Projeto AM 2015-2

Francisco de A. T. de Carvalho¹ Cleber Zenchettin²

1 Centro de Informatica-CIn/UFPE Av. Prof. Luiz Freire, s/n -Cidade Universitaria, CEP 50740-540, Recife-PE, Brasil, {fatc,cz}@cin.ufpe.br

- Considere a tabela de dados "Tic-Tac-Toe Endgame Data Set" do site uci machine learning repository (http://archive.ics.uci.edu/ml/).
 - a) Obtenha a matrix de dissimilaridades entre os objetos usando a seguinte função. Seja $\mathbf{x}_i = (x_{i1}, \dots, x_{ij}, \dots, x_{ip})$. Então: $d(\mathbf{x}_i, \mathbf{x}_l) = \sum_{j=1}^p \delta(x_{ij}, x_{lj})$, onde $\delta(x_{ij}, x_{lj}) = \begin{cases} 1 \text{ if } x_{ij} \neq x_{lj} \\ 0 \text{ if } x_{ij} = x_{li} \end{cases}$
 - b) Execute o algoritmo "Single view fuzzy K-set-medoids clustering algorithm" 100 vezes para obter uma partição fuzzy em 2 grupos e selecione o melhor resultado segundo a função objetivo. A partir da partição fuzzy, obtenha a partição hard em 2 grupos e calcule o índice de Rand corrigido. Para detalhes do algoritmo "Single view fuzzy K-set-medoids clustering algorithm" veja a seção 2.1 do artigo: "F.A.T. de Carvalho, Y. Lechevalier and F.M. Melo, Relational Partitioning Fuzzy Clustering Algorithms Based on Multiple Dissimilarity Matrices, Fuzzy Sets and Systems, 215, 1-28, 2013".

Observações:

- Parametros: $K = 2, m = 2, T = 150, \epsilon = 10^{-10}, q = 2$
- Para o melhor resultado imprimir: i) a partição fuzzy (matrix U), ii) a partição hard (para cada grupo, a lista de objetos), iii) para cada grupo a lista de medoids, iv) 0 índice de Rand corrigido.

- 2) Considere novamente a tabela de dados "Tic-Tac-Toe Endgame Data Set". Os exemplos são rotulados segundo as classes ω_1 : *positivo* e ω_2 : *negativo*. Os dados são descritos por 9 variáveis categóricas, cada uma delas com 3 categorias "x(1)", "o(0)" e "b(-1)". Cada objeto é descrito pelo par (\mathbf{x}, y) , onde $\mathbf{x} = (x_1, \dots, x_9), x_i \in \{1, 0, -1\}, i = 1, \dots, 9$ e $y \in \{\omega_1, \omega_2\}$.
 - a) Classificador Bayesiano. Classifique os exemplos segundo a seguinte regra de decisão: afetar o exemplo \mathbf{x} a classe ω_j se $j=arg\max P(\omega_l|\mathbf{x})$ com $P(\omega_l|\mathbf{x}) = \frac{P(\mathbf{x}|\omega_l)P(\omega_l)}{\sum_{j=1}^c P(\mathbf{x}|\omega_j)P(\omega_j)} \text{ onde } P(\omega_l) \text{ é a probabilidade a priori da}$ classe ω_l e $P(\mathbf{x}|\omega_j) = \prod_{i=1}^d (p_{ij})^{\left(\frac{x_i(x_i+1)}{2}\right)} (q_{ij})^{\left(1-x_i^2\right)} (r_{ij})^{\left(\frac{x_i(x_i-1)}{2}\right)}$ é a probabilidade condicional com $p_{ij} = P(x_i = 1|\omega_j), \ q_{ij} = P(x_i = 0|\omega_j)$ e $r_{ij} = P(x_i = -1|\omega_j), \ i = 1, \ldots, 9; \ j = 1, 2.$ Estime $P(\omega_l)$ e os parametros p_{ij}, q_{ij}, r_{ij} pelo método da máxima verossimilhança. Considerando o conjunto de aprendizagem da classe ω_j $D = \{\mathbf{x}_1, \ldots, \mathbf{x}_k, \ldots, \mathbf{x}_{n_j}\}$, use como estimativas desses parametros: $p_{ij} = \frac{1}{n_j} \sum_{k=1}^{n_j} \frac{x_{ki}(x_{ki}+1)}{2}; \ q_{ij} = \frac{1}{n_j} \sum_{k=1}^{n_j} \frac{x_{ki}(x_{ki}-1)}{2}$

- b) Estime diretamente $P(\omega_l|\mathbf{x})$ pelo método dos k-vizinhos mais próximos. Use a distância anterior do item1. Varie o número de vizinhos.
- c) Use a regra da soma para classificar o exemplo ${\bf x}$ a partir do calculo de $P(\omega_l|{\bf x})$ obtido pelos classificadores Bayesiano, e k-vizinhos
- d) Usar MLP e SVM para fazer a classificação dos dados.

Observações

- use validação cruzada estratificada para avaliar e comparar esses classificadores
- Obtenha uma estimativa pontual e um intervalo de confiança para a taxa de erro para cada classificador
- usar Friedman test (teste n\u00e3o parametrico) para comparar os classificadores. Usar tamb\u00e9m o Nemenyi test (pos teste)

Observações Finais

- No Relatório e na saída da ferramenta devem estar bem claros:
 - a) como foi realizada a combinação dos classificadores;
 - como foram organizados os experimentos de tal forma a realizar corretamente a avaliação dos modelos e a comparação entre os mesmos.
 Fornecer também uma descrição dos dados.
- Data de apresentação e entrega do projeto: QUINTA-FEIRA 03/12/2015
- Enviar por email : o programa fonte, o executável, os dados e o relatório do projeto
- PASSAR NA MINHA SALA PARA ASSINAR A ATA DE ENTREGA DO TRABALHO EM 01/12/2015
- ALUNOS DE PÓS-GRADUAÇÃO: o projeto pode ser realizado com no máximo 2 alunos.
- ALUNOS DE GRADUAÇÃO: o projeto pode ser realizado com no máximo 4 alunos.