

Project Report

Discrete Address Beacon System

ATC-75

S. I. Krich

DABS Coverage

16 August 1977

Prepared for the Federal Aviation Administration by

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MANSACHUNETTS

Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151.

BOC FILE COPY

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

1. Report No. 2. Government Accession No. 3. Respect No. 2. Georgiag No. 2. Activation of Subtition 1. Title and Subtition 1. S. LyKrich 2. Author(s) 1. S. LyKrich 2. Author(s) 1. S. LyKrich 3. S. LyKrich 3. S. LyKrich 3. S. LyKrich 3. S. LyKrich 4. S. LyKrich 4. S. LyKrich 4. S. LyKrich 4. S. LyKrich 5. Report Date 1. Work 1. S. LyKrich 5. Report No. 3. LyKrich 6. Performing Organization Report No. 3. LyKrich 7. D. Rox 73					
DABS Coverage DABS Coverage DABS Coverage S. I. Author's) S. I. Krich I. Was Unit No. (TRAIS) I. Centract a Green New Department of Transportation Federal Aviation Administration Systems Research and Development Service Washington, D. C. 20591 S. Supplementary Notes The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology under Air Force Contract F19628-76-C-0002. 6. Abstract DABS sensors are to be installed at FAA ASR and ARSR sites throughout continental U. S. as a purt of the evolutionary upgrading of the third generation ATC Radiar Beacon Systems (ATCRES) Was an activated by such deployment; and (2) a reasonable balance between number of installations, sensor maximum range, and coverage. This paper reports on a coverage study in which DABS coverage within CONUS was projected on a statistical or "percent coverage" basis by purely geometrical considerations. Results are given for CONUS, the eastern half of the U. S., and for the colden Tritangle. Profile coverage ("line-of-sight coverage down to") is given for the Boston-NYC- Washington corridor. T. Key Words II. Distribution Stetement Document is available to the public through the National Technical Information Service, Springfield, Vigrinal 22151.		. Government Acces	sion No. 3. R	ecipient's Catalog N	lo.
DABS Coverage Author's C. Performing Organization Name and Address S. I.y Krich S. I.y	FAA-RD-77-77		1	2) 900).
DABS Coverage Author/s) S.1, Krich S.1, Krich S.1, Krich S.1, Krich S.1, Krich S.2, Ferforming Organization Name and Address Massachusetts Institute of Technology Lincoln Laboratory P.0. Box 73 Lexington, Massachusetts 02173 Sponsoring Agency Name and Address Department of Transportation Federal Aviation Administration Systems Research and Development Service Washington, D.C. 20591 DABS sensors are to be installed at FAA ASR and ARSR sites throughout continental U.S. as a part of the evolutionary upgrading of the third generation ATC Radar Beacon System (ATCR8S). It is therefore important and Position of the Contract F19628-76-C-0002. DABS sensors are to be installed at FAA ASR and ARSR sites throughout continental U.S. as a part of the evolutionary upgrading of the third generation ATC Radar Beacon System (ATCR8S). It is therefore important and Position of the Contract F19628-76-C-0002. This paper reports on a coverage study in which DABS coverage within CONUS was projected on a statistical or "percent coverage" basis by purely geometrical considerations. Results are given for CONUS, the eastern half of the U.S., and for the Golden Triangle. Profile coverage ("line-of-sight coverage down to") is given for the Boston-NYC- Washington corridor. 18. Distribution Stetement Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151.	Title and Subtitle		5. R	eport Date	
DABS Coverage Author(s) S. I, Krich II. Cantract a Great New Lincoln Laboratory P. O. Box 73 Lexington, Massachusetts 102173 Lexington, Massachusetts 02173 Lexington, Massachusetts 02173 Separation Affair Address Department of Transportation Federal Avaitation Administration According to the Washington, D. C. 20591 DABS sensors are to be installed at FAA ASR and ARSR sites throughout continental U.S. as a part of the evolutionary upgrading of the third generation ATC Radar Beacon System (ATCRSS). It is therefore important to establish: (1) the degree of 3D coverage which would be provided by such deployment; and (2) a reasonable balance between number of installations, sensor maximum range, and coverage balas by uprely geometrical considerations, Results are given for CONUS, the eastern half of the U.S., and for the Golden Triangle. Profile coverage (Time-of-sight coverage down to*) is given for the Boston-NYC-Washington corridor. Key Words 18. Distribution Stetement Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151.	. Tring did southing			PACIFICATION SECTION S) /
Author's) Performing Organization Name and Address Massachusetts Institute of Technology Lincoln Laboratory P.O. Box 73 Lexington, Massachusetts 02173 Department of Transportation Federal Aviation Administration Systems Research and Development Service Washington, D.C. 20591 Supplementary Notes The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology under Air Force Contract F19628-76-C-0002. Abstract DABS sensors are to be installed at FAA ASR and ARSR sites throughout continental U.S. as a part of the evolutionary upgrading of the third generation ATC Radar Beacon Systems (ATCRSS). It is therefore important to establish (1) the degree of 3D coverage which would be provided by such deployment; and (2) a reasonable balance between number of installations, sensor maximum range, and coverage within CONUS was projected on a statistical or "percent coverage" basis by purely geometrical considerations, Results are given at CONUS, the eastern half of the U.S., and for the Golden Triangle. Profile coverage "files-of-sight coverage down to") is given for the Boston-NYC-	DABS Coverage		- Change	A CONTRACTOR OF THE PROPERTY OF THE PARTY OF	on Code
S.I.Krich Performing Organization Name and Address Massachusetts Institute of Technology Lincoln Laboratory P.O. Box 73 Lexington, Massachusetts 02173 2. Sponsoring Agency Name and Address Department of Transportation Federal Aviation Administration Systems Research and Development Service Washington, D.C. 20591 5. Supplementary Notes The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology under Air Force Contract F19628-76-C-0002. 6. Abstract DABS sensors are to be installed at FAA ASR and ARSR sites throughout continental U.S. as a part of the evolutionary upgrading of the third generation ATC Radar Beacon System (ATCRBS). It is therefore important to establish: (1) the degree of 3D coverage which would be provided by such deployment; and (2) a reasonable balance between number of installations, sensor maximum range, and coverage. This paper reports on a coverage study in which DABS coverage within CONUS was projected on a statistical or "percent coverage" basis by purely geometrical considerations. Results are given for CONUS, the eastern half of the U.S., and for the Golden Triangle. Profile coverage ("line-of-sight coverage down to") is given for the Boston-NYC-Washington corridor. 18. Distribution Statement Document is available to the public through the National Technical Information Service, Springfield, Viginia 22154.	and the second s				
Perlaming Organization Name and Address Massachusetts Institute of Technology Lincoln Laboratory P.O. Box 73 Lexington, Massachusetts 02173 Lexington, Mass	. Author(s)		8. P	erforming Organizati	on Report No.
Perturning Organization Name and Address Massachusetts Institute of Technology Lincoln Laboratory P.O. Box 73 Lexington, Massachusetts 02173 Lexington, Mas	S.I.Krich		1114	ATC-75	/
Massachusetts Institute of Technology Lincoln Laboratory P.O. Box 73 Lexington, Massachusetts 02173 2. Sponstring Agency Name and Address Department of Transportation Federal Aviation Administration Systems Research and Development Service Washington, D.C. 20591 3. Supplementary Notes The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology under Air Force Contract F19628-76-C-0002. 5. Abstroct DABS sensors are to be installed at FAA ASR and ARSR sites throughout continental U.S. as a part of the evolutionary upgrading of the third generation ATC Radar Beacon System (ATCRBS). It is therefore important to establish: (1) the degree of 3D coverage which would be provided by such deployment; and (2) a reasonable balance between number of installations, sensor maximum range, and coverage study in which DABS coverage within CONUS was projected on a statistical or "percent coverage" basis by purely geometrical considerations. Results are given for CONUS, the eastern half of the U.S., and for the Golden Triangle. Profile coverage ("time-of-sight coverage down to,") is given for the Boston-NYC- Washington corridor. 18. Distribution Statement Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151,			7	AIC-73	
Lincoln Laboratory P.O. Box 73 Lexington, Massachusetts 02173 2. Sponsoring Agency Name and Address Department of Transportation Federal Aviation Administration Systems Research and Development Service Washington, D.C. 20591 3. Supplementary Notes The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology under Air Force Contract F19628-76-C-0002. 3. Abstract DABS sensors are to be installed at FAA ASR and ARSR sites throughout continental U.S. as a part of the evolutionary upgrading of the third generation ATC Radar Beacon System (ATCRBS). It is therefore important to establish: (1) the degree of 3D coverage which would be provided by such deployment; and (2) a reasonable balance between number of installations, sensor maximum range, and coverage. This paper reports on a coverage study in which DABS coverage within CONUS was projected on a statistical or "percent coverage" basis by purely geometrical considerations. Results are given for CONUS, the eastern half of the U.S., and for the Golden Triangle. Profile coverage ("line-of-sight coverage down to,") is given for the Boston-NYC- Washington corridor. 18. Distribution Stetement Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151,			10.	Work Unit No. (TRA	IS)
P.O. Box 73 Lexington, Massachusetts 02173 2. Sponsoring Agency Name and Address Department of Transportation Federal Aviation Administration Systems Research and Development Service Washington, D.C. 20591 3. Supplementary Notes The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology under Air Force Contract F19628-76-C-0002. 3. Abstract DABS sensors are to be installed at FAA ASR and ARSR sites throughout continental U.S. as a part of the evolutionary upgrading of the third generation ATC Radar Beacon System (ATCRBS). It is therefore important to establish: (1) the degree of 3D coverage which would be provided by such deployment; and (2) a reasonable balance between number of installations, sensor maximum range, and coverage. This paper reports on a coverage study in which DABS coverage within CONUS was projected on a statistical or "percent coverage" basis by purely geometrical considerations. Results are given for CONUS, the eastern half of the U.S., and for the Golden Triangle. Profile coverage ("line-of-sight coverage down to") is given for the Boston-NYC-Washington corridor. Key Words 18. Distribution Statement Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151,		ogy			
Department of Transportation Federal Aviation Administration Systems Research and Development Service Washington, D.C. 20591 Dabs sensors are to be installed at FAA ASR and ARSR sites throughout continental U.S. as a part of the evolutionary upgrading of the third generation ATC Radar Beacon System (ATCRBS). It is therefore important to establish: (1) the degree of 3D coverage which would be provided by such deployment; and (2) a reasonable balance between number of installations, sensor maximum range, and coverage. This paper reports on a coverage study in which DABS coverage within CONUS was projected on a statistical or "percent coverage" basis by purely geometrical considerations, Results are given for CONUS, the eastern half of the U.S., and for the Golden Triangle. Profile coverage ("line-of-sight coverage down to") is given for the Boston-NYC- Washington corridor. 18. Distribution Statement Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151.	P.O. Box 73	*	15		
Department of Transportation Federal Aviation Administration Systems Research and Development Service Washington, D.C. 20591 Supplementary Notes The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology under Air Force Contract F19628-76-C-0002. DABS sensors are to be installed at FAA ASR and ARSR sites throughout continental U.S. as a part of the evolutionary upgrading of the third generation ATC Radar Beacon System (ATCRBS). It is therefore important to establish: (1) the degree of 3D coverage which would be provided by such deployment; and (2) a reasonable balance between number of installations, sensor maximum range, and coverage. This paper reports on a coverage study in which DABS coverage within CONUS was projected on a statistical or "percent coverage" basis by purely geometrical considerations. Results are given for CONUS, the eastern half of the U.S., and for the Colden Triangle. Profile coverage ("line-of-sight coverage down to") is given for the Boston-NYC-Washington corridor. 18. Distribution Stetement Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151.	Lexington, Massachusetts 02173		1		
Department of Transportation Federal Aviation Administration Systems Research and Development Service Washington, D.C. 20591 5. Supplementary Notes The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology under Air Force Contract F19628-76-C-0002. DABS sensors are to be installed at FAA ASR and ARSR sites throughout continental U.S., as a part of the evolutionary upgrading of the third generation ATC Radar Beacon System (ATCRBS). It is therefore important to establish: (1) the degree of 3D coverage which would be provided by such deployment; and (2) a reasonable balance between number of installations, sensor maximum range, and coverage. This paper reports on a coverage study in which DABS coverage within CONUS was projected on a statistical or "percent coverage" basis by purely geometrical considerations. Results are given for CONUS, the eastern half of the U.S., and for the Golden Triangle. Profile coverage ("line-of-sight coverage down to") is given for the Boston-NYC-Washington corridor. 18. Distribution Stetement Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151.	2. Sponsoring Agency Name and Address			The or Kebori and P	eriod Covered
Systems Research and Development Service Washington, D.C. 20591 14. Sponsoring Agency Code 15. Supplementary Notes The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology under Air Force Contract F19628-76-C-0002. Abstract DABS sensors are to be installed at FAA ASR and ARSR sites throughout continental U.S. as a part of the evolutionary upgrading of the third generation ATC Radar Beacon System (ATCRBS). It is therefore important to establish: (1) the degree 3D coverage which would be provided by such deployment; and (2) a reasonable balance between number of installations, sensor maximum range, and coverage. This paper reports on a coverage study in which DABS coverage within CONUS was projected on a statistical or "percent coverage" basis by purely geometrical considerations, Results are given for CONUS, the eastern half of the U.S., and for the Golden Triangle. Profile coverage (*line-of-sight coverage down to*) is given for the Boston-NYC-Washington corridor. 18. Distribution Statement Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151.			(9)	Project Report	
Washington, D.C. 20591 5. Supplementary Notes The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology under Air Force Contract F19628-76-C-0002. 5. Abstract DABS sensors are to be installed at FAA ASR and ARSR sites throughout continental U.S. as a part of the evolutionary upgrading of the third generation ATC Radar Beacon System (ATCRBS). It is therefore important to establish: (1) the degree of 3D coverage which would be provided by such deployment; and (2) a reasonable balance between number of installations, sensor maximum range, and coverage. This paper reports on a coverage study in which DABS coverage within CONUS was projected on a statistical or "percent coverage" basis by purely geometrical considerations, Results are given for CONUS, the eastern half of the U.S., and for the Golden Triangle. Profile coverage ("line-of-sight coverage down to*) is given for the Boston-NYC-Washington corridor. 18. Distribution Statement Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151, Virgin	Federal Aviation Administration			6	
The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology under Air Force Contract F19628-76-C-0002. DABS sensors are to be installed at FAA ASR and ARSR sites throughout continental U.S. as a part of the evolutionary upgrading of the third generation ATC Radar Beacon System (ATCRBS). It is therefore important to establish: (1) the degree of 3D coverage which would be provided by such deployment; and (2) a reasonable balance between number of installations, sensor maximum range, and coverage. This paper reports on a coverage study in which DABS coverage within CONUS was projected on a statistical or "percent coverage" basis by purely geometrical considerations. Results are given for CONUS, the eastern half of the U.S., and for the Golden Triangle. Profile coverage ("line-of-sight coverage down to") is given for the Boston-NYC-Washington corridor. Key Words Surveillance Coverage ATC Radar Beacon System Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151. Virginia 22151.	Systems Research and Development	Service	14.	ponsoring Agency C	ode
The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology under Air Force Contract F19628-76-C-0002. DABS sensors are to be installed at FAA ASR and ARSR sites throughout continental U.S. as a part of the evolutionary upgrading of the third generation ATC Radar Beacon System (ATCRBS). It is therefore important to establish: (1) the degree of 3D coverage which would be provided by such deployment; and (2) a reasonable balance between number of installations, sensor maximum range, and coverage. This paper reports on a coverage study in which DABS coverage within CONUS was projected on a statistical or "percent coverage" basis by purely geometrical considerations. Results are given for CONUS, the eastern half of the U.S., and for the Golden Triangle. Profile coverage ("line-of-sight coverage down to") is given for the Boston-NYC-Washington corridor. Key Words 18. Distribution Statement Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151.	wasnington, D.C. 20391				
DABS sensors are to be installed at FAA ASR and ARSR sites throughout continental U.S. as a part of the evolutionary upgrading of the third generation ATC Radar Beacon System (ATCRBS). It is therefore important to establish; (1) the degree of 3D coverage which would be provided by such deployment; and (2) a reasonable balance between number of installations, sensor maximum range, and coverage. This paper reports on a coverage study in which DABS coverage within CONUS was projected on a statistical or "percent coverage" basis by purely geometrical considerations. Results are given for CONUS, the eastern half of the U.S., and for the Golden Triangle. Profile coverage ("line-of-sight coverage down to") is given for the Boston-NYC-Washington corridor. 18. Distribution Stotement Surveillance Coverage ATC Radar Beacon System Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151.	5. Supplementary Notes				
DABS sensors are to be installed at FAA ASR and ARSR sites throughout continental U.S. as a part of the evolutionary upgrading of the third generation ATC Radar Beacon System (ATCRBS). It is therefore important to establish: (1) the degree of 3D coverage which would be provided by such deployment; and (2) a reasonable balance between number of installations, sensor maximum range, and coverage. This paper reports on a coverage study in which DABS coverage within CONUS was projected on a statistical or "percent coverage" basis by purely geometrical considerations. Results are given for CONUS, the eastern half of the U.S., and for the Golden Triangle. Profile coverage (*line-of-sight coverage down to*) is given for the Boston-NYC-Washington corridor. Surveillance Coverage ATC Radar Beacon System Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151.	The work reported in this document	t was performed at	Lincoln Laboratory, a ce	enter for research	operated
DABS sensors are to be installed at FAA ASR and ARSR sites throughout continental U.S. as a part of the evolutionary upgrading of the third generation ATC Radar Beacon System (ATCRBS). It is therefore important to establish: (1) the degree of 3D coverage which would be provided by such deployment; and (2) a reasonable balance between number of installations, sensor maximum range, and coverage. This paper reports on a coverage study in which DABS coverage within CONUS was projected on a statistical or "percent coverage" basis by purely geometrical considerations. Results are given for CONUS, the eastern half of the U.S., and for the Golden Triangle. Profile coverage ("line-of-sight coverage down to") is given for the Boston-NYC-Washington corridor. Surveillance Coverage ATC Radar Beacon System DABS 18. Distribution Stotement Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151.	by Massachusetts Institute of Techn	nology under Air F	orce Contract F19628-76-	C-0002.	
DABS sensors are to be installed at FAA ASR and ARSR sites throughout continental U.S. as a part of the evolutionary upgrading of the third generation ATC Radar Beacon System (ATCRBS). It is therefore important to establish: (1) the degree of 3D coverage which would be provided by such deployment; and (2) a reasonable balance between number of installations, sensor maximum range, and coverage. This paper reports on a coverage study in which DABS coverage within CONUS was projected on a statistical or "percent coverage" basis by purely geometrical considerations. Results are given for CONUS, the eastern half of the U.S., and for the Golden Triangle. Profile coverage ("line-of-sight coverage down to") is given for the Boston-NYC-Washington corridor. New Words					
Surveillance Coverage ATC Radar Beacon System DABS Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151.	U.S. as a part of the evolute System (ATCRBS). It is the which would be provided by of installations, sensor max. This paper reports on projected on a statistical or Results are given for CONU. Profile coverage (*line-of-swashington corridor.	tionary upgrading of refore important to such deployment; a dimum range, and of a coverage study "percent coverage US, the eastern hal	of the third generation A o establish: (1) the degree and (2) a reasonable balan coverage. in which DABS coverage we basis by purely geomet of the U.S., and for the	TC Radar Beacon of 3D coverage ce between numbe within CONUS wa rical consideration of Golden Triangle	s ons.
Surveillance Coverage ATC Radar Beacon System DABS Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151.					
Surveillance Coverage ATC Radar Beacon System DABS Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151.			10 5: :: (
Coverage ATC Radar Beacon System DABS Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151.			10. Distribution Statement		
ATC Radar Beacon System the National Technical Information Service, DABS Springfield, Virginia 22151.					
	ATC Radar Beacon System				n Service,
Totali ilionomy			Springfield, Vir	ginia 22151.	
	. or rain modeling				
. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages	. Security Classif. (of this report)	20. Security Class	if. (of this page)	21- No. of Pages	
Unclassified Unclassified 90	Unclassified	Unclass	ified	90	

CONTENTS

			Page
1.0	INTR	ODUCTION	1
	1.1	Motivation and Method	1
	1.2	Composite Coverage Summarized	3
	1.3	Conclusions	11
2.0	COVE	CRAGE MAPS	13
	2.1	Composite Coverage Maps	13
	2.2	Route Coverage Plots	18
3.0	BOST	ON ASR STUDY	21
	3.1	Effect of Near-In Buildings	21
	3.2	Terrain Sampling Granularity	25
APPE	NDIX	A: SITE DATA AND COVERAGE MAPS	A-1

MTIS		White	Section	×
COC		Buff	Section	
UNANNOUR	CED			
JUSTIFICAT	ION			*****
DISTRIBU	TION/AVA	ILAB	ILITY CO	DES
DISTRIBU			ILITY CO	

Figures

			Page
Fig.	1.1	Eastern United States and Golden Triangle (Boston-Chicago-Atlanta).	4
	1.2	Percent coverage in Golden Triangle (Boston-Chicago-Atlanta) - existing sensors.	6
	1.3	Percent coverage in Eastern United States and CONUS - existing sensors.	7
	1.4	Percent coverage in Golden Triangle from existing and proposed sensors.	9
	1.5	Percent coverage in Eastern United States and CONUS from existing and proposed sensors.	10
	2.1	Line of sight coverage and TAM approximation. Maximum sensor range = 60 nmi.	15
	2.2	Modified TAM coverage with 1/4° cutoff angle.	16
	2.3	Minimum coverage altitude above sensor level for a smooth $4/3$ earth model and $1/4^{\circ}$ elevation cutoff angle.	17
	2.4	ASR route coverage plot for Boston to Washington. (1/4° elevation cutoff angle)	19
	2.5	Map of sensors and flight path.	20
	2.6	Cumulative coverage distributions over the Boston-Washington contour.	20
	3.1	Horizon angles from ECAC model compared to optical measurements for a point 63 ft. west of Boston ASR at ground level.	22
	3.2	Effect of buildings at short ranges on the horizon angle.	23
	3.3	Distance to the line of sight terrain feature in the ECAC model for Boston ASR.	24
	3.4	Horizon angle from ECAC model with terrain raised 50 feet compared to optical measurements.	26
	3.5	Interpolation of grid points for hypothetical terrain.	27

Figures (continued)

			Page
Fig.	3.6	Horizon angle from ECAC model using (1) maximum of 4 points terrain interpolation and (2) 4 point linear interpolation.	28
	A.1	Existing ASR locations.	A-13
	A.2	Existing ARSR locations.	A-14
	A.3	Proposed ASR locations.	A-15
	A.4	Proposed ARSR locations.	A-16
	A.5	ASR composite coverage map, 20,000 ft. MSL, maximum range $R_{\text{max}} = 100 \text{ nmi.}$	A-17
	A.6	ASR composite coverage map, 20,000 ft. MSL, maximum range $R_{\text{max}} = 60 \text{ nmi.}$	A-18
	A.7	ASR composite coverage map, 15,000 ft. MSL, maximum range R $_{\rm max} \stackrel{>}{-} 133$ nmi.	A-19
	A.8	ASR composite coverage map, 15,000 ft. MSL, maximum range R = 100 nmi.	A-20
	A.9	ASR composite coverage map, 15,000 ft. MSL, maximum range $R_{\text{max}} = 60 \text{ nmi.}$	A-21
	A.10	ASR composite coverage map, 10,000 ft. MSL, maximum range R_{max} = 100 nmi.	A-22
	A.11	ASR composite coverage map, 10,000 ft. MSL, maximum range R_{max} = 60 nmi.	A-23
	A.12	ASR composite coverage map, 5,000 ft. MSL, maximum range $R_{max} \ge 71$ nmi.	A-24
	A.13	ASR composite coverage map, 5,000 ft. MSL, maximum range $R_{max} = 60 \text{ nmi}$.	A-25
	A.14	ASR composite coverage map, 3,000 ft. MSL, maximum range $R_{max} \ge 52$ nmi.	A-26
	A.15	ARSR composite coverage map, 20,000 ft. MSL, maximum range $R_{max} \ge 156$ nmi.	A-27

Figures (continued)

			Page
Fig.	A.16	ARSR composite coverage map, 20,000 ft. MSL, maximum range $R_{\rm max}$ = 150 nmi.	A-28
	A.17	ARSR composite coverage map, 20,000 ft. MSL, maximum range $\rm R_{max}$ = 100 nmi.	A-29
	A.18	ARSR composite coverage map, 15,000 ft. MSL, maximum range R $_{\rm max} ^{>} 133$ nmi.	A-30
	A.19	ARSR composite coverage map, 15,000 ft. MSL, maximum range $R_{\mbox{\scriptsize max}}$ = 100 nmi.	A-31
	A.20	ARSR composite coverage map, 10,000 ft. MSL, maximum range $R_{\mbox{\scriptsize max}} \geq 106$ nmi.	A-32
	A.21	ARSR composite coverage map, 10,000 ft. MSL, maximum range $\rm R_{max}$ = 100 nmi.	A-33
	A.22	ARSR composite coverage map, 5,000 ft. MSL, maximum range R $_{\mbox{\scriptsize max}}$ $^{>}$ 71 nmi.	A-34
	A.23	Proposed ASR composite coverage map, 20,000 ft. MSL, maximum range R = 100 nmi.	A-35
	A.24	Proposed ASR composite coverage map, 20,000 ft. MSL, maximum range R \approx 60 nmi.	A-36
	A.25	Proposed ASR composite coverage map, 15,000 ft. MSL, maximum range R \geq 133 nmi.	A-37
	A.26	Proposed ASR composite coverage map, 15,000 ft. MSL, maximum range $R_{\text{max}} = 100 \text{ nmi}$.	A-38
	A. 27	Proposed ASR composite coverage map, 15,000 ft. MSL, maximum range R = 60 nmi.	A-39
	A.28	Proposed ASR composite coverage map, 10,000 ft. MSL, maximum range R = 100 nmi.	A-40
	A.29	Proposed ASR composite coverage map, 10,000 ft. MSL, maximum range R = 60 nmi.	A-41
	A.30	Proposed ASR composite coverage map, 5,000 ft. MSL, maximum range $R_{\rm max}$ > 71 nmi.	A-42

Figures (continued)

						Page
Fig.	A.31	Proposed ASR comaximum range	omposite coverage m R = 60 nmi. max	ap, 5,000 ft.	MSL,	A-43
	A.32	Proposed ASR comaximum range	omposite coverage m R > 52 nmi. max	ap, 3,000 ft.	. MSL,	A-44
	A.33		composite coverage $R_{\text{max}} \ge 156 \text{ nmi.}$	map, 20,000 s	ft. MSL,	A-45
	A.34		composite coverage $R_{\text{max}} \geq 150 \text{ nmi.}$	map, 20,000 f	Et. MSL,	A-46
	A.35		composite coverage R _{max} = 100 nmi.	map, 20,000	Ft. MSL,	A-47
	A.36	•	composite coverage $\frac{R}{max} > 133 \text{ nmi.}$	map, 15,000	ft. MSL,	A-48
	A.37		composite coverage R _{max} = 100 nmi.	map, 15,000	ft. MSL,	A-49
	A.38		composite coverage R > 106 nmi.	map, 10,000	ft. MSL,	A-50
	A.39		composite coverage R = 100 nmi.	map, 10,000	ft. MSL,	A-51
	A.40	Proposed ARSR maximum range	composite coverage R > 71 nmi.	map, 5,000 f	t. MSL,	A-52

Tables

		Page
Table A.1	ASR Listing - 1974	A-2
A.2	ARSR Listing - 1974	A-6
A.3	Proposed ASR Listing	A-9
A.4	Proposed ARSR Listing	A-11
A. 5	Coverage Map Listing and Parameters	A-12

1.0 INTRODUCTION

1.1 Motivation and Method

Results of a CONUS-scale surveillance coverage study are presented. The study was motivated by a need to better understand the trade-offs behind such questions as these:

- Will a network of DABS beacon sensors located at present and proposed

 ASR and ARSR sites provide surveillance and communication coverage

 of all major airlanes within CONUS? if so, down to what altitude?
- Are DABS sensors at every ASR and ARSR site planned really necessary?; what fraction might be eliminated?
- What free space maximum range must DABS provide?
- Will ARSR long range sensors be essential should surveillance data from ASR type radars eventually become available to other facilities via a network?

Coverage patterns were calculated for sensors located at each of the 146 ASR sites and 94 ARSR sites existing in 1974 and those 117 ASR sites and 21 ARSR sites being proposed at that time. These were superimposed to form composite, national-scale, coverage maps. All coverage calculations were made by the DOD Electromagnetic Compatibility Analysis Center (ECAC), based upon computer stored representations of the topography surrounding each site. Topography

^{*}Proposed sites identified by ECAC.

data were provided by ECAC and sensor characteristics and specific altitudes of interest by Lincoln Laboratory. Analysis of the resulting composite coverage maps was performed at Lincoln Laboratory.

Coverage for a given sensor was defined simply as the region of space that could be seen without terrain obstruction up to some maximum range. Coverage at a given altitude represents a horizontal slice through this coverage volume. Coverage, thus obtained, is usually circular in shape with circumferential scalloping in the direction of interferring terrain. Constant altitude above mean sea level (MSL), rather than above sensor or ground level, was used since aircraft generally fly at a specified "above MSL altitude" based upon a pressure altimeter.

The method employed by ECAC* to calculate sensor coverage for given maximum range cut-off, and given altitude takes into account terrain features, but does not take into account the effects of obstructions such as buildings or other man-made objects visible along the horizon. In some locations, e.g., the Boston ASR site, airport and skyline obstructions reduce coverage much more than the hills of the surrounding terrain. Thus it was necessary to partially take the effects of obstructions along the horizon into account by arbitrarily setting the sensor elevation coverage lower limit to a small angle above the horizontal (i.e., by setting the sensor elevation cut-off angle at 1/4 degree). Refractivity due to the earth's atmosphere was handled by assuming an earth of radius 1/3 greater than actual.

^{*} See References [2], [3] and [4].

It is important to recognize the limitations of this model. First, Section 2 shows that the terrain model used is not applicable to a low altitude coverage study; i.e., MSL altitude where some terrain features are above the altitude being considered. Secondly, for many sensor locations, buildings have a far greater affect upon coverage than does topography. This is more of a problem for the ASRs located on the airport surface than the ARSRs. An example of this is the Boston ASR where building obstructions far exceed that due to terrain or the $1/4^{\circ}$ cut-off angle; see Section 3.

The assumed model, along with a sensor maximum range cut-off, resulted in most coverage patterns at high altitudes being circles. In retrospect, a model which simply draws circles of coverage around each site where the radius of the circle depends upon the sensor altitude, and maximum range would have been nearly as good for this study.

1.2 Composite Coverage Summarized

Percent coverage statistics have been computed for the Golden Triangle (Boston - Chicage - Atlanta), the Eastern United States, and the entire CONUS (see Fig. 1.1). By percent coverage is meant the percent of a geographic area at a given MSL altitude that can be seen by at least one sensor. The Golden Triangle was considered separately due to the high traffic volume. The Eastern United States, including the Golden Triangle, was considered only for 5000 ft. and 10,000 ft. MSL altitudes. CONUS, including the Eastern United States, was considered only for altitudes of 10,000 ft. MSL and above. Lower altitudes were not considered for CONUS since much of the ground in the Western United States is between 5,000 and 10,000 ft. MSL.

Fig.1.1. Eastern United States and Golden Triangle (Boston-Chicago-Atlanta).

Percent coverage predicted by these models are summarized in Figs. 1.2 through 1.5 for various sensor deployments and geographic regions. Figs. 1.2 and 1.3 describe ASR and ARSR coverage separately and combined. The left hand side of Fig. 1.3, below 10,000 ft., summarizes only the Eastern United States; the right hand side above 10,000 ft. summarizes the entire CONUS. This accounts for the coverage discontinuity at 10,000 ft. Figs. 1.4 and 1.5 repeat the study combining the present and proposed sensors.

Sensor maximum ranges (R_{max}) of 60, 100 and 150 nmi are also considered in Figs. 1.2 and 1.5. Due to earth curvature and the sensor model no additional coverage would be provided at 10,000 ft. for R_{max} greater than 105 nmi.

A concept under consideration includes the netting of all DABS sensors within a given region. This will tend to remove the distinction between ASRs and ARSRs since enroute centers may very well receive surveillance data from a network of ASR sites. For good low altitude coverage, a sensor on or near the airport would be required at many airports. Fig. 1.2 shows that excellent coverage of the Golden Triangle is supplied by the ASRs and that little additional coverage is gained by including the ARSRs. Therefore in this region the ARSRs would not be needed in a netted DABS deployment. In addition, due to the large number of sensors in this region, increasing the sensor maximum range to 100 nmi instead of 60 nmi yields only a small increase in coverage. The increased range may be desirable to provide back-up coverage in case of sensor outage.

Fig. 1.3 also shows that in the Eastern United States, the ARSRs would provide little additional coverage over what would already be provided by the ASRs, and thus many of the ASRS's would not be needed in a netted

Fig.1.2. Percent coverage in Golden Triangle (Boston-Chicago-Atlanta) — existing sensors.

Altitude Above Mean Sea Level (thousands of feet)

Fig.1.3. Percent coverage in Eastern United States and ${\tt CONUS}$ - existing sensors.

ATC-75(1.3c)

Altitude Above Mean Sea Level (thousands of feet)

Fig.1.3. Continued.

ATC-75(1.4)

Fig.1.4. Percent coverage in Golden Triangle from existing and proposed sensors.

Fig.1.5. Percent coverage in Eastern United States and CONUS from existing and proposed sensors.

deployment of sensors. However, in this region, increasing the maximum range to 100 nmi has a significant effect on coverage.

Fig. 1.3 also considers altitudes of 10,000 ft. and above over CONUS.

It shows that in the West many of the existing ARSRs will be needed to fill in the gaps between the ASRs. The missing regions can be filled in with a small number of new sensors.

Figs. 1.4 and 1.5 show the percent coverage where the 117 proposed ASRs have been added to the existing ASR's and the 21 proposed ARSRs have been added to the existing ARSRs. A comparison between Figs. 1.2 and 1.4 for the Golden Triangle shows that little increase is gained with the proposed ASRs added; coverage above 5000 feet was already good. The extra ARSRs do help. On a CONUS basis, a comparison between Figs. 1.3 and 1.5 shows that the extra sensors help.

Results presented here should be viewed as a rough approximation to coverage on a national scale. Sensor location selection requires detailed on-site analysis and should not be made solely on the basis of terrain models.

1.3 Conclusions

Broad conclusions which follow from the study are:

- (1) In the Eastern United States and especially the Golden Triangle,

 DABS sensors at the ASR sites would provide good surveillance data
 for both terminal and en-route Air Traffic Control with netting.

 Sensors at most ARSR sites will not be needed.
- (2) In the Western United States, sensors at many of the ARSR sites will be needed.

- (3) Buildings can be a far greater limiting factor on coverage than terrain.
- (4) The model used here is not valid for a low altitude coverage study and is only slightly better than a smooth 4/3 earth model at high altitudes.
- (5) Selection of a particular site for sensor installation requires detailed on-site analysis and should <u>not</u> be made solely on the basis of terrain models.

2.0 COVERAGE MAPS

Graphical coverage data has been supplied by ECAC in the form of: (1)

Composite Coverage Maps at specific altitudes above MSL, and (2) Route Coverage Plots of minimum coverage altitude along specific routes. Route coverage plots represent vertical slices through the coverage volume, whereas composite coverage maps are essentially horizontal cuts at fixed altitudes. These graphical results are based upon quantized topographic data (ignoring buildings*) for a grid spacing of 30 sec latitude x 30 sec longitude (roughly 1/2 mile x 1/2 mile). A four point linear interpolation estimates terrain altitudes between grid points. Atmospheric refractivity is modeled by assuming an effective earth's radius which is 4/3 the actual earth radius [1]. This allows radio waves to be drawn as straight lines over a 4/3 radius earth.

2.1 Composite Coverage Maps

Line of sight coverage is illustrated in Figure 2.1.a. The unshaded region represents the covered volume for the region in which the DABS sensor can detect aircraft. The Target Acquisition Model (TAM) [2],[3],[4] coverage approximation used by ECAC for this study is illustrated in Figure 2.1.b. Coverage is assumed to be provided for all altitudes (even altitudes below ground level) between the sensor and the terrain feature subtending the greatest angle to the sensor. The results are thus not applicable for a detailed low altitude coverage study. For example, a nearby airport in the valley between the two peaks in Figure 2.1a would not be well covered but the TAM model would indicate that it is.

See Section 3 for the effect buildings have upon coverage provided by the Boston ASR.

Fig.2.1. Line of sight coverage and TAM approximation. Maximum sensor range = 60 nmi.

For results presented here, a simple model was adopted in which the sensor antenna characteristics and nearby buildings limit the coverage to elevation angles in excess of $1/4^{\circ}$ above the horizontal. If β , the elevation angle of the terrain feature limiting the horizon, is less than $1/4^{\circ}$ then coverage is as illustrated in Figure 2.2. If $\beta \geq 1/4^{\circ}$ then Figure 2.1b is applicable.

The ASRs and ARSRs existing in 1974 and the proposed ASRs and ARSRs are listed in Tables A.1-A.4 and located on a map of the U.S. in Figs. A.1-A.4. Each of these four groups of sensors are considered separately in the composite coverage maps in Figs. A5-A40. Each coverage map is for a constant altitude above sea level; altitudes 3000, 5000, 10000, 15000, and 20000 feet have been considered. Maximum sensor ranges of 60, 100, 150, and 200 have also been considered. To permit quick retrieval of the desired map, the figure numbers and corresponding parameters are listed in Table A.5. Summary coverage statistics appear in Figs. 1.2-1.5 of Section 1.

Figure 2.3 depicts the lowest altitude above sensor level (or above sea level for a sensor at sea level), as a function of range, that a sensor can cover for a smooth 4/3 earth model under the above assumptions. For a given MSL altitude, the coverage ranges in Figs. A5-A40 (which include terrain blockage and sensors above sea level) will always be less than depicted in Fig. 2.3.

A better choice for the ARSRs might have been a cut-off angle on the order of $-1/4^\circ$ since ARSRs are usually well sited - frequently on top of a hill or mountain with few buildings around them.

Fig.2.2. Modified TAM coverage with $1/4^{\circ}$ cutoff angle.

Fig.2.3. Minimum coverage altitude above sensor level for a smooth 4/3 earth model and $1/4^{\rm O}$ elevation cutoff angle.

Sensor height used was the present ASR or ARSR height above ground level (from the ECAC data file). For the proposed ASR locations, the sensor height used was 50 ft; 50, 80, or 100 ft. was used as the sensor height for the proposed ARSRs. Changes in sensor height may be expected to have a significant effect upon coverage.

2.2 Route Coverage Plots

Route coverage plots partially determine: (1) the minimum MSL altitude at which continuous coverage is provided, and (2) how extensive are the regions of airspace visible from multiple sensors.

Fig. 2.4 is a "route coverage plot" depicting present-day coverage on a route from Boston to Washington, D.C. which passes very near to New York, Philadelphia, and Baltimore at intermediate points. In a route coverage plot, attention is limited to a one-dimensional ground track, which together with altitude constitutes a vertical slice through airspace. An aircraft is assumed to be covered if it falls in the unshaded region of Fig. 2.1.a. The term "route coverage plot" should not be taken to imply that only en route coverage is of interest, for in fact terminal coverage was of no less interest in this investigation. The limitation to a single ground track in any one plot is only a means of limiting attention to two dimensions for plotting purposes.

The sensors in question are the 1974 ASR sensors without any range limitation. A map showing the route and the sensors is given in Fig. 2.5.

Fig. 2.6 gives cumulative coverage distributions, derived from

Figure 2.4. At least single coverage is provided at all points above 1300 ft.

(above MSL), and at least triple coverage is provided at all points above

3700 ft. (above MSL).

Route coverage plots provide a good means for dipicting the results of this analysis technique for the heavily used routes.

Fig.2.4. ASR route coverage plot for Boston to Washington $(1/4^{\circ}$ elevation cutoff angle): (a) Coverage provided by present FAA ASR sites, (b) Coverage multiplicity.

Fig. 2.5. Map of sensors and flight path (flight path described by line latitude = $(42^{\circ}\ 25'\ 00'') - \chi(3^{\circ}\ 35'\ 00'')$; longitude = $(71^{\circ}\ 00'\ 00'') + \chi(6^{\circ}\ 00'\ 00'')$ for $0 < \chi < 1$).

Fig.2.6. Cumulative coverage distributions over the Boston-Washington contour.

3.0 BOSTON ASR STUDY

3.1 Effect of Near-In Buildings

To assess the effect of not including man-made obstructions in the ECAC terrain models, the horizon elevation angle, as measured with a transit, and the radio horizon angle as computed using the ECAC terrain models, have been compared for a sensor at ground level (transit and hypothetical sensor both placed 63 feet west of the present Boston ASR location). These results are illustrated in Fig. 3.1. Note that over much of the horizon there is little resemblance between measured and computed results. Much of this difference is obviously due to the close proximity of the buildings in downtown Boston, bridges, buildings at the airport, and trees.

Attempts were made to improve upon the ECAC model by more realistically accounting for the buildings. These methods, tried on the Boston ASR coverage calculations, met with limited success* and are discussed below.

The effect of buildings at short range on the horizon angle is depicted in Fig. 3.2. As expected, small buildings close to the sensor have a significant effect upon the horizon angle. The ECAC model of the terrain surrounding the Boston ASR is characterized by short ranges to the terrain features limiting the line-of-sight (see Figure 3.3). This is reasonable since there are few tall hills at long range. Small buildings at short range would thus be expected to have a significant effect upon the horizon angle.

To test the sensitivity of the ECAC model to close-in small buildings, the radio horizon angle was recomputed with two changes: (1) all terrain greater

^{*}They were not used in the CONUS coverage projections presented in Section 1, and 2.

Fig.3.1. Horizon angles from ECAC model compared to optical measurements for a point 63 ft. west of Boston ASR at ground level.

Fig.3.2. Effect of buildings at short ranges on the horizon angle.

Fig.3.3. Distance to the line of sight terrain feature in the ECAC model for Boston ASR.

than 4 nmi from the sensor was raised 50 feet when computing the radio horizon angle, and (2) if the terrain feature limiting the radio horizon angle was less than 4 nmi from the sensor (with the assumption in (1)), then 50 feet were added to the height of this terrain feature in computing the radio horizon angle. These ECAC model results are compared to the measured data in Fig. 3.4. Note that there is better but still not good agreement.

3.2 Terrain Sampling Granularity

Finally, the method used to compute terrain height was considered as a possible source of error. As illustrated in Fig. 3.5, the ECAC terrain model takes points on a 30 sec x 30 sec grid, and a 4 point linear interpolation is used to estimate terrain height between grid points. Thus, as illustrated in Fig. 3.5, the estimated and actual terrain height for Point A can differ significantly. To determine the significance of this difference, the radio horizon angle was recalculated using the maximum of 4 points to estimate the terrain (i.e., Point A in Fig. 3.5 was taken to be 700 ft. instead of 575 ft.). These results are compared in Fig. 3.6. Note that the differences are small, and thus it may be concluded that the linear 4 point interpolation was a good technique considering the close spacing of grid points. This method should also be checked in mountainous terrain.

Fig.3.4. Horizon angle from ECAC model with terrain raised 50 feet compared to optical measurements.

30" lat.

500

actual height = 800 ft.

4 point linear interpolation height = 575 ft.

maximum of 4 points height = 700 ft.

ATC-75(3.5)

Fig.3.5. Interpolation of grid points for hypothetical terrain.

Grid points

Fig.3.6. Horizon angle from ECAC model using (1) maximum of 4 points terrain interpolation and (2) 4 point linear interpolation.

References

- [1]. Skolnik, Merrill I., "Introduction to Radar Systems", (McGraw-Hill, 1962).
- [2]. "Topographic Analysis Handbook", Electromagnetic Compatibility Analysis Center, ECAC-HDBK-75-15, (February 1975).
- [3]. Crisafulli, Ruth A., "Target Acquisition Model (TAM)", Electromagnetic Compatibility Analysis Center, ECAC-TN-71-20 (March 1971).
- [4]. Crisafulli, Ruth A., "Target Acquisition Model (TAM) Map Projection Program", Electromagnetic Compatibility Analysis Center, ECAC-TN-71-33 (September 1971).

APPENDIX A SITE DATA AND COVERAGE MAPS

Table A.1. ASR Listing - 1974

Location (Lat, Long, Ground Level (ft. MSL), Sensor Height (ft. above ground level)

AL MAILENIE NIC	333424N	8645,25W	775.	55.
HUNTSVILLE AL	34383811	564708W	023.	31.
MAXHELL AFR AL	322319N	0862136W	162.	44.
MOBILE AL	304126N	0881455W	246.	46.
UAVIS INTHN AFR AZ	320936N	1105310w	2705.	30•
PHULLIIX AL	332604N	112001RW	1105.	56.
LITTLE ROCK AR	344347N	0921406W	257.	52.
BURSANK CA	341215N	1182114W	743.	70.
EUNARDS AFR CA	345222N	117543AW	2335.	32.
EL TORO CA	333947N	1174245W	400.	49.
FALSHO AIR TERM CA	364651N	1194306W	332.	50.
LLMUUR NAS	362045N	1195419W	235.	37.
LUNGBEACH CA	334909N	1180816W	58.	55.
LOS ANGELES CA	335557N	1182423W	126.	54.
LUS ANGELES CA	335714N	1182429W	116.	34.
MAKYSVILLE CA	391749N	1212735W	86.	29.
MC CLELLAN AFR CA	383956N	1212414W	81.	50.
MIKAMAN CA	325229N	1170823W	451.	74.
MUNTEREY CA	363516N	1215109W	257.	50.
MIN VIL CA	372500N	1220300W	90.	33.
DAKLAND CA	374223N	1221327W	6.	54.
ONTARIO CA	34n315N	1173541W	995.	55.
CULORAJU SPRINGS	384902N	1044243W	6160.	55.
DELIVER CO	394554N	1045401W	5296.	30.
WITHDSOR LOCKS CT	415619N	724102W	173.	24.
WASHINGTON DC	385142N	770202W	11.	27.
FT LAUULRUALE FL	26040411	0800911W	14.	30.
JACKSO WILLE FL	302931N	0814132W	28.	36.
MIAMI FL	254751N	0801727 N	9.	32.
OKLANDO FL	283256N	0811948	112.	50.
PENSACULA FI	302150N	08718421	15.	54.
TAMPA FL	275749N	082311AW	25.	55.
W PALM SEACH FL	264105N	08006n7w	17.	41.
ALLANTA GA	333907N	08425484	1045.	37.
AGUSTA JA	33215014	815727W	114.	60.
RUDINS AFE GA	323844N	0833618W	311.	55.
SAVANNALI GA	320008N	810841W	42.	24.
CHICAGO IL	415838N	87552911	663.	29.
CHICAGO OHITE INTL	415850N	875541W	667.	54.
CHICAGO SOUTH IL	413717N	874610W	667.	54.
MULINE IL	412618N	0902951W	589.	30.
PEOKA IL	40.3936N	8942114W	060.	54.

Table A.1. (continued)

SPRINGFIELD IL	395027N	894124W	598 •	54.
FT WAYNE MINI IN	405922N	851216W	802.	50.
INDIANAPOLIS IN	394344N	861709W	794.	40.
SO BEND IN	41422311	861931W	786.	37.
CEUAR RAPIDS IA	415241N	091422AW	863.	54.
DES MOINES TA	413226N	09339naw	954.	60.
SIOUX CITY TA	422408N	0962341W	1097.	54.
WICHITA KS	373906N	0972503W	1308.	34.
COVINGTON KY	39n234N	843916W	860.	82.
LEXINGTON KY	38n158N	84354111	976.	32.
LOUISVILLE KY	381038N	8543261	497.	60.
SHEREVEPORT LA	323045N	09339329	167.	27.
BATON ROUGE LA	303209N	0910859W	71.	30.
NEW ORLEANS LA	295937N	0901530W	17.	77.
ANUREWS AFR MD	38484411	765202W	271.	31.
BALTIMORE MD	391044N	764103W	157.	30.
BOSTON HA	4220551	710022W	17.	36.
FALMOUTH MA	413944N	703123W	123.	27.
DETROIT MI	421351N	83214AW	640 •	62.
FLINT MI	425723N	834440W	781.	54.
GRAND RAPINS MI	425254N	853124W	790 •	50.
LANSING MI	424700N	843518W	955•	67.
SAGNIAW MI	433102N	840430W	667.	30.
MINNEAPOLIS MI	445325N	0931351W	850.	30.
RUCHESTER MN	435435N	09230n7W	1316.	54.
JACKSON MS	321820N	09005nnw	316.	61.
MERIDIAN MS	323335N	0883416W	337.	45.
KANSAS CITY MO	391134N	09438124	945.	47.
ST LOUIS MO	384426N	0902214W	601.	65.
BILLINGS MT	454825N	1093332W	3671.	27.
GREAT FALLS MT	473005N	1110944W	3462.	32.
LINCOLN AFH NE	405027N	0964611W	1158.	62.
OMAHA NE	41083511	0955413W	1212.	08.
LAS VEGAS NV	36n505N	1150932W	2171.	25.
RENO INIL NV	392939N	1194559W	4396 •	28.
ATLANTIC CITY NJ	393720N	743542W	73.	28.
NEWARK INJ	404143N	741022W	8.	51.
ALBUQUER JUF NM	35n215N	1063702W	5318.	24.
ALBANY NY	424444N	734756W	320.	51.
BINGHAMTON MY	421250N	755845W	1581.	57.
BUFFALO NY	425626N	784411W	711.	37.
NEW YORK NY	403811N	734603W	12.	33.
RUCHESTER NY	430714N	773955W	542.	31.
				_

Table A.1. (continued)

KOME NY	431341N	752527W	578.	41.
SYKACUSE NY	430644N	760620W	400.	25.
WHITE PLAINS NY	410340N	734255W	490.	41.
ASHEVILLE NO	352631N	823226W	2230.	70.
CHARLOTTE NO	351236N	805629W	600.	70.
FAYETTEVLE MUNI NO	345824N	785228W	170.	61.
GREENS, ORU NC	360536N	795601W	932.	50.
RALEIGH NC	355313N	784707W	417.	65.
FARGO IL	465513N	0964812W	1498 •	30.
AKKON OH	405505N	812639W	1210.	30.
CLEVELAND OH	412449N	815107W	789.	31.
COLUMBUS OF	395959N	825344W	812.	65.
DAYTON OH	394900N	840200W	926.	72.
TOLEDO CH	413515N	834810W	670.	50.
YOUNGSTONN OH	411528N	804040W	1156.	47.
TINKER AFB OK	352535N	0972314W	1270.	51.
TULSA OK	361206N	0955328W	642.	30.
PURTLAND INTL OR	453456N	1223612W	23.	53.
ERIE PA	420500N	801038W	732.	30.
HARRISBURG PA	401324N	765239W	494.	29.
PHILADELPHIA PA	395232N	751401W	9.	28.
PITTSBURGH PA	402953N	801440W	1243.	30.
WILKES BARRE PA	412009N	754310W	1037.	47.
QUONSET PT RI	413608N	712440W	10.	28.
CHARLESTON SC	325425N	800225W	45.	55.
GRLENVILLE SC	345059N	822121W	1007.	47.
W COLUMBIA SC	335658N	810750W	236.	60.
SIUUX FALLS SD	433438N	0964427W	1428.	54.
ALCOA TH	354829N	8359n5W	989.	61.
BRISTOL TN	362822N	822414W	1537.	55.
CHATTA LOOGA TN	350155N	851227W	698•	47.
MEMPHIS TN	35n354N	0895713W	291.	49.
NASHVILLE TH	36n725N	864052W	597.	67.
AMARILLO TX	351341N	1014235W	3602.	30.
AUSTIN TX	301244N	0973954W	500.	17.
COLLEYVILLE TX	325250N	09707071	650.	54.
CORPUS CHRISTI TX	274357N	0972348W	32.	41.
DALLAS TX	325435N	0964501W	487.	50.
DALLAS TX	325141N	09645n1w	633.	40.
DYESS AFB TY	32260011	0995059W	1753.	30.
EL PASO TA	314832N	1062138W	3956.	36.
FT. WORTH TY	322419N	970244W	596.	30.
HOUSTON TX	29484011	0951452W	42.	90.
LUSBOCK TX	334005N	1015110W	3300.	25.

Table A.1. (continued)

MIULANU TA	315748N	1021150W	2730.	50.
XT DINCINA VIAC	293125N	0982841W	805.	55.
HILL AF'S UT	410710N	1115945W	4770.	26.
SALT LAKE CITY UT	404623N	1115833W	4220.	27.
BURLINGTON INTL VT	442800N	7309nnw	335.	50.
CHANTILLY YA	385724N	772750W	295.	37.
NORFOLK VA	365344N	761137W	25.	55.
RICHMO ID VA	373019N	771928W	157.	35.
ROAFIOK VA	371932N	795856W	1137.	37.
FAIRCHILD AFB WA	473721N	1173927W	2462.	55.
MC CHORL AFR WA	47n819N	1222815W	420.	29.
SLATTLE WA	472707N	1221850W	406.	51.
HUNTINGTON WV	382227N	8234n2W	844.	31.
CHARLESTON WV	382144N	813523W	982.	50.
GREEN BAY WT	442935N	880719W	675.	90.
MAUISON WI	430822N	0892016W	862.	30 •
MILNAUKLE WT	425704N	875352W	667.	65.

Table A.2. ARSR Listing - 1974

Location (Lat, Long, Ground Level (ft. MSL), Sensor Height (ft. above ground level)

RAMER AL	321238N	0861001W	276.	60.
PHOENIX ARSR AZ	335848N	1114742W	5239.	65.
RUSSELLVILLE AR	352400N	0925950W	1093.	72.
TEXARKAHA AFS AR	332717N	0935954W	367.	45.
BORON CA	350455N	1173453W	2994.	163.
HALF MOON BAY CA	373144N	1222535W	1930.	82.
MT. LAGUNA AFS CA	325233N	1162451W	6269.	p6.
PASO RUBLES CA	352344N	1202112W	3625.	66.
RRED BLUFF AFS CA	400847N	1221813W	483.	53.
SACRAMENTO CA	383314N	1211609W	130.	45.
SAN PEURO HILL CA	33444611	1182009W	1480.	60.
DENVER CO	393539N	1044135w	6150.	55.
GRAND JUNCTION CO	390418N	1083327W	9000.	56.
TRINIDAD ARSR CO	373230N	1040020W	5503.	59.
KEY WEST FL	243501N	814118W	9.	65.
MACDILL AFB FL	275005N	822820W	10.	66.
PATRIC AFB FL	281250N	0803558W	10.	52.
RICHMOND AFS FL	253724N	0802418W	12.	97.
TYNDALL AFE FL	300433N	853632W	28.	52.
WHITEHOUSE FIELDFL	302045N	0815225W	91.	46.
ATLANTA GA	335339N	842955W	1090.	70.
VALDOSTA GA	305831N	0831249W	325.	50.
ASHTON ID	443341N	1112636W	9904.	00.
BOISE ID	432640N	1160808w	8320 •	57.
CHICAGO IL	41475UN	875129W	615.	111.
HANNA CITY AFS IL	404000N	894500W	650.	65.
INDIANAPOLIS IN	394446N	861704W	784.	٠٥٥
LAGRANGE IN	413752N	852453W	979.	110.
W BRANCH LA	414221N	0911505W	800.	48.
HUTCHINSON AFS KS	375524N	0975414W	1536.	67.
OLATHE KS	385012N	0945413W	1055.	90 •
SUBLETTE KS	373953N	1005216W	2940.	58.
LYNCH AY	365458N	825326W	4150.	106.
ALEXANDRIA LA	311853N	0923141W	89.	78.
NEW ORLEANS LA	302050N	0894650W	28.	75•
BUCKS HARBOR ME	443741N	672344W	221.	118.
FT HEATH MA	422321N	705811W	60.	95.
SUITLAND MU	385114N	765622W	285.	80.
DETROIT MI	421636N	832827W	683.	77.
EMPIRE AFS MI	444807N	860303W	1003.	56.
MINNEAPOLIS MN	444510N	0931338W	1110.	ea.

Table A.2 (continued)

BYHALIA MS	345108N	0894556W	390 •	33.
MUSCOW MS	324308N	885040W	667.	65.
UKIRKSVILLE AFS MO	401752N	0923431W	982.	50 •
ST LOUIS MO	384204N	0902326W	706.	85.
KALISPELL MT	480041N	1142149W	6785.	40.
MALMSTROM AFB MT	475007N	1111209W	3525.	71.
HASTINGS NE	403448N	981720W	1900 •	68 •
NO PLATTE NE	404958N	1004452W	3161.	63.
OMAHA NE	412137N	0960130W	1305.	51.
ANGEL PEAK NV	361907N	1153430W	8865.	59.
BATTLE MOUNTAIN NV	402411N	1165202W	9601.	125.
FALLON AFS NV	392420N	1184316W	3926.	139.
TONOPAH NV	380830N	1171158W	7200 •	1,0.
ELWOOD CITY NJ	393519N	744156W	119.	b5•
ALBUQUERQUE NM	350417N	1065412W	5933.	30.
GALLUP ARSK NM	360435N	1085135W	9373.	72.
MESA RICA NM	361417N	1041214W	5373.	62.
SILVER CITY NM	32470UN	1081600W	7620 •	58.
DANSVILLE NY	423816N	773914W	2027.	65.
NEW YORK NY	403945N	134648W	10.	110.
SARATOGA SPR AFSNY	430037N	734057W	605.	72.
BENSON NC	35303UN	783330W	282.	68.
MAIDEN NC	353642N	811424W	889.	77.
BRECKSVILLE OH	411805N	814103N	1247.	115.
LONDON OH	395045N	832848W	1086.	118.
OKLAHOMA CITY OK	352402N	0973711W	1284.	69.
OKLAHOMA CITY AFS	352408N	0972133W	1331.	75.
KENO AFS OR	420410N	1215815W	6600.	42.
SALEM OR	445524N	1233424W	3740.	70.
BENTON AFS PA	412126N	761736W	2381.	122.
OAKDALE AD SITE PA	402356N	800926W	1270.	120.
TREVOSE PA	400805N	745914W	200.	53.
AIKEN AFS SC	333847N	0814037W	530.	72.
JEDBURG SC	330412N	801314W	50.	63.
GETTSBURG AFS SD	450303N	0995720W	2400.	120.
JOELTON TN	362010N	365140W	846.	72.
AMARILLO AFB TX	351448N	1013919W	3618.	40.
EL PASO TX	314053N	1061150W	4019.	90.
FT WORTH TX	325640N	0971312W	684.	70.
HOUSTON TX	293715N	0951021W	42.	108.
ODESSA TX	323315N	1022545W	3117.	93.
OILTON TX	272955N	0985805W	880.	60.

Table A.2. (continued)

SAN ANTONIO TX	29230BN	0983800w	784 .	53.
CEDAR CITY UT	373536N	1125144W	10691 •	83.
SALT LAKE CITY UT	410201N	1115016W	9515.	70.
BEDFORD AFS VA	373102N	793039W	4226.	46.
CAPE CHARLES AFSVA	370802N	755704W	9.	110.
MICA PEAK AFS WA	475426N	1170450W	5205.	42.
SEATTLE WA	473922N	1222443W	355.	105.
HORICON WI	432646N	882930W	1188.	78.
LOVELL WY	444900N	1075406W	9557.	56.
LUSK WY	423535N	1043515w	6100 •	40.
ROCK SPRINGS WY	412605N	1090700w	8663.	55•

Location (Lat, Long, Ground Level (ft. MSL), Sensor Height (ft. above ground level)

THAN AL AR	NINNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	0007900000044060000000000000000000000000	014218	••••••••••••••••••••••••••••••••••••••
PORTLAND ME	433900N	701800W	192.	50.

BARNSTABLE MUNI MA	413950N	701703W	52.	50.
NANTUCKET MEM MA	411654N 421600N	700138W	47.	50.
TEWKSBURY MA WORCHESTER MUNI MA	42100UN	715300W 715256W	1009.	50.
BATTIE CREEK MT	4219000	851500W	941.	50.
BATTLE CREEK MI BENTON HARBOR MI	421900N 420800N	802000W	643.	50.
KALAMAZOO MI	421400N	853300W	874.	50.
MUSKEGON MI DULUTH INTL MN	431000N	861400W	628· 1429·	50.
GULTH INTL MN GULFPORT CBS MS	465000N 302400N	0690400W	28.	50.
SPRINGFIELD MO	371500N	0932300W	28· 1267·	50.
SPRINGFIELD MO	463600N	1115900W	3873.	50 · 50 ·
MISSOULA MI	462500N	1140500W	3201. 1846.	50.
GRAND ISLAND NE. KEARNEY MUNI NE	405660N 404332N	U990U17W	2130.	50.
KELNE NH	425400N	721000W	487.	50.
LEBANON REGIONALNH	434U44N	721259W	1243.	50.
MANCHESTER NH	425000N	712000W	233.	50 · 50 ·
TRENTON NU	401700N	744900W 765400W	980:	50.
ISLIP NY	404800N	730600W	98•	50 •
ROSWELL INUTL INM	331600N	1043200W	3669.	50.
ELMIRA NY ISLIP NY ROSWELL INDIL NM SANTA FE CO MUNINM HICKORY NC	353226N	1060352W	6344.	50.
NEW BERTING	354400N 350500N	812300W 770400W	1189.	50.
ROCKY MOUNT MUNINC	355836N	7/4214W	97•	50.
WILMINGTON NC	341000N	775400W	31.	50·
WINSTON SLM AFS NO	300A00M	801200w	969.	50.
MINOT INTL NO	464/00N 481537N	1004500W 1011712W	1677. 1715.	50.
GRAND FKS INTL ND	475700N	971100W	844.	50.
BARTLESVILLE OR	36400514	U960105W	715.	50.
LANTON MUNI OK	343400N	0985200M	1109.	50.
EUGENE OR MEDFORD OK	440700N 422200N	1531300M	365. 1330.	50.
ALLENTOWN PA	40390UN	772500W	1000.	50.
ERIE INTL PA	42050UN	801100W	732 • 403 • 1000 •	50 •
WILLIAMSPT LYCU PA	40070UN	761800w	403.	50.
MYRTLE SCH MUNI SC	41160UN 334900N	705400W 784400W	1000.	50.
MYRTLE JCH MUNI SC RAPID CITY RGNL SD BEAUMONT MUNI TX COLLEGE STATION IX	440300N	1030300W	33. 3182.	50.
BEAUMONT MUNI TX	295/00N 303500N	U940100W	16.	50.
	303500N	0902200W	319.	50 •
HARLINGEN TA JACKSON TN	261400M	09/3900w	35.	50.
LONGVIEW TX	322300N	U944300W	365.	50.
MILLER INIL TX	261100N	981400W	433. 365. 107.	50.
SAN ANGELO TX	312200N	1003000W	1915.	50.
TEMPLE TX	310900N 322100N	U972400W	544.	50.
TYLER TX WACO MUNI TX	313700N	0971400W	516.	50.
WICHTIA EALL TV	335900N	0983000M	1015.	50.
CHARLTTESVILLE VA LYNCHBURG MUNI VA NEWPORT NEWS VA	380800N	782/00w	640 •	50.
NEWPORT NEWS VA	372000N 370600N	791200W 703000W	942.	50.
PASCO WA	4010000	1190/00W	406.	50.
YAKIMA MUNI WA	46340014	1503500M	1089.	50.
CLARKSBURG WV	391500N	801400W	1203.	50.
MORGANTOWN WV PARKERSBURG WV	393800N 392100N	795900W	1248 • 858 •	50.
LA CROSSE MUNI WI	435300N	U911500W	653.	50.
OSHKOSH WI	435900N	083300W	805.	50.
CASPER WY	42540011	1005800M	5438 •	50.
CHEYENNE MUNI WY	411200N	1044600M	1353.	50.

Table A.4. Proposed ARSR Listing

Location (Lat, Long, Ground Level (ft. MSL) Sensor Height (ft. above ground level)

GRAND BAY AL	302031N	U002U20W	100.	80.
HALEYVLE THA AL	34120UN	U8/3800w	925.	80.
HAVASU CITY AZ	342/00N	1142200W	480.	80.
HARTFORD CT	414500N	U724200W	19.	50.
			40.	80.
CRUSS CITY FL	293800N	0830700W		
BALDWIN_GA	33080011	U831500W	385.	60.
HANNA CITY AFS IL	403200N	U894/50W	724.	60.
WATERLOO MUNI 1A	42333UN	U922315W	920•	80.
SNOW MTN AFS KY	37535UN	UBBUUD9W	900•	80.
FINLAND AFS MN	472500N	U911440W	1520 •	50.
NEWPORT MS	325630N	U894615W	420.	60.
LEBANON MO	374000N	U924U00W	1323.	100.
				1000
BEACH IND	46540011	10400004	2950.	80.
FINLEY AFS NU	47310UN	U975000W	1450.	80.
AFTON OK	364200N	U945/00W	800.	50.
DU BOIS PA	410600N	U764600W	1817.	80.
CROSSVILLE MEM IN	354000N	850000w	1881.	50 •
TIPTONVILLE TN	362100N	U893U00W	280.	80.
ANSON TX	324500N	0995200W	1710.	00.
			550	aŭ.
ROGERS TX	30561UN	U9/1330W		
GUTHRIE WV	382539N	U814100W	1179.	80.

Table A.5. Coverage Map Listing and Parameters

Figure Number	Sensor Type	MSL Altitude (thousands of feet)	Maximum Range* (nmi)
A.5	ASR	20	100
A.6	ASR	20	60
A.7	ASR	15	<u>></u> 133
A.8	ASR	15	100
A.9	ASR	15	60
A.10	ASR	10	100
A.11	ASR	10	60
A.12	ASR	5	> 71
A.13	ASR	5	60
A.14	ASR	3	> 52
A.15	ARSR	20	>156
A.16	ARSR	20	150
A.17	ARSR	20	100
A.18	ARSR	15	≥133
A.19	ARSR	15	100
A.20	ARSR	10	106
A.21	ARSR	10	100
A.22	ARSR	5	≥ 71
A.23	Proposed ASR	20	100
A.24	Proposed ASR	20	60
A.25	Proposed ASR	15	≥133
A.26	Proposed ASR	15	100
A.27	Proposed ASR	15	60
A.28	Proposed ASR	10	100
A.29	Proposed ASR	10	60
A.30	Proposed ASR	5	≥ 71
A.31	Proposed ASR	5	60
A.32	Proposed ASR	3	> 52
A.33	Proposed ARSR	20	>156
A. 34	Proposed ARSR	20	150
A.35	Proposed ARSR	20	100
A.36	Proposed ARSR	15	>133
A.37	Proposed ARSR	15	100
A.38	Proposed ARSR	10	>106
A.39	Proposed ARSR	10	100
A.40	Proposed ARSR	5	≥ 71

^{*}Coverage maps for ranges greater than values preceded by ">" would be identical. (Due to earth curvature; see Section 2.1 and Fig. 2.3 for further explanation.)

Fig. A.1. Existing ASR locations.

Fig. A.2. Existing ARSR locations.

Fig. A.3. Proposed ASR locations.

Fig. A.4. Proposed ARSR locations.

Fig. A.5. ASR composite coverage map, 20,000 ft. MSL, maximum range $_{\rm R}$ = 100 nmi.

Fig. A.6. ASR composite coverage map, 20,000 ft. MSL, maximum range $R_{\rm max} = 60~{\rm nmi}.$

Fig. A.7. ASR composite coverage map, 15,000 ft. MSL, maximum rang R $_{\rm max} \ge 133~{\rm nmi}$.

Fig. A.9. ASR composite coverage map, 15,000 ft. MSL, maximum range $R_{\rm max}$ = 60 nmi.

Fig. A.10. ASR composite coverage map, 10,000 ft. MSL, maximum range max = 100 nm1.

Fig. A.11. ASR composite coverage map, 10,000 ft. MSL, maximum range $_{\rm R}$ $_{\rm max}$ = 60 nmi.

Fig. A.12. ASR composite coverage map, 5,000 ft. MSL, maximum range max $\succeq 71$ nmi.

Fig. A.13. ASR composite coverage map, 5,000 ft. MSL, maximum range $_{\rm R}$ = 60 nmi.

Fig. A.14. ASR composite coverage map, 3,000 ft. MSL, maximum range $R_{\rm max} \simeq 52~{\rm nmi}.$

Fig. A.15. ARSR composite coverage map, 20,000 ft. MSL, maximum range $_{\rm max} \ge 156~{\rm nmi}.$

Fig. A.16. ARSR composite coverage map, 20,000 ft. MSL, maximum range $_{\rm max}$ = 150 nmi.

Fig. A.17. ARSR composite coverage map, 20,000 ft. MSL, maximum range $_{\rm R}$ = 100 nmi.

Fig. A.18. ARSR composite coverage map, 15,000 ft. MSL, maximum range $_{\rm max} \simeq 133~{\rm nmi}.$

Fig. A.19. ARSR composite coverage map, 15,000 ft. MSL, maximum range $_{\rm max}^{\rm R}$ = 100 nmi.

Fig. A.20. ARSR composite coverage map, 10,000 ft. MSL, maximum range $_{\rm R}$ $_{\rm max}$ $\stackrel{>}{\simeq}$ 106 nmi.

Fig. A.21. ARSR composite coverage map, 10,000 ft. MSL, maximum range $_{\rm max}$ = 100 nmi.

Fig. A.22. ARSR composite coverage map, 5,000 ft. MSL, maximum range $_{\rm Rax} \simeq 71~\rm nmi.$

Fig. A.23. Proposed ASR composite coverage map, 20,000 ft. MSL, maximum range $\rm R_{max}$ = 100 nmi.

Fig. A.24. Proposed ASR composite coverage map, 20,000 ft. MSL, maximum range $_{\rm max}$ = 60 nmi.

Fig. A.25. Proposed ASR composite coverage map, 15,000 ft. MSL, maximum range $R_{\rm max} \ge 133~\rm nmi$.

Fig. A.26. Proposed ASR composite coverage map, 15,000 ft. MSL, maximum range $_{\rm max}$ = 100 nmi.

Fig. A.27. Proposed ASR composite coverage map, 15,000 ft. MSL, maximum range $_{\rm max}$ = 60 nmi.

Fig. A.28. Proposed ASR composite coverage map, 19,000 ft. MSL, maximum range R $_{\rm max}$ = 100 nmi.

Fig. A.29. Proposed ASR composite coverage map, 10,000 ft. MSL, maximum range $\rm R$ = 60 nmi.

Fig. A.30. Proposed ASR composite coverage map, 5,000 ft. MSL, maximum range $\rm R_{max} \ge 71~nmi$.

Fig. A.31. Proposed ASR composite coverage map, 5,000 ft. MSL, maximum range $\rm R_{\rm max} = 60~\rm nmi.$

Fig. A.32. Proposed ASR composite coverage map, 3,000 ft. MSL, maximum range $R_{\rm max}$ $\geq 52\,{\rm nmi}.$

Fig. A.33. Proposed ARSR composite coverage map, 20,000 ft. MSL, maximum range R $_{\rm max} \simeq 156~\rm nmi.$

Fig. A.34. Proposed ARSR composite coverage map, 20,000 ft. MSL, maximum range $_{\rm max}$ = 150 nmi.

Fig. A.35. Proposed ARSR composite coverage map, 20,000 ft. MSL, maximum range $_{\rm Max}$ = 100 nmi.

Fig. A.36. Proposed ARSR composite coverage map, 15,000 ft. MSL, maximum range R $_{\rm max} \, \ge \, 133 \, \, {\rm nmi}$.

Fig. A.37. Proposed ARSR composite coverage map, 15,000 ft. MSL, maximum range $\rm R_{max} = 100 \ nmi.$

Fig. A.33. Proposed ARSR composite coverage map, 10,000 ft. MSL, maximum range $\rm R_{max} \ge 106~nmi$.

Fig. A.39. Proposed ARSR composite coverage map, 10,000 ft. MSL, maximum range R $_{\rm max}$ = 100 nmi.

Fig. A.40. Proposed ARSR composite coverage map, 5,000 ft. MSL, maximum range R $_{\rm max} \ge 71$ nmi.