Lecture Notes: Basics of ML

Scott Pesme INRIA Grenoble

September 30, 2025

Contents

1	Introduction
	Supervised learning framework
	2.1 Regression setting
	2.2 Classification setting
A	Useful Formulas and Good Practices
	A.1 Definitions and notations
	A.2 Gradients
	A.3 Linear Algebra
	A.4 Convexity
	A.5 Good practices and sanity checks

1 Introduction

Slides of the general introduction can be found here.

2 Supervised learning framework

- 2.1 Regression setting
- 2.2 Classification setting

A Useful Formulas and Good Practices

A.1 Definitions and notations

Keep in mind that these are the notations I like to use, but these are obviously personal and others will use different ones!!

- the notation x will always be used for input data. E.g. $x_1, \ldots, x_n \in \mathbb{R}^d$ could be some dataset. n is then the number of training samples, and d the dimension of each data point. Similarly, y will used for output data, e.g. $y_1, \ldots, y_n \in \mathbb{R}$ (or $\in \{0,1\}$) are output data (or labels). When d > n, we often say that we are in the over-parametrised setting (also called under-determined setting, which can be confusing!), if d < n we say that we are in the under-parametrised setting (also called, under-determined setting).
- $X = \begin{pmatrix} & x_1 & \\ & \vdots & \\ & x_n & \end{pmatrix} \in \mathbb{R}^{n \times d}$ corresponds to data / feature / design /observation matrix. It has n = "number of samples" rows and d = "dimension of datapoints" columns.
- $y = (y_1, \dots, y_n) \in \mathbb{R}^n$ corresponds to the output vector.
- for a vector $u \in \mathbb{R}^d$, we let $||u||_2 := \sqrt{\sum_{i=1}^d u_i^2}$ denote the Euclidean norm of u (also called ℓ_2 -norm).
- for vectors $u, v \in \mathbb{R}^d$, we denote $\langle u, v \rangle := \sum_{i=1}^d u_i, v_i$ to be the inner product of u and v. Notice that $||u||^2 = \langle u, u \rangle$. Two vectors are said to be orthogonal if their inner product is null.
- for vectors x_1, \ldots, x_n , their span corresponds to the linear space which they generate: $\operatorname{span}(x_1, \ldots, x_n) := \{\lambda_1 x_1 + \ldots, \lambda_n x_n, \text{ where } \lambda_1, \ldots, \lambda_n \in \mathbb{R}\}.$
- the rank of a matrix corresponds to the dimension of the span of its columns, which is equal to the dimension of the span of its rows. Therefore for $X \in \mathbb{R}^{n \times d}$, it holds that $\operatorname{rank}(X) \leq \min(n, d)$. A matrix is said to be full $\operatorname{rank}(X) = \min(n, d)$.
- the null space (sometimes called kernel) of a matrix $A \in \mathbb{R}^{n \times d}$ is defined as $Ker(A) = \{w \in \mathbb{R}^d, Aw = 0\}$.
- a matrix $A \in \mathbb{R}^{d \times d}$ is said to be symmetric if $A^{\top} = A$. It is said to be positive semi-definite (we write this as $A \succeq 0$) if for all vector $u \in \mathbb{R}^d$, $u^{\top}Au \geq 0$. This is equivalent to saying that all the eigenvalues of A are positive.

A.2 Gradients

If $f: \mathbb{R}^d \to \mathbb{R}$ is twice differentiable, then its gradient $\nabla f: \mathbb{R}^d \to \mathbb{R}^d$ and hessian $\nabla^2 f: \mathbb{R}^d \to \mathbb{R}^{d \times d}$ are defined as:

$$\nabla f(w) = \left(\frac{\partial f}{\partial w_i}(w)\right)_{1 \leq i \leq d} \quad \nabla^2 f(w) = \left(\frac{\partial^2 f}{\partial w_i \partial w_i}(w)\right)_{1 \leq i,j \leq d}$$

• For a vector $b \in \mathbb{R}^d$, the gradient of the linear function $f : \mathbb{R}^d \to \mathbb{R}$, $f(w) = \langle a, w \rangle$ is equal to $\nabla f(w) = b$.

• For a (not necessarily symmetric) matrix $A \in \mathbb{R}^{d \times d}$, $f(w) = \frac{1}{2} w^{\top} A w$ is a quadratic function. Its gradient is $\nabla f(w) = \frac{1}{2} (A + A^{\top}) w$, which is equal to A w if and only if A is a symmetric matrix. The hessian of f is equal to $\nabla^2 f(w) = \frac{1}{2} (A + A^{\top})$.

A.3 Linear Algebra

- For a matrix $A \in \mathbb{R}^{d \times d}$, it holds that $w^{\top} A w = \sum_{i,j=1}^{d} w_i w_j A_{i,j}$.
- It holds that $X^{\top}X = \sum_{i=1}^{n} x_i x_i^{\top} \in \mathbb{R}^{d \times d}$ and $XX^{\top} = (\langle x_i, x_j \rangle)_{1 < i, j \le n} \in \mathbb{R}^{n \times n}$.
- Let $L(w) = \frac{1}{2} \sum_{i=1}^{n} (y_i \langle w, x_i \rangle)^2$, then $L(w) = \frac{1}{2} ||y Xw||^2$ and $\nabla L(w) = X^{\top} (Xw y)$.
- if n < d ("underparametrised setting), then the matrix $X^{\top}X$ cannot be invertible, because $\operatorname{span}(x_1, \ldots, x_n)$ cannot be equal to \mathbb{R}^d . However, if $n \geq d$ and $\operatorname{span}(x_1, \ldots, x_n) = \mathbb{R}^d$, then $X^{\top}X$ is invertible.
- Rank-nullity theorem: for $A \in \mathbb{R}^{n \times d}$, it holds that $\operatorname{rank}(A) + \dim \operatorname{Ker}(A) = d$.

A.4 Convexity

A function $f: \mathbb{R}^d \to \mathbb{R}$ is said to be convex if for all $w_1, w_2 \in \mathbb{R}^d$ and $\lambda \in [0, 1]$, $f(\lambda w_1 + (1 - \lambda)w_2) \le \lambda f(w_1) + (1 - \lambda)f(w_2)$ (DO A DRAWING TO VISUALISE THIS!).

- if f is convex and differentiable, then for all $w_1, w_2 \in \mathbb{R}^d$, it holds that $f(w_2) \ge f(w_1) + \langle \nabla f(w_1), w_2 w_1 \rangle$ (DO A DRAWING TO VISUALISE THIS!).
- if f is convex, then all local minima are global. Therefore, if $\nabla f(w^*) = 0$, then w^* is a global minimum. However, keep in mind that there exist convex functions which do not have any minima! (the exponential function for example)
- if a function f is convex, then its sublevel sets $\{w \in \mathbb{R}^d, f(w) \leq c\}$ are convex sets for all $c \in \mathbb{R}$. The converse is false (for example think of $x \mapsto \sqrt{|x|}$ in 1d).
- let $\lambda_1, \lambda_2 \geq 0$, if f_1 and f_2 are convex functions, then so is $\lambda_1 f_1 + \lambda_2 f_2$.
- $f: \mathbb{R}^n \to \mathbb{R}$ is convex and $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$, then $w \in \mathbb{R}^d \mapsto f(Aw + b)$ is convex too.

A.5 Good practices and sanity checks

Math sanity checks Always check that the math makes sense!

- If $f: \mathbb{R}^d \to \mathbb{R}$, then for a vector $w \in \mathbb{R}^d$, $\nabla f(w)$ must belong to \mathbb{R}^d ! So for example if $f(w) = \frac{1}{2} ||x||^2$, then writing that " $\nabla f(w) = ||x||$ " doesn't make sense.
- Check that the matrix operations are allowed: if $L(w) = ||y Xw||^2$, writing that $||\nabla L(w)|| = X(Xw y)||$ doesn't make sense because the operations XX and Xy don't make sense for $n \neq d$ (and also because of the remark right above).

Dimensional sanity check. Even if an expression is mathematically well-formed, it might be meaningless from the point of view of "units" or "dimensions." A quick check is to make sure your formulas are *homogeneous*: every term you add or compare should have the same "type."

Example. Suppose our data are temperature observations y_i measured in degrees Celsius. A feature vector $x \in \mathbb{R}^d$ could represent input quantities such as:

```
x = ([altitude in meters], [pressure in pascals], [wind speed in meters per second]).
```

A parameter vector $w \in \mathbb{R}^d$ scales each feature so that the inner product $\langle w, x \rangle$ has the same unit as y (degrees Celsius). In our small example the units of w are

$$([^{\circ}C] \cdot [meters]^{-1}, [^{\circ}C] \cdot [pascals]^{-1}, [^{\circ}C] \cdot [meters]^{-1} \cdot [seconds])$$

Now notice that:

- $\langle w, x \rangle$ makes sense: each coordinate of w carries the reciprocal unit of the corresponding coordinate of x, so the sum yields something in degrees Celsius.
- w + x does not make sense: w and x do not have the same units (adding "degrees per meter" to "meters" is meaningless).