VI- (7 points)

Soit f la fonction définie sur $I =]0; +\infty[$ par $f(x) = x^2 + \ln x$ et (C) sa courbe représentative dans un repère orthonormé (O; i, j).

- A-1) Calculer f'(x) et déterminer le sens de variations de f sur]0;+∞[.
 - 2) a- Calculer $\lim_{x\to 0} f(x)$ et déduire une asymptote à (C).
 - b- Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$.
 - c- Dresser le tableau de variations de f.
 - d-Déduire que l'équation $x^2 + \ln x = 0$, admet une solution unique α et que $0,6 < \alpha < 0,7$. Etudier le signe de f(x) suivant les valeurs de x.
 - 3) a- Démontrer que (C) admet un point d'inflexion dont on déterminera l'abscisse.
 - b- Tracer (C).
 - 4) a- Démontrer que f admet sur I, une fonction réciproque f-1 dont on déterminera le domaine de définition.
 - b-Soit (C') la courbe représentative de f-1. Prouver que le point A(1;1) est commun à (C) et (C') et tracer (C') dans le repère (O; i, j).
 - c- Ecrire une équation de la tangente en A à (C').
 - d- Soit S(α) l'aire du domaine limité par (C), (C'), l'axe des abscisses et l'axe des ordonnées. Calculer S(\alpha).
- **B-** Soit (T) la courbe représentative de la fonction h définie sur $I = [0; +\infty]$ par $h(x) = \ln x$.
 - 1) Etudier la position relative de (C) et (T) et tracer (T) dans le même repère que (C).
 - 2) Soit g la fonction définie sur I par $g(x) = x^2 + (\ln x)^2$.
 - a-Calculer g'(x) et vérifier que g'(x) = $\frac{2}{x}$ f(x).
 - b- En déduire le sens de variations de g sur I.
 - Soit M₀ le point de (T) d'abscisse α et M un point quelconque de (T) d'abscisse x.
 - a-Calculer OM_0^2 en fonction de α et OM^2 en fonction de x.
 - b- Prouver que $OM_0 \le OM$ pour tout x de I.
 - c- Démontrer que la tangente en Mo à (T) est perpendiculaire à (OMo).

On considère la fonction h définie sur IR par : $h(x) = e^{2x} + 2e^x - 2$.

A -

- 1) a- Résoudre l'équation h(x) = 0.
 - b-Calculer $\lim h(x)$ et $\lim h(x)$.
- 2) a- Dresser le tableau de variations de h.
 - b- Tracer la courbe représentative (H) de h dans un repère orthonormé.
 - c- Calculer l'aire du domaine limité par la courbe (H), l'axe des abscisses et les deux droites d'équations x = 0 et x = 1.

B -

Soit g la fonction définie sur IR par $g(x) = \frac{e^{2x} + 2}{e^x + 1}$ et f la fonction donnée par $f(x) = \ln(g(x))$.

On désigne par (C) la courbe représentative de f dans le plan rapporté à un nouveau repère orthonormé $(O; \vec{i}, \vec{j})$. (unité graphique : 2 cm)

- 1) a-Montrer que f est définie pour tout réel x.
 - b-Calculer $\lim_{x\to -\infty} f(x)$ et en déduire une asymptote (d) à (C).
- 2) a- Montrer que $f(x) = x + \ln\left(\frac{1+2e^{-2x}}{1+e^{-x}}\right)$.
 - b-Calculer $\lim_{x\to +\infty} f(x)$ et démontrer que la droite (d') d'équation y=x est asymptote à (C).
 - c- Etudier suivant les valeurs de x la position relative de (C) et (d').

3) a-Montrer que g'(x) =
$$\frac{e^x (h(x))}{(e^x + 1)^2}$$
.

- b- Montrer que f'(x) et h(x) ont même signe et dresser le tableau de variations de f.
- c-Trouver l'abscisse du point de la courbe (C) où la tangente à (C) est parallèle à (d').
- 4) Tracer (d), (d') et (C).

C-

On désigne par f^{-1} la fonction réciproque de f sur l'intervalle [0 ; $+\infty$ [;

- (C') est la courbe représentative de f⁻¹.
- 1) Tracer (C') dans le repère (O; i, j).
- 2) Ecrire une équation de la tangente à (C') au point d'abscisse ln2.