Contents

Figures				page xi	
Pr	eface	•		xv	
1	Intr	roduction		1	
	1.1	The Schwarz–Christoffel idea		1	
	1.2	History		5	
2	Esse	entials of Schwarz-Christoffel mapping		11	
	2.1	Polygons		11	
	2.2	The Schwarz–Christoffel formula		12	
	2.3	Polygons with one or two vertices		14	
	2.4	Triangles		19	
	2.5	Rectangles and elliptic functions		21	
	2.6	Crowding		23	
3	Nur	merical methods		27	
	3.1	Side-length parameter problem		27	
	3.2	Quadrature		32	
	3.3	Inverting the map		34	
	3.4	Cross-ratio parameter problem		35	

x Contents

	3.5	Mapping using cross-ratios	41
	3.6	Software	45
4	Vari	ations	47
	4.1	Mapping from the disk	48
	4.2	Mapping from a strip	49
	4.3	Mapping from a rectangle	54
	4.4	Exterior maps	60
	4.5	Periodic regions and fractals	61
	4.6	Reflections and other transformations	66
	4.7	Riemann surfaces	67
	4.8	Gearlike regions	69
	4.9	Doubly connected regions	73
	4.10	Circular-arc polygons	79
		Curved boundaries	84
5	App	lications	87
	5.1	Why use Schwarz–Christoffel maps?	88
	5.2	Piecewise-constant boundary conditions	89
		Alternating Dirichlet and Neumann conditions	
	5.3	Therrating Directive and Neumann Conditions	93
	5.3 5.4	Oblique derivative boundary conditions	93 100
		· ·	
	5.4	Oblique derivative boundary conditions	100
	5.4 5.5	Oblique derivative boundary conditions	100 113
	5.4 5.5 5.6	Oblique derivative boundary conditions	100 113 115
	5.4 5.5 5.6 5.7	Oblique derivative boundary conditions	100 113 115 120
Us	5.4 5.5 5.6 5.7 5.8 5.9	Oblique derivative boundary conditions	100 113 115 120 123
	5.4 5.5 5.6 5.7 5.8 5.9	Oblique derivative boundary conditions	100 113 115 120 123 127

Figures

1.1	Notational conventions	2
1.2	Action of a term in the SC product	3
1.3	The effect of prevertices on side lengths	4
1.4	Schwarz's plot of the conformal map to a square	6
2.1	Interior angles for a vertex at infinity	12
2.2	Map from the disk to a half-plane	15
2.3	Map from the half-plane to a strip	16
2.4	Map from the disk to a strip	16
2.5	A different map of the half-plane to a strip	17
2.6	Map from a doubly slit plane using reflection	17
2.7	Other maps obtained by reflection	18
2.8	Maps from the half-plane to wedges	19
2.9	Maps to triangles with two infinite vertices	20
2.10	Maps to triangles with one infinite vertex	21
2.11	Map from the half-plane to a rectangle	22
2.12	Map from a generalized quadrilateral	23
2.13	Illustration of crowding	24
3.1	Location of the last vertex by intersection	29
3.2	Maps to regions with 100 vertices	31
3.3	Endless descent in the side-length parameter problem	31

xii Figures

3.4	Embeddings with different crowding localities	36
3.5	Triangulation and quadrilaterals in the CRDT scheme	38
3.6	Summary of the CRDT idea	40
3.7	Preprocessing step for CRDT	41
3.8	Map to a "maze" using CRDT	43
3.9	Map to the maze from a multiply elongated region	44
4.1	Examples of disk maps	50
4.2	More examples of disk maps	51
4.3	Elementary factor in the strip map	52
4.4	Divergence adjustment of the strip map	53
4.5	Examples of strip maps	55
4.6	More examples of strip maps	56
4.7	Comparing the rectangle, half-plane, and strip	57
4.8	Examples of rectangle maps	58
4.9	More examples of rectangle maps	59
4.10	Examples of exterior maps	62
4.11	More examples of exterior maps	63
4.12	Map to a periodic channel	64
4.13	Map to a self-similar spiral	65
4.14	Map to a symmetric doubly connected region by reflection	66
4.15	Map to a symmetrically periodic channel by reflection	67
4.16	Maps to certain regions with circular arcs	68
	Map to a three-sheeted Riemann surface	70
4.18	Maps to gearlike regions	71
4.19	Logarithms of the gearlike regions	72
	Notation for the doubly connected map	73
4.21	First steps toward the doubly connected map	75
	Convergence of a doubly connected SC factor	76
4.23	Examples of doubly connected SC maps	80
4.24	Maps to circular-arc polygons	83
5.1	Solving Laplace's equation with two boundary values	90
5.2	Components of a piecewise-constant harmonic function .	92
5.3	Examples of four-boundary-value harmonic functions	94
5.4	More piecewise-constant Dirichlet examples	95
5.5	Solutions to the D/N/D/N Laplace problem	97
5.6	Solutions of three-value alternating D/N problems	97
5.7	Riemann surface in the four-value alternating D/N prob-	
	ĕ 1	100

	Figures	xiii
5.8	Examples of alternating D/N solutions	101
5.9	More examples of alternating D/N solutions	102
5.1	Oblique derivative problem on an L-shaped region	104
5.1	1 Solution of the L-shaped oblique derivative problem	104
5.1	2 More solutions to the L-shaped oblique problem	105
5.1	3 Examples from a space of solutions to an oblique deriva-	
	tive problem	109
5.1	4 More examples of solutions to oblique derivative problems	s110
5.1	5 Illustration of the Hall effect	111
5.1	6 Illustration of reflected Brownian motion	112
	7 Resistor trimming problem	114
	8 Multiple resistance measurements for locating cracks	115
	9 Wake flow past a polygonal obstacle	116
	0 Potential and computational planes for wake flow	117
	1 Elementary factor in the free-streamline map	118
	2 Examples of wake flows	121
	Notation for approximation discussion	124
	4 Level curves of Faber polynomials	126
5.2	5 Green's function for a symmetric multiply connected re-	
	gion	128
5.2	6 More examples of Green's functions	130