Robotic Navigation and Exploration

Week 5: SLAM Back-end (II)

Min-Chun Hu <u>anitahu@cs.nthu.edu.tw</u> CS, NTHU

Recall the SLAM Problem

SLAM Architecture

Error Compensation Methods

- Filter-based
 - Small Computation
 - On-line Optimization
- Graph-based
 - Large computation
 - High Accuracy
 - Off-line Optimization

Outline

- State Estimation and SLAM Problem
- SLAM Back-end (Error Compensation)
 - Filter-based Methods
 - Probability Theory and Bayes Filter
 - Kalman Filter (KF) / Extended Kalman Filter (EKF)
 - EKF-SLAM
 - Particle Filter
 - Fast-SLAM
 - Graph-based Methods
 - Pose Graph and Least-square Optimization
 - Gauss-Newton and Levenberg-Marquardt Algorithm
 - Sparse Matrix for Optimization

Introduction to Particle Filter

- EKF-SLAM assumes the probability distribution of robot pose and landmarks to be Gaussian, which leads to the following drawbacks:
 - Gaussian distribution can not express the robot pose properly.
 - The time complexity of estimating the covariance matrix for pose and landmarks is $(O(K^2))$, which is time-consuming even when only observing few landmarks.
 - (K: number of landmarks)
- Particle filter utilizes importance sampling to approximate arbitrary distribution, which can express the robot pose more precisely.
- Furthermore, the time complexity of posterior estimation can be decreased to **O(MlogK)** by disentangling the estimation process of pose and map.

Sampling Process

- In statistical modeling and inference, there are many complex problems that the closed-form descriptions of P(X) can not be obtained.
- One can define a function f(X) that computes P(X) up to a normalizing constant:

$$p(X) = \frac{f(X)}{Z}$$

where $z = \int_{x \in S} f(x) dx$ can not be computed because f(X) is too complex, or because the state space S is too large to compute the integral.

 Statistical sampling and simulation techniques are used for getting fair samples from target probability distributions.

Basic Sampling

Sampling from Probability Distribution Figure (PDF)

Basic Sampling

• From Probability Distribution Figure (PDF) to Cumulated Distribution Figure (CDF)

Basic Sampling

Discrete and Continuous Sampling

CDF

Importance Sampling

 Important sampling adopts discrete multinomial to approximate arbitrary distribution. More sampling particles will have more accurate approximation.

- 1. Sampling x_i from $\pi(x)$
- 2. Calculate $w_i = \frac{p(x_i)}{\pi(x_i)}$
- 3. Sampling x from $mul(x_i, w_i)$

Sequential Importance Sampling (SIS)

- Consider the localization problem, we utilize several particles to represent the approximation of pose distribution.
- In importance sampling, each particle have its own pose and weighting.
 The weighting is the division of source distribution and target distribution:

$$w_t^{(i)} = \frac{p(x_{1:t}^{(i)}|z_{1:t}, u_{1:t-1})}{\pi(x_{1:t}^{(i)}|z_{1:t}, u_{1:t-1})}$$

According to the graphical model, we have

$$w_{t}^{(i)} = \frac{p\left(x_{t}^{(i)} \middle| x_{1:t-1}^{(i)}, z_{1:t}, u_{1:t-1}\right)}{\pi(x_{t}^{(i)} \middle| x_{1:t-1}^{(i)}, z_{1:t}, u_{1:t-1})} \cdot \frac{p\left(x_{1:t-1}^{(i)} \middle| z_{1:t-1}, u_{1:t-2}\right)}{\pi\left(x_{1:t-1}^{(i)} \middle| z_{1:t-1}, u_{1:t-2}\right)}$$

Sequential Importance Sampling (SIS)

Apply the Bayes theorem, we can get

$$w_t^{(i)} = \frac{\eta p\left(z_t \left| x_{1:t}^{(i)}, u_{1:t-1} \right) p\left(x_t^{(i)} \left| x_{t-1}^{(i)}, u_{t-1} \right)}{\pi(x_t^{(i)} \left| x_{1:t-1}^{(i)}, u_{1:t-1} \right)} \cdot \frac{p\left(x_{1:t-1}^{(i)} \left| z_{1:t-1}, u_{1:t-2} \right)}{\pi\left(x_{1:t-1}^{(i)} \left| z_{1:t-1}, u_{1:t-2} \right)} \\ \propto \frac{p\left(z_t \left| m_{t-1}, x_t^{(i)} \right) p\left(x_t^{(i)} \left| x_{t-1}^{(i)}, u_{t-1} \right)}{\pi\left(x_t \left| x_{1:t-1}^{(i)}, z_{1:t}, u_{1:t-1} \right)} \cdot w_{t-1}^{(i)} \\ \pi\left(x_t \left| x_{1:t-1}^{(i)}, z_{1:t}, u_{1:t-1} \right) \\ \text{, in which} \qquad \eta = \frac{1}{p(z_t \left| z_{1:t-1}, u_{1:t-1} \right)}$$

Sequential Importance Sampling (SIS)

Now, we select the distribution of last timestep as the source distribution:

$$\pi\left(x_{t}\middle|x_{1:t-1}^{(i)},z_{1:t},u_{1:t-1}\right) = p(x_{t}^{(i)}|x_{t-1}^{(i)},u_{t-1})$$

 $w_{t}^{(i)} = \frac{\eta p\left(z_{t} \middle| m_{t-1}, x_{t}^{(i)}\right) p\left(x_{t}^{(i)} \middle| x_{t-1}^{(i)}, u_{t-1}\right)}{\pi\left(x_{t} \middle| x_{1:t-1}^{(i)}, z_{1:t}, u_{1:t-1}\right)} \cdot w_{t-1}^{(i)}$

We can get the update weighting:

$$w_{t}^{(i)} = w_{t-1}^{(i)} \frac{\eta p\left(z_{t} \middle| m_{t-1}, x_{t}^{(i)}\right) p\left(x_{t}^{(i)} \middle| x_{t-1}^{(i)}, u_{t-1}\right)}{p(x_{t}^{(i)} \middle| x_{t-1}^{(i)}, u_{t-1})}$$

$$\propto w_{t-1}^{(i)} \cdot p(z_t|m_{t-1}, x_t^{(i)})$$

Sequential Importance Resampling (SIR)

- After several steps, the weightings of most particles in SIS particle filter will decrease to close to zero.
- To avoid this problem, we can utilize the resampling process:

Monte-Carlo Localization

Fast-SLAM

 Now consider the full SLAM problem (localization and mapping), we can divide the full process to localization and mapping steps. This method is called Rao-Blackwellization.

$$p(x_{1:t}, m_t | z_{1:t}, u_{1:t}) = p(x_{1:t} | z_{1:t}, u_{1:t}) p(m_t | x_{1:t}, z_{1:t})$$

• In Fast-SLAM, the robot pose is represented by the multivariate distribution of several weighted particles, and each particle adopts **K** extended Kalman filter to estimate the landmarks independently.

Likelihood of Measurement

Fast-SLAM

- Steps of Fast-SLAM
- 1. Predict the next pose $x_t^{(i)}$ by motion model.

$$x_t^{(i)} \sim p(x_t^{(i)} | x_{t-1}^{(i)}, u_{t-1})$$

2. Update the distribution of each landmark $(\mu_{j,t}^{(i)}, \Sigma_{j,t}^{(i)})$ via measurement z_k .

$$Q = H\Sigma_{j,t-1}^{(i)}H^{T} + R, K_{t} = \Sigma_{j,t-1}^{(i)}H^{T}Q^{-1}$$

$$\mu_{j,t}^{(i)} = \mu_{j,t-1}^{(i)} + K_{k}\left(z_{k} - h(\mu_{j,t-1}^{(i)}, x_{t}^{(i)})\right)$$

$$\Sigma_{j,t}^{(i)} = (I - K_{t}H)\Sigma_{j,t-1}^{(i)}$$

3. Update the importance weight of particles.

$$w^{(i)} \sim |2\pi Q|^{-\frac{1}{2}} \exp\{-\frac{1}{2} \left(z_k - h\left(\mu_{j,t-1}^{(i)}, x_t^{(i)}\right)\right)^T Q^{-1} \left(z_k - h(\mu_{j,t-1}^{(i)}, x_t^{(i)})\right)\}$$

4. Resampling.

Fast SLAM

Measure of how well the target distribution is approximated by samples drawn from the proposal.

 $N_{eff} = \frac{1}{\sum_{i} \left(w_t^{(i)} \right)^2}$

• N_{eff} denotes the inverse variance of the normalized particle weights. For equal weights, the results is the number of the particles. And the sample approximation is close to the target.

$$N_{eff}^* = \frac{1}{\sum_i \frac{1}{N^2}} = \frac{1}{N \frac{1}{N^2}} = N$$

• If N_{eff} drops below a given threshold (usually set to half of the particles), we will resample the particle.

$$N_{eff} < \frac{N}{2}$$

Fast-SLAM

• Efficient implementation of Fast-SLAM. The basic idea is that the set of Gaussians in each particle is represented by a balanced binary tree.

Fast-SLAM Demo

Occupancy Grid Representation

Occupancy grid maps is a volumetric representation of environments.
 The advantage of grid representation is that it does not require any predefined definition of landmarks. Instead, in can model arbitrary types of environments.

Grid-based Fast-SLAM

- Steps of Grid-based Fast-SLAM
- 1. Predict the next pose $x_t^{(i)}$ by motion model.
- 2. Update the occupancy grid map of each particle.
- 3. Update the importance weight of particles.
- 4. Resampling.

Grid-based Fast-SLAM

- Steps of Grid-based Fast-SLAM
- 1. Predict the next pose $x_t^{(i)}$ by motion model.
- 2. Update the occupancy grid map of each particle.
- 3. Update the importance weight of particles.
- 4. Resampling.

Occupancy Grid Map Algorithm

 The occupancy grids store the probability if the discrete location is free. The state of the grid is defined by the rate of free and occupied.

$$Odd(s) = \frac{p(s=1)}{p(s=0)}$$

Apply the Bayes theorem to compute the posterior of the state

$$p(s|z) = \frac{p(z|s)p(s)}{p(z)} \qquad Odd(s|z) = \frac{p(s=1|z)}{p(s=0|z)} = \frac{p(z|s=1)p(s=1)/p(z)}{p(z|s=0)p(s=0)/p(z)} = \frac{p(z|s=1)}{p(z|s=0)}Odd(s)$$

Utilize the log operation to simplify the computation

$$\log Odd(s|z) = \log \frac{p(z|s=1)}{p(z|s=0)} + \log Odd(s)$$

• Compute the occupied probability from log state define $g = \log 0dd(s)$ and p = p(s = 1)

$$\exp(g) = Odd(s) = \frac{p(s=1)}{p(s=0)} = \frac{p}{1-p}$$
 $p = \frac{\exp(g)}{1 + \exp(g)}$

Occupancy Grid Map Algorithm

Define two likelihood parameter

$$l_{occ} = \frac{p(z=0|s=1)}{p(z=0|s=0)} \qquad l_{free} = \frac{p(z=1|s=1)}{p(z=1|s=0)} \qquad \boxed{\log Odd(s|z) = \log \frac{p(z|s=1)}{p(z|s=0)} + \log Odd(s)}$$

$$\log Odd(s|z) = \log \frac{p(z|s=1)}{p(z|s=0)} + \log Odd(s)$$

Initialize the state with half probability of occupied

$$\log Odd(s_{init}) = \log \frac{p(s_{init} = 1)}{p(s_{init} = 0)} = \log \frac{0.5}{0.5} = 0$$

ullet Ray tracing the grid, add l_{free} to all the grids passing by, and add l_{occ} to

the last grid.

Grid-based Fast-SLAM

- Steps of Grid-based Fast-SLAM
- 1. Predict the next pose $x_t^{(i)}$ by motion model.
- 2. Update the occupancy grid map of each particle.
- 3. Update the importance weight of particles.
- 4. Resampling.

Likelihood Field of Grid Map

$$p(z|x) = \eta \prod_{i}^{m} \mathcal{N}(z'_{i}; \mu_{i}, \Sigma_{i})$$

$$p(z|x) = ?$$

Laser Beam Model

A common sensor of mobile robot is a range finder, which measures the

distance from the robot to the obstacles.

4 components of the measurement model:

(a) Gaussian distribution p_{hit}

(b) Exponential distribution $p_{\rm short}$

(c) Uniform distribution p_{max}

(d) Uniform distribution $p_{\rm rand}$

Laser Beam Model

• (a) Correct range with local measurement noise.

$$\mathcal{N}(z_t^k; z_t^{k*}, \sigma_{\text{hit}}^2) = \frac{1}{\sqrt{2\pi\sigma_{\text{hit}}^2}} e^{-\frac{1}{2}\frac{(z_t^k - z_t^{k*})^2}{\sigma_{\text{hit}}^2}}$$

(b) Unexpected objects

$$p_{\text{short}}(z_t^k \mid x_t, m) = \begin{cases} \eta \lambda_{\text{short}} e^{-\lambda_{\text{short}} z_t^k} & \text{if } 0 \le z_t^k \le z_t^{k*} \\ 0 & \text{otherwise} \end{cases}$$

• (c) Failures

$$p_{\max}(z_t^k \mid x_t, m) = I(z = z_{\max}) = \begin{cases} 1 & \text{if } z = z_{\max} \\ 0 & \text{otherwise} \end{cases}$$

• (d) Random measurements

$$p_{\text{rand}}(z_t^k \mid x_t, m) = \begin{cases} \frac{1}{z_{\text{max}}} & \text{if } 0 \le z_t^k < z_{\text{max}} \\ 0 & \text{otherwise} \end{cases}$$

(a) Gaussian distribution $p_{
m hit}$

(c) Uniform distribution p_{\max}

(b) Exponential distribution p_{short}

(d) Uniform distribution $p_{\rm rand}$

$$p(z_t^k \mid x_t, m)$$

 z_{max}

Laser Beam Model

Mixture distribution of laser beam model.

$$p(z_t^k \mid x_t, m) = \begin{pmatrix} z_{\text{hit}} \\ z_{\text{short}} \\ z_{\text{max}} \\ z_{\text{rand}} \end{pmatrix}^T \cdot \begin{pmatrix} p_{\text{hit}}(z_t^k \mid x_t, m) \\ p_{\text{short}}(z_t^k \mid x_t, m) \\ p_{\text{max}}(z_t^k \mid x_t, m) \\ p_{\text{rand}}(z_t^k \mid x_t, m) \end{pmatrix}$$

Likelihood Field


```
1: Algorithm likelihood_field_range_finder_model(z_t, x_t, m):

2: q = 1
3: for all k do
4: if z_t^k \neq z_{\max}
5: x_{z_t^k} = x + x_{k,\text{sens}} \cos \theta - y_{k,\text{sens}} \sin \theta + z_t^k \cos(\theta + \theta_{k,\text{sens}})
6: y_{z_t^k} = y + y_{k,\text{sens}} \cos \theta + x_{k,\text{sens}} \sin \theta + z_t^k \sin(\theta + \theta_{k,\text{sens}})
7: dist = \min_{x',y'} \left\{ \sqrt{(x_{z_t^k} - x')^2 + (y_{z_t^k} - y')^2} \middle| \langle x', y' \rangle \text{ occupied in } m \right\}
8: q = q \cdot \left( z_{\text{hit}} \cdot \operatorname{prob}(dist, \sigma_{\text{hit}}) + \frac{z_{\text{random}}}{z_{\text{max}}} \right)
9: return q
```

Grid-based Fast-SLAM

1. Predict the next pose $x_t^{(i)}$ by motion model.

$$x_t^{(i)} \sim p(x_t^{(i)} | x_{t-1}^{(i)}, u_{t-1})$$

2. Update the occupancy grid map of each particle.

$$\log Odd(s|z) = \log \frac{p(z|s=1)}{p(z|s=0)} + \log Odd(s)$$

3. Update the importance weight of particles.

$$w_t^{(i)} = \eta \prod_i (z_{hit} \cdot prob(dist, \sigma_{hit}) + \frac{z_{random}}{z_{max}})$$

4. Resampling.

Grid-based Fast-SLAM Demo

Outline

- State Estimation and SLAM Problem
- SLAM Back-end (Error Compensation)
 - Filter-based Methods
 - Probability Theory and Bayes Filter
 - Kalman Filter (KF) / Extended Kalman Filter (EKF)
 - EKF-SLAM
 - Particle Filter
 - Fast-SLAM
 - Graph-based Methods
 - Pose Graph and Least-square Optimization
 - Gauss-Newton and Levenberg-Marquardt Algorithm
 - Sparse Matrix for Optimization

$$\mathbf{x} \sim N(\mathbf{\mu}, \mathbf{\Sigma})$$

$$P(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^N \det(\Sigma)}} \exp(-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^T \Sigma^{-1}(\mathbf{x} - \mathbf{\mu}))$$

$$-\ln P(\mathbf{x}) = \frac{1}{2} \ln((2\pi)^N \det(\mathbf{\Sigma})) + \frac{1}{2} (\mathbf{x} - \mathbf{\mu})^T \Sigma^{-1}(\mathbf{x} - \mathbf{\mu})$$

State Estimation

$$\mathbf{x}_{k} = f(\mathbf{x}_{k-1}, \mathbf{u}_{k}) + \mathbf{w}_{k}, \quad \mathbf{w}_{k} \sim \mathcal{N}(0, \mathbf{R}_{k})$$
$$\mathbf{z}_{k,j} = h(\mathbf{m}_{j}, \mathbf{x}_{k}) + \mathbf{v}_{k,j}, \quad \mathbf{v}_{k,j} \sim \mathcal{N}(0, \mathbf{Q}_{k,j})$$

• Probability of $\{\mathbf x_1,\dots,\mathbf x_N,\mathbf m_1,\dots,\mathbf m_M\}$ given $\{\boldsymbol u_1,\dots,\boldsymbol u_N,\mathbf z_{1,1},\dots,\boldsymbol z_{N,M}\}$:

$$P(\mathbf{x}, \mathbf{m} | \mathbf{z}, \mathbf{u}) = \frac{P(\mathbf{z}, \mathbf{u} | \mathbf{x}, \mathbf{m}) P(\mathbf{x}, \mathbf{m})}{P(\mathbf{z}, \mathbf{u})} \propto P(\mathbf{z}, \mathbf{u} | \mathbf{x}, \mathbf{m}) P(\mathbf{x}, \mathbf{m})$$
posterior likelihood prior

$$(\mathbf{x}, \mathbf{m})_{MAP}^* = \operatorname{argmax} P(\mathbf{x}, \mathbf{m} | \mathbf{z}, \mathbf{u}) = \operatorname{argmax} P(\mathbf{z}, \mathbf{u} | \mathbf{x}, \mathbf{m}) P(\mathbf{x}, \mathbf{m})$$

$$(\mathbf{x}, \mathbf{m})_{MLE}^* = \operatorname{argmax} P(\mathbf{z}, \mathbf{u} | \mathbf{x}, \mathbf{m})$$

$$P(\mathbf{z}_{k,j} | \mathbf{x}_{k}, \mathbf{m}_{j}) = \mathcal{N}(h(\mathbf{m}_{j}, \mathbf{x}_{k}), \mathbf{Q}_{k,j})$$

$$\left(\mathbf{x}_{k}, \mathbf{m}_{j}\right)_{MLE}^{*} = \operatorname{argmax} \mathcal{N}\left(h(\mathbf{m}_{j}, \mathbf{x}_{k}), \mathbf{Q}_{k, j}\right) = \operatorname{argmin} \frac{1}{2}\left(\mathbf{z}_{k, j} - h(\mathbf{m}_{j}, \mathbf{x}_{k})\right)^{T} \mathbf{Q}_{k, j}^{-1}\left(\mathbf{z}_{k, j} - h(\mathbf{m}_{j}, \mathbf{x}_{k})\right)$$

State Estimation

$$\left(\mathbf{x}_{k}, \mathbf{m}_{j}\right)_{MLE}^{*} = \operatorname{argmin} \frac{1}{2} \left(\mathbf{z}_{k,j} - h(\mathbf{m}_{j}, \mathbf{x}_{k})\right)^{T} \mathbf{Q}_{k,j}^{-1} \left(\mathbf{z}_{k,j} - h(\mathbf{m}_{j}, \mathbf{x}_{k})\right)$$

$$P(\mathbf{z}, \mathbf{u} | \mathbf{x}, \mathbf{m}) = \prod_{k} P(\mathbf{u}_{k} | \mathbf{x}_{k-1}, \mathbf{x}_{k}) \prod_{k,j} P(\mathbf{z}_{k,j} | \mathbf{x}_{k}, \mathbf{m}_{j})$$

$$\mathbf{e}_{\mathbf{u},k} = \mathbf{x}_k - f(\mathbf{x}_{k-1}, \mathbf{u}_k)$$

$$\mathbf{e}_{\mathbf{z},k,j} = \mathbf{z}_{k,j} - h(\mathbf{m}_j, \mathbf{x}_k)$$

$$\min F(\mathbf{x}, \mathbf{m}) = \sum_{k} \mathbf{e}_{\mathbf{u}, k}^{T} \mathbf{R}_{K}^{-1} \mathbf{e}_{\mathbf{u}, k} + \sum_{k} \sum_{j} \mathbf{e}_{\mathbf{z}, k, j}^{T} \mathbf{Q}_{K, j}^{-1} \mathbf{e}_{\mathbf{z}, k, j}$$

Graph Optimization: 1D Example

Error function

$$x_0 = 0$$

 $x_1 = x_0 + 1$
 $x_2 = x_1 - 0.8$
 $x_0 = x_2 + 0$
 $f_1 = x_0$
 $f_2 = x_1 - x_0 - 1$
 $f_3 = x_2 - x_1 + 0.8$
 $f_4 = x_0 - x_2$

$$\min_{x} \sum_{i} w_{i} f_{i}^{2} = w_{1} x_{0}^{2} + w_{2} (x_{1} - x_{0} - 1)^{2} + w_{3} (x_{2} - x_{1} + 0.8)^{2} + w_{4} (x_{0} - x_{2})^{2}$$
(Optimization)

Graph Optimization: 1D Example

Error Function

$$e_{01} = x_1 - x_0 - 1$$

 $e_{12} = x_2 - x_1 - 0.8$
 $e_{02} = x_0 - x_2$

$$\min_{x} \sum_{i,j} w_{ij} e_{ij}^2 = w_{01} (x_1 - x_0 - 1)^2 + w_{12} (x_2 - x_1 + 0.8)^2 + w_{02} (x_0 - x_2)^2$$

Graph Optimization: General Form

$$\min_{x} \sum_{i,j} w_{ij} e_{ij}^2 = w_{01} (x_1 - x_0 - 1)^2 + w_{12} (x_2 - x_1 + 0.8)^2 + w_{02} (x_0 - x_2)^2$$

$$\mathbf{F}(\mathbf{x}) = \sum_{\langle i,j \rangle \in \mathcal{C}} \underbrace{\mathbf{e}(\mathbf{x}_i, \mathbf{x}_j, \mathbf{z}_{ij})^{\top} \mathbf{\Omega}_{ij} \mathbf{e}(\mathbf{x}_i, \mathbf{x}_j, \mathbf{z}_{ij})}_{\mathbf{F}_{ij}} \quad (1)$$

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} \mathbf{F}(\mathbf{x}). \tag{2}$$

$$\begin{aligned} \mathbf{F}(\mathbf{x}) &= \mathbf{e}_{12}^{\top} \; \mathbf{\Omega}_{12} \; \mathbf{e}_{12} \\ &+ \mathbf{e}_{23}^{\top} \; \mathbf{\Omega}_{23} \; \mathbf{e}_{23} \\ &+ \mathbf{e}_{31}^{\top} \; \mathbf{\Omega}_{31} \; \mathbf{e}_{31} \\ &+ \mathbf{e}_{24}^{\top} \; \mathbf{\Omega}_{24} \; \mathbf{e}_{24} \\ &+ \dots \end{aligned}$$

Graph Optimization Library

g2o - General Graph Optimization

Linux: build passing Windows: build passing

g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has been designed to be easily extensible to a wide range of problems and a new problem typically can be specified in a few lines of code. The current implementation provides solutions to several variants of SLAM and BA.

https://github.com/RainerKuemmerle/g2o

Ceres Solver

Ceres Solver is an open source C++ library for modeling and solving large, complicated optimization problems. It is a feature rich, mature and performant library which has been used in production at Google since 2010. Ceres Solver can solve two kinds of problems.

https://github.com/ceres-solver/ceres-solver

Non-linear Optimization

Basics of Optimization

Least Squares Problem

Find x^* , a local minimizer for

$$F(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^{m} (f_i(\mathbf{x}))^2 ,$$

where $f_i: \mathbb{R}^n \to \mathbb{R}, i=1,\ldots,m$ are given functions, and $m \ge n$.

$$\frac{dF}{d\mathbf{x}} = 0$$

Local Minimizer

Given $F: \mathbb{R}^n \mapsto \mathbb{R}$. Find \mathbf{x}^* so that

$$F(\mathbf{x}^*) \leq F(\mathbf{x})$$
 for $\|\mathbf{x} - \mathbf{x}^*\| < \delta$.

m: number of data points

n: number of parameters

Example: Linear Least Square Fitting

Example: Nonlinear Least Square Fitting

parameters

$$\mathbf{x} = [x_1, x_2, x_3, x_4]^T$$

model

$$\mathbf{x} = [x_1, x_2, x_3, x_4]^T$$
 $M(t; \mathbf{x}) = x_3 e^{x_1 t} + x_4 e^{x_2 t}$

residuals

$$f_i(\mathbf{x}) = y_i - M(t_i; \mathbf{x})$$
$$= y_i - \left(x_3 e^{x_1 t} + x_4 e^{x_2 t}\right)$$

Function Minimization

Taylor expansion
$$F(\mathbf{x} + \mathbf{h}) \approx F(\mathbf{x}) + J(\mathbf{x})^T \mathbf{h} + \frac{1}{2} \mathbf{h}^T H(\mathbf{x}) \mathbf{h}$$

$$J(\mathbf{x}) \equiv F'(\mathbf{x}) = \begin{bmatrix} \frac{\partial F}{\partial x_1}(\mathbf{x}) \\ \vdots \\ \frac{\partial F}{\partial x_n}(\mathbf{x}) \end{bmatrix}$$

$$\boldsymbol{H}(\mathbf{x}) \equiv \boldsymbol{F}''(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 F}{\partial x_1^2}(\mathbf{x}) & \frac{\partial^2 F}{\partial x_1 \partial x_2}(\mathbf{x}) & \dots & \frac{\partial^2 F}{\partial x_1 \partial x_n}(\mathbf{x}) \\ \frac{\partial^2 F}{\partial x_2 \partial x_1}(\mathbf{x}) & \frac{\partial^2 F}{\partial x_2^2}(\mathbf{x}) & \dots & \frac{\partial^2 F}{\partial x_2 \partial x_n}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 F}{\partial x_n \partial x_1}(\mathbf{x}) & \frac{\partial^2 F}{\partial x_n \partial x_2}(\mathbf{x}) & \dots & \frac{\partial^2 F}{\partial x_n^2}(\mathbf{x}) \end{bmatrix}$$

Function Minimization

Necessary condition for a local minimizer:

$$J(\mathbf{x}^*) \equiv F'(\mathbf{x}) = \mathbf{0}$$

Why?

By definition, if \mathbf{x}^* is a local minimizer,

$$\|\mathbf{h}\|$$
 is small enough $\rightarrow F(\|\mathbf{x}^* + \mathbf{h}\|) > F(\mathbf{x}^*)$

$$F(\mathbf{x}^* + \mathbf{h}) \approx F(\mathbf{x}^*) + J(\mathbf{x}^*)^T \mathbf{h} + \frac{1}{2} \mathbf{h}^T H(\mathbf{x}) \mathbf{h} > F(\mathbf{x}^*)$$

$$F(\mathbf{x}^* - \mathbf{h}) \approx F(\mathbf{x}^*) - J(\mathbf{x}^*)^T \mathbf{h} + \frac{1}{2} \mathbf{h}^T H(\mathbf{x}) \mathbf{h} < F(\mathbf{x}^*)$$

a) minimum

b) maximum

c) saddle point

Quadratic Functions

$$F(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} - \mathbf{b}^{\mathsf{T}}\mathbf{x} + \mathbf{c}$$

$$A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$$

$$\boldsymbol{b} = \begin{bmatrix} 2 \\ -8 \end{bmatrix}$$

$$c = 0$$

Quadratic Functions

A is positive definite. All eigenvalues are positive. For all x, $x^{T}Ax>0$.

A is negative definite. All eigenvalues are negative. For all x, x^TAx<0.

A is singular

A is indefinite

Descent Methods

$$\mathbf{x}_0, \ \mathbf{x}_1, \ \mathbf{x}_2, \ \dots, \ \mathbf{x}_k \rightarrow \mathbf{x}^* \quad \text{for} \quad k \rightarrow \infty$$

- 1. Find a descent direction h_d
- 2. find a step length giving a good decrease in the F-value.

```
Algorithm Descent method
begin
   k := 0; \mathbf{x} := \mathbf{x}_0; found := false
                                                                                       {Starting point}
   while (not found) and (k < k_{\text{max}})
       \mathbf{h}_{d} := \operatorname{search\_direction}(\mathbf{x})
                                                                           \{From \mathbf{x} \text{ and downhill}\}\
       if (no such h exists)
                                                                                       \{x \text{ is stationary}\}\
          found := true
       else
                                                                         \{\text{from } \mathbf{x} \text{ in direction } \mathbf{h}_{d}\}
            \alpha := \text{step\_length}(\mathbf{x}, \mathbf{h_d})
           \mathbf{x} := \mathbf{x} + \alpha \mathbf{h}_{\mathbf{d}}; \quad k := k+1
                                                                                            {next iterate}
end
```

Descent Direction (Line Search Method)

$$\begin{split} F(\mathbf{x} + \alpha \mathbf{h}) &= F(\mathbf{x}) + \alpha \mathbf{h}^{\top} \mathbf{F}'(\mathbf{x}) + O(\alpha^2) \\ &\simeq F(\mathbf{x}) + \alpha \mathbf{h}^{\top} \mathbf{F}'(\mathbf{x}) \quad \text{for } \alpha \text{ sufficiently small.} \end{split}$$

Definition of descent direction:

h is a descent direction for F at \mathbf{x} if $\mathbf{h}\mathbf{F}'(\mathbf{x}) < 0$

Steepest Descent Method

$$F(\mathbf{x} + \alpha \mathbf{h}) = F(\mathbf{x}) + \alpha \mathbf{h}^{\mathsf{T}} \mathbf{F}'(\mathbf{x}) + O(\alpha^{2})$$
$$\simeq F(\mathbf{x}) + \alpha \mathbf{h}^{\mathsf{T}} \mathbf{F}'(\mathbf{x}) \quad \text{for } \alpha \text{ sufficiently small.}$$

$$\frac{F(\mathbf{x}) - F(\mathbf{x} + \alpha \mathbf{h})}{\alpha \|\mathbf{h}\|} = -\frac{1}{\|\mathbf{h}\|} \mathbf{h}^{\mathsf{T}} \mathbf{F}'(\mathbf{x}) = -\|\mathbf{F}'(\mathbf{x})\| \cos \theta$$

the decrease of F(x) per unit along h direction

greatest gain rate if
$$\theta = \pi \rightarrow \mathbf{h}_{sd} = -\mathbf{F}'(\mathbf{x})$$

 h_{sd} is a descent direction because $\mathbf{h}_{sd}^T F'(\mathbf{x}) = -F'(\mathbf{x})^2 < 0$

Steepest Descent Method

 $\varphi(\alpha) = F(\mathbf{x} + \alpha \mathbf{h})$, \mathbf{x} and \mathbf{h} are fixed, $\alpha \ge 0$.

Find α so that $\varphi(\alpha) = F(\mathbf{x} + \alpha \mathbf{h})$ is minimum.

$$0 = \frac{\partial \varphi(\alpha)}{\partial \alpha} = \frac{\partial F(\mathbf{x} + \alpha \mathbf{h})}{\partial \alpha} = \frac{\partial F(\mathbf{x} + \alpha \mathbf{h})}{\partial (\mathbf{x} + \alpha \mathbf{h})} \frac{\partial (\mathbf{x} + \alpha \mathbf{h})}{\partial \alpha} = \mathbf{h}^T F'(\mathbf{x} + \alpha \mathbf{h})$$

$$\mathbf{h} = -F'(\mathbf{x})$$

$$= \mathbf{h}^T (F'(\mathbf{x}) + \alpha F''(\mathbf{x})^T \mathbf{h}) = \mathbf{h}^T (-\mathbf{h} + \alpha \mathbf{H} \mathbf{h})$$

$$\alpha = \frac{\mathbf{h}^{\mathrm{T}}\mathbf{h}}{\mathbf{h}^{\mathrm{T}}\mathbf{H}\mathbf{h}}$$

Problem: Has good performance in the initial stages of the iterative process, but converge very slow with a linear rate.

- Root finding for f(x)=0
- March x and test signs
- Determine Δx (small→slow; large→ miss)

• Root finding for f(x)=0

Taylor's expansion:

$$f(x_0 + \varepsilon) = f(x_0) + f'(x_0)\varepsilon + \frac{1}{2}f''(x_0)\varepsilon^2 + \dots$$
$$0 = f(x_0 + \varepsilon) \approx f(x_0) + f'(x_0)\varepsilon$$

$$\varepsilon = -\frac{f(x_0)}{f'(x_0)}$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

• Root finding for f(x)=0

 \mathbf{x}^* is a stationary point \longrightarrow it satisfies $\mathbf{F}'(\mathbf{x}^*) = \mathbf{0}$.

$$\mathbf{F}'(\mathbf{x}+\mathbf{h}) = \mathbf{F}'(\mathbf{x}) + \mathbf{F}''(\mathbf{x})\mathbf{h} + O(\|\mathbf{h}\|^2)$$

$$\simeq \mathbf{F}'(\mathbf{x}) + \mathbf{F}''(\mathbf{x})\mathbf{h} \quad \text{for } \|\mathbf{h}\| \text{ sufficiently small}$$

$$= 0$$

$$\rightarrow$$
 $\mathbf{H} \mathbf{h}_n = -\mathbf{F}'(\mathbf{x})$ with $\mathbf{H} = \mathbf{F}''(\mathbf{x})$
 $\mathbf{x} := \mathbf{x} + \mathbf{h}_n$

Suppose that H is positive definite

$$\rightarrow \mathbf{u}^{\mathsf{T}} \mathbf{H} \mathbf{u} > 0$$
 for all nonzero \mathbf{u} .

$$\rightarrow 0 < \mathbf{h}_{n}^{\top} \mathbf{H} \, \mathbf{h}_{n} = -\mathbf{h}_{n}^{\top} \mathbf{F}'(\mathbf{x})$$

 \rightarrow h_n is a descent direction

$$\mathbf{H}\mathbf{h} = -F'(\mathbf{x})$$
$$\mathbf{h} = -\mathbf{H}^{-1}\mathbf{J}$$

- It has good performance in the final stage of the iterative process, where x is close to x*.
- It requires solving a linear system and H is not always positive definite.
- ightharpoonup Use the approximate Hessian $\mathbf{H} pprox \mathbf{J}^T \mathbf{J}$ Gauss-Newton

Gauss-Newton

$$\mathbf{h}^* = \operatorname{argmin} \frac{1}{2} \sum_{i=1}^m \|f_i(\mathbf{x} + \mathbf{h})\|^2$$

$$f(\mathbf{x} + \mathbf{h}) \approx f(\mathbf{x}) + \mathbf{J}(\mathbf{x})^T \mathbf{h}$$

$$\frac{1}{2} \|f(\mathbf{x} + \mathbf{h})\|^2 \approx \frac{1}{2} \|f(\mathbf{x}) + \mathbf{J}(\mathbf{x})^T \mathbf{h}\|^2 = \frac{1}{2} (\|f(\mathbf{x})\|^2 + 2f(\mathbf{x})\mathbf{J}(\mathbf{x})^T \mathbf{h} + \mathbf{h}^T \mathbf{J}(\mathbf{x})\mathbf{J}(\mathbf{x})^T \mathbf{h})$$

$$\mathbf{J}(\mathbf{x})f(\mathbf{x})^T + \mathbf{J}(\mathbf{x})\mathbf{J}(\mathbf{x})^T \mathbf{h} = \mathbf{0}$$

$$\mathbf{J}(\mathbf{x})\mathbf{J}(\mathbf{x})^T \mathbf{h} = -\mathbf{J}(\mathbf{x})f(\mathbf{x})^T$$

$$\mathbf{H}\mathbf{h} = -\mathbf{H}$$

 $\mathbf{g}(\mathbf{x})$

 $\mathbf{H}(\mathbf{x})$

Newton's Method:

$$\mathbf{H}\mathbf{h} = -F'(\mathbf{x})$$

Levenberg-Marquardt Method (LM)

- LM can be thought of as a combination of steepest descent and the Newton method.
 - When the current solution is far from the correct one, the algorithm behaves like a steepest descent method: slow, but guaranteed to converge.
 - When the current solution is close to the correct solution, it becomes a Newton's method.

$$\begin{aligned} &\textbf{if} \ \ \mathbf{F}''(\mathbf{x}) \ \text{is positive definite} \\ &\mathbf{h} := \mathbf{h}_n \\ &\textbf{else} \\ &\mathbf{h} := \mathbf{h}_{sd} \\ &\mathbf{x} := \mathbf{x} + \alpha \mathbf{h} \end{aligned}$$

true-region method

$$\rho = \frac{f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x})}{J(\mathbf{x})^T \mathbf{h}}$$

This needs to calculate second-order derivative which might not be available.

Levenberg-Marquardt Method (LM)

Initialize
$$\mathbf{x} = \mathbf{x}_0$$
, $\mu = \mu_0$
For $\mathbf{i} = 0 \sim K$
Find \mathbf{h} such that $\min_{\mathbf{h}} \frac{1}{2} \| \mathbf{f}(\mathbf{x}) + \mathbf{J}(\mathbf{x})^T \mathbf{h} \|^2 \mathbf{s.t} \| \mathbf{D} \mathbf{h} \|^2 \le \mu$
Calculate ρ
If $\rho \ge \frac{3}{4}$
 $\mu = 2\mu$
 $\mu = 2\mu$
If $\rho < \frac{1}{4}$
 $\mu = 0.5\mu$
If $\rho \ge Th$
else $\mathbf{x} = \mathbf{x} + \mathbf{h}$
If \mathbf{h} is smaller than ϵ , stop