Matematica e BioStatistica con Applicazioni Informatiche Esercitazione in aula del 28 novembre 2018

Quesito 1. Si consideri la funzione $f(x) = (4x + 6)^3$.

- 1. Calcolare l'integrale indefinito $\int f(x)dx$.
- 2. Determinare l'area (con segno) sottesa alla funzione f nell'intervallo [0,1].

Risposta

$$\int f(x)dx = \frac{(4x+6)^4}{16} + C.$$

Risposta 1

Il valore dell'area è -544.

Risposta 2

Quesito 2. Un campione di pazienti assume un certo farmaco. Ad ognuno di questo viene misurata

- 1. Glicemia
- 2. Colesterolo totale
- 3. Emoglobina

. .

...ecc. ecc. (100 parametri fisiologici in totale)

I valori vengono confrontati con quelli di un campione di controllo (o con quelli in letteratura).

Per ognuna di queste misure consideriamo un test di ipotesi:

 $H_{0,i}$: il valore del parametro i è uguale a quello del campione di controllo

 $H_{A,i}$: il valore del parametro i è diverso a quello del campione di controllo

Assumiamo che tutte le ipotesi nulle siano vere e che questi 100 parametri si comportino come v.a. stocasticamente indipendenti. Quant'è la probabilità di rigettare (erroneamente) almeno 1 ipotesi nulla con una significatività del 5%?

Quant'è la probabilità di rigettare almeno 5 ipotesi nulla con una significatività del 5%?

Quesito 3. La variabile aleatoria X ha distribuzione normale con media $\mu = 7$ e deviazione standard $\sigma = 5$

- 1. Calcolare la probabilità dell'evento $X \in [1, 9]$
- 2. Calcolare la probabilità che da un campione di rango n = 16 si ottenga una media in [1, 9].

Esprimere il risutato numerico tramite (solo) le funzioni elencate in calce.

Risposta

$$\Pr(1 \le X \le 9) = \Pr\left(\frac{1-\mu}{\sigma} \le Z \le \frac{9-\mu}{\sigma}\right) = \Pr\left(Z \le \frac{2}{5}\right) - \Pr\left(Z \le -\frac{6}{5}\right)$$

$$= \text{norm.cdf(2/5) - norm.cdf(-6/5)}$$

$$= \text{norm.cdf(0.4) - norm.cdf(-1.2) = 0.540}$$

 \bar{X} v.a. media campionaria

$$\Pr(1 \le \bar{X} \le 9) = \Pr\left(\frac{1-\mu}{\sigma/\sqrt{n}} \le Z \le \frac{9-\mu}{\sigma/\sqrt{n}}\right) = \Pr\left(Z \le \frac{8}{5}\right) - \Pr\left(Z \le -\frac{24}{5}\right)$$

$$= \text{norm.cdf(-24/5)} - \text{norm.cdf(-24/5)}$$

$$= \text{norm.cdf(1.6)} - \text{norm.cdf(-4.8)} = 0.945$$

Quesito 4. Da una popolazione con distribuzione normale con media μ ignota e deviazione standard 45 estraiamo un campione di 16 individui. Qual è la probabilità che la media campionaria risulti $> \mu + 15$?

Esprimere il risutato numerico tramite (solo) le funzioni elencate in calce.

Risposta

n = 16 dimensione del campione

 $\varepsilon = 15$

 $\sigma = 45$ deviazione standard della popolazione

 σ/\sqrt{n} errore standard (deviazione standard della media)

$$P\left(Z > \frac{\varepsilon}{\sigma/\sqrt{n}}\right) = P\left(Z > \frac{4}{3}\right) = 1 - \text{norm.cdf}(4/3) = 0.091$$
 Risposta

```
Formulario: se X \sim B(\mathbf{n}, \mathbf{p}) allora E(X) = np
se X \sim NB(\mathbf{n}, \mathbf{p}) allora E(X) = n(1-p)/p
```

Si assuma noto il valore delle seguenti funzioni della libreria scipy.stats di Python

binom.pmf(k, n, p) = $\Pr(X = k)$ dove $X \sim B(n, p)$

binom.cdf(k, n, p) = $\Pr\left(X \leq \mathtt{k}\right) \, \mathrm{dove} \, X \sim B(\mathtt{n},\mathtt{p})$

bimom.ppf(q, n, p) = k dove k è tale che $\Pr(X \leq k) \cong q \text{ per } X \sim B(n,p)$

nbinom.xxx(k, n, p), è l'analogo per $X \sim NB(n,p)$.

norm.xxx(z), è l'analogo per $Z \sim N(0,1)$.