Práctica – Modelado Orientado a Objetos

Modelado y Simulación de Sistemas Dinámicos

En esta práctica modelaremos, simularemos y analizaremos un sistema de bombeo de agua hacia un tanque, consistente en un bomba aspirante-impelente impulsada por un motor de corriente continua. La Figura 1 muestra un esquema del sistema en cuestión donde la bomba está conformada por un mecanismo biela manivela que mueve un pistón.

Figura 1: Sistema con una Bomba Aspirante Impelente

Para resolver el trabajo armaremos una librería denominada PumpingSystem dentro de la cual ubicaremos los modelos de los distintos componentes que iremos construyendo.

Problema 1. Sistema Biela-Manivela

Construir el modelo del componente Biela-Manivela teniendo en cuenta las siguientes consideraciones:

- El componente tiene un conector traslacional y uno rotacional.
- Hay tres parámetros: la longitud de la biela L, el radio de la manivela r y la posición del centro de la manivela s₀.
- Para relacionar la posición y el ángulo de los conectores se puede usar la siguiente ecuación:

$$s = r \cos(\phi) + L \sqrt{1 - (\frac{r}{L} \sin(\phi))^2}$$
 (1)

tal que $s+s_0$ es la posición del conector traslacional y ϕ es el ángulo del conector rotacional.

 Para relacionar la fuerza y el torque de los conectores, se puede usar:

$$\tau (s - r \cos(\phi)) = f (r s \sin(\phi))$$
 (2)

donde τ es el torque del conector rotacional y f la fuerza del traslacional.

Respecto a los parámetros, suponer que la longitud de la biela es $L=0.1\mathrm{m}$, que el radio de la manivela es $r=0.01\mathrm{m}$.

Verificar el correcto funcionamiento de este componente conectándolo a una inercia y una fuente de torque en el lado rotacional y una masa con fricción del lado traslacional como se muestra en la Figura 2. Observar la velocidad de la inercia y la posición de la masa.

Figura 2: Modelo de Prueba para el Componente Biela-Manivela.

Problema 2. Válvula de un Vía

Construir una clase de Modelica que represente una válvula de una vía que tenga las siguientes relaciones constitutivas:

$$\Delta P(t) = \begin{cases} R_{\text{on }} q(t) & \text{si } q(t) > 0\\ R_{\text{off }} q(t) & \text{si } q(t) \le 0 \end{cases}$$
 (3)

con
$$R_{\rm on} = 10^{-6} \text{ y } R_{\rm off} = 10^{12}.$$

Verificar el correcto funcionamiento de este nuevo componente conectando dos instancias del mismo a la salida de un tanque (inicialmente cargado) como se muestra en el esquema de la Figura 3.

Figura 3: Modelo de Prueba para la Válvula de una Vía.

Problema 3. Bomba Hidráulica

Construir una clase de Modelica correspondiente a la bomba aspirante-impelente, que incluya el sistema biela-manivela, el pistón-cilindro y las dos válvulas de una vía. Dicho modelo deberá tener como interfaces un conector rotacional (asociada al eje de la manivela) y dos conectores hidráulicos asociados a la entrada de la válvula de entrada y a la salida de la válvula de salida.

Suponer que el pistón-cilindro tiene un área de $A=0.001m^2.$

Verificar el correcto funcionamiento de la bomba conectando la misma a una fuente de torque constante y a una válvula como se muestra en la Figura 4.

Figura 4: Modelo de Prueba para la Bomba Aspirante-Impelente.

Problema 4. Modelo Completo

Construir el modelo completo, acoplando un motor de corriente continua a la parte mecánica de la bomba y el resto del circuito hidráulico a la parte hidráulica de la bomba.

Simular el sistema suponiendo que los parámetros del motor son $J=1~{\rm Kg/m^2},~L_a=10^{-3}{\rm Hy},$ $R_a=0.1\Omega,~K=1~{\rm V}~{\rm s/rad}~{\rm y}~U_a=12~{\rm V},$ que la resistencia hidráulica de salida es lineal con un parámetro $R_H=10^7~{\rm Pa}~{\rm s/m^3}~{\rm y}$ que el área del tanque es de 1 m².

Observar la evolución de las distintas variables del sistema y ver además que ocurre al aumentar o disminuir la tensión de entrada del motor.