北京师范大学 2020~2021 学年第二学期期中考试试卷

课程名称: 线性代数及其应用			[任课教师姓名: _黄华		
卷面总分: <u>10</u>	<u>0</u> 分 考试B	村长: <u>100</u> 分钟	考试类别:	闭卷 ■ 开	卷 □ 其他 □	
院 (系):		专业	/:		年级:	
姓 名:		学号:				
	,	,				
题号	第一题	第二题	第三题	第四题	总分	
得分						
阅卷教师(签字):						
一、判断对错,并给出理由(每小题5分,判断2分,理由3分,共30分)。						
1. 若 $m \times n$ 的矩阵 A 行等价于阶梯形矩阵 B , B 有 k 个非零行,则方程 A $\mathbf{x} = 0$ 的解空间的维数是 $m - k$ 。答:错 B 有 k 个非零行,意味着矩阵 A 有 k 个主元列,因此,其维数为 $n - k$						
2. 矩阵A的非零行构成 Row A的一组基。 答:错 矩阵A的线性无关行构成 Row A的一组基						
3. 若 A 是 $m \times n$ 的矩阵且 $rank A = m$,则线性变换 $\mathbf{x} \to A\mathbf{x}$ 是一对一的。 答: 错 只有 $rank A = n$ 时,才是一对一的						
4. <i>V</i> 是一个非 包含多于 <i>p</i> 个 答:错		量空间,若ran	$\mathrm{k}V=p$, S 为	是V的一个线性	生相关的子集,则 <i>S</i>	

5. 坐标变换矩阵总是可逆的。

S 包含的向量个数与p无关

答: 对

装

订

线

坐标变换矩阵的列是线性无关的, 且为方阵

6. 设f(t) = 3 + t, $g(t) = 3t + t^2$, 即g(t) = tf(t), 则 $\{f, g\}$ 是线性相关的。 答: 错

不满足线性关系

- 二、计算题(7-10每小题5分,11-12小题10分,共40分)
- 7. 确定h 和 k的值,使得下列方程组的解集(a)为空集,(b)包含唯一解,(c)包含无穷多解。

$$\mathbf{x}_1 + 3\mathbf{x}_2 = k$$
$$4\mathbf{x}_1 + h\mathbf{x}_2 = 8$$

解: 写方程组的增广阵, 并化为阶梯形

$$\begin{bmatrix} 1 & 3 & k \\ 4 & h & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & k \\ 0 & h-12 & 8-4k \end{bmatrix}$$

- (a) $h = 12, k \neq 2$
- (b) $h \neq 12$
- (c) h = 12, k = 2
- 8. 求如下矩阵A(见右页)的LU分解。

$$A = \begin{bmatrix} 2 & -4 & -2 & 3 \\ 6 & -9 & -5 & 8 \\ 2 & -7 & -3 & 9 \\ 4 & -2 & -2 & 1 \\ -6 & 3 & 3 & 4 \end{bmatrix}$$

解:

$$A = \begin{bmatrix} 2 & -4 & -2 & 3 \\ 6 & -9 & -5 & 8 \\ 2 & -7 & -3 & 9 \\ 4 & -2 & -2 & 1 \\ -6 & 3 & 3 & 4 \end{bmatrix} \sim \begin{bmatrix} 2 & -4 & -2 & 3 \\ 0 & 3 & 1 & -1 \\ 0 & -3 & -1 & 9 \\ 0 & 6 & 2 & -5 \\ 0 & -9 & -2 & 13 \end{bmatrix} \sim \begin{bmatrix} 2 & -4 & -2 & 3 \\ 0 & 3 & 1 & -1 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & 10 \end{bmatrix} \sim \begin{bmatrix} 2 & -4 & -2 & 3 \\ 0 & 3 & 1 & -1 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$= II$$

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 & 0 \\ 1 & -1 & 1 & 0 & 0 \\ 2 & 2 & -3/5 & 1 & 0 \\ -3 & -3 & 2 & 0 & 1 \end{bmatrix}$$

9. 计算如下矩阵B的行列式。

$$B = \begin{bmatrix} 4 & 8 & 8 & 8 & 5 \\ 0 & 1 & 0 & 0 & 0 \\ 6 & 8 & 8 & 8 & 7 \\ 0 & 8 & 8 & 3 & 0 \\ 0 & 8 & 2 & 0 & 0 \end{bmatrix}$$

解:按行或者按列展开,选择0最多的行或者列

$$\det B = (-1)^{2+2} \times 1 \times \begin{vmatrix} 4 & 8 & 8 & 5 \\ 6 & 8 & 8 & 7 \\ 0 & 8 & 3 & 0 \\ 0 & 2 & 0 & 0 \end{vmatrix} = (-1)^{4+2} \times 2 \times \begin{vmatrix} 4 & 8 & 5 \\ 6 & 8 & 7 \\ 0 & 3 & 0 \end{vmatrix}$$

$$= (-1)^{3+2} \times 2 \times 3 \times \begin{vmatrix} 4 & 5 \\ 6 & 7 \end{vmatrix} = -6 \times (4 \times 7 - 5 \times 6) = 12$$

10. 设
$$CD = \begin{bmatrix} 5 & 4 \\ -2 & 3 \end{bmatrix}$$
, $D = \begin{bmatrix} 7 & 3 \\ 2 & 1 \end{bmatrix}$, 求 C 。

解: det $D = 7 - 3 \times 2 = 1 \neq 0$

$$D^{-1} = \begin{bmatrix} 1 & -3 \\ -2 & 7 \end{bmatrix}$$

$$C = CDD^{-1} = \begin{bmatrix} 5 & 4 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ -2 & 7 \end{bmatrix} = \begin{bmatrix} -3 & 13 \\ -8 & 27 \end{bmatrix}$$

11. 求rank F、dim Nul F以及 Row A、Col F、Nul F的一个基。

$$F = \begin{bmatrix} 2 & -1 & 1 & -6 & 8 \\ 1 & -2 & -4 & 3 & -2 \\ -7 & 8 & 10 & 3 & -10 \\ 4 & -5 & -7 & 0 & 4 \end{bmatrix}$$

12. 设
$$P = \begin{bmatrix} 1 & 2 & -1 \\ -3 & -5 & 0 \\ 4 & 6 & 1 \end{bmatrix}$$
, $\mathbf{v}_1 = \begin{bmatrix} -2 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -8 \\ 5 \\ 2 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -7 \\ 2 \\ 6 \end{bmatrix}$, 求 \mathbb{R}^3 中的一组基

 $\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\}$,使得P是由基 $\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\}$ 到 $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ 的坐标变换矩阵。

记
$$U = [\mathbf{u}_1 \quad \mathbf{u}_2 \quad \mathbf{u}_3], \ V = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{v}_3]$$
则 $U = VP$

$$\mathbf{u}_1 = \begin{bmatrix} -6 \\ -5 \\ 21 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} -6 \\ -9 \\ 32 \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} -5 \\ 0 \\ 3 \end{bmatrix}$$

三、问答题(10分)

13. 若A是 $m \times n$ 的矩阵,Row A、Col A、Nul A、Row A^T 、Col A^T 和 Nul A^T ,哪一个子空间在 \mathbb{R}^m 中,哪一个子空间在 \mathbb{R}^n 中?共有多少个不同的子空间?

Col A 、Row A^T 、Nul A^T 在 \mathbb{R}^m 中

Row A、Nul A、Col A^T 在 \mathbb{R}^n 中

因为 Col $A = \text{Row } A^T$, Row $A = \text{Col } A^T$, 所以共有 4 个不同的子空间

四、证明题(每题各10分,共20分)

14. 设A是 $m \times n$ 的矩阵,B是 $m \times m$ 的可逆矩阵,证明: rank BA = rank A。证明:

 $B \not = m \times m$ 的可逆矩阵,则 $B = E_1 \cdot E_2 \cdot \cdots \cdot E_p$, E_i 为初等矩阵

 E_iA 为对A进行初等行变换,而初等行变换不改变A的列的相关性,也就是说,不改变A的秩

$$BA = E_1 \cdot E_2 \cdot \cdots \cdot E_p \cdot A$$
, $M \subseteq A$ $M \subseteq BA = A$

15. 设A是 $m \times n$ 的矩阵,B是 $n \times p$ 的矩阵,且 $AB = \mathbf{0}$ 。证明: rank $A + \text{rank } B \leq n$ 。证明:

 $AB = \mathbf{0}$,说明B的各列都满足方程 $A\mathbf{x} = \mathbf{0}$,也就是说B的各列都在 Nul A,从而,rank $B \leq \dim \text{Nul } A$

因为 $\operatorname{rank} A + \operatorname{Nul} A = n$

所以 $\operatorname{rank} A + \operatorname{rank} B \leq n$