Eigen (vectors | values) - Chapter 16
- Question: given Anxn, find an invertible Matrix, Q, s.f. Q'AQ is Diagonal

AKA

- find a linear transformation

F: R" - R"

x + Ax

find a basis of Rn s.t. matrix representation of f is diagonal.

$$x = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$$

$$x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$Ax = \begin{pmatrix} 6 \\ 3 \end{pmatrix} = 3 \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Eyen Eigen value Eigen vector x, s.t.

Ax = 2x

Let A be an nxn
matrix. If there exists
a number, \(\lambda \), and non-tero
vector \(\text{Vector} \)

Ax = \(\lambda \text{X} \)

X is an eigenvalue of A x is an eigen vector corresponding to λ

-To find Eigen (vector | value), solve $Ax = \lambda x$ for λ and x

NEXT UDWAN

Ax =
$$\lambda$$
x

Ax = (λI) x

x $(A - \lambda I)$ = 0

non invertible = $\det(A - \lambda I)$ = 0

Characteristic Equation

- Ex (find Eigen Value)

A - λI = $\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$
 $A - \lambda I$ = $\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$
 $A - \lambda I$ = $\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$
 $A - \lambda I$ = $\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$
 $A - \lambda I$ = $\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$
 $A - \lambda I$ = $\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$
 $A - \lambda I$ = $\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$
 $A - \lambda I$ = $\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$
 $A - \lambda I$ = $\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$
 $A - \lambda I$ = $A - \lambda I$ =

A-2I

$$\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ 1 & -1 \end{pmatrix}$$
Solve:
$$\begin{pmatrix} 2 & -2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 & -2 \\ -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

Let
$$\begin{pmatrix} x_1 \\ x_2 - 5 \end{pmatrix} = \begin{pmatrix} s \\ s \end{pmatrix} = s \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Eigenspace
$$\lambda = 2 = Span(!)$$

-Ex (more of fue same)

 $\lambda = 3$
 $A-3I = \begin{pmatrix} 1 & -2 \\ -2 & -2 \end{pmatrix}$

$$A-3I = \begin{pmatrix} 1 & -2 \\ 1 & -2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -2 \\ 0 & 0 \end{pmatrix}$$

$$\begin{array}{c} X_2 = 5 \\ x_1 = 2s \end{array} \Rightarrow \begin{pmatrix} 2^5 \\ 5 \end{pmatrix} = 5 \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Eigenspace is (span (?))

- Another Problem... $A = \begin{pmatrix} 3 & 2 \\ 3 & -2 \end{pmatrix}$

i) solve set (A) (A- LI) = 0 to get eigen values

2) for eigenvalue λ , solve the homogenious unear system $(A - \lambda I)_{x} = 0$ to get Eigen vector X

3] let
$$Q = (V_1, V_2 ... V_n)$$

Ly $Q^-AQ = \begin{pmatrix} \lambda_2 \\ \lambda_2 \end{pmatrix}$

Ex:
$$A = \begin{pmatrix} 3 & 2 \\ 3 & -2 \end{pmatrix}$$
 $\lambda_1 = -3$ $\lambda_2 = 4$

$$\lambda = -3: \longrightarrow \begin{pmatrix} 1 & 1/3 \\ 0 & 0 \end{pmatrix} \quad x_1 = -1/3 \text{ s}$$

$$\lambda = 4: \longrightarrow \begin{pmatrix} 1 & -2 \\ 0 & 0 \end{pmatrix} \quad x_1 = 2 \text{ s}$$

$$x_1 = 2 \text{ s}$$

$$x_1 = 3$$

$$x_1 = 4$$

$$x_2 = 3$$

$$x_1 = 4$$

$$x_2 = 3$$

$$x_1 = 4$$

$$x_2 = 3$$

$$x_1 = 4$$

then there might not be a result (diagonal)

for
$$A = \begin{pmatrix} -3 & (& 3 \\ 20 & 3 & 16 \\ 2 & -2 & 4 \end{pmatrix}$$
and $\lambda = -2$, $\rightarrow \begin{pmatrix} 1 & 0 & (\\ 0 & 1 - 2\\ 0 & 0 & 0 \end{pmatrix}$

free

 $S \begin{pmatrix} -1\\ 2\\ 1 \end{pmatrix} \leftarrow \begin{array}{c} X_3 = S \\ X_1 = -S \end{array} \times 2 = 2S$