218 Formules de Taylor. Exemples et applications.

I - Énoncés des formules de Taylor

1. En dimension 1

Dans cette partie, I désigne un segment [a,b] de $\mathbb R$ non réduit à un point et E un espace de Banach sur $\mathbb R$. Soit $f:I\to E$ une application.

[**GOU20**] p. 73

Dans un premier temps, supposons $E = \mathbb{R}$.

Théorème 1 (Rolle). On suppose f continue sur [a,b], dérivable sur]a,b[et telle que f(a) = f(b). Alors,

$$\exists c \in]a, b[$$
 tel que $f'(c) = 0$

Théorème 2 (Formule de Taylor-Lagrange). On suppose f de classe \mathscr{C}^n sur [a,b] telle que $f^{(n+1)}$ existe sur [a,b]. Alors,

$$\exists c \in]a, b[$$
 tel que $f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (b-a)^{n+1}$

On ne suppose plus $E = \mathbb{R}$. Le Théorème 1 n'est plus forcément vrai, mais on a tout de même le résultat suivant.

Théorème 4 (Inégalité des accroissements finis). Soit $g: I \to \mathbb{R}$. On suppose f et g continues sur [a,b] et dérivables sur [a,b[on a $\|f'(t)\| \le g'(t)$. Alors,

$$||f(b) - f(a)|| \le (g(b) - g(a))$$

Corollaire 5 (Inégalité de Taylor-Lagrange). On suppose f de classe \mathscr{C}^n sur [a,b] telle que $f^{(n+1)}$ existe sur]a,b[. On suppose qu'il existe M>0 tel que $\forall t\in]a,b[$, $\|f^{(n+1)}(t)\|\leq M.$ Alors,

$$\left\| f(b) - f(a) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} \right\| \le M \frac{(b-a)^{n+1}}{(n+1)!}$$

Théorème 6 (Formule de Taylor-Young). On suppose f de classe \mathscr{C}^n sur I telle que $f^{(n+1)}(x)$

existe pour $x \in I$. Alors, quand $h \longrightarrow 0$, on a

$$f(x+h) = \sum_{k=0}^{n+1} \frac{f^{(k)}(x)}{k!} h^k + o(h^{n+1})$$

Application 7 (Théorème de Darboux). On suppose f dérivable sur I. Alors f'(I) est un intervalle.

p. 80

p. 77

Théorème 8 (Formule de Taylor avec reste intégral). On suppose f de classe \mathscr{C}^{n+1} sur I. Alors,

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \int_{a}^{b} \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt$$

2. En dimension supérieure

Soit $U \subseteq \mathbb{R}^n$ un ouvert.

p. 328

Notation 9. Soient $f: U \to \mathbb{R}^m$ de classe \mathscr{C}^k sur U et $n \in [1, k]$. Par analogie avec

$$\forall (a_1, \dots, a_m) \in \mathbb{R}^m, (a_1 + \dots + a_m)^n = \sum_{i_1 + \dots + i_m = n} \frac{n!}{i_1! \dots i_m!} a_1^{i_1} \dots a_m^{i_m}$$

on note

$$\left(\sum_{i=1}^m h_i \frac{\partial f}{\partial x_i}(a)\right)^{(n)} = \sum_{i_1+\dots+i_m=n} \frac{n!}{i_1!\dots i_m!} h_1^{i_1}\dots h_m^{i_m} \frac{\partial^n}{\partial x_1^{i_1}\dots \partial x_m^{i_m}} f(a)$$

Théorème 10 (Formule de Taylor-Lagrange). Soient $f: U \to \mathbb{R}$ de classe \mathscr{C}^p sur $U, x \in \mathbb{R}^n$, $h = (h_1, ..., h_n) \in \mathbb{R}^n$ tels que $[x, x + h] \subseteq U$. Alors, $\exists \theta \in]0, 1[$ tel que

$$f(x+h) = \sum_{j=0}^{p-1} \frac{1}{i!} \left(\sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(x) \right)^{(j)} + \frac{1}{p!} \left(\sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(x+\theta h) \right)^{(p)}$$

Exemple 11. Pour $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathscr{C}^2 , pour $(h, k) \in \mathbb{R}^2$, il existe $\theta \in]0, 1[$ tel que

$$\begin{split} f(h,k) &= f(0,0) + h \frac{\partial f}{\partial x}(0,0) + k \frac{\partial f}{\partial y}(0,0) \\ &+ \frac{1}{2} \left(h^2 \frac{\partial^2 f}{\partial^2 x} f(\theta h, \theta k) + h k \frac{\partial^2 f}{\partial x \partial y} f(\theta h, \theta k) + k^2 \frac{\partial^2 f}{\partial^2 y} f(\theta h, \theta k) \right) \\ &+ o(\|(h,k)\|^2) \end{split}$$

p. 89

Théorème 12 (Formule de Taylor avec reste intégral). Soient $f: U \to \mathbb{R}^p$ de classe \mathscr{C}^k sur U, $x \in \mathbb{R}^n$, $h = (h_1, \dots, h_n) \in \mathbb{R}^n$ tels que $[x, x + h] \subseteq U$. Alors,

$$f(x+h) = \sum_{j=0}^{k-1} \frac{1}{i!} \left(\sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(x) \right)^{(j)} + \int_0^1 \frac{(1-t)^{k-1}}{(k-1)!} \left(\sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(x+th) \right)^{(k)} dt$$

Théorème 13 (Formule de Taylor-Young). Soient $f: U \to \mathbb{R}^p$ de classe \mathscr{C}^k sur $U, x \in \mathbb{R}^n$, $h = (h_1, ..., h_n) \in \mathbb{R}^n$ tels que $[x, x + h] \subseteq U$. Alors,

$$f(x+h) = \sum_{j=0}^{k} \frac{1}{i!} \left(\sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(x) \right)^{(j)} + o(\|h\|^k)$$

Application 14 (Lemme d'Hadamard). Soit $f: \mathbb{R}^n \to \mathbb{R}$ de classe \mathscr{C}^{∞} . On suppose f différentiable en 0 avec $df_0 = 0$ et f(0) = 0. Alors,

$$f(x_1,\dots,x_n)=\sum_{i,j=1}^nx_ix_jh_{i,j}(x_1,\dots,x_n)$$
 où $\forall i,j\in [\![1,n]\!],\,h_{i,j}:\mathbb{R}^n\to\mathbb{R}$ est $\mathcal{C}^\infty.$

II - Applications en analyse réelle

Dans cette partie, I désigne un intervalle de \mathbb{R} non réduit à un point et E un espace de Banach sur \mathbb{R} . Soit $f: I \to E$ une application.

1. Étude asymptotique de fonctions

On suppose $0 \in I$.

Définition 15. On dit que f admet un **développement limité** à l'ordre $n \in \mathbb{N}^*$ s'il existe $a_0, \ldots, a_n \in E$ tels que, au voisinage de 0,

$$f(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$$

Remarque 16. On pourrait de même définir les développements limités au voisinage d'un point $a \in I$.

Proposition 17. (i) Un développement limité, s'il existe, est unique.

(ii) Si f admet un développement limité en 0 à l'ordre $n \ge 1$, f est dérivable en 0 et sa dérivée en 0 vaut a_1 .

agreg.skyost.eu

- (iii) Si f est paire (resp. impaire), les coefficients du développement limité d'indice impair (resp. pair) sont nuls.
- (iv) Si f est n fois dérivable en 0, f' admet un développement limité en 0 : $f'(x) = \sum_{k=1}^{n} a_k x^{k-1} + o(x^{n-1})$.
- (v) Si f est dérivable sur I et f' admet un développement limité en 0: $f'(x) = \sum_{k=0}^{n} a_k x^k + o(x^n)$; alors, f admet un développement limité en 0 donné par $f(x) = \sum_{k=0}^{n} \frac{a_k}{(k+1)!} x^{k+1} + o(x^{k+1})$.
- (vi) Les règles de somme, produit, quotient et composition obéissent aux mêmes règles que pour les polynômes (sous réserve de bonne définition).

On déduit du Théorème 6 le résultat suivant.

Proposition 18. Si f est n fois dérivable en 0, alors f admet un développement limité à l'ordre n en 0:

$$f(x) = \sum_{k=0}^{n+1} \frac{f^{(k)}(0)}{k!} x^k + o(x^{n+1})$$

Exemple 19. En 0, on a les développements limités usuels suivants.

$$-e^x = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n).$$

$$--\sin(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}).$$

$$--\cos(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} + o(x^{2n+1}).$$

$$-- \sinh(x) = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}).$$

$$-- \cosh(x) = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n+1}).$$

— Pour tout
$$\alpha \in \mathbb{R}$$
, $(1+x)^{\alpha} = \sum_{k=0}^{n} \frac{\alpha(\alpha-1)...(\alpha-k+1)}{k!} + o(x^n)$.

Application 20.

$$\lim_{x \to 0} \frac{\tan(x) - x}{\sin(x) - x} = -2$$

Application 21 (Développement asymptotique de la série harmonique). On note $\forall n \in \mathbb{N}^*$, $H_n = \sum_{k=1}^n \frac{1}{k}$. Alors, quand n tend vers $+\infty$,

$$H_n = \ln(n) + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right)$$

[I-P] p. 380

2. Développements en série entière

Définition 22. Soient $U \subseteq \mathbb{C}$ un ouvert et $f: U \to \mathbb{C}$. On dit que f est **développable en série** entière en $a \in U$ s'il existe r > 0 et $(a_n) \in \mathbb{C}^{\mathbb{N}}$ tels que $D(a, r) \subseteq U$ et

[BMP] p. 46

$$\forall z \in D(a,r), f(z) = \sum_{n=0}^{+\infty} a_n (z-a)^n$$

Exemple 23. Soit $z_0 \in \mathbb{C}$. Alors,

[**GOU20**] p. 251

$$\forall z \in D(0, |z_0|), \frac{1}{z - z_0} = -\frac{1}{z_0 \sum_{n=0}^{+\infty}} \left(\frac{z}{z_0}\right)^n$$

Nous nous limiterons ici aux fonctions réelles.

Proposition 24. Soit $I \subseteq \mathbb{R}$ un intervalle contenant un voisinage de 0. Une fonction $f: I \to \mathbb{R}$ de classe \mathscr{C}^{∞} est développable en série entière si et seulement s'il existe $\alpha > 0$ tel que la suite de fonctions (R_n) définie par

$$R_n(x) = f(x) - \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k$$

tende simplement vers 0 sur $]-\alpha,\alpha[$. La série entière $\sum \frac{f^{(n)}(0)}{n!}z^n$ a alors un rayon de convergence supérieur ou égal à α et f est égale à la somme de cette série entière sur $]-\alpha,\alpha[$.

Remarque 25. Dans la pratique, pour montrer que le (R_n) précédent tend simplement vers 0, on peut l'exprimer comme un reste de Taylor (Lagrange ou intégral).

Exemple 26. On a les développements en série entière usuels suivants.

- Pour tout $x \in \mathbb{R}$, $e^x = \sum_{k=0}^{+\infty} \frac{x^k}{k!}$.
- Pour tout $x \in \mathbb{R}$, $\sin(x) = \sum_{k=0}^{+\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$.
- Pour tout $x \in \mathbb{R}$, $\cos(x) = \sum_{k=0}^{+\infty} (-1)^k \frac{x^{2k}}{(2k)!}$.
- Pour tout $x \in \mathbb{R}$, $\sinh(x) = \sum_{k=0}^{+\infty} \frac{x^{2k+1}}{(2k+1)!}$.
- Pour tout $x \in \mathbb{R}$, $\cosh(x) = \sum_{k=0}^{+\infty} \frac{x^{2k}}{(2k)!}$
- Pour tout $\alpha \in \mathbb{R}$, Pour tout $x \in]-1,1[$, $(1+x)^{\alpha} = \sum_{k=0}^{+\infty} \frac{\alpha(\alpha-1)...(\alpha-k+1)}{k!}$.

Contre-exemple 27. La fonction

$$f: x \mapsto \begin{cases} e^{-\frac{1}{x}} \sin x > 0\\ 0 \text{ sinon} \end{cases}$$

est \mathscr{C}^{∞} , vérifie $f^{(n)}(0) = 0$ pour tout entier n, mais ne coïncide pas avec la somme de $\sum \frac{f^{(n)}(0)}{n!} z^n \operatorname{sur}] - \alpha, \alpha [\operatorname{pour tout} \alpha > 0.$

Contre-exemple 28. On considère fonction définie sur \mathbb{R}^+ par

$$g: x \mapsto \int_0^{+\infty} \frac{e^{-t}}{1+xt} \, \mathrm{d}t$$

Alors g est \mathscr{C}^{∞} , vérifie $g^{(n)}(0) = 0$ pour tout entier n, et $\sum \frac{g^{(n)}(0)}{n!} z^n$ a un rayon de convergence nul.

Théorème 29 (Bernstein). Soient a > 0 et $f :]-a, a[\to \mathbb{R}$ de classe \mathscr{C}^{∞} . On suppose les dérivées de f positives sur]-a, a[. Alors f est développable en série entière sur]-a, a[.

[ROM18] p. 302

p. 152

3. Méthode de Newton

[DEV]

Théorème 30 (Méthode de Newton). Soit $f:[c,d]\to\mathbb{R}$ une fonction de classe \mathscr{C}^2 strictement croissante sur [c,d]. On considère la fonction

$$\varphi: \begin{array}{ccc} [c,d] & \to & \mathbb{R} \\ x & \mapsto & x - \frac{f(x)}{f'(x)} \end{array}$$

(qui est bien définie car f' > 0). Alors :

- (i) $\exists ! a \in [c, d]$ tel que f(a) = 0.
- (ii) $\exists \alpha > 0$ tel que $I = [a \alpha, a + \alpha]$ est stable par φ .
- (iii) La suite (x_n) des itérés (définie par récurrence par $x_{n+1} = \varphi(x_n)$ pour tout $n \ge 0$) converge quadratiquement vers a pour tout $x_0 \in I$.

Corollaire 31. En reprenant les hypothèses et notations du théorème précédent, et en supposant de plus f strictement convexe sur [c,d], le résultat du théorème est vrai sur I = [a,d]. De plus :

- (i) (x_n) est strictement décroissante (ou constante).
- (ii) $x_{n+1} a \sim \frac{f''(a)}{2f'(a)}(x_n a)^2$ pour $x_0 > a$.

- **Exemple 32.** On fixe y > 0. En itérant la fonction $F: x \mapsto \frac{1}{2} \left(x + \frac{y}{x} \right)$ pour un nombre de départ compris entre c et d où 0 < c < d et $c^2 < 0 < d^2$, on peut obtenir une approximation du nombre \sqrt{y} .
 - En itérant la fonction $F: x \mapsto \frac{x^2+1}{2x-1}$ pour un nombre de départ supérieur à 2, on peut obtenir une approximation du nombre d'or $\varphi = \frac{1+\sqrt{5}}{2}$.

4. Majoration d'une erreur d'approximation

Soit f une fonction réelle continue sur un intervalle [a,b]. On se donne n+1 points $x_0,\ldots,x_n\in[a,b]$ distincts deux-à-deux.

[**DEM**] p. 21

Définition 33. Pour $i \in [0, n]$, on définit le i-ième **polynôme de Lagrange** associé à x_1, \dots, x_n par

$$\ell_i: x \mapsto \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j}$$

Théorème 34. Il existe une unique fonction polynômiale p_n de degré n telle que $\forall i \in [0, n], p_n(x_i) = f(x_i)$:

$$p_n = \sum_{i=0}^n f(x_i) \ell_i$$

Théorème 35. On note $\pi_{n+1}: x \mapsto \prod_{j=0}^n (x-x_j)$ et on suppose f n+1 fois dérivable [a,b]. Alors, pour tout $x \in [a,b]$, il existe un réel $\xi_x \in]\min(x,x_i),\max(x,x_i)[$ tel que

$$f(x) - p_n(x) = \frac{\pi_{n+1}(x)}{(n+1)!} f^{(n+1)}(\xi_x)$$

Corollaire 36.

$$\|f-p_n\|_{\infty} \leq \frac{1}{(n+1)!} \|\pi_{n+1}\|_{\infty} \|f^{(n+1)}\|_{\infty}$$

Application 37 (Calculs approchés d'intégrales). On note $I(f) = \int_a^b f(t) \, dt$. L'objectif est d'approximer I(f) par une expression P(f) et de majorer l'erreur d'approximation E(f) = |I(f) - P(f)|.

[**DAN**] p. 506

- (i) Méthode des rectangles. On suppose f continue. Avec P(f) = (b-a)f(a), on a $E(f) \le \frac{(b-a)^2}{2} \|f'\|_{\infty}$.
- (ii) Méthode du point milieu. On suppose f de classe \mathscr{C}^2 . Avec $P(f) = (b-a)f\left(\frac{a+b}{2}\right)$, on a $E(f) \leq \frac{(b-a)^3}{24} \|f''\|_{\infty}$.
- (iii) Méthode des trapèzes. On suppose f de classe \mathscr{C}^2 . Avec $P(f) = \frac{b-a}{2}(f(a) + f(b))$, on a

$$E(f) \le \frac{(b-a)^3}{12} ||f''||_{\infty}.$$

(iv) Méthode de Simpson. On suppose f de classe \mathscr{C}^4 . Avec $P(f) = \frac{b-a}{6} \left(f(a) + f(b) + 4f\left(\frac{a+b}{2}\right) \right)$, on a $E(f) \leq \frac{(b-a)^3}{2880} \|f^{(4)}\|_{\infty}$.

III - Application aux fonctions de plusieurs variables

Soit $U \subseteq \mathbb{R}^n$ un ouvert.

1. Homéomorphismes

Lemme 38. Soit $A_0 \in \mathscr{S}_n(\mathbb{R})$ inversible. Alors il existe un voisinage V de A_0 dans $\mathscr{S}_n(\mathbb{R})$ et une application $\psi: V \to \mathrm{GL}_n(\mathbb{R})$ de classe \mathscr{C}^1 telle que

$$\forall A \in V, A = {}^t\psi(A)A_0\psi(A)$$

[DEV]

Lemme 39 (Morse). Soit $f: U \to \mathbb{R}$ une fonction de classe \mathscr{C}^3 (où U désigne un ouvert de \mathbb{R}^n contenant l'origine). On suppose :

- $df_0 = 0$.
- La matrice symétrique $H(f)_0$ est inversible.
- La signature de $H(f)_0$ est (p, n p).

Alors il existe un difféomorphisme $\phi = (\phi_1, \dots, \phi_n)$ de classe \mathscr{C}^1 entre deux voisinage de l'origine de \mathbb{R}^n $V \subseteq U$ et W tel que $\varphi(0) = 0$ et

$$\forall x \in U, f(x) - f(0) = \sum_{k=1}^{p} \phi_k^2(x) - \sum_{k=p+1}^{n} \phi_k^2(x)$$

Exemple 40. On considère $f:(x,y)\mapsto x^2-y^2+\frac{y^4}{4}$. La courbe d'équation

$$f(x, y) = 0$$

est (au changement près du nom des coordonnées) une projection de l'intersection d'un cylindre et d'une sphère tangents. On a

$$f = u^2 - v^2$$

avec
$$u:(x,y)\mapsto x$$
 et $v:(x,y)\mapsto y\sqrt{1-\frac{y^2}{4}}$.

p. 354

p. 209

p. 334

2. Conditions d'extrema

Soit $f: U \to \mathbb{R}$ de classe \mathscr{C}^2 sur U.

Théorème 41. On suppose $df_a = 0$ (a est un **point critique** de f). Alors :

- [**GOU20**] p. 336
- (i) Si f admet un minimum (resp. maximum) relatif en a, Hess $(f)_a$ est positive (resp. négative).
- (ii) Si $\operatorname{Hess}(f)_a$ définit une forme quadratique définie positive (resp. définie négative), f admet un minimum (resp. maximum) relatif en a.

Exemple 42. On suppose $df_a = 0$. On pose $(r, s, t) = \left(\frac{\partial^2}{\partial x_i \partial x_j} f\right)_{i+j=2}$. Alors:

- (i) Si $rt s^2 > 0$ et r > 0 (resp. r < 0), f admet une minimum (resp. maximum) relatif en a.
- (ii) Si $rt s^2 < 0$, f n'a pas d'extremum en a.
- (iii) Si $rt s^2 = 0$, on ne peut rien conclure.

Exemple 43. La fonction $(x, y) \mapsto x^4 + y^2 - 2(x - y)^2$ a trois points critiques qui sont des minimum locaux : (0,0), $(\sqrt{2}, -\sqrt{2})$ et $(-\sqrt{2}, \sqrt{2})$.

Contre-exemple 44. $x \mapsto x^3$ a sa hessienne positive en 0, mais n'a pas d'extremum en 0.

IV - Application en probabilités

Théorème 45 (Lévy). Soient (X_n) une suite de variables aléatoires réelles et X une variable aléatoire réelle. Alors :

[**Z-Q**] p. 544

$$X_n \xrightarrow{(d)} X \iff \phi_{X_n}$$
 converge simplement vers ϕ_X

où ϕ_Y désigne la fonction caractéristique d'une variable aléatoire réelle Y.

[**G-K**]

Théorème 46 (Central limite). Soit (X_n) une suite de variables aléatoires réelles indépendantes de même loi admettant un moment d'ordre 2. On note m l'espérance et σ^2 la variance commune à ces variables. On pose $S_n = X_1 + \cdots + X_n - nm$. Alors,

$$\left(\frac{S_n}{\sqrt{n}}\right) \xrightarrow{(d)} \mathcal{N}(0, \sigma^2)$$

Application 47 (Théorème de Moivre-Laplace). On suppose que (X_n) est une suite de variables aléatoires indépendantes de même loi $\mathcal{B}(p)$. Alors,

$$\frac{\sum_{k=1}^{n} X_k - np}{\sqrt{n}} \xrightarrow{(d)} \mathcal{N}(0, p(1-p))$$

Application 48 (Formule de Stirling).

$$n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n$$

p. 556

Bibliographie

Objectif agrégation [BMP]

Vincent BECK, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Mathématiques pour l'agrégation

[DAN]

Jean-François Dantzer. *Mathématiques pour l'agrégation. Analyse et probabilités.* De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332904-mathematiques-pour-l-agregation-analyse-et-probabilites.

Analyse numérique et équations différentielles

[DEM]

Jean-Pierre Demailly. *Analyse numérique et équations différentielles*. 4^e éd. EDP Sciences, 11 mai 2016.

https://www.uga-editions.com/menu-principal/collections-et-revues/collections/grenoble-sciences/analyse-numerique-et-equations-differentielles-239866.kjsp.

De l'intégration aux probabilités

[G-K]

Olivier GARET et Aline KURTZMANN. *De l'intégration aux probabilités*. 2^e éd. Ellipses, 28 mai 2019. https://www.editions-ellipses.fr/accueil/4593-14919-de-l-integration-aux-probabilites-2e-edition-augmentee-9782340030206.html.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.

Petit guide de calcul différentiel

[ROU]

François Rouvière. *Petit guide de calcul différentiel. à l'usage de la licence et de l'agrégation.* 4° éd. Cassini, 27 fév. 2015.

https://store.cassini.fr/fr/enseignement-des-mathematiques/94-petit-guide-de-calcul-differentiel-4e-ed.html.

Claude Zuily et Hervé Queffélec. *Analyse pour l'agrégation*. *Agrégation/Master Mathématiques*. 5^e éd. Dunod, 26 août 2020.

 $\verb|https://www.dunod.com/prepas-concours/analyse-pour-agregation-agregationmaster-mathematiques.||$