INF5180

Conception et exploitation d'une base de données

Cours 5

Zied Zaier, PhD

Département d'informatique Université du Québec à Montréal Cours 5

CONCEPTION LOGIQUE: TRADUCTION DU MODÈLE CONCEPTUEL DE DONNÉES EN SCHÉMA CONCEPTUEL RELATIONNEL

CE DOCUMENT EST INSPIRÉ DES TRAVAUX DES PROFESSEURS ROBERT GODIN, VALTCHEV PETKO ET FATIHA SADAT.

Sommaire

Partie I du cours

- Première ébauche du schéma: une table par classe
- Traduction des attributs
- Réalisation de l'identité par des clés primaires

Partie II du cours

- Traduction des associations
- Relations de généralisation/spécialisation
- Traduction des autres contraintes

Introduction au modèle relationnel

Concepts de base

- Domaine : ensemble de valeurs
- Relation : ensemble de n-uplets (tuples)
- SQL: multi-ensemble

Concepts de base (Suite)

- Deux facettes du concept de table
 - Schéma d'une table (table schema)
 - définition de son type (intention)
 - ex: Client(noClient, nomClient, noTéléphone)
 - Instance ou extension d'une table
 - état de la table
 - ~ variable qui contient un ensemble de lignes
 - modifications d'état
- Schéma relationnel
 - ensemble de schémas de tables

Instance de BD VentesPleinDeFoin

Table <i>Commande</i>		
noCommande	dateCommande	noClient
1	01/06/2000	10
2	02/06/2000	20
3	02/06/2000	10
4	05/07/2000	10
5	09/07/2000	30
6	09/07/2000	20
7	15/07/2000	40
8	15/07/2000	40

Table <i>Client</i>		
noClient	nomClient	noTéléphone
10	Luc Sansom	(999)999-9999
20	Dollard Tremblay	(888)888-8888
30	Lin Bô	(777)777-7777
40	Jean Leconte	(666)666-6666
50	Hafedh Alaoui	(555)555-5555
60	Marie Leconte	(666)666-6666
70	Simon Lecoq	(444)444-4419
80	Dollard Tremblay	(333)333-3333

Table <i>LigneCommande</i>		
noCommande	noArticle	quantité
1	10	10
1	70	5
1	90	1
2	40	2
2	95	3
3	20	1
4	40	1
4	50	1
5 5 5	70	3
5	10	5
5	20	5
6	10	5
6	40	1
7	50	1
7	95	2
8	20	3

Table <i>DétailLivraison</i>			
noLivraison	noCommande	noArticle	quantitéLivrée
100	1	10	7
100	1	70	5
101	1	10	3
102	2	40	2
102	2	95	1
100	3	20	1
103	1	90	1
104	4	40	1
105	5	70	2

105	5	70 2	
Table Article			
noArticle	description	prixUnitaire	quantitéEnStock
10	Cèdre en boule	10.99	10
20	Sapin	12.99	10
40	Epinette bleue	25.99	10
50	Chêne	22.99	10
60	Erable argenté	15.99	10
70	Herbe à puce	10.99	10
80	Poirier	26.99	10
81	Catalpa	25.99	10
90	Pommier	25.99	10
95	Génévrier	15.99	10

Contraintes d'intégrité du modèle relationnel Contrainte de domaine et de valeur non nulle

- $T(A_1: D_1, A_2: D_2, ..., A_n: D_n)$
 - D_i : domaine de A_i
- Valeur nulle
 - Comportement particulier
 - Valeur inconnue
 - Valeur non applicable

— ...

Clé primaire et contrainte d'entité

- Clé unique (unique key)
 - ou superclé (superkey)
 - identifiant
- Clé candidate (candidate key)
 - clé unique minimale
- Clé primaire (primary key)
 - sert de mécanisme de référence aux lignes de la table
- Contrainte d'entité (entity constraint)
 - ∃ clé primaire
 - non nulle

Contrainte d'intégrité référentielle

Clé étrangère non nulle → clé primaire

Représentation UML

Nom clé étrangère ≠ nom clé primaire

• Étiquette de la relation de dépendance

Conception logique : traduction du modèle conceptuel de données en schéma conceptuel relationnel

- Output : schéma relationnel (niveau conceptuel)
 - tables
 - colonnes
 - types, domaines, ...
 - contraintes d'intégrité
 - clés primaires, étrangères, ...
- Input à la conception
 - modèle conceptuel des données (en UML)
- Appelée aussi conception logique de la BD
 - ne fait pas intervenir les considérations de performance
- Mise à jour possible à l'étape conception

Rappel - modèle conceptuel des données - SYLERAT

Première ébauche du schéma : une table par classe

Traduction des attributs

Attribut de la classe -> colonne de la table

Livre

{UNIQUE: ISBN} ISBN: String titre: String

annéeParution: TypeDonnéesAnnée

<<table>>

{Clé candidate: ISBN}

ISBN:CHAR(13)

titre: VARCHAR(50)

année Parution: Domaine Année

- La multiplicité minimale de 1 est transformée en contrainte de colonne obligatoire
- La multiplicité 0 devient une colonne optionnelle

TRADUCTION DES CONTRAINTES D'IDENTIFICATION (UNIQUE)

- Contrainte UNIQUE -> clé candidate relationnelle
- clé primaire ?

Livre

{UNIQUE: ISBN} ISBN: String titre: String

annéeParution: TypeDonnéesAnnée

<<table>>

{Clé candidate: ISBN}

ISBN: CHAR(13)

titre: VARCHAR(50)

année Parution: Domaine Année

La clé candidate peut être considérée comme clé primaire

TRADUCTION DES TYPES DE DONNÉES

Type OCL	Type SQL2	Oracle 8
Boolean	BIT(1)	Non supporté (utiliser CHAR(1) + CHECK)
Integer	INTEGER ou SMALLINT	NUMBER(n)
String	CHARACTER (CHAR) (n), CHARACTER VARYING (VARCHAR) (n)	VARCHAR2(n), LONG ou LONG VARCHAR (chaîne jusqu'à 2G), CLOB (chaîne jusqu'à 4G), NCLOB (chaîne pour caractères encodés sur plusieurs octets)
Real	NUMERIC(p,s) (précision exacte), DECIMAL(p,s), REAL, DOUBLE PRECISION, FLOAT(p)	NUMBER(p,s)
Enum{v1,vn}	CHARACTER (CHAR) ou VARCHER + CHECK IN (v1,,vn) (possibilité de création de domaine)	1 1
	DATE	DATE inclut TIME
	TIME	
	TIMESTAMP	
	BIT(n), BIT VARYING(n)	RAW(n : max = 255), LONG RAW (binaire jusqu'à 2G), BLOB (binaire jusqu'à 4G)
		BFILE (pointeur à un fichier externe)

Types de données déclarés

- Domaine pas toujours supporté par le dialecte SQL
 - La classe stéréotypée ««datatype»» sera traduit en domaine au sens relationnel
 - Ex. Année parution sera du type : DomaineAnnée dans la table Livre

Livre

{UNIQUE: ISBN} ISBN: String titre: String

annéeParution: TypeDonnéesAnnée

<<table>>

{Clé candidate: ISBN}

ISBN: CHAR(13) titre: VARCHAR(50)

annéeParution: DomaineAnnée

<<datatype>>
TypeDonnéesAnnée
{Integer > 0 }

<<domain>>
DomaineAnnée

{INTEGER CHECK value > 0 }

TYPES ÉNUMÉRÉS

- Petit domaine invariant
 - création d'un domaine VARCHAR + CHECK

Exemplaire

{UNIQUE: idExemplaire} idExemplaire : String

dateAchat: Date

statut : enum(prêté, disponible, retiré)

<<table>>
Exemplaire

{Clé candidate : idExemplaire} idExemplaire : VARCHAR(10)

dateAchat: Date

statut: DomaineStatut

<<domain>>
DomaineStatut

{VARCHAR(15) CHECK value IN ('prêté', 'disponible', 'retiré')}

Création d'une table

- Gros domaine ou extensible
 - création d'une table à part
 - utilisé comme liste de valeurs
 - introduction d'une clé primaire artificielle ?

TYPES COMPLEXES

Option 1. Représentation explicite des attributs du type complexe

Membre

adresse : typeDonnéesAdresse

<<datatype>> typeDonnéesAdresse

num éro Civique num éro Appartem ent nom Rue nom Ville nom Provinc e nom Pays code Postal <<table>>
Membre

num éro Civique num éro Appartem ent nom Rue nom Ville nom Province nom Pays code Postal

Les attributs représentent les colonnes de la table

TYPES COMPLEXES

Option 2. Création d'une nouvelle table

N.B. Pas de partage de la même adresse!

- nouvelle table Adresse, même clé primaire dans les deux tables, contrainte
- d'intégrité référentielle :: représentation plus coûteuse

QUALIFICATEUR

 Partition des objets associés par rapport aux valeurs d'un ensemble d'attributs

QUALIFICATEUR

Colonne dans la table du rôle opposé

Le qualificateur devient une composante de la clé primaire de la table opposée

DISCRIMINANT

 Le discriminant est un attribut indiquant le critère de partitionnement des objets de la superclasse en sous-classes

indique à quelle sous-classe l'objet appartient?

DISCRIMINANT

Redondant?

Employé

{UNIQUE : codeMatricule} codeMatricule : String

catégorieEmployé : enum(bibliothécaire, commis)

Membre

téléphoneRésidence : String \$ nbMaxPrêts : Integer = 5

\$ duréeMaxPrêts : Integer = 7

<<table>>
Utilisateur

{Clé candidate : idUtilisateur} idUtilisateur : VARCHAR(10) motPasse : VARCHAR(10)

catégorieUtilisateur : DomaineCatégorieUtilisateur

<<domain>>
DomaineCatégorieUtilisateur

{VARCHAR(14) CHECK value IN ('employé, 'membre')}

- Le discriminant est traduit par une colonne dans la table parent
- Un domaine est créé avec des valeurs (noms des classes spécialisées correspondantes)

ATTRIBUT MULTIVALUÉ

- Table à part
 - clé étrangère + colonne pour l'attribut
- Petit tableau de taille fixe
 - n colonnes (valeurs nulles)
- Encodage
 - invisible au SGBD
- Oracle8
 - VARRAY, NESTED TABLE

COMPRESSION DES VALEURS DES ATTRIBUTS DE GRANDE TAILLE

- Supporté par le SGBD ?
- Multimédia

CRÉATION DE TABLES SUPPLÉMENTAIRES POUR LES ATTRIBUTS DE CLASSE

Membre

téléphoneRésidence : String

\$ nbMaxPrêts : Integer = 5

\$ duréeMaxPrêts : Integer = 7

<<table>>
Membre

téléphoneRésidence : VARCHAR(15)

<<table>>
MembreGénéral

nbMaxPrêts : INTEGER = 5

duréeMaxPrêts : INTEGER = 7

Réalisation de l'identité par les clés primaires

CRÉATION D'UNE CLÉ PRIMAIRE ARTIFICIELLE

La clé primaire est introduite dans les tables de la spécialisation

- De manière systématique ?
- Mécanisme de SEQUENCE Oracle

UTILISATION D'UN IDENTIFIANT NATUREL COMME CLÉ PRIMAIRE

Utilisation d'un identifiant naturel (UNIQUE)

>
Livre

{Clé candidate: ISBN}
ISBN : CHAR(13)
titre : VARCHAR(50)
annéeParution : DomaineAnnée

>
Livre

{Clé primaire: ISBN}
ISBN : CHAR(13)
titre : VARCHAR(50)
annéeParution : DomaineAnnée

- Si identifiant naturel trop lourd
 - introduire clé primaire artificielle

Utilisation du qualificateur

<<table>>
Cours

{Clé primaire :sigle}
sigle
titre
nbCrédits

IDENTIFIANT NATUREL POUR UNE SPÉCIALISATION

- Éviter de changer de clé primaire dans le contexte d'une hiérarchie de généralisation
- Si la table du parent est omise
 - considérer identifiant naturel de la spécialisation

Traduction des associations

- À l'aide des clés étrangères
 - permettent de représenter directement une association
 - un à un ou un à plusieurs
- introduction de nouvelles tables (d'intersection) pour les autres cas
 - Voir l'association entre les tables auteur et livre
 - Cas d'association binaires --- deux clés étrangères
 - Cas d'associations n-aires --- n clés étrangères

Traduction des associations

CAS GÉNÉRAL : TRADUCTION D'UNE ASSOCIATION PAR UNE TABLE

TRADUCTION D'UN RÔLE ORDONNÉ POUR UNE ASSOCIATION

CLASSE ASSOCIATIVE

CAS UN À PLUSIEURS

Option 1. Traduction par une table ?

Traduction par l'ajout d'une clé étrangère à privilégier

Option 2. Navigation plus performante

Lorsque deux tables possèdent une clé commune, on considère de les fusionner

Renommer la clé étrangère au besoin

afin d'éviter les ambiguïtés

CAS UN À UN

Option 1. Une clé étrangère (du côté obligatoire)

Une contrainte de clé candidate doit être spécifiée pour la clé étrangère

Une nouvelle table

Option 2.

Lorsque les deux rôle sont optionnels et que les valeurs nulles résultant de clés étrangères sont fréquentes

Fusion

- Option 3.
 - Cas 1-1 obligatoire
 - Considérer la fusion des deux tables

CAS DE L'AGRÉGATION

Comme une association normale

Catégorie

Traduction des relations de généralisation/spécialisation

- Délégation
- Fusion
- Concaténation

DÉLÉGATION

Changement de clé primaire ?

Extraire le téléphone résidence d'un Membre possédant l'idUtilisateur 12345

Traduction de la contrainte {disjointe, complète}

Cas de la multi-classification et de l'héritage multiple

Lorsque les relations de généralisations ne sont pas disjointes --- le même objet peut faire partie de plusieurs sous-classes en même temps (objet de jointure)

Alternatives

- Option 2. Identité commune sans table de jointure
 - vérifier la valeur de la clé primaire (no séquence) –
 doit être la même dans les deux tables

- Option 3. Identité séparée et redondance de données
 - considérer deux objets différents sans lien entre eux et dupliquer les données

ANALOGIE AVEC UNE ASSOCIATION UN À UN

- Clé étrangère
 - -dans l'enfant
 - -dans le parent ???
- Fusion
 - vers le parent (approche par fusion)
 - vers l'enfant (approche par concaténation)
- Nouvelle table ???

FUSION

Le résultat est une seule table parent contenant toutes les colonnes du parent et des enfants

ajout d'un discriminant (colonne) et d'une contrainte pour déterminer la sous-classe d'appartenance

CONCATÉNATION

Dupliquer les colonnes et contraintes référentielles de la classe parent dans chacune des tables des enfants

Cas d'une référence au parent

TRADUCTION DES GÉNÉRALISATIONS POUR SYLERAT

Traduction des autres contraintes

