Zestaw 2.

Zadanie 1.

Ułóż harmonogram dla problemu $P2||C_{\max}$ przy pięciu zadaniach o czasach wykonania (3,3,2,2,2) stosując regułę LPT. Porównaj uzyskane rozwiązanie z optymalnym.

Zadanie 2.

Sytuacja jak wyżej, ale mamy trzy procesory oraz n=7, zaś czasy wykonywania wynoszą (5,5,4,4,3,3,3).

Zadanie 3.

Rozważamy problem $P3|prec|C_{max}$ dla n=9 zadań z czasami wykonania (3,2,2,2,4,4,4,4,9). Diagram Hassego relacji ograniczeń kolejnościowych przedstawia rysunek:

Stosujemy algorytm szeregowania listowego, przy czym porządek na liście jest zgodny z numeracją zadań.

- Znajdź uszeregowanie listowe dla tego problemu.
- Zwiększ liczbę maszyn do 4.
- Zmniejsz czasy wykonywania o 1.
- Osłab relację prec usuwając łuki (z_4,z_5) i (z_4,z_6) .

Zadanie 4.

Wykaż NP-trudność problemu $1|r_i, C_i \le d_i|$ -.

Zadanie 5.

Wykaż, że problem z poprzedniego zadania staje się wielomianowy dla $p_j=1$ stosując redukcję do zagadnienia szukania skojarzeń w grafie.

Zadanie 6. Znajdź rozwiązanie problemu $P3|p_j=1$, in-tree $|C_{\max}|$ dla zadań o ograniczeniach kolejnościowych przedstawionych na poniższym rysunku:

