Package 'APIS'

October 2, 2024

Type Package

```
Title Auto-Adaptive Parentage Inference Software Tolerant to Missing
     Parents
Version 2.0.7
Description Parentage assignment package.
     Parentage assignment is performed based on observed average Mendelian transmission probabil-
     ity distributions or Exclusion.
     The main functions of this package are the func-
     tion APIS_2n(), APIS_3n() and launch_APIShiny(), which perform parentage assignment.
License GPL
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
Imports cowplot, data.table, doParallel, dplyr, DT, foreach, ggplot2,
     gridExtra, htmltools, methods, plotly, rlang, shiny,
     shinythemes
Depends R (>= 3.5.0), shinyBS
NeedsCompilation yes
Author Julien Roche [aut, cre],
     Ronan Griot [aut],
     Mathieu Besson [aut],
     François Allal [aut],
     Marc Vandeputte [aut],
     Jonathan D'Ambrosio [aut],
     Romain Morvezin [aut],
     Florence Phocas [aut],
     Sophie Brard-Fudulea [aut],
     Pierrick Haffray [aut]
Maintainer Julien Roche < julien.roche@inrae.fr>
Repository CRAN
Date/Publication 2024-10-02 12:10:06 UTC
```

2 APIS_2n

Contents

Index		12
	simulate_offspring	10
	plot_probabilities	10
	plot_mismatches	9
	plot_delta	9
	launch_APIShiny	8
	import_from_vcf	8
	import_from_ped	7
	assignment_power	6
	APIS_sire	6
	APIS_offspring3n	5
	APIS_offspring	5
	APIS_dam	5
	APIS_3n	3
	APIS_2n	2

APIS_2n

APIS for diploids

Description

APIS for diploids

Usage

```
APIS_2n(
  offspring_genotype,
  sire_genotype,
  dam_genotype,
  method = "mendel",
  exclusion_threshold = NULL,
  error = 0.05,
  simulation_if_small = FALSE,
  number_offspring_simulated = max(0, 500 - nrow(offspring_genotype)),
  number_cores = 2,
  verbose = FALSE
)
```

Arguments

```
offspring_genotype
matrix of the offspring genotypes
sire_genotype matrix of the sire genotypes
dam_genotype matrix of the offspring genotypes
```

APIS_3n

```
method: "mendel" i.e. likelihood or "exclusion" (default: "mendel"). Can also
method
                 be "" to select the method a posteriori.
exclusion_threshold
                 threshold for "exclusion" method (default : NULL). Override the error parame-
                  ter if not NULL
                 error accepted (default: 0.05)
error
simulation_if_small
                  simulate individuals (TRUE or FALSE)
number_offspring_simulated
                 number of offspring simulated (default : 500)
number_cores
                 number of cores
verbose
                  verbose
```

Value

list of 2 elements: a pedigree file and the log file

Examples

APIS_3n

APIS for triploids

Description

APIS for triploids

Usage

```
APIS_3n(
  offspring_genotype,
  sire_genotype,
  dam_genotype,
  method = "mendel",
  exclusion_threshold = NULL,
  error = 0.05,
  simulation_if_small = FALSE,
  number_offspring_simulated = max(0, 500 - nrow(offspring_genotype)),
```

APIS_3n

```
number_cores = 2,
verbose = FALSE,
t_recom = 0.5
)
```

Arguments

offspring_genotype

matrix of the offspring genotypes

sire_genotype matrix of the sire genotypes

dam_genotype matrix of the dam genotypes

method : "mendel" i.e. likelihood or "exclusion" (default : "mendel"). Can also

be "" to select the method a posteriori.

exclusion_threshold

threshold for "exclusion" method (default : NULL). Override the error parame-

ter if not NULL

error accepted (default : 0.05)

simulation_if_small

simulate individuals (TRUE or FALSE) (default : TRUE)

number_offspring_simulated

number of offspring simulated (default : 500)

verbose verbose

t_recom recombination rate

Value

list of 2 elements: a pedigree file and the log file

Examples

APIS_dam 5

APIS_dam

Example dam genotypes

Description

Example dam genotypes

Usage

APIS_dam

Format

A matrix with 14 rows (one row = one dam) and 100 columns (one column = one marker)

APIS_offspring

Example offspring genotypes

Description

Example offspring genotypes

Usage

APIS_offspring

Format

A matrix with 500 rows (one row = one offspring) and 100 columns (one column = one marker)

APIS_offspring3n

Example offspring 3n genotypes

Description

Example offspring 3n genotypes

Usage

APIS_offspring3n

Format

A matrix with 50 rows (one row = one offspring) and 100 columns (one column = one marker)

6 assignment_power

APIS_sire

Example sire genotypes

Description

Example sire genotypes

Usage

```
APIS_sire
```

Format

A matrix with 39 rows (one row = one sire) and 100 columns (one column = one marker)

assignment_power

Assignment power

Description

Assignment power

Usage

```
assignment_power(
  sire_genotype,
  dam_genotype,
  ploidy_level = 2,
  verbose = FALSE
)
```

Arguments

```
sire_genotype matrix of the sire genotypes
dam_genotype matrix of the dam genotypes
ploidy_level ploidy level of the parents
verbose verbose
```

Value

the theoretical assignment power calculated with the formula proposed in Vandeputte (2012)

import_from_ped 7

Examples

```
data("APIS_sire")
data("APIS_dam")

P = assignment_power(sire_genotype = APIS_sire, dam_genotype = APIS_dam)
```

import_from_ped

Import from Plink .ped

Description

Import from Plink .ped

Usage

```
import_from_ped(
  ped_file,
  no_fid = FALSE,
  no_parents = FALSE,
  no_sex = FALSE,
  no_pheno = FALSE,
  marker_names = NULL
)
```

Arguments

```
ped_file name of the ped file (from Plink)

no_fid if "no_fid" parameter was used in plink (default : FALSE)

no_parents if "no_parents" parameter was used in plink (default : FALSE)

no_sex if "no_sex" parameter was used in plink (default : FALSE)

no_pheno if "no_pheno" parameter was used in plink (default : FALSE)

marker_names list of marker names (default : NULL)
```

Value

matrix of genotypes for APIS

8 launch_APIShiny

 $import_from_vcf$

Import from .vcf

Description

Import from .vcf

Usage

```
import_from_vcf(vcf_file)
```

Arguments

vcf_file

name of the vcf file

Value

matrix of genotypes for APIS

launch_APIShiny

Shiny App for interactive session of APIS

Description

Launch the shiny interface to use APIS interactively

Usage

```
launch_APIShiny()
```

Value

void: most results are automatically saved

plot_delta 9

plot_delta

Plot deltas

Description

Plot deltas

Usage

```
plot_delta(log_file, threshold = NULL, simulated_individuals = NULL)
```

Arguments

log_file log file from the APIS_2n() or APIS_3n function

threshold threshold simulated_individuals

names of the simulated individuals

Value

plot of the distribution of delta

plot_mismatches

Plot mismatches

Description

Plot mismatches

Usage

```
plot_mismatches(log_file, threshold = NULL, simulated_individuals = NULL)
```

Arguments

log_file log file from the APIS_2n() or APIS_3n function

threshold threshold simulated_individuals

names of the simulated individuals

Value

plot of the distribution of mismatches

simulate_offspring

Description

Plot probabilities

Usage

```
plot_probabilities(log_file, threshold = NULL, simulated_individuals = NULL)
```

Arguments

```
log_file log file from the APIS_2n() or APIS_3n function
threshold threshold
simulated_individuals
names of the simulated individuals
```

Value

plot of the distribution of probabilities

```
simulate_offspring
Simulate offspring
```

Description

Simulate offspring

Usage

```
simulate_offspring(
    sire_genotype,
    dam_genotype,
    number_offspring,
    ploidy_level = 2,
    sire_contribution = 1,
    dam_contribution = 1,
    recombination_rate = 0.5,
    genotyping_error = 0.01
)
```

simulate_offspring 11

Arguments

```
sire_genotype
                 sire genotype
dam_genotype
                 dam genotype
number_offspring
                 number of offspring to simulate
ploidy_level
                 ploidy level of offspring
sire_contribution
                 sire contribution
dam_contribution
                 dam contribution
recombination_rate
                 recombination rate (only important for tri/tetra ploids offspring)
genotyping_error
                 genotyping error
```

Value

list with matrix with simulated offspring and pedigree

Examples

```
data("APIS_sire")
data("APIS_dam")
# For diploide offspring
simulate_offspring(sire_genotype=APIS_sire, dam_genotype=APIS_dam,
                   number_offspring=10,
                   ploidy_level = 2,
                   sire_contribution = 1, dam_contribution = 1,
                   recombination_rate = 0.5,
                   genotyping_error = 0.01)
# For triploide offspring
simulate_offspring(sire_genotype=APIS_sire, dam_genotype=APIS_dam,
                   number_offspring=10,
                   ploidy_level = 3,
                   sire_contribution = 1, dam_contribution = 2,
                   recombination_rate = 0.5,
                   genotyping_error = 0.01)
```

Index

```
\ast datasets
    APIS_dam, 5
    APIS_offspring, 5
    APIS_offspring3n, 5
    APIS_sire, 6
APIS_2n, 2
APIS_3n, 3
APIS_dam, 5
APIS_offspring, 5
APIS_offspring3n, 5
APIS_sire, 6
assignment_power, 6
import_from_ped, 7
import\_from\_vcf, 8
launch_APIShiny, 8
plot_delta, 9
plot_mismatches, 9
plot\_probabilities, 10
\verb|simulate_offspring|, 10
```