Camille Krewcun – Defrost

camille.krewcun@inria.fr

Definition

Plasticity = Ability of a material to undergo **permanent deformation**

> "Slippage" in the material structure at a microscale level

Elasticity = Ability of a material to **recover its rest shape** after undergoing deformation

Representation

Stress-strain curve - elasticity

Representation

Stress-strain curve - elasticity

Representation

Stress-strain curve - elasticity

Representation

Stress-strain curve - *elasticity*

Representation

Stress-strain curve - plasticity

Computational modelling

Computational modelling

u

$$F = \nabla u$$

$$\underline{\varepsilon} = \frac{1}{2}(F + F^T) - I$$
(Small strain theory)

$$\underline{\sigma} = C * \underline{\varepsilon}$$
(Generalised Hooke's law)

Virtual work principle (spatial integration)

Elasticity

Computational modelling

u

$$F = \nabla u$$

$$\underline{\varepsilon} = \frac{1}{2}(F + F^T) - I$$
(Small strain theory)

$$\underline{\sigma} = \varphi(\underline{\varepsilon})$$

(Nonlinear behaviour law)

Virtual work principle (spatial integration)

Plasticity

Computational modelling

Yield criterion

Threshold above which plastic deformation occurs

Von Mises yield function (metals)

Flow rule

Evolution of plastic strain (energy dissipation)

Associative flow rule

Plasticity

Computational modelling

Yield criterion : Von Mises yield function

$$f: \left\{ \begin{array}{c} \mathbb{R}^6 \longrightarrow \mathbb{R} \\ \underline{\sigma} \longmapsto f(\underline{\sigma}) \end{array} \right.$$

Computational modelling

Stress tensor $\underline{\underline{\sigma}}$

$$\underline{\underline{\sigma}} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix} = \begin{pmatrix} \sigma_{\chi\chi} & \sigma_{\chi y} & \sigma_{\chi z} \\ \sigma_{y\chi} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{z\chi} & \sigma_{zy} & \sigma_{zz} \end{pmatrix}$$

Computational modelling

Stress tensor $\underline{\underline{\sigma}}$

$$\underline{\underline{\sigma}} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix}$$

Computational modelling

Yield criterion : Von Mises yield function

$$f: \left\{ \begin{array}{c} \mathbb{R}^6 \longrightarrow \mathbb{R} \\ \underline{\sigma} \longmapsto f(\underline{\sigma}) \end{array} \right.$$

Computational modelling

Yield criterion: Von Mises yield function

$$f: \left\{ \begin{array}{c} \mathbb{R}^6 \longrightarrow \mathbb{R} \\ \underline{\sigma} \longmapsto f(\underline{\sigma}) \end{array} \right.$$

$$f(\underline{\sigma}) = \left[\frac{1}{2} (\sigma_{xx} - \sigma_{yy})^2 + \frac{1}{2} (\sigma_{yy} - \sigma_{zz})^2 + \frac{1}{2} (\sigma_{zz} - \sigma_{xx})^2 + 3\sigma_{yz}^2 + 3\sigma_{zx}^2 + 3\sigma_{xy}^2 \right]^{\frac{1}{2}} - \sigma_0$$

Computational modelling

Yield criterion: Von Mises yield function

$$f: \left\{ \begin{array}{c} \mathbb{R}^6 \longrightarrow \mathbb{R} \\ \underline{\sigma} \longmapsto f(\underline{\sigma}) \end{array} \right.$$

$$f(\underline{\sigma}) = \left[\frac{1}{2}(\sigma_{xx} - \sigma_{yy})^2 + \frac{1}{2}(\sigma_{yy} - \sigma_{zz})^2 + \frac{1}{2}(\sigma_{zz} - \sigma_{xx})^2 + 3\sigma_{yz}^2 + 3\sigma_{zx}^2 + 3\sigma_{xy}^2\right]^{\frac{1}{2}} - \sigma_0$$

Equivalent stress $\sigma^{eq}()$

Computational modelling

Yield criterion : Von Mises yield function

$$f: \left\{ \begin{array}{c} \mathbb{R}^6 \longrightarrow \mathbb{R} \\ \underline{\sigma} \longmapsto f(\underline{\sigma}) \end{array} \right.$$

$$f(\underline{\underline{\sigma}}) = \left[\frac{1}{2}(\sigma_{xx} - \sigma_{yy})^2 + \frac{1}{2}(\sigma_{yy} - \sigma_{zz})^2 + \frac{1}{2}(\sigma_{zz} - \sigma_{xx})^2 + 3\sigma_{yz}^2 + 3\sigma_{zx}^2 + 3\sigma_{xy}^2\right]^{\frac{1}{2}} - \sigma_0$$

Yield stress

Computational modelling

Yield criterion : Von Mises yield function - example in 1D

$$\begin{cases} \underline{\sigma} = \sigma \in \mathbb{R} \\ f(\underline{\sigma}) = \sigma - \sigma_0 \end{cases}$$

Computational modelling

Yield criterion : Von Mises yield function - example in 1D

$$f(\sigma) < 0$$
 : elastic behaviour

Computational modelling

Yield criterion : Von Mises yield function — example in 1D

$$f(\sigma) < 0$$
 : elastic behaviour

$$f(\sigma)=0$$
 : plastic behaviour

Computational modelling

Yield criterion : Von Mises yield function — example in 1D

$$f(\sigma) < 0$$
 : elastic behaviour

$$f(\sigma)=0$$
 : plastic behaviour

$$f(\sigma)>0$$
 : unrealistic behaviour

Computational modelling

Yield surface : $f(\underline{\sigma})=0$

Computational modelling

Yield surface : $f(\underline{\sigma})=0$

3D – principal stress space

Computational modelling

Yield surface : $f(\underline{\sigma})=0$

Computational modelling

Radial return algorithm

Computational modelling

Radial return algorithm

Computational modelling

Radial return algorithm

 $\underline{\sigma}_n$: stress state at step n ($f(\underline{\sigma}_n) < 0$)

Computational modelling

Radial return algorithm

 $\underline{\sigma}_n$: stress state at step n ($f(\underline{\sigma}_n) < 0$)

 $\Delta \underline{\sigma}_n^{el}$: elastic increment

 $\underline{\sigma}_{n+1}^{el}$: elastic predictor $(f(\underline{\sigma}_{n+1}^{el}) > 0)$

Computational modelling

Radial return algorithm

 $\underline{\sigma}_n$: stress state at step n (f($\underline{\sigma}_n$) < 0)

 $\Delta \underline{\sigma}_n^{el}$: elastic increment

 $\underline{\sigma}_{n+1}^{el}$: elastic predictor $(f(\underline{\sigma}_{n+1}^{el}) > 0)$

 $\Delta \underline{\sigma}_n^{pl}$: plastic correction

 $\underline{\sigma}_{n+1}$: stress state at step n+1 (f($\underline{\sigma}_{n+1}$) = 0)

Computational modelling

Hardening

Computational modelling

Hardening – illustration with 1D example

Computational modelling

Hardening – illustration with 1D example

Computational modelling

Hardening – illustration with 1D example

Computational modelling

Yield criterion : Von Mises yield function

$$f: \left\{ \begin{array}{c} \mathbb{R}^6 \longrightarrow \mathbb{R} \\ \underline{\sigma} \longmapsto f(\underline{\sigma}) \end{array} \right.$$

$$f(\underline{\underline{\sigma}}) = \left[\frac{1}{2}(\sigma_{xx} - \sigma_{yy})^2 + \frac{1}{2}(\sigma_{yy} - \sigma_{zz})^2 + \frac{1}{2}(\sigma_{zz} - \sigma_{xx})^2 + 3\sigma_{yz}^2 + 3\sigma_{zx}^2 + 3\sigma_{xy}^2\right]^{\frac{1}{2}} - \sigma_0$$

Computational modelling

Hardening

Isotropic hardening

Computational modelling

Hardening

Isotropic hardening

Kinematic hardening

• Example: application to coronary stent expansion simulation

Example: application to coronary stent expansion simulation

12 degrees of freedom beam elements

- 6 DoFs for position
- 6 DoFs for orientation

Example: application to coronary stent expansion simulation

• Example: application to coronary stent expansion simulation Silicone coronary artery phantoms from 3D-printed moulds

Example: application to coronary stent expansion simulation

Stent deployment under micro-CT acquisition

Example: application to coronary stent expansion simulation

Rigid registration (CT/simulation output)

CT data

Example: application to coronary stent expansion simulation

