Overlay analysis and Map Algebra

Spatial Data Analysis and Simulation modelling, 2020, Simon Scheider

Outline

- Vector Overlay and Analysis:
 - Spatial relations
 - Selection
 - Overlay
 - Spatial Join
- Raster Overlay and Analysis:
 - Local map algebra
 - Zonal map algebra

Vector Overlay and Analysis

Vector data format

e.g. point data

Objects have unique identifiers-point ID, polygon ID, arc ID, etc
common identifiers provide link to:

--geometry table (for 'where)

-attributes table (for what)

Cod	ordinates Ta	able
Point ID	X	у
1	1	3
2	2	1
3	4	1
4	1	2
5	3	2

At	tributes Tal	ole
Point ID	model	year
1	а	90
2	b	90
3	b	80
4	а	70
5	С	70

Relational (table based) data representation

GIS contain tables (feature classes) in which:

- rows: entities (records, observations, features):
 - 'all' information about one occurrence of a feature
- columns: attributes (fields, data elements, variables, items (ArcGIS))
 - one type of information for all features

The key field is an attribute whose values uniquely identify each row

	Parcel Table	e	
Parcel #	Address	Block	\$ Value
8	501 N Hi	1	105,450
9	590 N Hi	2	89,780
36	1001 W. Main	4	101,500
75	1175 W. 1st	12	98,000

Field Calculator

Table join

Produce map of values by district/ neighborhood

- Problem: no district code available in parcel Table
- Solution: join Parcel Table, containing values, with Geography Table, containing location codings, using Block as key field

	Parcel Table	е	
Parcel #	Address	Block	\$ Value
8	501 N Hi	1	105,450
9	590 N Hi	2	89,780
36	1001 W. Main	4	101,500
75	1175 W. 1st	12	98,000

	Geograp	hy Table	
Block	District	Tract	City
1	Α	101	Dallas
2	В	101	Dallas
4	В	105	Dallas
12	Е	202	Garland

Join Attributes by Field Value

Spatial relations

- Spatial (e.g. topological) relationships can be used for joining features
- Egenhofer's
 9-Intersection matrix allows to capture such relations
- Intersect =All that is not disjoint

Selecting layers by location

Spatial Join

• Joins attributes from one feature to another based on a spatial relationship. The target features and the joined attributes from the join features are written to the output feature class.

Join Attribute by Location (Summary)

Overlay: Intersect/Clip/Union/Merge/Dissolve

• These are point set operations (intersections or unions of point sets)

About Dissolve

- Input are polygons or lines
- Output are new polygons or lines that were generated based on the input

About Merge

About Clip

altered.

Input

This operation uses a clip

your input layer. The input

layer's attributes are not

layer like a cookie cutter on

Result

Layer

Example: Intersection

 This operation does a geometric intersection and keeps only the parts in both layers

INPUT

Example: Difference

 This operation subtracts a layer from another one

Example: Aggregate

- This operation aggregates a polygon layer using some attribute and using some statistics
- Sometimes also called "Dissolve"

Areal Interpolation

"Simple" approach with overlay

Kriging (Geostatistical Analyst)

Raster Overlay Analysis

Raster data model

Array of cells or pixels (aka picture elements) which are arranged in rows and columns. Each pixel has a value in the form of integer, floating points or alphanumeric.

A point can be represented by a single pixel in raster model. A line is a chain of spatially connected cells with the same value.

Similarly, a water body in raster data is represented as a set of contiguous pixels having same value that represents a homogeneous area.

Raster cells: more than pixels

- Rows / columns of pixels
- Cell coordinates and values
- Possible meaning of cell value?
 - feature identifier
 - qualitative characteristic
 - quantitative characteristic
 - representation of zone

List of cell values

[111122431122243612225466222543662252446625525443544525444444254]

Raster zones, regions and NoData/Null

- Zone: refers to the set of cells sharing a certain value (connected or disconnected)
- Region: zone with connected cells
- NoData/Null <> 0
- Associated table (in case of integers) (value, count)

Value	Count	Link
1	3	1
2	2	0
3	3	2
4	2	4
5	3	0
6	2	- 1

Cell size and extent

How to decide on resolution (cell size)?

- Resolution of input data
- The output needed for your analysis
- Response time (processing speed)
- Kind of application / analysis

Raster resolution increases as the size of the cell decreases

Raster extent: Same as display or layer?

Map Algebra

- Introduced by Dana Tomlin and Joseph Berry (Tomlin 1990)
- **Cell-by-cell** combination of raster data layers (addition, subtraction, multipl.,...)
- Simple operations on numbers stored as values at raster cell locations
- Output grids with results at the cell locations corresponding to input cells

Map Algebra: Basic elements

Building blocks for Map Algebra language are:

- Objects datasets, layers, values (as inputs or storage location)
- Operators (+, -, *, ...)
- Functions (loc,foc,zon,glob)
- Actions Result of applying functions with operators to objects
- Qualifiers on the actions parameters determining the conduction of a function

Map Algebra: Functions

Higher-order GIS operation (why?)

- Important building blocks for modeling
 Parameter-dependent
- Local: cell-by-cell
- Neighborhood (Focal): moving neighborhood
- **Zonal**: within homogeneous zones
- Global: incorporation of the full dataset

Example: Local Map algebra function

- Local functions: on equivalent cells across raster layers
- Quiz: What arithmetic operator is used in this local function example?

local sum

Example: Zonal Map algebra function

- Zonal functions: on cells within specified zones (zones defined by cell values of zone raster)
- Quiz: What operator is used in this zonal function example?
- Zonal maximum

Rasterize/vector to raster (Local Map Algebra)

Reclassify (Local Map Algebra)

OK

Cancel

Raster Calculator (Local Map Algebra)

Zonal Statistics

Note: Zone Raster can also be a Polygon layer!

Following values calculated for each zone:

- minimum
- maximum
- sum
- count
- mean
- standard deviation
- number of unique values
- range
- variance

Processing models (visual programming)

Use Processing
 Modeller
 to save/rerun
 processing
 workflows
 and export them
 into Python

Questions? (Q&A session)

References

- Chrisman (2002): Exploring Geographic Information systems, 2nd edition, Chapter 4 "Attribute based operations" (105-118)
- Chrisman (2002): Exploring Geographic Information systems, 2nd edition, Chapter 5 "Overlay: Integration of disparate sources" (119-152)
- Tomlin, C. D. (1990). Geographic information systems and cartographic modelling. New Jersey, US: Prentice-Hall.
- Egenhofer, M. J., & Franzosa, R. D. (1991). Point-set topological spatial relations. International Journal of Geographical Information System, 5(2), 161-174.