WEEK 9 ASSIGNMENT

-BY PRATHYUSHA RAVICHANDRAN

QUESTION 1

Use a weather forecast website, and utilize the psychometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapour in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise.

ANSWER:

	1:00 pm	14:00	4:00 pm	18:00	8:00 pm	21:00	22:00
	LightCloud	LightCloud	PartlyCloud	LightCloud	₩ Sun	₩ Sun	Sun
Effective temperature	9°C	10 ° C	8°C	6°C	4°C	2°C	2°C
Perceived temperature	7°C	10 ° C	6°C	4°C	2°C	0°C	0 ° C
Rainfall	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm
Humidity	67 %	65 %	69 %	70 %	75 %	83 %	87 %
Atmospheric pressure	1025 hPa	1025 hPa	1025 hPa	1026 hPa	1027 hPa	1027 hPa	1028 hPa
Wind intensity	15 km / h	14 km / h	9 km / h	9 km / h	7 km / h	8 km / h	8 km / h
Wind direction	←	←	←	\leftarrow	5	5	5
	IS	IS	IS	IS	SELF	SELF	SELF
Probability of fog	0 %	0 %	0 %	0 %	0 %	0 %	0 %
Dew point	3 ° C	3 ° C	3 ° C	1 ° C	-1 ° C	0 ° C	-1 ° C
Clouds	21 %	13 %	42 %	15 %	2 %	3 %	3 %
Low clouds	11 %	7 %	42 %	15 %	2 %	3 %	3 %
Medium clouds	18 %	12 %	2 %	0 %	1 %	0 %	0 %
ligh clouds	0 %	0 %	0 %	0 %	0 %	0 %	0 %
					``		

a) Absolute Humidity

From the chart, taking dry bulb temperature as 4°C and relative Humidity as 75%, the specific humidity is 0.0037.

By formula Method

 $\Phi = m_v/m_g$

```
\Phi = m_v/m_g
   = P_v/P_g (P_v = P_{sat} @4^{\circ}C = 0.8132 \text{ Kpa})
Partial pressure of water vapour
\Phi = P_v/P_g
P_v = \Phi \times P_g
P_v = 0.75 \times 0.8132 = 0.6099 \text{ Kpa}
P_a = P - P_v
P_a = 102.7 \text{kPa} - 0.6099 = 102.0901 \text{ kPa}
\omega = 0.622(P_v/P_a)
\omega=0.622 x 0.6099/102.0901
ω=0.00368 Kg vapour/Kg dry air
```

b) Wet bulb temperature

From the chart, taking dry bulb temperature as 4°C and relative Humidity as 75%, the specific humidity is

c) Mass of water vapour in the air (m_v) (taking classroom dimensions as 20mx5mx5m

```
M_v = P_v x V_v / R_v x T
m_v = 0.6099x(20x5x5) / 0.4615 x (4+273)
m_v=2.38kg
```

QUESTION 2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy.

ANSWER:

a) Internal Gains

```
Q_{ig.sensible}= 136+2.2A_{cf}+22N_{oc}
         = 136+2.2.200+22.2
         = 620W
Q_{ig.latent} = 20+0.22A_{cf}+12 N_{oc}
         = 20+0.22x200+12x2
         = 88W
```

b) Infiltration

```
Q_i = A_L. IDF
A_{UL} = 1.4 \text{cm}^2/\text{m}^2 (From the table)
Exposed surface = Wall area + roof area
                   A_{es} = 200 + 144
                   A_{es} = 344 \text{m}^2
A_L = A_{es} x A_{UL} = 344 \times 1.4
                    = 481.6cm<sup>2</sup>
Infiltration rate
Q_i = A_i \times IDF
IDF<sub>heating</sub> = 0.065 L/s
IDF_{cooling} = 0.032 L/s
Infiltration Rate- Winter
V_{\text{iheating}} = (481.6 \text{cm} 2) (0.065 \text{ L/s})
        = 35.156 L/s
```

 $V_{icooling} = (481.6cm2) (0.0375 L/s)$

= 18.06 L/s

c) Ventilation

$$\begin{split} Q_v &= 0.05 \; A_{cf} + 3.5 \; (N_{br} + 1) \\ \textbf{V(dot)} \; _{ventilation} &= (0.05 \times 200) + (3.5 \times (1 + 1)) = \textbf{17.0L/s} \\ \textbf{V(dot)} \; _{infiltration-ventilation} \; _{heating} &= 31.30 \; L/s + 17 \; L/s \\ &= \textbf{48.3} \; \textbf{L/s} \end{split}$$

Sensible and Latent load

$$C_{\text{sensible}} = 1.23$$

$$C_{latent} = 3010$$

$$\Delta T_{heating} = 20^{\circ}C - 4.1^{\circ}C = 15.9^{\circ}C$$

 $\Delta T_{cooling} = 31.1^{\circ}C - 24^{\circ}C = 7.1^{\circ}C$

$$\textbf{Q(dot)}_{\text{ i-v heating sensible}} = C_{\text{sensible}} V(\text{dot}) \ \Delta T_{\text{heating}}$$

Q(dot) i-v cooling sensible =
$$C_{sensible}V(dot) \Delta T_{cooling}$$

$$\textbf{Q(dot)}_{i\text{-v cooling latent}} = C_{latent} V(dot) \Delta \omega_{cooling}$$

$$= 3010 \times 32.41 \times (0.014-0.0095)$$