



### Outline of Presentation

Maria - Using the Online Visualisation Program

Harri - Using spreadsheets to Analyse CMS Data in the classroom

Enrique - Using Scilab to Analyse CMS Data in the classroom

**Enrique** - Introduction to Jupyter Notebooks

**Zorar** - Example Analysis of CMS data using Jupyter Notebook (ROOT Framework)

Christoph - Details of using Jupyter Notebooks to Analyse CMS Data

**Enrique** - How to access and share Jupyter Notebooks

## Open Data portal

www.opendata.cern.ch



## Open Data portal

#### **Education**



The CMS (Compact Muon Solenoid) experiment is one of two large general-purpose detectors built on the Large Hadron Collider (LHC). Its goal is to investigate a wide range of physics such as the characteristics of the Higgs boson, extra dimensions or dark matter.

Explore CMS >

For education purposes, the complex primary data need to be processed into a format (examples below) that is good for simple applications. Get in touch if you wish to build your own applications similar to those shown here



ALICE (A Large Ion Collider Experiment) is a heavy-ion detector designed to study the physics of strongly interacting matter at extreme energy densities, where a phase of matter called quark-gluon plasma forms. More than 1000 scientists are part of the collaboration.

Explore ALICE >



The ATLAS (A Toroidal LHC ApparatuS) experiment is a general-purpose detector exploring topics like the properties of the Higgs-like particle, extra dimensions of space, unification of fundamental forces and evidence for dark matter candidates in the Universe

Explore ATLAS >



The LHCb (Large Hadron Collider beauty) experiment aims to record the decay of particles containing b and anti-b quarks, known as B mesons. The detector is designed to gather information about the identity, trajectory, momentum and energy of each particle.

Explore LHCb >



Visualise events >



Visualise histograms >



## Open Data portal

#### CMS Derived Datasets

This collection includes data that have been derived from the CMS primary datasets

Years: 2010, 2011

Total records:

59

#### CMS Tools

This collection includes tools with which the CMS open data can be accessed and used

Years: 2010, 2011

Total records:

17

#### **CMS Learning Resources**

This collection includes learning resources that use CMS public data

Total records:

6

#### CMS Open Data Instructions

This collection contains CMS open data instructions.

Years: 2010, 2011

Total records:

7

## Visualise events



#### Resources we have created

## Document for high School teachers that includes:

Instructions for the use of the visualisation of events, including the description of the CMS detector.

Activity 1: Classroom activity in which students will explore the CMS detector and a dimuon event.

Activity 2: Calculation of invariant mass with the data that can be obtained from the even visualisation display.

## Resources: Instructions for the event display

#### VISUALISATION-OF-DATA-FROM-CMS-DETECTOR¶

#### VISUALISATION-DISPLAY¶

The CMS visual display can be used to visualize data obtained in the CMS detector. It can be found here: ¶

#### http://opendata.cern.ch/visualise/events/CMS¶

Some-basics-about-the-functionalities-of-the-top-up-buttons.-¶



# Activity 1: Hunting particles after the collision

# ACTIVITY ONE: HUNTING PARTICLES AFTER A COLLISION



#### Description of the activity

In this activity students will explore the particles obtained from a two proton collision in the CMS detector. For this, they will use the even visualizer

#### **Objective**

To understand the basics of the CMS detector system and how and where the particles are detected. This activity will also consolidate knowledge about how the properties of the particles can be used to detect them in different ways.

#### Needed background

Students need to understand the basics about the Large Hadron Collider and the CMS detector.

- Suggested video about the LHC: <a href="https://www.youtube.com/watch?v=pQhbhpU9Wrg">https://www.youtube.com/watch?v=pQhbhpU9Wrg</a>
- Suggested video about the CMS: <a href="https://www.youtube.com/watch?v=S99d9BQmGB0">https://www.youtube.com/watch?v=S99d9BQmGB0</a>

et

C.

•

## Activity 2: Calculation of invariant mass

#### Pavitasido

Learn·how·to·calculate·invariant·mass·in·a·two-particle·decay.¶

#### Reeded-background T

The file used for this activity is found in the Education folder of the visualization event: dimuon 0.ig \( \)

This data corresponds to the decay of a Z boson into two muons (muon-antimuon). The Z boson is an exchange particle mediating weak interactions. Z is neutral, so, the sum of the charges of its decay products must be zero. When the Z boson decays there are different possibilities but we will only focus on the dimuon decay. [1]  $\P$ 



Feynman-diagram-of-the-decay-of-the-Z-boson-into-two-muons.¶

# Using spreadsheets to Analyse CMS Data in the classroom



 $\mathbf{O}$ 

## Step 1: How to get the data







#### Files

MuRun2010B\_9.csv

MuRun2010B\_8.csv

MuRun2010B\_5.csv

MuRun2010B\_4.csv

MuRun2010B.csv

| MuRun2010B_3.csv | Size: 1.5 MB | Download |
|------------------|--------------|----------|
| MuRun2010B_2.csv | Size: 1.5 MB | Download |
| MuRun2010B_1.csv | Size: 1.5 MB | Download |
| MuRun2010B_0.csv | Size: 1.5 MB | Download |
| MuRun2010B_7.csv | Size: 1.5 MB | Download |
| MuRun2010B_6.csv | Size: 1.5 MB | Download |

Size: 1.5 MB

Size: 1.5 MB

Size: 1.5 MB

Size: 1.5 MB

Size: 15.2 MB

# Step 2: Doodle around with physics



: OA = JOC'+CB'+BA'

# Step 3: Play around with the data

|    |         | -    | 1.0 | The same of | a.  | $\alpha$ a | <u>a</u> = |      | P = 1    |        |        |       |           | 10  | 0.0   | T ?     | -00       | -   |           | F - 🔲 -   | -       | -       |
|----|---------|------|-----|-------------|-----|------------|------------|------|----------|--------|--------|-------|-----------|-----|-------|---------|-----------|-----|-----------|-----------|---------|---------|
| 1  |         |      | fix | Σ:          | =   | Run        |            |      |          |        |        |       |           |     |       |         |           |     |           |           |         |         |
|    |         | C    | Т   | D           |     | E          | F          |      | G        | Н      | 1      |       | J         | K   | - L   | М       | N         |     | 0         | P         | Q       | R       |
|    | Event   | Type | 1 E | 1           | pxl |            | py1        | р    | 21       | pt1    | otal   | ph    | i1        | Q1  | Type2 | E2      | px2       | py2 | 200000    | pæ2       | pt2 e   | ta2     |
|    | 9083079 | 2 G  |     | 19,1712     |     | 3,8171     | 3 9,04     | 323  | -16,4673 | 9,8158 | 3 -1,  | 28942 | 1,17139   | 1   | T     | 5,43984 | -0,362592 |     | 2,62699   | -4,74849  | 2,65189 | -1,345  |
| 3  | 9086222 | 5 G  |     | 12,9435     |     | 5,1257     | 9 -3,96    | 369  | -11,1973 | 6,491  | 8 4,   | 31335 | -0,660674 | -1  | G     | 11,8636 | 4,78984   |     | -6,26222  | -8,86434  | 7,88403 | -0,9666 |
| 4  | 9064485 | 0 G  |     | 12,3999     |     | -0,84974   | 2 9,4      | 1011 | 8,04015  | 9,4394 | 3 0,   | 77258 | 1,66094   | 1   | G     | 8,55532 | -4,85155  |     | 6,97696   | -0,983229 | 8,49797 | -0,1154 |
| 6  | 9067859 | LG.  |     | 17,8133     |     | -1,9595    | 9 2,80     | 631  | 17,4811  | 3,4219 | 6 2    | 3335  | 2,18053   | - 1 | G     | 9,42174 | 4,36523   | )   | 0,168017  | 8,34713   | 4,36846 | 1,4     |
| 6  | 9068669 | 0.G  |     | 7,95664     |     | 7,09       | 7 -1,30    | 546  | 3,34613  | 7,2180 | 6 0,4  | 48399 | -0,183411 | 1   | T     | 5,44467 | -1,34176  |     | 1,38647   | 5,09025   | 1,92941 | 1,697   |
|    | 9069245 | 1.G  |     | 11,3415     |     | 0,81644    | 5 4,98     | 596  | 10,1534  | 5,0523 | 6 1,   | 44794 | 1,40849   | 1   | G     | 7,86621 | 0,602823  | 1   | 5,05381   | 5,99681   | 5,08964 | 1,001   |
| 8  | 9072550 | ) G  |     | 18,1293     |     | 9,7796     | 3 7,17     | 648  | 13,4728  | 12,130 | 3 0,9  | 57512 | 0,633065  | -4  | T     | 4,48798 | -1,39990  | L   | 0,374027  | 4,24621   | 1,44902 | 1,796   |
| )  | 9074962 | 0 G  |     | 15,8762     |     | 1,592      | 8 3,00     | 336  | 15,5057  | 3,4084 | 2 2    | 21997 | 1,08455   | -1  | G     | 7,74866 | -1,91338  | 3   | 2,42923   | 7,10411   | 3,09228 | 1,560   |
| 0  | 9080835 | 6.G  |     | 8,99267     |     | -1,644     | 4 -4,20    | 646  | 7,77551  | 4,5164 | 8 1,   | 31172 | -1,94345  | - 1 | G     | 6,45454 | 0,860784  |     | -4,41161  | 4,63105   | 4,4948  | 0,9026  |
| 1  | 9085188 | (G   |     | 10,4199     |     | -3,6190    | 3 -2,36    | 646  | -9,47933 | 4,3240 | 6 4.   | 52644 | -2,56249  | 1   | G     | 25,6473 | 11,7951   | L   | -17,8219  | 14,1785   | 21,3716 | 0,6224  |
| 2  | 9065367 | ri G |     | 10,679      |     | 2,0543     | 8 0,496    | 999  | 10,4671  | 2,1143 | 5 2,   | 30268 | 0,23874   | -1  | G     | 9,74014 | -6,3448   | 3   | -7,15544  | 1,84454   | 9,56331 | 0.19    |
| 3  | 9073324 | 5 G  |     | 5,94088     |     | 1,8952     | 6 0,200    | 622  | 5,6259   | 1,9058 | 4 1,   | 80313 | 0,105409  | 1   | T     | 5,51003 | -4,81074  |     | -2,4305   | 1,13959   | 5,38986 | 0,2098  |
| 4  | 9077962 | 2 G  |     | 18,3797     |     | 2,2491     | 4 3,19     | 848  | 17,9586  | 3,910  | 1 2    | 2293  | 0,957933  | -1  | G     | 8,11221 | -3,1851   | L   | 2,77883   | 6,92316   | 4,22691 | 1,268   |
| 5  | 9078847 | l G  |     | 13,2996     |     | 1,3326     | 9 13.0     | 342  | -2,28086 | 13,102 | 1 -0.1 | 73215 | 1,4689    | 1   | T     | 6,65812 | 0.323117  |     | 1,82718   | -6,39346  | 1,85553 | -1,950  |
| 6  | 9091666 | 4 G  |     | 10,6149     |     | 5,4851     | 5 8,64     | 685  | -2,79476 | 10,239 | 9 -0,  | 26965 | 1,0055    | 1   | G     | 24,3322 | -14,8133  | 3   | -9,85434  | -16,5982  | 17,7916 | -0,833  |
| 7  | 9096920 | ) G  |     | 6,21069     |     | 0,40273    | 2 -3,00    | 414  | -5,38038 | 3,1004 | 1 -1,  | 31862 | -1,44053  | -1  | G     | 12,0373 | -8,90423  | 3   | -7,12958  | 3,84303   | 11,4068 | 0,3308  |
| 8  | 9106737 | 5 G  |     | 14,0768     |     | 1,6408     | 4 3,77     | 976  | 13,4594  | 4,1205 | 8 1    | 89949 | 1,16123   | 1   | G     | 7,65029 | -6,28796  |     | -4,12087  | 1,41259   | 7,51801 | 0,1868  |
| 9  | 9102775 | 3 G  |     | 9,2808      |     | -1,9496    | 6 -7,25    | 532  | 5,44805  | 7,5127 | 1 0,6  | 73171 | -1,83332  | 1   | T     | 4,6726  | 1,1790    | L   | 1,28327   | 4,33416   | 1,74271 | 1,64    |
| 0  | 9091633 | 1 G  |     | 8,4722      |     | 1,9760.    | 1 7,80     | 587  | 2,57256  | 8,0714 | 9 0,3  | 13559 | 1,32347   | -1  | G     | 4,12802 | -3,06666  |     | -2,55515  | -1,04698  | 3,99164 | -0,2593 |
| 1  | 9107905 | LG   |     | 11,7437     |     | -10,820    | 3 2,95     | 501  | 3,47723  |        |        | 05245 | 2,875     | -41 | T     | 3,67172 | 0,830242  |     | -0,966505 | -3,44194  | 1,27414 | -1,719  |
| 2  | 9094203 | S G  |     | 41,4068     |     | 4,0964     | 7 10.5     | 996  | 39,7081  | 11,737 | 6 1    | 93306 | 1,21429   | -1  | T     | 2,88176 | 0,936893  | 3   | 0.121513  | 2,72045   | 0.94474 | 1,779   |
| 3  | 9098510 | G    |     | 10,618      |     | -4,338     | 7 -0.754   | 251  | -9,66113 | 4,4037 | 7 -1.  | 52711 | -2,96947  | 1   | G     | 8,10394 | 2,39190   |     | 3,40745   | -6,95201  | 4,1632  | -1,285  |
| 4  | 9116821 | 3 G  |     | 167,782     |     | 39,009     | 1 -30,5    | 509  | 160,299  | 49,548 | 6 1    | 89031 | -0.664396 | - 1 | T     | 3,14872 | -0,426839 |     | -1,08415  | 2,92331   | 1,16515 | 1,650   |
| 5  | 9092839 |      |     | 14,9175     |     | -3,0758    |            |      | 14,3442  | 4,0946 |        | 96659 | 2,42065   | -1  | G     | 11.8474 | 5.45980   |     | -0.919517 | 10,4736   | 5.5367  | 1,394   |
| 6  | 9095144 |      |     | 22,482      |     | 21,686.    |            |      | -2,67353 |        |        | 19485 | 0,239285  | -1  |       | 5,10747 | -1,46378  |     | -0.116118 | -4,8907   | 1,46838 | -1,918  |
| 7  | 9099064 | s G  | 1 3 | 9,40165     |     | -1,5381    | 2 -1.00    | 688  | -9.21846 | 1,8438 | 8 -2   | 31234 | -2,55744  | 1   | G     | 33,0052 | 5,01750   |     | -9,95044  | -31,0668  | 11,1439 | -1,749  |
| 28 | 9112916 |      |     | 45.8122     |     | 5,66640    |            |      | -43.1698 |        |        | 75839 | -1.19228  | -1  | T     | 8.07748 | 0.120785  |     | -1.55773  | -7.92423  | 1.56241 | -2.326  |
| 39 | 9125503 |      |     | 13,0397     |     | 0,876390   |            | 305  | -11,9457 |        |        | 56443 | 1,40234   |     |       | 13,6012 | -2,63238  |     | 7,81677   | -10,8144  |         | -1,085  |

|      | Α     |        | В       | С       | D       | E       |       | F         |     | G       |        | Н        | I        |      | J    |       | K                 |
|------|-------|--------|---------|---------|---------|---------|-------|-----------|-----|---------|--------|----------|----------|------|------|-------|-------------------|
| 1    | Run   | Event  | t       | Type1   | E1      | px1     |       | py1       |     | pz1     |        | pt1      | eta1     | phi1 |      |       | Q1                |
| 2    | 14643 | 36 9   | 0830792 | G       | 19,1712 | 3,      | 81713 | 9,04      | 323 | -1      | 6,4673 | 9,81583  | -1,28942 | 2    | 1,   | 17139 |                   |
| 3    | 14643 | 36 9   | 0862225 | G       | 12,9435 | 5,      | 12579 | -3,98     | 369 | -1      | 1,1973 | 6,4918   | -1,31335 | 5    | -0,6 | 60674 |                   |
| 4    | 14643 | 36 9   | 0644850 | G       | 12,3999 | -0,8    | 49742 | 9,4       | 011 | 8       | ,04015 | 9,43943  | 0,77258  | 3    | 1,   | 66094 | 1                 |
| 5    | 14643 | 36 9   | 0678594 | G       | 17,8132 | -1,     | 95959 | 2,80      | 531 | 1       | 7,4811 | 3,42195  | 2,3335   | 5    | 2,   | 18053 | 1<br>1<br>1<br>-1 |
| 6    | 1464  | 36 9   | 0686690 | G       | 7,95664 |         | 7,097 | -1,31     | 646 | 3       | ,34613 | 7,21806  | 0,448399 | )    | -0,1 | 83411 | 1                 |
| 7    | 1464  | 36 9   | 0692451 | G       | 11,3415 | 0,8     | 16445 | 4,98      | 596 | 1       | 0,1534 | 5,05236  | 1,44794  | 1    | 1,4  | 40849 | 1                 |
| 8    | 14643 | 36 9   | 0725500 | G       | 18,1293 | 9,      | 77963 | 7,17      | 648 | 1       | 3,4728 | 12,1303  | 0,957512 | 2    | 0,6  | 33065 | -1                |
|      |       |        |         |         |         |         |       |           |     |         |        |          |          |      |      |       |                   |
| L    |       | М      |         | N       |         | 0       |       | Р         |     | Q       |        | R        | S        |      | Т    | U     |                   |
| Туре | 2 E2  |        | px2     |         | py2     |         | pz2   |           | pt2 |         | eta2   |          | phi2     | ζ    | 22   | М     |                   |
| T    |       | ,43984 | -0,     | 362592  |         | 2,62699 |       | -4,74849  | 2   | 2,65189 |        | -1,34587 | 1,707    | 796  | 1    | 2,73  | 205               |
| G    | 1     | 1,8636 | -       | 4,78984 | 1 -     | 6,26222 |       | -8,86434  | 7   | 7,88403 | -      | 0,966622 | -0,9178  | 341  | 1    | 3,10  | 256               |
| G    | 8     | ,55532 | -4      | 4,85155 | 5       | 6,97696 |       | -0,983229 | 8   | 3,49797 | -      | 0,115445 | 2,178    | 341  | -1   | 9,41  | 1149              |
| G    | 9     | 42174  | -       | 4,36523 | 3 0     | 168017  |       | 8,34713   | _   | 4,36846 |        | 1,403    | 0,03847  | 708  | 1    | 7,74  | 1702              |
| Т    | 5     | ,44467 | -:      | 1,34176 | 6       | 1,38647 |       | 5,09025   | 1   | 1,92941 |        | 1,69738  | 2,339    | 981  | -1   | 8,67  | 727               |
| G    | 7     | ,86621 | 0,      | 602823  | 3       | 5,05381 |       | 5,99681   | į   | 5,08964 |        | 1,00197  | 1,452    | 208  | -1   | 2,30  | 104               |
| Т    | 4     | ,48788 | -:      | 1,39991 | L 0     | 374027  |       | 4,24621   | 1   | 1,44902 |        | 1,79621  | 2,880    | 051  | 1    | 8,38  | 705               |
|      |       |        |         |         | -       |         |       |           |     |         |        |          |          | -    |      |       |                   |
|      |       |        |         |         |         |         |       |           |     |         |        |          |          |      |      |       |                   |
|      |       |        |         |         |         |         |       |           |     |         |        |          |          |      |      |       |                   |
| i    |       |        |         |         |         |         |       |           |     |         |        |          |          |      |      |       |                   |

|       |        |        | Glossanyforth                                                                                                                                                                                                                   |          |       |        |      |
|-------|--------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|--------|------|
|       | Α      | В      | Glossary for the columns:                                                                                                                                                                                                       |          | J     |        | K    |
| 1     | Run    | Event  | Run: The data collected by CMS in a given year are divided into sets called "Runs". For example Run is a data collection period with a variable length of time  Event: One proton - proton collision  Type1: G = global muon T. | ŗ        | hi1   |        | Q1   |
| 2     | 146436 | 908    | Event: One protection period with a variable length atter being from the second a sexample.                                                                                                                                     | e, the 2 | 1     | ,17139 |      |
| 3     | 146436 | 908    | <ul> <li>Event: One proton - proton collision</li> <li>Type1: G = global much. T.</li> </ul>                                                                                                                                    | year. 5  | -0,   | 660674 | -1   |
| 4     | 146436 | 906    | E1: energy of museum, 1 = tracker muon (observed                                                                                                                                                                                | 8        |       | ,66094 | 1    |
| 5     | 146436 | 906    | px1: momentumin the direction of the x-axis of muon number 1 px1: momentumin the direction of the y-axis of muon number 1 px1: momentumin the direction of the y-axis of muon number 1                                          | 35       | 2     | ,18053 |      |
| 6     | 146436 | 90     | py1: momentumin the direction of the x-axis of muon number 1 pz1: momentumin the direction of the y-axis of muon number 1 pt1: transverse many of the z-axis of muon number 1                                                   | 99       | -0,   | 183411 | 1    |
| 7     | 146436 |        | pz1: momentumin the direction of the y-axis of muon number 1 pt1: transverse momentum of muon number 1 eta1 = in experimental particle physics.                                                                                 | 94       | 1     | ,40849 | 1    |
| 8     | 146436 | 90     |                                                                                                                                                                                                                                 | 12       | 0,    | 633065 | -1   |
|       |        |        | eta1 = in experimental particle physics, pseudorapidity $n$ , is a commonly used spatial coordinate describing the angle of a particle relative to the beam axis. It is defined as                                              |          |       |        |      |
|       | N      | Λ.     | $\theta$ axis. It is defined as                                                                                                                                                                                                 |          | Т     | U      |      |
| Tyrno |        | :      | $\eta = -\ln[\tan(\frac{\theta}{2})]$ Q1: charge of muon number 1  Type2: G = global muon, T = tracker muon (above x-axis in the x-y-plane.                                                                                     |          | Q2    | М      |      |
| Туре  | .Z LZ  |        | Typo3: O muon number 1 measured from the positive x-axis in the                                                                                                                                                                 | 7070     |       |        |      |
| T     | 5,4    | 3984   | F2: energy of muon, T = tracker muon (change)                                                                                                                                                                                   | 7079     | 96 1  | 2,73   | 3205 |
| G     | 11,    | 8636 • | Type2: G = global muon, T = tracker muon (observed only in tracker)  px2: momentumin the discrete                                                                                                                               | 1784     | 11 1  | 3,10   | 256  |
| G     | 8,5    | 5537   | pv2: momentum: interestion of the x-axis of muce                                                                                                                                                                                | 1784     | 11 -1 | 9,41   | 1149 |
| G     |        | 217    |                                                                                                                                                                                                                                 | 8470     | 08 1  | 7,74   | 1702 |
| Т     |        | 446 •  | eta2 = in overse momentum of muon number 2                                                                                                                                                                                      | ,3398    | 31 -1 |        |      |
| G     | -      | 662    | eta2 = in experimental particle physics, pseudorapidity $n_i$ is a commonly used spatial coordinate describing the angle of a particle relative to the beam axis. It is defined as                                              | .,4520   | _     |        |      |
| T     | 4,4    |        | s a commonly used spatial coordinate                                                                                                                                                                                            | •        | _     |        |      |
| 1     | 4,4    |        | $\eta = -\ln[\tan(-1)]$                                                                                                                                                                                                         | .,8805   | 1     | 0,30   | CON  |
|       |        | •      | phi2 = is the azimuthal angle, $\varphi$ , and is measured from the positive x-axis in the x-y-plane.<br>Invariant mass                                                                                                         |          |       |        |      |
|       |        | :      | 22: charge of muon number 2                                                                                                                                                                                                     |          |       |        |      |
|       |        | •      | M: Invariant mass                                                                                                                                                                                                               |          |       |        |      |
| 4     |        |        | Mad =                                                                                                                                                                                                                           |          |       |        |      |

Note: Energy and momenta are

## Step 4: Overcome cultural differences...

```
12
.9
12
43
,9
5
43
5
```

Step 5: Get to work

W e c a n

| Vector sum Px | Vector sum Py | Vector sum P√a                        | Resultant momentum | Invariant mass |
|---------------|---------------|---------------------------------------|--------------------|----------------|
| 3,454538      | 11,67022      | -21,21979                             | 24,4588963971      | 2,7323390924   |
| 9,91563       | -10,24591     |                                       | •                  | 3,1023250789   |
| -5,701292     | 16,37806      | 7,056921                              | 18,7228660689      | 9,4114574544   |
| 2,40564       | 2,973327      | 25,82823                              | 26,1098686743      | 7,7470455409   |
| 5,75524       | 0,07001       | 8,43 <b>6</b> 38                      | 10,2127467589      | 8,677264163    |
| 1,419268      | 10,03977      | 16,15 <b>0</b> 21                     | 19,0693625052      | 2,3012034007   |
| 8,37972       | 7,550507      | · · · · · · · · · · · · · · · · · · · |                    | 8,3871122883   |
| -0,32058      | 5,44259       | 22,60981                              | 23,2578602988      | 4,1480048625   |

sk ill s to

## End result

5 ~





Invariant mass [GeV]

## Doing the same thing with SCILAB

#### Students will:

- create histograms of invariant mass vs # of events using Excel and SCILAB (the same way the Higgs Boson was discovered by CMS and ATLAS experiments at LHC)
- calculate invariant mass using relativistic mechanics (included in the IB Physics option: Relativity)
- use real data from LHC collisions collected by the CMS facility (Covers IB ICT requirement)
- vector sum momentum and calculate a resultant vector



### What is SCILAB?

#### Like MATLAB, just free

- less libraries and
- smaller data sets





# **SCILAB Script**

Approximately 30 lines of code, 4 parts:

- Importing data from .csv
- Defining variables
- Processing Data (Calc Mass)
- Plot Histogram

Students learn:

- how to import .csv files
- process data/run calculations

```
DiMuonHistogram.sce (C:\Users\Enrique\Desktop\OpenData\DiMuonHistogra...
File Edit Format Options Window Execute ?
DiMuonHistogram.sce 30
2 opendata = read csv('MuRun2010B.csv')
4 E1=opendata(:,1)
 5 E1=strtod(E1)
 6 E2=opendata(:,5)
7 E2=strtod(E2)
g px1=opendata(:,2)
9 px1=strtod(px1)
10 py1=opendata(:,3)
11 py1=strtod(py1)
12 pz1=opendata(:,4)
13 pz1=strtod(pz1)
14 px2=opendata (:, 6)
15 px2=strtod(px2)
16 py2=opendata(:,7)
17 py2=strtod (py2)
18 pz2=opendata(:,8)
19 pz2=strtod(pz2)
21 opendata = []
24 pxsum= px1+px2
25 pysum= py1+py2
26 pzsum= pz1+pz2
27 presultant=(pxsum.^2+pysum.^2+pzsum.^2).^0.5
29 mass=((E1+E2).^2-presultant.^2).^.5
   [cf, ind] = histplot(100, mass, normalization=%F);
32
```



 How much data do we need to be sure there is a statistical peak?
 (Introduction to CMS by Piotr Traczyk)

Compare and Contrast EXCEL and SCILAB?

Advantages of each?

Where did the data come from?

How did we get it? Cost?



# What are Jupyter Notebooks?

a web application

- create and share documents that contain live code, equations, visualizations.

#### Uses:

- statistical modeling
- numerical simulation
- machine learning



- 3 Easy Steps

Step 1

Create Github Account



Step 2:

#### <u>Upload Files</u>

-Use shared data files

-Use shared notebook

files



#### Step 3:

- goto mybinder.org

and build a repository

- go get Coffee



#### Students can:

- use notebooks
- no login time
- just open a link



## Important links

Google drive link with all the relevant documents:

https://drive.google.com/folderview? id=0B3PRHI4\_4xpmZU53a2NHOTg0QjQ&usp=sharing

Mybinder

http://tinyurl.com/gohhfl5

# Open Data!

