Experimental page: ratios of curve fit deaths to curve fit confirmed cases

Demonstration of SIR model where R_e is linearly reduced to 0.75 at the end of the sequence:

False Positives Demonstration

Use 0.17% from US est. incidence above as estimated daily incidence Prevalence estimated as avg. infected period of 2 weeks X incidence 99% accuracy of test 0.17% X 14 = 2.380%

Positive Negative 0.976% test pos 2.356% 3.33% 0.024% 96.644% 96.67% test neg 2.380% 97.620% 100.00%

Counter-act this tendency by increasing test sensitivity. However this may increase false negatives, the recipients of which may be positive, think they're negative, and go spread it around some more.

USA Excess Deaths (from CDC data):

Annualized on 46 weeks

	All Cause	All Cause, excl. CV19	CV19
3 yr average before 2020	854:100,000	854:100,000	-
2020	977:100,000	893:100,000	-
Diff.	122:100,000	39:100,000	84:100,000

Here are some demonstrations of SIR model, using R_e, gamma, and beta

