USN					

R. V. COLLEGE OF ENGINEERING

Autonomous Institution affiliated to VTU
III Semester B. E. Examinations Nov/Dec-18
Computer Science and Engineering
COMPUTER ORGANIZATION

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	Define computer organization.	01
	1.2	Give the basic performance equation.	01
	1.3	Give a short sequence of machine instructions for the task "Add the	
		contents of memory location A to those of location B and place the	
		answer in location C. Instructions LOAD LOC, R_i and STORE R_i , LOC are the	
		only instructions available to transfer data between memory and general	
		purpose registers. Do not destroy the contents of either location A or B.	02
	1.4	Register R_1 and R_2 of a computer contain the decimal values	
		2500 and 1800. Find the effective address of the memory operand in each	
		of the following instruction:	
		a) $STORE R_3 50(R_1, R_2)$	00
	1 5	b) $ADD - (R_1), R_5$	02
	1.5	Name any two data transfer signals on <i>PCI</i> bus along with their functionalities.	02
	1.6	Two processes A and B have clock frequencies of $700MHz$ and $900MHz$	02
	1.0	respectively. Suppose A can execute an instruction with an average of	
		3 steps and B can execute with an average of 5 steps. For the execution	
		of same instruction which processor is faster?	02
	1.7	When a subroutine is called, the address of the instruction following the	02
	_,,	CALL instruction is stored in	01
	1.8	What is Big-Endian and little Endian representation?	01
	1.9	What is Bit-Pair recording? Give an example.	01
	1.10	Write the algorithm for restoring division method.	02
	1.11	Define datapath in a processor unit.	01
	1.12	Define cache hit and cache miss.	01
	1.13	Why I/O devices cannot be directly connected to the system bus?	01
	1.14	Differentiate between synchronous and asynchronous bus.	01
i	1 15	Name any true leave shipative of UCD	Λ1

PART-B

1	2	a	List and explain the basic steps needed to execute the machine	
			instruction ADD LOCA, R_0 in terms of transfer between the components of	
			processor, memory and some control commands with the help of neat	
			diagram.	08

	b C	With examples explain the following assembler directive: i) EQU ii) ORIGIN iii) DATAWORD iv) RESERVE. Briefly describe the factors that influence the performance of processor.	04 04
		Briefly describe the factors that influence the performance of processor.	04
3	a b	Register R_5 is used in a program to point to the top of a stack containing 32-bit numbers. Write a sequence of instructions using the Index, auto-increment, auto-decimal addressing modes to perform each of the following tasks: i) Pop the top two items off the stack, add them and then push the result to the stack ii) Copy the fifth item from the top into register R_3 iii) Remove the top 10 items from the stack. For each case assume that the stack contains more than 10 items. Define sub-routine linkage. With an example explain different mechanism of passing parameters to sub-routine.	08
		OR	
4	a	Discuss the addressing mode of ARM architecture with an example for each.	10
	b	Describe the <i>ARM</i> register structure and also write the ARM instruction format.	06
5	a	In a situation where a number of devices are capable of initiating interrupts are connected to processor. Illustrate i) How can the processor recognize the device requesting an	
	b	interrupt? ii) How should two or more simultaneous request be handled? Define the bus arbitration. Explain the different ways of bus arbitration	08
	~	with suitable diagram.	08
		OR	
6	0	What is <i>DMA</i> ? Explain the registers in a <i>DMA</i> interface.	04
	a b	Differentiate between synchronous and asynchronous bus with proper	
		timing diagram.	04
	С	Mention the main features of SCSI Bus.	08
7	a	Our system has a main memory with 16MB of addressable locations and a 32kB direct cache with 8 bytes per block. The minimum addressable unit is a byte	
		i) How many blocks are there in the cache?	06
	b	ii) Show how the main memory address is partitioned. Design a $8M \times 32$ memory system using $512k \times 8$ memory chips and	06
		explain the memory architecture.	06
	С	Explain the advantages of set-associative mapping over direct mapping with an example.	04
8	a	With the help of single bus architecture explain how to transfer a word of	
0	a b	data from one processor register to another to <i>ALU</i> . Multiply the following numbers using Booth's bit pair recording algorithm	08
		i) 13 and -6 ii) 21 and 5	04
	c	Divide 12 by 4 using non-restoring division algorithm.	04