ORDER NO. MKE0301200C1

B15 (U.S.A.), B4 (CANADA, PUERTO RICO)

Service Manual

Compact VHS Camcorder

VM-L153 / PV-L353 / PV-L453 / PV-L353-K

SPECIFICATIONS

ITEM	SPECIFICATION	1	2	ITEM	SPECIFICATION	1	2
Power Source	Compact VHS Camcorder: DC6 V AC Adaptor: 110/120/220/240 V AC, 50/60 Hz Battery: Nickel-Cadmium Type DC 6 V	0	0	Lens	20 : 1 zoom lens, F1: 1.7 with auto iris control Focal length: 2.8 mm - 56.0 mm 4 speed power zoom function	0	0
Power	Compact VHS Camcorder: 6 V DC 8.5 W (Max. 11.5 W) AC Adapter: 19 W		0	Viewfinder	8.4 mm (0.33 inch) Electronic Viewfinder	-	0
Consumption	1.2 W (when not in use.)	-	-	LCD Monitor	63.5 mm (2.5 inch) Liquid Crystal Display	0	0
Video Signal	EIA Standard (525 lines, 60 fields) NTSC color signal	0	0	Memory	SD Memory Card/MultiMediaCard	Ŀ	0
Head: 2 rotary heads plus flying erase head. Helical scanning system Video Signal-to-Noise Ratio: SP: more than 43 dB			Image Size	FINE: 640 x 480 pixels Normal: 320 x 240 pixels	_	0	
Recording System		0	Image Storage	FINE: Approx. 60 images Normal: Approx. 210 images (For Optional 8 MB Memory Card)	-	0	
	,	╀	_	Image Format	JPEG	-	0
Audio	Head: Normal Mono: 1 stationary head MIC Input Level (MS type) - 70 dB Frequency Response: Normal Mono: SP: 100 Hz - 8 kHz SI P. 100 Hz - 5 kHz	0		Minimum Illumination Required	1.6 bx (F1: 1.7) 0.16 footcandles	0	0
	Signal-to-Noise Ratio: Normal Mono: SP: more than 42 dB SLP: more than 40 dB			Operating Condition	0 °C~40 °C (32 °F~104 °F) (Temperature) 10 %~75 % (Humidity)	0	0
Tape Speed	SP: 1-5/16 i.p.s (33.35 mm/s), SLP: 7/16 i.p.s (11.12 mm/s) Record/Payback Time: SP: Max. 30 min, SLP: Max. 90 min, with TC-30 Tape FF Time: Less than 7 min. (TC-30 Tape) REW Time: Less than 4 min. (TC-50 Tape)	0	0	Weight	Compact VHS Camcorder: 0.874 kg (1.93 lbs.) 0.89 kg (1.96 lbs.) AC Adaptor: 0.3 kg (0.66 lbs.)	0 0	00
Tape Format	Tape width 0.5 inch (12.7 mm) high density tape		0		Compact VHS Camcorder: 87.2 mm x 123 mm x 226 mm (W x H x D) (3-3/8 inch x 4-7/8 inch x 8-7/8 inch) (W x H x D)		
Pick-Up System	Sequential color difference field reverse system	+	0	Differsions	AC Adaptor: 68 mm x 41 mm x 140 mm (W x H x D) (2-11/16 inch x 1-5/8 inch x 5-1/2 inch) (W x H x D)	0	0
Pick-Up Device	One integral color filter Charge Coupled Device (CCD)	0	0	Solder	This model uses lead free solder (PbF).	0	0

VM-L153/PV-L353/PV-L353-K
 PV-L453

Weight and dimensions shown are approximate. Designs and specifications are subject to change without notice.

2003 Matsushita Kotobuki Electronics Industries LTD. All rights reserved. Unauthorized copying and distribution is a violation of law.

⚠ WARNING

This service information is designed for experienced repair technicians only and is not designed for use by the general public. It does not contain warnings or cautions to advise non-technical individuals of potential dangers in attempting to service a product. Products powered by electricity should be serviced or repaired only by experienced professional technicians. Any attempt to service or repair the product or products dealt with in this service information by anyone else could result in serious injury or death.

Panasonic / Quasar.

1. SAFETY PRECAUTIONS

GENERAL GUIDELINES

1. IMPORTANT SAFETY NOTICE

There are special components used in this equipment which are important for safety. These parts are marked by △ in the Schematic Diagrams, Circuit Board Layout, Exploded Views and Replacement Parts List. It is essentialthatthese criticalparts should be replaced with manufacturer's specified parts to prevent, shock, fire, or other hazards. Do not modify the original design without permission of manufacturer.

- 2. An Isolation Transformer should always be used during the servicing of AC Adaptor whose chassis is not isolated from the AC power line. Use a transformer of adequate power rating as this protects the technician from accidents resulting in personalinjuryfromelectrical shocks. It will also protect AC Adaptor from being damaged by accidental shorting that may occur during servicing.
- 3. When servicing, observe the original lead dress. If a short circuit is found, replace all parts which have been overheated or damaged by the short circuit.
- 4. After servicing, see to it that all the protective devices such as insulation barriers, insulation papers shields are properly installed.
- 5. After servicing, make the following leakage current checks to prevent the customer from being exposed to shock hazards.

LEAKAGE CURRENT COLD CHECK

- 1. Unplug the AC cord and connect a jumper between the two prongs on the plug.
- 2. Measure the resistance value, with an ohmmeter, between the jumpered AC plug and each exposed metallic cabinet part on the

equipment such as screwheads, connectors, control shafts, etc. When the exposed metallic part has a return path to thechassis,thereading should be between 1 M Ω and 5.2 M Ω . When the exposed metal does not have a return path to the chassis, the reading must be infinity.

LEAKAGE CURRENT HOT CHECK (See Figure 1.)

- 1. Plug the AC cord directly into the AC outlet. Do not use an isolation transformer for this check.
- 2. Connect a 1.5 k \(\text{Q} \), 10 W resistor, in parallel with a 0.15 \(\mu \) F capacitor, between each exposed metallic part on the set and a good earth ground, as shown in Figure 1.
- 3. Use an AC voltmeter, with 1 k Ω /V or more sensitivity, to measure the potential across the resistor.
- 4. Check each exposed metallic part, and measure the voltage at each point.
- 5. Reverse the AC plug in the AC outlet and repeat each of the above measurements.
- 6. The potential at any point should not exceed 0.75 V RMS. A leakage current tester (Simpson Model 229 or equivalent) may be used to make the hot checks, leakage current must not exceed 1/2 mA. In case a measurement is outside of thelimitsspecified, there is a possibility of a shock hazard, and the equipment should be repaired and rechecked before it is returned to the customer.

Figure. 1

Hot-Check Circuit

AC VOLTMETER

0.15 µF

TO
APPLIANCES
EXPOSED
METAL PARTS

1.5 kΩ. 10 W

EARTH GROUND

2. PREVENTION OF ELECTRO STATIC DISCHARGE (ESD) TO ELECTROSTATICALLY SENSITIVE (ES)

DEVICES

Some semiconductor (solid state) devices can be damaged easily by static electricity. Such components commonly are called Electrostatically Sensitive (ES) Devices. Examples of typical ES devices are integrated circuits and some field-effect transistorsandsemiconductor"chip" components. The following techniques should be used to help reduce the incidence of component damage caused by electro static discharge (ESD).

- 1. Immediately before handling any semiconductor component or semiconductor-equipped assembly, drain off any ESD on your body by touching a known earth ground. Alternatively, obtain and wear a commercially available discharging ESD wrist strap, which should be removed for potential shock reasons prior to applying power to the unit under test.
- 2. After removing an electrical assembly equipped with ES devices, place the assembly on a conductive surface such as aluminum foil, to prevent electrostatic charge buildup or exposure of the assembly.
- 3. Use only a grounded-tip soldering iron to solder or unsolder ES devices.
- 4. Use only an antistatic solder removal device. Some solder removal devices not classified as "antistatic (ESD protected)" can generate electrical charge sufficient to damage ES devices.
- 5. Do not use freon-propelled chemicals. These can generate electrical charges sufficient to damage ES devices.
- 6. Do not remove a replacement ES device from its protective package until immediately before you are ready to install it. (Most replacement ES devices are packaged with leads electrically shorted together by conductive foam, aluminum foil or comparableconductivematerial).
- 7. Immediately before removing the protective material from the leads of a replacement ES device, touch the protective material to the chassis or circuit assembly into which the device will be installed.

CAUTION:

Be sure no power is applied to the chassis or circuit, and observe all other safety precautions. 8. Minimize bodily motions when handling unpackaged replacement ES devices. (Otherwise harmless motion such as the brushing together of your clothes fabric or the lifting of your foot from a carpeted floor can generate static electricity (ESD)sufficienttodamage an ES device).

3. ABOUT LEAD FREE SOLDER (PbF)

Distinction of PbF PCB:

PCBs (manufactured) using lead free solder will have a PbF stamp or printing on the PCB. Only the Lens F.P.C. will have (F) stamp on the Flexible Cable. (Please refer to figures.)

Printed case

Stamped case

CAUTION:

- Pb free solder has a higher melting point than standard solder;
 Typically the melting point is 50 °F 70 °F (30 °C 40 °C) higher.
 Please use a soldering iron with temperature control and adjust it to 700 °F±20 °F (370 °C± 10 °C).
 In case of using high temperature soldering iron, please be carefull not to heat too long.
- Pb free solder will tend to splash when heated too high (about 1100 °F/600 °C).
 All products with the printed circuit board with PbF stamp or printing must be serviced with lead free solder. When soldering or unsoldering, completely remove all of the solder from the pins or solder area, and be sure to heat the soldering points with the lead free solder until it melts sufficiently.

Recommendations

Recommended lead free solder composition is Sn96.5 Ag3.0 Cu0.5.

Note

Pb free solder will be introduced on a running change basis for some parts such as the LCD C.B.A. and the Lens F.P.C. The introduction should be complete by April 2003.

4. HOW TO RECYCLE THE NICKEL CADMIUM BATTERY

This product has a fluorescent lamp that contains a small amount of mercury. It also contains lead in some components. Disposal of these materials may be regulated in your community due to environmental considerations. For disposal or recycling information please contact your local authorities, or the Electronics Industries Alliance: http://www.eiae.org.>

ATTENTION:

A nickel cadmium battery that is recyclable powers the product you have purchased. At the end of its useful life, under various state and local laws, it is illegal to dispose of this battery into your municipal waste stream. Please call 1-800-8-BATTERY for information on how to recycle this battery.

5. HOW TO REPLACE THE CLOCK BATTERY (LITHIUM BATTERY)

The clock battery is pre-installed. Follow the steps below if replacement becomes necessary.

- WARNING: -

Replace battery with Panasonic or Newsun type CR2025 only. Use of another battery may present a risk of fire or explosion.

Caution: Battery may explode if mistreated. Dispose of used battery promptly. Keep away from children. Do not recharge, disassemble or dispose of in fire.

Clock Battery

- While pinching the 2 tabs, pull Battery Tray out.
- 2 Bend middle tab out and remove Battery.
- 3 Snap new Battery (⊕ mark down) into Battery Tray.
 - · Do not reverse the polarity.
- 4 Insert Battery Tray so the triangle marks meet.

Note:

- Keep Battery out of children's reach. Swallowing it may be harmful.
- Improper installation, discharge, or missing battery causes "CLOCK BATTERY" to appear.
- Battery life is approximately 5 years.

6. SERVICE NOTES (PLEASE READ)

6.1. SERVICE NOTES

6.1.1. LCD F.F.C. (Flexible Flat Cable) CONNECTION CAUTION

Be sure to connect the Flexible Flat Cable (LCD F.F.C.) to Connector FP9101 correctly as shown. Otherwise, the F1001, Q1007 and L1018 for -15 V circuit on the Main C.B.A. may be damaged.

Fig. 1-1

6.1.2. CASSETTE UP UNIT REPLACEMENT CAUTION

The tab of the Cassette Up Unit has been bent when installed.

When removing the Cassette Up Unit, using pliers, straighten the tab 45° to remove the Cassette Up Unit.

When installing the Cassette Up Unit, bend the tab 45° again using pliers as shown.

Note:

Be careful not to break the tab off.

6.1.3. MAIN C.B.A. REPLACEMENT NOTE

To remove the Main C.B.A., the Lamp Socket Leads must be unsoldered. When installing the Main C.B.A., solder these leads onto the Main C.B.A.

Fig. 1-3

Soldering Note:

The Lamp Socket Leads have no polarization.

6.1.4. EXTENSION CABLES FOR SERVICE

Using the following Extension Cables, place the unit as shown for check and service.

	PART NUMBER	PART NAME	CONNECTION
	VUVS0007	12Pin Extension Cable	FP8 on Main C.B.A. ~ CCD F.P.C. on Lens Unit
	VUVS0012	22Pin Extension Cable	FP9 on Main C.B.A. ~ Lens F.P.C. on Lens Unit
3	VUVS0015	28Pin Extension Cable	FP1 on Main C.B.A. ~ A/C Head/Capstan F.P.C. on VCR Mechanism Chassis Ass'y

NOTE:

1. When using the cassette tape:

- A. Be sure to remove the cassette lid cover of cassette tape.
- B. Be sure to install the Lock Screw to Cassette Up Unit. After servicing, be sure to remove the Lock Screw.

 Refer to "HOW TO HOLD THE CASSETTE UP UNIT IN THE DOWN POSITION WITHOUT CASSETTE COVER INSTALLED."
- C. Select the H. SAFETY DEFEAT in SERVICE MODE. Refer to "
 SERVICE MODE SPECIFICATION (SELF-DIAGNOSTIC SYSTEM).
 "
 - Or, connect a silicon diode on component side of the Main C.B.A. as shown to defeat safety function. (Since Takeup Reel sensor, located on Main C.B.A. does not work when opening Main C.B.A., the mechanism does not work (Reel lock). Therefore, make sure to defeat Safety function.)
- 2. Use extreme care so as not to apply any excessive pressure to the Cylinder/Head Amp F.P.C. After servicing, be sure to place it correctly. Refer to "Cylinder Unit" in "MECHANISM SECTION."
- 3. EVF Display always stays ON. To turn off just the LCD Display, tape down the LCD open/close SW.
- 4. When servicing, avoid causing a from touching the component side of the Battery Catcher C.B.A. to the Main C.B.A.
- 5. When servicing with the Main C.B.A. installed on the Mechanism Chassis Ass'y (Main C.B.A. in raised position), tighten 2 Screws for stability.
- 6. Use a grounded ESD wrist strap while disassembling the Lens portion.
- 7. Use extreme care when unplugging or plugging in connectors. CAUTION:
- 8. Be sure to connect the Flexible Flat Cable (LCD F.F.C.) to Connector FP9101 correctly as shown. Refer to "LCD F.F.C. (Flexible Flat Cable) CONNECTION CAUTION" in Service Notes. Otherwise, the F1001,Q1007 and L1018 for -15 V circuit on the Main C.B.A. may be damaged.

Fig. 1-4

6.1.5. HOW TO HOLD THE CASSETTE UP UNIT IN THE DOWN POSITION WITHOUT CASSETTE COVER INSTALLED

The Cassette Up Unit will be in the up position without the Cassette Cover installed. To hold the Cassette Up Unit in the down position without it, a Lock Screw is needed.

6.1.5.1. How to install the Lock Screw:

1. If the Lock Lever, shown in gray, is set to Position "A" (No hole), change Position "A" (No hole) to Position "B" (Hole) as shown in Fig. 2-2 by pushing Portion (a) as shown in Fig. 2-1.

Note:

If the mechanism is in EJECT position, the Lock Lever cannot be changed to Position "B" by pushing Portion (a). In this case, apply power to set the mechanism to STOP position.

Fig. 2-1

Fig. 2-2

- 2. Install the Lock Screw in the Hole (Threaded Hole for Lock Screw access) in Position "B".
- 3. Hold down the Cassette Up Unit and confirm that the Cassette Up Unit will stay in the down position.

Note:

If the Cassette Up Unit will not stay in the down position, slide the Lock Lever to the right slightly.

6.1.5.2. Lock Screw is required when:

- 1. performing "TAPE INTERCHANGEABILITY ADJUSTMENT."
- 2. servicing with cassette tape in Service Position. The procedure below is required when the unit is in safety defeat mode.
 - A. Confirm that the Lock Lever, shown in gray, is set to Position "A" as shown in Fig. 2-1, and that the mechanism is in the STOP position.
 - B. Insert the cassette tape.
 - C. Push Portion (a) as shown in Fig. 2-1 while keeping the Cassette Up Unit in the down position so the mechanism starts loading. (Cassette Down Switch is ON.)

CAUTION: After servicing, be sure to remove the Lock Screw. The replacement Cassette Up Unit and Mechanism Chassis Ass'y are supplied with a Lock Screw installed. Make sure to remove this Lock Screw.

6.1.6. SERVICE MODE SPECIFICATION (SELF-DIAGNOSTIC SYSTEM)

when replacing them.

Operation:

- 1. Start-up: Press and hold all of the M.Focus, REC, and Stop buttons over 2 seconds, the unit goes into the self- diagnostic mode and main menu appears.
- 2. Mode Selection: Press M.Focus button to change and select self-diagnose mode.
- 3. Close: Turn off the Power Switch.

Display: Following descriptions can be displayed on EVF and TV monitor at the same time.

SERVICE MODE

START: M.FUCUS BUTTON QUIT : POWER OFF

61

Press and hold all of the M.Focus, REC and Stop buttons over 2 seconds. The Main Menu appears on E.V.F. and TV monitor.

* This figure stands for the Model No. of camcorder as

311011111				
MODEL NO.	VM-L153	PV-L353	PV-L353-K	PV-L453
* Figure	41	42	43	61

2. Auto Stop

When the unit suddenly shuts off, It is possible to see the cause description in this menu. Even if the AC adaptor or battery is disconnected, the most recent failure will be memorized. Pressing the Stop button at this time will reset the memory.

* Cause descriptions can be displayed until power shuts off. ** LOADING LOCK --- EJECT

^ LOADING LOCK --- EJECT STOP STBY

REC / PB (When it is possible to detect the lock position, loading lock position can be displayed.)

3. Auto Test

B.AUTO TEST

SET VCR/CAMERA SW TO CAMERA

- 1. CASSETTE TAPE IN
- 2. PRESS REC BUTTON
- a. Cassette tape in and press REC button. b. The unit operates automatically on tests.

B.AUTO TEST

- REC
- □ REVIEW
- ☐ PLAY
- ☐ REC PAUSE
- a. Automatically operates REC (30sec), REVIEW, PLAY, and STOP.
 b. Displays the test status while auto test is progressing.
 (Mark shows the test status.)

LOADING LOCK **
CYLINDER LOCK
TAKE-UP REEL LOCK
SUPPLY REEL LOCK
DEW
BATTERY UNDERCUT
STANDBY MODE

- * Cause descriptions can be displayed until power shuts off. ** LOADING LOCK --- EJECT
- * LOADING LOCK --- EJECT STOP STBY REC / PB

(When it is possible to detect the lock position, loading lock position can be displayed.)

4. Motor Control Signal Check

Displays all of motor drive signals and switch inputs from mechanism chassis.

^{*} Iris No. display

5. Operation Button Test - VCR

Tests connection of VCR operation buttons by pressing each button.

6. Operation Button Test - Camera

Tests connection of camera operation buttons by pressing each button.

7. Loading Test

F.LOADING TEST

SET VCR/CAMERA SW TO VCR

START: REC BUTTON QUIT : STOP BUTTON

Repeats loading / unloading 10 times without tape to check loading mechanism.

8. Mechanism Position

G.MECHANISM POSITION

- EJECT
- ☐ STOP STANDBY
- ☐ STANDBY
- □ REC/PLAY/FF

Displays mechanism position by monitoring mode switch. (■ mark shows the current mechanism position.)

9. Safety Defeat

H.SAFETY DEFEAT

SET VCR/CAMERA SW TO VCR

- 1.CLOSE CASSETTE DOOR WITHOUT TAPE
- 2.PRESS OPERATION **BUTTONS**
- Defeats following safety functions. Cylinder lock, Reel lock, End of tape, Battery under cut, Safety tab switch.
 It is possible to check mechanism movement without.
- tape by pressing operation buttons in this mode.

Another Method to put the unit into Safety Defeat mode: Connect a silicon diode between TP6011 and TP6012 on component side of the Main C.B.A. Refer to "EXTENSION CABLES FOR SERVICE" in "SERVICE NOTES."

10. Tracking Fix

I. TRACKING FIX

Functions to fix tracking position to its center for tape path alignment.

11. PG Shifter

This is a function to adjust Head Switching Position (PG SHIFTER) without using the Personal Computer. Perform adjustment procedure (AUTO) or (MANUAL). To adjust with this function, the TP Board, Audio/Video cable, oscilloscope, and VHS-C Alignment Tape (VFMS0004H6C) are necessary. For connecting TP Board, refer to "HOW TO USE TP BOARD" in SERVICE NOTES.

Adjustment procedure (AUTO)

- 1. Insert the VHS-C Alignment Tape to the camcorder.
- 2. Press PLAY button.
- Press TALLY (REC) button while playing back.
 Head Switching Position (PG SHIFTER) will be adjusted automatically.
- 4. "OK" indicator will be displayed on EVF. Note:
 - If "NG" indicator is displayed, adjust again.
- 5. Confirm that T is 6.5 H±0.5 H (approx.0.4 ms) as shown.

Adjustment procedure (MANUAL)

1. Perform steps 1 \sim 2 in Adjustment procedure (AUTO). 2. Press UP or Down button while playing back so that T is 6.5 H \pm 0.5 H (approx. 0.4 ms).

(For model with Photo Shot function)

If any of the following numbers appear on-screen in Photo mode, the palmcorder may need

service. Do not remove the battery (if attached) and write down the displayed number.

Error No.	Description	
U11	Card Error	
U12	Card Error	
U13	Card Error	
U14	Card/Camcorder Dialogue Error	
U15	No Card Memory	
U16	Captured image limit exceeded	
U17	Captured image limit exceeded	
U30	Error other than above	

Note:

While battery remains, the Error No. will be displayed again when the power is switched off and on again. (Once the Battery is removed or dead, Error No. will not remain in the memory.)

Refer to "TROUBLESHOOTING HINTS."

6.1.7. REMOVAL/INSTALLATION OF F.P.C. FROM NON ZIF (ZERO INSERTION FORCE) CONNECTOR

Removal/Installation of F.P.C. from the Non ZIF (Zero Insertion Force) connector:

- 1. The Non ZIF connectors and the ZIF connectors are used on the unit. And there are 2 types (Type A, Type B) of Non ZIF connectors.
- 2. To remove the F.P.C. from the Non ZIF connector, use the Plier for Non ZIF Connector (LSVQ0028) to pull out the F.P.C. as shown. The same Plier for Non ZIF Connector (LSVQ0028) should also be used to install the F.P.C. to the Non ZIF Connector.

3. Connect the F.P.C.s to the Non ZIF connectors, verifying the direction of F.P.C as shown.

Fig. 3-2

6.1.8. METHOD FOR LOADING/UNLOADING OF MECHANISM

6.1.8.1. (Electrical Method)

CAUTION:

If loading does not start after DC Power Supply is applied, DO NOT continue to applying DC Power Supply.

Connect the TP Board as shown, and apply 3 VDC Power Supply (DC (+) to TP21, DC (-) to TP20 for loading or DC (+) to TP20, DC (-) to TP21 for unloading). Refer to "HOW TO USE TP BOARD."

It normally takes approx. 6 seconds to unload the Mechanism from fully-loaded position to **EJECT** position.

Casselle Cover TP Clip 36P (LSUP0005C) Adjustment Cable 40P (LSUPOCOSA) DC ⊇uwar Supply (=3 VDC) TP211 TP Adjustment P.C B. 40P Landing (DC +3 V to TP21, DC (-) to TP20) (VFKW0123B) Unloading (DC +3 V to TP20, DC (-) to TP21)

Fig. 4-1

6.1.8.2. (Manual Method) without Cabinet Parts

Turn the Gear of Reduction Gear Unit clockwise (for loading) or counterclockwise (for unloading) manually.

It is necessary to rotate approx. 80 times from fully-loaded position to EJECT position.

Fig. 4-2

6.1.9. HOW TO REMOVE A JAMMED TAPE

CAUTION:

If loading does not start after DC Power Supply is applied, DO NOT continue applying DC Power Supply.

Remove a jammed tape as follows:

1. Remove a Screw and remove the EVR Cover.

Fig. 5-1

- 2. Place the unit with the Cassette Cover facing upward.
- 3. Connect the TP Board through the TP Board slot.
- 4. Apply +3VDC Power Supply to TP20 (+) and TP21 (-) on the TP Board to unload the mechanism. It normally takes approx. 6 seconds to unload the Mechanism to EJECT position. Then, remove the Power Supply and remove the TP Board.

- 5. Open the Cassette Cover fully.
- 6. Remove the tape slack by rotating the Takeup Reel Gear of the cassette tape.

Fig. 5-3 Tape slack Cassette tape Takeup Reel Gear **Bottom View**

- 7. Take out the cassette tape.
- 8. Connect the Power or Battery to set the Mechanism to STOP Position.

6.1.10. HOW TO USE TP BOARD

6.1.10.1. TP Board is required when:

- 1. performing "TAPE INTERCHANGEABILITY ADJUSTMENT."
- 2. performing "PC-EVR Adjustment."
- 3. the cassette tape is jammed. Refer to "HOW TO REMOVE A JAMMED TAPE."
- 4. loading or unloading the Mechanism (Electrical Method).
- 5. performing a signal check.

6.1.10.2. How to assemble TP Board:

1. Assemble the TP Board as shown.

Fig. 6-1 TP Clip (Side View) Projection Blue wire Pin 1: White wire Red wire TP Clip 36P (LSUP0005C) Pin 1: White wire
/ (Other pins: Blue/Red wire) Projection Blue wire Red wire TP Adjustment Cable 40P (LSUP0005A) 00000 000 000 000 00 0000000 000000 7P (TP SIDE) (RUBBER SIDE) TP Adjustment P.C.B. 40P (VFKW0123B) When inserting the TP Adjustment Cable into the TP Clip, be sure to insert the cable with the white wire (Pin 1) into the opposite side of the TP Clip Projection as shown.

6.1.10.3. How to connect TP Board to Camcorder:

1. Connect the TP Board to Camcorder as shown.

Fig. 6-2

6.1.10.4. Signal description on TP Adjustment P.C.B. 40P (VFKW0123B)

Fig. 6-3-1

Pin No.	Signal Name	Description	Waveforms
1	GND	Grounding terminal	
2	IRIS	To monitor IEJS at Fin 35 of IC605 on Main C.B.A.	Camera Mode (Gray Scale Chart)
3	GND	Grounding terminal	
4	Not used		
5	Not used		
6	EVR MODE (L)	EVR mode select: low	
7	CAM +4.5 V	Power terminal	
8	EVR SERIAL DATA 1	Serial data output from PC to camcorder	
9	V-SYNC	(For model without Photo Shot function) To monitor V sync signal at Fin 56 of 10391 on Mair C.B.A. (For model with Photo Shot function)	Selved
		To monitor V synus gna, at Fin 118 of 10301 on Mair C.B.A.	V Nes Camera Mode
10	EVR SERIAL DATA 0	Serial data output from camcorder to PC	
11	CAMERA RESET (L)	Camera microcontroller reset: low	
12	Not used		
13	EVR SERIAL CLOCK	Serial clock between PC and carncorder	
14	EVF-VCGW	Te monitor VCOM signal stiff in 38 of 10901 on Battery Catener C.B.A.	Secup RecrEt Vods (OderBar Chart)
15	Not used		
16	EVF-Blue	To monitor EVF blue signal at Pin 40 of ICsch on Battery Catcher C.B.A.	RecoFE Mode Octor For Charto
17	EVF-Green	To monitor EVF green signal at Fin 43 of IC901 on Battery Catcher 0.3.A.	RecrEB Mode (Color Bar Chart)

Fig. 6-3-2

Pin No.	Signal Name	Description	Waveforms
18	LUMIKANCE	To monitor luminance eignal at Pin 76, of ICSC1 on Main C.B.A.	1995 Table Camers Wode (Color Bar Chart)
19	EVF-Psc	To monitor EVF red signal at Pin 45 of IC901 on Satiety Catcher C.S.A.	RedPB Mode (Color Par Charl)
20	LOADING MOTOR 0	To monitor supply voltage to loading motor (+4.5 V or GND)	
21	LOADING MOTOR 1	To monitor supply voltage to loading motor (+4.5 V or GND)	
22	SUPPLY REEL PULSE	To monitor supply reel pulse at Pin 80 of ICscc1 on Wair C.B.A	Z/ 10%
23	Not used		
24	Not used		
25	PBCTL PULSE	To monitor PB control pulse at Pin 76 of IG8001 on Main G.B.A	1.6/50 17 10/3 P3 Mcce
26	SUPPLY PHOTO TR (L)	To monitor Supply Photo TR signal (TR on: low)	
27	CAP FG	To monitor capstan FG signs, at Pin 67 of IC6001 on Main C.3 A. (SP: 2155 Hz, S.P: 719 Hz)	30/Pr
28	TRAP MONITOR	Te monitor B-Misigna, at Pin 37 of ICS991 on the Misin C.B.A	RedP8 Mode 217 203 (Color Bar Charl)

Fig. 6-3-3

Pin No.	Signal Name	Description	Waveforms
	-SAVC	To monitor II synd signal at Pin 61 of IC3001 on Wair C.B.A. (In EVR adjustment mode, \$29kHz corner appears.)	IV 20.5 Ben/P8 Mode
an Po	BTUMINANCE	To monitor PB luminance aignal af Pin 23 of IC3001 on Main C.B.A.	atV has P3 Mare
31 YN	NR .	To moniter YNR error signal at Pin 21 of IC3001 on Main C.B.A	23m/ 25us P3 Mace
32 EN	NVELOPE	To monitor PB envelope signal a. Pint of FP8 on Main C.B.A	ESSATES ESSATES ESSATES ESSATES P3 Meto
33 116	EAD SW	To monitor head switching signal at Pin 23 of ICecch on Main C.B.A.	1.5V3:: 27 Sins P3 Mode
34 No	ot used		
35 GN	ND	Grounding terminal	
36 GN	ND	Grounding terminal	
37 FE	ed o ingvirange	To moniter recording chrominance is gnalled Pin 38 of IC3001 on Main C B.A.	50-V 20.5 V Rec Hode
38 RE	EC LUMINANCE	To monitor recording luminance signal at Pin 27 of IC2001 on Main C.B.A.	2451.5 247 Inno Rec Mode
39 No	ot used		
40 No	ot used		

6.1.11. EEPROM DATA

CAUTION:

Be sure to save the EEPROM data using PC-EVR Adjustment Program before service and adjustment in order to make sure to avoid an accidental data loss, etc. using PC-EVR Adjustment Program.

Click the desired button in Data editor menu for saving the EEPROM data, writting the EEPROM data which you stored in your

PC to the EEPROM IC, or writing the initial data to the EEPROM IC.

EEPROM IC

C.B.A.	EEPROM IC Ref. No.
Main C.B.A.	IC306

6.1.12. HOW TO REPLACE THE LAMP

DANGER:

Use only replacement Lamp (PART NO. VLLW0015) supplied by Panasonic to reduce risk of fire. Handle new Lamp with cloth or tissue as skin oils will decrease Lamp life.

Remove Light Protector and allow Lamp to cool before replacing to avoid possible burn hazard.

Fig. 7

6.1.13. HOW TO ACCESS THE MANUAL TRACKING CONTROL

Press the UP (Tracking Up) or Down (Tracking Down) button to perform the Manual Tracking Adjustment in Playback Mode.

6.1.14. SPECIAL NOTE

All integrated circuits and many other semiconductor devices are electrostatically sensitive and therefore require the special handlings techniques described under the "ELECTROSTATICALLY SENSITIVE (ES) DEVICES" section of this service manual.

6.1.15. MODEL NO. IDENTIFICATION MARK

Use Marks shown in the chart below to distinguish the different models included in this Service Manual.

MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D
NOT USED	PT

Note:

Refer to Item 3 of Schematic Diagram Notes of Schematic Diagram and Circuit Board Layout Notes, for Mark "PT."

7. DISASSEMBLY/ASSEMBLY PROCEDURES

7.1. CABINET SECTION

7.1.1. DISASSEMBLY FLOWCHART

This flow chart indicates the disassembly steps of the cabinet parts and the P.C.Boards in order to gain access to item (s) to be serviced. When reassembling, perform the step (s) in the reverse order. Bend, route and dress the wires as they were originally.

Note:

- 1. When removing the cabinet, work with care so as not to break the Locking Tabs.
- 2. Place a cloth or some other soft material under the P.C. Boards or Unit to prevent damage.
- 3. When reinstalling, ensure that the connectors are connected and electrical components have not been damaged.
- 4. Do not supply power to the unit during disassembly and reassembly.
- 7.1.2. Disassembly Method
- 7.2. MECHANISM SECTION
- 7.2.1. Disassembly Method

This procedure starts with the condition that the cabinet parts and Main C.B.A. have been removed.

When reassembling, perform the step(s) in the reverse order.

Perform all disassembly and alignments procedures in STOP Position except disassembly and alignment procedures which have the special Notes.

STEP LOC. No.	Prior Step (s)	Part	Fig. No.	Remove
(1)	-	Cassette Up Unit	DM3-1,2	2 (63), 2(L-1)
2	-	Cylinder Unit	DM4-1	3 (S), Hooking Portion
<u>(3)</u>		Not used	-	
(4)	-	Not used	-	-
(5)	2	Bulge Chip	DM4-2	(ē2))
6	-	P.C.B. Angle	DM5	(1)
7	-	Mechanism F.P.C. Unit	DM6-1,2	4 (1), Hooking Portion, double-sided adhesive tape, Unsolder
(a)		T	D14= 4 4	Gear Alignment (x1)
<u>8</u> 9	1,9	Tension Unit	DM7-1,2	(f), Hooking Portion (f), (fi)
(10)	1,8	Reel Table Unit	DM7-1,2	
	1,8,9	Rev Clutch	DM8	(f)
1	1	Take Gear	DM9-1,2	(L-1)
12	1,11	Rev Brake Arm Unit	DM9-1,2	(iii), Hooking Portion
13	•	A/C Head Unit	DM10	🔞 , Unsolder
<u>(4)</u>	=	Capstan Belt	DM11	·
(15)	6,13,14	Capstan Unit	DM12	3(0)
<u>(6)</u>	1,6,7,11,12,14	Idler Arm Unit	DM13	0
<u>①</u>	2	Mechanism Support Angle	DM14	(6)
13	1	Reduction Gear B	DM15	(1)
<u> </u>	-	Reduction Gear A	DM16	(0)
20	1,18	Reduction Gear Unit	DM16	2(3)
(<u>1</u>)	1	Pinch Arm Unit	DM17	<u> </u>
(22)	-	Not used	-	-
<u>(23)</u>	-	Not used	-	-
3	1,17	Takeup Post Unit	DM18-1,2	(4)
25)	1	Supply Post Unit	DM18-1,2	₩
26	-	Impedance Roller Unit	DM19-1,2	(19)
27	1,2,13,24,25	Loading Base Unit	DM19-1,2	4 🕦
28)	1,2,8,9,13,24,25,27	Takeup Loading Arm Unit	DM20	- Gear Alignment (x1)
29	1,2,8,9,13,24,25,27	Supply Loading Arm Unit	DM21-1,2,3	- Gear Alignment (x2)
30	8,9,19	Loading Motor Unit	DM22	2(1)
3	1,2,8,9,10,18,19,20,24,25,27,29,30	Main Cam Unit	DM22	-
32	1,2,8,9,10,18,19,20,24,25,27,29,30,31	Pinch Toggle	DM22	-
A	A	A	A	<u> </u>
A	I B	Ġ	D D	I E

How to read chart shown above:
A: Order of Procedure steps.
When reassembling, perform steps(s) in reverse order.
These numbers are also used as the identification (location) No. of parts in Figures.

- (coation) No. of parts in Figures.

 E. Steps to be completed prior to the current step.

 C: Part to be removed or installed.

 D: Fig. No. showing Procedure or Part Location.

 E: Identification of part to be removed, unhooked, unlocked, released, unplugged, unclamped, or unsoldered.

 2 = 2 Screws = 2.2(L-1) = 2 Looking Tabs (L-1)
- CAUTION:
- a. Use a wrist strap to provide ESD protection while disassembling or assembling.
 b. Removed Cut Washer is not reusable. If removed, install
- a new one.
 Following Cut Washers are to be used:

Ref. No.	Part No.
409	VMXW0217
(11)	VMXW0213
4 19	VMX2026

7.2.2. Inner Parts Location

Note:
BOX indicates alignment (Gear alignment or Tape Interchangeability adjustment) required when a part is replaced.

7.2.2.1. TOP VIEW

Fig. DM1-1

7.2.2.2. BOTTOM VIEW

7.2.3. STOP Position Confirmation

Fig. DM2

Perform all disassembly and alignments procedures in STOP Position except disassembly and alignment procedures which have the special Notes.

7.2.4. Cassette Up Unit

Fig. DM3-1-1

Fig. DM3-1-2

Fig. DM3-2-1

Fig. DM3-2-2

7.2.5. Cylinder Unit

Fig. DM4-1-1

Fig. DM4-1-2

7.2.6. Bugle Chip

Fig. DM4-2

7.2.7. P.C.B. Angle

Fig. DM5

7.2.8. Mechanism F.P.C Unit

Fig. DM6-1

Fig. DM6-2

7.2.9. Tension Unit, Reel Table Unit

Fig. DM7-1

Fig. DM7-2

7.2.10. Rev Clutch

Fig. DM8

7.2.11. Take Gear, Rev Brake Arm Unit

Fig. DM9-1

Fig. DM9-2

7.2.12. A/C Head Unit

Fig. DM10

7.2.13. Capstan Belt

Fig. DM11

7.2.14. Capstan Unit

Fig. DM12

7.2.15. Idle Arm Unit

Fig. DM13

7.2.16. Mechanism Support Angle

Fig. DM14

7.2.17. Reduction Gear B

Fig. DM15

7.2.18. Reduction Gear A, Reduction Gear Unit Fig. DM16

7.2.19. Pinch Arm Unit

Fig. DM17

7.2.20. Takeup Post Unit, Supply Post Unit Fig. DM18-1

Fig. DM18-2

Reassembly Note:

- 1. Installation of the Supply Post Unit and the Takeup Post Unit
- (1) Confirm that the end of the arm (the threaded hole) of Supply Loading Arm Unit and the end of the arm (the threaded hole) of Takeup Loading Arm Unit are in the end of the guide slots.
- (2) Install the Supply Post Unit and the Takeup Post Unit into Position "A" and "B" while being careful of the direction of the Supply Post Unit and the Takeup Post
- (3) Slide the Supply Post Unit and the Takeup Post Unit to the end of guide slots as shown.

- (4) Align the Hole of the Supply Loading Arm Unit with the Threaded Hole of the Supply Post Unit. Do the Same with the Takeup Post Unit.
 (5) Tighten a Screw (4) and (6).
 Caution:

Be careful of the following when tightening a Screw 4 and (416).

- 1. Be sure to tighten screws straight.
- 2. Do not over tighten screws.
- Adjustment of the Supply Boat Unit and Takeup Boat Unit
- After replacing, perform the "Tape Interchangeability Adjustment" procedures.

7.2.21. Impedance Roller Unit, Loading Base Unit Fig. DM19-1

- Do not apply excessive pressure to the Impedance Roller Unit.
 Removal of the Loading Base Unit
- Do not apply excessive pressure to the Loading Base Unit so as not to bend.
- (1) When removing the Loading Base Unit, remove 4 Screws (13).
 (2) Release 2 Guide Pins while lifting up the Loading Base Unit slightly. Then, remove the Loading Base Unit after sliding as indicated by the arrow.

Fig. DM19-2

7.2.22. Takeup Loading Arm Unit

Fig. DM20

7.2.23. Supply Loading Arm Unit

Fig. DM21-1

Fig. DM21-2

Fig. DM21-3

7.2.24. Loading Motor Unit, Main Cam Unit, Pinch Toggle Fig. DM22

- Reassembly Note:
 1. Do not pull the Eject Lever upward so as not to bend it.
 2. Installation of the Pinch Toggle and the Main Cam
- Unit
- (1) Install the Pinch Toggle so that the Pinch Toggle Hole fit over the Guide Pin.
- (2) Install the Main Cam Unit so that Guide Pin fits in the Main Cam Unit Hole.
- Installation of the Loading Motor Unit
- (1) Install the Loading Motor Unit the Guide Pin fits in Hole on chassis.
- (2) Tighten 2 Screws (14). If the 2 Screws (14) can not reach Threaded Holes, push down on the upper side of the Loading Motor Unit to tighten 2 Screws (11).

8. ADJUSTMENT PROCEDURES

8.1. SERVICE FIXTURES& TOOLS

8.2. MECHANICAL ADJUSTMENT

8.2.1. CLEANING PROCEDURE FOR THE UPPER CYLINDER UNIT

1. While slowly turning the Upper Cylinder Unit counterclockwise by hand, gently rub the Video Heads with a Head Cleaning Stick (VFK27) moistened with Isopropyl Alcohol 91 %.

Fig. M1

Head Cleaning
Stick (VFK27)

Counterclockwise

Note:

A. Do not rub vertically or apply excess pressure to the Video Heads.

Do not turn the Upper Cylinder Unit clockwise while cleaning.

B. After cleaning, use a Dry Head Cleaning Stick (VFK27) to remove any Isopropyl Alcohol 91 % remaining on the cylinder tape path. Otherwise, tape damage will occur.

8.2.2. ADJUSTMENT PROCEDURES

8.2.2.1. TAPE INTERCHANGEABILITY ADJUSTMENT

Before perform these Adjustment/Confirmation procedures, be sure to complete following items.

1. Connect the TP Board to S301 on the camcorder. Refer to "HOW TO USE TP BOARD" in "SERVICE NOTES."

Fig. M2-1

- 2. Put the unit into the service mode "I. TRACKING FIX" to defeat Auto Tracking. Refer to "SERVICE MODE SPECIFICATION (SELF-DIAGNOSTIC SYSTEM)" in "SERVICE NOTES."
- 3. Remove the Cassette Lid Cover from the Cassette Tape or the Alignment Tape.

Release Projections

Cassette Lid Cover

Fig. M2-2

Equipment Required:

Dual Trace Oscilloscope

VHS-C Alignment Tape (VFMS0004H6C)

VHS-C Alignment Tape (VFMW0001C)

Screwdriver Set (Purchase Locally)

TP Board

TP Adjustment Cable 40P (LSUP0005A)

TP Adjustment P.C.B. 40P (VFKW0123B)

TP Clip 36P (LSUP0005C)

8.2.2.1.1. ENVELOPE OUTPUT ADJUSTMENT

The height of the S and T Posts replacement part is preset at the factory.

Purpose:

To achieve a satisfactory picture and secure precise tracking.

Symptom of Misadjustment:

If the envelope is output poorly, much noise will appear in the picture. Then the tracking will lose precision and the playback picture will be distorted by any slight variation of the tracking control circuit.

- 1. Put the unit into the service mode "I. Tracking Fix" to defeat Auto Tracking. Refer to "SERVICE MODE SPECIFICATION (SELF-DIAGNOSTIC SYSTEM)" in "SERVICE NOTES."
- 2. Connect the oscilloscope to Pin 32 (Envelope signal) on the TP Adjustment P.C.B. Use Pin 33 (Head Switch signal) as a trigger.
- 3. Play back the VHS-C Alignment Tape (VFMS0004H6C).
- 4. Confirm that the RF envelope is flat enough. If not, with Flat Headed (—) Screwdriver, adjust S and T post height so that the envelope waveform becomes as flat as possible (No envelope drop). If the envelope drop appears on the left-halfofthewaveform, adjust S post height. If the envelope drop appears on the right-half of the waveform, adjust T post height.

CAUTION: Do not apply excessive pressure onto the S and T Posts when adjusting S and T post height.

Fig. M3-1
Before Adjustment

Left-half Right-half Adjust T Post
Adjust T Post

Oscilloscope

After Adjustment

Make flat (square) as possible.

Fig. M3-2

Oscilloscope

Note:

It will be possible to confirm step 4) after performing the following steps.

- A. Exit the "I. TRACKING FIX" mode, then skip the "J. PG SHIFTER" mode to enter other modes (except these 2). Or, close the service mode.
- B. Press the Tracking Control Up or Down button on the camcorder. Make sure that the envelope waveform remains flat. If not, readjust S and/or T post heights.
- 5. After adjustment, confirm that the tape travels without curing at S and T posts.

If curing is apparent, readjust the height of posts.

Fig. M3-3

Curing

Curing

No Good

Curing

8.2.2.1.2. A/C HEAD HEIGHT ADJUSTMENT

The height of the A/C Head replacement part is preset at the factory.

Purpose:

To be sure the tape runs properly along the Control Head.

Symptom of Misadjustment:

If the control signal is not properly picked up, Servo Operation can not be achieved.

- 1. Connect the oscilloscope to Pin 25 (PB Control signal) on the TP Adjustment P.C.B.
- 2. Play back the VHS-C Alignment Tape (VFMW0001C)
- 3. Confirm that the Sub Control Signal is 500 mV±200 mV. If not,

slightly and equally adjust Screw A, Screw B, and Screw C on the A/C Head Unit to achieve the sub control signal level of 500 mV± 200 mV.

(Sub Control Signal level will decrease when rotating screws clockwise, and increase when rotating screws counterclockwise.)

Fig. M4-1

Fig. M4-2

8.2.2.1.3. A/C HEAD AZIMUTH ADJUSTMENT

Purpose:

To adjust the position and height of the A/C Head so that it meets the tape tracks properly.

Symptom of Misadjustment:

If the position of the A/C Head is not properly adjusted, the Audio S/N Ratio will be poor.

- 1. Connect the Audio/Video Cable on the camcorder.
- 2. Connect the oscilloscope to audio output jack.
- 3. Playback the VHS-C Alignment Tape (VFMS0004H6C).
- 4. Adjust Screw C (Azimuth) on the A/C Head Unit so that the output level is at maximum.

- 5. Confirm and readjust the A/C Head height.
- 6. Confirm and readjust Screw C (Azimuth) on the A/C Head so that the output audio becomes is maximum.

8.2.2.1.4. A/C HEAD HORIZONTAL POSITION ADJUSTMENT

Purpose:

To adjust the Horizontal Position of the A/C Head.

Symptom of Misadjustment:

If the Horizontal Position of the A/C Head is not properly adjusted, maximum envelope can not be obtained at the Neutral Position of the Tracking Control Circuit.

- 1. Put the unit into the service mode "I. TRACKING FIX" to defeat Auto Tracking. Refer to "SERVICE MODE SPECIFICATION (SELF-DIAGNOSTIC SYSTEM)" in "SERVICE NOTES."
- 2. Connect the oscilloscope to Pin 32 (Envelope signal) on the TP Adjustment P.C.B. Use Pin 33 (Head Switch signal) as a trigger.
- 3. Play back the VHS-C Alignment Tape (VFMS0004H6C).
- 4. Set the Screwdriver into the Hole (A) as shown.

Fig. M6-1

5. Slowly move the A/C Head Unit to the direction "A" or "B" as shown so that the envelope is at maximum.

Fig. M6-2

6. To find the center of the maximum period of the envelope, move the A/C Head Unit to confirm the limits on either side of the maximum period.

Note:

It will be possible to confirm step 6) after performing the following steps.

- 1. Exit the "I. TRACKING FIX" mode, then skip the "J. PG SHIFTER" mode to enter other modes (except these 2). Or, close the service mode.
- 2. Press the Tracking Control Up Button on the camcorder several times (count the number of times pressed) until the maximum envelope is reduced to 1/2.
- 3. Press the Tracking Control Down Button on the camcorder several times (count the number of times pressed) until the maximum envelope is reduced to 1/2.
- 4. If the number of pressing is not the same, readjust A/C Head horizontal position.

8.2.2.1.5. CONFIRMATION OF ENVELOPE OUTPUT

Purpose:

To achieve a satisfactory picture and secure precise tracking.

Symptom of Misadjustment:

If the envelope is output poorly, much noise will appear in the picture. Then the tracking will lose precision and the playback picture will be distorted by any slight variation of the tracking control circuit.

- 1. Connect the oscilloscope to Pin 32 (Envelope signal) on the TP Adjustment P.C.B. Use Pin 33 (Head Switch signal) as a trigger.
- 2. Play back the VHS-C Alignment Tape (VFMS0004H6C).
- 3. Confirm that the envelope waveform is as flat as possible (V1/V(max) 0.7).

If adjustment is required, adjust S Post and/or T Post with "—" Screwdriver, Refer to "ENVELOPE OUTPUT ADJUSTMENT."

Fig. M7

Theoretical Waveform

V1

V1/V(max) ≥ 0.7

8.3. ELECTRICAL ADJUSTMENT

8.3.1. INITIAL GUIDELINE

The table below shows which adjustments are necessary according to the unit parts and individual parts to be replaced. Make sure to perform these adjustments shown below as necessary.

Replacement Parts Adjustment Item		MAIN C.B.A.	IC301(DIGITAL SIGNAL PROCESSOR)	IC306(EEPROM)	IC501(CAMERA/DSC MICROCONTROLLER)	IC309(HALL AMP)	IC602(TIMING SIGNAL GENERATOR)	IC605(SAMPLING HOLD&AGC CONTROL)	IC3001(LUMINANCE/CHROMINANCE SIGNAL PROCESS)	IC3002(TWIN CCD 1H DELAY)	X601	BATTERY CATCHER C.B.A.	IC901(EVF SIGNAL PROCESS)	LCD C.B.A.	IC9001(RGB SIGNAL PROCESS/LCD PANEL INDICATOR CONTROL)	IC9002(OP. AMP)	CCD C.B.A.	LENS UNIT	CYLINDER UNIT	L3031, C3157, D3006 (4.84 MHz Trap Circuit)
Camera	Frequency Adjustment	O	Ш				\circ			_ (9									Ш
Section	VCO Adjustment	Q	Ш	\bigcirc	<u> </u>			Ш	잌	\Box	_									Ш
	Burst/Sync Level Adjustment	Q		\bigcirc					9	\dashv					Ш					Ш
	Hall Amp Adjustment	Q	\cup	\bigcirc	\cup	\circ		\circ	_	\perp	4							\bigcirc		Ш
	Auto Focus Adjustment	\mathbb{R}	╙	\mathbb{R}	1				\dashv	\dashv	\dashv				Н			2		Н
	A/D Input Level Adjustment	K		\subseteq	1			\supseteq		\perp	\dashv						\mathcal{C}			Ш
	Iris PWM Adjustment	K	\cong	2	1	\circ		\bowtie	4	\dashv	4				Н		K	\cup		Н
	YH Level Adjustment	12	\cong	\mathbb{R}	1			\mathbb{R}^{2}	\dashv	\dashv	\dashv				Н		\geq			Н
	Auto white balance Adjustment	\mathbb{R}	\cup	\cong	1			\cup		\dashv	\dashv				Н	_	\circ		_	Н
VCR Section	Playback Video Level Adjustment	K	L	\subseteq	1				의	\dashv	_									Ш
	Sync Tip Frequency Adjustment	P	Ш	\bigcirc	1			Ш	잌	\perp	4									Ш
	Deviation Adjustment	M		Q	1			Ш	의	\Box										
	Rec Level Adjustment	Q		0	1			Ш	잌		_				Ш					Ш
	Comb Filter Gain Adjustment	Q	Ш	\bigcirc	1_			Щ	의	9	_									Ш
	YNR Adjustment	Ŏ	Ш	\bigcirc	1			\sqcup	\cup		4				Н					Н
	Head Switching Position Adjustment	Q	Ш	Q	1			Ш	_		_				Ш				\cup	
	4.84 MHz Trap Adjustment	Ø	Ш	Ø	1			Ш		\Box					Ш					\cup
EVF Section	PLL Adjustment	Ď		(1_			\sqcup		\sqcup	_	Ö	Ö		Ш					Ш
	Contrast (V1/V2/V3) Adjustment	Q	Ш	Q				Ш		Ц	4	Q	Q	Ш	Ш			Ш	Ш	Ш
	Brightness (V1/V2/V3) Adjustment	Q	Ш	\bigcirc				Ш	4		4	Ŏ	0		Ш			Ц		Ц
	Black Limiter Adjustment	Q	L	Ø	_	Щ		Щ	_	Ц	_	\supseteq	\square		Ш			Щ	Щ	Ц
	VCOM Level Adjustment	R	Ш	K	_			Ш	4	\Box	4	\cup	\square	L					Щ	Н
LCD Section	PLL Adjustment	Q	Ш	\bigcirc	1			Ш			4			\bigcirc	Q					Ш
	Pedestal Level Adjustment	Q	Ш	Q	1_		Ш	Ш			_		Ш	Ŏ	Ŏ	Ц		Ш		Ц
	Contrast Adjustment	Q	Ш	Ø	1_			Ш		Ц	_		Ш	Ŏ	Ŏ					Ш
	RB Sub Pedestal Adjustment	Q		Q	1_			Ш	_		_			Ŏ	Õ	Ш			Щ	Ш
	RB Sub Contrast Adjustment	Õ	┖	Q	_			\square						Õ	Õ					Ш
	Color Gain Adjustment	Q		0	1			Ш						OC	Q					
	VCOM level Adjustment	\bigcirc		0										0	0	0				Ш
	Common bias Adjustment	O		O										Ō	O					

Note: (): Adjustment Item

8.3.2. TEST EQUIPMENT

To do all of the Electrical Adjustment, the following equipments are required.

1. Dual-Trace Oscilloscope

Voltage Range: 0.001 to 50 V/Div. Frequency Range: DC to 50 MHz

Probes: 10:1, 1:1

- 2. DVM (Digital Volt Meter)
- 3. Frequency Counter
- 4. Color TV Monitor
- 5. VHS-C Alignment Tape (VFMS0004H6C)

- 6. Vectorscope
- 7. Plastic Tip Driver
- 8. Audio Video Cable (VJAW0032)
- 9. Power Supply for Interface Box.
- **10. Personal Computer**

PC: IBM PC/AT or compatible

OS: Microsoft ® Windows ® 95 - Windows ® XP

CPU: 486 or higher

Drive: 3.5 inch 1.44 MB floppy disk drive

Port: D-Sub-9-pin Serial or D-Sub-25-pin Serial

Monitor: VGA Color

11. PC-EVR Adjustment Program (VF0C2003DV10)

Note:

Ask latest version when placing order for PC-EVR Adjustment program.

12. CAAS Kit (VFKW1000)

Interface Box (VFKW1000AA)

Camera Connecting Cable (VFKW1000B)

9 Pin RS-232C Cable (VFKW1000C)

25 Pin RS-232C Cable (VFKW1000D)

- 13. TP Adjustment Cable 40P (LSUP0005A)
- 14. TP Adjustment P.C.B. 40P (VFKW0123B)
- 15. TP Clip 36P (LSUP0005C)

(adjustment equipment with using Infinity Lens)

- 16. Lighting (Light Box (VFK1164LBX1) is recommended)
- 17. Infinity Lens (VFK1164TCM02) (with Focus Chart)
- 18. 52, 49, 46 or 43 mm Ring (VFK1164TAR53, VFK1164TAR49, VFK1164TAR46 or VFK1164TAR43)
- 19. Gray Scale Chart (VFK1164TFGS2)
- 20. Color Bar Chart (VFK1164TFCB2)
- 21. White Chart (VFK1164TFWC2)

22. Color Conversion Filter (VFK1164TFCT2) (adjustment equipment without using Infinity Lens)

- 23. Lighting (Halogen Lamp (2000 lux))
- 24. Reflection Chart

Reflection Chart Set (VFKS003-N)
(Reflection Chart Set consists of Gray Scale Chart (VFKS003A),
Color Bar Chart (VFKS003B), Registration Chart (VFKS003C), and
Resolution Chart (VFKS003D)) Gray Scale Chart (VFKS003A)
Color Bar Chart (VFKS003B) Registration Chart (VFKS003C)
ResolutionChart(VFKS003D)Color Chip Chart (VFKW0116)

- 25. Color Temperature Conversion Filter 80A or equivalent Color Temperature Conversion Filter
- 26. Color Compensating Filter CC05M
- 27. A.W.B. Adjustment Fixture (VFKW0066)

8.3.3. PREPARATION

- 1. Connect the Interface Box to the TP Board with Camera Connecting Cable (VFKW1000B).
- 2. Connect the Interface Box to the Personal Computer with RS-232C Cable (VFKW1000C or VFKW1000D).
- 3. Connect the TP Board to S301 on the camcorder. Refer to "HOW TO USE TP BOARD" in "SERVICE NOTES."
- 4. Connect the AC Adaptor and camcorder, and apply DC +6 V to the Interface Box.
- 5. Power on the camcorder.

Note:

In case that the camcorder is in DEMO mode, release DEMO mode as follows:

- 1. Press MENU button for MENU mode. Then, press UP or DOWN button to select "SELF DEMO."
- 2. Press M.FOCUS button to select "OFF."
- 3. Press MENU to exit.

CAUTION:

- 1. Do not connect or disconnect any cables while the camcorder is powered on.
- 2. Before using the TP Board, be sure to clean S301 pattern with alcohol and confirm that there is no dust in the TP Clip.
- 3. To achieve the best adjustment results, warm up the camcorder for approx. 30 minutes before adjustment.
- 4. When removing the TP Clip from S301 on the camcorder, be sure to pinch the grips.

Fig. E1-1

6. Set up the camcorder for adjustment as follows:

Fig. E1-2

Note: (in Method 1)

- 1. Connect the 52, 49, 46 or 43 mm Ring to the Infinity Lens. Then, insert it into the Light Box.
- 2. Set the camcorder so that the Decoration Ring of the camcorder is firmly against the 52, 49, 46 or 43 mm Ring.

 When performing this operation, ensure that there is no gap

between the Decoration Ring and the 52, 49, 46 or 43 mm and that no external light can enter.

Figure

For necessary equipments marked A in Fig. E1-2, refer to the following table. Method 2 Light Box
Infinity Lers i 52, 49, 46 or 43 mm F
Focus Chart
Giay Scale Chart
Color Bar Crart
White Chart
Color Cornession Filter
Halogen Lamp
Ary Object (High contrast)
Giay Scale Chart
Color Cornession Filter
White Chart
Color Cornession Filter
Color Chart
Color Cornession Filter
Color Cornession Filter
A.W. B. Adjustment Fixture Necessary equipment Adjustment Item Note: Refer to "Frequency Adjustment" procedure Camera Section Frequency Adjustment VCO Adjustment Not used Burst/Sync Leve Adjustment Hall Amp Adjustment Auto Focus Adjustment (Automatic Adjustment) Not available (Note 1) A/D Input Level Adjustment Iris PWM Adjustment YH Level Adjustment Auto White Balance Adjustment 1 Indoor Preset Adjustment 2 Indoor Input Adjustment 3 Color Phase & R-Y, B-Y Gain Adjustment (Indoor Mode) 4 Outdoor Preset Adjustment 5 Outdoor Input Adjustment 6 Color Phase & R-Y, B-Y Gain Adjustment (Outdoor Mode VCR Section Playback Video Level Adjustment Sync Tip Frequency Acjustment Not used Caviation Adjustment Rec Level Adjustment Comb Filter Gain Adjustment YNF, Adjustment Head Switching Position Adjustment 4.84 MHz Trap Atljustment EVF Section PLL Adjustment Contrast (V1/V2/V3) Adjustment Brightness (V1AV2AV9) Adjustment Black Limiter Adjustment VCOM Level Adjustment LCD Section PLL Adjuetment Not used Pedestal Level Adjustment Contrest Adjustment RB Sup Pedestal Level Adjustment RB Sub Contrast Level Adjustment Color Gain Adjustment VCOM Level Adjustment Common Bias Adjustment

Note 1: Auto Focus adjustment (Automatic adjustment) is available only for Method 1.

Note 2: When performing Auto Focus Adjustment (Automatic Adjustment), be sure to perform under low light conditions.

To carry out this adjustment using the Light Box, create low light conditions artificially as follows.

Set the shutter speed to 1/10,000 or 1/4,000 on the menu display and confirm that there is no flicker in the Focus Chart Image at the selected shutter speed.

8.3.4. SET UP OF PC-EVR ADJUSTMENT PROGRAM

- 1. Turn on the PC and install the PC-EVR Adjustment Program into the PC.
- 2. Execute the "kc2003.exe" file by double clicking to start up the PC -EVR Adjustment Program.

The main menu display will be displayed.

Note:

The adjusted data is stored to the EEPROM IC after each adjustment.

8.3.5. FREQUENCY ADJUSTMENT

When replacing crystal oscillator (X601), confirm the Burst Frequency according to the

```
procedure below.
```

8.3.5.1. CAMERA SECTION

Purpose:

To set the chroma subcarrier.

Symptom of Misadjustment:

The picture will have no color. (The burst shifts)

Test Point:

TP601 (Main C.B.A.)

Adjustment:

C619, C620 (Main C.B.A.)

Specification:

14.31789 MHz ~ 14.31847 MHz (For model with Photo Shot function) 9.53477 MHz ~ 9.53515 MHz (For model without Photo Shot function)

Input:

Mode:

Equipment:

Frequency counter

Adjustment Procedure:

- 1. Place the unit in Service Position to gain access to C619 and C620 on the Main C.B.A. (foil side).
- 2. Connect the Frequency counter to TP601 on the Main C.B.A. (For model with Photo Shot function)
 - A. If the frequency is under 14.31789 MHz, be sure to remove the Capacitor C619 on the Main C.B.A.
 - Then, confirm the frequency is between 14.31789 MHz and 14.31847 MHz.
 - B. If the frequency is over 14.31847 MHz, install a Capacitor (a widely used capacitor: ECJ1VC1H010C) to C620 on the Main C.B.A.

Then, confirm the frequency is between 14.31789 MHz and

14.31847 MHz.

Fig. E2-1

(For model without Photo Shot function)

A. If the frequency is under 9.53477 MHz, be sure to remove the Capacitor C619 on the Main C.B.A.

Then, confirm the frequency is between 9.53477 MHz and 9.53515 MHz.

B. If the frequency is over 9.53515 MHz, install a Capacitor (a widely used capacitor: ECJ1VC1H020C) to C620 on the Main C.B.A.

Then, confirm the frequency is between 9.53477 MHz and 9.53515 MHz.

8.3.6. TEST POINTS AND CONTROL LOCATION

Test Point Information

O Test Point with no Test Pin.

9. SCHEMATIC DIAGRAMS

- 9.1. SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES
- 9.2. MAIN SCHEMATIC DIAGRAMS (Models: VM-L153/PV-L353/PV-L353-K)
- 9.3. MAIN SCHEMATIC DIAGRAMS (Model: PV-L453)
- 9.4. LCD SCHEMATIC DIAGRAMS
- 9.5. BATTERY CATCHER SCHEMATIC DIAGRAMS
- 9.6. HEAD AMP SCHEMATIC DIAGRAM
- 9.7. LCD SHAFT UNIT/CCD/MICROPHONE UNIT SCHEMATIC DIAGRAMS
- 9.8. TOP OPERATION UNIT/SIDE L OPERATION UNIT/MECHANISM FPC UNIT SCHEMATIC DIAGRAMS
- 9.9. INTERCONNECTION SCHEMATIC DIAGRAM

- 9.10. SIGNAL WAVEFORMS
- 9.11. VOLTAGE CHART

10. CIRCUIT BOARD LAYOUT

- 10.1. MAIN C.B.A. (Models: VM-L153/PV-L353/PV-L353-K)
- 10.2. MAIN C.B.A. (Model: PV-L453)
- 10.3. LCD C.B.A.
- 10.4. BATTERY CATCHER C.B.A.
- 10.5. MECHANISM FPC UNIT
- 11. BLOCK DIAGRAMS
- 12. EXPLODED VIEWS
- 12.1. MAIN PARTS SECTION

12.2. CASSETTE COVER AND LCD SECTION

12.3. SIDE CASE L SECTION

12.4. TOP CASE SECTION

12.5. FRONT CASE SECTION

12.6. LENS SECTION

12.7. SIDE CASE R SECTION

12.8. VCR MECHANISM SECTION

12.9. PACKING PARTS AND ACCESSORIES SECTION

9 PACKING PARTS AND ACCESSORIES SECTION

13. REPLACEMENT PARTS LISTS

BEFORE REPLACING PARTS, READ THE FOLLOWING:

13.1. REPLACEMENT NOTES

13.1.1. General Notes

1. Use only original replacement parts:

To maintain original function and reliability of repaired units, use

only original replacement parts which are listed with their part numbers in the parts list.

2. IMPORTANT SAFETY NOTICE

Components identified by the sign \triangle have special characteristics important for safety. When replacing any of these components, use only the specified parts.

3. SPECIAL NOTE

All integrated circuits and many other semiconductor devices are electrostatically sensitive and therefore require the special handling techniques described under the "ELECTROSTATICALLY SENSITIVE (ES) DEVICES" section of this service manual.

- 4. Parts with no Ref. No. in "EXPLODED VIEWS" are not supplied.
 And some Ref. No. will be skipped. Be sure to make your orders of replacement parts according to the parts list.
- 5. Parts different in shape or size may be used. However, only interchangeable parts will be supplied as service replacement parts.
- 6. Definition of Parts supplier:
 - A. Parts with mark "SPC" in the Remarks column are supplied from Spare Parts Center of Panasonic AVC Company.
 - B. Parts with mark "MKE" in the Remarks column are supplied from MKE.
 - C. Parts without mark in the Remarks column are supplied from MKI.
- 7. Item numbers with capital letter E (Example: E10, E20,...) in the Ref. No. column are shown in the exploded views.
- 8. Parts whose Ref. Nos. are the same are interchangeable as replacement parts. Any of these parts may be ordered and used as a replacement part.

13.1.2. Mechanical Replacement Notes

- 1. Section No. of parts shown in Exploded Views are indicated in the Remarks column.
- 2. Abbreviation

RTL: Retention Time Limited

This indicates that the retention time is limited for this item. After the discontinuation of this item in production, it will no longer be available.

- 3. Cut Washers (Ref No. 409, 411, and 419) are not reusable. If removed, install a new one.
- 4. After replacing Mechanism Chassis Ass'y (Ref. No. 49) or Mechanism Chassis Sub Ass'y (Ref. No. 213), perform the Tape Interchangeability Adjustment procedures. Refer to "TAPE INTERCHANGEABILITYADJUSTMENT" in MECHANICAL ADJUSTMENT.
- 5. Lamp (Ref No. 340) replacement note:

 DANGER: Use only replacement Lamp (PART NO. VLLW0015)

 supplied by Panasonic to reduce risk of fire. Handle new Lamp

 with cloth or tissue as skin oils will decrease Lamp life. Remove
 Light Protector and allow Lamp to cool before

 replacingtoavoidpossible burn hazard.

13.1.3. Electrical Replacement Notes

1. Unless otherwise specified; All resistors are in Ω , $K = 1,000 \Omega$, $M = 1,000 k \Omega$.

2. Abbreviation

RTL: Retention Time Limited

This indicates that the retention time is limited for this item. After the discontinuation of this item in production, it will no longer be available.

NR: Non Repairable Board Ass'y MGF CHIP: Metal Glaze Film Chip

C CHIP: Ceramic Chip

COMPLX CMP: Complex Component W FLMPRF: Wirewound Flameproof

C.B.A.: Circuit Board Assembly P.C.B.: Printed Circuit Board

E.S.D.: Electrostatically Sensitive Devices

3. SERVICE OF CHIP PARTS

When servicing chip parts, please use a soldering iron of less

than 30 W.

- 4. When replacing 0 \(\text{P} \) resistor, a wire can be substituted for it.
- 5. IC306 replacement note:
 When replacing this IC, be sure to write the initial data with PC-EVR Adjustment Program.
- 6. Resistors on Liquid Crystal Dispaly C.B.A. (Ref. No. E30) replacement note:

Some resistors on Liquid Crystal Display C.B.A. have Ref. Nos. for wire.

Although these resistors are discribed on Circuit Board Layout, they are not discribed on Schematic Diagaram. Refer to "LCD C.B.A." in CIRCUIT BOARD LAYOUT for servicing.

COMPARISON CHART OF MODELS & MARKS

MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D

13.2. MECHANICAL REPLACEMENT PARTS LIST

COMPARISON CHART OF MODELS & MARKS

MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D

Definition of Parts supplier:

- 1. Parts with mark "SPC" in the Remarks column are supplied from Spare Parts Center of Panasonic AVC Company.
- 2. Parts with mark "MKE" in the Remarks column are supplied from MKE.
- 3. Parts without mark in the Remarks column are supplied from MKI.

MECHANICAL REPLACEMENT PARTS

Ref. No.	Part No.	Part Name & Description	Remarks	
<u>7</u>	VDGW0072	TAKE GEAR	8	
9	LSEG0087	CYLINDER UNIT	8	
<u>12</u>	LSEM0071	CAPSTAN UNIT	8	
<u>13</u>	LSEM0068S	FOCUS MOTOR UNIT	6	
<u>15</u>	LSGQ0032	HAND STRAP (A)	3	
15	LSGQ0081	HAND STRAP (B,C,D)	3	
<u>16</u>	LSFL0148	OPTICAL FILTER	6	
<u>17</u>	LSKF0477	EVR COVER (A)	1	
17	LSKF0479	EVR COVER (B,C,D)	1	
<u>29</u>	LSMD0264	BACK UP COVER	7	
<u>31</u>	LSMG0116	FILTER RUBBER	6	
<u>32</u>	VEMW0087	LOADING MOTOR UNIT	8	
<u>33</u>	LSMA0639	P.C.B. ANGLE	8	
<u>37</u>	LSMA0637	MECHANISM SUPPORT ANGLE	8	
<u>40</u>	LSXY0487	CASSETE UP UNIT	8	
<u>44</u>	LSXD0019	TAKEUP POST UNIT	8	
<u> 15</u>	LSXD0018	SUPPLY POST UNIT	8	
<u>48</u>	LSXN0026	LENS UNIT	6	
<u>49</u>	LSXY0482	MECHANISM SUB CHASSIS ASS'Y	8 RTL	
<u>50</u>	LSXY0408	MECHANISM CHASSIS ASS'Y	1 RTL	
<u>51</u>	VXLW0080	TENSION UNIT	8	
<u>52</u>	LSXL0075	PINCH ARM UNIT	8	
<u>54</u>	LSXL0086	IDLER ARM UNIT	8	
<u>55</u>	VXPW0025	REEL TABLE UNIT	8	
<u>56</u>	VXPW0024	REV CLUTCH	8	
<u>58</u>	VXLW0078	TAKEUP LOADING ARM UNIT	8	
<u>59</u>	VXLW0077	SUPPLY LOADING ARM UNIT	8	
<u>61</u>	LSYK1065	ELECTRONIC VIEWFINDER UNIT (A)	7 RTL	
61	LSYK1066	ELECTRONIC VIEWFINDER UNIT (B,C,D)	7 RTL	
<u>67</u>	LSYK1195	CASSETTE COVER UNIT (A)	2	
67	LSYK1194	CASSETTE COVER UNIT (B,C)	2	
67	LSYK1192	CASSETTE COVER UNIT (D)	2	
<u>71</u>	LSJA0276	PC CONNECTION CABLE W/PLUG (D)	9	
71	LSJA0450	PC CONNECTION CABLE W/PLUG (D)	9	
<u>72</u>	LSKM0957	LENS CAP (A)	9	
72	LSKM0937	LENS CAP (B,C,D)	9	
<u>73</u>	LSGQ0049	LENS CAP STRAP	9	
<u>75</u>	LSFT0541	FLOPPY DISK UNIT (D)	9	
77	LSQT0629A	INSTRUCTION BOOK (D)	9	
<u>81</u>	LSJA0391	DC CORD W/PLUG	9	
<u>82</u>	LSJA0390	AUDIO/VIDEO CABLE W/PLUG	9	
83	LSPN0313	CUSHION,STYROFORM	9	
84	VPFW0049	BAG,POLYETHYLENE	9	
<u>85</u>	LSPG1525	PACKING CASE,PAPER (A)	9	
85	LSPG1526	PACKING CASE,PAPER (B)	9	
85	LSPG1512	PACKING CASE,PAPER (C)	9	
85	LSPG1527	PACKING CASE,PAPER (D)	9	
<u>86</u>	LSPN0314	CUSHION COVER	9	
<u>88</u>	LSQF0630	FAN BAG (A)	9	
88	LSQF0628	FAN BAG (B)	9	
88	LSQF0725	FAN BAG (C) 9		
88	LSQF0629	FAN BAG (D)	9	
92	LSFC0012	SHOULDER STRAP	9	
9 <u>3</u>	VYMW0009	CASSETTE ADAPTOR (C)	9	

Ref. No.	Part No.	Part Name & Description	Remarks
<u>95</u>	PV-A20-A	AC ADAPTOR UNIT (A,B,D)	∆ 9
95	PV-A20-K-A	AC ADAPTOR UNIT (C)	<u>A</u> 9
101	N9ZZ00000027	SECURITY TAG (A,B,D)	3
103	CSP-1C	CHECK POINT LABEL (B)	9
107	LSGU0554	TAPE EJECT KNOB	4
115	LSYK1046	SIDE CASE L UNIT, ABS RESIN (A)	3
115	LSYK1047	SIDE CASE L UNIT, ABS RESIN (B,C)	3
115	LSYK1048	SIDE CASE L UNIT, ABS RESIN (D)	3
117	LSMA0662	TRIPOD FRAME	3
128	LSXM0030	MICROPHONE UNIT (A)	5
128	LSXM0029	MICROPHONE UNIT (B,C,D)	5
130	LSEQ0664	TOP OPERATION UNIT	4
131	LSEQ0663	SIDE L OPERATION UNIT	3
148	LSKM0934	EVF CASE,ABS RESIN (A)	7
148	LSKM0859	EVF CASE,ABS RESIN (B,C,D)	7
151	LSKM0849	SIDE CASE RABS RESIN (A)	7
151 151	LSKM0935	. , ,	7
		SIDE CASE RABS RESIN (B,C)	
151	LSKM0936	SIDE CASE R,ABS RESIN (D)	7
<u>152</u>	LSSC0588	SHIELD PLATE, STEEL (D)	7
<u>155</u>	LSJB8212	CCD FLEXIBLE PRINTED CIRCUIT	6
184	LSSC0590	SENSOR SHIELD CASE,STEEL	1 -
<u>186</u>	LSGF0517	LIGHT PROTECTOR	7
188	LSMR0018	LIGHT REFLECTOR	7
<u>190</u>	LSMX0169	STOPPER PIECE (A,B,C)	3
203	LSXY0404	BACK LIGHT UNIT	∆ 2
<u>206</u>	LSMA0647	SHOULDER ANGLE A	7
<u>209</u>	LSMA0643	HAND STRAP ANGLE	3
<u>211</u>	LSXY0321	LIQUID CRYSTAL DISPLAY PANEL UNIT	2
<u>212</u>	LSXY0405	LEAD LIGHT PANEL UNIT	2
<u>213</u>	LSXY0407	MECHANISM CHASSIS SUB ASS'Y	8
<u>214</u>	LSMZ0213	TAPE GUIDE	7
<u>215</u>	LSMZ0210	GUIDE COVER	7
<u>216</u>	LSMZ0214	PROTECTOR	7
<u>221</u>	LSEM0067S	ZOOM MOTOR UNIT	6
<u>228</u>	VMDW0357	BULGE CHIP	8
<u>229</u>	LSMB0248	TAPE GUIDE SPRING	7
234	LSMT0045	LENS RUBBER	6
<u>239</u>	VKFS1021	BATTERY COMPARTMENT LID (C)	9
<u>241</u>	LSFL0149	INFRARED CUT FILTER	6
245	VDVW0003	CAPSTAN BELT	8
268	LSMG0118	EYE CAP	7
273	VXYW0195	REDUCTION GEAR UNIT	8
274	VDGW0063	REDUCTION GEAR A	8
275	LSDG0139	REDUCTION GEAR B	8
277	VXYW0194	MAIN CAM UNIT	6
297	LSMD0784	LENS PIECE	8
309	VMDW0486	PINCH TAPE GUIDE	8
310	VXJW0095	IMPEDANCE ROLLER UNIT	8
312	LSEH0007	AC HEAD UNIT	8
313	VMLW0083	PINCH TOGGLE	8
316	LSXL0083	REV BRAKE ARM UNIT	8
335	LSKM0905	LCD CASE B,ABS RESIN (A)	2
	+		

Ref. No.	Part No.	Part Name & Description	Remarks
<u>340</u>	VLLW0015	LAMP	Δ_7
344	LSEK0504	EVF FLEXIBLE PRINTED CIRCUIT	7
<u> 345</u>	LSMF0057	SHEET,NYLON-RAYON	1,2,3
348	LSEK0505	LCD FLEXIBLE FLAT CABLE W/OUT PLUG,15V,-15V	1
<u>349</u>	LSEQ0540	MECHANISM FLEXIBLE PRINTED CIRCUIT UNIT	8
<u> 355</u>	LSYK1019	LCD CASE A UNIT,ABS RESIN (A)	2
355	LSYK1018	LCD CASE A UNIT,ABS RESIN (B,C)	2
355	LSYK1000	LCD CASE A UNIT,ABS RESIN (D)	2
<u>361</u>	LSEK0480	EVF MAIN UNIT	7
362	LSSC0602	ESD PLATE L,STEEL	3
<u>363</u>	LSMA0665	COOLING PLATE	3
366	LSXA0492	LCD SHAFT UNIT (A)	2
366	LSXA0491	LCD SHAFT UNIT (B,C,D)	2
<u>871</u>	LSSA0002	EARTH CONTACT	8
37 <u>2</u>	LSMB0168	CONTACT SPRING	8
<u>373</u>	LSMA0336	CONTACT PLATE, STEINLESS	8
<u>875</u>	VDGW0059	MOTOR GEAR	8
37 <u>8</u>	LSSC0587	EVF ESD PLATE,STEEL	7
379	LSEK0478	LAMP SOCKET UNIT	7
380	LSGK0131	DECORATION RING (A)	5
380	LSGK0130	DECORATION RING (B,C,D)	5
382	LSGU0558	UP DOWN BUTTON	3
383	LSKM0925	SHAFT COVER (A)	2
383	LSKM0872	SHAFT COVER (B,C,D)	2
387	LSMD0783	COVER HINGE	2
392	LSXA0490	EVF ANGLE UNIT	7
<u> 393</u>	LSYK1055	FRONT CASE UNIT, ABS RESIN (A)	5
393	LSYK1054	FRONT CASE UNIT, ABS RESIN (B,C,D)	5
<u> 394</u>	LSGP0340	RING PANEL	5
<u> 395</u>	LSYK1031	TOP CASE UNIT, ABS RESIN (A)	4
395	LSYK1030	TOP CASE UNIT, ABS RESIN (B,C)	4
395	LSYK1004	TOP CASE UNIT, ABS RESIN (D)	4
396	LSMZ0343	SOUND INSULATION SHEET	2
397	LSSC0603	CONNECTOR SHIELD CASE,STEEL	2
407	XQN16+A32	SCREW,STEEL	8
108	VHDW0124	SCREW W/WASHER,STEEL	8
109	VMXW0217	CUT WASHER,STEEL	8
1 10	XWGV15Z32G	POLY SLIDER WASHER	8
<u>411</u>	VMXW0213	CUT WASHER,STEEL	8
1 12	XQN2+B35	SCREW,STEEL	8
113	XQN2+A22	SCREW,STEEL	8
414	XQN14+A32	SCREW,STEEL	8
115	XQN2+B22	SCREW,STEEL	8
1 16	XQN14+BJ25FZ	SCREW,STEEL	8
1 19	VMX2026	CUT WASHER,STEEL	8
121	XQN16+BF4FN	SCREW,STEEL	1
123	XQN16+B3FN	SCREW,STEEL	8
169	XQN2+BF4FXK	SCREW,STEEL	2
172	VHDW0102	SCREW,STEEL	7
473	VHDW0100	SCREW,STEEL	1
502	XQN16+CJ6	SCREW,STEEL	6
50 <u>4</u>	XQN2+CF3	SCREW,STEEL	1
533	XQN2+BF5FXK	SCREW,STEEL	1,3,4
586	XQN2+BJ5FXK	SCREW,STEEL	1,2,3,5,7

	1		-,-,-,-
Ref. No.	Part No.	Part Name & Description	Remarks
<u>604</u>	XQN2+BJ8FXK	SCREW,STEEL	1
<u>620</u>	XQN2+BJ6FXK	SCREW,STEEL	5,7
<u>627</u>	XQN2+BJ3FXK	SCREW,STEEL	4,7
<u>628</u>	XQN16+B3FU	SCREW,STEEL	8
<u>632</u>	XQN14+B3	SCREW,STEEL	8
<u>635</u>	XQN16+C5FU	SCREW,STEEL	8
<u>640</u>	LSHD0054	SCREW,STEEL	8
<u>647</u>	XQN2+BJ35	SCREW,STEEL	6
<u>648</u>	XQN14+BJ4	SCREW,STEEL	6
<u>706</u>	LSMZ0342	INSULATION SHEET,PLASTIC	2
<u>707</u>	VMTS0035	CUSHION,RUBBER	1
<u>708</u>	LSMX0171	INSULATION SHEET,PLASTIC	1
<u>709</u>	LSMX0175	SHEET,NYLON-RAYON	7
<u>710</u>	K1NA09B00002	SD CARD CONNECTOR (D)	7
<u>711</u>	LSMX0171	SHEET,NYLON-RAYON (D)	7
<u>712</u>	LSMF0220	SHEET,NYLON-RAYON	1
<u>E10</u>	LSEP8205A1	MAIN C.B.A. (A)	1 RTL
E10	LSEP8205B1	MAIN C.B.A. (B)	1 RTL
E10	LSEP8205C1	MAIN C.B.A. (C)	1 RTL
E10	LSEP8204A1	MAIN C.B.A. (D)	1 RTL
E20	LSEP8207B1	BATTERY CATCHER C.B.A. NR (A,B,C)	7
E20	LSEP8207A1	BATTERY CATCHER C.B.A. NR (D)	7
E30	LSEP8206A1	LIQUIED CRYSTAL DISPLAY C.B.A.	2 RTL
E40	LSEQ0666	CCD C.B.A. NR	6

SERVICE FIXTURES AND TOOLS

Ref. No.	Part No.	Part Name & Description	Remarks
	VFKS003-N	REFLECTION CHART SET	MKE
	VFKS003A	GLAY SCALE CHART	MKE
	VFKS003B	COLOR BAR CHART	MKE
	VFKS003C	REGISTRATION CHART	MKE
	VFKS003D	RESOLUTION CHART	MKE
	VFK1164TFWC2	WHITE CHART	SPC
	VFK1164TFGS2	GRAY SCALE CHART	SPC
	VFK1164TFCB2	COLOR BAR CHART	SPC
	VFK1164TFCT2	COLOR CONVERSION FILTER	SPC
	VFK1164LBX1	LIGHT BOX	SPC
	VFK1164TCM02	INFINITY LENS (WITH FOCUS CHART)	SPC
	VFK1164TLA01	LAMP	SPC
	VFK1164TAR58	ATTACHMENT RING (58mm)	SPC
	VFK1164TAR55	ATTACHMENT RING (55mm)	SPC
	VFK1164TAR52	ATTACHMENT RING (52mm)	SPC
	VFK1164TAR49	ATTACHMENT RING (49mm)	SPC
	VFK1164TAR46	ATTACHMENT RING (46mm)	SPC
	VFK1164TAR43	ATTACHMENT RING (43mm)	SPC
	VFK1164TAR37	ATTACHMENT RING (37mm)	SPC
	VFK1164TAR3A	ATTACHMENT RING (30.5mm)	SPC
	VFK1164TAR27	ATTACHMENT RING (27mm)	SPC
	VFMS0004H6C	VHS-C ALIGNMENT TAPE	MKE
	VFMW0001C	VHS-C ALIGNMENT TAPE	MKE
	VFK27	HEAD CLEANING STICK	SPC
	VFKS0081	GREASE	MKE

Ref. No.	Part No.	Part Name & Description	Remarks
	VFK1024	MOLYTONE GREASE	SPC
	VUVS0007	EXTENSION CABLE 12P	MKE
	VUVS0012	EXTENSION CABLE 22P	MKE
	VUVS0015	EXTENSION CABLE 28P	MKE
	LSUP0005A	TP ADJUSTMENT CABLE 40P	MKE
	VFKW0123B	TP ADJUSTMENT PCB 40P	MKE
	LSUP0005C	TP CLIP 36P	MKE
	VFKW0066	A.W.B. ADJUSTMENT FIXTURE	MKE
	VFKW0116	COLOR CHIP CHART	MKE
	VFKW1000	CAAS KIT	MKE
	VFKW1000AA	INTERFACE BOX	MKE
	VFKW1000B	CAMERA CONNECTING CABLE	MKE
	VFKW1000C	9PIN RS-232C CABLE	MKE
	VFKW1000D	25PIN RS-232C CABLE	MKE
	VHDW0125	LOCK SCREW	MKE
	LSVQ0028	PLIER FOR NON ZIF CONNECTOR	MKE

13.3. ELECTRICAL REPLACEMENT PARTS LIST

COMPARISON CHART OF MODELS & MARKS

MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D

Definition of Parts supplier:

1. All parts are supplied from MKI.

PRINTED CIRCUIT BOARD ASSEMBLY

Ref. No.	Part No.	Part Name & Description	Remarks
E10	LSEP8205A1	MAIN C.B.A. (A)	E.S.D. RTL
E10	LSEP8205B1	MAIN C.B.A. (B)	E.S.D. RTL
E10	LSEP8205C1	MAIN C.B.A. (C)	E.S.D. RTL
E10	LSEP8204A1	MAIN C.B.A. (D)	E.S.D. RTL
E20	LSEP8207B1	BATTERY CATCHER C.B.A. NR (A,B,C)	
E20	LSEP8207A1	BATTERY CATCHER C.B.A. NR (D)	
E30	LSEP8206A1	LIQUIED CRYSTAL DISPLAY C.B.A.	RTL
E40	LSEQ0666	CCD C.B.A. NR	

13.3.1. MAIN C.B.A.

(MODEL: A, B, C)

COMPARISON CHART OF MODELS & MARKS

MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D

INTEGRATED CIRCUITS

Ref. No.	Part No.	Part Name & Description	Remarks
IC301	MN673242	IC, LOGIC	E.S.D.
IC306	C3EBEG000047	IC, 4K EEP ROM	E.S.D.
IC308	C2DBJG000120	IC, 32BIT MICROCONTROLLER	E.S.D.
IC309	C0ABCZ000008	IC, LINEAR	
IC603	C1AB00000339	IC, LOGIC	E.S.D.
IC605	AN2109NFHQ	IC, LINEAR	
IC701	C0GBC0000018	IC, LINEAR	
IC701	C0GBA0000011	IC, LINEAR	
IC701	LB1837MTEL3	IC, LINEAR	
IC702	C0GBC0000018	IC, LINEAR	
IC702	C0GBA0000011	IC, LINEAR	
IC702	LB1837MTEL3	IC, LINEAR	
IC1001	C0DBCMC00003	IC, LINEAR	
IC2001	AN3897FH-V	IC, LINEAR	
IC2002	UNA022400L	IC, LINEAR	
IC2003	UNA022400L	IC, LINEAR	
IC3001	AN2401NFH	IC, LINEAR	
IC3002	MN38663S-E1	IC, LOGIC	E.S.D.
IC4001	AN12998A-V	IC, LINEAR	
IC6001	MN101D06FWG	IC, 8BIT MICROCONTROLLER	E.S.D.
IC6002	C0EBG0000136	IC, LINEAR	
IC6002	R3111Q391ATR	IC, LINEAR	
IC6002	S80839ANNPT2	IC, LINEAR	
IC6002	XC61CN3902NR	IC, LINEAR	
IC6005	C1ZBZ0002198	IC, PERIPHERAL MCU	E.S.D.
IC6006	C0CBACE00012	IC, PERIPHERAL MCU	E.S.D.
IC6007	C0GBG0000029	IC, LINEAR	
IC6203	CNB10010RL	TAKEUP REEL SENSOR	

TRANSISTORS

Ref. No.	Part No.	Part Name & Description	Remarks
Q301	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q301	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q302	B1ABAD000010	TRANSISTOR SI NPN CHIP	
Q302	2SC4215-YTL	TRANSISTOR SI NPN CHIP	
Q303	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q303	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q305	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q305	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q306	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q306	B1ADCF000063	TRANSISTOR SI PNP CHIP	
Q307	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q307	B1ADCF000063	TRANSISTOR SI PNP CHIP	
Q310	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q310	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q311	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q311	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q617	UNR521500L	TRANSISTOR SI NPN CHIP	
Q617	B1GBCFJA0006	TRANSISTOR SI NPN CHIP	
Q703	UNR521100L	TRANSISTOR SI NPN CHIP	
Q703	B1GBCFJJ0007	TRANSISTOR SI PNP CHIP	
Q1001	UNR511100L	TRANSISTOR SI PNP CHIP	
Q1001	B1GDCFJJ0008	TRANSISTOR SI PNP CHIP	
Q1002	UNR511300L	TRANSISTOR SI PNP CHIP	
Q1002	B1GDCFNN0007	TRANSISTOR SI PNP CHIP	
Q1003	UNR511500L	TRANSISTOR SI PNP CHIP	
Q1003	B1GDCFJJ0025	TRANSISTOR SI PNP CHIP	
Q1005	2SA201000L	TRANSISTOR SI PNP CHIP	
Q1005	B1ADPB000001	TRANSISTOR SI PNP CHIP	
Q1006	2SA204600L	TRANSISTOR SI PNP CHIP	
Q1006	B1ADMD000009	TRANSISTOR SI PNP CHIP	
Q1007	2SA204600L	TRANSISTOR SI PNP CHIP	
Q1007	B1ADMD000009	TRANSISTOR SI PNP CHIP	
Q1008	2SA204600L	TRANSISTOR SI PNP CHIP	
Q1008	B1ADMD000009	TRANSISTOR SI PNP CHIP	
Q1009	2SA204600L	TRANSISTOR SI PNP CHIP	
Q1009	B1ADMD000009	TRANSISTOR SI PNP CHIP	
Q1010	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q1010	B1ADCF000063	TRANSISTOR SI PNP CHIP	
Q1015	B1ABCF000098	TRANSISTOR SI NPN CHIP	
Q1015	B1ABCF000099	TRANSISTOR SI NPN CHIP	
Q1018	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q1018	B1ADCF000063	TRANSISTOR SI PNP CHIP	
Q1019	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q1019	B1ADCF000063	TRANSISTOR SI PNP CHIP	
Q1024	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q1024	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q1101	B1BDEB000001	TRANSISTOR SI PNP CHIP	
Q1102	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q1102	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q1103	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q1103	B1ADCF000063	TRANSISTOR SI PNP CHIP	
Q1105	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q1105	B1ADCF000063	TRANSISTOR SI PNP CHIP	
Q3003	2SB1218A0L	TRANSISTOR SI PNP CHIP	

Ref. No.	Part No.	Part Name & Description	Remarks
Q3003	B1ADCF000063	TRANSISTOR SI PNP CHIP	
Q3004	B1ABAD000010	TRANSISTOR SI NPN CHIP	
Q3004	2SC4215-YTL	TRANSISTOR SI NPN CHIP	
Q3005	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q3005	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q3027	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q3027	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q4001	XP0460100L	TRANSISTOR SI NPN CHIP	
Q4001	B1HFCFA00003	TRANSISTOR COMPLX CMP SI NPN CHIP	
Q4001	B1HFCFA00009	TRANSISTOR COMPLX CMP SI NPN CHIP	
Q4001	HN1B04FU-GTR	TRANSISTOR COMPLX CMP SI NPN CHIP	
Q4002	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q4002	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q4003	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q4003	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q4005	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q4005	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q4006	2SD06020RL	TRANSISTOR SI NPN CHIP	
Q4006	2SD0602ARL	TRANSISTOR SI NPN CHIP	
Q4006	2SD2432-R	TRANSISTOR SI NPN CHIP	
Q4007	2SB09700RL	TRANSISTOR SI PNP CHIP	
Q4007	2SB1585	TRANSISTOR SI PNP CHIP	
Q4008	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q4008	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q4009	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q4009	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q6004	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q6004	B1ADCF000063	TRANSISTOR SI PNP CHIP	
Q6008	UNR521700L	TRANSISTOR SI NPN CHIP	
Q6008	B1GBCFLA0006	TRANSISTOR SI NPN CHIP	
Q6010	UNR521200L	TRANSISTOR SI NPN CHIP	
Q6010	B1GBCFLL0012	TRANSISTOR SI NPN CHIP	
Q6012	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q6012	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q6013	2SD0601A0L	TRANSISTOR SI NPN CHIP	
Q6013	B1ABCF000011	TRANSISTOR SI NPN CHIP	
Q6021	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q6021	B1ADCF000063	TRANSISTOR SI PNP CHIP	

DIODES

Ref. No.	Part No.	Part Name & Description	Remarks
D601	MA2J11100L	DIODE SI CHIP	
D701	MA2J11100L	DIODE SI CHIP	
D1004	B0JCMD000014	DIODE SI CHIP	
D1005	MA2J11100L	DIODE SI CHIP	
D1005	B0ACCK000005	DIODE SI CHIP	
D1007	MA2J11100L	DIODE SI CHIP	
D1007	B0ACCK000005	DIODE SI CHIP	
D1008	MA2J11100L	DIODE SI CHIP	
D1012	MAZ80680HL	DIODE ZENER CHIP 6.8V	
D1013	B0JCMD000014	DIODE SI CHIP	
D1014	B0JCMD000014	DIODE SI CHIP	
D1015	B0JCMD000014	DIODE SI CHIP	
D1016	MA2J11100L	DIODE SI CHIP	
D1016	B0ACCK000005	DIODE SI CHIP	
D1017	MA2J11100L	DIODE SI CHIP	
D1017	B0ACCK000005	DIODE SI CHIP	
D1101	RD12S-T1B	DIODE ZENER CHIP 12V	
D1102	MA2J11100L	DIODE SI CHIP	
D1103	MAZ3120D0L	DIODE ZENER CHIP 12V	
D3006	MA2S35700K8	DIODE ZENER CHIP 12V	
D3006	B0CAAC000005	DIODE SI CHIP	
D3006	MA2S357-TX	DIODE SI CHIP	
D6001	MA3J142E0L	DIODE SI CHIP	
D6001	B0ADCJ000012	DIODE SI CHIP	
D6019	MA2J11100L	DIODE SI CHIP	

RESISTORS

Ref. No.	Part No.	Part Name & Description	Remarks
R301	ERJ3GEYJ122V	MGF CHIP 1/16W 1.2K	
R302	D0HB561ZA002	MGF CHIP 1/16W 560	
R303	ERJ3GEYG102V	MGF CHIP 1/16W 1K	
R304	D0HB222ZA002	MGF CHIP 1/16W 2.2K	
R305	D0HB222ZA002	MGF CHIP 1/16W 2.2K	
R306	ERJ3GEYJ391V	MGF CHIP 1/16W 390	
R307	ERJ3GEYG103V	MGF CHIP 1/16W 10K	
R308	ERJ3GEYG391V	MGF CHIP 1/16W 390	
R309	D0HB102ZA002	MGF CHIP 1/16W 1K	
R310	ERJ3GEYG102V	MGF CHIP 1/16W 1K	
R311	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R313	ERJ3GEYJ4R7V	MGF CHIP 1/16W 4.7	
R314	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R315	D0HB221ZA002	MGF CHIP 1/16W 220	
R316	ERJ3GEYJ221V	MGF CHIP 1/16W 220	
R317	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R318	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R319	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R320	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R321	D0HB242ZA002	MGF CHIP 1/16W 2.4K	
R322	D0HB152ZA002	MGF CHIP 1/16W 1.5K	
R323	ERJ3GEYJ912V	MGF CHIP 1/16W 9.1K	
R324	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R325	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R326	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	

Ref. No.		Part Name & Description	Remarks
R327	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R333	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R336	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R340	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R341	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R342	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R343	ERJ3GEYJ221V	MGF CHIP 1/16W 220	
R344	ERJ3GEYJ152V	MGF CHIP 1/16W 1.5K	
R345	ERJ3GEYJ104V	MGF CHIP 1/16W 100K	
R346	ERJ3GEYJ562V	MGF CHIP 1/16W 5.6K	
R347	ERJ3GEYJ272V	MGF CHIP 1/16W 2.7K	
R348	ERJ3GEYJ333V	MGF CHIP 1/16W 33K	
R349	ERJ3GEYJ304V	MGF CHIP 1/16W 300K	
R350	ERJ3GEYJ822V	MGF CHIP 1/16W 8.2K	
R351	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R352	ERJ3GEYJ273V	MGF CHIP 1/16W 27K	
R353	ERJ3GEYJ562V	MGF CHIP 1/16W 5.6K	
R355	ERJ3GEYJ304V	MGF CHIP 1/16W 300K	
R356	ERJ3GEYJ334V	MGF CHIP 1/16W 330K	
R357	ERJ3GEYJ474V	MGF CHIP 1/16W 470K	
R358	ERJ3GEYJ123V	MGF CHIP 1/16W 12K	
R359	ERJ3GEYJ123V	MGF CHIP 1/16W 12K	
R360	ERJ3GEYJ331V	MGF CHIP 1/16W 330	
R361	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R362	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R363	ERJ3GEYJ392V	MGF CHIP 1/16W 3.9K	
R364	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R365	ERJ3GEYK395V	MGF CHIP 1/16W 3.9M	
R366	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R367	ERJ3GEYJ273V	MGF CHIP 1/16W 27K	
R368	ERJ3GEYJ273V	MGF CHIP 1/16W 27K	
R369	ERJ3GEYJ393V	MGF CHIP 1/16W 39K	
R370	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R372	ERJ3GEYJ393V	MGF CHIP 1/16W 39K	
R373	ERJ3GEYJ303V	MGF CHIP 1/16W 30K	
R374	ERJ3GEYJ822V	MGF CHIP 1/16W 8.2K	
R375	ERJ3GEYJ333V	MGF CHIP 1/16W 33K	
R376	ERJ3GEYJ822V	MGF CHIP 1/16W 8.2K	
R377	ERJ3GEYJ333V	MGF CHIP 1/16W 33K	
R378	ERJ3GEYJ333V	MGF CHIP 1/16W 33K	
R379	ERJ3GEYJ822V	MGF CHIP 1/16W 8.2K	
R380	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R381	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R382	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R383	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R384	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R385	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R387	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R388	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R391	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R393		MGF CHIP 1/16W 100	
R394	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R399	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R400	ERJ3GEYJ331V	MGF CHIP 1/16W 330	

Ref. No.	Part No.	Part Name & Description	Remarks
R402	D0HB912ZA002	MGF CHIP 1/16W 9.1K	
R409	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R410	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R411	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R412	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R413	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R414	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R427	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R432	ERJ3GEYJ104V	MGF CHIP 1/16W 100K	
R436	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R603	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R608	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R609	ERJ3GEYJ681V	MGF CHIP 1/16W 680	
R616	ERJ3GEYJ105V	MGF CHIP 1/16W 1M	
R617	ERJ3GEYJ121V	MGF CHIP 1/16W 120	
R618	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R623		MGF CHIP 1/16W 4.7K	
R625	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R639	ERJ3GEYJ105V	MGF CHIP 1/16W 1M	
R641		MGF CHIP 1/16W 0	
R643		MGF CHIP 1/16W 0	
R644	ERJ3GEYJ330V	MGF CHIP 1/16W 33	
R645		MGF CHIP 1/16W 0	
R646		MGF CHIP 1/16W 0	
R651	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R652	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R653	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R659	ERJ3GEYJ562V	MGF CHIP 1/16W 5.6K	
R662	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R683	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R700		MGF CHIP 1/16W 0	
R701	ERJ3GEYJ100V	MGF CHIP 1/16W 10	
R702	ERJ3GEYJ100V	MGF CHIP 1/16W 10	
R703	ERJ3GEYJ100V	MGF CHIP 1/16W 10	
R704		MGF CHIP 1/16W 10	
R705		MGF CHIP 1/16W 10K	
R706		MGF CHIP 1/16W 39K	
R707		MGF CHIP 1/8W 100	
R708		MGF CHIP 1/16W 39K	
R709		MGF CHIP 1/16W 10K	
R712		MGF CHIP 1/16W 3.3K	
R713		MGF CHIP 1/16W 3.3K	
R714		MGF CHIP 1/16W 3.3K	
R715		MGF CHIP 1/16W 3.3K	
R718		MGF CHIP 1/16W 5.1K	
R719		MGF CHIP 1/16W 18K	
R720		MGF CHIP 1/16W 110K	
R721		MGF CHIP 1/16W 18K	
R722		MGF CHIP 1/16W 110K	
R723		MGF CHIP 1/16W 36K	
R724		MGF CHIP 1/16W 36K	
R726		MGF CHIP 1/16W 5.1K	
R730		MGF CHIP 1/16W 5.6K	
R732		MGF CHIP 1/16W 5.6K	
11772	LNJJGE 1J302V	MGI CHIE 1/10W 3.0K	

Ref. No.		Part Name & Description	Remarks
R735		MGF CHIP 1/16W 36K	
R736		MGF CHIP 1/16W 36K	
R737	ERJ3GEYJ114V	MGF CHIP 1/16W 110K	
R738	ERJ3GEYJ183V	MGF CHIP 1/16W 18K	
R739	ERJ3GEYJ114V	MGF CHIP 1/16W 110K	
R740	ERJ3GEYJ183V	MGF CHIP 1/16W 18K	
R744	ERJ8GEYJ3R9V	MGF CHIP 1/8W 3.9	
R745	ERJ8GEYJ3R9V	MGF CHIP 1/8W 3.9	
R746	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R747	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R748	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R749	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R750	ERJ3GEYJ105V	MGF CHIP 1/16W 1M	
R751	ERJ3GEYJ105V	MGF CHIP 1/16W 1M	
R752	ERJ3EKF1002V	MGF CHIP 1/16W 10K	
R753	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R1003	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R1004	ERJ3GEYJ682V	MGF CHIP 1/16W 6.8K	
R1006	ERJ3GEYJ224V	MGF CHIP 1/16W 220K	
R1007	ERJ3GEYJ224V	MGF CHIP 1/16W 220K	
R1009	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R1011	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R1012	D0HB393ZA002	MGF CHIP 1/16W 39K	
R1013	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R1016	D0HB203ZA002	MGF CHIP 1/16W 20K	
R1017	D0HB473ZA002	MGF CHIP 1/16W 47K	
R1019	ERJ3GEYJ224V	MGF CHIP 1/16W 220K	
R1020	ERJ3GEYJ471V	MGF CHIP 1/16W 470	
R1021	ERJ3GEYJ471V	MGF CHIP 1/16W 470	
R1022	ERJ3GEYJ562V	MGF CHIP 1/16W 5.6K	
R1023	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R1026	ERJ3GEYJ682V	MGF CHIP 1/16W 6.8K	
R1027	ERJ3GEYJ682V	MGF CHIP 1/16W 6.8K	
R1028	ERJ3GEYJ471V	MGF CHIP 1/16W 470	
R1029	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R1030	ERJ3GEYJ682V	MGF CHIP 1/16W 6.8K	
R1031	D0HB203ZA002	MGF CHIP 1/16W 20K	
R1032	D0HB151ZA002	MGF CHIP 1/16W 150	
R1033	D0HB103ZA002	MGF CHIP 1/16W 10K	
R1034	D0HB362ZA002	MGF CHIP 1/16W 3.6K	
R1035	D0HB390ZA003	MGF CHIP 1/16W 39	
R1036	D0HB272ZA002	MGF CHIP 1/16W 2.7K	
R1037	D0HB273ZA002	MGF CHIP 1/16W 27K	
R1038	D0HB390ZA003	MGF CHIP 1/16W 39	
R1039	D0HB302ZA002	MGF CHIP 1/16W 3K	
R1040	D0HB622ZA002	MGF CHIP 1/16W 6.2K	
R1041	D0HB390ZA003	MGF CHIP 1/16W 39	
R1043	D0HB302ZA002	MGF CHIP 1/16W 3K	
R1044	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R1045	ERJ6GEYJ271V	MGF CHIP 1/10W 270	
R1046		MGF CHIP 1/16W 2.2K	
R1060		MGF CHIP 1/16W 820	
R1071		MGF CHIP 1/16W 47K	
R1072		MGF CHIP 1/16W 47K	

Ref. No.	Part No.	Part Name & Description	Remarks
R1073	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R1074	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R1084	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R1085	ERJ3GEYJ392V	MGF CHIP 1/16W 3.9K	
R1086	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R1087	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R1101	ERJ8GEYJR56V	MGF CHIP 1/8W 0.56	
R1102	ERJ8GEYJR56V	MGF CHIP 1/8W 0.56	
R1103	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R1104	ERJ3GEYJ560V	MGF CHIP 1/16W 56	
R1105	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R1106	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R1107	ERJ3GEYJ562V	MGF CHIP 1/16W 5.6K	
R1108	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R1109	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R1110	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R1111	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R1601	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R1602	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R1603	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R1604	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R1605	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R1606	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R1610	ERJ3GEYJ273V	MGF CHIP 1/16W 27K	
R1611	ERJ3GEYJ683V	MGF CHIP 1/16W 68K	
R1612	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R1613	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R2001	ERJ3GEYJ152V	MGF CHIP 1/16W 1.5K	
R2003	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R2004	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R2008	ERJ8GEYJR33V	MGF CHIP 1/8W 0.33	
R2010	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R2011	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R2012	ERJ3GEYJ184V	MGF CHIP 1/16W 180K	
R2013	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R2014	ERJ3GEYJ684V	MGF CHIP 1/16W 680K	
R2015	ERJ3GEYJ682V	MGF CHIP 1/16W 6.8K	
R2016	ERJ3GEYJ684V	MGF CHIP 1/16W 680K	
R2021	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R2022	ERJ3GEYJ221V	MGF CHIP 1/16W 220	
R2023	ERJ8GEYJR33V	MGF CHIP 1/8W 0.33	
R2025	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R2026	ERJ3GEYJ820V	MGF CHIP 1/16W 82	
R2027	ERJ3GEYJ471V	MGF CHIP 1/16W 470	
R2028	ERJ3GEYJ391V	MGF CHIP 1/16W 390	
R2029	ERJ3GEYJ391V	MGF CHIP 1/16W 390	
R2030	ERJ3GEYJ471V	MGF CHIP 1/16W 470	
R2031		MGF CHIP 1/16W 100	
R2032		MGF CHIP 1/16W 10K	
R3002		MGF CHIP 1/16W 150K	
R3003		MGF CHIP 1/16W 1.5K	
R3004		MGF CHIP 1/16W 27	
R3005		MGF CHIP 1/16W 220	
R3006		MGF CHIP 1/16W 1K	

Ref. No.	Part No.	Part Name & Description	Remarks
R3008	ERJ3GEYJ122V	MGF CHIP 1/16W 1.2K	
R3009	ERJ3GEYJ392V	MGF CHIP 1/16W 3.9K	
R3010	ERJ3GEYJ122V	MGF CHIP 1/16W 1.2K	
R3011	ERJ3GEYJ271V	MGF CHIP 1/16W 270	
R3015	ERJ3GEYJ393V	MGF CHIP 1/16W 39K	
R3016	ERJ3GEYJ821V	MGF CHIP 1/16W 820	
R3017	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R3018	ERJ3GEYJ471V	MGF CHIP 1/16W 470	
R3022	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R3023	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R3024	ERJ6GEYJ560V	MGF CHIP 1/10W 56	
R3025	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R3026	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R3031	ERJ3GEYJ821V	MGF CHIP 1/16W 820	
R3032	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R3033	ERJ3GEYJ182V	MGF CHIP 1/16W 1.8K	
R3034	ERJ3GEYJ821V	MGF CHIP 1/16W 820	
R3035	ERJ3GEYJ182V	MGF CHIP 1/16W 1.8K	
R3036	ERJ3GEYJ471V	MGF CHIP 1/16W 470	
R3037	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R3038	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R3039	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R3040	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R3041	ERJ3GEYJ681V	MGF CHIP 1/16W 680	
R3044	ERJ3GEYJ681V	MGF CHIP 1/16W 680	
R3045	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R3048	ERJ3GEYJ681V	MGF CHIP 1/16W 680	
R3050	ERJ3GEYJ821V	MGF CHIP 1/16W 820	
R3129	ERJ3GEYJ391V	MGF CHIP 1/16W 390	
R3130	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R3140	ERJ3GEYJ122V	MGF CHIP 1/16W 1.2K	
R3150	ERJ3GEYJ152V	MGF CHIP 1/16W 1.5K	
R3151	ERJ3GEYJ183V	MGF CHIP 1/16W 18K	
R3152	ERJ3GEYJ821V	MGF CHIP 1/16W 820	
R3153	ERJ3GEYJ272V	MGF CHIP 1/16W 2.7K	
R3154	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R3180	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R3181	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R3182	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R3183	ERJ3GEYJ152V	MGF CHIP 1/16W 1.5K	
R3184	ERJ3GEYJ821V	MGF CHIP 1/16W 820	
R3185	ERJ3GEYJ182V	MGF CHIP 1/16W 1.8K	
R3186	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R3215	ERJ3GEYJ104V	MGF CHIP 1/16W 100K	
R4002	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R4003	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R4006	ERJ3GEYJ183V	MGF CHIP 1/16W 18K	
R4007	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R4009	ERJ3GEYJ2R2V	MGF CHIP 1/16W 2.2	
R4010	ERJ3GEYJ2R2V	MGF CHIP 1/16W 2.2	
R4011	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R4012	ERJ3GEYJ104V	MGF CHIP 1/16W 100K	
R4013	ERJ3GEYJ104V	MGF CHIP 1/16W 100K	
R4014	ERJ3GEYJ433V	MGF CHIP 1/16W 43K	

Ref. No.	Part No.	Part Name & Description	Remarks
R4015	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R4016	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R4017	ERJ3GEYJ123V	MGF CHIP 1/16W 12K	
R4018	ERJ3GEYJ333V	MGF CHIP 1/16W 33K	
R4019	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R4020	ERJ3GEYJ183V	MGF CHIP 1/16W 18K	
R4021	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R4022	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R4024	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R4025	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R4026	ERJ3GEYJ333V	MGF CHIP 1/16W 33K	
R4027	ERJ3GEYJ183V	MGF CHIP 1/16W 18K	
R4029	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R4030	ERJ3GEYJ680V	MGF CHIP 1/16W 68	
R4031	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R4032	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R4033	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R4034	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R4035	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R4037	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R4040	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R4041	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R4042	ERJ3GEYJ104V	MGF CHIP 1/16W 100K	
R4043	ERJ3GEYJ822V	MGF CHIP 1/16W 8.2K	
R4044	ERJ3GEYJ562V	MGF CHIP 1/16W 5.6K	
R4045	ERJ3GEYJ331V	MGF CHIP 1/16W 330	
R4046	ERJ3GEYJ334V	MGF CHIP 1/16W 330K	
R4047	ERJ3GEYJ683V	MGF CHIP 1/16W 68K	
R4050	ERJ3GEYJ393V	MGF CHIP 1/16W 39K	
R4051	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R4052	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R4053	ERJ3GEYJ823V	MGF CHIP 1/16W 82K	
R4054	ERJ3GEYJ433V	MGF CHIP 1/16W 43K	
R4055	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R4056	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R4057	ERJ3GEYJ100V	MGF CHIP 1/16W 10	
R4058	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R6004	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R6006	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R6009	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6010	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6011	ERJ3GEYJ562V	MGF CHIP 1/16W 5.6K	
R6015	ERJ3GEYJ273V	MGF CHIP 1/16W 27K	
R6016	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6017	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6018	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6019	ERJ3GEYJ474V	MGF CHIP 1/16W 470K	
R6020	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R6021	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6024	ERJ3GEYJ104V	MGF CHIP 1/16W 100K	
R6025	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6026	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6027	ERJ3GEYJ272V	MGF CHIP 1/16W 2.7K	
R6028	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	

Ref. No.	Part No.	Part Name & Description	Remarks
R6029	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R6030	ERJ3GEYJ272V	MGF CHIP 1/16W 2.7K	
R6032	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R6034	ERJ3GEYJ152V	MGF CHIP 1/16W 1.5K	
R6035	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6036	ERJ3GEYJ563V	MGF CHIP 1/16W 56K	
R6037	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6038	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6039	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R6040	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R6041	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6042	ERJ3GEYJ124V	MGF CHIP 1/16W 120K	
R6046	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6047	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6048	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6049	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6050	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6051	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6052	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6054	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R6056	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6058	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6059	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6060	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6062	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6064	ERJ3GEYJ563V	MGF CHIP 1/16W 56K	
R6066	ERJ3GEYJ682V	MGF CHIP 1/16W 6.8K	
R6068	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6070	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R6072	ERJ3GEYJ392V	MGF CHIP 1/16W 3.9K	
R6073	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R6074	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R6081	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6082	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6084	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R6085		MGF CHIP 1/16W 560	
R6086		MGF CHIP 1/16W 560	
		MGF CHIP 1/16W 560	
R6087		MGF CHIP 1/16W 560	+
			-
R6089		MGF CHIP 1/16W 4.7K	
R6090		MGF CHIP 1/16W 4.7K	
R6091		MGF CHIP 1/16W 4.7K MGF CHIP 1/16W 4.7K	
R6092			
R6093		MGF CHIP 1/16W 4.7K	
R6094		MGF CHIP 1/16W 4.7K	
R6095		MGF CHIP 1/16W 56K	+
R6096		MGF CHIP 1/16W 100K	+
R6097		MGF CHIP 1/16W 1K	
R6099		MGF CHIP 1/16W 47K	
R6102		MGF CHIP 1/16W 18K	
R6103		MGF CHIP 1/16W 2.7K	
R6104		MGF CHIP 1/16W 10K	
R6108		MGF CHIP 1/16W 220K	
R6110	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	

Ref. No.	Part No.	Part Name & Description	Remarks
R6111	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6112	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6113	ERJ3GEYJ272V	MGF CHIP 1/16W 2.7K	
R6114	ERJ3GEYJ154V	MGF CHIP 1/16W 150K	
R6115	ERJ3GEYJ393V	MGF CHIP 1/16W 39K	
R6116	ERJ3GEYJ393V	MGF CHIP 1/16W 39K	
R6119	ERJ8GEYJ101V	MGF CHIP 1/8W 100	
R6139	ERJ3GEYJ104V	MGF CHIP 1/16W 100K	
R6143	ERJ3GEYJ271V	MGF CHIP 1/16W 270	
R6144	ERJ3GEYJ271V	MGF CHIP 1/16W 270	
R6145	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6146	ERJ3GEYJ224V	MGF CHIP 1/16W 220K	
R6147	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R6148	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6149	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R6191	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R6201	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R6202	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R6209	ERJ3GEYJ225V	MGF CHIP 1/16W 2.2M	
R6210	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R6215	ERJ3GEYJ132V	MGF CHIP 1/16W 1.3K	
R6217	ERJ3GEYJ392V	MGF CHIP 1/16W 3.9K	

Ref. No.	Part No.	Part Name & Description	Remarks
C301	ECJ1VC1H330J	C CHIP 50V 33PF	
C302	ECJ1VC1H560J	C CHIP 50V 56PF	
C305	ECJ1VC1H470J	C CHIP 50V 47PF	
C306	ECJ2VB1C104K	C CHIP 16V 0.1UF	
C307	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C309	ECST0JY106	TANTALUM CHIP 6.3V 10UF	
C310	ECJ2YB1A105K	C CHIP 10V 1UF	
C311	ECJ2YB1A105K	C CHIP 10V 1UF	
C312	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C314	ECST0JY106	TANTALUM CHIP 6.3V 10UF	
C316	ECJ2YB1A105K	C CHIP 10V 1UF	
C317	ECJ2YB1A105K	C CHIP 10V 1UF	
C319	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C320	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C326	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C327	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C331	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C333	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C335	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C338	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C339	ECJ2VF1C105Z	C CHIP 16V 1UF	
C340	ECJ1VB1H103K	C CHIP 50V 0.01UF	
C341	ECJ1VB1H102K	C CHIP 50V 1000PF	
C342	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C345	ECJ1VB1H471K	C CHIP 50V 470PF	
C346	ECJ1VB1H471K	C CHIP 50V 470PF	
C347	ECJ1VB1H102K	C CHIP 50V 1000PF	
C357	ECUE1C104ZFV	C CHIP 16V 0.1UF	

Ref. No.	Part No.	Part Name & Description	Remarks
C359		C CHIP 16V 0.1UF	
C360	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C605	ECST0JX226	TANTALUM CHIP 6.3V 22UH	
C606	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C607	ECJ1VC1H150J	C CHIP 50V 15PF	
C611	ECJ1VC1H120J	C CHIP 50V 12PF	
C613	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C614	F1J1C1050011	C CHIP 16V 1UF	
C615	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C616	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C617	ECUE1C104ZFV	C CHIP 16V 0.1UF	
C618	ECJ1VC1H080D	C CHIP 50V 8PF	
C619	ECJ1VC1H020D	C CHIP 50V 2PF	
C623	ECEV1CA100S	ELECTROLYTIC CHIP 16V 10UF	
C633	ECJ2FB1A225K	C CHIP 10V 22UF	
C634	ECJ2FB1A225K	C CHIP 10V 22UF	
C636	ECJ1VF1A105Z	C CHIP 10V 1UF	
C638	ECJ1VF1A105Z	C CHIP 10V 1UF	
C639	ECJ1VF1A105Z	C CHIP 10V 1UF	
C640	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C641	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C642	ECJ2YB1A105K	C CHIP 10V 1UF	
C643	ECST0JY106	TANTALUM CHIP 6.3V 10UF	
C644	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C645	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C646	ECST0JY106	TANTALUM CHIP 6.3V 10UF	
C647	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C663	ECJ1VC1H100D	C CHIP 50V 10PF	
C703	ECJ2YF1A475Z	C CHIP 10V 4.7UF	
C704	ECJ2YF1A475Z	C CHIP 10V 4.7UF	
C706	ECJ2YF1A475Z	C CHIP 10V 4.7UF	
C707	ECJ2YF1A475Z	C CHIP 10V 4.7UF	
C708	ECEV1CA470S	ELECTROLYTIC CHIP 16V 47UF	
C709	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C710	ECJ1VB1H103K	C CHIP 50V 0.01UF	
C1002	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C1003		C CHIP 16V 0.1UF	
C1005	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C1007	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C1008	ECJ1VC1H101J	C CHIP 50V 100PF	
C1009	ECJ1VB1A105K	C CHIP 10V 1UF	
C1010	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C1011	ECJ1VB1H472K	C CHIP 50V 4700PF	
C1012	ECJ1VB1H222K	C CHIP 50V 2200PF	
C1013	ECJ1VC1H101J	C CHIP 50V 100PF	
C1014	ECJ1VC1H470J	C CHIP 50V 47PF	
C1015	ECJ1VC1H101J	C CHIP 50V 100PF	
C1016	ECJ1VC1H101J	C CHIP 50V 100PF	
C1017		C CHIP 50V 47PF	
C1018		C CHIP 50V 4700PF	
C1019		C CHIP 50V 4700PF	
C1020		C CHIP 16V 1UF	
C1021	ECEV1CA470S	ELECTROLYTIC CHIP 16V 47UF	
		100 4101	

Ref. No.	Part No.	Part Name & Description	Remarks
C1023	VCUSJBJ335KB	C CHIP 6.3V 3.3UF	
C1024	ECST1AY475	TANTALUM CHIP 16V 4.7UF	
C1025	ECJ1VB1H471K	C CHIP 50V 470PF	
C1026	ECJ2FB0J475K	C CHIP 6.3V 4.7UF	
C1028	ECJ1VB1H102K	C CHIP 50V 1000PF	
C1029	ECJ2FB1C105K	C CHIP 16V 1UF	
C1030	ECJ2VF1C105Z	C CHIP 16V 1UF	
C1031	ECEV1CA100S	ELECTROLYTIC CHIP 16V 10UF	
C1032	ECJ2VF1C105Z	C CHIP 16V 1UF	
C1033	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C1034	ECJ2FB1C105K	C CHIP 16V 1UF	
C1035	ECJ2FB1C105K	C CHIP 16V 1UF	
C1036	ECJ1VB1H102K	C CHIP 50V 1000PF	
C1037	ECJ2FB0J475K	C CHIP 6.3V 4.7UF	
C1039	ECJ1VB1H102K	C CHIP 50V 1000PF	
C1040	ECJ2VF1C105Z	C CHIP 16V 1UF	
C1041	ECEV1CA100S	ELECTROLYTIC CHIP 16V 10UF	
C1042	ECEV0JA470S	ELECTROLYTIC CHIP 6.3V 47UF	
C1044	ECST0JY226R	TANTALUM CHIP 6.3V 22UF	
C1045	ECJ1VF1A105Z	C CHIP 10V 1UF	
C1046	ECJ2VF1C105Z	C CHIP 16V 1UF	
C1049	ECJ1VB1H102K	C CHIP 50V 1000PF	
C1055	ECJ2VF1C105Z	C CHIP 16V 1UF	
C1056	ECJ2FB1C105K	C CHIP 16V 1UF	
C1057	ECJ2FB1C105K	C CHIP 16V 1UF	
C1060	ECJ1VF1A105Z	C CHIP 10V 1UF	
C1061	ECJ1VC1H470J	C CHIP 50V 47PF	
C1062	ECJ1VC1H470J	C CHIP 50V 47PF	
C1063	ECJ1VC1H101J	C CHIP 50V 100PF	
C1101	ECJ2YB0J225K	C CHIP 6.3V 2.2UF	
C2001	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C2002	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C2003	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C2007	ECEV0JA220S	ELECTROLYTIC CHIP 6.3V 22UF	
C2008	ECJ2VB1E333K	C CHIP 25V 0.033UF	
C2010	ECJ1VB1C683K	C CHIP 16V 0.068UF	
C2011	ECJ2YB1C334K	C CHIP 16V 0.33UF	
C2012	ECJ1VB1C473K	C CHIP 16V 0.047UF	
C2013	ECJ1VB1C473K	C CHIP 16V 0.047UF	
C2015	ECJ1VB1H152K	C CHIP 50V 1500PF	
C2016	ECJ1VB1H331K	C CHIP 50V 330PF	
C2017	ECJ2YB1A105K	C CHIP 10V 1UF	
C2021	ECJ1VF1H473Z	C CHIP 50V 0.047UF	
C2022	ECJ2VF1E473Z	C CHIP 25V 0.047UF	
C2023	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C2024	ECJ2YB1A105K	C CHIP 10V 1UF	
C2025	ECJ1VB1E103K	C CHIP 25V 0.01UF	
C2030	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C2031	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C2032	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C2040		ELECTROLYTIC CHIP 16V 10UF	
C2045		C CHIP 25V 0.01UF	
C3001	VCUSJBJ335KB	C CHIP 6.3V 3.3UF	
C3002	ECJ1VF1H103Z	C CHIP 50V 0.01UF	

Ref. No.	Part No.	Part Name & Description	Remarks
C3003	ECST0JY226R	TANTALUM CHIP 6.3V 22UF	
C3005	ECJ1VC1H220J	C CHIP 50V 22PF	
C3006	ECJ1VB1H332K	C CHIP 50V 3300PF	
C3007	ECJ2VF1H104Z	C CHIP 50V 0.1UF	
C3008	ECJ1VB1H103K	C CHIP 50V 0.01UF	
C3009	ECJ2VF1H104Z	C CHIP 50V 0.1UF	
C3010	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3011	ECJ1VC1H221J	C CHIP 50V 220PF	
C3012	ECJ1VB1H821K	C CHIP 50V 820PF	
C3013	ECJ1VC1H560J	C CHIP 50V 56PF	
C3014	ECJ1VC1H331J	C CHIP 50V 330PF	
C3015	ECJ1VC1H561J	C CHIP 50V 560PF	
C3017	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3018	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C3019	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3021	ECST0JY226R	TANTALUM CHIP 6.3V 22UF	
C3022	ECJ2YB1A105K	C CHIP 10V 1UF	
C3023	ECJ1VB1C473K	C CHIP 16V 0.047UF	
C3024	ECJ2VF1C105Z	C CHIP 16V 1UF	
C3025	ECJ1VB1H103K	C CHIP 50V 0.01UF	
C3028	ECJ1VB1H103K	C CHIP 50V 0.01UF	
C3029	ECJ1VB1H103K	C CHIP 50V 0.01UF	
C3030	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3031	ECJ1VB1A224K	C CHIP 10V 0.22UF	
C3032	ECJ1VB1H332K	C CHIP 50V 3300PF	
C3033	ECJ2YB0J225K	C CHIP 6.3V 2.2UF	
C3034	ECJ2VF1C105Z	C CHIP 16V 1UF	
C3036	F1K1C4750017	C CHIP 16V 4.7UF	
C3038	ECJ1VC1H560J	C CHIP 50V 56PF	
C3039	ECJ1VC1H180J	C CHIP 50V 18PF	
C3040	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3041	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C3042	ECEV0JA220S	ELECTROLYTIC CHIP 6.3V 22UF	
C3043	ECST0JY226R	TANTALUM CHIP 6.3V 22UF	
C3045	ECEV1HA3R3S	ELECTROLYTIC CHIP 50V 3.3UF	
C3046	ECEV0GA221S	ELECTROLYTIC CHIP 4V 220UF	
C3047	ECJ2YB1A105K	C CHIP 10V 1UF	
C3048	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3053	ECJ1VC1H390J	C CHIP 50V 39PF	
C3054	ECJ1VC1H101J	C CHIP 50V 100PF	
C3055	ECJ1VC1H181J	C CHIP 50V 180PF	
C3057	ECJ1VC1H180J	C CHIP 50V 18PF	
C3058	ECJ1VC1H120J	C CHIP 50V 12PF	
C3059	ECJ1VC1H100D	C CHIP 50V 10PF	
C3060	ECJ1VC1H120J	C CHIP 50V 12PF	
C3061	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3068	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3070	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C3072	ECJ1VB1H103K	C CHIP 50V 0.01UF	
C3073	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C3074		ELECTROLYTIC CHIP 6.3V 22UF	
C3075		C CHIP 50V 0.01UF	
C3077		C CHIP 50V 0.01UF	
C3078	ECJ1VF1H103Z	C CHIP 50V 0.01UF	

Ref. No.	Part No.	Part Name & Description	Remarks
C3079	ECJ1VB1H102K	C CHIP 50V 1000PF	
C3080	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3081	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3085	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C3098	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C3107	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3132	ECJ2VF1C105Z	C CHIP 16V 1UF	
C3135	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3139	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3150	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3152	ECJ1VB1H681K	C CHIP 50V 680PF	
C3153	ECJ1VB1H681K	C CHIP 50V 680PF	
C3157	ECJ1VC1H470J	C CHIP 50V 47PF	
C3158	ECJ1VC1H080C	C CHIP 50V 8PF	
C4002	F1J1A1050002	C CHIP 10V 1UF	
C4003	ECJ1VB1H102K	C CHIP 50V 1000PF	
C4004	ECUT2A472JCM	C CHIP 100V 4700PF	
C4005	ECJ2VB1H682K	C CHIP 50V 6800PF	
C4006	ECJ1VB1E223K	C CHIP 25V 0.022UF	
C4007	ECJ2YB1A105K	C CHIP 10V 1UF	
C4008	ECST0JY226R	TANTALUM CHIP 6.3V 22UF	
C4009	ECJ2VF1H104Z	C CHIP 50V 0.1UF	
C4011	ECJ1VB1H472K	C CHIP 50V 4700PF	
C4012	ECJ1VB1H103K	C CHIP 50V 0.01UF	
C4013	ECJ1VF1E104Z	C CHIP 25V 0.1UF	
C4014	ECJ1VF1E104Z	C CHIP 25V 0.1UF	
C4015	ECJ2VF1E104Z	C CHIP 25V 0.1UF	
C4016	ECST0JY226R	TANTALUM CHIP 6.3V 22UF	
C4017	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C4019	F1J1A1050002	C CHIP 10V 1UF	
C4021	ECEV1CA100S	ELECTROLYTIC CHIP 16V 10UF	
C4022	ECJ2YB1C474K	C CHIP 16V 0.47UF	
C4023	ECST0JY475	TANTALUM CHIP 6.3V 4.7UF	
C4026		C CHIP 16V 0.1UF	
C4027		C CHIP 50V 0.015UF	
C4028	ECST0JY106	TANTALUM CHIP 6.3V 10UF	
C4030	ECST0JY475	TANTALUM CHIP 6.3V 4.7UF	
C4031		C CHIP 50V 1200PF	
C4032	F1J1A1050004	C CHIP 10V 1UF	
C4033		C CHIP 50V 2700PF	
C4034		C CHIP 50V 0.01UF	
C4035		C CHIP 16V 1UF	
C4036		C CHIP 16V 1UF	
C4039		C CHIP 16V 0.47UF	
C4041		C CHIP 50V 2200PF	
C6001		C CHIP 50V 33PF	
C6002		C CHIP 10V 0.22UF	
C6004		C CHIP 16V 1UF	
C6004		C CHIP 50V 0.01UF	
C6007		C CHIP 50V 0.010F	
C6007		C CHIP 50V 12FF	
C6009		C CHIP 16V 0.1UF	
C6009		C CHIP 16V 0.10F	
C0011	LOUIVE ITHUSE	C CHIE JUV U.UTUF	

Ref. No.	Part No.	Part Name & Description	Remarks
C6014	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C6017	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C6018	ECJ2VF1H104Z	C CHIP 50V 0.1UF	
C6020	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C6022	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C6023	ECJ1VB1H102K	C CHIP 50V 1000PF	
C6025	ECEV0JA470S	ELECTROLYTIC CHIP 6.3V 47UF	
C6028	ECJ1VC1H060D	C CHIP 50V 6PF	
C6029	ECJ2VF1C105Z	C CHIP 16V 1UF	
C6031	ECJ1VB1H103K	C CHIP 50V 0.01UF	
C6044	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C6201	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C6202	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C6207	ECJ1VC1H101J	C CHIP 50V 100PF	
C6208	ECJ2VF1C224Z	C CHIP 16V 0.22UF	
C6214	ECJ1VB1H102K	C CHIP 50V 1000PF	
C6220	ECJ2YF1C155Z	C CHIP 16V 1.5UF	
C6221	ECJ1VB1H102K	C CHIP 50V 1000PF	
C6222	ECJ2YB1A105K	C CHIP 10V 1UF	
C6223	ECST0JY226R	TANTALUM CHIP 6.3V 22UF	
C6225	ECJ1VB1H103K	C CHIP 50V 0.01UF	

Ref. No.	Part No.	Part Name & Description	Remarks
L302	G1C470J00006	COIL CHIP 47UH	
L303	G1C330JA0010	COIL CHIP 33UH	
L305	G1C3R9J00004	COIL CHIP 3.9UH	
L307	G1C101J00002	COIL CHIP 100HF	
L308	G1C100KA0002	COIL CHIP 10UH	
L602	G1C150J00005	COIL CHIP 15UH	
L605	G1C150J00002	COIL CHIP 15UH	
L1001	G1C100MA0059	COIL CHIP 10UH	
L1002	ELL6SH100M	CHOKE COIL 10UH	
L1003	ELL6SH330M	CHOKE COIL 33UH	
L1004	ELL6SH330M	CHOKE COIL 33UH	
L1005	G1C100MA0065	CHOKE COIL 10UH	
L1006	G1C100MA0031	COIL CHIP 10UH	
L1007	G1C100MA0031	COIL CHIP 10UH	
L1008	G1C100MA0031	COIL CHIP 10UH	
L1009	G1C470J00006	COIL CHIP 47UH	
L1010	G1C470J00006	COIL CHIP 47UH	
L1011	G1C470J00006	COIL CHIP 47UH	
L1012	G1C100MA0031	COIL CHIP 10UH	
L1014	G1C100MA0031	COIL CHIP 10UH	
L1015	G1C100MA0031	COIL CHIP 10UH	
L1017	ELL6SH330M	CHOKE COIL 33UH	
L1018	ELL6SH101M	CHOKE COIL 100UH	
L1019	G1C100MA0031	COIL CHIP 10UH	
L1020	G1C100MA0031	COIL CHIP 10UH	
L3001	G1C220K00013	COIL CHIP 22UH	
L3002	G1C220K00013	COIL CHIP 22UH	
L3003	G1C220K00013	COIL CHIP 22UH	
L3004	G1C220K00013	COIL CHIP 22UH	

Ref. No.	Part No.	Part Name & Description	Remarks
L3006	G1C220K00013	COIL CHIP 22UH	
L3009	G1C820J00001	COIL CHIP 82UH	
L3011	G1C470J00006	COIL CHIP 47UH	
L3012	G1C120J00003	COIL CHIP 12UH	
L3013	G1C331J00004	COIL CHIP 330UH	
L3014	G1C180J00003	COIL CHIP 18UH	
L3015	G1C331J00004	COIL CHIP 330UH	
L3016	G1C470J00006	COIL CHIP 47UH	
L3017	G1C331J00004	COIL CHIP 330UH	
L3030	G1C220K00013	COIL CHIP 22UH	
L3031	G1C470J00006	COIL CHIP 47UH	
L4001	G1C221KA0002	COIL CHIP 220UH	
L4002	G1C101KA0002	COIL CHIP 100HF	

CRYSTAL OSCILLATOR

Ref. No.	Part No.	Part Name & Description	Remarks
X601	H0A286500001	CRYSTAL OSCILLATOR	
X3001	LSSX0070	CRYSTAL OSCILLATOR	
X6001	H0A143500002	CRYSTAL OSCILLATOR	
X6002	LSSX0072	CRYSTAL OSCILLATOR	

FPC CONNECTORS

Ref. No.	Part No.	Part Name & Description	Remarks
FP1	K1MN28B00053	CONNECTOR 28P	
FP2	K1MN26A00053	CONNECTOR 26P	
FP6	K1MN28B00053	CONNECTOR 28P	
FP7	K1MN14A00072	CONNECTOR 14P	
FP8	K1MN12A00058	CONNECTOR 12P	
FP9	K1MN22A00053	CONNECTOR 22P	
FP10	K1MN26A00053	CONNECTOR 26P	
FP11	K1MN06A00050	CONNECTOR 6P	
FP12	K1MN06B00140	CONNECTOR 6P	
FP13	K1MN16B00122	CONNECTOR 16P	

FUSE& PROTECTOR

Ref. No.	Part No.	Part Name & Description	Remarks
F1001	K5H202Z00005	FUSE CHIP 32V 2A	Δ
F1002	K5H152Z00006	FUSE CHIP 32V 1.5A	Δ

TRANSFORMER

	Ref. No.	Part No.	Part Name & Description	Remarks
[T4001	EQQ7QE025Q	TRANSFORMER	

MISCELLANEOUS

Ref. No.	Part No.	Part Name & Description	Remarks
707	VMTS0035	CUSHION,RUBBER	
708	LSMX0171	INSULATION SHEET,PLASTIC	
712	LSMF0220	SHEET,NYLON-RAYON	

13.3.2. MAIN C.B.A.

(MODEL: D)

COMPARISON CHART OF MODELS & MARKS

MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D

INTEGRATED CIRCUITS

Ref. No.	Part No.	Part Name & Description	Remarks
IC301	MN673241	IC, LOGIC	E.S.D.
IC306	C3EBEG000047	IC, 4K EEP ROM	E.S.D.
IC309	C0ABCZ000008	IC, LINEAR	
IC501	C2DBKH000115	IC, 32BIT MICROCONTROLLER	E.S.D.
IC505	C0DBEFB00001	IC, LINEAR	
IC602	MN5293-1	IC, CMOS GATE ARRAYS	E.S.D.
IC603	MN3112SA-E1	IC, CMOS STANDARD LOGIC	E.S.D.
IC605	AN2109NFHQ	IC, LINEAR	
IC701	C0GBC0000018	IC, LINEAR	
IC701	C0GBA0000011	IC, LINEAR	
IC701	LB1837MTEL3	IC, LINEAR	
IC702	C0GBC0000018	IC, LINEAR	
IC702	C0GBA0000011	IC, LINEAR	
IC702	LB1837MTEL3	IC, LINEAR	
IC1001	C0DBCMC00003	IC, LINEAR	
IC2001	AN3897FH-V	IC, LINEAR	
IC2002	UNA022400L	IC, LINEAR	
IC2003	UNA022400L	IC, LINEAR	
IC3001	AN2401NFH	IC, LINEAR	
IC3002	MN38663S-E1	IC, LOGIC	E.S.D.
IC4001	AN12998A-V	IC, LINEAR	
IC6001	MN101D06FWG	IC, 8BIT MICROCONTROLLER	E.S.D.
IC6002	C0EBG0000136	IC, LINEAR	
IC6002	R3111Q391ATR	IC, LINEAR	
IC6002	S80839ANNPT2	IC, LINEAR	
IC6002	XC61CN3902NR	IC, LINEAR	
IC6005	C1ZBZ0002198	IC, PERIPHERAL MCU	E.S.D.
IC6006	C0CBACE00012	IC, PERIPHERAL MCU	E.S.D.
IC6007	C0GBG0000029	IC, LINEAR	
IC6203	CNB10010RL	TAKEUP REEL SENSOR	

TRANSISTORS

Ref. No.	Part No.	Part Name & Description	Remarks
Q301	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q301	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q302	B1ABAD000010	TRANSISTOR SI NPN CHIP	
Q302	2SC4215-YTL	TRANSISTOR SI NPN CHIP	
Q303	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q303	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q305	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q305	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q306	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q306	B1ADCF000063	TRANSISTOR SI PNP CHIP	
Q307	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q307	B1ADCF000063	TRANSISTOR SI PNP CHIP	
Q308	2SD132800L	TRANSISTOR SI NPN CHIP	
Q308	2SD2436	TRANSISTOR SI NPN CHIP	
Q310	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q310	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q311	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q311	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q610	B1ABAD000010	TRANSISTOR SI NPN CHIP	
Q610	2SC4215-YTL	TRANSISTOR SI NPN CHIP	
Q611	B1ABAD000010	TRANSISTOR SI NPN CHIP	
Q611	2SC4215-YTL	TRANSISTOR SI NPN CHIP	
Q617	UNR521500L	TRANSISTOR SI NPN CHIP	
Q617	B1GBCFJA0006	TRANSISTOR SI NPN CHIP	
Q703	UNR521100L	TRANSISTOR SI NPN CHIP	
Q703	B1GBCFJJ0007	TRANSISTOR SI PNP CHIP	
Q1001	UNR511100L	TRANSISTOR SI PNP CHIP	
Q1001	B1GDCFJJ0008	TRANSISTOR SI PNP CHIP	
Q1002	UNR511300L	TRANSISTOR SI PNP CHIP	
Q1002	B1GDCFNN0007	TRANSISTOR SI PNP CHIP	
Q1003	UNR511500L	TRANSISTOR SI PNP CHIP	
Q1003	B1GDCFJJ0025	TRANSISTOR SI PNP CHIP	
Q1005	2SA201000L	TRANSISTOR SI PNP CHIP	
Q1005	B1ADPB000001	TRANSISTOR SI PNP CHIP	
Q1006	2SA204600L	TRANSISTOR SI PNP CHIP	
Q1006	B1ADMD000009	TRANSISTOR SI PNP CHIP	
Q1007	2SA204600L	TRANSISTOR SI PNP CHIP	
Q1007	B1ADMD000009	TRANSISTOR SI PNP CHIP	
Q1008	2SA204600L	TRANSISTOR SI PNP CHIP	
Q1008	B1ADMD000009	TRANSISTOR SI PNP CHIP	
Q1009	2SA204600L	TRANSISTOR SI PNP CHIP	
Q1009	B1ADMD000009	TRANSISTOR SI PNP CHIP	
Q1010	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q1010	B1ADCF000063	TRANSISTOR SI PNP CHIP	
Q1011	XP0450100L	TRANSISTOR SI NPN CHIP	
Q1011	B1HBCFA00001	TRANSISTOR COMPLX CMP SI NPN CHIP	
Q1011	B1HBCFA00010	TRANSISTOR COMPLX CMP SI NPN CHIP	
Q1011	B1HBCFA00011	TRANSISTOR COMPLX CMP SI NPN CHIP	
Q1013	2SA204600L	TRANSISTOR SI PNP CHIP	
Q1013	B1ADMD000009	TRANSISTOR SI PNP CHIP	
Q1015	B1ABCF000098	TRANSISTOR SI NPN CHIP	
Q1015	B1ABCF000099	TRANSISTOR SI NPN CHIP	
Q1018	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q1018	B1ADCF000063	TRANSISTOR SI PNP CHIP	

Ref. No.	Part No.	Part Name & Description	Remarks
Q1019	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q1019	B1ADCF000063	TRANSISTOR SI PNP CHIP	
Q1024	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q1024	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q1101	B1BDEB000001	TRANSISTOR SI PNP CHIP	
Q1102	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q1102	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q1103	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q1103	B1ADCF000063	TRANSISTOR SI PNP CHIP	
Q1105	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q1105	B1ADCF000063	TRANSISTOR SI PNP CHIP	
Q3003	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q3003	B1ADCF000063	TRANSISTOR SI PNP CHIP	
Q3004	B1ABAD000010	TRANSISTOR SI NPN CHIP	
Q3004	2SC4215-YTL	TRANSISTOR SI NPN CHIP	
Q3005	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q3005	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q3027	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q3027	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q4001	XP0460100L	TRANSISTOR SI NPN CHIP	
Q4001	B1HFCFA00003	TRANSISTOR COMPLX CMP SI NPN CHIP	
Q4001	B1HFCFA00009	TRANSISTOR COMPLX CMP SI NPN CHIP	
Q4001	HN1B04FU-GTR	TRANSISTOR COMPLX CMP SI NPN CHIP	
Q4002	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q4002	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q4003	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q4003	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q4005	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q4005	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q4006	2SD06020RL	TRANSISTOR SI NPN CHIP	
Q4006	2SD0602ARL	TRANSISTOR SI NPN CHIP	
Q4006	2SD2432-R	TRANSISTOR SI NPN CHIP	
Q4007	2SB09700RL	TRANSISTOR SI PNP CHIP	
Q4007	2SB1585	TRANSISTOR SI PNP CHIP	
Q4008	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q4008	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q4009	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q4009	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q6004	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q6004	B1ADCF000063	TRANSISTOR SI PNP CHIP	
Q6008	UNR521700L	TRANSISTOR SI NPN CHIP	
Q6008	B1GBCFLA0006	TRANSISTOR SI NPN CHIP	
Q6010	UNR521200L	TRANSISTOR SI NPN CHIP	
Q6010	B1GBCFLL0012	TRANSISTOR SI NPN CHIP	
Q6012	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q6012	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q6013	2SD0601A0L	TRANSISTOR SI NPN CHIP	
Q6013	B1ABCF000011	TRANSISTOR SI NPN CHIP	
Q6021	2SB1218A0L	TRANSISTOR SI PNP CHIP	
~~~.			

# **DIODES**

Ref. No.	Part No.	Part Name & Description	Remarks
D601	MA2J11100L	DIODE SI CHIP	
D701	MA2J11100L	DIODE SI CHIP	
D1004	B0JCMD000014	DIODE SI CHIP	
D1005	MA2J11100L	DIODE SI CHIP	
D1005	B0ACCK000005	DIODE SI CHIP	
D1007	MA2J11100L	DIODE SI CHIP	
D1007	B0ACCK000005	DIODE SI CHIP	
D1008	MA2J11100L	DIODE SI CHIP	
D1012	MAZ80680HL	DIODE ZENER CHIP 6.8V	
D1013	B0JCMD000014	DIODE SI CHIP	
D1014	B0JCMD000014	DIODE SI CHIP	
D1015	B0JCMD000014	DIODE SI CHIP	
D1016	MA2J11100L	DIODE SI CHIP	
D1016	B0ACCK000005	DIODE SI CHIP	
D1017	MA2J11100L	DIODE SI CHIP	
D1017	B0ACCK000005	DIODE SI CHIP	
D1101	RD12S-T1B	DIODE ZENER CHIP 12V	
D1102	MA2J11100L	DIODE SI CHIP	
D1103	MAZ3120D0L	DIODE ZENER CHIP 12V	
D3006	MA2S35700K8	DIODE SI CHIP	
D3006	B0CAAC000005	DIODE SI CHIP	
D3006	MA2S357-TX	DIODE SI CHIP	
D6001	MA3J142E0L	DIODE SI CHIP	
D6001	B0ADCJ000012	DIODE SI CHIP	
D6019	MA2J11100L	DIODE SI CHIP	

# **RESISTORS**

Ref. No.	Part No.	Part Name & Description	Remarks
R301	ERJ3GEYJ122V	MGF CHIP 1/16W 1.2K	
R302	D0HB561ZA002	MGF CHIP 1/16W 560	
R303	ERJ3EKF1001V	MGF CHIP 1/16W 1K	
R304	ERJ3EKF2201V	MGF CHIP 1/16W 2.2K	
R305	ERJ3EKF2201V	MGF CHIP 1/16W 2.2K	
R306	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R307	ERJ3EKF1002V	MGF CHIP 1/16W 10K	
R308	ERJ3EKF3900V	MGF CHIP 1/16W 390	
R309	ERJ3EKF1001V	MGF CHIP 1/16W 1K	
R310	ERJ3EKF1001V	MGF CHIP 1/16W 1K	
R312	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R314	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R315	D0HB221ZA002	MGF CHIP 1/16W 220	
R316	ERJ3GEYJ221V	MGF CHIP 1/16W 220	
R317	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R318	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R319	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R320	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R321	D0HB242ZA002	MGF CHIP 1/16W 2.4K	
R322	ERJ3EKF1501V	MGF CHIP 1/16W 1.4K	
R323	ERJ3GEYJ183V	MGF CHIP 1/16W 18K	
R333	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R336	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R340	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R342	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	

Ref. No.	Part No.	Part Name & Description	Remarks
R343		MGF CHIP 1/16W 220	
R344	ERJ3GEYJ152V	MGF CHIP 1/16W 1.5K	
R345	ERJ3GEYJ104V	MGF CHIP 1/16W 100K	
R346	ERJ3GEYJ562V	MGF CHIP 1/16W 5.6K	
R347	ERJ3GEYJ272V	MGF CHIP 1/16W 2.7K	
R348	ERJ3GEYJ333V	MGF CHIP 1/16W 33K	
R349	ERJ3GEYJ304V	MGF CHIP 1/16W 300K	
R350	ERJ3GEYJ822V	MGF CHIP 1/16W 8.2K	
R351	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R352	ERJ3GEYJ273V	MGF CHIP 1/16W 27K	
R353	ERJ3GEYJ562V	MGF CHIP 1/16W 5.6K	
R355	ERJ3GEYJ304V	MGF CHIP 1/16W 300K	
R356	ERJ3GEYJ334V	MGF CHIP 1/16W 330K	
R357	ERJ3GEYJ474V	MGF CHIP 1/16W 470K	
R358	ERJ3GEYJ123V	MGF CHIP 1/16W 12K	
R359	ERJ3GEYJ123V	MGF CHIP 1/16W 12K	
R360	ERJ3GEYJ331V	MGF CHIP 1/16W 330	
R361	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R362	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R363	ERJ3GEYJ392V	MGF CHIP 1/16W 3.9K	
R364	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R365	ERJ3GEYK395V	MGF CHIP 1/16W 3.9M	
R366	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R367	ERJ3GEYJ273V	MGF CHIP 1/16W 27K	
R368		MGF CHIP 1/16W 27K	
R369		MGF CHIP 1/16W 39K	
R370		MGF CHIP 1/16W 4.7K	
R372	ERJ3GEYJ393V	MGF CHIP 1/16W 39K	
R373	ERJ3GEYJ303V	MGF CHIP 1/16W 30K	
R374	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R376	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R379	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R380		MGF CHIP 1/16W 0	
R381		MGF CHIP 1/16W 2.7K	
R382		MGF CHIP 1/16W 1K	
R383		MGF CHIP 1/16W 0	
R384		MGF CHIP 1/16W 100	
R385		MGF CHIP 1/16W 100	
R387		MGF CHIP 1/16W 100	
R388		MGF CHIP 1/16W 100	
R391		MGF CHIP 1/16W 0	
R393		MGF CHIP 1/16W 100	
R394		MGF CHIP 1/16W 0	
R402		MGF CHIP 1/16W 18K	
R402		MGF CHIP 1/16W 100	
R430		MGF CHIP 1/16W 100K	
R436		MGF CHIP 1/16W 1K	
R450		MGF CHIP 1/16W 1K	
R450		MGF CHIP 1/16W 390	
R451		MGF CHIP 1/16W 220	
R452		MGF CHIP 1/16W 2.7K	
R453		MGF CHIP 1/16W 100K	
R454		MGF CHIP 1/16W 1K	
	LINUUGE I J4R / V	III O   O   III   I   I   I   I   I	1

Ref. No.	Part No.	Part Name & Description	Remarks
R530	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R531	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R532	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R533	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R569	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R603	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R605	ERJ3GEYJ331V	MGF CHIP 1/16W 330	
R608	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R609	ERJ3GEYJ821V	MGF CHIP 1/16W 820	
R612	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R613	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R614	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R616	ERJ3GEYJ105V	MGF CHIP 1/16W 1M	
R617	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R618	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R619	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R620	ERJ3GEYJ182V	MGF CHIP 1/16W 1.8K	
R622	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R623	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R624	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R625	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R626	ERJ3GEYJ183V	MGF CHIP 1/16W 18K	
R639	ERJ3GEYJ105V	MGF CHIP 1/16W 1M	
R641		MGF CHIP 1/16W 0	
R643		MGF CHIP 1/16W 0	
R644	ERJ3GEYJ330V	MGF CHIP 1/16W 33	
R645		MGF CHIP 1/16W 0	
R646	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R651	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R652	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R653	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R659	ERJ3GEYJ562V	MGF CHIP 1/16W 5.6K	
R662	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R680	ERJ3GEYJ331V	MGF CHIP 1/16W 330	
R683		MGF CHIP 1/16W 100	
R701		MGF CHIP 1/16W 10	
R702		MGF CHIP 1/16W 10	
R703		MGF CHIP 1/16W 10	
R704		MGF CHIP 1/16W 10	
R705		MGF CHIP 1/16W 10K	
R706		MGF CHIP 1/16W 39K	
R707		MGF CHIP 1/8W 100	
R708		MGF CHIP 1/16W 39K	
R709		MGF CHIP 1/16W 10K	
R712		MGF CHIP 1/16W 3.3K	
R713		MGF CHIP 1/16W 3.3K	
R714		MGF CHIP 1/16W 3.3K	
R715		MGF CHIP 1/16W 3.3K	
R718		MGF CHIP 1/16W 5.6K	
R719		MGF CHIP 1/16W 18K	
R720		MGF CHIP 1/16W 110K	
R721		MGF CHIP 1/16W 18K	
		MGF CHIP 1/16W 110K	
R722	ERJ3GEYJ114V	INIGE CHIE I/IOW I IUK	

Ref. No.	Part No.	Part Name & Description	Remarks
R724	ERJ3GEYJ363V	MGF CHIP 1/16W 36K	
R726	ERJ3GEYJ562V	MGF CHIP 1/16W 5.6K	
R730	ERJ3GEYJ562V	MGF CHIP 1/16W 5.6K	
R732	ERJ3GEYJ562V	MGF CHIP 1/16W 5.6K	
R735	ERJ3GEYJ363V	MGF CHIP 1/16W 36K	
R736	ERJ3GEYJ363V	MGF CHIP 1/16W 36K	
R737	ERJ3GEYJ114V	MGF CHIP 1/16W 110K	
R738	ERJ3GEYJ183V	MGF CHIP 1/16W 18K	
R739	ERJ3GEYJ114V	MGF CHIP 1/16W 110K	
R740	ERJ3GEYJ183V	MGF CHIP 1/16W 18K	
R744	ERJ8GEYJ3R9V	MGF CHIP 1/8W 3.9	
R745	ERJ8GEYJ3R9V	MGF CHIP 1/8W 3.9	
R746	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R747	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R748	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R749	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R750	ERJ3GEYJ105V	MGF CHIP 1/16W 1M	
R751	ERJ3GEYJ105V	MGF CHIP 1/16W 1M	
R752	ERJ3EKF1002V	MGF CHIP 1/16W 10K	
R753	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R1003	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R1004	ERJ3GEYJ682V	MGF CHIP 1/16W 6.8K	
R1006	ERJ3GEYJ224V	MGF CHIP 1/16W 220K	
R1007	ERJ3GEYJ224V	MGF CHIP 1/16W 220K	
R1009	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R1011	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R1012	D0HB393ZA002	MGF CHIP 1/16W 39K	
R1013	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R1016	D0HB203ZA002	MGF CHIP 1/16W 20K	
R1017	D0HB473ZA002	MGF CHIP 1/16W 47K	
R1019	ERJ3GEYJ224V	MGF CHIP 1/16W 220K	
R1020	ERJ3GEYJ471V	MGF CHIP 1/16W 470	
R1021	ERJ3GEYJ471V	MGF CHIP 1/16W 470	
R1022	ERJ3GEYJ562V	MGF CHIP 1/16W 5.6K	
R1023	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R1026	ERJ3GEYJ682V	MGF CHIP 1/16W 6.8K	
R1027	ERJ3GEYJ682V	MGF CHIP 1/16W 6.8K	
R1028	ERJ3GEYJ471V	MGF CHIP 1/16W 470	
R1029	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R1030	ERJ3GEYJ682V	MGF CHIP 1/16W 6.8K	
R1031	D0HB203ZA002	MGF CHIP 1/16W 20K	
R1032	D0HB151ZA002	MGF CHIP 1/16W 150	
R1033	D0HB103ZA002	MGF CHIP 1/16W 10K	
R1034	D0HB362ZA002	MGF CHIP 1/16W 3.6K	
R1035	D0HB390ZA003	MGF CHIP 1/16W 39	
R1036	D0HB272ZA002	MGF CHIP 1/16W 2.7K	
R1037	D0HB273ZA002	MGF CHIP 1/16W 27K	
R1038	D0HB390ZA003	MGF CHIP 1/16W 39	
R1039	D0HB302ZA002	MGF CHIP 1/16W 3K	
R1040	D0HB622ZA002	MGF CHIP 1/16W 6.2K	
R1041	D0HB390ZA003	MGF CHIP 1/16W 39	
R1043	D0HB302ZA002	MGF CHIP 1/16W 3K	
R1044	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R1045	ERJ6GEYJ271V	MGF CHIP 1/10W 270	

Ref. No.	Part No.	Part Name & Description	Remarks
R1046	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R1060	ERJ3GEYJ821V	MGF CHIP 1/16W 820	
R1062	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R1064	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R1065	ERJ3GEYJ821V	MGF CHIP 1/16W 820	
R1067	D0HB392ZA002	MGF CHIP 1/16W 3.9K	
R1068	D0HB182ZA002	MGF CHIP 1/16W 1.8K	
R1069	D0HB330ZA003	MGF CHIP 1/16W 33	
R1071	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R1072	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R1073	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R1074	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R1084	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R1085	ERJ3GEYJ392V	MGF CHIP 1/16W 3.9K	
R1086	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R1087	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R1101	ERJ8GEYJR56V	MGF CHIP 1/8W 0.56	
R1102	ERJ8GEYJR56V	MGF CHIP 1/8W 0.56	
R1103	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R1104	ERJ3GEYJ560V	MGF CHIP 1/16W 56	
R1105	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R1106	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R1107	ERJ3GEYJ562V	MGF CHIP 1/16W 5.6K	
R1108	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R1109	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R1110	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R1111	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R1601	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R1602	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R1603	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R1604	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R1605	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R1606	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R1610	ERJ3GEYJ273V	MGF CHIP 1/16W 27K	
R1611	ERJ3GEYJ683V	MGF CHIP 1/16W 68K	
R1612	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R1613	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R2001	ERJ3GEYJ152V	MGF CHIP 1/16W 1.5K	
R2003	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R2004	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R2008	ERJ8GEYJR33V	MGF CHIP 1/8W 0.33	
R2010	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R2011	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R2012	ERJ3GEYJ184V	MGF CHIP 1/16W 180K	
R2013	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R2014	ERJ3GEYJ684V	MGF CHIP 1/16W 680K	
R2015	ERJ3GEYJ682V	MGF CHIP 1/16W 6.8K	
R2016	ERJ3GEYJ684V	MGF CHIP 1/16W 680K	
R2021	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R2022	ERJ3GEYJ221V	MGF CHIP 1/16W 220	
R2023	ERJ8GEYJR33V	MGF CHIP 1/8W 0.33	
R2025	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R2026	ERJ3GEYJ820V	MGF CHIP 1/16W 82	
R2027	ERJ3GEYJ471V	MGF CHIP 1/16W 470	

Ref. No.	Part No.	Part Name & Description	Remarks
R2028	ERJ3GEYJ391V	MGF CHIP 1/16W 390	
R2029	ERJ3GEYJ391V	MGF CHIP 1/16W 390	
R2030	ERJ3GEYJ471V	MGF CHIP 1/16W 470	
R2031	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R2032	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R3002	ERJ3GEYJ154V	MGF CHIP 1/16W 150K	
R3003	ERJ3GEYJ152V	MGF CHIP 1/16W 1.5K	
R3004	ERJ3GEYJ270V	MGF CHIP 1/16W 27	
R3005	ERJ3GEYJ221V	MGF CHIP 1/16W 220	
R3006	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R3008	ERJ3GEYJ122V	MGF CHIP 1/16W 1.2K	
R3009	ERJ3GEYJ392V	MGF CHIP 1/16W 3.9K	
R3010	ERJ3GEYJ122V	MGF CHIP 1/16W 1.2K	
R3011	ERJ3GEYJ271V	MGF CHIP 1/16W 270	
R3015	ERJ3GEYJ393V	MGF CHIP 1/16W 39K	
R3016	ERJ3GEYJ821V	MGF CHIP 1/16W 820	
R3017	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R3018	ERJ3GEYJ471V	MGF CHIP 1/16W 470	
R3022	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R3023	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R3024	ERJ6GEYJ560V	MGF CHIP 1/10W 56	
R3025	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R3026	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R3031	ERJ3GEYJ821V	MGF CHIP 1/16W 820	
R3032	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R3033	ERJ3GEYJ182V	MGF CHIP 1/16W 1.8K	
R3034	ERJ3GEYJ821V	MGF CHIP 1/16W 820	
R3035	ERJ3GEYJ182V	MGF CHIP 1/16W 1.8K	
R3036	ERJ3GEYJ471V	MGF CHIP 1/16W 470	
R3037	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R3038	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R3039	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R3040	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R3041	ERJ3GEYJ681V	MGF CHIP 1/16W 680	
R3044	ERJ3GEYJ681V	MGF CHIP 1/16W 680	
R3045	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R3048	ERJ3GEYJ681V	MGF CHIP 1/16W 680	
R3050	ERJ3GEYJ821V	MGF CHIP 1/16W 820	
R3129	ERJ3GEYJ391V	MGF CHIP 1/16W 390	
R3130	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R3140	ERJ3GEYJ122V	MGF CHIP 1/16W 1.2K	
R3150	ERJ3GEYJ152V	MGF CHIP 1/16W 1.5K	
R3151	ERJ3GEYJ183V	MGF CHIP 1/16W 18K	
R3152	ERJ3GEYJ821V	MGF CHIP 1/16W 820	
R3153	ERJ3GEYJ272V	MGF CHIP 1/16W 2.7K	
R3154	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R3180	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R3181	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R3182	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R3183	ERJ3GEYJ152V	MGF CHIP 1/16W 1.5K	
R3184	ERJ3GEYJ821V	MGF CHIP 1/16W 820	
R3185	ERJ3GEYJ182V	MGF CHIP 1/16W 1.8K	
R3186	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R3215	ERJ3GEYJ104V	MGF CHIP 1/16W 100K	

Ref. No.	Part No.	Part Name & Description	Remarks
R4002	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R4003	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R4006	ERJ3GEYJ183V	MGF CHIP 1/16W 18K	
R4007	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R4009	ERJ3GEYJ2R2V	MGF CHIP 1/16W 2.2	
R4010	ERJ3GEYJ2R2V	MGF CHIP 1/16W 2.2	
R4011	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R4012	ERJ3GEYJ104V	MGF CHIP 1/16W 100K	
R4013	ERJ3GEYJ104V	MGF CHIP 1/16W 100K	
R4014	ERJ3GEYJ433V	MGF CHIP 1/16W 43K	
R4015	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R4016	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R4017	ERJ3GEYJ123V	MGF CHIP 1/16W 12K	
R4018	ERJ3GEYJ333V	MGF CHIP 1/16W 33K	
R4019	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R4020	ERJ3GEYJ183V	MGF CHIP 1/16W 18K	
R4021	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R4022	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R4024	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R4025	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R4026	ERJ3GEYJ333V	MGF CHIP 1/16W 33K	
R4027	ERJ3GEYJ183V	MGF CHIP 1/16W 18K	
R4029	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R4030	ERJ3GEYJ680V	MGF CHIP 1/16W 68	
R4031	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R4032	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R4033	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R4034	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R4035	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R4037	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R4040	ERJ3GEY0R00V		
R4041	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R4042		MGF CHIP 1/16W 100K	
R4043		MGF CHIP 1/16W 8.2K	
R4044	ERJ3GEYJ562V	MGF CHIP 1/16W 5.6K	
R4045		MGF CHIP 1/16W 330	
R4046		MGF CHIP 1/16W 330K	
R4050		MGF CHIP 1/16W 39K	
R4051		MGF CHIP 1/16W 10K	
R4052		MGF CHIP 1/16W 22K	
R4053		MGF CHIP 1/16W 82K	
R4054		MGF CHIP 1/16W 43K	
R4055		MGF CHIP 1/16W 0	
R4056		MGF CHIP 1/16W 10K	
R4057		MGF CHIP 1/16W 10	
R4058		MGF CHIP 1/16W 22K	+
R4059		MGF CHIP 1/16W 47K	+
R6004		MGF CHIP 1/16W 3.3K	+
R6006		MGF CHIP 1/16W 3.3K	+
R6009		MGF CHIP 1/16W 22K	
R6010		MGF CHIP 1/16W 4.7K	
		MGF CHIP 1/16W 4.7K	
R6011 R6015		MGF CHIP 1/16W 5.6K	+
110013	L.1000L 102/3V	IIIOI OIIII I/IOW Z/R	

Ref. No.	Part No.	Part Name & Description	Remarks
R6017	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6018	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6019	ERJ3GEYJ474V	MGF CHIP 1/16W 470K	
R6020	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R6021	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6024	ERJ3GEYJ104V	MGF CHIP 1/16W 100K	
R6025	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6026	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6027	ERJ3GEYJ272V	MGF CHIP 1/16W 2.7K	
R6028	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R6029	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R6030	ERJ3GEYJ272V	MGF CHIP 1/16W 2.7K	
R6032	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R6034	ERJ3GEYJ152V	MGF CHIP 1/16W 1.5K	
R6035	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6036	ERJ3GEYJ563V	MGF CHIP 1/16W 56K	
R6037	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6038	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6039	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R6040	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R6041	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6042	ERJ3GEYJ124V	MGF CHIP 1/16W 120K	
R6046	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6047	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6048	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6049	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6050	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6051	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6052	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6054	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R6056	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6058	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6059	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6060	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6062	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6064	ERJ3GEYJ563V	MGF CHIP 1/16W 56K	
R6066	ERJ3GEYJ682V	MGF CHIP 1/16W 6.8K	
R6068	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6070	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R6072	ERJ3GEYJ392V	MGF CHIP 1/16W 3.9K	
R6073	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R6074	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R6081	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6082	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6084	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R6085	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R6086	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R6087	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R6088	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R6089	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6090	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6091	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6092	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6093	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	

Ref. No.	Part No.	Part Name & Description	Remarks
R6094	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6095	ERJ3GEYJ563V	MGF CHIP 1/16W 56K	
R6096	ERJ3GEYJ104V	MGF CHIP 1/16W 100K	
R6097	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6098	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R6099	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R6102	D0HB183ZA002	MGF CHIP 1/16W 18K	
R6103	ERJ3GEYJ272V	MGF CHIP 1/16W 2.7K	
R6104	D0HB103ZA002	MGF CHIP 1/16W 10K	
R6108	ERJ3GEYJ224V	MGF CHIP 1/16W 220K	
R6110	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6111	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6112	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6113	ERJ3GEYJ272V	MGF CHIP 1/16W 2.7K	
R6114	ERJ3GEYJ154V	MGF CHIP 1/16W 150K	
R6115	ERJ3GEYJ393V	MGF CHIP 1/16W 39K	
R6116	ERJ3GEYJ393V	MGF CHIP 1/16W 39K	
R6119	ERJ8GEYJ101V	MGF CHIP 1/8W 100	
R6139	ERJ3GEYJ104V	MGF CHIP 1/16W 100K	
R6143	ERJ3GEYJ271V	MGF CHIP 1/16W 270	
R6144	ERJ3GEYJ271V	MGF CHIP 1/16W 270	
R6145	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6146	ERJ3GEYJ224V	MGF CHIP 1/16W 220K	
R6147	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R6148	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R6149	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R6191	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R6201	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R6202	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R6209	ERJ3GEYJ225V	MGF CHIP 1/16W 2.2M	
R6210	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R6215	ERJ3GEYJ132V	MGF CHIP 1/16W 1.3K	
R6217	ERJ3GEYJ392V	MGF CHIP 1/16W 3.9K	

Ref. No.		Part Name & Description	Remark
C301	ECJ1VC1H330J	C CHIP 50V 33PF	
C302	ECJ1VC1H560J	C CHIP 50V 56PF	
C305	ECJ1VC1H470J	C CHIP 50V 47PF	
C306	ECJ2VB1C104K	C CHIP 16V 0.1UF	
C307	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C309	ECST0JY106	TANTALUM CHIP 6.3V 10UF	
C310	ECJ2YB1A105K	C CHIP 10V 1UF	
C311	ECJ2YB1A105K	C CHIP 10V 1UF	
C312	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C314	ECST0JY106	TANTALUM CHIP 6.3V 10UF	
C316	ECJ2YB1A105K	C CHIP 10V 1UF	
C317	ECJ2YB1A105K	C CHIP 10V 1UF	
C319	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C320	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C321	ECST0JY106	TANTALUM CHIP 6.3V 10UF	
C323	ECST0JY106	TANTALUM CHIP 6.3V 10UF	
C326		C CHIP 50V 0.01UF	+
C327		C CHIP 50V 0.01UF	+
C329		C CHIP 16V 0.1UF	+
C330	ECEV0JA220S	ELECTROLYTIC CHIP 6.3V 22UF	+
C338		C CHIP 16V 0.1UF	
C339	ECJ2VF1C105Z		
C340		C CHIP 50V 0.01UF	
C341		C CHIP 50V 1000PF	+
C342		C CHIP 16V 0.1UF	
C347		C CHIP 50V 1000PF	
C357		C CHIP 16V 0.1UF	+
C401		C CHIP 50V 0.01UF	
C402		C CHIP 50V 0.01UF	
C403		C CHIP 50V 0.01UF	
C450		C CHIP 50V 0.01UF	
C451	ECJ2YB1A105K		
C501		C CHIP 16V 0.1UF	-
C502		C CHIP 16V 0.1UF	-
C503		C CHIP 16V 0.1UF	
C504		C CHIP 16V 0.1UF	
C505	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C506		C CHIP 16V 0.1UF	
C507		C CHIP 16V 0.1UF	
C508	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C509		C CHIP 16V 0.1UF	
C510	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C511		C CHIP 16V 0.1UF	
C531	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C604	ECJ1VC1H150J	C CHIP 50V 15PF	
C605	ECST0JY226R	TANTALUM CHIP 6.3V 22UF	
C606	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C607	ECJ1VC1H150J	C CHIP 50V 15PF	
C611	ECJ1VC1H150J	C CHIP 50V 15PF	
C613	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C614	F1J1C1050011	C CHIP 16V 1UF	
C615	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C616	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C617	ECJ2VF1E104Z	C CHIP 25V 0.1UF	

Ref. No.	Part No.	Part Name & Description	Remarks
C618	ECJ1VC1H060C	C CHIP 50V 6PF	
C619	ECJ1VC1H010C	C CHIP 50V 1PF	
C623	ECEV1CA100S	ELECTROLYTIC CHIP 16V 10UF	
C633	ECJ2FB1A225K	C CHIP 10V 2.2UF	
C634	ECJ2FB1A225K	C CHIP 10V 2.2UF	
C636	ECJ1VF1A105Z	C CHIP 10V 1UF	
C638	ECJ1VF1A105Z	C CHIP 10V 1UF	
C639	ECJ1VF1A105Z	C CHIP 10V 1UF	
C640	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C642	ECJ2YB1A105K	C CHIP 10V 1UF	
C643	ECST0JY106	TANTALUM CHIP 6.3V 10UF	
C644	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C645	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C646	ECST0JY106	TANTALUM CHIP 6.3V 10UF	
C647	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C651		C CHIP 50V 1000PF	
C663		C CHIP 50V 10PF	
C703	ECJ2YF1A475Z	C CHIP 10V 4.7UF	
C704	ECJ2YF1A475Z	C CHIP 10V 4.7UF	
C706	ECJ2YF1A475Z	C CHIP 10V 4.7UF	
C707	ECJ2YF1A475Z	C CHIP 10V 4.7UF	
C708	ECEV1CA470S	ELECTROLYTIC CHIP 16V 47UF	
C709	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C710		C CHIP 50V 0.01UF	
C1002		C CHIP 16V 0.1UF	
C1003		C CHIP 16V 0.1UF	
C1005	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C1007	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C1008	ECJ1VC1H101J	C CHIP 50V 100PF	
C1009	ECJ1VB1A105K		
C1010		C CHIP 16V 0.1UF	
C1011		C CHIP 50V 4700PF	
C1012		C CHIP 50V 2200PF	
C1013		C CHIP 50V 100PF	
C1014		C CHIP 50V 47PF	
C1015		C CHIP 50V 100PF	
C1016		C CHIP 50V 100PF	
C1017		C CHIP 50V 47PF	
C1018		C CHIP 50V 4700PF	
C1019		C CHIP 50V 4700PF	-
C1020		C CHIP 16V 1UF	
C1021		ELECTROLYTIC CHIP 16V 47UF	-
C1022		C CHIP 16V 4.7UF	
C1023		C CHIP 6.3V 3.3UF	
C1024	ECST1AY475	TANTALUM CHIP 16V 4.7UF	
C1025		C CHIP 50V 470PF	
C1026	F1J0J4750004	C CHIP 6.3V0.47UF	
C1028	ECJ1VB1H102K	C CHIP 50V 1000PF	
C1029	F1J1C1050011	C CHIP 16V 1UF	
C1030	ECJ2VF1C105Z	C CHIP 16V 1UF	
C1031	ECEV1CA100S	ELECTROLYTIC CHIP 16V 10UF	
C1032	ECJ2VF1C105Z	C CHIP 16V 1UF	
C1033	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C1034	F1J1C1050011	C CHIP 16V 1UF	

Ref. No.	Part No.	Part Name & Description	Remarks
C1035	F1J1C1050011	C CHIP 16V 1UF	
C1036	ECJ1VB1H102K	C CHIP 50V 1000PF	
C1037	F1J0J4750004	C CHIP 6.3V0.47UF	
C1039	ECJ1VB1H102K	C CHIP 50V 1000PF	
C1040	ECJ2VF1C105Z	C CHIP 16V 1UF	
C1041	ECEV1CA100S	ELECTROLYTIC CHIP 16V 10UF	
C1042	ECEV0JA470S	ELECTROLYTIC CHIP 6.3V 47UF	
C1044	ECST0JY226R	TANTALUM CHIP 6.3V 22UF	
C1045	ECJ1VF1A105Z	C CHIP 10V 1UF	
C1046	ECJ2VF1C105Z	C CHIP 16V 1UF	
C1049	ECJ1VB1H102K	C CHIP 50V 1000PF	
C1051	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C1053	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C1055	ECJ2VF1C105Z	C CHIP 16V 1UF	
C1056	F1J1C1050011	C CHIP 16V 1UF	
C1057	F1J1C1050011	C CHIP 16V 1UF	
C1059	ECJ2VF1C105Z	C CHIP 16V 1UF	
C1060	ECJ1VF1A105Z	C CHIP 10V 1UF	
C1061	ECJ1VC1H470J	C CHIP 50V 47PF	
C1062	ECJ1VC1H470J	C CHIP 50V 47PF	
C1063	ECJ1VC1H101J	C CHIP 50V 100PF	
C1101	ECJ2YB0J225K	C CHIP 6.3V 2.2UF	
C2001	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C2002	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C2003	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C2007	ECEV0JA220S	ELECTROLYTIC CHIP 6.3V 22UF	
C2008	ECJ2VB1E333K	C CHIP 25V 0.033UF	
C2010	ECJ1VB1C683K	C CHIP 16V 0.068UF	
C2011	ECJ2YB1C334K	C CHIP 16V 0.33UF	
C2012	ECJ1VB1C473K	C CHIP 16V 0.047UF	
C2013	ECJ1VB1C473K	C CHIP 16V 0.047UF	
C2015	ECJ1VB1H152K	C CHIP 50V 1500PF	
C2016	ECJ1VB1H331K	C CHIP 50V 330PF	
C2017	ECJ2YB1A105K	C CHIP 10V 1UF	
C2021	ECJ1VF1H473Z	C CHIP 50V 0.047UF	
C2022	ECJ2VF1E473Z	C CHIP 25V 0.047UF	
C2023	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C2024	ECJ2YB1A105K	C CHIP 10V 1UF	
C2025	ECJ1VB1E103K	C CHIP 25V 0.01UF	
C2030	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C2031	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C2032	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C2040	ECEV1CA100S	ELECTROLYTIC CHIP 16V 10UF	
C2045	ECJ1VB1E103K	C CHIP 25V 0.01UF	
C3001	VCUSJBJ335KB	C CHIP 6.3V 3.3UF	
C3002	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3003	ECST0JY226R	TANTALUM CHIP 6.3V 22UF	
C3005	ECJ1VC1H220J	C CHIP 50V 22PF	
C3006	ECJ1VB1H332K	C CHIP 50V 3300PF	
C3007	ECJ2VF1H104Z	C CHIP 50V 0.1UF	
C3008	ECJ1VB1H103K	C CHIP 50V 0.01UF	
C3009		C CHIP 50V 0.1UF	
C3010		C CHIP 50V 0.01UF	
		C CHIP 50V 220PF	+

Ref. No.	Part No.	Part Name & Description	Remarks
C3012	ECJ1VB1H821K	C CHIP 50V 820PF	
C3013	ECJ1VC1H560J	C CHIP 50V 56PF	
C3014	ECJ1VC1H331J	C CHIP 50V 330PF	
C3015	ECJ1VC1H561J	C CHIP 50V 560PF	
C3017	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3018	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C3019	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3021	ECST0JY226R	TANTALUM CHIP 6.3V 22UF	
C3022	ECJ2YB1A105K	C CHIP 10V 1UF	
C3023	ECJ1VB1C473K	C CHIP 16V 0.047UF	
C3024	ECJ2VF1C105Z	C CHIP 16V 1UF	
C3025	ECJ1VB1H103K	C CHIP 50V 0.01UF	
C3028	ECJ1VB1H103K	C CHIP 50V 0.01UF	
C3029	ECJ1VB1H103K	C CHIP 50V 0.01UF	
C3030	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3031	ECJ1VB1A224K	C CHIP 10V 0.22UF	
C3032		C CHIP 50V 3300PF	
C3033		C CHIP 6.3V 2.2UF	1
C3034	ECJ2VF1C105Z	C CHIP 16V 1UF	
C3036	F1K1C4750017	C CHIP 16V 4.7UF	
C3038	ECJ1VC1H560J	C CHIP 50V 56PF	
C3039	ECJ1VC1H180J	C CHIP 50V 18PF	
C3040	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3041		C CHIP 16V 0.1UF	
C3042	ECEV0JA220S	ELECTROLYTIC CHIP 6.3V 22UF	
C3043	ECST0JY226R	TANTALUM CHIP 6.3V 22UF	
C3045	ECEV1HA3R3S	ELECTROLYTIC CHIP 50V 3.3UF	
C3046	ECEV0GA221S	ELECTROLYTIC CHIP 4V 220UF	
C3047		C CHIP 10V 1UF	
C3048	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3053	ECJ1VC1H390J	C CHIP 50V 39PF	
C3054	ECJ1VC1H101J	C CHIP 50V 100PF	
C3055	ECJ1VC1H181J	C CHIP 50V 180PF	
C3057	ECJ1VC1H180J	C CHIP 50V 18PF	
C3058	ECJ1VC1H120J	C CHIP 50V 12PF	
		C CHIP 50V 10PF	
C3060		C CHIP 50V 12PF	
C3061		C CHIP 50V 0.01UF	
C3068		C CHIP 50V 0.01UF	
C3070		C CHIP 16V 0.1UF	
C3072		C CHIP 50V 0.01UF	1
C3073		C CHIP 16V 0.1UF	1
C3074	ECEV0JA220S	ELECTROLYTIC CHIP 6.3V 22UF	1
C3075		C CHIP 50V 0.01UF	
C3077		C CHIP 50V 0.01UF	+
C3078		C CHIP 50V 0.01UF	
C3079		C CHIP 50V 1000PF	1
C3080		C CHIP 50V 1000FF	1
C3081		C CHIP 50V 0.01UF	+
C3085		C CHIP 16V 0.1UF	+
C3098		C CHIP 16V 0.1UF	1
C3107		C CHIP 16V 0.10F	1
C3107		C CHIP 16V 1UF	+
JJ 132	L002 VI 10 1032	O O	

Ref. No.	Part No.	Part Name & Description	Remarks
C3139	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3150	ECJ1VF1H103Z	C CHIP 50V 0.01UF	
C3152	ECJ1VB1H681K	C CHIP 50V 680PF	
C3153	ECJ1VB1H681K	C CHIP 50V 680PF	
C3157	ECJ1VC1H470J	C CHIP 50V 47PF	
C3158	ECJ1VC1H080C	C CHIP 50V 8PF	
C4002	F1J1A1050002	C CHIP 10V 1UF	
C4003	ECJ1VB1H102K	C CHIP 50V 1000PF	
C4004	ECUT2A472JCM	C CHIP 100V 4700PF	
C4005	ECJ2VB1H682K	C CHIP 50V 6800PF	
C4006	ECJ1VB1E223K	C CHIP 25V 0.022UF	
C4007	ECJ2YB1A105K	C CHIP 10V 1UF	
C4008	ECST0JY226R	TANTALUM CHIP 6.3V 22UF	
C4009	ECJ2VF1H104Z	C CHIP 50V 0.1UF	
C4011	ECJ1VB1H472K	C CHIP 50V 4700PF	
C4012	ECJ1VB1H103K	C CHIP 50V 0.01UF	
C4013	ECJ1VF1E104Z	C CHIP 25V 0.1UF	
C4014	ECJ1VF1E104Z	C CHIP 25V 0.1UF	
C4015	ECJ2VF1E104Z	C CHIP 25V 0.1UF	
C4016	ECST0JY226R	TANTALUM CHIP 6.3V 22UF	
C4017	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C4019	F1J1A1050002	C CHIP 10V 1UF	
C4021	ECEV1CA100S	ELECTROLYTIC CHIP 16V 10UF	
C4022	ECJ2YB1C474K	C CHIP 16V 0.47UF	
C4023	ECST0JY475	TANTALUM CHIP 6.3V 4.7UF	
C4026	ECJ2VB1C104K	C CHIP 16V 0.1UF	
C4027	ECJ1VB1H153K	C CHIP 50V 0.015UF	
C4028	ECST0JY106	TANTALUM CHIP 6.3V 10UF	
C4030	ECST0JY475	TANTALUM CHIP 6.3V 4.7UF	
C4031	ECJ1VB1H122K	C CHIP 50V 1200PF	
C4032	F1J1A1050004	C CHIP 10V 1UF	
C4033	ECJ1VB1H272K	C CHIP 50V 2700PF	
C4034		C CHIP 50V 0.01UF	
C4035	ECJ2VF1C105Z	C CHIP 16V 1UF	
C4036	ECJ2VF1C105Z	C CHIP 16V 1UF	
C4039		C CHIP 16V 0.47UF	
C4041		C CHIP 50V 2200PF	
C6001		C CHIP 50V 33PF	
C6002		C CHIP 10V 0.22UF	
C6004		C CHIP 16V 1UF	
C6006		C CHIP 50V 0.01UF	
C6007		C CHIP 50V 12PF	+
C6008		C CHIP 50V 10PF	+
C6009		C CHIP 16V 0.1UF	+
C6011		C CHIP 50V 0.01UF	+
C6013		C CHIP 16V 0.1UF	+
C6014		C CHIP 50V 0.01UF	+
C6017		C CHIP 16V 0.1UF	+
C6018		C CHIP 50V 0.1UF	+
C6020		C CHIP 16V 0.1UF	+
C6022		C CHIP 50V 0.01UF	+
C6022		C CHIP 50V 1000PF	+
		ELECTROLYTIC CHIP 6.3V 47UF	+
C6025			

Ref. No.	Part No.	Part Name & Description	Remarks
C6029	ECJ2VF1C105Z	C CHIP 16V 1UF	
C6031	ECJ1VB1H103K	C CHIP 50V 0.01UF	
C6044	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C6201	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C6202	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C6207	ECJ1VC1H101J	C CHIP 50V 100PF	
C6208	ECJ2VF1C224Z	C CHIP 16V 0.22UF	
C6214	ECJ1VB1H102K	C CHIP 50V 1000PF	
C6220	ECJ2YF1C155Z	C CHIP 16V 1.5UF	
C6221	ECJ1VB1H102K	C CHIP 50V 1000PF	
C6222	ECJ2YB1A105K	C CHIP 10V 1UF	
C6223	ECST0JY226R	TANTALUM CHIP 6.3V 22UF	
C6225	ECJ1VB1H103K	C CHIP 50V 0.01UF	

Ref. No.	Part No.	Part Name & Description	Remarks
L302	G1C470J00006	COIL CHIP 47UH	
L303	G1C330JA0010	COIL CHIP 33UH	
L305	G1C3R9J00004	COIL CHIP 3.9UH	
L307	G1C150J00005	COIL CHIP 15UH	
L308	G1C100KA0002	COIL CHIP 10UH	
L310	G1C4R7M00021	COIL CHIP 4.7UH	
L601	G1C150J00005	COIL CHIP 15UH	
L602	G1C150J00005	COIL CHIP 15UH	
L605	G1C150J00005	COIL CHIP 15UH	
L1001	G1C100MA0059	COIL CHIP 10UH	
L1002	ELL6SH100M	CHOKE COIL 10UH	
L1003	ELL6SH330M	CHOKE COIL 33UH	
L1004	ELL6SH330M	CHOKE COIL 33UH	
L1005	G1C100MA0065	CHOKE COIL 10UH	
L1006	G1C100MA0031	COIL CHIP 10UH	
L1007	G1C100MA0031	COIL CHIP 10UH	
L1008	G1C100MA0031	COIL CHIP 10UH	
L1009	G1C470J00006	COIL CHIP 47UH	
L1010	G1C470J00006	COIL CHIP 47UH	
L1011	G1C470J00006	COIL CHIP 47UH	
L1012	G1C100MA0031	COIL CHIP 10UH	
L1014	G1C100MA0031	COIL CHIP 10UH	
L1015	G1C100MA0031	COIL CHIP 10UH	
L1016	G1C100MA0031	COIL CHIP 10UH	
L1017	ELL6SH330M	CHOKE COIL 33UH	
L1018	ELL6SH101M	CHOKE COIL 100UH	
L1019	G1C100MA0031	COIL CHIP 10UH	
L1020	G1C100MA0031	COIL CHIP 10UH	
L3001	G1C220K00013	COIL CHIP 22UH	
L3002	G1C220K00013	COIL CHIP 22UH	
L3003	G1C220K00013	COIL CHIP 22UH	
L3004	G1C220K00013	COIL CHIP 22UH	
L3006	G1C220K00013	COIL CHIP 22UH	
L3009	G1C820J00001	COIL CHIP 82UH	
L3011	G1C470J00006	COIL CHIP 47UH	
L3012	G1C120J00003	COIL CHIP 12UH	
L3013	G1C331J00004	COIL CHIP 330UH	

Ref. No.	Part No.	Part Name & Description	Remarks
L3014	G1C180J00003	COIL CHIP 18UH	
L3015	G1C331J00004	COIL CHIP 330UH	
L3016	G1C470J00006	COIL CHIP 47UH	
L3017	G1C331J00004	COIL CHIP 330UH	
L3030	G1C220K00013	COIL CHIP 22UH	
L3031	G1C470J00006	COIL CHIP 47UH	
L4001	G1C221KA0002	COIL CHIP 220UH	
L4002	G1C101KA0002	COIL CHIP 100UH	

#### **CRYSTAL OSCILLATOR**

Ref. No.	Part No.	Part Name & Description	Remarks
X501	EF0S5004E5	CRYSTAL OSCILLATOR	
X601	H0A286500001	CRYSTAL OSCILLATOR	
X3001	LSSX0070	CRYSTAL OSCILLATOR	
X6001	H0A143500002	CRYSTAL OSCILLATOR	
X6002	LSSX0072	CRYSTAL OSCILLATOR	

#### **FPC CONNECTORS**

Ref. No.	Part No.	Part Name & Description	Remarks
FP1	K1MN28B00053	CONNECTOR 28P	
FP2	K1MN37A00010	CONNECTOR 37P	
FP6	K1MN28B00053	CONNECTOR 28P	
FP7	K1MN14A00072	CONNECTOR 14P	
FP8	K1MN12A00058	CONNECTOR 12P	
FP9	K1MN22A00053	CONNECTOR 22P	
FP10	K1MN26A00053	CONNECTOR 26P	
FP11	K1MN06A00050	CONNECTOR 6P	
FP12	K1MN06B00140	CONNECTOR 6P	
FP13	K1MN16B00122	CONNECTOR 16P	

#### **FUSE& PROTECTOR**

Ref. No.	Part No.	Part Name & Description	Remarks
F1001	K5H202Z00005	FUSE CHIP 32V 2A	Δ
F1002	K5H152Z00006	FUSE CHIP 32V 1.5A	Δ

#### TRANSFORMER

Ref. No.	Part No.	Part Name & Description	Remarks
T4001	G2A392C00002	TRANSFORMER	

# **MISCELLANEOUS**

Ref. No.	Part No.	Part Name & Description	Remarks
707	VMTS0035	CUSHION,RUBBER	
708	LSMX0171	INSULATION SHEET,PLASTIC	
712	LSMF0220	SHEET,NYLON-RAYON	

# 13.3.3. BATTERY CATCHER C.B.A. NR

#### COMPARISON CHART OF MODELS & MARKS

MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D

#### **INTEGRATED CIRCUITS**

Ref. No.	Part No.	Part Name & Description	Remarks
IC503	C0ZBZ0000275	IC, RS232C DRIVER ( D )	
IC503	C0ZBZ0000540	IC, RS232C DRIVER ( D )	
IC503	C1ZBZ0001923	IC, RS232C DRIVER ( D )	
IC901	C0HBA0000127	IC, LINEAR	

#### **TRANSISTORS**

Ref. No.	Part No.	Part Name & Description	Remarks
Q901	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q901	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q902	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q902	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q903	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q903	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q904	UNR521200L	TRANSISTOR SI NPN CHIP	
Q904	B1GBCFLL0012	TRANSISTOR SI NPN CHIP	

# **DIODES**

Ref. No.	Part No.	Part Name & Description	Remarks
D901	MAZ80750ML	DIODE ZENER CHIP 7.5V	
D1204	RD20S-T1B	DIODE ZENER CHIP 20V	
D1213	RD12S-T1B	DIODE ZENER CHIP 12V	
D1215	RD20S-T1B	DIODE ZENER CHIP 20V	

#### **RESISTORS**

Ref. No.	Part No.	Part Name & Description	Remarks
R506	ERJ3GEYJ104V	MGF CHIP 1/16W 100K ( D )	
R507	ERJ3GEY0R00V	MGF CHIP 1/16W 0 ( D )	
R508	ERJ3GEY0R00V	MGF CHIP 1/16W 0 ( D )	
R509	ERJ3GEYJ103V	MGF CHIP 1/16W 10K ( D )	
R510	ERJ3GEYJ102V	MGF CHIP 1/16W 1K ( D )	
R511	ERJ3GEYJ473V	MGF CHIP 1/16W 47K ( D )	
R512	ERJ3GEY0R00V	MGF CHIP 1/16W 0 ( D )	
R513	ERJ3GEY0R00X	MGF CHIP 1/16W 0 ( D )	
R514	ERJ3GEYJ103V	MGF CHIP 1/16W 10K ( D )	
R515	ERJ3GEYJ102V	MGF CHIP 1/16W 1K ( D )	
R516	ERJ3GEYJ103V	MGF CHIP 1/16W 10K ( D )	
R517	ERJ3GEYJ103X	MGF CHIP 0.06W 10K ( D )	
R522	ERJ3GEYJ332X	MGF CHIP 1/16W 3.3K ( D )	
R523	ERJ3GEYJ103X	MGF CHIP 0.06W 10K ( D )	
R525	ERJ3GEYJ104V	MGF CHIP 1/16W 100K ( D )	
R570	LSRJ0002	VARIABLE RESISTOR ( D )	
R571	LSRJ0002	VARIABLE RESISTOR ( D )	
R901	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R902	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R903	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R904	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R905	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R906	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R907	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R908	ERJ3GEYJ332V	MGF CHIP 1/16W 3.3K	
R909	ERJ3GEYJ562V	MGF CHIP 1/16W 5.6K	
R910	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R911	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R912	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R913	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R914	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R915	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R916	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R917	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R918	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R920	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R921	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R922	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R1201	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R4419	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R4420	ERJ3GEY0R00V	MGF CHIP 1/16W 0	

Ref. No.	Part No.	Part Name & Description	Remarks
C521	ECST0JY106	TANTALUM CHIP 6.3V 10UF ( D )	
C522	ECJ1VB1C104K	C CHIP 16V 0.1UF ( D )	
C523	ECJ1VB1C104K	C CHIP 16V 0.1UF ( D )	
C524	ECJ1VB1C104K	C CHIP 16V 0.1UF ( D )	
C525	ECJ1VB1C104K	C CHIP 16V 0.1UF ( D )	
C526	ECST0JY106	TANTALUM CHIP 6.3V 10UF ( D )	
C901	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C902	ECJ1VB1H103K	C CHIP 50V 0.01UF	
C903	ECST0JY106	TANTALUM CHIP 6.3V 10UF	
C904	ECJ1VB1A105K	C CHIP 10V 1UF	
C905	ECJ1VB1A105K	C CHIP 10V 1UF	
C906	ECJ1VB1A105K	C CHIP 10V 1UF	
C907	ECJ1VB1A105K	C CHIP 10V 1UF	
C908	ECJ1VB0J474K	6.3V0.47UF	
C909	ECJ1VB1H103K	C CHIP 50V 0.01UF	
C910	ECJ1VB0J334K	C CHIP 6.3V 0.33UF	
C912	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C913	ECST1CY475	TANTALUM CHIP 16V 4.7UF	
C914	ECJ1VB1H682K	C CHIP 50V 6800P	
C915	ECJ1VB1H103K	C CHIP 50V 0.01UF	
C916	ECJ2YB1A105K	C CHIP 10V 1UF	
C917	ECJ1VB0J474K	C CHIP 6.3V0.47UF	
C918	ECJ1VB0J474K	C CHIP 6.3V0.47UF	
C919	ECJ1VB0J474K	C CHIP 6.3V0.47UF	
C921	ECJ1VB0J474K	C CHIP 6.3V0.47UF	
C922	ECJ1VB1A105K	C CHIP 10V 1UF	
C1202	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C1203	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C4422	ECJ1VB1H222K	C CHIP 50V 2200PF	

Ref. No.	Part No.	Part Name & Description	Remarks
L503	J0JBC0000014	BEAD INDUCTOR ( D )	
L504	J0JBC0000014	BEAD INDUCTOR ( D )	
L505	J0JBC0000014	BEAD INDUCTOR ( D )	
L506	G1C220K00013	COIL CHIP 22UH ( D )	
L901	G1C150J00005	COIL CHIP 15UH	
L1201	J0JHC0000054	BEADS CORE	
L1212	J0JHC0000054	BEADS CORE	
L4421	J0JBC0000014	BEAD INDUCTOR	
L4422	J0JBC0000014	BEAD INDUCTOR	

# **FPC CONNECTORS**

Ref. No.	Part No.	Part Name & Description	Remarks
FP901	K1MN22B00069	CONNECTOR 22P	

#### **FUSE& PROTECTOR**

Ref. No.	Part No.	Part Name & Description	Remarks
PR1201	K5H402Z00003	PROTECTOR CHIP 4A	Δ

#### **JACKS**

Ref. No.	Part No.	Part Name & Description	Remarks
JK6501	LSJJ0185	PC JACK SOCKET ( D )	

#### **MISCELLANEOUS**

Ref. No.	Part No.	Part Name & Description	Remarks
709	LSMX0175	SHEET,NYLON-RAYON	
710	K1NA09B00002	SD CARD CONNECTOR ( D )	
711	LSMX0171	SHEET,NYLON-RAYON ( D )	

# 13.3.4. LIQUIED CRYSTAL DISPLAY C.B.A.

#### INTEGRATED CIRCUITS

Ref. No.	Part No.	Part Name & Description	Remarks
IC9001	AN2545FHQ	IC, LINEAR	
IC9001	AN2545NFHQ	IC, LINEAR	
IC9002	C0ABAB000001	IC, LINEAR	

#### **TRANSISTORS**

Ref. No.	Part No.	Part Name & Description	Remarks
Q1203	UNR511200L	TRANSISTOR SI PNP CHIP	
Q1203	B1GDCFLL0012	TRANSISTOR SI PNP CHIP	
Q1204	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q1204	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q1205	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q1205	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q1206	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q1206	B1ADCF000063	TRANSISTOR SI PNP CHIP	
Q1208	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q1208	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q1209	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q1209	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q1211	UNR521300L	TRANSISTOR SI NPN CHIP	
Q1211	B1GBCFNN0009	TRANSISTOR SI NPN CHIP	
Q1213	B1ABCF000098	TRANSISTOR SI NPN CHIP	
Q1213	B1ABCF000099	TRANSISTOR SI NPN CHIP	
Q1214	2SD1819A0L	TRANSISTOR SI NPN CHIP	
Q1214	B1ABCF000020	TRANSISTOR SI NPN CHIP	
Q1215	UNR521200L	TRANSISTOR SI NPN CHIP	
Q1215	B1GBCFLL0012	TRANSISTOR SI NPN CHIP	
Q9051	2SD11190RL	TRANSISTOR SI NPN CHIP	Δ
Q9051	B1ABPC000007	TRANSISTOR SI NPN CHIP	Δ
Q9052	2SD11190RL	TRANSISTOR SI NPN CHIP	Δ
Q9052	B1ABPC000007	TRANSISTOR SI NPN CHIP	Δ
Q9053	2SB1218A0L	TRANSISTOR SI PNP CHIP	
Q9053	B1ADCF000063	TRANSISTOR SI PNP CHIP	

Ref. No.	Part No.	Part Name & Description	Remarks
D1203	MAZ80560LL	DIODE ZENER 5.6V	
D1205	MAZ81000HL	DIODE ZENER 10V	
D1206	MAZ80680ML	DIODE ZENER 6.8V	

# **RESISTORS**

Ref. No.	Part No.	Part Name & Description	Remarks
R1212	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R1213	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R1214	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R1215	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R1216	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R1217	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R1218	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R1219	ERJ3GEYJ821V	MGF CHIP 1/16W 820	
R1220	ERJ3GEYJ562V	MGF CHIP 1/16W 5.6K	
R1222	ERJ3GEYJ393V	MGF CHIP 1/16W 39K	
R1225	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R1226	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R9004	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R9005	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R9006	ERJ3GEYJ102V	MGF CHIP 1/16W 1K	
R9010	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R9011	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R9012	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R9013	ERJ3GEYJ561V	MGF CHIP 1/16W 560	
R9014	ERJ3GEYJ153V	MGF CHIP 1/16W 15K	
R9015	ERJ3GEYJ123V	MGF CHIP 1/16W 12K	
R9016	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R9017	ERJ6GEY0R00V	MGF CHIP 1/10W 0	
R9018	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R9019	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
R9020	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R9021	ERJ6GEYJ101V	MGF CHIP 1/10W 100	
R9022	ERJ3GEYJ101V	MGF CHIP 1/16W 100	
R9023	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R9024	ERJ3GEYJ104V	MGF CHIP 1/16W 100K	
R9025	ERJ6GEYJ682V	MGF CHIP 1/10W 6.8K	
R9026	ERJ3GEYJ473V	MGF CHIP 1/16W 47K	
R9027	ERJ3GEYJ472V	MGF CHIP 1/16W 4.7K	
R9028	ERJ3GEYJ223V	MGF CHIP 1/16W 22K	
R9029	ERJ3GEYJ123V	MGF CHIP 1/16W 12K	
R9030	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R9031	ERJ3GEYJ103V	MGF CHIP 1/16W 10K	
R9032	ERJ3GEYJ153V	MGF CHIP 1/16W 15K	
R9051	ERJ3GEYJ182V	MGF CHIP 1/16W 1.8K	
R9052	ERJ8GEYJ102V	MGF CHIP 1/8W 1K	
R9054	ERJ3GEYJ222V	MGF CHIP 1/16W 2.2K	
R9058	ERJ3GEY0R00V		
W1201	ERJ3GEY0R00V		
W1202	ERJ3GEY0R00V		
W1202	ERJ8GEY0R00V		
W1203 W1204	ERJ3GEY0R00V		
W1204 W1205	ERJ8GEY0R00V		
11 1203	LIGOGE TOROUV	11.01 OI III 1/044 U	

Ref. No.	Part No.	Part Name & Description	Remarks
W1206		MGF CHIP 1/8W 0	Romanio
W1207		MGF CHIP 1/8W 0	
W1208		MGF CHIP 1/16W 0	
W1209		MGF CHIP 1/8W 0	
W1210		MGF CHIP 1/16W 0	
W1211		MGF CHIP 1/8W 0	
W1212		MGF CHIP 1/8W 0	
W1215		MGF CHIP 1/8W 0	
W1216		MGF CHIP 1/8W 0	
W1217		MGF CHIP 1/8W 0	
W1218	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W1219	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W1220	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W1221	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
W1222	ERJ6GEY0R00V	MGF CHIP 1/10W 0	
W9001	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W9002	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W9003	ERJ6GEY0R00V	MGF CHIP 1/10W 0	
W9004	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W9005	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W9006	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
W9007	ERJ6GEY0R00V	MGF CHIP 1/10W 0	
W9008	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W9009	ERJ6GEY0R00V	MGF CHIP 1/10W 0	
W9010	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W9011	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W9012	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W9013	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W9014	ERJ6GEY0R00V	MGF CHIP 1/10W 0	
W9015	ERJ6GEY0R00V	MGF CHIP 1/10W 0	
W9016	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W9017	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W9018	ERJ6GEY0R00V	MGF CHIP 1/10W 0	
W9019	ERJ6GEY0R00V	MGF CHIP 1/10W 0	
W9020	ERJ6GEY0R00V	MGF CHIP 1/10W 0	
W9021	ERJ6GEY0R00V	MGF CHIP 1/10W 0	
W9022	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W9023	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
W9024	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W9025	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W9026	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W9027	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W9028	ERJ3GEY0R00V	MGF CHIP 1/16W 0	
W9029	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W9030	ERJ8GEY0R00V	MGF CHIP 1/8W 0	
W9031	ERJ6GEY0R00V		
W9051	ERJ3GEY0R00V	MGF CHIP 1/16W 0	

Ref. No.	Part No.	Part Name & Description	Remarks
C1205	ECJ1VB1H222K	C CHIP 50V 2200PF	
C1206	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C1207	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C1208	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C1209	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C1210	ECJ1VB1H103K	C CHIP 50V 0.01UF	
C1211	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C9003	ECST0JY475	TANTALUM CHIP 6.3V 4.7UF	
C9007	ECJ1VF1A105Z	C CHIP 10V 1UF	
C9008	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C9009	ECST0JY226R	TANTALUM CHIP 6.3V 22UF	
C9010	ECJ1VB1H681K	C CHIP 50V 680PF	
C9011	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C9012	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C9013	VCUSJBJ225KB	C CHIP 6.3V 2.2UF	
C9014	ECJ1VB1H152K	C CHIP 50V 1500PF	
C9015	ECST0JY475	TANTALUM CHIP 6.3V 4.7UF	
C9016	ECST0JY106	TANTALUM CHIP 6.3V 10UF	
C9017	ECJ1VB1A105K	C CHIP 10V 1UF	
C9018	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C9019	ECST1CY475	TANTALUM CHIP 16V 4.7UF	
C9020	ECJ1VB1A105K	C CHIP 10V 1UF	
C9021	ECJ1VB1A105K	C CHIP 10V 1UF	
C9022	ECJ2YF1C225Z	C CHIP 16V 2.2UF	
C9023	F1K1C2250005	C CHIP 16V 2.2UF	
C9024	ECJ2YF1C225Z	C CHIP 16V 2.2UF	
C9025	ECJ1VC1H151J	C CHIP 50V 150PF	
C9026	ECJ2YF1C225Z	C CHIP 16V 2.2UF	
C9027	ECJ1VB1C104K	C CHIP 16V 0.1UF	
C9028	F1J1C1050011	C CHIP 16V 1UF	
C9029	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C9031	ECST0JY106	TANTALUM CHIP 6.3V 10UF	
C9032	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C9051	ECUV1A106KBP	C CHIP 10V 10UF	
C9052	ECHU1H153JB5	C CHIP 50V 0.015PF	
C9053	LSCUCAD150J	C CHIP 2KV 15PF	
C9054	ECJ1VF1C104Z	C CHIP 16V 0.1UF	
C9055	LSCUCAD150J	C CHIP 2KV 15PF	

Ref. No.	Part No.	Part Name & Description	Remarks
L1202	ELJFA150KF	COIL 15UH	
L1203	G1C100MA0082	INDUCTOR CHIP 10UH	
L9001	G1C150J00005	COIL CHIP 15UH	
L9003	G1C150J00005	COIL CHIP 15UH	
L9005	G1C150J00005	COIL CHIP 15UH	
L9006	G1C150J00005	COIL CHIP 15UH	
L9007	G1C150J00005	COIL CHIP 15UH	
L9051	G1C680M00011	CHOKE COIL 68UH	Δ

#### **FPC CONNECTORS**

Ref. No.	Part No.	Part Name & Description	Remarks
FP1201	K1MN21B00062	CONNECTOR 21P	
FP9001	K1MN24B00105	CONNECTOR 24P	

# **FUSE& PROTECTOR**

Ref. No.	Part No.	Part Name & Description	Remarks
PR9051	K5H1022A0003	FUSE 32V 1A	

#### **TRANSFORMER**

Ref. No.	Part No.	Part Name & Description	Remarks
T9051	ETJV10ZA17AF	TRANSFORMER	Δ

#### **MISCELLANEOUS**

Ref. No.	Part No.	Part Name & Description	Remarks
706	LSMZ0342	INSULATION SHEET,PLASTIC	

# 14. SCHEMATIC DIAGRAMS FOR PRINTING WITH LETTER SIZE























#### IC6001 KEY VOLTAGE CHART

(VCR IVI	JUE)				
TED	MINAL	OPERATION BUTTON			
	TAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)		
3.42	~3.78V				
2.52	~2.88V	FF/ SEARCH	AUTO TRACKING		
1.62	~1.98V	REW/ SEARCH	MENU		
0.72	~1.08V	PLAY/STILL	DOWN		
0~0.	18V	STOP	UP		

#### (CAMERA EIS MODE)

TERMINAL	OPERATION BUTTON	
VOLTAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)
3.42~3.78V	LIGHT	
2.52~2.88V	EIS	MANUAL FOCUS/ SET
1.62~1.98V	FADE	MENU
0.72~1.08V	STILL/STROBE	DOWN/NEAR
0~0.18V	BACK LIGHT	UP/FAR

#### (CAMERA WIPE MODE)

TERMINAL	OPERATION BUTTON				
VOLTAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)			
3.42~3.78V	LIGHT				
2.52~2.88V		MANUAL FOCUS/ SET			
1.62~1.98V	MODE	MENU			
0.72~1.08V	START	SELECT+ DOWN/NEAR			
0~0.18V	BACK LIGHT	SELECT- UP/FAR			

#### (PHOTO REC MODE)

TERMINAL	OPERATION BUTTON			
VOLTAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)		
3.42~3.78V	LIGHT			
2.52~2.88V		MANUAL FOCUS/ SET		
1.62~1.98V		MENU		
0.72~1.08V	TO PHOTO THUMBNAIL MODE	DOWN/NEAR		
0~0.18V	BACK LIGHT	UP/FAR		

#### (PHOTO THUMBNAIL MODE)

TERMINAL	OPERATION BUTTON		
VOLTAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)	
3.42~3.78V	M. DEL		
2.52~2.88V			
1.62~1.98V		MENU	
0.72~1.08V	M. PLAY	SELECT+	
0~0.18V	TO PHOTO REC MODE	SELECT-	

#### (PHOTO PLAY MODE)

TERMINAL	OPERATION BUTTON			
VOLTAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)		
3.42~3.78V				
2.52~2.88V		SET		
1.62~1.98V		MENU		
0.72~1.08V		SELECT+ DOWN		
0~0.18V	TO PHOTO THUMBNAIL MODE	SELECT- UP		



















# TROUBLESHOOTING HINTS FOR SD/MultiMediaCard Error (Model: PV-L453)

The following ERROR No. will be displayed on the Camcorder LCD Monitor or EVF Monitor when an Error occurred.

ERROR No.	Error Description	Possible solution					
U11	The initial processing of IC501 for SD/Multi Media Card was failed. (Case 1)	May be caused by bad contact between SD/Multi Media Card and IC501 (Camera/DSC Microcontroller.) Check following items and repair or replace if necessary. Repair contact (solder) of signal lines between FP2 connector on the Main C.B.A. and SD/MMC Slot of the Battery Catcher C.B.A. (There are some resistors (R507,R508,etc.)) Replace IC501 (Camera/DSC Microcontroller) Repair contact (solder) of signal lines between IC501 and FP2 connector(Pin 14 ~ 19) on the Main C.B.A.					
U12	The initial processing of IC501 for SD/Multi Media Card was failed. (Case 2)  (May be caused by interruption, such as POWER OFF or the removal of the SD/Multi Media Card, during accessing to the system area of the memory address.	The SD/Multi Media Card is defective. Use a new SD/Multi Media Card. When a defect still goes on, it may be caused by bad contact between SD/Multi Media Card and IC501 (Camera/DSC Microcontroller.) Check following items and repair or replace if necessary.  Replace Battery Catcher Unit (Ref No. 30) Replace IC501 (Camera/DSC Microcontroller) Repair contact (solder) of signal lines between IC501 and FP2 connector(Pin 14 ~ 19) on the Main C.B.A.					
U13	The initial processing of IC501 for SD/Multi Media Card was failed. (Case 3)  May be caused by interruption, such as POWER OFF or the removal of the SD/Multi Media Card, during accessing to the system area of the memory address.	The SD/Multi Media Card is defective. Use a new SD/Multi Media Card.					
U14	Communication Error (SD/Multi Media Card <> Camcorder)	Install a new SD/Multi Media Card in the Camcorder.  Does the camcorder works OK?  OK  Caused by SD/Multi Media Card error. Format the original SD/Multi Media Card. If still NG, the original SD/ Multi Media Card is defective. Use a new one.  NG  May be caused by IC501 (Camera/DSC Microcontroller) malfunction. Replace IC501 on the Main C.B.A.					
U15	No SD/Multi Media Card Memory	Delete the data in the SD/Multi Media Card which was recorded by other compatible products.  OR Use a new SD/Multi Media Card.					
U16	Captured image (ctg folder) limit exceeded (Max. 215 folders)	Delete the data in the SD/Multi Media Card which was recorded by other compatible products.  OR Use a new SD/Multi Media Card.					
U17	Captured image (JPEG file) limit exceeded (Max. 699 files)	Delete the data in the SD/Multi Media Card which was recorded by other compatible products.  OR Use a new SD/Multi Media Card.					
U30	Error other than above	May be caused by IC501 (Camera/DSC Microcontroller) malfunction. Replace IC501 on the Main C.B.A.					

MAIN C.B.A. LSEP8205A1 (A) / LSEP8205B1 (B) / LSEP8205C1 (C) COMPARISON CHART OF MODELS & MARKS CIRCUIT BOARD LAYOUT SHOWS COMPONENTS INSTALLED FOR VARIOUS MODELS. FOR PROPER PARTS CONTENT FOR THE MODEL YOU ARE SERVICING, JIE
TO DEFEAT THE SAFETY FUNCTION, CONNECT A DIODE BETWEEN TP6011 AND TP6012, OR SELECT THE H.
SAFETY DEFEAT IN SERVICE MODE. REFER TO NOTE1 OF "EXTENSION CABLES FOR SERVICE" IN SERVICE
NOTES SECTION FOR MORE INFORMATION. MODEL MARK (COMPONENT SIDE) PLEASE REFER TO THE SCHEMATIC DIAGRAM AND PARTS LIST. VM-L153 PV-L353 В **PbF** CIRCUIT BOARD LAYOUT INCLUDES COMPONENTS WHICH ARE NOT USED. С PV-L353-K PV-L453 D FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES. REFER TO BEGINNING OF SCHEMATIC SECTION. R4022 C4041 R4018 R653 R436 R651 R4043 TP400 R4007 R4002 S R6191 C4018 R646 R643 C6032 R645 C615 R6029 C616 R603 C345 R376 R6027 R626 R378 R639 R616 C606 IMPORTANT SAFETY NOTICE: COMPONENTS IDENTIFIED BY THE SIGN 🛧 HAVE R2032 R617 R2013 C2010 SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY. R625 WHEN REPLACING ANY OF THESE COMPONENTS, R623 R644 R683 R6217 C6214 USE ONLY THE SPECIFIED PARTS R624 Q703 R707 CAUTION: FOR CONTINUED PROTECTION AGAINST FIRE HAZARD,
REPLACE ONLY WITH THE SAME TYPE 2A 24/32V FUSE.
ATTENTION: POUR UNE PROTECTION CONTINUE LES RISQUES R6092 R6016 D' INCENDIE N' UTILISERQUE DES FUSIBLE DE MÉME C342 R357 R354 R705 CAUTION: FOR CONTINUED PROTECTION AGAINST FIRE HAZARD,
REPLACE ONLY WITH THE SAME TYPE 1.5A 24/32V FUSE.
ATTENTION: POUR UNE PROTECTION CONTINUE LES RISQUES D' INCENDIE N' UTILISERQUE DES FUSIBLE DE MÉME C2031 C2030

SP 27 O. C1046  $\infty$ MAIN C.B.A. LSEP8205A1 NOTE: MULTILAYER C.B.A.
THIS C.B.A. IS Multi-Layer C.B.A. THIS CIRCUIT BOARD SHOWS
COMPONENT LAYOUT-PATTERN FOR COMPONENT SIDE AND /LSEP8205B1 /LSEP8205C1 FOIL SIDE. LAYOUT PATETRNS ARE SINGLE PATTERN FOR EACH LSJB8205 SIDE THAT MAKE EASY TO SIGHT THE COMPONENT LAYOUT. VM-L153/PV-L353/PV-L353-K

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

CIRCUIT BOARD LAYOUT SHOWS COMPONENTS INSTALLED FOR VARIOUS MODELS. FOR PROPER PARTS CONTENT FOR THE MODEL YOU ARE SERVICING, PLEASE REFER TO THE SCHEMATIC DIAGRAM AND PARTS LIST.

CIRCUIT BOARD LAYOUT INCLUDES COMPONENTS WHICH ARE NOT USED.

COMPARISON CHART OF MODELS & MARKS MODEL VM-L153 PV-L353 C D PV-L353-K PV-L453



MAIN C.B.A.

LSJB8205

LSEP8205A1 /LSEP8205B1 /LSEP8205C1 VM-L153/PV-L353/PV-L353-K

# **MAIN C.B.A. LSEP8204A1 (D)** TO DEFEAT THE SAFETY FUNCTION, CONNECT A DIODE BETWEEN TP6011 AND TP6012, OR SELECT THE H. SAFETY DEFEAT IN SERVICE MODE. REFER TO NOTE1 OF "EXTENSION CABLES FOR SERVICE" IN SERVICE NOTES SECTION FOR MORE INFORMATION.

C345 R376

R332 R333 C320 C319

R718

R6071 R6072

C1046

773 R73 R73 R72 R72

C707 R703 C706 R723

R320

R680

17 20 24

B & R304
E R303

C704

(COMPONENT SIDE)

TP6007

R6191

C6032

R4018

R6029

R6028 R6027

R2013 C2010

C6214

R6092 R6016

CIRCUIT BOARD LAYOUT SHOWS COMPONENTS INSTALLED FOR VARIOUS MODELS. FOR PROPER PARTS CONTENT FOR THE MODEL YOU ARE SERVICING, PLEASE REFER TO THE SCHEMATIC DIAGRAM AND PARTS LIST.

CIRCUIT BOARD LAYOUT INCLUDES COMPONENTS WHICH ARE NOT USED.

R4043 TP40

R4002

MODEL VM-L153 PV-L353 PV-L353-K С PV-L453 D

**COMPARISON CHART** OF MODELS & MARKS

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

C4041

R4007

R4019 R4016 C4033

IMPORTANT SAFETY NOTICE: COMPONENTS IDENTIFIED BY THE SIGN A HAVE SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY. WHEN REPLACING ANY OF THESE COMPONENTS, USE ONLY THE SPECIFIED PARTS.

LSJB8204

CAUTION: FOR CONTINUED PROTECTION AGAINST FIRE HAZARD,
REPLACE ONLY WITH THE SAME TYPE 2A 24/32V FUSE.
ATTENTION: POUR UNE PROTECTION CONTINUE LES RISQUES D' INCENDIE N' UTILISERQUE DES FUSIBLE DE MÉME

CAUTION: FOR CONTINUED PROTECTION AGAINST FIRE HAZARD, REPLACE ONLY WITH THE SAME TYPE 1.5A 24/32V FUSE. ATTENTION: POUR UNE PROTECTION CONTINUE LES RISQUES D' INCENDIE N' UTILISERQUE DES FUSIBLE DE MÉME TYPE 1.5A 24/32V

C663

C616

© D601

R626

R639

R683

R605

R607 R606 C615 R641

THIS C.B.A. IS Multi-Layer C.B.A. THIS CIRCUIT BOARD SHOWS COMPONENT LAYOUT-PATTERN FOR COMPONENT SIDE AND FOIL SIDE. LAYOUT PATETRNS ARE SINGLE PATTERN FOR EACH SIDE THAT MAKE EASY TO SIGHT THE COMPONENT LAYOUT.

MAIN C.B.A. LSEP8204A1

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

CIRCUIT BOARD LAYOUT SHOWS COMPONENTS INSTALLED FOR VARIOUS MODELS. FOR PROPER PARTS CONTENT FOR THE MODEL YOU ARE SERVICING, PLEASE REFER TO THE SCHEMATIC DIAGRAM AND PARTS LIST.

COMPARISON CHART OF MODELS & MARKS MODEL VM-L153 PV-L353 В C D PV-L353-K PV-L453



LSJB8204

# LCD C.B.A. LSEP8206A1

NOTE:
FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

IMPORTANT SAFETY NOTICE:
COMPONENTS IDENTIFIED BY THE SIGN A HAVE SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY. WHEN REPLACING ANY OF THESE COMPONENTS, USE ONLY THE SPECIFIED PARTS.

CIRCUIT BOARD LAYOUT SHOWS COMPONENTS INSTALLED FOR VARIOUS MODELS. FOR PROPER PARTS CONTENT FOR THE MODEL YOU ARE SERVICING, PLEASE REFER TO THE SCHEMATIC DIAGRAM AND PARTS LIST.

CIRCUIT BOARD LAYOUT INCLUDES COMPONENTS WHICH ARE NOT USED.

NOTE:

Some resistors on LCD C.B.A. have Ref. Nos. for wire. These resistors are not discribed on Schematic Diagaram. When servicing these resistors, please refer to Replacement Parts Lists.





# MECHANISM FPC UNIT

NOTE:

MECHANISM FPC UNIT IS NOT SERVICEABLE AND IS SUPPLIED AS A UNIT ONLY FOR REPLACEMENT.

NOTE:

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.



# **MAIN PARTS PORTION**

† A	† B	† C	† D	† E	† F
10	-	Side Case R Ass'y	0		-
9	50	Mechanism Chassis Ass'y	0	473, 533	6
8	<b>(£10)</b>	Main C.B.A.	0	242), 473, FP1, FP2, FP6, FP7, FP10, Unsolder	5
7	-	Lens Ass'y	0	586, FP8, FP9	-
6	-	Front Case Ass'y	0	256, 2(L-5), FP11	4
5	-	Top Case Ass'y	0	256, 3(L-4), FP12	3
4	184)	Sensor Shield Case	0	504, 2(L-3)	-
3	-	Side Case L Ass'y	0	3533, 2586, 5694, FP13	2
2	17)	EVR Cover	0	\$86	-
1	-	Cassette Cover and LCD Ass'y	0	2(L-1), 2(L-2), FP9101	1
STEP No.	Ref. No.	PART	Section No.	REMOVE	NOTE

# How to read chart shown above:

A: Order of Procedure steps.

When reassembling, perform steps (s) in reverse order.

B: Ref No.
C: Part to be removed or installed.
D: Section No.

E: Identification of part to be removed, unhooked, unlocked, released, unplugged, unclamped, or unsoldered.

2 (33)= 2 Screws (33), 2(L-1) = 2 Locking Tabs (L-1)

F: Refer to "Notes in chart."



# **CASSETTE COVER & LCD PORTION**

UAU.	J_	IL COVEII &	LOL	71 01111011	
STEP No.	Ref. No.	PART	Section No.	REMOVE	NOTE
1	383	Shaft Cover	2	4586	-
2	-	LCD Case Ass'y	2	2(86), 2(L-1), (99), Unsolder	7
3	355)	LCD Case A Unit	2	2469, 8(L-2)	-
4	366	LCD Shaft Unit	2	FP1201	-
5	335)	LCD Case B	2	4586	-
6	<b>E30</b>	LCD C.B.A.	2	3(L-3), FP9001, Unsolder	-
7	211	LCD Panel Unit	2	8(L-4)	8
8	212	Lead Light Panel Unit	2		9
9	203	Back Light Unit	2	3(L-5), LCD Sheet Unit	10
† A	† B	Ť C	† D	† E	† F

# How to read chart shown above:

A: Order of Procedure steps.

When reassembling, perform steps (s) in reverse order.

B: Ref No.
C: Part to be removed or installed.
D: Section No.

E: Identification of part to be removed, unhooked, unlocked, released, unplugged, unclamped, or unsoldered.

2 (3) = 2 Screws (3), 2(L-1) = 2 Locking Tabs (L-1)

F: Refer to "Notes in chart."



# **SIDE CASE L PORTION**

STEP No.	Ref. No.	DADT	Section No.	REMOVE	NOTE
1	(131)	Side L Operation Unit	<b>©</b>	7586, (L-1), 190 (without Photo Shot function)	11
† A	† B	Ċ	† D	† E	† F

# How to read chart shown above:

A: Order of Procedure steps.
When reassembling, perform steps (s) in reverse order.

B: Ref No.

C: Part to be removed or installed. D: Section No.

E: Identification of part to be removed, unhooked, unlocked, released, unplugged, unclamped, or unsoldered.
2 (33)= 2 Screws (33), 2(L-1) = 2 Locking Tabs (L-1)
F: Refer to "Notes in chart."



# **TOP CASE PORTION**

STEP No.	Ref. No.	I PART	Section No.	REMOVE	NOTE
1	(130)	Top Operation Unit	4	2627	12
Å	† B	† C	† D	† E	f F

# **How to read chart shown above:** A: Order of Procedure steps.

When reassembling, perform steps (s) in reverse order.

When reassembling, periorin steps (s) in reverse order.

B: Ref No.

C: Part to be removed or installed.

D: Section No.

E: Identification of part to be removed, unhooked, unlocked, released, unplugged, unclamped, or unsoldered.

2 (33) = 2 Screws (33), 2(L-1) = 2 Locking Tabs (L-1)

F: Refer to "Notes in chart."



# **FRONT CASE PORTION**

STEP No.	Ref. No.	I PARI	Section No.	REMOVE	NOTE
1	128)	Microphone Unit	6	(586)	-
† A	† B	† C	† D	† E	† F

#### How to read chart shown above:

A: Order of Procedure steps.

When reassembling, perform steps (s) in reverse order.

When reassembling, periorin steps (s) in reverse order.

B: Ref No.

C: Part to be removed or installed.

D: Section No.

E: Identification of part to be removed, unhooked, unlocked, released, unplugged, unclamped, or unsoldered.

2 (33) = 2 Screws (53), 2(L-1) = 2 Locking Tabs (L-1)

F: Refer to "Notes in chart."



## **CCD PORTION & LENS PORTION**

		l .		T T	
STEP No.	Ref. No.	PART	Section No.	REMOVE	NOTE
1	<b>E</b> 40	CCD C.B.A.	6	2602	13
2	31)	Filter Rubber	6		13
3	16	Optical Filter	6		13
4	241)	IR Cut Filter	6		13
† A	† B	† C	† D	† E	† F

#### How to read chart shown above:

A: Order of Procedure steps.

When reassembling, perform steps (s) in reverse order.

C: Part to be removed or installed.

D: Section No.

E: Identification of part to be removed, unhooked, unlocked, released, unplugged, unclamped, or unsoldered. 2 (33)= 2 Screws (33), 2(L-1) = 2 Locking Tabs (L-1) F: Refer to "Notes in chart."

STEP No.	Ref. No.	PART	Section No.	REMOVE	NOTE
1	-	Lens Piece Ass'y	6		-
2	13	Focus Motor Unit	6	2648, Unsolder	14
3	221)	Zoom Motor Unit	6	2647, 648, Unsolder	14
† A	† B	† C	Î D	† E	† F

#### How to read chart shown above:

A: Order of Procedure steps.

When reassembling, perform steps (s) in reverse order.

B: Ref No.

C: Part to be removed or installed.

D: Section No.

E: Identification of part to be removed, unhooked, unlocked, released, unplugged, unclamped, or unsoldered. 2 (33)= 2 Screws (33), 2(L-1) = 2 Locking Tabs (L-1) F: Refer to "Notes in chart."



### SIDE CASE R & LAMP & EVF PORTION

STEP No.	Ref. No.	PART	Section No.	REMOVE	NOTE
1	1	Lamp Ass'y	7	2586	15
2	186	Light Protector	7	3(L-1)	-
3	340	Lamp	7		16
† A	† B	† C	† D	† E	† F

### How to read chart shown above:

A: Order of Procedure steps.

When reassembling, perform steps (s) in reverse order.

B: Ref No.

C: Part to be removed or installed.

D: Section No.

E: Identification of part to be removed, unhooked, unlocked, released, unplugged, unclamped, or unsoldered. 2 (33)= 2 Screws (33), 2(L-1) = 2 Locking Tabs (L-1) F: Refer to "Notes in chart."

STEP No.	Ref. No.	I PART	Section No.	REMOVE	NOTE
1	<b>(£20)</b>	Battery Catcher C.B.A.	7	686, (L-2), FP901 29, Battery	17
† A	† B	† C	† D	† E	† F

#### How to read chart shown above:

A: Order of Procedure steps.

When reassembling, perform steps (s) in reverse order.

B: Ref No.

C: Part to be removed or installed.

D: Section No.

E: Identification of part to be removed, unhooked, unlocked, released, unplugged, unclamped, or unsoldered. 2 (33)= 2 Screws (33), 2(L-1) = 2 Locking Tabs (L-1) F: Refer to "Notes in chart."

STEP No.	Ref. No.	PART	Section No.	REMOVE	NOTE
1	<b>61</b>	EVF Unit	7	(586)	18
2	-	EVF Ass'y	7	620, €27, (L-3), FP951	19
3	268	Eye Cap	7		19
4	361)	EVF Main Unit	7		19
5	344	EVF F.P.C.	7		-
† A	† B	† C	† D	† E	† F

## How to read chart shown above:

A: Order of Procedure steps.

When reassembling, perform steps (s) in reverse order.

B: Ref No.

C: Part to be removed or installed. D: Section No.

E: Identification of part to be removed, unhooked, unlocked, released, unplugged, unclamped, or unsoldered. 2 (33)= 2 Screws (33), 2(L-1) = 2 Locking Tabs (L-1) F: Refer to "Notes in chart."



### Notes in chart

## 1. Removal of Cassette Cover and LCD Ass'y

To open the Cassette Cover, place the unit with the Cassette Cover facing upward. Then, with the power on slide the EJECT button, or remove the EVR Cover and slide the Lock Lever through the TP Board slot.



Installation of Cassette Cover and LCD Ass'y CAUTION:

Be sure to connect the Flexible Flat Cable (LCD F.F.C.) to Connector FP9101 correctly as shown. Otherwise, the F1001, Q1007 and L1018 for -15 V circuit on the Main C.B.A. may be damaged.



Fig. D3

### 2. Removal of Side Case L Ass'y

When removing the Side Case L Ass'y, take care not to damage the F.P.C in the unit.



### 3. Installation of Top Case Ass'y

- 1) Install the Top Case Ass'y with 3 Locking Tabs (L-4) in the direction indicated by the arrow.
- Connect the Top Operation F.P.C. to the Connector FP12 on the Main C.B.A. as shown.





Fig. D5

### 4. Removal of Front Case Ass'y

Release the Locking Tab (L-5) carefully using any thin object, e.g., a thin metal ruler.



Fig. D6

#### 5. Installation of Main C.B.A.

- 1) Take care not to damage the Flexible Cables.
- 2) Connect the Flexible Cables to the connectors on the Main C.B.A., verifying that the direction of the Flexible Cables is correct. Refer to "REMOVAL/INSTALLATION OF F.P.C. FROM NON ZIF (Zero Insertion Force) CONNECTOR."
- 3) After installing the Main C.B.A., crease the Battery Catcher F.P.C. as shown.



Fig. D7-1

#### Main C.B.A. replacement note

To remove the Main C.B.A., the Lamp Socket Leads must be unsoldered.

When installing the Main C.B.A., solder these leads onto the Main C.B.A.



Fig. D7-2

#### Soldering Note:

The Lamp Socket Leads have no polarization.

### 6. Installation of Mechanism Chassis Ass'y

The Mechanism Chassis Ass'y is supplied with a Lock Screw installed. Make sure to remove the Lock Screw from the Cassette Up Unit when replacing the Mechanism Chassis Ass'y.

### 7. Installation of LCD Case Ass'y

- 1) Set the LCD Case Ass'y and the Connector Shield Case (397) as shown.
- Shape the Speaker Leads as shown. Then, solder the Speaker Leads.



<outside view of Cassette Cover>



<inside view of Cassette Cover>

Fig. D9

#### 8. Removal/Installation of LCD Panel Unit

Use extreme care when handling the LCD Panel Unit to avoid damage, dust, and spots (especially fingerprints), etc.

### 9. Installation of Lead Light Panel Unit

After replacing the Lead Light Panel Unit, confirm that the Terminal of the Back Light Unit is soldered correctly.



Fig. D10

## 10. Installation of Back Light Unit



- When installing the Back Light Unit, confirm that the Back Light Unit is positioned as shown below.
- Use extreme caution when handling the Lead Light Panel and the LCD Sheet Unit to avoid damage, dust, and spots (especially fingerprints),etc.



Fig. D11

### 11. Removal of Side L Operation Unit

- 1) Remove the 7 Screws (586).
- Remove the Side L Operation Unit while releasing the Locking Tab (L-1) of the Zoom Switch.

Side L Operation Unit



Fig. D12-1

## (For model without Photo Shot function) Installation of Stopper Piece

Insert the projection of the Stopper Piece into the slot of the Side L Operation Unit as shown.



Fig. D12-2

## 12. Installation of Top Operation Unit

Before installing the Top Operation Unit, slide the Tape Eject Knob (107).

## 13. Removal of CCD C.B.A., Filter Rubber, Optical Filter, IR Cut Filter CAUTION:

- 1) When removing the CCD C.B.A., take care that the Optical Filter and the IR Cut Filter do not fall out.
- Take extreme caution when removing the CCD C.B.A. as it is easily damaged by static electricity. Use a Wrist Strap while removing and installing.
- 3) Do not touch the CCD window surface.

## Installation of CCD C.B.A., Filter Rubber, Optical Filter, IR Cut Filter

- Install the IR Cut Filter in the Lens Unit correctly.
   Note: Make sure no dust gets on the IR Cut Filter or in the Lens Unit. Clean the IR Cut Filter with lens cleaning paper dampened with lens cleaner if necessary.
- 2) Install the Optical Filter on the IR Cut Filter correctly. Note: Make sure no dust gets on the Optical Filter or in the Lens Unit. Clean the Optical Filter with lens cleaning paper dampened with lens cleaner if necessary.
- 3) Install the Filter Rubber on the Optical Filter correctly as shown below.

**Note:** Make sure that no dust gets on the Filter Rubber.

4) Install the CCD C.B.A. into the Lens Unit. Then, tighten the 2 Screws (502) while keeping the CCD C.B.A. pressed toward the upper left corner from the CCD side.



Fig. D13

**Note:** Do not touch the Lens Surface. Clean the surface with lens cleaning paper dampened with lens cleaner if necessary.

#### 14. Installation of Focus Motor Unit/Zoom Motor Unit

Install the Focus Motor Unit/Zoom Motor Unit so that the Shaft of the Focus Motor Unit/Zoom Motor Unit is set in the Holder within the specified area.

Shaft of Focus Motor Unit





Fig. D14-2

#### Soldering of Focus Motor Unit/Zoom Motor Unit



Fig. D14-3

#### 15. Installation of Lamp Ass'y

When installing the Lamp Ass'y, secure the 2 Screws (586) with the Lamp Ass'y being pressed down.

#### 16. Replacement of Lamp

When replacing the Lamp, refer to "HOW TO REPLACE THE LAMP" in "SERVICE NOTES."

## DANGER:

Use only replacement Lamp (PART NO. VLLW0015) supplied by Panasonic to reduce risk of fire.

Handle new Lamp with cloth or tissue as skin oils will decrease Lamp life.

Remove Light Protector and allow Lamp to cool before replacing to avoid possible burn hazard.

## 17. Removal of Battery Catcher C.B.A.

- 1) To remove the Battery Catcher Unit, first remove the Backup Cover (29) with the Battery.
- 2) Remove the Screw (586).
- 3) Release the Locking Tab (L-2) while pushing Portion A.
- 4) Then, slide the Battery Catcher C.B.A. out as indicated by the arrow.
- 5) Disconnect the EVF F.P.C from the Connector FP901.

#### **WARNING:**

Replace battery with Panasonic or Newsun type CR2025 only. Use of another battery may present a risk of fire or explosion. Caution: Battery may explode if mistreated. Dispose of used battery promptly. Keep away from children. Do not recharge, disassemble or dispose of in fire.





Fig. D15

#### 18. Installation of EVF Unit

Insert the EVF F.P.C. into the slot on the Side Case R.



Fig. D16

## 19. Replacement of EVF Main Unit

Take care not to damage the EVF F.P.C. (in the EVF Case) when removing the EVF Main Unit.

- 1) When replacing the EVF Main Unit, remove the 2 Screws (620, 627).
- 2) Rest Portion A of the EVF Case on the Eye Sight Lever so that the Eye Sight Lever is under Portion A as shown.
- Carefully pull off the EVF Ass'y (EVF Main Unit & Eye Cap) while grasping both sides of the EVF Case to release the Locking Tab (L-3).





Fig. D17-1

- Disconnect the EVF F.P.C. from Connector FP951 or the EVF Main Unit.
- 5) Then, remove the Eye Cap from the EVF Main Unit.





Fig. D17-2



1. Important safety notice

Components identified by the sign  $\bigwedge$  have special characteristics important for safety. When replacing any of these components. Use only the specified parts.

2. Do not use the part number shown on this drawing for ordering.

The correct part number and part value is shown in the parts list, and may be slightly different or amended since this drawing was prepared.

3. Use only original replacement parts:

To maintain original function and reliability of repaired units, use only original replacement parts which are listed with their part numbers in the parts list section of the service manual.

- 4. Parts different in shape or size may be used. However, only interchangeable parts will be supplied as service replacement parts.
- 5. Test point information

○ : Test point with no test pin.

## **Schematic Diagram Notes**

Indication for Zener Voltage of Zener Diodes
 The Zener Voltage of Zener Diodes are indicated as such on Schematic Diagrams.

Example:

(6.2V).....Zener Voltage

2. How to identify Connectors

Each connector is labeled with a Connector No. and Pin No. Indicating what it is connected to,

in other words, its counter part.

Use the interconnection schematic diagram to find the connection between associated connectors.

#### Example:

The connections between C.B.A.s are shown below.

Ref. No. of the connection parts such as lead cable, flexible cable which is supplied as a replacement parts.



Parts marked "PT" are not used in any models included in this service model.

Example: 
$$\begin{vmatrix} \bar{C}6\bar{0}1\bar{1} & 1 \\ 100P & 1 \\ P\bar{T} & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4} & 1 \\ 100P & 1 \end{vmatrix} \cdot \begin{vmatrix} \bar{C}6\bar{0}1\bar{4$$

## **Signal Waveform Note**

How to read Signal Waveform



- 1 Connecting Point
- (2) Volts/Div
- ③ Operation Mode of VCR
- (4) Time/Div
- (5) Waveform Point on Schematic
- 6 ΔV1:Peak to Peak

**WF5 ◆**⑤

## **Circuit Board Layout Note**

Circuit Board Layout shows components installed for various models.

For proper parts content for the model you are servicing, please refer to the schematic diagram and parts list.

#### NOTE:

Circuit Board Layout includes components which are not used.

## **Model No. Identification Mark**

#### COMPARISON CHART OF MODELS & MARKS

MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D
Not Used	PT

Note: Refer to item 3 of Schematic Diagram Notes for mark "PT".

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

TO M VI

CCD_15V

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS MODEL MARK VM-L153 PV-L353 PV-L353-K С D PV-L453 PT Not Used



◆ REC VIDEO SIGNAL 〈 PB VIDEO SIGNAL ◆ REC AUDIO SIGNAL ◆ PB AUDIO SIGNAL





LINK TO VOLTAGE CHART

**LINK TO SIGNAL WAVEFORM** 

LSJB8205 MAIN I (CONNECTOR) SCHEMATIC DIAGRAM VM-L153/PV-L353/PV-L353-K





## I/O CHART OF IC6001

Pin No.	I/O	Signal Name	Description
1	Ι	POWER	POWER SW
2	Ť	TALLY	REC SW ON(L)
3	Т	EJECT	EJECT SW
4	Ť	POS1	MODE SW POSITION 1
5	-		(Not used)
6	0	POWER	POWER ON(H)
7	0	LOAD2	LOADING MOTOR REV(H)
8	-	LOAD1	LOADING MOTOR FWD(H)
9	1	POS2	MODE SW POSITION 2
10	÷	KEY IN1	KEY DATA 1
11	÷	NSBT1	CAM SERIAL CLOCK
12	_	NSBI1	CAM SERIAL DATA 0
	-		
13	-	NSBO1	CAM SERIAL DATA 1
14	-	NSBT0	SERIAL CLOCK
15	1	NSBI0	SERIAL DATA 0
16	-	NSBO0	SERIAL DATA 1
17	0	SPK_ON_H	SPEAKER ON(H)
18	-		(Not used)
19	-	CYLON	CYL ON(L)
20	0	TLIM	CAP TORQUE LIMIT
21	0	RSF	CAP DIRECTION CTL
22	0	ACC	FORCED ACCELERATION
23	0	HSW	HEAD SW
24	0	VLP	V-LOCK PULSE
25	Ι	NRST	RESET(L)
26	0	FLYE	FLYING ERASE ON(H)
27	0	VDREC	VIDEO DELAY REC(H)
28	0	LCD_ON-H	LCD ON(H)
29	0	ARECCT	AUDIO REC(H)/PB(L)
30	0	DTCS	IC6005 CS(H)
31	-		(Not used)
32	Т	CAM-CS	CAM CS(L)
33	-	PWM1	CAP SPEED ERROR
34	0	PWM0	CYL SPEED ERROR
35	-	PWM4	(Not used)
36	1	VDD	VDD (+4.5V)
37	0	OSCO	OSC 1
38	-		OSC 2
38	-	VSS	
40	- T		Ground
	-	XI	CLOCK(32KHz)
41	-	XO	(Not used)
42	1	SXI	SXI
43	1	PHOTO	(Not used)
44	0	RSTOUT	AUDIO RESET(L)
45	0	EEPROM_CS	IC6008 CS(H)
46	-	RSTMN67324	(Not used)
47	0	CLOCK+B	CLOCK +B
48	1	VSS	Ground
49	-		(Not used)
	$\perp$	CVIN	VIDEO
50		VDD2	VDD (+4.5V)
50 51			
	-	AFCC	AFC
51	-		AFC AFC

in No.		Signal Name		Descript	tion	
55	0	LIGHT	LIGHT ON(H)			
56	0	AMUTE	AUDIO MUTE	(H)		
57	0	VCS	D/A LOAD			
58	0	VOB2	OSD BLANKI			
59	0	VOB1	OSD BLANKI	NG DATA		
60	0	VOW4	OSD DATA			
61	0	VOW3	<u> </u>	OSD (DATE/TIME) DATA		
62	-			(Not used)		
63	-		(Not used)			
64	1	CDOWN	CASSETTE D	OWN(L)		
65	1	YFG	CYL FG			
66	1	YPG	CYL PG			
67	0	FGF	CAP FG			
68	1	AFG	CAP PG			
69	0	VRO	V-REF			
70	ı	VRI	V-REF			
71	-	AVSS	Ground			
72	1	CTLA	CTL AMP			
73	1	AVDD	VDD (+4.5V)			
74	1/0	RCTLP	CTL PULSE(+	,		
75		RCTLN	CTL PULSE(-			
76	0	CO	PB CONTROL PULSE			
77	1	STAB	SAFETY TAB	. ,		
78	1	LIGHT_SCP		T CIRCUIT PR	OTECT	
79	I	LCDMOD	LCD PANEL N			1
			TERMINAL	LCD PANE	EL MODE	
			VOLTAGE	NORMAL/	OPEN/	
			0V	REVERSE	CLOSE	-
				NORMAL	CLOSE	-
			2.6V 1.1V	NORMAL	OPEN	-
			3.5V	REVERSE REVERSE	CLOSE OPEN	-
					OPEN	
80	1	SREEL	SUPPLY REE	L PULSE		
81	1	KEYAD4	KEY DATA 4			
82	Ι	KEYAD3	(Not used)			
83	1	BATT/EXT		T VOLTAGE DE	ETECT	
84	1	KEYAD2	KEY DATA 2			
85	1	BATT	BATTERY UN			
86	ı	SPHOTO	SUPPLY PHO	TO TR(L)		
87	-		(Not used)			
88	1	DEW	DEW SENSO			
89	1	ENV	ENV-VOLTAG	_		
90	1	TREEL	TAKE UP REE			
91	0	SLED	SENSOR LED	ON(H)		
92	0	DEW+B	DEW +B			
93	-		(Not used)			
94	0	KEYSCAN4	SCAN 4			
95	0	KEYSCAN3	SCAN 3			
96	0	KEYSCAN2	SCAN 2	SCAN 2		
97	0	KEYSCAN1	SCAN 1	SCAN 1		
98	0	ROTA	ROTARY SW			
99	-	HAMP	(Not used)			
100		DENV	(Not used)			

## I/O CHART OF IC6005

Pin No.	I/O	Signal Name	Description
1	0	TP0	Clock (32kHz)
2	1	XIN	X In
3	0	XOUT	X Out
4	-	GND	Ground
5	1	CS	CS (H)
6	1	SCK	Serial Clock
7	I/O	SIO	Serial Data1
8	I	VDD	VDD (+3.5V)

# IC6007 LOADING MOTOR DRIVE IC- DETAIL BLOCK DIAGRAM



NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.



## IC2001 CYL/CAP MOTOR DRIVE CONTROL IC- DETAIL BLOCK DIAGRAM



## IC2002 CAP MOTOR DRIVE IC- DETAIL BLOCK DIAGRAM



## IC2003 CYL MOTOR DRIVE IC- DETAIL BLOCK DIAGRAM



TO M VI

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART
OF MODELS & MARKS

MODEL MARK

VM-L153 A
PV-L353 B
PV-L353-K C
PV-L453 D
Not Used PT



## I/O CHART OF IC301

Pin No.	1/0	Signal Name	Description
1	-	VSS	Ground
2	ı	VDD	VDD (+3.5V)
3	0	BEND	BLOCK END CONTROL
4	Ι	NRE	READ ENABLE
5	Ι	NWE	WRITE ENABLE
6	Ι	ADR0	ADDRESS 0
7	I	ADR1	ADDRESS 1
8	Ι	ADR2	ADDRESS 2
9	1	ADR3	ADDRESS 3
10	1	ADR4	ADDRESS 4
11	ı	ADR5	ADDRESS 5
12	ı	ADR6	DSP CHIP SELECT 0
13	1	ADR7	DSP CHIP SELECT 4
14	I	VDD	VDD (+3.5V)
15	-	VSS	Ground
16	1	VDDOSC	VDD (+3.5V)
17	1	XI	28.6MHz OSC
18		XO	28.6MHz OSC
19	-	VSSOSC	Ground
20	I	VDDTG	VDD (+3.5V)
21	-	VSSTG	Ground
22	0	CLK	CLOCK
23	0	DCC	CLAMP PULSE
24	0	CPOB	OB CLAMP PULSE
25	0	PBLK	PRE BLANKING PULSE
26	0	CH2	V3 CHARGE PULSE
27	0	CH1	V1 CHARGE PULSE
28	0	V4	V4 PULSE
29	0	V3	V3 PULSE
30	0	V2	V2 PULSE
31	0	V1	V1 PULSE
32	0	SUB	SUB CONTROL PULSE
33	-	TEST0	(Not used)
34	-	TEST1	(Not used)
35	Ι	11	CLOCK
36	0	01	CLOCK
37	-	VSSTG	Ground
38	ı	VDDTG	VDD (+3.5V)
39	0	ADS	ANALOG SAMPLING PULSE
40	0	DS2	DOUBLE SAMPLING PULSE 2
41		DS1	DOUBLE SAMPLING PULSE 1
42	Ι	VDD2RH	VDD (+3.5V)
43	-	VSS2RH	Ground
44	0	R	RESET PULSE
45	-	CSEL2	(Not used)
46	-	CSEL1	(Not used)
47	0	H1	H1 PULSE
48	0	H2	H2 PULSE
49	Ι	VDD2RH	VDD (+3.5V)
50	-	VSS2RH	Ground
51		VDD	VDD (+3.5V)
52	-	VSS	Ground
53		BF	(Not used)
54	-	SYNC	(Not used)
55	-	BLK	(Not used)
56	0	VD	V SYNC
57	-	DCP	CLAMP PULSE
58	-	HCLR	(Not used)
59	-	HD	(Not used)
60	Ι	VCTRL	V CONTROL
61	-	TEST2	(Not used)
62	-	TEST3	(Not used)
63	-	TEST4	(Not used)
64	I	CS0	(Not used)
_	1	CS1	DSP CHIP SELECT 1
65		CS2	DSP CHIP SELECT 2
65 66	Ι		
65	I	CS3	DSP CHIP SELECT 3
65 66	_		DSP CHIP SELECT 3 (Not used)
65 66 67	I	CS3	
65 66 67 68	I -	CS3 BTEST10	(Not used)
65 66 67 68 69	- -	CS3 BTEST10 BTEST11	(Not used) (Not used)

in No.	$\overline{}$	Signal Name	Description
73	-	VSS	Ground
74	Н	VDD	VDD (+3.5V)
75	-	BLK0	(Not used)
76	-	CSEPC	COLOR SEPARATION CONTROL
77 78	-	FLD	(Not used)
79	-	RST	(Not used)
80	Н	BISTH	(Not used)
81		NTSEL	(Not used)
82	ī	DSPCLK1	CLOCK
83	-	TSEL0	(Not used)
84	-	TSEL1	(Not used)
85	-	TSEL2	(Not used)
86	П	UVSELIN	R-Y(L)/B-Y(H)
87	-	VCTRL	(Not used)
88	-	ZONE0	(Not used)
89	-	UVSELOUT	R-Y(L)/B-Y(H)
90	-	UVSEL	(Not used)
91	0	SYNC0	V/H SYNC
92	0	PWM	IRIS PWM CONTROL
93	Ι	VDD	VDD (+3.5V)
94	Ι	CLKA	CLOCK
95	$\vdash$	VSS	Ground
96	0	VCTRL0	V CONTROL
97	-	VEN	(Not used)
98	-	CP2	(Not used)
99	1	CSPC	COLOR SEPARATION CONTROL
100	-	DSEL	(Not used)
101	-	MASK	(Not used)
102	-	MINTEST	(Not used)
103	1	NPOWDA	(Not used)
104	-	TFMCIN1	(Not used)
105	-	TFMCIN2	(Not used)
106	-	TFMCIN3	(Not used)
107	-	FD0	(Not used)
108	-	ADTEST7	(Not used)
109 110	-	VDDAD	VDD (+3.5V)
111	- T	VSSAD REFBTM	Ground V-REF(L)
112	<u> </u>	VINA	A/D SIGNAL
113	·	REFTOP	V-REF(H)
114	Ė	VDDAD	VDD (+3.5V)
115	L-i	VSSAD	Ground
116	П	VDDDA	VDD (+3.5V)
117	$\vdash$	VSSDA	Ground
118	$\overline{}$	IREFY	LUMINANCE D/A I-REF
119	-	COMPY	LUMINANCE D/A CONTROL
120	0	YOUTA	LUMINANCE
121	ı	VREF	V-REF
122	-	COUTA	CHROMINANCE
123	-	COMPC	CHROMINANCE D/A CONTROL
124	-	IREFC	CHROMINANCE D/A I-REF
125	Ι	VDDDA	VDD (+3.5V)
126	-	VSSDA	Ground
127	Ι	VDD	VDD (+3.5V)
128	-	VSS	Ground
129	-	ADTEST0	(Not used)
130	-	ADTEST1	(Not used)
131	-	ADTEST2	(Not used)
132	-	ADTEST3	(Not used)
133	-	ADTEST4	(Not used)
134	-	ADTEST5	(Not used)
135	$\overline{}$	ADTEST6	(Not used)
_	-	DB0	DATA 0
	-	DB1	DATA 1
_	I/O	DB2	DATA 2
138		DB3	DATA 3
138 139	-		
138 139 140	I/O	DB4	DATA 4
138 139 140 141	I/O I/O	DB5	DATA 5
138 139 140 141 142	I/O I/O I/O	DB5 DB6	DATA 5 DATA 6
138 139 140 141	I/O I/O I/O	DB5	DATA 5

R356 330K R354

R358 ₹R359 ₹12K ₹12K

R346 ₹8349 \$5600 ₹300K

≹ R745 3R9

UNREG GND

C706 R703 4R7 10

C707 R704 4R7 10

**Q703** UN5211 (LED DRIVE)

ZOOM_MT1

ZOOM MT3

ZOOM_MT4

ZOOM MT2

FOCUS_MT3

FOCUS MT1

FOCUS MT4

FOCUS_MT2

MOTOR VM

TO M I

TO M IX 211

189

190

191

185

COMPARISON CHART OF MODELS & MARKS MODEL VM-L153 PV-L353 PV-L353-K С D PV-L453 PT Not Used

LINK TO VOLTAGE CHART

LSJB8205 MAIN V (CAMERA II/LENS DRIVE) SCHEMATIC DIAGRAM VM-L153/PV-L353/PV-L353-K

206 TO M I

207 TO M I

208 TO M I

209 TO M I

210 TO M I

HOLE_IN+

HOLE IN-

( HOLE OUT+

HOLE OUT-

ALC_CONT+

(HALL AMP )

## I/O CHART OF IC308

Pin No.	1/0	Signal Name	Description
1	0	CAM->VCR	CAM SERIAL DATA 0
2	ı	VCR SLK	CAM SERIAL CLOCK
3		DAC LD	DAC LOAD
4	-	DAC SO	DAC SERIAL DATA
5	0	DAC SCK	
	-		DAC SERIAL CLOCK
6	1	VDD	VDD (+3.5V)
7	-	VSS	Ground
8	0	CAM CS	CAM CS(L)
9	-	NC	(Not used)
10	0	ADRS0	ADDRESS 0
11	0	ADRS1	ADDRESS 1
12	0	ADRS2	ADDRESS 2
13	0	ADRS3	ADDRESS 3
14	0	ADRS4	ADDRESS 4
15	0	ADRS5	ADDRESS 5
16	-	NC	(Not used)
17	-	NC	(Not used)
18	-	VSS/VPP	Ground
19	I/O	DATA0	DATA 0
20	I/O	DATA1	DATA 1
21	I/O	DATA2	DATA 2
22	I/O	DATA3	DATA 3
23	I/O	DATA4	DATA 4
24	I/O	DATA5	DATA 5
25	I/O	DATA6	DATA 6
26	I/O	DATA7	DATA 7
27	0	CS0	CHIP SELECT 0
28	0	CS1	CHIP SELECT 1
29	0	CS2	CHIP SELECT 2
30	0	CS3	CHIP SELECT 3
31	Т	RESET	RESET(L)
32	-	XT1	(Not used)
33	-	NC	(Not used)
34	Т	VDD	VDD (+3.5V)
35	-	X2	(Not used)
36	ī	X1	14.3 MHz CLOCK
37	-	VSS	Ground
38	-	CLKOUT	(Not used)
39	0	CS4	CHIP SELECT 4
40	0	EE CS	EEPROM CS(L)
41		EVF CS	EVF LOAD
42	-	LCD CS	LCD LOAD
42	-	NC	
43		NC NC	(Not used)
	-		,
45	0	RE	READ ENABLE
46	0	WE	WRITE ENABLE
47	0	ZDC0	ZOOM MOTOR DRIVE CONTROL 0
48	0	ZDC1	ZOOM MOTOR DRIVE CONTROL 1
49	0	ZDC2	ZOOM MOTOR DRIVE CONTROL 2
50	0	ZD0	ZOOM MOTOR DRIVE 0

Pin No.	-		Description
51	-	ZD1	ZOOM MOTOR DRIVE 1
52	-	ZD2	ZOOM MOTOR DRIVE 2
53	-	ZD3	ZOOM MOTOR DRIVE 3
54	-	NC	(Not used)
55	1	VDD	VDD (+3.5V)
56	-	VSS	Ground
57	0	FDC0	FOCUS MOTOR DRIVE CONTROL 0
58	0	FDC1	FOCUS MOTOR DRIVE CONTROL 1
59	0	FDC2	FOCUS MOTOR DRIVE CONTROL 2
60	0	FD0	FOCUS MOTOR DRIVE 0
61	0	FD1	FOCUS MOTOR DRIVE 1
62	0	FD2	FOCUS MOTOR DRIVE 2
63	0	FD3	FOCUS MOTOR DRIVE 3
64	-	NC	(Not used)
65	-	TEST CLK	(Not used)
66	-	TEST DATA	(Not used)
67	-	TEST	(Not used)
68	0	LED CNT	LED CONTROL
69		Z ENC	ZOOM ENCODER
70	-	F ENC	FOCUS ENCODER
71	-	AVDD	VDD (+3.5V)
72	Ė	AVSS	Ground
73	Т	AVREF	V-REF
74		ZOOM AD	ZOOM SWITCH DET
75	İ	FNO	F NUMBER SIGNAL
76	-	THERMO	THERMO (LENS TEMPERATURE DET.)
77	-	LCD BRIGHT	(Not used)
78	-	AD4	(Not used)
79	-	AD5	(Not used)
80	-	AD6	(Not used)
81	-	AD7	(Not used)
82	Ė		(Not used)
83			(Not used)
84			(Not used)
85	-		(Not used)
	-	NC	(Not used)
86 87	1	VD	V-SYNC
	_		
88	-	DIS IRQ	DIS IRQ
89	-	BEVD NC	BLOCK END CONTROL
90	-		(Not used)
91	-	NC	(Not used)
92	-	NC	(Not used)
93	_	EVR MODE	EVR MODE
94	1	EVR->CAM	EVR SERIAL DATA 1
95	$\overline{}$	CAM->EVR	EVR SERIAL DATA 0
96	1	EVR CLK	EVR SERIAL CLOCK
97	1	EE SI	SERIAL DATA 1
98	-	EE/EVF S0	SERIAL DATA 0
99	-	EE/EVF SCK	SERIAL CLOCK
100	ш	VCR->CAM	CAM SERIAL DATA 1

## I/O CHART OF IC306

Pin No.	I/O	Signal Name	Description
1	-	R/B	(Not Used)
2	Τ	VCC	VDD (+3.5V)
3	Τ	CS	EEPROM CS(L)
4	1	SK	Serial Clock
5	1	DI	Serial Data 0
6	0	DO	Serial Data 1
7	-	GND	Ground
8	1	RES	Reset (L)

## IC309 HALL/IRIS AMP IC- DETAIL BLOCK DIAGRAM



## IC701 FOCUS MOTOR DRIVE IC- DETAIL BLOCK DIAGRAM



## IC702 ZOOM MOTOR DRIVE IC- DETAIL BLOCK DIAGRAM



NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

REC VIDEO SIGNAL

COMPARISON CHART
OF MODELS & MARKS

MODEL MARK

VM-L153 A
PV-L353 B
PV-L353-K C
PV-L453 D
Not Used PT



## IC603 CCD V DRIVE IC- DETAIL BLOCK DIAGRAM



## IC605 SAMPLING HOLD / AGC CONTROL IC- DETAIL BLOCK DIAGRAM





## IC3001 VIDEO/AUDIO PROCESS IC- DETAIL BLOCK DIAGRAM



## IC3002 TWIN CCD IH DELAY IC- DETAIL BLOCK DIAGRAM



FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS MODEL MARK VM-L153

C D

PT

PV-L353

PV-L353-K



## IC4001 AUDIO SIGNAL PROCESS IC- DETAIL BLOCK DIAGRAM



## MAIN IX (POWER SUPPLY) SCHEMATIC DIAGRAM (A,B,C)

CAUTION: FOR CONTINUED PROTECTION AGAINST FIRE HAZARD.

REPLACE ONLY WITH THE SAME TYPE 1.5A 24/32V FUSE. ATTENTION: POUR UNE PROTECTION CONTINUE LES RISQUES

D' INCENDIE N' UTILISERQUE DES FUSIBLE DE MÉME

CAUTION: FOR CONTINUED PROTECTION AGAINST FIRE HAZARD. REPLACE ONLY WITH THE SAME TYPE 2A 24/32V FUSE. ATTENTION: POUR UNE PROTECTION CONTINUE LES RISQUES NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS MODEL MARK VM-L153 PV-L353 В PV-L353-K С D PV-L453 PT Not Used

LSJB8205

IMPORTANT SAFETY NOTICE: COMPONENTS IDENTIFIED BY THE SIGN A HAVE SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY. WHEN REPLACING ANY OF THESE COMPONENTS. D' INCENDIE N' UTILISERQUE DES FUSIBLE DE MÉME TYPE 2A 24/32V USE ONLY THE SPECIFIED PARTS.



## **IC1001 PWM CONTROL IC- DETAIL BLOCK DIAGRAM**



NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART
OF MODELS & MARKS

MODEL MARK

VM-L153 A
PV-L353 B
PV-L353-K C
PV-L453 D
Not Used PT



## MAIN I (CONNECTOR) SCHEMATIC DIAGRAM (D)



NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

S, COMPARISON CHART OF MODELS & MARKS

MODEL MARK

VM-L153 A
PV-L353 B
PV-L353-K C
PV-L453 D
Not Used PT

				FP	9 (TO LENS UNIT)
V M C	182	F.ENC		22	F.ENC
M IX	200	AF_4.5V )	_	21	
V M C	( 183	Z.ENC )		20	
VMC	184	LED_CONT_)	_	19	
V M C	175	THERMO )		18	
				17	
O M V	192	ZOOM_MT2_)		16	
O M C	189	ZOOM_MT1_		15	
V M C	191	ZOOM_MT4		14	
O M C	190	ZOOM_MT3		13	
VMC	210	ALC_CONT+		12	
IVM	127	VREF_L )		11	
				10	
VMC	209	HOLE_OUT-		<i>#</i> 8	HOLE_OUT-
VMC	207	HOLE_IN-		7	HOLE_IN-
VMC	208	HOLE_OUT+		6	HOLE_OUT+ HOLE_IN+
O M V	206	HOLE_IN+		5	
VMC	202	ALC_MAIN+		4	ALC_MAIN+
VMC	188	FOCUS_MT2		3	FOCUS_MT2
VMC	185	FOCUS_MT3		2	FOCUS_MT3
OM V	187	FOCUS_MT4 ) FOCUS_MT1 )		1	FOCUS_MT4 FOCUS_MT1
				FP	8 (TO CCD C.B.A. FP6
MVI	220	CCD_15V	_	1	15V
MVI	214	CCD_SUB	_	2	SUB
M VI	223	CCD8V	_	3	
IV M	221	V1_DRIVE_OUT		4	V1
IV M	222	V2_DRIVE_OUT		5	V2
IV M	219	V3_DRIVE_OUT		6	V3
IV M	218	V4_DRIVE_OUT )		7	V4
IV M	215	CCD_RESET )	_	8	RESET
IV M	216	CCD_H1)	_	9	H1
IV M	217	CCD_H2	_	10	H2
				11	GND
			Lva.	<del></del> -	
			WF16 TP6205 TP6206	<u>/F1</u> _{FP}	(TO AC HEAD
			WF16	 	(TO AC HEAD /CAPSTAN UNIT)
O M II	66	CTL)	WF16	<b>—</b> ₽ □1	CTL(GND)
O M II	66 67	CTL) CTL_+)	WF16	FP 1 2	CTL(GND) CTL(-)
	$\overline{}$		WF16	<b>—</b> ₽ □1	CTL(GND)
II M C	67	CTL_+	WF16	FP 1 2 3 4	CTL(GND) CTL(-) CTL(+)
II M C	67	CTL_+	WF16	FP 1 2 3 3 4 5 5	CTL(-) CTL(+) CTLE(+)
M VIII	67	CTL_+) CTLE_+)	WF16	FP 1 2 3 4	CTL(GND) CTL(-) CTL(+) CTLE(+) CTLE(G)
II M C	67 251	CTL_+)	WF16	FP 1 2 3 4 5 6 7	CTL(GND) CTL(-) CTL(+) CTLE(+) CTLE(G) AE(GND)
M VIII M VIII M VIII	67 251 250	CTL_+) CTLE_+  AE_H  AUD_R1  AUD_R2	WF16 TP62057 TP6206	FP 1 2 3 4 5 6	CTL(GND) CTL(-) CTL(+) CTLE(+) CTLE(-) CTLE(-) AE(GND) AE(H)
M VIII M VIII M VIII M VIII M VIII	250 249	CTL_+ CTLE_+ AE_H AUD_R1	WF16 TP62057 TP6206	FP 1 2 3 3 4 4 5 6 6 7 8	CTL(GND) CTL(-) CTL(+) CTLE(+) CTLE(G) AE(GND) AE(H) AUD(R1)
M VIII M VIII M VIII M VIII M VIII	250 249 248	CTL_+) CTLE_+  AE_H  AUD_R1  AUD_R2	WF16 TP6205	5 6 7 8	CTL(GND) CTL(-) CTL(+) CTLE(+) CTLE(G) AE(GND) AE(H) AUD(R1) AUD(R2)
M VIII M VIII M VIII M VIII M VIII	250 249 248	CTL_+) CTLE_+  AE_H  AUD_R1  AUD_R2  AUD_P	WF16 TP6205	FP 1 2 3 3 4 4 5 5 6 6 7 8 8 9 10	CTL(GND) CTL(H) CTL(H) CTLE(H) CTLE(H) CTLE(G) AE(GND) AE(H) AUD(R1) AUD(R2) AUD(GND)
M VIII M VIII M VIII M VIII M VIII	250 249 248	CTL_+ CTLE_+  AE_H  AUD_R1 AUD_R2 AUD_P  VMR_CAP	WF16 TP6205	FP 1 2 3 3 4 5 6 6 7 7 8 9 10 11	CTL(GND) CTL(H) CTL(H) CTLE(H) CTLE(H) CTLE(G) AE(GND) AE(H) AUD(R1) AUD(R2) AUD(GND)
M VIII M VIII M VIII M VIII M VIII	250 249 248 247	CTL_+) CTLE_+  AE_H  AUD_R1  AUD_R2  AUD_P	WF16 TP6205/ TP6206	5 6 7 8 9 10	CTL(GND) CTL(c) CTL(+) CTL(+) CTLE(+) CTLE(G) AE(GND) AE(H) AUD(R1) AUD(R2) AUD(P) AUD GND MRGND VMR
M VIII	250 249 248 247 70	CTL_+ CTLE_+  AE_H AUD_R1 AUD_R2 AUD_P  VMR_CAP FG+_CAP	WF16 TP6205	FP 1. 2. 3. 4. 5. 6. 6. 7. 8. 9. 10. 11. 12. 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ". 13. ".	\( \( \text{CAPSTAN UNIT } \) \( \text{CALGND} \) \( \text{CTL(GND)} \) \( \text{CTL(+)} \) \( \text{CTLE(+)} \) \( \text{CTLE(G)} \) \( \text{AE(GND)} \) \( \text{AE(H)} \) \( \text{AUD(R1)} \) \( \text{AUD(R2)} \) \( \text{AUD(R2)} \) \( \text{AUD GND} \) \( \text{MRGND} \) \( \text{VMR} \) \( \text{FG+} \)
M VIII M VIII M VIII M VIII M VIII M VIII M X	250 249 248 247 70 32	CTL_+ CTLE_+  AE_H  AUD_R1 AUD_R2 AUD_P  VMR_CAP FG+_CAP  VH_CAP	WF16 TP6205/ TP6206	FP 1 2 3 3 4 4 5 6 6 7 7 8 8 9 10 11 11 12 13 13 14	(CAPSTAN UNIT / CTL(GND)
M VIII M VIII M VIII M VIII M VIII M VIII M O M III O M III	250 249 248 247 70 32	CTL_+ CTLE_+  AE_H AUD_R1 AUD_R2 AUD_R2 AUD_P  VMR_CAP FG+_CAP  VHCAP H1+_CAP	WF16 TP6205/ TP6206	FP 1 2 3 3 4 4 5 5 6 6 7 7 8 9 10 11 11 11 11 11 11 11 11 11 11 11 11	\( \( \text{CAPSTAN UNIT } \) \( \text{CAPSTAN UNIT } \) \( \text{CTL(GND)} \) \( \text{CTL(-)} \) \( \text{CTL(+)} \) \( \text{CTLE(+)} \) \( \text{CTLE(+)} \) \( \text{CTLE(-)} \) \( \text{AE(BND)} \) \( \text{AE(H)} \) \( \text{AUD(R1)} \) \( \text{AUD(R2)} \) \( \text{AUD(R2)} \) \( \text{AUD GND} \) \( \text{MR} \) \( \text{FG+} \) \( \text{FG+} \) \( \text{FG+} \) \( \text{VH-} \) \( \text{H1+} \)
II M C	250 249 248 247 70 32	CTL_+ CTLE_+  AE_H AUD_R1 AUD_R2 AUD_P  VMR_CAP FG+_CAP  VHCAP H1CAP H1CAP	WF16 TP6205/ TP6206	FP 1 2 3 3 4 4 5 5 6 6 7 7 8 8 9 10 11 12 12 12 13 13 14 15 16	\( \( \text{CAPSTAN UNIT } \) \( \text{CAPSTAN UNIT } \) \( \text{CTL}(\text{CN}) \) \( \text{CTL}(+) \) \( \text{CTL}(+) \) \( \text{CTLE}(+) \) \( \text{CTLE}(G) \) \( \text{AE}(GND) \) \( \text{AE}(GND) \) \( \text{AE}(GND) \) \( \text{AUD}(R1) \) \( \text{AUD}(R2) \) \( \text{AUD}(R2) \) \( \text{AUD}(R2) \) \( \text{AUD}(R) \) \( \text{MR} \) \( \text{FG} + \) \( \text{FG} + \) \( \text{FG} + \) \( \text{FG} + \) \( \text{H1} + \) \( \text{H1} + \)
II M C III M C	250 249 248 247 70 32 71 72	CTL_+ CTLE_+  AE_H AUD_R1 AUD_R2 AUD_P  VMR_CAP FG+_CAP  VH_CAP H1+_CAP H1CAP H2+_CAP	WF16 TP6205/ TP6206	FP 1 2 3 3 4 4 5 6 6 7 7 7 8 8 9 9 10 11 12 13 13 14 15 16 16 17	\( \( \text{CAPSTAN UNIT } \) \( \text{CAPSTAN UNIT } \) \( \text{CTL}(\text{CN}) \) \( \text{CTL}(+) \) \( \text{CTL}(+) \) \( \text{CTLE}(+) \) \( \text{CTLE}(6) \) \( \text{AE}(GND) \) \( \text{AE}(GND) \) \( \text{AE}(GND) \) \( \text{AUD}(R1) \) \( \text{AUD}(R2) \) \( \text{AUD}(R2) \) \( \text{AUD}(R2) \) \( \text{AUD}(RS) \) \( \text{VMR} \) \( \text{FG} + \) \( \text{FG} + \) \( \text{FG} + \) \( \text{FG} + \) \( \text{FH} + \) \(
M VIII	250 249 248 247 70 32 71 72 73	CTL_+ CTLE_+  AE_H AUD_R1 AUD_R2 AUD_R2 AUD_P  VMR_CAP FG+_CAP H1+_CAP H1CAP H2CAP H2CAP	WF16 TP6205/ TP6206	FP 1. 2. 3. 3. 4. 4. 5. 6. 6. 7. 7. 8. 8. 9. 10. 11. 11. 11. 11. 11. 11. 11. 11. 11	(CAPSTAN UNIT / CTL(GND)
II M CIIIV M VIII M OIII M OII	250 249 248 247 27 27 27 27 27 27 27 27 27	CTL_+ CTLE_+  AE_H AUD_R1 AUD_R2 AUD_P  VMR_CAP FG+_CAP  VHCAP H1+_CAP H2+_CAP H2CAP H3+_CAP H3+_CAP	WF16 TP6205/ TP6206	FP 1 2 3 3 4 4 5 5 6 6 7 7 7 8 8 9 9 10 11 12 2 7 13 14 15 16 16 17 17 18 19 19	\( \( \text{CAPSTAN UNIT } \) \( \text{CAPSTAN UNIT } \) \( \text{CTL(GND)} \) \( \text{CTL(+)} \) \( \text{CTL(+)} \) \( \text{CTLE(+)} \) \( \text{CTLE(G)} \) \( \text{AE(GND)} \) \( \text{AE(GND)} \) \( \text{AUD(R1)} \) \( \text{AUD(R2)} \) \( \text{AUD(R2)} \) \( \text{AUD(R2)} \) \( \text{AUD(RD)} \) \( \text{MRGND} \) \( \text{VMR} \) \( \text{FG2+} \) \( \text{VH-} \) \( \text{H1+} \) \( \text{H2-} \) \( \text{H2-} \) \( \text{H3-} \)
II M CIIIV M VIII W VIIII W VIII  W VIII  W VIII  W VIII W	250 249 248 247 248 247 70 32 71 72 73 74 75 76 77	CTL_+ CTLE_+  AE_H AUD_R1 AUD_R2 AUD_P2  AUD_P  VMR_CAP FG+_CAP  VH_CAP H1+_CAP H2CAP H2CAP H3+_CAP H3CAP	WF16 TP6205/ TP6206	FP 1 2 2 3 3 5 5 6 6 6 7 7 8 9 9 9 10 11 12 12 13 13 15 16 17 18 19 20 20	\( \( \text{CAPSTAN UNIT } \) \( \text{CAPSTAN UNIT } \) \( \text{CTL}(\text{CN}) \) \( \text{CTL}(+) \) \( \text{CTL}(+) \) \( \text{CTLE}(+) \) \( \text{CTLE}(+) \) \( \text{CTLE}(G) \) \( \text{AE}(GND) \) \( \text{AE}(GND) \) \( \text{AE}(GND) \) \( \text{AUD}(R2) \) \( \text{AUD}(R2) \) \( \text{AUD}(R2) \) \( \text{AUD}(R3) \) \( \text{AUD}(R3) \) \( \text{MR} \) \( \text{FG} + \) \( \text{FH} + \) \( \text{H1} + \) \( \text{H2} + \) \( \text{H2} + \) \( \text{H3} + \)
II M CIIIV M IIIV M IIIV M IIIV M IIIV M IIIV M IIIV M III M CIIIV M	250 249 248 247 27 70 32 71 72 73 74 75 76 77 77	CTL_+ CTLE_+  AE_H AUD_R1 AUD_R2 AUD_R2 AUD_P  VMR_CAP FG+_CAP H1+_CAP H1+_CAP H2CAP H2CAP H3+_CAP H3CAP H3CAP VM+_CAP	WF16 TP6205/ TP6206	FP	\( \( \text{CAPSTAN UNIT } \) \( \text{CAPSTAN UNIT } \) \( \text{CTL}(\text{CN}) \) \( \text{CTL}(+) \) \( \text{CTL}(+) \) \( \text{CTLE}(+) \) \( \text{CTLE}(+) \) \( \text{CTLE}(G) \) \( \text{AE}(GND) \) \( \text{AE}(GND) \) \( \text{AE}(GND) \) \( \text{AUD}(R2) \) \( \text{AUD}(R2) \) \( \text{AUD}(R2) \) \( \text{AUD}(R3) \) \( \text{AUD}(R3) \) \( \text{MR} \) \( \text{FG} + \) \( \text{FH} + \) \( \text{H1} + \) \( \text{H2} + \) \( \text{H2} + \) \( \text{H3} + \)
II M CIIIV M M IIIV M M IIIV M M IIIV M M IIIV M M III M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII	250 249 248 247 247 248 247 247 247 247 25 26 27 32 27 32 73 74 75 76 77 78 78	CTL_+ CTLE_+  AE_H AUD_R1 AUD_R1 AUD_R2 AUD_P  VMR_CAP FG+_CAP  VH_CAP H1+_CAP H2+_CAP H2CAP H3CAP VHCAP H3CAP	WF16 TP6205/ TP6206	FP 1 1 2 2 3 3 3 4 4 4 5 5 6 6 6 7 7 7 8 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11	\( \( \text{CAPSTAN UNIT } \) \( \text{CAPSTAN UNIT } \) \( \text{CTL(GND)} \) \( \text{CTL(+)} \) \( \text{CTL(+)} \) \( \text{CTL(+)} \) \( \text{CTLE(+)} \) \( \text{CTLE(G)} \) \( \text{AE(GND)} \) \( \text{AE(GND)} \) \( \text{AUD(R1)} \) \( \text{AUD(R2)} \) \( \text{AUD(R2)} \) \( \text{AUD(R3)} \) \( \text{MRGND} \) \( \text{VMR} \) \( \text{FG2+} \) \( \text{VH-} \) \( \text{H1+} \) \( \text{H2-} \) \( \text{H3+} \) \( \text{H3-} \) \( \text{H4-} \) \( \text{M2-} \)
II M CIIIV M M III W M CIIIV M M III W M CIIIV M M III M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII	250 249 248 247 70 32 71 72 73 74 75 76 77 77 78 80	CTL_+ CTLE_+  AE_H AUD_R1 AUD_R1 AUD_R2 AUD_P  VMR_CAP FG+_CAP H1+_CAP H1+_CAP H2CAP H2CAP H3+_CAP H3CAP H3CAP M3CAP M3CAP M3CAP	WF16 TP6205/ TP6206	FP	CTL(GND)  CTL(GND)  CTL(+)  CTL(+)  CTL(+)  CTL(-)  CTL(-)  CTL(-)  AE(GND)  AE(GND)  AUD(R1)  AUD(R1)  AUD(R2)  AUD GND  MRGND  YMR  FG+  FG2+  YH-  H1+  H1-  H2-  H3-  H3-  H3-  H4-  M2  M3
III M CI	250 249 248 247 70 32 71 72 73 73 74 75 76 77 78 79 80 80	CTL_+ CTLE_+  AE_H AUD_R1 AUD_R2 AUD_R2 AUD_R2 AUD_R  VMR_CAP FG+_CAP  VH_CAP H1+_CAP H2+_CAP H2+_CAP H3+_CAP H3+_CAP M4_CAP M4_CAP M4_CAP	WF16 TP6205/ TP6206	FP P	(CAPSTAN UNIT / CTL(GND)   CTL(GND)   CTL(-)
III M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII  M CIII	67 251 250 249 248 247 70 32 71 72 73 74 75 76 77 78 79 80 81 81 87	CTL_+ CTLE_+  AE_H AUD_R1 AUD_R1 AUD_R2 AUD_P  VMR_CAP FG+_CAP  VH_CAP H1+_CAP H2+_CAP H2CAP H3CAP H3CAP M3CAP M3CAP M4CAP LOADO	WF16 TP6205/ TP6206	FP P P P P P P P P P P P P P P P P P P	(CAPSTAN UNIT / CTL(GND)   CTL(GND)   CTL(+)   CTL(+)   CTL(+)   CTL(+)   CTL(+)   CTL(-)
III M CI	250 249 248 247 70 32 71 72 73 73 74 75 76 77 78 79 80 80	CTL_+ CTLE_+  AE_H AUD_R1 AUD_R2 AUD_R2 AUD_R2 AUD_R  VMR_CAP FG+_CAP  VH_CAP H1+_CAP H2+_CAP H2+_CAP H3+_CAP H3+_CAP M4_CAP M4_CAP M4_CAP	WF16 TP6205/ TP6206	FP	(CAPSTAN UNIT / CTL(GND)   CTL(GND)   CTL(-)

← REC VIDEO SIGNAL ← PB VIDEO SIGNAL ← PB AUDIO SIGNAL

LINK TO VOLTAGE CHART
LINK TO SIGNAL WAVEFORM

LSJB8204 MAIN I (CONNECTOR) SCHEMATIC DIAGRAM PV-L453



COMPARISON CHART OF MODELS & MARKS

MODEL MARK

VM-L153 A
PV-L353 B
PV-L353-K C
PV-L453 D
Not Used PT

#### IC6001 KEY VOLTAGE CHART

(VCR MODE)			
TERMINAL	OPERATION BUTTON		
VOLTAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)	
3.42~3.78V			
2.52~2.88V	FF/ SEARCH	AUTO TRACKING	
1.62~1.98V	REW/ SEARCH	MENU	
0.72~1.08V	PLAY/STILL	DOWN	
0~0.18V	STOP	UP	

CAMERA EIS MODE)					
TERMINAL	OPERATION BUTTON				
VOLTAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)			
3.42~3.78V	LIGHT				
2.52~2.88V	EIS	MANUAL FOCUS/ SET			
1.62~1.98V	FADE	MENU			
0.72~1.08V	STILL/STROBE	DOWN/NEAR			
0~0.18V	BACK LIGHT	UP/FAR			

TERMINAL	OPERATIO	IN BUTTON
VOLTAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)
3.42~3.78V	LIGHT	
2.52~2.88V		MANUAL FOCUS/ SET
1.62~1.98V	MODE	MENU
0.72~1.08V	START	SELECT+ DOWN/NEAR
0~0.18V	BACK LIGHT	SELECT- UP/FAR

TERMINAL	OPERATION BUTTON		
VOLTAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)	
3.42~3.78V	LIGHT		
2.52~2.88V		MANUAL FOCUS SET	
1.62~1.98V		MENU	
0.72~1.08V	TO PHOTO THUMBNAIL MODE	DOWN/NEAR	
0~0.18V	BACK LIGHT	UP/FAR	

TERMINAL	OPERATIO	N BUTTON
VOLTAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)
3.42~3.78V	M. DEL	
2.52~2.88V		
1.62~1.98V		MENU
0.72~1.08V	M. PLAY	SELECT+
0~0.18V	TO PHOTO REC MODE	SELECT-

TERMINAL	OPERATION BUTTON		
VOLTAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)	
3.42~3.78V			
2.52~2.88V		SET	
1.62~1.98V		MENU	
0.72~1.08V		SELECT+ DOWN	
0~0.18V	TO PHOTO THUMBNAIL MODE	SELECT- UP	

#### IC6001 KEY VOLTAGE CHART (LCD PANEL MODE) (SW9101,9102)

TERMINAL	LCD PANEL MODE		
(Pin 79 of IC6001)	NORMAL/ REVERSE	OPEN/CLOSE	
0V	NORMAL	CLOSE	
2.6V	NORMAL	OPEN	
1.1V	REVERSE	CLOSE	
3.5V	REVERSE	OPEN	

LINK TO VOLTAGE CHART LINK TO SIGNAL WAVEFORM LSJB8204

MAIN II (SYSTEM CONTROL/SERVO) SCHEMATIC DIAGRAM
PV-L453

## I/O CHART OF IC6001

Pin No.	I/O	Signal Name	Description
1	Ι	POWER	POWER SW
2	Τ	TALLY	REC SW ON(L)
3	Τ	EJECT	EJECT SW
4	Т	POS1	MODE SW POSITION 1
5	-		(Not used)
6	0	POWER	POWER ON(H)
7	0	LOAD2	LOADING MOTOR REV(H)
8	-	LOAD1	LOADING MOTOR FWD(H)
9	Ī	POS2	MODE SW POSITION 2
10	İ	KEY IN 1	KEY DATA1
11	İ	NSBT1	CAM SERIAL CLOCK
12	i T	NSBI1	CAM SERIAL CLOCK  CAM SERIAL DATA 0
13	-		CAM SERIAL DATA 1
	0	NSBO1	
14	-	NSBT0	SERIAL CLOCK
15	1	NSBI0	SERIAL DATA 0
16	0	NSBO0	SERIAL DATA 1
17		SPK_ON_H	SPEAKER ON(H)
18	-	EVF_CNT	(Not used)
19	0	CYLON	CYL ON(L)
20	0	TLIM	CAP TORQUE LIMIT
21	0	RSF	CAP DIRECTION CTL
22	0	ACC	FORCED ACCELERATION
23	0	HSW	HEAD SW
24	0	VLP	V-LOCK PULSE
25	Τ	NRST	RESET(L)
26	0	FLYE	FLYING ERASE ON(H)
27	0	VDREC	VIDEO DELAY REC(H)
28	0	LCD_ON-H	LCD ON(H)
29	0	ARECCT	AUDIO REC(H)/PB(L)
30	0	DTCS	IC6005 CS(H)
31	-		(Not used)
32	Т	CAM-CS	CAM CS(L)
33	-	PWM1	CAP SPEED ERROR
34	0	PWM0	CYL SPEED ERROR
35		PWM4	
			(Not used)
36	1	VDD	VDD (+4.5V)
37	-	OSCO	OSC 1
38	1	OSCI	OSC 2
39	-	VSS	Ground
40	1	XI	CLOCK(32KHz)
41	-	XO	(Not used)
42	1	SXI	SXI
43	1	PHOTO	PHOTO ON(L)
44	-	RSTOUT	AUDIO RESET(L)
45	0	EEPROM_CS	IC6008 CS(H)
46	-	RSTMN67324	(Not used)
47	0	CLOCK+B	CLOCK +B
48	-	VSS	Ground
49	-		(Not used)
50	Τ	CVIN	VIDEO
51	Τ	VDD2	VDD (+4.5V)
F0	0	AFCC	AFC
52			
53	1	AFCLPF	AFC

		Coult Name				
Pin No.	-	Signal Name	Description			
55	0	LIGHT	LIGHT ON(H)			
56	0	AMUTE	AUDIO MUTE	(H)		
57	0	VCS	D/A LOAD			
58	0	VOB2	OSD BLANKING DATA			
59	0	VOB1	OSD BLANKING DATA			
60	0	VOW4	OSD DATA			
61	0	VOW3	OSD(DATE/TIME)DATA			
62	-		(Not used)			
63	-		(Not used)			
64	1	CDOWN	CASSETTE D	OWN(L)		
65	1	YFG	CYL FG			
66	1	YPG	CYL PG			
67	0	FGF	CAP FG			
68	1	AFG	CAP PG			
69	0	VRO	V-REF			
70	1	VRI	V-REF			
71	-	AVSS	Ground			
72	Ι	CTLA	CTL AMP			
73	1	AVDD	VDD (+4.5V)			
74	I/O	RCTLP	CTL PULSE(+	-)		
75	I/O	RCTLN	CTL PULSE(-	,		
76	0	CO	PB CONTROL			
77	1	STAB	SAFETY TAB	( )		
78	Ι	LIGHT_SCP		T CIRCUIT PR	OTECT	
79		LCDMOD	LCD PANEL N	MODE		
			TERMINAL	LCD PAN	EL MODE	
			VOLTAGE	NORMAL/	OPEN/	
			0)/	REVERSE	CLOSE	
			0V	NORMAL	CLOSE	
			2.6V	NORMAL	OPEN	
			1.1V	REVERSE	CLOSE	
			3.5V	REVERSE	OPEN	
80	Ι	SREEL	SUPPLY REE	L PULSE		
81	Ι	KEYAD4	KEY DATA 4			
82	1	KEYAD3	(Not used)			
83	1	BATT/EXT	-	T VOLTAGE DI	TECT	
84	1	KEYAD2	KEY DATA 2			
85	1	BATT	BATTERY UN			
86	1	SPHOTO	SUPPLY PHO	TO TR(L)		
87	-		(Not used)			
88	1	DEW	DEW SENSO			
89	1	ENV	ENV-VOLTAG			
90	1	TREEL	TAKE UP REE			
91	0	SLED	SENSOR LED	ON(H)		
92	0	DEW+B	DEW +B			
93	-		(Not used)			
94	0	KEYSCAN4	SCAN 4			
95	0	KEYSCAN3	SCAN 3			
96	0	KEYSCAN2	SCAN 2			
97	0	KEYSCAN1	SCAN 1			
98	0	ROTA	ROTARY SW			
99	-	HAMP	(Not used)			
100	-	DENV	(Not used)			

## I/O CHART OF IC6005

Pin No.	I/O	Signal Name	Description
1	0	TP0	Clock (32kHz)
2	1	XIN	X In
3	0	XOUT	X Out
4	-	GND	Ground
5	1	CS	CS (H)
6	1	SCK	Serial Clock
7	I/O	SIO	Serial Data1
8	1	VDD	VDD (+3.5V)

# IC6007 LOADING MOTOR DRIVE IC- DETAIL BLOCK DIAGRAM



NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART
OF MODELS & MARKS

MODEL MARK

VM-L153 A
PV-L353 B
PV-L353-K C
PV-L453 D
Not Used PT



## IC2001 CYL/CAP MOTOR DRIVE CONTROL IC- DETAIL BLOCK DIAGRAM



## IC2002 CAP MOTOR DRIVE IC- DETAIL BLOCK DIAGRAM



## IC2003 CYL MOTOR DRIVE IC- DETAIL BLOCK DIAGRAM





### I/O CHART OF IC301

., 🔾	•	ALIMINI V	OF ICSUI
Pin No.	I/O	Signal Name	Description
1	Ι	VDD3	VDD (+3.5V)
2	-	VSS	Ground
3	-	BISTH	(Not used)
4	-	NDRAMTEST	(Not used)
5	-	DEBUGZ	(Not used)
6	-	FMCOUT3	(Not used)
7	-	FMCOUT2	(Not used)
8	-	FMCOUT1	(Not used)
9	-	FMCOUT0	(Not used)
10	ī	CS4	DSP CHIP SELECT 4
11	-	FMYIN7	(Not used)
	_		(
12	-	FMYIN6	(Not used)
13	-	FMYIN5	(Not used)
14	-	FMYIN4	(Not used)
15	1	VDD25	VDD (+2.5V)
16	-	VSS	Ground
17	1	BLKADRS3	ADDRESS 3
18	1	BLKADRS2	ADDRESS 2
19	1	BLKADRS1	ADDRESS 1
20	Τ	BLKADRS0	ADDRESS 0
21	I/O	BLKDATA7	DATA 7
22	-	BLKDATA6	DATA 6
23	-	BLKDATA5	DATA 5
24	-	BLKDATA4	DATA 4
25	-	BLKDATA3	DATA 3
26	I/O	BLKDATA2	DATA 2
27	-	VSS	Ground
28	ı	VDD3	VDD (+3.5V)
29	_	BLKDATA1	DATA 1
30		BLKDATA0	DATA 0
31	-	FMCIN3	(Not used)
			,
32	-	FMCIN2	(Not used)
33	-	PTESTDRAM1	(Not used)
34	-	PTESTDRAM0	(Not used)
35	-	VSS25	Ground
36	1	VDD25	VDD (+2.5V)
37	-	NPOWCA	(Not used)
38	-	NTSEL	(Not used)
39	-	BTEST1	(Not used)
40	-	TESL2	(Not used)
41	-	TESL1	(Not used)
42	-	TESL0	(Not used)
43	-	MASK L	(Not used)
44	-	CP20	(Not used)
45	Ι	VCTRL0	V CONTROL
46	-	CSPEC	(Not used)
47	-	BF0	(Not used)
48	-	VEN	(Not used)
49	-	BLK0	(Not used)
50	0	SYNC0	V/H SYNC
51	-	VSS	Ground
52	1	VDD3	VDD (+3.5V)
53	i		DSP CHIP SELECT 2
	_	CS2	
54	1	CS1	DSP CHIP SELECT 1
55	1	RST	DSP RESET(L)
56	0	VCTRL	V CONTROL
57	ı	TEST4	(Not used)
58	-	ADTEST0	(Not used)
59	-	ADTEST1	(Not used)
60	-	ADTEST2	(Not used)
61	-	ADTEST3	(Not used)
62	-	ADTEST4	(Not used)
63	-	VSS	Ground
64	Ι	VDD25	VDD (+2.5V)
65	-	ADTEST5	(Not used)
66	-	ADTEST6	(Not used)
67	-	ADTEST7	(Not used)
68	-	SOUT	(Not used)
69	ī	SCLK	SERIAL CLOCK
70	-	NINTEST	(Not used)
	-		/
71	- I	TEST0	(Not used) V-REF
72		VREF	VINEI

Pin No.	I/O	Signal Name	Description
73	-	COMPC	CHROMINANCE D/A CONTROL
74	-	IREFC	CHROMINANCE D/A I-REF
75	1	VDDDA	VDD (+3.5V)
76	-	VSSDA	Ground
77	0	COUTA	CHROMINANCE
78	-	YOUTA	LUMINANCE
79	-	VSSDA	Ground
80	1	VDDDA	VDD (+3.5V)
81	-	IREFY	LUMINANCE D/A I-REF
82	-	COMPY	LUMINANCE D/A CONTROL
83	-	TEST1	(Not used)
84	1	UVSELIN	R-Y(L)/B-Y(H)
85	1	VDD3	VDD (+3.5V)
86 87	- T	VSS	Ground
_	-	CS3	DSP CHIP SELECT 3
88	-	DCK	(Not used)
90	i T	CSPC	CLOCK  COLOR SEPARATION CONTROL
90	0	BEND	BLOCK END CONTROL
92	Ī	BLKNWE	WRITE ENABLE
93	i T	VDD25	VDD (+2.5V)
94		FLD	(Not used)
95	-	UVSEL	(Not used)
96	-	PWM	IRIS PWM CONTROL
97		DCP	CLANP PULSE
98	-	BLK	BLANKING PULSE
99	Т	SYNC	V/H SYNC
100	-	CP2	(Not used)
101	Τ	BF	BURST FLAG PULSE
102	Т	HCLR	H CLEAR PULSE
103	Τ	NWE	WRITE ENABLE
104	Ι	NRE	READ ENABLE
105	-	NTDRAM	(Not used)
106	-	VSS	Ground
107	Τ	VDD3	VDD (+3.5V)
108	Ι	CLKA	CLOCK
109	1	VDDAD	VDD (+3.5V)
110	1	REFBTM	V-REF(L)
111	1	REFBTM	V-REF(H)
112	1	VINA	A/D SIGNAL
113	-	VSSAD	Ground
114	-	CS0	(Not used)
115	1	VD	V SYNC
116	1	HD	H SYNC
117	1	ADR7	ADDRESS 7
118	1	ADR6	ADDRESS 6
119	1	ADR5	ADDRESS 5
120	1	VDD3	VDD (+3.5V)
121	-	VSS	Ground
122	1	ADR4	ADDRESS 4
123 124	<u> </u>  -	ADR3 ADR2	ADDRESS 3 ADDRESS 2
124	<u> </u>	ADR1	ADDRESS 2 ADDRESS 1
125	+	ADR1	
126	-	DB7	ADDRESS 0 DATA 7
128		DB7	DATA 6
129	$\overline{}$	DB5	DATA 5
130	-	DB3	DATA 4
131	-	DB3	DATA 3
132	-	DB2	DATA 2
133	-	DB1	DATA 1
134	1	BLKNRE	READ ENABLE
135	Ī	VDD25	VDD (+2.5V)
136		DB0	DATA 0
137	-	ZONE0	(Not used)
138		UVSEL0	R-Y(L)/B-Y(H)
139	-	VCTRL	(Not used)
140	-	DSEL	(Not used)
141	-	BTEST0	(Not used)
142	-	TEST3	(Not used)
143	-	TEST2	(Not used)

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

S, COMPARISON CHART OF MODELS & MARKS

MODEL MARK

VM-L153 A
PV-L353 B
PV-L353-K C
PV-L453 D
Not Used PT



#### I/O CHART OF IC501

n No.	I/O	Signal Name	Description	Pin No	. 1/0	Signal Name	Description
1	-	NC	(Not used)	73	-	AD7	(Not used)
2	0	ADRS5	ADDRESS 5	74	-	AD6	(Not used)
3	0	ADRS4	ADDRESS 4	75	-	AD5	(Not used)
4	0	ADRS3	ADDRESS 3	76	-	AD4	(Not used)
5	0	ADRS2	ADDRESS 2	77	-	LCD_BRIGHT	(Not used)
6	0	ADRS1	ADDRESS 1	78	1	THERMO	THERMO (LENS TEMPERATURE DET.
7	0	ADRS0	ADDRESS 0	79	1	FNO	F NUMBER SIGNAL
8	1	VDD	VDD (+3.5V)	80	1	VARZ	ZOOM SWITCH DET
9	-	VSS	Ground	81	1	VDD	VDD (+3.5V)
10 11	-	NC	(Not used)	82	-	VSS	Ground
12	0	NC CS5(FM)	(Not used) CHIP SELECT 5	83 84	0	NC RE	(Not used) READ ENABLE
13	0	` ′	ADDRESS 7	85	0	WE	WRITE ENABLE
14	0	CS3(ENCODER)	CHIP SELECT 3	86	0	CH-STOP	CHARGE STOP(L)
15	_	CS2(ZOOM)	CHIP SELECT 2	87	-	NC NC	(Not used)
16	-	CS1(EIS)	CHIP SELECT 1	88	-	NC	(Not used)
17	_	CS0(DSP)	ADDRESS 6	89	-	NC	(Not used)
18		MODE2/Vpp	IC MODE SETTING 2	90	0	LCD CS	LCD LOAD
_	I/O	DATA7	DATA 7	91	0	EEPROM CS	EEPROM CS(L)
		DATA6	DATA 6	92	-	NC	(Not used)
	_	DATA5	DATA 5	93	0	CLK(AN2109/TG)	D/A SERIAL CLOCK
_	I/O		DATA 4	94	0	DO(AN2109/TG)	D/A SERIAL DATA
_	I/O	DATA3	DATA 3	95	0		D/A LOAD
24	I/O	DATA2	DATA 2	96	0	EVF CS	EVF LOAD
25	I/O	DATA1	DATA 1	97	0	TG CS	TG LOAD
26	I/O	DATA0	DATA 0	98	1	VDD	VDD (+3.5V)
27	Τ	VDD	VDD (+3.5V)	99	-	VSS	Ground
28	-	VSS	Ground	100	-	NC	(Not used)
29	-	NC	(Not used)	101	0	FDC2	FOCUS MOTOR DRIVE CONTROL 2
30	-	NC	(Not used)	102	0	FDC1	FOCUS MOTOR DRIVE CONTROL 1
31	0	CAMCS	CAM CS(L)	103	0	FDC0	FOCUS MOTOR DRIVE CONTROL 0
32	0	HSS_CONT	SUB CONTROL PULSE	104	0	FD3	FOCUS MOTOR DRIVE 3
33	-	NC	(Not used)	105	0	FD2	FOCUS MOTOR DRIVE 2
34	1	MMC CD(P6)	SD IN(L)	106	0	FD1	FOCUS MOTOR DRIVE 1
35	0	` '	MMC CS(L)	107	0	FD0	FOCUS MOTOR DRIVE 0
36	1	SD_WR_N	SD WRITE PROTECT(L)	108	0	LED CONT	LED CONTROL
37	1	VDD	VDD (+3.5V)	109	-	NC	(Not used)
38	-	VSS	Ground	110	-	RAM D CLK	(Not used)
39	-	NC OAM OLI	(Not used)	111	-	RAM D DATA	(Not used)
10	0	CAM CLK	CAM SERIAL CLOCK	112	1	VDD	VDD (+3.5V)
11	0	CAM->VM	CAM SERIAL DATA 0	113	-	VSS	Ground
42	1	VM->CAM	CAM SERIAL DATA 1	114	1	F.ENC	FOCUS ENCODER
13	1	EVR MODE	EVR MODE(L)	115	I	Z.ENC	ZOOM ENCODER
44 45	-	WIPE	(Not used)	116	-		(Not used)
45 46	1	Hsync	H-SYNC Ground	117	0	ZDC2 ZDC1	ZOOM MOTOR DRIVE CONTROL 2
46 47	<u>-</u>	VDD	VDD (+3.5V)	118	0	ZDC1 ZDC0	ZOOM MOTOR DRIVE CONTROL 1 ZOOM MOTOR DRIVE CONTROL 0
47	-	VSS	Ground	119	0	ZD3	ZOOM MOTOR DRIVE CONTROL 0
40 49	- T	DIS IRQ	DIS IRQ	120	0	ZD2	ZOOM MOTOR DRIVE 3
+9 50	÷	BEND	BLOCK END CONTROL	122	0	ZD1	ZOOM MOTOR DRIVE 1
51	÷	VD	V-SYNC	123	0	ZD0	ZOOM MOTOR DRIVE 0
52	÷	UART IN	RS232C RECEIVED DATA	124	Ť	VDD	VDD (+3.5V)
53	0	UART OUT	RS232C TRANSMITTED DATA	125	-	VSS	Ground
54	_	EVR CLK	EVR SERIAL CLOCK	126		FMWE	FIELD MEMORY WRITE ENABLE
55	_	EVR->CAM	EVR SERIAL DATA 1	127	-	FMRE	FIELD MEMORY READ ENABLE
56	_	CAM->EVR	EVR SERIAL DATA 0	128	-	NC	(Not used)
57	_	MODE1	IC MODE SETTING 1	129	-	NC	(Not used)
58	_	MODE0	IC MODE SETTING 0	130	0	BLK ADRS3	ADDRESS 3
59	_	RESET	RESET(L)	131	+	BLK ADRS2	ADDRESS 2
30	-		(Not used)	132	_	BLK ADRS1	ADDRESS 1
31	Τ		VDD (+3.5V)	133	0		ADDRESS 0
32	_	X2	OSC 1	134	Ī	VDD	VDD (+3.5V)
63	Ī		OSC 2	135	-	VSS	Ground
64	-	CVSS	Ground	136	1/0	BLKDATA7	DATA 7
35	_	EE CLK	SERIAL CLOCK	137	-	BLKDATA6	DATA 6
36	Ī		SERIAL DATA 1	138	+	BLKDATA5	DATA 5
	0		SERIAL DATA 0	139	+	BLKDATA4	DATA 4
67	_	MMC SCK(P5)	MMC/SD SERIAL CLOCK	140	+	BLKDATA3	DATA 3
67 68			MMC/SD SERIAL DATA 1	141	-	BLKDATA2	DATA 2
8	ı	MMC SDI					
i8 i9	Ι				+		DATA 1
_	Ι	MMC SDI MMC SDO AVDD	MMC/SD SERIAL DATA 0  VDD (+3.5V)	142 143	I/O	BLKDATA1 BLKDATA0	DATA 1 DATA 0

#### I/O CHART OF IC306

Pin No.	I/O	Signal Name	Description
1	-	R/B	(Not Used)
2	Ι	VCC	VDD (+3.5V)
3	Τ	CS	EEPROM CS(L)
4	1	SK	Serial Clock
5	1	DI	Serial Data 0
6	0	DO	Serial Data 1
7		GND	Ground
8	1	RES	Reset (L)

## IC309 HALL/IRIS AMP IC- DETAIL BLOCK DIAGRAM



## IC701 ZOOM MOTOR DRIVE IC- DETAIL BLOCK DIAGRAM



## IC702 FOCUS MOTOR DRIVE IC- DETAIL BLOCK DIAGRAM



Not Used



LINK TO VOLTAGE CHART LINK TO SIGNAL WAVEFORM

#### I/O CHART OF IC602

Pin No.	., 🗸		L lescription
, , ,	-	Signal Name VSS	Description Ground
2	1	XI	X In
3	0	XO	X Out
4	ī	SDI	TG SERIAL DATA
5	0	SCO	SERIAL CLOCK
6	-	CLK	CLOCK
7	-	TEST1	(Not used)
8	ı	SCK	TG SERIAL CLOCK
9	0	DCP	CLAMP PULSE
-	0	PBLK	PRE BLANKING PULSE
-	0	CP0B	OB CLAMP PULSE
	-	CBLK	BLANKING PULSE
13	-	BF	BURSTFLAG PULSE
	0	HCRL	H CLEAR PULSE
15	Ť	DCC	(Not used)
16	-	CP2	(Not used)
	0	HD	H-SYNC
	0	VD	V-SYNC
19	0	FH2	FH2
20	0	SYNC	V/H SYNC
21	-	TEST2	(Not used)
22	Ι	SLD	TG LOAD
23	i	SUBCTL	SUB CONTROL PULSE
24	-	VSS	Ground
25	ī	VDD	VDD (+3.5V)
	0	SUB	SUB CONTROL PULSE
	0	V1	V1 PULSE
	0	V2	V2 PULSE
	0	V3	V3 PULSE
	-	V4	V4 PULSE
	0	CH1	V1 CHARGE PULSE
-	$\rightarrow$	CH2	V3 CHARGE PULSE
33	Ī	VDD	VDD (+3.5V)
34	-	VSS	Ground
	0	H2	H2 PULSE
	0	H1	H1 PULSE
	0	R	RESET PULSE
$\overline{}$	0	VDD	VDD (+3.5V)
39	-	ASEL2	(Not used)
40	0	VSS	Ground
41		ASEL1	(Not used)
42	-	RWO	RESET PULSE WIDTH
43	-	RWI	RESET PULSE WIDTH
44	-	VCTL	(Not used)
45	0	DS1	DOUBLE SAMPLING PULSE 1
46	0	DS2	DOUBLE SAMPLING PULSE 2
	0	ADS	FCK
48	-	CCDSW1	(Not used)
	0	01	CLOCK
50	-	11	CLOCK
51	Ι	CLKCNT1	CHARGE STOP
52	-	DS1SEL1	DOUBLE SAMPLING PULSE 1 WIDTH
53	-	DS1SEL2	DOUBLE SAMPLING PULSE 1 WIDTH
54	-	DS2SEL1	DOUBLE SAMPLING PULSE 2 WIDTH
55	-	DS2SEL2	DOUBLE SAMPLING PULSE 2 WIDTH
56	I	VDD	VDD (+3.5V)
57	I	CLR	TG OFF CONTROL
58	-	FCK2WI	FCK DUTY CONTROL
59	-	FCK2WO	FCK DUTY CONTROL
60	-	CCDSW2	(Not used)
	Т	CLKCNT2	EE H IN
61	- 1		1
	-	CSEL1	(Not used)
61	$\rightarrow$	CSEL1 CSEL2	(Not used) (Not used)

## IC603 CCD V DRIVE IC- DETAIL BLOCK DIAGRAM



## IC605 SAMPLING HOLD / AGC CONTROL IC- DETAIL BLOCK DIAGRAM



TP3004

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS MODEL





## IC3001 LUMINANCE/CHROMINANCE SIGNAL PROCESS IC- DETAIL BLOCK DIAGRAM



## IC3002 TWIN CCD IH DELAY IC- DETAIL BLOCK DIAGRAM



FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS MODEL MARK VM-L153 PV-L353 PV-L353-K С PV-L453 Not Used



LINK TO VOLTAGE CHART

LSJB8204 MAIN VIII (AUDIO) SCHEMATIC DIAGRAM PV-L453

#### IC4001 AUDIO SIGNAL PROCESS IC- DETAIL BLOCK DIAGRAM



CAUTION: FOR CONTINUED PROTECTION AGAINST FIRE HAZARD.

TYPE 1.5A 24/32V

REPLACE ONLY WITH THE SAME TYPE 1.5A 24/32V FUSE.

D' INCENDIE N' UTILISERQUE DES FUSIBLE DE MÉME

ATTENTION: POUR UNE PROTECTION CONTINUE LES RISQUES

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

OF MODELS & MARKS MODEL VM-L153 PV-L353 PV-L353-K С PV-L453

COMPARISON CHART

IMPORTANT SAFETY NOTICE: COMPONENTS IDENTIFIED BY THE SIGN A HAVE SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY. WHEN REPLACING ANY OF THESE COMPONENTS. USE ONLY THE SPECIFIED PARTS.



CAUTION: FOR CONTINUED PROTECTION AGAINST FIRE HAZARD.

TYPE 2A 24/32V

REPLACE ONLY WITH THE SAME TYPE 2A 24/32V FUSE

D' INCENDIE N' UTILISERQUE DES FUSIBLE DE MÉME

ATTENTION: POUR UNE PROTECTION CONTINUE LES RISQUES

LSJB8204

#### **IC1001 PWM CONTROL IC- DETAIL BLOCK DIAGRAM**



FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART
OF MODELS & MARKS

MODEL MARK

VM-L153 A
PV-L353 B
PV-L353-K C
PV-L453 D
Not Used PT



PV-L453



IMPORTANT SAFETY NOTICE: COMPONENTS IDENTIFIED BY THE SIGN A HAVE SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY. WHEN REPLACING ANY OF THESE COMPONENTS, USE ONLY THE SPECIFIED PARTS.

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.





LINK TO VOLTAGE CHART
LINK TO SIGNAL WAVEFORM

LSJB8206 LCD II (LCD DRIVE) SCHEMATIC DIAGRAM VM-L153/PV-L353/PV-L353-K/PV-L453

#### IC9001 RGB SIGNAL PROCESS/LCD PANEL INDICATOR CONTROL IC- DETAIL BLOCK DIAGRAM



TO BC II 10

TO BC II 11

BL_4.5V

EVF_3.5V

IMPORTANT SAFETY NOTICE:
COMPONENTS IDENTIFIED BY THE SIGN A HAVE
SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY.
WHEN REPLACING ANY OF THESE COMPONENTS,
USE ONLY THE SPECIFIED PARTS.

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART
OF MODELS & MARKS

MODEL MARK

VM-L153 A
PV-L353 B
PV-L353-K C
PV-L453 D
Not Used PT

#### *2 NOTE:

WRONG REF. NOS. ARE PRINTED ON SUFFIX(VERSION) NUMBER  $\ensuremath{\textcircled{2}}$  OF BATTERY CATCHER C.B.A. BY MISTAKE.

ON RUNNING CHANGE BASIS, SUFFIX(VERSION) NUMBER WILL BE CHANGED FROM 2 TO 3 AND THESE REF. NOS. WILL BE CORRECTED.

Wrong	Correct	
D1203	D1213	
D1205	D1215	
L1202	L1212	

#### ***3** NOTE:

BATTERY CATCHER C.B.A. ARE SUPPLIED INDIVIDUALY AS REPLACEMENT PARTS. HOWEVER, ONLY THE PARTS ENCLOSED IN DASHED LINES ARE NOT SUPPLIED. WHEN REPLACING THESE PARTS, REPLACE BATTERY CATCHER C.B.A. INSTEAD OF INDIVIDUAL PARTS.





IMPORTANT SAFETY NOTICE: COMPONENTS IDENTIFIED BY THE SIGN A HAVE SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY. WHEN REPLACING ANY OF THESE COMPONENTS, USE ONLY THE SPECIFIED PARTS.

WRONG REF. NOS. ARE PRINTED ON SUFFIX(VERSION) NUMBER (2)

OF BATTERY CATCHER C.B.A. BY MISTAKE.

*2 NOTE:

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS MODEL MARK VM-L153 PV-L353 В PV-L353-K С D PV-L453 PT Not Used

#### ***3** NOTE:

BATTERY CATCHER C.B.A. ARE SUPPLIED INDIVIDUALY AS REPLACEMENT PARTS. HOWEVER, ONLY THE PARTS ENCLOSED IN DASHED LINES ARE NOT SUPPLIED. WHEN REPLACING THESE PARTS, REPLACE BATTERY CATCHER C.B.A. INSTEAD OF





#### IC901 EVF SIGNAL PROCESS IC- DETAIL BLOCK DIAGRAM



NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS MODEL MARK VM-L153 PV-L353 В PV-L353-K С PV-L453 D PT Not Used

#### "FOR REFERENCE ONLY"

HEAD AMP IS NOT SERVICEABLE AND IS SUPPLIED AS A CYLINDER UNIT ONLY FOR REPLACEMENT.



#### LCD SHAFT UNIT

#### "FOR REFERENCE ONLY"

NOTE: LCD SHAFT UNIT IS NOT SERVICEABLE AND IS SUPPLIED AS A UNIT ONLY FOR REPLACEMENT.



#### CCD C.B.A.

#### "FOR REFERENCE ONLY"



NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART
OF MODELS & MARKS

MODEL MARK

VM-L153 A
PV-L353 B
PV-L353-K C
PV-L453 D
Not Used PT

#### MICROPHONE UNIT

#### "FOR REFERENCE ONLY"



LCD SHAFT UNIT MICROPHONE UNIT CCD C.B.A. VM-L153/PV-L353/PV-L353-K/PV-L453

#### **TOP OPERATION UNIT**

#### **MECHANISM FPC UNIT**

#### "FOR REFERENCE ONLY"

NOTE:

MECHANISM FPC UNIT IS NOT SERVICEABLE AND IS
SUPPLIED AS A UNIT ONLY FOR REPLACEMENT.

TOP OPERATION UNIT IS NOT SERVICEABLE AND IS SUPPLIED AS A UNIT ONLY FOR REPLACEMENT.



NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART
OF MODELS & MARKS

MODEL MARK

VM-L153 A
PV-L353 B
PV-L353-K C
PV-L453 D
Not Used PT

#### SIDE L OPERATION UNIT

"FOR REFERENCE ONLY"

SIDE L OPERATION UNIT IS NOT SERVICEABLE AND IS SUPPLIED AS A UNIT ONLY FOR REPLACEMENT.



TOP OPERATION UNIT SIDE L OPERATION UNIT MECHANISM FPC UNIT VM-L153/PV-L353/PV-L353-K/PV-L453

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

NOTE: FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS MODEL MARK VM-L153 PV-L353 В C D PV-L353-K PV-L453 PT Not Used



#### 8.2. MAIN SCHEMATIC DIAGRAMS (Models: VM-L153/PV-L353/PV-L353-K)

#### MAIN I (CONNECTOR) SCHEMATIC DIAGRAM (A,B,C)



### 353-K)

● TP5001 LIGHT_GND

**→** 

R1605 100 R1604 100

WF10

WF9

26 UNREG_GND UNREG GND UNREG_GND BACK UP

AUDIO L UNREG UNREG UNREG UNREG BATT_V VIDEO_OUT GND Y IN EVF_3.5V BL_4.5V

EVF_SCLK EVF_DATA EVF LOAD EVF_GND 5 EVF/LCD_15V 4 M_R_OUT 3 M_G_OUT

FP6 (TO CYLINDER UNIT) 1 ENV-OUT 2 REC-IN AT-OUT 4 V-DREC_H 7 FLY-E_L

9 HA-GND
10 HA-GND
11 FG13 VH-(PG)
14 VH-(PG)
15 PG
16 VH-(H3)
17 H2+
18 VH-(H2)
19 H220 H3+
21 VH(H3)

22 H3-23 H1+ 24 VH+(H1)

25 H1-26 M1 27 M2 28 M3

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

#### NOTE:

TE:
FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES,
OF MODELS & MARKS REFER TO BEGINNING OF SCHEMATIC SECTION.

MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D
Not Used	PT



					FP9	(10 ==110
го м у	182	F.ENC			22	F.ENC
O M IX	200	AF_4.5V			21	AF_4.5V
ОΜУ	183	Z.ENC )			20	Z.ENC
ОΜУ	184	LED_CONT )			19	LED CONT
OMV	175	THERMO			18	
· ·	(110)			_	17	
ому	192	ZOOM MT2			16	
• •	$\rightarrow$	ZOOM_MT1			15	ZOOM_WITZ
OMV	189				14	
OMV	191	ZOOM_MT4				
OMV	190	ZOOM_MT3 )			13	
OMV	210	ALC_CONT+ )			12	ALC_CONT+
IV M C	( 127	VREF_L )		-	11	ALC_CONT-
				•	10	ALC_MAIN-
OMV	209	HOLE_OUT-		-	9	HOLE_OUT-
OMV	207	HOLE IN-			8	HOLE_IN-
OMV	208	HOLE_OUT+			_ 7	HOLE_OUT+
OMV	206	HOLE_IN+			- 6	HOLE IN+
OMV	202	ALC_MAIN+			- 5	ALC_MAIN+
OMV	188	FOCUS_MT2			4	FOCUS_MT2
					3	
OMV	185	FOCUS_MT3			2	FOCUS_MT3
OMV	187	FOCUS_MT4	·			FOCUS_MT4
OMV	( 186	FOCUS_MT1 )	-		1	FOCUS_MT1
IV M C	220	CCD_15V	-		FP8	15V
IV M C	214	CCD_SUB			2	SUB
IV M C	223	CCD8V			3	-8V
IV M C	221	V1_DRIVE_OUT			4	V1
IV M C	222	V2_DRIVE_OUT			5	V2
IV M C	219	V3_DRIVE_OUT			- 6	V3
IV M C	218	V4_DRIVE_OUT			7	V4
O M IV	215	CCD RESET			- 8	RESET
O M IV		CCD_RESET )			_	H1
או או כ	( 216					
					9	
O M IV	217	CCD_H2			10	H2
O M VI			<b>(-</b>	<b>4</b>	10 11 12	
	217	CCD_H2	WF16	WF	10 11 12 1	H2 GND CCDOUT
	217	CCD_H2 )	WF16 TP6205 TP620	_	10 11 12	H2 GND
	217	CCD_H2 )		_	10 11 12 1	H2 GND CCDOUT  (TO AC HEAD //CAPSTAN UNIT
O M VI	217	CCD_H2		_	10 11 12 1 FP1 1	H2 GND CCDOUT  (TO AC HEAD //CAPSTAN UNIT CTL(GND)
O M VI	217 225	CCD_H2 CCDOUT CCDOUT		_	10 11 12 1	H2 GND CCDOUT  (TO AC HEAD //CAPSTAN UNIT CTL(GND) CTL(-)
O M VI	217 225 66 67	CCD_H2  CCDOUT  CTL -  CTL -		_	10 11 12 1 1 1 1 2 3 4	H2   GND   CCDOUT    (TO AC HEAD   //CAPSTAN UNIT   CTL(GND)   CTL(-)   CTL(+)   CTL(+)   CTL(+)   CTL(+)   CTL(+)   CTL(+)   CTL(+)   CTL(+)   CTL(+)   CTL(-)   C
O M VI	217 225 66 67	CCD_H2  CCDOUT  CTL -  CTL -		_	10 11 12 1 1 1 2 3 4 5	H2 GND CCDOUT  (TO AC HEAD (ICAPSTAN UNIT CTL(GND) CTL(-) CTL(+) CTLE(+) CTLE(+) CTLE(-)
O M II O M II O M II M VIII	217 225 66 67	CCD_H2  CCDOUT  CTL -  CTL +  CTL +		_	10 11 12 1 1 FP1 1 2 3 4 5 6	H2 GND CCDOUT  (TO AC HEAD (CAPSTAN UNIT CTL(GND) CTL(+) CTL(+) CTL(+) CTL(G) AE(GND)
O M II O M II M VIII	217 225 225 66 67 251 250 250	CCD H2  CCDOUT  CTL +  CTL +  CTL +  AE H		_	10 11 12 1 1 2 3 4 5 6 7	H2 GND CCDOUT  (TO AC HEAD (CAPSTAN UNIT CTL(GND) CTL(+) CTL(+) CTL(+) CTL(E(O) AE(GND) AE(GND)
O M VIII M VIII M VIII	217 225 66 67 251	CCD H2  CCDOUT  CTL +  CTL +  CTL +  AE H  AUD R1		_	FP1 1 2 3 4 5 6 7 8	H2
O M II O M II M VIII M VIII M VIII	217 225 66 67 251 250 249 248	CCD_H2  CCDOUT  CTL CTL_+ CTLE_+  AE_H  AUD_R1 AUD_R2		_	FP1 1 2 2 3 4 4 5 6 6 7 8 8 9 9	H2 GND CCDOUT  (TO AC HEAD (CAPSTAN UNIT CTL(GND) CTL(+) CTLE(+) CTLE(+) CTLE(G) AE(GND) AE(H) AUD(R1) AUD(R2)
O M II O M II M VIII M VIII M VIII	217 225 66 67 251	CCD H2  CCDOUT  CTL +  CTL +  CTL +  AE H  AUD R1		_	FP1 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	H2 GND CCDOUT  (TO AC HEAD (CAPSTAN UNIT CTL(GND) CTL(-) CTL(+) CTL(+) CTL(G) AE(GND) AE(GND) AE(GND) AUD(R1) AUD(R2) AUD(P)
O M II O M II M VIII M VIII M VIII	217 225 66 67 251 250 249 248	CCD_H2  CCDOUT  CTL CTL_+ CTLE_+  AE_H  AUD_R1 AUD_R2		_	FP1 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	H2
O M II O M II M VIII M VIII M VIII	217 225 66 67 251 250 249 248 247	CCD_H2  CCDOUT  CTL_+  CTL_+  CTL_+  AE H  AUD R1  AUD R2  AUD P		_	FP1 1 2 3 4 4 5 6 6 7 7 8 9 9 10 11 12	H2 GND CCDOUT  (TO AC HEAD (CAPSTAN UNIT CTL(GND) CTL(+) CTL(+) CTLE(+) CTLE(+) AE(GND) AE(H) AUD(R1) AUD(R2) AUD(P1) AUD(P) AUD(GND) MRGND
II M OO	217 225 225 225 225 251 251 251 249 248 247 270 270 270 270 270 270 270 270 270 27	CCD H2  CCDOUT  CTL -  CTL +  CTL +  AE H  AUD R1  AUD R2  AUD P		_	FP1 1 2 2 3 4 4 5 6 6 7 7 8 8 9 10 11 12 13	H2 GND CCDOUT  (TO AC HEAD (CAPSTAN UNIT CTL(GND) CTL(+) CTL(+) CTL(+) CTL(G) AE(GND) AE(GND) AE(GND) AUD(R1) AUD(R2) AUD(R2) AUD(R3) AUD(R3) AUD(R3) AUD(R3) AUD(R4) AUD(R4) AUD(R5) AUD(R5) AUD(R5) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6) AUD(R6)
II M OO	217 225 66 67 251 250 249 248 247	CCD_H2  CCDOUT  CTL_+  CTL_+  CTL_+  AE H  AUD R1  AUD R2  AUD P	TP6205	\$   Park   FP1 1 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 11 12 13 13 14	H2	
O M II O M VIII M VIII M VIII M VIII M VIII M VIII	217 225 66 67 251 250 249 248 247 70 32	CCD H2  CCDOUT  CTL.+  CTL.+  CTLE.+  ALUD R1  AUD R2  AUD R2  AUD P		\$   Park   FP1 1 2 3 3 4 4 5 6 6 7 7 8 9 9 10 11 12 13 13 14 15 15	H2   GND   CCDOUT	
II M O III V M IIIV M IIIV M IIIV M IIIV M IIIV M IIIV M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III	217 225 66 67 251 250 249 248 247 70 32	CCD_H2  CCDOUT  CTL_+  CTL_+  CTL_+  AE_H  AUD_R1  AUD_R2  AUD_P  VMR_CAP  FG+_CAP	TP6205	\$   Park   FP1 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.	H2	
II M O III V M IIIV M IIIV M IIIV M IIIV M IIIV M IIIV M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III	217 225 66 67 251 250 249 248 247 70 32	CCD H2  CCDOUT  CTL.+  CTL.+  CTLE.+  ALUD R1  AUD R2  AUD R2  AUD P	TP6205	\$   Park   FP1 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.	H2   GND   CCDOUT	
II M O II M O II M O II W M O III W	217 225 66 67 251 250 249 248 247 70 32	CCD_H2  CCDOUT  CTL_+  CTL_+  CTL_+  AE_H  AUD_R1  AUD_R2  AUD_P  VMR_CAP  FG+_CAP	TP6205	\$   Park   FP1 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.	H2	
II M O' III W O' III W O' III W O' III W O' III W O' III W O' III M C	217 225 266 67 251 249 248 247 70 32 71 72	CCD.H2  CCDOUT  CTL CTL.+ CTLE.+  AE.H  AUD.R1  AUD.R2  AUD.P.  VMR.CAP  FG+.CAP  HHCAP  HHCAP	TP6205	\$   Park   FP1 1 2 2 3 4 4 5 6 6 7 7 8 8 9 10 11 12 13 14 15 16 17 18	H2	
II M O III W O III W O III W O III W O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O III M O II  217 225 66 67 251 249 248 247 70 32 71 72 73	CCD_H2  CCDOUT  CTL_+  CTL_+  CTL_+  CTL_+  AE H  AUD_R1  AUD_R2  AUD_P  VMR_CAP  FG+_CAP  VH_CAP  H1+_CAP  H1+_CAP  H2+_CAP	TP6205	\$   Park   FP1 1 2 3 3 4 4 5 6 6 7 7 8 9 10 11 12 13 13 14 15 16 16 17 18 19 19	H2		
O M VI	217 225 225 250 249 248 247 70 32 71 72 73 74 75	CCD H2  CCDOUT  CTL -  CTL -  CTL +  CTLE +  AE H  AUD R1  AUD R2  AUD P  VMR CAP  FG+ CAP  H1- CAP  H1- CAP  H2- CAP  H2- CAP	TP6205	\$   Park   FP1 1 2 3 3 4 4 5 6 6 7 7 8 8 9 100 111 12 13 13 14 15 16 17 17 18 19 20 20	H2	
II M O' III W O' III W O' III W O' III W O' III W O' III W O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' II M	217 225 66 67 251 250 248 247 70 32 71 72 73 74 75 76	CCD H2  CCDOUT  CTL.+  CTL.+  CTLE.+  AE H  AUD R1  AUD R2  AUD P  VMR CAP  FG+ CAP  H1- CAP  H1- CAP  H2- CAP  H2- CAP  H3- CAP  H3- CAP	TP6205	\$   Park   FP1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 10 11 11 12 13 14 15 16 16 17 18 19 20 21 21	H2	
II M O' III M O' III W O' III W O' III W O' III W O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' II M	217 225  66 67 251  250 249 248 247  70 32  71 72 73 74 75 76 77	CCD_H2  CCD_UT  CTL_+  CTL_+  CTL_+  CTL_+  AE_H  AUD_R1  AUD_R2  AUD_P  VMR_CAP  FG+_CAP  VH_CAP  H1CAP  H1CAP  H2CAP  H2CAP  H3CAP  H3CAP  H3CAP	TP6205	\$   Park   FP1 1 2 2 3 4 4 5 5 6 6 7 8 8 9 9 10 11 11 12 13 11 15 16 17 18 19 2 20 21 1 22	H2	
II M O' III W O' III W O' III W O' III W O' III W O' III W O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' III M O' II 17 225  66 67 251  250 249 248 247  70 32  71 72 73 74 75 76 77 78	CCD H2  CTL -  CTL -  CTL +  CTL +  AE H  AUD R1  AUD R2  AUD P  VMR CAP  FG+ CAP  H1- CAP  H1- CAP  H2- CAP  H3- CAP  H3- CAP  VH- CAP  VH- CAP  VMR CAP	TP6205	\$   Park   FP1 1	H2		
II M O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' III W O' II	217 225  66 67 251  250 249 248 247  70 32  71 72 73 74 75 76 77 78 78	CCD H2  CCDOUT  CTL  CTL.+  CTLE.+  AE H  AUD R1  AUD R2  AUD P  VMR CAP  FG+ CAP  H1+ CAP  H2- CAP  H3- CAP  H3- CAP  H3- CAP  H3- CAP  M3- CAP  M4- CAP	TP6205	\$   Park   FP1 1 2 3 4 4 5 6 6 7 7 8 8 9 10 11 11 12 13 14 14 15 16 16 17 18 18 19 20 21 12 22 23 24 24	H2 GND CCDOUT  (TO AC HEAD (CAPSTAN UNIT CTL(GND) CTL(-) CTL(+) CTLE(+) CTLE(+) CTLE(0) AE(H) AUD(R1) AUD(R1) AUD(R2) AUD(P) AUD (R1) AUD(P) AUD (R1) AUD(P) H1+ H1+ H1+ H2- H3- H3- H3- WH2 M2	
II M O II M O III W M III W M III W M III W M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M III M M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M II M III 217 225  66 67 251  250 249 248 247  70 32  71 72 73 74 75 76 77 78 79 80	CCD H2  CCDOUT  CTL -  CTL -  CTL +  CTL E +  AE H  AUD R1  AUD R2  AUD P  VMR CAP  FG+ CAP  H1- CAP  H1- CAP  H2- CAP  H3- CAP  H3- CAP  H3- CAP  M3- CAP	TP6205	\$   Park   FP1 1 2 3 4 4 5 6 6 7 7 8 8 9 9 100 111 112 113 115 16 16 17 18 19 20 21 12 22 23 24 25	H2		
II M OO III	217 225  66 67 251  250 249 248 247  70 32  71 72 73 74 75 76 77 78 78	CCD H2  CCDOUT  CTL - CTL - CTL +  AE H AUD R1 AUD R2 AUD P  VMR CAP FG+ CAP H1- CAP H1- CAP H2- CAP H3- CAP H3- CAP VH+ CAP M3- CAP VH+ CAP M3- CAP M3- CAP M1- CAP M1- CAP M3- CAP M1- CAP M3- CAP M1- CAP M3- CAP M1- CAP	TP6205	\$   Park   FP1 1 2 2 3 4 4 5 6 6 7 7 8 8 9 9 10 11 11 12 13 14 15 16 17 18 19 20 21 12 22 23 24 25 26 26 26	H2	
II M O II M O III W M III W M III W M III W M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M M III M III M M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M III M II M III 217 225  66 67 251  250 249 248 247  70 32  71 72 73 74 75 76 77 78 79 80	CCD H2  CCDOUT  CTL -  CTL -  CTL +  CTL E +  AE H  AUD R1  AUD R2  AUD P  VMR CAP  FG+ CAP  H1- CAP  H1- CAP  H2- CAP  H3- CAP  H3- CAP  H3- CAP  M3- CAP	TP6205	\$   Park   FP1 1	H2		

LINK TO VOLTAGE CHART

LINK TO SIGNAL WAVEFORM

82

LSJB8205 MAIN I (CONNECTOR) SCHEMATIC DIAGRAM VM-L153/PV-L353/PV-L353-K



#### MAIN II (SYSTEM CONTROL/SERVO) SCHEMATIC DIAGRAM (A,B,C)

#### ***1** NOTE

TO DEFEAT THE SAFETY FUNCTION, CONNECT A DIODE BETWEEN TP6011 AND TP6012, OR SELECT THE H. SAFETY DEFEAT IN SERVICE MODE. REFER TO NOTE1 OF "EXTENSION CABLES FOR SERVICE" IN SERVICE NOTES SECTION FOR MORE INFORMATION.





83

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

NOTE:
FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES,
REFER TO BEGINNING OF SCHEMATIC SECTION.

### COMPARISON CHART OF MODELS & MARKS

MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D
Not Used	PT

DOWN

#### IC6001 KEY VOLTAGE CHART

(VCR MODE)				
TERMINAL	OPERATION BUTTON			
VOLTAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)		
3.42~3.78V				
2.52~2.88V	FF/ SEARCH			
1.62~1.98V	REW/ SEARCH	AUTO TRACKING		

#### (CAMERA MODE)

0~0.18V

0.72~1.08V PLAY/STILL

TERMINAL	OPERATION BUTTON		
VOLTAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)	
3.42~3.78V	LIGHT		
2.52~2.88V	EIS	MANUAL FOCUS/SET	
1.62~1.98V	FADE	MENU	
0.72~1.08V	STILL/ STROBE	DOWN/NEAR	
0~0.18V	BACKLIGHT	UP/FAR	

#### IC6001 KEY VOLTAGE CHART (LCD PANEL MODE) (SW9101,9102)

TERMINAL	LCD PANEL MODE		
(Pin 79 of IC6001)	NORMAL/ REVERSE	OPEN/CLOSE	
0V	NORMAL	CLOSE	
2.6V	NORMAL	OPEN	
1.1V	REVERSE	CLOSE	
3.5V	REVERSE	OPEN	



LINK TO SIGNAL WAVEFORM
LINK TO VOLTAGE CHART

LSJB8205 MAIN II (SYSTEM CONTROL/SERVO) SCHEMATIC DIAGRAM VM-L153/PV-L353/PV-L353-K

## ----

#### MAIN III (CYLINDER/ CAPSTAN DRIVE) SCHEMATIC DIAGRAM (A,B,C)



NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

#### NOTE:

TE:
FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES,
OF MODELS & MARKS REFER TO BEGINNING OF SCHEMATIC SECTION.

MODEL	MARK	
VM-L153	Α	
PV-L353	В	
PV-L353-K	С	
PV-L453	D	
Not Used	PT	



LINK TO VOLTAGE CHART

LSJB8205

MAIN III (CYLINDER/CAPSTAN DRIVE) SCHEMATIC DIAGRAM VM-L153/PV-L353/PV-L353-K

# -----

#### MAIN IV (CAMERA I) SCHEMATIC DIAGRAM (A,B,C)





NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

NOTE:
FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES,
REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS

OI WODELS & WAITING		
MODEL	MARK	
VM-L153	Α	
PV-L353	В	
PV-L353-K	С	
PV-L453	D	
Not Used	PT	





# ---

#### MAIN V (CAMERA II/LENS DRIVE) SCHEMATIC DIAGRAM (A,B,C)



----

89

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

NOTE: FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

140

TO M I.M IV

C_MICOM_3.5V

COMPARISON CHART OF MODELS & MARKS

OF WIDDELS & WARKS		
MODEL	MARK	
VM-L153	Α	
PV-L353	В	
PV-L353-K	С	
PV-L453	D	
Not Used	PT	



LINK TO VOLTAGE CHART

LSJB8205
MAIN V (CAMERA II/LENS DRIVE) SCHEMATIC DIAGRAM

VM-L153/PV-L353/PV-L353-K

#### MAIN VI (CCD DRIVE) SCHEMATIC DIAGRAM (A,B,C)

DSP_3.5V )

TO M IV 140







91

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

NOTE: FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

### COMPARISON CHART OF MODELS & MARKS

MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D
Not Used	PT



LINK TO VOLTAGE CHART
LINK TO SIGNAL WAVEFORM

LSJB8205 MAIN VI (CCD DRIVE) SCHEMATIC DIAGRAM VM-L153/PV-L353/PV-L353-K

### MAIN VII (VIDEO) SCHEMATIC DIAGRAM (A,B,C)







# ---

# MAIN VIII (AUDIO) SCHEMATIC DIAGRAM (A,B,C)





NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

NOTE: FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS

01 111000000 01111111111111111111111111		
MODEL	MARK	
VM-L153	Α	
PV-L353	В	
PV-L353-K	С	
PV-L453	D	
Not Used	PT	



LINK TO VOLTAGE CHART

LSJB8205 MAIN VIII (AUDIO) SCHEMATIC DIAGRAM VM-L153/PV-L353/PV-L353-K



### MAIN IX (POWER SUPPLY) SCHEMATIC DIAGRAM (A,B,C)

CAUTION: FOR CONTINUED PROTECTION AGAINST FIRE HAZARD,
REPLACE ONLY WITH THE SAME TYPE 1.5A 24/32V FUSE.
ATTENTION: POUR UNE PROTECTION CONTINUE LES RISQUES
D' INCENDIE N' UTILISERQUE DES FUSIBLE DE MÉME
TYPE 1.5A 24/32V

CAUTION: FOR CONTINUED PROTECTION AGAINST FIRE HAZARD,
REPLACE ONLY WITH THE SAME TYPE 2A 24/32V FUSE.
ATTENTION: POUR UNE PROTECTION CONTINUE LES RISQUES
D' INCENDIE N' UTILISERQUE DES FUSIBLE DE MÉME
TYPE 2A 24/32V

IMPORTANT SAFE COMPONENTS IDI SPECIAL CHARAC WHEN REPLACING USE ONLY THE SE





97

JES

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

NOTE:

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS

OF WODELS & WARRS	
MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D
Not Used	PT

IMPORTANT SAFETY NOTICE: COMPONENTS IDENTIFIED BY THE SIGN A HAVE SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY. WHEN REPLACING ANY OF THESE COMPONENTS, USE ONLY THE SPECIFIED PARTS.



LINK TO VOLTAGE CHART

**LSJB8205** MAIN IX (POWER SUPPLY) SCHEMATIC DIAGRAM VM-L153/PV-L353/PV-L353-K

# MAIN X (EVR CONNECTOR) SCHEMATIC DIAGRAM (A,B,C)







NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

### NOTE:

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS

MODEL | MARKS

MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D
Not Used	PT





### 8.3. MAIN SCHEMATIC DIAGRAMS (Model: PV-L453)

# ---

### MAIN I (CONNECTOR) SCHEMATIC DIAGRAM (D)





● TP5001 LIGHT_GND

D1103 MA3120WA (12V)

TIII)

R1605 100 R1604 100 R1606 100

WF10

WF9

(TO BATTERY CATCHER C.B.A.

UNREG_GND

UNREG_GND

UNREG_GND

BACK UP

ALIDIO I

UNREG

UNREG

UNREG

JNREG

VIDEO_OUT GND

Y_IN 232C_GND

PC_5V

SD_IN_L

SD_CLK SD_DATA SD_WP CAMERA_3.5V

BL_4.5V EVF_SCLK

EVF_DATA

EVF_LOAD

EVF/LCD_15V

FP6 (TO CYLINDER UNIT)

ENV-OUT

AT-OUT

HA-4.5V H-SW

HA-GND

HA-GND FG-

VH-(PG)

PG

H2+

H2-

H1+

H1-

M2

VH(H3)

VH+(H1)

VH+(PG)

VH-(H3)

VH+(H2)

FLY-E I

V-DREC_H

EVF GND

M R OUT

M_G_OUT

M_B_OUT M_VCOM

CMD

MICOM_UART_OUT

MICOM_UART_IN

SD_CD/DATA3

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

### NOTE:

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION

#### COMPARISON CHART OF MODELS & MARKS

O. MODELO	
MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D
Not Used	PT



LINK TO VOLTAGE CHART LINK TO SIGNAL WAVEFORM

LSJB8204 MAIN I (CONNECTOR) SCHEMATIC DIAGRAM PV-L453

56 C3155 C3154



### MAIN II (SYSTEM CONTROL/SERVO) SCHEMATIC DIAGRAM (D)

*1 NOTE
TO DEFEAT THE SAFETY FUNCTION, CONNECT A DIODE BETWEEN TP6011 AND TP6012, OR SELECT THE H.
SAFETY DEFEAT IN SERVICE MODE. REFER TO NOTE1 OF "EXTENSION CABLES FOR SERVICE" IN SERVICE NOTES SECTION FOR MORE INFORMATION.







#### COMPARISON CHART OF MODELS & MARKS

0050	
MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D
Not Used	PT

#### C6001 KEY VOLTAGE CHART

(VCR MODE)		
TERMINAL	OPERATION BUTTON	
VOLTAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)
3.42-3.78V		
2.52~2.88V	FF/ SEARCH	AUTO TRACKING
1.62~1.98V	REW/ SEARCH	MENU
0.72~1.08V	PLAY/STILL	DOWN
0.0401/	OTOD	LID

(CAMERA EIS MOD	DE)	
TERMINAL	OPERATIO	N BUTTON
VOLTAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)
3.42~3.78V	LIGHT	
2.52~2.88V	EIS	MANUAL FOCUS/ SET
1.62~1.98V	FADE	MENU
0.72~1.08V	STILL/STROBE	DOWN/NEAR
0.0191/	BACKLIGHT	HD/EAD

#### 

0.72~1.08V	START	SELECT+ DOWN/NEAR
0~0.18V	BACK LIGHT	SELECT- UP/FAR
(PHOTO REC MOD		
TERMINAL	OPERATIO	N BUTTON
VOLTAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)
3.42~3.78V	LIGHT	

TERMINAL	OPERATIO	N BUTTON
VOLTAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)
3.42-3.78V	LIGHT	
2.52~2.88V		MANUAL FOCUS/ SET
1.62~1.98V		MENU
0.72~1.08V	TO PHOTO THUMBNAIL MODE	DOWN/NEAR
0-0.18V	BACK LIGHT	UP/FAR

(PHOTO THUMBNA	AIL MODE)	
TERMINAL	OPERATIO	N BUTTON
VOLTAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)
3.42~3.78V	M. DEL	
2.52-2.88V		
1.62~1.98V		MENU
0.72~1.08V	M. PLAY	SELECT+
0~0.18V	TO PHOTO REC MODE	SELECT-

(PHOTO PLAY MO	DDE)		
TERMINAL	OPERATIO	OPERATION BUTTON	
VOLTAGE	KEY DATA 2 (PIN 84)	KEY DATA 4 (PIN 81)	
3.42-3.78V	-		
2.52-2.88V		SET	
1.62~1.98V		MENU	
0.72~1.08V		SELECT+ DOWN	
0~0.18V	TO PHOTO THUMBNAIL MODE	SELECT- UP	

#### IC6001 KEY VOLTAGE CHART (LCD PANEL MODE) (SW9101,9102)

TERMINAL	LCD PANEL MODE		
VOLTAGE (Pin 79 of IC6001)	NORMAL/ REVERSE	OPEN/CLOSE	
0V	NORMAL	CLOSE	
2.6V	NORMAL	OPEN	
1.1V	REVERSE	CLOSE	
3.5V	REVERSE	OPEN	

LINK TO VOLTAGE CHART LINK TO SIGNAL WAVEFORM LSJB8204

MAIN II (SYSTEM CONTROL/SERVO) SCHEMATIC DIAGRAM PV-L453

# ---

# MAIN III (CYLINDER/ CAPSTAN DRIVE) SCHEMATIC DIAGRAM (D)





NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

### NOTE:

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

### COMPARISON CHART OF MODELS & MARKS

MODEL	MARK	
VM-L153	Α	
PV-L353	В	
PV-L353-K	С	
PV-L453	D	
Not Used	PT	



LINK TO VOLTAGE CHART
LSJB8204
MAIN III (CYLINDER/CAPSTAN DRIVE) SCHEMATIC DIAGRAM
PV-L453

# ----

### MAIN IV (CAMERA I) SCHEMATIC DIAGRAM (D)



----

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram. NOTE:

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS

MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D
Not Used	PT



LINK TO VOLTAGE CHART

# ---

# MAIN V (CAMERA II/LENS DRIVE) SCHEMATIC DIAGRAM (D)





---

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

### NOTE:

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

#### COMPARISON CHART OF MODELS & MARKS

	OF WIODELS & WARKS			
MODEL		MARK		
VM-L153		Α		
PV-L353		В		
PV-L353-K		С		
	PV-L453	D		
	Not Used	PT		



LINK TO VOLTAGE CHART

LSJB8204

MAIN V (CAMERA II/LENS DRIVE) SCHEMATIC DIAGRAM PV-L453

# ----

### MAIN VI (CCD DRIVE) SCHEMATIC DIAGRAM (D)





----

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram. NOTE:

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS

OI WIODELS 6	INITINI
MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D
Not Used	PT



LINK TO VOLTAGE CHART
LINK TO SIGNAL WAVEFORM

LSJB8204 MAIN VI (CCD DRIVE) SCHEMATIC DIAGRAM PV-L453



### MAIN VII (VIDEO) SCHEMATIC DIAGRAM (D)







111

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram. NOTE: FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION. COMPARISON CHART OF MODELS & MARKS

MODEL	MARK	
VM-L153	Α	
PV-L353	В	
PV-L353-K	С	
PV-L453	D	
Not Used	PT	



LINK TO VOLTAGE CHART
LINK TO SIGNAL WAVEFORM

LSJB8204 MAIN VII (VIDEO) SCHEMATIC DIAGRAM PV-L453

# -----

# MAIN VIII (AUDIO) SCHEMATIC DIAGRAM (D)







NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram. NOTE:

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS

OF WODELS & WARKS			
MODEL	MARK		
VM-L153	Α		
PV-L353	В		
PV-L353-k	( C		
PV-L453	D		
Not Used	PT		



LINK TO VOLTAGE CHART

LSJB8204 MAIN VIII (AUDIO) SCHEMATIC DIAGRAM PV-L453



### MAIN IX (POWER SUPPLY) SCHEMATIC DIAGRAM (D)

CAUTION: FOR CONTINUED PROTECTION AGAINST FIRE HAZARD, REPLACE ONLY WITH THE SAME TYPE 1.5A 24/32V FUSE ATTENTION: POUR UNE PROTECTION CONTINUE LES RISQUES 4 D' INCENDIE N' UTILISERQUE DES FUSIBLE DE MÉME TYPE 1.5A 24/32V

CAUTION: FOR CONTINUED PROTECTION AGAINST FIRE HAZARD, REPLACE ONLY WITH THE SAME TYPE 2A 24/32V FUSE. ATTENTION: POUR UNE PROTECTION CONTINUE LES RISQUES D' INCENDIE N' UTILISERQUE DES FUSIBLE DE MÉME TYPE 2A 24/32V

IMPOR³ COMPO SPECIA WHFN USE ON



---

115

JES

IMPORTANT SAFETY NOTICE:

COMPONENTS IDENTIFIED BY THE SIGN A HAVE

SPECIAL CHARACTERISTICS IMPORTANT FOR SAFETY. WHEN REPLACING ANY OF THESE COMPONENTS,

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram. NOTE: FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION. COMPARISON CHART OF MODELS & MARKS

OI MODELO & MARKING			
MODEL	MARK		
VM-L153	Α		
PV-L353	В		
PV-L353-K	С		
PV-L453	D		
Not Used	PT		

PV-L453



# ----

# MAIN X (EVR CONNECTOR) SCHEMATIC DIAGRAM (D)





NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

NOTE:

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS

OF MIODELS & MARKINS				
MODEL	MARK			
VM-L153	Α			
PV-L353	В			
PV-L353-K	С			
PV-L453	D			
Not Used	PT			



LINK TO SIGNAL WAVEFORM

LSJB8204

MAIN X (EVR CONNECTOR) SCHEMATIC DIAGRAM PV-L453

### 8.4. LCD SCHEMATIC DIAGRAMS

### LCD I (LCD POWER) SCHEMATIC DIAGRAM





LINK TO VOLTAGE CHART





NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

### NOTE:

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.



# LCD II (LCD DRIVE) SCHEMATIC DIAGRAM

IMPORTANT SAFETY NOTICE:
COMPONENTS IDENTIFIED BY THE SIGN ASPECIAL CHARACTERISTICS IMPORTANT FOWHEN REPLACING ANY OF THESE COMPON USE ONLY THE SPECIFIED PARTS.

VIDEO SIGNAL





I SAFETY NOTICE:

ITS IDENTIFIED BY THE SIGN A HAVE HARACTERISTICS IMPORTANT FOR SAFETY.

ACING ANY OF THESE COMPONENTS, THE SPECIFIED PARTS.

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

NOTE: FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.





LINK TO VOLTAGE CHART LINK TO SIGNAL WAVEFORM

LSJB8206 LCD II (LCD DRIVE) SCHEMATIC DIAGRAM VM-L153/PV-L353/PV-L353-K/PV-L453

### 8.5. BATTERY CATCHER SCHEMATIC DIAGRAMS



### BATTERY CATCHER I SCHEMATIC DIAGRAM (A,B,C)

IMPORTANT SAFETY NOTICE:
COMPONENTS IDENTIFIED BY THE SIGN A F
SPECIAL CHARACTERISTICS IMPORTANT FOR
WHEN REPLACING ANY OF THESE COMPONEN
USE ONLY THE SPECIFIED PARTS.

### ***2** NOTE:

WRONG REF. NOS. ARE PRINTED ON SUFFIX(VERSION) NUMBER (3 OF BATTERY CATCHER C.B.A. BY MISTAKE.

ON RUNNING CHANGE BASIS, SUFFIX(VERSION) NUMBER WILL BE CHANGED FROM 2 TO 3 AND THESE REF. NOS. WILL BE CORRECT OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF

Wrong	Correct
D1203	D1213
D1205	D1215
L1202	L1212





AFETY NOTICE:
S IDENTIFIED BY THE SIGN A HAVE
RACTERISTICS IMPORTANT FOR SAFETY.
CING ANY OF THESE COMPONENTS,
E SPECIFIED PARTS.

FFIX(VERSION) NUMBER 2

ERSION) NUMBER WILL BE

REF. NOS. WILL BE CORRECTED.

ΚE.

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

TE:
FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES,
REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS MODEL MARK VM-L153 A

В

С

D

PT

PV-L353

PV-L453

Not Used

PV-L353-K

### *3 NOTE:

BATTERY CATCHER C.B.A. ARE SUPPLIED INDIVIDUALY AS REPLACEMENT PARTS. HOWEVER, ONLY THE PARTS ENCLOSED IN DASHED LINES ARE NOT SUPPLIED. WHEN REPLACING THESE PARTS, REPLACE BATTERY CATCHER C.B.A. INSTEAD OF INDIVIDUAL PARTS.

	REC VIDEO SIGNAL	PB VIDEO SIGNAL	REC AUDIO SIGNAL	PB AUDIO SIGNAL
R1201 1K	•	•		
₩-				2 1
		C1202	L1201	3
	<b>-</b>	T C1203	*2	<u> </u>
R4419 560	<b>★</b> D1204 RD20S	PT	L1212 J0JHC0000054	4
*2	(20V)		↑ PR1201 K5H402Z00003	DC JACK
C4422 <b>–</b> D1215 <b>Z</b> 2200P RD20S			4A	5 + BATTERY
(20V)			_	
		*2	D1213 RD12S (12V)	7
				8 COIN BATTERY
<b>□</b>			R4423 PT <b>≸</b>	
				AVJACK
			R4420 0 L4421 BK1608HM102	GND 1
			L4422 BK1608HM102	2 v
l				VIDEO 3
			$\rightarrow$	7 1
			į	*3
				3



# BATTERY CATCHER II SCHEMATIC DIAGRAM (A,B,C)





NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

#### NOTF:

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

#### COMPARISON CHART OF MODELS & MARKS

MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D
Not Used	PT





# **BATTERY CATCHER I SCHEMATIC DIAGRAM (D)**

IMPORTANT SAFETY NOTICE:
COMPONENTS IDENTIFIED BY THE SIGN A HA
SPECIAL CHARACTERISTICS IMPORTANT FOR S

WHEN REPLACING ANY OF THESE COMPONENT USE ONLY THE SPECIFIED PARTS.

*2 NOTE:

WRONG REF. NOS. ARE PRINTED ON SUFFIX(VERSION) NUMBER ② OF BATTERY CATCHER C.B.A. BY MISTAKE.

ON RUNNING CHANGE BASIS, SUFFIX(VERSION) NUMBER WILL BE CHANGED FROM 2 TO 3 AND THESE REF. NOS. WILL BE CORRECTED





((VERSION) NUMBER (2)

ION) NUMBER WILL BE NOS. WILL BE CORRECTED. NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

NOTE:

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS

005		
MODEL	MARK	
VM-L153	Α	
PV-L353	В	
PV-L353-K	С	
PV-L453	D	
Not Used	PT	

#### *3 NOTE:

BATTERY CATCHER C.B.A. ARE SUPPLIED INDIVIDUALY AS REPLACEMENT PARTS. HOWEVER, ONLY THE PARTS ENCLOSED IN DASHED LINES ARE NOT SUPPLIED. WHEN REPLACING THESE PARTS, REPLACE BATTERY CATCHER C.B.A. INSTEAD OF INDIVIDUAL PARTS.





# **BATTERY CATCHER II SCHEMATIC DIAGRAM (D)**





NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

#### NOTF:

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

#### COMPARISON CHART OF MODELS & MARKS

MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D
Not Used	PT





# 8.6. HEAD AMP SCHEMATIC DIAGRAM

# ...

#### **HEAD AMP SCHEMATIC DIAGRAM**

#### "FOR REFERENCE ONLY"









NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

NOTE:

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS

·	
MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D
Not Used	PT

NOTE:
HEAD AMP IS NOT SERVICEABLE AND IS
SUPPLIED AS A CYLINDER UNIT ONLY FOR REPLACEMENT.

← REC VIDEO SIGNAL 

← PB VIDEO SIGNAL





#### LCD SHAFT UNIT/CCD/MICROPHONE UNIT SCHEMATIC DIAGRAMS 8.7.

#### **LCD SHAFT UNIT**

#### "FOR REFERENCE ONLY"

LCD SHAFT UNIT IS NOT SERVICEABLE AND IS SUPPLIED AS A UNIT ONLY FOR REPLACEMENT.



#### CCD C.B.A. "FOR REFERENCE ONLY"

NOTE: CCD C.B.A. IS NOT SERVICEABLE AND IS SUPPLIED AS UNIT ONLY FOR REPLACEMENT. (TO MAIN C.B.A.) REC VIDEO SIGNAL (TO MAIN C.B.A.) 1 CCD OUT 2 GND RESET 1 SUB 2 15V **Q601** 2SC4215 (BUFFER) €) ₹R601 \$3300

⇟



NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

NOTE:

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS

MODEL | MARKS

MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D
Not Used	PT

## **MICROPHONE UNIT**

#### "FOR REFERENCE ONLY"

NOTE: MICROPHONE UNIT IS NOT SERVICEABLE AND IS SUPPLIED AS A UNIT ONLY FOR REPLACEMENT. TO MAIN C.B.A. AUDIO SIGNAL 1 AUDIO_REG_4.5V MIC OUT AUDIO_GND Q4308 🖤 AUDIO GND R4330 FLAME_GND 24303 C4313 C4301 C4315 FJ4301 D4305 3 AUDIO REG4.5V 4 MIC OUT 5 AUDIO GND 6 AUDIO GND C4304 1 **A** FLAME GND AUDIO GND ď.

# 8.8. TOP OPERATION UNIT/SIDE L OPERATION UNIT/MECHANISM FPC UNIT SCI

#### **TOP OPERATION UNIT**

## "FOR REFERENCE ONLY"

NOTE: TOP OPERATION UNIT IS NOT SERVICEABLE AND IS SUPPLIED AS A UNIT ONLY FOR REPLACEMENT.



## **MECHANISM FPC UNIT**

#### "FOR REFERENCE ONLY"

NOTE: MECHANISM FPC UNIT IS NOT SERVICEABLE AND IS SUPPLIED AS A UNIT ONLY FOR REPLACEMENT.





SID

A,B,C', T

# FPC UNIT SCHEMATIC DIAGRAMS

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

NOTE:
FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES,
REFER TO BEGINNING OF SCHEMATIC SECTION.

COMPARISON CHART OF MODELS & MARKS

MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D
Not Used	PT

## SIDE L OPERATION UNIT

"FOR REFERENCE ONLY"

NOTE: SIDE L OPERATION UNIT IS NOT SERVICEABLE AND IS SUPPLIED AS A UNIT ONLY FOR REPLACEMENT.



# 8.9. INTERCONNECTION SCHEMATIC DIAGRAM



## INTERCONNECTION SCHEMATIC DIAGRAM





129

NOTE: For placing a purchase order of the parts, be sure to use the part number listed in the parts list. Do not use the part number on this diagram.

#### NOTE:

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.

#### COMPARISON CHART OF MODELS & MARKS

MODEL	MARK
VM-L153	Α
PV-L353	В
PV-L353-K	С
PV-L453	D
Not Used	PT



# MAIN CRA (CAMERA SECTION)

MAIN	C.B.A	. (CA	MERA	A SEC
MODE	CAMERA		MODE	CAMERA
PIN NO.			PIN NO.	
	(A,B,C)		55	
1	0		56	0.2
2	3.5		57	0.1
3	0.0		58	
4	3.5		59	
5	3.5		60	0.1
6	2.7		61	0
7			62	0
8	1.6 0.9		63	3.5
9	3.3		64	3.5
			65	0.1
10	0.2			
11	0.1		66	0.1
12	0.2		67	0.1
13	0.2		68	0
14	3.5		69	0
15	0		70	
16	3.5		71	
17	1.8		72	0
18	1.7		73	0
19	0		74	3.5
20	3.5		75	
21	0		76	1.9
22	1.6		77	1.8
23	0.1		78	0
24	0.1		79	4.1
25	0.7		80	0
26	3.5		81	0
27	3.5		82	1.7
28	3.4		83	0
29	3.4		84	0
30	0.2		85	0
31	0.2		86	1.7
32	3.5		87	0
33	0		88	0.1
34	0		89	1.7
35	1.8		90	
36	1.5		91	3.2
37	0		92	3.5
38	3.5		93	3.5
39	1.6		94	1.8
40	0.4		95	0
41	0.5		96	0.1
42	3.5		97	
43	0		98	0
44	0.4		99	1.9
45	0		100	0
46	3.5		101	0
47	1.7		102	0
48	1.4		103	3.5
49	3.5		104	0
50	0		105	0
51	3.5		106	
52	0		107	
53			108	
54			109	3.5
		l l		<u> </u>

MODE PINNO.         CAMERA PINNO.           110         0           111         1.4           112         2.0           113         0.1           114         3.5           115         0           116         3.6           117         0           118         1.4           119         2.6           120         0.4           121         1.4           122         0.6           123         2.6           124         1.4           125         3.6           126         0           127         3.5           128         0           129            130            131            132            133            134            135            138         0.9           139         1.0           140         1.2           141         1.2           142         1.4           143         0.7           14	<b>1</b> )		
110       0         111       1.4         112       2.0         113       0.1         114       3.5         115       0         116       3.6         117       0         118       1.4         119       2.6         120       0.4         121       1.4         122       0.6         123       2.6         124       1.4         125       3.6         126       0         127       3.5         128       0         129          130          131          132          133          134          135          136       1.2         137       0.1         138       0.9         139       1.0         140       1.2         141       1.2         142       1.4         143       0.7         144       0.1         IC301       (D)	MODE PIN NO.	CAMERA	
112         2.0           113         0.1           114         3.5           115         0           116         3.6           117         0           118         1.4           119         2.6           120         0.4           121         1.4           122         0.6           123         2.6           124         1.4           125         3.6           126         0           127         3.5           128         0           129            130            131            133            134            135            136         1.2           137         0.1           138         0.9           139         1.0           140         1.2           141         1.2           142         1.4           143         0.7           144         0.1           IC301         (D)           1         <	110	0	
113       0.1         114       3.5         115       0         116       3.6         117       0         118       1.4         119       2.6         120       0.4         121       1.4         122       0.6         123       2.6         124       1.4         125       3.6         126       0         127       3.5         128       0         129          130          131          133          134          135          136       1.2         137       0.1         138       0.9         139       1.0         140       1.2         141       1.2         142       1.4         143       0.7         144       0.1         IC301       (D)         1       3.5         2       0         3       0         4       3.5	111	1.4	
113       0.1         114       3.5         115       0         116       3.6         117       0         118       1.4         119       2.6         120       0.4         121       1.4         122       0.6         123       2.6         124       1.4         125       3.6         126       0         127       3.5         128       0         129          130          131          132          133          134          135          136       1.2         137       0.1         138       0.9         139       1.0         140       1.2         141       1.2         142       1.4         143       0.7         144       0.1         IC301       (D)         1       3.5         2       0         3       0 <td>112</td> <td>2.0</td> <td></td>	112	2.0	
114       3.5         115       0         116       3.6         117       0         118       1.4         119       2.6         120       0.4         121       1.4         122       0.6         123       2.6         124       1.4         125       3.6         126       0         127       3.5         128       0         129          130          131          132          133          134          135          136       1.2         137       0.1         138       0.9         139       1.0         140       1.2         141       1.2         142       1.4         143       0.7         144       0.1         IC301       (D)         1       3.5         2       0         3       0         4       3.5			
115       0         116       3.6         117       0         118       1.4         119       2.6         120       0.4         121       1.4         122       0.6         123       2.6         124       1.4         125       3.6         126       0         127       3.5         128       0         129          130          131          132          133          134          135          136       1.2         137       0.1         138       0.9         139       1.0         140       1.2         141       1.2         142       1.4         143       0.7         144       0.1         IC301       (D)         1       3.5         2       0         3       0         4       3.5         5       0			
116       3.6         117       0         118       1.4         119       2.6         120       0.4         121       1.4         122       0.6         123       2.6         124       1.4         125       3.6         126       0         127       3.5         128       0         129          130          131          132          133          134          135          136       1.2         137       0.1         138       0.9         139       1.0         140       1.2         141       1.2         142       1.4         143       0.7         144       0.1         IC301       (D)         1       3.5         2       0         3       0         4       3.5         5       0         6	115		
118       1.4         119       2.6         120       0.4         121       1.4         122       0.6         123       2.6         124       1.4         125       3.6         126       0         127       3.5         128       0         129          130          131          132          133          134          135          136       1.2         137       0.1         138       0.9         139       1.0         140       1.2         141       1.2         142       1.4         143       0.7         144       0.1         IC301       (D)         1       3.5         2       0         3       0         4       3.5         5       0         6          7          13	116		
118       1.4         119       2.6         120       0.4         121       1.4         122       0.6         123       2.6         124       1.4         125       3.6         126       0         127       3.5         128       0         129          130          131          132          133          134          135          136       1.2         137       0.1         138       0.9         139       1.0         140       1.2         141       1.2         142       1.4         143       0.7         144       0.1         IC301       (D)         1       3.5         2       0         3       0         4       3.5         5       0         6          7          13			
120       0.4         121       1.4         122       0.6         123       2.6         124       1.4         125       3.6         126       0         127       3.5         128       0         129          130          131          133          134          135          136       1.2         137       0.1         138       0.9         139       1.0         140       1.2         141       1.2         142       1.4         143       0.7         144       0.1         IC301 (D)       1         1       3.5         2       0         3       0         4       3.5         5       0         6          7          8          9          10       0         11	118		
120       0.4         121       1.4         122       0.6         123       2.6         124       1.4         125       3.6         126       0         127       3.5         128       0         129          130          131          133          134          135          136       1.2         137       0.1         138       0.9         139       1.0         140       1.2         141       1.2         142       1.4         143       0.7         144       0.1         IC301 (D)       1         1       3.5         2       0         3       0         4       3.5         5       0         6          7          8          9          10       0         11	119	2.6	
122     0.6       123     2.6       124     1.4       125     3.6       126     0       127     3.5       128     0       129        130        131        133        134        135        136     1.2       137     0.1       138     0.9       139     1.0       140     1.2       141     1.2       142     1.4       143     0.7       144     0.1       IC301     (D)       1     3.5       2     0       3     0       4     3.5       5     0       6        7        8        9        10     0       11        12        13        14        15     2.5       16     0       17     1.7       18     1.6	120		
123     2.6       124     1.4       125     3.6       126     0       127     3.5       128     0       129        130        131        132        133        134        135        136     1.2       137     0.1       138     0.9       139     1.0       140     1.2       141     1.2       142     1.4       143     0.7       144     0.1       IC301     (D)       1     3.5       2     0       3     0       4     3.5       5     0       6        7        8        9        10     0       11        12        13        14        15     2.5       16     0       17     1.7       18     1.6	121	1.4	
124     1.4       125     3.6       126     0       127     3.5       128     0       129        130        131        133        134        135        136     1.2       137     0.1       138     0.9       139     1.0       140     1.2       141     1.2       142     1.4       143     0.7       144     0.1       IC301     (D)       1     3.5       2     0       3     0       4     3.5       5     0       6        7        8        9        10     0       11        12        13        14        15     2.5       16     0       17     1.7       18     1.6	122	0.6	
124     1.4       125     3.6       126     0       127     3.5       128     0       129        130        131        133        134        135        136     1.2       137     0.1       138     0.9       139     1.0       140     1.2       141     1.2       142     1.4       143     0.7       144     0.1       IC301     (D)       1     3.5       2     0       3     0       4     3.5       5     0       6        7        8        9        10     0       11        12        13        14        15     2.5       16     0       17     1.7       18     1.6	123	2.6	
126     0       127     3.5       128     0       129        130        131        132        133        134        135        136     1.2       137     0.1       138     0.9       139     1.0       140     1.2       141     1.2       142     1.4       143     0.7       144     0.1       IC301 (D)     1       1     3.5       2     0       3     0       4     3.5       5     0       6        7        8        9        10     0       11        12        13        14        15     2.5       16     0       17     1.7       18     1.6			
126     0       127     3.5       128     0       129        130        131        132        133        134        135        136     1.2       137     0.1       138     0.9       139     1.0       140     1.2       141     1.2       142     1.4       143     0.7       144     0.1       IC301 (D)     1       1     3.5       2     0       3     0       4     3.5       5     0       6        7        8        9        10     0       11        12        13        14        15     2.5       16     0       17     1.7       18     1.6	125	3.6	
127     3.5       128     0       129        130        131        132        133        134        135        136     1.2       137     0.1       138     0.9       139     1.0       140     1.2       141     1.2       142     1.4       143     0.7       144     0.1       IC301 (D)     1       1     3.5       2     0       3     0       4     3.5       5     0       6        7        8        9        10     0       11        12        13        14        15     2.5       16     0       17     1.7       18     1.6			
128     0       129        130        131        133        134        135        136     1.2       137     0.1       138     0.9       139     1.0       140     1.2       141     1.2       142     1.4       143     0.7       144     0.1       IC301 (D)     1       1     3.5       2     0       3     0       4     3.5       5     0       6        7        8        9        10     0       11        12        13        14        15     2.5       16     0       17     1.7       18     1.6			
129 130 131 132 133 134 135 136 1.2 137 0.1 138 0.9 139 1.0 140 1.2 141 1.2 142 1.4 143 0.7 144 0.1 IC301 (D) 1 3.5 2 0 3 0 4 3.5 5 0 6 7 8 7 8 7 8 9 10 0 11 12 13 14 15 2.5 16 0 17 1.7 18 1.6			
130        131        132        133        134        135        136     1.2       137     0.1       138     0.9       139     1.0       140     1.2       141     1.2       142     1.4       143     0.7       144     0.1       IC301     (D)       1     3.5       2     0       3     0       4     3.5       5     0       6        7        8        9        10     0       11        12        13        14        15     2.5       16     0       17     1.7       18     1.6			
131          132          133          134          135          136       1.2         137       0.1         138       0.9         139       1.0         140       1.2         141       1.2         142       1.4         143       0.7         144       0.1         IC301       (D)         1       3.5         2       0         3       0         4       3.5         5       0         6          7          8          9          10       0         11          12          13          14          15       2.5         16       0         17       1.7         18       1.6			
133 134 135 136 1.2 137 0.1 138 0.9 139 1.0 140 1.2 141 1.2 142 1.4 143 0.7 144 0.1 IC301 (D) 1 3.5 2 0 3 0 4 3.5 5 0 6 7 8 7 8 9 10 0 11 12 13 14 15 2.5 16 0 17 1.7 18 1.6			
134 135 136 1.2 137 0.1 138 0.9 139 1.0 140 1.2 141 1.2 142 1.4 143 0.7 144 0.1 IC301 (D) 1 3.5 2 0 3 0 4 3.5 5 0 6 7 8 9 10 0 11 12 13 14 15 2.5 16 0 17 1.7 18 1.6	132		
134 135 136 1.2 137 0.1 138 0.9 139 1.0 140 1.2 141 1.2 142 1.4 143 0.7 144 0.1 IC301 (D) 1 3.5 2 0 3 0 4 3.5 5 0 6 7 8 9 10 0 11 12 13 14 15 2.5 16 0 17 1.7 18 1.6	133		
136			
137 0.1 138 0.9 139 1.0 140 1.2 141 1.2 142 1.4 143 0.7 144 0.1 IC301 (D) 1 3.5 2 0 3 0 4 3.5 5 0 6 7 8 9 10 0 11 12 13 14 15 2.5 16 0 17 1.7 18 1.6	135		
138 0.9 139 1.0 140 1.2 141 1.2 142 1.4 143 0.7 144 0.1 IC301 (D) 1 3.5 2 0 3 0 4 3.5 5 0 6 7 8 9 10 0 11 12 13 14 15 2.5 16 0 17 1.7 18 1.6	136	1.2	
139 1.0  140 1.2  141 1.2  142 1.4  143 0.7  144 0.1  IC301 (D)  1 3.5  2 0  3 0  4 3.5  5 0  6  7  8  9  10 0  11  12  13  14  15 2.5  16 0  17 1.7  18 1.6	137	0.1	
140 1.2 141 1.2 142 1.4 143 0.7 144 0.1 IC301 (D) 1 3.5 2 0 3 0 4 3.5 5 0 6 7 8 9 10 0 11 12 13 14 15 2.5 16 0 17 1.7 18 1.6	138	0.9	
141     1.2       142     1.4       143     0.7       144     0.1       IC301 (D)     1       3.5     2       0     3.5       5     0       6        7        8        9        10     0       11        12        13        14        15     2.5       16     0       17     1.7       18     1.6	139	1.0	
142 1.4 143 0.7 144 0.1 IC301 (D) 1 3.5 2 0 3 0 4 3.5 5 0 6 7 8 9 10 0 11 12 13 14 15 2.5 16 0 17 1.7 18 1.6	140	1.2	
143     0.7       144     0.1       IC301 (D)     1       3.5     2       2     0       3     0       4     3.5       5     0       6        7        8        9        10     0       11        12        13        14        15     2.5       16     0       17     1.7       18     1.6	141	1.2	
144   0.1   IC301 (D)   1   3.5   2   0   3   0   4   3.5   5   0   6     7     8     10   0   11     12     13     14     15   2.5   16   0   17   1.7   18   1.6	142	1.4	
144   0.1   IC301 (D)   1   3.5   2   0   3   0   4   3.5   5   0   6     7     8     10   0   11     12     13     14     15   2.5   16   0   17   1.7   18   1.6	143	0.7	
IC301 (D)	144	0.1	
1 3.5 2 0 3 0 4 3.5 5 0 6 7 8 9 10 0 11 12 13 14 15 2.5 16 0 17 1.7 18 1.6	IC301	(D)	
3 0 4 3.5 5 0 6 7 8 9 10 0 11 12 13 14 15 2.5 16 0 17 1.7 18 1.6		3.5	
4 3.5 5 0 6 7 8 9 10 0 11 12 13 14 15 2.5 16 0 17 1.7 18 1.6	2	0	
4 3.5 5 0 6 7 8 9 10 0 11 12 13 14 15 2.5 16 0 17 1.7 18 1.6	3	0	
5 0 6 7 8 9 10 0 11 12 13 14 15 2.5 16 0 17 1.7 18 1.6	4	3.5	
6 7 8 9 10 0 11 12 13 14 15 2.5 16 0 17 1.7 18 1.6	5	0	
7 8 9 10 0 11 12 13 14 15 2.5 16 0 17 1.7 18 1.6	6		
8 9 10 0 11 12 13 14 15 2.5 16 0 17 1.7 18 1.6			
10 0 11 12 13 14 15 2.5 16 0 17 1.7 18 1.6	8		
11 12 13 14 15 2.5 16 0 17 1.7 18 1.6			
12 13 14 15 2.5 16 0 17 1.7 18 1.6		0	
13 14 15 2.5 16 0 17 1.7 18 1.6			
14 15 2.5 16 0 17 1.7 18 1.6	12		
15 2.5 16 0 17 1.7 18 1.6	13		
16 0 17 1.7 18 1.6	14		
17 1.7 18 1.6			
18 1.6			
19 1.6			
	19	1.6	

ODE NNO.\	CAMERA	MODE PINNO.	CAMERA
20	1.6	75	3.5
21	1.4	76	0
22	1.3	77	3.1
23	1.1	78	2.8
24	1.4	79	0
25	1.7	80	3.5
26	1.5	81	1.9
<u>20</u> 27		82	
	0		1.0
28	3.5	83	0
29	1.6	84	1.7
30	1.6	85	3.5
31		86	0
32		87	0
33	0	88	
34	0	89	1.7
35	0	90	1.7
36	2.5	91	0
37	3.5	92	0
38	0	93	2.5
39	0	94	
40	0	95	
41	0	96	2.5
42	0	97	0
43	0	98	1.0
<del>44</del>		99	3.1
<del>44</del> 45	0	100	0
46			0.2
		101	1 1
47 48		102	0.3
		103	3.4
49		104	3.4
50	3.2	105	0
51	0	106	0
52	3.5	107	3.4
53	0	108	1.7
54	0	109	3.4
55	3.5	110	1.3
56	0	111	3.3
57	3.5	112	1.9
58		113	0
59		114	3.5
60		115	0.1
61		116	0.4
62		117	0
63	0	118	0
64	2.5	119	0
65		120	3.5
66		121	0
67			
		122	0.3
68	1.7	123	3.4
69 70	1.7	124	0.8
70	0	125	1.6
71	0	126	2.8
72	1.2	127	0.8
73	1.0	128	0.9
- 4			

1.9

129

0.8

30 0

\ <u>MODE</u> PIN NO. \	CAMERA
130	1.0
131	0.7
132	0.7
133	0.9
134	0.5
135	0
136	2.5
	0.9
137	
138	1.7
139	0
140	0
141	0
142	0
143	0
144	0
IC306	
1	
2	3.5
3	3.5
4	3.5
5	0.1
6	1.5
7	0
8	3.5
	(A,B,C)
11	0
2	3.5
3	0
4	0.3
5	3.5
6	3.5
7	0
8	2.5
9	
10	2.7
11	1.6
12	0.8
13	3.5
14	0.1
15	0
16	
17	
18	0
19	3.1
20	2.1
21	1.3
22	3.5
	2.6
23	- <del>-</del>
23 24	0.2
24	0.2
24 25	1.2
24 25 26	1.2
24 25 26 27	1.2 1.0 0.1
24 25 26	1.2

	CAMERA	MODE	CAMERA
PIN NO.\		PIN NO.	
31	3.4	86	
32	0	87	3.5
33		88	0
34	3.5	89	0
35		90	
36	1.8	91	
37	0	92	
38		93	3.0
39	0.2	94	1.7
40	0	95	0
41		96	2.7
42		97	0
43		98	0.3
44		99	3.5
45	3.5	100	0.1
46	3.5	IC309	0.1
47	3.5	1	13.5
48	3.5	2	2.2
49			2.2
	0	3 4	14.8
50			_
51	0	5	1.4
52	0	6	1.4
53	0		0.1
54		8	3.4
55	3.5	9	0.1
56	0	10	0.1
57	0	11	0
58	3.5	12	0.6
59	3.5	13	0.6
60	0.8	14	2.5
61	0	IC501	
62	0	1	
63	0	2	0
64		3	0.7
65	0	4	0.3
66	0	5	0.2
67	0	6	0
68	0	7	0.4
69	3.4	8	0.4
70	3.4	9	0.4
71	3.5	10	
72	0	11	
73	3.5	12	0.4
74	0	13	0.4
75	3.4	14	0.4
76	1.7	15	3.6
77	0.6	16	0.4
78	0.1	17	0.4
79	0.1	18	0.4
80	0.1	19	0.4
81	0.1	20	
82	0.1	21	0
83	0.1	22	0
84	0.1	23	0
85	0.1	24	0

NNO.   25	\MODE	CAMERA
25         0           26         0           27         0           28            29            31         3.6           32         3.6           35         3.6           36         3.6           37         3.6           38         3.6           39            40         0           41         0           42         0           43         0           44            45         0           46         3.6           47         3.6           48         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63	$\overline{}$	
26         0           27         0           28            29            30            31         3.6           32         3.6           35         3.6           36         3.6           37         3.6           38         3.6           39            40         0           41         0           42         0           43         0           44            45         0           46         3.6           47         3.6           48         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61		0
27         0           28            29            31         3.6           32         3.6           33            34         3.6           35         3.6           38         3.6           39            40         0           41         0           42         0           43         0           44            45         0           46         3.6           47         3.6           48         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63		
28            29            30            31         3.6           32         3.6           33            34         3.6           35         3.6           38         3.6           39            40         0           41         0           42         0           43         0           44            45         0           46         3.6           47         3.6           48         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63		
29            30            31         3.6           32         3.6           34         3.6           35         3.6           38         3.6           39            40         0           41         0           42         0           43         0           44            45         0           46         3.6           47         3.6           48         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65		
30            31         3.6           32         3.6           33            34         3.6           35         3.6           36         3.6           37         3.6           38         3.6           39            40         0           41         0           42         0           43         0           44            45         0           46         3.6           49         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66		
31         3.6           32         3.6           33            34         3.6           35         3.6           38         3.6           39            40         0           41         0           42         0           43         0           44            45         0           46         3.6           47         3.6           48         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66		
32         3.6           33            34         3.6           35         3.6           36         3.6           37         3.6           38         3.6           39            40         0           41         0           42         0           43         0           44            45         0           46         3.6           49         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            70            71		
33            34         3.6           35         3.6           36         3.6           37         3.6           38         3.6           39            40         0           41         0           42         0           43         0           44            45         0           46         3.6           49         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70		
34         3.6           35         3.6           36         3.6           37         3.6           38         3.6           39            40         0           41         0           42         0           43         0           44            45         0           46         3.6           49         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71		
35         3.6           36         3.6           37         3.6           38         3.6           39            40         0           41         0           42         0           43         0           44            45         0           46         3.6           49         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           74		3.6
36         3.6           37         3.6           38         3.6           39            40         0           41         0           42         0           43         0           44            45         0           46         3.6           49         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           74            75		
37         3.6           38         3.6           39            40         0           41         0           42         0           43         0           44            45         0           46         3.6           49         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           74            75            76		
38         3.6           39            40         0           41         0           42         0           43         0           44            45         0           46         3.6           49         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           74            75            76            77		
39            40         0           41         0           42         0           43         0           44            45         0           46         3.6           49         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           74            75            76            77         3.5           78		
40         0           41         0           42         0           43         0           44            45         0           46         3.6           47         3.6           48         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           74            75            76            77         3.5           78		
41         0           42         0           43         0           44            45         0           46         3.6           47         3.6           48         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           74            75            76            77         3.5           78         1.7		
42         0           43         0           44            45         0           46         3.6           47         3.6           48         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           72         0           73         3.6           74            75            76            77         3.5           78         1.7		
43         0           44            45         0           46         3.6           47         3.6           48         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           72         0           73         3.6           74            75            76            77         3.5           78         1.7		
44            45         0           46         3.6           47         3.6           48         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           72         0           73         3.6           74            75            76            77         3.5           78         1.7		
45         0           46         3.6           47         3.6           48         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           72         0           73         3.6           74            75            76            77         3.5           78         1.7		
46         3.6           47         3.6           48         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           72         0           73         3.6           74            75            76            77         3.5           78         1.7		
47         3.6           48         3.6           49         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           72         0           73         3.6           74            75            76            77         3.5           78         1.7		
48         3.6           49         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           72         0           73         3.6           74            75            76            77         3.5           78         1.7		
49         3.6           50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           72         0           73         3.6           74            75            76            77         3.5           78         1.7		
50         1.8           51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           72         0           73         3.6           74            75            76            77         3.5           78         1.7		
51         1.8           52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           72         0           73         3.6           74            75            76            77         3.5           78         1.7		
52         1.7           53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           72         0           73         3.6           74            75            76            77         3.5           78         1.7		
53         3.6           54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           72         0           73         3.6           74            75            76            77         3.5           78         1.7		
54         0           55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           72         0           73         3.6           74            75            76            77         3.5           78         1.7		
55         3.6           56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           72         0           73         3.6           74            75            76            77         3.5           78         1.7		
56         0           57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           72         0           73         3.6           74            75            76            77         3.5           78         1.7		
57         0           58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           72         0           73         3.6           74            75            76            77         3.5           78         1.7		
58         0           59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           72         0           73         3.6           74            75            76            77         3.5           78         1.7		
59         0           60         3.4           61         0           62         0           63         0.4           64         0.7           65         1.8           66            67         3.6           68            70            71         3.6           72         0           73         3.6           74            75            76            77         3.5           78         1.7		
60 3.4 61 0 62 0 63 0.4 64 0.7 65 1.8 66 67 3.6 68 70 71 3.6 72 0 73 3.6 74 75 76 77 3.5 78 1.7		
61 0 62 0 63 0.4 64 0.7 65 1.8 66 67 3.6 68 70 71 3.6 72 0 73 3.6 74 75 76 77 3.5 78 1.7		
62 0 63 0.4 64 0.7 65 1.8 66 67 3.6 68 70 71 3.6 72 0 73 3.6 74 75 76 77 3.5 78 1.7		
63 0.4 64 0.7 65 1.8 66 67 3.6 68 70 71 3.6 72 0 73 3.6 74 75 76 77 3.5 78 1.7	<u> </u>	<u> </u>
64 0.7 65 1.8 66 67 3.6 68 70 71 3.6 72 0 73 3.6 74 75 76 77 3.5 78 1.7		
65 1.8 66 67 3.6 68 70 71 3.6 72 0 73 3.6 74 75 76 77 3.5 78 1.7		
66        67     3.6       68        69        71     3.6       72     0       73     3.6       74        75        76        77     3.5       78     1.7		
67 3.6 68 70 71 3.6 72 0 73 3.6 74 75 76 77 3.5 78 1.7		
68 69 70 71 3.6 72 0 73 3.6 74 75 76 77 3.5 78 1.7		
69        70        71     3.6       72     0       73     3.6       74        75        76        77     3.5       78     1.7		
70 71 3.6 72 0 73 3.6 74 75 76 77 3.5 78 1.7		
71 3.6 72 0 73 3.6 74 75 76 77 3.5 78 1.7		
72 0 73 3.6 74 75 76 77 3.5 78 1.7		
73 3.6 74 75 76 77 3.5 78 1.7		
74 75 76 77 3.5 78 1.7		
75 76 77 3.5 78 1.7		
76 77 3.5 78 1.7		
77 3.5 78 1.7		
78 1.7		
78 1.7 79 0		3.5
19 0		
	79	U

| NNO.   PINNO.   NNO.   ).9<br>)<br>3.6<br>3.6<br>)                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 80         0.2           81         0.8           82         1.4           83            84         4.3           85         3.6           86         1.5           87            88            89            90            91            92            93            94            95            96            97            98         0           99         1.2           100            4         0           103         0           7            104         2.7           105         1.9           106         3.6           107         0           111         0           111         2.8           112         0           16            110         0           111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ))<br>))<br>))<br>33.6<br>33.6<br>))<br><br>)) |
| 81     0.8       82     1.4       83        84     4.3       85     3.6       86     1.5       87        88        89        90        91        92        93        94        95        96        97        100        4     0       103     0       7     0       104     2.7       105     1.9       106     3.6       107     0       111     2.8       112     0       113     0.9       114        115        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ))<br>))<br>))<br>33.6<br>33.6<br>))<br><br>)) |
| 82       1.4         83          84       4.3         85       3.6         86       1.5         87          88          141       0         88          90          91          92          93          94          95          96          97          101       3.7         102       0         103       0         104       2.7         105       1.9         106       3.6         107       0         111       2.8         112       0         113       0.9         114          115          116          117       3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ).9<br>)<br>3.6<br>3.6<br>)<br><br>)<br><br>)  |
| 83          84       4.3         85       3.6         86       1.5         87          142          88          90          91          92          93          94          95          97          98       0         99       1.2         100          101       3.7         102       0         103       0         7          106       3.6         107       0         111       2.8         112       0         113       0.9         114          115          116          117       3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )<br>3.6<br>3.6<br>)<br><br>)<br><br>)<br>3.2  |
| 84       4.3         85       3.6         86       1.5         87          88          142       143         89          90          91          92          93          94          95          96          97          100          101       3.7         102       0         103       0         104       2.7         105       1.9         106       3.6         107       0         111       2.8         112       0         113       0.9         114          115          116          117       3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.6<br>3.6<br>)<br><br>)<br><br>)              |
| 85     3.6       86     1.5       87        88        90        91        92        93        94        95        97        98     0       99     1.2       100        101     3.7       102     0       103     0       104     2.7       105     1.9       106     3.6       107     0       111     2.8       112     0       113     0.9       114        115        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.6<br>)<br><br>)<br>)<br><br>)                |
| 86     1.5       87        88        90        91        92        93        94        95        96        97        98     0       99     1.2       100        101     3.7       102     0       103     0       104     2.7       105     1.9       106     3.6       107     0       111     2.8       112     0       113     0.9       114        115        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )<br><br><br>)<br><br>)<br>3.2                 |
| 87          88          143          144          90          91          92          93          94          95          96          97          98       0         99       1.2         100          101       3.7         102       0         103       0         7          105       1.9         106       3.6         107       0         110       0         111       2.8         112       0         113       0.9         114          115          116          117       3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )<br><br>)<br><br>)                            |
| 88        143       144        189        190        190        191        191        192        192        193        194        293        194        195        195        196        197        196        197        197        198       0       2        198       0       2        198       0       2        198       0       2        198       0       2        198       0       2        198       0       2        198       0       2        198       0       2        198       0       2        198       0       2        198       0        100        100        100        100       100        100       100       100       100       100       100       100       100       100       100       100       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )<br>)<br>)<br>)<br>3.2                        |
| 89        90        91        92        93        94        95        96        97        98     0       99     1.2       100        101     3.7       102     0       103     0       104     2.7       105     1.9       106     3.6       107     0       111     2.8       112     0       113     0.9       114        115        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )<br><br>)<br><br>3.2                          |
| 90 91 91 92 93 94 95 96 97 98 0 99 1.2 100 101 3.7 102 0 103 0 104 2.7 105 1.9 106 3.6 107 0 1108 3.6 109 110 0 111 2.8 112 0 113 0.9 114 115 116 117 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )<br><br>)<br><br>3.2                          |
| 91 92 93 94 95 96 97 98 0 2 99 1.2 100 1101 3.7 102 0 6 103 0 7 104 2.7 105 1.9 106 3.6 107 0 11 0 108 3.6 109 110 0 14 0 111 2.8 112 0 16 113 0.9 114 115 116 117 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.2                                            |
| 92        93        94        95        96        97        98     0       99     1.2       100        101     3.7       102     0       103     0       104     2.7       105     1.9       106     3.6       107     0       110     0       111     2.8       112     0       113     0.9       114        115        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )<br><br>3.2                                   |
| 93 94 95 96 97 98 0 2 3 99 1.2 100 101 3.7 102 0 6 7 103 0 7 104 2.7 105 1.9 106 3.6 107 0 11 0 108 3.6 109 110 0 14 0 111 2.8 112 0 16 113 0.9 114 115 116 117 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.2                                            |
| 94        95        96        97        98     0       99     1.2       100        101     3.7       102     0       103     0       104     2.7       105     1.9       106     3.6       107     0       110     0       111     2.8       112     0       113     0.9       114        115        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |
| 95        96        97        98     0       99     1.2       100        101     3.7       102     0       103     0       104     2.7       105     1.9       106     3.6       107     0       110     0       111     2.8       112     0       113     0.9       114        115        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |
| 96        97        98     0       99     1.2       100        101     3.7       102     0       103     0       104     2.7       105     1.9       106     3.6       107     0       110     0       111     2.8       112     0       113     0.9       114        115        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.5                                            |
| 97        98     0       99     1.2       100        101     3.7       102     0       103     0       104     2.7       105     1.9       106     3.6       107     0       1108     3.6       109        110     0       14     0       111     2.8       112     0       113     0.9       114        115        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |
| 98     0       99     1.2       100        101     3.7       102     0       103     0       104     2.7       105     1.9       106     3.6       107     0       1108     3.6       109        110     0       14     0       111     2.8       112     0       113     0.9       114        115        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |
| 99     1.2       100        101     3.7       102     0       103     0       104     2.7       105     1.9       106     3.6       107     0       1108     3.6       109        110     0       111     2.8       112     0       113     0.9       114        115        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |
| 100        101     3.7       102     0       103     0       104     2.7       105     1.9       106     3.6       107     0       1108     3.6       109        110     0       111     2.8       112     0       113     0.9       114        115        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .7                                             |
| 101     3.7       102     0       103     0       104     2.7       105     1.9       106     3.6       107     0       1108     3.6       109        110     0       111     2.8       112     0       113     0.9       114        115        115        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .7                                             |
| 102     0       103     0       104     2.7       105     1.9       106     3.6       107     0       1108     3.6       109        110     0       111     2.8       112     0       113     0.9       114        115        115        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ).1                                            |
| 103     0       104     2.7       105     1.9       106     3.6       107     0       108     3.6       109        110     0       111     2.8       112     0       113     0.9       114        115        115        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .5                                             |
| 103     0       104     2.7       105     1.9       106     3.6       107     0       1108     3.6       109        110     0       111     2.8       112     0       113     0.9       114        115        116        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.4                                            |
| 105     1.9       106     3.6       107     0       1108     3.6       109        110     0       111     0       111     2.8       112     0       113     0.9       114        115        115        116        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |
| 105     1.9       106     3.6       107     0       1108     3.6       109        110     0       111     0       111     2.8       112     0       113     0.9       114        115        115        116        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.4                                            |
| 106     3.6       107     0       1108     3.6       1109        111     0       111     13       111     0       111     14       112     0       113     0.9       114        115        116        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ).1                                            |
| 107     0       108     3.6       109        110     0       111     0       111     0       111     0       111     0       112     0       113     0.9       114        115        116        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ).7                                            |
| 108     3.6       109        110     0       111     2.8       112     0       113     0.9       114     0       115        116        117     0       116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ).1                                            |
| 109 110 0 111 2.8 112 0 113 0.9 114 0 115 115 116 117 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ).9                                            |
| 1110     0       1111     2.8       1112     0       113     0.9       114     0       115     16       17     0       114     17       115     19       116     20       117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ).2                                            |
| 111 2.8<br>112 0<br>113 0.9<br>114<br>115<br>116<br>117 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ).4                                            |
| 112 0<br>113 0.9<br>114<br>115<br>116<br>117 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |
| 113 0.9<br>114<br>115<br>116<br>117 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |
| 114        115        116        117     3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ).4                                            |
| 115<br>116<br>117 3.6 19 20 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ).2                                            |
| 116<br>117 3.6 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |
| 117 3.6 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.2                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.5                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.5                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.4                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ).2                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ).1                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ).2                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.4                                            |
| 129 33 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.4<br>3.5                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.4                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.4<br>3.5                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.4<br>3.5<br>3.5                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.4<br>3.5<br>3.5<br>)                         |
| 134 38 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.4<br>3.5<br>3.5                              |

MODE	CAMERA
PIN NO.	
39	3.5
40	0
41	3.5
42	0.8
43	1.1
44	0
45	0.3
46	0.3
47	1.4
48	
49	1.4
50	1.7
51	3.5
52	0
53	0
54	3.5
55	0
	3.5
56	
57	
58	1.7
59	1.7
60	
61	3.5
62	3.5
63	3.5
64	3.5
IC603	
1	-7.4
2	-7.8
3	
4	-0.2
	0
5	-0.4
6	3.5
7	0.1
8	3.5
9	0.1
10	3.4
11	
12	3.4
13	0.3
14	3.3
15	0.0
16	14.7
17	-7.5
18	-7.5
19	0
20	14.7
IC605	
1	0
2	1.9
3	
4	
5	2.0
6	4.4
7	1.3
	1.0

3 VOLTAGE CHART

# MAIN C.B.A. (POWER SUPPLY/VIDEO/AUDIO SECTION)

MODE PIN NO.	STOP	MODE PIN NO.	STOP
	2.1	14	7 1
8 9	2.1		7.1
	1.8	IC702	_
10 11	3.4 0.3	1 2	0.3
		· -	0.3
12	0	3	1.0
13		4	1.2
14		5	1.2
15		6 7	0
16		l	
17	3.4	8	0
18	1.7	9	0
19	3.4	10	0.3
20	1.4	11	3.1
21	0.2	12	0
22	0.3	13	0.1
23		14	6.3
24	0.7		
25	0.1	Q301	
26	0	E	2.5
27	2.3	С	4.5
28	2.3	В	3.1
29	4.4	Q302	
30		E	1.6
31	3.1	С	3.1
32		В	2.3
33	1.8	Q303	
34	1.8	E	1.8
35	0	С	0
36	4.4	В	1.2
37	3.1	Q305	
38	1.9	E	2.9
39	1.9	С	4.5
40	4.4	В	3.6
41	0	Q306	
42	2.2	E	2.2
43	2.3	C	0
44	3.0	В	2.9
45	0.1	Q307	5
46	2.3	E	2.6
47	3.4	C	0
48	1.4	В	2.9
IC701	1	·	(D)
1	0	(308) E	2.6
2	0.2	C	
	0.2	В	3.5
3 4	1.2	Q310	3.2
	1.2	· -	20
5		E	2.8
6	0.2	С	4.5
7	0	В	2.4
8	0	Q311	
9	0	E	1.8
10	0.3	С	4.6
11	0.3	Q311	
12	0	E	1.8
13	0.3	С	4.6
			_

MODE	STOP	
PIN NO.		
В	2.4	
	2.4	
Q610	0.5	
E	3.5	
С	3.5	
В	0.3	
Q611		
Е	3.5	
С	3.5	
В	3.5	
Q617		
E	1.1	
С	4.5	
В	1.8	
Q703	1.0	
	0	
E	0	
С	3.5	
В	0	
TP601	1.5	
TP602		
TP603		
TP604		
TP605	1.4	
-		
		l

NODE_	STOP	MODE	STOP
IN NO. 🗸		PIN NO.	
C1001		6	4.5
1	5.5	7	2.2
2	7.1	8	0
3	6.6	9	2.0
4	1.5	10	2.1
5	1.6	11	0.4
6	1.6	12	0
7	1.6	13	1.5
8	1.6	14	2.1
9	1.5	15	3.9
10	1.6	16	0.4
11	1.6	17	2.1
12	0.9	18	2.1
13	7.1	19	2.5
14	7.1	20	2.1
15	0.5	21	2.0
16	1.4	22	3.0
17	0		
		23	4.0
18	0	24	3.2
19	0.2	25	2.9
20	7.0	26	0
21	7.1	27	3.2
22	7.1	28	4.5
23	4.2	29	2.7
24		30	0
25	0.7	31	2.4
26	1.6	32	3.0
27	0.1	33	0
28	0.2	34	3.4
29	0.1	35	-4.5
30	0.1	36	2.5
31	1.6	37	2.4
32	1.5	38	2.3
33	6.3	39	2.8
34	7.0	40	1.3
35	5.4	41	1.4
36	6.5	42	2.2
37	7.0	43	2.2
38	6.5	44	3.1
39	7.2	45	0.2
40	6.1	46	
41	0.3	47	
42	0	48	
43	7.4	49	2.1
44	7.0	50	2.1
45	7.4	51	2.1
46	7.4	52	4.5
47	7.1	53	2.3
48	6.4	54	0
C3001		55	2.8
1	2.2	56	3.6
2		57	-4.5
3	4.1	58	3.0
4	0.1	59	0.0
5	٧.١	60	4.4

MODE	STOP
PÎN NO.\	
61	0.5
62	2.2
63	4.5
64	4.5
65	0.2
66	0.7
67	0
68	3.6
69	2.1
70	4.5
71	4.6
72	1.6
73	1.8
74	0
75	0.2
76	2.1
77	0.2
78	0.1
79	2.4
80	2.1
IC3002	
1	2.2
2	0
3	4.5
4	3.0
5	0
6	2.6
7	1.7
8	2.8
9	4.5
10	0
11	2.5
12	2.6
13	2.9
14	0
15	2.5
16	4.5
17	0
18	2.4
19	2.6
20	2.3
IC4001	2.0
1	2.1
2	0
3	2.1
4	0.7
5	2.1
6	2.1
7	2.9
<u>8</u> 9	0.1
10	0
11	0
12	

13 2.6

CTIO	N)	
MODE	STOP	MODE
NO.\		PIN NO.
14	4.5	В
15	0.8	Q1007
16	4.6	E
17	2.1	С
18	2.1	В
19	0.2	Q1008
20	0.2	Е
21	3.5	С
22	0	В
23	0.2	Q1009
24	0.1	E
25	2.1	C
26	1.8	В
27	0.7	Q1010
	0.7	E
28		C
29	2.0	
30	0.2	В
31	0.7	Q1011
32	2.0	E1
33		C1
34	2.1	B1
35	2.1	E2
36	2.1	C2
37	2.1	B2
38	1.9	Q1013
39	2.1	E
40	2.1	С
41		В
42	4.6	Q1015
43	4.0	E
44	0	С
45	0	В
46	2.1	Q1018
47	1.6	E
48	4.6	C
		В
Q1001		Q1019
E	7.1	E
C	7.1	C
В	0.1	В
Q1002	0.1	Q1024
E	0.1	E
С	0.1	
	0	С
B	0.1	В
Q1003	0.0	Q1101
E	2.0	E
С	0	C
В	1.4	В
Q1005		Q1102
Е	7.1	E
С	4.6	С
В	6.6	В
Q1006		Q1103
Е	7.1	E
С	3.6	С

MODE	STOP	l
PIN NO.	3101	
В	7.1	
Q1105		
E	7.1	
С	0	
В	7.1	
Q3003		
Е	4.3	
С	0	
В	3.8	
Q3004		
Е	3.3	l
C	3.4	
В	4.1	ŀ
Q3005	7.1	ŀ
E	2.8	ŀ
C		
	4.5	ŀ
В	3.4	ŀ
Q3027		
E	1.8	
С	4.9	
В	2.4	
Q4001		
E1	3.5	
C1	4.1	
B1	4.5	
E2	4.5	
C2	3.9	
B2	3.6	ŀ
Q4002	0.0	ŀ
E	0	ŀ
C	0.1	
В	0.8	
Q4003		
E	1.2	
С	0	
В	8.0	
Q4005		
Е	0	
С	0.4	
В	0.2	
Q4006		l
E	0	İ
C	0	l
В	0	
Q4007		ŀ
E	4.6	l
C		l
<b>—</b>	0	
В	4.5	
Q4008	_	
Е	0	
С	4.5	
В	0.1	
Q4009		l
Е	0	
С	1.7	

STOP

6.8

7.1 3.6 6.8

7.1 4.7 6.6

7.1 6.4 6.8

7.1 0 7.1 (D) 1.9 6.7 1.3 1.5 4.8 2.5 (D) 7.1 5.0 6.5

> 7.1 7.1 7.8

> 0 -5.4 -0.6

-8.1 -15.2 -8.1

> 6.8 7.1 7.1

> 7.1 1.9 7.1

> 7.1

7.1

0

MODE	STOP	
PINNO.		
В	0.2	
TP1001	4.6	
TP1002 TP1003	4.6 15.0	
TP1005	-7.9	
TP1006	3.6	
TP1007	4.7	
TP1008	15.0	
TP3001	1.0	
TP3002	2.7	
TP3003 TP3004	0.2 3.0	
TP3004	3.2	
TP3006	2.3	
TP4001	1.3	
TP4002	0	
TP4003	0	
		l

# MAIN C.B.A. (SYSTEM CONTROL/SERVO SECTION)

MAIN	C.B.A	۱. (SYS
MODE	REC	PLAY
PIN NO.		
IC2001		
1	2.1	2.1
2	0.6	0.6
3	0.6	0.7
4	3.0	3.0
5	0	0
6	0.1	0.1
7	0.1	0.1
8	2.3	2.3
9	2.3	2.3
10	2.3	2.3
11	2.3	2.3
12	2.3	2.3
13	2.3	2.3
14	6.9	7.0
15	1.8	1.8
16	1.9	1.8
17	1.8	1.8
18	0.5	0
19	0.5	0
20	0.4	0.6
21	7.2	6.7
22	6.9	6.7
23	6.5	6.7
24	0.5	0.5
25	0.5	0.5
26	0.5	0.5
27	2.6	0.1
28	2.6	2.5
29	1.0	0.9
30	1.0	1.0
31	1.0	0.9
32	1.0	0.9
33	2.0	2.0
34	2.2	0
35	2.2	2.2
36	1.7	1.7
37	1.7	1.7
38	1.3	1.3
39	1.3	1.3
40	0.1	0.1
41	0.1	0.1
42	0.1	0
43	0.1	0
44	2.1	2.1
45	0.7	0.7
46	0.6	0.6
47	0.3	0.3
48	2.1	2.1
49	6.1	6.3
50	2.0	2.0
51	0	0
52	4.6	4.6
53	2.2	2.2
54		

IVI COI	NIKO	L/SE	RVU	SECT	ION)	
MODE PIN NO.	REC	PLAY		MODE PIN NO.	REC	PLAY
55	0.8	0.8		15	4.6	4.6
<b>-</b>						
56	0	0		16	4.5	4.5
57	2.3	2.3		17	4.5	0
58	2.3	2.3		18		
59	2.3	2.3		19	0.1	0.1
60	2.3	2.3		20	4.5	4.5
61	2.3	2.3		21	0.1	0.1
62				22	0	0
63				23	2.3	2.3
64				24	0.1	0.1
IC2002				25	4.6	4.6
1	1.0	1.0		26	4.5	0
2	2.6	3.7		27	0.2	0.1
3	1.0				4.5	0.1
		1.0		28		
4	2.6	3.7		29	4.5	0
5	1.0	1.0		30	0.2	0.3
6	2.7	3.7		31		
7	2.0	2.0		32	2.5	2.5
8	1.0	1.0		33	2.0	2.0
9	0.5	0.5		34	2.1	2.1
10	1.0	1.0		35		
11	0.5	0.5		36	4.6	4.6
12	1.0	1.0		37		
13	0.5	0.5		38	1.4	0
14	0.1	0.1		39	0	0
IC2003	0.1	0.1		40	0.6	0.7
1	1.8	1.9		41		0.7
						4.0
2	6.5	6.5		42	4.6	4.6
3	1.8	1.9		43	4.5	4.6
4	6.5	6.5		44	4.5	4.5
5	0.1	1.9		45	0	0
6	6.5	6.5		46		
7	6.9	6.9		47	4.6	4.6
8	1.8	1.9		48	0	0
9	0.5	0.4		49		
10	1.8	1.9		50	2.4	2.3
11	0.5	0.5		51	4.6	4.6
12	1.8	1.9		52	2.3	2.2
13	0.5	0.5		53	2.3	2.3
14				54	4.5	4.5
	0.1	0.1		55		
IC6001	4.0	4.0			0	0
1	4.6	4.6		56	0	0.1
2	0	4.5		57	0	0
3	4.6	4.6		58	0.5	0.5
4				59	0	0
5	4.5	4.5		60	0.3	0.3
6	4.5	4.5		61	0	0
7	0.1	0.1		62	-	
8	0.1	0.1		63		
9	4.6	4.6		64	0	0
10	4.5	4.5		65	2.2	2.2
11	3.5	3.5		66	0.8	0.8
12	0.1	0.1		67	2.3	2.3
13	0.1	0.1		68	2.3	2.3
14	4.5	4.5	ı	69	2.3	2.3

MODE PIN NO.	REC	PLAY
70	2.3	2.3
71	0	0
72	2.2	2.2
73	4.6	4.6
74	2.7	2.3
75	2.0	2.3
76	2.3	2.2
77	4.6	4.6
78	0	0
79	2.5	2.5
80	2.0	2.0
81	1.6	1.6
1 1	4.6 4.6	4.6 4.6
82	4.0	4.0
83	4.0	4.0
84	4.6	4.6
85	4.1	4.1
86	4.4	0.1
87		
88	0.1	0.1
89	2.2	0.1
90	4.2	0.1
91	0.3	0.3
92	4.6	4.6
93		
94	4.6	2.0
95	4.6	4.6
96	4.6	4.6
97	4.6	4.6
98	2.3	2.3
99		
100	0.1	0.1
IC6002		
1	4.6	4.6
2	4.6	4.6
3		
4	0	0
IC6005		
1	0.8	0.8
2	0.9	0.9
3	1.0	0.8
4	0	0
5	0.2	0.2
6	4.5	4.5
7	4.5	4.5
8	4.3	4.3
IC6006		
1	0	0
2	7.0	7.0
3	4.6	4.6
IC6007		
1	2.1	2.0
2	7.0	7.0
3	7.0	7.0
4	0.1	0
5	0.1	0.1

MODE PIN NO.	REC	PLAY
	0.1	4.6
6	0.1	4.6
7	1.8	0
8	0	0
IC6203		
1	1.2	1.2
2	0	0
3	0	0
4	4.2	4.4
Q6004		
E	4.5	4.5
C	4.5	
		0
В	3.9	4.6
Q6008		
E	0	0
С	0	4.5
В	4.5	0
Q6010		
Е	0	0
C	0	0.1
В	0	0.1
	U	-
Q6012	0	_
E	0	0
С	4.5	0
В		
Q6013		
Е	0.4	0.4
С	7.0	7.0
В	0	0
Q6021		
Е	7.0	7.0
C	7.0	0
В	0	6.3
ь	U	0.5
TDEOGA		_
TP5001	0	0
TP5002	0	0
TP5003	1.8	0
TP5004	2.1	2.0
TP6001	8.0	0
TP6003	0.1	0.1
TP6006	4.5	0
TP6007		
TP6010	4.6	4.6
TP6011	4.5	
TP6011		16
	4.6	4.6
TP6020	4.1	4.1
TP6021	3.1	3.1
TP6022	3.1	3.1
TP6023	0	0
TP6205	2.1	2.3
TP6206	2.0	2.3
TP6208	0.8	0.8
11 02001		
	22	22
TP6210 TP6212	2.2 0.9	2.2 1.8

MODE PIN NO.	REC	PLAY
	0.0	4.6
TP6216	0.2	4.6
TP6217	2.2	2.0
TP6220	1.0	0.9
170220	1.0	0.9
		<u></u>

# LCDCBA

_CD (	C.B.A		
MODE	CAMERA	MODE	CAMERA
NO. \		PIN NO.	
IC9001		Q1203	
1	1.8	E	3.0
2	1.8	С	3.4
3	1.8	В	0.1
4		Q1206	
5		Е	
6		С	13.1
7		В	12.5
8	1.5	Q1207	
9	3.8	Е	0.1
10	2.6	С	0.1
11	2.6	В	4.2
12	2.6	Q1208	
13	2.6	Е	7.5
14	2.6	С	13.1
15	2.6	В	8.1
16	2.6	Q1209	
17	0.1	Е	0.1
18	7.5	С	8.1
19	0.1	В	0.7
20	0.1	Q1211	
21	0.5	Е	-15.0
22	1.7	С	-15.0
23	1.7	В	-15.1
24	1.7	Q1213	
25	3.5	Е	5.0
26	1.9	С	7.0
27	1.7	В	5.5
28	0.1	Q1214	
29	0.1	E	3.0
30	0.1	С	3.4
31	0.6	В	0
32	0.3	Q1215	
33	1.8	E	0.1
34		С	0.1
35		В	0
36		Q9004	
37	0	E	0.1
38	3.4	С	3.5
39	0.1	В	0.1
40	0	Q9005	
41	3.5	E	3.5
42	0.2	С	15.0
43	3.4	В	3.5
44	3.5	Q9051	
45	0.1	E	0
46	3.4	С	4.5
47	2.1	В	-0.3
48	2.1	Q9052	
IC9002		E	0
1	6.6	С	4.5
2	-15.6	В	-0.3
3	6.6	Q9053	
4	6.6	E	2.9
5	13.1	С	0.1

MODE	CAMERA	MODE	CAMER
PIN NO.	Or UVILIVY	PIN NO.	O WILLY
Q1203		B	2.4
<u>Q1203</u>	2.0	_	2.4
C	3.0	TP1203	10.1
	3.4		13.1
B	0.1	TP1204	7.5
Q1206		TP1205	5.0
E	40.4	TP9001	2.6
<u>C</u>	13.1	TP9002	2.6
В	12.5	TP9003	2.6
Q1207		TP9004	
E	0.1	TP9005	0.1
С	0.1	TP9006	0.1
В	4.2	TP9007	0.8
Q1208			
E	7.5		
С	13.1		
В	8.1		
Q1209			
E	0.1		
С	8.1		
В	0.7		
Q1211			
Е	-15.0		
С	-15.0		
В	-15.1		
21213			
Е	5.0		
С	7.0		
В	5.5		
Q1214	0.0		
E	3.0		
С	3.4		
В	0		
Q1215	-		
E E	0.1	-	
	0.1	-	
<u>C</u>			
B	0		
Q9004			
<u>E</u>	0.1		
C	3.5		
В	0.1		
Q9005	_		
Е	3.5		
С	15.0		
В	3.5		
Q9051			
Е	0		
С	4.5		
В	-0.3		
Q9052			
F	0		1

# **BATTERY CATCHER** CRA

C.B.A.		
MODE	CAMERA	
PIN NO.	0, 11,2, 1	
IC503	(D)	
1	0.1	
2	0.1	
_	-	
3	2.5	
4	4.8	
5	4.9	
6	9.7	
7		
8		
9		
10	0.1	
11	3.5	
12	0.1	
13	0	
14	0.1	
15	0	
16	5.0	
IC901		
1	3.1	
2	1.6	
3	0	
4	0	
5		
6	3.5	
7	0	
8	3.5	
9	0.5	
10	0	
11	3.1	
12		
	3.1	
13	0.1	
14		
15		
16	0	
17	3.0	
18	0.1	
19	1.6	
20	0.3	
21		
22		
23	2.0	
24	2.0	
25	2.1	
26	1.1	
27	1.1	
28	1.6	
29	2.1	
30	0.2	
31		
32	0	
33	0	
34		
35		
36	1.6	
37	0	

	CAMERA
PIN NO.\	
38	3.3
39	8.6
40	3.6
41	1.5
42	0
	2.6
43	3.6
44	1.4
45	3.6
46	1.4
47	8.6
48	4.3
49	3.1
50	0.9
51	0
52	2.1
53	
	1.5
54	1.5
55	1.5
56	3.1
57	2.0
58	1.7
59	0
60	0
61	0
62	0
63	0
64	0
04	0
Q901	
E	8.6
С	14.9
В	9.1
Q902	5.1
E	1.0
	1.8
<u>C</u>	3.1
В	9.1
Q903	
E	0
С	9.1
В	0.6
Q904	
E	0
	1.0
В	0.1
ט	0.1

#### MAIN C.B.A.



WF1



WF2



WF3



WF4



WF5



WF6



WF7



WF8



WF9



WF10



WF11



WF12



WF13



WF14



WF15



WF16



WF17



WF18

## LCD C.B.A.



WF19



WF20



WF21



WF22

NOTE:

FOR SCHEMATIC DIAGRAM AND CIRCUIT BOARD LAYOUT NOTES, REFER TO BEGINNING OF SCHEMATIC SECTION.