University of Toronto FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATIONS, DECEMBER 2000

First Year - Programs 1.2,3,4,6,7,8,9

MAT 186H1F Calculus I

SURNAME		Examiners
	· · · · · · · · · · · · · · · · · · ·	P. Bubenik
GIVEN NAME		D. Burbulla
STUDENT NO.		S. Homayouni
		K. Kaveh
SIGNATURE		

INSTRUCTIONS:

Non-programmable calculators permitted.

Answer all questions.

Present your solutions in the space provided; use the back of the **preceding** page if more space is required.

TOTAL MARKS: 100

The value for each question is shown in parentheses after the question number.

MARKER'S REPORT		
	J KEL OICE	
Q1		
Q2		
Q 3		
Q4		
Q 5		
Q6		
Q7		
Q8		
TOTAL		

1. [16 marks] Find the following:

(a) [5 marks]
$$\int_0^5 \frac{x}{\sqrt{x^2 + 16}} dx$$

(b) [5 marks]
$$\int_0^\infty \left(e^{-x} + e^{-2x}\right) dx$$

(c) [6 marks]
$$\lim_{x\to 0} \left(\frac{1}{2} + \frac{e^{3x}}{2}\right)^{\csc x}$$

2.(a) [7 marks] At which point(s) on the circle with equation $x^2 + y^2 = 1$ does the tangent line pass through the point (3,0)?

2.(b) [7 marks] Find y as a function of x if $\frac{dy}{dx} = y(2x+1)$ and y = -3 when x = 0.

- 3. [14 marks] The position x of a particle at time t is given by $x = 15t^2 5t^3 6$, for $0 \le t \le 3$. Find the following:
 - (a) [4 marks] the average velocity of the particle on the interval $0 \le t \le 3$.

(b) [5 marks] the maximum speed of the particle on the interval $0 \le t \le 3$.

(c) [5 marks] the average speed of the particle on the interval $0 \le t \le 3$.

4.(a) [6 marks] If Newton's method is used to approximate a solution to the equation $x^3 + x - 1 = 0$, and $x_1 = 0.5$, what is the value of x_3 ?

4.(b) [6 marks] Find the equations of all horizontal or vertical asymptotes (if any) to the graph of $y=\frac{x^2-1}{x^2+x-2}$.

- 5. [12 marks; 6 marks for each part] Let R be the region in the plane bounded by the curves $y=x^2$ and $y=2x-x^2$. (Draw a picture!) Find:
 - (a) the volume of the solid obtained by revolving R about the x-axis.

(b) the volume of the solid obtained by revolving R about the line x = -1.

- 6. [12 marks] A wire of length 100 cm is to be cut into two pieces. One piece will be bent into the shape of a circle; the other piece will be bent into the shape of a square. How should the wire be cut to
 - (a) maximize the combined area of the two shapes?
 - (b) mimimize the combined area of the two shapes?

7. [10 marks] The graph of the function f(x) for $-3 \le x \le 5$ is:

Sketch the graph of $F(x) = \int_{-3}^{x} f(t) dt$ for $-3 \le x \le 5$, given that F(0) = F(-3).

8. [10 marks] A tank filled with water of density $\rho = 1000 \text{ kg/m}^3$ has the shape of an inverted right circular cone, with radius at the top 2 m and with vertical height 3 m. Find the work done in pumping all of the water out of the tank and up to a horizontal pipe 1 m above the top of the tank. (Use acceleration due to gravity $g = 9.8 \text{ m/sec}^2$.)