Relazione del Progetto Laboratorio di ASD Prima Parte

M. Giunta¹ S. Anzolin² F. Casani³ G. De Nardi ⁴ Maggio 2021

¹Marco Giunta 147852 giunta.marco@spes.uniud.it ²Samuele Anzolin 111111 anzolin.samuele@spes.uniud.it ³Federico Casani 111111 casani.federico@spes.uniud.it

⁴Gianluca Giuseppe Maria De Nardi 142733 142733@spes.uniud.it

Indice

1	Introduzione	2
2	Ipotesi	2
3	Implementazione 3.1 periodNaive	2 2 2 2
4	Analisi dei dati ottenuti 4.1 Grafico dei tempi di periodNaive	
5	Conclusioni	3

1 Introduzione

In questo progetto abbiamo implementato e analizzato due algoritmi per il calcolo del periodo frazionario minimo di una stringa. I due algoritmi implementati sono:

- PeriodNaive
- PeriodSmart

Il linguaggio di programmazione che abbiamo utilizzato per questo progetto è C, in quanto è un linguaggio veloce ed efficiente e qualitativamente migliore per un'analisi temporale.

2 Ipotesi

Essendo period Naive un algoritmo con complessità asintotica nel caso peggiore pari a $O(n^2)$ mentre il secondo raggiunge una complessità lineare, possiamo dedurre che period Smart sarà notevolmente migliore nel caso peggiore.

3 Implementazione

3.1 periodNaive

L'implementazione di questo algoritmo come dice il suo nome, è abbastanza intuitiva.

Utilizziamo quindi un ciclo che scandisca l'intera stringa di input e internamente controlliamo la congruenza tra il prefisso e il suffisso precedentemente calcolato aumentando la lunghezza del bordo minimo man mano che il ciclo e il controllo avanzano.

3.2 periodSmart

Questo algoritmo invece, sfrutta il concetto di bordo, cioè una qualsiasi stringa che sia, prefisso e suffisso proprio della stringa principale. Come osservato quindi p è un periodo frazionario di s solo se p=|s|-r dove r è la lunghezza di un bordo di s, quindi il problema si riduce al solo calcolo del bordo massimo della stringa s.

Andiamo quindi ad analizzare l'implementazione vera e propria del algoritmo in questione, avremo quindi:

3.3 Algoritmo per il calcolo dei tempi medi

Il calcolo dei tempi medi

4 Analisi dei dati ottenuti

4.1 Grafico dei tempi di periodNaive

Allegare naive.pdf trasformato in immagine (ingrandire le scritte)
Allegare naivedist.pdf trasformato in immagine (ingrandire le scritte)

Figura 1: Test

4.2 Grafico dei tempi di periodSmart

Allegare smart.pdf trasformato in immagine Allegare smartdist.pdf trasformato in immagine

4.3 Analisi logaritmica dei due algoritmi

Allegare smartnaive.pdf trasformato in immagine

Non potendo analizzare i due algoritmi essendo su due scale temporali completamente differenti, dobbiamo quindi analizzarli in una scala logaritmica:

Allegare smartlog.pdf trasformato in immagine Allegare naivelog.pdf trasformato in immagine

4.4 Analisi comparativa tra i due algoritmi

Allegare smart.pdf trasformato in immagine Allegare naivedist.pdf trasformato in immagine

5 Conclusioni

Come osservato dai grafici, abbiamo sicuramente costatato che tra i due algoritmi c'è una notevole differenza in termini di tempo. L'argoritmo smart impiega molto meno tempo dell'algoritmo rivale ed è quindi più consigliato il suo utilizzo.