

Analysis of Alternatives: Deriving Warfighter Utility From Functional Measures of System-of-Systems Performance

Dr. Paul H. Deitz, Technical Director

U.S. Army Materiel Systems Analysis Activity

ATTN: AMXSY-TD

Aberdeen Proving Ground, MD 21005-5071

(410) 278-6598, DSN 298-6598; phd@arl.mil

<http://amsaa-web.arl.mil/OTD/techdir.html>

7 June 2000

**Presented at International Test and Evaluation Association (ITEA)
Workshop, *Navigating the T&E Landscape In the New T&E
Environment*, held at the Hilton Garden Inn, White Marsh, MD, 5-8
June, 2000.**

AMSAA

Workshop Issues

- Planning “optimum” tests
- Planning best mix of testing and modeling for evaluation
- Realistic “stimulation” of platforms under test
 - Methods of cost control in T&E
 - Economic models for T&E
 - Cost effectiveness comparisons of T&E facilities

Workshop Issues (cont)

None of these objectives has meaning without appropriate:

- **Measures-of-Performance (MoP), or**
- **Measures-of-Effectiveness (MoE), or**
- **Benefit, or**
- **other relevant value metric(s).**

Objective of Paper

- To present a kind of operational architecture suitable for integrated weapons analysis
- To see how the elements change as a mission progresses
- To see how the structure must be built from the desired mission outcome back towards platform design
- To extend the process to a system-of-systems

Key Metrics

There are three principal weapons platform metrics:

Level 4], *Platform Utility*, which is derived from

Level 3], *Platform Capability*, which is derived from

Level 2], *Platform Componentry/Connectivity*, which is the fundamental platform metric

AMSAA

Key Platform Metrics

These metrics are the

WHY

(Level 4)

the

WHAT

(Level 3)

and the

HOW

(Level 2)

of an *operations research* framework.

Example: Platform Configuration

2]

Secondary Armament

Early Warning Sensors
(LWR, RWR, MWR)

Moving
Sensors
Communicate

Main Armament

Crew

Millimeter Wave Radar Antenna

Commo Equipment

Engine Compartment

Fuel

Ammo Compartment

Wheels/Track

Commo Equipment

Target Acquisition/Engagement Sights

AMSAA

Abstraction: Platform Configuration

2]

Military Operations

Context

- Tactics
 - Doctrine
 - Scenario
 - etc.
- (Global Variables)

Level 2]

$v_2[C_1, C_2, \dots, C_c, C_d, \dots, C_i, C_k, \dots, C_m, C_n]$

Crew Ammo Fuel Msn Crit
Re-Armed and Re-Fueled

H + 7

AMSAA

Testing for Platform Capabilities

31

AMSAA
e Repleni
sh Engag

Abstraction: Platform Capabilities

3]

v_3 [Top Speed, Max Range, Rough Terrain Capability, ...
Rate of Fire, Time to Acquire Tgt, Hit Probability, ...
Data Rate, Data Latency, ...]

Level 3]

$O_{2,3}$ Operator

Context
• Tactics
• Doctrine
• Scenario
• etc.
(Global Variables)

Level 2]

H + 7

Mission Utility from Capabilities

Effectiveness
SS? Performance
e? Lethality
Y?

4H

Survability
Y?
Loss/Exchang
Readine
SS?

AMSA

Abstraction: Platform

Utility Level

4]

Level 4]

$O_{3,4}$ Operator

Msn Cap Reqs

Military Operations

- Tactics
 - Doctrine
 - Scenario
 - etc.
- (Global Variables)

H + 7

Level 2]

$O_{2,3}$ Operator

Context Data

AMSAA

Physical Analogues for the O_{1,2} Operator

Abstraction: Platform Live-Fire Test Operator

Level 4]

Level 3]

Level 2]

Level 1]

$O_{3,4}$ Operator

Msn Cap Reqs

$O_{2,3}$ Operator

Context Data

$O_{1,2}$ Operator

Context Data

Risk Factors

AMSAA

Military Operations

Context
• Tactics
• Doctrine
• Scenario
• etc.
(Global Variables)

Ablaze, the Arizona slips beneath the water

More US Marines won the Medal of Honor on Iwo Jima than in any other battle in US History.

In 36 days of fighting there were **25,851 US casualties** (1 in 3 were killed or wounded).

Virtually all 22,000 Japanese perished.

1 Level 4] - Mission Outcomes Status

Measure? Avoidance?

Loss Exchange Ratio (LER)

AMSAA

Mission-Based Utility

Summary

- Have described an analysis framework that:
 - has three linked metrics - utility, capability, componentry
 - where utility is based on mission-related capabilities
 - capabilities are based on componentry
 - platform componentry is the fundamental metric, and
- Platform effectiveness can change over time as specific military
 - a] mission requirements change, and/or
 - b] the component infrastructure degrades/is reconstituted

Summary (cont)

- What you as testers can measure is:
 - a] the effect of the military environment (e.g. bullets, wear out, resupply) on platform component parts and
 - b] the performance (e.g. move, shoot, communicate) of the platform as a whole in the military environment.
- What you as testers cannot measure is platform military effectiveness, and must seek the warfighter input to infer:
 - a] how performance forms the basis for effectiveness and
 - b] what defines the military environment(s).

Summary (cont)

- Process also implies that you must begin by defining:
 - 1] what constitutes operational effectiveness, then
 - 2] the key supporting capabilities, and then
 - 3] the robustness of the key components which support these capabilities
- Process implies a clear division of labor between the Scientist/ Engineer and the Warfighter/Operator, and who has the appropriate knowledge for each piece of the process.
- The following paper by Mr. Sheehan describes a method for developing the relationship between platform performance and military effectiveness.

Analysis of Alternatives: Deriving Warfighter Utility From Functional Measures of System-of-Systems Performance

Dr. Paul H. Deitz, Technical Director

U.S. Army Materiel Systems Analysis Activity

ATTN: AMXSY-TD

Aberdeen Proving Ground, MD 21005-5071

(410) 278-6598, DSN 298-6598; phd@arl.mil

<http://amsaa-web.arl.mil/OTD/techdir.html>

7 June 2000

**Presented at International Test and Evaluation Association (ITEA)
Workshop, *Navigating the T&E Landscape In the New T&E
Environment*, held at the Hilton Garden Inn, White Marsh, MD, 5-8
June, 2000.**

Backups

AMSAA

References

ces

- P. H. Deitz, *A V/L Taxonomy for Analyzing Ballistic Live-Fire Events*, **Proceedings of the 46th Annual Bomb & Warhead Technical Symposium**, 13-15 May 1996, Monterey, CA; also US Army Research Laboratory Technical Report ARL-TR-1274, December 1996.
- P. H. Deitz and M. W. Starks, *The Generation, Use, and Misuse of 'PKs' in Vulnerability/Lethality Analyses*, **The Journal of Military Operations Research**, Vol. 4, No. 1, 1999.
- F. Haddix, *The Conceptual Models of the Mission Space (CMMS) Data Representation and Interchange Specification*, **Proceedings of the 1999 Fall Simulation Interoperability Workshop**, sponsored by the Simulation Interoperability Standards Organization, September 1999.
- R. Luman, *Upgrading Complex Systems of Systems: A CAIV Methodology for Warfare Area Requirements Allocation*, **66th Military Operations Research Society Symposium**, Working Group 26, 24 June 1998.
- E. L. DuBois, W. P. Hughes, and L.J. Low, *A Concise Theory of Combat*, **Institute for Joint Warfare Analysis**, Naval Postgraduate School, 1999.
- P. H. Deitz, *Parsing SMART: What Are the Pieces and How Do They Fit Together?*, **Proceedings of the 1999 Fall Simulation Interoperability Standards Organization (SISO) Workshop**, 1999.

Component Change Mechanisms

(Quasi-) Perm Damage

Ballistic
Chemical
Laser
Directed Energy
High-Pwr Laser
Nuclear
Physics of Failure
Logistics Burdens
(Fuel, Ammo)
Reliability
Fair Wear & Tear
Fatigue⁺
Heat Stress⁺

Temp Damage

Electronic Jamming
Cosite Interference

Comp Repair/Fi

Battle Damage
Resupply/Replenish
Sleep⁺

⁺ Personnel Related

Combined Platform Performance

ACQUIRE

COMM

H + 5

SAA

System-of-Systems

Sys n

Sys $i = 1$

Top-Down Decompositional Framework

Bottom-Up Analysis Framework

Bottom-up process follows causal (*i.e.*, time-forward) behavior

Conclusions

- With an instantiated environment -

- Process

- Mission Utility → Platform Technology
- Applicable to “Systems-of-Systems” e.g. Communication Systems
- Provides structure for C/B, CAIV, and AoA analyses