Machine Learning for Engineering and Science Applications

Basic Operations

Tensor operations covered in this video

- Addition, Broadcasting
- Multiplication
 - Matrix Product, Dot Product, Hadamard Product (Elementwise multiply)
- Transpose
- Inverse

Skip this video if you know this basic material

Addition

Normal Matrix addition: $A_{ij} + B_{ij} = C_{ij}$

- Broadcasting: $A_{ij} + b_j = C_{ij}$
 - Adding a vector to a matrix by repeating the vector
 - Done automatically in MATLAB and Numpy

Multiplication

A =

>> b

- Matrix Product : C = AB
 - $\Box \quad C_{ij} = \sum_{k} A_{ik} B_{kj}$
 - Sizes must match

- Hadamard Product: $C = A \odot B$
 - Elementwise multiplication
 - A, B and C must be of the same size

48

Multiplication (contd)

- Dot Product : $\vec{a} \cdot \vec{b} = \alpha$
 - $\alpha = \sum_i a_i b_i$
 - \Box Can also be written as $\alpha = a^T b = b^T a$

32

```
>> alphal = a'*b
alphal =
    32
```

```
>> alpha2 = b'*a
alpha2 =
32
```

Transpose and Inverse

- Transpose: $B = A^T$
 - $\square \quad B_{ij} = A_{ji}$

>> A			
A =			
	1	2	3
	4	5	6
>> B	= A'		
В =			
	1	4	
	1 2	5	
	3	6	

A =		
0.7814	0.5567	0.7802
0.2880	0.3965	0.3376
0.6925	0.0616	0.6079
>> inv(A)		
ans =		
50.2178	-66.1993	-27.6885
13.3927	-14.8948	-8.9171
-58.5694	76.9290	34.0937
>> A*inv(A)		
ans =		
1.0000	0.0000	-0.0000
0.0000	1.0000	-0.0000
0.0000	0.0000	1.0000

>> A = rand(3)

- Inverse: $I = A^{-1}A = AA^{-1}$
 - Above definition is for a square matrix
 - Not all square matrices have an inverse
 - For non-square cases we can define something called the pseudoinverse