选最大与最小

选择问题

输入:集合L(含n个不等的实数)

输出: L中第 i 小元素

i=1, 称为最小元素

i=n,称为最大元素

位置处在中间的元素,称为中位元素 n为奇数,中位数唯一,i = (n+1)/2 n为偶数,可指定 i = n/2+1

选最大

算法: 顺序比较

输出: max = 17, k=4

算法最坏情况下的时间W(n)=n-1

伪码

算法 Findmax

输入: n 个数的数组 L

输出: max, k

- 1. $max \leftarrow L[1]$
- 2. for $i \leftarrow 2$ to n do
- 3. If max < L[i]
- 4. then $max \leftarrow L[i]$
- 5. $k \leftarrow i$
- 6. return max, k

选最大最小

通常算法:

- 1. 顺序比较,先选最大 max
- 2. 顺序比较,在剩余数组中选最小 min,类似于选最大算法,但比较时保留较小的数

时间复杂性:

$$W(n) = n-1 + n-2 = 2n-3$$

分组算法

伪码

算法 FindMaxMin

输入: n个数的数组L

输出: max, min

- 1. 将n个元素两两一组分成 $\lfloor n/2 \rfloor$ 组
- 2. 每组比较,得到 [*n*/2] 个较小和 [*n*/2] 个较大
- 3. 在 [n/2] 个较大(含轮空元素)中 找最大 max
- 4. 在 [n/2] 个较小(含轮空元素) 中 找最小 min

最坏情况时间复杂度

行2 的组内比较: $\lfloor n/2 \rfloor$ 次

行3--4 求 max 和 min 比较:

至多
$$2\lceil n/2\rceil - 2$$
次

$$W(n) = \lfloor n/2 \rfloor + 2 \lceil n/2 \rceil - 2$$
$$= n + \lceil n/2 \rceil - 2$$
$$= \lceil 3n/2 \rceil - 2$$

分治算法

- 1. 将数组 L从中间划分为两个 子数组 L_1 和 L_2
- 2. 递归地在 L_1 中求最大 max_1 和 min_1
- 3. 递归地在 L_2 中求最大 max_2 和 min_2
- 4. $max \leftarrow max\{ max_1, max_2 \}$
- 5. $min \leftarrow min\{min_1, min_2\}$

最坏情况时间复杂度

假设
$$n = 2^k$$
,
$$W(n) = 2W(n/2) + 2$$

$$W(2) = 1$$
解 $W(2^k) = 2W(2^{k-1}) + 2$

$$= 2[2W(2^{k-2}) + 2] + 2$$

$$= 2^2W(2^{k-2}) + 2^2 + 2 = \dots$$

$$= 2^{k-1} + 2^{k-1} + \dots + 2^2 + 2$$

$$= 3 \cdot 2^{k-1} - 2 = 3n/2 - 2$$

选择算法小结

选最大: 顺序比较, 比较次数 n-1

选最大最小

- 选最大+选最小,比较次数 2n-3
- 分组: 比较次数 [3n/2]-2]
- 分治: $n=2^k$, 比较次数 3n/2-2

选第二大

选第二大

输入: n个数的数组 L

输出:第二大的数 second

通常算法: 顺序比较

- 1. 顺序比较找到最大 max
- 2. 从剩下 n −1个数中找最大,就 是第二大second

时间复杂度:

$$W(n) = n - 1 + n - 2 = 2n - 3$$

提高效率的途径

- 成为第二大数的条件: 仅在与最大数的比较中被淘汰.
- 要确定第二大数,必须知道最大数.
- 在确定最大数的过程中记录下被最大数直接淘汰的元素.
- 在上述范围(被最大数直接淘汰的数)内的最大数就是第二大数.
- 设计思想: 用空间换时间.

锦标赛算法

- 1. 两两分组比较,大者进入下一轮, 直到剩下 1个元素 max 为止
- 2. 在每次比较中淘汰较小元素,将被淘汰元素记录在淘汰它的元素的链表上
- 3. 检查 max 的链表,从中找到最大元,即second

算法 FindSecond

输入:n个数的数组L,输出:second

- 1. $k \leftarrow n$ // 参与淘汰的元素数
- 2. 将k个元素两两1组,分成 $\lfloor k/2 \rfloor$ 组
- 3. 每组的2个数比较,找到较大数
- 4. 将被淘汰数记入较大数的链表
- 5. if k 为奇数 then $k \leftarrow \lfloor k/2 \rfloor + 1$
- 6. else $k \leftarrow |k/2|$
- 7. if k>1 then goto 2
- **8.** *max* ←最大数
- 9. $second \leftarrow max$ 的链表中的最大

淘

汰

实例

时间复杂度分析

命题1 设参与比较的有t个元素,经过i轮淘汰后元素数至多为 $\lceil t/2^i \rceil$.

证 对
$$i$$
 归纳. $i=1,$ 分 $\lfloor t/2 \rfloor$ 组,淘汰 $\lfloor t/2 \rfloor$ 个元素,进入下一轮元素数是 $t-\lfloor t/2 \rfloor = \lceil t/2 \rceil$

假设 i 轮分组淘汰后元素数至多为 $\lceil t/2^i \rceil$,那么 i+1 轮分组淘汰后元素数为 $\lceil \lceil t/2^i \rceil/2 \rceil = \lceil t/2^{i+1} \rceil$

时间复杂度分析(续)

命题2 max 在第一阶段分组比较中总计进行了 $\lceil \log n \rceil$ 次比较.

证 假设到产生 max 时总计进行 k 轮淘汰,根据命题 $1有 \lceil n/2^k \rceil = 1$.

若
$$n=2^d$$
, 那么有 $k=d=\log n=\lceil \log n \rceil$

若
$$2^d < n < 2^{d+1}$$
, 那么 $k = d + 1 = \lceil \log n \rceil$

时间复杂度分析(续)

第一阶段元素数: *n* 比较次数: <u>*n*-1</u> 淘汰了 *n*-1个元素

第二阶段:元素数 $\lceil \log n \rceil$ 比较次数: $\lceil \log n \rceil - 1$ 淘汰元素数为 $\lceil \log n \rceil - 1$

时间复杂度是

$$W(n) = n - 1 + \lceil \log n \rceil - 1$$

= $n + \lceil \log n \rceil - 2$.

小结

求第二大算法

- 调用2次找最大: 2n-3
- 锦标赛算法: $n + \lceil \log n \rceil 2$

主要的技术:用空间换时间

一般选择问题的算法设计

一般性选择问题

问题:选第 k 小.

输入:数组S,S的长度n,正整数k,

 $1 \le k \le n$.

输出: 第 k 小的数

实例 1

 $S=\{3,4,8,2,5,9,18\}, k=4, \text{ } \text{\mathbb{R}: 5}$

实例 2

统计数据的集合S,|S|=n, 选中位数, $k=\lceil n/2 \rceil$

一个应用: 管道位置

问题:某区域有n口油井,需要修建输油管道.根据设计要求,水平方向有一条主管道,每口油井修一条垂直方向的支管道通向主管道.如何选择主管道的位置,以使得支管道长度的总和最小?

最优解:Y坐标的中位数

下移后支管线总长度增加

简单的算法

算法一:

调用k次选最小算法 时间复杂度为O(kn)

算法二:

先排序,然后输出第k小的数时间复杂度为 $O(n \log n)$

分治算法

假设元素彼此不等,设计思想:

- 1. 用某个元素 m^* 作为标准将 S 划分成 S_1 与 S_2 ,其中 S_1 的元素小于 m^* , S_2 的元素大于等于 m^* .
- 2. 如果 $k \le |S_1|$,则在 S_1 中找第 k 小. 如果 $k = |S_1|+1$,则 m^* 是第 k 小如果 $k > |S_1|+1$,则在 S_2 中找第 $k-|S_1|-1$ 小

算法效率取决于子问题规模, 如何通过m*控制子问题规模?

m*的选择与划分过程

A: 数需要与m*比大小,B: 数大于m*

C: 数小于 m^* , D:数需要与 m^* 比大小

实例: n=15, k=6

8, 7, 10, 4 需要与9比较

归约为子问题

子问题

8 7 5 3 2 6 1 4

子问题规模 = 8, k=6

算法 Select (S, k)

伪码

输入:数组S,正整数k,

输出: S 中的第 k 小元素

- 1. 将S分5个一组,共 $n_M = \lceil n/5 \rceil$ 组
- 2. 每组排序,中位数放到集合 M
- 3. $m^* \leftarrow \text{Select}(M, \lceil |M|/2 \rceil) //S / A, B, C, D$
- 4. A,D元素小于m*放 S_1 ,大于m*放 S_2
- 5. $S_1 \leftarrow S_1 \cup C$; $S_2 \leftarrow S_2 \cup B$ 划分
- 6. if $k = |S_1| + 1$ then 输出 m^*
- 7. else if $k \leq |S_1|$ \leftarrow 递归计算子问题
- 8. then Select (S_1, k)
- 9. else Select $(S_2, k |S_1| 1)$

小结

选第k小的算法:

- 分治策略
- 确定*m**
- 用m*划分数组归约为子问题
- 递归实现

选择问题的 算法分析

伪码

算法 Select (S, k)

- 1. 将S分5个一组,共 $n_M = \lceil n/5 \rceil$ 组
- 2. 每组排序,中位数放到集合 M
- 3. $m^* \leftarrow \text{Select}(M, \lceil |M|/2 \rceil) //S / A, B, C, D$
- 4. A,D元素小于m*放 S_1 ,大于m*放 S_2
- 5. $S_1 \leftarrow S_1 \cup C$; $S_2 \leftarrow S_2 \cup B$
- 6. if $k = |S_1| + 1$ then 输出 m^*
- 7. else if $k \leq |S_1|$
- 8. then Select (S_1, k)
- 9. else Select $(S_2, k |S_1| 1)$

用m*划分

$$n = 5 (2r + 1), |A| = |D| = 2r$$

子问题规模至多: $2r+2r+3r+2 = 7r+2$

子问题规模估计

不妨设 n = 5(2r + 1), |A| = |D| = 2r,

$$r = \frac{n/5-1}{2} = \frac{n}{10} - \frac{1}{2}$$

划分后子问题规模至多为

$$\frac{7r+2}{10} = 7\left(\frac{n}{10} - \frac{1}{2}\right) + 2$$
$$= \frac{7n}{10} - \frac{3}{2} < \frac{7n}{10}$$

时间复杂度递推方程

算法工作量 W(n)

行2: O(n) //每5个数找中位数,构成M

行3: W(n/5) // M 中找中位数 m*

行4: O(n) // 用m*划分集合 S

行8-9: W(7n/10) //递归

 $W(n) \le W(n/5) + W(7n/10) + O(n)$

递归树

W(n)=W(n/5)+W(7n/10)+cn

.

$$W(n) \le cn (1+0.9+0.9^2+...)=O(n)$$

讨论

分组时为什么5个元素一组? 3个一组或7个一组行不行?

分析: 递归调用

- 1. 求 m*的工作量与 |M| = n/t 相 关,t 为每组元素数. t大,|M|小
- 2. 归约后子问题大小与分组元素 数*t* 有关. *t* 大,子问题规模大

3分组时的子问题规模

假设 t = 3, 3个一组:

$$n=3(2r+1)$$

$$r = (n/3 - 1)/2 = n/6 - 1/2$$

子问题规模最多为 4r+1= 4n/6-1

算法的时间复杂度

算法的时间复杂度满足方程 W(n) = W(n/3) + W(4n/6) + cn 由递归树得 $W(n) = \Theta(n \log n)$

关键:

/M/与归约后子问题规模之和小于<math>n,递归树每行的工作量构成公比小于1的等比级数,算法复杂度才是O(n).

小结

选第 k 小算法的时间分析

- 递推方程
- 分组时每组元素数的多少对时间复杂度的影响

卷积及其应用

向量计算

给定向量
$$a = (a_0, a_1, ..., a_{n-1})$$

 $b = (b_0, b_1, ..., b_{n-1})$
向量和 $a+b = (a_0+b_0, a_1+b_1, ..., a_{n-1}+b_{n-1})$
内积 $a\cdot b = a_0b_0 + a_1b_1 + ... + a_{n-1}b_{n-1}$
卷积 $a*b = (c_0, c_1, ..., c_{2n-2})$,其中
 $c_k = \sum a_ib_i$, $k = 0,1,...,2n-2$

i,j < n

卷积的含义

在下述矩阵中,每个斜线的项之和恰好是卷积中的各个分量

计算实例

向量
$$a = (1, 2, 4, 3), b = (4, 2, 8, 0)$$

则
$$a+b=(5,4,12,3)$$

 $a\cdot b=(4,4,32,0)$

$$a*b = (4, 10, 28, 36, 38, 24, 0)$$

	ab_0	ab_1	ab_2	ab_3
	1×4	1×2	1×8	1×0
a_1b	2×4	2×2	2×8	2×0
a_2b	4×4	4×2	4×8	4×0
_	3×4	3×2	3×8	3×0
<i>c</i> –	· 4×4 + '	2×2 ±1×	9 - 29	

-

卷积与多项式乘法

多项式乘法:
$$C(x) = A(x) B(x)$$

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{m-1} x^{m-1}$$

$$B(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}$$

$$C(x) = \underline{a_0 b_0 + (a_0 b_1 + a_1 b_0) x + \dots}$$

$$+ a_{m-1} b_{n-1} x^{m+n-2}$$

其中 x^k 的系数

$$c_k = \sum_{\substack{i+j=k\\i\in\{0,1,\dots,m-1\}\\j\in\{0,1,\dots,n-1\}}} a_i b_j, \quad k = 0, 1, \dots, m+n-2$$

卷积应用: 信号平滑处理

由于噪音干扰,对信号需要平滑处理

平滑处理

信号向量: $a=(a_0, a_1, \ldots, a_{m-1})$

$$b = (b_{2k}, b_{2k-1}, ..., b_0) = (w_{-k}, ..., w_k)$$

$$a_{i}' = \sum_{s=-k}^{k} a_{i+s} b_{k-s} = \sum_{s=-k}^{k} a_{i+s} w_{s}$$

把向量 b 看作2k+1长度窗口在a上移动计算 a*b, 得到 $(a_0', a_1', ..., a_{m-1}')$. 有少数项有误差.

实例

信号向量:
$$a = (a_0, a_1, \dots, a_8)$$

步长: $k = 2$
权值: $w = (w_{-2}, w_{-1}, w_0, w_1, w_2)$
 $= (b_4, b_3, b_2, b_1, b_0)$
 $a_i' = a_{i-2}b_4 + a_{i-1}b_3 + a_ib_2 + a_{i+1}b_1 + a_{i+2}b_0$
下标之和为 $i + k$

$$a_{i}' = a_{i-2}b_4 + a_{i-1}b_3 + a_{i}b_2 + a_{i+1}b_1 + a_{i+2}b_0$$
 $a_{0}b_{0}$ $a_{0}b_{1}$ $a_{0}b_{2}$ $a_{0}b_{3}$ $a_{0}b_{4}$ a_{2}'
 $a_{1}b_{0}$ $a_{1}b_{1}$ $a_{1}b_{2}$ $a_{1}b_{3}$ $a_{1}b_{4}$
 $a_{2}b_{0}$ $a_{2}b_{1}$ $a_{2}b_{2}$ $a_{2}b_{3}$ $a_{2}b_{4}$ a_{4}'
 $a_{3}b_{0}$ $a_{3}b_{1}$ $a_{3}b_{2}$ $a_{3}b_{3}$ $a_{3}b_{4}$ a_{5}'
 $a_{4}b_{0}$ $a_{4}b_{1}$ $a_{4}b_{2}$ $a_{4}b_{3}$ $a_{4}b_{4}$
 $a_{5}b_{0}$ $a_{5}b_{1}$ $a_{5}b_{2}$ $a_{5}b_{3}$ $a_{5}b_{4}$
 $a_{6}b_{0}$ $a_{6}b_{1}$ $a_{6}b_{2}$ $a_{6}b_{3}$ $a_{6}b_{4}$
 $a_{7}b_{0}$ $a_{7}b_{1}$ $a_{7}b_{2}$ $a_{7}b_{3}$ $a_{7}b_{4}$
 $a_{8}b_{0}$ $a_{8}b_{1}$ $a_{8}b_{2}$ $a_{8}b_{3}$ $a_{8}b_{4}$

小结

- 卷积的定义
- 卷积与多项式乘法的关系
- 卷积的应用——信号平滑处理

卷积计算

卷积计算: 蛮力算法

向量
$$a=(a_0,a_1,...,a_{n-1})$$
和 $b=(b_0,b_1,...,b_{n-1})$
 $A(x)=a_0+a_1x+a_2x^2+...+a_{n-1}x^{n-1}$
 $B(x)=b_0+b_1x+b_2x^2+...+b_{n-1}x^{n-1}$
 $C(x)=A(x)B(x)$
 $=a_0b_0+(a_0b_1+a_1b_0)x+...+a_{n-1}b_{n-1}x^{2n-2}$
 $C(x)$ 的系数向量就是 $a*b$.

卷积 a*b 计算等价于多项式相乘

蛮力算法的时间: $O(n^2)$

计算2n-1次多项式C(x)

- 1. 选择值 $x_0, x_1, \dots, x_{2n-1}$, 求出 $A(x_j)$ 和 $B(x_j)$, $j = 0, 1, \dots, 2n-1$ 主要步骤:多项式求值
- 2. 对每个j,计算 $C(x_j)=A(x_j)B(x_j)$
- 3. 利用多项式插值方法,由C(x) 在 $x = x_0, x_1, ..., x_{2n-1}$ 的值求出多项式 C(x)的系数

高斯滤波的权值函数

高斯滤波的权值函数为

$$w_s = \frac{1}{z} e^{-s^2}, \quad s = 0, \pm 1, ..., \pm k$$

 $w = (w_{-k}, ..., w_{-1}, w_0, w_1, ..., w_k)$

其中 z 用于归一化处理,使所有的权值之和为1. 处理结果

$$a_i' = \sum_{s=-k}^k a_{i+s} w_s$$

2n个数的选择:1的2n次根

$$\omega_{j} = e^{\frac{2\pi j}{2n}i} = e^{\frac{\pi j}{n}i}$$

$$= \cos \frac{\pi j}{n} + i \sin \frac{\pi j}{n}$$

$$j = 0,1,...,2n-1, i = \sqrt{-1}$$

n=4的实例

$$\omega_0 = 1,$$
 $\omega_1 = e^{\frac{\pi}{4}i} = \sqrt{2}/2 + \sqrt{2}/2 \cdot i,$ $\omega_2 = e^{\frac{\pi}{2}i} = i,$ $\omega_3 = e^{\frac{3\pi}{4}i} = -\sqrt{2}/2 + \sqrt{2}/2 \cdot i,$

$$\omega_4 = e^{\pi i} = -1, \ \omega_5 = e^{\frac{5\pi}{4}i} = -\sqrt{2}/2 - \sqrt{2}/2 \cdot i,$$

$$\omega_6 = e^{\frac{3\pi}{2}i} = -i, \, \omega_7 = e^{\frac{7\pi}{4}i} = \sqrt{2} / 2 - \sqrt{2/2} \cdot i$$

快速傅立叶变换FFT

- 1. 对 $x=1, \omega_1, \omega_2, \ldots, \omega_{2n-1}$, 分别计算 A(x), B(x)
- 2. 利用步1的结果对每个 $x = 1, \omega_1, \omega_2, \ldots, \omega_{2n-1}$,计算 C(x),得到 $C(1) = d_0, C(\omega_1) = d_1, \ldots, C(\omega_{2n-1}) = d_{2n-1}$
- 3. 构造多项式 $D(x) = d_0 + d_1 x + d_2 x^2 + ... + d_{2n-1} x^{2n-1}$
- 4. 対 $x=1, \omega_1, \omega_2, ..., \omega_{2n-1}$, 计算D(x), $D(1), D(\omega_1), ..., D(\omega_{2n-1})$

快速傅立叶变换FFT (续)

可以证明:

$$D(1) = 2n c_0$$

$$D(\omega_1) = 2n c_{2n-1}$$
...
$$D(\omega_{2n-1}) = 2nc_1$$

$$C_0 = D(1)/2n$$

$$c_{2n-1} = D(\omega_1)/2n$$
...
$$c_1 = D(\omega_{2n-1})/2n$$

知道了D(x)的值,就能求C(x)的系数

算法的关键

 $\diamondsuit x = 1, \omega_1, \omega_2, \ldots, \omega_{2n-1},$

- 步 1对 2n个x值分别求值多项式 A(x), B(x)
- 步2 做 2n次乘法
- 步3 对2n个x值求值多项式D(x)

关键:一个对所有的x 快速多项式求值算法

小结

卷积计算

- 蛮力算法 $O(n^2)$
- 快速傅立叶变换FFT算法 确定x的取值: 1 的 2n 次根 关键步骤: 多项式对x求值

如何设计多项式求值的快速算法?

快速傅立叶 变换:FFT算法

多项式求值算法

给定多项式:

$$A(x)=a_0+a_1x+...+a_{n-1}x^{n-1}$$

设x为1的2n次方根,对所有的x计算A(x)的值.

算法1: 对每个x 做下述运算: 依次计算每个项 $a_i x^i$, i=1,...,n-1 对 $a_i x^i$ (i=0,1,...,n-1)求和.

蛮力算法的时间复杂度

$$T_1(n) = O(n^3)$$

改进的求值算法

算法2: 依次对 每个x 做下述计算

$$\underline{A_1(x)} = a_{n-1}$$

$$A_2(x) = a_{n-2} + x \underline{A_1(x)} = a_{n-2} + a_{n-1}x$$

$$A_3(x) = a_{n-3} + xA_2(x) = a_{n-3} + a_{n-2}x + a_{n-1}x^2$$

• • •

$$A_n(x) = a_0 + x A_{n-1}(x) = A(x)$$

时间复杂度

$$T_2(n) = O(n^2)$$

偶系数与奇系数多项式

$$n=4$$

$$A(x)=a_0+a_1x+a_2x^2+a_3x^3$$

 $A_{\text{even}}(x)=a_0+a_2x$
 $A_{\text{odd}}(x)=a_1+a_3x$

$$A(x) = A_{\text{even}}(x^2) + xA_{\text{odd}}(x^2)$$
$$= a_0 + a_2 x^2 + x(a_1 + a_3 x^2)$$

分治多项式求值算法

一般公式 (n为偶数)

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

$$A_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + \dots + a_{n-2} x^{(n-2)/2}$$

$$A_{\text{odd}}(x) = a_1 + a_3 x + a_5 x^2 + \dots + a_{n-1} x^{(n-2)/2}$$

$$A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2)$$

- x^2 也是1 的 2n 次根
- 偶次数与奇次数多项式计算作为 n/2 规模的子问题,然后利用子问题的解 $A_{\text{even}}(x^2)$ 与 $A_{\text{odd}}(x^2)$ 得到 A(x) 5

分治求值算法设计

算法 3:

- 1. 计算 1 的所有的 2n 次根 $1, \omega_1, \omega_2, ..., \omega_{2n-1}$
- 2. 分别计算 $A_{\text{even}}(x^2)$ 与 $A_{\text{odd}}(x^2)$
- 3. 利用步2 的结果计算 A(x) $A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2)$

注意: x²不需要重新计算,所有根在单位圆间隔分布,隔一取一即可.

分治求值算法分析

$$T(n) = T_1(n) + f(n)$$

 $f(n) = O(n)$ 是步 1 计算 $2n$ 次根的时间

递归过程
$$T_1(n) = 2T_1(n/2) + g(n)$$
 $T_1(1) = O(1)$, $g(n) = O(n)$ 是对所有 $2n$ 次根在步 3 组合解的时间

$$T_1(n)=O(n\log n)$$

$$T(n)=O(n\log n)+O(n)=O(n\log n)$$

FFT算法伪码

- 1. 求值 $A(\omega_i)$ 和 $B(\omega_i)$,j=0,1,...,2n-1
- 2. 计算 $C(\omega_i)$, j=0, 1, ..., 2n-1
- 3. 构造多项式

$$D(x)=C(\omega_0)+C(\omega_1)x+...+C(\omega_{2n-1})x^{2n-1}$$

- 4. 计算所有的 $D(\omega_i)$, j = 0,1,...,2n-1
- 5. 利用下式计算C(x)的系数 c_i ,

$$D(\omega_j) = 2nc_{2n-j}$$

 $j = 0, 1, ..., 2n-1$

FFT算法分析

步1: 求值 $A(\omega_i)$ 和 $B(\omega_i)$ $O(n \log n)$

步2: 计算所有的 $C(\omega_i)$ O(n)

步3:

步4: 计算所有的 $D(\omega_i)$ $O(n\log n)$

步5: 计算所有的 c_i O(n)

算法时间为 $O(n\log n)$

小结

• 多项式求值算法

蛮力算法: $O(n^3)$

改进的求值算法: $O(n^2)$

FFT算法: O(nlogn)

• FFT算法的设计与分析

平面点集的凸包

平面点集的凸包

问题(平面点集的凸包) 给定大量离散点的集合Q,求一个最 小的凸多边形,使得Q中的点在该多 边形内或者边上.

应用背景

图形处理中用于形状识别:字形识别、碰撞检测等

分治算法

1. 以连接最大纵坐标点 y_{max} 和最小 纵坐标点 y_{min} 的线段 $d=\{y_{\text{max}},y_{\text{min}}\}$ 划 分L 为左点集 L_{left} 和右点集 L_{right}

2. Deal (L_{left}) ; Deal (L_{right})

Deal (L_{left})

考虑 L_{left} : 确定距d 最远的点P 在三角形内的点,删除; a 外的点与 a 构成 L_{left} 的子问题; b 外的点与 b 构成 L_{left} 的子问题.

4

伪码

${f Deal}\,(\,L_{left}\,)$

- 1. 以 d 和距离 d 最远点 P 构成三角形,P加入凸包,另外两条边分别记作 a 和 b
- 2. 检查 L_{left} 中其他点是否在三角形内; 在则从 L中删除; 否则根据在 a 或 b 边的外侧划分在两个子问题中
- 3. **Deal** (*a*)
- **4.** Deal (*b*)

算法分析

- 初始用d 划分 O(n)
- Deal 递归调用 W(n)
 - 找凸包顶点 P O(n)
 - 根据点的位置划分子问题 O(n)

•
$$W(n) = W(n-1) + O(n)$$
$$W(3) = O(1)$$

最坏情况为 $O(n^2)$

$$T(n) = O(n) + W(n) = O(n^2)$$

• Graham扫描算法 O (nlogn)

小结: 分治算法设计

 将原问题归约为子问题 直接划分注意尽量均衡 通过计算归约为特殊的子问题 子问题与原问题具有相同的性质 子问题之间独立计算

算法实现:递归或迭代实现注意递归执行的边界

小结:分治算法的 分析及改进

- 时间复杂度分析 给出关于时间复杂度函数的 递推方程和初值 求解方程
- 提高效率的途径 减少子问题个数 预处理

重要的分治算法

- 检索算法: 二分检索
- 排序算法: 快速排序、二分归并排序
- 选择算法
- 快速傅立叶变换 FFT 算法
- 平面点集的凸包