

Tutorium Hardware- und Systemgrundlagen

Gruppe 1Raum F109

Tutorium Hardware- & Systemgrundlagen

Gruppe 2 Raum F110

Mirko Bay
[mirko.bay@htwg-konstanz.de]

Michael Bernhardt
[michael.bernhardt@htwg-konstanz.de]

Boole'sche Algebra II

Schaltalgebra Huntington'sche Axiome

Schaltfunktionen & Schaltnetze Funktionstabellen

Aussagenlogik Strukturbäume

Min- / Max-Terme Disjunktive / Konjunktive Normalform

Shannonscher Entwicklungssatz (& Binärbäume) Multiplexer-Bausteine

Logik-Gatter [de.wikipedia.org/wiki/Logikgatter]

NICHT UND	NAND	A — & O— Y	NAND X ₂ X ₁ f ₁₄ 0 0 1 0 1 1 1 0 1 1 1 0
NICHT ODER	NOR	A — ≥1 B — O—Y	NOR X ₂
ANTIVALENZ	XOR	A — =1 B — Y	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
ÄQUIVALENZ	XNOR	A = Y	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Aufgabe 1: Gegeben sei die folgende boole'sche Funktion:

$$y = \overline{\overline{x_2 \cdot (x_2 \nleftrightarrow x_3)} \cdot \overline{x_3} \cdot \overline{(x_2 \nleftrightarrow x_3)}} \lor (\overline{(\overline{x_2} \lor \overline{x_3})} \nleftrightarrow 1)$$

Formen Sie die gegebene Funktion y durch Anwendung boole'scher Operationen derart um, dass die Funktion y nur durch ein einziges Gatter realisiert werden kann.

Zeichnen Sie das resultierende Gatter mit seinen Eingangsvariablen.

(Testat SS 07)

Aufgabe 2: Gegeben ist das folgende Schaltnetz:

Stellen Sie die Schaltfunktion $y = f(x_3, x_2, x_1)$ als boole'schen Ausdruck so dar, dass die Struktur des boole'schen Ausdrucks die Struktur der gezeigten Schaltung wiedergibt.

(Testat WS 03/04)

Aufgabe 3:

Zeigen Sie durch schaltalgebraische Umformungen, dass die Schaltfunktion Z = f (c, b, a) durch ein einziges Gatter realisiert werden kann. Formen Sie dazu den Ausdruck Z solange um, bis er die geeignete Form hat.

$$Z = [((a \leftrightarrow b) \lor c) \nleftrightarrow b] \cdot c$$

Zeichnen Sie das Gatter und geben Sie die entsprechenden Eingangsvariablen an.

(Testat SS 07 WDH)

Aufgabe 4: Gegeben ist das folgende Schaltnetz:

- a) Geben Sie die Funktionstabelle für $y = f(x_3, x_2, x_1)$ an.
- b) Geben Sie die Schaltfunktion (boole'scher Ausdruck) an, die durch dieses Schaltnetz implementiert wird.

(Testat WS 10/11)

Aufgabe 5: Gegeben sei folgende boole'sche Funktion:

$$y = [\overline{x_2 \vee \overline{x_1} \cdot \overline{x_2}} \vee (x_2 \leftrightarrow x_1) \vee (\overline{x_2 \vee x_1} \vee (\mathbf{1} \leftrightarrow \overline{x_2}))] \leftrightarrow \mathbf{0}$$

Diese Funktion soll durch Anwendung boole'scher Operationen so umgeformt werden, dass y mit einem <u>einzigen Gatterbaustein</u> realisiert werden kann.

Ermitteln Sie, um welchen Gatterbaustein es sich handelt und mit welchen Variablen die Eingänge dieses Gatters beschaltet werden müssen.

(Klausur WS 04/05)

Aufgabe 6: Gegeben ist das folgende Schaltnetz:

Mirko Bay & Michael Bernhardt

- a) Stellen Sie die Schaltunktion $y = f(x_3, x_2, x_1)$ als boole'schen Ausdruck so dar, dass die Struktur des boole'schen Ausdrucks die Struktur der gezeigten Schaltung wieder gibt.
 - b) Stellen Sie die Funktionstabelle für $y = f(x_3, x_2, x_1)$ auf.

(Testat SS 04)

Aufgabe 7: Gegeben sei die folgende boole'sche Funktion:

$$y = \overline{x_3 \cdot x_2 \cdot (x_2 \nleftrightarrow x_1)} \vee x_2 \cdot (x_3 \leftrightarrow x_1)$$

Diese Funktion soll durch ein einziges UND-Gatter realisiert werden.

Ermitteln Sie durch Anwendung boole'scher Operationen, mit welchen Eingangsvariablen das UND-Gatter beschaltet werden muss.

(Testat SS 02)