强化训练

类型一:角度统一

- 1. (2021·北京卷·★★) 已知函数 $f(x) = \cos x \cos 2x$, 则该函数是()
- (A) 奇函数,最大值为2
- (B) 偶函数,最大值为2
- (C) 奇函数,最大值为 $\frac{9}{8}$
- (D) 偶函数,最大值为 $\frac{9}{8}$
- 2. $(2022 \cdot 福州模拟 \cdot \star \star)$ 已知 $\sin(\alpha \frac{\pi}{4}) = \frac{2\sqrt{5}}{5}$, $\alpha \in (\frac{\pi}{2}, \frac{3\pi}{4})$, 则 $\sin \alpha = .$
- 4. (2022•北京模拟•★★) $\frac{\sin 7^{\circ} + \cos 15^{\circ} \sin 8^{\circ}}{\cos 7^{\circ} \sin 15^{\circ} \sin 8^{\circ}} = .$
- 5. (2022·太原一模·★★) sin 20°+sin 40°= ()
- (A) $\sin 50^{\circ}$ (B) $\sin 60^{\circ}$ (C) $\sin 70^{\circ}$ (D) $\sin 80^{\circ}$

- 6. $(2022 \cdot 北京模拟 \cdot \bigstar \star)$ 已知 α , β 均为锐角, $\cos \alpha = \frac{1}{7}$, $\cos (\alpha + \beta) = -\frac{11}{14}$,则 $\cos \beta = .$
- 7. $(2022 \cdot 延边一模 \cdot ★★★) 若 \sin 2\alpha = \frac{\sqrt{5}}{5}$, $\sin(\beta \alpha) = \frac{\sqrt{10}}{10}$, 且 $\alpha \in [\frac{\pi}{4}, \pi]$, $\beta \in [\pi, \frac{3\pi}{2}]$, 则 $\alpha + \beta = ()$

- (A) $\frac{7\pi}{4}$ (B) $\frac{9\pi}{4}$ (C) $\frac{5\pi}{4}$ $\vec{\mathbb{Q}}\frac{7\pi}{4}$ (D) $\frac{5\pi}{4}$ $\vec{\mathbb{Q}}\frac{9\pi}{4}$

8. $(2022 \cdot$ 郯城月考 $\cdot \star \star \star \star \star$)已知 α , β 为锐角, $\sin(\alpha+2\beta)=\frac{1}{5}$, $\cos\beta=\frac{1}{3}$,则 $\sin(\alpha+\beta)=$ ()

- (A) $\frac{1+8\sqrt{3}}{15}$ (B) $\frac{1\pm8\sqrt{3}}{15}$ (C) $\frac{2\sqrt{6}+2\sqrt{2}}{15}$ (D) $\frac{1-8\sqrt{3}}{15}$

类型二: 名称统一

- (A) $-\frac{6}{5}$ (B) $-\frac{3}{5}$ (C) $\frac{3}{5}$ (D) $\frac{6}{5}$

10. (2021 • T8 联考 • ★★★) 已知 √3 tan 20° + λ cos 70° = 3 , 则 λ 的值为 ()

- (A) $\sqrt{3}$ (B) $2\sqrt{3}$ (C) $3\sqrt{3}$ (D) $4\sqrt{3}$

11. (2019•新课标 I 卷•★★★) 函数 $f(x) = \sin(2x + \frac{3\pi}{2}) - 3\cos x$ 的最小值为.

12. (2022 • 湖南模拟 • ★★★) 已知 x 为锐角,则函数 $f(x) = \sin x \sin 2x$ 的最大值为.

类型三: 次数统一

13.(2022・台州期末・★★)若 $2\cos^2(\alpha-\frac{\pi}{3})+\cos 2\alpha=1$,则 $\tan 2\alpha=$ ()

- (A) $-\frac{\sqrt{3}}{3}$ (B) $\frac{\sqrt{3}}{3}$ (C) $-\sqrt{3}$ (D) $\sqrt{3}$

14.
$$(\bigstar \bigstar)$$
 若 $\tan \frac{\theta}{2} = 2$,则 $\frac{1 + \sin \theta + \cos \theta}{1 + \sin \theta - \cos \theta} = .$

类型四:三大思想综合

15. $(2022 \cdot 曲靖模拟 \cdot \star\star)$ 若 $\alpha \in (0,\frac{\pi}{2})$, $\beta \in (0,\frac{\pi}{2})$, 且 $(1+\cos 2\alpha)(1+\sin \beta)=\sin 2\alpha\cos \beta$,则下列结论 正确的是()

(A)
$$\alpha + \beta = \frac{\pi}{2}$$
 (B) $\alpha + \frac{\beta}{2} = \frac{\pi}{2}$ (C) $2\alpha - \beta = \frac{\pi}{2}$ (D) $\alpha - \beta = \frac{\pi}{2}$

(C)
$$2\alpha - \beta = \frac{\pi}{2}$$

(D)
$$\alpha - \beta = \frac{\pi}{2}$$

16.
$$(\star\star\star)$$
 设 $x\in(0,\frac{\pi}{2})$,则函数 $y=\frac{2\sin^2x+1}{\sin2x}$ 的最小值为.

17.
$$(2022 \cdot 高唐模拟 \cdot \star \star \star \star) \frac{1 + \cos 20^{\circ}}{2 \sin 20^{\circ}} - \sin 10^{\circ} (\frac{1}{\tan 5^{\circ}} - \tan 5^{\circ}) = .$$