EECS 376: Foundations of Computer Science

Lecture 14 - Introduction to Complexity

More practical classification of problems

- Previously, we classified problems like this:
 - **Decidable**: solvable in finite time
 - **Undecidable:** not solvable in finite time
- "For practical purposes, the difference between polynomial and exponential is often more crucial than the difference between finite and non-finite."

Jack Edmonds

(defined complexity class P, 1965)

- Today and next class: another classification
 - O P: solvable in polynomial time
 - O NP-hard: not likely solvable in polynomial time

Plan for this part of the course

Lecture 1:

• Define P and NP

Lecture 2

- Define NP-hard and NP-complete.
- Show the first NP-complete problem: SAT

Lectures 3 - 4

Show many NP-complete problems via reductions

Lectures 5 - 6

 Show many methods to solve efficiently NP-hard Problems

Class **P:** problems we can solve "fast"

Exponential vs. Polynomial

A regular Mac Pro computer performs about 10¹² operations/sec

	n=10	n=35	n=60	n=85
n²	100	1225	3600	7225
	< 1 sec	< 1 sec	< 1 sec	< 1 sec
n³	1000	43k	216k	614k
	< 1 sec	< 1 sec	< 1 sec	< 1 sec
2 ⁿ	1024 < 1 sec	34 x 10 ⁹ < 1 sec	> 4 years	> 120 million years

"Efficient": running time polynomial in input size

Exponential vs. Polynomial

• Consider this plot with an adjusted scaled

The Complexity Class P

Definition:

P is the set of all decision problems that can be decided in polynomial time.

Formally:

- For any problem L, an efficient decider Decide-L for L is such that
 - o x is a "yes" instance ⇔ Decide-L(x) accepts
 - x is a "no" instance ⇔ Decide-L(x) rejects (follows from above)
- Decide-L(x) runs in poly(|x|) time
 P is the set of all decision problems that have efficient deciders

Questions:

- Why polynomial? Why not $O(n^3)$? Why not O(n)?
- Why decision problems only?

Why do we use **Polynomial time** to capture the notion of efficiency?

• It is a robust definition.

• Composable:

- If my program calls a polynomial number of polynomial-time algorithms, then my program runs in polynomial time
 - Proof idea: $(n^k)^{k'} = n^{k \cdot k'}$ is also polynomial.
- Model-independent: by Church-Turing thesis
 - O A problem is solvable in polynomial time on a TM if and only if
 - O it is solvable in polynomial time any computer.

Why do we restrict ourselves to only **Decision problems**?

- Decision problems are simpler
 - o They also fit with the language formulation discussed in previous lectures

- To show that some <u>problems</u> are solvable in polytime,
 - Usually, via binary search,
 it is enough to check if the decision version is solvable in polytime
 - Let's see examples...

Decision version of problems

Shortest path

- Search version:
 - Given a graph and vertices s,t,
 what is the length of the shortest path from s to t?
- Decision version:
 - Given a graph, vertices s,t, and a budget b, is there a path from s to t of length at most b?

GCD

- Search version:
 - Given two numbers x and y, what is gcd(x,y)?
- Decision version:
 - Given two numbers x and y, and a threshold b, is gcd(x,y) at most b?

For these problems, if you can solve the decision version, you solve the search version too. How?

Example: Solving search problems using decision problems

Suppose we have M where

- M(x, y, b) accepts if $gcd(x, y) \le b$.
- M runs in polynomial time in the input size
 - Input size: log(x)+log(y)+log(b)

Goal: compute gcd(x, y) in polynomial time, i.e., poly(log(x)+log(y))

Bad approach:

- For $i = 0, ..., \min\{x, y\}$: if M(x, y, i) accepts, return i.
- What's wrong?
 - It is correct, but...
 - It takes $\Omega(\min\{x, y\})$ iterations. Not polynomial in $\log(x) + \log(y)$

Good approach: **binary search** in the range of $[0,...,\min\{x,y\}]$.

Total time: poly(log(x)+log(y))

The Complexity Class P

Definition:

 P is the set of all decision problems that can be decided in polynomial time.

Formally:

- For any problem L, an efficient decider Decide-L for L is such that
 - o x is a "yes" instance ⇔ Decide-L(x) accepts
 - o x is a "no" instance ⇔ Decide-L(x) rejects (follows from above)
 - Decide-L(x) runs in poly(|x|) time
- P is the set of all decision problems that have an efficient decider

non deterministic polynomed

Class NP:

problems we can verify "fast"

Common mistakes:

NP does not stand for "Not Polynomial"

What does **verify** mean?

- Example 1: Given a sudoku puzzle, is there a solution?
- Answer: Yes.
- Reply: We are not convinced (i.e. you could be lying to us).
- Reply: Now we are convinced.

				2	6		7		1
(6	8			7			9	
	1 8	9				4	5		
	8	2		1				4	
			4	6		2	9		
		5				3		2	8
			9	3				7	4
		4			5			3	6
	7		3		1	8			

4	3	5	2	6	9	7	8	1
6	8	2	5	7	1	4	9	3
1	9	7	8	3	4	5	6	2
8	2	6	1	9	5	3	4	7
3	7	4	6	8	2	9	1	5
9	5	1	7	4	3	6	2	8
5	1	9	3	2	6	8	7	4
2	4	8	9	5	7	1	3	6
7	6	3	4	1	8	2	5	9

If there is no solution, we will not ever be convinced either.

What does **verify** mean?

Consider a maze.

It might be hard to solve...

What does **verify** mean?

But if you give me the solution, I can verify that it's a valid solution.

If there is no solution, we will not ever be convinced either. 20

The Complexity Class NP

Definition:

NP is the set of all decision problems whose yes-instances can be verified in polynomial time.

Common mistakes: NP does not stand for "Not Polynomial"

- NP stands for Nondeterministic Polynomial"
- We will not talk about non-determinism in this class though.

"A better name would have been **VP: verifiable** in polynomial time." -Clyde Kruskal

The Complexity Class NP

Definition:

 NP is the set of all decision problems whose yes-instances can be verified in polynomial time.

Formally:

- For any problem L, an efficient verifier Verify-L for L is such that
 - o x is a "yes" instance $\Leftrightarrow \exists C \forall erify L(x, C)$ accepts
 - o x is a "no" instance \Leftrightarrow $(\forall C)$ Yerify-L(x, C) rejects (follows from above)
 - Verify-L(x, C) runs in poly(|x|) time
- NP is the set of all decision problems that have efficient verifiers
- If Verify-L(x, C) accepts, then C is called a certificate.

Intuition:

- If the input <u>has a solution</u>, then we can efficiently verify that given some <u>additional information</u>
- If there is <u>no solution</u>, then no additional information (even maliciously produced) could convince us

Nondeterministic Turing Machines

Definition:

A nondeterministic Turing machine is defined in the expected way. At any point in a computation, the machine may proceed according to several possibilities. The transition function for a nondeterministic Turing machine has the form

$$\delta: Q \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}).$$

The computation of a nondeterministic Turing machine is a tree whose branches correspond to different possibilities for the machine. If some branch of the computation leads to the accept state, the machine accepts its input.

The Running Time of a Deterministic Turing Machine

Definition:

Let M be a deterministic Turing machine that halts on all inputs. The *running time* or *time complexity* of M is the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where f(n) is the maximum number of steps that M uses on any input of length n. If f(n) is the running time of M, we say that M runs in time f(n) and that M is an f(n) time Turing machine. Customarily we use n to represent the length of the input.

The Running Time of a Nondeterministic Turing Machine

Definition:

Let N be a nondeterministic Turing machine that is a decider. The **running time** of N is the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where f(n) is the maximum number of steps that N uses on any branch of its computation on any input of length n, as shown in the following figure.

Measuring Deterministic and Nondeterministic Running Time

Equivalent Definition of NP

Theorem:

A language is in NP if and only if some nondeterministic polynomial time Turing machine decides it.

Prove that a problem is in **NP:**Showing efficient verifiers

Traveling Salesperson Problem (TSP)

Input: n vertices, distances between each pair of vertices, budget b

Output: Is there a length ≤b cycle containing every vertex exactly once?

TSP is in NP

Recall:

NP is the set of all decision problems **L** that have efficient verifiers **Verify-L**

- Verify-L(x, C) runs in poly(|x|) time

Example: TSP:

- Certificate C: Length ≤b cycle with all vertices.
- Efficient verifier Verify-TSP((G, b), C):
 - o Is C a cycle in G?
 - O Does C contain every vertex in G exactly once?
 - o Do the edge weights of **C** add up to ≤**b**?

TSP is in NP

Recall:

NP is the set of all decision problems **L** that have an efficient verifier **Verify-L**

- Verify-L(x, C) runs in poly(|x|) time

Example: TSP:

- Certificate C: Length ≤b cycle with all vertices.
- Efficient verifier Verify-TSP((G, b), C):
 - o Is C a cycle in G?
 - O Does C contain every vertex in G exactly once?
 - o Do the edge weights of **C** add up to ≤**b**?

TSP is in NP

Recall:

NP is the set of all decision problems **L** that have an efficient verifier **Verify-L**

- x is a "yes" instance

 ∃C Verify-L(x, C) accepts
- Verify-L(x, C) runs in poly(|x|) time

Example: TSP:

- Certificate C: Length ≤b cycle with all vertices.
- Efficient verifier Verify-TSP((G, b), C):
 - o Is C a cycle in G?
 - O Does C contain every vertex in G exactly once?
 - o Do the edge weights of **C** add up to ≤**b**?

To show that a problem is in **NP**, you need to specify (e.g. for the HW):

- 1. Certificate
- 2. Efficient verifier
- 3. Proof of correctness of verification algorithm

Example: TSP:

- 1. Certificate C: Length ≤b cycle containing every vertex.
- 2. Efficient verifier: Verify-TSP((G, b), C):

```
Is Ca cycle in G?
```

Does C contain every vertex in G exactly once?

Do the edge weights of **C** add up to **≤b**?

Accept if all 3 answers are "yes"

(you'd need to analyze the running time)

3. TSP "yes" instance ⇒ exists a length ≤**b** cycle containing every vertex ⇒ \exists **C** Verify-TSP(⟨**G**, **b**⟩, **C**) accepts

TSP "no" instance \Rightarrow no length \leq **b** cycle containing every vertex $\Rightarrow \forall C \text{ Verify-TSP}(\langle G, b \rangle, C)$ rejects

Useful fact: Certificate has poly length

Reminder:

- For any problem L, an efficient verifier Verify-L for L is such that
 - ∘ \mathbf{x} is a "yes" instance $\Leftrightarrow \exists \mathbf{C} \text{ Verify-L}(\mathbf{x}, \mathbf{C})$ accepts
 - Verify-L(x, C) runs in poly(|x|) time
- If Verify-L(x, C) accepts, then C is called a certificate.

Claim: without loss of generality, we can assume $|C| \le \text{poly}(|x|)$. Proof:

- Verify-L(x, C) runs in poly(x) time.
- It reads only poly(x) symbols of C. So, we can remove the rest.

Subset Sum is in NP

Input: a set S of integers and a target t.

Output: Is there a subset of the integers in S whose sum is exactly t?

Prove that Subset Sum is in **NP**.

- Certificate: a subset ⊆ S whose sum is t.
- Verifier: Verify(S, t, C): Check that $C \subseteq S$ and the sum of C is t.
- Analysis:
 - o (S, t) is a "yes" instance $\Leftrightarrow \exists C \text{ Verify}(S, t, C)$ accepts
 - Verify(x, C) runs in poly(|S| log t) time

Terminology on Satisfiability (SAT)

A **Boolean formula** Φ is made up of:

- "literals": variables and their negations (e.g. x, y, z, $\neg x$, $\neg y$, $\neg z$)
- OR: V
- AND: Λ

Example:

$$\Phi 1 = (x \vee y) \wedge (\neg y \vee x \vee \neg z) \wedge (\neg x \vee (y \wedge \neg z))$$

Φ is **satisfiable** if

- \exists a true/false assignment **A** to the variables so that $\Phi(\mathbf{A}) = \text{true}$
- For example, Φ1 is satisfiable.
 - o Assign x = F, y = T, z = F

SAT is in NP

Input: A Boolean formula Φ

Output: Is Φ satisfiable?

Prove that SAT is in **NP**.

- Certificate: a true/false assignment C to variables where $\Phi(C)$ = true
- Verifier: Verify(Φ , C): Check that Φ (C) = true
- Analysis:
 - o Φ is a "yes" instance \Leftrightarrow ∃C Verify(Φ , C) accepts
 - o Verify(Φ , C) runs in poly($|\Phi|$) time

THE Major Open Problem in Computer Science

P≟NP

"Is every efficiently verifiable problem also efficiently solvable?"

"If P = NP, then the world would be a profoundly different place than we usually assume it to be. There would be no special value in 'creative leaps', no fundamental gap between solving a problem and recognizing the solution once it's found."

- Scott Aaronson

Two Possible Worlds

