Отчёт по лабораторной работе №6

дисциплина: Математическое моделирование

Быстров Глеб Андреевич

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	11
5	Выводы	18
Список литературы		19

Список иллюстраций

3.1	Закон	8
3.2	Разность за единицу времени	8
3.3	Скорость изменения выздоравливающих особей	8
3.4	Динамика изменения числа людей в каждой из трех групп для пер-	
	вого случая	10
4.1	Код программы на OpenModelica для первого случая	11
4.2	График для первого случая (OpenModelica)	12
4.3	Код программы на Julia	12
4.4	Код программы на Julia	13
4.5	Код программы на Julia	13
4.6	График для первого случая (Julia)	14
4.7	Код программы на OpenModelica для второго случая	14
4.8	График для второго случая (OpenModelica)	15
4.9	Код программы на Julia	15
4.10	Код программы на Julia	16
4.11	Код программы на Julia	16
4.12	График для второго случая (Julia)	17
	Файлы на GitHub	17

Список таблиц

1 Цель работы

В данной лабораторной работе мне будет необходимо изучить построение математических моделей и рассмотреть простейшую модель эпидемии.

2 Задание

Вариант 68

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=10 060) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=61, А число здоровых людей с иммунитетом к болезни R(0)=23. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0) [1].

Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

1. если

$$I(0) \leq I^*$$

2. если

$$I(0) > I^*$$

3 Теоретическое введение

Задача об эпидемии

Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения

 I^*

, считаем, что все больные изолированы и не заражают здоровых. Когда

$$I(t) > I^*$$

, тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону: (рис. 3.1) [1].

$$\frac{dS}{dt} = \begin{cases} -\alpha S, \text{ если } I(t) > I^* \\ 0, \text{ если } I(t) \le I^* \end{cases}$$
 (1)

Рис. 3.1: Закон

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится, т.е.: (рис. 3.2).

$$\frac{dI}{dt} = \begin{cases} \alpha S - \beta I, \text{ если } I(t) > I^* \\ -\beta I, \text{ если } I(t) \le I^* \end{cases}$$
 (2)

Рис. 3.2: Разность за единицу времени

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни) (рис. 3.3) [2].

$$\frac{dR}{dt} = \beta I \tag{3}$$

Рис. 3.3: Скорость изменения выздоравливающих особей

Постоянные пропорциональности

$$\alpha, \beta$$

- это коэффициенты заболеваемости и выздоровления соответственно. Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия .Считаем, что на начало эпидемии в момент

времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая:

1.

$$I(0) \le I^*$$

2.

$$I(0) > I^*$$

Постановка задачи

Придумайте свой пример задачи об эпидемии, задайте начальные условия и коэффициенты пропорциональности. Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

1. если

$$I(0) \leq I^*$$

2. если

$$I(0) > I^*$$

Пример

На одном небольшом острове вспыхнула эпидемия свинки. Известно, что из всех проживающих на острове (N=2000) в момент начала эпидемии (t=0) число заболевших свинкой людей (являющихся распространителями инфекции) I(0)=100, а число здоровых людей с иммунитетом к болезни R(0)=0. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0). Считаем, что данный случай соответствует случаю, когда [2]

$$I(0) \leq I^*$$

Тогда получим следующую динамику изменения числа людей из каждой группы (рис. 3.4):

Рис. 3.4: Динамика изменения числа людей в каждой из трех групп для первого случая

4 Выполнение лабораторной работы

1. Сделаем программную реализацию на языке OpenModelica для первого случая (рис. 4.1).

```
model Lab6_1var
constant Integer N = 10060;
constant Integer I_0 = 61;
constant Integer R_0 = 23;
constant Integer S_0 = N-I_0-R_0;
constant Real alpha = 0.01;
constant Real beta = 0.02;
Real i(start=I_0);
Real r(start=R_0);
Real s(start=S_0);
Real t = time;
equation
der(i) = -beta*i;
der(r) = beta*i;
der(s) = 0;
annotation(experiment(StartTime = 0, StopTime = 90.0));
end Lab6_1var;
```

Рис. 4.1: Код программы на OpenModelica для первого случая

2. График изменения числа людей в каждой из трех групп для первого случая (рис. 4.2).

Рис. 4.2: График для первого случая (OpenModelica)

3. Сделаем программную реализацию на языке Julia (рис. 4.3 - 4.5).

Рис. 4.3: Код программы на Julia

```
| Solution | Solution
```

Рис. 4.4: Код программы на Julia

Рис. 4.5: Код программы на Julia

4. График изменения числа людей в каждой из трех групп для первого случая (рис. 4.6).

Рис. 4.6: График для первого случая (Julia)

5. Сделаем программную реализацию на языке OpenModelica для второго случая (рис. 4.7).

```
model Lab6 2var
     constant Integer N = 10060;
constant Integer I_0 = 61;
     constant Integer R_0 = 23;
     constant Integer S_0 = N-I_0-R_0;
     constant Real alpha = 0.01;
      constant Real beta = 0.02;
      Real i(start=I_0);
      Real r(start=R_0);
      Real s(start=S 0);
     Real t = time;
   equation
      der(i)= alpha*s-beta*i;
     der(r) = beta*i;
14
     der(s) = -alpha*s;
      annotation(experiment(StartTime = 0, StopTime = 90.0));
17 end Lab6_2var;
```

Рис. 4.7: Код программы на OpenModelica для второго случая

6. График изменения числа людей в каждой из трех групп для второго случая (рис. 4.8).

Рис. 4.8: График для второго случая (OpenModelica)

7. Сделаем программную реализацию на языке Julia (рис. 4.9 - 4.11).

Рис. 4.9: Код программы на Julia

```
for u in sol. u

1, 7, 2 = u

1, 1, 2 = u

1, 2, 2 = u

1, 2, 2 = u

1, 2, 3, 3 = u

1, 4 = u

1, 5 =
```

Рис. 4.10: Код программы на Julia

```
66 | )
67 plot!(
68 plt,
69 sol.t,
70 color=:pink,
71 color=:pink,
72 xlabel-"Brece",
73 ylabel-"Macchemocra",
74 label-"Becompone-vinad"
75 )
76
77 savefig(plt, "Lab6_ver2_EystrovGleb")
78
```

Рис. 4.11: Код программы на Julia

8. График изменения числа людей в каждой из трех групп для второго случая (рис. ??).

Рис. 4.12: График для второго случая (Julia)

9. Отправил файлы на сервер, используя команды в Windows PowerShell (рис. 4.13) [3].

Рис. 4.13: Файлы на GitHub

5 Выводы

В данной лабораторной работе мне успешно удалось изучить построение математических моделей и рассмотреть простейшую модель эпидемии.

Список литературы

- 1. Задания к лабораторной работе №6 (по вариантам) [Электронный ресурс]. 2023. URL: https://esystem.rudn.ru/pluginfile.php/1971738/mod_resource/content/2/%D0%97%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B5%20%D0%BA%20%D0%BB%D0%B0%D0%B1%D0%BE%D1%80%D0%B0%D0%B0%D0%B1%D0%BE%D1%80%D0%BD%D0%BE%D0%B9%20%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%B5%20%E2%84%96%207%20%283%29.pdf.
- 2. Лабораторная работа №6 [Электронный ресурс]. 2023. URL: https://esystem.rudn.ru/pluginfile.php/1971737/mod_resource/content/2/%D0%9B%D0%B0%D0%B1%D0%BE%D1%80%D0%B0%D1%82%D0%BE%D1%80%D0%BD%D0%B0%D0%BE%D1%82%D0%BD%D0%B0%D0%B1%D0%BE%D1%82%D0%B0%20%E2%84%96%205.pdf.
- 3. Git [Электронный ресурс]. 2023. URL: https://ru.wikipedia.org/wiki/Git.