Exercises for
Pattern Recognition
Peter Fischer, Shiyang Hu
Assignment 4, 11/14.11.2014

SOLUTION

General Information:

Exercises (1 SWS): Tue 12:15 - 13:45 (0.154-115) and Fri 08:15 - 09:45 (0.151-115)

Certificate: Oral exam at the end of the semester Contact: peter.fischer@fau.de, shiyang.hu@fau.de

Feature Transforms

Exercise 1 In this exercise we will refresh your knowledge of the Singular Value Decomposition (SVD).

(a) What is the relationship between the SVD of a square matrix A and A^T .

$$A = USV^T$$

 $A^T = (USV^T)^T = VSU^T$
(same singular values, roles of U and V interchanged)

(b) What is the relationship between the SVD of A and AA^{T} .

$$A = USV^{T}$$

$$AA^{T} = USV^{T} (USV^{T})^{T} = USV^{T}VS^{T}U^{T} = US^{2}U^{T}$$

(c) Find a relationship between the singular values and the eigenvalues of a matrix $B = AA^{T}$.

$$AA^{T}\mathbf{v} = \lambda \mathbf{v}$$

$$US^{2}U^{T}\mathbf{v} = \lambda \mathbf{v}$$

$$S^{2}U^{T}\mathbf{v} = \lambda U^{T}\mathbf{v}$$

$$S^{2}\mathbf{w} = \lambda \mathbf{w}$$

S is diagonal matrix with singular values, hence $S^2 = diag(\sigma_i^2) = \sum_i \sigma_i^2 e_i$.

The eigenvalues of B are exactly the squares of the singular values of B.

Exercise 2 Linear discriminant analysis (LDA) is used to transform features such that two classes can be discriminated by a linear decision boundary. Use LDA for classification in the MATLAB Classification toolbox.

- (a) Compute the LDA feature transform $\phi(\boldsymbol{x})$ during the training phase. See the solution in LDA.m
- (b) In the classification step, use the following decision rule:

$$y^* = \underset{y}{\operatorname{argmin}} \left\{ \frac{1}{2} \|\phi(\boldsymbol{x}) - \phi(\boldsymbol{\mu}_y)\|^2 - \log(p_y) \right\}$$

- (c) What is the relationship between LDA classification and nearest neighbor classification?
 - For equal priors, LDA is equivalent to nearest neighbor classification with the class centroids (mean value of all the samples from this class). As a distance function for nearest neighbor classification, the Mahalanobis distance is used.

Exercise 3 The excersise addresses the Principal Component Analysis (PCA) for dimensionality reduction. On the course website you can find a short Matlab script to create a set of random points in 3-space. Your goal is to find a linear projection into 2-space, such that the original points can be reconstructed with minimal error.

(a) Compute the pricipal component of your data, i.e. the unit vector \boldsymbol{w} such that the variance in its 1D subspace is maximized.

Input: Collection of D-dimensional features $X^* = (\boldsymbol{x}_0^*...\boldsymbol{x}_1^*) \in \mathbb{R}^{D \times n}$ (no class memberships required)

Output: Transformation $Y = W^T X$, where W is an orthogonal matrix and $X = (\boldsymbol{x}_0^* - \boldsymbol{\mu}, ..., \boldsymbol{x}_n^* - \boldsymbol{\mu})$ are the de-meaned features. The vector components of Y are sorted by decreasing variance and w_1 pointing in the direction of the most variance of the data (principal axis).

Note: Zero-mean data can be enforced simply by de-meaning the data before PCA and adding the mean after PCA.

Derivation: Goal: Project data into a 1D space in direction of a unit vector \boldsymbol{w} , such that the variance of the projected data is maximal.

Mean and Variance of projected data:

$$\mu_1 = \frac{1}{n} \sum_{i} \boldsymbol{w}^T \boldsymbol{x_i} = 0$$

and the variance (note that Σ_1 denotes a scalar!)

$$\Sigma_1 = \frac{1}{n-1} \sum_i \left(\boldsymbol{w}^T \boldsymbol{x_i} - \underbrace{\boldsymbol{w}^T \boldsymbol{\mu}}_{\text{zero mean}} \right)^2 = \frac{1}{n-1} \sum_i \boldsymbol{w}^T \boldsymbol{x_i} \boldsymbol{x}_i^T \boldsymbol{w} = \boldsymbol{w}^T \Sigma \boldsymbol{w}$$

where Σ is the covariance matrix of the data

$$\Sigma = \frac{1}{n-1} \sum \boldsymbol{x_i} \boldsymbol{x}_i^T = \frac{1}{n-1} X X^T$$

Conditional maximization given $\mathbf{w}^T \mathbf{w} = 1$ using Lagrange multiplier.

$$\boldsymbol{w_1} = \mathop{argmax}_{\boldsymbol{w}} \boldsymbol{w}^T \Sigma \boldsymbol{w} + \lambda (1 - \boldsymbol{w}^T \boldsymbol{w})$$

Derivative wrt. \boldsymbol{w} shall be zero

$$2\Sigma \boldsymbol{w} - 2\lambda \boldsymbol{w} \stackrel{!}{=} 0 \iff \Sigma \boldsymbol{w} \stackrel{!}{=} \lambda \boldsymbol{w}$$

 λ must be an eigenvalue of Σ and since we want to maximize this quantity, w_1 is the Eigenvector with the largest Eigenvalue of Σ .

Using SVD of X and the relationship between eigenvalues of A and singular values of $B = AA^{T}$:

$$\Sigma = \frac{1}{n-1} X X^{T} = \frac{1}{n-1} U D^{2} U^{T}$$

we can see that the solution is the first column of U.

- (b) Implement PCA to reduce the feature space to d=2 using Singular Value Decomposition (SVD). Hint: De-mean the data.
- (c) Visualize the reduced features in 2D.
- (d) Reproject the reduced features into the original space and compute the mean absolute error.

PCA example.m