Preface

This book is about the growing intersection of data-driven methods, applied optimization, and the classical fields of engineering mathematics and mathematical physics. We have been developing this material over a number of years, primarily to educate our advanced undergrad and beginning graduate students from engineering and physical science departments. Typically, such students have backgrounds in linear algebra, differential equations, and scientific computing, with engineers often having some exposure to control theory and/or partial differential equations. However, most undergraduate curricula in engineering and science fields have little or no exposure to data methods and/or optimization. Likewise, computer scientists and statisticians have little exposure to dynamical systems and control. Our goal is to provide a broad entry point to applied data science for both of these groups of students. We have chosen the methods discussed in this book for their (1) relevance, (2) simplicity, and (3) generality, and we have attempted to present a range of topics, from basic introductory material up to research-level techniques.

Data-driven discovery is currently revolutionizing how we model, predict, and control complex systems. The most pressing scientific and engineering problems of the modern era are not amenable to empirical models or derivations based on first-principles. Increasingly, researchers are turning to data-driven approaches for a diverse range of complex systems, such as turbulence, the brain, climate, epidemiology, finance, robotics, and autonomy. These systems are typically nonlinear, dynamic, multi-scale in space and time, high-dimensional, with dominant underlying patterns that should be characterized and modeled for the eventual goal of sensing, prediction, estimation, and control. With modern mathematical methods, enabled by unprecedented availability of data and computational resources, we are now able to tackle previously unattainable challenge problems. A small handful of these new techniques include robust image reconstruction from sparse and noisy random pixel measurements, turbulence control with machine learning, optimal sensor and actuator placement, discovering interpretable nonlinear dynamical systems purely from data, and reduced order models to accelerate the study and optimization of systems with complex multi-scale physics.

Driving modern data science is the availability of vast and increasing quantities of data, enabled by remarkable innovations in low-cost sensors, orders-of-magnitudes increases in computational power, and virtually unlimited data storage and transfer capabilities. Such vast quantities of data are affording engineers and scientists across all disciplines new opportunities for data-driven discovery, which has been referred to as the fourth paradigm of scientific discovery [245]. This fourth paradigm is the natural culmination of the first three paradigms: empirical experimentation, analytical derivation, and computational investigation. The integration of these techniques provides a transformative framework for

data-driven discovery efforts. This process of scientific discovery is not new, and indeed mimics the efforts of leading figures of the scientific revolution: Johannes Kepler (1571–1630) and Sir Isaac Newton (1642–1727). Each played a critical role in developing the theoretical underpinnings of celestial mechanics, based on a combination of empirical data-driven and analytical approaches. Data science is not replacing mathematical physics and engineering, but is instead augmenting it for the twenty-first century, resulting in more of a renaissance than a revolution.

Data science itself is not new, having been proposed more than 50 years ago by John Tukey who envisioned the existence of a scientific effort focused on learning from data, or *data analysis* [152]. Since that time, data science has been largely dominated by two distinct cultural outlooks on data [78]. The *machine learning* community, which is predominantly comprised of computer scientists, is typically centered on prediction quality and scalable, fast algorithms. Although not necessarily in contrast, the *statistical learning* community, often centered in statistics departments, focuses on the inference of interpretable models. Both methodologies have achieved significant success and have provided the mathematical and computational foundations for data-science methods. For engineers and scientists, the goal is to leverage these broad techniques to infer and compute models (typically nonlinear) from observations that correctly identify the underlying dynamics *and* generalize qualitatively and quantitatively to unmeasured parts of phase, parameter, or application space. Our goal in this book is to leverage the power of both statistical and machine learning to solve engineering problems.

Themes of This Book

There are a number of key themes that have emerged throughout this book. First, many complex systems exhibit dominant low-dimensional patterns in the data, despite the rapidly increasing resolution of measurements and computations. This underlying structure enables efficient sensing, and compact representations for modeling and control. Pattern extraction is related to the second theme of finding *coordinate transforms* that simplify the system. Indeed, the rich history of mathematical physics is centered around coordinate transformations (e.g., spectral decompositions, the Fourier transform, generalized functions, etc.), although these techniques have largely been limited to simple idealized geometries and linear dynamics. The ability to derive data-driven transformations opens up opportunities to generalize these techniques to new research problems with more complex geometries and boundary conditions. We also take the perspective of dynamical systems and control throughout the book, applying data-driven techniques to model and control systems that evolve in time. Perhaps the most pervasive theme is that of data-driven applied optimization, as nearly every topic discussed is related to optimization (e.g., finding optimal lowdimensional patterns, optimal sensor placement, machine learning optimization, optimal control, etc.). Even more fundamentally, most data is organized into arrays for analysis, where the extensive development of numerical linear algebra tools from the early 1960s onward provides many of the foundational mathematical underpinnings for matrix decompositions and solution strategies used throughout this text.

Acknowledgments

We are indebted to many wonderful students, collaborators, and colleagues for valuable feedback, suggestions, and support. We are especially grateful to Joshua Proctor, who was

instrumental in the origination of this book and who helped guide much of the framing and organization. We have also benefited from extensive interactions and conversations with Bing Brunton, Igor Mezić, Bernd Noack, and Sam Taira. This work would also not be possible without our many great colleagues and collaborators, with whom we have worked and whose research is featured throughout this book.

Throughout the writing of this book and teaching of related courses, we have received great feedback and comments from our excellent students and postdocs: Travis Askham, Michael Au-Yeung, Zhe Bai, Ido Bright, Kathleen Champion, Emily Clark, Charles Delahunt, Daniel Dylewski, Ben Erichson, Charlie Fiesler, Xing Fu, Chen Gong, Taren Gorman, Jacob Grosek, Seth Hirsh, Mikala Johnson, Eurika Kaiser, Mason Kamb, James Kunert, Bethany Lusch, Pedro Maia, Krithika Manohar, Niall Mangan, Ariana Mendible, Thomas Mohren, Megan Morrison, Markus Quade, Sam Rudy, Susanna Sargsyan, Isabel Scherl, Eli Shlizerman, George Stepaniants, Ben Strom, Chang Sun, Roy Taylor, Meghana Velagar, Jake Weholt, and Matt Williams. Our students are our inspiration for this book, and they make it fun and exciting to come to work every day.

We would also like to thank our publisher Lauren Cowles at Cambridge University Press for being a reliable supporter throughout this process.

Online Material

We have designed this book to make extensive use of online supplementary material, including codes, data, videos, homeworks, and suggested course syllabi. All of this material can be found at the following website:

databookuw.com

In addition to course resources, all of the code and data used in the book are available. The codes online are more extensive than those presented in the book, including code used to generate publication quality figures. Data visualization was ranked as the top used data-science method in the Kaggle 2017 *The State of Data Science and Machine Learning* study, and so we highly encourage readers to download the online codes and make full use of these plotting commands.

We have also recorded and posted video lectures on YouTube for most of the topics in this book. We include supplementary videos for students to fill in gaps in their background on scientific computing and foundational applied mathematics. We have designed this text both to be a reference as well as the material for several courses at various levels of student preparation. Most chapters are also modular, and may be converted into stand-alone *boot camps*, containing roughly 10 hours of materials each.

How to Use This Book

Our intended audience includes beginning graduate students, or advanced undergraduates, in engineering and science. As such, the machine learning methods are introduced at a beginning level, whereas we assume students know how to model physical systems with differential equations and simulate them with solvers such as **ode45**. The diversity of topics covered thus range from introductory to state-of-the-art research methods. Our aim is to provide an integrated viewpoint and mathematical toolset for solving engineering and science problems. Alternatively, the book can also be useful for computer science and

statistics students who often have limited knowledge of dynamical systems and control. Various courses can be designed from this material, and several example syllabi may be found on the book website; this includes homework, data sets, and code.

First and foremost, we want this book to be fun, inspiring, eye-opening, and empowering for young scientists and engineers. We have attempted to make everything as simple as possible, while still providing the depth and breadth required to be useful in research. Many of the chapter topics in this text could be entire books in their own right, and many of them are. However, we also wanted to be as comprehensive as may be reasonably expected for a field that is so big and moving so fast. We hope that you enjoy this book, master these methods, and change the world with applied data science!