Olimpiada Națională Gazeta Matematica – Faza pe școală – 20.02.2021

Clasa a VI-a

- 1) Să se rezolve în mulțimea numerelor întregi ecuația: 2xy 3x 5y = 4
- 2) Determinați cel mai mic număr natural de trei cifre, care împărțit la 8, 12 și 15 dă resturile 5, 9 respectiv, 12.
- 3) Trei unghiuri formate în jurul punctului O au măsurile x, y, z (exprimate în grade). Dacă x și y sunt direct proporționale cu 2 și 3, iar y și z sunt invers proporționale cu 0,1(6) și 0,2, determinați măsurile celor trei unghiuri.
- 4) Fie A, B, C, D puncte coliniare astfel încât AC = 8cm, BC = 7cm și AD = 9cm. Calculați lungimea segmentului BD.

Notă: Fiecare subiect se punctează de la 1 la 7. Timp de lucru 120 minute.

OLIMPIADA NAȚIONALĂ GAZETA MATEMATICĂ 2020-2021

Faza pe școală

20 februarie 2021

Clasa a 7-a

- 1. Arătați că $\sqrt{2017 \cdot 2018 + \sqrt{2017 \cdot 2018 + \sqrt{2017 \cdot 2018 + \sqrt{2017 \cdot 2018}}}} < 2018$
- 2. Să se calculeze perimetrul unui triunghi ale cărui laturi a, b, c satisfac inegalitatea $\sqrt{a^2-4\sqrt{3}a+21}+\sqrt{b^2-2\sqrt{3}b+28}+\sqrt{c^2-6c+25} \le 12$.
- 3. Se consideră trapezul ABCD cu $AB \parallel CD$, AB < CD și $AC \perp BD$. Dacă N este un punct oarecare pe [OC], unde $AC \cap BD = \{O\}$ și P este intersecția perpendicularei din C pe DN cu dreapta BD, arătați că $BN \perp AP$.
- 4. Din punctul O, centrul rombului ABCD ducem perpendicularele $OP \perp AD$ și $OQ \perp AB$, $P \in AD$ și $Q \in AB$. Știind că $PQ = \frac{AC}{2}$ arătați că ABCD este pătrat.

Fiecare subiect se puncteaza cu 7 puncte. Toate subiectele sunt obligatorii. Timp de lucru 3 ore.

OLIMPIADA NAȚIONALĂ GAZETA MATEMATICĂ 2020-2021

Faza pe școală

20 februarie 2021

Clasa a 8-a

- 1. Fie $E(x) = 16x^2 32x + 25, x \in \mathbb{R}$.
 - a) Dacă $m = (\sqrt{3} + 1)^2 \sqrt{3} 3$ arătați că $E(m) \in \mathbb{Z}$.
 - b) Dacă $a \in \mathbb{Z}$ scrieți numărul E(a) ca sumă de două pătrate.
 - c) Pentru $x \in \mathbb{N}$ determinați valoarea maximă a expresiei F(x) = 10 E(x).
- 2. Se consideră numerele $x, y \in \mathbb{R}$, $x \in [-8, -2]$ și y = x + 5. Arătați că expresia $E(x, y) = \sqrt{x^2 + y^2 + 16x + 6y + 73} + \sqrt{x^2 + y^2 + 4x 6y + 13}$ este constantă.
- 3. Calculati sumele:

a)
$$S = \frac{1}{\sqrt{3 + 2\sqrt{2}}} + \frac{1}{\sqrt{5 + 2\sqrt{6}}} + \frac{1}{\sqrt{7 + 2\sqrt{12}}} + \frac{1}{\sqrt{9 + 2\sqrt{20}}}$$

b)
$$S = \frac{1}{1 \cdot \sqrt{2} + 2 \cdot \sqrt{1}} + \frac{1}{2\sqrt{3} + 3\sqrt{2}} + \dots + \frac{1}{n\sqrt{n+1} + (n+1)\sqrt{n}}$$

4. În piramida patrulateră regulate *VABCD*, cu baza pătratul *ABCD*, *G* este centrul de greutate al ΔVAC , *F* este centrul de greutate al ΔABD și *M* este mijlocul segmentului [BG]. Demonstrați că $FM \parallel (VDC)$.

Fiecare subject se puncteaza cu 7 puncte. Toate subjectele sunt obligatorii. Timp de lucru 3 ore.

OLIMPIADA NATIONALĂ GAZETA MATEMATICĂ 2020-2021

Faza pe școală – 20 februarie 2021 Clasa a IX-a

1. Rezolvați în mulțimea numerelor reale ecuația:

$$\left[\frac{1}{x+1}\right] = \frac{1}{[x]+1},$$

unde [x] reprezintă partea întreagă a numărului real x.

2. a) Fie
$$a,b \in [1,+\infty]$$
. Arătați că $\frac{1}{1+a} + \frac{1}{1+b} \le \frac{1}{2} + \frac{1}{1+ab}$.

b) Determinați $n \in \mathbb{N}$ astfel încât $\sqrt{n^2 + 4n} \in \mathbb{N}$.

3. a) Demonstrați că
$$2^2 + 5^2 + 8^2 + ... + (3n-1)^2 = \frac{n(6n^2 + 3n - 1)}{2}, \forall n \in \mathbb{N}^*$$
.

b) Pentru $n \in \mathbb{N}^*$ fixat, determinați $a_1, a_2, a_3, ..., a_n \in \mathbb{R}$ care satisfac inegalitatea:

$$2\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+\ldots+a_{n}^{2}\right)-4\left[2a_{1}+5a_{2}+8a_{3}+\ldots+\left(3n-1\right)a_{n}\right]+n\left(6n^{2}+3n-1\right)\leq0.$$

4. Pe laturile paralelogramului ABCD se consideră punctele $M \in (AB)$, $N \in (BC)$, $P \in (DC)$ astfel încât $\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AB}$, $\overrightarrow{BN} = \frac{5}{6}\overrightarrow{BC}$, $\overrightarrow{DP} = \frac{1}{6}\overrightarrow{DC}$. Arătați că centrul de greutate al triunghiului MNP se află pe AC.

Fiecare subiect se punctează cu 7p. Toate subiectele sunt obligatorii. Timp de lucru: 3 ore

1.
$$\left[\frac{1}{x+1}\right] = \frac{1}{\left[x\right]+1} = k, k \in \mathbb{Z} \Rightarrow \left[x\right]+1 \in \left\{\pm 1\right\}$$
 (1p)

I.
$$\begin{cases} \begin{bmatrix} x \end{bmatrix} = 0 \\ \begin{bmatrix} \frac{1}{x+1} \end{bmatrix} = 1 \Rightarrow \begin{cases} x \in [0,1) \\ x \in \left(-\frac{1}{2},0\right] \Rightarrow x = 0 \end{cases}$$
 (2,25p)

II.
$$\begin{cases} \begin{bmatrix} x \end{bmatrix} = -2 \\ \begin{bmatrix} \frac{1}{x+1} \end{bmatrix} = -1 \end{cases} \Rightarrow \begin{cases} x \in [-2, -1) \\ x \in (-\infty, -2] \end{cases} \Rightarrow x = -2$$
 (2,25p)

Din I și II
$$\Rightarrow$$
 $S = \{0, -2\}$ (0,5p)

2. a)
$$\frac{1}{1+a} + \frac{1}{1+b} \le \frac{1}{2} + \frac{1}{1+ab}, \quad a, b \in [1, +\infty)$$
Prin calcul direct se obține:
$$\underbrace{(a-1)}_{\ge 0} \underbrace{(b-1)}_{\ge 0} \underbrace{(ab-1)}_{\ge 0} \ge 0 (A), \forall a, b \in [1, +\infty)$$
(2,75p)

Avem egaliatate dacă a=1 sau b=1. (0,25p)

b)
$$\sqrt{n^2 + 4n} = k \in \mathbb{N} \Rightarrow (n + 2 - k) \underbrace{(n + 2 + k)}_{>0} = 4$$

 $(n + 2 - k, n + 2 + k) \in \{(4,1), (2,2), (1,4)\} \Rightarrow 2n + 4 = 4 \Rightarrow n = 0$ (3p)

3. a) Inducție matematică (3p)

b) Din a) avem:

$$a_1^2 + a_2^2 + a_3^2 + \dots + a_n^2 - 2[2a_1 + 5a_2 + 8a_3 + \dots + (3n-1)a_n] + 2^2 + 5^2 + 8^2 + \dots + (3n-1)^2 \le 0$$
 (0,5p)

$$\left(a_{1}^{2}-2a_{1}+2^{2}\right)+\left(a_{2}^{2}-2\cdot5a_{2}+5^{2}\right)+\ldots+\left[a_{n}^{2}-2\left(3n-1\right)a_{n}+\left(3n-1\right)^{2}\right]\leq0$$
(1p)

$$\underbrace{\left(a_{1}-2\right)^{2}}_{\geq 0} + \underbrace{\left(a_{2}-5\right)^{2}}_{\geq 0} + \dots + \underbrace{\left(a_{n}-3n+1\right)^{2}}_{\geq 0} \leq 0 \Rightarrow \begin{cases} a_{1} = 2 \\ a_{2} = 5 \\ \dots \\ a_{n} = 3n-1 \end{cases}$$
 (1p+0,5p)

4. Fie PE = EN, $E \in (PN) \Rightarrow G \in (ME)$, $MG = \frac{2}{3} \cdot ME$, unde G este ecentrul de greutate al ΔMNP .

$$\overrightarrow{ME} = \frac{\overrightarrow{MP} + \overrightarrow{MN}}{2} = \frac{\overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DP} + \overrightarrow{MB} + \overrightarrow{BC}}{2} = \frac{-\frac{2}{3} \cdot \overrightarrow{AB} + \overrightarrow{BC} + \frac{1}{6} \cdot \overrightarrow{AB} + \frac{1}{3} \cdot \overrightarrow{AB} + \frac{5}{6} \cdot \overrightarrow{BC}}{2} = \frac{-\overrightarrow{AB} + 11\overrightarrow{BC}}{2} \Rightarrow \overrightarrow{MG} = \frac{2\left(-\overrightarrow{AB} + 11\overrightarrow{BC}\right)}{36}$$

$$\overrightarrow{AG} = \overrightarrow{AM} + \overrightarrow{MG} = \frac{11}{18}\left(\overrightarrow{AB} + \overrightarrow{AC}\right) = \frac{11}{18}\overrightarrow{AC} \Rightarrow G \in (AC)$$
(6p)

OLIMPIADA NAȚIONALĂ GAZETA MATEMATICĂ 2020-2021

Faza pe școală

20 februarie 2021

Clasa a10-a

- 1. Dacă $a,b,c \in (0,\infty)$, demonstrați că $\frac{3abc}{ab+ac+bc} \le \sqrt[3]{abc} \le \frac{a+b+c}{3}$.
- 2. Dacă $a=\log_{15}4$ și $b=\log_615$ exprimați în funcție de a și b numărul $c=\log_{10}25$.
- 3. Arătați că pentru orice $z_1, z_2 \in \mathbb{C}$ au loc relațiile:

a)
$$\left|1+\overline{z_1}z_2\right|^2+\left|z_2-z_1\right|^2=\left(1+\left|z_1\right|^2\right)\left(1+z_2\overline{z_2}\right)$$

b)
$$\left|1-\overline{z_1}z_2\right|^2 \ge \left(1-\left|z_1\right|^2\right)\left(1-\left|z_2\right|^2\right)$$

4. Arătați că nu există funcții injective $f: \mathbb{R} \to \mathbb{R}$ care, pentru orice număr real $x \in \mathbb{R}$, satisfic relația $f(3^x) + f(5^x) = 8$.

Fiecare subiect se puncteaza cu 7 puncte. Toate subiectele sunt obligatorii. Timp de lucru 3 ore.

Olimpiada Națională Gazeta Matematica – Faza pe școală –

20.02.2021

Clasa a XI-a

- 1) Fie A = $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Să se calculeze Aⁿ, n $\in \mathbb{N}^*$
- 2) Fie șirurile $(x_n)_{n\geq 0}$ și $(y_n)_{n\geq 0}$ care verifică relațiile:

$$\begin{cases} x_{n+1} = \sqrt{3}x_n - y_n \\ y_{n+1} = \sqrt{3}y_n + x_n \end{cases}, \ \forall n \ge 0 \ \ \text{si} \ \ x_0 = a, \ y_0 = b, \ \ a, b \in \mathbb{R} \end{cases}$$

Să se afle x_n, y_n în funcție de a și b

- 3) Se dă triunghiul ABC, unde A(m+3, m+2), B(2, 3), C(-3, 4)
 - a) Să se determine $m \in \mathbb{R}$ astfel încât aria triunghiului ABC este 8
 - b) Pentru m = -2 să se calculeze lungimea înălțimii din A
- 4) a) Să se calculeze $\lim_{n\to\infty} x_n$, unde $x_n = \frac{1}{\ln n} \left(1 + \frac{1}{2} + ... + \frac{1}{n} \right)$
 - b) Să se calculeze limita șirului cu termenul general:

$$a_{n} = \lim_{x \to 0} \frac{\sin^{2} x + \sin^{2} 2x + ... + \sin^{2} nx}{\sin^{2} (n+1)x + \sin^{2} (n+2)x + ... + \sin^{2} 2nx}$$

Notă: Fiecare subiect se punctează de la 1 la 7. Timp de lucru 180 minute.