!! KEEP THIS PAGE FACE-UP UNTIL YOU ARE TOLD TO BEGIN!!

- This is a closed book exam. You are permitted to use **two** A4 page of notes (both sides), all of which must be in your own handwriting. Submit your notes as a **pdf** file to "Canvas → Assignments → Midterm Exam II → "Content crib sheet" section by **11:50**.
- Electronic media with wireless capability are not allowed. You may use calculators without wireless capability.
- There are 5 problems worth a total of 100 points. The questions are not necessarily in order of increasing difficulty.
- This exam has 12 pages. Make sure your copy is complete.
- Problems where the number of points are followed by an exclamation point are basic skill problems and will be graded without partial credit.
- Box your final answer. You will be graded on both the final answer and the steps leading to it. Correct intermediate steps will help earn partial credit. For full credit, cross out any incorrect intermediate steps.
- If you need to make any additional assumptions, state them clearly.
- Legible writing will help when it comes to partial credits.
- Simplify your results when possible.
- Any writing after the time is up is an honor code violation. Write your name, ID, and sign the honor code pledge *before* starting the exam so that you can stop writing immediately when the time is up.
- Submit your signed honor code pledge as a pdf file to "Canvas → Assignments → Midterm Exam II → Honor Code Pledge Submission" section by 11:50.
- Submit your midter exam II solutions as a pdf file to Canvas by 11:50. Name your pdf file as "Name (First Name Last Name) + student ID", e.g., SanZhang+518370910999.pdf. Submit your pdf file to "Canvas → Assignments → Midterm Exam II → Midterm Exam II Solutions" section.
- In the unlikely event of a technical problem with Canvas, email your solutions to me (yong.long@sjtu.edu.cn) by the deadline, and then later upload when the system is working.
- Canvas records each of your submission times and the pdf file you uploaded. All of your submissions are on Canvas. For students who have submitted multiple versions, please indicate which version you want TAs to grade, by writing in the comment session of your file submission.
- Scores for late exams will be reduced by 1 point per minute after the due time, up to the total points.

Table of Fourier Series for Common Signals c_0 $c_k, k \neq 0$ Comments Name Waveform X_0 Caoyanzhuo@situ.edu.on 2023-07 $\frac{X_0}{2}$ $j\frac{X_0}{2\pi k}$ Sawtooth $-2T_{0}$ $-2T_0$ Impulse train $-T_0$ T_0 $2T_0$ -T/20T/2 T_0 $-T_0$ $\operatorname{sinc}\left(\frac{Tk\omega_0}{2\pi}\right)$ $\frac{Tk\omega_0}{2\pi} = \frac{Tk}{T_0}$ Rectangular wave x(t) X_0 $c_k = 0, k \text{ even}$ Square wave X_0 $\frac{-2X_0}{(\pi k)^2}$ Triangular wave sine $c_k = 0, k \text{ even}$ 2

Ta	ble of Fourier trans	sform pairs	_			
	f(t)	$F(\omega)$		f(t)	$F(\omega)$	
(7)	$\delta(t)$	1		$\frac{1}{b^2 + t^2}$	$\frac{\pi}{b} e^{-b \omega }$	
Care	1	$2\pi\delta(\omega) = \delta\!\left(\frac{\omega}{2\pi}\right)$		$e^{-b t }$	$\frac{2b}{b^2 + \omega^2}$	
Carried Street	u(t)	$\pi \delta(\omega) + \frac{1}{j\omega}$		$\operatorname{rect}\left(\frac{t}{T}\right)$	$T\operatorname{sinc}\left(T\frac{\omega}{2\pi}\right)$	
\bigcirc	sgn(t)	$rac{2}{j\omega}$		$\operatorname{tri}(t)$	$\operatorname{sinc}^2\left(\frac{\omega}{2\pi}\right)$	
23.0	$\mathrm{e}^{\jmath\omega_0t}$	$2\pi\delta(\omega-\omega_0)$		$\frac{\omega_0}{2\pi}\operatorname{sinc}\left(\frac{\omega_0}{2\pi}t\right)$	$\operatorname{rect}\left(\frac{\omega}{\omega_0}\right)$	4
	$\cos \omega_0 t$	$\pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$		$\operatorname{sinc}^2(t)$	$\operatorname{tri}\left(\frac{\omega}{2\pi}\right)$	0
N	$\sin \omega_0 t$	$\frac{\pi}{j}\delta(\omega-\omega_0)-\frac{\pi}{j}\delta(\omega+\omega_0)$		$e^{-at} u(t)$	$\frac{1}{j\omega + a}$	ASS.
Come	e^{-bt^2}	$\sqrt{\pi/b} e^{-\omega^2/(4b)}$		$\frac{t^{n-1}}{(n-1)!} e^{-at} u(t)$	$\frac{1}{(i\omega + a)^n}$	
	$\sum^{\infty} \delta(t - nT_0)$	$\sum^{\infty} \ \omega_0 \delta(\omega - k\omega_0)$		$\frac{j}{\pi t}$	$\operatorname{sgn}(\omega)$	
b i	$a=-\infty$ s a real positive nu	$\begin{array}{c} k=-\infty \\ \text{mber throughout. } a \text{ is a real or} \end{array}$	 complex	number throughout, v	with positive real p	oart.
for Cao Yan Zhuo@situ. 6		JON TO THE REAL PROPERTY OF THE PARTY OF THE		3		
۶		d noigh			ana am	7.00

f(t)	$F(\omega)$
$\frac{1}{b^2 + t^2}$	$\frac{\pi}{b} e^{-b \omega }$
$e^{-b t }$	$\frac{2b}{b^2 + \omega^2}$
$\operatorname{rect}\left(\frac{t}{T}\right)$	$T\operatorname{sinc}\left(T\frac{\omega}{2\pi}\right)$
$\operatorname{tri}(t)$	$\operatorname{sinc}^2\left(\frac{\omega}{2\pi}\right)$
$\frac{\omega_0}{2\pi}\operatorname{sinc}\left(\frac{\omega_0}{2\pi}t\right)$	$\operatorname{rect}\left(\frac{\omega}{\omega_0}\right)$
$\operatorname{sinc}^2(t)$	$\operatorname{tri}\left(\frac{\omega}{2\pi}\right)$
$e^{-at} u(t)$	$\frac{1}{j\omega + a}$
$\frac{t^{n-1}}{(n-1)!} e^{-at} u(t)$	$\frac{1}{(j\omega+a)^n}$
$\frac{j}{\pi t}$	$\operatorname{sgn}(\omega)$

$ \begin{array}{c} \text{Synthesis, Analysis} & f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega \\ \text{Eigenfunction} & h(t) * e^{j\omega_0 t} = H(\omega_0) e^{j\omega_0 t} \\ h(t) * e^{j\omega_0 t} = H(\omega_0) e^{j\omega_0 t} \\ h(\omega) 2\pi \delta(\omega - \omega_0) \\ h(\omega) 2\pi \delta(\omega - \omega_0)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Properties o	of the Continuous-Time Fourier	
Eigenfunction $h(t)*e^{j\omega_0t} = H(\omega_0)e^{j\omega_0t}$ $H(\omega)2\pi\delta(\omega-\omega_0) = H(\omega_0)2\pi\delta(\omega)$ $a_1f_1(t) + a_2f_2(t)$ $a_1F_1(\omega) + a_2F_2(t)$ $f(\omega) - \frac{1}{ a }e^{j\omega_0t}F(\omega/a)$ Time shift $f(t) - \tau$ $f(-\tau)$ $f(-$	Eigenfunction $h(t)*e^{j\omega_0t} = H(\omega_0)e^{j\omega_0t} \\ = H(\omega)2\pi\delta(\omega-\omega_0) \\ = H(\omega_0)2\pi\delta(\omega-\omega_0) \\ = $	~	Time	Fourier
Linearity $ \begin{array}{c} = H(\omega_0)2\pi\delta(\omega) \\ a_1f_1(t) + a_2f_2(t) \\ f(at+b), \ a \neq 0 \\ f(at+b), \ $	Linearity $a_1f_1(t) + a_2f_2(t) \qquad a_1F_1(\omega) + a_2F_2(\omega)$ $a_1F_1(\omega) + a_2F_2(\omega) \qquad a_1F_1(\omega) + a_2F_2(\omega)$ $f(at+b), \ a \neq 0 \qquad \frac{1}{ a }e^{j\omega b/a}F(\omega/a)$ Time shift $f(t-\tau) \qquad F(\omega)e^{-j\omega\tau}$ Time reversal $f(-t) \qquad F(-\omega)$ Time-scaling $f(at), \ a \neq 0 \qquad \frac{1}{ a }F\left(\frac{\omega}{a}\right)$ Convolution $f_1(t) * f_2(t) \qquad F_1(\omega) * F_2(\omega)$ Time-domain Multiplication $f(t) \cdot f_2(t) \qquad \frac{1}{2\pi}F_1(\omega) * F_2(\omega)$ Time-domain Multiplication $f(t) \cdot f_2(t) \qquad \frac{1}{2\pi}F_1(\omega) * F_2(\omega)$ Time. Differentiation $f(t) \cdot cos(\omega_0 t) \qquad F(\omega - \omega_0) + F(\omega - \omega_0)$ Time. Differentiation $f(t) \cdot cos(\omega_0 t) \qquad \frac{F(\omega - \omega_0) + F(\omega}{d\omega^n} f(t) \qquad \frac{d^n}{d\omega^n} f(t) \qquad \frac{d^n}{d\omega^n} F(\omega)$ Conjugation $f^*(t) \qquad F^*(t) \qquad f(t) * u(t) \qquad \frac{1}{j\omega}F(\omega) + \pi F(0) \delta d\omega^n$ Symmetry properties $f(t) \text{ real} \qquad F(\omega) = F^*(-\omega)$ Duality $F(t) \qquad F^*(t) \qquad 2\pi f(-\omega)$ Relation to Laplace $Parseval/Rayleigh Theorem$ $Parseval/Rayleigh Theorem$ $Parseval/Rayleigh Theorem$ $DC Value$ $\int_{-\infty}^{\infty} f(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) F(\omega) ^2 d\omega$ $\int_{-\infty}^{\infty} f(t) dt = F(0)$,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Eigenfunction	$h(t) * e^{j\omega_0 t} = H(\omega_0)e^{j\omega_0 t}$	$ H(\omega)2\pi\delta(\omega - \omega_0) $ $= H(\omega_0)2\pi\delta(\omega - \omega_0) $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c } \hline \text{Time reversal} & f(t-\tau) & F(\omega)e^{-j\omega\tau} \\ \hline \hline \text{Time reversal} & f(-t) & F(-\omega) \\ \hline \hline \text{Time-scaling} & f(at), \ a \neq 0 & \frac{1}{ a }F\left(\frac{\omega}{a}\right) \\ \hline \hline \text{Convolution} & f_1(t)*f_2(t) & F_1(\omega) \cdot F_2(\omega) \\ \hline \hline \text{Time-domain Multiplication} & f_1(t)*f_2(t) & \frac{1}{2\pi}F_1(\omega)*F_2(\omega) \\ \hline \hline \text{Time-domain Multiplication} & f(t)e^{j\omega_0t} & F(\omega-\omega_0) \\ \hline \hline \text{Frequency shift} & f(t)\cos(\omega_0t) & F(\omega-\omega_0) + F(\omega) \\ \hline \hline \text{Modulation (cosine)} & f(t)\cos(\omega_0t) & \frac{F(\omega-\omega_0)+F(\omega)}{2} \\ \hline \hline \text{Time. Differentiation} & \frac{d^n}{dt^n}f(t) & \frac{d^n}{dt^n}F(\omega) \\ \hline \hline \text{Integration} & \int_{-\infty}^t f(\tau) d\tau = f(t)*u(t) & \frac{1}{j\omega}F(\omega)+\pi F(0)\delta \\ \hline \hline \text{Conjugation} & f^*(t) & F^*(-\omega) \\ \hline \hline \text{Symmetry properties} & f(t) \text{ real} & F(\omega)=F^*(-\omega) \\ \hline \hline \hline Duality & F^*(t) & 2\pi f^*(\omega) \\ \hline \hline Duality & F(t) & 2\pi f(-\omega) \\ \hline \hline \text{Relation to Laplace} & F(\omega)=F(s) _{s=j\omega}, \text{ if ROC includes } j\omega \text{ axis} \\ \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Linearity	$a_1 f_1(t) + a_2 f_2(t)$	$a_1F_1(\omega) + a_2F_2(\omega)$
$\begin{array}{ c c c c } \hline \text{Time reversal} & f(-t) & F(-\omega) \\ \hline \text{Time-scaling} & f(at), \ a \neq 0 & \frac{1}{ a }F\left(\frac{\omega}{a}\right) \\ \hline \text{Convolution} & f_1(t)*f_2(t) & F_1(\omega) \cdot F_2(\omega) \\ \hline \text{Time-domain Multiplication} & f_1(t)*f_2(t) & \frac{1}{2\pi}F_1(\omega)*F_2(\omega) \\ \hline \text{Frequency shift} & f(t)e^{j\omega_0t} & F(\omega-\omega_0) \\ \hline \text{Modulation (cosine)} & f(t)\cos(\omega_0t) & \frac{F(\omega-\omega_0)+F(\omega-\omega_0)}{2} \\ \hline \text{Time. Differentiation} & \frac{d^n}{dt^n}f(t) & \frac{d^n}{d\omega^n}F(\omega) \\ \hline \text{Freq. Differentiation} & \int_{-\infty}^t f(\tau) d\tau = f(t)*u(t) & \frac{d^n}{d\omega^n}F(\omega) \\ \hline \text{Conjugation} & f^*(t) & F^*(-\omega) \\ \hline \text{Symmetry properties} & f(t) \text{ real} & F(\omega) = F^*(-\omega) \\ \hline \text{Duality} & F^*(t) & 2\pi f^*(\omega) \\ \hline \text{Duality} & F(t) & 2\pi f(-\omega) \\ \hline \text{Relation to Laplace} & F(\omega) = F(s) _{s=j\omega}, \text{ if ROC includes } j\omega \text{ ax} \\ \hline \text{Parseval/Rayleigh Theorem} & F=\int_{-\infty}^\infty f(t) ^2 dt = \frac{1}{2\pi}\int_{-\infty}^\infty F(\omega) ^2 d\omega \\ \hline \text{DC Value} & \int_{-\infty}^\infty f(t) dt = F(0) \\ \hline \end{array}$	$\begin{array}{ c c c c } \hline \text{Time reversal} & f(-t) & F(-\omega) \\ \hline \text{Time-scaling} & f(at), \ a \neq 0 & \frac{1}{ a }F\left(\frac{\omega}{a}\right) \\ \hline \text{Convolution} & f_1(t)*f_2(t) & F_1(\omega) \cdot F_2(\omega) \\ \hline \text{Time-domain Multiplication} & f_1(t) \cdot f_2(t) & \frac{1}{2\pi}F_1(\omega) \cdot F_2(\omega) \\ \hline \text{Frequency shift} & f(t)e^{j\omega_0t} & F(\omega-\omega_0) \\ \hline \text{Modulation (cosine)} & f(t)\cos(\omega_0t) & \frac{F(\omega-\omega_0)+F(\omega)}{2} \\ \hline \text{Time. Differentiation} & \frac{d^n}{dt^n}f(t) & (j\omega)^nF(\omega) \\ \hline \text{Freq. Differentiation} & \int_{-\infty}^t f(\tau) \ d\tau = f(t)*u(t) & \frac{1}{j\omega}F(\omega)+\pi F(0)\delta \\ \hline \text{Conjugation} & f^*(t) & F^*(-\omega) \\ \hline \text{Symmetry properties} & f(t) \text{ real} & F(\omega) = F^*(-\omega) \\ \hline \text{Duality} & F^*(t) & 2\pi f^*(\omega) \\ \hline \text{Duality} & F(b) & 2\pi f(-\omega) \\ \hline \text{Relation to Laplace} & F(\omega) = F(s) _{s=j\omega}, \text{ if ROC includes } j\omega \text{ axis} \\ \int_{-\infty}^\infty f_1(t)f_2^*(t) \ dt = \frac{1}{2\pi}\int_{-\infty}^\infty F_1(\omega)F_2^*(\omega) \ d\omega \\ \hline \text{DC Value} & \int_{-\infty}^\infty f(t) \ dt = F(0) \\ \hline \end{array}$	Time transformation	$f(at+b), a \neq 0$	$\frac{1}{ a }e^{j\omega b/a}F(\omega/a)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c } \hline \text{Time-scaling} & f(at), \ a \neq 0 & \frac{1}{ a }F\left(\frac{\omega}{a}\right) \\ \hline \text{Convolution} & f_1(t)*f_2(t) & F_1(\omega)\cdot F_2(\omega) \\ \hline \text{Time-domain Multiplication} & f_1(t)\cdot f_2(t) & \frac{1}{2\pi}F_1(\omega)*F_2(\omega) \\ \hline \text{Frequency shift} & f(t)e^{j\omega_0t} & F(\omega-\omega_0) \\ \hline \text{Modulation (cosine)} & f(t)\cos(\omega_0t) & \frac{F(\omega-\omega_0)+F(\omega-\omega_0)+F(\omega-\omega_0)}{2} \\ \hline \text{Time. Differentiation} & \frac{d^n}{dt^n}f(t) & \frac{d^n}{d\omega^n}F(\omega) \\ \hline \text{Integration} & \int_{-\infty}^t f(\tau) d\tau = f(t)*u(t) & \frac{1}{j\omega}F(\omega)+\pi F(0)\delta \\ \hline \text{Conjugation} & f^*(t) & F^*(-\omega) \\ \hline \text{Symmetry properties} & f(t) \text{ real} & F(\omega) = F^*(-\omega) \\ \hline Duality & F(t) & 2\pi f^*(\omega) \\ \hline \text{Duality} & F(t) & 2\pi f(-\omega) \\ \hline \text{Relation to Laplace} & F(\omega) = F(s) _{s=j\omega}, \text{ if ROC includes } j\omega \text{ axi} \\ \hline Parseval's Theorem & F(\omega) = \int_{-\infty}^\infty f_1(t)f_2^*(t) dt = \frac{1}{2\pi}\int_{-\infty}^\infty F_1(\omega)F_2^*(\omega) d\omega \\ \hline DC \text{Value} & \int_{-\infty}^\infty f(t) dt = F(0) \\ \hline \end{array}$	Time shift	f(t- au)	$F(\omega)e^{-j\omega\tau}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Time reversal	f(-t)	$F(-\omega)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Time-scaling	$f(at), a \neq 0$	
Frequency shift $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Frequency shift $ \begin{array}{c} f(t)e^{j\omega_0t} \\ \text{Modulation (cosine)} \\ \text{Time. Differentiation} \\ \text{Freq. Differentiation} \\ \text{Integration} \\ \text{Conjugation} \\ \text{Symmetry properties} \\ \\ \text{Duality} \\ \text{Parseval/Rayleigh Theorem} \\ \text{Parseval/Rayleigh Theorem} \\ \text{DC Value} \\ \\ \hline \\ Frequency shift f(t)e^{j\omega_0t} \\ f(t)\cos(\omega_0t) \\ f(t)\cos(\omega_0t) \\ f(t) \cos(\omega_0t) \\ f(t) \\ $	Convolution	$f_1(t) * f_2(t)$	$F_1(\omega) \cdot F_2(\omega)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Time-domain Multiplication	$f_1(t) \cdot f_2(t)$	$\frac{1}{2\pi}F_1(\omega) * F_2(\omega)$
Time. Differentiation	Time. Differentiation	Frequency shift	$f(t)e^{j\omega_0t}$	$F(\omega - \omega_0)$
Freq. Differentiation	Freq. Differentiation	Modulation (cosine)	$f(t)\cos(\omega_0 t)$	$\frac{F(\omega - \omega_0) + F(\omega + \omega_0)}{2}$
Integration $\int_{-\infty}^{t} f(\tau) d\tau = f(t) * u(t) \qquad \frac{1}{j\omega} F(\omega) + \pi F(0)$ Conjugation $f^*(t) \qquad \qquad F^*(-\omega)$ Symmetry properties $f(t) \text{ real} \qquad \qquad F(\omega) = F^*(-\omega)$ Summetry properties $f(t) = f^*(-t) \qquad \qquad F(\omega) \text{ real}$ Duality $F^*(t) \qquad \qquad 2\pi f^*(\omega)$ Duality $F(t) \qquad \qquad 2\pi f(-\omega)$ Relation to Laplace $F(\omega) = F(s) _{s=j\omega}, \text{ if ROC includes } j\omega \text{ ax }$ $\int_{-\infty}^{\infty} f_1(t) f_2^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$ DC Value $\int_{-\infty}^{\infty} f(t) dt = F(0)$	Integration $\int_{-\infty}^{t} f(\tau) d\tau = f(t) * u(t) \qquad \frac{1}{j\omega} F(\omega) + \pi F(0) \delta t \qquad f^*(t) \qquad F^*(t) \qquad F^*(-\omega)$ Symmetry properties $f(t) \text{ real} \qquad F(\omega) = F^*(-\omega) \qquad F(\omega) \text{ real} \qquad 2\pi f^*(\omega) \qquad 2\pi f(-\omega)$ Duality $F(t) \qquad F(t) \qquad 2\pi f(-\omega)$ Relation to Laplace $Parseval's \text{ Theorem} \qquad F(\omega) = F(s) _{s=j\omega}, \text{ if ROC includes } j\omega \text{ axis} \qquad f^*(t) f_2^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) d\omega \qquad F(\omega) = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega \qquad f^*(t) dt = F(0)$	Time. Differentiation	$\frac{d^n}{dt^n}f(t)$	$(j\omega)^n F(\omega)$
Integration $\int_{-\infty}^{t} f(\tau) d\tau = f(t) * u(t) \qquad \frac{1}{j\omega} F(\omega) + \pi F(0)$ Conjugation $f^*(t) \qquad \qquad F^*(-\omega)$ Symmetry properties $f(t) \text{ real} \qquad \qquad F(\omega) = F^*(-\omega)$ $F(\omega) \text{ real} \qquad \qquad F(\omega) \text{ real}$ Duality $F^*(t) \qquad \qquad 2\pi f^*(\omega)$ $2\pi f(-\omega)$ Relation to Laplace $\text{Parseval's Theorem} \qquad \qquad F(\omega) = F(s) _{s=j\omega}, \text{ if ROC includes } j\omega \text{ ax}$ $\int_{-\infty}^{\infty} f_1(t) f_2^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) dt$ $E = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$ DC Value $\int_{-\infty}^{\infty} f(t) dt = F(0)$	Integration $\int_{-\infty}^{t} f(\tau) d\tau = f(t) * u(t) \qquad \frac{1}{j\omega} F(\omega) + \pi F(0) \delta t \qquad F^*(t) \qquad F^*(t) \qquad F^*(-\omega)$ Symmetry properties $f(t) \text{ real} \qquad F(\omega) = F^*(-\omega) \qquad F(\omega) \text{ real} \qquad F(\omega) = F^*(\omega) \qquad F(\omega) \text{ real} \qquad F(\omega) = F^*(\omega) \qquad F(\omega) \qquad F$	Freq. Differentiation	$(-jt)^n f(t)$	$\frac{d^n}{d\omega^n}F(\omega)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Conjugation $f^*(t) \qquad \qquad F^*(-\omega)$ Symmetry properties $f(t) \text{ real} \qquad \qquad F(\omega) = F^*(-\omega)$ F(\omega) real $f(t) = f^*(-t) \qquad \qquad F(\omega) \text{ real}$ Duality $F^*(t) \qquad \qquad 2\pi f^*(\omega)$ Puality $F(t) \qquad \qquad F(\omega) = F(s) _{s=j\omega}, \text{ if ROC includes } j\omega \text{ axis}$ Parseval's Theorem $F(\omega) = F(s) _{s=j\omega}, \text{ if ROC includes } j\omega \text{ axis}$ Parseval/Rayleigh Theorem $F(\omega) = F(s) _{s=j\omega}, \text{ if ROC includes } j\omega \text{ axis}$ $\int_{-\infty}^{\infty} f_1(t) f_2^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) d\omega$ DC Value $F(\omega) = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$	Integration	$\int_{-\infty}^{t} f(\tau) d\tau = f(t) * u(t)$	$\frac{1}{i\omega}F(\omega) + \pi F(0)\delta(\omega)$
$f(t) = f^*(-t) \qquad F(\omega) \text{ real}$ Duality $F^*(t) \qquad 2\pi f^*(\omega)$ Duality $F(t) \qquad 2\pi f(-\omega)$ Relation to Laplace $F(\omega) = F(s) _{s=j\omega}, \text{ if ROC includes } j\omega \text{ ax}$ $\int_{-\infty}^{\infty} f_1(t) f_2^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) dt$ Parseval/Rayleigh Theorem $E = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$ DC Value $\int_{-\infty}^{\infty} f(t) dt = F(0)$	$f(t) = f^*(-t) \qquad F(\omega) \text{ real}$ Duality $F^*(t) \qquad 2\pi f^*(\omega)$ Duality $F(t) \qquad 2\pi f(-\omega)$ Relation to Laplace $F(\omega) = F(s) _{s=j\omega}, \text{ if ROC includes } j\omega \text{ axion}$ Parseval's Theorem $\int_{-\infty}^{\infty} f_1(t) f_2^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) d\omega$ Parseval/Rayleigh Theorem $E = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$ DC Value $\int_{-\infty}^{\infty} f(t) dt = F(0)$	Conjugation	₹.#° 5	, and the second
Duality $F^*(t) \qquad 2\pi f^*(\omega)$ Duality $F(t) \qquad 2\pi f(-\omega)$ Relation to Laplace $F(\omega) = F(s) _{s=j\omega}, \text{ if ROC includes } j\omega \text{ ax}$ Parseval's Theorem $\int_{-\infty}^{\infty} f_1(t) f_2^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) dt$ Parseval/Rayleigh Theorem $E = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$ DC Value $\int_{-\infty}^{\infty} f(t) dt = F(0)$	Duality $F^*(t) \qquad 2\pi f^*(\omega)$ Duality $F(t) \qquad 2\pi f(-\omega)$ Relation to Laplace $F(\omega) = F(s) _{s=j\omega}, \text{ if ROC includes } j\omega \text{ axion}$ Parseval's Theorem $\int_{-\infty}^{\infty} f_1(t) f_2^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) dt$ Parseval/Rayleigh Theorem $E = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$ DC Value $\int_{-\infty}^{\infty} f(t) dt = F(0)$	Symmetry properties	f(t) real	$F(\omega) = F^*(-\omega)$
Duality $F(t) \qquad 2\pi f(-\omega)$ Relation to Laplace $F(\omega) = F(s) _{s=j\omega}, \text{ if ROC includes } j\omega \text{ ax}$ Parseval's Theorem $\int_{-\infty}^{\infty} f_1(t) f_2^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) dt$ Parseval/Rayleigh Theorem $E = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$ DC Value $\int_{-\infty}^{\infty} f(t) dt = F(0)$	Duality $F(t) \qquad 2\pi f(-\omega)$ Relation to Laplace $F(\omega) = F(s) _{s=j\omega}, \text{ if ROC includes } j\omega \text{ axis}$ Parseval's Theorem $\int_{-\infty}^{\infty} f_1(t) f_2^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) d\omega$ Parseval/Rayleigh Theorem $E = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$ DC Value $\int_{-\infty}^{\infty} f(t) dt = F(0)$		$f(t) = f^*(-t)$	$F(\omega)$ real
Relation to Laplace $F(\omega) = F(s) _{s=j\omega}, \text{ if ROC includes } j\omega \text{ ax}$ $\int_{-\infty}^{\infty} f_1(t) f_2^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) dt$ $E = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$ DC Value $\int_{-\infty}^{\infty} f(t) dt = F(0)$	Relation to Laplace $F(\omega) = F(s) _{s=j\omega}, \text{ if ROC includes } j\omega \text{ axis}$ Parseval's Theorem $\int_{-\infty}^{\infty} f_1(t) f_2^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) dt$ Parseval/Rayleigh Theorem $E = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$ DC Value $\int_{-\infty}^{\infty} f(t) dt = F(0)$	Duality	$F^*(t)$	$2\pi f^*(\omega)$
Parseval's Theorem $\int_{-\infty}^{\infty} f_1(t) f_2^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) dt$ Parseval/Rayleigh Theorem $E = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$ DC Value $\int_{-\infty}^{\infty} f(t) dt = F(0)$	Parseval's Theorem $\int_{-\infty}^{\infty} f_1(t) f_2^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) dt$ Parseval/Rayleigh Theorem $E = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$ DC Value $\int_{-\infty}^{\infty} f(t) dt = F(0)$	Duality	F(t)	$2\pi f(-\omega)$
Parseval/Rayleigh Theorem $E = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$ DC Value $\int_{-\infty}^{\infty} f(t) dt = F(0)$	Parseval/Rayleigh Theorem $E = \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$ DC Value $\int_{-\infty}^{\infty} f(t) dt = F(0)$	Relation to Laplace	$F(\omega) = F(s) _{s=j\omega}$, if	ROC includes $j\omega$ axis
DC Value $\int_{-\infty}^{\infty} f(t) dt = F(0)$	DC Value $\int_{-\infty}^{\infty} f(t) dt = F(0)$	Parseval's Theorem	$\int_{-\infty}^{\infty} f_1(t) f_2^*(t) dt = \frac{1}{2\pi}$	$\frac{1}{\tau} \int_{-\infty}^{\infty} F_1(\omega) F_2^*(\omega) d\omega$
6.00	6.0	Parseval/Rayleigh Theorem	$E = \int_{-\infty}^{\infty} f(t) ^2 dt =$	$=\frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega) ^2d\omega$
6.0	6 17	DC Value	$\int_{-\infty}^{\infty} f(t) dt$	t = F(0)
at satisfies $f(t) = f^*(-t)$ is said to have Hermitian symmetry .		at satisfies $f(t) = f^*(-t)$ is said to		

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) + 7y(t) = \frac{\mathrm{d}}{\mathrm{d}t}x(t) + 4x(t) + \int_{-\infty}^{\infty} x(\tau)z(t-\tau)\,d\tau,$$

where $z(t) = 4e^{-t}u(t) + \delta(t)$.

Consider the signals x(t) and y(t) shown to the right. Find the Fourier transform $X(\omega)$, $Y(\omega)$ of x(t) and y(t). Using the axes below, sketch the magnitude spectrum of $X(\omega)$ and $Y(\omega)$.

The *relative* characteristics of your two plots are particularly important.

Hint: x(t) is the prenals shown to the right. Hint: x(t) is the product of the two sig-

11

