Package 'cartogramR'

September 3, 2024		
Version 1.2-0		
Date 2024-09-03		
Title Continuous Cartogram		
Description Procedures for making continuous cartogram. Procedures available are: flow based cartogram (Gastner & Newman (2004) <doi:10.1073 pnas.0400280101="">), fast flow based cartogram (Gastner, Seguy & More (2018) <doi:10.1073 pnas.1712674115="">), rubber band based cartogram (Dougenik et al. (1985) <doi:10.1111 j.0033-0124.1985.00075.x="">).</doi:10.1111></doi:10.1073></doi:10.1073>		
Depends R ($>= 3.5.0$)		
Imports sf, data.table, cleancall		
LinkingTo cleancall		
Suggests lwgeom		
SystemRequirements FFTW (>=3.3.1); possible package: fftw-devel (rpm), libfftw3-dev (deb) or fftw (brew).		
License MIT + file LICENSE		
RoxygenNote 7.2.3		
Encoding UTF-8		
NeedsCompilation yes		
Author Pierre-Andre Cornillon [aut, cre], Florent Demoraes [aut], Flow-Based-Cartograms [cph] (Author of core C code for gsm and gn procedures)		
Maintainer Pierre-Andre Cornillon <pre><pre></pre></pre>		
Repository CRAN		
Date/Publication 2024-09-03 14:50:02 UTC		
Contents		
as.sf		

2 as.sf

	as.sfc	3
	as.sfc.cartogramR	4
	as.sfmultipolygon	4
	cartogramR	5
	cartogramR_options	6
	check_ring_dir	8
	dist_between_vertices	9
	france_dept	9
	france_rivers	10
	from_coord_polygon	10
	grid_analysis	11
	make_layer	12
	plot.cartogramR	
	plot.dbv.cartogramR	13
	plot.gridanalysis.cartogramR	14
	precartogramR	
	print.cartogramR	16
	print.summary.cartogramR	
	residuals.cartogramR	17
	summary.cartogramR	
	summary.dbv.cartogramR	
	summary.gridanalysis.cartogramR	
	to_coord_polygon	
	usa	
	warp_features	22
Index		23

as.sf

Coerce an object to a sf object

Description

Coerce an object to a sf object

Usage

```
as.sf(x, ...)
```

Arguments

x object to be coerced

... arguments passed to or from other methods.

Value

an sf object

as.sf.cartogramR 3

as.sf.cartogramR

Coerce a cartogramR to a sf object

Description

Coerce a cartogramR to a sf object returning the sf object used to construct the cartogram with the cartogram as geometry and some more attributes

Usage

```
## S3 method for class 'cartogramR' as.sf(x, ...)
```

Arguments

x a cartogramR object

... arguments passed to or from other methods.

Value

a sf object including all the data (attributes) contained in the original sf object used to construct the cartogram and

- original areas of region (orig_area)
- final/deformed areas of region (final_area)
- target areas of region (target_area)
- original centers (x_orig_centers and y_orig_centers)
- final centers (x_final_centers and y_final_centers)

as.sfc

Coerce an object to a sfc object

Description

Coerce an object to a sfc object

Usage

```
as.sfc(x, ...)
```

Arguments

x object to be coerced

... arguments passed to or from other methods.

4 as.sfmultipolygon

Value

a sfc object

as.sfc.cartogramR

Coerce a cartogramR to a sfc object

Description

Coerce a cartogramR to a sfc object extracting the component cartogram of the cartogramR object

Usage

```
## S3 method for class 'cartogramR' as.sfc(x, ...)
```

Arguments

x a cartogramR object

... arguments passed to or from other methods.

Value

a sfc object

as.sfmultipolygon

Transform a sf object with several rows (polygons) by region to an sf object with one row by region and thus one multipolygon by region

Description

Transform a sf object with several rows (polygons) by region to an sf object with one row by region and thus one multipolygon by region

Usage

```
as.sfmultipolygon(data, idregion, closepolygon = FALSE)
```

Arguments

data a sf object

idregion a character string which indicates the name of the column (in data object) which

contains the region identifier.

closepolygon a boolean (default to FALSE) if TRUE it controls if polygons are closed and if not

add the first vertice at the end.

Value

a sf object with one row by region and one multipolygon by region.

cartogramR 5

cartogramR	Make a continuous cartogram (density equalizing maps)

Description

Make a continuous cartogram (density equalizing maps)

Usage

```
cartogramR(
  data,
  count,
  method = c("gsm", "gn", "dcn", "GastnerSeguyMore", "GastnerNewman",
        "DougenikChrismanNiemeyer"),
  options = NULL
)
```

Arguments

data	a sf object which contains at least two columns: obviously a geometry column (giving the map) and a column which contains a count by region (leading to a density by region, density to be equalized by deformation). Each row of data is a region and contains the simple feature geometry of type POLYGON or MULTIPOLYGON. Polygon ring directions are not checked but exterior ring must counter clockwise and holes clockwise (use option check_ring_dir of sf::st_read to achieve the right orientation of ring direction on import or use check_ring_dir function)
count	a character string which indicates the name of the column (in data object) which contains the count by region.
method	the method to be used, can be one of the following: gsm or GastnerSeguyMore (default), gn or GastnerNewman, dcn or DougenikChrismanNiemeyer.
options	a named list given to cartogramR_options function which process options see cartogramR_options for details. Default to NULL.

Value

A cartogramR object: a list with the following components:

- cartogram: a sf object (in the same order of data or sorted by idregion see reordered argument) which contains the initial data (without the geometry) with three additionnal columns (orig_area: original areas of regions, final_area: final areas of regions in the cartogram and target_areas the targeted area) and a geometry part which is the cartogram (ie the initial polygons after deformation)
- orig_centers: the initial centers calculated with sf::st_point_on_surface
- final_centers: the centers after deformation

6 cartogramR_options

• gridx: (for flow-based method) final grid (x-axis) if requested (see cartogramR_options for details).

• gridy: (for flow-based method) final grid (y-axis) if requested (see cartogramR_options for details). with additionnal attributes.

References

- Dougenik, J., Chrisman, R. & Niemeyer, D. (1985). An algorithm to construct continuous area cartograms. Professional Geographer **37**: 75-81.
- Gastner, M. & Newman, M.E.J. (2004). Diffusion-based method for producing density equalizing maps. *Proc. Natl. Acad. Sci. USA*, **101**:7499-7504
- Gastner, M., Seguy, V. & More, P. (2018). Fast flow-based algorithm for creating density-equalizing map projections. *Proceedings of the National Academy of Sciences USA*, **115**:E2156-E2164, website: go-cart

Examples

```
data(usa)
carto <- cartogramR(usa, "electors64")
plot(carto)
summary(carto)</pre>
```

cartogramR_options

Set the options of cartogramR in the correct format

Description

Set the options of cartogramR in the correct format

Usage

```
cartogramR_options(
  options,
  method = c("gsm", "gn", "dcn", "GastnerSeguyMore", "GastnerNewman",
        "DougenikChrismanNiemeyer")
)
```

Arguments

options

a named list with some (or all) the following components:

- maxit: (all method) the maximum number of iterations, default to 50.
- maxit_internal: ("gsm" or "gn") the maximum number of internal iterations, default to 10000.
- absrel: (all method) boolean, if TRUE relative convergence if FALSE absolute convergence (default to TRUE)

cartogramR_options 7

• abserror: (all method) Areas on cartogram differ at most by an (absolute value of) error of abserror. That is, $max_{polygons}|area_on_cartogram - target_area| <= abserror$ (default to 10000)

- abstol: ("dcn") the absolute convergence error tolerance: $max_{\{polygons\}}|area(i)-area(i-1)|$ default to 1000
- relerror: (all method) Areas on cartogram differ at most by an (absolute value of) relative error of relerror. That is, $max_{\{polygons\}}|area_on_cartogram/target_area-1| <= relerror$ (default to 0.01)
- reltol: ("dcn") the absolute convergence tolerance: $max_{\{polygons\}}abs((area(i)-area(i-1))/area(i-1))$ default to 1e-3
- L: ("gsm" or "gn") integer, gives the value of L (default is 512), must be a power of two (for fftw)
- mp: (all method) if a region contains exactly zero population, it will be replaced by mp times the smallest (strictly) positive population in any region (default to 0.2)
- pf: ("gsm" or "gn") Determines space between map and boundary (default to 1.5)
- sigma: ("gsm" or "gn") Width of Gaussian blur to smoothen the density (default to 5)
- center: ("gsm" or "gn") either a character string (only possible choices are "centroid" or "point_on_surface") or a function. If the object is a function, it will be used to calculate the "center" of polygons; "point_on_surface" will use the function sf::st_point_on_surface while "centroid" (the default) will use sf::st_centroid.
- verbose: (all method) integer giving the verbosity level (default to 0, not verbose)
- grid: ("gsm" or "gn") boolean, if TRUE export the final grid from flow algorithm (default to TRUE). Setting to FALSE
- check.ring.dir: (all method) boolean, if TRUE controls polygons orientation (default to TRUE)
- check.only: (all method) boolean, if TRUE control only polygons orientation and no replacement is done (default to FALSE)

method

the method to be used, can be one of the following: gsm or GastnerSeguyMore (default), gn or GastnerNewman, dcn or DougenikChrismanNiemeyer.

Value

a list to be processed by cartogramR

References

- Dougenik, J., Chrisman, R. & Niemeyer, D. (1985). An algorithm to construct continuous area cartograms. Professional Geographer **37**: 75-81.
- Gastner, M. & Newman, M. E. J. (2004). Diffusion-based method for producing density equalizing maps. *Proc. Natl. Acad. Sci. USA*, 101:7499-7504

8 check_ring_dir

 Gastner, M., Seguy, V. & More, P. (2018). Fast flow-based algorithm for creating densityequalizing map projections. *Proceedings of the National Academy of Sciences USA*, 115:E2156-E2164

Examples

```
data(usa)
carto1 <- cartogramR(usa, "electors64", options=list(verbose=1, L=256))
plot(carto1)</pre>
```

check_ring_dir

Polygon rings directions are checked and corrected if asked.

Description

Polygon ring are seen from above: exterior ring counter clockwise, holes clockwise

Usage

```
check_ring_dir(polygons, check.only = TRUE)
```

Arguments

polygons a sfc object which contains simple feature geometry of types POLYGON or MULTIPOLYGON check only a boolean which indicates if the function only checks the ring direction (check only=TRUE)

or checks and corrects the polygon direction (check.only=FALSE)

Value

Either a logical vector which indicates if line i of polygons is in the right direction (TRUE) or not or the corrected sfc object

Examples

```
data(usa)
all(check_ring_dir(sf::st_geometry(usa), check.only=TRUE))
```

dist_between_vertices 9

dist_between_vertices Analyse some of the grid options

Description

Analyse some of the grid options

Usage

```
dist_between_vertices(data)
```

Arguments

data

a sf object to be used in cartogram.

Value

a 'dbv.cartogramR' object which is a data-table which contains distance between vertices ('dbv') and polygons names ('L1', 'L2', 'L3') inherited from [sf::st_coordinates]

Examples

```
data(usa)
dbv <- dist_between_vertices(data=usa)
summary(dbv)</pre>
```

france_dept

Map of the population of mainland France (year 2018)

Description

This data set is a basemap of mainland France with the population in 2018 (pop2018), the number of physicians in 2018 (n_physicians), the number of general practitioner in 2018 (n_gp) and the number of general practitioner for 100000 inhabitants in 2018 (n_gp_per100000) in each department (dept_name or id).

Usage

```
data(france_dept)
```

Format

A sf object containing 8 columns of data and the geometry Projected CRS: RGF93 / Lambert-93 (EPSG: 2154)

Source

https://www.data.gouv.fr/fr/datasets/admin-express/#_

References

- https://www.insee.fr/fr/statistiques/2012713#tableau-TCRD_004_tab1_departements
- https://www.insee.fr/fr/statistiques/2012677#tableau-TCRD_068_tab1_departements

france_rivers

Map of french rivers of mainland France

Description

This data set is a basemap of mainland french rivers (name or id).

Usage

```
data(france_rivers)
```

Format

A sf object containing 2 columns of data and the geometry Projected CRS: RGF93 / Lambert-93 (EPSG: 2154)

Source

```
https://geoservices.ign.fr/telechargement-api
```

from_coord_polygon

Transform from coordinates system used in the polygons to coordinates system used in flow based cartogram

Description

Apply the mapping from the coordinates system used in the polygons (caracterised by the CRS) to the coordinates system used in flow based cartogram

Usage

```
from_coord_polygon(coord, carto)
```

Arguments

coord a vector of length 2 or a two columns matrix containing xy coordinates to trans-

form

carto a cartogramR object

grid_analysis 11

Value

a vector of length 2 or a two columns matrix containing xy coordinates in the coordinate systems of polygons used to build the cartogram

Examples

```
data(usa)
carto <- cartogramR(usa, "electors64")
from_coord_polygon(c(-0.007, -0.348), carto)</pre>
```

grid_analysis

Analyse some of the grid options

Description

Analyse some of the grid options

Usage

```
grid_analysis(data, gridpower2 = 8:11, pf = 1.5, verbose = FALSE)
```

Arguments

data a sf object to be used in cartogram.

gridpower2 a vector of exponent (to be raised at the power of 2) that gives the log2(size) of

the grid (default to '8:11')

pf Determines space between map and boundary (default to 1.5) verbose a boolean object to set on verbose mode (default to 'TRUE')

Value

a 'gridanalysis.cartogramR' object which is a matrix

Examples

```
data(usa)
ga <- grid_analysis(data=usa, gridpower2=4:8, verbose=TRUE)
summary(ga)</pre>
```

12 plot.cartogramR

make_layer

Make a layer

Description

Create a sfc object containing final centers, original centers, centers displacement, original graticule or final graticule.

Usage

```
make_layer(
    x,
    type = c("final_centers", "original_centers", "centers_translation", "final_graticule",
        "original_graticule")
)
```

Arguments

Χ

a cartogramR object

type

a character string giving the type of layer: - "final_centers": if method is dcn, sf::st_centroid is applied on deformed/cartogram region; if method is gsm or gn (ie flow based), initial "centers" are calculated and the cartogram deformation is applied on these "centers" giving the final_centers. - "original_centers" if method is dcn, sf::st_centroid is applied on original regions); if method is gsm or gn (ie flow based), initial "centers" are calculated using cartogramR center option see cartogramR_options. - "centers_translation" linestring giving the movement of centers due to the deformation used to have the cartogram - "final_graticule" (method gsm or gn) graticule obtained by the cartogram algorithm - "original_graticule" (method gsm or gn) graticule used by the cartogram algorithm

Value

a sfc object

plot.cartogramR

Plot a cartogram object

Description

Plot a cartogram object

Usage

```
## S3 method for class 'cartogramR'
plot(x, ...)
```

plot.dbv.cartogramR 13

Arguments

x a cartogram object... arguments passed to or from other methods.

Value

No return value, called for side effects

Examples

```
data(usa)
carto <- cartogramR(usa, "electors64")
plot(carto)</pre>
```

plot.dbv.cartogramR

Plot a dbv.cartogram object

Description

Plot a dbv.cartogram object

Usage

```
## S3 method for class 'dbv.cartogramR'
plot(x, which = 1:2, ask = TRUE, key = TRUE, last = 10, probminx = 0.9, ...)
```

Arguments

X	a dbv.cartogram object
which	if a subset of the plots is required, specify a subset of the numbers 1:2
ask	logical; if TRUE, the user is asked before each plot, see par(ask=.)
key	logical; if TRUE, a legend is drawn
last	draw the density of distance between vertices for the last coordinates
probminx	the sample quantiles (of distance between vertices) corresponding to the probability is used as a minimum of x-axis for the density plot (used only if last is $NULL$)
	arguments passed to or from other methods.

Details

The first plot is the density of distance between consecutive vertice by region. Only the upper quantiles are shown. The second plot is a barplot by region of the number of vertice divided by the perimeter of the region

Value

No return value, called for side effects

Examples

```
data(usa)
precarto <- precartogramR(usa, method="dcn")
plot(precarto)</pre>
```

```
\verb|plot.gridanalysis.cartogram|R|
```

Plot a gridanalysis.cartogram object

Description

Plot a gridanalysis.cartogram object

Usage

```
## S3 method for class 'gridanalysis.cartogramR'
plot(
    x,
    nthsmallest = 5,
    redrawxaxis = TRUE,
    type = "b",
    xlab = NULL,
    ylab = NULL,
    ylim = c(0, 20),
    ...
)
```

Arguments

x	a gridanalysis.cartogram object
nthsmallest	plot only the nthsmallest values among all polygons
redrawxaxis	if TRUE redraw ticks and labels of x axe at grid size on log scale
type	character string (length 1 vector) or vector of 1-character strings indicating the type of plot for each polygons, see graphics::matplot for all possible types.
xlab	titles for x axe, as in graphics::matplot.
ylab	titles for y axe, as in graphics::matplot.
ylim	ranges of y axe, as in graphics::matplot.
	arguments passed to or from other methods.

precartogramR 15

Value

No return value, called for side effects

Examples

```
data(usa)
precarto <- precartogramR(usa, method="gsm", pf=1.2, verbose=TRUE)
plot(precarto)</pre>
```

precartogramR

Make a pre cartogram analysis

Description

Make a pre cartogram analysis

Usage

```
precartogramR(
  data,
  method = c("gsm", "gn", "dcn", "GastnerSeguyMore", "GastnerNewman",
    "DougenikChrismanNiemeyer"),
  gridpower2 = 8:11,
  pf = 1.5,
  verbose = FALSE
)
```

Arguments

data

a sf object which contains at least two columns: obviously a geometry column (giving the map) and a column which contains a count by region (leading to a density by region, density to be equalized by deformation). Each row of data is a region and contains the simple feature geometry of type POLYGON or MULTIPOLYGON. Polygon ring directions are not checked but exterior ring must counter clockwise and holes clockwise (use option check_ring_dir of sf::st_read to achieve the right orientation of ring direction on import or use check_ring_dir function)

method

the method to be used, can be one of the following: gsm or GastnerSeguyMore (default), gn or GastnerNewman, dcn or DougenikChrismanNiemeyer.

gridpower2

a vector of exponent (to be raised at the power of 2) that gives the log2(size) of the grid (default to 8:11); meaningful for method gsm or GastnerSeguyMore

(default), gn or GastnerNewman

pf

Determines space between map and boundary (default to 1.5); meaningful for method gsm or GastnerSeguyMore (default), gn or GastnerNewman

verbose

a boolean object to set on verbose mode (default to FALSE); meaningful for

method gsm or GastnerSeguyMore (default), gn or GastnerNewman

print.cartogramR

Value

either a dbv.cartogramR object (if method is dcn or DougenikChrismanNiemeyer) see dist_between_vertices for details or a gridanalysis.cartogramR (if method is gsm or GastnerSeguyMore (default), gn or GastnerNewman) see grid_analysis for details

References

- Dougenik, J., Chrisman, R. & Niemeyer, D. (1985). An algorithm to construct continuous area cartograms. Professional Geographer **37**: 75-81.
- Gastner, M. & Newman, M.E.J. (2004). Diffusion-based method for producing density equalizing maps. *Proc. Natl. Acad. Sci. USA*, **101**:7499-7504
- Gastner, M., Seguy, V. & More, P. (2018). Fast flow-based algorithm for creating densityequalizing map projections. *Proceedings of the National Academy of Sciences USA*, 115:E2156-E2164

Examples

```
data(usa)
precarto <- precartogramR(usa)
plot(precarto)
summary(precarto)</pre>
```

print.cartogramR

Print a cartogram object

Description

Print a cartogram object

Usage

```
## S3 method for class 'cartogramR'
print(x, ...)
```

Arguments

x a cartogramR object

... arguments passed to or from other methods.

Value

No return value, called for side effects

```
print.summary.cartogramR
```

Print a summary of a cartogram object

Description

Print a summary of a cartogram object

Usage

```
## S3 method for class 'summary.cartogramR' print(x, ...)
```

Arguments

- x a summary.cartogramR object
- arguments passed to or from other methods. The following argument is available at this level: digits, the number of significant digits to use when printing.

Value

x.

Examples

```
data(usa)
carto <- cartogramR(usa, "electors64")
summary(carto)</pre>
```

Description

Errors of a cartogram object

Usage

```
## S3 method for class 'cartogramR'
residuals(object, ...)
```

Arguments

object a cartogramR object

. . .

arguments passed to or from other methods. The following arguments are available: - type; a character string giving the type of residuals (see details; can be abbreviated) - "relative error" - "absolute error" - "symmetric difference" - center; a character string giving the type of center (can be abbreviated): - "point_on_surface" (sf::st_point_on_surface applied on original and on deformed/cartogram region). - "deformed_center" (the center function, see cartogramR_options, is applied on region and this center follows the deformation giving the center on the deformed/cartogram region) - "centroid" (centroid of original and deformed/cartogram region). - initial_data; the initial sf object given as input of cartogramR. Only needed for symmetric differences residuals.

Details

The error vector contains the values of the differences between actual area of regions in the cartogram and theorical area (obtained with conservation of total area and constant density over region in the final cartogram)

Relative error are the error vector divided by the theorical area

Symmetric difference are the symmetric difference between actual area of regions in the cartogram and the original area. Each region is scaled to have an area equal to 1 and centered around the chosen center.

Value

A numeric vector which contains for each region observed area minus theorical area

Examples

```
data(usa)
carto <- cartogramR(usa, "electors64")
residuals(carto)</pre>
```

 $\verb"summary.cartogram" R$

Summary of a cartogram object

Description

Summary of a cartogram object

Usage

```
## S3 method for class 'cartogramR'
summary(object, ...)
```

Arguments

object a cartogramR object

. . .

arguments passed to or from other methods. The following arguments are available: - digits integer, used for number formatting with signif if not specified (i.e., [missing](.), [signif]() will not be called anymore (since $R \ge 3.4.0$, where the default has been changed to only round in the print and format methods). - quantile.type integer code used in quantile(*, type=quantile.type). - center character string code used in residuals.cartogramR. - initial_data; the initial sf object given as input of cartogramR. Only needed for symmetric differences residuals.

Value

A summary.cartogramR object: a list with the following components:

- qrr, the summary of absolute relative residuals
- gres, the summary of absolute residuals
- qsymdiff, the summary of all pairwise symmetric difference beween two scaled (multi)polygons representative of two regions. These residuals are calculated only if initial_data argument is provided.

Examples

```
data(usa)
carto <- cartogramR(usa, "electors64")
summary(carto)</pre>
```

summary.dbv.cartogramR

Summary of a dbv.cartogram object

Description

Summary of a dbv.cartogram object

Usage

```
## S3 method for class 'dbv.cartogramR'
summary(object, ...)
```

Arguments

```
object a dbv.cartogramR object ... arguments passed to or from other methods.
```

Value

a data-table which contains by region (L3)

- the sample quantiles corresponding to the probability 0.8, 0.85, ...,1
- the total number of vertices divided by the perimeter of the region (the sum of all polygons perimeter of the region, NbyPerim)

Examples

```
data(usa)
dbv <- dist_between_vertices(data=usa)
summary(dbv)</pre>
```

```
summary.gridanalysis.cartogramR
```

Summary of a gridanalysis.cartogram object

Description

Summary of a gridanalysis.cartogram object

Usage

```
## S3 method for class 'gridanalysis.cartogramR'
summary(object, ...)
```

Arguments

object a gridanalysis.cartogramR object ... arguments passed to or from other methods.

Value

A vector which indicate the grid size necessary to have more than steps grid points in each polygon

Examples

```
data(usa)
ga <- grid_analysis(data=usa, gridpower2=4:9)
summary(ga)</pre>
```

to_coord_polygon 21

to_coord_polygon	Transform from coordinates system used in flow based cartogram to coordinates system used in the polygons

Description

Apply the mapping from the coordinates system used in flow based cartogram to the coordinates system used in the polygons (caracterised by the CRS)

Usage

```
to_coord_polygon(coord, carto)
```

Arguments

coord a vector of length 2 or a two columns matrix containing xy coordinates to trans-

form

carto a cartogramR object

Value

a vector of length 2 or a two columns matrix containing xy coordinates in the coordinate systems of polygons used to build the cartogram

Examples

```
data(usa)
carto <- cartogramR(usa, "electors64")
to_coord_polygon(c(256,256), carto)</pre>
```

usa

Map of the number of electors in each state of the USA

Description

This data set is a basemap of the conterminous USA with the the number of electors in the 49 states from 1964 to 2020.

Usage

```
data(usa)
```

22 warp_features

Format

A sf object containing 24 columns of data and the geometry. Projected CRS: US National Atlas Equal Area (EPSG:2163)

warp_features Apply the deformation used to build a cartogram to a set of simple geometry coordinates

Description

Apply the deformation used to build a cartogram to a set of simple geometry coordinates or simple features. The resulting simple geometry object can be used to add geometry features on the cartogram.

Usage

```
warp_features(sfgeom, carto, verbose = FALSE)
```

Arguments

sfgeom a sf or a sfc object which contains simple feature geometry of types in the fol-

lowing POINT, MULTIPOINT, LINESTRING, MULTILINESTRING, POLYGON, 'MUL-

TIPOLYGON

carto a cartogramR object

verbose a boolean object to set on verbose mode (default to FALSE)

Value

a sf or a sfc object which contains simple feature geometry transformed

Examples

```
data(usa)
carto <- cartogramR(usa, "electors64")
LA <- sf::st_sfc(sf::st_point(c(-118.243685, 34.052234)))
sf::st_crs(LA) <- 4326
moregeom <- warp_features(LA, carto)
plot(carto)
plot(moregeom, add=TRUE, col=2, pch=15)</pre>
```

Index

```
* datasets
                                                  summary.gridanalysis.cartogramR, 20
    france_dept, 9
                                                  to\_coord\_polygon, \\ \textcolor{red}{21}
    france_rivers, 10
    usa, 21
                                                  usa, 21
as.sf, 2
                                                  warp_features, 22
as.sf.cartogramR, 3
as.sfc, 3
as.sfc.cartogramR, 4
as.sfmultipolygon, 4
cartogramR, 5, 6, 7
cartogramR_options, 5, 6, 6, 12, 18
check_ring_dir, 5, 8, 15
dist_between_vertices, 9, 16
france_dept, 9
france_rivers, 10
from_coord_polygon, 10
graphics::matplot, 14
grid_analysis, 11, 16
make_layer, 12
par, 13
plot.cartogramR, 12
plot.dbv.cartogramR, 13
plot.gridanalysis.cartogramR, 14
precartogramR, 15
print.cartogramR, 16
print.summary.cartogramR, 17
residuals.cartogramR, 17, 19
sf::st_centroid, 7, 12
sf::st_point_on_surface, 5, 7, 18
sf::st_read, 5, 15
summary.cartogramR, 18
summary.dbv.cartogramR, 19
```