	Supple (3)	
Q.1	If the derivative of a function is zero everywhere, the function must necessarily be? A -linear B - Constant C - Quadratic D - Everywhere zero	Ans : b
Q.2	The derivative of a function at a point is: a. An equation b. A function c. A number $F(x) = n \times F(x) = n$	٠
Q,3	d. Zero	Ans:C
	Find the slope of $\frac{a}{dx}(x^2 + 5x)$ a. $2x+5$ b. $2x+5x$ c. $2x$ d. $x^2 + 5$ $x^2 + 5x$	Ans : A
Q.4	Find the slope of $f(x) = -3x^2 - 6x$ at $x = 1$? a. $f'(x) = 6x$ b. $m = 0$ c. $f'(x) = -6x - 6$ d. $m = -12$ $f'(x) = -6x - 6$	Ans:d
Q.5	find the derivatives of the function $f(x) = \sqrt{x^2 - 1}$ a. $\frac{1}{2x\sqrt{x^2-1}}$ b. $\frac{1}{2\sqrt{x^2-1}}$ c. $\frac{1}{\sqrt{x^2-1}}$ d. $\frac{1}{\sqrt{x^2-1}}$ $\frac{2}{\sqrt{x^2-1}}$ $\frac{2}{\sqrt{x^2-1}}$ $\frac{2}{\sqrt{x^2-1}}$ $\frac{2}{\sqrt{x^2-1}}$ $\frac{2}{\sqrt{x^2-1}}$ $\frac{2}{\sqrt{x^2-1}}$	Ans : C
Q.6	If $f(x) = \sin^{2}(x)$, find $f'(\frac{\pi}{4})$. $f(x) = \sin^{2}(x) = [Gin(x)]^{2}$ a1 b. 1 c. 0.5 d2 If $f(x) = \sin^{2}(x)$, find $f'(\frac{\pi}{4})$. $f(x) = Gin^{2}(x) = [Gin(x)]^{2}$ $f'(x) = \sin^{2}(x)$, find $f'(\frac{\pi}{4})$. $f'(x) = \sin^{2}(x)$ $f'(x) = 2 + Gin(x)$ $f'(x) = 2 + Gin(\frac{\pi}{4})$ $f'(x) = Gin(\frac{\pi}{$	

خلى باللا _ تعوض معم قريدة إلى 12= ١٦ صشرا بد 3.14 كزمر دى زاورة .

Q.7	The graph of $y = 2x^3 - x^4$ has how many local maximums:	
	The graph of $y = 2x$ x has now many local maximums: a. 1 $y = 2x^3 - x^4$ $2x^2(3 - 2x) = 0$ $f(0) = 2(0)^3 - (6)^4$ b. 2 $y' = 6x^2 - 4x^3$ $2x^2 = 0$ $3 - 2x = 0$ 7 $f(\frac{3}{2}) = 2(\frac{3}{2})^3 - \frac{3}{2}$ d. 4 $y' = 0$	Ans:A
Q,8	The point of local maxima for the function (0.46,2.87) a. $\frac{\pi}{3}$ b. $\frac{\pi}{2}$ c. $\frac{\pi}{4}$ d. $\frac{\pi}{6}$	Ans ; C
Q.9	Find the value of a such that the function $f(x) = xe^{ax}$ has a critical point at $x = 3$ a. $\frac{1}{3}$ b. $\frac{1}{3}$ c. $\frac{-1}{3}$ c. $\frac{-1}{3}$ d. -3 3 -3	Ans : C
Q.10	The minimum value of the function f(x)=x³-3x²-24x+100 in the interval [-3, 3] is a. 20 b. 28 c. 16 d. 32	Ans : B
Q.11	Find the derivative of $\theta = \frac{3r+2}{2r+3}$	Ans : A
5 5 5 5	a) $\frac{d\theta}{dr} = \frac{5}{(2r+3)^2}$ b) $\frac{d\theta}{dr} = \frac{12r+5}{(2r+3)^2}$ c) $\frac{d\theta}{dr} = \frac{12r+13}{(2r+3)^2}$ d) $\frac{d\theta}{dr} = \frac{5}{2r+3}$	
Q.12	Find the derivative of $y = \sqrt{1 + \sqrt{2x}}$ a) $\frac{1}{4\sqrt{x + x\sqrt{x}}}$ b) $\frac{1}{2\sqrt{2x + 2x\sqrt{2x}}}$ c) $\frac{1}{\sqrt{x + x\sqrt{x}}}$ d) $\frac{1}{4\sqrt{2x + 2x\sqrt{2x}}}$	Ans : B

Q.13	$y = \begin{vmatrix} x-1 \\ x+1 \end{vmatrix}$	15 : A
**	a) $\frac{1}{(x+1)\sqrt{x^2-1}}$ b) $\frac{1}{(x+1)\sqrt{x-1}}$ c) $\frac{1}{(x-1)\sqrt{x^2-1}}$ d) $\frac{1}{(x+1)\sqrt{x^2+1}}$	
Q.14	$y = x^{4} + 2x + 5 \qquad y'' \text{ is : } \qquad 3x^{2} + 2 \\ \text{b)} 12x^{2} \\ \text{c)} x^{3} + 2 \\ \text{d)} 0$ $y = x^{4} + 2x + 5 \\ \Rightarrow 3 = x^{4} + 2x + 5 \\ \Rightarrow 3 = 4x^{3} + 2 \\ \Rightarrow 3 = 4x^{3} + 2$	Ans : B
Q.15	$y = e^{ax}, \frac{d^{n}y}{dx^{n}} \text{ is:}$ a) e^{ax} b) e^{ax-n} c) ae^{ax-n} d) $a^{n}e^{ax}$ $= \frac{d^{n}y}{dx^{n}} = a^{n}e^{ax}$ $= \frac{d^{n}y}{dx^{n}} = a^{n}e^{ax}$	Ans:d
Q.16	$y = (2-x)^3$, has critical points at $x = $: a) $\{0\}$ $\therefore \beta = (2-x)^3$ b) ± 2 $\therefore \beta' = 3(2-x)^2 * -1 : \beta' = 0$ c) 2 d) None $\therefore -3(2-x)^2 = 0 \Rightarrow (2-x)^2 = 0 \Rightarrow 2-x = 0 \Rightarrow x=2$	Ans: c
Q.17	y = (2 - x) ³ has maximum value at x= a) 0 b) 2 c) {0,2} d) None y = (2 - x) ³ has maximum value at x= الما عنوا فيمة والمحال المنافعة على المنافعة المرافعة المرافع	Ans : d
Q.18	$y = 3 + 2x + x^2$ has maximum value at: a) -1 $y = 3 + 2x + x^2$ b) 0 $y = 2 + 2x + x^2$ c) 2 $y = 3 + 2x + x^2$ b) 0 $y = 3 + 2x + x^2$ c) 2 $y = 3 + 2x + x^2$ d) None $y = 3 + 2x + x^2$ $y = 3 + 2x + x^2$ y =	Ans:d

a) $x=1$ b) $x=3$ c) A,b d) None Q.20 $y = x^3 - 6x^2 + 9x - 8$, has minimum value at: a) $x=1$ b) $x=3$ c) A,b d) None Q.21 If functions f and g are such that $f(x) = g(x) + k$ where k is a constant, then $(A) f'(x) = g'(x) + k$ $(B) f'(x) = g'(x)$ $(C) None of the above Q.22 If \sin(xy) + \cos(xy) = 0 then \frac{dy}{dx} = \frac{1}{x^2} = 1$	Annia
d) None $y = x^3 - 6x^2 + 9x - 8, \text{ has minimum value at:}$ a) X=1 b) X=3 c) A,b d) None 2.21 If functions f and g are such that $f(x) = g(x) + k$ where k is a constant, then $(A) f'(x) = g'(x) + k$ $(B) f'(x) = g'(x)$ $(C) \text{ None of the above}$ $(C) \text{ None of the above}$ $(A) \frac{y}{x}$ $(B) - \frac{y}{x}$ $(C) - \frac{x}{y}$ $(C) - \frac{x}{y}$ $(D) \frac{x}{y}$ $(A) e^x$ $(B) - \frac{c^x}{(1+c^x)^3}$ $(C) - \frac{c^x}{(1+c^x)^3}$ $(C) - \frac{c^x}{(1+c^x)^3}$	Ans : a
d) None $y = x^3 - 6x^2 + 9x - 8, \text{ has minimum value at:}$ a) X=1 b) X=3 c) A,b d) None Q.21 If functions f and g are such that $f(x) = g(x) + k$ where k is a constant, then $(A) f'(x) = g'(x) + k$ $(B) f'(x) = g'(x)$ $(C) \text{ None of the above}$ Q.22 If $\sin(xy) + \cos(xy) = 0$ then $\frac{dy}{dx} = \frac{1}{2} \left[\frac{1}{2} $	
2.20 $y = x^3 - 6x^2 + 9x - 8$, has minimum value at: a) $x = 1$ b) $x = 3$ c) A,b d) None 2.21 If functions f and g are such that $f(x) = g(x) + k$ where k is a constant, then $(A) f'(x) = g'(x) + k$ $(B) f'(x) = g'(x)$ $(C) None of the above$ $(D) \frac{y}{x}$ $(C) - \frac{x}{y}$ $(C) - \frac{x}{y}$ $(D) \frac{x}{y}$ $(D) \frac{-1}{(1 + e^x)^3}$ $(D) \frac{-1}{(1 + e^x)^3}$	
a) $X=1$ b) $X=3$ c) A,b d) None If functions f and g are such that $f(x) = g(x) + k$ where k is a constant, then (A) $f'(x) = g'(x) + k$ (B) $f'(x) = g'(x)$ (C) None of the above $ \begin{array}{cccccccccccccccccccccccccccccccccc$	
b) X=3 c) A,b d) None If functions f and g are such that $f(x) = g(x) + k$ where k is a constant, then (A) $f'(x) = g'(x) + k$ (B) $f'(x) = g'(x)$ (C) None of the above $F'(x) = 3(x) + k$ $F'(x) = 3(x) + k$ $F'(x) = 3(x) + c$ $F'(x) = 3($	Ans : b
If functions f and g are such that $f(x) = g(x) + k$ where k is a constant, then (A) $f'(x) = g'(x) + k$ (B) $f'(x) = g'(x)$ (C) None of the above $ \begin{array}{cccccccccccccccccccccccccccccccccc$	
If functions f and g are such that $f(x) = g(x) + k$ where k is a constant, then (A) $f'(x) = g'(x) + k$ (B) $f'(x) = g'(x)$ (C) None of the above $ \begin{array}{cccccccccccccccccccccccccccccccccc$	
If functions f and g are such that $f(x) = g(x) + k$ where k is a constant, then $(A) f'(x) = g'(x) + k$ $(B) f'(x) = g'(x)$ $(C) \text{ None of the above}$ $(C) \text{ None of the above}$ $(C) \text{ If } \sin(xy) + \cos(xy) = 0 \text{ then } \frac{dy}{dx} = \frac{ Y }{x} = \frac{ Y }{x}$	
If functions f and g are such that $f(x) = g(x) + k$ where k is a constant, then $(A) f'(x) = g'(x) + k$ $(B) f'(x) = g'(x)$ $(C) \text{ None of the above}$ $(C) \text{ None of the above}$ $(C) \text{ If } \sin(xy) + \cos(xy) = 0 \text{ then } \frac{dy}{dx} = 0$ $(A) \frac{y}{x}$ $(B) - \frac{y}{x}$ $(C) - \frac{x}{y}$ $(C) \frac{x}{y}$ $(D) \frac{x}{y}$ $(C) - \frac{c^{x}}{(1+c^{x})^{3}}$ $(C) - \frac{c^{x}}{(1+c^{x})^{3}}$ $(D) \frac{-1}{(1+c^{x})^{3}}$ $(D) \frac{-1}{(1+c^{x})^{3}}$	
then (A) $f'(x) = g'(x) + k$ (B) $f'(x) = g'(x)$ (C) None of the above $ \begin{array}{cccccccccccccccccccccccccccccccccc$	Ans : b
(A) $f'(x) = g'(x) + k$ (B) $f'(x) = g'(x)$ (C) None of the above $ \begin{array}{cccccccccccccccccccccccccccccccccc$	
(A) $f'(x) = g'(x) + k$ (B) $f'(x) = g'(x)$ (C) None of the above $ \begin{array}{cccc} & & & & & & & & & & & & \\ & & & & & & &$	
(B) f'(x) = g'(x) (C) None of the above $ \begin{array}{cccccccccccccccccccccccccccccccccc$	
(B) f'(x) = g'(x) (C) None of the above $ \begin{array}{cccccccccccccccccccccccccccccccccc$	
If $\sin(xy) + \cos(xy) = 0$ then $\frac{dy}{dx} = \frac{1}{2} \cos(xy) = 0$ (B) $-\frac{y}{x}$ (C) $-\frac{x}{y}$ (D) $\frac{x}{y}$ (A) $\frac{y}{x}$ (B) $-\frac{y}{x}$ (C) $-\frac{x}{y}$ (D) $\frac{x}{y}$ (A) e^{x} (B) $-\frac{e^{x}}{(1+e^{x})^{3}}$ (C) $-\frac{e^{x}}{(1+e^{x})^{2}}$ (D) $\frac{-1}{(1+e^{x})^{3}}$	
Q.22 If $\sin(xy) + \cos(xy) = 0$ then $\frac{dy}{dx} = \frac{1}{2} \cos(xy) = 0$ (C) $-\frac{x}{y}$ (D) $\frac{x}{y}$ Q.23 If $y = x + e^x$ then $\frac{d^2x}{dy^2}$ is: (A) e^x (B) $-\frac{c^x}{(1+c^x)^3}$ (C) $-\frac{e^x}{(1+e^x)^2}$ (D) $\frac{-1}{(1+e^x)^3}$	
Q.22 If $\sin(xy) + \cos(xy) = 0$ then $\frac{dy}{dx} = \left[\begin{array}{c} \frac{1}{ y } \\ (A) \frac{y}{x} \end{array}\right]$ (B) $-\frac{y}{x}$ (C) $-\frac{x}{y}$ (D) $\frac{x}{y}$ Q.23 If $y = x + e^x$ then $\frac{d^2x}{dy^2}$ is: $(A) e^x \qquad (B) -\frac{e^x}{\left(1+e^x\right)^3} \qquad (C) -\frac{e^x}{\left(1+e^x\right)^2} \qquad (D) \frac{-1}{\left(1+e^x\right)^3}$ Q.24	
If $\sin(xy) + \cos(xy) = 0$ then $\frac{1}{dx} = \frac{1}{2} + \frac{1}{$	
$(A) \frac{y}{x} \qquad (B) - \frac{y}{x} \qquad (C) - \frac{x}{y} \qquad (D) \frac{x}{y}$ $(A) \frac{y}{x} \qquad (B) - \frac{y}{x} \qquad (C) - \frac{x}{y} \qquad (D) \frac{x}{y}$ $(A) e^{x} \qquad (B) - \frac{e^{x}}{(1+e^{x})^{3}} \qquad (C) - \frac{e^{x}}{(1+e^{x})^{2}} \qquad (D) \frac{-1}{(1+e^{x})^{3}}$ $(C) - \frac{e^{x}}{(1+e^{x})^{2}} \qquad (D) \frac{-1}{(1+e^{x})^{3}}$	Ans:b
Q.23 If $y = x + e^x$ then $\frac{d^2x}{dy^2}$ is: (A) e^x (B) $-\frac{e^x}{(1+e^x)^3}$ (C) $-\frac{e^x}{(1+e^x)^2}$ (D) $\frac{-1}{(1+e^x)^3}$	Wills + n
Q.23 If $y = x + e^x$ then $\frac{d^2x}{dy^2}$ is: (A) e^x (B) $-\frac{e^x}{(1+e^x)^3}$ (C) $-\frac{e^x}{(1+e^x)^2}$ (D) $\frac{-1}{(1+e^x)^3}$	
(A) e^{x} (B) $-\frac{e^{x}}{(1+e^{x})^{3}}$ (C) $-\frac{e^{x}}{(1+e^{x})^{2}}$ (D) $\frac{-1}{(1+e^{x})^{3}}$	
(A) e^{x} (B) $-\frac{e^{x}}{(1+e^{x})^{3}}$ (C) $-\frac{e^{x}}{(1+e^{x})^{2}}$ (D) $\frac{-1}{(1+e^{x})^{3}}$	50
(A) e^{x} (B) $-\frac{e^{x}}{(1+e^{x})^{3}}$ (C) $-\frac{e^{x}}{(1+e^{x})^{2}}$ (D) $\frac{-1}{(1+e^{x})^{3}}$	Ans ; b
(A) e^{x} (B) $-\frac{e^{x}}{(1+e^{x})^{3}}$ (C) $-\frac{e^{x}}{(1+e^{x})^{2}}$ (D) $\frac{-1}{(1+e^{x})^{3}}$	8 6
Q.24 الله معالم المام ا	
If $x^2y + y^3 = 2$ then the value of $\frac{d^3y}{dx^2}$ at the point $(1, 1)$ is:	
If $x^2y + y^3 = 2$ then the value of $\frac{d^3y}{dx^2}$ at the point $(1, 1)$ is:	Ans : b
If $x^2y + y^3 = 2$ then the value of $\frac{d^2y}{dx^2}$ at the point (1, 1) is:	1,000
$\frac{1}{dx^2} = 2 \text{ then the value of } \frac{1}{dx^2}$	
(A) $-\frac{3}{4}$ (B) $-\frac{3}{8}$ (C) $-\frac{5}{12}$ (D) none	

Q.25	If $y = e^{\sqrt{x}} + e^{-\sqrt{x}}$ then $\frac{dy}{dx}$ equals	Ans : A,C
	(A) $\frac{e^{\sqrt{x}} - e^{-\sqrt{x}}}{2\sqrt{x}}$ (B) $\frac{e^{\sqrt{x}} - e^{-\sqrt{x}}}{2x}$ (C) $\frac{1}{2\sqrt{x}}\sqrt{y^2 - 4}$ (D) $\frac{1}{2\sqrt{x}}\sqrt{y^2 + 4}$	
Q.26	$f(x) = x^{\frac{1}{2}}$	Ans : C
	(A) $f'(x) = -\frac{1}{2\sqrt{x}}$ $-\frac{1}{2}F(x) = x^{\frac{1}{2}} = \sqrt{x}$	
122.	(B) $f'(x) = \frac{1}{\sqrt{x}}$ $= \frac{1}{2\sqrt{x}}$	
	(C) $f'(x) = \frac{1}{2\sqrt{x}}$ \therefore Answer \boxed{C}	
Q.27	(D) $f'(x) = \sqrt{x}$	Ans : a
	$f(x) = 5x^{2}(x+47)$ (A) $f'(x) = 15x^{2} + 470x$ (B) $f'(x) = 5x^{2} + 470x$ (C) $f'(x) = 10x$ (D) $f'(x) = 15x^{2} - 470x$ $f(x) = 5x^{2}(x+47)$	
Q.28	$f(x) = \frac{5x^2}{x + 47}$	Ans : e
	(B) $f'(x) = \frac{10x^2 + 470x}{(x+47)}$ $= \frac{10x^2 + 470x}{(x+47)^2}$ (C) $f'(x) = 10x$ $= \frac{10x^2 + 470x - 5x^2}{(x+47)^2}$	
	(D) $f'(x) = \frac{5x^2 + 470}{(x+47)^2}$ (E) None of the above $(x+47)^2$ = $(x+47)^2$: Answer [e]	
Q.29	$f(x) = 5(x+47)^2$	Ans : c
	(B) $f'(x) = 10x - 470$ (C) $f'(x) = 10x + 470$ $f'(x) = 5 \pm 2(x + 47)$ $f'(x) = 5 \pm 2(x + 47)$	e est
0.20	(D) $f'(x) = 15x^2 - 470x$ = 10 X + 9 + 0 Answer [3] Find the second derivative of the following function:	Ans : b
Q.30	$f(x) = 5x^{2}(x+47)$ $+ x^{2}(x) = 5x^{2}(x+47) = 5x^{2} + 235x^{2}$	10
	(B) $f''(x) = 30x + 470$ $\Rightarrow f'(x) = 15x^2 + 470x$	
	(C) $f''(x) = 15x^2 + 235$ $\therefore f''(x) = 30x + 470$	
	(D) $f''(x) = 15x^2 + 470x$: Answer [2]	

0.31	$u(x) = \sqrt{x}$	Ans : A
	Find $-\frac{u''(x)}{u'(x)}$.	
E	$(A) \frac{1}{2x}$	
	$(B) - \frac{1}{2x}$	
	(C) 2x	
	(D) -2x	Ans:a
Q.32	$\begin{vmatrix} \frac{d}{dx}(x^2e^x\sin x) = \\ A) & xe^x(2\sin x + x\sin x + x\cos x) \end{vmatrix}$	
	B) $xe^x(2\sin x + x\sin x - \cos x)$	
	c) $x e^x (2 \sin x + x \sin x + \cos x)$	
	D) None of these	
Q.33		Ans : A
	If $y = x \sin x$, then A) $\frac{1}{y} \frac{dy}{dx} = \frac{1}{x} + \cot x$	
	$ B) \qquad \frac{dy}{dx} = \frac{1}{x} + \cot x $	
	c) $\frac{1}{y}\frac{dy}{dx} = \frac{1}{x} - \cot x$	
	D) None of these	
Q.34	If $y = \frac{1}{a-z}$, then $\frac{dz}{dy} = \frac{1}{1+z}$	Ans: a
	If $y = \frac{1}{a-z}$, then $\frac{dz}{dy} = $ A) $(z-a)^2$	
	B) $-(z-a)^2$	
li l	40 8V 10000 14000 14000 15	
0.25	D) $-(z+a)^2$	Ans: c
Q.35	If $y = x + \frac{1}{x}$ then A) $x^2 \frac{dy}{dy} + xy = 0$	
	A) $x^2 \frac{dy}{dx} + xy = 0$	
125	$x^2 \frac{dy}{dx} + xy + 2 = 0$	
20	$x^2 \frac{dy}{dx} - xy + 2 = 0$	
	D) None of these	

Q.36	$d(-1)^2$	Ans : A
	$\begin{vmatrix} \frac{d}{dx} \left(\sqrt{x} \div \frac{1}{\sqrt{x}} \right)^2 = \\ A) & 1 - \frac{1}{x^2} \end{vmatrix}$	
	A) $1 - \frac{1}{c^2}$	
	11 161 400	
	c) $1 - \frac{1}{2x}$	
	D) None of these	
Q.37		Ans:b
	If $pv = 81$, then $\frac{dp}{dv}$ is at $v = 9$ equal to	
	A) 1 $ PV=81 \Rightarrow av = (9)^2$	
	B) =1 (-1) P= 31	
	If $pv = 81$, then $\frac{dp}{dv}$ is at $v = 9$ equal to A) 1 B) $\square 1$ (-1) $Pv = 81$ \square	
	D) None of these dy = 12 "Answer By	
Q.38	1 = 1 for the first for the fi	Ans : c
-	For the function $f(x) = x^2 - 6x + 8$ $f'(x) = 2x - 6$ $f'(x) = 3$ $2x - 6 = 0$ $2x = 6 \implies x = 6 = 3 \implies Answer [C]$	
	A) $\frac{9}{4}$ $= 1(x) = x - 6x + 6$	
	(a) $\frac{5}{2}$ $\frac{7}{2}$ $\frac{7}{2}$ $\frac{7}{2}$ $\frac{7}{2}$	
15	c) 3 " + (x) Vanishes => + (x) = 0	
	D) 7 : 2x-6=0	
	D) 2 2x=6 ⇒ x= = 3 Answer []	
Q.39 %	For the curve $\sqrt{x} + \sqrt{y} = 1$, $\frac{dy}{dx}$ at $\left(\frac{1}{4}, \frac{1}{4}\right)$ is	Ans : c
	A) ½ 1	
	A) ½ B) 1	
	c) =1	
2	D) 2	
Q.40	If $f(x) = 3e^{x^2}$ then $f'(x) - 2xf(x) + \frac{1}{2}f(0) - f'(0) =$	Ans : b
	A) 0 1 - 151	
	If $f(x) = 3e^{x^2} then f'(x) - 2xf(x) + \frac{1}{3}f(0) - f'(0) = $ A) B) 1	
	(c) $\frac{7}{3}e^{x^2}$	
	D) None of these	
	-/ Note of these	

1.017		
2.41	The derivative of tanx ax with respect to x is	Ans : d
	A) $1 - \tan^2 x$ - $ton(x) - x$	
	B) tanx = == == == == == == == == == == == ==	7
	c) $-\tan^2 x$ = $\sec^2 (x) - 1$ $\tan^2 x = \sec^2 x$	1
1 13	n) +2	1
	b) tall at	
Q.42	$\frac{d}{d}(e^{z^3})$ is equal to $\frac{1}{2}$, $\frac{x^3}{2}$	Ans: b
	$\frac{d}{dx}(e^{z^3}) \text{ is equal to}$ $A) 3xe^{z^3}$ $A) 3xe^{z^3}$ $A) 3xe^{z^3}$ $A) 3xe^{z^3}$	
	مراكم المراكم	
	B) 3x2e2 x .	
	c) $3x(e^{x^2})^2$: Answer [3]	6.00
	D) $2x^2e^{x^3}$	
Q.43	d. (. 2) L.J. C. (. 9.3)	Ans : b
	$\frac{d}{dx}\{\cos(\sin x^2)\} = \frac{d}{dx}\left[\cos(\sin x^2)\right]$	
	A) $\sin(\sin x^2) \cdot \cos x^2 \cdot 2x$ = $-\sin(\sin^2 x) + \frac{1}{4x}(\sin^2 x^2)$	1
	B) $-\sin(\sin x^2) \cdot \cos x^2 \cdot 2x$ = $-\sin(\sin x^2) + \cos(x)^2 + 2x$	
	C) $-\sin(\sin x^*) \cdot \cos^* x \cdot 2x$	1
7.5		
31 E	D) None of these ANSWER B	e e
Q.44	If $y = t^{4/3} - 3t^{-2/3}$ then $dy/dt = -1$	Ans : d
Q.44	If $y=t^{4/3}-3t^{-2/3}$ then dy/dt =	Ans : d
Q.44	If $y=t^{4/3}-3t^{-2/3}$ then dy/dt =	Ans : d
Q.44	If $y = t^{4/3} - 3t^{-2/3}$, then dy/dt = A) $\frac{2t^2 + 3}{3t^{5/3}}$ $2t^2 + 3$	Ans : d
Q.44	If $y = t^{4/3} - 3t^{-2/3}$ then dy/dt = A) $\frac{2t^2 + 3}{3t^{5/3}}$ $\boxed{3}$	Ans : d
Q.44	If $y=t^{4/3}-3t^{-2/3}$ then dy/dt = A) $\frac{2t^2+3}{3t^{5/3}}$ B) $\frac{2t^2+3}{t^{5/3}}$	Ans : d
Q.44	If $y = t^{4/3} - 3t^{-2/3}$ then $dy/dt =$ A) $\frac{2t^2 + 3}{3t^{5/3}}$ B) $\frac{2t^2 + 3}{t^{5/3}}$ C) $\frac{2(2t^2 + 3)}{t^{5/3}}$	Ans : d
Q.44	If $y = t^{4/3} - 3t^{-2/3}$ then $dy/dt =$ A) $\frac{2t^2 + 3}{3t^{5/3}}$ B) $\frac{2t^2 + 3}{t^{5/3}}$ C) $\frac{2(2t^2 + 3)}{t^{5/3}}$	Ans:d
2.44	If $y = t^{4/3} - 3t^{-2/3}$ then $dy/dt = $ A) $\frac{2t^2 + 3}{3t^{5/3}}$ B) $\frac{2t^2 + 3}{t^{5/3}}$ C) $\frac{2(2t^2 + 3)}{t^{5/3}}$	Ans:d
Q.44	If $y = t^{4/3} - 3t^{-2/3}$ then $dy/dt =$ A) $\frac{2t^2 + 3}{3t^{5/3}}$ B) $\frac{2t^2 + 3}{t^{5/3}}$ C) $\frac{2(2t^2 + 3)}{t^{5/3}}$ D) $\frac{2(2t^2 + 3)}{3t^{5/3}}$	
Q.44 Q.45	If $y = t^{4/3} - 3t^{-2/3}$ then $dy/dt = A$) $\frac{2t^2 + 3}{3t^{5/3}}$ B) $\frac{2t^2 + 3}{t^{5/3}}$ C) $\frac{2(2t^2 + 3)}{t^{5/3}}$ D) $\frac{2(2t^2 + 3)}{3t^{5/3}}$ If $y = \sin[\cos(\sin x)]$, then $dy/dx = 1$	Ans: d
τ.	If $y = t^{4/3} - 3t^{-2/3}$ then $dy/dt = A$) $\frac{2t^2 + 3}{3t^{5/3}}$ B) $\frac{2t^2 + 3}{t^{5/3}}$ C) $\frac{2(2t^2 + 3)}{t^{5/3}}$ D) $\frac{2(2t^2 + 3)}{3t^{5/3}}$ If $y = \sin[\cos(\sin x)]$, then $dy/dx = 1$	
τ.	If $y = t^{4/3} - 3t^{-2/3}$, then $dy/dt = A$) $\frac{2t^2 + 3}{3t^{5/3}}$ B) $\frac{2t^2 + 3}{t^{5/3}}$ C) $\frac{2(2t^2 + 3)}{t^{5/3}}$ D) $\frac{2(2t^2 + 3)}{3t^{5/3}}$ If $y = \sin[\cos(\sin x)]$, then $dy/dx = A$	
τ.	If $y = t^{4/3} - 3t^{-2/3}$, then $dy/dt = A$) $\frac{2t^2 + 3}{3t^{5/3}}$ B) $\frac{2t^2 + 3}{t^{5/3}}$ C) $\frac{2(2t^2 + 3)}{t^{5/3}}$ D) $\frac{2(2t^2 + 3)}{3t^{5/3}}$ If $y = \sin[\cos(\sin x)]$, then $dy/dx = A$) $-\cos[\cos(\sin x)]\sin(\cos x).\cos x$ B) $-\cos[\cos(\sin x)]\sin(\sin x).\cos x$	
τ.	If $y = t^{4/3} - 3t^{-2/3}$ then $dy/dt = A$) A) $\frac{2t^2 + 3}{3t^{5/3}}$ B) $\frac{2t^2 + 3}{t^{5/3}}$ C) $\frac{2(2t^2 + 3)}{t^{5/3}}$ D) $\frac{2(2t^2 + 3)}{3t^{5/3}}$ If $y = \sin[\cos(\sin x)]$, then $dy/dx = A$ A) $-\cos[\cos(\sin x)]\sin(\cos x) \cos x$	

Q.46	If $x^{2/3} + y^{2/3} = a^{2/3}$, then $\frac{dy}{dx} =$	Ans : b
	A) $\left(\frac{y}{x}\right)^{1/3}$	
	B) $-\left(\frac{y}{x}\right)^{1/3}$ \\ \tag{18} \tag{8} \tag{8}	
	c) $\left(\frac{x}{y}\right)^{1/3}$	
	D) $-\left(\frac{x}{y}\right)^{1/3}$	
Q.47	If $y = \sqrt{(1-x)(1+x)}$, then	Ans : b
	A) $(1-x^2)\frac{dy}{dx} - xy = 0$	
	$(1-x^2)\frac{dy}{dx} + xy = 0$	
	c) $(1-x^2)\frac{dy}{dx} - 2xy = 0$	
	D) $(1-x^2)\frac{dy}{dx} + 2xy = 0$	7.10-4
Q.48	If $y=3x^5+4x^4+2x+3$ then	Ans : c
1		•
/	$y_4 = 0$ $y_5 = 0$ $y_5 = 0$	10
	c) $y_6=0$	
	D) None of these	
Q.49	If $f(x) = mx + c$, $f(0) = f'(0) = 1$ then $f(2) =$	Ans : c
	A) 1 [19] 0 (1)51	
	B) 2	
	C) 3	SI
Q.50	If $y = a \sin x + b \cos x$ then $y^2 + \left(\frac{dy}{dx}\right)^2$ is a	Ans: d
	A) Function of x B) Function of y	
	B) Function of y	
	C) Function of x and y	
	D) Constant	

51	$\frac{d}{dx}\left(x^2\sin\frac{1}{x}\right) =$	Ans : b
1	(1)	
	13 13	
	B) $2x\sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$	l
	c) $\cos\left(\frac{1}{x}\right) - 2x\sin\left(\frac{1}{x}\right)$	
	D) None of these	
Q.52	$\frac{d}{dx}[\cos\left(1-x^2\right)^2] =$	Ans : c
	A) $-2x(1-x^2)\sin(1-x^2)^2$ B) $-4x(1-x^2)\sin(1-x^2)^2$	
	NAME OF TAXABLE PARTY O	
	c) $4x(1-x^2)\sin(1-x^2)^2$ D) $-2(1-x^2)\sin(1-x^2)^2$	
	D) = 2	
		Ans : b
Q.53	If the function $y(x) = x^3 - 3x + 1$, then	Alis. b
	a) y(x) is minimum at (-1,3) and maximum at (1,-1)	
	b) y(x) is maximum at (-1,3) and minimum at (1,-1)	
	c) y(x) is maximum at (-1,3) and maximum at (1,-1)	
	d) None of the above	
Q.54	If the face than 1/(1) = 13 + 0 , then the hours	Ans: c
Q,34	If the function y(x) = x ³ +8, then we have	1,113.0
	a) minimum point at (0,8)	
	b) negative point of inflection at (0,8)	
	c) positive point of inflection at (0,8)	
	d) None of the above	
Q.55	If the position of a particle is given by the equation of motion	Ans : c
	$f(t) = 1/(t+1) = (t+1)^{-1}$, then at $t = 2$ seconds	
	1(c) - 1/(c + 1/ - (c + 1/ , then at c - 2 seconds	

- b) the velocity is 1/9 and speed is 1/9 m/s
- c) the velocity is -1/9 m/s and speed is 1/9
- d) None of the above

[20] pads

Aus. Chapter (3)

13

(10): - f(x) = x3-3x2-24x+100

.. interval is [-3, 3]

- Answer 3.

#

$$Q(11) = 6 = 3r + 2
2r + 3$$

$$\frac{d6}{dr} = \frac{[(2r+3)*3] - [2*(3r+2)]}{(2r+3)^2}$$

$$= \frac{(6r+9) - (6r+4)}{(2r+3)^2}$$

$$= \frac{6r^2 + 9 - 6r^2 - 4}{(2r+3)^2}$$

$$= \frac{5}{(2r+3)^2}$$

$$= Answer A$$
##

$$=\frac{\sqrt{2x}}{2\sqrt{1+\sqrt{2x}}}$$

$$= \frac{1}{2\sqrt{2\times(1+\sqrt{2\times})}}$$

$$=\frac{1}{2\sqrt{2x+2x\sqrt{2x}}}$$

#

$$\frac{\lambda}{\lambda} = \frac{\lambda}{\lambda} = \frac{\lambda}{\lambda}$$

$$\frac{\lambda}{\lambda} = \frac{\lambda}{\lambda}$$

$$\frac$$

#

$$y'' = e^{\sqrt{x}} + e^{-\sqrt{x}}$$

$$y'' = e^{\sqrt{x}} + e^{-\sqrt{x}}$$

$$= \frac{e^{\sqrt{x}}}{2\sqrt{x}} + \frac{e^{-\sqrt{x}}}{2\sqrt{x}}$$

$$= \frac{e^{\sqrt{x}}}{2\sqrt{x}} + \frac{e^{-\sqrt{x}}}{2\sqrt{x}}$$

$$= \frac{e^{\sqrt{x}} - e^{-\sqrt{x}}}{2\sqrt{x}}$$

$$= \frac{e^$$

$$\mathcal{D}(\underline{s}):$$

$$u(x) = \sqrt{x}$$

$$u'(x) = [0(2\sqrt{x})] - [1 * 2 \frac{1}{2\sqrt{x}}]$$

$$\frac{1}{\sqrt{x}} = \frac{1}{4x \sqrt{x}}$$

$$\frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}}$$

$$\frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}}$$

$$= \frac{1}{2x}$$

$$\therefore \text{ Answer } \boxed{A}$$

$$Q(32)$$

$$\frac{d}{dx}(x^{2}e^{x}8inx) = \frac{d}{dx}(x^{2}e^{x}8inx) = \frac{d}{dx}(e^{x}cosx + e^{x}sinx) + 2xsinx - e^{x}$$

$$= x^{2}(e^{x}cosx + e^{x}sinx + 2xe^{x}sinx$$

$$= x^{2}e^{x}cosx + x^{2}e^{x}sinx + 2xe^{x}sinx$$

$$= xe^{x}[xcosx + xsinx + 2sinx]$$

$$= xe^{x}[xcosx + xsinx + 2sinx]$$

$$= xe^{x}[A]$$

$$\begin{aligned}
& \mathcal{Q}(33)^{2} \\
& \vdots & \mathcal{J} = \times 8 \text{ in } \times \\
& \vdots & \frac{d\mathcal{J}}{dx} = \times 6 \text{ cos } \times + 8 \text{ in } \times .1 \\
& \frac{1}{3} \cdot \frac{d\mathcal{J}}{dx} = \frac{\times 6 \text{ cos } \times}{3} + \frac{8 \text{ in } \times}{3} \\
& = \frac{\times 6 \text{ cos } \times}{3 \text{ in } \times} + \frac{8 \text{ in } \times}{3 \text{ in } \times} \\
& = \frac{\times 6 \text{ cos } \times}{3 \text{ in } \times} + \frac{1}{3 \text{ in } \times} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{\cos x}{3 \text{ in } \times} + \frac{1}{3} \\
& = \frac{1}{3$$

- Answer [A]

$$y = \frac{1}{a - 2}$$

$$y = \frac{1}{a - 2}$$

$$y = \frac{1}{a - 2}$$

$$\frac{d\overline{t}}{dy} = 0 - \frac{-1}{y^2}$$

$$= \frac{1}{y^2}$$

$$= \frac{1}{(a-E)^2} = (a-E)^2$$

$$\frac{dy}{dx} = 1 + \frac{1}{x^2}$$

$$\frac{\partial}{\partial x} = 1 + \frac{x^2}{x^2}$$

$$\frac{dy}{dx} = 1 - \frac{1}{x^2}$$

$$\frac{dy}{dx} = \frac{x^2 - 1}{x^2}$$

(a)
$$x^2 \frac{9x}{99} + xy = 0$$

$$x^{2}(\frac{x^{2}-1}{-x^{2}})+x(x+\frac{1}{x})=0$$

$$x^{2}+x^{2}+1=0$$

$$2 \times^2 \neq 0$$

$$x^{2}(\frac{x^{2}-1}{x^{2}})-x(x+\frac{1}{x})+2=0$$

 $x^{2}-1-[x^{2}+1]+2=0$

$$=1-\frac{1}{x^2}$$

$$\frac{57X}{7} + \frac{51B}{7} \cdot \frac{9X}{97} = 0$$

$$f(x) = 3e^{x^2} + 2x$$

:
$$f'(0) = 6(0)e^{(0)^2} = 0$$
.

$$= \frac{2(2t^2+3)}{3t^{5/3}} \cdot \#$$

Q(45).

$$\frac{d}{dx} \left[x^{2/3} \right] + \frac{d}{dx} \left[x^{2/3} \right] = \frac{d}{dx} \left[x^{2/3} \right]$$

$$\frac{1}{100} = -\frac{1}{100} = -\frac{1$$

$$\frac{\frac{1}{x^{\frac{1}{3}}}}{y^{\frac{1}{3}}} = \frac{\frac{1}{x^{1/3}}}{\frac{1}{x^{1/3}}} = \frac{x^{1/3}}{y^{1/3}} = (\frac{x}{x})^{\frac{1}{3}}$$

$$\frac{1}{x} \frac{dy}{dx} = \frac{-2x}{2\sqrt{1-x^2}} = \frac{-x}{\sqrt{1-x^2}} \rightarrow **$$

$$\frac{-x(1-x^{2})}{\sqrt{1-x^{2}}} + x\sqrt{1-x^{2}} = 0$$

$$\frac{-x(1-x^2)}{(1-x^2)^{1/2}} + x \sqrt{1-x^2} = 0$$

$$-x (1-x^2)^{1/2} + x \sqrt{1-x^2} = 0$$

= Answer [2]

$$f(t) = \frac{1}{1+t} = (1+t)^{-1}$$

$$= f(t) = -(1+t)^{-2}$$

$$f'(2) = -(1+2)^{-2} = -\frac{1}{9}$$

