Фамилия, имя, номер группы:

(Профессор Фарнсворт, наблюдая в телескоп, как Фрай и Лила убегают с темной стороны Луны):

Бог мой! Надо бы что-то предпринять... Но я уже в пижаме...

(Фарнсворт засыпает на стуле)

Футурама (1999)

Работа состоит из трёх частей: тестовая, задачи и ответы на открытые вопросы. Списывание карается обнулением работы. Ко всем одинаковым формулировкам я буду очень сильно придираться. Удачи!

Часть первая: тестовая

Дайте ответ на 10 тестовых вопросов. Каждый вопрос стоит 3 балла. Никакие дополнительные пояснений в этой части работы от вас не требуются.

Вопрос 1. Что из этого формула для шага в градиентном спуске?

$$\boxed{A} \ w_{t} = w_{t-1} - \eta \cdot \nabla L(w_{t})$$

$$\overline{C}$$
 $w_{t} = w_{t-1} - \eta \cdot \nabla L(w_{t-1})$

$$\boxed{A} \ w_t = w_{t-1} - \eta \cdot \nabla L(w_t) \qquad \boxed{C} \ w_t = w_{t-1} - \eta \cdot \nabla L(w_{t-1}) \qquad \boxed{E} \ w_t = w_{t-1} + \eta \cdot \nabla L(w_{t-1})$$

$$B w_t = w_{t-1} + \eta \cdot \nabla L(w_t)$$

$$egin{aligned} B \end{bmatrix} w_{\mathsf{t}} = w_{\mathsf{t}-1} + \eta \cdot \nabla \mathsf{L}(w_{\mathsf{t}}) \end{aligned} \qquad egin{aligned} D \end{bmatrix} w_{\mathsf{t}} = w_{\mathsf{t}-1} - \eta \cdot \nabla \mathsf{L}(w_{\mathsf{0}}) \end{aligned} \qquad egin{aligned} F \end{bmatrix}$$
 Нет верного ответа.

$$\overline{F}$$
 Нет верного ответа.

Вопрос 2. Какие из следующих функций активации подходят для обучения нейронных сетей?

$$A | f(z) = \max(0.25z, 0.75z)$$

$$C | f(z) = 0.25z$$

$$\boxed{E}$$
 f(z) = 1 – z

$$\boxed{B} f(z) = \min(0, z)$$

$$\boxed{D} f(z) = \begin{cases} 1, x > 0.5 \\ -1, x \leq 0.5 \end{cases}$$

|F| Нет верного ответа.

Вопрос 3. Яродар берёт картинку и пририсовывает ей с каждой стороны четыре дополнительные клетки. Свёртка какого размера не изменит размер исходной картинки?

 $A \mid 3 \times 3$

 $C \mid 5 \times 5$

 $E 7 \times 7$

 $B \mid 4 \times 4$

 $D \mid 6 \times 6$

|F| Нет верного ответа.

Вопрос 4. Какие из следующих техник можно использовать, чтобы избежать переобучения?

- A Аугментация данных (Data augmentation)
- | C | Использовать Adam вместо **SGD**
- | E | Дропаут (Dropout)

- В Нормализация по батчам (Batch Normalization)
- D Ранняя остановка обучения (Early stopping)
- |F| Нет верного ответа.

Вопрос 5. После обучения нейронной сети, вы обнаружили, что ассигасу на тренировочной выборки равен 100%, а ассигасу на тестовой выборке равен 42%. Какие из следующих методов могут помочь сократить разницу между этими двумя метриками?

- A Сигмоида в качестве актива-
- С Алгоритм обратного распространения ошибки
- E RMSprop

B Dropout

D Softmax

 \overline{F} Нет верного ответа.

Вопрос 6. Выберите все верные утверждения

- [A] Если мы используем сигмоиду в качестве функции активации, при обратном проходе через неё производная никогда не поменяет знак
- С Если мы используем Leaky ReLU в качестве функции активации, при обратном проходе через неё производная никогда не поменяет знак
- E В нормализации по батчам нет параметров, которые можно было бы обучить алгоритмом обратного распространения ошибки

- B Картинки нормируют на отрезок [-1;1] для более быстрой сходимости обучения
- [D] Картинки нормируют на отрезок [0; 1] для более быстрой сходимости обучения
- \overline{F} Нет верного ответа.

Вопрос 7. Выберите все верные утверждения об инициализации Хе

А Такая инициализация используется только в полносвязных сетях.

В Такая инициализация ис-

пользуется только в свёрточ-

- С Такая инициализация используется для симметричных функций активации вроде сигмоиды
- D Такая инициализация используется для функций активации вроде ReLU
- [E] Инициализация Хе корректируют параметры распределений в зависимости от входа и выхода слоя так, чтобы поддерживать дисперсию равной единице
- F Нет верного ответа.

Вопрос 8. У нас есть 10 классов. Классификатор предсказывает, что объект равновероятно относится к каждому из них. Какое значение принимает logloss на этом объекте?

 \boxed{A} - log 10

ных сетях.

 $C - \log 0.1$

 \boxed{E} -10 log 10

 $B - 0.1 \log 1$

 $D -10 \log 0.1$

 \overline{F} Нет верного ответа.

Вопрос 9. К изображению размера $W \times H$ применили D фильтров. Получилось новое изображение размера $W \times H \times D$. К немы мы хотим применить свёртку размера 1×1 . Сколько параметров нам надо будет обучить в этой свёртке?

 \overline{A}

C

E H

 $B W \cdot H$

D W

 $\lfloor F \rfloor$ Нет верного ответа.

Bonpoc 10. Выберите функции, которые могли бы описать части вычислительного графа, представленного ниже. Рёбрам соответствуют какие-то веса, а вершинам любые алгебраические операции и применения основных элементарных функций (экспонента, косинус и тп).

 $\boxed{A} h_1 = x_1^2 + x_2$

 $C h_3 = 2x_1 + 3x_2$

|E| h₃ = $2x_1$

 $\boxed{B} h_2 = e^{x_1}$

- $\boxed{D} y = 2h_1 + 3h_2 + h_3$
- F Нет верного ответа.

Часть вторая: задачки

Все ответы должны быть обоснованы. Решения должны быть прописаны для каждого пункта. Рисунки должны быть чёткими и понятными. Все линии должны быть подписаны. За решение каждой задачи можно получить 8 баллов.

Вопрос 11. Рассмотрим следующие две функции активации: сигмоиду и гиперболический тангенс

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$
 $\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}.$

- 1. Как взаимосвязаны $\sigma(z)$ и $\sigma'(z)$? Как взаимосвязаны $\tanh(z)$ и $\tanh'(z)$?
- 2. Выпишите уравнения для шага обратного распространения для обеих функций активации.
- 3. Что такое паралич нейронной сети? Как сигмоида способствует ему? Способствует ли параличу гиперболический тангентс?
- 4. Объясните, почему использование гиперболического тангентса вместо сигмоиды делает оптимизацию нейронной сети проще. Какие проблемы использование тангентса не исправляет?

Вопрос 13. Мы обучаем нейронную сеть из N свёрточных слоёв размера $k \times k$ с параметром сдвига (stride) равным единице. Дополнение картинки (padding) не делается. Нумерация слоёв начинается с единицы. Выпишите формулу, по которой можно вычислить размер поля обзора (receptive field) сети.

Вопрос 14. Решите следующую задачу матричной оптимизации. Убедитесь, что найденное решение действительно является минимумом.

$$f(x) = x^{\mathsf{T}} A x - x^{\mathsf{T}} b + c \to \min_{x}$$

Вопрос 15. Предположим, что softmax принимает на вход вектор z_1, \dots, z_k и возвращает вектор $p_1, \dots p_k$. Мы можем записать функцию в виде двух уравнений

$$r = \sum_{j=1}^k e^{z_j} \qquad y_i = \frac{e^{z_i}}{r}.$$

- 1. Пусть k = 3. Нарисуйте граф вычислений, на котором описывается взаимосвязь между величинами $z_1, z_2, z_3, p_1, p_2, p_3$ и r.
- 2. Опишите алгоритм обратного распространения ошибки для softmax-слоя. Выпишите формулу, по которой обновляется градиент при проходе через softmax.

Часть третья: открытые вопросы

Эта часть состоит из открытых вопросов. На них необходимо дать краткие, но ёмкие ответы. За ответ на каждый вопрос можно получить 5 баллов.

Вопрос 16. Есть теорема, которая говорит, что двухслойной нейронной сетью можно приблизить любую непрерывную функцию. Почему люди не ограничиваются двумя слоями и учат глубокие нейронные сети?

Вопрос 17. Можно ли утверждать, что оптимизация градиентным спуском гарантирует нахождение глобального оптимума весов глубокой нейронной сети? Почему?

Вопрос 20. Однажды на следующий день после жёсткой вечеринки в середине недели ваш коллега написал такую архитектуру нейросети. Она решает задачу классификации RGB-изображения размера 100×100 на 10 классов. Каждое изображение принадлежит только к одному классу. Какие проблемы есть у этой нейросети?

```
model = Sequential()
model.add(InputLayer([100, 100, 3]))
model.add(Conv2D(filters=512, kernel_size=(3, 3), kernel_initializer="glorot_uniform"))
model.add(Activation('relu'))
model.add(MaxPool2D(pool size=(2, 2)))
model.add(Conv2D(filters=128, kernel_size=(3, 3), kernel_initializer="glorot_uniform"))
model.add(Activation('relu'))
model.add(Conv2D(filters=32, kernel_size=(3, 3), kernel_initializer="glorot_uniform"))
model.add(Conv2D(filters=32, kernel_size=(1, 1), kernel_initializer="glorot_uniform"))
model.add(MaxPool2D(pool_size=(10, 10)))
model.add(Flatten()) # convert 3d tensor to a vector of features
model.add(Dense(64))
model.add(Dropout(rate=1))
model.add(Dense(10))
model.add(Activation('sigmoid'))
model.add(Dropout(rate=0.5))
```

Вопрос 21. Объясните мем

