Stærðfræði II

Tímadæmi 1

Pema vikunnar er stikun. Dæmin eru úr glósunum nema annað sé tekið fram.

Stikun ferla.

- 1.1.2. Myndbandslausn er á Canvas.
- 1.1.1. Lausn er í skjalinu "Lausnir á völdum dæmum úr kafla 1".

Ekki í bók 1. $\mathbf{r}:[0,4\pi]\to\mathbb{R}^3$, $\mathbf{r}(t)=\cos(t)\mathbf{i}+\sin(t)\mathbf{j}+t\mathbf{k}$ er spírall upp í kringum z-ásinn (alls 2 hringir). Endilega temjið ykkur að nota Geogebru/Matlab/annað frá byrjun til að teikna upp yfirborð og ferla.

Skurðferlar.

1.1.4. Stikið skurðferil kúlunnar $x^2 + y^2 + z^2 = 4$ við planið x + z = 2.

Lausn. Látum t.d. z = 2 - x inn í fyrri jöfnuna sem gefur

$$x^{2} + y^{2} + (2 - x)^{2} = 4 \Rightarrow x^{2} + y^{2} + 4 - 4x + x^{2} = 4 \Rightarrow 2x^{2} - 4x + 4 + y^{2} = 0$$

Tökum saman x-liðina og fáum $2(x^2-2x+2)$ sem við getum umskrifað í $2(x-1)^2+2$ (fyllum í ferninginn). Þá höfum við

$$2(x-1)^2 + 2 + y^2 = 4 \Leftrightarrow 2(x-1)^2 + y^2 = 2 \Leftrightarrow (x-1)^2 + (y/\sqrt{2})^2 = 1$$

Nú getum við sett $x-1=\cos(t)$ og $y/\sqrt{2}=\sin(t)$ þá er þessi jafna uppfyllt sbr.

$$\cos^2(t) + \sin^2(t) = 1$$

Úr þessu fæst

$$x = 1 + \cos(t) \qquad \qquad y = \sqrt{2}\sin(t)$$

Síðan setjum við z=2-x til að finna stikun á z þ.a.

$$z = 2 - x = 2 - (1 + \cos(t)) = 1 - \cos(t)$$

Allt saman er stikun:

$$\mathbf{r}(t) = (\cos(t) + 1)\mathbf{i} + \sqrt{2}\sin(t)\mathbf{j} + (1 - \cos(t))\mathbf{k}, \ t \in [0, 2\pi]$$

1.1.3. Stikið þann hluta skurðferils $z=x^2+y^2$ við $x^2+y^2=1$ sem er í fyrsta áttungi s.s. þar sem $x,y,z\geq 0$. Er það einfaldur lokaður ferill?

Lausn. Viljum stika skurðferil skálarinnar $z=x^2+y^2$ við sívalninginn $x^2+y^2=1$. Byrjum á að láta $x(t)=\cos(t)$ og $y(t)=\sin(t)$ þá er jafnan $x^2+y^2=1$ uppfyllt. Þá getum við látið $z=x^2+y^2=\cos^2(t)+\sin^2(t)=1$ til að tryggja að fyrri jafnan sé uppfyllt. Stikunin er því

$$\mathbf{r}(t) = \cos(t)\mathbf{i} + \sin(t)\mathbf{j} + \mathbf{k}$$

Við erum beðin um að stika bara þann hluta sem er í 1. áttungi (s.s. þar sem $x \ge 0$, $y \ge 0$ og $z \ge 0$. Við erum örugg með z stefnuna, því hún er fasti = 1. Við látum þá $t \in [0, \pi/2]$ og tryggjum þá að $\cos(t) \ge 0$ og $\sin(t) \ge 0$.

Kafli 11.3.5 í Adams: Breiðbogafletirnir $z=x^2$ og $z=4y^2$ skerast í tveimur ferlum. Annar ferlanna fer í gegnum (2,-1,4). Stikaðu ferilinn, notaðu t=y sem stika.

Byrjum á að setja jöfnurnar saman og fáum $x^2=4y^2$. Leysum: $x=\pm 2y$. Þar sem y<0 í (2,-1,4) veljum við mínus hlutann. Ef við notum t=y sem stika þá er

$$x = -2y = -2t z = 4y^2 = 4t^2$$

(mætti einnig nota $z=x^2$ en er pínu flóknara). Stikunin er

$$\mathbf{r}(t) = -2t\mathbf{i} + t\mathbf{j} + 4t^2\mathbf{k}, \quad t \in \mathbb{R}$$