

Hochschule Düsseldorf University of Applied Sciences

MACHINE PERCEPTION & TRACKING - SoSe2025

DETECTOR Ball, Torhüter, Spieler und Schiedsrichter falls sichtbar zu erkennen. OPTICAL FLOW Durchschnittliche Pixelverschiebung zwischen dem aktuellen und dem vorherigen Frame zu erkennen TRACKER Konsistente Tracks für Ball, Torhüter, Spieler und Schiedsrichter erstellen und aufzeichnen SHIRT CLASSIFIER Spieler anhand der Shirt-Farbe Team A oder B zuordnen Hochschule Düsseldorf University of Applied Sciences

ARCHITEKTUR

Video Reader

Detector

Optical Flow

Tracker

Shirt Classifier

Display

DETECTOR

Erkennung des Balles, der Spieler, der Torhüter und des Schiris

DETECTOR

Start

Step

Stop

MODEL YOLOV8M-FOOTBALL.PT

Objekte	Klasse
Ball	0
Torhüter	1
Spieler	2
Schiri	3

Warum

Erkennung von vier Objekten nach Aufgabenstellung

Formatvorgaben der Bounding Boxes passen auch

Nachteil ist die FPS beim Ausführen

IOU-NANO

IOU-MEDIUM

ABLAUF IN DER STEP-METHODE

Frame wird aus data geladen

Umgewandeltes Bild wird dem Model übergeben

Aus den Results extrahieren wir die nötigen Daten

Diese werden dann gespeichert und returned

STOPP!!!

Print dass die Detection finished ist.

OPTICAL FLOW

Bestimmung der *durchschnittlichen Pixelverschiebung* zwischen dem aktuellen und dem vorherigen Frame

Hochschule Düsseldorf University of Applied Sciences

11

OPTICAL FLOW

Konzept: Schätzung des Bewegungsvektors für jeden Pixel im Bild

Verschiebung eines Objekts bei zwei aufeinanderfolgenden Frames

$$I(x+dx,y+dy,t+dt)$$

OPTICAL FLOW

Annahme: Die Intensität des Objekt ist unverändert

$$I(x, y, t) = I(x + dx, y + dy, t + dt)$$

Taylor näherung der rechten Seite führt zu

$$\frac{I}{dx}\delta x + \frac{I}{dy}\delta y + \frac{I}{dt}\delta t = 0$$

Teilen durch δt ergibt die Optical Flow Gleichung

$$\frac{dI}{dx}u + \frac{dI}{dy}v + \frac{dI}{dt} = 0 \qquad \text{mit } u = \frac{dx}{dt} \text{ und } v = \frac{dy}{dt}$$

Gunnar-Farenback

Pros:

- Dense Flow Field: jeder Pixel wird betrachtet
- Größere Genauigkeit für globale Bewegung
- Robust bei einheitlichen Texturen

Cons:

- Höhere Kosten bei der Analyse
- Rauschanfällig bei Low-Texture

Lucas-Kanade

Pros:

- Sparse Flow Field: Recheneffizient
- Gut f
 ür besondere Merkmale

Cons:

- Durch feature erkennung, anfällig auf Spielerdetection
- Benötigt robuste Methode zum feature erkennen

OPTICAL FLOW: PAN, TILT, ZOOM

Pan/Tilt

Zoom

TRACKER

Aufgabe: Verknüpfung von Detektionen über mehrer Frames

Nutzen: Verfolgung individueller Objekte (Spieler) und

Stabilisierung der Ergebnisse

α/β -Filter PREDICTION & UPDATE

- Prediction der Objektbewegung basierend auf letzter Position & Geschwindigkeit
 - Kompensation von Kamerabewegung durch Optical Flow
- Update: Schätzung der aktuellen Position durch gewichtete Mischung von Vorhersage & Detektion

DATENASSOZIATION

- **Distance-Gating**: nur Detections unter 160 px von prediction
- Kostenmatrix: 1- IoU (IoU-Thresh = 0.3)
- Matching: Hungarian Algorithmus + Klassentreue

TRACK-BIRTH UND MAINTENANCE

- Neustarts: Unmatched Detections → neue Tracks (wenn IoU < 0.45)
- Filter:
- ♥ Velocity-Clamping (v_max je Klasse) Ball 120, Spieler 50
- Feld-Gate: Boxen nur im Bild
- Missing-Limit (max_missing je Klasse) Ball 1, Spieler 5

Hochschule Düsseldorf University of Applied Sciences

IoU 0.43

ERWEITERUNGEN

- Kalman/ Partikel Filter
- Deep-ReID-Features f
 ür bessere Assoziation

SHIRT CLASSIFIER

Spieler anhand der Shirt-Farbe Team A oder B zuordnen

Hochschule Düsseldorf University of Applied Sciences

22

ABLAUF IN DER STEP-METHODE

Shirt-Region wird berechnet

Klassifizieren und Clustern

Farb- und Teamzuordnung

CLUSTERING MIT KMEANS

Parameter:

- Eingabedaten: Trikotfarben der Spieler (float)
- Anzahl der Cluster = 2

Abbruchkriterien

- TERM_CRITERIA_EPS = 1
- TERM_CRITERIA_MAX_ITER = 10

HASTE FRAGEN?

Hochschule Düsseldorf University of Applied Sciences

28