# Locality Sensitive Hashing by Spark

Alain Rodriguez, Fraud Platform, Uber Kelvin Chu, Hadoop Platform, Uber



# Overlapping Routes

Finding similar trips in a city

### The problem

Detect trips with a high degree of overlap

We are interested in detecting trips that have various degrees of overlap.

- Large number of trips
- Noisy, inconsistent GPS data
- Not looking for exact matches
- Directionality is important



### Input Data

Millions of trips scattered over time and space

GPS traces are represented as an ordered list of (latitude,longitude,time) tuples.

- Coordinates are reals and have noise
- Traces can be dense or sparse, yet overlapping
- Large time and geographic search space

```
"latitude":25.7613453844,
"epoch":1446577692,
"longitude":-80.197244976
"latitude":25.7613489535,
"epoch":1446577693,
"longitude":-80.1972450862
```

### Google S2 Cells

Efficient geo hashing





Divides the world into consistently sized regions.

Area segments can be had of different sizes

#### Jaccard index

Set similarity coefficient

The Jaccard index can be used as a measure of set similarity

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

A = {a, b, c}, B = {b, c, d}, C = {c, d, e}
$$J(A, A) = 1.0$$

$$J(A, B) = 0.5$$

$$J(A, C) = 0.2$$

#### Heuristic

Densify sparse traces



#### Sparse and dense traces should be matched

Different devices generate varying data densities. Two segments that start and end at the same location should be detected as overlapping.

#### Ensure points are at most X distance apart

Densification ensures that continuous segments are independently overlapping.

#### Heuristic

#### Discretize route segments

#### Discretize segments

Break down routes into equal size area segments; this eliminates route noise. Segment size determines matching sensitivity.

#### Remove contiguous duplicates

Remove noise resulting from a vehicle stopped at a light or a very chatty device.



#### Heuristic

Shingle contiguous area segments



#### Directionality matters

Two overlapping trips with opposite directions should not be matched.

#### Shingling captures directionality

Combining contiguous segments captures the sequence of moves from one segment to another.

# Set overlap problem

Find traces that have the desired level of common shingles



#### N^2 takes forever

LSH to the rescue

- Sifting through a month's worth of trips for a city takes forever with the N^2 approach
- Locality-Sensitive Hashing allows us to find most matches quickly. Spark provides the perfect engine.



# Locality-Sensitive Hashing (LSH)

Quick Introduction

# Problem - Near Neighbors Search



## Problem - Clustering



- Set of Points P
- Distance Function D

### Curse of Dimensionality

1-Dimension e.g. single integer

Q: 7 Distance: 3

A Solution: Binary Tree e.g. Return 9, 4, 8, ...

2-Dimension e.g. GPS point

Q: (12.73, 61.45) Distance: 10

A Solution: Quadtree, R-tree, etc

### Curse of Dimensionality

How about very high dimension?

A trip often has thousands of shingles



Very hard problem

## Approximate Solution

#### Trip T<sub>1</sub> & Trip T<sub>2</sub> are similar



 $D(T_1, T_2)$  is small



With high probability  $T_1$  and  $T_2$  are hashed into the same bucket.

# Approximate Solution

#### Trip T<sub>1</sub> & Trip T<sub>2</sub> are not similar



$$D(T_1, T_2)$$
 is large  $\int$ 

With high probability  $T_1$  and  $T_2$  are hashed into the different buckets.

Some distance functions have good companions of hash functions.

For Jaccard distance, it is MinHash function.

MinHash(S) = min  $\{ h(x) \text{ for all } x \text{ in the set S} \}$ 

h(x) is hash function such as (ax + b) % m where a & b are some *good* constants and m is the number of hash bins

#### Example:

```
S = \{26, 88, 109\}

h(x) = (2x + 7) \% 8

MinHash(S) = min \{3, 7, 1\} = 1
```

# Some Other Examples

| Distance | Hash Function                                    |
|----------|--------------------------------------------------|
| Jaccard  | MinHash                                          |
| Hamming  | i-th value of vector x                           |
| Cosine   | Sign of the dot product of x and a random vector |

How to increase and control the probability?

It turns out the solution is very intuitive.

### Use Multiple Hash



Both h<sub>1</sub> and h<sub>2</sub> are MinHash, but with different parameters (e.g. a & b)

# Our Approach of LSH on Spark

### Shuffle Keys



- RDD[Trip]
- The hash values are shuffle keys
- h<sub>1</sub> and h<sub>2</sub> have non-overlapping key ranges
- groupByKey()

### Post Processing

Bucket<sub>1</sub> T<sub>1</sub>, T<sub>2</sub>

- If T<sub>1</sub> and T<sub>2</sub> are hashed into the same bucket, it's likely that they are similar.
- Compute the Jaccard distance.

### Approach 2



- Same pair of trips are matched in both h<sub>1</sub> and h<sub>2</sub> buckets
- Use one more shuffle to dedup
- Network vs Distance Computation

### Approach 3

- Don't send the actual trip vector in the LSH and Dedup shuffles
- Send only the trip ID
- After dedup, join back with the trip objects with one more shuffle
  - Then compute the Jaccard distance of each pair of matched trips.
- When the trip object is large, Approach 3 saves a lot of network usage.

#### How to Generate Thousands of Hash Functions

- Naive approach
  - Generate thousands tuples of (a, b, m)
- Cache friendly approach CPU register/L1/L2
  - Generate only two hash functions

$$\circ$$
 h<sub>1</sub>(x) = (a<sub>1</sub>x + b<sub>1</sub>) % m<sub>1</sub>

$$h_2(x) = (a_2x + b_2) \% m_2$$

$$h_i(x) = h_1(x) + i * h_2(x)$$
 i from 1 to number of hash functions

#### Other Features

#### Amplification

- Improve the probabilities
- Reduce computation, memory and network used in final post-processing
- More hashing (usually insignificant compared to the cost in final post-processing)

#### Near Neighbors Search

Used in information retrieval, instances based machine learning

### Other Applications of LSH

- Search for top K similar items
  - Documents, images, time-series, etc
- Cluster similar documents
  - Similar news articles, mirror web pages, etc
- Products recommendation
  - Collaborative filtering

#### Future Work

- Migrate to Spark ML API
  - DataFrame as first class citizen
  - Integrate it into Spark
- Low latency inserts with Spark Streaming
  - Avoid re-hashing when new objects are streaming in

# Thank you

UBER