Федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и технологий Кафедра «Компьютерные интеллектуальные технологии»

В.Г. ПАК

ДИСКРЕТНАЯ МАТЕМАТИКА

СЛАЙДЫ ВИДЕОЛЕКЦИЙ ДЛЯ СТУДЕНТОВ II КУРСА ЗАОЧНОГО ОТДЕЛЕНИЯ БАКАЛАВРИАТА НАПРАВЛЕНИЯ ПОДГОТОВКИ «ПРИКЛАДНАЯ ИНФОРМАТИКА»

Санкт-Петербургский политехнический университет Петра Великого 2018

Санкт-Петербургский политехнический университет Петра Великого, 2018 ©

Федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и технологий Кафедра «Компьютерные интеллектуальные технологии»

ЛЕКЦИЯ №6

ПРИНЦИП ДВОЙСТВЕННОСТИ. ЗАМКНУТЫЕ КЛАССЫ И ФУНКЦИОНАЛЬНАЯ ПОЛНОТА

СЛАЙДЫ ВИДЕОЛЕКЦИЙ ДЛЯ СТУДЕНТОВ II КУРСА ЗАОЧНОГО ОТДЕЛЕНИЯ БАКАЛАВРИАТА НАПРАВЛЕНИЯ ПОДГОТОВКИ «ПРИКЛАДНАЯ ИНФОРМАТИКА»

Санкт-Петербургский политехнический университет Петра Великого 2018

Санкт-Петербургский политехнический университет Петра Великого, 2018©

Содержание

- §3. Принцип двойственности
- §4. Операция суперпозиции и замыкание множества булевых функций. Замкнутые классы
- §5. Функциональная полнота. Базисы

Содержание (окончание)

§6. Теорема Поста о функциональной полноте

- 6.1. Пять важнейших замкнутых классов
 - 6.1.1. Классы функций, сохраняющих константы
 - 6.1.2. Класс самодвойственных функций
 - 6.1.3. Класс монотонных функций
 - 6.1.4. Класс линейных функций
- 6.2. Вспомогательные леммы
- 6.3. Теорема Поста
- 6.4. Предполные и замкнутые классы
- 6.5. Выделение базисов в полной системе

§3. Принцип двойственности

Определение. Функция $f^*(\tilde{x}^n) = \overline{f(\bar{x}_1, ..., \bar{x}_n)}$ называется двойственной к функции $f(\tilde{x}^n)$.

Например,

$$(x_1 \lor x_2)^* = \overline{x_1} \lor \overline{x_2} = x_1 x_2;$$

 $(x_1 x_2)^* = \overline{x_1} \overline{x_2} = x_1 \lor x_2;$
 $\overline{x}^* = \overline{x}; (x_1 \supset x_2)^* = \overline{x_1} x_2.$

Очевидно, что $(f^*)^* = f$, т.е. функции f^* и f двойственны друг другу.

Определение. Булева функция $f(\tilde{x}^n)$ называется *самодвойственной*, если $f^* = f$.

Теорема 3.1 (принцип двойственности). Если булева функция реализована формулой над $\mathfrak{S} = \{\&, \lor, \neg\}$, то формула, реализующая двойственную ей функцию, получается из исходной формулы заменой каждой дизъюнкции на конъюнкцию, а каждой конъюнкции на дизъюнкцию.

§4. Суперпозиция и замыкание. Замкнутые классы

§4. Операция суперпозиции и замыкание множества булевых функций. Замкнутые классы

Пусть Φ — множество функциональных символов и (или) логических связок, P- множество сопоставленных им функций.

Определение. Суперпозицией над множеством функций P называется всякая функция, которую можно реализовать формулой над множеством функциональных символов и связок Φ , сопоставленных функциям из P. **Определение.** Замыканием множества булевых функций K называется множество [K] всех суперпозиций над K.

Свойства замыканий:

- 1. $K \subseteq [K]$;
- 2. [[K]] = [K];
- 3. $K_1 \subseteq K_2 \Rightarrow [K_1] \subseteq [K_2]$;
- 4. $[K_1] \cup [K_2] \subseteq [K_1 \cup K_2]$.

Определение. Множество K булевых функций называется *(функционально)* замкнутым (замкнутым классом), если [K] = K.

§ 5. Функциональная полнота. Базисы

§ 5. Функциональная полнота. Базисы

Определение. Подмножество P функций замкнутого класса K называется (функционально) полным в K, если [P] = K.

Пусть P_2 -множество всех булевых функций. Если $K=P_2$, то говорят просто о *полноте*.

Определение. Множество P булевых функций называется (функционально) полным, если $[P] = P_2$.

Определение. Подмножество P функций замкнутого класса K называется предполным классом в K, если $[P] \neq K$ и для любой функции $f \in K \setminus P$ $[P \cup \{f\}] = K$.

Определение. Полное в замкнутом классе K множество P называется *базисом класса* K, если для любого собственного подмножества P' множества $P[P'] \neq K$.

Пусть $K=P_2$ (очевидно, что P_2 замкнуто). Тогда множество P является базисом P_2 в том случае, если оно есть такое минимальное подмножество P_2 , что $[P]=P_2$.

§ 5. Функциональная полнота. Базисы

Примеры полных классов и базисов:

- $\{\neg, \lor, \&\}$ полный класс, но не базис, т.к. $xy = \overline{x} \lor \overline{y};$
- {¬, &}, {¬,V} базисы;
- {0, 1, &, ⊕} полный класс, но не базис.

Теорема 5.1. Если каждая функция полного в замкнутом классе K класса K_1 может быть представлена суперпозицией над другим классом $K_2 \subseteq K$, то класс K_2 также полный.

Определение. Подмножество P функций класса K называется *независимым*, если ни одна из функций P не является суперпозицией над остальными функциями P.

Теперь можно дать эквивалентное определение базиса.

Определение. Полное в замкнутом классе K независимое множество P называется базисом в K.

Прежде всего, нас интересует случай $K = P_2$. Тогда возникают следующие задачи:

- 1) распознавание функциональной полноты;
- 2) нахождение базисов в полных системах.

6.1.1. Классы функций, сохраняющих константы

§6. Теорема Поста о функциональной полноте

6.1. Пять важнейших замкнутых классов

6.1.1. Классы функций, сохраняющих константы

Определение. Булева функция $f(\tilde{x}^n)$ сохраняет константу 0 (1), если $f(\tilde{0}^n) = 0$ ($f(\tilde{1}^n) = 1$). Обозначим T_0 (T_1) класс функций, сохраняющих константу 0 (1).

$$\tilde{x}^n$$
 - обозначение набора $\langle x_1, ..., x_n \rangle$; $\tilde{0}^n \ (\tilde{1}^n)$ - обозначение $\underbrace{\langle 0, ..., 0 \rangle}_n$ $\underbrace{\langle (1, ..., 1 \rangle)}_n$.

Теорема 6.1. Число всех различных n-местных булевых функций, сохраняющих константу 0 (1), равно $2^{2^{n}-1}$. **Теорема 6.2.** Классы T_0 , T_1 замкнуты.

6.1.2. Класс самодвойственных функций

Обозначим класс самодвойственных функций S.

Теорема 6.3. Булева функция самодвойственна тогда и только тогда, когда она принимает противоположные значения на противоположных наборах значений переменных.

Следствие. Число всех различных n-местных самодвойственных булевых функций равно $2^{2^{n-1}}$. **Теорема 6.4.** Класс S замкнут.

6.1.3. Класс монотонных функций

Введём на множестве всех двоичных векторов длины n отношение частичного порядка \prec :

$$\tilde{\alpha}^n < \tilde{\beta}^n \iff \alpha_1 \le \beta_1, \dots, \alpha_n \le \beta_n.$$

Определение. Булева функция $f(\tilde{x}^n)$ называется монотонной, если для любых наборов $\tilde{\alpha}^n$, $\tilde{\beta}^n$

$$\tilde{\alpha}^n \prec \tilde{\beta}^n \Rightarrow f(\tilde{\alpha}^n) \leq f(\tilde{\beta}^n).$$

Обозначим М класс монотонных функций.

Теорема 6.5. Класс *М* замкнут.

6.1.4. Класс линейных функций

6.1.4. Класс линейных функций

Определение. Булева функция называется *линейной*, если она реализуема полиномом Жегалкина не выше первой степени.

Обозначим L класс линейных функций.

Теорема 6.6. Число всех различных n-местных линейных булевых функций равно 2^{n+1} .

Теорема 6.7. Класс L замкнут.

§6. Теорема Поста о функциональной полноте 6.2. Вспомогательные леммы

Лемма 6.1 (о несамодвойственной функции). Из любой несамодвойственной функции с помощью подстановки в неё вместо переменных тождественной функции и функции отрицания можно получить тождественную константу.

Лемма 6.2 (о немонотонной функции). Из любой немонотонной функции с помощью подстановки в неё вместо переменных констант и тождественной функции можно получить функцию отрицания.

Лемма 6.3 (о нелинейной функции). Из любой нелинейной функции с помощью подстановки в неё вместо переменных констант, тождественной функции и функции отрицания можно получить конъюнкцию или отрицание конъюнкции.

6.3. Теорема Поста

Теорема 6.8 (теорема Поста о функциональной полноте). Для функциональной полноты класса K необходимо и достаточно, чтобы для каждого из пяти важнейших замкнутых классов в K нашлась не принадлежащая ему функция.

Следствие. Из любой полной системы можно выделить полную подсистему, содержащую не более четырёх функций.

6.3. Теорема Поста

Замечание. Количество функций в следствии нельзя уменьшить.

В критериальной таблице вы видите пример полной системы из четырёх функций. При удалении любой из них система перестаёт быть полной.

	0	1	x_1x_2	$x_1 \oplus x_2 \oplus x_3$
T_0	+	-	+	+
T_1	-	+	+	+
L	+	+	-	+
M	+	+	+	-
S	-	-	-	+

6.4. Предполные и замкнутые классы

6.4. Предполные и замкнутые классы

Теорема 6.9 (теорема Поста). Пять важнейших замкнутых классов предполны. Других предполных классов нет.

Теорема 6.10. Замкнутый класс имеет конечный базис.

Теорема 6.11. Множество замкнутых классов в P_2 счётно.

6.5. Выделение базисов в полной системе

6.5. Выделение базисов в полной системе

Следующий алгоритм позволяет найти все базисы в полной системе функций.

- 1. Построить критериальную таблицу.
- 2. Составить по таблице КНФ K: ЭД соответствуют пяти важнейшим замкнутым классам, если функция f не входит в класс (т.е. в соответствующей клетке стоит «минус», то она включается в ЭД как буква). Таким образом, K конъюнкция пяти ЭД.
- 3. Раскрывая скобки и используя законы идемпотентности и правила поглощения, привести K к ДНФ D, в которой дальнейшее применение правил поглощения невозможно.
- 4. Слагаемые полученной ДНФ *D* представляют базисы: в каждый базис включаются те функции, которые входят в соответствующую ЭК как буквы.

6.5. Выделение базисов в полной системе

Замечание. В простых случаях можно найти базисы непосредственно по критериальной таблице. Базис образуют такие подмножества функций (подмножества строк или столбцов), что:

- 1. Для каждого из пяти замкнутых классов в подмножестве найдётся функция, не принадлежащая классу (хотя бы один «минус» в столбце или строке).
- 2. Удаление любой функции из подмножества приводит к невыполнению условия 1 (появляется столбец или строка со всеми «плюсами»).