## Problem Set 1

## 1.) Partial derivatives

(a) 
$$w = xy$$
,  $x = y^2$ 

$$y = \frac{x}{2} \implies w = x \cdot \frac{x}{2} = \frac{x^2}{2}$$
also:  $w = (y^2) \cdot y = y^2 = x^2$ 
Thus:  $w = \frac{x^2}{2}$  and  $w = y^2 = x^2$ 
(b)  $\left(\frac{\partial \omega}{\partial x}\right) = \left(\frac{\partial (xy)}{\partial x}\right) = y$ 

$$\left(\frac{\partial \omega}{\partial \mathbf{x}}\right)_{2} = \left(\frac{\partial \left(\frac{\mathbf{x}^{2}}{2}\right)}{\partial \mathbf{x}}\right) = \frac{2\mathbf{x}}{2}$$

$$\left(\frac{\partial \omega}{\partial y}\right)_{z} = \left(\frac{\partial (y^{2}z)}{\partial y}\right)_{z} = 2yz$$

$$\left(\frac{\partial \Xi}{\partial \omega}\right)^{X} = \left(\frac{\partial \Xi}{\partial \left(\frac{\Xi}{X_{3}}\right)}\right)^{X} = -\frac{\Xi_{3}}{X_{3}}$$

$$\left(\frac{\partial z}{\partial z}\right)_y = \left(\frac{\partial (y^2 z)}{\partial z}\right)_y = y^2$$

## 2.) Two harmonic oscillators

Change notation from q (used in the problem formulation) to j (used here in the solution).

(a) The total energy of the composed system,  $U_1$ , equals to the sum of the energies of the two harmonic oscillators,  $E_{j_1}$  and  $E_{j_2}$ . E Each of these are given by:

 $E_{j_1} = j_1 \hbar \omega$ , where  $j_1 = 0, 1, 2, 3, ...$ 

and

 $E_{j2} = j_2 + \omega$ , where  $j_2 = 0, 1, 2, 3, ...$ 

Therefore

 $U_1 = E_{j_1} + E_{j_2} = (j_1 + j_2) t \omega$ 

On the other hand, the problem states (requires) that

 $U_1 = n_1 + \omega$ , where  $n_1 = 0, 1, 2, 3, ...$ 

Therefore we must have

 $(j_1+j_2)$  to = n, two

i.e. for any given  $n_1$ ,  $j_1$  and  $j_2$  must satisfy

 $\dot{j}_1 + \dot{j}_2 = n_1$ 

So the question of "how many microstates are available to the system" is reduced to finding the number of ways ha pair of non-negative integers j1 and j2 can result in the given value of n1 (which in turn runs n = 0,1,2,...; i.e. for each n, have to find the respective multiplicity)

$$n_1 = j_1 + j_2$$

Consider, for example  $n_1 = 3$ . This can be obtained in the ways (from pairs of non-negative j, and je)

$$j_1 = 0$$
;  $j_2 = 3$   
 $j_1 = 1$ ;  $j_2 = 2$   
 $j_1 = 2$ ;  $j_1 = 1$   
 $j_1 = 3$ ;  $j_2 = 0$ 

How about other possible value of n, or rather all possible values of n,? [general solution]

Can draw a table:

| n, | j.          | 12       | <u> </u> |
|----|-------------|----------|----------|
| 0  | 0           | 0        | 1        |
| 1  | 0           | 032      | 2        |
| 2  | 0<br>2<br>1 | 2 } 3    | 3        |
| 3  | 0 1 2 3     | 3 2 4    | 4        |
| n, | 1 2         | n, n, -1 | n,+1     |

Thus, for any  $n_i$ ,  $g(n_i) = n_i + 1$ 

The definition of entropy is:

So, in this example

$$S_1 = \kappa_8 \log(g_1) = \kappa_8 \log(n_1 + 1)$$

Usually we want to know the dependence of the entropy on the total energy of the system,  $S_{*}(V_{*})$ . In the present example  $V_{*}=n$ ,  $\hbar\omega$  =>  $n_{*}=\frac{U_{*}}{\hbar\omega}$ 

=> 
$$\left[S_1 = \kappa_B \log \left(\frac{U_1}{\hbar\omega} + 1\right)\right]$$

(b) Second system (we'll use index "2"): We now have  $E_{j_1} = j_1 \pm (2\omega) = 2j_1 \pm \omega$ and  $E_{j_2} = j_2 \pm (2\pm) = 2j_2 \pm \omega$ 

$$U_2 = E_{ji} + E_{j2}$$

$$n_2 t\omega = 2j_1 t\omega + 2j_2 t\omega$$

$$=> [n_2 = 2(j_1 + j_2)]$$

$$[j_1=0,1,2,...$$
 and  $j_2=0,1,2,...$  as before]

Then, our multiplicity table would look like:

| $n_2$ | 11                                | jz                   | 92               | $U_2 = n_2 t \omega = 2(j_i + j_2) t$ |
|-------|-----------------------------------|----------------------|------------------|---------------------------------------|
| 0     | 0                                 | 0                    | 1                | 0                                     |
| 2     | 0 1                               | 1 }                  | 2<br>microstates | 2 tw                                  |
| 4     | 0<br>1<br>2                       | 2 7                  | 3<br>microstates | 4tw                                   |
| 6     | 2 3                               | 3210                 | 4                | 646                                   |
| ,     |                                   |                      |                  |                                       |
| n,    | 0<br>1<br>2<br><br>N <sub>2</sub> | 12<br>12<br>12<br>10 | N2 +1            | no to                                 |

Thus, for any given value of  $n_2$  of the combined system, or equivalently for any given total energy of the combined system  $U_2 = n_2 + \omega$ , the respective multiplicity is

$$g_{2}(n_{2}) = \frac{n_{2}}{2} + 1$$
or
$$g_{2}(U_{2}) = \frac{n_{2}}{2} + 1$$

Accordingly, the entropy 
$$S = K_B \log(g)$$
 is now given by

$$S_2 = \kappa_B \log \left( \frac{n_2}{2} + 1 \right) =$$

$$= \kappa_B \log \left( \frac{U_2}{2 + \omega} + 1 \right)$$

(c) For the system composed of the two previous to taking into account their independence,

$$= \kappa \log(g_1) + \kappa \log(g_2) = S_1 + S_2$$

$$= \log \left( \frac{U_1}{\hbar \omega} + 1 \right) + \log \left( \frac{U_2}{2\hbar \omega} + 1 \right)$$

$$= \log \left[ \left( \frac{U_1}{4\omega} + 1 \right) \left( \frac{U_2}{24\omega} + 2 \right) \right]$$

$$f(x) = f(0)e^{-x^2/2\sigma^2}$$

(a). 
$$1 = \int_{-\infty}^{+\infty} dx \ f(x) = \int_{-\infty}^{+\infty} dx \ e^{-x^{2}/2\sigma^{2}}$$

even function of  $x$ ,  $f(-x) = f(x)$ 

$$= 2 f(0) \int_{0}^{+\infty} dx \ e^{-x^{2}/2\sigma^{2}} = 2 f(0) \frac{\sqrt{\pi}}{2(\frac{1}{\sqrt{2}\sigma})}$$

$$f(0) = \frac{1}{\sqrt{2\pi'}\sigma} \qquad (\sigma > 0)$$

(b) 
$$\langle x \rangle = \int_{-\infty}^{+\infty} dx \ x \ f(x) = 0$$
 since

$$g(x) \equiv x f(x) - is an odd function$$

$$f(x) = f(x) = -g(x)$$

$$\int_{-\infty}^{+\infty} dx g(x) = \int_{-\infty}^{\infty} dx g(x) + \int_{0}^{+\infty} dx g(x)$$

change of variables: x - - y

$$= \int_{x=-\infty}^{\infty} d(-y) g(-y) + \int_{x=-\infty}^{+\infty} dx g(x)$$

$$(y=+\infty)$$

$$= \int_{+\infty}^{\infty} dy g(y) + \int_{0}^{+\infty} dx g(x) = -\int_{0}^{+\infty} dy g(y) + \int_{0}^{+\infty} dx g(x) = 0$$

(c). 
$$\langle x^2 \rangle = \int_{-\infty}^{+\infty} dx \ x^2 f(x) = \int_{-\infty}^{+\infty} dx \ x^2 f(x) = \int_{-\infty}^{+\infty} dx \ x^2 e^{-x^2/2\sigma^2} = \int_{0}^{+\infty} dx \ x^2 e^{-x^2/$$

$$= \sigma^2$$

(d) 
$$W_{rms} = (\langle x^2 \rangle - \langle x \rangle^2)^{1/2} = (\sigma^2 - 0)^{1/2} = \sigma$$

or in the Graussian function of the form  $f(x) = f(0) e^{-x^2/2\sigma^2}$  has the meaning of the rms width.



(f) 
$$f(w_{1/2}) = \frac{1}{2} f(0)$$
,  $w_{1/2} - ?$   
 $f(w_{1/2}) = f(0) e^{-\frac{1}{2} (2\sigma^2)} = \frac{1}{2} f(0)$   
 $\vdots e^{\frac{1}{2} (2\sigma^2)} = 2$ 

$$e^{\frac{1}{12}/2\sigma^{2}} = 2 \implies \omega_{1/2}^{2} = 2\sigma^{2} \ln 2 = \sigma^{2} \ln 4$$

$$= > \omega_{1/2} = \sigma \sqrt{\ln 4} = \sigma \cdot 1.18$$

$$(\ln 4 > 1 = > \sqrt{\ln 4} > 1$$

$$= > \omega_{1/2} > \sigma$$

$$\omega_{1/2} \approx 1.2 \ \sigma$$