Exam 1 for CS 333201

10:10 - 12:00 a.m., March 22, 2017

	\$ to 1 24
	\$ 7 X5
1. (15%)	Eight people are seated in a row. Find the probability if
(a) (5	5%) there are 4 men and 4 women and no 2 men or 2 women can sit next to each other?
(b) (5	5%) there are 5 men and they must \$1t next to each other?
(c) (5	5%) there are 4 married couples and each couple must sit together?
(0) (0	47 /
	4!x(2')4 0000 4! x5:
	8.
0 (150/)	If a person bough 20 Christmas cards and 10 envelopes (labeled 1,2,,10). In how
2. (15%)	ways can the person put the 20 cards into the envelopes if
many	5%) the cards are distinct? 10 ²⁰
(1) (3	(5%) the cards are distinct.
(2) (5	5%) the cards are identical? (5%) the cards are identical and no envelope can be left empty?
(3) (5)	5%) the cards are identical and no chivelope can be rest and $\frac{1}{2}$
	$20 \qquad \times_{i} \forall i \qquad \times_{i} = 20$
	A person has 7 keys numbered 1 through 7 and each key can be used to open only one
without office, (a) (5	A person has 7 keys hambered 2 hambered 3. The keys are selected one at a time, ponding office (also numbered 1 through 7). The keys are selected one at a time, at replacement. Let the events E_i denote that the person can open the door of the <i>i</i> th $i = 1,, 7$. 5%) Find $P(E_i)$ for $i = 1,, 7$.
(b) (5	5%) Find $P(E_i E_j)$, $i \neq j$.
(c) (1	10%) Find the probability that the person can open at least one door.
	9,9 140
	0 000
	- 140:
4. (15%)	There are three machines A, B, and C in a semiconductor manufacturing facility that
make	chips. They manufacture 20%, 35%, and 45%, respectively, of the total semiconductor
chips.	and of their outputs, 6%, 4%, and 2% of the chips are defective.
(a) (10%) What is the probability that a random drawn chip from the combined output is
_	0.2×0.06
(b) (5%) If a chip is drawn randomly and is found defective, what is the probability that this
	a di di manamatantina di manahina Ra
u	0.014
	×0.02 0.090

- 5. (15%) A pair of fair dice is rolled until a sum of either 5 or 7 appears.
 - (a) (5%) What is the probability that a sum of 5 occurs in the first roll? What is the probability that a sum of 7 occurs in the first roll?
 - (b) (10%) Find the probability that a sum of 5 occurs before a sum of

 $\sum_{(\frac{-16}{36})^{n-1}} \frac{1}{q} = \frac{1}{q} \cdot \frac{1}{\frac{10}{10}} = \frac{1}{q} \times \frac{36}{10} = \frac{1}{4} \times \frac{3}{10} \times \frac{3}$ (a) (8%) Prove De Morgan's first law, $(\bigcup_{i=1}^n E_i)^c = \bigcap_{i=1}^n E_i^c$, by elementwise proof.

(a) (8%) Prove De Morgan Sinstan, $(S_{l-1}, E_1, \dots, E_n)$ is independent, then $P(E_1 \cup E_2 \cup \dots \cup E_n) = (O+1) \times E_n$ $1 - \prod_{i=1}^{n} (1 - P(E_i))$

7. (5%) The figure blow shows a switch network in a digital communication link, where each of the switches α_i , i = 1, ..., 6 is independently closed or open with probabilities p and 1 - p, respectively. What is the probability that there exists at least one closed path from 1 to 2?

 $|-(EFopen) \cdot p^{2}(1-(p^{2})^{2}) = p^{2}(1-(p^{4}-2p^{2}+1)).$ 7x b4(1-b,)+ bp = - pb+2p4