Weekly Report NTUA 6/12/2019

George Bakas

Status Report

- Combine Tutorial/Workshop
- Signal Extraction
 - Various methods for extracting number of QCD events in Signal reduced mass region
 - Fixed eb or free eb
- Unfolding
 - Response Matrices where Nbins Reco ~ 2Nbins Parton/Particle
 - Had to redo Signal extraction for unequal binning to be used in unfolding
 - Acceptance → reco bins (redone)
 - Efficiency → parton/particle bins
 - Unfloding technique
 - If square response matrix → simple inversion
 - If response matrix is not square:
 - Minimum of global correlation
 - L-curve method

Signal Extraction

$$S(x_{reco}) = D(x_{reco}) - N_{QCD,reduced}^{(2)} C_{QCD}^{shape}(x_{reco}) Q(x_{reco}) - B(x_{reco})$$
 Subdominant bkg shape and contribution (MC)

- Where x_{reco} is the respected variable of interest (ttbar mass,pt, rapidity, leading and subleading jetPt and |jetY|)
- We deploy a simultaneous fit in 3 regions (0,1,2 btag) because we do not have a pure Control Region.
 - Our data CR is ttbar contaminated

$$D(m^t)^{(i)} = N_{tt}^{(i)} T^{(i)}(m^t, k_{MassScale}, k_{MassResolution}) + N_{bkg}^{(i)} B(m^t) (1 + k_1 x) + N_{sub}^{(i)} O^{(i)}(m^t)$$

• We assume that $N_{tt}^{(0)} = (1 - e_b)^2 N_{tt}$, $N_{tt}^{(2)} = e_b^2 N_{tt}$ and $N_{tt}^{(1)} = 2(1 - e_b)e_b N_{tt}$ where e_b is the b tagging efficiency and N_{tt} is the total ttbar yield.

R_{yield} Calculation (MC Closure)

2016

2017

2018

We define
$$R_0 = \frac{D_{red}^{(0)}}{D_{ext}^{(0)}}$$
 and $R_1 = \frac{D_{red}^{(0)} - N_{TT,MC\,red}^{(0)}}{D_{ext}^{(0)} - N_{TT,MC\,ext}^{(0)}}$ and NQCD in Reduced SR

R0 (just data) =
$$0.264097$$

R1 (taking MC into account) = 0.262092
(R[0]-R[1])/R[0] = 0.00759071

----2017----
R0 (just data) =
$$0.270622$$

R1 (taking MC into account) = 0.269242
(R[0]-R[1])/R[0] = 0.00509682

----2018----
R0 (just data) = 0.266928
R1 (taking MC into account) = 0.265428

$$(R[0]-R[1])/R[0] = 0.00561997$$

Transfer Factor Calculation

We will use an ABCD method to extract the $N_{\text{QCD}}\,$ in the SR

From shape we have:

$$\frac{N_{QCD,reduced}^{(2)}}{N_{QCD,reduced}^{(0)}} = \frac{N_{QCD,extended}^{(2)}}{N_{QCD,extended}^{(2)}} \Longrightarrow$$

Region CRA

Top Mass Candidate

NQCD in Reduced (SR):

2016: 846.365 2017: 677.041 2018: 1201.35

Fiducial Measurements (jet Pt0) ABCD method and

2016

2017

2018

- Output is not consistent with what we expected
 - We expect r ~ 0.85 for 2016, ~0.58 for 2017 and ~0.63 for 2018
 - Nqcd in SR reduced probably the problem

Fiducial Measurements (mJJ)

2016

2017

2018

Response Matrices (Unequal Binning, jetPt0)

Response Reco-Parton jetPt0 2016

2017

Response Reco-Parton jetPt0 2017

2018

Response Reco-Parton jetPt0 2018

Response Matrices Particle (Unequal Binning, jetPt0)

2017

2018

Response Reco-Particle jetPt0 2018

