Indian Statistical Institute

BSDS IInd Year

Academic Year 2025 - 2026: Semester I

Course: Probability II

Instructor: Antar Bandyopadhyay

Assignment #3

Date Given: August 27, 2025

Date Due: September 05, 2025

Total Points: 10

- 1. Suppose X_1, X_2, \dots, X_d be *i.i.d.* standard normal random variables. Let **X** be the random (column) vector with components X_1, X_2, \dots, X_d stacked as a column with d entries. Let A be a $d \times d$ non-singular matrix with real entries. Let Y := AX. Show that **Y** is a multivariate normal random vector with mean vector **0** and variance co-variance matrix AA^T .
- 2. In the setup of **Problem** # 1 above, suppose $B_{k\times d}$ is a rectangular matrix with real entries which is full row rank (that is, rows are linearly independent). Let $\mathbf{W} := B\mathbf{X}$, then show that \mathbf{W} is a multivariate normal random vector with mean vector $\mathbf{0}$ and variance co-variance matrix BB^T .
- 3. Show that if Σ is a *positive definite* (p.d.) matrix of order $d \times d$, then it is necessarily a variance-covariance matrix of some random vector of dimension d. [Hint: Use Problem # 1 above].
- 4. Determine whether $\Sigma := ((\sigma_{ij}))_{1 \leq i,j \leq d}$, where

$$\sigma_{ij} := \left\{ \begin{array}{ll} 1 & \text{if } i = j, \\ \rho & \text{otherwise} \end{array} \right.$$

and $|\rho| < 1$, is a p.d. matrix. [Hint: Use Problem # 3 above].