MIT 18.06 Exam 3, Fall 2018 Johnson

Your name:			
Recitation:			

problem	score		
1	/33		
2	/33		
3	/34		
total	/100		

Problem 1 (33 points):

The following matrix is kind of like a Markov matrix:

$$A = \left(\begin{array}{ccc} 0.1 & 0.3 & 0.6 \\ 0.2 & 0.5 & 0.3 \\ 0.4 & 0.4 & 0.2 \end{array}\right)$$

except that each row sums to 1 (unlike a Markov matrix where each column sums to 1).

- (a) Give one eigenvalue and a corresponding eigenvector of A.
- (b) If $x \in \mathbb{R}^3$ is some vector $\neq 0$, give *brief* answers to the following questions about what *might* be true of $A^n x$ as $n \to \infty$:
 - (i) Can $A^n x$ approach a nonzero constant vector? If so, give the direction of the constant vector.
 - (ii) Can $A^n x$ approach the zero vector? If yes, describe (without calculating) what must be true of x for this to happen.
 - (iii) Can $A^n x$ diverge? What property of the eigenvalues of A explains your answer?
 - (iv) Can $A^n x$ oscillate forever (without growing or decaying)? What property of the eigenvalues of A explains your answer?

(blank page for your work if you need it)

Problem 2 (33 points):

The 3×3 real matrix A has eigenvalues $\lambda_1 = -1$, $\lambda_2 = -3 + 4i$, and $\lambda_3 = -3 - 4i$, with corresponding eigenvectors x_1, x_2 , and x_3 .

(a) What are the trace and determinant of 2A?

(b) If
$$x_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 and $x_2 = \begin{pmatrix} 0 \\ 1 \\ i \end{pmatrix}$, what is x_3 ?

- (c) Which of the following might possibly give a diverging solution, i.e. a solution vector whose magnitude blows up as $t \to \infty$ or $n \to \infty$ for some vector y? Circle all that apply:
 - (i) $A^n y$ as $n \to \infty$
 - (ii) $A^{-n}y$ as $n \to \infty$
 - (iii) The solution of $\frac{dx}{dt} = Ax$ as $t \to \infty$ for x(0) = y.
 - (iv) The solution of $\frac{dx}{dt} = -Ax$ as $t \to \infty$ for x(0) = y.
 - (v) The solution of $\frac{dx}{dt} = A^T A x$ as $t \to \infty$ for x(0) = y.
 - (vi) The solution of $\frac{dx}{dt} = -A^T Ax$ as $t \to \infty$ for x(0) = y.
- (d) Write down the exact solution x(t) to $\frac{dx}{dt} = Ax$ for the initial condition

$$x(0) = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}.$$

(blank page for your work if you need it)

Problem 3 (34 points):

A is a real 3×3 matrix. The matrix $B = A + A^T$ has eigenvalues $\lambda_1 = 2$, $\lambda_2 = 0$, and $\lambda_3 = 1$, with corresponding eigenvectors $x_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $x_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$, and $x_3 = \begin{pmatrix} 1 \\ 2 \\ -5 \end{pmatrix}$.

- (a) What is the matrix e^B? You can leave your answer as a product of several matrices, as long as you write down each matrix explicitly.
 - (b) Let $C = (I B)(I + B)^{-1}$.
 - (i) What are the eigenvalues of C? (Not much calculation is needed!)
 - (ii) Suppose that we compute

$$y = C^{100} \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right).$$

Give a good approximation for the vector \boldsymbol{y} in terms of a single eigenvector.

(blank page for your work if you need it)