Core forms:

Const:

Constants (type expr, type-constructor Const)

- ► Type: Const of sexpr
- ► The type-constructor Const is used both for self-evaluating and non-self-evaluating constants
- A self-evaluating constant is one you can type at the Scheme prompt and see it printed back at you: Numbers, chars, Booleans, strings

```
[\![\langle self\text{-}evaluating\ sexpr\rangle]\!] = \text{Const}(\langle self\text{-}evaluating\ sexpr\rangle)
```

Example:

```
let tag_parse = function
...
| Number(x) -> Const(Sexpr(Number(x)))
...;;
```

Qoute:

Example:

```
let tag_parse = function
...
| Pair(Symbol("quote"), Pair(x, Nil)) -> Const(Sexpr(x))evaluate
```

Variable:

$\sf Variables$ (type $\sf expr$, type-constructor $\sf Var$)

- ► Type: Var of string
- Variables are literal symbols that are not reserved words
 - ► The latest version of Scheme (R⁶RS) does not have many reserved words
 - ► Not having reserved words makes the parser more complex
 - ► We're going to ignore this, and assume that words that are used for syntax are reserved words. These include:
 - and, begin, cond, define, else, if, lambda, let, let* letrec, or, quasiquote, quote, set! unquote, unquote-splicing
 - ► There are additional reserved words, but we'll ignore those

Conditionals (type expr, type-constructor If)

- ► Type: If of expr * expr * expr
- ► Scheme supports if-then variant without an else-clause
 - ▶ These are used when the then-clause contains side-effects
 - ► The "missing"/implicit else-clause is defined to be Const(Void)
 - ► We shall support the if-then variant, and tacitly add the implicit else-clause
- ► This is your first recursive case of the expr datatype: An expr that contains sub-exprs.
 - Obviously, the tag-parser will have to be recursive!

Example:

```
let tag_parse = function
...
|Pair(Symbol("if"), Pair(test, Pair(dit, Pair(dif, Nil)))) ->
If(tag_parse test, tag_parse dif, tag_parse dif)
```

Lambda:

Lambdas (type expr, type-constructor LambdaSimple, LambdaOpt)

- ► Types:
 - ► LambdaSimple of string list * expr
 - ► LambdaOpt of string list * string * expr
- ► Scheme has three lambda-forms, and we're going to represent these three forms using the two AST nodes LambdaSimple & LambdaOpt.

Lambdas (type expr, type-constructor LambdaSimple, LambdaOpt)

- The general form of lambda-expressions is (lambda $\langle arglist \rangle$. $(\langle expr \rangle^+)$):
 - ① If $\langle arglist \rangle$ is a proper list of unique variable names, then the lambda-expression is said to be simple, and we represent it using the AST node LambdaSimple

Lambda simple:

Lambdas (type expr, type-constructor LambdaSimple, LambdaOpt)

- ► The general form of lambda-expressions is (lambda $\langle arglist \rangle$. $(\langle expr \rangle^+)$):
 - 1 If $\langle arglist \rangle$ is a proper list of unique variable names, then the lambda-expression is said to be simple, and we represent it using the AST node LambdaSimple

example:

(lambda (x y). (x))

Lambda opt:

Lambdas (type expr, type-constructor LambdaSimple, LambdaOpt)

- ► The general form of lambda-expressions is (lambda $\langle arglist \rangle$. $(\langle expr \rangle^+)$):
 - 2 If $\langle arglist \rangle$ is the improper list $(v_1 \cdots v_n \cdot v_s)$, then the lambda-expression is said to take at least n arguments:

Example:

(lambda (x y . z) . (x))

Lambda variadic: (translated to lambda opt)

Lambdas (type expr, type-constructor LambdaSimple, LambdaOpt)

- ► The general form of lambda-expressions is (lambda $\langle arglist \rangle$. $(\langle expr \rangle^+)$):
 - 3 If $\langle arglist \rangle$ is the symbol vs, then the lambda-expression is said to be variadic, and may be applied to any number of arguments:

Example:

(lambda x . (x))

Sequences:

Sequences (type expr, type-constructor Seq)

- ► Type: Seq of expr list
- ► There are two types of sequences:
 - Explicit sequences (begin-expressions)
 - Implicit sequences
 - ► Body of lambda
 - ▶ In the Ribs of cond
 - ▶ In the body of let, let*, letrec
 - ▶ Other syntactic forms we shall not support
- ► Both implicit & explicit sequences are encoded as single expressions using the type-constructor Seq

Set:

Assignments (type expr, type-constructor Set)

- ► Type: Set of expr * expr
- ▶ The AST node for set! (pronounced "set-bang") expressions

Define:

Definitions (type expr, type-constructor Def)

- ► Type: Def of expr * expr
- ► The AST node for define-expressions
- ► Two syntaxes for define:
 - (define $\langle var \rangle \langle expr \rangle$)
 - Example:
 (define pi (* 4 (atan 1)))

Or:

Disjunctions (type expr, type-constructor Or)

- ▶ Type: Or of expr list
- ▶ [(or)] = [#f] (by definition)
- $[(or \langle expr \rangle)] = [[\langle expr \rangle]]$ (#f is the unit element of or)
- ► The real work is done here:

```
[\![(\text{or }\langle expr_1\rangle \cdots \langle expr_n\rangle)]\!] = \text{Or}([\![\langle expr_1\rangle]\!]; \cdots; [\![\langle expr_n\rangle]\!]])
```

Application:

Applications (type expr, type-constructor Applic)

- ► Type: Applic of expr * (expr list)
- ► The AST node separates the expression in the procedure position from the list of arguments
- ► The tag-parser recurses over the procedure & the list of arguments:

Macro Expansions:

Let:

form:

► The syntax looks like this:

```
(let ((\mathbf{v}_1 \langle Expr_1 \rangle))

\cdots

(\mathbf{v}_n \langle Expr_n \rangle))

\langle expr_1 \rangle \cdots \langle expr_m \rangle)
```

Expands to:

Putting it all together, we get the following macro-expansion:

Let*:

1) This is the first of the two base cases:

$$[[(let* () \langle expr_1 \rangle \cdots \langle expr_m \rangle)]]$$

$$= [[(let () \langle expr_1 \rangle \cdots \langle expr_m \rangle)]]$$

This is the second base case:

$$[[(let* ((v \langle Expr \rangle)) \langle expr_1 \rangle \cdots \langle expr_m \rangle)]]$$

$$= [[(let ((v Expr)) \langle expr_1 \rangle \cdots \langle expr_m \rangle)]]$$

This is the inductive case:

Letrec:

Cond:

Option 1:

Form:

The cond form has the general form:

```
(\operatorname{cond} \langle rib_1 \rangle \\ \cdots \\ \langle rib_n \rangle)
```

There are 3 kinds of cond-ribs:

1) The common form $(\langle expr \rangle \langle expr_1 \rangle \cdots \langle expr_n \rangle)$, where $\langle expr \rangle$ is the test-expression: It is evaluated, and if not false, the rib is satisfied, all subsequent ribs are ignored, the corresponding implicit sequence is evaluated, and its final expression is returned.

Expands to:

The cond form macro-expands into nested if-expressions:

1 The general form of the rib converts into an if-expression with a condition and an explicit sequence for the then-clause. The else-clause of the if-expression continues the expansion of the cond:

Option 2:

Form:

2 The arrow form $(\langle expr \rangle => \langle expr_f \rangle)$, where $\langle expr \rangle$ is evaluated: If non-false, the rib is satisfied, and the return value is the application of $\langle expr_f \rangle$ to the value of $\langle expr \rangle$.

Expands to:

2 The arrow-form of the rib converts into a let that captures the value of the test, and if not false, passes it onto the function. For test-expression $\langle expr \rangle$, and function-expression $\langle expr_f \rangle$, the following expansion would do:

```
(let ((value [\langle expr \rangle]))
    (f (lambda () [\langle expr_f \rangle])))
(if value
    ((f) value)
;;; Continue with cond-ribs))
```

Option 3:

Form:

3 The else-rib has the form (else $\langle expr1 \rangle \cdots \langle expr_n \rangle$). It is satisfied immediately, and all subsequent ribs are ignored. The implicit sequence is evaluated, and the value of its final expression is returned.

Expands to:

3 The else-form of the rib converts into a begin-expression, and subsequent ribs are ignored

Quasiquote:

- ① Upon receiving the expression (unquote $\langle sexpr \rangle$), we return $\langle sexpr \rangle$
- 2 Upon receiving the expression (unquote-splicing $\langle sexpr \rangle$), we generate an error message, and quit
- 3 Given either the empty list or a symbol, we wrap (quote ···) around it
- 4 Given a vector, we apply to it map the quasiquote-expander over the elements of the list, and apply the procedure vector to the elements of the resulting list

This is the heart of the algorithm:

- (5) Given a pair, let A be the car, and let B be the cdr respectively.
 - ▶ If $A = (\text{unquote-splicing } \langle sexpr \rangle)$, then return (append sexpr [B])
 - ▶ If $B = (\text{unquote-splicing } \langle sexpr \rangle)$, then return (cons [A] sexpr)
 - ▶ Otherwise, return (cons [A] [B])

Examples:

Some examples:

```
      sexpr
      expansion

      (,a,@b)
      (cons a (append b '()))

      (,@a,@b)
      (append a (append b '()))

      (,a, ,b)
      (append a b)

      (,a, ,@b)
      (cons a b)

      (((,@a)))
      (cons (cons (append a '()) '()) '())

      #(a,bc,d)
      (vector 'a b 'c d)
```

And:

and

- ► Conjunctions are easily expanded into nested if-expressions:
 - ▶ [(and)] = [#t] (by definition)
 - $[(and \langle expr \rangle)] = [[\langle expr \rangle]]$ (#t is the unit element of and)
 - $$\begin{split} & \quad \llbracket (\text{and } \langle expr_1 \rangle \ \langle expr_2 \rangle \ \cdots \ \langle expr_n \rangle) \rrbracket \ = \\ & \quad (\text{if } \llbracket \langle expr_1 \rangle \rrbracket \ \llbracket (\text{and } \langle expr_2 \rangle \ \cdots \ \langle expr_n \rangle) \rrbracket \ \llbracket \#f \rrbracket) \end{split}$$

MIT define:

- (define $(\langle var \rangle . \langle arglist \rangle)$. $(\langle expr \rangle^+)$)
 - This form is macro-expanded into $(\text{define } \langle var \rangle \ (\text{lambda} \ \langle arglist \rangle \ . \ (\langle expr \rangle^+)))$
 - Used to define functions without specifying the λ : This is almost always a bad idea!
 - Note the implicit sequences!
 - Example: (define (square x) (* x x))