

Sharif University of Technology Department of Computer Engineering Fall 2022 Synthetic Biology Assignment #2 Hadis Ahmadiyan 400211524

توضیحات مربوط به هر فایل کد و خروجی نظیر آن ها در زیر امده است :

Init models.il

این کد ابتدا مدل $ecoli_core$ را دانلود میکند و با متد standarModel آن را لود میکند. سپس آن را همگن میکند (با تنظیم کران بالا و پایین هر واکنش و مقدار M=1000000). در ادامه نیز واکنش هایی که در تمرین قبل بلاک به دست آمده بودند را از مدل حذف میکند و مدل به دست آمده را بر میگرداند.

$Q1_1.jl$

با استفاده از کد init_models مدل همگن شده و بدون واکنش های بلاک را در متغیر m لود میکند

با اجرای یک بار FBA (با استفاده از متد اماده ی FBA) مقدار (flux_balance_analysis_dict : COBREXA) مقدار $v_{\rm biomass}$ (واکنش $v_{\rm biomass}$) برابر با $v_{\rm biomass}$) برابر با $v_{\rm biomass}$ به دست آمده بود که آن را ست میکنیم و $v_{\rm biomass}$ در نظر میگیریم.

v biomass به ازای تمام واکنش های مدل m ابتدا کران بالا و پایین آن واکنش را \cdot قرار میدهیم سپس v اجرا میکنیم و v اجرا میکنیم و این مقدار کمتر از v السلامی باشد یعنی آن واکنش برای رشد سلول ضروری است بنابراین آن واکنش را به دست می آوریم اگر این مقدار کمتر از v و اکنش ریر هستند :

"PGK" "ACONTb" "ENO" "PGM" "PIt2r" "ACONTa" "RPI" $"EX_nh4_e"$ "GAPD" "GLCpts" "EX_glc__D_e" "EX_h_e" "EX_pi_e" "GLNS" "ICDHyr" "NH4t"

$\overline{\mathbf{Q1}}_{-2.\mathbf{jl}}$

نتایج حاصل از این قسمت (**۱۱۱ جفت واکنش**) در پایان این گزارش (بخش ضمیمه) آمده است.

Q2_1.jl

reactions آین کد جفت شدگی های کامل را پیدا میکند به این شکل که به ازای تمام جفت واکنش های I,j موجود در لیست v بررسی میکند که آیا v یکی از واکنش ها ضریب دیگری هست یا نه، اگر این موضوع برقرار بود درایه ی نظیر در ماتریسv برابر با در نظر گرفته خواهد شد. طبق این بخش کد واکنش هایی که جفت شدگی کامل دارند (\mathbf{r} جفت واکنش) عبارت اند از :

ENO and PGM

GLCpts and EX_glc__D_e

و طبيعتا تمام واكنش ها با خودشان.

$Q2_2.jl$

این کد سایر انواع جفت شدگی را پیدا میکند. توابع یافتن واکنش های بلاک عینا مانند تکلیف قبلی است و در گزارش قبلی توضیح داده شده اند.

تابع find_blocked با استفاده از توابع irreversable_classic و reversable_classic که در تمرین قبل پیاده شده اند، واکنش های بلاکی که در لیست reactions هستند را پیدا کرده و باز میگرداند.

کد به این صورت عمل میکند که به ازای هر جفت واکنش j_{ij} از واکنش های لیست reactions با \cdot قرار دادن کران های واکنش i_{ij} بررسی میکند آیا واکنش j_{ij} بلاک شده است یا نه به این صورت که با استفاده از j_{ij} واکنش های بلاک شده در صورت حذف واکنش j_{ij} را میابد و بررسی میکند آیا واکنش j_{ij} در آن وجود دارد یا نه.

اگر واکنش با صفر شدن شار i شار j نیز صفر شود این یعنی در صورت وجود شار در واکنش j واکنش i هم شار خواهد داشت این یعنی جفت شدگی جهت دار مستقیم و out[I,j]=4 یعنی جفت شدگی جهت دار مستقیم و out[I,j]=4 یعنی جفت شدگی جهت دار معکوس خواهند داشت.

حال اگر به نتیجه برسیم که از j به i جفت شدگی مستقیم داریم، درایه ی $\operatorname{out}[I,j]$ را هم چک میکنیم، اگر $\operatorname{out}[I,j]=3$ باشد این یعنی از سمت I به j نیز جفت شدگی مستقیم داشتیم و از این نتیجه میشود که جفت شدگی جزیی داریم. و قرار میدهیم $\operatorname{out}[I,j]=\operatorname{out}[j,i]=2$

ماتریس زیر نتیجه ی نهایی آنالیز خواهد بود که در آن:

۳۵ جفت شدگی جهت دار مستقیم(۳۵ درایه=۳) و در نتیجه ۳۵ جفت شدگی جهت د ار معکوس (۳۵ درایه=۴) داریم.

۸ جفت واکنش داریم که با هم جفت شدگی جزیی دارند.(۱۶ درایه برابر با مقدار ۲)

۲ جفت واکنش داریم که با هم جفت شدگی کامل دارند (۴ درایه غیرقطری برابر با ۱)

و طبیعتا هرواکنشی با خودش هم جفت شدگی کامل دارد.

1	3	2	3	3	3	3	3	4	2
4	1	4	2	2	3	2	3	4	4
2	3	1	3	3	3	3	3	4	2
4	2	4	1	2	3	2	3	4	4
4	2	4	2	1	3	1	3	4	4
4	4	4	4	4	1	4	1	4	4
4	2	4	2	1	3	1	3	4	4
4	4	4	4	4	1	4	1	4	4
3	3	3	3	3	3	3	3	1	3
2	3	2	3	3	3	3	3	4	1

بررسی ضروری بودن واکنش ها به استدلال از روابط جفت شدگی:

گفتیم برای این که یک واکنش ضروری باشد یعنی باید در صورتی که شار آن واکنش ۰ شود شار بایومس هم ۰ شود. این یعنی از سمت بایومس به آن واکنش جفت شدگی جهت دار خواهیم داشت. یعنی در سطر نظیر بایومس، درایه های نظیر یک واکنش ضروری باید مقدار ۳ را داشته باشد.

با توجه به اینکه در لیست ۱۰ تایی reactions واکنش biomass نهمین واکنش است سطر ۹ را بررسی میکنیم. درایه ی نظیر تمام واکنش ها (به جز خود بایومس) ۳ هست این یعنی همه ی واکنش های لیست reactions واکنش های ضروری هستند.

این یافته با یافته ی حاصل از بخش ۱ هم مطابقت دارد چرا که تمام واکنش های فایل reactions در میان واکنش های ضروری پیدا شده در قسمت اول حضور دارند.

ضميمه

 $Q1_2$ کد خروجی

PFK and PGI: 0.0

PFK and PGL: 0.0

PFK and CO2t: 0.0

PFK and RPE: 0.0

PFK and CYTBD: 0.0

PFK and TALA: 0.0

PFK and TKT1: 0.0

PFK and TKT2: 0.0

PFK and EX_co2_e: 0.0

PFK and EX_h2o_e: 0.0

PFK and EX_o2_e: 0.0

PFK and G6PDH2r: 0.0

PFK and GND: 0.0

PFK and H2Ot: 0.0

PFK and NADH16: 0.0

PFK and NADTRHD: 0.0

PFK and O2t: 0.0

PFL and EX_h2o_e: 0.0

PFL and H2Ot: 0.0

PFL and NADH16: 0.0

PFL and PDH: 0.0

PGI and PGL: 0.0

PGI and RPE: 0.0

PGI and CYTBD: 0.0

PGI and TALA: 0.0

PGI and TKT1: 0.0

PGI and TKT2: 0.0

PGI and TPI: 0.0

PGI and EX_o2_e: 0.0

PGI and FBA: 0.0

PGI and G6PDH2r: 0.0

PGI and GND: 0.0

PGI and NADH16: 0.0

PGI and NADTRHD: 0.0

PGI and O2t: 0.0

PGL and RPE: 0.0

PGL and TALA: 0.0

PGL and TKT1: 0.0

PGL and TKT2: 0.0

PGL and TPI: 0.0

PGL and FBA: 0.0

ACALD and EX_h2o_e: 0.0

ACALD and H2Ot: 0.0

ALCD2x and EX_h2o_e: 0.0

ALCD2x and H2Ot: 0.0

PPC and CO2t: 0.0

PPC and CYTBD: 0.0

PPC and SUCDi: 0.0

PPC and EX_co2_e: 0.0

PPC and $EX_o2_e:0.0$

PPC and FUM: 0.0

PPC and ICL: 0.0

PPC and MALS: 0.0

PPC and MDH : 0.0

PPC and O2t: 0.0

CO2t and TPI: 0.0

CO2t and FBA: 0.0

RPE and TALA: 0.0

RPE and TKT1:0.0

RPE and TKT2: 0.0

RPE and TPI: 0.0

RPE and FBA: 0.0

RPE and G6PDH2r: 0.0

RPE and GND: 0.0

CYTBD and TPI: 0.0

CYTBD and FBA: 0.0

ETOHt2r and EX_h2o_e: 0.0

ETOHt2r and H2Ot: 0.0

TALA and TKT2: 0.0

TALA and TPI: 0.0

TALA and FBA: 0.0

TALA and G6PDH2r: 0.0

TALA and GND: 0.0

TKT1 and TKT2: 0.0

TKT1 and TPI: 0.0

TKT1 and FBA: 0.0

TKT1 and G6PDH2r: 0.0

TKT1 and GND: 0.0

TKT2 and TPI: 0.0

TKT2 and FBA: 0.0

TKT2 and G6PDH2r: 0.0

TKT2 and GND: 0.0

TPI and $EX_{co2}e:0.0$

TPI and EX_h2o_e: 0.0

TPI and $EX_02_e : 0.0$

TPI and G6PDH2r: 0.0

TPI and GND: 0.0

TPI and H2Ot: 0.0

TPI and NADH16: 0.0

TPI and NADTRHD: 0.0

TPI and O2t: 0.0

 $EX_{co2}e$ and FBA:0.0

EX_etoh_e and EX_h2o_e: 0.0

EX_etoh_e and H2Ot: 0.0

EX_for_e and EX_h2o_e: 0.0

 EX_{for_e} and H2Ot: 0.0

EX_for_e and NADH16: 0.0

EX_for_e and PDH: 0.0

 EX_h2o_e and FBA:0.0

EX_h2o_e and FORt: 0.0

 EX_02_e and FBA:0.0

FBA and G6PDH2r: 0.0

FBA and GND: 0.0

FBA and H2Ot: 0.0

FBA and NADH16: 0.0

FBA and NADTRHD: 0.0

FBA and O2t: 0.0

FORt and H2Ot: 0.0

FORt and NADH16: 0.0

FORt and PDH: 0.0

GLUDy and GLUSy: 0.0

count: 111