

Universidad Nacional de La Plata Facultad de Ciencias Exactas Departamento de Física

Búsqueda de Supersimetría con producción de Higgs en el detector ATLAS (CERN-LHC)

Trabajo de Tesis Doctoral

Gonzalo E. Orellana

Director
Dr. Hernán P. Wahlberg
Co-Director
Dr. Fernando Monticelli

Índice general

In	trodi	ucción	5
1.	Mod	delo Estándar y Supersimetría	7
	1.1.	Modelo Estándar	7
		1.1.1. Física más allá del Modelo Estándar	9
		1.1.2. Divergencias cuadráticas	10
	1.2.	Extensión Supersimétrica del Modelo Estándar	11
		1.2.1. Modelo Estándar Supersimétrico Mínimo	12
		1.2.2. El espectro de masas	15
	1.3.	Colisión pp	16
2.	LHO	C y detector ATLAS	19
	2.1.	El detector ATLAS	21
	2.2.	Sistema de coordenadas	22
	2.3.	Sistema de imanes	23
	2.4.	Los subdetectores de ATLAS	24
		2.4.1. Detector interno	24
		2.4.2. Calorímetros	25
		2.4.3. Espectrómetro de muones	27
	2.5.	Sistema de trigger	28
	2.6.	Modelo computacional y distribución de datos	29
3.	\mathbf{Rec}	onstrucción e identificación de objectos físicos	31
	3.1.	Electrones y fotones	31
		3.1.1. Reconstrucción	32
		3.1.2. Identificación	34
		3 1 3 Aislamiento	37

	3.2.	Muones	38
	3.3.	Jets	39
		3.3.1. Jets provenientes de quarks b (b -jets)	41
	3.4.	Energía transversa faltante	41
4.	Efic	iencia del trigger de fotones	43
	4.1.	Reconstrucción de fotones en el Trigger	43
	4.2.	Nomenclatura y menú del trigger de fotones	45
	4.3.	Método del bosón Z decayendo radiativamente	46
	4.4.	Factores de escala de las eficiencias	48
5.	Eler	mentos estadísticos para la búsqueda de nueva física	51
	5.1.	Estrategia general	51
	5.2.	Maximum likelihood	52
	5.3.	Constratación de hipótesis	53
	5.4.	Estadísticos de prueba	54
	5.5.	Límites superiores	56
	5.6.	Aproximación de las distribuciones de los estadísticos de prueba $\ \ldots \ \ldots$	57
	5.7.	Optimización de las regiones de señal	58
	5.8.	Ajuste de solo fondo	58
6.	Bús	queda de SUSY con fotones y Higgs en el estado final	61
	6.1.	Identificación de eventos de fondo	61
	6.2.	Muestras a partir de simulaciones de Monte Carlo	62
		6.2.1. Muestras de fondo	62
		6.2.2. Muestras de señal	63
	6.3.	Selección de eventos de señal	64
	6.4.	Regiones de control y validación	65
	6.5.	Fondo de jets identificados como fotones	67
	6.6.	Fondo de electrones identificados como fotones	67
	6.7.	Incertidumbres sistemáticas	68
7.	Res	ultados e interpretación del análisis	71
8.	Bús	queda de SUSY con producción electrodébil	7 5
	8.1.	Muestras de señal	76

ÍNDICE GENERAL	III
9. Conclusión	79
f A gradecimientos	81

85

Bibliografía

To Do

- Siglas: ATLAS, SM, ID, EM
- Mencionar
 - electrones = positrones
 - leptones: sin tau
 - MET asociado a neutrinos y nueva fisica
- Definiciones
 - qué cosas van con itálica (trigger?)
 - pile up, convención para escribirlo
 - Run 1, 2
 - prompt
 - crack region
 - barrel, endcap
 - z0 y sigmad0
 - prescale y rerun
 - derivation
 - PDF
 - RoI

Citas

- newt: T. Cornelissen et al., Concepts, Design and Implementation of the ATLAS New Tracking (NEWT), ATL-SOFT-PUB-2007-007 (2007), url: http://cds.cern.ch/record/1020106
- Kalman: R. Frühwirth, Application of Kalman filtering to track and vertex fitting, Nucl. Instrum. Meth. A262(1987) 444.
- chi2: T. G. Cornelissen et al., The global chi2 track fitter in ATLAS, J. Phys. Conf. Ser.119(2008) 032013
- gsf: ATLAS Collaboration,Improved electron reconstruction in ATLAS using the Gaussian Sum Filter-based model for bremsstrahlung, ATLAS-CONF-2012-047, 2012,url:https://cds.cern.ce

• Cacciari: M. Cacciari and G. P. Salam, Pileup subtraction using jet areas, Phys. Lett. B659(2008) 119, arXiv:0707.1378 [hep-ph].

- silicon: ATLAS Collaboration, Performance of the ATLAS Silicon Pattern Recognition Algorithm in Data and Simulation at s=7TeV, ATLAS-CONF-2010-072 (2010), url:http://cds.cern.ch/s
- trt: ATLAS Collaboration, Particle Identification Performance of the ATLAS Transition RadiationTracker, ATLAS-CONF-2011-128, 2011, url: https://cds.cern.ch/record/1383793.
- trimming: JHEP 02, 084 (2010), 0912.1342
- btag: ATLAS b-jet identification performance and efficiency measurement with tt-bar events in pp collisions at sqrt(s) 13 TeV, Eur. Phys. J. C 79 (2019) 970, ar-Xiv:1907.05120, FTAG-2018-01
- jeffrey: arXiv:0908.0130
- CMS: S. Chatrchyan et al. The CMS Experiment at the CERN LHC. JINST, 3:S08004, 2008.
- ALICE: K. Aamodt et al. 3:S08002, 2008. The ALICE experiment at the CERN LHC. JINST,
- LHCb: A. Augusto Alves, Jr. et al. The LHCb Detector at the LHC. JINST, 3:S08005, 2008.
- magnet: https://cds.cern.ch/record/409763
- level1: R. Achenbach et al. The ATLAS level-1 calorimeter trigger. JINST, 3:P03001, 2008.
- grid: CERN. The worldwide lhc computing grid.
- analysistools: B Lenzi. The Physics Analysis Tools project for the ATLAS experiment. Technical Report ATL-SOFT-PROC-2009-006, CERN, Geneva, Oct 2009.
- athena: P Calafiura, W Lavrijsen, C Leggett, M Marino, and D Quarrie. The Athena Control Framework in Production, New Developments and Lessons Learned. 2005.
- root: R. Brun and F. Rademakers. ROOT: An object oriented data analysis framework. Nucl. Instrum. Meth., A389:81–86, 1997.

Dudas

- Fotones convertidos dejan 2 depósitos en el EM o 1? Figura? Al parecer dejan 2 pero están muy juntos al estar boosteados, no es que dejan 2 depósitos bien separados en el detector y esos 2 se unifican en un fotón. De todas formas me gustaría confirmarlo
- En nuestro análisis los taus están como jets? No hay veto?
- Usamos los objetos baseline para calcular MET? Al final NO. MET se calcula por default por la tool con todos los objetos presentes en el evento
- El pt de los muones se mide solo con su traza? o algo de su energia se deposita en el MS y con eso se puede deducir el pt?
- Si al pi0 lo reconstruimos como a un jet, por que en la figura 3.2 hablamos de los 2 depositos de energía que deja su decaimiento a 2 fotones?
- Cuestiones sobre la definicion de objetos prompt:
 - HW: No entiendo tu comentario, la identificación son criterios de calidad del objeto que ya se clasificó como electrón o fotón.
 - GO: En el paper EGAM-2018-01 se utiliza la jerga prompt vs background para motivar la iden- tificación. Aquellos e/y que vienen de decaimientos prompt se depositan en el ECAL y los podemos considerar prompt, aquellos que vienen en otro tipo de decaimiento supongo que estarán contenidos dentro de los jets...
 - Revisar mejor definición de prompt
- Hay muones que no lleguen al MS? los de bajo pT? si es así, agregarlos a los CT

Introducción

...

6 0 Introducción

Capítulo 1

Modelo Estándar y Supersimetría

El Modelo Estándar (SM, por sus siglas en inglés) es la teoría que describe a las partículas elementales y a sus interacciones. Este modelo fue introducido por Glashow, Salam y Weinberg en la década de los 70 [?,?,?]. Está basado en teorías cuánticas de campo, y sus predicciones, cuantitativas y cualitativas, han sido verificadas experimentalmente con gran precisión.

Una de las extensiones del SM mejor motivada desde el punto de vista teórico es la Supersimetría, ya que resuelve algunas de las limitaciones del mismo. En particular, provee una solución al problema de jerarquía, proporciona candidatos para la materia oscura, permite la unificación de las fuerzas del SM, y hasta propone una conexión entre estas y la gravedad. Es por este motivo, que la Supersimetría, se ha vuelto uno de los objetivos principales en la búsqueda de nueva física en los últimos años.

1.1. Modelo Estándar

Según el SM las partículas se clasifican en dos grandes grupos: fermiones y bosones. Los fermiones son los que componen la materia ordinaria y se caracterizan por obedecer la estadística de Fermi-Dirac y tener espín semientero. Estos se clasifican en leptones y quarks, según si experimentan o no la interacción fuerte, siendo los últimos los que pueden interactuar mediante dicha fuerza.

Existen 6 tipos (o sabores) de leptones que se clasifican en tres generaciones. Cada generación se forma a partir de un leptón masivo y cargado y otro no masivo y neutro. Así se tienen el electrón (e^-) con su correspondiente neutrino (ν_e) , y el muón (μ^-) y el tau (τ^-) con sus neutrinos asociados $(\nu_\mu \ y \ \nu_\tau)$.

Así mismo, existen 6 tipos de quarks: up (u), down (d), charm (c), strange (s), top (t) y bottom (b). A diferencia de los leptones, lo quarks tienen carga de color, que les permite interactuar mediante la fuerza fuerte. Los quarks solo se manifiestan en estados ligados, denominados hadrones, fenómeno conocido como confinamiento de quarks. Existen dos tipos de hadrones en la naturaleza: los bariones (qqq) y los mesones $(q\bar{q})$.

Los fermiones se pueden encontrar en dos estados de helicidad, izquierda y derecha, salvo los neutrinos que solamente existen en estados de helicidad izquierda. Las dos últimas generaciones de fermiones son inestables, por lo que decaen a las de la primera generación. Es por esto que la materia ordinaria está compuesta por fermiones de la primera generación.

Así como los fermiones están asociados a la materia, los bosones están asociados a los portadores de las interacciones. Los mismos se caracterizan por obedecer la estadística Bose-Einstein y por tener espín entero. Existen cuatro tipos de interacciones fundamentales. La electromagnética, que afecta a las partículas con carga eléctrica, cuyo bosón asociado es el fotón. La débil, que actúa tanto en los quarks como en los leptones, asociada a los bosones W^{\pm} y Z^{0} . La interacción fuerte, que actúa en las partículas con carga de color, cuyo portador son los gluones. Finalmente, la cuarta interacción es la gravitatoria. La misma no está descripta por el SM, pero supone que debería actuar sobre todas las partículas del SM y su bosón asociado sería el gravitón.

Todas las partículas anteriormente mencionadas, tienen asociadas una antipartícula con la misma masa y espín, pero con carga y varios de sus números cuánticos opuestos (isospín, charmness, strangeness, topness, número bariónico, etc.).

El SM se construye formalmente como una teoría de gauge no abeliana, imponiendo invarianza de gauge local sobre campos cuantificados que describen las partículas fundamentales, dando lugar a los campos de gauge que describen las interacciones. Su grupo de simetría es:

$$\mathcal{G}_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y \tag{1.1}$$

donde Y (la hipercarga), L (la helicidad izquierda) y C (la carga de color) representan las cantidades conservadas del grupo de simetría. El subgrupo $SU(2)_L \times U(1)_Y$ representa el sector electrodébil (QED + interacción débil) y el subgrupo $SU(3)_C$ incluye la cromodinámica cuántica (QCD).

En el SM las partículas adquieren su masa mediante el mecanismo de Brout-Englert-Higgs (BEH) [?,?,?,?,?], a partir de la ruptura espontanea de la simetría electrodébil:

$$\mathcal{G}_{SM} \to SU(3)_C \times U(1)_Q$$
 (1.2)

produciendo los bosones masivos W^{\pm} y Z^{0} . Como consecuencia, es necesario incluir en el lagrangiano un nuevo campo escalar, dando lugar a un nuevo bosón masivo de espín 0, llamado bosón de Higgs. El mismo fue descubierto en el año 2012 por las colaboraciones ATLAS y CMS [?,?]. La medida más reciente de su masa se determinó con un valor de $125.09 \pm 0.21 ({\rm estad.}) \pm 0.11 ({\rm sist.}) {\rm GeV}$ [?]. Así como los bosones de gauge adquieren su masa mediante este mecanismo, es posible también generar la masa de los fermiones mediante su interacción con el Higgs, completando de esta forma el espectro de masas del SM. La Tabla 1.1 expone algunas propiedades de las partículas mencionadas.

Como comentario final, el SM tiene 19 parámetros libres: las 9 masas de los fermio-

1.1 Modelo Estándar 9

	Partículas			Espín	Carga eléctrica
	$(u,d)_L$	$(c,s)_L$	$(t,b)_L$	$\left(\frac{1}{2},\frac{1}{2}\right)$	$\frac{\left(\frac{2}{3}, -\frac{1}{3}\right)}{\left(\frac{2}{3}, -\frac{1}{3}\right)}$
Quarks	u_R	c_R	t_R	$\frac{1}{2}$	$\frac{2}{3}$
	d_R	s_R	b_R	$\frac{1}{2}$	$-\frac{1}{3}$
Leptones	$(\nu_e, e^-)_L$	$(\nu_{\mu},\mu^{-})_{L}$	$(\nu_{\tau}, \tau^{-})_{L}$	$\left(\frac{1}{2},\frac{1}{2}\right)$	(0, -1)
перионез	e_R^-	μ_R^-	$ au_R^-$	$\frac{1}{2}$	-1
		g		1	0
Bosones de Gauge		W^{\pm},Z		1	$\pm 1, 0$
		γ		1	0
Bosones escalares		H		0	0

Tabla 1.1: Partículas elementales del SM.

nes (considerando que los neutrinos tienen masa nula), las 3 constantes de acoplamiento de las interacciones, los 3 ángulos de mezcla de la matriz Cabibbo-Kobayashi-Maskawa (CKM) junto con la fase de la violación CP, el ángulo de vacío de QCD y finalmente la masa del Higgs y su valor de expectación del vacío.

1.1.1. Física más allá del Modelo Estándar

El SM provee una descripción notablemente exitosa de todos los fenómenos accesibles con los experimentos de altas energías disponibles actualmente. Sin embargo, también se sabe que el SM deja cuestiones sin resolver, tanto desde el punto de vista teórico, como experimental.

Desde el punto de vista teórico, el SM no explica los números cuánticos como la carga eléctrica, el isospín, la hipercarga o el color. Tampoco explica por qué los fermiones izquierdos se agrupan en dobletes y los derechos en singletes, ni por qué hay tres cargas de color, o cuántas generaciones hay. Otro síntoma de incompletitud es la gran cantidad de parámetros libres (19) que deben ajustarse a los datos observados, ya que no resultan de principios teóricos más fundamentales.

Desde el punto de vista experimental, también existen algunos resultados que no pueden acomodarse dentro del SM. Distintos experimentos demostraron que si bien los neutrinos tienen una masa muy pequeña, la misma no es nula. En contraposición con el SM que considera a los mismos no masivos. De todas formas, es posible escribir un término de masa para los neutrinos en el lagrangiano [?]. El mismo requiere agregar parámetros adicionales a la teoría y además, de la existencia de neutrinos con quiralidad derecha, que aún no fueron observados.

El SM tampoco provee un candidato para la materia oscura. A partir de la observación del movimiento de las galaxias, se sabe que el mismo no se corresponde con

la cantidad de materia observada, y es por eso que se propone la existencia de materia indetectable para los instrumentos astronómicos de medición actuales. La materia oscura debería corresponder entonces a partículas masivas, que interactúen solo débilmente y gravitacionalmente.

El triunfo de la teoría electrodébil, parece indicar que todas las interacciones corresponden a distintas manifestaciones de un único campo unificado y que el SM es una teoría efectiva a bajas energías (del orden de los 100GeV). Incluso ante la ausencia de la gran unificación de las fuerzas electrodébil y fuerte a una escala muy alta de energía, el SM debería ser modificado para incorporar los efectos de la gravedad a la escala de Planck $M_P \simeq 10^{19} \text{GeV}$. En este contexto, es un misterio por qué la relación $M_W/M_P \simeq 10^{-17} \text{GeV}$ es tan pequeña, lo que se denomina «problema de jerarquía» [?]. Esto lleva a pensar que los fenómenos de nueva física existen 17 órdenes de magnitud por arriba de la energía explorada en el presente. Asociado a este problema está el llamado «problema de naturalidad», donde no se comprende por qué la masa del Higgs es tan pequeña comparada con masa de Planck.

1.1.2. Divergencias cuadráticas

Como se mencionó anteriormente, el SM ha tenido un gran éxito en la descripción de los fenómenos conocidos hasta la escala del TeV. Aun así, es clara la necesidad de construir una nueva teoría que solucione los problemas que el SM conlleva. El principal inconveniente es solucionar el «problema de jerarquía», en el cual el cociente de escalas M_W/M_P es muy pequeño. Para ello es necesario ver las consecuencias de esta diferencia de escalas.

La parte eléctricamente neutra del campo de Higgs del SM es un escalar complejo H con un potencial clásico $V=m_H^2|H|^2+\lambda|H|^4$. El SM necesita un valor de expectación de vacío (VEV) para H no nulo, en el mínimo del potencial. Esto ocurre si $\lambda>0$ y $m_H^2<0$, resultando en $\langle H\rangle=\sqrt{-m_H^2/2\lambda}$. Experimentalmente, de las medidas de las propiedades de las interacciones débiles, se sabe que el valor de $\langle H\rangle$ es de aproximadamente 174 GeV. El descubrimiento del bosón de Higgs en el 2012 con una masa cercana a 125 GeV implica que, suponiendo que el SM es correcto como una teoría efectiva, $\lambda=0.126$ y $m_H^2=-(92.9\,{\rm GeV})^2$.

Por cada partícula a la que se acopla el campo de Higgs, m_H^2 recibe una gran corrección cuántica de los efectos virtuales. Por ejemplo, si el campo de Higgs se acopla a un fermión f con un término en el lagrangiano igual a $-\lambda H\bar{f}f$, el diagrama de Feynman en la Figura 1.1 genera una corrección:

$$\Delta m_H^2 = -\frac{|\lambda_f|^2}{8\pi^2} \Lambda_{UV}^2 + \dots$$
 (1.3)

donde m_f es la masa del fermión y Λ_{UV} es el corte usado para regular la integral en el loop.

Si Λ_{UV} es del orden de M_P , la corrección a m_H^2 es 30 órdenes de magnitud más

Figura 1.1: Correcciones cuánticas a un loop al parámetro de masa del Higgs m_H^2 debido a la masa de un fermión de Dirac f (izquierda) y debido a la masa de un campo escalar S (derecha).

grande que el valor requerido $\sim (100 \, {\rm GeV})^2$, produciendo las divergencias cuadráticas. Si bien los fermiones y bosones de gauge no tienen este comportamiento cuadrático en las correcciones cuánticas (sus masas son "naturales"), también se ven afectados indirectamente por este efecto, ya que las masas de los mismos dependen de $\langle H \rangle$. De esta forma, todas las masas de SM se ven afectadas por la escala de corte Λ_{UV} .

Una forma de solucionar este problema consiste en considerar la existencia de un escalar complejo S de masa m_S , que se acopla al campo de Higgs con un término $-\lambda_S |H|^2 |S|^2$. El diagrama de Feynman de la Figura 1.1 genera una corrección:

$$\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} \left[\Lambda_{UV}^2 - 2m_S^2 \ln(\Lambda_{UV}^2/m_S) + \dots \right]$$
 (1.4)

De esta forma, si existieran fermiones (bosones) no predichos por el SM, relacionados con los bosones (fermiones) del SM mediante una simetría, las contribuciones a las masas de las Ecuaciones 1.3 y 1.4 se cancelarían. A esta simetría se la denomina supersimetría (SUSY, por sus siglas en inglés) [?].

1.2. Extensión Supersimétrica del Modelo Estándar

Supersimetría es una simetría que relaciona las masas y los acoplamientos de partículas con diferente espín. Una transformación supersimétrica convierte un estado bosónico en uno fermiónico, y viceversa. El operador Q que genera estas transformaciones debe ser un espinor anticonmutativo, que cumpla:

$$Q|\operatorname{bos\'{o}n}\rangle = |\operatorname{fermi\'{o}n}\rangle$$
 $Q|\operatorname{fermi\'{o}n}\rangle = |\operatorname{bos\'{o}n}\rangle$ (1.5)

Los espinores son intrínsecamente objetos complejos, por lo tanto el conjugado hermítico de Q es también un generador de la simetría. Debido a que Q y Q^{\dagger} son operadores fermiónicos, llevan momento angular de espín $\frac{1}{2}$, por lo tanto es claro que SUSY debe ser una simetría espacio-temporal.

Los estados de partícula de una teoría supersimétrica son representados en el álgebra de SUSY como supermultipletes. Cada supermultiplete contiene ambos estados, fermión y bosón, que son comúnmente llamados supercompañeros uno de otro. Los generadores Q y Q^{\dagger} conmutan con los generadores de las transformaciones de gauge, por lo tanto las partículas en un mismo supermultiplete tienen que estar en la misma representación del grupo de gauge, y tener la misma carga eléctrica, isospín y color. Y como el operador de masa $-P^2$ también conmuta con los generadores y con todos los operadores de rotación y traslación, deberán tener los mismos autovalores de $-P^2$, y entonces la misma masa.

Cada supermultiplete tiene que contener igual número de grados de libertad fermiónico que bosónico $(n_F = n_B)$, por lo que existen varias combinaciones posibles. Las dos más importantes para esta teoría son el supermultiplete quiral (o escalar) y el de gauge (o vectorial).

La inclusión de la Supersimetría resuelve varios de los problemas antes mencionados. La simetría cancela las divergencias cuadráticas en la corrección de la masa del Higgs. La corrección de términos de mayor orden requieren que la masa de la partícula supersimétrica más liviana (*Lightest Supersymmetric Particle*, LSP) sea del orden del TeV, siendo ese el orden de energía en el cual el SM deja de ser válido, y es necesaria la implementación de SUSY. También provee un candidato a materia oscura, siendo en la mayoría de los modelos la partícula supersimétrica más liviana, que es estable y no interactuante. Finalmente, SUSY provee un marco de referencia para una teoría de Gran Unificación y para teorías que incorporan a la gravedad.

1.2.1. Modelo Estándar Supersimétrico Mínimo

Como se mencionó antes, en una extensión supersimétrica del SM, cada una de las partículas elementales conocidas está contenida en un supermultiplete quiral o de gauge, y debe tener un supercompañero con espín que difiera en $\frac{1}{2}$. La extensión que requiere la introducción de la mínima cantidad de parámetros se conoce como «Modelo Estándar Supersimétrico Mínimo» (MSSM por sus siglas en inglés).

Veamos ahora como se van construyendo los distintos supermultipletes. Como los supermultipletes escalares son los únicos que pueden contener un fermión cuya parte izquierda y derecha transforman de forma diferente, todos los fermiones del SM están agrupados en este tipo de supermultiplete. En cuanto a su nomenclatura, los nombres de los compañeros de espín 0 de los quarks o leptones son construidos anteponiendo una "s" (de scalar), y son llamados «squarks» y «sleptones». La parte izquierda y derecha de los quarks y leptones son fermiones de Weyl con diferentes propiedades de transformación de gauge del SM, entonces cada uno debe tener un compañero escalar complejo. Por ejemplo, los supercompañeros de la parte izquierda y derecha del campo de Dirac de los electrones son llamadas \tilde{e}_L y \tilde{e}_R , aunque el subíndice no se refiere a la helicidad de los slectrones (ya que ambos tienen espín 0) sino a la de sus supercompañeros. Lo mismo aplica para las demás leptones y quarks, los neutrino son simplemente denominados $\tilde{\nu}$ ya que son siempre

Supermultiplete	Bosón	Fermión
gluón, gluino	g	\widetilde{g}
W, wino	$W^{\pm},~W^0$	$\widetilde{W}^{\pm},\widetilde{W}^{0}$
B, bino	В	\widetilde{B}
sleptón, leptón *	$(\widetilde{ u},\widetilde{e}_L)$	(u, e_L)
siepton, tepton	\widetilde{e}_R	e_R
	$(\widetilde{u}_L,\widetilde{d}_L)$	(u_L,d_L)
squark, quark *	\widetilde{u}_R	u_R
	\widetilde{d}_R	d_R
Higgs, higgsinos	(H_d^0,H_d^-)	$(\widetilde{H}_d^0,\widetilde{H}_d^-)$
	(H_u^+, H_u^0)	$(\widetilde{H}_u^+,\widetilde{H}_u^0)$

Tabla 1.2: Supermultipletes quirales y de gauge del MSSM.

izquierdos.

El bosón escalar de Higgs debe estar en un supermultiplete quiral ya que tiene espín 0. Dada la naturaleza de los campos quirales introducidos en la implementación de SUSY, el campo escalar de Higgs no es suficiente para dar masa a los fermiones de helicidad izquierda y derecha, por lo que se debe agregar un nuevo campo escalar para compensar. En el SM, el campo de Higgs es un doblete, y de los cuatro grados de libertad solo uno permanece como consecuencia de la ruptura de la simetría electrodébil, resultando en un bosón de Higgs. En el MSSM se necesitan dos dobletes de Higgs, $H_u = (H_u^+, H_u^0)$ y $H_d = (H_d^0, H_d^-)$. El escalar neutro que corresponde al bosón de Higgs del SM es una combinación lineal de H_u^0 y H_d^0 . La nomenclatura usual para referirse a los supercompañeros de espín es agregar "-ino" a la partícula del SM, por lo tanto los compañeros fermiónicos de los escalares de Higgs son denominados «higgsinos», y se denotan $\widetilde{H_u}$ y $\widetilde{H_d}$.

Los bosones vectoriales del SM tienen que estar en supermultipletes de gauge y sus supercompañeros fermiónicos son llamados «gauginos». Las interacciones de gauge de color de QCD son mediadas por el gluon, cuyo compañero supersimétrico de espín es el «gluino». Los gauginos supercompañeros de los bosones de gauge electrodébiles, luego de mezclarse con los supercompañeros de los bosones de Higgs, dan lugar a los autoestados de masa denominados «charginos» y «neutralinos». En la Tabla 1.2 se puede ver el espectro completo del MSSM.

Por construcción, cada partículas y su supercompañero debe tener la misma masa, por lo que deberían existir, por ejemplo, fotinos de masa nula y selectrones con 0.511MeV. Como ninguna de las partículas antes mencionada fue observada experimentalmente, se deduce que SUSY es una simetría que está rota en el estado de vacío elegido por la naturaleza.

Junto con las otras dos generaciones.

El hecho de que sea una simetría rota, impide que se cancelen las divergencias cuadráticas en el cuadrado de las masas escalares, y eso fue uno de los motivos por el cual se introdujo SUSY. Para poder garantizar que siga ocurriendo esa cancelación, la ruptura de la simetría debe ser suave, y el lagrangiano efectivo del MSSM tiene que escribirse como:

$$\mathcal{L} = \mathcal{L}_{SUSY} + \mathcal{L}_{soft} \tag{1.6}$$

donde \mathcal{L}_{SUSY} contiene todas las interacciones de gauge y de Yukawa, y preserva la invarianza supersimétrica.

El lagrangiano que rompe SUSY, $\mathcal{L}_{\text{soft}}$, no está completamente determinado y su forma explícita así como el conjunto de parámetros involucrados dependen del mecanismo particular de ruptura de SUSY. Debido a que este mecanismo es desconocido, se puede suponer un conjunto de términos de ruptura de la forma más general posible, sin indagar en sus orígenes, que se fijan solo pidiendo la invarianza frente $SU(3)_C \times SU(2)_L \times U(1)_Y$, y que sean suaves a fin de mantener la cancelación de las divergencias cuadráticas. Estos términos soft proveen exitosamente las masas de las partículas supersimétricas, a fin de que sean más pesadas que sus correspondientes compañeras del SM, y la ruptura espontánea de la simetría electrodébil requerida a bajas energías necesaria para explicar la generación de las masas de las partículas del SM. Aun así, la diferencia de masa entre supercompañeros no debe ser demasiado grande, ya que se perdería la solución al problema de jerarquía.

Adicionalmente, para evitar problemas con la conservación del número bariónico B y leptónico L, se introduce una nueva simetría denominada paridad-R. Se define como $P_R = (-1)^{3(B-L)+2s}$, donde s es el espín de la partícula. Las partículas supersimétricas tienen $P_R = -1$, mientras que las partículas del SM tienen $P_R = +1$. La conservación de la paridad-R genera que las partículas supersimétricas solo puedan ser producidas en número par en experimentos de colisiones.

El trabajo de la referencia [?] muestra que el MSSM posee 124 parámetros independientes. De estos, 18 corresponden a los parámetros del SM, uno corresponde al sector de Higgs (el análogo a la masa del Higgs del SM), y 105 son nuevos parámetros del modelo.

Existen distintas propuestas para los mecanismos de ruptura de supersimetría. En la búsqueda asociada al presente trabajo, el modelado de la señal de SUSY se da en el contexto del modelo "Generalised Model of Gauge-Mediated Supersymmetry Breaking" (GGMSB). En este modelo, la supersimetría es rota en la escala del TeV en un sector oculto de estados inaccesibles por procesos del SM, y es propagada al sector visible del MSSM vía interacciones de bosones de gauge del grupo $SU(3)_C \times SU(2)_L \times U(1)_Y$ y gauginos.

En estos modelos con mediaciones de gauge, el gravitino es la partícula supersimétrica más ligera (LSP), con masas del orden del keV, estable y no interactuante, produciendo así energía faltante en la reconstrucción del evento en su estado final.

1.2.2. El espectro de masas

Los supercompañeros de las partículas del SM no son necesariamente los estados de masa del MSSM. Incluyendo efectos de ruptura de simetría electrodébil y supersimetría se producen estados de masa como mezcla de gauginos y higgsinos. La única excepción es el gluino que es un octeto de color y no se mezcla con otras partículas.

Las masas y mezclas de las distintas partículas tienen un rol importante en cuanto a su fenomenología y su correspondiente búsqueda experimental, por lo que se describen brevemente a continuación.

El sector de Higgs

El escalar de Higgs en el MSSM consiste en dos dobletes del $SU(2)_L$ complejos, H_u y H_d , con ocho grados de libertad reales. Luego de la ruptura de simetría electrodébil, tres de ellos son los bosones de Nambu-Goldstone, que corresponden a los modos longitudinales de los bosones masivos Z y W^{\pm} . Los restantes cinco grados de libertad producen el bosón de Higgs físico del modelo. La siguiente nomenclatura es utilizada:

 H^\pm : par de bosones de Higgs cargados A^0 : bosón de Higgs neutral CP-impar $H^0,\ h^0$: bosones de Higgs neutrales CP-par

Una de las predicciones bastantes sólidas de supersimetría es que debe haber al menos un bosón de Higgs liviano.

Neutralinos y charginos

Los higgsinos y los gauginos electrodébiles pueden combinarse debido a los efectos de la ruptura de simetría electrodébil. Los higgsinos neutros $(\widetilde{H}_u^0 \ y \ \widetilde{H}_d^0)$ y los gauginos neutros $(\widetilde{B} \ y \ \widetilde{W}^0)$ se combinan para formar cuatro autoestados de masa llamados «neutralinos», denotados $\widetilde{\chi}_1^0$, $\widetilde{\chi}_2^0$, $\widetilde{\chi}_3^0$ y $\widetilde{\chi}_4^0$, ordenados de forma ascendente por sus masas. El neutralino más liviano, $\widetilde{\chi}_1^0$, generalmente se considera como la LSP, ya que es una de las partículas del MSSM que puede ser un buen candidato para la materia oscura.

Los higgsinos cargados $(\widetilde{H}_u^+ \ y \ \widetilde{H}_d^-)$ y los winos $(\widetilde{W}^+ \ y \ \widetilde{W}^-)$ se combinan para formar dos autoestados de masa con carga ± 1 , denominados «charginos» y se denotan $\widetilde{\chi}_1^\pm$ y $\widetilde{\chi}_2^\pm$. Ordenados, por convención, de forma ascendente en sus masas.

Gluino

El gluino es un fermión de color con ocho componentes, por lo que no puede mezclarse con ninguna otra partícula del MSSM (aunque haya violación de paridad-R).

El parámetro de masa (M_3) está relacionado con los parámetros de masa del bino (M_1) y el wino (M_2) , con una relación:

$$M_3: M_2: M_1 \approx 6: 2: 1$$
 (1.7)

cerca de la escala del TeV. Por esto mismo, es razonable pensar que el gluino sea considerablemente más pesado que los neutralinos y charginos livianos.

Squarks y sleptones

Cualquier par de escalaras con la misma carga eléctrica, paridad-R, color y números cuánticos pueden mezclarse entre ellos. Al agregar el término soft en el MSSM, los autoestados de masa de los squarks y sleptones se pueden obtener diagonalizando tres matrices de 6×6 para squarks up, down y sleptones cargados, y una matriz adicional de 3×3 para los sneutrinos. La primera y la segunda generación de squarks y sleptones generalmente contiene 7 pares sin mezclar degenerados. En cambio, la tercer generación puede tener masas muy diferentes y combinaciones de pares $(\tilde{t}_L, \tilde{t}_R), (\tilde{b}_L, \tilde{b}_R)$ y $(\tilde{\tau}_L, \tilde{\tau}_R)$. Para un cierto fermión de la tercera generación, la matriz hermítica de masas en la base del autoestado de gauge $(\tilde{f}_R, \tilde{f}_R)$ puede ser diagonalizado por una matriz unitaria para producir los autoestados de masa, denotados $(\tilde{f}_1, \tilde{f}_2)$.

Debido a la elevada masa del quark top, la combinación es muy fuerte en el sector stop. Esto genera una gran separación entre las masas de los dos autoestados del stop, produciendo un stop mucho más liviano que los demás squarks

Distintos análisis realizados a partir de la toma de datos en el detector ATLAS, obtuvieron límites para las masas de las partículas supersimétricas. La Figura ?? muestra un resumen de los resultados actuales obtenidos.

1.3. Colisión pp

El LHC es un colisionador de protones, por lo tanto para comprender los procesos que ocurren en el mismo, es necesario entender la estructura del protón. Su composición se puede describir mediante la cromodinámica cuántica (QCD) [?], que explica las interacciones entre partículas que poseen carga de color: quarks y gluones. Los mediadores de la interacción, los gluones, pueden interactuar consigno mismo, lo que produce que la fuerza dependa de la distancia entre las cargas. De esta forma, la constante de acoplamiento de la fuerza, aumenta a grandes distancias (o bajas energías) y disminuye para distancias menores (altas energías). Es por este motivo que los cálculos perturbativos solo se pueden efectuar a altas energías. Otra característica de la interacción es el confinamiento, es decir, que las partículas con color no puedan existir libremente. Solo estados de color neutro de múltiples partículas de color pueden ser observados en la naturaleza viajando distancias macroscópicas.

1.3 Colisión pp

El protón es un barión, compuesto por dos quarks u y un quark d, cada uno con una carga de color tal que deje al protón en un estado neutro. Estos tres quarks son llamados quarks de valencia del protón, y están rodeados por un mar de gluones y pares de quark-antiquark que surgen de fluctuaciones cuánticas. A altas energías la colisión entre protones se puede considerar como una colisión entre dos de sus constituyentes, aplicando el «modelo de partones». Este modelo fue introducido por Feynman [?] y Bjorken [?] a fines de los años 60, para interpretar los resultados de los experimentos de dispersión inelástica profunda (DIS) electrón-nucleón en SLAC. Los quarks de valencia y los quarks y antiquarks del mar junto con los gluones son llamados «partones» del protón. Cada partón lleva solo una fracción del momento y la energía del protón. Para la medición de una sección eficaz de dispersión fuerte que involucre quarks y gluones en el estado inicial, es necesario conocer el momento de las partículas incidentes. Como los partones solo llevan una fracción del momento del protón, y están en interacción permanente entre ellos, el momento es desconocido, por lo que la escala de energía de las colisiones varía. Además, como se mencionó, los quarks (q) y gluones (g) salientes no pueden observarse directamente debido al confinamiento, pero son observados en el detector como jets. Entonces no es posible medir una sección eficaz partónica como $\sigma(qg \to qg)$, pero se puede hacer una medida inclusiva, como la sección eficaz hadrónica $\sigma(pp \to jj)$ con dos jets en el estado final. En teoría de perturbaciones, para pasar desde la sección eficaz partónica a la sección eficaz hadrónica es necesario conocer la probabilidad de que un partón de tipo n sea encontrado con una fracción de momento x, es decir, las funciones de distribución partónica (PDF). Estas funciones son determinadas a partir de datos obtenidos de los propios experimentos de altas energías, ya que no pueden determinarse a partir de la teoría.

Esta conexión entre los hadrones observables y el nivel partónico es posible gracias al concepto de «factorización», que permite una separación sistemática entre las interacciones de corta distancia (de los partones) y las interacciones de larga distancia (responsables del confinamiento de color y la formación de hadrones). El teorema de factorización [?] establece que la sección eficaz de producción de cualquier proceso de QCD del tipo $A + B \rightarrow X$, siendo a_i (b_j) los constituyentes del hadrón inicial A (B), puede ser expresada como:

$$\sigma_{AB\to X} = \sum_{ij} \int dx_{a_i} dx_{b_j} f_{A/a_i}(x_{a_i}, \mu_F^2) f_{B/b_j}(x_{b_j}, \mu_F^2) \sigma_{a_i b_j}(\mu_F^2, \mu_R^2)$$
(1.8)

donde x_i (x_j) es la fracción del momento del hadrón A(B) que lleva el partón a_i (b_j) y $\sigma_{a_ib_j\to X}$ es la sección eficaz de la interacción a nivel partónico, calculada a un dado orden de perturbaciones y una escala de renormalización μ_R . La escala de renormalización es introducida para absorber las divergencias ultravioletas que aparecen en los cálculos perturbativos más allá del primer orden. Las funciones $f_{A/a_i}(x_{a_i}, \mu_F^2)$ son las PDF, que representan la probabilidad de encontrar un partón de tipo n en el hadrón h con una fracción de momento x_n , dada una escala de factorización μ_F . Esta escala es un parámetro arbitrario introducido para tratar singularidades que aparecen en el régimen no pertur-

bativo. Estas divergencias son absorbidas, en forma similar a la renormalización, dentro de las funciones de distribución partónicas a la escala μ_F .

A modo de ejemplo, en la Figura ??, se muestra el buen acuerdo entre la sección eficaz de algunos procesos del SM medidas por ATLAS y las predicciones teóricas. Las observaciones experimentales realizadas en LHC resultan compatibles con el SM a un nivel de muy alta precisión.

Capítulo 2

LHC y detector ATLAS

El Gran Colisionador de Hadrones ($Large\ Hadron\ Collider\ (LHC)$) [?] es el acelerador de hadrones de la Organización Europea para la Investigación Nuclear (CERN, por sus antiguas siglas en francés), ubicado en la frontera entre Francia y Suiza. El mismo consiste en un anillo de 27 km de circunferencia construido en el mismo túnel en el que funcionaba el acelerador e^+e^- LEP (entre 1989 y 2000) [?], a una profundidad variable entre 50 y 174 m de la superficie.

El LHC está diseñado para colisionar protones a un máximo de energía de centro de masa¹ de $\sqrt{s}=14$ TeV. Para ello el CERN posee un complejo de aceleradores que en sucesivas etapas incrementan la energía de los protones, para luego hacerlos colisionar en cuatro puntos distintos donde se encuentran los detectores más importantes: ATLAS [1], CMS [?], LHCb [?] y ALICE [?].

La producción de protones comienza extrayendo los electrones de un contenedor con gas de hidrógeno mediante campos magnéticos. Luego los protones pasan por un complejo de aceleradores que en el pasado funcionaban como experimentos y que actualmente se utilizan para incrementan la energía de los protones en sucesivas etapas, como muestra la Figura 2.1. Inicialmente los protones son inyectados al acelerador lineal LINAC 2, que mediante cavidades de radiofrecuencia, acelera a los protones a una energía de 50 MeV. Desde aquí son dirigidos al *Proton Synchrotron Booster* que consiste en cuatro anillos superpuestos con un radio de 25 m que aceleran los protones hasta una energía de 1.4 GeV. Este último inyecta los protones en el *Proton Synchroton*, cuya circunferencia de 628 metros e inyecta protones de hasta 26 GeV en el *Super Proton Synchroton*, y este a su vez tiene una circunferencia de 7 km e inyecta protones de hasta 450 GeV en ambos anillos del LHC.

El último de los aceleradores es el LHC, donde los protones circulan en direcciones opuestas por cavidades de ultra alto vacío a una presión de 10^{-10} torr. El mismo cuenta con 1232 dipolos magnéticos superconductores de 15 m de largo enfriados a 1.9 K mediante helio superfluido, que generan un campo magnético de 8.4 T y permite mantener en su

¹Definida como la raíz cuadrada de la variable de Mandelstan, $\sqrt{s} = |p_1 + p_2|$, donde p_1 y p_2 representan los cuadrimomentos de las partículas incidentes.

Figura 2.1: ...

órbita circular a los protones. Los dipolos están equipados con sextupolos, octupolos y decapolos, que permiten corregir las pequeñas imperfecciones del campo magnético en las extremidades de los dipolos. Para aumentar la probabilidad de colisión, existe un sistema de focalización de los haces en las proximidades de los detectores, que estrecha el camino que recorren los protones. El mismo consiste de 392 cuadrupolos magnéticos que generan campos magnéticos de 6.8 T.

Los protones son acelerados mediante cavidades de radiofrecuencia que generan un voltaje longitudinal a una frecuencia específica. En esa frecuencia los protones sincronizados con la energía deseada no van sufrir aceleración alguna, mientras que aquellos descincornizados van a ser acelerados o desacelerados hasta obtener la energía deseada. De esta forma el haz de protones se divide en paquetes discretos denominados bunches, cada uno conteniendo del orden de 10^{11} protones. El número de bunches totales posibles en un haz con un espaciado de 25 ns es de 3564 2 . Considerando los tiempos que se necesitan para en la inyección y descarte del haz, junto con los tiempos que necesita cada detector para procesar la información, no todos los bunches son llenados, sino que se dejan 'espacios' definidos por diferentes esquemas, dejando así el número efectivo de bunches llenos a 2808.

Los aceleradores pueden ser caracterizados no solo por su energía de centro de masa sino también por su luminosidad instantánea (\mathcal{L}) , que mide el número de colisiones que ocurren en un período de tiempo y se define como:

²Se obtiene al dividir la frecuencia de las cavidades, 400 MHz, por la frecuencia de revolución, 11 kHz, y considerando que sólo 1 de cada 10 *bunches* es llenado para lograr el espaciado deseado

$$\mathcal{L} = f_{\text{rev}} n_b \frac{N_1 N_2}{A} \tag{2.1}$$

donde f_{rev} es la frecuencia de revolución (\sim 11 kHz), n_b es el número de bunches por haz, N_i es el número de partículas en cada bunch y A es la sección efectiva del haz, que puede expresarse en término de los parámetros del acelerador como:

$$A = \frac{4\pi\epsilon_n \beta^*}{\gamma F} \tag{2.2}$$

donde ϵ_n es la emitancia transversal normalizada (la dispersión transversal media de las partículas del haz en el espacio de coordenadas e impulsos), β^* es la función de amplitud en el punto de interacción, relacionada al poder de focalización de los cuadrupolos), γ es el factor relativista de Lorentz y F es un factor de reducción geométrico, debido al ángulo de cruce de los haces en el punto de interacción.

El número total de eventos esperados para un dado proceso con una sección eficaz σ , se obtiene como:

$$N = \sigma \int \mathcal{L}dt \tag{2.3}$$

donde al factor integral se lo conoce como luminosidad integrada.

El LHC comenzó a funcionar en 2010 en lo que se denominó $Run\ 1$, a una energía de de centro de masa de 7 TeV y logrando recolectar «¡lumi». En el 2013 finaliza la toma de datos y comienza el $Long\ shutdown\ 1$, período que se utilizó para realizar distintas actualizaciones preparándose para la siguiente toma de datos. En el 2015 comenzó el $Run\ 2$ que operaba a una energía de de centro de masa de 13 TeV y logró recolectar «¡lumi», finalizando en el 2018 dando lugar al $Long\ shutdown\ 2$. Este último estaba previsto con una duración de dos años, pero dada la situación epidemiológica de COVID-19 el mismo se terminó extendiendo hasta (???). Los planes a futuro del LHC preveen un tercer $run\ a\ 14\ TeV$, y luego ingresar en un nuevo período de inactividad para realizar las mejoras necesarias para el $High\ Luminosity\ LHC$.

2.1. El detector ATLAS

ATLAS (\boldsymbol{A} Toroidal $\boldsymbol{L}HC$ $\boldsymbol{A}pparatu\boldsymbol{S}$) [1] es uno de los experimentos multipropósito del LHC, diseñado para estudiar las colisiones protón-protón a altas energías provistas por el LHC.

El mismo tiene una simetría aproximadamente cilíndrica y está compuesto de distintos subdetectores, que cumplen diversas funciones en la identificación de las partículas producidas durante las colisiones. En la zona más próxima al haz se encuentra detector interno de trazas (ID) cuyo objetivo principal es reconstruir la trayectoria de las partículas cargadas. Está compuesto del Insertable B-Layer (IBL), un detector de píxeles, un

detector de bandas de silicio (SCT) y un detector de radiación de transición (TRT). A su vez, envolviendo al ID, se encuentra un solenoide superconductor que genera un campo magnético de 2 T, el cual curva la trayectoria de las partículas cargadas permitiendo así medir su impulso.

A continuación se ubica el sistema de calorímetros compuesto por el calorímetro electromagnético (ECAL) que mide principalmente la energía depositada por fotones y electrones, y el calorímetro hadrónico (HCAL) para medir la energía de los jets y hadrones.

En la parte más externa, se encuentra el espectrómetro de muones (MS) diseñado para detectar la producción de muones y además medir su momento. Este último es el que le da a ATLAS su tamaño característico de 45 m de largo y 25 m de alto. Intercalado con el MS se encuentra un sistema de imanes toroidales, que generan un campo magnético de 4 T para curvar la trayectoria de los muones hacia el final del detector.

El detector ATLAS se divide geométricamente en dos regiones, la parte central denominada *barrel* y la región extrema *endcap*. En la región *barrel* los detectores se ubican en forma de cilindros concéntricos alrededor del eje del haz, mientras en la región *endcap* se disponen como discos perpendiculares a la dirección del haz.

La Figura [[[agregar figura]]] detalla todas las componentes que integran al detector ATLAS y son descriptas en detalle a en las siguientes secciones.

2.2. Sistema de coordenadas

El sistema de coordenadas de ATLAS corresponde a un sistema cartesiano, cuyo origen coincide con el punto de interacción nominal ubicado en el centro del detector. El eje z está orientado con hacia la dirección del haz, el eje x se define desde el punto de interacción hacia el centro del anillo del LHC, y el eje y se define apuntando hacia la superficie terrestre.

Es conveniente además definir un sistema de coordenadas cilíndricas donde el radio R representa la distancia perpendicular al haz, el ángulo azimutal ϕ es medido alrededor del eje del haz, y el ángulo polar θ se mide con respecto al eje del haz perpendicular al eje x.

Una variable utilizada en física experimental de altas energías es la rapidez:

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right) \tag{2.4}$$

donde E es la energía total de la partícula y p_z es la componente en la dirección del haz de su impulso³. En el límite de altas energías, en donde la masa de la partícula es despreciable frente a su momento, es posible aproximarla a la llamada pseudorapidez η :

³Esta definición es un caso particular de la rapidez utilizada en relatividad especial, cuando se realiza una transformación en la dirección del haz del sistema de la boratorio a un sistema donde la partícula solo se mueve perpendicular al haz.

2.3 Sistema de imanes 23

$$\eta = -\ln \tan \left(\frac{\theta}{2}\right) \tag{2.5}$$

estando completamente relacionada con el ángulo θ . La razón detrás de esta transformación de coordenadas se debe a que la multiplicidad de partículas producidas es aproximadamente constante como función de η , y que la diferencia de pseudorapidez entre dos partículas es invariante frente a transformaciones de Lorentz a lo largo de la dirección del haz.

En el caso de colisiones hadrónicas, la fracción del impulso del protón adquirida por cada uno de las partones interactuantes es desconocida. Parte de este impulso es transferido en la interacción dura, mientras cierta fracción remanente escapa el detector a lo largo del haz. De esta forma, no es posible reconstruir el movimiento longitudinal del centro de masa en la interacción, y aplicar leyes de conservación sobre la cinemática de cada evento. Sin embargo, dado que los protones inciden a lo largo de la dirección del haz, y asumiendo que el momento de los partones en la dirección transversa al haz es nulo, el impulso total transverso se conserva durante la colisión. Por este motivo, es común utilizar solo las componentes transversales en la descripción de la cinemática del evento, definidas en términos de la pseudorapidez, como por ejemplo el momento transverso:

$$p_T = p\sin\theta = \frac{p}{\cosh\eta} \tag{2.6}$$

donde p es el momento de la partícula. De esta forma es posible describir la cinemática de cada partícula en términos de (p_T, η, ϕ)

2.3. Sistema de imanes

El detector ATLAS posee un poderoso sistema de imanes [?] utilizado para curvar la trayectoria de las partículas cargadas, pudiendo así medir tanto su impulso de forma precisa como también su carga. El mismo consta de dos tipos de imanes superconductores, uno en forma solenoidal y otros tres forma toroidal, enfriados a una temperatura de 4.5 K para poder producir los fuertes campos magnéticos.

El solenoide para al detector interno, y tiene un tamaño de 5.6 m de largo y 2.56 m de diámetro, y con un espesor de apenas 4.5 cm. El mismo produce un campo magnético de 2 T en la dirección del haz, por lo que las partículas cargadas son curvadas en la dirección de ϕ [[[revisar]]]. Para minimizar la interacción de las partículas que lo atraviesan y ahorrar la mayor cantidad de material posible, el solenoide comparte la cámara de vacío del calorímetro de LAr ([[[sección...]]])

Los toroides de ATLAS se componen de ocho bobinas, que generan campos de hasta 4 T [[[mirar bien estos números]]] en la dirección ϕ , por lo que las partículas que lo atraviesan (muones) so curvadas en la dirección η . El más grande de ellos mide 25.3 m de largo y 20.1 m de diámetro, y se ubica en la parte más externa del detector barrel

intercalado con el Espectrómetro de Muones ([[[seccion...]]]). Los otros dos restantes se encuentran en la región *endcap*, por fuera de los calorímetros, y miden 5.0 m de largo y 10.7 m de diámetro.

2.4. Los subdetectores de ATLAS

2.4.1. Detector interno

El detector interno es el más próximo al haz y su función principal es la reconstrucción de las trazas de las partículas cargadas, que a su vez sirve para medir la dirección, momento y carga de la misma, y la reconstrucción de los vértices primarios. Para ello combina detectores de muy alta resolución cerca del haz, junto con detectores continuos de trazas en la zona más alejada. El principio básico de funcionamiento consiste en utilizar su alta granularidad, para mapear las señales que dejan las partículas al atravesar cada celda, en coordenadas espaciales. El conjunto de esas señales son reconstruidas como trazas mediante algoritmos especializados. El detector interno contenido dentro del solenoide superconductor y mide 6.2 m de largo y 2.1 m de diámetro.

Detector de píxeles

El detector de píxeles fue construido para medir la posición de las trazas de partículas cargadas con la más alta precisión posible y es de vital importancia para la reconstrucción de los vértices primarios y secundarios. En la región barrel el detector se compone de tres capas cilíndricas, mientras que la endcap de tres discos. La capa más interna, denominada B-Layer, se encuentra a 50.5 mm del punto de interacción. El principio de detección para partículas cargadas es la medida de la deposición de la carga inducida en una capa de silicio por ionización. El sistema contiene un total de 80 millones de sensores, cada uno con una resolución de 10 μ m $(R - \phi)$ y 115 μ m (z).

Luego del Run 1 la luminosidad del LHC aumentó notablemente, lo que podía significar un daño por radiación en los detectores internos. En vez de reemplazar las partes del detector de píxeles que podían ser dañadas, se decidió colocar una capa adicional entre el detector de píxeles y la tubería donde circulan los protones denominado *Insertable B-Layer* [2]. El objetivo del mismo es mejorar la eficiencia en la identificación de trazas, vértices, y en la identificación de *bottom* quarks, que decaen típicamente fuera del radio del IBL.

El IBL está compuesto por 8 millones de chips de rápida lectura y con sensores de silicio, que detectan el paso de partículas cargadas mediante la deposición de carga inducida. El tamaño de los píxeles es de $50\times250\,\mu\mathrm{m}^2$, con una resolución de $8\,\mu\mathrm{m}~(R-\phi)$ y $40\,\mu\mathrm{m}~(z)$. La distancia entre el IBL y la tubería es de $0.2~\mathrm{mm}$, y entre el tubo y el detector de píxeles es de $1.9~\mathrm{mm}$.

Detector Semiconductor de Trazas (SCT)

Se encuentra por fuera del detector de píxeles y está diseñado para medir las trazas con alta precisión en la zona intermedia del detector. A diferencia del detector de píxeles, estos sensores de silicio están segmentados en micro bandas, dado que es más baja multiplicidad de partículas es posible reducir la resolución al costo de aumentar el área de cobertura. La resolución de $17\,\mu\mathrm{m}~(R-\phi)$ y $580\,\mu\mathrm{m}~(z)$. En la región barrel los módulos de SCT están dispuestos en 4 capas concéntricas, mientras que en la región endcap consiste en 9 discos transversales al eje del haz.

Detector de Radiación de Transición (TRT)

Es el detector más externo del ID y está diseñado, no solo para detectar partículas cargadas, sino también para distinguir entre partículas pesadas y livianas. El TRT se compone de tubos detectores de 4 mm de diámetro, con un gas que ioniza al ser atravesado por partículas cargadas. Los electrones producidos son colectados por una ánodo, y el tiempo de deriva es una medida de la distancia a la traza del mismo. Además, los tubos están rodeados de fibras de polipropileno con un índice de refracción diferente, por lo que las partículas que atraviesan el detector emiten radiación con una intensidad proporcional a $\gamma = E/m$, permitiendo al TRT distinguir partículas cargadas pesadas (π^{\pm}) de aquellas más livianas (e^{\pm}) . La región barrel contiene 50000 tubos paralelos al eje del haz y la región endcap 320000 tubos orientados radialmente. Su resolución es de 0.17 mm.

2.4.2. Calorímetros

El sistema de calorímetros de ATLAS está diseñado para medir la energía y la posición de las partículas, mediante la absorción de la energía depositada por las cascadas de partículas secundarias que estas generan en el material del mismo. Además, permite discriminar electrones y fotones de jets, detectar aquellas partículas neutras que no dejaron trazas en el ID y realizar la selección *online* de eventos potencialmente interesantes (Ver Sistema de *trigger*). Gracias a su amplia cobertura y a que absorbe la energía de prácticamente todas las partículas producidas (salvo muones) es de gran utilidad para poder medir el desbalance de energía transversa, magnitud discriminatoria utilizada en la mayoría de análisis fuera del SM.

Está compuesto de un calorímetro electromagnético (ECAL) dedicado principalmente a la medida de las deposiciones de partículas como fotones y electrones (partículas interactuantes principalmente vía interacción EM), y otro hadrónico (HCAL) dedicado a las cascadas de partículas producto de la hadronización de los quarks o gluones (jets) (partículas interactuantes principalmente vía interacción fuerte).

Calorímetro electromagnético (ECAL)

El ECAL en un calorímetro de muestreo (inhomogéneo) no compensado, que utiliza Plomo como material absorbente y LAr como material absorbente. Consiste en varias placas de Plomo dispuestas en forma de acordeón que se colocan de forma alterna inmersas en LAr. Las partículas incidentes interactúan con el Plomo creando una lluvia de partículas cargadas y neutras. Las partículas cargadas ionizan el medio activo, donde los electrones liberados son colectados en un electrodo central de kaptón/Cu hacia donde derivan por acción del campo eléctrico aplicado. La señal total en el medio activo es así proporcional a la energía total real de la partícula incidente. La ventaja de este método es la detalla reconstrucción de la forma de la cascada, al costo de no poder reconstruir la totalidad de la energía de la cascada debido al espacio que existe entre placa y placa.

El ECAL está dividido en dos mitades dentro de la región barrel ($\eta < 1.475$) y en dos componentes (una a cada lado) en la región endcap (1.375 $< |\eta| < 3.2$) En la región de transición entre el barrel y el endcap se encuentra una zona no instrumentada, por donde se conecta el detector. Esta región, denominada crack, está comprendida entre $1.37 < |\eta| < 1.52$. Es por este motivo que la mayoría de los análisis se requiere que los candidatos a fotones/electrones estén fuera de la región crack.

En la región diseñada para medidas de precisión ($\eta < 2.5$, excluyendo el crack), el ECAL está segmentado en tres capas longitudinales. La primera capa consiste de bandas con fina granularidad (en la dirección de η), para discriminar entre fotones aislados y pares de fotones espacialmente cercanos provenientes del decaimiento $\pi^0 \to \gamma\gamma$. Para los electrones y fotones con alta energía transversa, la mayoría de la energía se colecta en la segunda capa, que tiene una granularidad lateral de 0.025×0.025 en (η, ϕ) . La tercer capa se encarga de la energía depositada en las colas de la lluvia. El espesor del ECAL es mayor a 22 longitudes de radiación (X_0) en la región barrel, y mayor a 24 X_0 en los endcap, donde una longitud de radiación se define como la distancia promedio sobre la cual la energía de un electrón se reduce a 1/e de su energía inicial. Para el caso de los fotones, una reducción similar se obtiene a 9/7 de X_0 . Por tanto, toda la energía electromagnética es absorbida en el ECAL y sólo parte de la componente hadrónica llega al HCAL.

Calorímetro hadrónico (HCAL)

El HCAL es un conjunto de calorímetros que rodean al ECAL, extendiendo la aceptancia del calorímetro de ATLAS hasta cubrir prácticamente la totalidad de ángulo sólido del punto de colisión.

El primero de los calorímetros se denomina Tile~Calorimeter, es un calorímetro de muestreo que utiliza acero como material absorbente y tejas centelladoras plásticas como material activo, se encuentra en la región barrel y está dividido en dos partes que tienen una cobertura de $|\eta| < 1.0$ y $0.8 < |\eta| < 1.7$ respectivamente. En la región endcap se encuentra un calorímetro hadrónico de muestreo (HEC) con placas de cobre como absorbente y argón líquido como material activo, que consiste en dos ruedas, una atrás de la otra con las placas planas de Cu dispuestas perpendicularmente al eje del haz, conn un

radio de 2.3 m. Finalmente se encuentra el Forward Calorimeter (FCAL), un calorímetro de muestreo que extiende la cobertura del sistema a $|\eta| < 4.9$, coaxial al eje del haz y ubicado a 4.7 m a cada lado del punto de interacción. El material principal de los módulos es argón líquido (con cobre o tungsteno), y si bien no se utiliza para mediciones de precisión, provee información para el cómputo de la ener- gía transversa faltante y la reconstrucción de jets en regiones muy cercanas al eje del haz.

Por su parte, el HCAL tiene un espesor mayor a 7.7 longitudes de interacción hadrónica (λ) en la región barrel (9.7 λ en total si se cuenta el ECAL). De manera análoga a la longitud de radiación mencionada para el ECAL, una longitud de interacción hadrónica se define como la distancia promedio sobre la cual la energía de un hadrón se reduce a 1/e de su energía inicial. De esta forma, toda la energía con la que llegan los hadrones al HCAL, queda allí depositada.

2.4.3. Espectrómetro de muones

El espectrómetro de muones (MS) se encuentra situado en la parte más externa del detector ATLAS. Esto se debe a que los muones de alto p_T generados en el punto de interacción tienen un altísimo poder de penetración y son poco interactuantes, siendo las únicas partículas detectables capaces de llegar a este detector. El mismo se encuentra intercalado con el sistema de imanes toroidales, y está diseñado para obtener mediciones de alta precisión de la posición e impulso de los muones, y para una rápida identificación para el sistema de trigger. Este es el subdetector más grande y el que le da a ATLAS su tamaño característico.

El MS se compone de diferentes tipos de cámaras de detección de muones (ver Figura ??). Las Monitored Drift Tubes (MDTs) son responsables de la mayoría de las medidas de precisión y cubren el rango de $|\eta| < 2.7$. Funcionan de forma similar al TRT, con tubos llenos de un gas que ioniza y un ánodo central que recoge los electrones producidos, y el tiempo de deriva se asocia con la distancia a la traza. En la región endcap se encuentran las Cathode Strip Chambers (CSCs) que poseen alta resolución espacio-temporal y una cobertura $|\eta| > 2.0$. Estas cámaras funcionan midiendo la carga depositada en un ánodo, producto de la cascada de electrones creados cerca del mismo. Las Resistive Plate Chamber (RPCs) proveen una estimación rápida del momento de los muones al primer nivel del trigger con una cobertura de $|\eta| < 1.05$. Las RPCs miden la descarga ocasionada entre dos placas resistivas paralelas sometidas a una alta diferencia de potencial, tras la ionización del volumen de gas interno causada por el paso de muones energéticos. Finalmente se encuentra en la región endcap las Thin Gap Chambers (TGCs), similares en funcionamiento a las CSCs. Proveen también información al sistema de trigger en esta región y tienen una cobertura de $|\eta| < 2.4$.

2.5. Sistema de trigger

Como se mencionó anteriormente, el diseño del LHC permite tener una frecuencia de cruces de haces de 40 MHz y más de 30 [[[ver número]]] interacciones por cruce, lo que da una tasa de interacción protón-protón del orden del GHz. Tal frecuencia excede tanto las capacidades de cómputo del detector, como la capacidad de alamcenamiento de semejante cantidad de datos. Aún así, no todos los eventos son de interés para la colaboración, como por ejemplo la colisión elástica de los protones que no genera ningún tipo de decaimiento. El sistema de trigger del detector ATLAS [3] es el encargado de filtrar esos eventos de poco interés y, junto con el sistema de adquisición de datos (DAQ), almacena aquellos que potencialmente pueden llegar a ser de interés para los distintos análisis, reduciendo así la frecuencia de flujo de datos al orden del kHz. El sistema de trigger cumple un rol central en el correcto funcionamiento de todo el experimento, ya que en definitiva determina qué tipos de análisis se realizarán y qué nueva física podrá encontrarse. El mismo debe tener una alta eficiencia, para no desechar eventos importantes, pero con el compromiso de mantener el flujo de datos relativamente bajo.

El sistema de trigger está compuesto por dos niveles consecutivos capaces de realizar una identificación de partículas cada vez más compleja: un primer nivel de trigger (L1) basado en hardware y luego un trigger basado en software de alto nivel (HLT). La Figura [[[figura trigger+daq]]] muestra un esquema del sistema trigger y DAQ del detector ATLAS.

Level 1 (L1)

El primer nivel del trigger [?] está basado en hardware, y reduce los 40 MHz del LHC a menos de 100 kHz en aproximadamente 2.5 μ s, tiempo determinado por el limitado tamaño de los buffers de memoria y por el tiempo que le toma a los muones producidos en el evento alcanzar el MS. Utiliza la información recolectada en una región reducida (capas) del calorímetro y del MS, para así reconstruir lo que se denominan Regiones de Interés (RoI). Las RoIs se determinan por la posición de la deposición de energía en el calorímetro por parte de las partículas consideradas de interés (en el caso de los muones es en el MS), permitiendo una rápida reconstrucción de su energía transversa, y aplicando un posible filtro en esta magnitud. El diseño del L1 permite tener una aceptancia en el rango de $|\eta| < 2.5$ para electrones, fotones, muones y taus, hasta $|\eta| < 3.2$ para jets, y $|\eta| < 4.9$ para el cálculo del momento transverso faltante. Las RoIs a su vez sirven como semilla para el HLT que realiza selecciones más detalladas a partir de las mismas.

High Level Trigger (HLT)

Cuando un evento es aceptado por el L1, el mismo pasa a ser analizado por High Level Trigger [4], que está basado en software y permite reducir la tasa de eventos que se almacena a 1.5 kHz en un tiempo de 0.2 s. El mismo utliza las RoIs previamente recosntruidas por el L1, y ejecuta una secuencia de algoritmos aplicados sobre el objeto

candidato. Si uno de los pasos de la secuencia falla en los requisitos, los siguientes pasos no son aplicados para ahorrar tiempo de cómputo.

Los algoritmos del HLT constantan de dos estapas: los algoritmos de reconstrucción rápida ejecutados primero, y luego los algoritmos de reconstrucción de precisión similar a los que se utilizan en la selección offline. Los algoritmos de reconstrucción rápida utilizan la información de los calorímetros y de las trazas sólo dentro de la RoI para realizar la selección e identificación de los candidatos, y realizar el rechazo de fondo lo más rápido y temprano posible. Si la partícula candidata pasa los criterios definidos por la selección de reconstrucción rápida, se ejecutan los algoritmos de selección de precisión. Estos tienen acceso a la información del detector fuera de la RoI, con la máxima granularidad e incluyendo detalles sobre la calibración de energía de los calorímetros, la alineación de los subdetectores y el mapa de campo magnético. Los eventos aceptados por el HLT son finalmente grabados a disco y distribuidos, accesibles offline para todos los diferentes estudios y análisis.

2.6. Modelo computacional y distribución de datos

La arquitectura computacional de ATLAS está diseñada para permitir a todos los miembros de la colaboración un acceso ágil, directo y distribuido a la gran cantidad de datos colectados por el detector (\sim PB/año). La arquitectura se basa en la tecnología GRID [?], compartiendo el poder de procesamiento y la capacidad de almacenamiento disponibles en distintos centros de cómputo asociados alrededor del mundo.

El software de ATLAS se desarrolla dentro un entorno C++ común llamado AT-HENA [?,?,5], en el que se realiza todo el procesamiento de datos. Los eventos aceptados por el trigger deben ser procesados para reducir su tamaño y ser utilizados para los análisis offline. A la salida del HLT, los eventos son almacenados como Raw Data Objects (RDOs). Luego de aplicar los algoritmos de reconstrucción y calibración, las colecciones de los distintos objetos físicos obtenidas son almacenadas en formato ESD (Event Summary Data) y AOD (Analysis Object Data), una versión reducida del primero (~100 kB/evento). A partir de las ESDs/AODs, se ha definido un formato de datos significativamente más pequeño (10-15 kB/evento) conocido como xAOD, sobre el que se realiza el análisis final. Las xAOD son archivos accesibles vía el entorno de análisis de datos ROOT [?], que contienen el conjunto de variables de diferentes objetos físicos, según las necesidades de los distintos grupos de análisis dentro de ATLAS. En base a esto y para agilizar el análisis final, la colaboración preselecciona eventos offline en las llamadas derivaciones. Desde los raw data hasta las distintas derivaciones, se aplican distintos criterios de sliming (se remueven los eventos que no son de interés), skiming (se remueve la información irrelevante de los objetos) y thining (se remueven objetos y/o colecciones de objetos irrelevantes) según los estudios y análisis que se vayan a realizar sobre los datos colectados.

Las derivaciones de interés para esta tesis son las denominadas EGAM3, EGAM4

y SUSY1. Las EGAM3 y EGAM4 son utilizadas en esta tesis para la medida de la eficiencia de los trigger de fotones, ya que preseleccionan eventos con bosones Z decayendo radiativamente a partir de electrones o muones respectivamente. Una selección resumida de ambas derivaciones se lista a continuación:

• ...

La derivación SUSY1 es utilizada en esta tesis para preseleccionar los eventos para la búsqueda de supersimetría. La misma preselecciona eventos que cumplan al menos uno de los siguientes requisitos:

...

Capítulo 3

Reconstrucción e identificación de objectos físicos

El diseño del detector ATLAS permite la reconstrucción e identificación de prácticamente todas las partículas producidas en la colisión pp. La mayoría de las partículas del SM son inestables por lo que decaen rápidamente en otras partículas estables. Esto reduce considerablemente las posibles partículas que llegan al detector, ya que solo van a ser aquellas que sean estables o con suficiente vida media, siendo estas principalmente: γ , e^{\pm} , μ^{\pm} , ν y algunos hadrones como p, n, piones y kaones. El diseño de los distintos subdetector permite aprovechar las características de cada una de ellas, haciendo que cada una de las partículas anteriores depositen señales distintivas, permitiendo su reconstrucción e identificación. La Figura 3.1 muestra un esquema de las distintas señales producidas por cada una de las partículas en el detector ATLAS. Todos los procesos de reconstrucción descriptos se realizan una vez que el evento cumplió los requisitos del trigger y fue almacenado (offline).

3.1. Electrones y fotones

Los electrones y fotones producidos tanto en la colisión pp como aquellos producto del decaimiento de otras partículas, depositan la mayor parte de su energía en el ECAL. Estos depósitos están restringidos a un número de celdas vecinas cuyo conjunto se denomina cluster, y que tienen estructuras propias de estas partículas. Los depósitos que dejan ambas partículas son similares y con el objetivo de poder distinguirlas se utiliza además información del detector de trazas. Al ser el fotón una partícula neutra no deja traza en el ID, por lo que los clusters que no están asociados a trazas son considerados fotones, mientras que los que los que sí lo están son considerados electrones.

Procesos como la producción de pares $(\gamma \to e^-e^+)$ producto de la interacción de los fotones con el material del detector, pueden dejar trazas o depósitos que no corresponden con la reconstrucción de un fotón. El algoritmo de reconstrucción tiene en cuenta esto y puede reconstruir los vértices de conversión, por lo que los *clusters* asociados a vérti-

Figura 3.1: Esquade de los distintos tipos de señal que pueden dejar las partículas en el detector ATLAS

ces de conversión son considerados fotones. Finalmente, ciertos procesos (ej. $\pi^0 \to \gamma\gamma$) pueden generar depósitos que erróneamente son reconstruidos como fotones o electrones . Para reducir la identificación errónea se aplican entonces una serie de criterios de identificación y aislamiento, basados en las formas de depósitos de energía, que permiten discriminar estos procesos de los procesos prompt.

Las técnicas de reconstrucción de electrones y fotones se realizan en paralelo y son similares, pudiendo ser descriptas simultáneamente.

3.1.1. Reconstrucción

La reconstrucción de electrones y fotones en el detector ATLAS se realiza utilizando un algoritmo para la reconstrucción de clusters dinámicos de tamaño variable, denominados superclusters [6]. Durante Run 1 el algoritmo reconstruía clusters de tamaño fijo [?, 7, 8], que si bien tenían una respuesta lineal energética y un estabilidad frente a pile-up, no permitía reconstruir eficientemente la energía de fotones bremsstrahlung o de electrones/positrones producto de la creación de pares. La implementación de superclusters durante el Run 2, junto con la calibración de la energía descripta en la Referencia [9] permite solucionar esto sin perder la linealidad y estabilidad de los clusters de tamaño fijo.

Topo-clusters

El algoritmo comienza buscando las celdas en el ECAL y el HCAL con una señal¹ cuatro veces mayor al ruido esperado dadas las condiciones de luminosidad y pileup del Run 2. A partir de ellas agrega las celdas vecinas cuya señal sea dos veces mayor al ruido , que a su vez son utilizadas en la siguiente iteración del algoritmo, que se repite hasta que no haya más celdas adyacentes que cumplan este requisito. Finalmente se agregan todas las celdas vecinas a las celdas anteriores, independientemente de la intensidad de señal que tengan, formando lo que se denominan topo-clusters [?, 10]. Los topo-clusters que compartan celdas son unificados, mientras que los topo-clusters que tengan dos máximos locales son divididos.

Trazas y vértices de conversión

La reconstrucción de trazas se realiza utilizando un algoritmo de búsqueda de patrones de trazas estándar [?,11,12] en todo el ID. A su vez, utiliza los depósitos en el ECAL que presenten una forma compatible con la de una lluvia electromagnética para definir regiones de interés. En caso de que el algoritmo anterior falle, se utiliza en estas regiones otro algoritmo de búsqueda de trazas [?], permitiendo reconstruir trazas adicionales. Luego se realiza una serie de ajustes (χ^2 [?], GSF [?]) de las trazas permitiendo obtener correctamente los parámetros que la caracterizan. Finalmente las trazas son asociadas a los topo-clusters extrapolando a la misma desde el perigeo hasta la segunda capa del ECAL. Una traza se considera asociada con un topo-clusters si $|\Delta\eta| < 0.05$ y $-0.10 < q \cdot (\phi_{\rm traza} - \phi_{cluster}) < 0.05$, donde q es la carga de la traza. A su vez, el momento de la traza es escaleado para que coincida con al energía del topo-cluster asociado. Si múltiples trazas son asociadas a un mismo topo-cluster se clasifica a las mismas utilizando criterios de calidad, siendo la mejor clasificada la que se utiliza para reconstruir a los electrones.

Los vértices de conversión son reconstruidos a partir de pares de trazas con cargas de signo opuesto y consistentes con el decaimiento de una partícula sin masa. Adicionalmente se pueden reconstruir vértices de conversión a partir de una sola traza que no haya dejado señal en las capas más internas del ID. En ambos casos se busca que la traza tenga altas probabilidad de ser un electrón en el TRT [?] pero baja en el SCT. Es esperado que las trazas de los vértices de conversión estén muy cerca una de otra, en general compartiendo hits, haciendo que una de las trazas no llegue a reconstruirse. Para ello se utilizan trazas con requisitos de asociación a topo-clusters más relajados que los anteriormente descriptos, y con distintos criterios de ambigüedad ante solapamiento. Finalmente los vértices son asociados a los topo-clusters, y en caso de múltiples vértices asociados a un mismo topo-cluster se prioriza aquellos reconstruidos a partir de dos trazas y cuyo radio sea menor.

¹Para los topo-clusters electromagnéticos la medida de la señal se realiza en la escala electromagnética, que es la escala adecuada para medir los depósitos de energía de las partículas producidas en lluvias electromagnéticas de forma correcta

Superclusters

La reconstrucción de los superclusters para electrones y fotones se realiza de forma independiente y en dos etapas: primero se encuentran los topo-clusters semilla y luego se le adjuntan los topo-clusters satélites producidos generalmente por bremsstrahlung o por la división de topo-clusters. El algoritmo comienza ordenando todos los topo-clusters por $E_{\rm T}$ y verifica si pasan los requerimientos para ser un topo-clusters semilla (comenzando por los más energéticos). En el caso de los electrones el requisito es tener $E_{\rm T}$ mayor a 1 GeV y una traza asociada con al menos cuatro hits en el SCT, mientras que el de los fotones es tener $E_{\rm T}$ mayor a 1.5 GeV. Cuando un topo-clusters pasa estos requisitos se busca sus topo-clusters satélites asociados y el mismo no puede ser utilizado como satélite en las siguientes iteraciones. Los topo-clusters satélites son aquellos que se encuentran dentro de una ventana de $\Delta \eta \times \Delta \phi = 0.075 \times 0.125$ alrededor del centro del topo-cluster inicial. Para electrones además se consideran topo-clusters satélites aquellos que se encuentran dentro de una ventana de $\Delta \eta \times \Delta \phi = 0.125 \times 0.3$ cuya traza mejor ajustada coincide con la traza mejor ajustada del topo-cluster inicial. Para fotones convertidos además se consideran topo-clusters satélites aquellos que compartan el vértice de conversión con el topo-cluster inicial.

Para limitar la sensibilidad de los superclusters al pileup, el tamaño de cada topocluster constituyente es restringido a un máximo de 0.075~(0.125) en la dirección de η en la región barrel (endcap). Como el algoritmo se utiliza de forma independiente tanto para electrones como para fotones, puede ocurrir que un mismo supercluster se asocie tanto a un electrón como a un fotón. En ese caso se utilizan una serie de criterios de ambigüedad que permiten determinar si el candidato es un electrón o un fotón. En el caso que aún no pasen los criterios de ambigüedad el candidato es guardado como electrón y fotón simultáneamente, pero marcados como ambiguos y es decisión de cada análisis incluirlos en el mismo.

Finalmente se calibra la energía de los *superclusters*, las trazas son nuevamente ajustadas pero ahora utilizando los *superclusters* anteriores, y la energía es recalibrada teniendo en cuenta este nuevo último ajuste siguiendo el procedimiento descripto en la Referencia [9].

3.1.2. Identificación

Como se mencionó anteriormente, distinta criterios de identificación son utilizados para poder discriminar los objetos promptino de aquellos que no lo son. Para ello se definen una serie de variables basadas en la información del calorímetro y del ID, que mediante distintas técnicas permiten la correcta identificación de los objetos. Finalmente se definen diferentes puntos de trabajo (Working Points, WP) que permiten mejorar la pureza de los objetos seleccionados al costo de tener una menor eficiencia de selección.

La identificación de electrones tiene como principal objetivo discriminar los electrones *prompt* de los fotones convertidos, de jets que depositaron energía en el ECAL y de electrones producidos en el decaimiento de hadrones de sabor pesado. Esta identifica-

Figura 3. Figur

ción se basa en un método de likelihood que utiliza algunas de las variables descriptas en la Tabla 3.1, y cuyas PDFs se obtienen de eventos con decaimientos de J/Ψ y Z para electrones de bajo y alto $E_{\rm T}$ respectivamente [13]. Para electrones se definen tres WP, Loose, Medium y Tight, cuyas eficiencias de identificación promedio son 93 %, 88 % y 80 % respectivamente.

La identificación de fotones esta diseñada para seleccionar eficientemente fotones prompt y rechazar los fotones falsos provenientes de jets, principalmente del decaimiento de mesones livianos ($\pi^0 \to \gamma \gamma$). La identificación se basa en una serie de cortes rectangulares sobre las variables presentes en la Tabla 3.1. Las variables que utilizan las primeras capas del ECAL son esenciales para discriminar los decaimientos del π^0 en dos fotones muy colimados, ya que los depósitos de energía de este decaimiento se extienden en más celdas de este capa en comparación con el depósito de un fotón real. En la Figura 3.2 se puede observar la comparación de ambos procesos. Para la identificación de fotones también se definen tres WPs, Loose, Medium (empleado solamente en la reconstrucción en el HLT) y Tight, cada uno inclusivo con respecto al anterior, y en la Tabla 3.1 se muestran las variables empleadas por cada uno de ellos. Los WPs Loose y Medium fueron utilizados por los algoritmos del trigger durante la toma de datos del Run 2 para seleccionar eventos con uno o dos fotones. Como los depósitos de energía varían debido a la geometría del calorímetros, los tres WPs fueron optimizados para diferentes valores de $|\eta|$, y adicionalmente la selección Tight fue optimizada para distintos valores de $E_{\rm T}$. Los depósitos de energía de los fotones convertidos difiere de los no convertidos, debido a la separación angular entre el e^- y el e^+ que se amplifica por el campo magnético, y debido a la interacción de los pares con capas más altas del calorímetro, permitiendo optimizar la selección Tight de forma separada para fotones convertidos de los no convertidos. Esto no fue posible para las selecciones Loose y Medium ya que la información que utilizan no permite saber si un fotón es convertido o no. La optimización fue realizada a bajo $E_{\rm T}$ utilizando simulaciones de decaimientos radiativos del bosón Z junto con datos con eventos con bosones Z, y a alto $E_{\rm T}$ con simulaciones de producción de fotones inclusiva y jets. La eficiencia de identificación para la selección Tight supera el 80% para fotones con $E_{\rm T} > 20 \; {\rm GeV} \; [6].$

Tabla 3.1: Variables utilizadas en la finición de los WPs de identificación de fotones, Loose (L), Medium (M) y Tight (T).

Categoría	Nombre	Descripción		Μ	Τ
Fuga hadrónica	R_{had_1}	Fracción de E_{T} en la primer capa del HCAL	✓	✓	✓
		con respecto al $E_{\rm T}$ total del <i>cluster</i> (para			
	_	$ \eta < 0.8 \text{ y } \eta > 1.37$	_	_	_
	$R_{ m had}$	Fracción de $E_{\rm T}$ en el HCAL con respecto al	✓	✓	/
		$E_{\rm T}$ total del <i>cluster</i> (para $0.8 < \eta < 1.37$)			
2^{da} capa del ECAL	$w_{\eta 2}$ [[[va el	Ancho lateral de la lluvia: $\sqrt{\frac{\sum E_i \eta_i^2}{\sum E_i} - (\frac{\sum E_i \eta_i}{\sum E_i})^2}$	✓	✓	✓
	2?]]]	[[[esta bien el cuadrado del primer ter-			
		mino?]]], donde la suma es calculada en una			
		ventana de 3×5 celdas			
	R_{η}	Fracción de la suma de las energías contenida	✓	✓	1
		en un rectángulo de $\eta \times \phi = 3 \times 7$ celdas con			
		respecto a un rectángulo 7×7 celdas, ambos			
	D	centrados en la celda más energética	.,	.,	,
	R_{ϕ}	Fracción de la suma de las energías contenida	X	X	•
		en un rectángulo de $\eta \times \phi = 3 \times 3$ celdas con			
		respecto a un rectángulo 3×7 celdas, ambos			
1 ^{er} capa del ECAL	$E_{\rm ratio}$	centrados en la celda más energética Ratio of the energy difference between the	Х	./	
1 capa del ECAL	$E_{ m ratio}$	maximum energy deposit and the energy de-	^	V	V
		posit in a secondary maximum in the cluster			
		to the sum of these energies			
	$w_{s ext{ tot}}$	Ancho lateral total de la lluvia:	X	Х	1
	3 101	$\sqrt{\frac{\sum E_i (i - i_{\text{máx}})^2}{\sum E_i}}$, donde la suma se realiza	•	·	
		V ΣE_i sobre todas las celdas contenidas en una			
		ventana de $\Delta \eta \approx 0.0625$ e $i_{\text{máx}}$ es la celda			
		con mayor energía [[[alto de la ventana?]]]			
	211 - 2	Ancho lateral de la lluvia: $\sqrt{\frac{\sum E_i(i-i_{\text{máx}})^2}{\sum E_i}}$, don-	X	Х	./
	w_{s3}	de la suma se realiza sobre todas las celdas	^	^	V
		contenidas en una ventana de tres celdas al-			
		rededor de la celda de mayor energía, $i_{\text{máx}}$			
	$f_{ m side}$	Energy fraction outside core of three central	X	X	1
	Jside	cells, within seven cells [[entender y traducir	,	•	•
		bien]]]			
	ΔE_s	Difference between the energy of the cell as-	X	X	1
	-	sociated with the secondmaximum, and the			
		energy reconstructed in the cell with the sma-			
		llestvalue found between the first and second			
		maxima			
	f_1	Fracción de energía medida en la primer capa	X	X	✓
		del ECAL con respecto a la energía total del			
		cluster electromagnético			

Figura 3. squema del cono utilizado para el cálculo de la variable de aislamiento calorimétrico.

3.1.3. Aislamiento

Criterios de aislamiento se pueden aplicar sobre los fotones y electrones para aumentar aún más calidad de selección de los mismos. A su vez, la presencia de otros objetos cerca del fotón o el electrón puede interferir en la correcta reconstrucción de las variables cinemáticas del mismo, como su energía. El aislamiento de estos objetos se puede cuantizar definiendo variables no solo para los depósitos de energía, sino también para las trazas.

La variable de aislamiento calorimétrico [12] $(E_{\rm T}^{\rm coneX})$ se define entonces como la suma de la energía transversa de todas las celdas contenidas en un cono centrado en el topo-cluster, y cuyo radio ΔR^2 (en el plano $\eta - \phi$) es igual a X/100. La contribución energética del objeto a asilar se sustrae ignorando las celdas contenidas en un rectángulo en el centro del cono, y cuyos lados miden $\Delta \eta \times \Delta \phi = 5 \times 7$ como muestra la Figura 3.3. Las filtraciones energéticas del candidato fuera del rectángulo son tenidas en cuenta junto con los efectos de pile-up [?]. Para electrones se utiliza un cono de radio $\Delta R = 0.2$ $(E_{\rm T}^{\rm cone20})$, mientras que para fotones se utiliza uno de $\Delta R = 0.2$ $(E_{\rm T}^{\rm cone20})$ dependiendo del WP.

La segunda variable de aislamiento se obtiene en base a las trazas de los objetos reconstruidos ($p_{\rm T}^{\rm coneXX}$), se define como la suma del momento transverso de todas las trazas contenidas dentro de un cono centrado en la traza del electrón o en la dirección del cluster del fotón convertido. La traza asociada al electrón o al fotón convertido son excluidas de esta suma, al igual que aquellas que no pasen una serie de criterios de calidad mínima. Como los electrones producidos en el decaimiento de partículas pesadas pueden estar en cercanía de otras partículas, la variable de aislamiento de trazas utiliza un cono de radio variable, cuyo tamaño se reduce a alto $p_{\rm T}$. La variable se denomina $p_{\rm T}^{\rm varconeXX}$ donde XX es el radio máximo utilizado, que para el caso de los electrones es $\Delta R_{\rm máx} = 0.2~(p_{\rm T}^{\rm varcone20})$. En el caso de los fotones el radio del cono mide $\Delta R = 0.2~(p_{\rm T}^{\rm cone20})$.

A partir de estas variables se definen distintos WPs de aislamiento de electrones

 $^{^{2}\}Delta R = \sqrt{\Delta\phi^{2} + \Delta\eta^{2}}$

Tabla 3.2: Definición de los WPs de aislamiento para fotones y electrones.

Objeto	WP	Aislamiento calorimétrico	Aislamiento de trazas
Fotón	Tight	$E_{\rm T}^{\rm cone40} < 0.022 \times E_{\rm T} + 2.45 \text{ GeV}$	$p_{\rm T}^{ m cone20}/E_{ m T} < 0.05$
	TightCaloOnly	$E_{\rm T}^{\rm cone 40} < 0.022 \times E_{\rm T} + 2.45 \text{ GeV}$	
Electrón	Loose	$E_{ m T}^{ m cone20}/p_{ m T} < 0.2$	$p_{\rm T}^{ m varcone20}/p_{\rm T} < 0.15$

dependiendo de si se desea mantener constante la eficiencia o si se desea aplicar cortes fijos en las variables de aislamiento. Un ejemplo de WP de aislamiento para electrones es el Loose con una eficiencia de selección mayor a 90 % para electrones con $E_{\rm T} > 10$ GeV [6]. En el caso de fotones también se definen distintos WPs que pueden no utilizar todas las variables de aislamiento, como el caso del WP FixedCutTightCaloOnly que solo utiliza un corte en la variable $E_{\rm T}^{\rm cone.}$ Las definiciones de los distintos WPs de interés para esta tesis se listan en la Tabla 3.2.

3.2. Muones

La reconstrucción de muones se realiza de forma independiente en el detector interno y en el espectrómetro de muones. La información de los distintos subdetectores, que incluye a los calorímetros, se combina para formar a los objetos finales utilizados en los análisis [14]. La reconstrucción en el ID se realiza de la misma forma que con cualquier otra partícula cargada [?, ?]. La reconstrucción en el MS comienza con una búsqueda de patrones de hits para definir segmentos en cada cámara de muones, que luego son combinados con un ajuste de χ^2 global. Luego se combina la información del ID, MS y los calorímetros, utilizando una serie de algoritmos que definen 4 tipos de muones dependiendo del subdetector que se utilizó en la reconstrucción:

- Muones Combinados (CB): reconstruidos en el ID y el MS de forma independiente, y luego mediante un ajuste se reconstruye una traza combinada.
- Muones Segmentados (ST): trazas del ID que al extrapolarlas al MS tienen asociadas un segmento en el MDT o el CSC. Se definen principalmente para reconstruir aquellos muones de bajo $p_{\rm T}$ o que atraviesan las regiones del MS con baja aceptancia.
- Muones Calorimétricos (CT): trazas del ID que están asociadas a depósitos de energía en el calorímetro compatibles con una partícula mínimamente ionizante. Este tipo de muones son los de menor pureza pro permite detectarlos en regiones donde el MS está parcialmente instrumentado.
- Muones Extrapolados (ME): reconstruidos utilizando solo el MS y requiriendo que hayan dejado traza en la región forward además de una mínima compatibilidad con el punto de interacción. Se definen principalmente para extender la aceptancia a la región $2.5 < |\eta| < 2.7$ donde el ID no llega a cubrir.

3.3 Jets 39

En caso de solapamiento entre los distintos tipos de muones se resuelve teniendo prioridad por los CB, luego por los ST y finalmente por los CT. Para los ME se priorizan aquellos muones con mejor calidad en el ajuste de la traza y mayor cantidad de *hits*.

La identificación de muones se realiza con el objetivo de discriminar muones prompt de aquellos producidos principalmente en el decaimientos de piones y kaones, manteniendo una alta eficiencia y garantizando una medida robusta de su momento. Los muones producidos en el maimiento de hadrones cargados dejan una traza en el ID con una topología enroscada que genera discrepancias entre el momento reconstruido en el ID y el reconstruido en el MS. La identificación se realiza aplicando una serie de cortes en diferentes variables [14] obtenidas a partir del estudio de simulaciones de producción de pares de quarks top. Se definen cuatro WPS, Loose, Medium, Tight, y High-pT, para satisfacer las necesidades de los distintos análisis. Por ejemplo, la selección Loose está optimizada para reconstruir candidatos del decaimiento del bosón de Higgs, la selección Medium es la selección más genérica para todos los análisis, y lección High-pT está orientada a búsquedas de resonancias de alta masa del Z' y W'.

Finalmente se definen criterios de aislamiento que permiten distinguir aquellos muones producidos en los de caimientos de los bosones Z, W y Higgs que en general se producen de forma aislada, de aquellos producidos en los decaimientos semi-leptónicos que quedan embebidos en los jets. Para ello se definen siete WPs, utilizando las mismas variables de aislamica calorimétrico y de trazas utilizadas para fotones y electrones $(p_{\rm T}^{\rm varcone30} \ {\rm y} \ E_{\rm T}^{\rm cone20})$.

3.3. Jets

Debido al confinamiento de color los quarks o gluones, que tienen carga de color no nula, estos no pueden existir libres en la naturaleza. Al producirse quarks o gluones en la colisión estos crean nuevas partículas de color para generar partículas de carga de color nula. Este proceso que se denomina hadronización y produce en el detector una cascada de partículas de forma similar a un cono alrededor de la partícula inicial, llamada *jet*. Como los jets están compuestos de un número elevado de partículas que a su vez dejan trazas y deposiciones de energía, es necesario utilizar algoritmos especiales que permitan reagrupar a todas esas señales en su respectivo jet de forma correcta.

La reconstrucción de los jets comienza a partir de los depósitos de energía en el calorímetro generando topo-clusters de la misma forma que para electrones y fotones 3 [?]. Luego, los topo-clusters son combinados mediante un algoritmo denominado $anti\text{-}k_t$ [?] que realiza los siguientes pasos:

• Calcula la 'distancia' de todos los *topo-clusters* entre sí, y de cada *topo-cluster* con el haz:

³En este caso los jets pueden ser calibrados tanto en la escala electromagnética como en la hadrónica (escala LCW), la cual tiene en cuenta las diferencias entre las interacciones electromagnéticas y hadrónicas en el detector ATLAS

Figura 3.4: Esquema de agrupamiento de topo-clusters realizado por el algoritmo anti- k_t

$$d_{ij} = \min(p_{\mathrm{T},i}^{-2}, p_{\mathrm{T},j}^{-2}) \frac{\Delta_{ij}^2}{R^2}$$
(3.1)

$$d_{iB} = p_{\mathrm{T},i}^{-2} \tag{3.2}$$

Donde $\Delta_{ij}^2 = \Delta \phi_{ij}^2 + \Delta \eta_{ij}^2$ y R es un parámetro que asociado al radio del cono del jet a reconstruir, cuyo valor para el actual análisis es de 0.4

- Si el mínimo entre todas las distancias anteriormente calculadas es d_{iB} , se clasifica al $topo-cluster\ i$ como un jet, y se lo descarta de sucesivas iteraciones
- Si el mínimo entre todas las distancias anteriormente calculadas es d_{ij} , los topo-cluster i y j son combinados, se vuelven a calcular todas las distancias con este nuevo topo-cluster y se itera nuevamente

Este algoritmo tiende a unificar las partículas soft con las hard y separar a las partículas hard entre sí, formando conos de radio R que van a resultar útiles para determinar el solapamiento con otros objetos reconstruidos del evento. La Figura 3.4 muestra esquemáticamente como el algoritmo $anti-k_t$ tiende a agrupar los distintos topo-clusters. Jets provenientes de quarks o gluones son llamados en general small-R jets y se utiliza un R=0.4 para su reconstrucción. En cambio, los jets que representan partículas masivas decayendo hadrónicamente son llamados large-R y utilizan un R=1.

A continuación los jets pasan por una serie de correcciones y calibraciones antes de reconstruir el objeto final para los análisis. Primero se remueve la contribución por pileup, en el caso de los large-R jets afecta principalmente a las distribuciones angulares que son necesarias para la reconstrucción de su masa invariante, y se remueve utilizando una técnica denominada grooming descripta en la Referencia [?]. Para los small-R jets primero se realiza una corrección del origen de su vértice y luego se suprime la contribución por pile-up utilizando métodos que tienen en cuenta la densidad de en fía de pile-up [15] junto con variables asociadas a las trazas y al vértice primipio [16] . A continuación se calibra la energía del jet utilizando simulaciones de MC . Esto es necesario debido a que gran parte del jet es invisible al detector, por plo cuando el jet se encuentra en las zonas del mismo donde la sensibilidad es baja. La escala de energía del jet ($Jet\ Energy\ Scale$, JES) [17] calcula un factor de respuesta en bines de $|\eta|$ y p_T utilizando

simulaciones de MC, y que al aplicarlo a los datos permite la corrección en energía de los jets. Para los large-R jets se aplica a su vez una corrección similar en la masa necesaria para la correcta reconstrucción de su masa invariante. Los small-R jets por su parte pasan por una calibración (Global Sequential Calibration, GSC) que mejoran la resolución de energía del jet (Jet Energy Resolution, JER). Finalmente se realiza una corrección in situ aplicada exclusivamente a los datos.

3.3.1. Jets provenientes de quarks b (b-jets)

Los decaimientos de los hadrones pesados están gobernados generalmente por el hadrón más pesado en la cascada del decaimiento. Un hadrón b generalmente decae a través de una cascada a un madrón c, que a su vez decae a un hadrón s, etc. Esto genera la existencia de múltiples vértices secundarios, que junto con la información de las trazas y la elevada vida media de los hadrones b, son utilizados por distintos algoritmos para poder distinguir los hadrones b de hadrones con sabores más livianos (b-tagging). Algunos ejemplos de algoritmos [?] son el MV2 basado en un boosted decision tree y compuesto de clasificadores de bajo nivel, y el DL1 basado en una red neuronal profunda. Para cada algoritmo se definen WPs con distintas eficiencias de selección, que a mayor eficiencia mayor es la probabilidad de identificar otros tipos de jets erróneamente como b-jets. Con el WP de 77% del algoritmo MV2 (DL1) 1 de cada 5 (5) c-jets, 1 de cada 15 (14) τ -jets y 1 de cada 110 (130) jets livianos son identificados erróneamente como b-jets [?].

3.4. Energía transversa faltante

Como se mencionó en [[[definición MET]]], el momento transverso faltante se utiliza como un sustituto para obtener el momento de las partículas que prácticamente no interactúan con el detector, por ejemplo neutrinos o partículas más allá del SM. El momento en la dirección del haz que acarrea cada partón previo a la colisión es desconocido, pero en la dirección transversa al haz se puede considerar que es nulo. Por conservación del momento se puede deducir que luego de la colisión la suma de los momentos en el plano transverso de todas las partículas producidas debería ser nulo, y en caso de no serlo puede ser un indicio de una partícula que escapó la detección. La reconstrucción del momento transverso faltante se basa en esta conservación y se define como menos la suma de los momentos transversos de todas las partículas observadas en el evento. En esta suma se incluyen los electrones, muones, fotones, taus decayendo hadrónicamente y jets reconstruidos con los métodos descriptos en las secciones anteriores. Además se incluye un termino (soft) que tiene en cuenta el momento en la traza de las partículas que dejaron señal en el ID pero que no llegaron a reconstruirse. Quedando la definición del vector momento transverso faltante como [18]:

$$\mathbf{E}_{T}^{\text{miss}} = -\sum_{i} \mathbf{p}_{T}^{e_{i}} - \sum_{i} \mathbf{p}_{T}^{\gamma_{i}} - \sum_{i} \mathbf{p}_{T}^{\gamma_{i}} - \sum_{i} \mathbf{p}_{T}^{j_{i}} - \sum_{i} \mathbf{p}_{T}^{\mu_{i}} - \sum_{i} \mathbf{p}_{T}^{\text{Soft}_{i}}$$
(3.3)

En general no se utilizan las componentes de este vector sino que se utiliza su módulo $(E_{\rm T}^{\rm miss})$ y su ángulo $(\phi^{\rm miss})$, y cuando se menciona al momento transverso faltante se está haciendo referencia a su módulo. Cabe aclarar que esta definición introduce un sesgo a tener $E_{\rm T}^{\rm miss}$ no nula en eventos donde no se produjo ninguna partícula no interactuante, debido a la incorrecta o insuficiente reconstrucción de todos los objetos presentes en el evento. Otra variable que se utiliza además es $\Sigma E_{\rm T}$ que se define como la suma del módulo de los momentos de todas las partículas anteriormente consideradas.

Como la reconstrucción se realiza de forma independiente para cada objeto, puede ocurrir que dos objetos distintos compartan algunas celdas calorimétricas. Para evitar el doble conteo, se define el siguiente orden de prioridad: electrones, fotones, taus y jets [19,20]. Si alguna de estas partículas comparte celdas con otra de una prioridad mayor, la misma se elimina del cálculo de $E_{\rm T}^{\rm miss}$. Los muones son principalmente reconstruidos en el ID y el MS, por lo que el solapamiento con las demás partículas es mínimo y salvo algunos casos particulares ninguno es descartado. Muones no aislados que se solapan con los jets, jets que se solapan mínimamente con otros objetos o jets reconstruidos a partir de un depósito de energía de muones o de pile-up tienen un tratamiento especial descripto en la Referencia [18]. En el término Soft se incluyen solamente aquellas trazas provenientes del vértice principal que no estén asociadas las partículas anteriormente seleccionadas. Los depósitos de partículas neutras soft no se incluyen en este término ya que en su mayoría son producto del pile-up y su inclusión reduce el desempeño en la reconstrucción de $E_{\rm T}^{\rm miss}$.

Capítulo 4

Eficiencia del trigger de fotones

En el Capítulo [[[trigger/detector]]] se detalló el funcionamiento del sistema de trigger y su importancia para los distintos análisis que se realizan dentro de la colaboración. La medida precisa de la eficiencia de los triggers es empleada para tener conocimiento del rendimiento de los mismos y poder entonces determina la accimica de los análisis físicos de interés que involucran cada uno de los triggers utilizados. En este Capítulo se discute en particular la medida de la eficiencia de los triggers de fotones, que son de especial importancia para esta tesis. El método empleado utiliza una muestra de datos con fotones de alta pureza seleccionados a partir de eventos con bosones Z que decaen radiativamente. Este método se utiliza para la medida de la eficiencia de triggers con fotones de bajo $p_{\rm T}$ debido a la baja estadística de la muestra. Complementariamente se utiliza otro método denominado Bootstrap, que tiene una vor estadística a costo de una menor pureza, para los triggers con fotones de alto $p_{\rm T}$.

4.1. Reconstrucción de fotones en el Trigger

La reconstrucción de fotones [21] (y de forma similar la de electrones) en el Trigger comienza en el L1 con la construcción de regiones de interés (RoIs) utilizando sólo la información del calorímetro. A partir de esas RoIs el HLT ejecuta algoritmos de reconstrucción rápida que utilizan adicionalmente información del detector interno dentro de la RoI, permitiendo una selección e identificación inicial de fotones junto con un temprano rechazo de fondo. En el caso de que el candidato cumpla los requisitos de selección rápidos se ejecuta a continuación los algoritmos de precisión, que utilizan información adicional en regiones del detector fuera de la RoI. Estos algoritmos son similares a los utilizados en la reconstrucción offline con la diferencia de que no reconstruyen superclusters de fotones. A continuación se detallan los mecanismos realizados en ambas etapas del trigger.

Reconstrucción de fotones en el L1

Los triggers del L1 utiliza la información del calorímetro en la región central $(|\eta| < 2.5)$ para construir las RoIs, que consisten en torres (trigger towers) de 4×4 celdas de 0.1×0.1 en $\eta y \phi$. Un algoritmo (sliding-window [?]) busca los conjuntos de celdas de 2×2 cuya suma de energía transversa de uno de los cuatro posibles pares de celevecinas más cercanas $(1 \times 2 \text{ o } 2 \times 1)$ supere el umbral de energía que define al trigger \checkmark . Este umbral puede depender de η con una granularidad de 0.1, en general variando entre -2 y 3 GeV con respecto al umbral nominal, y en ese caso se agrega una letra 'V' al final del nombre del trigger. A su vez se puede aplicar un rechazo de actividad hadrónica, donde se rechaza al candidato si la suma de energía transversa de las celdas en el calorímetro hadrónico de la ventana de 2×2 es mayor a 1 GeV y supera $E_{\rm T}/23 - 0.2$. En ese caso se agrega una 'H' al final del nombre del trigger. Finalmente se puede incluir requisitos de aislamiento que rechazan a los candidatos si la suma de la energía transversa en las 12 celdas alrededor de la ventana de 2×2 es mayor a 2 GeV y supera $E_{\rm T}/8 - 1.8$, agregando una 'I' al nombre del trigger. Por ejemplo, el trigger L1_EM20VHI tiene un umbral de 20 GeV variable en η y utiliza el rechazo hadrónico y la selección de aislamiento. Tanto el rechazo hadrónico como la selección de aislamiento se aplican solamente a triggers con umbral mayor a 50 GeV.

Reconstrucción de fotones en el HLT

La reconstrucción en el HLT comienza aplicando algoritmos de reconstrucción rápida para reconstruir clusters con las celdas de las RoIs obtenidas en el L1. Para acelerar el proceso estos algoritmos solo utilizan la segunda capa del calorímetro electromagnético para encontrar la celda con mayor energía transversa de la RoI (see La posición del cluster se obtiene calculando el energy-weighted average cell positions dentro de una ventana de 3×7 ($\Delta\phi=0.075\times0.175$) centrada en la celda seed. Para calcular la energía acumulada se utiliza una ventana de 3×7 ($\Delta\eta\times\Delta\phi=0.075\times0.175$) en la región barrel y una ventana de 5×5 ($\Delta\eta\times\Delta\phi=0.125\times0.125$) en el endcap. Adicionalmente se realizan correcciones basadas en los algoritmos de reconstrucción que mejoran la resolución de la posición y energía del cluster. En esta etapa se realizan selecciones solamente basadas en la energía transversa del cluster y en los parámetros $R_{\rm had}$, R_{η} y $E_{\rm ratio}$.

Si el candidato pasa la selección anterior se utiliza una región levemente mayor a la RoI para ejecutar los algoritmos de precisión. Estos algoritmos son los mismos empleados en la reconstrucción offline [?] para construir el clusters y técnicas multivariable [9] para hacer correcciones en su energía. La identificación online de fotones utiliza las mismas shower shapes que en la reconstrucción offline, definiendo tres working points: loose, medium (empleado solamente en el HLT), y tight. Adicionalmente es posible incluir requisitos de aislamiento calorimétrico utilizando topo-clusters, de forma similar a la reconstrucción offline. Para ello se reconstruye la totalidad de los topo-clusters presentes en el evento para calcular la densidad de energía del evento en el HLT, necesaria para

sustraer el ruido de la señal en el cono de aislamiento. El cono se construye con un radio de $\Delta R < 0.2\,(0.4)$ alrededor del candidato para el punto de trabajo de aislamiento very-loose (tight), denotado en el nombre del trigger como icalovloose (icalotight). Un fotón en el HLT se considera aislado if the ratio of the transverse energy in the topo-clusters to the transverse energy of the photon candidate is less than 10 % (3 % con un corrimiento de energía de 2.45 GeV similar al de la Tabla 3.2). La reconstrucción de los topo-clusters del evento se realiza una sola vez en el evento y es utilizado por todos los triggers, inclusive aquellos que no utilizan fotones.

4.2. Nomenclatura y menú del trigger de fotones

La convención de nombres de triggers utilizada en el detector ATLAS es de la forma:

'Nivel de trigger'_'Multiplicidad del objeto''Tipo de objeto''Umbral de $E_{\rm T}$ '_'Requisitos adicionales'

El nivel del trigger puede ser tanto L1 como HLT. La multiplicidad representa la cantidad de objetos que pretende seleccionar el trigger con esos mismo requisitos. Los posibles tipos de objetos para los triggers de fotones pueden ser 'EM' en el caso de triggers del L1 y 'g' para el HLT. En el caso de triggers del L1 es posible que incluyan los requisitos 'I', 'H' o 'V' descriptas anteriormente. Los triggers compuestos por la disyunción de otros dos trigger, incluyen ambas componentes en el nombre sucesivamente. Finalmente en los requisitos adicionales se incluye la identificación, y en caso de haber requisito de aislamiento se agrega a continuación. Opcionalmente para los HLT triggers se puede explicitar el trigger del L1 que se utilizó como semilla. Por ejemplo la nomenclatura HLT_2g20_tight_icalovloose_L12EM15VHI representa un trigger del HLT que selecciona eventos con al menos dos fotones con $E_{\rm T}>20~{\rm GeV}$, ambos que pasen los requisitos de identificación tight y de aislamiento icalovloose, y adicionalmente se especifica el seed L1 trigger que requiere de dos L1 EM clusters con un umbral dependiente en η y centrado en 15 GeV, con los requisitos de aislamiento y rechazo hadrónico.

El menú de trigger de fotones se detalla en la Tabla 4.1. El trigger primario de un fotón con menor umbral y sin prescale está diseñado para búsquedas de física nueva más allá del SM con fotones de alto $E_{\rm T}$, mientras que el de dos fotones se utiliza principalmente para seleccionar eventos con bosones de Higgs decayendo a fotones. Los triggers de dos fotones con umbrales bajos e identificación tight son empleados para estudios más allá del SM con resonancias de baja masa ($\sim 60~{\rm GeV}$).

Tipo de trigger	2015	2016	2017-2018		
L1 simple	L1_EM20VH		L1_EM22VHI		
L1 doble	L1_2EM10VH	L1_2EM15VH	L1_2EM15VHI		
Primario de un fotón	HLT_g120_loose		HLT_g140_loose		
Primario de dos fotones	HLT_g35_loc	ose_g25_loose	HLT_g35_medium_g25_medium		
Loose doble	-	-	HLT_2g50_loose		
Tight doble	HLT_2g20_tight	HLT_2g22_tight	HLT_2g20_tight_icalovloose		

Tabla 4.1: Menú del trigger de fotones utilizados a lo largo de cada año durante el Run 2

4.3. Método del bosón Z decayendo radiativamente

Debido al amplio conocimiento adquirido en las últimas décadas sobre las propiedades del bosón Z, el mismo es empleado en la actualidad para realizar medidas de calibración y eficiencia. El decaimiento radiativo del bosón Z ocurre cuando uno de los productos del decaimiento leptónico irradia un fotón $(Z \to l^+l^-\gamma, l = e, \mu)$. Este decaimiento en particular se utiliza cuando se desea obtener una muestra de fotones con una elevada pureza, debido a que al reconstruir la masa invariante de los tres objetos y requerir que sea compatible con la del bosón Z, la posibilidad de que el fotón haya sido erróneamente reconstruido es muy baja. Teniendo en cuenta la alta pureza de fotones de la muestra esta técnica no requiere de métodos de sustracción de fondo. La desventaja de este método es la baja estadística de eventos con estas características, por lo que es utilizado para medir eficiencias de triggers con umbrales menores a 60 GeV.

La eficiencia de un determinado trigger se define como la fracción de eventos que pasaron el mismo con respecto al total de eventos presentes en la muestra:

$$\epsilon = \frac{N_{\text{trig}}}{N_{\text{total}}} \tag{4.1}$$

La eficiencia se calcula en función de distintas variables como por ejemplo $p_{\rm T}$ y η del objeto, o el $\langle \mu \rangle$ del evento. En el caso de una eficiencia teórica en función del $p_{\rm T}$ la forma de la misma debería ser una función escalón de Heaviside centrada en el valor de corte de $p_{\rm T}$ del trigger. El sistema de trigger toma una decisión basada en la reconstrucción de objetos online o tiempo real, sin embargo para los análisis físicos los objetos de interés son los reconstruidos offline (fuera de linea) de mayor precisión. Es por esto que las eficiencias se evalúan con respecto a estos últimos objetos, observando entonces un desvanecimiento de la curva escalón en el valor de selección online, en la llamada región de encendido (turn-on) del trigger en estudio. Los triggers y algoritmos de reconstrucción e identificación están diseñados para impedir una dependencia de la eficiencia en η o $\langle \mu \rangle$, por lo que al expresarla en función de estas variables se espera una curva plana muy cercana a 1. En el caso de triggers compuestos, se calcula la eficiencia de cada componente y la eficiencia total resulta como el producto de ambas.

Figura 4.1: Gráfico de la masa invariante de ambos junto con el fotón.

La medida de la eficiencia de cada trigger utiliza los datos tomados en el año correspondiente al mismo, listados en la Tabla 4.1. En el caso de que el trigger o una de sus componentes se hava configurado con un prescale, el mismo se emplea en modo rerun para la medida de la eficiencia. La muestra de datos se obtiene a partir de eventos que pasaron los triggers primarios de electrones o muones, junto con la derivation EGAM3 (EGAM4) que preselecciona eventos con electrones (muones) y un fotón, con requisitos orientados a este tipo de decaimiento. A los eventos se les solicita tener al menos dos leptones de carga opuesta y un fotón, todos con $p_T > 10$ GeV. El fotón debe estar dentro de la región $|\eta| < 2.37$ y pasar el WP de identificación tight. Las eficiencias se calculan dependiendo del WP de aislamiento del fotón utilizado, por lo que se calcularon para FixedCutTightCaloOnly y FixedCutLoose. Los leptones deben estar dentro de la región $|\eta| < 2.47$, pasar el WP de identificación medium, el de aislamiento loose y tener $|z_0| < 10$ mm y $\sigma(d_0) < 10$. A su vez el evento es rechazado si el ΔR entre el fotón y alguno de los leptones es menor a 0.2. Finalmente se realiza una selección en la masa invariante de los leptones (m_{ll}) y la de los 3 objetos $(m_{ll\gamma})$. En la Figura 4.1 se muestra el gráfico de m_{ll} en función de $m_{ll\gamma}$. En la misma se puede observar que la mayoría de los eventos se encuentra en la región $m_{ll} \sim 91~{\rm GeV}$ y $m_{ll\gamma} > \sim 96$, estos representan eventos en los cuales un bosón Z decayó a un par de leptones, y que adicionalmente en el evento se encontraba un fotón proveniente de otro proceso. En cambio en la región $86 < m_{ll\gamma} < 96$ y $40 < m_{ll} < 83$ la masa invariante de los pares de leptones no alcanza la del bosón Z, pero al combinarlos con el fotón sí lo hace. Al aplicar este último corte se garantiza que un leptón necesariamente haya irradiado y que el fotón provenga del decaimiento del bosón Z y no de otro proceso. En el caso de tener en el evento más de un fotón o más de dos leptones que cumplan los requisitos, se seleccionó el trío cuya masa invariante sea la más cercana a la del bosón Z.

Figura 4.2: Eficiencias de los triggers de para el año 2018 en función del $p_{\rm T}$ (izquierda), η (centro) y < μ > (derecha).

La incertidumbre estadística para la eficiencia se obtiene o el intervalo de confianza de un estimador de Bayes con el método de Jeffrey [?] Las incertezas sistemáticas se obtienen a partir de las variaciones en las eficiencias al modificar algunas de las selecciones empleadas en el método. El requisito sobre las masas invariantes se varió de 36 < m_{ll} < 87 GeV a 44 < m_{ll} < 79 GeV, y de 82 < $m_{ll\gamma}$ < 100 GeV a 88 < $m_{ll\gamma}$ < 94 GeV. Se modificó el requimiento de identificación de los leptones a tight y tight y

En la Figura 4.2 pueden observar los resultados de las eficiencias en función de las distintas variables.

4.4. Factores de escala de las eficiencias

Las simulaciones de Monte Carlo logran reproducir los procesos físicos en general con una alta precisión, pero naturalmente presentan imperfecciones principalmente relacionadas con la simulación de la interacción de las partículas con el material del detector. Estos efectos se traducen en eficiencias distintas (en general más altas) que las respectivas producidas en datos. Con el objetivo de corregir las simulaciones y que se asemejen lo más posible a los datos se calculan los Factores de Escala (SF), que son factores multiplicativos (pesos) aplicados luego a cada evento simulado según corresponda. Para el caso de la eficiencia del trigger de fotones, los SFs se definen como el cociente entre las eficiencias calculadas en datos y las calculadas con simulaciones:

$$SF(p_{T}, \eta) = \frac{\epsilon^{(\text{datos})}(p_{T}, \eta)}{\epsilon^{(\text{MC})}(p_{T}, \eta)}$$
(4.2)

En la región con $p_{\rm T}$ menor al umbral, donde las eficiencias son prácticamente nulas, y en la región del crack se definen los SFs igual 1 ± 1 . Las eficiencias de las simulaciones utilizan muestras con procesos con producción de electrones o muones junto con un fotón, y se calculan exactamente de la misma forma que en datos. En la Figura 4.3 se observa el SF obtenita para el trigger HLT_g25_loose con un WP de aislamiento FixedCutTightCaloOnly.

Figura 4.3: Factor de escala de la eficiente del trigger HLT_g25_loose con un WP de aislamiento FixedCutTightCaloOnly

Capítulo 5

Elementos estadísticos para la búsqueda de nueva física

5.1. Estrategia general

Un búsqueda general de nueva física consiste a grandes rasgos en un experimento de conteo de eventos con características asociadas al modelo de estudio, y su comparación con las predicciones que el Modelo Estándar hace de eventos con las mismas características. En caso de que haya un «buen acuerdo» entre las predicciones del SM y los datos observados, es posible afirmar que bajo las condiciones del experimento no hay evidencia de nuevos procesos físicos y que las predicciones del SM son correctas. En el caso de observar un «exceso» [[[en la jerga se usa exceso, pero en realidad no debería ser un déficit en la predicción del SM?]]] de eventos observados con respecto a las predicciones del SM, se puede afirmar que el SM tiene una carencia en sus predicciones y que se podría estar en presencia de un nuevo fenómeno físico. Los criterios para definir «buen acuerdo» y «exceso» requieren evaluaciones estadísticas rigurosas y se explican más adelante en este Capítulo.

En el contexto de esta Tesis se denomina **señal** a los procesos del modelo bajo estudio, y **fondo** a las predicciones del SM. Para poder identificar los eventos de señal es necesario conocer las características del mismo, y luego así, discriminarlos de otros procesos físicos presentes en el experimento. Se utilizan simulaciones de Monte Carlo para modelar la señal, reconstruyendo los observables cinemáticos que caracterizan a los eventos. Aplicando diferentes cortes en esas variables se puede favorecer ciertos procesos y desfavorecer otros. Un conjunto de cortes define una **región** en el espacio de observables. Las regiones donde la señal abunda con respecto al fondo, y por ende donde se espera observar un exceso significativo en los datos, se denominan **Regiones de Señal (SR)**.

En este tipo de experimentos es fundamental un correcto modelado de los procesos de fondo. Existen diferentes técnicas para modelar estos procesos: basadas exclusivamente en datos, exclusivamente en simulaciones de Monte Carlo o basadas en simulaciones y corregidas con datos. La motivación de esta última se debe a que las simulaciones en

general son validadas en regiones asociadas al proceso que modelan (SM por ejemplo), y como en este caso es necesario utilizarlas en regiones de señal, probablemente alejadas o más extremas de donde se validó, es esperable que esas predicciones en esas regiones no sean del todo correctas. Para ello se definen **Regiones de Control (CR)** donde abundan eventos de algún proceso de fondo de interés, dedicadas a normalizar las simulaciones de ese proceso en particular a los datos observados en la misma.

Finalmente se definen **Regiones de Validación (VR)** que justamente se utilizan para validar la estimación de los fondos anteriormente mencionados. Es importante destacar que el diseño de todas las regiones se realiza sin utilizar en ningún momento los datos en las SRs (blinding) para evitar todo tipo de sesgo en el resultado del experimento. Por este motivo el diseño de todas las CRs y VRs debe ser ortogonal a las SRs, de tal forma que ningún evento de las mismas estén incluido en las SRs. Una vez que se tiene confianza en la estimación de los fondos y son validados en las distintas VRs, se procede a observar los datos en las SRs (unblinding).

El concepto central en cualquier resultado estadístico es la probabilidad del modelo, que asigna una probabilidad a cada resultado posible del mismo. Un ejemplo muy utilizado en física de partículas es el modelo de Poisson que describe el resultado de un experimento de conteo:

$$P(N|\mu) = \frac{\mu^n e^{-\mu}}{N!}$$
 (5.1)

que define la probabilidad de observar N veces cierto proceso aleatorio, medido en un intervalo fijo de tiempo, donde μ es el número medio de eventos esperado. La distribución de Poisson es utilizada para describir múltiples fenómenos como decaimientos radiactivos o cualquier experimento de partículas que conste de contar eventos en un intervalo de tiempo. Es importante mencionar que las probabilidades obtenidas en esta distribución dependen estrictamente del modelo asumido como hipótesis, en este caso representado por el número medio de eventos esperados. De tal forma que la probabilidad de obtener el número observado de eventos en el experimento va a depender del modelo a estudiar, por ejemplo un modelo que sólo espera fondo o un modelo que considera la composición de fondo y señal. La probabilidad de ocurrencia de los datos observados (x) bajo la hipótesis bajo estudio se denomina likelihood:

$$\mathcal{L}(x|\mu) = \text{Pois}(N = x|\mu) \tag{5.2}$$

5.2. Maximum likelihood

Para trabajar con distribuciones en resultados estadísticos primero es necesario construir le modelo probabilistico para distribuciones. Si bien muchas distribuyciones pueden ser derivadas de la teoría analíticamente, en general se utilizan simulaciones del detector para generarlas. Esas simulaciones se describen mediante histogramas de la va-

riable observada. Cada clase del histograma puede ser considerado como un experimento de conteo independiente con una distribución de Poisson, quedando el *likelihood* como:

$$\mathcal{L}(x|\mu) = \prod_{i} \text{Pois}(N = x|\mu)$$
 (5.3)

El likelihood puede ser utilizado adicionalmente para estimar parámetros de la teoria (hipotesis) que estamos estudiando. Por ejemplo, si nuestra hipotesis está caracterizada por un conjunto de parámetros θ , y asumimos que esa hipotesis es verdadera, se esperaria que la probabilidad de observar esos datos bajo esa hipotesis sea maxima cuando los parametros θ sean los mas proximos a los valores reales del modelo. El estimador de máximo likelihood (MLE) consiste en obtener los valores θ hat de θ que maximicen a la funion lakilehood. Una practic mas coomun es en realida buscar el minimo del ogaritmo del likelihood por lo que el MLE queda como:

$$-\ln \mathcal{L}(\theta) = -\sum_{i=-1}^{N} \ln f(x_i; \theta)$$
 (5.4)

En el límite asintótico, cuando el número de mediciones N tiende a infinito, el MLE es consistente, es decir, para cada parámetro θ el valor estimado θ converge al valor verdadero θ . En este límite también el MLE es no sesgado y tiene su menor varianza. Esto significa que ningún otro estimador puede ser más eficiente. Para un número finito de eventos N , sin embargo, el MLE tiene un sesgo proporcional a 1 /N.

5.3. Constratación de hipótesis

Como se menciono anteriormente el experimento esta caracterizado por una o multiples hipotesis. Con el objetivo de descubrir procesos de nueva señal, se define la hipótesis nula (H_0) para describir los procesos ya conocidos (fondo). La cual va a ser evaluada contra la hipótesis alternativa (H_1) que incluye tanto fondo como señal. Si los resultados observadors en el experimento difieren de los esperados bajo la hipotesis nula, es posible rechazar a la misma y dando lugar a un descubirmiento. Caso contrario de no poder rechazarla, es posible poner límites al modelo donde los roles de las hipótesis se inviertnen, y ahora la hipótesis nula incluye a la señal y la alternativa solo fondo.

Las hipotesis pueden estar completamente determinadas o estar caractirazadas por distintos parametros, y las mismas definen a las PDFs de los distintos observables. Para poder discriminar una hipotesis de otra se define un estadistico de prueba que es una funcion de los observables, t(x), que al aplicar un corte sobre el mismo define una region critica en el espacio de observables. Si los datos observados dan un valor de t dentro de esa region la hipotesis nula es rechazada.

Alternativamente, se puede cuantizar el acuerdo entre el resultado de dicha búsqueda y una hipótesis dada calculando el p/value, que se define como la probabilidad bajo la

hipótesis de obtener un resultado igual o peor de incompatible con las predicciones de la hipótesis:

$$p = \int_{t_{obs}}^{\infty} g(t|H)dt \tag{5.5}$$

Pudiendose excluir la hipótesis si el p/value observador es menor a un cierto valor previamente definido.

En física de partículas usalmente se convierte el p-values a una significancia equivalente, Z, definida tal que una variable con distribucvin gaussiana que se encuentra Z desviaciones standadr por encima de su meadia tiene una probabilidad superior igual a p:

$$Z = \Phi^{-1}(1-p) \tag{5.6}$$

donde Φ^{-1} es la inversa de la cumilativa (cuantil) de la distribución normal. La comunidad de física de partículas es tiende a definir un rechazo de hipótesis de solo fondo con una significancia superior a los 5 sigmas ($p=2.87\cdot 10^{-7}$) como un nivel apropiado para definir un descubirmiento. Para excluir hipótesis de señal se define en cambio a partir de 1.64 sigmas (p=0.05). Cabe destacar que al rechazar la hipótesis de solo fondo es solo parte del proceso de descubrimiento de un nuevo fenómeno. La certeza de que un nuevo proceso está presente va a depender en general de otros factores, como la plausibilidad de una nueva hipótesis de señal y el grado al cual la misma describe a lso datos observados

5.4. Estadísticos de prueba

Generalmente, cuando se modela un fenómeno aleatorio de interés, el modelo elegido para ajustar a las observaciones de dicho fenómeno suele tener varios parámetros, de los cuales solo algunos pueden ser de interés. De manera formal a estos parámetros se los denomina parámetros de interés (μ) y al resto, parámetros nuisance (θ), y conviene separarlos explícitamente, $\mathcal{L}(\mu, \theta)$.

Para la búsqueda de nueva física es común definir como parámetro de interés a la intensidad de la señal de forma tal que la hipótesis de solo-fondo corresponde a $\mu=0$, y la hipótesis de señal+fondo a $\mu=1$. En general, las incertezas sistemáticas son incluidas en el modelo utilizando parámetros nuisance. En este escenario, donde hay un único parámetro de interés μ , y el resto de parámetros nuisance $\boldsymbol{\theta}$, es conveniente definir el profile likelihood ratio (PLR):

$$\lambda(\mu) = \frac{\mathcal{L}(\mu, \hat{\boldsymbol{\theta}})}{\mathcal{L}(\hat{\mu}, \hat{\boldsymbol{\theta}})}$$
 (5.7)

donde en el denominador, los valores $\hat{\mu}$ y $\hat{\boldsymbol{\theta}}$) son los valores estimados MLE. En el numerador, los parámetros $\hat{\boldsymbol{\theta}}$ son los valores que maximizan la función likelihood para

un valor fijo de μ , es decir que es una función multidimensional que depende solo del parámetro μ . Este proceso de elegir valores específicos de los parámetros nuisance para un valor dado de μ se lo conoce como profiling. El PLR depende explícitamente de μ pero es independiente de los parámetros nuisance que han sido 'eliminados' vía el profiling. La presencia de los parámetros nuisance que son ajustados a los datos ensanchan la función likelihood como función de μ , respecto a la distribución si sus valores estuvieran fijos. De cierta forma reflejan una pérdida de información sobre μ debido a estos parámetros desconocidos, que suelen ser las incertezas sistemáticas.

De la definición de $\lambda(\mu)$ se puede observar que la misma puede tomar valores solamente entre 0 y 1, donde 1 implica un buen acuerdo entre los datos y el valor hipotetizado de μ . De forma equivalente es conveniente usar el estadístico de prueba:

$$t_{\mu} = -2\ln\lambda(\mu) \tag{5.8}$$

donde ahora valores grandes de t_{μ} implica una gran incompatibilidad entre datos y $\mu.$

En muchos análisis la contribución del proceso de señal al valor medio de eventos se asume como no negativo, lo que implica que cualquier estimador de μ debería ser no negativo. Aún si no fuese así el caso, es conveniente definir un estimador efectivo $\hat{\mu}$ que maximice el likelihood y que tenga la posibilidad de tomar valores negativos (siemmpre y cuando los valores medios de Poisson, $\mu s_i + b_i$ sean no negativos). Esto va a permitir más adelante modelar a $\hat{\mu}$ como una variable con distribución gaussiana. Para un modelo con $\mu \geq 0$ si se encuentra que su estimador es negativo ($\hat{\mu} < 0$) entonces el mejor nivel de acuerdo entre datos y cualquier valor físico de μ va a ser cuando $\mu = 0$. Por lo que se puede denufuur un test estadistíco alternativo que tenga en cuenta esto:

$$\tilde{t}_{\mu} = -2 \ln \tilde{\lambda}(\mu) = \begin{cases}
-2 \ln \frac{\mathcal{L}(\mu, \hat{\boldsymbol{\theta}}(\mu))}{\mathcal{L}(0, \hat{\boldsymbol{\theta}}(0))} & \hat{\mu} < 0 \\
-2 \ln \frac{\mathcal{L}(\mu, \hat{\boldsymbol{\theta}}(\mu))}{\mathcal{L}(\hat{\mu}, \hat{\boldsymbol{\theta}})} & \hat{\mu} \ge 0
\end{cases}$$
(5.9)

Un caso especial de estadístico de prueba es $q_0 = \tilde{t}_0$, ya que el rechazo de esta hipótesis puede llevar al descrubimiento de nueva señal:

$$q_0 = \begin{cases} -2\ln\lambda(0) & \hat{\mu} < 0\\ 0 & \hat{\mu} \ge 0 \end{cases}$$
 (5.10)

En contraste con t_{μ} , este permite discriminar la hipótesis tanto si hay una fluctiacion arriba o abajo, por ejemplo en presencia de un fenómeno que pueda aumentar o disminuuir el numero de eventos. En cambio con q_0 , solamente consideramos un bajo acuerdo de los datos con la hiptesis de solo fondo, solo si $\hat{\mu} > 0$, ya que si bien un valor de $\hat{\mu} > 0$ mucho menor a cero puede significar evidencia en contra de la hipotesis, no implica que los datos tengan eventos de señal sino que alguna fluctuación estadística.

El p-value para este estadístico de prubea queda entonces:

$$p_0 = \int_{q_0, abs}^{\infty} f(q_0|0) dq_0 \tag{5.11}$$

5.5. Límites superiores

Cuando el p-value obtenido es mayor al límite definido para un descubrimiento, no es posible rechazar la hipótesis de solo fondo. En ese caso es posible establecer límites sobre el modelo caracterizado por el parámetro μ

$$q_{\mu} = \begin{cases} -2\ln\lambda(\mu) & \hat{\mu} \le \mu\\ 0 & \hat{\mu} > \mu \end{cases}$$
 (5.12)

La razón para poner $q_{\mu}=0$ para $\hat{\mu}>\mu$ es que cuando se establece un límite superior, el hecho de que $\hat{\mu}>\mu$ representa menos compatibilidad con μ que los datos obtenidos, y por lo tanto no se considera parte de la región de rechazo de la contrastación. También es importante notar que q_0 (utilizado como estadístico de prueba para descubrimiento) no es simplemente un caso especial de la ecuación, sino que tiene una definición diferente. Es decir, q_0 es cero si los datos fluctúan hacia abajo $(\hat{\mu}\langle 0\rangle)$, pero q_{μ} es cero si los datos fluctúan hacia arriba $(\hat{\mu}>\mu)$. Para cuantificar la consistencia de los datos observados con la hipótesis de intensidad de señal μ se calcula el valor-p

$$p_{\mu} = \int_{q_{\mu,obs}}^{\infty} f(q_{\mu}|\mu) dq_{\mu} \equiv \mathrm{CL}_{s+b}$$
 (5.13)

donde valores chicos de p_{μ} indican baja compatibilidad con la hipótesis de señal+fondo. El límite superior con un nivel de confianza del 95 % se obtiene resolviendo la siguiente ecuación:

$$p_{\mu} = 0.05 \tag{5.14}$$

Sin embargo, el límite superior calculado de esta forma tiene un problema: de acuerdo a este, se dice que una señal está excluida a 95 % CL, si $CL_{s+b} < 0.05$. Si se considera el caso de $\mu = 0$, se espera que por construcción el CL_{s+b} sea menor o igual que 0.05 con una probabilidad de 5 %. Esto significa que el 5 % de los análisis estarían excluyendo modelos con cero señal. Otro problema del CL_{s+b} es que para dos experimentos con el mismo número chico de eventos de señal esperado pero con un número de eventos de fondo distinto, el experimento con mayor fondo va a imponer mejores límites. Con motivo de solucionar estos inconvenientes se introduce el método de CL_s .

$$CL_s = \frac{p_{\mu}}{1 - p_b} \equiv \frac{CL_{s+b}}{CL_b}$$
 (5.15)

donde p_b es el valor del mismo estadístico bajo la hipótesis de solo-fondo,

$$1 - p_b = \int_{q_{\mu,obs}}^{\infty} f(q_{\mu}|0) dq_{\mu} \equiv CL_b$$
 (5.16)

El límite superior CL_s en μ , μ_{up} se obtiene resolviendo $CL_s = 0.05$. Se rechazan los valores de μ si $\mu < \mu_{up}$ con un nivel de confianza de 95 %. Cabe mencionarse para una observación cercana al número de eventos esperado de solo-fondo $(CL_b \sim 0.05)$ el CL_s da un valor del orden de dos veces el obtenido utilizando el CL_{s+b} .

5.6. Aproximación de las distribuciones de los estadísticos de prueba

Para hallar el p-value de una hipótesis es necesaria la función densidad de probabildiad del estadístico de prueba. En el caso del rechazo de la hipótesis nula se necesitaría $f(q_0|0)$, y para poner límtes superiores al modelo se necesitaría $f(q_\mu|\mu)$. A su vez es necesario $f(q_\mu|\mu')$ con $\mu \neq \mu'$ para hallar la significancia esperada y cómo esta distribuida si los datos corresponden a un parámetro distinto al que se esta evaluando.

Considerando una hipótesis con el parámetro μ que puede ser cero o no, y suponiendo que los datos se distribuyen de acuerdo a un parámetro μ' , la distribución $f(q_{\mu}|\mu')$ se puede aproximar utilizando los resultados de Wald que muestra que para el caso de un solo parámetro de interés:

$$-2\ln\lambda(\mu) = \frac{(\mu - \hat{\mu})^2}{\sigma^2} + \mathcal{O}(1/\sqrt{N})$$
 (5.17)

Aquí μ sigue una distribución Gaussiana con una media μ' y una desviación estándar σ , y N representa el tamaño de la muestra. Si despreciamos el término $\mathcal{O}(1/\sqrt{N})$ se puede mostrar que el estadístico de prueba t_{μ} sigue una distribución de χ^2 no central con un grado de libertad.

En este caso el estadístico q_{μ} puede aproximarse como:

$$q_{\mu} = \begin{cases} \frac{(\mu - \hat{\mu})^2}{\sigma^2} & \hat{\mu} \le \mu \\ 0 & \hat{\mu} > \mu \end{cases}$$
 (5.18)

al p-value como $p_{\mu}=1-\Phi(\sqrt{q_{\mu}})$ y a su correspondiente signifiac
nia equivalemten como $Z_{\mu}=\sqrt{q_{\mu}}.$

Estas aproximaciones permiten conocer las distribuciones muéstrales y calcular valores-p y significancias en el caso de un gran número de datos, de una forma simple y computacionalmente poco costosa. A pesar de que estrictamente es válido para $N \to \infty$, esta aproximación es suficientemente precisa para un número de eventos de fondo $\sim \mathcal{O}(10)$. Para muestras de datos muy pequeñas, o en casos donde la precisión es importante, siempre pueden validarse estas aproximaciones utilizando la generación Monte Carlo. Para

esto es necesario utilizar simulaciones Monte Carlo para generar lo que se denomina 'pseudo-experimentos'. El procedimiento consiste en generar el conjunto de observables x utilizando la pdf f(x|H) y calcular el valor del estadístico de prueba t(x) para cada conjunto. Este proceso se repite hasta acumular suficiente estadística en la distribución muestral del estadístico g(t|H).

5.7. Optimización de las regiones de señal

La búsqueda comienza definiendo las regiones de señal. Las mismas están caracterizadas por un estado final (motivado por un modelo en particular) que determina los cortes preliminares de la región. Adicional a esos cortes se agregan otros que aumentan el poder discriminatorio de las regiones de señal. El proceso de definir el conjunto de SRs y los cortes más aptos de cada una se denomina optimización. Es posible definir un conjunto de SRs optimizadas para discriminar al mismo modelo pero con distintos parámetros (masas por ejemplo), pudiendo estas ser independientes entre sí u ortogonales. Esto último puede ser ventajoso dependiendo de si se está realizando la búsqueda con el objetivo de descubrir algún fenómeno, o si se quiere poner límites al modelo estudiado. Cabe mencionar que si bien se buscan las regiones con mayor poder discriminatorio, es importante evitar definirlas basándose fuertemente en las predicciones del modelo. En caso de realizar una búsqueda muy dependiente del modelo y de no observar un exceso, se estarían poniedo límites a un modelo muy particular resultando poco útil para la comunidad científica. En por eso que el proceso de optimización, si bien está motivado por un estado final determinado por el modelo, termina siendo un compromiso entre un buen poder discriminatorio sin perder la idependencia al mismo. Una forma de garantizar esa independiencia es utilizar cortes un poco más relajados y pedir un número mínimo de eventos de señal y fondo.

...

5.8. Ajuste de solo fondo

Key ingredients of the fitting procedure are the ratios of expected event counts, called transfer factors, or TFs, of each normalized background process between each SR and each CR. The TFs allow the observations in the CRs to be converted into background estimates in the SRs, using:

$$N_p^{(SR)}(est.) = N_p^{(SR)}(raw) \times \frac{N_p^{(CR)}(obs.)}{N_p^{(CR)}(est.)} = \mu_p \times N_p^{(SR)}(raw)$$
 (5.19)

where Np(SR,est.) is the SR background estimate for each simulated physics processes p considered in the analysis, Np(CR,obs.) is the observed number of data events in the CR for the process, and MCp(SR,raw) and MCp(CR,raw) are raw and unnormalized

estimates of the contributions from the process to the SR and CR respectively, as obtained from MC simulation. An important feature of using TFs is that systematic uncertainties on the predicted background processes can be canceled in the extrapolation; a virtue of using the ratio of MC estimates. The total uncertainty on the number of background events in the SR is then a combination of the statistical uncertainties in the CR(s) and the residual systematic uncertainties of the extrapolation. For this reason, CRs are often defined by somewhat looser cuts than the SR, in order to increase CR data event statistics without significantly increasing residual uncertainties in the TFs, which in turn reduces the extrapolation uncertainties to the SR

Capítulo 6

Búsqueda de SUSY con fotones y Higgs en el estado final

El análisis para el cual está orientada esta Tesis consiste en la búsqueda de Supersimetría en eventos con un fotón aislado muy energético, jets y gran cantidad de energía faltante en estado final [?,?,?]. La estrategia general de la búsqueda consiste en el conteo del número de eventos observado en exceso sobre el SM en una cierta región del espacio de observables rica en eventos de la señal considerada.

6.1. Identificación de eventos de fondo

Para un correcto procedimiento, es necesario conocer los procesos del SM que tengan un estado final equivalente a de la señal buscada. Estos eventos toman el rol de fondo en el contexto de un análisis de búsqueda de SUSY. Para este análisis, son procesos que tienen un fotón, jets y energía faltante en el estado final, y pueden dividirse en varias categorías. Por un lado, los procesos que dan lugar a eventos con un fotón y energía faltante real, es decir, los que se llaman fondos irreducibles. Estos son:

- $Z(\to \nu\nu) + \gamma$
- $W(\to l\nu) + \gamma$
- \bullet $t\bar{t}+\gamma$

También es posible que, aunque el proceso no tenga fotones en el estado final, un electrón o un jet sean identificados como un fotón, dando lugar a un estado final idéntico al buscado. En esta categoría están:

- $W(\to l\nu) + \text{jets}$
- $Z(\to \nu\nu) + jets$

- t̄t̄
- *WW*, *ZZ*, *WZ*

Y por último, también puede haber procesos que a pesar de no generar energía faltante real, poseen lo que se denomina energía faltante instrumental, proveniente generalmente de la incorrecta reconstrucción de la energía de los jets. De esta manera, pueden dar lugar a eventos con el estado final de interés, los procesos QCD:

- \bullet γ + jets
- multijet, con alguno de los jets identificado como fotón
- $Z(\rightarrow ll)$ + jets, donde un leptón o un jet es identificado como un fotón

6.2. Muestras a partir de simulaciones de Monte Carlo

Muestras de señal de SUSY y fondos del SM fueron simulados utilizando generadores de Monte Carlo (MC) dedicados a $\sqrt{s}=13{\rm TeV}$. Las muestras de señal de SUSY se realizaron mediante una simulación rápida ATLFAST-II [?] del detector ATLAS, mientras que las muestras de fondo SM realizaron con una simulación completa basada en GEANT4 [?] del detector ATLAS, y reconstruido con los mismos algoritmos utilizados en los datos. Un peso evento a evento es aplicado a todas las muestras de MC para modelar las condiciones del detector de la muestra de datos bajo estudio, haciendo coincidir la distribución simulada del número de colisiones inelásticas pp por cruce de haces con el observado en los datos.

Las simulaciones se corrigen a su vez con factores de escala de eficiencia. y correciones en la escala de energía de fotones, leptones y jets, para describir mejor los datos. Las muestras se generaron con un distribución de pileup esperada, denominadas MC16a, MC16d y MC16e para el conjunto de datos 2015-2016, 2017 y 2018 respectivamente, con un peso adicional para igualar el perfil de interacción real de los datos.

6.2.1. Muestras de fondo

Varios procesos del SM pueden imitar una señal SUSY con fotones, jets y energía transversa faltante. Estos surgen de eventos con fotones reales o eventos en los que un electrón o un jet es identificado erróneamente como un fotón. Es esperado que la primera sea principalmente de eventos en los que se produce un bosón W, Z o un par $t\bar{t}$ en asociación con al menos un fotón real, decayendo subsecuentemente a neutrino prodeiendo importantes cantidades de $E_{\rm T}^{\rm miss}$. Estos fondos son denominados $W\gamma, W\gamma\gamma, Z\gamma, Z\gamma\gamma$ y $t\bar{t}\gamma$. Los eventos con fotones reales también pueden contribuir al fondo cuando $E_{\rm T}^{\rm miss}$ surge

de una reconstrucción instrumental incorrecta de la energía. Los fondos de $W\gamma$, $t\bar{t}\gamma$ y γ +jets se estiman normalizando la muestra de MC correspondiente para que coincida con el número de eventos observados en las regiones de control correspondientes, enriquecidas en el fondo dado y cinemáticamente similares a las regiones de señal. Contribuciones más pequeñas de $\gamma\gamma$, $W\gamma\gamma$, $Z\gamma$ y $Z\gamma\gamma$ son estimados directamente de las simulaciones de MC. La contaminación a partir de fondos de fotones falsos debido a la identificación errónea de electrones y jets que surgen de W + jets, Z + jets, $t\bar{t}$ o eventos de multijets, se estiman con una técnica basada en datos que se explica en las siguientes secciones. La Tabla 6.1 resume las principales fuentes de fondo anteriormente mencionadas.

	Real $E_{\mathbf{T}}^{\mathbf{miss}}$	Instrumental $E_{\mathbf{T}}^{\mathbf{miss}}$		
Real photon	$Z(\nu\nu)\gamma, W\gamma$ $t\bar{t}\gamma, Z(\nu\nu)\gamma\gamma, W\gamma\gamma$	γ +jets, $\gamma\gamma$, $Z(ll)\gamma$, $Z(ll)\gamma\gamma$		
Fake photons	W +jets, $Z(\nu\nu)$ +jets $t\bar{t}$	multijet, $Z(ll)$ +jets		

Tabla 6.1: Procesos del SM que constribuyen al fondo.

6.2.2. Muestras de señal

El presente análisis está motivado por la presencia de neutralinos mezcla de binohiggsino mezcla con un estado final predicho por el modelo de General Gauge Mediation compuesto de al menos un fotón, jets y alto $E_{\rm T}^{\rm miss}$. El componente bino del neutralino más liviano se acopla tanto al fotón como al bosón Z. El gluino es considerada como la única espartícula de color relevante para establecer un límite conservador en la masa de gluino.

Todas las masas de los squark se establecen en 5 TeV. Esto da como resultado una producción de procsos SUSY a través de la creación de pares de gluinos, cada uno de los cuales que decae posteriormente a través de un squark virtual (los 12 estados de sabor de los squarks se consideran completamente degenerados) a un pares quark-antiquark más el neutralino NLSP.

Otros parámetros del modelo se establecen en $M_2=3$ TeV, $\tan\beta=1.5$ y $m_{\tilde{G}}=1$ eV. Todos los términos de acoplamiento trilineal se establecen en cero y las masas de sleptons se establecen en 5 TeV. El bosón de Higgs está en el régimen de desacoplamiento con $m_A=2$ TeV y $m_h=125$ GeV, valor medido recientemente en el LHC para el Bosón de Higgs del SM [?]. En escenarios SUSY gauge mediated existen varios mecanismos [?, ?, ?, ?, ?] para generar una masa de bosón de Higgs como este valor observado, sin cambiar el fenomenología de los modelos aquí considerados. Además $c\tau_{\rm NLSP}<0.1$ mm se estableció para asegurar que el neutralino decaiga rápidamente y el decaimiento directo del gluino está prohibido fijando $BR(\tilde{g}\to \tilde{G}g)=0$.

Como M_1 y μ determinan la masa neutralino más ligera, están relacionados de tal manera que las fracciones de decaimiento del $\tilde{\chi}^0_1$ sean aproximadamente constante, resultando en BR($\tilde{\chi}^0_1 \to \gamma \tilde{G}$) $\sim 50\,\%$, BR($\tilde{\chi}^0_1 \to Z \tilde{G}$) $\sim 0\,\%$ y BR($\tilde{\chi}^0_1 \to h \tilde{G}$) $\sim 50\,\%$, números que varían en $\pm 1\,\%$ para todas las muestras.

Vale la pena señalar que $\sim 25\,\%$ de eventos tendrán dos fotones en el estado final, por lo que se realiza una búsqueda inclusiva que requiera al menos un γ , más dos \tilde{G} en el estado final.

El valor de μ también debe ser negativo para no favorecer los decaimientos al bosón de Z, lo que daría lugar a un estado final que es cubierto por otro análisis. Esto deja M_3 y μ como los únicos dos parámetros libres del modelo, que son variados desde 150 GeV $< m_{\tilde{\chi}_1^0} < (m_{gluino} - 50) gev$ y 1200 GeV $< m_{\tilde{g}} < 2400$ GeV con $m_{\tilde{\chi}_1^0} < m_{\tilde{g}}$.

Los puntos de señal generados se resumen en la Figura \ref{figura} . Consta de 81 puntos de produccion fuerte $(\tilde{g}\tilde{g})$ generados con 10000 eventos cada uno.

Se calcularon el espectro de masas completo, las fracciones de decaimiento del gluino y neutralino y los anchos de desintegración de este conjunto de puntos utilizando SUSPECT v2.43 [?], SDECAY v1.5 [?] y HDECAY v3.4 [?], ejecutados como parte del paquete SUSYHIT v1.5a [?]. Como ejemplo, la Figura ?? muestra el espectro de masas para uno de los puntos en la cuadrícula de señales GGM, con $(M_3, \mu) = (1600 \text{ GeV}, 650 \text{ GeV})$.

6.3. Selección de eventos de señal

El análisis está diseñado para comparar el número de eventos observados en tres regiones de señal para la producción fuerte (denominadas SRL, SRM y SRH) con las predicciones de los procesos de SM. La SRL apunta al espacio de fase con grandes diferencias de masa entre el gluino y el neutralino, lo que resulta en eventos caracterizados por una gran multiplicidad de jets y actividad hadrónica, pero momento transverso faltante moderado. La región de señal SRH está optimizada para los escenarios comprimidos, cerca de la diagonal en el plano de masa gluino-neutralino, dando eventos con un alto momento transverso faltante, fotones con $p_{\rm T}$ más alto y una multiplicidad de jets y actividad hadrónica más bajas. Finalmente, la región SRM se define para el espacio de fase intermedia entre SRL y SRH.

Dada la gran masa de gluinos producidos en el modelo GGM explorado, se espera que el momento transversal visible total sea grande. Esto da como resultado un valor grande para la variable $H_{\rm T}$, definida como la suma escalar de los momentos transversales de todos los jets de señal individuales y el fotón principal en el estado final. La selección de eventos de señal incluye un requisito un $H_{\rm T}$ y $E_{\rm T}^{\rm miss}$. En SRL, SRM y SRH, se requiere que los eventos contengan al menos un fotón aislado con $E_{\rm T}>145,>300$ o >400 GeV, respectivamente, y cero leptones para eliminar los eventos SM que contengan $V\gamma$ donde el bosón del vector decae leptónicamente. Además, se requieren más de cuatro jets en SRL y SRM, mientras que se requieren más de dos jets en SRH.

En eventos caracterizados por elevado $E_{\rm T}^{\rm miss}$ reconstruidos sin una contribución significativa de partículas que no interactuantes o que surge de fuentes instrumentales y objetos físicos mal reconstruidos, el vector de momento transverso faltante tiende a estar alineado con el fotón o con uno de los dos jets principales. Una selección basada en la

separación angular entre estos objetos y el vector $E_{\rm T}^{\rm miss}$ ($\Delta\phi({\rm jet},E_{\rm T}^{\rm miss})$) y $\Delta\phi(\gamma,E_{\rm T}^{\rm miss})$) proporciona una gran supresión de estos procesos de fondo.

Las señales de SUSY consideradas en este análisis se caracterizan por eventos con alta multiplicadad de jets en una amplia región del espacio de parámetros. Los jets secundarios son comparativamente más duros que los de los eventos de fondo SM. Como consecuencia, para procesos de señal con jets duros, $R_{\rm T}^4$ (definido como la suma escalar de $p_{\rm T}$ para los cuatro jets de $p_{\rm T}$ más alto, dividido la suma escalar del $p_{\rm T}$ de todos los jets de señal) toma valores inferiores a uno, mientras que para el fondo SM con menos jets y más suaves, $R_{\rm T}^4$ suele estar más cerca de la unidad [22]. No se aplica una selección de $R_{\rm T}^4$ para SRH debido al menor número de jets en esta región.

La selección de eventos para todas las regiones de señales se resume en la Tabla ??.

	SRL	SRM	SRH
$N_{\rm photons}$	≥ 1	≥ 1	≥ 1
$p_{ m T}^{ m leading} \gamma$	> 145 GeV	> 300 GeV	$> 400~{\rm GeV}$
$N_{ m leptons}$	0	0	0
$N_{ m jets}$	≥ 5	≥ 5	≥ 3
$\Delta\phi(\mathrm{jet},E_{\mathrm{T}}^{\mathrm{miss}})$	> 0.4	> 0.4	> 0.4
$\Delta\phi(\gamma, E_{\mathrm{T}}^{\mathrm{miss}})$	> 0.4	> 0.4	> 0.4
$E_{ m T}^{ m miss}$	> 250 GeV	> 300 GeV	> 600 GeV
$H_{ m T}$	$> 2000~{\rm GeV}$	$> 1600~{\rm GeV}$	$> 1600~{\rm GeV}$
$R_{ m T}^4$	< 0.90	< 0.90	

Tabla 6.2: Selección para las tres regiones de señal.

6.4. Regiones de control y validación

Se espera que las contribuciones de fondo dominantes del SM en las SR sean de la producción de $W\gamma$ y $t\bar{t}\gamma$ seguida de una producción de fotones con $E_{\rm T}^{\rm miss}$ instrumental. Estas tres contribuciones se determinan utilizando simulaciones de MC restringidas por eventos observados en regiones de control dedicadas a través de la estimación de factores de normalización. Las fuentes de fondo más pequeñas, $W\gamma\gamma$, $Z\gamma$, $Z\gamma\gamma$ y $\gamma\gamma$, se obtienen directamente de MC.

Las regiones de control denominadas como CRW, CRT y CRQ se utilizan para obtener el MC normalización para los eventos $W\gamma$, $t\bar{t}\gamma$ y QCD γ + jets respectivamente. Los criterios de selección para las CR asociadas con las SR se presentan en la Tabla ??. Las CR están diseñadas para ser ortogonales pero aún cinemáticamente similares a las SR, y que favorezcan el proceso de fondo de interés, con una contaminación de señal insignificante.

La selección para la CRQ se define a partir de las SRs pero aplicando un requisito

en $E_{\rm T}^{\rm miss}$ más bajo (> 100 GeV), una selección $H_{\rm T}$ similar y $\Delta\phi({\rm jet}, E_{\rm T}^{\rm miss})$ invertido, aplicados para aumentar la fracción de γ + jets en la muestra de control.

La región CRW se define al requerir un fotón, un leptón y 100 GeV $< E_{\rm T}^{\rm miss} <$ 200 GeV. Se aplica un requisito de veto de b-jets para reducir la contaminación de $t\bar{t}\gamma$.

La región CRT se define al requerir un fotón, un leptón, jets y 50 GeV < $E_{\rm T}^{\rm miss}$ < 200 GeV. Se requieren al menos dos jets etiquetados con b para aumentar la pureza de la población de eventos de $t\bar{t}\gamma$. También se aplican requisitos más flexibles en ambos casos para aumentar los rendimientos. No se aplica ningún requisito en $R_{\rm T}^4$ por la misma razón. Se aplica un requisito de $E_{\rm T}^{\rm miss}$ máximo para reducir la contaminación de la señal.

Se utiliza un conjunto adicional de Regiones de validación (VR) para verificar los resultados del procedimiento de estimación de anteriores. Fueron diseñadas para encontrarse cinemáticamente entre las regiones de señal y las regiones de control, pero con uno o más criterios invertido o modificado para reducir una posible contaminación de la señal. Las regiones VRL son diseñado para enriquecer los fondos $W\gamma$ y $t\bar{t}\gamma$. No se aplica ningún requisito de b-jets, por lo que se espera la contribución de ambos procesos. Las cuatro regiones (VRL 1 a 4) cubren diferentes partes del espacio de parámetros entre las regiones de control y de señal, variando principalmente los requisitos de $E_{\rm T}^{\rm miss}$ y $H_{\rm T}$. Las regiones VRM están diseñadas para validar la extrapolación del fondo γ + jets de la CR a la SR. Una VRQ similar a una región de señal está diseñada para ser ortogonal a la SR solo debido al requisito reducido en $E_{\rm T}^{\rm miss}$. Además, se diseñaron específicamente dos conjuntos de VRM para producir eventos de baja multiplicidad de jets y con fotones de alto $p_{\rm T}$ (VRM1H y VRM2H), o eventos con alta multiplicidad de jets y fotones menos energéticos (VRM1L y VRM2L), para validar la estimación de fondo en regiones más cerca de SRH o SRL respectivamente. Cada conjunto se divide en dos, uno incluido en el otro, seleccionando un rango diferente en $E_{\mathrm{T}}^{\mathrm{miss}}$. Un resumen de los diferentes criterios de selección se muestra en la Tabla ??.

Regions	$N_{\rm photons}$	$p_{\mathrm{T}}^{\mathrm{leading}\gamma}$ [GeV]	$N_{ m leptons}$	$N_{ m jets}$	$N_{ m bjets}$	$\Delta\phi(\mathrm{jet},E_{\mathrm{T}}^{\mathrm{miss}})$	$\Delta\phi(\gamma, E_{\mathrm{T}}^{\mathrm{miss}})$	$E_{\rm T}^{\rm miss}~{\rm [GeV]}$	$H_{\rm T} \; [{\rm GeV}]$	R_{T}^{4}
CRQ	≥ 1	> 145	0	≥ 3	-	< 0.4	> 0.4	> 100	> 1600	-
CRW	≥ 1	> 145	≥ 1	≥ 1	0	> 0.4	-	[100, 200]	> 400	-
CRT	≥ 1	> 145	≥ 1	≥ 2	≥ 2	> 0.4	-	[50, 200]	> 400	-
VRL1	≥ 1	> 145	≥ 1	≥ 2	-	> 0.4	-	[50, 200]	> 800	-
VRL2	≥ 1	> 145	≥ 1	≥ 2	-	> 0.4	-	[50, 200]	> 1300	-
VRL3	≥ 1	> 145	≥ 1	≥ 2	-	> 0.4	-	> 200	[600, 1600]	-
VRL4	≥ 1	> 145	≥ 1	≥ 2	-	< 0.4	-	> 200	> 1100	-
VRQ	≥ 1	> 145	0	≥ 3	-	> 0.4	> 0.4	[100, 200]	> 1600	-
VRM1L	≥ 1	> 145	0	≥ 5	-	> 0.4	> 0.4	[100, 200]	> 1600	< 0.90
VRM2L	≥ 1	> 145	0	≥ 5	-	> 0.4	> 0.4	[150, 200]	> 1600	< 0.90
VRM1H	≥ 1	> 300	0	≥ 3	-	> 0.4	> 0.4	[100, 200]	> 1600	-
VRM2H	≥ 1	> 300	0	≥ 3	-	> 0.4	> 0.4	[150, 200]	> 1600	-
VRE	≥ 1	> 145	-	≥ 1	≥ 1	> 0.4	< 0.4	> 200	[100, 1600]	-

Tabla 6.3: Selección para las regiones de control y validación.

6.5. Fondo de jets identificados como fotones

Los jets pueden identificarse erróneamente como fotones (fotones falsos) si contienen principalmente π^0 (o cualquier otro hadrón neutro) que se lleva la mayor parte de la energía del jet y se desintegra en un par de fotones colimados, lo que da como resultado un objeto electromagnético similar a un solo fotón altamente energético. Este fondo surge principalmente de multijets QCD, W + jets y eventos $t\bar{t}$ semileptónicos. Los criterios de identificación "tight. aplicados a los candidatos a fotones reducen este fondo. Después de aplicar esta selección, se espera que la muestra de datos contenga fotones reales con contaminación moderada de jets. Como no se espera que esta tasa de identificación errónea sea precisa utilizando simulaciones de MC, se utiliza un método de recuento de banda lateral basado en datos [?]. El método llamado ABCD hace uso de los diferentes perfiles de aislamiento esperados para fotones reales y jets mal identificados [23]. Se consideraron dos variables incluyen simultáneamente aislamiento calorimétrico y de trazas cuando para el fotón candidato, como se define en la Sec. ??. La identificación fuera offline 'tight' es por diseño más estricta queel trigger de fotones utilizado para recopilar los datos, por lo que se espera tener candidatos a fotones de los jets que fallan la seleccion tight pero satisfacen una seleccion intermedia. Estos jets de tipo fotón, en lo sucesivo denominados fotones non-tight, se definen como aquellos que pasan la identificación loose y satisfacen los cortes de selección "tight", con la excepción de al menos una de las cuatro selecciones asociadas con los depósitos de energía en el calorímetro EM. [?], elegidos por no estar correlacionados con las variables de aislamiento. De esta manera, el uso de fotones non-tight mejora la contribución de los jets que simulan ser fotones, necesarios para este método. En el plano de identificación-aislamiento, el método define una región de señal A que consta de candidatos a fotones aislados que satisfacen la identificación 'tight', y tres regiones de control, B, C y D, con candidatos a fotones no aislados y "tight", aislado y no tight y no aislado y no tight, respectivamente.

Se estima una posible correlación residual entre la identificación de fotones y el aislamiento, y la contaminación de las regiones de fondo por fotones reales, utilizando simulaciones de MC. Este método calcula la contribución de jets mal identificados en todas las regiones utilizadas en el análisis. Las incertidumbres sistemáticas del método se evalúan variando la definición de los objetos no ajustados y considerando las diferencias introducidas por la correlación residual entre las regiones.

6.6. Fondo de electrones identificados como fotones

Se espera una contaminación significativa en las regiones de señal de los procesos SM como W/Z + jets y eventos $t\bar{t}$ en los casos en los que un electrón de alto $p_{\rm T}$ se identifica erróneamente como un fotón. Este fondo se estima ponderando el número de eventos

observados en una muestra de control de electrones por la tasa de identificación errónea de electrón a fotón. Estas muestras de control de electrones son las mismas regiones de control, validación y señal del análisis, pero aplicando las mismas selecciones cinemáticas de fotones a los electrones, donde se solicita un electrón aislado alto p_T y se vetan los fotones de señal. Para estimar la tasa de identificación errónea de electrón a fotón, se utiliza un método basado en una muestra de eventos de datos de $Z \to ee$ [?,?]. Dado que el bosón Z no puede decaer directamente en un electrón y un fotón, los eventos de electrones-fotones que aparecen bajo el pico Z corresponden con mayor probabilidad a electrones mal identificados. Se aplica una técnica de sustracción de fondo, que tiene en cuenta también la contaminación procedente de combinaciones de pares aleatorios. El factor falso electrón-fotón se estima luego como la relación entre el número de pares electrón-fotón y electrón-electrón encontrados, por debajo del pico Z en el ajuste de la distribución de masa invariante. Este ajuste utiliza una función doubl sided Crystal-Ball (DSCB) (un núcleo gaussiano con colas asimétricas exponenciales) para modelar el pico Z, y una distribución gaussiana para modelar los pequeños fondos no resonantes para $Z \to ee$ Solo se seleccionan los pares entre una ventana de masa invariante definida para calcular el factor de falsificación de electrón a fotón. Esta ventana se define como $\pm 3\sigma$ alrededor del centro del pico de la DSCB, donde σ es el ancho del pico. Solo se seleccionan los eventos con $E_{\rm T}^{\rm miss}$ < 40 GeV, para evitar que los electrones provengan de las desintegraciones de W.

Se diseñó una región de validación dedicada (VRE) con la selección de eventos descrita en la Tabla 6.3, para validar la precisión del fondo correspondiente de electrón a fotón con las predicciones basadas con los factores falsos calculados. El conjunto de requisitos selecciona predominantemente $W(e\nu)$ + eventos de jets, donde un W impulsado (incluidos los que provienen de los quarks superiores) decae en un neutrino colineal (con alto $E_{\rm T}^{\rm miss}$) y un electrón de alto $p_{\rm T}$ (identificado erróneamente como un fotón).

6.7. Incertidumbres sistemáticas

Todos los procesos de fondo estimados por haciendo uso de simulaciones de MC o mediante métodos basados en datos, y también predicciones de señales MC, se ven afectados por incertidumbres sistemáticas que se originan principalmente en dos tipos de fuentes: experimentales y teóricos. Estas incertidumbres sistemáticas pueden afectar el número de eventos esperados tanto en las regiones de control como en las de señal.

La incertidumbre en la luminosidad integrada combinada de 2015-2018 es de 1.7% [?], obtenida con el detector LUCID-2 [?] para las medidas de luminosidad primaria.

Se estiman las incertidumbres sistemáticas debidas a la identificación de fotones y las eficiencias de aislamiento. siguiendo las prescripciones de la Ref. [6]. Se evalúan variando los factores de corrección de fotones en simulaciones de MC con las incertidumbres correspondientes. La escala de energía de fotones se determina usando muestras de eventos $Z \to ee$, cambiando las correcciones y resoluciones de escala en una desviación estándar hacia arriba y hacia abajo.

Para electrones [6] y muones [14], similar a los fotones, la incertidumbre para la eficiencia de identificación, escala de energía y la resolución se determinó de $Z \to l^+ l^-$ y $W^{\pm} \to l^{\pm} \nu$ muestras de control.

Para los jets, la escala de energía y las incertidumbres de resolución se derivan siguiendo el procedimiento descrito en la Ref. [15], donde se usa un esquema simplificado con 38 parámetros.

Para $E_{\rm T}^{\rm miss}$, las incertidumbres de todos los objetos subyacentes con los que se construye se propagan al cálculo, y se consideran las incertidumbres adicionales que tienen en cuenta la escala y la resolución en el término soft [18]. También se considera la incertidumbre sobre la reponderación acumulada.

Para los fondos de fotones falsos $(j \to \gamma \text{ y } e \to \gamma)$, hay dos tipos diferentes de incertidumbres que afectan sus estimaciones: la incertidumbre sistemática del método utilizado para estimar los factores falsos y la incertidumbre estadística de la muestra de control.

Para cada una de las principales muestras de simulación de fondo, se evalúa una incertidumbre teórica considerando diferentes fuentes de incertidumbres sistemáticas. Cada muestra contiene varios pesos internos que representan el efecto de las variaciones de diferentes parámetros de la teoría. Las variaciones sistemáticas consideradas para cada muestra son las escalas de renormalización y factorización μ_r y μ_f a nivel de generador, variaciones de los PDF [?] y la constante de acoplamiento fuerte (α_S) . Para μ_r y μ_f , se utilizan tres parámetros nuisance independientes, construidos manteniendo una de las escalas constante mientras se varía la otra, o como una variación coherente de ambas escalas. Para la incertidumbre de la PDF, la PDF nominal (NNPDF3.0) y las variaciones se combinan en envelope. Finalmente, se consideran las incertidumbres asociadas con la determinación y el truncamiento de α_S . Las incertidumbres de PDF y α_S se agregan en cuadratura. La incertidumbre sistemática teórica total en las regiones de señal está entre el 15 % y el 30 % dependiendo de la muestra de MC.

El impacto relativo de cada sistemática en la expectativa de fondo SM después del ajuste de solo fondo se presenta en la Tabla ??. Una de las mayores incertidumbres sistemáticas experimentales está relacionada con la escala y resolución de la energía del jet (excepto para la SRH, donde se reduce debido a la menor multiplicidad del jets y la actividad hadrónica). Las incertidumbres teóricas sistemáticas se acercan al 3 % para SRL y SRM, y son las mayores en SRH, alcanzando el nivel del 10 %.

Tabla 6.4: Resumen de las diferentes fuentes de sistemáticos en las predicciones del SM para las distintas SRs.

	SRL [%]	SRM [%]	SRH [%]
Total (stat. + syst.) uncertainty	28	25	17
Statistical uncertainty	20	15	12
Jet energy scale and resolution	18	19	4.1
b-tagging calibration	3.2	4.3	3.6
Jet fakes	2.1	2.5	2.3
MC theory	3.6	3.1	10
Electron fakes	1.4	1.9	i1
Electron/photon energy resolution and scale	5.5	1.1	4.1
Muon reconstruction and identification	2.6	1.8	i1
Photon ID and isolation	2.6	2.1	1.1
Pile-up reweighting	¡1	1.2	1.0
$E_{\rm T}^{\rm miss}$ soft-term scale and resolution	į1	¡1	¡1

Capítulo 7

Resultados e interpretación del análisis

Los eventos observados y los fondos del SM estimados obtenidos con el ajuste de solo fondo, en las diferentes regiones de señal utilizadas en este análisis se muestran en la Tabla ??.

Los resultados de las distribuciones $E_{\rm T}^{\rm miss}$ observadas en las regiones de señal SRL, SRM y SRH se muestran en Figura ??. Las distribuciones predichas para señales masas de gluino y neutralino cercanas a la sensibilidad esperada también se muestran a modo de comparación. Para cada gráfico, toda la selección de SR se aplican requisitos excepto el de la variable que se muestra.

El ajuste de solo fondo utilizado en las secciones anteriores para estimar el fondo utilizando las CR, se puede ampliar para incluir las SR y realizar pruebas de hipótesis, utilizando un enfoque de razón de probabilidad de registro de perfil (LLR) [?], sobre la compatibilidad del número observado de eventos con el SM, para establecer límites en las secciones transversales visibles y los límites de exclusión en modelos SUSY específicos.

El ajuste se basa en las SR y CR enumerados en la Tabla ?? y ?? y tiene en cuenta todos las incertidumbres sistemáticas discutidas en la Sección ??, tratadas como parámetros de nuisanse distribuidas normalmente. Con el ajuste simultáneo en las CR y SR se obtiene factores de normalización comunes para cada uno de los fondos de $W\gamma$, $t\bar{t}\gamma$ y QCD γ + jets . Cada incertidumbre experimental se trata como totalmente correlacionada entre las CR y el SR correspondiente, y se consideran los procesos físicos. Los sistemáticos de la teoría se tratan como correlacionados entre las diferentes regiones pero no correlacionada entre las muestras de fondo.

El número de eventos en cada SR para los datos y las contribuciones de los diferentes antecedentes del SM se muestran en la Tabla ??. Dado que no se observa un exceso significativo por encima del fondo SM en los SR, estos se utilizan para establecer límites en el número de nuevos eventos físicos (límites independientes del modelo) y en los parámetros de los modelos de señal GGM descritos en la Sección ??.

Los límites independientes del modelo sobre el número de eventos del SM en cada

SR se enumeran en la Tabla ??, junto con el p-value (p_0) , definido como la probabilidad de observar al menos el rendimiento del evento observado cuando asumiendo que no hay señal presente, y la correspondiente significado gaussiano Z. También se muestra el límite superior del nivel de confianza del 95 % en la sección transversal visible $\sigma \times A \times \epsilon$, obtenido al normalizar el límite superior al número de eventos de señal con la luminosidad integrada, donde σ es la sección transversal de producción para una señal más allá de SM (BSM), A es la aceptación (fracción de eventos con objetos que pasan todas las selecciones cinemáticas a nivel de partículas) y ϵ es la eficiencia (fracción de los eventos que se observaría después de la reconstrucción del detector). Para SRL y SRM, p_0 tiene un límite de 0,5 debido al hecho de que las predicciones superan los datos. Para SRH, el valor de descubrimiento p es 0.09, lo que significa que estas observaciones son compatibles con la hipótesis de solo fondo. Para SRM y SRH, la diferencia en los límites esperados, que tienen el mismo número de eventos esperados y una incertidumbre similar, se ve afectada por el número de eventos observados [?]. Según el número de eventos observados en los SR y la expectativa de fondo, se establecen límites superiores con un nivel de confianza (CL) del 95 % para cada SR en el número de eventos de cualquier escenario de la física de BSM. El límite más estricto observado es para SRM, donde se excluyen las secciones transversales visibles superiores a 0,022 fb.

Los límite de exclusión para modelos de señal SUSY específicos se basa en los estadísticos de prueba del profile likelihood, y se obtiene de un ajuste simultáneo en las contribuciones del SM y el modelo bajo estudio en una región de señal dada y sus regiones de control de fondo asociadas, que son todas por diseño estadísticamente independiente. Estos límites unilaterales se establecen en el 95 % CL usando la receta CL_s . El límite de exclusión observado se calcula con la eficiencia de la señal correspondiente a la sección transversal nominal de la teoría $\pm 1\sigma$. Los límites de exclusión combinados se muestran en la Figura ??, para cada modelo de señal considerado. Estos se obtienen con experimentos de pseudodatos y utilizando la región de señal con la mejor sensibilidad esperada en cada punto. La línea continua negra corresponde a los límites esperados al 95 % CL, con las bandas amarillas que indican las exclusiones de 1 σ debido a incertidumbres de la teoría de fondo. Los límites observados están indicados por medio curvas rojas, el contorno sólido representa el límite nominal, y las líneas punteadas se obtienen variando la sección transversal de la señal según el valor teórico.

Los límites en este artículo extienden entre 200 y 400 GeV en la masa de gluino a los alcanzados en la búsqueda anterior [22] para el modelo de señal γ/Z . Con respecto al modelo de señal γ/h , la búsqueda anterior [24] se realizó en Run-1 con un plano de masa ligeramente diferente estableciendo un límite alrededor de 1.2 TeV para la masa de gluino. En el presente estudio, los límites de este modelo amplían los resultados anteriores en casi 1 TeV. Para ambos modelos, los límites más estrictos de la masa de gluino se establecen en 2,4 TeV para una masa de neutralino de 1,3/1,4 TeV. Además, se alcanza un límite superior general en la masa de gluino de 2.2 TeV para todas las masas del neutralino, con la excepción de una masa de neutralino muy baja de 150 GeV donde el alcance en $m_{\tilde{\chi}_1^0}$ es 2050/2100 GeV, como se esperaba debido a la baja aceptación de la señal del análisis en esta región.

Tabla 7.1: Resumen del número de eventos observados incluy
nedo los límites con 95 % de CL en la sección eficaz visible y en el número de eventos observados.

Signal Region	$N_{ m obs}$	$N_{ m exp}$	$\langle \epsilon \sigma \rangle_{\rm obs}^{95} $ [fb]		$S_{ m obs}^{95}$	$S_{\rm exp}^{95}$	$p_0(\mathbf{Z})$
SRL	2	2.67 ± 0.75	0.034	$0.034^{+0.016}_{-0.009}$	4.73	$4.7^{+2.2}_{-1.2}$	0.50 (0.00)
SRM	0	2.55 ± 0.64	0.022	$0.033^{+0.013}_{-0.008}$	3	$4.6^{+1.8}_{-1.1}$	0.50(0.00)
SRH	5	2.55 ± 0.44	0.054	$0.035^{+0.014}_{-0.010}$	7.55	$4.8^{+1.9}_{-1.4}$	0.09(1.32)

Capítulo 8

Búsqueda de SUSY con producción electrodébil

Es posible realizar una búsqueda alternativa con el mismo estado final, para realizar un búsqueda de un modelo supersimétrico similar al anterior pero dedicado a la preducción electrodébil de partículas de SUSY.

El estado final esta motivado por modelos de supersimetría (SUSY) [?,?,?,?, ?,?], que son candidatos teóricamente bien motivados para la física más allá del Modelo Estándar (SM). Teorías de ruptura de simetría gauge mediated (GMSB) [?,?,?] predicen un sector oculto en el que la supersimetría se rompe con un valor de expectación de vacío $\langle F \rangle$, donde la ruptura de simetría se transfiere al sector visible a través de interacciones de bosones gauge del modelo estándar. La partícula supersimétrica más ligera (LSP) en GMSB es el gravitino ultraligero (G), que en determinadas circunstancias es un candidato viable a materia oscura [?,?]. La fenomenología de los modelos GMSB está determinada por la naturaleza de la partícula supersimétrica próxima a la más ligera (NLSP), que para una gran parte del espacio de parámetros del GMSB es el neutralino $\tilde{\chi}_1^0$. Los neutralinos son mezclas de autoestados de gauginos neutros (\tilde{B}, \tilde{W}^0) y higgsinos neutros $(\tilde{H}_u^0, \tilde{H}_d^0)$, y por lo tanto el neutralino más ligero puede decar a un \tilde{G} by a γ , Z o h (el bosón de Higgs neutro más ligero, asumido compatible con el bosón de Higgs observado en ATLAS y CMS). Los dos últimos están sujetos a una fuerte supresión cinemática proporcional a $(1-m_Z^2/m_{\tilde{\chi}_1^0}^2)^4$ y $(1-m_{h^0}^2/m_{\tilde{\chi}_1^0}^2)^4$, pero que aún juegan un papel importante en la fenomenología si $\langle F \rangle$ no es demasiado grande, $\tilde{\chi}_1^0$ tiene un contenido considerable de zino o higgsino y $m_{\tilde{\chi}_1^0}$ es significativamente mayor que m_Z o m_{h^0} . Teóricamente se permiten las desintegraciones a A^0 o H^0 pero es poco probable que se permitan cinemáticamente.

En consecuencia, un par de $\tilde{\chi}_1^0$ producidos en un colisionador puede dar lugar a un estado final que contenga dos bosones $(hh, h\gamma, hZ, Z\gamma, ZZ, \gamma\gamma)$ más $E_{\rm T}^{\rm miss}$ de las partículas LSP estables e indetectables (\tilde{G}) . Se han realizado varias búsquedas de estas signaturas [?,?,?,?,?,24-29]. Los escenarios considerados en este análisis son aquellos con al menos un fotón más dos \tilde{G} en el estado final, esperados en el caso en que el $\tilde{\chi}_1^0$ sea una mezcla bino-higgsino, como se muestra en la Figura ??.

Los esfuerzos para formular al GMSB de una forma independiente de modelo han llevado al desarrollo de la general gauge mediated (GGM) [?,?]. GGM incluye un sector observable con todos los campos del Modelo Estándar Mínimo Supersimétrico (MSSM), junto con un sector oculto que contiene la fuente de ruptura de SUSY. En GGM, no hay necesidad de ninguna jerarquía de masas entre los estados de color y no de color y, por lo tanto, no existe una restricción teórica sobre la masa de los estados de color, por lo que estos estados están al alcance del LHC.

Samples of the expected SUSY signals and SM backgrounds were simulated using dedicated Monte Carlo (MC) generators at $\sqrt{s}=13$ TeV. The SUSY signal samples were passed through a ATLFAST-II fast simulation [?] of the ATLAS detector, while the SM background samples were passed through a GEANT4-based full simulation [?] of the ATLAS detector, and reconstructed with the same algorithms used for the data. An event-by-event reweighting is applied to all MC samples to model the realistic machine conditions of the data sample under study, by matching the simulated distribution of the number of inelastic pp collisions per bunch crossing (pile-up) to the one observed in data.

The simulations are further corrected with efficiency scale factors and an additional smearing of the energy scale of photons, leptons and jets, to better describe the data. The samples were generated with an expected pileup distribution, namely MC16a, MC16d and MC16e for 2015-2016, 2017 and 2018 data sets respectively, with and additional reweighting to match the actual interaction profile of the data.

8.1. Muestras de señal

El presente análisis está motivado por las signaturas de nuetralinos mezcla de bino-higgsino con un estado final que consta de al menos un fotón, jets y alto $E_{\rm T}^{\rm miss}$. El componente bino de los neutralinos más ligeros se acopla tanto al fotón como al bosón Z, mientras que el componente higgsino se acopla al bosón de Higgs.

Las muestras de señales se generaron utilizando un enfoque simplificado de este modelo. Se consideraron cuatro canales de producción de electroweakino: $\tilde{\chi}_1^0$ $\tilde{\chi}_2^0$, $\tilde{\chi}_1^0$ $\tilde{\chi}_1^\pm$, $\tilde{\chi}_1^0$ $\tilde{\chi}_1^\pm$, $\tilde{\chi}_1^0$ $\tilde{\chi}_1^\pm$, $\tilde{\chi}_1^0$. La sección transversal de cada proceso se calculó usando RESUMMINO-3.0.0 en el orden de precisión NLO + NLL, usando CTEQ6.6 y los PDF MSTW2008, con sus correspondientes conjuntos de PDF y variaciones de escala para las incertidumbres. La figura ?? muestra la sección transversal de cada producción de gaugino y la sección transversal total en función de la masa $\tilde{\chi}_1^0$. Los puntos de señal se produjeron en función de la masa de $\tilde{\chi}_1^0$: $m_{\tilde{\chi}_1^0} = [150, 250, 350, 450, 550, 650, 750, 850, 950, 1050, 1250, 1450]$ GeV. La masa de $\tilde{\chi}_2^0$ ($\tilde{\chi}_1^\pm$) se estableció en $m_{\tilde{\chi}_1^0} + 11(10)$ GeV, mientras que la masa de gravino se estableció en 1 eV. Todo el resto de las masas de espartículas se establecieron en el régimen desacoplado definido como 4,5 GeV.

Las desintegraciones $\tilde{\chi}_{2}^{0}$ ($\tilde{\chi}_{1}^{\pm}$) se establecen 100 % en $\tilde{\chi}_{1}^{0}$ a través de un Z (W^{\pm}) fuera de la cáscara, y el último tiene la fracción de ramificación SM. Las fracciones de ramificación de $\tilde{\chi}_{1}^{0}$ se establecieron 33 % en $\tilde{G} + \gamma$, 33 % en gravino + Z y 33 % en

 $gravino + h^0$. Esto se hizo para tener una buena cantidad de estadísticas para todos los posibles estados finales, con el fin de volver a ponderar cada evento al estado final deseado. Favorecer (o desfavorecer) un modelo con una $\tilde{\chi}_1^0$ caracterizada con una fracción de ramificación particular a γ , Z o h^0 (BR $_{\gamma}$, BR $_{z}$, BR $_{b^0}$), los eventos se ponderaron según:

$$w = [w_{\gamma\gamma}, w_{\gamma Z}, w_{\gamma h^0}, w_{ZZ}, w_{Zh^0}, w_{h^0h^0}] = 9 \cdot [BR_{\gamma}^2, BR_{\gamma} \cdot BR_{Z}, BR_{\gamma} \cdot BR_{h^0}, BR_{Z}^2, BR_{Z} \cdot BR_{h^0}, BR_{h^0}^2]$$
(8.1)

Se estudiaron dos modelos particulares siguiendo ejemplos previos de análisis. El modelo fue la $\tilde{\chi}_1^0$ decae 50 % a $\gamma + \tilde{G}$ y 50 % a $Z + \tilde{G}$ ($w = \frac{9}{4}[1,1,0,1,0,0]$) llamado 'modelo ph + Z', y el modelo donde $\tilde{\chi}_1^0$ decae 50 % a $\gamma + \tilde{G}$ y 50 % a $h^0 + \tilde{G}$ ($w = \frac{9}{4}[1,0,1,0,0,1]$) el llamado 'modelo ph + h'.

Capítulo 9

Conclusión

Basado en datos de colisión protón-protón con $\sqrt{s}=13$ TeV correspondiente a una luminosidad integrada de 139 fb⁻¹ registrada por el detector ATLAS en el LHC en Run-2, se ha realizado una búsqueda con un estado final de al menos un fotón aislado con alto momento transverso, jets y alto momento transverso faltante. Se definen tres regiones de señal, una con una predicción de 2.67 ± 0.75 eventos de fondo y 2 eventos observados, otra con 2.55 ± 0.64 eventos de fondo y sin eventos observados, y la última que predice 2.55 ± 0.44 eventos de fondo con 5 eventos observados. Los resultados son compatibles con ningún exceso significativo de eventos sobre la estimación de fondo de SM. Los límites superiores de 95 % CL dependientes del modelo se establecen en las posibles contribuciones de la nueva física en un escenario GGM con un neutralino NLSP que es una mezcla de higgsino y bino. Para la correspondiente producción de gluino, las masas se excluyen a valores de 2200 GeV para la mayoría de las masas NLSP investigadas. Los límites superiores de 95 % CL independientes del modelo se establecen en la sección transversal visible asociada de las contribuciones de la nueva física.

80 9 Conclusión

Agradecimientos

...

Bibliografía

- [1] ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider. JINST, 3:S08003, 2008.
- [2] ATLAS Collaboration. ATLAS Insertable B-Layer Technical Design Report, 2010.
- [3] ATLAS Collaboration. Performance of the ATLAS trigger system in 2015. Eur. Phys. J. C, 77:317, 2017.
- [4] ATLAS Collaboration. ATLAS High-Level Trigger, Data Acquisition and Controls: Technical Design Report, 2003.
- [5] ATLAS Collaboration. ATLAS Computing: Technical Design Report, 2005.
- [6] ATLAS Collaboration. Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton–proton collision data. JINST, 14:P12006, 2019.
- [7] ATLAS Collaboration. Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data. Eur. Phys. J. C, 76:666, 2016.
- [8] ATLAS Collaboration. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data. Eur. Phys. J. C, 74:3071, 2014.
- [9] ATLAS Collaboration. Electron and photon energy calibration with the ATLAS detector using 2015–2016 LHC proton–proton collision data. *JINST*, 14:P03017, 2019.
- [10] ATLAS Collaboration. Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1. Eur. Phys. J. C, 77:490, 2017.
- [11] ATLAS Collaboration. Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016. Eur. Phys. J. C, 79:205, 2019.
- [12] ATLAS Collaboration. Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton–proton collision data at $\sqrt{s} = 13 \text{ TeV}$. Eur. Phys. J. C, 79:639, 2019.

84 BIBLIOGRAFÍA

[13] ATLAS Collaboration. Electron efficiency measurements with the ATLAS detector using 2012 LHC proton–proton collision data. Eur. Phys. J. C, 77:195, 2017.

- [14] ATLAS Collaboration. Muon reconstruction performance of the ATLAS detector in proton-proton collision data at $\sqrt{s} = 13 \text{ TeV}$. Eur. Phys. J. C, 76:292, 2016.
- [15] ATLAS Collaboration. Jet energy scale measurements and their systematic uncertainties in proton–proton collisions at $\sqrt{s} = 13 \text{ TeV}$ with the ATLAS detector. *Phys. Rev. D*, 96:072002, 2017.
- [16] ATLAS Collaboration. Performance of pile-up mitigation techniques for jets in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector. Eur. Phys. J. C, 76:581, 2016.
- [17] ATLAS Collaboration. Jet energy scale and resolution measured in proton–proton collisions at $\sqrt{s} = 13 \text{ TeV}$ with the ATLAS detector. 2020.
- [18] ATLAS Collaboration. Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at $\sqrt{s} = 13$ TeV. Eur. Phys. J. C, 78:903, 2018.
- [19] ATLAS Collaboration. Performance of missing transverse momentum reconstruction in proton–proton collisions at $\sqrt{s} = 7 \text{ TeV}$ with ATLAS. Eur. Phys. J. C, 72:1844, 2012.
- [20] ATLAS Collaboration. Performance of algorithms that reconstruct missing transverse momentum in $\sqrt{s}=8\,\text{TeV}$ proton–proton collisions in the ATLAS detector. Eur. Phys. J. C, 77:241, 2017.
- [21] ATLAS Collaboration. Performance of electron and photon triggers in ATLAS during LHC Run 2. Eur. Phys. J. C, 80:47, 2020.
- [22] ATLAS Collaboration. Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV pp collisions with the ATLAS detector. Phys. Rev. D, 97:092006, 2018.
- [23] ATLAS Collaboration. Measurement of the inclusive isolated prompt photon cross section in pp collisions at $\sqrt{s} = 7 \text{ TeV}$ with the ATLAS detector. *Phys. Rev. D*, 83:052005, 2011.
- [24] ATLAS Collaboration. Search for photonic signatures of gauge-mediated supersymmetry in 8 TeV pp collisions with the ATLAS detector. Phys. Rev. D, 92:072001, 2015.
- [25] ATLAS Collaboration. Search for diphoton events with large missing transverse momentum in 1 fb⁻¹ of 7 TeV proton–proton collision data with the ATLAS detector. *Phys. Lett. B*, 710:519, 2012.

BIBLIOGRAFÍA 85

[26] ATLAS Collaboration. Search for supersymmetry in events with photons, bottom quarks, and missing transverse momentum in proton–proton collisions at a centre-of-mass energy of 7 TeV with the ATLAS detector. *Phys. Lett. B*, 719:261, 2013.

- [27] ATLAS Collaboration. Search for Diphoton Events with Large Missing Transverse Energy in 7 TeV Proton–Proton Collisions with the ATLAS Detector. *Phys. Rev. Lett.*, 106:121803, 2011.
- [28] ATLAS Collaboration. Search for Diphoton Events with Large Missing Transverse Energy with 36 pb⁻¹ of 7 TeV Proton–Proton Collision Data with the ATLAS Detector. Eur. Phys. J. C, 71:1744, 2011.
- [29] ATLAS Collaboration. Summary of the ATLAS experiment's sensitivity to supersymmetry after LHC Run 1 interpreted in the phenomenological MSSM. JHEP, 10:134, 2015.