Longitudianl Data Analysis

3. Linear Models for Correlated Data

To develop a general linear model framework for longitudinal data, in which the inference we make about the parameters of interest (β) recoginze the likely correlation structure of the data. There are two ways to archieve this:

- 1. To build explicit parametric models of the covariance struture (e.g. CS/exchangable, AR(1), etc.)
- 2. To use methods of inference which are robust to misspecification of the covariance structure. 12

1. Random effect model (conditional model)

$$Y_{ij} = U_i + \beta_0 + \beta_1 t_j + \varepsilon_{ij}$$

where

 $U_i \sim N(0, v^2)$, variance between units (clusters)

$$\varepsilon_{ij} \sim N(0, \tau^2)$$
, variation within units

 $\rho = \frac{v^2}{v^2 + \tau^2}$, proportion of total variance due to between units variation

- $var(y_{ij}|U_i) = \tau^2, cov(y_{ij}, y_{ij'}|U_i) = 0$
- Ex: R.E. (repeated measures) ANOVA:

we can treat the group (condition) variable as the original "time" variable, i.e. the repeated meaures are observed on different conditions (which cause the groups effect that we are interested in).

$$y_{ij} = \mu_j + U_i + \varepsilon_{ij}$$

where

$$\mu_j, j = 1, \dots, n$$
 the group effects

 $U_i \sim N(0, v^2)$, the between subjects random effect

$$\varepsilon \sim N(0, \tau^2)$$

Total sum of squares = Between group sum of squares + within group sum of squares

 $^{^{1}}$ The covariance structure is usually the nuisance parameter

²Two categories of robustness: 1. w.r.t. the outliers; 2. w.r.t. model assumptions

$$cov(y_{ij}, y_{i'j'}) = \begin{cases} var(y_{ij}) = \tau^2 + v^2, & \text{if } i = i', j = j' \\ cov(y_{ij}, y_{ij'}) = v^2, & \text{if } i = i', j \neq j' \\ 0, & \text{if } i \neq i', j \neq j' \end{cases}$$

$$corr(y_{ij}, y_{ij'}) = \frac{cov(y_{ij}, y_{ij'})}{\sqrt{var(y_{ij})var(y_{ij'})}} = \frac{v^2}{\tau^2 + v^2} = \rho$$
 (within cluster correlation)

• heteogeneity: variantion between groups implies (relative) similarity/correlation within gorups. If $v^2 >> \tau^2 \Rightarrow \rho \to 1 \Rightarrow$ significant difference among groups.

2. Marginal model (population average)

1. With exchangable (CS) variance-covariance structure (balanced data)

$$Y_{ij} = \beta_0 + \beta_1 t_j + \varepsilon_{ij}, i = 1, /cdots, m; j = 1, \dots, n$$

$$Cov(Y_i) = \sigma^2 V_0$$

where

$$V_0 = \rho J + (1 - \rho)I$$

$$\rho = corr(y_{ij}, y_{ik}), \text{ for } i \neq k$$

- marginal model with CS variance struture is equivalent with random effect (intercept) model: the same $E(Y_i)$ and $cov(Y_i)$ structures, thus will return the same estimate of the parameters.
- 2. Exponential correlation / autoregressive model
 - Correlation b/t a pair of measurements of the same subject decays towards 0 as the time separation b/t the measurement increases, i.e.
 - for unequally-spaced data

$$cov(y_{ij}, y_{ik}) = [V_0]_{ij} = v_{ij} = \sigma^2 e^{-\phi|t_j - t_k|}$$

- for equally-spaced data

$$t_{i-1} - t_i = d$$

for all j, then $v_{jk} = \sigma^2 \rho$, where $\rho = \exp(-\phi d)$ is the correlation b/t successive observations on the same subject.

• In marginal models, we model the mean and the covariance structrue separately:

$$E[Y_i] = \mu = X_i \beta$$

$$Cov[Y_i] = CS/AR(1)/...$$

- Three basic elements of correlation structure:
 - Random effects
 - Autocorrelation or serial dependence
 - Noise, measurement error
- Modelling the correlation in longitudian data is important to be able to obtain correct inference on β s. Incorporating correlation into estimation of regression models is achieved via **weighted least squares**.