Codebook

Wesley Leung

September 2018

Contents

1	Dat	Data Structures 2							
	1.1	Genera	al						
		1.1.1	Indexed Priority Queue						
		1.1.2	Skew Heap						
		1.1.3	Incremental Skew Heap						
		1.1.4	Ordered Square Root Array						
		1.1.5	Ordered Root Array						
		1.1.6	Square Root Array						
		1.1.7	Root Array						
		1.1.8	Radix Heap						
		1.1.9	Radix Heap 64						
			•						
			V 1						
	1.0		Union Find Undo						
	1.2								
		1.2.1	Size Balanced Tree						
		1.2.2	Size Balanced Tree Set						
		1.2.3	Fenwick Tree						
		1.2.4	Fenwick Tree Binary Search						
		1.2.5	Fenwick Tree Range Point						
		1.2.6	Fenwick Tree Range						
		1.2.7	Fenwick Tree 2D						
		1.2.8	Fenwick Tree ND						
		1.2.9	Fenwick Tree Quadratic						
			Fenwick Tree Polynomial						
		1.2.11	Bottom Up Segment Trees						
		1.2.12	Top Down Segment Trees						
		1.2.13	Implicit Treap						
		1.2.14	Lazy Implicit Treap						
	1.3	Geome	${ m etry}$						
		1.3.1	Point						
		1.3.2	Vector						
		1.3.3	Rectangle						
		1.3.4	Kd Tree						
	1.4	Graph	25						
		1.4.1	Euler Tour Treap						
		1.4.2	Lazy Euler Tour Treap						
			Link Cut Tree						
		1.4.4	Lazy Link Cut Tree						
		1.4.5	Top Tree						
	1.5	String	•						
	1.0	1.5.1	Trie						
		1.0.1	<u></u>						
2	Alge	orithm	$_{ m S}$						
	_		nic Programming						
		2.1.1	Coin Change						
		2.1.2	Minimum Coin Change						
		2.1.3	Egg Dropping						
		2.1.4	Hamiltonian Cycle						
		2.1.4 $2.1.5$	Hamiltonian Path						
		2.1.6	0-1 Knapsack						
		2.1.0 $2.1.7$	Unbounded Knapsack						
		2.1.7	Bounded Knapsack						
		_	•						
		2.1.9	ZigZag						
			Unique ZigZag						
			Longest Common Integer Subsequence						
		2.1.12	Longest Increasing Subsequence						

			m Nonconsecutive Subsequence Sum	
	2.1.14	Maximu	m Subarray Sum	35
	2.1.15	Maximu	m Subarray Sum With Skip	. 36
			m Zero Submatrix	
			ns	
			Hull Optimization	
			Optimization	
2.2			ddle	
2.2	2.2.1		Subset Sum	
	2.2.1 $2.2.2$		m Subset Difference	
	2.2.2		Sum Count Less	
2.3			7	
2.3	2.3.1		m Subarray For Each Subarray of Size K	
	2.3.1 $2.3.2$		m Subarray Sum of Size K	
	2.3.3		m Subarray Sum of Size K or Less	
0.4	2.3.4		m Subarray Sum of Size K or More	
2.4			· · · · · · · · · · · · · · · · · · ·	
	2.4.1		Hull	
	2.4.2		Pair	
	2.4.3		Pair	
2.5	_			
	2.5.1			
		2.5.1.1	Depth First Search	
		2.5.1.2	BreadthFirstSearch	
	2.5.2		Path	
		2.5.2.1	Classical Dijkstra Single Source Shortest Path	
		2.5.2.2	Dijkstra Single Source Shortest Path	
		2.5.2.3	Source Path Faster Algorithm	
		2.5.2.4	Bellman Ford Single Source Shortest Path and Negative Cycle Detection	
		2.5.2.5	Floyd Warshall All Pairs Shortest Path	
		2.5.2.6	Johnson All Pairs Shortest Path	43
	2.5.3	Compon	nents	. 44
		2.5.3.1	Biconnected Components	. 44
		2.5.3.2	Connected Components	44
		2.5.3.3	Kosaraju Sharir Strongly Connected Components	44
		2.5.3.4	Tarjan Strongly Connected Components	45
		2.5.3.5	Bron Kerbosch Max Clique	
		2.5.3.6	Stoer Wagner Min Cut	
		2.5.3.7	Centroid Decomposition	
		2.5.3.8	Dynamic Connectivity Divide and Conquer	
		2.5.3.9	Dynamic Connectivity Sqrt Decomposition	
			Dynamic Biconnectivity	
	2.5.4		m Spanning Tree	
		2.5.4.1	Prim Minimum Spanning Tree	
		2.5.4.2	Kruskal Minimum Spanning Tree	
		2.5.4.3	Boruvka Minimum Spanning Tree	
		2.5.4.4	Offline Dynamic MST	
	2.5.5	-	Common Ancestor	
	2.0.0	2.5.5.1	LCA using Sparse Table	
		2.5.5.2	LCA using Euler Tour	
		2.5.5.2 $2.5.5.3$	LCA using Range Minimum Query	
		2.5.5.4	Tarjan Offline LCA	
	2.5.6	Queries		
	∠.5.0	2.5.6.1		
		2.5.6.1 $2.5.6.2$	Heavy Light Decomposition	
		2.5.6.2 $2.5.6.3$	Mo's Algorithm for Trees	
	257		Disjoint Union Sets for Trees	
	2.5.7	•	Chale	
		2.5.7.1	Cycle	
		2.5.7.2	Directed Cycle	54

	2.5.8	Matching	54
		2.5.8.1 Bipartite	54
		2.5.8.2 Hopcroft-Karp Maximum Matching	54
		2.5.8.3 Edmonds Matching	55
		2.5.8.4 Hungarian Algorithm	56
		2.5.8.5 Stable Marriage	57
	2.5.9	Network Flow	57
		2.5.9.1 Edmonds Karp Max Flow	57
		2.5.9.2 Dinic Max Flow	58
		2.5.9.3 Max Flow Min Cost	58
	2.5.10	Dynamic Programming	59
		2.5.10.1 Maximum Nonadjacent Sum	59
2.6	Math .		59
2.0	2.6.1	Bisection Root Finding	59
	2.6.2	Newton Root Finding	59
	2.6.3	Ternary Search for Maximum or Minimum	60
	2.6.4	Combinatorics	60
	2.6.5	Greatest Common Divisor	61
	2.6.6	Primes	61
	2.6.7	Fast Fourier Transformations	62
	2.6.8	Gaussian Elimination	63
	2.6.9	Matrix	63
		XOR Satisfiability	64
2.7		·	64
2.1	Querie 2.7.1	Mo's Algorithm	64
	2.7.1 $2.7.2$		65
0.0		Mo's Algorithm with Updates	
2.8		D. 0 1	65
	2.8.1	Binary Search	65
0.0	2.8.2	Interpolation Search	66
2.9			66
	2.9.1	Counting Sort	66
	2.9.2	Heap Sort	66
	2.9.3	Merge Sort	67
	2.9.4	Merge Sort Bottom Up	67
	2.9.5	Quick Sort 3 Way	69
	2.9.6	Quick Sort Dual Pivot	69
	2.9.7	Shell Sort	70
	2.9.8	Count Inversions	70
2.10	String		71
		KMP String Search	71
		Manacher Palindrome	71
		Z Algorithm	72
		Longest Common Substring	72
		Minimum Edit Distance	72
	2.10.6	Suffix Automata	73

1 Data Structures

1.1 General

#pragma once

1.1.1 Indexed Priority Queue

```
#include <bits/stdc++.h>
using namespace std;
class no_such_element_exception: public runtime_error {
    no_such_element_exception(): runtime_error("No such element exists"){}
     no_such_element_exception(string message): runtime_error(message){}
   Indexed Priority Queue supporting changing the key of an index
   Comparator convention is same as priority_queue in STL
   Time Complexity:
      constructor: O(N)
// empty, size, top, keyOf: O(1)
// insert, remove, pop, changeKey: O(log N)
// Memory Complexity: O(N)
template <class Key, class Comparator = less<Key>> struct IndexedPQ {
    Comparator cmp; int maxN, N; vector<int> pq, qp; vector<Key> keys;
void exch(int i, int j) { swap(pq[i], pq[j]); qp[pq[i]] = i; qp[pq[j]] = j; }
void swim(int k) { while (k > 1 && cmp(keys[pq[k / 2]], keys[pq[k]])) { exch(k, k / 2); k /= 2; } }
    void sink(int k) {
         while (2 \star k <= N) {
              int j = 2 * k;
if (j < N && cmp(keys[pq[j]], keys[pq[j + 1]])) j++;</pre>
              if (!cmp(keys[pq[k]], keys[pq[j]])) break;
exch(k, j); k = j;
     IndexedPQ(int maxN) : maxN(maxN), N(0), pq(maxN + 1), qp(maxN, -1), keys(maxN) { assert(maxN >= 0); }
    bool empty() { return N == 0; }
    bool containsIndex(int i) { assert(0 <= i && i < maxN); return qp[i] != -1; }</pre>
     int size() { return N; }
    void push(int i, Key key) {
   assert(0 <= i && i < maxN);</pre>
          if (containsIndex(i)) throw invalid_argument("index is already in the priority queue");
         N++; qp[i] = N; pq[N] = i; keys[i] = key; swim(N);
    pair<int, Key> top() {
   if (N == 0) throw no_such_element_exception("Priority queue underflow");
         return make_pair(pq[1], keys[pq[1]]);
     pair<int, Key> pop() {
         if (N == 0) throw no_such_element_exception("Priority queue underflow");
          int minInd = pq[1]; Key minKey = keys[minInd]; exch(1, N--); sink(1); qp[minInd] = -1;
          return make_pair(minInd, minKey);
     Key keyOf(int i) {
         assert(0 <= i && i < maxN);
         if (!containsIndex(i)) throw no_such_element_exception("index is not in the priority queue");
          else return keys[i];
    void changeKey(int i, Key key) {
   assert(0 <= i && i < maxN);</pre>
          if (!containsIndex(i)) throw no_such_element_exception("index is not in the priority queue");
         Key old = keys[i]; keys[i] = key;
         if (cmp(old, key)) swim(qp[i]);
         else if (cmp(key, old)) sink(qp[i]);
     void remove(int i) {
          assert(0 <= i && i < maxN);
         if (!containsIndex(i)) throw no_such_element_exception("index is not in the priority queue");
int index = qp[i]; exch(index, N--); swim(index); sink(index); qp[i] = -1;
};
1.1.2 Skew Heap
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Heap supporting merges
// comparator convention is same as priority_queue in STL
   Time Complexity:
// constructor, empty, top, size: O(1)
// pop, push, merge: O(log N)
template <class Value, class Comparator = less<Value>> struct SkewHeap {
     Comparator cmp;
    struct Node { Value val; Node *left = nullptr, *right = nullptr; Node (Value val) : val(val) {} };
int sz = 0; Node *root = nullptr;
Node *merge(Node *a, Node *b) {
         if (!a || !b) return a ? a : b;
         if (cmp(a->val, b->val)) swap(a, b);
         a->right = merge(b, a->right); swap(a->left, a->right);
return a;
     SkewHeap() {}
    bool empty() { return !root; }
```

```
Value top() { return root->val; }
     Value pop()
         Value ret = root->val; root = merge(root->left, root->right); sz--;
return ret;
     void push(Value val) { root = merge(root, new Node(val)); sz++; }
     void merge(SkewHeap &h) { root = merge(root, h.root); sz += h.sz; }
     int size() { return sz; }
1.1.3 Incremental Skew Heap
#pragma once
#include <bits/stdc++.h>
using namespace std;
   Heap supporting merges and increments
// comparator convention is same as priority_queue in STL
// Time Complexity:
// constructor, empty, top, increment, size: O(1)
// pop, push, merge: O(log N)
template <class Value, class Comparator = less<Value>> struct IncrementalSkewHeap {
    Comparator cmp;

struct Node { Value val, delta = 0; Node *left = nullptr, *right = nullptr; Node (Value val) : val(val) {} };

int sz = 0; Node *root = nullptr;
     void propagate(Node *a) {
         a->val += a->delta;
         if (a->left) a->left->delta += a->delta;
         if (a->right) a->right->delta += a->delta;
         a \rightarrow delta = 0;
     Node *merge(Node *a, Node *b) {
         if (!a || !b) return a ? a : b;
         propagate(a); propagate(b);
         if (cmp(a->val, b->val)) swap(a, b);
         a->right = merge(b, a->right); swap(a->left, a->right);
    IncrementalSkewHeap() {}
bool empty() { return !root; }
     Value top() { propagate(root); return root->val; }
     Value pop() {
         propagate(root); Value ret = root->val; root = merge(root->left, root->right); sz--;
         return ret;
     void push(Value val) { root = merge(root, new Node(val)); sz++; }
     void increment(Value delta) { if (root) root->delta += delta;
     void merge(IncrementalSkewHeap &h) { root = merge(root, h.root); sz += h.sz; }
     int size() { return sz; }
1.1.4 Ordered Square Root Array
#include <bits/stdc++.h>
using namespace std;
class no_such_element_exception: public runtime_error {
public:
    no_such_element_exception(): runtime_error("No such element exists"){}
    no_such_element_exception(string message): runtime_error(message){}
// Decomposes the array into blocks of size sqrt(n) multiplied by a factor // The factor should be between 1 and 10, and should be smaller for large N \,
// Time Complexity:
      constructor: O(N)
      insert, erase: O(sqrt(N) + log(N))
      pop\_front: O(sqrt(N))
      pop_back: O(1) amortized
      front, back, empty, size: O(1)
      at, accessor, contains, floor, ceiling, above, below: O(log(N))
      values: O(N)
// Values. O(N)
// Memory Complexity: O(N)
template <class Value, class Comparator = less<Value>>
struct OrderedSqrtArray {
     Comparator cmp; int n, SCALE_FACTOR; vector<vector<Value>> a; vector<int> prefixSZ;
    pair<int, int> ceiling_ind(const Value val) const {
  int lo = 0, hi = (int) a.size(), mid;
  while (lo < hi) {</pre>
              mid = 1o + (hi - 1o) / 2;
              if (cmp(a[mid].back(), val)) lo = mid + 1;
              else hi = mid;
         if (lo == (int) a.size()) return {(int) a.size(), 0};
         int i = lo; lo = 0, hi = (int) a[i].size();
while (lo < hi) {</pre>
              mid = lo + (hi - lo) / 2;

if (cmp(a[i][mid], val)) lo = mid + 1;
              else hi = mid;
         return {i, lo};
    pair<int, int> floor_ind(const Value val) const {
         int lo = 0, hi = ((int) a.size()) - 1, mid;
while (lo <= hi) {
    mid = lo + (hi - lo) / 2;</pre>
```

```
if (cmp(val, a[mid].front())) hi = mid - 1;
         else lo = mid + 1;
    if (hi == -1) return {-1, 0};
int i = hi; lo = 0, hi = ((int) a[i].size()) - 1;
    while (lo <= hi) {
         mid = lo + (hi - lo) / 2;
         if (cmp(val, a[i][mid])) hi = mid - 1;
         else lo = mid + 1;
    return {i, hi};
pair<int, int> above_ind(const Value val) const {
    int lo = 0, hi = (int) a.size(), mid;
    while (lo < hi) {
         mid = lo + (hi - lo) / 2;
         if (cmp(val, a[mid].back())) hi = mid;
         else lo = mid + 1;
    if (lo == (int) a.size()) return {(int) a.size(), 0};
    int i = lo; lo = 0, hi = (int) a[i].size();
    while (lo < hi) {
         mid = lo + (hi - lo) / 2;
        if (cmp(val, a[i][mid])) hi = mid;
else lo = mid + 1;
    return {i, lo};
pair<int, int> below_ind(const Value val) const {
    int lo = 0, hi = ((int) a.size()) - 1, mid;
while (lo <= hi) {</pre>
        mid = lo + (hi - lo) / 2;
         if (cmp(a[mid].front(), val)) lo = mid + 1;
         else hi = mid - 1;
    if (hi == -1) return {-1, 0};
int i = hi; lo = 0, hi = ((int) a[i].size()) - 1;
while (lo <= hi) {</pre>
         mid = lo + (hi - lo) / 2;
         if (cmp(a[i][mid], val)) lo = mid + 1;
         else hi = mid - 1;
    return {i, hi};
OrderedSqrtArray(const int SCALE_FACTOR = 1) : n(0), SCALE_FACTOR(SCALE_FACTOR) {}
assert(n >= 0); assert(is_sorted(st, en, cmp));
    int sqrtn = (int) sqrt(n) * SCALE_FACTOR;
for (It i = st; i < en; i += sqrtn) {</pre>
         a.emplace_back(i, min(i + sqrtn, en));
         prefixSZ.push_back(0);
    for (int i = 1; i < (int) a.size(); i++) prefixSZ[i] = prefixSZ[i - 1] + (int) a[i - 1].size();</pre>
OrderedSqrtArray(initializer_list<Value> il, const int SCALE_FACTOR = 1) :
        n(il.end() - il.begin()), SCALE_FACTOR(SCALE_FACTOR) {
    assert(n >= 0); assert(is_sorted(il.begin(), il.end(), cmp));
    int sqrtn = (int) sqrt(n) * SCALE_FACTOR;
for (auto i = il.begin(); i < il.end(); i += sqrtn) {</pre>
         a.emplace_back(i, min(i + sqrtn, il.end()));
prefixSZ.push_back(0);
    for (int i = 1; i < (int) a.size(); i++) prefixSZ[i] = prefixSZ[i - 1] + (int) a[i - 1].size();</pre>
void insert(const Value val) {
    int int, int> i = above_ind(val);
if (n++ == 0) { a.emplace_back(); prefixSZ.push_back(0); }
if (i.first == (int) a.size()) a[-i.first].push_back(val);
    else a[i.first].insert(a[i.first].begin() + i.second, val);
    int sqrtn = (int) sqrt(n) * SCALE_FACTOR;
    if ((int) a[i.first].size() > 2 * sqrtn)
         a.emplace(a.begin() + i.first + 1, a[i.first].begin() + sqrtn, a[i.first].end());
         a[i.first].resize(sqrtn);
         prefixSZ.push_back(0);
    for (int j = i.first + 1; j < (int) a.size(); j++) prefixSZ[j] = prefixSZ[j - 1] + (int) a[j - 1].size();
bool erase(const Value val) {
    pair<int, int> i = ceiling_ind(val);
    if (i.first == (int) a.size() || a[i.first][i.second] != val) return false;
    --n; a[i.first].erase(a[i.first].begin() + i.second);
if (a[i.first].empty()) { a.erase(a.begin() + i.first); prefixSZ.pop_back(); }
    for (int j = i.first + 1; j < (int) a.size(); j++) prefixSZ[j] = prefixSZ[j - 1] + (int) a[j - 1].size(); return true;
void pop_front() {
    assert(n > 0); --n; a.front().erase(a.front().begin());
    if (a.front().empty()) { a.erase(a.begin()); prefixSZ.pop_back(); }
    for (int i = 1; i < (int) a.size(); i++) prefixSZ[i] = prefixSZ[i - 1] + (int) a[i - 1].size();</pre>
void pop_back() {
   assert(n > 0); --n; a.back().pop_back();
    if (a.back().empty()) { a.pop_back(); prefixSZ.pop_back(); }
```

```
const Value &at(const int k) const {
          assert(0 <= k && k < n); int lo = 0, hi = ((int) a.size()) - 1, mid;
          while (lo <= hi) {
               mid = lo + (hi - lo) / 2;
               if (k < prefixSZ[mid]) hi = mid - 1;
else lo = mid + 1;</pre>
          return a[hi][k - prefixSZ[hi]];
     const Value &operator [](const int k) const { return at(k); }
     const Value &front() const { assert(n > 0); return a.front().front(); }
const Value &back() const { assert(n > 0); return a.back().back(); }
     bool empty() const { return n == 0; }
     int size() const { return n; }
     bool contains (const Value val) const
          pair<int, int> i = ceiling_ind(val);
return i.first != (int) a.size() && a[i.first][i.second] == val;
     pair<int, Value> floor(const Value val) const {
          pair<int, int> i = floor_ind(val);
if (i.first == -1) throw no_such_element_exception("call to floor() resulted in no such value");
          return {prefixSZ[i.first] + i.second, a[i.first][i.second]};
     pair<int, Value> ceiling(const Value val) const {
          pair<int, int> i = ceiling_ind(val);
if (i.first == (int) a.size()) throw no_such_element_exception("call to ceiling() resulted in no such value");
return {prefixSZ[i.first] + i.second, a[i.first][i.second]};
     pair<int, Value> above(const Value val) const {
          pair<int, int> i = above_ind(val);
if (i.first == (int) a.size()) throw no_such_element_exception("call to above() resulted in no such value");
return {prefixSZ[i.first] + i.second, a[i.first][i.second]};
     pair<int, Value> below(const Value val) const {
          pair<int, int> i = below_ind(val);
if (i.first == -1) throw no_such_element_exception("call to below() resulted in no such value");
return {prefixSZ[i.first] + i.second, a[i.first][i.second]};
     vector<Value> values() const {
          vector<Value> ret;
          for (auto &
return ret;
               (auto &&ai : a) for (auto &&aij : ai) ret.push_back(aij);
1.1.5 Ordered Root Array
#pragma once
#include <bits/stdc++.h>
using namespace std;
class no_such_element_exception: public runtime_error {
public:
     no_such_element_exception(): runtime_error("No such element exists"){}
     no_such_element_exception(string message): runtime_error(message){}
// Decomposes the array into N \hat{\ } (1 / R) containers of size N \hat{\ } ((R - 1) / R) multiplied by a factor
// The factor should be between 1 and 10, and should be smaller for large N \,
// Time Complexity:
      constructor: O(N)
      insert, erase: O(N ^ (1 / R) + log(N))
pop_front: O(N ^ (1 / R))
pop_back: O(1) amortized
      front, back, empty, size: O(1) at, accessor, contains, floor, ceiling, above, below: O(log(N))
      values: O(N)
// Memory Complexity: O(N)
template <const int R, class Value, class Container, class Comparator = less<Value>>
struct OrderedRootArray {
    Comparator cmp; int n, SCALE_FACTOR; vector<Container> a; vector<int> prefixSZ;
     int ceiling_ind(const Value val) const {
          int lo = 0, hi = (int) a.size(), mid;
while (lo < hi) {</pre>
               mid = 1o + (hi - 1o) / 2;
               if (cmp(a[mid].back(), val)) lo = mid + 1;
               else hi = mid;
          return lo;
     int floor_ind(const Value val) const {
          int lo = 0, hi = ((int) a.size()) - 1, mid;
while (lo <= hi) {</pre>
               mid = 1o + (hi - 1o) / 2;
               if (cmp(val, a[mid].front())) hi = mid - 1;
else lo = mid + 1;
          return hi;
     int above_ind(const Value val) const {
          int lo = 0, hi = (int) a.size(), mid;
while (lo < hi) {</pre>
               mid = lo + (hi - lo) / 2;
               if (cmp(val, a[mid].back())) hi = mid;
               else lo = mid + 1;
          return lo;
```

```
int below_ind(const Value val) const {
    int lo = 0, hi = ((int) a.size()) - 1, mid;
    while (lo <= hi) {
   mid = lo + (hi - lo) / 2;</pre>
         if (cmp(a[mid].front(), val)) lo = mid + 1;
         else hi = mid - 1;
    return hi:
OrderedRootArray(const int SCALE_FACTOR = 1) : n(0), SCALE_FACTOR(SCALE_FACTOR) {}
template <typename It> OrderedRootArray(const It st, const It en, const int SCALE_FACTOR = 1) :
    n(en - st), SCALE_FACTOR(SCALE_FACTOR) {
    assert(n >= 0); assert(is_sorted(st, en, cmp));
    int rootn = (int) pow(n, (double) (R - 1) / R) * SCALE_FACTOR;
    for (It i = st; i < en; i += rootn) {
   a.emplace_back(i, min(i + rootn, en), SCALE_FACTOR);</pre>
         prefixSZ.push_back(0);
    for (int i = 1; i < (int) a.size(); i++) prefixSZ[i] = prefixSZ[i - 1] + (int) a[i - 1].size();</pre>
OrderedRootArray(initializer_list<Value> il, const int SCALE_FACTOR = 1) :
         n(il.end() - il.begin()), SCALE_FACTOR(SCALE_FACTOR) {
    assert(n >= 0); assert(is_sorted(il.begin(), il.end(), cmp));
    int rootn = (int) pow(n, (double) (R - 1) / R) * SCALE_FACTOR;
for (auto i = il.begin(); i < il.end(); i += rootn) {
    a.emplace_back(i, min(i + rootn, il.end()), SCALE_FACTOR);
}</pre>
         prefixSZ.push_back(0);
    for (int i = 1; i < (int) a.size(); i++) prefixSZ[i] = prefixSZ[i - 1] + (int) a[i - 1].size();</pre>
void insert(const Value val) {
    int i = above_ind(val);
    if (n++ == 0) { a.emplace_back(SCALE_FACTOR); prefixSZ.push_back(0); }
    if (i == (int) a.size()) a[--i].insert(val);
    else a[i].insert(val);
    int rootn = (int) pow(n, (double) (R - 1) / R) * SCALE FACTOR;
    if ((int) a[i].size() > 2 * rootn) {
          vector<Value> b;
         while (a[i].size() > rootn) { b.push_back(a[i].back()); a[i].pop_back(); }
         reverse(b.begin(), b.end()); a.emplace(a.begin() + i + 1, b.begin(), b.end(), SCALE_FACTOR); prefixSZ.push_back(0);
    for (int j = i + 1; j < (int) a.size(); j++) prefixSZ[j] = prefixSZ[j - 1] + (int) a[j - 1].size();</pre>
bool erase (const Value val) {
    int i = ceiling_ind(val);
    if (i == (int) a.size()) return false;
    if (!a[i].erase(val)) return false;
    if (a[i].empty()) { a.erase(a.begin() + i); prefixSZ.pop_back(); }
    for (int j = i + 1; j < (int) a.size(); j++) prefixSZ[j] = prefixSZ[j - 1] + (int) a[j - 1].size();
return true;</pre>
void pop front() {
    assert(n > 0); --n; a.front().pop_front();
    if (a.front().empty()) { a.erase(a.begin()); prefixSZ.pop_back(); }
    for (int i = 1; i < (int) a.size(); i++) prefixSZ[i] = prefixSZ[i - 1] + (int) a[i - 1].size();</pre>
void pop back()
    assert(n > 0); --n; a.back().pop_back();
    if (a.back().empty()) { a.pop_back(); prefixSZ.pop_back(); }
const Value &at(const int k) const {
    assert(0 \leq k && k \leq n); int lo = 0, hi = ((int) a.size()) - 1, mid;
    while (lo <= hi) {
         mid = 1o + (hi - 1o) / 2;
         if (k < prefixSZ[mid]) hi = mid - 1;
else lo = mid + 1;</pre>
    return a[hi].at(k - prefixSZ[hi]);
const Value &operator [](const int k) const { return at(k); }
const Value &front() const { assert(n > 0); return a.front().front(); }
const Value &back() const { assert(n > 0); return a.back().back(); }
bool empty() const { return n == 0; }
int size() const { return n; }
bool contains (const Value val) const {
    int i = ceiling_ind(val);
    return i != (int) a.size() && a[i].contains(val);
pair<int, Value> floor(const Value val) const {
    int i = floor_ind(val);
if (i == -1) throw no_such_element_exception("call to floor() resulted in no such value");
pair<int, Value> j = a[i].floor(val);
return {prefixSZ[i] + j.first, j.second};
pair<int, Value> above(const Value val) const {
    int i = above_ind(val);
    int i - above_inu(var),
if (i == (int) a.size()) throw no_such_element_exception("call to above() resulted in no such value");
pair<int, Value> j = a[i].above(val);
return {prefixSZ[i] + j.first, j.second};
pair<int, Value> below(const Value val) const {
    int i = below_ind(val);
if (i == -1) throw no_such_element_exception("call to below() resulted in no such value");
    pair<int, Value> j = a[i].below(val);
```

```
return {prefixSZ[i] + j.first, j.second};
    pair<int, Value> ceiling(const Value val) const {
   int i = ceiling_ind(val);
         if (i == (int) a.size()) throw no_such_element_exception("call to ceiling() resulted in no such value");
         pair<int, Value> j = a[i].ceiling(val);
          return {prefixSZ[i] + j.first, j.second};
     vector<Value> values() const {
          vector<Value> ret;
         for (auto &&ai : a) for (auto &&aij : ai.values()) ret.push_back(aij);
return ret;
1.1.6 Square Root Array
#pragma once
#include <bits/stdc++.h>
using namespace std;
class no such element exception: public runtime error {
public:
     no_such_element_exception(): runtime_error("No such element exists"){}
     no_such_element_exception(string message): runtime_error(message){}
// Decomposes the array into blocks of size sqrt(n) multiplied by a factor // The factor should be between 1 and 10, and should be smaller for large N \,
   Time Complexity:
      constructor: O(N)
      insert, erase: O(sqrt(N) + log(N))
      push_front, pop_front: O(sqrt(N))
      push_back, pop_back: O(1) amortized front, back, empty, size: O(1)
      at, accessor: O(log(N))
      values: O(N)
// Memory Complexity: O(N)
template <class Value> struct SqrtArray {
    int n, SCALE_FACTOR; vector<vector<Value>> a; vector<int> prefixSZ;
SqrtArray(const int SCALE_FACTOR = 1) : n(0), SCALE_FACTOR(SCALE_FACTOR) {}
SqrtArray(const int n, const int SCALE_FACTOR) : n(n), SCALE_FACTOR(SCALE_FACTOR) {
    assert(n >= 0); int sqrtn = (int) sqrt(n) * SCALE_FACTOR;
}
         for (int i = 0; i < n; i += sqrtn) { a.emplace_back (min(sqrtn, n - i)); prefixSZ.push_back(0); } for (int i = 1; i < (int) a.size(); i++) prefixSZ[i] = prefixSZ[i - 1] + (int) a[i - 1].size();
     template <typename It> SqrtArray(const It st, const It en, const int SCALE_FACTOR = 1) : n(en - st), SCALE_FACTOR(SCALE_FACTOR)
          assert(n >= 0); int sqrtn = (int) sqrt(n) * SCALE_FACTOR;
         for (It i = st; i < en; i += sqrtn) { a.emplace_back(i, min(i + sqrtn, en)); prefixSZ.push_back(0); }
for (int i = 1; i < (int) a.size(); i++) prefixSZ[i] = prefixSZ[i - 1] + (int) a[i - 1].size();</pre>
     SqrtArray(initializer_list<Value> il, const int SCALE_FACTOR = 1) : n(il.end() - il.begin()), SCALE_FACTOR(SCALE_FACTOR) {
         assert(n >= 0); int sqrtn = (int) sqrt(n) * SCALE_FACTOR;
for (auto i = il.begin(); i < il.end(); i += sqrtn) { a.emplace_back(i, min(i + sqrtn, il.end())); prefixSZ.push_back(0); }
for (int i = 1; i < (int) a.size(); i++) prefixSZ[i] = prefixSZ[i - 1] + (int) a[i - 1].size();</pre>
     void insert(int k, const Value val) { // inserts value before kth index
         while (lo <= hi)
              mid = 10 + (hi - 10) / 2;
if (k < prefixSZ[mid]) hi = mid - 1;
              else lo = mid + 1;
            -= prefixSZ[hi]; int sqrtn = (int) sqrt(n) * SCALE_FACTOR;
         if (hi == -1) a[hi += (int) a.size()].push_back(val);
else a[hi].insert(a[hi].begin() + k, val);
          if ((int) a[hi].size() > 2 * sqrtn) {
              a.emplace(a.begin() + hi + 1, a[hi].begin() + sqrtn, a[hi].end()); a[hi].resize(sqrtn); prefixSZ.push_back(0);
         for (int i = hi + 1; i < (int) a.size(); i++) prefixSZ[i] = prefixSZ[i - 1] + (int) a[i - 1].size();</pre>
     void push front (const Value val) {
         if (n++ == 0) { a.emplace_back(); prefixSZ.push_back(0); }
          a.front().insert(a.front().begin(), val); int sqrtn = (int) sqrt(n) * SCALE_FACTOR;
         if ((int) a.front().size() > 2 * sqrtn) {
               a.emplace(a.begin() + 1, a.front().begin() + sqrtn, a.front().end()); a.front().resize(sqrtn); prefixSZ.push_back(0);
         for (int i = 1; i < (int) a.size(); i++) prefixSZ[i] = prefixSZ[i - 1] + (int) a[i - 1].size();</pre>
     void push back (const Value val) {
         if (n++ == 0) { a.emplace_back(); prefixSZ.push_back(0);
          a.back().push_back(val); int sqrtn = (int) sqrt(n) * SCALE_FACTOR;
         if ((int) a.back().size() > 2 * sqrtn) {
               a.emplace_back(a.back().begin() + sqrtn, a.back().end()); a[(int) a.size() - 2].resize(sqrtn);
              prefixSZ.push_back(prefixSZ[(int) a.size() - 2] + (int) a[(int) a.size() - 2].size());
     void erase(const int k) {
         assert(0 <= k \&\& k < n); --n; int lo = 0, hi = (int) (a.size()) - 1, mid;
          while (lo <= hi) {
              mid = lo + (hi - lo) / 2;
              if (k < prefixSZ[mid]) hi = mid - 1;</pre>
              else lo = mid + 1;
```

```
a[hi].erase(a[hi].begin() + k - prefixSZ[hi]);
          if (a[hi].empty()) { a.erase(a.begin() + hi); prefixSZ.pop_back();
         for (int i = hi + 1; i < (int) a.size(); i++) prefixSZ[i] = prefixSZ[i - 1] + (int) a[i - 1].size();</pre>
     void pop_front() {
         assert(n > 0); --n; a.front().erase(a.front().begin());
          if (a.front().empty()) { a.erase(a.begin()); prefixSZ.pop_back(); }
          for (int i = 1; i < (int) a.size(); i++) prefixSZ[i] = prefixSZ[i - 1] + (int) a[i - 1].size();</pre>
     void pop_back() {
         assert(n > 0); --n; a.back().pop_back();
         if (a.back().empty()) { a.pop_back(); prefixSZ.pop_back(); }
     Value & operator [] (int k) {
         assert (0 \leq k && k \leq n); int lo = 0, hi = ((int) a.size()) - 1, mid;
         while (lo <= hi) {
              mid = lo + (hi - lo) / 2;
              if (k < prefixSZ[mid]) hi = mid - 1;
else lo = mid + 1;</pre>
         return a[hi][k - prefixSZ[hi]];
    const Value &at(const int k) const {
         assert (0 <= k \&\& k < n); int lo = 0, hi = ((int) a.size()) - 1, mid;
          while (lo <= hi) {
              mid = 1o + (hi - 1o) / 2;
              if (k < prefixSZ[mid]) hi = mid - 1;
else lo = mid + 1;</pre>
         return a[hi][k - prefixSZ[hi]];
    const Value &operator [](const int k) const { return at(k); }
    const Value &front() const { assert(n > 0); return a.front().front(); }
const Value &back() const { assert(n > 0); return a.back().back(); }
bool empty() const { return n == 0; }
     int size() const { return n; }
     vector<Value> values() const {
         vector<Value> ret;
         for (auto &&ai : a) for (auto &&aij : ai) ret.push_back(aij);
return ret;
1.1.7 Root Array
#pragma once
#include <bits/stdc++.h>
using namespace std;
class no_such_element_exception: public runtime_error {
    no_such_element_exception(): runtime_error("No such element exists"){}
    no_such_element_exception(string message): runtime_error(message){}
// Decomposes the array into N \hat{\ } (1 / R) containers of size N \hat{\ } ((R - 1) / R) multiplied by a factor
   The factor should be between 1 and 10, and should be smaller for large N
// Time Complexity:
// constructor: 0
     constructor: O(N)
      insert, erase: O(N ^ (1 / R) + log(N))
      push_front, pop_front: O(N ^ (1 / R))
      push_back, pop_back: O(1) amortized
      front, back, empty, size: O(1) at, accessor: O(log(N))
      values: O(N)
// Memory Complexity: O(N)
template <const int R, class Value, class Container> struct RootArray {
    int n, SCALE_FACTOR; vector<Container> a; vector<int> prefixSZ;
RootArray(const int SCALE_FACTOR = 1) : n(0), SCALE_FACTOR(SCALE_FACTOR) {}
    RootArray(const int n, const int SCALE_FACTOR): n(n), SCALE_FACTOR(SCALE_FACTOR) {
   assert(n >= 0); int rootn = (int) pow(n, (double) (R - 1) / R) * SCALE_FACTOR;
         for (int i = 0; i < n; i += rootn) { a.emplace_back(min(rootn, n - i)); prefixSZ.push_back(0); } for (int i = 1; i < (int) a.size(); i++) prefixSZ[i = rootn] + (int) a[i = 1].size();
     template <typename It> RootArray(const It st, const It en, const int SCALE_FACTOR = 1) : n(en - st), SCALE_FACTOR(SCALE_FACTOR)
         assert(n >= 0); int rootn = (int) pow(n, (double) (R - 1) / R) * SCALE_FACTOR;
for (It i = st; i < en; i += rootn) { a.emplace_back(i, min(i + rootn, st + n), SCALE_FACTOR); prefixSZ.push_back(0); }
for (int i = 1; i < (int) a.size(); i++) prefixSZ[i] = prefixSZ[i - 1] + (int) a[i - 1].size();</pre>
     RootArray(initializer_list<Value> i1, const int SCALE_FACTOR = 1) : n(i1.end() - i1.begin()), SCALE_FACTOR(SCALE_FACTOR) {
         assert (n >= 0); int rootn = (int) pow(n, (double) (R - 1) / R) * SCALE_FACTOR; for (auto i = il.begin(); i < il.end(); i += rootn) {
              a.emplace_back(i, min(i + rootn, il.end()), SCALE_FACTOR);
              prefixSZ.push_back(0);
         for (int i = 1; i < (int) a.size(); i++) prefixSZ[i] = prefixSZ[i - 1] + (int) a[i - 1].size();
     void insert(int k, const Value val) { // inserts value before kth index
          assert (0 \leq k && k \leq n);
         if (n++ == 0) { a.emplace_back(SCALE_FACTOR); prefixSZ.push_back(0); }
         int lo = 0, hi = (int) (a.size()) - 1, mid; while (lo <= hi) {
              mid = 1o + (hi - 1o) / 2;
              if (k < prefixSZ[mid]) hi = mid - 1;</pre>
              else lo = mid + 1;
```

```
k -= prefixSZ[hi]; int rootn = (int) pow(n, (double) (R - 1) / R) * SCALE_FACTOR;
         if (hi == -1) a[hi += (int) a.size()].push_back(val);
         else a[hi].insert(k, val);
         if ((int) a[hi].size() > 2 * rootn) {
              vector<Value> b;
             while (a[hi].size() > rootn) { b.push_back(a[hi].back()); a[hi].pop_back(); }
              reverse(b.begin(), b.end()); a.emplace(a.begin() + hi + 1, b.begin(), b.end(), SCALE_FACTOR); prefixSZ.push_back(0);
         for (int i = hi + 1; i < (int) a.size(); i++) prefixSZ[i] = prefixSZ[i - 1] + (int) a[i - 1].size();</pre>
    void push_front(const Value val) {
         if (n++ == 0) { a.emplace_back(SCALE_FACTOR); prefixSZ.push_back(0); }
a.front().push_front(val);
         int rootn = (int) pow(n, (double) (R - 1) / R) * SCALE_FACTOR;
         if ((int) a.front().size() > 2 * rootn) {
              vector<Value> b;
             while (a.front().size() > rootn) { b.push_back(a.front().back()); a.front().pop_back(); }
             reverse(b.begin(), b.end()); a.emplace(a.begin() + 1, b.begin(), b.end(), SCALE_FACTOR); prefixSZ.push_back(0);
    void push_back(const Value val) {
         if (n++ == 0) { a.emplace_back(SCALE_FACTOR); prefixSZ.push_back(0); }
         a.back().push_back(val);
         int rootn = (int) pow(n, (double) (R - 1) / R) * SCALE_FACTOR;
         if ((int) a.back().size() > 2 * rootn) {
              vector<Value> b;
             while (a.back().size() > rootn) { b.push_back(a.back().back()); a.back().pop_back(); }
             reverse(b.begin(), b.end()); a.emplace_back(b.begin(), b.end(), SCALE_FACTOR);
             prefixSZ.push_back(prefixSZ[(int) a.size() - 2] + (int) a[(int) a.size() - 2].size());
    void erase(const int k) {
         assert(0 <= k && k < n); --n; int 10 = 0, 10 = 0 (int) (a.size()) - 1, mid;
         while (lo <= hi) {
             mid = 1o + (hi - 1o) / 2;
             if (k < prefixSZ[mid]) hi = mid - 1;</pre>
             else lo = mid + 1;
         a[hi].erase(k - prefixSZ[hi]);
if (a[hi].empty()) { a.erase(a.begin() + hi); prefixSZ.pop_back(); }
         for (int i = hi + 1; i < (int) a.size(); i++) prefixSZ[i] = prefixSZ[i - 1] + (int) a[i - 1].size();</pre>
    void pop_front() {
         assert(n > 0); --n; a.front().pop_front();
         if (a.front(),empty()) { a.erase(a.begin()); prefixSZ.pop_back(); }
for (int i = 1; i < (int) a.size(); i++) prefixSZ[i] = prefixSZ[i - 1] + (int) a[i - 1].size();</pre>
    void pop_back() {
   assert(n > 0); --n; a.back().pop_back();
         if (a.back().empty()) { a.pop_back(); prefixSZ.pop_back(); }
    Value & operator [] (int k) { assert (0 \le k \& k < n); int lo = 0, hi = ((int) a.size()) - 1, mid;
         while (lo <= hi) {
             mid = 10 + (hi - 10) / 2;
             if (k < prefixSZ[mid]) hi = mid - 1;</pre>
             else lo = mid + 1;
         return a[hi][k - prefixSZ[hi]];
    const Value &at(const int k) const {
    assert(0 <= k && k < n); int lo = 0, hi = ((int) a.size()) - 1, mid;</pre>
         while (lo <= hi) {
             mid = 1o + (hi - 1o) / 2;
             if (k < prefixSZ[mid]) hi = mid - 1;
else lo = mid + 1;</pre>
         return a[hi].at(k - prefixSZ[hi]);
    const Value & operator [](const int k) const { return at(k); }
const Value & front() const { assert(n > 0); return a.front().front(); }
    const Value &back() const { assert(n > 0); return a.back().back(); }
    bool empty() const { return n == 0; }
    int size() const { return n; }
    vector<Value> values() const {
         vector<Value> ret;
         for (auto &&ai : a) for (auto &&aij : ai.values()) ret.push_back(aij);
1.1.8 Radix Heap
#pragma once
#include <bits/stdc++.h>
using namespace std;
// 32-bit Radix Heap
// Comparator convention is same as priority_queue in STL
// Time Complexity:
    top: O(B) where B is the number of bits
     empty, size, pop, push: O(1)
template <class T, class Comparator = less<uint32_t>> struct RadixHeap
    Comparator cmp; int n; uint32_t last; vector<pair<uint32_t, T>> x[33];
int bsr(uint32_t a) { return a ? 31 - __builtin_clz(a) : -1; }
    int bsr(uint32_t a) { return a ? 31 - _builtin_clz(a) : -1; }
void aux(const pair<uint32_t, T> &p) { x[bsr(p.first ^ last) + 1].push_back(p); }
```

```
RadixHeap() : n(0), last(0) {}
     bool empty() const { return 0 == n; }
     int size() const { return n; }
pair<uint32_t, T> top() {
   assert(n > 0);
           if (x[0].empty()) {
                int i = 1;
                while (x[i].empty()) ++i;
last = x[i][0].first;
for (int j = 1; j < int(x[i].size()); j++) if (cmp(last, x[i][j].first)) last = x[i][j].first;
for (auto &&p : x[i]) aux(p);</pre>
                x[i].clear();
           return x[0].back();
     void pop() { assert(n > 0); top(); n--; x[0].pop_back(); }
void push(uint32_t key, T value) { n++; aux({key, value}); }
1.1.9 Radix Heap 64
#pragma once
#include <bits/stdc++.h>
using namespace std;
// 64-bit Radix Heap
// Comparator convention is same as priority queue in STL
// Time Complexity:
      top: O(B) where B is the number of bits
// empty, size, pop, push: O(1)
template <class T, class Comparator = less<uint64_t>> struct RadixHeap64 {
     Comparator cmp; int n; uint64_t last; vector<pair<uint64_t, T>> x[65]; int bsr(uint64_t a) { return a ? 63 - _builtin_clzll(a) : -1; }
     void aux(const pair<uint64_t, T> &p) { x[bsr(p.first ^ last) + 1].push_back(p); }
RadixHeap64() : n(0), last(0) {}
bool empty() const { return 0 == n; }
int size() const { return n; }
     pair<uint64_t, T> top() {
    assert(n > 0);
           if (x[0].empty()) {
                int i = 1:
                 while (x[i].empty()) ++i;
                 last = x[i][0].first;
                for (auto &&p : x[i]) aux(p);
                x[i].clear();
           return x[0].back();
     void pop() { assert(n > 0); top(); n--; x[0].pop_back(); }
void push(uint64_t key, T value) { n++; aux({key, value}); }
1.1.10 RMQ Sparse Table
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Sparse Table for Range Minimum Queries
// Time Complexity:
    init: O(N log N)
// query: O(1)
template <const int MAXN, const int LGN, class T> struct RMQSparseTable {
     T A[MAXN]; int ST[LGN][MAXN];
     int minInd(int 1, int r) { return A[1] <= A[r] ? 1 : r; }</pre>
     void init(int N) {
   int lg = 32 - _builtin_clz(N); iota(ST[0], ST[0] + N, 0);
   for (int i = 0; i < lg - 1; i++) for (int j = 0; j + (1 << i) < N; j++)
        ST[i + 1][i] = minInd(ST[i][j], ST[i][j + (1 << i)]);</pre>
     int query(int 1, int r) { // zero-indexed, inclusive
   int i = 31 - __builtin_clz(r - 1 + 1); 1 = ST[i][1]; r = ST[i][r - (1 << i) + 1];</pre>
           return minInd(1, r);
};
1.1.11 Union Find
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Union Find / Disjoint Sets with Half Compression
// Time Complexity:
      init: O(N)
       find, join, connected, getSize: Inverse Ackerman
 // Memory Complexity: O(N)
template <const int MAXN> struct UnionFind {
     int UF[MAXN], cnt;
void init(int N) { cnt = N; fill(UF, UF + MAXN, -1); }
int find(int v) { return UF[v] < 0 ? v : UF[v] = find(UF[v]); }</pre>
     bool join (int v, int w) {
    v = find(v); w = find(w);
           if (v == w) return false;
if (UF[v] > UF[w]) swap(v, w);
UF[v] += UF[w]; UF[w] = v; cnt--;
```

```
return true;
     bool connected(int v, int w) { return find(v) == find(w); }
int getSize(int v) { return -UF[find(v)]; }
1.1.12 Union Find Undo
#pragma once
#include <bits/stdc++.h>
using namespace std;
   Union Find / Disjoint Sets supporting undos {\it Time\ Complexity:}
      init: O(N)
      find, join, connected, getSize: O(log N) undo: O(1)
// Memory Complexity: O(N)
template <const int MAXN> struct UnionFindUndo {
     int UF[MAXN], cnt; stack<pair<pair<int, int>, int>> history;
void init(int N) { cnt = N; fill(UF, UF + MAXN, -1); }
     int find(int v) { while (UF[v] >= 0) v = UF[v]; return v; }
     bool join(int v, int w) {
    v = find(v); w = find(w);
          if (v == w) return false;
          if (UF[v] > UF[w]) swap(v, w);
          history.push({{v, w}, UF[w]}); UF[v] += UF[w]; UF[w] = v; cnt--; return true;
     void undo() {
   int v = history.top().first.first, w = history.top().first.second, ufw = history.top().second;
   history.pop(); UF[w] = ufw; UF[v] -= UF[w]; cnt++;
     1.2
         Trees
1.2.1 Size Balanced Tree
#pragma once
#include <bits/stdc++.h>
using namespace std;
class no_such_element_exception: public runtime_error {
public:
     no_such_element_exception(): runtime_error("No such element exists"){}
     no such element exception(string message): runtime error(message){}
// Size Balanced Binary Search Set
// Time Complexity:
      constructor, empty, size: O(1)
      keyValuePairs: O(N)
all other operators: O(log N)
 // Memory Complexity: O(N)
template <typename Key, typename Value, typename Comparator = less<Key>> struct SBT {
     comparator cmp; vector<Key> KEY; vector<Value> VAL; vector<int> SZ, L, R; int root = 0;
void update(int x) { SZ[x] = 1 + SZ[L[x]] + SZ[R[x]]; }
int rotateRight(int x) { int y = L[x]; L[x] = R[y]; R[y] = x; update(x); update(y); return y; }
int rotateLeft(int x) { int y = R[x]; R[x] = L[y]; L[y] = x; update(x); update(y); return y; }
     int maintain(int x, bool flag) {
          if (flag) {
               if (SZ[L[x]] < SZ[L[R[x]]]) { R[x] = rotateRight(R[x]); x = rotateLeft(x); else if (SZ[L[x]] < SZ[R[R[x]]]) x = rotateLeft(x);
          } else +
               if (SZ[R[x]] < SZ[R[L[x]]) { L[x] = rotateLeft(L[x]); x = rotateRight(x); } else if (SZ[R[x]] < SZ[L[L[x]])) x = rotateRight(x);
          L[x] = maintain(L[x], false); R[x] = maintain(R[x], true); x = maintain(x, true); x = maintain(x, false);
          return x;
     int get(int x, Key key) {
          if (!x) return 0;
if (cmp(key, KEY[x])) return get(L[x], key);
          else if (cmp(KEY[x], key)) return get(R[x], key);
          else return x;
     int put(int x, Key key, Value val) {
          if (!x) {
               if (KEY.empty()) KEY.push_back(key);
               if (VAL.empty()) VAL.push_back(val);
KEY.push_back(key); VAL.push_back(val); SZ.push_back(1); L.push_back(0); R.push_back(0);
               return int(KEY.size()) - 1;
          if (cmp(key, KEY[x])) { int l = put(L[x], key, val); L[x] = 1; }
          else if (cmp(KEY[x], key)) { int r = put(R[x], key, val); R[x] = r; }
else { VAL[x] = val; return x; }
          update(x); return maintain(x, key > KEY[x]);
```

int removeMin(int x) {
 if (!L[x]) return R[x];

L[x] = removeMin(L[x]); update(x); return x;

```
int removeMax(int x) {
     if (!R[x]) return L[x];
     R[x] = removeMax(R[x]); update(x); return x;
int getMin(int x) { return L[x] ? getMin(L[x]) : x; }
int getMax(int x) { return R[x] ? getMax(R[x]) : x; }
int remove(int x, Key key) {
   if (cmp(key, KEY[x])) L[x] = remove(L[x], key);
   else if (cmp(KEY[x], key)) R[x] = remove(R[x], key);
          if (!L[x]) return R[x];
          else if (!R[x]) return L[x];
else { int y = x; x = getMin(R[y]); R[x] = removeMin(R[y]); L[x] = L[y]; }
     update(x); return x;
int floor(int x, Key key) {
     if (!x) return 0;
if (!cmp(key, KEY[x]) && !cmp(KEY[x], key)) return x;
     if (cmp(key, KEY[x])) return floor(L[x], key);
     int y = floor(R[x], key); return y ? y : x;
int ceiling(int x, Key key) {
     if (!x) return 0;
     if (!cmp(key, KEY[x]) && !cmp(KEY[x], key)) return x;
if (cmp(KEY[x], key)) return ceiling(R[x], key);
     int y = ceiling(L[x], key); return y ? y : x;
int select(int x, int k) {
     if (!x) return 0;
int t = SZ[L[x]];
     if (t > k) return select(L[x], k);
     else if (t < k) return select(R[x], k - t - 1);
return x;</pre>
int getRank(int x, Key key) {
   if (!x) return 0;
     if (cmp(key, KEY[x])) return getRank(KEY[x], key);
     else if (cmp(KEY[x], key)) return 1 + SZ[L[x]] + getRank(R[x], key);
     else return SZ[L[x]];
void keyValuePairsInOrder(int x, vector<pair<Key, Value>> &queue) {
     keyValuePairsInOrder(L[x], queue); queue.push_back({KEY[x], VAL[x]}); keyValuePairsInOrder(R[x], queue);
void keyValuePairs(int x, vector<pair<Key, Value>> &queue, Key lo, Key hi) {
     if (cmp(lo, KEY[x])) keyValuePairs(L[x], queue, lo, hi);
if (!cmp(KEY[x], lo) && !cmp(hi, KEY[x])) queue.push_back({KEY[x], VAL[x]});
if (cmp(KEY[x], hi)) keyValuePairs(R[x], queue, lo, hi);
SBT() : SZ(1), L(1), R(1) {}
void clear() {
     KEY.clear(); VAL.clear(); SZ.clear(); L.clear(); R.clear();
     SZ.push_back(0); L.push_back(0); R.push_back(0);
bool empty() { return root == 0; }
int size() { return SZ[root]; }
Value get (Key key)
     int x = get(root, key);
if (!x) throw no_such_element_exception("no such key is in the symbol table");
     return VAL[x];
bool contains(Key key) { return get(root, key) != 0; }
void put(Key key, Value val) { root = put(root, key, val); }
void remove(Key key) { if (contains(key)) root = remove(root, key); }
void removeMin() {
     if (empty()) throw runtime_error("called removeMin() with empty symbol table");
     root = removeMin(root);
void removeMax()
     if (empty()) throw runtime_error("called removeMax() with empty symbol table");
     root = removeMax(root);
pair<Key, Value> getMin() {
    if (empty()) throw runtime_error("called getMin() with empty symbol table");
     int x = getMin(root); return {KEY[x], VAL[x]};
pair<Key, Value> getMax() {
    if (empty()) throw runtime_error("called getMax() with empty symbol table");
     int x = getMax(root); return {KEY[x], VAL[x]};
pair<Key, Value> floor(Key key) {
    if (empty()) throw runtime_error("called floor() with empty symbol table");
     int x = floor(root, key);
     if (!x) throw no_such_element_exception("call to floor() resulted in no such value");
     return {KEY[x], VAL[x]};
pair<Key, Value> ceiling(Key key) {
     if (empty()) throw runtime_error("called ceiling() with empty symbol table");
     int x = ceiling(root, key);
     if (!x) throw no_such_element_exception("call to ceiling() resulted in no such value"); return \{KEY[x], VAL[x]\};
pair<Key, Value> select(int k) {
```

```
if (k < 0 || k >= size()) throw invalid_argument("k is not in range 0 to size");
          int x = select(root, k); return {KEY[x], VAL[x]};
     int getRank(Key key) { return getRank(root, key); }
     vector<pair<Key, Value>> keyValuePairs() {
          vector<pair<Key, Value>> queue; keyValuePairsInOrder(root, queue);
          return queue;
     vector<pair<Key, Value>> keyValuePairs(Key lo, Key hi) {
          vector<pair<Key, Value>> queue; keyValuePairs(root, queue, lo, hi);
return queue;
     int size(Key lo, Key hi) {
   if (cmp(hi, lo)) return 0;
          if (contains(hi)) return getRank(hi) - getRank(lo) + 1;
          else return getRank(hi) - getRank(lo);
1.2.2 Size Balanced Tree Set
#include <bits/stdc++.h>
using namespace std;
class no such element exception: public runtime error {
public:
     no_such_element_exception(): runtime_error("No such element exists"){}
     no_such_element_exception(string message): runtime_error(message){}
// Size Balanced Binary Search Set
// Time Complexity:
      constructor, empty, size: O(1) values: O(N)
      all other operators: O(log N)
// Memory Complexity: O(N)
template <typename Value, typename Comparator = less<Value>> struct SBTSet {
     Comparator cmp; vector<Value> VAL; vector<int> SZ, L, R; int root = 0;
     void update(int x) { SZ[x] = 1 + SZ[L[x]] + SZ[R[x]]; }
     int rotateRight(int x) { int y = L[x]; L[x] = R[y]; R[y] = x; update(x); update(y); return y; }
int rotateLeft(int x) { int y = R[x]; R[x] = L[y]; L[y] = x; update(x); update(y); return y; }
     int maintain(int x, bool flag) {
          if (flag)
               if (SZ[L[x]] < SZ[L[R[x]]])  { R[x] = rotateRight(R[x]); x = rotateLeft(x); }
               else if (SZ[L[x]] < SZ[R[R[x]]]) x = rotateLeft(x);
               else return x;
          } else {
                \begin{array}{lll} \textbf{if} & (SZ[R[x]] < SZ[R[L[x]]]) & \{L[x] = rotateLeft(L[x]); \ x = rotateRight(x); \} \\ \textbf{else if} & (SZ[R[x]] < SZ[L[L[x]]]) \ x = rotateRight(x); \\ \end{array} 
               else return x;
          L[x] = maintain(L[x], false); R[x] = maintain(R[x], true); x = maintain(x, true); x = maintain(x, false);
          return x;
     bool contains (int x, Value val) {
          if (!x) return false;
          else if (cmp(val, VAL[x])) return contains(L[x], val);
          else if (cmp(VAL[x], val)) return contains(R[x], val);
          return true;
     int add(int x, Value val) {
          if (!x)
               if (VAL.empty()) VAL.push_back(val);
VAL.push_back(val); SZ.push_back(1); L.push_back(0); R.push_back(0);
               return int(VAL.size()) - 1;
          if (cmp(val, VAL[x])) { int l = add(L[x], val); L[x] = l; }
else { int r = add(R[x], val); R[x] = r; }
update(x); return maintain(x, !cmp(val, VAL[x]));
     int removeMin(int x) {
          if (!L[x]) return R[x];
          L[x] = removeMin(L[x]); update(x); return x;
     int removeMax(int x) {
          if (!R[x]) return L[x];
R[x] = removeMax(R[x]); update(x); return x;
     int getMin(int x) { return L[x] ? getMin(L[x]) : x; }
     int getMax(int x) { return R[x] ? getMax(R[x]) : x; }
int remove(int x, Value val) {
   if (cmp(val, VAL[x])) L[x] = remove(L[x], val);
          else if (cmp(VAL[x], val)) R[x] = remove(R[x], val);
          else
               if (!L[x]) return R[x];
else if (!R[x]) return L[x];
else { int y = x; x = getMin(R[y]); R[x] = removeMin(R[y]); L[x] = L[y]; }
          update(x); return x;
     int floor(int x, Value val) {
          if (!x) return 0;
if (!x) return 0;
if (!cmp(val, VAL[x]) && !cmp(VAL[x], val)) return x;
if (cmp(val, VAL[x])) return floor(L[x], val);
int y = floor(R[x], val); return y ? y : x;
```

```
int ceiling(int x, Value val) {
         if (!x) return 0;
         if (!cmp(val, VAL[x]) && !cmp(VAL[x], val)) return x;
if (cmp(VAL[x], val)) return ceiling(R[x], val);
         int y = ceiling(L[x], val); return y ? y : x;
     int select(int x, int k) {
         if (!x) return 0;
int t = SZ[L[x]];
         if (t < k) return select(L[x], k);
else if (t < k) return select(R[x], k - t - 1);</pre>
         return x:
    int getRank(int x, Value val) {
   if (!x) return 0;
   if (!cmp(VAL[x], val)) return getRank(L[x], val);
   else return 1 + SZ[L[x]] + getRank(R[x], val);
     void valuesInOrder(int x, vector<Value> &queue) {
         if (!x) return;
         valuesInOrder(L[x], queue); queue.push_back(VAL[x]); valuesInOrder(R[x], queue);
     void values(int x, vector<Value> &queue, Value lo, Value hi) {
         if (!x) return;
if (cmp(lo, VAL[x])) values(L[x], queue, lo, hi);
if (!cmp(VAL[x], lo) && !cmp(hi, VAL[x])) queue.push_back(VAL[x]);
if (cmp(VAL[x], hi)) values(R[x], queue, lo, hi);
     SBTSet(): SZ(1), L(1), R(1) {}
     void clear() {
         VAL.clear(); SZ.clear(); L.clear(); R.clear(); SZ.push_back(0); L.push_back(0); R.push_back(0);
    bool empty() { return root == 0; }
     int size() { return SZ[root]; }
    bool contains(Value val) { return contains(root, val); }
void add(Value val) { root = add(root, val); }
void remove(Value val) { if (contains(val)) root = remove(root, val); }
     void removeMin() {
         if (empty()) throw runtime_error("called removeMin() with empty symbol table");
         root = removeMin(root);
     void removeMax()
         if (empty()) throw runtime_error("called removeMax() with empty symbol table");
         root = removeMax(root);
         if (empty()) throw runtime_error("called getMin() with empty symbol table");
         return VAL[getMin(root)];
     .
Value getMax()
         if (empty()) throw runtime_error("called getMax() with empty symbol table");
return VAL[getMax(root)];
         if (empty()) throw runtime_error("called floor() with empty symbol table");
         int x = floor(root, val);
         if (!x) throw no_such_element_exception("call to floor() resulted in no such value");
         return VAL[x];
     Value ceiling(Value val) {
         if (empty()) throw runtime_error("called ceiling() with empty symbol table");
         int x = ceiling(root, val);
         if (!x) throw no_such_element_exception("call to ceiling() resulted in no such value");
         return VAL[x];
         if (k < 0 \mid | k >= size()) throw invalid_argument("k is not in range 0 to size");
         return VAL[select(root, k)];
     int getRank(Value val) { return getRank(root, val); }
     vector<Value> values()
         vector<Value> queue; valuesInOrder(root, queue);
return queue;
     vector<Value> values(Value lo, Value hi) {
         vector<Value> queue; values(root, queue, lo, hi);
return queue;
     int size(Value lo, Value hi)
         if (cmp(hi, lo)) return 0;
         if (contains(hi)) return getRank(hi) - getRank(lo) + 1;
         else return getRank(hi) - getRank(lo);
1.2.3 Fenwick Tree
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Fenwick Tree or Binary Indexed Tree supporting point updates and range queries
// Time Complexity:
    init: O(N)
     update, rsq: O(log N)
// Memory Complexity: O(N)
```

```
template <const int MAXN, class T> struct FenwickTree {
      T BIT[MAXN];
     void init() { fill(BIT, BIT + MAXN, 0); }
void update(int i, T v) { for (; i < MAXN; i += i & -i) BIT[i] += v; }
T rsq(int i) { T ret = 0; for (; i > 0; i -= i & -i) ret += BIT[i]; return ret; }
      T rsq(int a, int b) { return rsq(b) - rsq(a - 1); }
1.2.4 Fenwick Tree Binary Search
#pragma once
#include <bits/stdc++.h>
using namespace std;
// FenwickTree supporting point updates and range queries, as well as
    support for lower_bound and upper_bound binary searching the cumulative sum
    Time Complexity:
       init: O(N)
       update, rsq, lower_bound, upper_bound: O(log N)
 // Memory Complexity: O(N)
template <const int MAXN, class T> struct FenwickTreeBinarySearch {
     T BIT[MAXN]; int lg = 31 - _builtin_clz(MAXN);

void init() { fill(BIT, BIT + MAXN, 0); }

void update(int i, T v) { for (; i < MAXN; i += i & -i) BIT[i] += v; }

T rsq(int i) { T ret = 0; for (; i > 0; i -= i & -i) ret += BIT[i]; return ret; }
        rsq(int a, int b) { return rsq(b) - rsq(a - 1); }
     int lower_bound(T value) {
  int ind = 0, i = 0; T sum = 0;
  for (int x = 1g; x >= 0; x--) {
    i = ind | (1 << x);
}</pre>
                 if (i >= MAXN) continue;
                 if (sum + BIT[i] < value) { ind = i; sum += BIT[i]; }</pre>
           return ind + 1;
     int upper_bound(T value) {
           int ind = 0, i = 0; T sum = 0;
for (int x = lg; x >= 0; x--) {
                 i = ind | (1 << x);
if (i >= MAXN) continue;
                 if (sum + BIT[i] <= value) { ind = i; sum += BIT[i]; }</pre>
           return ind + 1;
      }
};
1.2.5 Fenwick Tree Range Point
#include <bits/stdc++.h>
using namespace std;
    Fenwick Tree or Binary Indexed Tree supporting range updates and point queries
    Time Complexity:
       init: 0(N)
       update, getValue: O(log N)
// Memory Complexity: O(N)
template <const int MAXN, class T> struct FenwickTree {
    T BIT[MAXN];
      void init()
                      { fill(BIT, BIT + MAXN, 0);
     void update(int i, T v) { for (; i < MAXN; i += i & -i) BIT[i] += v; }</pre>
     void update(int a, int b, T v) { update(a, v), update(b + 1, -v); }
T getValue(int i) { T ret = 0; for (; i > 0; i -= i & -i) ret += BIT[i]; return ret; }
1.2.6 Fenwick Tree Range
#pragma once
#include <bits/stdc++.h>
using namespace std;
   Fenwick Tree or Binary Indexed Tree supporting range updates and range queries
   Time Complexity:
       constructor: O(N)
       update, rsq: O(log N)
// Memory Complexity: O(N)
template <class T> struct FenwickTreeRange {
     int size; vector<T> BIT1, BIT2;
T rsq(vector<T> &BIT, int i) { T ret = 0; for (; i > 0; i -= i & -i) ret += BIT[i]; return ret; }
void update(vector<T> &BIT, int i, T v) { for (; i <= size; i += i & -i) BIT[i] += v; }
FenwickTreeRange(int size) : size(size), BIT1(size + 1, 0), BIT2(size + 1, 0) {}
     T rsq(int a, int b) { return rsq(BIT1, ind) * ind - rsq(BIT2, ind); }
T rsq(int a, int b) { return rsq(b) - rsq(a - 1); }
      void update(int a, int b, T value)
           update(BIT1, a, value); update(BIT1, b + 1, -value); update(BIT2, a, value * ((T) a - 1)); update(BIT2, b + 1, -value * (T) b);
1.2.7 Fenwick Tree 2D
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Fenwick Tree or Binary Indexed Tree supporting point updates and range queries in 2 dimensions
// Time Complexity:
```

```
init: O(NM)
     update, rsq: O(log N log M)
// Memory Complexity: O(NM)
template <const int MAXN, const int MAXM, class T> struct FenwickTree2D {
    T BIT[MAXN][MAXM];
    void init() { for (int i = 0; i < MAXN; i++) fill(BIT[i], BIT[i] + MAXM, 0); }</pre>
    for (int i = x; i < MAXN; i += i & -i) for (int j = y; j < MAXM; j += j & -j) BIT[i][j] += v;
    T rsq(int x, int y) {
         for (int i = x; i > 0; i -= i & -i) for (int j = y; j > 0; j -= j & -j) ret += BIT[i][j];
    return rsq(x2, y2) + rsq(x1 - 1, y1 - 1) - rsq(x1 - 1, y2) - rsq(x2, y1 - 1);
};
1.2.8 Fenwick Tree ND
#pragma once
#include <bits/stdc++.h>
using namespace std;
// N dimensional Fenwick Tree
// Time Complexity:
     constructor: O(product of dims)
     update: O(product of logs of dims)
      rsq: O(2^N * (product of logs of dims))
// Memory Complexity: O(product of dims)
template <typename T> struct FenwickTreeND {
    int prod, n; vector<int> dim, sufProd; vector<T> BIT;
    T rsq(vector<int> &ind, int curDim, int pos) {
         if (curDim == n) sum += BIT[pos];
else for (int i = ind[curDim], i > 0; i -= i & -i)
              sum += rsq(ind, curDim + 1, pos + (i - 1) * sufProd[curDim]);
         return sum;
    T rsq(vector<int> &start, vector<int> &end, int curDim, int pos) {
          \bar{T} sum = 0;
         if (curDim == n) sum += BIT[pos];
         else {
              for (int i = end[curDim]; i > 0; i -= i & -i)
              sum += rsq(start, end, curDim + 1, pos + (i - 1) * sufProd[curDim]);
for (int i = start[curDim] - 1; i > 0; i -= i & -i)
sum -= rsq(start, end, curDim + 1, pos + (i - 1) * sufProd[curDim]);
         return sum;
    void update(vector<int> &ind, int curDim, int pos, T value) {
         if (curDim == n) BIT[pos] += value;
else for (int i = ind[curDim]; i <= dim[curDim]; i += i & -i)</pre>
              update(ind, curDim + 1, pos + (i - 1) * sufProd[curDim], value);
    FenwickTreeND(vector<int> &dim) : prod(1), n(dim.size()), dim(dim) {
         for (int i = n - 1; i >= 0; i--) { sufProd.push_back(prod); prod *= dim[i]; }
reverse(sufProd.begin(), sufProd.end());
         for (int i = 0; i < prod; i++) BIT.push_back(0);</pre>
    T rsq(vector<int> &ind) { return rsq(ind, 0, 0); }
T rsq(vector<int> &start, vector<int> &end) { return rsq(start, end, 0, 0); }
void update(vector<int> &ind, T value) { update(ind, 0, 0, value); }
1.2.9 Fenwick Tree Quadratic
#include <bits/stdc++.h>
using namespace std;
// FenwickTree supporting range updates with updates in the form of
// adding v, 2v, 3v, ... to the interval [1, r], and range queries // Time Complexity:
     constructor: O(N)
     update, rsq: O(log N)
// Memory Complexity: O(N)
template <class T> struct FenwickTreeQuadratic {
    int size; vector<T> con, lin, quad;
T rsq(vector<T> &BIT, int i) { T ret = 0; for (; i > 0; i -= i & -i) ret += BIT[i]; return ret; }
    void update(vector<T> &BIT, int i, T v) { for (; i <= size; i += i & -i) BIT[i] += v; }</pre>
    FenwickTreeQuadratic(int size): size(size), con(size + 1), lin(size + 1), quad(size + 1) {}
T rsq(int ind) { return (rsq(quad, ind) * (T) ind * (T) ind + rsq(lin, ind) * (T) ind + rsq(con, ind)) / (T) 2; }
T rsq(int a, int b) { return rsq(b) - rsq(a - 1); }
    void update(int a, int b, T value) {
   int s = a - 1, len = b - a + 1;
         update(con, b + 1, value * ((T) len * (T) (len + 1)));
```

1.2.10 Fenwick Tree Polynomial

```
#pragma once
#include <bits/stdc++.h>
using namespace std;
// FenwickTree supporting range updates with updates in the form of // adding v, 2^k * v, 3^k * v, ... to the interval [1, r], and range queries
   Time Complexity:
      constructor: O(N + K^3)
      update: O(K (K + log N))
      rsq: O(K log N)
// Memory Complexity: O(KN + K^3)
template <class T> struct FenwickTreePolynomial {
     T powMod(T base, T pow, T mod) {
   T x = 1, y = base % mod;
          for
          for (; pow > 0; pow /= 2, y = y * y % mod) if (pow % 2 == 1) x = x * y % mod;
return x;
     int size, maxK; T mod;
vector<vector<T>> BIT;
     vector<vector<T>> cof {{0, 1},
                                    {0, 1, 1},
{0, 1, 3, 2},
                                    \{0, 0, 6, 12, 6\},\
                                   {0, 0, 6, 12, 6},

{0, -4, 0, 40, 60, 24},

{0, 0, -60, 0, 300, 360, 120},

{0, 120, 0, -840, 0, 2520, 2520, 720},

{0, 0, 3360, 0, -11760, 0, 23520, 20160, 5040},

{0, -12096, 0, 80640, 0, -169344, 0, 241920, 181440, 40320},

{0, 0, -544320, 0, 1814400, 0, -2540160, 0, 2721600, 1814400, 362880},

{0, 3024000, 0, -19958400, 0, 39916800, 0, -39916800, 0, 33264000, 19958400, 3628800}};
     vector<vector<T>>> sumDiff;
     vector<T> factorial;
     vector<vector<T>> pascal;
     T invDen;
     T rsq(vector<T> &BIT, int i) { T ret = 0; for (; i > 0; i -= i \& -i) (ret += BIT[i]) %= mod; return ret; }
     void update(vector<T> &BIT, int i, T v) { for (; i <= size; i += i & -i) (BIT[i] += v) %= mod;
     FenwickTreePolynomial(int size, int maxK, T modbigPrime) : size(size), maxK(maxK), mod(modbigPrime), BIT(maxK + 2), sumDiff(maxK
            + 1), pascal(maxK + 2) {
          assert (maxK >= 0 && maxK <= 10);
          factorial.push_back(1);
          for (int i = 1; i < maxK + 2; i++) factorial.push_back(factorial.back() * i);</pre>
          for (int i = 0; i < maxK + 2; i++) for (int j = 0; j <= size; j++) BIT[i].push_back(0);
          for (int k = 0; k < maxK + 1; k++) {
    for (int i = 0; i < maxK + 2; i++)</pre>
                     sumDiff[k].push_back(vector<T>());
                     for (int j = 0; j < maxK + 2 - i; j++) sumDiff[k][i].push_back(0);</pre>
          for (int i = 0; i < maxK + 2; i++) {</pre>
               pascal[i].push_back(1);
               for (int j = 1; j <= i; j++) pascal[i].push_back(pascal[i].back() * (i - j + 1) / j);</pre>
          for (int k = 0; k < maxK + 1; k++) {
                for (int i = 0; i < k + 2; i++) {
                    sign = -sign;
               }
          invDen = pow3(factorial[maxK + 1], mod - 2, mod);
     T rsq(int ind) {
          T sum = rsq(BIT[maxK + 1], ind);
          for (int i = maxK; i >= 0; i--) sum = ((sum * ind) % mod + rsq(BIT[i], ind)) % mod;
if (sum < 0) sum += mod;</pre>
          return sum * invDen % mod;
     T rsq(int a, int b) {
   T sum = (rsq(b) - rsq(a - 1)) % mod;
   if (sum < 0) sum += mod;</pre>
          return sum;
     void update(int a, int b, T value, int k) {
          value %= mod;
          if (value < 0) value += mod;
T s = a - 1, len = b - a + 1, mult;
for (int i = 0; i < k + 2; i++) {
    mult = sumDiff[k][i][k + 1 - i];</pre>
               for (int j = k - i; j >= 0; j -- ) mult = ((mult * s) % mod + sumDiff[k][i][j]) % mod; update(BIT[i], a, value * mult % mod); update(BIT[i], b + 1, -value * mult % mod);
          mult = cof[k][k + 1];
          for (int i = k; i >= 0; i--) mult = ((mult * len) % mod + cof[k][i]) % mod;
if (mult < 0) mult += mod;</pre>
          mult = (mult * (factorial[maxK + 1] / factorial[k + 1])) % mod;
          update(BIT[0], b + 1, value * mult % mod);
```

1.2.11 Bottom Up Segment Trees

#pragma once
#include <bits/stdc++.h>

```
using namespace std;
   / single assignment and modifications, range query
template <const int MAXN> struct SegmentTree_SAM_RQ {
        using Data = int; int N; Data T[2 * MAXN];
       const Data def = 0; // default value
const Data qdef = INT_MIN; // query default value
         // operation must be associative (but not necessarily commutative)
        Data merge (Data 1, Data r); // to be implemented
        Data applyVal(Data o, Data n); // to be implemented
       template <class it> void init(it st, it en) {
   N = en - st; for (int i = 0; i < N; i++) T[N + i] = *(st + i);</pre>
               for (int i = N - 1; i > 0; i--) T[i] = merge(T[i << 1], T[i << 1 | 1]);
        void init(int size) { N = \text{size}; for (int i = 1; i < 2 * N; i++) T[i] = \text{def}; }
        void update(int i, Data v) { for (i += N - 1, T[i] = applyVal(T[i], v); i >>= 1;) T[i] = merge(T[i << 1], T[i << 1 | 1]); }</pre>
       Data query(int 1, int r) {
               Data q1 = qdef, qr = qdef;

for (1 += N - 1, r += N - 1; 1 <= r; 1 >>= 1, r >>= 1) {
                       if (1 & 1) ql = merge(ql, T[l++]);
                       if (!(r & 1)) qr = merge(T[r--], qr);
               return merge(ql, qr);
};
// range modification, single query
// works when order of modifications does not affect result
template <const int MAXN> struct SegmentTree_RM_SQ {
       using Data = int; int N; Data T[2 * MAXN];
       const Data def = 0; // default value

bool final = false; // whether the pushAll function has been called

Data merge(Data 1, Data r); // to be implemented

template <class it> void init(it st, it en) { N = en - st; for (int i = 0; i < N; i++) T[N + i] = *(st + i), T[i] = 0; }

void init(int size) { N = size; for (int i = 0; i < N; i++) T[N + i] = def, T[i] = 0; }
       void update(int 1, int r, Data v) {
   for (1 += N - 1, r += N - 1; 1 <= r; 1 >>= 1, r >>= 1) {
      if (1 & 1) { T[1] = merge(T[1], v); 1++; }
                       if (!(r & 1)) { T[r] = merge(T[r], v); r--; }
       Data query(int i) {
               if (final) return T[N + i - 1];
               Data q = 0; for (i += N - 1; i > 0; i >>= 1) <math>q = merge(q, T[i]);
        void pushAll() {
               final = true:
 // range assignments/modifications, range query
template <const int MAXN> struct SegmentTree_RAM_RQ {
private:
       using Data = int; using Lazy = int; int N, H; Data T[2 * MAXN]; Lazy L[MAXN]; // L stores lazy values
       const Data def = 0; // default value
const Data qdef = 0; // query default value
const Lazy ldef = 0; // lazy default value
// operation must be associative (but not necessarily commutative)
        Data merge (Data 1, Data r); // to be implemented
       T[i] = applyVal(T[i], getSegmentVal(v, k));
               if (i < N) L[i] = mergeLazy(L[i], v);</pre>
       void pushup(int i) {
               for (int k = 2; i > 1; k <<= 1) { i >>= 1; T[i] = L[i] == ldef ? merge(T[i << 1], T[i << 1 | 1]) : getSegmentVal(L[i], k); }
               for (int h = H, k = 1 << (H - 1); h > 0; h--, k >>= 1) {
   int ii = i >> h;
                      template <class it> void init(it st, it en) {
              N = en - st; H = 0; for (int i = 1; i <= N; H++) i <<= 1; for (int i = 0; i < N; i++) { T[N + i] = *(st + i); L[i] = ldef; }
               for (int i = N - 1; i > 0; i--) T[i] = merge(T[i << 1], T[i << 1 | 1]);</pre>
        void init(int size) {
               N = size; H = 0;
               for (int i = 1; i <= N; H++) i <<= 1;
for (int i = 1; i < 2 * N; i++) T[i] = def;</pre>
               for (int i = 1; i < N; i++) L[i] = ldef;</pre>
        void update(int 1, int r, Lazy v) {
               full displayed in the initial ini
                       if (1 & 1) apply(1++, v, k);
                      if (!(r & 1)) apply(r--, v, k);
               pushup(10); pushup(r0);
```

```
Data query(int 1, int r) {
           if (!(r \& 1)) qr = merge(T[r--], qr);
           return merge(ql, qr);
     }
1.2.12 Top Down Segment Trees
#include <bits/stdc++.h>
using namespace std;
template <const int MAXN> struct SegmentTree {
     using Data = int; const Data vdef = 0, qdef = 0;
Data merge(const Data &1, const Data &r); // to be implemented
Data apply(const Data &x, const Data &v); // to be implemented
     Data T[MAXN * 4], A[MAXN]; int N;
     void build(int cur, int cL, int cR) {
    if (cL == cR) { T[cur] = A[cL]; return; }
    int m = cL + (cR - cL) / 2; build(cur * 2, cL, m); build(cur * 2 + 1, m + 1, cR);
    T[cur] = merge(T[cur * 2], T[cur * 2 + 1]);
     void update(int cur, int cL, int cR, int ind, const Data &val) {
           if (cL > ind || cR < ind) return;</pre>
           if (cL == cR) { T[cur] = apply(T[cur], val); return; }
int m = cL + (cR - cL) / 2; update(cur * 2, cL, m, ind, val); update(cur * 2 + 1, m + 1, cR, ind, val);
T[cur] = merge(T[cur * 2], T[cur * 2 + 1]);
     Data query (int cur, int cL, int cR, int 1, int r) {
           if (cL > r || cR < 1) return qdef;</pre>
           if (cL >= 1 && cR <= r) return T[cur];
int m = cL + (cR - cL) / 2;</pre>
           return merge(query(cur * 2, cL, m, 1, r), query(cur * 2 + 1, m + 1, cR, 1, r));
     template <class It> SegmentTree(It st, It en): N(en - st) {
    for (int i = 1; i <= N; i++) A[i] = \star(st + i - 1); build(1, 1, N);
     SegmentTree(int size) : N(size) { fill(A + 1, A + N, vdef); build(1, 1, size); }
     void update(int ind, const Data &val) { update(1, 1, N, ind, val); }
     Data query(int 1, int r) { return query(1, 1, N, 1, r); }
template <const int MAXN> struct LazySegmentTree {
   using Data = int; using Lazy = int; const Data vdef = 0, qdef = 0; const Lazy ldef = 0;
   Data merge(const Data &1, const Data &r); // to be implemented
   Data apply(const Data &x, const Lazy &v); // to be implemented
   Data apply(const Data &x, const Lazy &v); // to be implemented
     Lazy getSegmentVal(const Lazy &v, int len); // to be implemented Lazy mergeLazy(const Lazy &l, const Lazy &r); // to be implemented Data T[MAXN * 4], A[MAXN]; Lazy L[MAXN * 4]; int N;
     void propagate(int cur, int cL, int cR) {
   if (T[cur].lazy != ldef) {
                L[cur].lazy = ldef;
           }
     void build(int cur, int cL, int cR) {
    if (cL == cR) { T[cur] = A[cL]; L[cur] = ldef; return; }
    int m = cL + (cR - cL) / 2; build(cur * 2, cL, m); build(cur * 2 + 1, m + 1, cR);
    T[cur] = merge(T[cur * 2], T[cur * 2 + 1]);
     void update(int cur, int cL, int cR, int l, int r, const Lazy &val) {
           if (cL > r || cR < 1) return;</pre>
           if (cL != cR) propagate(cur, cL, cR);
           if (cL >= 1 && cR <= r) {
 T[cur] = apply(T[cur], getSegmentVal(val, cR - cL + 1));
                L[cur] = mergeLazy(L[cur], val);
return;
           int m = cL + (cR - cL) / 2; update(cur * 2, cL, m, 1, r, val); update(cur * 2 + 1, m + 1, cR, 1, r, val); T[cur] = merge(T[cur * 2], T[cur * 2 + 1]);
     Data query(int cur, int cL, int cR, int 1, int r) {
           if (cL != cR) propagate(cur, cL, cR);
           if (cL > r || cR < 1) return qdef;</pre>
           if (cL >= 1 && cR <= r) return T[cur];
int m = cL + (cR - cL) / 2;</pre>
           return merge (query (cur * 2, cL, m, 1, r), query (cur * 2 + 1, m + 1, cR, 1, r));
     template <class It> LazySegmentTree(It st, It en): N(en - st) {
           for (int i = 1; i \le N; i++) A[i] = *(st + i - 1); build(1, 1, N);
     LazySegmentTree(int size) : N(size) { fill(A + 1, A + N, vdef); build(1, 1, size); }
     void update(int ind, const Lazy &val) { update(1, 1, N, ind, val); }
     Data query(int 1, int r) { return query(1, 1, N, 1, r); }
struct PersistentSeamentTree {
     using Data = int; using Lazy = int; static const Data vdef = 0, qdef = 0; static const Lazy ldef = 0;
```

Data merge (const Data &1, const Data &r); // to be implemented

```
Data apply(const Data &x, const Lazy &v); // to be implemented
     Lazy getSegmentVal(const Lazy &v, int len); // to be implemented
     Lazy mergeLazy(const Lazy &1, const Lazy &r); // to be implemented
     struct Node {
         Node *left = nullptr, *right = nullptr;
         Data val = PersistentSegmentTree::vdef;
         Lazy lazy = PersistentSegmentTree::ldef;
     void propagate(Node *cur, int cL, int cR) {
          if (cur->lazy != ldef) {
               int m = cL + (cR - cL) / 2;
               if (cur->left == nullptr) cur->left = new Node();
              cur->left->val = apply(cur->left->val, getSegmentVal(cur->lazy, m - cL + 1));
cur->left->lazy = mergeLazy(cur->left->lazy, cur->lazy);
               if (cur->right == nullptr) cur->right = new Node();
              cur->right->val = apply(cur->right->val, getSegmentVal(cur->lazy, cR - m));
cur->right->lazy = mergeLazy(cur->right->lazy, cur->lazy);
              cur->lazy = ldef;
     int N; vector<Node*> roots = {new Node()};
     template <class It> Node *build(int cL, int cR, It st) {
         Node *ret = new Node();
         if (cL == cR) { ret->val = *(st + cL - 1); return ret; }
int m = cL + (cR - cL) / 2;
         ret->left = build(cL, m, st); ret->right = build(m + 1, cR, st); ret->val = merge(ret->left->val, ret->right->val);
          return ret;
     Node *update(Node *cur, int cL, int cR, int 1, int r, const Lazy &val) {
         if (cL > r || cR < 1) return cur;</pre>
         Node *ret = new Node();
         if (cur) {
              ret->left = cur->left; ret->right = cur->right; ret->val = cur->val, ret->lazy = cur->lazy;
         assert (ret);
         if (cL != cR) propagate(ret, cL, cR);
if (cL >= 1 && cR <= r) {
    ret->val = apply(ret->val, getSegmentVal(val, cR - cL + 1));
    ret->lazy = mergeLazy(ret->lazy, val);
    return ret;
         int m = cL + (cR - cL) / 2;
         ret->left = update(ret->left, cL, m, l, r, val);

ret->right = update(ret->right, m + 1, cR, l, r, val);

if (ret->left && ret->right) ret->val = merge(ret->left->val, ret->right->val);
         else if (ret->left) ret->val = ret->left->val;
          else if (ret->right) ret->val = ret->right->val;
    Data guery (Node *cur, int cL, int cR, int 1, int r) {
         if (!cur || cL > r || cR < 1) return qdef;
if (cL != cR) propagate(cur, cL, cR);</pre>
         if (cL >= 1 && cR <= r) return cur->val;
int m = cL + (cR - cL) / 2;
         return merge(query(cur->left, cL, m, 1, r), query(cur->right, m + 1, cR, 1, r));
     template <class It> PersistentSegmentTree(It st, It en): N(en - st) { roots.push_back(build(1, N, st)); }
    PersistentSegmentTree(int size) : N(size) {}
    void update(int 1, int r, int val) { roots.push_back(update(roots.back(), 1, N, 1, r, val)); }
Data query(int rootInd, int 1, int r) { return query(roots[rootInd], 1, N, 1, r); }
    void revert(int x) { roots.push_back(roots[x]); }
1.2.13 Implicit Treap
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Implicit Treap supporting point updates and range queries
// Time Complexity:
      constructor: O(N)
      updateVal, queryRange: O(log N)
// Memory Complexity: O(N)
struct ImplcitTreap {
     seed_seq seq {
          (uint64_t) chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count(),
          (uint64_t) __builtin_ia32_rdtsc(),
(uint64_t) (uintptr_t) make_unique<char>().get()
    mt19937 rng; uniform_real_distribution<double> dis;
    using Data = int; const Data vdef = 0;
vector<Data> VAL, SBTR; vector<int> L, R, SZ; vector<double> PRI; int root = -1;
     int makeNode (Data val) {
         VAL.push_back(val); SBTR.push_back(val); L.push_back(-1); R.push_back(-1); SZ.push_back(1); PRI.push_back(dis(rng));
         return int(VAL.size()) - 1;
     int size(int x) { return x == -1 ? 0 : SZ[x]; }
    Data sbtrVal(int x) { return x == -1 ? vdef : SBTR[x]; }
Data merge(Data 1, Data r); // to be implemented
     Data applyVal(Data o, Data n); // to be implemented
     void apply(int x, Data d) {
          if (x == -1) return;
         VAL[x] = applyVal(VAL[x], d); SBTR[x] = applyVal(SBTR[x], d);
     void update(int x) {
```

```
if (x == -1) return;
           If (X == 1, Tetath,
SZ[x] = 1; SBTR[x] = VAL[x];
if (L[x] != -1) { SZ[x] += SZ[L[x]]; SBTR[x] = merge(SBTR[x], SBTR[L[x]]); }
if (R[x] != -1) { SZ[x] += SZ[R[x]]; SBTR[x] = merge(SBTR[x], SBTR[R[x]]); }
     void merge(int &x, int 1, int r) {
   if (1 == -1 || r == -1) { x = 1 == -1 ? r : 1; }
   else if (PRI[1] > PRI[r]) { merge(R[1], R[1], r); x = 1; }
           else { merge(L[r], l, L[r]); x = r; }
           update(x);
      void split(int x, int &l, int &r, int lsz) {
           if (x == -1) { l = r = -1; return; }
if (lsz <= size(L[x])) { split(L[x], l, L[x], lsz); r = x; }</pre>
           else { split(R[x], R[x], r, lsz - size(L[x]) - 1); l = x; }
     finplcitTreap(int N) : rng(seq), dis(0.0, 1.0) {
    for (int i = 0; i < N; i++) merge(root, root, makeNode(vdef));</pre>
      template <class It> ImplcitTreap(It st, It en) : rng(seq), dis(0.0, 1.0) {
           for (It i = st; i < en; i++) merge(root, root, makeNode(*i));</pre>
      void updateVal(int i, Data val) {
           int left, right, mid; split(root, left, mid, i); split(mid, mid, right, 1);
apply(mid, val); update(mid); merge(root, left, mid); merge(root, root, right);
      Data queryRange(int 1, int r)
           int left, right, mid; split(root, left, mid, 1); split(mid, mid, right, r - 1 + 1);
Data ret = sbtrVal(mid); merge(root, left, mid); merge(root, root, right);
           return ret;
1.2.14 Lazy Implicit Treap
#include <bits/stdc++.h>
using namespace std;
// Implicit Treap supporting range updates and queries
    Time Complexity:
       constructor: O(N)
       updateRange, queryRange: O(log N)
// Memory Complexity: O(N)
struct LazyImplcitTreap {
     seed_seq seq {
           (uint64_t) chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count(),
            (uint64_t) __builtin_ia32_rdtsc(),
            (uint64_t) (uintptr_t) make_unique<char>().get()
     mt19937 rng; uniform_real_distribution<double> dis;
     using Data = int; using Lazy = int; const Data vdef = 0; const Lazy ldef = 0;
      vector<Data> VAL, SBTR; vector<Lazy> LZ; vector<int> L, R, SZ; vector<double> PRI; int root = -1;
      int makeNode(Data val) {
           VAL.push_back(val); SBTR.push_back(val); LZ.push_back(ldef);
L.push_back(-1); R.push_back(-1); SZ.push_back(1); PRI.push_back(dis(rng));
           return int (VAL.size()) - 1;
     int size(int x) { return x == -1 ? 0 : SZ[x]; }
Data sbtrVal(int x) { return x == -1 ? vdef : SBTR[x]; }
      Data merge (Data 1, Data r); // to be implemented
     Lazy getSegmentVal(Lazy v, int k); // to be implemented Lazy mergeLazy(Lazy l, Lazy r); // to be implemented Data applyLazy(Data d, Lazy l); // to be implemented
     void apply(int x, Lazy v) {
   if (x == -1) return;
           VAL[x] = applyLazy(VAL[x], v); SBTR[x] = applyLazy(SBTR[x], getSegmentVal(v, SZ[x])); LZ[x] = mergeLazy(LZ[x], v);
      void propagate(int x) {
           if (x == -1 || LZ[x] == ldef) return;
if (L[x] != -1) apply(L[x], LZ[x]);
if (R[x] != -1) apply(R[x], LZ[x]);
           LZ[x] = ldef;
      void update(int x) {
           if (x == -1) return;
SZ[x] = 1; SBTR[x] = VAL[x];
if (L[x] != -1) { SZ[x] += SZ[L[x]]; SBTR[x] = merge(SBTR[x], SBTR[L[x]]); }
if (R[x] != -1) { SZ[x] += SZ[R[x]]; SBTR[x] = merge(SBTR[x], SBTR[R[x]]); }
      void merge(int &x, int 1, int r) {
           propagate(1); propagate(r);
if (1 == -1 || r == -1) { x = 1 == -1 ? r : 1; }
else if (PRI[1] > PRI[r]) { merge(R[1], R[1], r); x = 1; }
           else { merge(L[r], 1, L[r]); x = r; }
           update(x);
     void split(int x, int &1, int &r, int lsz) {
    if (x == -1) { 1 = r = -1; return; }
           propagate(x);
           if (lsz <= size(L[x])) { split(L[x], 1, L[x], lsz); r = x; }
else { split(R[x], R[x], r, lsz - size(L[x]) - 1); l = x; }</pre>
      LazyImplcitTreap(int N) : rng(seq), dis(0.0, 1.0) {
```

```
for (int i = 0; i < N; i++) merge(root, root, makeNode(vdef));
}
template <class It> LazyImplcitTreap(It st, It en) : rng(seq), dis(0.0, 1.0) {
    for (It i = st; i < en; i++) merge(root, root, makeNode(*i));
}
void updateRange(int 1, int r, Lazy val) {
    int left, right, mid; split(root, left, mid, l); split(mid, mid, right, r - l + 1);
    apply(mid, val); merge(root, left, mid); merge(root, root, right);
}
Data queryRange(int 1, int r) {
    int left, right, mid; split(root, left, mid, l); split(mid, mid, right, r - l + 1);
    Data ret = sbtrVal(mid); merge(root, left, mid); merge(root, root, right);
    return ret;
}</pre>
```

1.3 Geometry

1.3.1 Point

```
#pragma once
#include <bits/stdc++.h>
using namespace std;
using T = double; const T EPS = 1e-9;
struct Point {
     T x, y;
Point (T x = 0, T y = 0) : x(x), y(y) {}
     double polarRadius() const { return sqrt(x * x + y * y); }
     double theta() const { return atan2(y, x); }
     double angleTo(const Point &that) const { return atan2(that.x - x, that.y - y); }
     T area2 = (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
                                                   '-1;
           if (area2 < -T(EPS)) return</pre>
           else if (area2 > T(EPS)) return +1;
           else return 0:
     static T area2(const Point &a, const Point &b, const Point &c) {
           return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
     Point rotate(const Point &that, double theta) const {
           T x = \text{that.x} + (x - \text{that.x}) * \cos(\text{theta}) - (y - \text{that.y}) * \sin(\text{theta});
T y = \text{that.y} + (x - \text{that.x}) * \sin(\text{theta}) + (y - \text{that.y}) * \cos(\text{theta});
           return Point(x, y);
     double distanceTo(const Point &that) const {
           T dx = x - that.x, dy = y - that.y;
return sqrt(dx * dx + dy * dy);
     T distanceSquaredTo(const Point &that) const {
           T dx = \hat{x} - that.x, dy = y - that.y;
return dx * dx + dy * dy;
     bool onSegment (const Point &p, const Point &q) const {
    return x <= max(p.x, q.x) + T(EPS) && x >= min(p.x, q.x) - T(EPS) && y <= max(p.y, q.y) + T(EPS) && y >= min(p.y, q.y) - T(
                 EPS):
     static bool intersects (const Point &p1, const Point &q1, const Point &p2, const Point &q2) {
           int o1 = Point::ccw(p1, q1, p2), o2 = Point::ccw(p1, q1, q2), o3 = Point::ccw(p2, q2, p1), o4 = Point::ccw(p2, q2, q1);
if (o1 != o2 && o3 != o4) return true;
           if (o1 == 0 && p2.onSegment(p1, q1)) return true;
if (o2 == 0 && q2.onSegment(p1, q1)) return true;
           if (o3 == 0 && p1.onSegment(p2, q2)) return true;
           if (o4 == 0 && q1.onSegment(p2, q2)) return true;
           return false:
     static Point intersection(const Point &p1, const Point &q1, const Point &p2, const Point &q2) {
   T Al = q1.y - p1.y, Bl = p1.x - q1.x, Cl = Al * p1.x + Bl * p1.y;
   T A2 = q2.y - p2.y, B2 = p2.x - q2.x, C2 = A2 * p2.x + B2 * p2.y, det = Al * B2 - A2 * B1;
   if (abs(det) <= T(EPS)) throw runtime_error("The lines do not intersect");</pre>
           return Point((B2 * C1 - B1 * C2) / det, (A1 * C2 - A2 * C1) / det);
     int compareTo(const Point &that) const {
   if (y < that.y - T(EPS)) return -1;
   if (y > that.y + T(EPS)) return +1;
           if (x < that.x - T(EPS)) return -1;</pre>
           if (x > that.x + T(EPS)) return +1;
     bool operator == (const Point &other) const { return abs(x - other.x) <= T(EPS) && abs(y - other.y) <= T(EPS); } bool operator != (const Point &other) const { return abs(x - other.x) > T(EPS) || abs(y - other.y) > T(EPS); }
     static bool xOrderLe(const Point &p, const Point &q)
                                                                                    return p.x <= q.x + T(EPS); }
                                                                                    return p.x > q.x + T(EPS);
     static bool xOrderGt (const Point &p, const Point &g)
     static bool xOrderGe(const Point &p, const Point &q)
                                                                                     return p.x >= q.x - T(EPS);
     static bool yOrderLt (const Point &p, const Point &q)
                                                                                    return p.y < q.y - T(EPS);</pre>
                                                                                    return p.y <= q.y + T(EPS);</pre>
     static bool yOrderLe(const Point &p, const Point &q)
                                                                                    return p.y > q.y + T(EPS); }
return p.y > q.y + T(EPS); }
return (p.x*p.x + p.y*p.y) < (q.x*q.x + q.y*q.y) - T(EPS); }
     static bool yOrderGt(const Point &p, const Point &q)
     static bool yOrderGe(const Point &p, const Point &q) static bool rOrderLt(const Point &p, const Point &q)
     static bool rOrderLe (const Point &p, const Point &q)
                                                                                    return (p.x*p.x + p.y*p.y) <= (p.x*p.x + p.y*p.y) + T(EPS); }
     static bool rorderGe(const Point &p, const Point &q) { return (p.x*p.x + p.y*p.y) > (q.x*q.x + q.y*q.y) + T(EPS); } static bool rorderGe(const Point &p, const Point &q) { return (p.x*p.x + p.y*p.y) > (q.x*q.x + q.y*q.y) - T(EPS); } bool polarOrderLt(const Point &q1, const Point &q2) const { return ccw(*this, q1, q2) > 0; } bool polarOrderLe(const Point &q1, const Point &q2) const { return ccw(*this, q1, q2) > 0; }
```

```
bool polarOrderGt(const Point &q1, const Point &q2) const { return ccw(*this, q1, q2) < 0; }
    bool polarOrderGe(const Point &q1, const Point &q2) const { return ccw(*this, q1, q2) <= 0; }
bool atan2OrderLt(const Point &q1, const Point &q2) const { return angleTo(q1) - angleTo(q2) < T(EPS); }
bool atan2OrderLe(const Point &q1, const Point &q2) const { return angleTo(q1) - angleTo(q2) <= -T(EPS); }
     bool atan2OrderGt(const Point &q1, const Point &q2) const { return angleTo(q1) - angleTo(q2) < T(EPS); }
     bool atan2OrderGe(const Point &q1, const Point &q2) const { return angleTo(q1) - angleTo(q2) <= -T(EPS); }
     bool distanceToOrderLt (const Point &p, const Point &q) { return distanceSquaredTo(p) - distanceSquaredTo(q) < T(EPS); } bool distanceToOrderLe(const Point &p, const Point &q) { return distanceSquaredTo(p) - distanceSquaredTo(q) <= -T(EPS); } bool distanceToOrderGt(const Point &p, const Point &q) { return distanceSquaredTo(p) - distanceSquaredTo(q) < T(EPS); } bool distanceToOrderGt(const Point &p, const Point &q) { return distanceSquaredTo(p) - distanceSquaredTo(q) < T(EPS); }
     bool distanceToOrderGe(const Point &p, const Point &q) { return distanceSquaredTo(p) - distanceSquaredTo(q) <= -T(EPS); }
struct Point_hash {
     size_t operator ()(const Point &p) const {
          return 31 * hash<T> {}(p.x) + hash<T> {}(p.y);
1.3.2 Vector
#pragma once
#include <bits/stdc++.h>
using namespace std;
using T = double; const T EPS = 1e-9;
struct Vector {
     int d; vector<T> data;
     Vector()
               {}
     Vector(int d) : d(d), data(d, 0) {}
     template <class It> Vector(It st, It en) : d(d), data(st, en) {}
int dimension() const { return d; }
     T dot(const Vector &that) const {
          if (d != that.d) throw invalid_argument("Dimensions don't agree");
          T sum = 0;

for (int i = 0; i < d; i++) sum = sum + (data[i] * that.data[i]);
          return sum;
     T operator * (const Vector &that) const { return dot(that); }
     T cross2D(const Vector &that) const {
          if (d != 2 || that.d != 2) throw invalid_argument("Vectors must be 2-dimensional");
          return data[0] * that.data[1] - data[1] * that.data[0];
                     (const Vector &that) const { return cross2D(that); }
     T operator |
     Vector cross3D(const Vector &that) const {
          if (d != 3 || that.d != 3) throw invalid_argument("Vectors must be 3-dimensional");
          Vector c(d);
          c.data[0] = data[1] * that.data[2] - data[2] * that.data[1];
c.data[1] = data[2] * that.data[0] - data[0] * that.data[2];
            .data[2] = data[0] * that.data[1] - data[1] * that.data[0];
     Vector operator ^ (const Vector &that) const { return cross3D(that); }
double magnitude() const { return sqrt(dot(*this)); }
     double distanceTo(const Vector &that) const {
          if (d != that.d) throw invalid_argument("Dimensions don't agree");
          return minus (that) .magnitude();
     vector plus(const Vector &that) const {
   if (d != that.d) throw invalid_argument("Dimensions don't agree");
          Vector c(d);
          for (int i = 0; i < d; i++) c.data[i] = data[i] + that.data[i];</pre>
     Vector operator + (const Vector &that) const { return plus(that); }
     Vector minus (const Vector &that) const {
          if (d != that.d) throw invalid_argument("Dimensions don't agree");
          Vector c(d);
          for (int i = 0; i < d; i++) c.data[i] = data[i] - that.data[i];</pre>
          return c:
     Vector operator - (const Vector &that) const { return minus(that); }
     T cartesian(int i) const { return data[i]; }
       &operator [](int i) { return data[i];
     T operator [](int i) const { return data[i]; }
     Vector scale (double alpha) const {
          Vector c(d);
          for (int i = 0; i < d; i++) c.data[i] = alpha * data[i];
return c;</pre>
     Vector operator * (double alpha) const { return scale(alpha); }
Vector operator / (double alpha) const { return scale(1.0 / alpha); }
     Vector direction() const {
          if (magnitude() <= EPS) throw runtime_error("Zero-vector has no direction");
return scale(1.0 / magnitude());</pre>
     double directionCosine(int i) const { return data[i] / magnitude(); }
     Vector projectionOn(const Vector &that) const {
          if (d != that.d) throw invalid_argument("Dimensions don't agree");
          return that.scale(dot(that) / that.dot(that));
     Vector rotate(Vector &that, double theta) const {
          if (d == 2 && that.d == 2) {
               Vector r(2);
               r.data[0] = that.data[0] + (data[0] - that.data[0]) * cos(theta) - (data[1] - that.data[1]) * sin(theta);
               r.data[1] = that.data[1] + (data[0] - that.data[0]) * sin(theta) + (data[1] - that.data[1]) * cos(theta);
               return r:
          } else if (d == 3 && that.d == 3) {
```

```
\textbf{return} \  \, \texttt{scale} \, (\texttt{cos} \, (\texttt{theta})) \, . \texttt{plus} \, (\texttt{that.direction} \, () \, . \texttt{cross3D} \, (\star \\ \textbf{this}) \, . \\ \textbf{scale} \, (\texttt{sin} \, (\texttt{theta}))) \, . \\ \textbf{plus} \, (\texttt{that.direction} \, () \, . \\ \textbf{cross3D} \, (\star \\ \textbf{this}) \, . \\ \textbf{cross2D} \, (\star \\ \textbf{this})
                                        scale(that.direction().dot(*this)).scale(1.0 - cos(theta)));
                        else if (d == that.d) {
                            throw invalid_argument("Vectors must be 2-dimensional or 3-dimensional");
                        else {
                             throw invalid_argument("Dimensions don't agree");
          bool operator < (const Vector &that) const {
                   for (int i = 0; i < d; i++) if (abs(data[i] - that.data[i]) > EPS) return data[i] < that.data[i];</pre>
                   return false:
};
1.3.3 Rectangle
#pragma once
#include <bits/stdc++.h>
#include "Point.h"
using namespace std;
using T = double; const T EPS = 1e-9;
struct Rectangle {
          T xmin, ymin, xmax, ymax;
          Rectangle(T xmin, T ymin, T xmax, T ymax) : xmin(xmin), ymin(ymin), xmax(xmax), ymax(ymax) {
                   assert (xmin <= xmax):
                   assert (ymin <= ymax);
          T width() const { return xmax - xmin; }
          T height() const { return ymax - ymin;
         bool intersects(Rectangle that) const {
    return xmax - that.xmin >= -EPS && ymax - that.ymin >= -EPS
                             && that.xmax - xmin >= -EPS && that.ymax - ymin >= -EPS;
         bool contains(const Point &p) const {
    return (p.x - xmin >= -EPS) && (xmax - p.x >= -EPS) && (p.y - ymin >= -EPS) && (ymax - p.y >= -EPS);
          double distanceTo(const Point &p) const { return sqrt(distanceSquaredTo(p)); }
          T distanceSquaredTo(const Point &p) const {
   T dx = 0, dy = 0;
   if (p.x < xmin) dx = p.x - xmin;</pre>
                   else if (p.x > xmax) dx = p.x - xmax;
                   if (p.y < ymin) dy = p.y - ymin;
else if (p.y > ymax) dy = p.y - ymax;
return dx * dx + dy * dy;
          bool operator == (const Rectangle &that) const {
                   if (abs(xmin - that.xmin) > EPS) return false;
if (abs(ymin - that.ymin) > EPS) return false;
                   if (abs(xmax - that.xmax) > EPS) return false;
if (abs(ymax - that.xmax) > EPS) return false;
return true;
          bool operator != (const Rectangle &that) const {
                   if (abs(xmin - that.xmin) > EPS) return true;
                    if (abs(ymin - that.ymin) > EPS) return true;
                    if (abs(xmax - that.xmax) > EPS) return true;
                   if (abs(ymax - that.ymax) > EPS) return true;
                   return false;
};
struct Rectangle_hash {
          size_t operator () (const Rectangle &r) const {
                   return 31 * (31 * hash<T> {}(r.xmin) + hash<T> {}(r.ymin)) + hash<T> {}(r.xmax)) + hash<T> {}(r.ymax);
};
1.3.4 Kd Tree
#pragma once
 #include <bits/stdc++.h>
#include "Point.h"
#include "Rectangle.h"
using namespace std;
using T = double: const T EPS = 1e-9:
struct KdTree {
         bool VERTICAL = false, HOI
T XMIN, YMIN, XMAX, YMAX;
struct Node {
                                                                  HORIZONTAL = true;
                   Point p; Rectangle r;
                   Node *leftUp = nullptr, *rightDown = nullptr;
                   Node(const Point &p, const Rectangle &r) : p(p), r(r) {}
          int cnt; Node *root;
          template <class It> Node *construct(Node *n, It points, int lo, int hi, bool partition, T xmin, T ymin, T xmax, T ymax) {
                   if (lo > hi) return nullptr;
int mid = lo + (hi - lo) / 2;
                   if (partition == VERTICAL) nth_element(points + lo, points + mid, points + hi + 1, Point::xOrderLt);
else nth_element(points + lo, points + mid, points + hi + 1, Point::yOrderLt);
                   Point p = *(points + mid);
                    n = new Node(p, Rectangle(xmin, ymin, xmax, ymax));
                   if (partition == VERTICAL) {
                             n->leftUp = construct(n->leftUp, points, lo, mid - 1, !partition, xmin, ymin, n->p.x, ymax);
n->rightDown = construct(n->rightDown, points, mid + 1, hi, !partition, n->p.x, ymin, xmax, ymax);
```

```
} else {
                  n->leftUp = construct(n->leftUp, points, lo, mid - 1, !partition, xmin, ymin, xmax, n->p.y);
                 n->rightDown = construct(n->rightDown, points, mid + 1, hi, !partition, xmin, n->p.y, xmax, ymax);
         return n:
Node *insert(Node *n, const Point &p, bool partition, T xmin, T ymin, T xmax, T ymax) {
         if (nullptr == n) {
                  cnt++;
                  return new Node(p, Rectangle(xmin, ymin, xmax, ymax));
         if (n->p == p) return n;
         if (partition == VERTICAL) {
                  if (Point::xOrderLt(p, n->p)) n->leftUp = insert(n->leftUp, p, !partition, xmin, ymin, n->p.x, ymax);
                  else n->rightDown = insert(n->rightDown, p, !partition, n->p.x, ymin, xmax, ymax);
             else {
                  \textbf{if} \ (\texttt{Point::yOrderLt}(\texttt{p}, \ \texttt{n->p})) \ \ \texttt{n->leftUp} = \texttt{insert}(\texttt{n->leftUp}, \ \texttt{p}, \ \texttt{!partition}, \ \texttt{xmin}, \ \texttt{ymin}, \ \texttt{xmax}, \ \texttt{n->p.y}); \\ \textbf{(point::yOrderLt}(\texttt{p}, \ \texttt{n->p})) \ \ \texttt{n->p.y}); \\ \textbf{(point::yOrderLt}(\texttt{p}, \ \texttt{n->p})); \\ \textbf{(point::yOrderLt}(\texttt{p}, 
                  else n->rightDown = insert(n->rightDown, p, !partition, xmin, n->p.y, xmax, ymax);
         return n:
bool contains(Node *n, const Point &p, bool partition) {
         if (nullptr == n) return false;
         if (n->p == p) return true;
if (partition == VERTICAL) {
                  if (Point::xOrderLt(p, n->p)) return contains(n->leftUp, p, !partition);
                  else return contains(n->rightDown, p, !partition);
         } else {
                 if (Point::yOrderLt(p, n->p)) return contains(n->leftUp, p, !partition);
                 else return contains(n->rightDown, p, !partition);
void range(Node *n, queue<Point> &q, const Rectangle &rect) {
         if (nullptr == n || !rect.intersects(n->r)) return;
         if (rect.contains(n->p)) q.push(n->p);
         range(n->leftUp, q, rect); range(n->rightDown, q, rect);
Point *findNearest(Node *n, const Point &p, Point *nearest) {
    if (nullptr == n || (nullptr != nearest && nearest->distanceSquaredTo(p) < n->r.distanceSquaredTo(p))) return nearest;
         if (nullptr != n->leftUp && n->leftUp->r.contains(p)) {
                 nearest = findNearest(n->leftUp, p, nearest);
                  nearest = findNearest(n->rightDown, p, nearest);
         } else {
                 nearest = findNearest(n->rightDown, p, nearest);
                 nearest = findNearest(n->leftUp, p, nearest);
         return nearest:
KdTree(T xmin, T ymin, T xmax, T ymax) : XMIN(xmin), YMIN(ymin), XMAX(xmax), YMAX(ymax), cnt(0), root(nullptr) {}
bool empty() { return cnt == 0; }
int size() { return cnt; }
void insert(const Point &p) { root = insert(root, p, VERTICAL, XMIN, YMIN, XMAX, YMAX); }
bool contains(const Point &p) { return contains(root, p, VERTICAL); }
queue<Point> range(const Rectangle &rect) { queue<Point> q; range(root, q, rect); return q; }
Point *findNearest(const Point &p) {
         if (empty()) return nullptr;
         return findNearest(root, p, nullptr);
```

1.4 Graph

};

1.4.1 Euler Tour Treap

```
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Euler Tour Treap supporting vertex updates and vertex/subtree queries
// Time Complexity:
      constructor: O(N)
      treeRoot, connected, addEdge, cutParent: O(log N)
updateVertex, queryVertexValue, querySubtreeValue: O(log N)
// Memory Complexity: O(N)
struct EulerTourTreap {
     seed_seq seq {
          (uint64_t) chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count(),
          (uint64_t) __builtin_ia32_rdtsc(),
          (uint64_t) (uintptr_t) make_unique<char>().get()
    mt19937 rng; uniform_real_distribution<double> dis;
    using Data = int; const Data vdef = 0; const bool ISPRE = true, ISPOST = false;
     vector<Data> VAL, SBTR; vector<int> PRE, POST, VERT, L, R, P, SZ; vector<double> PRI; vector<bool> TYPE;
    int makeNode(int vert, bool type, Data val) {
    VAL.push_back(val); SBTR.push_back(val); VERT.push_back(vert); TYPE.push_back(type);
    L.push_back(-1); R.push_back(-1); P.push_back(-1); SZ.push_back(1); PRI.push_back(dis(rng));
         return int(VAL.size()) - 1;
    int size(int x) { return x == -1 ? 0 : SZ[x]; }
Data val(int x) { return x == -1 ? vdef : VAL[x];
     Data sbtrVal(int x) { return x == -1 ? vdef : SBTR[x]; }
```

```
Data merge(Data 1, Data r); // to be implemented
     Data applyVal(Data o, Data n); // to be implemented
     void apply(int x, Data d) {
          if (x == -1) return;
           VAL[x] = applyVal(VAL[x], d); SBTR[x] = applyVal(SBTR[x], d);
     void update(int x) {
          if (x == -1) return;
SZ[x] = 1; SBTR[x] = VAL[x];
if (L[x] != -1) { P[L[x]] = x; SZ[x] += SZ[L[x]]; SBTR[x] = merge(SBTR[x], SBTR[L[x]]); }
if (R[x] != -1) { P[R[x]] = x; SZ[x] += SZ[R[x]]; SBTR[x] = merge(SBTR[x], SBTR[R[x]]); }
     void merge(int &x, int 1, int r) {
          if (1 == -1 || r == -1) { x = 1 == -1 ? r : 1; }
else if (PRI[1] > PRI[r]) { merge(R[1], R[1], r); x = 1; }
          else { merge(L[r], 1, L[r]); x = r; }
          update(x):
     void split(int x, int &1, int &r, int lsz) {
    if (x == -1) { l = r = -1; return; }
    P[x] = -1;
          if (lsz <= size(L[x])) { split(L[x], 1, L[x], lsz); r = x; }
else { split(R[x], R[x], r, lsz - size(L[x]) - 1); l = x; }</pre>
     int min(int x) {
          if (x == -1) return 0;
while (L[x] != -1) x = L[x];
          return x;
     int root(int x) {
   if (x == -1) return 0;
   while (P[x] != -1) x = P[x];
           return x;
     int index(int x) {
           int ind = size(L[x]);
           for (; P[x] != -1; x = P[x]) if (L[P[x]] != x) ind += 1 + size(L[P[x]]);
          return ind;
     EulerTourTreap(int N) : rng(seq), dis(0.0, 1.0) {
           for (int i = 0, dummy = -1; i < N; i++) {
                PRE.push_back(makeNode(i, ISPRE, vdef)); POST.push_back(makeNode(i, ISPOST, vdef)); merge(dummy, PRE.back(), POST.back());
     template <class It> EulerTourTreap(It st, It en) : rng(seq), dis(0.0, 1.0) {
          int dummy = -1;
for (It i = st; i < en; i++) {
    PRE.push_back(makeNode(i, ISPRE, *i)); POST.push_back(makeNode(i, ISPOST, *i));
    merge(dummy, PRE.back(), POST.back());</pre>
     int treeRoot(int v) { return VERT[min(root(PRE[v]))]; }
     bool connected(int v, int w) { return treeRoot(v) == treeRoot(w); }
     void addEdge(int v, int w) {
   int l, r; split(root(PRE[v]), l, r, index(PRE[v]) + 1);
          merge(1, 1, root(PRE[w])); merge(1, 1, r);
     void cutParent(int v) {
          int 1, m, r; split(root(PRE[v]), 1, m, index(PRE[v])); split(m, m, r, index(POST[v]) + 1);
merge(1, 1, r);
     Data getVertexValue(int v) {
          int 1, m, r; split(root(PRE[v]), 1, m, index(PRE[v])); split(m, m, r, 1);
Data ret = val(m); merge(1, 1, m); merge(1, 1, r);
return ret;
     Data getSubtreeValue(int v) { // value may be doubled due to double counting of pre and post
   int 1, m, r; split(root(PRE[v]), 1, m, index(PRE[v])); split(m, m, r, index(POST[v]) + 1);
   Data ret = sbtrVal(m); merge(1, 1, m); merge(1, 1, r);
          return ret:
     void updateVertex(int v, Data val) {
          int 1, preV, m, postV, r; split(root(PRE[v]), 1, preV, index(PRE[v])); split(preV, preV, m, 1);
split(m, m, postV, index(POST[v])); split(postV, postV, r, 1);
          apply(preV, val); apply(postV, val); merge(1, 1, preV); merge(1, 1, m); merge(1, 1, postV); merge(1, 1, r);
1.4.2 Lazy Euler Tour Treap
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Euler Tour Treap supporting vertex/subtree updates and vertex/subtree queries
// Time Complexity:
     constructor: O(N)
      treeRoot, connected, addEdge, cutParent: O(log N)
updateVertex, updateSubtreeValue, queryVertexValue, querySubtreeValue: O(log N)
// Memory Complexity: O(N)
struct LazyEulerTourTreap {
     seed_seq seq {
           (uint64_t) chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count(),
           (uint64_t) __builtin_ia32_rdtsc(),
           (uint64_t) (uintptr_t) make_unique < char > () .get()
```

```
mt19937 rng; uniform_real_distribution<double> dis;
using Data = int; using Lazy = int; const Data vdef = 0; const Lazy ldef = 0; const bool ISPRE = true, ISPOST = false;
vector<Data> VAL, SBTR; vector<Lazy> LZ; vector<int> PRE, POST, VERT, L, R, P, SZ; vector<double> PRI; vector<bool> TYPE;
int makeNode(int vert, bool type, Data val) {
    VAL.push_back(val); SBTR.push_back(val); LZ.push_back(ldef); VERT.push_back(vert); TYPE.push_back(type);
          L.push_back(-1); R.push_back(-1); P.push_back(-1); SZ.push_back(1); PRI.push_back(dis(rng));
          return int(VAL.size()) - 1;
int size(int x) { return x == -1 ? 0 : SZ[x]; }
Data val(int x) { return x == -1 ? vdef: VAL[x]; }
Data sbtrVal(int x) { return x == -1 ? vdef: VAB[x]; }
Data sbtrVal(int x) { return x == -1 ? vdef : SBTR[x]; }
Data merge(Data 1, Data r); // to be implemented
Lazy getSegmentVal(Lazy v, int k); // to be implemented
Lazy mergeLazy(Lazy 1, Lazy r); // to be implemented
Data applyLazy(Data d, Lazy 1); // to be implemented
void apply(int x, Lazy v) {
          if (x == -1) return;
            \texttt{VAL}[\texttt{x}] = \texttt{applyLazy}(\texttt{VAL}[\texttt{x}], \texttt{v}); \texttt{SBTR}[\texttt{x}] = \texttt{applyLazy}(\texttt{SBTR}[\texttt{x}], \texttt{getSegmentVal}(\texttt{v}, \texttt{SZ}[\texttt{x}])); \texttt{LZ}[\texttt{x}] = \texttt{mergeLazy}(\texttt{LZ}[\texttt{x}], \texttt{v}); \texttt{LZ}[\texttt{x}] = \texttt{mergeLazy}(\texttt{LZ}[\texttt{x}], \texttt{x}); \texttt{LZ}[\texttt{x}] = \texttt{LZ}[\texttt{x}] 
void propagate(int x) {
          if (x == -1 || LZ[x] == ldef) return;
if (L[x] != -1) apply(L[x], LZ[x]);
if (R[x] != -1) apply(R[x], LZ[x]);
LZ[x] = ldef;
void update(int x) {
          if (x == -1) return;
SZ[x] = 1; SBTR[x] = VAL[x];
          if (L[x]!=-1) { P[L[x]] = x; SZ[x] += SZ[L[x]]; SBTR[x] = merge(SBTR[x], SBTR[L[x]]); }
if (R[x]!=-1) { P[R[x]] = x; SZ[x] += SZ[R[x]]; SBTR[x] = merge(SBTR[x], SBTR[R[x]]); }
void merge(int &x, int 1, int r) {
          propagate(1); propagate(r);
           if (1 == -1 || r == -1) { x = 1 == -1 ? r : 1; }
          else if (PRI[1] > PRI[r]) { merge(R[1], R[1], r); x = 1; }
else { merge(L[r], 1, L[r]); x = r; }
          update(x);
void split(int x, int &l, int &r, int lsz) {
          if (x == -1) { 1 = r = -1; return; }
propagate(x); P[x] = -1;
           if (lsz <= size(L[x])) { split(L[x], l, L[x], lsz); r = x; }</pre>
          else { split(R[x], R[x], r, lsz - size(L[x]) - 1); l = x; }
          update(x);
int min(int x) {
          if (x == -1) return 0;
while (L[x] != -1) x = L[x];
return x;
int root(int x) {
          if (x == -1) return 0;
while (P[x] != -1) x = P[x];
return x;
int index(int x) {
          int ind = size(L[x]);
for (; P[x] != -1; x = P[x]) if (L[P[x]] != x) ind += 1 + size(L[P[x]]);
          return ind;
LazyEulerTourTreap(int N) : rng(seq), dis(0.0, 1.0) {
          for (int i = 0, dummy = -1; i < N; i++) {
    PRE.push_back(makeNode(i, ISPRE, vdef)); POST.push_back(makeNode(i, ISPOST, vdef));</pre>
                     merge(dummy, PRE.back(), POST.back());
template <class It> LazyEulerTourTreap(It st, It en) : rng(seq), dis(0.0, 1.0) {
          int dummy = -1;
for (It i = st; i < en; i++) {</pre>
                    PRE.push_back(makeNode(i, ISPRE, *i)); POST.push_back(makeNode(i, ISPOST, *i)); merge(dummy, PRE.back(), POST.back());
int treeRoot(int v) { return VERT[min(root(PRE[v]))]; }
bool connected(int v, int w) { return treeRoot(v) == treeRoot(w); }
void addEdge(int v, int w) {
          int 1, r; split(root(PRE[v]), 1, r, index(PRE[v]) + 1);
merge(1, 1, root(PRE[w])); merge(1, 1, r);
void cutParent(int v)
          int 1, m, r; split(root(PRE[v]), l, m, index(PRE[v])); split(m, m, r, index(POST[v]) + 1); merge(l, l, r);
Data getVertexValue(int v) {
          int 1, m, r; split(root(PRE[v]), 1, m, index(PRE[v])); split(m, m, r, 1);
          Data ret = val(m); merge(l, l, m); merge(l, l, r);
Data getSubtreeValue(int\ v) { // value may be doubled due to double counting of pre and post
          int 1, m, r; split(root(PRE[v]), 1, m, index(PRE[v])); split(m, m, r, index(POST[v]) + 1);
Data ret = sbtrVal(m); merge(1, 1, m); merge(1, 1, r);
return ret;
void updateVertex(int v, Data val) {
   int 1, preV, m, postV, r; split(root(PRE[v]), 1, preV, index(PRE[v])); split(preV, preV, m, 1);
```

```
split(m, m, postV, index(POST[v])); split(postV, postV, r, 1);
         apply(preV, val); apply(postV, val); merge(1, 1, preV); merge(1, 1, m); merge(1, 1, postV); merge(1, 1, r);
    void updateSubtree(int v, Data val) {
   int l, m, r; split(root(PRE[v]), l, m, index(PRE[v])); split(m, m, r, index(POST[v]) + 1);
         apply(m, val); merge(l, l, m); merge(l, l, r);
1.4.3 Link Cut Tree
#pragma once
#include <bits/stdc++.h>
using namespace std;
   Link Cut Tree supporting vertex updates and path queries
   Time Complexity:
constructor: O(N)
     makeRoot, findRoot,
                             lca, link, cut, cutParent, updateVertex, queryPath: O(log N)
// Memory Complexity: O(N)
struct LinkCutTree {
    using Data = int; const Data vdef = 0;
vector<Data> VAL, SBTR; vector<int> L, R, P, SZ; vector<bool> REV;
    int makeNode(Data val) {
         VAL.push_back(val); SBTR.push_back(val); REV.push_back(false);
          \label{eq:lower_back} \verb|L.push_back(-1); R.push_back(-1); P.push_back(-1); SZ.push_back(1); \\
         return int (VAL.size()) - 1;
    LinkCutTree(int N) { for (int i = 0; i < N; i++) makeNode(vdef); }
    template <class It> LinkCutTree(It st, It en) { for (It i = st; i < en; i++) makeNode(*i); }</pre>
    bool isRoot(int x) { return P[x] == -1 || (x != L[P[x]] && x != R[P[x]]); }
int size(int x) { return x == -1 ? 0 : SZ[x]; }
Data sbtr(int x) { return x == -1 ? vdef : SBTR[x]; }
Data merge(Data 1, Data r); // to be implemented
    Data applyVal(Data o, Data n); // to be implemented
    void apply(int x, Data d) {
         if (x == -1) return;
         VAL[x] = applyVal(VAL[x], d); SBTR[x] = applyVal(SBTR[x], d);
    void propagate(int x) {
         if (REV[x]) {
             REV[x] = false; swap(L[x], R[x]);
              if (L[x] != -1) REV[L[x]] = !REV[L[x]];
if (R[x] != -1) REV[R[x]] = !REV[R[x]];
    void connect(int ch, int par, bool hasCh, bool isL) {
         if (ch != -1) P[ch] = par;
         if (hasCh) {
             if (isL) L[par] = ch;
              else R[par] = ch;
         }
    void rotate(int x) {
         int p = P[x], g = P[p]; bool isRootP = isRoot(p); bool isL = x == L[p];
connect(isL ? R[x] : L[x], p, true, isL); connect(p, x, true, !isL); connect(x, g, !isRootP, isRootP ? false : p == L[g]);
         update(p);
    void splay(int x) {
         while (!isRoot(x)) {
             int p = P[x], g = P[p];
if (!isRoot(p)) propagate(g);
              propagate(p); propagate(x);
              if (!isRoot(p)) rotate((x == L[p]) == (p == L[g]) ? p : x);
              rotate(x);
         propagate(x); update(x);
    int expose(int x) {
         int last = -1;
for (int y = x; y != -1; y = P[y]) { splay(y); L[y] = last; last = y; }
         splay(x); return last;
    void makeRoot(int x) { expose(x); REV[x] = !REV[x]; }
    int findRoot(int x) {
         expose(x);

while (R[x] != -1) x = R[x];
         splay(x); return x;
    bool connected(int x, int y) {
   if (findRoot(x) != findRoot(y)) return false;
   if (x == y) return true;
         expose(x); expose(y); return P[x] != -1;
    int lca(int x, int y) {
   if (findRoot(x) != findRoot(y)) return -1;
         expose(x); return expose(y);
    bool link(int x, int y) {
         if (connected(x, y)) return false;
makeRoot(x); P[x] = y; return true;
    bool cut(int x, int y) {
         if (!connected(x, y)) return false;
         makeRoot(x); expose(y);
```

```
if (x != R[y] || L[x] != -1) return false;
                       R[y] = P[R[y]] = -1; return true;
           bool cutParent(int x) {
                       cutratenc.;
expose(x);
if (R[x] == -1) return false;
R[x] = P[R[x]] = -1;
           bool updateVertex(int x, Data val) { makeRoot(x); apply(x, val); return true; }
int queryPath(int from, int to) {
                       if (!connected(from, to)) return vdef;
                       makeRoot(from); expose(to); return sbtr(to);
1.4.4 Lazy Link Cut Tree
#include <bits/stdc++.h>
using namespace std;
 // Link Cut Tree supporting path updates and path queries
// Time Complexity:
              constructor: O(N)
              makeRoot, findRoot, lca, link, cut, cutParent, updatePath, queryPath: O(log N)
 // Memory Complexity: O(N)
struct LazyLinkCutTree {
           using Data = int; using Lazy = int; const Data vdef = 0; const Lazy ldef = 0;
            vector<Data> VAL, SBTR; vector<Lazy> LZ; vector<int> L, R, P, SZ; vector<bool> REV;
            int makeNode(Data val) {
                       VAL.push_back(val); SBTR.push_back(val); LZ.push_back(ldef); REV.push_back(false); L.push_back(-1); R.push_back(-1); P.push_back(-1); SZ.push_back(1); return int(VAL.size()) - 1;
           LazyLinkCutTree(int N) { for (int i = 0; i < N; i++) makeNode(vdef); }

template <class It> LazyLinkCutTree(It st, It en) { for (It i = st; i < en; i++) makeNode(*i); }

bool isRoot(int x) { return P[x] == -1 || (x != L[P[x]] && x != R[P[x]]); }

int size(int x) { return x == -1 ? 0 : SZ[x]; }
           Data sbtr(int x) { return x == -1 ? vdef : SBTR[x]; }
Data merge(Data 1, Data r); // to be implemented
Lazy getSegmentVal(Lazy v, int k); // to be implemented
Lazy mergeLazy(Lazy 1, Lazy r); // to be implemented
Data applyLazy(Data d, Lazy 1); // to be implemented
            void apply(int x, Lazy v) {
                       if (x == -1) return;
                        \texttt{VAL}[\texttt{x}] = \texttt{applyLazy}(\texttt{VAL}[\texttt{x}], \texttt{v}); \texttt{SBTR}[\texttt{x}] = \texttt{applyLazy}(\texttt{SBTR}[\texttt{x}], \texttt{getSegmentVal}(\texttt{v}, \texttt{SZ}[\texttt{x}])); \texttt{LZ}[\texttt{x}] = \texttt{mergeLazy}(\texttt{LZ}[\texttt{x}], \texttt{v}); \texttt{Matrix}(\texttt{v}, \texttt{v}); \texttt{Matrix}(\texttt{v}); \texttt{Matrix}(\texttt{v}, \texttt{v}); \texttt{Matrix}(\texttt{v}); \texttt{Matrix
            void propagate(int x) {
                       if (REV[x]) {
                                   REV[x] = false; swap(L[x], R[x]);

if (L[x] != -1) REV[L[x]] = !REV[L[x]];
                                    if (R[x] != -1) REV[R[x]] = !REV[R[x]];
                       LZ[x] = ldef;
            void update(int x) {
                        \begin{split} & \texttt{SBTR}[x] = \texttt{merge}(\texttt{merge}(\texttt{sbtr}(\texttt{L}[x]), \texttt{applyLazy}(\texttt{VAL}[x], \texttt{LZ}[x])), \texttt{sbtr}(\texttt{R}[x])); \\ & \texttt{SZ}[x] = 1 + \texttt{size}(\texttt{L}[x]) + \texttt{size}(\texttt{R}[x]); \\ \end{aligned} 
           void connect(int ch, int par, bool hasCh, bool isL) {
   if (ch != -1) P[ch] = par;
                       if (hasCh) {
                                   if (isL) L[par] = ch;
                                   else R[par] = ch;
            void rotate(int x) {
                       int p = P[x], g = P[p]; bool isRootP = isRoot(p); bool isL = x == L[p]; connect(isL ? R[x] : L[x], p, true, isL); connect(p, x, true, !isL); connect(x, g, !isRootP, isRootP ? false : p == L[g]);
                       update(p);
            void splay(int x) {
                       while (!isRoot(x)) {
                                   int p = P[x], g = P[p];
                                    if (!isRoot(p)) propagate(g);
                                   propagate(p); propagate(x);
if (!isRoot(p)) rotate((x == L[p]) == (p == L[g]) ? p : x);
                                   rotate(x);
                       propagate(x); update(x);
            int expose(int x) {
                       int last = -1;
for (int y = x; y != -1; y = P[y]) { splay(y); L[y] = last; last = y; }
splay(x); return last;
            void makeRoot(int x) { expose(x); REV[x] = !REV[x]; }
           int findRoot(int x) {
                       expose(x);
while (R[x] != -1) x = R[x];
                       splay(x); return x;
            bool connected(int x, int y) {
```

```
if (findRoot(x) != findRoot(y)) return false;
           if (x == y) return true;
           expose(x); expose(y); return P[x] != -1;
     int lca(int x, int y) {
   if (findRoot(x) != findRoot(y)) return -1;
           expose(x); return expose(y);
     bool link(int x, int y)
           if (connected(x, y)) return false;
makeRoot(x); P[x] = y; return true;
     bool cut(int x, int y)
           if (!connected(x, y)) return false;
           \label{eq:makeRoot} \begin{array}{ll} \text{makeRoot}(x); \text{ expose}(y); \\ \textbf{if} \text{ } (x \text{ } != \text{R[y]} \text{ } | | \text{ } \text{L[x]} \text{ } != \text{-1}) \text{ } \textbf{return false}; \\ \text{R[y]} \text{ } = \text{P[R[y]]} \text{ } = \text{-1}; \text{ } \textbf{return true}; \end{array}
     bool cutParent(int x) {
           expose(x);
if (R[x] == -1) return false;
R[x] = P[R[x]] = -1;
return true;
     bool updatePath(int from, int to, Lazy val) {
   if (!connected(from, to)) return vdef;
   makeRoot(from); expose(to); apply(to, val); return sbtr(to);
     int queryPath(int from, int to) {
           if (!connected(from, to)) return vdef;
makeRoot(from); expose(to); return sbtr(to);
1.4.5 Top Tree
#pragma once
#include <bits/stdc++.h>
using namespace std;
     int mn, mx, sum, size;
     Data(int mn = INT_MAX, int mx = INT_MIN, int sum = 0, int size = 0) : mn(mn), mx(mx), sum(sum), size(size) {}
struct Lazy
     int lz, fl;
     Lazy(int 1z = 0, int f1 = 0): 1z(1z), f1(f1) {}
// Top Tree supporting path and subtree, updates and queries
    Time Complexity:
      constructor: O(N)
      makeRoot, findParent, link, cutParent: O(log N)
updatePath, updateSubtree, queryPath, querySubtree: O(log N)
 // Memory Complexity: O(N)
struct TopTree {
     const int INC = 1, ASSIGN = 2;
     Data merge(const Data &1, const Data &r) {
    return Data(min(l.mn, r.mn), max(l.mx, r.mx), l.sum + r.sum, l.size + r.size);
     int apply(int val, int lz, int fl) {
           if (f1 == ASSIGN) return lz;
else if (f1 == INC) return val + lz;
           else return val;
     Data applyLazy(const Data &d, const Lazy &lz) {
    return d.size ? Data(apply(d.mn, lz.lz, lz.fl), apply(d.mx, lz.lz, lz.fl), apply(d.sum, lz.lz * d.size, lz.fl), d.size) : d;
     Lazy mergeLazy(const Lazy &ch, const Lazy &par) {
   return Lazy(apply(ch.lz, par.lz, par.fl), max(ch.fl, par.fl));
     vector<Data> PATH, SBTR, FTR; vector<Lazy> LZPATH, LZSBTR;
     vector<array<int, 4>> CH; vector<int> VAL, P; vector<bool> REV, INR;
     int makeNode(int val, bool inr) {
           VAL.push_back(val); Data d = inr ? Data() : Data(val, val, val, 1); Lazy lz = Lazy(0, 0); PATH.push_back(d); SBTR.push_back(d); FTR.push_back(d); LZPATH.push_back(lz); LZSBTR.push_back(lz);
           CH.push_back({0, 0, 0, 0}); P.push_back(0); REV.push_back(false); INR.push_back(inr); return int(VAL.size()) - 1;
     TopTree(int N) { makeNode(0, false); for (int i = 1; i <= N; i++) makeNode(0, false); } template <class It> TopTree(It st, It en) { makeNode(0, false); for (It i = st; i < en; i++) makeNode(*i, false); }
     bool isRoot(int x, bool t) {
           if (t) return !P[x] || !INR[x] || !INR[P[x]];
           else return !P[x] || (x != CH[P[x]][0] && x != CH[P[x]][1]);
     void rev(int x) { REV[x] = !REV[x]; swap(CH[x][0], CH[x][1]); }
     void pushPath(int x, const Lazy &lz) {
    LZPATH[x] = mergeLazy(LZPATH[x], lz); PATH[x] = applyLazy(PATH[x], lz);
           VAL[x] = apply(VAL[x], lz.lz, lz.fl); SBTR[x] = merge(PATH[x], FTR[x]);
     void pushSbtr(int x, const Lazy &lz, bool ftr) {
    LZSBTR[x] = mergeLazy(LZSBTR[x], lz); SBTR[x] = applyLazy(SBTR[x], lz); FTR[x] = applyLazy(FTR[x], lz);
           if (ftr) pushPath(x, lz);
     void propagate(int x) {
           if (x) {
                 if (REV[x]) {
```

```
REV[x] = false;
                for (int i = 0; i < 2; i++) if (CH[x][i]) rev(CH[x][i]);</pre>
          for (int i = 0; i < 4; i++) if (CH[x][i]) pushSbtr(CH[x][i], LZSBTR[x], i >= 2);
for (int i = 0; i < 2; i++) if (CH[x][i]) pushPath(CH[x][i], LZPATH[x]);</pre>
           LZSBTR[x] = LZPATH[x] = Lazy();
void update(int x) {
     if (x)
          PATH[x] = SBTR[x] = FTR[x] = Data();
          if (!INR[x]) PATH[x] = SBTR[x] = Data(VAL[x], VAL[x], VAL[x], 1);
for (int i = 0; 1 < 2; i++) {</pre>
                if (CH[x][i]) {
                     PATH[x] = merge(PATH[x], PATH[CH[x][i]]);
                     FTR[x] = merge(FTR[x], FTR[CH[x][i]]);
          for (int i = 0; i < 4; i++) if (CH[x][i]) SBTR[x] = merge(SBTR[x], SBTR[CH[x][i]]);
for (int i = 2; i < 4; i++) if (CH[x][i]) FTR[x] = merge(FTR[x], SBTR[CH[x][i]]);</pre>
int findInd(int x) {
     friction (int i = 0; i < 4; i++) if (CH[P[x]][i] == x) return i;
assert(false); return -1;
void connect(int ch, int par, int i) {
     if (ch) P[ch] = par;
     CH[par][i] = ch;
void rotate(int x, int t) {
     assert(t == 0 \mid \mid t == 2);
     int p = P[x], g = P[p];
bool isL = x == CH[p][t];
     if (g) connect(x, g, findInd(p));
     else P[x] = 0;
     connect(CH[x][t ^ isL], p, t ^ !isL); connect(p, x, t ^ isL); update(p);
void splay(int x, int t) {
     assert(t == 0 || t == 2);
     while (!isRoot(x, t))
          int p = P[x], g = P[p];
            \textbf{if} \ (! \texttt{isRoot}(p, \ t)) \ \texttt{rotate}((x == \texttt{CH}[p][t]) == (p == \texttt{CH}[g][t]) \ ? \ p : x, \ t); 
          rotate(x, t);
     update(x);
void add(int x, int y) {
     propagate(y);
      for (int i = 2; i < 4; i++) if (!CH[y][i]) { connect(x, y, i); return; }</pre>
     int z = makeNode(0, true), w = 0; for(w = y; INR[CH[w][2]]; w = CH[w][2]) propagate(CH[w][2]); connect(CH[w][2], z, 2); connect(x, z, 3); connect(z, w, 2); splay(z, 2);
void remove(int x) {
     if (INR[P[x]]) { connect(CH[P[x]][findInd(x) ^ 1], P[P[x]], findInd(P[x])); <math>splay(P[P[x]], 2); }
     else connect(0, P[x], findInd(x));
     P[x] = 0;
void expose(int x) {
     stack<int> stk; int y = x, z;
for (z = x; z; z = P[z]) stk.push(z);
     while (!stk.empty()) { propagate(stk.top()); stk.pop(); }
splay(x, 0);
     if (CH[x][1]) { z = CH[x][1]; CH[x][1] = 0; add(z, x); update(x); }
     while (P[x]) {
          for (z = P[x]; INR[z]; z = P[z]);
          splay(z, 0);
if (CH[z][1]) { connect(CH[z][1], P[x], findInd(x)); splay(P[x], 2); }
           else remove(x);
          connect(x, z, 1); update(z); x = z;
     splay(y, 0);
void makeRoot(int x) { expose(x); rev(x); }
int findParent(int x) {
     expose(x); propagate(CH[x][0]);
     for (x = CH[x][0]; x && CH[x][1]; x = CH[x][1]) propagate(CH[x][1]); return x;
int findRoot(int x) { for (; P[x]; x = P[x]); return x; }
int cutParent(int x) {
     int y = findParent(x);
if (y) { expose(y); remove(x); update(y); }
     return y;
rvoid link(int x, int y) {
    makeRoot(x); int p = cutParent(x);
    if (findRoot(x) != findRoot(y)) p = y;
     if (p) { expose(p); add(x, p); update(p); }
void updateSubtree(int x, Lazy lz) {
   expose(x); VAL[x] = apply(VAL[x], lz.lz, lz.fl);
   for (int i = 2; i < 4; i++) if (CH[x][i]) pushSbtr(CH[x][i], lz, true);</pre>
     update(x);
```

```
void updatePath(int x, int y, Lazy lz) { makeRoot(x); expose(y); splay(x, 0); pushPath(x, lz); }
Data querySubtree(int x) {
      expose(x); Data ret = (VAL[x], VAL[x], VAL[x], 1);
      for (int i = 2; i < 4; i++) ret = merge(ret, SBTR[CH[x][i]]);
      return ret;
    }
Data queryPath(int x, int y) { makeRoot(x); expose(y); splay(x, 0); return PATH[x]; }</pre>
```

1.5 String

1.5.1 Trie

```
#include <bits/stdc++.h>
using namespace std;
struct Trie {
    struct Node { unordered_map<char, Node*> child; int cnt = 0, prefixCnt = 0; };
    void insert(Node *root, string &s) {
        Node *cur = root;
        for (char c : s) {
            if (cur->child.count(c)) cur = cur->child[c];
            else cur = cur->child[c] = new Node();
            cur->prefixCnt++;
        cur->cnt++;
    int count(Node *root, string &s) {
        Node *cur = root;
        for (char c : s)
            if (cur->child.count(c)) cur = cur->child[c];
            else return 0;
        return cur->cnt;
    int prefixCount(Node *root, string &s) {
        Node *cur = root;
for (char c : s) {
            if (cur->child.count(c)) cur = cur->child[c];
            else return 0;
        return cur->prefixCnt;
    Node *root = new Node();
    void insert(string &s) { insert(root, s); }
   bool contains(string &s) { return count(root, s) >= 1; }
    bool hasPrefix(string &s) { return prefixCount(root, s) >= 1; }
    int count(string &s) { return count(root, s); }
    int prefixCount(string &s) { return prefixCount(root, s); }
```

2 Algorithms

2.1 Dynamic Programming

2.1.1 Coin Change

```
#pragma once
#include <bits/stdc++.h>
using namespace std;

// Computes the number of ways to make chance for exactly T dollars given N coin values

// Time Complexity: O(TN)

// Memory Complexity: O(T + N)

template <const int MAXT, const int MAXN> struct CoinChange {
    int dp[MAXT], C[MAXN];
    int solve(int T, int N) {
        dp[0] = 1; fill(dp + 1, dp + T + 1, 0);
        for (int i = 0; i < N; i++) for (int j = 1; j <= T; j++) if (C[i] <= j) dp[j] += dp[j - C[i]];
    return dp[T];
    }
};</pre>
```

2.1.2 Minimum Coin Change

```
#pragma once
#include <bits/stdc++.h>
using namespace std;

// Computes the minimum number of coins to make chance for exactly T dollars given N coin values

// Time Complexity: O(TN)
// Memory Complexity: O(T + N)

template <const int MAXT, const int MAXN> struct CoinChange {
    int dp[MAXT], C[MAXN];
    int solve(int T, int N) {
        dp[0] = 0; fill(dp + 1, dp + T + 1, INT_MAX - 1);
        for (int i = 1; i <= T; i++) for (int j = 0; j < N; j++) if (C[j] <= i) dp[i] = min(dp[i], dp[i - C[j]] + 1);
        return dp[T];
    }
};</pre>
```

2.1.3 Egg Dropping

```
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the number of trials required to determine which of the F floors will
// an egg break on, using E eggs, assuming eggs cannot be resued if broken
// Time Complexity:
     preCompute: O(E^2)
     query: O(log E)
// querySingle: O(E log F)
// Memory Complexity: O(E^2)
template <const int MAXE> struct EggDropping {
    long long dp[MAXE][MAXE];
     void preCompute() {
         for (int i = 1; i < MAXE; i++) {</pre>
              dp[i][0] = 0; dp[i][1] = 1;
              for (int j = 2; j < MAXE; j++) dp[i][j] = dp[i - 1][j - 1] + dp[i][j - 1] + 1;</pre>
     int query(int E, int F) { return lower_bound(dp[E], dp[E] + MAXE, F) - dp[E]; }
    long long f(int x, int E, int F) {
   long long sum = 0, term = 1;
         for (int i = 1; i \le E \&\& sum < F; i++) sum += ((term *= x - i + 1) /= i); return <math>sum;
     int querySingle(int E, int F) {
         int lo = 1, hi = F, mid;
while (lo < hi) {</pre>
              mid = lo + (hi - lo) / 2;
              if (f(mid, E, F) < F) lo = mid + 1;
              else hi = mid;
         return lo;
};
2.1.4 Hamiltonian Cycle
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the shortest Hamiltonian Cycle (returning to starting position) // Time Complexity: O(N^2 * 2^N) // Memory Complexity: O(N * 2^N)
template <const int MAXN, class T> struct HamiltonianCycle
     T INF, dist[MAXN][MAXN], dp[1 << MAXN][MAXN]; int order[MAXN];</pre>
     HamiltonianCycle(T INF) : INF(INF) {}
    T solve(int N) {
   T ret = INF;
         for (int i = 0; i < (1 << N); i++) for (int j = 0; j < N; j++) dp[i][j] = INF; dp[1][0] = 0;
         for (int i = 1; i < (1 << N); i += 2) for (int j = 0; j < N; j++) if (i & (1 << j))
    for (int k = 1; k < N; k++) if (!(i & (1 << k))) dp[i ^ (1 << k)][k] = min(dp[i ^ (1 << k)][k], dp[i][j] + dist[j][k]);</pre>
         for (int i = 1; i < N; i++) ret = min(ret, dp[(1 << N) - 1][i] + dist[i][0]);
int curPos = 0, curState = (1 << N) - 1;
for (int i = N - 1; i >= 0; i--) {
              int next = -1;
              for (int j = 0; j < N; j++)
                    \textbf{if} \ ((\texttt{curState} \ \& \ (1 << j)) \ \&\& \ (\texttt{next} == -1 \ || \ dp[\texttt{curState}][j] \ + \ dist[j][\texttt{curPos}] \ < \ dp[\texttt{curState}][\texttt{next}] \ + \ dist[\texttt{next}][
                         curPos]))
                        next = i;
              order[i] = curPos = next; curState ^= 1 << curPos;
         return ret:
};
2.1.5 Hamiltonian Path
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the shortest Hamiltonian Path (does not have to return to starting position) // Time Complexity: O(N^2 * 2^N) // Memory Complexity: O(N * 2^N)
template <const int MAXN, class T> struct HamiltonianPath {
     T INF, dist[MAXN][MAXN], dp[1 << MAXN][MAXN]; int order[MAXN];</pre>
     HamiltonianPath(T INF) : INF(INF) {}
    T run(int N) {
    T ret = INF;
         for (int i = 0; i < N; i++) ret = min(ret, dp[(1 << N) - 1][i]);</pre>
         int curState = (1 \ll N) - 1, last = -1;
         for (int i = N - 1; i >= 0; i--) {
              int next = -1;
for (int j = 0; j < N; j++)
                    \textbf{if} \ ((\text{curState \& (1 << j)}) \ \&\& \ (\text{next == -1 || dp[curState][j] + (last == -1 ? 0 : dist[j][last])} < dp[curState][next] 
                         + (last == -1 ? 0 : dist[next][last])))
                        next = j;
```

order[i] = last = next; curState ^= 1 << last;</pre>

```
};
2.1.6 0-1 Knapsack
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the maximum value that can be obtained by items in a knapsack (from a selection of N items)
// that can hold a maximum of M weight, not allowing for repeated instances of items
// Time Complexity: O(NM)
// Space Complexity: O(N + M)
template <const int MAXN, const int MAXM, class TV> struct ZeroOneKnapsack {
    int W[MAXN]; TV V[MAXN], dp[MAXM];
    TV solve(int N, int M) {
        fill (dp, dp + M + 1, 0); for (int j = M; j >= W[i]; j--) dp[j] = max(dp[j - W[i]] + V[i]);
        return dp[M];
};
2.1.7 Unbounded Knapsack
#pragma once
#include <bits/stdc++.h>
using namespace std;
   Computes the maximum value that can be obtained by items in a knapsack (from a selection of N items)
// that can hold a maximum of M weight, allowing for repeated instances of items
// Time Complexity: O(NM)
// Space Complexity: O(N + M)
template <const int MAXN, const int MAXM, class TV> struct UnboundedKnapsack {
    int W[MAXN]; TV V[MAXN], dp[MAXM];
    TV solve(int N, int M) {
    for (int j = 0; j <= M; j++) for (int i = 0; i < N; i++) if (W[i] <= j) dp[j] = max(dp[j], dp[j - W[i]] + V[i]);
        return dp[M];
};
2.1.8 Bounded Knapsack
#pragma once
#include <bits/stdc++.h>
using namespace std;
   Computes the maximum value that can be obtained by item in a knapsack (from a selection of N items)
^{\prime\prime} that can hold a maximum of M weight, allowing for a maximum of Fi items for item i
// Time Complexity: O(NM log M)
// Space Complexity: O(N log M + M)
template <const int MAXN, const int MAXM, class TV> struct BoundedKnapsack {
    TV dp[MAXM]; vector<pair<int, TV>> items;
    void addItem(int w, TV v, int f) {
        int sum = 0, mult = 1;
        for (f = min(f, MAXM / w); sum + mult < f; sum += mult, mult *= 2) items.emplace_back(mult * w, mult * v); items.emplace_back((f - sum) * w, (f - sum) * v);
    void reset() { items.clear(); }
    TV solve(int N, int M) {
        fill(dp, dp + M + 1, 0);

for (auto &&i : items) for (int j = M; j >= i.first; j--) dp[j] = max(dp[j], dp[j - i.first] + i.second);
        return dp[M]:
};
2.1.9 ZigZag
#pragma once
#include <bits/stdc++.h>
using namespace std;
   Computes the length of the longest zigzag subsequence
// A zigzag sequence alternates between increasing and decreasing (it can start with either)
// Time Complexity: O(N)
// Memory Complexity: O(N)
template <const int MAXN> struct ZigZag {
    int A[MAXN], dp[2][MAXN];
    int solve(int N) {
        return max(dp[0][N - 1], dp[1][N - 1]);
};
2.1.10 Unique ZigZag
#pragma once
#include <bits/stdc++.h>
using namespace std;
  Computes the number of unique zigzag sequences of a specified length N, modulo a number
// A zigzag sequence alternates between increasing and decreasing (it can start with either)
```

return ret;

```
// Time Complexity: O(N^2)
 // Memory Complexity: O(N)
template <const int MAXN, const long long MOD> struct UniqueZigZag {
     long long dp[2][MAXN];
     long long solve(int N)
          flong solve(int N) {
    dp[0][0] = dp[1][0] = 0; dp[1][1] = 1;
    for (int i = 2; i <= N; i++) for (int j = 1; j <= i; j++) {
        if (i % 2 == 0) { dp[0][j] = (dp[1][j - 1] + dp[0][j - 1]) % MOD; dp[0][j + 1] = dp[0][j]; }
        else { dp[1][j] = (dp[0][i] - dp[0][j - 1] + dp[1][j - 1] + MOD) % MOD; dp[1][j + 1] = dp[1][j]; }</pre>
          return dp[N % 2][N] % MOD;
};
2.1.11 Longest Common Integer Subsequence
#include <bits/stdc++.h>
using namespace std;
// Computes the longest common subsequence between 2 arrays of integers
   Time Complexity: O(N^2)
// Memory Complexity: O(N^2)
template <const int MAXN, const int MAXM = MAXN> struct LCIS {
     \textbf{int} \ \texttt{A[MAXN], B[MAXM], dp[MAXN][MAXM], subsequence[max(MAXN, MAXM)], len;}
     int solve(int N, int M) {
   for (int i = 1; i <= N; i++) for (int j = 1; j <= M; j++) {
      if (A[i - 1] == B[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
      else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);</pre>
          len = dp[N][M];
          for (int i = N, j = M, k = len - 1; i > 0 && j > 0;) {
   if (A[i - 1] == B[j - 1]) { subsequence[k--] = A[i - 1]; i--; j--; }
               else if (dp[i - 1][j] > dp[i][j - 1]) i--;
               else j--;
          return len;
};
2.1.12 Longest Increasing Subsequence
#include <bits/stdc++.h>
using namespace std;
// Computes the length of the longest increasing subsequence // Time Complexity: O(N log N) // Memory Complexity: O(N)
template <const int MAXN> struct LongestIncreasingSubsequence {
     int A[MAXN], dp[MAXN];
     int solve(int N) {
   int ret = 0;
          for (int i = 0; i < N; i++) {
   int j = lower_bound(dp, dp + ret, A[i]) - dp;</pre>
               dp[j] = A[i]; if (j == ret) ret++;
          return ret;
2.1.13 Maximum Nonconsecutive Subsequence Sum
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the maximum sum of a non sonsecutive subsequence
// Compaces the maximum sa
// Time Complexity: O(N)
// Memory Complexity: O(N)
template <const int MAXN> struct MaxNonConsecutiveSum {
     int A[MAXN], dp[MAXN];
     int solve(int N) {
          dp[0] = A[0]; dp[1] = max(dp[0], A[1]);
          return dp[N - 1];
max(dp[i], M[i], M[i] = max(dp[i - 2] + A[i], dp[i - 1]);
return dp[N - 1];
2.1.14 Maximum Subarray Sum
#pragma once
#include <bits/stdc++.h>
using namespace std;
   'Computes the subarray with the maximum sum using Kadane's Algorithm
// Time Complexity: O(N)
template <const int MAXN> struct MaxSubarraySum {
     int A[MAXN], maxSum, st, en; // st and en are the starting and ending (inclusive) indices of the subarray
     int solve(int N) {
          maxSum = st = 0; en = -1; int curMax = 0, curSt = 0;
          for (int i = 0; i < N; i++)</pre>
                curMax += A[i]; if (curMax < 0) { curMax = 0; curSt = i + 1; }
               if (maxSum < curMax) { maxSum = curMax; st = curSt; en = i; }</pre>
          return maxSum:
```

```
};
```

```
2.1.15 Maximum Subarray Sum With Skip
#include <bits/stdc++.h>
using namespace std;
// Computes the subarray with the maximum sum, removing at most one element from the array
// Time Complexity: O(N)
// Memory Complexity: O(N)
template <const int MAXN> struct MaxSubarraySumSkip {
    int A[MAXN], fw[MAXN], bw[MAXN];
    int solve(int N) {
         for (int i = 1; i < N; i++) { fw[i] = curMax = max(A[i], curMax + A[i]); maxSum = max(maxSum, curMax); }
curMax = maxSum = bw[N - 1] = A[N - 1];
curMax = maxSum = bw[N - 1] = A[N - 1];</pre>
         for (int i = 1; i < N - 1; i++) maxSum = max(maxSum, fw[i - 1] + bw[i + 1]);
};
2.1.16 Maximum Zero Submatrix
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the area of the largest submatrix that contains only 0s
   Time Complexity: O(NM)
// Memory Complexity: O(NM)
template <const int MAXN, const int MAXM = MAXN> struct MaxZeroSubmatrix {
    int A[MAXN][MAXM], H[MAXN][MAXM];
    int solve(int N, int M) {
         stack < int > s; int ret = 0;
         for (int j = 0; j < M; j++) for (int i = N - 1; i >= 0; i--) H[i][j] = A[i][j] ? 0 : 1 + (i == N - 1 ? 0 : H[i + 1][j]); for (int i = 0; i < N; i++) {
             for (int j = 0; j < M; j++) {
   int minInd = j;</pre>
                  while (!s.empty() && H[i][s.top()] >= H[i][j]) {
  ret = max(ret, (j - s.top()) * (H[i][s.top()]));
                       minInd = s.top(); s.pop(); H[i][minInd] = H[i][j];
                  s.push(minInd);
              while (!s.empty()) ret = max(ret, (M - s.top()) * H[i][s.top()]); s.pop();
         return ret;
};
2.1.17 Partitions
#pragma once
#include <bits/stdc++.h>
using namespace std;
 / counts the number of partitions of a number such that the sum is equal to n / Time Complexity: O(N^2)
// Memory Complexity: O(N)
template <const int MAXN> struct Partitions1 {
    long long dp[MAXN];
    long long solve(int N, long long mod) {
         dp[0] = 1;
for (int i = 1; i <= N; i++) for (int j = i; j <= N; j++) dp[j] = (dp[j] + dp[j - 1]) % mod;
         return dp[N] % mod;
};
// counts the number of partitions of size k, for a number such that the sum is equal to n
// Time Complexity: O(NK)
// Memory Complexity: O(NK)
template <const int MAXN, const int MAXK> struct Partitions2 {
    long long dp[MAXN][MAXK];
    long long solve(int N, int K, long long mod) {
    dp[0][1] = 1;
    for (int i = 1; i <= N; i++) for (int j = 1; j <= min(i, K); j++) dp[i][j] = (dp[i - 1][j - 1] + dp[i - j][j]) % mod;</pre>
         return dp[N][K] % mod;
2.1.18 Convex Hull Optimization
#include <bits/stdc++.h>
using namespace std;
   Supports adding lines in the form f(x) = mx + b and finding the maximum value of f(x) at any given x
   Comparator convention is same as priority_queue in STL
// Time Complexity:
     addLine, getMax: O(1)
// Memory Complexity: O(N) where N is the total number of lines added
template <const int MAXN, class T, class Comparator = less<T>> struct ConvexHullOptimization {
   Comparator cmp; T M[MAXN], B[MAXN]; int front = 0, back = 0;
   void addLine(T m, T b) { // in non decreasing order of slope, as sorted by the comparator
```

while (back >= 2 && (B[back - 2] - B[back - 1]) * (m - M[back - 1]) >= (B[back - 1] - b) * (M[back - 1] - M[back - 2])) back

```
M[back] = m, B[back++] = b;
}
T getMax(T x) { // in non decreasing order of x, regardless of comparator
    while (front < back - 1 && !cmp(M[front + 1] * x + B[front + 1], M[front] * x + B[front])) front++;
    return M[front] * x + B[front];
}
};</pre>
```

2.1.19 Knuth Optimization

```
#pragma once
#include <bits/stdc++.h>
using namespace std;
  'Knuth's Dynamic Programming Optimization
// Must statisfy dp[i][j] = \min\{dp[i][k] + dp[k][j] + cost(i, k, j)\} for i \le k \le j // and A[i][j - 1] \le A[i][j] \le A[i + 1][j], where A[i][j] is the optimal value of k
// for dp[i][j]
   Time Complexity: Reduces the runtime from O(N^3) to O(N^2)
// Memory Complexity: O(N^2)
template <const int MAXN, const int INF> struct KnuthOptimization {
     int dp[MAXN][MAXN], mid[MAXN][MAXN];
     int cost(int 1, int m, int r); // to be implemented
     int solve(int N) {
          for (int 1 = N - 1; 1 >= 0; 1--) for (int r = 1; r <= N; r++) {
                if (r - 1 < 2) { dp[1][r] = 0; mid[1][r] = 1; continue; }</pre>
               dp[1][r] = INF;
for (int m = mid[1][r - 1]; m <= mid[1 + 1][r]; m++) {
   int temp = dp[1][m] + dp[m][r] + cost(1, m, r);
   if (dp[1][r] > temp) { dp[1][r] = temp; mid[1][r] = m; }
          return dp[0][N];
};
```

2.2 Meet in the Middle

2.2.1 Closest Subset Sum

```
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Finds the closest non-empty subset sum to a value, using a meet in the middle approach // Time Complexity: Reduces the runtime from O(N * 2^{\circ}N) to O(N * 2^{\circ}(N/2))
// Memory Complexity: O(2^(N/2))
template <const int MAXN, class T> struct ClosestSubsetSum {
   T A[MAXN]; vector<T> ans; // ans contains the closest non-empty subset sum to value
   void solveHalf(vector<T> &half, vector<pair<T, int>> &sum) {
      for (int i = 1; i < (1 << int(half.size())); i++) {</pre>
                T curSum = 0; for (int j = 0; j < int(half.size()); j++) if (i & (1 << j)) curSum += half[j];
                sum.push_back(make_pair(curSum, i));
          sort(sum.begin(), sum.end()); sum.resize(unique(sum.begin(), sum.end()) - sum.begin());
     T solve(int N, T value) { // returns the closest sum, elements are stored in ans
          vector<T> even, odd; even.reserve(N - N / 2); odd.reserve(N / 2);
          vector<pair<T, int>> evenSum, oddSum; evenSum.reserve(1 << (N - N / 2)); oddSum.reserve(1 << (N / 2));</pre>
          for (int i = 0; i < N; i++) {
   if (i % 2 == 0) even.push_back(A[i]);</pre>
                else odd.push_back(A[i]);
          solveHalf(even, evenSum); solveHalf(odd, oddSum);
if (int(evenSum.size()) > 0 && abs(value - evenSum[0].first) < minDiff) {</pre>
                evenPerm = evenSum[0].second; oddPerm = 0; closestSum = evenSum[0].first; minDiff = abs(value - evenSum[0].first);
          if (int(oddSum.size()) > 0 && abs(value - oddSum[0].first) < minDiff) {</pre>
                evenPerm = 0; oddPerm = oddSum[0].second; closestSum = oddSum[0].first; minDiff = abs(value - oddSum[0].first);
          for (int i = 0; i < int(evenSum.size()); i++) {</pre>
                int j = lower_bound(oddSum.begin(), oddSum.end(), make_pair(value - evenSum[i].first, -1)) - oddSum.begin();
if (j == int(oddSum.size())) {
                     if (j > 0 && abs(value - (evenSum[i].first + oddSum[j - 1].first)) < minDiff) {
    evenPerm = evenSum[i].second; oddPerm = oddSum[j - 1].second;
    closestSum = evenSum[i].first + oddSum[j - 1].first;</pre>
                           minDiff = abs(value - (evenSum[i].first + oddSum[j - 1].first));
                } else if (evenSum[i].first + oddSum[j].first != value)
                     if (j > 0 && abs(value - (evenSum[i].first + oddSum[j - 1].first)) < minDiff) {</pre>
                          cvenPerm = evenSum[i].second; oddPerm = oddSum[j - 1].second;
closestSum = evenSum[i].first + oddSum[j - 1].first;
minDiff = abs(value - (evenSum[i].first + oddSum[j - 1].first));
                     if (abs(value - (evenSum[i].first + oddSum[j].first)) < minDiff) {</pre>
                           evenPerm = evenSum[i].second; oddPerm = oddSum[j].second;
                           closestSum = evenSum[i].first + oddSum[j].first;
                           minDiff = abs(value - (evenSum[i].first + oddSum[j].first));
                else
                     if (abs(value - (evenSum[i].first + oddSum[j].first)) < minDiff) {</pre>
                           evenPerm = evenSum[i].second; oddPerm = oddSum[j].second;
closestSum = evenSum[i].first + oddSum[j].first;
```

```
minDiff = abs(value - (evenSum[i].first + oddSum[j].first));
               }
          for (int i = 0; i < int(even.size()); i++) if (evenPerm & (1 << i)) ans.push_back(i * 2);</pre>
          for (int i = 0; i < int(odd.size()); i++) if (oddPerm & (1 << i)) ans.push_back(i * 2 + 1);
          return closestSum;
};
2.2.2 Minimum Subset Difference
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Divides a set into two disjoint non-empty subsets with the smallest absolute difference
// of sums between them, using a meet in the middle approach
// Time Complexity: Reduces the runtime from O(N * 3\hat{N}) to O(N * 3\hat{N})
// Memory Complexity: O(3^(N/2))
template <const int MAXN, class T> struct MinSubsetDifference {
     T A[MAXN]; vector<T> setA, setB; // setA and setB contain the two disjoint non-empty subset void solveHalf(vector<T> &half, vector<pair<T, int>> &diff) {
          int perms = 1;
          for (int i = 0; i < int(half.size()); i++) perms *= 3;
for (int i = 1; i < perms; i++) {
   int cur = i; T curDiff = 0;</pre>
               for (int j = 0; j < int(half.size()); j++) {
    if (cur % 3 == 1) curDiff += half[j];</pre>
                     else if (cur % 3 == 2) curDiff -= half[j];
                     cur /= 3;
                diff.push_back(make_pair(curDiff, i));
          sort(diff.begin(), diff.end()); diff.resize(unique(diff.begin(), diff.end()) - diff.begin());
     \dot{	exttt{T}} solve(\dot{	exttt{int}} N) { // returns the smallest absolute difference of sums, set is split into setA and setB
          T minDiff = numeric_limits<T>::max(); vector<T> even, odd; even.reserve(N - N / 2); odd.reserve(N / 2); vector<pair<T, int>> evenDiff, oddDiff; evenDiff.reserve(1 << (N - N / 2)); oddDiff.reserve(1 << (N / 2));
          int evenPerm, oddPerm; setA.clear(); setB.clear();
for (int i = 0; i < N; i++) {
   if (i % 2 == 0) even.push_back(A[i]);</pre>
                else odd.push_back(A[i]);
          solveHalf(even, evenDiff); solveHalf(odd, oddDiff); int p = 0, q = 0;
if (int(evenDiff.size()) > 0 && abs(evenDiff[0].first) < minDiff) {</pre>
                evenPerm = evenDiff[0].second; oddPerm = 0; minDiff = abs(evenDiff[0].first);
          if (int(oddDiff.size()) > 0 && abs(oddDiff[0].first) < minDiff) {
    evenPerm = 0; oddPerm = oddDiff[0].second; minDiff = abs(oddDiff[0].first);</pre>
          while (p < int(evenDiff.size()) && q < int(oddDiff.size())) {
    if (abs(evenDiff[p].first - oddDiff[q].first) < minDiff) {
        evenPerm = evenDiff[p].second; oddPerm = oddDiff[q].second; minDiff = abs(evenDiff[p].first - oddDiff[q].first);</pre>
                if (evenDiff[p].first < oddDiff[q].first) p++;</pre>
                else if (evenDiff[p].first > oddDiff[q].first) q++;
                else break:
          for (int i = 0; i < (int) even.size(); i++) {</pre>
               if (evenPerm % 3 == 1) setA.push_back(i * 2);
else if (evenPerm % 3 == 2) setB.push_back(i * 2);
                evenPerm /= 3;
          for (int i = 0; i < (int) odd.size(); i++) {</pre>
               if (oddPerm % 3 == 1) setB.push_back(i * 2 + 1);
else if (oddPerm % 3 == 2) setA.push_back(i * 2 + 1);
                oddPerm /= 3;
          return minDiff:
2.2.3 Subset Sum Count Less
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the number of subsets that sum less than or equal to a value
// using a meet in the middle approach
// Time Complexity: Reduces the runtime from O(N * 2^N) to O(N * 2^(N/2))
// Memory Complexity: O(2^(N/2))
template <const int MAXN, class T> struct SubsetSumCountLess {
     T A[MAXN];
     long long solveHalf(vector<T> &half, vector<T> &sum, T value) {
          long long ret = 0;
for (int i = 1; i < (1 << int(half.size())); i++) {
    T curSum = 0;</pre>
                for (int j = 0; j < int(half.size()); j++) if (i & (1 << j)) curSum += half[j];</pre>
                sum.push_back(curSum);
               if (curSum <= value) ret++;
          sort(sum.begin(), sum.end());
          return ret;
```

long long solve(int N, T value) {

```
long long ret = 0; vector<T> even, odd; even.reserve(N - N / 2); odd.reserve(N / 2);
vector<T> evenSum, oddSum; evenSum.reserve(1 << (N - N / 2)); oddSum.reserve(1 << (N / 2));
for (int i = 0; i < N; i++) {
    if (i % 2 == 0) even.push_back(A[i]);
    else odd.push_back(A[i]);
}

ret += solveHalf(even, evenSum, value); ret += solveHalf(odd, oddSum, value);
if (value >= 0) ret++;
for (int i = 0, j = int(oddSum.size()) - 1; i < int(evenSum.size()); i++) {
    while (j >= 0 && evenSum[i] + oddSum[j] > value) j--;
    ret += j + 1;
}
return ret;
}
```

2.3 Sliding Window

2.3.1 Maximum Subarray For Each Subarray of Size K

```
#pragma once
#include <bits/stdc++.h>
using namespace std;

// Computes the maximum element for each contiguous subarray of size K

// Time Complexity: O(N)

// Memory Complexity: O(N)

template <const int MAXN> struct MaxSubarrayK {
    int A[MAXN], dq[MAXN], ans[MAXN];
    void solve(int N, int K) {
        int front = 0, back = 0;
        for (int i = 0; i < N; i++) {
            while (back - front > 0 && A[dq[back - 1]] <= A[i]) back--;
            dq[back++] = i;
            if (i >= K - 1) ans[i - K + 1] = A[dq[front]];
        }
    }
};
```

2.3.2 Maximum Subarray Sum of Size K

```
#pragma once
#include <bits/stdc++.h>
using namespace std;

// Computes the maximum sum of a subarray of size K

// Time Complexity: O(N)

// Memory Complexity: O(N)

template <const int MAXN> struct MaxSubarraySumK {
   int maxSum, st, en, A[MAXN];
   int solve(int N, int K) {
      maxSum = 0; st = 0; en = K;
      for (int i = 0; i < K; i++) maxSum += A[i];
      int curSum = maxSum;
      for (int i = K; i < N; i++) if ((curSum += A[i] - A[i - K]) > maxSum) {
            st = i - K + 1; en = i + 1; maxSum = curSum;
      }
      return maxSum;
    }
};
```

2.3.3 Maximum Subarray Sum of Size K or Less

```
#pragma once
#include <bits/stdc++.h>
using namespace std;

// Computes the maximum subarray sum of size K or less
// Time Complexity: O(N)
// Memory Complexity: O(N)

template <const int MAXN> struct MaxSubarraySumK {
   int A[MAXN], dq[MAXN];
   int solve(int N, int K) {
      int front = 0, back = 0, ans = 0;
      for (int i = 1; i < N; i++) A[i] += A[i - 1];
      for (int i = 0; i < N; i++) {
        while (back - front > 0 && dq[front] < i - K) front++;
        while (back - front > 0 && A[dq[back - 1]] >= A[i]) back--;
        dq[back++] = i; ans = max(ans, A[i] - A[dq[front]]);
    }
    return ans;
};
```

2.3.4 Maximum Subarray Sum of Size K or More

```
#pragma once
#include <bits/stdc++.h>
using namespace std;

// Computes the maximum subarray sum of size K or more
// Time Complexity: O(N)
// Memory Complexity: O(N)
template <const int MAXN> struct MaxSubarraySumK {
   int A[MAXN], maxSum[MAXN];
   int solve(int N, int K) {
```

```
maxSum[0] = A[0];
         int curMax = A[0], sum = 0;
for (int i = 1; i < N; i++) maxSum[i] = curMax = max(A[i], curMax + A[i]);</pre>
         for (int i = 0; i < K; i++) sum += A[i];
         int ans = sum;
         for (int i = K; i < N; i++) { sum += A[i] - A[i - K]; ans = max(ans, max(sum, sum + maxSum[i - K])); }
return ans;</pre>
};
```

2.4 Geometry

2.4.1 Convex Hull

};

```
#pragma once
#include <bits/stdc++.h>
#include "../../datastructures/geometry/Point.h"
using namespace std;
using namespace std::placeholders;
    Computes the convex hull of points
// Time Complexity: O(N log N)
// Memory Complexity: O(N)
template <const int MAXN> struct ConvexHull {
   Point P[MAXN]; vector<Point> hull;
   void clear() { hull.clear(); }
     void run(int N) {
           sort(P, P + N, Point::yOrderLt);
if (N > 1) sort(P + 1, P + N, bind(&Point::polarOrderLt, P[0], _1, _2));
hull.push_back(P[0]);
           int k1, k2;
for (k1 = 1; k1 < N; k1++) if (P[0] != P[k1]) break;
           if (k1 == N) return;
           for (k2 = k1 + 1; k2 < N; k2++) if (Point::ccw(P[0], P[k1], P[k2]) != 0) break; hull.push_back(P[k2 - 1]);
           for (int i = k2; i < N; i++)</pre>
                 while (hull.size() >= 2 && Point::ccw(hull[hull.size() - 2], hull[hull.size() - 1], P[i]) <= 0)</pre>
                     hull.pop_back();
                hull.push_back(P[i]);
2.4.2 Closest Pair
#pragma once
#include <bits/stdc++.h>
#include "../../datastructures/geometry/Point.h"
using namespace std;
// Computes the closest pair of points
// Time Complexity: O(N log N)
// Memory Complexity: O(N)
template <const int MAXN> struct ClosestPair {
     Point P[MAXN], pointsByY[MAXN], aux[MAXN], best1, best2; double bestDist;
void merge(int lo, int mid, int hi) {
          for (int k = lo; k <= hi; k++) aux[k] = pointsByY[k];
int i = lo, j = mid + 1;
for (int k = lo; k <= hi; k++) {</pre>
                if (i > mid) pointsByY[k] = aux[j++];
                 else if (j > hi) pointsByY[k] = aux[i++];
                else if (aux[j].compareTo(aux[i]) < 0) pointsByY[k] = aux[j++];
else pointsByY[k] = aux[i++];</pre>
     double closest(int lo, int hi) {
          if (hi <= lo) return numeric_limits<double>::infinity();
int mid = lo + (hi - lo) / 2; Point median = P[mid];
           double delta = min(closest(lo, mid), closest(mid + 1, hi));
           merge(lo, mid, hi); int m = 0;
          merge(10, m1d, n1); int m = 0;
for (int i = lo; i <= hi; i++) if (abs(pointsByY[i].x - median.x) < delta) aux[m++] = pointsByY[i];
for (int i = 0; i < m; i++) {
    for (int j = i + 1; (j < m) && (aux[j].y - aux[i].y < delta); j++) {
        double distance = aux[i].distanceTo(aux[j]);
}</pre>
                      if (distance < delta) {</pre>
                            delta = distance;
                            if (distance < bestDist) { bestDist = delta; best1 = aux[i]; best2 = aux[j]; }</pre>
           return delta;
     void solve(int N) {
          if (N <= 1) return;
sort (P, P + N, Point::xOrderLt);
for (int i = 0; i < N - 1; i++) {
   if (P[i] == P[i + 1]) {</pre>
                      bestDist = 0; best1 = P[i]; best2 = P[i + 1];
           for (int i = 0; i < N; i++) pointsByY[i] = P[i];</pre>
           closest(0, N - 1);
```

2.4.3 Farthest Pair

```
#pragma once
#include <bits/stdc++.h>
#include "../../datastructures/geometry/Point.h"
#include "ConvexHull.h"
using namespace std;
// Computes the farthest pair of points
// Time Complexity: O(N log N)
// Memory Complexity: O(N)
template <const int MAXN> struct FarthestPair {
     Point P[MAXN], hull[MAXN], best1, best2; double bestDist;
ConvexHull<MAXN> H;
     void solve(int N) {
          bestDist = -numeric_limits<double>::infinity();
if (N <= 1) return;</pre>
          copy(P, P + N, H.P);
H.run(N);
          int M = 1;
          for (auto &&p : H.hull) hull[M++] = p;
          if (M == 1) return;
          if (M == 2) {
               best1 = hull[1]; best2 = hull[2];
bestDist = best1.distanceTo(best2);
                return;
          while (Point::area2(hull[M], hull[1], hull[k + 1]) > area2(hull[M], hull[1], hull[k])) k++;
for (int i = 1, j = k; i <= k && j <= M; i++) {
   if (hull[i].distanceTo(hull[j]) > bestDist) {
                     best1 = hull[i]; best2 = hull[j];
                     bestDist = hull[i].distanceTo(hull[j]);
                while ((j < M) && Point::area2(hull[i], hull[i + 1], hull[j + 1]) > Point::area2(hull[i], hull[i + 1], hull[j])) {
                     double distanceSquared = hull[i].distanceTo(hull[j]);
                     if (distanceSquared > bestDist)
                          best1 = hull[i]; best2 = hull[j];
bestDist = hull[i].distanceTo(hull[j]);
          }
};
```

2.5 Graph

2.5.1 Search

2.5.1.1 Depth First Search

```
#pragma once
#include <bits/stdc++.h>
using namespace std;

// Depth First Traversal of a graph
// Time Complexity: O(V + E)
// Memory Complexity: O(V + E)

template <const int MAXV> struct DFS {
    bool vis (MAXV); int dep[MAXV], to [MAXV]; vector<int> adj[MAXV];
    void addEdge(int v, int w) { adj[v].push_back(w); }
    void addBiEdge(int v, int w) { addEdge(v, w); addEdge(w, v); }
    void reset() { for (int i = 0; i < MAXV; i++) adj[i].clear(); }
    void dfs(int v, int d) {
        vis[v] = true; dep[v] = d;
        for (int w : adj[v]) if (!vis[w]) { to[w] = v; dfs(w, d + 1); }
    }
    void run(int s) { fill(vis, vis + MAXV, false); fill(to, to + MAXV, -1); dfs(s, 0); }
};</pre>
```

2.5.1.2 BreadthFirstSearch

```
#pragma once
#include <bits/stdc++.h>
using namespace std;

// Breadth First Traversal of a graph
// Time Complexity: O(V + E)
// Memory Complexity: O(V + E)

template <const int MAXV> struct BFS {
   int dist[MAXV], to[MAXV]; vector<int> adj[MAXV];
   void addEdge(int v, int w) { adj[v].push_back(w);
   void addBiEdge(int v, int w) { addEdge(v, w); addEdge(w, v); }
   void reset() { for (int i = 0; i < MAXV; i++) adj[i].clear(); }
   void run(int s) {
      fill(dist, dist + MAXV, INT_MAX); fill(to, to + MAXV, -1);
      queue<int> q; dist[s] = 0; q.push(s);
      while (!q.empty()) {
         int v = q.front(); q.pop();
         for (int w : adj[v]) if (dist[w] == INT_MAX) { dist[w] = dist[v] + 1; to[w] = v; q.push(w); }
    }
};
```

2.5.2 Shortest Path

2.5.2.1 Classical Dijkstra Single Source Shortest Path

```
#include <bits/stdc++.h>
using namespace std;
// Classical Dijkstra's single source shortest path algorithm for weighted graphs with non negative weights // Time Complexity: O(V^2)
// Memory Complexity: O(V + E)
template <const int MAXV, class unit> struct ClassicalDijkstraSSSP {
    unit INF, dist[MAXV]; pair<int, unit> to[MAXV]; bool done[MAXV]; vector<pair<int, unit>> adj[MAXV]; ClassicalDijkstraSSSP(unit INF) : INF(INF) {}
    void addEdge(int v, int w, unit weight) { adj[v].emplace_back(w, weight); }
    void addBiEdge(int v, int w, unit weight) { addEdge(v, w, weight); addEdge(w, v, weight); }
void clear() { for (int i = 0; i < MAXV; i++) adj[i].clear(); }</pre>
    void run(int V, int s) {
        fill(dist, dist + V, INF); fill(to, to + V, make_pair(-1, 0)); fill(done, done + V, false); dist[s] = 0;
for (int v = 0; v < V - 1; v++) {
   int minV = -1;</pre>
             done[minV] = true;
             for (auto &&e : adj[minV]) if (dist[e.first] > dist[minV] + e.second)
                  dist[e.first] = dist[minV] + e.second; to[e.first] = {v, e.second};
        }
};
```

2.5.2.2 Dijkstra Single Source Shortest Path

2.5.2.3 Source Path Faster Algorithm

```
#pragma once
#include <br/>
#in
```

2.5.2.4 Bellman Ford Single Source Shortest Path and Negative Cycle Detection

```
#pragma once
#include <bits/stdc++.h>
using namespace std;

// Bellman Ford's single source shortest path algorithm for weighted graphs with negative cycles
// Can be used to detect negative cycles
```

```
// Time Compleity: O(VE)
// Memory Complexity: O(V + E)
template <const int MAXV, class unit> struct BellmanFordSSSP {
    struct Edge { int v, w; unit weight; };
    unit INF, dist[MAXV]; pair<int, unit> to[MAXV]; vector<Edge> edges; bool hasNegativeCycle; BellmanFordSSSP(unit INF) : INF(INF)
    {
    void addEdge(int v, int w, unit weight) { edges.push_back({v, w, weight}); }
    void addBiEdge(int v, int w, unit weight) { addEdge(v, w, weight); addEdge(w, v, weight); }
    void clear() { edges.clear(); }
    void run(int V, int s) {
        for (int i = 0; i < V - 1; i++) for (auto &&e : edges) if (dist[e.v] < INF && dist[e.w] > dist[e.v] + e.weight) {
            dist[e.w] = dist[e.v] + e.weight; to[e.w] = {e.v, e.weight};
        }
        bool inCycle = true;
    while (inCycle) {
            inCycle = false;
            for (auto &&e : edges) if (dist[e.w] > -INF && dist[e.w] > dist[e.v] + e.weight) {
                  dist[e.w] = -INF; inCycle = true; hasNegativeCycle = true;
        }
    }
}
};
```

2.5.2.5 Floyd Warshall All Pairs Shortest Path

2.5.2.6 Johnson All Pairs Shortest Path

```
#pragma once
#include <bits/stdc++.h>
using namespace std;
         Johnson's all pairs shortest path algorithm for weighted graphs
// Can be used to detect negative cycles // Time Complexity: O(VE log E) or O(VE log V) if an indexed priority queue is used // Memory Complexity: O(V^2 + E)
template <const int MAXV, class unit> struct JohnsonAPSP {
             unit INF, dist[MAXV][MAXV], h[MAXV]; JohnsonAPSP(unit INF) : INF(INF) {}
pair<int, unit> to[MAXV][MAXV]; bool hasNegativeCycle; vector<pair<int, unit>> adj[MAXV];
void addEdge(int v, int w, unit weight) { adj[v].emplace_back(w, weight); }
void addBiEdge(int v, int w, unit weight) { addEdge(v, w, weight); addEdge(w, v, weight); }
void clear() { for (int i = 0; i < MAXV; i++) adj[i].clear(); }</pre>
              void run(int V) {
    for (int v = 0; v < V; v++) { fill(dist[v], dist[v] + V, INF); fill(to[v], to[v] + V, make_pair(-1, 0)); }</pre>
                            fill(h, h + V, INF); h[V] = 0;
                            for (int v = 0; v < V; v++) adj[V].emplace_back(v, 0);
for (int i = 0; i < V; i++) for (int v = 0; v <= V; v++) for (auto &&e : adj[v])
    if (h[v] < INF && h[e.first] > h[v] + e.second) h[e.first] = h[v] + e.second;
                            adj[V].clear();
                            bool inCycle = true;
                            while (inCycle)
                                           inCycle = false;
                                          for (int v = 0; v <= V; v++) for (auto &&e : adj[v]) {
   if (h[v] < INF && h[e.first] > -INF && h[e.first] > h[v] + e.second) {
      h[e.first] = -INF; inCycle = true; hasNegativeCycle = true;
                            adj[V].clear();
                            if (hasNegativeCycle) return;
                            for (int s = 0; s < V; s++) {
                                          priority_queue<pair<unit, int>, vector<pair<unit, int>> , greater<pair<unit, int>>> PQ;
                                          PQ.emplace(dist[s][s] = 0, s);
                                          while (!PQ.empty()) {
                                                        unit d = PQ.top().first; int v = PQ.top().second; PQ.pop();
                                                         if (d > dist[s][v]) continue;
                                                         \texttt{to[s][e.first]} = \{\texttt{v}, \texttt{e.second}\}; \texttt{PQ.emplace}(\texttt{dist[s][e.first]} = \texttt{dist[s][v]} + \texttt{e.second} + \texttt{h[v]} - \texttt{h[e.first]}, \texttt{e.first} = \texttt{dist[s][v]} + \texttt{e.second} + \texttt{h[v]} = \texttt{h[e.first]}, \texttt{e.first} = \texttt{h[e.first
                                          1
                            for (int v = 0; v < V; v++) for (int w = 0; w < V; w++) dist[v][w] = dist[v][w] - h[v] + h[w];
```

};

2.5.3 Components

2.5.3.1 Biconnected Components

```
#pragma once
#include <bits/stdc++.h>
using namespace std;
   Computes the articulation points and bridges of a graph,
// and decomposes the graph into biconnected ocmponents
// Time Complexity: O(V + E)
// Memory Complexity: O(V + E)
template <const int MAXV> struct Biconnected {
    int low[MAXV], pre[MAXV], cur; bool articulation[MAXV]; stack<pair<int, int>> s;
vector<int> adj[MAXV]; vector<pair<int, int>> bridges; vector<unordered_set<int>> components;
    void addEdge(int v, int w) { adj[v].push_back(w); adj[w].push_back(v); }
    void dfs(int v, int prev) {
         int children = 0; pre[v] = low[v] = cur++;
         for (int w : adj[v]) {
   if (pre[w] == -1)
                  children++; s.emplace(v, w); dfs(w, v); low[v] = min(low[v], low[w]);
                  if ((prev == v && children > 1) || (prev != v && low[w] >= pre[v])) {
                       articulation[v] = true; components.emplace_back();
                       while (s.top().first != v || s.top().second != w) {
                           components.back().insert(s.top().first); components.back().insert(s.top().second); s.pop();
                       components.back().insert(s.top().first); components.back().insert(s.top().second); s.pop();
             if (low[w] == pre[w]) bridges.emplace_back(v, w);
} else if (w != prev && pre[w] < low[v]) {
   low[v] = pre[w]; s.emplace(v, w);</pre>
    void clear() { for (int i = 0; i < MAXV; i++) adj[i].clear(); bridges.clear(); components.clear(); }</pre>
    void run(int V) {
         cur = 0:
         for (int v = 0; v < V; v++) { low[v] = pre[v] = -1; articulation[v] = false; }
         for (int v = 0; v < V; v++) {
              if (pre[v] == -1) dfs(v, v);
             if (!s.empty()) {
                  components.emplace_back();
                  while (!s.empty())
                       components.back().insert(s.top().first); components.back().insert(s.top().second); s.pop();
             }
         }
};
```

2.5.3.2 Connected Components

```
#pragma once
#include <bits/stdc++.h>
using namespace std;
 / Computes the connected components of a graph
// Time Complexity: O(V + E)
// Memory Complexity: O(V + E)
template <const int MAXV> struct ConnectedComponents {
    int id[MAXV]; bool vis[MAXV];
    vector<int> adj[MAXV]; vector<vector<int>> components;
    void addEdge(int v, int w) { adj[v].push_back(w); adj[w].push_back(v); }
   void dfs(int v) {
    vis[v] = true; id[v] = components.size() - 1;
        components.back().push_back(v);
        for (int w : adj[v]) if (!vis[w]) dfs(w);
   void clear() { for (int i = 0; i < MAXV; i++) adj[i].clear(); components.clear(); }</pre>
   void run(int V) {
        fill(vis, vis + MAXV, false);
        for (int v = 0; v < V; v++) if (!vis[v]) { components.emplace_back(); dfs(v); }
```

2.5.3.3 Kosaraju Sharir Strongly Connected Components

```
#pragma once
#include <bits/stdc++.h>
using namespace std;

// Determines the strong components in a directed graph using Kosaraju and Sharir's algorithm
// Time Complexity: O(V + E)
// Memory Complexity: O(V + E)
template <const int MAXV> struct KosarajuSharirSCC {
   int id[MAXV]; bool vis[MAXV]; vector<int> adj[MAXV], rev[MAXV]; vector<vector<int>> components; stack<int> revPost;
   void addEdge(int v, int w) { adj[v].push_back(w); }
   void postOrder(int v) {
      vis[v] = true;
      for (int w : rev[v]) if (!vis[v]) postOrder(w);
      revPost.push(v);
   }
   void dfs(int v) {
```

```
vis[v] = true; id[v] = components.size() - 1; components.back().push_back(v);
          for (int w : adj[v]) if (!vis[v]) dfs(w);
     void clear() { for (int i = 0; i < MAXV; i++) { adj[i].clear(); rev[i].clear(); } components.clear(); }</pre>
     void run(int V) {
          fill(vis, vis + V, false);
          for (int v = 0; v < V; v++) for (int w : adj[v]) rev[w].push_back(v);
for (int v = 0; v < V; v++) if (!vis[v]) postOrder(v);
fill(vis, vis + V, false);</pre>
          while (!revPost.empty()) {
               int v = revPost.top(); revPost.pop();
               if (!vis[v]) { components.emplace_back(); dfs(v); }
2.5.3.4
           Tarjan Strongly Connected Components
#pragma once
#include <bits/stdc++.h>
using namespace std;
  / Determines the strong components in a directed graph using Tarjan's algorithm
// Time Complexity: O(V + E)
// Memory Complexity: O(V + E)
template <const int MAXV> struct TarjanSCC {
    int id[MAXV], low[MAXV], pre; bool vis[MAXV]; vector<int> adj[MAXV]; vector<vector<int>> components; stack<int> s;
    void addEdge(int v, int w) { adj[v].push_back(w); }
     void dfs(int v) {
          vis[v] = true; int mn = low[v] = pre++; s.push(v);
          for (int w : adj[v]) {
   if (!vis[w]) dfs(w);
               if (low[w] < mn) mn = low[w];</pre>
          if (mn < low[v]) { low[v] = mn; return; }</pre>
          int w; components.emplace_back();
               w = s.top(); s.pop();
               id[w] = components.size() - 1; components.back().push_back(w); low[w] = INT_MAX;
          } while (w != v);
     void clear() { for (int i = 0; i < MAXV; i++) adj[i].clear(); components.clear(); }</pre>
     void run(int V) {
          fill(vis, vis + V, false); pre = 0;
for (int v = 0; v < V; v++) if (!vis[v]) dfs(v);
};
2.5.3.5 Bron Kerbosch Max Clique
#pragma once
#include <bits/stdc++.h>
using namespace std;
   Computes the maximum (weighted) clique in an undirected graph, where each vertex
// can have a weight (default is 1)
// A clique is defined to be a subset of a graph such that every pair of vertices // in the subset are connected by an edge
   Time Complexity: O(3^{\circ}(V/3))
// Memory Complexity: O(V^2)
template <const int MAXV> struct BronKerboschMaxClique {
    bool adj[MAXV][MAXV]; int W[MAXV];
void init() { for (int i = 0; i < MAXV; W[i++] = 1) for (int j = 0; j < MAXV; j++) adj[i][j] = 0; }
int solve(int V, long long cur, long long pool, long long excl) {</pre>
          if (pool == 0 && excl == 0) {
               int cnt = 0;
               for (int i = 0; i < V; i++) if ((cur & (1LL << i)) > 0) cnt += W[i]; return cnt;
          int res = 0, j = 0;
          for (int i = 0; i < V; i++) if ((pool & (1LL << i)) > 0 || (excl & (1LL << i)) > 0) j = i; for (int i = 0; i < V; i++) {
               if ((pool & (1LL << i)) == 0 || adj[i][j]) continue;</pre>
               int ncurr = cur, npool = 0, nexcl = 0; ncurr |= 1LL << i;
for (int k = 0; k < V; k++) if (adj[i][k]) { npool |= pool & (1LL << k); nexcl |= excl & (1LL << k); }</pre>
               res = max(res, solve(V, ncurr, npool, nexcl)); pool &= ~(1LL << i); excl |= 1 >> i;
          return res;
     int solve(int V) { return solve(V, 0, (1LL << V) - 1, 0); }</pre>
2.5.3.6 Stoer Wagner Min Cut
#pragma once
#include <bits/stdc++.h>
#include "../../datastructures/IndexedPQ.h"
#include "../../datastructures/UnionFind.h"
using namespace std;
// Computes the minimum cut for a weighted graph
// A cut is a partition of the vertices into two nonempty subsets
// A crossing edges is an edge with endpoints in both subsets
// The cost of a cut is the sum of the weights of the crossing edges // Time Complexity: O(V\ (V\ +\ E)\ \log\ V) // Memory Complexity: O(V\ +\ E)
```

template <const int MAXN, class unit> struct StoerWagnerMinCut {

```
struct Graph {
          vector<pair<int, unit>> adj[MAXN];
         void addEdge(int v, int w, unit weight) { adj[v].emplace_back(w, weight); adj[w].emplace_back(v, weight); }
void clear() { for (int i = 0; i < MAXN; i++) adj[i].clear(); }</pre>
    bool vis[MAXN], cut[MAXN]; UnionFind<MAXN> uf; unit INF; StoerWagnerMinCut(unit INF) : INF(INF) {}
     void addEdge(int v, int w, unit weight) { G.addEdge(v, w, weight); }
    struct CutPhase { unit weight; int s, t; };
void makeCut(int V, int t, UnionFind<MAXN> &uf) { for (int v = 0; v < V; v++) cut[v] = uf.connected(v, t); }
void minCutPhase(int V, CutPhase &cp) {</pre>
         IndexedPQ<unit, less<unit>> pq(V);

for (int v = 0; v < V; v++) if (v != cp.s && !vis[v]) pq.push(v, 0);
         pq.push(cp.s, INF);
         while (!pq.empty()) {
              int v = pq.top().first; pq.pop(); cp.s = cp.t; cp.t = v;
for (auto &&e : G.adj[v]) if (pq.containsIndex(e.first)) pq.changeKey(e.first, pq.keyOf(e.first) + e.second);
         cp.weight = 0;
         for (auto &&e : G.adj[cp.t]) cp.weight += e.second;
     Graph contractEdge(int V, int s, int t) {
         Graph H;
         for (int v = 0; v < V; v++)</pre>
              for (auto &&e : G.adj[v]) {
                   if ((v == s && e.first == t) || (v == t && e.first == s)) continue;
                   if (v < e.first) {
                        if (e.first == t) H.addEdge(v, s, e.second);
else if (v == t) H.addEdge(e.first, s, e.second);
                        else H.addEdge(v, e.first, e.second);
              }
          return H:
    unit minCut(int V, int root = 0) {
         unit ret = INF; CutPhase cp = {0, root, root}; uf.init(V); fill(vis, vis + V, false); fill(cut, cut + V, false);
         for (int v = V; v > 1; v--) {
              minCutPhase(V, cp);
if (cp.weight < ret) { ret = cp.weight; makeCut(V, cp.t, uf); }</pre>
              G = contractEdge(V, cp.s, cp.t); vis[cp.t] = true; uf.join(cp.s, cp.t);
         return ret;
     void clear() { G.clear(); }
2.5.3.7 Centroid Decomposition
#include <bits/stdc++.h>
using namespace std;
// Finds the centroid of each component of a tree, and splits the component at that vertex
   Can be used to create a centroid tree, which has depth O(log V)
   Time Complexity:
       getCentroid: O(ComponentSize)
       bfs: O(V log V)
// Memory Complexity: O(V)
template <const int MAXV> struct CentroidDecomposition {
   vector<int> adj[MAXV]; bool exclude[MAXV]; int par[MAXV], T[MAXV];
     void addEdge(int v, int w) { adj[v].push_back(w); adj[w].push_back(v); }
     int getSize(int v, int prev) {
         int size = 1;
         for (int w : adj[v]) if (w != prev && !exclude[w]) size += getSize(w, v);
         return size:
     int getCentroid(int v, int prev, int treeSize) {
         int n = treeSize, size = 1; bool hasCentroid = true;
         for (int w : adj[v]) {
              if (w == prev || exclude[w]) continue;
              int ret = getCentroid(w, v, treeSize);
if (ret > 0) return ret;
              hasCentroid &= -ret <= n / 2; size += -ret;
         return (hasCentroid &= n - size <= n / 2) ? v : -size;
    void init() { fill(exclude, exclude + MAXV, false); }
void clear() { for (int i = 0; i < MAXV; i++) adj[i].clear(); }</pre>
     int getCentroid(int v) {
         int c = getCentroid(v, -1, getSize(v, -1)); exclude[c] = true;
         return c;
         queue<pair<int, int>> q; q.emplace(root, -1);
         while (!q.empty()) {
   int v = q.front().first, c = getCentroid(v, -1, getSize(v, -1));
   par[c] = q.front().second; q.pop(); exclude[c] = true;
              for (int w : adj[c]) if (!exclude[w]) q.emplace(w, c);
```

2.5.3.8 Dynamic Connectivity Divide and Conquer

#pragma once
#include <bits/stdc++.h>
using namespace std;

```
// Support queries for the number of components in a graph, after edges have been added or removed
// Divide and Conquer Solution
// Time Complexity: O(V + Q log Q)
// Memory Complexity: O(V + Q)
template <const int MAXV, const int MAXQ> struct DynamicConnectivityDivAndConq {
    int Q = 0, cnt, UF(MAXV); vector<int> ans; unordered_map<int, int> present[MAXV]; stack<pair<pair<int ,int>, int>> history;
struct Query { int type, v, w, otherTime; } q[MAXQ];
    int find(int v) { while (UF[v] >= 0) v = UF[v]; return v; }
    bool join(int v, int w) {
    v = find(v); w = find(w);
         if (v == w) return false;
if (UF[v] > UF[w]) swap(v, w);
         history.push({{v, w}, UF[w]}); UF[v] += UF[w]; UF[w] = v; cnt--;
return true;
    void undo() {
         int v = history.top().first.first, w = history.top().first.second, ufw = history.top().second;
         history.pop(); UF[w] = ufw; UF[v] -= UF[w]; cnt++;
    void solve(int 1, int r) {
    if (1 == r && q[1] type == 0) ans.push_back(cnt);
         if (1 -= r aa qir, cir
if (1 >= r) return;
int m = 1 + (r - 1) / 2, curSize = history.size();
for (int i = m + 1; i <= r; i++) if (q[i].otherTime < l) join(q[i].v, q[i].w);</pre>
         while ((int) history.size() > curSize) undo();
         for (int i = 1; i <= m; i++) if (q[i].otherTime > r) join(q[i].v, q[i].w); solve(m + 1, r);
         while ((int) history.size() > curSize) undo();
    void clear() { for (int i = 0; i < MAXV; i++) present[i].clear(); ans.clear(); Q = 0; }</pre>
    void addEdge(int v, int w) {
         if (v > w) swap(v, w);
         present[v][w] = Q; q[Q++] = \{1, v, w, INT\_MAX\};
    void removeEdge(int v, int w) {
         if (v > w) swap(v, w);
         int insTime = present[v][w]; q[Q] = {-1, v, w, insTime}; q[insTime].otherTime = Q++; present[v].erase(w);
    void query() { q[Q] = {0, -1, -1, Q}; Q++; }
    void solve(int V) {
    cnt = V; fill(UF, UF + MAXV, -1);
    solve(0, Q - 1);
};
```

2.5.3.9 Dynamic Connectivity Sqrt Decomposition

```
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Support queries for the number of components in a graph, after edges have been added or removed
// Sqrt Decomposition Solution
// Time Complexity: O(V * (Q / B) + Q * B)
// Memory Complexity: O(V + Q)
template <const int MAXV, const int MAXQ, const int BLOCKSZ> struct DynamicConnectivitySqrtDecomp {
    int Q = 0, vis[MAXV], root[MAXV]; vector<int> ans; unordered_set<int> adj[MAXV], toRem[MAXV]; unordered_map<int, int> adj2[MAXV]
    struct Query { int type, v, w; } q[MAXQ];
void dfs1(int v, int r) {
   root[v] = r;
         for (int w : adj[v]) if (root[w] == -1 && !toRem[v].count(w)) dfs1(w, r);
    bool dfs2(int v, int t, int i) {
         if (v == t) return true;
         vis[v] = i;
         for (auto && e : adj2[v]) if (vis[e.first] != i && dfs2(e.first, t, i)) return true;
         return false:
    void clear() { for (int i = 0; i < MAXV; i++) { adj[i].clear(); toRem[i].clear(); adj2[i].clear(); } ans.clear(); Q = 0; }</pre>
    void addEdge(int v, int w) { q[Q++] = \{1, v, w\}; }
    void removeEdge(int v, int w) { q[Q++] = \{-1, v, w\}; } void query() { q[Q++] = \{0, -1, -1\}; } void solve(int V) {
         int cnt = V;
        fill (vis, vis + MAXV, -1);
for (int st = 0; st < Q; st += BLOCKSZ) {
    fill (root, root + V, -1);
    for (int i = st; i < min(st + BLOCKSZ, Q); i++) {</pre>
                   if (q[i].type != -1) continue;
                  toRem[q[i].v].insert(q[i].w); toRem[q[i].w].insert(q[i].v);
             for (int v = 0; v < V; v++) {</pre>
                  if (root[v] == -1) dfsl(v, v);
                  adj2[v].clear();
              for (int v = 0; v < V; v++) {
                  for (int w : adj[v]) if (root[v] != root[w]) adj2[root[v]][root[w]]++;
                  toRem[v].clear();
              for (int i = st; i < min(st + BLOCKSZ, Q); i++) {</pre>
                   if (q[i].type == 1) {
                       adj[q[i].v].insert(q[i].w); adj[q[i].w].insert(q[i].v);
                       int rv = root[q[i].v], rw = root[q[i].w];
```

```
if (rv != rw) {
        if (!dfs2(rv, rw, i)) cnt--;
        adj2[rv][rw]++; adj2[rw][rv]++;
}

else if (q[i].type == -1) {
        adj[q[i].v].erase(q[i].w); adj[q[i].w].erase(q[i].v);
        int rv = root[q[i].v], rw = root[q[i].w];
        if (rv != rw) {
            if (--adj2[rv][rw] == 0) adj2[rv].erase(rw);
            if (--adj2[rw][rv] == 0) adj2[rw].erase(rv);
            if (!dfs2(rv, rw, i)) cnt++;
        }
        else ans.push_back(cnt);
    }
}
```

2.5.3.10 Dynamic Biconnectivity

```
#include <bits/stdc++.h>
using namespace std;
// Supports queries for the number of bridges in a graph after edges have been added // Time Complexity: O(V + Q) // Memory Complexity O(V + Q)
template <const int MAXV, const int MAXQ> struct DynamicBiconnectivity {
      int Q = 0, UF[MAXV], par[MAXV], dep[MAXV]; vector<int> adj[MAXV], ans;
struct Query { int type, v, w; } q[MAXQ];
      int find(int v) { return UF[v] < 0 ? v : UF[v] = find(UF[v]); }
     bool join(int v, int w) {
    v = find(v); w = find(w);
            if (v == w) return false;
if (UF[v] > UF[w]) swap(v, w);
UF[v] += UF[w]; UF[w] = v;
            return true;
      void dfs(int v, int prev, int d) {
            \begin{split} \text{dep}[v] &= \text{d; par}[v] = \text{prev;} \\ \text{for (int } w : \text{adj}[v]) &\text{if (} w \text{ != prev) dfs(} w, \text{ v, d + 1);} \end{split}
     void init() { fill(UF, UF + MAXV, -1); Q = 0; }
void clear() { for (int i = 0; i < MAXV; i++) adj[i].clear(); ans.clear(); }</pre>
      void addEdge(int v, int w) {
   if (join(v, w)) { adj[v].push_back(w); adj[w].push_back(v); q[Q++] = {1, v, w}; }
   else q[Q++] = {2, v, w};
      void query() { q[Q++] = \{0, -1, -1\}; }
      void solve(int V) {
            fill(par, par + MAXV, -1); fill(UF, UF + MAXV, -1); int cnt = 0; for (int v = 0; v < V; v++) if (par[v] == -1) dfs(v, -1, 0); for (int i = 0; i < Q; i++) {
                   if (q[i].type == 0) ans.push_back(cnt);
                  else if (q[i].type == 1) cnt++;
                  else (
                        int a = q[i].v, b = q[i].w;
while ((a = find(a)) != (b = find(b))) {
                               if (dep[a] < dep[b]) swap(a, b);</pre>
                              UF[a] = find(par[a]); a = par[a]; cnt--;
```

2.5.4 Minimum Spanning Tree

2.5.4.1 Prim Minimum Spanning Tree

```
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the minimum spanning tree using Prims's algorithm.
// Time Complexity: O(E log E) or O(E log V) if an indexed priority queue is used
// Memory Complexity: O(V + E)
template <const int MAXV, class unit> struct PrimMST {
  unit INF; PrimMST(unit INF) : INF(INF) {}
  struct Edge { int v, w; unit weight; };
     pair<int, unit> to[MAXV]; unit weight, cost[MAXV]; vector<Edge> mst; bool vis[MAXV];
vector<pair<int, unit> adj[MAXV];
     void addEdge(int v, int w, unit weight) { adj[v].emplace_back(w, weight); adj[w].emplace_back(v, weight); }
     unit run(int V) {
           \label{eq:weight} weight = 0; \ fill(vis, \ vis \ + \ V, \ \mbox{\bf false}); \ fill(cost, \ cost \ + \ V, \ \mbox{INF}); \ fill(to, \ to \ + \ V, \ \mbox{make\_pair}(-1, \ 0)); 
          priority_queue<pair<unit, int>, vector<pair<unit, int>>, greater<pair<unit, int>>> PQ;
for (int s = 0; s < V; s++) {</pre>
               if (vis[s]) continue;
               PQ.emplace(cost[s] = 0, s);
while (!PQ.empty()) {
                     int v = PQ.top().second; PQ.pop(); vis[v] = true;
                     for (auto &&e : adj[v]) if (!vis[e.first] && e.second < cost[e.first]) {</pre>
                          to[e.first] = {v, e.second}; PQ.emplace(cost[e.first] = e.second, e.first);
               }
```

```
for (int v = 0; v < V; v++) if (to[v].first != -1) {
               mst.push_back({v, to[v].first, to[v].second}); weight += to[v].second;
          return weight:
     void clear() { for (int i = 0; i < MAXV; i++) adj[i].clear(); mst.clear(); }</pre>
2.5.4.2 Kruskal Minimum Spanning Tree
#pragma once
#include <bits/stdc++.h>
using namespace std;
   Computes the minimum spanning tree using Kruskal's algorithm.
// Time Complexity: O(E log E)
// Memory Complexity: O(V + E)
template <const int MAXV, class unit> struct KruskalMST {
     struct Edge {
          int v, w; unit weight;
          bool operator < (const Edge &e) const { return weight < e.weight; }</pre>
     int UF[MAXV]; vector<Edge> edges, mst; unit weight;
     void addEdge(int v, int w, unit weight) { edges.push_back({v, w, weight}); }
     int find(int v) { return UF[v] < 0 ? v : UF[v] = find(UF[v]); }</pre>
     bool join(int v, int w) {
          v = find(v); w = find(w);
          if (v == w) return false;
if (UF[v] > UF[w]) swap(v, w);
          UF[v] += UF[w]; UF[w] = v; return true;
     unit run(int V) {
          weight = 0; fill(UF, UF + V, -1); sort(edges.begin(), edges.end());
          for (auto &&e : edges) {
    if (int(mst.size()) >= V - 1) break;
               if (join(e.v, e.w)) { mst.push_back(e); weight += e.weight; }
          return weight;
     void clear() { edges.clear(); mst.clear(); }
2.5.4.3 Boruvka Minimum Spanning Tree
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the minimum spanning tree using Boruvka's algorithm. // Time Complexity: O(E log V) // Memory Complexity: O(V + E)
template <const int MAXV, class unit> struct BoruvkaMST {
     struct Edge { int v, w; unit weight; };
int UF[MAXV], closest[MAXV]; vector<Edge> edges, mst; unit weight;
    void addEdge(int v, int w, unit weight) { edges.push_back({v, w, weight}); }
int find(int v) { return UF[v] < 0 ? v : UF[v] = find(UF[v]); }
bool join(int v, int w) {
    v = find(v); w = find(w);</pre>
          if (v == w) return false;
if (UF[v] > UF[w]) swap(v, w);
UF[v] += UF[w]; UF[w] = v;
          return true
     unit run(int V)
          weight = 0; fill(UF, UF + V, -1);
for (int t = 1; t < V && int(mst.size()) < V - 1; t *= 2) {</pre>
               fill(closest, closest + V, -1);
for (int e = 0; e < int(edges.size()); e++) {</pre>
                    int i = find(edges[e].v), j = find(edges[e].w);
                    if (i == j) continue;
                    if (closest[i] == -1 || edges[e].weight < edges[closest[i]].weight) closest[i] = e;</pre>
                    if (closest[j] == -1 || edges[e].weight < edges[closest[j]].weight) closest[j] = e;</pre>
               for (int i = 0; i < V; i++) {
   if (closest[i] == -1) continue;</pre>
                    int v = edges[closest[i]].v, w = edges[closest[i]].w;
if (join(v, w)) { mst.push_back(edges[closest[i]]); weight += edges[closest[i]].weight; }
          return weight;
     void clear() { edges.clear(); mst.clear(); }
2.5.4.4 Offline Dynamic MST
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Supports queries for the minimum spanning tree after an edges's weight has been changed
// Offline Sqrt Decomposition Solution 
// Time Complexity: O(V + E * (Q / B) + Q * B) 
// Memory Complexity: O(V + E + Q)
template <const int MAXV, const int MAXE, const int MAXQ, const int BLOCKSZ, class unit> struct OfflineDynamicMST {
     struct Edge { int v, w; unit weight; };
```

```
int Q = 0, flag[MAXE], ind[MAXQ], curflag, UF[2][MAXV], stamp[2], vis[2][MAXV]; unit ans[MAXQ]; pair<int, unit> q[MAXQ];
set.pair.vunit, int>> small, large; vector<Edge> edges;
void prop(int i, int v) { if (vis[i][v] != stamp[i]) { vis[i][v] = stamp[i]; UF[i][v] = -1; } }
int find(int i, int v) { prop(i, v); return UF[i][v] < 0 ? v : UF[i][v] = find(i, UF[i][v]); }</pre>
bool join(int i, int v, int w) {
   v = find(i, v); w = find(i, w);
     if (v == w) return false;
     if (UF[i][v] > UF[i][w]) swap(v, w);
     UF[i][v] += UF[i][w]; UF[i][w] = v;
void addEdge(int v, int w, unit weight) { edges.push_back(\{v, w, weight\}); }
void query(int i, unit weight) { q[Q++] = {i, weight}; }
void solve(int V) {
     int E = edges.size(); fill(flag, flag + E, -1); curFlag = 0; unit forest, mst;
     for (int i = 0; i < E; i++) large.emplace(edges[i].weight, i); for (int i = 0; i < 2; i++) fill(UF[i], UF[i] + V, -1); for (int l = 0; l < Q; l += BLOCKSZ) {
          int r = min(1 + BLOCKSZ - 1, Q - 1), cnt = 0; curFlag++; stamp[0]++; small.clear();
          for (int i = 1; i <= r; i++) {
    flag[q[i].first] = curFlag; join(0, edges[q[i].first].v, edges[q[i].first].w);</pre>
               small.emplace(edges[q[i].first].weight, q[i].first);
          stamp[1]++;
          for (auto &&p : large) if (flag[p.second] != curFlag)
   if (join(1, edges[p.second].v, edges[p.second].w)) ind[cnt++] = p.second;
          stamp[1]++; forest = 0;
for (int i = 0; i < cnt; i++) {
               if (join(0, edges[ind[i]].v, edges[ind[i]].w)) {
                    join(1, edges[ind[i]].v, edges[ind[i]].w);
forest += edges[ind[i]].weight;
               } else small.emplace(edges[ind[i]].weight, ind[i]);
          for (int i = 1; i <= r; i++) {
               large.erase({edges[q[i].first].weight, q[i].first}); small.erase({edges[q[i].first].weight, q[i].first});
               edges[q[i].first].weight = q[i].second;
               large.emplace(edges[q[i].first].weight, q[i].first); small.emplace(edges[q[i].first].weight, q[i].first);
               for (auto &&p: small) if (join(0, find(1, edges[p.second].v), find(1, edges[p.second].w)))
   mst += edges[p.second].weight;
               stamp[0]++; mst = 0;
               ans[i] = forest + mst;
void clear() { small.clear(); large.clear(); edges.clear(); Q = 0; }
```

2.5.5 Lowest Common Ancestor

2.5.5.1 LCA using Sparse Table

```
#pragma once
#include <bits/stdc++.h>
using namespace std;
   Supports queries for the lowest common ancestor of 2 vertices in a tree using a sparse table
   Time Complexity:
      run: O(V log V)
      lca: 0(log V)
template <const int MAXV, const int MAXLGV> struct LCA_SparseTable {
    int dep[MAXV], par[MAXLGV][MAXV]; vector<int> adj[MAXV];
    void addEdge(int v, int w) { adj[v].push_back(w); adj[w].push_back(v); }
    void dfs(int v, int prev, int d) {
   dep[v] = d; par[0][v] = prev;
         for (int w : adj[v]) if (w != prev) dfs(w, v, d + 1);
    void clear() { for (int i = 0; i < MAXV; i++) adj[i].clear(); }
void run(int V, int root = 0) {
    for (int i = 0; i < MAXLGV; i++) fill(par[i], par[i] + V, -1);
    dfs(root, -1, 0);</pre>
         for (int i = 1; i < MAXLGV; i++) for (int j = 0; j < V; j++) if (par[i - 1][j] != -1) par[i][j] = par[i - 1][par[i - 1][j]];
    int lca(int v, int w) {
         if (dep[v] < dep[w]) swap(v, w);</pre>
         for (int i = MAXLGV - 1; i >= 0; i--) if (par[i][v] != -1 && dep[par[i][v]] >= dep[w]) v = par[i][v];
         if (v == w) return v;
         for (int i = MAXLGV - 1; i >= 0; i--) if (par[i][v] != par[i][w]) { v = par[i][v]; w = par[i][w]; }
         return par[0][v];
```

2.5.5.2 LCA using Euler Tour

```
#pragma once
#include <bits/stdc++.h>
using namespace std;

// Supports queries for the lowest common ancestor of 2 vertices in a tree by computing the euler tour of the tree
// Time Complexity:
// run: O(V)
// lca: O(log V)
template <const int MAXV> struct LCA_Euler {
   int to[MAXV], ind[MAXV], vert[MAXV], head[MAXV], ord[MAXV * 4], size, cnt, curInd; vector<int> adj[MAXV];
   void addEdge(int v, int w) { adj[v].push_back(w); adj[w].push_back(v); }
   void dfs(int v, int prev) {
      int cur = ind[v] = curInd++; vert[cur] = v;
```

```
for (int w : adj[v]) {
              if (w == prev) continue;
              ord[size + cnt++] = cur;
              if (head[cur] == -1) head[cur] = cnt - 1;
              dfs(w, v);
          ord[size + cnt++] = cur;
         if (head[cur] == -1) head[cur] = cnt - 1;
     void clear() { for (int i = 0; i < MAXV; i++) adj[i].clear(); }</pre>
     void run (int V, int root = 0) {
    size = 2 * V - 1; curInd = cnt = 0; fill(head, head + V, -1); dfs(root, -1);
    for (int i = 2 * size - 2; i > 1; i -= 2) ord[i / 2] = min(ord[i], ord[i ^ 1])
          int lo = head[ind[v]], hi = head[ind[w]], ret = INT_MAX; if (lo > hi) swap(lo, hi);
          for (lo += size, hi += size; lo <= hi; lo = (lo + 1) / 2, hi = (hi - 1) / 2) ret = min(ret, min(ord[lo], ord[hi]));
};
2.5.5.3 LCA using Range Minimum Query
#include <bits/stdc++.h>
using namespace std;
   Supports queries for the lowest common ancestor of 2 vertices in a tree by reduing the problem
   to a range minimum query
   Time Complexity:
       run: 0(V log V)
       lca: 0(1)
template <const int MAXV, const int MAXLGV> struct LCA_RMO {
  int ind, head[MAXV], dep[MAXV], rmq[MAXLGV][2 * MAXV]; vector<int> adj[MAXV];
  void addEdge(int v, int w) { adj[v].push_back(w); adj[w].push_back(v); }
  void dfs(int v, int prev, int d) {
         dep[v] = d; rmq[0][head[v] = ind++] = v;
         for (int w : adj[v]) if (w != prev) { dfs(w, v, d + 1); rmq[0][ind++] = v; }
     int minDep(int v, int w) { return dep[v] < dep[w] ? v : w; }
int RMQ(int 1, int r) { int i = 31 - __builtin_clz(r - 1 + 1); return minDep(rmq[i][1], rmq[i][r - (1 << i) + 1]); }</pre>
     void clear() { for (int i = 0; i < MAXV; i++) adj[i].clear(); }</pre>
     void run(int V, int root = 0) {
         ind = 0; dfs(root, -1, 0); int lg = 32 - _builtin_clz(V * 2 - 1);

for (int i = 0; i < lg; i++) for (int j = 0; j < ind; j++) rmq[i + 1][j] = minDep(rmq[i][j], rmq[i][min(j + (1 << i), ind -
               1)]);
     int lca(int v, int w) { if (head[v] > head[w]) swap(v, w); return RMQ(head[v], head[w]); }
2.5.5.4 Tarjan Offline LCA
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Supports queries for the lowest common ancestor of 2 vertices in a tree using Tarjan's Offline algorithm
// Supports queries for the lowest common ancestor of 2 vertices in // Time Complexity: O(V + Q) template <const int MAXV, const int MAXQ> struct TarjanOfflineLCA {
     const bool WHITE = false, BLACK = true; bool color[MAXV]; int par[MAXV], ans[MAXQ], UF[MAXV], Q = 0;
     vector<int> adj[MAXV]; vector<pair<int, int>> qAdj[MAXV];
     int find(int v) { return UF[v] < 0 ? v : UF[v] = find(UF[v]); }</pre>
     void join(int v, int w) {
    v = find(v); w = find(w);
         if (v == w) return;
if (UF[v] > UF[w]) swap(v, w);
UF[v] += UF[w]; UF[w] = v;
     void dfs(int v, int prev) {
         par[v] = v;
         for (int w : adj[v]) if (w != prev) { dfs(w, v); join(v, w); par[find(v)] = v; }
color[v] = BLACK;
          for (auto &&q : qAdj[v]) if (color[q.first] == BLACK) ans[q.second] = par[find(q.first)];
     void clear() { for (int i = 0; i < MAXV; i++) { adj[i].clear(); qAdj[i].clear(); } Q = 0; }</pre>
     void run(int root = 0) { fill(UF, UF + MAXV, -1); fill(color, color + MAXV, WHITE); dfs(root, -1); }
     void query(int v, int w) { qAdj[v].emplace_back(w, Q); qAdj[w].emplace_back(v, Q); Q++; }
2.5.6 Queries
2.5.6.1 Heavy Light Decomposition
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Decomposes a tree into chains, such that a path from any vertex to the root will cover at most log V chains
// Time Complexity:
      run: 0(V)
      lca: O(log V)
// queryPath: O(log V) * (complexity of query)
// Memory Complexity: O(V)
template <const int MAXV> struct HLD {
     int dep[MAXV], par[MAXV], chain[MAXV], size[MAXV], head[MAXV], ind[MAXV], vert[MAXV], chainNum, curInd;
     vector<int> adj[MAXV];
```

```
dep[v] = d; par[v] = prev; size[v] = 1;
         for (int w : adj[v]) if (w != prev) { dfs(w, v, d + 1); size[v] += size[w]; }
    void hld(int v, int prev) {
         if (head[chainNum] == -1) head[chainNum] = v; chain[v] = chainNum; ind[v] = curInd; vert[curInd++] = v; int maxInd = -1;
         for (int w : adj[v]) if (w != prev && (maxInd == -1 || size[maxInd] < size[w])) maxInd = w;</pre>
         if (maxInd != -1) hld(maxInd, v);
         for (int w : adj[v]) if (w != prev && w != maxInd) { chainNum++; hld(w, v); }
    int merge(int a, int b); // to be implemented
    int query(int 1, int r, bool up); // to be implemented
    int queryUp(int v, int w, bool up, bool includeW) {
         int ans = 0;
         while (chain[v] != chain[w]) {
              ans = up ? merge(ans, query(ind[head[chain[v]]], ind[v], up)) : merge(query(ind[head[chain[v]]], ind[v], up), ans);
              v = par[head[chain[v]]];
         if (!includeW && v == w) return ans;
return up ? merge(ans, query(ind[w] + !includeW, ind[v], up)) : merge(query(ind[w] + !includeW, ind[v], up), ans);
    void clear() { for (int i = 0; i < MAXV; i++) adj[i].clear(); }</pre>
    void run(int root = 0) { chainNum = 0; curInd = 1; fill(head, head + MAXV, -1); dfs(root, -1, 0); hld(root, -1); }
void addEdge(int a, int b) { adj[a].pb(b); adj[b].pb(a); }
    int lca(int v, int w) {
         while (chain[v] != chain[w]) {
             if (dep[head[chain[v]]] < dep[head[chain[w]]]) w = par[head[chain[w]]];</pre>
              else v = par[head[chain[v]]];
         if (dep[v] < dep[w]) return v;</pre>
         return w:
    int queryPath(int v, int w)
         int lcavertex = lca(v, w);
         return merge(queryUp(v, lcavertex, true, false), queryUp(w, lcavertex, false, true));
2.5.6.2 Mo's Algorithm for Trees
#pragma once
#include <bits/stdc++.h>
using namespace std;
  Mo's algorithm on a tree, used to count the number of distinct integers on a path between two nodes
// Time Complexity: O(V + Q log Q + Q * max(B, Q / B) * (update complexity)) // Memory Complexity: O(V log V + Q)
template <const int MAXV, const int MAXQ, const int BLOCKSZ, const int MAXLGV> struct MoTree {
    struct Query {
         int 1, r, lca, ind, block;
bool operator < (const Query &q) const { return block == q.block ? r < q.r : block < q.block; }
    int head[MAXV], dep[MAXV], rmq[MAXLGV][2 * MAXV], pre[MAXV], post[MAXV], vert[MAXV * 2], cnt[MAXV], ans[MAXQ], val[MAXV], temp[
                ind1, ind2, curAns; vector<int> adj[MAXV]; Query q[MAXQ]; bool vis[MAXV];
    void dfs(int v, int prev, int d) {
    dep[v] = d; rmq[0][head[v] = ind1++] = v; vert[pre[v] = ind2++] = v;
         for (int w : adj[v]) if (w != prev) { dfs(w, v, d + 1); rmq[0][ind1++] = v; }
         vert[post[v] = ind2++] = v;
    int minDep(int v, int w) { return dep[v] < dep[w] ? v : w; }
int RMQ(int 1, int r) { int i = 31 - __builtin_clz(r - 1 + 1); return minDep(rmq[i][l], rmq[i][r - (1 << i) + 1]); }
int lca(int v, int w) { if (head[v] > head[w]) swap(v, w); return RMQ(head[v], head[w]); }
    void add(int x) { if (cnt[x]++ == 0) curAns++; }
void rem(int x) { if (--cnt[x] == 0) curAns--; }
    void update(int v) {
         if (vis[v]) rem(val[v]);
         else add(val[v]);
         vis[v] = !vis[v];
         indl = ind2 = 0; int lg = 32 - __builtin_clz(V * 2 - 1); fill(cnt, cnt + V, 0); fill(vis, vis + V, false); dfs(0, -1, 0); for (int i = 0; i < lg; i++) for (int j = 0; j < indl; j++) rmq[i + 1][j] = minDep(rmq[i][j], rmq[i][min(j + (1 << i), indl)]
               - 1)1);
         copy(val, val + V, temp); sort(temp, temp + V); int k = unique(temp, temp + V) - temp; for (int v = 0; v < V; v++) val[v] = lower_bound(temp, temp + k, val[v]) - temp;
         for (int i = 0; i < Q; i++) {</pre>
              int v = q[i].1, w = q[i].r; q[i].lca = lca(v, w);
              if (pre[v] > pre[w]) swap(v, w);
if (q[i].lca == v) {
                  q[i].l = pre[v]; q[i].r = pre[w];
              else
                  q[i].l = post[v]; q[i].r = pre[w];
              q[i].ind = i; q[i].block = q[i].l / BLOCKSZ;
         sort(q, q + Q); int 1 = q[0].1, r = 1 - 1; curAns = 0;
         for (int i = 0; i < Q; i++) {
              while (1 < q[i].1) update(vert[1++]);</pre>
              while (1 > q[i].1) update(vert[--1]);
              while (r < q[i].r) update(vert[++r]);</pre>
              while (r > q[i].r) update(vert[r--]);
              if (q[i].lca != vert[l] && q[i].lca != vert[r]) update(q[i].lca);
              ans[q[i].ind] = curAns;
```

void dfs(int v, int prev, int d) {

};

```
if (q[i].lca != vert[l] && q[i].lca != vert[r]) update(q[i].lca);
     void clear() { for (int i = 0; i < MAXV; i++) adj[i].clear(); Q = 0; }</pre>
2.5.6.3 Disjoint Union Sets for Trees
#pragma once
#include <bits/stdc++.h>
using namespace std;
   Supports queries on graphs that involve finding the number of nodes in a subtree
    with a certain property
// Time Complexity: O(V log V + Q)
// Memory Complexity: O(V + Q)
template <const int MAXV, const int MAXQ> struct DSUTree {
  int Q = 0, ans[MAXQ], color[MAXV], temp[MAXV], size[MAXV], cnt[MAXV]; bool isHeavy[MAXV];
  vector<int> adj[MAXV]; vector<pair<int, int>> q[MAXV];
  void addEdge(int v, int w) { adj[v].push_back(w); adj[w].push_back(v); }
  void query(int v, int val) { q[v].emplace_back(val, Q++); }

     void getSize(int v, int prev) {
          size[v] = 1;
          for (int w : adj[v]) if (w != prev) { getSize(w, v); size[v] += size[w]; }
     void add(int v, int prev, int delta) {
          cnt[color[v]] += delta;
for (int w : adj[v]) if (w != prev && !isHeavy[w]) add(w, v, delta);
     void dfs(int v, int prev, bool keep) {
          int maxSize = -1, heavyInd = -1;
          for (int w : adj[v]) if (w!= prev && size[w] > maxSize) { maxSize = size[w]; heavyInd = w; } for (int w : adj[v]) if (w!= prev && w!= heavyInd) dfs(w, v, 0); if (heavyInd!= -1) { dfs(heavyInd, v, 1); isHeavy[heavyInd] = 1; }
          add(v, prev, 1);
          for (auto &&qq: q[v]) ans[qq.second] = cnt[qq.first];
if (heavyInd != -1) isHeavy[heavyInd] = 0;
          if (!keep) add(v, prev, -1);
     void run(int V) {
          copy(color, color + V, temp); sort(temp, temp + V); int k = unique(temp, temp + V) - temp; for (int v = 0; v < V; v++) color[v] = lower_bound(temp, temp + k, color[v]) - temp; fill(isHeavy, isHeavy + V, false); getSize(0, -1); dfs(0, -1, 0);
     void clear() { for (int i = 0; i < MAXV; i++) { adj[i].clear(); q[i].clear(); } Q = 0; }</pre>
2.5.7 Cycle
2.5.7.1 Cycle
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Finds a cycle in an undirected graph (including self loops and parallel edges)
// Time Complexity: O(V + E)
// Memory Complexity: O(V + E)
template <const int MAXV> struct Cycle {
     bool vis[MAXV]; int to[MAXV]; vector<int> adj[MAXV], cycle;
     void addEdge(int v, int w) { adj[v].push_back(w); adj[w].push_back(v); }
bool hasSelfLoop(int V) {
          for (int v = 0; v < V; v++) for (int w : adj[v]) {</pre>
               if (v != w) continue;
               cycle.clear(); cycle.push_back(v); cycle.push_back(v);
return true;
          return false;
     bool hasParallelEdges(int V)
          fill(vis, vis + V, false);
for (int v = 0; v < V; v++) {</pre>
                for (int w : adj[v]) {
                          cycle.clear(); cycle.push_back(v); cycle.push_back(w); cycle.push_back(v);
return true;
                     if (vis[w]) {
                     vis[w] = true;
                for (int w : adj[v]) vis[w] = false;
          return false:
     void dfs(int v, int prev) {
           vis[v] = true;
          for (int w : adj[v]) {
               if (!cycle.empty()) return;
               if (!vis[w]) { to[w] = v; dfs(w, v); }
else if (w != prev) {
                     cycle.clear();
                     for (int x = v; x != w; x = to[x]) cycle.push_back(x);
                     cycle.push_back(w); cycle.push_back(v);
```

}

```
void clear() { for (int i = 0; i < MAXV; i++) adj[i].clear(); cycle.clear(); }</pre>
         if (hasSelfLoop(V) || hasParallelEdges(V)) return;
         fill(vis, vis + V, false);
         for (int v = 0; v < V; v++) if (!vis[v]) dfs(v, -1);
};
2.5.7.2 Directed Cycle
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Finds a cycle in a directed graph 
// Time Complexity: O(V + E) 
// Memory Complexity: O(V + E)
template <const int MAXV> struct DirectedCycle {
    bool vis[MAXV], onStack[MAXV]; int to[MAXV]; vector<int> adj[MAXV], cycle;
void dfs(int v) {
         vis[v] = onStack[v] = true;
         for (int w : adj[v]) {
             if (!cycle.empty()) return;
             else if (!vis[w]) { to[w] = v; dfs(w); }
             else if (onStack[w]) {
                  cycle.clear();
                  for (int x = v; x != w; x = to[x]) cycle.push_back(x);
                  cycle.push_back(w); cycle.push_back(v);
         onStack[v] = false;
    void clear() { for (int i = 0; i < MAXV; i++) adj[i].clear(); cycle.clear(); }</pre>
    void run(int V) {
         fill(vis, vis + MAXV, false);
         for (int v = 0; v < V; v++) if (!vis[v] && cycle.empty()) dfs(v);
2.5.8 Matching
2.5.8.1 Bipartite
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes whether an undirected graph is bipartite, or whether it has an odd cycle.
// Computes whether an analyse
// Time Complexity: O(V + E)
// Memory Complexity: O(V + E)
template <const int MAXV> struct Bipartite {
    const bool WHITE = false, BLACK = true; bool bipartite, color[MAXV], vis[MAXV]; int to[MAXV]; vector<int> oddCycle, adj[MAXV];
    void addEdge(int v, int w) { adj[v].push_back(w); adj[w].push_back(v); }
    void bfs(int s) {
         queue<int> q; color[s] = WHITE; vis[s] = true; q.push(s);
         while (!q.empty())
             int v = q.front(); q.pop();
             for (int w : adj[v]) {
   if (!vis[w]) { vis[w] = true; to[w] = v; color[w] = !color[v]; q.push(w); }
   else if (color[w] == color[v]) {
                      bipartite = false; oddCycle.clear(); stack<int> stk; int x = v, y = w;
                      while (x != y) \{ stk.push(x); oddCycle.push_back(y); x = to[x]; y = to[y]; \}
                      stk.push(x);
                      while (!stk.empty()) { oddCycle.push_back(stk.top()); stk.pop(); }
                      oddCycle.push_back(w); return;
             }
         }
    void run(int V) {
         bipartite = true; fill(color, color + V, WHITE); fill(vis, vis + V, false);
         for (int v = 0; v < V && bipartite; v++) if (!vis[v]) bfs(v);
    void clear() { for (int i = 0; i < MAXV; i++) adj[i].clear(); oddCycle.clear(); }</pre>
2.5.8.2 Hopcroft-Karp Maximum Matching
#pragma once
#include <bits/stdc++.h>
using namespace std;
   Computes the maximum matching (ans minimum vertex cover) on an unweighted bipartite graph
// Time Complexity: O((V + E) sqrt V)
// Memory Complexity: O(V + E)
template <const int MAXV> struct HopcroftKarpMaxMatch {
    int cardinality, mate[MAXV], dist[MAXV], pathDist; vector<int> adj[MAXV], typeA; bool color[MAXV];
void addEdge(int v, int w) { adj[v].pb(w); adj[w].pb(v); }
    bool hasPath() {
         queue<int> q;
for (int v : typeA) {
   if (mate[v] == -1) { dist[v] = 0; q.push(v); }
             else dist[v] = INT_MAX;
         pathDist = INT_MAX;
```

```
while (!q.empty()) {
              int v = q.front(); q.pop();
              for (int w : adj[v])
                   if (mate[w] == -1) {
                        if (pathDist == INT_MAX) pathDist = dist[v] + 1;
                   } else if (dist[mate[w]] == INT_MAX) {
    dist[mate[w]] = dist[v] + 1;
                        if (pathDist == INT_MAX) q.push(mate[w]);
         return pathDist != INT_MAX;
    bool dfs(int v) {
         for (int w : adj[v]) {
              if (mate[w] == -1) {
    if (pathDist == dist[v] + 1) { mate[w] = v; mate[v] = w; return true; }
} else if (dist[mate[w]] == dist[v] + 1) {
                   if (dfs(mate[w])) { mate[w] = v; mate[v] = w; return true; }
         dist[v] = INT_MAX; return false;
    void init() { fill(mate, mate + MAXV, -1); fill(color, color + MAXV, false); }
    void clear() { for (int i = 0; i < MAXV; i++) adj[i].clear(); typeA.clear(); }</pre>
     int getMaxMatch() {
         cardinality = 0;
for (int v = 0; v < MAXV; v++) if (color[v]) typeA.push_back(v);</pre>
         while (hasPath()) for (int v : typeA) if (mate[v] == -1 && dfs(v)) cardinality++;
         return cardinality:
2.5.8.3 Edmonds Matching
#include <bits/stdc++.h>
using namespace std;
// Computes the maximum matching in a general undirected graph, such that each vertex
// is incident with at most one edge in the matching
// Time Complexity: O(V^2 * E)
// Memory Complexity: O(V + E)
template <const int MAXV> struct EdmondsMatching {
  int cardinality, match[MAXV], par[MAXV], id[MAXV], vis2[MAXV], stamp; bool vis[MAXV], blossom[MAXV]; vector<int> adj[MAXV];
  void addEdge(int v, int w) { adj[v].push_back(w); adj[w].push_back(v); }
    void markPath(int i, int b, int j)
         for (; id[i] != b; i = par[match[i]]) { blossom[id[i]] = blossom[id[match[i]]] = true; par[i] = j; j = match[i]; }
     int lca(int i, int j) {
         while (true) {
              vis2[i = id[i]] = stamp;
if (match[i] == -1) break;
              i = par[match[i]];
         while (true) {
    if (vis2[j = id[j]] == stamp) return j;
              j = par[match[j]];
    int getAugmentingPath(int V, int s) {
   fill(par, par + V, -1); fill(vis, vis + V, false); iota(id, id + V, 0); queue<int> q; vis[q] = true; q.push(s);
         while (!q.empty()) {
              int v = q.front(); q.pop();
              for (int w : adj[v]) {
                   if (id[v] == id[w] || match[v] == w) continue;
if (w == s || (match[w] != -1 && par[match[w]] != -1)) {
   int newBase = lca(v, w); fill(blossom, blossom + V, false); markPath(v, newBase, w); markPath(w, newBase, v);
}
                        for (int i = 0; i < V; i++) {</pre>
                             if (!blossom[id[i]]) continue;
                             id[i] = newBase;
                             if (!vis[i]) { vis[i] = true; q.push(i); }
                   } else if (par[w] == -1) {
                        par[w] = v;
if (match[w] == -1) return w;
                        vis[match[w]] = true;
                        q.push(match[w]);
              }
         assert (false);
         return -1:
     int getMaxMatch(int V) {
         fill(match, match + V, -1); fill(vis2, vis2 + V, 0); stamp = 0; for (int i = 0; i < V; i++) {
              if (match[i] != -1) continue;
              int v = getAugmentingPath(V, i);
               while (v'! = -1) { int pv = par[v], ppv = match[pv]; match[v] = pv; match[pv] = v; v = ppv; }
         cardinality = 0;
for (int i = 0; i < V; i++) if (match[i] != -1) cardinality++;
return cardinality / 2;</pre>
```

```
void clear() { for (int i = 0; i < MAXV; i++) adj[i].clear(); }</pre>
```

2.5.8.4 Hungarian Algorithm

```
#pragma once
#include <bits/stdc++.h>
using namespace std;
   Solves the assignment problem of matching W workers to J jobs with the minimum cost
   where each worked can only be assigned to 1 job and each job can only be assigned to 1 worker
// Time Complexity: O(max(W, J)^3)
// Memory Complexity: O(max(W, J)^2)
template <const int MAXWJ, class unit> struct HungarianAlgorithm {
   unit INF, EPS; HungarianAlgorithm(unit INF, unit EPS) : INF(INF), EPS(EPS) {}
   int rows, cols, dim; bool committedWorkers[MAXWJ];
    unit matrix[MAXWJ][MAXWJ], costMatrix[MAXWJ][MAXWJ], labelByWorker[MAXWJ], labelByJob[MAXWJ], minSlackValueByJob[MAXWJ],
          totalCost;
    int minSlackWorkerByJob[MAXWJ], matchJobByWorker[MAXWJ], matchWorkerByJob[MAXWJ], parentWorkerByCommittedJob[MAXWJ];
void match(int w, int j) { matchJobByWorker[w] = j; matchWorkerByJob[j] = w; }
void updateLabeling(unit slack) {
         for (int w = 0; w < dim; w++) if (committedWorkers[w]) labelByWorker[w] += slack;</pre>
          for (int j = 0; j < dim; j++) {</pre>
               if (parentWorkerByCommittedJob[j] != -1) labelByJob[j] -= slack;
              else minSlackValueByJob[j] -= slack;
     void reduce() {
         for (int w = 0; w < dim; w++) {</pre>
               unit minCost = INF;
               for (int j = 0; j < dim; j++) minCost = min(minCost, costMatrix[w][j]);
for (int j = 0; j < dim; j++) costMatrix[w][j] -= minCost;</pre>
          for (int j = 0; j < dim; j++) {</pre>
               unit minCost = INF;
               for (int w = 0; w < dim; w++) minCost = min(minCost, costMatrix[w][j]);</pre>
               for (int w = 0; w < dim; w++) costMatrix[w][j] -= minCost;</pre>
     void computeInitialSolution() {
         for (int j = 0; j < dim; j++) labelByJob[j] = INF;
for (int w = 0; w < dim; w++) for (int j = 0; j < dim; j++)
   if (costMatrix[w][j] < labelByJob[j]) labelByJob[j] = costMatrix[w][j];</pre>
     void greedyMatch() {
         for (int w = 0; w < dim; w++) for (int j = 0; j < dim; j++)

if (matchJobByWorker[w] == -1 && matchWorkerByJob[j] == -1 && costMatrix[w][j] - labelByWorker[w] - labelByJob[j] <= EPS
                   match(w, j);
    int getUnmatchedWorker() {
   for (int w = 0; w < dim; w++) if (matchJobByWorker[w] == -1) return w;</pre>
          return dim;
    void initialize(int w) {
    for (int i = 0; i < dim; i++) { committedWorkers[i] = false; parentWorkerByCommittedJob[i] = -1; }</pre>
          committedWorkers[w] = true;
         for (int j = 0; j < dim; j++) {
    minSlackValueByJob[j] = costMatrix[w][j] - labelByWorker[w] - labelByJob[j];</pre>
              minSlackWorkerByJob[j] = w;
     void execute() {
         while (true)
              int minSlackWorker = -1, minSlackJob = -1; unit minSlackValue = INF;
               for (int j = 0; j < dim; j++) {</pre>
                    if (parentWorkerByCommittedJob[j] == -1)
                         if (minSlackValueByJob[j] < minSlackValue) {</pre>
                             minSlackValue = minSlackValueByJob[j]; minSlackWorker = minSlackWorkerByJob[j]; minSlackJob = j;
               if (minSlackValue > EPS) updateLabeling(minSlackValue);
              parentWorkerByCommittedJob[minSlackJob] = minSlackWorker;
               if (matchWorkerByJob[minSlackJob] == -1) {
                   int committedJob = minSlackJob, parentWorker = parentWorkerByCommittedJob[committedJob];
                   while (true) {
                        int temp = matchJobByWorker[parentWorker]; match(parentWorker, committedJob); committedJob = temp;
                         if (committedJob == -1) break;
                        parentWorker = parentWorkerByCommittedJob[committedJob];
                    return
               } else {
                   int worker = matchWorkerByJob[minSlackJob]; committedWorkers[worker] = true;
                   for (int j = 0; j < dim; j++) {
                         if (parentWorkerByCommittedJob[j] == -1) {
                             unit slack = costMatrix(worker][j] - labelByWorker[worker] - labelByJob[j];
if (minSlackValueByJob[j] > slack) { minSlackValueByJob[j] = slack; minSlackWorkerByJob[j] = worker; }
                   }
     void init() { for (int i = 0; i < dim; i++) fill(matrix[i], matrix[i] + dim, 0); }</pre>
     unit run(int workers, int jobs) {
         dim = max(workers, jobs); rows = workers; cols = jobs;
```

```
for (int i = 0; i < dim; i++) {</pre>
              labelByWorker[i] = labelByJob[i] = minSlackValueByJob[i] = 0;
             minSlackWorkerByJob[i] = 0;
             matchJobByWorker[i] = matchWorkerByJob[i] = parentWorkerByCommittedJob[i] = -1;
committedWorkers[i] = false;
             for (int j = 0; j < dim; j++) costMatrix[i][j] = matrix[i][j];</pre>
         reduce(); computeInitialSolution(); greedyMatch();
         int w = getUnmatchedWorker();
         www.ie worker(); w = getUnmatchedWorker(); }
for (w = 0; w < rows; w++) if (matchJobByWorker[w] >= cols) matchJobByWorker[w] = -1;
         for (int j = 0; j < cols; j++) if (matchWorkerByJob[j] >= rows) matchWorkerByJob[j] = -1;
         totalCost = 0;
         for (int w = 0; w < rows; w++) if (matchJobByWorker[w] != -1) totalCost += matrix[w][matchJobByWorker[w]];</pre>
         return totalCost;
};
2.5.8.5 Stable Marriage
#pragma once
#include <bits/stdc++.h>
using namespace std;
  Given N people of type A and N people of type B, and a list of their ranked choices for partners, the goal is to arrange N pairs such that if a person x of type A perfers
// a person y of type B more than their current partner, then person y preters their
// current partner more than x
// Time Complexity: O(N^2)
// Memory Complexity: O(N^2)
template <const int MAXN> struct StableMarriage {
    int aPrefs[MAXN], bPrefs[MAXN], curA[MAXN], mateA[MAXN], mateB[MAXN], bRanks[MAXN][MAXN];
    void solve(int N) {
         for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) bRanks[i][bPrefs[i][j]] = j;</pre>
         queue<int> q;
         for (int i = 0; i < N; i++) { curA[i] = mateB[i] = -1; q.push(i); }</pre>
         while (!q.empty()) {
             int A = q.front(); q.pop();
              while (true) {
                  int B = aPrefs[A][++curA[A]];
                  if (mateB[B] == -1) {
    mateB[B] = A;
                       break;
                  } else if (bRanks[B][A] < bRanks[B][mateB[B]]) {</pre>
                       q.push(mateB[B]); mateB[B] = A;
                      break:
```

2.5.9 Network Flow

};

2.5.9.1 Edmonds Karp Max Flow

for (int i = 0; i < N; i++) mateA[mateB[i]] = i;</pre>

```
#pragma once
#include <bits/stdc++.h>
using namespace std;
   Computes the maximum flow and minimum cut in a flow network using Edmonds Karp's algorithm
// Time Complexity: O(V * E^2)
// Memory Complexity: O(V + E)
template <const int MAXV, class unit> struct EdmondsKarpMaxFlow {
   unit INF, EPS; EdmondsKarpMaxFlow(unit INF, unit EPS) : INF(INF), EPS(EPS) {}
          int to; unit cap, origCap; int next;
          Edge(int to, unit cap, int next) : to(to), cap(cap), origCap(cap), next(next) {}
     int to[MAXV], last[MAXV]; bool vis[MAXV], cut[MAXV]; vector<Edge> e; unit maxFlow, minCut;
void addEdge(int v, int w, unit vw, unit wv = 0) {
    e.emplace_back(w, vw, last[v]); last[v] = int(e.size()) - 1;
          e.emplace_back(v, wv, last[w]); last[w] = int(e.size()) - 1;
     bool bfs(int V, int s, int t) {
          fill(vis, vis + V, false); fill(to, to + V, -1); queue<int> q; q.push(s); vis[s] = true;
          while (!q.empty()) {
               int v = q.front(); q.pop();
for (int i = last[v]; i != -1; i = e[i].next)
                    if (e[i].cap > EPS && !vis[e[i].to]) { vis[e[i].to] = true; to[e[i].to] = i; q.push(e[i].to); }
          return vis[t];
     void init() { fill(last, last + MAXV, -1); fill(cut, cut + MAXV, false); }
     void clear() { e.clear(); }
     unit getFlow(int V, int s, int t) {
          maxFlow = 0:
          while (bfs(V, s, t))
               unit bottle = INF;
               for (int v = t; v != s; v = e[to[v] ^1].to) bottle = min(bottle, e[to[v]].cap);
for (int v = t; v != s; v = e[to[v] ^1].to) { e[to[v]].cap -= bottle; e[to[v] ^1].cap += bottle; }
               maxFlow += bottle;
          return maxFlow;
```

```
void inferMinCutDfs(int v) {
          cut[v] = true;
           \textbf{for (int } i = last[v]; i != -1; i = e[i].next) \textbf{ if } (e[i].cap > 0 \&\& !cut[e[i].to]) inferMinCutDfs (e[i].to); \\ 
     unit inferMinCut(int V, int s) {
          inferMinCutDfs(s); minCut = 0;
for (int v = 0; v < V; v++) if (cut[v]) for (int i = last[v]; i != -1; i = e[i].next)
               if (!cut[e[i].to]) minCut += e[i].origCap;
          return minCut:
};
2.5.9.2 Dinic Max Flow
#pragma once
#include <bits/stdc++.h>
using namespace std;
    Computes the maximum flow and minimum cut in a flow network using Dinic's algorithm
// Time Complexity: O(V^2 * E), O(min(V^2/3), E^2(1/2)) * E) for unit capacities // Memory Complexity: O(V + E)
template <const int MAXV, class unit> struct DinicMaxFlow {
   unit INF, EPS; DinicMaxFlow(unit INF, unit EPS) : INF(INF), EPS(EPS) {}
     struct Edge {
          int to; unit cap, origCap; int next;
          Edge (int to, unit cap, int next) : to(to), cap(cap), origCap(cap), next(next) \{\}
     int level[MAXV], last[MAXV]; bool vis[MAXV], cut[MAXV]; vector<Edge> e; unit maxFlow, minCut;
     void addEdge(int v, int w, unit vw, unit wv = 0) {
    e.emplace_back(w, vw, last[v]); last[v] = int(e.size()) - 1;
          e.emplace_back(v, wv, last[w]); last[w] = int(e.size()) - 1;
     bool bfs(int V, int s, int t) {
    fill(level, level + V, -1); level[s] = 0; queue<int> q; q.push(s);
          while (!q.empty()) {
               int v = q.front(); q.pop();
for (int i = last[v]; i != -1; i = e[i].next)
                     if (e[i].cap > EPS && level[e[i].to] == -1) { level[e[i].to] = level[v] + 1; q.push(e[i].to); }
          return level[t] != -1:
     unit dfs(int v, int t, unit flow) {
          if (v == t) return flow;
          unit ret = 0;
          for (int i = last[v]; i != -1; i = e[i].next) if (e[i].cap > EPS && level[e[i].to] == level[v] + 1) {
               unit res = dfs(e[i].to, t, min(flow, e[i].cap));
ret += res; e[i].cap -= res; e[i ^ 1].cap += res; flow -= res;
                if (abs(flow) <= EPS) break;</pre>
          return ret:
     void init() { fill(last, last + MAXV, -1); fill(cut, cut + MAXV, false); }
     void clear() { e.clear(); }
     unit getFlow(int V, int s, int t) {
          maxFlow = 0;
          while (bfs(V, s, t)) maxFlow += dfs(s, t, INF);
          return maxFlow;
     void inferMinCutDfs(int v) {
          cut[v] = true;
          for (int i = last[v]; i != -1; i = e[i].next) if (e[i].cap > 0 && !cut[e[i].to]) inferMinCutDfs(e[i].to);
     unit inferMinCut(int V, int s) {
          inferMinCutDfs(s); minCut = 0;
          for (int v = 0; v < V; v++) if (cut[v]) for (int i = last[v]; i != -1; i = e[i].next)
               if (!cut[e[i].to]) minCut += e[i].origCap;
          return minCut:
2.5.9.3 Max Flow Min Cost
#pragma once
#include <bits/stdc++.h>
using namespace std;
   Computes the maximum flow using a path with the minimum cost Time Complexity: O(VEB \log V) where B the the upper bound on the largest supply of any node
// Memory Complexity: O(V + E)
template <const int MAXV, class flowUnit, class costUnit> struct MaxFlowMinCost {
     flowUnit FLOW_INF, FLOW_EPS; costUnit COST_INF, COST_SMALL_INF;
MaxFlowMinCost(flowUnit FLOW_INF, flowUnit FLOW_EPS, costUnit COST_INF, costUnit COST_SMALL_INF) :
    FLOW_INF(FLOW_INF), FLOW_EPS(FLOW_EPS), COST_INF(COST_INF), COST_SMALL_INF(COST_SMALL_INF) {}
     struct Edge {
          int from, to; flowUnit cap; costUnit origCost, cost; int next;
Edge(int from, int to, flowUnit cap, costUnit cost, int next) :
               from(from), to(to), cap(cap), origCost(cost), cost(cost), next(next) {}
     int last[MAXV], prev[MAXV], index[MAXV]; costUnit phi[MAXV], dist[MAXV]; vector<Edge> e; bool hasNegativeEdgeCost;
void addEdge(int u, int v, flowUnit flow, costUnit cost) {
    if (cost < 0) hasNegativeEdgeCost = true;
    e.emplace_back(u, v, flow, cost, last[u]); last[u] = int(e.size()) - 1;
    e.emplace_back(v, u, 0, -cost, last[v]); last[v] = int(e.size()) - 1;</pre>
     void bellmanFord(int V, int s, int t) {
    fill(phi, phi + V, COST_SMALL_INF); phi[s] = 0;
    for (int j = 0; j < V - 1; j++) for (int i = 0; i < int(e.size()); i++)</pre>
```

```
if (e[i].cap > FLOW_EPS) phi[e[i].to] = min(phi[e[i].to], phi[e[i].from] + e[i].cost);
bool dijkstra(int V, int s, int t) {
    fill(dist, dist + V, COST_INF); fill(prev, prev + V, -1); fill(index, index + V, -1);
     priority_queue<pair<costUnit, int>, vector<pair<costUnit, int>>, greater<pair<costUnit, int>>> PQ;
     PQ.emplace(dist[s] = 0, s);
     while (!PQ.empty()) {
          pair<costUnit, int> v = PQ.top(); PQ.pop();
          if (v.first > dist[v.second]) continue;
for (int next = last[v.second]; next != -1; next = e[next].next) {
   if (abs(e[next].cap) <= FLOW_EPS) continue;</pre>
               costUnit d = dist[v.second] + e[next].cost + phi[v.second] - phi[e[next].to];
               if (dist[e[next].to] <= d) continue;</pre>
              prev[e[next].to] = v.second; index[e[next].to] = next;
PQ.emplace(dist[e[next].to] = d, e[next].to);
     return dist[t] != COST_INF;
void init() { fill(last, last + MAXV, -1); hasNegativeEdgeCost = false; }
void clear() { e.clear(); }
pair<flowUnit, costUnit> getMaxFlowMinCost(int V, int s, int t) {
    flowUnit flow = 0; costUnit cost = 0; fill(phi, phi + V, 0);
     if (hasNegativeEdgeCost) bellmanFord(V, s, t);
     while (dijkstra(V, s, t)) {
    flowUnit aug = FLOW_INF; int cur = t;
          while (prev[cur] != -1) { aug = min(aug, e[index[cur]].cap); cur = prev[cur]; }
          flow += aug; cur = t;
          while (prev[cur] != -1) {
               e[index[cur]].cap -= aug; e[index[cur] ^ 1].cap += aug;
               cost += aug * e[index[cur]].origCost; cur = prev[cur];
          for (int v = 0; v < V; v++) if (dist[v] != COST_INF) phi[v] += dist[v];</pre>
     return {flow, cost};
```

2.5.10 Dynamic Programming

2.5.10.1 Maximum Nonadjacent Sum

```
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the maximum sum of non adjacent vertices on any path between
// a source an (optional) destination vertex on a Directed Acyclic Graph
// Time Complexity: O(V)
// Memory Complexity: O(V)
template <const int MAXV> struct MaxNonadjacentSum {
   vector<int> adj[MAXV]; int val[MAXV], dp[MAXV][2];
     void addEdge(int v, int w) { adj[v].push_back(w); }
int dfs(int v, int t, bool take) {
   if (v == t) return take;
          if (dp[v][take] != -1) return dp[v][take];
          int ret = INT_MIN;
          for (int w : adj[v]) {
                if (take) ret = max(ret, dfs(w, false) + val[v]);
ret = max(ret, dfs(w, true));
          return dp[v][take] = ret;
     int solve(int s, int t) {
    fill(dp, dp + MAXV, -1);
    return dfs(s, t, true);
};
```

2.6 Math

2.6.1 Bisection Root Finding

```
#pragma once
#include <bits/stdc++.h>
using namespace std;

// Finds the root of a function using a bisection search
// Time Complexity: O(log((hi - lo) / EPS)) * (cost to compute f(x))
template <class T, class F> T bisection_root_finding(F f, T lo, T hi, T EPS) {
    T mid;
    do {
        mid = lo + (hi - lo) / 2;
        if (f(mid) < 0) lo = mid;
        else hi = mid;
    } while (hi - lo >= EPS);
    return mid;
}
```

2.6.2 Newton Root Finding

```
#pragma once
#include <bits/stdc++.h>
using namespace std;
```

```
// Find the root of a function using Newton's Method, given an initial guess x\theta
// Time Complexity: O(-\log(EPS)) * cost to compute f(x), faster in practice template <class T, class F> T newton(F f, F df, T x0, T EPS) {
     T cur = x0, next = x0;

do { cur = next; next = cur - f(cur) / df(cur); } while (abs(next - cur) > EPS);

return next;
2.6.3 Ternary Search for Maximum or Minimum
#include <bits/stdc++.h>
using namespace std;
// Ternary search to find the minimum of a function // Time Complexity: O(\log((hi - 1o) / EPS)) * (cost to compute f(x))
template <class T, class F> ternary_search(F f, T lo, T hi, T EPS) {
     do {
         m1 = lo + (hi - lo) / 3; m2 = hi - (hi - lo) / 3; if (f(m1) < f(m2)) hi = m2; // f(m1) < f(m2) for minimum, f(m1) > f(m2) for maximum
          else lo = m1;
    } while (abs(hi - lo) >= EPS);
return lo + (hi - lo) / 2;
// Ternary search to find the minimum of a function at integral values
 // Time Complexity: O(log(hi - lo)) * (cost to compute f(x))
template <class T, class F> ternary_search(F f, T lo, T hi) {
     static_assert(is_integral<T>::value, "T must be an integral type"); T mid;
    while (lo < hi) {
   mid = lo + (hi - lo) / 2;</pre>
          else lo = mid + 1;
     return lo;
2.6.4 Combinatorics
#pragma once
#include <bits/stdc++.h>
using namespace std;
// n! % m
// Time Complexity: O(n)
template <class T> T factorial(T n, T m) {
    T ret = 1;
for (int i = 2; i <= n; i++) ret = (ret * i) % m;
// n! % p for a prime p
// Time Complexity: O(p log n)
template <class T> T factorialPrime(T n, T p) {
    while (class 1) if lactorial rifine(i ii, i p) {
    T ret = 1, h = 0;
while (n > 1) {
    ret = (ret * ((n / p) % 2 == 1 ? p - 1 : 1)) % p; h = n % p;
    for (int i = 2; i <= h; i++) ret = (ret * i) % p;</pre>
     return ret;
}
// a * b % mod
// Time Complexity: O(log b)
template <class T> T multMod(T a, T b, T mod) {
    for (; b > 0; b /= 2, y = (y + y) % mod) if (b % 2 == 1) x = (x + y) % mod; return x;
// base ^ pow % mod
// Dase pow & mod
// Time Complexity: O(log pow)

template <class T> T powMod(T base, T pow, T mod) {
  T x = 1, y = base % mod;
    for (; pow > 0; pow /= 2, y = y * y % mod) if (pow % 2 == 1) x = x * y % mod; return x;
// Modular Multiplicative Inverse of i in Zp for a prime p
// Time Complexity: O(log p)
template <class T> T multInv(T i, T p) {
     return powMod(i, p - 2, p) % p;
// i / j % p for a prime p
// Time Complexity: O(log p)
template <class T> T divMod(T i, T j, T p) {
    return i * powMod(j, p - 2, p) % p;
// n choose k
// Time Complexity: O(\min(k, n - k))
long long choose(int n, int k) {
    if (n < k) return 0;
if (k > n - k) k = n - k;
long long ret = 1;
     for (int i = 0; i < k; i++) ret = ret * (n - i) / (i + 1);</pre>
```

```
return ret;
// n choose k \ \ p for a prime p // Time Complexity: O(\min(k, n-k)) template <class T> T choose(int n, int k, T p) {
         if (n < k) return 0;
if (k > n - k) k = n
          for (int i = 0; i < k; i++) { num = (num * (n - i)) % p; den = (den * (i + 1)) % p; }</pre>
          return divMod(num, den, p);
// n choose k % p
 // Time Complexity: O(log p) if factorials are precomputed
template <class T> T fastChoose(int n, int k, T p) {
          return divMod(divMod(factorial(n, p), factorial(k, p), p), factorial(n - k, p), p);
 // choosing k elements from n items with replacement, modulo p
// Time Complexity: O(log p) if factorials are precomputed template <class T> T multiChoose(int n, int k, T p) {
          return fastChoose(n + k - 1, k, p);
 // n permute k
  // Time Complexity: O(min(k, n - k))
 long long permute(int n, int k) {
         if (n < k) return 0;
if (n < k) return 0;
if (k > n - k) k = n - k;
long long ret = 1;
for (int i = 0; i < k; i++) ret = ret * (n - i);
return ret;</pre>
 // n permute k % p
 // Time Complexity: O(\min(k, n - k))
template <class T> T permute(int n, int k, T p) {
         if (n < k) return 0;
if (k > n - k) k = n - k;
          T ret = 1;
          for (int i = 0; i < k; i++) ret = ret * (n - i) % p;
 // n permute k % p
// In permute X * property Propert
         return divMod(factorial(n, p), factorial(k, p), p);
2.6.5 Greatest Common Divisor
 #pragma once
 #include <bits/stdc++.h>
using namespace std;
 // Time Complexity of all functions: O(log max(a, b))
 // Computes gcd(a, b)
template <typename T> T gcd(T a, T b) {
          while (b != 0) { T temp = b; b = a % b; a = temp; }
          return abs(a);
 // Computes gcd(a b)
template <typename T> T gcdRec(T a, T b) { return b == 0 ? abs(a) : gcdRec(b, a % b); }
// Extended Euclidean Algorithm to compute x and y, where ax + by = gcd(a, b) template <typename T> T EEA(T a, T b, T &x, T &y) {
    if (b == 0) { x = 1; y = 0; return abs(a); }
    T x1, y1, g = EEA(b, a % b, x1, y1); y = x1 - (a / b) * y1; x = y1; return g;
  // Computes the multiplicative inverse of a in {\it Zn}
template <typename T> T multInv(T a, T n) {
   T x, y;
   assert(EEA(a, n, x, y) == 1); // otherwise, there is no inverse
   return (x % n + n) % n;
 // Solves the linear congruence ax = c \mod m
  ^{\prime\prime} return the value of x, and the modulus of the answer
template < typename T> pair<T, T> solveCongruence(T a, T c, T m) {
   T x, y, g = EEA(a, m, x, y);
   assert(c % g == 0); // otherwise there is no solution
   x = (x % m + m) % m; x = (x * c / g) % (m / g);
          return make_pair(x, m / g);
2.6.6 Primes
 #pragma once
 #include <bits/stdc++.h>
using namespace std;
 // Determines whether N is prime
// Time Complexity: O(sqrt N)
// Memory Complexity: O(1)
```

```
bool isPrime(long long N) {
      if (N < 2) return false;</pre>
     for (long long i = 2; i * i <= N; i++) if (N % i == 0) return false; return true;
// Returns the prime factors of N
// Time Complexity: O(sqrt N)
// Memory Complexity: 0(1)
vector<long long> primeFactor(long long x) {
     for (long long i = 2; i * i <= x; i++) while (x % i == 0) { ret.push_back(i); x /= i; }
     if (x > 1) ret.push_back(x);
return ret;
template <class T> T powMod(T base, T pow, T mod) {
    T x = 1, y = base % mod;
    for (; pow > 0; pow /= 2, y = y * y % mod) if (pow % 2 == 1) x = x * y % mod;
    return x;
// Determines whether N is prime using the Miller Rabin Primality Test
// Time Complexity: O((log N)^3) * iterations
// Memory Complexity: O(1)
template <class T> bool millerRabin(T N, int iterations) {
     if (N < 2 | | (N != 2 && N % 2 == 0)) return false;
     mt19937_64 rng(time(0)); T s = N - 1; while (s % 2 == 0) s /= 2;
      for (int i = 0; i < iterations; i++)</pre>
           T temp = s, r = powMod(T(rng() % (N - 1) + 1), temp, N);

while (temp != N - 1 && r != 1 && r != N - 1) { r = r * r * N; temp *= 2; }

if (r != N - 1 && temp * 2 == 0) return false;
     return true;
// Sieve of Erathosthenes to identify primes and the smallest prime factor of each number
// Time Complexity:
      sieve: O(N)
       primeFactor: O(log x)
 // Memory Complexity: O(N)
template <const int MAXN> struct Sieve {
     bool isPrime[MAXN], SPF[MAXN]; vector<int> primes;
     void run (int N) {
           primes.clear(); fill(isPrime, isPrime + N + 1, true); isPrime[0] = isPrime[1] = false;
           for (int i = 2; i <= N; i++) {
                if (isPrime[i]) { primes.push_back(i); SPF[i] = i; }
for (int j = 0; j < (int) primes.size() && i * primes[j] <= N && primes[j] <= SPF[i]; j++) {
    isPrime[i * primes[j]] = false; SPF[i * primes[j]] = primes[j];</pre>
     vector<int> primeFactor(int x) {
           vector<int> ret;
           while (x != 1) { ret.push_back(SPF[x]); x /= SPF[x]; }
return ret;
};
// Segmented Sieve of Erathosthenes to identify primes between \operatorname{st} and \operatorname{en}
// Time Complexity: O(en - st)
// Memory Complexity: O(sqrt(en) + en - st)
template <const int MAXE, const int MAXRANGE> struct SegmentedSieve {
  bool sievel[int(sqrt(MAXE)) + 5], sieve2[MAXRANGE]; vector<long long> primes;
     primes.clear(); st = max(st, 2LL); long long sqrtEn = sqrt(en);
fill(sieve1, sieve1 + sqrtEn + 1, false); fill(sieve2, sieve2 + en - st + 1, false); sieve1[0] = sieve1[1] = true;
for (long long i = 2; i <= sqrtEn; i++) {</pre>
                if (sievel[i]) continue;
                for (long long j = i * i; j \le  sqrtEn; j += i) sievel[j] = true; for (long long j = (st + i - 1) / i * i; j \le  en; j += i) if (j != i \&\& !sieve2[j - st]) sieve2[j - st] = true;
           for (long i = 0; i < en - st + 1; i++) if (!sieve2[i]) primes.push_back(st + i);</pre>
}:
// Determines the factors of all numbers from 1 to N \,
// Time Complexity: O(N log N)
// Memory Complexity: O(N log N)
template <const int MAXN> struct Factors {
      vector<int> factors[MAXN];
     void run(int N) { for (int i = 1; i <= N; i++) for (int j = i; j <= N; j += i) factors[j].push_back(i); } void clear() { for (int i = 0; i < MAXN; i++) factors[i].clear(); }
2.6.7 Fast Fourier Transformations
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Time Complexity of all functions: O(log max(size(a), size(b)))
const double PI = 3.14159265358979323846;
void fft(vector<complex<double>> &a, bool invert) {
     int N = int(a.size());
```

```
for (int i = 1, j = 0; i < N; i++) {</pre>
          int bit = N >> 1;
          for (; j >= bit; bit >>= 1) j -= bit;
          j += bit;
         if (i < j) swap(a[i], a[j]);</pre>
    for (int len = 2; len <= N; len <<= 1) {
    double ang = 2 * PI / len * (invert ? -1 : 1);
    complex<double> wlen(cos(ang), sin(ang));
          for (int i = 0; i < N; i += len) {</pre>
              complex<double> w(1, 0);
for (int j = 0; j < len / 2; j++) {
                   complex<double> u = a[i + j], v = a[i + j + len / 2] * w;
a[i + j] = u + v; a[i + j + len / 2] = u - v; w *= wlen;
         }
     if (invert) for (int i = 0; i < N; i++) a[i] /= N;</pre>
// Multiplies 2 large integers
void multiplyInteger(vector<int> &a, vector<int> &b, vector<int> &res) {
    vector<complex<double>> fa(a.begin(), a.end()), fb(b.begin(), b.end());
     int N = int(a.size()) + int(b.size());
     while (N & (N - 1)) N++;
     fa.resize(N); fb.resize(N); fft(fa, false); fft(fb, false);
     for (int i = 0; i < N; i++) fa[i] *= fb[i];</pre>
     fft(fa, true); res.resize(N);
    int carry = 0;
for (int i = 0; i < N; i++) { res[i] = (int) (fa[i].real() + 0.5) + carry; carry = res[i] / 10; res[i] %= 10; }</pre>
     while (int(res.size()) > 1 && res.back() == 0) res.pop_back();
// Multiplies 2 polynomial
template <class T> void multiplyPolynomial(vector<T> &a, vector<T> &b, vector<T> &res) {
    vector<complex<double>> fa(a.begin(), a.end()), fb(b.begin(), b.end());
    int N = int(a.size()) + int(b.size()) - 1; bool isIntegral = is_integral<T>::value;
     while (N & (N - 1)) N++;
     fa.resize(N); fb.resize(N); fft(fa, false); fft(fb, false);
     for (int i = 0; i < N; i++) fa[i] *= fb[i];</pre>
    fft(fa, true); res.resize(N);
for (int i = 0; i < N; i++) res[i] = isIntegral ? round(real(fa[i])) : real(fa[i]);</pre>
     while (int(res.size()) > 1 && res.back() == 0) res.pop_back();
2.6.8 Gaussian Elimination
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Solve the equation Ax = b for Matrix A, and Vectors b, x
// Time Complexity: O(N^3)
// Memory Complexity: O(N^2)
template <const int MAXN> struct GaussianElimination {
    for (int p = 0; p < N; p++) {</pre>
              int m = p;
for (int i = p + 1; i < N; i++) if (abs(A[i][p]) > abs(A[m][p])) m = i;
              swap(A[p], A[m]); swap(b[p], b[m]);
if (abs(A[p][p]) \le EPS) throw runtime_error("Matrix is singular or nearly singular");
              for (int i = p + 1; i < N; i++) {
    double alpha = A[i][p] / A[p][p]; b[i] -= alpha * b[p];
                   for (int j = p; j < N; j++) A[i][j] -= alpha * A[p][j];</pre>
         fill(x, x + N, 0);
for (int i = N - 1; i >= 0; i--) {
    double sum = 0.0;
    for (int j = i + 1; j < N; j++) sum += A[i][j] * x[j];
    x[i] = (b[i] - sum) / A[i][i];</pre>
         }
2.6.9 Matrix
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Metrix data structure
template <class T> struct Matrix : vector<vector<T>>> {
    int N, M; Matrix(int N, int M) : N(N), M(M) { for (int i = 0; i < N; i++) this->push_back(vector<T>(M, 0)); }
// Returns the identiy matrix of dimension N
// Time Complexity: O(N^2)
template <class T> Matrix<T> identity(int N) {
    Matrix<T> A(N, N);
    for (int i = 0; i < N; i++) A[i][i] = 1;</pre>
    return A:
// Returns A + B
// Time Complexity: O(N^2)
```

```
template <class T> add(const Matrix<T> &A, const Matrix<T> &B) {
     assert (A.N == B.N && A.M == B.M); Matrix<T> C(A.N, A.M);
     for (int i = 0; i < C.N; i++) for (int j = 0; j < C.M; j++) C[i][j] = A[i][j] + B[i][j];
return C;</pre>
// Returns A - B
// Time Complexity: O(N^2)
template <class T> sub(const Matrix<T> &A, const Matrix<T> &B) {
     assert (A.N == B.N && A.M == B.M); Matrix<T> C(A.N, A.M);
     for (int i=0; i< C.N; i++) for (int j=0; j< C.M; j++) C[i][j]=A[i][j]-B[i][j]; return C;
// Returns A * B
// Time Complexity: O(N^3)
template <class T> times(const Matrix<T> &A, const Matrix<T> &B) {
     assert(A.M == B.N); Matrix<T> C(A.N, B.M);
          (int i = 0; i < A.N; i++) for (int j = 0; j < B.M; j++) for (int k = 0; k < A.M; k++) C[i][j] += A[i][k] * B[k][j];
// Returns A ^ pow
// Time Complexity: O(N^3 log pow)
template <class T> pow(const Matrix<T> &A, long long pow) {
   assert(A.N == A.M);
     Matrix<T> x = identity(A.N), y = A;
     for (; pow > 0; pow /= 2, y = times(y, y)) if (pow % 2 == 1) x = times(x, y); return x;
2.6.10 XOR Satisfiability
#pragma once
#include <bits/stdc++.h>
using namespace std:
// Solves the boolean satisfiability problem for so the rows of A when xored evaluate to b // If A[i][j] = 1, then the value xj is xored in equation i // If A[i][j] = 0, then the value !xj is xored in equation i
// Time Complexity: O(N^3)
// Memory Complexity: O(N^2) template <const int MAXN> struct GaussianElimination {
     bool A[MAXN][MAXN], b[MAXN], x[MAXN];
     void solve(int N) {
          for (int p = 0; p < N; p++) {
  int m = p;
  for (int i = 0; i < p; i++) {</pre>
                    int j = i;
                    while (j < N && !A[i][j]) j++;
                    if (j == p) m = i;
               for (int i = p + 1; i < N; i++) if (A[i][p]) m = i;
               if (!A[m][p]) continue;
               swap(A[p], A[m]); swap(b[p], b[m]);
for (int i = 0; i < N; i++) if (p != i && A[i][p]) {
   b[i] ^= b[p];</pre>
                    for (int j = p; j < N; j++) A[i][j] ^= A[p][j];</pre>
          }
copy(b, b + N, x);
for (int i = N - 1; i >= 0; i--) {
   if (!A[i][i] && x[i]) throw runtime_error("Matrix has no solution");
   if (x[i]) for (int j = i - 1; j >= 0; j--) { x[j] ^= A[j][i]; A[j][i] = false; }
}
};
2.7 Queries
2.7.1 Mo's Algorithm
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Mo's algorithm, used to count the number of distinct integers in a subarray
// Time Complexity: O(N+Q)\log Q+Q* max(B,Q/B)* (update complexity)) // Memory Complexity: O(N+Q)
template <const int MAXN, const int MAXQ, const int BLOCKSZ> struct Mo {
     struct Query {
          int 1, r, ind, block;
          bool operator < (const Query &q) const { return block == q.block ? r < q.r : block < q.block; }</pre>
     int Q = 0, cnt[MAXN], ans[MAXQ], val[MAXN], temp[MAXN], curAns; Query q[MAXQ]; void query (int 1, int r) { q[Q] = {1, r, Q, 1 / BLOCKSZ}; Q++; } void add(int x) { if (cnt[x]++ == 0) curAns++; }
     void rem(int x) { if (--cnt[x] == 0) curAns--;
     void run(int N) {
          fill(cnt, cnt + N, 0); copy(val, val + N, temp); sort(temp, temp + N); int k = unique(temp, temp + N) - temp; for (int i = 0; i < N; i++) val[i] = lower_bound(temp, temp + k, val[i]) - temp;
          sort(q, q + Q); int 1 = q[0].1, r = 1 - 1; curAns = 0;
          for (int i = 0; i < Q; i++) {
               while (1 < q[i].1) rem(val[1++]);
while (1 > q[i].1) add(val[--1]);
```

while (r < q[i].r) add(val[++r]);</pre>

```
while (r > q[i].r) rem(val[r--]);
                    ans[q[i].ind] = curAns;
       void clear() { Q = 0; }
2.7.2 Mo's Algorithm with Updates
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Mo's algorithm, supporting point updates, used to count the number of distinct integers in a subarray // Time Complexity: O(N + Q * ((N/B)^2 + B * (update complexity))) // Memory Complexity: O(N + Q)
template <const int MAXN, const int MAXQ, const int BLOCKSZ> struct MoUpdates {
      int Q = 0, cnt [MAXN + MAXQ], ans [MAXQ], val [MAXN] + temp [MAXN + MAXQ], curAns; pair<int, int> q[MAXQ]; bool isQuery[MAXQ]; vector<int> qs[MAXN / BLOCKSZ + 5][MAXN / BLOCKSZ + 5];
      void add(int x) { if (cnt[x]+ == 0) curAns++; }
void rem(int x) { if (--cnt[x] == 0) curAns--; }
void upd(int i, int x) { rem(val[i]); add(val[i] = x); }
void query(int l, int r) { q[Q] = {1, r}; isQuery[Q++] = true; }
       void update(int i, int x) { q[Q] = {i, x}; isQuery[Q++] = false; }
       void run (int N) {
             int cur = N, blocks = (N - 1) / BLOCKSZ + 1; fill(cnt, cnt + N + Q, 0);
for (int i = 0; i < Q; i++) if (!isQuery[i]) temp[cur++] = q[i].second;
copy(val, val + N, temp); sort(temp, temp + cur); int k = unique(temp, temp + cur) - temp;
for (int i = 0; i < N; i++) val[i] = lower_bound(temp, temp + k, val[i]) - temp;
for (int i = 0; i < Q; i++) {</pre>
                    if (isQuery[i]) qs[q[i].first / BLOCKSZ][q[i].second / BLOCKSZ].push_back(i);
                    else {
                          q[i].second = lower_bound(temp, temp + k, q[i].second) - temp;
for (int bl = 0; bl <= q[i].first / BLOCKSZ; bl++) for (int br = q[i].first / BLOCKSZ; br < blocks; br++)
                                  qs[bl][br].push_back(i);
```

int 1 = 0, r = 1 - 1; curAns = 0; stack<pair<int, int>> revert;
for (int bl = 0; bl < blocks; bl++) for (int br = bl; br < blocks; br++) {</pre>

revert.emplace(q[i].first, val[q[i].first]); if (1 <= q[i].first && q[i].first <= r) upd(q[i].first, q[i].second);

while (l < q[i].first) rem(val[l++]);
while (l > q[i].first) add(val[--1]);
while (r < q[i].second) add(val[++r]);
while (r > q[i].second) rem(val[r--]);

else val[q[i].first] = q[i].second;

pair<int, int> x = revert.top(); revert.pop();

if (1 <= x.first && x.first <= r) upd(x.first, x.second);</pre>

for (int i : qs[bl][br]) {
 if (isQuery[i]) {

while (!revert.empty()) {

} else {

ans[i] = curAns;

else val[x.first] = x.second;

2.8 Search

2.8.1 Binary Search

void clear() { Q = 0; }

```
#pragma once
#include <bits/stdc++.h>
using namespace std;
// returns the first value in the range [lo, hi) where f(x) == 0
// if there is no value in [lo, hi) where f(x) == 0, then it returns -1
// assumes that f(x) is non decreasing in the range (lo, hi) // Time Complexity: O(\log (hi - lo)) * (cost to compute f(x)) template <class T, class F> T getExact(T lo, T hi, F f) {
      while (lo <= hi) {
           T \text{ mid} = lo + (hi - lo) / 2;
           auto fmid = f(mid);
           if (fmid < 0) lo = mid + 1;
           else if (fmid > 0) hi = mid - 1;
           else return mid;
     return -1;
// returns the first value in the range [lo, hi) where f(x) is true // if no value in [lo, hi) satisfies f(x), then it returns hi
// assumes that all values where f(x) is true are greater than all values where f(x) is false // Time Complexity: O(\log (hi - lo)) * (cost to compute f(x)) template <class T, class F> T getFirst(T lo, T hi, F f) {
      while (lo < hi) {
           T \text{ mid} = lo + (hi - lo) / 2;
           if (f(mid)) hi = mid;
           else lo = mid + 1;
```

```
return lo;
// returns the last value in the range [lo, hi) where f(x) is true // if no value in [lo, hi) satisfies f(x), then it returns lo - 1 // assumes that all values where f(x) is true are less than all values where f(x) is false // Time Complexity: O(\log (hi - lo)) * (cost to compute f(x))
template <class T, class F> T getLast(T lo, T hi, F f) {
      while (lo <= hi) {
            if (f(mid)) lo = mid + 1;
else hi = mid - 1;
      return hi:
2.8.2 Interpolation Search
#pragma once
#include <bits/stdc++.h>
using namespace std;
// returns the first value in the range [lo, hi) where f(x) == key
// if there is no value in [lo, hi] where f(x) == key, then it returns -1
// assumes that f(x) is uniform and non decreasing in the range [lo, hi] // Time Complexity: O(\log\log(hi-lo)) * (cost to compute f(x)) template <class T, class F> T interpolationSearch(T lo, T hi, F f, T key) {
      hi--:
      while (lo < hi) {</pre>
            auto fguess = ((key - f(lo)) / f(hi - lo)) * (hi - lo) + lo;
auto fguess = f(guess);
if (fguess < key) lo = guess + 1;
else if (fguess > key) hi = guess - 1;
            else return guess;
      return -1;
2.9
           Sort
2.9.1 Counting Sort
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Sorts an array using counting sort, works with integer values
// Time Complexity: O(N + K) worst case for N elements over a range of K
 // Memory Complexity: O(N + K) additional memory
template <class It> void counting_sort(It st, It en) {
  int n = en - st;
  if (n == 0) return;
      int maxVal = INT_MIN, minVal = INT_MAX, *count = new int[maxVal - minVal + 1], *b = new int[n];
      for (It i = st; i < en; i++) { maxVal = max(maxVal, *i); minVal = min(minVal, *i); }
for (int i = 0; i <= maxVal - minVal; i++) count[i] = 0;</pre>
      for (It i = st; i < en; i++) count[*i - minVal]++;</pre>
      for (int i = 1; i <= maxVal - minVal; i++) count[i] += count[i - 1];
for (It i = st; i < en; i++) b[--count[*i - minVal]] = *i;
for (It i = st; i < en; i++) *i = b[i - st];</pre>
      delete[] (count); delete[] (b);
2.9.2 Heap Sort
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Sorts an array using heap sort
// Time Complexity: O(N log N) worse case
// Memory Complexity: O(1) additional memory
template <class It> void heap_sort(It st, It en) {
      int n = en - st;
for (int i = n / 2; i >= 1; i--) {
   int k = i;
            while (2 * k <= n) {
   int j = 2 * k;
   if (j < n && st[j - 1] < st[j]) j++;
   if (st[k - 1] >= st[j - 1]) break;
   swap(st[k - 1], st[j - 1]); k = j;
      while (n > 1) {
            swap(st[0], st[n-1]); n--; int k = 1;
            while (2 * k <= n) {
   int j = 2 * k;</pre>
                  if (j < n \&\& st[j-1] < st[j]) j++;
if (st[k-1] >= st[j-1]) break;
swap(st[k-1], st[j-1]); k = j;
      }
```

/////////// COMPARATOR SORT ///////////////

68

```
template <class It, class Comparator> void heap_sort(It st, It en, Comparator cmp) {
     int n = en - st;
for (int i = n / 2; i >= 1; i--) {
          int k = i;
          while (2 * k <= n) {
                int j = 2 * k;
                \begin{array}{lll} \textbf{if} & (j < n \text{ &\& cmp(st[j-1], st[j])) j++;} \\ \textbf{if} & (!\text{cmp(st[k-1], st[j-1])) break;} \\ \text{swap(st[k-1], st[j-1]); } & k = j; \end{array}
     while (n > 1) {
          swap(st[0], st[n - 1]); n--; int k = 1;
while (2 * k <= n) {
   int j = 2 * k;</pre>
                if (j < n \&\& cmp(st[j - 1], st[j])) j++;
                if (! cmp(st[k-1], st[j-1])) break;

swap(st[k-1], st[j-1]); k = j;
     }
2.9.3 Merge Sort
#pragma once
#include <bits/stdc++.h>
using namespace std;
  / Sorts an array using merge sort
// Time Complexity: O(N log N) worse case
// Memory Complexity: O(N) additional memory
const int INSERTION SORT CUTOFF = 8;
template <class SrcIt, class DstIt>
void merge_sort(SrcIt src_st, SrcIt src_en, DstIt dst_st, DstIt dst_en) {
   int n = src_en - src_st;
     if (n <= INSERTION_SORT_CUTOFF) {</pre>
          for (int i = 0; i < n; i++) for (int j = i; j > 0 && dst_st[j] < dst_st[j - 1]; j--)
    swap(dst_st[j], dst_st[j - 1]);</pre>
     int mid = (n - 1) / 2;
     merge_sort(dst_st, dst_st + mid + 1, src_st, src_st + mid + 1);
merge_sort(dst_st + mid + 1, dst_en, src_st + mid + 1, src_en);
if (src_st[mid + 1] >= src_st[mid]) { for (int i = 0; i < n; i++) dst_st[i] = src_st[i]; return; }</pre>
     for (int i = 0, j = mid + 1, k = 0; k < n; k++) {
    if (i > mid) dst_st[k] = src_st[j++];
    else if (j >= n) dst_st[k] = src_st[i++];
    else if (src_st[j] < src_st[i]) dst_st[k] = src_st[j++];</pre>
           else dst_st[k] = src_st[i++];
template <class It> void merge_sort(It st, It en) {
     typedef typename std::iterator_traits<It>::value_type T;
     int n = en - st; T *aux = new T[n];
for (int i = 0; i < n; i++) aux[i] = st[i];</pre>
     merge_sort(aux, aux + n, st, en); delete[] (aux);
template <class SrcIt, class DstIt, class Comparator>
void merge_sort(SrcIt src_st, SrcIt src_en, DstIt dst_st, DstIt dst_en, Comparator cmp) {
     int n = src_en - src_st;
     if (n <= INSERTION_SORT_CUTOFF)</pre>
          for (int i = 0; i < n; i++) for (int j = i; j > 0 && cmp(dst_st[j], dst_st[j - 1]); j--) swap(dst_st[j], dst_st[j - 1]);
          return;
     int mid = (n - 1) / 2;
     merge_sort(dst_st, dst_st + mid + 1, src_st, src_st + mid + 1, cmp);
merge_sort(dst_st + mid + 1, dst_en, src_st + mid + 1, src_en, cmp);
if (!cmp(src_st[mid + 1], src_st[mid])) { for (int i = 0; i < n; i++) dst_st[i] = src_st[i]; return; }
for (int i = 0, j = mid + 1, k = 0; k < n; k++) {</pre>
          if (i > mid) dst_st[k] = src_st[j++];
          else if (j \ge n) dst_st[k] = src_st[i++];
          }
template <class It, class Comparator> void merge_sort(It st, It en, Comparator cmp) {
     typedef typename std::iterator_traits<It>::value_type T;
int n = en - st; T *aux = new T[n];
     for (int i = 0; i < n; i++) aux[i] = st[i];</pre>
     merge_sort(aux, aux + n, st, en, cmp); delete[] (aux);
2.9.4 Merge Sort Bottom Up
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Sorts an array using bottom up merge sort
```

```
// Memory Complexity: O(N) additional memory
const int INSERTION_SORT_CUTOFF = 7;
template <class It> void merge_sort_buttom_up(It st, It en) {
     typedef typename std::iterator_traits<It>::value_type T;
int n = en - st; T *aux = new T[n];
for (int i = 0; i < n; i++) aux[i] = st[i];
bool flag = true; int len = 1;
for (; len * 2 <= INSERTION_SORT_CUTOFF && len < n; len *= 2);</pre>
      for (int lo = 0; lo < n; lo += len + len) {</pre>
           int hi = min(lo + len + len - 1, n - 1);
for (int i = lo; i <= hi; i++) for (int j = i; j > lo && aux[j] < aux[j - 1]; j--)</pre>
                 swap(aux[j], aux[j - 1]);
      len *= 2:
     for (; len < n; len *= 2) {
           if (flag) {
                 for (int lo = 0; lo < n; lo += len + len) {</pre>
                       int mid = lo + len - 1, hi = min(lo + len + len - 1, n - 1);
if (mid + 1 < n && aux[mid + 1] >= aux[mid]) {
    for (int i = lo; i <= hi; i++) st[i] = aux[i];</pre>
                       } else {
                             int i = lo, j = mid + 1;
for (int k = lo; k <= hi; k++) {</pre>
                                  if (i > mid) st[k] = aux[j++];
else if (j > hi) st[k] = aux[i++];
                                   else if (aux[j] < aux[i]) st[k] = aux[j++];
                                  else st[k] = aux[i++];
           } else {
                 for (int lo = 0; lo < n; lo += len + len) {
   int mid = lo + len - 1, hi = min(lo + len + len - 1, n - 1);
   if (mid + 1 < n && st[mid + 1] >= st[mid]) {
                             for (int i = lo; i <= hi; i++) aux[i] = st[i];</pre>
                       } else {
                             int i = lo, j = mid + 1;
for (int k = lo; k <= hi; k++) {</pre>
                                   if (i > mid) aux[k] = st[j++];
                                   else if (j > hi) aux[k] = st[i++];
                                   else if (st[j] < st[i]) aux[k] = st[j++];
                                  else aux[k] = st[i++];
                 }
           flag = !flag;
      if (flag) for (int i = 0; i < n; i++) st[i] = aux[i];</pre>
     delete[] (aux);
template <class It, class Comparator> void merge_sort_bottom_up(It st, It en, Comparator cmp) {
      typedef typename std::iterator_traits<It>::value_type T;
     int n = en - st; T *aux = new T[n];
for (int i = 0; i < n; i++) aux[i] = st[i];
bool flag = true; int len = 1;</pre>
      for (; len * 2 <= INSERTION_SORT_CUTOFF && len < n; len *= 2);</pre>
     for (int lo = 0; lo < n; lo += len + len) {
   int hi = min(lo + len + len - 1, n - 1);</pre>
           for (int i = lo; i <= hi; i++) for (int j = i; j > lo && cmp(aux[j], aux[j - 1]); j--)
                 swap(aux[j], aux[j - 1]);
      len *= 2;
      for (; len < n; len *= 2) {
           if (flag) {
                 for (int lo = 0; lo < n; lo += len + len) {</pre>
                       int mid = lo + len - 1, hi = min(lo + len + len - 1, n - 1);
if (mid + 1 < n && !cmp(aux[mid + 1], aux[mid])) {
    for (int i = lo; i <= hi; i++) st[i] = aux[i];</pre>
                       } else {
                             int i = lo, j = mid + 1;
                             for (int k = lo; k <= hi; k++) {</pre>
                                   if (i > mid) st[k] = aux[j++];
                                   else if (j > hi) st[k] = aux[i++];
                                  else if (cmp(aux[j], aux[i])) st[k] = aux[j++];
else st[k] = aux[i++];
           } else {
                 for (int lo = 0; lo < n; lo += len + len) {
   int mid = lo + len - 1, hi = min(lo + len + len - 1, n - 1);
   if (mid + 1 < n && !cmp(st[mid + 1], st[mid])) {</pre>
                             for (int i = lo; i <= hi; i++) aux[i] = st[i];</pre>
                       } else {
                             int i = lo, j = mid + 1;
for (int k = lo; k <= hi; k++) {</pre>
                                  if (i > mid) aux[k] = st[j++];
else if (j > hi) aux[k] = st[i++];
                                   else if (cmp(st[j], st[i])) aux[k] = st[j++];
```

// Time Complexity: O(N log N) worse case

```
else aux[k] = st[i++];
                     }
               }
           flag = !flag;
     if (flag) for (int i = 0; i < n; i++) st[i] = aux[i];</pre>
     delete[] (aux);
2.9.5 Quick Sort 3 Way
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Sorts an array using 3-way quick sort // Time Complexity: O(N^2) worse case, O(N \log N) average case // Memory Complexity: O(1) additional memory
const int INSERTION SORT CUTOFF = 8;
const int MEDIAN_OF_3_CUTOFF = 40;
template <class It> inline It median3(It a, It b, It c) {
    return (*a < *b ? (*b < *c ? b : (*a < *c ? c : a)) : (*c < *b ? b : (*c < *a ? c : a)));</pre>
template <class It> void quick_sort_3_way(It st, It en) {
     int n = en - st;
if (n <= INSERTION_SORT_CUTOFF) {</pre>
           for (int i = 0; i < n; i++) for (int j = i; j > 0 && st[j] < st[j - 1]; j--)
    swap(st[j], st[j - 1]);</pre>
           return;
     } else if (n <= MEDIAN_OF_3_CUTOFF) {</pre>
          It m = median3(st, st + n / 2, en - 1); swap(*st, *m);
     } else {
           int eps = n / 8; It mid = st + n / 2;
           median3(mid - eps, mid, mid + eps),
median3(en - 1 - eps - eps, en - 1 - eps, en - 1));
           swap(*st, *ninther);
     int i = 0, j = n, p = 0, q = n; auto v = st[0];
     while (true) {
          while (true) {
while (st[++i] < v) if (i == n - 1) break;
while (v < st[--j]) if (j == 0) break;
if (i == j && st[i] == v) swap(st[++p], st[i]);
if (i >= j) break;
           swap(st[i], st[j]);
if (st[i] == v) swap(st[++p], st[i]);
           if (st[j] == v) swap(st[--q], st[j]);
     for (int k = 0; k \le p; k++, j--) swap(st[k], st[j]);
for (int k = n - 1; k \ge q; k--, i++) swap(st[k], st[i]);
quick_sort_3_way(st, st + j + 1); quick_sort_3_way(st + i, en);
///////////// COMPARATOR SORT ///////////////
template <class It, class Comparator> void quick_sort_3_way(It st, It en, Comparator cmp) {
     int n = en - st;
     if (n <= INSERTION_SORT_CUTOFF) {</pre>
           for (int i = 0; i < n; i++) for (int j = i; j > 0 && cmp(st[j], st[j-1]); j--) swap(st[j], st[j-1]);
           return;
     } else if (n <= MEDIAN_OF_3_CUTOFF) {
   It m = median3(st, st + n / 2, en - 1); swap(*st, *m);</pre>
           int eps = n / 8; It mid = st + n / 2;
           swap(*st, *ninther);
     int i = 0, j = n, p = 0, q = n; auto v = st[0];
     while (true) {
           while (cmp(st[++i], v)) if (i == n - 1) break;
           while (cmp(v, st[--j])) if (j == 0) break;
if (i == j && !cmp(st[i], v) && !cmp(v, st[i])) swap(st[++p], st[i]);
if (i >= j) break;
           if (1 >= );
stean,
swap(st[i], st[j]);
if (!cmp(st[i], v) && !cmp(v, st[i])) swap(st[++p], st[i]);
if (!cmp(st[j], v) && !cmp(v, st[j])) swap(st[--q], st[j]);
     for (int k = 0; k <= p; k++, j--) swap(st[k], st[j]);
for (int k = n - 1; k >= q; k--, i++) swap(st[k], st[i]);
quick_sort_3_way(st, st + j + 1, cmp); quick_sort_3_way(st + i, en, cmp);
2.9.6 Quick Sort Dual Pivot
#pragma once
#include <bits/stdc++.h>
```

using namespace std;

```
// Sorts an array using dual pivot quick sort
// Time Complexity: O(	ilde{N}^2) worse case, O(	ilde{N} log 	ilde{N}) average case
// Memory Complexity: O(1) additional memory
const int INSERTION_SORT_CUTOFF = 8;
template <class It> void quick_sort_dual(It st, It en) {
    int n = en - st;
if (n <= 1) return;
if (n <= INSERTION_SORT_CUTOFF) { // insertion sort</pre>
          for (int i = 0; i < n; i++) {
   for (int j = i; j > 0 && st[j] < st[j - 1]; j--) {</pre>
                    swap(st[j], st[j - 1]);
          return;
     if (st[n - 1] < st[0]) swap(st[0], st[n - 1]);</pre>
    int lt = 1, gt = n - 2, i = 1;
while (i <= gt) {
    if (st[i] < st[0]) swap(st[i++], st[lt++]);
    else if (st[n - 1] < st[i]) swap(st[i], st[gt--]);</pre>
     swap(st[0], st[--lt]);
swap(st[n - 1], st[++gt]);
     quick_sort_dual(st, st + lt);
     if (st[lt] < st[gt]) quick_sort_dual(st + lt + 1, st + gt);</pre>
     quick_sort_dual(st + gt + 1, en);
template <class It, class Comparator> void quick_sort_dual(It st, It en, Comparator cmp) {
    int n = en - st;
if (n <= 1) return;
if (n <= INSERTION_SORT_CUTOFF) { // insertion sort</pre>
          for (int i = 0; i < n; i++) {
    for (int j = i; j > 0 && cmp(st[j], st[j - 1]); j--) {
                    swap(st[j], st[j - 1]);
          return:
     if (cmp(st[n - 1], st[0])) swap(st[0], st[n - 1]);
     int lt = 1, gt = n - 2, i = 1;
while (i <= gt) {</pre>
          if (cmp(st[i], st[0])) swap(st[i++], st[lt++]);
          else if (cmp(st[n - 1], st[i])) swap(st[i], st[gt--]);
          else i++;
     swap(st[0], st[--lt]);
swap(st[n - 1], st[++gt]);
quick_sort_dual(st, st + lt);
     if (cmp(st[lt], st[gt])) quick_sort_dual(st + lt + 1, st + gt);
     quick_sort_dual(st + gt + 1, en);
2.9.7 Shell Sort
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Sorts an array using shell sort // Time Complexity: O(N^{(4/3)}) worse case
// Memory Complexity: O(1) additional memory
template <class It> void shell sort(It st, It en) {
    int n = en - st, h = 1;
while (h < n * 4 / 9) h = h * 9 / 4 + 1;</pre>
     for (; h >= 1; h = h * 4 / 9) for (int i = h; i < n; i++)
    for (int j = i; j >= h && st[j] < st[j - h]; j -= h) swap(st[j], st[j - h]);</pre>
//////////// COMPARATOR SORT ////////////////
template <class It, class Comparator> void shell_sort(It st, It en, Comparator cmp) {
     int n = en - st, h = 1;
while (h < n * 4 / 9) h = h * 9 / 4 + 1;
     for (; h >= 1; h = h * 4 / 9) for (int i = h; i < n; i++)
    for (int j = i; j >= h && cmp(st[j], st[j - h]); j -= h) swap(st[j], st[j - h]);
2.9.8 Count Inversions
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Counts the number of inversions in an array, while also sorting using merge sort // Time Complexity: O(N log N) worse case
// Memory Complexity: O(N) additional memory
template <class SrcIt, class DstIt>
long long count_inversions(SrcIt src_st, SrcIt src_en, DstIt dst_st, DstIt dst_en) {
   int n = src_en - src_st;
     if (n <= 1) return 0;</pre>
```

```
int mid = (n - 1) / 2; long long ret = 0;
           int mid = (n - 1) / 2; long long ret = 0;
ret += count_inversions(dst_st, dst_st + mid + 1, src_st, src_st + mid + 1);
ret += count_inversions(dst_st + mid + 1, dst_en, src_st + mid + 1, src_en);
for (int i = 0, j = mid + 1, k = 0; k < n; k++) {
    if (i > mid) { dst_st[k] = src_st[j++]; }
    else if (j >= n) { dst_st[k] = src_st[i++]; ret += j - (mid + 1); }
    else if (src_st[j] < src_st[i]) { dst_st[k] = src_st[j++]; ret += mid + 1 - i; }
else if dst_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if dst_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if dst_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if dst_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if dst_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_st[k] = src_st[i] / (mid + 1); ret += mid + 1 - i; }
else if (src_
                      else { dst_st[k] = src_st[i++]; ret += j - (mid + 1); }
            return ret;
template <class It> long long count_inversions(It st, It en) {
            typedef typename std::iterator_traits<It>::value_type T;
            int n = en - st; T *aux = new T[n];
            for (int i = 0; i < n; i++) aux[i] = st[i];</pre>
            long long ret = count_inversions(aux, aux + n, st, en);
           delete[] (aux);
           return ret / 2;
 template <class SrcIt, class DstIt, class Comparator>
long long count_inversions(SrcIt src_st, SrcIt src_en, DstIt dst_st, DstIt dst_en, Comparator cmp) {
           int n = src_en - src_st;
if (n <= 1) return 0;</pre>
            int mid = (n - 1) / 2; long long ret = 0;
           ret += count_inversions(dst_st, dst_st + mid + 1, src_st, src_st + mid + 1, cmp);
ret += count_inversions(dst_st + mid + 1, dst_en, src_st + mid + 1, src_en, cmp);
for (int i = 0, j = mid + 1, k = 0; k < n; k++) {
    if (i > mid) { dst_st[k] = src_st[j++]; }
                      else if (j >= n) { dst_st[k] = src_st[i++]; ret += j - (mid + 1); }
                      else if (cmp(src_st[i]), src_st[i])) { dst_st[k] = src_st[j++]; ret += mid + 1 - i; }
else { dst_st[k] = src_st[i++]; ret += j - (mid + 1); }
            return ret:
template <class It, class Comparator> long long count_inversions(It st, It en, Comparator cmp) {
    typedef typename std::iterator_traits<It>::value_type T;
    int n = en - st; T *aux = new T[n];
    for (int i = 0; i < n; i++) aux[i] = st[i];
    long long ret</pre>
            long long ret = count_inversions(aux, aux + n, st, en, cmp);
            delete[] (aux);
2.10
                        String
2.10.1 KMP String Search
 #pragma once
 #include <bits/stdc++.h>
using namespace std;
 // KMP String Search
       Time Complexity:
   preCompute: O(len(pat))
```

```
search, multiSearch: O(len(txt))
// Memory Complexity: O(len(pat)) additional memory
template <const int MAXS> struct KMP {
       int LCP[MAXS]; string pat; vector<int> matches;
void preCompute (const string &pat) {
    this->pat = pat; LCP[0] = -1;
    for (int i = 0, j = -1; i < pat.length(); i++, j++, LCP[i] = (i != pat.length() && pat[i] == pat[j]) ? LCP[j] : j)
        while (j >= 0 && pat[i] != pat[j]) j = LCP[j];
}
       int search (const string &txt) { // returns the first index of a match, -1 if none
              for (int i = 0, j = 0, n = txt.length(); i < n; i++, j++) {
    while (j >= 0 && txt[i] != pat[j]) j = LCP[j];
    if (j == pat.length() - 1) return i - j;
       void multiSearch(const string &txt) { // finds all matches
              matches.clear();
              for (int i = 0, j = 0; i < txt.length(); i++, j++) {
   while (j >= 0 && (j == pat.length() || txt[i] != pat[j])) j = LCP[j];
   if (j == pat.length() - 1) matches.push_back(i - j);
```

2.10.2 Manacher Palindrome

```
#pragma once
#include <bits/stdc++.h>
using namespace std;
   Computes the longest palindromic substring centered at each half index
// Time Complexity: O(S)
// Memory Complexity: O(S) additional memory
template <const int MAXS> struct ManacherPalindrome {
    int p[MAXS]; string s; char t[MAXS * 2];
    void preProcess(const string &s) {
```

```
this->s = s; t[0] = '\$'; t[s.length() * 2 + 1] = '#'; t[s.length() * 2 + 2] = '@';
         for (int i = 0; i < int(s.length()); i++) { t[2 * i + 1] = '\#'; t[2 * i + 2] = s[i]; }
         int center = 0, right = 0; fill(p, p + int(s.length()) * 2 + 3, 0);
         for (int i = 1; i < int(s.length()) * 2 + 2; i++) {</pre>
              (int i = 1; i < int(s.length()) * 2 + 2; i++) {
int mirror = 2 * center - i;
if (right > i) p[i] = min(right - i, p[mirror]);
while (t[i + (1 + p[i])) == t[i - (1 + p[i])) p[i]++;
if (i + p[i] > right) { center = i; right = i + p[i]; }
    string longestPalindromicSubstring() { // longest palindromic substring
         int length = 0, center = 0;
for (int i = 1; i < int(s.length()) * 2 + 2; i++) if (p[i] > length) { length = p[i]; center = i; }
return s.substr((center - 1 - length) / 2, (center - 1 + length) / 2 - (center - 1 - length) / 2);
    int length = p[i + 2], center = i + 2;
return s.substr((center - 1 - length) / 2, (center - 1 + length) / 2 - (center - 1 - length) / 2);
};
2.10.3 Z Algorithm
#pragma once
#include <bits/stdc++.h>
using namespace std;
  Computes an array z, where z[i] is the length of the longest substring starting at S[i],
// which is also a prefix of S (maximum k such that S[i + j] == S[j] for all 0 <= j < k)
// Time Complexity: O(S)
// Memory Complexity: O(S) additional memory
template <const int MAXS> struct ZAlgorithm {
    int z[MAXS];
     void run(const string &S) {
         int 1 = 0, r = 0;
         if (int(S.length()) > 0) z[0] = int(S.length());
for (int i = 1; i < int(S.length()); i++) {</pre>
              if (i > r) {
                   1 = r = i;
                   while (r < int(S.length()) && S[r] == S[r - 1]) r++;
              r--; z[i] = r - 1 + 1;
} else {
                   int j = i - 1;
                   if (z[j] < r - i + 1) z[i] = z[j];
                   else {
1 = i;
                        while (r < int(S.length()) \&\& S[r] == S[r - 1]) r++;
                        r--; z[i] = r - 1 + 1;
             }
       }
2.10.4 Longest Common Substring
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the longest common substring between 2 strings
// Time Complexity: O(len(s1) * len(s2))
// Memory Complexity: O(len(s2))
template <const int MAXS> struct LongestCommonSubstring {
    int dp[2][MAXS]; string substring;
     int solve(const string &s1, const string &s2) {
         int st = 0, len = 0;
for (int i = 0; i < 2; i++) fill(dp[i], dp[i] + s2.length() + 1, 0);</pre>
         if (dp[i % 2][j] > len) { len = dp[i % 2][j]; st = i - dp[i % 2][j]; }
         substring = s1.substr(st, len);
         return len:
};
2.10.5 Minimum Edit Distance
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Computes the minimum edit distance between 2 strings, allowing for custom penalties
// Time Complexity: O(len(s1) * len(s2))
// Memory Complexity: O(len(s2))
template <const int MAXS> struct MinEditDistance {
    int dp[2][MAXS]; string substring;
     int solve(const string &s1, const string &s2, int repPen = 1, int insPen = 1, int delPen = 1) {
         for (int i = 0; i < 2; i++) fill(dp[i], dp[i] + s2.length() + 1, 0);
for (int i = 0; i <= int(s1.length()); i++) {
    for (int j = 0; j <= int(s2.length()); j++) {
        if (i == 0) dp[i % 2][j] = j;
    }
}</pre>
```

```
else if (j == 0) dp[i % 2][j] = i;
                        else if (s1[i - 1] == s2[j - 1]) dp[i % 2][j] = dp[1 - i % 2][j - 1];
else dp[i % 2][j] = min(min(dp[1 - i % 2][j - 1] + repPen, dp[1 - i % 2][j] + insPen), dp[i % 2][j - 1] + delPen);
            return dp[int(s1.length()) % 2][int(s2.length())];
};
2.10.6 Suffix Automata
#pragma once
#include <bits/stdc++.h>
using namespace std;
// Suffix Automata
// Time Complexity:
// add: O(S)
       addLetter: amortized O(1)
       LCS: 0(S)
// Memory Complexity: O(S * ALPHABET_SIZE)
template <const int ALPHABET_SIZE, const int OFFSET> class SuffixAutomata {
   vector<array<int, ALPHABET_SIZE>> to; vector<int> len, link; int last;
      void init() {
            to.clear(); len.clear(); link.clear(); last = 0;
            to.emplace_back(); to.back().fill(-1); len.push_back(0); link.push_back(0);
      void addLetter(char c) {
            c -= OFFSET; int p = last, q;
if (to[p][c] != -1) {
                  q = to[p][c];
                  if (len[q] == len[p] + 1) { last = q; return; }
to.push_back(to[q]); len.push_back(len[p] + 1); link.push_back(link[q]); link[q] = int(link.size()) - 1;
                  while (to[p][c] == q) { to[p][c] = int(to.size()) - 1; p = link[p]; }
            white (to[p][c] == q) { to[p][c] = Inc(to.size()) = 1, p = link[p], }
} else {
    last = int(to.size()); to.emplace_back(); to.back().fill(-1); len.push_back(len[p] + 1); link.push_back(0);
    while (to[p][c] == -1) { to[p][c] = last; p = link[p]; }
    if (to[p][c] == last) { link[last] = p; return; }
                  if (to[p][c];
if (len[q] == len[p] + 1) { link[last] = q; return; }
to.push_back(to[q]); len.push_back(len[p] + 1);
link.push_back(link[q]); link[q] = int(link.size()) - 1; link[last] = int(link.size()) - 1;
while (to[p][c] == q) { to[p][c] = int(to.size()) - 1; p = link[p]; }
      void add(const string &s) {
            last = 0;
            for (auto &&c : s) addLetter(c);
       .
// longest common substring
      int LCS(const string &s) {
            int p = 0, curLen = 0, ret = 0;
            for (char c : s) {
    c -= OFFSET;
                  while (p != 0 && to[p][c] == -1) { p = link[p]; curLen = len[p]; }
                  if (to[p][c]!= -1) { p = to[p][c]; curLen++; }
ret = max(ret, curLen);
            return ret;
```