TRACCE ESERCITAZIONE 18

1) La seguente tabella elenca i dati sul peso molecolare di un materiale in polipropilene.

Molecular Weight Range (g/mol)	x_i	w_i
8,000-16,000	0.05	0.02
16,000-24,000	0.16	0.10
24,000-32,000	0.24	0.20
32,000-40,000	0.28	0.30
40,000-48,000	0.20	0.27
48,000-56,000	0.07	0.11

Calcolare:

- (a) il peso molecolare medio numerico,
- (b) il peso molecolare medio ponderale
- (c) il grado di polimerizzazione.
- (d) indice di polidispersione

2) È possibile avere un poli(metilmetacrilato) PMMA omopolimero con i seguenti dati di peso molecolare e un grado di polimerizzazione di 527? Perché si o perché no?

Molecular Weight Range (g/mol)	w_i	x_i
8,000-20,000	0.02	0.05
20,000-32,000	0.08	0.15
32,000-44,000	0.17	0.21
44,000-56,000	0.29	0.28
56,000-68,000	0.23	0.18
68,000-80,000	0.16	0.10
80,000-92,000	0.05	0.03

3) La densità e la percentuale di cristallinità associata per due materiali in politetrafluoroetilene sono i seguenti:

ρ (g/cm ³)	crystallinity (%)
1.188	67.3
1.152	43.7

Calcolare:

- a) le densità del politetrafluoroetilene totalmente cristallino e del politetrafluoroetilene totalmente amorfo.
- b) Determinare la percentuale di cristallinità di un campione che ha una densità di 2,26 g/cm³.

4) Per alcuni polimeri viscoelastici che sono sottoposti a prove di rilassamento dello stress, lo stress decade con il tempo secondo:

$$\sigma(t) = \sigma(0) \exp\left(-\frac{t}{\tau}\right)$$

dove $\sigma(t)$ e $\sigma(0)$ rappresentano le sollecitazioni dipendenti dal tempo e quelle iniziali (cioè al tempo 0), rispettivamente, e t e τ indicano il tempo trascorso e il tempo di rilassamento. Un campione di un polimero viscoelastico il cui rilassamento della tensione obbedisce all'equazione scritta prima viene tirato in tensione fino a una deformazione misurata di 0,6; la sollecitazione necessaria per mantenere questa deformazione costante è stata misurata in funzione del tempo. Determinare E_r dopo 10 secondi per questo materiale se il livello di stress iniziale era 2,76 MPa, che è sceso a 1,72 MPa dopo 60 s.

5) La resistenza alla trazione e il peso molecolare peso molecolare per due materiali in polietilene sono i seguenti:

Tensile Strength (MPa)	Number-Average Molecular Weight (g/mol)
85	12,700
150	28,500

Stimare il peso molecolare medio numerico che è necessario per dare una resistenza alla trazione di 195 MPa.

- 6) Per ciascuna delle seguenti coppie di polimeri, tracciare ed etichettare le curve sforzo-deformazione sullo stesso grafico [facendo grafici separati per i punti (a), (b) e (c)].
 - (a) Polipropilene isotattico e lineare con un peso molecolare medio di 120000 g/mol; polipropilene atattico e lineare con un peso molecolare medio di 100000 g/mol
 - (b) PVC ramificato avente un grado di polimerizzazione di 2000; PVC fortemente reticolato avente un grado di polimerizzazione di 2000
- (c) Copolimero poli(stirene-butadiene) random con peso molecolare medio numerico di 100000 g/mol e 10% dei siti disponibili reticolati e testati a 20 °C; copolimero poli(stirene-butadiene) random con peso molecolare medio numerico di 120000 g/mol e 15% dei siti disponibili reticolati e testati a 85C. (Suggerimento: i copolimeri poli(stirene-butadiene) possono avere un comportamento elastomerico).
- 7) Per ciascuna delle seguenti coppie di polimeri dichiara se è possibile determinare se un polimero ha una temperatura di fusione più alta dell'altro
- (a) Polistirene isotattico che ha una densità di 1,12 g/cm³ e un peso molecolare medio di 150000 g/mol; polistirene sindiotattico che ha una densità di 1,10 g/cm³ e un peso molecolare medio di 125000 g/mol
- (b) polietilene lineare con un grado di polimerizzazione di 5000; polipropilene lineare e isotattico con un grado di polimerizzazione di 6500
- (c) Polistirene ramificato e isotattico che ha un grado di polimerizzazione di 4000; polipropilene lineare polipropilene lineare e isotattico con un grado di polimerizzazione di 7500