

COURSE DESCRIPTION FORM: CS-1005: Discrete Structures

INSTITUTION FAST School of Computing, National University of Computer and Emerging Sciences, Islamabad Campus

PROGRAM TO BE EVALUATED

BS-AI, DS Spring 2024

Course Description

	Г					
Course Code	CS-1005					
Course Title	Discrete Structures					
Credit Hours	3					
Course Instructors	Saira Qamar					
	Zonera Anjum	Zonera Anjum				
Grading Policy	Absolute Grading					
Policy about missed assessment items in the course	Retake of missed assessment items (other than sessional/ final exam) will not be held. Student who misses an assessment item (other than sessional / final exam) is awarded zero marks in that assessment item i.e. late submission will not be accepted.					
	For missed sessional/ final exam, exam retake/ pretake application along with necessary evidence are required to be submitted to the department secretary. The examination assessment and retake committee decides the exam retake/ pretake cases.					
Course Plagiarism Policy	Plagiarism in project or sessional/ final exam will result in F grade in the course. Plagiarism in an assignment will result in zero marks in the whole assignments category.					
Prerequisites by Course(s) or Topics	None					
Assessment	Assessment with the weight.					
Instruments with Weights	Assessment Type	Weight				
(homeworks,	Grand Quizzes /Assignments	10				
quizzes, sessional	Sessional Exams (2)	25				
exams, final exam, assignments, etc.)	Quizzes	10				
acoignimonito, oto.)	Class Participation	5				
	Final Exam	50				
Course Coordinator	Saira Qamar, Zonera Anjum					
URL (if any)	https://classroom.google.com/c/NjI4MT	Y5MTI2OTU1?cjc=uimdqd6				
Course Catalog Description	'Discrete Mathematics' is the study of mathematical structures that are inherently <i>discretized</i> , i.e. have countable states. In this course, we will examine one of the central branches of Discrete Mathematics — Mathematical Logic — in the utmost detail. Topics include propositional logic, predicate logic, proof techniques, undecidability, program verification, and					

	program proofs. The theme of the course is the rigorous treatment of computing and the realizations that emerge through formalism – as such, we will continually discuss Russel's Paradox, the Halting Problem, and Godel's Theorems. Further topics include an introduction to second-order logic.						
Textbook	"Logic in Computer Science" (2 nd Edition) Michael Huth, Mark Ryan.						
Reference Material	"Mathema	ory Logic and Sets for Comp etical Logic for Computer Scie tional Complexity".		Nimal Nissanke. Zhongwan Lu. Christos Papadimitriou.			
Course Goals	A Cour	as I samin a Outsamas (CI	0-1				
	A. Cour	se Learning Outcomes (CL	Os)				
	After cou	urse completion, the students	shall be able to	D:			
	1. Ехрі	ess a logic sentence in term	s of predicates,	quantifiers and logical connectives.			
	2. App		I reasoning to p	practical problems related to offered			
	3. Appl	y mathematical induction to	orove properties	s of sequences, recursive relations			
	4. Apply graph theory concepts to compute network related metrics and develop solutions for computing applications related to the program						
	B. Program Learning Outcomes (PLOs)						
	PLO 1	Computing and Artificial Intelligence Knowledge	computing f specialization	edge of mathematics, natural sciences, fundamentals, and a computing to solve complex computing ag artificial intelligence techniques.			
	PLO 2	Problem Analysis	complex co substantiated	omputational problems, reaching conclusions using first principles of natural sciences, computing, and ligence.			
	PLO 3	Design/Develop Solutions	and design sy that meet so consideration societal, and e	ons for complex computing problems ystems, components, and processes specified needs with appropriate for public health and safety, cultural, environmental considerations.			
	PLO 4	Investigation & Experimentation	problems using research based				
	PLO 5	Modern Tool Usage	resources and intelligence	, and apply appropriate techniques, d modern computing and artificial tools, including prediction and complex computing problems.			
	PLO 6						

NCEAC.FORM 001-

		and cultural issues relevant to context of complex computing problems.
PLO 7	Environment and Sustainability	Understand and evaluate sustainability and impact of professional computing and artificial intelligence work in solving complex computing problems.
PLO 8	Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of computing and artificial intelligence practice.
PLO 9	Individual and Team Work	Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
PLO 10	Communication	Communicate effectively on complex computing and AI activities with the computing and artificial intelligence community and with society at large.
PLO 11	Project Management and Finance	Demonstrate knowledge and understanding of management principles and economic decision making and apply these to one's own work as a member or a team.
PLO 12	Life Long Learning	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological changes.

C. Mapping of CLOs to PLOs (CLO: Course Learning Outcome, PLOs: Program Learning Outcomes)													
			PLOs										
		1	2	3	4	5	6	7	8	9	10	11	12
CLOs	1	✓											
	2		✓										
	3		✓										
	4			✓									

Topics covered in the course (assume 15-week instruction and 3 contact hours per

1. Topics to be covered:						
List of Topics	No. of Weeks	Contact Hours	CLO(s)			
Introduction – Discrete Mathematics, Logic, and Formalism	0.5	1.5	1			
Fundamentals of Propositional Logic	1	3	1			

week)

NCEAC.FORM 001-

	Propositional Lo	ogic Transformational	1	3	2		
	Propositional Lo	3	9	2	-		
	Predicate Logic and Tableaux	3	9	1, 2			
	Mathematical In	Mathematical Inductions Graph Theory			3		
	Graph Theory				4		
	Undecidability -	1	3	1,4			
	Fundamentals of Verification	2	6	2			
	Loop Invariants Correctness Pro	1.5	4.5	2			
	Total	15	45				
Programming Language for Assignments	None.						
Class Time Spent (in percentage)	Theory	Problem Analysis	Solution	on Design	Social and Ethical Issues		
	55	20	20		5		
Oral and Written Communications		equired to submit at lea o make1 oral pre					