15

20

25

30

DESCRIPTION

<u>Compositionally Different Polymer-Based</u> Sensor Elements And Methods For Preparing Same

This is based on a provisional application, U.S. Serial No. 60/051,203, filed on June 30, 1997, the contents of which are expressly incorporated herein by reference.

Field Of The Invention

The present invention is directed to novel devices and methods for preparing and using a plurality of compositionally different sensors that are capable of detecting the presence of a chemical analyte in a fluid.

There is considerable interest in developing chemically sensitive sensors that are capable of detecting the presence of a particular chemical analyte in a fluid for the purpose of achieving a detectable response. Such sensors are often fabricated from a polymeric organic material that is capable of absorbing a chemical analyte which comes in contact therewith, wherein absorbance of the analyte causes the polymeric material to swell, thereby providing a response that is capable of being detected. Variability in the ability to absorb an analyte results in variability in the detectable signal produced. Such organic polymer-based sensors have found in a variety of different use applications and devices including, for example, devices that function as analogs of the mammalian olfactory system (Lewis, U.S. Patent No. 5,571,401 (incorporated herein by reference), Lundström et al., Nature 352:47-50 (1991) and Shurmer and Gardner, Sens. Actuators B 8:1-11 (1992)), bulk conducting polymer films (Barker et al., Sens. Actuators B 17:143 (1994) and Gardner et al., Sens. Actuators B 18:240

20

25

30

(1994)), surface acoustic wave devices (Grate et al., Anal. Chem. 67:2162 (1995), Grate et al., Anal. Chem. 65:A987 (1993) and Grate et al., Anal. Chem. 65:A940 (1993)), fiber micromirrors (Hughes et al., J. Biochem. 41:77 (1993)), quartz crystal microbalances Biotechnol. 5 (Chang et al., Anal. Chim. Acta 249:323 (1991)) and dye impregnated polymeric coatings on optical fibers (White et al., Anal. Chem. 68:2191 (1996)). These and all other references cited herein are expressly incorporated reference as if set forth herein in their entirety. To 10 date, however, many of the sensors employed in the abovedescribed devices have been fabricated from limited numbers of polymeric components and, therefore, are limited in the responses that they are capable of producing.

Further, today's technology lags far behind the ability of canines or humans to detect or distinguish between chemical analytes. As a consequence, certain work is limited by the suitability of animals or humans to execute For example, quality control of food products can tasks. require production line employees to smell each item. Unfortunately, the ability of individuals to adequately discriminate odors diminishes after a short period of time, e.q., in about two hours. In addition, mammalian olfactory senses are limited in their ability to identify certain For example, water vapor is not detectable by vapors. Further, mammalian olfactory senses are limited to identifying gaseous components, with no ability to identify or "smell" solutes in liquids.

There have been several attempts to construct sensors that can mimic or exceed the capability of olfactory organs. Such attempts have employed, for example, heated metal oxide thin film resistors, polymer sorption layers on the surfaces of acoustic wave resonators, fiber optic micromirrors,

The state of the first of the f

10

15

arrays of electrochemical detectors, and conductive polymers. Each of these techniques, however, has significant limitations in reproducibility, the ability to discriminate between analytes, or the time required for response. Further, these techniques are often prohibitively expensive or complicated.

Arrays of metal oxide thin film resistors, for example, are typically based on SnO2 films that have been coated with various catalysts. Furthermore, these arrays generally do not allow deliberate chemical control of the response of elements in the array and the reproducibility of response from array to array is often poor. For example, the use of resonators, employs wave surface acoustic transduction mechanism that involves complicated electronics and a frequency measurement to one Hz while sustaining a 200 MHz Rayleigh wave in the crystal. Therefore, a need exists for devices and methods to identify and measure analytes in fluids that overcome or minimize these problems.

Recent studies have shown that arrays of chemically sensitive sensors, formed from a library of swellable 20 polymers containing electrically organic insulating conducting carbon black, are broadly responsive to a variety of analytes, yet allow classification and identification of organic vapors through application of pattern recognition methods. (Lonergan et al., Chem. Mater. 8:2298 (1996)). To 25 date, these array elements have been fabricated from a relatively small number of approximately 10-20 organic polymer backbone polymers, with a single distinct composition in each sensor element. Although a limited number of polymeric sensor compositions might be chosen to 30 perform optimally for specific applications, attempts to perform complex applications, such as to mimic the sense of olfaction, in which the sensing task is time dependent or is

20

25

5

not defined in advance of the sensor array construction, will almost certainly require use of polymeric sensor libraries that are far more extensive and compositionally diverse than those presently known. Thus, there is a need for novel methods for producing large libraries of compositionally distinct chemically sensitive sensors, each of which are capable of producing a detectable response in the presence of a chemical analyte of interest.

10 Summary Of The Invention

While methods for producing a plurality of compositionally distinct chemically sensitive sensors may prove to be very useful in a variety of applications, the utility of such methods is dependent upon whether the response produced by each of the compositionally distinct sensors is a linear function of the mole fraction of any particular component of the sensor. In other words, if the response provided by a sensor is a direct linear function of the mole fraction of a particular component of the sensor, then not much additional information will be obtained from the responses of sensors that comprise a mixture of two different polymeric materials over those sensors that are fabricated solely from one or the other polymeric material. Thus, nonlinearity in the response profile as compared to the mole fraction of an organic material present in the plurality of the sensors is very important for increasing the power of these sensor arrays to resolve multitudes of analytes.

Therefore, it is an object of the present invention to provide a combinatorial approach to the construction of sensor arrays in which blends of two or more organic materials are used as a feedstock to create compositionally varying chemically sensitive sensor films.

15

20

It is also an object of the present invention to provide (i) novel methods for making and using a plurality of compositionally different sensors, each of which comprise at least two different organic materials and that are capable of detecting the presence of a chemical analyte in a fluid, and (ii) novel devices made by these methods.

It is another object of the present invention to provide (i) novel methods for making and using a plurality of compositionally different sensors, each of which provide a detectable signal in response to the presence of a chemical analyte, and wherein the detectable signal is not linearly related to the mole fraction of any organic material present in the sensor; and (ii) novel devices made by these methods.

It is yet another object of the present invention to provide (i) novel methods for making and using a plurality of chemically sensitive sensors that can be employed in any system that is dependent upon analyte uptake to achieve a detectable response, and (ii) novel devices made by these methods. Such systems include, for example, analogs to the mammalian olfactory system, arrays of coated surface acoustic wave sensors, fiber optic micromirrors, quartz crystal microbalance sensors, polymer-coated fiber optic sensors, and the like.

It is another object of the present invention to provide (i) novel methods for making a plurality of chemically sensitive sensors, wherein those methods are quick, easy, inexpensive and are capable of providing large numbers of compositionally distinct sensors for use in vapor detection; and (ii) novel devices made by these methods.

These and further objects will be apparent to the ordinarily skilled artisan upon consideration of the specification as a whole.

15

20

25

30

In accordance with the present invention, novel methods are provided for preparing a plurality of compositionally different sensors that are capable of detecting the presence of a chemical analyte in a fluid, and, thereby, provide a As used herein, the term "fluid" detectable response. and liquids. Specifically, includes both gases an embodiment of the present invention is directed to methods for making a plurality of compositionally different sensors that are capable of detecting the presence of an analyte in The methods comprise combining different ratios of a fluid. at least first and second organic materials. The first and second organic materials will generally be different and form an organic polymer or polymer blend when combined, and combining provides a plurality of compositionally different sensors that comprise a variable mixture of the first and second organic materials. the sensors provides a detectable signal in response to the presence of the chemical analyte, which signal is linearly related to the mole fraction of at least one of the organic materials, and more preferably both of the organic materials present in the sensors. The devices made by these methods are also disclosed.

In accordance with the present invention, the first and second organic materials may be combined simultaneously to produce the array of sensors, or the organic components may be combined at different times to produce the plurality of sensors, neither being critical to the invention. In one embodiment, the first and second organic materials are each organic polymers, thereby providing a plurality of sensors each of which comprise an organic polymer blend. In another embodiment, the first and second organic materials may be organic monomer units which, when combined, polymerize,

10

15

20

25

30

either with or without the presence of a catalyst, to form an organic polymer.

In still another embodiment, the first organic material homopolymer or copolymer, and the second organic material is a monomer which is combined with the first When the monomer is polymerized in the presence of the first, preformed polymer, the monomer polymerizes to produce an interpenetrating network (IPN) of first and second organic materials. This technique is particularly suitable for achieving blends when dealing with polymers that are imicible in one another, and/or where the polymers are made from monomers that are volatile. Under these conditions, the preformed polymer is used to dictate the properties (e.g., viscosity) of the polymer-monomer mixture. Thus, the polymer holds the monomer in solution. of such systems are (1) preformed polyvinyl acetate with monomer methylmethacrylate to form an IPN of pVA and pMMA, (2) preformed pVA with monomer styrene to form an IPN of pVA and polystyrene, and (3) preformed pVA with acrylonitrile to form an IPN of pVA and polyacrylonitrile. More than one monomer may be used where it is desired to create an IPN having one or more copolymers.

In yet another embodiment of the present invention, an electrically conductive material, which may be a single electrically conductive material or a mixture of two or more electrically conductive materials, is added to a polymer, polymer blend, or stabilized colloid. a preferred In embodiment of the present invention, the electrically conductive material is a conductive polymer or carbon black. When an electrically conductive material is added to the sensors, the sensors provide (i) an electrical path for an electrical current, (ii) a first electrical resistance in the electrical path in the absence of the chemical analyte

15

20

25

30

and (iii) a second resistance in the electrical path in the presence of the chemical analyte. The first and second electrical resistances may be either the same or different, depending upon the analyte being analyzed and the ability of that sensor to sorb (either absorb or adsorb) that analyte.

One embodiment is an electronic nose that mimics a This embodiment includes a mammalian olfactory system. substrate having a plurality of sensors, where each sensor includes a chemically sensitive resistor that includes a combination of a first nonconductive organic material at a concentration, a second nonconductive organic material at a concentration and a conductive material. The nonconductive organic material is different from the second nonconductive organic material and the number of number different greater than the of sensors is which form the nonconductive organic materials The electronic nose also includes an electrical measuring apparatus electrically connected to the array sensors.

Another embodiment of the electronic nose includes at least two chemically sensitive resistors and an electrical measuring apparatus electrically connected to the resistors. Each chemically sensitive resistor includes a combination of a first nonconductive organic material at a concentration, a second nonconductive organic material at a concentration, and a conductive material, with the proviso that the first nonconductive organic material is different from the second nonconductive organic material. In one embodiment, the concentration of the first nonconductive organic material of the first resistor is different from the concentration of the first nonconductive organic material of the second In another embodiment, the first nonconductive resistor. organic material of the second resistor is the same as the

15

20

25

first nonconductive organic material of the first resistor, and the concentration of the first nonconductive organic material of the first resistor is the same as the concentration of the first nonconductive organic material of the second resistor.

Methods of using the sensors are also provided. embodiment is a method for detecting the presence of an analyte in a fluid, which includes the step of providing a plurality of sensors that includes at least two chemically sensitive resistors, each having a resistance response to the presence of the fluid and a resistance response to presence of the analyte, and an electrical apparatus electrically connected to the resistors. chemically sensitive resistor includes a combination of a first nonconductive organic material at a concentration, a second nonconductive organic material, and a conductive material, with the proviso that the first nonconductive organic material in each resistor is different from the second nonconductive organic material in each resistor and with a further proviso that the concentration of the first nonconductive organic material in the first resistor is different from the concentration of the first nonconductive organic material in the second resistor. The resistors are then exposed to the fluid, and resistance responses are measured. Then, the measured resistance response of the first resistor is compared to the first measured resistance response of the second resistor to determine the presence of the analyte in the fluid.

In other embodiments, the sensors are combined with a wide variety of supporting technology to measure sensor response other than resistance. These embodiments include techniques that detect variations in electromagnetic energy, optical properties, capacitance, inductance or impedance and

10

15

20

25

other physical, chemical and electrical properties that may vary in accordance with the response of the sensors. Thus, the number of applications sensing the presence of the analytes are very broad and also, therefore, the applications to which the sensors may be put is very broad.

Methods of manufacturing are also provided. is a method of manufacturing an array embodiment chemically sensitive sensors from a limited number feedstock solutions of nonconductive organic materials in which the first step includes providing a first feedstock solution of a first organic material at a concentration x in a first solvent, a second feedstock solution of a second organic material in a second solvent at three different concentrations, y, y+b and y+c, and a substrate having first, second and third preselected regions. Next, each of the first, second and third regions is contacted with the first feedstock solution at concentration x. Then, the first region is contacted with the second feedstock solution at concentration y, the second region is contacted with the second feedstock solution at said concentration y+b, and the third region is contacted with the second feedstock solution at said concentration y+c. In this embodiment, the first organic material is different from the second organic different y+c are each y+b and and ٧, material The resulting sensor array has a total concentrations. number of sensors, one manufactured at each preselected region, that is greater than the number of feedstock solutions used to manufacture the sensors.

Other embodiments of the present invention are arrays of compositionally different sensors and methods of producing them. In certain embodiments, these arrays of sensors may be incorporated into devices that are capable of detecting the presence of an analyte in a fluid and/or may

20

25

30

be placed in communication with apparati that are capable of measuring the signal produced by the array in response to the presence of a chemical analyte in a fluid. In some embodiments, the above-described plurality of sensors is incorporated into a device designed to detect the presence of an analyte in a fluid. Such devices include, sensors, acoustic wave fiber optic example, surface micromirrors, quartz crystal microbalance sensors and polymer-coated fiber optic sensors.

Other embodiments of the present invention will become apparent to those of ordinary skill in the art upon a consideration of the specification as a whole.

Brief Description Of The Drawings

Figure 1 shows the temporal response of a typical polymer composite chemiresistor sensor. This particular carbon black-containing composite sensor contained 55.1% poly(vinyl acetate) (PVA) and 44.9% poly(methyl methacrylate) (PMMA). The sensor was exposed to 13.9 parts per thousand (ppth) methanol in air for 540 seconds starting at the time point designated 180 seconds in the graph.

Figure 2 shows the maximum relative differential resistance response, $\Delta R_{max}/R$, of a series of polymer blend carbon black-containing composite chemically sensitive resistors upon exposure to ethyl acetate. The plot depicts data obtained from 3 sensors of pure PMMA, 2 with 29.2% (by mole fraction) PVA, 2 with 55.1% PVA, 3 with 77.3% PVA and 2 of pure PVA. The responses plotted for each sensor are the mean $\Delta R_{max}/R$ values for 5 exposures to 2.9 ppth ethyl acetate in air. The error bars represent one standard deviation unit of the $\Delta R_{max}/R$ responses averaged over all of the

10

15

20

25

30

sensors of a given composition. The dashed line is a guide showing the deviation of the data points from linearity.

Figure 3 shows a limited number (n) of polymer feedstock solutions at two different concentrations that have been combined to produce a greater number of combinatorial sensors.

Figure 4 shows the effect of increasing the variety polymer feedstock solutions on the total number of sensors produced.

relative 5 depicts maximum differential resistance response, $\Delta R_{\text{max}}/R_{\text{b}}$, of a series of polymer blendcarbon black composite chemiresistors upon exposure to (a) 8.3 ppth of ethyl acetate. The plot of Figure 5, as well as each of Figures 6-9, depict data obtained from 14 detectors of pure PMMA, 10 with 11% (by monomer mole fraction) PVA, 10 with 28% PVA, 15 with 44% PVA, 10 with 64% PVA, 15 with 78% PVA, 10 with 91% PVA, and 15 of pure PVA. The responses plotted for each mole fraction are the mean $\Delta R_{\rm max}/R_{\rm b}$ values for 10 exposures to each set of detectors containing the specified mole fraction of PVA, while the error bars represent one standard deviation unit. Dashed lines were drawn, joining the end points, as a guide to the eye indicating a linear response relationship.

Figure 6 depicts maximum relative differential resistance response of a series of polymer blend-carbon black composite chemiresistors upon exposure to 5.2 ppth of ethanol.

Figure 7 depicts maximum relative differential resistance response of a series of polymer blend-carbon black composite chemiresistors upon exposure to 8.2 ppth of acetonitrile.

Figure 8 depicts maximum relative differential resistance response of a series of polymer blend-carbon

20

25

30

black composite chemiresistors upon exposure to 20.7 ppth of acetone.

Figure 9 depicts maximum relative differential resistance response of a series of polymer blend-carbon black composite chemiresistors upon exposure to 11.3 ppth of methanol in air.

Figure 10 depicts temporal resistance response of a typical polymer composite chemiresistor detector. This particular carbon black composite detector contained 64% PVA and 36% PMMA by monomer mole fraction. The detector was exposed to 11.3 ppth of methanol in air for 600 s starting at t=120 s. The baseline resistance before the exposure $R_{\rm b}$, and the maximum resistance change during the exposure, $\Delta R_{\rm max}$, were 4858 and 50 Ω , respectively.

15 Detailed Description Of The Invention

Novel methods are provided for manufacturing large numbers of chemically sensitive sensors starting from only a Specific embodiments are directed to few base components. methods of making and using a plurality of compositionally of polymer-based sensors that are capable detecting the presence of an analyte in a fluid. embodiments are directed to the devices made by these In one embodiment, the sensors prepared using the presently described method comprise a polymer or polymer blend material that is capable of sorbing a chemical analyte when, brought in contact therewith. In certain embodiments, the act of sorbing the chemical analyte causes the polymer or polymer blend to swell, thereby providing a response that is capable of being detected. Such swelling causes a volumetric change in the sensor. In embodiments where the sensor is a chemically sensitive resistor, such swelling causes a resistance response to permeation by the analyte.

10

15

20

25

30

In certain embodiments, the resistance response is inversely proportional to the volumetric change. Because different polymers and polymer blends exhibit varying abilities to absorb different chemical analytes, arrays of compositionally distinct sensors will provide different responses to different analytes, those responses being capable of being detected and measured with an appropriate detection apparatus.

In order to prepare a plurality of compositionally different sensors as described herein, different ratios of at least first and second organic materials must be combined to form an organic polymer or an organic polymer blend. Organic materials that find use herein include organic polymers, and particularly nonconductive organic polymers, which are capable of absorbing a chemical analyte when brought into contact therewith as well as organic monomeric units which, when combined, polymerize to form an organic In the case where two or more organic polymers are polymer. combined to form a plurality of sensors, each sensor in the plurality will comprise a polymer blend (i.e., a blend of two or more different organic polymers). The two or more polymers added to form the polymer blend may be combined either simultaneously or one or more of the components may be added to the blend at different times. Preferably, only two different organic polymers are combined in varying ratios to form the plurality of sensors; however, three or more different polymers may also be employed.

In certain embodiments where the organic materials combined to form the sensors are monomers, those monomers, when combined or when significantly heated, exposed to light, etc., polymerize to form a single organic polymer. Again, as with the organic polymers discussed above, the monomer units may be added to create the sensors

10

15

20

25

simultaneously or at different times. In other embodiments, the organic materials can be components of the same copolymer (a polymer made from two or more different monomers). In certain embodiments, the organic material can be oligomers. Certain embodiments of oligomers can have molecular weights between 400 and about 2,000. In still other embodiments, the organic material is a homopolymer (a polymer made from one monomer).

In still another embodiment, the first organic material is a homopolymer or copolymer, and the second organic material is a monomer which is combined with the first material. When the monomer is polymerized in the presence of the first, preformed polymer, the monomer polymerizes to produce an interpenetrating network (IPN) of first and This technique is particularly second organic materials. suitable for achieving blends when dealing with polymers that are imicible in one another, and/or where the polymers are made from monomers that are volatile. Under these conditions, the preformed polymer is used to dictate the properties (e.g., viscosity) of the polymer-monomer mixture. Thus, the polymer holds the monomer in solution. Examples of such systems are (1) preformed polyvinyl acetate with monomer methylmethacrylate to form an IPN of pVA and pMMA, (2) preformed pVA with monomer styrene to form an IPN of pVA and polystyrene, and (3) preformed pVA with acrylonitrile to form an IPN of pVA and polyacrylonitrile. More than one monomer may be used where it is desired to create an IPN having one or more copolymers.

Thus, the term "organic materials" is intended to an encompass both organic polymers, and particularly nonconductive organic polymers, and monomers, which are capable of polymerizing to form an organic polymer.

A variety of different organic polymers may be employed as organic materials in the chemically sensitive sensors described herein. Certain of these polymers are discussed in Lewis et al., U.S. Patent No. 5,571,401, incorporated herein by reference in it entirety for all purposes. In 5 certain embodiments, the organic materials include mainchain carbon polymers such as poly(dienes), poly(alkenes), poly(acrylics), poly(methacrylics), poly(vinyl ethers), poly(vinyl thioethers), poly(vinyl alcohols), poly(vinyl ketones), poly(vinyl halides), poly(vinyl nitriles), 10 poly(vinyl esters), poly(styrenes), poly(arylenes), and the like, main-chain acrylic heteroatom organic polymers such as poly(esters), poly(carbonates), poly(oxides), poly(sulfonates), poly(anhydrides), poly (urethanes), poly (sulfides), poly(thioesters), poly(siloxanes), 15 poly(sulfonamides), poly(amides), poly(sulfones), poly(phosphazenes), poly(silanes), poly(ureas), poly(silazanes), and the like, and main-chain heterocyclic polymers such as poly(furan tetracarboxylic acid diimides), poly(oxadiazoles), 20 poly(benzoxazoles), poly(benzothiazinophenothiazines), poly(benzothiazoles), poly(pyrazinoquinoxalines), poly(pyromellitimides), (quinoxalines), poly(benzimidazoles), poly(oxindoles), poly(oxoisoindolines), poly(dioxoisoindolines), poly (triazines), poly(pyridazines), poly(piperazines), poly (pyri-25 dines), poly(piperidines), poly(triazoles), poly (pyrazoles), poly(pyrrolidines), poly(carboranes), poly(oxabicyclononanes), poly(dibenzofurans), poly(phthalides), poly (acetals), poly(anhydrides), carbohydrates, and the like. In a preferred embodiment, the polymers employed are 30 poly(vinyl acetate) (PVA) and poly(methacrylate) (PMMA).

Each of the above organic polymers, and the monomer units

10

15

20

25

30

that polymerize to form these polymers, are well known in the art and may be employed.

combined are in employed organic materials different ratios so as to provide a plurality of sensors, each of which contains a different mole fraction of at least one of the organic materials employed in the fabrication. a plurality of different sensors may example, prepared by adding one part of a first polymer to 99 parts of a second polymer to provide the first sensor, adding two parts of a first polymer to 98 parts of a second polymer to Therefore, each sensor in provide the second sensor, etc. the plurality of sensors may be compositionally different.

sensors are capable of providing a detectable signal in the presence of a chemical analyte of interest. It is a preferred characteristic of the sensors that the detectable signal, or response, is not linearly related to the mole fraction of at least one of the organic materials present in the sensor elements. Further, the response is not a sum or average of the individual responses of each of Such non-linearity the components of the sensor. response is preferable because arrays of compositionally different sensor elements will optimally provide additional information and resolution of detection if non-linearity of response exists. In other words, if the magnitude of the detectable signal is linearly related to the mole fraction of the components present in the sensor elements, not much obtained from information can be additional comprising a mixture of two different components as compared to that which can be obtained by using only two sensors, each of which being fabricated from only a single polymer Thus, the detectable signal produced by the component. sensor is not linearly related to the mole fraction of at

10

15

20

25

30

least one of the organic materials used during sensor fabrication.

The step of combining the polymers or monomer units can be performed by a variety of different techniques such as, but not limited to, solution casting, suspension casting, and mechanical mixing. In general, solution cast routes are advantageous because they provide homogeneous structures and ease of processing. With solution cast routes, sensors may easily fabricated by spin, spray or dip coating. Suspension casting still provides the possibility of spin, spray or dip coating but more heterogeneous structures than with solution casting are expected. With mechanical mixing, there are no solubility restrictions since it involves only the physical mixing of the sensor element components, but device fabrication is more difficult since spin, spray and dip coating are no longer possible. A more detailed discussion of each of these follows.

For systems where the components of the sensors are soluble in a common solvent, the sensors can be fabricated by solution casting. In embodiments where sensors, for example, polymers, are soluble in a common solvent, the use of such miscible solutions has an added advantage. In a series of test tasks, the resolving power of a sensor array containing miscible blends was shown to be superior to that of arrays containing an identical number of sensors that are comprised of only the two base polymeric materials.

In suspension casting, one or more of the components of the sensor is suspended and the others dissolved in a common solvent. Suspension casting is a rather general technique applicable to a wide range of species, which can be suspended in solvents by vigorous mixing or sonication. Mechanical mixing is suitable for all of the possible

10

15

20

25

30

component permutations. In this technique, the components are physically mixed in a ball-mill or other mixing device.

In one embodiment, the combining step is performed by spraying a first polymer or monomer in a left to right direction across a grid which comprises multiple wells, wherein the concentration of the first polymer or monomer is smoothly varied as the spray travels across the grid. Once the first polymer or monomer is applied to the surface of the grid, a second polymer or monomer is sprayed from a top to bottom direction across the surface of the grid, wherein the concentration of the second polymer or monomer is smoothly varied as the spray travels across the surface of the grid. This process provides a plurality of polymer- or polymer blend-based sensor elements, each of which comprises a different mole fraction of the first and/or second polymer or monomer employed in the fabrication.

An embodiment of a method for manufacturing an array of chemically sensitive sensors from a limited number feedstock solutions of nonconductive organic materials can be carried out by the following method. First, following are provided: a first feedstock solution of a first organic material at a concentration x in a first solvent, a second feedstock solution of a second organic in a second solvent at three different material concentrations, y, y+b and y+c, and a substrate having first, second and third preselected regions. In some embodiments, these preselected regions are physically separated on the substrate. In certain embodiments, the regions are recessed below the surface of the substrate In other embodiments, ridges surround the forming wells. regions on the surface of the substrate. In some of these embodiments, the ridges are formed from photodefinable

10

15

20

25

30

material. In other embodiments, the ridges are formed from sputtered material.

Next, each of the first, second and third regions is contacted with the first feedstock solution at concentration Then, the first region is contacted with the second feedstock solution at concentration y, the second region is contacted with the second feedstock solution at concentration y+b, and the third region is contacted with the second feedstock solution at said concentration y+c. this embodiment, the first organic material is different from the second organic material and y, y+b and y+c are each different concentrations. The resulting sensor array has a total number of sensors, one manufactured each preselected region, that is greater than the number of feedstock solutions used to manufacture the sensors.

In a preferred embodiment, the method of contacting is In other embodiments, the method of contacting spraying. includes pipetting, micropipetting, depositing, spinning, evaporating, dipping, flowing and the like. In embodiments, the method further includes the step of varying the concentration of the second organic material in the second solution from y to y+b or from y+b to y+c. certain of these embodiments, the concentration is smoothly In yet other embodiments, after the step of varying the concentration, the method further includes the step of moving the solution from the first region to the second region. For instance, in certain embodiments using spraying as the contacting method, a spraying unit contacts the first, second and third regions and delivers the first solution at concentration x. Then a spraying unit contacts first region and delivers the second solution at concentration y. Then the concentration is smoothly varied to concentration y+b as the second solution is moved to the

10

15

20

25

30

second region and contacts the second region delivering the solution at concentration y+b. Finally, the concentration is smoothly varied to concentration y+c as the second solution is moved to the third region and contacts the third region delivering the solution at y+c. In certain embodiments where the sensors to be produced are chemically sensitive resistors, the first feedstock solution further comprises a conductive material, or a third feedstock contains said conductive material, which can also be varied in concentration.

In certain embodiments, these preselected regions are arranged in an array or grid. In some embodiments, concentrations of both nonconductive organic materials are varied. As a simple example, an embodiment is formed where 4 sensors are arranged in a square grid with the first sensor in the upper left corner, the second sensor in the upper right corner, the third sensor in the bottom left corner and the fourth sensor in the bottom right corner. The previously described spraying unit or units can be used as described above to form the sensors. The first solution is sprayed from top to bottom with the concentration smoothly varied from x to x+a. Then the second solution is sprayed from left to right with the concentration smoothly The resulting combinatorial sensor varied from y to y+b. array contains four sensors, each with a different mole fraction of first and second organic materials. embodiments, the direction of spraying is altered. In other embodiments, sensor arrays contain more than 4 sensors. Some embodiments can contain 106 sensors. In certain embodiments, sensor arrays are arranged in shapes other than squares. For instance, arrays may be arranged in shapes such as rectangles, circles, ovals, triangles, rhomboids, diamonds and the like. In some embodiments, arrays are

15

20

25

30

arranged in shapes that produce the most sensors when the array is fabricated on a silicon wafer.

In certain embodiments, the organic materials can be polymers. Where the organic materials are polymers, in certain embodiments, the first polymer is different from the second polymer. In other embodiments, the organic materials are monomers, and the method further includes the step of polymerizing the monomers by applying an activating agent. These activating agents include light, heat and chemicals. In some embodiments, the first solution is miscible in the second solution. In certain of these embodiments, the first solvent is the same as the second solvent.

The sensors that are prepared by these methods are capable of providing a detectable signal in response to contact with a chemical analyte. Specifically, the polymer-based sensors are capable of absorbing a chemical analyte which, in some embodiments, causes the polymer to swell, thereby providing a signal which is capable of detection. Numerous apparati are known in the art and/or may be configured to detect the swelling of the sensor.

In a preferred embodiment, an electrically conductive material is added to the polymer or polymer blend used to fabricate the sensors. In other embodiments, two or more electrically conductive materials are added to the organic material. In these cases, the sensors formed are chemically sensitive resistors.

FIGS. 3 and 4 demonstrate the important concept of using a limited number of feedstock solutions to create a greater number of array sensors. Referring now to FIG. 3, this shows a limited number (n) of polymer feedstock solutions that have been combined to produce a greater number of combinatorial sensors. The feedstock solutions along the top of the matrix $(P_1 \dots P_n)$ are at concentration

15

20

The same feedstock polymers are shown along the left the $matrix (P_1 ... P_n)$ at concentration Individual cells in the matrix show the effect of combining the feedstock solutions to produce a sensor. For instance, at column 2, row 1 contains sensor $P_{2[x]}P_{1[y]}$, indicates that this sensor is formed from polymer feedstock at concentration [x] and polymer feedstock concentration [y]. Of course, the cells along the diagonal contain only one polymer type and, accordingly, are not Thus, it can be seen that a limited combinatorial sensors. number of polymer feedstock solutions can be combinatorially combined to produce a greater number of sensors. instance, if the matrix is limited to a 4x4 array of feedstock solutions P_1 through P_4 , such an array of 4 polymer feedstocks would produce 12 combinatorial sensors, assuming that x and y are different concentrations. Further, if the array is confined to those sensors in the cells above the diagonal in the 4x4 array, it can be seen that the four feedstocks still produce a greater number of sensors, namely Thus, even if we eliminate sensors that differ from another sensor only in the concentration of the feedstock polymers used, the resulting number of sensors is still greater than the number of feedstock solutions.

Referring now to FIG. 4, the effect of increasing the 25 variety polymer feedstock solutions is shown. The feedstock solutions along the top of the matrix, P_1 concentration [x], are the same as in FIG. 3 However, here in FIG. 4, the feedstock polymers shown along the left side of the matrix, P_{n+1} ... P_{n+m} at concentration [y], 30 are different from the feedstock polymers shown along the top of the matrix. As a result, the sensors in the cells along the diagonal now contain combinatorial sensors, in contrast to the diagonal cells of FIG. 3. For instance, the

10

15

20

25

30

cell at column 2, row 2 contains sensor $P_{2[x]}P_{n+2[y]}$, indicating that this sensor is formed from polymer feedstock P_2 at concentration [x] and polymer feedstock P_{n+2} , which is different from P_2 , at concentration [y]. Thus, if this matrix is limited to a 4x4 array of feedstock solutions P_1 through P_4 , along the top, and P_{n+1} ... P_{n+4} along the left, such an array of 8 polymer feedstocks would produce 16 combinatorial sensors, regardless of whether x and y are different or the same concentrations.

The limited feedstock concept is demonstrated in an embodiment of an electronic nose that mimics a mammalian olfactory system, that includes a substrate having a plurality of array sensors, where each array sensor includes a chemically sensitive resistor that includes a combination first nonconductive organic material concentration, a second nonconductive organic material at a and a conductive material. The first concentration, nonconductive organic material is different from the second nonconductive organic material and the number of array the of different than number sensors is greater nonconductive organic materials that form the array sensors. The electronic nose also includes an electrical measuring apparatus electrically connected to the array sensors. certain embodiments, the first array sensor differs from the second array sensor in the concentration of the first nonconductive organic material.

Another embodiment includes two chemically sensitive resistors and an electrical measuring apparatus electrically connected to the resistors. Each chemically sensitive resistor includes a combination of a first nonconductive organic material at a concentration, a second nonconductive organic material at a concentration, and a conductive material, with the proviso that the first nonconductive

10

15

20

25

30

organic material is different from the second nonconductive organic material and that the concentration of the first nonconductive organic material of the first resistor is different from the concentration of the first nonconductive organic material of the second resistor. In certain of these embodiments, the first nonconductive organic material of the first resistor is different from the nonconductive organic material of the second resistor. other embodiments, the second nonconductive organic material first resistor is different from the nonconductive organic material of the second resistor.

another embodiment includes two chemically sensitive resistors and an electrical measuring apparatus electrically connected to the resistors. described As previously, each chemically sensitive resistor includes a combination of a first nonconductive organic material at a concentration, a second nonconductive organic material at a concentration, and a conductive material, with the proviso that the first nonconductive organic material is different from the second nonconductive organic material. However, in this embodiment, the first nonconductive organic material of the first resistor is the same as the first nonconductive organic material of the second resistor, concentration of the first nonconductive organic material of the first resistor is the same as the concentration of the first nonconductive organic material of the second resistor. In certain embodiments, the concentration of the second nonconductive organic material of the first resistor is different from the concentration of the second nonconductive organic material of the second resistor. In other embodiments, the second nonconductive organic material of is the first resistor different from the second nonconductive organic material of the second resistor.

15

20

25

30

Yet another embodiment is a single sensor for detecting an analyte in a fluid, which includes a chemically sensitive resistor having a resistance, where the resistor includes a combination of a first nonconductive organic material having a resistance, a second nonconductive organic material having a resistance, and a conductive material. The resistance is initially a baseline resistance, when the sensor is free of the analyte. When the sensor is exposed to the analyte, the resistance response. An electrical resistance is a electrically connected measuring apparatus is to The resistance of this resistor is nonlinear. other words, the resistance is different from a sum of the resistance of the first nonconductive organic material and the resistance of the second nonconductive organic material, and further is different from an average of the resistance first nonconductive organic material resistance of the second nonconductive organic material.

second certain embodiments, the first and nonconductive organic materials are nonconductive organic polymers and the combination is an organic nonconductive Lists of these organic polymers have polymer blend. previously been cited herein. In one embodiment, the first nonconductive polymer is polyvinyl acetate and the second nonconductive polymer is polymethyl methacrylate. In other embodiments, the nonconductive organic materials are each organic monomers, and the combination nonconductive polymerizes the monomers into an organic polymer. certain embodiments, the first nonconductive organic monomer is different from the second nonconductive organic monomer. In other embodiments, they are the same.

One or more of a variety of electrically conductive materials may be employed. In some embodiments, the conductive material is an organic conducting polymer.

organic conducting Examples of such polymers include poly(thiophenes), poly(anilines), poly(pyrroles), poly(acetylenes), and the like. In other embodiments, the conductive material is a carbonaceous material such as carbon blacks, graphite, coke, C60, and the like. 5 other embodiments, the conductive material is a charge transfer complex such as tetramethylparaphenylenediaminechloranile, alkali metal tetracyanoquinodimethane complexes, tetrathiofulvalene halide complexes, and the like. In other embodiments, the conductive material is inorganic an 10 conductor such as a metal or a metal alloy. Examples In other include Ag, Au, Cu, Pt, AuCu alloy, and the like. embodiments, the conductive material is a highly doped semiconductor. Examples include Si, GaAs, InP, MoS2, TiO2, and the like. In still other embodiments, the conductive 15 material is a conductive metal oxide. Examples include In_2O_3 , SnO_2 , $Na_xPt_3O_4$, and the like. In other embodiments, the conductive material is a superconductor. Examples include YBa₂Cu₃O₇, Tl₂Ba₂Ca₂Cu₃O₁₀, and the like. In still the conductive material is a mixed other embodiments, 20 inorganic/organic conductor. Examples include tetracyanoplatinate complexes, iridium halocarbonyl complexes, stacked macrocyclic complexes, and the like.

embodiments include а second chemically Certain sensitive resistor that has a resistance. 25 The second resistor includes a combination of a first nonconductive material that resistance, has a nonconductive organic material that has a resistance, and a The resistance of the conductive material. sensitive resistor is nonlinear, using 30 chemically definition provided herein.

In certain embodiments having at least two resistors, the first nonconductive organic material in the first

15

20

25

30

resistor is the same as the first nonconductive organic material in the second resistor, and in certain of these embodiments, the mole fraction of the first nonconductive organic material in the first chemically sensitive resistor different from the mole fraction of nonconductive organic material in the second chemically sensitive resistor. In certain of the embodiments just described, the ratio of the resistance of the first resistor to the resistance of the second resistor is a function of a property different from the ratio of the mole fraction of first nonconductive organic material in the first resistor to the mole fraction of the first nonconductive organic material in the second resistor, which is yet another example of the nonlinearity of these embodiments. other embodiments, the second nonconductive organic material in the first resistor is the same as the second nonconductive organic material in the second resistor.

In embodiments with one or more conductive materials, where the sensors swell in response to contact with a chemical analyte, the particles of conductive material in the sensors move farther apart, thereby increasing the resistance to electrical current passing through the sensor. As such, in embodiments where a conductive material is added to the sensors, the sensors will provide (i) an electrical path, (ii) a first electrical resistance in the electrical path in the absence of the analyte, and (iii) a second electrical resistance in the presence of the chemical Where the sensor is incapable of sorbing the analyte. chemical analyte, the first and second electrical resistances will generally be the same. However, where the sensor sorbs the chemical analyte, the second electrical resistance will generally be different than first the electrical resistance. Thus, in embodiments where the

10

20

25

sensors include conductive materials, the detectable signal that detects the presence of a chemical analyte in the fluid is a direct current electrical resistance, but could be resistance over time or frequency.

The sensors that are chemically sensitive resistors can be used in a variety of ways. One embodiment is a method for detecting the presence of an analyte in a fluid, which includes the steps of providing an array of sensors that includes two chemically sensitive resistors, each having a resistance response to the fluid and a resistance response the analyte, and an electrical measuring apparatus electrically connected to the resistors. Each chemically sensitive resistor includes a combination of a nonconductive organic material at a concentration, a second nonconductive organic material, and a conductive material, with the proviso that the first nonconductive organic material in each resistor is different from the second nonconductive organic material in each resistor and with a proviso that the concentration of further nonconductive organic material in the first resistor is different from the concentration of the first nonconductive organic material in the second resistor. The resistors are then exposed to the fluid and resistance responses that occur when the resistors are permeated by the fluid are Then, the measured resistance response of the measured. first resistor is compared to the measured resistance response of the second resistor to determine the presence of the analyte in the fluid.

As indicated previously herein, certain embodiments of this method include nonconductive organic materials that are nonconductive organic polymers. Other embodiments include nonconductive organic materials that are monomers. In some embodiments, the first organic monomer or polymer is

different from the second organic monomer or polymer. embodiments including monomers, the monomers are polymerized to form an organic polymer. Polymerization is induced by exposure of the monomers to an activating agent, such as light, heat or catalytic chemical. In certain embodiments containing more than one resistor, the first organic material in the first resistor is the same as the first organic material in the second resistor and the second organic material in the first resistor is the same as the second organic material in the second resistor. of these embodiments, the concentration of the first organic in the first resistor is different from the material concentration of the first organic material in the second Thus, a concentration gradient of the first resistor. organic material is formed across the resistors in the combinatorial resistor array. Similarly, a concentration gradient of the second organic material is formed across the resistors, as well.

Certain embodiments containing at least two resistors further include the step of providing a known sample of the 20 analyte in solution and exposing the first and second chemically sensitive resistors to the known solution to create a known response pattern to the presence of the Then, when the sensors are exposed to an unknown 25 fluid, the first measured response and the second measured response are used to create a measured response pattern. This measured response pattern can then be compared to the known response pattern to determine the presence of the analyte in the fluid, the absence of a substance different 30 from the analyte in the fluid or the concentration of the analyte in the fluid.

In other embodiments, an information storage device is coupled to the electrical measuring apparatus; and the

10

15

20

25

30

method includes the additional step of storing information in the storage device. This information storage device can be coupled to embodiments having one or more sensors. In some embodiments, this information storage device is a computer. In certain embodiments the stored information is the resistance response to the analyte for each resistor. In other embodiments, the stored information is the resistance response of the resistor as a function of time.

In embodiments that have at least two sensors, the stored information can be the known response pattern to the analyte. The method then includes the additional step of comparing the measured response pattern to the known response pattern to determine the presence of the analyte in the fluid, the absence of a substance different from the analyte in the fluid.

In some embodiments, the electrical measuring apparatus includes an integrated circuit. In certain embodiments, the integrated circuit includes neural network-based hardware. In other embodiments, the integrated circuit includes a digital-analog converter.

The methods of fabrication of the sensors described herein allow quick, easy and inexpensive preparation of large numbers of chemically sensitive sensors а In one embodiment, arrays combinatorial fashion. compositionally distinct sensors are incorporated into a device that is designed to detect the presence of an analyte in a fluid by providing a detectable response. Such devices include, without limitation, surface acoustic wave sensors, quartz crystal microbalance sensors, polymer-coated fiber optic sensors, devices designed as analogs of the mammalian olfactory system, and the like. In such systems, the array of sensors employed often comprises at least ten, usually at

20

25

30

least 100, and often at least 1000 different sensors, though with mass deposition fabrication techniques described herein or otherwise known in the art, arrays of on the order of at least 10^6 sensors are readily produced. In certain embodiments, arrays of sensor are placed in communication with an apparatus designed to detect and/or measure the signal produced by the sensor array both in the presence and in the absence of the chemical analyte of interest.

As discussed previously, the sensors described herein can be combined with a wide variety of supporting technology to measure sensor response other than resistance. These embodiments include techniques that detect variations in electromagnetic energy, optical properties, capacitance, inductance or impedance and other physical, chemical and electrical properties that may vary in accordance with the response of the sensors. Thus, the applications to which the sensors may be put is very broad.

One embodiment is a sensor that includes two chemically sensitive elements. The first chemically sensitive element, which includes a combination of first and second organic materials, is adapted to provide a detectable response. organic materials can be any of the suitable materials previously described herein. The detectable response of this first element is nonlinear by the definition provided The second chemically sensitive element, which also a combination of first and includes second materials, is also adapted to provide a detectable response. The detectable response of the second element is nonlinear by the definition provided herein. A detector is operatively associated with the first and second chemically sensitive elements. During use, each of the first and said second chemically sensitive elements gives a detectable response when in contact with the analyte, which is

10

15

20

25

30

different from the detectable response when the first and second elements are free of the analyte. In some embodiments, the detectable response is a variation in optical transmission and the detector is a spectrophotometer. In other embodiments, the detectable response is a variation in electromagnetic energy, and the detector measures electromagnetic energy.

Other embodiments include methods by which the abovedescribed sensors can be used. One embodiment is a method for detecting the presence of an analyte in a fluid, which first includes the step of providing a first chemically sensitive element as described in the immediately preceding paragraph, where the element has a detectable response to the fluid and a detectable response to the analyte. second chemically sensitive element is also provided which has a detectable response to the fluid and a detectable response to the analyte. A detector is operatively associated with the first and second chemically sensitive Next, the first and second chemically sensitive elements. elements are exposed to the fluid. Then the detectable response of the first element is measured. As previously described, in one embodiment, this detectable response is optical transmission. In another embodiment, the detectable is electromagnetic This energy. detectable response response of the first element is nonlinear according to the definition provided herein. Next, the detectable response of the second element is measured. This detectable of the second element is also nonlinear, in that it is different from a sum of the detectable response to permeation by the fluid of the first organic material and the detectable response to permeation by the fluid of the second organic material, is different from an average of the detectable response to permeation by the fluid of the first organic

10

15

20

25

30

material and the detectable response to permeation by the fluid of the second organic material. Next, the measured response of the first element is compared to the detectable response by the analyte for the first element and the measured response of the second element is compared to the detectable response to the analyte for the second element to determine the presence of the analyte in the fluid.

A wide variety of chemical analytes and fluids may be analyzed by the disclosed sensors and arrays so long as the generating a differential capable analyte is subject response across a plurality of sensors of the array. Analyte applications include broad ranges of classes such as organics such as alkanes, alkenes, alkynes, dienes, alicyclic hydrocarbons, arenes, alcohols, ethers, ketones, aldehydes, carbonyls, carbanions, polynuclear aromatics and derivatives of such organics, e.g., halide derivatives, etc., biomolecules such as sugars, isoprenes fatty acids and derivatives, isoprenoids, and Accordingly, commercial applications of the sensors arrays include environmental toxicology and remediation, quality control, food and materials biomedicine, agricultural products monitoring, and the like.

Further details of these devices and methods are illustrated in the following non-limiting examples.

Example 1

Two organic polymers, poly(vinyl acetate)(PVA) and poly(methyl methacrylate) (PMMA), were selected to form compositionally varied sensors to determine if those sensors would be capable of providing a detectable signal which is not linearly related to the mole fraction of either of the organic polymers present in the sensor. Five different

15

20

25

30

PVA/PMMA blends were investigated as carbon black-containing chemically sensitive resistors. The combinatorial sensor fabrication was achieved by combining the two initial base polymer feedstocks to produce solutions of PVA/PMMA mixtures having PVA mole fractions of 0.000, 0.292, 0.551, 0.773 and 1.000, respectively. Each stock solution contained 25 mL of tetrahydrofuran (THF) and 250 mg total dissolved organic nominally identical procedures used polymer, with fabricate all sensors. To introduce the electrically conducting carbon black component into the composite, a 10 mL aliquot of each stock solution was then combined with 43 mg of carbon black. Each carbon black-polymer suspension was sonicated for 10 minutes and was then spin-coated, at 1000 rpm, onto a glass slide.

The sensors were allowed to dry for a minimum of 12 hours before use. Prior to sensor deposition, the glass slide was coated with two gold contacts to allow monitoring of the resistance response of the sensors upon exposure to various test vapors.

Figure 1 displays a typical sensor response. Upon exposure to a test vapor containing 13.9 ppth (parts per thousand) of methanol in air for 540 seconds starting at the time point designated 180 seconds in the graph, resistance of the composite film increases and the response then decreases after the vapor exposure is terminated. This behavior has been discussed in detail for a series of pure polymeric compositions that have been used as either carbon black or polypyrrole composites to provide arrays of electrically conductive vapor sensors. Lonergan et al., Chem. Mater. 8:2298 (1996) and Freund and Lewis, Proc. Natl. Acad. Sci. USA 92:2652 (1995). Specifically, the increase in electrical resistance observed in response to contact with the chemical analyte is a result of the polymeric material of the sensor sorbing the analyte, thereby swelling and increasing the distance between at least some of the carbon black particles present in the sensor and, in turn, increasing the relative electrical resistance.

To assess the performance of the miscible blend sensors, all of the sensors were exposed five times each to five different analytes, with the vapor concentrations arbitrarily chosen to be 13.9 parts per thousand (ppth) of methanol, 5.2 ppth of ethanol, 7.2 ppth of acetone, 2.9 ppth of ethyl acetate and 4.6 ppth of acetonitrile in air at 21°C. Only the maximum differential resistance response relative to the baseline resistance $\Delta R_{\text{max}}/R$ was used in the analysis of the array performance carried out in this work. The results are presented in Figure 2.

Figure 2 depicts a plot of $\Delta R_{\text{max}}/R$ for the polymer blend chemically sensitive resistors upon exposure to ethyl acetate. Similar behavior was observed when methanol, ethanol, acetonitrile or acetone were used as test vapors (data not shown). In all cases, a statistically significant non-linearity was observed for the sensor response versus the mole fraction of the base polymer feedstocks.

This indicates that useful information is available through use of such miscible blend materials in a sensor array for vapor classification.

25 The ability of a specific sensor array to resolve pairs of solvent vapors can be quantified statistically through reference to a generalized resolution factor, rf. This quantity is equivalent to that proposed by Muller, Sens. Actuators B 4:35 (1991) and recently used by Gardner and 30 Bartlett, Eurosensors IX, pp. 169 (1995) and is a multidimensional analogue to the separation factors used in gas chromatography. Nonlinearity in the gas-solid partition coefficient is crucial to increasing the diversity of a

broadly responsive sensor array that is fabricated through combinatorial methods, because otherwise the response of the blended chemically sensitive resistors can be predicted precisely from the responses of the base polymeric sensor materials. No new analyte classification information is therefore provided by the inclusion of the additional sensors into the sensor array without such nonlinear behavior.

The mean response vector,

10

 \overrightarrow{X}_a

of an n-sensor array to analyte a is taken as the n-dimensional vector containing the mean response of each sensor,

 \overline{Q}_{aj}

15 to the ath analyte as components such that,

$$\vec{X}_a = (\overline{Q_{a1}}, \overline{Q_{a2}}, ..., \overline{Q_{an}})$$

The State of the S

between two analytes, a and b, in the Euclidean sensor response space is then just the magnitude of the difference between

 \overrightarrow{X}_a

and

5

 \overrightarrow{X}_b

The reproducibility of the sensor responses to the analytes is also important in quantifying the resolving power of the array. Thus the standard deviations,

 σ_a , \vec{d}

and

 σ_{b} , \bar{d}

15

10

obtained from all the individual array responses to each of a and b in the direction of the vector d, are used to describe the average separation and ultimately define the resolution factor,

$$rf = \frac{\left| \vec{d} \right|}{\sqrt{\sigma^2_{a,\vec{d}} + \sigma^2_{b,\vec{d}}}}$$

20

25

This metric allows quantification of the ability of the sensor array to resolve pairwise the vapors of concern in the test analyte set. Because the functional form of the response of the various polymer chemically sensitive resistors was very similar, this procedure can be used to

10

15

20

provide an objective measure of array performance, as opposed to performing a subjective assessment of the performance of task-specific neural network classifiers on functionally dissimilar responses of various array elements. Zupan and Gasteiger, Neural Networks for Chemists, VCH, New York, NY, pp. 305 (1993).

The responses produced by a set of 12 sensors, three with only PMMA, two with 29.2% mole fraction PVA in PMMA, two with 55.1 % mole fraction PVA in PMMA, three with 77.3% mole fraction PVA in PMMA, and two with only PVA, were investigated using this approach. Two criteria were chosen as a measure of the performance of each array: (1) the mean resolution factor of the sensor array for all of the analyte pairs in the test set, and (2) the value of rf produced by that library for the worst-resolved pair of analytes in the The performance of every combination of 5 of the 12 sensors was evaluated to determine if the best-performing set, by either performance criterion, would contain the 5 sensors comprised of only the base polymers or whether some of the combinatorially fabricated polymer blends would be included in the best-performing sensor library. The results of these experiments are presented in Tables 1 to 3.

TABLE 1

Sensor set, including combinatorial sensors, with largest average rfa

(avg. rf=20, worst rf = 2.8) 5

	ethanol	acetonitrile	acetone	ethyl acetate			
methanol	15	2.8	16	25			
ethanol		25	25 10 19				
acetonitrile			32	40			
acetone				15			

^a This set of five sensors contained one with only PMMA.

TABLE 2

Sensor set, including combinatorial sensors, with largest 10 average rfb (avg. rf = 19, worst rf = 3.0)

ethanol	acetonitrile	acetone	ethyl acetate		
13	3.0	28	21		
	24	9.4	15		
		30	33		
			20		
		13 3.0	13 3.0 28 24 9.4		

b This set of five sensors contained two with only PMMA, one with 77.3 PVA in PMMA and two with only PVA.

15

20

25

TABLE 3

Sensor set with only single polymer sensors c

(avg. rf = 14, worst rf = 3.0)

	ethanol	acetonitrile acetone		ethyl acetate		
methanol	12	3.0	19	18		
ethanol		14	8.1	9.1		
acetonitrile			25	20		
acetone				14		

[°] This set of five sensors contained three with only PMMA and 2 with only PVA.

As clearly shown in Tables 1-3, the inclusion of the combinatorially-fabricated sensors produced a statistically significant improvement in average rf. Large improvements in the resolution of individual vapor pairs, such as acetonitrile from ethyl acetate, or ethanol from ethyl acetate, were obtained by including the combinatoriallyfabricated sensors into the sensor library. However, the performance of the array in separating the worst resolved pair of solvents, methanol and acetonitrile, did not improve including the combinatorially-formed significantly by sensors into the library, indicating that further diversity in the base components of the array is required in order to optimize the performance of the array for this particular sensing task.

Another significant conclusion arising from the data presented in Tables 1-3 is that the classification of these various vapors, at fixed concentrations, is statistically robust from the array response even though the individual sensors themselves were not designed to possess high selectivity toward a specific analyte. For example, a pairwise resolution factor of 8 implies that, in a single

10

15

20

presentation of the challenge vapors to the sensor array, a given vapor can be distinguished from the other member of the test pair statistically with >99.999% confidence level. This level of performance was met or exceeded by the best-performing five element polymer blend sensor arrays for essentially all of the test vapor pairs used in this work (except methanol-acetonitrile, which were only distinguished at approximately a 96% confidence in a single presentation), even though the array elements were not chosen in advance specifically to perform any particular set of vapor classification tasks.

response nonlinear of binary, а Exploitation of quaternary blend chemically sensitive tertiary, and resistors to various solvent vapors should offer the opportunity to increase significantly the diversity of a polymer composite sensor library and, therefore, to increase its classification performance relative to a library that contains chemically sensitive resistors fabricated from the pure polymeric phases alone.

The olfactory bulb of canines has approximately 100 million receptor cells and that humans have over 1000 different olfactory receptor proteins. Axel, Sc. Am. 154 (1995). Thus, attempts to mimic functionally the olfactory sense are more likely to be realizable with exploitation of combinatorial sensor library methodologies to incorporate extensive diversity into a polymer-based vapor sensing array. Certain embodiments provide novel methods for preparing highly diverse libraries of chemically sensitive sensors.

Example 2

5

10

15

20

25

30

acetate) of poly(vinyl blends Compatible poly(methyl methacrylate) have been used to produce a series of electrically conducting carbon black composites whose resistance is sensitive to the nature and concentration of an analyte in the vapor phase. See Lewis, Grubbs, Severin, Sanner and Doleman, "Use of Compatible Polymer Blends to Fabricate Arrays of Carbon Black-Polymer Composite Vapor Analytical Chemistry, in press Detectors," incorporated herein by reference in its entirety. electrical resistance response of the composites was found nonlinear function of the mole fraction be а These compatible blend poly(vinyl acetate) in the blend. provided additional analyte detectors composite discrimination information relative to a reference detector array that only contained composites formed using the pure polymer phases. The added discrimination power provided by the compatible blend detectors, and thus the added diversity of the enhanced detector array, was quantified through use statistical metric to assess the performance of of detector arrays in various vapor classification tasks.

blend compositions different PVA/PMMA Eight investigated as carbon black composite chemiresistor vapor The compatible blend detector fabrication was initial base achieved by combining the two feedstocks to produce solutions of PVA/PMMA having PVA mole fractions (by monomer) of 0.00, 0.11, 0.28, 0.44, 0.64, 0.78, 0.91, and 1.00, respectively. Each stock solution mL of tetrahydrofuran, 200 mg of contained 20 dissolved polymer, and 86 mg of suspended carbon black. glass microscope slides, cut to a size approximately 2 cm \times 2.5 cm, were modified for suse as the substrate for each polymer blend detector. Two parallel

10

15

20

25

30

bands of 20 nm thick chromium (≈ 2 cm x 1 cm), spaced apart 0.5 cm, were evaporated onto each slide. The chromium bands were then coated with 30 nm of evaporated gold, thus forming robust electrical contacts. Each carbon black-polymer suspension was sonicated for 10 minutes and was then spin-coated, at 1000 rpm, onto a modified glass slide such that the gap between the slide electrical contacts was spanned by the polymer composite film. The detectors were allowed to dry in ambient air for 12 hours before use.

To obtain response data, the detectors were placed into a 1.2 L sampling chamber and electrical leads were attached to the two chromium-gold bands of each detector. resistance of each detector was recorded as a function of time using a Keithley model 7001 channel switcher connected to a Keithley model 2002 multimeter that was interfaced to a An automated flow system consisting of personal computer. LabVIEW software, a personal computer, and electrically controlled solenoid valves and mass flow controllers was used to produce and delivery controlled concentrations of solvent vapors to the detectors in the sampling chamber. The desired vapor concentrations were obtained by passing a stream of carrier gas through a bubbler that had been filled with the solvent of choice and then diluting this flow into a stream of air maintained at a controlled flow rate. The time protocol for each exposure was 120 s of air, followed by 600 s of test vapor in air, ending with another 600 s of air.

Figure 10 displays the resistance response of a typical detector. Upon exposure to a test vapor, the resistance of the composite film increased, and the response then decreased after the vapor exposure was terminated. This behavior has been discussed in detail for a series of pure polymeric compositions that have been used as either

15

20

25

30

carbon black or polypyrrole composites to provide different analytes, with the vapor concentrations chosen to be 11.3 parts per thousand (ppth) of methanol, 5.2 ppth of ethanol, 20.7 ppth of acetone, 8.3 ppth of ethyl acetate, and 8.2 ppth of acetonitrile in air at 21° C. these concentrations 7.1% of the solvent-saturated to all correspond concentration of each analyte in 21° C air, under a total atmospheric pressure of 753 Torr. The maximum differential resistance response relative to the baseline resistance $(\Delta R_{\text{max}}/R_{\text{b}})$ was used in the analysis of the array performance carried out in this work.

Figs. 5-10 depict plots of $\Delta R_{\rm max}/R_{\rm b}$ for the polymer bland chemiresistors upon exposure to acetate, ethanol, acetonitrile, acetone, and methanol. For each analyte, a statistically significant nonlinearity was observed for the detector response versus the mole fraction of the base polymer feedstocks. Since the nonlinearity is not the same for all solvents, this indicates that useful information is available through use of such compatible blend materials in a detector array for vapor classification.

The ability of a specific detector array to resolve pairs of solvent vapors can be quantified statistically through reference to a generalized resolution factor, rf. This quantity is equivalent to that proposed by Miller et al., [need citation] and recently used by Gardner and Bartlett [need citation] and is multidimensional analogue of chromatography. factors used in gas the separation Resistance responses, $\Delta R_{\text{max}}/R_{\text{b}}$, of carbon black-polymer composite detectors, containing ≥20 wt. % carbon black, have been shown to vary linearly over at least an order of magnitude in the concentration of the analyte in the vapor phase. Hence, detector arrays which can resolve analytes at one concentration can also be used to resolve analytes at

10

15

20

25

other concentrations. The detector responses were autoscaled to account for the different dynamic ranges of different detectors. The autoscaled response of the jth detector to the ith exposure, A_{ij} was thus

$$A_{ij} = \frac{(\Delta R_{ij, \max}/R_b) - \alpha_j}{\beta_j} \tag{1}$$

where αj and βj are the mean and standard deviations, respectively, in the responses of the jth detector to all analytes. The mean response vector, $\vec{x_a}$, of an n-detector array to analyte a is taken as the n-dimensional vector containing the mean autoscaled response of each detector $\vec{A_a}$, to the ath analyte such that

$$\overrightarrow{x}_a = \left(\overrightarrow{A}_{a1}, \overrightarrow{A}_{a2}, \dots, \overrightarrow{A}_{an}\right) \tag{2}$$

The average separation, $|\vec{d}|$, between two analytes, a and b, in the Euclidean detector response space is then simply the magnitude of the difference between \vec{x}_a and \vec{x}_b . The reproducibility of the array responses to the analytes is also important in quantifying the resolving power of the array. A measure of array response reproducibility to analyte, a, σ_a , is obtained by projecting the array response vectors for each exposure to analyte a onto the vector \vec{d} , and calculating the standard deviation in these scalar projections about the projection of the mean response vector, \vec{x}_a onto \vec{d} . The same procedure is repeated for analyte b of the a, b analyte pair, allowing a pairwise resolution factor to be defined as

$$rf = \frac{\left| \vec{d} \right|}{\sqrt{\sigma^2_{a,\vec{d}} + \sigma^2_{b,\vec{d}}}} \tag{3}$$

15

20

25

30

This metric allows quantification of the ability to resolve pairwise the vapors of concern in the test analyte set based on the response patters that they produce on the detector array. Because the functional form of the response of the various polymer composite chemiresistors was very similar, this procedure can be used to provide an objective measure of array performance, as opposed to performing a subjective assessment of the performance of task-specific network classifiers on functionally dissimilar neural responses of various array elements. It is important to realize, however, that the results are nevertheless coupled to the metric used to evaluate the response and that different algorithms, such as, for example, Fisher linear discriminants, which are linear data analysis methods that are not confined to pass through the mean response values of analytes of concern, may well yield different conclusions from the same response data.

The response produced by a set of 99 detectors, 14 detectors with pure PMMA, 10 with 11% PVA, 10 with 28% PVA, 15 with 44% PVA, 10 with 64% PVA, 15 with 78% PVA, 10 with 91% PVA, and 15 with pure PVA, were investigated using this approach. The performances of 8-detector combinations from different sets of detectors were evaluated to determine if arrays containing some of the compatible blend polymer detectors would perform better than arrays containing only detectors made from the base polymers, for certain test tasks. The performance of each studies array was measured by its ability to resolve the solvents pairwise, as given by the calculated rf values obtained using the simple linear data analysis method described above.

Results are presented for four sets of detectors. Set A contained all 14 detectors with 0% PVA and all 15 detectors with 100% PVA (i.e., all the base polymer

10

15

30

35

contained all 99 detectors). Set B of the prepared detectors ranging from 0% through to 100% PVA content. C contained only the 10 detectors with 91% PVA. contained all 14 of the 0% PVA detectors, all 10 of the 91% PVA detectors, and all 15 of the 100% PVA detectors. there are extremely large numbers of possible 8-detector combinations from within sets A, B, and D (≈10 unique 8detector combinations out of 99 set B detectors), 500member subsets of the total number of 8-detector array combinations were selected randomly and their corresponding rf values were calculated. For set C, rf values for all 45 possible 8-detector combinations out of 10 detectors were The results of the calculated resolution calculated. factors for arrays of 8-detectors within each set were averaged and are presented in Table 4, below.

TABLE 4

Sensors used	Overall avg. rf	vs ethanol	vs ethyl- acetate	vs acetonitr ile	vs. acetone	vs ethyl acetate	vs acetoni~ trile	Vs acetone	acetate Vs acetoni- trile	acetate Vs acetone	vs acetone
Set A	52	25	61	90	44	58	93	42	58	20	27
Set B	60	19	67	104	81	67	110	81	31	17	26
Set C	81	4.6	122	102	181	103	93	148	17	31	8.7
Set D	60	23	84	93	60	82	96	58	55	22	26

The overall average rf represents the average resolution factor across all analyte pairs for random combinations of detectors from a given detector set. The results for set A, set B, and set D were obtained by averaging over 500 randomly selected 8-detector arrays composed of only the detectors within each respective set. The results for set C were obtained by averaging over all 45 possible 8-detector combinations of the detectors within the set. Set A contained all 14 of the 0% PVA detectors and all 15 of the 100% PVA detectors (i.e., all the base polymer detectors). Set B contained all 99 of the prepared detectors ranging from 0% to 100% PVA content. Set C contained only the 10 detectors with 91% PVA. Set D contained all 14 of the 0% PVA detectors, all 10 of the 91% PVA detectors, and all 15 of the 100% PVA detectors.

Clearly, the inclusion of compatible blend detectors produced a statistically significant improvement in maximizing the overall average rf, which is the average ability of all calculated 8-detector array combinations within a set of detectors to resolve all analyte pairs using the metric defined above. For example, sets B, C, and D, which contained compatible blend detectors, had overall average rf's of 60, 81, and 60, respectively, whereas the

10

15

20

25

30

base polymer detector arrays (set A) had an overall average rf of 52. The array performance in separating the pair of solvents, ethyl acetate vs. acetone, that was worst resolved by set A (base polymer detectors) could also be improved by using 8-detector arrays containing only 91% PVA detectors (set C) or by including these detectors in arrays that contained the base polymer detectors (set D). Set D arrays, containing blended polymers, exhibit a larger overall average rf, a larger rf for the worst resolved analyte pair, and resolved 7 of the 10 analyte pairs better than did the base polymer arrays of set A.

Another significant conclusion arising from the data is that the classification of these various vapors, at fixed concentrations, is statistically robust from the array response even though the individual detectors themselves were not designed to possess high selectivity toward a specific analyte. For example, a pairwise resolution factor of 4.5 implies that, in a single presentation of the challenge vapors to the detector array, a given vapor can be . . . was met or exceeded by all of the eight-element detector arrays of Table 4 for all of the test vapor pairs used in this work, even though the array elements were not chosen in advance specifically to perform any particular set of vapor classification tasks.

Utilization of a nonlinear response of binary, tertiary, and quaternary blend composite chemiresistors to various solvent vapors should offer the opportunity to increase significantly the diversity of a polymer composite detector array and therefore to increase its classification performance relative to an array that contains chemiresistors fabricated from the pure polymeric phases alone. The binary polymer blend advantages reported herein are in agreement with those recently published using a different

10

15

20

25

detector modality, polymer-dye optical detectors. The exact performance gain of any specific array will likely be task dependent and must be evaluated for each application of concern. We note, however, that the olfactory bulb of canines has approximately 100 million receptor cells and that humans have over 1000 different . . . into a polymer-based vapor-sensing array. Extension of the approach described herein to other blends and a comparison of the detector diversity that can be achieved through the use of block and random copolymers as a complement to the use of compatible blends in detector arrays will be reported separately.

and methods devices particular While described for producing compositionally different polymerbased sensors, once this description is known, it will be apparent to those of ordinary skill in the art that other embodiments and alternate steps are also possible without departing from the spirit and scope of the invention. Moreover, it will be apparent that certain features of each embodiment as well as features disclosed in each reference incorporated herein, can be used in combination with devices Accordingly, the above illustrated in other embodiments. description should be construed as illustrative, and not in a limiting sense, the scope of the invention being defined by the following claims.

20

Claims

- A sensor array for detecting analyte in a fluid, comprising:
- a substrate having an array of sensors, each sensor 5 comprising a combination of a first organic material at a concentration, and a second organic material wherein at least concentration, one sensor is an interpenetrating network comprising a first polymer and a second polymer formed from a monomer polymerized in the presence of the first polymer; and 10
 - a detector operatively associated with each said sensor.

wherein the first organic material is different from the second organic material and wherein the number of sensors is greater than the number of different organic materials which form the sensors.

- 2. The sensor array of claim 1, wherein each sensor comprises a chemically sensitive resistor.
- 3. The sensor array of claim 1, wherein the first organic material is a nonconductive organic material.
- 4. The sensor array of claim 1, wherein the second 25 organic material is a nonconductive organic material.
 - 5. The sensor array of claim 1, wherein each sensor further comprises a conductive material.
- 30 6. The sensor array of claim 1, wherein the detector is an electrical measuring apparatus electrically connected to said sensors.

- 7. The sensor array of claim 1, wherein the first organic material is a copolymer.
- 8. The sensor array of claim 1, wherein the first organic material is a homopolymer.
 - 9. The sensor array of claim 1, wherein the first organic material is a block copolymer.
- 10 10. The sensor array of claim 1, wherein the first and second organic materials are homopolymers.
 - 11. A sensor array for detecting analyte in a fluid, comprising:
 - a first sensor comprising a combination of a first organic material at a concentration and a second organic material at a concentration, with the proviso that the first organic material is different from the second organic material and the sensor is an interpenetrating network comprising a first polymer and a second polymer formed from a monomer polymerized in the presence of the first polymer;
 - a second sensor comprising a combination of a first organic material at a concentration and a second organic material at a concentration, with the proviso that the first organic material is different from the second organic material and the concentration of the first organic material of the first sensor is different from the concentration of the first organic material of the second sensor; and
- a detector operatively associated with each said 30 sensor.
 - 12. The sensor array of claim 11, wherein each sensor comprises a chemically sensitive resistor.

15

20

And the first of the first of the first that the first first

10

- 13. The sensor array of claim 11, wherein the first organic material is a nonconductive organic material.
- 5 14. The sensor array of claim 11, wherein the second organic material is a nonconductive organic material.
 - 15. The sensor array of claim 11, wherein the first and second sensors further comprise a conductive material.
 - 16. The sensor array of claim 11, wherein the detector is an electrical measuring apparatus electrically connected to said sensors.
- 17. The sensor array of claim 11, wherein the first organic material of the first sensor is a copolymer.
 - 18. The sensor array of claim 11, wherein the first organic material of the first sensor is a homopolymer.
 - 19. The sensor array of claim 11, wherein the first organic material of the first sensor is a block copolymer.
- 20. The sensor array of claim 11, wherein the first 25 and second organic materials of the first sensor are homopolymers.
 - 21. A sensor array for detecting analyte in a fluid, comprising:
- a substrate having a plurality of array sensors, each sensor comprising a chemically sensitive resistor comprising a combination of a first nonconductive organic material at a

concentration, a second nonconductive organic material at a concentration and a conductive material; and

an electrical measuring apparatus connected to said array sensors,

wherein the first nonconductive organic material is different from the second nonconductive organic material and wherein the number of sensors is greater than the number of different nonconductive organic materials which form the sensors.

10

30

- 22. The sensor array of claim 21, wherein a first array sensor differs from a second array sensor in the concentration of the first nonconductive organic material.
- 23. The sensor array of claim 21, wherein the first and second nonconductive organic materials are nonconductive organic polymers.
- 24. The sensor array of claim 23, wherein each nonconductive organic polymer is selected from the group consisting of main-chain carbon polymers, main-chain acrylic heteroatom organic polymers and main-chain heterocyclic polymers.
 - The sensor array of claim 24, wherein said main-25. chain carbon polymers are selected from the group consisting of poly(dienes), poly(alkenes), poly(acrylics), (methacrylics), poly(vinyl ethers), poly(vinyl thioethers), poly(vinyl alcohols), poly(vinyl ketones), poly(vinyl halides), poly(vinyl nitriles), poly(vinyl esters), poly(styrenes) and poly(arylenes).

- 26. The sensor array of claim 24, wherein said main-chain acrylic heteroatom organic polymers are selected from the group consisting of poly(oxides), poly(carbonates), poly(esters), poly(anhydrides), poly(urethanes), poly(sulfonates), poly(siloxanes), poly(sulfides), poly(thioesters), poly(sulfones), poly(sulfonamides), poly(amides), poly(ureas), poly(phosphazenes), poly(silanes) and poly (silazanes).
- The sensor array of claim 24, wherein -said main-10 chain heterocyclic polymers are selected from the group consisting of poly(furan tetracarboxylic acid diimides), poly(benzoxazoles), poly(oxadiazoles), poly(benzothiazingphenothiazines), poly(benzothiazoles), poly(pyrazinoquinoxalines), poly(pyromellitimides), poly(quinoxalines), poly 15 (benzimidazoles), poly(oxindoles), poly(oxoisoindolines), poly(dioxoisoindolines), poly(triazines), poly(pyridazines), poly(pyridines), poly(piperidines), poly(piperazines), poly(triazoles), poly(pyrazoles), poly(pyrrolidines), poly (carboranes), poly(oxabicyclononanes), poly(dibenzofurans), 20 poly(phthalides), poly(acetals), poly(anhydrides) and carbohydrates.
- 28. The sensor array of claim 24, wherein the first nonconductive polymer is polyvinyl acetate and the second nonconductive polymer is polymethylmethacrylate.
- 29. The sensor array of claim 21, wherein the first and second nonconductive organic materials are each nonconductive organic monomers and the combination polymerizes the monomers into an organic polymer.

- 30. The sensor array of claim 29, wherein the first nonconductive organic monomer is different from the second nonconductive organic monomer.
- 31. The sensor array of claim 21, wherein the conductive material is an organic conducting polymer.
- 22. The sensor array of claim 31, wherein the organic conducting polymer is selected from the group consisting of poly(anilines), poly(thiophenes), poly(pyrroles), and poly (acetylenes).
 - 33. The sensor array of claim 21, wherein the conductive material is a carbonaceous material.
 - 34. The sensor array of claim 33, wherein the carbonaceous material is selected from the group consisting of carbon blacks, graphite, coke, and C_{60} .
- 20 35. The sensor array of claim 21, wherein the conductive material is a charge transfer complex.
- 36. The sensor array of claim 35, wherein the charge transfer complex is selected from the group consisting of tetramethylparaphenylenediamine-chloranile, alkali metal tetracyanoquinodimethane complexes and tetrathiofulvalene halide complexes.
- 37. The sensor array of claim 21, wherein the 30 conductive material is an inorganic conductor.

- 38. The sensor array of claim 37, wherein the inorganic conductor is selected from the group consisting of metals and metal alloys.
- 39. The sensor array of claim 38, wherein the metal and metal alloys are selected from the group consisting of Ag, Au, Cu, Pt, and AuCu,
- 40. The sensor array of claim 21, wherein the 10 conductive material is a doped semiconductor.
 - 41. The sensor array of claim 40, wherein the doped semiconductor is selected from the group consisting of Si, GaAs, InP, MoS_2 , and TiO_2 .
 - 42. The sensor array of claim 21, wherein the conductive material is a conductive metal oxide.
- 43. The sensor array of claim 42, wherein the 20 conductive metal oxide is selected from the group consisting of In₂O₃, SnO₂, and Na_xPt₃O₄.
 - 744. The sensor array of claim 21, wherein the conductive material is a superconductor.
 - 45. The sensor array of claim 44, wherein the superconductor is selected from the group consisting of $YBa_2Cu_3O_7$, $Ti_2Ba_2Ca_2Cu_3O_{10}$, and the like.
- 30 46. The sensor array of claim 21, wherein the conductive material is a mixed inorganic/organic conductor.

The first cost of the first that the first the first the first that the first the firs

15

25

sympton

47. The sensor array of claim 46, wherein the mixed inorganic/organic conductor is selected from the group consisting of tetracyanoplatinate complexes, iridium halocarbonyl complexes and stacked macrocylic complexes.

5

1-0

48. An sensor array, comprising:

a first chemically sensitive resistor comprising a combination of a first nonconductive organic material at a concentration, a second nonconductive organic material at a concentration, and a conductive material, with the proviso that the first—nonconductive organic material is—different from the second nonconductive organic material;

a second chemically sensitive resistor comprising a combination of a first nonconductive organic material at a concentration, a second nonconductive organic material at a concentration, and a conductive material, with the proviso that the first nonconductive organic material is different from the second nonconductive organic material and the concentration of the first nonconductive organic material of the first resistor is different from the concentration of the first nonconductive organic material of the second resistor; and

electrical measuring apparatus electrically connected to said resistors.

25

20

49. The sensor array of claim 48, wherein the first nonconductive organic material of the first resistor is different from the first nonconductive organic material of the second resistor.

30

50. The sensor array of claim 48, wherein the second nonconductive organic material of the first resistor is

different from the second nonconductive organic material of the second resistor.

- 51. The sensor array of claim 48, wherein the first and second nonconductive organic materials are nonconductive organic polymers and the combination is an organic nonconductive polymer blend.
- 52. The sensor array of claim 51, wherein each nonconductive organic polymer is selected from the group consisting of main-chain carbon polymers, main-chain acrylic heteroatom organic polymers and main-chain heterocyclic polymers.
- 53. The sensor array of claim 52, wherein said mainchain carbon polymers are selected from the group consisting
 of poly(dienes), poly(alkenes), poly(acrylics), poly
 (methacrylics), poly(vinyl ethers), poly(vinyl thioethers),
 poly(vinyl alcohols), poly(vinyl ketones), poly(vinyl
 halides), poly(vinyl nitriles), poly(vinyl esters),
 poly(styrenes) and poly(arylenes).
- 54. The sensor array of claim 52, wherein said mainchain acrylic heteroatom organic polymers are selected from
 the group consisting of poly(oxides), poly(carbonates),
 poly(esters), poly(anhydrides), poly(urethanes), poly
 (sulfonates), poly(siloxanes), poly(sulfides), poly
 (thioesters), poly(sulfones), poly(sulfonamides), poly
 (amides), poly(ureas), poly(phosphazenes), poly(silanes) and
 poly(silazanes).
 - 55. The sensor array of claim 52, wherein said mainchain heterocyclic polymers are selected from the group

15

20

consisting of poly(furan tetracarboxylic acid diimides), poly(benzoxazoles), poly(oxadiazoles), poly(benzothiazinophenothiazines), poly(benzothiazoles), poly(pyrazinoquinoxalines), poly(pyromellitimides), poly(quinoxalines), poly(benzimidazoles), poly(oxindoles), poly(oxoisoindolines), poly(dioxoisoindolines), poly(triazines), poly(pyridazines), poly(piperadines), poly(pyridines), poly(piperadines), poly(pyrazoles), poly(pyrrolidines), poly(carboranes), poly(oxabicyclononanes), poly(dibenzofurans), poly(phthalides), poly(acetals), poly(anhydrides) and carbohydrates.

- 56. The sensor array of claim 52, wherein the first nonconductive polymer is polyvinyl acetate and the second nonconductive polymer is polymethylmethacrylate.
- 57. The sensor array of claim 48, wherein the first and second nonconductive organic materials are each nonconductive organic monomers and the combination polymerizes the monomers into an organic polymer,
- 58. The sensor array of claim 57, wherein-the first nonconductive organic monomer is different from the second nonconductive organic monomer.
- \$9. The sensor array of claim 48, wherein the conductive material is an organic conducting polymer.
- 60. The sensor array of claim 59, wherein the organic conducting polymer is selected from the group consisting of poly(anilines), poly(thiophenes), poly(pyrroles), and poly (acetylenes).

15

- 61. The sensor array of claim 48, wherein the conductive material is a carbonaceous material.
- \$2. The sensor array of claim 61, wherein the carbonaceous material is selected from the group consisting of carbon blacks, graphite, coke, and C60.
 - 63. The sensor array of claim 48, wherein the conductive material is a charge transfer complex.
 - 64. The sensor array of claim 63, wherein the charge transfer complex is selected from the group consisting of tetramethylparaphenylenediamine-chloranile, alkali metal tetracyanoquinodimethane complexes and tetrathiofulvalene halide complexes.
 - 65. The sensor array of claim 48, wherein the conductive material is an inorganic conductor.
 - 66. The sensor array of claim 65, wherein the inorganic conductor is selected from the group consisting of metals and metal alloys.
- 67. The sensor array of claim 66, wherein the metal and metal alloys are selected from the group consisting of Ag, Au, Cu, Pt, and AuCu.
 - 68. The sensor array of claim 48, wherein the conductive material is a doped semiconductor.
 - $^{\circ}$ 69. The sensor array of claim 48, wherein the doped semiconductor is selected from the group consisting of Si, GaAs, InP, MoS₂, and TiO₂.

- 70. The sensor array of claim 48, wherein the conductive material is a conductive metal oxide.
- 71. The sensor array of claim 70, wherein the conductive metal oxide is selected from the group consisting of In_2O_3 , SnO_2 , and $Na_xPt_3O_4$.
- 72. The sensor array of claim 48, wherein the 10 conductive material is a superconductor.
 - 73. The sensor array of claim 72, wherein the superconductor is selected from the group consisting of $YBa_2Cu_3O_7$, $Ti_2Ba_2Ca_2Cu_3O_{10}$, and the like.
 - 74. The sensor array of claim 48, wherein the conductive material is a mixed inorganic/organic conductor.
- 75. The sensor array of claim 74, wherein the mixed 20 inorganic/organic conductor is selected from the group consisting of tetracyanoplatinate complexes, iridium halocarbonyl complexes and stacked macrocylic complexes.

·76. An sensor array, comprising:

- a first chemically sensitive resistor comprising a combination of a first nonconductive organic material at a concentration, a second nonconductive organic material at a concentration, and a conductive material, with the proviso that the first nonconductive organic material is different from the second nonconductive organic material;
 - a second chemically sensitive resistor comprising a combination of a first nonconductive organic material at a concentration, a second nonconductive organic material at a

concentration, and a conductive material, with the proviso that the first nonconductive organic material is different from the second nonconductive organic material, the first nonconductive organic material of the second resistor is the same as the first nonconductive organic material of the first resistor, and the concentration of the first nonconductive organic material of the first resistor is the same as the concentration of the first nonconductive organic material of the second resistor; and

5

Contraction of the State State

The specific services

15

20

electrical measuring apparatus electrically connected to said resistors.

- 77. The sensor array of claim 76, wherein the concentration of the second nonconductive organic material of the first resistor is different from the concentration of the second nonconductive organic material of the second resistor.
- 78. The sensor array of claim 76, wherein the second nonconductive organic material of the first resistor is different from the second nonconductive organic material of the second resistor.
- 79. The sensor array of claim 76, wherein the first and second nonconductive organic materials are nonconductive organic polymers and the combination is an organic nonconductive polymer blend.
- 80. The sensor array of claim 79, wherein each nonconductive organic polymer is selected from the group consisting of main-chain carbon polymers, main-chain acrylic heteroatom organic polymers and main-chain heterocyclic polymers.

- 81. The sensor array of claim 80, wherein said main-chain carbon polymers are selected from the group consisting of poly(dienes), poly(alkenes), poly(acrylics), poly (methacrylics), poly(vinyl ethers), poly(vinyl thioethers), poly(vinyl alcohols), poly(vinyl ketones), poly(vinyl halides), poly(vinyl nitriles), poly(vinyl esters), poly (styrenes) and poly(arylenes).
- the group consisting of poly(oxides), poly(carbonates), poly(esters), poly(anhydrides), poly(urethanes), poly(sulfonates), poly(siloxanes), poly(sulfides), poly(sulfonates), poly(siloxanes), poly(siloxanes) and poly(siloxanes).
- .83. The sensor array of claim 80, wherein said mainchain heterocyclic polymers are selected from the group 20 consisting of poly(furan tetracarboxylic acid diimides), poly(oxadiazoles), poly(benzothiazinopoly(benzoxazoles), phenothiazines), poly(benzothiazoles), poly(pyrazinoquinoxalines), poly(pyromellitimides), poly(quinoxalines), poly (benzimidazoles), poly(oxindoles), poly(oxoisoindolines), 25 poly(dioxoisoindolines), poly(triazines), poly(pyridazines), poly(piperazines), poly(pyridines), poly(piperidines), poly poly(pyrazoles), poly(pyrrolidines), (triazoles), (carboranes), poly(oxabicyclononanes), poly(dibenzofurans), poly(phthalides), poly(acetals), poly(anhydrides) and carbo-30 hydrates.

- 84. The sensor array of claim 80, wherein the first nonconductive polymer is polyvinyl acetate and the second nonconductive polymer is polymethylmethacrylate.
- 85. The sensor array of claim 76, wherein the first and second nonconductive organic materials are each nonconductive organic monomers and the combination polymerizes the monomers into an organic polymer.
- 10 ,86. The sensor array of claim 85, wherein the first nonconductive organic monomer is different from the second nonconductive organic monomer.
- 87. The sensor array of claim 76, wherein the 15 conductive material is an organic conducting polymer.
 - 88. The sensor array of claim 87, wherein the organic conducting polymer is selected from the group consisting of poly(anilines), poly(thiophenes), poly(pyrroles), and poly(acetylenes).
 - 89. The sensor array of claim 76, wherein the conductive material is a carbonaceous material.
- 90. The sensor array of claim 89, wherein the carbonaceous material is selected from the group consisting of carbon blacks, graphite, coke, and C_{Ω} .
- 91. The sensor array of claim 76, wherein the 30 conductive material is a charge transfer complex.
 - 92. The sensor array of claim 91, wherein the charge transfer complex is selected from the group consisting of

- 5 93. The sensor array of claim 76, wherein the conductive material is an inorganic conductor.
- 94. The sensor array of claim 93, wherein the inorganic conductor is selected from the group consisting of metals and metal alloys.
 - 95. The sensor array of claim 94, wherein the metal and metal alloys are selected from the group consisting Qf Ag, Au, Cu, Pt, and AuCu.
 - 96. The sensor array of claim 76, wherein the conductive material is a doped semiconductor.
- 97. The sensor array of claim 96, wherein the doped semiconductor is selected from the group consisting of Si, GaAs, InP, MoS_{24} and TiO_{2} .
 - 298. The sensor array of claim 76, wherein the conductive material is a conductive metal oxide.
 - 99. The sensor array of claim 98, wherein the conductive metal oxide is selected from the group consisting of In_2O_3 , SnO_2 , and $Na_xPt_3O_4$.
 - 30 100. The sensor array of claim 76, wherein the conductive material is a superconductor.

15

20

- 101. The sensor array of claim 100, wherein the superconductor is selected from the group consisting of $YBa_2Cu_3O_7$, $Ti_2Ba_2Ca_2Cu_3O_{10}$, and the like.
- 5 102. The sensor array of claim 76, wherein the conductive material is a mixed inorganic/organic conductor.
- 103. The sensor array of claim 102, wherein the mixed inorganic/organic conductor is selected from the group consisting of tetracyanoplatinate complexes, iridium halocarbonyl complexes and stacked macrocylic complexes.
 - 104. A method for detecting the presence of an analyte in a fluid, comprising the steps of:

providing a sensor array comprising:

- a first chemically sensitive resistor having a resistance response to permeation by said fluid and a resistance response to permeation by said analyte, said first resistor comprising a combination of a first nonconductive organic material at a concentration, a second nonconductive organic material, and a conductive material, with the proviso that the first nonconductive organic material is different from the second nonconductive organic material;
- a second chemically sensitive resistor having a resistance response to permeation by said fluid and a resistance response to permeation by said analyte, said second resistor comprising a combination of a first nonconductive organic material at a concentration, a second nonconductive organic material, and a conductive material, with the proviso that the first nonconductive organic material is different from the second nonconductive organic material; and

15

20

25

an electrical measuring apparatus electrically connected to said resistors,

wherein the concentration of the first nonconductive organic material in the first resistor is different from the concentration of the first nonconductive organic material in the second resistor;

exposing the resistors to the fluid;

measuring said resistance responses that occur when the resistors are permeated by the fluid; and

comparing the measured resistance response of the first resistor to said resistance response to permeation by the analyte of the first resistor and comparing the measured resistance response of the second resistor to said resistance response to permeation by the analyte of the second resistor to determine the presence of the analyte in the fluid.

- 105. The method of claim 104, wherein said first and second nonconductive organic materials are each nonconductive organic polymers.
- 106. The method of claim 104, wherein said-first and second nonconductive organic materials are each nonconductive organic monomers.

107. The method of claim 106, wherein the steps of providing the first and second chemically sensitive resistor further comprise the steps of exposing the combination of organic monomers in each resistor to an activating agent at the time the resistors are formed to polymerize the organic monomers into a polymer.

30

a company on

- 108. The method of claim 107, wherein said activating agent is selected from the group consisting of light, heat and catalytic chemical.
- 5 109. The method of claim 104, further comprising the steps of:

providing a known sample of said analyte in solution; and

exposing said first chemically sensitive resistor and said second chemically sensitive resistor to said known sample to create a known response pattern to permeation by said analyte.

110. The method of claim 109, further comprising the 15 step of:

using said measured resistance response to permeation by said fluid of the first resistor and said measured resistance response to permeation by said fluid of the second resistor to create a measured response pattern.

_ _111. The method of claim 110, further comprising the step of:

comparing said measured response pattern to said known response pattern to permeation by said analyte to determine the presence of said analyte in the fluid.

112. The method of claim 110, further comprising the step of:

comparing said measured response pattern to said known response pattern to permeation by said analyte to determine the absence of a substance different from said analyte in the fluid.

20

10

15

20

113. The method of claim 110, further comprising the step of:

comparing said measured response pattern to said known response pattern to permeation by said analyte to determine the concentration of said analyte in the fluid.

.14. The method of claim 104, further comprising the steps of:

providing an information storage device coupled to said electrical measuring apparatus; and

storing information in said information storage device.

- 115. The method of claim 114, wherein said information storage device is a computer.
- 116. The method of claim 114, wherein said stored information is the resistance response to permeation by the analyte for the first resistor and the resistance response to permeation by the analyte for said second resistor.
- . 117. The method of claim 110, further comprising the steps of:
- providing an information storage device coupled to said electrical measuring apparatus; and
- 25 storing said known response pattern to permeation by said analyte in said information storage device.
 - 118. The method of claim 117, further comprising the step of:
- comparing the measured response pattern to said stored known response pattern to permeation by said analyte to determine the presence of the analyte in the fluid.

20

25

30

119. The method of claim 117, further comprising the step of:

comparing the measured response pattern to said stored known response pattern to permeation by said analyte to determine absence of a substance different from the analyte in the fluid.

120. The method of claim 117, further comprising the step of:

comparing the measured response pattern to said stored known response pattern to permeation by said analyte to determine the concentration of the analyte in the fluid.

. 121. A method of manufacturing an array of chemically sensitive sensors from a limited number of feedstock solutions of nonconductive organic materials comprising the steps of:

providing a first feedstock solution of a first organic material at a concentration x in a first solvent, a second feedstock solution of a second organic material at a concentration y in a second solvent, a second feedstock solution of a second organic material at a concentration y+b in a second solvent, a second feedstock solution of a second organic material at a concentration y+c in a second solvent, and a substrate having a first preselected region, a second preselected region and a third preselected region;

contacting each of said first, second and third regions with said first feedstock solution at said concentration \mathbf{x} ;

contacting the first region with said second feedstock solution at said concentration y;

contacting the second region with the second feedstock solution at said concentration y+b; and

contacting the third region with the second feedstock solution at said concentration y+c,

wherein, the first organic material is different from the second organic material, wherein y, y+b and y+c are each different concentrations, and wherein the total number of sensors manufactured, one at each preselected region, is greater than the number of feedstock solutions used to manufacture the sensors.

10 122. The method of claim 121, wherein, after the step of contacting the first region with the second feedstock solution at concentration y, the method further comprises the step of varying the concentration of the second organic material to concentration y+b.

15

The first of the fact of the first of the fi

\$\frac{1}{23}\$. The method of claim 122, wherein after the step of varying the concentration of the second organic material in the second feedstock solution to a concentration y+b, the method further comprises the step of moving the second solution to the second region.

20

124. The method of claim 121, wherein the first and second organic materials are each nonconductive organic polymers.

25

125. The method of claim 121, wherein the first and second organic materials are each nonconductive organic monomers.

36

26. The method of claim 121, wherein the first feedstock solution further comprises a conductive material.

- 127. The method of claim 121, wherein the first solution is miscible in the second solution.
- 128. The method of claim 121, wherein the first solvent is the same as the second solvent.
 - :129. The method of claim 121, wherein the step of contacting comprises spraying.
- 10 130. The method of claim 121, wherein the step of contacting comprises a step selected from the group consisting of coating, pipetting, micropipetting, depositing, spinning, evaporating, dipping and flowing.
- 15 131. The method of claim 121, wherein the first preselected region and the second preselected region on the substrate are physically separated.
- is recessed below the surface of the substrate in a first well and the second region is recessed below the surface of the substrate in a second well, the first well physically separated from the second well.
- 25 133. The method of claim 131, wherein the first region is surrounded by ridges on the surface of the substrate and the second region is surrounded by ridges on the surface of the substrate, the first region physically separated from the second region.

134. A sensor for detecting an analyte in a fluid, comprising:

a chemically sensitive resistor having a resistance, comprising a combination of a first nonconductive organic material having a resistance, a second nonconductive organic material having a resistance, and a conductive material; and

electrical measuring apparatus electrically connected to said resistor,

wherein the resistance of the chemically sensitive resistor is different from a sum of the resistance of the first nonconductive organic material and the resistance of the second nonconductive organic material, and wherein the resistance of the chemically sensitive resistor is different from an average of the resistance of the first nonconductive organic material and the resistance of the second nonconductive organic material.

135. The sensor of claim 134, wherein said resistance is a baseline resistance.

136. The sensor of claim 134, wherein the first and second nonconductive organic materials are nonconductive organic polymers and the combination is an organic nonconductive polymer blend.

137. The sensor of claim 136, wherein each nonconductive organic polymer is selected from the group consisting of main-chain carbon polymers, main-chain acrylic heteroatom organic polymers and main-chain heterocyclic polymers.

138. The sensor of claim 137, wherein said main-chain carbon polymers are selected from the group consisting of

25

30

20

5

10

poly(dienes), poly(alkenes), poly(acrylics), poly (methacrylics), poly(vinyl ethers), poly(vinyl thioethers), poly(vinyl alcohols), poly(vinyl ketones), poly(vinyl halides), poly(vinyl nitriles), poly(vinyl esters), poly (styrenes) and poly(arylenes).

139. The sensor of claim 137, wherein said main-chain acrylic heteroatom organic polymers are selected from the poly(oxides), poly(carbonates), of consisting poly(urethanes), poly poly(anhydrides), poly(esters), poly(siloxanes), poly(sulfides), poly (sulfonates), poly(sulfones), poly(sulfonamides), (thioesters), (amides), poly(ureas), poly(phosphazenes), poly(silanes) and poly(silazanes).

15

20

25

10

- 140. The sensor of claim 137, wherein said main-chain heterocyclic polymers are selected from the group consisting of poly(furan tetracarboxylic acid diimides), poly(benzopoly(oxadiazoles), poly(benzothiazinophenothiaxazoles), poly(benzothiazoles), poly(pyrazinoquinoxalines), poly(pyromellitimides), poly(quinoxalines), poly(benzimidapolý(oxindoles), poly(oxoisoindolines), poly(pyridazines), (dioxoisoindolines), poly(triazines), poly(piperazines), poly(pyridines), poly(piperidines), poly poly(pyrazoles), poly(pyrrolidines), (triazoles), (carboranes), poly(oxabicyclononanes), poly(dibenzofurans), poly(phthalides), poly(acetals), poly(anhydrides) and carbohydrates.
- 30 141. The sensor of claim 137, wherein the first nonconductive polymer is polyvinyl acetate and the second nonconductive polymer is polymethylmethacrylate.

- 142. The sensor of claim 134, wherein the first and second nonconductive organic materials are each nonconductive organic monomers and the combination polymerizes the monomers into an organic polymer.
- 143. The sensor of claim 142, wherein the first nonconductive organic monomer is different from the second nonconductive organic monomer.
- 144. The sensor of claim 134, wherein the conductive material is an organic conducting polymer.
 - 145. The sensor of claim 144, wherein the organic conducting polymer is selected from the group consisting of poly(anilines), poly(thiophenes), poly(pyrroles), and poly(acetylenes).
 - 146. The sensor of claim 134, wherein the conductive material is a carbonaceous material.
 - 147. The sensor of claim 146, wherein the carbonaceous material is selected from the group consisting of carbon blacks, graphite, coke, and C_{60} .
- 25 148. The sensor of claim 134, wherein the conductive material is a charge transfer complex.
- :149. The conductor of claim 148, wherein the charge transfer complex is selected from the group consisting of tetramethylparaphenylenediamine-chloranile, alkali metal tetracyanoquinodimethane complexes and tetrathiofulvalene halide complexes.

The state of the s

5

1

15

- 150. The sensor of claim 134, wherein the conductive material is an inorganic conductor.
- § 151. The sensor of claim 150, wherein the inorganic conductor is selected from the group consisting of metals and metal alloys.
- 152. The sensor of claim 151, wherein the metal and metal alloys are selected from the group consisting of Ag, 10 Au, Cu, Pt, and AuCu,
 - 53. The sensor of claim 134, wherein the conductive material is a doped semiconductor.
- 15 $\frac{1}{2}$ 54. The sensor of claim 153, wherein the doped semiconductor is selected from the group consisting of Si, GaAs, InP, MoS₂, and TiO₂.
- 155. The sensor of claim 134, wherein the conductive 20 material is a conductive metal oxide.
 - 156. The sensor of claim 155, wherein the conductive metal oxide is selected from the group consisting of In_2O_3 , SnO_2 , and $Na_xPt_3O_4$.

157. The sensor of claim 134, wherein the conductive material is a superconductor.

158. The sensor of claim 157, wherein the superconductor is selected from the group consisting of $YBa_2Cu_3O_7$, $Ti_2Ba_2Ca_2Cu_3O_{10}$, and the like.

And the form the time one one one one one one one one of the fall that t

ŀ£

15

20

159. The sensor of claim 134, wherein the conductive material is a mixed inorganic/organic conductor.

- 160. The sensor of claim 159, wherein the mixed inorganic/organic conductor is selected from the group consisting of tetracyanoplatinate complexes, iridium halocarbonyl complexes and stacked macrocylic complexes.
- 161. The sensor of claim 134, wherein said conductive material is a first conductive material, and further comprising a second conductive material.
 - 162. The sensor of claim 134, wherein the chemically sensitive resistor is a first chemically sensitive resistor, and further comprising:
 - chemically sensitive resistor having second combination of resistance, comprising а nonconductive organic material having a resistance, a second nonconductive organic material having a resistance, and a conductive material, wherein the resistance of the second chemically sensitive resistor is different from a sum of the resistance of the first nonconductive organic material of the second resistor and the resistance of the second nonconductive organic material of the second resistor, and wherein the resistance of the second chemically sensitive resistor is different from an average of the resistance of the first nonconductive organic material of the second resistor and the resistance of the second nonconductive organic material of the second resistor.

163. The sensor of claim 162, wherein each of said first and second nonconductive organic materials in the second chemically sensitive resistor is a nonconductive

30

20

25

organic polymer and the combination of nonconductive organic polymers is an organic polymer blend.

- 164. The sensor of claim 162, wherein each of said first and second nonconductive organic materials in the second chemically sensitive resistor is an organic monomers and the combination polymerizes the monomers into an organic polymer.
- 10 165. The sensor of claim 164, wherein the nonconductive organic monomer in the second chemically sensitive resistor different is from the second nonconductive organic monomer in the second chemically sensitive resistor.

166. The sensor of claim 162, wherein the first nonconductive organic material in the first chemically sensitive resistor is the same as the first nonconductive organic material in the second chemically sensitive resistor.

- 167. The sensor of claim 162, wherein the second nonconductive organic material in the first chemically sensitive resistor is the same as the second nonconductive organic material in the second chemically sensitive resistor.
- .168. The sensor of claim 166, wherein the mole fraction of the first nonconductive organic material in the first chemically sensitive resistor is different from the mole fraction of the first nonconductive organic material in the second chemically sensitive resistor.

25

169. The sensor of claim 168, wherein the ratio of the resistance of the first chemically sensitive resistor to the resistance of the second chemically sensitive resistor is a function of a property different from the ratio of the mole fraction of the first nonconductive organic material in the first chemically sensitive resistor to the mole fraction of the first nonconductive organic material in the second chemically sensitive resistor.

- 10 170. The sensor of claim 134, wherein the chemically sensitive resistor has a resistance response to permeation by said analyte and undergoes a volumetric change when in contact with the analyte.
- 15

 ¶71. The sensor of claim 170, wherein the resistance is inversely proportional to the volumetric change.
 - 172. A sensor for detecting an analyte in a fluid, comprising:
 - a first chemically sensitive element adapted to provide a detectable response, comprising a combination of first and second organic materials, wherein the detectable response of the first chemically sensitive element is different from a sum of a detectable response of the first organic material and a detectable response of the second organic material, and wherein the detectable response of the first chemically sensitive element is different from an average of the detectable response of the first organic material and the detectable response of the second organic material and the
- a second chemically sensitive element adapted to provide a detectable response, comprising a combination of first and second organic materials, wherein the detectable response of the second chemically sensitive element is

1.0

15

different from a sum of a detectable response of the first organic material and a detectable response of the second organic material, and wherein the detectable response of the second chemically sensitive element is different from an average of the detectable response of the first organic material and the detectable response of the second organic material; and

a detector operatively associated with the first and second chemically sensitive elements,

wherein, during use, each of said first and said second chemically sensitive elements give a detectable response when in contact with the analyte, said detectable response being different from the detectable response when the first and second elements are free of the analyte.

173. The sensor of claim 172, wherein said first and second organic materials are each organic polymers and the combination is an organic polymer blend.

20 174. The sensor of claim 172, wherein said first and second organic materials are each organic monomers and the combination polymerizes the monomers into an organic polymer.

25. 175. The sensor of claim 172, wherein the detectable response is a variation in electrical resistance, and wherein the detector is an electrical measuring apparatus.

176. The sensor of claim 172, wherein the detectable response is a variation in optical transmission, and wherein the detector is a spectrophotometer.

- 177. The sensor of claim 172, wherein the detectable response is a variation in electromagnetic energy, and wherein the detector measures electromagnetic energy.
- § 178. The sensor of claim 172, wherein the first and second chemically sensitive elements undergo a volumetric change when in contact with the analyte.
- 179. The sensor of claim 178, wherein the detectable response of the first chemically sensitive element is inversely proportional to the volumetric change of the first chemically sensitive element and the detectable response of the second chemically sensitive element is inversely proportional to the volumetric change of the second chemically sensitive element.
 - 180. The sensor of claim 175, wherein the first chemically sensitive element further comprises a conductive material.
 - 181. The sensor of claim 175, wherein the second chemically sensitive element further comprises a conductive material.
- 25)182. The sensor of claim 180, wherein said conductive material is a first conductive material and the first chemically sensitive element further comprises a second conductive material.
- 183. The sensor of claim 182, wherein said conductive material is a first conductive material and the second chemically sensitive element further comprises a second conductive material.

10

15

20

25

- 184. The sensor of claim 172, wherein the first organic material in the first chemically sensitive element is the same as the first organic material in the second chemically sensitive element.
- 185. The sensor of claim 172, wherein the second organic material in the first chemically sensitive element is the same as the second organic material in the second chemically sensitive element.
 - il 186. The sensor of claim 184, wherein the mole fraction of the first organic material in the first chemically sensitive element is different from the mole fraction of the first organic material in the second chemically sensitive element.
- 187. The sensor of claim 186, wherein the ratio of the detectable response of the first chemically sensitive element to the detectable response of the second chemically sensitive element is a function of a property different from the ratio of the mole fraction of the first organic material in the first chemically sensitive element to the mole fraction of the first organic material in the second chemically sensitive element.
- 188. A method for detecting the presence of an analyte in a fluid, comprising the steps of:

providing a chemically sensitive resistor having a 30 baseline resistance, a measured resistance response to permeation by said fluid and a resistance response to permeation by said analyte, said chemically sensitive resistor comprising a combination of a first nonconductive

organic material having a resistance, a second nonconductive organic material having a resistance and a conductive material, wherein the resistance of the chemically sensitive resistor is different from a sum of the resistance of said first nonconductive organic material and the resistance of said second nonconductive organic material, and wherein the resistance of the chemically sensitive resistor is different from an average of the resistance of the first nonconductive organic material and the resistance of the second nonconductive organic material;

providing an electrical measuring apparatus electrically connected to the resistor;

exposing the resistor to the fluid;

measuring said resistance response that occurs when the resistor is permeated by the fluid; and

comparing the measured resistance response to said resistance response to permeation by the analyte to generate an indicator which indicates the presence of the analyte in the fluid.

20

25

10

15

189. The method of claim 188, wherein said resistor is a first chemically sensitive resistor, said measured resistance response to permeation by said fluid is a first measured resistance response to permeation by said fluid, said resistance response to permeation by said analyte is a first resistance response to permeation by said analyte and said indicator is a first indicator, and further comprising the steps of:

providing a second chemically sensitive resistor electrically connected to said electrical measuring apparatus, said second chemically sensitive resistor having a baseline resistance, a second measured resistance response to permeation by said fluid and a second resistance response

ու այդումբ ա

to permeation by said analyte, said second chemically sensitive resistor comprising a combination of a first nonconductive organic material having a resistance, a second nonconductive organic material having a resistance and a conductive material, wherein the second resistance of the second resistor is different from a sum of the resistance of said first nonconductive organic material and the resistance of said second nonconductive organic material, and wherein the resistance of the second resistor is different from an average of the resistance of the first nonconductive organic material and the resistance of the second nonconductive organic material;

exposing the second resistor to the fluid;

measuring said second resistance response that occurs when the second resistor is permeated by the fluid; and

comparing the second measured resistance response to the second resistance response to permeation by the analyte to generate a second indicator which indicates the presence of the analyte in the fluid.

20

10

15

190. The method of claim 188, wherein said first and second nonconductive organic materials are each nonconductive organic polymers, and the combination is an organic polymer blend.

25

191. The method of claim 188, wherein said first nonconductive organic material is a first organic monomer and said second nonconductive organic material is a second organic monomer.

30

192. The method of claim 191, wherein said first organic monomer is different from said second organic monomer.

10

15

20

- 193. The method of claim 191, wherein the combination of organic monomers is polymerized to form an organic polymer before the combination is used to form the first chemically sensitive resistor.
- 194. The method of claim 191, wherein the step of providing the first chemically sensitive resistor further comprises the step of exposing the combination of organic monomers to an activating agent at the time the sensor is formed to polymerize the organic monomers into a polymer.
- 195. The method of claim 194, wherein said activating agent is selected from the group consisting of light, heat and catalytic chemical.
- 196. The method of claim 189, wherein said first and second nonconductive organic materials in the second chemically sensitive resistor are each nonconductive organic polymers and the combination is an organic polymer blend.
- claim 189, wherein said first 197. The method of nonconductive organic material in the second chemically first organic monomer and said sensitive resistor is a nonconductive organic material in the second second chemically sensitive resistor is a second organic monomer and the combination polymerizes the monomers into an organic polymer.
- 30 #98. The method of claim 197, wherein first organic monomer in the second chemically sensitive resistor is different from the second organic monomer in the second chemically sensitive resistor.

10

15

20.

- 199. The method of claim 197, wherein the first organic monomer in the first chemically sensitive resistor is different from the first organic monomer in the second chemically sensitive resistor.
- 200. The method of claim 198, wherein the first organic monomer in the first chemically sensitive resistor is different from the first organic monomer in the second chemically sensitive resistor.
- 3201. The method of claim 189, further comprising the step of comparing said first indicator and said second indicator to create a response pattern which indicates the presence of the analyte in the fluid.
- 202. The method of claim 201, further comprising the step of using said response pattern to indicate the absence of a substance different from the analyte in the fluid.
- 203. The method of claim 188, further comprising the steps of:
- providing an information storage device coupled to said electrical measuring apparatus; and
- 25 storing information in said information storage device.
 - 204. The method of claim 203, wherein the information storage device is a computer.
- 205. The method of claim 203, wherein said stored information is the resistance response to permeation by the analyte.

comparing the measured resistance response to said stored resistance response to permeation by the analyte to generate a storage-referenced indicator which indicates the presence of the analyte in the fluid.

207. The method of claim 205, further comprising the step of:

comparing the measured resistance response to said stored resistance response to permeation by the analyte to generate a storage-referenced indicator which indicates the concentration of the analyte in the fluid.

15 \208. The method of claim 189, further comprising the steps of:

providing an information storage device coupled to said electrical measuring apparatus; and

storing information in said information storage device.

209. The method of claim 208, wherein said stored information is the first resistance response to permeation by the analyte for said first resistor and the second resistance response to permeation by the analyte for said

25 second resistor.

210. The method of claim 209, further comprising the
steps of:

comparing the first measured resistance response to said stored first resistance response to permeation by the analyte to generate a first storage-referenced indicator which indicates the presence of the analyte in the fluid; and

The property of the control of the c

20

comparing the second measured resistance response to said stored second resistance response to permeation by the analyte to generate a second storage-referenced indicator which indicates the presence of the analyte in the fluid.

5

211. The method of claim 210, further comprising the step of comparing said first storage-referenced indicator and said second storage-referenced indicator to create a storage-referenced response pattern that indicates the identity of the analyte in the fluid.

15

1-0

212. The method of claim 210, further comprising the step of comparing said first storage-referenced indicator and said second storage-referenced indicator to create a storage-referenced response pattern that indicates the concentration of the analyte in the fluid.

213. The method of claim 203, wherein said stored information is a database.

20

214. The method of claim 208, wherein said stored information is a database.

25

215. The method of claim 203, wherein said stored information is the resistance response of the resistor as a function of time.

30

216. The method of claim 188, wherein said electrical measuring apparatus includes an integrated circuit.

217. The method of claim 216, wherein said integrated circuit includes neural network-based hardware.

10

15

20

30

218. The method of claim 216, wherein said integrated circuit includes a digital-analog converter.

219. A method for detecting the presence of an analyte in a fluid, comprising the steps of:

providing a first chemically sensitive element having a detectable response to permeation by said fluid and a detectable response to permeation by said analyte, said first element comprising a combination of a first organic material having a detectable response to permeation by said fluid and by said analyte and a second organic material having a detectable response to permeation by said fluid and by said analyte;

providing a second chemically sensitive element having a detectable response to permeation by said fluid and a detectable response to permeation by said analyte, said second element comprising a combination of first organic material having a detectable response to permeation by said fluid and by said analyte and a second organic material having a detectable response to permeation by said fluid and by said analyte;

providing a detector operatively associated with the first and second chemically sensitive elements;

exposing the first and second chemically sensitive 25 elements to said fluid;

measuring said detectable response of the first element, wherein the detectable response of the first element is different from a sum of the detectable response to permeation by the fluid of the first organic material and the detectable response to permeation by the fluid of the second organic material, and wherein the detectable response of the first element is different from an average of the detectable response to permeation by the fluid of the first

organic material and the detectable response to permeation by the fluid of the second organic material;

measuring said detectable response of the second element, wherein the detectable measured response of the second element is different from a sum of the detectable response to permeation by the fluid of the first organic material and the detectable response to permeation by the fluid of the second organic material, and wherein the detectable response of the second element is different from an average of the detectable response to permeation by the fluid of the first organic material and the detectable response to permeation by the fluid of the second organic material;

comparing the measured response of the first element to said detectable response to permeation by the analyte for the first element to generate a first indicator;

comparing the measured response of the second element to said detectable response to permeation by the analyte-for the second element to generate a second indicator; and

comparing said first indicator and said second indicator to create a response pattern to indicate the presence of the analyte in the fluid.

220. The method of claim 219, wherein said first and second organic materials are each organic polymers and the combination is an organic polymer blend.

221. The method of claim 219, wherein said first and second organic materials are each organic monomers and the combination polymerizes the monomers to form an organic polymer.

The state was a second control of the state of the state

10

15

20

25

- 222. The method of claim 219, further comprising the step of using said response pattern to indicate the concentration of said analyte in the fluid.
- 3 223. The method of claim 219, further comprising the step of using said response pattern to indicate the absence of a substance different from said analyte in the fluid.
- 224. The method of claim 219, further comprising the 10 steps of:

Just House Justs Justs Live

The Health of Burn the Health

15

20

25

providing an information storage device coupled to said detector; and

storing information in said information storage device;

- 225. The method of claim 219, wherein said first organic material in the first chemically sensitive element is the same as said first organic material in the second chemically sensitive element, and said second organic material in the first chemically sensitive element is the same as said second organic material in said second chemically sensitive element.
 - 1226. The method of claim 225, wherein concentration of the first organic material in the first chemically sensitive element is different from the concentration of the first organic material in the second chemically sensitive element.
- 227. The method of claim 219, wherein the detectable response of the first element and the detectable response of the second element are each variations in electrical resistance, and wherein the detector is an electrical measuring apparatus.

20

- 228. The method of claim 227, wherein the first chemically sensitive element further comprises a conductive material.
- 5 229. The method of claim 227, wherein the second chemically sensitive element further comprises a conductive material.
- 230. The method of claim 219, wherein the detectable response of the first element and the detectable response of the second element are each variations in optical transmission, and wherein the detector is a spectrophotometer.
 - 231. The method of claim 219, wherein the detectable response of the first element and the detectable response of the second element are each variations in electromagnetic energy, and wherein the detector measures electromagnetic energy.

232. A method of manufacturing a combinatorial sensor array for detecting an analyte in a fluid comprising the steps of:

providing a first solution of a first organic material

25 at a concentration x in a first solvent, a second solution
of a second organic material at a concentration y in a
second solvent, and a substrate having a first preselected
region and a second preselected region;

contacting said first region with said first solution 30 at said concentration x;

contacting the second region with the first solution at said concentration x+a;

contacting the first region with said second solution at said concentration y; and

contacting the second region with the second solution at said concentration y+b,

wherein, the first region forms a first sensor having a blend of the first organic material at mole fraction m and the second organic material at mole fraction 1-m and the second region forms a second sensor having a blend of the first organic material at mole fraction n and the second organic material of mole fraction 1-n, said two sensors forming a combinatorial sensor array.

- 233. The method of claim 232, wherein m = n.
- 1.5 (234). The method of claim 232, wherein x=y.
 - 235. The method of claim 232, wherein a=b.
- p36. The method of claim 232, wherein a and b are
 20 positive numbers.
 - 237. The method of claim 232, wherein a and b are negative numbers.
- 238. The method of claim 232, wherein the first organic material is a first polymer.
 - 239. The method of claim 232, wherein the second organic material is a second polymer.

240. The method of claim 232, wherein the first organic material is a first polymer and the second organic material

is a second polymer,

THE BEST OF THE STATE OF THE ST

. 5

1-0

- 241. The method of claim 240, wherein the first polymer is different from the second polymer.
- 5 242. The method of claim 232, wherein the first organic material is a first monomer, and further comprising the step of:

polymerizing said first monomer by applying an activating agent to the first region and to the second 10 region.

- .243. The method of claim 242, wherein said activating agent is selected from the group consisting of light, heat and chemical.
- 244. The method of claim 232, wherein the second organic material is a second monomer, and further comprising the step of:
- polymerizing said second monomer by applying an 20 activating agent to the first region and to the second region.
- :245. The method of claim 244, wherein said activating agent is selected from the group consisting of light, heat and chemical.
 - 246. The method of claim 232, wherein the first solution is miscible in the second solution,
- 30 247. The method of claim 246, wherein said first solvent is the same as said second solvent.

- 248. The method of claim 232, wherein the step of contacting comprises spraying.
- 249. The method of claim 232, wherein the step of contacting comprises a step selected from the group consisting of coating, pipetting, micropipetting, depositing, spinning, evaporating, dipping and flowing.
- 250. The method of claim 232, wherein, after the step of contacting said first region with said first solution at said concentration x, the method further comprises the step of varying the concentration of the first organic material in the first solution to concentration x+a.
- 251. The method of claim 250, wherein the concentration of the first organic material in the first solution is smoothly varied to concentration x+a.
- 252. The method of claim 250, wherein, after the step of varying the concentration of the first organic material in the first solution to concentration x+a, the method further comprises the step of moving the first solution to said second region.
- 25 253. The method of claim 232, wherein, after the step of contacting said first region with said second solution at said concentration y, the method further comprises the step of varying the concentration of the second organic material in the second solution to concentration y+b.

THE THE THE THE THE THE THE THE THE

H B Chin He Suit

254. The method of claim 253, wherein the concentration of the second organic material in the second solution is smoothly varied to concentration y+b.

20

5

- 255. The method of claim 232, wherein, after the step of varying the concentration of the second organic material in the second solution to y+b, the method further comprises the step of moving the second solution to said second region.
- 256. The method of claim 232, wherein the first preselected region and the second preselected region on the substrate are physically separated.
 - 257. The method of claim 256, wherein the first region is recessed below the surface of the substrate in a first well and the second region is recessed below the surface of the substrate in a second well, the first well physically separated from the second well.
 - 258. The method of claim 256, wherein the first region is surrounded by ridges on the surface of the substrate and the second region is surrounded by ridges on the surface of the substrate, the first region physically separated from the second region.
- 259. The method of claim 258, wherein said ridges are formed from photodefinable material.
 - 260. The method of claim 258, wherein said ridges are formed from sputtered material.
- 30 .261. The method of claim 232, wherein the substrate further comprises a third preselected region and a fourth preselected region, the four preselected regions arranged in an array, the array having a top edge, a bottom edge, a left

The transfer of the state of th

edge and a right edge, the top edge adjacent to regions 1 and 2, the bottom edge adjacent to regions 3 and 4, the left edge adjacent to regions 1 and 3, and the right edge adjacent to regions 2 and 4, and further comprising the steps of:

contacting said first region and said second region near said top edge of said array with said first solution at concentration x;

contacting said third and fourth regions with the first 10 solution at concentration x+a;

contacting the first and third regions near said left edge of the array with said second solution at concentration y; and

contacting the second and fourth regions with the second solution at concentration y+b,

wherein, each region forms a sensor having a blend of the first organic material and the second organic material, said sensors forming a combinatorial sensor array.

- 20 262. The method of claim 261, wherein the mole fraction of the first organic material the first sensor is e, in the second sensor is f, in the third sensor is g and in the fourth sensor h.
- 25 263. The method of claim 262, wherein e, f, g and h are all different numbers.
- 264. The method of claim 261, wherein, after the step of contacting said first region and said second region near the top edge of said array with said first solution at concentration x, the method further comprises the step of varying the concentration of the first organic material in the first solution to concentration x+a.

265. The method of claim 264, wherein the concentration of the first organic material in the first solution is smoothly varied to concentration x+a.

5

10

15

266. The method of claim 264, wherein, after the step of varying the concentration of the first organic material in the first solution to concentration x+a, the method further comprises the step of moving the first solution from near the top of the array in the direction of said bottom of the array.

the first tenth death their there had first

1.3

The same areas

267. The method of claim 261, wherein, after the step of contacting said first and third regions near the left edge of said array with said second solution at concentration y, the method further comprises the step of varying the concentration of the second organic material in the second solution to concentration y+b.

20

268. The method of claim 267, wherein the concentration of the second organic material in the second solution is smoothly varied to concentration y+b.

. 25 (

269. The method of claim 267, wherein, after the step of varying the concentration of the second organic material in the second solution to concentration y+b, the method further comprises the step of moving the second solution from near the left edge of the array in the direction of said right edge of the array.