$$\hat{\beta}_{i} = \frac{\sum (y_{i} - \bar{y})(x_{i} - \bar{x})}{\sum (x_{i} - \bar{x})^{2}}, \quad \hat{\beta}_{o} = \bar{y} - \hat{\beta}_{i} \bar{x}$$

$$\therefore Y = \hat{\beta}_{o} + \hat{\beta}_{i} \bar{x} = 77.86 + |1.8 \bar{x}|$$

Ho: Pi=0 ; HA: Pi =0 SST = Z(x-y)2; SSR = Z(x-x)2; SSE = Z(x-x)2 V:= B+ BX; for 1=10000 A = 7/5512/(1-2) sefont s.e.(B) = 0 /-(E(x:-x)2

4)
$$\beta_{1}^{2} \pm b(n-2).05/2$$
 \cdot s.e.(β_{1}^{2}) = [$y_{1}y_{1}y_{2}$] \cdot [$y_{1}y_{2}y_{3}$]

5)
$$X_0 = 1.05$$
, $L_0 = \frac{1}{10} + \frac{1}{10} \times \frac{1}{10}$
 $5.e.(10) = 6 \sqrt{\frac{1}{10} + \frac{1}{10}} \times \frac{1}{10} \times \frac{$

4° ± t(1,2,.05/2) · S.e.(20) = [88,30, 92,20]

6)
$$Cor(Y_{1}X)^{2} = \frac{Z(Y_{1}-\overline{Y})(X_{1}-\overline{X})}{\sqrt{Z(X_{1}-\overline{Y})^{2}}Z(X_{1}-\overline{X})^{2}} = 0.624 = 1$$

7)
$$t_1 = \frac{(or(Y_0 X)^2) \sqrt{n-2}}{\sqrt{1-(or(Y_0 X)^2)}} = 3.386$$

: P-valle= 6.00329 < X=.05 by lafeld+ ,50 he reject the NVI) and conclude there is significant correlation

Problem
$$Z$$

Let $\overline{Y} = \overline{Y}_1 Z Y_1$ and $\overline{B}_1 = Z C_1 Y_1$ for $C_1 = \frac{X_1 - \overline{X}_1}{5xx}$

if $COV(C\overline{Y}_1, \overline{B}_1) = COV(Z Y_1, \overline{X}_1) = 0$ and $VOR(X_1) = 0$ 2

if $COV(C\overline{Y}_1, \overline{B}_1) = \frac{OZ}{Y_1} Z C_1 = \frac{OZ}{Y_1} Z \frac{C_1 - \overline{X}_1}{5xx} = 0$

Problem Z

Let $COV(C\overline{Y}_1, \overline{B}_1) = \frac{OZ}{Y_1} Z C_2 = \frac{OZ}{Y_1} Z \frac{C_1 - \overline{X}_1}{5xx} = 0$

Problem Z
 $COV(C\overline{Y}_1, \overline{B}_1) = \frac{OZ}{Y_1} Z C_2 = \frac{OZ}{Y_1} Z \frac{C_1 - \overline{X}_2}{5xx} = 0$

Problem Z
 $COV(C\overline{Y}_1, \overline{B}_1) = \frac{OZ}{Y_1} Z C_2 = \frac{OZ}{Y_1} Z \frac{C_1 - \overline{X}_2}{5xx} = 0$

Problem Z
 $COV(C\overline{Y}_1, \overline{B}_1) = \frac{OZ}{Y_1} Z C_2 = \frac{OZ}{Y_1} Z \frac{C_1 - \overline{X}_2}{5xx} = 0$
 $COV(C\overline{Y}_1, \overline{B}_1) = \frac{OZ}{Y_1} Z C_2 = \frac{OZ}{Y_1} Z C_2 = \frac{OZ}{Y_2} Z C_2 = 0$

Problem Z
 $COV(C\overline{Y}_1, \overline{B}_1) = \frac{OZ}{Y_1} Z C_2 = \frac{OZ}{Y_2} Z C_2 = 0$
 $COV(C\overline{Y}_1, \overline{B}_1) = \frac{OZ}{Y_1} Z C_2 = \frac{OZ}{Y_2} Z C_2 = 0$
 $COV(C\overline{Y}_1, \overline{B}_1) = 0$
 $COV(C\overline{Y}_1, \overline{B}_1)$

Problem 4

$$Var(P_n) = Var(P_0 + P_1 \times h) = Var(\overline{y} - P_1 \overline{x} + P_1 \times h)$$

$$= Var(\overline{y} + P_1(X_n - \overline{x}))$$

$$= Var(\overline{y}) + (X_n - \overline{x})^2 Var(P_1) + Z(X_n - \overline{x}) cov(\overline{y}, P_1)$$

$$= Var(\overline{y}) + (X_n - \overline{x})^2 Var(P_1) + Z(X_n - \overline{x}) cov(\overline{y}, P_1)$$

$$= O^2 + O^2(X_n - \overline{x})^2 = O^2 \left[\frac{1}{n} + \frac{(X_n - \overline{x})^2}{Z(X_1 - \overline{x})^2} \right]$$

Problem 5

$$\frac{1}{a}$$
 var(1) = $\frac{887}{n-1}$ = 0.00501, cor (X3) = $\sqrt{\frac{889}{887}}$ = 0.630 = r
b) $\frac{1}{6}$ or $\frac{1}{6}$ $\frac{1}{1}$ $\frac{1}{6}$ = 0.499 = $\frac{1}{2}$ = 0.499 = $\frac{1}{2}$

c)
$$S_1e.(\hat{N}_0) = \hat{O}\sqrt{\hat{n}} + \frac{(\hat{N}_0 - \hat{N}_1)^2}{2(\hat{N}_0 - \hat{N}_1)^2}$$

 $\hat{N}_0 + \hat{V}_0 + \frac{(\hat{N}_0 - \hat{N}_1)^2}{2(\hat{N}_0)} = [0.465, 0.533]$

B₁ ± t_{CA-2} , .05/2) · S.e.(G_1) = [0.258, 1.654] B₁ = 0.656 < | So we cannot repeat the null hypothise is that $B_1 = 0$ since we have no evisione $B_1 = 1$ explicitly | $t = \frac{0.656-1}{\text{S.e.}(G_1)} < 0 < 1.74$

so we cannot reject the MM hypothosis

 $f) \quad f^2 = (of (J_1 X)^2 = cof (X_1 Y)^2$