UNIVERSIDADE FEDERAL DO AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS BACHARELADO EM MATEMÁTICA

LABORATÓRIO DE FÍSICA I RELATÓRIO IV

Fabrício Yuri Costa da Silva - 21454545 Gabriel Bezerra de M. Armelin - 21550325 Jonas Miranda Cascais Júnior - 21553844 Laise Alves Pimentel - 21202395

Professor: José Pedro Cordeiro

Sumário

1	Introdução	3
2	Parte Experimental	4
3	Análise de Dados	5
	Coleta das amostras	5
4	Conclução	6
\mathbf{R}	Referências	

1. Introdução

Este relatório descreve e analisa o experimento realizado em sala de aula na disciplina Laboratório de Física I do curso de Bacharelado em Matemática no dia 01 de julho de 2016.

A próxima seção explicará detalhamendamente o experimento realizado.

2. Parte Experimental

O experimento consiste em caracterizar o movimento retilíneo uniforme através da análise de dados e gráficos. Para isto foram utilizados os seguintes materias e aparelhos:

- Trilho de ar e carrinho: aparelho formado por um trilho posicionado horizontalmente responsável pela trajetória retilínea do carrinho e um carrinho encarrilhado neste trilho. O carrinho se movimenta quando um compressor injeta ar por buraquinhos no trilho.
- Compressor de ar: responsável pela injeção de ar no trilho de ar. A injeção de ar causa a movimentação do carrinho.
- Sensores de movimento: Há dois sensores de movimento. Um no início da trajétória e é responsável por registrar o posicionamento inicial. O segundo sensor foi utilizado para registrar o posicionamento final da medição.
- Cronômetro digital: aparelho responsável por iniciar a marcação de tempo a partir do recebimento das informações dos sensores de movimento.
- Outros materias utilizados foram: barbante, porta-peso, peso e polia. O barbante foi preso ao carrinho e ao porta-peso através de uma polia.

O experimento consiste de duas etapas:

- 1. A primeira etapa consistiu em medir o tempo que o carrinho demorou para se deslocar de um ponto inicial a uma sequência de pontos finals iniciando em 120cm e terminando 170cm.
- 2. A segunda etapa consistiu em medir o tempo que o carrinho demorou para se deslocar de um ponto inicial a um ponto final variando a quantidade de pesos no porta-peso.

A próxima seção explicará em detalhes cada uma destas etapas.

3. Análise de Dados

Esta seção apresenta os dados e cálculos em cada atividade descrita na seção Parte Experimental.

Coleta das amostras

Na fase1, coletamos amostras de tempo para vários deslocamentos do carrinho. Os valores coletados estão na tabela a seguir:

Tabela 3.1: Amostras dos deslocamentos e tempos de duração.

Deslocamentos (m)	Tempos (s)
1.2	1.077
1.3	1.321
1.4	1.533
1.5	1.700
1.6	1.853
1.7	2.013

Na fase 2, coletamos amostras de tempo para vários pesos no porta-peso. A próxima tabela apresenta os valores obtidos.

Tabela 3.2: Amostras dos pesos e tempos de duração.

Pesos (g)	Tempos (s)
11	1.1810
12	1.1230
13	1.0600
14	0.9979
15	0.9737
16	0.9270
17	0.9166

4. Conclução

Referências

Halliday, R.; Krane, D.; Resnick. 1996. Física. Vol. 1. Livros Técnicos e Científicos Editora.

Nussenzveig, H.M. 1997. Curso de Física Básica. Vol. 1. Edgard Bucher Ltda.

Tipler, G., P.A. e MOSCA. 2005. Física. Vol. 1. McGraw-Hill.