

#### MITx: 6.041x Introduction to Probability - The Science of Uncertainty

■ Bookmarks

Unit 0: Overview

- EntranceSurvey
- Unit 1: Probability models and axioms
- Unit 2: Conditioning and independence
- Unit 3: Counting
- Unit 4: Discrete random variables
- ▶ Exam 1
- Unit 5: Continuous random variables
- Unit 6: Further topics on random variables
- ▼ Unit 7: Bayesian inference

Unit 7: Bayesian inference > Lec. 15: Linear models with normal noise > Lec 15 Linear models with normal noise vertical1

**■** Bookmark

## Exercise: Normal unknown and additive noise

(3/4 points)

As in the last video, let  $X = \Theta + W$ , where  $\Theta$  and W are independent normal random variables and W has mean zero.

a) Assume that  $oldsymbol{W}$  has positive variance. Are  $oldsymbol{X}$  and  $oldsymbol{W}$  independent?

No ▼

✓ Answer: No

b) Find the MAP estimator of  $\Theta$  based on X if  $\Theta \sim N(1,1)$  and  $W \sim N(0,1)$ , and evaluate the corresponding estimate if X=2.

c) Find the MAP estimator of  $\Theta$  based on X if  $\Theta \sim N(0,1)$  and  $W \sim N(0,4)$ , and evaluate the corresponding estimate if X=2.

$$\hat{\boldsymbol{\theta}} = \boxed{2/5}$$
 Answer: 0.4

d) For this part of the problem, suppose instead that  $X=2\Theta+3W$ , where  $\Theta$  and W are standard normal random variables. Find the MAP estimator of  $\Theta$  based on X under this model and evaluate the corresponding estimate if X=2.

$$\hat{\theta} = 16/25$$
 **X** Answer: 0.30769

Answer:

a) They are not independent. This is intuitively clear because W has an effect on X. Another way to see it is that we have (by independence of  $\Theta$  and W) that  $\mathbf{E}[\Theta W] = \mathbf{E}[\Theta] \, \mathbf{E}[W] = \mathbf{0}$ , which leads to

$$\mathbf{E}[XW] = \mathbf{E}[(\Theta + W)W] = \mathbf{E}[W^2] \neq 0 = \mathbf{E}[X]\mathbf{E}[W],$$

#### Unit overview

Lec. 14: Introduction to Bayesian inference Exercises 14 due Apr 06, 2016 at 23:59 UT

# Lec. 15: Linear models with normal noise

Exercises 15 due Apr 06, 2016 at 23:59 UT

#### Problem Set 7a

Problem Set 7a due Apr 06, 2016 at 23:59 UTC

## Lec. 16: Least mean squares (LMS) estimation

Exercises 16 due Apr 13, 2016 at 23:59 UT

## Lec. 17: Linear least mean squares (LLMS) estimation

Exercises 17 due Apr 13, 2016 at 23:59 UT

#### Problem Set 7b

Problem Set 7b due Apr 13, 2016 at 23:59 UTC

### Solved problems

## Additional theoretical material

**Unit summary** 

which in turn implies that  $oldsymbol{X}$  and  $oldsymbol{W}$  are not independent.

b) If we focus on the terms that involve heta, the posterior is of the form

$$c(x)e^{-(\theta-1)^2/2}e^{-(x-\theta)^2/2}$$
.

To find the MAP estimate, we set the derivative with respect to  $\theta$  of the exponent to zero, so that  $(\hat{\theta}-1)+(\hat{\theta}-x)=0$ , or  $\hat{\theta}=(1+x)/2$ , which, when x=2, evaluates to 3/2.

c) If we focus on the terms that involve heta, the posterior is of the form

$$c(x)e^{- heta^2/2}e^{-(x- heta)^2/(2\cdot 4)}$$
 .

To find the MAP estimate, we set the derivative with respect to  $\theta$  of the exponent to zero, so that  $\hat{\theta} + (\hat{\theta} - x)/4 = 0$ , or  $\hat{\theta} = x/5$ , which, when x = 2, evaluates to 2/5.

d) Note that conditional on  $\Theta=\theta$ , the random variable X is normal with mean  $2\theta$  and variance 9. If we focus on the terms that involve  $\theta$ , the posterior is of the form

$$c(x)e^{- heta^2/2}e^{-(x-2 heta)^2/(2\cdot 9)}$$
 .

To find the MAP estimate, we set the derivative with respect to  $\theta$  of the exponent to zero, so that  $\hat{\theta}+2(2\hat{\theta}-x)/9=0$ , or  $\hat{\theta}=2x/13$ , which, when x=2, evaluates to 4/13.

You have used 3 of 3 submissions

© All Rights Reserved



© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

















