UART Registers

Usecases

There are cases where you want to dynamically control your FPGA from external interface, in such cases many people uses SPI or I2C controlled registers to configure CSR (Configuration and Status Registers)

This repo contains uart_reg module which can be used to set configuration registers, currently only manually read/write is possible from external interface, other modules can only read values from this registers. Writing to these registers from internal will be future implementation.

uart_core is slighly adopted version from libfpga

How to Use

It is very simple to import this module into your design, just copy uart_core.v and uart_regs.v into your workspace folder, and the use the uart_regs module from uart_regs.v file.

uart_regs module

```
module uart regs #(
    parameter W_REG = 32
)(
    input wire clk,
    input wire rst_n,
    input wire rx,
    output wire tx,
    input wire [9:0] div_int,
    input wire [3:0] div_frac,
    output wire [W_REG-1:0] Reg1,
    output wire [W_REG-1:0] Reg2,
    output wire [W_REG-1:0] Reg3,
    output wire [W_REG-1:0] Reg4,
    output wire [W_REG-1:0] Reg5,
    output wire [W_REG-1:0] Reg6,
    output wire [W_REG-1:0] Reg7,
    output wire [W_REG-1:0] Reg8
);
```

As defined in module definition, Reg{1..8} are configuration registers which is read by other

modules. tx and rx should be mapped to FPGA pins and clk and rst_n need to be conneced. div_frac and div_int can be set internally to set UART baudrate as per following expression:

baud_rate = fCLk/(8*(div_int + div_frac/16))

Implementation

uart_regs needs uart_core module which is UART state-machine, whenever we have have read/write
request as byte in RX FIFO rx_irq is asserted which triggers uart_regs state-machine:

1. If read_reg is asserted