EC504 ALGORITHMS AND DATA STRUCTURES FALL 2020 MONDAY & WEDNESDAY 2:30 PM - 4:15 PM

Prof: David Castañón, dac@bu.edu

GTF: Mert Toslali, toslali@bu.edu

Haoyang Wang: haoyangw@bu.edu

Christopher Liao: <u>cliao25@bu.edu</u>

Graphs

in the "real world"

- Networks are graphs
 - Information: WWW, citation, ...
 - Social: co-actor, dating, messenger, communities, ...
 - Technological: Internet, power grids, airline routes, ...
 - Biological: Neural networks, food web, blood vessels, ...
- Object hierarchies are graphs
- Circuit layouts are graphs
- Computer programs are graphs

Graph Traversals

- Traversals of graphs are also called *searches*
- We can use either breadth-first or depth-first traversals
 - Breadth-first requires a queue
 - Depth-first requires a stack
- We each case, we will have to track which vertices have been visited requiring $\Theta(|V|)$ memory
- The time complexity cannot be better than and should not be worse than $\Theta(|V| + |E|)$
 - Connected graphs simplify this to $\Theta(|E|)$
 - Worst case: $\Theta(|V|^2)$

Applications

Applications of tree traversals include:

- Determining connectedness and finding connected sub-graphs
- Determining the path length from one vertex to all others
- Testing if a graph is bipartite
- Branch and bound search
- Topological Sort
- **–** ...

Strongly-Connected Components

- o Kosaraju's Algorithm
 - o Perform DFS on graph G = (V, E), Decele
 - o Number vertices according to their finishing time in DFS of G
 - Perform DFS on Gr = (V,Er), where Er are reverse of edges in E, selecting nodes in decreasing order of finishing time in previous
 - Strongly connected components = reachable trees obtained in last DFS

Reverse graph with distance labels

Strongly Connected Components

First vertex in stack: 16 — No out neighbors, 16 pops, it is its own tree, so it is an isolated

Next vertex in stack: 14: adds 11: adds 12: adds 13; Pop 13, 12, 11, 14 as strongly connected component.

Next highest vertex into stack: 6: adds 5: Tries to add 16, but it has already been popped. Pop 5, 6: Strongly connected component.

Add 3 to stack: tries to add 6, but it has popped already So 3 is its own connected component.

Strongly-Connected Components

Correctness

- o If y and w are in a strongly-connected component
- o Then there is a path from v to w and a path from w to v
- o Therefore, there will also be a path between v and w in G and Gr

o Running time o Two executions of DFS o O(|E|+|V|)

- o O(|E|+|V|)

Weighted Graphs

- A weighted graph G=(V,E) is a graph along with a weight function $w:E\to\Re$
- Weighted graphs can be directed or undirected

Spanning Trees

- A **spanning tree** of an undirected graph is
 - edge subset forming a tree that spans every vertex
 - ▶ #V 1 edges

Minimum Spanning Trees

• A **minimum spanning tree** (MST) of an undirected weighted graph (V, E) with weights $w(\cdot)$:

Connected subgraph (V, E') which is a tree and for which $\sum_{i} w(i, j)$ is minimized

MST Problem

- Given a weighted graph G, we want a subgraph $G' = (V, E'), \ E' \subseteq E$, such that all vertices are connected on G' Subgraph $G' = (V, E'), \ E' \subseteq E$ total weight $\sum_{(x,y) \in E'} w(x,y)$ is minimized
- Spanning tree: a tree containing all vertices in G
- Question: Find a spanning tree with minimum weight.
 - The problem is thus called Minimum Spanning Tree (MST)

MST: Problem and Motivation

- Suppose we have n computers,
 connected by wires as given in the graph
- Each wire has a renting cost
- We want to select some wires, such that all computers are connected (i.e. every two can communicate)
- Algorithmic question: How to select a subset of wires with the minimum renting cost?
- Answer to this graph?

Applications

- Networks
 - electric, computer, water, transportation
- Computer vision
 - Facial recognition
 - Handwriting recognition
 - ▶ Image segmentation
- ▶ Low-density parity check codes (LDPC)

Minimum Spanning Tree Algorithms

Kruskal's algorithm (1956)

ON THE SHORTEST SPANNING SUBTREE OF A GRAPH AND THE TRAVELING SALESMAN PROBLEM

JOSEPH B. KRUSKAL, JR.

Several years ago a typewritten translation (of obscure origin) of [1] raised some interest. This paper is devoted to the following theorem: If a (finite) connected graph has a positive real number attached to each edge (the *length* of the edge), and if these lengths are all distinct, then among the spanning¹ trees (German: Gerüst) of the graph there is only one, the sum of whose edges is a minimum; that is, the shortest spanning tree of the graph is unique. (Actually in [1] this theorem is stated and proved in terms of the "matrix of lengths" of the graph, that is, the matrix $||a_{ij}||$ where a_{ij} is the length of the edge connecting vertices i and j. Of course, it is assumed that $a_{ij} = a_{ij}$ and that $a_{ij} = 0$ for all i and j.)

The proof in [1] is based on a not unreasonable method of constructing a spanning subtree of minimum length. It is in this construction that the interest largely lies, for it is a solution to a problem (Problem 1 below) which on the surface is closely related to one version (Problem 2 below) of the well-known traveling salesman problem.

Minimum Spanning Tree Algorithms

▶ Prim-Jarnik Algorithm

vojtěch jarník: problému min

opisu panu O. BORŮVI

Shortest Connection Networks And Some Generalizations

By R. O PRIM

(Manuscript received May 8, 1957)

The basic problem considered is that of interconnecting a given set of terminals with a shortest possible network of direct links. Simple and practical procedures are given for solving this problem both graphically and computationally. It develops that these procedures also provide solutions for a much broader class of problems, containing other examples of practical interest.

Preliminary ideas

- Build minimal spanning trees incrementally
- Show by induction that algorithm is correct at each step
- ► Concept: A set of edges $T \subset E$ is **promising** if it is a subset of a P minimal spanning tree (V, E')
 - Let $B = \{v \in V : v \in e \text{ for some } e \in T\}$
 - Then, (B,T) is a subgraph of (V,E) which is a **Dee**

Greedy Algo...

Graph Cuts

• A cut is any partition of the vertices into two groups, B and V-B

• with edges **b** and **e** joining the partitions

Useful Property

- **Lemma**: Let $T \subset E$, and $B \supseteq V, B \neq V$. Assume T is a promising set of edges for the MST problem in (V,E), and no edge in T leaves B (no edge across cut (B, V-B)). Let e^* be the smallest weight edge in E such that $e^* = \{i, j\}, i \in B, j \notin B$. Then, $T' = T \cup \{e^*\}$ is a promising set.
- Allows us to grow a promising set! (Induction)

Proof.

(B, V-B) form a partition of V: a cut

Edge $e^* = \{i, j\}, i \in B, j \notin B$ has the smallest weight among all edges that cross the cut.

Case 1: MST includes e^*

- ▶ Let MST (G, E') where $T \subset E'$ be such that $e^* \in E'$
- Simple: then $T \cup \{e^*\} \subset E'$ is promising

Case2: MST does not includes e

- ▶ Let MST (G, E') where $T \subset E'$ be such that $e^* \notin E'$
- Hard: Look at cycle including e. Swap b for e^* in E', total weight must not increase, hence have MST $(V, E' \cup \{e^*\} \{b\})$

Proof of Correctness

Lemma: Proof (cont)

Since T is promising, let MT = minimum spanning tree $(V, E'), T \subset E'$.

If $e^* \in E'$, then $T' = T \cup \{e^*\} \subset E'$ has no cycles, and is thus a promising set of edges, proving the theorem.

If $\{i, j\} \notin E'$, then $E' \cup \{e^*\}$ has one cycle that includes e^* , as it has #V edges and a tree must have at most #V-1 edges

In that cycle, there exists edge b that leaves B, hence $b \notin T$

Note $w(b) \ge w(e^*)$ by how we selected e^*

Note: $E' \cup \{e^*\} - \{b\}$ leaves graph connected, and has number of edges = #V-1, and its total weight is no greater than the weight of E'

Hence, $(V, E' \cup \{e^*\} - \{b\})$ is also MST, and $T' = T \cup \{e^*\} \subset E' \cup \{e^*\} - \{b\}$ so T' is a promising subset

- Sort edges by weight in ascending order
- Start with empty set T (note: it is promising)
- For each edge e in sorted list
 - If adding edge e to T does not create cycle in $(V, T \cup e)$
 - ...add it to MST: $T = T \cup \{e\}$
 - ➤ Claim: T is now promising set with one more edge
- Stop when you have #V − 1 edges in T

Proof of Correctness \square

- At any stage in algorithm, T is a forest (no cycles can be created)
- At any stage in algorithm, T is a promising set
 - True initially when $T = \emptyset$
 - If at a stage in algorithm, vertex e^* is the lowest weight edge remaining, and it does not form a cycle with T, then:
 - Let $\{a,b\} = e^*$; let B be vertices in T connected to a
 - Then, no edge in T leaves B and e^* is minimum weight edge among edges that leave B
 - By lemma, $T \cup \{e^*\}$ is promising set
- Thus, algorithm converges to MST

Kruskal

- How can we tell if adding edge will create cycle?
- Start by giving each vertex its own "cloud", which consists of all connected vertices in current T (Disjoint Sets)
- If both ends of lowest-cost edge are in same cloud
 - we know that adding the edge will create a cycle!
- When edge is added to MST
 - merge clouds of the endpoints

Kruskal Pseudo-Code

```
function kruskal(G):
    // Input: undirected, weighted graph G
    // Output: list of edges in MST
    for vertices v in G:
        makeCloud(v) // put every vertex into it own set
    MST = []
    Sort all edges
    for all edges (u,v) in G sorted by weight:
        if u and v are not in same cloud:
            add (u,v) to MST
            if size(MST) = |V| - 1:
                 break
            merge clouds containing u and v
    return MST
```


edges =
$$[(C,E),(D,F),(B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]$$

2 3 4 4 4 5 6 7

edges = [(C,E),(D,F),(B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

edges = [(D,F),(B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

edges = [(B,C),(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]

edges =
$$[(E,F),(B,D),(A,B),(A,D),(B,E),(B,F)]$$

edges =
$$[(A,B),(A,D),(B,E),(B,F)]$$

edges =
$$[(A,D),(B,E),(B,F)]$$

Merging Clouds Efficiently (Naive way)

- Keep track of clouds using disjoint sets (Union-Find)
 - Edge forms a cycle if both ends of the edge belong to the same disjoint set (have the same root!)
 - Checking that an edge forms a cycle has amortized complexity $O(\log^*(|V|)) \approx O(1)$

Kruskal Runtime

7=4-10d.

- O(|V|) for iterating through vertices
- → O(|E|log|E|) for sorting edges
- O(|E|×1) for iterating through edges and merging clouds with path compression
- \rightarrow O(|V|+|E|log|E|+|E|×1)
 - \rightarrow = O(|V|+|E|log|E|)
- O(|V|+|E|log|E|)
 - ▶ Better than simple O(|V|³) without disjoint sets

Disjoint components:

1 2 3 4 5 6 7 8 9

1) Add {3,6}

Disjoint components:

3 1 2 4 5 7 8 9

ı

6

2) Add {4,6}

3 1 2 5 7 8 9

/\

6 4

Minimum Spanning Tree

Empty

Minimum Spanning Tree

3--6

3--6--4

Sorted edges

{3,6}, {4,6},{7,9},{8,9},{3,4},{6,7}, {2,5},{2,4}{5,6},{7,8}, {2,7},{1,2}, {6,8},{5,9},{1,3}

Disjoint components:

- 3) Add {7,9}
 - 3 7 1 2 5 8
- /\
- 6 4 9
- 4) Add {8,9}
- 3 7 1 2 5
- /\ /\
- 6 4 9 8

Minimum Spanning Tree

Sorted edges

{3,6}, {4,6},{7,9},{8,9},{3,4},{6,7}, {2,5},{2,4}{5,6},{7,8}, {2,7},{1,2}, {6,8},{5,9},{1,3}

Disjoint components:

5) Discard {3,1} (cycle); add {6,7}

3 1 2 5

/ | \

6 4 7

/ \

9 8

6) Add {2,5}

3 12

/ | \

6 4 7 5

/ \

9 8

Minimum Spanning Tree

Sorted edges

{3,6}, {4,6},{7,9},{8,9},{3,4},{6,7}, {2,5},{2,4}{5,6},{7,8}, {2,7},{1,2}, {6,8},{5,9},{1,3}

Disjoint components:

1

/ | \

6 4 7 2

/ \ \

Minimum Spanning Tree

7--9--8

8) Discard (5,6), (7,8), (2,7). Select arc (1,2). DONE

Sorted edges

{3,6}, {4,6},{7,9},{8,9},{3,4},{6,7}, {2,5},{2,4}{5,6},{7,8}, {2,7},{1,2}, {6,8},{5,9},{1,3}