$$n^{*}(\overline{x}_{t+1}) = n_{t+1}(x)$$

$$= \int_{-L/2+ct}^{L/2+ct} k(x-y)R_{0}g(f(n_{t}(y)))dy$$

$$= \int_{-L/2+ct}^{L/2+ct} k(x-\overline{y}_{t}-ct)R_{0}g(f(n^{*}(\overline{y}_{t})))dy$$

$$= \int_{-L/2+ct}^{L/2+ct} k(\overline{x}_{t}-\overline{y}_{t})R_{0}g(f(n^{*}(\overline{y}_{t})))dy$$

$$\Rightarrow n^{*}(\overline{x}_{t}-c) = \int_{-L/2+ct}^{L/2+ct} k(\overline{x}_{t}-\overline{y}_{t})R_{0}g(f(n^{*}(\overline{y}_{t})))dy$$

$$\Rightarrow n^{*}(\overline{x}_{t}) = \int_{-L/2}^{L/2} k(\overline{x}_{t}+c-\overline{y}_{t})R_{0}g(f(n^{*}(\overline{y}_{t})))d\overline{y}_{t}$$

$$(3)$$

As long as f(0) = 0, there is a trivial solution to this problem where $n^*(\overline{x}) \equiv 0$ for all \overline{x} , i.e., there is a trivial traveling pulse with no adults in it. If the trivial traveling pulse is unstable, even very small populations will persist or grow and avoid crashing back to the trivial pulse. To evaluate the stability of a traveling pulse, we introduce a small perturbation to the traveling pulse $n^*(\overline{x})$ and see if this perturbation grows or shrinks over time:

$$\begin{split} n_{t}(x) &= n^{*}(\overline{x}_{t}) + \xi_{t}(x) \\ \Rightarrow \xi_{t+1}(x) &= n_{t+1}(x) - n^{*}(\overline{x}_{t+1}) \\ &= n_{t+1}(x) - n^{*}(\overline{x}_{t} - c) \\ &= \int_{-L/2 + ct}^{L/2 + ct} k(x - y)R_{0}g(f(n_{t}(y)))dy - \int_{-L/2}^{L/2} k(\overline{x}_{t} - \overline{y}_{t})R_{0}g(f(n^{*}(\overline{y}_{t})))d\overline{y}_{t} \text{ using (3)} \\ &= \int_{-L/2 + ct}^{L/2 + ct} k(x - y)R_{0}g(f(n_{t}(y)))dy - \int_{-L/2 + ct}^{L/2 + ct} k(x - ct - (y - ct))R_{0}g(f(n^{*}(\overline{y}_{t})))d\overline{y}_{t} \\ &= \int_{-L/2 + ct}^{L/2 + ct} k(x - y)R_{0}g(f(n_{t}(y)))dy - \int_{-L/2 + ct}^{L/2 + ct} k(x - y)R_{0}g(f(n^{*}(\overline{y}_{t})))d\overline{y}_{t} \\ &= \int_{-L/2 + ct}^{L/2 + ct} k(x - y)\left(R_{0}g(f(n_{t}(y))) - R_{0}g(f(n^{*}(\overline{y}_{t})))\right)dy \\ &= \int_{-L/2 + ct}^{L/2 + ct} k(x - y)R_{0}\left(g(f(n_{t}(y))) - g(f(n^{*}(\overline{y}_{t})))\right)dy \\ &\Rightarrow \xi_{t+1}(x) = \int_{-L/2 + ct}^{L/2 + ct} k(x - y)R_{0}g'(f(n^{*}(\overline{y})))f'(n^{*}(\overline{y}))(n_{t}(y) - n^{*}(\overline{y}_{t}))dy \\ &\Rightarrow \xi_{t+1}(x) = \int_{-L/2 + ct}^{L/2 + ct} k(x - y)R_{0}g'(f(n^{*}(\overline{y})))f'(n^{*}(\overline{y}))\xi_{t}(y)dy \\ &\Rightarrow \xi_{t+1}(x) = \int_{-L/2 + ct}^{L/2 + ct} k(x - y)R_{0}g'(0)f'(0)\xi_{t}(y)dy \text{ if } n^{*}(\overline{x}) = 0 \text{ and } f(0) = 0 \end{split}$$

If we assume $\xi_t(x) = \lambda^t u(x-ct)$ for some $\lambda \in \mathbb{R}$ and $u: [-L/2, L/2] \to \mathbb{R}$, then the

perturbation grows in time if and only if $\lambda > 1$. Using Equation (4), we can rewrite $\xi_{t+1}(x)$,

$$\lambda u(x - ct - c) = R_0 g'(0) f'(0) \int_{-L/2 + ct}^{L/2 + ct} k(x - y) u(y - ct) dy$$

$$\Rightarrow \lambda u(\overline{x}) = R_0 g'(0) f'(0) \int_{-L/2}^{L/2} k(\overline{x} + c - \overline{y}) u(\overline{y}) dy$$

Define the integral operator

$$\psi_f(u)(x) = R_0 g'(0) f'(0) \int_{-L/2}^{L/2} k(x+c-y) u(y) dy.$$

Then the perturbation to the traveling pulse will satisfy

$$\psi_f(u)(x) = \lambda u(x) \tag{5}$$

 λ and u are thus an eigenvalue and eigenfunction of the functional operator ψ_f . The trivial traveling pulse is unstable when the dominant eigenvalue of ψ_f is greater than 1.

The biomass in the equilibrium traveling wave depends on the specific functional forms of the harvesting function g(n) and the recruitment function f(n). However, the persistence of the population only depends on R_0 , g'(0) and f'(0). In this paper, we only considered a proportional harvesting function, i.e. the amount of adults harvested obeyed g(n) = (1-h)n. For this function, g'(0) = 1 - h. For the recruitment function we considered, f'(0) = 1.

A.2 Separable dispersal kernels It is not immediately obvious that the operator ψ will have any eigenfunctions. However, Jentzsch's theorem guarantees that there is an eigenfunction u, provided that the kernel k satisfies some properties [Zhou and Kot, 2011]. Finding the eigenfunctions and eigenvalues is in general a hard problem to solve. It becomes easier if the kernel k is separable, i.e., there are functions a_n, b_n such that $k(x - y) = \sum_{n=1}^{\infty} a_n(x)b_n(y)$. In that case, (5) becomes

$$\lambda u(x) = R_0 g'(0) f'(0) \sum_{n=1}^{\infty} \left(a_n(x) \int_{-L/2}^{L/2} b_n(y - c) u(y) dy \right)$$

$$\Rightarrow \lambda \int_{-L/2}^{L/2} b_k(x - c) u(x) dx = R_0 g'(0) f'(0) \sum_{n=1}^{\infty} \left(\int_{-L/2}^{L/2} b_n(x - c) u(x) dx \right) \left(\int_{-L/2}^{L/2} a_n(y) b_k(y - c) dy \right)$$
for any k

$$\Rightarrow \lambda d_k = R_0 g'(0) f'(0) \sum_{n=1}^{\infty} A_{nk} d_n$$
(6)

where

$$A_{nk} = \int_{-L/2}^{L/2} a_n(x)b_k(x-c)dx$$
 and $d_k = \int_{-L/2}^{L/2} b_k(x-c)u(x)dx$

Finding the eigenvalues of (5) then reduces to finding the eigenvalues of the matrix comprised of entires $(A_{nk})_{n,k=1}^{\infty}$.

To find the equilibrium biomass, we rewrite (3) using the separable kernel as in Latore et al. [1998]:

$$n^*(x) = \int_{-L/2}^{L/2} k(x+c-y) R_0 g(f(n^*(y))) dy$$

$$= \int_{-L/2}^{L/2} \left(\sum_{n=1}^{\infty} a_n(x) b_n(y-c) \right) R_0 g(f(n^*(y))) dy$$

$$= \sum_{n=1}^{\infty} a_n(x) \int_{-L/2}^{L/2} b_n(y-c) R_0 g(f(n^*(y))) dy$$

If we define $m_n = \int_{-L/2}^{L/2} b_n(y-c) R_0 g(f(n^*(y))) dy$ then we find that

$$n^*(x) = \sum_{n=1}^{\infty} m_n a_n(x) \text{ and}$$

$$m_n = \int_{-L/2}^{L/2} b_n(y - c) R_0 g\left(f\left(\sum_{n=1}^{\infty} m_n a_n(y)\right)\right) dy$$
(7)

The equations (7) allows us to find the m_n numerically and we then find the total equilibrium biomass by integrating $n^*(x)$ over space.

A.3 Gaussian dispersal kernel The Gaussian dispersal kernel is given by

$$k(x-y) = \frac{1}{2\sqrt{D\pi}}e^{\frac{-(x-y)^2}{4D}},$$

where D is one half the variance of the kernel. This is a separable kernel with $a_n(x) = b_n(x) = \frac{1}{\sqrt{2n!\sqrt{D\pi}}}e^{-x^2/4D}\left(\frac{x}{\sqrt{2D}}\right)^n$ [Latore et al., 1998].

As a first approximation to k we ignore all but the 0^{th} terms for a_n and b_n so that Equation (6) becomes

$$\lambda d_0(c) = R_0(1-h)A_{00}(c)d_0(c)$$

$$\Rightarrow \lambda = R_0(1-h)A_{00}(c)$$
where $A_{00}(c) = 2\sqrt{2}\exp\left(\frac{-c^2}{8D}\right)\left[\operatorname{erf}\left(\frac{L-c}{2\sqrt{2D}}\right) - \operatorname{erf}\left(\frac{-L-c}{2\sqrt{2D}}\right)\right]$

where erf is the error function. The critical rate of environmental shift c^* and the critical harvesting rate h^* are those values of c and h, respectively, that make $\lambda = 1$.

A.4 Sinusoidal dispersal kernel The sinusoidal dispersal kernel is given by

$$k(x-y) = \begin{cases} \frac{w}{2}\cos(w(x-y)) & , & |x-y| \le \frac{\pi}{2w} \\ 0 & , & |x-y| > \frac{\pi}{2w} \end{cases}$$

where L is the length of the patch and we assume $\frac{\pi}{2w} > L, c < \frac{\pi}{2w} - L$.

In this case, $k(x-y) = \frac{w}{2}\cos(wx)\cos(w(y-c)) + \frac{w}{2}\sin(wx)\sin(w(y-c))$ so that A_{ij} and d_i can be found for i,j=1,2 and (6) reduces to

$$\lambda^2 - \left(\frac{R_0(1-h)wL}{2}\cos(wc)\right)\lambda + \frac{R_0^2(1-h)^2}{16}\left(w^2L^2 - \sin^2(wL)\right) = 0.$$

If we solve for λ , we find

$$\lambda = (1 - h)R_0 \left[\frac{wL\cos(wc)}{4} + \frac{1}{4} \sqrt{\sin^2(wL) - w^2L^2\sin^2(wc)} \right].$$

Zhou and Kot [2011] solve for the critical speed, c^* , at which the population will be driven extinct:

$$c^* = c^*(R_0) = \frac{1}{w} \cos^{-1} \left[\frac{16 + R_0^2 (1 - h)^2 (w^2 L^2 - \sin^2(wL))}{8R_0 (1 - h)wL} \right].$$

In our model, we can additionally solve for the critical harvesting rate, h^* , at which the population will be driven extinct:

$$h^* = 1 - \frac{1}{R_0} \cdot \frac{4wL}{w^2L^2 - \sin^2(wL)} \left[\cos(wc) - \sqrt{\cos^2(wc) - 1 + \frac{\sin^2(wL)}{w^2L^2}} \right]$$

A.5 Approximate critical harvesting proportions

We will use the following Taylor series to make approximations of the critical harvesting proportions under the two dispersal kernels:

$$\cos(x) = 1 - \frac{x^2}{2}$$

$$\cos^2(x) = 1 - x^2$$

$$\sin^2(x) = x^2 - \frac{x^4}{3}$$

$$erf(x) = \frac{2}{\sqrt{\pi}}(x - \frac{x^3}{3})$$

$$\exp(x) = 1 + x + \frac{x^2}{2}$$

For the Gaussian kernel we found

$$h^* = 1 - \frac{2\sqrt{2}\exp\left(\frac{c^2}{8D}\right)}{R_0\left[erf\left(\frac{L-c}{2\sqrt{2D}}\right) - erf\left(\frac{-L-c}{2\sqrt{2D}}\right)\right]}$$
(8)

Using the Taylor series and the fact that $D = \frac{\sigma^2}{2}$ where σ^2 is the variance of the exponential kernel,

$$h^* \sim 1 - \frac{\sqrt{2\pi} \left(1 + \frac{c^2}{8D} + \frac{c^4}{128D^2}\right)}{R_0 \sqrt{\pi} \left[\frac{L-c}{2\sqrt{2D}} - \frac{(L-c)^3}{3(2\sqrt{2D})^3} - \frac{-L-c}{2\sqrt{2D}} + \frac{(-L-c)^3}{3(2\sqrt{2D})^3}\right]}$$
$$= 1 - \frac{1}{R_0} \cdot \frac{3\sqrt{2\pi}}{8L} \frac{\left(32\sigma^4 + 8c^2\sigma^2 + c^4\right)}{\sigma\left(12\sigma^2 - \left(L^2 + 3c^2\right)\right)}$$

For the sinusoidal kernel we found

$$h^* = 1 - \frac{1}{R_0} \cdot \frac{4wL}{w^2L^2 - \sin^2(wL)} \left[\cos(wc) - \sqrt{\cos^2(wc) - 1 + \frac{\sin^2(wL)}{w^2L^2}} \right]$$
(9)

Using the Taylor series and the fact that $w = \frac{\sqrt{\frac{\pi^2}{4} - 2}}{\sigma}$ where σ^2 is the variance of the sinusoidal kernel,

$$h^* \sim 1 - \frac{1}{R_0} \cdot \frac{12wL}{w^4L^4} \left[1 - \frac{w^2c^2}{2} - \sqrt{1 - w^2c^2 - \frac{w^2L^2}{3}} \right]$$

$$= 1 - \frac{1}{R_0} \cdot \frac{4\sqrt{3}}{L^3(\pi^2 - 8)^{3/2}} \cdot \sigma \left[8\sqrt{3}\sigma^2 - (\pi^2 - 8)\sqrt{3}c^2 - 4\sigma\sqrt{12\sigma^2 - (\pi^2 - 8)(3c^2 + L^2)} \right]$$

In the case of both kernels, the critical harvesting proportion can be approximated by a function that looks like

$$h^* \sim 1 - \frac{1}{R_0} \cdot p(L)q(\sigma^2, c^2, L^2 + 3c^2)$$
 (10)

where p(L) is a decreasing function of the length of the viable patch L.

A.6 MPA fluctuations

After the simulations come to equilibrium, the fluctuations in total biomass per generation fluctuate more in MPAs that are larger and spaced farther apart than simulations in which the MPAs that are smaller and more closely spaced. The large MPAs have a slightly larger average population, however large MPAs here can induce fluctuations of biomass even in deterministic simulations. Thus we expect if reproduction was stochastic, large MPAs spaced far apart would be more likely to result in extinction of the population than more closely spaced, smaller MPAs.

Figure 1: Total population biomass is on the y axis, and generation is on the x axis. These simulations were run with climate velocity = 0.1, and a proportional harvest rate = 0.08.

A.7 Re-allocation of Effort

Spatial shifts of harvesters in response to MPA creation can affect sustainability of the system [Botsford et al., 2009]. We model the two extremes of response: either that harvesting pressure that occurred in now-MPAs is reallocated outside the reservers, or harvesting inside MPAs disappears from the system with the creation of MPAs and MPAs are effectively an effort control management technique. To reallocate effort we increased quota by 50% in outside of MPAs (see Kaplan and Botsford [2005] for similar approach).

We found no qualitative change in our results. Reallocation of effort was effectively like increasing the harvesting rate, and thus the critical harvest rate was lower than when effort was removed from the system.

Figure 2: Climate velocity is on the x axis, harvest rate is on the y axis. These simulations were run with effort reallocated to areas outside of MPAs.

References

Louis W. Botsford, Daniel R. Brumbaugh, Churchill Grimes, Julie B. Kellner, John Largier, Michael R. OFarrell, Stephen Ralston, Elaine Soulanille, and Vidar Wespestad. Connectivity, sustainability, and yield: bridging the gap between conventional fisheries management and marine protected areas. *Reviews in Fish Biology and Fisheries*, 19(1):69–95, 3 2009. ISSN 0960-3166. doi: 10.1007/s11160-008-9092-z.

David M. Kaplan and Louis W. Botsford. Effects of variability in spacing of coastal marine reserves on fisheries yield and sustainability. *Canadian Journal of Fisheries and Aquatic Sciences*, 62:905–912, 2005.

J. Latore, P. Gould, and A. M. Mortimer. Spatial dynamics and critical patch size of annual plant populations. *Journal of Theoretical Biology*, 190(3):277–285, 1998.

Ying Zhou and Mark Kot. Discrete-time growth-dispersal models with shifting species ranges. Theoretical Ecology, 4(1):13-25, 2 2011. ISSN 1874-1738. doi: 10.1007/s12080-010-0071-3.