AAAI 2019, HONOLULU, U.S.A.

Multi-Task Learning with Multi-View Attention for Answer Selection and Knowledge Base Question Answering

Yang Deng, Yuexiang Xie, Yaliang Li, Min Yang, Nan Du, Wei Fan, Kai Lei, Ying Shen

School of Electronics and Computer Engineering, Peking University Shenzhen Graduate School
Tencent Medical Al Lab

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

Presenter: Yang Deng (ydeng@pku.edu.cn)

Center for Internet Research and Engineering, Peking University (PKU)

Jan 29th, 2019. Honolulu, U.S.A.

Introduction

- Answer Selection & Knowledge Base Question Answering
- Multi-Task Learning

Methodology

- **Problem Definition**
- Multi-Task Learning for Question Answering
- Multi-View Attention Scheme

Experiment

- Multi-Task Learning Results
- Ablation Analysis of Multi-View Attention
- Case Study of Multi-View Attention

Summary

Introduction

Answer Selection

Problem

Given a question, answer selection aims to pick out the correct answer from a set of candidates.

Current Study

Deep Learning Model, Attention Mechanism, External Knowledge

- Knowledge Base Question Answering (KBQA)
- Problem

Given a question, KBQA aims to pick out a fact from a given knowledge base to answer the question.

Current Study

Semantic Parsing, Deep Learning Model, Contextual Information

Introduction

Multi-Task Learning

Multi-task learning aims to jointly learn different related tasks.

Motivations

- both answer selection and KBQA can be regarded as a ranking problem, with one at text-level while the other at knowledge-level.
- these two tasks can benefit each other: answer selection can incorporate the external knowledge from knowledge base, while KBQA can be improved by learning contextual information from answer selection.

Problem Definition

- Ranking Problem: Given a question $q_i \in Q$, the task is to rank a set of candidate answer sentences or facts $a_i \in A$.
- Inputs:
 - a word sequence $W = \{w_1, w_2, \dots, w_L\}$
 - a knowledge sequence $K = \{k_1, k_2, ..., k_L\}$
 - D_t as the t-th preprocessed task dataset with N samples: $D_t = \{(W_{q_i}^t, K_{q_i}^t, W_{a_i}^t, K_{a_i}^t, Y_i^t)\}_{i=1}^{N_t}$, where Y_i^t denotes the label of i-th QA pair in t-th task.

Outputs:

• a relevancy score $f(q, a) \in [0, 1]$ for each question-answer pair

		Answer Selection	KBQA
word	Q A	what was johnny appleseed 's real name? john chapman, aka american folk hero johnny appleseed.	what is the name of a track created by katy perry? katy perry music artist track witness
knowledge	Q A	johnny_appleseed john_chapman, johnny_appleseed	katy_perry katy_perry, music.artist.track, witness

- Multi-Task QA network (MTQA-net)
- Task-specific Encoder Layer

■ Multi-Task Learning for Question Answering

Shared Representation Learning Layer

$$S_q = \text{Bi-LSTM}(H_q);$$
 $S_a = \text{Bi-LSTM}(H_a).$ $s_q = Average(S_q), s_a = Average(S_a).$ $x = [s_q, s_a, x_{ol}].$

Task-specific Softmax Layer

$$p^{(t)} = \operatorname{softmax}\left(W_s^{(t)}x + b_s^{(t)}\right)$$

Multi-Task Learning

$$L = -\sum_{t=1}^{T} \lambda_t \sum_{i=1}^{N_t} \left[y_i^{(t)} \log p_i^{(t)} + \left(1 - y_i^{(t)} \right) \log \left(1 - p_i^{(t)} \right) \right]$$

Multi-View Attention Scheme

- Word View & Knowledge View & Co-attention View
- Two-way attention
- Semantic View & Knowledge Semantic View
- Semantic information as attention source
- Multi-View Attention Sharing
- Two-way attention

Datasets

	Dataset	#Question (train/dev/test)	#QA Pairs (train/dev/test)	
Answer	Yahoo QA	50098/6289/6283	253K/31K/31K	
Selection	TREC QA	1229/82/100	53417/1148/1517	
KDOA	SimpleQuestions	71038/10252/20464	571K/80K/164K	
KBQA	WebQSP	3067/-/1632	302K/-/160K	

■ Multi-Task Learning Results

Model	Yahoo QA		TREC QA		SimpleQuestions	WebQSP
	P@1	MRR	MAP	MRR	Accuracy	Accuracy
HD-LSTM (Tay et al. 2017)	0.557	0.735	0.750	0.815	-	-
CTRN (Tay, Tuan, and Hui 2018a)	0.601	0.755	0.771	0.838	-	-
HyperQA (Tay, Tuan, and Hui 2018b)	0.683	0.801	0.770	0.825	-	-
KAN(AP-LSTM) (Deng et al. 2018)	0.744	0.840	0.797	0.850	-	-
BiCNN (Yih et al. 2015)	-	-	-	-	0.900	0.777
AMPCNN (Wenpeng et al. 2016)	-	-	-	-	0.913	-
HR-BiLSTM (Yu et al. 2017)	-	-	-	-	0.933	0.825
Multiple View Matching (Yu et al., 2018)	-	-	-	-	<u>0.937</u>	0.854
MTQA-net (STL)	0.737	0.818	0.763	0.832	0.913	0.808
MTQA-net (MTL)	0.752	0.839	0.779	0.841	0.922	0.820
MVA-MTQA-net (STL)	0.806	0.878	0.783	0.838	0.931	0.823
MVA-MTQA-net (MTL)	0.833	0.909	0.811	0.862	0.957	0.858

- MVA-MTQA-net (MTL) outperforms the state-of-the-art results by a noticeable margin on all the datasets
- In both MVA-MTQA-net and its basic model (MTQA-net), multi-task learning (MTL) methods can significantly improve the performance of all four datasets compared with single-task learning (STL)

Ablation Analysis of Multi-View Attention

Model		Yahoo QA		TREC QA		SimpleQuestions	WebQSP
		P@1	MRR	MAP	MRR	Accuracy	Accuracy
STL MTL	MTQA-net MTQA-net	0.737 0.752	0.818 0.839	0.763 0.779	0.832 0.841	0.913 0.922	0.808 0.820
STL	MVA-MTQA-net w/o word view w/o knowledge view w/o semantic view w/o knowledge semantic view w/o co-attention view	0.806 0.792 0.781 0793 0.788 0.775	0.878 0.863 0.854 0.862 0.859 0.850	0.783 0.769 0.761 0.773 0.762 0.761	0.838 0.834 0.827 0.837 0.822 0.824	0.931 0.926 0.930 0.921 0.928 0.917	0.823 0.809 0.818 0.813 0.814 0.803
MTL	MVA-MTQA-net w/o word view w/o knowledge view w/o semantic view w/o knowledge semantic view w/o co-attention view	0.833 0.824 0.826 0.822 0.822 0.811	0.909 0.894 0.893 0.886 0.890 0.882	0.811 0.792 0.796 0.789 0.793 0.792	0.862 0.854 0.861 0.856 0.856 0.847	0.957 0.947 0.944 0.945 0.944 0.937	0.858 0.835 0.844 0.836 0.840 0.829

- All kinds of view contribute more or less performance boost to the model.
- Co-attention view attention makes the most contribution to the improvement
- For STL, knowledge and knowledge semantic view attentions are more distinguishable than word view and semantic view in two answer selection tasks, while the word view and semantic attentions contribute more in two KBQA tasks
- For MTL, we observe that each view of attention makes a similar contribution to the improvement in four tasks

Case Study of Multi-View Attention

Summary

- We explore multi-task learning approaches for answer selection and knowledge base question answering.
- We propose a novel multi-task learning scheme that leverages multiview attention mechanism to bridge different tasks.
- Experimental results show that multi-task learning of answer selection and KBQA outperforms state-of-the-art single-task learning methods.

Thanks and QA

Thank you!

Presenter: Yang Deng (ydeng@pku.edu.cn)

Center for Internet Research and Engineering , Peking University (PKU)

January 29th, 2019. Honolulu, USA.

