Turing's Thesis

Turing's thesis (1930):

Any computation carried out by mechanical means can be performed by a Turing Machine

Algorithm:

An algorithm for a problem is a Turing Machine which solves the problem

The algorithm describes the steps of the mechanical means

This is easily translated to computation steps of a Turing machine

When we say: There exists an algorithm

We mean: There exists a Turing Machine that executes the algorithm

Variations of the Turing Machine

The Standard Model

Infinite Tape

Read-Write Head (Left or Right)

Control Unit

Deterministic

Variations of the Standard Model

Turing machines with:

- Stay-Option
- · Semi-Infinite Tape
- · Off-Line
- Multitape
- Multidimensional
- Nondeterministic

Different Turing Machine Classes

Same Power of two machine classes: both classes accept the same set of languages

Same Power of two classes means:

for any machine $\,M_1\,$ of first class there is a machine $\,M_2\,$ of second class

such that:
$$L(M_1) = L(M_2)$$

and vice-versa

Turing Machines with Stay-Option

The head can stay in the same position

Left, Right, Stay

L,R,S: possible head moves

Example:

Time 1

Time 2

Multiple Track Tape

A useful trick to perform more complicated simulations

track 1 track 2

track 1 track 2

$$\underbrace{q_1} \xrightarrow{(b,a) \to (c,d),L} \underbrace{q_2}$$

Semi-Infinite Tape

The head extends infinitely only to the right

- · Initial position is the leftmost cell
- When the head moves left from the border, it returns to the same position

The Off-Line Machine

Multi-tape Turing Machines

Input string appears on Tape 1

$$\underbrace{q_1}^{(b,f) \to (g,d),L,R} \underbrace{q_2}$$

Multidimensional Turing Machines

MOVES: L,R,U,D

U: up D: down

HEAD Position: +2, -1

Nondeterministic Turing Machines

Allows Non Deterministic Choices

Time 0

 $a \rightarrow c, R$

Time 1

Choice 1

Choice 2

Input string w is accepted if there is a computation:

There is a computation:

All possible computation paths

