Department of Computer Science University of Cyprus

EPL342 – Databases

Lecture 10: RA III

RA Advanced + Examples

(Chapter 8.4-8.5, Elmasri-Navathe 7ED)

Demetris Zeinalipour

http://www.cs.ucy.ac.cy/courses/EPL342

Επισκόπηση Τελεστών Σχεσιακής Άλγεβρας που Καλύφθηκαν

- Η Σχεσιακή Άλγεβρα παρέχει τους τελεστές (operators):
 - Μοναδιαίοι Σχεσιακοί Τελεστές (Unary Relational Ops)
 - Επιλογή (Select, σ (sigma))
 - Προβολή (Project, π (pi))
 - Μετονομασία (Rename, ρ (rho))
 - Σχεσιακοί Τελεστές από την Θεωρία Συνόλων
 - Ένωση (UNION, ∪), Τομή (INTERSECTION, ∩), Διαφορά Συνόλων (DIFFERENCE ή MINUS, −)
 - Καρτεσιανό Γινόμενο (CARTESIAN PRODUCT, x)
 - Δυαδικοί Σχεσιακοί Τελεστές (Binary Relational Ops)
 - **Συνένωση** (JOIN, ▷<<)(υπάρχουν πολλαπλές εκδοχές)
 - − Εφόσον το Σ δεν υποστηρίζεται σαν σύμβολο θα χρησιμοποιείται το ⊗
 - Διαίρεση (DIVISION, /)
 - Επιπλέον Σχεσιακοί Τελεστές
 - Συναρτήσεις Συνάθροισης AGGREGATE FUNCTIONS (π.χ., SUM, COUNT, AVG, MIN, MAX)
 - Εξωτερική Συνένωση (OUTER JOINS) sity of Cyprus) ©

Περιεχόμενο Διάλεξης

Κεφάλαιο 8: Προχωρημένη Σχεσιακή Άλγεβρα

- 8.3) Δυαδικοί Σχεσιακοί Τελεστές: Διαίρεση,
 Συμβολισμός για Δένδρα Επερωτήσεων
- 8.4) Επιπλέον Σχεσιακές Πράξεις:
 - Συναθροιστικές Συναρτήσεις (Aggregate Functions)
 - Γενικευμένη Προβολή (Generalized Projection)
 - Ομαδοποίηση (Grouping)
 - Πράξεις Αναδρομικής Κλειστότητας (Recursive Closure)
 - Πράξεις Εξωτερικής Συνένωσης (Outer Join)
- 8.5) Παραδείγματα Επερωτήσεων σε Σχεσιακή Άλγεβρα με το Σχήμα Βάσης University και το Σχήμα Sailors-Reserve-Boats

Δυαδικοί Σχεσιακοί Τελεστές Διαίρεση (Division)

• Ο τελεστής της Διαίρεσης (Division, /), παρόλο που ΔΕΝ υποστηρίζεται σε πραγματικές γλώσσες βάσεων δεδομένων*, είναι χρήσιμος στο πλαίσιο της Σχεσιακής Άλγεβρας για να διατυπώσει επερωτήσεις της μορφής:

Βρες τους Suppliers που προσφέρουν <u>ΌΛΑ</u> τα Parts □.χ., (όπως προσδιορίζονται τα Parts).

	•				
sno	pno		PARTS		
s1	p1				0.10.0
s1	p2		pno		sno
s1	рЗ	/	p2	_	s1
s1	p4	/	<u> </u>	_	31
s2	p1		p4		s4
s2	p2				
s3	p2				
s4	p2				
s4	p4				

^{*} Στην συνέχεια θα δούμε πως ο τελεστής μπορεί να υλοποιηθεί με χρήση ₁₀₋₄ υπαρκτών τελεστών της **SQL** (δηλ., αντίστοιχους τελεστές των σ-π-x)

Δυαδικοί Σχεσιακοί Τελεστές

A/B3

Διαίρεση (Division) αιρετέος (nominator)

λιαιρετεος (non				
pno				
p1				
p2				
р3				
p4				
p1				
p2				
p2				
p2				
p4				
	pno p1 p2 p3 p4 p1 p2 p2 p2			

1	pno	
/	p2	
	B1	
	Α πάντης	Ծ η;
	sno	
	s1	
	s2	
	s3	
	s4	
ļ		

A/B1

Διαιρέτ	ες (den	ominators)		
1	pno	1	pno	
•	p2		p1	
	p4		p2	
	B2	l	p4	
Aı	τάντησ	·η;	B3	<u> </u>
	sno	A-	πάντης	τη ;
	s1		sno	
	s4		s1	

A/B2

Αναπαράσταση Διαίρεσης με Ποσοδείκτες $A / B = \{ x \mid \exists (x,y) \in A \forall y \in B \}$

10-5

Expressing A/B Using Basic Operators

- Σημειώστε ότι η διαίρεση (/) ΔΕΝ είναι βασικός τελεστής αλλά αποτελεί βολική συντομογραφία
 - − Το ίδιο ισχύει και για την **Συνένωση (⊗)**, θυμηθείτε ότι $\mathbf{R} \otimes_{\mathbf{e}} \mathbf{S} = \sigma_{\mathbf{e}} (\mathbf{R} \times \mathbf{S})$.
 - Ωστόσο η συνένωση είναι πραγματικά χρήσιμη (για αυτό υλοποιείται από από την SQL ως ξεχωριστός τελεστής)
- Εφόσον η διαίρεση δεν υπάρχει ως τελεστής σε πραγματικές γλώσσες, ποια ακολουθία τελεστών σ-π-χ θα μας επέστρεφε το ίδιο λογικό αποτέλεσμα;
- Έκφραση Διαίρεσης με τελεστές σ-π-χ

$$A / B = \pi_{x}(A) - \pi_{x}((\pi_{x}(A) \times B) - A)$$

Η επόμενη διαφάνεια εξηγεί την πιο πάνω έκφραση

Δυαδικοί Σχεσιακοί Τελεστές Διαίρεση (Division)

- A / B = $\pi_x(A) \pi_x((\pi_x(A) \times B) A)$ = all_results – disqualifying_results
- all_results: Όλες οι δυνατές πλειάδες του αποτελέσματος
 - $\pi.\chi.$, όλοι οι suppliers $\pi_x(A) = \{ s_1, s_2, s_3, s_4 \}$
- Από το all_results πρέπει να αφαιρέσουμε τους ακατάλληλους suppliers (disqualifying_results)
 - αυτούς που ΔΕΝ προσφέρουν **ΟΛΑ** τα parts **y∈B.** (δηλ., s_2 , s_3)

Η επεξήγηση του πιο πάνω ακολουθεί διαγραμματικά

disqualifying_results συμβολίζεται με [π_x((π_x(A) × B) − A)]

	X	У
	s1	p1
	s1	p2
	s1	рЗ
	s1	p4
	s2	p1
/	s2	p2
	7 s3	p2
/	s4	p2
	s4	р4

y p2 p4

	_					
					X	У
	74				-s1	 p2
	X			·	s1	 p4
	s1		У		-s2	p2
	62		p2		s2	p4
	s2	×	μΖ		- s3	p2
Π_{V}	s3		p4			
-					s3	p4
	s4		В		- s4	- p2 -
	$\pi_{x}(A)$	()			- s4	p4
					π /Λ	
				, _	(H)XII	/ ^, P/
	, - 0/	λοι οι Δ	γηνατα	OI ZUV	ουασ	µoi 🟓

x y
s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2
s3 p2
s4 p4
Πραγματικοί
Συνδυασμοί

Disqualifying_ results

Τέλος, A/B = {s1,s2,s3,s4} - {s2,s3} = {s1, s4}

Δένδρο Επερώτησης (Query Tree)

• Δένδρο Επερώτησης (Query Tree)

Είναι μια δενδρική δομή που αντιστοιχεί σε μια έκφραση της Σχεσιακής Άλγεβρας η οποία δείχνει με ποια ακολουθία πρέπει να εκτελεστούν οι τελεστές

PROJECT

Δένδρο Επερώτησης (Query Tree)

- Ένα Δένδρο Επερώτησης (Query Tree) ονομάζεται και Δένδρο Αποτίμησης Επερωτήσεων (Query Evaluation Tree)
- Η βάση δεδομένων επιλεγεί συνήθως μόνο τα αριστεροβαθή δένδρα (αυτά στα οποία το δεξί παιδί είναι σχέση εισόδου
 - γιατί με αυτό τον τρόπο τα αποτελέσματα μπορεί να σωληνώνονται μεταξύ τελεστών (pipelined)
- Σημειώστε ότι υπάρχουν πολλά τέτοια πιθανά δένδρα n!, όπου n ο αριθμός των σχέσεων (διάταξη χωρίς επανατοποθέτηση)

Επιπλέον Σχεσιακοί Τελεστές (Additional Relational Operators)

- Η σχεσιακή άλγεβρα, όπως προτάθηκε δεν είχε πρόνοιες για κάποια είδη χρήσιμων πράξεων, π.χ.,
 - Συναθροιστικές Συναρτήσεις (Aggregate Functions)
 - Εύρεση **απλών στατιστικών** των πινάκων (π.χ., μέση ηλικία, μέγιστος βαθμός φοιτητή, αριθμός φοιτητών σε μια σχέση κτλ.)
 - Ομαδοποίηση (Grouping) των συναθροιστικών αποτελεσμάτων (π.χ., ανά Τμήμα)
 - Πράξεις Αναδρ. Κλειστότητας (Recursive Closure) για εύρεση απαντήσεων αναδρομικά σε μια σχέση
 - Πράξεις Εξωτερικής Συνένωσης (Outer Join) για συμπερίληψη πλειάδων που δεν συνενώνονται
- Πολλές από τις πιο πάνω πράξεις υποστηρίζονται σήμερα και τόσο στο τυπικό επίπεδο (δηλ., στη Σχεσιακή Άλγεβρα όσο και στο πρακτικό επίπεδο (δηλ., στη SQL, QBE, κτλ.)

Επιπλέον Σχεσιακοί Τελεστές

(Συναθροιστικές Συναρτήσεις)

• Συναθροιστικές Συναρτήσεις (Aggregate Functions): Προσδιορίζουν μαθηματικές πράξεις πάνω σε συλλογές τιμών της βάσης:

 $\mathcal{F}_{\text{<function-list>}}$ (Relation)

- Function List: MIN, MAX, SUM, COUNT, AVERAGE, ...
- Παράδειγμα: Βρες τη μέση ηλικία των υπάλληλων $\mathcal{F}_{Average(age)}$ (EMPLOYEE)
- Η συνάρτηση COUNT χρησιμοποιείται για να μετριούνται πλειάδες ή τιμές.
 - Δεν μετριούνται τα **NULL**.
 - Δεν μετριούνται τα Διπλότυπα (εφόσον δεν υπάρχουν στην Σχεσιακή Άλγεβρα)
 - Στην SQL, όπου οι σχέσεις (πίνακες) ενδέχεται να περιέχουν διπλότυπα (duplicates) χρησιμοποιείται και η έννοια του COUNT DISTINCT για να ΜΗΝ μετριούνται ξανά τα διπλότυπα στα πολυσύνολα.

Επιπλέον Σχεσιακοί Τελεστές (Συναθροιστικές Συναρτήσεις)

- Παραδείγματα Χρήσης του Τελεστή Συναθροιστικής Συνάρτησης F
 - $\mathcal{F}_{MAX(Salary)}$ (EMPLOYEE) επιστρέφει την μέγιστη τιμή του πεδίου Salary που εμφανίζεται στη σχέση EMPLOYEE.
 - $\mathcal{F}_{\text{MIN(Salary)}}$ (EMPLOYEE) επιστρέφει την **ελάχιστη τιμή** του πεδίου Salary που εμφανίζεται στη σχέση EMPLOYEE.
 - $\mathcal{F}_{\text{SUM(Salary)}}$ (EMPLOYEE) επιστρέφει το άθροισμα του πεδίου Salary που εμφανίζεται στη σχέση EMPLOYEE.
 - F_{COUNT(SSN), AVERAGE(Salary)} (EMPLOYEE) επιστρέφει τον αριθμό των υπαλλήλων και τον μέσο όρο των μισθών ΤΟυς

Επιπλέον Σχεσιακοί Τελεστές

(Ομαδοποίηση με Συναθροιστικές Συναρτήσεις)

Ομαδοποίηση (Grouping)

- Οι συναθροιστικές συναρτήσεις F μπορεί να εφαρμόζονται σε επί μέρους (ομαδοποιημένα) υποσύνολα μιας σχέσης
 - Π.χ., Βρες τον Μέσο Μισθό ανά Τμήμα (αντί για όλη την εταιρεία).
- Ο τελεστής της συνάθροισης επεκτείνεται ως ακολούθως:

<grouping-list> \mathcal{F} <function-list>(Relation)

 Το αποτέλεσμα περιλαμβάνει τα πεδία που προσδιορίζονται στο function-list και το επιπλέον πεδίο(α) του grouping-list

Παράδειγμα

- Ερώτηση: Για κάθε τμήμα, ανάκτησε το DNO, τον αριθμό των υπαλλήλων και τον μέσο μισθό ανά τμήμα
- Απάντηση:

Επιπλέον Σχεσιακοί Τελεστές (Ομαδοποίηση με Συναθροιστικές Συναρτήσεις)

- Εάν θέλουμε μπορούμε να μετονομάσουμε τα αποτελέσματα έτσι ώστε αυτά να έχουν εξειδικευμένα ονόματα γνωρισμάτων
- R(Dno, No_of_employees, Average_sal)

 \leftarrow DNO $\mathcal{F}_{\text{COUNT(SSN), AVERAGE(Salary)}}$ (EMPLOYEE)

EMPLOYE	E				3				
Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

Dno	No_of_employees	Average_sal					
5	4	33250					
4	3	31000					
1	1	55000					

Επιπλέον Σχεσιακοί Τελεστές (Ομαδοποίηση + Επιλογή με Συναθρ. Συναρ.)

Ομαδοποίηση με Επιλογή (HAVING)

Φιλτράρει το αποτέλεσμα μιας ομαδοποίησης

- π.χ., να βρούμε και πάλι τον αριθμό υπαλλήλων και τον μέσο όρο μισθών ανά τμήμα αλλά να τυπώσουμε μόνο τα αποτελέσματα όπου Count>3.
- Στη SQL υπάρχει εξειδικευμένος τελεστής για αυτή τη συχνή λειτουργία ο οποίος ονομάζεται HAVING (θα μελετηθεί αργότερα)
- Στη Σχεσιακή Άλγεβρα μπορεί να λυθεί με συνδυασμό Συναθροιστικής συνάρτησης ακολουθούμενο από επιλογή.
- Το παράδειγμα στην επόμενη διαφάνεια δείχνει πως...

Fname	Minit	Lname	Ssn		Salary	Super_ssn	Dno			Dno	Count (*)	Avg (Salary)	
John	В	Smith	123456789		30000	333445555	5	П	_ -	5	4	33250	1
Franklin	Т	Wong	333445555	1	40000	888665555	5	11	│ ┌╼	4	3	31000	
Ramesh	К	Narayan	666884444	1	38000	333445555	5	11	- - ►	1	1	55000	1
Joyce	Α	English	453453453		25000	333445555	5			Result	of Q24		1
Alicia	J	Zelaya	999887777	1	25000	987654321	4	17					
Jennifer	S	Wallace	987654321	1	43000	888665555	4	1	-				
Ahmad	٧	Jabbar	987987987	1	25000	987654321	4	1_					
James	Е	Bong	888665555	1	55000	NULL	1	Ī					10

Grouping EMPLOYEE tuples by the value of Dno

10-18

Επιπλέον Σχεσιακοί Τελεστές (Ομαδοποίηση + Επιλογή με Συναθρ. Συναρ.)

- Q1: Βρες τα ονόματα όλων των υπαλλήλων με δυο ή περισσότερους εξαρτώμενους (dependents).
- // Καταμέτρηση (COUNT) Εξαρτωμένων κάθε ατόμου
- 1. T1(Ssn, Dcount) $\leftarrow_{ESSN} \mathcal{F}_{COUNT(Dependent_name)}$ (DEPENDENT)
- // Φιλτράρισμα Συναρθροιστικού Αποτελέσματος με Επιλογή
- 2. T2 $\leftarrow \sigma_{Dcount \geq 2}$ (T1)
- // Προβολή Αποτελεσμάτων (μέσω φυσικής συνένωσης πάνω στο SSN)
- 3. RESULT $\leftarrow \pi_{\text{LNAME, FNAME}}(T2 * \text{EMPLOYEE})$

Επιπλέον Σχεσιακοί Τελεστές (Γενικευμένη Προβολή)

• Γενικευμένη Προβολή (Generalized Projection): Επεκτείνει την πράξη της προβολής επιτρέποντας να συμπεριληφθούν στη λίστα της προβολής συναρτήσεις γνωρισμάτων, δηλ.,

 $\pi_{F1, F2, ..., Fn}$ (R), όπου F_i ($i \le n$) μπορεί να είναι συνάρτηση γνωρίσματος ή σταθερά.

- Π.χ., Υποθέστε το ακόλουθο Σχήμα: ΕΜΡLΟΥΕΕ(Ταυτότητα, Μισθός, Αποκοπές, Χρόνια_Υπηρεσίας)
- Ταυτότητα, Μισθός-Αποκοπές, 2000*Χρόνια_Υπηρεσίας, 0.25*Μισθός (EMPLOYEE)
 Απλό Καθαρός Βοημε Φορολογία

- Αναδρομική Κλειστότητα (Recursive or Transitive Closure Operations): Επεξήγηση με Παράδειγμα:
 - Supervisor(123456789) → 333445555
 - Supervisor(333445555) → 888665555
 - Supervisor(888665555) → NULL
- Supervisor(123456789) σε όλα τα πιο πάνω επίπεδα;
 - Απάντηση A= {333445555, 888665555, NULL}
- Το Α ορίζει την αναδρομική κλειστότητα του Supervisor(123456789)

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

- Αναδρομική Κλειστότητα (Recursive Closure Operations)
 - Στη Σχεσιακή Άλγεβρα δεν υπάρχει τελεστής που να υποστηρίζει αυτή την πράξη.
 - Μπορούμε ωστόσο να το **υποστηρίξουμε** με μια **σειρά συνενώσεων** (δες επόμενη διαφάνεια).
 - Σε SQL3, που θα δούμε αργότερα, θα είναι δυνατό να υλοποιηθεί με κάποιο διαδικαστικό τρόπο, με χρήση επαναλήψεων, αλλά όχι μέσω κάποιου εξειδικευμένου τελεστή.
 - Μια ιδέα είναι η χρήση του αλγορίθμου Floyd-Warshall, το οποίο βρίσκει το ελάχιστο μονοπάτι μεταξύ οποιονδήποτε κορυφών(και κατ' επέκταση όλα τα δυνατά ζεύγη)

10-22

• Αναδρομική Κλειστότητα σε Σχεσιακή Άλγεβρα

- Ερώτημα (Q5): Βρες τους υφιστάμενους (supervisees) του James Borg μέχρι 2 επίπεδα κάτω
- Απάντηση:
- 1. BORG_SSN $\leftarrow \pi_{SSN}(\sigma_{Fname="James" AND Lname="Borg"}(EMPLOYEE))$
- 2. SUPERVISION(SSN1,SSN2) $\leftarrow \pi_{SSN, Super_ssn}$ (EMPLOYEE)
- // Υφιστάμενοι του James Borg σε **επίπεδο 1**
- 3. RESULT1(SSN)= π_{SSN1} (SUPERVISION $\otimes_{SSN2=SSN}$ BORG_SSN))
- // Υφιστάμενοι των Άμεσα Υφιστάμενων του James Borg (σε επίπεδο 2)
- 4. RESULT2(SSN)= π_{SSN1} (SUPERVISION $\otimes_{SSN2=SSN}$ RESULT1))
- RESULT ← RESULT2 ∪ RESULT1

BORG SSN: 888665555

(SSN) (SUPERSSN)

RESULT

(0014)	(001 1110014)
SSN1	SSN2
123456789	333445555
333445555	888665555
999887777	987654321
987654321	888665555
666884444	333445555
453453453	333445555
987987987	987654321
	SSN1 123456789 333445555 999887777 987654321 666884444 453453453

Υφιστάμενοι Borg Επιπέδου 1

RESULT 1	SSN				
	333445555				
	987654321				

Υφιστάμενοι Borg Επιπέδου 2

RESULT 2	SSN
	123456789
	999887777
	666884444
	453453453
	987987987

RESULT2 ∪ **RESULT1**

SSN 123456789

10-24

Επιπλέον Σχεσιακοί Τελεστές

ΕΙΠΠΛεόν Ζχεσιακόι Γελεστες (Εξωτερική Συνένωση, Outer Join $=\otimes$, \otimes =, $=\otimes$ =)

• Εξωτερική Συνένωση (Outer Join) – Παράδειγμα

|Sailors|=5

sid rating sname age 22 45.0 dustin 28 **35.0** yuppy 31 lubber 55.5 35.0 guppy 10 35.0 rusty

	Keser	ves =6
<u>sid</u>	<u>bid</u>	day
28	103	12/4/21
28	103	11/3/21
31	101	10/10/21
31	102	10/12/21
31	101	10/11/21
58	103	11/12/21

- Σε μια **Θ-συνένωση** το αποτέλεσμα περιλαμβάνει **ΜΟΝΟ** τις πλειάδες που έχουν το ίδιο γνώρισμα συνένωσης (δηλ., το sid):
 - SAILOR⊗_{sid=sid}RESERVES = {(28, yuppy, 9, 35.0, 103, 12/4/21), (28, yuppy, 9, 35.0, 103, 11/3/21), (31, lubber, 8, 55.5, 101, 10/10/21), (31, lubber, 8, 55.5, 102, 10/12/21), (31, lubber, 8, 55.5, 101, 10/11/21), (58, rusty, 10, 35.0, 103, 11/12/21)}
- Συχνά, θέλουμε να έχουμε στο αποτέλεσμα ΟΛΕΣ τις πλειάδες της **ΑΡΙΣΤΕΡΗΣ σχέσης**, δηλ., να περιλαμβάνει και τις πλειάδες (22,dustin,7,45.0,NULL,NULL), (44,guppy,5,35.0,NULL, NULL)
 - Το πιο πάνω είναι παράδειγμα Αριστερής Εξ. Συν. (left outer join, =⊗)
 - Κατά αντίστοιχο τρόπο δημιουργούνται και οι έννοιες της δεξιάς (right outer join, ⊗=) και Πλήρης Εξωτερικής συνένωσης (full outer join,=⊗=)
 10-25

Επιπλέον Σχεσιακοί Τελεστές (Εξωτερική Συνένωση, Outer Join $=\otimes$, $\otimes=$, $=\otimes=$)

EMPLOYEE =⊗_{DNO=Dnumber} **DEPARTMENT_SUB**

EMPLOYEE

LIVITLOTE	_				3				
Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	2
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	2
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	2
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	2
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	2
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

Τυπικά, το σενάριο αυτό δεν είναι εφικτό λόγω του κανόνα αναφορικής ακεραιότητας, προκύπτει ωστόσο σε συνένωση μη-κλειδιων

DEPARTMENT_SUB

<u>DNO=Dnum</u>ber

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

Η εξωτερική συνένωση είναι χρήσιμη για παραγωγή αποτελεσμάτων που θέλουν στο αποτέλεσμα όλες τις εγγραφές μιας οντότητας ανεξάρτητα εάν συνενώνονται ή όχι όχι ΣείπαΙἰρο

RESULT

Fname	Minit	Lname	Dname
John	В	Smith	NULL
Franklin	Т	Wong	Research
Alicia	J	Zelaya	NULL
Jennifer	S	Wallace	Administration
Ramesh	K	Narayan	NULL
Joyce	Α	English	NULL
Ahmad	٧	Jabbar	NULL
James	E	Borg	Headquarters

Παραδείγματα Σχεσιακής Άλγεβρας (Σχήμα UNIVERSITY)

EMPLOYEE

DEPARTMENT

Dname Dnumber Mgr_ssn Mgr_start_date

DEPT_LOCATIONS

Dnumber	Dlocation

PROJECT

Pname	Pnumber	Plocation	Dnum
1 1101110			

WORKS ON

Essn Pno Hours

DEPENDENT

Essn Dependent_name	Sex Bdate	Relationship
---------------------	-----------	--------------

- Q1: Ανάκτησε το name και address όλων των υπαλλήλων που δουλεύουν για το 'Research' department.
- 1. RESEARCH_DEPT $\leftarrow \sigma_{\text{DNAME='Research'}}$ (DEPARTMENT)
- 2. RESEARCH_EMPS ← (RESEARCH_DEPT ⊗ DNUMBER= DNO EMPLOYEE)
- 3. RESULT $\leftarrow \pi_{FNAME, LNAME, ADDRESS}$ (RESEARCH_EMPS)

^{*} Η σειρά των σ-π-⊗ θα μπορούσε να αλλάξει λαμβάνοντας πίσω το ίδιο αποτέλεσμα (π.χ., η σειρά των joins στο 2)

- Q3: Βρες το όνομα των υπαλλήλων που δουλεύουν πάνω σε όλα τα projects που ελέγχονται από το department 5.
 - 1. DEPT5_PROJS(Pno) $\leftarrow \pi_{Pnumber}(\sigma_{DNUM=5}(PROJECT))$
 - 2. EMP_PROJ(Ssn, Pno) $\leftarrow \pi_{ESSN, Pno}(WORKS_ON)$
 - 3. RESULT_EMP_SSNS ← EMP_PROJ / DEPT5_PROJS
 - 4. RESULT $\leftarrow \pi_{LNAME, FNAME}$ (RESULT_EMP_SSNS * EMPLOYEE)

^{*} Natural join

- Q4: Δημιουργήστε μια λίστα από projects τα οποία περιλαμβάνουν ένα υπάλληλο με το επίθετο "Smith", ως υπάλληλο ή* ως manager του τμήματος που ελέγχει το εν λόγω project.
 - Αναλύοντας το πιο πάνω ερώτημα βρίσκουμε ότι το αποτέλεσμα θα πρεπει να είναι της μορφής (δηλ., να είναι ένωση αποτελεσμάτων)
 π_{Pnumber}(SMITH_WORKER_PROJS USMITH_MGR_PROJS)
 - Στην επόμενη διαφάνεια δείχνουμε αναλυτικά την απάντηση.

* Εάν το ή ήταν συμμετρική διάφορα (δηλαδή **είτε...ή**) τότε θα έπρεπε να εφαρμόσουμε την ισοδυναμία **R** (**B S =** (**R - S**) (**S - - R**)

 Q4: Δημιουργήστε μια λίστα από projects τα οποία περιλαμβάνουν ένα υπάλληλο με το επίθετο "Smith", ως υπάλληλο ή ως manager του τμήματος που ελέγχει το εν λόγω project.

SMITHS $\leftarrow \pi_{ssn}(\sigma_{Lname='Smith'}(EMPLOYEE))$

SMITH_WORKER_PROJS $\leftarrow \pi_{Pno}(SMITHS \otimes_{SSN=ESSN}WORKS_ON)$

 $SMITH_MNG_DEPTS \leftarrow \Pi_{DNumber}(SMITHS \otimes_{SSN=MGR SSN}DEPARTMENT)$

 $SMITH_MGR_PROJS(PNO) \leftarrow \pi_{Pnumber}(SMITH_MNG_DEPTS)$

⊗_{DNumber=DNum}PROJECT)

10-31

Παραδείγματα Σχεσιακής Άλγεβρας Sailors-Reserve-Boats

Βρες τα ονόματα των sailors που κράτησαν μια κόκκινη βάρκα

Sailors (sid:integer, sname:string, rating:integer, age:real)
Boats (bid:integer, bname:string, color:string)
Reserves (sid:integer, bid:integer, day:date)

$$\pi_{sname}((\sigma_{color='red'}, Boats) \bowtie Reserves \bowtie Sailors)$$

❖ Μια πιο αποδοτική διατύπωση*:

$$π$$
 $sname$ $(π$ sid $(π$ bid $σ$ $color='red'$ $Boats) \bowtie Res) \bowtie Sailors)$

- * Είναι πιο αποδοτικό διότι τα ενδιάμεσα αποτελέσματα είναι μικρότερα
 - π.χ., στο π_{bid}(σ_{color=«red»}Boats) διατηρούμε ως ενδιάμεσο αποτέλεσμα μόνο το bid αντί και τα τρία πεδία 42: Databases Demetris Zeinalipour (University of Cyprus) ©