# Report No.: DRTFCC1409-1165

TM 3 & ANT 2 & Highest

#### Reference



## **High Band-edge**



Report No.: DRTFCC1409-1165





# Report No.: DRTFCC1409-1165



Report No.: DRTFCC1409-1165

#### TM 4 & ANT 1 & Lowest

#### Reference



#### Low Band-edge



Report No.: DRTFCC1409-1165





## Report No.: DRTFCC1409-1165



Report No.:

DRTFCC1409-1165

#### Reference

Middle

TM 4 & ANT 1 &





Report No.: DRTFCC1409-1165





Report No.:

DRTFCC1409-1165

#### TM 4 & ANT 1 & Highest

#### Reference



#### **High Band-edge**



Report No.: DRTFCC1409-1165





## Report No.: DRTFCC1409-1165



Report No.: DRTFCC1409-1165

#### TM 4 & ANT 2 & Lowest

#### Reference



## Low Band-edge



Report No.: DRTFCC1409-1165





Report No.: DRTFCC1409-1165



Report No.: DRTFCC1409-1165

#### TM 4 & ANT 2 & Middle

#### Reference





# Report No.: DRTFCC1409-1165





Report No.: DRTFCC1409-1165

TM 4 & ANT 2 & Highest

#### Reference



**High Band-edge** 



Report No.: DRTFCC1409-1165





Report No.: DRTFCC1409-1165



Report No.: DRTFCC1409-1165

# 8.5 Radiated spurious emissions

# Test Requirements and limit, §15.247(d), §15.205, §15.209& RSS-210 [A8.5], RSS-Gen [7.2.2]

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a) and (b), then the 15.209(a) limit in the table below has to be followed

#### • FCC Part 15.209(a) and (b)

| Frequency (MHz) | Limit (uV/m)  | Measurement Distance (meter) |
|-----------------|---------------|------------------------------|
| 0.009 - 0.490   | 2400/F (kHz)  | 300                          |
| 0.490 - 1.705   | 24000/F (kHz) | 30                           |
| 1.705 – 30.0    | 30            | 30                           |
| 30 ~ 88         | 100 **        | 3                            |
| 88 ~ 216        | 150 **        | 3                            |
| 216 ~ 960       | 200 **        | 3                            |
| Above 960       | 500           | 3                            |

<sup>\*\*</sup> Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

| • FCC Part 15.205 | (a). Only spurious e | inissions are penni | ited in any or the n | equency bands | listed below. |
|-------------------|----------------------|---------------------|----------------------|---------------|---------------|
| MHz               | MHz                  | MHz                 | MHz                  | GHz           | GHz           |
| 0.009 ~ 0.110     | 8.41425 ~ 8.41475    | 108 ~ 121.94        | 1300 ~ 1427          | 4.5 ~ 5.15    | 14.47 ~ 14.5  |
| 0.495 ~ 0.505     | 12.29 ~ 12.293       | 123 ~ 138           | 1435 ~ 1626.5        | 5.35 ~ 5.46   | 15.35 ~ 16.2  |
| 2.1735 ~ 2.1905   | 12.51975 ~           | 149.9 ~ 150.05      | 1645.5 ~ 1646.5      | 7.25 ~ 7.75   | 17.7 ~ 21.4   |
| 4.125 ~ 4.128     | 12.52025             | 156.52475 ~         | 1660 ~ 1710          | 8.025 ~ 8.5   | 22.01 ~ 23.12 |
| 4.17725 ~ 4.17775 | 12.57675 ~           | 156.52525           | 1718.8 ~ 1722.2      | 9.0 ~ 9.2     | 23.6 ~ 24.0   |
| 4.20725 ~ 4.20775 | 12.57725             | 156.7 ~ 156.9       | 2200 ~ 2300          | 9.3 ~ 9.5     | 31.2 ~ 31.8   |
| 6.215 ~ 6.218     | 13.36 ~ 13.41        | 162.0125 ~ 167.17   | 2310 ~ 2390          | 10.6 ~ 12.7   | 36.43 ~ 36.5  |
| 6.26775 ~ 6.26825 | 16.42 ~ 16.423       | 167.72 ~ 173.2      | 2483.5 ~ 2500        | 13.25 ~ 13.4  | Above 38.6    |
| 6.31175 ~ 6.31225 | 16.69475 ~           | 240 ~ 285           | 2655 ~ 2900          |               |               |
| 8.291 ~ 8.294     | 16.69525             | 322 ~ 335.4         | 3260 ~ 3267          |               |               |
| 8.362 ~ 8.366     | 16.80425 ~           | 399.90 ~ 410        | 3332 ~ 3339          |               |               |
| 8.37625 ~ 8.38675 | 16.80475             | 608 ~ 614           | 3345.8 ~ 3358        |               |               |
|                   | 25.5 ~ 25.67         | 960 ~ 1240          | 3600 ~ 4400          |               |               |
|                   | 37.5 ~ 38.25         |                     |                      |               |               |
|                   | 73 ~ 74.6            |                     |                      |               |               |
|                   | 74.8 ~ 75.2          |                     |                      |               |               |

<sup>•</sup> FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

Report No.: DRTFCC1409-1165

#### **Test Configuration**



#### TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

#### ■ Measurement Instrument Setting for Radiated Emission Measurements.

#### Peak Measurement: 12.2.4 of KDB 558074 v03r2

RBW = As specified in below table , VBW  $\geq$  3 x RBW, Sweep = Auto, Detector = Peak, Trace mode = Max Hold until the trace stabilizes.

| Frequency   | RBW         |
|-------------|-------------|
| 9-150 kHz   | 200-300 Hz  |
| 0.15-30 MHz | 9-10 kHz    |
| 30-1000 MHz | 100-120 kHz |
| > 1000 MHz  | 1 MHz       |

#### Average Measurement: 12.2.5.2 of KDB 558074 v03r2

- 1. RBW = 1MHz(unless otherwise specified)
- 2. VBW ≥ 3 X RBW
- 3. Detector = RMS, if span / sweep point ≤ (RBW/2)
- 4. Averaging type = Power
- 5. Sweep time = auto
- 6. Trace average = At least 100 traces
- 7. A duty cycle correction factor(10log(1/x), where x is the duty cycle) shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.

| Test Mode | Duty Cycle<br>(%) | Duty Cycle Correction Factor<br>(dB) |
|-----------|-------------------|--------------------------------------|
| TM 1      | 97.57             | 0.11                                 |
| TM 2      | 87.46             | 0.59                                 |
| TM 3      | 86.75             | 0.62                                 |
| TM 4      | 76.33             | 1.18                                 |

Note: Please refer to Appendix I for detailed information.

Report No.: DRTFCC1409-1165

# Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : <u>Test Mode 1(TM 1)</u>

| Tested<br>ANT | Tested<br>Frequency | Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | DCCF<br>(dB) | DCF<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|---------------|---------------------|--------------------|------------|---------------------------|------------------|-------------------|---------------|--------------|-------------|--------------------|-------------------|----------------|
|               |                     | 2385.76            | Н          | Z                         | PK               | 56.23             | -0.07         | -            | -           | 56.16              | 74.00             | 17.84          |
|               |                     | 2385.61            | Н          | Z                         | AV               | 44.37             | -0.07         | 0.11         | -           | 44.41              | 54.00             | 9.59           |
|               | Lowest              | 4823.92            | Н          | Z                         | PK               | 50.66             | 6.63          | ı            | ı           | 57.29              | 74.00             | 16.71          |
|               |                     | 4824.16            | Н          | Z                         | AV               | 45.94             | 6.63          | 0.11         | -           | 52.68              | 54.00             | 1.32           |
|               |                     | -                  | -          | -                         | -                | -                 | -             | -            | -           | -                  | -                 | -              |
|               | Middle              | 4874.08            | Н          | Z                         | PK               | 50.51             | 6.80          | -            | -           | 57.31              | 74.00             | 16.69          |
| ANT 1         |                     | 4873.96            | Н          | Z                         | AV               | 45.44             | 6.80          | 0.11         | -           | 52.35              | 54.00             | 1.65           |
|               |                     | -                  | -          | ı                         | ı                | -                 | ı             | ı            | ı           | -                  | ı                 | -              |
|               |                     | 2498.32            | Н          | Z                         | PK               | 56.86             | 0.26          | ı            | ı           | 57.12              | 74.00             | 16.88          |
|               |                     | 2498.04            | Н          | Z                         | AV               | 46.14             | 0.26          | 0.11         | -           | 46.51              | 54.00             | 7.49           |
|               | Highest             | 4924.09            | Н          | Z                         | PK               | 48.95             | 6.97          | -            | -           | 55.92              | 74.00             | 18.08          |
|               |                     | 4924.02            | Н          | Z                         | AV               | 44.22             | 6.97          | 0.11         | -           | 51.30              | 54.00             | 2.70           |
|               |                     | -                  | -          | -                         | -                | -                 | -             | -            | -           | -                  | -                 | -              |

#### Note.

- 1. No other spurious and harmonic emissions were found greater than listed emissions on above table.
- 2. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL - AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Measurement Distance = 3 m for below 10 GHz, Measurement Distance = 1 m for above 10 GHz. Therefore Distance Correction Factor(DCF): -9.54 dB = 20\*log(1m/3m)

TRF-RF-221(00)140218 Page 92 / 102

DRTFCC1409-1165

# Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : Test Mode 2(TM 2)

| Tested<br>ANT | Tested<br>Frequency | Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | DCCF<br>(dB) | DCF<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|---------------|---------------------|--------------------|------------|---------------------------|------------------|-------------------|---------------|--------------|-------------|--------------------|-------------------|----------------|
|               |                     | 2389.91            | Н          | Z                         | PK               | 66.65             | -0.07         | -            | -           | 66.58              | 74.00             | 7.42           |
|               |                     | 2389.93            | Н          | Z                         | AV               | 51.62             | -0.07         | 0.59         | -           | 52.14              | 54.00             | 1.86           |
|               | Lowest              | 4824.44            | Н          | Z                         | PK               | 47.09             | 6.63          | -            | -           | 53.72              | 74.00             | 20.28          |
|               |                     | 4824.32            | Н          | Z                         | AV               | 36.30             | 6.63          | 0.59         | -           | 43.52              | 54.00             | 10.48          |
|               |                     | -                  | -          | -                         | -                | -                 | -             | -            | -           | -                  | -                 | -              |
|               | Middle              | 4874.30            | Н          | Z                         | PK               | 51.58             | 6.80          | -            | -           | 58.38              | 74.00             | 15.62          |
| ANT 1         |                     | 4874.55            | Н          | Z                         | AV               | 39.83             | 6.80          | 0.59         | -           | 47.22              | 54.00             | 6.78           |
|               |                     | -                  | -          | -                         | -                | -                 | -             | -            | -           | -                  | -                 | -              |
|               |                     | 2483.60            | Н          | Z                         | PK               | 66.92             | 0.26          | -            | -           | 67.18              | 74.00             | 6.82           |
|               |                     | 2483.61            | Н          | Z                         | AV               | 51.64             | 0.26          | 0.59         | -           | 52.49              | 54.00             | 1.51           |
|               | Highest             | 4923.45            | Н          | Z                         | PK               | 50.66             | 6.97          | -            | -           | 57.63              | 74.00             | 16.37          |
|               |                     | 4923.82            | Н          | Z                         | AV               | 38.96             | 6.97          | 0.59         | -           | 46.52              | 54.00             | 7.48           |
|               |                     | -                  | -          | -                         | -                | -                 | -             | -            | -           | -                  | -                 | -              |

#### Note.

Report No.:

- 1. No other spurious and harmonic emissions were found greater than listed emissions on above table.
- 2. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL - AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Measurement Distance = 3 m for below 10 GHz, Measurement Distance = 1 m for above 10 GHz. Therefore Distance Correction Factor(DCF): -9.54 dB = 20\*log(1m/3m)

TRF-RF-221(00)140218 Page 93 / 102

Report No.: DRTFCC1409-1165

# Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : <u>Test Mode 3(TM 3)</u>

| Tested<br>ANT       | Tested<br>Frequency | Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | DCCF<br>(dB) | DCF<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|---------------------|---------------------|--------------------|------------|---------------------------|------------------|-------------------|---------------|--------------|-------------|--------------------|-------------------|----------------|
|                     |                     | 2389.33            | Н          | Z                         | PK               | 70.94             | -0.07         | -            | -           | 70.87              | 74.00             | 3.13           |
|                     |                     | 2389.75            | Н          | Z                         | AV               | 51.51             | -0.07         | 0.62         | -           | 52.06              | 54.00             | 1.94           |
|                     | Lowest              | 4824.25            | Н          | Z                         | PK               | 48.36             | 6.63          | -            | -           | 54.99              | 74.00             | 19.01          |
|                     |                     | 4824.45            | Н          | Z                         | AV               | 36.58             | 6.63          | 0.62         | -           | 43.83              | 54.00             | 10.17          |
|                     |                     | -                  | -          | -                         | -                | -                 | -             | -            | -           | -                  | -                 | -              |
|                     | Middle              | 4873.68            | Н          | Z                         | PK               | 51.70             | 6.80          | -            | -           | 58.50              | 74.00             | 15.50          |
| ANT 1<br>+<br>ANT 2 |                     | 4874.03            | Н          | Z                         | AV               | 39.86             | 6.80          | 0.62         | -           | 47.28              | 54.00             | 6.72           |
| ANTZ                |                     | -                  | -          | -                         | -                | -                 | -             | -            | -           | -                  | -                 | -              |
|                     |                     | 2483.57            | Н          | Z                         | PK               | 67.36             | 0.26          | -            | -           | 67.62              | 74.00             | 6.38           |
|                     |                     | 2483.86            | Н          | Z                         | AV               | 51.47             | 0.26          | 0.62         | -           | 52.35              | 54.00             | 1.65           |
|                     | Highest             | 4923.27            | Н          | Z                         | PK               | 52.75             | 6.97          | -            | -           | 59.72              | 74.00             | 14.28          |
|                     |                     | 4923.76            | Н          | Z                         | AV               | 39.66             | 6.97          | 0.62         | -           | 47.25              | 54.00             | 6.75           |
|                     |                     | -                  | -          | -                         | -                | -                 | -             | -            | -           | -                  | -                 | -              |

#### Note.

- 1. No other spurious and harmonic emissions were found greater than listed emissions on above table.
- 2. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL - AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Measurement Distance = 3 m for below 10 GHz, Measurement Distance = 1 m for above 10 GHz. Therefore Distance Correction Factor(DCF): -9.54 dB = 20\*log(1m/3m)

TRF-RF-221(00)140218 Page 94 / 102

Report No.: DRTFCC1409-1165

# Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : <u>Test Mode 4(TM 4)</u>

| Tested<br>ANT       | Tested<br>Frequency | Frequency<br>(MHz) | ANT<br>Pol | EUT<br>Position<br>(Axis) | Detector<br>Mode | Reading<br>(dBuV) | T.F<br>(dB/m) | DCCF<br>(dB) | DCF<br>(dB) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|---------------------|---------------------|--------------------|------------|---------------------------|------------------|-------------------|---------------|--------------|-------------|--------------------|-------------------|----------------|
|                     |                     | 2388.79            | Н          | Z                         | PK               | 70.99             | -0.07         | -            | -           | 70.92              | 74.00             | 3.08           |
|                     |                     | 2389.34            | Н          | Z                         | AV               | 50.93             | -0.07         | 1.18         | -           | 52.04              | 54.00             | 1.96           |
|                     | Lowest              | 4844.86            | Н          | Z                         | PK               | 44.06             | 6.70          | -            | -           | 50.76              | 74.00             | 23.24          |
|                     |                     | 4844.88            | Н          | Z                         | AV               | 33.54             | 6.70          | 1.18         | -           | 41.42              | 54.00             | 12.58          |
|                     |                     | -                  | -          | -                         | -                | -                 | -             | -            | -           | -                  | -                 | -              |
| ANIT 4              | Middle              | 4874.42            | Н          | Z                         | PK               | 44.77             | 6.80          | -            | -           | 51.57              | 74.00             | 22.43          |
| ANT 1<br>+<br>ANT 2 |                     | 4874.66            | Н          | Z                         | AV               | 34.45             | 6.80          | 1.18         | -           | 42.43              | 54.00             | 11.57          |
| AINT Z              |                     | -                  | -          | -                         | -                | -                 | -             | -            | -           | -                  | -                 | -              |
|                     |                     | 2489.42            | Н          | Z                         | PK               | 68.64             | 0.26          | -            | -           | 68.90              | 74.00             | 5.10           |
|                     |                     | 2488.73            | Н          | Z                         | AV               | 50.65             | 0.26          | 1.18         | -           | 52.09              | 54.00             | 1.91           |
|                     | Highest             | 4904.83            | Н          | Z                         | PK               | 44.56             | 6.90          | -            | -           | 51.46              | 74.00             | 22.54          |
|                     |                     | 4904.86            | Н          | Z                         | AV               | 33.88             | 6.90          | 1.18         | -           | 41.96              | 54.00             | 12.04          |
|                     |                     | -                  | -          | -                         | -                | -                 | -             | -            | -           | -                  | -                 | -              |

#### Note.

- 1. No other spurious and harmonic emissions were found greater than listed emissions on above table.
- 2. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL - AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Measurement Distance = 3 m for below 10 GHz, Measurement Distance = 1 m for above 10 GHz. Therefore Distance Correction Factor(DCF): -9.54 dB = 20\*log(1m/3m)

TRF-RF-221(00)140218 Page 95 / 102

Report No.: DRTFCC1409-1165

#### 8.6 Power-line conducted emissions

#### Test Requirements and limit, §15.207& RSS-Gen [7.2.2]

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

| Frequency Range | Conducted Limit (dBuV) |            |  |  |  |  |
|-----------------|------------------------|------------|--|--|--|--|
| (MHz)           | Quasi-Peak             | Average    |  |  |  |  |
| 0.15 ~ 0.5      | 66 to 56 *             | 56 to 46 * |  |  |  |  |
| 0.5 ~ 5         | 56                     | 46         |  |  |  |  |
| 5 ~ 30          | 60                     | 50         |  |  |  |  |

<sup>\*</sup> Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

#### **■ TEST PROCEDURE**

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to the test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.
- **Test Results:** Comply(Refer to next page.)

The worst data was reported.

Report No.: DRTFCC1409-1165

#### RESULT PLOTS

# **AC Line Conducted Emissions (Graph)**

Test mode 3(TM 3) & Middle

# Results of Conducted Emission

Date: 2014-08-20

 Model No.
 : H660W

 Type
 :

 Serial No.
 :

 Test Condition
 : 802.11n(HT20)

Referrence No. Power Supply Temp/Humi. Operator

120V 60Hz 21'C 39 % R.H H.S SON

Memo

LIMIT : FCC P15.207 QP FCC P15.207 AV





DRTFCC1409-1165 Report No.:

# **AC Line Conducted Emissions (List)**

Test mode 3(TM 3) & Middle

# Results of Conducted Emission

Date: 2014-08-20

Model No. Type Serial No.

H660W

Referrence No. Power Supply Temp/Humi.

: 120V 60Hz : 21'C 39 % R.H : H.S SON

**Test Condition** 

802.11n(HT20)

Operator

Memo

LIMIT : FCC P15.207 QP FCC P15.207 AV

| NO | FREQ     | READ<br>QP<br>[dBuV] | AV   | C.FACTOR | QP   | ULT<br>AV<br>[dBuV] | QP   | IIT<br>AV<br>[dBuV] | MAR<br>QP<br>[dBuV] | AV   | PHASE |  |
|----|----------|----------------------|------|----------|------|---------------------|------|---------------------|---------------------|------|-------|--|
| 1  | 0.15379  | 32.3                 | 12.2 | 0.0      | 32.3 | 12.2                | 65.8 | 55.8                | 33.5                | 43.6 | N     |  |
| 2  | 0.22540  | 27.8                 | 6.5  | 0.0      | 27.8 | 6.5                 | 62.6 | 52.6                | 34.8                | 46.1 | N     |  |
| 3  | 0.31196  | 20.4                 | 7.3  | 0.0      | 20.4 | 7.3                 | 59.9 | 49.9                | 39.5                | 42.6 | N     |  |
| 4  | 0.44926  | 12.2                 | 0.4  | 0.0      | 12.2 | 0.4                 | 56.9 | 46.9                | 44.7                | 46.5 | N     |  |
| 5  | 1.08120  | 14.3                 | 7.1  | 0.0      | 14.3 | 7.1                 | 56.0 | 46.0                | 41.7                | 38.9 | N     |  |
| 6  | 1.30520  | 12.6                 | 4.8  | 0.0      | 12.6 | 4.8                 | 56.0 | 46.0                | 43.4                | 41.2 | N     |  |
| 7  | 2.46560  | 14.2                 | 7.3  | 0.1      | 14.3 | 7.4                 | 56.0 | 46.0                | 41.7                | 38.6 | N     |  |
| 8  | 7.78240  | 13.3                 | 7.0  | 0.3      | 13.6 | 7.3                 | 60.0 | 50.0                | 46.4                | 42.7 | N     |  |
| 9  | 9.47780  | 10.5                 | 4.6  | 0.3      | 10.8 | 4.9                 | 60.0 | 50.0                | 49.2                | 45.1 | N     |  |
| 10 | 10.97280 | 8.9                  | 2.8  | 0.3      | 9.2  | 3.1                 | 60.0 | 50.0                | 50.8                | 46.9 | N     |  |
| 11 | 0.18057  | 32.4                 | 17.7 | 0.0      | 32.4 | 17.7                | 64.5 | 54.5                | 32.1                | 36.8 | L1    |  |
| 12 | 0.21773  | 28.7                 | 14.9 | 0.0      | 28.7 | 14.9                | 62.9 | 52.9                | 34.2                | 38.0 | L1    |  |
| 13 | 0.31180  | 23.1                 | 8.2  | 0.0      | 23.1 | 8.2                 | 59.9 | 49.9                | 36.8                | 41.7 | L1    |  |
| 14 | 0.38427  | 25.7                 | 14.9 | 0.0      | 25.7 | 14.9                | 58.2 | 48.2                | 32.5                | 33.3 | L1    |  |
| 15 | 0.99245  | 19.7                 | 9.7  | 0.0      | 19.7 | 9.7                 | 56.0 | 46.0                | 36.3                | 36.3 | L1    |  |
| 16 | 0.99420  | 20.2                 | 10.4 | 0.0      | 20.2 | 10.4                | 56.0 | 46.0                | 35.8                | 35.6 | L1    |  |
| 17 | 2.48920  | 20.6                 | 11.0 | 0.1      | 20.7 | 11.1                | 56.0 | 46.0                | 35.3                | 34.9 | L1    |  |
| 18 | 7.08740  | 14.8                 | 7.4  | 0.3      | 15.1 | 7.7                 | 60.0 | 50.0                | 44.9                | 42.3 | L1    |  |
| 19 | 10.33620 | 10.3                 | 3.0  | 0.3      | 10.6 | 3.3                 | 60.0 | 50.0                | 49.4                | 46.7 | L1    |  |

Report No.: DRTFCC1409-1165

# 8.7 Occupied bandwidth

# Test Requirements, RSS-Gen [4.6.1]

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99 % emission bandwidth, as calculated or measured.

#### TEST CONFIGURATION



#### **■ TEST PROCEDURE**

The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used given that a peak or peak hold may produce a wider bandwidth than actual.

#### **■ TEST RESULTS: N/A**

| Test Mode | Francis mari | Test Res | sults[MHz] |
|-----------|--------------|----------|------------|
| rest wode | Frequency    | ANT 1    | ANT 2      |
|           | Lowest       | -        | -          |
| TM 1      | Middle       | -        | -          |
|           | Highest      | -        | -          |
|           | Lowest       | -        | -          |
| TM 2      | Middle       | -        | -          |
|           | Highest      | -        | -          |
|           | Lowest       | -        | -          |
| TM 3      | Middle       | -        | -          |
|           | Highest      | -        | -          |
|           | Lowest       | -        | -          |
| TM 4      | Middle       | -        | -          |
|           | Highest      | -        | -          |

Report No.: DRTFCC1409-1165

# 9. LIST OF TEST EQUIPMENT

| Туре                                   | Manufacturer           | Model               | Cal.Date<br>(yy/mm/dd) | Next.Cal.Date<br>(yy/mm/dd) | S/N               |
|----------------------------------------|------------------------|---------------------|------------------------|-----------------------------|-------------------|
| Spectrum Analyzer                      | Agilent Technologies   | E4440A              | 13/10/24               | 14/10/24                    | US45303051        |
| MXA Signal Analyzer                    | Agilent                | N9020A              | 13/09/24               | 14/09/24                    | MY50200834        |
| Dynamic Measurement DC<br>Source       | Agilent                | 66332A              | 14/02/07               | 15/02/07                    | GB37470190        |
| Vector Signal Generator                | Rohde Schwarz          | SMBV100A            | 14/01/07               | 15/01/07                    | 255571            |
| Signal Generator                       | Rohde Schwarz          | SMF100A             | 14/07/01               | 15/07/01                    | 102341            |
| Multimeter                             | HP                     | 34401A              | 14/02/27               | 15/02/27                    | 3146A13475        |
| Power Meter &<br>Wide Bandwidth Sensor | Anritsu                | ML2496A/<br>MA2411B | 13/10/29               | 14/10/29                    | 1338004 / 1306053 |
| 50W 10dB ATT                           | SMAJK                  | SMAJK-50-10         | 13/10/23               | 14/10/23                    | 3-50-10           |
| PreAmplifier                           | Agilent                | 8449B               | 14/02/27               | 15/02/27                    | 3008A00370        |
| Amplifier                              | HP                     | 8447E               | 14/01/08               | 15/01/08                    | 2945A02865        |
| High-pass filter                       | Wainwright Instruments | WHKX3.0             | 14/01/07               | 15/01/07                    | 12                |
| Loop Antenna                           | Schwarzbeck            | FMZB1513            | 14/04/29               | 16/04/29                    | 1513-128          |
| BILOG ANTENNA                          | SCHAFFNER              | CBL6112B            | 12/11/06               | 14/11/06                    | 2737              |
| Double-Ridged Guide Antenna            | ETS-LINDGREN           | 3117                | 14/05/12               | 16/05/12                    | 00140394          |
| HORN ANT                               | A.H.Systems            | SAS-574             | 13/03/20               | 15/03/20                    | 154               |
| EMI TEST RECEIVER                      | R&S                    | ESU                 | 14/01/08               | 15/01/08                    | 100014            |
| EMI TEST RECEIVER                      | ROHDE&SCHWARZ          | ESR                 | 14/02/07               | 15/02/07                    | 101767            |
| CVCF                                   | NF                     | 4420                | 13/09/12               | 14/09/12                    | 3049354420023     |
| LISN                                   | R&S                    | ESH2-Z5             | 13/09/12               | 14/09/12                    | 828739/006        |
| Thermohygrometer                       | BODYCOM                | BJ5478              | 14/05/13               | 15/05/13                    | 120612-2          |

Report No.: DRTFCC1409-1165

# **APPENDIX I**

# **Duty cycle information**

#### **TEST PROCEDURE**

Duty cycle measured using section 6.0 b) of KDB558074 v03r2:

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal.

Set the center frequency of the instrument to the center frequency of the transmission. Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value. Set VBW ≥ RBW. Set detector = peak or average.

The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T  $\leq$  16.7 microseconds.)

#### **TEST DATA**

| Test Mode | Tested frequency | T <sub>ON</sub><br>(ms) | T <sub>ON+OFF</sub> (ms) | Duty Cycle<br>(%) | Duty Cycle Correction Factor (dB) |
|-----------|------------------|-------------------------|--------------------------|-------------------|-----------------------------------|
| TM 1      | Middle           | 8.43                    | 8.64                     | 97.57             | 0.11                              |
| TM 2      | Middle           | 1.395                   | 1.595                    | 87.46             | 0.59                              |
| TM 3      | Middle           | 1.31                    | 1.51                     | 86.75             | 0.62                              |
| TM 4      | Middle           | 0.648                   | 0.849                    | 76.33             | 1.18                              |

Please refer to next page for actual test plot.

Report No.: DRTFCC1409-1165



