

4.實驗設計(變異數分析)

以兩類因子為例

[The Experiment design computation and images] (實驗設計的計算與國形) 選擇 1. one way X(ij)=mu(i)+e(ij), e(ij) are N(0,sigma*sigma) 2. two way X(ij)=mu(ij)+e(ij), e(ij) are N(0,sigma*sigma)	the error probability distrbiution will be the Normal?
 two way and duplication X(ijk)=mu(ij)+e(ijk),e(ijk) are N(0,sigma*sigma) one way & repeat measures X(ij)=mu(ij)+e(ij),e(ij) are N(0,sigma*sigma) 	
5. latin square X(ijk)=mu(ijk)+e(ijk),e(ijk) are N(0,sigma*sigma)	
6. three way X(ijkl)=mu(ijk)+e(ijkl),e(ijkl) are N(0,sigma*sigma)	
7. return	
[selecting the error probability distribution]	[two way analysis(兩類因子分析)]
1. Uniform distribution	~~~~~~~ 選擇 ~~~~~~
2. Normal distribution	1. residual analysis(残差分析)
3. Double exponential distribution	2. factor A one way analysis(一類因子分析)
4. Arcsin distribution	3. factor B one way analysis(一類因子分析)
5. Traigular 1 distribution	4. 返回
6. Trapezoid distribution	
7. U-quadratic distribution	
8. Semi-circle distribution	
9. Logistic distribution	
10. Symmetric Traigular distribution	
選擇 4,	

Output data

Output data						
以下為由模擬器所	得樣本值					
X(1,1)=0.0000000+e	(1,1),e(1,1)	~Arcsin(0.0000	00,2.236068)	, Variance=	10.000000, sample size=1	1
X(1,2)=-1.0000000+	e(1,2),e(1,2)	~Arcsin(0.0000	000,2.236068), Variance=	=10.000000, sample size=	:1
X(1,3)=-2.0000000+	e(1,3),e(1,3)	~Arcsin(0.0000	000,2.236068), Variance=	10.000000, sample size=	:1
X(2,1)=1.0000000+e	(2,1),e(2,1)	~Arcsin(0.0000	00,2.236068)	, Variance=	10.000000, sample size=1	1
X(2,2)=0.0000000+e	(2,2), $e(2,2)$	~Arcsin(0.0000	00,2.236068)	, Variance=	10.000000, sample size=1	1
X(2,3)=-1.0000000+	e(2,3), e(2,3)	~Arcsin(0.0000	000,2.236068), Variance=	=10.000000, sample size=	:1
X(3,1)=2.0000000+e	(3,1),e(3,1)	-Arcsin(0.0000	00,2.236068)	, Variance=	10.000000, sample size=1	1
X(3,2)=1.0000000+e	(3,2),e(3,2)	~Arcsin(0.0000	00,2.236068)	, Variance=	10.000000, sample size=1	1
X(3,3)=0.0000000+e	(3,3),e(3,3)	~Arcsin(0.0000	00,2.236068)	, Variance=	10.000000, sample size=1	1
X(4,1)=3.000000+e	(4,1),e(4,1)	~Arcsin(0.0000	00,2.236068)	, Variance=	10.000000, sample size=1	1
					10.000000, sample size=1	
					10.000000, sample size=1	
	(, , , (, ,	`	,		, 1	
X(ij)=mu+alpha(i)+	beta(j)+e(ij	,i=1,,4, j=1,,	3			
mu=0.000000,	J/ \3/	.				
alpha(1)=1.000000,	alpha(2)=2	.000000, alpha(3)=3.000000	, alpha(4)=4	.000000,	
beta(1)=-1.000000,				. 1	,	
eij iid Arcsin(0.000						
A1	,	A2	A	3	A4	
B1 2.2233229		-1.0938710911		839230	1.2017208546	
B2 0.2048710		-2.0539805894		168351	-0.0540853850	
B3 -2.3013805	0872	-0.0749204586	-1.44645	943119	-1.0610581968	
There are two factors : A and B						
Two way model						
X(ij)=mu+alpha(i)+beta(j)+e(ij), i=1,2,4, j=1,2,3						
$\Lambda(ij)$ -iiiu+aipiia (i) +ocia (j) +c (ij) , i-1,2,4, j-1,2,3						
	A1	A2	A3	A4		
factor A sample mean	0.04227	-1.07426	1.06845	0.02886		

1.05212

0.01253

0.02594

alpha estimate value

-1.09059

	B1	B2	В3
factor B sample mean	0.94819	0.32176	-1.22095
beta estimate value	0.93186	0.30543	-1.23728
Total sample size=1	2, grand mean=	0.016330	
ī			
summation of alpha	(i)=0.000000)	
summation of beta(0.000000		

ANOVA

Source	df	SS	MS	F
Factor A	3	6.8914942648	2.2971647549	0.8714267757
Factor B	2	9.9700655966	4.9850327983	1.8910663890
Error	6	15.8165768079	2.6360961347	
Total	11	32.6781366694		

~~~~ The run test of residual~~~~~~~

number of the negative of residual=7 number of the positive of residual=5

Run=7

H0: residualis random , H1: Increasing line or decreasing line

Z=0.104103, p-value=0.541500

H0: residual is random , H1: Oscillation

Z=0.104103, p-value=0.458500

H0: residual is random , H1: Increasing line or decreasing line or Oscillation

Z=0.104103, p-value=0.917000

~~~~~~ error ~~~~~~

| 1.24919 | -0.95147 | -0.53872 | 0.24100 |
|----------|----------|----------|----------|
| -0.14283 | -1.28515 | 1.81634 | -0.38837 |
| -1.10637 | 2.23662 | -1.27762 | 0.14737 |

[two way analysis(兩類因子分析)]

- 1. residual analysis(残差分析)
- 2. factor A one way analysis(一類因子分析)
- 3. factor B one way analysis(一類因子分析)
- 4. 返回

選擇1,

選擇2,

| | one way - | | - | | | |
|--------------------|--------------------|--|----------|---------|---------------|--|
| A1 | | A2 | A3 | | A4 | |
| 2.22332 | | -1.0938710911 | 1.46158 | | 1.2017208546 | |
| 0.20487 | | -2.0539805894 | | 168351 | -0.0540853850 | |
| -2.301380 | 5872 - | 0.0749204586 | -1.44645 | 43119 | -1.0610581968 | |
| | Only | a factor : A | | | | |
| One way model | • | | | | | |
| X(ij)=mu+alpl | | 2 4 i-12 | n(i) | | | |
| 21(1)/-111u alph | im(1) C(1)/, 1—1 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | •,11(1) | | | |
| 1_11 2_12 | 2-12 1- | A 1 | | | | |
| 1=A1, 2=A2, | 3=A3, 4= | A4 | | | | |
| | A1 | A2 | A3 | A4 | Total | |
| sample size | 3 | 3 | 3 | 3 | 12 | |
| sample mean | 0.04227 | -1.07426 | 1.06845 | 0.02886 | 0.01633 | |
| sample variance | 5.13806 | 0.97946 | 5.49060 | 1.28520 | | |
| alpha estimate va | alue 0.02594 | -1.09059 | 1.05212 | 0.01253 | | |
| | 11(1) 0.000 | 000 | | | | |
| summation of a | Ipna(1)=0.000 | 000 | | | | |
| H0:alpha(1)= | =alpha(4)=0 | | | | | |
| ANOVA | (.) | | | | | |
| Source d | f | SS | MS | | F | |
| Treatment 3 | 6.8 | 914942648 | 2.297164 | 47549 | 0.7126681229 | |
| Error 8 | 25. | 7866424046 | 3.22333 | 303006 | | |
| Total 11 | 32.0 | 6781366694 | | | | |


~~~~ The run test of residual~~~~~~~

number of the negative of residual=6 number of the positive of residual=6

Run=6

H0: residualis random , H1: Increasing line or decreasing line

Z=-0.605530, p-value=0.272500

H0: residual is random , H1: Oscillation

Z=-0.605530, p-value=0.727500

H0: residual is random , H1: Increasing line or decreasing line or Oscillation

Z=-0.605530, p-value=0.545000

| ~~~~~~ error ~~~~~~ |      |          |          |          |  |  |
|---------------------|------|----------|----------|----------|--|--|
| A1                  | A2   | A3       | A4       |          |  |  |
|                     |      |          |          |          |  |  |
| 2.18                | 8105 | -0.01961 | 0.39314  | 1.17286  |  |  |
| 0.16                | 5260 | -0.97972 | 2.12177  | -0.08294 |  |  |
| -2.34               | 1365 | 0.99934  | -2.51490 | -1.08992 |  |  |