×

VTU Connect

CBCS SCHEME

18MAT31

Max. Marks:100

Third Semester B.E. Degree Examination, July/August 2021 Transform Calculus, Fourier Series and Numerical

Techniques

Note: Answer any FIVE full questions.

- $1\quad a.\quad Find\ L[t\,e^{-2t}\sin 4t]\,.$
 - b. A periodic function of period $2\pi/\omega$ is defined by $f(t) = \begin{cases} E \sin \omega t, & 0 \le t < \frac{\pi}{2}\omega \\ 0, & \frac{\pi}{2}\omega \le t < \frac{2\pi}{2}\omega \end{cases}$. Where E and
 - ω are constants. c. Solve : $y''(t)+k^2y(t)=0; \ \ y(0)=0$ and y'(0)=1 by Laplace transformation. (07 Marks)
- 2 a. Find: i) $L^{-1} \left\{ \frac{s^2 3s + 4}{s^3} \right\}$ ii) $L^{-1} \left[Cot^{-1} \left(\frac{S}{2} \right) \right]$. (06 Marks)
- b. Find the inverse Laplace transform of $\frac{1}{(s-1)(s^2+1)}$ by using convolution theorem.
- c. Express the following function in terms of Heaviside step function and hence find its Laplace transform where $f(t) = \begin{cases} t^2, & 0 < t \le 2 \\ 4t, & t > 2 \end{cases}$
- 3 a. Expand $f(x) = x(2\pi x)$ as a Fourier series in $[0, 2\pi]$. (06 Marks)
 - b. Obtain Fourier series for the function f(x) given by $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ (07 Marks)
 - c. Find the half range sine series of $f(x) = \frac{e^{ax}}{\sinh a \pi} \ln (0, \pi)$. (07 Marks)
- 4 a. Find the Fourier series expansion of f(x) given by $f(x) = \begin{cases} 1 & 0 < x < 1 \\ 2 & 1 < x < 3 \end{cases}$ (06 Marks)
- b. Find the half range sine series for x^2 in $(0,\pi)$. (07 Marks) c. The values of x and the corresponding values of f(x) over a period T are given below. Show that $f(x) = 0.75 + 0.37 \cos \theta + 1.004 \sin \theta$ where $\theta = \frac{2\pi x}{x}$.
 - x
 0
 T/6
 T/3
 T/2
 2T/3
 5T/6
 T

 f(x)
 1.98
 1.30
 1.05
 1.30
 -0.88
 -0.25
 1.98
- 5 a. State: i) Initial and final value theorems ii) Find the Z-transform of $\cos\left(\frac{n\pi}{2} + \frac{\pi}{4}\right)$. (06 Marks)
 - b. Find the complex Fourier transform of the function $f(x) = \begin{cases} 1 & \text{for } |x| \le a \\ 0 & \text{for } |x| > a \end{cases}$ Hence evaluate $\int_{-\infty}^{\infty} \left(\frac{\sin x}{x} \right) dx$ (07 Marks)
 - Compute the inverse Z-transform of $\frac{3z^2 + 2z}{(5z-1)(5z+2)}$ (07 Marks)

Download VTU Connect App Now from Google Play Store

Download VTU Connect App Now from Google Play Store

18MAT31

- 6 a. Find the Fourier cosine transform of $f(x) = \begin{cases} x, & 0 < x < 2 \\ 0, & \text{else where} \end{cases}$
- (06 Marks)
- b. Find the Z-transform of $2n + \sin \frac{n\pi}{4} + 1$.
- c. Solve the difference equation: $u_{n+2} 3u_{n+1} + 2u_n = 0$, with $u_0 = 0$ and $u_1 = -1$. (07 Marks)
- a. Find by Taylor's series method the value of y at x = 0.1 to five places of decimals from $\frac{dy}{dx} = x^2y - 1, y(0) = 1.$
 - b. Use fourth order Runge-Kutta method to solve $(x+y)\frac{dy}{dx} = 1$, y(0.4) = 1 at x = 0.5 correct to four decimal places.
 - c. If $\frac{dy}{dx} = 2e^x y$, y(0) = 2, y(0.1) = 2.010, y(0.2) = 2.040 and y(0.3) = 2.090, find y(0.4) correct to four decimal places by using Milne's predictor corrector method and applying corrector formula twice.
- 8 a. Using modified Euler's formula compute y(1.1) correct to five decimal places given that $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$ and y = 1 at x = 1. [taking h = 0.1].
 - b. Employ Taylor's series method to find y at x = 0.1 and 0.2 correct to four places of decimal.
 - Given $\frac{dy}{dx} 2y = 3c^x$, y(0) = 0. (07 Marks)

 c. Solve the differential equation $y' + y + xy^2 = 0$ with the initial values of $y: y_0 = 1$, $y_1 = 0.9008$, $y_2 = 0.8066$, $y_3 = 0.722$ corresponding to the values of $x: x_0 = 0$, $x_1 = 0.1$, $x_2 = 0.2$, $x_3 = 0.3$ by computing the value of y corresponding to x = 0.4 applying Adams Bashforth predictor and corrector formula. (07 Marks)
- 9 a. Given y'' xy' y = 0 with the initial conditions y(0) = 1, y'(0) = 0, compute y(0.2) using fourth order Runge-Kutta method.
 - b. Derive Euler's equation in the standard form $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$.
 - c. A heavy cable hangs freely under gravity between two fixed points. Show that the shape of the cable is a catenary. (07 Marks)
- 10 a. Apply Milne's method to compute y(0.8) given that y'' = 1 2yy' and the following table of initial values. (07 Marks)
- (06 Marks)
- c. Find the extremal of the functional : $\int_{0}^{x_{1}} (y^{2} + y'^{2} 2y \sin x) dx$
- (07 Marks)

18MAT31

 $\frac{1}{x^2} \frac{1}{x^3} \frac{dx}{dx}$ b. Find the Fourier Cosine transform of $\frac{4x}{f(x)} = \begin{cases} 4x, & 0 < x < 1 \\ 4 - x, & 1 < x < 4 \\ 0, & x > 4 \end{cases}$

c. Find the Z – transform of $\cos\left(\frac{n\pi}{2} + \frac{\pi}{4}\right)$.

 $\begin{array}{ll} \textbf{OR} & \textbf{a.} & \textbf{Solve the Integral equation} \\ & \int\limits_{0}^{\infty} f(\theta) cosc\theta \, \theta d\theta = \begin{cases} 1-\alpha & 0 \leq \alpha \leq 1, \text{hence evaluate } \int\limits_{0}^{\infty} \frac{\sin^{2}t}{t^{2}} \, dt. \\ \textbf{b.} & \textbf{Find the Inverse } Z - \text{transform of } \frac{22^{2}+3Z}{(z^{2}+2)(z^{2}+4)} \, \\ \textbf{e.} & \textbf{Using the } Z - \text{transform, solve } Y_{m2} - 4Y_{s} = 0, \text{ given } Y_{0} = 0, Y_{1} = 2. \end{cases}$

7 a. Using Taylor's series method, solve the Initial value problem $\frac{dy}{dx} = x^2y - 1$, y(0) = 1 at the point x = 0.1. Consider upto 4^{th} degree term.

dx
b. Use modified Euler's method to compute y(0.1), given that $\frac{dy}{dx} = x^2 + y$, y(0) = 1 by taking h = 0.05. Consider two approximations in each step. c. Given that $\frac{dy}{dx} = x - y^2$, find y at x = 0.8 with

(07 Marks)

OR

8 a. Solve the following by Modified Euler's method

 $\frac{dy}{dx} = x + |\sqrt{y}|$, y(0) = 1 at x = 0.4 by taking h = 0.2. Consider two modifications in each

step.

b. Given $\frac{dy}{dx} = 3x + \frac{y}{2}$, y(0) = 1. Compute y(0.2) by taking h = 0.2 using Runge – Kutta method of order IV. (07 Marks)

c. Given $\frac{dy}{dz} = (1+y)x^2$ and y(1) = 1, y(1,1) = 1.233, y(1,2) = 1.548, y(1,3) = 1.979, determine y(1,4) by Adam's Bashforth method. Apply corrector formula once. (07 Marks) 2 of 3

Download VTU Connect App Now from Google Play Store

18MAT31

(07 Marks)

18MAT31 9 a. Given $y'' \cdot xy' - y = 0$ with y(0) = 1, y'(0) = 0. Compute y(0.2) using Runge – Kutta method. (86 Marks) (07 Marks)

b. Derive Euler's equation in the form $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y} \right) = 0$. c. Prove that the geodesics on a plane are straight lines.

10 a. Find the curve on which functional $\int_{0}^{1} [(y')^{2} + 12xy]dx \text{ with } y(0) = 0 \text{ , } y(1) = 1 \text{ can be extremized.}$

b. Obtain the solution of the equation $\frac{2d^2y}{dx^2} = 4x + \frac{dy}{dx}$ by computing the value of dependent variable corresponding to the wake 1.4 of the independent variable by applying Milne's method using the following data. Apply corrector formula once. (07 Marks)

x 1 1,1 1,2 1.3 1.3 y 2 1,22156 2,4649 2,7514 y 2 1,23156 2,4649 2,7514 y 2 1,2318 2,6725 3,0657 c. A heavy cable hangs freely under gravity between two fixed points. Show that the shape of (07 Marks) the cable is Catenary $y = c \cosh \left(\frac{x+a}{c} \right)$.