

Dispositivos de Almacenamiento

Décimo (I BTP) "A" Informática I 20 de Julio de 2025

I. Introducción

En el funcionamiento de una computadora, la capacidad de almacenar y recuperar información es tan crucial como su capacidad de procesamiento. Los dispositivos de almacenamiento son los componentes que permiten guardar datos de forma temporal o permanente, asegurando que la información esté disponible cuando se necesite. Esta clase explorará los diferentes tipos de memorias y dispositivos de almacenamiento, sus características, funciones y cómo se utilizan en la vida real.

II. La Jerarquía de la Memoria

Las computadoras utilizan diferentes tipos de memoria y almacenamiento, organizados en una jerarquía basada en su velocidad, capacidad y costo. Los más rápidos y costosos suelen tener menor capacidad, mientras que los más lentos y económicos tienen mayor capacidad.

III. Tipos de Memoria (Almacenamiento Primario)

Estos tipos de memoria son directamente accesibles por la CPU y son esenciales para el funcionamiento inmediato del sistema.

a. Memoria de Acceso Aleatorio (RAM - Random Access Memory)

Definición: Es la memoria principal de la computadora. Almacena temporalmente los datos y programas que la CPU está utilizando en un momento dado.

Características:

Volátil: Su contenido se borra cuando la computadora se apaga o se reinicia.

Rápida: Permite un acceso muy rápido a la información.

Crucial para el rendimiento: Cuanta más RAM, más programas y datos puede manejar la computadora simultáneamente sin ralentizarse.

Ejemplos: Módulos DDR4, DDR5 (tipos de RAM modernos).

Uso Típico: Ejecución de aplicaciones, edición de documentos, navegación web.

b. Memoria de Solo Lectura (ROM - Read Only Memory)

Definición: Es un tipo de memoria no volátil que almacena permanentemente instrucciones básicas y esenciales para el arranque de la computadora.

Características:

No volátil: Su contenido no se borra al apagar el equipo.

Permanente: La información se graba durante la fabricación y no se puede modificar fácilmente.

Contiene firmware: Almacena el software de arranque (como la BIOS/UEFI) que permite a la computadora iniciar, realizar pruebas de hardware y cargar el sistema operativo.

Ejemplos: Chips de BIOS en la placa madre.

Uso Típico: Proceso de arranque del sistema.

IV. Dispositivos de Almacenamiento (Almacenamiento Secundario)

Estos dispositivos se utilizan para almacenar datos de forma permanente, incluso cuando la computadora está apagada. Son de mayor capacidad y menor velocidad que la RAM.

a. Discos Duros (HDD - Hard Disk Drive)

Definición: Son dispositivos de almacenamiento magnético que utilizan platos giratorios para guardar datos.

Características:

Mecánicos: Contienen partes móviles (platos, cabezales de lectura/escritura).

Gran capacidad: Ofrecen mucho espacio de almacenamiento a un costo relativamente bajo por gigabyte.

Más lentos: Su velocidad de acceso es menor comparada con los SSD debido a sus componentes mecánicos.

Ejemplos: Discos duros internos y externos de 1TB, 2TB, etc.

Uso Típico: Almacenamiento masivo de archivos, sistema operativo, programas, documentos, fotos, videos.

b. Unidades de Estado Sólido (SSD - Solid State Drive)

Definición: Son dispositivos de almacenamiento basados en memoria flash (similar a la de las memorias USB), sin partes móviles.

Características:

Electrónicos: No tienen componentes mecánicos, lo que los hace más rápidos y duraderos.

Alta velocidad: Ofrecen velocidades de lectura y escritura significativamente superiores a los HDD.

Mayor costo: Son más caros por gigabyte que los HDD.

Ejemplos: SSD SATA, SSD NVMe (M.2).

Uso Típico: Instalar el sistema operativo y programas para un arranque y carga rápidos, aplicaciones que requieren alto rendimiento.

c. Unidades Flash (Memorias USB, Tarjetas SD)

Definición: Dispositivos de almacenamiento portátiles que utilizan memoria flash.

Características:

Portátiles: Pequeños y fáciles de transportar.

Versátiles: Se conectan a través de puertos USB o ranuras de tarjetas.

Capacidad variada: Desde unos pocos gigabytes hasta varios terabytes.

Ejemplos: Memorias USB, tarjetas microSD para teléfonos/cámaras.

Uso Típico: Transferencia de archivos, copias de seguridad rápidas, almacenamiento portátil.

d. Discos Ópticos (CD, DVD, Blu-ray)

Definición: Dispositivos que almacenan datos en discos mediante láser para leer y escribir información.

Características:

Legado: Menos comunes hoy en día debido a la popularidad de las unidades flash y la nube.

Capacidad limitada: CD (700 MB), DVD (4.7 GB), Blu-ray (25 GB por capa).

Durabilidad: Pueden rayarse o dañarse.

Ejemplos: Películas en DVD, software en CD.

Uso Típico: Almacenamiento de música, películas, software (históricamente).

e. Almacenamiento en la Nube (Cloud Storage)

Definición: Almacenamiento de datos en servidores remotos accesibles a través de Internet.

Características:

Accesibilidad: Acceso a los archivos desde cualquier dispositivo con conexión a Internet.

Escalabilidad: Capacidad de almacenamiento flexible según la necesidad.

Copias de seguridad: Ofrece redundancia y protección contra pérdida de datos locales.

Ejemplos: Google Drive, Dropbox, OneDrive, iCloud.

Uso Típico: Copias de seguridad, colaboración en documentos, acceso a archivos desde múltiples dispositivos.

V. Conclusión

Los dispositivos de almacenamiento son componentes esenciales que permiten a las computadoras guardar, acceder y gestionar la información de manera efectiva. Desde la rápida memoria RAM que facilita la multitarea hasta los discos duros y SSD que almacenan nuestros archivos de forma permanente, y el almacenamiento en la nube que ofrece accesibilidad global, cada tipo de dispositivo cumple una función vital. Comprender sus características y usos nos ayuda a tomar decisiones informadas sobre cómo gestionar y proteger nuestros datos digitales.