Lemma 1. With probability at least $1 - \delta$, for any $(h, k) \in [H] \times [K]$, $\mu^s \in BR(\pi^s)$, and $\pi \in \Pi$

$$L_h^{k-1}(\pi^*) - L_h^{k-1}(\pi) \le -2\sum_{s=1}^{k-1} \mathbb{E}_{\xi_h \sim \mu^s}[\ell_{\pi^s}(\pi; \xi_h)] + 2\log(H|\Pi|/\delta).$$

Proof. Given $\pi \in \mathcal{H}$, we denote the random variable $X_{h,\pi}^k$ as

$$X_{h,\pi}^{k} = \log \left(\frac{\mathbb{P}_{h,\pi^{*}}(s_{h+1}^{k} | s_{h}^{k}, a_{h}^{k})}{\mathbb{P}_{h,\pi}(s_{h+1}^{k} | s_{h}^{k}, a_{h}^{k})} \right).$$

Now we define a filtration $\{\mathcal{F}_{h,k}\}_{k=1}^K$ as (B.25) in [1]. Thus we have $X_{h,\pi}^k \in \mathcal{F}_{h,k}$. Therefore, by applying Lemma D.1 in [1], we have that with probability at least $1-\delta$, for any $(h,k) \in [H] \times [K]$, and $\pi \in \Pi$, we have

$$-\frac{1}{2}\sum_{s=1}^{k-1} X_{h,\pi}^s \le \sum_{s=1}^{k-1} \log \mathbb{E} \left[\exp\left\{ -\frac{1}{2} X_{h,\pi}^s \right\} | \mathcal{F}_{h,s-1} \right] + \log(H|\Pi|/\delta). \tag{1}$$

Meanwhile, by (B.27) in [1], for any $\mu^s \in BR(\pi^s)$, the conditional expectation equals to

$$\mathbb{E}\left[\exp\left\{-\frac{1}{2}X_{h,\pi}^{s}\right\} | \mathcal{F}_{h,s-1}\right] = 1 - \mathbb{E}_{(s_{h}^{s}, a_{h}^{s}) \sim \mu^{s}} [D_{H}(\mathbb{P}_{h,\pi^{*}}(\cdot | s_{h}^{s}, a_{h}^{s}) || \mathbb{P}_{h,\pi}(\cdot | s_{h}^{s}, a_{h}^{s}))]. \tag{2}$$

Denote $\mathbb{E}_{(s_h^s, a_h^s) \sim \mu^s}[D_H(\mathbb{P}_{h, \pi^*}(\cdot | s_h^s, a_h^s))|\mathbb{P}_{h, \pi^s}(\cdot | s_h^s, a_h^s))]$ as $\mathbb{E}_{\xi_h \sim \mu^s}[\ell_{\pi^s}(\pi; \xi_h)]$. Using the fact $\log(x) \leq x - 1$ and substituting (2) into (1) finishes the proof.

Initializing a policy set $\mathcal{H}_{\psi} \leftarrow \mathcal{H}_{\text{fin}}$, for all $k, l \in [K]$ with k > l, if $\pi^k \stackrel{\psi}{\sim} \pi^l$, we eliminate π^l from \mathcal{H}_{ψ} . The resulting \mathcal{H}_{ψ} has the following property by its construction:

- $\mathcal{H}_{\psi} \subset \mathcal{H}_{fin}$.
- $n^{\psi}(\mathcal{H}_{\psi}) \leq n^{\psi}(\mathcal{H}_{fin}).$

Lemma 2. If for all $k \in [K]$ such that $\pi^k \in \mathcal{H}_{\psi}$, we have

$$V(\psi(\pi^*), \pi^*) - V(\psi(\pi^k), \pi^k) < c_k$$

where $\{c_k\}_{k\in[K]}$ is a non-increasing sequence. Then, for all $k\in[K]$, we have

$$V(\psi(\pi^*), \pi^*) - V(\psi(\pi^k), \pi^k) < c_k$$

Proof. By definition, for all $k, l \in [K]$ with k > l and $\pi^k \stackrel{\psi}{\sim} \pi^l$, we have

$$V(\psi(\pi^k), \pi^k) = V(\psi(\pi^l), \pi^l).$$

Thus,

$$V(\psi(\pi^*), \pi^*) - V(\psi(\pi^k), \pi^k) = V(\psi(\pi^*), \pi^*) - V(\psi(\pi^l), \pi^l).$$

Note that for all $k \in [K]$ such that $\pi^k \in \mathcal{H}_{\psi}$, we have

$$V(\psi(\pi^*), \pi^*) - V(\psi(\pi^k), \pi^k) < c_k$$

which implies $V(\psi(\pi^*), \pi^*) - V(\psi(\pi^l), \pi^l) \le c_k$. By the construction rule of \mathcal{H}_{ψ} , for all $l \in [K]$ with $\pi^l \notin \mathcal{H}_{\psi}$, we can always find a constant k' such that k' > l and $\pi^{k'} \in \mathcal{H}_{\psi}$. Thus

$$V(\psi(\pi^*), \pi^*) - V(\psi(\pi^l), \pi^l) \le c_{k'} \le c_l.$$

Theorem 3. Given an MDP with generalized eluder coefficient $d_{GEC}(\cdot)$ and a finite hypothesis class \mathcal{H}_{fin} with $\pi^* \in \mathcal{H}_{fin}$, by setting

$$\eta = \sqrt{\frac{d_{\rm GEC}(1/\sqrt{HK})}{\log(Hn^{\psi}(\mathcal{H}_{\rm fin})/\delta) \cdot HK}},$$

the regret of the MEX algorithm applying on \mathcal{H}_{fin} with oracle ψ after K episodes is upper bounded by, with probability at least $1-\delta$,

$$\operatorname{Regret}(K) \lesssim \sqrt{d_{\operatorname{GEC}}(1/\sqrt{HK}) \cdot \log(Hn^{\psi}(\mathcal{H}_{\operatorname{fin}})/\delta) \cdot HK}$$

Proof. We decompose the regret into two terms,

$$\begin{split} \operatorname{Regret}(K) &\triangleq \sum_{k=1}^{K} V(\psi(\pi^*), \pi^*) - V(\psi(\pi^k), \pi^*) \\ &= \underbrace{\sum_{k=1}^{K} V(\psi(\pi^*), \pi^*) - V(\psi(\pi^k), \pi^k)}_{\text{Term (i)}} + \underbrace{\sum_{k=1}^{K} V(\psi(\pi^k), \pi^k) - V(\psi(\pi^k), \pi^*)}_{\text{Term (ii)}}. \end{split}$$

Term (i). By the choice of π^k , we have

$$V(\psi(\pi^*), \pi^*) - \eta \sum_{h=1}^{H} L_h^{k-1}(\pi^*) \le V(\psi(\pi^k), \pi^k) - \eta \sum_{h=1}^{H} L_h^{k-1}(\pi^k)$$

for all $k \in [K]$. Thus,

$$V(\psi(\pi^*), \pi^*) - V(\psi(\pi^k), \pi^k) \le \eta \sum_{h=1}^{H} \left(L_h^{k-1}(\pi^*) - L_h^{k-1}(\pi^k) \right). \tag{3}$$

Applying Lemma 1, we have that with probability at least $1 - \delta$, for any $(h, k) \in [H] \times [K]$ and all $\pi \in \mathcal{H}_{\psi}$,

$$L_h^{k-1}(\pi^*) - L_h^{k-1}(\pi) \le -2\sum_{s=1}^{k-1} \mathbb{E}_{\xi_h \sim \psi(\pi^s)}[\ell_{\pi^s}(\pi; \xi_h)] + 2\log(H|\mathcal{H}_{\psi}|/\delta).$$

Substituting the above equation into (3) gives us, with probability at least $1 - \delta$, for all $k \in [K]$ with $\pi^k \in \mathcal{H}_{\psi}$, we have

$$V(\psi(\pi^*), \pi^*) - V(\psi(\pi^k), \pi^k) \le -2\eta \sum_{k=1}^{H} \sum_{s=1}^{k-1} \mathbb{E}_{\xi_h \sim \psi(\pi^s)} [\ell_{\pi^s}(\pi^k; \xi_h)] + 2H\eta \log(H|\mathcal{H}_{\psi}|/\delta)$$

We define c_k as

$$c_k \triangleq -2\eta \sum_{h=1}^{H} \sum_{s=1}^{k-1} \mathbb{E}_{\xi_h \sim \psi(\pi^s)} [\ell_{\pi^s}(\pi^k; \xi_h)] + 2H\eta \log(H|\mathcal{H}_{\psi}|/\delta).$$

The sequence $\{c_k\}_{k\in[K]}$ is a non-increasing sequence. Applying Lemma 2 gives us, with probability at least $1-\delta$, for all $k\in[K]$, we have

$$V(\psi(\pi^*), \pi^*) - V(\psi(\pi^k), \pi^k) \le c_k.$$

Summing over [K] gives us, with probability $1 - \delta$,

Term (i)
$$\leq \sum_{k=1}^{K} c_k$$

$$= -2\eta \sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s=1}^{k-1} \mathbb{E}_{\xi_h \sim \psi(\pi^s)} [\ell_{\pi^s}(\pi^k; \xi_h)] + 2H\eta \log(H|\mathcal{H}_{\psi}|/\delta)$$

$$\leq -2\eta \sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s=1}^{k-1} \mathbb{E}_{\xi_h \sim \psi(\pi^s)} [\ell_{\pi^s}(\pi^k; \xi_h)] + 2H\eta \log(Hn_{\psi}(\mathcal{H}_{fin})/\delta).$$

Term (ii). Follow the proof of Theorem 4.4 in [1],

Term (ii)
$$\leq 2\eta \sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s=1}^{k-1} \mathbb{E}_{\xi_h \sim \psi(\pi^s)} [\ell_{\pi^s}(\pi^k; \xi_h)] + \frac{d_{\text{GEC}}(\varepsilon_{\text{conf}})}{8\eta} + \sqrt{d_{\text{GEC}}(\varepsilon_{\text{conf}})HK} + \varepsilon_{\text{conf}}HK.$$

Combining Term (i) and Term (ii).

$$\begin{split} \operatorname{Regret}(K) &= \operatorname{Term} \ (\mathrm{i}) + \operatorname{Term} \ (\mathrm{ii}) \\ &\leq 2\eta K H \log(H n^{\psi}(\mathcal{H}_{\operatorname{fin}}) / \delta) + \frac{d_{\operatorname{GEC}}(\varepsilon_{\operatorname{conf}})}{8\eta} + \sqrt{d_{\operatorname{GEC}}(\varepsilon_{\operatorname{conf}}) H K} + \varepsilon_{\operatorname{conf}} H K. \end{split}$$

Set $\varepsilon_{\rm conf} = 1/\sqrt{HK}$ and

$$\eta = \sqrt{\frac{d_{\mathrm{GEC}}(1/\sqrt{HK})}{\log(Hn^{\psi}(\mathcal{H}_{\mathrm{fin}})/\delta) \cdot HK}}$$

leads to the proof.

Bibliography

[1] Zhihan Liu, Miao Lu, Wei Xiong, Han Zhong, Hao Hu, Shenao Zhang, Sirui Zheng, Zhuoran Yang, and Zhaoran Wang. One Objective to Rule Them All: A Maximization Objective Fusing Estimation and Planning for Exploration. may 2023.