ISÉN - CIR2 2 octobre 2010

DS de maths n° 1

Rotations et quaternions

Consignes

- La durée de l'épreuve est 2h.
- L'énoncé comporte 10 questions sur 1 feuille (recto/verso).
- L'usage de la calculatrice est interdit (et inutile).
- Rédigez clairement vos solutions en explicitant votre raisonnement au maximum.
- Amusez-vous bien!

On travaille dans l'espace euclidien \mathbf{E} muni d'un repère orthonormé direct $(O, \vec{i}, \vec{j}, \vec{k})$. Ainsi, on pourra à toutes fins pratiques identifier \mathbf{E} à l'espace vectoriel \mathbf{V} des vecteurs (algébriques), qui admet pour base $(\vec{i}, \vec{j}, \vec{k})$.

Nous allons ici tenter de combiner en une seule toutes les opérations algébriques qui sont disponibles dans **V**. Ce faisant, nous obtiendrons au passage une nouvelle représentation fort utile et instructive pour les rotations.

Préliminaires

- 1. Donner la matrice 3×3 représentant, par rapport à la base $(\vec{i}, \vec{j}, \vec{k})$, une rotation d'angle θ autour de l'axe passant par O et dirigé par \vec{k} (orienté positivement).
- 2. Rappeler comment on calcule, en termes de leurs coordonnées, le produit scalaire $\vec{v} \cdot \vec{w}$ ainsi que le produit vectoriel $\vec{v} \wedge \vec{w}$ de deux vecteurs $\vec{v}, \vec{w} \in V$. Prenez soin de bien spécifier dans quel(s) ensemble(s) habitent ces deux produits.

Un nouveau produit sur V

Considérons l'ensemble \mathbf{H} des expressions formelles $\mathbf{q}=a+\vec{v}$ formées d'un nombre réel $a\in\mathbf{R}$ et d'un vecteur $\vec{v}\in\mathbf{V}$. Par analogie avec les nombres complexes, nous dirons qu'une telle expression, portant le nom de quaternion, est formée d'une partie réelle $\mathrm{Re}(\mathbf{q})=a$ ainsi que d'une partie imaginaire $\mathrm{Im}(\mathbf{q})=\vec{v}$.

Note : Dans l'écriture « $a + \vec{v}$ », le symbole d'addition n'a pas de sens propre, il ne sert que de séparateur. S'il vous dérange, vous pouvez utiliser plutôt la notation « (a, \vec{v}) » qui rend plus explicite le fait qu'en réalité nous définissons \mathbf{H} comme le produit cartésien $\mathbf{R} \times \mathbf{V}$.

Cet ensemble de quaternions ${\bf H}$ nous permet de combiner \cdot et \wedge en un nouveau produit

$$\star: V \times V \longrightarrow \mathbf{H}.$$

défini par la formule

$$\vec{v} \star \vec{w} = -\vec{v} \cdot \vec{w} + \vec{v} \wedge \vec{w}.$$

- 3. a) Calculer $\vec{v} \star \vec{w}$ pour $\vec{v} = 2\vec{i} 3\vec{k}$ et $\vec{w} = \vec{i} + 4\vec{j} \vec{k}$.
 - b) Évaluer les 9 produits dans la matrice suivante :

$$\begin{pmatrix} \vec{i} \star \vec{i} & \vec{i} \star \vec{j} & \vec{i} \star \vec{k} \\ \vec{j} \star \vec{i} & \vec{j} \star \vec{j} & \vec{j} \star \vec{k} \\ \vec{k} \star \vec{i} & \vec{k} \star \vec{j} & \vec{k} \star \vec{k} \end{pmatrix}.$$

- 4. Établir les deux faits suivants : pour $\vec{v}, \vec{w} \in \mathbf{V}$,
 - a) \vec{v} et \vec{w} sont perpendiculaires \iff Re $(\vec{v} \star \vec{w}) = 0 \iff \vec{v} \star \vec{w} = -\vec{w} \star \vec{v}$;
 - b) \vec{v} et \vec{w} sont parallèles (proportionnels) \iff $\text{Im}(\vec{v} \star \vec{w}) = 0 \iff \vec{v} \star \vec{w} = \vec{w} \star \vec{v}$.

Produit de quaternions

Nous allons maintenant étendre la loi \star à tout **H** en postulant la distributivité de \star sur le + formel, ce qui nous pousse à définir le produit de deux quaternions $\mathbf{q} = a + \vec{v}$ et $\mathbf{q}' = b + \vec{w}$ par la formule

$$\mathbf{q}\star\mathbf{q}'=(a+\vec{v})\star(b+\vec{w})=\underbrace{ab-\vec{v}\cdot\vec{w}}_{\mathrm{Re}(\mathbf{q}\star\mathbf{q}')}+\underbrace{b\vec{v}+a\vec{w}+\vec{v}\wedge\vec{w}}_{\mathrm{Im}(\mathbf{q}\star\mathbf{q}')}.$$

5. Montrer que la loi de composition \star ainsi définie sur \mathbf{H} est associative.

Poursuivant l'analogie avec les nombres complexes, on définit le conjugu'e $\overline{\mathbf{q}} = a - \vec{v}$ d'un quaternion $\mathbf{q} = a + \vec{v}$ en changeant le signe de sa partie imaginaire, ainsi que son $module \ |\mathbf{q}| = \sqrt{\mathbf{q} \star \overline{\mathbf{q}}}$.

6. Vérifier que le seul quaternion de module nul est le quaternion nul $\mathbf{0} = 0 + \vec{0}$, et en déduire que tout quaternion $\mathbf{q} \neq \mathbf{0}$ admet un inverse pour \star donné par

$$\mathbf{q}^{-1} = \frac{\overline{\mathbf{q}}}{|\mathbf{q}|^2}.$$

7. Vérifier que l'ensemble \mathbf{H}^1 des quaternions unitaires (de module 1) forme un groupe pour la loi \star .

Et les rotations dans tout ça?

Étant donné un quaternion unitaire $\mathbf{q} \in \mathbf{H}^1$, on définit une application $R_{\mathbf{q}} : \mathbf{H} \to \mathbf{H}$ par la formule

$$R_{\mathbf{q}}(\mathbf{x}) = \mathbf{q} \star \mathbf{x} \star \overline{\mathbf{q}}.$$

- 8. Établir que pour tout $\mathbf{x}, \mathbf{y} \in \mathbf{H}$, on a
 - a) $\operatorname{Re}(R_{\mathbf{q}}(\mathbf{x})) = \operatorname{Re}(\mathbf{x}),$
 - b) $R_{\mathbf{q}}(\mathbf{x}) \star R_{\mathbf{q}}(\mathbf{y}) = R_{\mathbf{q}}(\mathbf{x} \star \mathbf{y}).$
- 9. À partir des propriétés précédentes, vérifier que
 - a) si $\vec{v} \in \mathbf{V}$, alors $R_{\mathbf{q}}(\vec{v}) \in \mathbf{V}$,
 - b) $R_{\mathbf{q}}$ préserve le produit scalaire : pour $\vec{v}, \vec{w} \in \mathbf{V}$, on a $R_{\mathbf{q}}(\vec{v}) \cdot R_{\mathbf{q}}(\vec{w}) = \vec{v} \cdot \vec{w}$.

En d'autres termes, $R_{\mathbf{q}}$ est une isométrie linéaire de l'espace!

- 10. Explicitons l'isométrie $R_{\bf q}$ correspondant au quaternion unitaire ${\bf q}=a+\vec{e}.$
 - a) En écrivant $\vec{e} = b\vec{i} + c\vec{j} + d\vec{k}$, calculer explicitement les vecteurs images

$$R_{\mathbf{q}}(\vec{i}), \quad R_{\mathbf{q}}(\vec{j}) \quad \text{et} \quad R_{\mathbf{q}}(\vec{k}).$$

b) Par ailleurs, puisque $|\mathbf{q}|^2 = a^2 + ||\vec{e}||^2 = 1$, on peut écrire **q** sous la forme

$$\mathbf{q} = \cos \theta + (\sin \theta) \vec{w}$$

où \vec{w} est un vecteur unitaire dans la direction de \vec{e} . Si (\vec{u}, \vec{v}) est une base orthonormée du plan normal à \vec{e} choisie de sorte que $(\vec{u}, \vec{v}, \vec{w})$ soit une base orthonormée directe, calculez

$$R_{\mathbf{q}}(\vec{u}), \quad R_{\mathbf{q}}(\vec{v}) \quad \text{et} \quad R_{\mathbf{q}}(\vec{w}).$$

Que remarquez-vous?

