Clase 3: Parámetros de Historia de Vida (FishLife) y Modelos por Recluta

Luis A. Cubillos

https://luisacubillos.github.io/EvalManDataLim/index.html

Programa

Hora	Tópicos
10:00-11:00	Parámetros de Historia de Vida y Modelos por recluta
11:00-11:15	Pausa y café
11:15-12:00	Guía práctica - Demostración en R (Lab 2: FishLife)
12:00-12:15	Pausa y café
12:15-13:00	Guía práctica - Demostración en R (Lab 2: LBSPR y LBB)
13:00-14:00	Pausa
14:00-15:00	Consultas casos de estudio

Teoría de la Historia de Vida

- ▶ La teoría de la historia de vida intenta comprender y predecir las trayectorias de sobrevivencia, crecimiento, y reproducción maximizando el fitness en diferentes ambientes, desde el punto de vista genético como no-genetico (Roff 2007).
- ▶ El crecimiento es el proceso más determinante del fitness, porque afecta la sobrevivencia y la reproduccción. Enberg et al. (2012)

El tamaño de un individuo es un estado

- El tamaño del cuerpo tiene importancia ecológica.
- Crecimiento y tamaño están relacionado y correlacionado, pero no son lo mismo.
- ► Crecimiento es el *proceso* por el cual se llega a cierto tamaño (un *estado*).

Cambios en el crecimiento

- ► Tasas de crecimiento variable
- ► Edad de madurez variable
- Inversión en reproducción variable

Esfuerzo reproductivo

- Asignación de energía para la reproducción
- Presupuesto energético:
 - Antes de la madurez: mantención y crecimiento.
 - Después de la madurez: mantención, crecimiento o reproducción.
- Compromisos entre:
 - Retrasos en la reproducción: crecimiento rápido y tamaño grande.
 - Reproducción temprana...

Parámetros de historia de vida

- lacktriangle Crecimiento: parámetros del modelo de von Bertalanffy L_{∞} y K
- ightharpoonup Sobrevivencia M y Longevidad, o edad máxima t_{max}
- Reproducción: edad de madurez tm y talla de madurez Lm

Crecimiento en longitud

$$L_t = L_{\infty}(1 - \exp(-K(t - t_0)))$$

Sobrevivencia

Edad

Madurez

□ -l - -l / - ~ - - \

Teoría de historia de vida

La teoría de historia de vida intenta proporcionar explicaciones evolutivas de las variaciones en las formas en que las especies animales viven sus vidas.

Relaciones adimensionales de varios parámetros clave de historia de vida son los mismos para las diferentes especies, incluso a través de taxones distante.

Invariantes

La teoría de la evolución de la historia de vida produce invariantes, que se constituyen en productos o razones entre ciertos parámetros de historia de vida y permanecen aproximadamente constantes dentro de algunos taxa.

Charnov (1993)

Muchas de esas invariantes surgen de modelos simples de historia de vida que maximizan el el éxito de la duración reproductiva de manera densidad-independiente (e.g. Jensen 1996).

La contribución de Beverton y Holt

- ▶ Beverton y Holt plantearon relaciones entre parámetros de historia de vida, cuya recopilación fue la base empírica para la teoría de Charnov.
- 1. Producto entre la mortalidad natural (M) y la edad de primera madurez (t_m)
- 2. Razón entre M y el coeficiente de crecimiento del modelo de von Bertalanffy (K)
- 3. Razón entre la longitud de madurez (L_m) y la longitud asintótica (L_∞) .

Jennings, S., Dulvy, N.K. 2008. Beverton and Holt's insights into life history theory: influence, application and future use. In: Payne, A., Cotter, J., Potter, T. (ed.) Advances in fisheris science, 50 year on from Beverton and Holt, Wiley, p. 434-450.

Prince, J., Hordyk, A., Valencia, S.R., Loneragan, N., Sainsbury, K. 2015. Revisiting the concept of Beverton–Holt life-history invariants with the aim of informing data-poor fisheries assessment, ICES Journal of Marine Science, 72: 194–203

Las tres invariantes

Jensen (1996) obtiene los valores de las invariantes maximizando la función de fecundidad y asumiendo que los organismos crecen de acuerdo al modelo de von Bertalanffy, siendo estos:

$$M \times t_m = 1.65$$

$$\frac{M}{K} = 1.5$$

$$\frac{L_m}{L_\infty}=0.66$$

Consideraciones

- Los "parámetros de historia de vida" se refieren a todos aquellos que determinan los procesos de crecimiento, madurez y mortalidad y que definen el fitness total o eficacia biológica.
- ► Los valores plausibles para el conjunto de estos parámetros se sustentan en relaciones estables entre ellos que definen ciertas invariantes.
- Dichas invariantes, combinadas con la teoría evolutiva podría permitir la estimación de dichos parámetros para especies poco estudiadas

Trabajos recientes

- ► Enfoques basados en FishBase
- FishLife de Thorson et al. (2017)

Thorson, J. T., S. B. Munch, J. M. Cope, and J. Gao. 2017. Predicting life history parameters for all fishes worldwide. Ecological Applications. 27(8): 2262–2276.

Fishl ife

Paquete FishLife de Thorson et al. (2017) en el repositorio GitHub https://github.com/James-Thorson/FishLife

FishLife

- Es un modelo evolutivo integral de parámetros de historia de vida, ajustado a mediciones de tallas, crecimiento, mortalidad y madurez disponibles en FishBase.
- El modelo predice un vector de parámetros de historia de vida x_g a lo largo de linajes filogenéticos utilizando una caminata aleatoria multivariada, i.e.,

$$x_g \sim MVN(x_{p(g)}, \sum_{I(g)})$$

p(g) es el pariente taxonómico del taxon g; p.e., si X_g son los valores de la historia de vida promedio para el género Brama, entonces $x_{p(g)}$ son los valores promedio para la familia Bramidae.

 $\sum_{l(g)}$ es la covarianza evolutiva entre parámetros de historia de vida.

FishLife (cont.)

- Para la asociación de un rasgo (p.e. mortalidad natural M) y otros rasgos (e.g., peso asintótico W_{infty}) se utiliza MAR (major axis regression), lo que implica calcular una descomposición eigen de la covarianza evolutiva.
- Para un taxon, por ejemplo la reineta Brama australis:

Aplicación de FishLife

Aquí utilizamos un ejemplo para un taxon, por ejemplo la reineta *Brama australis*, con el comando Plot_taxa

Parámetros estimados

► Son 20 parámetros, primeros siete en escala log

Param.	
Loo	Longitud asintótica VBGF (cm)
K	Coef. de crecimiento VB (año $^{-1}$)
Winfinity	Peso asintótico VBGF (gr)
tmax	Longevidad o edad máxima (años)
tm	Edad de madurez (años)
M	Mortalidad natural
Lm	Longitud de madurez (cm)

Parámetros (cont.)

Salida en escala log:

Loo	K	Winfinity	tmax	tm	М	Lm
4.121	-1.752	7.916	2.833	1.419	-1.246	3.476

Escala real (anti-log):

Loo	K	Winfinity	tmax	tm	М	Lm
61.606	0.173	2741.48	16.996	4.135	0.288	32.328

Parámetros estimados (cont.)

Param.	
Temperature	Temperatura (°C)
In_var	Desv. Estd. condicional de variabilidad de reclutamiento.
rho	coef. de autocorrelación de residuales de reclutamiento
In_MASPS	log Max. desovantes por desovadores en exceso de reemplazo.
In_margsd	Desviación estándard mariginal reclutamiento
h	Steepness de la relación stock-recluta
logitbound_h	Límite logístico de h

Parametros estimados (cont.)

Temperature	In_var	rho	In_MASPS	In_margsd	h	logitbound_h
15.9	-2.17	0.6	1.2	-0.72	0.73	1.06

Parámetros estimados (cont.)

Puntos biológicos de referencia

Param.	
In_Fmsy_over_M In_Fmsy In_r	Razón entre $log(F_{msy}/M)$ Log. mort. pesca en el RMS log. r_{max}
r In_G G	r _{max} log tiempo generacional Tiempo generacional

Parámetros (cont.)

In_Fmsy_over_M	In_Fmsy	ln_r	r	In_G	G
0.98	-0.28	-1.31	0.41	2.27	11.52

Matriz de varianza co-varianza

```
Sigma = MisParms[[1]]$Cov_pred
knitr::kable(Sigma, digits=3)
```

Simulación

```
lh parms <- c("Loo", "K", "tmax", "M", "Lm")</pre>
cov <- MisParms[[1]]$Cov pred</pre>
Sigma <- cov[which(rownames(cov) %in% lh_parms), which(colnames(cov) %in% lh_parms)
mean <- MisParms[[1]]$Mean pred</pre>
mu <- mean[lh_parms]</pre>
colnames(Sigma) <- rownames(Sigma) <- lh_parms</pre>
names(mu) <- lh parms</pre>
lh_n <- MASS::mvrnorm(1,mu=mu,Sigma=Sigma)</pre>
Linf = exp(lh_n["Loo"])
K = \exp(\ln n["K"])
Lm = \exp(lh n["Lm"])
M = \exp(\ln n["M"])
       = ceiling(exp(lh n["tmax"]))
Α
```

Simulación (cont.)

```
n=50
lh_n <- MASS::mvrnorm(n,mu=mu,Sigma=Sigma)
Linf = exp(lh_n[,"Loo"])

K = exp(lh_n[,"K"])
Lm = exp(lh_n[,"Lm"])
M = exp(lh_n[,"M"])
A = ceiling(exp(lh_n[,"tmax"]))
df <- data.frame(Linf=Linf,K=K,Lm=Lm,M=M,A=A)</pre>
```

Relaciones entre parámetros

Curvas de producción en equilibrio

- Modelo de producción estructurado por edad
 - Parámetros de historia de vida
 - Mortalidad por pesca y selectividad
 - Relación stock-recluta
 - Modelos por recluta
 - Error de proceso

Relación S-R y Modelos por recluta

$$R = \alpha S/(1 + \beta S)$$
, Beverton-Holt

donde α y β son parámetros.

Steepness

Para el modelo de Beverton y Holt, los parámetros se expresaron por:

$$\alpha = (1 - h) S_0 / (4hR_0)$$

 $\beta = (5h - 1) / (4hR_0)$

donde h es el escarpamiento (steepness).

Biomasa desovante no explotada

Se puede estimar en términos relativos con $R_0=1$, i.e.,

$$n_{F=0,j} = R_0, \qquad j = 1$$

 $n_{F=0,j} = p_{F=0,j-1} \exp(-M), \qquad j = 2, ..., A$

 $R_0 = 1$ = Reclutamiento inexplotado que genera la biomasa desovante no explotada $(SPR_{F=0})$, M es la tasa de mortalidad natural, y A es la edad máxima. Luego,

$$SPR_{F=0} = \sum_{j=1}^{A} m_j w_j n_{F=0,j} \exp(-M_j \tau)$$

donde m_j es la proporción de individuos maduros a la edad j, W_j es el peso promedio a la edad j, $n_{F=0}$ es la abundancia no explotada a la edad j, M_j es la tasa instantánea de mortalidad natural a la edad j, y τ es el mes del pico de desove como una fracción del año.

Biomasa desovante por recluta

$$p_{F,j} = p_{F,j-1} \exp(-M + F_{j-1}), \qquad j = 2, ..., A$$

$$SPR_F = \sum_{j=1}^{A} m_j w_j p_{F,j} \exp\left(-(M+F_j)\tau\right)$$

Rendimiento por recluta

$$YPR = \sum_{j=1}^{A} F_{j} w_{j} p_{F,j} (1 - \exp(-(M + F_{j}))) / (M + F_{j})$$

Relación SPR

La biomasa desovante por recluta (SPR), en función de la mortalidad por pesca (F), a reclutamiento relativo en equilibrio en función de F, se estima por:

$$R = (SPR_F - \alpha) / (\beta SPR),$$
 Beverton-Holt

El rendimiento relativo: $Y = YPR \times R$. Asimismo, la biomasa desovante se puede estimar multiplicando SPR por R,i.e.,

$$S = SPR_F \times R$$

Resumen de cálculos

Consultas

¿Preguntas...?

Pausa y café

