For More

JOIN @PuneEngineers Telegram

UNIT V: NUMERICAL METHODS

- 1 Use method of Bisection to find a root of equation, = x. (4 iterations)
- Use method of Regula Falsi to find a root of equation, $x^3 3 + 1 = 0$. (4 iterations)
- 3 Use Secant method to find a root of equation, $x^3 3x + 1 = 0$. (4 iterations)
- Find value of $\frac{1}{17}$ 3 by using Newton-Raphson method correct up to 3 decimal places.
- Solve the equation $x^2 4x + 2 = 0$ using method of simple iterations. (4 iterations)
- 6 Solve the following system of equation by using Gauss elimination method,

$$4x_1 + {}_2 + 4x_3 = 4$$

 $_1 + 4$ $_2 - 2$ $_3 = 4$ $_3$
 $x_1 + 2$ $_2 - 4$ $_3 = 6$

7 Solve the system of equation by using L-U decomposition method

$$2x_1 + 2x_2 + 3x_3 = 4$$
$$4x_1 - 2x_2 + x_3 = 9$$
$$x_1 + 5x_2 + 4x_3 = 3$$

- 8 If $f(x) = x^2 x 2$ then for $\phi(x) = \frac{x+2}{x}$ with x = 1.5, find four iteration for x = 1.5
- 9 Solve the system of equation by using Gauss Seidel iteration method.

$$x_1 + 5x_2 + 2x_3 = -6$$

 $x_1 + 2x_2 + 3x_3 = -4$
 $4x_1 + x_2 + x_3 = 2$ (3 iteration)

Solve the system of equation by using Gauss Jacobi method.

$$x_1 + 2x_2 + x_3 = 82$$

$$x_1 + 3x_2 + 4x_3 = 20$$

$$4x_1 + 3x_2 + 2x_3 = 16$$

- Using secant method , the first four approximation to a root of equation $x^3 5x 7 = 0$, if $x_0 = 2.5$ and $x_1 = 3$
- By using Bisection method, solve equation, $x^3 3x + 1 = 0$ (given root belongs to interval [0,1])
- Solve $x = 0.24 \sin (x + 0.5)$ correct tap to 4 decimals by using method of simple iteration
- Use Newton's method to find the root of $2x 3 \cos x = 0$ which is near to 0.9.

- 14 Use bisection method to find root of equation $x^4 + 2x^3 x 1 = 0$ lying in interval [0,1] at end of 6^{th} iteration.
- 15 Use Secant method to find root of equation $x^3-5x-7=0$ correct upto three decimal places.
- 16 Use Secant method to find root of equation $xe^x = cosx$ correct upto four decimal places.
- 17 Use Regula-Falsi method (method of false position) to find root of equation $x=e^{-x}$ correct to three decimal places with initial approximations 0.5 & 1
- 18 Use Regula-Falsi method (method of false position) to find root of equation $x \log_{10} x = 1.2^{\square}$ correct to three decimal places with initial approximations 0.5 & 1
- 19 Use Newton-Raphson method to find root of equation $x^3+2x-5=0$ at the end of fifth iteration.
- 20 Use Newton-Raphson method to find root of equation $x^2+4 sinx=0$ correct to four decimal places
- 21 Solve system of linear equations by using Gauss Elimination method

$$x+4y-z=-5$$

 $x+y-6z=-12$
 $3x-y-z=4$

22 Solve system of linear equations by using Triangular Factorization (LU decomposition) method

$$3 x_1 + x_2 + x_3 = 4$$

 $x_1 + 2 x_2 + 2 x_3 = 3$
 $2 x_1 + x_2 + 3 x_3 = 4$

23 Solve system of linear equations by using Cholesky method

$$4x_1-2x_2=0$$

$$-2x_1+4x_2-x_3=1$$

$$-x_2+4x_3=0$$

24 Solve system of linear equations by Jacobi's Iteration method

$$28 x_1 + 4 x_2 - x_3 = 32$$

 $x_1 + 3 x_2 + 10 = 24$
 $2 x_1 + 17 x_2 + 4 x_3 = 35$

25 Solve system of linear equations by Gauss-Seidel Iteration method

$$28 x_1 + 4 x_2 - x_3 = 32$$

 $x_1 + 3 x_2 + 10 = 24$
 $2 x_1 + 17 x_2 + 4 x_3 = 35$

26 Use method of Successive Approximation to find root of equation $8x^3-6x-1=0$ correct upto four decimal places considering initial value as 0.95