Задача А. Хип ли?

 Имя входного файла:
 isheap.in

 Имя выходного файла:
 isheap.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Структуру данных Неар можно реализовать на основе массива.

Для этого должно выполнятся *основное свойство Heap'a*, которое заключается в следующем. Для каждого $1 \le i \le n$ выполняются следующие условия:

- Если $2i\leqslant n$, то $a[i]\leqslant a[2i]$
- Если $2i + 1 \leqslant n$, то $a[i] \leqslant a[2i + 1]$

Дан массив целых чисел. Определите является ли он Неар'ом.

Формат входного файла

Первая строка входного файла содержит целое число n ($1 \le n \le 10^5$). Вторая строка содержит n целых чисел по модулю не превосходящих $2 \cdot 10^9$.

Формат выходного файла

Выведите «YES», если массив является Неар'ом и «NO» в противном случае.

Примеры

isheap.in	isheap.out
5	NO
1 0 1 2 0	
5	YES
1 3 2 5 4	

Задача В. Хипуй!

 Имя входного файла:
 heap.in

 Имя выходного файла:
 heap.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

В этой задаче вам необходимо организовать структуру данных Неар для хранения целых чисел, над которой определены следующие операции:

- Insert(X) добавить в Неар число X;
- Extract достать из Неар наибольшее число (удалив его при этом).

Формат входного файла

Во входном файле записано количество команд N ($1 \le N \le 100\,000$), потом последовательность из N команд, каждая в своей строке.

Каждая команда имеет такой формат: "0 <число>" или "1", что означает соответственно операции Insert(<число>) и Extract. Добавляемые числа находятся в интервале от 1 до 10^7 включительно.

Гарантируется, что при выполенении команды Extract в структуре находится по крайней мере один элемент.

Формат выходного файла

В выходной файл для каждой команды извлечения необходимо вывести число, полученное при выполнении команды Extract.

Примеры

heap.in	heap.out
7	100
0 100	50
0 10	
1	
0 5	
0 30	
0 50	
1	

Задача С. Быстрая сортировка

Имя входного файла: sort.in
Имя выходного файла: sort.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Дан массив целых чисел. Ваша задача — отсортировать его в порядке неубывания с помощью алгоритма быстрой сортировки (qsort).

Формат входного файла

В первой строке входного файла содержится число N ($1 \le N \le 100\,000$) — количество элементов в массиве. Во второй строке находятся N целых чисел, по модулю не превосходящих 10^9 .

Формат выходного файла

В выходной файл надо вывести этот же массив в порядке неубывания, между любыми двумя числами должен стоять ровно один пробел.

Примеры

sort.in	sort.out
10	1 1 2 2 3 3 4 6 7 8
1821473236	

Note

В этой задаче обязательно использовать быструю сортировку.

ЛКШ.2011.Август.С.День3 Судиславль, Берендеевы Поляны, 5 Августа 2011

Задача D. Количество различных элементов в массиве

 Имя входного файла:
 differ.in

 Имя выходного файла:
 differ.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Дан массив целых чисел. Определите, сколько в нем содержится различных элементов.

Формат входного файла

Первая строка входного файла содержит целое число n ($1 \le n \le 10^5$). Вторая строка содержит n целых чисел, по модулю не превосходящих $2 \cdot 10^9$.

Формат выходного файла

Выведите единственное число — количество различных элементов в данном массиве.

Примеры

differ.in	differ.out
5 1 0 1 2 0	3
5 1 5 2 3 4	5
5 0 0 0 0 0	1