#### Inferência Estatística II

# Prof. Fernando de Souza Bastos fernando.bastos@ufv.br

Departamento de Estatística Programa de Pós-Graduação em Estatística Aplicada e Biometria Universidade Federal de Viçosa Campus UFV - Viçosa



### Sumário

- Introdução
- Resultado Importante
- Teorema
- Teste Qui-Quadrado
- Exemplo 1
- 6 Exemplo 2
- Distribuição F
- Teste F
  - Exemplo 1

## Teste Qui-Quadrado

Testes qui-quadrado foram originalmente proposto por Karl Pearson em 1900, este teste representou um dos primeiros métodos de inferência estatística. Considere a variável aleatória  $X_i$  distribuída como  $N(\mu_i, \sigma_i^2)$ , em que  $i=1,2,\ldots,n$ , e as variáveis  $X_1, X_2,\ldots,X_n$  mutuamente independentes. A função de densidade conjunta dessas variáveis é dada por:

$$f(x_1, x_2, \ldots, x_n) = \frac{1}{\sigma_1 \ldots \sigma_n (2\pi)^{n/2}} e^{\left(-\frac{1}{2} \sum_{i=1}^n \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2\right)}, -\infty < x_i < \infty$$

A variável aleatória definida pelo expoente (exceto o coeficiente -1/2) é a soma  $\sum_{i=1}^n \left(\frac{x_i-\mu_i}{\sigma_i}\right)^2$ , essa variável aleatória segue uma distribuição Qui-Quadrado com n graus de liberdade, denotada como  $\chi^2(n)$ .

# Prove que $Z^2 \sim \chi^2(1)$

Considere  $V=Z^2$ . Quero mostrar que a densidade de V é a densidade de uma variável qui-quadrado com 1 grau de liberdade, dada por:

$$g(v) = \frac{1}{2^{\frac{1}{2}} \Gamma\left(\frac{1}{2}\right)} v^{\frac{1}{2} - 1} e^{-\frac{v}{2}}, \ v > 0$$

# Prove que $Z^2 \sim \chi^2(1)$

Considere  $V=Z^2$ . Quero mostrar que a densidade de V é a densidade de uma variável qui-quadrado com 1 grau de liberdade, dada por:

$$g(v) = \frac{1}{2^{\frac{1}{2}} \Gamma\left(\frac{1}{2}\right)} v^{\frac{1}{2} - 1} e^{-\frac{v}{2}}, \ v > 0$$

Para mostrar tal resultado, notem que

$$G(v) = P(V \le v) = P(Z^2 \le v)$$

$$= P(-\sqrt{v} \le Z \le \sqrt{v})$$

$$= 2P(0 \le Z \le \sqrt{v}), \ Z \text{ \'e sim\'etrica em relação a origem!}$$

$$= 2\int_0^{\sqrt{v}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

Considere 
$$z = \sqrt{y} \Rightarrow dz = \frac{y^{-\frac{1}{2}}}{2}dy = \frac{1}{2\sqrt{y}}dy$$
, nesse caso,  $z = 0 \Rightarrow y = 0, z^2 \Rightarrow y = y$ , logo,

Considere 
$$z = \sqrt{y} \Rightarrow dz = \frac{y^{-\frac{1}{2}}}{2}dy = \frac{1}{2\sqrt{y}}dy$$
, nesse caso,  $z = 0 \Rightarrow y = 0, z^2 \Rightarrow y = v$ , logo,

$$G(v) = 2 \int_0^{\sqrt{v}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

$$= 2 \int_0^v \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} \frac{1}{2\sqrt{y}} dy$$

$$= 2 \int_0^v \frac{1}{\sqrt{\pi}\sqrt{2}} y^{\frac{1}{2}-1} e^{-\frac{y}{2}} dy, \ v > 0$$

Considere  $z = \sqrt{y} \Rightarrow dz = \frac{y^{-\frac{1}{2}}}{2}dy = \frac{1}{2\sqrt{y}}dy$ , nesse caso,  $z = 0 \Rightarrow y = 0, z^2 \Rightarrow y = v$ , logo,

$$G(v) = 2 \int_0^{\sqrt{v}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

$$= 2 \int_0^v \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} \frac{1}{2\sqrt{y}} dy$$

$$= 2 \int_0^v \frac{1}{\sqrt{\pi}\sqrt{2}} y^{\frac{1}{2}-1} e^{-\frac{y}{2}} dy, \ v > 0$$

Segue que,

$$G'(v) = g(v) = \frac{1}{\sqrt{\pi}\sqrt{2}}v^{\frac{1}{2}-1}e^{-\frac{v}{2}}dy, \ v > 0$$

Usando o fato de 
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$
, temos que,

$$g(v) = rac{1}{\Gamma\left(rac{1}{2}
ight)\sqrt{2}}v^{rac{1}{2}-1}e^{-rac{v}{2}}dy, \ v>0 \ \mathsf{cqd} \ lacksquare$$

#### Teorema 1

Sejam  $Z_1, Z_2, \ldots, Z_{\nu}$  variáveis aleatórias independentes com distribuição normal padrão, onde  $\nu$  é um inteiro positivo. Então, a variável aleatória  $\chi^2(\nu) = \sum_{i=1}^{\nu} Z_i^2$  segue uma distribuição qui-quadrado com  $\nu$  graus de liberdade.

#### Teorema 1

Sejam  $Z_1, Z_2, \ldots, Z_{\nu}$  variáveis aleatórias independentes com distribuição normal padrão, onde  $\nu$  é um inteiro positivo. Então, a variável aleatória  $\chi^2(\nu) = \sum_{i=1}^{\nu} Z_i^2$  segue uma distribuição qui-quadrado com  $\nu$  graus de liberdade.

#### Observação:

A soma de duas variáveis qui-quadrado independentes,  $\chi^2(\nu_1) + \chi^2(\nu_2)$ , segue uma distribuição qui-quadrado com  $\nu_1 + \nu_2$  graus de liberdade.

Devido aos resultados anteriores, se  $X_1$  segue uma distribuição binomial  $b(n, p_1)$ , considere a variável aleatória:

$$Y = \frac{X_1 - np_1}{\sqrt{np_1(1-p_1)}}$$

Devido aos resultados anteriores, se  $X_1$  segue uma distribuição binomial  $b(n, p_1)$ , considere a variável aleatória:

$$Y = \frac{X_1 - np_1}{\sqrt{np_1(1-p_1)}}$$

Conforme n se aproxima do infinito, a variável Y tem uma distribuição aproximada N(0,1). Além disso, a distribuição de  $Y^2$  é aproximadamente  $\chi^2(1)$ .

Seja 
$$X_2=n-X_1$$
 e  $p_2=1-p_1$ . Defina  $Q_1=Y^2,$  então

$$Q_1 = \frac{(X_1 - np_1)^2}{np_1(1 - p_1)} = \frac{(X_1 - np_1)^2}{np_1} + \frac{(X_2 - np_2)^2}{np_2}$$

Isso ocorre porque  $(X_1 - np_1)^2 = (n - X_2 - n + np_2)^2 = (X_2 - np_2)^2$ .

Esse resultado pode ser generalizado da seguinte maneira. Suponha que  $X_1, X_2, \ldots, X_{k-1}$  tenham uma distribuição multinomial com os parâmetros n e  $p_1, p_2, \ldots, p_{k-1}$ . Defina  $X_k = n - (X_1 + X_2 + \ldots + X_{k-1})$  e  $p_k = 1 - (p_1 + p_2 + \ldots + p_{k-1})$ . Defina  $Q_{k-1}$  por:

$$Q_{k-1} = \sum_{i=1}^{k} \frac{(X_i - np_i)^2}{np_i}$$

À medida que n se aproxima do infinito,  $Q_{k-1}$  possui uma distribuição aproximada  $\chi^2(k-1)$ . Para usar essa aproximação, é importante garantir que n seja grande o suficiente para que cada  $np_i$ , onde  $i=1,2,\ldots,k$ , seja pelo menos igual a 5.

## Teste Qui-Quadrado

Considere um espaço amostral A de um experimento aleatório que seja a união de k conjuntos mutuamente disjuntos  $A_1, A_2, \ldots, A_k$ . Suponha que  $P(A_i) = p_i$ , i = 1, 2, ..., k, e  $p_k = 1 - p_1 - p_2 - ... - p_{k-1}$ . Em que  $p_i$  é a probabilidade de que o resultado do experimento aleatório seja um elemento do conjunto  $A_i$ .

https://est711.github.io/

## Teste Qui-Quadrado

Considere um espaço amostral A de um experimento aleatório que seja a união de k conjuntos mutuamente disjuntos  $A_1,A_2,\ldots,A_k$ . Suponha que  $P(A_i)=p_i,\ i=1,2,\ldots,k$ , e  $p_k=1-p_1-p_2-\ldots-p_{k-1}$ . Em que  $p_i$  é a probabilidade de que o resultado do experimento aleatório seja um elemento do conjunto  $A_i$ .

Repita um experimento aleatório n vezes de forma independente, e considere  $X_i$  como o número de vezes que o resultado do experimento é um elemento do conjunto  $A_i$ . Ou seja,  $X_1, X_2, \ldots, X_k = n - X_1 - X_2 - \ldots - X_{k-1}$  representam as frequências com as quais o resultado é, respectivamente, um elemento de  $A_1, A_2, \ldots, A_k$ . A função de massa de probabilidade conjunta de  $X_1, X_2, \ldots, X_{k-1}$  é a função de massa de probabilidade multinomial com os parâmetros  $n, p_1, p_2, \ldots, p_{k-1}$ .

Considere a hipótese simples:

$$H_0: p_1 = p_{10}, p_2 = p_{20}, \dots, p_{k-1} = p_{k-1,0}$$
  
$$(p_k = p_{k0} = 1 - p_{10} - p_{20} - \dots - p_{k-1,0})$$

Em que  $p_{10}, p_{20}, \ldots, p_{k-1,0}$  são valores especificados. Deseja-se testar  $H_0$  em relação a todas as alternativas.

Considere a hipótese simples:

$$H_0: p_1 = p_{10}, p_2 = p_{20}, \dots, p_{k-1} = p_{k-1,0}$$
  
 $(p_k = p_{k0} = 1 - p_{10} - p_{20} - \dots - p_{k-1,0})$ 

Em que  $p_{10}, p_{20}, \ldots, p_{k-1,0}$  são valores especificados. Deseja-se testar  $H_0$  em relação a todas as alternativas.

Se a hipótese  $H_0$  for verdadeira, a variável aleatória

$$Q_{k-1} = \sum_{i=1}^{k} \frac{(X_i - np_{i0})^2}{np_{i0}}$$

tem uma distribuição aproximada qui-quadrado com k-1 graus de liberdade. Pois, se  $H_0$  é verdadeira,  $np_{i0}$  é o valor esperado de  $X_i$ . Os valores observados de  $Q_{k-1}$  não devem ser muito grandes se  $H_0$  for verdadeira.

Podemos, portanto, considerar o teste com nível de significância  $\alpha$  que rejeita  $H_0$  quando  $Q_{k-1} \geq c$ . Usando o software R, calculamos o valor crítico c por meio da função qchisq(1 -  $\alpha$ , k - 1). Se a hipótese  $H_0$  for rejeitada quando o valor observado de  $Q_{k-1}$  for pelo menos igual a c, o teste de  $H_0$  terá um nível de significância aproximadamente igual a  $\alpha$ . Além disso, se q for o valor realizado da estatística do teste  $Q_{k-1}$ , o nível de significância observado do teste pode ser calculado em R pela função 1-pchisq(q, k - 1). Isso é frequentemente chamado de teste de bondade de ajuste.

# Exemplo 1

Escolher um dos seis primeiros números inteiros positivos por meio de um experimento aleatório (por exemplo, lançamento de um dado). Seja  $A_i = \{x : x = i\}$ , onde i = 1, 2, ..., 6.

$$H_0: P(A_i) = p_{i0} = \frac{1}{6}, \ i = 1, 2, \dots, 6,$$

 $\alpha=5\%$ . Para realizar o teste, o experimento aleatório é repetido sob as mesmas condições, 60 vezes de forma independente. Ou seja, k=6 e  $n \cdot p_{i0}=60 \cdot \frac{1}{6}=10, \ i=1,2,\ldots,6$ . Seja  $X_i$  a frequência com que o experimento aleatório termina com o resultado em  $A_i, \ i=1,2,\ldots,6$ . Defina  $Q_5$  como:

$$Q_5 = \sum_{i=1}^6 \frac{(X_i - 10)^2}{10}$$

Uma vez que existem 6-1=5 graus de liberdade, o valor crítico para um teste com nível  $\alpha=0.05$  é qchisq(0.95,5)=11.0705. Suponha agora que as frequências experimentais de  $A_1,A_2,\ldots,A_6$  sejam, respectivamente, 13, 19, 11, 8, 5 e 4. O valor observado de  $Q_5$  é calculado como:

$$egin{aligned} Q_{5,cal} &= rac{(13-10)^2}{10} + rac{(19-10)^2}{10} + rac{(11-10)^2}{10} \ &+ rac{(8-10)^2}{10} + rac{(5-10)^2}{10} + rac{(4-10)^2}{10} \ &= 15.6 \end{aligned}$$

Como 15.6 > 11.0705, a hipótese  $P(A_i) = \frac{1}{6}$ , i = 1, 2, ..., 6, é rejeitada a um nível de significância (aproximado) de 5%.



Figura: Gráfico com Resultados do Teste Qui-Quadrado



Figura: Poder do Teste Qui-Quadrado (Exemplo 1)

# Exemplo 2

Neste exemplo, um ponto deve ser selecionado a partir do intervalo unitário  $\{x: 0 < x < 1\}$  por meio de um processo aleatório. Definimos os conjuntos  $A_1 = \{x: 0 < x \leq \frac{1}{4}\}$ ,  $A_2 = \{x: \frac{1}{4} < x \leq \frac{1}{2}\}$ ,  $A_3 = \{x: \frac{1}{2} < x \leq \frac{3}{4}\}$  e  $A_4 = \{x: \frac{3}{4} < x < 1\}$ . As probabilidades  $p_i$ , onde i=1,2,3,4, atribuídas a esses conjuntos sob a hipótese são determinadas pela função de densidade de probabilidades 2x, em que 0 < x < 1, e zero caso contrário. Essas probabilidades são:

$$p_{10} = \int_0^{\frac{1}{4}} 2x \, dx = \frac{1}{16}, \quad p_{20} = \int_{\frac{1}{4}}^{\frac{1}{2}} 2x \, dx = \frac{3}{16}$$

$$p_{30} = \int_{\frac{1}{2}}^{\frac{3}{4}} 2x \, dx = \frac{5}{16} \quad p_{40} = \int_{\frac{3}{4}}^{1} 2x \, dx = \frac{7}{16}$$

Portanto, a hipótese a ser testada é que  $p_1, p_2, p_3$  e  $p_4 = 1 - p_1 - p_2 - p_3$  possuem os valores anteriores em uma distribuição multinomial com k = 4. Considere  $\alpha = 0.025$ , repetindo o experimento aleatório n = 80 vezes de forma independente sob as mesmas condições, temos  $n \cdot p_{i0}$ , i = 1, 2, 3, 4 são, respectivamente, 5, 15, 25 e 35.

Portanto, a hipótese a ser testada é que  $p_1, p_2, p_3$  e  $p_4 = 1 - p_1 - p_2 - p_3$  possuem os valores anteriores em uma distribuição multinomial com k = 4. Considere  $\alpha = 0.025$ , repetindo o experimento aleatório n = 80 vezes de forma independente sob as mesmas condições, temos  $n \cdot p_{i0}$ , i = 1, 2, 3, 4 são, respectivamente, 5, 15, 25 e 35.

Suponha que as frequências observadas de  $A_1$ ,  $A_2$ ,  $A_3$  e  $A_4$  sejam 6, 18, 20 e 36, respectivamente. Assim,

$$Q_{3,cal} = \frac{(6-5)^2}{5} + \frac{(18-15)^2}{15} + \frac{(20-25)^2}{25} + \frac{(36-35)^2}{35} = \frac{64}{35}$$

$$\approx 1.83.$$

Ou seja, falhamos em rejeitar  $H_0$ , pois  $\chi^2_{tab} = qchisq(0.975, 3) = 9.34$ .



Figura: Gráfico com Resultados do Teste Qui-Quadrado



Figura: Poder do Teste Qui-Quadrado (Exemplo 2)



Figura: Poder do Teste Qui-Quadrado (Exemplo 2)



Figura: Poder do Teste Qui-Quadrado (Exemplo 2)



Figura: Poder do Teste Qui-Quadrado (Exemplo 2)

# Para 🕋

• Exercícios da seção 4.7: 1, 4 e 9.

# Distribuição F

## Definição 1

Sejam Y e W variáveis aleatórias independentes, em que Y segue uma distribuição qui-quadrado com m graus de liberdade e W segue uma distribuição qui-quadrado com n graus de liberdade, m e n inteiros positivos dados. Defina uma nova variável aleatória X da seguinte forma:

$$X = \frac{Y/m}{W/n} = \frac{nY}{mW}.$$

Então, a distribuição de X é chamada de distribuição F com m e n graus de liberdade. A função de densidade de probabilidade da distribuição F é apresentada no próximo slide. Seja X uma variável aleatória com distribuição F com m e n graus de liberdade. Então, sua função de densidade de probabilidade f(x) é a seguinte, para x>0:

$$f(x) = \frac{\Gamma\left[\frac{1}{2}(m+n)\right] m^{m/2} n^{n/2}}{\Gamma\left[\frac{1}{2}m\right] \Gamma\left[\frac{1}{2}n\right]} \frac{x^{m/2} - 1}{(mx+n)^{(m+n)/2}},$$

e f(x) = 0 para  $x \ge 0$ .

Suponha que as variáveis aleatórias  $X_1,\ldots,X_m$  formem uma amostra aleatória de m observações de uma distribuição normal para a qual tanto a média  $\mu_1$  quanto a variância  $\sigma_1^2$  são desconhecidas. Suponha também que as variáveis aleatórias  $Y_1,\ldots,Y_n$  formem uma amostra aleatória independente de n observações de outra distribuição normal para a qual tanto a média  $\mu_2$  quanto a variância  $\sigma_2^2$  são desconhecidas. Por fim, suponha que as seguintes hipóteses devam ser testadas a um nível de significância especificado  $\alpha_0$  (0 <  $\alpha_0$  < 1):

$$H_0: \sigma_1^2 \leq \sigma_2^2, \quad H_1: \sigma_1^2 > \sigma_2^2.$$

Definimos  $S_X^2$  e  $S_Y^2$  como as variâncias amostrais de X e Y, respectivamente. Então,  $S_X^2/(m-1)$  e  $S_Y^2/(n-1)$  são estimadores de  $\sigma_1^2$  e  $\sigma_2^2$ , respectivamente. Faz sentido intuitivo rejeitar  $H_0$  se a razão desses dois estimadores for grande. Ou seja, definimos

$$V = \frac{S_X^2}{m-1} / \frac{S_Y^2}{n-1},$$

e rejeitamos  $H_0$  se  $V \ge c$ , onde c é escolhido para que o teste tenha um nível de significância desejado.

## Exemplo 1

Suponha que seis observações  $X_1,\ldots,X_6$  sejam selecionadas aleatoriamente de uma distribuição normal para a qual tanto a média  $\mu_1$  quanto a variância  $\sigma_1^2$  são desconhecidas, e é encontrado que  $S_X^2=30$ . Suponha também que 21 observações,  $Y_1,\ldots,Y_{21}$ , sejam selecionadas aleatoriamente de outra distribuição normal para a qual tanto a média  $\mu_2$  quanto a variância  $\sigma_2^2$  são desconhecidas, e é encontrado que  $S_Y^2=40$ . Realize um teste F das hipóteses

$$H_0: \sigma_1^2 \leq \sigma_2^2, \quad H_1: \sigma_1^2 > \sigma_2^2.$$

Neste exemplo, temos m=6 e n=21. Portanto, quando  $H_0$  é verdadeira, a estatística V, seguirá a distribuição F com 5 e 20 graus de liberdade. Segue que o valor de V para as amostras dadas é  $V=\frac{30/5}{40/20}=3$ .

O valor-p do teste, pode ser calculado no R por:

$$Pvalor = P(F > Tcal)$$
  
=  $pf(Fcal, nx - 1, ny - 1, lower.tail = FALSE) = 0.035$ 

A hipótese  $H_0$  de que  $\sigma_1^2 \leq \sigma_2^2$  seria, portanto, rejeitada no nível de significância  $\alpha_0=0.05$ , e  $H_0$  não seria rejeitada no nível de significância  $\alpha_0=0.025$ .

É possível mostrar que o poder deste teste pode ser escrito como:

$$\gamma_d(\sigma_1^2, \sigma_2^2) = 1 - F_{m-1, n-1}(C * \frac{\sigma_1^2}{\sigma_2^2}), C = F_{tab}$$

Suponha, assim, que seja importante rejeitar  $H_0$  se  $\sigma_1^2$  for três vezes maior que  $\sigma_2^2$ . Nesse caso, gostaríamos que a função poder fosse alta quando  $\sigma_1^2=3\sigma_2^2$ . Nesse caso,  $1-F_{5,20}(2.71\times 1/3)\approx 0.5$ . Logo, se  $\sigma_1^2$  for três vezes maior que  $\sigma_2^2$ , o teste com nível de 0.05 tem cerca de 50% de chance de rejeitar  $H_0$ .

### Referências I



Hogg, RV, J McKean e AT Craig (2019). Introduction to Mathematical Statistics.