E	Find the eigen values and eigen vector for $A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \end{bmatrix}$
F	Show that $F = (y^2 - z^2 + 3yz - 2x)i + (3yz + 2yy)j + (3yz - 2yz + 2zz + 2zz)$ is both irrotational and solve (4)
Q3. (20 Marks Eac	Solve any Four out of Six5 marks mach
A	Find $L\left[\int_0^t e^{-2u}\cos^2u du\right]$
В	Find the inverse Laplace transform by using convolution theorem (\$2+4\$+13)2
C	Obtain the Fauntain
	Obtain the Fourier series for $f(x) = x$ in (0.2π)
D	The strong or the family of
	$e^{-x} \cos y + xy = c$ where c is the real constant in the xy-plane.
E	Show that $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ satisfies Cayley-Hamilton theorem. Hence
F	Evaluate by using Green's theorem $\int_C (3x^2 - 8y^2) dx + (4y - 6xy) dy$, where C is the closed region bounded by $y = \sqrt{x}$ and $y = x$
Q4. (20 Marks Each)	any rout out of Six
A	
3	Evaluate $\int_0^{\infty} e^{-t} \int_0^t \left(\frac{\sin u}{u}\right) du dt$ $L^{-1} \left[log \left(1 + \frac{4}{e^2} \right) \right]$
	Obtain the Fourier series for x^3 in $(-\pi,\pi)$
	Find the analytic function $f(z)$ whose imaginary part is $e^{z}(x \sin y + y \cos y)$
	If $A = \begin{bmatrix} 2 & 3 \\ -3 & -4 \end{bmatrix}$ then find A^{50}
	Use Stoke's Theorem to evaluate $\int_{C} F dF$ where $F = x^{2}I + xyj$ and C is boundary of the rectangle $x=0$, $y=0$, $x=a$, $y=b$

Paper / Subject Code: 51401 / Applied Mathematics-III SEISEMIII IT CHOICE BASEN AM-III

Total Marks: 80

Hours: 3 hrs

Note: 1) Question no. 1 is compulsory.

2) Attempt any three questions out of five questions

a) If any 11 numbers between 1 and 20 are chosen show that at least two of them will be multiplies of each other.

b) A function $f: R - \left\{\frac{7}{3}\right\} \to R - \left\{\frac{4}{3}\right\}$ is defined by $f(x) = \frac{4x-5}{3x-7}$, Prove that f is bijective

and find the rule for f (05)

c) Find $L\left[\frac{d}{dt}\left(\frac{1-\cos 2t}{t}\right)\right]$ (05)

d) Prove that there does not exist an analytic function whose imaginary part is

 $3x^2 + \sin x + y^2 + 5y + 4$. (05)

Q-2

a) Find $L^{-1}\left[\frac{s}{(s^2+3^2)(s^2+5^2)}\right]$ using convolution Theorem. (06)

(06)b) What is the chance of throwing ten with four dice?

c) In a certain examination there are multiple choice questions. There are four possible answers to each questions and one of them is correct. An intelligent student can solve 90% questions correctly by reasoning and for the remaining 10% questions he gives answer by guessing. A week student can solve 20% question correctly by reasoning and for the remaining 80% questions he gives answer by guessing. An intelligent student gets the correct (08)answer. What is the probability that he was guessing.

a) A can hit a target 2 times in 5 shots, B 3 times in 4 shots, C 2 times in 3 shots. They fire a volley. What is the probability that at least 2 shots hit the target? (06)

b) Find $L^{1}\left(\tan^{-1}\left(\frac{2}{c^{2}}\right)\right)$ (06)

c) If R is the relation on the set of integers such that aRb if and only if 2a+3b is divisible by 5. (08)Find the equivalence classes.

a) Evaluate $\int_{0}^{\infty} e^{-it} \left(\frac{\cos(7t) - \cos(11t)}{t} \right) dt$ (06)

b) Find $L^{-1} \left[\frac{s^2 + 2s + 3}{(s^2 + 2s + 10)(s^2 + 2s + 17)} \right]$ (06)

c) Find the bilinear Transformation which maps the points 2, i, -2 on to the points 1, i, -1. (08)Also find image of |z| = 1 of z-plane to w-plane.

Paper / Subject Code: 51401 / Applied Mathematics-III

S SEM III | IT | CHOICE BASED | AM - III

Q-5

a) A family consisting of an old man, 6 adults and 4 children is to be seated in a row for dinner. The children with dinner. The children wish to occupy two seats at each end and the old man refuse to have a child on either side of him. child on either side of him. In how many ways can the seating arrangement be made for the dinner?

b) Find the analytic function f(z) = u + iv in terms of z if $u - v = (x - y)(x^2 + 4xy + y^2)$. (06)

(08) c) Solve $\frac{d^3y}{dt^3} - 2\frac{d^2y}{dt^2} + 5\frac{dy}{dt} = 0$ with y(0) = 0, y''(0) = 0, y'''(0) = 1.

Q-6 (06)

a) Prove that $(A-B)\cup(B-A)=(A\cup B)-(A\cap B)$ (06)

b) Draw the Hasse diagram of Dios.

c) Find Laplace Transformation of the following

i) $te^{3t}erf(5\sqrt{t})$, ii) $\sin tH(t) + (\cos t - \sin t)H(t - \pi)$ (08)

Paper / Subject Code: 51401 / Applied Mathematics-III

IT/ Choice based/som III/ Applied Maths III

[Time: 3 Hours]

[Marks:80]

06

Please check whether you have got the right question paper.

N.B: 1. Q 1 is compulsory.

- 2. Attempt any three from remaining
- 3. Rights indicate full marks.
- 1. a. If A, B, C are subset of universal set V then prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$ 05
 - b. If $f: R \to R$ is given by y = 2x + 1, prove that f is one to one and onto and find f^{-1} 05
 - c. Find L $\{(1+t\bar{e}^t)^3\}$
 - d. Check whether the following function Harmonic or not $3x^2 + sinx + y^2 + 5y + 4$ 05
- 2. a. Find k if $f(z) = \frac{1}{2} \log (x^2 + y^2) + i \tan^{-1} \frac{kx}{y}$ is analytic
 - b. Find L (|sin2t|)
 - c. Let $f: R \to R$ $f(x) = x^2 + 2x 1$ $g: R \to R$ $g(x) = 4x^2 + 2$
 - Find (1) f 0 (gof) (II) go (fog)
- 3. a. Find Bilinear transformation under which Z=1, -i, -1 from point w=i, 0, -i 06
 - b. If A be the set of non-integers and let R be a relation on A×A defined by (a, b) R(c, d) if ad=bc, then prove that R is an equivalence relation.
 - c. Find (1) L $\left\{ \int_{0}^{t} \bar{e}^{u} \frac{stnu}{u} du \right\}$ (2) L $\left\{ (1 + 2t + 3t^{2} + t^{3})H(t 2) \right\}$
 - a. Use convolution them and evaluate
 - $L^{-1}\left\{\frac{(s+5)^2}{(s^2+10s+16)^2}\right\}$
 - b. Find transitive clouser of following relation defined on $A = \{a, b, c, d, e\}$ by Warshal 06 algorithm $R = \{(a, a) (a, b) (b, c) (c, d) (c, c) (d, e)\}$
 - c. A man speaks truth 3 times out of 5 when a die is thrown he states that it gave an ace what
 is probability that this event has actually happened.

SE/IT/chow based /sem III / Applied Mathematics-III

a. How many four digit numbers can be formed out of the digits 1, 2, 3, 5, 7, 8, 9 if no digit is 06
 repeated twice? How many of them will be greater than 3000.

06

80

06

08

- b. Solve using Laplace transform $\frac{d^2y}{dt^2} + 9y = 18 \text{ given that } y(0) = 0 \text{ and } y(\frac{\pi}{2}) = 0$
- c. Evaluate (1) L⁻¹ $\left\{\frac{1}{\sqrt{2s+1}}\right\}$ (2) L⁻¹ $\left\{\frac{2s^2-6s+5}{s^2-6s^2+11}\right\}$
- 6. a. Solve $a_n = 5a_{n-1} 6a_{n-2}$ for $n \ge 2$, $a_0 = 0$, $a_1 = 1$
 - b. Find orthogonal curves of family of curves e^{-x} Cos y +xy= α , where α is the real constant
 - i. Find the image of rectangular region bounded by x=0, x=3, y=0, y=2 under the transformation w= z+(1+i)
 - ii. A fair dice is thrown thrice. Find probability that sum of numbers obtained is 10.

	10	
Option C:	3	
Option D:	5.25	
20:2↑	A continuous $f(x) = k^2 x^3$,	andom variable X has the probability law
Option A:	2/81	$0 \le x \le 3$, $k > 0$ then value of k is
Option B:	4/81	
Option C:	4/9	
Option D:	2/9	

Q2 (20 Marks)	Solve any Four or	ıt of Six		5 m	arks each		FI		
A	Find Laplace trans	form of	f(t) = si	n²t cos³t					
В	Using convolution	theorem		10.00	place trans				
C	Find Fourier series of $f(x) = x \sin x \operatorname{in}(-\pi, \pi)$.								
D	Find an analytic function $\omega = f(z) = u + iv$, where $z = x + iy$, whose real part is $u(x,y) = x^2 - y^2 + 2y - \sin(x) \cdot \sinh(y)$								
	Calculate Spearma coefficient of corre 5 students.	n's coeff elation fr	om the fo	ollowing	iata on ne	ight and wer	ights		
E	Height(in	61	63	65	67	69			
	inches) Weight(In kgs)	64	62	65	70	72			

	The warranty of electronic device in the	
F	function $f(x) = \begin{cases} 4e^{-4x}, x > 0 \\ 0, otherwise \end{cases}$	ty
	Find the expected warranty of the device.	

Q3 (20 Marks)	Solve	e any Fou	rout of S	ix				
20 Marks)		-					5 ma	rks each
A	Giver Find	f(t) = L[f(t)],	$ \begin{cases} 4, 0 \leq \\ 0, x > \\ L[f'(t)] \end{cases} $	x < 3				
В	Find	inverse	Laplace	transform	n of Ø($s) = \frac{3s^2}{s^3 + 1}$	2+11s+11 6s ² +11s+	6
C	Find l	nalf range	sine serie	s for $f(x)$	$)=e^{-x}$	0 < x < 1	I.,	
D	In the Show	polar coo that u sati	rdinates, l isfies Lap	let $\omega = u$ lace's equ	+ iv, u	$ i(r,\theta) = r \\ \text{find } v(r,\theta) $	·²sin2θ. θ).	
	Fitas	econd deg	gree parab	olic curve	to the fo	llowing da	ita.	
Е	X	0	1	2	3	4	5	6
	у	1	1	3	7	13	21	31
F	A rand $x = 0$,	lom varial 1,2,3,4.W	ble X has rite Prob	the proba	bility dis	tribution F and find s	p(X = x)standard o	$= \frac{1}{16} \left(4_0 \right)$ leviation

10 21 A	Find the constant 'a' if $f(z) = ax^2y - y^3 + i(3xy^2 - x^3)$ is analytic $a = 0$ $a = 0$ $a = 6$ $a = 2$
Q2: (20 Marks)	Solve any Four out of Six5 marks each Fit a straight line to the following data $(X,Y) = (1,-5),(1,1),(2,4),(3,7),(4,10)$ Find half range cosine series for $f(x) = x(\pi - x)$, $0 < x < \pi$
C	Find $L^{-1}\left[\frac{1}{(s+3)(s-4)^2}\right]$ using convolution theorem. Find the orthogonal trajectories of the family of curves
D	A discrete random variable has p.d.f. given below $X : -2 -1 0 1 2 3$
E	$P(X=x): 0.2 k 0.1 2k 0.1 2k$ Find k and $(P(X \ge 1)$
F	Evaluate $\int_{0}^{\infty} \frac{e^{-t} - e^{-3t}}{t} dt$

Q3. (20 Marks)	Solve any Four out of Six5 marks each	
A		4 Page

	Show that $u = 3x^2y - y^3$ is harmonic. Find the corresponding analytic function.
В	Find $L^{-1}\left[\frac{5s+3}{(s-1)(s^2+2s+5)}\right]$
	Find the Fourier series for $f(x) = x^3$, in $(-\pi, \pi)$
D	Find the expectation and M.G.F. of the following distribution X: P(X=x): 1/3 1/2 1/6
Ē	Compute Spearman's rank correlation coefficient from the following data X: 16, 18, 25, 30, 12 Y: 38, 21, 38, 16, 50
F	Find Laplace transform of $te^{-t}\cos\cos t$

Q.2

Q 2.	Solve any	y Fou	r out o	f Six				5	marks	each	
A	Find Lap	olace	transf	form	of e-	$3t t \sqrt{1}$	- sin2	lt.	2011/2011/20	100,000	
В	Find inv	erse/	Lapla	ce tra	nsform	ns of	552-1	15:-11			
С	Expand	Fouri	er Sei	ries fo	r f(v	1-10	(5+1)		2-1	1	
D	Find con (ax ⁴ + l is analyt	bx^2y	is a, i	J. C. O	and o	s if				lay)	
	Ten students got the following percentage of marks in mathematics and statistics										
E	Maths	78	36	98	25	75	82	90	62	65	39
	Stats	84	51	91	60	68	62	86	58	53	47
	Calculate										
F	A bolt is twice as number 5% of bo stock pile that it is	man of ite ilts pre e and	y time ems. S roduce I one	es as 3% of ced by is cho	B, and bolts C are	d mack produ e defe	nines E iced b ctive.	3 and 0 y A an All bo	c prod d B ar lts are	e defe e put i	qual ective and nto one

Q.3

Q. 3	Self	e any For	r out of S	ix	-	-			
A	Вуц	ising Lap	lace tran	sform o	value	roo singa		5 m	narks each
	But	icin- c			valuate	0 0	at t		
В	(52+	sing Cor	volution	theore	m, find in	verse La	aplace t	ransfo	orm of
С	Ехр	and Fou	ırier Se	ries for	f(x) =1-	x² in (-1, 1)	715	
D	Find v=_c	the an sinh cosh 2y+	alytic for cos2x	unction	f(z) = u	+iv , ir	term:	s of z	, if
	Obta	in the e	quations	of the l	ines of re	egressio	n for th	ne fol	lowing dat
E	X	65	66	67	67	68	69	70	
-2754): 	Y	67	68	65	68	72	72	69	71
	Aran	dom va	riable X	has the	following	ng prob	ability	distri	bution
	No.	X	-2	-1	0	1	2		3
		1576-31G			The second second		0	-	
F	14-17	P	0.1	K	0.1	2K	0.	2	3K

Q. 4	Solve any F	our out of	Six						
A	Find Lapla	ce transfo	orm of e	-2u coel			5 marks each		
В	Find Invers	e Laplace	transform	m of 1,	V 52+0	7			
C	Find Inverse Laplace transform of $\frac{1}{s} \log \sqrt{\frac{s^2+9}{s^2+16}}$								
D	Find the half range cosine series for $f(x) = (x-1)^2$; $0 < x < 1$ $x^3y - xy^3 = c$								
-	Fit a straigh	t line of	the form	V=a+hv+	0 th = E 11	000000000000000000000000000000000000000			
E	X	1	3	5	o the foll		ata		
		8	12	4.5	7	8	10		
F	A random v.	f(x)	$=$ $\begin{cases} \kappa \chi^{-1} \\ 0 \end{cases}$	ability de	> 0,	nction $k > 0$ erwise	20		

3. Upload your answer papers *

Files submitted:

4. Have you uploaded required pdf file of answers? *

Mark only one oval.

Yes