第一周程序作业

孙天阳 SA23001051

2024年9月25日

1 引言

本次实验旨在利用有限元方法求解两点边值问题,方程形式如下:

$$-u'' = f$$
, $0 < x < 1$,

其中,边界条件为 u(0) = u(1) = 0。通过构造有限元离散方程并采用线性基函数,我们求解了不同网格划分下的数值解,并分析其在 L^2 和 H^1 范数下的误差收敛性。选择的函数 $f(x) = 2\cos(x) - (x-1)\sin(x)$,其精确解为 $u(x) = (x-1)\sin(x)$ 。

2 方法

为了求解上述边值问题,我们采用了以下步骤:

- 首先,将区间 [0,1] 均匀划分为 N+1 个子区间,生成对应的网格节点和步长 h。
- 其次,组装刚度矩阵 A 和右端项向量 F,通过数值积分构造离散方程。
- 解方程 $-Au_h = F$ 获得数值解 u_h .
- 计算数值解与精确解之间的 L^2 和 H^1 误差,并通过误差的对数关系计算收敛阶数。

在具体实现中,针对不同网格密度 N=10,20,40,80,我们分别计算数值解并分析其收敛性。

3 结果

表 1: L^2 和 H^1 误差及收敛阶数

N	L^2 误差	L2 收敛阶数	H^1 误差	H ¹ 收敛阶数
10	1.40854×10^{-3}	-	4.90167×10^{-2}	-
20	3.86443×10^{-4}	1.87	2.56657×10^{-2}	0.93
40	1.01409×10^{-4}	1.93	1.31444×10^{-2}	0.97
80	2.42843×10^{-5}	2.06	6.65316×10^{-3}	0.98

4 讨论

实验中我们计算了不同网格划分下的误差及收敛阶数,结果如表 1 所示。可以看到,随着网格密度的增加, L^2 和 H^1 误差逐渐减小,且收敛阶数总体上接近理论预测的值。具体来说, L^2 误差的收敛阶数在 1.87 至 2.06 之间,接近理论上的 2; 而 H^1 误差的收敛阶数接近 1,这与线性有限元方法的理论结果基本一致。

在编程实现上,我们将整个程序模块化,分解为几个独立的函数,包括生成网格、组装矩阵、求解有限元问题以及计算误差等部分。这样的设计思路不仅使得程序结构更加清晰,易于维护和理解,还为将来进一步拓展和改进提供了灵活性。