

US Food Insecurity Analysis

Alec Edgecliffe-Johnson, Ryan McDonald, Andrew Roberts, Ira Seidman ARIA Consulting Group

Purpose

<u>Food Insecurity (FI)</u> – a lack of consistent access to enough food for an active, healthy life [1]

1 in 9 Americans in 2018

We are tasked with several objectives:

- Develop a model for predicting FI at the county level
- Identify greatest contributing factors
- Create time series models for predicting where FI will persist/worsen

Data Exploration

- Data from Feeding America, CDC, County Health Rankings, Census.gov
 - Features include disability rates, unemployment, education, income
 - Target is percent of population considered food insecure
 - o 60 features and 3,140 counties
- Highest FI Deep South, parts of west
- Lowest FI Northeast, upper Midwest

Data Exploration Cont.

- Childhood food insecurity is higher than adult food insecurity no matter how the data is sliced
- Strongest economic predictors of food insecurity life expectancy, diabetes rate, median income, per capita income, poverty rates, and free or reduced lunch household rates (racial indicators were less correlated)

Modeling Overview

- Six different methods of imputation mean, median mode, knn, linear regression, and random forest
- Random forest lead to the best testing scores, so all scores reported are with the rf imputation. Only a .05-.1 improvement in RMSE of food insecurity rate over mean and median
- Goal was to build a model that best predicted food insecurity using

	0.50	
percent_physically_inactive	0.52	
percent_low_birthweight	0.56	
percent_of_adults_with_less_than_high_school_diploma	0.6	
percent_single_parent_households_CHR	0.62	
percent_no_highschool_diploma	0.62	
percent_unemployed_CDC	0.65	
percent_smokers	0.65	
percent_enrolled_in_free_or_reduced_lunch	0.68	
percent_disabled	0.68	
average_number_of_mentally_unhealthy_days	0.74	
percentile_rank_social_vulnerability	0.76	
pct_overall_pov_19	0.82	
percent_fair_or_poor_health	0.82	
percent_below_poverty	0.83	
percent_children_in_poverty	0.85	
ch_fi_rate_18	0.92	
fi_rate_18	1	

Modeling Overview Cont.

- Several Regression Models were chosen to investigate.
- Once our Production Model was chosen, the team moved onto forecasting
 - Univariate and Multivariate Time Series
 Models were developed to predict Food
 Insecurity (and poverty) into the future.
 - More on those results later!

# Models Developed	9	
Transformers Utilized	Standard Scalar, Polynomial Features, PCA	
Regressors Utilized	KNN, Decision Trees, Linear Regression, SVM, Tensor Flow,	
Ensemble Methods Utilized	RandomForest, AdaBoost	
Workflow Automation Methods	Pipeline	
Hyperparameter Tuning Technique	GridSearchCV	

Production Model Performance / Evaluation

So, how well does it work?

- Production Model Testing R² = 93.5%. RMSE = 0.93
 - StandardScaler
 - Random Forest Imputation of nulls
 - All Numerical Features
 - Linear Regression (Default Parameters)
- Models 2-9 R² Range = 78%-93%. RMSE = 1.69 0.99
 - Support Vector Machines and Principal Component Analysis (w/ Ln Reg) both scored as well as our production model
 - Runtimes significantly longer
 - Not necessarily as well interpreted (SVM)

Rating	Production Model Feature	Coefficient
1	% Disabled	0.845
2	% Children in Poverty	0.564
3	% Fair or Poor Health	0.368
4	% Severe Housing Cost Burden	0.330
5	% Below Poverty	0.230
6	% Single Parent Households	0.175
7	% Severe Housing Problems	0.175
8	# Households	0.175
9	Ave # Mentally Unhealthy Days	0.148
10	% Unemployed	0.147

Conclusions, Recommendations and Further Steps

Conclusions: Percent Disabled, Percent Children in Poverty and Percent Fair or Poor health were the three largest predictors. Our forecasts show persistent high levels of Food Insecurity in a number of states in the Southeast as well as New Mexico and Utah.

Recommendations: Federal and state coordination to investigate and ameliorate the factors that we found were most predictive of Food Insecurity, particularly in areas that are forecasts indicated were at a higher risk for increased rates.

Further steps: Further develop time series forecasts with additional variables and at county levels. Identify better and more granular factors (eg. family size for those below poverty) to develop more specific

