Due: Wed Mar 14

Homework #8

1. Reductions

Let $A \leq B$ for two problems A and B mean that problem A can be solved in big \mathbb{O} of the time it takes to solve problem B.

- (a) Show that $MULTIPLICATION \leq SQUARING$.
- (b) Show that **SQUARING** < **MULTIPLICATION**.
- (c) Show that $SQUARING \leq RECIPROCAL$.
- (d) If $A \equiv B$ means $A \leq B$ and $B \leq A$ which of MULTIPLICATION, SQUARING, and RECIPROCAL are equivalent?

HINT:
$$\frac{1}{x} - \frac{1}{y} = \frac{y-x}{xy}$$
. Try $y = x + 1$.

2. Lucas Numbers:

INPUT: A K bit number X.

QUESTION: Is X a Fibonacci number?

The Lucas numbers are defined by the recurrence

$$L_n = L_{n-1} + L_{n-2}$$

with the initial conditions: $L_0 = 2$, $L_1 = 1$ Show that this problem is in \mathcal{P} by outlining (NO CODE, just explain what you're doing) an algorithm, **AND** showing that your algorithm runs in polynomial time in K, the number of bits.

3. Roots:

Without finding the solutions, show that $x^2 - x - 1 = 0$ has:

- (a) NO positive integer solutions
- (b) NO rational solutions HINTS:
 - i. Assume that x = p/q where p and q are integers with no common factors.
 - ii. $p^2 q^2 = (p q)(p + q)$.
 - iii. Each integer is either ODD or EVEN.

4. Average Case:

Do Exercise 5.5 in the NOTES on page 61.

5. Lower Bound:

Exercise 6.1 in the NOTES on page 71, is about the lower bound of $\frac{3}{2}n-2$ comparisons to find the largest and smallest elements in an array. Devise a divide-and-conquer algorithm for this problem and show that the number of comparisons used by your algorithm achieves this lower bound.

6. Boolean Expression:

Assume that you have an algorithm **YS()** so that when you input a Boolean expression $\mathbf{E}(x_1,\ldots,x_n)$ into **YS()**,

- YS(E) outputs YES if E is satisfiable, and
- YS(E) outputs NO if E is not satisfiable.
- (a) Show how to use **YS()** to construct an algorithm **FIND(** $D(x_1, ..., x_n)$ **)** which when given a satisfiable Boolean expression $D(x_1, ..., x_n)$, returns an assignment $x_1 = a_1, x_2 = a_2, ..., x_n = a_n$, so that $D(a_1, ..., a_n)$ is TRUE.
- (b) Assume that **YS**($D(x_1,...,x_n)$) has run time $\mathbb{O}(n^k)$ and find the run time of **FIND**($D(x_1,...,x_n)$).

7. Platonic Hamiltonian Circiuts:

Show that each of the *PLATONIC* solids has a Hamiltonian circuit.

8. s-t Hamiltonian Path:

INPUT: A graph G and two specified vertices s and t.

QUESTION: Does G have a Hamiltonian Path which starts at s and ends at t?

- (a) Assume that you know that Hamiltonian Circuit is \mathcal{NP} —Complete, show that s-t Hamiltonian Path is \mathcal{NP} —Complete.
- (b) Assume that you know that s-t Hamiltonian Path is \mathcal{NP} -Complete, show that Hamiltonian Circuit is \mathcal{NP} -Complete.
- (c) Show that the Yes/No version of TSP (Traveling Sales Person) with all edge weights in $\{1, 2\}$ is \mathcal{NP} -Complete. (You should assume that Hamiltonian Circuit is \mathcal{NP} -Complete.)

9. Graph Isomorphism:

Graph isomorphism is an example of a problem which is in \mathcal{NP} , but is not known to be \mathcal{NP} -complete, nor is it known to be in co- \mathcal{NP} .

INPUT: Two graphs, $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$.

QUESTION: Can the vertices of G_1 be renamed so that G_1 becomes G_2 ? (Is there a one-to-one onto function $f: V_1 \to V_2$ so that $\forall x, y \quad (x, y) \in E_1$ iff $(f(x), f(y)) \in E_2$?

Show that GRAPH ISOMORPHISM is in \mathcal{NP} .

10. Canonical Number:

A graph with n vertices can be represented as an $n \times n$ binary matrix which has a 1 in position (i,j) if and only if there is an edge (v_i,v_j) . If you "unroll" this matrix (say by rows), you will have a vector of n^2 bits and you can consider this to be a number in standard binary notation. So, there is a correspondence between n vertex graphs and n^2 bit numbers. If we re-label the vertices of the graph, we don't change the graph properties. Different re-labelings of the graph will (usually) give different numbers. Clearly among all re-labelings of the graph, there is some re-labeling which gives the smallest value for this binary number. We would like to represent a graph by the minimum number we can get by re-labeling. We'll call this minimal number the canonical number of the graph. It's easy to see that two graphs are isomorphic iff they have the same canonical number.

- (a) The graph $v_1-v_2-v_3$ is isomorphic to $v_1-v_3-v_2$ and is also isomorphic to $v_2-v_1-v_3$. Find the canonical number of $v_1-v_2-v_3$.
- (b) Show that if finding the *canonical number* of a graph is easy, then GRAPH ISO-MORPHISM is easy. (Here, *easy* means takes polynomial time.)

 However, *canonical number* may be harder than GRAPH ISOMORPHISM. If I can tell that two graphs are NOT isomorphic, I know that their canonical numbers are different, but I don't know what their canonical numbers are. Further, if I know that two graphs are isomorphic, I know that their canonical numbers are identical, but again I don't know what these canonical numbers are.

(c) **Is-Canonical**:

INPUT: A graph G and an integer I.

QUESTION: Is I < the canonical number of G?

EXERCISE: Show that IS-CANONICAL is in $co-\mathcal{NP}$.

11. Tautology:

INPUT: A Boolean Expression $E(x_1, \ldots, x_n)$.

QUESTION: Does E evaluate to **TRUE** for each and every assignment of **TRUE** and **FALSE** to the variables, the x's?

Show that **TAUTOLOGY** is co- \mathcal{NP} -complete.

12. **3-SAT:**

INPUT: A Boolean Expression $E(x_1, ..., x_n)$ in Clause form with at most 3 literals per clause.

QUESTION: Does E evaluate to **TRUE** for some assignment of **TRUE** and **FALSE** to the variables, the x's?

Show that if **SAT** is \mathcal{NP} -complete, then **3-SAT** is \mathcal{NP} -complete.