$$\left\{\begin{array}{lll} \text{Invertible} \right\} & \leftarrow & \left\{\begin{array}{lll} \text{Line bundles} \right\} \\ \text{Sheaves} \end{array} \right\} & \leftarrow & \left\{\begin{array}{lll} \text{Line bundles} \right\} \\ \text{Ox} (L) & \leftarrow & \leftarrow & L \end{array} \right.$$
 Choose an open cover $\left\{\begin{array}{lll} \text{Ui} \right\} \end{array}$ and iso.

$$\left\{\begin{array}{lll} \text{Flu}_{i} & \stackrel{\sigma_{i}}{\longrightarrow} & \text{Ou}_{i} \\ \text{Flu}_{i} & \stackrel{\sigma_{i}}{\longrightarrow} & \text{Ou}_{i} \end{array} \right\}$$

$$\left\{\begin{array}{lll} \text{Flu}_{i} & \stackrel{\sigma_{i}}{\longrightarrow} & \text{Ou}_{i} \\ \text{Flu}_{i} & \stackrel{\sigma_{i}}{\longrightarrow} & \text{Ou}_{i} \end{array} \right\}$$

$$\left\{\begin{array}{lll} \text{Line bundles} \right\} \\ \text{Choose an open cover} \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \right\} \\ \left\{\begin{array}{lll} \text{Choose an open cover} \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \right\} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \\ \text{Flu}_{i} & \stackrel{\sigma_{i}}{\longrightarrow} \end{array} \right\} \\ \left\{\begin{array}{lll} \text{Choose an open cover} \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \right\} \\ \left\{\begin{array}{lll} \text{Choose an open cover} \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \right\} \\ \left\{\begin{array}{lll} \text{Choose an open cover} \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \right\} \\ \left\{\begin{array}{lll} \text{Choose an open cover} \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \right\} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \right\} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \right\} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \right\} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \right\} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \right\} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \right\} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \right\} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \right\} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \right\} \\ \left\{\begin{array}{lll} \text{Ui} \right\} \end{array} \\$$

Let L be the line bundle with transition functions

Llu;
$$\frac{s_i}{\longrightarrow}$$
 CxU; $\frac{s_i}{\longrightarrow}$ CxU; $\frac{s_i}{\longrightarrow}$ CxU;

Si.Sj = mult by tij.

Then $O_X(L) \cong F$

$${Tnv sheaves} = {Line bundles} \\ H'(X, Q_x^*).$$

Divisors.

$$\mathcal{D}_1 \sim \mathcal{D}_2 \Rightarrow \mathcal{O}_{\chi}(\mathcal{D}_1) \cong \mathcal{O}_{\chi}(\mathcal{D}_2)$$

Conversely
$$O_X(D_1) \cong O_X(D_2) \Rightarrow D_1 \sim D_2$$

Pf: Let $V = X - D_1 - D_2$
Then
$$I \in \Gamma(U, Q_X(D_1))$$

$$I \in \Gamma(U, Q_X(D_2)).$$

Then f is a mer. fun on X and gives the lin equiv. $D_1 \sim D_2$

$$\bigcup_{1} \longrightarrow \bigcup_{1} \times \mathbb{C}$$

$$\cup \longmapsto (U, 1)$$

We have a section which on Uz is $U_2 \rightarrow U_2 \times C$ $U \mapsto (t^n, u)$ i.e. a menomorphic section of 2 with $(\sigma) = mp$. Sinv. sheeves?
Thut admit? = { Line bundles that } admit mer. seet } mer sec. ? Divisor classes? (D) $H^{0}(X, O(D)) = \{f \mid (f) + D \geq 0\}$ $H^{\circ}(X,L) = \{Global hol. sect. q. L\}$ where or is the mer see of L given by D.

(f) + D is an effective divisor equ to D. modulo scaling by inv. fun. on X.

IDI = { Eff div lin equ to D?

Thm: X a compact R-S., D a divisor on X. Then H (X, O(D)) is a fin dim. v. space. Pf: Let $p \in X$, let t be a uniformizer. $L_n(\rho) = \mathbb{C} \langle t^1, t^2, \dots, t^n \rangle.$ $= t^{-n} \partial_{x,p} / \partial_{x,p}$ = mp 0x,p/0x,p. Let $L(D) = \prod_{P \in X} L_{mult_{p}(D)}(P)$ by fin. dim. v. space. We have a map $H^{0}(X, O(D)) \longrightarrow L(D)$ fin dim. $f \longmapsto Laurent tails of f$ = image of f in the quotient.

Kernel = Global Hol. func. on X. \Rightarrow $H^0(X,O(D))$ is fin dim.

Def: A linear system (B divisors equivalent to D) is a subspace of HO(X, O(D)).

PEX is a "base point" of the linear system if all sections in the linear system vanish at p.

Recal		base	point dim	free (nH)	linear + (c	SB-em	basis)
	A	hol- n	map	X_ -	IP"		
Q:	When i	s this	map	an en	nbeddin	y ?	

Embedding: i:X -> P

i homeomorphism onto its image $\forall x \in X$ and the germ of a holfun at or is the restriction of the germ of a holf. fun on Y.

i.e. the restriction map

is surj. $O_p \rightarrow i_* O_x$

For X = Riemann surface, Ox,p = Conv. pow. ser in a unitomizer t. so surj \Leftrightarrow I fun on P hol. at a that restricts to a uniformizer.

X compact: (1) = one-one.

X a compact RS. D a divisor $V \subset H^0(X,D)$ a bpt linear series.

 $9: X \rightarrow 1P^n$ the map given by V. $[[X_0: ---: X_n]]^2$.

Then $V = \{ \varphi^*(h) \mid h \in \mathbb{C} \langle X_0, ..., X_n \rangle \}$

i) φ is 1-1 iff V "separates points". (i.e. $\forall P \neq q \in X \exists \sigma \in V$ such that $\sigma(p) = 0$ but $\sigma(q) \neq 0$).

(Pf: Pick $\sigma = \varphi^*(h)$ where h is the equation of a hyperplane through p but not q)

2) Opn -> P. Ox is surj iff V separates

tangent rectors i.e.

PEX J OEV st. o vanishes

to order exactly 1 at p.

It: $p \mapsto [\sigma_0(p): - : \sigma_n(p)]$ $\sigma_0(p)=0 + :>0$ So, brally at p. $\times \rightarrow A^{\prime\prime}$ $n \mapsto (\sigma_0, - : \sigma_0, \sigma_0)$.

P H (0,-1,0).

hol fun at 0 in A" = power series in 21,-., 2n. So if I hol fun that restricts to a uniformizer, then I lin comb of 21,-., 2n that dues. The same lin. comb gives 5.