26th Annual Conference on **Quantum Information Processing**

4-10 Feb, 2023 | Ghent, Belgium

CONFERENCE PROGRAM

Tutorials 4+5 February, 2023 Conference 6-10 February, 2023

Local organisers

For more information, visit qip2023.ugent.be

About QIP

The international conference on Quantum Information Processing (QIP) is the premier annual meeting for quantum information research. Since the first meeting in Aarhus (Denmark) in 1998, the conference has featured breakthroughs by leaders in the disciplines of computing, cryptography, information theory, mathematics, and physics. The scientific objective of the series is to gather the theoretical quantum information community to present and discuss the latest groundbreaking work in the field.

Welcome word from the chairs

QIP is the annual High Mass of quantum computation, and we are thrilled to host it this year in the medieval city of Ghent. Belgium has a long tradition in organizing illustrious conferences in the quantum sciences, starting with the Solvay conferences in 1911, and we are convinced that you, as distinguished speakers and participants, will make for an equally memorable conference this year.

The quantum information sciences have evolved enormously during the last three decades, and its tentacles have now penetrated not just the field of computer science but also large areas of theoretical and experimental physics and of the data sciences. A main reason for this success can largely be attributed to the fact that the theory of quantum information provides a powerful new language for describing correlations. Its vocabulary consists of qubits and entanglement; its grammar is provided by quantum circuits, quantum complexity classes and quantum error correcting codes; and we are all gathered here to develop the semantics. The long-term viability of our field critically depends on our ability to reach out to different communities, and this mission is clearly mirrored in the programme of QIP.

The core activity of QIP is of course presenting the latest and greatest results in the field of quantum computation. Who could have predicted that 700 people would show up for a tutorial on quantum simulation? Who knew that so many new quantum algorithms would have been discovered during the last year that we had to schedule 7 sessions about it? Who could skip the plenary talk on the minimal canonical form of a tensor network? The diversity and breadth of the talks is mind-boggling, and we encourage all participants to take full advantage of the distinct company of so many accomplished researchers to interact as much as possible. QIP has a tradition of showcasing how open and welcoming our community is, and we are confident that everybody will embrace these core principles during the conference in Ghent and be respectful to all participants.

We wish all of you an extremely interesting and productive week at QIP2023, and hope that you will find some time to visit some of the cultural monuments such as the Sacred Lamb of Van Eyck in the Saint Bavo's cathedral. Special thanks go to the whole Ghent crew to make this event happen, and especially to Inge Van der Vennet for organizing the finances and logistics, to Céline for designing the QIP logo, to Chanel for help with designs and layouts, and to all of you for making this an unforgettable week. Het ga jullie goed!

From Vortraite

Jacob Bridgeman & Frank Verstraete Ghent, February 2023

Jacob Bridgenen

Code of conduct

The open exchange of ideas and the freedom of thought and expression are central to the aims and goals of QIP; these require an environment that fosters dignity, understanding, and mutual respect, and that embraces diversity. The organizers of QIP 2023 are committed to an inclusive conference experience, respectful of all participants and free of discrimination, harassment, bullying, or retaliation. All attendees, speakers, sponsors, and volunteers at QIP 2023 are expected to read and agree with the following code of conduct. It applies to all event venues as well as event-related social activities. We expect all participants in QIP 2023 activities to:

- Exercise respect in your speech and actions.
- Refrain from demeaning, discriminatory, or harassing behavior and speech.
- Abstain from making use of sexual & sexualized imagery in talks and posters.
- Be mindful of your surroundings and your fellow participants: for example, other people may hear inappropriate comments even if they are not your intended audience.
- Alert community leaders and get involved (if safe and possible) when you notice a dangerous situation, someone in distress, or violations of this policy, even if they seem inconsequential.

Participants asked to stop any harassing behavior are expected to comply immediately. If a participant engages in unacceptable behavior, the event organizers retain the right to take any actions to keep the conference a welcoming environment for all participants. This includes warning the offender or expulsion from the conference.

Contact points

Emergency services (police, ambulance)

In Belgium, emergency services can be contacted at:

Phone 112 (In case of emergency)

Violations of code of conduct

The Ghent University service <u>Trustpunt</u> can provide support to any attendees in need. This service is confidential. To make an appointment, their contact details are:

Website https://www.ugent.be/student/en/study-support/trustpunt

Email trustpunt@ugent.be

Phone +32 9 264 82 82, only available 9am to noon

You can also contact the local organizers at:

Phone +32 471 99 44 93

In case of danger or crisis, you can contact the permanence center of UGent 24/7:

Phone +32 9 264 88 88

For support outside of the UGent context, you can contact the Community Help Service. This service is confidential. The contact details are:

Website https://www.chsbelgium.org/

Phone +32 2 648 40 14

Our Sponsors

Diamond Sponsors

Gold Sponsors

Silver Sponsors

Poster Sponsor

(1)uSoft

Social Event Sponsor

Contents

About QIP																2
Welcome word from the	e cha	irs														2
Code of conduct .																3
Contact points																3
Emergency se	rvice	s (po	lice,	amb	oulan	ce)										3
Violations of c																3
Sponsors																4
																6
Transport options																6
Visiting Ghent in					•	•	•	•	•	•	•	•	•	•	•	6
Basic necessiti					•	•	•	•	•	•	•	•	•	•	•	6
Sights and tou				-	•	•	•	•	•	•	•	•	•	•	•	6
Local bars and				•	•	•	٠	•	•	•	•	•	•	•	•	
			1115	•	•	•	٠	•	•	•	•	٠	•	•	•	6
Conference venues & S	ched	ule														8
Venues																8
Maps																9
Overview.																9
Science progr	am v	enue	s: U	FO ar	nd Blo	andij	n .									10
Conference d	inner	and	rum	p ses	ssion:	Ouc	le Visi	mijn								11
Timetable .																11
Pre-recorded	talks															11
Overview.																12
Tutorials .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
Afternoons/Pa				•	•	•	•	•	•	•	•	•	•	•	•	15
Monday		30331	0113	•	•	•	•	•	•	•	•	•	•	•	•	15
Tuesday		•	•	•	•	•	٠	•	•	•	•	•	•	•	•	16
Wednes		•	•	•	•	•	•	•	•	•	•	•	•	•	•	17
		•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	
Thursday		•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	18
,		•	٠	•	٠	•	٠	•	•	•	•	•	•	•	•	19
Best student pap	er	•	•	•	•	•	•	•	•	•	•	•		•	•	20
Organizers																21
Local organizing	comr	mitte	e.													21
Steering committ	ee															21
Program commit	tee															21
Accepted posters .																24
Monday session		•	٠	•	•	•	٠	•	•	•	•	٠	•	•	•	24
Tuesday session		•		•	•		٠	•	•	•	•	٠	•	•	•	32
Not presenting	•	•	•	•	•		•	•	•	•	•	٠	•	•	•	32 39
1	•	•	•	•	•	•	٠	•	•	•	•	٠	•	•	٠	
List of participants																40

Local information

Transport options

Ghent is well served by public transport, and is an easy train ride from Brussels airport, or a coach from Brussels South Charleroi airport.

Once you reach Gent-Sint-Pieters, the main station of Ghent, it's an easy walk or tram ride (number 1, towards Evergem) to the city center at the Korenmarkt. Tram tickets can be purchased from a machine on the platform.

We discourage driving: the central area of Ghent is a low emission zone, and cars must be registered to enter.

Once in the city center all conference venues are within easy walking distance.

Visiting Ghent in a nutshell

A wealth of information on things to do and places to visit during your stay in Ghent can be found at visit.gent.be.

Basic necessities

For basic shopping and supplies during the conference you can go to a convenient branch of any of the local supermarket chains:

- Okay
- Albert Heijn
- Carrefour
- Delhaize

These can be found within walking distance of the conference venues and your local accommodation.

Sights and tourist attractions

The historic city center of Ghent offers a wide variety of sights to see. A small selection of the essentials:

- The Korenmarkt, St Michael's Bridge, and the Graslei and Korenlei
- The 'three towers of Ghent': St Nicholas' Church, the Belfry and St Bavo's Cathedral
- The Adoration of the Mystic Lamb, painted in 1432 by the Van Eyck brothers
- The Castle of the Counts
- The Vrijdagmarkt
- Ghent's museums: MSK, SMAK, STAM, ...

Local bars and restaurants

Besides history and culture, Ghent boasts a large number of bars and restaurants where you can enjoy both local and not-so-local specialties. Be sure to try out some Belgian beers, help yourself to a portion of fries with accompanying snacks at a local 'frituur', and try our traditional stew at any restaurant that serves 'stoverij'. For a dining or drinking experience in the beautiful setting that is the Ghent city center, you can visit one of the many places near the Korenmarkt, the Vrijdagmarkt or Patershol.

Some suggested restaurants:

- Any fry shop of your choosing
 - Frituur Bij Filip
 - Stefano's place
 - ...

- Patrick Foleys (burgers)
- Uncle Babe's (burgers)
- Yalo (seasonal kitchen)
- Aba-jour (Belgian kitchen)

- Multatuli (Belgian kitchen)
- Pakhuis (Belgian kitchen)
- Eethuis De Fobie (Belgian kitchen)
- Tapasbar La Malcontenta (tapas)
- Miss Yu (Asian)

Suggested bars:

Favorites of the group:

- Trollekelder
- Barazza café
- Café venTura
- Dulle Griet
- 't Dreupelkot

Close to UFO:

- Vooruit Café
- The Upside-down World
- Marimain

More for the beer lovers:

- Brouwbar
- Jan Van Gent

With music:

- Hot Club Gent (jazz)
- Missy Sippy (blues and roots)

Cocktails:

- Jiggers
- The Drifter

Coffee:

- OR Coffee
- Full Circle
- Peaberry Coffeebar
- Cafe Labath
- Bar Bidon

- Umamido Ghent (Asian)
- De Kastart (pasta)
- Firenze (Italian)
- Greenway Ghent (vegetarian)
- De Walrus (vegetarian)
- Het Waterhuis aan de Bierkant
- Café Den Turk (the oldest bar in Ghent)
- Het Spijker
- ONA winebar
- Trappistenhuis
- De Ploeg
- Café Backdoor
- Ghent Gruut Brewery
- Dok Brewing Company
- Misterioso (jazz)
- Minor Swing (jazz)
- Uncle Babe's
- Pole Pole Café
- Take Five
- Mokabon
- Het Moment
- Take Five
- Koffeine

Conference venues & Schedule

Venues

QIP 2023 will take place between three main venues:

- UGent campus UFO & De Brug Sint-Pietersnieuwstraat 33, 9000 Gent
- UGent campus Blandijn
 Blandijnberg, 9000 Gent
- Oude Vismijn
 Sint Veerleplein 5, 9000 Gent

Session type	Venue
Registration	UFO
Tutorials	UFO
Invited plenary talks	UFO
Plenary talks	UFO
Short plenary talks	UFO
Poster sessions	UFO
Business meeting	UFO
Industry session	UFO
Parallel sessions	Blandijn
Α	Auditorium 5
В	Auditorium 2
С	Auditorium 3
Conference dinner	Vismijn
Rump session	Vismijn
Lunch	De Brug

Parallel sessions will take place in the following rooms:

All A sessions: Blandijn auditorium 5
All B sessions: Blandijn auditorium 2
All C sessions: Blandijn auditorium 3

Maps

Overview

An interactive map can be found here.

Scientific venues

All plenary talks, poster sessions, and the industry and business sessions will take place in the UFO campus of Ghent University (Sint-Pietersnieuwstraat 33, 9000 Gent). Parallel sessions will be held just down the road in the Blandijn building (Blandijnberg, 9000 Gent).

Conference dinner and rump session: Oude Vismijn

The dinner and rump session will be held in the Oude Vismijn in the center of Ghent.

Address: Sint Veerleplein 5, 9000 Gent

The Vismijn is located near the Gravensteen, the castle of the Counts of Flanders.

Timetable

Pre-recorded talks

A small number of authors were unable to attend. Their talks can be found on our YouTube channel, and will not be presented during the conference.

- Collusion Resistant Copy-Protection for Watermarkable Functionalities
 Jiahui Liu, Qipeng Liu, Luowen Qian and Mark Zhandry
- Depth-Bounded Quantum Cryptography with Applications to One-Time Memory and More Qipeng Liu

	Saturday 4 February	Sunday 5 February	Venue		Monday 6 February	Tuesday 7 February	Tuesday 7 February Wednesday 8 February Thursday 9 February	Thursday 9 February	Friday 10 February	Venue
				8:00 am	Registration	Registration				
Ε	Registration	Registration		9:00 am	Welcome	i		i		
Ε				9:30 am		Plenary 1	Invited plenary 2	Plenary 2		
	Tutorial 1A	Tutorial 3A		10:00 am	Invited plenary 1	Short plenary 3	Short plenary 6	Short plenary 9	Short plenary 10	UFO
				10:30 am	Coffee	Coffee	Coffee	Coffee	Coffee	
Ε	Break	Break		11:00 am	Short plenary 1	Short plenary 4	Short plenary 7		i	
Ε				11:30 am	Short plenary 2	Short plenary 5	Short plenary 8	Invited plenary 3	Plenary 3	
	Tutorial 1B	Tutorial 3B		12:00 pm	Photo					
				12:30 pm	, Jones	Lunch	Lunch	Lunch	Lunch	De Brug
Ε	200	i (UFO							
	Dedk	P G G G		1:30 pm						
Ε					Parallel 1	Parallel 3	Parallel 5	Parallel 6	Parallel 8	
	Tutorial 2A	Tutorial 4A								
				3:00 pm	Coffee	Coffee	Coffee	Coffee	Coffee	
Ε	Break	Break		3:30 pm			Industry session			Blandijn
Ε					c lellorod	Z Jolies P	(UFO)		0 10	
	Tutorial 2B	Tutorial 48			1 1 1 1 1		Business meeting (UFO)	Parallel 7		
				_						
				7:00 pm						
					Poster session 1	Poster session 2				
					(UFO)	(UFO)	Dinner (Oude Vismijn)	Rump (Oude Vismijn)		

2:00 pm

1:00 pm

3:30 pm 4:00 pm

9:00 am

9:30 am

11:00 am 11:30 am

Tutorials

	Saturday 4 February	Sunday 5 February
8:30 am 9:00 am	Registration	Registration
9:30 am		
10:00 am	Tutorial 1A: Quantum supremacy	Tutorial 3A: Fault tolerance
10:30 am	Bill Fefferman	Barbara Terhal
11:00 am	Break	Break
11:30 am		
12:00 pm	Tutorial 1B: Quantum supremacy Bill Fefferman	Tutorial 3B: Fault tolerance Barbara Terhal
12:30 pm		
1:00 pm		
1:30 pm	Break	Break
2:00 pm		
2:30 pm	Tutorial 2A: Quantum simulation	Tutorial 4A: Quantum architecture Fred Chong and Jonathan Baker
3:00 pm	•	
3:30 pm	Break	Break
4:00 pm		
4:30 pm	Tutorial 2B: Quantum simulation	Tutorial 4B: Quantum architecture
5:00 pm	Ignacio Cirac	Fred Chong and Jonathan Baker

Plenary 1: Verifiable Quantum Advantage without Structure Tokach Your Towns and Mark Thound's County Short plenary 2: Quantum Information Processing with Indefinite County Structure College Tokach Your County Structure College		Monday & February	Tuesday 7 February	Wednesday 8 February	Thursday 9 February	Filday 10 February
Short plenary 5: Novedyn Baspin, Omar Favil and Alas Shore plenary 5: A lower bound on the overhead of quantum error Short plenary 5: A lower bound on the overhead of quantum error Short plenary 5: A lower bound on the overhead of quantum error Short plenary 5: A lower bound on the overhead of quantum error Chie and Maxio Ma		Registation	Registration			
In the distinct of the following Chernic Control of the following Chernic Control of the following Chernic Control of the following Chernic Chernic Control of Chernic Control of Chernic Cher		Welcome	Plenay 1: Veffable Quantum Advartace without Structure	Invited plenary 2. Quantum Information Processing with Indefinite	Plenay 2. A polynomial-lime classical algorithm for noisy random creat sampline	
Short plenary 2: Carlee Collee Colle		Invited plenary 1: Cique Homology is QMAr-hard	Takashi Yamakawa and Mark Zhandry	Causa Order Giulo Chirbella	Doil Aharonov, Xun Gao, Zeph Landau, Yunchao Liu and Umesh Vazirani	
Short plenary 1: Generalized entropy accumulation Short plenary 2: Marine and Teval. David Sulter and Renato Renner Tony Melger, Omar Favai. David Sulter and Renato Renner Tony Melger, Omar Favai. David Sulter and Renato Renner Handle Storing David Sulter and Renator Renner Handle Storing Cheng Thort plenary 2: A Simple and Tighter Derivation of Achievability for Short plenary 3: A lower bound on the overhead of quantum error Classical Communication over Quantum Channels Hoodyn Baspin, Omar Favai and Ala Shayeghi Thort Thort Short plenary 7: Learning many-body Hamiltonians with Heisenberg- Innel Storing Di Farg and Yuan Su Short plenary 7: Learning many-body Hamiltonians with Heisenberg- Innel Short plenary 7: Learning many-body Hamiltonians with Heisenberg- Resolution of Achievability for Short plenary 3: A lower bound on the overhead of quantum error Classical Communication of Achievability for Short plenary 3: A lower bound on the overhead of quantum error Classical Communication of Achievability for Short plenary 8: Sparse random Hamiltonians are quantumly easy Chi-fang Chen, Alexander Dober I. Mario Berta, Joel Tropp and Renardo Berta, Joel Tropp and Financh Fenando Renardo Berta, Joel Tropp and Lunch Lunch		Marcos Cichigno and Tamara Kohler		Short plenary 6: The minimal canonical form of a tensor network. Arturo Acuariva, Visu Makam, Harold Nieuwboer, David Pérez-Gacia, Friedrich Sithner, Michael Walter and Freek Witteveen.	the Quantum	Short plenary 10: Multidimensional Quantum Walks, with Application to k-Distinctness Stacey Jeffery and Sebastian Zur
Short plenary 1: Generalised entropy accumulation Tony Melger, Omar Favral, David Suffer and Renato Renner Tony Melger, Omar Favral, David Suffer and Renato Renner Tony Melger, Omar Favral, David Suffer and Renato Renner Handle Stating many-body Hamiltonians with Heisenberg- Internet Quantum Channels Hoyato Yamasaid and Masato Koashi Handle Managary 7: Learning many-body Hamiltonians with Heisenberg- Internet Grant G		Collee	Coffee	Coffee	Coffee	Coffee
Short plenary 2: A Simple and Tighter Derivation of Achievability for correction in low dimensions Classical Communication over Quantum Charmels Haa-Chung Cheng Haa-Chung Cheng Noué-dyn Baspin, Omar Favzi and Ala Shayeghi Pholo Lunch Lunch Lunch Lunch			Short plenary 4: Time-Efficient Constant-Space-Overhead Fault- Tolerant Quantum Computation Hayata Yamasaki and Masato Kosshi	Short plen ary 7: Learning many-body Hamiltonians with Heisenberg- limited scaling Hsin-Yuan Huang. Yu Tong, Di Fang and Yuan Su	Invited plenary 3: Real-lime quantum error correction beyond break- even	Plenary 3: NLIS Hamiltonians from good quantum codes
Lunch		Short ple nary 2. A Simple and Tighter Derivation of Achievability for Classical Communication over Quantum Channels Hao-Chung Cheng	Short plen ary 5: A lower bound on the overhead of quantum error correction in low dimensions Nouedyn Baspin, Omar Fawzi and Ala Shayeghi	Short plenary 8: Sparse random Hamiltonians are quantumly easy CH-Fang Chen, Alexander Datzel, Mario Berta, Joel Tropp and Femando Brandoo	V. V. Svok, A. Eckbusch, B. Royer, S. Singh, I. Isiousios, S. Ganjam, A. Miano, B. L. Brock, A. Z. Ding, L. Furnzio, S. M. Girvin, R. J. Schoelkopf, M. H. Devorel	Antrag Anshu, Nikolas Breuckmann and Chinmay Nikhe
Lunch		Photo				
Lunch	12:30 pm	Lunch	Lunch	Lunch	Lunch	Lunch

Afternoons/Parallel sessions

1:30-3:00	Parallol 14 (ALCOPITHAS) Blandiin Aud 5	Monday 6 February	Parallel 1C (MANY-BODY SYSTEMS) Blandijn Aud 3
1:30 pm	Parallel 1A (ALGORITHMS) Blandijn Aud 5	Parallel 1B (COMPLEXITY) Blandijn Aud 2	rardiler IC (MANT-BODT STSTEMS) Bidfidijii Aud S
1.30 pm	Limitations of VQAs: a quantum optimal transport approach Daniel Stlick França, Cambyse Rouze, Giacomo De Palma and Milad Marvian	Noisy Decoding by Shallow Circuits with Parities: Classical and Quantum Jop Briët, Harry Buhrman, Davi Castro-Silva and Niels Neumann	Lower Bounding Ground State Energies of Local Hamilton Tractable Relaxations of Many-Body problems Through Renormalization Group liya Kull, Norbert Schuch, Ben Dive and Miguel Navascu
2:00 pm	A Convergence Theory for Over-parameterized Variational Quantum Eigensolvers Xuchen You, Shouvanik Chakrabarti, Boyang Chen and Xiaodi Wu	stateQIP = statePSPACE Tony Metger and Henry Yuen	General guarantees for randomized benchmarking wi random quantum circuits Markus Heinrich, Martin Kliesch and Ingo Roth
2:30 pm	Aldodi Wu		
	Solving boolean satisfiability problems with the quantum approximate optimization algorithm Sami Boulebnane and Ashley Montanaro	The Complexity of NISQ Sitan Chen, Jordan Cotler, Hsin-Yuan Huang and Jerry Li	
3:00 pm			
		Coffee (Blandijn)	
3:30-5:30	Parallel 2A (ALGORITHMS) Blandijn Aud 5	Coffee (Blandijn) Parallel 2B (CRYPTOGRAPHY) Blandijn Aud 2	Parallel 2C (LEARNING AND OTHER TOPICS) Blandijn Au
:30-5:30 3:30 pm	Parallel 2A (ALGORITHMS) Blandijn Aud 5 Quantum tomography using state-preparation unitaries Joran van Apeldoorn, Arjan Cornelissen, Andras Gilyen and Giacomo Nannicini		Parallel 2C (LEARNING AND OTHER TOPICS) Blandijn Au Tight Bounds for Quantum State Certification with Incohe Measurements Sitan Chen, Brice Huang, Jerry Li and Allen Liu merged with Tight Bounds for State Tomography with Incoherent Measurements Sitan Chen, Brice Huang, Jerry Li, Allen Liu and Mark Se
3:30 pm	Quantum tomography using state-preparation unitaries Joran van Apeldoorn, Arjan Cornelissen, Andras Gilyen and	Parallel 2B (CRYPTOGRAPHY) Blandijn Aud 2 Another Round of Breaking and Making Quantum Money: How to Not Build It from Lattices, and More	Tight Bounds for Quantum State Certification with Incohe Measurements Sitan Chen, Brice Huang, Jerry Li and Allen Liu merged with Tight Bounds for State Tomography with Incoherent Measurements Sitan Chen, Brice Huang, Jerry Li, Allen Liu and Mark Se Quantum Talagrand, KKL and Friedgut's theorems and learnability of quantum observables
	Quantum tomography using state-preparation unitaries Joran van Apeldoorn, Arjan Cornelissen, Andras Gilyen and Giacomo Nannicini A Complete Hierarchy of Linear Systems for Certifying Quantum Entanglement of Subspaces Nathaniel Johnston, Benjamin Lovitz and Aravindan	Parallel 2B (CRYPTOGRAPHY) Blandijn Aud 2 Another Round of Breaking and Making Quantum Money: How to Not Build It from Lattices, and More Jiahui Liu, Hart Montgomery, and Mark Zhandry Quantum Advice in the Quantum Random Oracle Model	Tight Bounds for Quantum State Certification with Incohe Measurements Sitan Chen, Brice Huang, Jerry Li and Allen Liu merged with Tight Bounds for State Tomography with Incoherent Measurements Sitan Chen, Brice Huang, Jerry Li, Allen Liu and Mark Se Quantum Talagrand, KKL and Friedgut's theorems and

7:00-9:30 pm	
	(UFO)

		Tuesday 7 February	
1:30-3:00	Parallel 3A (ALGORITHMS) Blandijn Aud 5	Parallel 3B (ERROR CORRECTION) Blandijn Aud 2	Parallel 3C (INFORMATION THEORY) Blandijn Aud 3
1:30 pm	Mind the gap: Achieving a super-Grover quantum speedup by jumping to the end Alexander Dalzell, Nicola Pancotti, Earl Campbell and Fernando Brandao	Exponentially tighter bounds on error mitigation: hardness at log log (n) depth Yihui Quek, Daniel Stilck Franca, Sumeet Khatri, Johannes Jakob Meyer and Jens Eisert	Joint State-Channel Decoupling and One-Shot Quantum Coding Theorem Hao-Chung Cheng, Frédéric Dupuis and Li Gao merged with Optimal Second-Order Rates for Quantum Information Decoupling and Privacy Amplification Yu-Chen Shen, Li Gao and Hao-Chung Cheng
2:00 pm	Quantum speedups for solving linear regression problems Ashley Montanaro and Changpeng Shao	Pauli topological codes from Abelian anyon theories Tyler Ellison, Yu-An Chen, Arpit Dua, Wilbur Shirley, Nathanan Tantivasadakarn and Dominic Williamson	Exact solution for the quantum and private capacities of bosonic dephasing channels Ludovico Lami and Mark Wilde
2:30 pm	Testing and Learning Quantum Juntas Nearly Optimally Thomas Chen, Shivam Nadimpalli and Henry Yuen	Long-range data transmission in a fault-tolerant quantum bus architecture Shin Ho Choe and Robert Koenig	On generalised quantum Stein's lemmata and the reversibility of quantum resources Mario Berta, Fernando Brandao, Gilad Gour, Ludovico Lami, Martin Plenio, Bartosz Regula and Marco Tomamichel
3:00 pm		Coffee (Blandijn)	
3:30-5:30	Parallel 4A (ALGORITHMS) Blandijn Aud 5	Parallel 4B (CRYPTOGRAPHY) Blandijn Aud 2	Parallel 4C (FOUNDATIONS) Blandijn Aud 3
3:30 pm	Optimizing quantum circuit parameters via SDP Eunou Lee merged with An Improved Approximation Algorithm for Quantum Max-Cut Robbie King	Cryptography with Certified Deletion James Bartusek and Dakshita Khurana merged with Blind Delegation with Certified Deletion James Bartusek, Sanjam Garg, Dakshita Khurana and Bhaskar Roberts	Quantum networks self-test all entangled states Ivan Supic, Joseph Bowles, Marc-Olivier Renou, Matty Hoban and Antonio Acin
4:00 pm	Unique Games hardness of Quantum Max-Cut, and a conjectured vector-valued Borell's inequality Yeongwoo Hwang, Joe Neeman, Ojas Parekh, Kevin Thompson and John Wright	Quantum Commitments and Signatures without One-Way Functions Tomoyuki Morimae and Takashi Yamakawa	Universal trade-off structure between symmetry, irreversibility and quantum coherence for quantum processes Hiroyasu Tajima, Ryuji Takagi, Yui Kuramochi and Keiji Saito
4:30 pm	Matchgate Shadows for Fermionic Quantum Simulation Kianna Wan, William J. Huggins, Joonho Lee and Ryan Babbush	Quantum Cryptography in Algorithmica William Kretschmer, Luowen Qian, Makrand Sinha and Avishay Tal	Why interference phenomena do not capture the essence of quantum theory Lorenzo Catani, Matthew Leifer, David Schmid and Robert Spekkens
5:00 pm	Classical shadows of fermions with particle number symmetry Guang Hao Low	On the Feasibility of Unclonable Encryption, and More Prabhanjan Ananth, Fatih Kaleoglu, Xingjian Li, Qipeng Liu and Mark Zhandry	Simulating qubit correlations with classical communication Martin Johannes Renner, Armin Tavakoli and Marco Túlio Quintino

5:30 pm

7:00-9:30	
pm	Poster session 1
	(UFO)
	(3.6)

		Wednesday 8 February	
1:30-3:00	Parallel 5A (ALGORITHMS) Blandijn Aud 5	Parallel 5B (COMPLEXITY) Blandijn Aud 2	Parallel 5C (INFORMATION THEORY) Blandijn Aud 3
1:30 pm	A Sublinear-Time Quantum Algorithm for Approximating Partition Functions Arjan Cornelissen and Yassine Hamoudi	Improved Hardness Results for the Guided Local Hamiltonian Problem Chris Cade, Marten Folkertsma, Sevag Gharibian, Ryu Hayakawa, Francois Le Gall, Tomoyuki Morimae and Jordi Weggemans	Super-exponential distinguishability of correlated quantum states Gergely Bunth, Gábor Maróti, Milán Mosonyi and Zoltán Zimborás
2:00 pm	Quantum Algorithms for Sampling Log-Concave Distributions and Estimating Normalizing Constants Andrew M. Childs, Tongyang Li, Jin-Peng Liu, Chunhao Wang and Ruizhe Zhang	Influence in Completely Bounded Block-multilinear Forms and Classical Simulation of Quantum Algorithms Nikhil Bansal, Makrand Sinha and Ronald de Wolf	Testing quantumness without entanglement Ludovico Lami and Martin Plenio
2:30 pm	Improved Quantum Speedups for Zero-Sum Games via Dynamic Gibbs Sampling Adam Bouland, Yosheb Getachew, Yujia Jin, Aaron Sidford and Kevin Tian	Quantum Pseudoentanglement Adam Bouland, Bill Fefferman, Soumik Ghosh, Umesh Vazirani and Zixin Zhou	Continuous-variable quantum state designs: theory and applications Joseph Iosue, Kunal Sharma, Michael Gullans and Victor Albert
3:00 pm		Coffee (UFO)	
3:30 pm 4:00 pm		Industry session (UFO)	
4:30 pm		Business meeting (UFO)	
5:00 pm			

_	
7:00 pm	
until late	Dinner
	(Oude Vismijn)

		Thursday 9 February	
1:30-3:00	Parallel 6A (ALGORITHMS) Blandijn Aud 5	Parallel 6B (CRYPTOGRAPHY) Blandijn Aud 2	Parallel 6C (INFORMATION THEORY) Blandijn Aud 3
1:30 pm	The Quantum and Classical Streaming Complexity of Quantum and Classical Max-Cut John Kallaugher and Ojas Parekh	From the Hardness of Detecting Superpositions to Cryptography: Quantum Public Key Encryption and Commitments Minki Hhan, Tomoyuki Morimae and Takashi Yamakawa	Complete order implies tight relative entropy decay rate Li Gao, Marius Junge, Nicholas Laracuente and Haojian Li
2:00 pm	Mean estimation when you have the source code; or, quantum Monte Carlo methods Robin Kothari and Ryan O'Donnell	Commitments to Quantum States Sam Gunn, Nathan Ju, Fermi Ma and Mark Zhandry	Generating k EPR-pairs from an n-party resource state Sergey Bravyi, Yash Sharma, Mario Szegedy and Ronald de Wolf
2:30 pm	Quantum divide and conquer Andrew Childs, Robin Kothari, Matt Kovacs-Deak, Aarthi Sundaram and Daochen Wang	Post-Quantum Zero Knowledge, Revisited (or: How to Do Quantum Rewinding Undetectably) Alex Lombardi, Fermi Ma and Nicholas Spooner	Circuit knitting with classical communication Christophe Piveteau and David Sutter
3:00 pm		Coffee	
3:30-6:00	Parallel 7A (COMPLEXITY) Blandijn Aud 5	Parallel 7B (MANY-BODY SYSTEMS) Blandijn Aud 2	Parallel 7C (LEARNING AND OTHER TOPICS) Blandijn Aud 3
3:30 pm	Memory-Sample Lower Bounds for Learning with Classical- Quantum Hybrid Memory Qipeng Liu, Ran Raz and Wei Zhan	Long-range entanglement from finite-depth circuits and measurements: from theory to quantum devices Nathanan Tantivasadakarn, Ryan Thorngren, Ruben Verresen and Ashvin Vishwanath	An operator-algebraic formulation of self-testing Connor Paddock, William Slofstra, Yuming Zhao and Yangchen Zhou
4:00 pm	On reductions from weak to strong simulation Sergey Bravyi, Giuseppe Carleo, David Gosset and Yinchen Liu	Topological phases of unitary dynamics: Classification in Clifford category Jeongwan Haah	Experimental quantum key distribution certified by Bell's theorem David Nadlinger, Peter Drmota, Bethan Nichol, Gabriel Araneda, Dougal Main, Raghavendra Srinivas, David Lucas, Chris Ballance, Kirill Ivanov, Ernest Tan, Pavel Sekatski, Rüdiger Urbanke, Renato Renner, Nicolas Sangouard and Jean-Daniel Bancal
4:30 pm	Hybrid Quantum-Classical Search Algorithms Ansis Rosmanis	Dualities in one-dimensional quantum lattice models: symmetric Hamiltonians and matrix product operator intertwiners Laurens Lootens, Clement Delcamp, Gerardo Ortiz and Frank Verstraete	Improved machine learning algorithm for predicting ground state properties Laura Lewis, Hsin-Yuan Huang and John Preskill
5:00 pm	Unitary property testing lower bounds by polynomials Adrian She and Henry Yuen	Universal lower bound on topological entanglement entropy Isaac Kim, Michael Levin, Ting-Chun Lin, Daniel Ranard and Bowen Shi	Linear programming with unitary-equivariant constraints Dmitry Grinko and Maris Ozols
1 5:30 pm		Entanglement area law for 1D gauge theories and bosonic systems Nilin Abrahamsen, Ning Bao, Yuan Su, Yu Tong and Nathan Wiebe	

8:00 pm until late	
until late	Rump
	(Oude Vismijn)
	(cocc risingn)

	Friday 10 February			
1:30-3:00	Parallel 8A (ALGORITHMS) Blandijn Aud 5	Parallel 8C (FOUNDATIONS) Blandijn Aud 3		
1:30 pm	Breaking the cubic barrier in the Solovay-Kitaev algorithm Greg Kuperberg	Quantifying Quantum Advantage in Topological Data Analysis Dominic Berry, Yuan Su, Casper Gyurik, Robbie King, Joao Basso, Alexander Barba, Abhishek Rajput, Nathan Wiebe, Vedran Dunjko and Ryan Babbush	Information processing in causal networks from AdS/CFT Alex May, Jonathan Sorce and Beni Yoshida	
2:00 pm	Shorter Quantum Circuits via Single-Qubit Gate Approximation Romy Minko, Adam Paetznick, Vadym Kliuchnikov, Kristin Lauter and Christophe Petit	A streamlined quantum algorithm for topological data analysis with exponentially fewer qubits Sam McArdle, András Gilyén and Mario Berta	Inevitability of knowing less than nothing Gilad Gour, Mark Wilde, Sarah Brandsen and Isabelle Jianing Geng	
2:30 pm	Quantum algorithms from fluctuation theorems: Thermal-state preparation Zoe Holmes, Gopikrishnan Muraleedharan, Yigit Subasi, Rolando Somma and Burak Sahinoglu		A Computational Separation Between Quantum No-cloning and No-teleportation Barak Nehoran and Mark Zhandry	
3:00 pm	Coffee			
3:30-5:00	Parallel 9A (COMPLEXITY) Blandijn Aud 5	Parallel 9B (ERROR CORRECTION) Blandijn Aud 2	Parallel 9C (MANY-BODY SYSTEMS) Blandijn Aud 3	
3:30 pm	Hay from the haystack: explicit examples of exponential quantum circuit complexity Yifan Jia and Michael Wolf	An efficient decoder for a linear distance quantum LDPC code Shouzhen Gu, Christopher Pattison and Eugene Tang	Optimal time-periodic Hamiltonian simulation Kaoru Mizuta and Kelsuke Fujii	
4:00 pm	Optimizing the depth of variational quantum algorithms is strongly QCMA-hard to approximate Lennart Bittel, Sevag Gharibian and Martin Kliesch	Good Quantum LDPC Codes with Linear Time Decoders Irit Dinur, Min-Hsiu Hsieh, Ting-Chun Lin and Thomas Vidick	A subpolynomial-time algorithm for the free energy of one- dimensional quantum systems in the thermodynamic limit Hamza Fawzi, Omar Fawzi and Samuel Scalet	
4:30 pm	Decidability of fully quantum nonlocal games with noisy maximally entangled states Minglong Qin and Penghui Yao	Quantum Locally Testable Code with Exotic Parameters Andrew Cross, Zhiyang He, Anand Natarajan, Mario Szegedy and Guanyu Zhu	Optimizing sparse fermionic Hamiltonians Yaroslav Herasymenko, Maarten Stroeks, Jonas Helsen and Barbara Terhal	
5:00 pm	Quantum free games Anand Natarajan and Tina Zhang	Floquet codes without parent subsystem codes Margarita Davydova, Nathanan Tantivasadakarn and Shankar Balasubramanian	Circuit complexity and classical simulation of Many-Body Localized Systems Adam Ehrenberg, Abhinav Deshpande, Christopher L. Baldwin, Dmitry A. Abanin and Alexey V. Gorshkov	

5:30 pm

The QIP 2023 Best Student Paper Prize

is awarded to

Chi-Fang Chen

for their paper

"Sparse random Hamiltonians are quantumly easy"

Organizers

Local organizing committee

Chairs:

- Jacob Bridgeman | Universiteit Gent | co-chair
- Frank Verstraete | Universiteit Gent & University of Cambridge | chair

Finances and logistics:

Inge Van der Vennet

Local organizing team:

- Université libre de Bruxelles
 - Nicolas Cerf
 - Nathan Goldman
 - Serge Massar
 - Ognyan Oreshkov
 - Stefano Pironio
 - Jérémie Roland
- IMEC
 - Kristiaan De Greve
- Universiteit Gent
 - Céline Broeckaert
 - Chanel Leong
 - Karel Van Acoleyen

Steering committee

- Omar Fawzi | Inria, ENS Lyon
- Steve Flammia | AWS Center for Quantum Computing
- David Gosset | University of Waterloo
- Min-Hsiu Hsieh | Hon Hai Quantum Computing Research Center
- Elham Kashefi | CNRS and University of Edinburgh
- Barbara Kraus | Institute for Theoretical Physics, University of Innsbruck
- Troy Lee | University of Technology Sydney
- Laura Mančinska | University of Copenhagen
- John Smolin | IBM Research
- Frank Verstraete | Ghent University
- Thomas Vidick | California Institute of Technology | chair

Program committee

- Gorjan Alagic | University of Maryland
- Victor Albert | University of Maryland & NIST
- Guillaume Aubrun | Université Claude Bernard Lyon 1
- Alexander Belov | University of Latvia
- Dominic Berry | Macquarie University
- Mario Berta | RWTH Aachen University

- Sergey Bravyi | IBM
- Dan Browne | University College London
- Ángela Capel Cuevas | Universität Tübingen
- Ulysse Chabaud | Caltech
- Andrew Childs | University of Maryland
- Matthias Christandl | University of Copenhagen
- Kai-Min Chung | Academia Sinica
- Andrea Coladangelo | UC Berkeley
- Toby Cubitt | University College London | co-chair
- Andrew Doherty | The University of Sydney
- Runyao Duan | Baidu
- David Elkouss Coronas | OIST & QuTech
- Philippe Faist | Freie Universität Berlin
- Bill Fefferman | University of Chicago
- Sevag Gharibian | Paderborn University
- Alexandru Gheorghiu | Chalmers University of Technology
- Alex B. Grilo | CNRS
- David Gross | University of Cologne
- Jeongwan Haah | Microsoft
- Jonas Helsen | CWI & QuSoft
- Min-Hsiu Hsieh | Foxconn Quantum Computing Research Center
- Zoe Holmes | EPFL
- Sandy Irani | UC Irvine
- Elham Kashefi | University of Edinburgh
- Kohtaro Kato | Nagoya University
- Iordanis Kerenidis | CNRS
- Isaac Kim | UC Davis
- Robert Koenig | Technical University of Munich
- Richard Kueng | Johannes Kepler University Linz
- Srijita Kundu | University of Waterloo
- François Le Gall | Nagoya University | chair
- Felix Leditzky | University of Illinois Urbana-Champaign
- Anthony Leverrier | INRIA Paris
- Tongyang Li | Peking University
- Qipeng Liu | Simons Institute
- Frédéric Magniez | CNRS
- Carl Miller | University of Maryland & NIST
- Ramis Movassagh | Google Quantum Al
- Ion Nechita | CNRS
- Nelly Ng | Nanyang Technological University
- Chinmay Nirkhe | UC Berkeley
- Jonathan Oppenheim | University College London
- Michał Oszmaniec | CTP PAS
- Stefano Pironio | Université libre de Bruxelles
- Matthew Pusey | University of York
- Yihui Quek | Harvard University & Freie Universität Berlin

- Patrick Rebentrost | CQT
- Bartosz Regula | The University of Tokyo
- Ben Reichardt | University of Southern California
- Norbert Schuch | University of Vienna
- Florian Speelman | University of Amsterdam & QuSoft
- Yuan Su | Microsoft Quantum
- Michael Walter | Ruhr University Bochum
- James Watson | University of Maryland
- Ronald de Wolf | CWI & University of Amsterdam
- Takashi Yamakawa | NTT
- Penghui Yao | Nanjing University
- Bei Zeng | Hong Kong University of Science and Technology

Accepted posters

All posters must be presented in the assigned session. **No session changes can be made**. They should be hung on the board numbered with the submission ID, and **must be removed at the end of the session**. All posters remaining after the session will be removed and **discarded**. Posters must fit on a **portrait**, **A0** poster board.

A selection of posters have been highlighted by the Program Committee.

Monday session

ID	Title	Authors
7	Relation between nonclassical features through logical qualts	Sooryansh Asthana and V. Ravishankar
8	BBM92 quantum key distribution over a free space dusty channel of 200 meters	Sarika Mishra, Ayan Biswas and R.P. Singh
11	The vacuum provides quantum advantage to otherwise simulatable architectures	Cameron Calcluth, Alessandro Ferraro and Giulia Ferrini
13	Fault-Tolerant Preparation of Quantum Polar Codes Encoding One Logical Qubit	Ashutosh Kumar Goswami, Mehdi Mhalla and Valentin Savin
15	Multipartite Entanglement Detection via Correlation Mi- nor Norm	Rain Lenny, Amit Te'Eni, Bar Peled and Eliahu Cohen
16	The energetic cost of large-scale quantum computing	Marco Fellous-Asiani, Jing Hao Chai, Yvain Thonnart, Hui Khoon Ng, Robert Whitney and Alexia Auffèves
18	Out-of-distribution generalization for learning quantum dynamics and dynamical simulation	Matthias C. Caro, Hsin-Yuan Huang, Joe Gibbs, Nic Ezzell, Andrew Sornborger, Lukasz Cincio, Patrick Coles and Zoe Holmes
27	Quantum Regularized Least Squares	Shantanav Chakraborty, Aditya Morolia and Anurudh Peduri
39	Finite speed of quantum information in models of in- teracting bosons at finite density	Chao Yin and Andrew Lucas
40	Privacy and correctness trade-offs for information- theoretically secure quantum homomorphic encryption	Yanglin Hu, Yingkai Ouyang and Marco Tomamichel
45	Entanglement transitivity problems	Gelo Noel Tabia, Kai-Siang Chen, Chung-Yun Hsieh, Yu- Chun Yin and Yeong-Cherng Liang
46	Transformation of an unknown unitary operation: complex conjugation	Tomasz Młynik
49	Phase Estimation of Local Hamiltonians on NISQ Hardware	Laura Clinton, Johannes Bausch, Toby Cubitt and Joel Klassen
50	Creating quantum-resistant classical-classical OWFs from quantum-classical OWFs	Wei Zheng Teo, Marco Carmosino and Lior Horesh
52	Tailored cluster states with high threshold under biased noise	Jahan Claes, Eli Bourassa and Shruti Puri
53	Communication with Unreliable Entanglement Assistance	Uzi Pereg, Christian Deppe and Holger Boche
56	Optimal input states for quantifying the performance of continuous-variable unidirectional and bidirectional teleportation	Hemant Mishra, Samad Oskouei and Mark Wilde
57	Pseudo standard entanglement structure cannot be dis- tinguished from standard entanglement structure	Hayato Arai and Masahito Hayashi
58	Detecting entanglement in quantum many-body systems via permutation moments	Zhenhuan Liu, Yifan Tang, Hao Dai, Pengyu Liu, Shu Chen and Xiongfeng Ma
61	Contextuality as a precondition for entanglement	Martin Plávala and Otfried Gühne
63	Avoiding barren plateaus using classical shadows	Stefan Sack, Raimel Medina, Richard Kueng, Alexios Michailidis and Maksym Serbyn
64	Transition states and greedy exploration of the QAOA optimization landscape	Raimel A. Medina Ramos, Stefan Sack, Richard Kueng and Maksym Serbyn
67	State-dependent Trotter Limits and their approximations	Daniel Burgarth, Niklas Galke, Alexander Hahn and Lauritz van Luijk
69	Variational quantum algorithms for real time evolution of quantum systems	Stefano Barison, Filippo Vicentini, Ignacio Cirac and Giuseppe Carleo
71	Avoiding barren plateaus via transferability of smooth solutions in Hamiltonian Variational Ansatz	Antonio Anna Mele, Glen Bigan Mbeng, Giuseppe Ernesto Santoro, Mario Collura and Pietro Torta
72	Universal Parity Quantum Computing	Michael Fellner, Anette Messinger, Kilian Ender and Wolfgang Lechner

73	Modular Parity Quantum Approximate Optimization	Kilian Ender, Anette Messinger, Michael Fellner, Clemens Dlaska and Wolfgang Lechner
75	Quantum variational learning for quantum error- correcting codes	Chenfeng Cao, Chao Zhang, Zipeng Wu, Markus Grassl and Bei Zeng
77	Quantum Entanglement with Self-stabilizing Token Ring for Fault-tolerant Distributed Quantum Computing Sys- tem	Jehn-Ruey Jiang
80	An Entropic Lens on Stabilizer States	William Munizzi, Cynthia Keeler and Jason Pollack
81	Distilling nonlocality in quantum correlations	Sahil Gopalkrishna Naik, Govind Lal Sidhardh, Samrat Sen, Arup Roy, Ashutosh Rai and Manik Banik
82	Your spectra don't fit: SDP refutations for the quantum marginal problem	Felix Huber and Nikolai Wyderka
87	Equivalence between the exact bosonization and fermion-to-qubit mappings in two spatial dimensions	Yu-An Chen and Yijia Xu
88	Learning quantum phases via single-qubit disentanglement	Zheng An, Chenfeng Cao, Chengqian Xu and Duanlu Zhou
90	Universal cost bound of quantum error mitigation based on quantum estimation theory	Kento Tsubouchi, Takahiro Sagawa and Nobuyuki Yoshioka
97	Partial self-testing and randomness certification in networks	Pavel Sekatski, Sadra Boreiri and Nicolas Brunner
99	Bound on local minimum-error discrimination of bipartite quantum states	Donghoon Ha and Jeong San Kim
104	Observing ground-state properties of the Fermi- Hubbard model using a scalable algorithm on a quan- tum computer	Jan Lukas Bosse, Ashley Montanaro, Stasja Stanisic, Filippo Maria Gambetta, Raul A. Santos, Wojciech Mruczkiewicz, Thomas E. O'Brien and Eric Ostby
105	Variational quantum simulation of the imaginary- time Lyapunov control for accelerating the ground-state preparation	Yu-Cheng Chen, Alice Hu and Qian Wang
108	Task-dependent semi-quantum secure communication in layered networks with OAM states of light	Rajni Bala, Sooryansh Asthana and V. Ravishankar
109	Restoring quantum communication efficiency over high loss optical fibres	Francesco Anna Mele, Ludovico Lami and Vittorio Giovannetti
110	Uncertainty relations from graph theory	Carlos de Gois, Kiara Hansenne and Offried Gühne
112	Quantum Differential Privacy: An Information Theory Perspective	Christoph Hirche, Cambyse Rouze and Daniel Stilck França
113	Quantum optimization with Instantaneous Quantum Polynomial circuits	Sebastian Leontica and David Amaro
116	Multivariable quantum signal processing (M-QSP): prophecies of the two-headed oracle	Zane Rossi and Isaac Chuang
118	Quantum Analysis of Continuous Time Stochastic Process	Xi-Ning Zhuang, Zhao-Yun Chen, Cheng Xue, Yu-Chun Wu and Guo-Ping Guo
119	Induced on-demand revival in coined quantum walks on infinite d-dimensional lattices	Mahesh N. Jayakody, Ismael L. Paiva, Asiri Nanayakkara and Eliahu Cohen
120	Detecting entanglement by pure bosonic extension	Xuanran Zhu, Chao Zhang, Chenfeng Cao, Youning Li and Bei Zeng
121	Characterizing Symmetry-Protected Thermal Equilibrium by Work Extraction	Yosuke Mitsuhashi, Kazuya Kaneko and Takahiro Sagawa
122	(No) Quantum ST tradeoff for USTCON	Simon Apers, Stacey Jeffery, Galina Pass and Michael Walter
124	Advantages of adaptive and general strategies for discrimination of unitary channels beyond group-theoretical methods	Jessica Bavaresco, Mio Murao and Marco Túlio Quintino
125	Quantum error correction using squeezed Schrödinger cat states	David Schlegel, Fabrizio Minganti and Vincenzo Savona
127	Composition of Multipartite Quantum Systems: Perspective from Timelike Paradigm	Sahil Gopalkrishna Naik, Edwin Peter Lobo, Samrat Sen, Ram Krishna Patra, Alimuddin Mir, Tamal Guha, Some Sankar Bhattacharya and Manik Banik
128	Improved maximum-likelihood quantum amplitude estimation	Adam Callison and Dan Browne
129	Divide-and-conquer verification method for noisy intermediate-scale quantum computation	Yuki Takeuchi, Yasuhiro Takahashi, Tomoyuki Morimae and Seiichiro Tani
131	Generalized resource theory of purity: One-shot purity distillation with local noisy operations and one way classical communication	Sayantan Chakraborty, Aditya Nema and Francesco Buscemi
132	Testing of quantum nonlocal correlations under constrained free will and imperfect detectors	Abhishek Sadhu and Siddhartha Das
133	Continuity of quantum entropic quantities via almost convexity	Andreas Bluhm, Ángela Capel, Paul Gondolf and Antonio Pérez Hernández

134	Exponential concentration and untrainability in quantum kernel methods	Supanut Thanasilp, Samson Wang, Marco Vinicio Sebastian de la Roca and Zoe Holmes
138	Digital adiabatic state preparation error scales better than you might expect	Lucas Kocia, Fernando Calderon-Vargas, Matthew Grace, Alicia Magann, James Larsen, Andrew Baczewski and Mohan Sarovar
142	Going beyond the scale: Uniform observable error bounds for Trotter formulae in the semiclassical regime	Yonah Borns-Weil and Di Fang
146	Fundamental Limitation on the Detectability of Entanglement	Pengyu Liu, Zhenhuan Liu, Shu Chen and Xiongfeng Ma
149	Multipartite Entanglement Measures via Bell Basis Measurements	Jacob Beckey, Gerard Pelegrí, Steph Foulds and Natalie Pearson
152	The Complexity of Approximating Critical Points of Quantum Phase Transitions	James Watson and Johannes Bausch
154	Federated Learning with Quantum Secure Aggregation	Yichi Zhang, Chao Zhang, Cai Zhang, Bei Zeng, Qiang Yang and Lixin Fan
156	Single-qubit gate teleportation provides a quantum advantage	Libor Caha, Xavier Coiteux-Roy and Robert Koenig
160	Quantum leap in pattern recognition	Doğa Veske, Cenk Tüysüz, Mirko Amico, Nicholas Bronn, Olivia Lanes, Imre Bartos, Zsuzsa Marka, Sebastian Will and Szabolcs Marka
162	Geometric structure of (thermo)majorization cones	Alexssandre de Oliveira Junior, Jakub Czartowski, Kamil Korzekwa and Karol Życzkowski
163	Observation of the Entanglement Barrier with Classical Shadows	Aniket Rath, Vittorio Vitale, Sara Murciano, Matteo Votto, Jerome Dubail, Richard Kueng, Cyril Branciard, Pasquale Calabrese and Benoit Vermersch
168	Revealing multi-point temporal quantum statistics without measurement back-action	Pengfei Wang, Hyukjoon Kwon, Chun-Yang Luan, Wentao Chen, Mu Qiao, Zinan Zhou, Kaizhao Wang, Myungshik Kim and Kihwan Kim
169	Certifying Temporal Correlations	Harshank Shrotriya, Leong Chuan Kwek and Kishor Bharti
170	Adaptive syndrome measurements for Shor-style error correction	Theerapat Tansuwannont and Kenneth R. Brown
176	Barren plateaus in quantum tensor network optimization	Enrique Cervero, Kirill Plekhanov and Michael Lubasch
177	Certified Everlasting Functional Encryption	Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki and Takashi Yamakawa
178	Quantum algorithm for ground state energy estimation using circuit depth with exponentially improved de- pendence on precision	Guoming Wang, Daniel Stilck França, Ruizhe Zhang, Shuchen Zhu and Peter Johnson
182	Quantum correlations on the no-signaling boundary: self-testing and more	Kai-Siang Chen, Gelo Noel M. Tabia, Jebaratnam Chellasamy, Shiladitya Mal, Jun-Yi Wu and Yeong-Cherng Liang
187	Efficient measures of magic for quantum computers and matrix product states	Tobias Haug, Myungshik Kim and Lorenzo Piroli
188	Universal decoding of a single qubit information: deterministic and exact protocol	Satoshi Yoshida, Akihito Soeda and Mio Murao
189	Non-Pauli Errors in the Three-Dimensional Surface Code	Tom Scruby, Michael Vasmer and Dan Browne
191	Logarithmic Quantum Forking Quantum State Preparation with Optimal Circuit Depth:	Alessandro Berti
200	Implementations and Applications	Xiao-Ming Zhang, Tongyang Li and Xiao Yuan
206	Nonlocal Network Coding in Multiple Access Channels Trading causal order for locality	Jiyoung Yun, Ashutosh Rai and Joonwoo Bae Ravi Kunjwal and Ämin Baumeler
210	Grothendieck inequalities characterize converses to the	Jop Briët, Francisco Escudero Gutiérrez and Sander Gri-
	nolynomial method	hiling
211	polynomial method Quantum operations with indefinite time direction	biling Giulio Chiribella and Zixuan Liu
211		-
	Quantum operations with indefinite time direction Tight analytic bound on the trade-off between device- independent randomness and nonlocality Quantum realization of extreme points - from hybrid cor-	Giulio Chiribella and Zixuan Liu
214	Quantum operations with indefinite time direction Tight analytic bound on the trade-off between device- independent randomness and nonlocality Quantum realization of extreme points - from hybrid cor- relations to channel assemblages Sequential Methods in Quantum Hypothesis Testing	Giulio Chiribella and Zixuan Liu Lewis Wooltorton, Peter Brown and Roger Colbeck Michal Banacki, Piotr Mironowicz, Ravishankar Ramanathan and Pawel Horodecki John Calsamiglia, Marco Fanizza, Christoph Hirche, Yonglong Li, Esteban Martínez Vargas, Ramon Muñoz-Tapia, Gael Sentis, Michalis Skotiniotis, Vincent Tan and Marco Tomamichel
214	Quantum operations with indefinite time direction Tight analytic bound on the trade-off between device- independent randomness and nonlocality Quantum realization of extreme points - from hybrid cor- relations to channel assemblages	Giulio Chiribella and Zixuan Liu Lewis Wooltorton, Peter Brown and Roger Colbeck Michal Banacki, Piotr Mironowicz, Ravishankar Ramanathan and Pawel Horodecki John Calsamiglia, Marco Fanizza, Christoph Hirche, Yonglong Li, Esteban Martínez Vargas, Ramon Muñoz-Tapia, Gael Sentis, Michalis Skotiniotis, Vincent Tan and Marco
214 215 222	Quantum operations with indefinite time direction Tight analytic bound on the trade-off between device- independent randomness and nonlocality Quantum realization of extreme points - from hybrid cor- relations to channel assemblages Sequential Methods in Quantum Hypothesis Testing Learning Quantum Processes with Memory - Quantum	Giulio Chiribella and Zixuan Liu Lewis Wooltorton, Peter Brown and Roger Colbeck Michal Banacki, Piotr Mironowicz, Ravishankar Ramanathan and Pawel Horodecki John Calsamiglia, Marco Fanizza, Christoph Hirche, Yonglong Li, Esteban Martínez Vargas, Ramon Muñoz-Tapia, Gael Sentis, Michalis Skotiniotis, Vincent Tan and Marco Tomamichel Dmytro Bondarenko, Tobias Osborne, Robert Salzmann
214 215 222 223	Quantum operations with indefinite time direction Tight analytic bound on the trade-off between device- independent randomness and nonlocality Quantum realization of extreme points - from hybrid cor- relations to channel assemblages Sequential Methods in Quantum Hypothesis Testing Learning Quantum Processes with Memory - Quantum Recurrent Neural Networks Parameterized Complexity of Weighted Local Hamil- tonian Problems and Quantum Exponential Time Hy-	Giulio Chiribella and Zixuan Liu Lewis Wooltorton, Peter Brown and Roger Colbeck Michal Banacki, Piotr Mironowicz, Ravishankar Ramanathan and Pawel Horodecki John Calsamiglia, Marco Fanizza, Christoph Hirche, Yonglong Li, Esteban Martínez Vargas, Ramon Muñoz-Tapia, Gael Sentis, Michalis Skotiniotis, Vincent Tan and Marco Tomamichel Dmytro Bondarenko, Tobias Osborne, Robert Salzmann and Viktoria-Sophie Schmiesing Michael Bremner, Zhengfeng Ji, Luke Mathieson and

230	Universal sample lower bounds for quantum error mitigation	Ryuji Takagi, Hiroyasu Tajima and Mile Gu
232	Near-optimal circuit design for variational quantum optimization	Bence Bakó, Adam Glos, Özlem Salehi and Zoltán Zimborás
234	What is nonclassical about uncertainty relations?	Lorenzo Catani, Matthew Leifer, Giovanni Scala, David Schmid and Robert Spekkens
236	Variational learning algorithms for quantum query complexity	Zipeng Wu, Shi-Yao Hou, Chao Zhang, Bei Zeng and Lvzhou Li
239	Tensor Network Assisted Variational Quantum Algorithm	Junxiang Huang, Wenhao He, Yukun Zhang, Yusen Wu, Bujiao Wu and Xiao Yuan
242	Efficient and robust estimation of many-qubit Hamiltonians	Daniel Stilck França, Johannes Borregaard, Albert H. Werner, Liubov Markovich and Slava Dobrovitski
243	Fault-tolerant error correction for a universal non- Abelian topological quantum computer at finite tem- perature	Alexis Schotte, Lander Burgelman and Guanyu Zhu
244	Deep Circuit QAOA	Gereon Koßmann, Lennart Binkowski, Lauritz van Luijk, Timo Ziegler and René Schwonnek
245	A Graphical Formalism for Entanglement Purification	Lina Vandré and Otfried Gühne
246	Symmetries in quantum networks lead to no-go theorems for entanglement distribution and to verification techniques	Kiara Hansenne, Zhen-Peng Xu, Tristan Kraft and Otfried Gühne
248	Fast erasure decoder for a class of quantum LDPC codes	Nicholas Connolly, Vivien Londe, Anthony Leverrier and Nicolas Delfosse
252	A single T-gate makes distribution learning hard	Marcel Hinsche, Marios Ioannou, Alexander Nietner, Ryan Sweke, Jonas Haferkamp, Yihui Quek, Dominik Hangleiter, Jean-Pierre Seifert and Jens Eisert
254	Magic: a new perspective on quantum chaos	Lorenzo Leone, Salvatore F.E. Oliviero, Alioscia Hamma and Seth Lloyd
255	Transitions in quantum complexity in random circuits	Salvatore F.E. Oliviero, Lorenzo Leone, You Zhou, Stefano Piemontese, Sarah True and Alioscia Hamma
256	Testing quantum theory with generalized non- contextuality	Markus P. Mueller and Andrew J. P. Garner
257	A mathematical framework for quantum Hamiltonian simulation and duality	Harriet Apel and Toby Cubitt
258	Quantifying the intrinsic randomness of quantum measurements	Gabriel Ignacio Senno, Antonio Acín and Thomas Strohm
259	Predicting Gibbs State Expectation Values with Pure Thermal Shadows	Luuk Coopmans, Yuta Kikuchi and Marcello Benedetti
260	Uncloneable Cryptographic Primitives with Interaction	Anne Broadbent and Eric Culf
263	Entanglement renormalization of thermofield double states	Cheng-Ju Lin, Zhi Li and Tim Hsieh
266	Probing sign structure using measurement-induced entanglement	Cheng-Ju Lin, Weicheng Ye, Yijian Zou, Shengqi Sang and Timothy Hsieh
269	Equivalence in delegated quantum computing	Fabian Wiesner, Jens Eisert and Anna Pappa
271	Self-testing Arbitrary Projective Measurement	Ranyiliu Chen, Jurij Volčič and Laura Mančinska
272	Manifold search in the quantum machine learning realm: a computational approach to quantum symmetry discovery	Jonathan Lu, Rodrigo Bravo, Kaiying Hou, Gebremedhin Dagnew, Susanne Yelin and Khadijeh Najafi
274	Correlation between PQC Descriptors and Training Accuracy in Hybrid Quantum-Classical Model for Earth Observation Image Classification	Su Yeon Chang, Bertrand Le Saux, Sofia Vallecorsa and Michele Grossi
275	Loss-tolerant all-optical quantum computing ar- chitecture using parity-state-encoded multiphoton qubits	Seok-Hyung Lee, Srikrishna Omkar, Yong Siah Teo and Hyunseok Jeong
277	Security of continuous variable QKD with discrete modulation	Stefan Baeuml, Carlos Pascual, Victoria Wright, Omar Fawzi and Antonio Acin
278	Qubit-oscillator concatenated codes: decoding formalism & code comparison	Yijia Xu, Yixu Wang, En-Jui Kuo and Victor Albert
279	Optimal Strategies of Quantum Metrology with a Strict Hierarchy	Qiushi Liu, Zihao Hu, Haidong Yuan and Yuxiang Yang
282	Looped Pipelines Enabling Effective 3D Qubit Lattices in a Strictly 2D Device	Zhenyu Cai, Adam Siegel and Simon Benjamin
287	A Quantum Online Portfolio Optimization Algorithm	Debbie Huey Chih Lim and Patrick Rebentrost
290	Fast-forwarding quantum walk-based Monte Carlo simulations	Mathys Rennela, Vivien Londe, Alain Sarlette, Martin Roetteler and Matthias Troyer
291	Optimizing the information extracted by a single qubit measurement	Stefano Polla, Gian-Luca R. Anselmetti and Thomas E. O'Brien
292	Local-Dimension-Invariant Stabilizer Codes	Lane Gunderman and Arun Moorthy

294	Enhancing Detection of Topological Order by Local Error Correction	Nishad Maskara, Iris Cong, Minh Tran, Hannes Pichler, Giulia Semeghini, Susanne Yelin, Soonwon Choi and Mikhail Lukin
297	Towards near-term quantum simulation of materials	Laura Clinton, Toby Cubitt, Brian Flynn, Filippo Maria Gambetta, Joel Klassen, Ashley Montanaro, Stephen Pid- dock, Raul A. Santos and Evan Sheridan
299	Theory-independent randomness generation with spacetime symmetries	Albert Aloy, Caroline Jones, Stefan Ludescher and Markus Müller
305	Single-qubit loss-tolerant quantum position verification protocol secure against entangled attackers	Llorenc Escola Farras and Florian Speelman
306	Classically optimized Hamiltonian simulation	Conor Mc Keever and Michael Lubasch
307	Quantum theory in finite dimension cannot explain every general process with finite memory	Marco Fanizza, Josep Lumbreras and Andreas Winter
310	Improved simulation of quantum circuits dominated by free Fermionic operations	Oliver Reardon-Smith, Michał Oszmaniec and Kamil Korzekwa
311	Evaluating the impact of noise on the performance of the Variational Quantum Eigensolver	Marita Oliv, Andrea Matic, Thomas Messerer and Jeanette Miriam Lorenz
312	Channel Simulation: Finite Blocklengths and Broadcast Channels	Michael Cao, Navneeth Ramakrishnan, Mario Berta and Marco Tomamichel
314	Beyond i.i.d. in the Resource Theory of Asymmetry: An Information-Spectrum Approach for Quantum Fisher Information	Koji Yamaguchi and Hiroyasu Tajima
315	Optimizing Fermionic Encodings for both Hamiltonian and Hardware	Riley Chien and Joel Klassen
320	Parallel window decoding enables scalable fault tolerant quantum computation	Luka Skoric, Dan Browne, Kenton Barnes, Neil Gillespie and Earl Campbell
324	Mermin polytopes in quantum computation and foundations	Cihan Okay, Ho Yiu Chung and Selman Ipek
325	Fault-tolerant Coding for Entanglement-Assisted Communication	Paula Belzig, Matthias Christandl and Alexander Müller- Hermes
326	Quantum LDPC Codes for Modular Architectures	Armands Strikis and Lucas Berent
327	Molecular Quantum Circuit Design	Jakob Kottmann
329	Estimating the entanglement of random multipartite quantum states	Khurshed Fitter, Cécilia Lancien and Ion Nechita
330	Quantum max-flow in the bridge graph	Vincent Steffan, Fulvio Gesmundo and Vladimir Lysikov
331	Variational solutions for local fermion-to-qubit mappings	Jannes Nys and Giuseppe Carleo
332	Page curves and typical entanglement in linear optics	Joseph Iosue, Adam Ehrenberg, Dominik Hangleiter, Abhinav Deshpande and Alexey Gorshkov
333	Classical models are a better explanation of the Ji- uzhang 1.0 Gaussian Boson Sampler than its targeted squeezed light model	Javier Martínez-Cifuentes, Karen Fonseca-Romero and Nicolás Quesada
334	Total insecurity of communication via strong converse for quantum privacy amplification	Robert Salzmann and Nilanjana Datta
338	Toys can't play: physical agents in Spekkens' theory	Ladina Hausmann, Nuriya Nurgalieva and Lídia del Rio
340	State Preparation Fidelities for Dicke States	Shamminuj Aktar, Andreas Bärtschi, Abdel-Hameed A. Badawy and Stephan Eidenbenz
345	Circuits of space-time quantum channels	Pavel Kos and Georgios Styliaris
346	Quantum algorithms and the power of forgetting	Andrew Childs, Matthew Coudron and Amin Shiraz Gilani
350	Efficient classical algorithm of molecular vibronic spectra problem	Changhun Oh, Youngrong Lim, Bill Fefferman and Liang Jiang
357	Sharp complexity phase transitions generated by entanglement	Abhinav Deshpande, Bill Fefferman, Soumik Ghosh, Alexey Gorshkov and Dominik Hangleiter
361	Qubit seriation: Undoing data shuffling using spectral ordering	Atithi Acharya, Manuel Rudolph, Jing Chen, Jacob Miler and Alejandro Perdomo-Ortiz
364	A parallel repetition theorem in the quantum commuting operator model	Junqiao Lin, William Slofstra and Henry Yuen
366	Learning quantum processes without input control	Marco Fanizza, Matteo Rosati and Yihui Quek
371	Classification of measurement-based quantum wire in stabilizer PEPS	Paul Herringer and Robert Raussendorf
372	Error propagation in NISQ devices for solving classical optimization problems	Guillermo González-García, Rahul Trivedi and J. Ignacio Cirac
373	From Auditable Quantum Authentication to Best- of-Both-Worlds Multiparty Quantum Computation with Public Verifiable Identifiable Abort	Mi-Ying Huang and Er-Cheng Tang
375	Only Classical Parametrised States have Optimal Measurements	Wilfred Salmon, Sergii Strelchuk and David Arvidsson- Shukur
376	Multiplicative Updates for Quantum Bilinear Optimization	Wayne Lin, Georgios Piliouras, Ryann Sim and Antonios Varvitsiotis

378	Anyon braiding and the renormalization group	Alexander Stottmeister
380	Thermal State Preparation via Rounding Promises	Patrick Rall, Chunhao Wang and Pawel Wocjan
382	Fragile boundaries of tailored surface codes and improved decoding of circuit-level noise	Oscar Higgott, Thomas Bohdanowicz, Aleksander Ku bica, Steven Flammia and Earl Campbell
384	Fusion category symmetry-protected topological order in the generalized cluster state	Chris Fechisin, Nathanan Tantivasadakarn, David Aaser Wenqing Xu, Wenjie Ji, Jason Alicea, John Preskill and Vic tor Albert
385	Topological data analysis on noisy quantum computers	Ismail Yunus Akhalwaya, Shashanka Ubaru, Kenneth Clarkson and Lior Horesh
387	Area laws for steady states of detailed-balance Lind- bladians	Itai Arad, Raz Firanko and Moshe Goldstein
389	Rate-Distortion Theory for Mixed States	Debbie Leung, Kohdai Kuroiwa and Zahra Baghali Kho nian
390	Large N Matrix Quantum Mechanics as a Quantum Memory	Gong Cheng, Chunjun Cao and Brian Swingle
392	Upper and lower bounds on CSS code dimensions for magic state distillation protocols	Rhea Alexander, Si Gvirtz-Chen, Nikolaos Koukoulekio and David Jennings
393	A graph-theoretical analysis on first order quantum phase transitions for adiabatic quantum computing	Matthias Werner, Artur Garcia-Saez and Marta P Estare las
394	Faster Born probability estimation via gate merging and frame optimisation	Nikolaos Koukoulekidis, Hyukjoon Kwon, Hyejung Je David Jennings and Myungshik Kim
399	Measurement-free Quantum Error Correction for Gaussian Noise using Gottesman-Kitaev-Preskill States	En Jui Chang and Ching Yi Lai
401	Interpolating between Rényi entanglement entropies for arbitrary bipartitions via operator geometric means	Dávid Bugár and Péter Vrana
405	When is better state preparation worthwhile?	Shivesh Pathak, Antonio Russo, Stefan Seritan and Ar drew Baczewski
406	The 2T-qutrit, a two-mode bosonic qutrit	Aurélie Denys and Anthony Leverrier
412	Towards Geometric Quantum Machine Learning	Frederic Sauvage, Martin Larroca, Marco Cerez Nguyen Quynh, Louis Schatzki, Paolo Braccia, Micha Ragone and Patrick Coles
415	The power and limitations of self-testing	Jed Kaniewski, David Rasmussen Lolck, Laura Manči ska, Thor Gabelgaard Nielsen and Simon Schmidt
418	Inference Based Quantum Sensing	Cinthia Huerta, Max Hunter Gordon, Frederic Sauvage Akira Sone, Andrew Sornborger, Patrick Coles and Marc Cerezo
419	Correcting phenomenological errors for quantum memories via belief propagation	Kao-Yueh Kuo and Ching-Yi Lai
420	Holography as a resource for non-local quantum computation	Kfir Dolev and Sam Cree
426	Quantum dichotomies and coherent thermodynamics beyond first-order asymptotics	Patryk Lipka-Bartosik, Christopher Chubb, Joseph Rene Marco Tomamichel and Kamil Korzekwa
427	Group coset monogamy games and an application to device-independent continuous-variable QKD	Eric Culf, Thomas Vidick and Victor V. Albert
428	Lattice-Based Quantum Advantage from Rotated Measurements	Yusuf Alnawakhtha, Atul Mantri, Carl Miller and Daoche Wang
429	The dynamical uncertainty principle determines the programmability of quantum processors	Yunlong Xiao, Gaurav Saxena, Ryuji Takagi, Sarvagy Upadhyay and Mile Gu
435	Qubit-Efficient Randomized Quantum Algorithms for Linear Algebra	Samson Wang, Sam McArdle and Mario Berta
441	The Complexity-Theoretic Limits of Quantum Algorithms for Topological Data Analysis	Alexander Schmidhuber and Seth Lloyd
449	Gibbs Sampling of Periodic Potentials on a Quantum Computer	Arsalan Motamedi and Pooya Ronagh
450	A theory of quantum differential equation solvers: limitations and fast-forwarding	Dong An, Jin-Peng Liu, Daochen Wang and Qi Zhao
452	Quantum receivers for near-optimal unambiguous decoding	Jasminder Sidhu, Michael Bullock, Saikat Guha an Cosmo Lupo
456	Quantifying the performance of approximate tele- portation and quantum error correction via symmetric two-PPT-extendibility	Tharon Holdsworth, Vishal Singh and Mark Wilde
457	Variational Quantum Algorithms for Semidefinite Programming	Dhrumil Patel, Patrick Coles and Mark Wilde
459	FABLE: Fast Approximate Quantum Circuits for Block- Encodings	Roel Van Beeumen and Daan Camps
460	On the Impossibility of General Parallel Fast-forwarding of Hamiltonian Simulation	Nai-Hui Chia, Kai-Min Chung, Yao-Ching Hsieh, Har Hsuan Lin, Yao-Ting Lin and Yu-Ching Shen
472	Discrete Bulk Reconstruction	Scott Aaronson and Jason Pollack

473	Guaranteed efficient energy estimation of quantum many-body Hamiltonians using ShadowGrouping	Alexander Gresch and Martin Kliesch
474	Randomized compiling improves logical performance	Aditya Jain, Pavithran Iyer, Stephen D. Bartlett and Joseph Emerson
478	Quantum networks with coherent routing of information through multiple nodes	Hlér Kristjánsson, Yan Zhong, Anthony Munson and Giulio Chiribella
482	Quantum embedding approaches for materials sim- ulations on quantum computers	Francois Jamet, Abhishek Agarwal and Ivan Rungger
483	On the sampling complexity of open quantum systems	lsobel Aloisio, Gregory White, Charles Hill and Kavan Modi
485	Versatile fidelity estimation with confidence	Akshay Seshadri, Martin Ringbauer, Rainer Blatt, Thomas Monz and Stephen Becker
488	Unconditional Quantum Advantage for Sampling with Shallow Circuits	Adam Bene Watts and Natalie Parham
490	Robustness and Limitations of Quantum Algorithms for Nonconvex Optimization	Weiyuan Gong, Chenyi Zhang and Tongyang Li
491	Distillation of Secret Key and GHZ States from Multipartite Mixed States	Farzin Salek and Andreas Winter
494	Power of sequential protocol in hidden channel discrimination	Sho Sugiura, Arkopal Dutt, Sina Zeytinoglu, William J. Munro and Isaac L. Chuang
495	Information recoverability of noisy quantum states	Xuanqiang Zhao, Benchi Zhao, Zihan Xia and Xin Wang
497	Shadow estimation of gate-set properties from random sequences	Jonas Helsen, Marios Ioannou, Roth Ingo, Jonas Kitzinger, Emilio Onorati, Albert Werner and Jens Eisert
498	Quantum state tomography via non-convex Rie- mannian gradient descent	Ming-Chien Hsu, En-Jui Kuo, Wei-Hsuan Yu, Jian-Feng Cai and Min-Hsiu Hsieh
501	Breaking barriers in two-party quantum cryptography via stochastic semidefinite programming	Akshay Bansal and Jamie Sikora
504	Catalysis in action via elementary thermal operations	Jeongrak Son and Nelly H. Y. Ng
507	Tight Bounds on Genuine Multipartite Nonlocality for AND	Hafiza Rumlah Amer and Jibran Rashid
508	Error-Robust Quantum Signal Processing using Rydberg Atoms	Sina Zeytinoglu and Sho Sugiura
514	Greatly improved higher-order product formulae for quantum simulation	Mauro Morales, Pedro Costa, Daniel Burgarth, Yuval Sanders and Dominic Berry
517	How to characterise a clock: putting clocks against each other	Nuriya Nurgalieva, Ralph Silva and Renato Renner
520	Geometry of Uniform Matrix Product States	Tim Seynnaeve and Harshit J. Motwani
525	A perturbative gadget for avoiding barren plateaus in variational quantum algorithms	Simon Cichy, Paul K. Faehrmann, Sumeet Khatri and Jens Eisert
529	Quantum metrology beyond the i.i.d. regime: Continuous multiple hypothesis testing	Johannes Jakob Meyer, Sumeet Khatri, Daniel Stilck França, Jens Eisert and Philippe Faist
532	Continuous-Variable Shadow Tomography	Srilekha Gandhari, Victor Albert, Jacob Taylor and Michael Gullans
533	A hybrid framework for estimating nonlinear functions of quantum states	You Zhou and Zhenhuan Liu
534	Extendibility of Werner States	Dávid Jakab, Adrian Solymos and Zoltán Zimborás
535	A random matrix model for approximate t-designs	Piotr Dulian and Adam Sawicki
536	Hunting for quantum-classical crossover in condensed matter problems	Nobuyuki Yoshioka, Tsuyoshi Okubo, Yasunari Suzuki, Yuki Koizumi and Wataru Mizukami
540	Estimating Quantum Hamiltonians via Joint Measurements of Noisy Non-Commuting Observables	Daniel McNulty, Filip Maciejewski and Michał Oszmaniec
544	A Complete Equational Theory for Quantum Circuits	Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix and Benoît Valiron
548	Fermion-Parity-Based Computation and its Majorana- Zero-Mode Implementation	Campbell McLauchlan and Benjamin Beri
549	Quantum-inspired algorithms for approximating matrix functions	Youngrong Lim and Chanhun Oh
550	Efficient classical simulation of cluster state quantum circuits with alternative inputs	Sahar Atallah, Michael Garn, Sania Jevtic, Yukuan Tao and Shashank Virmani
551	Proof of the Wigner-Araki-Yanase theorem for unbounded conserved observables	Yui Kuramochi and Hiroyasu Tajima
552	Fundamental thresholds of realistic quantum error correction circuits from classical spin models	Davide Vodola, Manuel Rispler, Seyong Kim and Markus Müller
553	Ultra fast quantum circuits for quantum state preparation	Harry Buhrman, Marten Folkertsma and Niels Neumann
557	Even the weakest external quantum correlations forbid catalysis	Seok Hyung Lie and Nelly Ng

559	Circuit depth versus energy in topologically ordered systems	Arkin Tikku and Isaac Kim
560	No-broadcasting theorem for non-signaling boxes and assemblages	Carlos Vieira, Adrian Solymos, Cristhiano Duarte and Zoltán Zimborás
561	Two instances of random access code in the quantum regime	Nitica Sakharwade, Michal Studzinski, Michal Eckstein and Pawel Horodecki
568	Shallow shadows: Expectation estimation using low- depth random Clifford circuits	Christian Bertoni, Jonas Haferkamp, Marcel Hinsche, Marios Oannou, Jens Eisert and Hakop Pashayan
570	Multi-agent blind quantum computation without universal cluster state	Shuxiang Cao
571	SeQUeNCe, a Customizable Discrete-Event Simulator of Quantum Networks	Rajkumar Kettimuthu
572	Quantum Accelerated Causal Tomography: Circuit Considerations Towards Applications	Tamal Acharya, Akash Kundu and Aritra Sarkar
678	Genetic Algorithms for Quantum Circuit Optimization	Leo Sünkel, Darya Martyniuk, Denny Mattern and Johannes Jung
713	Variational Quantum Clustering with Pseudo-Labelling	Hyeong-Gyu Kim, Siheon Park and June-Koo Kevin Rhee
763	Logical Majorana Fermions for Fault-Tolerant Quantum Simulation	B. C. A. Morrison and Andrew Landahl

Tuesday session

ID	Title	Authors
518	Simulating Markovian open quantum systems using higher order series expansion	Xiantao Li and Chunhao Wang
573	Adaptive Advantage in Entanglement-Assisted Communications	Jef Pauwels, Stefano Pironio, Emmanuel Zambrini Cruzeiro and Armin Tavakoli
575	Quantum Computation for Periodic Solids in Second Quantization	Aleksei V. Ivanov, Christoph Sünderhauf, Nicole Holz- mann, Tom Ellaby, Rachel Kerber, Glenn Jones and Joan Camps
576	On the Necessity of Collapsing for Post-Quantum and Quantum Commitments	Marcel Dall'Agnol and Nick Spooner
578	Calculable lower bounds on the efficiency of universal sets of quantum gates	Oskar Słowik and Adam Sawicki
579	Indeterminism and Bell nonlocality with classical systems	Lorenzo Giannelli, Carlo Maria Scandolo and Giulio Chiri- bella
580	Quantinuum's Quantum Monte Carlo Integration Engine	Ifan Williams, Alexandre Krajenbrink, Michael Spranger, Steven Herbert, Jose Gefaell, Edwin Agnew, Roland Guichard and Julien Sorci
581	How much noise can a Haar-random state withstand before all entanglement is lost?	Daniel Miller and Jens Eisert
582	An adaptive quantum-phase-estimation protocol for NISQ hardware	Joseph Smith, David Arvidsson-Shukur and Crispin Barnes
584	Gauging quantum states with non-anomalous matrix product operator symmetries	Jose Garre Rubio and Ilya Kull
585	Catalysis in Charging Quantum Batteries	Ricard Ravell Rodriguez, Borhan Ahmadi, Pawel Mazurek, Shabir Barzanjeh, Robert Alicki and Pawel Horodecki
586	Constrained quantum optimization for extractive summarization on a trapped-ion quantum computer	Romina Yalovetzky, Pradeep Niroula, Ruslan Shaydulin, Pierre Minssen, Dylan Herman, Shaohan Hu and Marco Pistoia
587	Relaxing hardware requirements for surface codes	Matthew McEwen, Craig Gidney and Dave Bacon
590	Bandwidth Enables Generalization in Quantum Kernel Models	Abdulkadir Canatar, Evan Peters, Cengiz Pehlevan, Stefan Wild and Ruslan Shaydulin
591	Software Tools for Decoding Quantum Low-Density Parity Check Codes	Lucas Berent, Lukas Burgholzer and Robert Wille
592	Optical cluster-state generation with unitary averaging	Deepesh Singh, Austin Lund and Peter Rohde
593	Fourier-based quantum signal processing	Thais Lima Silva, Lucas Borges and Leandro Aolita
594	Classical product code constructions for quantum Calderbank-Shor-Steane codes	Dimiter Ostrev, Davide Orsucci, Francisco Lazaro and Balazs Matuz
595	Transforming Collections of Pauli Operators into Equivalent Collections of Pauli Operators over Minimal Registers	Lane Gunderman
596	Maximally entangled symmetric states of two qubits	Eduardo Serrano-Ensástiga and John Martin
597	Quantum Computation for Simulating Periodic Solid- state Systems Using Plane-wave Basis	Qian Wang, Alice Hu and Yu-Cheng Chen
598	Detection and estimation of progress of brain cancer using quantum-classical CNN based method	Sriya Bada, Sreeraj Warrier and Jayasri Dontabhaktuni
599	Two-qutrit Bell-diagonal states: Al versus Algorithmics	Marcin Wieśniak
600	Motion-blur detection in underwater images using classical-quantum CNN based method	Sreeraj Warrier, Sriya Bada, Jayasri Dontabhaktuni, Ro- hith Achampeta and Sebastian Uppapalli
601	Robust qudit Hamiltonian engineering from graphical constructions and spherical designs	Hengyun Zhou, Nathaniel Leitao, Haoyang Gao, Leigh Martin, Oksana Makarova, Iris Cong, Alexander Douglas and Mikhail Lukin
602	Quantum Spatial Attention based U-Net (QuSAt-UNet) for Ball Screw Drive Metal Surface Segmentation	Kalpesh Prajapati and Kameshwar Rao Jv
603	Variational Quantum Circuit with Transformer for Classifying Medical Condition based on User Reviews on Drugs	Kalpesh Prajapati and Kameshwar Rao Jv
605	Entanglement in quantum hypergraph states	Jan Nöller and Mariami Gachechiladze
606	Anyon Condensation and Quantum Error Correction	Julio C. Magdalena de la Fuente and Markus S. Kesselring
607	Quantum security of subset cover problems	Samuel Bouaziz-Ermann, Alex B. Grilo and Damien Vergnaud
608	A State Distillation Method Using Quantum Imaginary Time Control for Solving the Generalized Eigenproblems	Mengzhen Ren, Alice Hu and Yu-Cheng Chen
609	A tensor norm approach to quantum compatibility	Andreas Bluhm and Ion Nechita
610	Extension of CL-P bound of Clifford circuits via framed Wigner simulator	Gue Dong Park, Hyukjoon Kwon and Hyunseok Jeong

611	Best practices for multivariant input in parametrized quantum circuits	Dirk Heimann, Gunnar Schönhoff, Elie Mounzer and Frank Kirchner
612	Multispectral Satellite Data Analysis Using Support Vector Machines With Quantum Kernels	Artur Miroszewski, Filip Szczepanek, Grzegorz Czelusta, Bartosz Grabowski, Bertrand Le Saux, Jakub Nalepa and Jakub Mielczarek
613	Quantum Simulation of \mathbb{Z}_2 Lattice Gauge theory with minimal requirements	Reinis Irmejs, Mari-Carmen Banuls and J. Ignacio Cirac
614	No graph states can be prepared in quantum networks with bipartite sources	Owidiusz Makuta, Laurens T. Ligthart and Remigiusz Augusiak
615	Syndrome extraction using the spin-photon interface	Elena Callus and Pieter Kok
616	Noise in quantum rigid rotors: from the perspective of error correction	Shubham Jain, Eric Hudson, Wesley Campbell and Victor Albert
617	Exponential data encoding strategy for quantum su- pervised learning	Seongwook Shin, Yong Siah Teo and Hyunseok Jeong
619	Finite-time Landauer principle at strong coupling	Alberto Rolandi and Martí Perarnau-Llobet
620	Efficient Machine-Learning-based decoder for Heavy Hexagonal QECC	Debasmita Bhoumik, Ritajit Majumdar, Dhiraj Madan, Dhinakaran Vinayagamurthy, Shesha Raghunathan and Susmita Sur-Kolay
621	Efficient Quantum Circuit Generation via Reinforcement Learning	Kim DongHa
622	Classically Approximating Variational Quantum Machine Learning with Random Fourier Features	Jonas Landman, Slimane Thabet, Constantin Dalyac, Hela Mhiri and Elham Kashefi
623	Near Term Quantum Machine Learning with Particle Number Preserving Circuits	Jonas Landman, Iordanis Kerenidis and Natansh Mathur
624	Error mitigation for chemistry simulation on quantum hardware	Christian Gogolin
625	Transcendental properties of entropy-constrained sets: Part II	Vjosa Blakaj and Chokri Manai
626	Quantum Bell Inequalities from Information Causality	Prabhav Jain, Mariami Gachechiladze and Nikolai Miklin
627	Quantum Approximate Optimization Algorithm and its recursive version to solve MAX-CUT problem for Complete graphs	Eunok Bae and Soojoon Lee
628	Universality verification for a set of quantum gates	Adam Sawicki, Lorenzo Mattioli and Zoltan Zimboras
629	Quantum Correlated Policies in Multi-Agent Re- inforcement Learning	Hans Hohenfeld
630	Matrix concentration inequalities and random \emph{t} -designs	Piotr Dulian and Adam Sawicki
632	A new information criterion for quantum state estimation	Hiroshi Yano and Naoki Yamamoto
633	Efficient decomposition of multi-qubit gates	P.V. Sriluckshmy, Vicente Pina-Canelles, Manuel G. Algaba, Fedor Šimkovic and Martin Leib
634	Privacy Amplification with Python	lyan Mendez Veiga and Esther Hänggi
635	Fault-tolerant Variational Quantum Eigensolver	Hasan Sayginel, Dan Browne, Francois Jamet and Ivan Rungger
636	The Smallest Code with Transversal T	Stergios Koutsioumpas, Darren Banfield and Alastair Kay
637	Multicore quantum computing	Hamza Jnane, Brennan Undseth, Zhenyu Cai, Simon Benjamin and Balint Koczor
638	QuBOBS, physical devices and a visual representation to explain quantum computing	Sophie Laplante, Loris Perez, Sylvie Tissot and Lou Vettier
639	Overcoming fundamental bounds on quantum conference key agreement	Giacomo Carrara, Glaucia Murta and Federico Grasselli
640	Implementing Logical Operators using Code Rewiring	Darren Banfield and Alastair Kay
641	Quantum Machine Learning on Smaller Quantum Computers	Simon Marshall, Casper Gyurik and Vedran Dunjko
642	Minimal Port-based Teleportation	Michal Studzinski and Sergii Strelchuk
643	Dual-unitary circuits: Conservation laws and operator spreading Feasibility of NISQ Algorithms for Topological Data Anal-	Tom Holden-Dye, Arijeet Pal and Lluís Masanes
644	ysis	Shashvat Shukla
645	Generic quantum Wielandt's inequality	Yifan Jia and Angela Capel Cuevas
647	Preparing the XY surface code with high threshold under biased noise	Pei-Kai Tsai, Yue Wu and Shruti Puri
648	Error-correction zoo	Victor V. Albert and Philippe Faist
649	Measurement-free quantum error correction with native multi-qubit gates	Michael A. Perlin, Mark Saffman and Robert J. Joynt
650	On the power of nonstandard quantum oracles	Roozbeh Bassirian, Bill Fefferman and Kunal Marwaha
651	Practical and efficient Hamiltonian learning Quantum World Models: Learning MDP Transitions Using	Wenjun Yu, Jinzhao Sun, Zeyao Han and Xiao Yuan
652	Parametrized Quantum Circuits	Lukas Gross, Dirk Heimann and Hans Hohenfeld

653	Optimising VQE via Bayesian updates of local surrogate models	Jan Lukas Bosse and Ashley Montanaro
654	New techniques to improve zero-noise extrapolation on superconducting qubits	Kathrin Koenig, Finn Reinecke and Thomas Wellens
656	Efficient simulation of time-dependent Hamiltonians	Guannan Chen, Pranav Singh, Chris Budd and Mo- hammadali Foroozandeh
657	Dynamics of entanglement of many-body localized systems coupled to an environment	Elisabeth Wybo, Michael Knap and Frank Pollmann
658	Efficient measurement schemes for bosonic systems	Tianren Gu, Xiao Yuan and Bujiao Wu
659	Contractivity and QAOA Performance under Dephasing	Dina Abdelhadi and Daniel Stilck Franca
660	Virtual Resource Distillation in Continuous Variable Systems	Amalina Lai, Mile Gu and Ryuji Takagi
661	Analyses of the viability of automating the quantum circuit construction of Grover's Oracle for executing wild-card searches on NISQ processors	Willie Huang
662	Design of Quantum error correcting code for biased error on heavy-hexagon structure	Younghun Kim, Jeongsoo Kang and Younghun Kwon
665	Quantum simulation of dynamical phase transitions in noisy quantum devices	Younes Javanmard
666	Quantum walk based sampling algorithms	Sára Pituk and András Gilyén
667	Quantum chernoff bounds for advantage distillation DIQKD	Mikka Stasiuk, Ernest Tan and Norbert Lutkenhaus
668	Analytically Realizing Hybrid Boson-Qubit Operations via Hamiltonian Simulation Techniques	Christopher Kang, Micheline Soley, Eleanor Crane, Steven Girvin and Nathan Wiebe
671	Quantum tomography under perturbed Hamiltonian evolution and scrambling of errors - a quantum signature of chaos	Abinash Sahu, Naga Dileep Varikuti and Vaibhav Madhok
672	Comparison of 2-dimensional and high-dimensional BB84 QKD protocols	Claudia De Lazzari, Ilaria Vagniluca, Domenico Ribezzo, Davide Bacco, Alessandro Zavatta and Tommaso Oc- chipinti
673	Spectral estimation for Hamiltonians: a comparison be- tween classical imaginary-time evolution and quantum real-time evolution	Maarten Stroeks, Jonas Helsen and Barbara Terhal
674	Spacelike Floquet Codes	Simon Burton
675	Certifying Quantum Separability with Adaptive Polytopes	Ties-Albrecht Ohst, Xiao-Dong Yu, Otfried Gühne and H. Chau Nguyen
676	Universal entanglement and correlation measure in two- dimensional conformal field theories	Chao Yin and Zhenhuan Liu
677	Quantum phase detection generalisation from marginal quantum neural network models	Saverio Monaco, Oriel Kiss, Antonio Mandarino, Sofia Vallecorsa and Michele Grossi
679	Statistical mechanics mapping for finite rate LDPC codes	Benedikt Placke and Nikolas Breuckmann
680	Interpolation of Trotter data for eigenvalue and expectation value estimation	Gumaro Rendon, Jacob Watkins and Nathan Wiebe
681	Frequency analysis of nonlinear pendulum via Quantum Fourier Transform	Yi-Lin Cheng, Chih-Yu Chen, Tsung-Wei Huang and Yu- Ping Liao
682	Quantum error correction in a time-dependent transverse field Ising model	Yifan Hong, Jeremy Young, Adam Kaufman and Andrew Lucas
683	Square-root measurements and resource state degradation in port-based teleportation scheme	Piotr Kopszak, Marek Mozrzymas and Michał Studziński
684	Optimizing Bell inequalities via Tropical Algebra	Mengyao Hu, Patrick Emonts and Jordi Tura
685	Faster eigenstate preparation using a distributed quantum protocol	Benjamin Schiffer and Jordi Tura
686	Hardy's paradox and locally (in)accessible information	Maria Violaris and Samuel Kuypers
687	Simultaneous Stoquasticity	Jacob Bringewatt and Lucas Brady
689	Simultaneous transfer of energy and information through a quantum channel.	Bishal Kumar Das, Lav R. Varshney and Vaibhav Madhok
690	Towards a Classical-Interfacing Quantum Data Center	Lara Booth and Agnes Villanyi
691	Classification of Hybrid Quantum-Classical Computing	Frank Phillipson, Niels Neumann and Robert Wezeman
692	Unraveling correlated material properties with noisy quantum computers: solving extended impurity models with the natural-orbitalization algorithm	Pauline Besserve and Thomas Ayral
693	Enhancing binary phase-shift-keying quantum communication with atomic indirect measurement via squeezing operation	Min Namkung and Jeong San Kim
694	Optimising shadow tomography with generalised measurements	Hai Chau Nguyen, Jan Lennart Bönsel, Jonathan Steinberg and Otfried Gühne
695	Advantages of Measurement-based Variational Quantum Eigensolvers	Anna Schroeder, Matthias Heller and Mariami Gachechiladze

Goussian interconversion of non-Gaussian resources Gaussian interconversion of non-Gaussian resources Stabilizer subsystem decompositions for single- and multi- mode Gottesman-Kitaev-Preskill codes Fiscilin-nets and dynamic programming: towards bond dimension witnesses The theory prediction for entangle source though double-still The fist quantum walks simulation for loading prob- ability distribution The fist quantum metric evaluation on gate-based, annealing-based and photonic quantum hardware Intrinsic decoherence effects on quantum coherence and quantum discord in XXI Heisenberg model Lew-depth simulations of fermionic systems on realistic quantum discord in XXI Heisenberg model Concentration inequalities for Output Statistics of Quan- tum Markov Processes Multi-quibit Gate Decomposition Techniques for Trapped-Ion Qualits Full optimization of a single-aubit gate on the gen- ericate sequential quantum mprimizer The effect of errors on Gaussian boson sampling applied to the dense subgraph problem NISQ friendly approach towards variational quantum eigensolver Tile Tester convergence to the Parronado paradox problem via quantum random walks to predict the chemical reaction rate constant Opfimization of coincidence window for QKD in a noisy environment Tester convergence to the Parronado paradox problem via quantum random walks to predict the chemical reaction rate constant Opfimization of coincidence window for QKD in a noisy environment Tester convergence to the Parronado paradox problem via quantum random walks to predict the chemical reaction rate constant Opfimization of coincidence window for QKD in a noisy environment Local Stachastic Factored Gradient Descent for Dis- tributed Quantum State Tomography A new class of entropic uncertainty relations Composite Pulses in Phase Space: High-Hidelity Universal Measurement-Free Gate Teleportation for Finite-Energy SkPace Characteria fractored and Steven M Girv Althority distribution Arash Ahmadi and Elisan, Andra Mar
Gaussian interconversion of non-Gaussian resources Stabilizer subsystem decompositions for single- and multimode Gottesman-Kifaev-Preskill codes Folion-nets and Alynamic programming: towards bond dimension withesses the theory prediction for entangle source though double-silf Trainable Quantum Walks simulation for loading probability distribution Trainable Quantum Walks simulation for loading probability distribution The first quantum metric evaluation on gate-based, annealing-based and photonic quantum charevare Intrinsic decoherence effects on quantum coherence and quantum discord in XXZ Heisenberg model Low-depth simulations of fermionic systems on realistic quantum hardware fund Markov Processes Concentration Inequalities for Output Statistics of Quantum Markov Processes Concentration Inequalities for Output Statistics of Quantum Markov Processes Concentration Inequalities for Output Statistics of Quantum Markov Processes Concentration Inequalities for Output Statistics of Quantum Markov Processes Concentration Inequalities for Output Statistics of Quantum Markov Processes Concentration Inequalities for Output Statistics of Quantum Markov Processes Full polimization of a single-qubit gate on the generalized sequential quantum optimizer The fieffect of errors on Gaussian boson sampling applied to the dense subgraph problem NISQ frienally approach towards variational quantum eigensolver Tienergy Filler with 1D Tensor Networks Faster convergence to the Parrondo paradox problem via quantum random walks to predict the chemical reaction of NISQ Circuits Taking Advantage of Noise to Speed Up Classical Simulation of NISQ Circuits Taking Quantum random walks to predict the chemical reaction of NISQ Circuits Taking Quantum random walks to predict the chemical reaction of NISQ Circuits Taking Quantum random walks to predict the chemical reaction of NISQ Circuits Taking Quantum random walks to predict the chemical reaction of NISQ Circuits Taking Quantum random walks to predict the chemical rea
mode Gottesman-Kitaev-Preskill codes Folion-nets and dynamic programming: towards bond dimension witnesses Patrick Emonts, Mengyao Hu and Jordi Tura
dimension witnesses 701 the theory prediction for entangle source though double-slit 702 trainable Quantum Walks simulation for loading probability distribution 703 annealing-based and photonic quantum hardware 704 Intrinsic decoherence effects on quantum coherence and quantum discord in XXI Heisenberg model 705 Low-depth simulations of fermionic systems on realistic quantum hardware 706 Concentration inequalities for Output Statistics of Quantum Markov Processes 707 Improved the Concentration inequalities for Output Statistics of Quantum hardware and Unit Quantum hardware 708 Trainable with Gate Decomposition Techniques for Irrapped-lon Quality 709 Trainable of the dense subgraph problem 710 Intrinsic decoherence effects on quantum coherence and quantum discord in XXI Heisenberg model 710 Concentration inequalities for Output Statistics of Quantum hardware 711 Procentration inequalities for Output Statistics of Quantum Hum Markov Processes 712 The effect of errors on Gaussian boson sampling applied to the dense subgraph problem 713 Institute of the fear on Gaussian boson sampling applied to the dense subgraph problem 714 NISQ friendly approach towards variational quantum eigensolver 715 Energy Filter with 1D Tensor Networks 716 Faster convergence to the Parrondo paradax problem 717 Indiang Advantage of Noise to Speed Up Classical Simulation of NISQ Circuits 718 Paster convergence to the Parrondo paradax problem 719 Jaking Advantage of Noise to Speed Up Classical Simulation of NISQ Circuits 720 Profinization of coincidence window for QKD in a noisy environment 721 Optimization of coincidence window for QKD in a noisy environment 722 Entanglement Batteries 723 Zero noise extrapolation for a small diatomic molecule on a trapped-ion quantum computer 724 Reduce-and-chop: Shallow circuits for deeper problems 725 Anoise extrapolation for a small diatomic molecule on a trapped-ion quantum computer 726 Anoise of entropic uncertainty relations 727 Composite Pulses in Phase Space: High-Fidelit
double-sift Trainable Quantum Walks simulation for loading probability distribution Trainable Quantum Walks simulation for loading probability distribution The first quantum metric evaluation on gate-based, and potential probability distribution The first quantum metric evaluation on gate-based, and probability distribution The first quantum metric evaluation on gate-based, and Niels Neumann Total Intrinsic decoherence effects on quantum coherence and quantum discord in XXZ Heisenberg model Total Cov-depth simulations of fermionic systems on realistic quantum hardware Total Love-depth simulations of fermionic systems on realistic quantum hardware Total Love-depth simulations of fermionic systems on realistic quantum hardware Total Love-depth simulations of fermionic systems on realistic quantum hardware Concentration Inequalities for Output Statistics of Quantum Markov Processes Multi-qubit Gate Decomposition Techniques for Irapped-lon Qudits Total Pull optimization of a single-qubit gate on the generalized sequential quantum optimizer The effect of errors on Gaussian boson sampling applied to the dense subgraph problem NISQ friendly approach towards variational quantum eigensolver Total Energy Filter with 1D Tensor Networks Faster convergence to the Parrondo paradox problem via quantum random walks algorithm. Toking Advantage of Noise to Speed Up Classical Simulation of NISQ Circuits Toking Quantum random walks to predict the chemical reaction rate constant Toking Quantum random walks to predict the chemical reaction rate constant Toking Quantum random walks for predict the chemical reaction rate constant Toking Quantum random walks for expect of the Partonal Quantum random walks for expect of the problems Toke Problem Randy Charles Problems Toke Problem Randy Charles Randy Charles Randy Charles Randy Charles Random Randy Charles Goldina Randy Charles Random Randy Charles Goldina Randy Charles Random Randy Charles Random Random Randy Charles Random Random Randy Charles Random Random Rand
ability distribution The first quantum metric evaluation on gate-based, annealing-based and photonic quantum hardware Intrinsic decoherence effects on quantum coherence and quantum discord in XXI elsemberg model Total quantum hardware Low-depth simulations of fermionic systems on realistic quantum hardware Low-depth simulations of fermionic systems on realistic quantum hardware Low-depth simulations of fermionic systems on realistic quantum hardware Low-depth simulations of fermionic systems on realistic quantum hardware Low-depth simulations of fermionic systems on realistic quantum hardware Low-depth simulations of fermionic systems on realistic quantum hardware Low-depth simulations of fermionic systems on realistic quantum hardware Manseur Manuel G. Algaba, PV. Sriluckshmy, Martin Leib and dar Simkovic Federica Gifotti, Madalin Guta, George Bakewell and Juan P. Garrahan Anastasiia Nikolaeva, Eygeny Kiktenko and Aleks adorov Kaito Wada, Rudy Raymond, Yuki Sato and I wantum elized sequential quantum optimizer The effect of errors on Gaussian boson sampling applied to the dense subgraph problem NISQ friendly approach towards variational quantum eligensolver Title Energy Filter with 1D Tensor Networks Kaito Wada, Rudy Raymond, Yuki Sato and I wantum eligensolver Naomi Solomons, Oliver Thomas and Dara McCute Eyuel Eshetu Elala, Aidan Pellow-Jarman, Rowan P Jarman, Shane McFarthing, Francesco Petruccion June-Koo Kevin Rhee Kahiti Sheh Rai, Alvaro M. Alhambra and J. Ignacio Ran-Yu Chang, Yu-Chao Hsu, Tzu-Jui Liu and Tsun Huang Taking Advantage of Noise to Speed Up Classical Simulation of NISQ Circuits Taking Quantum random walks to predict the chemical reaction rate constant Optimization of considence window for QKD in a noisy environment Title Giffunction of considence window for QKD in a noisy environment Ten onise extrapolation for a small diatomic molecule on a trapped-ion quantum computer Ten onise extrapolation for a small diatomic molecule on a trapped-ion quantum computer Ten onis
annealing-based and photonic quantum hardware Intrinsic decoherence effects on quantum coherence and quantum discord in XXZ Heisenberg model Askaria Dahbi, Mansoura Oumennana and Massour Low-depth simulations of fermionic systems on realistic quantum hardware Concentration Inequalities for Output Statistics of Quantum Markov Processes Concentration Inequalities for Output Statistics of Quantum Markov Processes Multi-qubit Gate Decomposition Techniques for Irrapped-Ion Qudits Full optimization of a single-qubit gate on the generalized sequential quantum optimizer The effect of errors on Gaussian boson sampling applied to the dense subgraph problem NISQ friendly approach towards variational quantum eigensolver Fereign Filler with 1D Tensor Networks Faster convergence to the Parrondo paradox problem via quantum random walks algorithm. Taking Advantage of Noise to Speed Up Classical Simulation of NISQ Circuits Using Quantum random walks to predict the chemical reaction rate constant Optimization of coincidence window for QKD in a noisy environment Zero noise extrapolation for a small diatomic molecule on a trapped-ion quantum computer Anacy Chao Liu, Stefan Nimmrichter and Offried Gühn Actrian Peirez-Salinas, Radoica Draskic, Jordi Tura Brand Vedran Dunjko Oliver Maupin, Ashlyn Burch, Christopher Yale, Love, Susan Clark, Brandon Ruzic, Andrew Landah neth Rudinger, Antonio Russo, Daniel Lobser and Arizin Peirez-Salinas, Radoica Draskic, Jordi Tura Brand Vedran Dunjko Oliver Maupin, Ashlyn Burch, Christopher Yale, Love, Susan Clark, Brandon Ruzic, Andrew Landah neth Rudinger, Antonio Russo, Daniel Lobser and Arizin Peirez-Salinas, Sadoica Draskic, Jordi Tura Brand Vedran Dunjko Oliver Maupin, Ashlyn Burch, Christopher Yale, Love, Susan Clark, Brandon Ruzic, Andrew Landah neth Rudinger, Antonio Russo, Daniel Lobser and Arizin Peirez-Salinas, Sadoica Draskic, Jordi Tura Brand Vedran Dunjko Oliver Maupin, Ashlyn Burch, Christopher Yale, Love, Susan Clark, Brandon Ruzic, Andrew Landah neth Rudinger, An
and quantum discord in XXX Heisenberg model Low-depth simulations of fermionic systems on realistic quantum hardware Concentration Inequalities for Output Statistics of Quantum Markov Processes Multi-qubit Gate Decomposition Techniques for Trapped-lon Qudits Multi-qubit Gate Decomposition Techniques for Trapped-lon Qudits Full optimization of a single-qubit gate on the generalized sequential quantum optimizer The effect of errors on Gaussian boson sampling applied to the dense subgraph problem NISQ friendly approach towards variational quantum eigensolver Fester convergence to the Parrondo paradox problem via quantum random walks algorithm. Taking Advantage of Noise to Speed Up Classical Simulation of NISQ Circuits Using Quantum random walks to predict the chemical reaction rate constant Optimization of coincidence window for QKD in a noisy environment Zero noise extrapolation for a small dilatomic molecule on a trapped-lon quantum computer Zero noise extrapolation for a small dilatomic molecule on a trapped-lon quantum computer Anastasia Nikolaeva, Evgeny Kiklenko and Aleks dorov Kaito Wada, Rudy Raymond, Yuki Sato and I guantum and Dara McCute Eyuel Eshetu Elala, Aidan Pellow-Jarman, Rowan P Jarman, Shane McFarthing, Francesco Petruccion June-Koo Kevin Rhee Kshiti Sneh Rai, Aivaro M. Alhambra and J. Ignacio Ran-Yu Chang, Yu-Chao Hsu, Tzu-Jui Liu and Tsuh Huang Joel Rajakumar, James Watson and Yi-Kai Liu Tsung-Wei Huang, Ran-Yu Chang and Chih-Yu Che eaction rate constant Tye-Chao Liu, Stefan Nimmrichter and Offried Gühl Adrian Pérez-Salinas, Radoica Draskic, Jordi Tura Brand Verran Durijko Oliver Maupin, Ashlyn Burch, Christopher Yale, Love, Susan Clark, Brandon Ruzic, And
Low-depth simulations of fermionic systems on realistic quantum hardware Concentration Inequalities for Output Statistics of Quantum Markov Processes Multi-qubit Gate Decomposition Techniques for properties of Quantum Anastasiia Nikolaeva, Evgeny Kiktenko and Aleks and Juan P. Garrahan Anastasiia Nikolaeva, Evgeny Kiktenko and Aleks and Juan P. Garrahan Anastasiia Nikolaeva, Evgeny Kiktenko and Aleks and Juan P. Garrahan Anastasiia Nikolaeva, Evgeny Kiktenko and Aleks and Juan P. Garrahan Anastasiia Nikolaeva, Evgeny Kiktenko and Aleks and Juan P. Garrahan Anastasiia Nikolaeva, Evgeny Kiktenko and Aleks and Juan P. Garrahan Anastasiia Nikolaeva, Evgeny Kiktenko and Aleks and Juan P. Garrahan Anastasiia Nikolaeva, Evgeny Kiktenko and Aleks and Juan P. Garrahan Anastasiia Nikolaeva, Evgeny Kiktenko and Aleks and Juan P. Garrahan Anastasiia Nikolaeva, Evgeny Kiktenko and Aleks and Juan P. Garrahan Anastasiia Nikolaeva, Evgeny Kiktenko and Aleks and Juan P. Garrahan Anastasiia Nikolaeva, Evgeny Kiktenko and Aleks and Juan P. Garrahan Anastasiia Nikolaeva, Evgeny Kiktenko and Aleks and Juan P. Garrahan Anastasiia Nikolaeva, Evgeny Kiktenko and Aleks and Juan P. Garrahan Anastasiia Nikolaeva, Evgeny Kiktenko and Aleks and Juan P. Garrahan Anastasiia Nikolaeva, Evgeny Kiktenko and Aleks and Juan P. Garrahan Anastasiia Nikolaeva, Evgeny Kiktenko and Aleks and Nikolaeva, Evgeny Kiktenko and Aleks and Nikolaeva, Evgeny Kiktenko and Aleks and Nastasia Nikolaeva, Evgeny Kiktenko and Aleks and Al
tum Markov Processes And Juan P. Garrahan Multi-qubit Gate Decomposition Techniques for trapped-lon Qudits Full optimization of a single-qubit gate on the generalized sequential quantum optimizer The effect of errors on Gaussian boson sampling applied to the dense subgraph problem NISQ friendly approach towards variational quantum eigensolver Naomi Solomons, Oliver Thomas and Dara McCutto Watanabe Eyuel Eshetu Elala, Aidan Pellow-Jarman, Rowan P Jarman, Shane McFarthing, Francesco Petruccion Jarman, Shane McFarthing, Francesco Petruccion Jarman, Shane McFarthing, Francesco Petruccion Jarman, Shane McEarthing, Francesco Petruccion Jarman, S
Trapped-lon Qudits Full optimization of a single-qubit gate on the generalized sequential quantum optimizer The effect of errors on Gaussian boson sampling applied to the dense subgraph problem Naomi Solomons, Oliver Thomas and Dara McCute Synchrolizer Synchrolizer Naomi Solomons, Oliver Thomas and Dara McCute Synchrolizer Syn
Full optimization of a single-qubit gate on the generalized sequential quantum optimizer The effect of errors on Gaussian boson sampling applied to the dense subgraph problem NISQ friendly approach towards variational quantum eigensolver NISQ friendly approach towards variational quantum eigensolver NISQ friendly approach towards variational quantum eigensolver Fenergy Filter with 1D Tensor Networks Energy Filter with 1D Tensor Networks Faster convergence to the Parrondo paradox problem via quantum random walks algorithm. Taking Advantage of Noise to Speed Up Classical Simulation of NISQ Circuits Using Quantum random walks to predict the chemical reaction rate constant Optimization of coincidence window for QKD in a noisy environment Entanglement Batteries Xe-Chao Liu, Stefan Nimmrichter and Offried Gühr Adrián Pérez-Salinas, Radoica Draskic, Jordi Tura Brand Vedran Dunjko Oliver Maupin, Ashlyn Burch, Christopher Yale, Love, Susan Clark, Brandon Ruzic, Andrew Landah neth Rudinger, Antonio Russo, Daniel Lobser and Ar Baczewski Local Stochastic Factored Gradient Descent for Distributed Quantum State Tomography Local Stochastic Factored In Place Space: High-Fidelity Universal Measurement-Free Gate Teleportation for Finite-Energy Matanabe Kaito Wada, Rudy Raymond, Yuki Sato and Evater Matanaba (Watanabe Naomi Solomons, Oliver Thomas and Dara McCute Stoches in Stoches and Dara McCute Fyuel Eshetu Elala, Aidan Pellow-Jarman, Rowan P Jarman, Shane McFarthing, Francesco Petruccion Jurne-Noo Reyler Este Holden Jarman, Shane McFarthing, Francesco Petruccion Jurne-Noo Reyler Este Holden Jarman, Shane McFarthing, Francesco Petruccion Jurne-Noo Reyler Este Holden Jarman, Shane McFarthing, Francesco Petruccion Jurne-Noo Reyler Este Holden Jarman, Shane McFarthing, Francesco Petruccion Jurne-Noo Reyler Este Holden Jarman, Shane McFarthing, Francesco Petruccion Jurne-Noo Reyler Este Holden Jarman, Shane McFarthing, Francesco Petruccion Jurne-Noo Reyler Este Holden Jarman, Shane McFarthing, Francesco Petrucci
to the dense subgraph problem NISQ friendly approach towards variational quantum eigensolver Faster convergence to the Parrondo paradox problem via quantum andom walks algorithm. Taking Advantage of Noise to Speed Up Classical Simulation of NISQ Circuits Using Quantum random walks to predict the chemical reaction rate constant Optimization of coincidence window for QKD in a noisy environment Reduce-and-chop: Shallow circuits for deeper problems Zero noise extrapolation for a small diatomic molecule on a trapped-ion quantum computer Local Stochastic Factored Gradient Descent for Distributed Quantum State Tomography Local Stochastic Factored Gradient Descent for Distributed Quantum State Tomography Local Stochastic Factored Gradient Pellow Addish Singh, Baptiste Royer and Steven M Girv Macupin, Baptiste Royer and Steven M Girv Macupins Ashlyn Burste Royer and Steven M Girv GKP Qubits Nadit Macupan Equation Place Space: High-Fidelity Universal Macupan McFarthing, Francesco Petruccion June-Koo Kevin Rhee Eyuel Eshetu Elala, Aidan Pellow-Jarman, Rowan P Jarman, Shane McFarthing, Francesco Petruccion June-Koo Kevin Rhee Sye-Chao Kevin Rhee Kshiti Sneh Rai, Álvaro M. Alhambra and J. Ignacio Ran-Yu Chang, Yu-Chao Hsu, Tzu-Jui Liu and Tsun Huang Ran-Yu Chang, Yu-Chao Hsu, Tzu-Jui Liu and Tsun Huang Tsung-Wei Huang, Ran-Yu Chang and Chih-Yu Che Haung, Ran-Yu Chang and Chih-Yu Che Pajakumar, James Watson and Yi-Kai Liu Tsung-Wei Huang, Ran-Yu Chang and Chih-Yu Che Pajakumar, James Watson and Yi-Kai Liu Tsung-Wei Huang, Ran-Yu Chang the Huang Tsung-Wei Huang the H
NISQ friendly approach towards variational quantum eigensolver Faster convergence to the Parrondo paradox problem via quantum random walks algorithm. Taking Advantage of Noise to Speed Up Classical Simulation of NISQ Circuits Using Quantum random walks to predict the chemical reaction rate constant Optimization of coincidence window for QKD in a noisy environment Eyuel Eshetu Elala, Aidan Pellow-Jarman, Rowan Parman, Shane McFarthing, Francesco Petruccion June-Koo Kevin Rhee Kshiti Sneh Rai, Álvaro M. Alhambra and J. Ignacio Ran-Yu Chang, Yu-Chao Hsu, Tzu-Jui Liu and Tsun Huang Joel Rajakumar, James Watson and Yi-Kai Liu Tsung-Wei Huang, Ran-Yu Chang and Chih-Yu Che environment Fentanglement Batteries Fentanglement Batteries Ye-Chao Liu, Stefan Nimmrichter and Offried Gühr Adrián Pérez-Salinas, Radoica Draskic, Jordi Tura Brand Vedran Dunjko Oliver Maupin, Ashlyn Burch, Christopher Yale, Love, Susan Clark, Brandon Ruzic, Andrew Landah neth Rudinger, Antonio Russo, Daniel Lobser and Al Baczewski Tero noise extrapolation for a small diatomic molecule on a trapped-ion quantum computer Tero noise extrapolation for a small diatomic molecule on a trapped-ion quantum computer Tero noise extrapolation for a small diatomic molecule on a trapped-ion quantum computer Junhyung Lyle Kim, Mohammad Taha Toghani, Cettributed Quantum State Tomography An ew class of entropic uncertainty relations Composite Pulses in Phase Space: High-Fidelity Universal Measurement-Free Gate Teleportation for Finite-Energy GKP Qubits Eyuel Eshetu Elala, Aidan Pellov in Rehat Allana Exhitation Indication Allana Singh, Baptiste Royer and Steven M Girversal Shraddha Singh, Baptiste Royer and Steven M Girversal S
Faster convergence to the Parrondo paradox problem via quantum random walks algorithm. Taking Advantage of Noise to Speed Up Classical Simulation of NISQ Circuits Using Quantum random walks to predict the chemical reaction rate constant Optimization of coincidence window for QKD in a noisy environment Tender of Nisq Entanglement Batteries Ran-Yu Chang, Yu-Chao Hsu, Tzu-Jui Liu and Tsun Huang Joel Rajakumar, James Watson and Yi-Kai Liu Tsung-Wei Huang, Ran-Yu Chang and Chih-Yu Che Hashir Kuniyil and Kadir Durak Hashir Kuniyil and Kadir Durak Hashir Kuniyil and Kadir Durak Reduce-and-chop: Shallow circuits for deeper problems Ran-Yu Chang, Yu-Chao Hsu, Tzu-Jui Liu and Tsun Huang Joel Rajakumar, James Watson and Yi-Kai Liu Tsung-Wei Huang, Ran-Yu Chang and Chih-Yu Che Hashir Kuniyil and Kadir Durak Hashir Kuniyil and Kadir Durak Ye-Chao Liu, Stefan Nimmrichter and Offried Gühn Adrián Pérez-Salinas, Radoica Draskic, Jordi Tura Brand Vedran Dunjko Oliver Maupin, Ashlyn Burch, Christopher Yale, Love, Susan Clark, Brandon Ruzic, Andrew Landah neth Rudinger, Antonio Russo, Daniel Lobser and An Baczewski Tzero noise extrapolation for a small diatomic molecule on a trapped-ion quantum computer Love, Susan Clark, Brandon Ruzic, Andrew Landah neth Rudinger, Antonio Russo, Daniel Lobser and An Baczewski Junhyung Lyle Kim, Mohammad Taha Toghani, Celuribe and Anastasios Kyrillidis Antonio Rotundo and Rene Schwonnek Composite Pulses in Phase Space: High-Fidelity Universal Measurement-Free Gate Teleportation for Finite-Energy GKP Qubits
via quantum random walks algorithm. Taking Advantage of Noise to Speed Up Classical Simulation of NISQ Circuits Joel Rajakumar, James Watson and Yi-Kai Liu Tsung-Wei Huang, Ran-Yu Chang and Chih-Yu Charan and Chih-Yu Ch
Using Quantum random walks to predict the chemical reaction rate constant Tsung-Wei Huang, Ran-Yu Chang and Chih-Yu Chemical reaction rate constant Tsung-Wei Huang, Ran-Yu Chang and Chih-Yu Chemical reaction rate constant Tsung-Wei Huang, Ran-Yu Chang and Chih-Yu Chemical reaction rate constant Tsung-Wei Huang, Ran-Yu Chang and Chih-Yu Chemical reaction rate constant Tsung-Wei Huang, Ran-Yu Chang and Chih-Yu Chemical reaction rate constant Tsung-Wei Huang, Ran-Yu Chang and Chih-Yu Chemical Ran-Yu Chang an
reaction rate constant Optimization of coincidence window for QKD in a noisy environment Tendrig and Chin-Tu Che Resource on a trapped-ion quantum computer Local Stochastic Factored Gradient Descent for Distributed Quantum State Tomography A new class of entropic uncertainty relations Composite Pulses in Phase Space: High-Fidelity Universal GKP Qubits Centanglement Batteries Ye-Chao Liu, Stefan Nimmrichter and Offried Gühr Adrián Pérez-Salinas, Radoica Draskic, Jordi Tura Brand Vedran Dunjko Oliver Maupin, Ashlyn Burch, Christopher Yale, Love, Susan Clark, Brandon Ruzic, Andrew Landah neth Rudinger, Antonio Russo, Daniel Lobser and Arabaczewski Junhyung Lyle Kim, Mohammad Taha Toghani, Céluribe and Anastasios Kyrillidis Antonio Rotundo and Rene Schwonnek Shraddha Singh, Baptiste Royer and Steven M Girv GKP Qubits
environment Pashii Korilyii and Kadii Dorak Perchao Liu, Stefan Nimmrichter and Otfried Gühr Adrián Pérez-Salinas, Radoica Draskic, Jordi Tura Brand Vedran Dunjko Oliver Maupin, Ashlyn Burch, Christopher Yale, Love, Susan Clark, Brandon Ruzic, Andrew Landah neth Rudinger, Antonio Russo, Daniel Lobser and Ar Baczewski Local Stochastic Factored Gradient Descent for Distributed Quantum State Tomography Local Stochastic Factoreic Gradient Descent for Distributed Pulses in Phase Space: High-Fidelity Universal Measurement-Free Gate Teleportation for Finite-Energy Measurement-Free Gate Teleportation for Finite-Energy Shraddha Singh, Baptiste Royer and Steven M Girv
Reduce-and-chop: Shallow circuits for deeper problems Adrián Pérez-Salinas, Radoica Draskic, Jordi Tura Brand Vedran Dunjko Oliver Maupin, Ashlyn Burch, Christopher Yale, Love, Susan Clark, Brandon Ruzic, Andrew Landah neth Rudinger, Antonio Russo, Daniel Lobser and Al Baczewski Local Stochastic Factored Gradient Descent for Distributed Quantum State Tomography Local Stochastic Factored Gradient Descent for Distributed Pulses of entropic uncertainty relations A new class of entropic uncertainty relations Composite Pulses in Phase Space: High-Fidelity Universal Measurement-Free Gate Teleportation for Finite-Energy GKP Qubits Adrián Pérez-Salinas, Radoica Draskic, Jordi Tura Brand Vedran Dunjko Oliver Maupin, Ashlyn Burch, Christopher Yale, Love, Susan Clark, Brandon Ruzic, Andrew Landah neth Rudinger, Antonio Russo, Daniel Lobser and Al Baczewski Junhyung Lyle Kim, Mohammad Taha Toghani, Céturibe and Anastasios Kyrillidis Antonio Rotundo and Rene Schwonnek
725 Zero noise extrapolation for a small diatomic molecule on a trapped-ion quantum computer Test and Vedran Dunjko Oliver Maupin, Ashlyn Burch, Christopher Yale, Love, Susan Clark, Brandon Ruzic, Andrew Landah neth Rudinger, Antonio Russo, Daniel Lobser and Al Baczewski Test and Vedran Dunjko Oliver Maupin, Ashlyn Burch, Christopher Yale, Love, Susan Clark, Brandon Ruzic, Andrew Landah neth Rudinger, Antonio Russo, Daniel Lobser and Al Baczewski Junhyung Lyle Kim, Mohammad Taha Toghani, Cétuributed Quantum State Tomography Test and Vedran Dunjko Oliver Maupin, Ashlyn Burch, Christopher Yale, Love, Susan Clark, Brandon Ruzic, Andrew Landah neth Rudinger, Antonio Russo, Daniel Lobser and Al Baczewski Junhyung Lyle Kim, Mohammad Taha Toghani, Céturibe and Anastasios Kyrillidis Antonio Rotundo and Rene Schwonnek Composite Pulses in Phase Space: High-Fidelity Universal Measurement-Free Gate Teleportation for Finite-Energy GKP Qubits
 Zero noise extrapolation for a small diatomic molecule on a trapped-ion quantum computer Local Stochastic Factored Gradient Descent for Distributed Quantum State Tomography A new class of entropic uncertainty relations Composite Pulses in Phase Space: High-Fidelity Universal Measurement-Free Gate Teleportation for Finite-Energy GKP Qubits Love, Susan Clark, Brandon Ruzic, Andrew Landah neth Rudinger, Antonio Ruzso, Daniel Lobser and Al Baczewski Junhyung Lyle Kim, Mohammad Taha Toghani, Céruite and Anastasios Kyrillidis Antonio Rotundo and Rene Schwonnek Shraddha Singh, Baptiste Royer and Steven M Girv
 tributed Quantum State Tomography Uribe and Anastasios Kyrillidis A new class of entropic uncertainty relations Composite Pulses in Phase Space: High-Fidelity Universal Measurement-Free Gate Teleportation for Finite-Energy GKP Qubits Uribe and Anastasios Kyrillidis Antonio Rotundo and Rene Schwonnek Shraddha Singh, Baptiste Royer and Steven M Girv
Composite Pulses in Phase Space: High-Fidelity Universal 729 Measurement-Free Gate Teleportation for Finite-Energy GKP Qubits Shraddha Singh, Baptiste Royer and Steven M Girv
729 Measurement-Free Gate Teleportation for Finite-Energy Shraddha Singh, Baptiste Royer and Steven M Girv GKP Qubits
Universality versus certification of distinctive features in the Bose-Hubbard Hamiltonian Lukas Pausch, Edoardo G. Carnio, Alberto Rodrígue Andreas Buchleitner
Analyzing and designing fault-tolerant circuits using detector error models Analyzing and designing fault-tolerant circuits using detector error models Peter-Jan Derks and Alex Townsend-Teague
Spin squeezing inequalities meet randomized measurements Spin squeezing inequalities meet randomized measurements Jan Lennart Bönsel, Satoya Imai, Ye-Chao Liu and C
734 A toolbox to simulate quantum optomechanical systems Sampreet Kalita and Amarendra K. Sarma
Noisy quantum batteries: optimizing the output ergotropy Salvatore Tirone, Raffaele Salvia, Stefano Chessa art torio Giovannetti
High-dimensional measurement incompatibility and steering High-dimensional measurement incompatibility and steering Benjamin Jones, Roope Uola, Thomas Cope, Marie nou, Sebastien Designolle, Pavel Sekatski and N
Long-range entangled states from stochastic evolution and random measurements Long-range entangled states from stochastic evolution and random measurements Losifina Angelidi, Marcin Szyniszewski and Arijeet Po
Faster Stochastic First-Order Method for Maximum- Likelihood Quantum State Tomography Chung-En Tsai, Hao-Chung Cheng and Yen-Huan

739	Quantum Error Correction with Gauge Symmetries	Abhishek Rajput, Alessandro Roggero and Nathan
740	Using copies to improve precision in continuous-time	Wiebe Jemma Bennett, Adam Callison, Tom O'Leary, Mia West,
742	quantum computing Adaptive surface code for quantum error correction on	Nicholas Chancellor and Viv Kendon Adam Siegel, Armands Strikis, Thomas Flatters and Simon
743	a defective lattice Probing spectroscopic features of quantum many-body	Benjamin Jinzhao Sun, Lucia Vilchez-Estevez, Vlatko Vedral and Andrew Rooth Reveal
745	systems on a quantum simulator Active error-corrected memory with the Sweep Rule	drew Boothroyd Annie Ray, Raymond Laflamme and Aleksander Kubica
746	Reducing the qubit requirement of Jordan-Wigner encodings of N-mode, K-fermion systems from N to log(N choose K)	Brent Harrison, Daniel Adamiak and James Whitfield
747	Correcting non-independent and non-identically distributed errors with surface codes	Konstantin Tiurev, Peter-Jan Derks, Joschka Roffe, Jens Eisert and Jan-Michael Reiner
748	Relative Entropy Accumulation in von Neumann al- gebras	Omar Fawzi, Li Gao and Mizanur Rahaman
749	Evaluation of QUBO formulations of the ranking aggregation problem	Elías Combarro, Raúl Pérez Fernández, José Ranilla and Bernard De Baets
750	Continuous Variable Quantum Key Distribution in Multiple-Input Multiple-Output Settings	Shradhanjali Sahu
751	Distributing Quantum Circuits over Heterogeneous, Modular Quantum Computing Architectures	Daniel Mills, Pablo Andres-Martinez, Luciana Henaut, Ross Duncan, Kentaro Yamamoto, Tim Forrer, Mio Murao and Jun-Yi Wu
752	Efficient decoding schemes for the $\rm XYZ^2$ hexagonal stabilizer code	Basudha Srivastava, Ben Criger, Hussain Anwar, Anton Frisk Kockum and Mats Granath
753	SymboliQ: A Python framework for Symbolic Quantum Computation	Victory Omole and Bob Sutor
754	A Shot-Aware Benchmark for Variational Quantum Eigensolvers	Cody Fan, Adam Cobb and Susmit Jha
755	High-threshold fault-tolerance in measurement-based error correction with tailored fusion circuits	Kaavya Sahay, Jahan Claes and Shruti Puri
756	Optimising graph codes for measurement-based loss tolerance	Tom Bell and Stefano Paesani
757	The domain wall color code	Konstantin Tiurev, Arthur Pesah, Markus Kesserlring, Joschka Roffe, Peter-Jan Derks, Jens Eisert and Jan- Michael Reiner
758	Floquet Code as Code Deformation	Xiaozhen Fu and Daniel Gottesman
759	Optimal Decoding of 1D Low-depth Random-circuit Codes	Jon Nelson, Michael Gullans and Gregory Bentsen
760	Stochastic approximate state conversion for entanglement and general quantum resource theories	Tulja Varun Kondra, Chandan Datta and Alexander Streltsov
761	Using Clifford RSRG-X to investigate resonance pro- liferation at the transition between many-body localised phases	Jared Jeyaretnam, Christopher J. Turner and Arijeet Pal
762	Observable thermalization in a one-dimensional Ising model	Lodovico Scarpa, Fabio Anza and Vlatko Vedral
764	A Vapor Cavity QED system for quantum computation and communication	Sharoon Austin, Dhruv Devulapalli, Kunal Sharma, Khoi Hoang, Feng Zhou, Kartik Srinivasan and Alexey Gorshkov
768	A diagrammatic approach to local physics using tensor networks and category theory	Andreas Bauer
769	Solving relativistic bound-state problems in QCD with a fault-tolerant quantum computer	Mason Rhodes, Michael Kreshchuk and Andrew Landahl
770	A Fast Renormalization-Group Tensor-Network Decoder for Quantum Low-Density Parity-Check Codes	Cole Maurer and Andrew Landahl
772	On solving combinatorial optimisation problems using Quantum Imaginary Time Evolution (QITE)	Anirban Mukherjee, Nitin Nayak and M Girish Chandra
773	Robust Witnesses of Genuine Multiparticle Indistinguishability	Shawn Geller, Aaron Young, Scott Glancy and Emanuel Knill
775	Renormalisation Through The Lens Of Quantum Convolutional Neural Networks	Nathan McMahon, Petr Zapletal and Michael Hartmann
776	Compressive gate set tomography	Raphael Brieger, Ingo Roth and Martin Kliesch
777	Towards a minimal example of quantum nonlocality without inputs and Topologically robust network non-locality	Sadra Boreiri, Antoine Girardin, Bora Ulu, Patryk Lipka- Bartosik, Nicolas Brunner and Pavel Sekatski
778	Nonlocal network coding in interference channels based on Clauser-Horne-Shimony-Holt game	Jiyoung Yun, Ashutosh Rai and Joonwoo Bae
779	On the Role of Quantum Communication and Loss in Attacks on Quantum Position Verification	Philip Verduyn Lunel, Rene Allerstorfer, Florian Speelman and Harry Buhrman

780	Towards Practical and Error-Robust Quantum Position Verification	Rene Allerstorfer, Harry Buhrman, Florian Speelman and Philip Verduyn Lunel	
781	Communication complexity of relations: an orthogonality graph inspired case study	Sumit Rout, Some Sankar Bhattacharya, Nitica Sakharwade, Paweł Horodecki and Ravishankar Ramanathan	
782	Entropic Inequalities on Fermionic System	Tim Möbus, Cambyse Rouzé and Li Gao	
784	IQP-based Verification of Quantum Computational Advantage: Stabilizer Constructions and Classical Security	Michael Bremner, Bin Cheng and Zhengfeng Ji	
785	Gate teleportation based quantum Fourier transform	Taewan Kim, Yongsoo Hwang, Kyunghyun Baek and Jeongho Bang	
786	Computational complexity of optimizing defect braiding quantum circuits by reordering qubits	Kunihiro Wasa, Shin Nishio, Koki Suetsugu, Michael Hanks, Ashley Stephens, Yu Yokoi and Kae Nemoto	
787	Fixed interval scheduling problem with minimal idle time with an application to music arrangement problem	Ludmila Botelho and Özlem Salehi	
788	Deep Spiking Quantum Neural Network for Noisy Image Classification	Debanjan Konar, Aditya Das Sarma, Soham Bhandary and Attila Cangi	
790	Easy-to-compute local Clifford invariants for graph states	Frederik Hahn and Adam Burchardt	
791	Entanglement-efficient bipartite-distributed quantum computing with entanglement-assisted packing processes	Jun-Yi Wu, Kosuke Matsui, Timothy Forrer, Akihito Soeda, Pablo Andres-Martinez, Daniel Mills, Luciana Henaut, and Mio Murao	
792	Harnessing non-Hermitian dissipation for quantum control	Serra Erdamar, Maryam Abbasi, Weijian Chen, Byung Ha, Jacob Muldoon, Yogesh Joglekar and Kater Murch	
793	High-dimensional Quantum Steering in Networks	Sophie Egelhaaf and Roope Uola	
794	Recommender System Expedited Quantum Control Optimization	Priya Batra	
795	Stabilizer codes for Open Quantum Systems	Francisco Revson Fernandes Pereira, Stefano Mancini and Giuliano Gadioli La Guardia	
796	Particle Tracking with Noisy Intermediate-Scale Quantum Computers	Tim Schwägerl, Cigdem Issever and Karl Jansen	
797	Quantum error correction with dissipatively stabilized squeezed cat qubits	Timo Hillmann and Fernando Quijandría	
798	Speedups for near- and long-term Hamiltonian sim- ulation via fermionic labelling	Mitchell Chiew and Sergii Strelchuk	
799	Hamiltonian Formulation of the Schwinger Model with Wilson Fermions	Takis Angelides, Karl Jansen, Lena Funcke and Stefan Kühn	
800	Quantum Algorithms for Atomistic and Continuous Models in Electrochemistry	Alejandro Somoza, Albert Pool, Konstantin Lamp, Marina Walt, Giorgio Silvi, Michael Lubasch and Birger Horstmann	
801	Optimization of gate-based implementation of algorithms that are based on quantum walks	Maksims Dimitrijevs and Andris Ambainis	
802	Design Constraints for Unruh-DeWitt Quantum Computers	Eric Aspling, Michael Lawler and John Marohn	
803	Variational quantum algorithms to resolve berry phases in quantum chemistry	Emiel Koridon and Stefano Polla	
804	Contextuality and memory cost of simulation of Majorana fermions	Susane Calegari, Juani Bermejo-Vega and Michał Osz- maniec	
805	Method for the visualization of multi-qubit systems pure states	Alice Barthe, Vedran Dunjko, Jordi Tura and Michele Grossi	
807	An elegant proof of self-testing for multipartite Bell inequalities	Ekta Panwar, Palash Pandya and Marcin Wiesniak	
808	A quantum algorithm for the orthogonal matching pursuit	Armando Bellante, Stefano Vanerio and Stefano Zanero	
810	Evaluation of training methods for Quantum Re- inforcement Learning	Georg Kruse and Andreas Rosskopf	
812	Optimising option pricing quantum algorithms based on variational quantum simulation through rigorous error estimates	David Dechant, Jordi Tura and Vedran Dunjko	
814	Algebraic Bethe Circuits	Alejandro Sopena, Max Hunter-Gordon, Diego García- Martín, Germán Sierra and Esperanza López	
815	Information scrambling in non-KAM quantum systems with application to quantum metrology.	Naga Dileep Varikuti, Abinash Sahu, Arul Lak- shminarayan and Vaibhav Madhok	
817	Numerical evidence for exponential speed-up of QAOA over unstructured search for approximate constrained optimization	John Golden, Andreas Bärtschi, Stephan Eidenbenz and Daniel O'Malley	
819	Generating Approximate Ground States of Molecules using Using Quantum Machine Learning	Jack Ceroni, Torin Stetina, Maria Kieferova, Carlos Ortiz Marrero, Juan Miguel Arrazola and Nathan Wiebe	
820	Quantum Data-Syndrome Subsystem Codes	Andrew Nemec	
821	Spatial Search on Lattices with Continuous Time Quantum Walks	Dhruv Devulapalli and Andrew Childs	

	Quantum Defect Analyzer (QDA): An experimental analysis	Meghashrita Das, Biswajit Basu and Pabitra Mitra
823	Correcting coherent and readout errors in the surface code	Áron Márton and Janos Asboth
824	OPTRAN: Choosing an Optimal Pass Set for Quantum Transpilation	Siddharth Dangwal, Gokul Subramanian Ravi and Frederic T. Chong
826	Verifying the activation of bipartite quantum correlations	Jonathan Steinberg, H. Chau Nguyen and Matthias Kleinmann
827	Heuristic Cost-Efficient Readout Error Mitigation	Ákos Budai, Zoltán Zimborás and András Pályi
829	Entanglement and Coherence in Bernstein-Vazirani algorithm	Moein Naseri, Tulja Varun Kondra, Suchetana Goswami, Marco Fellous-Asiani and Alexander Streltsov
830	Distance-preserving flag fault-tolerant protocols for pla- nar color codes of distance 9	Balint Pato, Theerapat Tansuwannont, Shilin Huang and Kenneth R. Brown
832	Extending matchgate simulation methods to universal quantum circuits	Avinash Mocherla
833	Fast quantum state reconstruction via accelerated non- convex programming	Junhyung Lyle Kim, George Kollias, Amir Kalev, Ken X. Wei and Anastasios Kyrillidis
835	Minimum Entanglement Protocols for Function Estimation	Adam Ehrenberg, Jacob Bringewatt and Alexey Gorshkov
836	Efficient learning and benchmarking of readout noise cross-talk models in near-term quantum devices	Jan Tuziemski, Filip Maciejewski, Joanna Majsak, Oskar Słowik and Michał Oszmaniec
837	Quantum Enhanced and Verified Exascale Computing (QEVEC)	Viv Kendon
838	Classical Splitting of Parametrized Quantum Circuits	Cenk Tüysüz, Giuseppe Clemente, Arianna Crippa, Tobias Hartung, Stefan Kühn and Karl Jansen
840	Parallelization of Sequential Quantum Channel Discrimination in the Non-Asymptotic Regime	Bjarne Bergh, Nilanjana Datta, Robert Salzmann and Mark Wilde
841	Multivariate quantum signal processing may be more difficult than we thought	Balazs Nemeth, Blanka Kover, Boglarka Kulcsar and Roland Botond Miklosi
842	Quantum simulation with Rydberg qutrits	Toonyawat Angkhanawin
843	Improved decoding of quantum LDPC codes using neural-network enhanced belief propagation	Bohan Lu, Arthur Pesah, Joschka Roffe and Nithin Raveendran
844	Quantum Algorithm for Path-Edge Sampling	Stacey Jeffery, Shelby Kimmel and Alvaro Piedrafita
844 846	Quantum Algorithm for Path-Edge Sampling Optimizing quantum circuits with Riemannian gradient flow	Stacey Jeffery, Shelby Kimmel and Alvaro Piedrafita Roeland Wiersema
	Optimizing quantum circuits with Riemannian gradient flow Adventures in Building Qudit Circuits	
846	Optimizing quantum circuits with Riemannian gradient flow	Roeland Wiersema
846 847	Optimizing quantum circuits with Riemannian gradient flow Adventures in Building Qudit Circuits Completeness for arbitrary finite dimensions of ZXW-	Roeland Wiersema Lia Yeh and John van de Wetering Boldizsár Poór, Quanlong Wang, Razin Shaikh, Lia Yeh,
846 847 848	Optimizing quantum circuits with Riemannian gradient flow Adventures in Building Qudit Circuits Completeness for arbitrary finite dimensions of ZXW-calculus, a unifying calculus	Roeland Wiersema Lia Yeh and John van de Wetering Boldizsár Poór, Quanlong Wang, Razin Shaikh, Lia Yeh, Richie Yeung and Bob Coecke
846 847 848 849	Optimizing quantum circuits with Riemannian gradient flow Adventures in Building Qudit Circuits Completeness for arbitrary finite dimensions of ZXW-calculus, a unifying calculus Multi Party Quantum Clock Synchronization Symmetry Adapted Trotter Decomposition for the Sim-	Roeland Wiersema Lia Yeh and John van de Wetering Boldizsár Poór, Quanlong Wang, Razin Shaikh, Lia Yeh, Richie Yeung and Bob Coecke Manon Bart and Ryan Glasser
846 847 848 849 850	Optimizing quantum circuits with Riemannian gradient flow Adventures in Building Qudit Circuits Completeness for arbitrary finite dimensions of ZXW-calculus, a unifying calculus Multi Party Quantum Clock Synchronization Symmetry Adapted Trotter Decomposition for the Simulation of Heisenberg Model on IBM Quantum Devices Fast-mixing results of quantum Monte Carlo methods for	Roeland Wiersema Lia Yeh and John van de Wetering Boldizsár Poór, Quanlong Wang, Razin Shaikh, Lia Yeh, Richie Yeung and Bob Coecke Manon Bart and Ryan Glasser Bo Yang and Naoki Negishi
846 847 848 849 850	Optimizing quantum circuits with Riemannian gradient flow Adventures in Building Qudit Circuits Completeness for arbitrary finite dimensions of ZXW-calculus, a unifying calculus Multi Party Quantum Clock Synchronization Symmetry Adapted Trotter Decomposition for the Simulation of Heisenberg Model on IBM Quantum Devices Fast-mixing results of quantum Monte Carlo methods for antiferromagnetic Heisenberg model on bipartite graphs	Roeland Wiersema Lia Yeh and John van de Wetering Boldizsár Poór, Quanlong Wang, Razin Shaikh, Lia Yeh, Richie Yeung and Bob Coecke Manon Bart and Ryan Glasser Bo Yang and Naoki Negishi Jun Takahashi, Samuel Slezak and Elizabeth Crosson Bo Yang, Kaoru Yamamoto, Hiroyuki Harada, Yuuki Toku-
846 847 848 849 850 851	Optimizing quantum circuits with Riemannian gradient flow Adventures in Building Qudit Circuits Completeness for arbitrary finite dimensions of ZXW-calculus, a unifying calculus Multi Party Quantum Clock Synchronization Symmetry Adapted Trotter Decomposition for the Simulation of Heisenberg Model on IBM Quantum Devices Fast-mixing results of quantum Monte Carlo methods for antiferromagnetic Heisenberg model on bipartite graphs Resource-efficient Generalized Subspace Expansion Koopman Operator learning for Accelerating Quantum	Roeland Wiersema Lia Yeh and John van de Wetering Boldizsár Poór, Quanlong Wang, Razin Shaikh, Lia Yeh, Richie Yeung and Bob Coecke Manon Bart and Ryan Glasser Bo Yang and Naoki Negishi Jun Takahashi, Samuel Slezak and Elizabeth Crosson Bo Yang, Kaoru Yamamoto, Hiroyuki Harada, Yuuki Tokunaga, Nobuyuki Yoshioka and Suguru Endo
846 847 848 849 850 851 852	Optimizing quantum circuits with Riemannian gradient flow Adventures in Building Qudit Circuits Completeness for arbitrary finite dimensions of ZXW-calculus, a unifying calculus Multi Party Quantum Clock Synchronization Symmetry Adapted Trotter Decomposition for the Simulation of Heisenberg Model on IBM Quantum Devices Fast-mixing results of quantum Monte Carlo methods for antiferromagnetic Heisenberg model on bipartite graphs Resource-efficient Generalized Subspace Expansion Koopman Operator learning for Accelerating Quantum Optimization and Machine Learning	Roeland Wiersema Lia Yeh and John van de Wetering Boldizsár Poór, Quanlong Wang, Razin Shaikh, Lia Yeh, Richie Yeung and Bob Coecke Manon Bart and Ryan Glasser Bo Yang and Naoki Negishi Jun Takahashi, Samuel Slezak and Elizabeth Crosson Bo Yang, Kaoru Yamamoto, Hiroyuki Harada, Yuuki Tokunaga, Nobuyuki Yoshioka and Suguru Endo Di Luo, Jiayu Shen, Rumen Dangovski and Marin Soljacic Aadil Oufkir, Omar Fawzi and Daniel Stilck Franca Cristina Cirstoiu, Daniel Mills, Silas Dilkes, Seyon Sivarajah and Ross Duncan
846 847 848 849 850 851 852 853	Optimizing quantum circuits with Riemannian gradient flow Adventures in Building Qudit Circuits Completeness for arbitrary finite dimensions of ZXW-calculus, a unifying calculus Multi Party Quantum Clock Synchronization Symmetry Adapted Trotter Decomposition for the Simulation of Heisenberg Model on IBM Quantum Devices Fast-mixing results of quantum Monte Carlo methods for antiferromagnetic Heisenberg model on bipartite graphs Resource-efficient Generalized Subspace Expansion Koopman Operator learning for Accelerating Quantum Optimization and Machine Learning Lower bounds on learning Pauli channels	Roeland Wiersema Lia Yeh and John van de Wetering Boldizsár Poór, Quanlong Wang, Razin Shaikh, Lia Yeh, Richie Yeung and Bob Coecke Manon Bart and Ryan Glasser Bo Yang and Naoki Negishi Jun Takahashi, Samuel Slezak and Elizabeth Crosson Bo Yang, Kaoru Yamamoto, Hiroyuki Harada, Yuuki Tokunaga, Nobuyuki Yoshioka and Suguru Endo Di Luo, Jiayu Shen, Rumen Dangovski and Marin Soljacic Aadil Oufkir, Omar Fawzi and Daniel Stilck Franca Cristina Cirstoiu, Daniel Mills, Silas Dilkes, Seyon Sivarajah and Ross Duncan Pascal Baßler, Matthias Zipper, Christopher Cedzich, Markus Heinrich, Patrick Huber, Michael Johanning and Martin Kliesch
846 847 848 849 850 851 852 853 854 855	Optimizing quantum circuits with Riemannian gradient flow Adventures in Building Qudit Circuits Completeness for arbitrary finite dimensions of ZXW-calculus, a unifying calculus Multi Party Quantum Clock Synchronization Symmetry Adapted Trotter Decomposition for the Simulation of Heisenberg Model on IBM Quantum Devices Fast-mixing results of quantum Monte Carlo methods for antiferromagnetic Heisenberg model on bipartite graphs Resource-efficient Generalized Subspace Expansion Koopman Operator learning for Accelerating Quantum Optimization and Machine Learning Lower bounds on learning Pauli channels Volumetric Benchmarking of Error Mitigation with Qermit	Roeland Wiersema Lia Yeh and John van de Wetering Boldizsár Poór, Quanlong Wang, Razin Shaikh, Lia Yeh, Richie Yeung and Bob Coecke Manon Bart and Ryan Glasser Bo Yang and Naoki Negishi Jun Takahashi, Samuel Slezak and Elizabeth Crosson Bo Yang, Kaoru Yamamoto, Hiroyuki Harada, Yuuki Tokunaga, Nobuyuki Yoshioka and Suguru Endo Di Luo, Jiayu Shen, Rumen Dangovski and Marin Soljacic Aadil Oufkir, Omar Fawzi and Daniel Stilck Franca Cristina Cirstoiu, Daniel Mills, Silas Dilkes, Seyon Sivarajah and Ross Duncan Pascal Baßler, Matthias Zipper, Christopher Cedzich, Markus Heinrich, Patrick Huber, Michael Johanning and
846 847 848 849 850 851 852 853 854 855	Optimizing quantum circuits with Riemannian gradient flow Adventures in Building Qudit Circuits Completeness for arbitrary finite dimensions of ZXW-calculus, a unifying calculus Multi Party Quantum Clock Synchronization Symmetry Adapted Trotter Decomposition for the Simulation of Heisenberg Model on IBM Quantum Devices Fast-mixing results of quantum Monte Carlo methods for antiferromagnetic Heisenberg model on bipartite graphs Resource-efficient Generalized Subspace Expansion Koopman Operator learning for Accelerating Quantum Optimization and Machine Learning Lower bounds on learning Pauli channels Volumetric Benchmarking of Error Mitigation with Qermit Synthesis of and compilation with time-optimal multiqubit gates	Roeland Wiersema Lia Yeh and John van de Wetering Boldizsár Poór, Quanlong Wang, Razin Shaikh, Lia Yeh, Richie Yeung and Bob Coecke Manon Bart and Ryan Glasser Bo Yang and Naoki Negishi Jun Takahashi, Samuel Slezak and Elizabeth Crosson Bo Yang, Kaoru Yamamoto, Hiroyuki Harada, Yuuki Tokunaga, Nobuyuki Yoshioka and Suguru Endo Di Luo, Jiayu Shen, Rumen Dangovski and Marin Soljacic Aadil Oufkir, Omar Fawzi and Daniel Stilck Franca Cristina Cirstoiu, Daniel Mills, Silas Dilkes, Seyon Sivarajah and Ross Duncan Pascal Baßler, Matthias Zipper, Christopher Cedzich, Markus Heinrich, Patrick Huber, Michael Johanning and Martin Kliesch Paul Frixons, María Naya-Plasencia, André Chailloux and
846 847 848 849 850 851 852 853 854 855 857	Optimizing quantum circuits with Riemannian gradient flow Adventures in Building Qudit Circuits Completeness for arbitrary finite dimensions of ZXW-calculus, a unifying calculus Multi Party Quantum Clock Synchronization Symmetry Adapted Trotter Decomposition for the Simulation of Heisenberg Model on IBM Quantum Devices Fast-mixing results of quantum Monte Carlo methods for antiferromagnetic Heisenberg model on bipartite graphs Resource-efficient Generalized Subspace Expansion Koopman Operator learning for Accelerating Quantum Optimization and Machine Learning Lower bounds on learning Pauli channels Volumetric Benchmarking of Error Mitigation with Qermit Synthesis of and compilation with time-optimal multiqubit gates Widening Simon-based Attacks Unveiling Quantum Entanglement in Many-Body Systems	Roeland Wiersema Lia Yeh and John van de Wetering Boldizsár Poór, Quanlong Wang, Razin Shaikh, Lia Yeh, Richie Yeung and Bob Coecke Manon Bart and Ryan Glasser Bo Yang and Naoki Negishi Jun Takahashi, Samuel Slezak and Elizabeth Crosson Bo Yang, Kaoru Yamamoto, Hiroyuki Harada, Yuuki Tokunaga, Nobuyuki Yoshioka and Suguru Endo Di Luo, Jiayu Shen, Rumen Dangovski and Marin Soljacic Aadil Oufkir, Omar Fawzi and Daniel Stilck Franca Cristina Cirstoiu, Daniel Mills, Silas Dilkes, Seyon Sivarajah and Ross Duncan Pascal Baßler, Matthias Zipper, Christopher Cedzich, Markus Heinrich, Patrick Huber, Michael Johanning and Martin Kliesch Paul Frixons, María Naya-Plasencia, André Chailloux and Ritam Bhaumik

Not presenting

Title	Authors
Quantum Advantage from Any Non-Local Game	Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan and Lisa Yang
Multi-qubit noise deconvolution and characterization	Simone Roncallo, Lorenzo Maccone and Chiara Macchiavello
Quantum Algorithms for Testing Hamiltonian Symmetry	Margarite LaBorde and Mark Wilde
Cycle Index Polynomials and Generalized Quantum Separability Tests	Zachary Bradshaw, Margarite Laborde and Mark Wilde
Locality and error correction in quantum dynamics with measurements	Andrew Lucas, Aaron Friedman, Chao Yin and Yifan Hong
Thermodynamic Signatures of Genuinely Multipartite Entanglement	Samgeeth Puliyil, Manik Banik and Mir Alimuddin
Fully undistillable quantum states are separable	Satvik Singh and Nilanjana Datta
Channel capacity of relativistic quantum communication with rapid interaction	Erickson Tjoa and Kensuke Gallock-Yoshimura
Optimal local work extraction from bipartite quantum systems in the presence of Hamiltonian couplings	Raffaele Salvia, Giacomo De Palma and Vittorio Giovannetti
From String Detection to Orthogonal Vector Problem	Yunhao Wang, Tianyuan Zheng and Lior Horesh
Constructing quantum decoders based on complementarity principle	Yoshifumi Nakata, Takaya Matsuura and Masato Koashi
New additivity properties of the relative entropy of entanglement and its generalisations	Roberto Rubboli and Marco Tomamichel
Digital quantum simulation of gauge theories	Yao Ji, Henry Lamm and Shuchen Zhu
Performance and limitations of the QAOA at constant levels on large sparse hypergraphs and spin glass models	Joao Basso, David Gamarnik, Song Mei and Leo Zhou
Distributed State Preparation with Zero Communication	lan George, Min-Hsiu Hsieh and Eric Chitambar
Algorithmic-level Error Correction: Arbitrarily Accurate Recovery Of Noisy Quantum Signal Processing	Andrew K. Tan, Yuan Liu, Minh C. Tran and Isaac L. Chuang
Multipartite Nonlocality in Clifford Networks	Amanda Gatto Lamas and Eric Chitambar
On the computational hardness needed for quantum cryptography	Zvika Brakerski, Ran Canetti and Luowen Qian
Efficient quantum time dynamics via Yang-Baxter equation	Sahil Gulania, Bo Peng, Zichang He, Niranjan Govind and Yuri Alexeev
Self-restricting Noise in Quantum Dynamics	Nicholas Laracuente
Structure Learning for Quantum Kernels	Massimiliano Incudini, Francesco Martini and Alessandra Di Pierro
Hardware-Efficient and Accurate Unsupervised Quantum Machine Learning on Electronic Structure Problems	Chia-Tung Chu, Shih-Kai Chou and Hsi-Sheng Goan
The electrostatic control of two-level systems for PbS Nanotadpoles	Grigor Mantashyan and David Hayrapetyan
Neural-Network Quantum States for Continuum Quantum Field Theory	John Martyn, Khadijeh Najafi and Di Luo
Quantum Image Representation Methods Using Qutrits	Ankit Khandelwal and M Girish Chandra
Effects of noise on generalization in quantum machine learning	Van Tuan Vo
Quantum Phase Recognition using Quantum Tensor Networks	Shweta Sahoo, Utkarsh Azad and Harjinder Singh
Towards A Scalable Implementation of IRC-VQE Algorithm Incorporating Finite-Difference based Geometry Optimization to Probe Accurately SN2 Reaction Pathway	Nirmal M R, Shampa Sarkar, Manoj Nambiar and Sriram Goverapet Srinivasan
Isomerization Reaction Pathway Tracing of small organic molecules using extended IRC-VQE Framework	Nirmal M R, Shampa Sarkar, Manoj Nambiar and Sriram Goverapet Srinivasan
A Quantum-Enabled Nested Hybrid Scalable Approach for Molecular Geometry Optimization in the NISQ era	Nirmal M R, Shampa Sarkar, Manoj Nambiar and Sriram Goverapet Srinivasan
Improving Amplitude Estimation with Error Mitigation	George Umbrarescu, Adam Callison and Dan E. Browne
Effect of Gaussian and Bessel laser beams on linear and nonlinear optical properties of vertically coupled cylindrical quantum dots	Paytsar Mantashyan, Tigran Sargsian and David Hayrapetyan

List of participants

Name	Affiliation
Alastair Abbott	Inria Grenoble
Dina Abdelhadi	EPFL
Youssef Achari Berrada	BMW Group & FAU
Antonio Acín	ICFO
Abhishek Agarwal	National Physical Laboratory
Dorit Aharonov	Hebrew University of Jerusalem
Arash Ahmadi	Kavli Institute of Nanoscience
Borhan Ahmadi	University of Gdańsk
	,
Kundu Akash	Polish Academy of Sciences
Miguel Alarcón	Purdue University
Victor V. Albert	QuICS @ NIST & UMD College Park
Rhea Alexander	Imperial College London
Manuel Algaba	IQM
Abdulla Alhajri	University of Oxford
Nicholas Allen	Princeton University
Rene Allerstorfer	QuSoft (CWI Amsterdam)
Yusuf Alnawakhtha	University of Maryland
Isobel Aloisio	Monash University
Hafiza Rumlah Amer	IBA
Prabhanjan Ananth	UCSB
Takis Angelides	DESY, CQTA
losifina Angelidi	University College London
Toonyawat Angkhanawin	Durham University
Galit Anikeeva	MIT
Leandro Aolita	Technology Innovation Institute
	University College London
Harriet Apel	
Simon Apers	CNRS, IRIF
Maite Arcos Enriquez	University College London
Mirko Arienzo	Hamburg University of Technology
Rotem Arnon-Friedman	Weizmann Institute of Science
Atul Singh Arora	Caltech
Vahid Reza Asadi	University of Waterloo
Janos Asboth	Budapest University of Technology and Economics
Eric Aspling	Binghamton University
Sooryansh Asthana	Indian Institute of Technology Delhi
Sharoon Austin	University of Maryland, Joint Quantum Institute
Ryan Babbush	Google Quantum Al
Flavio Baccari	Max Planck Institute of Quantum Optics
Andrew Baczewski	Sandia National Laboratories
Eunok Bae	Hanyang University
Zahra Baghali Khanian	Technical University of Munich
Jonathan Baker	Duke Quantum Center
Rajni Bala	Indian Institute of Technology Delhi
Shankar Balasubramanian	Massachusetts Institute of Technology
Pato Balint	Duke University
Michał Banacki	ICTQT, University of University of Gdańsk
Jean-Daniel Bancal	CEA
Akshay Bansal	Virginia Tech
Jinge Bao	National University of Singapore
Pedro Baptista	Kobenhavn Universitet
Stefano Barison	EPFL
Khashayar Barooti	EPFL
Manon Bart	Tulane
Alice Barthe	CERN
Andreas Bärtschi	Los Alamos National Laboratory
James Bartusek	UC Berkeley
	University of Sydney
Nouedyn Baspin	
Pascal Baßler	Hamburg University of Technology
Andreas Bauer	Free University Berlin
Jessica Bavaresco	University of Geneva
Emily Beatty	Inria & ENS de Lyon & LIP
Jacob Beckey	University of Colorado Boulder
Tom Bell	University of Bristol
Armando Bellante	Politecnico di Milano
Alexander Belov	University of Latvia
Paula Belzig	University of Copenhagen
Jemma Bennett	Durham University
Elizabeth Bennewitz	University of Maryland
Lucas Berent	Technical University of Munich
Thiago Bergamaschi	UC Berkeley
Bjarne Bergh	University of Cambridge

Mario Berta	RWTH Aachen University
Alessandro Berti	University of Pisa
Christian Bertoni	Freie Universität Berlin
Pauline Besserve	Atos Quantum Laboratory & Ecole Polytechnique
Kishor Bharti	Institute of high performance computing, A*STAR
Debasmita Bhoumik	Indian Statistical Institute
Lennart Binkowski	Institut für Theoretische Physik, LUH
Lennart Bittel	HHU Duesseldorf
Vjosa Blakaj	Technical University of Munich
Andreas Bluhm	Université Grenoble Alpes, CNRS, LIG
Nick Blunt	Riverlane
Saverio Bocini	LPTMS - Université Paris-Saclay
Jan Lennart Bönsel Lara Booth	University of Siegen EECS
Sadra Boreiri	University of Geneva
Lucas Borges	Technology Innovation Institute
Yonah Borns-Weil	UC Berkeley
Jan Lukas Bosse	Phasecraft Phase Craft
Can Bostanci	Columbia University
Samuel Bouaziz-Ermann	LIP6, Sorbonne Université, CNRS
Sami Boulebnane	Phasecraft Phase craft
Gregory Boyd	University of Oxford
Bastiaan Braams	CWI
Alex Bredariol Grilo	LIP6
Nikolas Breuckmann	University of Bristol
Jacob Bridgeman	Ghent University
Raphael Brieger	Heinrich-Heine-Universität Düsseldorf
Richard Brierley	Nature Physics
Steve Brierley	Riverlane
Jacob Bringewatt	QuICS / University of Maryland
Anne Broadbent	University of Ottawa
Céline Broeckaert	Ghent University
Ákos Budai	Wigner Research Centre for Physics
Dávid Bugár	Budapest University of Technology and Economics
Harry Buhrman	QuSoft & CWI & University of Amsterdam
Jake Bulmer	PsiQuantum
Adam Burchardt	QuSoft Characteristics
Lander Burgelman	Ghent University
Simon Burton Chris Cade	Quantinuum University of Amsterdam & Fermioniq
Zhenyu Cai	University of Oxford
Cameron Calcluth	Chalmers University of Technology
Susane Calegari	Center for Theoretical Physics PAS
Adam Callison	University College London
Elena Callus	University of Sheffield
Giancarlo Camilo	Technology Innovation Institute
Joan Camps	Riverlane
Chenfeng Cao	The Hong Kong University of Science and Technology
Chunjun Cao	Caltech
Michael Xuan Cao	National University of Singapore
Shuxiang Cao	University of Oxford
Angela Capel	University of Tuebingen
Matthias C. Caro	IQIM, Caltech
Giacomo Carrara	HHU Düsseldorf
Katiuscia Cassemiro Laura Castilla Castellano	PRX Quantum Universidad Complutense de Madrid
Davi Castrila Castellano	CWI, QuSoft
Lorenzo Catani	Technische Universität Berlin
Laura Caune	Riverlane
Christopher Cedzich	Quantum Technology Research Group
Nicolas Cerf	Université Libre de Bruxelles
Enrique Cervero Martin	Centre for Quantum Technologies
Ulysse Chabaud	Caltech
Ran-Yu Chang	National Yang Ming Chiao Tung University
Su Yeon Chang	CERN
Yen Jui Chang	National Taiwan University
Shao Changpeng	University of Bristol
Ziad Chaoui	TU Berlin
Boyang Chen	Tsinghua University
Chi-Fang (Anthony) Chen	Caltech
Guannan Chen	University of Bath
Kai-Siang Chen	National Cheng Kung University
Ranyiliu Chen	Copenhagen University
Si Chen	University of Leeds
Thomas Chen Yanlin Chen	Columbia University CWI & QuSoft
Idrilli Cileti	CYYI & WUSUII

Yu-Cheng Chen City University of Hong Kong University of Technology Sydney Bin Cheng Hao-Chung Cheng National Taiwan University Yi-Lin Cheng Chung Yuan Christian University El Amine Cherrat IRIF, CNRS Dartmouth College Riley Chien Mitchell Chiew University of Cambridge Giulio Chiribella The University of Hong Kong & University of Oxford Shin Ho Choe Technical University of Munich Byung-Soo Choi Pukyong National University Fred Chong University of Chicago Matthias Christandl University of Copenhagen Christopher Chubb ETH Zurich Kai-Min Chung Institute of Information Science, Academia Sinica Simon Cichy Freie Universität Berlin Max Planck Institute of Quantum Optics Ignacio Cirac Cristina Cirstoiu Quantinuum Maria Ciudad Alañón Phasecraft Laura Clinton **Phasecraft** Luke Coffman University of Colorado Boulder Xavier Coiteux-Roy TU Munich Léo Colisson CWI, Amsterdam Adam Connolly Quantinuum Inria Paris Nicholas Connolly Luuk Coopmans Quantinuum Tim Coopmans Leiden University Arjan Cornelissen IRIF Ophelia Crawford Riverlane Samuel Crew Ruhr-Universität Bochum Marcos Crichigno QC Ware Toby Cubitt Phasecraft & University College London Joshua Cudby DAMTP Eric Culf University of Waterloo Joseph Cunningham Université Libre de Bruxelles Jakub Czartowski Jagiellonian University Alexander Dalzell **AWS Center for Quantum Computing** Arne Darras Université Libre de Bruxelles Banfield **Darren** Royal Holloway, University of London Meghashrita Das Indian Institute of Technology Kharagpur Ishaun **Datta** Stanford Massachusetts Institute of Technology Marharyta **Davydova** Carlos de Gois Universität Siegen IMFC. Kristiaan **De Greve** Jan Scholtens de Jong Technische Universitaet Berlin Claudia **De Lazzari** QTI S.R.L. Technology Innovation Institute Thais de Lima Silva Marcel de Sena Dall'Agnol University of Warwick Alexis **De Vos** Universiteit Gent Ronald de Wolf CWI David **Dechant** Leiden University, Lorentz Institute Matthias Degroote Boehringer Ingelheim Clement Delcamp **Ghent University** Aurélie Denys Inria Paris FU Berlin, Physics (AG Eisert) Janek **Denzler** Charlie **Derby** Phasecraft Abhinav **Deshpande IBM** Lukas **Devos Ghent University** Dhruv **Devulapalli** QuICS, University of Maryland Beatriz **Dias** Technische Universität München Maksims **Dimitrijevs** University of Latvia Jordan **Docter** Stanford University Kfir **Dolev** Stanford University Kim **Dongha** Korea Advanced Institute of Science and Technology Jayasri Dontabhaktuni Mahindra University Paderborn University Rudolph **Dorian** João **Doriguello** National University of Singapore Thomas **Draper** Center for Communications Research at La Jolla Technical University of Berlin Institute of Software Engineering and The-Fenja **Drauschke** oretical Computer Science Julien Du Crest **CNRS LIG** Piotr **Dulian** Center for Theoretical Physics of the Polish Academy of Sciences Karel **Dumon** Miraex Vedran **Dunjko** LIACS Alicja **Dutkiewicz** Lorentz Institute, Leiden University Arkopal **Dutt** Massachusetts Institute of Technology Sophie **Egelhaaf** University of Geneva

Adam Ehrenberg	JQI, QuICS
Hanna Ek	Chalmers University of Technology
Eyuel Eshetu Elala	KAIST
Tyler Ellison	Yale University
Patrick Emonts	Leiden University
Lynn Engelberts	CWI & QuSoft
Serra Erdamar	Washington University in St. Louis
Llorenç Escola Farras	University of Amsterdam
Francisco Escudero	Qusoft, CWI
	·
Vahideh Eshaghian	University of Cologne
Simona Etinski	Inria Paris
Paul Fährmann	Freie Universität Berlin
Philippe Faist	Freie Universität Berlin
Cody Fan	UCLA
Marco Fanizza	Universitat Autònoma de Barcelona
Jean-Baptiste Faverjon	QCWare
Omar Fawzi	Inria & Ens de Lyon & LIP
Christopher Fechisin	University of Maryland
Bill Fefferman	University of Chicago
Michael Fellner	Parity Quantum Computing GmbH
Marco Fellous-Asiani	University of Warsaw
Francisco Revson Fernandes Pereira	IQM
Nur Duwi Fat Fitri	KAIST
Khurshed Fitter	Visvesvaraya National Institute of Technology
Brian Flynn	Phasecraft
Marten Folkertsma	Qusoft, CWI
Tim Forrer	The University of Tokyo
Steph Foulds	Durham University
Adrián Franco Rubio	Max Planck Institute for Quantum Optics
John Fregeau	Center for Computing Sciences
Jamie Friel	Oxford Quantum Circuits
Paul Frixons	Inria
Mariami Gachechiladze	TU Darmstadt
Niklas Galke	Universitat Autònoma de Barcelona
	Phasecraft
Filippo Maria Gambetta	
Srilekha Gandhari	University of Maryland, College Park
Raul Garcia-Patron Sanchez	University of Ednburgh
Michael Garn	Brunel University London
Managina a Carrella r	
Maxime Garnier	Inria
Gyorgy Geher	Riverlane
Gyorgy Geher Shawn Geller	Riverlane University of Colorado Boulder
Gyorgy Geher Shawn Geller Yosheb Getachew	Riverlane University of Colorado Boulder Stanford University
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian	Riverlane University of Colorado Boulder Stanford University Universität Paderborn
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planac GmbH
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planac GmbH
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planac GmbH Stanford University
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planac GmbH Stanford University Polish Academy of Sciences
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos Paulina Goedicke	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planqc GmbH Stanford University Polish Academy of Sciences Universität zu Köln
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos Paulina Goedicke Christian Gogolin	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planac GmbH Stanford University Polish Academy of Sciences Universittät zu Köln Covestro
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos Paulina Goedicke Christian Gogolin Mark Goh	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute Univeristy of Leeds The University of Nottingham planac GmbH Stanford University Polish Academy of Sciences University of Cologne Qedma Quantum Computing
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos Paulina Goedicke Christian Gogolin Mark Goh Omri Golan	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planac GmbH Stanford University Polish Academy of Sciences Universitrat zu Köln Covestro University of Cologne
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos Paulina Goedicke Christian Gogolin Mark Goh Omri Golan John Golden Nathan Goldman	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planac GmbH Stanford University Polish Academy of Sciences University at Köln Covestro University of Cologne Qedma Quantum Computing Los Alamos National Laboratory Université libre de Bruxelles
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos Paulina Goedicke Christian Gogolin Mark Goh Omri Golan John Golden Nathan Goldman Louis Golowich	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planac GmbH Stanford University Polish Academy of Sciences University of Cologne Qedma Quantum Computing Los Alamos National Laboratory
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos Paulina Goedicke Christian Gogolin Mark Goh Omri Golan John Golden Nathan Goldman	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planac GmbH Stanford University Polish Academy of Sciences Universität zu Köln Covestro University of Cologne Qedma Quantum Computing Los Alamos National Laboratory Université libre de Bruxelles UC Berkeley OQC
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos Paulina Goedicke Christian Gogolin Mark Goh Omri Golan John Golden Nathan Goldman Louis Golowich Rodrigo Goncalves Chaves Paul Gondolf	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Nottingham planac GmbH Stanford University Polish Academy of Sciences Universität zu Köln Covestro University of Cologne Qedma Quantum Computing Los Alamos National Laboratory Université libre de Bruxelles UC Berkeley OQC Fachbereich Mathematik Universität Tübingen
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos Paulina Goedicke Christian Gogolin Mark Goh Omri Golan John Golden Nathan Goldman Louis Golowich Rodrigo Goncalves Chaves Paul Gondolf Guillermo Gonzalez Garcia	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planac GmbH Stanford University Polish Academy of Sciences Universität zu Köln Covestro University of Cologne Qedma Quantum Computing Los Alamos National Laboratory Université libre de Bruxelles UC Berkeley OQC Fachbereich Mathematik Universität Tübingen Max Planck Institute of Quantum Optics
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos Paulina Goedicke Christian Gogolin Mark Goh Omri Golan John Golden Nathan Goldman Louis Golowich Rodrigo Goncalves Chaves Paul Gondolf Guillermo Gonzalez Garcia David Gosset	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planac GmbH Stanford University Polish Academy of Sciences Universität zu Köln Covestro University of Cologne Qedma Quantum Computing Los Alamos National Laboratory Université libre de Bruxelles UC Berkeley OQC Fachbereich Mathematik Universität Tübingen Max Planck Institute of Quantum Optics University of Waterloo & Perimeter Institute
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos Paulina Goedicke Christian Gogolin Mark Goh Omri Golan John Golden Nathan Goldman Louis Golowich Rodrigo Goncalves Chaves Paul Gondolf Guillermo Gonzalez Garcia David Gosset Ashutosh Goswami	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planac GmbH Stanford University Polish Academy of Sciences Universittät zu Köln Covestro University of Cologne Qedma Quantum Computing Los Alamos National Laboratory Université libre de Bruxelles UC Berkeley OQC Fachbereich Mathematik Universität Tübingen Max Planck Institute of Quantum Optics University of Waterloo & Perimeter Institute CEA-LETI, Grenoble
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos Paulina Goedicke Christian Gogolin Mark Goh Omri Golan John Golden Nathan Goldman Louis Golowich Rodrigo Goncalves Chaves Paul Gondolf Guillermo Gonzalez Garcia David Gosset Ashutosh Goswami Ross Grassie	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planqc GmbH Stanford University Polish Academy of Sciences Universittät zu Köln Covestro University of Cologne Qedma Quantum Computing Los Alamos National Laboratory Université libre de Bruxelles UC Berkeley OQC Fachbereich Mathematik Universität Tübingen Max Planck Institute of Quantum Optics University of Edinburgh
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos Paulina Goedicke Christian Gogolin Mark Goh Omri Golan John Golden Nathan Goldman Louis Golowich Rodrigo Goncalves Chaves Paul Gondolf Guillermo Gonzalez Garcia David Gosset Ashutosh Goswami Ross Grassie Alexander Gresch	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planqc GmbH Stanford University Polish Academy of Sciences Universittät zu Köln Covestro University of Cologne Qedma Quantum Computing Los Alamos National Laboratory Université libre de Bruxelles UC Berkeley OQC Fachbereich Mathematik Universität Tübingen Max Planck Institute of Quantum Optics University of Waterloo & Perimeter Institute CEA-LETI, Grenoble University of Edinburgh Heinrich Heine University Düsseldorf
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos Paulina Goedicke Christian Gogolin Mark Goh Omri Golan John Golden Nathan Goldman Louis Golowich Rodrigo Goncalves Chaves Paul Gondolf Guillermo Gonzalez Garcia David Gosset Ashutosh Goswami Ross Grassie Alexander Gresch Sander Gribling	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planac GmbH Stanford University Polish Academy of Sciences Universittät zu Köln Covestro University of Cologne Qedma Quantum Computing Los Alamos National Laboratory Université libre de Bruxelles UC Berkeley OQC Fachbereich Mathematik Universität Tübingen Max Planck Institute of Quantum Optics University of Waterloo & Perimeter Institute CEA-LETI, Grenoble University of Edinburgh Heinrich Heine University Düsseldorf Universite Paris Cite, IRIF
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos Paulina Goedicke Christian Gogolin Mark Goh Omri Golan John Golden Nathan Goldman Louis Golowich Rodrigo Goncalves Chaves Paul Gondolf Guillermo Gonzalez Garcia David Gosset Ashutosh Goswami Ross Grassie Alexander Gresch Sander Gribling Daniel Grier	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planac GmbH Stanford University Polish Academy of Sciences Universität zu Köln Covestro University of Cologne Qedma Quantum Computing Los Alamos National Laboratory Université libre de Bruxelles UC Berkeley OQC Fachbereich Mathematik Universität Tübingen Max Planck Institute of Quantum Optics University of Waterloo & Perimeter Institute CEA-LETI, Grenoble University of Edinburgh Heinrich Heine University Düsseldorf Universite Paris Cite, IRIF UC San Diego
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos Paulina Goedicke Christian Gogolin Mark Goh Omri Golan John Golden Nathan Goldman Louis Golowich Rodrigo Goncalves Chaves Paul Gondolf Guillermo Gonzalez Garcia David Gosset Ashutosh Goswami Ross Grassie Alexander Gresch Sander Gribling Daniel Grier Dmitry Grinko	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Nottlingham planac GmbH Stanford University Polish Academy of Sciences University of Cologne Qedma Quantum Computing Los Alamos National Laboratory Université libre de Bruxelles UC Berkeley OQC Fachbereich Mathematik Universität Tübingen Max Planck Institute of Quantum Optics University of Waterloo & Perimeter Institute CEA-LETI, Grenoble University of Edinburgh Heinrich Heine University Düsseldorf University of Amsterdam, QuSoft
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos Paulina Goedicke Christian Gogolin Mark Goh Omri Golan John Golden Nathan Goldman Louis Golowich Rodrigo Goncalves Chaves Paul Gondolf Guillermo Gonzalez Garcia David Gosset Ashutosh Goswami Ross Grassie Alexander Gresch Sander Gribling Daniel Grier Dmitry Grinko Koen Groenland	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planac GmbH Stanford University Polish Academy of Sciences Universitat zu Köln Covestro University of Cologne Qedma Quantum Computing Los Alamos National Laboratory Université libre de Bruxelles UC Berkeley OQC Fachbereich Mathematik Universität Tübingen Max Planck Institute of Quantum Optics University of Waterloo & Perimeter Institute CEA-LETI, Grenoble University Pais Cite, IRIF UC San Diego University of Amsterdam, QuSoft QuSoft
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos Paulina Goedicke Christian Gogolin Mark Goh Omri Golan John Golden Nathan Goldman Louis Golowich Rodrigo Goncalves Chaves Paul Gondolf Guillermo Gonzalez Garcia David Gosset Ashutosh Goswami Ross Grassie Alexander Gresch Sander Gribling Daniel Grier Dmitry Grinko Koen Groenland Lukas Gross	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planac GmbH Stanford University Polish Academy of Sciences Universität zu Köln Covestro University of Cologne Qedma Quantum Computing Los Alamos National Laboratory Université libre de Bruxelles UC Berkeley OQC Fachbereich Mathematik Universität Tübingen Max Planck Institute of Quantum Optics University of Waterloo & Perimeter Institute CEA-LETI, Grenoble University of Edinburgh Heinrich Heine University Düsseldorf University of Amsterdam, QuSoft QuSoft DFKI German Research Center for Artificial Intelligence
Gyorgy Geher Shawn Geller Yosheb Getachew Sevag Gharibian Alexandru Gheorghiu Katarine Ghislain Soumik Ghosh Lorenzo Giannelli Amin Shiraz Gilani Neil Gillespie András Gilyén Matthew Girling Federico Girotti Giacomo Giudice Tudor Giurgica-Tiron Adam Glos Paulina Goedicke Christian Gogolin Mark Goh Omri Golan John Golden Nathan Goldman Louis Golowich Rodrigo Goncalves Chaves Paul Gondolf Guillermo Gonzalez Garcia David Gosset Ashutosh Goswami Ross Grassie Alexander Gresch Sander Gribling Daniel Grier Dmitry Grinko Koen Groenland	Riverlane University of Colorado Boulder Stanford University Universität Paderborn Chalmers University Ghent University University of Chicago The University of Hong Kong University of Maryland Riverlane Rényi Institute University of Leeds The University of Nottingham planac GmbH Stanford University Polish Academy of Sciences Universitat zu Köln Covestro University of Cologne Qedma Quantum Computing Los Alamos National Laboratory Université libre de Bruxelles UC Berkeley OQC Fachbereich Mathematik Universität Tübingen Max Planck Institute of Quantum Optics University of Waterloo & Perimeter Institute CEA-LETI, Grenoble University Pais Cite, IRIF UC San Diego University of Amsterdam, QuSoft QuSoft

Virgila Cuamand	loria
Virgile Guemard	Inria
Alexandre Guernut	Loria
Michael Gullans	NIST, UMD
Lane Gunderman	IQC & Uwaterloo
Sam Gunn	UC Berkeley
Jakob Günther	University of Copenhagen
Andrew Guo	University of Maryland, QuICS
Casper Gyurik	Leiden University
Donghoon Ha	Kyung Hee University
	Microsoft Quantum
Jeongwan Haah	
Frederik Hahn	Technical University of Berlin
Oliver Hahn	Chalmers University of Technology
Sean Hallgren	Penn State University
Yassine Hamoudi	UC Berkeley
Esther Hänggi	Lucerne University of Applied Sciences and Arts
Dominik Hangleiter	QuICS
Kiara Hansenne	Universität Siegen
Dylan Harley	QMATH, University of Copenhagen
•	· · · · · ·
Brent Harrison	Dartmouth College
Montgomery Hart	Linux Foundation
Paul Haubenwallner	Fraunhofer IGD
Tobias Haug	Imperial College London
Ladina Hausmann	ETH Zürich
Ryu Hayakawa	Kyoto University
Arai Hayato	Nagoya University
Zhiyang He	Massachusetts Institute of Technology
. •	
Dirk Heimann	Universität Bremen
Markus Heinrich	Heinrich Heine University Düsseldorf
Matthias Heller	IGD
Jonas Helsen	CWI & QuSoft
Fabian Henze	University of Cologne
Yaroslav Herasymenko	QuTech (TU Delft) & QuSoft (CWI, Amsterdam)
Paul Hermouet	ENS & CASCADE / LIP6 - QI
Paul Herringer	University of British Columbia
<u> </u>	,
Nicolas Heurtel	Université Paris-Saclay & Quandela
Oscar Higgott	University College London
Timo Hillmann	Chalmers University of Technology
Marcel Hinsche	Free University Berlin
Christoph Hirche	CQT NUS
Taiga Hiroka	Kyoto University
Olli Hirviniemi	IOM
Matty Hoban	Quantinuum
Timothée Hoffreumon	Université Libre de Bruxelles
Hans Hohenfeld	
	University of Bremen
Tom Holden-Dye	University College London
Yifan Hong	CU Boulder
Lior Horesh	IBM Research & Columbia University
Min-Hsiu Hsieh	Hon Hai Quantum Computing Research Center
Mengyao Hu	Leiden University
Yanglin Hu	National University of Singapore
Hsin-Yuan Huang	Institute for Quantum Information and Matter
Mi-Ying Huang	University of Southern California
Rui-Zhen Huang	Ghent University
Thomas Huffstutler	SUNY Stony Brook
	,
Yeongwoo Hwang	Harvard School of Engineering
Marios Ioannou	FU Berlin
Joseph losue	University of Maryland
Selman Ipek	Bilkent University
Reinis Irmejs	Max Planck Institute of Quantum Optics
Ben Jaderberg	PASQAL
Alexander Jahn	Free University Berlin
Aditya Jain	IQC, University of Waterloo
Prabhav Jain	TU Darmstadt
Shubham Jain	QuICS, University of Maryland, College Park
Dávid Jakab	Wigner Research Centre for Physics
Mahesh Jayakody	Bar-llan University
Stacey Jeffery	QuSoft, CWI
	NCSC
Jerome Jenquin	
	University College London
Jared Jeyaretnam	University College London Technische Universität München
Jared Jeyaretnam Yifan Jia	Technische Universität München
Jared Jeyaretnam Yifan Jia Jehn-Ruey Jiang	Technische Universität München National Central University, Taiwan
Jared Jeyaretnam Yifan Jia Jehn-Ruey Jiang Yun Jiyoung	Technische Universität München National Central University, Taiwan Korea Advanced Institute of Science and Technology
Jared Jeyaretnam Yifan Jia Jehn-Ruey Jiang Yun Jiyoung Hamza Jnane	Technische Universität München National Central University, Taiwan Korea Advanced Institute of Science and Technology University of Oxford
Jared Jeyaretnam Yifan Jia Jehn-Ruey Jiang Yun Jiyoung Hamza Jnane Benjamin Jones	Technische Universität München National Central University, Taiwan Korea Advanced Institute of Science and Technology University of Oxford University of Bristol
Jared Jeyaretnam Yifan Jia Jehn-Ruey Jiang Yun Jiyoung Hamza Jnane	Technische Universität München National Central University, Taiwan Korea Advanced Institute of Science and Technology University of Oxford

Lin Junqiao	CWI & QuSoft
Sampreet Kalita	Indian Institute of Technology Guwahati
John Kallaugher	Sandia National Labs
Christopher Kang	University of Chicago
Jeongsoo Kang	Hanyang University
Ishaan Kannan	Caltech
Narasimhan Kannan	QuiX Quantum B.V.
Agoston Kaposi	Wigner Research Centre for Physics
Akshit Katiyar	Penn State
Kohtaro Kato	Nagoya University
Viv Kendon	University of Strathclyde
Rajkumar Kettimuthu	Argonne National Laboratory
Sumeet Khatri	Freie Universität Berlin
Dongmin Kim	Pukyong National University, Korea
Hyeong-Gyu Kim	Korea Advanced Institute of Science and Technology
Jeong San Kim	Kyung Hee University
Junhyung Lyle Kim	Rice University
Younghun Kim	Hanyang ERICA University
Shelby Kimmel	Middlebury College
Robbie King	Caltech
Jonas Kitzinger	Freie Universität Berlin
Joel Klassen	Phasecraft
Frederik Ravn Klausen	QMATH, University of Copenhagen
Matthias Kleinmann	University of Siegen
Martin Kliesch	Hamburg University of Technology
Vadym Kliuchnikov	Microsoft Quantum
Erin Knutson	American Physical Society
Lucas Kocia	Sandia National Laboratories
Kathrin Koenig	Fraunhofer IAF
Robert Koenig	Technical University of Munich
Tamara Kohler	ICMAT
Zoltán Kolarovszki	Wigner Research Centre for Physics & Eötvös Loránd University
Debanjan Konar	Helmholtz-Zentrum Dresden-Rossendorf (HZDR) CASUS - Center for Ad-
·	vanced Systems Understanding
Tulja Varun Kondra	University of Warsaw
Piotr Kopszak	University of Wrocław
Emiel Koridon	Leiden university & Vrije Universiteit Amsterdam
Andre Kornell	Dalhousie University
Kamil Korzekwa	Jagiellonian University
Pavel Kos	Max Planck Institute of Quantum Optics
Robin Kothari	Google Research
Jakob Kottmann	University of Augsburg
Nikolaos Koukoulekidis	Imperial College London
Stergios Koutsioumpas	Royal Holloway, University of London
Matt Kovacs-Deak	University of Maryland / QuICS
William Kretschmer	University of Texas at Austin
Hari Krovi	Riverlane
Georg Kruse	Fraunhofer IISB
llya Kull	University of Vienna
Ravi Kunjwal	Université Libre de Bruxelles
Julia Alina Kunzelmann	Heinrich-Heine-University Duesseldorf
Greg Kuperberg	UC Davis
Y∪i Kuramochi	Kyushu University
Kohdai Kuroiwa	IQC, University of Waterloo
Samuel Kuypers	University of Lugano
Hyukjoon Kwon	Korea Institute for Advanced Study
Yong Kwon	Pukyong National University
Younghun Kwon	Hanyang University
Seung-Hyeok Kye	Seoul National University
Amalina Lai	Nanyang Technological University
Ching-Yi Lai	National Yang Ming Chiao Tung University
Ludovico Lami	QuSoft, University of Amsterdam
Jonas Landman	QC Ware & University Of Edinburgh
Sophie Laplante	IRIF, Université Paris Cité
Francisco Lázaro Blasco	German Aerospace Center (DLR)
Yvan Le Borgne	CNRS
Francois Le Gall	Nagoya University
Eunou Lee	Sunkyunkwan University
Seok-Hyung Lee	Seoul National University
Soojoon Lee	Kyung Hee University
Yonghae Lee	Kangwon National University
Dominik Leichtle	LIP6, Sorbonne University
Rain Lenny	Bar Ilan university
Lorenzo Leone	University of Massachusetts Boston
Chanel Leong	Nicoya
Hou Heng Leong	CU Boulder
-	

UCL/CMMP Sebastian Leontica Inria Paris Anthony Leverrier Laura **Lewis** Caltech Haojian **Li** Technische Universität München Jan **Li** LION, Leiden Universtiy Sarah (Meng) Li IQC, University of Waterloo Yen-Huan **Li** National Taiwan University Ugne Liaubaite Leibniz University Hannover Caha Libor Technische Universität München Seok Hyung Lie Nanyang Technological University Laurens **Ligthart** University of Cologne Debbie **Lim** Centre for Quantum Technologies Youngrong **Lim** Korea Institute for Advanced Study Cheng-Ju Lin University of Maryland Han-Hsuan Lin National Tsing Hua University Technology Innovation Institute Ruge **Lin** Ting-Chun **Lin** University of California San Diego Wayne **Lin** Singapore University of Technology and Design Qiushi **Liu** The University of Hong Kong Tianhan Liu IQM Ye-Chao **Liu** University of Siegen Yinchen Liu University of Waterloo Zi-Wen **Liu** Perimeter Institute for Theoretical Physics Zixuan **Liu** The University of Hong Kong Edwin Lobo Université Libre de Bruxelles Laurens Lootens Ghent University / University of Cambridge Northeastern University Benjamin **Lovitz** Guang Hao Low Microsoft Angus Lowe MIT Johanna **Loyer** Inria Paris Bohan **Lu** Freie Universität Berlin Harvard University Jonathan **Lu** Stefan Ludescher IQOQI-Vienna Fermi **Ma UC** Berkeley Henry Ma MIT Yao Ma Sorbonne University, LIP6 Jelena **Mackeprang** Qusoft, CWI Daan Maertens **Ghent University** Julio Carlos Magalena De La Fuente Freie Unversität Berlin Frederic Magniez CNRS / IRIF, Universite Paris Cite Christian Majenz Technical University of Denmark Owidiusz Makuta Polish Academy of Sciences Laura Mančinska QMATH, University of Copenhagen Patrick Mangat 7ITiS Lewis Marco Newcastle University Liubov Markovich Leiden University Gábor Maróti Budapest University of Technology and Economics Charles Marrder University of Colorado Boulder LIACS Simon Marshall John Martin University of Liège Javier **Martínez** Polytechnique Montréal Darya Martyniuk Fraunhofer FOKUS University of Chicago Kunal Marwaha Université Libre de Bruxelles Michele Masini Serge Massar Université Libre de Bruxelles Kieran Mastel IQC, University of Waterloo Natansh **Mathur** IRIF, CNRS & QC Ware Andrea Matic Fraunhofer Institut für Kognitive Systeme Oliver Maupin Tufts University Cole Maurer Sandia National Labratories Alex May Stanford University & Perimeter Institute Jarrod McClean Google Quantum Al Matthew McEwen Google Quantum Al Conor Mckeever Quantinuum Campbell McLauchlan University of Cambridge Nathan McMahon Friedrich-Alexander-Universität Daniel McNulty CFT, PAS Dana **Mead Phasecraft** Raimel Medina Ramos IST Austria Konstantinos Meichanetzidis Quantinuum Antonio Anna **Mele** Freie Universität Berlin Francesco Anna Mele Scuola Normale Superiore di Pisa lyan Mendez Veiga ETH Zürich Lingfa Meng University of Copenhagen llya Merkulov Weizmann Institute of Science Anette Messinger **ParityQC**

Tony Metger Institute for Theoretical Physics, ETH Zurich Johannes Jakob Meyer FU Berlin Mehdi **Mhalla** CNRS LIG Grenoble Daniel Miller Freie Universität Berlin Daniel Mills Quantinuum Jiri Minar CWI/QuSoft/University of Amsterdam Hhan Minki Korea Institute for Advanced Study Romy Minko University of Bristol Murao Mio The University of Tokyo Artur Miroszewski Jagiellonian University Abhishek **Mishra** Université Libre de Bruxelles Hemant Mishra Cornell University Sarika Mishra Physical Research Laboratory, Ahmedabad, India Yosuke Mitsuhashi The University of Tokyo Kaoru Mizuta RIKEN RQC Tomasz Młynik University of Gdańsk Tim Möbus Technical university Munich Avinash Mocherla University College London Ankith **Mohan** Virainia Tech Saverio Monaco Università degli Studi di Padova Ashley Montanaro Phasecraft & University of Bristol Cat Mora **Phasecraft** Mauricio Morales University of Technology Sydney Kyoto University Tomoyuki Morimae Sam Morley-Short **PsiQuantum** Benjamin Morrison Sandia National Laboratories Arsalan Motamedi University of Waterloo Hamoon Mousavi Columbia University Ramis Movassagh Google Quantum Al Alexandra Moylett Riverlane Frank Mueller North Carolina State Univ. Garazi Muguruza University of Amsterdam/QuSoft Markus **Müller** Institute for Quantum Optics and Quantum Information, Vienna William Munizzi Arizona State University Heinrich-Heine-Universität Düsseldorf Gláucia Murta Sahil **Naik** S. N. Bose National Centre for Basic Sciences Guo **Naixu** CQT Hiroshi **Nakata** Jij Inc. Min Namkung Kyung Hee University Moein **Naseri** University of Warsaw Princeton University Barak Nehoran Jon **Nelson** University of Maryland Aditya **Nema** Nagoya University Andrew Nemec **Duke University** University of Cambridge Balázs **Németh** Okinawa Institute of Science and Technology Kae Nemoto Alexander Nenninger NTT DATA Deutschland GmbH Niels Neumann QuSoft / TNO Fermioniq, QuSoft & University of Amsterdam, ILLC Ido Niesen Korteweg-de Vries Institute for Mathematics & QuSoft, University of Am-Harold Nieuwboer sterdam Anastasiia Nikolaeva Russian Quantum Center Chinmay Nirkhe IBM Quantum Kohji Nishimura Jii Inc. Shin Nishio SOKENDAI & OIST Georgia Nixon University of Cambridge Jan **Nöller** Technische Universität Darmstadt Nuriya Nurgalieva ETH Zurich Jannes Nys **FPFI** Tatsuki Odake The University of Tokyo University of Chicago Changhun Oh Ties-Albrecht **Ohst** Universität Siegen Parekh **Ojas** Sandia National Labs Cihan Okay Bilkent University Michael Oliveira Sorbonne University Salvatore Francesco Emanuele Oliviero University of Massachusetts Boston Harold Ollivier Inria Victory Omole Industry Jonathan Oppenheim University College London Université Libre de Bruxelles Ognyan **Oreshkov** Dominik Bartlomiej Orlowski Københavns Universitet Davide Orsucci Institute for Communication and Navigation / DLR CTP PAS Michał Oszmaniec Aadil **Oufkir** Inria & ENS de Lyon & LIP Guneykan Ozgul Pennsylvania State University Maris Ozols QuSoft & University of Amsterdam

Pablo Páez Velasco	Universidad Complutense de Madrid
Ana Palacios	Qilimanjaro
Louis Paletta	Inria
Nicola Pancotti	AWS
	· ··· -
Mahasweta Pandit	University of Gdańsk
Brendan Pankovich	ORCA Computing
Ekta Panwar	University of Gdańsk
Natalie Parham	Columbia University
Gue Dong Park	Seoul National University
Carlos Pascual	ICFO
Galina Pass	University of Amsterdam (QuSoft)
Dhrumil Patel	Cornell University
Shivesh Pathak	Sandia National Lab
Subhasree Patro	QuSoft, CWI
Andrew Patterson	Riverlane
Christopher Pattison	Caltech
Lukas Pausch	Université de Liège
Jef Pauwels	Université Libre de Bruxelles
Anurudh Peduri	Ruhr-Universität Bochum
Simon Perdrix	Loria / Inria
Adrián Pérez-Salinas	Lorentz Institute
Michael A. Perlin	ColdQuanta
	·
Arthur Pesah	University College London
Derks Peter-Jan	Freie Universität Berlin
Frank Phillipson	TNO & Maastricht University
Niklas Pirnay	Technische Universität Berlin
Stefano Pironio	Université Libre de Bruxelles
Sára Pituk	
	Eötvös Loránd University
Christophe Piveteau	ETH Zurich
Benedikt Placke	Max Planck Institute for the Physics of Complex Systems
Martin Plávala	Universität Siegen
Pierre Pocrequ	LIG
Stefano Polla	Lorentz institute Leiden University & Google Quantum Al
Jason Pollack	University of Texas at Austin
Anthony Polloreno	University of Colorado Boulder
Mario Ponce	IQM Quantum Computers & LMU
Boldizsár Poór	Quantinuum
Minglong Qin	Nanjing University
Yihui Quek	Harvard University
Marco Túlio Quintino	Sorbonne Université, LIP6
-	
Matti Raasakka	Aalto University
Mizanur Rahaman	Inria & ENS de Lyon & LIP
Ashutosh Rai	Korea Advanced Institute of Science and Technology
Kshiti Sneh Rai	Universiteit Leiden
Joel Rajakumar	University of Maryland
Abhishek Raiput	University of Washington
Sergi Ramos Calderer	
9	Technology Innovation Institute
Daniel Ranard	MIT
Jibran Rashid	IBA
Aniket Rath	LPMMC, CNRS, UGA
Annie Ray	Institute for Quantum Computing
Arpan Ray	TU Eindhoven
Oliver Reardon-Smith	Jagiellonian University
Bartosz Regula	University of Tokyo
<u> </u>	·
Brendan Reid	Riverlane
Maxime Remaud	Inria de Paris
Mengzhen Ren	City University of Hong Kong
Gumaro Rendon	Zapata Computing, Inc.
Mathys Rennela	Inria
Martin Johannes Renner	
	University of Vienna
Marc-Olivier Renou	QIT ICFO
Mason Rhodes	Sandia National Laboratories
Tobias Rippchen	RWTH Aachen
Manuel Rispler	Forschungszentrum Jülich
Bhaskar Roberts	UC Berkeley
Denis Rochette	Paul Sabatier University
Joschka Roffe	Freie Universität Berlin
Jérémie Roland	Université Libre de Bruxelles
Alberto Rolandi	Université de Genève
Pooya Ronagh	University of Waterloo & 1QBit
Ansis Rosmanis	Nagoya University
Zane Rossi	Massachusetts Institute of Technology
Ingo Roth	Technology Innovation Institute
Antonio Rotundo	Leibniz University Hannover
Sumit Rout	ICTQT, University of Gdansk
Cambyse Rouzé	Technical University of Munich

Ittai Rubinstein	Qedma Quantum Computing
Jose Garre Rubio	University of Vienna
Antonio Russo	Sandia National Laboratories
Stefan Sack	Institute of Science and Technology Austria
Abhishek Sadhu	Raman Research Institute
Kaavya Sahay	Yale University
Mehmet Burak Şahinoğlu	PsiQuantum
Abinash Sahu	Indian Institute of Technology Madras, Chennai
Shradhanjali Sahu	University of Leeds
Waheeda Banu Saib	LIACS
Farzin Salek Shishavan	Technical University of Munich
Wilfred Salmon Robert Salzmann	University of Cambridge University of Cambridge
Raul Santos	Phasecraft
Shubhayan Sarkar	Université Libre de Bruxelles
Alain Sarlette	Inria Paris
Adam Sawicki	Polish Academy of Sciences
Hasan Sayginel	University College London
Samuel Scalet	University of Cambridge
Lodovico Scarpa	University of Oxford
Luke Schaeffer	University of Maryland
Christian Schaffner	University of Amsterdam, QuSoft
Benjamin Schiffer	Max Planck Institute of Quantum Optics
Eden Schirman	Classiq
David Schlegel	EPFL
Alexander Schmidhuber	MIT
Simon Schmidt	University of Copenhagen Leibniz University of Hannover
Viktoria-Sophie Schmiesing Alexis Schotte	Photonic
Anna Schroeder	Merck KGaA & TU Darmstadt
Norbert Schuch	University of Vienna
Tim Schwägerl	Humboldt-University of Berlin
Zohar Schwartzman-Nowik	Hebrew University of Jerusalem
René Schwonnek	Leibniz Universität Hannover
Thomas Scruby	Okinawa Institute of Science and Technology
James Seddon	Phasecraft
Samrat Sen	S.N. Bose National Centre for Basic Sciences
Gabriel Senno	Quside
Stefan Seritan	Sandia National Labs
Eduardo Serrano-Ensástiga	University of Liège
Akshay Seshadri	University of Colorado Boulder
Kanav Setia Tim Seynnaeve	qBraid Co. KU Leuven
Ubaru Shashanka	IBM Research
Mackenzie Shaw	QuTech, TU Delft
Ruslan Shaydulin	JPMorgan Chase
Adrian She	University of Toronto
Yixin Shen	Royal Holloway, University of London
Yu-Chen Shen	National Taiwan University
Yu-Ching Shen	Institute of Information Science, Academia Sinica
Evan Sheridan	Phasecraft
Seongwook Shin	Seoul National University
Ariel Shlosberg	CU Boulder, JILA
Shashvat Shukla	UCL
Jasminder Sidhu	University of Strathclyde
Adam Siegel	Materials KAIST
Park Siheon Jamie Sikora	
Fedor Šimkovic	Virginia Tech IQM
Deepesh Singh	University of Queensland
Shraddha Singh	Yale University
Vishal Singh	Cornell University
Luka Skoric	Riverlane
Joseph Slote	Caltech
Oskar Słowik	Center for Theoretical Physics PAS
Jarrett Smalley	Rolls Royce Plc
Joseph Smith	University of Cambridge
Arie Soeteman	Fermioniq
Adel Sohbi	ORCA Computing
Naomi Solomons	University of Bristol
Adrian Solymos	Wigner Research Centre for Physics
	Incestist the left to a level and The amount of the amount of DID
Alejandro Somoza	Institute of Technical Thermodynamics, DLR
Jeongrak Son	Nanyang Technological University

Pagudha Crivertava	University of Cathanburg
Basudha Srivastava Chirag Srivastava	University of Gothenburg Harish-Chandra Research Institute
Bada Sriya	Mahindra University
Matthew Stafford	Riverlane
Mikka Stasiuk	Institute for Quantum Computing
Joseph Steele	University of Nottingham & Rolls Royce
Vincent Steffan	QMATH, University of Copenhagen
Daniel Stilck Franca	Inria & ENS Lyon
Alexander Stottmeister	Leibniz University Hannover
Armands Strikis	Oxford University
Maarten Stroeks	QuTech, TU Delft
Michal Studzinski	University of Gdańsk
Georgios Styliaris	Max Planck Institute of Quantum Optics
Yigit Subasi	Los Alamos National Laboratory
Sathyawageeswar Subramanian	University of Warwick
Sho Sugiura	NTT Research, Inc.
Francis Sullivan	IDA/Center for Computing Sciences
Christoph Sünderhauf	Riverlane
Ivan Supic	CNRS, LIP6, Sorbonne University
David Sutter	IBM Research
Daniel Szabo	IRIF, Université Paris Cité
Hiroyasu Tajima	The University of Electro-Communications Nanyang Technological University
Ryuji Takagi Jun Takahashi	CQuIC, University of New Mexico
Yuki Takeuchi	NTT Communication Science Laboratories
Xinyu Tan	MIT Communication science Laboratories
Er-Cheng Tang	Academia Sinica
Eugene Tang	Massachusetts Institute of Technology
Wei Tang	Ghent University
Clara Tanghe	Ghent University
Theerapat Tansuwannont	Duke University
Nathanan Tantivasadakarn	Caltech
Mehmet Huseyin Temel	Eindhoven University of Technology
Kosei Teramoto	The University of Tokyo
Barbara Terhal	EEMCS Department, Delft University of Technology
Kevin Thompson	Sandia National Labs
Arkin Tikku	University of Sydney
Jean-Pierre Tillich	Inria de Paris
Salvatore Tirone	Scuola Normale Superiore di Pisa
Konstantin Tiurev	HQS Quantum Simulations
Marco Tomamichel	Centre for Quantum Technologies
Sabine Tornow	RI CODE
Alex Townsend-Teague	Freie Universität Berlin
Pei-Kai Tsai Kento Tsubouchi	Yale University The University of Tokyo
Huang Tsung-Wei	Chung Yuan Christian University
Quinten Tupker	CWI & QuSoft
Jordi Tura I Brugués	Applied Quantum Algorithms Leiden
Cenk Tüysüz	DESY/CQTA
Jan Tuziemski	Center for Theoretical Physics
Bora Ulu	Université de Genève
George Umbrarescu	University College London
Sarvagya Upadhyay	Fujitsu Research of America
Eloïc Vallée	LION Leiden University
Karel Van Acoleyen	Ghent University
Roel Van Beeumen	Lawrence Berkeley National Laboratory
Maarten Van Damme	Ghent University
Stefan Van Den Hoven	University of Twente
Ward Van Der Schoot	TNO
Inge Van der Vennet	Ghent University Universiteit van Amsterdam
Dyon Van Vreumingen Vincent van Wingerden	Universiteit van Amsterdam Classia
Bram Vancraeynest-De Cuiper	Ghent University
Vivien Vandaele	CNRS, LORIA
Laurens Vanderstraeten	Ghent University
Lina Vandré	Universität Siegen
Robijn Vanhove	Caltech
Naga Dileep Varikuti	Indian Institute of Technology Madras
Francisca Vasconcelos	UC Berkeley
Umesh Vazirani	UC Berkeley
Aditi Venkatesh	PMA
Philip Verduyn Lunel	CWI & QuSoft
Frank Verstraete	Ghent University / University of Cambridge
Kevin Vervoort	Ghent University
Thomas Vidick	Weizmann Institute of Science
Lucia Vilchez Estevez	University of Oxford

Agnes Villanyi Dhinakaran Vinayagamurthy Maria Violaris Ward Vleeshouwers Christophe Vuillot Kaito Wada	MIT IBM India Research Lab University of Oxford Quix Quantum & Qusoft
Maria Violaris Ward Vleeshouwers Christophe Vuillot	University of Oxford
Ward Vleeshouwers Christophe Vuillot	·
Christophe Vuillot	
·	Inria
	Keio University
Michael Walter	Ruhr-Universität Bochum
Kianna Wan	Stanford University
Chunhao Wang	Pennsylvania State University
Daochen Wang	University of Maryland
Qian Wang	City University of Hong Kong
Sabrina Wang	Phasecraft
Samson Wang	Imperial College London
Xin Wang	City University of Hong Kong
Jacob Watkins	Michigan State University
James Watson	Department of Computer Science
Julian Wechs	Université Libre de Bruxelles
Jordi Weggemans	QuSoft, CWI
Zhan Wei	Princeton University
Shih-Han Weng	Chung Yuan Christian University
Albert H. Werner	QMATH, University of Copenhagen
Matthias Werner	Qilimanjaro Quantum Tech University of Toronto
Nathan Wiebe Roeland Wiersema	University of Waterloo & Vector Institute
Fabian Wiesner	TU Berlin
Marcin Wieśniak	University of Gdańsk
Sören Wilkening	Volkswagen Aktiengesellschaft
Ifan Williams	Quantinuum
Dominic Williamson	The University of Sydney
Huang Willie	Amazon Web Services
Freek Witteveen	University of Copenhagen
Lewis Wooltorton	University of York
Wadim Wormsbecher	Bundesdruckerei GmbH
Bujiao Wu	Peking university
Jun-Yi Wu	Tamkang University
Zipeng Wu	The Hong Kong University of Science and Technology
Elisabeth Wybo	IQM Quantum Computers
Nikolai Wyderka	Heinrich-Heine-Universität Düsseldorf
Yunlong Xiao Fu Xiaozhen	Institute of High Performance Computing, A*STAR University of Maryland, College Park
Yiiia Xu	QuICS, University of Maryland
Takashi Yamakawa	NTT Social Informatics Laboratories
Hayata Yamasaki	The University of Tokyo
Bo Yang	Sorbonne University
Hiroshi Yano	Keio University
Lia Yeh	University of Oxford
Richie Yeung	University of Oxford
Chao Yin	University of Colorado Boulder
Qiu Yixian	Centre for Quantum Technologies
Duyal Yolcu	
Satoshi Yoshida	The University of Tokyo
Nobuyuki Yoshioka	The University of Tokyo
Javanmard Younes	Institute of theoretical physics/Quantum information group
Jeffery Yu Wenjun Yu	University of Maryland
Charles Yuan	The University of Hong Kong Massachusetts Institute of Technology
Sina Zeytinoglu	NTT Research Inc.
Daniel Zhang	University of Oxford & Phasecraft
Tina Zhang	MIT
Yichi Zhang	The Hong Kong University of Science and Technology
Xuanqiang Zhao	The University of Hong Kong
Yuming Zhao	IQC, University of Waterloo
Hengyun Zhou	Harvard Physics
Guanyu Zhu	IBM Quantum
Xuanran Zhu	The Hong Kong University of Science and Technology
Timo Ziegler	Volkswagen AG
Zoltán Zimborás	Wigner Research Centre for Physics
Matthias Zipper	Hamburg University of Technology
	MIT
Alexander Zlokapa Sebastian Zur	QuSoft, CWI