GZP6816D

型压力传感器

数字输出 无铅产品

产品规格书

版本号: V1.4

文件发行日期: 2022.03.16

网址: http://www.sencoch.com 客服电话: 0553-3116860 / 0553-2167689

地址: 江苏省无锡市滨湖区滴翠路 100号 无锡(国家)工业设计园 17栋

目录

1. 产品特点	
2. 应用领域	
3. 概述	
5. 电气特性	
6. 外形结构 (单位为毫米)	
7. 电气连接	(
8. I ² C 通讯协议	-
9. 一般读取指令	1(
10. 换算	1(
11. 使用注意事项	1(
11.1. 焊接	1(
11.2. 清洗要求	1
11.3. 存储和运输	
	ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ
11.4. 其他使用注意事项	12
12. 包装信息	13
安全注意事项	14
IIC Example Code (C51 Language)	15
免责声明	2
/U/X/ 13	

文件修订历史

修订	描述	日期
V1.0	初始版本	2021.4.2
V1.1	增加封面、目录	2021.9.23
V1.2	增加寄存器、指令说明	2021.11.18
V1.3	更新程序量程、延时	2021.12.24
V1.4	调整产品归类	2022.03.16

公司保留在不另行通知的情况下对其所包含的规格进行更改的权利。 产品规格书版权及产品最终解释权归芯感智所有。

1. 产品特点

■ 测量范围 30kPa~110kPa

■ 绝压型

■ 电源电压: 1.8V ~ 3.6V

■ 电流消耗: <80uA(最大过采样率一次测量)

■ 休眠状态电流: 0.1uA (25°C)

■ IIC 通讯

■ 绝对压力精度: ±1hPa (8.3m)

■ 相对压力精度: ±0.12hPa (1m)

■ 产品尺寸: 2.5*2.0*0.98mm

2. 应用领域

■ 无人机、气象站、导航

■ 运动穿戴设备

■ 手机等移动设备

■ 钟表、家电

■ 监护仪、制氧机等医疗设备

■ 便携式和固定式气压计

3. 概述

GZP6816D 是一款具有高精度和低电流消耗的小型化数字式气体压力传感器,兼具压力和温度测量两种特点。内部信号处理器将压力和温度传感器的输出分别转换为 24 位、16 位数据。每个压力传感器已单独校准并且包含校准系数,在应用中使用系数将测量结果转换成真实的压力和温度值,传感器测量和校准系数可通过串行 I²C 接口获得。

4. 性能指标

供电电源: 1.8V~3.6V DC

测试参考: 温度@25℃, 压力@950~1050hPa

网址: http://www.sencoch.com 客服电话: 0553-3116860 / 0553-2167689

地址: 江苏省无锡市滨湖区滴翠路 100 号 无锡(国家)工业设计园 17 栋

表 1. 性能指标

Parameter	Conditions	Min	Тур	Max	Units
测温范围	内部温度传感器	-40		150	$^{\circ}$ C
绝对压力精度		-1		1	hPa
相对压力精度		-0.12		0.12	hPa
温度测量精度		-1		1	℃
过载压力			2x		Rated
工作温度		-30		100	℃
补偿温度		-10		60	℃
储存温度		-40		150	$^{\circ}\mathbb{C}$

5. 电气特性

表 2.电气特性

Parameter	Condition	ns	Min	Тур	Max	Units
	V _{DD} =2V B	<u>†</u>	32			dB
		过采样率 128x		80		
1Hz 转换率测量		过采样率 64x		42		
时的平均电流		过采样率 32x		23		
	OSR_P	过采样率 16x		13		μA
		过采样率 8x		8		_'
		过采样率 3x		6		
		过采样率 2x		4		
峰值电流	峰值电流			0.3		mA
待机电流	25°C 时作	木眠状态的待机电流		50	250	nA
单次测量时间	OSR_P	过采样率 128x		203		ms
(包括测外部电		过采样率 64x		105		
桥和测温时间,其		过采样率 32x		56		
中测温的 OSR		过采样率 16x		31		
为1024x)		过采样率 8x		19		
		过采样率 4x		13		
		过采样率 2x		10		
ADC 转换速率	OSR 为2	x ~ 128x	20		1350	Hz
I ² C 时钟频率					3.4	MHz
温度分辨率				0.003		K/LSB
启动时间	V _{DD} 上升			1	ms	
	V _{DD} 上升			2.5	ms	
唤醒时间	休眠状态	至接口开始通讯的时间			0.5	ms
	休眠状态	至开始测量的时间			2	ms

网址: http://www.sencoch.com 客服电话: 0553-3116860 / 0553-2167689

地址: 江苏省无锡市滨湖区滴翠路 100 号 无锡(国家)工业设计园 17 栋

6. 外形结构 (单位为毫米)

7. 电气连接

Bottom View

图 4. 引脚图对应关系(Bottom view)

表 3. 引脚对应关系

引脚	符号	功能
1	GND	接地
2	NC	无定义
3	SDA	I ² C 双向数据线
4	SCL	I ² C 时钟线
5	NC	无定义
6	NC	无定义
7	GND	接地
8	VDD	电源

注意

客服电话: 0553-3116860 / 0553-2167689 网址: http://www.sencoch.com

地址: 江苏省无锡市滨湖区滴翠路 100号 无锡(国家)工业设计园 17栋

- 1. 装配前请确认好电气定义
- 2. NC 脚不要有任何的电气连接, 否则可能会造成产品功能失效
- 3. 焊装过程中做好防静电保护
- 4. 过载电压(3.6Vdc)可能烧毁电路芯片
- 5. 请在 VDD 和 GND 之间加上 0.1uf 电容
- 6. 本产品无反接保护,装配时请注意电源极性

图 5. 典型应用

8. I2C 通讯协议

I2C 总线使用 SCL 和 SDA 作为信号线,这两根线都通过上拉电阻(典型值 4.7K)连接到 VDD,不通信时都保持为高电平。

IIC 设备地址为 0x78。

设备地址为 0x78 左移 1 位后为 0xF0,为 IIC 的写操作。

设备地址为 0x78 左移 1 位后再加 1 为 0xF1.为 IIC 的读操作。

IIC 通讯示意图如下所示:

(1) 写命令中格式如下:

(2) 发送完写命令后需要等待一段时间再发送读命令,因为内部完成整个测量需要一段时间。等待的时长取决于压力过采样率和温度过采样率的设置(默认 OSR128X,单次测量时间为 203mS)。

可以通过发送 0XF1 命令读取传感器的状态值,来判断传感器数据采集是否已完成。

网址: http://www.sencoch.com 客服电话: 0553-3116860 / 0553-2167689

地址: 江苏省无锡市滨湖区滴翠路 100 号 无锡(国家)工业设计园 17 栋

(3) 读数指令如下:

S	. I ()X - I A	A Status	А	PressureD at[23:16]	А	PressureD at [15:8]	А	PressureD at [7:0]	А	TempDat [15:8]	А	TempDat [7:0]	Ν	Р	
---	---------------	----------	---	---------------------	---	------------------------	---	-----------------------	---	----------------	---	------------------	---	---	--

I²C 读出 5 字节校准后的压力值和温度值

表 4.比特位描述

	Status 字节描述				
比特位	定义	描述			
Bit7	保留	固定为 0			
Bit6	上电指示	1 上电; 0 掉电			
Bit5	采集结束标志	1 数据采集未完成0 数据采集完成,可读取数据			
Bit4	保留	固定为 0			
Bit3	保留	固定为 0			
Bit2	保留	固定为 1			
Bit1	保留	固定为 0			
Bit0	保留	固定为 0			

■ IIC 指令表

IIC 指令表 5.

Command (byte)	Return	Description	NOR Mode	CMD Mode
0x00~0x1F	16 位数据	从 OTP 中读取数据;	支持	支持
		地址和命令是相同的		
0x40~0x5F		向 OTP 中写数据;	支持	支持
跟随的命令字为		写地址是指令值减去 0x40		
(0x0000 ~ 0xFFFF)		(地址是 0x00 到 0x1F)	3	
0xA0~0xA7	24 位未校准	Get_Raw	支持	支持
跟随的命令字为	数据	该指令用来执行一次传感器测量,将测量到未		
0xXXXX		经过校准的 ADC 数据写入输出寄存器。		
0xA8	_	Start_NOM	不支持	支持
		退出命令模式,进入正常模式。		
0xA9	_	Start_CM	支持	不支持
		退出正常模式,进入命令模式。		
0xAA	_	Write_ChecksumC	支持	支持
		如果 CRC 校验值还没有写入 OTP 中,指令对		
		OTP 中数据进行校验并将校验码写入 OTP		
		中。		
0xAC	24 位校准后	Get_Cal	支持	支持
	的电桥值和	使用 OTP 中的配置进行整体测量		
	16 为校准后	(AZBM,BM,AZTM,和TM),并且把校准后的		
	的温度值	电桥值和温度值写入接口		
0xB0~0xBF	24 位校准后	(见表 6)	支持	支持
	的电桥值和			
	16 为校准后			
	的温度值		,	

网址: http://www.sencoch.com 客服电话: 0553-3116860 / 0553-2167689

地址: 江苏省无锡市滨湖区滴翠路 100 号 无锡(国家)工业设计园 17 栋

表 6	Get	Cal	S	命令

Command 0xBX(HEX)	Function	Detail
X 的第[3] Bit	测量温度时ADC的过采样率	0: 4x 过采样率 1: 8x 过采样率
	OSR_T	
X 的第[2:0] Bit	测量外部电桥时 ADC 的过采	000: 128x 过采样率 100: 8x 过采样率
	样率 OSR_P	001: 64x 过采样率 101:4x 过采样率
		010: 32x 过采样率 110: 2x 过采样率
		011: 16x 过采样率 111: 1x 过采样率

Get_Cal_S 命令 $(0xB0 \sim 0xBF)$ 与 0xAC 命令几乎一样,除了测量时 ADC 的过采样率的设定有所不同,例如,要设置温度 ADC 为 4 倍过采样,压力 ADC 为 1 倍过采样,命令格式为 0xB7,直接用 0xB7 代替 0xAC 即可。

表 7. OTP 寄存器表

Addr	Bit Range	Description	Notes/Explanations
0x00~0x13		校准系数	
	15:14	温度过采样	00:8X 01:16 X 10: 32X 11:64X
			000: 128X 001: 64X 010: 32X
			011: 16X 100: 8X 101: 4X
	13:11	压力过采样	110: 2X 111: 1X
			000 : 1/16> [-1/16, 15/16]
			001 : 2/16 -> [-2/16, 14/16]
			010 : 3/16 -> [-3/16, 13/16]
0x14			011 : 4/16 —> [-4/16, 12/16]
			100 : 5/16 —> [-5/16, 11/16]
			101 : 6/16 -> [-6/16, 10/16]
		/ > ==	110 : 7/16> [-7/16, 9/16]
	10:8	ADC 偏置	111 : 8/16 —> [-8/16, 8/16]
	7:6	保留	
	5	传感器原始信号极性反转	1: 不反转, 0: 反转
	4:0	保留	
0x15~0x16		内部测试	
	4	中断使能	0: disable, 1: enable
			00: 无效
			01:校准值高于预设上限(TH_H)
	3:2	中断 0 配置位	10:校准值低于预设下限(TH_L)
			11:校准值高于预设上限(TH_H)或者低
0x17			于预设下限(TH_L)
			00: 无效
			01:校准值高于预设上限(TH_H)
	1:0	中断 1 配置位	10:校准值低于预设下限(TH_L)
			11:校准值高于预设上限(TH_H)或者低
			于预设下限(TH_L)

网址: http://www.sencoch.com 客服电话: 0553-3116860 / 0553-2167689

地址: 江苏省无锡市滨湖区滴翠路 100 号 无锡(国家)工业设计园 17 栋

9. 一般读取指令

表 8.读取指令

Command(byte)	Return	Description
0xAC	24 位校准后的压力值和16 位校准后的温度值	

10. 换算

读到校准数据后,需要将以 AD 值形式表示的无符号数进行简单的换算。

为方便理解我们假设读到的校准数据为: 0x04 0x9B 0xB0 0xC5 0x56 0xAA 0x04 为状态字 Bit5 为 1 表明最近一次 I2C 忙,需要等待一段时间。如果 Bit5 为 0 表明设备非忙,可以读取数据。关于状态字各比特的详细描述请参见表 4.比特位描述。

0x9B 0xB0 0xC5 三个字节为电桥校准值

0x56 0xAA 两个字节为温度校准值

实际某压力点电桥校准值换算: 将 0x9B 0xB0 0xC5 转换为十进制数为 10203333,

本次计算假设校准时使用的量程为 30Kpa-110Kpa,对应的 AD 输出为 1677722~15099494 (10%AD~90%AD),

根据输入输出关系公式(pressure= ((PMAX-PMIN)/(DMAX-DMIN)*(Dtest-DMIN)+PMIN))得到:实际压力值= (110-30) / (15099494-1677722) * (10203333-1677722) +20=70.816 Kpa 温度校准值换算:将 0x56 0xAA 转换为十进制数为 22186,由于读取到的校准数据是以百分比形式表示的,这个百分比在数值上等于我们换算得到的十进制数与 16bits 无符号数的最大值 (65535) 之比,所以在换算百分比时可进行如下计算

22186/65536*100%=33.85%

温度的校准范围规定为-40℃~150℃ 所以校准值=(150-(-40)) *33.85%—40=24.32℃ 注释:需要注意的是,温度传感器需校准后方可使用,未校准的温度值为原始值,不具备参考价值。

11. 使用注意事项

11.1. 焊接

由于本产品为热容量较小的小型构造,因此请尽量减少来自外部的热量的影响。否则可能会因热变形而造成破损,引起特性变动。请使用非腐蚀性的松香型助焊剂。另外,由于产品暴露在外,因此请注意不要使助焊剂侵入内部。

1) 手焊接

- · 请使用头部温度在 260 ~ 300 ℃ (30 W) 的电烙铁 在 5 秒以内实施作业。
- · 在端子上施加负载进行焊接的情况下,由于输出可能会 发生变化,因此请注意。
- · 请保持电烙铁头洁净。
- 2) DIP 焊接 (DIP 端子型)
- ·在温度为 260 ℃以下的 DIP 焊锡槽内在 5 秒以内实施作业。
- ·安装在热容量较小的基板上时,由于可能会发生热变形,因此请避免采用 DIP 焊接。

网址: http://www.sencoch.com 客服电话: 0553-3116860 / 0553-2167689

地址: 江苏省无锡市滨湖区滴翠路 100 号 无锡(国家)工业设计园 17 栋

3) 回流焊接 (SMD 端子型)

推荐的回流炉温度设置条件如下所示

图 6.回流焊接

- · 由于无法做到自校准, 因此请慎重地对准端子与走线的位置。
- . 设置的温度为端子附近的印刷电路板上所测得的值。
- ·由于装置,条件等原因,压力导入口的先端因为高温会发生溶解和变形,务必请在实际的贴装条件下,进行确认测试。
- 4) 焊接部的修正
- . 请一次性完成修正。
- · 对搭焊进行修正时, 请使用头部形状较平滑的电烙铁, 请勿追加涂敷助焊剂。
- · 关于电烙铁头部的温度, 请使用在规格书所记载的温度以下的电烙铁。
- 5) 在端子上施加过度的力后,会引发变形,损害焊接性,因此请避免使产品掉落,或进行繁杂的使用。
- 6) 印刷板的翘度相对于整个传感器应保持在 0.05mm 以下, 请对此进行管理。
- 7) 安装传感器后,对基板进行切割弯折时,请注意不要使焊接部产生应力。
- 8) 由于传感器的端子为外露构造,因此金属片等触摸端子后,会引发输出异常。请注意不要用金属片或者手等触摸。
- 9) 焊接后,为了防止基板的绝缘恶化而实施涂层时,请注意不要使传感器上面附着药剂。

11.2. 清洗要求

- 1) 由于产品为开放型,因此请注意不要使清洗液侵入内部。
- 2) 使用超声波进行清洗时,可能会使产品发生故障,因此请避免使用超声波进行清洗。

11.3. 存储和运输

- 1) 本产品为非防滴构造,因此请勿在可能溅到水等的场所中使用。
- 2) 请勿在产生凝露的环境中使用。另外,附着在传感器芯片上的水分冻结后,可能会造成传感器输出的变动或者破坏。
- 3) 压力传感器的芯片在构造上接触到光后,输出会发生变动。尤其是通过透明套等施加压力时,请避免使光接触到传感器的芯片。
- 4) 正常包装的压力传感器可通过普通输送工具运输。请注意: 产品在运输过程中防止潮湿、冲击、晒伤和压力。

11.4. 其他使用注意事项

- 1) 安装方法错误时,会造成事故,因此请注意。
- 2) 请避免采用超声波等施加高频振动的使用方法。

网址: http://www.sencoch.com 客服电话: 0553-3116860 / 0553-2167689

地址: 江苏省无锡市滨湖区滴翠路 100 号 无锡(国家)工业设计园 17 栋

- 3) 能够直接使用的压力媒介仅为干燥空气。除此以外的媒介,尤其是在腐蚀性气体(有机溶剂气体,亚硫酸气体,硫化氢气体等)和含有水分,异物的媒介中使用时,会造成故障和破损,因此请避免在上述环境中使用。
- 4) 压力导入口的内部配置有压力传感器芯片。从压力导入口插入针等异物后,会造成芯片破损和导入口堵塞,因此请绝对避免上述操作。另外,使用时请避免堵塞大气导入口。
- 5) 关于使用压力,请在额定压力的范围内使用。在范围外使用时,会造成破损。
- 6) 由于可能因静电而造成破坏,因此使用时请注意: 请将桌子上的带电物,作业人员接地,以使周围的静电安全放电。
- 7) 根据所使用的压力,请充分注意产品的固定和套管,导入管的固定及选择。另外,如有疑问,敬请垂询。

■ 请在实际使用状态下进行确认

由于本规格为产品单体规格, 为了提高实际使用时的可靠性, 请确认实际使用状态下的性能和品质。

12. 包装信息

载带信息(单位为毫米) 每卷数量: 10,000 PCS

图 7. 载带

图 8. 载带口袋细节图

安全注意事项

本产品是使用一般电子设备用(通信设备,测量设备,工作机械等)的半导体部品而制成的。使用这些半导体部品的产品,可能会因外来干扰和浪涌而发生误动作和故障,因此请在实际使用状态下确认性能及品质。为以防万一,请在装置上进行安全设计(保险丝,断路器等保护电路的设置,装置多重化等),一旦发生误动作也不会侵害生命,身体,财产等。为防止受伤及事故的发生,请务必遵守以下事项:

·驱动电流和电压应在额定值以下使用。

·请按照电气定义进行接线。特别是对电源进行逆连接后,会因发热,冒烟,着火等电路损伤引发事故,因此敬请注意。

·对产品进行固定和对压力导入口进行连接时请慎重。

IIC Example Code (C51 Language)

```
#include <reg52.h>
#include <stdio.h>
#include <math.h>
#define DELAY_TIME 20
#define PMIN 30.0 // The minimum range pressure value for example 30Kpa 传感器最低量程
#define PMAX 110.0 //The full scale pressure value, for example 110Kpa 传感器最大量程
#define DMIN 1677722.0 //AD value corresponding to The minimum range pressure,
                        // for example 10%AD=2^24*0.1 最低量程对应的 AD 值
#define DMAX 15099494.0 //AD Value Corresponding to The full scale pressure value,
                        // for example 90%AD=2^24*0.9 最高量程对应的 AD 值
sbit SCL = P3 ^ 3; //IIC clock line IIC 时钟线
sbit SDA = P1 ^5; //IIC data line
                                IIC 数据线
//The 7-bit IIC address of the sensor is 0x78 传感器 7 位 IIC 总线地址
unsigned char Device_Address = 0x78 << 1;
float pressure kpa = 0.0; //变量,用于保存压力值,单位为 KPa
unsigned long pressure_pa = 0; //变量,用于保存压力值,单位为Pa
float temperature = 0.0; //变量, 用于保存温度值, 单位为℃
void Delay_Ms(unsigned char n) //Ms Time-Delay function Ms 延时函数
{
    unsigned char i,j;
    for(i=0;i< n;i++)
        for(j=0;j<123;j++);
}
void Start(void)
                //Start signal IIC 总线起始信号
    SDA = 1:
    Delay_Ms(DELAY_TIME);
    SCL = 1;
    Delay_Ms(DELAY_TIME);
    SDA = 0;
    Delay_Ms(DELAY_TIME);
    SCL = 0;
    Delay_Ms(DELAY_TIME);
}
```

网址: http://www.sencoch.com 客服电话: 0553-3116860 / 0553-2167689

地址: 江苏省无锡市滨湖区滴翠路 100 号 无锡(国家)工业设计园 17 栋

```
//Stop signal IIC 总线停止信号
void Stop(void)
    SDA = 0;
    Delay_Ms(DELAY_TIME);
    SCL = 1;
    Delay_Ms(DELAY_TIME);
    SDA = 1;
    Delay_Ms(DELAY_TIME);
    SCL = 0;
    Delay_Ms(DELAY_TIME);
}
unsigned char Check_ACK(void) //Read sensor's ACK signal 读取传感器的 ACK 信号
    unsigned char ack;
    SDA = 1;
    Delay_Ms(DELAY_TIME);
    SCL = 1;
    Delay_Ms(DELAY_TIME / 2);
    ack = SDA;
    Delay_Ms(DELAY_TIME / 2);
    SCL = 0;
    Delay_Ms(DELAY_TIME);
    return ack;
}
void Send_ACK(void) //Send ACK signal to sensor 向传感器发送 ACK 信号
{
    SDA = 0;
    Delay_Ms(DELAY_TIME);
    SCL = 1;
    Delay_Ms(DELAY_TIME);
    SCL = 0;
    Delay_Ms(DELAY_TIME);
    SDA = 1;
    Delay_Ms(DELAY_TIME);
}
void SendByte(unsigned char byte1) //Send one byte to sensor 向传感器发送 1 个字节
    unsigned char i = 0;
    do
        if (byte1 & 0x80)
```

网址: http://www.sencoch.com 客服电话: 0553-3116860 / 0553-2167689

地址: 江苏省无锡市滨湖区滴翠路 100 号 无锡(国家)工业设计园 17 栋

```
\{ SDA = 1; \}
        else
        \{SDA = 0;\}
        Delay_Ms(DELAY_TIME);
        SCL = 1;
        Delay_Ms(DELAY_TIME);
        byte1 <<= 1;
        j++;
        SCL = 0;
    \} while (i < 8);
    SCL = 0;
    Delay_Ms(DELAY_TIME);
}
unsigned char ReceiveByte(void) //Receive one byte from sensor 从传感器读取 1 个字节
    unsigned char i = 0, tmp = 0;
    do
        tmp <<= 1;
        SCL = 1;
        Delay_Ms(DELAY_TIME);
        if (SDA)
        \{ tmp |= 1; \}
        SCL = 0;
        Delay_Ms(DELAY_TIME);
        i++;
    \} while (i < 8);
    return tmp;
}
//Write several bytes of data to the sensor 向传感器写若干个字节
unsigned char GZP6816D_IIC_Write(unsigned char address, unsigned char *buf, unsigned char count)
    unsigned char timeout, ack;
    address &= 0xFE; // The lowest bit of address is 0 means writing 地址值最低位为 0 表示写
    Start();
    Delay_Ms(DELAY_TIME);
    SendByte(address); //Send the address to the sensor 向传感器发送地址值
    Delay_Ms(DELAY_TIME);
    timeout = 0;
    do //Getting the ACK response from the sensor means success, otherwise means failure
    { //如能获取传感器的 ACK 信号,则表示 IIC 总线通信成功;否则表示通信失败
        ack = Check_ACK();
```

网址: http://www.sencoch.com 客服电话: 0553-3116860 / 0553-2167689 地址: 江苏省无锡市滨湖区滴翠路 100 号 无锡(国家)工业设计园 17 栋

```
timeout++;
        if (timeout == 10)
        {
             Stop();
            return 1;
        }
    } while (ack);
    while (count)
        SendByte(*buf); //Write bytes to the sensor 向传感器写字节数据
        Delay_Ms(DELAY_TIME);
        timeout = 0;
        do
        {
            ack = Check_ACK();
            timeout++;
            if (timeout == 10)
            {
                 return 2;
        } while (0);
        buf++;
        count--;
    }
    Stop();
    return 0;
}
//Read several bytes of data from the sensor 从传感器读取若干个字节
unsigned char GZP6816D_IIC_Read(unsigned char address, unsigned char *buf, unsigned char count)
{
    unsigned char timeout, ack;
    address |= 0x01; // The lowest bit of address is 1 means reading 地址值最低位为 1 表示读
    Start();
    SendByte(address);
    Delay_Ms(DELAY_TIME);
    timeout = 0;
    do //Getting the ACK response from the sensor means success, otherwise means failure
    { //如能获取传感器的 ACK 信号,则表示 IIC 总线通信成功;否则表示通信失败
        ack = Check_ACK();
        timeout++;
        if (timeout == 10)
             Stop();
```

网址: http://www.sencoch.com 客服电话: 0553-3116860 / 0553-2167689 地址: 江苏省无锡市滨湖区滴翠路 100 号 无锡(国家)工业设计园 17 栋

```
return 1:
        }
    } while (ack);
    Delay_Ms(DELAY_TIME);
    while (count)
        *buf = ReceiveByte();
        if (count != 1) //Except the last byte, send ACK to the sensor after receiving byte
            Send ACK(): //除了最后一个字节外,每接收一个字节,向传感器发送 ACK 信号
        buf++;
        count--;
    }
    Stop();
    return 0;
}
//Read the status of the sensor and judge whether IIC is busy
unsigned char GZP6816D_lsBusy(void) //读取传感器的状态变量,用于判断数据是否已准备好被读取
{
    unsigned char status;
    GZP6816D_IIC_Read(Device_Address, &status, 1);
    status = (status >> 5) & 0x01;
    return status:
}
void GZP6816D_get_cal(void) //The function of reading pressure and temperature from the sensor
                            //从传感器 GZP6816D 读取压力值和温度值的函数
    unsigned char buffer[6] = {0}; //Temp variables used to restoring bytes from the sensor
                               //临时变量,用于保存从传感器中读出的字节数据
    unsigned long Dtest = 0;
    unsigned int temp_raw = 0;
    buffer[0] = 0xAC; //Send 0xAC command and read the returned six-byte data
    GZP6816D_IIC_Write(Device_Address, buffer, 1); //发送 0XAC 命令, 启动一次压力和温度测量
    Delay_Ms(DELAY_TIME);
    while (1)
    {
        if (GZP6816D_lsBusy()) //判断传感器数据是否已准备好被读取
        {Delay_Ms(DELAY_TIME);
                               }
        else
            break:
    GZP6816D_IIC_Read(Device_Address, buffer, 6); //读取传感器 6 个字节数据
```

//Computing the calibrated pressure and temperature values 计算校准后的压力值和温度值 Dtest = (unsigned long)((((unsigned long)buffer[1]) << 16) | (((unsigned int)buffer[2]) << 8) | ((unsigned char)buffer[3])); temp_raw = ((unsigned int)buffer[4] << 8) | (buffer[5] << 0); //The calibrated pressure value is converted into actual values if (Dtest != 0) { //将校准后的压力值转换成真实的压力值 pressure_kpa = (float) ((PMAX-PMIN)/(DMAX-DMIN)*(Dtest-DMIN)+PMIN); //单位: KPa pressure_pa = (unsigned long) (pressure_kpa * 1000.0); //单位: Pa } else //pressure value, its unit is KPa 压力值,单位: KPa $pressure_kpa = 0.0;$ //pressure value, its unit is Pa 压力值,单位: Pa $pressure_pa = 0;$ } temperature = (float) temp_raw / 65536; //The calibrated temperature value is converted into actual values temperature = ((float) temp * 19000 - 4000) / 100; // its unit is °C //将校准后的温度值转换成真实的温度值,单位: ℃ } void main() //The main function Printf("CFSensor Ltd"); while(1) { GZP6816D_get_cal(); Delay Ms(1000); Printf("The pressure from GZP6816D is %ld Pa\r\n", pressure_pa); Printf("The temperature from GZP6816D is %f CTG\r\n\r\n", temperature);

}

免责声明

本表中的信息已经过仔细审查,并被认为是准确的,但是,不对不准确之处承担任何责任。此外,此信息不会向此类设备的购买者传达制造商专利权下的任何许可。芯感智保留对此处的任何产品进行更改的权利,恕不另行通知。芯感智对其产品对任何特定用途的适用性不作任何保证、陈述或保证,也不承担因应用或使用任何产品或电路而产生的任何责任,并明确否认任何和所有责任,包括但不限于后果性或附带损害。典型参数可以而且确实在不同的应用中有所不同。客户的技术专家必须针对每个客户应用验证所有操作参数。

网址: http://www.sencoch.com 客服电话: 0553-3116860 / 0553-2167689

地址: 江苏省无锡市滨湖区滴翠路 100 号 无锡(国家)工业设计园 17 栋