What is claimed is:

1. A method for providing a data symbol having a first quadrature compensated data symbol (FQCDS), second quadrature compensated data symbol (SQCDS), a first in-phase compensated data symbol (FICDS) and a second in-phase compensated data symbol (SICDS) to an inverse fast fourrier transform (IFFT) of a multicarrier quadrature modulator having an amplifier, wherein a first subcarrier data symbol and a second subcarrier data symbol are available from a mapper and an alpha, epsilon and gain are predetermined comprising the steps of:

first quadrature compensating the data symbol based on the alpha, epsilon and gain to produce a FQCDS;

second quadrature compensating the data symbol based on the alpha, epsilon and gain to produce a SQCDS;

first in-phase compensating the data symbol based on the alpha, epsilon and gain to produce a FICDS; and

second in-phase compensating the data symbol based on the alpha, epsilon and gain to produce a SICDS.

- 2. A method for providing a first quadrature compensated data symbol (FQCDS), second quadrature compensated data symbol (SQCDS), a first in-phase compensated data symbol (FICDS) and a second in-phase compensated data symbol (SICDS) to an inverse fast fourrier transform (IFFT) of a multicarrier quadrature modulator having an amplifier, wherein at least four transmitted symbol are available from the amplifier and at least four data symbols and a next data symbol are available from a mapper comprising the steps of:
 - a) calculating the energy of at least four transmitted symbols;
- b) calculating a alpha, epsilon and gain based on the energy of the at least four transmitted symbols and at least four data symbols;
 - c) storing the alpha, epsilon and gain;
- d) first quadrature compensating the next data symbol first quadrature subcarrier based on the alpha, epsilon and gain to produce a FQCDS;
- e) second quadrature compensating the next data symbol second quadrature subcarrier based on the alpha, epsilon and gain to produce a SQCDS;
 - f) first in-phase compensating the next data symbol first in-phase subcarrier

275

276

277

278

279 280

281

282

283 284

251

252

253

254

255 256

257

258

259 260

261 262

263

based on the alpha, epsilon and gain to produce a FICDS;

- g) second in-phase compensating the next data symbol second in-phase subcarrier based on the alpha, epsilon and gain to produce a SICDS; and
- h) repeating steps a, b and c wherein the at least four transmitted symbols include the next transmitted data symbol and the at least four data symbols include the next data symbol.
- 3. The method of claim 2 wherein the step of calculating a alpha, epsilon and gain further comprises the step of:

calculating a first alpha, first epsilon and a first gain based on the energy of the at least for transmitted symbols:

calculating a second alpha, second epsilon and a second gain based on the energy of the next data symbol;

calculating a alpha based on a average of the first alpha and the second alpha; calculating a epsilon based on a average of the first epsilon and the second epsilon; and

calculating a gain based on a average of the first gain and the second gain.

- 4. The method of claim 2 wherein the step of calculating the energy of at least four transmitted symbols further comprises the steps of:
 - a) sampling output of a transmitter to provide a sampled signal;
 - b) squaring the sampled signal to provide a squared sample signal; and
 - c) integrating the squared sample signal over a symbol duration.
- 5. An apparatus for providing a first quadrature compensated data symbol (FQCDS), second quadrature compensated data symbol (SQCDS), a first in-phase compensated data symbol (FICDS) and a second in-phase compensated data symbol (SICDS)to an inverse fast fourrier transform (IFFT) of a multicarrier quadrature modulator having an amplifier, wherein at least four transmitted symbol are available from the amplifier and at least four data symbols and a next data symbol are available from a mapper comprising:
 - a) means for calculating the energy of at least four transmitted symbols:
- b) means for calculating a alpha, epsilon and gain based on the energy of the at least four transmitted symbols and at least four data symbols;
 - c) means for storing the alpha, epsilon and gain;

285

286 287

288

289

290

291

292 293

294 295

296 297

298

299

300

301

303

305

307

309 310

311

312

313 314

315

d) means for first quadrature compensating the next data symbol first quadrature subcarrier based on the alpha, epsilon and gain to produce a FQCDS; e) means for second quadrature compensating the next data symbol second quadrature subcarrier based on the alpha, epsilon and gain to produce a SQCDS; f) means for first in-phase compensating the next data symbol first in-phase subcarrier based on the alpha, epsilon and gain to produce a FICDS; g) means for second in-phase compensating the next data symbol second inphase subcarrier based on the alpha, epsilon and gain to produce a SICDS; and h) means for repeating steps a, b and c wherein the at least four transmitted symbols include the next transmitted data symbol and the at least four data symbols include the next data symbol. 6. The apparatus of claim 5 wherein the means for calculating a alpha, epsilon and gain further comprises: means for calculating a first alpha, first epsilon and a first gain based on the energy of the at least for transmitted symbols; means for calculating a second alpha, second epsilon and a second gain based on the energy of the next data symbol; means for calculating a alpha based on a average of the first alpha and the second alpha; means for calculating a epsilon based on a average of the first epsilon and the second epsilon; and means for calculating a gain based on a average of the first gain and the second gain. 7. The apparatus of claim 5 wherein the means for calculating the energy of at least four transmitted symbols further comprises: a) means for sampling output of a transmitter to provide a sampled signal; b) means for squaring the sampled signal to provide a squared sample signal; and

c) means for integrating the squared sample signal over a symbol duration.