II- Year II- Semester	Name of the Course	L	T	P	С
PC2203	Operating Systems	3	0	0	3

Course Objectives:

- 1. Study the basic concepts and functions of operating system
- 2. Learn about Processes, Threads and Scheduling algorithms
- 3. Understand the principles of concurrency and Deadlocks
- 4. Learn various memory management schemes
- 5. Study I/O management and File systems

UNIT-I 10 Hours

Introduction to Operating System Concepts: What Operating Systems do, Computer System Organization, Functions of Operating systems, Types of Operating Systems, Operating Systems, Services, System calls, Types of System calls, Operating System Structures, Distributed Systems, Special purpose systems.

UNIT-II 10 Hours

Process Management: Process concept, Process State Diagram, Process control block, Process Scheduling- Scheduling Queues, Schedulers, Scheduling Criteria, Scheduling algorithms and their evaluation, Operations on Processes, Inter-process Communication.

Threads: Overview, User and Kernel threads, Multi-threading Models.

UNIT-III 10 Hours

Concurrency: Process Synchronization, The Critical- Section Problem, Peterson's Solution, Synchronization Hardware, Semaphores, Monitors, and Classic Problems of Synchronization.

Principles of deadlock: System Model, Deadlock Characterization, Methods for Handling Deadlocks: Deadlock Prevention, Detection and Avoidance, Recovery form Deadlock.

UNIT- IV 10 Hours

Memory Management: Logical vs physical address space, Swapping, Contiguous Memory Allocation, Paging, Structures of the Page Table, Segmentation.

Virtual Memory Management: Virtual memory overview, Demand Paging, Page-Replacement & its algorithms, Allocation of Frames, Thrashing.

UNIT-V 8 Hours

File system Interface: The concept of a file, Access Methods, Directory structure, files sharing, protection.

File System implementation: File system structure, Allocation methods, and Free-space management.

Mass-storage structure: overview of Mass-storage structure, Disk scheduling, Swap space management.

Text Books:

- 1. Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin and Greg Gagne 9th Edition, John Wiley and Sons Inc., 2012
- 2. Operating Systems Internals and Design Principles, William Stallings, 7th Edition, Prentice Hall, 2011

Reference Books:

- 1. Modern Operating Systems, Andrew S. Tanenbaum, Second Edition, Addison Wesley.
- 2. Operating Systems: A Design-Oriented Approach, Charles Crowley, Tata McGraw Hill Education.
- 3. Operating Systems: A Concept-Based Approach, D M Dhamdhere, Second Edition, Tata McGraw-Hill Education

e-Resources

- 1. https://en.wikipedia.org/wiki/Operating_system
- 2. https://www.tutorialspoint.com/operating_system/

Course Outcomes: By the end the of the course, the student will be able to

- **CO-1: Understand** the structure and functionalities of Operating System
- **CO-2: Demonstrate** the concept of Process, Threads and CPU Scheduling Algorithms
- **CO-3:** Use the principles of Concurrency to solve Synchronization problems
- **CO-4: Demonstrate** various methods for handling Deadlocks
- **CO-5: Infer** various Memory Management Techniques

CO-PO-Mapping

CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	P01 1	PO1 2	PSO 1	PSO 2
PO										_	_			
CO 1	2	3	3	-	-	-	-	-	-	-	-	-	3	2
CO 2	3	3	3	1	2	-	-	-	-	-	-	-	3	
CO 3	2	2	3	-	2	-	-	-	-	-	-	-	2	
CO 4	2	2	3	-	2	-	-	-	-	-	-	-	2	2
CO 5	3	3	3	_	2	_	_	-	_	-	-	-	3	2

Micro Syllabus of Operating Systems

UNIT I: Introduction to Operating System Concepts: What Operating Systems do, Computer System Organization, Functions of Operating systems, Types of Operating Systems, Operating Systems Services, System calls, Types of System calls, Operating System Structures, Distributed Systems, Special purpose systems.

Unit	Module	Micro Content
	What Operating Systems do	User View, System View, Defining Operating Systems.
	Computer System Organization	Computer-system operation, Storage structure, i/o structure.

	Functions of Operating systems	Process Management, Memory Management, File Management, I/O Management, Protection, Security, Networking.
	Types of Operating Systems	Batch processing, Multiprogramming, Timesharing, Distributed, Real time, Multi user, Multi-tasking, Embedded, Mobile operating system.
	Operating Systems Services	User interface, Program execution, I/O operations, File system manipulation, Communication, Error Detection.
UNIT I	System calls, Types of System calls	Process control, File management, Device management, Information maintenance, and Communication maintenance, Protection and security maintenance system calls.
	Operating System Structures	Simple Structure Approach, Layered Approach, Microkernel Approach, Modules Approach.
	Distributed Systems	About Distributed Systems.
	Special purpose systems	Real Time Embedded Systems, Multimedia Systems, And Handheld Systems.

UNIT - II

Process Management: Process concept, Process State Diagram, Process control block, Process Scheduling- Scheduling Queues, Schedulers, Scheduling Criteria, Scheduling algorithms and their evaluation, Operations on Processes, Inter-process Communication.

Threads: Overview, User and Kernel threads, Multi-threading Models.

Unit	Module	Micro Content
	Process concept	Define process, process in memory.
	Process State Diagram	Process states, diagram of process states.
	Process control block	Process state, process number, program counter, CPU
		registers, CPU switch from process to process, memory management information, accounting information, I/O
		status information.
	Process Scheduling	Introduction to process scheduler.
	Scheduling Queues	Job queue, ready queue, device queue, queueing diagram.
	Schedulers	Importance of scheduler, long term scheduler, short term
		scheduler, medium term scheduler, degree of
		multiprogramming, i/o bound process, cpu-bound
		process, swapping.
UNIT II	Scheduling Criteria	Throughput, Turnaround time, Waiting Time, Response
	Calcadallina ala addina	time.
	Scheduling algorithms	First-Come First-Served (FCFS) Scheduling, Shortest-Job-First(SJF) Scheduling, Priority Scheduling, Round
		Robin(RR) Scheduling, Multiple-Level Queue
		Scheduling, Multilevel Feedback Queue Scheduling.
	Evaluation of Scheduling	Deterministic modelling, Queueing models, Simulations
	algorithms	and Implementation.
	Operations on Processes	Process creation, Process termination.
	Inter-process	Shared memory systems, Message passing systems.
	Communication	
	Threads: Overview	Definition of thread, single threaded process,
		multithreaded process, benefits.
	Multi-threading Models	User and Kernel threads, many-to-one model, one-to-one
		model, many-to-many model.

UNIT-III

Concurrency: Process Synchronization, The Critical- Section Problem, Peterson's Solution, Synchronization Hardware, Semaphores, Monitors, and Classic Problems of Synchronization.

Principles of deadlock: System Model, Deadlock Characterization, Methods for Handling

Deadlocks: Deadlock Prevention, Detection and Avoidance, Recovery form Deadlock.

Unit	Module	Micro Content
	Process Synchronization	What is synchronization, why is it required, cooperating
		processes, race condition.
	Critical- Section Problem	Critical section, entry section, remainder section, mutual
		exclusion, progress, bounded waiting.
	Peterson's Solution	Software based solution to critical section between two
		processes.
	Synchronization	Locking, test and set instructions, mutual exclusion
	Hardware	implementation with test and set, compare and swap
		instructions, mutual exclusion implementation with
		compare and swap.
UNIT III	Semaphores	Semaphore usage, counting and binary semaphore,
		semaphore implementation, deadlock and starvation.
	Monitors	Structure of monitors, monitors vs semaphores, monitor
		usage, implementing a monitor using semaphores,
		dining-philosophers solution using monitors.
	Classic Problems of	Bounded-buffer problem, reader-writer problem, dining-
	Synchronization	philosophers problem.
	Principles of deadlock:	Deadlock definition, resources, request-use-release of
	System Model	resources.
	Deadlock	Necessary conditions for occurrence of deadlock,
	Characterization Described Brownstiers	Resource allocation graph.
	Deadlock Prevention	Mutual exclusion, hold and wait, no-preemption, circular
	Deadle de Detection	wait.
	Deadlock Detection	Graph algorithm, Banker's algorithm.
	Deadlock Avoidance	Safe state, Graph algorithm, Banker's algorithm.
	Recovery form Deadlock	Process termination, resource pre-emption.

UNIT-IV

Memory Management: Logical vs physical address space, Swapping, Contiguous Memory Allocation, Paging, Structures of the Page Table, Segmentation.

Virtual Memory Management: Virtual memory overview, Demand Paging, Page-Replacement &

its algorithms, Allocation of Frames, Thrashing

Unit	Module	Micro Content
	Memory Management	Base register, limit register, protection with base and
		limit register.
	Logical vs physical	Logical address, memory address register, physical
	address space	address, dynamic relocation using relocation register.
	Swapping	Swapping of two processes using a disk as backing store,
		swapping on mobile systems.
	Contiguous Memory	Memory protection, memory allocation, fragmentation.
	Allocation	
	Paging	Basic method for implementing paging, paging hardware,
		TLB, protection, shared pages.
	Structure of the Page	Hierarchical paging, hashed page tables, inverted page
	Table	tables.
	Segmentation	Basic method, segmentation hardware.
	Virtual memory overview	Virtual memory, virtual address space.

UNIT IV	Demand Paging	Demand paging technique, basic concepts, steps in
		handling page fault, locality of reference.
	Page-Replacement & its	Need for page replacement, page replacement techniques:
	algorithms	FIFO, Optimal, LRU, LRU Approximation, Counting
		based.
	Allocation of Frames	Minimum number of frames, allocation algorithms:
		equal, proportional, global vs local allocation, non-
		uniform memory access,
	Thrashing	Cause of thrashing, working set model.

UNIT-V

File system Interface: The concept of a file, Access Methods, Directory structure, files sharing, protection.

File System implementation: File system structure, Allocation methods, and Free-space management.

Mass-storage structure: overview of Mass-storage structure, Disk scheduling, Swap space management.

Unit	Module	Micro Content
	File Concept	File - attributes, operations, types, structure.
	Access Methods	Sequential, Direct, other access methods.
	Directory structure	Typical file system organization, storage structure, single
		level directory, two-level, tree-structured, acyclic-graph, general graph directory.
UNIT V	Files sharing	Multiple users, remote file system, Consistency semantics.
	Protection	Types of access, access control.
	File system structure	File systems, basic file system, layered file system, file organization module, logical file system, FCB.
	Allocation methods	Contiguous, linked, indexed, efficiency of these methods.
	Free-space management	Free-space list, bit vector, linked list, grouping, counting.
	Overview of Mass-storage	Magnetic disks, solid state disks.
	structure	
	Disk scheduling	FCFS, SSTF, SCAN,C-SCAN, LOOK,C-LOOK.
	Swap space management	Swap-space use, location