

درس رقم

درس : الجداء السلمي في الفضاء و تطبيقاته

I. الجداء السلمي في الفضاء:

 $\vec{v} = \overrightarrow{AC}$ و $\vec{u} = \overrightarrow{AB}$ حيث \vec{v} حيث \vec{v} و $\vec{u} = \overrightarrow{AB}$ الجداء \vec{v} الجداء

السلمي للمتجهتين u و v هو:

 $\vec{u}.\vec{v} = \overrightarrow{AB}.\overrightarrow{AC} = AB \times AH$ في الحالة 1 هو:

 $\vec{u}.\vec{v} = \overrightarrow{AB}.\overrightarrow{AC} = -AB \times AH$ في الحالة 2 هو:

01. تعریف:

.(AB) على $\vec{v} = \overrightarrow{AC}$ و $\vec{u} = \overrightarrow{AB}$ ليكن $\vec{u} = \overrightarrow{AB}$ ليكن $\vec{v} = \overrightarrow{AC}$ على المسقط العمودي ل

الجداء السلمي ل \vec{u} و \vec{v} و يرمز له ب \vec{AB} . هو:

المنحى المعدد الحقيقي $AB \times AH$ إذا كان \overrightarrow{AH} و \overrightarrow{AB} لهما نفس المنحى المعدد الحقيقي

العدد الحقيقي $AB \times AH$ إذا كان \overrightarrow{AB} و \overrightarrow{AB} لهما منحيان \neq

الجداء السلمي منعدم) $\vec{u}.\vec{v}=0$ أو $\vec{v}=\vec{0}$ أو $\vec{u}=\vec{0}$ (الجداء السلمي منعدم)

.02 ملاحظات

 $\vec{\mathbf{u}} \cdot \vec{\mathbf{u}} = \overrightarrow{\mathbf{AB}} \cdot \overrightarrow{\mathbf{AB}} = \mathbf{AB} \times \mathbf{AB} = \mathbf{AB}^2 \ge \mathbf{0}$

 $\vec{u}.\vec{u}=\vec{u}^2$ يسمى المربع السلمي ل \vec{u} ويرمز له ب $\vec{u}.\vec{u}=\vec{u}$.

 $\|\vec{\mathbf{u}}\| = \sqrt{\vec{\mathbf{u}}\cdot\vec{\mathbf{u}}} = A\mathbf{B}$: العدد الحقيقي الموجب: $\mathbf{AB} = \sqrt{\vec{\mathbf{u}}\cdot\vec{\mathbf{u}}} = A\mathbf{B}$ يسمى منظم المتجهة $\vec{\mathbf{u}}$ ويرمز له ب

 $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \mathbf{0} \Leftrightarrow \vec{\mathbf{v}} \perp \vec{\mathbf{u}} \stackrel{=}{=} \mathbf{0}$

 $\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times \cos\left(\overrightarrow{\overline{AB}},\overrightarrow{AC}\right) \quad \overrightarrow{u}.\overrightarrow{v} = \|\overrightarrow{u}\| \times \|\overrightarrow{v}\| \times \cos\left(\overrightarrow{u},\overrightarrow{v}\right) = \underline{\overrightarrow{a}}$

03. خاصیات:

ا و \vec{v} و \vec{w} متجهات من \vec{v} و من \vec{v} لدينا:

أ_ $\vec{u}.\vec{v}=\vec{v}.\vec{u}$ (تماثلية الجداء السلمي).

II. معلم متعامد ممنظم _ أساس متعامد ممنظم.

درس : الجداء السلمي في الفضاء و تطبيقاته درس رفّ

01. تعاریف:

$$\left(\det\left(\vec{i},\vec{j},\vec{k}\right)\neq0
ight)$$
 أساس في الفضاء V_3 يكافئ \vec{i} و \vec{j} و \vec{i} غير مستوائية من الفضاء $\left(\vec{i}$, \vec{j} , \vec{k}

أخذ نقطة
$$0$$
 من الفضاء ؛الرباعي $(0,\vec{i},\vec{j},\vec{k})$ يسمى معلم في الفضاء، نقول أن الفضاء منسوب إلى المعلم $(\vec{i},\vec{j},\vec{k})$ أو أيضا الفضاء مزود بالمعلم $(\vec{i},\vec{j},\vec{k})$.

.
$$\|\vec{j}\| = \|\vec{i}\| = \|\vec{k}\| = 1$$
 و $\vec{k} \cdot \vec{j} = \vec{k} \cdot \vec{i} = \vec{j} \cdot \vec{i} = 0$ أساس في الفضاء V_3 هو أساس متعامد ممنظم يكافئ V_3

و في هذه الحالة المعلم
$$\left(\, 0 \, , \, \dot{i} \, , \, \dot{j} \, , \, \dot{k} \, \right)$$
 يسمى معلم متعامد ممنظم

III. تحليلية الجداء السلمي في الفضاء

باقي فقرات الدرس المتبقية الفضاء نرمز له ب $\mathbf{v}(\mathbf{x}',\mathbf{y}',\mathbf{z}')$ و منسوب إلى م.م. م $\mathbf{u}(\mathbf{x},\mathbf{y},\mathbf{z})$. $\mathbf{u}($

$$\vec{\mathbf{u}}.\vec{\mathbf{v}} = \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{x'} \\ \mathbf{y'} \\ \mathbf{z'} \end{pmatrix} = \mathbf{x}\mathbf{x'} + \mathbf{y}\mathbf{y'} + \mathbf{z}\mathbf{z'} \quad \text{as } \vec{\mathbf{v}} \neq \vec{\mathbf{u}} \quad \vec{\mathbf{u}} \neq \vec{\mathbf{v}} \quad \vec{\mathbf{v}} \neq \vec{\mathbf{u}} \quad \vec{\mathbf{v}} \neq \vec{\mathbf{v}} \quad \vec{\mathbf{v}} \neq \vec{\mathbf{v}}$$

.
$$\|\vec{u}\| = \sqrt{\vec{u}.\vec{u}} = \sqrt{x^2 + y^2 + z^2}$$
 : هو \vec{u} منظم المتجهة \vec{u}

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$
 المسافة بين A و B هي: A

 $\mathbf{k} \in \mathbb{R}$ من الفضاء حيث $\mathbf{M}(\mathbf{x},\mathbf{y},\mathbf{z})$ من الفضاء حيث . \mathbf{IV}

01. خاصية:

، مجموعة النقط $\mathbf{M}(x,y,z)$ من الفضاء حيث \mathbb{R} ، مجموعة النقط $\mathbf{M}(x,y,z)$ من الفضاء حيث $\mathbf{A}(x_{\mathrm{A}},y_{\mathrm{A}},z_{\mathrm{A}})$

. ax + by + cz + d = 0 : هي مستوى معادلته تكتب على شكل . \overrightarrow{u} . $\overrightarrow{AM} = k$

 $\vec{\mathrm{u}}ig(0,1,0ig)$ و $\mathbf{A}ig(1,1,1ig)$ مثال: $\mathbf{A}ig(1,1,1ig)$

 $\overrightarrow{u}.\overrightarrow{AM}=0$: مجموعة النقط M(x,y,z) من الفضاء M(x,y,z)

$$M(x,y,z) \in (P) \Leftrightarrow \overrightarrow{u}.\overrightarrow{AM} = 0 \Leftrightarrow \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} x-1 \\ y-1 \\ z-1 \end{pmatrix} = 0$$
 عندنا:

$$\Leftrightarrow 0.(x-1)+1(y-1)+0(z-1)=0$$

$$\Leftrightarrow$$
 y $-1 = 0$

y=1 : المجموعة (P) هي المستوى الذي معادلته

درس : الجداء السلمي في الفضاء و تطبيقاته

درس رقم

آ. مستوى معرف بنقطة ومتجهة منظمية عليه:

01. متجهة منظمية على مستوى:

<u>ـ</u> تعریف:

متجهة منظمية على مستوى (P) هي: كل متجهة $\stackrel{\leftarrow}{n}$ غير منعدمة و يكون اتجاهها عموديا على المستوى (P).

<u>ب</u> نتيجة:

 \vec{n} منظمية على المستوى \vec{v} يكافئ أن: \vec{n} متعامدة مع متجهتين موجهتين \vec{v} و \vec{v} للمستوى \vec{v} للمستوى

02. خاصية:

<u>أ</u> خاصية:

 $(a,b,c)\neq(0,0,0)$ و $(a,b,c)\neq(0,0,0)$ من $(a,b,c)\neq(0,0,0)$ عن $(a,b,c)\neq(0,0,0)$

مجموعة النقط M(x,y,z) من الفضاء حيث: ax+by+cz+d=0 هي مستوى و المتجهة الغير المنعدم منظمية على هذا المستوى.

<u>ب</u> مثال:

x+2y-z+4=0 ماذا تمثل مجموعة النقط $\mathbf{M}ig(x,y,zig)$ من الفضاء التي تحقق ما يلي

مجموعة النقط هي المستوى (P)حيث $\vec{n}(1,2,-1)$ منظمية على (P)و المارة من A(0,0,4) (لإن إحداثيات A تحقق المعادلة)

ج_ ملحوظة:

$$Pigg(Aigg(0\ 0\ Aigg), \vec{n}igg(1\ 2\ -1igg)$$
 او $Pig(A, \vec{n}igg)$ برمز له ب: $Pig(A, \vec{n}igg)$ او $Pig(A, \vec{n}igg)$

 \vec{u} مجموعة النقط M(x,y,z) من الفضاء حيث: \vec{u} . $\vec{AM} = 0$ هي المستوى \vec{u} المار من \vec{A} و متجهة منظمية على \vec{u} هي المستوى (P) المار من \vec{A} و متجهة منظمية على (P) هي \vec{u} .

VI. مسافة نقطة عن مستوى:

01. تعریف:

(P) مستوى من الفضاء و A نقطة من الفضاء و النقطة H المسقط العمودي ل A على المستوى AH المسافة AH تسمى المسافة AH = d(A,(P)) ونرمز لها بAH = d(A,(P)) .

02. خاصية:

$$(P)$$
 عن المستوى (P) مستوى من الفضاء الذي معادلته هي: $ax + by + cz + d = 0$ مسافة النقطة A عن المستوى A خن المستوى $AH = d(A,(P)) = \frac{\left|ax_A + by_A + cz_A + d\right|}{\sqrt{a^2 + b^2 + c^2}}$ هي:

.03 مثال:

 $\mathbf{m} \in \mathbb{R}$ و النقطة $\mathbf{A} \left(0,0,m
ight)$ و النعتبر المستوى $\mathbf{P} \left(\mathbf{O}, \vec{i}, \vec{j}
ight)$

1) حدد معادلة ديكارتية للمستوى (P).

درس : الجداء السلمي في الفضاء و تطبيقاته

- (P) أحسب مسافة النقطة A عن المستوى (P).
- d(A,(P)) = 0 ماذا تمثل الحالة التي تكون فيها (3

VII. الوضاع النسبية للمستقيمات و المستويات و التعامد 01.

01. خاصیه 1:

$$\vec{n'}(a',b',c')$$
 و $\vec{n}(a,b,c)$ و $\vec{n}(a,b,c)$ مستویین من الفضاء و $(P_2):a'x+b'y+c'z+d'=0$ و $(P_1):ax+by+cz+d=0$ منظمیتین علی (P_1) و (P_2) علی التوالي

- يكافئ \overrightarrow{n} و \overrightarrow{n} مستقيميتين $(P_2) \| (P_1) \| / (P_1)$
- (0=1) الجداء السلمي $\vec{n'}.\vec{n}=0$ يكافئ $(P_2)\pm(P_1)$

02. خاصية 2:

- مستقيم من الفضاء و $D(A,\vec{u})$ مستقيم من الفضاء. $P(A,\vec{n})$
- (0=1) الجداء السلمي $\vec{u}.\vec{n}=0$ يكافئ (D)
 - يكافئ $\vec{\mathbf{u}}$ $\vec{\mathbf{u}}$ مستقيمتين. $(\mathbf{D}) \perp (\mathbf{P})$ م

دراسة تحليلية للفلكة:

VIII. 01. فلكة:

تعريف:

- (R>0) نقطة من الفضاء و R عدد حقيقي موجب قطعا Ω
- الفلكة (S) التي مركزها Ω و شعاعها R هي مجموعة النقط M من الفضاء التي تحقق $\Omega = \Omega$ ونرمز لها ب: $S(\Omega,R)$.
 - [AB] هذه القطعة تسمى قطر للفلكة [S] ونرمز للفلكة كذلك ب: [AB] هذه القطعة تسمى قطر للفلكة [S]

درس : الجداء السلمي في الفضاء و تطبيقاته

الصفحة

 $S(\Omega,R)$ معادلة ديكارتية لفلكة $S(\Omega,R)$

خاصية:

 $\mathrm{S}ig(\Omegaig(a,b,cig),Rig)$ هي :

او أيضا
$$(x-a)^2 + (y-a)^2 + (z-a)^2 = \mathbb{R}^2$$

$$d = a^2 + b^2 + c^2 - R^2$$
 $x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$

مثال:

 $\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 = \mathbf{1}$ هي: $\mathbf{S}(\mathbf{O}, \mathbf{1})$ معادلة ديكارتية للفلكة:

 $S_{[AB]}$ معادلة ديكارتية لفلكة معادلة

خاصية:

A و B نقطتين مختلفتين من الفضاء.

مجموعة النقط $\mathbf{M}(\mathbf{x},\mathbf{y},\mathbf{z})$ من الفضاء التي تحقق $\mathbf{M} = \mathbf{M}$ هي الفلكة التي معادلتها الديكارتية هي:

$$(x-x_A)(x-x_B)+(y-y_A)(y-y_B)+(z-z_A)(z-z_B)=0$$

مثال:

 $\mathbf{S}_{ ext{[AB]}}$ و $\mathbf{B}ig(0,-1,0ig)$. حدد معادلة ديكارتية للفلكة $\mathbf{A}ig(0,1,0ig)$

$$\mathbf{M}(\mathbf{x},\mathbf{y},\mathbf{z}) \in \mathbf{S}_{[\mathbf{AB}]} \Leftrightarrow \overrightarrow{\mathbf{MA}}.\overrightarrow{\mathbf{MB}} = \mathbf{0} \iff \begin{pmatrix} \mathbf{x} \\ \mathbf{y}-\mathbf{1} \\ \mathbf{z} \end{pmatrix}. \begin{pmatrix} \mathbf{x} \\ \mathbf{y}+\mathbf{1} \\ \mathbf{z} \end{pmatrix} = \mathbf{0} \Leftrightarrow \mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 = \mathbf{1}; \ \left(\overrightarrow{\mathbf{AM}}.\overrightarrow{\mathbf{BM}} = \mathbf{0}\right)$$

 $(\mathbb{R} \text{ idd} cb \text{ } (y,z) + y^2 + z^2 + ax + by + cz + d = 0)$ عو \mathbf{b} و \mathbf{b} عو \mathbf{b} عو \mathbf{b}

خاصية:

 $R_2 = a^2 + b^2 + c^2 - 4d$ و و و و من R من $R_2 = a^2 + b^2 + c^2 - 4d$

$$\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 + \mathbf{a}\mathbf{x} + \mathbf{b}\mathbf{y} + \mathbf{c}\mathbf{z} + \mathbf{d} = \mathbf{0}$$
 مجموعة النقط $\mathbf{M}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ من الفضاء التي تحقق (E)

$$(E) = S\left(\Omega\left(-\frac{a}{2}, -\frac{b}{2}, -\frac{c}{2}\right), R = \frac{\sqrt{R_2}}{2}\right) \text{ is } \underline{\underline{j}}$$

 $\mathbf{R}_{2}>\mathbf{0}$ إذا كان

$$\mathbf{R}_2 = \mathbf{0}$$
 غذا كان $\left(\mathbf{E}\right) = \left\{\Omega\left(-\frac{\mathbf{a}}{2}, -\frac{\mathbf{b}}{2}, -\frac{\mathbf{c}}{2}\right)\right\} \stackrel{\underline{\underline{\mathbf{a}}}}{\underline{\underline{\mathbf{c}}}}$

$$\mathbf{R}_{2} < \mathbf{0}$$
 اِذَا كَانُ $(\mathbf{E}) = \emptyset$

 $D(A,\vec{u})$ و مستقيم $S(\Omega,R)$ قاطع فلكة .IX

01. خاصیات:

درس : الجداء السلمي في الفضاء و تطبيقاته درس رقم

1 OII	(\mathbf{D})	1- 0		TT
$d = \Omega H$	(I)I	() علی ا	المسقط العمودي ل	н

حالة 3 :	حالة 2 :
$(\mathbf{D}) \cap (\mathbf{S}) = \{\mathbf{H}\}$	$(D)\cap(S)=\{A,B\}$

$$\mathbf{H}$$
 نقول : $\mathbf{(D)}$ مماس ل

$$f B$$
 نقول : $f (D)$ يقطع $f (S)$ في $f A$ و

$$ig(\mathbf{S}ig)$$
 خارج الفلكة $ig(\mathbf{D}ig)$

$$\mathbf{d} = \Omega \mathbf{H} = \mathbf{R}$$
 شرط

$$\mathbf{d} = \Omega \mathbf{H} > \mathbf{R}$$
شرط

$\mathbf{P}ig(\mathbf{A}, \vec{\mathbf{u}}, \vec{\mathbf{v}}ig)$ و مستوى $\mathbf{S}ig(\mathbf{\Omega}, \mathbf{R}ig)$ قلكة \mathbf{X}

01. الأوضاع النسبية - خاصيات:

$\mathbf{d} = \mathbf{\Omega} \mathbf{H}$ المسقط العمودي ل $\mathbf{\Omega}$ على المستوى \mathbf{P} و المسقط العمودي ل

$(D)\cap(S)=\{H\}_{:3}$ حالة	$(P)\cap(S)=(C)$ عالة 2	حلة P)∩(S)=∅ _{: 1}
نقول: (P) مماس للفلكة في النقطة H حيث	$ig(\mathbf{C} ig)$ يقطع $ig(\mathbf{S} ig)$ وفق دائرة	نقول: (P) خارج الفلكة (S)

$(H\Omega)ot(P)$ المستقيم $\mathbf{R}_{\mathrm{C}} = \sqrt{\mathbf{R}^2 - \mathbf{d}^2}$ مرکزها H مرکزها شرط: d = ΩH < R

02. خاصية:

فلكة و A من S فلكة و S مستوى وحيد S مماس ل S عند النقطة S وهو المستوى العمودي على المستقيم $\overrightarrow{AM}.\overrightarrow{A\Omega}=0$ في النقطة A أي A أي A A A A A ومنه معادلة A في النقطة A في النقطة A