

Index

- 1. Database fundamentals
- 2. Data Models
- 3. SQL

1.DatabaseFundamentals

Database Fundamentals Topics

Database concept

Relation and non-relational

Major providers

Database Fundamentals – Database concept

A database is:

- An organized collection of structured information
- Typically stored electronically in a computer system
- The data is typically modeled in rows and columns in a series of tables to make processing and data querying eficiente
- Allows for data to be easily accessed, managed, modified updated, controlled and organized
- Most database use structured query language (SQL) for writing and querying data

Database Fundamentals – Database concept

- What is a Database Management System?
 - A database management system (DBMS) is a collection of programs that enables users to create and maintains a database
- Advantages of a DBMS:
 - Allow concurrency
 - Control security
 - Maintain data integrity
 - Provide for backup and recovery
 - Control redundancy
 - Allow data independency
 - Provide non-procedural query language
 - Perform automatic query optimization

Database Fundamentals – Relational vs Non-Relational

Relational databases:

- Items in a relational database are organized as a set of tables with columns and rows
- Relational database technology provides the most eficiente and flexible way to access structured information

NoSQL databases:

- NoSQL, or nonreational database, allows unstructured and semistructured data to be stored and manipulated (in contrast to a relational database, which defines how all data inserted into the database must be composed)
- NoSQL databases grew popular as web applications became more common and more complex

Database Fundamentals – Relational vs Non-Relational

SQL vr NoSQL:

- SQL databases are tables based whereas NoSQL databases can be document based, key-value pairs, graph databases.
- SQL databases are vertically scalable (ram,...) while NoSQL databases are horizontally (servers) scalable.
- SQL databases have a predefined schema whereas NoSQL databases use dynamic schema for unstructured data.
- SQL requires specialized DB hardware for better performance while NoSQL uses commodity hardware.
- SQL database examples: MySql, Oracle, Sqlite, Postgres and MS-SQL.
- NoSQL database examples: MongoDB, BigTable, Redis, RavenDb, Cassandra, Hbase, Neo4j and CouchDb

Database Fundamentals – Major providers

Rank					Score		
Oct 2023	Sep 2023	Oct 2022	DBMS	Database Model	Oct 2023	Sep 2023	Oct 2022
1.	1.	1.	Oracle 🔠	Relational, Multi-model 🛐	1261.42	+20.54	+25.05
2.	2.	2.	MySQL 🚻	Relational, Multi-model 🛐	1133.32	+21.83	-72.06
3.	3.	3.	Microsoft SQL Server	Relational, Multi-model 🛐	896.88	-5.34	-27.80
4.	4.	4.	PostgreSQL 🚹	Relational, Multi-model 🛐	638.82	+18.06	+16.10
5.	5.	5.	MongoDB 🔠	Document, Multi-model 🔞	431.42	-8.00	-54.81
6.	6.	6.	Redis 🖽	Key-value, Multi-model 🛐	162.96	-0.72	-20.41
7.	7.	7.	Elasticsearch	Search engine, Multi-model 👩	137.15	-1.84	-13.92
8.	8.	8.	IBM Db2	Relational, Multi-model 🛐	134.87	-1.85	-14.79
9.	9.	↑ 10.	SQLite [Relational	125.14	-4.06	-12.66
10.	10.	4 9.	Microsoft Access	Relational	124.31	-4.25	-13.85

Source: DB-Engines Ranking - popularity ranking of database management systems (db-engines.com)

2.Data Models

Data Models - Topics

Table, View e MView

PK, FK, Index

Schema

Functions

Model definition

Types of Data Models

Data Models – Table, View and MView

- Table
 - Dataset with data from the same subject
 - Made up of rows and columns
 - Each row is uniquely identified by a primary key (in a relational DB)
 - Each column stores a specific type of data

ID	Title	ISBN	Author	Publishing
1	1984	2343454895456	George Orwell	04/12/1979
2	Anna Karenina	1234548485843	Leo Tolstoy	07/11/1998
4	The Adventures of I	3450345345443	Mark Twain	08/11/1999
5	Ulysses	9944933003232	James Joyce	06/05/2010
8	War and Peace	0944344903312	Leo Tolstoy	08/11/2001
11	The Brothers Karan	9003940397271	Doso	04/07/2012
12	On the Road	0459450444310	Jack Kerouac	30/12/2005
15	The Metamorphosi	2003948930545	Franz Kafka	09/03/1976
16	The Illiad	9449039333923	Homer	05/07/1998
17	The Odyssey	8409404850139	Homer	06/08/1999

Data Models- Table, View and MView

- View
 - Looks like a table, but it's a virtual table (only exists while used)
 - Made up of rows and columns
 - Changes applied to the data in na underlying table are reflected in the view
 - Usually a subset of a table or result from joining existing tables

ID	Title	ISBN		
1	1984	2343454895456	George Orwell	
2	Anna Karenina	1234548485843		
4	The Adventures of I	3450345345443	Mark Twain	
5	Ulysses	9944933003232		
8	War and Peace	0944344903312		
11	The Brothers Karan	9003940397271		
12	On the Road	0459450444310		
15	The Metamorphosi	2003948930545		
16	The Illiad	9449039333923		
17	The Odyssey	8409404850139		06/08/1999

Data Models- Table, View and MView

- Materialized View
 - Unlike views, mviews are stored in the table or disk (so have better performance)
 - Can be indexed as a table
 - Made up of rows and columns
 - Can define the refresh hour and frequency
 - · Changes applied to the data in an underlying table are reflected in the view after a refresh
 - Usually a subset of a table or result from joining existing tables

ID	Title	ISBN
1	1984	2343454895456
2	Anna Karenina	1234548485843
4	The Adventures of I	3450345345443
5	Ulysses	9944933003232
8	War and Peace	0944344903312
11	The Brothers Karan	9003940397271
12	On the Road	0459450444310
15	The Metamorphosi	2003948930545
16	The Illiad	9449039333923
17	The Odyssey	84094048501394

Data Models – PK, FK & Index

- Primary Key (PK)
 - One column (or combination of columns) that uniquely identify each row
 - Contains a unique value that uniquely identify each row
 - Cannot be null
 - Can also be a column that is specifically generated by the database according to a defined sequence

Data Models – PK, FK & Index

- Foreign Key (FK)
 - aka "referencing key"
 - a key used to link two tables
 - a column or a combination of columns, matching a PK on other table.
 - The relationship between 2 tables matches the PK in one with a FK in the other

Data Models – PK, FK & Index

- Index
 - Indexes are used to find rows quickly
 - Without an index, search begin by the first row and then read through the entire table
 - Most common: PRIMARY KEY, UNIQUE, INDEX

Data Models – Schema

- Schema
 - Represents how the data is organized in tables and how tables link between them
 - Abstraction to logically group objects such as tables, joins and keys
 - A schema is the skeleton of database
 - Is the design for the data modified to fit in a specific database technology
 - Is about the implementation of the database

Data Models – Functions

- Function
 - Allows to encapsulate operations that can take several steps in a single functions within the database
 - Allows reusing code blocks
 - Can be created in several languages (eg. SQL, C, Python)
 - https://www.postgresql.org/docs/9.1/sql-createfunction.html

```
CREATE [OR REPLACE] FUNCTION function_name (arguments)

RETURNS return_datatype AS $variable_name$

DECLARE

declaration;
[...]

BEGIN

< function_body >
[...]

RETURN { variable_name | value }

END; LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION increment(i integer)

RETURN integer AS $$

BEGIN

RETURN integer AS $$

END;

END;

END;

$$ LANGUAGE plpgsql;
```

Data Models – Model definition

- Database model
 - The definition of the database
 - The design for the data (no matter the storage technology)
 - Gives a conceptual understanding of how is structured in a database

- Data Model concepts:
 - Entity: A real-world thing (eg. Customer)
 - Attribute: Characteristics or properties of na entity (eg. Age)
 - Relationship: Dependency or association between two entities (eg. Related to Product table)

- Conceptual:
 - High-level = least detail
 - Designed for a business audience (less technical)
 - Establish the entities, some attributes, and high level relationships
 - Developed independently of hardware specificatios

- Logical:
 - Add entity types, data attributes and relationships between entities
 - Include most business detail
 - Describes data requirements from the business point of view
 - Fully-attributed data model that is independent technology details
 - Data attributes will typically have datatypes

Physical:

- The internal schema database design
- Technically aligned to a platform and capable of generating a first cut database schema.
- Fully-attributed data model that is dependent upon a specific version of a data persistence technology
- Include physical objects such as views, primary key constraints, foreign key

constraints, indexes

3. SQL

SQL - Topics

Key Concepts

PostgreSQLKey

Exercises

SQL – Key Concepts

- What can we do?
 - Data interrogation
 - Data definition
 - Data manipulation
 - Data control

SQL – Key Concepts

Select statement... the beginning of your sql journey!

- SELECT statement has the following clauses
 - WHERE
 - GROUP BY
 - DISTINCT
 - ORDER BY
 - LIMIT
 - FETCH
 - HAVING
 - JOIN (INNER JOIN, LEFT JOIN, FULL OUTER JOIN, CROSS)
 - UNION
 - INTERSECT
 - EXCEPT

SQL- Key concepts

Operators:

Operator	Action
=	Tests for equality
!=	Tests for inequality
<	Tests for less-than
>	Tests for greater-than
<=	tests for less-than or equal-to
>=	tests for greater-than or equal-to
BETWEEN	tests whether a value lies within a given range
IN	tests whether a row's value is contained in a set of specified values
EXISTS	tests whether rows exist, given the specified conditions
LIKE	tests whether a value matches a specified string
IS NULL	tests for NULL values
IS NOT NULL	tests for all values other than NULL

SQL – Example of a Relational Model

Gym example:

SQL – Example of a Relational Model

Gym example:

Nome

Ana

Rui

Nuno

Rita

José

Socios

6078

5819

4526

3955

9999

Monitores

ВІ	Nome
9876	Luís
1234	Joana

Desportos

Sigla	Designação
КВ	Kickbox
NT	Natação
AE	Aeróbica

Pratica

BI	Sigla	Quota
6078	AE	25
5819	KB	30
4526	KB	30
4526	NT	20
3955	KB	30
3955	NT	20
3955	AE	25
9876	KB	0

Orienta

ВІ	Sigla	Salario
1234	KB	40
1234	NT	30
9876	NT	30
9876	AE	35

SQL - Select

Used to show the information needed

Select col1, col2,... **From** table1

SQL - Select

Used to show the information needed

1. Show all the information about members

Socios

ВІ	Nome
6078	Ana
5819	Rui
4526	Nuno
3955	Rita
9999	José

Monitores

ВІ	Nome
9876	Luís
1234	Joana

Desportos

Sigla	Designação
KB	Kickbox
NT	Natação
AE	Aeróbica

Orienta

BI	Sigla	Salario
1234	KB	40
1234	NT	30
9876	NT	30
9876	AE	35

Pratica

Sigla	Quota
AE	25
KB	30
KB	30
NT	20
KB	30
NT	20
AE	25
KB	0
	AE KB NT KB NT AE

SQL - Select

Used to show the information needed

1. Show all the information about all partners

select * from socios;

Result

ВІ	Nome
6078	Ana
5819	Rui
4526	Nuno
3955	Rita
9999	José

SQL - Distinct

Remove Duplicates

Select distinct col1, col2 **From** table1

SQL - Distinct

Remove Duplicates

2. Select the acronyms of the sports that have participants

Socios

ВІ	Nome
6078	Ana
5819	Rui
4526	Nuno
3955	Rita
9999	José

Monitores

ВІ	Nome
9876	Luís
1234	Joana

Desportos

Sigla	Designação	
KB	Kickbox	
NT	Natação	
AE	Aeróbica	

Orienta

BI	Sigla	Salario
1234	KB	40
1234	NT	30
9876	NT	30
9876	AE	35

Pratica

Sigla	Quota
AE	25
KB	30
KB	30
NT	20
KB	30
NT	20
AE	25
KB	0
	AE KB KB NT KB NT AE

SQL - Distinct

Remove Duplicates

2. Select the acronyms of the sports that have participants

select sigla
from pratica;

Results

Sigla

ΑE

KB

KB

NT

KB

NT

ΑE

KΒ

select distinct sigla

from pratica;

Results

Sigla

ΑE

KΒ

NT

SQL – Where

Used to filter rows

Select col1, col2 **From** table1 **Where** <condition>

SQL – Where

Used to filter rows

3. List member's BI number and name, whose BI number is less than 6000

Socios

ВІ	Nome
6078	Ana
5819	Rui
4526	Nuno
3955	Rita
9999	José

Monitores

ВІ	Nome
9876	Luís
1234	Joana

Desportos

Sigla	Designação
KB	Kickbox
NT	Natação
AE	Aeróbica

Orienta

BI	Sigla	Salario
1234	KB	40
1234	NT	30
9876	NT	30
9876	AE	35

ВІ	Sigla	Quota
6078	AE	25
5819	KB	30
4526	KB	30
4526	NT	20
3955	KB	30
3955	NT	20
3955	AE	25
9876	KB	0

SQL – Where

Used to filter rows

3. List member's BI number and name, whose BI number is less than 6000

select bi, nome

from socios

where *bi* < 6000;

ВІ	Nome
5819	Rui
4526	Nuno
3955	Rita

SQL - Like

Search for strings

Compare strings with like:

% look for any string with 0 or more characters :

name **like** 'M%' (Oracle, MySQL)

'Marina' will be na output

Compare strings with =, looks for the exact match:

name = 'M%' is true if the name is 'M%'

SQL – Like

Search for strings

4. List the member's BI number and name which member's name start with 'R' or BI number is

between 4000 and 5000.

Desportos

Designação

PK,FK2 BI PK,FK1 Sigla

Salario

PK Sigla

Monitores

Nome

PK BI

Socios

Nome

Pratica

Sigla

Quota

PK,FK2

PK BI

Socios

ВІ	Nome
6078	Ana
5819	Rui
4526	Nuno
3955	Rita
9999	José

Monitores

ВІ	Nome
9876	Luís
1234	Joana

Desportos

Sigla	Designação
KB	Kickbox
NT	Natação
AE	Aeróbica

Orienta

BI	Sigla	Salario
1234	KB	40
1234	NT	30
9876	NT	30
9876	AE	35

ВІ	Sigla	Quota
6078	AE	25
5819	KB	30
4526	KB	30
4526	NT	20
3955	KB	30
3955	NT	20
3955	AE	25
9876	KB	0

SQL – Like

> Search for strings

4. List the member's BI number and name which member's name start with 'R' or BI number is between 4000 and 5000.

select bi, nome

from socios

where nome like 'R%' or bi between 4000 and 5000;

ВІ	Nome
5819	Rui
4526	Nuno
3955	Rita

SQL – Arithmetic Espressions

5. What would be the salaries above 40€ if we increase 20%?

Socios

ВІ	Nome
6078	Ana
5819	Rui
4526	Nuno
3955	Rita
9999	José

Monitores

ВІ	Nome
9876	Luís
1234	Joana

Desportos

Sigla	Designação
KB	Kickbox
NT	Natação
AE	Aeróbica

Orienta

BI	Sigla	Salario
1234	KB	40
1234	NT	30
9876	NT	30
9876	AE	35

ВІ	Sigla	Quota
6078	AE	25
5819	KB	30
4526	KB	30
4526	NT	20
3955	KB	30
3955	NT	20
3955	AE	25
9876	KB	0
5819 4526 4526 3955 3955 3955	KB KB NT KB NT AE	30 30 20 30 20 25

SQL – Arithmetic Espressions

5. What would be the salaries above 40€ if we increase 20%?

select bi, sigla, salario*1.2 **as** "Novo salário"

from orienta

where *salario**1.2 > 40

BI	Sigla	Novo Salario
1234	KB	48
9876	AE	42

SQL - In

> Value belong to a set

6. List the member's ID and sport's acronyms, which exercise aerobics or swimming

SQL - In

Value belong to a set

6. List the member's ID and sports acronyms which exercise aerobics or swimmers

Socios

ВІ	Nome
6078	Ana
5819	Rui
4526	Nuno
3955	Rita
9999	José

Monitores

ВІ	Nome
9876	Luís
1234	Joana

Desportos

Sigla	Designação
KB	Kickbox
NT	Natação
AE	Aeróbica

Orienta

ВІ	Sigla	Salario
1234	KB	40
1234	NT	30
9876	NT	30
9876	AE	35

ВІ	Sigla	Quota
6078	AE	25
5819	KB	30
4526	KB	30
4526	NT	20
3955	KB	30
3955	NT	20
3955	AE	25
9876	KB	0

SQL - In

> Value belong to a set

6. List the member's ID and sports acronyms which exercise aerobics or swimmers

select bi, sigla
from pratica
where sigla in ('AE', 'NT');

select bi, sigla
from pratica
where sigla='AE' or sigla='NT'

ВІ	Sigla
3955	AE
3955	NT
4526	NT
6078	AE

SQL- Order by

Output sorting

Select col1, col2
From table1
Where <condition>
Order by col_1;

SQL- Order by

Output sorting

7. Get a list of sports acronyms and member's BI sorted ascending by acronym and descending by BI

Socios

ВІ	Nome
6078	Ana
5819	Rui
4526	Nuno
3955	Rita
9999	José

Monitores

ВІ	Nome
9876	Luís
1234	Joana

Desportos

Sigla	Designação
KB	Kickbox
NT	Natação
AE	Aeróbica

Orienta

ВІ	Sigla	Salario
1234	KB	40
1234	NT	30
9876	NT	30
9876	AE	35

ВІ	Sigla	Quota
6078	AE	25
5819	KB	30
4526	KB	30
4526	NT	20
3955	KB	30
3955	NT	20
3955	AE	25
9876	KB	0

SQL – Order by

Output sorting

7. Get a list of sports acronyms and member's BI sorted ascending by acronym and descending by BI

select sigla, bi
from pratica
order by sigla , bi desc

Sigla	ВІ
AE	6078
AE	3955
KB	9876
KB	5819
KB	4526
KB	3955
NT	4526
NT	3955

SQL – Aggregation Functions

> Aggregate rows and calculate values

```
Select col1, col2,..., count(colx)
From table1
Where <condition>
Group by col1, col2, ...;
```

SQL – Aggregation Functions

Aggregate rows and calculate values

8. Get the average salary, number of salaries and total salaries, as well as the

highest and lowest salary

Salario

Socios

PK BI

Nome

Pratica

PK,FK1 BI

PK,FK2 Sigla

PK,FK1 Sigla

PK,FK1 Sigla

PK,FK1 Sigla

PK,FK1 Sigla

PK,FK1 Sigla

PK,FK1 Sigla

Quota

Socios

ВІ	Nome
6078	Ana
5819	Rui
4526	Nuno
3955	Rita
9999	José

Monitores

ВІ	Nome
9876	Luís
1234	Joana

Desportos

Sigla	Designação
KB	Kickbox
NT	Natação
AE	Aeróbica

Orienta

ВІ	Sigla	Salario
1234	KB	40
1234	NT	30
9876	NT	30
9876	AE	35

ВІ	Sigla	Quota
6078	AE	25
5819	KB	30
4526	KB	30
4526	NT	20
3955	KB	30
3955	NT	20
3955	AE	25
9876	KB	0

SQL – Aggregation Functions

Aggregate rows and calculate values

8. Get the average salary, number of salaries and total salaries, as well as the highest and lowest salary

select

avg(salario) as mean,
count(*) as number,
sum(salario) as total,
max(salario) as max,
min(salario) as min

from orienta

Mean	Number	Total	Max	Min
33,75	4	135	40	30

SQL – Group By

Aggregate rows and calculate values

9. Calculate the total amount paid by each member (bi and value)

Socios

ВІ	Nome
6078	Ana
5819	Rui
4526	Nuno
3955	Rita
9999	José

Monitores

ВІ	Nome
9876	Luís
1234	Joana

Desportos

Sigla	Designação	
KB	Kickbox	
NT	Natação	
AE	Aeróbica	

Orienta

ВІ	Sigla	Salario
1234	KB	40
1234	NT	30
9876	NT	30
9876	AE	35

ВІ	Sigla	Quota
6078	AE	25
5819	KB	30
4526	KB	30
4526	NT	20
3955	KB	30
3955	NT	20
3955	AE	25
9876	KB	0

SQL – Group By

Aggregate rows and calculate values

9. Calculate the total amount paid by each member (bi and value)

select bi, sum(quota)
from pratica
group by bi

Results

ВІ	Sum(quota)
3955	75
4526	50
5819	30
6078	25
9876	0

It is essential to have in the *group by* all the non-aggregated columns is the *select* statement

SQL – Group by with filters

> Aggregate rows and calculate values

10. Calculate the total amount paid by each member, but only for cases above 40€

Socios

ВІ	Nome
6078	Ana
5819	Rui
4526	Nuno
3955	Rita
9999	José

Monitores

ВІ	Nome
9876	Luís
1234	Joana

Desportos

Sigla	Designação	
KB	Kickbox	
NT	Natação	
AE	Aeróbica	

Orienta

ВІ	Sigla	Salario
1234	KB	40
1234	NT	30
9876	NT	30
9876	AE	35

ВІ	Sigla	Quota
6078	AE	25
5819	KB	30
4526	KB	30
4526	NT	20
3955	KB	30
3955	NT	20
3955	AE	25
9876	KB	0

SQL – Group by with filters

Aggregate rows and calculate values

10. Calculate the total amount paid by each member, but only for cases above €40

select bi, sum(quota)
from pratica
where sum(quota) > 40
group by bi

SQL – Group by & Having

Aggregate rows and calculate values

10. Calculate the total amount paid by each member, but only for cases above 40€

select bi, sum(quota)

from pratica

where sum(quota) > 40

group by bi

select bi, **sum**(quota)

from pratica

group by bi

having sum(quota) > 40

having selects rows from aggregation like **where** selects rows from base table

SQL – Joins

Most common types of joins:

- (Inner) join only returns records that have matching values in both tables
- Left join returns all records from the left table, and the matched records from the right table
- Right join returns all records from the right table, and the matched records from the left table;

Select *
From table1 t1
(left/right) Join table2 t2 on t1.col1 = t2.col3

Join tables

11. List the member's name and sport's acronym, who practice aerobics and swimming

Socios

ВІ	Nome
6078	Ana
5819	Rui
4526	Nuno
3955	Rita
9999	José

Monitores

ВІ	Nome
9876	Luís
1234	Joana

Desportos

Sigla	Designação
KB	Kickbox
NT	Natação
AE	Aeróbica

Orienta

ВІ	Sigla	Salario
1234	KB	40
1234	NT	30
9876	NT	30
9876	AE	35

ВІ	Sigla	Quota
6078	AE	25
5819	KB	30
4526	KB	30
4526	NT	20
3955	KB	30
3955	NT	20
3955	AE	25
9876	KB	0

Join tables

11. List the member's name and sport's acronym, who practice aerobics and swimming

select nome, sigla
from socios
join pratica on socios.bi=pratica.bi

where sigla in ('AE', 'NT')

Nome	Sigla
Ana	AE
Nuno	NT
Rita	NT
Rita	AE

Join tables

12. List the member's name and sport's name, who practice aerobics and swimming

Socios

ВІ	Nome
6078	Ana
5819	Rui
4526	Nuno
3955	Rita
9999	José

Monitores

ВІ	Nome
9876	Luís
1234	Joana

Desportos

Sigla	Designação
KB	Kickbox
NT	Natação
AE	Aeróbica

Orienta

BI	Sigla	Salario
1234	KB	40
1234	NT	30
9876	NT	30
9876	AE	35

ВІ	Sigla	Quota
6078	AE	25
5819	KB	30
4526	KB	30
4526	NT	20
3955	KB	30
3955	NT	20
3955	AE	25
9876	KB	0

Join tables

12. List the member's name and sport's name, who practice aerobics and swimming

select s.nome, d.designação
from socios s
join pratica p on s.bi=p.bi
join desportos d on p.sigla = d.sigla
where p.sigla in ('AE', 'NT')

Nome	Designação
Ana	Aeróbica
Nuno	Natação
Rita	Natação
Rita	Aeróbica

SQL – UNION & INTERSECT

Union / Intersect tables

UNION Statement

Select col1, col2 From table1 Union (all) Select col3, col4 From table2;

INTERSECT Statement

Select col1, col2 From table1 Intersect Select col3, col4 From table2;

SQL – UNION

Union / Intersect tables

13. List all names from members and monitors?

Socios

ВІ	Nome
6078	Ana
5819	Rui
4526	Nuno
3955	Rita
9999	José

Monitores

ВІ	Nome
9876	Luís
1234	Joana

Desportos

Sigla	Designação	
KB	Kickbox	
NT	Natação	
AE	Aeróbica	

Orienta

BI	Sigla	Salario
1234	KB	40
1234	NT	30
9876	NT	30
9876	AE	35

ВІ	Sigla	Quota
6078	AE	25
5819	KB	30
4526	KB	30
4526	NT	20
3955	KB	30
3955	NT	20
3955	AE	25
9876	KB	0

SQL – UNION

13. List all names from members and monitors?

(select nome

from socios)

Union

(select nome

From monitores)

SQL-INTERSECT

14. List the common names from members and monitors?

(select nome

from socios)

intersect

(select nome

From monitores)

SQL – PostgreSQL

PostgreSQL:

- Also known as postgres
- Not only for academic purposes
- Relational database
- (probably) the most advanced open source database system
- Free and open source
- uses SQL (Structured query language) as its main query language
- Some customers: Apple, Fujitsu, Red Hat, Cisco, Juniper Network
- It has high availability.
- It also supports image, video, audio storage and also supports graphical data.
- It requires very low maintenance.
- It supports Multi-version concurrency control (MVCC).
- It has user defined data-types.
- It runs on all operating systems.

SQL – PostgreSQL

Download:

- https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
- Version 16
- Save your password!
- Port: 5432
- Save pre-installation summary:

SQL – PostgreSQL

- Validate installation:
 - Open pgAdmin4.exe (c:\Programs\PostgreSQL\16\pgAdmin 4\runtime)
 - If no server exists, create one:
 - Right click on servers\create\server
 - Fill it

SQL – PostgreSQL

- Validate installation:
 - Open pgAdmin4 (c:\Programs\PostgreSQL 16\pgAdmin 4\bin
 - Right click on Database (1)\postgres -> Query Tool
 - Run query: select version()

SQL – PostgreSQL

- Create database:
 - Download DVD Rental Sample Database
 - Right click on <server name>\Create\Database
 - Chose a name and save (eg. Dvd_db)
 - Right click on dvd_db\restore
 - On file name, insert fil path 'C:\Users\...\dvdrental.tar'
 - Click on Restore

SQL – PostgreSQL

- Create database:
 - Confirm that you can see the tables
 - Right click in one of the tables\properties
 - Explore

SQL - DV

DVD rental ER diagram

ema

SQL – Select

From Actors,

Exercise:

- 1. Select only the first name;
- 2. Select only first and last names;
- 3. Select only distinct first name;
- 4. Select only first name that is different from Nick;

```
Hint:
    Select col1, col2
    From table 1
    Where
    <condition>;
    Comments
    /* select * from
    table1
    means select all
    data from table1
```

SQL – Select

Exercise:

- Select only the first name;
 Select first_name from actor;
- 2. Select only first and last names; Select first_name, last_name from actor;
- Select only distinct first name;
 Select distinct first_name from actor;
- 4. Select only first name that is different from Nick; Select first_name, last_name From actor Where first_name != 'Nick';

```
Hint:
Select col1, col2
From table1
Where
<condition>;

/*
Comments
*/
```

SQL – Order by

Exercise:

- 1. Select all actor's data sorted by last name;
- 2. Select all actor's data sorted by last name but descending;
- 3. Select all actor's data in which first name starts with 'B'

Hint:

Select col1, col2
From table1
Where < condition >
Order by col_1;

SQL – Order By

Exercise:

- 1. Select all actor's data sorted by last name; select * from actor order by last_name;
- Select all actor's data sorted by last name but descending;
 - select * from actor order by last_name desc;
- 3. Select all actor's data in which first name starts with 'B'

```
select * from actor where first_name like 'B%';
```

Hint:

Select col1, col2
From table1
Where
<condition>
Order by col_1;

Exercise:

- 1. Number of records of the actor's table;
- 2. How many actors are with the same first name sorted by first name descending;
- 3. Create an alias for the countings column (eg: howmany);

Hint:

```
Select col1, col2,...,
count(colx)
From table1
Where <condition>
Group by col1, col2, ...;
```

Exercise:

- Number of records of the actor's table;
 Select count(*) from actor;
- 2. How many actors are with the same first_name;
- Create an alias for the countings column (HowMany);

```
select first_name, count(first_name) howmany
from actor
group by first_name
order by first_name desc;
```

Hint:

Select col1, col2,..., count(colx) From table1 Where <condition> Group by col1, col2,... Order by col1;

Exercise:

- 1. Reuse previous query and ...
- Sort it by HowMany in descending order and by first_name ascending;

Hint:

Select col1, col2,..., count(colx) From table1 Where <condition> Group by col1, col2,... Order by col_1;

Exercise:

- 1. Reuse previous query and ...
- Sort it by HowMany in descending order and by first_name ascending;

```
select first_name,count(first_name) howmany
from actor
group by first_name
order by howmany desc, first_name;
```

Hint:

Select col1, col2,..., count(colx) From table1 Where <condition> Group by col_1, col2, ... Order by col_1;