Abstract Algebra II Take Home Test

Michael Nelson

February 18, 2018

(1): Let $\varphi : \mathbb{Z}[x] \to \mathbb{Z}[x]$ is a ring automorphism. Then φ is completely determined by where it maps 1 and x, since

$$\varphi(a_0 + a_1 x + \dots + a_n x^n) = \varphi(a_0) + \varphi(a_1 x) + \dots + \varphi(a_n x^n)$$

= $a_0 \varphi(1) + a_1 \varphi(x) + \dots + a_n \varphi(x)^n$,

for all $a_0 + a_1 x + \cdots + a_n x^n \in \mathbb{Z}[x]$. Since $\varphi(1) = \varphi(1 \cdot 1) = \varphi(1)^2$, we must have $\varphi(1)(\varphi(1) - 1) = 0$. Since $\mathbb{Z}[x]$ is an integral domain, we either have $\varphi(1) = 0$ or $\varphi(1) = 1$. If $\varphi(1) = 0$, then $\varphi(a) = 0$ for all $a \in \mathbb{Z}$, which implies φ is not injective, therefore we must have $\varphi(1) = 1$.

Next, suppose $\varphi(x) = c_k x^k + c_{k-1} x^{k-1} + \cdots + c_0$ where $c_k \neq 0$. Since $x \in \text{Im}\varphi$, there is some $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x]$ with $a_n \neq 0$, such that $x = \varphi(a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0)$. Since $a_n \neq 0$, $c_k^n \neq 0$, the lead term of $\varphi(a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0)$ is $a_n c_k^n x^{kn}$. Since the lead term of x and $\varphi(a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0)$ must be equal, we must have kn = 1 and $a_n c_k^n = 1$. This implies k = n = 1 and $c_k = \pm 1$. Therefore $\varphi(x)$ has the form $\varphi(x) = \pm x + c$ for some $c \in \mathbb{Z}$. Conversely, map $\varphi: \mathbb{Z}[x]$ given by

$$\varphi(a_0 + a_1x + \dots + a_nx^n) = a_0 + a_1(c \pm x) + \dots + a_n(c \pm x)^n$$

for all $a_0 + a_1x + \cdots + a_nx^n \in \mathbb{Z}[x]$ is a ring automorphism: Let $\sum_{i \in \mathbb{Z}} a_ix^i$ and $\sum_{j \in \mathbb{Z}} b_jx^j$ be in $\mathbb{Z}[x]$, so a_i and b_j are zero for all but finitely many i, j. Then

$$\varphi\left(\sum_{i\in\mathbb{Z}}a_{i}x^{i}\sum_{j\in\mathbb{Z}}b_{j}x^{j}\right) = \varphi\left(\sum_{n\in\mathbb{Z}}\left(\sum_{m=0}^{n}a_{m}b_{n-m}\right)x^{n}\right)$$

$$= \sum_{n\in\mathbb{Z}}\left(\sum_{m=0}^{n}a_{m}b_{n-m}\right)(c\pm x)^{n}$$

$$= \sum_{i\in\mathbb{Z}}a_{i}(c\pm x)^{i}\sum_{j\in\mathbb{Z}}b_{j}(c\pm x)^{j}$$

$$= \varphi\left(\sum_{i\in\mathbb{Z}}a_{i}x^{i}\right)\varphi\left(\sum_{j\in\mathbb{Z}}b_{j}x^{j}\right)$$

and

$$\varphi\left(\sum_{i\in\mathbb{Z}}a_ix^i + \sum_{j\in\mathbb{Z}}b_jx^j\right) = \varphi\left(\sum_{i\in\mathbb{Z}}(a_i + b_i)x^i\right)$$

$$= \sum_{i\in\mathbb{Z}}(a_i + b_i)(c\pm x)^i$$

$$= \sum_{i\in\mathbb{Z}}a_i(c\pm x)^i + \sum_{j\in\mathbb{Z}}b_j(c\pm x)^j$$

$$= \varphi\left(\sum_{i\in\mathbb{Z}}a_ix^i\right) + \varphi\left(\sum_{i\in\mathbb{Z}}b_jx^j\right).$$

(2) : Let $\varphi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ be a ring automorphism. Then φ is completely determined by where it maps (1,0) and (0,1) since

$$\varphi(a,b) = \varphi(a,0) + \varphi(0,b)
= a\varphi(1,0) + b\varphi(0,1),$$

for all $(a,b) \in \mathbb{Z} \times \mathbb{Z}$. Since φ is injective, we must have $\varphi(1,0) \neq (0,0)$ and $\varphi(0,1) \neq (0,0)$. Since $(0,0) = \varphi((1,0) \cdot (0,1)) = \varphi(1,0)\varphi(0,1)$, we see that $\varphi(1,0)$ and $\varphi(0,1)$ must be zero divisors. Nonzero zero divisors in $\mathbb{Z} \times \mathbb{Z}$ have the form (a,0) or (0,b) where $a,b \in \mathbb{Z}$ with $a \neq 0$ and $b \neq 0$: Let $(x,y),(r,s) \in \mathbb{Z} \times \mathbb{Z}$ with $(x,y) \neq (0,0)$ and $(r,s) \neq (0,0)$. Then

$$(x,y)(r,s) = (xr,ys) = (0,0)$$

implies either x=0 or r=0 and either y=0 or s=0, since $\mathbb Z$ is an integral domain. We can't have both x and y be zero, so if x=0, then $y\neq 0$, and therefore s=0. Similarly if y=0, then $x\neq 0$, and therefore r=0. So φ can have one of two forms: $\varphi_{(x,y)}(a,b)=(ax,by)$ and $\varphi_{(x,y)}^*(a,b)=(bx,ay)$ for all $a,b\in\mathbb Z$ and $x,y\in\mathbb Z-\{0\}$. If (a,b) and (c,d) are elements in $\mathbb Z\times\mathbb Z$, then

$$\varphi_{(x,y)}(a+c,b+d) = ((a+c)x, (b+d)y)
= (ax+cx, by+dy)
= (ax,by) + (cx,dy)
= \varphi_{(x,y)}(a,b) + \varphi_{(x,y)}(c,d).$$

similarly,

$$\varphi_{(x,y)}^{\star}(a+c,b+d) = ((b+d)x, (a+c)y)
= (bx + dx, ay + cy)
= (bx, ay) + (dx, cy)
= \varphi_{(x,y)}(a,b) + \varphi_{(x,y)}(c,d).$$

This shows $\varphi_{(x,y)}$ and $\varphi_{(x,y)}^{\star}$ are additive for all $x,y \in \mathbb{Z} - \{0\}$. However,

$$(x,y) = \varphi_{(x,y)}(1,1)$$

$$= \varphi_{(x,y)}((1,1)(1,1))$$

$$= \varphi_{(x,y)}(1,1)\varphi_{(x,y)}(1,1)$$

$$= (x^2, y^2)$$

implies x = 1 and y = 1 in $\varphi_{(x,y)}$ since \mathbb{Z} is an integral domain. Similarly,

$$(x,y) = \varphi_{(x,y)}^{\star}(1,1)$$

$$= \varphi_{(x,y)}^{\star}((1,1)(1,1))$$

$$= \varphi_{(x,y)}^{\star}(1,1)\varphi_{(x,y)}(1,1)$$

$$= (x^{2}, y^{2})$$

implies x=1 and y=1 in $\varphi_{(x,y)}^{\star}$. So we are limited to two possibilities, $\varphi_{(1,1)}$ and $\varphi_{(1,1)}^{\star}$, and these are ring homomorphisms since they are also multiplicative: $\varphi_{(1,1)}$ is just the identity map, so it's suffices to check $\varphi_{(1,1)}^{\star}$:

$$\varphi_{(1,1)}^{\star}(ac,bd) = (bd,ac)
= (b,a)(d,c)
= \varphi_{(1,1)}^{\star}(a,b)\varphi_{(1,1)}^{\star}(c,d).$$

Moreover, these are ring automorphisms since they can be represented by matrices in $GL_2(\mathbb{Z})$, namely $\varphi_{(1,1)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\varphi_{(1,1)}^* = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, which are bijections on the set $\mathbb{Z} \times \mathbb{Z}$.

(3) : Let R be a local ring with maximal ideal \mathfrak{m} . To show $R-R^{\times}$ is an ideal, we need to show $R-R^{\times}$ is nonempty and that $x+ry\in R-R^{\times}$ for all $x,y\in R-R^{\times}$ and $r\in R$. Since 0 is not a unit, $0\in R-R^{\times}$, so $R-R^{\times}$ is nonempty. Let $x,y\in R-R^{\times}$ and $r\in R$. Since x and y are not units, $\langle x\rangle\neq\langle 1\rangle$ and $\langle y\rangle\neq\langle 1\rangle$. Thus, $\langle x\rangle$ and $\langle y\rangle$ are each contained in their own maximal ideal. Since there is only one maximal ideal, they must both be contained in \mathfrak{m} . Therefore $x,y\in \mathfrak{m}$. Since \mathfrak{m} is an ideal, we have $x+ry\in \mathfrak{m}$. Since \mathfrak{m} contains no units (otherwise $\mathfrak{m}=\langle 1\rangle$), x+ry is not a unit, and therefore $x+ry\in R-R^{\times}$.

Conversely, suppose the set of nonunits $R - R^{\times}$ forms an ideal. By Zorn's Lemma, it must be contained in some maximal ideal \mathfrak{m} . We first show that $R - R^{\times}$ contains \mathfrak{m} too, so that $R - R^{\times} = \mathfrak{m}$. Suppose there is an $x \in \mathfrak{m}$ such that $x \notin R - R^{\times}$. This means x is a unit which belongs to \mathfrak{m} . But this is a contradiction since this would imply $\mathfrak{m} = \langle 1 \rangle$. Now we show that this maximal ideal is unique in R. Suppose \mathfrak{m}' is another maximal ideal in R distinct from \mathfrak{m} . Then $\mathfrak{m}' \neq \mathfrak{m}$ implies $\mathfrak{m} \not\subset \mathfrak{m}'$ and $\mathfrak{m} \not\supset \mathfrak{m}'$ by maximality of \mathfrak{m} and \mathfrak{m}' , so there is some $x \in \mathfrak{m}'$ such that $x \notin \mathfrak{m}$. Since $\mathfrak{m} = R - R^{\times}$, x must be a unit, but this implies $\mathfrak{m}' = \langle 1 \rangle$, which is a contradiction.