	Bernoulli The random variable only has 2 possible outcomes.	1.2 Integration	
Description	Probability of one of them is p	Substitute y	x+1 ,
Notation	$X \sim Bernoulli(p)$	$\theta = \int_0^\infty g(x)$	$\int_{0}^{\infty} dx = \int_{0}^{\infty}$
PMF	$P(X = k) = \begin{cases} p, & k = 1\\ 1 - p, & k = 0 \end{cases}$	$h(y) = \frac{g(\frac{1}{y-1})}{y^2}$	
PIVIF	$\Gamma(X=k) = \begin{cases} 1-p, & k=0 \end{cases}$	1.3 Multi-din $\theta = \int_0^1 \int_0^1 \dots$	nensiona
Expectation	E(X) = p	$\theta = J_0 J_0$ Generate k in	J_0 $g(x_1)$ dependent
Variance	Var(X) = p(1-p)	× n matrix)	асрена
	Indicator Function is a Bernoulli Random Variable, $\mathbb{1}_A=$		
Properties	$\int 1$, if A happens		
	0, if A doesn't happen		
Distribution			
	Number of successes in n Bernoulli trials.		
	$X \sim B(n,p)$		
	$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \ k = 0, 1, \dots, n$ E(X) = np	- (i)	(i).
	Var(X) = np $Var(X) = np(1-p)$	Since $g(U_1^{(i)},$	$, U_n^{(i)}$
	If X_1, \ldots, X_n are i.i.d. with distribution $Bernoulli(p)$,	$-\frac{1}{k} \sum_{i=1}^{k} g(U_1^i)$	
	then $X_1 + \ldots + X_n \sim B(n,p)$	1.4 Algorithm	
Distribution		- 1. Suppose (
	Number of Bernoulli trials to obtain the first success.	 centred at 2. P(X² + Y 	
	$X \sim Geometric(p)$	- 3. Hence, if a	
	$P(X = k) = p(1-p)^{k-1}, \ k = 1, 2, 3, \dots$	proportion	of point
Expectation		2. Inversion N	
	$Var(X) = \frac{1-p}{p^2}$	1. Generate a	
Distribution	Number of events occurring in a fixed time interval or	2. If R.V. is co	
Description	region of opportunity. Number of events per single unit	3. Else, for $i = 4$. Set $X = I$	
	of time. $X \sim Poi(\lambda)$	2.1 Proof for	
	$P(X=k) = rac{\lambda^k}{k!}e^{-\lambda}, \ k=0,1,2,\ldots,\lambda>0$	1. Let F_X der	
	$E(X = k) = \frac{\pi}{k!}e^{-k}, \ k = 0, 1, 2, \dots, \lambda > 0$ $E(X) = \lambda$	2. $F_X(x) = 1$	
	$E(X) = \lambda$ $Var(X) = \lambda$	3. Since F is	
	When n is large & p is small, np is moderate $B(n,p) \rightarrow$	function of	x. So a
Dronarties	Poi(np)	4. Therefore,	
	Negative Binomial	F(x) = I	. ,
Description	Number of Bernoulli trials to obtain r successes.	Use when	
Notation	$X \sim NB(r,p)$	 If discrete, At times, c 	
PMF	$P(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r}, \ k = r, r+1, \dots$	Poisson, Bi	
Expectation	$E(X) = \frac{1}{p}$	 For Gamma 	a, Inversi
Variance	$Var(X) = \frac{r(1-p)}{p^2}$	 Gamma to In continuo 	
Distribution		2.2 Inversion	
Description	n: Number of trials, k : Number of mutually exclusive events.	For $S \sim Gar$	
	$X \sim Multinomial(n, p_1, \dots, p_k)$	$X_i \sim Exp(\beta)$	
PMF	$P(X_1 = x_1, \dots, X_k = x_k) = \frac{n!}{x_1! \dots x_k!} p_1^{x_1} \dots p_k^{x_k}$	Name	Base
Alternate	$p(\mathbf{x}) = rac{n!}{\prod x_j!} \prod \pi_j^{x_j}$ for $\sum \pi_j = 1 \;,\; \sum x_j = n \;, x_j \geq 1$	Poisson	P(X =
			$e^{-\lambda}$
	$E(X_i) = np_i$	Binomial	P(X =
	$Var(X_i) = np_i(1 - p_i)$ $Cov(X_i, X_j) = -np_ip_j, i \neq j$	-	$(1-p)^n$
Distribution		Negative	P(X =
Notation Notation	$X \sim Uniform(a,b)$	Binomial	p^r
	$\left(\frac{1}{a}, a \le x \le b\right)$	 Rejection I Choose a s 	
PDF	$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{otherwise} \end{cases}$ $\begin{cases} 0, & x < a \end{cases}$	pdf), such t	
	$\begin{pmatrix} 0 & x < a \end{pmatrix}$	2. Generate a	
	$F(x) = \begin{cases} 0, & x < a \\ x-a & x < a \end{cases}$	3. Generate a	
CDE	$I'(x) = \sqrt{-}, a < x < 0$	4. If $Y \leq f_X$	
CDF	b-a' - 1		
CDF	$F(x) = \begin{cases} \frac{x-a}{b-a}, & a \le x < b \\ 1, & x \ge b \end{cases}$	5. Else, reject	V and r
Expectation	$E(X) = \frac{a+b}{2}$	- 5. Else, reject _ holds.	
Expectation Variance	$E(X) = \frac{a+b}{2}$ $Var(X) = \frac{(b-a)^2}{12}$	5. Else, reject holds.3.1 Proof for	Rejectio
Expectation Variance	$E(X) = \frac{a+a}{2}$ $Var(X) = \frac{(b-a)^2}{12}$ $U(0,1) \equiv Beta(1,1)$	5. Else, reject holds. 3.1 Proof for 1. (V, Y) is u	Rejectio
Expectation Variance Properties	$E(X)=rac{v-v}{2}$ $Var(X)=rac{(b-a)^2}{12}$ $U(0,1)\equiv Beta(1,1)$ Transform to $Uniform(a,b)$ from $U(0,1)$: $Y=(b-1)$	5. Else, reject holds. 3.1 Proof for 1. (V, Y) is u $g(x)$ }	Rejectio uniformly
Expectation Variance Properties	$\begin{split} E(X) &= \frac{\frac{a_1}{2}}{12} \\ Var(X) &= \frac{(b-a)^2}{12} \\ U(0,1) &\equiv Beta(1,1) \\ \text{Transform to } Uniform(a,b) \text{ from } U(0,1) \text{: } Y = (b-a)X + a \end{split}$	5. Else, reject holds. 3.1 Proof for 1. (V, Y) is $g(x)$ } 2 (V, Y) is	Rejection iniformly only according to the contract of the cont
Expectation Variance Properties Distribution	$\begin{split} E(X) &= \frac{\frac{a_1}{2}}{12} \\ Var(X) &= \frac{(b-a)^2}{12} \\ U(0,1) &\equiv Beta(1,1) \\ \text{Transform to } Uniform(a,b) \text{ from } U(0,1) \text{: } Y = (b-a)X + a \end{split}$	5. Else, reject holds. 3.1 Proof for 1. (V, Y) is u $g(x)$ }	Rejection uniformly only according Y) is uni
Expectation Variance Properties Distribution Notation	$E(X) = \frac{\frac{m^2}{12}}{Var(X) = \frac{(b-a)^2}{12}}$ $U(0,1) \equiv Beta(1,1)$ Transform to $Uniform(a,b)$ from $U(0,1)$: $Y = (b-a)X + a$ Normal $X \sim N(\mu,\sigma^2)$	5. Else, reject holds. 3.1 Proof for $1.(V,Y)$ is 0 $g(x)$ 0 0 0 0 0 0 0 0 0 0	Rejection uniformly only according Y) is uniformly over B
Expectation Variance Properties Distribution Notation PDF	$\begin{split} E(X) &= \frac{\frac{m^2}{12}}{12} \\ Var(X) &= \frac{(b-a)^2}{12} \\ U(0,1) &\equiv Beta(1,1) \\ \text{Transform to } Uniform(a,b) \text{ from } U(0,1) \text{: } Y = (b-a)X + a \\ \text{Normal} \\ X &\sim N(\mu,\sigma^2) \\ f(x) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \ -\infty < x < \infty \end{split}$	5. Else, reject holds. 3.1 Proof for $1.(V,Y)$ is a $g(x)$ $2(V,Y)$ is 3. Since (V,Y) distributed	Rejection uniformly only according Y) is uniformly over B
Expectation Variance Properties Distribution Notation PDF CDF	$\begin{split} E(X) &= \frac{\frac{m^2}{2}}{12} \\ Var(X) &= \frac{(b-a)^2}{12} \\ U(0,1) &\equiv Beta(1,1) \\ \text{Transform to } Uniform(a,b) \text{ from } U(0,1) \text{: } Y = (b-a)X + a \\ \text{Normal} \\ X &\sim N(\mu,\sigma^2) \\ f(x) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right), \ -\infty < x < \infty \\ F(x) &= \int_{-\infty}^{\infty} f(x) dx; -\infty < x < \infty \end{split}$	5. Else, reject holds. 3.1 Proof for $1.(V,Y)$ is a $g(x)$ } 2. $.(V,Y)$ is 3. Since (V,Y) distributed 4. The joint d	Rejection uniformly only accomply accomply accomply accomply over B ensity of
Expectation Variance Properties Distribution Notation PDF CDF Expectation	$\begin{split} E(X) &= \frac{\frac{m^2}{12}}{12} \\ Var(X) &= \frac{(b-a)^2}{12} \\ U(0,1) &\equiv Beta(1,1) \\ \text{Transform to } Uniform(a,b) \text{ from } U(0,1) \text{: } Y = (b-a)X + a \\ \text{Normal} \\ X &\sim N(\mu,\sigma^2) \\ f(x) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \ -\infty < x < \infty \end{split}$	- 5. Else, reject holds. 3.1 Proof for 1. (V,Y) is u $g(x)$ } 2. u	Rejection uniformly only accomply accomply accomply accomply over B ensity of

1.2 Integration Transformation: $[0,\infty] o [0,1]$
Substitute $y=rac{1}{x+1}$, $dy=rac{-dx}{(x+1)^2}=-y^2dx$
$ heta = \int_0^\infty g(x) dx = \int_0^1 h(y) dy$
$h(y) = \frac{g(\frac{1}{y-1})}{y^2}$
1.3 Multi-dimensional Integral:
$ heta = \int_0^1 \int_0^1 \int_0^1 g(x_1, x_2,, x_n) dx_1 dx_2 dx_n$
Generate k independent sets with n independent uniform
× n matrix)

$$\begin{pmatrix} u_1^{(1)} & \dots & u_n^{(1)} \\ u_1^{(2)} & \dots & u_n^{(2)} \\ u_1 & \dots & u_n^{(2)} \\ & \cdot & \dots & \cdot \\ & \cdot & \dots & \cdot \\ \vdots & \dots & \vdots \\ u_1^{(k)} & \dots & u_n^{(k)} \end{pmatrix}$$

Since
$$g(U_1^{(i)},...,U_n^{(i)})$$
 , $i=1,2,...,k$ are i.i.d, $\hat{\theta}=\frac{1}{k}\sum_{i=1}^kg(U_1^{(i)},...,U_n^{(i)}) o \theta$

4 Algorithm for estimating π

Suppose (X, Y) is uniformly distributed in the square of area 4 centred at the origin (0.0).

 $P(X^2 + Y^2 \le 1) = \frac{\pi}{4}$

Hence, if a large number of points are generated in the square, the proportion of points that fall within the circle is approximately $\frac{\pi}{4}$

Inversion Method Algorithm

Generate a random number $u=U\sim [0,1]$

If R.V. is continuous, find X in which $F_X^{-1}(u)$ falls under

Else, for i = 0, 1, 2, ..., n, find X where $F_X = \sum_{i=0}^{i_{max}} p_i$

1 Proof for Inversion Method

Let F_V denote the distribution of $X = F^{-1}(U)$.

 $F_X(x) = P(X \le x) = P(F^{-1}(U) \le x).$

Since F is a distribution function, F(x) is a monotone increasing 1. $X \sim N_d(\mu, \Sigma)$ has p.d.f: $p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{1}{2}|\Sigma|^{\frac{1}{2}}}} e^{-\frac{(x-\mu)^{\frac{1}{2}(\Sigma)^{\frac{1}{2}}}}{2}}$ function of x. So $a \leq b \equiv F(a) \leq F(b)$

Therefore, $F_X(x) = P(F[F^{-1}(U)] \leq F(x)) = P(U \leq$

F(x) = F(x). Since $U \sim [0,1]$

Use when theoretical F^{-1} is known

If discrete, make sure to calculate the individual F_X properly.

At times, calculating all the individual F_x is difficult, like with

Poisson, Binomial & Negative Binomial

For Gamma, Inversion method can only be used if you convert the Gamma to a sum of independent Negative Binomials.

In continuous case, use $\int_a^b f(y)dy$ or cdf to calculate.

2 Inversion Method Table

or $S \sim Gamma(n, eta)$, let $S_n = X_1 + X_2 + ... + X_n$, where $\sim Exp(\beta)$

Name	Base Case	Recursion Relation
1 Poisson		$P(X = k) = P(X = k-1) \cdot \frac{\lambda}{k}, k = 1, 2, \dots$
Binomial	$P(X=0) = (1-p)^n$	$P(X = k) = P(X = k-1) \cdot \frac{(n-k+1)p}{k(1-p)}, k = 1, 2, \dots, n$
Negative Binomial		$P(X = k) = P(X = k-1) \cdot \frac{k-1+r}{k} \cdot (1-p)$
2 Datastis		

Rejection Method Algorithm

pdf), such that $f_X(x) \leq c \cdot g(x)$, $\forall x \text{ in } x : f_X(x) \text{ where } c > 1$.

Generate a random variable V from g(x)

Generate a uniform random number Y from $U \sim [0, c \cdot g(x)]$.

If $Y \leq f_X(V)$, accept V = X.

Else, reject V and repeat generation of V & Y until $Y \le f_X(V)$ holds.

1 Proof for Rejection Method

(V,Y) is uniformly distributed over $S = \{(x,y) : 0 \le y \le c \le a$

. (V,Y) is only accepted if it lies in $B=\{(x,y):0\leq y\leq f(x)\}$ Let $\hat{\mathbb{I}}$ be an MC estimator for some distribution. Since (V, Y) is uniform over S, the accepted (V, Y) is uniformly **6.1 Simple Sampling Algorithm**

The joint density of (V, Y) : h(x, y) = $\int g(x)h(y|x) = \frac{1}{c}$, $(x,y) \in S$

• The chances of sampling (V, Y) from S is $\frac{1}{a}$

The marginal density of accepted $V: k(x) = \int_0^{f(x)} 1 \, dy = f(x)$ Does not reduce variance

Following Box-Muller

Following Box-Ividine $X = \sqrt{-2log(U)} \cdot \frac{V_1}{\sqrt{V_1^2 + V_2^2}}$ $Y = \sqrt{-2log(U)} \cdot \frac{V_2}{\sqrt{V_1^2 + V_2^2}}$

n R.V. (i.e. k $\;\;\;\;$ Given $R=X^2+Y^2$, $R\sim U[0,1]$ and is independent from heta , let

$$\begin{array}{l} X = \sqrt{\frac{-2log(U)}{V_1^2 + V_2^2}} \cdot V_1 = \sqrt{\frac{-2log(S)}{S}} V_1 \\ Y = \sqrt{\frac{-2log(U)}{V_1^2 + V_2^2}} \cdot V_2 = \sqrt{\frac{-2log(S)}{S}} V_2 \end{array}$$

X and Y are independent unit normals when (V1,V2) is a randomly chosen point in the circle of radius 1 centred at the origin and $S = V_1^2 + V_2^2$

5.5 Multivariate Normal R.V. Algorithm

 Σ is a d imes dcovariance matrix

$$\begin{array}{l} 1. \ X \sim N_d(\mu, \Sigma) \ \text{has p.d.f.} \ p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{(\mathbf{x} - \mu)^2 \sum_{1 \leq i \leq n} \mu}{2}} \\ 2. \ \text{Generate vector} \ \mathbf{z} = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_d \end{pmatrix} \ \text{where} \ \mathbf{z} \in \mathbb{R}^d \ z_i \sim N(0, 1) \end{array}$$

3. $\mathbf{z} \sim N(0, I)$ where I is identity matrix

4. Find a d imes d matrix T where $T'T = \Sigma$

5. Let $\mathbf{x} = T'\mathbf{z} + \mu$

· Matrix T can be found by Cholesky decomposition

· Matrix T can be found by Eigenvalue decomposition

. This does not use Uniform number generator but rnorm

5.6 Multivariate Conditional Normal R.V. Algorithm

2. Generate x_1 from $X_1 \sim N(\mu_1, \sigma_{11})$

3. Generate $x_2|x_1$ from $X_2|X_1 \sim N(\mu_2', \Sigma_{22}')$

4. Generate $x_3|(x_2,x_1)$ from $X_3|(X_1,X_2) \sim N(\mu_3',\Sigma_{33}')$

5. Repeat until the full vector x is solved

μ'_i is the conditional mean of x_i represented as a vector

• Σ'_{ii} is the conditional variance of x_i represented as a vector

• $\mu'_i = \mu_{i|1:i-1} = \mu_i + \sum_{i,1:i-1} \sum_{1:i-1,1:i-1}^{-1} (\mathbf{x} - \mu_{1:i-1})$

 $\bullet \quad \Sigma_{ii}' = \Sigma_{i|1:i-1} = \Sigma_{ii} - \Sigma_{i,1:i-1} \Sigma_{1:i-1,1:i-1}^{-1} \Sigma_{1:i-1,i}$

 This method uses the fact that multivariate normals have a joint Gaussian relationship (i.e. conditional in nature)

5.7 Multinomial Algorithm

1. Multinomial : $p(\mathbf{x}) = \frac{n!}{\prod x^j} \prod \pi_i^{x_j}$ for $\sum \pi_j = 1$, $\sum x_j =$

- 2. Alternate: $p(X_1=x_1,...,X_k=x_k)=rac{n!}{x_1!...x_k!}\cdot (p_1)^{x_1}...(p_k)^{x_k}$ 3. Generate x_1 from $X_1 \sim Binomial(n, p_1)$

— 4. Generate $x_j|x_1,...,x_{j-1}$ from $X_j|X_1,...,X_{j-1} \sim$ $Binomial(n-\sum_{1}^{j-1}X_i,\frac{p_j}{1-\sum_{i}^{j-1}p_i})$

— 5. Assign last $x_k = n - \sum_{i=1}^{k-1} X_i$

. This method makes use of the fact that multinomial are essentially 7.4 Markov Chain Terminologies a sum of marginal binomials

6. Variance Reduction

Choose a **simpler** probability density function g(x) (Trial/Proposal Let h(x) be any function used to represent the Expectation. For instance, if I am finding E[X] then h(X) = X. The goal is in reducing the value of n in Monte Carlo Integration, where the distribution X has the samples $\mathbf{x} = [x_1,....,x_n]$

$$E[X] = E[h(\mathbf{x})] = \frac{1}{n} \int h(\mathbf{x}) f(\mathbf{x}) dx = \hat{\theta}$$

$$E[X^2] = E[h(\mathbf{x})^2] = \frac{1}{n} \int h(\mathbf{x})^2 f(\mathbf{x}) dx$$

 $Var[X] = Var[h(\mathbf{x})] pprox \frac{E[(h(\mathbf{x}) - E[h(\mathbf{x})]^2)]}{E[h(\mathbf{x})]^2]} = \frac{E[h(\mathbf{x})^2] - (E[h(\mathbf{x})])^2}{E[h(\mathbf{x})]^2]} = \frac{E[h(\mathbf{x})^2] - (E[h(\mathbf{x})])^2}{E[h(\mathbf{x})]^2} = \frac{E[h(\mathbf{x})^2] - E[h(\mathbf{x})]}{E[h(\mathbf{x})]^2} = \frac{E[h(\mathbf{x})^2] - E[h(\mathbf{x})]}{E[h(\mathbf{x})]} = \frac{E[h(\mathbf{x})^2] - E[h(\mathbf{x})]}{E[h(\mathbf{x})$

for some limits ("boundary") where area under the curve f(x) = 1 as

n impacts the confidence interval of the estimator.

Sample n samples from distribution X

1. $\hat{I} = \frac{1}{n} \sum_{i=1}^{n} h(X)$ 2. $I = E[I] = \hat{I}$ 3. $E[I^2] = \frac{1}{n} \int h(X)^2 f(x) dx$ 4. $Var\hat{\mathbf{I}} = \frac{\ddot{Var}\mathbf{I}}{Var} = \frac{E[\hat{\mathbf{I}}^2] - \hat{\mathbf{I}}^2}{Var}$

Not an unbiased estimate of variance

7. Markov Chain

For our purpourses, we assume that Markov Chains are homogenous This seeks to find a global min/max of a cost function by exploring in time, meaning the transition probabilities are fixed and do not change with time. A **Markov Chain** is a mathematical model used to describe a sequence of events where

1. The future state depends only on the current state (not the past). This is called the Markov Property

A Markov Chain X is a discrete time stochastic process X_0, X_1, \ldots with the property that the distribution of X_{\star} given all previous values

the process, X_0, \ldots, X_{t-1} , only depends upon X_{t-1} : $P[X_t \in$ $A[X_0, \dots, X_{t-1}] = P[X_t \in A | X_{t-1}]$ for any Set A

2. The transitions between states are described by probabilities $p_{ij} = P(X_{t+1} = j | X_t = i)$ denotes the transition probability from state i to state i at time t+1.

 $p_{ij}(m) = P(X_{t+m} = j | X_t = i), m = 1, 2, ...$ denote the multistep transition probability from state i to state i. Can be seen as the sum over all intermediate states k through which the system passes in its transition from state i to state j

 $p_{ij}(m+1) = \sum_{k}^{n} p_{ik}(m) p_{kj} \;,\; m=1,2,\ldots$ with $p_{ik}(1) = p_{ik}$ $p_{ij}(m+n) = \sum_{k=0}^{n} p_{ik}(m) p_{kj}(n), m, n = 1, 2, ...$

7.1 Markov Chain Components

1. States: A Markov Chain consists of a finite set of states. S = $\{s_1, s_2, \dots, s_n\}$

2. Initial State: The starting state of the system is represented by a probability vector $\pi^{(0)}$, where $\pi^{(0)}$ is the probability of starting in

3. **Stationary Distribution/Invariant**: A probability distribution π is **stationary** if, after applying the transition matrix P, it remains unchanged: $\pi P = \pi$. Intuitively, it describes the long-term behaviour of the system.

4. **Transition Matrix**: The transitions between states are represented by a square matrix P, called the **transition matrix**. Each entry p_{ij} gives the probability of transitioning from state i to state j. The matrix is written as

$$P = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{bmatrix}$$

All p_{ij} are conditional probabilities that satisfy $p_{ij} > 0$ and $\sum_{i=1}^{n} p_{ij} = 1$ where n is the total number of states. $p_{ij} \geq 0$: Probabilities are non-negative. $\sum_{i=1}^{n} p_{ii} = 1$: Each row sums to 1, ensuring the probabilities account for all possible transitions.

7.3 Markov Chain Mechanics

1. Current State: At any time t, the system is in one of the states

2. Transition: The system moves to a new state at the next time step. t+1, based on the probabilities in the row of P corresponding to the current state

given by: $\pi^{(t+1)} = \pi^{(t)}P$

 π is a vector

1. Irreducible: A Markov Chain is irreducible if it's possible to get from 2. For stationary processes: $Var(\bar{X}_N) = \frac{1}{N} \sum_{k=-N}^{N} \left(1 - \frac{|k|}{N}\right) c(k)$ any state to any other state (possibly over multiple steps).

cycle (e.g., alternating between two states indefinitely)

3. **Recurrent States**: States that the system will return to infinitely often. $f_i = P(\text{ever returning to state i}) = 1$

4. Transition States: $f_i < 1$

5. Transient States: States that the system may leave and never return to

6. Accessible States: if i can reach i in a finite number of transitions or vice versa

7. **Communicable States**: $i \leftrightarrow j$ or if i and j can transition to each other in a finite number of transitions or vice versa

8 Positive Recurrent: A recurrent state is positive recurrent if the expected time to return to that state is finite

7.5 Markov Chain Example

Suppose we have three states for the weather: $S=% \frac{1}{2}\left(-\frac{1}{2}\left(-\frac{1}{2}\right) +\frac{1}{2}\left(-\frac{1}{2}\right) \right) +\frac{1}{2}\left(-\frac{1}{2}\left(-\frac{1}{2}\right) +\frac{1}{2}\left(-\frac{1}{2}\right)$ {Sunny, Rainy, Cloudy}

The transition matrix P might look like:

 $P = \begin{bmatrix} 0.0 & 0.3 & 0.1 \\ 0.4 & 0.4 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$

If it's Sunny today.

10. Simulated Annealing Algorithm

the solution space whilst avoiding getting trapped in local minima/maxima

- 1. Set a sufficiently high initial temperature T_0 to ensure most proposed transitions are accepted, irregardless of cost function improvement.
- Reduce temperature gradually following an exponential cooling schedule: $T_k = \alpha T_{k-1}, \quad k = 1, 2, \dots$ where T_k : Temperature at step k. α is a constant reduction factor (0.8 to 0.99). Smaller values → faster cooling values close to 1 → slower cooling.
- 3. Initially, large changes are accepted, but as the temperature decreases, the algorithm becomes more selective.
- 4. At each temperature T_{t_i} a number of proposed transitions (new solutions) are attempted
- 5. If the new solution improves the cost function, it is always
- 6. If the new solution worsens the cost function, it is accepted with a probability proportional to $exp(-\Delta E/T)$, where ΔE is the change in the cost function. This helps to escape local minima early in the process.
- 7. Continue until no significant changes in the solution or the desired number of acceptances is not achieved for several consecutive temperature levels (Convergence)

11. Confidence Intervals

Estimate Mean: $\hat{\mu}_N = \frac{1}{N} \sum_{i=1}^{N} X_i$, where X_i are the simulated values and N is the number of samples.

Estimate Variance:
$$\hat{S}^2 = \frac{1}{N-1}\sum_{i=1}^N(X_i-\hat{\mu}_N)^2$$

Compute Standard Error: $SE = \sqrt{\frac{\hat{S}^2}{N}}$

Determine Critical Value: For a 95% confidence interval, $z^* \approx 1.96$ (standard normal distribution)

Confidence Interval: 95% confidence interval is given by: $\hat{\mu}_N \pm z^*$. SE. This translates to the interval: $[\hat{\mu}_N - z^* \cdot SE, \hat{\mu}_N + z^* \cdot SE]$ Adjust for Dependencies (if not i.i.d.): For stationary sequences, adjust the variance using the effective sample size: $Var(\hat{\mu}_N) \approx \frac{Var(X_i) \cdot \tau}{N}$, where τ is the integrated autocorrelation time.

11.1 Confidence Intervals for Case 2: Batch Means

When dealing with stationary processes, consecutive observations are correlated, making the usual formula for variance unreliable.

1. Split N total observations X_1, \ldots, X_N into b batches of size L =

2. Compute the mean for each batch: $Y_k = \frac{1}{L} \sum_{i=(k-1)L+1}^{kL} X_i$

3. Treat these batch means Y_1, \ldots, Y_k as independent.

4. Estimate the variance of \bar{X} (mean of the entire sequence) using the variance of Y_k : $S_b^2 = \frac{1}{b-1} \sum_{k=1}^b (Y_k - \bar{Y}_b)^2$

5. Construct a 95% confidence interval: $Y_b \pm t_{b-1,0.025} \sqrt{rac{S_b^2}{h}}$ where $t_{b-1,0.025}$ is the critical value of the t-distribution with b-1degrees of freedom.

The batch size L must be large enough to ensure the batch means Y_{l} are approximately independent.

11.2 Confidence Intervals for Case 2: Covariance Summation

3. **Evolution**: The state probabilities at time t+1, denoted $\pi^{(t+1)}$, are For a stationary process, the variance of the sample mean \bar{X}_N depends on the autocovariance structure of the process:

 $Var(\bar{X}_N) = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{i=1}^{N} Cov(X_i, X_j)$

1. Define $c(k) = \operatorname{Cov}(X_1, X_{1+k})$

any state to any other state (possibly over multiple steps). 2. **Aperiodic:** A chain is aperiodic if it doesn't repeat states in a fixed 3. For large N, this simplifies to: $Var(\bar{X}_N) \approx \frac{V}{N}$ where V = c(0) + c(0)

• Directly estimating V using: $\hat{V}_N = \hat{c}_N(0) + 2\sum_{k=1}^{N-1}\hat{c}_N(k)$ where $c^N(k)\hat{c}_N(k)$ is the sample covariance at lag k, often performs poorly in practice due to noise and bias.

11.3 Confidence Intervals for Case 2: Window Methods

Instead of summing the entire auto-covariance series V = c(0) + c(0) $2\sum_{k=1}^{\infty} c(k)$ (which is computationally expensive and may not converge well), you sum up to a fixed lag L (called the "window size"): $\hat{V}_{N,L} = \hat{c}_N(0) + 2\sum_{k=1}^L \hat{c}_N(k)$. The idea is to assume correlations beyond lag ${\cal L}$ are negligible. Choose ${\cal L}$ based on methods below.

First Approach: Decay of Correlations: Plot $\hat{c}_N(k)$ (estimated covariance at lag k) against k. Choose L where $\hat{c}_N(k)$ becomes indistinguishable from noise. If c(k) decays slowly, choosing ${\cal L}$ too small can underestimate V

Second Approach: Self-Consistent Windowing: Start with an initial guess L_1 . Compute the integrated autocorrelation time $au_{N,L} =$ $\hat{V}_{N,L}/\hat{c}_N(0)$. If L_1 is not at least 5 times $\tau_{N,L}$, increase L and recompute

· Computationally efficient, especially for short-range dependencies.

	see the distribution of it and the normalising constant is	
	straightforward	
Distribution	Exponential	
Notation	$X \sim Exp(\lambda)$	
PDF	$f(x) = egin{cases} \lambda e^{-\lambda x}, & x > 0 \ 0, & x \leq 0 \end{cases}$	
	Note that $\lambda>0$	
CDF	$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0 \end{cases}$	
	$x \leq 0$ $x \leq 0$	
Expectation	$E(X) = \frac{1}{\lambda}$	
Variance	$Var(X) = \frac{1}{\lambda^2}$	
Properties	For any $X \sim Exp(\lambda) \ P(X > s + t \mid X > s) = P(X > t)$	
Distribution		
Notation	()	
PDF	$ \begin{aligned} X \sim Gamma(\alpha,\beta) \\ f(x) &= \begin{cases} \frac{\beta^a}{\Gamma(a)} x^{a-1} e^{-\beta x}, & x \geq 0 \\ 0, & x < 0 \end{cases} \\ F(x) &= \frac{1}{\Gamma(a)} \gamma(\alpha,\beta x) \end{aligned} $	
	$\int_{0}^{\infty} (x) = 0$	
CDF	$F(x) = \frac{1}{\Gamma(\alpha)} \gamma(\alpha, \beta x)$	
Expectation	$E(X) = \frac{a}{\beta}$	
Variance	$Var(X) = \frac{a}{\beta^2}$	
	$\gamma(lpha,eta x)$: $\int_0^{eta x} t^{lpha-1} e^{-t}dx$ only computable where we	
	know x	
	Gamma Function: $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt$	
	Recursion Property: $\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$	
	Gamma Function Computation: $\Gamma(\alpha)=(\alpha-1)!$	
	Sum of Gamma Random Variables: Let X_1,\ldots,X_k be	
	independent random variables where $X_i \sim$	
	$Gamma(lpha_i,eta)$ for each i . Then $X_1+\cdots+X_k\sim$	
	$Gamma(\alpha_1 + \cdots + \alpha_k, \beta)$	
Properties	Connection with the Standard Normal: If $Z \sim N(0,1)$	
	then: $Z^2 \sim Gamma(rac{1}{2},rac{1}{2}) \sim \chi^2(1)$	
	Connection with Chi Squared: Assume Z_1, \ldots, Z_k are	
	i.i.d. $N(0,1)$ random variables. Then, $Z_1^2 + \cdots + Z_k^2 \sim$	
	$Gamma(\frac{k}{2},\frac{1}{2}) \sim \chi^2(k)$	
	Connection with Exponential: If X_1, \ldots, X_n i.i.d.	
	$Exp(\lambda) = Gamma(1, \lambda)$ then $X_1 + \cdots + X_n \sim$	
	$Gamma(n, \lambda)$	
	Scaling: If $X \sim Gamma(\alpha, \beta)$, then $cX \sim \beta$	
	$Gamma(\alpha, \frac{\beta}{c})$	
Distribution		
Notation	$X \sim Beta(\alpha, \beta)$	
PDF	$f(x)=rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)}x^{lpha-1}(1-x)^{eta-1} ext{ for } 0\leq x\leq 1 \ , a>0 \ , b>0$	
CDF	$F(x) = \frac{1}{\Gamma(\alpha)} \gamma(\alpha, \beta x)$	
Expectation	$E(X) = \frac{\alpha}{\alpha + \beta}$	
Variance	$Var(X) = \frac{lphaeta}{(lpha+eta)^2(lpha+eta+1)}$	
variance	Swap of Parameters: If $X \sim Beta(\alpha,\beta)$, then $1-$	
	$X \sim Beta(\beta, \alpha)$	
	Connection with Gamma Distribution: If $X\sim$	
	Camma(o, B) V o Camma(B, B) and Y V are	
	independent, then $\frac{X}{X+Y} \sim Beta(\alpha, \beta)$	
Properties	independent, then $\frac{X}{X+Y} \sim Beta(\alpha, \beta)$ Order Statistics : If X_1, \dots, X_n are i.i.d.	
	$Uniform(0,1)$, and $X_{(1)} \leq \cdots \leq X_{(n)}$ are their order	
	statistics, then for $k=1,\ldots,n, X_{(k)}\sim Beta(k,n+1)$	
	(1-k)	
	Useful Tip : To generate Beta distribution, draw i.i.d. Uniform samples, order them, and select the k th one.	
1 Monte C	arlo Integration	
	$ heta = E[g(x)] = \int_0^1 g(x) dx$	
2 Accumi-	$ \sigma = E[g(x)] = \int_0^x g(x)dx $ $ \sigma U \sim [0, 1] \theta = E[g(U)] $	

- 2. Assuming $U \sim [0,1], \theta = E[q(U)]$
- 3. If $U_1, U_2, ..., U_k$ are independent $U, g(U_1), g(U_2), ..., g(U_k)$ are
- 4. By Strong Law of Large Numbers, $\frac{1}{k} \sum_{i=0}^k g(U_i) o E[g(U)] = \theta$
- 5. Generate a large number of random numbers U_i
- 6. Approximate θ by the average value of a(U) with $\hat{\theta} =$ $\frac{1}{k} \sum_{i=0}^{k} g(U_i)$
- **1.1** Integration Transformation: [a,b] o [0,1]
- Substitute $y = \frac{x-a}{b-a}$, $dy = \frac{dx}{b-a}$
- $\theta = \int_{0}^{b} g(x)dx = \int_{0}^{1} g(a + [b a]y)(b a)dy = \int_{0}^{1} h(y)dy$

- B is contained by f(x), it's total area under the curve is 1 6.2 Stratified Sampling Algorithm as f(x) is some pdf
- Integrating B over the region bounded by f(x) (i.e. [0, f(x)] will be where V is found
- Uniform sampling ensures proportionality between f(x) and the 3. Assign n_i as sample sizes to each $S^{(i)}: n_1 + \dots + n_M = n$ region B
- Efficient when a is chosen s.t. c is small close to 1 (fewer points) are rejected)
- c should be the maximum value of $\frac{f(x)}{g(x)}$ over the entire domain of x (i.e. $c = \sup \frac{f(x)}{g(x)}$ or use $\frac{d}{dx} = 0$
- Number of proposals needed is c where c ~ Gemoetric(¹/₂)

• $P(\{(V,Y):B\}) = \frac{\operatorname{area}B}{\operatorname{area}S} = \frac{1}{c}$ 4. Composition Method Algorithm

- 1. Divide $F_X(x)$ into M subregions where $F_X(x) = \sum_{i=1}^M p_i$ $F_{X_i}(x)$ where $\sum_{i=1}^M p_i = 1$
- cases but depends on distribution of $\sum_{i=1}^{M} p_i = 1$)
- 3. Generate $Y = U \sim [0,1]$ and scale it to the range of F_Y
- 4. Solve $X = F_{v}^{-1}(Y)$

4.1 Composition Method Remarks

- Useful if you know how F_v^{-1} can be "binned" into weighted distributions
- Useful when $F_{\rm Y}^{-1}$ is known but not $F_{\rm Y}^{-1}$

5. Polar Method Algorithm for Generating Normal R.V.

Using the relationship between cartesian (x, y) and polar (r, θ) coordinates, Normal R.V. can be simulated as follows

5.1 Box-Muller Algorithm

- 1. Generate $U_1, U_2 \sim U[0, 1]$
- 2. Since $R \sim Exp(\frac{1}{n}), r = F^{-1}(U_1) = -2log(U_1)$
- 3. Since $\Theta \sim U[0, 2\pi], \theta = F^{-1}(U_2) = 2\pi * U_2$
- 4. Let $X = r \cos \theta = \sqrt{-2log(U_1)} \cos 2\pi * U_2$ 5. Let $Y = r \sin \theta = \sqrt{-2log(U_1)} \sin 2\pi * U_2$

5.2 Box-Muller Algorithm Proof

Suppose $X, Y \sim N(0, 1)$ where X and Y are i.i.d. Let $R \otimes \Theta$ be polar coordinates of vector (X, Y).

 $R = X^2 + Y^2$, $\tan \Theta = \frac{Y}{Y}$

Given X and Y are independent, joint density is,

$$f(x,y)=rac{1}{\sqrt{2\pi}}e^{rac{-x^2}{2}}rac{1}{\sqrt{2\pi}}e^{rac{-y^2}{2}}=rac{1}{2\pi}e^{rac{-(x^2+y^2)}{2}}$$

Convert the equations to a "realisation" format, with Jacobian Transformation of |J|=2 accounting for the change in (x,y)coordinates to (r, θ) coordinates.

$$r = x^2 + y^2$$
, $\theta = \tan^{-1} \frac{y}{x}$

$$f(r,\theta) = \frac{1}{2} \frac{1}{2\pi} e^{\frac{-r}{2}}, \ 0 < r < \infty, \ 0 < \theta < 2\pi$$

The joint density of (r, θ) can be further factored into 2 parts, an exponential and a uniform density, $f(r, \theta) = \frac{1}{2} \frac{1}{2r} e^{\frac{-r}{2}} = (\frac{1}{2} e^{\frac{-r}{2}})$

This means $R \sim Exp(\frac{1}{2})$ and $\Theta \sim U[0,2\pi]$

Using this, we can generate (r,θ) coordinates and convert it into (x, y) coordinates

5.3 Improved Box-Muller Algorithm

- 1. Generate $U_1, U_2 \sim U[0,1]$
- 2. Let $V_1 = 2U_1 1$
- 3. Let $V_2 = 2U_2 1$
- 4. Let $S = V_1^2 + V_2^2$
- 5. If S > 1, repeat

6. Else, $X=\sqrt{\frac{-2log(S)}{S}}V_1$ and $Y=\sqrt{\frac{-2log(S)}{S}}V_2$

5.4 Improved Box-Muller Algorithm Proof

Given Step 1 - 3, (V_1, V_2) will be uniformly distributed in a square centred on (0,0) with area 4. Suppose, (V_1,V_2) continue to be generated until it is in a circle centred on (0,0) of radius 1 or V_1^2 + $V_2^2 \leq 1$. Hence, (V_1, V_2) following this condition is uniformly distributed in the circle

If (V_1, V_2) are converted to polar coordinates using Jacobian Transformation.

$$f(r, \theta) = (1) \cdot (\frac{1}{r})$$

This means $R \sim U[0,1]$ and $\Theta \sim U[0,2\pi]$ where R and Θ are

Since θ is a random angle, (V_1, V_2) being points randomly generated in the circle, the $\sin \theta$ and $\cos \theta$ can be generated

- 1. Divide domain of f(x): S into M disjoint subsets $S^{(1)}, S^{(2)}, \dots, S^{(M)} : S = \bigcup_{i=1}^{M} S^{(i)}.$
- 2. For each $S^{(i)}$: $P(X \in S^{(i)}) = a_i = \int_{S^{(i)}} f(x) \, dx$
- 4. For each $S^{(i)}$, generate n_i realisations $X_1^{(i)}, \ldots, X_{n_i}^{(i)}$ from
- conditional PDF : $g(x) = \begin{cases} \frac{f(x)}{a_i}, & \text{if } x \in S^{(i)}, \\ 0, & \text{otherwise}. \end{cases}$
- 5. The sub-strata estimator is $\hat{T}_i = \frac{1}{n_i} \sum_{i=1}^{n_i} h(X_i^{(i)})$ for some
- 6. $E[T_i] = \int_{S_i} h(\mathbf{x}_{S_i}) \frac{f(\mathbf{x}_{S_i})}{a_i} = \frac{1}{a_i} \int_{S_i} h(\mathbf{x}_{S_i}) f(\mathbf{x}_{S_i}) = \frac{l_i}{a_i}$ 7. The stratified estimator is $T = \sum_{i=1}^{M} a_i T_i$ after correcting for sub-
- dividing n and drawing samples from g(x)
- 8. $E[T] = \sum_{i=1}^{M} a_i E[T_i] = \sum_{i=1}^{M} a_i \frac{l_i}{a_i} = I$
- 2. Choose an F_{X_i} , where $i \sim$ some discrete r.v. (use uniform for most 9. $Var(T_i) = \frac{1}{n} \left(\int_{S^{(i)}} h(x)^2 \frac{f(x)}{a} dx \left(\frac{l}{a} \right)^2 \right)$
 - 10. $VarT = \sum_{i=1}^{M} a_i^2 VarT_i$.
 - a_i = \int_{S(i)} f(x) dx is the total probability of S⁽ⁱ⁾ under f(x).
 - Dividing f(x) by a_i ensures the conditional PDF q(x) sums to 1 over $S^{(i)}: \int_{S^{(i)}} g(x) dx = \int_{S^{(i)}} \frac{f(x)}{g} dx = \frac{1}{g} \int_{S^{(i)}} f(x) dx = 1.$
 - \bullet T is unbiased because the sum of the sub-strat aestimators result in the estimator itself
 - Reduces variance because $Var\hat{\theta} = VarT + \frac{1}{n} \sum_{i=1}^{M} a_i (\frac{I_i}{n} I_B)$ which is $\geq VarT$

6.1 Importance Sampling Algorithm

We are first given $I = E[h(X)] = \int_S h(x)f(x)dx$ we can choose some g(x) and sample X_i s from g. It needs to be noted that gshould be as close in shape to h(x)f(x) for this to work. Y is just to note that the samples do not follow the original distribution of Xsince we are drawing from q.

- 1. Rewrite $I = \int_S h(x) \frac{f(x)}{g(x)} g(x) dx = E\left[\frac{h(x)f(x)}{g(X)}\right] = E[h(Y)w(Y)]$ where $w(y) = \frac{f(y)}{g(y)}$ is the weighting function.
- 2. $\hat{\mathbf{I}}$ is $\frac{1}{n} \sum_{i=1}^{n} h(x_i) w(x_i)$ where $w(x_i) = \frac{f(x_i)}{g(x_i)}$
- 3. $Var\hat{\mathbf{I}}$ is $\frac{1}{n}Var[h(X)w(X)] = \frac{1}{n}(\int_{S} \frac{h^{2}(x)f^{2}(x)}{q(x)}dx \mathbf{I}^{2}).$
- 4. If h(x) > 0 for all $x \in S$, the $Var\hat{\Gamma}$ is exactly 0.
- $5. \sigma^2 = Var_g[h(X)w(X)] = \int_S \frac{h^2(x)f^2(x)}{g(x)} dx I^2$
- 6. Confidence Interval : $I \in \left[\hat{I} 1.96 \frac{\hat{\sigma}}{\sqrt{n}}, \hat{I} + 1.96 \frac{\hat{\sigma}}{\sqrt{n}}\right]$ where $\hat{\sigma}^2 =$
- Define $g'(x) = c \cdot |h(x)| \cdot f(x)$ where c is a constant
- Let $\int_S g'(x)dx = 1$, hence $c = \frac{1}{\int \frac{1}{|h(x)|f(x)dx}}$ or $\frac{1}{1}$ if the estimator
- $g(x) = c \cdot g'(x)$
- Optimal proposal density is $g(x) \propto |h(x)| \cdot f(x)$

6.4 Control Variates Sampling Algorithm

We are first given $I = E[h(X)] = \int_S h(x)f(x)dx$. The control variates method uses an auxiliary variable C, correlated with X, to reduce the variance of the estimator

- 1. Define the adjusted estimator as $\hat{\mathbf{I}} = \hat{\mathbf{I}}_X + \beta(\hat{C} \mu_C)$
- 2. $\hat{\mathbf{I}}_X = \frac{1}{n} \sum_{i=1}^n h(X_i)$ 3. $\hat{C} = \frac{1}{n} \sum_{i=1}^n C_i$

- 4. $\mu_C = E[C]$ is known or approximated
- 5. β is a coefficient determined by minimising variance.
- 6. Use optimal $\beta^* = -\frac{\operatorname{Cov}(h(X),C)}{\operatorname{Vor}(C)}$
- 7. $Var(\hat{I}) = Var(\hat{I}_X) 2\beta Cov(h(X), C) + \beta^2 Var(C) = (1 \beta^2) Var(C)$ $Cor(h(X), C)^2) \cdot Var(\hat{I}_X)$
- If C is highly correlated with h(X), a β can always be chosen so that $Var(\hat{\mathbf{I}}) \leq Var(\hat{\mathbf{I}}_X)$
- if only $E[C] = \mu$ is given, $\hat{I} = \beta \hat{I}_X + (1 \beta)C$

6.5 Antithetic Variates Method

This method exploits negatively correlated random variables to reduce variance, particularly if h(X) is monotonic

- 1. Let $U \sim U[0,1], X = F^{-1}(U)$ and $X' = F^{-1}(1-U)$
- 2. $\hat{\mathbf{I}} = \frac{1}{2n} \sum_{i=1}^{n} (h(U_i) + h(1 U_i))$ 3. $Var[\hat{i}] = \frac{1}{2n}(Var(h(U)) + Cov(h(U), h(1-U))).$
- reducing variance compared to independent sampling.
- The effectiveness of the antithetic method depends on the monotonicity of h(x). If h(x) is monotonic, h(U) and h(1-U)are negatively correlated, ensuring variance reduction

- 60% chance it will be Sunny tomorrow.
- 30% chance it will Rain tomorrow
- 10% chance it will be Cloudy tomorrow

Each row tells you the probabilities for the next state, given the

For the above matrix, the stationary distribution π satisfies $\pi P = \pi$ After solving, you might find $\pi = [0.5, 0.3, 0.2]$ which means in the

- 50% of the days will be Sunny.
- 30% will be Rainy.
- 20% will be Clouds

8. Metropolis Hastings Algorithm

Let $b(j), j=1,\ldots,m$ be positive numbers, and let B= $\sum_{i=1}^{m} b(j)$. Suppose that m is large and B is difficult to calculate. and that we want to simulate a sequence of random variables with probability mass function $\pi(j) = \frac{b(j)}{D}$ One way of simulating a sequence of random variables whose distributions converge to $\pi(i)$ is to find a Markov chain that is easy to simulate and whose limiting probabilities are $\pi(j)$. Convergence is guaranteed as long as $\pi(j) \propto$

- 1. Start with an **irreducible proposal distribution** q(x, x'), which generates candidate samples X from the current state X
- 2. q(x, x') does not need to match the target distribution; it can be any valid probability function.
- 3. A candidate sample X' is either **accepted** or **rejected** based on an acceptance probability: $\alpha = \min(1, \frac{b(X')q(X',X)}{b(X)q(X,X')})$
- 4. This ensures the Markov Chain converges to the target distribution (
- 5. Generate a candidate sample X' using g(X, X')
- 6. Compute α based on the target and proposal distributions.
- 7. Draw a random number $U \sim U[0,1]$
- 8. If $U < \alpha$, accept X' as the next state. 9. Otherwise, stay at the current state X
- 10. Iterate this process to build a Markov Chain with $\pi(x)$ as its stationary distribution.

8.1 Choosing a proposal distribution

q(x,x') is a **probabilistic function** that specifies how to propose a new candidate state X', given the current state X, g(x,x') doesn' need to match the target distribution $\pi(x)$. However, it affects how efficient the algorithm is.

Gaussian Proposal (continuous space): q(x, x') =

 $\frac{1}{\sqrt{2\sigma^2}} \exp\left(-\frac{(x'-x)^2}{2\sigma^2}\right)$. Here, X' is drawn from a normal distribution centred at \hat{X} with variance σ^2 . Generate $X' = X + \mathcal{N}(0, \sigma^2)$ Uniform Proposal (discrete space): q(x,x')=

 $\int \frac{1}{\text{neighbors of } x} \quad \text{if } x' \text{ is a valid neighbor of } x, \\ \text{.Generate, } X' \text{ by}$ otherwise

randomly choosing a neighbour of X.

Exploration: q(x, x') must allow the Markov chain to explore the entire space S. Otherwise, the chain might "get stuck" in one part of

Efficiency: q(x, x') should balance between: Proposing states close to X (so α is high) and exploring the state space widely.

Common Choices

- Gaussian Proposal: Works well for continuous variables.
- Uniform Proposal: Simple for discrete spaces.
- Adaptive Proposal: Adjust $q(x,x^\prime)$ dynamically based on past samples to improve efficiency.

9. Gibbs Sampler Algorithm

$$f(x|y,z) = \frac{f(x,y,z)}{f(y,z)} \propto f(x,y,z)$$

Conditional Marginal is Proportional to the Joint Posterior because the denominator is constant with respect to x. Therefore, we just need to take out the multiplicative constants (because of proportionality) to find the marginal conditional posterior densities. We use the most updated values to update the rest.

- 1. Initialise the first guess $\theta^{(0)} = (\theta_1^{(0)}, \theta_2^{(0)}, \dots, \theta_d^{(0)})$, where θ represents the vector of all variables.
- 2. For each iteration t, update each variable sequentially
- 3. Sample $\theta_1^{(t)}$ from its conditional distribution $\pi(\theta_1|\theta_2^{(t-1)},\ldots,\theta_d^{(t-1)},Y)$
- For $U \sim U[0,1]$, U and U = U are perfectly negatively correlated, 4. Sample $\theta_2^{(t)}$ from its conditional distribution $\pi(\theta_2|\theta_1^{(t)},\theta_3^{(t-1)},\ldots,\theta_J^{(t-1)},Y)$
 - 5. Continue this for all variables $\theta_1, \ldots, \theta_d$
 - 6. Repeat sequential sampling T times/until convergence. Output sample set $(\theta_1^{(t)}, \dots, \theta_d^{(t)})_{t=1}^T$ approx. target joint distribution

 Relies on choosing L, which may be non-trivial if dependencies are long-range.

11.4 Confidence Intervals for Case 2: Regenerative Methods

Applicable for stationary Markov chains, Identify a "regeneration state" l that the Markov chain revisits. Between consecutive visits to

l, the process "restarts," making segments between visits independent. By leveraging these independent segments, we can reduce dependence issues Define σ_k as the time of the k-th visit to state l. Define segment

lengths $D_k = \sigma_k - \sigma_{k-1}$ (time between visits). Define segment sums $H_k = \sum_{i=\sigma_{k-1}+1}^{\sigma_k} h(W_i)$, where $h(W_i)$ is the function of interest. Use the segments to estimate: $E(X_t) = \frac{E(H_k)}{E(D_t)}$ by replacing expectations with sample means.

- Converts a dependent process into independent segments. allowing for the use of i.i.d. techniques.
- Requires finding a suitable regeneration state, which may not always exist or be easy to identify.

Feature	Window Methods	Regenerative Methods	
Applicability	General stationary sequences	Stationary Markov chains with regeneration	
Core Idea		Using independent regenerative segments	
Dependency Handling	Approximate (truncates at L)	Exact (segments are i.i.d.)	
Ease of Use		Requires identifying regeneration states	
Computation	Summing covariances; fast for short-range	Segment extraction; depends on regeneration	

11.5 Confidence Intervals for Case 3: Hypothesis Testing

	Test	Procedure
		- Define $X_t = h(W_t)$
	Batch Means Discard problematic batches to ensure convergence	- Use additional functions
		h_1,h_2,h_3 and plot their batch
		means
ı ı't w		- Discard initial batches if unstable
	Null Hypothesis for Stationarity Identify and discard initialisation	- Divide into b_1 and b_2 batches
		- Calculate variances S_1^2, S_2^2
	bias, then retest stationarity	- Test $rac{S_1^2}{S_2^2} \sim F_{b_1-1,b_2-1}$
	Independent Runs for Smoothing Ensure smoothness and verify	- Perform multiple runs from the same initial state
		- Compute smoothed estimates
	convergence to equilibrium	$E(X_t)$
ion		- Perform runs with different initia
	Widely Separated Initialisations Estimate burn-in time and assess the stability of the process	states X ₀
		- Plot $\{X_t\}$ over time
		- Identify T when graphs appear

12. Bootstrap Sampling

- 1. Original dataset: $X = \{2, 4, 6, 8, 10\}$
- 2. **Bootstrap sample 1:** Randomly sample with replacement: $X_i^* =$ {4, 6, 6, 8, 2}

cimilar

- 3. **Bootstrap sample 2:** Randomly sample again: $X_2^* =$
- {10, 10, 6, 8, 4} 4. Bootstrap sample 3: Randomly sample again: $X_2^* = \{6, 8, 8, 2, 4\}$
- 5. Generate N=1000 bootstrap samples accordingly

Each bootstrap sample has the same size as the original dataset (n=5). Test statistics should be calculated for each sample before being aggregated back to be the statistics for the sampling

12.1 Bootstrap Statistics

- 1. Given an observed dataset x_1, x_2, \dots, x_n .
- 2. Sample mean: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- 3. Generate N bootstrap samples by sampling with replacement from the observed dataset

5. For each bootstrap sample X^* , calculate the mean : $\bar{x}^* =$

Each bootstrap sample X* will have n elements.

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{*}$$
 6. The bootstrap estimate of MSE is defined as: $MSE(\hat{F})=$

 $\frac{1}{N}\sum_{k=1}^{N}(\bar{x}_{k}^{*}-\bar{x})^{2}$ General: Mean the bootstrap statistics to approximate population