Nonlinear Systems

Morse Theory and Lyapunov Stability on Manifolds

Aykut C. Satici

March 12, 2021

Boise State University Mechanical and Biomedical Engineering Electrical and Computer Engineering

Outline

Introduction

Notations and Definitions

Lyapunov Stability Analysis on Euclidean Spaces

Morse-Lyapunov Functions

Systems with Single Critical Points

Systems with Multiple Critical Points

The Invariance Principle

Lyapunov Stability - Introduction

- ► Introduced by Alexandr Mikhailovich Lyapunov.
- ► The general problem of the stability of motion, 1892.
- ▶ Doctoral thesis in Kharkov Mathematical Society.
- ► The most general theory for analyzing stability of (at least) ordinary differential equations.

Lyapunov Stability - Introduction

- ▶ Different notions of stability: input-output stability, periodic orbit stability, etc.
- ► Stability of equilibrium points usually characterized in the sense of Lyapunov.
 - ► An equilibrium point is STABLE if all solutions starting at nearby points stay nearby.
 - ► It is ASYMPTOTICALLY STABLE if all solutions starting at nearby points not only stay nearby, but also tend to the equilibrium point as time approaches infinity.
- For a linear system $\dot{x} = Ax$, the stability of x = 0 can be completely characterized by the eigenvalues of A.
- ► Stability of a nonlinear system sometimes can be characterized by the same method (through linearization).
- Lyapunov stability theorems give sufficient conditions for stability.

Manifolds and Vector Fields

- \blacktriangleright \mathcal{M} (state-space) denotes a manifold of finite dimension n.
- ▶ $f \in \mathfrak{X}(M)$ is a continuous vector field on \mathcal{M} .
- ► We assume that there exists a unique right maximally defined integral curve of *f* starting at *x*.
- lacktriangle We also assume that this integral curve is defined on $[0,\infty]$.

$$\varphi: [0,\infty] \times \mathcal{M} \to \mathcal{M}$$

with

$$\varphi(0,x) = x,$$

$$\varphi(t_1, \varphi(t_2, x)) = \varphi(t_1 + t_2, x).$$

▶ The semiflow φ is the evolution function.

Invariant and Stable Sets

Definition

 $\Omega\subseteq\mathcal{M}$ is called an invariant set if for all $x\in\Omega$ and $t\in\mathbb{R}_{\geq0}$, $\varphi(t,x)\in\Omega$. If $\Omega=\{p\}$ is a singleton, then Ω is called and EQUILIBRIUM POINT of the dynamical system (\mathcal{M},φ) .

Definition

 $\Omega \subseteq \mathcal{M}$ is STABLE if for every open neighborhood $\mathcal{U} \subseteq \mathcal{M}$ of Ω , there exists a neighborhood $\mathcal{V} \subseteq \mathcal{M}$ of Ω such that $\varphi(t, \mathcal{V}) \subseteq \mathcal{U}$ for all $t \geq 0$.

An invariant set Ω is asymptotically stable if

- $ightharpoonup \Omega$ is stable,
- ▶ Ω is attractive, i.e., for all $x \in \Omega$, there exists an open neighborhood $\mathcal{N} \subseteq \mathcal{M}$ of Ω such that for all $x \in \mathcal{N}$, $\varphi(t,x) \xrightarrow{t \to \infty} \Omega$.

Domain (Region) of Attraction

The domain of attraction is denoted by

$$\mathcal{A} = \{ x \in \mathcal{M} : \varphi(t, x) \to \Omega \text{ as } t \to \infty \}.$$

 Ω is said to be GLOBALLY asymptotically stable if $\mathcal{N}=\mathcal{M}.$

Definition

The Lie derivative of $V:\mathcal{M}\to\mathbb{R}$ along $f\in\mathfrak{X}(\mathcal{M})$ is defined by

$$\mathcal{L}_f V : \mathcal{M} \to \mathbb{R},$$

$$p \mapsto dV_p(f(p)).$$

Lyapunov Function

Definition

Let K be an invariant set of the dynamical system (\mathcal{M}, φ) . A continuous function $V: \mathcal{A} \to \mathbb{R}_{\geq 0}$ is a LYAPUNOV FUNCTION if

- ▶ V(x) > 0 for all $x \in A \setminus K$,
- $ightharpoonup V(x) = 0 \text{ for all } x \in \mathcal{K},$
- ▶ *V* is proper, i.e., $V^{-1}(B)$ is compact for all compact subset $B \subseteq \mathbb{R}_{\geq 0}$,
- ightharpoonup V is strictly decreasing along orbits of φ , i.e.,

$$V \circ \varphi(t,x) < V(x),$$

for all t > 0 and $x \in \mathcal{A} \setminus \mathcal{K}$. If V is differentiable, this condition may be replaced by

$$\mathcal{L}_f V(x) < 0.$$

(Nondegenerate) Critical Points

Definition

Let $V: \mathcal{M} \to \mathbb{R}$ be a smooth function. A CRITICAL POINT, $p \in \mathcal{M}$, of V is a point where the differential

$$dV_p: T_p\mathcal{M} \to \mathbb{R}$$

has rank zero, i.e., in any local coordinate system $\{x_i\}_{1}^{n}$, one has $\frac{\partial V}{\partial x_i}(p) = 0$ for all $i = 1, \dots, n$.

Definition

A critical point p is NONDEGENERATE if the Hessian $H_p(V)$ is a nondegenerate bilinear form, i.e., if any coordinate system, the Hessian matrix

$$\left(\frac{\partial^2 V}{\partial x_i \partial x_j}\right)_{1 \le i, j \le n}$$

is nondegenerate.

7

Nondegenerate Critical Points

Definition

The dimension of the subspace of $T_p\mathcal{M}$ on which $H_p(V)$ is negative definite is called the MORSE INDEX of V at p, denoted by $\operatorname{ind}(V,p)$.

Definition

A C^2 function $V: \mathcal{M} \to \mathbb{R}$ is a MORSE FUNCTION if all its critical points are nondegenerate.

Definition

The (SUB)-LEVEL SETS of a function $V:\mathcal{M}\to\mathbb{R}$ are

$$\mathcal{M}_a = V^{-1}((-\infty, a]),$$

 $\mathcal{M}_{a,b} = V^{-1}([a, b]).$

Topological Definitions

- ightharpoonup A top. space is an *n*-cell if it is homeomorphic to \mathbb{R}^n .
- ► A top. space *X* is CONTRACTIBLE if it is *homotopy equivalent* to the one-point space.
- ▶ A subspace A of X is called a DEFORMATION RETRACT of X if there exists a continuous function $h: [0,1] \times X \to X$ such that for all $X \in X$, $a \in A$,

$$h(0,x) = x,$$

 $h(1,x) \in A,$
 $h(1,a) = a.$

- ► The k^{th} BETTI NUMBER of \mathcal{M} , denoted by b_k is the rank of the k^{th} homology group $H^k(\mathcal{M})$.
- ightharpoonup The Euler characteristic of \mathcal{M} is defined by

$$\chi(\mathcal{M}) = \sum_{k=1}^{k} (-1)^k b_k.$$

Lyapunov Stability Analysis on Euclidean

Spaces

Autonomous Systems

Consider the autonomous system

$$\dot{x} = f(x) \tag{1}$$

where $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^n$ is a locally Lipschitz map, with an equilibrium point at x = 0.

Definition

The equilibrium point x = 0 of the system (1) is

• stable if, $\forall \varepsilon > 0$, $\exists \delta = \delta(\varepsilon) > 0$ such that

$$||x(0)|| < \delta \implies ||x(t)|| < \epsilon, \quad \forall t \ge 0.$$

- unstable if it is not stable.
- ightharpoonup asymptotically stable if it is stable and δ can be chosen s.t.

$$||x(0)|| < \delta \implies \lim_{t \to \infty} x(t) = 0.$$

Example – Pendulum

The pendulum equation

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -a \sin x_1 - b x_2$$

has two equilibrium points at $(x_1 = 0, x_2 = 0)$ and $(x_1 = \pi, x_2 = 0)$.

- ▶ If b = 0, trajectories in the nbhd. of the first equilibrium are closed orbits.
- ► By starting sufficiently close to the eq. point, trajectories are guaranteed to stay within any specified ball.
- ► The point is not asymptotically stable since trajectories don't tend to the eq. point.
- If b > 0, the origin becomes asymptotically stable.
- ▶ The second eq. point is a saddle point: the $\varepsilon \delta$ requirement cannot be satisfied (for every $\varepsilon > 0$ there exists a trajectory that will leave the ball B_{ε} even if x(0) is arbitrarily close to $(\pi,0)$).

Theorem

Let $x=0\in D$ be an equilibrium point for (1). Let $V:D\to \mathbb{R}$ be a continuously differentiable function such that

$$V(0) = 0$$
 and $V(x) > 0$ in $D - \{0\}$,
 $\dot{V}(x) \le 0$ in D .

Then, x = 0 is stable. Moreover, if

$$\dot{V}(x) < 0 \text{ in } D - \{0\}$$

then x = 0 is asymptotically stable.

Proof of stability.

Given $\varepsilon > 0$, choose $0 < r \le \varepsilon$ such that $B_r \subseteq D$. Let $\alpha = \min_{\|\mathbf{x}\| = r} V(\mathbf{x})$. Then, $\alpha > 0$. Take $0 < \beta < \alpha$ and consider $\mathcal{M}_{\beta} = V^{-1}((0,\beta])$.

<u>Claim</u>: $\mathcal{M}_{\beta} \subseteq \mathring{B}_{r}$. Argue ad absurdum. Suppose $\mathcal{M}_{\beta} \cap \mathring{B}_{r} \neq \mathcal{M}_{\beta}$. Then $\exists p \in \mathcal{M}_{\beta} \cap \partial B_{r}$. Note, $V(p) \geq \alpha > \beta$, but $V(\mathcal{M}_{\beta}) \subseteq [0, \beta]$.

The set \mathcal{M}_{β} is invariant since

$$\dot{V}(x(t)) \leq 0 \ \Rightarrow \ V(x(t)) \leq V(x(0)) \leq \beta, \ \forall t \geq 0.$$

Because \mathcal{M}_{β} is compact (closed and bounded), we conclude that the ODE (1) has a unique solution $\forall t \geq 0$ whenever $x(0) \in \mathcal{M}_{\beta}$. Since V is continuous and V(0) = 0, $\exists \delta > 0$ such that

$$||x|| \le \delta \Rightarrow V(x) < \beta.$$

Proof of stability (cont'd).

Then,

$$B_{\delta} \subseteq \mathcal{M}_{\beta} \subseteq B_{r}$$

and

$$x(0) \in B_{\delta} \Rightarrow x(0) \in \mathcal{M}_{\beta} \Rightarrow x(t) \in \mathcal{M}_{\beta} \Rightarrow x(t) \in B_{r},$$

proving stability.

Proof of asymptotic stability.

Now assume $\dot{V}(x) < 0$ in $D - \{0\}$. We want to show that $x(t) \xrightarrow{t \to \infty} 0$; i.e., $\forall a > 0$, $\exists T > 0$, s.t. $||x(t)|| < a, \forall t > T$.

We know that $\forall a>0$, we can choose b>0 s.t. $\mathcal{M}_b\subseteq B_a$. Therefore, it is sufficient to show that $V(x(t))\xrightarrow{t\to\infty}0$. Since V is monotonically decreasing and bounded from below by zero,

$$V(x(t)) \xrightarrow{t \to \infty} c \ge 0.$$

<u>Claim</u>: c=0. Argue ad absurdum. Suppose c>0. By continuity of V, $\exists d>0$ s.t. $B_d\subseteq \mathcal{M}_c$. The limit $V(x(t))\to c>0$ implies that $x(t)\notin B_d, \forall t\geq 0$. Define $\max_{d\leq \|x\|\leq r}\dot{V}(x)=:-\gamma<0$. It follows that

$$V(x(t)) = V(x(0)) + \int_0^t \dot{V}(x(\tau)) d\tau \le V(x(0)) - \gamma t.$$

The RHS will eventually become negative: contradiction (c > 0).

Lyapunov Stability: Intuition

- ► A continuously differentiable function *V*, satisfying the theorem's conditions is called a LYAPUNOV FUNCTION.
- ▶ When \dot{V} < 0, the trajectory moves from level set $\mathcal{M}_{c_3} = V^{-1}(c_3)$ to an inner level set $\mathcal{M}_{c_2} = V^{-1}(c_2)$ with a smaller c.
- ► $V^{-1}(c) \xrightarrow{c\downarrow 0} 0$. Hence the trajectory approaches the origin.
- ▶ If we only knew that $\dot{V} \leq 0$, we cannot be sure that the trajectory $x(t) \xrightarrow{t \to \infty} 0$, 1but we can conclude that the origin is stable.

¹See, however, Krasovskii-LaSalle's theorem.

Example: Undamped pendulum

$$\dot{x}_1 = x_2,$$

$$\dot{x}_2 = -a \sin x_1.$$

V(x) =
$$a(1 - \cos x_1) + \frac{1}{2}x_2^2$$
.

Analysis

Clearly, V(0) = 0 and V(x) > 0 if $x \neq (2k\pi, 0)$. Compute the Lie derivative of V along f:

$$\dot{V}(x) = \mathcal{L}_f V(x) = ax_2 \sin x_1 - ax_2 \sin x_1 = 0.$$

Thus, the origin is stable. Since $\dot{V}(x) \equiv 0$, we conclude that the origin is not asymptotically stable as solutions starting on the level set \mathcal{M}_c remain in that set.

Example: Damped pendulum

Region of Attraction

Chetaev's Instability Theorem

Theorem

Let $V: D \to \mathbb{R}$ be a continuously differentiable function such that V(0) = 0 and $V(x_0) > 0$ for some x_0 with arbitrarily small $||x_0||$. Let $U := \{x \in B_r : V(x) > 0\}$

and suppose that $\dot{V}(U) > 0$. Then, x = 0 is unstable.

Proof.

 $x_0 \in \check{U}$ and $V(x_0) = a > 0$. The trajectory x(t) starting at $x(0) = x_0$ must leave U. Indeed, as long as $x(t) \in U$, $V(x(t)) \ge a$, since $\dot{V}(U) > 0$. Let $\min\{\dot{V}(x) : x \in U \text{ and } V(x) \ge a\} := \gamma > 0$. Then,

$$V(x(t)) = V(x_0) + \int_0^t \dot{V}(x(s)) ds \ge a + \int_0^t \gamma ds = a + \gamma t.$$

Hence, x(t) will leave U because V(x) is bounded on U. Now, x(t) cannot leave U through V(x) = 0 since $V(x(t)) \ge a$. Hence it must leave U through the sphere \mathbb{S}_r . Note: $||x_0||$ was arbitrarily small.

Isolated Critical Points

Lemma

Suppose that x_e is an equilibrium points of the dynamical system (M, φ) . If $V : \mathcal{M} \to \mathbb{R}$ is a differentiable Lyapunov function then x_e is the only critical point of V.

Proof.

Suppose V has another critical point, x_c , in the domain of attraction. By the definition of a Lyapunov function, we must have $\mathcal{L}_f V(x_c) = 0$. This contradicts the fact that if $x \neq x_e$, $\mathcal{L}_f V(x) < 0$.

Morse Lemma

Theorem (Morse Lemma)

Let $p \in \mathcal{M}$ be a nondegenerate critical point of a smooth function $V: \mathcal{M} \to \mathbb{R}$. There exists a local coordinate system $\{x_i\}_1^n$ in a nbhd. $\mathcal{N} \subseteq \mathcal{M}$ of p with $x_i(p) = 0$ for all $1 \le i \le n$ such that for $x \in \mathcal{N}$,

$$V(x) = V(p) - x_1^2 - \ldots - x_i^2 + x_{i+1}^2 + \ldots + x_n^2$$

where i = ind(V, p).

Corollary

Let $p \in \mathcal{M}$ be an equilibrium point of (\mathcal{M}, φ) and $V : \mathcal{M} \to \mathbb{R}_{\geq 0}$ a Morse-Lyapunov function. There exists a local coordinate system $\{x_i\}_1^n$ around p such that V is locally the canonical quadratic Lyapunov function

$$V(x) = \sum_{i=1}^{n} x_i^2$$

with ind(V, p) = 0.

Level Sets of a Lyapunov Function

Theorem (Deformation Lemma)

Let $V: \mathcal{M} \to \mathbb{R}$ be a smooth function and $a, b \in V(\mathcal{M})$ such that a < b. If $\mathcal{M}_{a,b}$ is compact and does not contain critical points of V then \mathcal{M}_a is diffeomorphic to \mathcal{M}_b . MOreover, \mathcal{M}_a is a deformation retract of \mathcal{M}_b .

Corollary

Let \mathcal{M} be a smooth Riemannian manifold. If \mathcal{M} contains a closed invariant asymptotically stable set, then for all $a,b\in V(\mathcal{M})$, \mathcal{M}_a is diffeomorphic to \mathcal{M}_b and \mathcal{M}_a is a deformation retract of \mathcal{M}_b where V is a smooth Lyapunov function.

Systems with Single Critical Points

Domain of Attraction – Revisited

Theorem (Brown-Stallings Lemma)

Let \mathcal{M} be a paracompact manifold such that every compact subset is contained in an open set diffeomorphic to a Euclidean space. Then \mathcal{M} itself is diffeomorphic to a Euclidean space.

Corollary

Let $\mathcal M$ be a paracompact manifold. The domain of attraction of an asymptotically stable equilibrium point is diffeomorphic to a Euclidean space.

Morse and Sontag Theorems

Theorem (Morse Theorem)

Let $V: \mathcal{M} \to \mathbb{R}$ be a Morse function, p a critical point such that ind(V,p)=i and c=V(p). If there exists $\varepsilon>0$ such that $\mathcal{M}_{c-\varepsilon,c+\varepsilon}$ is compact and does not contain other critical points p, then $\mathcal{M}_{c-\varepsilon} \cup e_i$ is a deformation retract of $\mathcal{M}_{c+\varepsilon}$ where e_i is an i-cell.

Theorem (Sontag Theorem)

Let us consider the dynamical system (\mathcal{M}, φ) with an equilibrium point $x_e \in \mathcal{M}$. Suppose that x_e is asymptotically stable. Then the domain of attraction of x_e , given by

$$\mathcal{A} = \left\{ x \in \mathcal{M} : \lim_{t \to \infty} \varphi(t, x) = x_e \right\},\,$$

is contractible.

Systems with Multiple Critical Points

Morse Theorem – (Third Version)

Theorem (Morse Theorem)

If $V:\mathcal{M}\to\mathbb{R}$ is a Morse function such that \mathcal{M}_a is compact for each $a\in\mathbb{R}$ then \mathcal{M} has the homotopy type of a CW-complex with one i-cell for each critical point of index i.

Corollary

Suppose that the dynamical system (\mathcal{M}, φ) has several equilibria (x_1, \ldots, x_k) . If there exists a Morse-Lyapunov function $V : \mathcal{M} \to \mathbb{R}_{\geq 0}$ then $\{x_1, \ldots, x_k\}$ is a retract of the domain of attraction.

Proposition (Reeb Theorem)

Suppose that \mathcal{M} is compact without boundary. If $V: \mathcal{M} \to \mathbb{R}$ is a smooth function with only two critical points, then \mathcal{M} is homeomorphic to the n-sphere \mathbb{S}^n .

Morse Inequalities

Theorem (Morse Inequalities)

Let m_k be the number of ciritcal points of a Morse function V with index k. Then, we have

$$b_k \le m_k, \quad \forall k,$$

$$\sum_{i=0}^{j} (-1)^{j-i} b_i \le \sum_{i=0}^{j} (-1)^{j-i} m_i \quad \forall j,$$

$$\chi(\mathcal{M}) = \sum_{k} (-1)^k b_k = \sum_{k} (-1)^k m_k.$$

The next corollary states a necesary condition for the existence of a Morse-Lyapunov function based on the Euler characteristic, which is a topological invariant.

Existence of Morse-Lyapunov Functions

Corollary

Consider the dynamical system (\mathcal{M}, φ) with several equilibria (x_1, \ldots, x_k) . If there exists a Morse-Lyapunov function $V : \mathcal{M} \to \mathbb{R}_{\geq 0}$ then $\chi(\mathcal{M}) = k \geq b_0$.

Proof.

If there exists a Morse-Lyapunov function V, (x_1, \ldots, x_k) are the only critical points with indices 0. Then, by the Morse inequalities, $\chi(\mathcal{M}) = m_0 = k$ and $b_0 \leq m_0 = k$.

Remark

If $\chi(\mathcal{M}) \neq k$ then there is no Morse-Lyapunov function for the dynamical system.

The Invariance Principle

Intuition

