Description of The Variables

• The collected data contains the following Variables

- 1. Name
- 2. Age
- 3. Gender
- 4. Height (Ht)
- 5. Weight (Wt)
- 6. Address (Senior citizen association name)
- 7. Medical History (Med History)
- 8. Surgical History (Sx History)
- 9. Medication
- 10. Hypertension (HTN)
- 11. Diabetes Mellitus (DM)
- 12. Blood pressure (B.P.)
- 13. Geriatric Depression (GDS)
- 14. Cognition scale (MoCA)
- 15. Lung function (PEFR)
- 16. Endurance test (2MWT)
- 17. Balance tested dynamically (TUG)
- 18. Balance tested statically (FRT)
- 19. Cognition (TMT A)
- 20. Higher level cognition (TMT B)
- 21. Quality of life (OPQOL)
- 22. Physical activity measurement (QPAR)
- 23. Body mass index (BMI)

• Description of the Tests (Sr. Nos 13 to 21)

13. Geriatric depression:

This is assessed by the paper-based Geriatric Depression Scale, shortened to GDS. This is a 30-point scale, with Yes and No as the response options. There are 30 statements, which are scored as 0 or 1 based on the response given. The maximum score is 30, minimum is 0. Depression can be diagnosed if the patient scores 9 or higher on this scale. Higher the score, more is the depression. Scoring is as follows:

- a. 0 to 9 = Normal
- b. 10 to 19 = Mild depression
- c. 20 to 30 = Severe Depression

14. Lung function (PEFR):

This is a physical test performed using a device known as the peak flow meter. The person inhales and places the device's mouthpiece in their mouth. They exhale as forcefully as they can. A small indicator on the device is pushed ahead with the force of this exhalation. This shows the amount of air that was forcefully pushed out by the person. The more the forceful air exhalation, the better is the lung capacity.

15. Endurance test (2MWT):

This is a physical test performed by the individual. A specified distance is marked using two cones / markers. The individual walks between the two markers for a duration of 2 minutes. They are instructed to go as far as they can. The distance that they cover in the 2 minutes is measured. this is the actual distance that they walked. The predicted distance can be calculated using a formula. The percentage distance walked is calculated. If the person covers 75% and more of the predicted distance, the endurance is good.

16. Balance tested dynamically (TUG):

The Timed Up and Go test is again a physically performed test. The test assesses the dynamic balance of the individual. The person sits on a chair without arms. A marker is placed at a distance of 3 meters from the chair. When the command "Go" is given, the person has to get up from the chair without using any hand support, walk towards the marker, turn around it, walk back towards the chair, turn around, and sit in the

chair. The time required to complete the test is noted. The normative values of time taken to complete the test are categorised by age. In general, the test should be completed between 7 to 10 seconds. The longer it takes to complete the test, the worse is the dynamic balance. This indicates that the person is at risk of falling, which can cause mild to severe injuries.

17. Balance tested statically (FRT):

This is another physical test but assesses the static balance of a person. A tape measure is mounted on a wall at the height of the person's shoulder. The person stands next to the wall, ensuring that they are not touching / leaning against it. While maintaining their posture appropriately, they then reach forward as far as is possible. The distance that the person can reach forward for is measured. The more the distance covered by the person, the better is the static balance, and the lesser is the risk of fall.

18. Cognition (TMT A):

This is a paper-based test, where the patient has to join a series of numbers from 1 to 25. The time taken to complete this is recorded in seconds. The lesser time required to complete this test, the better is the cognition of the individual.

19. Higher level cognition (TMT B):

This is a higher-level modification of the TMT A. In this, the patient has to join numbers and alphabets alternately in sequence, Ex. 1-A-2-B-3-C-4-D-5-E ... 12-L. In this test, the individual's ability to keep a separate track of the letter and number sequences is tested. This indicates the functioning of the brain, hence, tests cognition. Again, the lesser time to complete this test shows better functioning of the brain.

20. Quality of life (OPQOL):

The quality of life of the individual is assessed using this test. It asks questions related the functioning and ease of functioning in activities that they carry out daily. The higher the score, higher is the quality of life.

21. Physical activity measurement (QPAR):

The physical activity level of the individual is measured using this scale. It identifies how much the person is active.

Description of The Dataset

Sr. No.	Variable Name	Count	Null Count
1	Age	833	0
2	Gender	833	0
3	Ht	833	0
4	Wt	833	0
5	Address	798	35
6	Med History	352	481
7	Sx History	450	383
8	Medication	342	491
9	HTN	583	250
10	DM	567	266
11	B.P.	720	113
12	Systolic	720	113
13	Diastolic	717	116
14	GDS	779	54
15	MOCA	781	52
16	PEFR 2	489	344
17	2 MWT	606	227
18	TUG	773	60
19	FRT	731	102
20	TMT A	532	301
21	TMT B	466	367
22	OPQOL	92	741
23	QPAR	93	740

The important study variables i.e. QPAR, OPQOL, TMT B, TMT A, PEFR 2, 2 MWT contains the large number of null values.

Description of Important Variables

o GDS - Geriatric Depression Score

GDS Score	GDS level	Count
0 to 9	Normal	662
10 to 19	Mild Depression	103
20 to 30	Severe Depression	14

o MoCA - Montreal Cognitive Assessment Test

MoCA Score	MoCA level	Count
0 to 10	Severe Cognitive Impairment	21
10 to 17	Moderate Cognitive Impairment	48
18 to 25	Mild Cognitive Impairment	333
26 to 30	Normal	379

o QPAR - Quick Physical Activity Rating

QPAR Score	QPAR level	Count
0 to 19	Less amount of Exercise	24
20 to 42	Moderate amount of Exercise	51
43 and More	Large amount of Exercise	14

o OPQOL - Older People Quality of Life

OPQOL Score	OPQOL level
35	Lowest level
175	Highest level

o BMI – Body Mass Index

BMI Score	BMI Status	Count
Less than 18.5	Underweight	17
18.5 to 22.9	Normal	184
23 to 24.9	Overweight	169
25 and More	Obese	463

Exploratory Data Analysis

Obstribution of Male and Female Population

Interpretation:

There is nearly equal number of Male and Female population in the data.

Gender wise Performance in all Tests:

- The average Geriatric Depression Score in Female population are slightly greater than the Male population.
- The average Quick Physical Activity Rate are better in Female population than the Male population.

4. MOCA

5. TMT A

6. TMT B

- The average Older People Quality of Life scores are almost same for Male and Female population.
- The average Montreal Cognitive Assessment scores are almost same for Male and Female population.
- o In Trail Making Test A & B, Male population performs better than the Female population.

7. PEFR 2

8. 2 MWT

9. FRT

10. TUG

- The average Peak Expiratory Flow Rate are higher in Male population than the Female population.
- The Two Minute Walk Test results are better in Male population than the Female population.
- The Functional Reach Test results are almost same for both Male population Female population.
- In Timed Up and Go Test, Male population performs better than the Female population.

Obstribution of Population Age wise

Interpretation:

Near about 70% of the population belongs to age group 61 to 75.

Age wise Performance in all Tests:

- The average Geriatric Depression Scores are increasing slightly with the increase in age of a person.
- The average Quick Physical Activity Scores are decreasing with the increase in age of a person.

4. MOCA

5. TMT A

6. TMT B

- The average Older People Quality of Life of Older People decreases slightly with the increasing age.
- The average Montreal Cognitive Assessment scores are decreases slightly with the increasing age.
- In Trail Making Test A & B, the younger age population performs better than the old age population.

- o The average Peak Expiratory Flow Rate are higher in 56 to 80 age group.
- O The Two Minute Walk Test results are almost same for all age group except 86 to 90 and 91 to 95.
- o The Functional Reach Test results are decreases slightly with the increasing age.
- In Timed Up and Go Test, average time required to complete the test goes on increasing with the age.

• Distribution of Population according to their Physical Health

Interpretation:

BMI score indicates that 56% of the population are Obese, 22% Normal, 20% Overweight and 2% Underweight.

Fitness wise Performance in all Tests:

5.19 5 4.74 4 ... 1 Underweight Overweight Obese Normal Fitness

2. QPAR

- O The Underweight population shows higher average GDS followed by Obese.

 Population with Normal fitness shows lowest average GDS of all.
- The average Physical Activity Rate is lowest in Underweight population followed by
 Obese population. Population with Normal fitness shows highest QPAR score.

4. MOCA

5. TMT A

6. TMT B

- Obese population. The average Older People Quality of Life of Older People somewhat lower for the
- The average Montreal Cognitive Assessment scores are nearly same for all the Fitness group.
- o In Trail Making Test A, The Underweight population not performing well.
- o In Trail Making Test B, The Obese population not performing well.

7. PEFR 2

8. 2 MWT

9. FRT

10. TUG

- o The average Peak Expiratory Flow Rate are higher in Normal fitness group.
- The Two Minute Walk Test results are almost same for all fitness group except Underweight one.
- The Functional Reach Test results are better in Underweight population followed by Obese and Overweight population.
- o In Timed Up and Go Test, average time required to complete the test is almost same for all fitness group except Underweight one.

• GDS Score Comparison for the Population with

(b) Diabetes Mellitus (DM)

(c) Medical History

(d) Surgical History

- The population having Hypertension (HTN) and Diabetes Mellitus (DM) have higher Geriatric Depression Score than the population not having HTN and DM.
- The population having some Medical history and Surgical history have higher Geriatric Depression Score.

• QPAR Score Comparison for the Population with :

(a) Hypertension (HTN)

(b) Diabetes Mellitus (DM)

(c) Medical History

- The population not having Hypertension (HTN) and Diabetes Mellitus (DM) have higher Physical Activity Rate than the person having HTN and DM.
- The population having some Medical History have somewhat lower Quality of Physical Activity Rate.

OPQAL Score Comparison for the Population with:

(a) Hypertension (HTN)

(b) Diabetes Mellitus (DM)

(c) Medical History

- The population not having Hypertension (HTN) and Diabetes Mellitus (DM) have higher Quality of Life score than the person having HTN and DM.
- The population having some Medical History have somewhat lower Quality of Life score.

Correlation Testing

Correlation testing is a statistical method used to evaluate the strength and direction of the relationship between two or more variables. The correlation coefficient, which ranges from -1 to 1, is used to quantify this relationship. A correlation coefficient of 1 indicates a perfect positive correlation, meaning that as one variable increases, the other variable also increases. Conversely, a correlation coefficient of -1 indicates a perfect negative correlation, meaning that as one variable increases, the other variable decreases. A correlation coefficient of 0 indicates no linear correlation between the variables.

The objective of correlation testing is to determine whether there is a significant relationship between two variables, and if so, to quantify the strength of that relationship.

The test statistic in correlation testing is often the t-score, which is calculated using the formula:

$$t = \frac{r\sqrt{n-2}}{\sqrt{(1-r^2)}} \sim t_{n-2}$$

where,

r is the correlation coefficient n is the sample size

The p-value is then calculated as the corresponding two-sided p-value for the t-distribution with n-2 degrees of freedom. If the p-value is less than the chosen significance level (often 0.05), we reject the null hypothesis of no correlation and conclude that there is a statistically significant correlation between the variables.

The assumptions of correlation testing includes:

- 1. **Linearity:** The relationship between the variables is linear.
- 2. **Independence:** The observations are independent of each other.
- 3. **Normality:** For **Pearson's correlation**, the variables should be approximately Normally distributed. Skewness of the variables can be used to check this assumption.

Variable	Skewness	Variable	Skewness
GDS	1.5751893618476618	TMT B	17.05048704780885
OPQOL	-2.477009769889324	PEFR	0.35330874613700847
QPAR	0.8557763629487607	TUG	10.982342528908706
MoCA	-2.110212166200407	2 MWT	3.276112228197445
TMT A	2.1176491256673073	FRT	0.5964896234880194

Spearman' rank correlation

Spearman's rank correlation measures the strength and direction of association between two ranked variables. It basically gives the measure of monotonicity of the relation between two variables i.e. how well the relationship between two variables could be represented using a monotonic function.

The formula for Spearman's rank coefficient is:

$$\rho = 1 - \frac{6\Sigma \,\mathrm{d}_i^2}{n(n^2 - 1)}$$

Where,

 ρ = Spearman's rank correlation coefficient

di = Difference between the two ranks of each observation

n = Number of observations

The Spearman Rank Correlation can take a value from +1 to -1

- 1. Value of +1 means a perfect association of rank.
- 2. Value of 0 means there is no association between ranks.
- 3. Value of -1 means a perfect negative association of rank.

The assumptions of rank correlation testing includes:

- 1. Interval or Ratio level or ordinal data.
- 2. Unlike Pearson's correlation, there is no requirement of normality and hence it is a non-parametric statistics.

Pearson's correlation

Hypothesis to Test:

H0: There is no correlation between PEFR and FRT

H1: There is correlation between PEFR and FRT

R Code:

cor.test(data1\$pefr,data1\$frt)

Pearson's product-moment correlation

data: data1\$pefr and frt

t = -0.23748, df = 684, p-value = 0.1203

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.08387872 0.06582031

sample estimates:

cor

0.07741478

Decision & Conclusion

As p-value > 0.05, H0 is Accepted.

There is no correlation between PEFR and FRT.

• To test using Pearson's correlation

- 1. Balance can have an effect on physical activity and physical functioning.
- 2. Physical activity levels can have an effect on depression.
- 3. Physical activity levels can have an effect on cognitive functioning.
- 4. Cognitive functioning can have an effect on depression.
- 5. Physical activity, cognitive functioning and depression can have an effect on quality of life.

Spearman's rank correlation

Hypothesis to Test:

H0: There is no correlation between OPQOL and HTN

H1: There is correlation between OPQOL and HTN

R Code:

cor.test(as.numeric(as.factor(data1\$htn)),data\$opqol, method = "spearman")

Spearman's rank correlation rho

data: as.numeric(as.factor(htn)) and opqol

S = 104908, p-value = 0.8197

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

-0.159454

Decision & Conclusion

As p-value > 0.05, H0 is Accepted.

There is no correlation between OPQOL and HTN

• To test using Spearman's rank correlation

- 1. HTN, DM can have an effect on quality of life.
- 2. Surgeries, Medical history can have an effect on quality of life.

Variables	p-value	cor / rho	Conclusion
PEFR and FRT	0.1203	0.07741478	No Correlation
2 MWT and FRT	2.2e-16	0.3543602	Higher the 2 MWT score higher is the
			Balance.
TUG and FRT	0.1606	-0.0536241	No Correlation
QPAR and GDS	0.03836	-0.2163087	Lower The GDS score higher is the
			Quick Physical Activity Rate.
QPAR and MoCA	0.0683	0.198702	No Correlation
QPAR and TMT A	0.02084	-0.2503595	Lower the TMT A score higher is the
			QPAR.
QPAR and TMT B	0.002239	-0.3329666	Lower the TMT B score higher is the
			QPAR.
MOCA and GDS	2.184e-07	-0.1877575	Lower the GDS score higher is the
			MOCA.
TMT A and GDS	4.474e-05	0.1814684	Higher the GDS score higher is the
			TMT A.
TMT B and GDS	0.0002844	0.1747825	Higher the GDS score higher is the
			TMT B.
OPQOL and GDS	0.008454	-0.274524	Lower the GDS score higher is the
			quality of life.
OPQOL and MoCA	0.04945867	-0.05099649	Lower the MoCA score indicates
			higher the quality of life.
OPQOL and TMT A	0.371	-0.09884821	No Correlation
OPQOL and TMT B	0.308	0.1146741	No Correlation
OPQOL and QPAR	0.001424	0.3313179	Higher the QPAR value indicates
			higher quality of life
OPQOL and HTN	0.8197	-0.159454	No Correlation
OPQOL and DM	0.8732	-0.01687207	No Correlation
OPQOL and Med	0.4432	-0.08092411	No Correlation
History			
OPQOL and Sx History	0.1602	-0.1476433	No Correlation

MANN - WHITNEY U TEST

The Mann Whitney U test, sometimes called the Mann Whitney Wilcoxon Test or the Wilcoxon Rank Sum Test, is used to test whether two samples are likely to derive from the same population i.e., that the two populations have the same shape. It is used to compare the differences between two independent samples when the sample distributions are not normally distributed.

The Man-Whitney U Test is non – parametric counterpart to the t-test for independent samples. The t-test for independent of samples tests whether there is a mean difference. On the other hand Mann-Whitney U Test, Checks whether there is Rank Sum Difference. The advantage of taking Rank Sum rather than difference in Means is that the data need not to be Normally distributed.

Assumption

- 1. All of the observations from both groups are independent of each other. The responses are at least ordinal (i.e., one can at least say, of any two observations, which is the greater).
- 2. The shapes of the distributions for the two groups are roughly the same.

Hypothesis to Test:

H0: The Two Population are Equal.

H1: The Two Population are Not Equal.

Test Statistics

The test statistic for the Mann Whitney U Test is denoted U and is the smaller of U_1 and U_2 , defined below.

$$U_1 = n_1 n_2 + \frac{n_1(n_1+1)}{2} - R_1$$
 $U_2 = n_1 n_2 + \frac{n_2(n_2+1)}{2} - R_2$

Where,

 $R_1 = \text{sum of the ranks for group 1}, \qquad n_1 = \text{Number of observations from group 1}$

 $R_2 = \text{sum of the ranks for group 2},$ $n_2 = \text{Number of observations from group 2}$

Decision & Conclusion

Reject H0 at $100(1-\alpha)\%$ level of significance if U \le U0 where U0 is found using statistical tables considering values of n1 and n2 and U is smaller than of U1 and U2.

OR Reject H0 at 100 (1- α) % level of significance if, p-value < 0.05

• Why Mann - Whitney U Test ?

- 1. To study the variables with respect to Gender.
- 2. To study the variables with respect Hypertension (HTN).
- 3. To study the variables with respect Diabetes Mellitus (DM).
- 4. To study the variables with respect Medical History.
- 5. To study the variables with respect Surgical History.

H0: Distribution of GDS score in Male and Female is same.

H1: Distribution of GDS score in Male and Female is not same.

R Code:

wilcox.test(male_data\$GDS, female_data\$GDS)

Wilcoxon rank sum test with continuity correction

data: male_data\$GDS and female_data\$GDS

W = 63046, p-value = 4.173e-05

alternative hypothesis: true location shift is not equal to 0

Decision & Conclusion

As p-value < 0.05, H0 is Rejected.

Distribution of GDS score for Male population and Female is not same.

Variable	p-value	Conclusion
GDS	4.173e-05	GDS is not same for Male and Female population.
OPQOL	0.1881	OPQOL is same for Male and Female population.
QPAR	0.7525	QPAR is same for Male and Female population.
MoCA	0.3018	MoCA is same for Male and Female population.
TMT A	0.6234	TMT A is same for Male and Female population.
TMT B	0.7537	TMT B is same for Male and Female population.
PEFR	1.054e-09	PEFR is not same for Male and Female population.
TUG	0.9649	TUG is same for Male and Female population.
2 MWT	0.0586	2 MWT is same for Male and Female population.
FRT	0.7444	FRT is same for Male and Female population.

H0: Distribution of GDS score with respect to Hypertension (HTN) is same.

H1: Distribution of GDS score with respect to Hypertension (HTN) is not same.

R Code:

wilcox.test(hypertension_yes\$GDS, hypertension_no\$GDS)

Wilcoxon rank sum test with continuity correction

data: hypertension_yes\$GDS and hypertension_no\$GDS

W = 38783, p-value = 0.0551

alternative hypothesis: true location shift is not equal to 0

Decision & Conclusion

As p-value > 0.05, H0 is Accepted.

Distribution of GDS score with respect to Hypertension (HTN) is same.

Variable	p-value	Conclusion
GDS	0.0551	GDS score with respect to Hypertension (HTN) is same.
OPQOL	0.1292	OPQOL with respect to Hypertension (HTN) is same.
QPAR	0.7626	QPAR with respect to Hypertension (HTN) is same.
MoCA	0.3482	MoCA with respect to Hypertension (HTN) is same.
TMT A	0.4686	TMT A with respect to Hypertension (HTN) is same.
TMT B	0.8205	TMT B with respect to Hypertension (HTN) is same.
PEFR	0.3852	PEFR with respect to Hypertension (HTN) is same.
TUG	0.002297	TUG with respect to Hypertension (HTN) is not same.
2 MWT	0.003439	2MWT with respect to Hypertension (HTN) is not same.
FRT	0.2058	FRT with respect to Hypertension (HTN) is same.

H0: Distribution of GDS score with respect to Diabetes Mellitus (DM) is same.

H1: Distribution of GDS score with respect to Diabetes Mellitus(DM) is not same.

R Code:

wilcox.test(diabetes_yes\$GDS, diabetes_no\$GDS)

Wilcoxon rank sum test with continuity correction

data: diabetes_yes\$GDS and diabetes_no\$GDS

W = 35522, p-value = 0.2204

alternative hypothesis: true location shift is not equal to 0

Decision & Conclusion

As p-value > 0.05, H0 is Accepted.

Distribution of GDS score with respect to Diabetes Mellitus (DM) is same.

Variable	p-value	Conclusion
GDS	0.2204	GDS score with respect to DM is same.
OPQOL	0.8753	OPQOL with respect to Diabetes Mellitus (DM) is same.
QPAR	0.2187	QPAR with respect to Diabetes Mellitus (DM) is same.
MoCA	0.1042	MoCA with respect to Diabetes Mellitus (DM) is same.
TMT A	0.08748	TMT A with respect to Diabetes Mellitus (DM) is same.
TMT B	0.0878	TMT B with respect to Diabetes Mellitus (DM) is same.
PEFR	0.4791	PEFR with respect to Diabetes Mellitus (DM) is same.
TUG	0.0002721	TUG with respect to Diabetes Mellitus (DM) is not same.
2 MWT	0.07907	2 MWT with respect to Diabetes Mellitus (DM) is same.
FRT	4.408e-05	FRT with respect to Diabetes Mellitus (DM) is not same.

H0: Distribution of GDS score with respect to Medical History is same.

H1: Distribution of GDS score with respect to Medical History is not same.

R Code:

wilcox.test(med_yes\$GDS,med_no\$GDS)

Wilcoxon rank sum test with continuity correction

data: med_yes\$GDS and med_no\$GDS

W = 26300, p-value = 0.3152

alternative hypothesis: true location shift is not equal to 0

Decision & Conclusion

As p-value > 0.05, H0 is Accepted.

Distribution of GDS score with respect to Medical History is same.

Variable	p-value	Conclusion
GDS	0.3152	GDS score with respect to Medical History is same.
OPQOL	0.5924	OPQOL with respect to Medical History is same.
QPAR	0.5782	QPAR with respect to Medical History is same.
MoCA	0.4644	MoCA with respect to Medical History is same.
TMT A	0.469	TMT A with respect to Medical History is same.
TMT B	0.02302	TMT B with respect to Medical History is not same.
PEFR	5.081e-11	PEFR with respect to Medical History is not same.
TUG	0.269	TUG with respect to Medical History is same.
2 MWT	0.02875	2 MWT with respect to Medical History is not same.
FRT	1.975e-08	FRT with respect to Medical History is not same.

H0: Distribution of GDS score with respect to Surgical History is same.

H1: Distribution of GDS score with respect to Surgical History is not same.

R Code:

wilcox.test(sx_yes\$GDS,sx_no\$GDS)

Wilcoxon rank sum test with continuity correction

data: sx_yes\$GDS and sx_no\$GDS

W = 13376, p-value = 0.001914

alternative hypothesis: true location shift is not equal to 0

Decision & Conclusion

As p-value < 0.05, H0 is Rejected.

Distribution of GDS score with respect to Surgical History is not same.

Variable	p-value	Conclusion		
GDS	0.001914	GDS score with respect to Surgical History is not same.		
OPQOL	-	Insufficient data		
QPAR	-	Insufficient data		
MoCA	0.09852	MoCA with respect to Surgical History is same.		
TMT A	0.3995	TMT A with respect to Surgical History is same.		
TMT B	0.005051	TMT B with respect to Surgical History is not same.		
PEFR	0.9026	PEFR with respect to Surgical History is same.		
TUG	0.5525	TUG with respect to Surgical History is same.		
2 MWT	1.985e-06	2 MWT with respect to Surgical History is not same.		
FRT	1.684e-06	FRT with respect to Surgical History is not same.		

Analysis of Variance (ANOVA) and Post hoc Test

ANOVA is a statistical method used to test differences between two or more means. It is like the t-test, but while the t-test is generally used for comparing two means, ANOVA is used when you have more than two means to compare.

Objective

The objective of ANOVA is to determine if there are significant differences among the group means. If the between group variance is high and the within group variance is low, this provides evidence that the means of the groups are significantly different.

Test Statistic

The test statistic in ANOVA is the F-ratio, which is the ratio of the between group variance to the within-group variance. If the between-group variance is significantly larger than the within-group variance, the F-ratio will be large and likely significant.

Assumptions

- 1. Independence: The observations are independent of each other.
- 2. Normality: The data within each group are normally distributed.
- 3. Homogeneity of variance: The variance of data in the groups should be the same.

• To Study using Analysis of Variance (ANOVA) and Post hoc Test?

- 1. To study the variables with respect to different Age Group.
- 2. To study the variables with respect to different Physical Fitness.

Post Hoc Test

Post hoc test is used only after we find a statistically significant result and need to determine where our differences truly came from. The term "post hoc" comes from the Latin for "after the event".

Post hoc tests are an integral part of ANOVA. When you use ANOVA to test the equality of at least three group means, statistically significant results indicate that not all of the group means are equal. However, ANOVA results do not identify which particular differences between pairs of means are significant. Post hoc test identifies these differences between pairs of means that are significantly different.

Test Statistic

$$t = \frac{\bar{d}}{s_d/\sqrt{n}} \sim t_{n-1}$$

Where,

- d Mean of the differences between all pairs
- sd Standard deviation of the differences
- n Number of pairs

Assumptions

- 1. The participants should be selected randomly from the population.
- 2. The differences between the pairs should be approximately normally distributed.
- 3. There should be no extreme outliers in the differences.

1. Comparison of Geriatric Depression Score (GDS) for different Age Group

Response Variable: GDS

Treatments: Different Age Group

Hypothesis to Test:

H0: There is no significant difference in the average GDS between different Age groups.

H1: There is a significant difference in the average GDS between different Age groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatments	9	343	38.09	1.579	0.117
Residuals	769	18549	24.12		

Decision & Conclusion

As, p-value > 0.05, H0 is Accepted.

There is no significant difference in the average GDS between people of different Age groups.

Residual Plot

Residuals vs Fitted Values Plot

Interpretation:

The straight line indicates the residuals are normally distributed. i.e. Assumption is satisfied.

Constant Variance

H0: All population variances are equal.

H1: At least two population variances are different.

R Code:

 $bartlett.test(gds \sim Column, data = df)$

Bartlett test of homogeneity of variances

data: gds by Column

Bartlett's K-squared = 15.394, df = 9, p-value = 0.08066

Decision & Conclusion

As p-value > 0.05, H0 is Accepted.

All population variances are equal. i.e. Assumption is satisfied.

Hypothesis to Test:

H0: Average GDS between two different Age Groups is same.

H1: Average GDS between two different Age Groups is not same.

Post hoc Table

	40 to 50	51 to 55	56 to 60	61 to 65	66 to 70	71 to 75	76 to 80	81 to 85	86 to 9
51 to 55	0.2939	-	1	-	-	-	-	-	1
56 to 60	0.4193	0.5955	1	-	-	-	-	-	1
61 to 65	0.4086	0.5472	0.9629	-	-	-	-	-	1
66 to 70	0.3635	0.6221	0.8823	0.771	-	-	-	-	1
71 to 75	0.4356	0.5086	0.8785	0.8753	0.6571	-	-	-	1
76 to 80	0.7979	0.1957	0.2288	0.1289	0.0802	0.1675	-	-	1
81 to 85	0.6459	0.3459	0.5266	0.4723	0.3698	0.537	0.6656	-	1
86 to 90	0.1037	0.0037	0.0031	0.0021	0.0016	0.0025	0.0145	0.0102	1
91 to 95	0.7721	0.7593	0.9155	0.9224	0.8895	0.9407	0.8516	0.9426	0.1873

Interpretation:

There is significant difference in GDS for people in 86 to 90 Age group.

2. Comparison of MOCA for different Age Group

Response Variable: MOCA

Treatments: Different Age Group

Hypothesis to Test:

H0: There is no significant difference in the average MOCA between different Age groups.

H1: There is a significant difference in the average MOCA between different Age groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatments	9	455	50.57	1.932	0.0447*
Residuals	771	20188	26.18		

Decision & Conclusion

As p - value < 0.05, H0 is Rejected.

The average MOCA between people of different Age Groups differ Significantly.

Hypothesis to Test:

H0: Average MOCA between two different Age Groups is same.

H1: Average MOCA between two different Age Groups is not same.

Post hoc Table

	40 to 50	51 to 55	56 to 60	61 to 65	66 to 70	71 to 75	76 to 80	81 to 85	86 to 90
51 to 55	0.9729	-	-	-	-	-	-	-	-
56 to 60	0.2468	0.0897	-	-	-	-	-	-	-
61 to 65	0.7073	0.5922	0.0246	-	-	-	-	-	-
66 to 70	0.6224	0.4698	0.0518	0.631	-	-	-	-	-
71 to 75	0.5667	0.3961	0.0904	0.4304	0.7416	-	-	-	-
76 to 80	0.8426	0.8049	0.0187	0.5959	0.3704	0.2604	-	-	-
81 to 85	0.7415	0.5841	0.0015	0.0737	0.0368	0.0238	0.2284	-	-
86 to 90	0.2663	0.1614	0.0055	0.0445	0.0326	0.0265	0.0753	0.2432	-
91 to 95	0.6901	0.6485	0.2528	0.4984	0.4562	0.4282	0.5673	0.8012	0.7148

Interpretation:

There is significant difference in MOCA for people in Age groups of following pairs :

- 1) 86 to 90 with 56 to 60, 61 to 65, 66 to 70 and 71 to 75
- 2) 81 to 85 with 56 to 60, 66 to 70 and 71 to 75
- 3) 76 to 80 with 56 to 60
- 4) 61 to 65 with 56 to 60

3. Comparison of QPAR for different Age Group

Response Variable : QPAR

Treatments : Different Age Group

Hypothesis to Test:

H0: There is no significant difference in the average QPAR between different Age groups.

H1: There is a significant difference in the average QPAR between different Age groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatments	8	4614	576.8	3.009	0.0051**
Residuals	84	16100	191.7		

Decision & Conclusion

As p - value < 0.01, H0 is Rejected.

The average QPAR between people of different Age groups differ highly Significantly.

The data is insufficient to perform Post Hoc Analysis.

4. Comparison of OPQOL for different Age Group

Response Variable: OPQOL

Treatments: Different Age Group

Hypothesis to Test:

H0: There is no significant difference in the average OPQOL between different Age groups.

H1: There is a significant difference in the average OPQOL between different Age groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatments	8	4106	513.3	1.16	0.333
Residuals	83	36727	442.5		

Decision & Conclusion

As p - value > 0.05, H0 is Accepted.

There is no significant difference in the average OPQOL between people of different Age groups.

The data is insufficient to perform Post Hoc Analysis.

5. Comparison of TMT A for different Age Group

Response Variable: TMT A

Treatments: Different Age Group

Hypothesis to Test:

H0: There is no significant difference in the average TMT A between different Age groups.

H1: There is a significant difference in the average TMT A between different Age groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatments	8	4614	576.8	3.009	0.0051**
Residuals	84	16100	191.7		

Decision & Conclusion

As p - value < 0.01, H0 is Rejected.

The average TMT A between people of different Age Groups differ highly Significantly.

Hypothesis to Test

H0: Average TMT A between two different Age Groups is same.

H1: Average TMT A between two different Age Groups is not same.

	40 to 50	51 to 55	56 to 60	61 to 65	66 to 70	71 to 75	76 to 80	81 to 85	86 to 90
51 to 55	0.85606	-	-	1	-	-	-	-	_
56 to 60	0.46081	0.46025	-	-	-	-	=	-	-
61 to 65	0.63845	0.71119	0.46636	ı	-	-	-	-	-
66 to 70	0.73328	0.85486	0.28996	0.63587	-	-	-	-	-
71 to 75	0.97354	0.71989	0.05163	0.07574	0.17425	-	-	-	-
76 to 80	0.63114	0.32743	0.00613	0.00578	0.01483	0.18793	-	-	-
81 to 85	0.82757	0.5581	0.05214	0.09422	0.16718	0.64025	0.57073	-	-
86 to 90	0.00682	0.00082	1.70E-05	2.70E-05	4.50E-05	0.00021	0.00141	0.00077	-
91 to 95	0.38601	0.28438	0.13833	0.18772	0.21662	0.31929	0.48501	0.39238	0.23627

Interpretation: There is significant difference in TMT A for people in 76 to 80 and 86 to 90 Age group.

6. Comparison of TMT B of different Age Group

Response Variable: TMT B

Treatments: Different Age Group

Hypothesis to Test:

H0: There is no significant difference in the average TMT B between different Age groups.

H1: There is a significant difference in the average TMT B between different Age groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatments	9	520761	57862	1.343	0.212
Residuals	444	19128320	43082		

Decision & Conclusion

As p - value > 0.05, H0 is Accepted.

There is no significant difference in the average TMT B between people in different groups.

Hypothesis to Test:

H0: Average TMT B between two different Age Groups is same.

H1: Average TMT B between two different Age Groups is not same.

	40 to 50	51 to 55	56 to 60	61 to 65	66 to 70	71 to 75	76 to 80	81 to 85	86 to 90
51 to 55	0.7858	-	-	-	-	-	-	-	-
56 to 60	0.6496	0.8246	-	-	-	-	-	-	-
61 to 65	0.8118	0.9057	0.5611	-	-	-	-	-	1
66 to 70	0.8736	0.8082	0.4262	0.7666	-	-	-	-	-
71 to 75	0.8905	0.4857	0.1287	0.1759	0.2619	-	-	-	-
76 to 80	0.9234	0.5401	0.1951	0.3104	0.4229	0.9029	-	-	ı
81 to 85	0.9255	0.5672	0.264	0.4243	0.5333	0.9245	0.9995	-	-
86 to 90	0.0982	0.0206	0.0052	0.0074	0.0093	0.0235	0.0235	0.0293	1
91 to 95	0.365	0.2225	0.16	0.2049	0.225	0.3171	0.3075	0.3156	0.6968

Interpretation : There is significant difference in TMT B for people in 86 to 90 Age group.

7. Comparison of 2 MWT of different Age Group

Response Variable: MWT

Treatments: Different Age Group

Hypothesis to Test:

H0: There is no significant difference in the average TMT B between different Age groups.

H1: There is a significant difference in the average TMT B between different Age groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatment	9	100302	11145	4.52	9.05e-06 ***
Residuals	596	1469527	2466		

Decision & Conclusion

As p - value < 0.01, H0 is Rejected.

The average MWT between people of different Age groups differ highly Significantly.

Hypothesis to Test:

H0: Average MWT between two different Age Groups is same.

H1: Average MWT between two different Age Groups is not same.

The data is insufficient to perform Post Hoc Analysis.

8. Comparison of FRT of different Age Group

Response Variable: FRT

Treatments: Different Age Group

Hypothesis to Test:

H0: There is no significant difference in the average FRT between different Age groups.

H1: There is a significant difference in the average FRT between different Age groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatment	9	3829	425.4	3.169	0.000917 ***
Residuals	715	95994	134.3		

Decision & Conclusion

As p - value < 0.01, H0 is Rejected.

The average FRT between people of different Age groups differ highly Significantly.

Hypothesis to Test:

H0: Average FRT between two different Age Groups is same.

H1: Average FRT between two different Age Groups is not same.

	40 to 50	51 to 55	56 to 60	61 to 65	66 to 70	71 to 75	76 to 80	81 to 85	86 to 90
51 to 55	0.68382	-	-	-	-	-	-	-	-
56 to 60	0.24333	0.39435	-	-	-	-	-	-	-
61 to 65	0.40675	0.67749	0.38267	-	-	-	-	-	-
66 to 70	0.39585	0.65999	0.40018	0.95333	-	-	-	-	-
71 to 75	0.9545	0.57288	0.01187	0.01551	0.01171	-	-	-	-
76 to 80	0.84775	0.71401	0.05166	0.12148	0.10742	0.73195	1	ı	ı
81 to 85	0.34714	0.08824	0.00033	0.00043	0.00035	0.04139	0.03764	1	ı
86 to 90	0.38511	0.18326	0.03311	0.06155	0.05903	0.23637	0.20154	0.82836	ı
91 to 95	0.23803	0.12986	0.04213	0.06627	0.06458	0.16657	0.14705	0.46487	0.61286

Interpretation:

There is significant difference in FRT for people in 71 to 75, 81 to 85, 86 to 90 and 91 to 95 Age groups.

9. Comparison of TUG for different Age Group

Response Variable: TUG

Treatments: Different Age Group

Hypothesis to Test:

H0: There is no significant difference in the average TUG between different Age groups.

H1: There is a significant difference in the average TUG between different Age groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatment	9	1888	209.75	2.27	0.0164 *
Residuals	763	70510	92.41		

Decision & Conclusion

As p - value < 0.05, H0 is Rejected.

The average TUG between people of different Age groups differ Significantly.

Hypothesis to Test:

H0: Average TUG between two different Age Groups is same.

H1: Average TUG between two different Age Groups is not same.

Post hoc Table

	40 to 50	51 to 55	56 to 60	61 to 65	66 to 70	71 to 75	76 to 80	81 to 85	86 to 90
51 to 55	0.77513	-	ı	1	ı	1	ı	ı	-
56 to 60	0.8478	0.84827	ı	1	ı	1	ı	ı	-
61 to 65	0.65016	0.82854	0.49465	1	ı	1	ı	ı	-
66 to 70	0.46691	0.49772	0.15273	0.26242	ı	1	ı	ı	-
71 to 75	0.40707	0.39706	0.09268	0.13685	0.67571	1	ı	ı	-
76 to 80	0.12756	0.05064	0.00148	0.00068	0.00941	0.02608	ı	ı	-
81 to 85	0.22316	0.15946	0.03003	0.04597	0.17634	0.277	0.557	ı	-
86 to 90	0.11645	0.11775	0.08328	0.11309	0.16413	0.18812	0.42912	0.33379	-
91 to 95	0.28363	0.32024	0.27087	0.33352	0.41894	0.45484	0.74805	0.63571	0.79669

Interpretation:

There is significant difference in TUG for people in 76 to 80 and 81 to 85 Age groups.

10. Comparison of PEFR for different Age Group

Response Variable: PEFR

Treatments: Different Age Group

Hypothesis to Test:

H0: There is no significant difference in the average PEFR between different Age groups.

H1: There is a significant difference in the average PEFR between different Age groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatment	9	305146	33905	3.529	0.000299 ***
Residuals	478	4592210	9607		

Decision & Conclusion

As p - value < 0.01, H0 is Rejected.

The average PEFR between people of different Age groups differ highly Significantly.

Hypothesis to Test:

H0: Average PEFR between two different Age Groups is same.

H1: Average PEFR between two different Age Groups is not same.

The data is insufficient to perform Post Hoc Analysis.

1. Comparison of Geriatric Depression Score (GDS) for different Fitness Group

Response Variable : GDS

Treatments: Different Fitness Group

Hypothesis to Test:

H0: There is no significant difference in the average GDS between different Fitness groups.

H1: There is a significant difference in the average GDS between different Fitness groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatment	3	15	5.008	0.206	0.893
Residuals	775	18877	24.358		

Decision & Conclusion

As, p-value > 0.05, H0 is Accepted.

There is no significant difference in the average GDS between people of different Fitness groups.

Residual Plot

Residuals vs Fitted Values Plot

Interpretation:

The straight line indicates the residuals are normally distributed i.e. Assumption is satisfied.

Constant Variance

H0: All population variances are equal.

H1: At least two population variances are different.

R Code:

bartlett.test(gds ~Treatment, data = data1)

Bartlett test of homogeneity of variances

data: gds by Treatment

Bartlett's K-squared = 1.7185, df = 3, p-value = 0.6328

Decision & Conclusion

As p-value > 0.05, H0 is Accepted.

All population variances are equal.

Hypothesis to Test:

H0: Average GDS between two different Fitness Groups is same.

H1: Average GDS between two different Fitness Groups is not same.

Post hoc Table

	Normal	Obese	Overweight
Obese	0.49	-	-
Overweight	0.82	0.69	-
Underweight	0.66	0.84	0.73

Interpretation:

There is no significant difference in GDS for people in different Fitness group.

2. Comparison of MOCA for different Fitness Group

Response Variable: MOCA

Treatments: Different Fitness Group

Hypothesis to Test:

H0: There is no significant difference in average MOCA between different Fitness groups.

H1: There is a significant difference in the average MOCA between different Fitness groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatment	3	13	4.373	0.165	0.92
Residuals	777	20630	26.55		

Decision & Conclusion

As p - value > 0.05, H0 is Accepted.

i.e. There is no significant difference in the average MOCA between people of different Fitness groups.

Hypothesis to Test:

H0: Average MOCA between two different Fitness Groups is same.

H1: Average MOCA between two different Fitness Groups is not same.

Post hoc Table

	Normal	Obese	Overweight
Obese	0.71	-	-
Overweight	0.88	0.59	-
Underweight	0.75	0.65	0.8

Interpretation:

There is no significant difference in MOCA for people in different Fitness group.

3. Comparison of QPAR for different Fitness Group

Response Variable: QPAR

Treatments: Different Fitness Group

Hypothesis to Test:

H0: There is no significant difference in the average QPAR between different Fitness groups.

H1: There is a significant difference in the average QPAR between different Fitness groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatment	3	688	229.3	1.019	0.388
Residuals	89	20026	225		

Decision & Conclusion

As p - value > 0.05, H0 is Accepted.

There is no significant difference in the average QPAR between people of different Fitness groups.

The data is insufficient to perform Post Hoc Analysis.

4. Comparison of OPQOL for different Fitness Group

Response Variable: OPQOL

Treatments: Different Fitness Group

Hypothesis to Test:

H0: There is no significant difference in the average OPQOL between different Fitness groups.

H1: There is a significant difference in the average OPQOL between different Fitness groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatment	3	526	175.5	0.383	0.765
Residuals	88	40307	458		

Decision & Conclusion

As p - value > 0.05, H0 is Accepted.

There is no significant difference in the average OPQOL between people of different Fitness groups.

The data is insufficient to perform Post Hoc Analysis.

5. Comparison of TMT A for different Fitness Group

Response Variable: TMT A

Treatments: Different Fitness Group

Hypothesis to Test:

H0: There is no significant difference in the average TMT A between different Fitness groups.

H1: There is a significant difference in the average TMT A between different Fitness groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatment	3	1452	484.1	0.424	0.736
Residuals	528	602842	1141.7		

Decision & Conclusion

As p - value > 0.05, H0 is Accepted.

There is no significant difference in the average TMT A between people of different Fitness groups.

Hypothesis to Test:

H0: Average TMT A between two different Fitness Groups is same.

H1: Average TMT A between two different Fitness Groups is not same.

Post hoc Table

	Normal	Obese	Overweight
Obese	0.58	-	-
Overweight	0.53	0.84	-
Underweight	0.44	0.35	0.33

Interpretation : There is no significant difference in TMT A for people in different Fitness group.

6. Comparison of TMT B of different Fitness Group

Response Variable: TMT B

Treatments: Different Fitness Group

Hypothesis to Test:

H0: There is no significant difference in the average TMT B between different Fitness groups.

H1: There is a significant difference in the average TMT B between different Fitness groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatment	3	43484	14495	0.333	0.802
Residuals	450	19605598	43568		

Decision & Conclusion

As p - value > 0.05, H0 is Accepted.

There is no significant difference in the average TMT B between people of different Fitness groups.

Hypothesis to Test:

H0: Average TMT B between two different Fitness Groups is same.

H1: Average TMT B between two different Fitness Groups is not same.

	Normal	Obese	Overweight
Obese	0.49	-	-
Overweight	0.83	0.38	-
Underweight	0.97	0.83	0.98

Interpretation:

There is no significant difference in TMT B for people in different Fitness group.

7. Comparison of MWT of different Fitness Group

Response Variable: MWT

Treatments: Different Fitness Group

Hypothesis to Test:

H0: There is no significant difference in the average MWT between different Fitness groups.

H1: There is a significant difference in the average MWT between different Fitness groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatment	3	3424	1141	0.439	0.725
Residuals	602	1566405	2602		

Decision & Conclusion

As p - value > 0.05, H0 is Accepted.

There is no significant difference in the average MWT between people of different Fitness groups.

Hypothesis to Test:

H0: Average MWT between two different Fitness Groups is same.

H1: Average MWT between two different Fitness Groups is not same.

	Normal	Obese	Overweight
Obese	0.65	-	-
Overweight	0.65	0.92	-
Underweight	0.4	0.29	0.29

Interpretation:

There is no significant difference in MWT for people in different Fitness group.

8. Comparison of FRT of different Fitness Group

Response Variable: FRT

Treatments: Different Fitness Group

Hypothesis to Test:

H0: There is no significant difference in the average FRT between different Fitness groups.

H1: There is a significant difference in the average FRT between different Fitness groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatment	3	1058	352.7	2.574	0.0529
Residuals	721	98765	137		

Decision & Conclusion

As p - value > 0.05, H0 is Accepted.

There is no significant difference in the average FRT between people of different Fitness groups.

Hypothesis to Test:

H0: Average FRT between two different Fitness Groups is same.

H1: Average FRT between two different Fitness Groups is not same.

	Normal	Obese	Overweight
Obese	0.0078	-	-
Overweight	0.0605	0.7111	-
Underweight	0.19	0.6489	0.5712

Interpretation:

There is significant difference in FRT for people belonging to Obese and Normal Fitness groups.

9. Comparison of TUG of different Fitness Group

Response Variable: TUG

Treatments: Different Fitness Group

Hypothesis to Test:

H0: There is no significant difference in the average TUG between different Fitness groups.

H1: There is a significant difference in the average TUG between different Fitness groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatment	3	1373	457.7	4.956	0.00206 **
Residuals	769	71025	92.4		

Decision & Conclusion

As p - value < 0.01, H0 is Rejected.

There is significant difference in the average TUG between people of different Fitness groups.

Hypothesis to Test:

H0: Average TUG between two different Fitness Groups is same.

H1: Average TUG between two different Fitness Groups is not same

	Normal	Obese	Overweight
Obese	0.89347	-	-
Overweight	0.48439	0.48509	-
Underweight	0.00019	0.00016	0.00057

Interpretation:

There is significant difference in TUG for people belonging to Underweight Fitness groups.

10. Comparison of PEFR for different Fitness Group

Response Variable : PEFR

Treatments: Different Fitness Group

Hypothesis to Test:

H0: There is no significant difference in the average PEFR between different Fitness groups.

H1: There is a significant difference in the average PEFR between different Fitness groups.

ANOVA Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Treatment	3	39755	13252	1.32	0.267
Residuals	484	4857601	10036		

Decision & Conclusion

As p - value > 0.05, H0 is Accepted.

There is no significant difference in the average PEFR between people of different Fitness groups.

Hypothesis to Test:

H0: Average PEFR between two different Fitness Groups is same.

H1: Average PEFR between two different Fitness Groups is not same.

	Normal	Obese	Overweight
Obese	0.17	-	-
Overweight	0.518	0.545	-
Underweight	0.088	0.209	0.152

Interpretation:

There is no significant difference in PEFR for people in different Fitness group.

ODD'S RATIO

Odds provides measure of likelihood of a particular outcome. Odds are calculated as number of events that produce outcomes to the number of events that do not produce outcome.

In statistics odds are an expression of Relative Probabilities. The odds in the favour of an event is probability that an event will happen to the probability that an event will not happen.

Odd's Ratio is statistics that quantifies the strength of association between two events. Odds ratio is used to find probability of an event when there are two possible outcomes and there is one casual effect.

Formula:

Interpretation:

- Odd's Ratio (OR) = 1
 The event is Equally likely in both the groups.
- Odd's Ratio (OR) > 1
 The event is More likely in the group of interest.
- Odd's Ratio (OR) < 1
 The event is Less likely in the group of interest.

R Code:

> oddsratio(HTN)

\$data

	HTN_YES	HTN_NO	Total
Male	159	127	286
Female	185	112	297
Total	344	239	583

\$measure

NA

odds ratio with 95% C.I. estimate lower upper

Male 1.0000000 NA NA

Female 0.7584635 0.5440579 1.055875

\$p.value

NA

two-sided midp.exact fisher.exact chi.square

Male NA NA NA

Female 0.1014975 0.1097569 0.1003512

R Code:

> oddsratio(DM)

\$data

	DM_YES	DM_NO	Total
Male	122	156	278
Female	114	175	289
Total	236	331	567

\$measure

NA

odds ratio with 95% C.I. estimate lower upper

Male 1.000000 NA NA

Female 1.200014 0.8587796 1.678169

\$p.value

NA

two-sided midp.exact fisher.exact chi.square

Male NA NA NA

Female 0.2855309 0.3068268 0.2837901

Interpretation:

Females have approximately 20.00% higher odds of having Diabetes Mellitus as compared to Males.

As p - value > 0.05

R Code:

> oddsratio(med)

\$data

	Med History_YES	Med History_NO	Total
Male	103	54	157
Female	117	78	195
Total	220	132	352

\$measure

NA

odds ratio with 95% C.I. estimate lower upper

Male 1.000000 NA NA

Female 1.270075 0.8212586 1.972364

\$p.value

NA

two-sided midp.exact fisher.exact chi.square

Male NA NA NA

Female 0.2831087 0.3191297 0.2802536

Interpretation:

Females have approximately 27.00 % higher odds of having medical history as compared to Males.

As p - value > 0.05

> oddsratio(Sx)

\$data

	Sx History_YES	Sx History_NO	Total
Male	166	30	196
Female	219	35	254
Total	385	65	450

\$measure

NA

odds ratio with 95% C.I. estimate lower upper

Male 1.0000000 NA NA

Female 0.8840065 0.520752 1.508396

\$p.value

NA

two-sided midp.exact fisher.exact chi.square

Male NA NA NA

Female 0.6487459 0.6859854 0.6478437

Interpretation:

Females have approximately 11.6% lower odds of having surgical history as compared to males.

The odds of having surgical history for females are 0.884 times the odds for males.

As p - value > 0.05

> oddsratio(x1)

\$data

	Medication_YES	Medication_NO	Total
Male	123	35	158
Female	135	49	184
Total	258	84	342

\$measure

NA

odds ratio with 95% C.I. estimate lower upper

Male 1.000000 NA NA

Female 1.273392 0.7749071 2.10923

\$p.value

NA

two-sided midp.exact fisher.exact chi.square

Male NA NA NA

Female 0.3413536 0.3785452 0.3374269

Interpretation:

Females have approximately 27.34% higher odds of having Medication as compared to Males.

As p - value > 0.05