

Four Output Low Power Differential Fanout Buffer for PCI Express Gen1, Gen2, Gen3, and QPI

9DBL411B

General Description:

The ICS9DBL411B is a 4 output lower power differential buffer. Each output has its own OE# pin. It has a maximum operating frequency of 150 MHz.

Recommended Application:

PCI-Express Gen 1/2/3 or QPI fanout buffer

Output Features:

- 4 low power differential output pairs
- Individual OE# control of each output pair

Key Specifications:

- Output cycle-cycle jitter < 15ps additive
- Output to output skew: < 50ps

Features/Benefits:

- Low power differential outputs for PCI-Express and QPI clocks
- Power down mode when all OE# are high
- Available in I-temp
- 20-pin MLF or TSSOP packaging

Power Groups

Pin Number (TSSOP)		Description
VDD	GND	Description
9,18	10,17	VDD_IO for DIF(3:0)
4	5	3.3V Analog VDD & GND

Pin Nun	nber (MLF)	Decembries
VDD	GND	Description
6,15	7,14	VDD_IO for DIF(3:0)
1	2	3.3V Analog VDD & GND

Functional Block Diagram

Pin Configurations

OE0#	1	20	DIF0T_LPR
DIF_INC	2	19	DIF0C_LPR
DIF_INT	3	ന 18	VDD_IO
VDDA	4	— 17	GND
GNDA	5	4 16	OE1#
OE3#	6	占 15	DIF1T_LPR
DIF3C_LPR	7	1 4	DIF1C_LPR
DIF3T_LPR	8		OE2#
VDD_IO	9	12	DIF2T_LPR
GND	10	11	DIF2C LPR

20-pin MLF

20-pin TSSOP

Terminations

Zo-17=Rs (ohms), where Zo is the single-ended intrinsic impedance of the board transmission line. Single-ended intrinsic impedance is $\frac{1}{2}$ that of the differential impedance.

Single Ended	Rs		
Impedance	5%	Rs	
(Zo)	tolerance	2% tolerance	Notes
50	33	33.2	In general, 5% resistors
45	27	27.4	may be used. All values are
42.5	24 or 27	24.9	in ohms.

TSSOP Pin Description

PIN # (TSSOP)	PIN NAME	PIN TYPE	DESCRIPTION
-	OE0#	IN	Output Enable for DIF0 output. Control is as follows:
ı	OEU#	IIN	0 = enabled, 1 = Low-Low
2	DIF_INC	IN	Complement side of differential input clock
3	DIF_INT	IN	True side of differential input clock
4	VDDA	PWR	3.3V Power for the Analog Core
5	GNDA	GND	Ground for the Analog Core
6	OE3#	IN	Output Enable for DIF3 output. Control is as follows:
0	OL3#	IIN	0 = enabled, 1 = Low-Low
7	DIF3C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
8	DIF3T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
9	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V
10	GND	GND	Ground pin
11	DIF2C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
12	DIF2T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
13	OE2#	IN	Output Enable for DIF2 output. Control is as follows:
13	UE2#	IIN	0 = enabled, 1 = Low-Low
14	DIF1C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
15	DIF1T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
16	OE1#	INI	Output Enable for DIF1 output. Control is as follows:
10	16 OE1# IN		0 = enabled, 1 = Low-Low
17	GND	GND	Ground pin
18	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V
19	DIF0C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
20	DIF0T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)

MLF Pin Description

PIN # (MLF)	PIN NAME	PIN TYPE	DESCRIPTION	
1	VDDA	PWR	3.3V Power for the Analog Core	
2	GNDA	GND	Ground for the Analog Core	
3	OE3#	IN	Output Enable for DIF3 output. Control is as follows: 0 = enabled, 1 = Low-Low	
4	DIF3C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)	
5	DIF3T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)	
6	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V	
7	GND	GND	Ground pin	
8	DIF2C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)	
9	DIF2T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)	
10	OE2#	IN	Output Enable for DIF2 output. Control is as follows: 0 = enabled, 1 = Low-Low	
11	DIF1C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)	
12	DIF1T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)	
13	OE1#	IN	Output Enable for DIF1 output. Control is as follows: 0 = enabled, 1 = Low-Low	
14	GND	GND	Ground pin	
15	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V	
16	DIF0C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)	
17	True clock of low power differential clock pair		True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)	
18	OE0# IN		Output Enable for DIF0 output. Control is as follows: 0 = enabled, 1 = Low-Low	
19	DIF_INC	IN	Complement side of differential input clock	
20	DIF_INT	IN	True side of differential input clock	

Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Maximum Supply Voltage	VDDA	Core Supply Voltage		4.6	V	1,7
Maximum Supply Voltage	VDD_IO	Low-Voltage Differential I/O	0.99	3.8	V	1,7
Maximum Input Voltage	V_{IH}	3.3V LVCMOS Inputs		4.6	V	1,7,8
Minimum Input Voltage	V_{IL}	Any Input	Vss - 0.5		V	1,7
Ambient Operating Temp	TambCOM	Commercial Range	0	70	°C	1
Ambient Operating Temp	TambIND	Industrial Range	-40	85	°C	1
Storage Temperature	Ts	-	-65	150	°C	1,7
Input ESD protection	ESD prot	Human Body Model	2000		V	1,7

Electrical Characteristics - Input/Supply/Common Output Parameters PARAMETER SYMBOL CONDITIONS MIN MAX

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Supply Voltage	VDDA	Supply Voltage	3.000	3.600	V	1
		Low-Voltage Differential I/O				
Supply Voltage	VDDxxx_IO	Supply	0.99	3.600	V	1
				V_{DD} +		
Input High Voltage	V _{IHSE}	Single-ended inputs	2	0.3	V	1
Input Low Voltage	V_{ILSE}	Single-ended inputs	V _{SS} - 0.3	0.8	V	1
Differential Input High		Differential inputs				
Voltage	V_{IHDIF}	(single-ended measurement)	600	1.15	V	1
Differential Input Low		Differential inputs				
Voltage	V_{ILDIF}	(single-ended measurement)	V_{SS} - 0.3	300	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4	8	V/ns	2
Input Leakage Current	I_{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5	5	uA	1
	I _{DD_3.3V}	VDDA supply current		20	mA	1
		VDD_IO supply @ fOP =				
Operating Supply Current	I _{DD_IO_133M}	133MHz		20	mA	1
		VDDA supply current, Input				
	I _{DD_SB_3.3V}	stopped, OE# pins all high		750	uA	1
Power Down Current		VDD_IO supply, Input				
(All OE# pins High)	I _{DD_SBIO}	stopped, OE# pins all high		150	uA	1
Input Frequency	Fi	$V_{DD} = 3.3 \text{ V}$	15	150	MHz	2
Pin Inductance	L_{pin}			7	nΗ	1
	C _{IN}	Logic Inputs	1.5	5	pF	1
Input Capacitance	C _{OUT}	Output pin capacitance		6	pF	1
		Number of clocks to enable				
OE# latency		or disable output from				
(at least one OE# is low)	_	assertion/deassertion of OE#	1	3	periods	1
(at least one OL# is low)	T _{OE#LAT}	Delay from assertion of first	I		penous	'
		OE# to first clock out				
Clock stabilization time		(assumes input clock running				
(from all OE# high to first		and device in power down				
OE# low).	T _{STAB}	state))		150	ns	1
	ISTAB	Output enable after				<u> </u>
Tdrive_OE#	T _{DROE#}	OE# de-assertion		10	ns	1
Tfall_OE#	T _{FALL}			5	ns	1
Trise_OE#	T _{RISE}	Fall/rise time of OE# inputs		5	ns	1
IDT® Four Output Low Bower Did		- DOL Frances for Cond. Cond. Cond.				

AC Electrical Characteristics - DIF Low Power Differential Outputs

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	NOTES
Rising Edge Slew Rate	t _{SLR}	Differential Measurement	1.5	4	V/ns	1,2
Falling Edge Slew Rate	t _{FLR}	Differential Measurement	1.5	4	V/ns	1,2
Slew Rate Variation	t _{SLVAR}	Single-ended Measurement		20	%	1
Maximum Output Voltage	V_{HIGH}	Includes overshoot		1150	mV	1
Minimum Output Voltage	V_{LOW}	Includes undershoot	-300		mV	1
Differential Voltage Swing	V_{SWING}	Differential Measurement	1200		mV	1
Crossing Point Voltage	V_{XABS}	Single-ended Measurement	300	550	mV	1,3,4
Crossing Point Variation	$V_{XABSVAR}$	Single-ended Measurement		140	mV	1,3,5
Duty Cycle Distortion	D _{CYCDIS0}	Differential Measurement, fIN<=133.33MHz		3	%	1,6
Additive Cycle to Cycle Jitter	DIFJ _{C2CADD}	Differential Measurement, Additive		15	ps	1
DIF[3:0] Skew	DIF _{SKEW}	Differential Measurement		50	ps	1
Propagation Delay	t _{PD}	Input to output Delay	2.5	3.5	ns	1
Additive Phase Jitter - PCIe Gen1	t _{phase_add} PCIG1	1.5MHz < 22MHz		6	ps Pk- Pk	1,9
Additive Phase Jitter - PCIe Gen2 High Band	t _{phase_add} PCIG2HI	High Band is 1.5MHz to Nyquist (50MHz)		0.16	ps rms	1,9
Additive Phase Jitter PCIe Gen2 Low Band	t _{phase_add} PCIG2LO	Low Band is 10KHz to 1.5MHz		0.07	ps rms	1,9
Additive Phase Jitter PCIe Gen3	t _{phase_add} PCIG2LO	2M-4M, 2M-5M filter		0.2	ps rms	1,9
Additive Phase Jitter QPI133 (6.4GBs, 12 UI)	t _{phase_add} QPI6G4	11MHz to 33MHz		0.04	ps rms	1,9

Notes on Electrical Characteristics (all measurements use 9LRS3187B as clock source and R_S =33ohms/ C_L =2pF test load):

¹Guaranteed by design and characterization, not 100% tested in production.

² Slew rate measured through Vswing centered around differential zero

³ Vxabs is defined as the voltage where CLK = CLK#

⁴ Only applies to the differential rising edge (CLK rising and CLK# falling)

⁵ Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of CLK and falling edge of CLK#. It is measured using a +/-75mV window centered on the average cross point where CLK meets CLK#.

⁶ This figure refers to the maximum distortion of the input wave form.

⁷ Operation under these conditions is neither implied, nor guaranteed.

⁸ Maximum input voltage is not to exceed maximum VDD

⁹ The 9DBL411B has no PLL, so the part itself contributes very little jitter to the input clock. But this also means that the 9DBL411 cannot 'de-jitter' a noisy input clock. Values calculated per PCI SIG and per Intel Clock Jitter tool version 1.5

20-pin TSSOP Marking Diagrams

20-pin MLF Marking Diagrams

20-pin TSSOP Package Drawing and Dimensions

20-Lead, 4.40 mm. Body, 0.65 mm. Pitch TSSOP

	(17	'3 mil)	(25.6 mil)		
	In Millimeters		In Inches		
SYMBOL	COMMON D	IMENSIONS	COMMON D	IMENSIONS	
	MIN	MAX	MIN	MAX	
Α		1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.19	0.30	.007	.012	
С	0.09	0.20	.0035	.008	
D	SEE VAF	RIATIONS	SEE VARIATIONS		
E	6.40 E	BASIC	0.252 BASIC		
E1	4.30	4.50	.169	.177	
е	0.65 E	BASIC	0.0256 BASIC		
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VAF	RIATIONS	
а	0°	8°	0°	8°	
aaa		0.10		.004	

VARIATIONS

N	Dn	nm.	D (inch)	
IN	MIN	MAX	MIN	MAX
20	6.40	6.60	.252	.260

Reference Doc.: JEDEC Publication 95, MO-153

10-0035

20-pin MLF Package Drawing and Dimensions

THERMALLY ENHANCED, VERY THIN, FINE PITCH QUAD FLAT / NO LEAD PLASTIC PACKAGE

DIMENSIONS

SYMBOL	MIN.	MAX.	
Α	0.8	1.0	
A1	0	0.05	
A3	0.20 Reference		
b	0.18	0.3	
е	0.50 BASIC		

DIMENSIONS

DIVILIVOIONO			
	ICS 20L		
SYMBOL	TOLERANCE		
N	20		
N_D	5		
N _E	5		
D x E BASIC	4.00 x 4.00		
D2 MIN. / MAX.	2.00 / 2.25		
E2 MIN. / MAX.	2.00 / 2.25		
L MIN. / MAX.	0.45 / 0.65		

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DBL411BKLF	Tubes	20-pin MLF	0 to +70°C
9DBL411BKLFT	Tape and Reel	20-pin MLF	0 to +70°C
9DBL411BGLF	Tubes	20-pin TSSOP	0 to +70°C
9DBL411BGLFT	Tape and Reel	20-pin TSSOP	0 to +70°C
9DBL411BKILF	Tubes	20-pin MLF	-40 to +85°C
9DBL411BKILFT	Tape and Reel	20-pin MLF	-40 to +85°C
9DBL411BGILF	Tubes	20-pin TSSOP	-40 to +85°C
9DBL411BGILFT	Tape and Reel	20-pin TSSOP	-40 to +85°C

[&]quot;LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

[&]quot;B" is the device revision designator (will not correlate to the datasheet revision).

9DBL411B

Four Output Low Power Differential Buffer for PCI Express Gen1, Gen2, Gen3, and QPI

Revision History

Rev.	Issue Date	Description	Page #
0.1 1/8/20		Initial Release. Compared with A rev the following have changed:	
	1/9/2010	1. Added I-temp version	
	1/6/2010	2. Updated electrical tables for I-temp	
		3. Revised Phase Jitter specs and added QPI.	
Α	1/8/2010	Released to final.	
В	4/23/2010	Changed Input Frequency from 33 min to 15 MHz min	5
С	10/18/2010	Updated Supply Voltage min/max ratings.	5
D	3/22/2012	Updated phase jitter table for PCIe Gen3.	
Е	6/28/2012	Typo in "Differential Input Low Voltage" units; changed "V" to "mV"	
		Correct typo on top-side marking for MLF (commercial temp.) from "L411BKL" to	
F	8/16/2013	"411BKL".	
G	9/25/2018	Replaced "Trays" with "Tubes" in Ordering Information.	

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/