خلاصه فیزیک هالیدی - فصل ششم: نیرو و حرکت ۱۱

اصطحاک: هنگامی یک نیروی $\frac{1}{F}$ بخواهد جسمی را روی سطحی بلغزاند ,از طرف سطح یک نیروی اصطحاک بر آن جسم وارد می شود. این نیروی اصطحاک موازی با سطح است و جهت آن در سویی است که با لغزش مخالفت می کند .این نیرو ناشی از پیوندی است که میان جسم و سطح ایجاد می شود. اگر جسم نلغزد ,نیروی اصطحاک ایستایی F_s است .ولی اگر جسم بلغزد , نیروی اصطحاک ,نیروی اصطحاک ایستایی خیر است .ولی اگر جسم بلغزد , نیروی اصطحاک ... اصطحاک جنبشی F_s است .

۱- اگر جسم حرکت نکند, نیروی اصطحاک ایستایی $\overset{\leftarrow}{F_s}$ و آن مؤلفه ای از $\overset{\leftarrow}{F}$ که موازی سطح است از لحاظ بزرگی یکسان و از لحاظ جهت در خلاف یکدیگرند . اگر مؤلفهٔ موازی افزایش یابد f_s نیز افزایش می یابد.

است که با رابطهٔ زیر داده می شود: $f_{
m s,max}$ است که با رابطهٔ زیر داده می شود: $f_{
m s}$

$$f_{s,max} = \mu_s F_N$$

که در آن μ_s ضریب اصطکاک ایستایی و F_N بزرگی نیروی عمودی است. اگر آن مؤلفهٔ f_s که موازی سطح است از $f_{s.max}$ بیشتر شود , آنگاه جسم روی سطح می لغزد.

 7 – هرگاه جسم شروع به لغزیدن روی سطح کند , بزرگی نیروی اصطکاک به سرعت به مقدار ثابت $f_{\rm k}$ کاهش می یابد که این مقدار با رابطهٔ زیر داده می شود:

$$f_k = \mu_S F_N$$

که در آن μ_s ضریب اصطکاک جنبشی است.

نیروی کششی : هرگاه میان هوا (یا هر شارهٔ دیگری) و یک جسم سرعت نسبی وجود داشته باشد,

بر جسم نیروی کششی $\frac{1}{D}$ وارد می شود که سوی آن در خلاف حرکت نسبی و در جهتی است که در آن شاره نسبت به جسم شارش می کند. بزرگی $\frac{1}{D}$ با ضریب کششی $\frac{1}{D}$ که با تجربه تعیین می شود با رابطهٔ زیر به تندی نسبی $\frac{1}{D}$ مربوط است:

$$D = \frac{1}{2}C p A v^2$$

که در آن p چگالی شاره (جرم بر واحد حجم) و A سطح مقطع مؤثر جسم(مساحت مقطعی عمود بر سرعت نسبی $\stackrel{\leftarrow}{}_{n}$) است.

تندی حد: هرگاه جسمی با لبه های پهن مسافت به حد کافی بلندی را در هوا طی کند. بزرگی های نیروی کششی $\stackrel{\leftarrow}{}_D$ و نیروی گرانشی $\stackrel{\leftarrow}{}_F$ و ارد به جسم با هم برابر می شوند. آنگاه جسم با تندی حد ثابتی که با رابطهٔ زیر داده می شود سقوط می کند:

$$v_{\rm t} = \sqrt{\frac{2F_{\rm g}}{C \, p \, A}}$$

حرکت دایره ای یکنواخت: اگر یک ذره روی دایره ای یا کمانی از یک دایره به شعاع \mathbf{R} با تندی ثابت \mathbf{v} حرکت کند, گفته می شود که آن ذره در حال حرکت دایره ای یکنواخت است. آنگاه ذره یک شتاب مرکز گرای $\hat{\mathbf{r}}$ دارد که بزرگی آن با رابطهٔ زیر داده می شود:

$$a = \frac{v^2}{R}$$

این شتاب ناشی از نیروی مرکزگرای خالصی است که بر جسم وارد می شود و مقدار آن با رابطهٔ

$$F = \frac{mv^2}{R}$$

داده می شود که در آن \mathbf{m} جرم ذره است. کمیتهای برداری $\frac{1}{a}$ و $\frac{1}{a}$ در جهت مرکز انحنای مسیر حرکت ذره اند.