素数の数え上げと乗法的関数の和

えびちゃん (rsk0315)

Jun. 29, 2022 @ ねこねこ勉強ぱーてぃ

更新:Aug. 6 11:54, 2022 (82cab06)

000

以下のことがわかるようになる:

- N∩[1,n] の素数の個数 π(n) や k 乗和¹を求める
 - in $O(n^{3/4}/\log(n))$ time
 - in $O(n^{2/3})$ time
 - in $O(n^{2/3}/\log(n)^{1/3})$ time
- 乗法的関数 f について $\sum_{i=1}^{n} f(i)$ を求める
 - in $O(n^{3/4}/\log(n))$ time? ← 解析は未解決
 - in $O(n^{2/3})$ time

¹k は定数とする。

記法に関してI

000

任意の二項演算 \circ : $S \times T \rightarrow S$ と $(x,y) \in S \times T$ に対して、

$$x \stackrel{\circ}{\leftarrow} y$$

で、 $x \leftarrow x \circ y$ を表すものとする。x += yのような気持ち²。

特に、今回の内容においては、 $x \leftarrow x - (y-z)$ の括弧を省いて $x \leftarrow y - z$ と書けるのがうれしい。

 $^{^{2}}$ IAT_EX で x += y などと書くのは見栄えが悪くて好きではない。

000

擬似コード中において、ループ順が重要なときは列の形で

foreach
$$i \leftarrow (1, ..., n)$$
 do

と書き、そうでないときは集合の形で

foreach
$$i \in \{1, \ldots, n\}$$
 do

と書いている。

変数への代入にはν← α を用いるが、定数の宣言のときには v = a を用いることもある。

まずは愚直からI

000000000000000000000

Algorithm 2.1: 愚直に数え上げ

```
1 function PRIMECOUNT-NAÏVE(n)
2 \pi \leftarrow 0
3 foreach i \in \{2, \dots, n\} do
4 if i is prime then \Rightarrow 試し割り法で判定
5 \pi \leftarrow 1
6 return \pi
```

これは $\Theta(n^{3/2}/\log(n))$ 時間。

 $1/\log(n)$ は、各試し割りに必要な回数の解析に基づく 3 。

³https://twitter.com/259 Momone/status/1443890427514351622 など。

まずは愚直からⅡ

```
Algorithm 2.2: 篩で数え上げ
function PRIMECOUNT-SIEVE(n)
2 \pi \leftarrow 0
3 foreach i \in \{2, ..., n\} do
4 if i is prime then
5 \pi \leftarrow 1
6 return \pi
```

これは Θ(n) 時間。

Eratosthenes の篩では $\Theta(n \log(\log(n)))$ 時間だが、用いる篩として線形篩 4 などを採用することで $\Theta(n)$) 時間になる。

⁴詳しくは触れない。今回の話には特に出てこない。

まずは愚直から III

0000000000000000000

陽に素数を調べる方針では、O(n^{1-ε}) 時間にはできない。

- [1, n] の整数をすべて調べると Ω(n) 時間かかる。
- [1,n] の素数だけを列挙できたとしても $\Omega(\pi(n))$ 時間か かる⁵。
 - $\pi(n) \sim n/\log(n)$ なので、 $\Omega(n/\log(n))$ 時間。

そこで、陽には調べない方針を考える必要がある。

 $^{^5\}pi$ (n) は n 以下の素数の個数。 π (1) = 0, π (7) = π (8) = 4, π (12.3) = 5 など。

Eratosthenes の篩の動作の様子を眺める。

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Figure: 篩の初期状態。

Eratosthenes の篩の動作の様子を眺める。

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Figure: 篩。2 で篩っている様子。

Eratosthenes の篩の動作の様子を眺める。

Figure: 篩。3 で篩っている様子。

Eratosthenes の篩の動作の様子を眺める。

	2	3		5		7	 	/	100
11	XX	13	14	X 5/	X6	17	18	19	200
28/	22/	23	24	25	26/		28	29	30
31	32	<i> }} </i>	34	35	36	37	38	39	40
41		43	44	45	46	47	48	49	50
<i>\$</i> {\	<i>52</i>	53	54	55	<i>\$</i> 6	<i>\$1</i> //	58	59	60
61	952/	<i>63</i>	64	65	66	67	68	69/	70)
71		73	14	75/	7/6/	77	78/	79	80
% {/	%2 /	83	84	85	86	% //	**/	89	90
91	92	93/	94	95	96	97	98	99	100

Figure: 篩。素数でないとわかった4では篩わない。

Eratosthenes の篩の動作の様子を眺める。

	2	3		5		7	 	/	100
11	XX	13	XX	X 5/	X6	17	18	19	20
		23		25	26	27/	<i>1</i> 28/	29	30
31	32	33	34 /	35	36	37	3 8/	<i>3</i> 37	40
41	A2	43		45	46	47	48/	49	50
33/	<i>52</i>	53	<i>\$</i> #	55	<i>\$</i> 6	57/	58	59	60
61	62	63	<i>64</i>	65	66	67	68	169	70
71	72	73	14	73/	7/6/	77	78	79	80
8	82	83		85	86	87 /	**/	89	90
91	<i>99</i>	93	94/	95	96/	97	98 /	<i>99</i> /	100

Figure: 篩。5 で篩っている様子。

Eratosthenes の篩の動作の様子を眺める。

	2	3		5	16/	7	 	/	100
11	12	13	14	15	16	17	18	19	20
28	22/	23	24	25/	26		28	29	30
31	32	<i> }} </i>	34	35/	36	37	38	39	40
41		43		45	46	47	48	49	50
<i>\$</i> {\	<i>52</i>	53	<i>54</i>	35/	56	<i>\$1</i> //	38	59	60
61	952/	<i>63</i>	64	65	66	67	68	69/	70)
71		73		7/3/	7/6/	77	18	79	80
% {/	%2 /	83	*	85 /	86	% //	88	89	90
91	92	93/	94	95/	96	97	98	99	100

Figure: 篩。素数でないとわかった6では篩わない。

Eratosthenes の篩の動作の様子を眺める。

	2	3		5		7	 	/	100
11	12	13	14	15	16	17	18	19	20
		23	<i>74</i>	23/	26		28	29	30)
31	32	33	34	35/	36	37	38	<i>39</i>	40
41	A2	43	44	45	46	47	48	49	50
33/	<i>52</i>	53	<i>5</i> 4	35	<i>\$</i> 6	57/	58	59	60
61	62	63	64	63	66	67	68	69	70
71		73	74	75	7/6/	77	78	79	80
8	82	83	84	85 /	86	8 7/	88/	89	900
91	<i>99</i>	<i>9</i> 3/	94	95/	96/	97	98 /	<i>99</i> /	100

Figure: 篩。7で篩っている様子。

Eratosthenes の篩の動作の様子を眺める。

	2	3		5	16/	7	 	19/	100
11		13	34	XX	16	17	18	19	20
28		23	24	25/	26		28	29	30
31	<i>334)</i>	33/	34	35/	36	37	38/	<i>39</i>	40
41		43		48	46	47	48/	49	50
33	<i>52</i> /	53	<i>5</i> 4	35	56	57/	58	59	60
61	<i>69</i> 4/	63	64	93/	66	67	68	69	70
71		73	74	713/	76	77/	18	79	80
8 1	82 /	83	84	85 /	86	8 7/	88/	89	90
9	92	93	94	93	96	97	98	99	100

Figure: 篩。素数でないとわかった 8 から 10 では篩わない。

Eratosthenes の篩の動作の様子を眺める。

Figure: 篩。 $\sqrt{100}$ 以下の素数で篩った様子。残りは素数。

えびちゃん

重要な観察

「素数iによって篩われる整数は何個あるか?」

- これを $2 \le i \le \sqrt{n}$ の各素数について考える。
- それらの和をn-1から引けばn以下の素数の個数がわかる。
- →というわけで、これを高速に求めたい。

篩われる個数を求めるI

どのような数が篩われるかを考える。

Figure: 3 で篩っている様子。

$$= \{9, 15, 21, 27, 33, 39, 45\}$$

$$= \{3 \cdot j \mid j \in \{3, 5, 7, 9, 11, 13, 15\}\}.$$

篩われる個数を求める Ⅱ

iで篩われる個数は、以下の値の差から求められる。

- |n/i| 以下のうち、i 未満の素数では篩われなかった個数
 - $(i, n) = (3, 50) \text{ cold } [\{2, 3, 5, 7, 9, 11, 13, 15\}] = 8$
- i 未満の整数の個数
 - i = 3 では |{2}| = 1

	2	3		5		7	 	9	100
11	<i>32</i> /	13	7/4	15	16	17	18	19	200
21	22/	23	24	25	26	27	28	29	300
31	32/	33	34	35	36	37	38	39	40
41	32	43	44	45	46	47	48	49	500

Figure: $\{3 \cdot j \mid j \in \{3,5,7,9,11,13,15\}\}$ の 7 個が 3 で篩われる様子。

篩われる個数を求める Ⅲ

以下の値は、i以前に篩われていることに注意。

- i未満の素数jに対し、i·j。
- i未満の素数で篩われた整数jに対し、i·j。

Figure: $\{5 \cdot j \mid j \in \{5,7,11\}\}$ が 5 で篩われる様子。

たとえば $15 = 5 \cdot 3$ や、 $20 = 5 \cdot (2 \cdot 2)$ は、すでに篩われている。

篩われる個数を求める IV

以下の値を求めればよいとわかった。

- |n/i| 以下のうち、i 未満の素数では篩われなかった個数
- i未満の整数の個数 π(i-1)

そこで、以下のようにおく。

 $S_{i}(v) := v$ 以下のうちi以下の素数では篩われなかった個数

i で篩うとき、得ているのは $S_{i-1}(v)$ で、得たいのは $S_i(v)$ 。 特に、初め $S_1(v) = v - 1$ 。また、 $S_{i-1}(i-1) = \pi(i-1)$ 。

篩われる個数を求める V

 $S_i(v)$ を求めたい。

- iが素数でない場合
 - $S_{i}(v) = S_{i-1}(v)$
 - 篩う処理をしないため。
- i² > v の場合
 - $S_{i}(v) = S_{i-1}(v)$
 - 判明する最小の合成数 i² が範囲外のため。

篩われる個数を求める VI

 $S_{i}(v)$ を求めたい。 $i^{2} \leq v$ なる素数 i について考える。

iで篩われる個数は

- |v/i| 以下のうち、i 未満の素数では篩われなかった個数
- i未満の整数の個数

の差だったので.

$$S_{i}(v) = S_{i-1}(v) - (S_{i-1}(|v/i|) - \pi(i-1))$$

とわかる。

篩われる個数を求める VII

以下を求めたくなった。

$$S_{\mathfrak{i}}(\mathfrak{n}) = S_{\mathfrak{i}-1}(\mathfrak{n}) - (S_{\mathfrak{i}-1}(\lfloor \mathfrak{n}/\mathfrak{i} \rfloor) - \pi(\mathfrak{i}-1)).$$

右辺に $S_{i-1}(\lfloor n/i \rfloor)$ があるため、 $S_*(\lfloor n/* \rfloor)$ も求める必要がある 6 。 ここで、||n/i|/j|=|n/ij| に注意すると、|n/*| の取りうる値は

$$\underbrace{1,2,\ldots,\lfloor\sqrt{n}\rfloor}_{i\;(1\leqslant i\leqslant\sqrt{n})},\underbrace{\lfloor n/\lfloor\sqrt{n}\rfloor\rfloor,\ldots,\lfloor n/2\rfloor,n}_{\lfloor n/i\rfloor\;(1\leqslant i\leqslant\sqrt{n})}$$

の $O(\sqrt{n})$ 通りしかないことがわかる 7,8 。

^{6* 11} wild card.

 $^{||}n|/|\sqrt{n}+1|| \leq |n/\sqrt{n}| = |\sqrt{n}|$ から従う。

 $^{8|\}sqrt{n}| = |n/|\sqrt{n}|$ は成り立ったり成り立たなかったりするので注意。

Lucy DP I

よって、長さ $O(\sqrt{n})$ の配列 9 を管理して DP すればよい。

更新順に気をつければ、DP 配列を使い回して

$$dp[n/j] \stackrel{-}{\leftarrow} dp[\lfloor n/(i \cdot j) \rfloor] - \pi(i-1)$$

と更新できる。

 $n/j \ge i^2$ なる (i,j) についてのみ更新するように気をつける。

考案者 Lucy Hedgehog の名前から、主に Project Euler 界隈では Lucy DP と呼ばれている。

⁹i, |n/i| ($1 \le i \le \sqrt{n}$) で 2 本持つなり、配列の前後で分けるなりする。

Lucy DP II — 擬似コード

Algorithm 2.3: Lucy DP

```
1 function PRIMECOUNT-LUCY(n)
           R \leftarrow (\lfloor n/i \rfloor - 1)_{i-1}^{\lfloor \sqrt{n} \rfloor}
 2
          L \leftarrow (i-1)^{\lfloor n/\lfloor \sqrt{n}\rfloor \rfloor}_{i-1}
           foreach i \leftarrow (2, 3, \dots, |\sqrt{n}|) do
                  if L_i \leq L_{i-1} then continue \triangleright i is prime \iff L_i > L_{i-1}
 5
                  \pi_{i-1} = L_{i-1}
                                                                                           > \pi_{i-1} = \pi(i-1)
 6
                  foreach i \leftarrow (1, 2, \dots, |\sqrt{n}|) do
 7
                         if |n/j| < i^2 then break
 8
                     (L_{\mid \mathbf{n}/\mathbf{i}\mid} \text{ or } R_{\mathbf{i}}) \leftarrow (L_{\mid \mathbf{n}/\mathbf{i}\mathbf{i}\mid} \text{ or } R_{\mathbf{i}\mathbf{i}}) - \pi_{\mathbf{i}-1}
 9
                  for each j \leftarrow (\lfloor n/\lfloor \sqrt{n} \rfloor \rfloor - 1, \ldots, 2, 1) do
10
                         if j < i^2 then break
11
                     L_i \leftarrow L_{|i/i|} - \pi_{i-1}
12
                   return R<sub>1</sub>
13
```

Lucy DP III

擬似コード中の A_i or B_i は

- A; が定義されていれば A;
- そうでなければ B_i

を意味するものとする。

 $S_{i-1}(i) > S_{i-1}(i-1)$ のとき、i が素数となることに注意せよ 10 。 ループ先頭において、 $S_{i-1}(v) = L(v)$ である。

また、10 行目のループの都合で、L の長さを $|n/|\sqrt{n}||$ とした。

¹⁰個数の差分を見れば、条件を満たすかの判定ができるということ。

Lucy DP IV — 計算量解析

9 行目と 12 行目の実行回数を見積もる。

7行目より $j \leq |\sqrt{n}| \leq \sqrt{n}$ 、8行目より $n/j \geq |n/j| \geq i^2$ で11、 9行目の実行回数は高々 $\min{\sqrt{n}, n/i^2}$ 。

10 行目より $j < |n/|\sqrt{n}|| = \sqrt{n} + o(1)$ 、11 行目より $j \ge i^2$ で、 12 行目の実行回数は高々 $\max\{\sqrt{n} - i^2 + o(1).0\}$

これらを、各素数iについて足し合わせればよい。

¹¹i について不等式を解き、i の取る範囲が実行回数に相当する。

Lucy DP V — 計算量解析

$$\begin{split} &\int_{x=2}^{\sqrt{n}} \min\{\sqrt{n}, n/x^2\} d\pi(x) + \int_{x=2}^{\sqrt{n}} \max\{\sqrt{n} - x^2, 0\} d\pi(x) \\ &= \sqrt{n} \int_{2}^{\sqrt[4]{n}} d\pi(x) + n \int_{\sqrt[4]{n}}^{\sqrt{n}} \frac{d\pi(x)}{x^2} + \int_{2}^{\sqrt[4]{n}} (\sqrt{n} - x^2) d\pi(x) \\ &= 2\sqrt{n} \int_{2}^{\sqrt[4]{n}} d\pi(x) + n \int_{\sqrt[4]{n}}^{\sqrt{n}} \frac{d\pi(x)}{x^2} - \int_{2}^{\sqrt[4]{n}} x^2 d\pi(x). \end{split}$$

$$\pi(x) \sim \frac{x}{\log(x)}$$

$$d\pi(x) \sim \frac{\log(x) - 1}{\log(x)^2} dx.$$

Lucy DP VI — 計算量解析

000000000000000000000

$$\begin{split} \operatorname{Ei}(\log(x)) &= \operatorname{li}(x) \sim x/\log(x) \, \, \text{\sharp \mathfrak{I} } \, , \\ &\int \frac{d\pi(x)}{x^2} \sim \int \frac{\log(x)-1}{x^2 \log(x)^2} \, dx \\ &= \frac{1}{x \log(x)} + 2 \operatorname{Ei}(-\log(x)) + \operatorname{const} \\ &= \frac{1}{x \log(x)} + 2 \operatorname{li}(x^{-1}) + \operatorname{const} \\ &\sim -\frac{1}{x \log(x)}. \end{split}$$

ここで、 $\mathrm{Ei}(x)$ と $\mathrm{li}(x)$ はそれぞれ指数積分と対数積分を表す 12 。

¹²この辺は Wolfram Alpha や Integral Calculator を頼った。

Lucy DP VII — 計算量解析

残りの項も同様に計算する。

$$\int x^2 d\pi(x) \sim \int \frac{x^2 (\log(x) - 1)}{\log(x)^2} dx$$

$$= \frac{x^3}{\log(x)} - 2 \operatorname{Ei}(3 \log(x)) + \operatorname{const}$$

$$= \frac{x^3}{\log(x)} - 2 \operatorname{li}(x^3) + \operatorname{const}$$

$$\sim \frac{x^3}{3 \log(x)}.$$

Lucy DP VIII — 計算量解析

以上より、

$$\begin{split} &2\sqrt{n}\,\int_2^{\sqrt[4]{n}}d\pi(x) + n\int_{\sqrt[4]{n}}^{\sqrt{n}}\frac{d\pi(x)}{x^2} - \int_2^{\sqrt[4]{n}}x^2\,d\pi(x)\\ &\sim 2\sqrt{n}\left[\frac{x}{\log(x)}\right]_2^{\sqrt[4]{n}} - n\left[\frac{1}{x\log(x)}\right]_{\sqrt[4]{n}}^{\sqrt{n}} - \left[\frac{x^3}{3\log(x)}\right]_2^{\sqrt[4]{n}}\\ &=\cdots\\ &=O\bigg(\frac{n^{3/4}}{\log(n)}\bigg). \end{split}$$

実際には、 $d\pi(x)$ が絡む積分は、係数を気にしなければ、 dx で積分して log(n) で割ってもうまくいくことが多そう¹³。

¹³ところで Riemann-Stielties 積分とかで調べるとよい?

Lucy DP IX — 総和への応用

000000000000000000000

S;(v) の代わりに以下のようにおく。

 $S_{i}^{1}(v) := v$ 以下のうちi以下の素数で篩われていない素数の総和 初期化と更新は以下の通り。

$$S_{1}^{1}(\nu) = \sum_{i=2}^{\nu} i = \left\lfloor \frac{\nu \cdot (\nu+1)}{2} \right\rfloor - 1,$$

$$S_{i}^{1}(\nu) = S_{i-1}^{1}(\nu) - i \cdot (S_{i-1}^{1}(\lfloor \nu/i \rfloor) - S_{i-1}^{1}(i-1)).$$

同様にして、2乗和 $S_i^2(v)$ なども求められる 14 。

 $^{^{14}}$ 経緯としては、元々は総和 $S_i^1(v)$ を求める問題の解法として提案された。

乗法的関数について

以下を満たす関数 f を**乗法的関数** (multiplicative function) と呼ぶ。

- f(1) = 1, and
- $gcd(u, v) = 1 \implies f(uv) = f(u) \cdot f(v)$.

たとえば、Euler の φ 関数は乗法的関数である。特に、

$$\Phi\left(\prod_{p: \text{prime}} p^{e_p}\right) = \prod_{p: \text{prime}} (p-1) \cdot p^{e_p-1}$$

が成り立つ。

e.g.,
$$\phi(120) = \phi(2^3 \cdot 3 \cdot 5) = \underbrace{\phi(2^3)}_{4} \cdot \underbrace{\phi(3)}_{2} \cdot \underbrace{\phi(5)}_{4} = 32_{\circ}$$

26 / 70

素数の数え上げ **果法的関数の和** Lucy DPの高速化 **果**法的関数の和の高速化 **実**験 おわり

乗法的関数の和

乗法的関数 f に対して、 $\sum_{i=1}^{n} f(i)$ を高速に求めたくなる。

例として、1以上n以下の整数の組のうち、互いに素なものは

$$\sum_{i=1}^n \varphi(i)$$

と表せる(順序は区別しないとする)。

さて、1 < i ≤ n の親を i/gpf(i) とする n 頂点の木を考えてみる。 ここで、gpf(i) は i の最大の素因数 (greatest prime factor) である。

図を次のページに載せる。

Figure: n = 20 の木

子での値の和I

iの子は、 $j \in [gpf(i), n/i]$ の各素数jについて $i \cdot j$ と表せる。

Figure: n = 20 の木における i = 2 の部分木

 $j = \mathsf{gpf}(\mathfrak{i})$ とそれ以外の子に分けて、次のように表せる。

$$f(4) + f(6) + f(10) + f(14) = f(2^2) + f(2) \cdot (f(3) + f(5) + f(7)).$$

子での値の和Ⅱ

素因数が複数ある場合は少し注意が必要。

Figure: ある n の木における i = 60 の子

$$f(300) + f(420) + f(660) + f(780)$$

= $f(12) \cdot f(5^2) + f(60) \cdot (f(7) + f(11) + f(13))$.

木上の DFS I

葉でない頂点 $v = (\prod_{p} p^{e_p}) \cdot q^c (gpf(v) = q)$ にいるとき、

- $f(\prod_{p} p^{e_p}) \cdot f(q^{c+1})$
- $f(v) \cdot \sum_{r} f(r)$
 - rはq<r≤n/v を満たす素数

の和を求めればよい。葉でない頂点のみ探索するとする。

 $f(\prod_{\nu} p^{e_{\nu}})$ や $f(\nu)$ 、 q^{c} などは DFS しながら管理すればよい¹⁵。

¹⁵最大でない素因数の f と、最大素因数を分けて持てばよい。

木上の DFS II

 $f(q^c)$ と $\sum_r f(r)$ を高速に求められる必要がある。

- f(q^c)の計算
 - (q, c, q^c) などから O(1) 時間で求まるのが望ましい。
- ∑_r f(r) の計算・前処理
 - f(r) が多項式なら Lucy DP などで求められる。
 - 高速に求められるなら、多項式でなくてもよい。

木上の DFS Ⅲ — 計算量解析 (未解決)

葉以外の頂点 {i | i · gpf(i) ≤ n} の個数を求めればよい。

p ≤ √n なる各素数 p について、

- $i \cdot p \leq n$, and
- gpf(i) = p

なるiが $O(\sqrt{n})$ 個であれば、 $O(n^{3/4}/\log(n))$ 個と示せる。

上記は未解決だが、 $n \leq 10^{12}$ の範囲では成り立っているそう。

See: https://zhuanlan.zhihu.com/p/33544708.

Lucy DP の高速化

Lucy DP を $O(n^{2/3})$ 時間に高速化する。

元々の計算量は

$$\int_{2}^{\sqrt{n}} \min \{ \sqrt{n}, n/x^{2} \} d\pi(x) + \int_{2}^{\sqrt{n}} \max \{ \sqrt{n} - x^{2}, 0 \} d\pi(x)$$

に由来するが、区間 $[2,\sqrt[6]{n}]$ と $[\sqrt[3]{n},\sqrt{n}]$ での積分を考えてみる。

$$\begin{split} & \int_{2}^{6\sqrt{n}} \min\{\sqrt{n}, n/x^2\} d\pi(x) + \int_{2}^{6\sqrt{n}} \max\{\sqrt{n} - x^2, 0\} d\pi(x) \\ &= \sqrt{n} \int_{2}^{6\sqrt{n}} d\pi(x) + \int_{2}^{6\sqrt{n}} (\sqrt{n} - x^2) d\pi(x) \\ &= 2\sqrt{n} \int_{2}^{6\sqrt{n}} d\pi(x) - \int_{2}^{6\sqrt{n}} x^2 d\pi(x) \\ &\sim 2\sqrt{n} \left[\frac{x}{\log(x)} \right]_{2}^{6\sqrt{n}} - \left[\frac{x^3}{3\log(x)} \right]_{2}^{6\sqrt{n}} \\ &= O\left(\frac{n^{2/3}}{\log(n)} \right). \end{split}$$

定積分 Ⅱ

$$\begin{split} &\int_{\frac{3}{\sqrt{n}}}^{\sqrt{n}} \min\{\sqrt{n}, n/x^2\} d\pi(x) + \int_{\frac{3}{\sqrt{n}}}^{\sqrt{n}} \max\{\sqrt{n} - x^2, 0\} d\pi(x) \\ &= n \int_{\frac{3}{\sqrt{n}}}^{\sqrt{n}} \frac{d\pi(x)}{x^2} \\ &\sim n \left[-\frac{1}{x \log(x)} \right]_{\frac{3}{\sqrt{n}}}^{\sqrt{n}} \\ &= O\left(\frac{n^{2/3}}{\log(n)}\right). \end{split}$$

場合分け

これにより、 $i \in [2, \sqrt[6]{n}] \cup [\sqrt[3]{n}, \sqrt{n}]$ なる素数i では、そのまま Lucy DP をしても $O(n^{2/3}/\log(n))$ 時間で抑えられるとわかる。

そこで、残りの (√n, √n) の区間について考える。

dp[n/j] の更新に関して、 $n/j \ge n^{2/3}$ すなわち $j \le \sqrt[3]{n}$ のときは、 愚直に更新しても $O(n^{2/3}/\log(n))$ 回で済む 16 。

あとは、 $n/j < n^{2/3}$ について考えればよい。

 $^{^{16}}i$ が高々 $n^{1/3}/\log(n)$ 個、i が高々 $n^{1/3}$ 個なので。

重要な事実

以下の事実に気をつける。

- iで篩われる合成数vについて、lpf(v) = i が成り立つ。
 - lpf(v) は v の最小の素因数 (least prime factor) を表す。
 - constant constant
- $lpf(v) \ge i$ なる $v \le n^{2/3}$ は $\Theta(n^{2/3}/log(n))$ 個。
 - 解析に関しては後述の関数を参照。
- → lpf(v) = i なる v を一つあたり O(1) 時間で列挙できれば、 $i \in (n^{1/6}, n^{1/3})$ で篩われる数を陽に列挙しても大丈夫。

¹⁷有限の整数で1を篩うことはできないため?

$\mathrm{lpf}(\mathsf{v})=\mathsf{i}$ なる合成数 v の列挙 I

乗法的関数の和を求める際に作ったのと同様の木を DFS する。

Figure: 木の一部分

根 1 から最初に辿った値が最小素因数となることに注意する。 たとえば、lpf(187) = 11 とわかる。

素数iの深さは1であり、iの真の部分木の各数が求めるvである。

$\mathrm{lpf}(\mathsf{v}) = \mathsf{i}$ なる合成数 v の列挙 II

n^{2/3} 以下の合成数を列挙する際の空間計算量を確認する。

再帰で行う場合、深さは log(n) 段になるので問題ない。

stack を用いる場合について考える。素数 $i \in (\mathfrak{n}^{1/6},\mathfrak{n}^{1/3})$ の子は

$$\frac{n^{2/3}/\log(n)}{n^{1/6}}$$

個程度あり、深さは高々 $\log(\mathfrak{n})$ 段なので、 $O(\sqrt{\mathfrak{n}})$ space で済む 18 。

¹⁸深くなるにつれて子は減るので、粗い見積もりではありそう。

高速化の方針

u が篩われていれば $b_{\nu}=1$ 、そうでないとき $b_{\nu}=0$ となる配列を

- ν 以下の篩われた個数は、 $\sum_{i=1}^{\nu} b_i$ で取得する。

と管理すればよい。 \rightarrow BIT を用いて $O(\log(n))$ 時間で可能¹⁹。

 $n/j \geqslant n^{2/3}$ の Lucy DP と併せて、個数を求めることができる 20 。

更新は $O(n^{2/3}/\log(n))$ 回なので、 $O(n^{2/3})$ 時間となる。

 $^{^{19}}$ 実際には、 $v=\lfloor n/* \rfloor$ のみ管理すればよいので、 $O(\sqrt{n})$ space にできる。 $^{20}n^{2/3}$ 未満の範囲については Lucy DP をする代わりに、 $n^{2/3}$ 以上の範囲のDP のための補助情報(篩われた個数)のみを管理するということ。

場合分けの remark

- $2 \le i \le n^{1/6}$
 - そのまま Lucy DP しても $O(n^{2/3}/\log(n))$ 時間。
- $n^{1/6} < i < n^{1/3}$
 - $n/j \ge n^{2/3}$
 - Lucy DP で $O(n^{2/3}/\log(n))$ 回の更新。
 - 更新の際はBITから値を取得し、O(n^{2/3})時間。
 - $n/j < n^{2/3}$
 - lpf(v) = i なる合成数 v を列挙して BIT で管理する。
 - 操作ごとに $O(\log(n))$ 時間なので $O(n^{2/3})$ 時間。
- $n^{1/3} \leqslant i \leqslant n^{1/2}$
 - そのまま Lucy DP しても $O(n^{2/3}/\log(n))$ 時間。

実装

やや長くなるため、擬似コードは付録に載せる。

ここでは、 $i \ge |n/i|$ に対応する配列を分けて持つ方針ではなく、 前半が |n/i|、後半が i に対応する降順の列

$$A = (\bot, n, \lfloor n/2 \rfloor, \dots, \lfloor n/\lfloor \sqrt{n} \rfloor \rfloor, \lfloor n/\lfloor \sqrt{n} \rfloor \rfloor - 1, \dots, 2, 1)$$

に対し、dp[i] を $S_*(A_i)$ に対応させる方針を採用した 21 。

|n/k| に対応する要素の添字は

if
$$k \le \sqrt{n}$$
 then k else $|A| - \lfloor n/k \rfloor$

で取得できる。

^{21 |} はダミーの値。

BITなどで管理するイメージ図などを載せてみる。

$$\underbrace{\frac{dp[1]}{s_1(400)}}_{\substack{s_1(200)\\=399}} \xleftarrow{-} \underbrace{\frac{dp[2]}{s_1(200)}}_{\substack{s_1(200)\\=199}} - \underbrace{\pi(2-1)}_{0}$$

$$dp[1] = S_2(400) = 200$$

²²数直線が対数軸であることに注意。なお、ノーカット版は付録に掲載。

BITなどで管理するイメージ図などを載せてみる。

$$\underbrace{\frac{dp[2]}{s_{1}(200)}}_{s_{1}(99)} \xleftarrow{-} \underbrace{\frac{dp[4]}{s_{1}(100)}}_{=99} - \underbrace{\pi(2-1)}_{0}$$

$$dp[2] = S_2(200) = 100$$

²²数直線が対数軸であることに注意。なお、ノーカット版は付録に掲載。

BITなどで管理するイメージ図などを載せてみる。

$$\underbrace{\frac{dp[36]}{\overset{-}{\underset{=3}{\underbrace{}}}} \overset{-}{\underset{=1}{\underbrace{}}} \underbrace{\frac{dp[38]}{\overset{s_1(2)}{\underset{=1}{\underbrace{}}}} - \underbrace{\pi(2-1)}_{0}}_{0}$$

$$dp[36] = S_2(4) = 2$$

²²数直線が対数軸であることに注意。なお、ノーカット版は付録に掲載。

BITなどで管理するイメージ図などを載せてみる。

$$dp[1] = S_3(400) = 134$$

 $S_2(400)$ $S_2(133)$

=200

²²数直線が対数軸であることに注意。なお、ノーカット版は付録に掲載。

BITなどで管理するイメージ図などを載せてみる。

 $dp[7] = S_5(57) = 17$

²²数直線が対数軸であることに注意。なお、ノーカット版は付録に掲載。

BITなどで管理するイメージ図などを載せてみる。

$$dp[1] = S_5(400) = 108$$

²²数直線が対数軸であることに注意。なお、ノーカット版は付録に掲載。

BITなどで管理するイメージ図などを載せてみる。

$$dp[2] = S_5(200) = 56$$

²²数直線が対数軸であることに注意。なお、ノーカット版は付録に掲載。

BITなどで管理するイメージ図などを載せてみる。

$$\underbrace{\frac{dp[8]}{s_2(50)}}_{\substack{s_2(50)\\=25}} \leftarrow \underbrace{\frac{\left\{v \in (\mathbb{N} \setminus \mathbb{P}) \mid v \leqslant 50, \sqrt[6]{\pi} < lpf(v) < \pi^{2/3}\right\}\right|}{|\{9,15,21,25,27,33,35,39,45\}|}}_{=9}$$

$$dp[8] = S_5(50) = 16$$

²²数直線が対数軸であることに注意。なお、ノーカット版は付録に掲載。

BITなどで管理するイメージ図などを載せてみる。

$$\underbrace{\frac{dp[9]}{\underset{=22}{\longleftarrow}} \underbrace{\leftarrow}_{\substack{\{\nu \in (\mathbb{N} \setminus \mathbb{P}) \mid \nu \leqslant 44, \, \sqrt[6]{\pi} < lpf(\nu) < \pi^{2/3}\}\}}_{\mid \{9,15,21,25,27,33,35,39\}\mid}}_{=8}$$

$$dp[9] = S_5(44) = 14$$

²²数直線が対数軸であることに注意。なお、ノーカット版は付録に掲載。

BITなどで管理するイメージ図などを載せてみる。

 $p[1] = 3_{11}(400) = 87$

²²数直線が対数軸であることに注意。なお、ノーカット版は付録に掲載。

BITなどで管理するイメージ図などを載せてみる。

$$dp[1] = S_{19}(400) = 78$$

²²数直線が対数軸であることに注意。なお、ノーカット版は付録に掲載。

解析に関する関数たち

- $\Phi(x,y)$
 - x以下の正整数のうち、y-rough である個数を表す。
 - y-rough:最小素因数が y 以上
 - $\Phi(x, x^{1/u}) \sim x \cdot \omega(u) / \log(x^{1/u})$
 - ω(u) は Buchstab function と呼ばれる。
- $\Psi(x,y)$
 - χ以下の正整数のうち、y-smooth である個数を表す。
 - y-smooth (y-friable):最大素因数が y 以下
 - $\Psi(x, x^{1/\alpha}) \sim x \cdot \rho(\alpha)$
 - ρ(a) は Dickman-de Bruijn function と呼ばれる。
 - $\rho(\alpha) \approx \alpha^{-\alpha}$.

さらなる高速化

区間の分け方を調整することで、log factor を減らせる。

- $2 \le i \le n^{1/6}$
- $n^{1/6} < i < n^{1/3}/\log(n)^{2/3}$
 - $n/j < n^{2/3}/\log(n)^{1/3}$ で分ける。
- $n^{1/3}/\log(n)^{2/3} \le i \le n^{1/2}$

各分岐で行うことは同じ。 $O(\mathfrak{n}^{2/3}/\log(\mathfrak{n})^{1/3})$ 時間になる。

高速化の概略

乗法的関数の和の計算を高速化する。

以下の流れで求める。

- 1. 素数 p に対して f(p) の和を求める。
- 2. $(\sqrt[3]{n}+1)$ -rough number i に対して f(i) の和を求める。
- 3. (√n+1)-rough number i に対して f(i) の和を求める。
- 4. 整数iに対してf(i)の和を求める。

具体的なpやiの範囲などは次ページ以降で説明する。

記法の導入

- p_k : k 番目の素数 (e.g. $p_1 = 2, p_2 = 3, p_3 = 5, ...$)
 - $(p_{\pi(i)})_{i=2}^{\infty} = (2,3,3,5,5,7,7,7,7,11,11,...)$ に注意。
- $S_{\mathbb{P}}^{f}(\mathfrak{n}) := \sum_{\mathbf{f}} f(\mathfrak{p})$:素数におけるfの和 2≤p≤n p: prime
- $S_{\nu}^{f}(n) := \sum_{i=1}^{n} f(i) : p_{k}$ -rough number における f の和
- $L(f, n) := (f(1), f(2), \dots, f(|\sqrt{n}|))$
- $R(f,n) := (f(|n/|\sqrt{n}||), \dots, f(|n/2|), f(n))$
- V(f, n) := (L(f, n), R(f, n))

素数でのfの和

まず、 $V(S_{\mathbb{P}}^f, \mathfrak{n})$ を計算する。

Remark:

$$S_{\mathbb{P}}^{f}(n) := \sum_{\substack{2 \leqslant p \leqslant n \\ p : \text{ prime}}} f(p).$$

各 $\nu=i$ $(1\leqslant i\leqslant \lfloor \sqrt{n}\rfloor)$ と $\nu=\lfloor n/i\rfloor$ $(1\leqslant i\leqslant \lfloor \sqrt{n}\rfloor)$ に対して、 ν 以下の素数 p における f(p) の総和を求めるということ。

これは、素数 p に対して f(p) = g(p) なる多項式 g が存在すれば、先の高速化した Lucy DP で $O(n^{2/3})$ 時間で計算できる 23 。

²³素数 p 以外の部分は無視して、素数の部分さえ多項式で表せればよい。

$(\sqrt[3]{n}+1)$ -rough number での f の和 I

 $(\sqrt[3]{n}+1)\text{-rough}$ number での f の和 $V(S_{\pi(\sqrt[3]{n})+1}^f,n)$ を求める。

|n/i|の値の範囲によって分けて考える。なお、簡便さのため、 $\sqrt[3]{n}$ を超える最小の素数 $p_{\pi(\sqrt[3]{n})+1}$ を q とおく。

まず、 $q > \sqrt[3]{n}$ から、 $n^{1/3}$ 以下の q-rough number は 1 のみ。

$$m = \lfloor n/i \rfloor \leqslant n^{1/3} \text{ if } n < \infty$$

$$S^f_{\pi(\sqrt[3]{n})+1}(\lfloor n/i\rfloor) = f(1)$$

より、各 m について O(1) 時間で計算できる。

より²⁵、各 m について O(1) 時間で計算できる。

 $q>\sqrt[3]{n}$ から、 $n^{2/3}$ 以下の q-rough number の素因数は高々 1 \mathcal{O}^{24} 。 $m=\lfloor n/i\rfloor \in (n^{1/3},n^{2/3}] について、$ $S_{\pi(\sqrt[3]{n})+1}^f(m)=f(1)+(S_{\mathbb{P}}^f(m)-S_{\mathbb{P}}^f(q-1))$

 $^{^{24}}q^2 > n^{2/3} \text{ toc.}$

²⁵累積和の差分を求めているだけ。

(³√n+1)-rough number での f の和 Ⅲ

 $q>\sqrt[3]{n}$ から、n 以下の q-rough number の素因数は高々2つ。

$$\mathfrak{m}=\lfloor \mathfrak{n}/\mathfrak{i}\rfloor\in (\mathfrak{n}^{2/3},\mathfrak{n}]\ \text{if out},$$

$$\begin{split} S^f_{\pi(\sqrt[3]{n})+1}(\mathfrak{m}) &= \quad f(1) + (S^f_{\mathbb{P}}(\mathfrak{m}) - S^f_{\mathbb{P}}(\mathfrak{q}-1)) \\ &+ \sum_{j=\pi(\sqrt[3]{n})+1} \left(f(\mathfrak{p}_j^2) + f(\mathfrak{p}_j) \cdot (S^f_{\mathbb{P}}(\mathfrak{m}/\mathfrak{p}_j) - S^f_{\mathbb{P}}(\mathfrak{p}_j)) \right). \end{split}$$

より 26 、各 m について $O(\pi(\sqrt{m}))$ 時間で計算できる。

 $^{^{26}}$ 素因数に p_i を 2 つ持つ場合と、 p_i と p_i 以外を持つ場合で分ける。

(∛n+1)-rough number でのfの和 IV — 計算量解析

各 m = |n/i| について $\Theta(\pi(m))$ 時間かかるので、

$$\begin{split} \sum_{i=1}^{\lfloor n^{1/3} \rfloor} \pi(\sqrt{n/i}) &\sim \sum_{i=1}^{\lfloor n^{1/3} \rfloor} \sqrt{n/i} \, / \log(\sqrt{n/i}) \\ &\sim 2\sqrt{n} \, \int_{1}^{n^{1/3}} \frac{dx}{\sqrt{x} \, \log(n/x)}. \end{split}$$

$$\int \frac{dx}{\sqrt{x} \log(n/x)} = -2\sqrt{n} \operatorname{li}(\sqrt{x/n}) + \operatorname{const}$$
$$\sim \frac{4\sqrt{x}}{\log(n/x)}.$$

(∛n+1)-rough number での f の和 V — 計算量解析

よって、

$$\begin{split} \sum_{i=1}^{n^{1/3}} \pi(\sqrt{n/i}) &\sim 8\sqrt{n} \left[\frac{\sqrt{x}}{\log(n/x)} \right]_1^{n^{1/3}} \\ &= \Theta(n^{2/3}/\log(n)) \end{split}$$

とわかる。

(√n+1)-rough number での f の和 I

($\sqrt[6]{n}+1$)-rough number での f の和 $V(S_{\pi(\sqrt[6]{n})+1}^f,n)$ を求める。

 S_{k+1}^f から S_k^f を計算するための式

$$S_k^f(m) = \sum_{e=0}^{\lfloor \log_{p_k}(m) \rfloor} f(p_k^e) \cdot S_{k+1}^f(\lfloor m/p_k^e \rfloor)$$

を念頭におく²⁷。

各 $k=\pi(\lfloor\sqrt[3]{n}\rfloor),\ldots,\pi(\lfloor\sqrt[6]{n}\rfloor)+1$ について、この式の通り愚直に更新すると $\Theta(n^{5/6}/\log(n))$ 時間かかるため、工夫が必要になる。

 $^{^{27}}$ p_k の次数ごとに求めて足せばよいということ。

$(\sqrt[6]{n}+1)$ -rough number での f の和 II

高速化の方針は Lucy DP のときとほぼ同じ。

 $m \geqslant n^{2/3}$ については

$$S_k^f(m) = \sum_{e=0}^{\lfloor \log_{p_k}(m) \rfloor} f(p_k^e) \cdot S_{k+1}^f(\lfloor m/p_k^e \rfloor)$$

で更新し、 $\mathfrak{m} < \mathfrak{n}^{2/3}$ については差分を BIT で管理する。

 \sqrt{n} 以下の素数のみから $n^{2/3}$ 以下の合成数を網羅する部分で、 $(\sqrt[6]{n}+1)$ -rough であることが効いている。

(∜n+1)-rough number でのfの和 Ⅲ — 計算量解析

 $m \ge n^{2/3}$ における更新回数は

$$\begin{split} \sum_{i=\pi(\sqrt[6]{n})+1}^{\pi(\sqrt[3]{n})} \sum_{j=1}^{\lfloor \sqrt[3]{n} \rfloor} \log_{p_i}(n/j) \leqslant \sum_{i=\pi(\sqrt[6]{n})+1}^{\pi(\sqrt[3]{n})} \sum_{j=1}^{\lfloor \sqrt[3]{n} \rfloor} \log_{\sqrt[6]{n}}(n) \\ &= \sum_{i=\pi(\sqrt[6]{n})+1}^{\pi(\sqrt[3]{n})} \sum_{j=1}^{\lfloor \sqrt[3]{n} \rfloor} 6 \\ &\sim \frac{n^{1/3}}{\frac{1}{3} \log(n)} \cdot 6 \cdot \lfloor \sqrt[3]{n} \rfloor \\ &= O(n^{2/3}/\log(n)) \end{split}$$

となる。

<mark>(∜n+1)-rough number での f の和 IV — 計算量解析</mark>

 $m < n^{2/3}$ における更新回数に関する解析は Lucy DP と同じ。

 $n^{2/3}$ 以下の $(\sqrt[6]{n}+1)$ -rough number の個数に相当し、これは $\Theta(n^{2/3}/\log(n))$ 個であることが知られている。

各操作は BIT で行うため一回あたり $O(\log(n))$ 時間なので、 $(\sqrt[6]{n}+1)$ -rough number での和は $O(n^{2/3})$ 時間で求められる。

2-rough number での f の和 I

2-rough number での和 $V(S_1^f,n)$ 、すなわち全体の和を求める 28 。

 S_{k+1}^f から S_k^f を計算するための式

$$S_k^f(m) = \sum_{e=0}^{\lfloor \log_{p_k}(m) \rfloor} f(p_k^e) \cdot S_{k+1}^f(\lfloor m/p_k^e \rfloor)$$

を用いて、 $k = \pi(\lfloor \sqrt[6]{n} \rfloor), \ldots, 2, 1$ と愚直に更新すればよい。

 $^{^{28}}$ lpf(1) = ∞ と定義したため、1 も 2-rough であることに注意せよ。

2-rough number での f の和 Ⅱ — 計算量解析

計算量は以下のようになる。

$$\begin{split} &\sum_{i=1}^{\pi(\sqrt[6]{n})} \sum_{j=1}^{\lfloor \sqrt{n} \rfloor} (\log_{p_k}(n/i) + \log_{p_k}(i)) \\ &= \sum_{i=1}^{\pi(\sqrt[6]{n})} \sum_{j=1}^{\lfloor \sqrt{n} \rfloor} \log_{p_k}(n) \\ &\leqslant \sum_{i=1}^{\pi(\sqrt[6]{n})} \sum_{j=1}^{\lfloor \sqrt{n} \rfloor} \log_2(n) \\ &\sim \frac{n^{1/6}}{\frac{1}{6} \log(n)} \sqrt{n} \cdot \log_2(n) = O(n^{2/3}). \end{split}$$

乗法的関数の和の高速化

乗法的関数 f に対する $\sum_{i=1}^{n} f(i)$ が $O(n^{2/3})$ 時間で得られた²⁹。

素因数が高々2個であるための条件などと絡むため、Lucy DP のときのような方針では、log factor を減らせないと思われる。

なお、未調査だが、 $O(n^{2/3}/\log(n))$ time, $O(\sqrt{n})$ space の手法も知られているらしい。

²⁹実際には Θ になるはず。

補足

前述の各手法で p_i を使っているが、必要になるのは $p_i \leqslant \sqrt{n}$ の範囲のみ。予め篩などで列挙しておけばよく、たとえば線形篩を用いれば $\langle O(\sqrt{n}), O(1) \rangle$ time, $O(\sqrt{n})$ space で済む。

単純な乗法的関数として f(i)=i や $f(i)=i^2$ などが挙げられる。 テストを行う際にはそれを用いるのが便利だと思われる。

環境

実験に用いた環境は以下の通り。

PC MacBook Pro (13-inch, M1, 2020)

メモリ 16 GB

言語 Rust, rustc 1.63.0-nightly (fdca237d5 2022-06-24)

最適化 -C opt-level=3

ツール Criterion.rs (0.3.5)

計測結果I

Lucy DP の亜種たちの実測の結果は以下の通り。

いずれもほぼ同じだが、 $n=10^{10}$ 程度で $\Theta(n^{2/3}/\log(n)^{1/3})$ が優勢になっていた。 $n=10^{13}$ で 1.6 秒程度であった。

Figure: Lucy DP の計測結果

素数の数え上げ 乗法的関数の和 Lucy DPの高速化 乗法的関数の和の高速化 実験 おわり

計測結果Ⅱ

Lucy DP の亜種たちの実測の結果は以下の通り。

いずれもほぼ同じだが、 $n=10^{10}$ 程度で $\Theta(n^{2/3}/\log(n)^{1/3})$ が優勢になっていた。 $n=10^{13}$ で 1.6 秒程度であった。

Figure: Lucy DP の計測結果

計測結果 Ⅲ

乗法的関数の和を求めるアルゴリズムの実測の結果は以下の通り。

こちらも同じような感じ。定数倍が重めだが、 $n=10^9$ 程度で $\Theta(n^{2/3})$ の方が優勢になり始めた。 $n=10^{12}$ で 1.3 秒程度。

Figure: 乗法的関数の和の計測結果

計測結果 IV

乗法的関数の和を求めるアルゴリズムの実測の結果は以下の通り。

こちらも同じような感じ。定数倍が重めだが、 $n=10^9$ 程度で $\Theta(n^{2/3})$ の方が優勢になり始めた。 $n=10^{12}$ で 1.3 秒程度。

Figure: 乗法的関数の和の計測結果

求めた値

Table: 素数の個数と $\phi(n)$ の和の値

$\log_{10}(n)$	$\pi(n)$	$\sum_{i=1}^{n} \phi(i)$
1	4	32
2	25	3044
3	168	304192
4	1229	30397486
5	9592	3039650754
6	78498	303963552392
7	664579	30396356427242
8	5761455	3039635516365908
9	50847534	303963551173008414
10	455052511	30396355092886216366
11	4118054813	3039635509283386211140
12	37607912018	303963550927059804025910
13	346065536839	30396355092702898919527444
14	3204941750802	3039635509270144893910357854

参考文献 I

- Sum of Multiplicative Function / min-25
 - https://min-25.hatenablog.com/ entry/2018/11/11/172216(web.archive.org:20211009144526)
- min-25 sieve
 - https://zhuanlan.zhihu.com/p/60378354
 - https://oi-wiki.org/math/number-theory/min-25/
- 洲閣篩 (Zhouge sieve)
 - http://debug18.com/posts/calculatethe-sum-of-multiplicative-function(web.archive.org:20190114044154)

0000

参考文献 Ⅱ

• the black algorithm / baihacker

 http://baihacker.github.io/main/2020/The_prefix-sum_ of_multiplicative_function_the_black_algorithm.html

Nyaan's Library

- https://nyaannyaan.github.io/library/multiplicative-function/ sum-of-multiplicative-function.hpp
- https://nyaannyaan.github.io/library/multiplicative-function/ prime-counting.hpp
- https://nyaannyaan.github.io/library/multiplicative-function/ prime-counting-o2d3.hpp
- https://nyaannyaan.github.io/library/multiplicative-function/ prime-counting-faster.hpp

0000

関連資料

- 乗法的関数の和を $O(n^{2/3}/\log(n))$ time, $O(\sqrt{n})$ space らしい
 - https://blog.csdn.net/ whzzt/article/details/104105025(web.archive.org:20211009144526)
- 別の手法で $\sum_{i} \phi(i)$ などを $O(n^{2/3})$ time / maspy
 - https://maspypy.com/dirichlet-積と、数論関数の累積和
- $\pi(n)$: the Meissel, Lehmer, Lagarias, Miller, Odlyzko method
 - $O(x^{2/3}/\log(x)^2)$ time, $O(x^{1/3}\log(x)^3\log(\log(x)))$ space
 - https://www.ams.org/journals/mcom/1996-65-213/ S0025-5718-96-00674-6/S0025-5718-96-00674-6.pdf
- 実用的に高速なライブラリ。1031 くらいまでできるらしい。
 - https://qithub.com/kimwalisch/primecount

0000

Thank you!

擬似コードI

 $\Theta(\mathfrak{n}^{2/3})$ 時間の Lucy DP の擬似コード。

拡大して見ればよいので、めちゃくちゃに縮小してある。

```
Algorithm 8.1: 高速化した Lucy DF
1 function PRIMECOUNT-LUCY<sup>2/3</sup>(n.)
z \quad \mid \quad A = (n, \lfloor n/2 \rfloor, \ldots, \lfloor n/\lfloor \sqrt{n} \rfloor \rfloor, \lfloor n/\lfloor \sqrt{n} \rfloor \rfloor - 1, \ldots, 2, 1)
     S \leftarrow (A_1 - 1, A_2 - 1, \dots, A_{(A)} - 1)
        while p_{\pi} \leqslant \sqrt[n]{n} do
          I foreach i \leftarrow (1, 2, ..., |A|) do
                if A_1 < p_{\pi}^2 then break
                  j = (if i \cdot p_{\pi} \le \sqrt{n} \text{ then } i \cdot p_{\pi} \text{ else } |A| - \lfloor A_i/p_{\pi} \rfloor)
         \pi \leftarrow 1
        b \leftarrow (0)^{|A|}_{i=1} \sqrt[3]{6}
                                                                 D bはBITで管理する。
        while p_n \leqslant \sqrt[n]{n} do
             foreach i \leftarrow (1, 2, ..., \lfloor \sqrt[3]{n} \rfloor) do
                 j = (if i \cdot p_{\pi} \le \sqrt{n} \text{ then } i \cdot p_{\pi} \text{ else } |A| - \lfloor A_i/p_{\pi} \rfloor)
                    if j>\sqrt{n} then
                         S_i \leftarrow \left(S_j - \sum b_k\right) - \pi
                   S_i \leftarrow S_j - \pi
               for each \nu \in \{\nu \mid lpf(\nu) = p_{\pi}, \nu < \pi/|\sqrt[4]{\pi}|\} \setminus P do
                 i = (if v \le \sqrt{n} \text{ then } |A| - v \text{ else } |n/v|)
                 if j > \sqrt[4]{n} then b_i \xleftarrow{+} 1
        foreach j \leftarrow (|A|, ..., \lfloor \sqrt[4]{n} \rfloor) do > ループ範囲に関して
               S_j \leftarrow \sum^{|n|} b_k
        while p_m \leqslant \sqrt{n} do
            foreach i \leftarrow (1, 2, ..., |A|) do
                if A_1 < p_{\pi}^2 then break
                  j = (if i \cdot p_{\pi} \le \sqrt{n} \text{ then } i \cdot p_{\pi} \text{ else } |A| - \lfloor A_i/p_{\pi} \rfloor)
                 S_i \leftarrow S_i
        return S1
                                                                                                > \pi(n)
   ^{\circ}n^{1/4} 以下の素数では終っていることから、 加丁 で管理されている合成数は n^{1/4} より大きい、そのため |\leftarrow (|A|-\lfloor\sqrt{n}\rfloor,\dots,\lfloor\sqrt{n}\rfloor) で十分そう。
```

擬似コードⅡ

 $\Theta(\mathfrak{n}^{2/3}/\log(\mathfrak{n})^{1/3})$ 時間の Lucy DP の擬似コード。

拡大して見ればよいので、めちゃくちゃに縮小してある。

```
Algorithm 8.2: 高速化した Lucy DP
1 function PRAGECOUNT-LUCY 2/3/Loc (n.)
1 function PROBLE, OWNT-LLC. (PA)

2 A = (n, \lfloor n/2 \rfloor, ..., \lfloor n/\lfloor \sqrt{n} \rfloor \rfloor, \lfloor n/\lfloor \sqrt{n} \rfloor \rfloor - 1, ..., 2, 1)
         S \leftarrow (A_1 - 1, A_2 - 1, \dots, A_{|A|} - 1)
         while p_m \leqslant \sqrt[4]{n} do
            foreach i \leftarrow (1, 2, ..., |A|) do
               if A_1 < p_{\pi}^2 then break
                  j = (if i \cdot p_{\pi} \leq \sqrt{n} \text{ then } i \cdot p_{\pi} \text{ else } |A| - \lfloor A_i/p_{\pi} \rfloor)
               S_i \leftarrow S_j
         b \leftarrow (0)_{i=\parallel}^{|A|} \sqrt[b]{\pi \cdot \log(\pi)^{1/3}}
                                                                  D bはBITで管理する。
         if \lfloor \sqrt[4]{n} \cdot \log(n)^{1/3} \rfloor \le \sqrt{n} then
          [j_0 = \lfloor \sqrt[3]{n} \cdot \log(n)^{1/3} \rfloor
           j_0 = |A| - \lfloor n/\lfloor \sqrt[3]{n} \cdot \log(n) \rfloor \rfloor
          while p_{-} \le \sqrt{n} / \log(n)^{2/3} do
            foreach i \leftarrow (1, 2, ..., |\sqrt[n]{n} \cdot \log(n)^{1/3}|) do
                     j = (if i \cdot p_{\pi} \le \sqrt{n} \text{ then } i \cdot p_{\pi} \text{ else } |A| - |A_i/p_{\pi}|)
                           S_i \leftarrow \left(S_j - \sum_{k} b_k\right) - \pi
22
                       S_i \leftarrow S_j - \pi
                  \nu \in \{\nu \mid lpf(\nu) = p_\pi, \nu < \pi/\lfloor \sqrt[4]{\pi} \cdot \log(\pi)^{1/3}\rfloor\} \setminus \mathbf{P} \text{ do}
                  j = (if \nu \le \sqrt{n} \text{ then } |A| - \nu \text{ else } \lfloor n/\nu \rfloor)
                  if j > j_0 then b_1 \leftarrow 1
           foreach j \leftarrow (|A|, ..., |\sqrt[3]{n} \cdot \log(n)^{1/3}|) do
          while p_{\pi}\leqslant\sqrt{n} do
           for each i \leftarrow (1, 2, \dots, |A|) do
                  I if A_1 < p_-^2 then break
                     j = (if i \cdot p_{\pi} \leq \sqrt{n} \text{ then } i \cdot p_{\pi} \text{ else } |A| - |A_i/p_{\pi}|)
               L \; S_i \leftarrow S_j
            \pi \stackrel{+}{\leftarrow} 1
          return S
                                                                                                    > n(n)
```

擬似コードⅢ

 $\Theta(\mathfrak{n}^{2/3})$ 時間で乗法的関数の和を求める擬似コード。

拡大して見ればよいので、めちゃくちゃに縮小してある。

```
ensen (江泉法的間数である
                           formals in (1,2,..., Al) de
                                                      if m \le n^{1/2} then constone
                           \begin{split} & h_1 \leftarrow S_g^{\ell}(m) - S_g^{\ell}(q-1) \\ & \text{if } m < m^{2/3} \text{ the section} \\ & \text{for each } j \leftarrow (m[q], m(q) + 1, \dots) \text{ dis} \\ & \text{for each } j \leftarrow (m[q], m(q) \text{ the section} \\ & h_1 \leftarrow f(p_1^2) + f(p_1) \cdot (S_g^{\ell}([m/p_1]) - S_g^{\ell}(p_1)) \end{split}
         b \leftarrow (b)_{i=\lfloor \frac{1}{2} \log \rfloor}^{(A)}
\alpha \leftarrow \alpha(a^{1/2}) + 1
                  while p_{m-1}>n^{1/\alpha}\,d\alpha
                                    x \leftarrow 1
from b \mapsto (1, ..., \lfloor \sqrt{n} \rfloor) da
                                                      formula i \leftarrow (1, ..., \lfloor \sqrt{n} \rfloor) due

m \leftarrow A_i

if m < p_i, then break

formula i = (1, 2, ...) due

d = \lfloor m/p_i \rfloor

j = (0 \text{ if } d < \sqrt{n} \text{ then } |A| - d \text{ site } \lfloor n/d \rfloor)

if h > \sqrt{n} then
                                                                                                                                                         h_0 \leftarrow f(p_n^n) \cdot \left(h_0 + \sum_{k=1}^{|A|} h_k\right)
                                                                                                            Third right his
                                                                                          s \leftarrow ([p, q, 1, p^{\perp})) \Rightarrow s \bowtie ank \forall \exists \exists p \neq s,
while [a, (p, p^{\perp}) \leftarrow s \times cp] is
[a = (a^{\perp} v \in \sqrt{s}) \text{ then } [b] = v \text{ the } [a/v])
                                                                                                                     \begin{aligned} & \text{if } j > \sqrt{n} \text{ dom } b_j \leftarrow \varphi \cdot f(p_i^e) \\ & \text{if } v \cdot p_i < \left[ e_i / \left( \frac{\sqrt{n}}{n} \right) \right] \text{ dom} \\ & \text{if } \text{ cov}((v \cdot p_i, t_i, \phi_i, p_i^{e_{i-1}})) \end{aligned}
                                              \left[ \begin{array}{c} \lim_{n \to \infty} j \mapsto (i+1, \dots) \text{ d} n \\ \text{ if } y \mapsto (i+1, \dots) \text{ d} n \\ \text{ if } y \mapsto p_i \geqslant (n/(\sqrt{n})) \text{ d} n \text{ both } n \text{ d} n \text{
         \begin{array}{c} \underbrace{A}_{i,j} \in (A_1, \dots, \lfloor \sqrt{n} \rfloor) \triangleq \\ h_j \leftarrow \sum^{|A|} h_k \end{array}
                  white p<sub>n-1</sub> > 2 du

| n ← 1
                           \begin{aligned} &\alpha := 1 \\ &\text{formals} \ i \in \{1,2,\ldots\} \ d\alpha \\ &m := A, \\ &\text{if } m 
                           \begin{aligned} & h_i := t(p^n) \cdot h_i \\ & h_i := t(p^n) \cdot h_i \\ & \text{if } m < p^{n+1} \text{ then bead}. \end{aligned}
*SECRETATION OF THE PROPERTY O
```

高速化 Lucy DP の動き

Lucy DP を $\Theta(\mathfrak{n}^{2/3})$ 時間に高速化したアルゴリズムの動作。

n = 400 の場合を例として載せる。

実際に実装する際は、∛nの切り捨ての扱いなどから、必ずしも同じ動作になるとは限らないかも。

Figure: アルゴリズムの動き

$$\underbrace{\frac{dp[2]}{s_{1(200)}} \leftarrow \underbrace{\frac{dp[4]}{s_{1(100)}} - \underbrace{\pi(2-1)}_{0}}_{s_{1(100)}=99}$$

$$dp[2] = S_2(200) = 100$$

$$\underbrace{\frac{dp[3]}{s_1(133)}}_{\substack{s_1(133)\\=132}} \xleftarrow{-} \underbrace{\frac{dp[6]}{s_1(66)}}_{\substack{s_1(66)\\=65}} - \underbrace{\pi(2-1)}_{0}$$

$$dp[3] = S_2(133) = 67$$

$$\underbrace{\frac{dp[4]}{s_1(100)}}_{\substack{s_1(50)\\=99}} \xleftarrow{-} \underbrace{\frac{dp[8]}{s_1(50)}}_{\substack{s_1(50)\\=49}} - \underbrace{\pi(2-1)}_{0}$$

$$dp[4] = S_2(100) = 50$$

$$dp[5] = S_2(80) = 40$$

Figure: アルゴリズムの動き

Figure: アルゴリズムの動き

 $dp[8] = S_2(50) = 25$

Figure: アルゴリズムの動き

Figure: アルゴリズムの動き

$$\underbrace{\frac{dp[10]}{s_1^{(40)}} \leftarrow \underbrace{\frac{dp[20]}{s_1^{(20)}} - \underbrace{\pi(2-1)}_{0}}_{=19}$$

$$dp[10] = S_2(40) = 20$$

$$dp[11] = S_2(36) = 18$$

$$\underbrace{\frac{dp[12]}{s_{1}(33)}}_{\substack{s_{1}(33)\\=32}} \xleftarrow{-} \underbrace{\frac{dp[24]}{s_{1}(16)}}_{\substack{s_{1}(16)\\=15}} - \underbrace{\pi(2-1)}_{0}$$

$$dp[12] = S_2(33) = 17$$

 $dp[13] = S_2(30) = 15$

Figure: アルゴリズムの動き

 $dp[14] = S_2(28) = 14$

Figure: アルゴリズムの動き

 $dp[15] = S_2(26) = 13$

Figure: アルゴリズムの動き

 $dp[16] = S_2(25) = 13$

Figure: アルゴリズムの動き

Figure: アルゴリズムの動き

Figure: アルゴリズムの動き

$$dp[20] = S_2(20) = 10$$

Figure: アルゴリズムの動き

 $dp[22] = S_2(18) = 9$

Figure: アルゴリズムの動き

$$dp[23] = S_2(17) = 9$$

$$dp[24] = S_2(16) = 8$$

$$\underbrace{\frac{dp[25]}{\overset{c}{\underset{=14}{\overset{(15)}{\circ}}}} \overset{-}{\longleftarrow} \underbrace{\frac{dp[33]}{\overset{s_1(7)}{\underset{=6}{\circ}}} - \underbrace{\pi(2-1)}_{0}}_{0}$$

$$dp[25] = S_2(15) = 8$$

$$dp[26] = S_2(14) = 7$$

$$dp[27] = S_2(13) = 7$$

$$\underbrace{\frac{dp[28]}{\overset{c}{\underset{=11}{\overset{s_{1}(12)}{=1}}}} \overset{-}{\underset{=5}{\overset{dp[34]}{\longleftarrow}}} \underbrace{\frac{dp[34]}{\underset{=5}{\overset{o}{\underbrace{}}}} - \underbrace{\pi(2-1)}_{0}}_{0}$$

$$dp[28] = S_2(12) = 6$$

$$dp[29] = S_2(11) = 6$$

$$\underbrace{\frac{dp[30]}{\overset{s_1(10)}{\underset{=9}{\overset{s_1(5)}{\longrightarrow}}}} \underbrace{\frac{dp[35]}{\overset{s_1(5)}{\underset{=4}{\overset{o}{\longrightarrow}}}} - \underbrace{\pi(2-1)}_{0}}_{0}$$

$$dp[30] = S_2(10) = 5$$

$$dp[31] = S_2(9) = 5$$

$$\underbrace{\frac{dp[32]}{\overset{c}{\underset{=7}{\overset{s_{1}(8)}{=7}}}} \overset{-}{\underset{=3}{\overset{dp[36]}{\leftarrow}}} \underbrace{\frac{dp[36]}{\overset{s_{1}(4)}{\underset{=3}{\overset{o}{\longrightarrow}}}} - \underbrace{\pi(2-1)}_{0}}_{0}$$

$$dp[32] = S_2(8) = 4$$

$$dp[33] = S_2(7) = 4$$

$$\underbrace{\frac{dp[34]}{\overset{c}{\underset{=5}{\overset{}}{\overset{}}}}}_{\overset{s_1(6)}{\underset{=2}{\overset{}}{\overset{}}}}\underbrace{\frac{dp[37]}{\overset{s_1(3)}{\underset{=2}{\overset{}}{\overset{}}}}-\underbrace{\pi(2-1)}_{0}$$

$$dp[34] = S_2(6) = 3$$

$$\underbrace{\frac{dp[35]}{s_1^{(5)}}}_{\substack{s_1(5)\\=4}} \xleftarrow{-} \underbrace{\frac{dp[38]}{s_1^{(2)}}}_{\substack{s_1(2)\\=1}} - \underbrace{\pi(2-1)}_{o}$$

$$dp[35] = S_2(5) = 3$$

$$\underbrace{\frac{dp[36]}{\overset{c}{\underset{=3}{\overset{s_{1}(4)}{\longrightarrow}}}}}_{\overset{c}{\underset{=1}{\overset{s_{1}(2)}{\longrightarrow}}}} - \underbrace{\frac{dp[38]}{\underset{=1}{\overset{s_{1}(2)}{\longrightarrow}}}} - \underbrace{\pi(2-1)}_{0}$$

$$dp[36] = S_2(4) = 2$$

Figure: アルゴリズムの動き

$$\underbrace{\frac{dp[8]}{s_2(50)}}_{\substack{s_2(50)\\=25}} \underbrace{\frac{\left[\left\{\nu \in (\mathbb{N} \setminus \mathbb{P}) \,|\, \nu \leqslant 50, \, \sqrt[6]{\pi} < lpf(\nu) < \pi^{2/3}\right\}\right]}{\left|\left\{9,15,21,25,27,33,35,39,45,49\right\}\right|}}_{=10}$$

$$dp[8] = S_7(50) = 15$$

$$\underbrace{\frac{dp[9]}{s_{2}^{(44)}} \leftarrow \underbrace{\left|\left\{\nu \in (\mathbb{N} \setminus \mathbb{P}) \,|\, \nu \leqslant 44, \, \sqrt[6]{\pi} < lpf(\nu) < n^{2/3}\right\}\right|}_{=8}}_{|\{9,15,21,25,27,33,35,39\}|}$$

$$dp[9] = S_7(44) = 14$$

$$\underbrace{\frac{dp[10]}{\underset{=20}{\overset{\longleftarrow}{\text{S}_{2}(40)}}}}_{\text{S}_{2}(40)}\underbrace{\frac{\left\{\nu\in(\mathbb{N}\backslash\mathbb{P})\,|\,\nu\leqslant40,\,\sqrt[6]{\pi}<\mathrm{lpf}(\nu)<\pi^{2/3}\right\}\right|}_{|\{9,15,21,25,27,33,35,39\}|}$$

$$dp[10] = S_7(40) = 12$$

$$dp[11] = S_7(36) = 11$$

$$\underbrace{\frac{dp[12]}{S_2(33)}}_{\substack{S_2(33)\\=17}} \xleftarrow{-} \underbrace{\left| \left\{ \nu \in (\mathbb{N} \backslash \mathbb{P}) \, | \, \nu \leqslant 33, \, \sqrt[6]{\pi} < \mathrm{lpf}(\nu) < \pi^{2/3} \right\} \right|}_{=6}$$

$$dp[12] = S_7(33) = 11$$

$$\underbrace{\frac{dp[13]}{\text{S}_2(30)}}_{\substack{\text{S}_2(30)\\=15}} \xleftarrow{-} \underbrace{\left\{ \underbrace{\left\{ \nu \in (\mathbb{N} \backslash \mathbb{P}) \, | \, \nu \leqslant 30, \, \sqrt[6]{\pi} < \text{lpf}(\nu) < \pi^{2/3} \right\} \right]}_{|\{9,15,21,25,27\}|}_{=5}$$

$$dp[13] = S_7(30) = 10$$

$$\underbrace{\frac{dp[14]}{\underset{s_2(28)}{\underbrace{-}}} \left(\underbrace{\left\{ \underset{\nu \in (\mathbb{N} \backslash \mathbb{P})}{\underbrace{\left\{ \underset{\nu \in 28, \, \text{ fin} < \text{lpf}(\nu) < \pi^{2/3} \right\} \right\}}}}_{|\{9,15,21,25,27\}|} \right)}_{=5}$$

$$dp[14] = S_7(28) = 9$$

$$\underbrace{\frac{dp[15]}{\underset{=13}{\overset{\longleftarrow}{\text{s}_{2}(26)}}} \underbrace{\overset{\longleftarrow}{\longleftarrow} \underbrace{\left|\left\{\nu \in (\mathbb{N} \backslash \mathbb{P}) \, | \, \nu \leqslant 26, \frac{6}{\sqrt{n}} < \text{lpf}(\nu) < n^{2/3}\right\}\right|}_{|\{9,15,21,25\}|}}_{=4}$$

$$dp[15] = S_7(26) = 9$$

$$\underbrace{\frac{dp[16]}{\underset{=13}{\overset{\longleftarrow}{\text{op}}}} \xleftarrow{\overset{\longleftarrow}{\underbrace{\left\{\nu \in (\mathbb{N} \backslash \mathbb{P}) \mid \nu \leqslant 25, \, \sqrt[6]{\pi} < \mathrm{lpf}(\nu) < \pi^{2/3}\right\}\right|}}_{|\{9,15,21,25\}|}_{=4}}_{}$$

$$dp[16] = S_7(25) = 9$$

$$\underbrace{\frac{dp[17]}{\underset{=12}{\overset{\longleftarrow}{\text{S}_2(23)}}} \xleftarrow{\overset{\longleftarrow}{\longleftarrow}} \underbrace{\left\{ \underbrace{\left\{ \nu \in (\mathbb{N} \backslash \mathbb{P}) \, | \, \nu \leqslant 23, \, \sqrt[6]{\pi} < \mathrm{lpf}(\nu) < \pi^{2/3} \right\} \right]}_{|\{9,15,21\}|}_{=3}}_{}$$

$$dp[17] = S_7(23) = 9$$

$$\underbrace{\frac{dp[18]}{\underset{=11}{\overset{\longleftarrow}{\longleftarrow}}}\underbrace{\left\{\underbrace{\left\{\nu\in(\mathbb{N}\backslash\mathbb{P})\left|\nu\leqslant22,\frac{6\sqrt{n}<\mathrm{lpf}(\nu)<\pi^{2/3}\right\}\right\}}_{|\{9,15,21\}|}}_{=3}\right\}}_{}$$

$$dp[18] = S_7(22) = 8$$

$$\underbrace{\frac{dp[19]}{\underset{=11}{\overset{\longleftarrow}{\text{s}_2(21)}}} \underbrace{\overset{\longleftarrow}{\longleftarrow}}_{\underset{=3}{\underbrace{\left\{\nu \in (\mathbb{N} \backslash \mathbb{P}) \, | \, \nu \leqslant 21, \, \sqrt[6]{\pi} < \mathrm{lpf}(\nu) < \pi^{2/3}\right\}\right]}}_{|\{9,15,21\}|}_{=3}}$$

$$dp[19] = S_7(21) = 8$$

$$\underbrace{\frac{dp[20]}{s_2(20)}}_{\substack{s_2(20)\\=10}} \xleftarrow{-} \underbrace{\left|\left\{\nu \in (\mathbb{N} \backslash \mathbb{P}) \,|\, \nu \leqslant 20, \, \sqrt[6]{\pi} < \mathrm{lpf}(\nu) < n^{2/3}\right\}\right|}_{\mid \{9,15\}\mid}$$

$$dp[20] = S_7(20) = 8$$

$$\underbrace{\frac{dp[21]}{S_2(19)}}_{\substack{S_2(19)\\=10}} \xleftarrow{-} \underbrace{\left\{ \underbrace{\left\{ \nu \in (\mathbb{N} \backslash \mathbb{P}) \, | \, \nu \leqslant 19, \, \sqrt[6]{\pi} < \mathrm{lpf}(\nu) < \pi^{2/3} \right\} \right]}_{|\{9,15\}|}}_{=2}$$

$$dp[21] = S_7(19) = 8$$

$$\underbrace{\frac{dp[22]}{S_2(18)}}_{\substack{S_2(18)\\=9}} \xleftarrow{-} \underbrace{\left\{ \underbrace{\left\{ \nu \in (\mathbb{N} \backslash \mathbb{P}) \, | \, \nu \leqslant 18, \, \sqrt[6]{\pi} < \mathrm{lpf}(\nu) < \pi^{2/3} \right\} \right]}_{|\{9,15\}|}}_{=2}$$

$$dp[22] = S_7(18) = 7$$

$$\underbrace{\frac{dp[23]}{\underset{=9}{\overset{\longleftarrow}{\text{S}_2(17)}}} \xleftarrow{\overset{\longleftarrow}{\longleftarrow}} \underbrace{\left\{ \underbrace{\left\{ \nu \in (\mathbb{N} \backslash \mathbb{P}) \, | \, \nu \leqslant 17, \, \sqrt[6]{\pi} < \mathrm{lpf}(\nu) < \pi^{2/3} \right\} \right]}_{|\{9,15\}|}}_{=2}$$

$$dp[23] = S_7(17) = 7$$

$$\underbrace{\frac{dp[24]}{\underset{s_2(16)}{\underbrace{-}}} \xleftarrow{-} \underbrace{\left\{ \underbrace{\left\{ \nu \in (\mathbb{N} \backslash \mathbb{P}) \, | \, \nu \leqslant 16, \, \sqrt[6]{\pi} < \mathrm{lpf}(\nu) < \pi^{2/3} \right\} \right]}_{|\{9,15\}|}}_{=2}}_{}$$

$$dp[24] = S_7(16) = 6$$

$$\underbrace{\frac{dp[25]}{\underset{=8}{\underbrace{\sum_{\nu \in (\mathbb{N} \setminus \mathbb{P}) \mid \nu \leqslant 15, \, \sqrt[6]{\pi} < lpf(\nu) < \pi^{2/3} \}}}}_{|\{9,15\}|}}_{|\{9,15\}|}$$

$$dp[25] = S_7(15) = 6$$

$$\underbrace{\frac{dp[26]}{\underset{=7}{\underbrace{\leftarrow}}} \xleftarrow{\leftarrow} \underbrace{\left\{ \underbrace{\nu \in (\mathbb{N} \backslash \mathbb{P}) \, | \, \nu \leqslant 14, \, \sqrt[6]{\pi} < \mathrm{lpf}(\nu) < \pi^{2/3} \right\}}_{|\{9\}|}}_{=1}$$

$$dp[26] = S_7(14) = 6$$

$$\underbrace{\frac{dp[27]}{\underset{=7}{\underbrace{\sum}}} \xleftarrow{-} \underbrace{\left\{ \underbrace{\nu \in (\mathbb{N} \backslash \mathbb{P}) \mid \nu \leqslant 13, \, \underbrace{\sqrt[6]{\pi} < \mathrm{lpf}(\nu) < \pi^{2/3}}_{|\{9\}|} \right\}}_{=1}}_{}$$

$$dp[27] = S_7(13) = 6$$

$$\underbrace{\frac{dp[28]}{\underset{=6}{\underbrace{-}}} \xleftarrow{-} \underbrace{\left\{ \underset{\nu \in (\mathbb{N} \setminus \mathbb{P})}{\underbrace{\left\{ \underset{\nu \in 12, \, \text{ for } \text{ for }$$

$$dp[28] = S_7(12) = 5$$

$$\underbrace{\frac{dp[29]}{\underset{=6}{\underbrace{\sum}}} \overset{-}{\longleftarrow} \underbrace{\left\{ \underbrace{\left\{ \nu \in (\mathbb{N} \backslash \mathbb{P}) \, | \, \nu \leqslant 11, \, \frac{6}{\sqrt{n}} < lpf(\nu) < n^{2/3} \right\} \right]}_{|\{9\}|}}_{=1}$$

$$dp[29] = S_7(11) = 5$$

$$\underbrace{\frac{dp[30]}{\underset{=5}{\underbrace{\sum}}} \leftarrow \underbrace{\left\{ \underbrace{\left\{ \nu \in (\mathbb{N} \backslash \mathbb{P}) \, | \, \nu \leqslant 10, \, \sqrt[6]{\pi} < \mathrm{lpf}(\nu) < \pi^{2/3} \right\} \right|}_{|\{9\}|}}_{=1}$$

$$dp[30] = S_7(10) = 4$$

$$\underbrace{\frac{dp[31]}{\underset{=5}{\underbrace{-}}} \xleftarrow{-} \underbrace{\left|\left\{\nu \in (\mathbb{N} \backslash \mathbb{P}) \, | \, \nu \leqslant 9, \, \sqrt[6]{\pi} < \mathrm{lpf}(\nu) < \pi^{2/3}\right\}\right|}_{|\{9\}|}_{=1}}_{=1}$$

$$dp[31] = S_7(9) = 4$$

$$\underbrace{\frac{dp[32]}{\underset{=4}{\underbrace{\leftarrow}}} \xleftarrow{-} \underbrace{\left|\left\{\substack{\nu \in (\mathbb{N} \backslash \mathbb{P}) \, | \, \nu \leqslant 8, \, \sqrt[6]{\pi} < lpf(\nu) < \pi^{2/3}\right\}\right|}_{|\{\}|}}_{=0}$$

$$dp[32] = S_7(8) = 4$$

Figure: アルゴリズムの動き

 $dp[2] = S_{11}(200) = 47$

$$dp[3] = S_{11}(133) = 32$$

Figure: アルゴリズムの動き

$$dp[2] = S_{13}(200) = 46$$

Figure: アルゴリズムの動き

Figure: アルゴリズムの動き

おわり

$$p_{\pi(\sqrt{400})}=19$$
 であり、 $S_{19}(400)=\pi(400)=78$ が求められた。

おまけ

約数の総和を求める関数 σ1 について、

$$\sigma_1\left(\prod_{p: \, prime} p^{e_p}\right) = \prod_{p: \, prime} \frac{p^{e_p+1}-1}{p-1}$$

が成り立つ。特に、 $\sigma_1(p)=p+1$ である。よって、今回の手法で各整数の "約数の和" の総和は $\Theta(\mathfrak{n}^{2/3})$ 時間で得られる 30 。