Real Variables: Problem Set IX

Youngduck Choi

Courant Institute of Mathematical Sciences New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set IX of Real Variables 2015 at NYU.

1 Solutions

Question 1. Royden 12-5.

5. Suppose that a topological space X has the property that every continuous, bounded real-valued function on a closed subset has a continuous extension to all of X. Show that if X is Tychonoff, then it is normal.

Solution. Consider

$$\mathscr{S} = \{f^{-1}(O) \mid f \text{ is continuous, and } O \text{ is open in } \mathbb{R}\}.$$

Question 2. Royden 12-6.

6. Let (X, \mathcal{T}) be a normal topological space and \mathcal{F} the collection of continuous real-valued functions on X. Show that \mathcal{T} is the weak topology induced by \mathcal{F} .

Solution. Consider

$$\mathscr{S} = \{f^{-1}(O) \mid f \text{ is continuous, and } O \text{ is open in } \mathbb{R}\}.$$

Question 3. Royden 12-27.

27. For $f, g \in C[a, b]$, show that f = g if and only if $\int_a^b x^n f(x) dx = \int_a^b x^n g(x) dx$ for all n.

Solution. Consider

$$\mathscr{S} \ = \ \{f^{-1}(O) \, | \, f \text{ is continuous, and } O \text{ is open in} \mathbb{R}\}.$$

Question 4. Royden 12-35.

35. Let \mathcal{A} be an algebra of continuous real-valued functions on a compact Hausdorff space X that separates points. Show that either $\overline{\mathcal{A}} = C(X)$ or there is a point $x_0 \in X$ for which $\overline{\mathcal{A}} = \{f \in C(X) \mid f(x_0) = 0\}$. (Hint: If $1 \in \overline{\mathcal{A}}$, we are done. Moreover, if for each $x \in X$ there is an $f \in \mathcal{A}$ with $f(x) \neq 0$, then there is a $g \in \mathcal{A}$ that is positive on X and this implies that $1 \in \overline{\mathcal{A}}$.)

Solution. Consider

$$\mathscr{S} = \{f^{-1}(O) \mid f \text{ is continuous, and } O \text{ is open in } \mathbb{R}\}.$$

Question 5. Royden 13-8.

8. A nonnegative real-valued function $\|\cdot\|$ defined on a vector space X is called a **pseudonorm** if $\|x+y\| \le \|x\| + \|y\|$ and $\|\alpha x\| = |\alpha| \|x\|$. Define $x \cong y$, provided $\|x-y\| = 0$. Show that this is an equivalence relation. Define $X/_{\cong}$ to be the set of equivalence classes of X under \cong and for $x \in X$ define [x] to be the equivalence class of x. Show that $X/_{\cong}$ is a normed vector space if we define $\alpha[x] + \beta[y]$ to be the equivalence class of $\alpha x + \beta y$ and define $\|[x]\| = \|x\|$. Illustrate this procedure with $X = L^p[a, b]$, $1 \le p < \infty$.

Solution. We show that the relation is reflexive, symmetric, and transitive.

Let $x \in X$. It follows that

$$||x - x|| = ||\theta||,$$

where θ is the identity element of the linear space X. By definition of linear space, we have $\alpha \cdot \theta = \theta$ for all α . Hence, for some $\alpha > 1$, we have

$$\|\theta\| = \|\alpha \cdot \theta\|$$
$$= |\alpha| \|\theta\|.$$

As |a| > 0, we have $|\theta| = 0$. Consequently, ||x - x|| = 0. It follows that for all $x \in X$, $x \equiv x$. The relation is reflexive.

Let $x, y \in X$ and $x \equiv y$. Observe that

$$||x - y|| = ||-1 \cdot (y - x)||$$

= $|-1|||y - x||$
= $||y - x||$.

As $x \equiv y$, which gives ||x - y|| = 0, it follows that ||y - x|| = 0 and $y \equiv x$. Hence, the relation is symmetric.

Let $x, y, z \in X$ and $x \equiv y$ and $y \equiv z$. By triangle inequality, it follows that

$$||y - z|| = ||(x - y) + (y - z)||$$

 $\leq ||x - y|| + ||y - z|| = 0 + 0 = 0.$

Hence, ||y - z|| = 0, and it follows that $x \equiv z$. Hence, the relation is symmetric.

We show that X_{\equiv} is a normed vector space. Firstly, we check that the defined norm is well defined. Let $x,y\in X$, such that $x\equiv y$. It follows that $\|x-y\|=0$. Hence, $\|x\|=\|y\|$, and it follows that $\|x\|=\|y\|$. The norm is well-defined.

Question 6. Royden 13-33.

Solution. Consider

$$\mathscr{S} = \{f^{-1}(O) \mid f \text{ is continuous, and } O \text{ is open in } \mathbb{R}\}.$$

2

- 33. Let X be a linear subspace of C[0, 1] that is closed as a subset of $L^2[0, 1]$. Verify the following assertions to show that X has finite dimension. The sequence $\{f_n\}$ belongs to X.
 - (i) Show that X is a closed subspace of C[0, 1].
 - (ii) Show that there is a constant $M \ge 0$ such that for all $f \in X$ we have $||f||_2 \le ||f||_\infty$ and $||f||_\infty \le M \cdot ||f||_2$.
 - (iii) Show that for each $y \in [0, 1]$, there is a function k_y in L^2 such that for each $f \in X$ we have $f(y) = \int_0^1 k_y(x) f(x) dx$.
 - (iv) Show that if $\{f_n\} \to f$ weakly in L^2 , then $\{f_n\} \to f$ pointwise on [0,1].
 - (v) Show {f_n} → f weakly in L², then {f_n} is bounded (in what sense?), and hence {f_n} → f strongly in L² by the Lebesgue Dominated Convergence Theorem.
 - (vi) Conclude that X, when normed by || · ||₂, has a compact closed unit ball and therefore, by Riesz's Theorem, is finite dimensional.