Dense Subgraph Discovery Primitives: Risk Aversion and Exclusion Queries

Charalampos E. Tsourakakis[†], **Tianyi Chen**[†], Naonori Kakimura[‡], Jakub Pachocki*

[†]Boston University, USA [‡]Keio University, Japan *OpenAI, USA

Project code: https://github.com/tsourolampis

Motivation

Department of Computer Science

Uncertain graphs

Online dating

 $\mathcal{G} = (V, E, p)$, where $p: E \to (0, 1]$. Whether an edge exists or not is uncertain.

- Expected weight \rightarrow reward.
- variance \rightarrow risk(uncertainty).

Densest subgraph discovery

- is poly-time solvable via max flow[1].
- has $\frac{1}{2}$ approximation greedy algorithm[2].

How to do DSD on uncertain graph?

Problem1: Given an uncertain graph, how can we find a dense subgraph that has low risk?

Method

Intuitively, our goal is to find a subgraph G[S] induced by $S \subseteq V$ such that:

- Its average expected reward $\frac{e \in E(S)}{|S|} w_e$ is large.
- The associated average risk is low $\frac{e \in E(S)}{|S|} \frac{\sigma_e^2}{|S|}$.

Transform:

- For each edge e we create two edges:
- A positive edge, $w^+(e)=\mu_e$
- A negative edge, $w^-(e) = \sigma_e^2$.

Objective:

$$max_{S \subseteq V} f(S) = \frac{w^{+}(S) + \lambda_{1}|S|}{w^{-}(S) + \lambda_{2}|S|}$$

$$\frac{w^{+}(S) + \lambda_{1}|S|}{w^{-}(S) + \lambda_{2}|S|} \ge q \rightarrow$$

$$\sum_{e \in E(S)} \underbrace{\left[w^{+}(e) - qw^{-}(e) \right]}_{\tilde{w}(e)} \ge |S| \underbrace{\left[(q\lambda_{2} - \lambda_{1}) \right]}_{q'} \rightarrow$$

$$\sum_{e \in E(S)} \frac{\tilde{w}(e)}{|S|} \ge q' \ (\tilde{w}(e) \ can \ be \ negative)$$

Hardness: The DSP on graphs with negative weights is NP-hard (Reduction from MAX-CUT).

Corollary: Assume that $w^+(e) \ge q_{max}w^-(e)$ for all $e \in E^+ \cup E^-$, where q_{max} is the maximum possible query value. Then, the densest subgraph problem is solvable in polynomial time.

Bounding risk: $f(S) = \frac{w^+(S) + \lambda_1 |S|}{Bw^-(S) + \lambda_2 |S|}$ by changing parameter B.

Algorithm:

Algorithm 2: Peeling

Input: G $n \leftarrow |V|, H_n \leftarrow G;$ Let v be the vertex of H_i of minimum degree, i.e., $d(v) = deg^{+}(v) - deg^{-}(v)$ (break ties arbitrarily); $H_{i-1} \leftarrow H_i \backslash v;$

Bad instance

return H_j that achieves maximum average degree among $H_i s$, i = 1, ..., n.

- In total n nodes in the bottom row.
- Let $W = \frac{n-4}{3}$. Then, 3W n < -3, which leads to removing the central node at first.

Improvement

Algorithm 3: Heuristic-Peeling
Input: $G, C \in (0, +\infty)$
$n \leftarrow V , H_n \leftarrow G \text{ for } i \leftarrow n \text{ to } 2 \text{ do}$
Let v be the vertex of H_i of minimum degree, i.e.,
$d(v) = Cdeg^{+}(v) - deg^{-}(v) \text{ (break ties arbitrarily) } H_{i-1} \leftarrow H_i \backslash v$
end
return H_j that achieves maximum average degree among $H_i s, i = 1,, n$.

Extension - exclusion queries

Problem2: Given a large-scale multilayer network, how do we find a dense subgraph that excludes certain types of edges?

Approach: Use -W weights for the excluded edge types. W can differ according to the scenarios.

Datasets

Uncertain graphs

Name	n	m
Biogrid	5 640	59 748
Collins	1622	9074
Gavin	1855	7669
Krogan core	2708	7123
Krogan extended	3672	14317
• TMDB	160 784	883 842

Multilayer graphs

Name	\overline{n}	m
` '		(902834,387597,222253,30018,63062)
• Twitter (Feb. 2)	706 104	$(1\ 002\ 265,\ 388\ 669,\ 218\ 901,\ 29\ 621,\ 64\ 282)$
• Twitter (Feb. 3)	651 109	(1010002,373889,218717,27805,59503)
• Twitter (Feb. 4)	528594	(865019,435536,269750,32584,71802)
• Twitter (Feb. 5)	631 697	(999961, 396223, 233464, 30937, 66968)
• Twitter (Feb. 6)	732852	(941353, 407834, 239486, 31853, 67374)
• Twitter (Feb. 7)	742566	(1129011, 406852, 236121, 30815, 68093)

Results

• Test the trade-off between reward and risk by ranging B

B	Average exp. reward	average risk
0.25	0.18	0.09
1	0.17	0.08
2	0.13	0.06
\overline{Gav}	in dataset (n = 1855,	m = 7669).

- Test the trade-off between reward, risk and size by ranging C and $\lambda 1$, see fig (a), (b) and (c).
- Test the heuristic exclusion queries on Twitter datasets, see fig (d), (e) and (f).

- 1. Risk averse DSD results for TMDB: (a) average expected weight, (b) average risk, (c) output size.
- 2. Degree density for three exclusion queries per each pair of interaction types over the period of the first week of February 2018: (d) Follow and mention. (e) Follow and retweet. (f) Mention and retweet.
- Exploring the effect of the negative weight -W on the excluded edge types for various C values..

C	W	$ S^* $	$\rho_{retweet}(S^*)$	$ ho_{reply}(S^*)$
0.1	1	296	63.44	-0.75
	5	99	45.67	-0.01
	200 000	200	30.37	0
1	1	346	72.70	-2.75
	5	319	68.70	-1.29
	200 000	200	30.38	0
10	1	351	73.10	-3.31
	5	351	73.10	-3.31
	200 000	200	30.37	0

References

- [1] Goldberg, A. V.. Finding a Maximum Density Subgraph. *University* of California at Berkeley, 1984.
- [2] Charikar, Moses. Greedy approximation algorithms for finding dense components in a graph. APPROX, 2000.
- [3] Tsourakakis, Charalampos E and Sekar, Shreyas and Lam, Johnson and Yang, Liu. Risk-Averse Matchings over Uncertain Graph Databases, arXiv preprint arXiv:1801.03190, 2018.