Introduction to Linear Regression

The Math of Applied Statistics

• Very often, the data come in (x, y) pairs

• Given x we would like to predict y

• Many potential combinations exits..

Iviany potential combinations exits								
у	$ $	$ $ $\{0,1\}$	<i>k</i> categories	ordered categories	\mathbb{R}^p	N		
Х	11/2	(0,1)	Categories	Categories		14	•••	
Ø								
$\{0,1\}$								
k categories								
ordered categories								
\mathbb{R}								
\mathbb{R}^p								
	$ \setminus $							
·								
This class								

CXM: Oge group

Predicting from a distribution

- We want to guess (predict) the value of an unknown measurement y
- ullet We propose a probabilistic model: the measurement is a RV $Y \sim P_Y$
- We seek to minimize

$$\mathsf{MSE}(m) := \mathbb{E}\left[(Y - m)^2 \right]$$

• Set $\mu(x) := \mathbb{E}[Y]$. We have

$$MSE(m) = \mathbb{E}\left[(Y - m)^2\right] = \mathbb{E}\left[(Y - \mu + \mu - m)^2\right]$$

$$= \mathbb{E}\left[(Y - \mu)^2\right] + \mathbb{E}\left[(\mu - m)^2\right] + 2(\mu - m)\mathbb{E}\left[Y - \mu\right]$$

$$= \mathbb{E}\left[(Y - \mu)^2\right] + (\mu - m)^2 + 0$$

$$= \operatorname{Var}\left[Y\right] + (\mu - m)^2$$

MSE(m) is minimal when $\mu = m$.

Prediction from a conditional distribution

• Suppose a **probabilistic** model $Y \sim P_Y(x)$. The "best" predictor of y given x in the MSE sense is the **conditional expectation**:

$$\mu(x) = \mathbb{E}\left[Y|X=x\right].$$

Indeed, using previous slide's logic:

$$\mathbb{E}\left[\left(Y-\mu(x)\right)^{2}|X=x\right] \leq \mathbb{E}\left[\left(Y-m(x)\right)^{2}|X=x\right]$$

for any function m(x)

• If X is random and we have a probability model $Y, X \sim P_{X,Y}$, then

$$\mathbb{E}\left[\left(Y-\mu(X)\right)^{2}\right]\leq\mathbb{E}\left[\left(Y-m(X)\right)^{2}\right]$$

The assumption $Y, X \sim P_{X,Y}$ gives rise to a **correlation model** for the dependency between the variables.

Linear Regression with One Predictor

- We restrict our prediction function m(x) to have a linear (actually, affine) form $m(x) = \beta_0 + \beta_1 x$
- The MSE is a function of β_0 and β_1

$$\mathsf{MSE}(\beta_0,\beta_1) = \mathbb{E}\left[(\beta_0 + \beta_1 x - Y)^2 \right]$$

We have

$$\mathsf{MSE}(\beta_0,\beta_1) = \mathbb{E}\left[\left(\underline{\mu(x)} - Y\right)^2\right] + (\mu(x) - m(x))^2,$$

so that the linear predictor is optimal iff

$$\mu(x) = \mathbb{E}[Y|X=x] = \beta_0 + \beta_1 x,$$

In practice, this is rarely the case. George Box's dictum "All models are wrong, but some are useful"

comes to mind here.

Linearity

 Suppose we are given measurements of height and weight of many individuals

	Height	Weight
0	1.875714	109.720985
1	1.747060	73.622732
2	1.882397	96.497550
3	1.821967	99.809504
4	1.774998	93.598619

• We propose a model:

$$y_i = \beta_0 + \beta_1 x_i,$$
 $(x_i, y_i) = (\text{height}_i, \text{height}_i)$

Beyond Simple Linearity

• A Linear model with p predictors and p+1 parameters:

$$y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_p x_{ip} + \epsilon_i, \qquad i = 1, \ldots, n$$

We will also use the notation

$$\mathbb{E}\left[Y|X=x\right] = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

For example, home sale prices:

$y_i =$	sale price of home i				
$x_{i1} =$	square meters of home i				
$x_{i2} =$	# of bedrooms of home i				
: =	:				
$x_{i,203} =$	# of synagogues near home i				

- Remarks:
 - The model is linear in $\beta = (\beta_0, \dots, \beta_p)$, not in x
 - Would still be linear if we add $x_{i,204} = \sqrt{\#\text{of bedrooms}}$
 - Sum of linear models is also a linear model

Lecture 1

We started with the following slides:

The math of applied stat.

Predicting from a distribution

Predicting one RV from another

Lincox regression with One Predictor

Linearity

suppose Lou are given mesarenents of heigh weight of many individuals

We propose a mole!

id Height (cn) Weight [hg]

1 180 109.7

2 174 73.6

: ; ;

Polynomial Regression

$$y_i = \beta_0 + \beta_i x_i + \beta_2 x_i^2 + \dots + \beta_n x_i^k + \xi_i \quad x_i \in \mathbb{R}$$
in short:
$$E(Y | X = x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_n x^k \quad x \in \mathbb{R}$$

muses sonze if the relationship botneen and y is smooth

· Given data, he can approximate it arbitrarily well for large k

(zero error if k=n-1)

Perfect appx in linear models is suspicious, usually indicates an overfit.

Two Groups

Suppose he must to compare two groups:
male/female, nichtel vs. copper, treatment vs.
control

- We encode one of the group as a and the other one as 1:
for example:

(**) $E(Y|X=xJ= \begin{cases} \beta_0+\beta_1 & x=1 \\ \beta_0 & x=0 \end{cases}$

- We can write
$$(*)$$
 as
$$E(Y/X=X) = \beta_0 + \beta_1 \cdot X$$
Notation: during variable

K groups

$$x_1 = \begin{cases} 1 & \text{if group 1} \\ 0 & \text{otherwise} \end{cases}$$
 $x_2 = \begin{cases} 1 & \text{if group 2} \\ 0 & \text{otherwise} \end{cases}$ otherwise

· We get:

E[YIX=x]=
$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_{m-1} x_{m-1}$$

(group o has mean β_0 , mean of group $j > 0$ is $\beta_0 + \beta_j$)

Ezuivalently:

Two-Phase Regression

- The slope of the line changes at a certain point to For example, the performance of an overage human kidney decline at age 40. We express this as follows.

 $E[Y|X=x] = \beta_0 + \beta_1 x + \beta_2 [x-x]_+$ $Z_+ := \max\{0, z\} = Z \cdot I_{z>0}$

Multiple Regression

Suppose that we want a relationship that changes over time time goes for le periods we can use:

 $E(Y|X=x) = \beta_0 + \beta_1(x-t_1)_{+} + \beta_1(x-t_2)_{+} + ... + \beta_k(x-t_k)_{+}$

Periodic Functions

How can we handle cyclical data, e.g. calender time?

 $F(Y|X=x) = \beta_0 + \beta_1, \sin(2\pi f_0 x) + \beta_2 \cos(2\pi f_0 x) + \beta_3 \sin(2 \cdot 2\pi f_0 x) + \dots$

Example: We want to predict traffic at a specific hour of the day based on features: time of day, day of week,

$$F(Y|X=x) = \beta_0 + \beta_1 \sin(2\pi \frac{x}{24}) + \beta_2 \cos(2\pi \frac{x}{24})$$

$$+ \beta_3 \sin(2\pi - \frac{x}{2\cdot 24}) + \beta_4 \cos(2\pi \frac{x}{2\cdot 24})$$

Concluding Remarks

- despite the models differences,

the underlying math is all linear

- Examples of non-linear models:

$$-ECYIX=xJ=\beta_0(1-e^{-\beta_0x})$$

-
$$\mathbb{E}(Y|X=x) = \beta_1 x_1 + \beta_2 (x_2 - \beta_3)_+$$

$$-\mathbb{E}[Y|X=x] = \sum_{j=1}^{k} \beta_{j}e^{-\frac{1}{2}||X-\mu_{j}||^{2}}$$