UP NEXT

Retrieval Methods for Large Scale Related Video Suggestion

Tushaar G (15IT117)
Himadri Pal (15IT119)
Pratyush Prakash (15IT130)
Suraj Hegde (15IT146)

Agenda

- Introduction
- Literature Survey
- Outcome of Literature Survey
- Motivation
- Problem Statement
- Objectives
- Proposed Work
- Conclusion
- ☐ Timeline of Project
- Individual Contribution
- References

Introduction

YouTube

Hulu

Literature Review

Authors	Methodology	Advantages	Limitations	
J. Davidson et. al.	Collaborative filtering	Recommendations are more accurate	Presentation bias, only co-viewed videos	
Shumeet Baluja et. al.	Co-view graph	Same as above	Same as above	
Bo Yang et. al.	Hybrid model	Considers both video info and co-views (multimodal)	Small scale	

Outcome of Literature Review

- Current state-of-the-art video suggestion systems are based on the *collaborative filtering analysis*—less applicable to fresh videos or tail videos with few views, since they have very sparse and noisy co-view data.
- Lack of *content based* video retrieval systems
- Topic based indexing retrieval has not be done on a large scale before

Issues and Challenges

- Hand-crafted playlists
 - Does not scale for large video collections
- Metadata/Topic based playlists
 - More of the same/non-diverse
 - Poor metadata
 - User feedback is not considered
- Co-view counts
 - Works well for popular videos with many views
 - Fresh/tail content will have very sparse and noisy co-view data

Motivation

- Abundance of content supply and demand: video retrieval, recommendation and discovery
- Least number of people are willing to spend more time on website
- Related video suggestion: ubiquitous on the web
- CNN, Netflix, Hulu, YouTube: related videos—improving these suggestions
- Improve "user" engagement and browsing experience (click-through analytics)

Problem Statement

- Model videos using weighted topic vectors
- Use an information retrieval approach to find related videos

 - Query– watch video
 - Documents

 ranked videos
 - Topic weights

 tf-idf / learn from user feedback

Research Objectives

- Video Representation
 - Topic Assignment
 - Topic Indexing
- Retrieval with weighted topics
- Learning *topical transitions* using implicit user feedback
- Parallel-update optimization
- *Re-rank* using hybrid model (co-view and topical representation)

Proposed Model

Methodology: Video Representation

- Semantic representation of video content
- Annotate video 'V' using textual annotations, query logs, anchor text information

metadata
uploader keywords
common search queries
playlist names
Freebase entities
Wikipedia articles

Soundtrack (0.335)
Fifty_Shades_Freed (0.894)
Hailee_Steinfeld (0.995)
Video Song (0.112)

Methodology: IR Weights

 $SC(V_W,V_R) = q(V_R) \sum_{ au \in V_W \cap V_R} \mathcal{I}_s(au) rac{c(au,V_W)}{log(1+df(au))} c(au,V_R)$ idf component: dampened Indicator function: "stopword" removal

$$\mathcal{I}_s = egin{cases} 1 & df(au) < df_{max} & ext{some large constant} \ 0 & else \end{cases}$$

* Note that there is **no** need for any document length normalization since all the videos have roughly the same number of topics associated with them

Methodology: Implicit User Feedback

Methodology: Diagonal Transitions

- Capturing all possible transitions (T^2)
- *Sparse* transition matrix
- Only concerned with the transitions along the diagonal— more reliable

Work Done

- Evaluation Methodologies
 - Historical data, user studies, online evaluation
 - Choice of method
 – population of users
- Limitations to Large Scale Recommendations
 - Biased Sample
 - Subjective w.r.t. users
 - Gap between information need and information query

Work Done

User Simulation

- Simulate typical user behaviour
- Measure *number of results* returned by the *topic retrieval method* that are added to the *user's top related results*

Live experiment

- Large scale experiment: Youtube traffic
- Metrics-watchtime, completion rate, abandonment rate

Results and Analysis

Co-view vs. Up Next

(a) Percentage of new related videos.

(b) Percentage of watch videos with new related videos.

Results and Analysis

Re-ranking: IR vs. Trans vs. Co-view (baseline)

Results and Analysis

Watch time metric breakdown (category and age)

	IRTopics	TransTopics					
Video Category							
Music	$-0.64\% \ (\pm 0.09\%)$	$+0.28\% \ (\pm 0.09\%)$					
Gaming	$+0.86\% \ (\pm 0.68\%)$	+1.14% (±0.66%)					
News	+1.61% (±0.41%)	+3.53% (±0.41%)					
Science and Technology	$+2.43\% \ (\pm 0.5\%)$	$+3.79\% (\pm 0.51\%)$					
Pets and Animals	$+3.70\% (\pm 0.68\%)$	$+4.16\% (\pm 0.66\%)$					
	Video Age						
< 1 month	$+0.99\% \ (\pm 0.26\%)$	$+3.34\% \ (\pm 0.26\%)$					
1 month - 1 year	$+0.50\% \ (\pm 0.11\%)$	+2.24% (±0.11%)					
> 1 year	$+0.87\% \ (\pm 0.07\%)$	+1.06% (±0.08%)					

Timeline of Project

Milestones	Feb 2018	Mid-Mar 2018	End-Mar 2018	April 2018
Literature Survey	•	•	~	~
Topic Indexing		~	•	~
Weighted Topic Retrieval (IRTopics)			•	~
Topic Transitions (TransTopics)			•	~
ReRanking Algorithm				•
User Simulated metric evaluation (Testing)			~	

Individual Contribution

- Tushaar
 - Topic indexing
 - IRTopics
- Himadri
 - Topic indexing
 - TransTopic

- Pratyush
 - TransTopics
 - ReRanking
- Suraj
 - ReRanking
 - Evaluation

References

- [1] Bendersky, M., Harmsen, J.J., Josifovski, V., Lepikhin, D., & Pueyo, L.G. (2014). Up next: retrieval methods for large scale related video suggestion. KDD.
- [2] Broder, A. Z., Carmel, D., Herscovici, M., Soffer, A., & Zien, J. (2003, November). Efficient query evaluation using a two-level retrieval process. In Proceedings of the twelfth international conference on Information and knowledge management (pp. 426-434). ACM.
- [3] Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., ... & Sampath, D. (2010, September). The YouTube video recommendation system. In Proceedings of the fourth ACM conference on Recommender systems (pp. 293-296). ACM.