10:51 **2**499_8011

> Each R3 is independently aryl; phenyl optionally substituted with 1-5 independent R⁴ on each ring; or heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

> > Each n is independently 1 or 2;

Each in is independently 0, 1, 2, 3, or 4;

Each R4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; haloalkyl; SR5; OR5; $OC(O)R^5$; NR^5R^5 ; NR^5R^6 ; NR^5R^6 ; NR^5R^{16} ; $COOR^5$; NO_2 ; CN; $C(O)R^5$; $C(O)C(O)R^5$; $C(O)NR^5R^5$; $S(O)_{n}R^{5}:S(O)_{n}NR^{5}R^{5};\ NR^{5}C(O)NR^{5}R^{5};\ NR^{5}C(O)C(O)R^{5};\ NR^{5}C(O)R^{5};\ NR^{5}(COOR^{5});$ $NR^{5}C(O)R^{8};\ NR^{5}S(O)_{n}NR^{5}R^{5};\ NR^{5}S(O)_{n}R^{5};\ NR^{5}S(O)_{n}R^{8};\ NR^{5}C(O)C(O)NR^{5}R^{5};$ $NR^5C(O)C(O)NR^5R^6; OC(O)NR^5R^5; \\ QS(O)_nNR^5R^5; NR^5S(O)_nOR^5; \\ P(O)(OR^5)_2; C1-C10 \\ alkyloping (A) \\ A = 1000 \\ A = 1000$ substituted with 1-3 independent aryl, R7 or R8; or C2-C10 alkenyl substituted with 1-3 independent aryl, R7 or R8;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R7 or R9 groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R7 or R⁹ groups; or C2-C10 alkenyl substituted with 1/3 independent aryl, R⁷ or R⁹;

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=N R⁵) NR⁵R⁵, or $S(O)_n \mathbb{R}^5$;

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(\Theta)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11},\ COOR^{10},\ NO_2,\ CN,\ C(O)R^{10},\ OC(O)NR^{10}R^{10},\ (C(O)NR^{10}R^{10},\ N(R^{10})C(O)R^{10},\ N(R^{10})C(O)$ $(COOR^{10}), S(O)_{p}NR^{10}R^{10}; NR^{10}S(O)_{p}NR^{10}R^{10}; NR^{10}S(O)_{p}R^{10}; or P(O)(OR^{5})_{2};$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; halo;\sulfur; oxygen; CF3; SR5; $OR^5;\ OC(O)R^5;\ NR^5R^5;\ NR^5R^6;\ NR^6R^6;\ COOR^5;\ NO_2;\ CN;\ C(O)R^5;\ CO)NR^5R^5;\ S(O)_nNR^5R^5;$ NR⁵C(O)NR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_uR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R° is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1.9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹, NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)_nNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃. OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²;

Each R^{11} is independently $C(Q)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_{n}R^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₅, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl;

C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; haloalkyl; COOR⁵; C(O)R⁵;

3499_8011

C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵; S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkeny) substituted with 1-3 independent aryl, R7 or R8;

AMGEN

Each R²³ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; haloalkyl; SR5; OR5; $OC(O)R^5; \ NR^5R^5; \ NR^5R^6; \ COOR^5; \ NO_2; \ CN; \ C(O)R^5; \ C(O)C(O)R^5; \ C(O)NR^5R^5; \ S(O)_nR^{5:1}$ $S(O)_{n}NR^{5}R^{5}; \quad NR^{5}C(Q)NR^{5}R^{5}; \quad NR^{5}C(O)C(O)R^{5}; \quad NR^{5}C(O)R^{5}; \quad NR^{5}C(O)R^{5}; \quad NR^{5}C(O)R^{8}; \quad NR^{5}C(O)R^{5}; \quad NR^{5}C(O)R^{5};$ $NR^{5}S(O)_{n}NR^{5}R^{5}; \quad NR^{\frac{1}{2}}S(O)_{n}R^{5}; \quad NR^{5}S(O)_{n}R^{8}; \quad NR^{5}C(O)C(O)NR^{5}R^{5}; \quad NR^{5}C(O)C(O)NR^{5}R^{6};$ OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R7 or R8; or C2-C10 alkenyl substituted with 1-3 independent aryl, R7 or R8;

Each haloalkyl is independently a C1-C10 alkyl substituted with one or more halogen atoms, selected from F. Cl. Br, or I, including perhaloalkyl;

Each aryl is independently a 6-carbon monocyclic, 10-carbon bicyclic or 14carbon tricyclic aromatic ring system optionally substituted with 1-3 independent C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; R9; halo; haloalkyl; $OR^{10}; \ SR^{10}; \ NR^{10}R^{10}; \ NR^{10}R^{11}; \ COOR^{10}; \ NO_2; \ CN; \ C(O)R^{10}; \ C(O)C(O)R^{10}; \ C(O)NR^{10}R^{10};$ $N(R^{10})C(O)NR^{10}R^{10}, \ N(R^{10})C(O)R^{10}; \ N(R^{10})S(O)_{n}R^{10}; \ N(R^{10})(COOR^{10}); \ NR^{10}C(O)C(O)R^{10};$ $NR^{10}C(O)R^9$; $NR^{10}S(O)_nNR^{10}R^{10}$; $NR^{10}S(O)_nR^9$; $NR^{12}C(O)C(O)NR^{12}R^{12}$; $S(O)_nR^{10}$: S(O), NR 10R 10; OC(O)R 10; C1-C10 alkyl substituted with 1-3 independent R9, halo, CF3, OR 10, SR^{10} , $OC(O)R^{10}$, $NR^{11}R^{11}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $COOR^{10}$, NO_z , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})$ (COOR $(O)_0NR^{10}R^{10}$; R^{10} ; or C2-C10 alkenyl substituted with 1-3 independent R9, halo, CF3, $\Diamond R^{10}$, SR10, OC(O)R10, NR11R11, NR10R10, $NR^{10}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})$ (COOR¹⁰), \$(O)_nNR¹⁰R¹⁰;

Each heterocyclyl is independently a 3-8 membered nonaromatic monocyclic, 8-12 membered nonaromatic bicyclic, or 11-14 membered nonaromatic tricyclic, ring system having 1-4 heteroatoms if monocyclic, 1-8 heteroatoms if bicyclic, or 1-10 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S;

Each heteroaryl is independently a 5-8 membered aromatic monocyclic, 8-12 membered aromatic bicyclic, or 11-14 membered aromatic tricyclic ring system having 1-4

10:52 **2**499_8011

> heteroatoms if monocyclic, 1-8 heteroatoms if bicyclic, or 1-10 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S;

provided R and R2 are not both 1-alkylpyridinium, both 4-pyridyl or both morpholino; further provided R1 is not NH2;

further provided R and R2 are not both hydroxy, methoxy, ethoxy or phenoxy;

further provided R¹ is not phenoxy, acetylamino, or methylamino when R² is morpholino;

further provided R¹ is not methoxy or hydroxy when R² is 4-chlorophenylamino;

further provided R1 is not phenoxy, methoxy or ethoxy when R2 is 4-

aminophenylsulfonylamino;

further provided R1 is not phenoxy when R2 is 4-methylthiophenylamino or sulfanilamido;

and further provided R¹ is not hydroxy when R² is hexylamino, phenylamino, 3methylphenylamino, 2-ethoxyphenylamino, 4 methylthiophenylamino, 2ethylsulfinylphenylamino, 3-propylsulfonylphenylamino, 4-acetylphenylamino, 4sulfamylphenylamino, 3-nitrophenylamino, 4-cyanophenylamino, 4-carboxyphenylamino, 4-(acetylamino)phenylamino, 4-biphenylamino, 1-naphthylamino, 4-pyridylamino, 2thiazolylamino, 4-quinolylamino, and 2-pyrimidinylamino,

2. The compound of claim 1 wherein,

R¹ is independently R³;

R² is independently NHR³;

Each R³ is independently aryl; phenyl optionally substituted with 1-5 independent R⁴ on each ring; or heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

Each R⁴ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; $NR^5R^5; NR^5R^6; NR^5R^{16}; COOR^5; NO_2; CN; C(O)R^5; C(O)C(O)R^5; C(O)NR^5R^5; S(O)_0R^5; C(O)R^5; C(O)R^$ $S(O)_nNR^5R^5$; $NR^5C(O)NR^5R^5$; $NR^5C(O)C(O)R^5$; $NR^5C(O)R^5$; $NR^5(COOR^5)$; $NR^5C(O)R^8$; OC(O)NR⁵R⁵; OS(O)_uNR⁵R⁵; NR⁵S(O)_aOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

AMGEN

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_n$ R^5 ;

 $Each\ R^7\ is\ independently\ halo,\ CF_3,\ SR^{10},\ OR^{10},\ OC(O)R^{10},\ NR^{10}R^{10},\ NR^{10}R^{11},\\ NR^{11},\ COOR^{10},\ NO_2,\ CN,\ C(O)R^{10},\ OC(O)NR^{10}R^{10},\ C(O)NR^{10}R^{10},\ N(R^{10})C(O)R^{10},\ N(R^{10})C(O)R^{10},$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)_nR¹⁰; S(O)_nNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted

3499_8011

with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²;

Each R¹¹ is independently C(O)R¹⁰, COOR¹⁰, C(O)NR¹⁰R¹⁰ or S(O)₀R¹⁰;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkcnyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R^{16} is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 , R^8 , or phenyl optionally substituted with substituted with 1-4 independent R^{23} ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵; S(O)_nNR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 or R^8 ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 .

3. The compound of claim 1 wherein,

R¹ is independently heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

R² is independently NHR³;

Each R³ is independently aryl; phenyl optionally substituted with 1-5 independent R⁴ on each ring; or heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

Each R^4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁵R¹⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_aOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=NR⁵)NR⁵R⁵, or S(O)_n
R⁵:

 $Each\ R^7\ is\ independently\ halo,\ CF_3,\ SR^{10},\ OR^{10},\ OC(O)R^{10},\ NR^{10}R^{10},\ NR^{10}R^{11},\\ NR^{11}R^{11},\ COOR^{10},\ NO_2,\ CN,\ C(O)R^{10},\ OC(O)NR^{10}R^{10},\ C(O)NR^{10}R^{10},\ N(R^{10})C(O)R^{10},\ N(R^{10})C(O)R$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵: NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

10:54 **3**499_8011

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF3; SR10; OR10; $NR^{10}R^{10}$; $NR^{10}R^{11}$; $NR^{11}R^{11}$; $COOR^{10}$; NO_2 ; CN; $C(O)R^{10}$; $S(O)_nR^{10}$; $S(O)_nNR^{10}R^{10}$; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl, C4-C10 cycloalkenyl; haloalkyl, C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, $C(O)R^{13}$, $C(O)NR^{13}R^{13}$, $NR^{13}C(O)R^{13}$, or $OC(O)R^{13}$;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR14, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR 14R 14, COOR 14, NO2, CN;

Each R¹⁴ is independently H; C1-C10 alkyl: C3-C10 cycloalkyl or phenyl; Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8: halo; CF3; COOR5; C(O)R5; C(O)C(O)R5; **3**499_801

 $C(O)NR^5R^5$; $S(O)_nR^5$; $S(O)_nNR^5R^5$; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 , R^8 , or phenyl optionally substituted with substituted with 1-4 independent R^{23} ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵ S(O)_nNR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

4. The compound of claim 1 wherein,

 R^1 is independently phenyl optionally substituted with 1-5 independent R^4 ; R^2 is independently NHR³;

Each R³ is independently aryl; phenyl optionally substituted with 1-5 independent R⁴ on each ring; or heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

Each R^4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF3; SR5; OR5; OC(O) R^5 ; NR5 R^5 ; NR5 R^6 ; NR5 R^6 ; NR5 R^6 ; NO2; CN; C(O) R^5 ; C(O)C(O) R^5 ; C(O)NR5 R^5 ; S(O) R^5 ; S(O) R^5 ; S(O) R^5 ; NR5C(O)NR5 R^5 ; NR5C(O)NR5 R^5 ; NR5C(O) R^5 ; NR5C

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=NR⁵)NR⁵R⁵, or S(O)_n

R⁵:

23499-8011

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})C(O)$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may he substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)₀NR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)₀NR⁵R⁵; NR³S(O)₀R⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)₀R¹⁰; S(O)₀NR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R^{10} is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF_3 , OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R¹¹ is independently C(O)R¹⁰, COOR¹⁰, C(O)NR¹⁰R¹⁰ or S(O)₀R¹⁰;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl;

C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-

_· **3**499_301

C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³. NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R^{16} is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 , R^8 , or phenyl optionally substituted with substituted with 1-4 independent R^{23} ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; NR⁵C(O)R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

5. The compound of claim 1 wherein,

Each R^1 and R^2 is independently NHR³;

Each R^3 is independently aryl; phenyl optionally substituted with 1-5 independent R^4 on each ring; or heteroaryl optionally substituted with 1-4 independent R^4 on each ring;

Each R^4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 , halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁵R¹⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸;

 $NR^5S(O)_nNR^5R^5;\ NR^5S(O)_nR^5;\ NR^5S(O)_nR^8;\ NR^5C(O)C(O)NR^5R^5;\ NR^5C(O)C(O)NR^5R^6;$ $OC(O)NR^5R^5;\ OS(O)_nNR^5R^5;\ NR^5S(O)_nOR^5;\ P(O)(OR^5)_2;\ C1-C10\ alkyl\ substituted\ with\ 1-3\ independent\ aryl,\ R^7\ or\ R^8;\ or\ C2-C10\ alkenyl\ substituted\ with\ 1-3\ independent\ aryl,\ R^7\ or\ R^8;$

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_n$ R^5 :

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{10}R^{11}$, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})$ ($COOR^{10}$), $S(O)_nNR^{10}R^{10}$; $NR^{10}S(O)_nNR^{10}R^{10}$, $NR^{10}S(O)_nR^{10}$; or $P(O)(OR^5)_2$;

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsarurated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)_nR¹⁰; S(O)_nNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-

3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF_3 , OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R^{16} is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF_3 ; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 , R^8 , or phenyl optionally substituted with substituted with 1-4 independent R^{23} ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

R⁵:

The compound of claim I wherein,

R¹ is independently NHR³;

R² is independently NHR³;

Each R³ is independently aryl; phonyl optionally substituted with 1-5 independent R⁴ on each ring; or heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

Each R4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; NR^5R^5 ; NR^5R^6 ; NR^5R^{16} ; $COOR^5$; NO_2 ; $CO; C(O)R^5; C(O)C(O)R^5; C(O)NR^5R^5; S(O)_0R^5$ $S(O)_{n}NR^{5}R^{5}$; $NR^{5}C(O)NR^{5}R^{5}$; $NR^{5}C(O)C(O)R^{5}$; $NR^{5}C(O)R^{5}$; $NR^{5}(COOR^{5})$; $NR^{5}C(O)R^{8}$; $NR^{5}S(O)_{n}NR^{5}R^{5};\ NR^{5}S(O)_{n}^{N}R^{5};\ NR^{5}S(O)_{n}^{N}R^{5};\ NR^{5}C(O)C(O)NR^{5}R^{6};\ NR^{5}C(O)C(O)NR^{5}R^{6};$ $OC(O)NR^5R^5$; $OS(O)_nNR^5R^5$; $NR^5S(O)_nOR^5$; $P(O)(OR^5)_2$; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2 C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R5 is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl, C4-C10 cycloalkenyl aryl; R9; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R7 or R9 groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R7 or R9 groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R7 or R9;

Each R⁶ is independently C(Q)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=NR⁵)NR⁵R⁵, or S(O)_n

Each R⁷ is independently halo, CR₃, SR¹⁰, OR¹⁰, OC(O)R¹⁰, NR¹⁰R¹⁰, NR¹⁰R¹¹, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})$ $(COOR^{10}), S(O)_nNR^{10}R^{10}; NR^{10}S(O)_nNR^{10}R^{10}; NR^{10}S(O)_nR^{10}; or P(O)(OR^5)_2;$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; halo; sulfur; oxygen; CF3; SR5; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)₀NR⁵R⁵; $NR^5C(O)NR^5R^5$; $NR^5C(O)R^9$; $NR^5S(O)_nNR^5R^5$; $NR^5S(O)_nR^9$; C1-C10 alkyl substituted with 1-3 independent R7, R9 or aryl; or C2-C10 alkenyl substituted with 1-3 independent R7, R9 or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)_nR¹⁰; S(O)_nNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R^{10} is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF_3 , OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_{n}R^{10}$;

Each R¹² is independently H; C1 C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl;

C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵;

Ge.

50h

3499_8011

C(O)NR⁵R⁵; S(O)_nR⁵; S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R23; or C2-C10 alkenyl substituted with 1-3 independent aryl, R7 or R8; and

Each R²³ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; $NR^{5}R^{5}; NR^{5}R^{6}; COOR^{5}; NO_{2}; CN; C(O)R^{5}; C(O)C(O)R^{5}; C(O)NR^{5}R^{5}; S(O)_{0}R^{5}; S(O)_{n}NR^{5}R^{5};$ $NR^{5}C(O)NR^{5}R^{5};\ NR^{5}C(O)C(O)R^{5};\ NR^{5}C(O)R^{5};\ NR^{5}(COOR^{5});\ NR^{5}C(O)R^{8};\ NR^{5}S(O)_{0}NR^{5}R^{5};$ $NR^{5}S(O)_{n}R^{5}; NR^{5}S(O)_{n}R^{8}; NR^{5}C(O)C(O)NR^{5}R^{5}; NR^{5}C(O)C(O)NR^{5}R^{6}; OC(O)NR^{5}R^{5};$ OS(O), NR⁵R⁵; NR⁵S(O), OR⁵; P(O)(OR⁵)₂; Cl-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸; provided R¹ is not NH₂.

7. The compound of claim 1 wherein,

R¹ is independently NHR⁶;

R² is independently NHR³;

Each R³ is independently aryl; phenyl optionally substituted with 1-5 independent R4 on each ring; or heteroaryl optionally substituted with 1-4 independent R4 on each ring;

Each R4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; $NR^{5}R^{5};\ NR^{5}R^{6};\ NR^{5}R^{16};\ COOR^{5};\ NO_{2};\ CN;\ C(O)R^{5};\ C(O)C(O)R^{5};\ C(O)NR^{5}R^{5};\ S(O)_{n}R^{5}=0$ ${}^{5}(O)_{11}NR^{5}R^{5}; NR^{5}C(O)NR^{5}R^{5}; NR^{5}C(O)C(O)R^{5}; NR^{5}C(O)R^{5}; NR^{5}(COOR^{5}); NR^{5}C(O)R^{8};$ $NR^{5}S(O)_{n}NR^{5}R^{5};\ NR^{5}S(O)_{n}R^{5};\ NR^{5}S(O)_{n}R^{6};\ NR^{5}C(O)C(O)NR^{5}R^{5};\ NR^{5}C(O)C(O)NR^{5}R^{6};$ OC(O)NR⁵R⁵; OS(O)_aNR⁵R⁵; NR⁵S(O)_aOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_n$

R5:

08/20/02

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11},COOR^{10},NO_2,CN,C(O)R^{10},UC(O)NR^{10}R^{10},C(O)NR^{10}R^{10},N(R^{10})C(O)R^{10},N(R^$ $(COOR^{10}), S(O)_nNR^{10}R^{10}; NR^{10}S(O)_nNR^{10}R^{10}; NR^{10}S(O)_nR^{10}; or P(O)(OR^5)_2;$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; halo; sulfur; oxygen; CF3; SR5; OR^5 ; $OC(O)R^5$; NR^5R^5 ; NR^5R^6 ; NR^6R^6 ; $COOR^5$; NO_2 ; CN; $C(O)R^5$; $C(O)NR^5R^5$; $S(O)_nNR^5R^5$; $NR^5C(O)NR^5R^5$; $NR^5C(O)R^9$; $NR^5S(O)_nNR^5R^5$; $NR^5S(O)_nR^9$; C1-C10 alkyl substituted with 1-3 independent R7, R9 or aryl; or C2-C10 alkenyl substituted with 1-3 independent R7, R9 or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF3; haloalkyl; SR 10, $OR^{10}; NR^{10}R^{10}; NR^{10}R^{11}; NR^{11}R^{11}; COOR^{10}; NO_2; CN; C(O)R^{10}; S(O)_{a}R^{10}; S(O)_{n}NR^{10}R^{10}; or$ C(O)NR10R10:

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent CI-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 $cycloalkenyl, OR^{12}, SR^{12}, NR^{12}R^{12}, COOR^{12}, NO_2, CN, C(O)R^{12}, C(O)NR^{12}R^{12}, NR^{12}C(O)R^{12}, C(O)R^{12}R^{12}, C(O)R^{12}, C(O)R^{12}R^{12}, C(O)R^{12}R^{12}, C(O)R^{12}R^{12}, C(O)R^$ N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_{m}NR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$; Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl;

C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-

C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF3, OR13, SR13, $NR^{13}R^{13}$, $COOR^{13}$, NO_2 , CN, $C(O)R^{13}$, $C(O)NR^{13}R^{13}$, $NR^{13}C(O)R^{13}$, or $OC(O)R^{13}$; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, $C(O)R^{13}$, $C(O)NR^{13}R^{13}$, $NR^{13}C(O)R^{13}$, or $OC(O)R^{13}$;

AMGEN

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR14, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR14R14, COOR14, NO2, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; COOR5; C(O)R5; C(O)C(O)R5; C(O)NR⁵R⁵; S(O)₀R⁵; S(O)₀NR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸; and

Each R²³ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; $NR^{5}R^{5}; NR^{5}R^{6}; COOR^{5}; NO_{2}; CN; C(O)R^{5}; C(O)C(O)R^{5}; C(O)NR^{5}R^{5}; S(O)_{0}R^{5}; S(O)_{0}NR^{5}R^{5}; S(O)_{$ $NR^{5}C(O)NR^{5}R^{5};\ NR^{5}C(O)C(O)R^{5};\ NR^{5}C(O)R^{5};\ NR^{5}C(O)R^{5};\$ $NR^5S(O)_bR^5;\ NR^5S(O)_bR^8;\ NR^5C(O)C(O)NR^5R^5;\ NR^5C(O)C(O)NR^5R^6;\ OC(O)NR^5R^5;$ OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

8. The compound of claim 1 wherein,

R¹ is independently OR⁵:

R² is independently NHR³;

Each R3 is independently aryl; phenyl optionally substituted with 1-5 independent R4 on each ring; or heteroaryl optionally substituted with 1-4 independent R4 on each ring;

Each R4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR^5R^5 ; NR^5R^6 ; NR^5R^{16} ; $COOR^5$; NO_2 ; CN; $C(O)R^5$; $C(O)C(O)R^5$; $C(O)NR^5R^5$; $S(O)_nR^5$!

 $S(O)_nNR^5R^5$; $NR^5C(O)NR^5R^5$; $NR^5C(O)C(O)R^5$; $NR^5C(O)R^5$; $NR^5(COOR^5)$; $NR^5C(O)R^8$; $NR^5S(O)_nNR^5R^5$; $NR^5S(O)_nR^5$; $NR^5S(O)_nR^8$; $NR^5C(O)C(O)NR^5R^5$; $NR^5C(O)C(O)NR^5R^6$; $OC(O)NR^5R^5$, $OS(O)_nNR^5R^5$; $NR^5S(O)_nOR^5$; $P(O)(OR^5)_2$; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 or R^8 ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ;

AMGEN

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_u$

R⁵;

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})C(O)$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁶R⁶; NR⁶R⁶; COOR⁵; NO₂, CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)₀R¹⁰; S(O)₀NR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

58 2499 8011

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_aNR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R^{16} is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 , R^8 , or phenyl optionally substituted with substituted with 1-4 independent R^{23} ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR^5 ; OR⁵; OC(O) R^5 ; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵; S(O)_nNR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵C(O)C(O)NR⁵C(O)C(O)NR⁵R⁵C(O)C(O)NR⁵C(O)C(O)NR⁵C(O)C(O)NR⁵C(O)C(

3499_8011

OS(O), NR5R5; NR5S(O), OR5; P(O)(OR5)2; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 or R^8 , or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ; provided R is not methoxy or hydroxy when R2 is 4-chlorophenylamino; further provided R^1 is not phenoxy, methoxy or ethoxy when R^2 is 4-aminophenylsulfonylamino; and further provided R^1 is not phenoxy when R^2 is 4-methylthiophenylamino or sulfanilamide.

9. The compound of claim 1 wherein,

R1 is independently SR5;

R² is independently NHR³;

Each R³ is independently aryl; phonyl optionally substituted with 1-5 independent R4 on each ring; or heteroaryl optionally substituted with 1-4 independent R4 on each ring;

Each R4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; NR^5R^5 ; NR^5R^6 ; NR^5R^{16} ; $COOR^5$; NO_4 ; CN; $C(O)R^5$; $C(O)C(O)R^5$; $C(O)NR^5R^5$; $S(O)_nR^5$: $S(O)_{b}NR^{5}R^{5}; NR^{5}C(O)NR^{5}R^{5}; NR^{5}C(O)C(O)R^{5}; NR^{5}C(O)R^{5}; NR^{5}(COOR^{5}); NR^{5}C(O)R^{8};$ $NR^{5}S(O)_{n}NR^{5}R^{5};\ NR^{5}S(O)_{n}R^{5};\ NR^{5}S(O)_{n}R^{6}\backslash NR^{5}C(O)C(O)NR^{5}R^{5};\ NR^{5}C(O)C(O)NR^{5}R^{6};$ $OC(O)NR^5R^5$; $OS(O)_aNR^5R^5$; $NR^5S(O)_nOR^5$; $R(O)(OR^5)_2$; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R°; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R7 or R9 groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R7 or R9 groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R7 or R9;

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=NR⁵)NR⁵R⁵, or

 $S(O)_{n}R^{5};$

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11},COOR^{10},NO_2,CN,C(O)R^{10},OC(O)NR^{10}R^{10},C(O)NR^{10}R^{10},N(R^{10})C(O)R^{10},N(R^$ $(COOR^{10}), \ S(O)_{n}NR^{10}R^{10}; \ NR^{10}S(O)_{n}NR^{10}R^{10}; \ NR^{10}S(O)_{n}R^{10}; \ or \ P(O)(OR^{5})_{2};$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, r 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substitutent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰, NO₂; CN; C(O)R¹⁰; S(O)_nR¹⁰; S(O)_nNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently/H; C1-C10 alkyl; C2-C10 alkcnyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)₀NR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)₀NR¹²R¹², or OC(O)R¹²;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³.

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R^{16} is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF_3 ; $COOR^5$; $C(O)R^5$; $C(O)C(O)R^5$; $C(O)NR^5R^5$; $S(O)_nR^5$; $S(O)_nR^5$; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 , R^8 , or phenyl optionally substituted with substituted with 1-4 independent R^{23} ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 , and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂. CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)₀R⁵; S(O)₀NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁶; NR⁵S(O)₀NR⁵R⁵; NR⁵S(O)₀R⁸; NR⁵S(O)₀R⁸; NR⁵S(O)₀R⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OC(O)N

10. The compound of claim 1 wherein:

R² is independently NHR³;

R1 is one of the following groups:

$$R^4$$
 R^4
 R^4
 R^4
 R^4

Each R³ is independently aryl; phenyl optionally substituted with 1-5 independent R⁴ on each ring; or heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

Each R⁴ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁵R⁶; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nR⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵C(O)R⁸; NR⁵C(O)_nR⁵; NR⁵C(O)_nR⁵; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=NR⁵)NR⁵R⁵, or S(O)_n

$$\begin{split} R^5; \\ & \qquad \qquad Each \ R^7 \ is \ independently \ halo, \ CF_3, \ SR^{10}, \ OR^{10}, \ OC(O)R^{10}, \ NR^{10}R^{10}, \ NR^{10}R^{11}, \\ NR^{11}R^{11}, \ COOR^{10}, \ NO_2, \ CN, \ C(O)R^{10}, \ OC(O)NR^{10}R^{10}, \ C(O)NR^{10}R^{10}, \ N(R^{10})C(O)R^{10}, \ N(R^{10})C(O)$$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁶R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)₀NR⁵R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵S(O)₀NR⁵R⁵; NR⁵S(O)₀R⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substitutent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰;

OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)₀R¹⁰; S(O)₀NR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)₀R⁵; S(O)₀NR⁵R⁵;

 $NR^{5}S(O)_{n}R^{5};\ NR^{5}S(O)_{n}R^{8};\ NR^{5}C(O)C(O)NR^{5}R^{5};\ NR^{5}C(O)C(O)NR^{5}R^{6};\ OC(O)NR^{5}R^{5};$ OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

AMGEN

11. The compound of claim 1 wherein,

R1 is independently heterocyclyl optionally substituted with 1-4 independent R4 on each ring, wherein said heterocyclyl is not unsubstituted piperidine;

R² is independently NHR³;

Each R³ is independently aryl; phenyl optionally substituted with 1-5 independent R⁴ on each ring; or heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

Each R4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; $NR^5R^5; NR^5R^6; NR^5R^{16}; COOR^5; NO_2; CN; C(O)R^5; C(O)C(O)R^5; C(O)NR^5R^5; S(O)_nR^{5n} + (O)^2R^5; C(O)^2R^5; C(O)^2R^5;$ $S(O)_{b}NR^{5}R^{5};\ NR^{5}C(O)NR^{5}R^{5};\ NR^{5}C(O)C(O)R^{5};\ NR^{5}C(O)R^{5};\ NR^{5}(COOR^{5});\ NR^{5}C(O)R^{8};$ $NR^{5}S(O)_{n}NR^{5}R^{5};\ NR^{5}S(O)_{n}R^{5};\ NR^{5}S(O)_{n}R^{8};\ NR^{5}C(O)C(O)NR^{5}R^{5};\ NR^{5}C(O)C(O)NR^{5}R^{6};$ OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=NR⁵)NR⁵R⁵, or S(O)_n R5;

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11},COOR^{10},NO_2,CN,C(O)R^{10},OC(O)NR^{10}R^{10},C(O)NR^{10}R^{10},N(R^{10})C(O)R^{10},N(R^$ $(COOR^{10})$, $S(O)_nNR^{10}R^{10}$; $NR^{10}S(O)_nNR^{10}R^{10}$; $NR^{10}S(O)_nR^{10}$; or $P(O)(OR^5)_2$;

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if hicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be

11:00 **6**499_8011

substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; halo; sulfur; oxygen; CF3; SR5; OR^5 ; $OC(O)R^5$; NR^5R^5 ; NR^5R^6 ; NR^6R^6 ; $COOR^5$; NO_2 ; CN; $C(O)R^5$; $C(O)NR^5R^5$; $S(O)_uNR^5R^5$; NR⁵C(O)NR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R7, R9 or aryl; or C2-C10 alkenyl substituted with 1-3 independent R7, R9 or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0. 1. 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur, oxygen; CF3; haloalkyl; SR10; $OR^{10}; NR^{10}R^{10}; NR^{10}R^{11}; NR^{11}R^{11}; COOR^{10}; NO_2; CN; C(O)R^{10}; S(O)_nR^{10}; S(O)_nNR^{10}R^{10}; or$ C(O)NR10R10:

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, $NR^{13}R^{13}$, $COOR^{13}$, NO_2 , CN, $C(O)R^{13}$, $C(O)NR^{13}R^{13}$, $NR^{13}C(O)R^{13}$, or $OC(O)R^{13}$; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, $C(O)R^{13}$, $C(O)NR^{13}R^{13}$, $NR^{13}C(O)R^{13}$, or $OC(O)R^{13}$;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR14, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl;

C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵;

C(O)NR⁵R⁵: S(O)_nR⁵ S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)₀R⁵: S(O)₀NR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁶; NR⁵C(O)R⁸; NR⁵S(O)₀NR⁵R⁵; NR⁵S(O)₀R⁸; NR⁵S(O)₀R⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OC(O)NR⁵R⁵; OS(O)₀NR⁵R⁵; NR⁵S(O)₀OR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

12. The compound of claim 1 wherein,

Each R¹ is independently heteroaryl substituted with 1-4 independent R⁴ on each ring, wherein said heteroaryl comprises at least one nitrogen heteroatom and said heteroaryl is attached at said nitrogen heteroatom;

Each R² is independently NHR³;

Each R^3 is independently aryl; phenyl optionally substituted with 1-5 independent R^4 on each ring; or heteroaryl optionally substituted with 1-4 independent R^4 on each ring;

Each R^4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁶; NR⁵R⁶; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵C(O)R⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵, P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; cor R⁹ groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_n$ R^5 ;

 $Each\ R^7\ is\ independently\ halo,\ CF_3,\ SR^{10},\ OR^{10},\ OC(O)R^{10},\ NR^{10}R^{10},\ NR^{10}R^{11},\\ NR^{11}R^{11},\ COOR^{10},\ NO_2,\ CN,\ C(O)R^{10},\ OC(O)NR^{10}R^{10},\ C(O)NR^{10}R^{10},\ N(R^{10})C(O)R^{10},\ N(R^{10})C(O)R$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substitutent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)₀R¹⁰; S(O)_nNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R^{10} is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, R^{12} , R^{12} , or R^{12} , or R^{12} , or R^{12} , or phenyl optionally substituted with 1-3

08/20/02

independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R¹¹ is independently C(O)R¹⁰, COOR¹⁰, C(O)NR¹⁰R¹⁰ or S(O)_nR¹⁰;

AMGEN

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, $NR^{13}R^{13}$, $COOR^{13}$, NO_2 , CN, $C(O)R^{13}$, $C(O)NR^{13}R^{13}$, $NR^{13}C(O)R^{13}$, or $OC(O)R^{13}$; or phenyl optionally substituted with 1-3 independent CI-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, $C(O)R^{13}$, $C(O)NR^{13}R^{13}$, $NR^{13}C(O)R^{13}$, or $OC(O)R^{13}$;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR14, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF_3 ; $COOR^5$; $C(O)R^5$; $C(O)C(O)R^5$; C(O)NR⁵R⁵; S(O)_uR⁵; S(O)_uNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸. or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R7 or R8; and

Each R²³ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; $NR^5R^5; \ NR^5R^6; \ COOR^5; \ NO_2; \ CN; \ C(O)R^5; \ C(O)C(O)R^5; \ C(O)NR^5R^5; \ S(O)_nR^{5:} \ S(O)_nNR^5R^5;$ $NR^{5}C(O)NR^{5}R^{5};\ NR^{5}C(O)C(O)R^{5};\ NR^{5}C(O)R^{5};\ NR^{5}C(O)R^{5};\$ $NR^{5}S(O)_{u}R^{5};\ NR^{5}S(O)_{u}R^{8};\ NR^{5}C(O)C(O)NR^{5}R^{5};\ NR^{5}C(O)C(O)NR^{5}R^{6};\ OC(O)NR^{5}R^{5};$ OS(O)_nNR⁵R⁵: NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

13. The compound of claim 1 wherein,

3499 8011

Each R¹ is independently heterocyclyl substituted with 1-4 independent R⁴ on each ring, wherein said heterocyclyl is not unsubstituted piperidine, and said heterocyclyl comprises at least one nitrogen heteroatom and said heterocyclyl is attached at said nitrogen heteroatom;

Each R² is independently NHR³;

Each R^3 is independently aryl; phenyl optionally substituted with 1-5 independent R^4 on each ring; or heteroaryl optionally substituted with 1-4 independent R^4 on each ring;

Each R^4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁵R¹⁶: COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_n$ R^5 :

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{10}R^{11}$, $NR^{10}R^{10}$, NO_2 , NR^{10} , $NC(O)R^{10}$, $NC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{10$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵;

6499 8011

 $NR^5C(O)NR^5R^5$; $NR^5C(O)R^9$; $NR^5S(O)_nNR^5R^5$; $NR^5S(O)_nR^9$; C1-C10 alkyl substituted with 1-3 independent R^7 , R^9 or aryl; or C2-C10 alkenyl substituted with 1-3 independent R^7 , R^9 or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)₀R¹⁰; S(O)₀NR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²;

Each R¹¹ is independently C(O)R¹⁰, COOR¹⁰, C(O)NR¹⁰R¹⁰ or S(O)_nR¹⁰;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

3499_8011

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; COOR5; C(O)R5; C(O)C(O)R5; C(O)NR⁵R⁵; S(O)₀R⁵: S(O)₀NR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R7 or R8; and

Each R²³ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; $NR^5R^5; NR^5R^6; COOR^5; NO_2; CN; C(O)R^5; C(O)C(O)R^5; C(O)NR^5R^5; S(O)_nR^5; S(O)_nNR^5R^5; S(O)_nNR^5; S(O)_nNR^5R^5; S(O)_nNR^5; S(O)_nNR^5; S(O)_nNR^5; S(O)_nNR^5; S(O)_nNR^5;$ $NR^5C(O)NR^5R^5;\ NR^5C(O)C(O)R^5;\ NR^5C(O)R^5;\ NR^5(COOR^5);\ NR^5C(O)R^8;\ NR^5S(O)_nNR^5R^5;$ $NR^{5}S(O)_{n}R^{5};\ NR^{5}S(O)_{n}R^{8};\ NR^{5}C(O)C(O)NR^{5}R^{5};\ NR^{5}C(O)C(O)NR^{5}R^{6};\ OC(O)NR^{5}R^{5};$ OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent axyl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

14. The compound of claim 1 wherein,

Each R² is independently NHR³;

Each R¹ is independently of the formula:

Each R³ is independently aryl; phenyl optionally substituted with 1-5 independent R4 on each ring; or heteroaryl optionally substituted with 1-4 independent R4 on each ring;

Each R⁴ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloaikyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; $NR^5R^5; NR^5R^6; NR^5R^{16}; COOR^5; NO_2; CN, C(O)R^5; C(O)C(O)R^5; C(O)NR^5R^5; S(O)_0R^5; C(O)R^5; C(O)R^$ $S(O)_nNR^5R^5$; $NR^5C(O)NR^5R^5$; $NR^5C(O)C(O)R^5$; $NR^5C(O)R^5$; $NR^5(COOR^5)$; $NR^5C(O)R^8$; $NR^{5}S(O)_{0}NR^{5}R^{5};\ NR^{5}S(O)_{0}R^{5};\ NR^{5}S(O)_{n}R^{8};\ NR^{5}C(O)C(O)NR^{5}R^{5};\ NR^{5}C(O)C(O)NR^{5}R^{6};$

OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; r C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_n$ R^5 ;

 $Each\ R^7\ is\ independently\ halo,\ CF_3,\ SR^{10},\ OR^{10},\ OC(O)R^{10},\ NR^{10}R^{10},\ NR^{10}R^{11},\\ NR^{11}R^{11},\ COOR^{10},\ NO_2,\ CN,\ C(O)R^{10},\ OC(O)NR^{10}R^{10},\ C(O)NR^{10}R^{10},\ N(R^{10})C(O)R^{10},\ N(R^{10})C(O)R$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)₀R¹⁰; S(O)₀NR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10

5499 8011

cycloalkenyl, OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF_3 , OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R^{16} is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 , R^8 , or phenyl optionally substituted with substituted with 1-4 independent R^{23} ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ; and

Each R²³ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_uR⁵ S(O)_uNR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_uNR⁵R⁵; NR⁵S(O)_uR⁸; NR⁵S(O)_uR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OS(O)_uNR⁵R⁵; NR⁵S(O)_uOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

15. The compound of claim 1 wherein,

Each R² is independently NHR³;

Each R¹ is independently of the formula:

a'

Each X is independently O or S;

Each R³ is independently aryl; phenyl optionally substituted with 1-5 independent R⁴ on each ring; or heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

Each R^4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nR⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵C(O)R⁵; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=NR⁵)NR⁵R⁵, or S(O)_n

R5;

: 06 2499 8011

Each R^7 is independently halo, CF_5 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})C(O)$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substitutent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)₀R¹⁰; S(O)₀NR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²;

Each R¹¹ is independently C(O)R¹⁰, COOR¹⁰, C(O)NR¹⁰R¹⁰ or S(O)₀R¹⁰; Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl;

C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-

C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵ S(O)_nNR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OC(O)NR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

16. The compound of claim 1 wherein,

Each R² is independently NHR³;

Each R1 is independently of the formula:

Each X is independently O or S;

Each R³ is independently aryl: phenyl optionally substituted with 1-5 independent R4 on each ring; or heteroaryl optionally substituted with 1-4 independent R4 on each ring;

Each R4 is independently selected from H. C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; NR^5R^5 ; NR^5R^6 ; NR^5R^{16} ; $COOR^5$; NO_2 ; CN; $C(O)R^5$; $C(O)C(O)R^5$; $C(O)NR^5R^5$; $S(O)_nR^{5}$; $S(O)_{n}NR^{5}R^{5}$; $NR^{5}C(O)NR^{5}R^{5}$; $NR^{5}C(O)C(O)R^{5}$; $NR^{5}C(O)R^{5}$; $NR^{5}(COOR^{5})$; $NR^{5}C(O)R^{8}$; $NR^{5}S(O)_{n}NR^{5}R^{5}$; $NR^{5}S(O)_{n}R^{5}$; $NR^{5}S(O)_{n}R^{8}$; $NR^{5}C(O)C(O)NR^{5}R^{5}$; $NR^{5}C(O)C(O)NR^{5}R^{6}$; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂, C1-C10 alkyl substituted with 1-3 independent aryl, R7 or R8; or C2-C10 alkenyl substituted with 1-3 independent aryl, R7 or R8;

Each R5 is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R7 or R9 groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R7 or R⁹ groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=NR⁵)NR⁵R⁵, or S(O)_n R5;

Each R⁷ is independently halo, CF₃, SR¹⁰, OR¹⁰, OC(O)R¹⁰, NR¹⁰R¹⁰, NR¹⁰R¹¹, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})$ $(COOR^{10})$, $S(O)_nNR^{10}R^{10}$; $NR^{10}S(O)_nNR^{10}R^{10}$; $NR^{10}S(O)_0R^{10}$; or $P(O)(OR^5)_2$;

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O. N. or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be

substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)_uR¹⁰; S(O)_uNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R^{10} is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF_3 , OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂. CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴;

SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently II; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸; and

Each R²³ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)₀R⁵; S(O)₀NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁵; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OC(O)NR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

17. The compound of claim 1 wherein,

Each R² is independently NHR³;

Each \mathbb{R}^1 is independently of the formula:

Each R³ is independently aryl; phenyl optionally substituted with 1-5 independent R⁴ on each ring; or heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

Each R4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; NR^5R^5 ; NR^5R^6 ; NR^5R^{16} ; $COOR^5$; NO_2 ; CN; $C(O)R^5$; $C(O)C(O)R^5$; $C(O)NR^5R^5$; $S(O)_0R^5$; $S(O)_{n}NR^{5}R^{5}$; $NR^{5}C(O)NR^{5}R^{5}$; $NR^{5}C(O)C(O)R^{5}$; $NR^{5}C(O)R^{5}$; $NR^{5}C(O)R^{8}$; $NR^{5}S(O)_{n}NR^{5}R^{5};\ NR^{5}S(O)_{n}R^{5};\ NR^{5}S(O)_{n}R^{8};\ NR^{5}C(O)C(O)NR^{5}R^{5};\ NR^{5}C(O)C(O)NR^{5}R^{6};$ OC(O)NR⁵R⁵; OS(O)_uNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

AMGEN

Each R5 is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R7 or R9 groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R7 or R⁹ groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=NR⁵)NR⁵R⁵, or S(O)_n R5;

Each R⁷ is independently halo, CF₃, SR¹⁰, OR¹⁰, OC(O)R¹⁰, NR¹⁰R¹⁰, NR¹⁰R¹¹, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})$ $(COOR^{10}),\ S(O)_nNR^{10}R^{10};\ NR^{10}S(O)_nNR^{10}R^{10};\ NR^{10}S(O)_nR^{10};\ or\ P(O)(OR^5)_2;$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; halo; sulfur; oxygen; CF3; SR5; OR^5 ; $OC(O)R^5$; NR^5R^5 ; NR^5R^6 ; NR^6R^6 ; $COOR^5$; NO_2 ; CN; $C(O)R^5$; $C(O)NR^5R^5$; $S(O)_0NR^5R^5$; NR⁵C(O)NR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R7, R9 or aryl; or C2-C10 alkenyl substituted with 1-3 independent R7, R9 or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF3; haloalkyl; SR10;

 OR^{10} ; $NR^{10}R^{10}$; $NR^{10}R^{11}$; $NR^{11}R^{11}$; $COOR^{10}$; NO_2 ; CN; $C(O)R^{10}$; $S(O)_nR^{10}$; $S(O)_nNR^{10}R^{10}$; or $C(O)NR^{10}R^{10}$;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)₀NR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)₀NR¹²R¹², or OC(O)R¹²;

Each R¹¹ is independently C(O)R¹⁰, COOR¹⁰, C(O)NR¹⁰R¹⁰ or S(O)_nR¹⁰.

Each R¹² is independently H: C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl, C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R¹⁷ is independently NR⁵R¹⁶; OR⁵; SR⁵; or halo; and

Each R²³ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycl alkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵;

 $NR^5R^5; NR^5R^6; COOR^5; NO_2; CN; C(O)R^5; C(O)C(O)R^5; C(O)NR^5R^5; S(O)_nR^5; S(O)_nNR^5R^5; NR^5C(O)NR^5R^5; NR^5C(O)R^5; NR^5C(O)R^5; NR^5C(O)R^5; NR^5C(O)R^8; NR^5S(O)_nNR^5R^5; NR^5S(O)_nR^5; NR^5S(O)_nR^6; NR^5C(O)C(O)NR^5R^5; NR^5C(O)C(O)NR^5R^6; OC(O)NR^5R^5; OS(O)_nNR^5R^5; NR^5S(O)_nOR^5; P(O)(OR^5)_2; C1-C10 alkyl substituted with 1-3 independent aryl, <math>R^7$ or R^8 ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 .

a

18. The compound of claim 1 wherein,

Each R¹ is independently one of the following groups:

wherein m is 0, 1, 2, 3 or 4;

Each R⁴ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁵R⁶; NR⁵R⁶; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁶; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; NR⁵C(O)C(O)NR⁵R⁶; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

 $S(O)_{n}R^{5};$

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=NR⁵)NR⁵R⁵, or

AMGEN

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})$ ($COOR^{10}$), $S(O)_nNR^{10}R^{10}$; $NR^{10}S(O)_nNR^{10}R^{10}$; $NR^{10}S(O)_nR^{10}$; or $P(O)(OR^5)_2$;

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)₀R¹⁰; S(O)₀NR¹⁰R¹⁰; or C(O)R¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)₀NR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)₀NR¹²R¹², or OC(O)R¹²;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹⁵R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R^{16} is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF_3 ; $COOR^5$; $C(O)R^5$; $C(O)C(O)R^5$; $C(O)NR^5R^5$; $S(O)_nR^5$; $S(O)_nNR^5R^5$; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 , R^8 , or phenyl optionally substituted with substituted with 1-4 independent R^{23} ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ;

Each R²² is independently C2-C9 alkyl substituted with 1-2 independent aryl, R⁷, or R⁸; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF3; SR5; OR5; OC(O)R5; NR5R5; NR5R6; COOR5; NO2; CN; C(O)R5; C(O)C(O)R5; C(O)NR5R5; S(O)nR5R5; S(O)nR8R5R5; NR5C(O)NR5R5; NR5C(O)R8; NR5C(O)R8

The compound of claim 1 wherein,
 Each R¹ is independently

wherein m is 0, 1, 2, 3 or 4;

Each R⁴ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁶; NR⁵R⁶; NR⁵R⁶; COOR⁵, NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵C(O)R⁸; NR⁵C(O)R⁸; NR⁵S(O)_nR⁵; NR⁵S(O)_nR⁶; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_0R^5$;

 $Each\ R^7\ is\ independently\ halo,\ CF_3,\ SR^{10},\ OR^{10},\ OC(O)R^{10},\ NR^{10}R^{10},\ NR^{10}R^{11},\\ NR^{11},\ COOR^{10},\ NO_2,\ CN,\ C(O)R^{10},\ OC(O)NR^{10}R^{10},\ C(O)NR^{10}R^{10},\ N(R^{10})C(O)R^{10},\ N(R^{10})C(O)R^{10},$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)₀NR⁵R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁹; NR⁵S(O)₀NR⁵R⁵; NR⁵S(O)₀R⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)_nR¹⁰; S(O)_nNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R^{10} is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF_3 , OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R¹¹ is independently C(O)R¹⁰, COOR¹⁰, C(O)NR¹⁰R¹⁰ or S(O)_nR¹⁰;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10

alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

a

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R²² is independently C2-C9 alkyl substituted with 1-2 independent aryl, R⁷, or R⁸;

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵ S(O)_nNR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OC(O)NR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸; and

Each R^{24} is independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^9 ; halo; sulfur, oxygen; CF_3 ; SR^5 ; OR^5 ; $OC(O)R^5$; NR^5R^5 ; NR^5R^6 ; NR^6R^6 ; $COOR^5$; NO_2 ; CN; $C(O)R^5$; $C(O)NR^5R^5$; $CO)_nNR^5R^5$; $NR^5C(O)_nNR^5R^5$; $NR^5C(O)_nNR^5$;

20. The compound of claim 1 wherein,

AMGEN

Each R is independently one of the following:

$$\alpha'$$

$$R^{19}$$
 or R^4 or R^4 R^4

wherein

Each halo is selected from fluoro, chloro, bromo and iodo;

Each R^4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF3; SR5; OR5; OC(O) R^5 ; NR5 R^5 ; NR5 R^6 ; NR5 R^6 ; NR5 R^6 ; NO2; CN; C(O) R^5 ; C(O)C(O) R^5 ; C(O)NR5 R^5 ; S(O)_nR5; S(O)_nR5; S(O)_nR5; NR5C(O)C(O)R5; NR5C(O)R5; NR5C(O)R8; NR5C(O)R8; NR5C(O)_nNR5 R^5 ; NR5C(O)_nR5; NR5C(O)_nR8; NR5C(O)C(O)NR5 R^5 ; NR5C(O)C(O)NR5 R^6 ; OC(O)NR5 R^5 ; NR5C(O)C(O)NR5 R^5 ; NR5C(O)C(O)NR5 R^5 ; NR5C(O)C(O)NR5 R^5 ; NR5C(O)C(O)NR5 R^5 ; OS(O)_nNR5 R^5 ; NR5C(O)_nOR5; P(O)(OR5)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 or R^8 ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_0R^5$;

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})$ ($COOR^{10}$), $S(O)_nNR^{10}R^{10}$; $NR^{10}S(O)_nNR^{10}R^{10}$; $NR^{10}S(O)_nR^{10}$; or $P(O)(OR^5)_2$;

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl, C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R³; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be

substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)_nR¹⁰; S(O)_nNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

a'

Each R^{10} is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF_3 , OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_{a}R^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R^{16} is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 , R^8 , or phenyl optionally substituted with substituted with 1-4 independent R^{23} ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ;

Each R¹⁹ is independently H or C1-C6 alkyl; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵; S(O)_nNR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OC(O)NR⁵

The compound of claim 1 wherein,
 Each R¹ is independently

Each R^4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O) R^5 ; NR⁵R⁵; NR⁵R⁶; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nR⁵: S(O)_nR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵C(O)_nNR⁵R⁵; NR⁵S(O)_nR⁵; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=NR⁵)NR⁵R⁵, or S(O)_nR⁵;

 $Each\ R^7\ is\ independently\ halo,\ CF_3,\ SR^{10},\ OR^{10},\ OC(O)R^{10},\ NR^{10}R^{10},\ NR^{10}R^{11},\\ NR^{11}R^{11},\ COOR^{10},\ NO_2,\ CN,\ C(O)R^{10},\ OC(O)NR^{10}R^{10},\ C(O)NR^{10}R^{10},\ N(R^{10})C(O)R^{10},\ N(R^{10})C(O)R$

a

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O. N. or S. which may be saturated or unsaturated, and wherein 0. 1. 2. 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)R⁹; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)_BR¹⁰; S(O)_BNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)₀NR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)₀NR¹²R¹², or OC(O)R¹²;

Each R¹¹ is independently C(O)R¹⁰, COOR¹⁰, C(O)NR¹⁰R¹⁰ or S(O)_nR¹⁰;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl;

C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-

C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl;

C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵;

C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R¹⁹ is independently H or C1-C6 alkyl; and

Each R²³ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo: CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵; S(O)_nNR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OC(O)NR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

- 24. A method of treating kinase-mediated disease or disease symptoms in a mammal comprising administration of a composition comprising an effective amount of a compound of any of claims 1-21.
- 25. A method of inhibiting kinase activity in a mammal comprising administration of a composition comprising an effective amount of a compound of any of claims 1-21.

^{5.}h B1

26. A method of treating disease or disease symptoms in a mammal comprising administration of a composition comprising an effective amount of a compound of any of claims 1-21.

27. A method of inhibiting angiogenesis or vasculogenesis activity in a mammal comprising administration of a composition comprising an effective amount of a compound of any of claims 1-21.