Spatial Clustering and Deconvolution

5/18

Outline

- Visium spatial technology
- Spatial clustering
 - Method
 - Example: Prefrontal cortex
- Spatial deconvolution
 - Method
 - Example: Melanoma
 - Example: Merkel cell carcinoma

Visium spatial technology

 Spatial RNA sequencing provides high-throughput gene expression profiling while preserving the morphological context of the tissue

Spatial clustering

 Accurate clustering is an important step that allows downstream analyses such as cell type or tissue annotation and differential expression to provide unbiased biological insights

Method

- Fit a parametric model to the observed data (principal components)
 - Using MCMC, iteratively estimate the center of each cluster, variance within clusters, and cluster label of each spot
 - Spatially smooth cluster labels by encouraging neighboring spots to belong to the same cluster

Dorsolateral prefrontal cortex (Maynard et al., 2020)

- Manual annotation by expert based on cytoarchitecture and selected marker genes
 - Considered ground truth
 - Labor-intensive

Non-spatial clustering

- Shared nearest neighbor clustering on top 50 principal components (PCs) generated from highly variable genes (HVGs) + spatial coordinates
- Set to return 8 clusters to improve clustering performance
- Adjusted Rand Index (ARI) = 0.27

Spatial clustering

- Spatial clustering on top 9
 principal components (PCs)
 generated from highly variable
 genes (HVGs)
- Set to return 7 clusters to match prior knowledge of prefrontal cortex cytoarchitecture
- ARI = 0.47

Spatial deconvolution

- Visium is not a single cell technology
- Deconvolution can:
 - Increase the resolution of the spatial map
 - Allow for better understanding of tissues composed of heterogenous mixtures of cells (e.g. tumor microenvironment)

Method

- Similar to clustering method, except now the unit of analysis is not a spot but instead a "cell"
 - Using MCMC, iteratively estimate the center of each cluster, variance within clusters, and cluster label of each "cell" while accounting for the spatial structure
 - In each iteration, jitter the features of each "cell" while keeping the sum over all "cells" within a spot fixed

Melanoma (Thrane et al., 2018)

Deconvolution reveals heterogeneity in the tumor immune microenvironment

Merkle cell carcinoma (MCC)

CHGA (cancer marker) expression

CD3 (T cell marker) expression

Spatial clustering

- Clusters 1 and 4 from spatial clustering correspond to the tumor
- Cluster 2 has the highest immune expression

Spatial deconvolution

- Most of the immune cells (green) are at the periphery of the tumor
- However, there is some evidence of immune infiltration inside the tumor

