,3)$   
=  $\emptyset U ab*a$   
=  $ab*a$ 

Algorithm to build RE that describes L(M) from any FSM M =  $(K, \Sigma, \delta, S, A)$ 

Two Sub Routines:

- 1. standardize: To convert M to the required form
- 2. **buildregex**: Construct the required RE from

modified machine M

### 1.Standardize (M:FSM)

- i. Remove unreachable states from M
- ii. Modify start state
- iii. Modify accepting states
- iv. If there is more than one transition between states p and q ,collapse them to single transition
- v. If there is no transition between p and q and p  $\notin$ A, q  $\notin$ S,then create a transiton between p and q labled  $\Phi$

#### 2.buildregex(M:FSM)

- i. If M has no accepting states then return RE  $\Phi$
- ii. If M has only one accepting state , return RE  $\epsilon$
- iii. until only the start state and the accepting state remain do:
  - a. Select some state rip of M
  - b. Find R'(p,q) = R(p,q) U R(p,rip).R(rip,rip)\*.R(rip,q)
  - c. Remove rip on d all transitions into ad out of it
- iv. Return the RE that labels from start state to the accepting state

#### **Example 2: Build RE from FSM**



**Step 1:** let RIP be state 4

1-4-2: bb

After removing rip state 4



**Step 2:** Collapse multiple transitions from state 1 to state 2

1-2: a U bb

After collapsing multiple transitions from state 1 to state 2



**Step 3**: let rip be state 2

1-3: (a U bb)b\*a

After removing rip state 2



RE = (a U bb)b\*a

**Example 3: Build RE From FSM** 



Step 1: Remove state s as it is dead state

After removing state s



**Step 2**: Add new start state t and new accepting state u

After adding t and u



**Step 3**: Let rip be state q

p-q-p: 01

After removing rip state q



p-r-p: 10

After removing rip state r



RE = (01 U 10)\*

#### **Example 4:A simple FSM with no simple RE**

 $L = \{w \in \{a,b\}^* : w \text{ contains an even no of a's and an odd number of b's} \}$ 



#### [3] even a's odd b's

Step 1: Add new start state S and new accepting state A.



Step 2: let rip be state 4



Step 3: let rip be state 2



Step 3: let rip be state 2



Last Step: let rip be state 1



RE = (RE6)\*(RE5)= ((RE3) U (RE1)(RE4)\*(RE2))\*((RE1)(RE4)\*)

 $= ((a(bb)^*a) \cup (b \cup a(bb)^*ba)(aa \cup ab(bb)^*ba)^*(b \cup ab(bb)^*a))^*((b \cup a(bb)^*ba)((aa \cup ab(bb)^*ba)^*)$ 

# Example 5:Using fsmtoregexheuristic construct a RE for the following FSM(Example 5.3 from textbook)



RE = (0000 U 0001 U 1100 U 1101 U 0010 U 1110 U 1100 U 0100 U 0011 U 1111 U 1101 U 0101)

## **Writing Regular Expressions**

Let L = {w ε {a,b}\*: there is no more than one b}
 L = {ε,b,a,aa,ab,ba,aba,baa,abaa,aabaa,-----}
 RE = a\*(b U ε)a\*



### **Writing Regular Expressions**

Let L = {w ε {a,b}\*: No two consecutive letters are same}
 RE = (b U ε)(ab)\*(a U ε) or (a U ε)(ba)\*(b U ε)
 L = {ε,a,b,ab,ba,aba,baba,ababa,baba,-----}



## **Writing Regular Expressions**

Floating point Numbers

D stands for (0 U 1 U 2 U 3 U 4 U 5 U 6 U 7 U 8 U 9)

RE = 
$$(\varepsilon U + U -)D^{+}(\varepsilon U .D^{+})(\varepsilon U (E(\varepsilon U + U -)D^{+})$$

$$L = \{ 24.06, +24.97E-05, ----- \}$$



#### **Building DFSM**

- It is possible to construct a DFSM directly from a set of patterns
- Suppose we are given a set K of n keywords and a text string s.
- Find the occurences of s in keywords K
- K can be defined by RE

$$(\Sigma^*(K_1 \cup K_2 \cup .... \cup Kn)\Sigma^*)^+$$

Accept any string in which at least one keyword occurs

#### Algorithm- buildkeywordFSM

 To build dfsm that accepts any string with atleast one of the specified keywords

### **Buildkeyword(K:Set of keywords)**

- Create a start state  $q_0$
- For each element k of K do

Create a branch corresponding to k

- Create a set of transitions that describe what to do when a branch dies
- Make the states at the end of each branch accepting

# Ex:Keywords Set = {cat,bat,cab}



#### **Applications Of Regular Expressions**

- Many Programming languages and scripting systems provide support for regular expression matching
- Re's are used in emails to find spam messages
- Meaningful words in protein sequences are called motifs
- Used in lexical analysis
- To Find Patterns in Web
- To Create Legal passwords
- Regular expressions are useful in a wide variety of text processing tasks,

- More generally string processing, where the data need not be textual.
- Common applications include data validation, data scraping (especially web scraping), data wrangling, simple parsing, the production of syntax highlighting systems, and many other tasks.

#### **RE for Decimal Numbers**

$$RE = -? ([0-9]^+(\.[0-9]^*)? | \.[0-9]^+)$$

- $(\alpha)$ ? means the RE  $\alpha$  can occur 0 or 1 time.
- $(\alpha)^*$  means the RE  $\alpha$  can repeat 0 or more times.
- $(\alpha)^+$  means the RE  $\alpha$  can repeat 1 or more times.

24.23, -24.23, .12, 12. ---- are some examples

#### **Requirements for legal password**

- A password must begin with a letter
- A password may contain only letters numbers and a underscore character
- A password must contain atleast 4 characters and no more than 8 characters

$$((a-z) U (A-Z))$$

$$((a-z) U (A-Z) U (0-9) U U \varepsilon)$$

$$((a-z) U (A-Z) U (0-9) U U \varepsilon)$$

$$((a-z) U (A-Z) U (0-9) U U \epsilon)$$

$$((a-z) U (A-Z) U (0-9) U U \epsilon)$$

Very lengthy regular expression

#### Different notation for writing RE

- $\alpha$  means that the pattern  $\alpha$  must occur exactly once.
- $\alpha^*$  means that the pattern may occur any number of times(including zero).
- $\alpha^+$  means that the pattern  $\alpha$  must occur atleast once.
- α{n,m} means that the pattern must occur **atleast n times** but not more than **m times**
- $\alpha\{n\}$  means that the pattern must occur **n times exactly**
- So RE of a legal password is:

$$RE = ((a-z) U (A-Z))((a-z) U (A-Z) U (0-9) U_{3,7}$$

Examples: RNSIT\_17,Bangalor, VTU\_2017 etc

• RE for an ip address is:

$$\mathbf{RE} = ((0-9)\{1,3\}(\setminus (0-9)\{1,3\})\{3\})$$

Examples: 121.123.123.123

118.102.248.226

10.1.23.45

#### **Manipulating and Simplifying Regular Expressions**

Let  $\alpha$ ,  $\beta$ ,  $\gamma$  represent regular expressions and we have the following identities.

- 1. Identities involving union
- 2. Identities involving concatenation
- 3. Identities involving Kleene Star

#### **Identities involving Union**

• Union is Commutative

$$\alpha \cup \beta = \beta \cup \alpha$$

Union is Associative

$$(\alpha \cup \beta) \cup \gamma = \alpha \cup (\beta \cup \gamma)$$

•  $\Phi$  is the identity for union

$$\alpha \cup \Phi = \Phi \cup \alpha = \alpha$$

union is idempotent

$$\alpha U \alpha = \alpha$$

• For any 2 sets A and B, if  $B \subseteq A$ , then A U B = A

$$a^* U aa = a^*$$
, since  $L(aa) \subseteq L(a^*)$ .

#### **Identities involving concatenation**

• Concatenation is associative

$$(\alpha\beta)\gamma = \alpha(\beta\gamma)$$

•  $\epsilon$  is the identity for concatenation ulse.com

$$\alpha \epsilon = \epsilon \alpha = \alpha$$

 $\Phi$  is a zero for concatenation.

$$\alpha\Phi=\Phi\alpha=\Phi$$

• Concatenation distributes over union

$$(\alpha \cup \beta)\gamma = (\alpha\gamma) \cup (\beta\gamma)$$

$$\gamma(\alpha \cup \beta) = (\gamma\alpha) \cup (\gamma\beta)$$

### **Identities involving Kleene Star**

$$\bullet \quad \Phi * = \varepsilon$$

• 
$$(\alpha^*)^* = \alpha^*$$

• 
$$\alpha * \alpha * = \alpha *$$

- If  $\alpha^* \subseteq \beta^*$  then  $\alpha^*\beta^* = \beta^*$
- Similarly If  $\beta^* \subseteq \alpha^*$  then  $\alpha^*\beta^* = \alpha^*$  $a^*(a \cup b)^* = (a \cup b)^*$ , since  $L(a^*) \subseteq L((a \cup b)^*)$ .
- $(\alpha \cup \beta)^* = (\alpha^*\beta^*)^*$
- If  $L(\beta) \subseteq L(\alpha)$  then  $(\alpha \cup \beta)^* = \alpha^*$ (a U  $\epsilon$ )\* = a\*,since  $\{\epsilon\} \subseteq L(a^*)$ .

#### **Simplification of Regular Expressions**

2. (b U bb)\*b\* = b\*b\* //L(bb) 
$$\subseteq$$
 L(b\*)

3. 
$$((a \cup b)^* b^* \cup ab)^*$$

$$= ((a \cup b)^* \cup ab)^* //L(b^*) \subseteq L(a \cup b)^*$$

$$= (a \cup b)^* //L(a^*) \subseteq L(a \cup b)^*)$$

4. 
$$((a \cup b)^* (a \cup \epsilon)b^* = (a \cup b)^* //L((a \cup \epsilon)b^*) \subseteq L(a \cup b)^*$$

5. 
$$(\Phi^* \cup b)b^*$$
 =  $(\epsilon \cup b)b^*$  // $\Phi^* = \epsilon$   
=  $b^*$  // $L(\epsilon \cup b) \subseteq L(b^*)$ 

6. 
$$(a \ U \ b)*a* \ U \ b = (a \ U \ b)* \ U \ b // \ L(a*) \subseteq L((a \ U \ b)*)$$
  
=  $(a \ U \ b)*$  //  $L(b) \subseteq L((a \ U \ b)*)$ 

$$7.((a U b)^+)^* = (a U b)^*$$

## **Chapter-7**

#### **Regular Grammars**

Regular grammars sometimes called as right linear grammars.

A regular grammar G is a quadruple  $(V, \sum, R, S)$ 

- V is the rule alphabet which contains nonterminals and terminals.
- $\sum$  (the set of terminals) is a subset of V
- R (the set of rules) is a finite set of rules of the form

 $X \rightarrow Y$ 

• S (the start symbol) is a nonterminal.

All rules in R must:

- Left-hand side should be a single nonterminal.
- Right-hand side is  $\varepsilon$  or a single terminal or a single terminal followed by a single nonterminal.

### **Legal Rules**

 $S \rightarrow a$ 

 $S \rightarrow \epsilon$ 

 $T \rightarrow aS$ 

## Not legal rules

S→aSa

 $S \rightarrow TT$ 

aSa**→**T

 $S \rightarrow T$ 

- The language generated by a grammar  $G = (V, \sum, R, S)$  denoted by L(G) is the set of all strings w in  $\sum^*$  such that it is possible to start with S.
- Apply some finite set of rules in R, and derive w.
- Start symbol of any grammar G will be the symbol on the left-hand side of the first rule in R<sub>G</sub>

#### **Example of Regular Grammar**

Example 1:Even Length strings

Let  $L = \{w \in \{a, b\}^* : lwl \text{ is even}\}.$ 

The following regular expression defines L:

 $((aa)\ U\ (ab)\ U\ (ba)\ U\ (bb))^*$  or  $((a\ U\ b)(a\ U\ b))^*$ 

DFSM accepting L



Regular Grammar G defining L

 $S \rightarrow \epsilon$ 

S**→**aT

S→bT

T**→**aS

T→bS

**Derivation of string using Rules** 

**Derivation of string "abab"** 

S => aT

=> abT

=> abaS

=> ababS

=> abab

#### **Regular Grammars and Regular Languages**

#### **THEOREM**

Regular Grammars Define Exactly the Regular Languages

#### **Statement:**

The class of languages that can be defined with regular grammars is exactly the regular languages.

**Proof:** Regular grammar → FSM

FSM → Regular grammar

The following algorithm constructs an FSM M from a regular grammar  $G = (V, \sum, R, S)$  and assures that

L(M) = L(G):

#### **Algorithm-Grammar to FSM**

grammartofsm ( G: regular grammar) =

- 1. Create in M a separate state for each nonterminal in V.
- 2. Make the state corresponding to S the start state.
- 3. If there are any rules in R of the form  $X \rightarrow w$ , for some  $w \in \Sigma$ , then create an additional state labeled #.
- 4. For each rule of the form  $X \rightarrow wY$ ,

add a transition from X to Y labeled w.

- 5. For each rule of the form  $X \rightarrow w$ , add a transition from X to # labeled w.
- 6. For each rule of the form  $X \rightarrow \varepsilon$ , mark state X as accepting.
- 7. Mark state # as accepting.
- 8. If M is incomplete then M requires a dead state.

Add a new state D. For every (q, i) pair for which no transition has already been defined, create a transition from q to D labeled i. For every i in  $\Sigma$ , create a transition from D to D labeled i.

### Example 2:Grammar→FSM

### Strings that end with aaaa

se.com Let  $L = \{w \in \{a, b\}^* : w \text{ end with the pattern aaas}\}$ 

RE = (a U b)\*aaaa

Regular Grammar G

 $S \rightarrow aS$ 

 $S \rightarrow bS$ 

S→aB

 $B \rightarrow aC$ 

 $C \rightarrow aD$ 

 $D \rightarrow a$ 

#### **Example 3:The Missing Letter Language**

Let  $\Sigma = \{a, b, c\}$ .

 $L_{Missing} = \{ w : \text{there is a symbol a } \in \sum \text{not appearing in } w \}.$ 

Grammar G generating  $L_{\text{Missing}}$ 

# FSM for Missing Letter Language



## **Example 4: Strings that start with abb.**

Let L =  $\{w \in \{a, b\}^*: w \text{ starting with string abb}\}$ . RE =  $abb(a \cup b)^*$ 

## Regular Grammar G

S $\rightarrow$ aB B $\rightarrow$ bC C $\rightarrow$ bT T $\rightarrow$ aT T $\rightarrow$ bT T $\rightarrow$  $\epsilon$ 

# **Example 5: Strings that end with abb.**

b

В

Let L =  $\{w \in \{a, b\}^*: w \text{ ending with string abb}\}$ .

 $RE = (a \cup b)*abb$ 

## Regular Grammar G

S→aS S→bS S→aT T→bB B→b

## Example 6:Strings that contain substring 001.

Let L =  $\{w \in \{0, 1\}^*: w \text{ containing the substring } 001\}.$ 

RE = (0 U 1)\*001(0 U 1)\*

#### Regular Grammar G

S→0S S→1S S→0T T→0P P→1X



- X→0X
- X**→**1X
- $X \rightarrow \epsilon$

#### **Algorithm FSM to Grammar**

- 1. Make M deterministic (to get rid of  $\varepsilon$ -transitions).
- 2. Create a nonterminal for each state in the new M.
- 3. The start state becomes the starting nonterminal.
- 4. For each transition  $\delta(T, a) = U$ , make a rule of the form  $T \rightarrow aU$ .
- 5. For each accepting state T, make a rule of the form  $T \rightarrow \epsilon$ .

#### **Example 7:Build grammar from FSM**



RE = (a U bb)b\*aGrammar A→aB A→bD B→bB  $B \rightarrow aC$ D**→**bB  $C \rightarrow \epsilon$ Derivation of string "aba"  $A \Rightarrow aB$ => abBUPulse.com => abaC => aba Derivation of string "bba"  $A \Rightarrow bB$ => bbB=> bbaC => bba **Example 8:A simple FSM with no simple RE** 

 $L = \{w \in \{a,b\}^* : w \text{ contains an even no of a's and an odd}$ number of b's}



#### Grammar

A→aB

A→bC

B**→**aA

B→bD

C**→**bA

TUPulse.com  $C \rightarrow aD$ 

D→bB

 $D \rightarrow aC$ 

 $C \rightarrow \epsilon$ 

## Derivation of string "ababb"

 $A \Rightarrow aB$ 

=> abD

=> abaC

=> ababA

=> ababbC

=> ababb

## RE,RG and FSM for given Language

Let L = { we {a, b }\*: every a in w is immediately followed by atleast one b.}

L = { b,ab,abb,----}

 $RE = (ab U b)^*$ 

**Regular Grammar** 

S→aT

s→bs

S→ε

T→bS



#### **Satisfying Multiple Criteria**

Let  $L = \{ w \in \{a, b \}^* : w \text{ contain an odd number of a's and } \}$ 



S→bS

S→aT

 $3 \leftarrow T$ 

T**→**aS

 $T\rightarrow bX$ 

X→aS

X→bX

#### **Conclusion on Regular Grammars**

- Regular grammars define exactly the regular languages.
- But regular grammars are often used in practice as FSMs and REs are easier to work.
- But as we move further there will no longer exist a technique like regular expressions.
- So we discuss about context-free languages and context-free-grammars are very important to define the languages of push-down automata.

#### **Chapter-8**

#### **Regular and Nonregular Languages**

- The language a\*b\* is regular.
- The language  $A^nB^n = \{a^nb^n : n \ge 0\}$  is not regular.
- The language  $\{w \in \{a,b\}^*: \text{every a is immediately followed by b} \}$  is regular.
- The language {w ∈ {a, b}\*:every a has a matching b somewhere and no b matches more than one a} is not regular.
- Given a new language L, how can we know whether or not it is regular?

#### Theorem 1: The Regular languages are countably infinite

#### **Statement:**

There are countably infinite number of regular languages.

#### **Proof:**

- We can enumerate all the legal DFSMs with input alphabet  $\Sigma$ .
- Every regular language is accepted by at least one of them.
- So there cannot be more regular languages than there are DFSMs.

But the number of regular languages is infinite because it includes the following infinite set of languages:

• Thus there are at most a countably infinite number of regular languages.

#### **Theorem 2 : The finite Languages**

**Statement:** Every finite language is regular.

#### **Proof**:

- If L is the empty set, then it is defined by the R.E Ø and so is regular.
- If it is any finite language composed of the strings  $s_1, s_2, .... s_n$  for some positive integer n, then it is defined by the R.E:  $s_1 U s_2 U ... U s_n$
- So it too is regular
- ❖ Regular expressions are most useful when the elements of L match one or more patterns.
- ❖ FSMs are most useful when the elements of L share some simple structural properties.

#### **Examples:**

•  $L_1 = \{ w \in \{0-9\}^* : w \text{ is the social security number of the }$  current US president \}.

 $L_1$  is clearly finite and thus regular. There exists a simple FSM to accept it.

- $L_2 = \{1 \text{ if Santa Claus exists and } 0 \text{ otherwise} \}.$
- $L_3 = \{1 \text{ if God exists and } 0 \text{ otherwise} \}.$

L<sub>2</sub> and L<sub>3</sub> are perhaps a little less clear.

So either the simple FSM that accepts { 0} or the simple

FSM that accepts  $\{1\}$  and nothing else accepts  $L_2$  and  $L_3$ .

- L<sub>4</sub> = {1 if there were people in north America more than
   10000 years age and 0 otherwise}.
- $L_5 = \{1 \text{ if there were people in north America more than } 15000 \text{ years age and 0 otherwise} \}.$

 $L_{1}$  is clear. It is the set  $\{1\}$ .

L<sub>5</sub> is also finite and thus regular.

- $L_6 = \{ w \in \{0-9\} \}^*$ : w is the decimal representation, without leading 0's, of a prime Fermat number  $\}$
- Fermat numbers are defined by

$$Fn = 2^{2n} + 1$$
,  $n >= 0$ .

- The first five elements of F are {3, 5, 17, 257,65537}.
- All of them are prime. It appears likely that no other Fermat numbers are prime. If that is true, then L<sub>6</sub>

is finite and thus regular.

If it turns out that the set of Fermat numbers is infinite, then it is almost surely not regular.

Four techniques for showing that a language L(finite or infinite) is regular:

- 1. Exhibit a R.E for L.
- 2. Exhibit an FSM for L.
- 3. Show that the number of equivalence of  $\approx_L$  is finite.
- 4. Exhibit a regular grammar for L.

#### **Closure Properties of Regular Languages**

The Regular languages are closed under

- Union
- Concatenation
- Kleene star
- Complement Second Intersection
- Intersection
- Difference
- Reverse
- Letter substitution

#### Closure under Union, Concatenation and Kleene star

**Theorem**: The regular languages are closed under union, concatenation and Kleene star.

**Proof**: By the same constructions that were used in the proof of Kleene's theorem.

#### **Closure under Complement**

#### **Theorem:**

The regular languages are closed under complement.

#### **Proof**:

- If  $L_1$  is regular, then there exists a DFSM  $M_1$ =( $K, \sum, \delta, s, A$ ) that accepts it.
- The DFSM M<sub>2</sub>=(K, ∑,δ,s,K-A), namely M<sub>1</sub> with accepting and nonaccepting states swapped, accepts ¬(L(M<sub>1</sub>))
   because it rejects all strings that M<sub>1</sub> accepts and rejects all strings that M<sub>1</sub> accepts.

#### Steps:

- Given an arbitrary NDFSM M<sub>1</sub>, construct an equivalent
   DFSM M' using the algorithm ndfsmtodfsm.
- 2. If  $M_1$  is already deterministic,  $M' = M_1$ .
- 3. M' must be stated completely, so if needed add dead state and all transitions to it.
- 4. Begin building  $M_2$  by setting it equal to M'.
- 5. Swap accepting and nonaccepting states. So

$$M_2=(K, \sum, \delta, s, K-A)$$

#### Example:

- Let L = {w ∈ {0,1}\* : w is the string ending with 01} RE = (0 U 1)\*01
- The complement of L(M) is the DFSM that will accept strings that do not end with 01.

#### **Closure under Intersection**

#### **Theorem:**

The regular languages are closed under intersection.

#### **Proof**:

• Note that

$$L(M_1) \cap L(M_2) = \neg (\neg L(M_1) \cup \neg L(M_2)).$$

- We have already shown that the regular languages are closed under both complement and union.
- Thus they are closed under intersection.
- Example:



- Fig (a) is DFSM L1 which accepts strings that have 0.
- Fig(b) is DFSM L2 which accepts strings that have 1.

• Fig(c) is Intersection or product construction which accepts that have both 0 and 1.

#### The Divide and Conquer Approach

- Let L = {w ∈ {a,b}\* : w contains an even number of a's and an odd number of b's and all a's come in runs of three }.
- L is regular because it is the intersection of two regular languages,

 $L = L_1 \cap L_2$ , where

• L1 = {w ∈ {a,b}\* : w contains an even number of a's and an odd number of b's},and

 $L2 = \{w \in \{a,b\}^*: all \text{ a's come in runs of three}\}.$ 

• L1 is regular as we have an FSM accepting L1



- L2 =  $\{w \in \{a,b\}^*: all \ a$ 's come in runs of three $\}$ .
- L2 is regular as we have an FSM accepting L2



 $L = \{w \in \{a,b\}^* : w \text{ contains an even number of a's and an odd number of b's and } \}$ all a's come in runs of three \{.

L is regular because it is the intersection of two regular languages,  $L = L_1 \cap L_2$ 

#### **Closure under Set difference**

#### Theorem:

The regular languages are closed under set difference.

#### **Proof**:

$$L(M_1) - L(M_2) = L(M_1) \cap \neg L(M_2)$$

- Regular languages are closed under both complement and intersection is shown.
  - Thus regular languages are closed under set difference.

#### **Closure under Reverse**

The regular languages are closed under reverse.

#### **Proof**:

•  $L^R = \{ w \in \Sigma^* : w = x^R \text{ for some } x \in L \}.$ 

#### Example:

1. Let 
$$L = \{001, 10, 111\}$$
 then  $L^R = \{100, 01, 111\}$ 

2. Let L be defined by RE  $(0 \text{ U } 1)0^*$  then L<sup>R</sup> is  $0^*(0 \text{ U } 1)$ 

reverse(L) = 
$$\{x \in \Sigma^* : x = w^R \text{ for some } w \in L\}.$$

By construction.

- Let  $M = (K, \Sigma, \delta, s, A)$  be any FSM that accepts L.
- Initially, let M' be M.

- Reverse the direction of every transition in M'.
- Construct a new state q. Make it the start state of M'.
- Create an ε-transition from q to every state that was an accepting state in M.
- M' has a single accepting state, the start state of M.

#### **Closure under letter substitution or Homomorphism**

- The regular languages are closed under letter substitution.
- Consider any two alphabets,  $\sum_1$  and  $\sum_2$ .
- Let **sub** be any function from  $\sum_1$  to  $\sum_2$ \*.
- Then letsub is a letter substitution function from L₁ to L₂ iff letsub(L₁) = {
   w ∈ ∑₂\*:∃y ∈ L₁(w = y except that every character c of y has been replaced by sub(c))}.
- Example 1 Consider  $\sum_1 = \{a,b\}$  and  $\sum_2 = \{0,1\}$

Let **sub** be any function from  $\sum_1$  to  $\sum_2^*$ .

$$sub(a) = 0$$
,  $sub(b) = 11$ 

letsub(
$$a^nb^n : n \ge 0$$
) = {  $0^n1^{2n} : n \ge 0$ }

• Example 2

Consider 
$$\Sigma_1 = \{0,1,2\}$$
 and  $\Sigma_2 = \{a,b\}$ 

Let **h** be any function from  $\sum_1$  to  $\sum_2^*$ .

$$h(0) = a, h(1) = ab, h(2) = ba$$

$$h(0120) = h(0)h(1)h(2)h(0)$$

= aabbaa

$$h(01*2) = h(0)(h(1))*h(2)$$
  
=  $a(ab)*ba$ 

#### **Long Strings Force Repeated States**

**Theorem**: Let  $M=(K,\sum,\delta,s,A)$  be any DFSM. If M accepts any string of length |K| or greater, then that string will force M to visit some state more than once.

#### **Proof**:

- M must start in one of its states.
- Each time it reads an input character, it visits some state. So ,in processing a string of length n, M creates a total of n+1 state visits.
- If n+1 > |K|, then, by the pigeonhole principle, some state must get more than one visit.
- So, if  $n \ge |K|$ , then M must visit at least one state more than once.

### The Pumping Theorem for Regular Languages

**Theorem:** If L is regular language, then:

$$\exists k \ge 1 \ (\forall strings \ w \in L, where |w| \ge k \ (\exists x, y, z \ (w = xyz, y =$$

$$|xy| \ll k$$

$$y \neq \epsilon$$
, and

$$\forall q >= 0(xy^qz \in L)))$$
.

#### **Proof:**

• If L is regular then it is accepted by some DFSM  $M=(K, \sum, \delta, s, A)$ .

Let k be |K|

- Let w be any string in L of length k or greater.
- By previous theorem to accept w, M must traverse some loop at least once.

- We can carve w up and assign the name y to the first substring to drive M through a loop.
- Then x is the part of w that precedes y and z is the part of w that follows y.
- We show that each of the last three conditions must then hold:
- $|xy| \le k$

M must not traverse thru a loop.

It can read k - 1 characters without revisiting any states.

But kth character will take M to a state visited before.

•  $y \neq \varepsilon$ 

Since M is deterministic, there are no loops traversed by  $\varepsilon$ .

•  $\forall q >= 0 (xy^qz \in L)$ 

y can be pumped out once and the resulting string must

be in L.

### Steps to prove Language is not regular by contradiction method.

- 1. Assume L is regular.
- 2. Apply pumping theorem for the given language.
- 3. Choose a string w, where w  $\in$  L and IwI >= k.
- 4. Split w into xyz such that  $|xy| \le k$  and  $y \ne \varepsilon$ .
- 5. Choose a value for q such that  $xy^qz$  is not in L.
- 6. Our assumption is wrong and hence the given language is not regular.

#### **Problems on Pumping theorem (Showing that the language is not regular)**

#### 1. Show that A<sup>n</sup>B<sup>n</sup> is not Regular

Let *L* be 
$$A^nB^n = \{ a^nb^n : n >= 0 \}.$$

Proof by contradiction.

Assume the given language is regular.

Apply pumping theorem and split the string w into xyz

Choose w to be a<sup>k</sup>b<sup>k</sup> (We get to choose any w).



We show that there is no x, y, z with the required properties:

$$k \le |xy|$$
, TIPUSE COM  
 $\forall q > = 0$  ( $xy^qz$  is in L y must be in region 1.

So  $y = a^p \le Since |xy|$  1.\ge for some p Let q = 2, producing: ak+pbk L, since it has more  $a \notin which$  's than b' s.

- 2.  ${a^ib^j : i, j \ge 0 \text{ and } i j = 5}$ .
- Not regular.
- L consists of all strings of the form a\*b\* where the number of a's is five more than the number of b's.
- We can show that L is not regular by pumping.
- Let  $w = a^{k+5}b^k$ .
- Since  $|xy| \le k$ , y must equal  $a^p$  for some p > 0.

• We can pump y out once, which will generate the string  $a^{k+5-p}b^k$ , which is not in L because the number of a's is less than 5 more than the number of b's.

## VTUPulse.com

# VTUPulse.com