

Trabajo Práctico 2

Rutas en Internet

8 de noviembre de 2015

Teoría de las Comunicaciones 2do Cuatrimestre de 2015

Grupo 5

Integrante	LU	Correo electrónico
Abásolo, Nicolás	310/08	nicolasabasolo@gmail.com
Garrone, Javier	151/10	javier3653@gmail.com
Negri, Franco	693/13	franconegri2004@hotmail.com
Santos, Diego	874/03	diego.h.santos@gmail.com

Instancia	Docente	Nota		
Primera entrega				
Segunda entrega				

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina

Tel/Fax: (54 11) 4576-3359 http://www.fcen.uba.ar ÍNDICE ÍNDICE

${\rm \acute{I}ndice}$

1.	Introducción 1.0.1. Objetivos utilizados	2 2
2.	Desarrollo	2
3.	Segunda consigna: gráficos y análisis3.1. Universidad París Descartes - Francia - IP: 193.51.86.163.2. Universidad de Sydney	5
4	Conclusiones	q

1. Introducción

En este trabajo práctico hemos realizado nuestra propia implementación de la herramienta traceroute. Esta herramienta permite conocer la ruta de los paquetes en una conexión end to end. En nuestra implementación enviamos paquetes ICMP e incrementamos gradualmente el valor de TTL empezando con un valor fijo igual a 1 (uno). Utilizamos esta herramienta para realizar distintas experimentaciones, entre ellas conocer las rutas que atraviesan los paquetes hasta llegar a cuatro universidades localizadas en distintos puntos de la Tierra y calcular los RTTs relativos de los distintos hops. Una vez obtenida esta información se utilizará para detectar enlaces submarinos entre continentes. Nos hemos basado que ante grandes variaciones de RTT podríamos estar en presencia de un enlace submarino.

1.0.1. Objetivos utilizados

Se utilizarán como objetivos las siguientes universidades. Las mismas están ubicadas en diferentes partes del mundo:

- 1. Universidad París Descartes Francia (www.univ-paris5.fr) (IP: 193.51.86.16)
- 2. Universidad de Nigeria Nigeria (www.unn.edu.ng) (IP: 162.144.89.24)
- 3. Universidad de Hong Kong China (www.ust.hk) (IP: 143.89.14.2)
- 4. Universidad de Sydney Australia (www.sydney.edu.au) (IP: 129.78.5.11)

2. Desarrollo

Hemos implementado una versión traceroute en Python utilizando la biblioteca Scapy. Hicimos uso del campo $Time\ To\ Live\ (TTL)$, el cual fuimos incrementando sucesivamente para alcanzar todos los nodos intermedios en la ruta hacia el host final (en nuestro caso una Universidad). Durante estos envíos almacenamos las IPs de los nodos alcanzados y calculamos el RTT promedio desde el origen hasta cada nodo. Una vez que hemos calculado la media RTT se calculó el desvío estándard para cada salto mediante la herramienta std^1 que nos ofrece la biblioteca Numpy. Por último, a partir RTT promedio, hemos calculado el valor $\Delta\ RTT$ de cada enlace calculando la diferencia con el salto anterior:

$$\Delta RTT = RTT_i - RTT_{i-1} \tag{1}$$

Nuestro principal objetivo es detectar enlaces submarinos. Al ser un enlace punto a punto el RTT debe aumentar de forma significativa al pasar por un enlace submarino dado que no hay nodos intermedios. Por lo tanto, nos interesa identificar los outliers (valores atípicos) de la distribución de los RTT.

Se han tomado los Δ RTT para detectar los outliers mediante el Test de $Grubbs^2$. Dicho test asume que los datos iniciales siguen una distribución normal.

Por lo tanto hemos utilizado la herramienta $normalTest^3$ de Scipy. Con esta herramienta calculamos la probabilidad de que los Δ RTT sigan una distribución normal. En nuestra implementación no toleramos una probabilidad menor al 95 %. En caso de lograr una probabilidad mayor se indica el valor Alpha de probabilidad de rechazo de la hipótesis. Una vez hemos obtenido una buena probabilidad del test de normalidad hemos implementado un test de hipótesis basándonos en el mencionado Test de Grubbs. El test de hipótesis sugiere que en caso de existir outliers la

 $^{^{1}} http://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html\\$

 $^{^2} https://en.wikipedia.org/wiki/Grubbs'_test_for_outliers$

³http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.normaltest.html

hipótesis de que no existen valores atípicos es rechazada. Por lo cual tomaremos como outliers aquellos saltos que hagan rechazar la hipótesis. Estos outliers, suponemos, son producidos en las mediciones por los enlaces submarinos que alteran el Δ RTT promedio.

Posteriormente contrastamos lo realizado con la realidad. Mediante la herramienta de geolocalización 4 pudimos ubicar en el mapa la localización aproximada de las direcciones IP que nuestro traceroute nos brinda para poder constatar los si los outliers que hemos detectado corresponden a saltos submarinos y poder estudiar lo que está sucediendo.

 $^{^4}http://www.plopip.com/$

3. Segunda consigna: gráficos y análisis

3.1. Universidad París Descartes - Francia - IP: 193.51.86.16

Hop	IP	RTT promedio (s)	deltaRTT promedio	Ubicación
1	192.168.0.1	0,006502	0,006502	Argentina - Buenos Aires
2	200.89.164.189	0,025426	0,018924	Argentina - Buenos Aires
3	200.89.165.5	0,022739	0	Argentina - Buenos Aires
4	200.89.165.250	0,023967	0,001227	Argentina - Buenos Aires
5	206.165.31.213	0,023886	0	Estados Unidos
6	67.16.139.18	0.153896	0,130009	Estados Unidos - Manhattan
7	213.248.76.189	0,147402	0	Europa (Telia Network Services)
8	62.115.143.64	0,173705	0,026303	Europa (Telia Network Services UK)
9	213.155.130.86	0,174316	0,000610	Europa (Telia Network Services UK)
10	80.239.132.130	0,183801	0,009485	Alemania (Telia AB/Telia Int. Carrier)
11	195.2.30.46	0,249497	0,065696	Europa
12	195.2.28.154	0,244204	0	Europa
13	195.2.10.145	0,243621	0	Europa
14	195.10.54.66	0,269441	0,025820	Francia (Dyson Ltd)
15	193.51.177.25	0,271685	0,002243	Francia - Paris
16	193.51.177.116	0,258662	0	Francia - Paris
17	193.51.181.101	0,258660	0	Francia - Paris
18	195.221.127.166	0,269296	0,010635	Francia - Paris
19	193.51.86.16	0,256802	0	Francia
20	193.51.181.101	0,258082	0,001279	Francia
21	193.51.181.101	0,254919	0	Francia
22	193.51.181.101	0,255926	0,001007	Francia
23	193.51.181.101	0,254769	0	Francia
24	193.51.181.101	0,256566	0,001797	Francia

Análisis RTT por Hop

Universidad de Francia - IP: 193.51.86.16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figura 1: RTT promedio por hop - Universidad de Francia

Hop

Análisis zScore por Hop

Universidad de Francia - IP: 193.51.86.16

Figura 2: zScore promedio por hop - Universidad de Francia

3.2. Universidad de Sydney

Hop	IP	RTT promedio (s)	deltaRTT promedio	Ubicación
1	192.168.0.1	0.00317819338096	0.00317819338096	Argentina - Buenos Aires
2	200.89.165.169	0.0273115007501	0.0241333073691	Argentina - Buenos Aires
3	200.89.165.5	0.0295196944161	0.00220819366606	Argentina - Buenos Aires
4	200.89.165.250	0.0303499635897	0.000830269173572	Argentina - Buenos Aires
5	207.136.166.241	0.0279953793476	0	Estados Unidos
6	67.16.139.18	0.15700549953	0.129010120183	Estados Unidos - Illinois
7	64.208.27.102	0.151270602879	0	Estados Unidos
8	129.250.3.172	0.15870277662	0.00743217374149	Estados Unidos - Colorado
9	129.250.2.219	0.176934030495	0.0182312538749	Estados Unidos - Colorado
10	129.250.7.69	0.185023287409	0.00808925691404	Estados Unidos - Colorado
11	129.250.3.123	0.185811053765	0.000787766356217	Estados Unidos - Colorado
12	204.1.253.166	0.185876883959	6.58301930679e-05	Estados Unidos - California
13	202.158.194.172	0.3106533885	0.124776504542	Australia - New South Wales
14	113.197.15.68	0.305794251593	0	Australia - New South Wales
15	113.197.15.66	0.331599779819	0.0258055282267	Australia - New South Wales
16	113.197.15.62	0.330528166733	0	Australia - New South Wales
17	113.197.15.13	0.330654288593	0.000126121859801	Australia - New South Wales
18	138.44.5.47	0.337141043261	0.00648675466839	Australia
19	129.78.5.11	0.337009869124	0	Australia - Sydney
20	129.78.5.11	0.337688013127	0.000678144003216	Australia - Sydney
21	129.78.5.11	0.336762147514	0	Australia - Sydney
22	129.78.5.11	0.338513030818	0.00175088330319	Australia - Sydney
23	129.78.5.11	0.336039300028	0	Australia - Sydney
24	129.78.5.11	0.339367595158	0.00332829513048	Australia - Sydney

3,5 3 2,5 2

1,5 1 0,5

ZScore

Análisis zScore por Hop Universidad de Sydney ZScore

Figura 3: zScore promedio por hop - Universidad de Sydney

Hop

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figura 4: RTT promedio por hop - Universidad de Sydney

3.3. Universidad De Mosku - Rusia - IP: 188.44.50.103

Hop	IP	RTT promedio (s)	deltaRTT promedio	Ubicación
1	192.168.0.1	0.00328697348541	0.00328697348541	Argentina
2	200.89.164.165	0.0182673031429	0.0149803296575	Argentina
3	200.89.165.130	0.018018808005	0	Argentina
4	200.89.165.222	0.023129620642	0.00511081263704	Argentina
5	206.165.31.213	0.0159362801966	0	United States
6	67.17.75.66	0.153266360362	0.137330080166	United States
7	4.68.111.121	0.144784176125	0	United States
8	4.69.158.253	0.267091494686	0.122307318561	United States
9	4.69.158.253	0.266443899045	0	United States
10	213.242.110.198	0.313186002227	0.0467421031829	United Kingdom
11	194.85.40.229	0.313147967716	0	Russian Federation
12	194.190.254.118	0.295875315396	0	Russian Federation
13	93.180.0.172	0.310500500249	0.0146251848526	Moscow City Russian Federation
14	188.44.33.30	0.293746012562	0	Moscow City
15	188.44.50.103	0.286035416261	0	Moscow City

Análisis RTT por Hop

Universidad de Mosku

Figura 5: RTT promedio por hop - Universidad de Mosku

Análisis zScore por Hop

Universidad De Mosku

Figura 6: zScore promedio por hop - Universidad de Mosku

4. Conclusiones