

Excitation / ionization

 Incoming charged particle interacts with atom / molecule:

An ion pair is created

Elastic collision 1

• Interaction between two particles where kinetic energy is preserved:

$$m_1, v$$
 m_2
 v_2
 v_3
 v_4
 v_2

• Classical mechanics:

$$\begin{split} T_0 &= \frac{1}{2} \, m_1 v^2 = \frac{1}{2} \, m_1 v_1^2 + \frac{1}{2} \, m_2 v_2^2 \\ m_1 v &= m_1 v_1 \cos \theta + m_2 v_2 \cos \chi \\ 0 &= m_1 v_1 \sin \theta - m_2 v_2 \sin \chi \end{split}$$

UiO : Department of Physics University of Oslo

Elastic collision 2

$$\Rightarrow v_{2} = \frac{2m_{1}v\cos\chi}{m_{1} + m_{2}} , \quad v_{1} = v\sqrt{1 - \frac{4m_{1}m_{2}\cos^{2}\chi}{(m_{1} + m_{2})^{2}}}$$

$$\tan\theta = \frac{\sin2\chi}{\frac{m_{1}}{m_{2}} - \cos2\chi}$$

• Equations give, among others, maximum energy transferred:

$$E_{\text{max}} = \frac{1}{2} \, m_2 v_{2,\text{max}}^2 = 4 \frac{m_1 m_2}{(m_1 + m_2)^2} \, T_0$$

\Box 1			1	1 1			
нΊ	lasti	\boldsymbol{c}	CO	Н	lici	\mathbf{n}	2
ப	asu	·	CUI	u	поі	IUII	ാ

a) m ₁ >>m ₂	b) m ₁ =m ₂	c) m ₁ < <m<sub>2</m<sub>
$0 \le \chi \le \pi/2$	$0 \le \chi \le \pi/2$	$0 \le \chi \le \pi/2$
$0 \le \theta \le \tan^{-1}(\frac{m_2}{m_1}\sin 2\chi)$	$0 \le \theta \le \pi/2$	$0 \le \theta \le \pi$
$E_{\text{max}} = 4 \frac{m_2}{m_1} T_0$	$\mathbf{E}_{\mathrm{max}} = \mathbf{T}_{\mathrm{0}}$	$E_{\text{max}} = 4 \frac{m_1}{m_2} T_0$

• Proton-electron collision:

$$\theta_{max}$$
 = 0.03° , E_{max} = $0.2~\%$

• Electron-electron (or e.g. proton-proton) coll.:

$$\theta_{max}$$
 = 90 $^{\circ}$, E_{max} = 100 $\%$

UiO : Department of Physics University of Oslo

Elastic collision - cross section 1

Force exerted on particle 2:

$$\begin{split} \vec{F} &= \frac{zZe^2}{4\pi\epsilon_0 r^2} \vec{u}_r \\ F_x &= F\sin\eta \quad , \quad F_y = F\cos\eta \end{split}$$

Elastic collision - cross section 2

Momentum of particle 2: $d\vec{p}_{tr} = \vec{F}dt$

$$\frac{dx}{dt} = v \quad , \quad \tan \eta = \frac{x}{b}$$

$$\Rightarrow \frac{d}{d\eta} \tan \eta = \frac{1}{\cos^2 \eta} = \frac{dx}{bd\eta} \Rightarrow dt = \frac{bd\eta}{v\cos^2 \eta}$$

Total momentum transfer in interaction:

$$\vec{p}_{tr} = \int\limits_{-\pi/2}^{\pi/2} F \cos\eta \frac{b d\eta}{v \cos^2\eta} \, \vec{j} = \frac{zZe^2b}{4\pi\epsilon_0 v} \int\limits_{-\pi/2}^{\pi/2} \frac{d\eta}{r^2 \cos\eta} \, \vec{j} \qquad , \qquad r = \frac{b}{\cos\eta} \label{eq:ptr}$$

$$\Rightarrow \quad \vec{p}_{tr} = \frac{zZe^2}{4\pi\epsilon_0 bv} \int_{-\pi/2}^{\pi/2} \cos \eta d\eta \vec{j} = \frac{2zZe^2}{4\pi\epsilon_0 bv} \vec{j}$$

UiO Department of Physics
University of Oslo

Elastic collision - cross section 3

Energy transfer: $E = \frac{p_{tr}^2}{2m_2} = \frac{2}{m_2} \left(\frac{zZe^2}{4\pi\epsilon_0 bv}\right)^2$

Cross section: $\sigma = \pi b^2 \rightarrow d\sigma = 2\pi bdb$. Thus:

$$b^{2} = \frac{2}{m_{2}} \left(\frac{zZe^{2}}{4\pi\epsilon_{0}v} \right)^{2} \frac{1}{E} \quad \Rightarrow \quad |2\pi bdb| = d\sigma = \frac{2\pi}{m_{2}} \left(\frac{zZe^{2}}{4\pi\epsilon_{0}v} \right)^{2} \frac{1}{E^{2}} dE$$

$$r_{\rm e} = \frac{{\rm e}^2}{4\pi\epsilon_{\rm o} {\rm m_{\rm e}} {\rm c}^2}$$

$$\Rightarrow \frac{d\sigma}{dE} = \frac{2\pi r_e^2 (zZ)^2 (m_e c^2)^2}{m_2 v^2} \frac{1}{E^2} = 2\frac{m_e}{m_2} (zZ)^2 \frac{\pi r_e^2 m_e c^2}{\beta^2} \frac{1}{E^2}$$

Elastic collision – cross section 5

• Consider z=1 og $m_1=m_e << m_2$

$$\begin{split} & m_{1} << m_{2} & \Longrightarrow \\ & E = \frac{1}{2} m_{2} v_{2}^{2} \approx \frac{1}{2} m_{2} \left(\frac{2 m_{1} v \cos \chi}{m_{2}} \right)^{2} = 2 \frac{m_{1}^{2}}{m_{2}} v^{2} \cos^{2} \chi \\ & \tan \theta \approx - \frac{\sin 2 \chi}{\cos 2 \chi} = -\tan 2 \chi \quad \Longrightarrow \quad \chi = \frac{\pi}{2} - \frac{\theta}{2} \\ & \Longrightarrow \quad \frac{d\sigma}{d\theta} = \frac{d\sigma}{dE} \frac{dE}{d\theta} \\ & \Longrightarrow \quad \frac{d\sigma}{d\Omega} = \frac{1}{2 \pi \sin \theta} \frac{d\sigma}{d\theta} = \frac{Z^{2}}{4} \frac{r_{e}^{2} m_{e} c^{2}}{\beta^{2}} \frac{1}{\sin^{4}(\theta/2)} \end{split}$$

Stopping power

• S=dT/dx; expected energy loss per unit lenght

$$\begin{split} dT = & \left\langle E n_{_{\boldsymbol{V}}} dx \sigma \right\rangle = n_{_{\boldsymbol{V}}} dx \int\limits_{E_{min}}^{E_{max}} \frac{d\sigma}{dE} E dE = \rho \bigg(\frac{N_{_{\boldsymbol{A}}} Z}{A} \bigg) dx \int\limits_{E_{min}}^{E_{max}} \frac{d\sigma}{dE} E dE \\ & \bigg(\frac{dT}{\rho dx} \bigg) = \frac{S}{\rho} = \bigg(\frac{N_{_{\boldsymbol{A}}} Z}{A} \bigg) \int\limits_{E_{min}}^{E_{max}} \frac{d\sigma}{dE} E dE \end{split}$$

• S=dT/ρdx : *mass* stopping power

UiO • Department of Physics University of Oslo

Impact parameter

- Charged particles: Coulomb interactions
- Most important: interactions with electrons
- Impact parameter *b*:

Soft collisions 1

- b >> a: incoming particle passes atom at long distance
- Weak forces, small energy transfers to the atom
- Inelastic collisions: Predominantly excitations, some ionizations
- Energy transfer range from "Emin" to "H"
- Hans Bethe: Quantum mechanical considerations
- Theory for heavy charged particles in the following

UiO • Department of Physics University of Oslo

Soft collisions 2

$$\frac{S_{c,soft}}{\rho} = \left(\frac{dT_{soft}}{\rho dx}\right)_c = \frac{N_A Z}{A} \frac{2\pi r_0^2 m_e c^2 z^2}{\beta^2} ln \left[\frac{2m_e c^2 \beta^2 H}{I^2 (1-\beta^2)} - \beta^2\right]$$

- r_0 : classical electron radius = $e^2/4\pi\epsilon_0 m_e c^2$
- I: mean excitation potential
- $\beta = v/c$
- z: charge of incoming particle
- ρ : density of medium
- N_AZ/A: numbers of electron per gram
- H: maksimum energy transferred by soft collisions

Soft collisions 2

• Quantum mechanics (atomic structure) is reflected in the mean excitation potential

UiO : Department of Physics University of Oslo

Hard collisions 1

- $b \sim a$: charged particle pass 'through' atom
- Large (but few) energy transfers
- Energy transfers from H to E_{max}
- May be considered as an elastic collision between free particles (binding energy is negligible)

$$\frac{S_{c,hard}}{\rho} = \left(\frac{dT}{\rho dx}\right)_{hard} = \frac{N_A Z}{A} \frac{2\pi r_0^2 m_e c^2 z^2}{\beta^2} \left[ln \left(\frac{E_{max}}{H}\right) - \beta^2 \right]$$

Collision stopping power

• For inelastic collisions, the total cross section is thus:

$$\begin{split} \frac{S_c}{\rho} &= \frac{S_{c,soft}}{\rho} + \frac{S_{c,hard}}{\rho} \\ &= 4\pi r_0^2 m_e c^2 \left(\frac{N_A Z}{A}\right) \left(\frac{z}{\beta}\right)^2 \left[ln \left(\frac{2m_e c^2 \beta^2}{(1-\beta^2)I}\right) - \beta^2 \right] \end{split}$$

• Important: Increases with z^2 , decreases with v^2 and I, not dependent on particle mass

UiO : Department of Physics

S_c/ρ , different substances

• I and electron density (ZN_A/A) give differences

S_c/ρ , electrons and positrons

- Electron-electron scattering is more complicated; scattering between two identical particles
- $S_{c, hard}/\rho$ (el-el) is described by the Möller cross section
- $S_{c, hard}/\rho$ (pos-el) is described by the Bhabha c.s.
- $S_{c, soft}/\rho$ was given by Bethe, as for heavy particles
- Characteristics similar to that for heavy charged particles

UiO : Department of Physics University of Oslo

Shell correction

- Derivation of S_c assumes v >> v_{atomic electrons}
- When $v \sim v_{\text{atomic electrons}}$, no ionizations
- Most important for K-shell electrons
- Shell correction C/Z takes this into accout, and thus reduces S_c/ρ
- C/Z depends on particle energy and medium

Density correction

Charged particles polarizes medium which is being traversed

$$\vec{E}_{part} \left(\begin{array}{c} \vec{E}_{pol} \\ \vec{E}_{part} \end{array} \right) \left(\begin{array}{c} \vec{E}_{pol} \\ \vec{E}_{part} \end{array} \right) \left(\begin{array}{c} \vec{E}_{pol} \\ \vec{E}_{part} \end{array} \right) \left(\begin{array}{c} \vec{E}_{part} \\ \vec{E}_{part} \\ \vec{E}_{part} \end{array} \right) \left(\begin{array}{c} \vec{E}_{part} \\ \vec{E}_{part} \\ \vec{E}_{part} \end{array} \right) \left(\begin{array}{c} \vec{E}_{part} \\ \vec{E}_{$$

- Weaker interactions with remote atoms due to reduction in electromagnetic field strenght
- · Polarization increases with energy and density
- Most important for electrons and positrons

UiO : Department of Physics University of Oslo

Density correction

- Density correction δ reduces S_c/ρ for liquids and solids
- S_c/ρ (water vapor) > S_c/ρ (water)

Linear Energy Transfer 1

- LET $_{\Lambda}$ is denoted the *restricted stopping power*
- dT/dx: mean energy loss per unit lenght but how much is deposited 'locally'?

- S_c : energy transfers from E_{min} to E_{max}
- How much energy per unit length is deposited within the range of an electron given energy Δ ?

UiO : Department of Physics University of Oslo

Linear Energy Transfer 2

 Energy loss (soft + hard) per unit lenght for E_{min} < E < Δ:

$$\begin{split} L_{\Delta} = & \left(\frac{dT}{dx}\right)_{\Delta} = \rho \left(\frac{N_{A}Z}{A}\right) \int_{E_{min}}^{\Delta} \frac{d\sigma}{dE} E dE \\ = & \rho 2\pi r_{0}^{2} m_{e} c^{2} \left(\frac{N_{A}Z}{A}\right) \left(\frac{z}{\beta}\right)^{2} \left[ln \left(\frac{2m_{e}c^{2}\beta^{2}\Delta}{(1-\beta^{2})I}\right) - 2\beta^{2} \right] \end{split}$$

- For $\Delta = E_{max}$, we have $L_{\infty} = S_c$; unrestricted LET
- LET_{Δ} is often given in [keV/ μ m]
- 30 MeV protons in water: LET_{100 eV} / L_{∞} = 0.53

Brehmsstrahlung 1

• Photon may be emitted from charged particle accelerated in the field from an electron or nucleus

• Larmor's formula (classical electromagnetism) for radiated effect from accelerated charged particle:

$$P = \frac{(ze)^2 a^2}{6\pi\epsilon_0 c^3}$$

UiO • Department of Physics University of Oslo

Brehmsstrahlung 2

For particle accelerated in nuclear field:

$$F = ma = \frac{zZe^{2}}{4\pi\epsilon_{0}r^{2}} \implies a = \frac{zZe^{2}}{4\pi\epsilon_{0}mr^{2}}$$
$$\Rightarrow P \propto \left(\frac{Z}{m}\right)^{2}$$

• Comparison of protons and electrons:

$$\frac{P_p}{P_e} = \left(\frac{m_e}{m_p}\right)^2 \approx \frac{1}{1836^2}$$

Brehmsstrahlung not important for heavy charged particles

Brehmsstrahlung 3

- Energy loss by brehmsstrahlung is called radiative loss
- Maksimum energy loss is the total kinetic energy *T*
- Radiative loss per unit lenght: *radiative stopping power*:

$$\left(\frac{S}{\rho}\right)_{r} = \left(\frac{dT}{\rho dx}\right)_{r} \approx \alpha r_{0}^{2} \frac{N_{A}Z^{2}}{A} (T + m_{e}c^{2}) \overline{B_{r}} (T, Z)$$

- $\overline{B}_r(T,Z)$ weakly dependent on T and Z
- Brehmsstrahlung increases with energy and atomic number

UiO : Department of Physics University of Oslo

Total stopping power, electrons

$$\left(\frac{dT}{\rho dx}\right)_{tot} = \left(\frac{dT}{\rho dx}\right)_{c} + \left(\frac{dT}{\rho dx}\right)_{r}$$

Cerenkov effect

- High energy electrons (v > c/n) polarizes medium (e.g. water) and blueish light (+ UV) is emitted
- Low energy loss

UiO : Department of Physics University of Oslo

Other interactions

- *Nuclear interactions*: Inelastic process where charged particle (e.g. proton) excites nucleus →
 - Scattering of charged particle
 - Emission of neutron, photon, or α-particle (⁴He)
- Not important below ~10 MeV (protons)
- Positron annihilation: Positron interacts with electron → a pair of photons with energy ≥ 2 x 0.511 MeV is created. Photons are emitted in opposite directions.
- Probability decreases as ~ 1/v

Range 1

- The range \Re of a charged particle in matter is the (expectation value of) it's total pathlenght p
- The projected range <t> er is the (expectation value of) the largest depth t_f a charged particle can reach along it's incident direction
- Electrons:

$$\langle t \rangle \langle \mathcal{R}$$

• Heavy charged particles:

$$\langle t \rangle \approx \Re$$

CSDA-range

- The range may be approximated by \mathcal{R}_{CSDA} (continuous slowing down approximation)
- Energy loss per unit lenght dT/dx gives implicitly a measure of the range:

$$T_0 \longrightarrow T_0 - \Delta T = T_0 - \frac{dT}{dx} \Delta x$$

$$\Delta x = \frac{dx}{dT} \Delta T , \Rightarrow \Re = \sum_{i=1}^n \Delta x_i = \sum_{i=1}^n \left(\frac{dx}{dT}\right)_i \Delta T$$

$$\Longrightarrow \mathfrak{R}_{CSDA} = \int\limits_0^{T_0} \!\! \left(\frac{dT}{dx} \right)^{\!\!-1} dT$$

UiO • Department of Physics University of Oslo

Range 3

• The range is often given multiplied by the density:

$$\Re_{\text{CSDA}} = \int_{0}^{T_0} \left(\frac{dT}{\rho dx} \right)^{-1} dT$$

- Unit thus becomes [cm] $[g/cm^3] = [g/cm^2]$
- Range of charged particle depends on:
 - Charge and kinetic energy
 - Density, electron density and mean excitation potential of absorber

Multiple scattering and straggling

- In a beam of charged particles, one has:
 - Variations in energy deposition (straggling)
 - Variations in angular scattering
- → The beam, where all particles originally had the same velocity, will be smeared out as the particles traverses matter

Monte Carlo simulations

Monte Carlo simulations of the track of an electron (0.5 keV) and an α-particle (4 MeV) in water

Note:
 e⁻ is most scattered
 α has the highest dT/dx

Excitation

Ionisation

α

Oslo University Hospita

UiO : Department of Physics University of Oslo

Hadron therapy

 Heavy charged particles may be used for radiation therapy – conforms better to the target than photons or electrons

UiO : Department of Physics University of Oslo Oslo University Hospital

Web pages

• For stopping powers:

http://www.nist.gov/pml/data/star

• For attenuation coefficients:

http://www.nist.gov/pml/data/xraycoef