Лекции по курсу *"Математическая Статистика"* Ибрагимов Д. Н.

Contents

Многомерное нормальное распределение 5					
Зам	ечание	5			
1.1	Лемма 1	5			
1.2	Определение 1	5			
1.3	Лемма 2	5			
1.4	Лемма 3	6			
1.5	Лемма 4	6			
	note	6			
1.6	Определение 2	6			
Зам	ечание	6			
1.7	Лемма 5	7			
		7			
Зам		7			
1.8		7			
		7			
	• •	8			
Замо		8			
0 01112		Ĭ			
Teop	рема о нормальной корреляции	9			
2.1		9			
2.2		9			
		9			
	2.2.2 Свойство 2	9			
	2.2.3 Свойство 3	9			
		9			
		9			
2.3		10			
		10			
Зам		10			
		10			
2.5	★ 111	10			
		10			
		11			
2.7		11			
		11			
Зам		12			
0 01112		_			
Вид	ы сходимости последовательностей случайных величин	13			
3.1	•	13			
3.2	•	13			
3.3		13			
3.4		13			
3.5		13			
	3ами 1.1 1.2 1.3 1.4 1.5 1.6 3ами 1.7 3ами 2.1 2.2 2.3 3ами 2.4 2.5 2.6 2.7 3ами 2.4 2.5 2.6 2.7 3ами 3.1 3.2 3.3 3.4	Замечание 1.1 Лемма 1 1.2 Определение 1 1.3 Лемма 2 1.4 Лемма 3 1.5 Лемма 4 1.6 Определение 2 3амечание 1.7 Лемма 5 Доказательство Замечание 1.8 Определение 3 1.8.1 Доказательство леммы 3 1.8.2 Доказательство леммы 4 Замечание 1.2 Определение 1 2.2 Основные свойства условного М. О. 2.2.1 Свойство 1 2.2.2 Свойство 2 2.2.3 Свойство 3 2.2.4 Свойство 4 2.2.5 Свойство 5 2.3 Лемма 1 1 Доказательство 3 Замечание 1 2.4 Определение 2 1 2.5 Определение 3 1 2.6 Теорема 1 1 Доказательство 3 Замечание 1 2.7 Теорема 2 (О пормальной корреляции) 1 Доказательство 3 Замечание 1 2.7 Теорема 2 (О пормальной корреляции) 1 Доказательство 3 Замечание 1 2.0 Пределение 2 1 3.0 Пределение 3 1 3.1 Определение			

	3.6	Пример 2
	3.7	Пример 3
	3.8	Пример 4
	3.9	Пример 5
	Заме	чание
	3.10	Лемма 1
		Доказательство
	3.11	Лемма 2 (Неравенство Маркова)
		Доказательство
	3.12	Следствие 1
		Доказательство
	3.13	Следствие 2 (Неравенство Чебышёва)
		Доказательство
	3.14	Лемма 3
		Доказательство
	3.15	Теорема 1 (Бореля — Кантелли) 1
	0,10	Доказательство
	3 16	Лемма 4
	3.10	Доказательство
	Заме	чание
	Oam	-turne
4	Зако	н больших чисел
	4.1	Определение 1
	4.2	Определение 2
	4.3	Теорема 1 (Закон Больших Чисел Чебышёва)
		Доказательство
	4.4	Теорема 2 (Закон Больших Чисел Колмогорова)
	Заме	чание
	4.5	Теорема 3
		1copenius
		Доказательство
	4.6	±
	4.6	Доказательство
	4.6 4.7	Доказательство 20 Следствие 1 21 Доказательство 22
	4.7	Доказательство 20 Следствие 1 20 Доказательство 20
	4.7	Доказательство 20 Следствие 1 20 Доказательство 20 Теорема 4 20
	4.7 Заме	Доказательство 26 Следствие 1 26 Доказательство 26 Теорема 4 26 чание 26
	4.7 Заме	Доказательство 20 Следствие 1 20 Доказательство 20 Теорема 4 20 чание 20 Следствие 2 20
5	4.7 Заме 4.8	Доказательство 20 Следствие 1 20 Доказательство 20 Теорема 4 20 чание 20 Следствие 2 20 Доказательство 20 тральная предельная теорема (ЦПТ) 20
5	4.7 Заме 4.8	Доказательство 20 Следствие 1 20 Доказательство 20 Теорема 4 20 чание 20 Следствие 2 20 Доказательство 20 гральная предельная теорема (ЦПТ) 25 чание 25
5	4.7 Заме 4.8	Доказательство 20 Следствие 1 20 Доказательство 20 Теорема 4 20 чание 20 Следствие 2 20 Доказательство 20 гральная предельная теорема (ЦПТ) 20 чание 20 Определение 1 20
5	4.7 Заме 4.8 Цен Заме	Доказательство 20 Следствие 1 20 Доказательство 20 Теорема 4 20 чание 20 Следствие 2 20 Доказательство 20 гральная предельная теорема (ЦПТ) 25 чание 25
5	4.7 Заме 4.8 Цен Заме 5.1	Доказательство 20 Следствие 1 20 Доказательство 20 Теорема 4 20 чание 20 Следствие 2 20 Доказательство 20 гральная предельная теорема (ЦПТ) 20 чание 20 Определение 1 20
5	4.7 Заме 4.8 Цен Заме 5.1 5.2	Доказательство 26 Следствие 1 26 Доказательство 26 Теорема 4 26 чание 26 Следствие 2 26 Доказательство 27 гральная предельная теорема (ЦПТ) 27 чание 27 Определение 1 27 Лемма 1 28
5	4.7 Заме 4.8 Цен Заме 5.1 5.2	Доказательство 20 Следствие 1 20 Доказательство 20 Теорема 4 20 чание 20 Следствие 2 20 Доказательство 20 гральная предельная теорема (ЦПТ) 20 чание 20 Определение 1 20 Лемма 1 20 Лемма 2 20

	5.5	Определение 2	3
	5.6	Теорема 1 (Центральная предельная)	3
		Доказательство	4
	5.7	Следствие 1 (Теорема Муавра - Лапласа)	4
		Доказательство	4
	5.8	Пример 1	5
	5.9	Теорема 2 (Ляпунова)	5
	Заме	ечание	5
	5.10	Теорема 3 (Неравенство Берри-Эссеена)	5
	Заме	ечание	6
	5.11	Пример	6
6		орка и ее характеристики 2	
	6.1	Определение 1	
	6.2	Определение 2	
	6.3	Определение 3	
	Заме	ечание	
	6.4	Определение 4	
	6.5	Определение 5	
	Заме	ечание	
	6.6	Определение 6	7
	6.7	Определение 7	7
	6.8	Лемма 1	8
		Доказательство	8
	6.9	Следствие 1	8
	6.10	Определение 8	8
	6.11	Теорема 1 (Мостеллера)	8
	6.12	Определение 9	8
		ечание	8
	6.13	Свойства $\hat{F}_n(x)$	9
		ечание	9
	6.14	Определние 10	0
	Заме	ечание	0
	Выб	ррочные моменты	0
	6.15	Определние 1	0
	6.16	Определение 2	0
	6.17	Определение 3	0
	6.18	Свойства выборочных моментов	1

Источники {-}

• Ивченко Г. И., Медведев Ю. И. "Математическая статистика", изд. "Высшая школа", 1984

- Кибзун А. И., Наумов А. В., Горяинова Е. Р. "Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами", изд "ФИЗМАТЛИТ", 2013
- Панков А. Р., Платонов Е. Н. "Практикум по математической статистике", изд. "МАИ", 2006

1 Многомерное нормальное распределение

Замечание

Вектор $X=(X_1,\dots,X_n)^T$ называется **случайным**, если X_1,\dots,X_n — случайные величины (далее **с.в**), определенные на одном вероятностном пространстве.

Через $M[X] = m_X$ обозначим вектор математического ожидания:

$$M[X] = m_X = \begin{pmatrix} M[X_1] \\ \vdots \\ M[X_n] \end{pmatrix}$$

Через K_x обозначим ковариационную матрицу с.в X:

$$K_X = \begin{pmatrix} \operatorname{cov}(X_1, X_1) & \dots & \operatorname{cov}(X_1, X_n) \\ \vdots & \ddots & \vdots \\ \operatorname{cov}(X_n, X_1) & \dots & \operatorname{cov}(X_n, X_n) \end{pmatrix}$$

1.1 Лемма 1

Пусть $K_X \in \mathbb{R}^{n \times n}$ — ковариационная матрица с.в X. Тогда:

1.
$$K_X \geqslant 0$$
, т.е. $\forall x \in \mathbb{R}^n \setminus \{0\}, x^T K_X x \geqslant 0$;

2.
$$K_X^T = K_X$$

1.2 Определение 1

Случайный вектор $X = (X_1, \dots, X_n)^T$ называется **невырожденным нормальным вектором**:

$$X \sim N(m_X, K_X)$$

если совместная плотность вероятности имеет вид:

$$f_X(x)=((2\pi)^n\det K_X)^{\frac{-1}{2}}\exp\{\frac{-1}{2}(x-m_X)^TK_X^{-1}(x-m_X)\}$$
 где $m_X\in\mathbb{R}^n,K_X\in\mathbb{R}^{n\times n},K_X>0,K_x^T=K_X$

1.3 Лемма 2

Пусть X — невырожденный нормальный вектор с параметрами m_X и K_X . Тогда $M[X]=m_X$, а K_X — корвариационная матрица X. Рассмотрим основные свойства многомерного нормального распределения.

1.4 Лемма 3

Пусть $X \sim N(m_X, K_X), A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m.$ Тогда:

$$Y = AX + b \sim N(m_Y, K_Y),$$

$$m_Y = Am_X + b,$$

$$K_Y = AK_XA^T.$$

1.5 Лемма 4

Пусть $X \sim N(m_X, K_X)$.

Тогда компоненты вектора X **независимы** тогда и только тогда, когда они некоррелированы.

note

Доказательство данных утверждений при помощи аппарата функций распределения и плотности довольно сложно. Поэтому рассмотрим аппарат характеристических функций.

1.6 Определение 2

Пусть $X = (X_1, ..., X_n)^T -$ случайный вектор.

Тогда характеристической функцией называется:

$$\psi_X(\lambda) = M[e^{i\lambda^TX}] = \int\limits_{\mathbb{R}^n} e^{i\lambda^TX} dF_X(x)$$

Замечание

Характеристическая функция определена для любого случайного вектора или с.в. Если с.в **дискретная**, то:

$$\psi_X(\lambda) = \sum_{k=1}^{\infty} e^{i\lambda X_k} p_k$$

Если с.в абсолютно непрерывная, то

$$\psi_X(\lambda) = \int\limits_{\mathbb{D}} e^{i\lambda X} f_X(x) dx$$

В этом случае $\psi_X(\lambda)$ является **преобразованием Фурье** f_X .

Поскольку преобразование Фурье взаимно однозначно, а f_X однозначно определяет распределение, то характеристическая функция $\psi_X(x)$ также однозначно определяет распределение с.в X.

Причем:

$$f_X(x) = \frac{1}{(2\pi)^n} \int\limits_{\mathbb{R}} e^{-i\lambda^T X} \psi_X(x) d\lambda$$

1.7 Лемма 5

Пусть X — случайный вектор, $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$. Тогда:

1. для Y = AX + b

$$\psi_Y(\lambda) = e^{i\lambda^T b} \psi_X(A^T \lambda)$$

2. компоненты вектора X **независимы** тогда и только тогда, когда

$$\psi_Y(\lambda) = \prod_{k=1}^n \psi_{X_k}(\lambda_k)$$

Доказательство

1.
$$\psi_Y(\lambda) = M[e^{i\lambda^T Y}] = M[e^{i\lambda^T AX} e^{i\lambda^T b}] = e^{i\lambda^T b} M[e^{i(A^T \lambda)^T X}] = e^{i\lambda^T b} \psi_X(A^T \lambda)$$

Замечание

При помощи характеристической функции можно дать другое определение нормального распределения. В том числе для вырожденного K_X .

1.8 Определение 3

Случайный вектор X называется **нормальным**: $X \sim N(m_X, K_X)$, если:

$$\psi_X(\lambda) = \exp\{i\lambda^T m_X - \frac{1}{2}\lambda^T K_X \lambda\}$$

1.8.1 Доказательство леммы 3

В силу Леммы 5, п.1

$$\begin{split} \psi_Y(\lambda) &= e^{i\lambda^T b} \psi_X(A^T \lambda) = e^{i\lambda^T b} \exp\{i\lambda^T A m_x - \frac{1}{2} \lambda^T A K_X A^T \lambda\} = \\ &= \exp\{i\lambda^T (A m_x + b) - \frac{1}{2} \lambda^T (A K_x A^T) \lambda\} \end{split}$$

7

1.8.2 Доказательство леммы 4

Пусть X_i,\dots,X_n попарно некоррелированы. Тогда $cov(X_i,X_i)=0,$ $i\neq 0,$ т.е. :

$$\begin{split} K_x &= diag(\sigma_{X_1}^2, \dots, \sigma_{X_n}^2) = \\ &= \begin{pmatrix} \sigma_{X_1}^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{X_n}^2 \end{pmatrix} \end{split}$$

$$\begin{array}{ll} \psi_X(\lambda) \ = \ \exp\{i\lambda_1 m_{X_1} + \dots + i\lambda_n m_{X_n} - \frac{1}{2}\lambda^T K_X \lambda\} \ = \ \exp\{i\lambda_1 m_{X_1} + \dots + i\lambda_n m_{X_n} - \frac{1}{2}(\lambda_1^2 \sigma_{X_1}^2 + \dots + \lambda_n^2 \sigma_{X_n}^2)\} = \prod_{k=1}^n \exp\{i\lambda_n m_{X_n} - \frac{1}{2}\lambda_k^2 \sigma_{K_n}^2\} = \prod_{k=1}^n \psi_{X_k}(\lambda_k). \end{array}$$

Откуда с учетом Леммы 5, п.1 X_1, \dots, X_n — н/з.

Пусть X_1,\dots,X_n — н/з. Тогда X_1,\dots,X_n попарно некоррелированы. \blacksquare

Замечание

Поскольку K_X — невырожденная, симметричная и положительноопределенная, то существует $S \in \mathbb{R}^{n \times n}$ — ортогональная (т. е. $S^T = S^{-1}$) такая, что:

$$S^T K_X S = \Lambda = diag(\lambda_1, \dots, \lambda_n)$$

где
$$\lambda_i > 0, i = \overline{1,n}$$

Определим матрицу $\Lambda^{-\frac{1}{2}}=diag(\lambda_1^{-\frac{1}{2}},\dots,\lambda_n^{-\frac{1}{2}}).$ Рассмотрим вектор

$$Y = \Lambda^{-\frac{1}{2}} S^T (X - m_X)$$

Тогда $A=\Lambda^{-\frac{1}{2}}S^T, b=-\Lambda^{-\frac{1}{2}}S^Tm_X.$

В силу Леммы 3:

$$\begin{split} m_Y &= A m_X + b = \Lambda^{-\frac{1}{2}} S^T - \Lambda^{-\frac{1}{2}} S^T m_X = 0, \\ K_Y &= A K_X A^T = \Lambda^{-\frac{1}{2}} S^T K_X S \Lambda^{-\frac{1}{2}} = I, \end{split}$$

т. е.
$$Y \sim N(0, I)$$
.

При помощи невырожденного линейного преобразования с.в. X может быть преобразован в стандартный нормальный вектор.

Верно и обратное:

$$X = m_X + S\Lambda^{\frac{1}{2}}Y,$$

откуда следует Лемма 2

2 Теорема о нормальной корреляции

2.1 Определение 1

Условным математическим ожиданием абсолютно непрерывного случайного вектора X относительно абсолютно непрерывного случайного вектора Y называется:

$$M[X\mid Y]=\int\limits_{-\infty}^{+\infty}xf_{X\mid Y}(x\mid Y)dx,$$
где $f_{X\mid Y}(x\mid Y)=\frac{f_z(x,Y)}{f_y(Y)},z=\binom{X}{Y}$

2.2 Основные свойства условного М. О.

2.2.1 Свойство 1

2.2.2 Свойство 2

2.2.3 Свойство 3

$$\boxed{M[\alpha X_1 + \beta X_2 \mid Y] = \alpha M[X_1 \mid Y] + \beta M[X_2 \mid Y]}$$

2.2.4 Свойство 4

Пусть
$$X,Y$$
 — независимые. Тогда $M[X\mid Y]=M[X]$ Доказательство
$$M[X\mid Y]=\int\limits_{-\infty}^{+\infty}xf_{X\mid Y}(x\mid Y)dx=\int\limits_{-\infty}^{+\infty}x\frac{f_{z}(x,Y)}{f_{Y}(Y)}dx=\int\limits_{-\infty}^{+\infty}+\infty x\frac{f_{X}(x)f_{Y}(Y)}{f_{Y}(Y)}dx=M[X].$$

2.2.5 Свойство 5

$$\overline{M[M[X\mid Y]]=M[X]}$$
 (формула повторного М. О.)

2.3 Лемма 1

Пусть X,Y — случайные векторы с конечными вторыми моментами. Тогда: $M[(X-\hat{X})\phi(Y)^T]=0$ где $\hat{X}=M[X\mid Y]$

Доказательство

$$\begin{split} &M[(X-\hat{X})\phi(Y)^T] = M[X\phi(Y)^T] - M[M[X\mid Y]\phi(Y)^T] = \\ &= \text{по Cвойству 2} = M[X\phi(Y)^T] - M[M[X\phi(Y)^T\mid Y]] = \text{по Свойству 5} = M[X\phi(Y)^T] - M[X\phi(Y)^T] = 0. \ \blacksquare \end{split}$$

Замечание

Если рассмотреть евклидово пространство $\mathbb{L}_2(\Omega)$ со скалярным произведением:

$$(X,Y) = M[X \cdot Y]$$

то *условное* М. О. — **оператор ортогонального проектирования** X на подпространство, порождаемое Y.

2.4 Определение 2

Оценкой X по наблюдениям Y называется любая измеримая функция $\phi(Y).$

2.5 Определение 3

 \pmb{O} пенка \hat{X} называется с.к.-оптимальной оценкой X, если для любой другой оценки \tilde{X} верно

$$M[|\tilde{X}-\hat{X}|^2]\leqslant M[|X-\tilde{X}|^2]$$

2.6 Теорема 1

 $M[X\mid Y]-$ с.к.-оптимальная оценка X по наблюдениям Y.

$$\begin{split} M[|X - \tilde{X}|^2] &= M[|X - \hat{X} + \hat{X} - \tilde{X}|^2] = M[|X - \hat{X}|^2] + 2M[(X - \hat{X})^T(\hat{X} - \tilde{X})] + M[|\hat{X} - \tilde{X}|^2] \stackrel{*}{=} \end{split}$$

Поскольку по определению $\tilde{X}-\hat{X}=\phi(Y)$, то в силу Леммы 2.1 $M[(X-\hat{X})^T(\tilde{X}-\hat{X})]=0.$

$$\stackrel{*}{=} M[|X - \hat{X}|^2] + M[|\hat{X} - \tilde{X}|^2] \geqslant M[|X - \hat{X}|^2]. \blacksquare$$

2.7 Теорема 2 (О нормальной корреляции)

Пусть

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim N \left(\begin{pmatrix} m_X \\ m_Y \end{pmatrix}, \begin{pmatrix} K_X & K_{XY} \\ K_{XY}^T & K_Y \end{pmatrix} \right)$$

Тогда

1.
$$Law(X | Y) = N(\mu(Y), \Delta),$$

где

$$\mu(Y) = M[X \mid Y] = m_X + K_{XY} K_Y^{-1} (Y - m_Y)$$

$$\Delta = K_X - K_{XY}K_Y^{-1}K_{YX}$$

2.
$$M[|X - \mu(Y)|^2] = tr(K_X - K_{XY}K_Y^{-1}K_{YX})$$

Доказательство

Рассмотрим линейное преобразование Y:

$$\mu(Y) = m_X + K_{XY} K_Y^{-1} (Y - m_Y)$$

В силу Леммы 1.3

$$X-\mu(Y)=(I-K_{XY}K_Y^{-1})\begin{pmatrix} X\\Y\end{pmatrix}-m_X+K_{XY}K_Y^{-1}m_Y\sim N(\mu,K)$$

$$\mu=(I-K_{XY}K_Y^{-1})\begin{pmatrix} m_X\\m_Y\end{pmatrix}-m_X+K_{XY}K_Y^{-1}m_Y=0$$

$$K=(I-K_{XY}K_Y^{-1})\begin{pmatrix} K_X&K_{XY}\\K_{XY}^T&K_Y\end{pmatrix}\begin{pmatrix} I\\-(K_{XY}K_Y^{-1})^T\end{pmatrix}=$$

$$=(K_X-K_{XY}K_Y^{-1}K_{XY}^T&K_{XY}-K_{XY}K_Y^{-1}K_Y)\begin{pmatrix} I\\K_Y^{-1}K_{XY}^T\end{pmatrix}=$$

$$=K_X-K_{XY}K_Y^{-1}K_{XY}^{-1}=\Delta$$

$$cov(X-\mu(Y),Y)=cov(X,Y)-cov(\mu(Y),Y)=cov(X,Y)-cov(K_{XY}K_Y^{-1}Y+m_X-K_{XY}K_Y^{-1}m_Y,Y)=cov(X,Y)-K_{XY}K_Y^{-1}cov(Y,Y)=K_{XY}-K_{XY}K_Y^{-2}K_Y=0$$
 т.е. $X-\mu(Y)$ и Y некорреливаны.

Тогда в силу Леммы 1.5, п.2 $X - \mu(Y)$ и Y независимы. Построим характеристическую функцию условного распределения X относительно Y:

$$\psi_{X\mid Y}(\lambda\mid Y) = \int\limits_{\mathbb{R}^n} e^{i\lambda^T X} f_{X\mid Y}(x\mid Y) dx = M[e^{i\lambda^T X}\mid Y] = M[e^{i\lambda^T (X-\mu(Y))} e^{i\lambda^T \mu(Y)}\mid Y] \stackrel{*}{=}$$

в силу Леммы 1.2 и независимости
$$X - \mu(Y)$$
 и $Y = M[e^{i\lambda^T(X-\mu(Y))} \mid Y] \cdot M[e^{i\lambda^T\mu(Y)} \mid Y] = M[e^{i\lambda^T(X-\mu(Y))}]e^{i\lambda^T\mu(Y)} = \psi_{X-\mu(Y)}(\lambda)e^{i\lambda^T\mu(Y)} = \exp\{-\frac{1}{2}\lambda^T\Delta\lambda\} \cdot \exp\{i\lambda^T\mu(Y) - \frac{1}{2}\lambda^T\Delta\lambda\}$

т.е. Условное распределение нормальное:

$$X(Y \sim N(\mu(Y), \Delta))$$

Вычислим с.к. ошибку:

$$M[|X - \mu(Y)|^2] = M[\Delta X_1^2 + \Delta X_2^2 + \dots + \Delta X_n^2] = \sum_{k=1}^n M[\Delta X_k^2] = \sum_{k=1}^n D[\Delta X_k] = \sum_{k=1}^n \Delta_{kk} = tr\Delta. \blacksquare$$

Замечание

- 1. Из Теоремы о нормальной корреляции следует, что в гауссовском случае с.к.оптимальная оценка является линейной.
- 2. Если X и Y независимы, то с.к.-оптимальная оценка m_X .
- 3. С.к.-оптимальная оценка **несмещенная**, т.к. $M[X \mu(Y)] = 0$.

3 Виды сходимости последовательностей случайных величин

3.1 Определение 1

Говорят, что $\{X_n\}_{n=1}^\infty$ образует **последовательность случайных величин**, если $\forall N \in \mathbb{N}$ X_n определены на одном вероятностном пространстве.

3.2 Определение 2

Говорят, что последовательность с.в. $\{X_n\}_{n\in\mathbb{N}}$ сходится по вероятности к с.в. X, если $\forall \varepsilon>0$:

$$\lim_{n \to \infty} P(|X_n - X| \leqslant \varepsilon) = 1$$

ИЛИ

$$\lim_{n \to \infty} P(|X_n - X| > \varepsilon) = 0$$

3.3 Определение 3

Говорят, что последовательность с.в. $\{X_n\}_{n\in\mathbb{N}}$ сходится почти наверное к с.в. X, если

$$P(\{\omega: X_n(\omega) \overset{n \to \infty}{\nearrow} X(\omega)\}) = 0$$

ИЛИ

$$P(\{\omega: X_n(\omega) \overset{n \to \infty}{\longrightarrow} X(\omega)\}) = 1$$

3.4 Определение 4

Говорят, что последовательность с.в. $\{X\}_{n\in\mathbb{N}}$ сходится в среднем квадратическом к с.в. X, если

$$M[|X_n - X|^2] \stackrel{n \to \infty}{\longrightarrow} 0$$

3.5 Пример 1

Пусть $\{X_n\}_{n\in\mathbb{N}}$ — случайная последовательность.

$$X \sim \begin{pmatrix} 0 & n \\ 1 - \frac{1}{n^2} & \frac{1}{n^2} \end{pmatrix}$$

$$P(\{\omega: \lim_{n\to\infty} X_n(\omega)\neq 0\})=P(\{\omega: \forall N\in \mathbb{N} \exists n\geqslant N: X_n(\omega)=n\})=P(\prod_{N=1}^\infty \sum_{n=N}^\infty \{\omega: X_n(\omega)=n\})\stackrel{*}{=}$$

1.
$$\sum\limits_{n=N+1}^{\infty}\{\omega:X_n(\omega)=n\}\subset\sum\limits_{n=N}^{\infty}\{\omega:X_n(\omega)=n\}$$

$$\text{2. }P(\sum_{n=N}^{\infty}\{\omega:X_n(\omega)=n\}\leqslant \sum_{n=N}^{\infty}P(\{\omega:X_n(\omega)=n\})=\sum_{n=N}^{\infty}\frac{1}{n^2}\overset{n\to\infty}{\longrightarrow}0\text{, t.k. }\sum_{n=1}^{\infty}\frac{1}{n^2}<\infty$$

Тогда в силу $\mathit{aксиомы}$ непрерывности $\stackrel{*}{=} 0$, т.е. $X_n \stackrel{\text{п.н.}}{\longrightarrow} 0$

3.6 Пример 2

Рассмотрим ту же последовательность. Выберем $\varepsilon>0$

$$P(|X_n - 0| \leqslant \varepsilon) = \begin{cases} 1, & \varepsilon \geqslant n \\ 1 - \frac{1}{n^2}, & \varepsilon \in (0; n) \end{cases}$$

Тогда $X_n \stackrel{P}{\longrightarrow} 0$

3.7 Пример 3

Рассмотрим ту же последовательность:

$$M[|X_n-0|^2]=M[X_n^2]=0^2(1-\tfrac{1}{n^2})+n^2\tfrac{1}{n^2}=1 \overset{n\to\infty}{\longrightarrow} 0$$
 Тогда $X_n\overset{\text{с.к.}}{\longrightarrow} 0$

3.8 Пример 4

Пусть $f_{nk}:[0;1]\longrightarrow\{0;1\}, n\in\mathbb{N}, k=\overline{1,n},$

$$f_{n,k} = \begin{cases} 0, & t \notin \left[\frac{k-1}{n}; \frac{k}{n}\right], \\ 1, & t \in \left[\frac{k-1}{n}; \frac{k}{n}\right]. \end{cases}$$

Пусть $X\sim R(0;1)$. Рассмотрим последовательность с.в. $X_{nk}=f_{nk}(X)$. $\forall\omega\in\Omega X(\omega)\in[0;1]$. Тогда $\forall n\in\mathbb{N}\exists k=\overline{1,n}$ такое, что $X(\omega)\in[\frac{k-1}{n};\frac{k}{n}]$. Т.е. если $\varepsilon=\frac{1}{2}$, то $\forall n\in\mathbb{N}$ найдется $k=\overline{1,n}$ такой, что

$$|f_{nk}(X(\omega)) - 0| > \varepsilon$$

Тогда $X_{nk}(\omega) \xrightarrow{n \to \infty} 0$, т.е.

$$\{\omega: \lim_{n,k\to\infty} X_{nk}(\omega) = 0\} = \emptyset$$

$$X_{nk} \xrightarrow{\Pi. \text{ M.}} 0$$

При этом $\forall \varepsilon > 0$

$$R(|X_{nk}-0|>\varepsilon) = \begin{cases} 0, & \varepsilon\geqslant 1,\\ P(X\in [\frac{k-1}{n}, \frac{k}{n}]), \varepsilon\in (0;1) \end{cases} = \begin{cases} 0, & \varepsilon\geqslant 1, & \underset{n\to\infty}{n\to\infty}\\ \frac{1}{n}, & \varepsilon\in (0;1) \end{cases} \stackrel{n\to\infty}{\longrightarrow} 0$$

$$X_{nk} \stackrel{P}{\longrightarrow} 0$$

$$M[|X_{nk}-0|^2] = M[X_{nk}] = M[f_{nk}(X)] = \int\limits_0^1 f_{nk}(x)f_x(x)dx = \int\limits_0^1 f_{nk}(x)dx = \int\limits_{\frac{k-1}{n}}^1 1dx = \frac{1}{n} \stackrel{n\to\infty}{\longrightarrow} 0$$

$$X_{nk} \stackrel{\text{c.k}}{\longrightarrow} 0$$

3.9 Пример 5

Рассмотрим последовательность с.в. $Y_{n_1k} = nK_{n_1k}$ Тогда $Y_{n_1k} \stackrel{\text{п.н.}}{\longrightarrow} 0$. $\forall \varepsilon > 0$. $P(|Y_{n_1k} - 0| > \varepsilon) = \begin{cases} 0, & \varepsilon \geqslant n, \\ P(X \in [\frac{k-1}{n}; \frac{k}{n}]), & \varepsilon \in (0; n) \end{cases} = \begin{cases} 0, & \varepsilon \geqslant n, & \text{nto} \infty \\ \frac{1}{n}, & \varepsilon \in (0; n) \end{cases} \stackrel{\text{nto} \infty}{\longrightarrow} 0$ $Y_{n_1k} \stackrel{P}{\longrightarrow} 0$ $M[|Y_{n_1k} - 0|^2] = M[n^2 X_{nk}^2] = n^2 M[X_{nk}] = n \stackrel{P}{\longrightarrow} \infty$ $Y_{n_1k} \stackrel{\text{c.s.}}{\longrightarrow} 0$

Замечание

Согласно определению для исследования на сходимость нужно знать совместное распределение с.в. X_n и X, а для случая сходимости почти наверное совместное распределение всей последовательности $\{X_n\}_{n\in\mathbb{N}}$ и X. Поэтому исследование на сходимость иначе, чем к детерминированной константе, довольно проблематично.

3.10 Лемма 1

Пусть
$$X_n \stackrel{\text{п.н.}}{\longrightarrow} X$$
. Тогда $X_n \stackrel{P}{\longrightarrow} X$.

Доказательство

$$0 = P(\{\omega: \lim_{n \to \infty} X_n(\omega) \neq X(\omega)\}) = P(\{\omega: \exists \varepsilon > 0 \forall N \in \mathbb{N} \exists n \geqslant N: |X_n(\omega) - X(\omega) > \varepsilon\}) = P(\sum_{\varepsilon > 0} \prod_{N=1}^{\infty} \sum_{n=N}^{\infty} \{\omega: |X_n(\omega) - X(\omega)| > \varepsilon\}) \geqslant P(\prod_{N=1}^{\infty} \sum_{n=N}^{\infty} \{\omega: |X_n(\omega) - X(\omega)| > \varepsilon'\}),$$
 $\forall \varepsilon' > 0$ Тогда $0 = P(\prod_{N=1}^{\infty} \sum_{n=N}^{\infty} \{\omega: |X_n(\omega) - X(\omega)| > \varepsilon\}),$

$$\sum_{n=N+1}^{\infty} \{\omega: |X_n(\omega) - X(\omega)| > \varepsilon\}) \subset \sum_{n=N}^{\infty} \{\omega: |X_n(\omega) - X(\omega)| > \varepsilon\}$$

В силу аксиомы непрерывности:

$$\begin{split} 0 = \lim_{N \to \infty} P(\sum_{n=N}^{\infty} \{\omega : |X_n(\omega) - X(\omega)| > \varepsilon\}) \geqslant \lim_{N \to \infty} P(\{\omega : |X_N(\omega) - X(\omega)| > \varepsilon\}) \\ X_N \xrightarrow{P} X \end{split}$$

3.11 Лемма 2 (Неравенство Маркова)

Пусть $P(X \geqslant 0) = 1, M[X] < \infty$. Тогда $\forall \varepsilon > 0$

$$P(X>\varepsilon)=\frac{M[X]}{\varepsilon}$$

Доказательство

$$M[X] = \int\limits_0^{+\infty} x dF_X(x) \geqslant \int\limits_{\varepsilon}^{+\infty} x dF_X(x) \geqslant \varepsilon \int\limits_{\varepsilon}^{+\infty} dF_X(X) = \varepsilon P(X > \varepsilon). \ \blacksquare$$

3.12 Следствие 1

Пусть $M[X^{-k}] < \infty$. Тогда $\forall \varepsilon > 0$:

$$P(|X| > \varepsilon) \leqslant \frac{M[|X|^k|]}{\varepsilon^k}$$

Доказательство

$$P(|X| > \varepsilon) = P(|X|^k > \varepsilon^k) \leqslant \frac{M[|X|^k]}{\varepsilon^k}$$
.

3.13 Следствие 2 (Неравенство Чебышёва)

Пусть $M[X^2] < \infty$. Тогда

$$P(|X - M[X]| > \varepsilon) \leqslant \frac{D[X]}{\varepsilon^2}$$

Доказательство

$$P(|X-M[X]|>\varepsilon)\leqslant \tfrac{M[|X-M[X]|^2]}{\varepsilon^2}=\tfrac{D[X]}{\varepsilon^2}. \ \blacksquare$$

3.14 Лемма 3

Пусть
$$X_n \stackrel{\text{с.к.}}{\longrightarrow} X$$
. Тогда $X_n \stackrel{P}{\longrightarrow} X$.

$$P(|X_n-X|>\varepsilon)\leqslant \tfrac{M[|X_n-X|^2]}{\varepsilon^2}\overset{n\to\infty}{\longrightarrow} 0. \ \blacksquare$$

Теорема 1 (Бореля — Кантелли) 3.15

Пусть
$$A_1,\dots,A_n\subset\Omega,B=\prod\limits_{N=1}^\infty\sum\limits_{n=N}^\infty A_n.$$
 Тогда

1. Если
$$\sum\limits_{n=1}^{\infty}P(A_n)<\infty$$
, то $P(B)=0$;

2. Если
$$A_1,\dots,A_n$$
 независимы в совокупности и $\sum\limits_{n=1}^{\infty}P(A_n)=\infty$, то $P(B)=1.$

Доказательство

1.
$$P(B) = P(\prod_{N=1}^{\infty} \sum_{n=N}^{\infty} A_n) \stackrel{*}{=}$$

т.к.
$$\sum_{n=N+1}^\infty A_n \subset \sum_{n=N}^\infty A_n, \text{ то по аксиоме непрерывности } \stackrel{*}{=} \lim_{N\to\infty} P(\sum_{n=N}^\infty A_n) \leqslant \lim_{N\to\infty} \sum_{n=N}^\infty P(A_n) \stackrel{N\to\infty}{\longrightarrow} 0,$$
 т.к.
$$\sum_{n=1}^\infty P(A_n) < \infty$$

$$2. \ P(B) = \cdots = \lim_{N \to \infty} P(\sum_{n=N}^{\infty} A_n) = \lim_{N \to \infty} (1 - P(\prod_{n=N}^{\infty} \overline{A_n})) = 1 - \lim_{N \to \infty} P(\prod_{M=N}^{\infty} \prod_{n=N}^{M} \overline{A_n}) \stackrel{*}{=}$$

т.к.
$$\prod_{n=N}^{M+1}\overline{A_n}\subset\prod_{n=N}^{M}\overline{A_n}$$
, то по аксиоме непрерывности

$$\overset{n=N}{=} 1 - \lim_{N \to \infty} \lim_{M \to \infty} P(\prod_{n=N}^{M} \overline{A_n}) = 1 - \lim_{N \to \infty} \lim_{M \to \infty} \prod_{n=N}^{M} (1 - P(A_n)) = 1 - \lim_{N \to \infty} \lim_{M \to \infty} \prod_{n=N}^{M} e^{\ln(1 - P(A_n))} = 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{N \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{N \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\Longrightarrow} 1 - \lim_{N \to \infty} \lim_{N \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\Longrightarrow} 1 - \lim_{N \to \infty} \lim_{N \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\Longrightarrow} 1 - \lim_{N \to \infty} \lim_{N \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\Longrightarrow} 1 - \lim_{N \to \infty} \lim_{N \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\Longrightarrow} 1 - \lim_{N \to \infty} \lim_{N \to \infty} e^{\sum n = N^M \ln(1 - P(A_n))} \overset{*}{\Longrightarrow} 1 - \lim_{N \to \infty} \lim_{N$$

$$1-\lim_{} \lim_{} \lim_{} e^{\sum n=N^{M}\ln(1-P(A_{n}))} \geqslant \stackrel{*}{\geqslant}$$

т.к.
$$\ln(1-t) = -t - \frac{t^2}{2} - \frac{t^3}{3} - \frac{t^4}{4} - \dots < -t$$
, то

$$\stackrel{*}{\geqslant} 1 - \lim_{N \to \infty} \lim_{M \to \infty} e^{-\sum\limits_{n=N}^{M} P(A_n)} = 1 - \lim_{n \to \infty} 0 = 1. \; \blacksquare$$

3.16 Лемма 4

Пусть $X_n \stackrel{P}{\longrightarrow} X$,

$$\sum_{n=1}^{\infty}P(|X_n-X|>\varepsilon)<\infty$$

Тогда $X_n \stackrel{\text{п.н.}}{\longrightarrow} X$

В силу Теоремы 3.1 $\forall \varepsilon > 0$

$$P(\prod_{N=1}^{\infty}\sum_{n=N}^{\infty}\{\omega:|X_n-X|>\varepsilon\})=0$$

Тогда

$$\begin{split} &P(\{\omega: \lim_{n\to\infty} X_n X_n(\omega) \neq X(\omega)\}) = P(\{\omega: \exists \varepsilon > 0, \forall N \in \mathbb{N} \exists n \geqslant N: |X_n(\omega) - X(\omega)| > \varepsilon\}) \\ &= P(\{\omega: \exists M \in \mathbb{N}, \forall N \in \mathbb{N} \exists n \geqslant N: |X_n(\omega) - X(\omega)| > \frac{1}{M}\}) = P(\sum_{M=1}^\infty \prod_{N=1}^\infty \sum_{n=N}^\infty \{\omega: |X_n - X| > \frac{1}{M}\}) \leqslant \sum_{M=1}^\infty P(\prod_{N=1}^\infty \sum_{N=1}^\infty n = N^\infty \{\omega: |X_n - X| > \frac{1}{M}\}) = 0. \ \blacksquare \end{split}$$

Замечание

1.

$$\begin{array}{cccc} X_n \stackrel{\text{c.k.}}{\longrightarrow} X & \Longrightarrow & X_n \stackrel{P}{\longrightarrow} X \\ \text{ИЛИ} & & & \\ X_n \stackrel{\text{п.н.}}{\longrightarrow} X & \Longrightarrow & X_n \stackrel{P}{\longrightarrow} X \end{array}$$

- 2. В силу теоремы Рисса (функциональный анализ) если $X_n \stackrel{P}{\longrightarrow} X$, то существует подпоследовательность $\{X_{n_k}\}_{k\in\mathbb{N}}: X_{n_k} \stackrel{\text{п.н.}}{\underset{k\to\infty}{\longrightarrow}} X$
- 3. В силу теоремы о мажорирующей сходимости, если $X_n \stackrel{P}{\longrightarrow} X$ и $\exists Y-$ с.в.: $|X_n| \leqslant Y, M[Y^2] < \infty$, то $X_n \stackrel{\text{с.к.}}{\longrightarrow} X$
- 4. Также из функционального анализа известно, что операция предела (по мере, почти наверное, в средне квадратическом) замкнута относительно линейных операций и непрерывных преобразований.

4 Закон больших чисел

4.1 Определение 1

Выборкой объема n будем называть с.в. $Z_n = (X_1, \dots, X_n)^T$, где X_1, \dots, X_n — независимые с.в.

Через $F_k(x)$ обозначим функцию распределения k-го элемента выборки.

Если $F_k = F_1, k = \overline{2,n}$, то выборка называется *однородной*.

4.2 Определение 2

Выборочным средним $\overline{X_n}$ выборки Z_n называется $\overline{X_n} = \frac{1}{n} \sum_{k=1}^n X_k$

4.3 Теорема 1 (Закон Больших Чисел Чебышёва)

Пусть Z_n — однородная выборка, $M[X_k^2]<\infty.$

Тогда
$$\overline{X_n} \stackrel{\text{с.к.}}{\longrightarrow} m_X, \overline{X_n} \stackrel{P}{\longrightarrow} m_X$$

Доказательство

$$M[|\overline{X_n}-m_X|^2]=M[|\overline{X_n}-M[\overline{X_n}]|^2|^2]=D[\overline{X_n}]=\tfrac{1}{n^2}D[\tfrac{n}{k=1}X_k]=\tfrac{nD[X_1]}{n^2}\overset{n\to\infty}{\longrightarrow}0$$

Т.е. по определению $\overline{X_n} \stackrel{\text{с.к.}}{\longrightarrow} m_X.$

С учетом Леммы 3.3 $\overline{X_n} \stackrel{P}{\longrightarrow} m_X$.

4.4 Теорема 2 (Закон Больших Чисел Колмогорова)

Пусть Z_n — однородная выборка, $M[X_k]=m_X<\infty.$

Тогда $\overline{X_n} \stackrel{\text{п.н.}}{\longrightarrow} m_X$

Замечание

Т.о. для однородной выборки $\overline{X_n}$ сходится почти наверное и по вероятности к m_X , если оно существует, и в среднем квадратичном, если существует дисперсия.

4.5 Теорема 3

Пусть Z_n — неоднородная выборка, $M[X_k]=m_X<\infty, D[X_k]=D_k\leqslant D_{max}<\infty,$ где $k\in\mathbb{N}$

Тогда
$$\overline{X_n} \stackrel{\text{с.к.}}{\longrightarrow} m_X, \overline{X_n} \stackrel{P}{\longrightarrow} m_X.$$

$$M[|\overline{X_n}-m_X|^2]=M[|\overline{X_n}-M[\overline{X_n}]|^2]=D[X_n]=\frac{1}{n^2}\sum_{k=1}^nD_k\leqslant\frac{nD_{max}}{n^2}=\frac{D_{max}}{n}\overset{n\to\infty}{\longrightarrow}0$$
 Т.о. $\overline{X_n}\overset{\text{с.к.}}{\longrightarrow}m_X$. Тогда в силу Леммы 3.3 $\overline{X_n}\overset{P}{\longrightarrow}m_X$.

4.6 Следствие 1

Пусть
$$Z_n$$
 — неоднородная выборка, $D[X_k]=D_k\leqslant D_{max}<\infty, k\in\mathbb{N}.$ Тогда $\overline{X_n}-\frac{1}{n}\sum\limits_{k=1}^n m_{X_k}\stackrel{\text{с.к.}}{\longrightarrow} 0, \overline{X_k}-\frac{1}{n}\sum\limits_{k=1}^n m_{X_k}\stackrel{P}{\longrightarrow} 0.$

Доказательство

$$\overline{X_n} - \tfrac{1}{n} \sum_{k=1}^n m_{X_k} = \tfrac{1}{n} \sum_{k=1}^n (X_k - m_{X_k}) = \tfrac{1}{n} \sum_{k=1}^n Y_k,$$
 где $M[Y_k] = 0, D[Y_k] = D[X_k] = \leqslant D_{max} < \infty$ Тогда $\overline{Y_k}$ удовлетворяет условиям Теоремы 4.3. \blacksquare

4.7 Теорема 4

Пусть Z_n — неоднородная выборка, $M[X_k]=m_X<\infty, D[X_k]=D_k<\infty$,

$$\sum_{k=1}^{n} \frac{D[X_k]}{k^2} < \infty$$

Тогда

$$\overline{X_n} \overset{\text{\tiny п.н.}}{\longrightarrow} m_X$$

Замечание

Условие Теоремы 4 более мягкое, чем условие Теоремы 3. Пусть $D[X_k]\leqslant D_{max}, k\in\mathbb{N}.$ Тогда

$$\sum_{k=1}^n \frac{D[X_k]}{k^2} \leqslant \sum_{k=1}^n \frac{D_{max}}{k^2} = \frac{\pi^2 D_{max}}{\sigma} < \infty$$

4.8 Следствие 2

Пусть N(A) — число появления события A в серии из N независимых опытов. Тогда

$$\frac{N(A)}{N} \xrightarrow{\text{\tiny II.H.}} P(A), \frac{N(A)}{N} \xrightarrow{\text{\tiny C.K.}} P(A)$$

По условию $N(A)\sim Bi(N;P(A))$. Тогда $\exists X_1,\dots,X_n\sim Be(P(A))$ — независимые с.в. При этом $M[X_1]=P(A),D[X_1]=P(A)(1-P(A))\leqslant \frac14.$ Тогда в силу Теоремы 4

$$\frac{N(A)}{N} = \frac{1}{N} \sum_{k=1}^{N} X_k \xrightarrow{\text{c.k.}} P(A)$$

в силу Теоремы 2

$$\frac{N(A)}{N} = \frac{1}{N} \sum_{k=1}^{N} X_k \xrightarrow{\text{\tiny II.H.}} P(A)$$

5 Центральная предельная теорема (ЦПТ)

Замечание

Сходимости ${\it c.к.}$, ${\it n.н.}$ и P в общем случае исследования предполагают либо знание совместного распределения элементов последовательности, либо наличие точкой функциональной зависимости от $\omega \in \Omega$.

Как правило, в теории вероятностей это неизвестно, а с.в. описываются при помощи их распределений, а не как функции. При этом если у двух величин совпадают распределения, то это вовсе не значит, что они равны.

Поэтому довольно важным является вид сходимости *по распределению*, т.е. в смысле **"описательного инструмента" с.в.

5.1 Определение 1

Говорят, что последовательность с.в. $\{X_n\}_{n\in\mathbb{N}}$ сходится по распределению к с.в. X, если

$$F_{X_n}(x) \stackrel{n \to \infty}{\longrightarrow} F_X(x)$$
, $\forall x$ — точки непрерывности $F_X(x)$.

5.2 Лемма 1

Пусть
$$X_n \stackrel{P}{\longrightarrow} X$$
. Тогда $X_n \stackrel{d}{\longrightarrow} X$

5.3 Лемма 2

Пусть
$$X_n \stackrel{d}{\longrightarrow} X, Y_n \stackrel{P}{\longrightarrow} C$$

Тогда $X_n + Y_n \stackrel{d}{\longrightarrow} C$

Доказательство

Пусть
$$C=0, x_0$$
 — точка непрерывности $F_X(x)$. Тогда $\forall \varepsilon>0$
$$F_{X_n+Y_n}(x_0)=P(X_n+Y_n\leqslant x_0)=\underbrace{P(\{X_n+Y_n\leqslant x_0\}\{|Y_n|>\varepsilon\})}_{p_1}+\underbrace{P(\{X_n+Y_n\leqslant x_0\}\{|Y_n|\leqslant\varepsilon\})}_{p_2}$$

$$0\leqslant p_1\leqslant P(|Y_n>\varepsilon)\overset{n\to\infty}{\longrightarrow}0$$

$$p_2=P(\{X_n+Y_n\leqslant x_0\}\{-\varepsilon\leqslant Y_n\leqslant\varepsilon\})\overset{*}{\leqslant}$$

$$\begin{cases}X_n+Y_n\leqslant x_0\\ -\varepsilon\leqslant Y_n\leqslant\varepsilon\end{cases} \Longrightarrow \begin{cases}X_n+Y_n\leqslant x_0\\ -\varepsilon\leqslant-Y_n\leqslant\varepsilon\end{cases} \Longrightarrow X_n\leqslant x_0+\varepsilon$$

$$\overset{*}{\leqslant}P(X_n\leqslant x_0+\varepsilon)=F_{X_n}(x_0+\varepsilon)$$

$$p_2\geqslant P(\{\varepsilon+X_n\leqslant x_0\}\{-\varepsilon\leqslant Y_n\leqslant\varepsilon\})\overset{*}{\geqslant}$$

$$P(AB)=P(A)-P(A\backslash B)\geqslant P(A)-P(\overline{B})$$

$$\stackrel{*}{\geqslant} P(\varepsilon+X_n\leqslant x_0)-P(|Y_n>\varepsilon)=F_{X_n}(x_0-\varepsilon)-P(|Y_n|>\varepsilon)$$
 Т.о. $F_{X_n}(x_0-\varepsilon)-P(|Y_n|>\varepsilon)\leqslant F_{X_n+Y_n}(x_0)\leqslant F_{X_n}(x_0+\varepsilon)+p_1$ Выберем $\varepsilon>0$ так, чтобы $(x_0-\varepsilon;x_0+\varepsilon)$ было областью непрерывности $F_X(x)$ Тогда $\lim_{n\to\infty}F_{X_n}(x_0\pm\varepsilon)=F_X(x_0\pm\varepsilon)$

$$F_{X_n}(x_0-\varepsilon)\leqslant \varliminf_{n\to\infty}F_{X_n+Y_n}(x_0)\leqslant \varlimsup_{n\to\infty}F_{X_n+Y_n}(x_0)\leqslant F_X(x_0+\varepsilon)$$

Возьмем предел по $\varepsilon\to 0$. В силу непрерывности $F_X(x)$ в $x_0\lim_{\varepsilon\to 0}F_X(x_0\pm\varepsilon)=F_X(x_0)$ Откуда $F_X(x_0)=\lim_{\varepsilon\to 0}F_{X_n+Y_n}(x_0)$, т.е.

$$X_n + Y_n \stackrel{d}{\longrightarrow} X$$

Пусть
$$C\neq 0$$
. Тогда $Y_n-C=\tilde{Y}\stackrel{P}{\longrightarrow} 0$,
$$X_n+C=\tilde{X_n}\stackrel{d}{\longrightarrow} X+C=\tilde{X}$$
 Получаем $X_n+Y_n=\tilde{X_n}+\tilde{Y_n}\stackrel{d}{\longrightarrow} \tilde{X}=X+C$. \blacksquare

5.4 Доказательство леммы 5.1

$$X_n=(X_n-X)+X$$
, где $X\stackrel{d}{\longrightarrow} X, X_n-X\stackrel{P}{\longrightarrow} 0.$ В силу Леммы 5.2 $X_n=(X_n-X)+X\stackrel{d}{\longrightarrow} X+0=X.$ \blacksquare

Замечание

Из теории преобразования Фурье следует, что $X_n \stackrel{d}{\longrightarrow} X$ тогда и только тогда, когда $\psi_{X_n}(\lambda) \stackrel{n \to \infty}{\longrightarrow} \psi_X(\lambda), \lambda \in \mathbb{R}$

5.5 Определение 2

Последовательность с.в. $\{X_n\}_{n\in\mathbb{N}}$ называется *асимптотически нормальной*, если $X_n\stackrel{d}{\longrightarrow} X$, где $X\sim N(m;\sigma^2)$

5.6 Теорема 1 (Центральная предельная)

Пусть $\{X_n\}_{n\in\mathbb{N}}$ — последовательность независимых и одинаково распределенных с.в., причем

$$M[X_1] = m_X, D[X_1] = \sigma_X^2$$

Тогда

$$S_n \frac{\sum\limits_{k=1}^n X_n - nm_X}{\sigma_X \sqrt{n}} \stackrel{d}{\longrightarrow} N(0;1)$$

Обозначим через $Y_k = \frac{X_k - m_X}{\sigma_X \sqrt{n}}$

Тогда $\sum_{k=1}^n Y_k$, где Y_1,\ldots,Y_n — независимые с.в.

В силу Леммы 1.5

$$\psi_{S_n}(\lambda) = \psi_Y(\lambda,\lambda,\dots,\lambda) = \prod_{k=1}^n \psi_{Y_k}(\lambda) = \psi_{Y_1}^n(\lambda) = \psi^n(\frac{\lambda}{\sigma_X\sqrt{n}})$$

где $\psi(\lambda)$ — характеристическая функция X_k-m_X .

$$\psi(0) = M[e^{i0(X_k - m_X)}] = M[1] = 1$$

$$\psi'(0) = M[i(X_k - m_X)e^{i0(X_k - m_X)}] = M[X_k - m_X]i = 0$$

$$\begin{array}{l} \psi'(0) = M[i(X_k - m_X)e^{i0(X_k - m_X)}] = M[X_k - m_X]i = 0 \\ \psi''(0) = -M[(X_k - m_X)^2e^{i0(X_k - m_X)}] = -M[(X_k - m_X)^2] = -\sigma_X^2 \end{array}$$

Тогда согласно формуле Тейлора

$$\psi(\lambda) = \psi(0) + \psi'(0)\lambda + \psi''(0)\frac{\lambda^2}{2} + 0(\lambda^2) = 1 - \frac{\sigma_X^2}{2}\lambda^2 + 0(\lambda^2)$$

Рассмотрим $\ln \psi_{S_n}(\lambda) = n \ln \psi(\frac{\lambda}{\sigma_X \sqrt{n}}) = n \ln(1-\frac{\lambda^2}{2n}+0(\frac{\lambda^2}{\sigma_X^2 n})) = n(-\frac{\lambda^2}{2n}+0(\frac{\lambda^2}{\sigma_X^2 n}) + \frac{\lambda^2}{2n})$

$$0(-\frac{\lambda^2}{2n} + 0(\frac{\lambda^2}{\sigma_X^2 n}))) = n(-\frac{\lambda^2}{2n} + 0(\frac{\lambda^2}{\sigma_X^2 n})) = -\frac{\lambda^2}{2n} + \frac{0(\frac{\lambda^2}{\sigma_X^2 n})}{\frac{\lambda^2}{\sigma_X^2 n}} \cdot \frac{\lambda^2}{2} \xrightarrow{n \to \infty} -\frac{\lambda^2}{2},$$

$$\psi_{S_n}(\lambda) \xrightarrow{n \to \infty} e^{-\frac{\lambda^2}{2}}$$

где $\psi_Y(\lambda)=e^{-\frac{\lambda^2}{2}}$ по определению является *характеристической функцией $Y\sim$

Тогда
$$S_n \stackrel{d}{\longrightarrow} Y \sim N(0;1)$$
. \blacksquare

Следствие 1 (Теорема Муавра - Лапласа)

Пусть $X_n \sim Bi(n;p)$

Тогда

$$\frac{X_n-np}{\sqrt{np(1-p)}}\stackrel{d}{\longrightarrow} N(0;1)$$

Доказательство

Т.к. $X_n \sim Bi(n;p)$, то существуют независимые $\tilde{X_1}, \dots, \tilde{X_n} \sim Be(p)$ такие, что

$$X_n = \sum_{k=1}^n \tilde{X_k}, M[\tilde{X_k}] = p = m_X, D[\tilde{X_k}] = p(1-p) = \sigma_X^2$$

Тогда в силу Теоремы 1:

$$\frac{\sum\limits_{k=1}^{n} \tilde{X_k} - nm_X}{\sigma_X \sqrt{n}} \stackrel{d}{\longrightarrow} N(0;1). \blacksquare$$

5.8 Пример 1

Вычислить вероятность того, что при n=1000 подбрасываниях монета упадет "орлом" от 400 до 600 раз.

Пусть X — число выпавших "орлов". Тогда $X \sim Bi(1000; \frac{1}{2})$. По формуле БернуллиЖ

$$P(X \in [400; 600]) = \sum_{k=400}^{600} C_{1000}^k \frac{1}{2^{1000}}$$

Оценим данную величину с помощью ЦПТ.

В силу Теоремы 1 и Следствия

$$\frac{X - n\frac{1}{2}}{\sqrt{n\frac{1}{2}(1 - \frac{1}{2})}} \stackrel{n \to \infty}{\longrightarrow} N(0; 1)$$

Тогда

$$P(400\leqslant X\leqslant 600)=P(\tfrac{400-500}{\sqrt{250}}\leqslant \tfrac{X-nm_X}{\sigma_X\sqrt{n}}\leqslant \tfrac{600-500}{\sqrt{250}})\approx \Phi_0(\tfrac{100}{5\sqrt{10}})-\Phi_0(-\tfrac{100}{5\sqrt{10}})=2\Phi_0(2\sqrt{10})\approx 1.$$

5.9 Теорема 2 (Ляпунова)

Пусть $\{X_n\}_{n\in\mathbb{N}}$ — последовательность независимых с.в., $M[X_n]=m_{X_n}, D[X_n]=\sigma^2_{X_n}, M[|X_n-m_{X_n}|^3]=C_n^3<\infty$

При этом
$$\frac{(\sum\limits_{k=1}^{n}C_{k}^{3})^{\frac{1}{3}}}{(\sum\limits_{k=1}^{n}\sigma_{X_{n}}^{2})^{\frac{1}{2}}}\stackrel{n\to\infty}{\longrightarrow} 0$$
 (Условие Ляпунова)

Тогда
$$\dfrac{(\sum\limits_{k=1}^n X_k - M[\sum\limits_{k=1}^n X_k]}{\sqrt{D[\sum\limits_{k=1}^n X_k]}} \xrightarrow[n o \infty]{d} \sim N(0;1)$$

Замечание

Для *аппроксимации* точности использования ЦПТ используется **неравенство Берри**-Эссеена

5.10 Теорема 3 (Неравенство Берри-Эссеена)

Пусть $\{X_n\}_{n\in\mathbb{N}}$ — последовательность независимых и одинаково распределенных с.в.

$$M[X_n] = m_X, D[X_n] = \sigma_X^2, M[|X_n - m_X|^3] = \rho < \infty$$

Тогда $\forall x \in \mathbb{R}$ и $n \in \mathbb{N}$

$$|P(\frac{\sum\limits_{k=1}^{n}X_{k}-nm_{X}}{\sigma_{X}\sqrt{n}})-(\frac{1}{2}+\Phi_{0}(x))|\leqslant\frac{C_{0}\rho}{\sigma_{X}^{3}\sqrt{n}}$$

Замечание

Точное значение константы C неизвестно. По текущим данным (2010 г.) $C_0 \leqslant 0.4784$

5.11 Пример

Оценим точность решения в предыдущем примере: $\sigma_X^2 = \frac{1}{4}, n = 1000, m_X = \frac{1}{2}, X_n \sim \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ $\rho = M[|X_n - m_X|^3] = |0 - \frac{1}{2}|^3 \cdot \frac{1}{2} + |1 - \frac{1}{2}|^3 \cdot \frac{1}{2} = \frac{1}{8}$ Тогда погрешность составит для двухстороннего нер-ва: $\frac{2C_0\rho}{\sigma_X^3\sqrt{n}} = \frac{2\cdot 0.4784 \cdot \frac{1}{8}}{\frac{1}{64} \cdot \sqrt{1000}} \approx 0.03$

6 Выборка и ее характеристики

6.1 Определение 1

Выборкой называется $Z_n=(X_1,\dots,X_n)^T$ независимый вектор с.в. Если все X_1,\dots,X_n — одинаково распределены, а F(x) — функция распределения, то говорят, что Z_n — однородная выбрка, порожденная распределением F(x)

6.2 Определение 2

Реализацией выборки $Z_n\in\mathbb{R}^n$ называется неслучайный вектор $z_n=Z_n(\omega)$, состоящий из реализаций элементов выборки $X_k, k=\overline{1,n}$.

6.3 Определение 3

Множество S всех возможных реализаций выборки Z_n называют **выборочным пространством**

Замечание

Обычно распределение, порождающее выбрку, известно неточно.

$$F_X = F_X(x;\theta)$$

Задача состоит в построении оценки θ по элементам выборки.

6.4 Определение 4

С.в. $\phi(Z_n)$, где $\phi:S o\mathbb{R}$ — измерима, называется **статистикой**.

6.5 Определение 5

 ${\it k}$ -ой порядковой статистикой называется k-е по величине значение элемента выборки $Z_n = (X_1, \dots, X_n)^T$ и обозначается $X^{(k)}$

Замечание

 $X^{(k)}$ является функцией от всей выборки, т.к. при различных $\omega \in \Omega X^{(k)}$ будет совпадать по значению с разными X_i .

6.6 Определение 6

Набор порядковых статистик $X^{(1)},\dots,X^{(n)}$ называется вариационным рядом.

6.7 Определение 7

$$X^{(1)} = \min_{k=\overline{1,n}} X_k, X^{(n)} = \max_{k=\overline{1,n}} X_k.$$

6.8 Лемма 1

Пусть однородная выборка Z_n порождена распределением F(x). Тогда функция распределения $X^{(k)}$ имеет вид:

$$F_{(k)}(x) = P(X^{(k)} \leqslant x) = \sum_{i=k}^{n} C_n^i (F(x))^i (1 - F(x))^{n-i}$$

Доказательство

Рассмотрим с.в. Y, равную числу элементов выборки, не превоскходящих x. Тогда $Y \sim Bi(n; F(x))$.

$$F_{(k)}(x) = P(X^{(k)} \leqslant x) = P(Y \geqslant k) = \sum_{i=k}^{n} C_n^i (F(x))^i (1 - F(x))^{n-i}$$
.

6.9 Следствие 1

$$\begin{split} F_{(1)}(x) &= 1 - (1 - F(x))^n, \\ F_{(n)}(x) &= (F_{(x)})^n. \end{split}$$

6.10 Определение 8

Выборочной квантилью уровня $\alpha \in (0;1)$ называется порядковая статистика $X^{([nd]+1)}$

6.11 Теорема 1 (Мостеллера)

Пусть
$$X-$$
 абсолютно непрерывная с.в., $x_{\alpha}-$ точка гладкости $f_X(x), f_X(x_{\alpha})>0$ Тогда $(X^{([nd]+1)}-x_{\alpha})\sqrt{\frac{nf_X^2(x_{\alpha})}{p(1-p)}}\stackrel{d}{\longrightarrow} N(0;1)$

6.12 Определение 9

Выборочной функцией распределения называется статистика $\hat{F}_n(x)$:

$$\hat{F_n}(x) = \begin{cases} \frac{1}{n} \max\{k = \overline{1,n} : X^{(k)} \leqslant x\}, & x \geqslant X^{(1)}, \\ 0, & x < X^{(1)} \end{cases}$$

Замечание

Фактически $\hat{F_n}(x)$ — частота события $\{X\leqslant x\}$, которая исользуется для оценки вероятности $F(x)=P(X\leqslant x)$.

6.13 Свойства $\hat{F}_n(x)$

1.
$$n \cdot \hat{F}_n(x) \sim Bi(n; F(x))$$

$$2. \ \boxed{M[\hat{F_n}(x)] = F(x)}$$

3.
$$\boxed{\sup_{x \in \mathbb{R}} |\hat{F_n}(x) - F(x)| \xrightarrow{\text{\tiny II.H.}} 0}$$

(Теорема Гливенко - Кантелли)

4.
$$\left[(\hat{F_n}(x)-F(x))^2\right]=\frac{F(x)(1-F(x))}{n}\leqslant \frac{1}{4n}$$

5.
$$|\hat{F_n}(x) - F(x)| \xrightarrow{\text{c.k.}} 0$$

6.
$$\left[\frac{\hat{F_n}(x) - F(x)}{\sqrt{F(x)(1 - F(x))}} \sqrt{n} \stackrel{d}{\longrightarrow} N(0; 1)\right]$$

(Следует из теоремы Муавра - Лапласа)

Замечание

 $\hat{F}_n(x)$ При увеличении n равномерно приблежается к F(x), при этом точность приближения можно оценить при помощи свойств 4 и 6.

 $\frac{\Gamma$ истрограмма. На основе реализации вариационного ряда построим разбиение \mathbb{R} $-\infty=t_0 < t_1 < t_2 < \cdots < t_l < t_{l+1} = +\infty,$ $t_1 \leqslant x^{(1)}, t_l > x(n).$

Как правило, длина интервалов разбиения выбирается одинаковой:

$$h_k = t_{k+1} - t_k = \frac{t_l - t_1}{l-1}, k = \overline{1, l-1}$$

Вычислим частоту попадания элементов выборки в k-й интервал: $\hat{p_k} = \frac{n_k}{n}$, где n_k — число элементов выборки, попавших в $[t_k; t_{k+1}), k = \overline{0,l}$ Заметим, что $\hat{p_0} = \hat{p_l} = 0$.

6.14 Определние 10

Гистограммой называется функция:

$$\hat{f}_n(x) = \begin{cases} 0, & x \in (t_0; t_1) \cup [t_l; t_{l+1}), \\ \hat{p_k}, & x \in (t_k; t_{k+1}), k = \overline{1, l-1} \end{cases}$$

Замечание

Если плотность вероятности $f_X(x)$ непрерывна и ограничена, а число разрядо гистограммы l_n удовлетворяет условию: $l_n \longrightarrow +\infty, \frac{n}{l_n} \longrightarrow +\infty,$ то

$$\hat{f}_n(x) \stackrel{P}{\longrightarrow} f_X(x)$$

Т.е. гистограмма является статистической аппроксимацией функции плотности вероятности.

Выборочные моменты

6.15 Определние 1

Выборочным начальным и **центральным моментами** называется соответственно статистики:

$$\begin{split} \nu_r \hat(n) &= \tfrac{1}{n} \sum_{k=1}^n X_k^r \\ \mathbf{M} \\ \hat{\mu_r}(n) &= \tfrac{1}{n} \sum_{k=1}^n (X_k - \hat{\nu}_1(n))^r \end{split}$$

6.16 Определение 2

Выборочным средним и **выборочой дисперсией** называются соответственно статистики:

$$\begin{split} \overline{X_n} &= \nu_1 \hat(n) = \tfrac{1}{n} \sum_{k=1}^n X_k \\ \mathbf{M} \\ \hat{d_X}(n) &= \hat{S}^2(n) = \hat{\mu_2}(n) = \tfrac{1}{n} \sum_{k=1}^n (X_k - \overline{X})^2 \end{split}$$

6.17 Определение 3

Пусть $Z_n=(X_1,\dots,X_n)^T$ и $V_n=(Y_1,\dots,Y_n)^T$ — выборки, порожденные распределениями F_X и F_Y соответственно. Тогда выборочным коэффициентом корреляции называется:

$$\hat{r_{XY}} = \frac{\sum\limits_{k=1}^{n}(X_k - \overline{X_n})(Y_k - \overline{Y_k})}{n\sqrt{\hat{d_X}\cdot\hat{d_Y}}}$$

6.18 Свойства выборочных моментов

1.
$$\boxed{M[\hat{\nu_r}(n)] = \nu_r, r \in \mathbb{N}}$$

Доказательство

$$M[\hat{\nu_r}(n)] = \frac{1}{n} \sum_{k=1}^n M[X_k^r] = \frac{1}{n} n \nu_r$$
.

2. Если
$$M[X^r] < \infty$$
, то $\hat{\nu_r}(n) \stackrel{\text{п.н.}}{\longrightarrow} \nu_r$

Доказательство

3.
$$\left| ext{Если } M[X^r] < \infty, ext{ то } \hat{\mu_r}(n) \stackrel{\text{п.н.}}{\longrightarrow} \mu_r \right|$$

Доказательство

$$\overline{\hat{\mu_r}(n)} = \frac{1}{n} \sum_{k=1}^n (X_k - \overline{X_n})^r = \frac{1}{n} \sum_{k=1}^n \sum_{i=0}^r C_r^i X_k^i (-\hat{X_n})^{r-i} = \sum_{i=0}^r C_r^i (-\hat{X_n})^{r-i} (\frac{1}{n} \sum_{k=1}^n X_k^i) = \sum_{i=0}^r C_r^i (-\hat{X_n})^{r-i} \hat{\nu_i}(n) \xrightarrow[\text{CB-BO}(2)]{\text{I.H.}} \sum_{i=0}^r C_r^i (-\nu_1)^{r-i} \hat{\nu_i} = \dots = \mu_i. \blacksquare$$

$$4. \ \left| D[\overline{X_n}] = \frac{1}{n} D[X] \right|$$

Доказательство

 $\overline{\mathrm{C}}$ учетом независимости X_1,\dots,X_n

$$D[X\overline{X_n}] = D[\frac{1}{n} \sum_{k=1}^n X_k] = \frac{1}{n^2} \sum_{k=1}^n D[X_k] = \frac{nD[X]}{n^2}. \blacksquare$$

5.
$$M[\hat{d_X}(n)] = \frac{n-1}{n}D[X]$$

Доказательство

$$\begin{split} &\widehat{M[\hat{d_X}(n)]} = \frac{1}{n} \sum_{k=1} n M[(X_k - \overline{X_n})^2] = M[(X_1 - \overline{X_n})^2] = D[X_1 - \overline{X_n})^2] = D[\frac{n-1}{n} X_1 - \sum_{k=2} n \frac{1}{n} \overline{X_k}] \overset{\text{\tiny H}/3}{=} \frac{n-1}{n} D[X_1] + \frac{1}{n^2} \sum_{k=2}^n D[X_k] = D[X] \frac{n^2 - 2n + 1 + n - 1}{n^2} = D[X] \cdot \frac{n-1}{n}. \end{split}$$

6.
$$\overline{\frac{\overline{X_n} - m_X}{\sigma_X} \sqrt{n}} \xrightarrow{d} N(0; 1)$$

Доказательство Т.к. X_1,\dots,X_n независимые, $M[X_k]=m_k,D[X_k]=\sigma_X^2,k\in\mathbb{N}$, то в силу Теоремы 5.1:

$$\frac{\sum\limits_{k=1}^{n}X_{k}-nm_{X}}{\sigma_{X}\sqrt{n}}=\frac{\frac{1}{n}\sum\limits_{k=1}^{n}X_{k}-m_{X}}{\frac{\sigma_{X}}{\sqrt{n}}}\overset{d}{\longrightarrow}N(0;1)$$

7.
$$\left[\frac{\hat{d_X(n)} - \sigma_X^2}{\sqrt{\mu_4 - \mu_2}} \sqrt{n} \stackrel{d}{\longrightarrow} N(0; 1) \right]$$