Let $S = \{ n \in \mathbf{N} \mid P(n) \text{ is true} \}.$

- If (i) $1 \in S$ and
- if (ii) for all $n \in \mathbb{N}$, $n \in S \Rightarrow n+1 \in S$,

then $S = \mathbf{N}$. (That is, for all $n \in \mathbf{N}$ the statement P(n) is true.)

Example 6.1.1 illustrates how to use the Fundamental Theorem of Mathematical Induction to prove for all $n \in \mathbb{N}$ that the statement P(n) is true. Notice in this example, we first prove that (i) $1 \in S$ and then we prove that (ii) for any $n \in \mathbb{N}$, if $n \in S$, then $n + 1 \in S$.

Example 6.1.1 Prove for all $n \in \mathbb{N}$ that $1 + 2 + \dots + n = \frac{n(n+1)}{2}$.

Proof: Let P(n) be the statement $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$ and let $S = \{n \in \mathbb{N} \mid P(n) \text{ is true}\}.$

- (i) Remark: First we prove that $1 \in S$. For n = 1, the left-hand side of the statement P(1) is 1 and the right-hand side is $\frac{1(1+1)}{2} = \frac{2}{2} = 1$. Consequently, P(1) is true and $1 \in S$.
- (ii) Remark: Next, we prove that for $n \in \mathbb{N}$, $n \in S \Rightarrow n+1 \in S$. Let $n \in \mathbb{N}$ and assume that $n \in S$. Hence, P(n), which is

(1)
$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

is assumed to be true. The statement P(n+1), which we must prove to be true using (1), is

(2)
$$1+2+\cdots+n+(n+1)=\frac{(n+1)((n+1)+1)}{2}=\frac{(n+1)(n+2)}{2}.$$

Grouping the summands on the left-hand side of (2) as shown below and then substituting from (1), we find

$$(1+2+\cdots+n)+(n+1)=\frac{n(n+1)}{2}+(n+1)$$
$$=(n+1)\left(\frac{n}{2}+1\right)=\frac{(n+1)(n+2)}{2}.$$

That is, if (1) is true, it follows that (2) is true and therefore $n + 1 \in S$.

Since the hypotheses (i) and (ii) of the Fundamental Theorem of Mathematical Induction are true, the conclusion $S=\mathbf{N}$ is true. Consequently, the statement P(n) is true for all $n\in\mathbf{N}$ —that is, $1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n\in\mathbf{N}$.

Instead of defining S to be the set of all natural numbers n such that the statement P(n) is true, proofs by mathematical induction are usually presented in the following logically equivalent, but less formal, form.