Autómatas y Lenguajes Formales Nota 06. Lema del bombeo, teorema de Myhill-Nerode y propiedades de cerradura*

Noé Salomón Hernández S.

1. El lema del bombeo

Sea $L \subseteq \Sigma^*$ un lenguaje regular, entonces existe $n \ge 0$ (la cual depende de L) tal que para toda $w \in L$, $|w| \ge n$, existen x, y y z con w = xyz, tales que

- a) $y \neq \varepsilon$
- b) $|xy| \leq n$
- c) $\forall k \geq 0, \ xy^k z \in L$

Demostración. Se demostrará más adelante.

Esta es una propiedad de los lenguajes regulares que puede ser usada en su forma contrapositiva para demostrar que un lenguaje dado **no** es regular. Dicha forma contrapositiva se aplica imaginando que se tiene la siguiente interacción en contra de un adversario.

 \dashv

- a) El adversario piensa en un valor para $n \geq 0$. Pero no sabemos el valor en concreto de n.
- b) Elegimos una cadena $w \in L$ con $|w| \ge n$. La elección de w está en términos del parámetro desconocido n.
- c) El adversario piensa en una descomposición w = xyz con $y \neq \varepsilon$, y $|xy| \leq n$. Pero no nos informa quienes son $x, y \in \mathbb{Z}$.
- d) Ganamos al encontrar $k \geq 0$ tal que $xy^kz \notin L$. Esto lo hacemos sin conocer a x, y y z.
- Si logramos ganar el juego anterior, entonces habremos demostrado que L no es regular. Es importante seguir el orden de los pasos en la interacción. También nótese la falta de información acerca de n, x, y y z por lo que ganar este juego es complicado, pero aún así podemos ganar como en el siguiente ejemplo:

^{*}Esta nota se basa en el libro: D. C. Kozen. *Automata and Computability*, Springer-Verlag, Inc., New York, NY, 1997 y en las notas del prof. Rajeev Motwani, aquí las encuentran.

Ejemplo 1.1 El lenguaje $L_{Eq} = \{w \in \{0,1\}^* \mid w \text{ tiene mismo número de 0s y 1s}\}$ no es regular.

Apliquemos la interacción que resulta de la forma contrapositiva del lema del bombeo.

- a) El adversario piensa en un valor para $n \geq 0$.
- b) Nosotros tomamos $w = 0^n 1^n$. Claramente $w \in L_{Eq}$ y $|w| \ge n$.
- c) El adversario piensa en una descomposición w=xyz con $y\neq \varepsilon,$ y $|xy|\leq n$. Vemos que como $|xy|\leq n$, debe pasar que x y y están constituidos únicamente por 0s. Sean |x|=i, |y|=j>0 y $|xy|=i+j\leq n$. De modo que $w=\underbrace{0^i}_x\underbrace{0^j}_y\underbrace{0^{n-(i+j)}1^n}_z$
- d) Escogemos k = 0. Así

$$xy^k z = xy^0 z$$

$$= xz$$

$$= 0^i 0^{n-(i+j)} 1^n$$

$$= 0^{n-j} 1^n$$

Como j > 0 (pues $y \neq \varepsilon$), xy^kz tiene menos 0s que 1s. Por lo tanto, $xy^kz \notin L_{Eq}$. Hemos ganado el juego, esto quiere decir que L_{Eq} no es regular.

Los incisos a) y c) son ajenos a nosotros, ya que representan el turno del adversario. Nosotros actuamos en los incisos b) y d) de manera creativa e ingeniosa para ganar el juego.

Ejemplo 1.2 El lenguaje $L_p = \{a^p \mid p \text{ es un número primo}\}$ no es regular.

Siguiedo la interacción con el adversario que resulta de la forma contrapositiva del lema del bombeo tenemos:

- a) El adversario piensa en un valor para $n \geq 0$. Desconocemos el valor concreto de n.
- b) Elegimos q un número primo tal que $q \ge n+2$. Como hay un número infinito de números primos, podemos asegurar que $q \ge n+2$ siempre existe para cualquier n que haya escogido el adversario. Así, tomamos la cadena $w=a^q$. Claramente $w \in L_p$ y $|w|=q \ge n$.
- c) El adversario piensa en una descomposición w=xyz con $y\neq \varepsilon$, y $|xy|\leq n$. Sean |x|=i, |y|=j>0 y $|xy|=i+j\leq n$. Por lo que |z|=q-i-j, así $w=\underbrace{a^i}_x\underbrace{a^j}_y\underbrace{a^{q-i-j}}_z$
- d) Escogemos k = q j. Así

$$|xy^k z| = |xy^{q-j} z|$$

$$= i + j(q - j) + (q - i - j)$$

$$= j(q - j) + (q - j)$$

$$= (q - j)(j + 1)$$

Veremos que la longitud de la cadena xy^kz es el producto de factores no triviales, es decir, factores que son al menos 2.

• Como j > 0, tenemos j + 1 > 1. De manera que $j + 1 \ge 2$.

Sabemos que $q \ge n+2$ y también que $j \le n$, de esto último se sigue que $-j \ge -n$. Sumando $q \ge n+2$ y $-j \ge -n$, llegamos a q = n+2.

Luego, la longitud de la cadena xy^kz tiene dos factores no triviales y no puede ser primo. Por lo tanto, $xy^kz \notin L_p$. Hemos ganado el juego, esto quiere decir que L_p no es regular.

A continuación se presenta la demostración del lema del bombeo.

Demostración. Sea L un lenguaje regular y $M=(Q,\Sigma,\delta,q_0,F)$ el AFD mínimo para L. Así que tomamos n=|Q|. Ahora, consideramos $w\in L$ con $|w|=m\geq n$. Como $w\in L(M)$, $\widehat{\delta}(q_0,w)$ en M define la trayectoria de ejecución para $w=a_1a_2\ldots a_m$.

Denotamos a p_{ℓ} como el estado que se alcanza al procesar la subcadena $a_1 a_2 \dots a_{\ell}$ en M con $0 \le \ell \le m$, es decir,

$$p_{\ell} = \widehat{\delta}(q_0, a_1 a_2 \dots a_{\ell}).$$

Al definir $p_0 = q_0$, tenemos abajo la trayectoria de ejecución dada por $\widehat{\delta}(q_0, w)$,

De este modo, con la cadena w el AFD visita m+1 estados. Como m+1>n y cada p_ℓ pertenece a Q, el cual únicamente tiene n estados, se sigue por el principio de las casillas que $p_0, p_1, \ldots, p_{m-1}, p_m$ no son todos distintos. Sean $0 \le i < j \le n$ índices tales que $p_i = p_j$. Por lo que el siguiente ciclo está presente en la trayectoria de ejecución,

Observemos que,

- a) |y| = j i > 0, pues i < j.
- b) $|xy| = j \le n$, ya que elegimos $i < j \le n$.
- c) $\forall k \geq 0, \ xy^kz \in L(M)$, ya que el ciclo de arriba se repite k veces, culminando la ejecución en el estado final p_m , esto se conoce como el ciclo del bombeo.

2. Teorema de Myhill-Nerode

Definición 2.1 Sea $R \subseteq \Sigma^*$ un lenguaje regular. Una relación Myhill-Nerode para R es una relación de equivalencia \equiv sobre Σ^* que satisface las siguientes tres propiedades:

(I) \equiv es de congruencia derecha: para toda $x, y \in \Sigma^*$ y $a \in \Sigma$,

$$x \equiv y \Rightarrow xa \equiv ya;$$

(II) $\equiv redefine R$: para toda $x, y \in \Sigma^*$,

$$x \equiv y \Rightarrow (x \in R \Leftrightarrow y \in R);$$

(III) \equiv es de *índice finito*, es decir, \equiv tiene un número finito de clases de equivalencia.

Definición 2.2 Sea $R \subseteq \Sigma^*$ un lenguaje regular o no, y $x, y \in \Sigma^*$. Definimos una relación de equivalencia \equiv_R sobre Σ^* en términos de R como sigue

$$x \equiv_R y \stackrel{\text{def}}{\Longleftrightarrow} \forall z \in \Sigma^*, (xz \in R \Leftrightarrow yz \in R).$$

En otras palabras, dos cadenas son equivalentes bajo \equiv_R si, al concatenar cualquier cadena a la derecha de ambas, se obtienen dos cadenas tales que ambas están en R, o bien, ambas no están en R.

Teorema 2.3 (Myhill-Nerode) Sea $R \subseteq \Sigma^*$. Las siguientes afirmaciones son equivalentes:

- (a) R es regular;
- (b) existe una relación de Myhill-Nerode para R;
- (c) la relación \equiv_R es de índice finito, es decir, \equiv_R tiene un número finito de clases de equivalencia.

Demostración. Se omite pero puede ser encontrada en el libro Automata and Computability por D. C. Kozen. ⊢

Ejemplo 2.1 Encuentre las clases de equivalencia inducias por \equiv_L para el lenguaje L = L(M), donde M es el autómata siguiente.

De manera que $L = \{w \in \{0,1\}^* \mid w \text{ tiene al menos dos 0's}\}$. Las clases de equivalencia para $\equiv_L \text{son}$:

- $[\varepsilon] = \{1^*\}$, en palabras esta es la clase de equivalencia de cadenas binarias sin 0's. En esta clase de equivalencia están ε , 1, 1111, . . . ; Qué $z \in \{0,1\}^*$ le ponemos concatenar a la derecha de las cadenas en esta clase de equivalencia para que resulten elementos de L? Únicamente, cadenas z de la forma $1^*01^*0(0+1)^*$.
- $[0] = \{1^*01^*\}$, en palabras esta es la clase de equivalencia de cadenas binarias con un 0. En esta clase de equivalencia están 0, 10, 111011, ...; Qué $z \in \{0,1\}^*$ le ponemos concatenar a la derecha de las cadenas en esta clase de equivalencia para que resulten elementos de L? Únicamente, cadenas z de la forma $1^*0(0+1)^*$.
- $[00] = \{1*01*0(0+1)*\}$, en palabras esta es la clase de equivalencia de cadenas binarias con dos o más 0's. En esta clase de equivalencia están 00, 1010, 0010, . . . ; Qué $z \in \{0,1\}^*$ le ponemos concatenar a la derecha de las cadenas en esta clase de equivalencia para que resulten elementos de L? Cualquier z de la forma $(0+1)^*$.

Las clases de equivalencia son mutuamente excluyentes. Por ejemplo, 1111 $\not\equiv_L$ 111011 ya que al concatenar ambas cadenas con 0 a la derecha tenemos que 11110 $\not\in L$, mientras que 1110110 $\in L$.

2.1. Una aplicación

El teorema de Myhill-Nerode puede usarse para determinar si un lenguaje R es regular o no, al encontrar el número de clases de equivalencia de \equiv_R .

Ejemplo 2.2 Tomemos el lenguaje

$$A = \{a^n b^n \mid n > 0\}$$

Si $k \neq m$, entonces $a^k \not\equiv_A a^m$, ya que al tomar b^k se tiene que $a^k b^k \in A$ pero $a^m b^k \not\in A$. Por lo tanto, hay una infinidad de clases de equivalencia de \equiv_A , al menos una para cada a^k , $k \geq 0$. Por el teorema de Myhill-Nerode, A no es regular.

De hecho, uno puede mostrar que las clases de equivalencia de \equiv_A son:

$$G_k = \{a^k\}, \quad k \ge 0,$$

$$H_k = \{a^{n+k}b^n \mid n \ge 1\}, \quad k \ge 0,$$

$$E = \Sigma^* - \bigcup_{k>0} G_k \cup H_k = \Sigma^* - \{a^mb^n \mid 0 \le n \le m\}.$$

Para cadenas en G_k , únicamente los elementos de $\{a^nb^{n+k} \mid n \geq 0\}$ pueden ser concatenados para obtener cadenas de A; para las cadenas de H_k , únicamente las cadenas de la forma b^k pueden ser concatenados para obtener cadenas de A; y no hay cadena que pueda ser concatenada a elementos de E de manera que resulte una cadena de A.

Ejemplo 2.3 Tomemos el lenguaje

$$L_{Sq} = \{a^n \mid n \text{ es un cuadrado perfecto}\}$$

Supongamos que tenemos dos naturales i y j, tales que $i \neq j$. Sin pérdida de generalidad supongamos $0 \leq j < i$. Queremos ver que $a^i \not\equiv_{L_{Sq}} a^j$, por lo que hay que encontrar un entero k de modo que $a^i a^k \in L_{Sq}$ y $a^j a^k \not\in L_{Sq}$. Sea $k = (i+1)^2 - i = i^2 + i + 1$. Entonces $i+k=\not l+(i+1)^2-\not l=(i+1)^2$ pero $j+k=i^2+i+j+1$, así $i^2 < j+k < (i+1)^2$ ya que j < i. Como j+k cae entre i^2 y $(i+1)^2$, j+k no puede ser un cuadrado perfecto. Eso indica que $a^i a^k \in L_{Sq}$ y $a^j a^k \not\in L_{sq}$. Como lo anterior ocurre para cualesquiera i y j distintos, hay una infinidad de clases de equivalencia de $\equiv_{L_{Sq}}$. Por el teorema de Myhill-Nerode, L_{Sq} no es regular.

Ejemplo 2.4 Tomemos al lenguaje

$$L_D = \{ w \in \{a, b\}^* \mid n_a(w) < 2 \, n_b(w) \}$$

donde la función $n_{\sigma}(w)$ calcula el número de veces que el símbolo $\sigma \in \{a, b\}$ figura en la cadena w. Sean k y m dos naturales distintos con k < m, así $k + 1 \le m$ y

$$2(k+1) \le 2m \tag{\$}$$

Ahora $a^{2k} \not\equiv_{L_D} a^{2m}$, puesto que al considerar b^{k+1} se tiene que

- $a^{2k}b^{k+1} \in L_D$ porque $n_a(a^{2k}b^{k+1}) = 2k < 2(k+1) = 2n_b(a^{2k}b^{k+1})$.
- Pero, $a^{2m}b^{k+1} \not\in L_D$ porque $n_a(a^{2m}b^{k+1}) = 2m \ge 2(k+1) = 2n_b(a^{2k}b^{k+1})$ como dice la ecuación ♣.

Efectivamente, $a^{2k} \not\equiv_{L_D} a^{2m}$ para cualesquiera k y m distintos, debido a que uno debe ser mayor que el otro. Por lo tanto, hay una infinidad de clases de equivalencia. Por el teorema de Myhill-Nerode, L_D no es regular.

3. Propiedades de cerradura

Teorema 3.1 Si L_1 y L_2 son lenguajes regulares, entonces también lo son $L_1 \cup L_2$, $L_1 \cdot L_2$ y L_1^* .

Demostración. Al ser L_1 y L_2 lenguajes regulares, entonces deben haber expresiones regulares R_1 y R_2 tales que,

$$L_1 = L(R_1),$$

$$L_2 = L(R_2).$$

Entonces,

- $L_1 \cup L_2 = L(R_1) \cup L(R_2) = L(R_1 + R_2),$
- $L_1 \cdot L_2 = L(R_1) \cdot L(R_2) = L(R_1 \cdot R_2),$
- $L_1^* = L(R_1)^* = L(R_1^*).$

Por lo tanto, $L_1 \cup L_2$, $L_1 \cdot L_2$ y L_1^* deben ser regulares ya que son generados por una expresión regular.

Así, la clase de lenguajes regulares es cerrada bajo las operaciones de unión, concatenación y estrella de Kleene, es decir, no se pueden generar lenguajes fuera de esta clase al aplicar dichas operaciones a los lenguajes que ya forman parte de los lenguajes regulares.

3.1. Complemento

Sea Σ un alfabeto. El complemento del lenguaje L es $\overline{L} = \Sigma^* - L$.

Teorema 3.2 Los lenguajes regulares son cerrados bajo la operación de complemento.

Demostración. Consideremos el lenguaje regular L que es reconocido por el AFD $M = (Q, \Sigma, \delta, q_0, F)$. Construimos ahora el AFD $\overline{M} = (Q, \Sigma, \delta, q_0, Q - F)$. Claramente, $L(\overline{M}) = \overline{L(M)} = \overline{L}$. Por lo tanto, \overline{L} es regular al tener un AFD que lo reconoce.

3.2. Intersección

Teorema 3.3 Sean L_1 y L_2 lenguajes regulares, entonces $L_1 \cap L_2$ es regular.

Demostración. Por las leyes de De Morgan conocemos que $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$. Por resultados previos sabemos que los lenguajes regulares son cerrados bajo la unión y el complemento. Por lo tanto, $L_1 \cap L_2$ es regular.

3.3. Reversa

La reversa de una cadena se define como se muestra a continuación:

$$\varepsilon^{\mathcal{R}} = \varepsilon,$$

$$w^{\mathcal{R}} = (a_1 a_2 \dots a_{n-1} a_n)^{\mathcal{R}}$$

$$= a_n a_{n-1} \dots a_2 a_1.$$

De manera que la reversa de una lenguaje L es $L^{\mathcal{R}} = \{w^{\mathcal{R}} \mid w \in L\}$.

Teorema 3.4 Los lenguajes regulares son cerrados bajo la operación de reversa.

Demostración. Vamos a extender la definición de reversa a expresiones regulares inductivamente,

$$Base \begin{cases} \varepsilon^{\mathcal{R}} = \varepsilon \\ \varnothing^{\mathcal{R}} = \varnothing \\ a^{\mathcal{R}} = a \quad \forall a \in \Sigma \end{cases}$$

Para el paso inductivo suponemos que E_1 y E_2 son expresiones regulares. Así,

Paso inductivo
$$\begin{cases} (E_1 + E_2)^{\mathcal{R}} = E_1^{\mathcal{R}} + E_2^{\mathcal{R}} \\ (E_1 \cdot E_2)^{\mathcal{R}} = E_2^{\mathcal{R}} \cdot E_1^{\mathcal{R}} \\ (E_1^*)^{\mathcal{R}} = (E_1^{\mathcal{R}})^* \end{cases}$$

Se deja como ejercicio al lector que verifique por inducción que $L(E^{\mathcal{R}}) = L(E)^{\mathcal{R}}$. \dashv Aplicando como ejemplo la definición anterior a la expresión regular $E = abc + bc^*a$ tenemos que $E^{\mathcal{R}} = cba + ac^*b$.

4. Lenguajes no regulares

A continuación se da una lista de lenguajes no regulares, i.e., que no son aceptados por autómatas finitos.

- $\{w \in \{0,1\}^* \mid w \text{ tiene mismo número de 0s y 1s}\}$
- $\{a^n b^n \mid n \ge 0\}$; similarmente, $\{0^n 1^n \mid n \ge 0\}$
- $\{a^n \mid n \text{ es un cuadrado perfecto}\}$
- $\{ w \in \{a, b\}^* \mid n_a(w) < 2 \, n_b(w) \}$
- $\{a^n \mid n \text{ es número primo}\}$
- $\{a^{n!} \mid n \ge 0\}$
- $| \{ww \mid w \in \{0,1\}^* \} |$
- $\bullet \ \{0^i 1^j \mid i > j\}$
- $\{w \in \{0,1\}^* \mid w^{\mathcal{R}} = w, \text{ es decir, } w \text{ es un palindrome}\}$