Project Report: Investigating Renewable Energy's Impact on CO₂ and GHG Emissions

Prepared for Stakeholders

Date: August 21, 2025

Author: Chiagoziem Cyriacus Ugoh

Purpose: This report investigates whether increased renewable energy usage correlates with reductions in CO₂ and GHG emissions per capita, identifying trends, regional disparities, and standout countries. It addresses four key questions, provides detailed visualization explanations, actionable insights, and recommendations. All insights derive from the dataset (2,405 rows, 79 countries, 1992–2023, 6 regions: Africa, Asia, Europe, North America, South America, Australia).

Executive Summary

The analysis reveals that renewable energy adoption correlates strongly with reduced CO₂ and GHG emissions in developed regions (Europe: -0.949, North America: -0.816), but not in developing ones (Asia: 0.336, Africa: 0.352), where emissions rise with renewables due to economic growth. Global CO₂ doubled from ~20,887 Mt (1992) to ~35,495 Mt (2023), with renewables tripling but showing a positive global correlation (0.831). Per capita CO₂ is lower in high-renewables regions (~6-7 t/person in Europe vs. global ~8 t). Forecasts suggest stabilization (~35,000 Mt by 2028), with Europe declining further and Asia/Africa rising without intervention. Standout countries include China (highest CO₂), Germany (renewables leader), and Algeria (volatile renewables).

Actionable Insights:

- Strong negative correlations in Europe/North America show renewables displace fossils; positive correlations elsewhere indicate scaling needs.
- Top emitters (China, US) contribute ~40% of CO₂; focus here maximizes impact.

• Per capita disparities: High-renewables countries (e.g., Nordics) \sim 5-7 t vs. low (e.g., Qatar) \sim 20+ t.

Recommendations:

- Allocate 25% of ESG budgets to renewables in Asia/Africa to achieve decoupling.
- Adopt EU-style policies (e.g., subsidies) globally; prioritize top emitters.
- Deploy notebook's Streamlit dashboard for real-time monitoring; update forecasts yearly.

1. Introduction and Project Goal

Goal: Investigate if renewable energy usage reduces CO₂ and GHG emissions per capita, while identifying trends, regional disparities, and standout countries. **Key Questions:**

- 1. Does renewable energy adoption lead to lower CO2 emissions?
- 2. Which regions/countries are leading or lagging in renewables?
- 3. What are the patterns, anomalies, or turning points in the data?
- 4. How do per capita emissions differ between high- and low-renewables countries?

Why This Matters: With global CO₂ doubling since 1992, understanding renewables' impact guides policy, investment, and corporate ESG strategies for net-zero targets.

Data Overview: The dataset includes 2,405 cleaned rows (from 2,686), covering 79 countries, with metrics like CO₂ (Mt), GHG (Mt CO₂eq), renewables (equivalent primary energy units), and CO₂ per capita (t/person). Analysis uses pandas, SQL, Plotly, and SARIMAX for forecasting.

2. Detailed Analysis and Visualizations

$\mathsf{Africa} - \mathsf{CO_{_2}} \, \mathsf{over} \, \mathsf{time}$

Africa — Renewables over time

Africa — GHG over time

${\rm Europe-CO_{_2}\ over\ time}$

Europe — Renewables over time

Europe — GHG over time

$\mathsf{Asia} - \mathsf{CO}_{_{\! 2}} \, \mathsf{over} \, \mathsf{time}$

Asia — Renewables over time

Asia — GHG over time

North America — $\mathrm{CO_{_2}}$ over time

North America — Renewables over time

North America — GHG over time

South America — $\mathrm{CO}_{_{2}}$ over time

South America — Renewables over time

South America — GHG over time

${\rm Australia-CO_{_2}\ over\ time}$

Australia — Renewables over time

Australia — GHG over time

$CO_{_{2}}$ — regional totals

Renewables — regional totals

GHG — regional totals

Renewables vs CO₂ by Region (animated)

2.1 Does Renewable Energy Adoption Lead to Lower CO₂ Emissions?

Answer: Yes in developed regions (Europe, North America), where strong negative correlations indicate renewables displace fossils. In developing regions (Asia, Africa), positive correlations suggest renewables add capacity without reducing emissions, driven by growth.

CO, — regional totals

Regional CO₂ over Time (e.g., Africa, Europe, Asia)

- **Description:** Line charts with markers; X-axis: Year (1992–2023); Y-axis: CO₂ sum (Mt); Blue line per region.
- **Data Insights:** Europe declines from ~6,979 Mt (2000) to ~4,906 Mt (2023); Asia surges to ~20,000+ Mt; Africa rises to ~900+ Mt.
- **Trends and Interpretation:** Europe's decline post-2010 aligns with renewables surge (-0.949 correlation); Asia's exponential growth reflects industrial demand (0.336).
- **Actionable Insights:** Negative correlations in Europe/North America confirm renewables' effectiveness; positive in Asia/Africa signals insufficient fossil replacement.
- Recommendations: Scale renewables in Asia (target 500+ units by 2030);
 adopt Europe's subsidy models.

Renewables — regional totals

Regional Renewables over Time

- **Description:** Similar; Y-axis: Renewables sum (units).
- **Data Insights:** Europe to ~815 units, Asia ~185+, Africa ~17.
- **Trends:** Europe's steady rise; Asia's post-2010 boom; Africa's volatility (e.g., 3.419 YoY growth in 2003).
- **Insights:** High renewables correlate with CO₂ drops only in Europe/North America.
- **Recommendations:** Fund solar/wind in Africa (\$50B annually); replicate Germany's grid investments.

Renewables vs CO, by Region (animated)

Animated Scatter: Renewables vs CO₂

- **Description:** Scatter plot; X: Renewables sum; Y: CO₂ sum; colored by region; animated by Year (slider).
- **Data Insights:** Europe moves left-up (more renewables, less CO₂); Asia right-up (both increase).
- **Trends:** Post-2010, Europe clusters lower; Asia dominates high-CO₂ quadrant.
- Insights: Visualizes decoupling success (Europe) vs. failure (Asia).
- **Recommendations:** Use animation for policy workshops; target Asia for tech transfers.

Correlation (renewables_sum vs co2_sum) by region:

Europe : -0.949
North America : -0.816
South America : -0.076
Australia : 0.141
Asia : 0.336
Africa : 0.352

Global correlation (renewables vs CO2, GHG):

	renewables_sum	co2_sum	ghg_sum
renewables_sum	1.000000	0.830570	0.820665
co2_sum	0.830570	1.000000	0.995935
ghg_sum	0.820665	0.995935	1.000000

Global Correlations:

- Data: Renewables-CO2 correlation: 0.831 globally.
- Insights: Positive correlation reflects co-growth; decoupling not global.
- **Recommendations:** Prioritize top emitters (China, US) for renewable scaleup.

Conclusion: Renewables reduce emissions where policies displace fossils (Europe); elsewhere, growth masks impact.

2.2 Which Regions/Countries Are Leading or Lagging in Renewables?

Answer: Leaders: Europe (highest sum, ~815 units), North America (~200 units); countries like Germany, Norway. Laggers: Africa (~15 units), parts of Asia (e.g., oil-rich nations); countries like Algeria (volatile), Saudi Arabia (low adoption).

Renewables — regional totals

Renewables — Regional Totals

• **Description:** Multi-line chart; X: Year; Y: Renewables_sum; colored lines (e.g., Europe blue, Asia red).

- **Data Insights:** Europe leads (342 to 815 units); Asia grows rapidly post-2010; Africa flat (~10-17).
- **Trends:** Europe's consistent rise; Asia's exponential; Africa's stagnation.
- **Insights:** Leaders have diversified grids; laggers rely on fossils or hydro.
- **Recommendations:** Invest \$100B in Africa's solar; replicate Norway's hydro model.

Top Emitters:

	Country	co2_total
0	China	226520.825
1	United States	177570.130
2	Russia	52338.735
3	India	51249.237
4	Japan	38728.081
5	Germany	26770.964
6	Canada	17540.384
7	South Korea	16712.374
8	Iran	16335.493
9	United Kingdom	15811.423

Data Table:

| Country | CO2_total (Mt) | |------|-----| | China | 226,520.825 | | United States | 177,570.130 | | Russia | 52,338.735 | | India | 51,249.237 |

- **Insights:** China/US lead emissions but also renewables (China's sum high in Asia). Russia/Saudi lag in renewables share.
- **Recommendations:** Target China for solar scale-up; incentivize Russia's transition.

Standouts: Germany (high renewables, declining CO₂); Algeria (volatile renewables, e.g., 1.769 YoY growth 1998).

Recommendations: Study Germany's policies; stabilize Africa's investment climate.

2.3 What Are the Patterns, Anomalies, or Turning Points in the Data?

Answer: Patterns: Global CO₂ up ~70%; renewables tripled. Regional: Europe declines post-2000; Asia exponential. Anomalies: 2001–2002 dips (economic);

Africa's renewables volatility. Turning Points: Post-2010 renewables surge (policy-driven).

GHG — regional totals

Regional GHG over Time

- **Description:** Line charts; Y: GHG sum (Mt CO₂eq).
- **Data Insights:** Asia ~29,000+ Mt; Europe ~6,633 (2023).
- **Trends:** Parallels CO₂; Africa's GHG ~1.5x CO₂ (agriculture).
- Insights: Non-energy emissions significant; 2001 dip anomaly.
- Recommendations: Address methane in Africa via ag tech.

	Year	renewables_sum	co2_sum	ghg_sum	co2pc_avg
0	1992	744.997395	20886.752	33072.666	7.718406
1	1993	775.531717	21080.531	33005.724	7.674924
2	1994	781.927582	21241.517	33855.268	7.667623
3	1995	775.532782	21770.320	34187.243	7.691485
4	1996	750.712997	22421.046	35376.228	7.900804

	count	mean	std	min	25%
Year	32.0	2007.500000	9.380832	1992.000000	1999.750000
renewables_sum	32.0	894.297235	168.116794	744.997395	769.641603
co2_sum	32.0	28496.461437	5160.303142	20886.752000	23277.116000
ghg_sum	32.0	41411.972500	5479.010976	33005.724000	35731.857000
co2pc_avg	32.0	8.261762	0.466070	7.398452	7.855204

 $\operatorname{World} - \operatorname{CO_{\scriptscriptstyle 2}} \operatorname{over} \operatorname{time}$

World — Renewables over time

World — GHG over time

	renewables_sum	co2_sum	ghg_sum
renewables_sum	1.000000	0.830570	0.820665
co2_sum	0.830570	1.000000	0.995935
ghg_sum	0.820665	0.995935	1.000000

Global CO₂/Renewables/GHG (In [17]):

- **Description:** Line charts; Y: Respective sums.
- Data Insights: CO_2 from 20,887 to 35,495 Mt; renewables ~745 to 1,322 units; ghg ~33.1 to 48.7.
- Trends: CO₂ plateaus post-2020; renewables accelerate post-2010.
- Insights: Turning point ~2010 (global policies); 2020 dip (COVID).
- **Recommendations:** Analyze post-2010 policies for scaling.

Africa - CO₂ (history + forecast)

Asia — CO₂ (history + forecast)

$Australia-CO_{_{2}}\ (history+forecast)$

${\sf Europe-CO_{\tiny 2}\ (history+forecast)}$

North America — CO_2 (history + forecast)

South America — CO₂ (history + forecast)

9. Regional Forecasts:

- **Description:** Lines with forecast (orange) and 95% CI bands.
- Insights: Europe's decline continues; Asia/Africa rise.
- Recommendations: Plan for Asia's growth; monitor CI for risks.

Conclusion: Post-2010 marks policy-driven renewable growth; anomalies highlight economic sensitivity.

2.4 How Do Per Capita Emissions Differ Between Highand Low-Renewables Countries?

Answer: High-renewables countries (e.g., Sweden, Norway) have \sim 5-7 t/person CO₂, 50-70% lower than low-renewables (e.g., Qatar, Kuwait: \sim 20-30 t). High-renewables align with lower per capita emissions.

	rows_total	countries	year_min	year_max	
0	2405	79	1992	2023	

				count	mea	an		std		min		25%	•
	renew	ables_s	sum	32.0	492.02210)7	139.721	682	342.2	202977	379.	858437	42
		co2_s	sum	32.0	5949.68012	25	508.257	336	4905.6	71000	5531.	182000	608
		ghg_s	sum	32.0	7585.95906	63	550.409	359	6587.3	803000	7282.	166750	760
				ronow	ables_sum	-	2_sum	ab	g_sum				
		-61		renew	-				- <u>-</u>				
	renew	ables_s			1.000000		949417		334655				
		co2_9	sum		-0.949417	1.	000000	0.9	929126				
		ghg_s	sum		-0.834655	0.	929126	1.0	000000				
Out[57]		Regio	n Ye	ar rei	newables_s	um	co2_sı	ım	ghg_su	m co	2pc_av	g cou	ntries
	123	Europ	e 20	19	638.8589	940	5347.5	97	6967.9	00 6	5.74108	8	34
	124	Europ	e 20	20	732.1186	504	4936.6	25	6587.3	03 6	5.09635	3	34
	125	Europ	e 20	21	738.4221	155	5213.9	31	6912.0	13 6	5.38308	8	34
	126	Europ	e 20	22	734.8018	300	5139.2	208	6865.0	71 6	5.16714	7	34
	127	Europ	e 20	23	815.2635	507	4905.6	71	6633.3	42 5	5.77955	9	34
				count	mea	an		std		min		25%	
	renew	ables_s	sum	32.0	10.67887	71	2.812	388	7.41	1706	9.07	6019	9.6
		co2_9	sum	32.0	768.57853	31	147.492	322	485.88	35000	625.64	1750	825.9
		ghg_s	sum	32.0	1114.67487	75	153.366	966	827.01	7000	964.33	7750	1171.:
				WOW O	ables sum		2	ar la ar					
				renew	ables_sum				_sum				
	renew	ables_s			1.000000		352011		60158				
		co2_s	sum		0.352011	1.0	000000	0.99	99081				
		ghg_s	sum		0.360158	0.9	999081	1.00	00000				
Out[58]	: R	egion	Year	rene	wables_sum	C	o2_sum	gh	ıg_sum	co2p	c_avg	count	ries
	0	Africa	1992		10.201364	ļ	485.885	8	327.017	3.0	09500		4

8.836401

9.914224

9.094689

12.497541

521.346

543.803

586.215

591.247

864.199

879.627

937.433

939.599

3.22875

3.33275

3.52900

3.51725

4

4

Region-Year Aggregates:

- Data Table (Sample):

Africa 1993

Africa 1994

Africa 1995

Africa 1996

1

2

3

4

- **Recommendations:** Target high per capita countries (e.g., Qatar) for transition.

Interactive Dashboard:

- **Description:** Subplots (CO₂, Renewables, GHG, CO₂ per capita, etc); dropdowns for region/country; rangesliders.
- **Insights:** Norway ~5 t, Qatar ~25 t; high-renewables countries consistently lower
- **Recommendations:** Deploy dashboard for boardroom analysis; compare countries. https://chiagoziemrenewabledashboard.streamlit.app/

Conclusion: High-renewables countries show lower per capita emissions; laggers need targeted interventions.

4. Actionable Insights and Recommendations

Insights:

- Correlation Impact: Europe/North America's negative correlations (-0.949, -0.816) prove renewables' efficacy; Asia/Africa's positive (0.336, 0.352) show scaling gaps.
- Regional Leaders/Laggers: Europe leads (815 units); Africa lags (~15).
 China's high renewables don't curb CO₂.
- Patterns: Post-2010 turning point; 2001/2020 anomalies (economic/COVID).
- **Per Capita:** High-renewables countries ~5-7 t/person; low ~20+ t.

Recommendations:

- 1. **Policy:** Adopt Europe's subsidies in Asia/Africa; target 20% renewables share by 2030.
- 2. **Investment:** Allocate \$200B to Africa's solar/wind; prioritize China/US (40% emissions).
- 3. **Monitoring:** Deploy Streamlit dashboard (In [24]) for KPIs; update SARIMAX vearly.
- 4. **Corporate ESG:** Benchmark against Germany; set per capita CO₂ targets <7 t by 2030.

5. Conclusion

Renewables reduce emissions where policies enable displacement (Europe), but global doubling of CO₂ shows insufficient scale. Stakeholders should prioritize

high-emitter transitions, monitor via dashboards, and invest in laggers to meet net-zero goals.

Appendix:

• **Data:** 2,405 rows, cleaned via pandas; SQL for aggregates.

• **Limitations:** No GDP/policy data; assumes continuity.

• **Next Steps:** Run Granger tests on lags; integrate with ESG reports.

Column	Meaning / Description
Year	Calendar year of the observation.
Region_Canonical	Standardized name of the region (e.g., Europe, Asia).
Country	Country name within the region.
Label	Display label for region/country (used in charts and dashboards).
CO2	Total CO ₂ emissions in megatonnes (Mt) for that year.
Total_GHG	Total greenhouse gas emissions in CO ₂ -equivalent (Mt CO ₂ eq).
CO2_per_capita	CO ₂ emissions per person in tons per capita .
Renewables_equivalent_primary_energy	Energy generated from renewables expressed in primary energy equivalent (e.g., PJ or TWh).
CO2_grow_yoy	Year-over-year percentage growth of CO ₂ emissions. Positive means increase, negative means decrease.
Renewables_grow_yoy	Year-over-year growth of renewable energy production in %.
CO2_per_renewable_unit	Carbon intensity per unit of renewable energy (CO ₂ emissions per renewable energy unit).

Column Explanations

1. Country

- The name of the country the data point refers to.
- Example: Nigeria, Germany, United States.

2. **Year**

- The calendar year of observation.
- Example: 2010, 2015, 2020.

3. Renewables equivalent primary energy

- The amount of renewable energy consumed or produced, expressed in primary energy equivalents.
- Primary energy equivalent means adjusting electricity from renewables (like wind, solar, hydro) into an equivalent amount of primary fuel that would otherwise have been required.
- Units often: Exajoules (EJ), Terawatt-hours (TWh), or Million tonnes of oil equivalent (Mtoe).

4. **CO2**

- Total **carbon dioxide emissions** from the country in that year.
- Usually measured in million tonnes (MtCO₂).
- Territorial emissions (from within the country's borders, not accounting for imports/exports).

5. CO2_per_capita

- CO₂ emissions **per person** in the country.
- Formula: CO2 / Population.
- Units: tonnes per person (tCO₂/person).

6. Total_GHG

- Total greenhouse gas emissions, including CO₂ plus other gases like methane (CH₄), nitrous oxide (N₂O), fluorinated gases.
- Units: usually in **CO₂-equivalent (MtCO₂e)**, meaning other gases are converted into CO₂ terms using their global warming potential (GWP).

7. UN Region

- The official United Nations geographic classification of the country's region.
- Example: Africa, Europe, Asia, Latin America, Oceania, Northern America.

8. Region_Canonical

- A simplified or standardized region grouping, often used for analysis (could be broader or different from UN categories).
- Example: Sub-Saharan Africa, Middle East, Western Europe, North America.

9. Renewables grow yoy

- The **year-over-year growth rate of renewable energy** in percentage terms.
- Formula:

$$\operatorname{Growth}_t = \frac{\operatorname{Renewables}_t - \operatorname{Renewables}_{t-1}}{\operatorname{Renewables}_{t-1}} \times 100$$

Shows how fast renewables are increasing (or decreasing) each year.

10. CO2_grow_yoy

- The year-over-year growth rate of CO₂ emissions in percentage terms.
- Formula:

$$ext{Growth}_t = rac{ ext{CO2}_t - ext{CO2}_{t-1}}{ ext{CO2}_{t-1}} imes 100$$

• Positive = emissions rising, Negative = emissions falling.

11. CO2 per renewable unit

- A ratio showing how many tonnes of CO₂ are emitted per unit of renewable energy.
- Formula:

$$\frac{\text{CO}_2 \text{ emissions}}{\text{Renewable energy consumption}}$$

• Interpretation: Lower values suggest a cleaner energy mix (more renewables relative to emissions).

This notebook was converted with convert.ploomber.io