

Scalable Data Science

Lecture 4: Background on Optimization

Sourangshu Bhattacharya

Computer Science and Engineering
IIT KHARAGPUR

In this review

Outline:

- Definition of an optimization problem
- Properties of optima
- Algorithm for differentiable objectives
- Convex functions subgradients
- Subgradient descent.
- Stochastic gradient descent.

What is Optimization?

Find the minimum or maximum value of an objective function (f_0) w.r.t. arguments x.

The arguments must satisfy given a set of inequality and equality constraints.

General form:

$$\arg \min_{x} f_0(x)$$
s.t. $f_i(x) \le 0, i = \{1, \dots, k\}$

$$h_j(x) = 0, j = \{1, \dots l\}$$

$$\min f(x, y) = x^2 + 2y^2$$

Example:

x > 0

$$\min f(x, y) = x^{2} + 2y^{2}$$
$$-2 < x < 5, y \ge 1$$

$$\min f(x, y) = x^2 + 2y^2$$
$$x + y = 2$$

Why Do We Care?

Linear Classification

$$\arg\min_{w} \sum_{i=1}^{n} ||w||^{2} + C \sum_{i=1}^{n} \xi_{i}$$
s.t.
$$1 - y_{i} x_{i}^{T} w \leq \xi_{i}$$

$$\xi_{i} \geq 0$$

Maximum Likelihood

$$\arg\max_{\theta} \sum_{i=1}^{n} \log p_{\theta}(x_i)$$

Machine Learning is Optimization!!

K-Means

$$\arg \min_{\mu_1, \mu_2, \dots, \mu_k} J(\mu) = \sum_{j=1}^k \sum_{i \in C_j} ||x_i - \mu_j||^2$$

Types of objective functions

- Objective functions may be unimodal or multimodal.
 - a. Unimodal only one optimum
 - b. Multimodal more than one optimum
- Most algorithms work on unimodal functions.
 The optimum determined in such cases is called a local optimum.
- 3. The global optimum is the best of all local optimum designs.

Types of optimization algorithms

- Derivative-based optimization (gradient based)
 - Objective function should be differentiable.
 - Capable of determining "search directions" according to an objective function's derivative.
 - Steepest descent method (Gradient descent);
 - Newton's method;
 - Conjugate gradient, etc.
- Derivative-free optimization
 - Searches over the feasible set in a systematic manner.
 - random search method;
 - genetic algorithm;
 - simulated annealing; etc.

Gradient

• <u>Definition</u>: The gradient of $f: \mathbb{R}^n \to \mathbb{R}$ is a function

 $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$ given by

$$\nabla f(x_1,...,x_n) := \left(\frac{\partial f}{\partial x_1},..., \frac{\partial f}{\partial x_n}\right)^T$$

Gradient:
$$\left[\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y}\right]$$

 $\partial f(x,y)$

Gradient

The gradient defines (hyper) plane approximating the function

infinitesimally

$$\Delta z = \frac{\partial f}{\partial x} \cdot \Delta x + \frac{\partial f}{\partial y} \cdot \Delta y$$

• For all directions v, |v| = 1:

$$\frac{\partial f}{\partial v}(p) = \left\langle \nabla f_p, v \right\rangle$$

- Magnitude is highest when v and ∇f_p point to the same direction.
- Gradient points to direction of steepest descent

Gradient

• Let $f: \mathbb{R}^n \to \mathbb{R}$ be a smooth function around p, if f has local **minimum** (maximum) at p then:

$$\nabla f_p = \overline{0}$$

Intuitive: necessary for local min(max)

Hessian matrix

- If the derivative of ∇f exists, we say that f is twice differentiable.
 - Write the second derivative as D^2f (or \mathbf{F}), and call it the *Hessian* of f.

$$\boldsymbol{F} = D^2 f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(\boldsymbol{x}) & \frac{\partial^2 f}{\partial x_2 \partial x_1}(\boldsymbol{x}) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1}(\boldsymbol{x}) \\ \frac{\partial^2 f}{\partial x_1 \partial x_2}(\boldsymbol{x}) & \frac{\partial^2 f}{\partial x_2^2}(\boldsymbol{x}) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_2}(\boldsymbol{x}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n}(\boldsymbol{x}) & \frac{\partial^2 f}{\partial x_2 \partial x_n}(\boldsymbol{x}) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(\boldsymbol{x}) \end{bmatrix}$$

- The local optimum is mínimum (máximum) if the Hessian matrix is positive (negative) definite.
- Else it is a saddle point.

Constrained Optimization

Minimize
$$f(x)$$

Subject to $g_j(x) \ge 0$ for $j = 1, 2, ..., J$
 $h_k(x) = 0$ for $k = 1, 2, ..., K$
 $x = (x_1, x_2, ..., x_N)$

Lagrangian:
$$L(x, u, v) = f(x) - \sum_{j=1}^{J} u_j g_j(x) - \sum_{k=1}^{K} v_k h_k(x)$$

Kuhn-Tucker conditions

Find vectors $x_{(N\times 1)}$, $u_{(1\times J)}$, and $v_{(1\times K)}$ that satisfy

$$\nabla f(x) - \sum_{j=1}^{J} u_j \, \nabla g_j(x) - \sum_{k=1}^{K} v_k \, \nabla h_k(x) = 0$$

$$g_j(x) \ge 0 \quad \text{for } j = 1, 2, \dots, J$$

$$h_k(x) = 0 \quad \text{for } k = 1, 2, \dots, K$$

$$u_j g_j(x) = 0 \quad \text{for } j = 1, 2, \dots, J$$

$$u_i \ge 0 \quad \text{for } j = 1, 2, \dots, J$$

Algorithms

Gradient Descent

• An algorithm for: $\min_{x} f(x)$

Input
$$x_0 \in \mathbb{R}^n$$

Step 0: set i = 0

Step 1: if
$$\nabla f(x_i) = 0$$
 Stop,

else, compute *search direction* $h_i \in \mathbb{R}^n$

Step 2: compute the *step-size* $\lambda_i \in \arg\min_{\lambda \geq 0} f(x_i + \lambda \cdot h_i)$

Step 3: set
$$X_{i+1} = X_i + \lambda_i \cdot h_i$$
 go to step 1

Negative Gradient direction

Gradient Descent

Given:

$$f(x_1, x_2) = 2\sin(1.47x_1)\sin(0.34x_2) + \sin(x_1)\sin(1.9x_2)$$

Find the minimum when x_1 is allowed to vary from 0.5 to 1.5 and x_2 is allowed to vary from 0 to 2.

Gradient Descent

What is the problem with steepest descent?

- We can repeat the same directions over and over...
- Wouldn't it be better if, every time we took a step, we got it right the first time?

Newton's Method

Idea: use a second-order approximation to function.

$$f(x + \Delta x) \approx f(x) + \nabla f(x)^T \Delta x + \frac{1}{2} \Delta x^T \nabla^2 f(x) \Delta x$$

Choose Δx to minimize above:

$$\Delta x = -\left[\nabla^2 f(x)\right]^{-1} \nabla f(x)$$

This is descent direction:

$$\nabla f(x)^T \Delta x = -\nabla f(x)^T \left[\nabla^2 f(x) \right]^{-1} \nabla f(x) < 0.$$

Newton's Method Picture

Prefer Convex Problems

Local (non global) minima and maxima:

Convex Functions and Sets

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \text{dom} f$ and any $a \in [0, 1]$,

$$f(ax + (1 - a)y) \le af(x) + (1 - a)f(y)$$

A set $C \subseteq \mathbb{R}^n$ is convex if for $x, y \in C$ and any $a \in [0, 1]$,

$$ax + (1-a)y \in C$$

Important Convex Functions

SVM loss:

$$f(w) = \left[1 - y_i x_i^T w\right]_+$$

Binary logistic loss:

$$f(w) = \log \left(1 + \exp(-y_i x_i^T w)\right)$$

Convex Optimization Problem

```
minimize f_0(x) (Convex function) s.t. f_i(x) \leq 0 (Convex sets) h_j(x) = 0 (Affine)
```


Subgradient Descent Motivation

Lots of non-differentiable convex functions used in machine learning:

The subgradient set, or subdifferential set, $\partial f(x)$ of f at x is

$$\partial f(x) = \{g : f(y) \ge f(x) + g^T(y - x) \text{ for all } y\}.$$

Subgradient Descent – Algorithm

Really, the simplest algorithm in the world. Goal:

$$\underset{x}{\text{minimize}} f(x)$$

Just iterate

$$x_{t+1} = x_t - \eta_t g_t$$

where η_t is a stepsize, $g_t \in \partial f(x_t)$.

Online learning and optimization

- Goal of machine learning :
 - Minimize expected loss

$$\min_{h} L(h) = \mathbf{E} \left[loss(h(x), y) \right]$$

given samples

$$(x_i, y_i)$$
 $i = 1, 2...m$

- This is Stochastic Optimization
 - Assume loss function is convex

Batch (sub)gradient descent for ML

Process all examples together in each step

$$w^{(k+1)} \leftarrow w^{(k)} - \eta_t \left(\frac{1}{n} \sum_{i=1}^n \frac{\partial L(w, x_i, y_i)}{\partial w} \right)$$

where L is the regularized loss function

- Entire training set examined at each step
- Very slow when n is very large

Stochastic (sub)gradient descent

- "Optimize" one example at a time
- Choose examples randomly (or reorder and choose in order)
 - Learning representative of example distribution

for
$$i = 1$$
 to n :
$$w^{(k+1)} \leftarrow w^{(k)} - \eta_t \frac{\partial L(w, x_i, y_i)}{\partial w}$$

where L is the regularized loss function

Stochastic (sub)gradient descent

for
$$i = 1$$
 to n :
$$w^{(k+1)} \leftarrow w^{(k)} - \eta_t \frac{\partial L(w, x_i, y_i)}{\partial w}$$

where L is the regularized loss function

- Equivalent to online learning (the weight vector w changes with every example)
- Convergence guaranteed for convex functions (to local minimum)

References:

- R. Fletcher **Practical Methods of Optimization**, 2nd Edition. *John Wiley & Sons, Inc.* July 2000.
- Stephen Boyd and Lieven Vandenberghe. **Convex Optimization** *Cambridge University Press 2009*.
- Wikipedia.

Thank You!!

