INDWELLING TYPE ENDOSCOPE

Publication number:JP2000296098Publication date:2000-10-24Inventor:OUCHI TERUO

Applicant: ASAHI OPTICAL CO LTD

Classification:

- international: A61B1/00; A61B1/005; A61M25/01; G02B23/24;

A61J15/00; **A61B1/00; A61B1/005; A61M25/01; G02B23/24;** A61J15/00; (IPC1-7): A61B1/00;

A61M25/01; G02B23/24

- European: A61B1/005B4

Application number: JP19990104795 19990413 **Priority number(s):** JP19990104795 19990413

Also published as:

US6506150 (B1) DE10018383 (A1)

Report a data error here

Abstract of JP2000296098

PROBLEM TO BE SOLVED: To relieve a pain to be given to a subject owing to long-time observation by connecting a part between an observation base part placed in a celom and an external device in an outer part with a catheter part to be inserted to a celom through the nostril. SOLUTION: The endoscope is provided with the observation base part 10, the catheter part 11 and the external device in order from the tip part. A subject swallows the observation base part 10 from the mouth in a state where the catheter part 11 is removed from the external device 12. Then, the catheter part 11 fixed to the rear end of the base part 10 becomes a state where it comes out from the mouth. An introduction tube is independently inserted from the nostril and the tip is made to be in a state where it is out of the mouth. In this state, the tip of the catheter 11 coming out from the mouth is inserted to the introduction tube coming out from the mouth and introduced to the side of the nostril. When the introduction tube is pulled-out from the nostril, only the tip of the catheter part 11 comes out from the nostril. The catheter part 11 coming out from the nostril is connected to the external device 12 so that the state becomes observable state.

Data supplied from the esp@cenet database - Worldwide

(19)日本國特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-296098 (P2000-296098A)

(43)公開日 平成12年10月24日(2000.10.24)

(51) Int.Cl. ⁷	識別記号	FΙ	テーマコード(参考)	
A 6 1 B 1/00	3 0 0	$\Lambda \ 6 \ 1 \ B \ 1/00$	300A 2H040	
A61M 25/01		C 0 2 B 23/24	Λ 40061	
G 0 2 B 23/24			В	
			С	
		A 6 1 M 25/00	309B	
		審查請求 未請求	請求項の数11 〇L (全 6 頁)	
(21)出願番号	特願平11-104795	(,	I願人 000000527 旭光学工業株式会社	
(22)出顧日	平成11年4月13日(1999.4.13)	東京都	板橋区前野町2丁目36番9号	
		(72)発明者 大内	輝雄	
		東京都	板橋区前野町2丁目36番9号 旭光	
		学工業	株式会社内	
		(74)代理人 100083	286	
		弁理士	三浦 邦夫	

最終頁に続く

(54) 【発明の名称】 体内留置型内視鏡

(57)【要約】

【目的】 長時間の導入においても被験者の苦痛が少な い、体内留置型内視鏡を得る。

【構成】 口から体腔内に飲み込むことができる観察基 部と、この観察基部に接続され鼻孔から体内に通すこと ができるカテーテル部と、このカテーテル部と着脱可能 な外部装置を備えた体内留置型内視鏡。

【特許請求の範囲】

【請求項1】 口から体腔内に飲み込むことができる、対物光学系と照明窓とを有する観察基部;内部に、上記対物光学系による像を伝達するイメージ伝達系と上記照明窓を発光させる照明伝達系とを有し、鼻孔から体内に通すことができる、上記観察基部より柔軟で該観察基部に接続されたカテーテル部;及びこのカテーテル部の先端に着脱可能で、上記イメージ伝達系による像を観察するためのモニタと、上記照明伝達系に照明エネルギを付与する照明装置とを有する外部装置;を有することを特徴とする体内留置型内視鏡。

【請求項2】 請求項1記載の内視鏡において、観察基 部は、湾曲部を有し、カテーテル部には、湾曲操作ワイ ヤが収納され、外部装置に湾曲操作部を有することを特 徴とする体内留置型内視鏡。

【請求項3】 請求項2記載の内視鏡において、上記湾曲操作ワイヤの材質が形状記憶合金であり、上記湾曲部を湾曲させるために該湾曲操作ワイヤを選択加熱させる手段を有することを特徴とする体内留置型内視鏡。

【請求項4】 請求項2または3記載の内視鏡において、観察基部は先端部側から順に、対物光学系と照明窓を有する硬質部と;湾曲可能な湾曲部と;外力が加わったとき変形可能な可撓部と;から構成されることを特徴とする体内留置型内視鏡。

【請求項5】 請求項1から4のいずれか1項記載の内 視鏡において、照明伝達系はライトガイドファイバであ り、照明装置は光源であることを特徴とする体内留置型 内視鏡。

【請求項6】 請求項1から4のいずれか1項記載の内 視鏡において、照明窓にLEDを有し、照明伝達系と照 明装置とは、給電線と給電装置であることを特徴とする 体内留置型内視鏡。

【請求項7】 請求項1から6のいずれか1項記載の内 視鏡において、イメージ伝達系はイメージガイドファイ バであることを特徴とする体内留置型内視鏡。

【請求項8】 請求項1から6のいずれか1項記載の内 視鏡において、対物光学系にCCDを用い、イメージ伝 達系は信号線であることを特徴とする体内留置型内視 鏡.

【請求項9】 請求項1から8のいずれか1項記載の内 視鏡において、観察基部には内視鏡要素を有し、カテー テル部には該内視鏡要素用のケーブルが収納され、外部 装置には該ケーブルの先端に着脱可能な、該内視鏡要素 を利用するための内視鏡要素操作装置を有することを特 徴とする体内留置型内視鏡。

【請求項10】請求項9記載の内視鏡において、内視鏡要素は送気口であり、ケーブルは送気チューブであり、 内視鏡要素操作装置は送気装置であることを特徴とする 体内留置型内視鏡。

【請求項11】請求項9記載の内視鏡において、内視鏡

要素は送気口及び送水口であり、ケーブルは送気チューブ及び送水チューブであり、内視鏡要素操作装置は送気装置及び送水装置であることを特徴とする体内留置型内視鏡。

【発明の詳細な説明】

[0001]

【技術分野】本発明は、体内に長時間留置しても被験者の苦痛が少ない体内留置型内視鏡に関する。

[0002]

【従来技術およびその問題点】内視鏡検査では、体内挿入部と操作部が連結したいわゆる通常内視鏡を口から導入し、可撓管部を押し込んで目的箇所を観察する。体内患部の経過観察や日常生活における被験者の生体情報の観察、記録のためには、内視鏡の体内挿入が長時間に亘ることがある。しかし、口から内視鏡を長時間導入し続けることは、被験者にとって大きな苦痛であった。

【0003】被験者の苦痛を軽減できる内視鏡の従来例として特開昭64-76822第1図のものがある。この内視鏡はカプセル状で、腸紐誘導用の柔軟連続部材の中途に設置されている。被験者が検査前日の夕方前記柔軟連続部材の先端に形成された軟球を飲み、翌日肛門から軟球が体外へ放出される。この柔軟連続部材の先端部と後端部を術者が引張調整することによりカプセルの部位を誘導する。

【0004】上記実施例によるカプセル状の内視鏡は、一般的な内視鏡と比較して被験者の苦痛は小さい。しかし被験者は12時間以上柔軟連続部材を口から出した状態にしておかなければならず、会話や食事が不可能であり苦痛軽減の大きな効果は期待できない。また、カプセル状の内視鏡は姿勢制御が困難である。

[0005]

【発明の目的】本発明は、被験者の苦痛の小さい体内留 置型内視鏡を提供することを目的とする。

[0006]

【発明の概要】本発明の体内留置型内視鏡は、口から体腔内に飲み込むことができる、対物光学系と照明窓とを有する観察基部と;内部に、上記対物光学系による像を伝達するイメージ伝達系と上記照明窓を発光させる照明伝達系とを有し、鼻孔から体内に通すことができる柔軟なカテーテル部と;カテーテル部先端に着脱可能で、上記イメージ伝達系による像を観察するためのモニタと、上記照明伝達系に照明エネルギを付与する照明装置とを有する外部装置と;で構成されることを特徴としている。

【0007】観察基部は、湾曲操作ワイヤを用いて、外部装置に設けた湾曲操作部を操作することにより湾曲させることが可能である。またこの湾曲操作ワイヤの材質を形状記憶合金とし、該湾曲操作ワイヤを加熱する手段を設ければ、加熱用の給電線のみで外部装置より湾曲操作が可能となり好ましい。照明光の供給に関しては、前

記照明伝達系をライトガイドファイバとし、照明装置を 光源とするとよい。あるいは照明伝達系を給電線、照明 装置を給電装置とし、照明窓にLEDを設けてもよい。 イメージ伝達系は例えばイメージガイドファイバとする とよいが、対物光学系にCCDを用いてイメージ伝達系 を信号線とすることも可能である。

【0008】また、観察基部には観察用のみならず処置 用の内視鏡要素を内蔵することも好ましい。例えば、観 察基部に送気口あるいは送水口を設け、カテーテル部に 送気チューブあるいは送水チューブを内蔵させて外部装 置より送気あるいは送水することができる。

[0009]

【発明の実施の形態】図1、図2及び図5から図14は、本発明による内視鏡の第一の実施形態を示す。この内視鏡は、先端部から順に、観察基部10、カテーテル部11、及び外部装置12とを備えている。観察基部10は、先端部から順に、硬質部10A、湾曲部10B及び可撓部10Cを有しており、カテーテル部11は、この可撓部10Cの後端部に固定されている。硬質部10Aは例えばプラスチックのようなマクロに見て変形しない材質からなり、可撓部10Cは、体腔内に導入すれば消化管の形状に沿うことができる柔軟性を有している。湾曲部10Bは、例えば金属網材等からなる、可撓部10Cを基部として湾曲することができる。カテーテル部11と外部装置12は着脱可能になっていて、図1はこれらが接続されている状態を示す。

【0010】カテーテル部11は、鼻孔から挿入可能な外径と柔軟性を有するもので、外径8mm以下、好ましくは6mm以下とするのがよい。観察基部10の硬質部10Aには、対物光学系13、照明窓14、送気口15が備えられている。対物光学系13は、対物レンズ13a、CCD13b、増幅回路28を備え、増幅回路28は、信号線(イメージ伝達系)16に接続されている。信号線16は観察基部10及びカテーテル部11を通り、カテーテル部11の端部に突出している。この突出部は外部装置12に備えられたモニタ12aに接続される。

【0011】照明窓14にはライトガイドファイバ(照明伝達系)17の先端部が臨んでいてライトガイドファイバ17は観察基部10及びカテーテル部11を通り、カテーテル部11の端部に突出している。この突出部は外部機器12に備えられた光源12bに接続される。

【0012】送気口15は観察基部10及びカテーテル部11を導通した送気チューブ18に連通していて、この送気チューブ18も、カテーテル部11の端部に突出している。この突出部は、外部機器12に備えられた送気装置12cと接続される。この送気口15より送気を行い、管腔を膨張させることができる。これにより観察基部10と消化管内壁との距離をとることができ、観察がし易くなる。

【0013】観察基部10及びカテーテル部11には、複数本(この例では4本)の湾曲操作ワイヤ19が内蔵されている(図6)。各湾曲操作ワイヤ19の先端部は、硬質部10Aに固定されていて、湾曲部10Bから可撓部10C及びカテーテル部11に至る。湾曲部10Bは、いずれかの湾曲操作ワイヤ19が引かれると、引かれた部分が小径になるように湾曲する周知の構造である。各湾曲操作ワイヤ19はカテーテル部の後端部から突出しており、その突出端が外部装置12の湾曲操作装置20に接続される。

【0014】カテーテル部11を外部機器12に接続した状態の一断面図を図8に示す。カテーテル部11が外部機器12に取り付けられると、照明伝達系(ライトガイドファイバ)17及び送気チューブ18はそれぞれ光源12bと送気装置12cに連結し、照明窓14に照明光を、送気口15に送気を与えることが可能となる。イメージ伝達系(信号線)16はモニタ12aに連結し、対物光学系13によって得られた被写体の像をモニタ上で観察することが可能となる。

【0015】4本の湾曲操作ワイヤ19の先端部は、硬 質部10Aに対し、円柱状である観察基部10の、直径 方向の対向位置に90°間隔で固定されている。直径方 向の対向する2本の湾曲操作ワイヤ19は、図9に示す ように、カテーテル部11からの突出部において、湾曲 操作装置20のラック20bにそれぞれ接続される。一 対のラック20bは、1つのピニオン20aに噛み合っ ており、ピニオン20aを回転させると、一対のラック 20bが反対方向へ移動する。その結果、対になるラッ ク20bに連結した一組の湾曲操作ワイヤの一方は引っ ぱられ他方は押し込まれる。すなわち、ピニオン20a を回転させることにより湾曲部を湾曲させることが可能 となる。図9では、2本の湾曲操作ワイヤ19のみを示 したが、残りの2本についても同様である。なお、湾曲 部10Bの湾曲方向を一方向とするときには、湾曲操作 ワイヤ19は2本で足りる。

【0016】以上の構成の本内視鏡は、カテーテル部11を外部装置12から外した状態において、被験者が観察基部10を口から飲み込む。すると観察基部10の後端に固定されたカテーテル部11が口から出ている状態になる(図12)。これとは別に、鼻孔から導入用チューブ21を挿入しこの先端を口から出す(図13)。この状態において、口から出ているカテーテル部11の先端を口から出ている導入用チューブ21に挿入し、鼻孔側まで導入する(図14)。導入用チューブ21を鼻孔から引き抜けばカテーテル部11の先端のみを鼻孔から出すことができる。鼻孔から出したカテーテル部11を外部装置12に接続すると観察状態とすることができる。

【0017】観察基部10の照明窓14には照明伝達系(ライトガイドファイバ)17によって照明光が供給さ

れる。照明光を受けた被写体の像は対物レンズ13aに よってCCD13bの撮像面に結像し、CCD13bか ら出力された画像信号が増幅回路28で増幅され、イメ ージ伝達系(信号線)16を通じて外部装置12のモニ タ12 a上で観察することができる。湾曲操作装置20 を操作することにより湾曲部 10 Bを湾曲させて対物レ ンズ13aの向きを変え、目的箇所を観察することがで きる。

【0018】観察や処置を行わないときはカテーテル部 11を外部装置12から外しておけば、被験者は自由に 活動でき苦痛も少ない。また外部装置12に接続してい てもカテーテル部11は鼻孔を通しているので本22を 読むなどの行動は可能である(図11)。

【0019】飲み込まれた観察基部10はカテーテル部 11を固定していなければ蠕動運動によりゆっくり消化 管内を進むので、観察基部10が目的箇所に到達したら 体外に出ているカテーテル部11の先端を外部装置12 に接続して観察や処置を行えばよい(図10)。またカ テーテル部11を固定して蠕動運動による観察基部10 の進行を止めれば、観察基部10を同位置に固定させる ことができる。

【0020】図3は、本発明の別の実施例を示すもので ある。この実施例は、照明窓14にLED26を固定 し、照明伝達系17として給電線25を用いて外部装置 12を介して上記LED26に給電することによって照 明光を与えるものである。

【0021】図4はさらに別の実施例を示すものであ る。この実施例は、湾曲ワイヤ23としてSMA合金 (形状記憶合金)を用い、可撓部10C内にこれら湾曲 ワイヤ23を選択通電する選択加熱通電回路24を設け たものである。選択加熱通電回路24はカテーテル部1 1を通した給電線25を介して外部装置12に接続され ており、外部装置12を介していずれかの湾曲ワイヤ2 3に選択加熱(通電)することにより湾曲させることが 可能である。

【0022】上記実施例では内視鏡要素は送気用である が、送水用や、処置用の鉗子等も可能である。(図5参 照)

【0023】なお、本発明は上記実施例に限定されるも のではなく、本発明の要旨を逸脱しない範囲で種々変形 実施できることは勿論である。

[0024]

【発明の効果】以上のように、本発明の体内留置型内視 鏡によれば、体腔内に置かれる観察基部と外部の外部装 置との間を、鼻孔を通して体腔内に挿入できるカテーテ ル部を介して接続したので、長時間の観察によっても被 験者に苦痛を与えることが少ない。

【図面の簡単な説明】

【図1】本発明による体内留置型内視鏡の一実施形態を 示す、一部を断面とした全体図である。

- 【図2】図1における別の断面を図示したものである。
- 【図3】本発明による体内留置型内視鏡の別の実施形態 を示す、一部を断面とした部分図である。
- 【図4】本発明による体内留置型内視鏡のさらに別の実 施形態を示す、一部を断面とした部分図である。
- 【図5】図1におけるA-A断面図である。
- 【図6】図2におけるB-B断面図である。
- 【図7】カテーテル部の斜視断面図である。
- 【図8】カテーテル部と外部装置との接続例を示す断面 図である。
- 【図9】湾曲機構の例を示す図である。
- 【図10】本発明による内視鏡が体腔内に置かれ、外部 装置と接続した図である。
- 【図11】本発明による内視鏡の、日常生活における体 内留置状態の例である。
- 【図12】カテーテル部先端を鼻に通す方法を順に図示 したものである。
- 【図13】カテーテル部先端を鼻に通す方法を順に図示 したものである。
- 【図14】カテーテル部先端を鼻に通す方法を順に図示 したものである。

「符号の詳明」

【符号の説明】			
10	観察基部		
1 0 A	硬質部		
1 0 B	湾曲部		
10C	可撓部		
1 1	カテーテル部		
1 2	外部装置		
12a	モニタ		
12b	光源		
12c	送気装置		
1 3	対物光学系		
13a	対物レンズ		
13b	CCD		
14	照明窓		
1 5	送気口		
16	イメージ伝達系		
1 7	照明伝達系		
18	送気チューブ		
19	湾曲操作ワイヤ		
20	湾曲操作装置		
20a	ピニオン		
20b	ラック		
21	導入用チューブ		
22	本		

- 23
- 湾曲ワイヤ
- 24 選択加熱通電回路
- 25 給電線
- 26 LED
- 送水チューブ 27

28 増幅回路

フロントページの続き

Fターム(参考) 2HO40 AA00 BA21 CA03 DA03 DA11

DA19 DA54 DA57 GA02

4C061 AA01 BB02 CC06 CC07 DD03

FF06 FF25 FF42 FF45 FF46

HH02 HH04 HH32 HH35 HH47

JJ02 LL02 NN01 NN03 PP04

QQ06 UU02