

IIC1253 — Matemáticas Discretas

INTERROGACION 2

Preguntas en blanco: Preguntas entregadas en blanco se evaluarán con un 1.5.

Pregunta 1

Demuestre que el principio del buen orden implica el principio de inducción simple.

Pregunta 2

Sea \mathcal{F} el conjunto de todas las funciones inyectivas de \mathbb{N} en \mathbb{N} . ¿es el conjunto \mathcal{F} infinito numerable o no? Demuestre su afirmación.

Pregunta 3

Un grafo dirigido G sobre \mathbb{N} es un par G=(V,E) tal que $V\subseteq\mathbb{N}$ es un conjunto finito y no vació, y $E\subseteq V\times V$ es una relación binaria. Un camino infinito en G es una secuencia infinita v_0,v_1,\ldots tal que $(v_i,v_{i+1})\in E$ para todo $i\geq 0$. Definimos el conjunto C_G^ω como el conjunto de todos los caminos infinitos en G.

- 1. Dé un ejemplo de un grafo dirigido G_1 sobre \mathbb{N} tal que $C_{G_1}^{\omega}$ es un conjunto finito no vacío. Demuestre su afirmación.
- 2. Dé un ejemplo de un grafo dirigido G_2 sobre $\mathbb N$ tal que $C_{G_2}^{\omega}$ es un conjunto infinito no-numerable. Demuestre su afirmación.
- 3. Dé un ejemplo de un grafo dirigido G_3 sobre \mathbb{N} tal que $C_{G_3}^{\omega}$ es un conjunto infinito numerable. Demuestre su afirmación.

Pregunta 4

Para un $n \ge 1$, sea $\{0,1\}^n$ el conjunto de todas las palabras de largo exactamente n. Dos palabras $u = a_1 a_2 \dots a_n$ y $v = b_1 b_2 \dots b_n$ en $\{0,1\}^*$ se dicen consecutivas si existe un $i \le n$ tal que $a_i \ne b_i$ y $a_j = b_j$ para todo $j \ne i$. Es decir, u y v son consecutivas si difieren exactamente en un sólo símbolo. Por ejemplo, para n = 5 las palabras 01011 y 01111 son consecutivas porque solo difieren en el tercer dígito.

Demuestre que para todo $n \ge 1$, uno puede hacer una secuencia de las palabras en $\{0,1\}^n$ de la forma:

$$u_0, u_1, \ldots, u_{2^n}$$

tal que todas las palabras en $\{0,1\}^n$ aparecen en la secuencia, $u_0=u_{2^n}$, y para todo $i<2^n$ se cumple que u_i y u_{i+1} son palabras consecutivas.