Solved Example of Exponential Smoothing

Question:

Given the weekly demand data, what are the exponential smoothing forecasts for Periods 2-10 using

A)
$$\alpha = 0.10$$

B)
$$\alpha = 0.60$$

Assume *F1=D1*

Week	Demand
1	820
2	775
3	680
4	655
5	750
6	802
7	798
8	689
9	775
10	?

Solution:

We know the formula for exponential smoothing which is:

$$F_{t} = F_{t\text{-}1} + \alpha \; (A_{t\text{-}1} \text{--} F_{t\text{-}1})$$

Where

Ft = Forecast value for the coming time period

Ft-1 = Forecast value in 1 past time period

At-1 = Actual occurrence in the 1 past time period

 α = Alpha smoothing constant

A)

 $\alpha = 0.10$

We will calculate it in the following table:

Week	Demand	$\alpha = 0.10$
	(A _t)	(F_t)
1	820	820
		$(\mathbf{F_1} = \mathbf{D_1})$
		Assumed
2	775	820
3	680	815
4	655	801.5
5	750	787
6	802	783
7	798	785
8	689	786.3
9	775	776.6
10		776.4

$$F_{t} = F_{t\text{-}1} + \alpha \; (A_{t\text{-}1} \text{--} F_{t\text{-}1})$$

Exponential smoothing forecast for period 2-10 years.

$$F_2 = F_{2-1} + \alpha (A_{2-1} - F_{2-1})$$

$$F_2 = F1 + \alpha (A1 - F1)$$

$$F_2 = 820 + 0.10 (820-820)$$

$$F_2 = 820 + 0$$

$$F_2 = 820$$

Similarly,

$$F_3 = F_2 + \alpha (A_2 - F_2)$$

$$F_3 = 820 + 0.10 (775-820)$$

$$F_3 = 820 - 4.5$$

$$F_3 = 815$$
 (Approx.)

$$F_4 = 815 + 0.10 (680-815)$$

$$F_4 = 801.5$$

$$F_5 = 801.5 + 0.10 (655-801.5)$$

$$F_5 = 787$$

$$F_6 = 787 + 0.10 (750-787)$$

$$F_6 = 783$$

$$\mathbf{F}_7 = 783 + 0.10 \ (802-783)$$

$$F_7 = 785$$

$$F_8 = 785 + .10 (798-785)$$

$$F_8 = 786.3$$

$$F_9 = 786.3 + 0.10 (689-786.3)$$

$$F_9 = 776.6$$

$$\mathbf{F}_{10} = 776.6 + 0.10 \ (775-776.6)$$

$\mathbf{F}_{10} = 776.4$ (Which is the required amount)

Students, in the same way you can calculate the value of forecast (F_{10}) for $\alpha = 0.60$.

Also note that smaller values of α shows smoother trend because if $\alpha = 0.10$, it implies that your results will be 90% accurate and there will be 10% chances of error. If $\alpha = 0.60$, it implies that your results will be 40% accurate and there will be 60% chances of error.
