PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-255319

(43) Date of publication of application: 25.09.1998

(51)Int.CI.

GllB 7/135

G03F 7/20

(21)Application number: 09-076450

(71)Applicant:

HITACHI MAXELL LTD

(22)Date of filing:

12.03.1997

(72)Inventor:

SUENAGA MASASHI **SUGIYAMA TOSHINORI**

(54) MASTER DISK EXPOSURE DEVICE AND METHOD THEREFOR

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a master disk exposure device capable of exposing a minute pit and a narrow groove with high precision and provided with a developing function.

SOLUTION: In this master disk exposure device 100, a master disk 19 coated with a photoresist film 20 is irradiated convergently with laser beams to form a desired pattern. A nozzle 210 fills water between a condensing lens 17 and the master disk 19 during the exposure. The condensing lens 17 increases in NA and functions as an immersion objective. With the nozzle arranged in piping for a water tank and a developer tank, and with a valve installed that changes a feeding liquid to water or developer, the master disk aligner can also be used as a developing device.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開書号

特開平10-255319

(43)公開日 平成10年(1998) 9月25日

(51) Int.CL*		集別配号	PΙ		
GIIB	7/135		G11B	7/135	z
G03F	7/20	505	G03F	7/20	505

密査部球 未請求 額求項の数9 FD (全 9 頁)

(21)出顧番号	特顧平9-76450	(71)出顧人	000005810		
			日立マクセル株式会社		
(22) 出願日	平成9年(1997)3月12日		大阪府淡木市丑寅1丁目1番88号		
		(72)発明者	宋永 正恋		
			大阪府支木市丑寅一丁目1番88号 日立マ		
			クセル株式会社内		
		(72)発明者	杉山 ^{、李} 寿紀		
			大阪府茨木市丑寅一丁目 1 番88号 日立マ		
			クセル株式会社内		
		(74)代建人	弁理士 川北 喜十郎 (外1名)		

(54) 【発明の名称】 原盤館光装置及び方法

(57)【要約】

【課題】 微小ピット及び幅狭満を高精度で露光することができ、しかも現像機能をも同時に備えた原盤露光装置を提供する。

【解決手段】 原盤高光装置100はフォトレジスト腺20を塗布した原盤19にレーザ光を集光して照射して所望のパターンに感光する。ノズル210は高光中に集光レンズ17と原盤19との間に水を充満させる。集光レンズ17のNAが増大し、液浸レンズとして標能する。酸ノズルを水タンク及び現像液タンクに配管し、供給液体を水または現像液に切り換えるバルブを備えることにより、原盤露光装置を現像装置としても機能させることもできる。

特際

(2)

【特許請求の範囲】

【請求項】】 フォトレジストを塗布した記録媒体製造 用原盤にレーザ光を集光して照射することによりフォト レジストを所望のパターンに感光する原盤電光装置にお いて

上記レーザ光を上記原盤表面に集光するための光学素子 と

上記光学素子と上記原盤表面との間の光路に液体を介在 させるための手段とを備えることを特徴とする原盤露光 装置。

【請求項2】 上記光学素子が液視レンズとして機能することを特徴とする請求項1記載の原盤電光装置。

[論求項3] 上記液体を介在させるための手段が、原盤上に液体を吐出するためのノズルと、該ノズルに液体を供給するための液体供給装置とから構成されていることを特徴とする論求項1または2に記載の原盤露光装置。

【請求項4】 さらに、現像液を原盤上に供給するための手段を有することを特徴とする請求項1~3のいずれか一項に記載の原盤電光装置。

【請求項5】 上記現像液を原盤上に供給するための手段が、上記原盤上に上記液体または現像液を吐出するためのノズルと、該ノズルに上記液体または現像液を供給するための供給装置と、該ノズルへの上記液体または現像液の供給を切り換えるための切り換え装置とから構成されていることを特徴とする請求項4に記載の原盤露光装置。

【請求項6】 さらに、露光及び現像された原盤を検査 するための検査装置を備えることを特徴とする請求項5 に記載の原盤露光装置。

【請求項7】 上記検査装置が、原盤露光装置の上記光 学素子を含む光ヘッドであることを特徴とする請求項6 に記載の原盤露光装置。

【請求項8】 上記液体が水であることを特徴とする請求項1~7のいずれか一項記載の原盤露光装置。

【請求項9】 フォトレジストを塗布した記録媒体製造 用原盤にレーザ光を集光して照射することによりフォト レジストを所望のパターンに感光する原盤露光方法にお いて

上記レーザ光を集光するための光学素子と原盤との間に 40 液体を介在させながら原盤露光を行うことを特徴とする 原盤露光方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光ディスク等の記録媒体用基板の原盤を製造するための原盤露光装置に関し、より詳細にはフォトレジストを塗布した原盤を露光する際の露光解像力を向上することができる原盤露光装置及び方法に関する。

[0002]

特開平10-255319

【従来の技術】コンパクトディスクや光磁気ディスクの **基板は、プリフォーマット信号に対応するグループやブ** リエンボスピットのパターンを原盤上に露光及び現像に より形成した後、得られた原盤を複製してスタンパを作 製し、スタンパを装若した射出成型器でプラスチック材 料等を射出成型することによって製造される。原盤にグ ループやプリエンボスピットのパターンを形成するため に原盤露光装置が用いられている。原盤露光装置は、通 常。フォトレジストが塗布されたガラス原盤を回転しな 10 がら、原盤面に照射するレーザ光をプリフォーマット体 号に応じてオンオフすることによって所定のパターンで フォトレジストを感光する。感光した原盤は、原盤露光 装置から取り外された後、現像装置のターンテーブルに 装着され、回転している原盤表面に上方からアルカリ液 を供給することにより現像が行われる。現像が終わる と、原盤に形成された満やピットの寸法が適切がどうか を光ヘッドを備えた検査装置により検査される。こうし てスタンパ形成用の原盤が作製されている。

【0003】上述の原盤露光装置として、例えば、テレ20 ビジョン学会誌 Wol 37, No.6、475-490頁(1983年)には、レーザ光液長入=457、98 n m、レンズ閉口数 NA=0、93の光へッドを用いて、原盤上にスポットサイズ約0、5 μmにレーザ光を絞り込むことができる VHD/AHD方式ビデオディスクのレーザカッティングマシンが開示されている。このカッティングマシンを用いると最小0、25 μmのエンボスピットを形成することができることが報告されている。また、このカッティングマシンはレーザスポットを原盤に追従させるためにHe-Neレーザを補助ビームとしたフォーカシング サーボ系を用いている。

【0004】特開平6-187668号公報は、狭トラックビッチ化、高密度記録しても隣接トラックからのクロストークを経済することができる光ディスク原盤の製造方法を開示しており、原盤露光において上記文献とはは同様の構成のレーザカッティングマシンを使用している。

[0005]

【発明が解決しようとする課題】近年のマルチメディア 化による情報量の増大に伴い、光ディスク等の情報記録 媒体の高密度化、大容量化が要望されている。この要望 に応えるために、原盤露光装置においても光ディスク等 に記録するエンボスピットやグループのパターンをより 微小化して露光する必要がある。かかる微小パターンを 露光するには、レーザ光を原盤に集光するレンズの関口 数(NA)を増大すること、レーザ光の液長を短波長化 することが考えられる。しかしながら、レンズのNA及 びレーザ波長の短波長化には限界があり、露光分解能を 大幅に向上することは容易ではない。

【0006】また、前記のように露光及び現像工程は、 50 それぞれ、原盤露光装置及び現像装置を用いて別々に行

11-Mar-03 13:45

特開平10-255319

われていたため、装置コストがかかるとともに、装置設置スペースも必要であり、さらにスタンパを製造するまでの工程を煩雑化していた。

(3)

[0007] 本発明の目的は、情報ビットの後小化及び 狭トラックピッチ化に対応した狭満化を実現することが できる原盤露光装置を提供することにある。

[1008]また、本発明の別の目的は、磊光機能のみならず現像機能をも備え且つ磊光解像力が向上した原盤 露光装置を提供することにある。

【0010】本発明の原盤器光装置の原理を図6を用いて説明する。図6は、本発明の原盤器光装置の光へッドにより露光されている原盤19近傍の拡大概念図である。原盤器光装置のレーザ光線(図示しない)から照射されたレーザ光4はリレーレンズ15を介して葉光レンズ17により原盤上に塗布されたフォトレジスト膜20の表面に集光される。本発明の原盤器光装置は、図6に示したように液体200を原盤表面上に供給するノズル210を値えており、露光動作中には、このノズル210から供給された液体200により原盤のフォトレジス 30ト膜20と集光レンズ17との間隙は充満される。ここで、葉光レンズ17により識別しうる2点間の最小距離では一般に下記式(1)により表される。

[0011]

【数1】

マー \(\lambda / \lambda \rangle \ra

盤窩光装置の集光レンズよりもNAを増大することができる。換言すれば、本発明の原盤露光装置では、集光レンズ17を液没レンズとして機能させることができる。液体200は、NAを大きくするために、風折率の大きな液体が好ましいが、レンズ17の収差の防止する観点から原盤の表面20と集光レンズ17との間隔を微調整する場合には、集光レンズ17の風折率に近い屈折率を有する液体、例えば、セダー油を用いるのが好ましい。しかしながら、液体200は、原盤のフォトレジスト良良とせぎ且つ後処理が容易であるという観点から水が好適である。

【0012】本発明の原盤露光装置は、さらに、現像液を原盤上に供給するための手段を有することができる。 原盤露光装置に現像液供給手段を装着することにより露光後のプロセスに使用されていた現像装置が不要となり、露光・現像プロセスを簡略化することが可能になる。

【0013】上記現像液を原盤上に供給するための手段 は、上記光学素子と原盤との間に介在させる液体または 現像液を原盤上に吐出するためのノズルと、該ノズルに 上記液体または現像液を供給するための供給装置と、上 記ノズルへの上記液体または現像液の供給を切り換える ための切り換え装置とから構成することができる。本発 明の原盤露光装置の具体例では、集光レンズと原盤との 間に液体を介在させるために原盤上に液体を吐出するた めのノズルとノズルに液体を供給するための供給装置を 用いているので、供給液を現像液と露光用の液体とで切り換えることができる切り換え装置、例えば、電磁弁を 装着すれば、かかるノズル及び液体供給装置を現像液供 給用としても用いることができ、一層簡単な構造で現像 機能を原盤露光装置に組み込むことができる。

【0014】本発明の原盤露光装置は、さらに、露光及び現像された原盤のピットや満の幅や深さ等を検査するための検査装置を備えることができる。これにより、原盤器光装置により露光・現像・検査が一つの装置で可能となり、設備コストの削減及びスタンパ製造までのプロセスを簡略化することができる。従来の検査装置は光ヘッドを備え、光ヘッドからの検査光を走査して現像露光されたピットや溝幅を検査していたので、原盤器光装置の集光レンズを含む光ヘッドを検査用の光ヘッドとして使用することが可能となり、装置の簡略化及び小型化が可能となる。

【0015】本発明の第2の態様に従えば、フォトレジストを建布した記録媒体製造用原盤にレーザ光を集光して照射することによりフォトレジストを所望のバターンに感光する原盤露光方法において、上記レーザ光を集光するための光学素子と原盤との間に液体を介在させながら原盤露光を行うことを特徴とする原盤露光方法が提供される。

11-Mar-03 13:52

特闘平10-255319

(4)

【()()16】本発明の原盤露光方法に従えば、レーザ光 を集光するための光学素子と原盤との間に液体を介在さ せながら原盤露光を行うために、光学素子を液浸レンズ として機能させて光へっドの磊光解像力を向上させるこ とができる。また、靄光中に原盤上に付着した虚等を液 体を流動させることにより除去することができる。

[0017]

【発明の実施の形態】以下、本発明の固体イマージョン レンズを用いた原盤電光装置の実施の形態及び実施例を 図面を参照しながら説明する。

【()()18】 (第1実施例) 本発明に従う原盤露光装置 の第1実施例を図1により説明する。図1は、原盤露光 装置100の構成観略を示す。原盤露光装置100は、 主に、磊光用のレーザ光を出射するレーザ光源1.原盤 19への照射タイミング及び照射位置をそれぞれ調整す る音響光学(AO)変調器7及び音響光学(AO)偏向 器9.磊光用光ヘッド27.原盤19を回転するターン テーブル21.原盤19上に水を吐出するノズル210 及び水/現像液供給装置220、照射されたスポットを 光路を調整するためのビームスプリッター3、ミラー1 1. ハーフミラー13、レンズ6等の種々の光学素子か **ら構成されている。**

【① 019】レーザ光瀬1から出射されたレーザ光東2 はビームスプリッタ3により第1の光束4と第2の光束 5に分けられる。第1の光束4は、一対のレンズ6で挟 まれたAO変調器?に入射して、記録すべき信号のタイ ミングに応じたパルス光に変調される。AO変調器7で 変調されたパルス光はミラー8で反射された後、AO偏 向器9に入射して原盤19の所定の半径方向位置を照射 30 するように偏向される。次いで、偏向された光は、偏光 ミラー10及びミラー11を経て光ヘッド27に入射す る。光ヘッド27には後述するリレーレンズ15及び集 光レンズ17が装着されており、それらのレンズにより レーザ光は原盤19の表面の所定位置に集光される。原 盤 1 9 上には予め入射光に対して感光性のフォトレジス ト20が途布されている。一方、第2の光束5はEO変 調器12に入射する。AO変調器7の代わりにEO変調 器12により照射タイミング及び露光量を変調してもよ い。EO変調器12を通過した光はハーフミラー13で 40 反射され、入/2位相板14を透過した後、偏光ミラー 10. ミラー11を経て光へっド27に到達する。

【0020】ノズル210はターンテーブル21の上方 で且つ原盤19の中心近傍に配置されており、原盤19 に向かって水200を吐出する。ターンテーブル21に より原盤19が回転されるとその途心力で水200は原 盤19の外周に広がり、原盤のフォトレジスト膜20を 覆う水段を形成する。原盤19の外周に向かって流動し た水200は集光レンズ17と原盤のフォトレジスト表 面20との間を充満するため、集光レンズ17は被視レ 50 イル34 f、永久随石35 b、ヨーク36 c。36 d は

ンズとして機能する。

[0021] 光ヘッド27から原盤19上のフォトレジ スト購20に照射された光は、前記式(1)及び液浸レ ンズの原理により空気中の理論的な最小スポット径より も小さなスポットを形成してフォトレジスト腺20を感 光させる。このため、従来の原盤露光装置よりも露光解 像力が向上し、一層微細なピット及び案内海のバターン を高結度で露光することができる。 光ヘッド27の構造 の詳細については後述する。

6

【0022】原盤19のフォトレジスト腺20の表面か ら反射された光は、集光レンズ17及びリレーレンズ1 5を透過して平行光となり、ミラー11、偏光ミラー1 O.ハーフミラー13を経てレンズ22により張像管2 4上に集光される。撮像管24のディスプレイ26に表 示されたスポット像26a.26bを観察することによ り、集光レンズ17によって形成されるスポット形状を 確認することができる。

【0023】レーザ光源1、AO変調器7、EO変調器 12. ターンテーブル21等の動作は、図示しない制御 観測するための場像管24及びディスプレイ26並びに 20 部(図3及び図4参照)により一括して管理される。制 御部にはプリフォーマット信号が入力され、それに応じ TAO変調器7等の発光周期等が調整される。

[0024]次に、原盤露光装置100の光へッド27 の構造の詳細を図2及び図3を用いて説明する。図2 は、集光レンズ17を弾性部材18を介して支持する光 ヘッド27を下方から見た斜視図を示し、図3は光ヘッ F27の拡大断面図を示す。なお、図3には、光ヘッド 27の構造を分かり易くするために、ノズル210から 吐出された水200の図示は省略してある。

【0025】図2に示すように光へっド27は、集光レ ンズ17と、集光レンズ17を保持する集光レンズホル ダ16aと、光ヘッドベース部28とを備え、栄光レン ズホルダ16aはベース部28の底面に固着された4本 の支持部材29及びそれに接続された弾性部材188、 例えば板バネにより支持されている。との支持常造によ り、集光レンズホルダ16aは、原盤平面と平行な方向 (図中X, Y方向) に拘束され、集光レンズ 17の光軸 方向(図中2方向)に可動である。

【0026】図3に示すように、集光レンズホルダ16 aはその上部にビエゾ素子33を介してリレーレンズ1 5を支持するリレーレンズホルダ32を備える。とこ で、ビエゾ素テ33は集光レンズ17に対するリレーレ ンズ 15の光軸方向位置を変更してリレーレンズ 15の 焦点位置を微調整する。

【0027】リレーレンズホルダ32は弾性部村18h を介してベース部28の支持部材29と連結されてい る。リレーレンズホルダ32上には、ボイスコイル型ア クチュエータ 14()を構成するボビン34eが固着され ており、アクチュエーター40の他の構成要素であるコ

【0029】次に、図4を用いて、図1に示した水/現 像液供給装置220の構造の詳細を説明する。水/現像 液供給装置220は、主に、アルカリ液である現像液及 び水をそれぞれ貯蔵するタンク82、84と、それらの タンク内部を加圧する窒素ポンプ92と、タンク82。 84からノズル210に水/現像液を供給する配管8 O. 80a, 80b及び制御部88等から構成されてい る。水/現像液を吐出するノズル210は配管80に接 30 続され、その途中から現像波タンク82に接続する配管 80aと水タンク84に接続する配管80hに分岐す る。配管80a及び80bにはそれぞれ電磁バルブ86 a及び86 bが装着されており、その開閉は制御部88 により制御される。配管80の途中には流量コントロー ルバルブ9()が鉄着され、ノズル2()から吐出される 液体の流量が制御部88を通じて制御される。現像液タ ンク82と水タンク84にはそれぞれ窒素ポンプ92か **ら高圧窒素が供給され、タンク内部が加圧されることに** よってそれらのタンク82、84から現像液及び水が配 40 官80a, 80bに流出される。 窒素ポンプ 92もまた 制砂部88により制御されている。なお、制御部88 は、図1に示した原盤露光装置の露光動作を一括して管 理している制御部と共通している。

【0030】図4に示したような現像液/水供給装置220の動作を以下に説明する。原盤電光装置において露光が行われる際、制御部88は水タンク84側の電磁バルブ86bを開放して水タンク84内の水を配管80に供給する。制御部88はまた流量コントロールバルブ90を制御して、配管80中を流れる水の流量を調節し、

適量の水をノズル210から吐出させる。 これにより、 露光中は、集光レンズ17と原盤表面のフォトレジスト 20との間隙が水で充満され、集光レンズ17が液浸レ ンズとして機能する。また、磊光前または磊光中にフォ トレジスト腺20上に付着した塵等がノズルからの水に より流し出されるために、虚等の付着物による露光精度 の低下を防止することもできる。なお、ノズル210か ら吐出される水量は、集光レンズ17と原盤表面のフォ トレジスト20との間瞭が常に水で充満される量が必要 であるが、原盤上での水の流動により集光レンズ17と 原盤表面のフォトレジスト20との間の維持された間隔 を変動させないようにするのが望ましい。原盤上での水 の流れを安定させるためにノズル210の吐出方向を水 平方向にしてもよい。また、集光レンズホルダ16aに よる水の抵抗を減らすために集光レンズホルダ168の 底面の端部が曲面を形成するようにしてもよい。

[0031] 原盤20の露光が終了すると、制御部88は電磁バルブ86hを閉鎖するとともに、現像液タンク82側の電磁バルブ86aを開放することによってノズ20ル210から吐出される液を水から現像液に切り換える。流量コントロールバルブ90は制御部88の制御下で現像液の流量を調整し、通切な流速の現像液をノズル210から吐出させる。こうして、感光した原盤20の現像的作が行われる。

[0032] 図4に示した装置220では、現像液と水とを電磁バルブ86g, Dを切り換えることによって同一ノズル210により供給することができため、露光移了後、感光した原盤を移動することなくその場合で現像することができる。

【0033】さらに、図1に示した光へっド27 撮像管24及びディスプレイ26は、露光・現像が終了した後に原盤上に形成されたビット及び溝の幅や深さ等を検査するための検査装置として用いることも可能である。このように原盤露光装置を希成することにより、従来の原盤露光装置を、露光・現像・検査が可能な一体型装置とすることができる。

【0034】〔第2実施例〕本発明に従う原盤露光装置の第2実施例を図5を用いて説明する。図5は、図3に示した原盤露光装置の光へッド27の変形例を示す断面図である。図5に示した光へッド部は、集光レンズ17を支持する集光レンズホルダ16bの構造が図3に示した気光レンズホルダ16aと異なる以外は、実施例1の原盤露光装置100の光へッド部と同様の構造を有する。それゆえ、実施例1の原盤露光装置100と共通する部付及び構造については同一の行号を付してその説明を省略する。また、図5には、集光レンズホルダ16bの構造を分かり易くするために、ノズル210から吐出された水の図示を省略してある。

[1)()35] 葉光レンズホルダ16bは、その中央に集 50 光レンズ17を支持し、ホルダ底部は外側に向かうに従

(6)

特別平10-255319

10

って原盤19との間隔が広くなるような鍵面を形成している。集光レンズホルダ16 hの内部には、外部から集光レンズ17に通じる空洞(光路)16 f、16 gが集光レンズ17の光軸を挟んで対称に形成されおり、一方の光路16 fの開口部(光入射口)には光ファイバ40が装着され、他方の光路16 gの開口部(光出射口)には、スリット41 a及び徐出部41 bを値えたレンズ位置検出器41が装着されている。レンズ位置検出器41 が装着されている。レンズ位置検出器41 の後出部41 bは前述のボイスコイルモータ140を制御する制御部88に接続されている。すなわち、実施例10 nの配置光装置では、ボイスコイルモータ140の制御はディスプレイ26による観察結果に基づいて行っていたが、この実施例ではレンズ位置後出器41からの検出信号に基づいて行う。

【0036】光ファイバ40から射出された光は空洞 (光路) 16 fを通って集光レンズ17に入射した後、 原盤19により反射されて再び集光レンズ17及び空洞 (光路) 168を通ってレンズ位置検出器41に入射す る。レンズ位置検出器41は、検出部418と41bに 分割されており、集光レンズ17の端面17cと原盤表 20 面20との間隔が予め定めた過正値のとき、原盤からの 反射光の中心がレンズ位置後出器41の検出部418と 41bの中間に配置するように設計されている。 すなわ ち、このとき後出部41aと41bの前記反射光の光量 が等しくなる。それゆえ、露光中、すなわち、ノズル2 10から水が吐出されて原盤表面のフォトレジスト20 上を水が流動しているときに、集光レンズ17の端面1 7cと原盤のフォトレジスト20との間隔が過正な間隔 になければ、後出部41aと41bから出てくる反射光 検出出力のバランスがくずれ、制御部ではこれに庇答し 30 てポイスコイル型アクチュエータ140を駆動し葉光レ ンズ17と原盤19との間隔が適正な値に修正されるよ うにする。また、水などの液体を集光レンズ17とフォ トレジスト表面20との間に充満させた場合、フォトレ ジストと前記液体との屈折率が近似していれば、光ファ イバー4()から出た光がフォトレジスト表面20で反射 される強度が小さくなり位置光検出部で検出される光量 が減り、サーボが不安定になることがある。このような 場合には、フォトレジストと原盤の間にアルミ等の反射 膜を形成して反射光量を増すこともできる。

[0037] 図5に示した原盤露光装置は、レンズ位置 検出器41を備えるので集光レンズ17と原盤との間隔 が常に連正な値になるように制御部88を通じて自動的 に調整される。従って、電光中に原盤表面に供給された 水の流量の変勢等により集光レンズホルダ16bの上下 方向の揺れが生じた場合でも、揺れを諦めて集光レンズ 17と原盤との間隔を適正な値に収束することができ る。

【10038】以上、本発明を実施例により説明してきた たは現像液を供給するための供給装置と上記ノスルへの たは現像液を供給するための供給装置と上記ノスルへの が、本発明は特許請求の範囲に記載した範囲で実施例の 50 該液体または現像液の供給を切り換えるための切り換え

後々の変形及び改良を含むことができる。上記例では、原磐中央近傍に水/現像液が吐出されるようにノズルを配置したが、ノズルの位置は原盤の回転によって原盤と集光レンズとの間隙に水を充満させることができる限り任意の位置に配置することができる。例えば、原盤の半径方向において集光レンズと同一位置であり且つ原盤の回転方向前方にノズルを配置することができる。またノズルからの液体の吐出方向はノズルの向きを変更することによって任意の方向に調整することができる。

【0039】上記実施例ではノズルを用いて水を原盤上に吐出させる構成としたが、原盤外周に沿って整面を設けることによって原盤を底部とする容器を形成し、容器内に一定量の水を著えることによって原盤と集光レンズとの間隙に水を充満させることもできる。このようにすれば、ノズルから吐出する水の量を低減し、あるいは、電光前にのみノズルから水を容器内に充満させ、水の流動による集光レンズホルダの揺れを抑制することができる。また、ノズル自体を省略して、上記のような容器構造だけを採用してもよい。すなわち、原盤と集光レンズとの間隙に水を介在させることができる方法であれば、任意の方法を用いることができる。

【0040】また、上記原盤電光装置は、光へっ下部を現像処理時に原盤から退避させることができるような退避機構あるいは光へっ下部に現像液が付着することを防止するための光へっ下カバーを設けることができる。かかる退避機構または光へっ下カバーを設けることによって光へっ下部をアルカリ液である現像液から保護し、レンス及びレンズホルダの腐食を防止することができる。【0041】本発明の原盤電光装置は、コンパクトディスク、CD-ROM、デジタルビデオディスク等の再生専用の光記操媒体、CD-Rのような追記型記録媒体、光超気ディスクのような害換え型光記録媒体のみならずハードディスク等に使用されるエンボスピットタイプの磁気記録媒体を製造するために使用することができる。【0042】

【発明の効果】本発明の原盤露光装置は、集光レンズと 原盤との間に液体を介在させることによって集光レンズ は液浸レンズとして機能することができるため、露光解 像力を一層向上することができ、それによって極めて微 40 小なピット、例えば、0.2μm以下のピットが形成さ れる高密度記録媒体用の原盤を製造することも可能にな る。

【10043】また、本発明の原盤露光装置は、現像液供給手段を有するため露光後のプロセスに従来使用されていた現像装置が不要となり、露光・現像プロセスを簡略化することが可能になる。特に、現像液供給手段を、上記光学素子と原盤との間に介在させる液体または現像液を原盤上に吐出するためのノズルと該ノズルに該液体または現像液を供給するための供給装置と上記ノズルへの対策はまたは現像液の供給を切り換えるための切り換え

11-Mar-03 15:1

(7)

特闘平10-255319

12

装置とから構成することにより、ノズルから現像液と露光用の液体とを切り換えて吐出することができるため、一層簡単な構造で現像機能を原盤露光装置に組み込むことができる。

11

【0044】本発明の原盤電光装置は、さらに、露光及び現像された原盤のピットや満の幅や深さ等を検査するための検査装置を値えることにより、原盤露光装置により電光・現像・検査が一つの装置で可能となり、設備コストの削減及びスタンパ製造までのプロセスの簡略化を実現することができる。

[0045] 本発明の原盤露光方法に従えば、レーザ光を集光するための光学素子と原盤との間に液体を介在させながら原盤露光を行うために、光学素子を液浸レンズとして機能させることができるとともに露光中に原盤上に付着した座等を流動除去することができる。このため光へっドの露光解像力及び露光精度を向上させることが可能になる。

【図面の簡単な説明】

【図1】本発明に従う原盤高光装置の全体構成を説明する概念図である。

【図2】図1に示した本発明に従う原盤露光装置の光へ ッドの第1実施例を下方から見た斜視図である。

【図3】図1に示した本発明に従う原盤露光装置の光へ ットの第1実施例を示す断面図である。

【図4】本発明の第1実施例及び第2実施例に従う原盤*

* 富光禁還のノズル及び水/現像液供給禁還の構造を説明 する概念図である。

【図5】本発明の第2の実施例に従う原盤高光装置の光 ヘッドの断面図である。

【図6】本発明の原盤露光装置の集光レンズが被視レンズとして機能することを説明する図である。

【符号の説明】

3 ビームスブリッタ

7 AO変調器

10 9 AO偏向器

16a, b 集光レンズホルダ

17 集光レンズ

18 弹性部针

20 フォトレジスト

27 光ヘッド

28 光ヘッドベース部

29 支持部村

82 現像液タンク

84 水タンク

0 92 窒素ポンプ

100 原盤露光装置

130 ボイスコイル型アクチュエータ

200 水

210 水/現像液吐出ノズル

[図1]

(8)

特闘平10-255319

