1. UVODNA RAZMATRANJA

1.1. Jezični procesor

- uloga jezičnog procesora
- jezici u postupku prevođenja
- definicija jezika

Osnovna uloga: jezični procesor prevodi zapis algoritma iz izvornog jezika $\mathbf{L_i}$ u zapis algoritma u ciljnom jeziku $\mathbf{L_c}$ koji je moguće izvesti na zadanom računalu.

Definicija jezičnog procesora zasnovana je na tri **jezika**: izvornom, ciljnom i jeziku izgradnje.

 $JP^{L_i o L_c}$ JP - jezični procesor L_i - izvorni jezik L_c - ciljni jezik

 L_g - jezik izgradnje (najčešće $L_c = L_g$)

L_{svi} – skup svih nizova koje je moguće napisati primjenom zadanih znakova abecede, dekadskih znamenaka, operatora, posebnih znakova i pravopisnih znakova.

Jezik se definira skupom nizova nad nekom abecedom.

1.2. Procesi jezičnog procesora

- uloga formalnog automata i formalne gramatike
- faze i razine rada jezičnog procesora
- sintaksa i semantika

Formalni automat M – matematički model automata koji odlučuje da li niz na ulazu pripada zadanom jeziku.

Formalna gramatika G – je matematička struktura koja koristeći skupove produkcija generura nizove znakova koji pripadaju jeziku.

Razine rada podijeljene su u dvije osnovne faze rada jezičnog procesora:

- 1) Faza analize:
 - 1. razina: **leksička analiza**
 - 2. razina: sintaktička i semantička analiza generiranje višeg međukoda
- 2) Faza sinteze:
 - 3. razina: prevođenje višeg u **srednji međukod**
 - 4. razina: prevođenje srednjeg u niži međukod
 - 5. razina: prevođenje nižeg međukoda u ciljni program

Sintaksa: definira jezik kao skup svih dozvoljenih nizova leksičkih jedinki; način gradnje izraza od leksema, naredbi...

Semantika: određuje skup dozvoljenih značenja (semantička pravila povezuju ponašanje računala s izvođenjem programa).

1.3. Znakovlje i oznake

- znak, niz, nadovezivanje, dijelovi niza
- jezik i operacije nad jezicima
- skupovi, kardinalni broj
- graf, usmjereni graf i stablo

Znak: je elementarni simbol, od kojeg se grade riječi.

Abeceda: je skup znakova.

Niz: je konačni slijed znakova abecede postavljenih jedan iza drugog; ε prazni niz.

Nadovezivanje nizova: označava se potencijom te vrijedi:

$$W^{0} = \varepsilon$$
; $W^{i} = W^{i-1}W$; $W^{1} = W^{0}W = \varepsilon W = W$.

Dijelovi niza: prefiks, sufiks, podniz, podslijed... **Formalni jezik:** skup nizova nad abecedom.

Operacije nad jezicima:

1.	Unija jezika L i N	$L \cup N$
2.	Presjek jezika L i N	$L \cap N$
3.	Razlika jezika L i N	L – N
4.	Nadovezivanje jezika L i N	LN
5.	Kartezijev produkt	LxN
6.	Partitivni skup jezika	2^{L}
7.	Kleeneov operator *	L*
8.	Kleeneov operator +	L+
9.	Komplement jezika	Гc

Skupovi mogu biti:

- prebrojivo beskonačni (postoji bijekcija na skup prirodnih brojeva)
- neprebrojivo beskonačni (ne postoji bijekcija na skup prirodnih brojeva)

Kardinalni broj: broj elemenata skupa.

Graf: G = (V, E) čini konačni skup čvorova V i skup parova čvorova E. Parovi čvorova su grane grafa.

Usmjereni graf: Grane usmjerenog grafa su uređeni parovi čvorova koje nazivamo usmjerenim granama.

Stablo: Usmjereni graf sljedećih svojstava:

- 1) Korijen stabla nema prethodnika i od njega vodi neki put do ostalih čvorova.
- 2) Bilo koji čvor osim korijena ima točno jednog neposrednog prethodnika.

2. DETERMINISTIČKI KONAČNI AUTOMAT (DKA)

2.1. Regularni jezik i konačni automat

- regularni jezik i konačni automati
- definicija determinističkog konačnog automata

Jezik je **regularan** ako i samo ako postoji **konačni automat** koji ga prihvaća. Time je definirana **istovjetnost** konačnih automata i regularnih jezika. Konačni automati:

- deterministički konačni automat (**DKA**, DFA)
- nedeterministički konačni automat (NKA, NFA)
- NKA s ε prijelazima (ε-NKA, ε-NFA)

Definicija DKA:

dka = (Q,
$$\Sigma$$
, δ , q₀, F)

Q - konačan skup stanja δ - funkcija prijelaza δ : Q x $\Sigma \to \Sigma$ - konačan skup ulaznih Q znakova q $_0 \in \mathbb{Q}$ - početno stanje $F \in \mathbb{Q}$ - skup prihvatljivih stanja

DKA se prikazuje dijagramom stanja ili tablicom prijelaza.

2.1. Deterministički konačni automat i niz

- proširena fja prijelaza DKA
- prihvaćanje ulaznog niza DKA

Fja prijelaza: jednoznačno određuje prijelaz u iduće stanje što se zapiše na sljedeći način:

NovoStanje = δ (StaroStanje, UlazniZnak).

Za bilo koji par starog stanja i ulaznog znaka jednoznačno je određeno u koje stanje prelazi DKA.

Definira se **fja**: $\hat{\delta}: Q \times \Sigma^* \to Q$, koja definira stanje automata nakon čitanja ulaznog niza.

Σ* – skup svih mogućih nizova ulaznih znakova, uključujući i prazni niz;

DKA prihvaća niz ako je: $\delta(q_0,x)=p, \quad p\in F$ DKA prihvaća skup L(dka) $\subseteq \Sigma^*$ ako je: $L(dka)=\left\{x\middle|\delta(q_0,x)\in F\right\}$ Za nizove koji nisu u skupu L(DKA) kaže se da ih DKA ne prihvaća.

2.3. Model DKA i programsko ostvarenje

- model DKA
- programsko ostvarenje DKA
- pretvorba ulaznog niza
- načini ostvarenja fja prijelaza

Model DKA:

- Traka je konačna
- Glava samo čita i ne može pisati

Programsko ostvarenje DKA:

Konačni automat je **matematički model** koji je moguće ostvariti **programskim jezikom**. Za potrebe učinkovitog programskog ostvarenja razmatraju se načini zapisa ulaznih znakova, stanja i fje prijelaza.

Načini zapisa stanja:

- izravan: zapisom u varijablu
- posredan: zapis dijelom programa

Načini zapisa fje prijelaza:

- vektorski:
 - za svako stanje jedan vektor
 - za svaki znak jedan element vektora
 - kod izravnog zapisa stanja element vektora je stanje
 - kod neizravnog zapisa stanja element vektora je adresa
- listom:
- postiže se učinkovito korištenje memorije
- unosi se lista parova znak, stanje
- troši se više vremena

2.4. Definicije ekvivalentnosti

- ekvivalentnost stanja i automata
- svojstva ekvivalentnosti
- strategija redukcije broja stanja
- uvjeti istovjetnosti stanja

Istovjetnost stanja (ekvivalentnost): dva stanja su istovjetna ako prihvaćaju ili odbijaju isti skup nizova.

Ekvivalentnost automata M i N: M i N su istovjetni ako su istovjetna njihova početna stanja.

Uvjeti istovjetnosti: npr. stanja p i q

- uvjet podudarnosti: p i q moraju biti prihvatljiva ili neprihvatljiva
- uvjet napredovanja: vrijedi: $\delta(p,a) = \delta(q,a)$

Tranzitivnost istovjetnosti: iz p=q i q=r slijedi p=r

Strategija redukcije broja stanja:

- grupu istovjetnih stanja zamijeniti jednim
- prvo istovjetna stanja označiti istim imenom
- sve prijelaze označiti tim imenom
- u skupu Q ostaviti samo jedno stanje
- po potrebi funkciju prijelaza

Za određivanje broja stanja koristimo neki od 3 algoritma:

- primitivne tablice
- Huffman-Meally.jev algoritam
- tablica implikanata (Paul-Ungerov algoritam)

3. MINIMIZACIJA KONAČNOG AUTOMATA

3.1. Algoritam primitivne tablice

- koraci algoritma
- primjer

Određivanje istovjetnosti stanja (npr. p i q) **Prvim algoritmom (primitivnim tablicama):**

- primjenjuje uvjete istovjetnosti iterativno
- neučinkovit, zahtjeva ispitivanje svih parova stanja

Koraci algoritma:

- 1. provjeri uvjet podudarnosti
- 2. za svaki znak formiraj zasebni stupac
- 3. provjeri uvjet napredovanja i za svaki novi par različitih stanja stvori novi redak
- 4. provjeri uvjet podudarnosti za svaki novi par, ako uvjet nije zadovoljen prvi par nije istovjetan
- 5. ako nema novog para, prvi par je istovjetan

Primjer:

	С	d	Т
ро	ро	рЗ	0
p1	p2	р5	0
p2	p2	р7	0
рЗ	р6	р7	0
p4	р1	р6	1
р5	р6	р5	0
p6	р6	рЗ	1
р7	р6	рЗ	0

	С	d
po, p1	po, p2	p3, p5
po, p2	po, p2	p3, p7
p3, p5	р6	p5, p7
p3, p7	р6	p3, p7
p5, p7	р6	p3, p5

p0=p1=p2	
p3=p5=p7	

	С	d	Τ
ро	ро	рЗ	0
p3	р6	рЗ	О
р4	рl	р6	1
p6	р6	рЗ	1

Stanje p4 je nedostupno.

3.2. Algoritam Huffman-Mealy

- koraci algoritma
- primjer

Određivanje istovjetnosti stanja (npr. p i q) **Drugim algoritmom (Huffman-Mealy):**

- dijeli skup stanja Q na podskupove korištenjem uvjeta podudarnosti

Koraci algoritma:

- podijeli Q na dva podskupa na osnovu uvjeta podudarnosti (pripadnost skupu F)
- provjeri zatvorenost podskupova: podijeli podskup tako da su u novom podskupu p i q: δ(p,a)∈Gi ∧ δ(q,a)∈Gi
- 3. ako nema novih podskupova, stanja u podskupovima su istovjetna

Primjer:

	C	đ	⊥
ро	ро	рЗ	0
p1	p2	р5	0
p2	p2	р7	0
рЗ	р6	р7	0
p4	рl	р6	1
p 5	р6	р5	0
p6	р6	рЗ	1
р7	р6	рЗ	0

$$po = p1 = p2$$

 $p3 = p5 = p7$

ISTI AUTOMAT!

3.3. Algoritam tablice implikanata

- koraci algoritma
- primjer

Određivanje istovjetnosti stanja (npr. p i q) **Trećim algoritmom (tablica implikanata):**

Traži neistovjetna stanja koracima algoritma:

- 1. označi sve neistovjetne parove stanja na osnovu uvjeta podudarnosti (pripadnost skupu F)
- 2. za sve neoznačene parove p, q za sve ulazne simbole:

ako je $\delta(p,a)$, $\delta(q,a)$ označen označi p, q

označi rekurzivno sve parove u listi p,q i dalje

inače za sve znakove a

ako je $(\delta(p,a) != \delta(q,a))$

dodaj p, q u listu $\delta(p,a)$, $\delta(q,a)$ (implikanti)

Primjer:

	U	d	Τ
p o	ро	р 3	0
	р 2	р 5	0
p	р	p	0
1	2	5	
p	р	p	
2	2	7	
р	р	р	0
3	6	7	
р	р	р	1
4	1	6	
р	р	р	0
5	6	5	
р	р	р	1
6	6	3	
р	р	р	0
7	6	3	

p 1			•)=p1=p2
p2							p.s	8=p5=p7
рЗ	Х	Х	Х					
р4	X	X	X	X				
р5	Х	Х	Х		X			
p6	X	X	X	X	Х	X		_
р7	Х	Х	Х		x		X	
	p0	p1	p2	рЗ	р4	р5	р6	

3.4. Nedohvatljiva stanja

- definicija nedohvatljivih stanja
- algoritam eliminacije
- algoritam postizanja DKA s minimalnim brojem stanja

Stanje p je **nedohvatljivo** ako ne postoji niz w: $\delta(q_0,w) = p$. Odbacivanjem nedohvatljivih stanja dobije se istovjetni DKA s manjim brojem stanja.

Koraci:

- 1. u listu dohvatljivih stanja DS upiši qo
- 2. proširi DS sa skupom stanja {p | $p=\delta(q_0,a)$, za sve $a\Sigma \in \}$
- 3. za sva stanja $q_i \in DS$ proširi DS sa skupom stanja $\{p \mid p = \delta(q_i, a) \land p \notin DS, za \text{ sve a } \Sigma \in \}$

DKA s minimalnim brojem stanja:

- Odbacivanjem istovjetnih i nedostupnih stanja dobije se istovjetni **DKA s minimalnim brojem stanja**.
- Ne postoji drugi DKA koji prihvaća isti jezik, a koji ima manje stanja
- Optimalno je najprije odbaciti nedostupna stanja pa onda tražiti i odbaciti istovjetna stanja.

4. NEDETERMINISTIČKI KONAČNI AUTOMAT (NKA)

4.1. Pristup i rad NKA

- opis NKA
- primjer i rad NKA
- formalna definicija NKA

Opis NKA (NFA): Za razliku od funkcije prijelaza DKA koja za jedno stanje i jedan znak određuje prijelaz u jedinstveno stanje, nova funkcija prijelaza određuje prijelaz u skup stanja.

Primjer NKA: prihvaća nizove koji imaju barem dvije uzastopne nule ili jedinice

Rad NKA opisuje se na sljedeći način:

- svaki put kada postoji mogućnost prijelaza u više različitih stanja, stvori se toliki broj DKA koji paralelno obrađuju ulazni niz.
- niz se prihvaća ako staza makar jednog DKA završi prihvatljivim stanjem.

Formalna definicija: NKA čini:

nka = (Q,
$$\Sigma$$
, δ , q₀, F)

Q - konačan skup stanja

 Σ - konačan skup ulaznih znakova

 δ - funkcija prijelaza δ :

 $Q \rightarrow \Sigma \times 2^Q$

q₀ ∈ Q-početno stanje

 $F \in Q$ - skup prihvatljivih stanja

4.2. Definicija NKA

- formalna definicija NKA
- proširena fija prijelaza NKA
- prihvaćanje ulaznog niza
- fija prijelaza NKA nad skupom stanja

NKA čini:

nka = (Q,
$$\Sigma$$
, δ , q_0 , F)

Q - konačan skup stanja Σ - konačan skup ulaznih znakova

 δ - funkcija prijelaza δ : $Q \rightarrow \Sigma \times 2^Q$ $q_0 \in Q$ - početno stanje $F \in Q$ - skup prihvatljivih stanja

Definira se **fja**: $\hat{\delta}: Q \times \Sigma^* \to 2^Q$, koja definira stanje automata nakon čitanja ulaznog niza.

Vrijedi:

(1) $\hat{\delta}(q,\varepsilon) = \{q\}$

(2)
$$\hat{\delta}(q, wa) = P = \left\{ p \middle| r \in \hat{\delta}(q, w) \Rightarrow p \in \delta(r, a) \right\}$$

Vrijedi:

- iz (1) da automat mijenja stanje ako se desi ulazni znak

- uvrštavanjem u (2) w= ε dobije se: $\hat{\delta}(q, \varepsilon a) = \hat{\delta}(q, a) = P = \{p | p \in \delta(q, a)\} = \delta(q, a)$ Slijedi da su obje fje iste, tj. opisuju iste prijelaze.

Nadalje proširimo funkciju: $\delta: 2^{\varrho} \times \Sigma^* \to 2^{\varrho}$

- koja definira stanje automata nakon čitanja ulaznog niza polazeći iz nekog od podskupa stanja P \in 2^Q

od podskupa stanja $P \in 2^{\mathbb{Q}}$ - vrijedi: $\delta(P, w) = \bigcup_{q \in P} \delta(q, w)$; $P \subseteq Q$

NKA prihvaća niz ako je u P makar jedno stanje iz F: $\delta(q_0,x)=P$; $P\cap F\neq\varnothing$ NKA prihvaća skup L(nka) $\subseteq \Sigma^*$: $L(nka)=\{x|\delta(q_0,x)\cap F\neq\varnothing\}$ Za nizove koji nisu u skupu L(nka) kaže se da ih NKA ne prihvaća

4.3. Izgradnja DKA iz zadanog NKA

- definicija algoritma
- problem nedostupnih stanja
- primjer izgradnje

Izgradnja DKA iz zadanog NKA:

- Za bilo koji NKA M={Q,Σ,δ,q0,F} moguće je izgraditi istovjetni DKA
 M'={Q',Σ',δ',q0',F'}
- NKA i DKA su istovjetni ako prihvaćaju isti jezik L(M)=L(M')
- ako je Q={q₀,...,q_i} izgradimo Q'=2^Q, [p₀,...,p_j]∈ Q', p_k∈ Q;
 pa vrijedi: Q'={[Ø], [q₀],..., [q₁],..., [q₀, q₁],..., [q₀, q₁],..., [q₀,...,q_j] }
- F'=skup svih $[p_0,...,p_i]$ gdje je barem jedan $p_k \in F$
- početno stanje je q₀'=[q₀]
- funkcija prijelaza DKA jest: $\delta'([p_0,...,p_l],a) = [r_0,...,r_j]$ ako i samo ako je: $\delta(\{p_0,...,p_l\},a) = \{r_0,...,r_j\}$
- mnoga stanja dobivenog DKA su nedostupna, pa ih eliminiramo
- DKA minimiziramo radi učinkovite programske realizacije

Primjer izgradnje:

Ako je NKA $M=\{q_0,q_1\},\{0,1\},\delta,q_0,\{q_1\}\}$. Fja prijelaza NKA M prikazana je tablicom:

	0	1	1
qo	{qo,q1}	{q1}	0
q1	{}	{qo,q1}	1

DKA $M'=(Q', \Sigma', \delta', q_0', F')$ gradimo na sljedeći način:

- 1) $Q'=\{[\emptyset], [q_0], [q_1], [q_0, q_1]\},$
- 2) F'={[q1], [q0, q1]},
- 3) $q_0' = [q_0].$
- 4) Fija prijelaza δ' je:

$$\begin{array}{lll} \delta' \; ([q_{\circ}], \, 0) = [\; q_{\circ}, \, q_{1}], & \delta' \; ([q_{\circ}, \, q_{1}], \, 1) = [q_{\circ}, \, q_{1}], \\ \delta' \; ([q_{\circ}], \, 1) = [\; q_{1}], & \delta'([\; \varnothing], \, 0) = [\; \varnothing], \\ \delta' \; ([q_{1}], \, 0) = [\varnothing], & \delta'([\; \varnothing], \, 1) = [\; \varnothing]. & \delta'([\; \varphi_{0}], \, 1) = [\; \varphi_{0}], \\ \delta' \; ([q_{0}, \, q_{1}], \, 0) = [q_{0}, \, q_{1}], & \delta'([q_{0}, \, q_{1}], \, 0) = [q_{0}, \, q_{1}], & \delta'([q_{0}, \, q_{1}], \, 0) = [q_{0}, \, q_{1}], & \delta'([q_{0}, \, q_{1}], \, 0) = [q_{0}, \, q_{1}], & \delta'([q_{0}, \, q_{1}], \, 0) = [q_{0}, \, q_{1}], & \delta'([q_{0}, \, q_{1}], \, 0) = [q_{0}, \, q_{1}], & \delta'([q_{0}, \, q_{1}], \, 0) = [q_{0}, \, q_{1}], & \delta'([q_{0}, \, q_{1}], \, 0) = [q_{0}, \, q_{1}], & \delta'([q_{0}, \, q_{1}], \, 0) = [q_{0}, \, q_{1}], & \delta'([q_{0}, \, q_{1}], \, 0) = [q_{0}, \, q_{1}], & \delta'([q_{0}, \, q_{1}], & \delta'([q_{0}, \, q_{1}], \, 0) = [q_{0}, \, q_{1}], & \delta'([q_{0}, \, q_{1}], & \delta'([q_{0}, \, q_{1}], \, 0) = [q_{0}, \, q_{1}], & \delta'([q_{0}, \, q_{1$$

Izgrađeni DKA M'=(Q', $\{0,1\}$, δ' , $[q_0]$, $\{[q_1]$, $[q_0, q_1]\}$):

	0	1	Т
qo	[qo,q1]	[q1]	0
q1	[Ø]	[qo,q1]	1
[qo,q1]	[qo,q1]	[qo,q1]	1
[Ø]	[Ø]	[Ø]	0

4.4. Istovjetnost NKA i DKA

dokaz istovjetnosti

Istovjetnost NKA i DKA:

Neka je DKA M' izgrađen na temelju zadanog NKA M. Želi se dokazati da automati M i M' prihvaćaju isti jezik L(M) = L(M').

Dokazuje se **indukcijom** da za bilo koji niz $w \in \Sigma^*$ vrijedi:

$$\delta'([q0], w)=[r0,..., rj]$$
 ako i samo ako je $\delta(q0, w)=\{r0,..., rj\}.$

Indukcija se zasniva na duljini niza x:

- najprije dokažemo za | w | =0, tj. w= ε:
- pretpostavimo da vrijedi za $x \in \Sigma^*$, a onda dokažemo za xa, $a \in \Sigma$

Na temelju pretpostavke vrijedi:

- (1) $\delta'([q0], x)=[p0,..., pj]$ ako i samo ako je $\delta(q0, x)=\{p0,..., pj\}$
- $-\delta'([p0,...,pl],a) = [r0,...,rj]$ ako i samo ako je $\delta(\{p0,...,pl\},a) = \{r0,...,rj\}$
- (2) $\delta'([p0,...,pi], a)=[r0,...,ri]$ ako i samo ako je $\delta(\{p0,...,pi\}, a)=\{r0,...,ri\}$
- (3) $\delta'([q_0], xa) = [r_0, ..., r_i]$ ako i samo ako je $\delta(q_0, xa) = \{r_0, ..., r_i\}$
- obzirom da je $\delta'([q_0], w) \in F'$ ako i samo ako $\delta(q_0, w)$ sadrži makar jedno stanje iz F
- slijedi da NKA M i DKA M' prihvaćaju isti jezik odnosno L(M)=L(M')

5. EPSILON-NEDETERMINISTIČKI KONAČNI AUTOMAT (ε-NKA)

5.1. Pristup i rad ε-NKA

- opis ε-NKA
- primjer i rad ε-NKA
- formalna definicija ε-NKA

Opis ε-NKA: (nedeterministički konačni automat s ε-prijelazima)

- NKA zasnovan na proširenoj fiji prijelaza
- omogućuje konačnom automatu da promijeni stanje, a da ne pročita niti jedan ulazni znak.

Primjer:

- prihvaća nizove koji:
 - Započinju proizvoljnim brojem nula
 - Nastavljaju proizvoljnim brojem
 - Završavaju proizvoljnim brojem dvojki

Rad &-NKA: &-NKA prihvaća niz ako postoji barem jedan slijed prijelaza iz početnog stanja u jedno od prihvatljivih stanja, uz uvjet da se pročitaju svi znakovi niza. U slijed prijelaza uključuju se i &-prijelazi.

Formalna definicija:

ϵ -nka=(Q, Σ , δ , q_0 , F)

Q - konačan skup stanja

 Σ - konačan skup ulaznih

znakova

 δ - funkcija prijelaza:

 $\delta \colon Q \times (\Sigma \cup \{\epsilon\}) {\to} 2^Q$ $q_0 \in Q \text{ - početno stanje}$ $F \in Q \text{ - skup prihvatljivih stanja}$

5.2. Definicija NKA

- formalna definicija ε-NKA
- definicija ε-okruženja
- definicija proširene fije prijelaza

Formalna definicija:

 ϵ -nka=(Q, Σ , δ , qo, F)

Q - konačan skup stanja

 Σ - konačan skup ulaznih

znakova

 δ - funkcija prijelaza:

 $\delta: \mathbb{Q} \times (\Sigma \cup \{\epsilon\}) \to 2^{\mathbb{Q}}$ $q_0 \in \mathbb{Q}$ - početno stanje

 $F \in Q$ - skup prihvatljivih stanja

ε-OKRUŽENJE(q): stanju $q \in Q$ dodjeljujemo skup $R \subseteq Q$ tako da R sadrži sva ona stanja u koja q prelazi isključivo ε-prijelazom:

ε-OKRUŽENJE(q) = {p | p jest q ili ε-NKA prelazi iz q u p isključivo ε-prijelazom} Fja $\hat{\delta}(q,w)$ jest **proširenje fje prijelaza** na argumente: $\hat{\delta}: Q \times \Sigma^* \to 2^Q$. Fja $\hat{\delta}$ definira se pomoću fije ε-OKRUŽENJE (uključujemo i ε-prijelaze):

$$\hat{\delta}(q,\varepsilon) = \varepsilon - \text{OKRUŽENJE}\{q\}$$

$$\hat{\delta}(q, wa) = \varepsilon - \text{OKRUŽENJE}\{P\}; \qquad P = \{p | r \in \hat{\delta}(q, w) \Rightarrow p \in \delta(r, a)\}$$

Za skupove stanja vrijedi:

$$\delta(R,a) = \bigcup_{a \in R} \delta(q,a)$$

$$\hat{\delta}(R, a) = \bigcup_{q \in R} \delta(q, a)$$

$$\hat{\delta}(R, w) = \bigcup_{q \in R} \hat{\delta}(q, w)$$

5.3. Izgradnja NKA iz zadanog ε-NKA

- definicija algoritma izgradnje
- primjer izgradnje

Izgradnja NKA iz zadanog ε-NKA:

- Za bilo koji ε-NKA M= $\{Q, \Sigma, \delta, q_0, F\}$ moguće je izgraditi istovjetni NKA $M'=\{Q',\Sigma',\delta',q_0',F'\}$
- ε- NKA i NKA su istovjetni ako prihvaćaju isti jezik L(M)=L(M')
- izgradimo Q'= Q = $\{q_0,...,q_i\}$
- početno stanje je q₀'=q₀
- F'=F∪{ q_0 } ako ε-OKRUŽENJE(q_0) sadrži barem jedno stanje p_k ∈ F, inače F'=F
- $\delta'(q,a) = \hat{\delta}(q,a)$

Primjer:

- $-izgradimo Q' = Q = \{q_0, q_1, q_2\}$
- početno stanje je q₀'=q₀
- $-F' = F \cup \{q_0\} = \{q_2\} \cup \{q_0\} = \{q_0, q_2\} \text{ jer je:}$

 ε -OKRUŽENJE(q₀) \cap F = {q₀, q₁, q₂} \cap {q₂} = {q₂}

- funkcija
$$\delta'$$
:
$$\delta'(q_0,0) = \{q_0,q_1,q_2\} \qquad \text{jer j} \hat{\mathcal{E}}(q_0,0) = \varepsilon - \text{OKRUŽENJE} \left(\delta(\hat{\mathcal{S}}(q_0,\varepsilon),0)\right) = \{q_0,q_1,q_2\}$$

ITD.

Dobije se NKA:					
	0	1	2	Т	
qo	{ qo, q1, q2},	{q1, q2}	{q2}	1	
q1	Ø	{q1, q2},	{q2}	0	
q2	Ø	Ø	{q2}	1	

5.4. Istovjetnost ε-NKA i NKA

dokaz istovjetnosti

Dokazuje se indukcijom s obzirom na duljinu niza x. Dokaz se izvodi u dva koraka. U prvom koraku dokazuje se da vrijedi: $\delta'(q_0, x) = \hat{\delta}(q_0, x)$

U drugom koraku dokazuje se da $\delta'(q_0, x)$ sadrži stanje iz F' ako i samo ako $\hat{\delta}(q_0, x)$ sadrži stanje iz skupa F.

(detaljniji izvod u knjizi, str. 38)

6. KONAČNI AUTOMATI SA IZLAZOM

6.1. Moore automat

- ideja izlaza
- formalna definicija Moore automata
- primjer

DKA (DFA) s izlazom:

- izlaz je ograničen funkcijom (0,1) koja označava da li se niz prihvaća ili odbacuje
- funkcija izlaza proširuje se na dva načina:
 - Moore = izlaz je funkcija stanja
 - Mealy = izlaz je funkcija stanja i ulaza
- za Mealy je moguće izgraditi istovjetni Moore i obrnuto
- Mealy i Moore automati su istovjetni ako za bilo koji ulazni niz daju jednake izlazne nizove

Formalna definicija:

 $MoDka = (Q, \Sigma, \Delta, \delta, \lambda, q_0)$

- Q je skup stanja, q₀∈Q početno stanje
- $-\Sigma$ je konačan skup ulaznih znakova,
- $-\Delta$ je konačan skup izlaznih znakova,
- $-\delta$ je funkcija prijelaza Q $\times\Sigma\to$ Q,
- $-\lambda$ je funkcija izlaza $Q \rightarrow \Delta$

DKA je poseban slučaj Moore automata sa Δ ={0,1}

Primjer: Za niz koji predstavlja binarni broj potrebno je izgraditi Moore automat koji za pročitani prefiks niza daje ostatak dijeljenja broja s 3.

6.2. Mealy automat

- formalna definicija Mealy automata
- primjer

DKA (DFA) s izlazom:

- izlaz je ograničen funkcijom (0,1) koja označava da li se niz prihvaća ili odbacuje
- funkcija izlaza proširuje se na dva načina:
 - Moore = izlaz je funkcija stanja
 - Mealy = izlaz je funkcija stanja i ulaza
- za Mealy je moguće izgraditi istovjetni Moore i obrnuto
- Mealy i Moore automati su istovjetni ako za bilo koji ulazni niz daju jednake izlazne nizove

Formalna definicija:

$$MeDka = (Q, \Sigma, \Delta, \delta, \lambda, q_0)$$

- Q je skup stanja, q₀∈Q početno stanje
- $-\Sigma$ je konačan skup ulaznih znakova,
- Δ je konačan skup izlaznih znakova,
- $-\delta$ je funkcija prijelaza $Q \times \Sigma \rightarrow Q$,
- $-\lambda$ je funkcija izlaza $Q \times \Sigma \rightarrow \Delta$

Primjer: Za niz koji predstavlja binarni broj potrebno je izgraditi Mealy automat koji za pročitani prefiks niza daje ostatak dijeljenja broja s 3.

6.3. Konstrukcija Mealy iz zadanog Moore DKA

- definicija istovjetnosti
- izgradnja funkcije izlaza
- primjer

Konstrukcija Mealy iz zadanog Moore automata

- –za prazni niz ε Moore M daje, a Mealy M' ne daje izlaz
- -istovjetnost se definira: $bT_{M'}(w) = T_{M}(w)$; $b = \lambda(q_0)$
- -za niz nakon početnog simbola b Moore automata
- za Mealy automat gradi se izmijenjena funkcija izlaza:

$$\lambda'(q,a) = \lambda(\delta(q,a)); \quad \forall q \in Q, a \in \Sigma$$

Primjer: Konstrukcija Mealy iz zadanog Moore automata

- Za niz koji predstavlja binarni broj potrebno je izgraditi Moore automat koji za pročitani prefiks niza daje ostatak dijeljenja broja s 3:

$$\lambda'(q_{0},0) = 0; \qquad \lambda'(q_{0},0) = \lambda(\delta(q_{0},0)) = \lambda(q_{0}) = 0$$

$$\lambda'(q_{0},1) = 1; \qquad \lambda'(q_{0},1) = \lambda(\delta(q_{0},1)) = \lambda(q_{1}) = 1$$

$$\lambda'(q_{1},0) = 2; \qquad \lambda'(q_{1},0) = \lambda(\delta(q_{1},0)) = \lambda(q_{2}) = 2$$

$$\lambda'(q_{1},1) = 0; \qquad \lambda'(q_{1},1) = \lambda(\delta(q_{1},1)) = \lambda(q_{0}) = 0$$

$$\lambda'(q_{2},0) = 1; \qquad \lambda'(q_{2},0) = \lambda(\delta(q_{2},0)) = \lambda(q_{1}) = 1$$

$$\lambda'(q_{2},1) = 2; \qquad \lambda'(q_{2},1) = \lambda(\delta(q_{2},1)) = \lambda(q_{2}) = 2$$

- nacrtamo graf:

$$\begin{array}{c}
0 \ 0 \\
 & \downarrow \\$$

6.4. Konstrukcija Moore iz zadanog Mealy DKA

- definicija istovjetnosti
- izgradnja Moore automata
- primjer

Dva su automata istovjetna ako za bilo koji ulazni niz daju jednake izlazne nizove. **Istovjetnost** Mealyevog automata M' i Mooreovog automata M definira na sljedeći način:

b
$$T_M \cdot (w) = T_M \cdot (w)$$
; $b = \lambda(q_0)$

za niz nakon početnog simbola b Moore automata.

Konstrukcija Moore iz zadanog Mealy:

- 1) $Q'=Q \times \Delta$; $[q,b] \in Q', q \in Q \mid b \in \Delta$,
- 2) $q_0' = [q_0, b_0]$; $b_0 \in \Delta$ je proizvoljan,
- 3) $\delta'([q, b], a) = [\delta(q, a), \lambda(q, a)]; q \in \mathbb{Q}, b \in \Delta \mid a \in \Sigma,$
- 4) $\lambda'([q,b])=b$; $q \in \mathbb{Q}, b \in \Delta$.

Primier:

-skup stanja Q' j
$$Q' = \{[q_0,0],[q_0,1],[q_0,2],[q_1,0],[q_1,1],[q_1,2],[q_2,0],[q_2,1],[q_2,2]\}$$
-početno stanje $q_0'q' \in [q_0,0]$ i funkcija prijelaza je:

$$\begin{split} &\delta'([q_0,0],0) = [q_0,0]; \quad \delta'([q_0,1],0) = [q_0,0]; \quad \delta'([q_0,2],0) = [q_0,0] \\ &\delta'([q_0,0],1) = [q_1,1]; \quad \delta'([q_0,1],1) = [q_1,1]; \quad \delta'([q_0,2],1) = [q_1,1]; \\ &\delta'([q_1,0],0) = [q_2,2]; \quad \delta'([q_1,1],0) = [q_2,2]; \quad \delta'([q_1,2],0) = [q_2,2] \\ &\delta'([q_1,0],1) = [q_0,0]; \quad \delta'([q_1,1],1) = [q_0,0]; \quad \delta'([q_1,2],1) = [q_0,0]; \\ &\delta'([q_2,0],0) = [q_1,1]; \quad \delta'([q_2,1],0) = [q_1,1]; \quad \delta'([q_2,2],0) = [q_1,1] \\ &\delta'([q_2,0],1) = [q_2,2]; \quad \delta'([q_2,1],1) = [q_2,2]; \quad \delta'([q_2,2],1) = [q_2,2]; \end{split}$$

-odbacimo nedostupna stanja i dobijemo polazni Moore:

$$\begin{split} & \mathcal{S}'\big([q_0,0],0\big) = [q_0,0]; \qquad \mathcal{S}'\big([q_0,0],1\big) = [q_1,1]; \\ & \mathcal{S}'\big([q_1,1],0\big) = [q_2,2]; \qquad \mathcal{S}'\big([q_1,1],1\big) = [q_0,0]; \\ & \mathcal{S}'\big([q_2,2],0\big) = [q_1,1] \qquad \mathcal{S}'\big([q_2,2],1\big) = [q_2,2]; \end{split}$$

-funkcija izlaza je:

$$\begin{split} \lambda'(&[q_0,0])=0; & \lambda'(&[q_0,0])=0; \\ \lambda'(&[q_1,1])=1; & \lambda'(&[q_1,1])=1; \\ \lambda'(&[q_2,2])=2 & \lambda'(&[q_2,2])=2; \end{split}$$

7. REGULARNI JEZICI I IZRAZI

7.1. Definicija regularnih izraza

- regularni jezik i izraz
- algoritam sinteze DKA

Regularni jezik je **regularan** ako postoji konačni automat koji ga prihvaća. **Regularni izraz** je izraz kojim definiramo regularni jezik.

Algoritam sinteze DKA:

- 1. regularni jezik K
- 2. opis jezika K regularnim izrazima r: L(r)=K
- 3. izgraditi ε-NKA M za koji vrijedi: L(M)=L(r)
- 4. izgraditi NKA M 'za koji vrijedi: L(M ')=L(M)
- 5. izgraditi DKA M " za koji vrijedi: L(M ")=L(M ')
- 6. izgraditi minimalni DKA M " za koji vrijedi:
- 7. L(M''')=L(M'')=L(M')=L(M)=L(r)=K

7.2. Rekurzivna pravila za RI

- navesti rekurzivna pravila
- pravila asocijativnosti i prednosti
- istovjetnost i svojstva RI

Rekurzivna pravila:

- 1. \emptyset jest RI i označava jezik $L(\emptyset)=\{\}$
- 2. ε jest RI i označava jezik $L(\varepsilon) = \{\varepsilon\}$
- 3. $\forall \alpha \in \Sigma$, a jest RI i označava jezik L(a)={a} (ista iznaka "a" znači znak, niz i RI)
- 4. ako su r i s RI koji označavaju L(r) i L(s) vrijedi:
 - (r) \vee (s) jest RI i označava jezik L((r) \vee (s))= L(r) \cup L(s) (operator \vee nekad se označava sa + ili |)
 - (r)(s) jest RI i označava jezik L((r)(s)) = L(r)L(s)
 - $(r)^*$ jest RI i označava jezik $L((r)^*)=(L(r))^*$

Pravila asocijativnosti i prednosti:

5. $\varepsilon r = r \varepsilon = r$

- 1. unarni operator * jest lijevo asocijativan i najveće je prednosti
- 2. binarni operator nadovezivanja je lijevo asocijativan i veće je prednosti od operat. v
- 3. binarni operator \vee jest lijevo asocijativan i najmanje je prednosti **Istovjetnost RI**: Dva RI r i s su istovjetna ako definiraju iste jezike: L(r)=L(s) [piše se r=s].

Svojstva RI:

1.	$r \lor s = s \lor r$	v jest komutativno
2.	$r \lor (s \lor t) = (r \lor s) \lor t$	v jest asocijativno
3.	(rs)t = r(st)	nadovezivanje jest asocijativno
4.	$r(s \lor t) = rs \lor rt$	distributivnost nadovezivanja nad v
	$(s \lor t)r = sr \lor tr$	

ε jest neutralni element nadovezivanja

6. $r^* = (r \vee \epsilon)^*$

7. $r^{**} = r^*$

relacija između v i * idempotentnost

7.3. Konstrukcija e-NKA iz RI

- pravila elementarnih automata

p1. za RI \varnothing koji označava jezik L(\varnothing)={} izgradimo: ε -NKA M=({i,f}, Σ , {}, i, {f})

p2. za RI ε koji označava jezik L(ε)={ ε } izgradimo: ε -NKA M=({i,f}, Σ , { δ (i, ε)=f}, i, {f})

p3. za RI a koji označava jezik L(a)={a} izgradimo: ε-NKA $M=(\{i,f\}, \Sigma, \{\delta(i,a)=f\}, i, \{f\})$

p4. za RI **r1∨r2** koji označava jezik L(r1∨r2) = L(r1)∪L(r2) izgradimo ε-NKA M

p5. za RI **r1r2** koji označava jezik L(r1r2) = L(r1)L(r2) izgradimo ε-NKA M

p6. za RI **r1*** koji označava jezik L(r1*) = L(r1)* izgradimo ε-NKA M

p7. za RI (r) koji označava jezik L((r)) = L(r) izgradimo ε -NKA M za RI (r) tako da uzmemo

ε-NKA M1 za RI r

7.4. Generator konačnog automata

- generator i simulator
- struktura ostvarenja

Generator KA (konačnog automata): ostvaruje dio ili cjelokupnu pretvorbu RI u DKA

Simulator:

- -ovisno o željenom konačnom automatu izgradi se program simulator
- -simulator radi na upisanoj tablici prijelaza (izravni način zapisa stanja, samo mijenjamo tablice)
- -simulator čita znakove ulaza i računa prijelaz u stanje na osnovu tablice prijelaza

Struktura ostvarenja:

Generator KA gradi tablicu prijelaza na temelju RI. Tablica prijelaza se ugradi u program simulator.

8. SVOJSTVA REGULARNIH JEZIKA

8.1. Klase jezika

- skup svih jezika
- položaj regularnih jezika
- zatvorenost klase jezika
- unija, nadovezivanje, Kleene

Skup svih jezika:

- 2^{Σ^*} označava skup svih jezika nad abecedom Σ , a svaki jezik $L\subseteq \Sigma^*$ je član tog skupa $L\in 2^{\Sigma^*}$.

Regularni jezici su u skupu RJ $\subset 2^{\Sigma *}$.

Zatvorenost klase jezika:

- definira se obzirom na operacije nad jezicima
- klasa je zatvorena ako primjenom operacije dobijemo jezik u istoj klasi RJ su zatvoreni obzirom na **uniju, nadovezivanje i Kleeneov operator** što slijedi iz definicije regularnih izraza.

8.2. Zatvorenost regularnih jezika

- zatvorenost obzirom na komplement
- zatvorenost obzirom na presjek

Zatvorenost obzirom na komplement:

- 1. neka DKA $M = (Q, \Sigma, \delta, q0, F)$ prihvaća $L(M) \in RJ$
- 2. za komplement jezika L(M)° izgradimo: DKA M' = (Q, Σ , δ , q_0 , Q\F),koji prihvaća iezik:

$$L(M') = \{w \mid \delta(q_0, w) \in Q \setminus F\} = \{w \mid \delta(q_0, w) \notin F\} = \Sigma^* \setminus \{w \mid \delta(q_0, w) \in F\} = \Sigma^* \setminus L(M) = L(M)^c$$

Zatvorenost obzirom na presjek:

- koristimo zatvorenost unije i komplementa, te DeMorganovo pravilo: $L \cap N = ((L \cap N)^c)^c = (L^c \cup N^c)^c$

8.3. Regularne definicije

- zatvorenost obzirom na supstituciju
- regularne definicije

Zatvorenost obzirom na supstituciju: Regularni jezici zatvoreni su obzirom na **supstituciju.** Svojstvo supstitucije (zamjene) omogućava pojednostavljeno zapisivanje **regularnih definicija**

- 1. neka je $R \subset \Sigma^*$; $R \in RJ$
- 2. pridružimo znaku $a \in \Sigma$ RJ $R_a \subseteq \Delta^*$ tako da niz $a_1 a_2 ... a_n$ zamijenimo nizom $w_1 w_2 ... w_n$
- 3. dobiveni jezik f(R) je regularan
- 4. dovoljno je R i Ra opisati regularnim izrazima

Regularne definicije:

- imenima dodjeljujemo RI, odnosno zamjenjujemo s RI
- oblik regularnih definicija je:

 $d_1 \rightarrow r_1$ $d_2 \rightarrow r_2$ $d_n \rightarrow r_n$

9. SVOJSTVO NAPUHAVANJA

9.1. Definicija svojstva napuhavanja

- problem dugačkih nizova
- ponavljanje stanja
- prihvaćanje dugačkog niza

Svojstvo napuhavanja: pogodno je za dokazivanje neregularnosti nekih jezika, kao i za dokazivanje ispravnosti raznih algoritama kojima se utvrđuje nepraznost regularnog jezika, beskonačnost regularnog jezika, itd...

Ponavljanje stanja:

Ako DKA koji prima ulazni niz koji je duži od broja stanja automata, barem će se jedno stanje u nizu ponavljati.

Prihvaćanje dugačkog niza:

- bilo koji dovoljno dugački niz z∈L(M) može se rastaviti na podnizove: z=uvw
- podniz v moguće je proizvoljan broj puta ponoviti, jer je uv $^{i}w\in L(M)$, a M odgovarajući DKA
- ako RJ sadrži dovoljno dugačak niz z=uvw, onda taj jezik sadrži beskonačni skup nizova uviw

9.2. Dokaz neregularnosti

- pristup dokazu neregularnosti
- primjer
- nepraznost i beskonačnost regularnog jezika

Pristup dokazu neregularnosti:

- ako je L regularan, postoji **n** takav da je moguće
 - bilo koji niz $z \in L$ gdje je |z| > n rastaviti na podnizove z = uvw tako da je: $|uv| \le n$ i $1 \le |v|$
 - za bilo koji i≥0 niz uviw∈L
 - pokazuje se da n nije veći od broja stanja minimalnog DKA koji prihvaća jezik L

Primier:

- jezik $K = \left\{0^{\ell^2} \middle| \ell \in N; \ell \ge 1\right\}$ nije regularan
 - pretpostavi se da je L regularan jezik
 - neka **n** odgovara dokazu neregularnosti i neka je $z=0^{r^2}$ niz jezika L: $|z|=n^2$, |z|>n
 - prema dokazu neregularnosti niz **z** rastavlja se na podnizove uvw; $1 \le |v| \le |uv| \le n$
 - treba utvrditi da li je niz uviw element jezika L za bilo koji i
 - ako je **i**=2 onda i $|v| \le |uv| \le n$ onda je $|uvw| = |z| = n^2 < |uv^2w| = (n^2 + |v|) \le (n^2 + n)$
 - budući da je (n²+n) < (n+1)² vrijedi:
 - $n^2 < |uv^2w| < (n+1)^2$ tj. $|uv^2w|$ nije kvadrat cijelog broja
 - bez obzira na n i na podjelu uvw, uv²w nije član jezika; posljedično L je neregularan.

Algoritmi odlučivanja:

- nepraznost regularnog jezika
 - L(M) je neprazan ako DKA M prihvaća niz duljine |z|<n; n je broj stanja DKA M

(ako je u skupu dohvatljivih stanja jedno prihvatljivo, L(M) je neprazan)

- beskonačnost regularnog jezika

- L(M) je beskonačan ako DKA M prihvaća niz duljine n≤|z|<2n; n je broj stanja DKA M
- promatra se graf DKA M i dobije se DKA M' tako da se izuzmu neprihvatljiva stanja za koje ne postoji staza u prihvatljivo (L(M) je beskonačan ako graf DKA M' ima barem jednu zatvorenu petlju)

10. REGULARNA GRAMATIKA

10.1. Kontekstno neovisna gramatika

- formalna definicija gramatike
- oznake u formalnoj gramatici
- kontekstno neovisna gramatika
- relacija primjene produkcija

Formalna gramatika:

Formalna gramatika je skup pravila kojima nezavršne znakove zamjenjujemo završnim znakovima koristeći produkcije.

Relacijom ⇒ označavamo primjenu jednog pravila, dok relacijom ⇒* ili

⇒ označavamo primjenu više pravila.

Gramatiku formalno definiramo na svojstvima kontekstno neovisnih gramatika Oznake u formalnoj gramatici:

- 1. A,B,C,D,E...S su nezavršni znakovi gramatike
- 2. a,b,c...0, 1, 2..., su završni znakovi gramatike
- 3. X,Y,Z su završni ili nezavršni znakovi
- 4. u, v, w, x, y i z označavaju nizove završnih znakova
- 5. α , β , γ označavaju nizove završnih i nezavršnih znakova

-ima li više produkcija za isti nezavršni znak koristimo |, npr. $A \rightarrow a$ i $A \rightarrow b$ piše se $A \rightarrow a | b$.

Kontekstno neovisna gramatika

- je uređena četvorka: G=(V, T, P, S)
 - V konačni skup nezavršnih znakova
 - T konačni skup završnih znakova V∩T=Ø
 - P konačni skup produkcija oblika A $\rightarrow \alpha$
 - S početni nezavršni znak
- produkcije gramatike su najčešće u BNF obliku (Backus-Naur Form-sustav oznaka)

10.2. Formalna gramatika i jezici

- generiranje jezika
- kontekstno neovisni jezici
- generativno stablo

Generiranje jezika:

- G=(V, T, P, S) generira jezik $L(G) = \{w \mid w \in T^*; S \Rightarrow_G^* w\}$
- gramatike G_1 i G_2 su istovjetne ako generiraju iste jezike tj. ako vrijedi $L(G_1) = L(G_2)$.

Kontekstno neovisne jezike generira kontekstno neovisna gramatika.

Skup kontekstno neovisnih jezika KNJ Regularni jezici RJ=KNJ

Generativno stablo:

- za G = (V, T, P, S) stablo je generativno ako
 - čvorove označimo znakovima V∪T∪{ε}
 - 2. korijen stabla označen je početnim nezavršnim znakom S
 - 3. unutrašnii čvorovi označeni su nezavršnim A ∈ V
 - 4. za čvor A i djecu $X_1, X_2,...X_n$ vrijedi produkcija iz $P A \rightarrow X_1 X_2...X_n$
 - 5. znakom ε označava se isključivo list stabla; taj list je jedino dijete svog roditelja
 - 6. listovi stabla označeni su znakovima skupa $T \cup \{\epsilon\}$ i čitani slijeva na desno čine generirani niz jezika L(G)
- $S \Rightarrow_G w$ vrijedi samo ako postoji generativno stablo.

10.3. Regularna gramatika

- definicija
- konstrukcija regularne gramatike iz DKA
- odnos regularne gramatike i DKA

Regularna gramatika:

- regularna gramatika generira regularne jezike
- ujedno je i kontekstno neovisna gramatika
- konstruiranjem gramatike za regularni jezik zadan DKA dokazujemo da je gramatika regularna

Konstrukcija regularne gramatike iz DKA:

- za regularni jezik zadan s DKA M = (Q, Σ , δ , q_0 , F) gradi se kontekstno neovisna aramatika
- G = (V, T, P, S) tako da je L(M) = L(G).
- primjenjujemo pravila:
 - $T = \Sigma$; završni znakovi gramatike su ulazni znakovi automata
 - V = Q; nezavršni znakovi su stanja automata
 - S = q₀; početno stanje je početni nezavršni znak
 - na temelju prijelaza DKA δ(A, a) = B gradimo produkciju A→aB
 - za prihvatljiva stanja A∈F gradimo produkcije A→ε

Odnos regularne gramatike i DKA:

Istovjetnost G i DKA: **prihvaća** li DKA isti jezik koji **generira** G, DKA i G su istovjetni: L(DKA) = L(G).

10.4. Sinteza NKA iz regularne gramatike

- istovjetnost regularne gramatike i DKA
- konstrukcija NKA iz jednostavne gramatike
- izvor nederminiranosti

Istovjetnost regularne gramatike i DKA: **prihvaća** li DKA isti jezik koji **generira** G, DKA i G su istovjetni: L(DKA) = L(G).

Konstrukcija NKA za jednostavni G:

- koristimo gramatiku s produkcijama oblika: A→aB i C→ε
- to su upravo oblici koji nastaju konstrukcijom gramatike na osnovu DKA; pravila su:
 - $-\Sigma = T$; završni znakovi gramatike su ulazni znakovi automata
 - Q = V; nezavršni znakovi su stanja automata
 - q₀ = S; početno stanje je početni nezavršni znak
 - na temelju produkcije A \rightarrow aB gradi se prijelaz DKA $\delta(A, a) = \delta(A, a) \cup B$ jer su moguće višestruke produkcije iz A,a
 - ako postoji produkcija A→ε, stanje A je prihvatljivo; A∈F

10.5. Desno linearna gramatika

- definicija desno linearne gramatike
- konstrukcija NKA iz DLG

Desno linearna gramatika je regularna gramatika koja ima najviše jedan nezavršni znak na desnoj strani:

- A→wB ili A→w
- $A,B \in V$; $W \in T^*$

Konstrukcija NKA iz DLG:

Složenu produkciju oblika : S \rightarrow A rastavimo na jednostavne: S \rightarrow desne strane svih produkcija od A. Ako postoje produkcije A \rightarrow cA i A \rightarrow ϵ bit će S \rightarrow cA, S \rightarrow ϵ jer S preko A generira sve međunizove od A.

10.6. Lijevo linearna gramatika

- definicija lijevo linearne gramatike
- konstrukcija e-NKA iz LLG

Lijevo linearna gramatika je regularna gramatika koja ima najviše jedan nezavršni znak na lijevoj strani: $A \rightarrow Bw$ ili $A \rightarrow w$; $A, B \in V$; $w \in T^*$

Konstrukcija e-NKA iz LLG:

Neka je G=(V, T, P, S) LLG.

Konstrukcija ε -NKA M', koji prihvaća jezik L(M')=L(G), se obavlja na način:

1) Iz LLG G se konstruira DLG G'=(V, T, P', S) na način da se skup produkcija P gramatike G preuredi tako da se desne strane produkcija napišu obrnutim

redoslijedom. Vrijedi $L(G') = L(G)^R$.

- 2) Na temelju DLG G' se konstruira NKA M koji prihvaća jezik L(M)= L(G') = L(G)^R
- 3) NKA M se preuredi tako da ima samo jedno prihvatljivo stanje.
- 4) Na temelju NKA M se izgradi ε -NKA M' koji prihvaća jezik $L(M')=L(M)^R=L(G')^R=L(G)$. Početno stanje M' je prihvatljivo stanje od M, a prihvatljivo od M' je početno od M.
- 5) Funkcije prijelaza NKA M' se grade zamjenom smjera usmjerenih grana u dijagramu stanja.