Def 0: Let V, W be vector spaces $(\dim_{\mathbb{R}} V, \dim_{\mathbb{R}} W < \infty)$.

A map $T: V \to W$ is called a linear transformation, if:

1)
$$v_1, v_2 \in V \Rightarrow T(v_1 + v_2) = T(v_1) + T(v_2),$$

$$(2) v \in V, \alpha \in \mathbb{R} \Rightarrow T(\alpha v) = \alpha T(v)$$

$$T(0) = T(\alpha 0) = \alpha T(0), \ \alpha \in F_2, \ char \ F_2 = 2, \ \underbrace{1+1}_{2-times} = 0$$

$$0 = 1 \cdot T(0) - \alpha T(0) = (1 - \alpha)T(0)$$

$$1-\alpha \neq 0 \Rightarrow T(0) = 0.$$

$$T(v_1 + v_2) = T(v_1) + T(v_2)$$

$$T(\mathbf{0}) = T(\mathbf{0} + \mathbf{0}) = T(\mathbf{0}) + T(\mathbf{0}) \Rightarrow T(\mathbf{0}) = \mathbf{0}.$$

1.1)
$$(T+S)(u+v) = (T+S)(u) + (T+S)(v)$$

1.2)
$$(T+S)(\alpha u) = \alpha \cdot (T+S)(u)$$
 ? $----$ (Exercise)

2.2)
$$(\alpha T)(u+v) = (\alpha T)(u) + (\alpha T)(v)$$
 ? ---- (Exercise)

0)
$$\dim_{\mathbb{R}} \mathbb{R} = 1$$

1)
$$\dim_{\mathbb{R}} \mathbb{C}^1 = 2$$
,

2) dim_{$$\mathbb{C}$$} $\mathbb{C} = 1$.

$$\dim_{\mathbb{C}}\mathbb{C}\colon\ \{1,\sqrt{-1}\} \Rightarrow a\cdot 1 + b\cdot \sqrt{-1} \in \mathbb{C},\ \ a,b \in \mathbb{C}.$$

$$\mathbb{C}^n, F: \{e_1, \dots, e_n, \sqrt{-1}e_1, \dots, \sqrt{-1}e_n\} \Rightarrow \overline{\dim_{\mathbb{R}} \mathbb{C}^n = 2n, \dim_{\mathbb{C}} \mathbb{C}^n = n}$$

 $\dim_{\mathbb{R}} \mathbb{C}^1 : \{1, \sqrt{-1}\} \text{ is a basis of } \mathbb{C} \text{ over } \mathbb{R}$

 $\dim_{\mathbb{C}} \mathbb{C} : \{1\}$ is a basis of \mathbb{C} over \mathbb{C}

Example:
$$\dim_{\mathbb{R}} \mathbb{C}^2 = \dim_{\mathbb{R}} (\mathbb{C} \times \mathbb{C}) = 4$$

Solution: write
$$\alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \gamma \begin{bmatrix} \sqrt{-1} \\ 0 \end{bmatrix} + \delta \begin{bmatrix} 0 \\ \sqrt{-1} \end{bmatrix}, \alpha, \beta, \gamma, \delta \in F.$$

1)
$$\alpha, \beta, \gamma, \delta \in \mathbb{R} \Rightarrow B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} \sqrt{-1} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \sqrt{-1} \end{bmatrix}$$
 linear independent and spanning \mathbb{C}

 $\Rightarrow B$ is a basis and $\dim_{\mathbb{R}} \mathbb{C}^2 = 4$.

2)
$$\alpha, \beta, \gamma, \delta \in \mathbb{C} \Rightarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \sqrt{-1} \\ 0 \end{bmatrix}$$
 linear dependent, and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ \sqrt{-1} \end{bmatrix}$ also linear dependent

$$\Rightarrow$$
 only $B = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{pmatrix}$ linear independent. But $\mathbb{C} = \operatorname{span} \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{pmatrix} = \operatorname{span} \begin{pmatrix} 1, \sqrt{-1} \end{pmatrix}$

 $\Rightarrow B$ is a basis and $\dim_{\mathbb{C}} \mathbb{C}^2 = 2$.