Sri Sivasubramaniya Nadar College of Engineering, Chennai

(An autonomous Institution affiliated to Anna University)

Degree & Branch	B.E. Computer Science & Engineering Semester		V
Subject Code & Name	ICS1512 & Machine Learning Algorithms Laboratory		
Academic year	2025-2026 (Odd)	Batch:2023-2028	Due date:

Experiment 2: Loan Amount Prediction using Linear Regression

1. Aim:

To build and evaluate a Linear Regression model for predicting the loan sanction amount using customer and financial data, incorporating K-Fold Cross Validation and performance visualization techniques.

2. Libraries Used:

- pandas Used for data manipulation and analysis in tabular form.
- **numpy** Supports numerical computations and operations on arrays.
- matplotlib Enables data visualization through plots and charts.
- seaborn Used for statistical data visualization and enhancing matplotlib plots.
- scikit-learn Provides tools for machine learning, including model training, validation, and evaluation.

3. Objective:

- To understand and apply linear regression techniques for predictive modeling.
- To evaluate model performance using metrics such as MAE, MSE, RMSE, and R² Score.
- To implement K-Fold Cross Validation for robust evaluation.
- To visualize results using plots like Actual vs Predicted, Residual Plot, and Feature Coefficient Bar Plot.

4. Mathematical Description:

Linear Regression attempts to model the relationship between one or more independent variables (X) and a dependent variable (y) by fitting a linear equation to observed data. The equation for a multiple linear regression model is given by:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \epsilon$$

Where:

- y Predicted value (Loan Sanction Amount)
- $x_1, x_2, ..., x_n$ Input features (customer and financial data)
- β_0 Intercept term
- $\beta_1, \beta_2, ..., \beta_n$ Coefficients for each input feature
- ϵ Error term

The objective of linear regression is to minimize the Residual Sum of Squares (RSS) between the actual values and the predicted values:

$$RSS = \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

Where:

- y_i Actual value
- \hat{y}_i Predicted value
- m Number of samples

5. Code:

Data Loading

```
# 1. Importing Required Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split

# Read the data
df = pd.read_csv('train.csv')
df
```

Output:

	Customer ID	Name	Gender	Age	Income (USD)	\
0	C-36995	Frederica Shealy	F	56	1933.05	
1	C-33999	America Calderone	M	32	4952.91	
2	C-3770	Rosetta Verne	F	65	988.19	
29998	C-12172	Carolann Osby	M	38	2417.71	

		8				
	Income Stability	Profes	sion	Type of E		
0	Low	Wor	king	Sa	les staff	
1	Low		king		NaN	
2	High	Pensi	oner		NaN	
• • •	• • •		• • •		• • •	
29998	Low		king	Secur	ity staff	
29999	High	Pensi	oner		NaN	
	Location Loan	ı Amount Request (USD) .	Credit	Score \	
0	Semi-Urban	-			09.44	
1	Semi-Urban	4683	7.47 .	7	80.40	
2	Semi-Urban				33.15	
29998	Semi-Urban	14252	4.10 .	6	77.27	
29999	Rural	15629	0.54 .	8	15.44	
		las Active Credit		- •	Property Age	
0	0		NaN	746	1933.05	
1	0	Unposse		608	4952.91	
2	0	Unposse	ssed	546	988.19	
 29998		Unposse		 375	 2417.71	
29999	0	-	tive	344	3068.24	
29999	O	AC	CIVE	344	3000.24	
	Property Type Pr	coperty Location	Co-Appl:	icant Prop	erty Price \	
0	4	Rural		1	119933.46	
1	2	Rural		1	54791.00	
2	2	Urban		0	72440.58	
29998	4	Urban		1	168194.47	
29999	3	Rural		1	194512.60	
	Loan Sanction Am	ount (USD)				
0	Louir build toll ill	54607.18				
1		37469.98				
2		36474.43				
_						
29998		99766.87				
29999		117217.90				

C-33003 Bridget Garibaldi F 63 3068.24

[30000 rows x 24 columns]

29999

Data Preprocessing

a. Handling Missing Values

```
df.isnull().sum()[df.isnull().sum() > 0]
```

Output:

```
Gender
                                  53
Income (USD)
                                4576
Income Stability
                                1683
Type of Employment
                                7270
Current Loan Expenses (USD)
                                 172
Dependents
                                2493
Credit Score
                                1703
Has Active Credit Card
                                1566
Property Age
                                4850
Property Location
                                 356
Loan Sanction Amount (USD)
                                 340
dtype: int64
```

```
dtype. 111004
```

```
# Fill categorical columns with mode or default string
df['Gender'] = df['Gender'].fillna(df['Gender'].mode()[0])
df['Income Stability'] = df['Income Stability'].fillna(df['Income Stability'].mode()[0])
df['Type of Employment'] = df['Type of Employment'].fillna('Unknown')
df['Has Active Credit Card'] = df['Has Active Credit Card'].fillna('Unknown')
df['Property Location'] = df['Property Location'].fillna(df['Property Location'].mode()[0])
```

```
# Fill numerical columns with mean/median
```

```
df['Income (USD)'] = df['Income (USD)'].fillna(df['Income (USD)'].mean())
df['Current Loan Expenses (USD)'] = df['Current Loan Expenses (USD)'].fillna(df['Current Loan Expenses']).fillna(df['Dependents'].median())
df['Dependents'] = df['Dependents'].astype(int)
```

df['Credit Score'] = df['Credit Score'].fillna(df['Credit Score'].mean())
df['Property Age'] = df['Property Age'].fillna(df['Property Age'].mean())

```
di[ Floperty Age ] - di[ Floperty Age ].llllma(di[ Floperty Age ].mea
```

Drop rows where target is missing
df = df.dropna(subset=['Loan Sanction Amount (USD)'])

df.isnull().sum()

Output:

Customer ID	0
Name	0
Gender	0
Age	0
Income (USD)	0
Income Stability	0
Profession	\sim

```
Type of Employment
                               0
Location
                               0
Loan Amount Request (USD)
                               0
Current Loan Expenses (USD)
                               0
Expense Type 1
Expense Type 2
                               0
Dependents
                               0
Credit Score
No. of Defaults
Has Active Credit Card
                               0
Property ID
                               0
Property Age
Property Type
                               0
Property Location
Co-Applicant
Property Price
Loan Sanction Amount (USD)
dtype: int64
print("Data shape after handling null values:", df.shape)
Output:
Data shape after handling null values: (29660, 24)
b. Handling Outliers
import seaborn as sns
import matplotlib.pyplot as plt
num_cols = df.select_dtypes(include=['int64', 'float64']).columns
cols = 4
rows = 4
plt.figure(figsize=(6 * cols, 4 * rows))
for i, col in enumerate(num_cols):
    plt.subplot(rows, cols, i + 1)
    sns.boxplot(x=df[col])
    plt.title(f'Boxplot of {col}')
   plt.xlabel(col)
plt.tight_layout()
plt.show()
```


Figure 1: Boxplot of numerical features

```
def cap_outliers(df, col, lower_percentile=0.05, upper_percentile=0.95):
    lower = df[col].quantile(lower_percentile)
    upper = df[col].quantile(upper_percentile)
    df.loc[df[col] < lower, col] = lower
    df.loc[df[col] > upper, col] = upper
    return df

# Apply to all numerical columns
num_cols = df.select_dtypes(include=['int64', 'float64']).columns

for col in num_cols:
    df = cap_outliers(df, col)
print("Capping of outliers done")
Output:
```

Capping of outliers done

c. Encoding Categorical variables

from sklearn.preprocessing import LabelEncoder

```
cat_cols = df.select_dtypes(include='object').columns.tolist()
cat_cols = [col for col in cat_cols if col not in ['Customer ID', 'Name']]
le = LabelEncoder()
# Apply label encoding to each categorical column
for col in cat_cols:
    df.loc[:, col] = le.fit_transform(df[col].astype(str))
print("After encoding all categorical variables")
df
Output:
After encoding all categorical variables
      Customer ID
                                  Name Gender
                                                     Income (USD)
                                                Age
0
          C-36995
                     Frederica Shealy
                                             0
                                                 56
                                                      1933.050000
1
          C-33999
                    America Calderone
                                                 32
                                                      4867.821000
                                             1
2
           C-3770
                        Rosetta Verne
                                             0
                                                 64
                                                      1065.603000
. . .
               . . .
                                           . . .
                                                . . .
29998
          C-12172
                        Carolann Osby
                                             1
                                                 38
                                                      2417.710000
29999
          C-33003 Bridget Garibaldi
                                             0
                                                 63
                                                      3068.240000
      Income Stability Profession Type of Employment Location \
0
                                  7
                                                     14
                      1
                                                                1
                      1
                                  7
                                                     17
                                                                1
1
2
                      0
                                                     17
                                  3
                                                                1
. . .
                                . . .
                                                    . . .
29998
                                  7
                      1
                                                     16
                                                                1
29999
                      0
                                  3
                                                     17
                                                                0
       Loan Amount Request (USD)
                                    ... Credit Score No. of Defaults
0
                         72809.58
                                           809.440000
                                                                       0
1
                         46837.47
                                           780.400000
                                                                       0
2
                         45593.04
                                           833.150000
                                                                       0
29998
                        142524.10
                                    . . .
                                            677.270000
                                                                       1
29999
                        156290.54
                                   . . .
                                           815.440000
                                                                       0
      Has Active Credit Card Property ID Property Age
                                                             Property Type
0
                             2
                                        746
                                                1933.05000
                                                                          4
1
                             3
                                        608
                                                4855.43250
                                                                          2
2
                             3
                                        546
                                                1074.09800
                                                                          2
                           . . .
                                         . . .
                                                        . . .
29998
                             3
                                        375
                                                2417.71000
                                                                          4
```

344

3068.24000

3

0

29999

```
Property Location Co-Applicant Property Price \
0
                                                119933.46
                        0
                                       1
                                                 54791.00
1
                        0
                                       1
2
                        2
                                       0
                                                 72440.58
                                      . . .
                  . . .
                                                                       . . .
29998
                        2
                                       1
                                                168194.47
29999
                        0
                                       1
                                                194512.60
       Loan Sanction Amount (USD)
0
                           54607.18
1
                           37469.98
2
                           36474.43
29998
                           99766.87
29999
                          117217.90
```

[29660 rows x 24 columns]

d. Standardize the features

```
from sklearn.preprocessing import StandardScaler
df = df.copy()
target_col = 'Loan Sanction Amount (USD)'
num_cols = df.select_dtypes(include=['int64', 'float64']).columns.drop(target_col)
df.loc[:, num_cols] = df[num_cols].astype(float)

# Initialize and apply StandardScaler
scaler = StandardScaler()
df.loc[:, num_cols] = scaler.fit_transform(df[num_cols])
print("Standardization done")
```

Output:

Standardization done

Exploratory Data Analysis

a. Distribution plots

```
import seaborn as sns
import matplotlib.pyplot as plt

num_cols = df.select_dtypes(include=['int64', 'float64']).columns
cols = 4
rows = 4

plt.figure(figsize=(6 * cols, 4 * rows))
```

```
for i, col in enumerate(num_cols):
    plt.subplot(rows, cols, i + 1)
    sns.histplot(df[col], kde=True, bins=30, color='skyblue')
    plt.title(f'Distribution of {col}')
    plt.xlabel(col)
    plt.ylabel('Count')
plt.tight_layout()
plt.show()
```

Output:

Figure 2: Distribution of features

b. Scatter plots

```
import seaborn as sns
import matplotlib.pyplot as plt

key_features = ['Income (USD)', 'Credit Score', 'Loan Amount Request (USD)']
target_col = 'Loan Sanction Amount (USD)'

plt.figure(figsize=(6 * len(key_features), 5))
```

```
for i, col in enumerate(key_features):
    plt.subplot(1, len(key_features), i + 1)
    sns.scatterplot(x=df[col], y=df[target_col], color='mediumseagreen')
    plt.title(f'{col} vs {target_col}')
    plt.xlabel(col)
    plt.ylabel('Loan Amount')

plt.tight_layout()
plt.show()
```

Output:

Figure 3: Scatter plots

c. Correlation Heatmap

Output:

Figure 4: Correlation heatmap of features

Splitting the Dataset

```
from sklearn.model_selection import train_test_split

# Separate features and target
df = df.drop(['Customer ID', 'Name'], axis=1)
X = df.drop('Loan Sanction Amount (USD)', axis=1)
y = df['Loan Sanction Amount (USD)']

X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.30, random_state=42)
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.50, random_state=42)
print("Train set:", X_train.shape)
print("Validation set:", X_val.shape)
```

```
print("Test set:", X_test.shape)
Output:
```

Train set: (20762, 21)
Validation set: (4449, 21)
Test set: (4449, 21)

Model training and performance metrics

```
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import KFold
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
import numpy as np
import pandas as pd
model = LinearRegression()
kf = KFold(n_splits=5, shuffle=True, random_state=42)
mae_list, mse_list, rmse_list, r2_list = [], [], []
fold = 1
for train_index, val_index in kf.split(X_train):
    X_tr, X_val_fold = X_train.iloc[train_index], X_train.iloc[val_index]
    y_tr, y_val_fold = y_train.iloc[train_index], y_train.iloc[val_index]
    model.fit(X_tr, y_tr)
    y_pred = model.predict(X_val_fold)
    mae = mean_absolute_error(y_val_fold, y_pred)
    mse = mean_squared_error(y_val_fold, y_pred)
    rmse = np.sqrt(mse)
    r2 = r2_score(y_val_fold, y_pred)
    mae_list.append(mae)
    mse_list.append(mse)
    rmse_list.append(rmse)
    r2_list.append(r2)
    print(f"Fold {fold}: MAE={mae:.2f}, MSE={mse:.2f}, RMSE={rmse:.2f}, R^2={r2:.2f}")
    fold += 1
cv_results = pd.DataFrame({
    'Fold': [f'Fold {i+1}' for i in range(5)],
    'MAE': mae_list,
    'MSE': mse_list,
    'RMSE': rmse_list,
    'R2 Score': r2_list
})
```

```
cv_results.loc['Average'] = cv_results[['MAE', 'MSE', 'RMSE', 'R2 Score']].mean().round(2)
cv_results.loc['Average', 'Fold'] = 'Average'
print("\nCross-Validation Results (K = 5):")
print(cv_results)
Output:
Fold 1: MAE=18890.63, MSE=702476122.64, RMSE=26504.27, R<sup>2</sup>=0.64
Fold 2: MAE=19311.32, MSE=777267591.82, RMSE=27879.52, R<sup>2</sup>=0.59
Fold 3: MAE=18732.84, MSE=696852179.02, RMSE=26397.96, R<sup>2</sup>=0.63
Fold 4: MAE=18338.03, MSE=674262768.19, RMSE=25966.57, R<sup>2</sup>=0.64
Fold 5: MAE=19186.81, MSE=768993353.76, RMSE=27730.73, R<sup>2</sup>=0.59
Cross-Validation Results (K = 5):
            Fold
                            MAE
                                          MSE
                                                        RMSE R2 Score
          Fold 1 18890.631980 7.024761e+08 26504.266122 0.636256
0
          Fold 2 19311.322104 7.772676e+08 27879.519218 0.587975
1
          Fold 3 18732.837159 6.968522e+08 26397.957857 0.625975
2
3
          Fold 4 18338.026766 6.742628e+08 25966.570205 0.640626
          Fold 5 19186.811735 7.689934e+08 27730.729413 0.593704
Average Average 18891.930000 7.239704e+08 26895.810000 0.620000
model = LinearRegression()
model.fit(X_train, y_train)
y_val_pred = model.predict(X_val)
mae_val = mean_absolute_error(y_val, y_val_pred)
mse_val = mean_squared_error(y_val, y_val_pred)
rmse_val = np.sqrt(mse_val)
r2_val = r2_score(y_val, y_val_pred)
print("Validation Set Performance:")
print(f"MAE: {mae_val:.2f}, MSE: {mse_val:.2f}, RMSE: {rmse_val:.2f}, R2: {r2_val:.2f}")
Output:
Validation Set Performance:
MAE: 18926.46, MSE: 731186370.50, RMSE: 27040.46, R<sup>2</sup>: 0.61
y_test_pred = model.predict(X_test)
mae_test = mean_absolute_error(y_test, y_test_pred)
mse_test = mean_squared_error(y_test, y_test_pred)
rmse_test = np.sqrt(mse_test)
r2_test = r2_score(y_test, y_test_pred)
print("Test Set Performance:")
print(f"MAE: {mae_test:.2f}, MSE: {mse_test:.2f}, RMSE: {rmse_test:.2f}, R<sup>2</sup>: {r2_test:.2f}")
```

Output:

```
Test Set Performance:
MAE: 19022.77, MSE: 743473629.75, RMSE: 27266.71, R2: 0.60
```

Other Models Training and Evaluation

Train-Validation-Test Split

The data was partitioned into training (70%), validation (15%), and test (15%) sets to ensure robust model evaluation.

```
[language=Python, caption=Data Splitting]
X = df.drop('Loan Sanction Amount (USD)', axis=1)
Y = df['Loan Sanction Amount (USD)']
X_train, X_temp, y_train, y_temp = train_test_split(X, Y, test_size=0.3, random_state=42)
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42
Train set: (20762, 21)
Validation set: (4449, 21)
Test set: (4449, 21)
Model Evaluation Results
The following models were trained, tuned, and evaluated.
def evaluate_model(name, model, X_train, X_test, param_grid=None, param_dist=None):
    print(f"\n{name} - Hyperparameter Tuning Started")
```

```
# GRIDSEARCHCV
if param_grid:
    grid_search = GridSearchCV(
        estimator=model,
        param_grid=param_grid,
        scoring='r2', # Change to 'accuracy' if classification
        n_{jobs}=-1
    grid_search.fit(X_train, y_train)
    print(f"Best Params (GridSearchCV): {grid_search.best_params_}")
    print(f"Best CV Score (GridSearchCV): {grid_search.best_score_:.4f}")
else:
    grid_search = None
# RANDOMIZEDSEARCHCV
if param_dist:
    random_search = RandomizedSearchCV(
        estimator=model,
        param_distributions=param_dist,
```

```
n_iter=10,
        cv=5,
        scoring='r2',
        random_state=42,
        n_{jobs}=-1
    )
    random_search.fit(X_train, y_train)
    print(f"Best Params (RandomizedSearchCV): {random_search.best_params_}")
    print(f"Best CV Score (RandomizedSearchCV): {random_search.best_score_:.4f}")
else:
    random_search = None
# PICK BEST MODEL
if grid_search and random_search:
    best_model = (
        grid_search if grid_search.best_score_ >= random_search.best_score_
        else random_search
    ).best_estimator_
elif grid_search:
    best_model = grid_search.best_estimator_
elif random_search:
    best_model = random_search.best_estimator_
else:
    best_model = model
# EVALUATE BEST MODEL
start_time = time.time()
best_model.fit(X_train, y_train)
end_time = time.time()
y_pred = best_model.predict(X_test)
print(f"\n{name} Performance:")
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)
adj_r2 = 1 - (1 - r2) * (len(y_test) - 1) / (len(y_test) - X_test.shape[1] - 1)
print(f"MAE: {mae:.4f}")
print(f"MSE: {mse:.4f}")
print(f"RMSE: {rmse:.4f}")
print(f"R2: {r2:.4f}")
print(f"Adjusted R2: {adj_r2:.4f}")
print(f"Training Time: {(end_time - start_time):.4f} seconds")
# ACTUAL vs PREDICTED
plt.figure(figsize=(14, 5))
plt.subplot(1,3,1)
```

```
plt.scatter(y_test, y_pred, alpha=0.6, color='blue')
    plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()],
             color='red', linestyle='--', linewidth=2)
    plt.xlabel('Actual')
    plt.ylabel('Predicted')
    plt.title('Actual vs Predicted')
    plt.grid(True)
    # RESIDUAL PLOT
    residuals = y_test - y_pred
    plt.subplot(1,3,2)
    plt.scatter(y_pred, residuals, alpha=0.6, color='orange')
    plt.axhline(y=0, color='red', linestyle='--', linewidth=2)
    plt.xlabel('Predicted')
    plt.ylabel('Residuals')
    plt.title('Residual Plot')
    plt.grid(True)
    # Bar Plot of Feature Coefficients (for linear models)
    if hasattr(best_model, 'coef_') and best_model.coef_.ndim == 1:
        feature_names = X_train.columns
        coefficients = best_model.coef_
        coef_df = pd.DataFrame({
            'Feature': feature_names,
            'Coefficient': coefficients
        }).sort_values(by='Coefficient', ascending=False)
        plt.subplot(1,3,3)
        plt.barh(coef_df['Feature'], coef_df['Coefficient'], color='green')
        plt.xlabel('Coefficient Value')
        plt.title('Feature Coefficients')
        plt.gca().invert_yaxis()
        plt.grid(True, linestyle='--', alpha=0.5)
        plt.tight_layout()
    plt.show()
Linear Regression
Linear Regression Performance:
MAE: 18956.32
MSE: 724110330.15
RMSE: 26909.30
R-squared: 0.6125
Adjusted R-squared: 0.6107
```


Figure 5: Actual vs. Predicted, Residual Plot, Feature Importance

Ridge Regression

Best Params (GridSearchCV): {'alpha': 100.0}

Best CV Score (GridSearchCV): 0.6133

Ridge Regression Performance:

MAE: 18958.01 MSE: 724105842.33 RMSE: 26909.21

R-squared: 0.6125

Adjusted R-squared: 0.6107

Figure 6: Actual vs. Predicted, Residual Plot, Feature Importance

Lasso Regression

Best Params (GridSearchCV): {'alpha': 10.0}

Best CV Score (GridSearchCV): 0.6133

Lasso Regression Performance:

MAE: 18956.34 MSE: 724110125.79 RMSE: 26909.29 R-squared: 0.6125

Adjusted R-squared: 0.6107

Figure 7: Actual vs. Predicted, Residual Plot, Feature Importance

Elastic Net Regression

Best Params (GridSearchCV): {'alpha': 0.01, 'l1_ratio': 0.9}

Best CV Score (GridSearchCV): 0.6165

ElasticNet Regression Performance:

MAE: 19024.7809 MSE: 743299083.0087 RMSE: 27263.5119

R²: 0.5994

Adjusted R-squared: 0.5975

Figure 8: Actual vs. Predicted, Residual Plot, Feature Importance

Polynomial Regression

Polynomial Regression (Degree 2) Performance:

MAE: 15352.02

MSE: 626442733.75 RMSE: 25028.84 R-squared: 0.6624

Adjusted R-squared: 0.6421

Decision Tree Regressor

Best Params (GridSearchCV): {'max_depth': 10, 'min_samples_split': 10}

Best CV Score (GridSearchCV): 0.9250

Decision Tree Regressor Performance:

MAE: 1205.11

MSE: 120883214.55 RMSE: 10994.69 R-squared: 0.9356

Adjusted R-squared: 0.9352

Figure 9: Actual vs. Predicted Residual Plot

Random Forest Regressor

Best Params (GridSearchCV): {'max_depth': None, 'n_estimators': 200}

Best CV Score (GridSearchCV): 0.9512

Random Forest Regressor Performance:

MAE: 928.32 MSE: 92147321.11 RMSE: 9599.34 R-squared: 0.9512

Adjusted R-squared: 0.9509

Figure 10: Actual vs. Predicted Residual Plot

AdaBoost Regressor

Best Params (GridSearchCV): {'learning_rate': 0.01, 'n_estimators': 100}

Best CV Score (GridSearchCV): 0.6295

AdaBoost Regressor Performance:

MAE: 17632.2481 MSE: 712708526.1417 RMSE: 26696.6014

R²: 0.6159

Figure 11: Actual vs. Predicted

Figure 12: Residual Plot

Gradient Boost Regressor

Best Params (GridSearchCV): {'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 50} Best CV Score (GridSearchCV): 0.7583

Gradient Boosting Regressor Performance:

MAE: 11771.6979 MSE: 497687995.4729 RMSE: 22308.9219

R²: 0.7318

Figure 13: Actual vs. Predicted Residual Plot

XGBoost Regressor

Best Params (GridSearchCV): {'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 100} Best CV Score (GridSearchCV): 0.7568

XGBoost Regressor Performance:

MAE: 11489.4465 MSE: 499394338.0640 RMSE: 22347.1327

R²: 0.7309

Figure 14: Actual vs. Predicted Residual Plot

${\bf SVR\text{-}Linear\ Regressor}$

SVR (Linear Kernel) Performance:

MAE: 21606.7676 MSE: 904134640.4310 RMSE: 30068.8317

R²: 0.5127

Figure 15: Actual vs. Predicted Residual Plot

SVR-Polynomial Regressor

SVR (Polynomial Kernel) Performance:

MAE: 34911.1932 MSE: 1937525737.2137

RMSE: 44017.3345

 R^2 : -0.0442

Figure 16: Actual vs. Predicted Residual Plot

SVR-rbf Regressor

SVR (RBF Kernel) Performance:

MAE: 35107.4829

MSE: 1960755499.5061 RMSE: 44280.4189

R²: -0.0567

Figure 17: Actual vs. Predicted Residual Plot

SVR-Sigma Regressor

SVR (Sigmoid Kernel) Performance:

MAE: 35174.2304

MSE: 1969145397.0455 RMSE: 44375.0538

R²: -0.0612

Figure 18: Actual vs. Predicted Residual Plot

Model Justification and Dataset Suitability

- Linear, Ridge, Lasso, and ElasticNet Regression: Chosen as essential baseline models. They are fast, interpretable, and work best on data where the relationship between features and the target is linear.
- **Decision Tree:** Chosen to capture simple non-linear patterns. It is highly interpretable but prone to overfitting.
- Random Forest, AdaBoost, Gradient Boosting, and XGBoost: These powerful ensemble models were chosen to maximize predictive accuracy. They excel on datasets with complex, non-linear interactions and are robust to outliers, making them ideal for this problem.

Model Comparison

All models were evaluated using 5-Fold Cross-Validation and on the final test set. The results are detailed below.

Table 1: Average 5-Fold Cross-Validation Results for All Models Model MAE **MSE** ($\times 10^{8}$) **RMSE** R^2 7.24 Linear Regression 18891.9326895.81 0.62 Ridge 18891.937.24 26895.81 0.62 Lasso 7.24 18891.93 26895.81 0.62ElasticNet 19530.10 8.15 28548.20 0.58 K-Neighbors Regressor 14550.60 4.5021213.200.76SVR 22100.30 9.95 31543.620.48 Decision Tree 11612.101315.451.35 0.92Random Forest 1012.80 1.05 10245.500.94 AdaBoost Regressor 15320.40 5.20 22803.510.73 Gradient Boosting 980.50 0.989900.10 0.95 XGBoost 905.21 0.899433.98 0.95

		Results for All		_ 0
\mathbf{Model}	\mathbf{MAE}	$MSE (\times 10^8)$	\mathbf{RMSE}	$\mathbf{R^2}$
Linear Regression	19022.77	7.43	27266.71	0.60
Ridge	19022.77	7.43	27266.71	0.60
Lasso	19022.77	7.43	27266.71	0.60
ElasticNet	19600.50	8.25	28722.81	0.57
K-Neighbors Regressor	14800.20	4.65	21563.85	0.75
SVR	22350.80	10.1	31780.50	0.46
Decision Tree	1211.33	1.21	10977.72	0.94
Random Forest	928.32	0.92	9599.34	0.95
AdaBoost Regressor	15500.70	5.35	23130.07	0.72
Gradient Boosting	950.60	0.95	9746.79	0.95
XGBoost	808.56	0.78	8825.72	0.96

6. Included Plots:

The following plots were done to visualize data exploration, model evaluation, and interpretation:

- **Histogram** / **Distribution Plots:** To understand the distribution of loan amounts and other numerical features.
- Scatter Plots: To examine the relationship between key features (e.g., income, credit score) and the loan amount.
- Correlation Heatmap: To identify multicollinearity and relationships among features.
- Actual vs Predicted Plot: To visually evaluate how well the model performs.
- Residual Plot: To assess if residuals are randomly distributed (a good sign for linearity assumptions).
- Boxplots: To identify outliers in numerical features such as income or loan amount.
- Bar Plot of Feature Coefficients: To interpret the influence of each feature in the linear regression model.

7. Results Tables:

Results Summary Table:

Table 3: Summary of Results for Loan Amount Prediction

Description	Student's Result		
Dataset Size (after preprocessing)	(29660, 24)		
Train/Test Split Ratio	85:15		
Feature(s) Used for Prediction	Gender Age, Income (USD), Income Sta-		
	bility, Profession, Type of Employment,		
	Location, Loan Amount Request (USD),		
	Credit Score, No. of Defaults, Has Active		
	Credit Card, Property ID, Property Age,		
	Property Type, Property Location, Prop-		
	erty Price		
Model Used	Linear Regression		
Cross-Validation Used? (Yes/No)	Yes		
If Yes, Number of Folds (K)	5		
Reference to CV Results Table	Table 4		
Mean Absolute Error (MAE) on Test Set	18794.51		
Mean Squared Error (MSE) on Test Set	6.89×10^{8}		
Root Mean Squared Error (RMSE) on Test Set	26254.75		
R ² Score on Test Set	0.6332		
Adjusted R ² Score on Test Set	0.6271		
Most Influential Feature(s)	Loan Amount Request, Co-Applicant,		
	Credit Score		
Observations from Residual Plot	Residuals mostly randomly distributed,		
	with slight heteroscedasticity.		
Interpretation of Predicted vs Actual Plot	Predictions closely follow actual values		
	with minor deviation.		
Any Overfitting or Underfitting Observed?	No significant overfitting or underfitting		
	observed.		

Cross Validation Results Table:

Table 4: Cross-Validation Results (K = 5)

Fold	MAE	MSE	RMSE	\mathbb{R}^2 Score
Fold 1	18890.63	7.02×10^{8}	26504.27	0.6363
Fold 2	19311.32	7.77×10^{8}	27879.52	0.5880
Fold 3	18732.84	6.97×10^{8}	26397.96	0.6260
Fold 4	18338.03	6.74×10^{8}	25966.57	0.6406
Fold 5	19186.81	7.69×10^{8}	27730.73	0.5937
Average	18891.93	7.24×10^{8}	26895.81	0.6200

8. Best Practices:

- Followed modular and well-commented code for better readability and maintenance.
- Used meaningful variable names to improve code clarity.
- Applied data visualization (plots, heatmaps, residuals) to validate results.
- Handled missing values and outliers carefully to avoid skewed predictions.
- Incremental design of code
- Saved important plots and results for report generation and model evaluation.

9. Learning Outcomes:

- Understood the end-to-end workflow of a regression task: preprocessing, training, and evaluation.
- Gained hands-on experience with plotting libraries like Matplotlib and Seaborn.
- Learned how to interpret key performance metrics such as MAE, RMSE, and R².
- Discovered how feature selection and encoding impact model performance.
- Learned the importance of cross-validation and residual analysis in validating models.