



# Single-cell Navigator: visualizing scRNA-seq data

Konstantin Zaitsev, ITMO University August 27<sup>th</sup>, 2021. Tomsk / My Hotel Room.



### Visualizing scRNA-seq data

#### Main goals:

- To make hypothesis generations easier
- Remove "man-in-the-middle"

#### Extra goals:

- Fast
- Responsive



### Visualizing scRNA-seq data

https://artyomovlab.wustl.edu/scn/

(still in production, so feedback is very welcome)



### Let's open the dataset





### Let's open the dataset

- ✓ Go to <a href="https://artyomovlab.wustl.edu/scn/">https://artyomovlab.wustl.edu/scn/</a>
- Search for 10x
- And click on the dataset

#### scNavigator: beta

Single-cell Navigator is an open-source project dedicated to processing and visualization of single-cell RNA-seq data

Below we have a large collection of datasets and tools to play with:

- Large collection of automatically processed datasets. We processed almost every scRNA-seq dataset from GEO Omnibus database. We make it available for you in our browser.
- Collection of curated datasets. Curated dataset are those that we process by hand. These will include datasets from Human Cell Atlas (HCA), Tabula Muris and some of the dataset
- You can search for cell type specific gene signatures! When we processed all the public scRNA-seq datasets we also calculated all the markers of all the clusters in all these datase
  you which cluster in which dataset it looks like.
- If you were provided with secret dataset token, you can use it at the very right of this page





### If you have any problem finding dataset

✓ Just go to <a href="https://artyomovlab.wustl.edu/scn/?token=10x">https://artyomovlab.wustl.edu/scn/?token=10x</a> 5k pbmc



### Result should look like that





### We can color the cells

- Cluster
- Number of UMIs
- Number of genes detected
- umap\_Cluster\_centers





### **Expression of CD3d**





### Or you can go for any of your favorite genes







### **Expression scatter plot**

- Expression scatter plot shows gene expression in each cell
- We can see that expression of some genes is localized with clusters



### **Violin plot**

X coordinate

Cluster

Select gene

Z-score

Split by







### Violin plot

- Violin plot shows distribution of gene expression within several groups of cells (in our case groups are clusters)
- Higher the violin higher the expression in the group



# Cd79a: expression scatter and expression violin





### **Markers**

- Usually we run differential expression to identify cluster markers
- You can compare a cluster against all the other clusters and identify genes that have higher expression than in the other clusters



### **Markers tab**







### Markers tab: what's the cluster 7?



- **♥** GNLY gene name
- ♥ Cluster 7 we are checking results for cluster 7 vs other clusters
- Average log-fold change: average difference between expression of GNLY in cluster 7 and in other clusters
- ▼ P value (we test difference between average expression of this gene inside and outside cluster 7).
- P adjusted adjusted p value for multiple hypothesis



### Markers tab: what's the cluster 7?

- You have two buttons next to the gene name
- 1) First will open gene expression on scatter plot
- 2) Second will open gene expression on violin plot

| Choose the table |          |         |                     |            |                  |              |           |  |  |  |
|------------------|----------|---------|---------------------|------------|------------------|--------------|-----------|--|--|--|
| markers          |          |         |                     |            |                  |              |           |  |  |  |
| G                | ene name | Cluster | Av. log-fold change | P value    | Adjusted p value | % in cluster | % outside |  |  |  |
| ~                |          | = 7     | >                   | < 1e-      | < 1e-            | >            | <         |  |  |  |
| GNLY             | 7        | ,       |                     | 8.8497e-68 | 1.4179e-63       | 0.995        | 0.136     |  |  |  |
| KLRD1            | 7        | ,       |                     | 1.1925e-64 | 1.9107e-60       | 0.99         | 0.109     |  |  |  |



### Now let's play with it

I want you to check out any other genes



### **Public datasets**

- We try to process many other public datasets trying to make them available to scientific community
- You can always go back to the main tab (top left corner)



### **Public datasets**

scNavigator: beta 10x\_5k\_pbmc X

#### scNavigator: beta

Single-cell Navigator is an open-source project dedicated to processing and visualization of single-cell RNA-seq data

Below we have a large collection of datasets and tools to play with:

- Large collection of automatically processed datasets. We processed almost every scRNA-seq dataset from GEO Omnibus database. We make it available for you in our browser.
- Collection of curated datasets. Curated dataset are those that we process by hand. These will include datasets from Human Cell Atlas (HCA), Tabula Muris and some of the datasets that we generated in our lab.
- You can search for cell type specific gene signatures! When we processed all the public scRNA-seq datasets we also calculated all the markers of all the clusters in all these datasets. Just put a list of genes and we will tell you which cluster in which dataset it looks like.
- If you were provided with secret dataset token, you can use it at the very right of this page



| Name                | Description                                                                                                                              |                             | Organism     | # of cells | Exte. |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|------------|-------|
|                     |                                                                                                                                          |                             |              |            |       |
| SE101901/SRS2384613 | Single cell sequencing of hippocampus tissues in traumatic brain injury                                                                  |                             | Mus Musculus | 8878       | 0     |
| SE103976/SRS2523512 | Detecting Activated Cell Populations Using Single-Cell RNA-Seq                                                                           | Mus Musculus                | 6488         | ø          |       |
| SE129730/SRS4617144 | Single cell RNA-seq shows cellular heterogeneity and lineage expansion in a mouse model of SHH-driven medulloblastoma support resistance | Mus Musculus                | 4552         | 0          |       |
| SE103983/SRS2523775 | Single-cell RNA-seq (Drop-seq) of MGE, CGE and LGE of E13.5 (MGE) and E14.5 (CGE, LGE) mouse embryos                                     | Mus Musculus                | 11704        | 0          |       |
| SE93374/SRS1913127  | A Molecular Census of Arcuate Hypothalamus and Median Eminence Cell Types                                                                | Mus Musculus                | 61225        | 0          |       |
| SE103983/SRS2523784 | Single-cell RNA-seq (Drop-seq) of MGE, CGE and LGE of E13.5 (MGE) and E14.5 (CGE, LGE) mouse embryos                                     |                             |              | 709        | 8     |
| SE137007/SRS5355828 | Proliferation-competent Tcf1+ CD8 T-cells in dysfunctional populations are CD4 T-cell help independent                                   |                             |              |            | 0     |
| SE106960/SRS2690039 | The single cell RNA seq of pulmonary alveolar epithelial cells                                                                           |                             |              | 2683       | 0     |
| SE113111/SRS3165512 | sc-RNA sequencing of skeletal muscle macrophages during T. gondii infection and injury                                                   | Mus Musculus                | 6625         | 8          |       |
| SE129730/SRS4617149 | Single cell RNA-seq shows cellular heterogeneity and lineage expansion in a mouse model of SHH-driven medulloblastoma support resistance | ce to SHH inhibitor therapy | Mus Musculus | 5110       | 0     |



### Public datasets

- Two main sources
  - NCBI GEO (Gene Expression Omnibus, <a href="https://www.ncbi.nlm.nih.gov/geo/">https://www.ncbi.nlm.nih.gov/geo/</a>)
  - EMBL EBI (European Bioinformatics Institute, part of EMBL, <a href="https://www.ebi.ac.uk/">https://www.ebi.ac.uk/</a>)



### Increasing number of public datasets

- Number of public GSE dataset which were qualified as scRNA-seq
- Histogram and cumulative count





### Public scRNA-seq datasets

Most of the scRNA-seq datasets are available at NCBI GEO (or SRA) Problems are:

- Different technologies used to perform experiment (10x, DropSeq, SmartSeq2, C1 Fluidigm etc)
- Different pipelines were used to analyze
- Different formats in which data is kept

Most of the dataset processing was done by Maria Firuleva





### Current database snapshot

- Total ~3500 single-cell samples (as of two weeks ago)
- Some merged GSEs are available
- We will troubleshoot unprocessed datasets
- We tested the pipeline for bulk-like scRNA-seq dataset, will start those soon





### How do we process single-cell RNA-seq

- Determine chemistry version
- Kallisto Bustools (from both reads and bams)
- EmptyDrops to remove noise
- Seurat analysis
- SCNPrep





### **Seurat analysis**

Seurat is an R package for analysis of single-cell RNA-seq data

- Some more QC: removing cells with high mito-content
- Normalization
- (if dataset consists of multiple samples) merging samples together
- PCA
- Dimensionality reductions: both tSNE and UMAP
- Clustering
- Markers identification



### GeneQuery inspired gene signature search

- Having this large database of public scRNA-seq datasets we wanted to implement gene signature search
- Given with a list of gene, we can match it against markers of all the clusters present in our database



### Database of all the markers in all the single-cell clusters











### **Gene Signature Search**

- User submits a gene set
- We compare gene set against markers of all the populations
- Find datasets and clusters where signature is expressed





### Example: top 50 genes

You can select top 50 genes





### Example: top 50 genes

We get a lot of results



Press the button



### We can see enrichment of these genes in other datasets





### Study case: tumor microenvironments

Crossmatching immune tumor microenvironments





## Signature of macrophage populations were well-conserved in different mouse tumor models

|           |                                | Activition | Pro-inflat | nratory Monocyt | EJIKE<br>FOLZEX |
|-----------|--------------------------------|------------|------------|-----------------|-----------------|
| GSE110746 | B16 tumor model (this dataset) | 7.68E-52   | 4.36E-48   | 8.01E-46        | 2.33E-46        |
| GSE119352 | D42m1 tumor model              | 7.41E-29   | 3.22E-33   | 2.41E-45        | 4.48E-16        |
| GSE112865 | MC38 tumor model               | 2.90E-25   | 2.33E-18   | 2.54E-26        | 1.68E-07        |
| GSE121861 | LL2/SA1 tumor models           | 1.59E-31   | 1.82E-15   | 8.56E-32        | 1.01E-10        |





### What else can we do with it

- We obtained the markers for all the populations and datasets
- We can figure out the similarity between these populations



### Not all the genes are interesting

## Universe of the published single-cell RNA-seq data





### **Building similarity networks**

Each dataset and each cluster is an **IDF vector** now



Cosine similarity of dataset IDF vectors



Cosine similarity of cluster IDF vectors



revaling samples that were sorted/taken from same/similar tissue

revaling cell-type specific gene signature across all the datasets



### **Conclusion**

- We hope that single-cell navigator will make interpretation of scRNA-seq data easier
- https://artyomovlab.wustl.edu/scn/
- We try to get there as much datasets as we can
- If you want to use SCN for your private data:
  - You can just e-mail me <u>kzaitsev@itmo.ru</u>
     and I will give you a private link to your data
  - Wait until it gets published (ETA?), you will be able to host SCN locally, or for your department



### Extra gene signatures from the study case

- Anti-inflammatory: Ms4a7 Clec12a Fcer1g Lpl Slc11a1 Rab3il1 C1qa Blvrb Ckb C1qc Clec4b1 Sirpa Fcgr4 Grn Pycard C1qb Adgre1 Ctsc Cd72 Clec4a1 Hexa Aif1 Clec4a2 Lst1 Slamf9 Lgmn AF251705 Nr1h3 Cd300e Ctsb
- Pro-inflammatory: Arg1 Adam8 Ninj1 Mmp12 Basp1 Slc2a1 Hilpda Cstb Il1rn Clec4d Il7r Ndrg1 Hmox1 Ftl1 Cd36 Lgals3 Fabp5 Cxcl2 Plin2 Emp1 Rgcc Bnip3 Egln3 Thbs1 Fth1 Ctsl Spp1 Card19 Ero1l Fabp4
- Monocyte-like: Il1b Gm9733 Btg2 Ccr2 Zbp1 Plbd1 Ifitm3 H2-DMa Ly6i Plac8 Spi1 Osm Ms4a6c Samhd1 Cybb Lyz2 Naaa Fos Ms4a4c H2-DMb1 Hp Prdx5 Junb Cd74 Tgfbi Ly6c2 Slamf8 Klra2 Zfp36 Scimp
- Folr2+: Sepp1 Trf Cd163 Apoe Mrc1 Fxyd2 Fcgrt Igf1 Ccl24 Folr2 Itm2b Igfbp4 F13a1 Ednrb Tmem37 Gas6 Ltc4s Glul Cbr2 C4b Wfdc17 Pltp Lyve1 Cd209f Clec10a Npl Pf4 Timp2 Rnase4 C1qc