

Mindestflugzeit einer VTOL-Drohne

Projekt zu Einführung in neuronale Netzwerke

Leonard Uscinowicz

TUM Fakultät für Physik
Technische Universität München

8. Februar 2023

Outline

- Einleitung
- Problemstellung
- 3 Lösungsansätze
- 4 Ergebnisse

Simulation

- Simulation einer fliegenden Drohne mit 2 Propellern
- Kein Algorithmus zum fliegen
 - → Machine-learning zum Antrainieren des Flugverhaltens
- Ausnützung des sogenannten Reinforcement-learning

VTOL-Drohne

actions
$$=egin{pmatrix} f_l \ f_r \ \delta_l \ \delta_r \ \end{pmatrix}$$

 \Longrightarrow 4 mögliche Aktionen

Reinforcement-learning

Tabelle 1 Unterschiede der Trainingsmethoden

Lernmethode	Konventionell	Reinforcement
Trainingsdaten	Eingaben mit erwarteten Ausgaben	Zustand und Umgebung
Ziel des Trainings	Loss-function reduzieren	Reward-function maximieren

Outline

- Einleitung
- Problemstellung
- Lösungsansätze
- 4 Ergebnisse

Ziele

- Abfliegen einer 3D-Route:
 - → großes Problem
 - ---- volle Ausnützung der Drohnenaktionen notwendig
- Hinfliegen zu einem 2D-Zielpunkt
 - → kleines Problem
 - \longrightarrow Reduzierung des Aktionsraumes auf 2 Aktionen

Hazards

- Krafteinflüsse wie Gravitation
 - ---- dauerndes Runterfallen
- Kein Limit bei Unterschieden der Drehgeschwindigkeiten der Propeller
 - ---- zu schnelles Drehen
 - ---- Limits erzeugen unvorhersagbares Verhalten
- Wind

Outline

- Einleitung
- Problemstellung
- 3 Lösungsansätze
- 4 Ergebnisse

Standard Reward

$$\underbrace{r_{\mathsf{paper}}(t)}_{\mathsf{Reward}} = \underbrace{k_p r_p(t)}_{\mathsf{Teilfortschritt}} + \underbrace{k_s s(p(t))}_{\mathsf{Gesamtfortschritt}} + \underbrace{k_w p r_{wp}}_{\mathsf{Zieln\"{a}he}} - \underbrace{r_T}_{\mathsf{Kollisionsstrafe}} - \underbrace{k_\omega |\omega|}_{\mathsf{Rotationsgeschwindigkeit}} \tag{1}$$

Probleme bei der Reward-function

- Lokale maxima bei Beenden der Simulation
 - → sehr schnelle Drehung ganz am Anfang
- Fehlende Strafen
 - Abstand vom Pfad
 - Abstand vom Zielpunkt
 - Position unter der Grundfläche
 - ---- dauerndes Runterfallen

Lernphasen

- 1. Halten einer positiven Flughöhe: $z \ge 0$
- 2. Abgewöhnen von rapiden Drehungen $|\omega| \leq 2.0$
 - → nur kleine und schlechte Korrekturen bei Abweichungen vom Pfad möglich
- 3. Langsames annähern an den Zielpunkt
 - \longrightarrow langsamer Lernfortschritt mit starkem fehlerhaften Verhalten
- 4. Optimierung der Flugzeit
 - → häufiges Vorbeischiessen am Zielpunkt

Erfolglose Optimierungsversuche

- Veränderung der Koeffizienten $k_i \longrightarrow$ unerwartete Verhaltensänderungen
- Skalierung negativer Reward-Werte → kaum Verhaltensänderungen
- Limitierung der Propellerdifferenzen → keine Verhaltensänderungen

Erfolgreiche Optimierungen

- Vergrößern der Netzwerkstruktur → schnellerer Lernfortschritt
- 2. Beachten der Größenordnungen der Summanden \longrightarrow omnifunktionale Verbesserungen
- 3. Belohnungen wirksamer als Strafen → viel schnellerer Lernfortschritt
- 4. Optimierung mit Exponentialfunktion → wirksamer als antiproportionale Funktion

Verbesserte Funktion

$$\underbrace{r_{\text{new}}(t)}_{\text{neue Reward}} = \underbrace{k_p r_p(t) + k_s s(p(t)) + k_{wp} r_{wp} - k_{\omega} |\omega|}_{\text{Standard Reward ohne Kollisionsstrafe}} + \underbrace{r_{\text{extra}}}_{\text{zusätzliche Optimierungen}} \tag{2}$$

$$\underbrace{r_{\text{extra}}}_{\text{zusätzliche Optimierungen}} = \underbrace{k_{su}r_{su}}_{z\geq 0} + \underbrace{k_{pr}r_{pr}}_{|\dot{\omega}| \text{ klein}} + \underbrace{k_{hit}r_{hit}(t)}_{\text{Ziel getroffen}} - \underbrace{k_{d}d_{wp}}_{\text{Zielferne}} - \underbrace{k_{gd}r_{gd}}_{\text{Pfadferne}}$$
(3)

Outline

- Einleitung
- Problemstellung
- Lösungsansätze
- 4 Ergebnisse

Naher Zielpunkt Bilder

(a) Drohne fliegt zum naheliegenden Zielpunkt

(b) Drohne kommt an am naheliegenden Zielpunkt

Naher Zielpunkt Lernkurven

2.00×10⁵ 1.50×10⁵ 1.00×10⁵ 5.00×10⁴ 0 100 150

(a) Lernkurve #1 skaliert in der Lernphase

(b) Lernkurve #1 skaliert in der Optimierungsphase

Weit gelegener Zielpunkt Bilder

(a) Drohne fliegt zum weit gelegenen Zielpunkt

(b) Drohne kommt an am weit gelegenen Zielpunkt

Weit gelegener Zielpunkt Lernkurven

(a) Lernkurve #2 skaliert in der Lernphase

(b) Lernkurve #2 skaliert in der Optimierungsphase

Exzentrische Verhaltensmuster

- Aufschaukeln
 - → Rausschaukeln aus der Simulation
- Seitliches Ansteuern des Zielpunkts
 - → häufigeres Vorbeischiessen am Ziel

Erkenntnisse

- Präzise Anpassung der Belohnungen und Bestrafungen unter Beachtung aller Größenordnungen notwendig
 - ---- sonst unvorhersagbares Verhalten
- Lernfortschritt stark abhängig vom Reward
 - → Perfektionierung der Zusammenarbeit der Summanden des Reward wirksam
- Reinforcement learning < Conventional training (nur meine Meinung)