Fuzzy Preference Learning

Dariush Hasanpoor

Isfahan University Of Technology

May 24 2015

Outline

- Introduction
- 2 Fuzzy Preference Learning
- References

- Introduction
 - What is preference?
 - Notations
 - Types of Ranking
 - Special Cases of preference learning
- Puzzy Preference Learning
 - Choquet Integral
 - Fuzzy Preference Learning Using Choquet Integral
 - Results
- 3 References

What is preference?

Definition

Preference Learning refers to the task of learning to predict an order relation on a collection of objects (alternatives).

- Preference information plays a key role in automated decision making and appears in various guises in AI researches:
 - ▶ Qualitative decision theory
 - Non-monotonic reasoning
 - Constraint satisfaction
 - Planning

Notations

Definition: Weak Preference

A weak *preference* relation \succeq on a set $\mathcal A$ is a reflexive and transitive binary relation.

Definition: Strict Preference

$$a \succ b \longleftrightarrow (a \succeq b) \land (b \npreceq a)$$

• In agreement with preference semantics

Notation	Interpretation
	"alternative a is at least as prefered as alternative b ."
	"alternative a is prefered over alternative b ."

Notations

Definition: Weak Preference

A weak *preference* relation \succeq on a set $\mathcal A$ is a reflexive and transitive binary relation.

Definition: Strict Preference

$$a \succ b \longleftrightarrow (a \succeq b) \land (b \npreceq a)$$

• In agreement with preference semantics

Notation	Interpretation
	"alternative \boldsymbol{a} is at least as prefered as alternative \boldsymbol{b} ."
	"alternative a is prefered over alternative b ."

Notations

Definition: Weak Preference

A weak *preference* relation \succeq on a set $\mathcal A$ is a reflexive and transitive binary relation.

Definition: Strict Preference

$$a \succ b \longleftrightarrow (a \succeq b) \land (b \npreceq a)$$

• In agreement with preference semantics

Notation	Interpretation
$a \succeq b$	"alternative a is at least as prefered as alternative b ."
$a \succ b$	"alternative a is prefered over alternative b ."

Preference Structure

Definition: Total Strict Order (Ranking)

If \mathcal{A} is a finit set of objects/alternatives $\{a_1,\ldots,a_m\}$ a ranking of \mathcal{A} can be definied with a permutation τ of $\{1,\ldots,m\}$ which $a_i \succ a_j \leftrightarrow \tau(i) < \tau(j)$.

- S_m is a set of all permutation of τ .
- The task of preference learner is to search in S_m space which is learning to rank.

Preference Structure

Definition: Total Strict Order (Ranking)

If \mathcal{A} is a finit set of objects/alternatives $\{a_1,\ldots,a_m\}$ a ranking of \mathcal{A} can be definied with a permutation τ of $\{1,\ldots,m\}$ which $a_i \succ a_j \leftrightarrow \tau(i) < \tau(j)$.

- S_m is a set of all permutation of τ .
- The task of preference learner is to search in S_m space which is learning to rank.

- The tasks are categorized as three main problems:
 - **▶** Label ranking
 - Object ranking
 - Instance ranking

Label Ranking

Task

The task of this model is to find a preference ranking among the labels for any instance.

Given

- A set of training instances $\{x_k \mid k=1,\ldots,n\} \subseteq \mathcal{X}$.
- A set of labels $\mathcal{L} = \{\lambda_i \mid i = 1, \dots, m\}$.
- For each training instance x_k : a set of associated pairwise preferences of the form $\lambda_i \succ_{x_k} \lambda_j$.

Find

• A ranking function in the form of an $\mathcal{X} \to \mathcal{S}_m$ mapping that assigns a ranking (permutation) \succ_x of \mathcal{L} to every $x \in \mathcal{X}$.

Label Ranking

Task

The task of this model is to find a preference ranking among the labels for any instance.

Given

- A set of training instances $\{x_k \mid k=1,\ldots,n\} \subseteq \mathcal{X}$.
- A set of labels $\mathcal{L} = \{\lambda_i \mid i = 1, \dots, m\}$.
- For each training instance x_k : a set of associated pairwise preferences of the form $\lambda_i \succ_{x_k} \lambda_j$.

Find

• A ranking function in the form of an $\mathcal{X} \to \mathcal{S}_m$ mapping that assigns a ranking (permutation) \succ_x of \mathcal{L} to every $x \in \mathcal{X}$.

Label Ranking

Task

The task of this model is to find a preference ranking among the labels for any instance.

Given

- A set of training instances $\{x_k \mid k=1,\ldots,n\} \subseteq \mathcal{X}$.
- A set of labels $\mathcal{L} = \{\lambda_i \mid i = 1, \dots, m\}.$
- For each training instance x_k : a set of associated pairwise preferences of the form $\lambda_i \succ_{x_k} \lambda_j$.

Find

• A ranking function in the form of an $\mathcal{X} \to \mathcal{S}_m$ mapping that assigns a ranking (permutation) \succ_x of \mathcal{L} to every $x \in \mathcal{X}$.

Object Ranking

Task

The task of this model is to find a preference ranking order among instances.

Given

- A (potentially infinite) set X of objects (each object typically represented by a feature vector).
- A finite set of pairwise preferences $x_i \succ x_j$, $(x_i, x_j) \in \mathcal{X} \times \mathcal{X}$.

- A ranking function that, given a set of objects $O \subset X$ as input, returns a permutation(ranking) of these objects.
- In the training phase, preference learning algorithms have access to examples for which the order relation is (partially) known.

Object Ranking

Task

The task of this model is to find a preference ranking order among instances.

Given

- A (potentially infinite) set X of objects (each object typically represented by a feature vector).
- A finite set of pairwise preferences $x_i \succ x_j$, $(x_i, x_j) \in \mathcal{X} \times \mathcal{X}$.

- A ranking function that, given a set of objects $O \subset X$ as input, returns a permutation(ranking) of these objects.
- In the training phase, preference learning algorithms have access to examples for which the order relation is (partially) known.

Object Ranking

Task

The task of this model is to find a preference ranking order among instances.

Given

- A (potentially infinite) set X of objects (each object typically represented by a feature vector).
- A finite set of pairwise preferences $x_i \succ x_i$, $(x_i, x_i) \in \mathcal{X} \times \mathcal{X}$.

- A ranking function that, given a set of objects $O \subset X$ as input, returns a permutation(ranking) of these objects.
- In the training phase, preference learning algorithms have access to examples for which the order relation is (partially) known.

Object Ranking

Task

The task of this model is to find a preference ranking order among instances.

Given

- A (potentially infinite) set X of objects (each object typically represented by a feature vector).
- A finite set of pairwise preferences $x_i \succ x_i$, $(x_i, x_i) \in \mathcal{X} \times \mathcal{X}$.

- A ranking function that, given a set of objects $O \subset X$ as input, returns a permutation(ranking) of these objects.
- In the training phase, preference learning algorithms have access to examples for which the order relation is (partially) known.

Instance Ranking

Task

The task of this model is to find a preference ranking order among instances.

Given

- A (potentially infinite) set X of objects (each object typically represented by a feature vector).
- A finite set of pairwise preferences $x_i \succ x_j$, $(x_i, x_j) \in \mathcal{X} \times \mathcal{X}$.
- An order set of labels $\mathcal{L} = \{\lambda_i \mid i = 1, \dots, m\}$ which $y_1 \succ y_2 \succ \dots \succ y_m$.
- A set of $\mathcal{R} \subseteq \mathcal{X} \times \mathcal{L}$ which each instance x_k is associated with a label $\lambda_{\hat{k}}$.

- A ranking function that, given a set of objects $O \subset X$ as input, returns a permutation(ranking) of these objects.
- In the training phase, preference learning algorithms have access to examples for which the order relation is (partially) known.

Special Cases of preference learning

▷ Classification

A single class label λ_i is assigned to each example x_k . This is equivalent to the set of preferences $\{\lambda_i \succ_{x_k} \lambda_j \mid 1 \le j \ne i \ge m\}$.

Multi-label classification

Each training example x_k is associated with a subset $\mathcal{L}_k \subseteq \mathcal{L}$ of possible labels. This is equivalent to the set of preferences $\{\lambda_i \succ_{x_k} \lambda_j \mid \lambda_i \in \mathcal{L}_k, \ \lambda_j \in \mathcal{L} \setminus \mathcal{L}_k\}$.

Special Cases of preference learning

▷ Classification

A single class label λ_i is assigned to each example x_k . This is equivalent to the set of preferences $\{\lambda_i \succ_{x_k} \lambda_i \mid 1 \le j \ne i \ge m\}$.

Multi-label classification

Each training example x_k is associated with a subset $\mathcal{L}_k \subseteq \mathcal{L}$ of possible labels. This is equivalent to the set of preferences $\{\lambda_i \succ_{x_k} \lambda_j \mid \lambda_i \in \mathcal{L}_k, \ \lambda_j \in \mathcal{L} \setminus \mathcal{L}_k\}$.

- Introduction
 - What is preference?
 - Notations
 - Types of Ranking
 - Special Cases of preference learning
- Fuzzy Preference Learning
 - Choquet Integral
 - Fuzzy Preference Learning Using Choquet Integral
 - Results
- 3 References

12 / 23

- Suppose a school is more scientifically than literary oriented.
- How can we compare these 3 students?

Student	Math	Physics	Literature
а	18	16	10
b	10	12	18
С	14	15	15

- A candidate set of weights can be $\{\frac{3}{8}, \frac{3}{8}, \frac{2}{8}\}.$
- But what if the school wants to favor well equilibrated students without weak points?
 - ▶ Then the student *c* should be considered better than student *a* and *b*.
 - ► This cannot be simply done by simple weighting sum procedure!!
- So how are we going rank them?!
 - ► Choquet integral can address such problems.

- Suppose a school is more scientifically than literary oriented.
- How can we compare these 3 students?

Student	Math	Physics	Literature
а	18	16	10
b	10	12	18
С	14	15	15

- A candidate set of weights can be $\{\frac{3}{8}, \frac{3}{8}, \frac{2}{8}\}$.
- But what if the school wants to favor well equilibrated students without weak points?
 - ▶ Then the student *c* should be considered better than student *a* and *b*.
 - ► This cannot be simply done by simple weighting sum procedure!!
- So how are we going rank them?!
 - Choquet integral can address such problems.

- Suppose a school is more scientifically than literary oriented.
- How can we compare these 3 students?

Student	Math	Physics	Literature
а	18	16	10
b	10	12	18
С	14	15	15

- A candidate set of weights can be $\{\frac{3}{8}, \frac{3}{8}, \frac{2}{8}\}$.
- But what if the school wants to favor well equilibrated students without weak points?
 - ▶ Then the student c should be considered better than student a and b
 - ► This cannot be simply done by simple weighting sum procedure!!
- So how are we going rank them?!
 - ► Choquet integral can address such problems.

- Suppose a school is more scientifically than literary oriented.
- How can we compare these 3 students?

Student	Math	Physics	Literature
а	18	16	10
b	10	12	18
С	14	15	15

- A candidate set of weights can be $\{\frac{3}{8}, \frac{3}{8}, \frac{2}{8}\}.$
- But what if the school wants to favor well equilibrated students without weak points?
 - ▶ Then the student *c* should be considered better than student *a* and *b*.
 - ► This cannot be simply done by simple weighting sum procedure!!
- So how are we going rank them?!
 - Choquet integral can address such problems.

- Suppose a school is more scientifically than literary oriented.
- How can we compare these 3 students?

Student	Math	Physics	Literature
а	18	16	10
b	10	12	18
С	14	15	15

- A candidate set of weights can be $\{\frac{3}{8}, \frac{3}{8}, \frac{2}{8}\}.$
- But what if the school wants to favor well equilibrated students without weak points?
 - ▶ Then the student *c* should be considered better than student *a* and *b*.
 - This cannot be simply done by simple weighting sum procedure!!
- So how are we going rank them?!
 - Choquet integral can address such problems.

Continued...

► Choquet Integral

$$C_{\mu}(x) = \sum_{i=1}^{n} (x_{\tau(i)} - x_{\tau(i-1)}) \mu(\{\tau(i), \dots, \tau(n)\})$$
$$x_{\tau(1)} \le x_{\tau(2)} \le \dots \le x_{\tau(n)}, \ x_{\tau(0)} = 0$$

Continued...

Student	Math(1)	Physics(2)	Literature(3)	$\{ au\}$	
a	18	16	10	$\{0, 3, 2, 1\}$	{0, 10, 16, 18}
b c	10 14	12	18	$\{0, 1, 2, 3\}$	{0, 10, 12, 18}
С	14	15	15	$\{0, 1, 2, 3\}$	$\{0, 14, 15, 15\}$
		$x = \sum_{i=1}^{n} (x_{\tau(i)})$ $x = \sum_{i=1}^{n} (x_{\tau(i)})$ $x = \sum_{i=1}^{n} (x_{\tau(i)})$		$\{ au(i),\ldots, au(n)\}$ $\mu(\{\emptyset\})=$	
	$\mu(\{$	$1\})=\mu(\{2\}$) = 0.45,	$\mu(\{3\}) =$	0.3
	$\mu(\{$	$1, 3\}) = \mu(\{$	(2, 3) = 0.9,	$\mu(\{1,\ 2\}) =$	0.5

Continued...

Student				$\{\tau\}$	
а	18	16	10	{0, 3, 2, 1}	{0, 10, 16, 18}
b	10	12	18	$\{0, 1, 2, 3\}$	{0, 10, 12, 18}
С	14	15	15	{0, 1, 2, 3}	{0, 14, 15, 15}
a 18 16 10 $\{0, 3, 2, 1\}$ $\{0, 10, 16, 18\}$ b 10 12 18 $\{0, 1, 2, 3\}$ $\{0, 10, 12, 18\}$ c 14 15 15 $\{0, 1, 2, 3\}$ $\{0, 10, 12, 18\}$ $\mathcal{C}_{\mu}(x) = \sum_{i=1}^{n} (x_{\tau(i)} - x_{\tau(i-1)}) \mu(\{\tau(i), \dots, \tau(n)\})$					

$$\mu(\{1,\ 2,\ 3\})=1, \qquad \qquad \mu(\{\emptyset\})=0$$

$$\mu(\{1\}) = \mu(\{2\}) = 0.45, \qquad \qquad \mu(\{3\}) = 0.3$$

$$\mu(\{1,\ 3\})=\mu(\{2,\ 3\})=0.9, \quad \, \mu(\{1,\ 2\})=0.5$$

$$\begin{split} \mathcal{C}_{\mu}(a) &= (10-0) \times \mu(\{3,2,1\}) + (16-10) \times \mu(\{2,1\}) + (18-16) \times \mu(\{1\}) = 13.9 \\ \mathcal{C}_{\mu}(b) &= (10-0) \times \mu(\{1,2,3\}) + (12-10) \times \mu(\{2,3\}) + (18-12) \times \mu(\{3\}) = 13.6 \\ \mathcal{C}_{\mu}(c) &= (14-0) \times \mu(\{3,2,1\}) + (15-14) \times \mu(\{2,3\}) + (15-15) \times \mu(\{3\}) = 14.9 \end{split}$$

Continued...

Student	Math	Physics	Literature	Weighted sum	Choquet integral
a	18	16	10	15.25	13.9
b	10	12	18	12.75	13.6
С	14	15	15	14.62	14.9

- As in previous example, we had $\mu(\{1\}) = \mu(\{2\}) = 0.45, \ \mu(\{1, 2\}) = 0.5.$
 - We can see $\mu(\{1, 2\}) \neq \mu(\{1\}) + \mu(\{2\})$.

Definition: Non-additive(Capacities) Measures

Let $\mathcal{X}=\{x_1,\ldots,\,x_n\}$ be a finit set and μ a measure $2^{\mathcal{X}}\to[0,\,1]$ if there are $A,\,B\subseteq\mathcal{X}\mid A\cap B=\emptyset$ such that $\mu(\{A,B\})\neq\mu(\{A\})+\mu(\{B\})$ then the measure μ is a non-additive or capacity fuzzy measure.

Non-additive measures are normalized and monotone

$$\mu(\emptyset)=0,\ \mu(\mathcal{X})=1\ \mathrm{and}$$

$$\mu(A)\leq \mu(B)\quad\forall\, A\subseteq B\subseteq\mathcal{X}$$

▶ Choquet Integral combines non-additive measures in a desirable way.

- As in previous example, we had $\mu(\{1\}) = \mu(\{2\}) = 0.45, \ \mu(\{1, 2\}) = 0.5.$
 - We can see $\mu(\{1, 2\}) \neq \mu(\{1\}) + \mu(\{2\})$.

Definition: Non-additive(Capacities) Measures

Let $\mathcal{X}=\{x_1,\ \dots,\ x_n\}$ be a finit set and μ a measure $2^{\mathcal{X}}\to [0,\ 1]$ if there are $A,\ B\subseteq \mathcal{X}\mid A\cap B=\emptyset$ such that $\mu(\{A,B\})\neq \mu(\{A\})+\mu(\{B\})$ then the measure μ is a non-additive or capacity fuzzy measure.

Non-additive measures are normalized and monotone.

$$\mu(\emptyset)=0,\;\mu(\mathcal{X})=1\;\mathrm{and}$$

$$\mu(A)\leq\mu(B)\quad\forall\,A\subseteq B\subseteq\mathcal{X}$$

Choquet Integral combines non-additive measures in a desirable way.

- As in previous example, we had $\mu(\{1\}) = \mu(\{2\}) = 0.45, \ \mu(\{1, 2\}) = 0.5.$
 - We can see $\mu(\{1, 2\}) \neq \mu(\{1\}) + \mu(\{2\})$.

Definition: Non-additive(Capacities) Measures

Let $\mathcal{X}=\{x_1,\ \dots,\ x_n\}$ be a finit set and μ a measure $2^{\mathcal{X}}\to [0,\ 1]$ if there are $A,\ B\subseteq \mathcal{X}\mid A\cap B=\emptyset$ such that $\mu(\{A,B\})\neq \mu(\{A\})+\mu(\{B\})$ then the measure μ is a non-additive or capacity fuzzy measure.

▶ Non-additive measures are normalized and monotone.

$$\mu(\emptyset)=0,\;\mu(\mathcal{X})=1\;\mathrm{and}$$

$$\mu(A)\leq\mu(B)\quad\forall\,A\subseteq B\subseteq\mathcal{X}$$

Choquet Integral combines non-additive measures in a desirable way.

Möbius transform

Definition: Möbius transform

$$\mu(B) = \sum_{A \subseteq B} m(A)$$

$$m_{\hat{\mu}}(A) = \sum_{v \in A} (-1)^{|A| - |v|} \hat{\mu}(v)$$

Möbius transform

Definition: Möbius transform

$$\mu(B) = \sum_{A \subseteq B} m(A)$$

$$m_{\hat{\mu}}(A) = \sum_{v \subseteq A} (-1)^{|A| - |v|} \hat{\mu}(v)$$

Example

$$\begin{split} & m_{\hat{\mu}}(\{\emptyset\}) = \hat{\mu}(\emptyset) \\ & m_{\hat{\mu}}(\{1\}) = \hat{\mu}(\{1\}) - \hat{\mu}(\emptyset) \\ & m_{\hat{\mu}}(\{1,2\}) = \hat{\mu}(\{1,2\}) - \hat{\mu}(\{1\}) - \hat{\mu}(\{2\}) + \hat{\mu}(\emptyset) \end{split}$$

Möbius transform

Example

$$\begin{split} & m_{\hat{\mu}}(\{\emptyset\}) = \hat{\mu}(\emptyset) \\ & m_{\hat{\mu}}(\{1\}) = \hat{\mu}(\{1\}) - \hat{\mu}(\emptyset) \\ & m_{\hat{\mu}}(\{1,2\}) = \hat{\mu}(\{1,2\}) - \hat{\mu}(\{1\}) - \hat{\mu}(\{2\}) + \hat{\mu}(\emptyset) \end{split}$$

▶ The value $m_{\tilde{\mu}}(A)$ can be interpreted as the weight that is exclusively allocated to A, instead of being indirectly connected with A through the interaction with other subsets.

- ▶ Suppose that $f: \mathcal{X} \to \mathbb{R}_+$ is any nonnegative function that assigns a value to each criterion x_i for any object.
- ▶ Question: How to aggregate the evaluations of individual criteria?
- ▶ **Answer:** This overall evaluation can be considered as an integral $C_{\mu}(f)$ of the function f with respect to the measure μ .
- ► This article has focued on object ranking problem

- ▶ Suppose that $f: \mathcal{X} \to \mathbb{R}_+$ is any nonnegative function that assigns a *value* to each criterion x_i for any object.
- ▶ Question: How to aggregate the evaluations of individual criteria?
- ▶ **Answer:** This overall evaluation can be considered as an integral $C_{\mu}(f)$ of the function f with respect to the measure μ .
- ► This article has focued on object ranking problem.

- ▶ Suppose that $f: \mathcal{X} \to \mathbb{R}_+$ is any nonnegative function that assigns a *value* to each criterion x_i for any object.
- ▶ Question: How to aggregate the evaluations of individual criteria?
- ▶ **Answer:** This overall evaluation can be considered as an integral $C_{\mu}(f)$ of the function f with respect to the measure μ .
- This article has focued on object ranking problem.

- ▶ Suppose that $f: \mathcal{X} \to \mathbb{R}_+$ is any nonnegative function that assigns a *value* to each criterion x_i for any object.
- Question: How to aggregate the evaluations of individual criteria?
- ▶ **Answer:** This overall evaluation can be considered as an integral $C_{\mu}(f)$ of the function f with respect to the measure μ .
- ► This article has focued on object ranking problem.

$$\begin{split} \mathcal{C}_{\hat{\mu}}(f) &= \sum_{i=1}^{n} (f(x_{(i)}) - f(x_{(i-1)})) \cdot \mu(\overbrace{\{x_{(i)}, \ \dots, \ x_{(n)}\}}^{A_{(i)}}) \\ &= \sum_{i=1}^{n} f(x_{(i)}) \cdot (\mu(A_{(i)}) - \mu(A_{(i+1)})) \\ &\stackrel{\text{MT}}{=} \sum_{i=1}^{n} f(x_{(i)}) \cdot \sum_{R \subseteq \mathcal{T}} m(R) \mid \mathcal{T} = \{\mathcal{G} \cup \{x_{(i)}\} \mid \mathcal{G} \subset \{x_{(i+1)}, \ \dots, \ x_{(n)}\}\} \\ &= \sum_{T \subseteq \mathcal{X}} m(T) \times \min_{x_i \in T} f(x_i) \\ &= \sum_{T \subseteq \mathcal{X}} \sum_{v \subseteq T} (-1)^{|A| - |v|} \hat{\mu}(v) \times \min_{x_i \in T} f(x_i) \end{split}$$

Continued...

Description of approach

- ▶ Training data to be available in the form of a set of objects o_i .
- \blacktriangleright Every object o_i is linked to a corresponding label information l_i .
- ▶ A set \mathcal{D} is constructed: $(o_i, o_j) \in \mathcal{D}$ suggesting that $o_i \succ o_j \mid l_i > l_j$.
- ▶ The Choquet integral is uniquely identified by the underlying measure μ on the set of criteria \mathcal{X} , the problem comes down to defining μ .
- Finding μ measure is actually a optimization problem!

Experiments

Datebases

DATASETS AND THEIR PROPERTIES

data set	#instances	#attributes	#classes
Color (CLR) 1–7	120	3	3
Scientific Journals (SCJ)	172	5	4
CPU	209	6	2
Auto MPG	398	8	6
Employee Selection (ESL)	488	4	9
Mamographic (MMG)	830	5	2
Lecturers Evaluation (LEV)	1000	4	5
Concrete Compressive Strength (CCS)	1030	8	6
Car Evaluation (CEV)	1728	6	4

Experiments

Results

Performance in Terms of the Average C-Index \pm Standard Deviation

data set	WM	PL d=1	PL d=2	PL d=3	CI
CLR 1	.9663±.0148(4)	$.9506 \pm .0155(5)$.9674±.0129(3)	.9700±.0141(2)	.9828±.0090(1)
CLR 2	$.8740 \pm .0293(4)$	$.8601 \pm .0294(5)$	$.8876 \pm .0200(3)$	$.9341 \pm .0244(2)$	$.9804 \pm .0128(1)$
CLR 3	$.9343 \pm .0204(4)$	$.9268 \pm .0219(5)$	$.9375 \pm .0156(3)$	$.9633 \pm .0143(2)$	$.9878 \pm .0150(1)$
CLR 4	$.9357 \pm .0171(4)$	$.9228 \pm .0247(5)$	$.9431 \pm .0189(3)$	$.9659 \pm .0166(2)$	$.9915 \pm .0056(1)$
CLR 5	$.9518 \pm .0194(3)$	$.9485 \pm .0179(5)$	$.9565 \pm .0142(2)$	$.9516 \pm .0171(4)$	$.9682 \pm .0140(1)$
CLR 6	$.9046 \pm .0202(4)$	$.8923 \pm .0205(5)$	$.9127 \pm .0201(3)$	$.9460 \pm .0191(2)$	$.9825 \pm .0121(1)$
CLR 7	$.8880 \pm .0312(4)$	$.8797 \pm .0256(5)$	$.8892 \pm .0219(3)$	$.9258 \pm .0237(2)$	$.9688 \pm .0167(1)$
SCJ	$.8168 \pm .0105(4)$	$.8098 \pm .0112(5)$	$.8270 \pm .0241(3)$	$.8313 \pm .0109(2)$	$.8450 \pm .0201(1)$
CPU	$.9965 \pm .0027(3)$	$.9950 \pm .0093(5)$	$.9978 \pm .0012(2)$	$.9955 \pm .0005(4)$	$.9986 \pm .0014(1)$
MPG	$.8887 \pm .0176(4)$	$.8850 \pm .0143(5)$	$.8912 \pm .0078(3)$	$.8967 \pm .0093(2)$	$.9060 \pm .0111(1)$
ESL	$.9497 \pm .0162(2)$	$.9559 \pm .0071(1)$	$.9465 \pm .0104(4)$	$.9491 \pm .0126(3)$	$.9424 \pm .0098(5)$
MMG	$.8961 \pm .0230(2)$	$.8536 \pm .0168(4)$	$.8714 \pm .0181(3)$	$.7813 \pm .0350(5)$	$.9015 \pm .0210(1)$
LEV	$.8710 \pm .0289(2)$	$.8620 \pm .0320(3)$	$.8713 \pm .0250(1)$	$.8527 \pm .0300(5)$	$.8610 \pm .0320(4)$
CCS	$.8650 \pm .0068(4)$	$.8586 \pm .0102(5)$	$.8862 \pm .0184(3)$	$.8962 \pm .0203(2)$	$.9050 \pm .0038(1)$
CEV	$.8981 \pm .0066(4)$.8804±.0076(5)	$.9118 \pm .0059(3)$	$.9585 \pm .0090(2)$	$.9771 \pm .0039(1)$
average rank	3.47	4.53	2.8	2.73	1.47

Additionally, the rank of each method it shown in brackets.

Compared the approach with kernel-based methods.

- ▶ Spider implementation of the RankSVM approach with a linear and a polynomial kernel(PL) with kernel degree of *d*.
- ▶ Weighted Mean(WM).

Experiments

Results

WIN STATISTICS (NUMBER OF DATASETS ON WHICH THE FIRST METHOD WAS BETTER THAN THE SECOND ONE)

	WM	PL d=1	PL d=2	PL d=3	CI
WM	_	14	2	5	2
PL d=1	1	_	1	3	2
PL d=2	13	14	_	4	2
PL d=3	10	12	11	_	1
CI	13	13	13	14	_

Compared the approach with kernel-based methods.

- ▶ Spider implementation of the RankSVM approach with a linear and a polynomial kernel(PL) with kernel degree of *d*.
- ► Weighted Mean(WM).

References

Dr. Safayani, "Fuzzy integral lecture," 2015.

A. F. Tehrani, W. Cheng, and E. Hullermeier, "Preference Learning Using the Choquet Integral: The Case of Multipartite Ranking," in *Fuzzy Systems*. IEEE Transactions, Dec. 2012, vol. 20, pp. 1102–1113.

J. Furnkranz and E. Hullermeier, *Encyclopedia of Machine Learning*. Springer, 2010, ch. Preference Learning, pp. 789–795.

Johannes Furnkranz and Eyke Hullermeier, "Preference Learning," *Kunstliche Intelligenz*, pp. 60–61, 2005.

E. Hullermeier, J. Furnkranz, W. Cheng, and K. Brinker, *Artificial Intelligence*. ScienceDirect, 2008, ch. Label ranking by learning pairwise preferences.

- Techniques
 - Learning Utility Function
 - Learning Preference Relations

5 Fuzzy Preference Learning

Learning Utility Function

• A natural way to represent preferences is to evaluate the alternatives by means of a utility function.

Object Preferences Senario

Such a function is a mapping $\mathcal{F}: \mathcal{X} \to \mathcal{U}$ that assigns a utility degree $\mathcal{F}(x)$ to each object x and, thereby, induces a linear order on \mathcal{X} .

Label Preferences Senario

A utility function $\mathcal{F}_i: \mathcal{X} \to \mathcal{U}$ is needed for every label $\lambda_i, i = , \dots, m$

ho - $\mathcal{F}(x)$ is the utility assigned to alternative λ_i by instance x.

ightharpoonup A ranking \succ_x is derived that satisfies $\lambda_i \succ_x \lambda_j o \mathcal{F}_i(x) \ge \mathcal{F}_j(x)$.

Learning Utility Function

• A natural way to represent preferences is to evaluate the alternatives by means of a utility function.

Object Preferences Senario

 $hd \ \$ Such a function is a mapping $\mathcal F:\mathcal X o\mathcal U$ that assigns a utility degree $\mathcal F(x)$ to each object x and, thereby, induces a linear order on $\mathcal X.$

- ho A utility function $\mathcal{F}_i:\mathcal{X} o\mathcal{U}$ is needed for every label $\lambda_i,i=,\ldots,m$
- $hd \mathcal{F}(x)$ is the utility assigned to alternative λ_i by instance x
- hd A ranking $hd x_x$ is derived that satisfies $\lambda_i
 hd x_x \lambda_j o \mathcal{F}_i(x) \geq \mathcal{F}_j(x)$.

Learning Utility Function

• A natural way to represent preferences is to evaluate the alternatives by means of a utility function.

Object Preferences Senario

 $hd \ \$ Such a function is a mapping $\mathcal F:\mathcal X o\mathcal U$ that assigns a utility degree $\mathcal F(x)$ to each object x and, thereby, induces a linear order on $\mathcal X.$

- ho A utility function $\mathcal{F}_i: \mathcal{X} \to \mathcal{U}$ is needed for every label $\lambda_i, i = , \dots, m$.
- \triangleright $\mathcal{F}(x)$ is the utility assigned to alternative λ_i by instance x_i
- ightharpoonup A ranking \succ_x is derived that satisfies $\lambda_i \succ_x \lambda_j \to \mathcal{F}_i(x) \geq \mathcal{F}_j(x)$.

Learning Utility Function

• A natural way to represent preferences is to evaluate the alternatives by means of a utility function.

Object Preferences Senario

 $hd \$ Such a function is a mapping $\mathcal F:\mathcal X o\mathcal U$ that assigns a utility degree $\mathcal F(x)$ to each object x and, thereby, induces a linear order on $\mathcal X.$

- \triangleright A utility function $\mathcal{F}_i: \mathcal{X} \to \mathcal{U}$ is needed for every label $\lambda_i, i = , \dots, m$.
- \triangleright $\mathcal{F}(x)$ is the utility assigned to alternative λ_i by instance x.
- ightharpoonup A ranking \succ_x is derived that satisfies $\lambda_i \succ_x \lambda_j \to \mathcal{F}_i(x) \geq \mathcal{F}_j(x)$.

Learning Utility Function

• A natural way to represent preferences is to evaluate the alternatives by means of a utility function.

Object Preferences Senario

 $hd \$ Such a function is a mapping $\mathcal F:\mathcal X o\mathcal U$ that assigns a utility degree $\mathcal F(x)$ to each object x and, thereby, induces a linear order on $\mathcal X.$

- \triangleright A utility function $\mathcal{F}_i: \mathcal{X} \to \mathcal{U}$ is needed for every label $\lambda_i, i = , \dots, m$.
- \triangleright $\mathcal{F}(x)$ is the utility assigned to alternative λ_i by instance x.

Learning Preference Relations

 An alternative approach to preference learning consists of comparing pairs of objects(labels) in terms of a binary preference relation.

Object Preferences Senario

- \triangleright Learning a binary preference predicate $\mathcal{Q}(x,x')$, which predicts whether x is preferred to x' or vice versa.
- ▶ A final ordering is found in a second phase by deriving a ranking that is maximally consistent with these predictions.

- One can train a separate model(base learner) $\mathcal{M}_{i,j}$ for each pair of labels
- $(\lambda_i, \lambda_j) \in \mathcal{L}, \ 1 \leq i < j \leq m$; thus, a total number of $\frac{1}{2}$ models is needed.
- For training, a preference information of the form $\lambda_i \succ_x \lambda_j$ is turned into a (classification example (x, y) for the learner $\mathcal{M}_{n,b}$, where $a = \min(i, j)$ and $b = \max(i, j)$.
- \triangleright $\mathcal{M}_{a,b}$ is intended to learn the mapping that outputs 1 if $\lambda_a \succ_x \lambda_b$ and 0 if $\lambda_b \succ_x \lambda_a$.

Learning Preference Relations

 An alternative approach to preference learning consists of comparing pairs of objects(labels) in terms of a binary preference relation.

Object Preferences Senario

- ightharpoonup Learning a binary preference predicate $\mathcal{Q}(x,x')$, which predicts whether x is preferred to x' or vice versa.
- A final ordering is found in a second phase by deriving a ranking that is maximally consistent with these predictions.

- ightharpoonup One can train a separate model(base learner) $\mathcal{M}_{i,j}$ for each pair of labels $(\lambda_i,\lambda_j)\in\mathcal{L},\ 1\leq i< j\leq m;$ thus, a total number of $\frac{m(m-1)}{2}$ models is needed.
- For training, a preference information of the form $\lambda_i \succ_x \lambda_j$ is turned into a (classification) example (x,y) for the learner $\mathcal{M}_{a,b}$, where $a=\min(i,j)$ and $b=\max(i,j)$.
- \triangleright $\mathcal{M}_{a,b}$ is intended to learn the mapping that outputs 1 if $\lambda_a \succ_x \lambda_b$ and 0 if $\lambda_b \succ_x \lambda_a$.

Learning Preference Relations

 An alternative approach to preference learning consists of comparing pairs of objects(labels) in terms of a binary preference relation.

Object Preferences Senario

- ightharpoonup Learning a binary preference predicate $\mathcal{Q}(x,x')$, which predicts whether x is preferred to x' or vice versa.
- ▶ A final ordering is found in a second phase by deriving a ranking that is maximally consistent with these predictions.

- ightharpoonup One can train a separate model(base learner) $\mathcal{M}_{i,j}$ for each pair of labels $(\lambda_i,\lambda_j)\in\mathcal{L},\ 1\leq i< j\leq m;$ thus, a total number of $\frac{m(m-1)}{2}$ models is needed.
- For training, a preference information of the form $\lambda_i \succ_x \lambda_j^-$ is turned into a (classification) example (x,y) for the learner $\mathcal{M}_{a,b}$, where $a=\min(i,j)$ and $b=\max(i,j)$.
- \triangleright $\mathcal{M}_{a,b}$ is intended to learn the mapping that outputs 1 if $\lambda_a \succ_x \lambda_b$ and 0 if $\lambda_b \succ_x \lambda_a$.

Learning Preference Relations

 An alternative approach to preference learning consists of comparing pairs of objects(labels) in terms of a binary preference relation.

Object Preferences Senario

- ▶ Learning a binary preference predicate Q(x, x'), which predicts whether x is preferred to x' or vice versa.
- ▶ A final ordering is found in a second phase by deriving a ranking that is maximally consistent with these predictions.

- ightharpoonup One can train a separate model(base learner) $\mathcal{M}_{i,j}$ for each pair of labels $(\lambda_i,\lambda_j)\in\mathcal{L},\ 1\leq i< j\leq m$; thus, a total number of $\frac{m(m-1)}{2}$ models is needed.
- ightharpoonup For training, a preference information of the form $\lambda_i \succ_x \lambda_j$ is turned into a (classification) example (x,y) for the learner $\mathcal{M}_{a,b}$, where $a=\min(i,j)$ and $b=\max(i,j)$.
- \triangleright $\mathcal{M}_{a,b}$ is intended to learn the mapping that outputs 1 if $\lambda_a \succ_x \lambda_b$ and 0 if $\lambda_b \succ_x \lambda_a$.

Learning Preference Relations

 An alternative approach to preference learning consists of comparing pairs of objects(labels) in terms of a binary preference relation.

Object Preferences Senario

- ▶ Learning a binary preference predicate Q(x, x'), which predicts whether x is preferred to x' or vice versa.
- ▶ A final ordering is found in a second phase by deriving a ranking that is maximally consistent with these predictions.

- ightharpoonup One can train a separate model(base learner) $\mathcal{M}_{i,j}$ for each pair of labels $(\lambda_i,\lambda_j)\in\mathcal{L},\ 1\leq i< j\leq m$; thus, a total number of $\frac{m(m-1)}{2}$ models is needed.
- ightharpoonup For training, a preference information of the form $\lambda_i \succ_x \lambda_j$ is turned into a (classification) example (x,y) for the learner $\mathcal{M}_{a,b}$, where $a=\min(i,j)$ and $b=\max(i,j)$.
- \triangleright $\mathcal{M}_{a,b}$ is intended to learn the mapping that outputs 1 if $\lambda_a \succ_x \lambda_b$ and 0 if $\lambda_b \succ_x \lambda_a$.

Learning Preference Relations

 An alternative approach to preference learning consists of comparing pairs of objects(labels) in terms of a binary preference relation.

Object Preferences Senario

- \triangleright Learning a binary preference predicate $\mathcal{Q}(x,x')$, which predicts whether x is preferred to x' or vice versa.
- ▶ A final ordering is found in a second phase by deriving a ranking that is maximally consistent with these predictions.

- One can train a separate model(base learner) $\mathcal{M}_{i,j}$ for each pair of labels $(\lambda_i, \lambda_j) \in \mathcal{L}, \ 1 \leq i < j \leq m$; thus, a total number of $\frac{m(m-1)}{2}$ models is needed.
- ightharpoonup For training, a preference information of the form $\lambda_i \succ_x \lambda_j$ is turned into a (classification) example (x,y) for the learner $\mathcal{M}_{a,b}$, where $a=\min(i,j)$ and $b=\max(i,j)$.
- \triangleright $\mathcal{M}_{a,b}$ is intended to learn the mapping that outputs 1 if $\lambda_a \succ_x \lambda_b$ and 0 if $\lambda_b \succ_x \lambda_a$.

- Techniques
 - Learning Utility Function
 - Learning Preference Relations

5 Fuzzy Preference Learning

- ▶ The idea is to represent the latent utility function $\mathcal{U}(\cdot)$ in terms of a Choquet integral.
- Assuming that objects $o \in \mathcal{O}$ are represented as feature vectors:

$$f_o = (f_o(x_1), \ldots, f_o(x_n))$$

▶ $f_o(x_i)$ can be thought of as the evaluation of object o on the criterion x_i , So:

$$\mathcal{U}(o) = \mathcal{C}_{\mu}(f_o)$$

$$C(U,O) = \frac{\sum\limits_{1 \leq i < j \leq k} \sum\limits_{(o,o') \in O_i \times O_j} \mathcal{S}(\mathcal{U}(o),\,\mathcal{U}(o'))}{\sum\limits_{i < j} |O_i|.|O_j|},\,\,\mathcal{S}(u,v) = \begin{cases} 1 & u < v \\ 0 & \text{otherwise} \end{cases}$$

- ▶ The idea is to represent the latent utility function $\mathcal{U}(\cdot)$ in terms of a Choquet integral.
- ▶ Assuming that objects $o \in \mathcal{O}$ are represented as feature vectors:

$$f_o = (f_o(x_1), \ldots, f_o(x_n))$$

▶ $f_o(x_i)$ can be thought of as the evaluation of object o on the criterion x_i , So:

$$\mathcal{U}(o) = \mathcal{C}_{\mu}(f_o)$$

$$C(U,O) = \frac{\sum\limits_{1 \leq i < j \leq k} \sum\limits_{(o,o') \in O_i \times O_j} \mathcal{S}(\mathcal{U}(o),\,\mathcal{U}(o'))}{\sum\limits_{i < j} |O_i|.|O_j|},\,\,\mathcal{S}(u,v) = \begin{cases} 1 & u < v \\ 0 & \text{otherwise} \end{cases}$$

- ▶ The idea is to represent the latent utility function $\mathcal{U}(\cdot)$ in terms of a Choquet integral.
- Assuming that objects $o \in \mathcal{O}$ are represented as feature vectors:

$$f_o = (f_o(x_1), \ldots, f_o(x_n))$$

▶ $f_o(x_i)$ can be thought of as the evaluation of object o on the criterion x_i , So:

$$\mathcal{U}(o) = \mathcal{C}_{\mu}(f_o)$$

$$C(U,O) = \frac{\sum\limits_{1 \leq i < j \leq k} \sum\limits_{(o,o') \in O_i \times O_j} \mathcal{S}(\mathcal{U}(o),\,\mathcal{U}(o'))}{\sum\limits_{i < j} |O_i|.|O_j|},\,\,\mathcal{S}(u,v) = \begin{cases} 1 & u < v \\ 0 & \text{otherwise} \end{cases}$$

Fuzzy Preference Learning Using Choquet Integral Continued...

- ▶ The idea is to represent the latent utility function $\mathcal{U}(\cdot)$ in terms of a Choquet integral.
- ▶ Assuming that objects $o \in \mathcal{O}$ are represented as feature vectors:

$$f_o = (f_o(x_1), \ldots, f_o(x_n))$$

▶ $f_o(x_i)$ can be thought of as the evaluation of object o on the criterion x_i , So:

$$\mathcal{U}(o) = \mathcal{C}_{\mu}(f_o)$$

$$C(U,O) = \frac{\sum\limits_{1 \leq i < j \leq k} \sum\limits_{(o,o') \in O_i \times O_j} \mathcal{S}(\mathcal{U}(o),\,\mathcal{U}(o'))}{\sum\limits_{i < j} |O_i|.|O_j|},\,\,\mathcal{S}(u,v) = \begin{cases} 1 & u < v \\ 0 & \text{otherwise} \end{cases}$$