Лабораторная работа 1.4.5

Изучение колебаний струны

И. М. Артёмов

11 ноября 2022 г.

Цель работы: изучить поперечные стоячие волны на тонкой натянутой струне; измерить собственные частоты колебаний струны и проверить условие образования стоячих волн; измерить скорость распространения поперечных волн на струне и исследовать её зависимость от натяжения струны.

Оборудование: закрепленная на станине стальная струна, набор грузов, электромагнитные датчики, звуковой генератор, двухканальный осциллограф, частотомер.

1. Теоретическое введение

В работе изучаются поперечные колебания стальной гитарной струны, натянутой горизонтально и закрепленной между двумя неподвижными зажимами. Так как поперечные размеры струны много меньше её длины, то напряжение в струне может быть направлено только вдоль неё. В натянутой струне возникает поперечная упругость, то есть способность сопротивляться всякому изменению формы, происходящему без изменения объёма. При вертикальном смещении произвольного элемента струны, возникают силы, действующие на соседние элементы, и в результате вся струна приходит в движение в вертикальной плоскости, т.е. возбуждение «бежит» по струне. Передача возбуждения представляет собой поперечные бегущие волны, распространяющиеся с некоторой скоростью в обе стороны от места возбуждения. В ненатянутом состоянии струна не обладает свойством поперечной упругости, и поперечные волны на ней невозможны.

1.1. Уравнение волны на струне

Рассмотрим гибкую однородную струну, в которой создано натяжение T, и получим дифференциальное уравнение, описывающее её малые поперечные свободные колебания. Отметим, что, если струна расположена горизонтально в поле тяжести,

Рис. 1. К выводу уравнения колебаний струны

величина T должна быть достаточна для того, чтобы в состоянии равновесия струна не провисала, т.е. сила натяжения должна существенно превышать вес струны. Направим ось x вдоль струны в положении равновесия. Форму волны будем описывать функцией y(x,t), определяющей вертикальное смещение y струны в данной точке в любой момент времени t. Рассмотрим малый элемент dm струны. Так как амплитуда колебаний невелика, то можно пренебречь добавочным напряжением, возникающим из-за удлинения элементов струны и считать силу T натяжения нити постоянной по её длине. Также можно считать углы отклонения α струны от оси α малыми. В итоге по α закону Ньютона в проекциях на ось α для элемента получим:

$$T\alpha_2 - T\alpha_1 \approx \frac{\partial^2 y}{\partial t^2} dm \tag{1}$$

Учтём, что в ненатянутом положении длина элемента равна δx , то есть $dm=\rho\delta x$, где ρ - линейная плотность нити в ненатянутом состоянии. Тогда, учитывая, что $\alpha=\partial y/\partial x$, получим:

$$T\delta\alpha = \frac{\partial^2 y}{\partial t^2} \rho \delta x \Rightarrow \frac{\partial^2 y}{\partial t^2} = \frac{T}{\rho} \frac{\partial^2 y}{\partial x^2} = u^2 \frac{\partial^2 y}{\partial x^2} \quad \left(u = \sqrt{\frac{T}{\rho}} \right)$$
 (2)

 $\frac{\partial^2 y}{\partial t^2} = u^2 \frac{\partial^2 y}{\partial x^2}$ (*) - уравнение свободных малых поперечных колебаний в струне. Оно также называется волновым уравнением.

1.2. Бегущие волны

Заметим, что произвольная функция вида y(x,t) = f(x-ut) является решением волнового уравнения (*). Действительно, обозначим $\psi(x,t) = x - ut$. Тогда

$$y(x,t) = f(\psi(x,t)) \Rightarrow \frac{\partial y}{\partial t} = \frac{df}{d\psi} \frac{\partial \psi}{\partial t} \Rightarrow \frac{\partial^2 y}{\partial t^2} = \frac{\partial \psi}{\partial t} \left(\frac{d^2 f}{d\psi^2} \frac{\partial \psi}{\partial t} \right) + \frac{df}{d\psi} \frac{\partial^2 \psi}{\partial t^2}$$
(3)

Аналогично:

$$\frac{\partial^2 y}{\partial x^2} = \frac{\partial \psi}{\partial x} \left(\frac{d^2 f}{d\psi^2} \frac{\partial \psi}{\partial x} \right) + \frac{df}{d\psi} \frac{\partial^2 \psi}{\partial x^2} \tag{4}$$

Учитывая, что $\frac{\partial \psi}{\partial t} = u$, $\frac{\partial^2 \psi}{\partial t^2} = 0$, $\frac{\partial \psi}{\partial x} = 1$, $\frac{\partial^2 \psi}{\partial x^2} = 0$, получим:

$$\frac{\partial^2 y}{\partial t^2} = u^2 \frac{d^2 f}{d\psi^2} = u^2 \frac{\partial^2 y}{\partial x^2} \tag{5}$$

Заметим теперь, что если в уравнении $y(x,t)=f(\psi(x,t))$ положить $\psi=const,$ то получим: dx/dt=u, то есть возмущение струны движется поступательно со скоростью u вдоль оси x.

Общее же решение волнового уравнения представимо в виде суперпозиции двух волн произвольной формы, бегущих вдоль оси x со скоростями $\pm u$:

$$y(x,t) = f_1(x - ut) + f_2(x + ut)$$
(6)

Вид функций f_1 и f_2 в данной конкретной задаче определяется из начальных и граничных условий. В данной работе будут изучаться гармонические волны:

$$y(x,t) = a\cos[k(x-ut)] + b\cos[k(x+ut)] =$$

$$= a\cos(\omega t - kx) + b\cos(\omega t + kx)$$
(7)

Здесь ω - циклическая частота колебаний, а $k=\frac{\omega}{u}=\frac{2\pi}{\lambda}$ - пространственная частота волны. (λ - длина волны).

1.3. Собственные колебания струны. Стоячие волны

Найдем вид свободных колебаний струны с закрепленными концами. Пусть струна закреплена в точках x=0 и x=L. Тогда из условия y(0,t)=0 ($\forall t$), получим:

$$a\cos(\omega t) + b\cos(\omega t) = 0 \Rightarrow a = -b$$
 (8)

Тогда:

$$y(x,t) = a(\cos(\omega t - kx) - \cos(\omega t + kx)) = 2a\sin kx \cdot \sin \omega t \tag{9}$$

Нетрудно видеть, что данная волна получается в результате суперпозиции двух гармонических бегущих навстречу друг другу волн с равными амплитудами. Такая волна называется $cmonue\ddot{u}$. Вся струна колеблется с циклической частотой ω . При этом амплитуда колебаний распределена по струне по закону: $y_m(x) = 2a \sin kx$. В точках, где $\sin kx = 1$, амплитуда колебаний максимальна ($nyunocmu\ волны$). Точки, у которых $\sin kx = 0$ не колеблются вовсе ($ysnu\ волны$). Точки струны между двумя соседними узлами всегда колеблются в одной фазе, то есть в любой момент времени их скорости сонаправлены.

Используем второе граничное условие $y(L,t) = 0 \ (\forall t)$:

$$\sin kL = 0 \Rightarrow kL = \pi n, \quad n \in \mathbb{N}$$
 (10)

Тогда:

$$\lambda_n = \frac{2L}{n}, \quad n \in \mathbb{N} \tag{11}$$

Как видно, параметр n определяет число полуволн (то есть пучностей), которые умещаются на струне. Так как длина волны однозначно связана с её частотой, то струна может колебаться только с определёнными частотами:

$$\nu_n = \frac{u}{2L}n\tag{12}$$

Спектр собственных частот ν_n колебаний струны зависит только от её натяжения, линейной плотности и длины и, в случае малых гармонических колебаний, не зависит от модуля Юнга материала струны.

1.4. Возбуждение колебаний струны. Резонанс

При колебаниях реальной струны всегда имеет место потеря энергии. Поддержание незатухающих колебаний в струне может осуществляться точечным источником, в качестве которого в данной работе используется электромагнитный вибратор. Для эффективной раскачки колебаний используется явление резонанса - необходимо, чтобы вынуждающая частота ν вибратора совпала с одной из собственных частот ν_n струны. Тогда в любой момент времени потери энергии будут компенсироваться поступающей от воздбудителя колебаний энергией, процесс становится стационарным и можно наблюдать стоячие волны.

Также стоит отметить, что в идеальном случае поток энергии вдоль стоячей волны отсутствует (в каждом участке между узлами кинетическая энергия переходит в потенциальную и наоборот). Однако, энергия от вибратора должна каким-то образом доходить до удалённых от него частей струны, поэтому в реальности помимо стоячей волны, есть ещё и малая бегущая компонента, которая и переносит энергию источника. Если потери энергии за период малы по сравнению с запасом колебательной энергии в струне, то искажение стоячих волн бегущей волной не существенно — наложение бегущей волны малой амплитуды на стоячую визуально приводит к незначительному «размытию» узлов (амплитуда колебаний в узлах совпадает с амплитудой бегущей компоненты волны).

Для достижения максимальной раскачки колебаний, необходимо располагать возбуждающий контакт вблизи узловый точки (но не строго в ней). Действительно, предположим, что вибратор способен раскачать соответствующий элемент струны до амплитуды A. Если x_0 - расстояние от него до пучности, то из формулы (9):

$$A = 2a\sin kx_0 \Rightarrow a = \frac{A}{2\sin kx_0}$$

Отсюда видно, что расстояние x_0 следует устремлять к нулю.

Наконец отметим, что в ходе работы необходимо добиться того, чтобы колебания были *линейно поляризованы*, то есть чтобы струна колебалась в одной плоскости. Также необходимо обеспечить малость амплитуды колебаний - в противном случае волновое уравнение (*) будет неприменимо.

Рис. 2. Экспериментальная установка

2. Описание экспериментальной установки

Схема установки приведена на рис. 2. Стальная гитарная струна 1 закрепляется в горизонтальном положении между двумя стойками с зажимами 2 и 3, расположенными на массивной станине 4. Один конец струны закреплен в зажиме 2 неподвижно. К противоположному концу струны, перекинутому через блок, прикреплена платформа с грузами 5, создающими натяжение струны. Зажим 3 можно передвигать по станине, устанавливая требуемую длину струны. Возбуждение и регистрация колебаний струны осуществляются с помощью электромагнитных датчиков (вибраторов), расположенных на станине под струной. Электромагнитный датчик 6 подключен к звуковому генератору 7 и служит для возбуждения колебаний 10 струны, частота которых измеряется с помощью частотомера 10 (в некоторых установках частотомер встроен в генератор). Колебания струны регистрируются с помощью электромагнитного датчика 8, сигнал с которого передается на вход осциллографа 9. Разъёмы, через которые датчики с помощью кабелей соединяются с генератором и осциллографом, расположены на корпусе станины.

3. Ход работы.

- 1. Освобождаем зажим струны на стойке 3 и устанавливаем начальную длину L= (это рекомендованное значение, указанное на установке). Подвешиваем $N_1=2$ грузика к нити массами: $m_1=487.4$ г и $m_2=453.4$ г. Зажимаем струну в стойке 3. Располагаем возбуждающий датчик 6 рядом с неподвижной стойкой 2.
- **2.** Проведём предварительные расчёты. Так как масса подвеса **5** равна $M_{sup}=115.1$ г, то сила натяжения нити: $T=(M_{sup}+m_1+m_2)g$. Линейная плотность струны указана на установке: $\rho=568.4$ мг/м. Тогда скорость распространения

волн в струне:

$$u = \sqrt{\frac{\left(M_{sup} + \sum_{i=1}^{N_1} m_i\right)g}{\rho}} \approx 142\frac{M}{c}$$
(13)

Длину струны измеряем линейкой: $L = (49.00 \pm 0.05)$ см. Рассчитаем частоту основной гармоники струны по формуле (12)

$$u_1 = \frac{1}{2L}u \approx 145 \, \Gamma$$
ц

Зная значения u и L, можно предварительно рассчитать значения остальных гармоник по формуле (12).

- **3.** Включим в сеть звуковой генератор, установим на нём синусоидальный тип сигнала. Установим регистрирующий датчик **8** в центре под струной (в месте пучности). Убедиждаемся, что сигнал с выхода генератора подаётся на возбуждающий датчик **6**. Устанавливаем на генераторе рассчитанную частоту ν_1
- **4.** Медленно изменяя частоту генератора в пределах $\nu_1 \pm 5$ Γ ц, добиваемся возбуждения стоячей волны с максимальной амплитудой. Записываем частоту, выдаваемую генератором (табл.1).
- 5. Увеличим частоту генератора в 2 раза и аналогичным образом определим частоту ν_2 , при которой амлпитуда колебаний достигает максимума. Проведём такое же измерение для третьей гармоники. Результат в табл. 1

$ u_1, \Gamma$ ц	$ u_2$, Γ ц	$ u_3$, Гц
132.0	270.0	404.0

Таблица 1

6. Изменим амплитуду сигнала генератора так, чтобы при колебаниях струна не касалась регистрирующего датчика 8. Убедимся, что сигнал колебаний струны с датчика 8 подаётся на вход канала 2 осциллографа, а на вход канала 1 подаётся опорный сигнал с генератора на частоте возбуждения струны. Включим осциллограф в сеть и проверим его настройку. Выведем на экран сигнал с регистрирующего датчика.

Подстроим частоту ν генератора так, чтобы она была близка к рассчитанной частоте ν_1 основной гармоники. Добьёмся, чтобы амплитуда регистрируемого сигнала была максимальной. Окончательное значение частоты генератора:

$$u_1 = 134.6 \, \Gamma$$
ц

7. Проведём измерения частот ещё 4 нечётных гармоник. Регистрирующий датчик стоит оставлять под струной. Результаты - в табл. 2

n	$ u_n$, Гц
1	134.6
2	271.2
3	405.3
4	543.6
5	681.9
6	819.3
7	957.1
8	1096.0
9	1238.4
10	1378.0
10	1378.0

n	$ u_n$, Гц
1	161.5
2	325.0
3	488.7
4	653.6
5	811.9
6	982.4
7	1149.0
8	1313.0
9	1479.0
10	1645.0

n	$ u_n$, Гц
1	186.7
2	373.5
3	563.0
4	750.4
5	940.3
6	1129.6
7	1317.5
8	1505.0
9	1695.0
10	1881.0

n	$ u_n$, Гц
1	201.4
2	404.3
3	607.5
4	810.4
5	1013.5
6	1215.0
7	1418.0
8	1622.0
9	1825.0
10	2031.0

n	$ u_n$, Гц
1	223.0
2	444.0
3	667.5
4	891.6
5	1113.0
6	1338.0
7	1559.0
8	1783.0
9	2008.0
10	2233.0

Таблица 2

Таблица 3

Таблица 4

Таблица 5

Таблица 6

№ опыта	№ груза	m_i , г	T, H
1	1	487.4	10.3
1	2	453.4	10.5
2	3	483.4	15.1
3	4	491.9	19.9
4	5	334.3	23.2
5	6	494.6	28.0

	400.4	
3	483.4	15.1
4	491.9	19.9
5	334.3	23.2
6	494.6	28.0

Таблица 7

N опыта	u, м/с	σ_u , м/с
1	135.3	0.3
2	161.6	0.3
3	184.7	0.2
4	199.0	0.2
5	218.8	0.3

Таблица 8

- 8. Измерим 5 частот нечётных гармоник. Заметим, что теперь посередине струны всегда находится узел волны, поэтому регистрирующий датчик стоит сместить в сторону пучности. Для n, не делящихся на 4, можно располагать датчик на расстоянии $L/4 \approx 12.3$ см от стойки 3, для n=4 расположим датчик на расстоянии $3L/8 \approx 18.4$ см, для n=8 - на расстоянии $15L/16 \approx 21.4$ см. Результаты - в табл. 2
- 9. Повторим пункты 7 и 8 ещё для четырёх значений $T.\ T$ будем изменять, подвешивая всё большее число грузов к нити. Результаты - в табл. 3, 4, 5, 6. В табл. 7 представлены значения масс грузов, подвешенных в каждом из пяти опытов и силы натяжения нитей.
- 10. Построим графики зависимостей $\nu_n(n)$ для каждого из пяти опытов и аппроксимируем их линейной функцией по МНК. Результаты - на рис. 3. Зная угловые коэффициенты β этих зависимостей, определим скоросоть распространения волн в струне в каждом случае, как:

$$u = 2\beta L$$

Результаты - в табл. 8. Погрешность измерения u считалась, как:

$$\sigma_u = u\sqrt{\left(\frac{\sigma_\beta}{\beta}\right)^2 + \left(\frac{\sigma_L}{L}\right)^2}$$

Рис. 3. Графики зависимостей $\nu_n(n)$ и их аппроксимация линейной функцией по MHK

Рис. 4. График зависимости $u^2(T)$ и его аппроксимация линейной функцией по xu-квадрат

11. Построим график зависимости $u^2(T)$. Результат - на рис. 4. Погрешность измерения u^2 считалась по формуле:

$$\sigma_{u^2} = 2u\sigma_u$$

Аппроксимируем график линейной функцией методом хи-квадрат. Получим, что если $u^2(T)=a+bT,$ то:

$$a = (11\pm 2)\cdot 10^2 \, \frac{\text{m}^2}{\text{c}^2} \quad ; \quad b = (16.61\pm 0.10)\cdot 10^2 \, \frac{\text{m}}{\text{kg}} \quad ; \quad r \approx 0.99994 \quad ; \quad \frac{\chi^2}{d.o.f.} \approx 2.27$$

Отсюда получим значение линейной плотности струны:

$$\rho = \frac{1}{b} \approx (602 \pm 4) \, \frac{\text{MT}}{\text{M}} \quad ; \quad \varepsilon_{\rho} = \frac{\sigma_{\rho}}{\rho} \approx 7 \cdot 10^{-3} \, \% \quad ; \quad \left(\sigma_{\rho} = \frac{\sigma_{b}}{b^{2}}\right)$$

4. Вывод

В работе были изучены поперечные стоячие волны на тонкой натянутой струне, были измерены собственные частоты её колебаний, измерена скорость распространения волн в струне и линейная плотность струны. Экспериментальные графики зависимостей $\nu_n(n)$ и $u^2(T)$ хорошо ложатся на аппроксимирующие прямые, но эти прямые не проходят через начало координат. Однако отклонение аппроксимирующих прямых от начала координат по оси ординат мало ($\sim 1\%$) по сравнению с значениями ординат экспериментальных точек. Отличие измеренного значения линейной плотности струны от указанного на установке составляет 6%. Само значение ρ измерено с достаточно высокой точностью $\varepsilon_{\rho} = 7 \cdot 10^{-3}$ %. Отличие ρ от указанного на установке значения более, чем на погрешность, может быть связано с:

- 1) Неточностью определения собственных частот ν_n из-за возникновения нелинейных эффектов при резонансе, и, как следствие, неточностью в определении скорости распространения u волны в струне.
- 2) Неучтением погрешностей измерения собственных частот.
- 3) Недостаточным количеством экспериментальных точек на графике $u^2(T)$, то есть недостаточным количеством опытов по измерению собственных частот струны в зависимости от силы натяжения нити T.