Parallel Decoding of Conditional Masked Language Models

Дарья Виноградова

09.03.2021

Мотивация

- обычно генерируем перевод слева направо авторегрессионно
- замаскируем некоторые слова таргетного перевода и научим модель их предсказывать, основываясь на входном тексте и куске перевода
- можно сгенерировать перевод для всех слов независимо, а потом повторять процедуры для подмножества слов, в котором модель не уверена
- немного хуже работает, зато можно параллелить вычисления
- предполагаем, что предсказываемые слова зависят лишь от входного текста и куска предсказанного (независимы между собой)

Модель

- СМLМ модель, предсказывающая замаскированное подмножество слов
- в основе трансформер
- отличие от классического трансформера: смотрим в обе стороны, двигаясь по декодированной последовательности
- дополнительно предсказываем длину перевода (по выходу энкодера)

Обучение

- маскируем случайное количество слов таргета, предсказываем их
- считаем лосс только для слов маски

Применение

- предсказываем длину
- предсказываем перевод такой длины параллельно
- фиксированное число итераций перепредсказываем подмножество слов, в которых модель не уверена

Пример

src	Der Abzug der franzsischen Kampftruppen wurde am 20. November abgeschlossen
t = 0	The departure of the French combat completed completed on 20 November.
t = 1	The departure of French combat troops was completed on 20 November.
	The withdrawal of French combat troops was completed on November 20th .

Эксперименты

Model	Dimensions	Iterations	WMT'14		WMT'16	
	(Model/Hidden)		EN-DE	DE-EN	EN-RO	RO-EN
NAT w/ Fertility (Gu et al., 2018)	512/512	1	19.17	23.20	29.79	31.44
CTC Loss (Libovický and Helcl, 2018)	512/4096	1	17.68	19.80	19.93	24.71
Iterative Refinement (Lee et al., 2018)	512/512	1	13.91	16.77	24.45	25.73
	512/512	10	21.61	25.48	29.32	30.19
(Dynamic #Iterations)	512/512	?	21.54	25.43	29.66	30.30
Small CMLM with Mask-Predict	512/512	1	15.06	19.26	20.12	20.36
	512/512	4	24.17	28.55	30.00	30.43
	512/512	10	25.51	29.47	31.65	32.27
Base CMLM with Mask-Predict	512/2048	1	18.05	21.83	27.32	28.20
	512/2048	4	25.94	29.90	32.53	33.23
	512/2048	10	27.03	30.53	33.08	33.31
Base Transformer (Vaswani et al., 2017)	512/2048	N	27.30			
Base Transformer (Our Implementation)	512/2048	N	27.74	31.09	34.28	33.99
Base Transformer (+Distillation)	512/2048	N	27.86	31.07		
Large Transformer (Vaswani et al., 2017)	1024/4096	N	28.40			
Large Transformer (Our Implementation)	1024/4096	N	28.60	31.71		

Сравнение скорости работы

Помогает ли увеличение числа итераций?

Iterations	WMT'1	4 EN-DE	WMT'16 EN-RO		
	BLEU	Reps	BLEU	Reps	
T = 1	18.05	16.72%	27.32	9.34%	
T = 2	22.91	5.40%	31.08	2.82%	
T=3	24.99	2.03%	32.19	1.26%	
T=4	25.94	1.07%	32.53	0.87%	
T = 5	26.30	0.72%	32.62	0.61%	

Нужно ли больше итераций для длинных последовательностей?

	T = 4	T = 10	T = N
$1 \le N < 10$	21.8	22.4	22.4
$10 \le N < 20$	24.6	25.9	26.0
$20 \le N < 30$	24.9	26.7	27.1
$30 \le N < 40$	24.9	26.7	27.6
$40 \le N$	25.0	27.5	28.1

Как влияет количество длин-кандидатов?

Length	WMT'14 EN-DE		WMT'16 EN-RO		
Candidates	BLEU	LP	BLEU	LP	
$\ell = 1$	26.56	16.1%	32.75	13.8%	
$\ell = 2$	27.03	30.6%	33.06	26.1%	
$\ell = 3$	27.09	43.1%	33.11	39.6%	
$\ell = 4$	27.09	53.1%	32.13	49.2%	
$\ell = 5$	27.03	62.2%	33.08	57.5%	
$\ell = 6$	26.91	69.5%	32.91	64.3%	
$\ell = 7$	26.71	75.5%	32.75	70.4%	
$\ell = 8$	26.59	80.3%	32.50	74.6%	
$\ell = 9$	26.42	83.8%	32.09	78.3%	
Gold	27.27	1 - 1	33.20		

Как влияет количество длин-кандидатов?

Length	WMT'14 EN-DE		WMT'16 EN-RO		
Candidates	BLEU	LP	BLEU	LP	
$\ell = 1$	26.56	16.1%	32.75	13.8%	
$\ell = 2$	27.03	30.6%	33.06	26.1%	
$\ell = 3$	27.09	43.1%	33.11	39.6%	
$\ell = 4$	27.09	53.1%	32.13	49.2%	
$\ell = 5$	27.03	62.2%	33.08	57.5%	
$\ell = 6$	26.91	69.5%	32.91	64.3%	
$\ell = 7$	26.71	75.5%	32.75	70.4%	
$\ell = 8$	26.59	80.3%	32.50	74.6%	
$\ell = 9$	26.42	83.8%	32.09	78.3%	
Gold	27.27	1 - 1	33.20		

Есть ли смысл в дистилляции?

Iterations	WMT'1	4 EN-DE	WMT'1	6 EN-RO
	Raw	Dist	Raw	Dist
T = 1	10.64	18.05	21.22	27.32
T=4	22.25	25.94	31.40	32.53
T = 10	24.61	27.03	32.86	33.08

Источники

https://arxiv.org/pdf/1904.09324.pdf - Mask-Predict: Parallel Decoding of Conditional Masked Language Models