TAREA 1 - TOPOLOGÍA

KEVIN VELEZ

Problema 1 Problema en clase

Demostrar que d es una métrica en \mathbb{Z}^+ , donde d está dada por:

$$d(n,m) = \left| \frac{1}{n} - \frac{1}{m} \right|$$

Demostración: Debemos mostrar que d satisface las cuatro propiedades para ser una métrica. Sean $n, m, k \in \mathbb{Z}^+$.

i)

$$d(n,n) = \left| \frac{1}{n} - \frac{1}{n} \right| = |0| = 0$$

ii) $d(n,m) \ge 0$ por definición, ya que el valor absoluto es no negativo.

iii)

$$d(n,m) = \left| \frac{1}{n} - \frac{1}{m} \right| = \left| (-1) \left(\frac{1}{m} - \frac{1}{n} \right) \right| = \left| \frac{1}{m} - \frac{1}{n} \right| = d(m,n)$$

iv)

$$d(n,m) = \left| \frac{1}{n} - \frac{1}{m} \right| = \left| \frac{1}{n} - \frac{1}{k} + \frac{1}{k} - \frac{1}{m} \right| \le \left| \frac{1}{n} - \frac{1}{k} \right| + \left| \frac{1}{k} - \frac{1}{m} \right| = d(n,k) + d(k,m)$$

Por tanto, d es una métrica.

Problema 2 Ejercicio 5(c). Elementos de topología - Garcia y Dal Lago

Demostrar que $A = \{(x,y) \in \mathbb{R}^2: 0 < x < 1, \ 0 < y < 1, \ x \neq \frac{1}{n} \ \forall n \in \mathbb{N}\} \subseteq \mathbb{R}^2$ es un abierto de \mathbb{R}^2 con la métrica euclídea.

Demostración:

Universidad del Valle

Sea $(x,y) \in A$, vamos a mostrar que existe r>0 tal que $B((x,y),r)\subseteq A$. Tenemos entonces que 0< x<1, por lo que $\frac{1}{x}>1$, existe un $k\in\mathbb{N}$ tal que $k<\frac{1}{x}< k+1$, luego $\frac{1}{k+1}< x<\frac{1}{k}$, además, 0< y<1. Consideramos entonces el radio $r=\min\left\{1-y, x-\frac{1}{k+1}, \frac{1}{k}-x, y\right\}>0$, y la bola abierta B((x,y),r).

Sea $(u, v) \in B((x, y), r)$, entonces, como la métrica es la euclídea, se tiene que

(1)
$$d((x,y),(u,v)) < r$$

$$\sqrt{(x-u)^2 + (y-v)^2} < r$$

$$(x-u)^2 + (y-v)^2 < r^2$$

Como $(y-u)^2 > 0$, entonces $(x-u)^2 < r^2$, así

$$(x - u)^2 < r^2$$

 $|x - u| < |r|$
 $|x - u| < r$
 $-r < x - u < r$
 $-r < u - x < r$

por definición, $r \leq \frac{1}{k} - x$, y $r \leq x - \frac{1}{k+1}$, por lo que $-r \geq \frac{1}{k+1} - x$, entonces

$$\frac{1}{k+1} - x \le -r < u - x < r \le \frac{1}{k} - x$$

$$\frac{1}{k+1} - x < u - x < \frac{1}{k} - x$$

$$\frac{1}{k+1} < u < \frac{1}{k}$$

Análogamente, en (1), como $(x-u)^2 > 0$, entonces $(y-v)^2 < r^2$, así

$$(y-v)^2 < r^2$$

 $|y-v| < |r|$
 $|y-v| < r$
 $-r < y-v < r$
 $-r < v - y < r$

por definición, $r \le 1-y$, y $r \le y$, por lo que $-r \ge -y$, entonces

$$\begin{aligned} -y &\leq -r < v - y < r \leq 1 - y \\ -y &< v - y < 1 - y \\ 0 &< v < 1 \end{aligned}$$

Así, tenemos que 0 < v < 1 y $\frac{1}{k+1} < u < \frac{1}{k}$, por lo que $(u,v) \in A$, y por tanto $B((x,y),r) \subseteq A$. Luego, A es un abierto de \mathbb{R}^2

Problema 3 Ejercicio 8. Elementos de topología - Garcia y Dal Lago

Sea E un espacio métrico, $A \subseteq E$ y $x \in E$. Se define la distancia de x a A por

$$d(x, A) = \inf \left\{ d(x, y) : y \in A \right\}$$

- a) Demostrar que si definimos $\delta: E \to \mathbb{R}$ por $\delta(x) = d(x, A)$, δ es continua.
- b) Probar que si r > 0, $\{x : d(x, A) \le r\}$ es cerrado

Demostración:

a) Sea $x, x_0 \in E$, y $a \in A$, entonces $d(x, a) \le d(x, x_0) + d(x_0, a)$, como $d(x, A) \le d(x, a)$ por ser el ínfimo, entonces $d(x, A) \le d(x, x_0) + d(x_0, a)$, así, se tiene que

$$\delta(x) \le d(x, x_0) + d(x_0, a)$$

Esto se cumple para todo para todo $a \in A$, en particular, para el ínfimo. Como ínf $\{d(x,x_0)+d(x_0,a):a\in A\}=d(x,x_0)+$ ínf $\{d(x_0,a):a\in A\}=d(x,x_0)+$ for lo que

$$\delta(x) \le d(x, x_0) + \delta(x_0)$$

$$\delta(x) - \delta(x_0) \le d(x, x_0)$$

De manera análoga, partiendo de $d(x_0, a) \le d(x_0, x) + d(x, a)$, se llega a que $\delta(x) - \delta(x_0) \ge -d(x_0, x)$, por lo que

$$|\delta(x) - \delta(x_0)| \le d(x, x_0)$$

Ahora, sea $\varepsilon > 0$, podemos tomar x_0 ε -cercano a x, de tal manera que $d(x, x_0) = \varepsilon$, en otras palabras, tomamos $r = \varepsilon$ y tenemos que $d(x, x_0) \le r = \varepsilon$ implica que $|\delta(x) - \delta(x_0)| \le d(x, x_0) \le r = \varepsilon$. Lo cual quiere decir, que la función δ es continua para todo punto $x \in E$

b) Sea r > 0, vamos a probar que $B = \{x : d(x, A) \le r\}$ es cerrado. Notemos que $B = \delta^{-1}([0, 1])$. Como δ es continua, entonces preimagen de cerrados es cerrado, y como [0, 1] es cerrado, entonces B es cerrado.

Problema 4 Ejercico 6. Topología - Munkres

Pruebe que las topologías de \mathbb{R}_{ℓ} y \mathbb{R}_{K} no son comparables.

Demostración: Sean τ_{ℓ} y τ_{K} las topologías de \mathbb{R}_{ℓ} y \mathbb{R}_{K} respectivamente. Consideremos el elemento básico [0,1) para τ_{ℓ} . No hay ningún básico para τ_{K} que contenga al 0, y este contenido en [0,1), así que $\tau_{\ell} \mathbb{Z} \tau_{K}$.

Ahora, consideremos consideremos el básico $(-1,1)\setminus K$ para τ_K , No existe ningún básico para τ_ℓ que contenga al 0, y este contenido en $(-1,1)\setminus K$, así que $\tau_K \not\subset \tau_\ell$.

Por lo tanto, τ_{ℓ} y τ_{K} no son comparables.