Лабораторная работа 3.5.1

Изучение плазмы газового разряда в неоне

Татаурова Юлия Романовна

1 ноября 2024 г.

Цель работы: изучение вольт-амперной характеристики тлеющего разряда; изучение свойств плазмы методом зондовых характеристик.

Оборудование: стеклянная газоразряданя трубка, наполненная неоном, высоковольтный источник питания, источник питания постоянного тока, делитель напряжения, резистор, потенциометр, амперметры, вольтметры, переключатели.

Теоретические сведения

Если газ продолжать нагревать, то сначала молекулы диссоциируют на атомы, а затем и атомы распадаются на электроны и ионы, так что газ становится ионизованным, представляя собой смесь из свободных электронов и ионов, а также нейтральных частиц. Газ с достаточно большой степенью ионизации называют плазмой.

Рассмотрим простейший вид **плазменных колебаний**. Ионы будем считать одноразрядными т.е $n_i = n_e$. Выделим в нейтрильной плазме некоторый объем (рис.1). Пусть все электроны сместились на расстояние x относительно ионов (ионы как существенно тяжелые частицы можно считать неподвижными). Тогда на боковых гранях возникнут поверхностные заряды с плотностю $\sigma = \pm n_e e \Delta x \Rightarrow E = 4\pi n_e e \Delta x \Rightarrow \ddot{x} = -\frac{eE}{m} = -\frac{4\pi n_e e^2}{m} x \Rightarrow \omega = \sqrt{\frac{4\pi n_e e^2}{m}}$ - плазменная (ленгмюровская) частота коллективных колебаний электронов.

Рис. 1: Плазменные колебания

Определим амплитуду колебаний в случае, когда колебания возбуждены за счет тепловой энергии. Средняя скорость теплового движения $\bar{v}_e = \sqrt{\frac{kT_e}{m_e}}$. Амплитуду колебаний оценим как смещение с этой скоростю за характерное вермя плазменных колебаний $1/\omega$

$$r_D \approx \frac{\bar{v}_e}{\omega} = \sqrt{\frac{kT_e}{4\pi n_e e^2}} \tag{1}$$

 r_D - **дебаевский радиус**. **Идеальной плазмой** называется ионизованный газ, дебаевский радиус которого существенно меньше характерного размера области, занимаемой этим газом.

Простым методом исследования свойств плазмы является измерение электрических потенциалов с помощью **зонов** - небольших проводников, вводимых в плазму. При внесении в плазму он сталкивается с заряженными частицами. И т.к скорости электронов существенно превышает скорости ионов, то проводник зарядится отрицательно $-U_f$. Рассмотрим измерения с помощью **двойного зонда** - система, состоящая из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга. Между

зондами создаётся разность потенциалов , которая по величине много меньше плавающего потенциала $|U| \ll |U_f|$. При этом оба зонда имеют относительно плазмы близкий к плавающему отрицательный по тенциал. Рассчитаем величину тока, проходящего через двойной зонд вблизи точки I=0.

$$I = I_i \operatorname{th} \frac{eU}{2kT_e} \tag{2}$$

Экспериментальные данные и установка

Стеклянная газоразрядная трубка имеет холодный полый катод, три анода и геттерный узел — стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка (геттер). Катод и один из анодов (I или II) с помощью переключателя $\Pi 1$ к регулируемому высоковольтному источнику питания (ВИП) с выходным напряжением до нескольких киловольт. При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A1, а падение напряжения на разрядной трубкевольтметром V1. При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находится двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания через потенциометр R. Переключатель R позволяет изменять полярность напряжения на зондах. Для измерения зондового тока используется микроамперметр A2.

ВАХ разряда при убывании и нарастании тока

Вольт-ампераня характеристика разряда

Определим напряжение зажигания разряда $U_{\rm pasp}=200~{\rm B}.$ Из графика находим $R_{\rm диф}^{\rm max}=\frac{dU}{dI}=(13.98\pm0.05)\cdot10^3~{\rm Om}$

(нарастание $)I$, м A	0.52	0.80	1.13	1.439	1.84	2.42	2.98	3.33	3.87	4.45
(нарастание $)U$ $, В$	34.3	32.9	32.1	31.5	27.8	21.4	18.3	16.9	15.9	15.3
(убывание)I, мА	4.721	4.31	3.939	3.570	3.203	2.827	2.469	1.852	1.100	0.594
(убывание) U , В	14.9	15.4	15.8	16.2	17.3	19.1	21.0	23.3	32.1	33.8

Таблица 1: ВАХ разряда при нарастании и убывании тока

Зондовые характеристики

Снимем вольт-амперную характеристику двойного зонда для различных значений разрядного тока $I_{\rm p}$. По полученным графикам определим температуру электронов по формуле:

$$kT_e = \frac{1}{2} \frac{eI_{\text{iH}}}{\frac{dI}{dU}U=0} \tag{3}$$

Определим так же ионный ток насыщения $I_{\rm in}$ и концентрацию $n_e=n_i=n$ через этот ток:

$$I_i = 0.4n_i e S \sqrt{\frac{2kT_e}{m_i}} \tag{4}$$

Рессчитаем плазменную частоту колебаний ω , электронную поляризационную длину r_{D_e} и число ионов N_D в дебаевской сфере по формулам соответсвенно:

$$\omega = \sqrt{\frac{4\pi n_e e^2}{m_e}} = 5.6 \cdot 10^4 \sqrt{n_e} \tag{5}$$

$$r_{D_e} = \sqrt{\frac{kT_e}{4\pi n_e e^2}} \tag{6}$$

$$N_D = \frac{4}{3}\pi r_D{}^3 n_i \tag{7}$$

$$r_D \approx \frac{\bar{v}_e}{\omega} = \sqrt{\frac{kT_e}{4\pi n_e e^2}} \tag{8}$$

$I_{\rm p}, {\rm mA}$	5 ± 0.02	4 ± 0.02	3 ± 0.02	1.5 ± 0.02
ΔU , B	11.5 ± 0.5	10.3 ± 0.3	8.1 ± 0.4	7 ± 0.5
$I_{\mathrm{ih}},\mathrm{mkA}$	79.8 ± 9.3	70 ± 8	44.5 ± 6.5	21.4 ± 3.7
$T_e, K \cdot 10^3$	68 ±8	60±7	47±7	18±3
$n, \mathrm{m}^{-3} \cdot 10^{16}$	5.3	5	3.6	2.7
ω , рад/с ·10 ⁴	13.6	13.2	11.1	9.7

Таблица 2: Данные найденные по ВАХ зонда для различных значений тока разряда

$I_{\rm p}=5~{ m mA}$	<i>I</i> , мА	82.5	85.9	84.7	81.5	74.6	62.4	50.6	36.5	19.9	-24.4	-42.5	-51.9
	U, B	25.01	22.03	19.	16.04	13.03	10.04	8.01	6.02	4.03	-2.02	-4.08	-6.01
$I_{ m p}=4~{ m mA}$	<i>I</i> , мА	70.6	70.3	68.5	65.7	60.6	51.1	42.3	30.5	17.1	-23.5	-38.9	-51.5
	U, B	25.03	22.08	19.04	16.	13.04	10.02	8.06	6.07	4.01	-2.04	-4.06	-6.06
$I_{\rm p}=3~{ m mA}$	I, мА	52.6	50.9	49.17	47.2	44.	38.1	32.02	23.5	13.5	-20.3	-31.5	-41.0
	U, B	25.03	22.04	19.03	16.06	13.04	10.03	8.07	6.	4.03	-2.03	-4.08	-6.08
$I_{ m p}=1.5~{ m mA}$	I, мА	24.6	23.8	23.	22.2	21.1	18.8	16.1	12.2	7.1	-12.3	-17.9	-22.7
	U, B	25.	22.09	19.06	16.03	13.08	10.06	8.05	6.04	4.09	-2.17	-4.06	-6.02

Таблица 3: ВАХ двойного зонда при различных токах разряда

Рис. 3: Сравнение ВАХ двойного зонда при различных токах разряда

Рис. 4: ВАХ двойного зонда при различных значениях тока разряда I_{p}