(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(II)特許出願公開番号 特開2002-208447

(P2002-208447A) (43)公開日 平成14年7月26日(2002.7.26)

(51) Int. Cl. 7	識別記号		FΙ					テ	-73-1	(参考)
H01R 11/01	501		H01R	11/01		501	С	5E02	4	
H01B 5/16			H01B	5/16				5E05	1	
13/00	501			13/00		501	P	5G30	7	
H01R 13/03			H01R	13/03			Z			
33/76				33/76			A			,
·		審査請求	未請求	請求	項の数25	OL	(全21	頁)	最終頁	に続く
(21)出願番号	特願2001-5490(P2001-	5490)	(71) 出	調人	00000417	78				
					ジェイエ	スアー	ル株式会	会社		
(22)出願日	平成13年1月12日(2001.)	1.12)		•	東京都中	央区築	地2丁	月11番2	24号	
	•		(72) 至	問者	山田 大	典				
					東京都中			目11番2	24号 シ	フェイ
					エスアー	ル株式	会社内		-	
			(72)多	Ě明者	木村 澆			,		
					東京都中			目11番2	24号 シ	ジェイ
			Ì		エスアー					
•			F 夕-	-ム(参	考) 5E0	24 CB06				
			1			51 CA03				
					5G3	07 HAO2	HB03 H	HC02		

(54) 【発明の名称】異方導電性シートおよびその製造方法

(57)【要約】

【課題】 接続した電子装置などの回路基板から異方 導電性シートを剥離する際などに、異方導電性シートの 一面に静電気が生じて帯電することを防止または抑制す ることができ、例えば異方導電性シートを、プリント回 路基板や半導体集積回路などの回路装置の電気的検査に 用いる場合には、検査作業を中断して異方導電性シート の除電作業を行うことが不要で、高い時間的効率で、回 路装置の電気的検査を行うことができる異方導電性シートを提供すること。

【解決手段】 各々厚み方向に伸び、弾性を有する複数の導電路形成部が、絶縁部によって相互に絶縁された状態で配設されてなる異方導電性シート本体と、この異方導電性シート本体における導電路形成部の表面に一体的に設けられた接点部材と、このシート体の少なくとも一面に一体的に設けられた除電層とを有することを特徴とする異方導電性シート

【特許請求の範囲】

【請求項1】 各々厚み方向に伸び、弾性を有する複数 の導電路形成部が、絶縁部によって相互に絶縁された状 態で配設されてなる異方導電性シート本体と、 この異 方導電性シート本体における導電路形成部の表面に設け られた接点部材と、このシート体の少なくとも一面に一 体的に設けられた除電層とを有することを特徴とする異 方導電性シート。

【請求項2】 接点部材が、異方導電性シート本体にお ける導電路形成部の表面に接着されていることを特徴と 10 する請求項1に記載の異方導電性シート。

接点部材が、その一面側が導電路形成部 【請求項3】 に埋め込まれた状態であることを特徴とする請求項1ま たは請求項2に記載の異方導電性シート。

接点部材が、前記シート本体における導 【請求項4】 電路形成部上に、硬化性樹脂中に導電性粉末が分散され てなる導電性接着層を介して、一体的に設けられている ことを特徴とする請求項1に記載の異方導電性シート。

導電路形成部が、その表面が絶縁部の表 【請求項5】 面から突出した状態であることを特徴とする請求項1~ 20 請求項4の何れかに記載の異方導電性シート。

【請求項6】 除電層は、シート体における絶縁部に設 けられていることを特徴とする請求項2に記載の異方導 電性シート。

シート体は、その厚み方向に並ぶよう配 【請求項7】 向した状態で含有された導電性粒子を有することを特徴 とする請求項1乃至請求項4のいずれかに記載の異方導 電性シート。

【諸求項8】 除電層が、導電性有機物質を含有してな ることを特徴とする請求項1乃至請求項5のいずれかに 30 記載の異方導電性シート。

【請求項9】 除電層が、アミン系有機導電性物質を含 有してなることを特徴とする請求項1乃至請求項5のい ずれかに記載の異方導電性シート。

【請求項10】 除電層が、金属を含有してなることを 特徴とする請求項1乃至請求項5のいずれかに記載の異 方導電性シート。

【請求項11】 除電層が、カーボンブラックを含有し てなることを特徴とする請求項1乃至請求項5のいずれ かに記載の異方導電性シート。

除電層が、金属層よりなることを特徴 【請求項12】 とする請求項1乃至請求項5のいずれかに記載の異方導 電性シート。

【請求項13】 除電層が、有機物質よりなるバインダ 一中に導電性物質が含有されてなることを特徴とする請 求項1乃至請求項5のいずれかに記載の異方導電性シー

【請求項14】 除電層が、熱可塑性樹脂中に導電性有 機物質が含有されてなることを特徴とする請求項1乃至 請求項5のいずれかに記載の異方導電性シート。

【請求項15】 除電層が、導電性ポリマーよりなるこ とを特徴とする請求項1乃至請求項5のいずれかに記載 の異方導電性シート。

【請求項16】 請求項1に記載の異方導電性シートを 製造する方法であって、

導電性物質を含有してなる流動性の除電層形成用組成物 を、シート体に塗布して塗膜を形成し、その後、当該塗 膜に対して定着処理を行うことにより、除電層を形成す る工程を有することを特徴とする異方導電性シートの製 造方法。

【請求項17】 請求項1に記載の異方導電性シートを 製造する方法であって、

導電性物質と、バインダーもしくはバインダーとなる硬 化性材料とを含有してなる流動性の除電層形成用組成物 を、シート体に塗布して塗膜を形成し、その後、当該塗 膜に対して乾燥処理および/または硬化処理を行うこと により、除電層を形成する工程を有することを特徴とす る異方導電性シートの製造方法。

【請求項18】 請求項1に記載の異方導電性シートを 製造する方法であって、

除電層となるべき除電層用フィルムを、シート体に接着 することにより、除電層を形成する工程を有することを 特徴とする異方導電性シートの製造方法。

【請求項19】 請求項1に記載の異方導電性シートを 製造する方法であって、

シート体に金属のメッキ処理を行うことにより、金属層 よりなる除電層を形成する工程を有することを特徴とす る異方導電性シートの製造方法。

【請求項20】 請求項1に記載の異方導電性シートを 製造する方法であって、

シート体を成形するための金型の成形面に除電層となる べき層を形成し、その後、この金型内に、硬化されて弾 性高分子物質となる高分子形成材料中に導電性粒子が含 有されてなるシート体成形材料を注入して成形材料層を 形成し、当該成形材料層を硬化処理する工程を有するこ とを特徴とする異方導電性シートの製造方法。

【請求項21】 金型内に形成された成形材料層に、磁 場を作用させながらまたは磁場を作用させた後に、当該 成形材料層を硬化処理することを特徴とする請求項18 40 に記載の異方導電性シートの製造方法。

請求項1に記載の異方導電性シートか 【請求項22】 らなる半導体回路接続用コネクター。

請求項1に記載の異方導電性シートを 【請求項23】 電気的接続部材として用いた検査装置。

請求項1に記載の異方導電性シートを 【請求項24】 電気的接続部材として用いた半導体回路検査装置。

請求項1に記載の異方導電性シートか 【請求項25】 らなる回路装置検査用治具。

【発明の詳細な説明】

[0001]

50

3

【発明の属する技術分野】本発明は、例えば電子部品などの回路装置相互間の電気的接続や、プリント回路基板、半導体集積回路などの回路装置の検査装置におけるコネクターなどに好ましく用いられる異方導電性シートおよびその製造方法に関する。

[0002]

【従来の技術】異方導電性エラストマーシートは、厚み方向にのみ導電性を示すもの、または厚み方向に加圧されだときに厚み方向にのみ導電性を示す加圧導電性導電部を有するものであり、ハンダ付けあるいは機械的嵌合などの手段を用いずにコンパクトな電気的接続を達成することが可能であること、機械的な衝撃やひずみを吸収してソフトな接続が可能であることなどの特長を有するため、このような特長を利用して、例えば電子計算機、電子式デジタル時計、電子カメラ、コンピューターキーボードなどの分野において、回路装置、例えばプリント回路基板とリードレスチップキャリアー、液晶パネルなどとの相互間の電気的な接続を達成するためのコネクターとして広く用いられている。

【0003】また、プリント回路基板や半導体集積回路 20 などの回路装置の電気的検査においては、検査対象である回路装置の少なくとも一面に形成された被検査電極と、検査用回路基板の表面に形成された検査用電極との電気的な接続を達成するために、回路装置の被検査電極領域と検査用回路基板の検査用電極領域との間に異方導電性エラストマーシートを介在させることが行われている。

【0004】従来、このような異方導電性エラストマーシートとしては、種々の構造のものが知られており、例えば特開昭51-93393号公報等には、金属粒子を30エラストマー中に均一に分散して得られる異方導電性エラストマーシートが開示され、また、特開昭53-147772号公報等には、導電性磁性体粒子をエラストマー中に不均一に分布させることにより、厚み方向に伸びる多数の導電路形成部と、これらを相互に絶縁する絶縁部とが形成されてなる異方導電性エラストマーシートが開示され、更に、特開昭61-250906号公報等には、導電路形成部の表面と絶縁部との間に段差が形成された異方導電性エラストマーシートが開示されている。【0005】

【発明が解決しようとする課題】しかしながら、異方導電性シートは、厚み方向に導電性を有するものであるが、面方向においては絶縁性を有するものであるため、その使用方法や使用環境によっては、当該異方導電性シートの表面に静電気が生じて帯電し、種々の問題が生じる。例えば、異方導電性シートを回路装置の電気的検査に用いる場合には、異方導電性シートの表面に静電気が生じて帯電すると、当該静電気による引力によって、異方導電性シートに検査対象である回路装置が張りつくため、検査作業を円滑に行うことが困難となる。また、異50

方導電性シートの表面に高い電圧の静電気が蓄積されると、作業者の安全性の確保の点で不都合であり、特に、極めて高い電圧の静電気が蓄積されたときには、当該静電気が放電することによって、検査装置、異方導電性シートあるいは検査対象である回路装置に故障が生じることがある。このような理由から、回路装置の電気的検査においては、定期的にあるいは異方導電性シートの表面に静電気の発生が観察されたときに必要に応じて、検査作業を中断し、除電ブラシなどを用いて異方導電性シートの除電作業を行うことが必要であり、そのため、検査効率が低下する、という問題がある。

【0006】本発明は、以上のような事情に基づいてなされたものであって、その第1の目的は、表面に静電気が生じて帯電することを防止または抑制することができる異方導電性シートを提供することにある。本発明の第2の目的は、表面に静電気が生じて帯電することを防止または抑制することができる異方導電性シートを製造することができる方法を提供することにある。

[0007]

【課題を解決するための手段】本発明の異方導電性シートは、厚み方向に導電性を有する異方導電性のシート体と、このシート体の少なくとも一面に一体的に設けられた除電層とを具えてなることを特徴とする。

【0008】また、本発明の異方導電性シートは、厚み方向に伸びる複数の導電部が絶縁部によって相互に絶縁された状態で配置されてなる異方導電性のシート体と、この異方導電性シート本体における導電路形成部の表面に設けられた接点部材と、このシート体の少なくとも一面に一体的に設けられた除電層とを有することを特徴とする。このような異方導電性シートにおいては、前記除電層は、シート体における絶縁部に設けられていることが好ましい。また、前記シート体における絶縁部の少なくとも一面には、凹所が形成されており、この凹所内に除電層が設けられていてもよい。

【0009】本発明の異方導電性シートにおいては、前記シート体は、その厚み方向に並ぶよう配向した状態で含有された導電性粒子を有することが好ましい。接点部材は、異方導電性シート本体における導電路形成部の表面に接着されていることが好ましい。また、接点部材は、その一面側が導電路形成部に埋め込まれた状態であることが好ましい。接点部材は、前記シート本体における導電路形成部上に、硬化性樹脂中に導電性粉末が分散されてなる導電性接着層を介して、一体的に設けられていることが好ましい。また、導電路形成部は、その表面が絶縁部の表面から突出した状態であることが好まし

【0010】本発明の異方導電性シートにおいては、前記除電層として、導電性有機物質を含有してなるものを用いることができる。また、前記除電層として、アミン系有機導電性物質を含有してなるものを用いることがで

きる。また、前記除電層として、金属を含有してなるものを用いることができる。また、前記除電層として、カーボンブラックを含有してなるものを用いることができる。また、前記除電層として、金属層よりなるものを用いることができる。また、前記除電層として、有機物質よりなるバインダー中に導電性物質が含有されてなるものを用いることができる。また、前記除電層として、熱可塑性樹脂中に導電性有機物質が含有されてなるものを用いることができる。また、前記除電層として、導電性ポリマーよりなるものを用いることができる。

【0011】本発明の異方導電性シートの製造方法は、 導電性物質を含有してなる流動性の除電層形成用組成物 を調製し、この除電層形成用組成物をシート体に塗布し て塗膜を形成し、その後、当該塗膜に対して定着処理を 行うことにより、除電層を形成する工程を有することを 特徴とする。

【0012】また、本発明の異方導電性シートの製造方 とは、導電性物質と、パインダーもしくはパインダーと なる硬化性材料とを含有してなる流動性の除電層形成用 組成物を調製し、この除電層形成用組成物をシート体に 20 一ト体の一面における一部の領域に形成されていてもよ な い。そして絶縁部12の表面には除電層130が形成さ れている。 を形成する工程を有することを特徴とする。 【0019】この第1の実施の形態において、導電路形

【0013】また、本発明の異方導電性シートの製造方法は、除電層となるべき除電層用フィルムを製造し、この除電層用フィルムをシート体に接着することにより、 除電層を形成する工程を有することを特徴とする。

【0014】また、本発明の異方導電性シートの製造方法は、シート体に金属のメッキ処理を行うことにより、 金属層よりなる除電層を形成する工程を有することを特 30 徴とする。

【0015】また、本発明の異方導電性シートの製造方法は、シート体を成形するための金型の成形面に除電層となるべき層を形成し、その後、この金型内に、硬化されて弾性高分子物質となる高分子形成材料中に導電性粒子が含有されてなるシート体成形材料を注入して成形材料層を形成し、当該成形材料層を硬化処理する工程を有することを特徴とする。このような製造方法においては、金型内に形成された成形材料層に、磁場を作用させながらまたは磁場を作用させた後に、当該成形材料層を40硬化処理することが好ましい。

[0016]

【作用】上記の構成によれば、異方導電性のシート体の一面に除電層が設けられているため、当該除電層を接地することにより、異方導電性シートの一面に静電気が生じて帯電することを防止または抑制することができる。

[0017]

【発明の実施の形態】以下、本発明の実施の形態につい て詳細に説明する。

〈異方導電性シート〉

【発明の実施の形態】以下、本発明の実施の形態につい て詳細に説明する。

〈第1の実施の形態〉図1は、本発明の異方導電性シー トに係る第1の実施の形態における要部の構成を示す説 明用断面図である。この異方導電性シートは、それぞれ 厚み方向に伸びる複数の導電路形成部11と、これらの 導電路形成部11を相互に絶縁する絶縁部12とよりな る異方導電性シート本体10を有する。この異方導電性 10 シート本体10における導電路形成部11の各々は、弾 性を有する導電性材料により構成され、当該異方導電性 シート本体10の面方向に沿って、接続対象電極のパタ ーンに対応するパターンに従って配置されている。そし て、各々の導電路形成部11の表面には、熱圧着された 接点部材30が設けられている。また、本発明の異方導 電性シートは、厚み方向に導電性を有する異方導電性の シート体と、このシート体の少なくとも一面に設けられ た除電層とを具えてなるものである。この除電層は、シ ート体の一面全体にわたって形成されていてもよく、シ い。そして絶縁部12の表面には除電層130が形成さ れている。

【0019】この第1の実施の形態において、導電路形成部11の各々は、絶縁部12より大きな厚みを有し、その両表面が絶縁部12の両表面から突出した状態である。また、接点部材30の各々は、その外径rが導電路形成部11の外径Rより小さいものであり、しかもその一面側部分が異方導電性シート本体10における導電路形成部11に埋め込まれた状態であると共に、その他面側部分が当該導電路形成部11の表面から突出した状態である。ここで、接点部材30の導電路形成部11に対する埋め込み深さd1は、接点部材30が導電路形成部11に対して高い接着性を得るために、例えば接点部材30の厚みの10%以上であることが好ましい。

【0020】異方導電性シート本体10における導電路 形成部11は、絶縁性の弾性高分子物質中に導電性粒子 が含有されて構成され、好ましくは弾性高分子物質中に 導電性粒子が厚み方向に並んだ状態で配向されており、 この導電性粒子により、当該導電路形成部の厚み方向に 導電路が形成される。この導電路形成部11は、厚み方 向に加圧されて圧縮されたときに抵抗値が減少して導電 路が形成される、加圧導電路形成部とすることもでき ス

【0021】導電路形成部11に用いられる絶縁性の弾性高分子物質としては、架橋構造を有する高分子物質が好ましい。架橋高分子物質を得るために用いることのできる硬化性の高分子物質形成材料としては、種々のものを用いることができ、その具体例としては、ポリブタジエンゴム、天然ゴム、ポリイソプレンゴム、スチレンープタジエン共重合体ゴム、アクリロニトリループタジエ

ン共重合体ゴムなどの共役ジェン系ゴムおよびこれらの水素添加物、スチレンーブタジエンージエンブロック共重合体ゴム、スチレンーイソプレンブロック共重合体などのブロック共重合体ゴムおよびこれらの水素添加物、クロロプレン、ウレタンゴム、ポリエステル系ゴム、エピクロルヒドリンゴム、シリコーンゴム、エチレンープロピレン共重合体ゴムなどが挙げられる。以上において、得られる異方導電性シートに耐候性が要求される場合には、共役ジエン系ゴム以外のものを用いることが好ましく、特10に、成形加工性および電気特性の観点から、シリコーンゴムを用いることが好ましい。

【0022】シリコーンゴムとしては、液状シリコーンゴムを架橋または縮合したものが好ましい。液状シリコーンゴムは、その粘度が歪速度10⁻¹ secで10⁵ ポアズ以下のものが好ましく、縮合型のもの、付加型のもの、ビニル基やヒドロキシル基を含有するものなどのいずれであってもよい。具体的には、ジメチルシリコーン生ゴム、メチルビニルシリコーン生ゴム、メチルフェニルビニルシリコーン生ゴムなどを挙げることができる。

【0023】これらの中で、ピニル基を含有する液状シ リコーンゴム(ビニル基含有ポリジメチルシロキサン) は、通常、ジメチルジクロロシランまたはジメチルジア ルコキシシランを、ジメチルピニルクロロシランまたは ジメチルビニルアルコキシシランの存在下において、加 水分解および縮合反応させ、例えば引続き溶解ー沈殿の 繰り返しによる分別を行うことにより得られる。また、 ビニル基を両末端に含有する液状シリコーンゴムは、オ クタメチルシクロテトラシロキサンのような環状シロキ 30 サンを触媒の存在下においてアニオン重合し、重合停止 剤として例えばジメチルジピニルシロキサンを用い、そ の他の反応条件(例えば、環状シロキサンの量および重 合停止剤の量)を適宜選択することにより得られる。こ こで、アニオン重合の触媒としては、水酸化テトラメチ ルアンモニウムおよび水酸化 n - プチルホスホニウムな どのアルカリまたはこれらのシラノレート溶液などを用 いることができ、反応温度は、例えば80~130℃で ある。このようなビニル基含有ポリジメチルシロキサン は、その分子量Mw(標準ポリスチレン換算重量平均分 40 子量をいう。以下同じ。) が10000~4000の ものであることが好ましい。また、得られる導電路素子 の耐熱性の観点から、分子量分布指数(標準ポリスチレ ン換算重量平均分子量Mwと標準ポリスチレン換算数平 均分子量Mnとの比Mw/Mnの値をいう。以下同 じ。)が2.0以下のものが好ましい。

【0024】一方、ヒドロキシル基を含有する液状シリコーンゴム(ヒドロキシル基含有ポリジメチルシロキサン)は、通常、ジメチルジクロロシランまたはジメチルジアルコキシシランを、ジメチルヒドロクロロシランま 50

たはジメチルヒドロアルコキシシランの存在下におい て、加水分解および縮合反応させ、例えば引続き溶解-沈殿の繰り返しによる分別を行うことにより得られる。 また、環状シロキサンを触媒の存在下においてアニオン 重合し、重合停止剤として、例えばジメチルヒドロクロ ロシラン、メチルジヒドロクロロシランまたはジメチル ヒドロアルコキシシランなどを用い、その他の反応条件 (例えば、環状シロキサンの量および重合停止剤の量) を適宜選択することによっても得られる。ここで、アニ オン重合の触媒としては、水酸化テトラメチルアンモニ ウムおよび水酸化nープチルホスホニウムなどのアルカ リまたはこれらのシラノレート溶液などを用いることが でき、反応温度は、例えば80~130℃である。この ようなヒドロキシル基含有ポリジメチルシロキサンは、 その分子量Mwが10000~4000のものである ことが好ましい。また、優れた耐熱性が得られることか ら、分子量分布指数が2以下のものが好ましい。本発明 に係る異方導電性シート本体10おいては、上記のビニ ル基含有ポリジメチルシロキサンおよびヒドロキシル基 20 含有ポリジメチルシロキサンのいずれか一方を用いるこ ともでき、両者を併用することもできる。

【0025】導電路形成部11に用いられる導電性粒子 としては、磁力を作用させる方法により当該粒子を異方 導電性シート本体10の厚み方向に容易に配向させるこ とができる観点から、導電性磁性体粒子を用いることが 好ましい。この導電性磁性体粒子の具体例としては、ニ ッケル、鉄、コバルトなどの磁性を示す金属の粒子若し くはこれらの合金の粒子またはこれらの金属を含有する 粒子、またはこれらの粒子を芯粒子とし、当該芯粒子の 表面に金、銀、パラジウム、ロジウムなどの導電性の良 好な金属のメッキを施したもの、あるいは非磁性金属粒 子若しくはガラスピーズなどの無機物質粒子またはポリ マー粒子を芯粒子とし、当該芯粒子の表面に、ニッケ ル、コバルトなどの導電性磁性体のメッキを施したも の、あるいは芯粒子に、導電性磁性体および導電性の良 好な金属の両方を被覆したものなどが挙げられる。これ らの中では、ニッケル粒子を芯粒子とし、その表面に金 や銀などの導電性の良好な金属のメッキを施したものを 用いることが好ましい。芯粒子の表面に導電性金属を被 覆する手段としては、特に限定されるものではないが、 例えば化学メッキまたは無電解メッキを利用することが できる。

【0026】導電性粒子として、芯粒子の表面に導電性 金属が被覆されてなるものを用いる場合には、良好な導電性が得られる観点から、粒子表面における導電性金属の被覆率(芯粒子の表面積に対する導電性金属の被覆面積の割合)が40%以上であることが好ましく、さらに好ましくは45%以上、特に好ましくは47~95%である。また、導電性金属の被覆量は、芯粒子の0.5~50重量%であることが好ましく、より好ましくは1~

30重量%、さらに好ましくは $3\sim25$ 重量%、特に好ましくは $4\sim20$ 重量%である。被覆される導電性金属が金である場合には、その被覆量は、芯粒子の $2.5\sim30$ 重量%であることが好ましく、より好ましくは $3\sim20$ 重量%、さらに好ましくは $3.5\sim15$ 重量%、特に好ましくは $4\sim10$ 重量%である。また、被覆される導電性金属が銀である場合には、その被覆量は、芯粒子の $3\sim50$ 重量%であることが好ましく、より好ましくは $4\sim40$ 重量%、さらに好ましくは $5\sim30$ 重量%、特に好ましくは $6\sim20$ 重量%である。

[0027] また、導電性粒子の粒子径は、 $1\sim100$ 0μ mであることが好ましく、より好ましくは $2\sim50$ 0μ m、さらに好ましくは $5\sim300\mu$ m、特に好ましくは $10\sim200\mu$ mである。また、導電性粒子の粒子径分布(Dw/Dn)は、 $1\sim10$ であることが好ましく、より好ましくは $1.05\sim5$ 、特に好ましくは $1.1\sim4$ である。このような条件を満足する導電性粒子を用いることにより、得られる導電路形成部11は、加圧変形が容易なものとなり、また、当該導電路形成部11において導電性粒子の形状は、特に限定されるものではないが、高分子物質用材料中に容易に分散させることができる点で、球状のもの、星形状のものあるいはこれらが凝集した2次粒子による塊状のものであることが好ましい。

【0028】また、導電性粒子の含水率は、5%以下であることが好ましく、より好ましくは3%以下、さらに好ましくは2%以下、とくに好ましくは1%以下である。このような条件を満足する導電性粒子を用いることにより、高分子物質用材料層を硬化処理する際に、当該 30高分子物質用材料層内に気泡が生ずることが防止または抑制される。

【0029】また、導電性粒子として、その表面がシランカップリング剤などのカップリング剤で処理されたものを適宜用いることができる。導電性粒子の表面がカップリング剤で処理されることにより、当該導電性粒子と弾性高分子物質との接着性が高くなり、その結果、得られる導電路形成部11は、繰り返しの使用における耐久性が高いものとなる。カップリング剤の使用量は、導電性粒子の導電性に影響を与えない範囲で適宜選択される40が、導電性粒子表面におけるカップリング剤の被覆率

(導電性芯粒子の表面積に対するカップリング剤の被覆面積の割合)が5%以上となる量であることが好ましく、より好ましくは上記被覆率が $7\sim100\%$ 、さらに好ましくは $10\sim100\%$ 、特に好ましくは $20\sim100\%$ となる量である。

【0030】 このような導電性粒子は、導電路形成部1 1中に体積分率で20~60%、好ましくは25~40 %となる割合で含有されていることが好ましい。この割 合が20%未満の場合には、十分に電気抵抗値の小さい 50

導電路形成部11が得られないことがある。一方、この割合が60%を超える場合には、得られる導電路形成部11は脆弱なものとなりやすく、導電路形成部11として必要な弾性が得られないことがある。

【0031】異方導電性シート本体10における絶縁部 12は、絶縁性を有する弾性高分子物質により構成され ている。かかる弾性高分子物質を得るために用いること のできる硬化性の高分子物質形成材料としては、ポリブ タジエンゴム、天然ゴム、ポリイソプレンゴム、スチレ 10 ンープタジエン共重合体ゴム、アクリロニトリループタ ジエン共重合体ゴムなどの共役ジエン系ゴムおよびこれ らの水素添加物、スチレンープタジエンージエンプロッ ク共重合体ゴム、スチレン-イソプレンブロック共重合 体などのプロック共重合体ゴムおよびこれらの水素添加 物、クロロプレン、ウレタンゴム、ポリエステル系ゴ ム、エピクロルヒドリンゴム、シリコーンゴム、エチレ ンープロピレン共重合体ゴム、エチレンープロピレンー ジエン共重合体ゴムなどが挙げられ、得られる異方導電 性シートに耐候性が要求される場合には、共役ジエン系 ゴム以外のものを用いることが好ましい。

【0032】以上において、得られる異方導電性シートに耐候性が要求される場合には、共役ジエン系ゴム以外のものを用いることが好ましく、特に、成形加工性および電気特性の観点から、シリコーンゴムを用いることが好ましい。

【0033】シリコーンゴムとしては、前記導電路形成部に使用されるものが好適に使用でき、液状シリコーンゴムを架橋または縮合したものが好ましい。液状シリコーンゴムは、その粘度が歪速度10⁻¹ secで10 ポアズ以下のものが好ましく、縮合型のもの、付加型のもの、ビニル基やヒドロキシル基を含有するものなどのいずれであってもよい。具体的には、ジメチルシリコーン生ゴム、メチルフェニルビニルシリコーン生ゴムなどを挙げることができる

【0034】これらの中で、ビニル基を含有する液状シリコーンゴム(ビニル基含有ポリジメチルシロキサン)は、通常、ジメチルジクロロシランまたはジメチルジアルコキシシランを、ジメチルビニルクロロシランまたはジメチルビニルアルコキシシランの存在下において、加水分解および縮合反応させ、例えば引続き溶解ー沈殿の繰り返しによる分別を行うことにより得られる。また、ビニル基を両末端に含有する液状シリコーンゴムは、オクタメチルシクロテトラシロキサンのような環状シロナンを触媒の存在下においてアニオン重合し、重合停止剤として例えばジメチルジビニルシロキサンの量および、その他の反応条件(例えば、環状シロキサンの量および、その他の反応条件(例えば、環状シロキサンの量および、で、アニオン重合の触媒としては、水酸化テトラメチルアンモニウムおよび水酸化nーブチルホスホニウムな

どのアルカリまたはこれらのシラノレート溶液などを用いることができ、反応温度は、例えば80~130℃である。このようなピニル基含有ポリジメチルシロキサンは、その分子量Mw(標準ポリスチレン換算重量平均分子量をいう。以下同じ。)が10000~4000のものであることが好ましい。また、得られる導電路素子の耐熱性の観点から、分子量分布指数(標準ポリスチレン換算重量平均分子量Mwと標準ポリスチレン換算数平均分子量Mnとの比Mw/Mnの値をいう。以下同じ。)が2.0以下のものが好ましい。

【0035】一方、ヒドロキシル基を含有する液状シリ コーンゴム (ヒドロキシル基含有ポリジメチルシロキサ ン) は、通常、ジメチルジクロロシランまたはジメチル ジアルコキシシランを、ジメチルヒドロクロロシランま たはジメチルヒドロアルコキシシランの存在下におい て、加水分解および縮合反応させ、例えば引続き溶解ー 沈殿の繰り返しによる分別を行うことにより得られる。 また、環状シロキサンを触媒の存在下においてアニオン 重合し、重合停止剤として、例えばジメチルヒドロクロ ロシラン、メチルジヒドロクロロシランまたはジメチル ヒドロアルコキシシランなどを用い、その他の反応条件 (例えば、環状シロキサンの量および重合停止剤の量) を適宜選択することによっても得られる。ここで、アニ オン重合の触媒としては、水酸化テトラメチルアンモニ ウムおよび水酸化 n - プチルホスホニウムなどのアルカ リまたはこれらのシラノレート溶液などを用いることが でき、反応温度は、例えば80~130℃である。この ようなヒドロキシル基含有ポリジメチルシロキサンは、 その分子量MWが10000~40000のものである ことが好ましい。また、得られる導電路素子の耐熱性の 30 観点から、分子量分布指数が2.0以下のものが好まし い。本発明においては、上記のビニル基含有ポリジメチ ルシロキサンおよびヒドロキシル基含有ポリジメチルシ ロキサンのいずれか一方を用いることもでき、両者を併 用することもできる。

【0036】本発明においては、高分子物質形成材料を硬化させるために適宜の硬化触媒を用いることができる。このような硬化触媒としては、有機過酸化物、脂肪酸アゾ化合物、ヒドロシリル化触媒などを用いることができる。硬化触媒として用いられる有機過酸化物の具体40例としては、過酸化ペンゾイル、過酸化ビスジシクロベンゾイル、過酸化ジクミル、過酸化ビスジシクロベンゾイル、過酸化ジクミル、過酸化ビスジシクロベンゾイル、過酸化ジクミル、過酸化リカージャリープチルなどが挙げられる。硬化触媒として用いられる脂肪酸アゾ化合物の具体例としては、アゾビスイソブチロニトリルなどが挙げられる。ヒドロシリル化反応の触媒として使用し得るものの具体例としては、塩化白金酸およびその塩、白金ー不飽和基含有シロキサンコンプレックス、ロニルシロキサンと白金とのコンプレックス、ロコンプレックス、トリオルガノホスフィンあるいはホスファ50

イトと白金とのコンプレックス、アセチルアセテート白金キレート、環状ジエンと白金とのコンプレックスなどの公知のものが挙げられる。硬化触媒の使用量は、高分子物質形成材料の種類、硬化触媒の種類、その他の硬化処理条件を考慮して適宜選択されるが、通常、高分子物質形成材料100重量部に対して3~15重量部である。

【0037】また、シート体の基材中には、必要に応じて、通常のシリカ粉、コロイダルシリカ、エアロゲルシリカ、アルミナなどの無機充填材を含有させることができる。このような無機充填材を含有させることにより、シート体を得るための成形材料のチクソトロピー性が確保され、その粘度が高くなり、しかも、導電性粒子の分散安定性が向上すると共に、高い強度を有するシート体が得られる。このような無機充填材の使用量は、特に限定されるものではないが、多量に使用すると、磁場による導電性粒子の配向を十分に達成することができなくなるため、好ましくない。

【0038】絶縁部12を構成する弾性高分子物質としては、導電路形成部11を構成する弾性高分子物質と同一の種類のものあるいは異なる種類のものを用いることができる。また、絶縁部12は、導電路形成部11と一体であってもよく、また、別体のものであってもよい。【0039】異方導電性シート本体10の厚みは、例えば0.1~2mmであり、好ましくは0.2~1mmである。また、導電路形成部11の外径Rは、例えば0.02~1mmであり、好ましくは0.05~0.5mmである。

[0040] 接点部材30としては、導電性ポリマーなどの有機物よりなるものや、これに金属が混合された組成物よりなるもの、金属シートまたは金属膜等の金属よりなるものなどの導電性材料を用いることができる。これらの中でも、接続対象電極の表面に形成された酸化膜を確実に突き破ることができる点で、金属シートまたは金属膜等の金属よりなるものを用いることが好ましく、かかる金属の具体例としては、銅、金、ロジウム、白金、パラジウム、ニッケルまたはそれらのメッキあるいはそれらの合金などを用いることができる。このような接点部材30は、例えばニッケル層/銅層/金層などの積層体により構成されていてもよい。また、接点部材30の厚みは、例えば0.01~0.5mmであり、好ましくは0.025~0.1mmである。

【0041】以上の異方導電性シートは、例えば以下の方法によって製造することができる。先ず、異方導電性シート本体10は、例えば異方導電性シート本体成形金型を用いることによって、形成することができる。

[0042]上記の異方導電性シート本体成形用金型は、それぞれ全体の形状が略平板状であって互いに対応する上型と下型とよりなり、上型および下型が電磁石に装着可能に構成されるか、若しくは電磁石と一体的に構

成され、成形空間内に充填された材料層に磁場を作用させながら当該材料層を加熱硬化することができる構造のものである。また、材料層に磁場を作用させて適正な位置に導電性を有する部分を形成するために、異方導電性シート本体成形金型における上型、あるいは上型およる下型の両方は、鉄、ニッケル等の強磁性体からなる基板上に、金型内の磁場に強度分布を生じさせるための鉄、ニッケル等よりなる強磁性体部分と、銅等の非磁性金配列した層(以下、「モザイク層」という。)を有する構成のものであり、上型および下型の成形面は、平坦であるか若しくは形成すべき異方導電性シート本体10の導電部に対応してわずかな凹凸を有するものである。

【0043】以上の構成の異方導電性シート本体成形金型によれば、材料層に対して電磁石によって強度分布を有する磁場を形成することができる。そして、このような異方導電性シート本体成形金型において、モザイク層における強磁性体部分と非磁性体部分との配置、形状等は、成形すべき異方導電性シートに基づいて決定される。すなわち、得られる異方導電性シート本体10の導20電路形成部11に相当する箇所に強磁性体部分が配置され、その強磁性体部分の形状が導電路形成部11の断面形状に適合したものである。

【0044】上記のような異方導電性シート本体成形金 型を用いて、図2に示すような導電路形成部11の両表 面が絶縁部12の両表面から突出した状態の異方導電性 シート本体10を製造する方法としては、例えば形成す る異方導電性シート本体10に適合した成形空間を有す る異方導電性シート本体成形金型の当該成形空間内に、 硬化されて弾性高分子物質となる高分子物質材料中に磁 30 性を示す導電性粒子が含有されてなる成形材料を注入し て成形材料層を形成し、この成形材料層に対してその厚 み方向に強度分布を有する磁場を作用させ、その磁力の 作用によって導電性粒子を移動させて、得られる異方導 電性シート本体10における導電路形成部11となる部 分に集合させ、更には導電性粒子を厚み方向に並ぶよう 配向させ、その状態で当該異方導電性シート成形材料層 を硬化し、これを当該異方導電性シート本体成形金型か ら離型させることにより、異方導電性シート本体10を 形成する方法が挙げられる。

【0045】異方導電性シート本体成形材料中には、高分子物質形成材料を硬化させるための硬化触媒を含有させることができる。このような硬化触媒としては、有機過酸化物、脂肪酸アゾ化合物、ヒドロシリル化触媒などを用いることができる。硬化触媒として用いられる有機過酸化物の具体例としては、過酸化ベンゾイル、過酸化ビスジシクロベンゾイル、過酸化ジクミル、過酸化ジターシャリーブチルなどが挙げられる。硬化触媒として用いられる脂肪酸アゾ化合物の具体例としては、アゾビスイソブチロニトリルなどが挙げられる。ヒドロシリル化50

反応の触媒として使用し得るものの具体例としては、塩化白金酸およびその塩、白金ー不飽和基含有シロキサンコンプレックス、ビニルシロキサンと白金とのコンプレックス、白金と1,3ージビニルテトラメチルジシロキサンとのコンプレックス、トリオルガノホスフィンあるいはホスファイトと白金とのコンプレックス、アセチルアセテート白金キレート、環状ジエンと白金とのコンプレックスなどの公知のものが挙げられる。硬化触媒の使用量は、高分子物質形成材料の種類、硬化触媒の種類、その他の硬化処理条件を考慮して適宜選択されるが、通常、高分子物質形成材料100重量部に対して3~15重量部である。

[0047] 異方導電性シート本体成形材料層の硬化処理は、平行磁場を作用させたままの状態で行うこともできるが、平行磁場の作用を停止させた後に行うこともできる。異方導電性シート本体材形成材料層に作用される平行磁場の強度は、平均で200~10000ガウスとなる大きさが好ましい。また、平行磁場を作用させる手段としては、電磁石の代わりに永久磁石を用いることもできる。このような永久磁石としては、上記の範囲の平行磁場の強度が得られる点で、アルニコ(Fe-A1-Ni-Co系合金)、フェライトなどよりなるものが好ましい。このようにして得られる導電路形成部11は、導電性粒子が異方導電性シート本体10の厚み方向に並ぶよう配向しているため、導電性粒子の割合が小さくても良好な導電性が得られる。

[0048] 異方導電性シート本体成形材料層の硬化処理の方法は、使用される材料の種類によって適宜選定されるが、通常、加熱処理によって行われる。加熱により異方導電性シート本体成形材料層の硬化処理を行う場合には、例えば電磁石にヒーターを設ければよい。具体的な加熱温度および加熱時間は、異方導電性シート本体成形材料層を構成する高分子物質用材料などの種類、導電性磁性体粒子の移動に要する時間などを考慮して適宜選定される。

【0049】異方導電性シートの導電部への接点部材の

配置は、例えば次のような方法で行うことができる。

[接点形成の実施形態1] 異方導電性シート本体10表面には、例えば図3に示すように、複数の接点部材30が連結用部分32によって連結されてなる、例えば銅とニッケルの合金よりなる全体がシート状の接点形成材料31が重ねられた状態に配置される。

【0050】接点形成材料31は、異方導電性シート本体10に対し、その導電路形成部11上に接点形成材料31における接点部材30の各々が位置するよう位置合わせをした状態で、例えば100~200℃の加熱雰囲 10気中において板状の圧着治具43を用いて、あるいは100~200℃に加熱した板状の圧着治具43を用いて、接点部材30の表面に対して最高20kg/cm²程度のプレス圧力を加えることにより、それそれの導電路形成部11に接点部材30を熱圧着させ、これにより、図6に示すように、当該導電路形成部11の各々の表面に接点部材30の下側部分が埋没した状態で一体的に熱圧着により固着された複合体40が形成される。

【0051】次いで、図6に示すように、導電路形成部 11に対応した位置に凹所44Aを有する切断治具44 20 を接点形成材料31に挿入することにより、複合体40 の非被固着分である連結用部分32および枠部分33を接点部材30から切り離して除去する後処理を行うことにより、接点部材30前の絶縁化処理がなされて個々の接点部材30が分離されて電気的に絶縁された状態となり、これにより、図1に示す構成の異方導電性シートが得られる。

【0052】接点部材30間の絶縁化処理は、上記の手段の他に、レーザーを利用して連結用部分32を除去する手法、または、連結用部分32を酸化させることによ 30 り非導電化する手法を利用することもできる。

【0053】〈接点形成の実施形態2〉図7は、本発明の異方導電性シートに係る第2の実施の形態における接点部材の要部の構成を示す説明用断面図である。この異方導電性シートは、それぞれ厚み方向に伸びる複数の導電路形成部11と、これらの導電路形成部11を相互に絶縁する絶縁部12とよりなる異方導電性シート本体10を有する。この異方導電性シート本体10における導電路形成部11の各々は、弾性を有する導電性材料により構成され、当該異方導電性シート本体10の面方向に40沿って、接続対象電極のパターンに対応するパターンに従って配置されている。そして、導電路形成部11の表面においては、熱圧着された接点部材30が一体的に設けられている。

【0054】この第2の実施の形態において、導電路形成部11の各々は、その一表面(図中、上面)が絶縁部12の表面より下方に没した状態であり、その他表面(図中、下面)が絶縁部12の表面から上方に突出した状態である。また、接点部材30の各々は、その外径 r が導電路形成部11の外径Rより小さいものであり、し50

かもその一面側部分が異方導電性シート本体10における導電路形成部11に埋め込まれた状態であると共に、その他面部分が当該導電路形成部11の表面から突出した状態である。以上の点を除き、異方導電性シート本体10および接点部材30の各々の具体的構成は、前述の第1の実施の形態に係る異方導電性シートと同様である。

[0055]上記の異方導電性シートは、例えば導電路 形成部11の一面が絶縁部12の上面と同一平面上に位 置する異方導電性シート本体10を形成し、前述の第1 の実施の形態に係る異方導電性シートの製造方法と同様 にして製造することができる。

【0056】以上、本発明に係る実施の形態を説明した が、本発明においては、上記の実施の形態に限定され ず、以下のような種々の変更を加えることができる。本 発明においては、図8に示すように、各接点部材30が 隣接する接点部材30および導電路形成部11と絶縁状 態にあるならば、異方導電性シート本体10における導 電路形成部11の表面に接点形成材料31の連結用部分 32の一部が残存した状態であってもよい。また、本発 明においては、図9に示すように、各接点部材30が、 隣接する接点部材30および導電路形成部11と絶縁状 態にあるならば、その外径 r が導電路形成部 1 1 の外径 Rと同一であってもよく、更に、図10に示すように、 その外径rが導電路形成部11の外径Rよりも大きいも のであってもよい。このような異方導電性シートによれ ば、接続対象電極に導電路形成部11が直接接触しない ため、導電路形成部を構成する弾性高分子物質中に含有 される低分子量成分により、接続対象電極の表面が汚染 されることがない。

【0057】更に、本発明においては、図11に示すように、接点部材30が、導電路形成部11に埋め込まれて、その表面が導電路形成部11の表面と同一平面状となる状態であってもよい。なお、接点部材30は、その形状が制限されるものではなく、例えば角板状、楕円板状などであってもよく、また切り込み部分あるいは溝部分などを有するものであってもよい。

【0058】本発明において、異方導電性シートの製造方法に用いる異方導電性シート本体10としては、適宜の異方導電性シート本体成形用金型によって形成された、図12および図13に示すような導電路形成部11の表面に接点部材30に適合する大きさの凹所11Aを有するものを用いることもできる。このような異方導電性シート本体10を用いることによれば、熱圧着を行う際に必要とされる接点形成材料31の位置合わせが確実で容易となる。ここで、形成された凹所11Aの寸法は、その内径が接点部材30の外径rと同等であることが好ましく、また、その深さは、接点部材30の厚みより小さいものであっても、あるいは接点部材30の厚みより小さいものであってもよい。

【0059】本発明において、異方導電性シートの製造方法に用いる接点形成材料31としては、異方導電性シート本体10における導電路形成部11の配列パターンと対掌のパターンに従って配列された複数の接点部材30が、絶縁性材料よりなる連結用部分32によって一体に連結されてなる接点形成材料31を用いることができる。この場合には、連結用部分32に対して後処理によって行う接点部材30間の絶縁化処理が不要となる。かかる絶縁性材料としては、エラストマーや樹脂などの各種の高分子のシート、フィルム、または、繊維、織布な10どを用いることができる。

【0060】異方導電性シートの接点部材は、例えば以下の方法(イ)または方法(ロ)によって製造することができる。

方法(イ):この方法(イ)においては、先ず、図14に示すように、平滑な一面41を有するステンレスなどの易剥離性支持板140を用意し、この易剥離性支持板140の一面41に、接点用導電材料30を形成するための例えば金属よりなる導電材料層30Aを形成する。次いで、易剥離性支持板140の一面41上に支持された。場電材料層30A上に、フォトリソグラフィーの手法により、目的とする導電路形成部11の配置パターンに対応するパターンに従って形成された孔46を有するレジスト層45を形成する。そして、レジスト層45を形成する。そして、レジスト層45の孔46内に、硬化性樹脂材料中に導電性粉末が分散されてなる流動性の導電性接着層形成材料を充填し、当該導電性接着層形成材料の硬化処理を行うことにより、図16に示すように、レジスト層45の孔46内に導電性接着層20が形成される。

【0061】以上において、易剥離性支持板140の一 30面41に金属よりなる導電材料層30Aを形成する方法としては、スパッタリング法、蒸着法、その他のメッキ法などを利用することができる。レジスト層45の孔46内に導電性接着層形成材料を充填する方法としては、スクリーン印刷等の印刷法、多孔印刷法などを利用することができる。

【0062】次いで、レジスト層45および導電性接着層20の上面に、硬化されて弾性高分子物質となる高分子物質用材料中に導電性磁性体粒子が分散されてなるシート基材形成材料を塗布することにより、図17に示す 40ように、レジスト層45および導電性接着層20の上面にシート基材形成材料層10Aが形成される。また、シート基材形成材料の粘度は、温度25℃において100000~1000000cpの範囲内であることが好ましい。

【0063】次いで、図18に示すように、シート基材 形成材料層10Aの上面に一方の磁極板50を配置する と共に、易剥離性支持板140の下面に他方の磁極板5 5を配置し、更に、一方の磁極板50の上面および他方 の磁極板55の下面に一対の電磁石51,56を配置す 50

る。ここで、一方の磁極板50は、目的とする導電路形成部11の配置パターンに対掌なパターンに従って強磁性体部分Mが形成され、この強磁性体部分M以外の部分には非磁性体部分Nが形成されており、当該強磁性体部分Mが導電性接着層20の上方に位置するよう配置される。また、他方の磁極板55は、目的とする導電路形成部11の配置パターンと同一のパターンに従って強磁性体部分Mが形成され、この強磁性体部分M以外の部分には非磁性体部分Nが形成されており、当該強磁性体部分Mが導電性接着層20の下方に位置するよう配置される。

【0064】そして、電磁石51,56を作動させるこ とにより、一方の磁極板50の強磁性体部分Mからこれ に対応する他方の磁極板55の強磁性体部分Mに向かう 方向に平行磁場が作用する。その結果、シート基材形成 材料層10Aにおいては、当該シート基材形成材料層1 0 A中に分散されていた導電性磁性体粒子が、一方の磁 極板50の強磁性体部分Mとこれに対応する他方の磁極 板55の強磁性体部分Mとの間に位置する部分に集合 し、更に好ましくは当該シート基材形成材料層10Aの 厚み方向に配向する。そして、この状態において、シー ト基材形成材料層10Aを硬化処理することにより、図 19に示すように、一方の磁極板50の強磁性体部分M とこれに対応する他方の磁極板55の強磁性体部分Mと の間に配置された、導電性磁性体粒子が密に充填された 導電路形成部11と、導電性磁性体粒子が全くあるいは 殆ど存在しない絶縁部12とよりなるシート基材10が 形成される。

【0065】以上において、シート基材形成材料層10Aの硬化処理は、平行磁場を作用させたままの状態で行うこともできるが、平行磁場の作用を停止させた後に行うこともできる。シート基材形成材料層10Aに作用される平行磁場の強度は、平均で200~1000ガウスとなる大きさが好ましい。また、平行磁場を作用させる手段としては、電磁石の代わりに永久磁石を用いることもできる。

【0066】シート基材形成材料層10Aの硬化処理は、使用される材料によって適宜選定されるが、通常、加熱処理によって行われる。加熱によりシート基材形成材料層10Aの硬化処理を行う場合には、電磁石51,56にヒーターを設ければよい。具体的な加熱温度および加熱時間は、シート基材形成材料層10Aを構成する高分子物質用材料などの種類、導電性磁性体粒子の移動に要する時間などを考慮して適宜選定される。

【0067】このようにしてシート基材10が形成された易剥離性支持板140を、一方の磁極板50と他方の磁極板55との間から取り出し、更に、易剥離性支持板40を導電材料層30Aから剥離させる。そして、この導電材料層30Aに対して、フォトリソグラフィーおよびエッチング処理を施してその一部を除去することによ

り、図20に示すように、導電性接着層20上に導電材料層30Aの残部による例えば金属シートまたは金属膜よりなる接点用導電材料30が形成され、更にシート基材10上に形成されたレジスト層45を除去することにより、図14に示す構成の異方導電性シートが得られる。このような方法によれば、接着性の高い導電性接着層20が確実に得られると共に、シート基材10を容易に形成することができる。

【0068】方法(口):この方法(口)においては、 予め適宜の方法によって作製されたシート基材10を用 10 意し、このシート基材10上に、導電路形成部11の上 面を露出させる孔46を有するレジスト層45を形成 し、このレジスト層45の孔46内に前述の導電性接着 層形成材料を充填した後、当該導電性接着層形成材料の 硬化処理を行うことにより、図21に示すように、レジ スト層45の孔46内に導電性接着層20が形成され る。レジスト層45の孔46内に導電性接着層形成材料 を充填する方法としては、スクリーン印刷等の印刷法な どを利用することができる。

【0069】次いで、図22に示すように、レジスト層 20 45 および導電性接着層20の上面に、接点用導電材料 30を形成するための例えば金属よりなる導電材料層30 Aを形成し、この導電材料層30 Aに対して、フォトリソグラフィーおよびエッチング処理を施してその一部を除去することにより、図23に示すように、導電性接着層20上に導電材料層30Aの残部による例えば金属シートまたは金属膜よりなる接点用導電材料30が形成され、更にシート基材10上に形成されたレジスト層45を除去することにより、図14に示す構成の異方導電性シートが得られる。レジスト層45および導電性接着 30 層20の上面に導電材料層30Aを形成する方法としては、スパッタリング法、蒸着法、その他のメッキ法などを利用することができる。

【0070】〈第2の実施の形態〉図24は、本発明の 異方導電性シートに係る第2の実施の形態における接続 部材の要部の構成を示す説明用断面図である。この第2 の実施の形態において、導電路形成部11の各々は、絶 縁部12の厚みより小さい厚みを有し、その上面が絶縁 部12の上面より下方に位置するよう配置されることに より、当該導電路形成部11上に凹所15が形成されて 40 いる。そして、導電路形成部11上に形成された凹所1 5内に導電性接着層20が収容されることにより、当該 導電性接着層20は、その上面が絶縁部12の上面と同 一平面上に位置するよう配置されており、これにより、 接点用導電材料30が、シート基材10における絶縁部 12の表面から突出した状態とされている。以上におい て、シート基材10、導電性接着層20および接点用導 電材料30の各々の具体的構成は、前述の第1の実施の 形態に係る異方導電性シートと同様である。

【0071】上記の異方導電性シートは、例えば以下の 50

方法によって製造することができる。先ず、前述の第1 の実施の形態における方法(イ)と同様にして、易剥離 性支持板140の一面41に、接点用導電材料30を形 成するための例えば金属よりなる導電材料層30Aを形 成する。次いで、この易剥離性支持板140の一面41 上に支持された導電材料層30A上に、硬化性樹脂材料 中に導電性粉末が分散されてなる流動性の導電性接着層 形成材料を、目的とする導電路形成部11の配置パター ンに対応するパターンに従って塗布し、当該導電性接着 層形成材料の硬化処理を行うことにより、図25に示す ように、導電材料層30Aの上面に導電性接着層20が 形成される。そして、導電性接着層20および導電材料 層30Aの上面に、硬化されて弾性高分子物質となる高 分子物質用材料中に導電性磁性体粒子が分散されてなる シート基材形成材料を塗布する。以下、第1の実施の形 態における方法(イ)と同様にして平行磁場を作用させ・ ると共に、当該シート基材形成材料層10Aの硬化処理 を行い、シート基材10が形成された易剥離性支持板1 40を、一方の磁極板50と他方の磁極板55との間か ら取り出し、更に、易剥離性支持板140を導電材料層 30Aから剥離させる。そして、この導電材料層30A に対して、フォトリソグラフィーおよびエッチング処理 を施してその一部を除去することにより、導電性接着層 20上に例えば金属シートまたは金属膜よりなる接点用 導電材料30が形成され、以て図14に示す構成の異方 導電性シートが得られる。

【0072】〈第3の実施の形態〉図26は、本発明の 異方導電性シートに係る第3の実施の形態における要部 の構成を示す説明用断面図である。この第3の実施の形態において、導電性接着層20および接点用導電材料3 0が、シート基材10における絶縁部12の表面から突 出した状態とされている。また、接点用導電材料30 は、導電性接着層20の上面および側面を覆うよう設けられている。

【0073】上記の異方導電性シートは、例えば以下の 方法によって製造することができる。先ず、前述の第1 の実施の形態における方法(イ)と同様にして、図27 に示すように、この易剥離性支持板140の一面41 に、フォトリソグラフィーの手法により、目的とする導 電路形成部11の配置パターンに対応するパターンに従 って形成された孔46を有するレジスト層45を形成す る。次いで、このレジスト層45および易剥離性支持板 40上に、接点用導電材料30を形成するための例えば 金属よりなる導電材料層30Aを形成し、その後、レジ スト層45の孔46内に、硬化性樹脂材料中に導電性粉 末が分散されてなる流動性の導電性接着層形成材料を充 填し、当該導電性接着層形成材料の硬化処理を行うこと により、図28に示すように、レジスト層45の孔46 内に導電性接着層20が形成される。そして、導電性接 着層20および導電材料層30Aの上面に、硬化されて

(12)

30

弾性高分子物質となる高分子物質用材料中に導電性磁性 体粒子が分散されてなるシート基材形成材料を塗布す る。以下、前述の第1の実施の形態における方法(イ) と同様にして、平行磁場を作用させると共に、当該シー ト基材形成材料層10Aの硬化処理を行う。

【0074】このようにしてシート基材10が形成され た易剥離性支持板140を、一方の磁極板50と他方の 磁極板55との間から取り出し、更に、易剥離性支持板 140を導電材料層30Aから剥離させる。そして、レ ジスト層45を除去することにより、導電材料層30A の全面を露出させ、この導電材料層30Aに対して、フ ォトリソグラフィーおよびエッチング処理を施してその 一部を除去することにより、導電性接着層20上に導電 材料層30Aの残部による例えば金属シートまたは金属 膜よりなる接点用導電材料30が形成され、以て図26 に示す構成の異方導電性シートが得られる。

【0075】次に除電層について述べる。

《除電層》除電層を構成する材料としては、それ自体導 電性を有するもの(以下、「自己導電性物質」ともい う。)、吸湿することによって導電性が発現されるもの (以下、「吸湿導電性物質」ともいう。) などを用いる ことができる。自己導電性物質としては、一般的には、 金属結合により導電性を示す物質、余剰電子の移動によ って電荷の移動が起こるもの、空孔の移動によって電荷 の移動が起こるもの、イオンを生成し、そのイオンが電 荷を運ぶもの、主鎖に沿ってπ結合を持ち、その相互作 用により導電性を示す物質、側鎖にある基の相互作用に よって電荷の移動を起こす物質などから選択して用いる ことができる。具体的には、白金、金、銀、銅、ニッケ ル、コバルト、鉄、アルミニウム、マンガン、亜鉛、 錫、鉛、インジウム、モリブデン、ニオブ、タンタル、 クロムなどを含む金属粒子;二酸化銅、酸化亜鉛、酸化 錫などの導電性金属酸化物;チタン酸カリウムなどのウ ィスカ;ゲルマニウム、珪素、インジウム燐、硫化亜鉛 などの半導電性物質;カーボンブラック、グラファイト などの炭素系の物質;第4級アンモニウム塩、アミン系 化合物などの陽イオンを生成する物質;脂肪族スルホン 酸塩、高級アルコール硫酸エステル塩、高級アルコール エチレンオキサイド付加硫酸エステル塩、高級アルコー ル燐酸エステル塩、高級アルコールエチレンオキサイド 40 付加燐酸エステル塩などの陰イオンを生成する物質;ベ タインなどの陽イオンおよび陰イオンの両方を生成する 物質;ポリアセチレン系ポリマー、アクリル系ポリマ ー、ポリフェニレン系ポリマー、複素環ポリマー、ラダ ーポリマー、ネットワークポリマー、イオン性ポリマー などの導電性高分子物質などを用いることができる。以 上において、イオンを生成する物質は、界面活性剤とし て総称されることもある。また、ポリアセチレン系ポリ マー、アクリル系ポリマー、ポリフェニレン系ポリマ ー、ラダーポリマー、ネットワークポリマーなどのポリ 50 して塗膜を形成し、その後、この塗膜を定着処理する方

マーにおいては、金属イオンなどをドープすることによ って導電性をコントロールすることも可能である。吸湿 導電性物質としては、一般的には、吸湿性の大きい物質 であることが好ましく、極性の大きい基である、水酸基 やエステル基などを持つ物質であることが好ましい。具 体的には、クロルポリシロキサン、アルコキシシラン、 アルコキシポリシラン、アルコキシポリシロキサンなど の珪素化合物; 導電性ウレタン、ポリピニルアルコール またはその共重合体などの高分子物質、高級アルコール エチレンオキサイド、ポリエチレングリコール脂肪酸エ ステル、多価アルコール脂肪酸エステルなどのアルコー ル系界面活性剤、多糖類などを用いることができる。

【0076】このような導電性物質は、それ自体で層を 形成し得るものであれば、単独で除電層を構成すること ができるが、それ自体で層を形成することが困難なもの を用いる場合、或いは形成すべき除電層の導電性を調整 する場合には、適宜のバインダーを使用して除電層を構 成することができる。このようなバインダーとしては、 熱可塑性樹脂材料、硬化性樹脂材料、紙、接着材、樹脂 20 材料を溶剤に溶解して流動性を持たせたものなどを用い ることができ、硬化性樹脂材料としては、放射線、熱、 イオン、酸などによって硬化し得るものを用いることが できる。

【0077】除電層は、その表面固有抵抗が1×10 1 2 Ω / \square 以下であることが好ましく、特に、 1×10 。 ~1×10′° Ω/□であることが好ましい。表面 固有抵抗が1×10¹2 Ω/口を超える場合には、シー トの表面の帯電を十分にまたは防止または抑制すること が困難となることがある。一方、表面固有抵抗が過小で ある場合には、例えば除電層がシート体の表面全体にわ たって形成されているときに、面方向における所要の絶 緑性が得られないことがある。

【0078】また、除電層は、その電気伝導度(体積固 有抵抗の逆数)が $1 \times 1~0^{-7}~\Omega^{-1}~m^{-1}$ 以上である ことが好ましく、特に、 $1 \times 10^{-7} \sim 1 \times 10^{4}$ Ω - ' m- ' であることが好ましい。電気伝導度が1×1 $0^{-7} \Omega^{-1} m^{-1}$ 未満である場合には、シートの表面 の帯電を十分にまたは防止または抑制することが困難と なることがある。一方、電気伝導度が過大である場合に は、例えば除電層がシート体の表面全体にわたって形成 されているときに、面方向における所要の絶縁性が得ら れないことがある。

【0079】シート体上に除電層を形成する方法として は、当該除電層を構成する材料に応じて適宜選択するこ とができ、具体的には、下記の(1)~(4)の方法を 利用することができる。

(1) 導電性物質(自己導電性物質および/または吸湿 導電性物質)を含有してなる流動性の除電層形成用組成 物を調製し、この除電層形成用組成物をシート体に塗布

法。

(2) 除電層となるべき除電層用フィルムを製造し、こ の除電層用フィルムをシート体に接着する方法。

(3) シート体に、電解メッキ、無電解メッキ、スパッ タリング、蒸着などの金属のメッキ処理を行う方法。

(4) 金型の成形面に除電層となるべき層を形成し、当 該金型内においてシート体を製造する方法。

【0080】上記(1)の方法において、除電層形成用 組成物に流動性を付与するために、或いは除電層形成用 組成物の流動性を調整するために、適宜の溶剤を用いる 10 ことができる。

【0081】除電層形成用組成物をシート体の表面に塗 布する方法としては、スプレー法、刷毛による方法、浸 漬による方法、LB膜として被覆する方法、ロール塗布 法、ブレード(スキージ)によって塗布する方法などを 利用することができる。

【0082】除電層形成用組成物よりなる塗膜の定着処 理は、当該除電層形成用組成物を構成する成分の種類に 応じて選択される。具体的には、除電層形成用組成物と して、層を形成することが可能な導電性物質が溶剤中に 20 含有されてなるもの、或いは導電性物質およびバインダ 一が溶剤中に含有されてなるものを用いる場合には、当 該除電層形成用組成物の塗膜が乾燥処理されることによ って定着されることにより、除電層が形成される。ま た、除電層形成用組成物として、導電性物質と、バイン ダーとなる硬化性材料とを含有してなるものを用いる場 合には、当該電層形成用組成物の塗膜が硬化処理される ことによってあるいは乾燥処理された後に硬化処理され ることよって定着されることにより、除電層が形成され る。以上のような除電層形成用組成物としては、一般に 30 「帯電防止剤」もしくは「導電性塗料」として市販され ているものを用いることができる。

【0083】また、上記(1)の方法において、シート 体の表面における一部の領域に除電層を形成する場合に は、当該シート体の表面における除電層を形成しない領 域に、レジストまたはテープなとによりマスクを形成し たうえで、除電層形成用組成物を用いて除電層を形成し た後、当該マスクを除去する方法を採用することができ る。

【0084】上記(2)の方法において、除電層用フィ ルムをシート体に接着する手段としては、熱圧着による 手段、適宜の接着剤を用いる手段を採用することができ る。また、除電層用フィルムとしては、一般に「帯電防 止フィルム(シート)」として市販されているものや、 金属箔を用いることができる。上記(3)の方法におい て、シート体の表面における一部の領域に除電層を形成 する場合には、当該シート体の表面における除電層を形 成しない領域に、レジストまたはテープなとによりマス クを形成したうえで、メッキ処理によって除電層を形成 した後、当該マスクを除去する方法、メッキ処理によっ 50 離dが10mmを超える場合には、シート体10Aの一

てシート体の表面に金属層を形成し、この金属層に対し て、フォトリソグラフィーおよびエッチング処理を施し てその一部を除去する方法を利用することができる。上 記(4)の方法において、金型の成形面に除電層となる べき層を形成する方法としては、上記(1)~(3)の 方法を適用することができる。

【0085】《異方導電性シート本体の構造》本発明の 異方導電性シートは、上記のようなシート体および除電 層を有するものであれば、その具体的構造は特に限定さ れるものではなく、種々の構造のものを採用することが できる。以下、本発明の異方導電性シートの除電層の具 体的な構造例について説明する。

【0086】〔構造例1〕構造例1に係る異方導電性シ ートの説明用断面図を図29に示す。この異方導電性シ ート10は、シート体10Aと、このシート体10Aの 一面に、その周辺以外の領域を覆うよう設けられた除電 層130とにより構成されている。

【0087】このような異方導電性シート10において は、隣接する導電部11同士が除電層130によって接 続された状態にあるため、除電層130の表面固有抵抗 $が1\times10^5$ ~ 1×10^{11} Ω / \square であることが好ま しく、さらに好ましくは $1 \times 10^7 \sim 1 \times 10^9 \Omega$ / □である。表面固有抵抗が1×10⁵ Ω/□未満であ る場合には、隣接する導電部間における所要の絶縁性が 得られないことがある。一方、表面固有抵抗が1×10 ¹¹Ω/□を超える場合には、シートの表面の帯電を十 分にまたは防止または抑制することが困難となることが ある。また、同様の理由により、除電層130の電気伝 導度は、例えば除電層30の厚みが0.1mmのときに は、 $1 \times 10^{-1} \sim 1 \times 10^{-5} \Omega^{-1} m^{-1}$ であるこ とが好ましい。

【0088】〔構造例2〕構造例2に係る異方導電性シ ートの説明用断面図を図30に示す。この異方導電性シ ート10は、導電性粒子が密に充填された、それぞれ厚 み方向に伸びる複数の導電部11と、これらの導電部1 1を相互に絶縁する絶縁部12とよりなるシート体10 Aを有し、当該シート体10Aには、導電部11が小さ いピッチで高い密度で配置された高密度導電部領域21 A. 21B, 21Cが形成され、その頂部には接点部材 が配置されている。そして、このシート体10Aの一面 には、開口131が形成された除電層130が設けられ ており、この除電層130の開口131によって、シー ト体10Aにおける高密度導電部領域21A, 21B, 21 Cが露出した状態とされている。

【0089】このような異方導電性シート10において は、シート体10Aの一面における導電部11の周縁 と、除電層130の開口縁との離間距離dが10mm以 下であることが好ましく、さらに好ましくは5mm以 下、特に好ましくは O. 5~3 mmである。この離間距 面における導電部11の周縁と、除電層130の開口縁との間の領域が帯電しやすくなる。一方、この離間距離が過小である場合には、除電層130の材質および厚みによっては、面方向における所要の絶縁性が得られないことがある。また、同様の理由により、シート体20の高密度導電部21間における離間距離Dは、3mm以下、特に、0.1~1mmであることが好ましい。

【0090】除電層130の厚みは、 100μ m以下であることが好ましく、さらに好ましくは 50μ m以下である。この厚みが 100μ mを超える場合には、例えば検査対象である回路装置の被検査電極と、シート体10Aの導電部11との電気的接続が、当該除電層130が障害となって確実に達成することが困難となることがある。

【0091】〔構造例3〕構造例3に係る異方導電性シートの説明用断面図を図31に示す。この異方導電性シート10は、導電性粒子が密に充填され、その頂部には接点部材が配置され、それぞれ厚み方向に伸びる複数の導電部11と、これらの導電部11を相互に絶縁する絶 20縁部12とよりなるシート体10Aを有し、このシート体10Aの一面には、当該導電部11のパターンに対応するパターンに従って開口131が形成された除電層130が設けられており、この除電層130の開口131の各々によって、シート体10Aの導電部11の各々が露出した状態とされている。

【0092】このような異方導電性シート10においては、前述の構造例2に係る異方導電性シートと同様に、シート体10Aの一面における導電部11の周縁と、除電層130の開口縁との離間距離dが5mm以下、特に300.5~2mmであることが好ましい。また、隣接する導電部11間に除電層130を設ける場合には、シート体10Aにおける隣接する導電部11間における離間距離Dは、2mm以上であることが好ましく、さらに好ましくは3mm以上、特に好ましくは5mm以上である。この離間距離Dが2mm未満である場合には、隣接する導電部11間の領域に除電層30を形成することが困難となることがある。

【0093】 [構造例4] 構造例4に係る異方導電性シートの説明用断面図を図32に示す。この異方導電性シート10は、導電性粒子が密に充填され、その頂部には接点部材が配置され、それぞれ厚み方向に伸びる複数の導電部11と、これらの導電部11を相互に絶縁する絶縁部12とよりなるシート体10Aを有し、当該シート体10Aには、導電部11が小さいピッチで高い密度で配置された高密度導電部領域21A,21B,21Cが形成されている。そして、このシート体10Aの一面には、高密度導電部領域21A,21B,11C以外の領域に凹所23が形成されており、この凹所23内に除電層130が設けられている。

【0094】〔構造例5〕構造例5に係る異方導電性シ ートの説明用断面図を図33に示し、当該異方導電性シ ートの平面図を図34に示す。この異方導電性シート1 0は、導電性粒子が密に充填され、その頂部には接点部 材が配置され、それぞれ厚み方向に伸びる複数の導電部 11と、これらの導電部11を相互に絶縁する絶縁部1 2とよりなるシート体10Aを有し、当該シート体10 Aには、導電部11が小さいピッチで高い密度で配置さ れた高密度導電部領域21A,21B,21Cが形成さ 10 れている。また、髙密度導電部領域21Bにおいては、 図34に示すように、導電部11が矩形の枠状に配置さ れている。そして、このシート体10Aの一面には、高 密度導電部領域21A,21B,21C上に開口36が 形成された高導電性除電層35が設けられており、導電 部11が矩形の枠状に配置された高密度導電部領域21 B上に、低導電性除電層37が、高導電性除電層35の 開口36を塞ぐよう設けられている。

【0096】このような異方導電性シート10によれば、シート体10Aの一面における高密度導電部領域21A,21B,21C以外の領域には、高導電性除電層35が設けられているため、高い効率で帯電を防止または抑制することができる。しかも、導電部11が枠状に配置された高密度導電部領域21Bに囲まれた領域(以下、これを「独立領域」という。)においては、当該独立領域上に形成された高導電性除電層35が、当該高密度導電部領域21B上に形成された低導電性除電層37を介して、独立領域以外の領域に形成された高導電性除電層35に接続されているため、確実に帯電を防止または抑制することができる。

【0097】〔構造例6〕構造例6に係る異方導電性シートの説明用断面図を図35に示す。この異方導電性シート10は、導電性粒子が密に充填され、その頂部には接点部材が配置され、それぞれ厚み方向に伸びる複数の導電部11と、これらの導電部11を相互に絶縁する絶縁部12とよりなるシート体10Aを有し、当該シート50体10Aには、導電部11が小さいピッチで高い密度で

配置された高密度導電部領域21A,21B,21Cが形成されている。また、この例においては、シート体10の導電部11の各々は、絶縁部12の両面から突出した状態に形成されている。そして、このシート体10Aの一面には、開口131が形成された除電層130が設けられており、この除電層130の開口131によって、シート体10Aにおける高密度導電部領域21A,21B,21Cが露出した状態とされている。このような異方導電性シート10においては、シート体10Aの導電部11の突出高さは、除電層130の厚みより大きいことが好ましく、特に除電層130の厚みの2~10倍であることが好ましい。

【0098】 このような異方導電性シート 10においては、除電層 130 の表面固有抵抗は 1×10^6 ~ 1×10^{1} の 10^{1} の 10^{1} の 10^{1} のの表面固有抵抗は 1×10^6 ~ 1×10^{1} の 10^{1} の表面固有抵抗が 1×10^{1} の 10^{1} の 10^{1} の 10^{1} の表面の帯電を十分にまたは防止または抑制する 10^{1} の表面の帯電を十分にまたは防止または抑制する 10^{1} の 10^{1

【0099】 〔構造例7〕前記の方法などにより、例え ば図2などに示されるような接点部材のない異方導電性 シートを製造する。この異方導電性シートの表面は、凸 状であっても、平面であっても、凹状であってもよい。 次に、この異方導電性シートの表面の全面または一部 に、スパッタリングなどにより金属膜を形成する。この 30 金属としては、銅、ニッケル、金、白金、ロジウムなど が挙げられる。金属膜の膜厚としては、特に制限はなく 適宜の厚さに形成することが出来るが、好ましくは0. $1\sim100\mu$ m、さらに好ましくは0. $2\sim10\mu$ m、 より好ましくは0.3~3 μ m特に好ましくは0.4~ 2μm、である。以上のようにして製造した金属膜が形 成された異方導電性シートは、導電部以外の部分の該金 属膜の一部を切断し、各導電部を電気的に絶縁すること により、本発明の異方導電性シートを製造することが出 来る。金属膜の一部を切断するには、YAGやエキシマ などのレーザーが好適である。また、上記とは別の方法 として、上記で製造した金属膜が形成された異方導電性 シートは、その金属膜表面に感光性樹脂(レジスト)の 層を形成し、ホトリソ法により導電部以外の部分の該金 属膜の一部を開口し、その部分の金属膜をエッチングな どにより除去して各導電部を電気的に絶縁することによ り、本発明の異方導電性シートを製造することが出来 る。

【0100】《異方導電性シートの使用方法》本発明の 異方導電性シートは、回路装置の電気的接続や電気的検 50

査に好適に用いることができる。以下、上記の構造例2 に係る異方導電性シート10を使用して回路装置の電気 的検査を行う場合について説明する。回路装置の電気的 検査においては、図36に示すように、検査対象である 回路装置(以下、「被検査回路装置」ともいう。) 1の 被検査電極2と対掌なパターンに従って配置された接続 用電極41を表面に有し、接続用電極41に配線部42 Aを介して電気的に接続された、例えばピッチが2.5 4 mm、1.80 mm若しくは1.27 mmの格子点配 列に従って配置された端子電極42を裏面に有するコネ クター板60が用意される。そして、このコネクター板 60の表面上に、異方導電性シート10が、そのシート 体10Aの導電部11が接続用電極41上に位置される よう配置され、この異方導電性シート10上に、被検査 回路装置1が、その被検査電極2が当該異方導電性シー ト10におけるシート体10Aの導電部11上に位置さ れるよう配置される。ここで、異方導電性シート10 は、除電層130が回路装置2側となるよう配置され、 当該除電層130は適宜の手段により接地されている。

【0101】そして、例えばコネクター板60を被検査 回路装置1に接近する方向に移動させることにより、異 方導電性シート10が被検査回路装置1とコネクター板 60とにより加圧された状態となり、この加圧力によ り、異方導電性シート10におけるシート体10Aの導 電部11にその厚み方向に伸びる導電路が形成され、そ の結果、被検査回路装置1の被検査電極2とコネクター 板60の接続用電極41との間の電気的接続が達成さ れ、この状態で所要の電気的検査が行われる。そして、 被検査回路装置1の電気的検査が終了した後、この被検 査回路装置1が別の被検査回路装置に交換され、当該被 検査回路装置に対して、上記と同様の操作を繰り返すこ とによって電気的検査が好適に行われる。また、本発明 の異方導電性シートは、導電部の頂部に良導電性の接続 部材が配置されているので、異方導電性シートを回路装 置などから剥がす際に、静電気の発生もない。

【0102】さらに、本発明の異方導電性シート10によれば、シート体10Aの一面に除電層130が設けられているため、当該除電層130を接地することにより、異方導電性シートの一面に静電気が生じて帯電することを防止または抑制することができる。従って、本発明の異方導電性シートを、プリント回路基板や半導体集積回路などの回路装置の電気的検査に用いる場合には、検査作業を中断して異方導電性シートの除電作業を行うことが不要となるため、高い時間的効率で、回路装置の電気的検査を行うことができる。

【0103】本発明の異方導電性シートは、上記の実施の形態にに限定されるものではなく種々の変更を加えることが可能である。例えば、前述の構造例1~7において、除電層130はシート体10Aの両面に設けられていてもよい。また、シート体10Aには、複数の除電層

130を積層して設けることもできる。 また、異方導 電性シート10は、例えば回路装置の電気的検査に用い られるコネクター板60の表面に一体的に設けられたも のであってもよい。

[0104]

【実施例】以下、本発明の実施例について説明するが、 本発明はこれらの実施例に限定されるものではない。ま た、以下の実施例において使用したシート体の詳細は次 のとおりである。

[形態] 図36に示す形態で、導電性粒子が密に充填さ 10 れた厚み方向に伸びる複数の導電部が、絶縁部によって 相互に絶縁された状態で配置されてなるもの(偏在 型), 厚み1.2mm, 導電部の径0.8mm, 導電部 のピッチ1.5mm

[基材] 付加型シリコーンゴム

[導電性粒子] 平均粒子径が40μmのニッケル粒子に 金がメッキされてなるもの

【0105】〈実施例1〉前記の構造例7の方法に準じ て、異方導電性シートの表面に白金を全面スパッタリン グし、レーザーで接点部材周辺に絶縁加工を施し、図1 4に示されるような導電部に接点部材が設けられた異方 導電性シートを製造した。

【0106】〈実施例2〉前記の構造例7の方法に準じ て、異方導電性シートの表面に銅を全面スパッタリング

し、レーザーで接点部材周辺に絶縁加工を施し、図14 に示されるような導電部に接点部材が設けられた異方導 電性シートを製造した。

【0107】(実施例3)前記の構造例7の方法に準じ て、異方導電性シートの表面に銅と金を全面スパッタリ ングし、レーザーで接点部材周辺に絶縁加工を施し、図 14に示されるような導電部に接点部材が設けられた異 方導電性シートを製造した。

【0108】〈比較例1〉スパッタリングの処理をせ ず、導電部に接点部材を設けない以外は実施例1の方法 に準じて異方導電性シートを製造した。

【0109】 〔試験例1〕 ガラス繊維補強型エポキシ基 板上に、実施例1~3、および比較例1で製造した異方 導電性シートの各々を除電層が上を向いた状態で固定 し、これを異方導電性シートが上を向いた状態でアース したアルミ板上に配置した。次いで、気温100度の条 件下において、異方導電性シートの表面にパッケージ回 路基板(被検査物)を配置し、異方導電性シートを、1 30kgfの荷重で2秒間加圧し、この操作を合計で1 万回行った。そして、上記の試験が終了してから50秒 間経過した後、被検査物および異方導電性シートの表面 電位を測定した。以上試験結果を表1に示す。

[0110] 【表1】

実施例	帯電量 【V】	
	被検査物	PCR
比較例1	+600	-300
実施例1	+10以下	—10以下
実施例2	+10以下	—10以下
実施例3	+10以下	—10以下

20

実施例はいずれも帯電せず、問題無しの結果 +10および-10以下の値はは測定器の精度上測定不 能領域

【0111】表1の結果から明らかなように、実施例1 ~3に係る異方導電性シートによれば、試験が終了して から50秒間経過後における表面電位の値はいずれも小 されることが確認された。これに対して、比較例におい ては、試験が終了してから50秒間経過後における表面 電位の値がいずれも大きく、表面に静電気が生じて帯電 するものであった。

[0112]

【発明の効果】本発明の異方導電性シートによれば、異 方導館性シート本体10における導電路形成部11の表 面には、接点部材30が設けられているため、接続対象 電極の表面に酸化膜が形成されている場合にも、接点部 材30よって当該酸化膜が突き破られるため、接続対象 50 シートによれば、シート体の一面に除電層が設けられて

電極と異方導電性シート本体10の導電路との間の電気 さらに、異方導電性シー 的接続が確実に達成される。 トを回路装置などから剥がす際に、静電気の発生もな い。このためICパッケージなどの被検査物の損傷も防 止できる。また、接続対象電極に対し、異方導電性シー ト本体10における導電路形成部11が直接接触する表 さく、表面に静電気が生じて帯電することが確実に抑制 40 面部分が少ないため、当該導電路形成部11を構成する 弾性高分子物質中に含有される低分子量成分による接続 対象電極の表面の汚染が抑制される。

> 【0113】更に、接点部材30が異方導電性シート本 体10における導電路形成部11の表面に熱圧着できる ため、導電路形成部11に対して接点部材30が高い接 着性で固着され、その結果、当該電路形成部11と接点 部材30と間に接着層を設けなくとも長い使用寿命が得 また導電部の劣化も防止でき、異方導電性シ ートの耐久性も向上できる。さらに本発明の異方導電性

いるため、当該除電層を接地することにより、異方導電 性シートの一面に静電気が生じて帯電することを防止ま たは抑制することができる。従って、本発明の異方導電 性シートを、プリント回路基板や半導体集積回路などの 回路装置の電気的検査に用いる場合には、検査作業を中 断して異方導電性シートの除電作業を行うことが不要と なるため、高い時間的効率で、回路装置の電気的検査を 行うことができる。また絶縁加工の方法によってはそこ に除電面やグランド(アース)面を形成でき、さらなる 帯電防止の強化、高周波、高精度の測定を行う事も可能 10 となる。また、金属膜はスパッタ、メッキといった極め て薄い金属膜を形成することにより施すことができ、そ の場合はPCRの面接触、凹凸追従性といったゴムの特 徴は失われない。そのため、加圧力はゴムのみの状態と 変わらない範囲で使用することが出来る。また、かかる 異方導電性シートを容易に製造することができる。

[0114]

【図面の簡単な説明】

【図1】異方導電性シートの接点部材の要部の構成を示す説明用断面図である。

【図2】図1に示した異方導電性シートの異方導電性シート本体の構成を示す説明用断面図である。

- 【図3】熱圧着を行う工程を示す説明図である。
- 【図4】接点形成材料の説明用平面図である。
- 【図5】接点形成材料の説明用断面図である

【図 6 】接点部材配置の後処理を行う工程を示す説明図 である

【図7】異方導電性シートの要部の構成を示す説明用断面図である。

【図8】異方導電性シートの接点部材の配置の一例を示 30 用断面図である。 す説明用断面図である。 【図32】構造6

【図9】異方導電性シートの接点部材の配置の一例を示す説明用断面図である。

【図10】異方導電性シートの接点部材の配置の一例を 示す説明用断面図である。

【図11】異方導電性シートの接点部材の配置の一例を 示す説明用断面図である。

【図12】異方導電性シートに係る異方導電性シート本体の接点部材の配置の一例を示す説明用断面図である。

【図13】異方導電性シートに係る異方導電性シート本 40 体の接点部材の配置の一例を示す説明用断面図である。

【図14】異方導電性シートの接点部材の配置の要部の 構成を示す説明用断面図である。

【図15】導電材料層上にレジスト層が形成された状態を示す説明用断面図である。

【図16】レジスト層の孔内に導電性接着層が形成された状態を示す説明用断面図である。

【図17】レジスト層および導電性接着層上にシート基 材形成材料層が形成された状態を示す説明用断面図であ る。 【図18】シート基材形成材料層に平行磁場を作用させた状態を示す説明用断面図である。

【図19】レジスト層および導電性接着層上にシート基 材が形成された状態を示す説明用断面図である。

【図20】導電性接着層上に接点用導電材料が形成された状態を示す説明用断面図である。

【図21】レジスト層の孔内に導電性接着層が形成された状態を示す説明用断面図である。

【図22】レジスト層および導電性接着層上に導電材料 層が形成された状態を示す説明用断面図である。

【図23】 導電性接着層上に接点用導電材料が形成された状態を示す説明用断面図である。

[図24] 第2の実施の形態に係る異方導電性シートの 要部の構成を示す説明用断面図である。

【図25】易剥離性支持板の一面上に導電材料層を介して導電性接着層が形成された状態を示す説明用断面図である。

【図26】第2の実施の形態に係る異方導電性シートの 接点部材の配置の要部の構成を示す説明用断面図であ

【図27】レジスト層および易剥離性支持板上に導電材料層が形成された状態を示す説明用断面図である。

【図28】レジスト層の孔内に導電性接着層が形成された状態を示す説明用断面図である。

【図29】構造例1に係る異方導電性シートを示す説明 用断面図である。

【図30】構造例2に係る異方導電性シートを示す説明 用断面図である。

【図31】構造例3に係る異方導電性シートを示す説明 用断面図である。

【図32】構造例4に係る異方導電性シートを示す説明 用断面図である。

【図33】構造例5に係る異方導電性シートを示す説明 用断面図である。

【図34】構造例5に係る異方導電性シートを示す平面 図である。

【図35】構造例6に係る異方導電性シートを示す説明 用断面図である。

【図36】構造例1に係る異方導電性シートが、検査対 象である回路装置とコネクター板との間に介在された状態を示す説明図である。

【符号の説明】

	210 3 -	> WU 711		
	1 0	異方導電性シート	1 1	導電
	路形成部	ß		
	1 1 A	凹所	1 2	絶縁
	部			
	3 0	接点部材	3 1	接点
	形成材料	4		
	3 2	連結用部分	3 3	枠部
50	分			

20

特開2	0 0	2 -	2 0	8 4	4 7
7 ~					

33	<i>)</i>		34
40 複合体	4 3 圧着	M 強磁性体部分	N 非磁性体部
治具		分	
43A 凸所	4.4 切断	1 回路装置	2 被検査電極
治具		21A, 21B, 21C 髙	密度導電部領域
44A 凹所	10A シー	23 凹所	•
ト基材形成材料層		130 除電層	131 開口
20 導電性接着層	30A 導電	35 高導電性除電層	36 開口
材料層		37 低導電性除電層	60 コネク
140 易剥離性支持板		ター板	
45 レジスト層	46. レジス 10	41 接続用電極	42 端子電
ト層の孔		極	
50 一方の磁極板	5 1 電磁石	4 3 配線部	
55 他方の磁極板	5 5 電磁石		

【図1】

【図3】

[図5]

[図2]

【図4】

[図6]

[図10]

[図9]

【図7】

【図11】

[図13]

【図15】

【図17】

【図22】

【図12】

【図14】

【図16】

【図18】

[図27]

[図19]

【図21】

【図24】

【図26】

【図29】

【図23】

[図25]

【図28】

【図30】

【図31】

【図32】

【図34】

【図36】

【図33】

【図35】

フロントページの続き

(51) Int. Cl. 7

識別記号

H 0 1 R 43/00

FI

H 0 1 R 43/00

テーマコード(参考)

Н

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.