Instituto Politécnico Nacional

Escuela Superior de Cómputo

Tarea 6

Sesión 9 del parcial 2 de Métodos Numéricos.

Tema: Métodos de Taylor de orden superior.

Nombre del alumno: De Luna Ocampo Yanina

Fecha de entrega: 24/10/2021

Introducción:

Este método se basa en suponer que la solución y (t;t0, y0) es suficientemente diferenciable en un entorno de t0. Si t1 está en dicho entorno y denotado h = t1 – t0. Este método se tuvo que obtener del de Euler que hemos visto con anterioridad. Generaremos aproximaciones por medio de este teorema.

<u>Descripción:</u> Emplee el método de Taylor de orden dos y cuatro para obtener aproximaciones de las soluciones del siguiente problema con valores iniciales:

Problema 1 del ejercicio 4.2, orden2:

$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$

Para lo anterior emplee h = 0.2, es decir, N = 10.

Procedimiento:

Debemos determinar nuestros parámetros dados por el ejercicio previo, tenemos nuestro punto inicial, punto final, condición inicial y el número de pasos que hará.

```
a = 0
b = 2
ci = 0.5
n = 10
```

Escribimos nuestra función f(t,y) para definirla y poder utilizarla

```
def fty(t,y):
    fty = y - (t**2) + 1
    return fty
```

Ya teniendo nuestra función original, debemos derivarla y definirla, con lo que obtenemos los siguiente.

```
def ftyp(t,y):
    fty = y - (t**2) - 2*t + 1
    return fty
```

Determinamos el tamaño de nuestro salto.

$$h = (b - a) / n$$

Creamos nuestro arreglo y procedemos a definir nuestra función.

```
def ftyR(t):
    ftyR = (t**2) + (2*t) + 1
    return ftyR
```

Sacamos nuestros valores exactos y el error de aproximación. Acomodándolos en una tabla, obtenemos lo siguiente:

Resultado:

La aproximacion obtenida se encuentra dada por:

Punto		Aproximacion	Real	Error Absoluto
	0.0	0.5	1.	0 0.5
	0.2	0.83	1.4	4 0.61
	0.4	1.2158	1.9	6 0.7442
	0.6	1.652076	2.5	6 0.907924
	0.8	2.13233272	3.2	4 1.10766728
	1.0	2.64864592	4.	0 1.35135408
	1.2	3.19134802	4.8	4 1.64865198
	1.4	3.74864458	5.7	6 2.01135542
	1.6	4.30614639	6.7	6 2.45385361
	1.8	4.8462986	7.8	4 2.9937014
	2.0	5.34768429	9.	0 3.65231571

Problema 1 del ejercicio 4.2, orden 4:

$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$

Para lo anterior emplee h = 0.2, es decir, N = 10.

Procedimiento:

Los valores necesarios para esta parte del problema, ya los hemos explicado en la parte superior.

Procedemos a obtener las siguientes derivadas que son, la segunda y la tercera.

Seguimos con definir nuestra nueva función.

```
def operaT4(t, w, h):
    operaT = fty(t,w) + (h / 2) * ftyp(t,w) + (h**2 / 6) * ftypp(t,w) + (h**3 / 24) * ftyppp(t,w)
    return operaT
```

Sacamos nuestros valores exactos y el error de aproximación. Acomodándolos en una tabla, obtenemos lo siguiente:

Resultado:

La aproximacion obtenida se encuentra dada por:

Punto		Aproximacion	Real	Err	or Absoluto
	0.0	0.5		1.0	0.5
	0.2	0.8293		1.44	0.6107
	0.4	1.21409102		1.96	0.74590898
	0.6	1.64894677		2.56	0.91105323
	0.8	2.12723959		3.24	1.11276041
	1.0	2.64087443		4.0	1.35912557
	1.2	3.17996403		4.84	1.66003597
	1.4	3.73243207		5.76	2.02756793
	1.6	4.28352853		6.76	2.47647147
	1.8	4.81523774		7.84	3.02476226
	2.0	5.30555538		9.0	3.69444462

¿Qué aprendí?

Este método, se obtiene a partir del desarrollo de orden n=1 de la función y(t) en el punto tk. Podemos encontrar un método que mejore la solución del problema, si el desarrollo de Taylor se extiende hasta orden n.