Лабораторная работа №2

Смоленский Н.О. гр. 150501

Таблица примитивных полиномов:

D_1	D_2	D_3	D_4	D_5	Итерации	Полином
1	0	0	0	0	1	
1	0	0	0	1	21	
1	0	0	1	0	31	$\mathbf{x}^5 \oplus \mathbf{x}^3 \oplus 1$
1	0	0	1	1	14	
1	0	1	0	0	31	$\mathbf{x}^5 \oplus \mathbf{x}^2 \oplus 1$
1	0	1	0	1	15	
1	0	1	1	0	12	
1	0	1	1	1	31	$\mathbf{x}^5 \oplus \mathbf{x}^4 \oplus \mathbf{x}^3 \oplus \mathbf{x}^2 \oplus 1$
1	1	0	0	0	21	
1	1	0	0	1	8	
1	1	0	1	0	15	
1	1	0	1	1	31	$\mathbf{x}^5 \oplus \mathbf{x}^4 \oplus \mathbf{x}^3 \oplus \mathbf{x}^1 \oplus 1$
1	1	1	0	0	14	
1	1	1	0	1	31	$\mathbf{x}^5 \oplus \mathbf{x}^4 \oplus \mathbf{x}^2 \oplus \mathbf{x}^1 \oplus 1$
1	1	1	1	0	31	$\mathbf{x}^5 \oplus \mathbf{x}^3 \oplus \mathbf{x}^2 \oplus \mathbf{x}^1 \oplus 1$
1	1	1	1	1	6	

Единицы и нули в столбцах D обозначают наличие или отсутствие исключительного или на входе соответствующего триггера. Количество итераций соответствует количеству последовательностей, которое покрывает данный полином.

Анализируемая последовательность: 1010 1110 1110 1111. В качестве делителя выбран следующий полином:

$$g(x) = x^5 \oplus x^3 \oplus 1$$

Аналитическое деление полиномов:

Остаток от деления (сигнатура) равен 01011. Теперь необходимо проверить результат промоделировав результат работы СА.

Такт №16 имеет значение, зеркальное тому, что было получено при делении.

Ввиду того, что при делении старшие разряды находились слева, а при моделировании — справа, можно сделать вывод о верности выполненных вычислений.

Теперь необходимо выполнить моделирование процесса получения сигнатуры S'(x) для полинома G'(x), обратного полиному g(x):

$$G'(x) = x^5 \oplus g(x)^{-1} = x^5(x^{-5} \oplus x^{-3} \oplus 1) = 1 \oplus x^2 \oplus x^5$$

Его сигнатура S'(x):

 M – матрица полинома g(x)

Сигнатура S(x) = 11010 (или 01011, начиная со старших разрядов), полученная в результате умножения матриц соответствует сигнатурам, полученным аналитически и при моделировании, что подтверждает верность вычислений.

Схема с ГПСП и СА:

Для составления карты эталонных сигнатур в полюсах 6, 7, 8 и 9 необходимо смоделировать результат работы ГПСП, схемы с отсутствием неисправностей и эталонные сигнатуры, полученные на СА.

Затем необходимо смоделировать сигнатуры, полученные при работе схемы с заданными неисправностями, и сопоставить их с эталонными.

Карта эталонных сигнатур в полюсах 6, 7, 8 и 9:

		Π	ICI	I			Ġ	та	ло	Н					(6/0)						6/	¹ 1						7	7/0				7/1				8/0								8	/1			T	9/0							9/1					٦			
JNº	Q_1	Q_2	Q ₃	Q_4	Q_5	Y	Q_1	Q_2	Q3	Q	₄ ()5	Y	Q_1	Q	₂ C)3(\mathfrak{I}_4	Q ₅	Y	Ç) ₁ (\mathcal{I}_2	Q ₃	Q.	4 Q)5	Y	Q_1	Q ₂	Q	3 Q) ₄ (\mathfrak{I}_5	Y	Q_1	Q_2	Q	3 Q	4 Q	5	Y (Q_1	Q_2	Q_3	Q_4	Q ₅	Y	Q_1	Q_2	Q_3	Q_4	Q	5 Y	Z Ç) ₁ (\mathfrak{I}_2	Q_3	Q_4	Q ₅	Y	Qı	Q	₂ C)3 (J ₄ (\mathfrak{I}_5
0	1	1	1	1	1	1	0	0	0	0	(0	1	0	0) ()	0	0	1	()	0	0	0	0)	1	0	0	0	()	0	1	0	0	0	0	0)	1	0	0	0	0	0	0	0	0	0	0	0	() (0	0	0	0	0	1	0	0) (0	0	0
1	1	1	1	0	1	1	1	0	0	0) (0	0	1	0	+	-+	0	0	1	1	1	0	0	0	()	1	1	0	0	()	0	1	1	0	0	0	0) [1	1	0	0	0	0	0		0	0	0	0			0	0	0	0	0	1	1	0) (0	0	0
2	1	1	1	0	0	0	1	1	0	0) (0	1	0	1	()	0	0	0	1	1	1	0	0	C) (0	1	1	0	()	0	0	1	1	0	0	0) (0	1	1	0	0	0	1	0	0	0	0	0	0) (0	0	0	0	0	1	1	1	(0	0	0
3	0	1	1	1	0	0	0	1	1	0) (0	0	1	0	1	1	0	0	0	()	1	1	0	C) (0	0	1	1	()	0	0	0	1	1	0	0) (0	0	1	1	0	0	1	1	0	0	0	0	() (0	0	0	0	0	1	1	1	1	1	0	0
4	0	0	1	1	1	1	0	0	1	1	(0	1	0	1	()	1	0	1	()	0	1	1	0) (0	0	0	1	1	l	0	1	0	0	1	1	0) [1	0	0	1	1	0	0	1	1	0	0	0	() (0	0	0	0	0	1	1	1	. 1	1	1	0
5	1	0	0	0	1	1	1	0	0	1		1	0	1	0) [1	0	1	1	1	1	0	0	1	1		1	0	0	0	1	l	1	1	1	0	0	1	1		1	1	0	0	1	1	0	0	1	1	0	0	() (0	0	0	0	0	1	1	1	. 1	1	1	1
6	1	1	0	1	0	0	0	1	0	1		1	1	1	1	()	0	0	0	()	1	0	1	1		0	0	0	0	1	l	1	0	0	1	0	1	1		0	0	1	0	1	1	1	0	0	1	1	0	() (0	0	0	0	0	1	0	1	. 1	1	1	1
7	0	1	1	0	1	1	1	0	1	1		1	0	1	1		1	0	0	1	1	1	0	1	1	1		1	1	0	0	1	l	1	1	1	0	1	1	1	. [:	1	1	0	1	1	1	0	1	0	0	1	1	() (0	0	0	0	0	1	0	0) [1	0	0
8	1	0	1	0	0	0	0	1	0	0		1	1	0	1		1	1	0	0	()	1	0	0	1		0	0	1	0	1	l	1	0	0	1	0	0	1		0	0	1	0	0	1	1	1	1	0	1	1	() (0	0	0	0	0	1	1	0) (0	1	0
9	0	1	0	1	0	0	1	0	1	1	(0	1	1	0	1	1	1	1	0	1	1	0	1	1	C)	0	1	0	1	1		1	0	1	0	1	1	0) (0	1	0	1	1	0	1	0	1	1	1	1	() (0	0	0	0	0	1	1	1	(0	0	1
10	0	0	1	0	1	0	0	1	0	1		1	0	0	1	()	0	1	1	()	1	0	1	1		0	1	1	0	()	1	1	0	1	0	1	1		1	0	1	0	1	1	0	0	0	1	0	1	() (0	0	0	0	0	1	0	1	. 1	1	1	0
11	1	0	0	0	0	0	1	0	1	1		1	1	1	0) [1	1	0	0	()	0	1	1	1		0	1	1	1	1	l	0	0	0	0	1	1	1		0	0	0	1	1	1	1	1	0	0	0	0	() (0	0	0	0	0	1	1	0) [1	1	1
12	0	1	0	0	0	0	1	1	0	0)	1	1	1	1	()	1	1	0	1	1	0	0	0	1		0	0	1	1	1	l	1	0	1	0	0	0	1		0	1	0	0	0	1	1	1	1	0	0	0) (0	0	0	0	0	1	0	1	(0	0	1
13	0	0	1	0	0	1	1	1	1	1	-	0	1	0	1	1	1	1	1	0	1	1	1	0	1	0)	1	1	0	1	()	1	0	1	1	0	1	0) (0	1	1	0	1	0	1	1	1	1	0	0) (0	0	0	0	0	1	0	0)]	1	1	0
14	0	0	0	1	0	1	1	1	1	1		1	1	0	0) [1	0	1	0	()	1	1	0	1		1	0	1	0	()	0	0	0	1	1	0	1		0	0	1	1	0	1	1	1	1	1	1	0) (0	0	0	0	0	1	1	0) (0	1	1
15	0	0	0	0	1	0	0	1	1	0) [1	0	0	0) (\mathbf{C}	0	0	1	1	1	0	1	0	() (0	1	0	1	()	0	1	1	0	1	0	0) [1	1	0	1	0	0	0	1	1	1	1	1	() (0	0	0	0	0	1	0	1	. (0	1	1
16	1	0	0	1	0	0	1	0	1	0	•	0	1	0	0) ()	0	0	0	1	1	1	0	1	0)	0	0	1	0	1	l	0	0	1	1	0	1	0) (0	1	1	0	1	0	1	1	1	1	0	1	() (0	0	0	0	0	1	0	0)]	1	1	1
17	0	1	0	0	1	1	0	1	0	1	-	0	0	1	0) ()	0	0	1	()	1	1	0	1	Į.	1	0	0	1	()	1	1	0	1	1	0	1	. .	1	0	1	1	0	1	0	0	1	1	0	0) (0	0	0	0	0	1	0	0) (0	0	1
18	1	0	1	1	0	0	1	0	1	0) [1	0	0	1	(\mathbf{c}	0	0	0	()	0	1	0	() (0	0	0	0	()	0	0	0	0	1	0	0) (0	0	0	1	0	0	1	0	0	1	1	0) (0	0	0	0	0	1	0	0) (0	1	0
19	0	1	0	1	1	1	1	1	0	0) (0	0	0	0) [1	0	0	1	()	0	0	1	0)	1	0	0	0	()	0	1	0	0	0	1	0) [1	0	0	0	1	0	0	1	0	0	1	1	() (0	0	0	0	0	1	1	0) (0	0	1
20	1	0	1	1	1	1	1	1	1	0	1	0	1	0	0	(О	1	0	1	1	1	0	0	0	1		1	1	0	0	()	0	1	1	0	0	0	1	. :	1	1	0	0	0	1	0	1	1	0	1	1	() (0	0	0	0	0	1	0	1	. (0	1	0
21	1	1	0	0	1	1	1	1	1	1	(0	0	1	0) ()	0	1	1	()	1	0	1	C)	1	1	1	0	()	0	1	0	1	0	1	0) [1	0	1	0	1	0	0	1	1	1	1	1	() (0	0	0	0	0	1	1	0)]	1	0	1
22	1	1	1	1	0	0	1	1	1	1		1	0	1	1	()	1	0	0]	1	0	1	0	1		0	1	1	1	()	0	0	1	0	1	0	1		0	1	0	1	0	1	1	1	1	1	0	1	() (0	0	0	0	0	1	0	1	. (0	0	0
23	0	1	1	1	1	1	1	1	1	0)	1	1	0	1	1 1	1	0	1	1]	1	1	0	0	0)	1	0	1	1	1	l	0	1	1	1	0	0	0) [1	1	1	0	0	0	0	0	1	1	0	0) (0	0	0	0	0	1	1	0) [1	0	0
24	1	0	1	0	1	1	0	1	1	0) (0	0	0	0) [1	0	0	1	1	1	1	1	0	C)	1	1	0	1	1	l	1	1	1	1	1	0	0) [1	1	1	1	0	0	0	0	0	1	1	0	() (0	0	0	0	0	1	1	1	(0	1	0
25	1	1	0	0	0	0	1	0	1	1	(0	1	0	0) (Э	1	0	0]	1	1	1	1	0) (0	0	1	0	()	1	0	1	1	1	1	0) (0	1	1	1	1	0	1	0	0	0	1	1	() (0	0	0	0	0	1	1	1	. 1	1	0	1
26	0	1	1	0	0	0	0	1	0	1		1	1	1	0) ()	0	1	0	()	1	1	1	1		0	1	0	1	1	l	0	0	0	1	1	1	1		0	0	1	1	1	1	1	0	0	0	1	1	() (0	0	0	0	0	1	0	1	. 1	1	0	0
27	0	0	1	1	0	0	1	0	1	1		1	0	0	1	()	1	0	0	1	1	0	1	0	1		1	0	1	0	1	l	1	0	1	0	1	0	1		0	1	0	1	0	1	1	0	0	0	1	1	() (0	0	0	0	0	1	1	0) []	1	1	0
28	0	0	0	1	1	0	1	1	0	0) [1	0	0	0) [1	0	1	1	1	1	1	0	0	C) (0	0	0	1	1	l	1	1	1	1	0	0	0) [1	1	1	0	0	0	0	0	0	0	1	1	() (0	0	0	0	0	1	1	1	(0	1	1
29	1	0	0	1	1	1	1	1	1	1	(0	0	1	0	()	0	0	1	1	1	1	1	0	0)	1	1	0	0	()	1	1	1	1	1	0	0) [1	1	1	1	0	0	0	1	0	0	1	1	() (0	0	0	0	0	1	0	1	. 1	1	1	1
30	1	1	0	1	1	1	1	1	1	1		1	0	0	1	()	0	0	1	1	1	1	1	1	C)	1	0	1	0	1	l	0	1	1	1	1	1	0) [1	1	1	1	1	0	0	1	1	0	1	1	() (0	0	0	0	0	1	0	0) []	1	0	1
31	1	1	1	1	1	1	0	1	1	0		1	1	0	0) [1	0	0	1	1	1	1	1	1	1		1	1	0	1	()	1	1	1	1	1	1	1	:	1	1	1	1	1	1	0	1	1	1	1	1	() (0	0	0	0	0	1	0	0) (0	0	0

Для неисправностей выделены те сигнатуры, с которых начинается несоответствие эталона.

Первым набором ПСП, для которого последовательности при всех неисправностях начинают отличатся от эталона, является набор 11.

Таблица сигнатур неисправностей при наборе 11 («окно» формирования сигнатуры):

Неисправность	Q_1	Q_2	Q_3	Q_4	Q_5
6/0	1	0	1	1	0
6/1	0	0	1	1	1
7/0	1	1	1	1	0
7/1	0	0	1	1	1
8/0	0	0	1	1	1
8/1	1	0	0	0	0
9/0	0	0	0	0	0
9/1	1	0	1	1	1

Неисправности 6/1, 7/1 и 8/0 имеют одинаковые сигнатуры 00111, следовательно, определить, какая именно из этих неисправностей возникает, невозможно.