SemEval-2015 Task 3: Answer Selection in Community Question Answering

组员:李宏强、王东升

概述:

本实验针对SemEval_2015_Task_3中English的数据集,完成TaskA任务和TaskB任务。本文首先从数据集中提取每个Question和Comment的属性信息和内容信息。分别采用基于规则和基于文本相似度的方式提取了24个特征,使用SVM,GDBT,RandomForest三种分类器进行分类。

GitHub: https://github.com/pku601/NLP_QA

特征提取:

属性信息包括:QID, QCATEGORY, QUSERID, QTYPE, QGOLD YN, CID, CUSERID, CGOLD, CGOLD YN. 内容信息包括: QSubject, QBody, CSubject, CBody.

属性信息特征提取:

基于属性信息提取的特征

属性	描述	维度	取值
cuserEqualQuser	Qusertion用户是否等于Comment用户	1	Bool
qCategoryProbility	Question对应的所有Comment的CGOLD	6	List

内容信息特征提取:

基于相似度方式提取的特征

属性	描述	维度	取值
LdaSimilarity	Question内容与Comment内容LDA相似度	1	Float
LsiSimilarity	Question内容与Comment内容LSI相似度	1	Float
BowsSimilarity	Question内容与Comment内容Bows相似度	1	Float
Word2VecSimilarity	Question内容与Comment内容Word2Vec相似度	1	Float

内容信息特征提取:

文本基于规则方式提取的特征

属性	描述	维度	取值
hasURL	内容是否含有URL	1	Bool
hasEmail	内容是否含有Email	1	Bool
hasYes	内容含有Yes的个数	1	Int
hasNo	内容含有No的个数	1	Int
hasSure	内容含有Sure的个数	1	Int
hasCan	内容含有Can的个数	1	Int
hasNeither	内容含有Neither的个数	1	Int
hasGood	内容含有Good的个数	1	Int
hasSorry	内容含有Sorry的个数	1	Int
hasOk	内容含有Ok , Okay的个数	1	Int
HasThank	内容含有Thank, Thanks的个数	1	Int
startWithYes	内容是否Yes开始	1	Bool
wordNums	内容含有的单词数	1	Int

标签制定及建模:

对于TaskA任务,标签的数量为6,标签编号从0到5,分别对应Good,Bad,Potential,Dialogue,Not English,Other。
对于TaskB任务,只提取了QTYPE为YES_NO的样本,并且尝试了以下两种方式:

- 1. 对Comment进行建模
- 2. 对Question进行建模

标签制定及建模:

- 1. 对Comment进行建模,标记Comment标签数量为3,编号从0到2,分别对应Good_Yes,Good_No,Unsure。其中Unsure包括Good,Unsure,Bad,Potential,Dialogue,Not English,Other。通过模型对Comment的标签进行预测,最后通过判断Good_Yes和Good_No的数量。如果Good_Yes数量较多,则这些Comment对应的Question的标签为Yes;如果Good_No数量较多,则这些Comment对应的Question的标签为No;如果相等,Question的标签则为Unsure。
- 2. 对Question进行建模,标记Qustion的标签数量为3,编号从0到2,分别对应Yes,No,Unsure。Question的属性为Quesiton的所有Comment的属性的平均值。通过实验,采用第一种方式得到的MACRO-averaged F1较低,约为32%,于是本文决定采用第二种方式处理TaskB。

模型训练:

本文采用了三种分类模型,分别为:

- SVM
- GBDT
- RandomForest

实验结果:

Task A (without Dialog)

Model	Dataset	Macro Precision	Macro Recall	Macro F1	Accuracy
SVM	Devel	45.29%	46.70%	44.51%	65.71%
	Test	44.84%	45.43%	43.35%	64.32%
GBDT	Devel	78.56%	49.26%	47%	67.72%
	Test	45.9%	48.84%	46.9%	68.12%
Random forest	Devel	48.89%	48.10%	46.42%	64.92%
	Test	48.93%	47.96%	46.74%	65.89%
Baseline	Test			22.36%	50.46%
Rank one	Test			57.29%	72.67%

实验结果:

Task B

Model	Dataset	Macro Precision	Macro Recall	Macro F1	Accuracy
SVM	Devel	55.08%	42.92%	42.97%	44.12%
	Test	48.20%	46.69%	47.23%	58.62%
GBDT	Devel	53.71%	50%	50.35%	50%
	Test	59.25%	62.7%	59.14%	65.59%
Random forest	Devel	57.94%	55.42%	55.71%	55.88%
	Test	53.38%	53.31%	52.86%	65.52%
Baseline	Test			25.0%	60%
Rank one	Test			63.7%	72%

实验总结分析:

总结

- 从模型上看,相比于SVM和RandomFores ,GBDT的效果比较好。
- 从指标Macro F1和Accuracy看,本实验的最好效果比Baseline
 效果好,与Rank one相比还有较大差距。

• 改进方案:

- 本实验只是用了传统的机器学习方法,没有采用深度学习算法。
 后期可以采用深度网络模型,如CNN进行实验。
- 本实验只随机选取了模型的一些超参数,没有设置细粒度的分析超参数的选择方案。后期可以对超参数进行细粒度调整。
- 本实验只选择了24个特征,后期可以添加更多特征进行实验。

参考文献:

- AlessandroMoschitti, PreslavNakov LluisMarquez WalidMagdy, James Glass, and Bilal Randeree. "Semeval-2015 task 3: Answer selection in community question answering." SemEval-2015 269 (2015).
- Barrón-Cedeno, Alberto, et al. "Thread-Level Information for Comment Classification in Community Question Answering." ACL (2). 2015.

THANKS