Integration

Derek, Vignesh

2020

INTEGRATION [80 Marks]

1 Integrate the following:

(a)
$$\int \tan^{-1}(\frac{\pi}{3}x) \, \mathrm{d}x$$
 [4]

(b)
$$\int x^3 e^{3x} dx$$
 [4]

(c)
$$\int_{-\frac{1}{2}}^{1} \frac{1}{\sqrt{(1-x)(x+2)}} dx$$
 [4]

(d)
$$\int_0^{\ln 2} \frac{1}{e^x + e^{2x}} dx$$
, using the substitution $x = \ln u$. [5]

2 Show that $\frac{d}{dx} \cot x = -\csc^2 x$.

Hence or otherwise, find $\int \csc^3 x \, dx$, given that $0 < x < \pi$. [6]

- 3 Show that $\cos a\theta \cos 3a\theta = \frac{\cos 2a\theta + \cos 4a\theta}{2}$. Hence by Integration by Parts, find $\int_0^{\pi/4} 2\theta \cos \theta \cos 3\theta \, d\theta$. [6]
- 4 A geometric progression has first term a and common ration x, where $a, x \in \mathbb{R}$. The sum of the first n terms of the geometric progression is denoted by S_n .
 - (a) State in terms of a and x, the nth term of the geometric progression. [1]
 - (b) Given that the sum of the first n terms of the Harmonic Series $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = H_n$, show that $\int_0^1 S_n dx = aH_n$ [3]
- **5** Sketch the graph of $f(x) = 0.1e^x$ for $0 \le x \le \pi, x \in \mathbb{R}$. Using a Graphing Calculator, find the region enclosed by y = f(x) and the x-axis. [5]

- **6** Curves C_1 and C_2 are given by the equations $y = x \cos x$ and y = x respectively. For $0 \le x \le 2\pi$, find the exact area enclosed by C_1 and C_2 .
- 7 An engineer from FlowerFans.com models a new fan with the parametric equations $x = 3\cos\theta\cos2\theta$, $y = 3\sin\theta\cos2\theta$ for $0 \le x \le 2\pi$. Using a graphing calculator, find the total area of the blades of the fan in units².
- 8 Find the exact volume of region R rotated through 2π radians about the x-axis, where R is the region enclosed by $y = \frac{1-x}{\sqrt{x}}$, the line x = 2 and the x-axis. [4]
- **9** The curve C has the equation $y = |xe^x|$.
 - (a) Sketch the curve C. [2]
 - (b) Find the volume of region S rotated through 2π radians about the x-axis, where S is the region enclosed by C, the lines x = -1 and x = 1, and the x-axis. [4]
- 10 The curve C has the equation $e^{\frac{1}{2}x-1}$.
 - (a) Find the equation of L, where L is the tangent to the curve C at x = 4. [2]
 - (b) Find the region enclosed by C, L, and the axes. [3]
 - (c) Find the volume of the above-mentioned region when it is rotated by 2π radians about the y-axis. [3]
- 11 A ball partially submerged in a beaker of water can be expressed as the following graph from the side view, where the ball is a circle and the water surface is the x-axis. Given

Figure 1: Partially Submerged Ball

that the centre of the ball is at (0,2) and that the radius of the ball is 4 units, show that the volume of the ball submerged in water is equal to $\frac{40}{3}\pi$ units³. [7]

12 An architecture student is attempting to model the famous Burj Al Arab in wood (sculpting wood comes at \$1000.00/units³). He approximates the shape of the building to the curve C with equation $(y - k)^2 = r^2k(k - x)$ for $x, y \ge 0$ where k and r are positive constants used for scaling purposes.

Figure 2: Burj Al Arab, taken from Wikipedia

- (a) Given that the wooden model is formed by rotating the region enclosed by C and the axes $\frac{\pi}{4}$ radians around the y-axis, calculate the volume of the model in terms of k and r.
- (b) Calculate the amount of money spent on wood by the architecture student to construct the model if $k = 1, r = \frac{3}{2}$. [3]