1 Come risolvere gli esercizi

1.1 Insiemi

1.1.1 Insieme a stella

Un insieme $\Omega \subseteq R^n$ viene detto "a stella" se

$$\exists x_0 \in \Omega$$
 tale che il segmento $\bar{x_0}x \subseteq \Omega \ \forall x \in \Omega$

1

In sostanza Ω è un insieme "a stella" se esiste un suo punto che "vede tutti gli altri"

1.1.2 Insieme connesso

Un insieme è connesso se esiste una curva che unisce ogni suo punto

1.1.3 Insieme semplicemente connesso

Un insieme $\Omega \subseteq \mathbb{R}^n$ si dirà semplicemente connesso se ogni curva chiusa $\gamma: [0,1] \to \Omega$ è omotopa in Ω ad una curva costante $\sigma(t) \equiv x_0 \quad \forall t \in [0,1]$

1.2 Derivata direzionale

Data la funzione f(x, y), la derivata in direzione (v_1, v_2) in (x_0, y_0) vale

$$v_1 f_x(x_0, y_0) + v_2 f_y(x_0, y_0)$$

1.3 Lunghezza di una curva

che in una sola variabile si riduce a

$$\wedge \gamma(t) = \int_{a}^{b} \| \dot{\gamma}(t) \| \, \mathrm{d}x$$

$$\int_{a}^{b} \sqrt{1 + f(t)} \, \mathrm{d}t$$

1.4 Integrale superficiale

$$\int_{\Delta} f(\Phi_{(u,v)}) |\Phi_u \wedge \Phi_v| \, \mathrm{d}u \, \mathrm{d}v$$

Esempio

Calcolare $\int_{\Sigma} x d\sigma$. $\Sigma = \operatorname{graph}(\arctan(\frac{y}{x}))$.

$$\begin{cases} x > 0 \\ y > 0 \\ 1 < x^2 + y^2 < 2 \end{cases}$$

$$f_x = -\frac{y}{x^2 + y^2} \quad f_y = \frac{x}{x^2 + y^2}$$

$$\sqrt{1 + \frac{y^2}{(x^2 + y^2)^2} + \frac{x^2}{(x^2 + y^2)^2}} = \sqrt{1 + \frac{1}{x^2 + y^2}}$$

Determino gli estremi di integrazione in coordinate polari: θ è compreso tra 0 e $\frac{\pi}{2}$ in quanto ci troviamo nel primo quadrante, mentre $1 < \rho < \sqrt{2}$ poiché $1 < \rho^2 < 2$. Per effettuare il cambio di coordinate necessito del determinate della Jacobiana, ovvero $\det(J) = \rho$

$$\begin{split} & \int_0^{\frac{\pi}{2}} d\theta \int_1^{\sqrt{2}} \, d\rho \, \rho \cos(\theta) \, \sqrt{\frac{1+\rho^2}{\rho^2}} \, \rho &= \\ &= \int_0^{\frac{\pi}{2}} \cos(\theta) \, d\theta \int_1^{\sqrt{2}} \, \rho \, \sqrt{1+\rho^2} \, d\rho &= \dots \end{split}$$

1.5 Integrale curvilineo

$$\int_{\gamma} f(x, y) = \int_{a}^{b} f(\gamma(t)) \|\dot{\gamma}(t)\| dt$$

1.6 Integrale di campo

$$\int_{\gamma} f d\gamma = \int_{a}^{b} \left[f_{1}(x(t), y(t)) \, x'(t) + f_{2}(x(t), y(t)) \, y'(t) \right] dt = \int_{a}^{b} f(\gamma(t)) \, \dot{\gamma}(t) \, dt$$

1.7 Area della porzione di grafico (o superficie di f(x,y))

$$A = \int_a^b \left(\int_c^d \sqrt{a + (f_x)^2 + (f_y)^2} \, dy \right) dx$$

1.8 Volume

$$V = \int_{a}^{b} dx \int_{c}^{d} dy \int_{c}^{f} dz$$

Esempio

Calcolo del volume di un solido ottenuto ruotando una funzione f(z) > 0 attorno all'asse z

$$T = \left\{ (\rho, \theta, z) : \begin{cases} a < z < b \\ 0 < \rho < f(z) \\ 0 < \theta < 2\pi \end{cases} \right\}$$

$$V(T) = \int_{T} dx dy dz =$$

$$= \int_{0}^{2\pi} d\theta \int_{a}^{b} dz \int_{0}^{f(z)} \rho d\theta = 2\pi \int_{a}^{b} dz \frac{1}{2} f^{2}(z) = \pi \int_{a}^{b} f^{2}(z) dz$$

1.9 Integrale su un insieme

1.9.1 In 2 variabili

Se T è "normale"

$$\int_T f(x, y) = \int_a^b \int_c^d f(x, y) \, dy \, dx$$

1.9.2 In 3 variabili

Integrazione per strati

$$\int_{\Omega} f(x, y, z) \, dx \, dy \, dz$$

$$\int_{\mathbb{R}} dz \int_{\Omega(z)} f(x, y, z) \, dx \, dy$$

Come risolvere gli esercizi

Integrazione per fili

$$\int_{\Pi_{x,\,y}(\Omega)}\,\mathrm{d}\mathbf{x}\,\mathrm{d}\mathbf{y}\int_{\Omega(x,\,y)}\,f(x,\,y,z)\,\mathrm{d}\mathbf{z}$$

1.9.3 Cambio di variabile

(necessita di revisione)

$$\int_{\Omega} f(x) dx = \int_{\Omega'} f(g(y)) |\det(g'(y))| dy$$

- $g: \Omega \to \Omega'$
- Ω, Ω' aperti
- $g \in C'$
- q invertibile

1.10 Determinare la differenziabilità

- Per essere differenziabile in (x_0, y_0) , la funzione deve essere continua in (x_0, y_0) , deve esistere la derivata direzionale
- Se A ha derivate parziali continue in un intorno di (x_0, y_0) è differenziabile in quel punto.

1.11 Inversione locale

Data F(x, y) = (f(x, y), g(x, y))

F(x,y) è localmente invertibile in (x_0,y_0) se il determinante Jacobiano in (x_0,y_0) è non nullo

$$|J(x_0, y_0)| = \left| \left(\begin{array}{cc} f_x & g_x \\ f_y & g_y \end{array} \right) \right| \neq 0$$

1.12 Teorema del Dini

- Per esplicitare una funzione f(x,y) rispetto alla variabile y (o alla x) è necessario che $f_y \neq 0$ $(of_x \neq 0)$
- Per applicare il Th. del Dini in un punto (x_0, y_0) è necessario che

$$\begin{cases} f_x(x_0, y_0) \neq 0 \\ f_y(x_0, y_0) \neq 0 \end{cases}$$

1.13 Direzione di massima pendenza

• Direzione di massima pendenza ascendente di f in (x_0, y_0)

$$\nabla f(x_0, y_0) = \begin{pmatrix} f_x(x_0, y_0) \\ f_y(x_0, y_0) \end{pmatrix}$$

• Direzione di massima pendenza discendente di f in (x_0, y_0)

$$-\nabla f(x_0, y_0) = - \left(\begin{array}{c} f_x(x_0, y_0) \\ f_y(x_0, y_0) \end{array} \right)$$

Se =(0,0) non è definita (punto stazionario).

La direzione della curva di livello di una funzione f in un punto (x_0, y_0) è ortogonale alla direzione di massima pendenza.

1.14 Piano tangente a superficie cartesiana

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x_0 - x_0) + f_y(x_0, y_0)(y - y_0)$$

1.15 Piano tangente al sostegno di una superficie parametrica

Necessita di revisione!

1. Calcolo il vettore normale alla superficie parametrica

$$\Phi u \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \wedge \Phi_v \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = (E_1, E_2, E_3)$$

e se =0 la superfice è non regolare

2. Piano tangente = $E_1(x-x_0) + E_2(y-y_0) + E_3(z-z_0)$

1.16 Polinomio di Taylor

1.16.1 Formula di ordine 1

$$f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

1.16.2 Formula di ordine 2

(formula di ordine I)
$$+\frac{1}{2}f_{xx}(x_0, y_0)(x - x_0)^2 + f_{xy}(x_0, y_0)(x - x_0)(y - y_0) + \frac{1}{2}f_{yy}(x_0, y_0)(y - y_0)^2$$

1.16.3 Formula di ordine 3

(incollata da Wikipedia)

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + f_x(x_0, y_0) \cdot h + f_y(x_0, y_0) \cdot k + \frac{1}{2!} \left[f_{xx}(x_0, y_0) h^2 + 2f_{xy}(x_0, y_0) hk + f_{yy}(x_0, y_0) k^2 \right] + \frac{1}{3!} \left[f_{xxx}(x_0, y_0) h^3 + 3f_{xxy}(x_0, y_0) h^2 k + 3f_{xyy}(x_0, y_0) hk^2 + f_{yyy}(x_0, y_0) k^3 \right] + R(h, k)$$

1.17 Calcolare il potenziale di una forma differenziale

Forma differenziale $w(x, y) = A_1(x, y) dx + A_2(x, y) dy$

1. Calcolo

$$\int [A_1(x, y)] dx = f(x, y) + C(y)$$

2. Derivo f(x, y) + C(y) rispetto a y e pongo la derivata = $A_2(x, y)$

$$\frac{d}{d\mathbf{v}}[f(x,y) + C(y)] = A_2(x,y)$$

3. Ricavo C (eventulmente integrando C'(y) del passaggio precedente) e sostituisco il valore trovato in f(x, y) + C(y), il risultato è il potenziale (ovvero una primitiva)

1.18 Vettore normale

Il vettore normale di f(x, y) si trova:

• Per una superficie parametrica:

$$f_x(x_0, y_0) \wedge f_y(x_0, y_0)$$

$$\frac{\partial x}{\partial s} \wedge \frac{\partial x}{\partial t}$$

Appunti utili 5

• Per una superficie cartesiana:

$$\left(\begin{array}{c} f_x(x_0, y_0) \\ f_y(x_0, y_0) \\ -1 \end{array}\right)$$

Per ottenere il versore normale è necessario dividere il vettore per la sua norma

Se la superficie S è data implicitamente, come la serie di punti (x, y, z) che soddisfano F(x, y, z) = 0, allora la normale nel punto (x, y, z) alla superficie è data dal gradiente

$$\nabla F(x, y, z)$$

1.19 Massimi e minimi

Devo considerare i punti critici della funzione pondendo tutte le derivate parziali = 0. L'annullamento di tutte le derivate in (x_0, y_0) è condizione necessaria (ma non sufficiente) affinché (x_0, y_0) sia un punto di minimo o di massimo.

$$\begin{cases} f_x(x_0, y_0) = 0 \\ f_y(x_0, y_0) = 0 \end{cases}$$

A questo punto calcolo l'Hessiana nei punti trovati

$$H = \left(\begin{array}{cc} f_{\mathrm{xx}}(x_0, y_0) & f_{\mathrm{xy}}(x_0, y_0) \\ f_{\mathrm{yx}}(x_0, y_0) & f_{\mathrm{yy}}(x_0, y_0) \end{array} \right)$$

con $f_{xy} = f_{yx}$ (perché??)

Adesso posso

- 1. Calcolare il determinante di H e verificare:
 - det > 0 e 1° elemento > 0 allora (x_0, y_0) è un punto di minimo
 - det >0 e 1° elemento < 0 allora (x_0, y_0) è un punto di massimo
 - det < 0 allora (x_0, y_0) è un punto di sella
- 2. Calcolare $det(H \lambda I)$ e trovare gli autovalori:
 - \bullet Se sono concordi < 0 allora ho un punto di massimo
 - ullet Se sono concordi >0 allora ho un punto di minimo
 - Se sono discordi ho una sella
 - Se uno di essi = 0 allora ho un punto degenere

1.20 Limiti

$$\lim_{0,x\to 0} f(x.y) = \lim_{y,0\to 0} \left(x,y\right) = \lim_{x\to 0} f(x) = L? \quad \Longrightarrow \quad \lim_{x,y\to 0} = L$$

2 Appunti utili

2.1 Funzioni iperboliche

$$\operatorname{senh}(x) = \frac{e^x - e^{-x}}{2}$$

$$\operatorname{cosh}(x) = \frac{e^x - e^{-x}}{2}$$

$$\operatorname{cosh}^2(x) - \sinh^2(x) = 1$$

$$D(\sinh(x)) = \cosh(x)$$

$$D(\cosh(x)) = \sinh(x)$$

2.2 Prodotto vettore (o prodotto esterno)

Calcolo in \mathbb{R}^3

$$a \wedge b = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \wedge \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} \\ -\begin{vmatrix} \begin{pmatrix} a_1 & b_1 \\ a_3 & b_3 \end{vmatrix} \end{vmatrix} \\ \begin{vmatrix} \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \end{vmatrix} \end{pmatrix} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ -(a_1 b_3 - a_3 b_1) \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

2.3 Derivate

2.3.1 Derivate fondamentali

$$D(\sqrt{x}) = \frac{1}{2\sqrt{x}}$$

$$D(\log_b(x)) = \frac{\log_b e}{x} = \frac{1}{x \ln(b)}$$

2.3.2 Derivate di funzioni composte

$$D(a^{f(x)}) = a^{f(x)} \cdot f'(x) \cdot \ln(a)$$

$$D(f(x)^{g(x)}) = f(x)^{g(x)} \cdot \left[g'(x) \cdot \ln(f(x)) + g(x) \cdot \frac{f'(x)}{f(x)} \right]$$

$$D(x^{f(x)}) = x^{f(x)} \cdot \left[f'(x) \cdot \ln(x) + \frac{f(x)}{x} \right]$$

2.4 Formule trigonometriche

2.4.1 Formule di addizione e sottrazione

$$sen(\alpha \pm \beta) = sen(\alpha)\cos(\beta) \pm sen(\beta)\cos(\alpha)$$
$$cos(\alpha \pm \beta) = cos(\alpha)\cos(\beta) \mp sen(\alpha)sen(\beta)$$
$$tan(\alpha \pm \beta) = \frac{tan(\alpha) \pm tan(\beta)}{1 \mp tan(\alpha)tan(\beta)}$$

2.4.2 Formule di duplicazione

$$\begin{split} \operatorname{sen}(2\,\alpha) &= 2\operatorname{sen}(\alpha)\operatorname{cos}(a) \\ \operatorname{cos}(2\,\alpha) &= \operatorname{cos}^2(\alpha) - \operatorname{sen}^2(\alpha) = 1 - 2\operatorname{sen}^2(\alpha) = 2\operatorname{cos}^2(a) - 1 \\ \operatorname{tan}(2\,\alpha) &= \frac{2\operatorname{tan}(\alpha)}{1 - \operatorname{tan}^2(\alpha)} \end{split}$$

2.4.3 Formule di bisezione

$$\operatorname{sen}\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 - \cos(\alpha)}{2}}$$
$$\operatorname{cos}\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 + \cos(\alpha)}{2}}$$
$$\operatorname{tan}\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 - \cos(\alpha)}{1 + \cos(\alpha)}}$$

Appunti utili

2.4.4 Formule parametriche

$$\operatorname{sen}(\alpha) = \frac{2 \tan\left(\frac{\alpha}{2}\right)}{a + \tan^2\left(\frac{\alpha}{2}\right)}$$

$$\cos(\alpha) = \frac{1 - \tan^2(\frac{\alpha}{2})}{1 + \tan^2(\frac{\alpha}{2})}$$

$$\tan(\alpha) = \frac{2\tan(\frac{\alpha}{2})}{1 - \tan^2(\frac{\alpha}{2})}$$

2.5 Cambi di coordinate

2.5.1 Coordinate sferiche

$$\begin{cases} x = \rho \sin(\theta) \cos(\varphi) \\ y = \rho \sin(\theta) \sin(\varphi) \\ z = \rho \cos(\theta) \end{cases}$$

2.5.2 Coordinate cilindriche

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = h \end{cases}$$

Matrice Jacobiana per il cambio di coordinate

$$\det \begin{pmatrix} \cos(\theta) & -\rho\sin(\theta) & 0\\ \sin(\theta) & \rho\cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix} = \rho$$

2.6 Funzioni utili

2.6.1 Circonferenza

Equazione cartesiana

$$(x-x_0)^2 + (y-y_0)^2 = r^2$$

Equazione in coordinate polari

$$\rho = r$$

Equazione parametrica

$$C: \left\{ \begin{array}{l} x = x_0 + R\cos(t) \\ y = y_0 + R\sin(t) \end{array} \right. t \in [0, 2\,\pi]$$

2.7 Limiti notevoli

(inserire)

2.8 Integrali

2.8.1 Integrazione per parti

$$\int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx + C$$

$$\int_{a}^{b} f(x) g'(x) dx = f(b) g(b) - f(a)g(a) - \int_{a}^{b} f'(x) g(x) dx$$

2.8.2 Integrali utili

$$\int f^{n}(x) f'(x) dx = \frac{f^{n+1}(x)}{n+1} + C$$

$$\int a^{f(x)} f'(x) dx = \frac{a^{f(x)}}{\ln(a)} + C$$

$$\int \sin^{2}(x) dx = \frac{1}{2} [x - \sin(x) \cos(x)] + C$$

$$\int \cos^{2}(x) dx = \frac{1}{2} [x + \sin(x) \cos(x)] + C$$
1

Da verificare:

$$\int \frac{1}{\sin^2(x)} dx = \int (1 + \cot^2(x)) dx = -\cot(x) + C$$

2.8.3 Sostituzioni utili

$$\begin{cases} \sqrt{x^2 + 1} \Longrightarrow x = \sinh(t) \\ \sqrt{x^2 - 1} \Longrightarrow x = \cosh(t) \\ \sqrt{1 - x^2} \Longrightarrow x = \begin{cases} \sin(t) \\ \cos(t) \end{cases} \\ \sqrt{-1 - x^2} \Longrightarrow \text{non ha senso in } \mathbb{R} \end{cases}$$