- Name Mahaveer Rulaniya
- The language used Python
- Hardware and Software requirements- GPU, Jupyter Notebook
- Detailed explanation of the code is present in Githubhttps://github.com/mahaveer-rulaniya/Data Analysis Challenge

Analysis of Automobile Prices

- □ Aim and Objective Exploring the data by calculating summary and descriptive statistics, and creating visualizations of the data, several potential relationships between automobile characteristics and their price.
- Executive Summary There are many factors that contribute to the major inclinations in deciding the price of automobiles. Some of them are -
 - Make
 - Cylinders
 - Horsepower
 - City MPG
 - Drive Wheels
- ☐ Introduction to Exploratory Data Analysis-
- 1. Variable identification

2. Univariate Analysis

3. Bivariate Analysis

Now we will explore all these steps in-depth and also perform statistical analysis.

Data Analysis and Visualization

♦ Individual Feature Statistics-

Summary statistics for minimum, maximum, mean, median, standard deviation, and distinct count were calculated for numeric columns.

Column	mean	std	min	max	
symboling	0.886364	1.079372	-1.00	3.00	
normalized-losses	113.840909	22.407156	89.00	161.00	
wheel-base	98.315909	6.300593	88.60	113.00	
length	174.786364	11.480316	155.90	199.60	
width	65.872727	2.096126	63.60	71.10	
height	53.425000	2.140080	48.80	56.70	
curb-weight	2596.840909	564.805432	1874.00	4066.00	
engine-size	129.863636	43.006141	90.00	258.00	
bore	3.369545	0.276930	2.92	3.78	
stroke	3.271136	0.336353	2.64	4.17	
compression-ratio	9.213636	1.379198	7.60	14.90	
horsepower	104.750000	38.625106	68.00	207.00	
peak-rpm	5217.045455	352.658810	4425.00	5900.00	
city-mpg	24.477273	5.819665	15.00	38.00	
highway-mpg	30.136364	6.067442	19.00	43.00	
price	14860.840909	8880.370439	6295.00	35550.00	

A histogram of the Price column shows that the price values are right-skewed – in other words, most cars are priced at the lower end of the price range, as shown here:

Numeric Relationships-

The following scatter-plot matrix was generated initially to compare numeric features with one another.

Viewing plots in the bottom row or the right-most column of this matrix shows an apparent relationship between price and other numeric features. Specifically, as length, curb-weight, engine size, and horsepower increase, so does price; and as city-mpg increases, the price reduces.

Correlation-The correlation between the numeric columns was then calculated with the following results:

Columns	normalize d-losses	length	curb-weig ht	engine- size	horsepo wer	peak-rpm	city-mpg	highway- mpg	price
normalized- losses	1.000000	-0.06043 3	-0.006289	-0.0086 57	0.088777	0.242206	-0.124516	-0.086070	0.014377
length	-0.060433	1.000000	0.877728	0.68336 0	0.551990	-0.286362	-0.670909	-0.704662	0.686829
curb-weight	-0.006289	0.877728	1.000000	0.85059 4	0.750505	-0.266358	-0.757414	-0.797465	0.819595
engine-size	-0.008657	0.683360	0.850594	1.00000 0	0.809321	-0.244383	-0.653658	-0.677470	0.860074
horsepower	0.088777	0.551990	0.750505	0.80932 1	1.000000	0.130119	-0.800797	-0.770269	0.749343
peak-rpm	0.242206	-0.28636 2	-0.266358	-0.2443 83	0.130119	1.000000	-0.114230	-0.054195	-0.10784 7
city-mpg	-0.124516	-0.67090 9	-0.757414	-0.6536 58	-0.80079 7	-0.114230	1.000000	0.971337	-0.66886 2
highway-m pg	-0.086070	-0.70466 2	-0.797465	-0.6774 70	-0.77026 9	-0.054195	0.971337	1.000000	-0.69319 0
price	0.014377	0.686829	0.819595	0.86007 4	0.749343	-0.107847	-0.668862	-0.693190	1.000000

Categorical Relationships-

After exploring the Numeric values and price relations of Automobile now let us focus on the Categorical variables and Price relationships through Bar graphs and Box plots.

1. Make and Price relationship-

There are a few manufacturers that typically create expensive cars, some manufactures with predominantly mid-priced cars, and some that seem to specialize in lower-priced cars

2. Fuel-type and price relationship-

There are a wider range of prices for gas cars than for diesel cars, though the median price is similar for both types

3. Drive-wheels and Price relationships-

Rear-wheel-drive cars are typically more expensive than other types of car which can also be seen in the below boxplot:

4. Engine Location and Price relationship-

Rear-engine cars are significantly more expensive than front-engine cars; and their prices fall within a smaller range.

5. Number of Cylinders and price relationship-

As the number of cylinders increases the price of automobile tend to increase.

♦ Regression Analysis-

It is important to see the linear relationships between some of the major factors and the price of the automobile.

Here it can be observed that as length, curb-weight, horsepower increase than the price increases while as Highway-mpg increases the price decreases.

& Conclusion-

This analysis has shown that the price of an automobile can be predicted from its features. In particular, the manufacturer, number of cylinders, horsepower, city MPG, and drive wheels have a significant effect on the price of an automobile. Secondary features, such as fuel type can help further classify automobiles and determine the price.

Future Scope of my work - Hello I am third year UG student at IIT Kharagpur. I am a Data Science enthusiast skilled in Python, data analysis, Statistical modeling, Machine Learning, and BI tools and techniques. I am open for the project and work related to Data Science and ML.