

spries - shurt

$$f = \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{1}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$$

$$\frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{1}}{\sqrt{1}} \frac{\sqrt{1}}{\sqrt{1}} \frac{\sqrt{1}}{\sqrt{2}} = \frac{\sqrt{1}}{\sqrt{1}}$$

$$\frac{\sqrt{1}}{\sqrt{2}} = \frac{1}{\sqrt{1}} \frac{\sqrt{1}}{\sqrt{2}} = \frac{1}{\sqrt{1}}$$

$$\frac{\sqrt{1}}{\sqrt{2}} = \frac{1}{\sqrt{1}} \frac{\sqrt{2}}{\sqrt{2}} = \frac{1}{\sqrt{1}}$$

$$\Rightarrow f = \frac{1}{\sqrt{3}} \frac{\sqrt{2}}{\sqrt{2}}$$







()





17.76

$$A_0 = 40,000$$

Let  $F = 1$  (wont cm)

 $f_{p1} = 1 \text{ MHz}, f_{p2} = 40 \text{ MHz}, f_{p3} = 200 \text{ MHz}$ 
 $\phi = 40^{-}$ 

And  $f_{p0} = \frac{f_{p0}}{a_{0}F} = \frac{25}{a_{0}F}$ 

And  $f_{p0} = \frac{f_{p0}}{a_{0}F} = \frac{1000 \text{ MHz}}{a_{0}F}$ 
 $\phi = 70^{\circ}$ 
 $\phi =$