Physics Formulas and Constants

Madria Durdinas	A - A	Cubatamia Danta					-					
Metric Prefixes		Subatomic Parts		onversions	Constants			mmor				
giga, G, 10 ⁹	$m_e = 5.97 \times 10^{24} \text{ kg}$	$m_p = 1.67 \times 10^{-27} \text{ kg}$	Pkg/m3 =	ρ _{g/cm3} x 10 ³	$g = 9.8 \text{ m/s}^2$		θ	$\sin\theta$	$\cos\theta$	$tan\theta$		
mega, M, 10 ⁶	$r_e = 6.38 \times 10^5 \text{ m}$	$m_n = 1.67 \times 10^{-27} \text{ kg}$	$P_{Pa} = P_a$	_{tm} x 10°	$G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2$	/kg²	0°	0	1	0		
kilo, k, 10 ³	$m_m = 7.35 \times 10^{22} \text{ kg}$	$m_e = 9.11 \times 10^{-31} \text{ kg}$	$T_{\rm K} = T_{\rm oC}$	+ 273	R = 8.31 J/(mol•K)		30°	1/2	√3/2	√3/3		
centi, c, 10 ⁻²	$r_m = 1.74 \times 10^6 \text{ m}$	$q_p = 1.60 \times 10^{-19} \text{ C}$	$E_{\rm J} = E_{\rm eV}$	x 1.60 x 10 ⁻¹⁹	$k = 9.0 \times 10^9 \text{N} \cdot \text{m}^2/\text{C}^2$		37°	3/5	4/5	3/4		
milli, m, 10 ⁻³	$r_{e-m} = 3.84 \times 10^8 \text{ m}$	$q_e = -1.60 \times 10^{-19} \text{ C}$	$n_{\text{mole}} = \Lambda$	√6.02 x 10 ²³	$\epsilon_0 = 8.85 \times 10^{-12} \text{ C/N} \cdot$	m²	45°	√2/2	√2/2	1		
micro, μ, 10 ⁻⁶	$m_s = 1.99 \times 10^{30} \text{ kg}$	Water		x 1.66 x 10 ⁻²⁷	k' = 2 x 10 T•m/A		53°	4/5	3/5	4/3		
nano, n, 10 ⁻⁹	$r_s = 6.96 \times 10^8 \text{ m}$	$\rho_{\text{water}} = 1000 \text{ kg/m}^3$	-	Percent	$\mu_0 = 4\pi \times 10^{-7} \text{ T-m/A}$		60°	√3/2	1/2	√3		
pico, p, 10 ⁻¹²	$r_{e-s} = 1.50 \times 10^{11} \text{ m}$	melting point = 0°C	% 1 = 1		ue c = 3 x 10° m/s		90°	1	0	x		
μ.σ., μ., .σ	163	boiling point = 100°C		00Σ trial – mean		_	-					
		= 4180 J/kg•K		N(mean)	B _H = 13.6 eV		_					
		o Troo ong It	5	Mineury	D _H = 10.0 01	_						
Displacement d in m		$d = x - x_0$		Bernoulli's Equation in Pa			$P + \rho g y + \frac{1}{2} \rho v^2 = C$					
Average Velocity v_{av} in m/s		$V_{av} = \frac{1}{2}(V_0 + V_t) = d/t$		Specific Gravity			$s.g. = \rho_{object}/\rho_{fluid}$					
	ration a in m/s ²	$a = (v_t - v_o)/t$		Rate of Heat Transfer in W			$H = kA(T_H - T_L)/L$					
	Circular Motion	$v = 2\pi r/T$			Thermal Expansion in m			$\Delta L = \alpha L_0 \Delta T$				
1111-1111	$ce = 2\pi r$, $T = period$)	$a_c = \sqrt{r}$	7				$K = {}^{3}/_{2}RT = {}^{1}/_{2}MV^{2}$					
	atic Equations	$d = v_0 t + \frac{1}{2}at^2$			Molecular Kinetic Energy in J Ideal Gas Law			PV = nRT				
	$v_0 \mid v_t \mid a \mid t$		$d = \frac{v_0t + \gamma_2at}{d}$ $d = \frac{1}{2}(v_1 + v_0)t$		Calorimetry in J			$Q = mc\Delta T$				
		$V_t = V_0 + at$				_	-			_		
	yo Vyı -g t	$v_t = v_0 + at$ $v_t^2 = v_0^2 + 2ad$		Heat	t Engines in J		= Q _{in} -					
	tor Addition	$R_x = R\cos\theta$			isobaric	W _{in} :	$W_{in} = -P\Delta V$ $\Delta U = {}^{3}/_{2}\Delta(PV) = {}^{3}/_{2}nR\Delta T$					
Vec	tor Addition									1 <i>T</i>		
R	R _v	$R_y = R \sin \theta$		isometrio	isothermic adiabatic			$T_L)/T_F$				
\ \frac{1}{6}	R _x	$R = (R_x^2 + R_y^2)^{1/2}$		Isometrio	adiabatic			$W_{out}/2$	Q _{in}			
		$tan\theta = R_y/R_x$				T=	1/f	0545,0				
			F = ma			$V_W = \lambda/T = \lambda f$						
140000	Force F in N		$F_g = mg = GMm/r^2$		nanical Waves	$v_w = [F_T/(m/L)]^{\frac{1}{2}} \text{ (string)}$						
$\Sigma F_{\parallel} = ma$ $\Sigma F_{\perp} = 0$		$F_1 \leq \mu F_n$		ACCESS FOR ACCESS TO MARKET TO UNIQUE PROTECTION OF CONTROLS		$\lambda_n = 2L/n, f_n = nf_1$						
			$F_s = kx$				$f' = f(v_w \pm v_o)/(v_w \pm v_s)$					
			$F_c = mv^2/r$		Radius of Curvature r		r = 2f					
	que rin m•N		$t = r_{\perp}F_r$				$V_n = c/n$, $f_n = f_1$, $\lambda_n = \lambda_1/n$					
Center of Mass cm in m			$cm = \Sigma(r_i m_i)/\Sigma(m_i)$		Refraction		$n_1 \sin \theta_1 = n_2 \sin \theta_2$					
Work Win J			$W = F_{\parallel}d$				$sin\theta_c = n_{low}/n_{high}$					
Power P in $W = J/s$ $P = W$		$P = W/t = Fv_{av}$			s and Mirrors		$\frac{110c = 11 \text{ Jow 11 high}}{(d_o + 1/\pm d_i = 1/\pm f)}$					
Kinetic Energy K in J		the state of the s	$K = \frac{1}{2}mv^2$		convex lens = concave mirror			$M = h/h_o = -d/d_o$				
		$K_t = \frac{1}{2}\beta mv^2$	$K_t = \frac{1}{2}\beta mV^2$		2 slit Interference m = 1			$tan\theta = x/L$				
Potential Energy <i>U</i> in J		$U_g = mgh = -GMm/r$	$U_g = mgh = -GMm/r$ $U_s = \frac{1}{2}kx^2$		×			$sin\theta_c = m\lambda/d$				
		$U_s = \frac{1}{2}kx^2$						$sin\theta_d = (m + \frac{1}{2})\lambda/d$				
Conservation	of Mechanical Energy	$K + U \pm W = K' + U$	$K + U \pm W = K' + U'$		Light Spot Width W			$W \approx 2\lambda L/D$				
Moment	Momentum p in kg·m/s $p = mv$		-7	Electric Field E in N/C = V/m								
Impulse .	Jin N•s = kg•m/s	$J = F\Delta t = m\Delta v = \Delta p$					$E = k Q /r^2$ $E_{-} = k Qq /r^2 = 1$		~/E	_		
	K≒p	$K = p^2/2m$			c Force F _e in N	$F_e = k Qq /r^2 = q E$ $V = kQ/r$						
Conservat	tion of Momentum	$p_A + p_B = p_A' + p_B'$			ge V in J/C = V		V = kQ/r $U_e = kQq/r = qV$					
Angular Mon	nentum L in kg·m²/s	$L = r\beta mv$			Energy U _e in J		$\frac{\kappa Gq}{\epsilon_o A/d}$			_		
Simple Harn	nonic Motion (SHM)	$T_{\rm s} = 2\pi (m/k)^{1/2}$	939	2000	+ + + + + + + + + 6 V	V =				_		
.1	E	$v_0 = 2\pi A/T = A(k/m)$)1/2	V high + + + + +		Q =						
^		$a_A = v_o^2/A = A(k/m)$		↑ <u>†</u>				'= ½C	P 14	02/0		
0 17 17	ET T ET	$K_0 = \frac{1}{2}mv^2$		d √√	E2V			$= \frac{720}{1 + \frac{1}{2}}$				
-4+		$U_A = \frac{1}{2}kA^2$		V _{low}	0 V							
Р	endulum	$T_p = 2\pi (L/g)^{\frac{1}{2}}$						$C_2 +$		_		
	ss-Energy	E = mc ²	-	В	attery in V		E - IF					
	ear Reaction	m _{reactants} = m _{products} :	t m _{RF}		.5		E1 ± 8	2				
	e Wavelength	$\lambda_{particle} = h/p$	DL	Curre	nt I in A = C/s	I = 0						
Ephoton			Ephoton = $hf = mc^2$ $E_{photon} = 1240 \text{ eV} \cdot \text{nm}/\lambda_{nm}$				$R = \rho L/A$					
		According to the contract of t						V = IR				
1 1100	OII III O OI G V		$p_{photon} = mc = h/\lambda = E/c$		sistors in Ω	P =	IV = I	$^{2}R = 1$	F/R	A 1000		
Flectron Eng	ray Levels in Lor eV				1			$R_s = R_1 + R_2 +$				
Electron Energy Levels in J or eV $E_{n-electron} = -B/n^2$ Photoelectrons in J or eV $K_{electron} = E_{photon} - \phi_{metal}$			1			$1/R_p = 1/R_1 + 1/R_2 +$						
		$K_{electron} = E_{photon} - \phi_n$	netal	Macro	atic Field Pin T	B _{stra}	ight = K	'I/r	1010-2	200		
Dens	ity ρ in kg/m ³	$\rho = m/V$		Magne	etic Field B in T			(N/L)	4			
Pressure	$P \text{ in } Pa = N/m^2$	P = F/A		Magnet	tic Force F _B in N		qvB :					
		$P = \rho gh$		7.00	90-019-050- Audult	_	AXE					
	ancy F _b in N	$F_b = \rho_t V_o g$		Induc	ced emf S in V			t = vL	F			
Volume F	low Rate in m ³ /s	$V/t = A_1 v_1 = A_2 v_2$					B	-	1.0			

MECHANICS (continued)

K. Universal Gravitation

- 1. Goal: Examine gravitational energy and force fig 28
- Case 1: Bodies of mass M₁ & M₂ separated by r

3. Key equations:

- a. Gravitational Energy: $U_r = \frac{GM_1M_2}{2}$
- b. Gravitational force: $F_i = \frac{GM_iM_i}{G}$
- c. Acceleration due to gravity: $g = G M(earth)/r^2$

For objects on the Earth's surface, $g = 9.8 \text{ m/s}^2$

Sample: Verify "g" at the Earth's surface

Equation: $g = G M(\text{earth})/r^2$

Given: $M = 6 \times 10^{24} \text{ k}, r = 6.4 \times 10^6 \text{ m}$

Calculation: =
$$\frac{6.67 \times 10^{-6} m^3 kg^{-3} \times 6 \times 10^{16} kg}{(6.4 \times 10^{16} m)^2} = 9.8 \text{ ms}^2$$

- 4. Case 2: A body interacts with the Earth fig 29
- 5. Key Equation:
 - a. Gravitational potential energy: $U_{\varrho} = m g h$; object on the Earth's surface, h = 0, $U_{Q} = 0$
 - b. Weight = gravitational force; $F_g = m g$
- Sample: Calculate escape velocity, vesc, for an orbiting rocket of mass m at altitude h

$$\frac{1}{2}m v_{\rm esc}^2 = \frac{GmM}{r}$$
; therefore, $v_{\rm esc} = \sqrt{\frac{2GM}{r}}$

Note: vesc varies with altitude, but not rocket mass

L. Oscillatory Motion

- 1. Goal: Study motion & energy of oscillating body
- 2. Simple harmonic motion (1-d)
 - a. Force: $F = -k\Delta x$ (Hooke's Law)
 - b. Potential Energy: $U_k = \frac{1}{2}k\Delta x^2$
 - c. Frequency = $\frac{1}{2\pi} \sqrt{\frac{k}{m}}$ fig 30

3. Simple Pendulum

- a. Period: $T = 2\pi \sqrt{\frac{I}{g}}$
- b. Potential energy: $U_g = m g h$
- c. Frequency = $\frac{1}{2\pi} \sqrt{\frac{g}{l}}$ fig 31
- 4. For both cases:
 - a. Kinetic energy: $K = \frac{1}{2} m v^2$
- b. Conservation of Energy: E = U + K

M. Forces in Solids and Liquids

- 1. Goal 1: Examine properties of solids & liquids
 - a. Density of a solid or liquid: $\rho = \frac{mass}{volume}$
 - ·Common unit: g/cm3; g/L; kg/m3

Flow Through a Hose

. Sample: A piece of metal, 1.5 cm × 2.5 cm × 4.0 cm, has a mass of 105.0 g; determine o

Equation:
$$\rho = \frac{n}{r}$$

Date:
$$w = 105.0 \text{ a}$$
 $V = 1.5 \times 2.5 \times 4.0 \text{ cm}^3 = 15 \text{ cm}^3$

- c. Pascals's Law: For an enclosed fluid, pressure is equal at all points in the vessel
- the piston inserted into the fluid

d. A column of water generates pressure, P increases with depth;

Equation: $P_2 = P_1 + \rho gh$ fig 33

- e. Archimedes' Principle: Buoyant force, F_b , on a object of volume V submerged
- 2. Goal 2: Examine fluid motion & fluid dynamics
- a. Properties of an Ideal fluid: Non-viscous, incompressible, steady flow, no turbulence
- water flow through a hose fig 35
- c. Bernoulli's Equation: For any point y in the fluid flow, $P + \frac{1}{2}\rho v^2 + \rho g y = \text{constant}$

Equation:
$$\rho = \frac{m}{V}$$

Data:
$$m = 105.0 \text{ g}$$
, $V = 1.5 \times 2.5 \times 4.0 \text{ cm}^3 = 15 \text{ cm}^3$

- Calculate: $\rho = 105.0/15.0 \text{ g/cm}^3 = 7.0 \text{ g/cm}^3$
- b. Pressure exerted by a fluid: $P = \frac{\text{force}}{\text{organisation}}$
- **Sample:** Hydraulic press: F = P/A for enclosed liquid; A is the surface area of

Equation: $A_1F_1 = A_2F_2$; cylinder area determines force fig 32

- in liquid of density ρ : $F_b = \rho Vg$ fig 34
- At any point in the flow, the product of area and velocity is constant: $A_1v_1 = A_2v_2$
- b. Variable density: $\rho_1 A_1 v_1 = \rho_2 A_2 v_2$; illustrations: gas flow through a smokestack,
- Special case: Fluid at rest $P_1 P_2 = \rho g h$

VAVE MOTION

- A. Descriptive Variables
 - 1. Types: Transverse, longitudinal, traveling, standing, harmonic
 - a. General form for transverse traveling wave: y = f(x vt) (to the right) or y = f(x + vt) (to the left)
 - b. General form of harmonic wave: $y = A\sin(kx \omega t)$ or $y = A\cos(kx \omega t)$
 - c. Standing wave: Integral multiples of 3 fit the length of the oscillating material
 - d. General wave equation: $\frac{d^2y}{dx^2} = \frac{1}{v^2} \frac{d^2y}{dt^2}$
 - e. Superposition Principle: Overlapping waves interact => constructive and destructive interference

Harmonic Wave Properties

λ (m)	Distance between peaks Time to travel one λ . $f = \frac{1}{T}$			
T (sec)				
f(Hz)				
ω (rad/s)	$\omega = \frac{2\pi}{T} = 2\pi f$			
A	Height of wave			
v (m/s)	$v = \lambda f$			
k (m ⁻¹)	$k = \frac{2\pi}{\lambda}$			
	T (sec) f (Hz) ω (rad/s) A ν (m/s)			

2. Sample: Determine the velocity and period of a wave with $\lambda = 5.2 \text{ m and } f = 50.0 \text{ Hz}$

Equations: $v = \lambda f$

Data: $\lambda = 5.20 \text{ m}$; f = 50.0 Hz

Calculations: $v = \lambda f = 5.20 \text{ m} \times 50.0 = 260 \text{ m/s}$

$$T = \frac{1}{f} = \frac{1}{50}$$
 Hz = 0.02 s

- **B. Sound Waves**
 - 1. Wave nature of sound: Compression wave displaces the medium carrying the wave
 - 2. General speed of sound: $v = \sqrt{\frac{B}{\rho}}$:

note: B = Bulk Modulus (measure of volume compressibility)

For a gas: $v = \sqrt{\frac{\gamma RT}{M}}$; note: $\gamma = \frac{C_r}{C_r}$ (ratio of gas heat capacities)

Sample: Calculate speed of sound in Helium at 273 K Helium: Ideal gas, $\gamma = 1.66$; M = 0.004 kg/mole

$$v = \sqrt{\frac{\gamma RT}{M}}$$

$$= \sqrt{\frac{1.66 \times 8.314 \text{ kg m}^2/\text{s}^2 \times 273\text{K}}{0.004\text{kg}}}$$

- = $\sqrt{941,900}$ m²/s² = 971 m/s note: $\sqrt{}$ applies to the units
- 3. Loudness as intensity and relative intensity
- a. Absolute Intensity (I = Power/Area) is an inconvenient measure of
- b. Relative loudness: **Decibel scale (dB)**: $\beta = 10 \log \frac{I}{I}$; I_0 is the threshold of hearing: $\beta(I_0) = 0$
- c. Samples: Jet plane: 150 dB; Conversation: 50 dB; a change in 10 dB represents a 10-fold increase in I
- Doppler effect: The sound frequency shifts full due to relative motion of source and listener; v_0 - listener speed; v_s - source speed; v - speed of sound

Key: Identify relative speed of source and listener

THERMODYNAMICS

A. Goal: Study of work, heat and energy of a system fig 36 **Key Variables**

Heat: Q	+Q added to the system
Work: W	+W done by the system
Energy: E	System internal E
Enthalpy: H	H = E + PV
Entropy: S	Thermal disorder
Temperature: T	Measure of thermal E
Pressure: P	Force exerted by a gas
Volume: V	Space occupied

Electric Field & Force | Electric Potential

Capacitance

$$F_e = k \frac{|q_1||q_2|}{R^2}$$

$$\vec{\mathbf{F}}_e = q \vec{\mathbf{E}}$$

$$F_e = |q|E$$

$$V = \frac{\mathbf{kq}}{R}$$

$$C = \frac{Q}{\Delta V}$$

$$F_e = qE$$

$$F_e = |q|E$$

$$E = \frac{k|q|}{R^2}$$

$$PE_e = k \frac{q_1 q_2}{R}$$
$$W_e = q \Delta V$$

 $E = \frac{\Delta V}{d}$

$$C = \frac{1}{\Delta V}$$
$$= \frac{1}{2} Q \Delta V$$

$$C = \frac{Q}{\Delta V}$$
 , $Q = C\Delta V$, $\Delta V = \frac{Q}{C}$
 $U = \frac{1}{2}Q\Delta V$, $U = \frac{1}{2}C\Delta V^2$, $U = \frac{Q^2}{2}$

$$\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_N}$$

$$C_n = C_1 + C_2 + \dots + C_N$$

$$\Phi_e = EA\cos\theta$$

$$\Phi_{net} = \frac{q_{enc}}{\epsilon_0}$$

Magnetic Field & Force $F_m = |q|vB\sin\theta$

 $C_p = C_1 + C_2 + \dots + C_N$ $C = \frac{\kappa \epsilon_0 A}{d}$

$\epsilon_0 = \frac{1}{4\pi k}$ Faraday's Law

$$F_m = ILB \sin \theta$$
$$\tau_{net} = IAB \sin \theta$$
$$\mu_0 I$$

Resistance & Current

 $\Phi_m = BA\cos\theta$ $\varepsilon_{ind} = -N \frac{\Delta \Phi_m}{\Delta t}$ $\varepsilon_{ind} = -B\ell v$

$$B = \frac{\mu_0 I}{2\pi r_c}$$

$$B = \frac{\mu_0 I}{2a}$$

$$B = \frac{\mu_0 NI}{I} = \mu_0 nI$$

$$\Delta V = IR$$
 , $I = \frac{\Delta V}{R}$, $R = \frac{\Delta V}{I}$
 $P = I\Delta V$, $P = I^2R$, $P = \frac{\Delta V^2}{R}$
 $R_s = R_1 + R_2 + \dots + R_N$
 $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$

$$B_1 \ell_1 \cos \theta_1 + B_2 \ell_2 \cos \theta_2 + \dots = \mu_0 I_{enc}$$

Inductance Time Constant Transformer en

 $\cdots = \mu_0 I_{enc} \qquad \sum_{i} I_i = \sum_{\alpha \neq i \neq i \neq i} I_j$

$$\varepsilon_L = -L \frac{\Delta I}{\Delta t}$$
 $\tau = RC$

$$t_{\frac{1}{2}} = \tau \ln(2)$$

$$L = \frac{N\Phi_m}{I}$$
 $\tau = \frac{L}{R}$

 $U_L = \frac{1}{2}LI^2$

 $\Delta V_m = I_m Z$

$$\frac{\Delta V_{in}}{\Delta V_{out}} = \frac{N_p}{N_s} \qquad \sum_{loop} \Delta V_i = 0$$

$$\varepsilon = \Delta V + Ir = I(R)$$

$$\tau = \frac{L}{R}$$

$$\varepsilon = \Delta V + Ir = I(R + r)$$

$$\rho = \frac{1}{\sigma}$$
f/Physicist Page ©2017

$$R = \frac{\rho L}{A}$$

 $\rho = \rho_0 (1 + \alpha \Delta T)$

 $R \approx R_0(1 + \alpha \Delta T)$

$$J=\frac{I}{A}$$

 $I = \frac{\Delta q}{\Delta t}$

 $J = \sigma E$

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
$$\varphi = \tan^{-1} \left(\frac{X_L - X_C}{R} \right)$$

$$I_{rms} = \frac{I_m}{\sqrt{2}}$$

 $\Delta V_{rms} = \frac{\Delta V_m}{\sqrt{2}}$

$$=\frac{\mathbf{w}_{0}}{\Delta \mathbf{w}}=\frac{\mathbf{w}_{0}\mathbf{L}}{\mathbf{R}}$$

$$\Delta V_m = \sqrt{\Delta V_{Rm}^2 + (\Delta V_{Lm} - \Delta V_{Cm})^2}$$

$$X_t = \omega I$$

$$X_C = \frac{1}{C}$$

$$\omega_0 = \frac{1}{\sqrt{LC}} = 2\pi f_0$$
 $\mathbf{Q}_{\circ} = \frac{\mathbf{Q}_{\circ}}{\Delta \mathbf{w}}$

Newton's Law of Gravitation

Gravitational Force is-

- * Always attractive
- * Independent of medium
- * Conservative of Central Force

Gravitational Field Intensity I = - GM ? ⇒ 主= 듦

Solid Sphere

Hollow sphere

Acceleration due to gravity

$$3 = \frac{GM_e}{R_e^2} = \frac{U}{3}\pi R R$$

 $3 = 9.8 \text{ m/s}^2$

Me = Mass of earth Re = Radius of earth P = density of earth G = 6.67 x10 11 Nm2/kg2 Gravitation

Gravitational Potential

Variation of Acceleration due to gravity

2 Due to depth (d)

3. Due to Rotation of earth 8'= 8- w2Recos x

At equator 1 = 0° At poles h = 90.

Kepler's Law

1.1 Every planet revolve around the sun in an elliptical orbit with sun at one of the focus.

2. The line Joining the sun to the planet sweeps out equal area in equal interval of time,

dA = = tv = Const.

T2 = Ks +3

T = Time period of revolution Y = Semimajor axis of the orbit Ks = Kepler's Const. Ks = 2.97x10 175/m3

Escape Velocity

ELECTRIC CHARGE & FIELD

Basic Properties of Charge

- Two types (+ve 4 -ve)
- Charge is scalar
- 1 Quantized Q = 1ne n = 0,1,2,3,...
-) Charge is Conserved
- D Like charges Repel 4 Unlike charges attracts
- 9 SI Unit Coulomb (c)

by Umesh Rajoria

Coulomb's Law

Dielectric Constant or relative electrical Permittivity

- 9 Er = E = Fracuum
 Fmedium
-) For Metals Er = 00 For Air Er = 1
- 9 1≤ € x ≤ ∞

Electric Field due to a point charge

Electric Field Lines

- 1 Outward from +ve charge & Inward for -ve charge
- Do not intersect each other
- Do not form close loop

Electric dipole

$$\overrightarrow{P} = 9 \times 2\overrightarrow{A}$$
direction of $\overrightarrow{P} = -9$ to $+9$

Electric Field due to dipole

Torque on dipole in Uniform

Horizontal Range

$$R = \frac{u^2 \sin_2 \theta}{g} = \frac{2u_x u_y}{g}$$

Maximum Height

$$H = \frac{u^2 \sin^2 \theta}{2g} = \frac{u_v^2}{2g}$$

Time of Flight

Path - Parabolic

Projectile Motion

In projectile Motion Total energy of projectile remains Constant at every instant.

T.E. = P.E. + K.E.

Displacement at time "t

$$X = ut$$
 , $Y = -\frac{1}{2}gt^2$
 $S = \sqrt{X^2 + Y^2}$

by Umesh Rajoria

Horizontal Projectile Motion

Horizontal Range

Equation of Trajectory

Coordinates at time 't'

$$X = (u \cos \theta) t$$

$$Y = (u \sin \theta) t - \frac{1}{2}gt^{2}$$
Net displacement
$$S = \sqrt{x^{2} + y^{2}}$$

Velocity at time 't'

$$\sqrt{x} = u \cos \theta$$
, $\sqrt{y} = u \sin \theta - g t$

$$\sqrt{y} = \sqrt{\sqrt{x^2 + \sqrt{y^2}}}$$

$$\tan \alpha = \frac{\sqrt{y}}{\sqrt{y}} \left[\text{direction} \right]$$

Velocity at time 't'

$$V_x = u$$
, $V_y = gt$
 $V = \int V_x^2 + V_y^2$ tane = $\frac{V_y}{V_x}$

Foradoy's Law of EMI

- (i) Reason of induced emf or current is change in magnetic flux
- 正 = 는 역 한 역 = - N 명

direction of induced emf or current is such that it always opposes the cause that produces it.

* Lenz's law based on the energy conservation law.

Fleming's Right hand Rule

Magnetic Motion

Induced Current

Electro magnetic Induction

Energy Stored in Inductor

Self Induction

Mutual Induction

Plottona

Translatory Motion
e = Blusing

Motional EMF due to

Rotational Motion $e = \frac{Bl^2w}{2}$

Eddy Current

It is induced current in a metal body due to change in magnetic flux

* Losses

(i) Unnecessary Heat (ii) Unnecessary Retardation

Uniform Circular Motion

Particle Moves in a circle at a Constant Speed

Angular Velocity

$$\omega_{\text{av}} = \frac{\Delta \theta}{\Delta t}$$

$$\omega_i = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$$

Relation between

- * Sand 0 => S= YO
- * V and w > マニロxア

- * As $F_c = \frac{mv^2}{Y} \neq 0$, so the Particle is not in equilibrium
- * Inct = 0 then

 Angular Momentum L = Const.

 Momentum p = const.

Circular Motion

Non-Uniform Circular Motion

* Tangential Acceleration = = = x x

Tangential Force Ft = mat

* Centripetal Acceleration \$\overline{ac} = \overline{

Centripetal Force Fe = mac

* Net Acceleration a= Ja2 + a2

Net Force F = m at + at

Motion in a Vertical Circle

Body is under the influence of gravity of earth and total mechanical energy is conserved.

- * Particle will complete the circle it u > 1591
- * Particle will oscillate if velocity becomes zero and the tension in the string is not zero.

 0 < U < J291

Equations of Circular Motion

$$\omega_2 = \omega_1 + \alpha t$$

$$\omega_2^2 - \omega_1^2 = 2\alpha\theta$$

$$\theta_n = \omega_1 + \frac{\alpha}{2}(2n-1)$$

by-Umesh Rajoria

Tension at any point on vertical Loop

$$T-mg\cos\theta = \frac{mv^2}{L}$$

Displacement Int

Integration

Hon Velocity

Integration Ac

Acceleration

Polygon Law of Vector addition 百 R = A+B+C+D+E

Parallelagram Law Triangle Law

$$\vec{R} = \vec{A} + \vec{B}$$

$$R = \sqrt{A^2 + B^2 + 2ABCos\theta}$$

$$tan \alpha = \frac{Bsin\theta}{A + BCos\theta}$$

Vector

Components of Vector

$$R = \int A^2 + B^2 - 2ABGoSB$$

$$tan \alpha = \underbrace{BSin\theta}_{A-BCoSB}$$

Lami's Theorem

Scalar Product

Vector Product

$$\vec{A} \times \vec{B} = ABSinon$$

Motion of a body in Lift

when a body of mass m is placed on a weighing machine which is placed in a lift, then actual weight of the body is mag

This force mg acts on a weighing machine which offers a reaction R given by the reading of weighing machine.

This reaction R exerted by the sweface of Contact on the body is the apparent weight of the body.

1.1 When the lift is moving upwards -

Net upward force on lift is

or ma = R-mg

Hence apparent weight (R) is

$$R = m(g+q)$$

Apparent weight > Actual weight

2.1 When the lift is moving downward-

Net downward force on lift is

or ma = mg - R

Hence apparent weight (R) is

$$R = m(g-a)$$

Apparent weight < Actual weight

Note - Here m = m,+m2 [mass of lift + mass of body]

Note -

- (i) It lift is at rest or moving upward or downward with constant velocity then a = 0 and R = mq.

 Hence Apparent weight = Actual weight
- (ii) If lift is accelerating downword at the rate of 'g' than R=0.

 Hence Apparent Weight = 0 (Weightlessness)
- (iii) If lift is accelerating downword at the rate of a > g then R = -ve.

 Hence Apparent weight is -ve, which means the body will rise from the floor of the lift and stick to the ceiling of the lift.

Linear Motion Equations of Motion Free Falling Bodies * only applied to linear motion vector quantity + vertical motion under gravity without air resistance Scalar quantity with constant acceleration → pisplacement (s) → Distance (d) 1 9 = 9.81ms-1 → velocity (v) → Speed - if both (+), a acting downwar Average velocity v=u+at Average speed v up (+) because direction of g never v down (-) = AS v2= U2 + 208 = total distance travelled changes (towards Earth) S = 1 (u+v) t total time taken * Acceleration (a) * if speed not constant + vertical motion under gravity with air resistance Average acceleration S= ut + Lat' net force ma = ma - Fv terminal as Frat, eventually velocity At. mq-Fv =0, a =0 , object * Sign of v = a , velocity ? fall at terminal sign of v +a, velocity + velocity Rinematico Graphs of Motion 3-t graph v-t graph a - t graph Bend towards y-axis Projectile Motion decreasing rate Vertical component · constant acceleration Uy = usin 0 ~ → V:0 Maximum height Bend away from y-axis H= WISINIO + Object undergoing linear motion · Increasing rate · in the horizontal direction · in the vertical direction Time taken, tH Total time taken, T= 2usine th = usine Horizontal component · constant velocity Ux = ucos 0 Horizontal Range, R when 9:45° · horizontal distance R= uzsinzo y: Sin 0 Rmax = 42 Sin (2x45) Sx = McOS 0 t 270 360 Rmax = * Rmax when 0:45°