终身机器学习 Lifelong Machine Learning

3 类增量学习

主讲:梁国强

gqliang@nwpu.edu.cn

Outlines

- 3.1 持续学习
- 3.2 基于正则化的类增量学习
- 3.3 基于重放的类增量学习
- 3.4 基于模型结构的类增量学习

■ 基于回放的CL

旧任务数据不可见→保存部分样本、生成旧任务数据

■基于正则化的CL

无法计算旧任务风险→添加损失约束,保留旧任务知识

■ 基于网络结构的CL

模型能力弱 > 扩展网络结构,每一个任务是一个子网络

■基于正则化的CL

无法计算旧任务风险→添加损失约束,保留旧任务知识

目标
$$\sum_{t=1}^{\mathcal{T}} \mathbb{E}_{(\mathcal{X}^{(t)}, \mathcal{Y}^{(t)})} [\mathcal{L}(f_t(\mathcal{X}^{(t)}; \theta), \mathcal{Y}^{(t)})]$$

实际优化 $\frac{1}{N_T}\sum_{i=1}^{N_T}\ell(f(x_i^{(T)};\theta),y_i^{(T)})$ +penalty Term

在新任务学习时,保留知识

Distillation

先验模型 (参数重要性)

■基于正则化的CL

Distillation

先验模型 (参数重要性)

Figure From "A Comprehensive Survey of Continual Learning: Theory, Method and Application"

Distillation Based

Knowledge Distillation

Distillation Based

Knowledge Distillation

Training curve for ResNet50 Train. Acc. Val. Acc. 79 76 73 70 50 60 80 90 100

能不能利用大模型训练小模型

Distillation Based

Knowledge Distillation

The student model is less confident

exp(5)

exp(5) + exp(1)

exp(1)

 $\exp(5) + \exp(1)$

Distillation Based

Knowledge Distillation

	Logits	Probabilities
Cat	5	0.982
Dog	1	0.017

exp(5)
$\exp(5) + \exp(1)$
exp(1)
$\exp(5) + \exp(1)$

	Logits	Probabilities
Cat	3	0.731
Dog	2	0.269

The student model is less confident

Student Network

$$p(z_i, T) = \frac{\exp(z_i/T)}{\sum_{j} \exp(z_j/T)}$$

z:预测logit T: 温度系数

Distillation Based

Knowledge Distillation

$$p(z_i, T) = \frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)}$$

z:预测logit T: 温度系数

	$\exp(5/1) + \exp(1/1)$									
	Logits	Probabilities (T=1)	Probabilities (T=10)							
Cat	5	0.982	0.599							
Dog	1	0.017	0.401							

 $\exp(5/1)$

 $\frac{\exp(5/10)}{\exp(5/10) + \exp(1/10)}$

温度系数用于平滑预测分布, T越大分布越平滑

Distillation Based

Distillation Based

■ Knowledge Distillation——对齐中间参数

使用FC层对齐参数形状

(a) Teacher and Student Networks

(b) Hints Training

使用L2损失约束教师和学生模型的中间参数

FitNets: Hints for Thin Deep Nets [Romero et al., ICLR 2015]

Distillation Based

■ Knowledge Distillation——对齐中间特征

Like What You Like: Knowledge Distill via Neuron Selectivity Transfer [Huang and Wang, arXiv 2017]

Distillation Based

■ Knowledge Distillation——对齐注意力图

Distillation Based

■ Knowledge Distillation——对齐more?

对齐多个样本之间的关系

Distillation Based

■ Knowledge Distillation——对齐more?

对齐多个样本之间的关系

Distillation Based

Knowledge Distillation

使用KD从旧模型中蒸馏知识用于新任务学习

Distillation Based

■ Learning without Forgetting 获得旧任务响应

Li, Z., & Hoiem, D. (2017). Learning without forgetting. IEEE PAMI, 40(12), 2935-2947.

Distillation Based

Distillation Based

$$\mathcal{L} = \sum_{i=1}^{m} \mathcal{L}_{old}(Y_{oi}, \hat{Y_{oi}}) + \mathcal{L}_{new}(Y_n, \hat{Y_n}) + \mathcal{R}(\theta)$$

$$\mathcal{L}_{new}(\mathbf{y}_n, \hat{\mathbf{y}}_n) = -\mathbf{y}_n \cdot \log \hat{\mathbf{y}}_n$$
 新任务样本预测与GT的损失

$$\mathcal{L}_{old}(\mathbf{y}_{o}, \hat{\mathbf{y}}_{o}) = -H(\mathbf{y}'_{o}, \hat{\mathbf{y}}'_{o})$$

$$= -\sum_{i=1}^{l} y'^{(i)}_{o} \log \hat{y}'^{(i)}_{o}$$

$$= \|y'^{(i)}_{o}\|_{o} \|y'^{(i)}_{o}\|_{o}$$

$$\|f\|_{e} \|f\|_{o}$$

$$\|f\|_{e} \|f\|_{o}$$

$$\|f\|_{e} \|f\|_{o}$$

Distillation Based

```
LEARNINGWITHOUTFORGETTING:
 Start with:
        \theta_s: shared parameters
        \theta_o: task specific parameters for each old task
        X_n, Y_n: training data and ground truth on the new task
  Initialize:
        Y_o \leftarrow \text{CNN}(X_n, \theta_s, \theta_o) // compute output of old tasks for new data
        \theta_n \leftarrow \text{RANDINIT}(|\theta_n|) // randomly initialize new parameters
 Train:
         Define \hat{Y}_o \equiv \text{CNN}(X_n, \hat{\theta}_s, \hat{\theta}_o) // old task output
        Define \hat{Y}_n \equiv \text{CNN}(X_n, \hat{\theta}_s, \hat{\theta}_n) // new task output
        \theta_s^*, \ \theta_o^*, \ \theta_n^* \leftarrow \operatorname{argmin}\left(\lambda_o \mathcal{L}_{old}(Y_o, \hat{Y}_o) + \mathcal{L}_{new}(Y_n, \hat{Y}_n) + \mathcal{R}(\hat{\theta}_s, \hat{\theta}_o, \hat{\theta}_n)\right)
```


Distillation Based

Learning without Forgetting

AlexNet 1 old task + 1 new task

ILSVRC 2012
Places2 + PASCAL VOC 2012
Caltech-UCSD Birds
MIT indoor scenes
MNIST

Distillation Based

Learning without Forgetting

性能表现(数值为与LWF的差值)

	$ImageNet \rightarrow VOC$		ImageNet→CUB		ImageNet→Scenes		$ImageNet \rightarrow MNIST$		Places365→VOC		Places365→CUB		Places365→Scenes		Places365→MNIST	
	old	new	old	new	old	new	old	new	old	new	old	new	old	new	old	new
LwF (ours)	56.2	76.1	54.7	57.7	55.9	64.5	49.8	99.3	50.6	70.2	47.9	34.8	50.9	75.2	38.3	99.2
Fine-tuning	-0.9	-0.3	-3.8	-0.7	-2.0	-0.8	-2.8	0.0	-2.2	0.1	-4.6	1.0	-2.1	-1.7	-0.9	0.1
LFĽ	0.0	-0.4	-1.9	-2.6	-0.3	-0.9	-2.9	-0.6	0.2	-0.7	0.7	-1.7	-0.2	-0.5	-0.4	-0.1
Fine-tune fc	0.5	-0.7	0.2	-3.9	0.6	-2.1	7.0	-0.2	0.5	-1.3	1.8	-4.9	0.3	-1.1	13.0	-0.2
Feat. Extraction	0.8	-0.5	2.3	-5.2	1.2	-3.3	7.3	-0.8	1.1	-1.4	3.8	-12.3	0.8	-1.7	13.3	-1.1
Joint Training	0.7	-0.2	0.6	-1.1	0.5	-0.6	7.2	-0.0	0.7	-0.0	2.3	1.5	0.3	-0.3	13.4	-0.1

新任务上,LWF取得了最好的效果 旧任务上,LWF抄过Fine-tuning,稍差于Joint Training

Distillation Based

Distillation Based

Dark Experience Replay

- 测试无任务ID
- 有限存储

Distillation Based

Learning without Forgetting

$$\mathcal{L} = \sum_{i=1}^{m} \mathcal{L}_{old}(Y_{oi}, \hat{Y_{oi}}) + \mathcal{L}_{new}(Y_n, \hat{Y_n}) + \mathcal{R}(\theta)$$
 新旧数据不平衡

$$\mathcal{L} = \lambda \sum_{i=1}^{m} \mathcal{L}_{old} (1 - \lambda) + (1 -) \mathcal{L}_{new} + \mathcal{R}(\theta)$$

$$\lambda = \frac{|\mathcal{Y}_{b-1}|}{|\mathcal{Y}_b|}$$

旧数据在总样本中的比例

Distillation Based

当前任务CE损失

Dark Experience Replay

当前任务CE损失

- ➤ 使用Buffer存储部分样本响应(Logits)
- ➤ 最小化现在输出与Buffer存储 logit的L2距离

$$\underset{\theta}{\operatorname{argmin}} \mathcal{L}_{t_c} + \alpha \mathbb{E}_{(x,z) \sim \mathcal{M}} [\|z - h_{\theta}(x)\|_{2}^{2}]$$

$$\mathcal{L}_{t} \triangleq \mathbb{E}_{(x,y) \sim D_{t}} [\ell(y, f_{\theta}(x))]$$

Distillation Based

- Dark Experience Replay
 - ➤ 使用Buffer存储部分样本响应(Logits)
 - ➤ 最小化现在输出与Buffer存储logit的L2距离

$$\mathcal{L}_{t_c} + \alpha \mathbb{E}_{(x',y',z') \sim \mathcal{M}} [\|z' - h_{\theta}(x')\|_2^2]$$

$$+ \beta \mathbb{E}_{(x'',y'',z'') \sim \mathcal{M}} [\ell(y'', f_{\theta}(x''))]$$
Buffer样本的GT损失

Distillation Based

Dark Experience Replay

Algorithm 1 - Dark Experience Replay

```
Input: dataset D, parameters \theta, scalar \alpha,
             learning rate \lambda
\mathcal{M} \leftarrow \{\}
for (x, y) in D do
    (x', z', y') \leftarrow sample(\mathcal{M})
    x_t \leftarrow augment(x)
    x'_t \leftarrow augment(x')
    z \leftarrow h_{\theta}(x_t)
    reg \leftarrow \alpha \|z' - h_{\theta}(x'_t)\|_2^2
    \theta \leftarrow \theta + \lambda \cdot \nabla_{\theta} [\ell(y, f_{\theta}(x_t)) + reg]
    \mathcal{M} \leftarrow reservoir(\mathcal{M}, (x, z))
end for
```


Distillation Based

Dark Experience Replay

```
Algorithm 2 - Dark Experience Replay ++
    Input: dataset D, parameters \theta, scalars \alpha and \beta,
               learning rate \lambda
    \mathcal{M} \leftarrow \{\}
   for (x, y) in D do
        (x', z', y') \leftarrow sample(\mathcal{M})
        (x'', z'', y'') \leftarrow sample(\mathcal{M})
        x_t \leftarrow augment(x)
        x'_t, x''_t \leftarrow augment(x'), augment(x'')
        z \leftarrow h_{\theta}(x_t)
        reg \leftarrow \alpha \|z' - h_{\theta}(x'_t)\|_2^2 + \beta \ell(y'', f_{\theta}(x''_t))
        \theta \leftarrow \theta + \lambda \cdot \nabla_{\theta} [\ell(y, f_{\theta}(x_t)) + req]
        \mathcal{M} \leftarrow reservoir(\mathcal{M}, (x, z, y))
    end for
```


Distillation Based

- Dark Experience Replay
 - ➤ 使用Buffer存储部分样本响应(Logits)
 - ➤ 最小化现在输出与Buffer存储logit的L2距离
 - ➤ 在整个优化过程中都更新Buffer

Distillation Based

Dark Experience Replay

Distillation Based

- Dark Experience Replay
 - ▶ 优点

高效

测试时候,不需要任务ID

➤缺点

蒸馏存在知识损失

如何平衡新旧知识

难以控制实际参数的变化

Distillation Based

■ 特征蒸馏PODNet

Distillation Based

■ 子空间蒸馏

$$\ell_{SD}^{CL}(\mathcal{X}_{B},\mathcal{Y}_{B}) := \frac{1}{|\mathbb{C}^{t}|} \sum_{k=1}^{|\mathbb{C}^{t}|} \left(2 \, m - 2 \left\| \mathbf{P}_{k}^{t \top} \mathbf{P}_{k}^{t - 1} \right\|_{F}^{2}\right)$$
新旧提取特征的SVD分解

Distillation Based

Subspace

Method	S-MNIST		S-CIFAR10		S-Tiny Imagenet	
	Task-IL	Class-IL	Task-IL	Class-IL	Task-IL	Class-II
JOINT	99.65	97.92	98.29	92.20	82.04	59.87
SGD	87.15	19.90	61.02	19.61	17.93	7.79
LwF (Li & Hoiem, 2017)	99.25	20.07	63.28	19.59	15.79	8.46
oEWC (Schwarz et al., 2018)	99.10	20.00	68.27	19.47	19.20	7.56
SI (Zenke et al., 2017)	99.07	19.97	68.05	19.46	35.97	6.58
	Tiny Memory					
ER (Rolnick et al., 2019)	97.72	73.80	77.85	32.87	28.07	5.85
DER (Buzzega et al., 2020)	98.48	77.12	80.72	32.43	27.73	4.26
SD (Ours)	98.35	79.37	81.65	35.1	30.11	6.05
	Small Memory					
iCARL (Rebuffi et al., 2017)	98.28	70.51	88.99	49.02	28.19	7.53
ER (Rolnick et al., 2019)	97.86	80.43	91.19	44.79	38.17	8.49
DER (Buzzega et al., 2020)	98.80	84.55	91.40	61.93	40.22	11.87
SD (Ours)	97.71	85.28	92.88	61.85	39.52	8.54
DER (Buzzega et al., 2020) + SD (Ours)	98.86	86.54	92.07	66.12	42.63	12.26
	Medium Memory					
iCARL (Rebuffi et al., 2017)	98.81	74.55	88.22	47.55	31.55	9.38
ER (Rolnick et al., 2019)	98.89	86.57	93.61	57.74	48.64	9.99
DER (Buzzega et al., 2020)	98.84	90.54	93.40	70.51	51.78	17.75
SD (Ours)	99.00	89.00	94.86	71.85	48.60	10.03
DER (Buzzega et al., 2020) + SD (Ours)	98.98	91.47	94.68	75.96	52.74	19.43

Distillation Based

Subspace distillation

Distillation Based

■ 关系蒸馏

Distillation Based

■ 关系蒸馏

构建三元组 $\{\mathbf{x}_i,\mathbf{x}_j,\mathbf{x}_k\}$

$$\cos \angle \mathbf{r}_a \mathbf{r}_b \mathbf{r}_c = \left\langle \mathbf{e}^{ab}, \mathbf{e}^{cb} \right\rangle \qquad \mathbf{e}^{ij} = \frac{\mathbf{r}_i - \mathbf{r}_j}{\left\| \mathbf{r}_i - \mathbf{r}_j \right\|_2}$$

Distillation Based

■ 关系蒸馏

构建Exemplar Relation Graph

$$A(p, q, z; \Theta^t) = \langle e_{pq}, e_{zq} \rangle, \ p, q, z \subset G^t$$

$$e_{pq} = \frac{v_p - v_q}{\|v_p - v_q\|_2}, \ e_{zq} = \frac{v_z - v_q}{\|v_z - v_q\|_2}$$

$$A(p,q,z;\Theta^{t+1}) = \langle e_{pq}, e_{zq} \rangle, \ p,q,z \in G^t$$
 where $e_{pq} = \frac{v_p - v_q}{\|v_p - v_q\|_2}, \ e_{zq} = \frac{v_z - v_q}{\|v_z - v_q\|_2}$

$$\ell_{ERL}(G^t; \Theta^t, \Theta^{t+1}) = |A(\Theta^t) - A(\Theta^{t+1})|_p$$

Distillation Based

■ 总结

- 考虑参数对任务贡献是不同的
- 估计重要性分布,作为先验优化指导模型学习

基于参数重要性

- EWC
 - ✓ 标志性的参数重要性方法

Don't let important parameters change drastically (reduce plasticity)

基于参数重要性

- EWC
 - ✓ 标志性的参数重要性方法

通用性公式,不同是如何计算 参数重要性矩阵

$$\mathcal{L}(\theta) = \mathcal{L}_B(\theta) + \sum_i \frac{\lambda}{2} F_i (\theta_i - (\theta_{A,i}^*))^2$$

当前任务的 BCE损失 参数重要性 矩阵 旧模型参 数

基于参数重要性

- EWC
 - ✓ 标志性的参数重要性方法

$$\mathcal{L}(\theta) = \mathcal{L}_B(\theta) + \sum_{i} \frac{\lambda}{2} F_i (\theta_i - \theta_{A,i}^*)^2$$

Fisher信息矩阵 损失的梯度幅值,越大代表越重要

$$F_{\theta} = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \left[\left(\frac{\partial \log p_{\theta}(\mathbf{y}|\mathbf{x})}{\partial \theta} \right) \left(\frac{\partial \log p_{\theta}(\mathbf{y}|\mathbf{x})}{\partial \theta} \right)^{\top} \right]$$

- ✓ Fisher 信息矩阵等于对数 似然函数的海森矩阵的期 望取负
- ✓ 反映了对数似然函数在参 数处的曲率
- ✓ 曲率越大,对数似然函数 越高而窄,否则越平而宽

基于参数重要性

EWC

基于参数重要性

EWC

 F_1 is small, while F_2 is large. (We can modify θ_1 , but do not change θ_2 .)

- **EWC**
 - ✓性能

- EWC
 - ✓性能

基于参数重要性

$$\mathcal{L}(\theta) = \mathcal{L}_B(\theta) + \sum_i \frac{\lambda}{2} F_i (\theta_i - \theta_{A,i}^*)^2$$

■ EWC++: 按批次迭代更新

$$F_{\theta}^{t} = \alpha F_{\theta}^{t} + (1 - \alpha) F_{\theta}^{t-1}$$

在当前批数据上计算

基于参数重要性

$$\mathcal{L}(\theta) = \mathcal{L}_B(\theta) + \sum_i \frac{\lambda}{2} F_i (\theta_i - \theta_{A,i}^*)^2$$

■ EWC++: 按批次迭代更新

$$F_{\theta}^{t} = \alpha F_{\theta}^{t} + (1 - \alpha) F_{\theta}^{t-1}$$

■ Synaptic Intelligence:按批次迭代更新

$$\tilde{L}_{\mu} = L_{\mu} + c \sum_{k} \Omega_{k}^{\mu} \left(\tilde{\theta}_{k} - \theta_{k} \right)^{2} \qquad \Omega_{k}^{\mu} = \sum_{\nu < \mu} \frac{\left(\omega_{k}^{\nu} \right)^{2} + \xi}{\left(\Delta_{k}^{\nu} \right)^{2} + \xi}$$

参数 θ_k 对任务 ν 的重要性:

 $1.沿着训练轨迹上对任务v整体损失的贡献 <math>\omega_k^{\nu}$;

2.该参数的移动距离 Δ_{k} ^V

单个参数k对任务v的贡献

$$\sum_t g_k(heta(t)) heta_k'(t)$$
 $oldsymbol{g}=rac{\partial L}{\partial oldsymbol{ heta}}$

$$\Delta_k^{\nu} \equiv \theta_k(t^{\nu}) - \theta_k(t^{\nu-1})$$

$$\mathcal{L}(\theta) = \mathcal{L}_B(\theta) + \sum_i \frac{\lambda}{2} F_i(\theta_i - \theta_{A,i}^*)^2$$

- ✓ Elastic Weight Consolidation (EWC) https://arxiv.org/abs/1612.00796
- ✓ Synaptic Intelligence (SI) https://arxiv.org/abs/1703.04200
- ✓ Memory Aware Synapses (MAS) https://arxiv.org/abs/1711.09601
- ✓RWalk https://arxiv.org/abs/1801.10112
- ✓ Sliced Cramer Preservation (SCP)
 https://openreview.net/forum?id=BJge3TNKwH

总结 实际优化
$$\frac{1}{N_T}\sum_{i=1}^{N_T}\ell(f(x_i^{(T)};\theta),y_i^{(T)})$$
 +penalty Term

Distillation

可塑性效果不明显

先验模型 (参数重要性)

度量矩阵占用存储空间

如何快速计算度量是个问题

谢!