

ELL100: INTRODUCTION TO ELECTRICAL ENGG.

Boolean Logic

Instructor for this part: Debanjan Bhowmik, Assistant Professor, Department of Electrical Engineering, IIT Delhi

Contact: debanjan@ee.iitd.ac.in

Textbook: Moris Mano's 'Digital Design':

Chapter 2 (Boolean Algebra and Logic Gates)

Boolean Algebra

- Branch of algebra in which variable values are: True
 (1) or False (0)
- Basic set of TRUE/FALSE operations and rules
- Formulated by George Boole in 19th century
 - Two binary operators:
 - AND (conjunction): Output is TRUE 'only if' E

	AND	
A — inputs B —	Output	$C = A \cdot B$

Α	В	С
0	0	0
1	0	0
0	1	0
1	1	1

JE

Boolean Algebra

- Two binary operators:
 - AND (conjunction): Output is TRUE 'only if' BOTH inputs are TRUE
 - OR (disjunction): Output is TRUE 'if' ANY input is TRUE

Α	В	С
0	0	0
1	0	1
0	1	1
1	1	1

Boolean Algebra

- Two binary operators: AND (conjunction), OR (disjunction)
- One unary operator: NOT (Negation)

Α	В
0	1
1	0

Boolean Algebra: Basic Properties

- Both the binary operations satisfy: If A,B are 1/0
 - Closure (If A, B are $1/0 \rightarrow A+B$, A.B are also 1/0)
 - Commutativity

•
$$A + B = B + A$$
.

$$A.B = B.A$$

Associativity

•
$$(A + B) + C = A + (B + C)$$
, $A.(B.C) = (A.B).C$

$$A.(B.C) = (A.B).C$$

Distributivity

•
$$A.(B+C) = A.B + A.C$$

•
$$A.(B+C) = A.B + A.C$$
 $A + (B.C) = (A+B).(A+C)$

Idempotence

•
$$A + A = A$$

$$A.A = A$$

Identity

•
$$A + 1 = 1$$

$$A.0 = 0$$

Boolean Algebra: Basic Properties

- • Both the binary operations satisfy: If A,B are 1/0
 - Closure
 - Commutativity
 - Associativity
 - Distributivity
 - Idempotence
 - Absorption (A + A.B = A.(A + B) = A)
 - Involution $(\bar{A} = A \rightarrow NOT(NOT(A)) = A)$
 - Complement ($A + \overline{A} = 1$, $A.\overline{A} = 0$)

$$A + A.B = (A.1) + (A.B)$$

= $A.(B+1) = A$

$$A.(A + B) = (A + 0).(A + B)$$

= $A + (B.0) = A$

Boolean Algebra: Basic Properties

- Both the binary operations satisfy: If A,B are 1/0
 - Closure
 - Commutativity
 - Associativity
 - Distributivity
 - Idempotence
 - Absorption
 - Involution
 - Complement

De Morgan's Laws:

$$\overline{A + B} = \overline{A}.\overline{B}$$

$$\overline{A.B} = \overline{A} + \overline{B}$$

Universal Gates

- Universal Gates: Logic Gates that can implement any Boolean function, without the use of any other type of gates.
- They are more easier to fabricate and are the actual 'basic' gates in digital electronics

Universal Gates

- Universal Gates: Logic Gates that can implement any Boolean function, without the use of any other type of gates.
 - NAND Gate: \overline{AB} (NOT-AND)

А	В	С
0	0	1
1	0	1
0	1	1
1	1	0

NAND Implementation of NOT/AND/OR

Universal Gates

- Universal Gates: Logic Gates that can implement any Boolean function, without the use of any other type of gates.
 - NOR Gate : $\overline{A+B}$ (NOT-OR)

Α	В	С
0	0	1
1	0	0
0	1	0
1	1	0
1	1	0

NOR Implementation of NOT/OR/AND

Other Commonly Used Gates

- • Exclusive OR (XOR): $A \oplus B = \bar{A}B + A\bar{B}$
 - Also called Exclusive Disjunction
 - Output is TRUE if odd number of inputs are TRUE
 - Becomes "one and only one" in case of 2 inputs

Α	В	С
0	0	0
1	0	1
0	1	1
1	1	0

Other Commonly Used Gates

- • Exclusive NOR (XNOR) : $A \odot B = \bar{A}\bar{B} + AB = \overline{A \oplus B}$
 - Output is TRUE if even number of inputs are TRUE
 - Becomes 'Equivalence' in case of two inputs

$$Y = (\overline{A \oplus B}) = (A.B + \overline{A}.\overline{B})$$

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	1