

Business Analytics 2 – Lecture 8: Multi-Attribute Utility Theory

- MAUT: EUT with multidimensional outcomes
- Preference Independence of attributes
- The additive multiattribute utility function
- Assessing attribute-specific utility functions
- Assessing weights: The tradeoff approach
- Supplementary material on preference assumptions in MAUT: Preference, Utility, and Additive Independence

Multi-attribute Utility Theory (MAUT) - Motivation

- Many problems have multiple objectives:
 - Planning the national budget
 - improve social security, reduce debt, cut taxes, build national defense
 - Planning an advertising campaign
 - reach, expenses, target groups
 - Designing a distribution system
 - minimize transportation costs, minimize CO₂ emissions
 - Planning an investment portfolio
 - maximize expected returns, minimize risk
- MAUT is EUT applied to multi-objective problems
 - Attribute: a measure for the achievement of an objective (="criterion" also)

From EUT to MAUT

■ The set of possible outcomes *T* is multidimensional, denoted by *A*:

$$A = A_1 \times \cdots \times A_n$$

- Examples of attributes:
 - revenue (\$)
 - CO₂-reduction
 - Social responsibility
- Set of all possible lotteries *L*:
 - A lottery $f \in L$ associates a probability $f(x) \in [0,1]$ with each possible outcome

$$x = (x_1, \dots x_n) \in A$$

 Deterministic outcomes are modelled as degenerate lotteries n=2 attributes: A_1 : Net present value; A_2 : market share

Lottery

Degenerate Lottery

Multi-attribute Preference representation with EU

■ \geqslant satisfies axioms A1-A4 if and only if there exists a real-valued utility function over the set of outcomes $u: A \to \mathbb{R}$ such that

$$f_X \ge f_Y \Longleftrightarrow \sum_{x \in A} f_X(x) u(x) \ge \sum_{x \in A} f_Y(x) u(x)$$

where $x = (x_1, ..., x_n)$ and $\sum_{x \in A} f_X(x) u(x)$ is the expected utility

- We say u represents preferences \geq
- Remember:
 - For continuous random variables, EU is computed as an integral
 - *u* is unique up to positive affine transformations

EUT vs. MAUT

- Since EUT does not require outcomes to be unidimensional, in principle EUT contains MAUT
- But the assessment of $u: A_1 \times \cdots \times A_n \to \mathbb{R}$ is much more complicated than assessment of $u: T \to \mathbb{R}$

- In fact MAUT is mainly a collection of methods and models to decompose the assessment of *u* into two parts
 - 1. Assessing the attribute-specific utility functions $u_i: A_i \to \mathbb{R}$, i = 1, ..., n
 - 2. Choosing a functional form to aggregate $u_1, ..., u_n$ to overall utility u
 - Step 1 is similar to assessing unidimensional utility functions
 - For Step 2, we have to make some assumptions about preferences among the multiple attributes

Preference Independence (PI)

■ **Definition.** A Subset of attributes $S \subset \{A_1, ..., A_n\}$ is **PI** if the preference order of degenerate lotteries that differ only on attributes in S does not depend on the levels of the rest of the attributes \bar{S} , i.e.,

$$(x_s^I, x_{\bar{S}}) \geqslant (x_s^{II}, x_{\bar{S}}) \Rightarrow (x_s^I, x'_{\bar{S}}) \geqslant (x_s^{II}, x'_{\bar{S}}) \forall x'_{\bar{S}}$$

- Example: Consider an investment selection problem with three attributes: Profits, Market share, and CO₂ reduction. Is S={Profits} preference independent?
 - $\bar{S} = \{\text{Market Share, CO}_2 \text{ reduction}\}$
 - Take arbitrary a and b such that $(aM \in 10\%, 10\%, 10\%, 10\%, 10\%, 10\%)$.
 - Then, is it true that $(aM \in c, c, d \text{ tons}) \ge (bM \in c, c, d \text{ tons})$ for any c and d?
 - It the answer is yes, then {Profits} is PI
- Note! The definition of the most and least preferred levels x_i^* , $x_i^0 \in A_i$ for attribute $\{A_i\}$ is possible only if the attribute is PI.

Preference Independence (PI): Meal example

- Consider choosing a meal with three attributes:
 - Wine: A_t ={red, white}
 - Main: A_2 = {beef, fish}

E.g. vector (white, fish, rice) is a meal

- Side: A_3 = {potatoes, rice}
- The DM states that:
 - 1. "I prefer red wine to white wine": (red, b, c) > (white, b, c) $\forall b \in A_2, c \in A_3$
 - 2. "I prefer beef to fish": $(a, beef, c) > (a, fish, c) \forall a \in A_1, c \in A_3$
 - 3. "I prefer potatoes to rice": $(a, b, potatoes) > (a, b, rice) \forall a \in A_1, b \in A_2$
 - 4. (red, beef, rice) > (white, beef, potatoes)
 - 5. (red, fish, rice) < (white, fish, potatoes)

• Questions:

- Which of the attributes {wine}, {main} and {side} are PI?
- Is the <u>subset</u> of attributes {wine, side} PI?

Additive Multiattribute Utility Function

• Theorem. If <u>each</u> subset of attributes is PI and some other assumptions* hold, then preferences ≽ are represented by an additive MAU function

$$u(x) = \sum_{i=1}^{n} w_i u_i(x_i) + u(x^0)$$
, where

- $u_i(x_i) = \frac{u(x_1^0, x_2^0, ..., x_i, ..., x_n^0) u(x^0)}{u(x_1^0, x_2^0, ..., x_i^*, ..., x_n^0) u(x^0)} \in [0,1]$ is the attribute-specific utility function for A_i
- $w_i = [u(x_1^0, x_2^0, \dots, x_i^*, \dots, x_n^0) u(x^0)] > 0$ is the "importance" weight for attribute A_i
- $u(x^*) u(x^0) = \sum_{i=1}^n w_i$

Notation:

Vector of attribute levels (an alternative): $x = (x_1, ..., x_n)$

All attributes at the most preferred level: $x^* = (x_1^*, ..., x_n^*)$

All attributes at the least preferred level: $x^0 = (x_1^0, ..., x_n^0)$

Standard Scaling of the Additive MAU function

- Remember from EUT: Utilities for two outcomes can be fixed
- The theorem on the previous slide left the numerical values for $u(x^0)$ and $u(x^*)$ unspecified
 - Any values can be selected (as long as $u(x^0) < u(x^*)$)
 - Usually $u(x^0) = 0$ and $u(x^*) = 1$, which leads to

$$u(x) = \sum_{i=1}^{n} w_i u_i(x_i)$$
, where $\sum_{i=1}^{n} w_i = 1$

- It would be possible to choose some other multi-attribute outcomes $x^+, x^- \in A$, $x^+ > x^-$, and scale the utility function so that $u(x^+) = 1$ and $u(x^-) = 0$
 - E.g. In some applications we might want the status-quo alternative (or its CE) to have zero utility to help communicate the model results

Assessing Attribute-specific Utility Functions

- Use same techniques as with unidimensional utility functions
 - Certainty equivalent, probability equivalent, etc; Scale so that $u_i(x_i^0) = 0$ and $u_i(x_i^*) = 1$ for each attribute i.
 - Also direct "scoring" often applied in practice
- What about the levels of other attributes ?
 - Fixed at the same level in every outcome (cf. 4€)
 - Usually not explicitly shown to the DM

- Results do not depend on what this level is because we are assuming that preferences can be represented with the additive utility function
 - E.g., utility of apples with the additive utility function:

$$\begin{split} u(x_1,4) &= 0.5u(50,4) + 0.5u(-10,4) \\ \Leftrightarrow w_1u_1(x_1) + w_2u_2(4) &= 0.5w_1u_1(50) + 0.5w_2u_2(4) + 0.5w_1u_1(-10) + 0.5w_2u_2(4) \\ \Leftrightarrow w_1u_1(x_1) &= 0.5w_1u_1(50) + 0.5w_1u_1(-10) \\ \Leftrightarrow u_1(x_1) &= 0.5u_1(50) + 0.5u_1(-10) \quad \text{(The amount of euros does not matter!)} \end{split}$$

Example: Choosing a Software Supplier

- Step 1: Generate objectives
 - Minimize cost, Minimize Delay, Maximize quality
- Step 2: Develop attributes to measure the achievement of the objectives
 - Cost obtained from suppliers' offers
 - A numerical evaluation of delay
 - A verbal evaluation based on recommendations is used to measure quality

i	Name	A_i	x_i^0	x_i^*
1	Cost	[10,40] k€	40	10
2	Delay	{1,2,,30} days	30	1
3	Quality	{fair, good, excellent}	fair	exc.

- Step 3: Assess attribute-specific utility functions
 - Quality: Direct assessment
 - $u_3(\text{fair})=0$, $u_3(\text{good})=0.4$ and $u_3(\text{exc.})=1$
 - Cost: Linear utility function

•
$$u_1(x_1) = \frac{40-x_1}{30}$$

- Delay: Assessment with CE approach

Cost

Delay

Quality

[10,40]€

 $\{1,2,...,30\}$ days

{fair, good, excellent}

10

exc.

30

fair

13

Assessing attribute weights: Tradeoff-weighting

- First, ask the DM to establish a preference order for n hypothetical alternatives $(x_1^0, ..., x_i^*, ..., x_n^0)$, i=1,...,n
 - ith attribute has the most preferred outcome; others the least preferred
- Assume this results in the order

$$(x_1^*, x_2^0, \dots, x_n^0) \geq (x_1^0, x_2^*, x_3^0 \dots, x_n^0) \geq \dots \geq (x_1^0, \dots, x_i^*, \dots, x_n^0) \geq \dots \geq (x_1^0, \dots, x_{n-1}^0, x_n^*)$$

■ Then, for each i=2,...,n ask the DM to define $x_i \in A_i$ such that

$$(..., x_i, x_{i+1}^0, ...) \sim (..., x_i^0, x_{i+1}^*, ...)$$

- For each *i* this results in linear equation

$$u(\dots, x_i, x_{i+1}^0, \dots) = u(\dots, x_i^0, x_{i+1}^*, \dots)$$
 Other terms of the sum cancel out $\Leftrightarrow w_i u_i(x_i) = w_{i+1} u_{i+1}(x_{i+1}^*)$ cancel out $w_i u_i(x_i) = w_{i+1}$

■ These n-1 equations together with $\sum w_i = 1$ are sufficient to solve the values on the n unknowns w_1, \dots, w_n

She is indifferent

between the two

alternatives

Example: SW supplier (Cont'd)

j	Name	A_i	x_i^0	x_i^*
1	Cost	[10,40] €	40	10
2	Delay	{1,2,,30} days	30	1
3	Quality	{fair, good, excellent}	fair	exc.

- Step 4: Assess attribute weights
 - Assume the DM states: $(40,1, fair) \ge (10,30, fair) \ge (40,30, exc.)$
 - Choose delay $x_2 \in \{1, ..., 30\}$ such that $(40, x_2, x_3) \sim (10, 30, x_3)$
 - Answer $x_2 = 8$ gives

$$w_1 u_1(40) + w_2 u_2(8) + w_3 u_3(x_3) = w_1 u_1(10) + w_2 u_2(30) + w_3 u_3(x_3)$$

$$w_2 u_2(8) = w_1$$

$$\Leftrightarrow w_2 \cdot 0.9 = w_1$$

Value of x_3 does not matter

- Choose cost $x_1 \in [10,40]$ such that $(x_1, x_2, fair) \sim (40, x_2, excl.)$
- Answer x_1 =20 gives

$$w_1 u_1(20) + w_2 u_2(x_2) + w_3 u_3(\text{fair}) = w_1 u_1(40) + w_2 u_2(x_2) + w_3 u_3(\text{excl.})$$

 $w_1 u_1(20) = w_3$

$$\Leftrightarrow w_1 \cdot \frac{2}{3} = w_3$$

Value of x_2 does not matter

Step 4: Assess attribute weights (cont'd)

$$w_2 \cdot 0.9 = w_1$$

$$w_1 \cdot \frac{2}{3} = w_3$$

$$\sum_i w_i = 1$$

i	Name	A_i	x_i^0	x_i^*
1	Cost	[10,40] €	40	10
2	Delay	{1,2,,30} days	30	1
3	Quality	{fair, good, excellent}	fair	exc.

$$\Rightarrow 1 = w_1 + w_2 + w_3 = w_1 + \frac{w_1}{0.9} + \frac{2w_1}{3} \approx 2.774w_1 \Rightarrow w_1 \approx 0.36$$

$$\Rightarrow w_2 = \frac{w_1}{0.9} \approx 0.40$$

$$\Rightarrow w_3 = \frac{2w_1}{3} \approx 0.24$$

QU	IARTILE	•	× 🗸	fx =\$F\$4*F9+	+\$G\$4 * G9 +\$ H	I\$4*H9										
4	А	В	С	D	E F	G	Н	I	J	K	L	M	Ν	0	P	
1														x2	u2(x2)	
2					Attribute weights (wi)		hts (wi)							1	1.000	
3					Cost	Delay	Quality	1						2	0.986	
1					0.36	0.40	0.24	Ī	1.00					3		
5												u(x)				
5		Attrib	ute-specific perfo	ormances	Attribute-spe		-specific utilities					u(x)	_	. \	147.21.	(v
7		Cost	Delay	Quality	Cost	Delay	Quality	Ove	erall utility			u(x)		· / .	wiui	$(\lambda$
	Supplier	x1	x2	х3	u1(x1)	u2(x2)	u3(x3)	u	(x1,x2,x3)					<u>; _ 1</u>		
	x^0	40	30	fair	0.00	0.00	0.00	39+	\$H\$4*H9					$\iota - 1$		_
)	x^*	10	1	excellent	1.00	1.00	1.00		1.00					9	0.889	
L														10	0.875	
2														11	0.850	
3	Tradeoff1a	40	8	fair	0.00	0.90	0.00		0.36		х3	u3(x3)	Ш	12	0.825	
1	Tradeoff1b	10	30	fair	1.00	0.00	0.00		0.36		fair	0		13	0.800	
5											good	0.4	Ш	14	0.775	
5	Tradeoff2a	20	1	fair	0.67	1.00	0.00		0.64		excellent	1		15	0.750	
7	Tradeoff2b	40	1	excellent	0.00	1.00	1.00		0.64					16	0.714	
3														17	0.679	
)														18	0.643	
)														19	0.607	
														20	0.571	
														21	0.536	
														22	0.500	
														23	0.438	
;														24	0.375	
														25	0.313	
'														26	0.250	_
3														27	0.188	<u>'tic</u>
)												L	epp		lkk ou<u>n</u>28 a	Lie
)														29	0.063	
1														30	0.000	

MAUT: Decision recommendations

- Consider there are m decision alternatives $x^j = (x_1^j, x_2^j, ..., x_n^j), j=1,...,m$
- Alternatives are ranked based on their expected utilities $E[u(x^j)]$
 - If there are no uncertainties then

$$E[u(x^j)] = u(x^j) = \sum_i w_i u_i(x_i^j)$$

- If there are uncertainties then x^j is a random variable with some PDF $f_{x^j}(x)$ and the expected utility is computed as

$$E[u(x^j)] = \sum_{x \in A} f_{x^j}(x) u(x) = \sum_{x \in A} f_{x^j}(x) \sum_i w_i u_i(x)$$

- Integral for continuous r.v:s
- In a decision tree MAU is used just like unidimensional utility

- Step 5: Producing decision recommendations
 - Assume there are three possible suppliers
 - Supplier 1: Expensive, fair quality, has the software ready

$$x^1 = (35,1, fair)$$

- Supplier 2: Cheap, good quality, software available in 1 week

$$x^2 = (21,7, good)$$

- Supplier 3: Moderate price, good quality, there is a 20% chance of 1-week delay and 10% chance of 2-week delay

$$x^{3} = (24, \tilde{x}^{3}_{2}, \text{good}), f_{\tilde{x}^{3}_{2}}(x) = \begin{cases} 0.7, & \text{if } x = (24, 1, \text{good}) \\ 0.2, & \text{if } x = (24, 8, \text{good}) \\ 0.1, & \text{if } x = (24, 15, \text{good}) \end{cases}$$

	A	В	С	D	E F	G	Н	Į.	I J	
1										
2						Attribute weights (wi)				
3					Co	st Dela	/ Quality			
4					0.3	36 0.40	0.24		1.00	
5								_		
6		Attribu	ite-specific perfo	rmances		Attribute-sp	ecific utilities			
7		Cost	Delay	Quality	Co	st Dela	Quality		Overall utility	
8	Supplier	x1	x2	х3	u1(x1) u2(x2) u3(x3)	\perp	u(x1,x2,x3)	
9	x^0	40	30	fair	0.0	0.00	0.00		0.00	
10	X^*	10	1	excellent	1.0	00 1.00	1.00		1.00	
11	Tradeoff1a	40	8	fair	0.0	0.90	0.00		0.36	$E[u(x^{1})]$ $E[u(x^{2})]$ $E[u(x^{3})]$
12	Tradeoff1b	10	30	fair	1.0	0.00	0.00		0.36	
13	Tradeoff2a	20	1	fair	0.6	57 1.00	0.00		0.64	$E[a_{i}(a_{i}2)]$
14	Tradeoff2b	40	1	excellent	0.0	00 1.00	1.00		0.64	$\begin{bmatrix} & E[u(x)] \end{bmatrix}$
15										
16	Supplier 1	35	1	fair	0.1	1.00	0.00		0.46	$E[u(x^3)]$
17	Supplier 2	21	7	good	0.6	0.92	0.40		0.69	
18										
19	Supplier 3 (s1)	24	1	good	0.5	3 1.00	0.40		0.69	√
20	Supplier 3 (s2)	24	8	good	0.5	0.90	0.40		0.65	0.67
21	Supplier 3 (s3)	24	15	good	0.5	3 0.75	0.40		0.59	
22										
23									Lep	pänen / Vilkkumaa / Liesiö
24			=	=0.7*J19+0.2	2*J20+	·0.1*J21				
25										20
26										

Supplementary material on preference assumptions in MAUT/MAVT

Preference Independence (PI)

Definition. A Subset of attributes $S \subset \{A_1, ..., A_n\}$ is **PI** if the preference order of degenerate lotteries that differ only on attributes in *S* does not depend on the levels of the rest of the attributes \bar{S} , i.e.,

$$(x_s^I, x_{\bar{S}}) \geqslant (x_s^{II}, x_{\bar{S}}) \Rightarrow (x_s^I, x'_{\bar{S}}) \geqslant (x_s^{II}, x'_{\bar{S}}) \forall x'_{\bar{S}}$$

- Example: Consider an investment selection problem with three attributes: Profits, Market share, and CO₂ reduction.
 - Is S={Profits} preference independent?
 - $\bar{S} = \{\text{Market Share, CO}_2 \text{ reduction}\}$
 - Take arbitrary a and b such that $(aM \in 10\%, 10\%, 10\%, 10\%, 10\%, 10\%)$.
 - Then, is it true that $(aM \in c, c, d \text{ tons}) \ge (bM \in c, c, d \text{ tons})$ for any c and d?
 - It the answer is yes, then {Profits} is PI
- Note! The definition of the most and least preferred levels x_i^* , $x_i^0 \in A_i$ for attribute $\{A_i\}$ is possible only if the attribute is PI.

Mutual Preference Independence

- Example (Cont'd).
 - Is S={Profits, Market Share} preference independent?
 - $\bar{S} = \{CO_2 \text{ reduction}\}\$
 - Assume $(10M\mathfrak{C},11\%,10 \text{ tons}) \ge (5M\mathfrak{C},12\%,10 \text{ tons})$?
 - Then, does it hold for any a that $(10M\mathfrak{C},11\%, a \text{ tons}) \ge (5M\mathfrak{C},12\%, a \text{ tons})$?
 - It the answer is yes then attribute set {Profits, Market Share} is PI
 - However, it might be that, for instance, (10M€,11%,0 tons) ≤ (5M€,12%,0 tons), in which case {Profits, Market Share} is not PI.
 - E.g. "If the investment does not contribute to the environmental objective, it becomes more important to establish a stronger market share to survive the PR blowback"
- **Definition.** If every subset $S \subset \{A_1, ..., A_n\}$ is PI then we say the attributes $A_1, ..., A_n$ are **mutually preference independent (MPI)**

PI and MPI: Meal example

- Consider choosing a meal with three attributes:
 wine: A1={red, white}, dish; A2= {beef, fish}, side dish: A3= {potato, rice}
- The DM states "I prefer (i) red wine to white, (ii) beef to fish and (iii) potato to rise.
 - Since these statements do not depend on the levels of attributes, they imply that each attribute $\{A_i\}$ is PI
- The DM also has the following preferences:
 - (red, beef, rice) > (white, beef, potato)
 - (red, fish, rice) < (white, fish, potato)

Question: Are the attributes MPI?

■ The subset {wine, side dish} is not PI, and therefore the attributes are not mutually preference indep.

For any $a \in A_1, b \in A_2, c \in A_3$ (red, b, c) > (white, b, c) (a, beef, c) > (a, fish, c) (a, b, potato) > (a, b, rice)

Utility Independence (UI)• **Definition.** Subset of attributes $S \subset \{A_1, ..., A_n\}$ is **UI** if the preference order of lotteries that have equal certain outcomes on attributes S does not depend on the level of these outcomes, i.e.,

$$(\widetilde{\boldsymbol{x}}_{\scriptscriptstyle S}^{\scriptscriptstyle I}, \boldsymbol{x}_{\bar{\scriptscriptstyle S}}) \geqslant (\widetilde{\boldsymbol{x}}_{\scriptscriptstyle S}^{\scriptscriptstyle II}, \boldsymbol{x}_{\bar{\scriptscriptstyle S}}) \Rightarrow (\widetilde{\boldsymbol{x}}_{\scriptscriptstyle S}^{\scriptscriptstyle I}, \boldsymbol{x'}_{\bar{\scriptscriptstyle S}}) \geqslant (\widetilde{\boldsymbol{x}}_{\scriptscriptstyle S}^{\scriptscriptstyle II}, \boldsymbol{x'}_{\bar{\scriptscriptstyle S}}) \forall \boldsymbol{x}_{\bar{\scriptscriptstyle S}}'$$

- Example:

Assume DM prefers I:

If {Profits} is UI, then she prefers I for any a and b:

However, for a small market share (a), she may be more risk-averse about profits and choose II

→ {Profits} not UI.

■ Definition. If every subset $S \subset \{A_1, ..., A_n\}$ is UI then we ww say the attributes $A_1, ..., A_n$ are **mutually utility independent (MUI)**

Additive independence (AI)

■ **Definition.** Subset of attributes $S \subset \{A_1, ..., A_n\}$ is **AI** if [the DM is indifferent between these lotteries I and II for any $x, x' \in A$.

 $(20M \in 10\%, 2 \text{ tons})$

 $(1M \in 2\%, 0 \text{ tons})$

• Example:

- {Profits} is AI if the DM is indifferent between I and II
- However, she might prefer II since it does not include an outcome where all attributes have very poor values.
 In this case {Profits} is not AI.
- AI is the strongest of the three preference assumptions:
 - Let $S \subset \{A_1, ..., A_n\}$. Then S is $AI \Rightarrow S$ is $UI \Rightarrow S$ is PI

Additive Multiattribute Utility Function

Theorem. The attributes are MPI and one attribute is AI iff preferences ≽ are represented by an **additive** MAU function

$$u(x) = \sum_{i=1}^{n} w_i u_i(x_i) + u(x^0)$$
, where

- $u_i(x_i) = \frac{u(x_1^0, x_2^0, ..., x_i, ..., x_n^0) u(x^0)}{u(x_1^0, x_2^0, ..., x_i^*, ..., x_n^0) u(x^0)} \in [0,1]$ is the attribute specific utility function for A_i
- $w_i = [u(x_1^0, x_2^0, \dots, x_i^*, \dots, x_n^0) u(x^0)] > 0$ is the "importance" weight for attribute A_i
- $u(x^*) u(x^0) = \sum_{i=1}^n w_i$
- Sketch of proof:
 - If an attribute is AI it is also UI. This together with the MPI assumption implies the attributes are MUI. This implies that *u* is either multiplicative or additive. The AI assumption then implies it must be additive.

$$x = (x_1, ..., x_n), x^* = (x_1^*, ..., x_n^*), x^0 = (x_1^0, ..., x_n^0)$$

What if preference assumptions do not hold?

- More complicated utility functions are available (not covered here)
 - If attributes mutually UI (but no attribute is AI) then preferences represented by the multiplicative utility function

$$u(x) = \frac{\prod_{i=1}^{n} [1 + k w_i u_i(x_i)]}{k} - \frac{1}{k}$$

- One additional parameter *k* to assess
- If each attribute is UI then preferences are represented by the multilinear utility function

$$u(x) = \sum_{I \subseteq \{1,...,n\}} w_I \prod_{i \in I} u_i(x_i) \prod_{i \notin I} (1 - u_i(x_i))$$

- 2^n parameters to assess $(w_I, I \subseteq \{1, ..., n\})$
- Common observation from practical applications: Additive or multiplicative multi-attribute utility usually sufficient.
 - May however require restructuring attributes

