Quiz 2: Proofs

1. Consider the following "proof" of the statement "1/4 > 1/2".

$$2 > 1 \tag{1}$$

$$2\log_{10}(\frac{1}{2}) > 1\log_{10}(\frac{1}{2}) \tag{2}$$

$$\log_{10}((\frac{1}{2})^2) > \log_{10}(\frac{1}{2}) \tag{3}$$

$$\frac{1}{4} = \frac{1^2}{2} > \frac{1}{2} \tag{4}$$

Which of the below options correctly identifies the mistake in the above proof? Provide justification.

- (A) 2 > 1 is not correct.
- (B) 2 > 1 does not imply $2 \log_{10}(\frac{1}{2}) > 1 \log_{10}(\frac{1}{2})$.
- (C) $2\log_{10}(\frac{1}{2}) > 1\log_{10}(\frac{1}{2})$ does not imply $\log_{10}((\frac{1}{2})^2) > \log_{10}(\frac{1}{2})$.
- (D) $\log_{10}((\frac{1}{2})^2) > \log_{10}(\frac{1}{2})$ does not imply $\frac{1}{2}^2 > \frac{1}{2}$.
- 2. Consider the following "proof" of the statement "If a, b are real numbers such that a = b then a = 0".

$$a = b (5)$$

$$a^2 = ab (6)$$

$$a^2 - b^2 = ab - b^2 (7)$$

$$(a-b)(a+b) = (a-b)b \tag{8}$$

$$a + b = b \tag{9}$$

$$a = 0 \tag{10}$$

Which of the below options correctly identifies the mistake in the above proof? Provide justification.

- (A) a = b does not imply $a^2 = ab$.
- (B) $a^2 = ab$ does not imply $a^2 b^2 = ab b^2$.
- (C) $a^2 b^2 = ab b^2$ does not imply (a b)(a + b) = (a b)b.
- (D) (a-b)(a+b) = (a-b)b does not imply a+b=b.
- 3. Consider the sequence defined inductively as follows: $a_0 = 0$, and $a_n = a_{\lceil n/2 \rceil} + a_{\lfloor n/2 \rfloor}$. We claim that $a_n = n$ for all n. We prove this by induction. For the base case observe that $a_0 = 0$ by definition. Assume that for all n < k, we have $a_n = n$. Now $a_k = a_{\lceil k/2 \rceil} + a_{\lfloor k/2 \rfloor}$ by definition. From the induction hypothesis, we have $a_{\lceil k/2 \rceil} = \lceil k/2 \rceil$ and $a_{\lfloor k/2 \rfloor} = \lfloor k/2 \rfloor$. Thus, $a_k = a_{\lceil k/2 \rceil} + a_{\lfloor k/2 \rfloor} = \lceil k/2 \rceil + \lfloor k/2 \rfloor = k$. Thus, the claim is established by induction.
 - (A) The proof is correct.
 - (B) For some values of k, the induction hypothesis does not allow us to conclude $a_{\lceil k/2 \rceil} = \lceil k/2 \rceil$
 - (C) For some values of k, the induction hypothesis does not allow us to conclude $a_{\lfloor k/2 \rfloor} = \lfloor k/2 \rfloor$.
 - (D) For some values of k, $\lceil k/2 \rceil + \lfloor k/2 \rfloor \neq k$.

Provide justification.