

Open-Minded

Naive Bayes Classifier

Neuroinformatics Tutorial 3

Duc Duy Pham¹

¹Intelligent Systems, Faculty of Engineering, University of Duisburg-Essen, Germany

Content

- Revision: McCulloch Pitts Neuron
- Revision Lecture
- Naive Bayes Classifier
- Tasks

Content

- Revision: McCulloch Pitts Neuron
- Revision Lecture
- Naive Bayes Classifier
- Tasks

• Which of the following statements are true?

- Which of the following statements are true?
 - 1. A McCulloch Pitts Neuron can process real valued inputs
 - 2. A McCulloch Pitts Neuron has excitatory and activating inputs
 - 3. A McCulloch Pitts Neuron always returns a binary vector
 - 4. A McCulloch Pitts Neuron is an Artificial Neuron

- Which of the following statements are true?
 - 1. A McCulloch Pitts Neuron can process real valued inputs
 - 2. A McCulloch Pitts Neuron has excitatory and activating inputs
 - 3. A McCulloch Pitts Neuron always returns a binary vector
 - 4. A McCulloch Pitts Neuron is an Artificial Neuron

- Which of the following statements are true?
 - 1. A McCulloch Pitts Neuron can process real valued inputs
 - 2. A McCulloch Pitts Neuron has excitatory and activating inputs
 - 3. A McCulloch Pitts Neuron always returns a binary vector
 - 4. A McCulloch Pitts Neuron is an Artificial Neuron

• Which of the following parameters are crucial for the definition of a McCulloch Pitts Neuron?

- Which of the following parameters are crucial for the definition of a McCulloch Pitts Neuron?
 - 1. Threshold
 - 2. Number of incoming signals
 - 3. Number of outgoing signals
 - 4. Position of inhibitory and excitatory signals

- Which of the following parameters are crucial for the definition of a McCulloch Pitts Neuron?
 - 1. Threshold
 - 2. Number of incoming signals
 - 3. Number of outgoing signals
 - 4. Position of inhibitory and excitatory signals

• Which of the following parameters are crucial for the definition of a McCulloch Pitts Neuron?

- 1. Threshold
- 2. Number of incoming signals
- 3. Number of outgoing signals
- 4. Position of inhibitory and excitatory signals

• Task: Construct a McCulloch Pitts Neuron, that models NOR

• Task: Construct a McCulloch Pitts Neuron, that models NOR

x_1	x_2	f_{NOR}
0	0	1
0	1	0
1	0	0
1	1	0

• Task: Construct a McCulloch Pitts Neuron, that models NOR

• Task: Construct a McCulloch Pitts Neuron, that models $f_1(x_1,x_2,x_3,x_4,x_5)\coloneqq x_1\neg x_2x_3\neg x_4x_5$

• Task: Construct a McCulloch Pitts Neuron, that models $f_1(x_1,x_2,x_3,x_4,x_5)\coloneqq x_1\neg x_2x_3\neg x_4x_5$

• Task: Construct a McCulloch Pitts Neuron, that models $f_2(x_1,x_2,x_3,x_4,x_5)\coloneqq \neg x_1\neg x_2x_3x_4x_5$

• Task: Construct a McCulloch Pitts Neuron, that models $f_2(x_1,x_2,x_3,x_4,x_5)\coloneqq \neg x_1\neg x_2x_3x_4x_5$

• Task: Construct a McCulloch Pitts Neuron, that models $f_3(x_1,x_2,x_3,x_4,x_5)\coloneqq \neg x_1x_2\neg x_3x_4\neg x_5$

• Task: Construct a McCulloch Pitts Neuron, that models $f_3(x_1,x_2,x_3,x_4,x_5)\coloneqq \neg x_1x_2\neg x_3x_4\neg x_5$

• Task: Construct a McCulloch Pitts Net, that models $f(x_1, x_2, x_3, x_4, x_5) \coloneqq f_1 \vee f_2 \vee f_3$

McCulloch Pitts Neuron: Juypter

Content

- Revision: McCulloch Pitts Neuron
- Revision Lecture
- Naive Bayes Classifier
- Tasks

• Which statements are true for the learning phase?

- Which statements are true for the learning phase?
 - 1. Model is trained to solve specific task
 - 2. Statistical properties could be used to train model
 - 3. This phase is also called inference phase
 - 4. In this phase the model gains experience

- Which statements are true for the learning phase?
 - 1. Model is trained to solve specific task
 - 2. Statistical properties could be used to train model
 - 3. This phase is also called inference phase
 - 4. In this phase the model gains experience

- Which statements are true for the learning phase?
 - 1. Model is trained to solve specific task
 - 2. Statistical properties could be used to train model
 - 3. This phase is also called inference phase
 - 4. In this phase the model gains experience

• Which statements are true for the working phase?

- Which statements are true for the working phase?
 - 1. In working phase: features are stochastically independent
 - 2. Use trained model to apply on unseen data
 - 3. In this phase the model delivers experience
 - 4. Aim: make optimal decision

- Which statements are true for the working phase?
 - 1. In working phase: features are stochastically independent
 - 2. Use trained model to apply on unseen data
 - 3. In this phase the model delivers experience
 - 4. Aim: make optimal decision

- According to lecture:
 - Learning Phase
 - Working Phase
 - Both phases should be applied in cycle

Data partitioning:

Labeled Data

• Data partitioning:

Labeled Data

Train

Data partitioning:

Labeled Data

Train
Validate

Data partitioning:

Labeled Data

Train	Validate	Test (Evaluate)
-------	----------	-----------------

Data partitioning:

Labeled Data

Data partitioning:

Data partitioning:

Data partitioning:

• Data partitioning (sometimes, e.g. if more data available):

Why is statistics essential in ML?

- Why is statistics essential in ML?
 - 1. Observations/Measurements can be statistically evaluated
 - 2. Predictions are always stochastically independent
 - 3. Knowledge can be statistically described
 - 4. Every ML algorithm is derived from Bayes' rule

- Why is statistics essential in ML?
 - 1. Observations/Measurements can be statistically evaluated
 - 2. Predictions are always stochastically independent
 - 3. Knowledge can be statistically described
 - 4. Every ML algorithm is derived from Bayes' rule

- Why is statistics essential in ML?
 - 1. Observations/Measurements can be statistically evaluated
 - 2. Predictions are always stochastically independent
 - 3. Knowledge can be statistically described
 - 4. Every ML algorithm is derived from Bayes' rule

- Task: Hot Dog vs Not Hot Dog Image Classifier
- Used features: Presence of Logo
- Assumption: Data is representative

No.	Logo?	Label
0	Yes	Hot Dog
1	Yes	Hot Dog
2	No	Hot Dog
3	Yes	Hot Dog
4	Yes	Not Hot Dog
5	Yes	Not Hot Dog
6	Yes	Hot Dog
7	Yes	Not Hot Dog
8	No	Not Hot Dog
9	Yes	Not Hot Dog

- Task: Hot Dog vs Not Hot Dog Image Classifier
- Used features: Presence of Logo
- Assumption: Data is representative
- What is the Probability of an image being a Hot Dog image based on this data, i.e. P(Hot Dog)?

No.	Logo?	Label
0	Yes	Hot Dog
1	Yes	Hot Dog
2	No	Hot Dog
3	Yes	Hot Dog
4	Yes	Not Hot Dog
5	Yes	Not Hot Dog
6	Yes	Hot Dog
7	Yes	Not Hot Dog
8	No	Not Hot Dog
9	Yes	Not Hot Dog

- Task: Hot Dog vs Not Hot Dog Image Classifier
- Used features: Presence of Logo
- Assumption: Data is representative
- What is the Probability of an image being a Hot Dog image based on this data, i.e. P(Hot Dog)?

A:	20%	C:	40%
B:	30%	D:	50%

No.	Logo?	Label
0	Yes	Hot Dog
1	Yes	Hot Dog
2	No	Hot Dog
3	Yes	Hot Dog
4	Yes	Not Hot Dog
5	Yes	Not Hot Dog
6	Yes	Hot Dog
7	Yes	Not Hot Dog
8	No	Not Hot Dog
9	Yes	Not Hot Dog

- Task: Hot Dog vs Not Hot Dog Image Classifier
- Used features: Presence of Logo
- Assumption: Data is representative
- What is the Probability of an image being a Hot Dog image based on this data, i.e. P(Hot Dog)?

A:	20%	C:	40%	
B:	30%	D:	50%	

No.	Logo?	Label
0	Yes	Hot Dog
1	Yes	Hot Dog
2	No	Hot Dog
3	Yes	Hot Dog
4	Yes	Not Hot Dog
5	Yes	Not Hot Dog
6	Yes	Hot Dog
7	Yes	Not Hot Dog
8	No	Not Hot Dog
9	Yes	Not Hot Dog

- Task: Hot Dog vs Not Hot Dog Image Classifier
- Used features: Presence of Logo
- Assumption: Data is representative
- What is the Probability of an image not having a logo based on this data, i.e.
 P(No Logo)?

No.	Logo?	Label
0	Yes	Hot Dog
1	Yes	Hot Dog
2	No	Hot Dog
3	Yes	Hot Dog
4	Yes	Not Hot Dog
5	Yes	Not Hot Dog
6	Yes	Hot Dog
7	Yes	Not Hot Dog
8	No	Not Hot Dog
9	Yes	Not Hot Dog

- Task: Hot Dog vs Not Hot Dog Image Classifier
- Used features: Presence of Logo
- Assumption: Data is representative
- What is the Probability of an image not having a logo based on this data, i.e.
 P(No Logo)?

A:	20%	C:	40%
B:	30%	D:	50%

No.	Logo?	Label
0	Yes	Hot Dog
1	Yes	Hot Dog
2	No	Hot Dog
3	Yes	Hot Dog
4	Yes	Not Hot Dog
5	Yes	Not Hot Dog
6	Yes	Hot Dog
7	Yes	Not Hot Dog
8	No	Not Hot Dog
9	Yes	Not Hot Dog

- Task: Hot Dog vs Not Hot Dog Image Classifier
- Used features: Presence of Logo
- Assumption: Data is representative
- What is the Probability of an image not having a logo based on this data, i.e.
 P(No Logo)?

A:	20%	C:	40%
B:	30%	D:	50%

No.	Logo?	Label
0	Yes	Hot Dog
1	Yes	Hot Dog
2	No	Hot Dog
3	Yes	Hot Dog
4	Yes	Not Hot Dog
5	Yes	Not Hot Dog
6	Yes	Hot Dog
7	Yes	Not Hot Dog
8	No	Not Hot Dog
9	Yes	Not Hot Dog

- Task: Hot Dog vs Not Hot Dog Image Classifier
- Used features: Presence of Logo
- Assumption: Data is representative
- What is the Probability of an image being a Hot Dog image based on this data if there is a logo on that image, i.e. P(Hot Dog | Logo)?

No.	Logo?	Label
0	Yes	Hot Dog
1	Yes	Hot Dog
2	No	Hot Dog
3	Yes	Hot Dog
4	Yes	Not Hot Dog
5	Yes	Not Hot Dog
6	Yes	Hot Dog
7	Yes	Not Hot Dog
8	No	Not Hot Dog
9	Yes	Not Hot Dog

- Task: Hot Dog vs Not Hot Dog Image Classifier
- Used features: Presence of Logo
- Assumption: Data is representative
- What is the Probability of an image being a Hot Dog image based on this data if there is a logo on that image, i.e. P(Hot Dog | Logo)?

A:	30%	C:	50%
B:	40%	D:	60%

No.	Logo?	Label
0	Yes	Hot Dog
1	Yes	Hot Dog
2	No	Hot Dog
3	Yes	Hot Dog
4	Yes	Not Hot Dog
5	Yes	Not Hot Dog
6	Yes	Hot Dog
7	Yes	Not Hot Dog
8	No	Not Hot Dog
9	Yes	Not Hot Dog

- Task: Hot Dog vs Not Hot Dog Image Classifier
- Used features: Presence of Logo
- Assumption: Data is representative

 What is the Probability of an image being a Hot Dog image based on this data if there is a logo on that image, i.e. P(Hot Dog | Logo)?

A:	30%	C:	50%
B:	40%	D:	60%

No.	Logo?	Label
0	Yes	Hot Dog
1	Yes	Hot Dog
2	No	Hot Dog
3	Yes	Hot Dog
4	Yes	Not Hot Dog
5	Yes	Not Hot Dog
6	Yes	Hot Dog
7	Yes	Not Hot Dog
8	No	Not Hot Dog
9	Yes	Not Hot Dog

- Task: Hot Dog vs Not Hot Dog Image Classifier
- Used features: Presence of Logo
- Assumption: Data is representative

 What is the Probability of an image being a Hot Dog image based on this data if there is a logo on that image, i.e. P(Hot Dog | Logo)?

A:	30%	C:	50%
B:	40%	D:	60%

No.	Logo?	Label
0	Yes	Hot Dog
1	Yes	Hot Dog
2	No	Hot Dog
3	Yes	Hot Dog
4	Yes	Not Hot Dog
5	Yes	Not Hot Dog
6	Yes	Hot Dog
7	Yes	Not Hot Dog
8	No	Not Hot Dog
9	Yes	Not Hot Dog

- Task: Hot Dog vs Not Hot Dog Image Classifier
- Used features: Presence of Logo
- Assumption: Data is representative

 What is the Probability of an image being a Hot Dog image based on this data if there is a logo on that image, i.e. P(Hot Dog | Logo)?

A:	30%	C:	50%
B:	40%	D:	60%

No.	Logo?	Label
0	Yes	Hot Dog
1	Yes	Hot Dog
2	No	Hot Dog
3	Yes	Hot Dog
4	Yes	Not Hot Dog
5	Yes	Not Hot Dog
6	Yes	Hot Dog
7	Yes	Not Hot Dog
8	No	Not Hot Dog
9	Yes	Not Hot Dog

- According to lecture:
 - Learning Phase
 - Working Phase
 - Both phases should be applied in cycle

- In practice quite important:
 - Estimation of Likelihood P(feature | class)
 - Easy for categorical features:

Sky Occlusion	Sky color	Class
Cloudy	Blue	Rainy
Cloudy	Red	Rainy
Cloudy	Blue	Rainy
Cloudy	Blue	Sunny
Clear	Blue	Sunny
Clear	Blue	Sunny

- In practice quite important:
 - Estimation of Likelihood P(feature | class)
 - Easy for categorical features:

P(Sky Occlusion=Cloudy | Class = Sunny) = ?

Sky Occlusion	Sky color	Class
Cloudy	Blue	Rainy
Cloudy	Red	Rainy
Cloudy	Blue	Rainy
Cloudy	Blue	Sunny
Clear	Blue	Sunny
Clear	Blue	Sunny

- In practice quite important:
 - Estimation of Likelihood P(feature | class)
 - Easy for categorical features:

• P(Sky Occlusion=Cloudy | Class = Sunny) = 33,3%

Sky Occlusion	Sky color	Class
Cloudy	Blue	Rainy
Cloudy	Red	Rainy
Cloudy	Blue	Rainy
Cloudy	Blue	Sunny
Clear	Blue	Sunny
Clear	Blue	Sunny

- In practice quite important:
 - Estimation of Likelihood P(feature | class)
 - Easy for categorical features:

• P(Sky Occlusion=Clear | Class = Rainy) = ?

Sky Occlusion	Sky color	Class
Cloudy	Blue	Rainy
Cloudy	Red	Rainy
Cloudy	Blue	Rainy
Cloudy	Blue	Sunny
Clear	Blue	Sunny
Clear	Blue	Sunny

- In practice quite important:
 - Estimation of Likelihood P(feature | class)
 - Easy for categorical features:

P(Sky Occlusion=Clear | Class = Rainy) = 0%

Sky Occlusion	Sky color	Class
Cloudy	Blue	Rainy
Cloudy	Red	Rainy
Cloudy	Blue	Rainy
Cloudy	Blue	Sunny
Clear	Blue	Sunny
Clear	Blue	Sunny

- In practice quite important:
 - Estimation of Likelihood P(feature | class)
 - Easy for categorical features:
 - But what about continuous features?

- In practice quite important:
 - Estimation of Likelihood P(feature | class)
 - Easy for categorical features:
 - But what about continuous features?

Temp.	Class
19°C	Rainy
18°C	Rainy
20°C	Rainy
21°C	Sunny
22°C	Sunny
24°C	Sunny

- In practice quite important:
 - Estimation of Likelihood P(feature | class)
 - Easy for categorical features:
 - But what about continuous features?
 - $P(Temp=19.5^{\circ}C \mid Class = Rainy) = ?$

Temp.	Class
19°C	Rainy
18°C	Rainy
20°C	Rainy
21°C	Sunny
22°C	Sunny
24°C	Sunny

- In practice quite important:
 - Estimation of Likelihood P(feature | class)
 - Easy for categorical features:
 - But what about continuous features?
 - P(Temp=19.5°C | Class = Rainy) = 0%?

Temp.	Class
19°C	Rainy
18°C	Rainy
20°C	Rainy
21°C	Sunny
22°C	Sunny
24°C	Sunny

- In practice quite important:
 - Estimation of Likelihood P(feature | class)
 - Easy for categorical features:
 - But what about continuous features?
 - P(Temp=19.5°C | Class = Rainy) = 0%?
 - => Need to estimate underlying distribution!

Temp.	Class
19°C	Rainy
18°C	Rainy
20°C	Rainy
21°C	Sunny
22°C	Sunny
24°C	Sunny

• We observe lots of continuous features and **assume** a gaussian distribution

• We observe lots of continuous features and **assume** a gaussian distribution

• We observe lots of continuous features and **assume** a gaussian distribution

• We observe lots of continuous features and **assume** a gaussian distribution

- We observe lots of continuous features and assume a gaussian distribution
- The most probable value should be where most data points are gathered, i.e. where it is densest.

- We observe lots of continuous features and **assume** a gaussian distribution
- The most probable value should be where most data points are gathered, i.e. where it is densest

- We observe lots of continuous features and **assume** a gaussian distribution
- The most probable value should be where most data points are gathered, i.e. where it is densest.

- We observe lots of continuous features and assume a gaussian distribution
- The most probable value should be where most data points are gathered, i.e. where it is densest.
- Gaussian Density function estimates probability

$$rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

- We observe lots of continuous features and assume a gaussian distribution
- The most probable value should be where most data points are gathered, i.e. where it is densest.
- Gaussian Density function estimates probability
- Need mean and variance!

$$rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

- In practice quite important:
 - Estimation of Likelihood P(feature | class)
 - Easy for categorical features:
 - But what about continuous features?
 - P(Temp=19.5°C | Class = Rainy) = 0%?
 - => Need to estimate underlying distribution!

Temp.	Class
19°C	Rainy
18°C	Rainy
20°C	Rainy
21°C	Sunny
22°C	Sunny
24°C	Sunny

- In practice quite important:
 - Estimation of Likelihood P(feature | class)
 - Easy for categorical features:
 - But what about continuous features?
 - P(Temp=19.5°C | Class = Rainy) = 0% ?
 - => Need to estimate underlying distribution!
 - Assume Gaussian
 => Mean Temp (Given Class = Rainy) = 19°C

Temp.	Class
19°C	Rainy
18°C	Rainy
20°C	Rainy
21°C	Sunny
22°C	Sunny
24°C	Sunny

- In practice quite important:
 - Estimation of Likelihood P(feature | class)
 - Easy for categorical features:
 - But what about continuous features?
 - P(Temp=19.5°C | Class = Rainy) = 0% ?
 - => Need to estimate underlying distribution!
 - Assume Gaussian
 - => Mean Temp (Given Class = Rainy) = 19°C
 - => Variance (Given Class = Rainy) = $\frac{0^2+1^2+1^2}{3} = \frac{2}{3}$

Temp.	Class
19°C	Rainy
18°C	Rainy
20°C	Rainy
21°C	Sunny
22°C	Sunny
24°C	Sunny

- In practice quite important:
 - Estimation of Likelihood P(feature | class)
 - Easy for categorical features:
 - But what about continuous features?
 - P(Temp=19.5°C | Class = Rainy) = 0% ?
 - => Need to estimate underlying distribution!
 - Assume Gaussian

=> Variance (Given Class = Rainy) =
$$\frac{2}{3}$$

=> P(Temp=19.5°C | Class = Rainy) =
$$\frac{1}{\sqrt{2\pi^{2}_{3}}}e^{\frac{-(19.5-19)^{2}}{2\cdot\frac{2}{3}}}$$

1 _	$(x-\mu)^2$
$\frac{1}{\sqrt{2}}e^{-\frac{1}{2}}$	$2\sigma^2$
$\sqrt{2\pi\sigma^2}$	

Temp.	Class
icinp.	Class
19°C	Rainy
18°C	Rainy
20°C	Rainy
21°C	Sunny
22°C	Sunny
24°C	Sunny

Content

- Revision: McCulloch Pitts Neuron
- Revision Lecture
- Naive Bayes Classifier
- Tasks

Bayes' Formula

$$P(c|x) = \frac{P(x|c) \cdot P(c)}{P(x)}$$

Chain Rule for joint probabilities:

$$P(c, x_1, x_2, \dots, x_n) = P(c) \cdot P(x_1|c) \cdot P(x_2|c, x_1) \cdots P(x_n|c, x_1, \dots, x_{n-1})$$

Chain Rule for joint probabilities:

$$P(c, x_1, x_2, \dots, x_n) = P(c) \cdot P(x_1|c) \cdot P(x_2|c, x_1) \cdots P(x_n|c, x_1, \dots, x_{n-1})$$

Easy proof by induction

• Aim:

$$\underset{k=0,\ldots,N}{\operatorname{argmax}}[P(C_k|x_1,\ldots x_n)]$$

$$\underset{k=0,\ldots,K}{\operatorname{argmax}}[P(C_k|x_1,\ldots x_n)]$$

$$\underset{k=0,\ldots,K}{\operatorname{argmax}}[P(C_k|x_1,\ldots x_n)]$$

$$= \underset{k=0,...,K}{\operatorname{argmax}} \left[\frac{P(C_k)P(x_1,...x_n|C_k)}{P(x_1,...x_n)} \right]$$

$$\underset{k=0,\ldots,K}{\operatorname{argmax}}[P(C_k|x_1,\ldots x_n)]$$

$$= \underset{k=0,...,K}{\operatorname{argmax}} \left[\frac{P(C_k)P(x_1,...x_n|C_k)}{P(x_1,...x_n)} \right]$$

A: Multiplication with 1

B: Bayes

C: Cauchy-Schwartz

D: Likelihood Estimation

$$\underset{k=0,\ldots,K}{\operatorname{argmax}}[P(C_k|x_1,\ldots x_n)]$$

$$= \underset{k=0,...,K}{\operatorname{argmax}} \left[\frac{P(C_k)P(x_1,...x_n|C_k)}{P(x_1,...x_n)} \right]$$

A: Multiplication with 1

B: Bayes

C: Cauchy-Schwartz

D: Likelihood Estimation

$$\underset{k=0,\ldots,K}{\operatorname{argmax}}[P(C_k|x_1,\ldots x_n)]$$

$$= \underset{k=0,...,K}{\operatorname{argmax}} \left[\frac{P(C_k)P(x_1,...x_n|C_k)}{P(x_1,...x_n)} \right]$$

$$= \underset{k=0,...,K}{\operatorname{argmax}} \left[\frac{P(C_k, x_1, ... x_n)}{P(x_1, ... x_n)} \right]$$

$$\underset{k=0,\ldots,K}{\operatorname{argmax}}[P(C_k|x_1,\ldots x_n)]$$

$$= \underset{k=0,...,K}{\operatorname{argmax}} \left[\frac{P(C_k)P(x_1,...x_n|C_k)}{P(x_1,...x_n)} \right]$$

$$= \underset{k=0,...,K}{\operatorname{argmax}} \left[\frac{P(C_k, x_1, ... x_n)}{P(x_1, ... x_n)} \right]$$

A: Per Definition of Joint Prob

B: Chain Rule

C: Bayes

D: Markov Assumption

$$\underset{k=0,\ldots,K}{\operatorname{argmax}}[P(C_k|x_1,\ldots x_n)]$$

$$= \underset{k=0,...,K}{\operatorname{argmax}} \left[\frac{P(C_k)P(x_1,...x_n|C_k)}{P(x_1,...x_n)} \right]$$

$$= \underset{k=0,...,K}{\operatorname{argmax}} \left[\frac{P(C_k, x_1, ... x_n)}{P(x_1, ... x_n)} \right]$$

A: Per Definition of Joint Prob

B: Chain Rule

C: Bayes

D: Markov Assumption

$$\underset{k=0,\ldots,K}{\operatorname{argmax}}[P(C_k|x_1,\ldots x_n)]$$

$$= \underset{k=0,...,K}{\operatorname{argmax}} \left[\frac{P(C_k)P(x_1,...x_n|C_k)}{P(x_1,...x_n)} \right]$$

$$= \underset{k=0,...,K}{\operatorname{argmax}} \left[\frac{P(C_k, x_1, ... x_n)}{P(x_1, ... x_n)} \right]$$

$$= \underset{k=0,\ldots,K}{\operatorname{argmax}} [\{P(C_k, x_1, \ldots x_n)]$$

$$= \underset{k=0,...,K}{\operatorname{argmax}} [\{P(C_k, x_1, \dots x_n)]$$

$$= \underset{k=0,...,K}{\operatorname{argmax}} [\{P(C_k, x_1, \dots x_n)]$$

$$= \underset{k=0,...,K}{\operatorname{argmax}} [P(C_k) \cdot P(x_1|C_k) \cdot P(x_2|C_k, x_1) \cdots P(x_n|C_k, x_1, ..., x_{n-1})]$$

$$= \underset{k=0,...,K}{\operatorname{argmax}} [\{P(C_k, x_1, \dots x_n)]$$

$$= \underset{k=0,...,K}{\operatorname{argmax}} [P(C_k) \cdot P(x_1|C_k) \cdot P(x_2|C_k, x_1) \cdots P(x_n|C_k, x_1, ..., x_{n-1})]$$

Very naive assumption:

It is assumed, that **features** are stochastically independent from each other. It means that knowing about the occurrence of one feature, does not change the probability of any other feature, i.e. $P(x_i|x_j) = P(x_i) \ \forall i, i \neq j$

$$= \underset{k=0,\ldots,K}{\operatorname{argmax}} [\{P(C_k, x_1, \ldots x_n)]$$

$$= \underset{k=0,...,K}{\operatorname{argmax}} [P(C_k) \cdot P(x_1|C_k) \cdot P(x_2|C_k, x_1) \cdots P(x_n|C_k, x_1, ..., x_{n-1})]$$

Very naive assumption:

It is assumed, that **features** are stochastically independent from each other. It means that knowing about the occurrence of one feature, does not change the probability of any other feature, i.e. $P(x_i|x_i) = P(x_i) \ \forall i, i \neq j$

$$= \underset{k=0,...,K}{\operatorname{argmax}} [P(C_k) \cdot P(x_1|C_k) \cdot P(x_2|C_k) \cdot P(x_n|C_k)]$$

 Given a labeled training set, how do we get these probabilities?

$$\underset{k=0,\ldots,K}{\operatorname{argmax}} [P(C_k) \cdot P(x_1|C_k) \cdot P(x_2|C_k) \cdots P(x_n|C_k)]$$

 Given a labeled training set, how do we get these probabilities?

$$\underset{k=0,...,K}{\operatorname{argmax}} [P(C_k) \cdot P(x_1|C_k) \cdot P(x_2|C_k) \cdots P(x_n|C_k)]$$

Prior:

Number of class occurences in data set divided by number of all samples in data set

 Given a labeled training set, how do we get these probabilities?

Likelihoods of all features, given class C_k

Prior of class C_k : Number of class occurrences in data set divided by number of all samples in data set

 Given a labeled training set, how do we get these probabilities?

Prior of class C_k : Number of class occurrences in data set divided by number of all samples in data set Likelihoods of all features, given class C_k

For each feature/class combination, we need a (gaussian) distribution model!

This way we can calculate the probability during inference!

• "Training":

)

- "Training":
 - Calculate class probabilities for all classes from training data

)

- "Training":
 - Calculate class probabilities for all classes from training data
 - Calculate mean and standard deviation for each feature class combination (to model Gaussian each feature distribution given each class)

J

- "Training":
 - Calculate class probabilities for all classes from training data
 - Calculate mean and standard deviation for each feature class combination (to model Gaussian each feature distribution given each class)

• Inference:

J

- "Training ":
 - Calculate class probabilities for all classes from training data
 - Calculate mean and standard deviation for each feature class combination (to model Gaussian each feature distribution given each class)

• Inference:

 For each class calculate the product of likelihoods and the class prob (Use mean and standard deviation to estimate likelihood for input features)

- "Training ":
 - Calculate class probabilities for all classes from training data
 - Calculate mean and standard deviation for each feature class combination (to model Gaussian each feature distribution given each class)
- Inference:
 - For each class calculate the product of likelihoods and the class prob (Use mean and standard deviation to estimate likelihood for input features)
 - Return class with highest value

$$\underset{k=0,...,K}{\operatorname{argmax}} [P(C_k) \cdot P(x_1|C_k) \cdot P(x_2|C_k) \cdot \cdots P(x_n|C_k)]$$

Content

- Revision: McCulloch Pitts Neuron
- Revision Lecture
- Naive Bayes Classifier
- Tasks