MachineLearning Overview **MACHINE LEARNING IN EMOJI**

BecomingHuman.Al

BASIC REGRESSION

linear model.LinearRegression() Lots of numerical data

Target variable is categorical

human builds model based on input / output

human input, machine output human utilizes if satisfactory

human input, machine output human reward/punish, cycle continues

CLUSTER ANALYSIS

Similar datum into groups based on centroids

covariance.EllipticalEnvelope() Finding outliers through grouping

CLASSIFICATION

neural network.MLPClassifier()

Complex relationships. Prone to overfitting Basically magic.

neighbors.KNeighborsClassifier()

Group membership based on proximity

tree.DecisionTreeClassifier()

If/then/else. Non-contiguous data. Can also be regression.

ensemble.RandomForestClassifier()

Find best split randomly Can also be regression

svm.SVC() svm.LinearSVC()

Maximum margin classifier. Fundamental Data Science algorithm

GaussianNB() MultinominalNB() BernoulliNB

Updating knowledge step by step with new info

FEATURE REDUCTION

T-DISTRIB STOCHASTIC NEIB EMBEDDING

manifold.TSNE()

Visual high dimensional data. Convert similarity to joint probabilities

PRINCIPLE COMPONENT ANALYSIS

decomposition.PCA()

Distill feature space into components that describe greatest variance

CANONICAL CORRELATION ANALYSIS

decomposition.CCA()

Making sense of cross-correlation matrices

LINEAR **DISCRIMINANT ANALYSIS**

Linear combination of features that separates classes

OTHER IMPORTANT CONCEPTS

BIAS VARIANCE TRADEOFF

UNDERFITTING / OVERFITTING

INERTIA

ACCURACY FUNCTION

PRECISION FUNCTION

SPECIFICITY FUNCTION

SENSITIVITY FUNCTION