Higher Rank Series and Root Puz	Palermo. Tuly rozi
for Plumbed 3- Hanifolds j. W.W.	
Goal Construct invariants of 3-manifolds	(VCU)
Suiding Problem Categorify WRT invar	isms
Recent Progress	
[gukor-Putror-Vafa, 2017] => homology theo	tefineel Ay Luler chor.
Expected Properties a Laurent series The series of 1 Line 2(9) = WRT 1 April 2(9) = WRT	$\hat{Z}(q)$
9 → toot of 1	

② Ž(q) in a quantum modular form, à la Zagier

Gulzos-Manolessen For negative definite plumbed 3-manifolds, 2021 — Ž(q) in an invatiant. Plumbings

closed priented

3-mfds Plumbing Trees M(r)G Framing matrix $B = \begin{pmatrix} a & 1 \\ 1 & b \end{pmatrix}$ 5'x5' 25'x5' Idea M = DX for a 4-mfd X $(x,y)\mapsto (y,x)$ and B represent the intersection form on H. (x, Z) Det. 1 [weakly) neg. det. <=> B insertible and B-1 neg. def. (on subspace spanned by vertices of T of day >3) 2) M a neg. des. plumbed 3-mfd <=> M = M(r) for some us neg def. plumbing tree r

Neumann gisen 2 w. neg. def. plumbing trees Tand I'l

 $M(\Gamma) \cong M(\Gamma')$ stientation preserving homeomorphism

<=> Mand Make related by a series of 5 modes:

Strategy Prosing insariance = Checking insariance under the Keumann

Moreozer $\hat{Z}(q)$ depends on $s \in Spin^{\epsilon}(M) \cong_{AFF.} H_{\epsilon}(M, \mathbb{Z})$

For M neg. def. and ne Spin (M). Gukos-Handesen 2021 Ž(g) is:

- 1 insariant up to or. pres. homemor.
- @ insariant up to >->.

Arhmechet - Johnson - Krushkal

For neg. def. T.

Z(9) fit in an oo family of invariant series

Note For neg. def. I, one needs only (A-) and (B-)

Parke (T. Q. 1) — Z(q)
2020 W. neg. def. root generalised invaria.
lattice Spin-str. series invariant series

[GPPY]-[GM] is the case Q=A1.

Tre a w. neg. def. T and an arbitrary root lattice Q, Joen 2, (9) fit in a larger family of instruction?

Thm 1 (Hoore-T., 2024)

(T,Q,s,P) Y(9)

as in Park

as in Park

insariant up to or. pres. Insmemor.

insariant up to action of Weyl 3p on s.

Thm 2 (Moore - T.)

(1) $Y_{P,n}(q) = \hat{Z}_n(q)$ for $Q = A_{\epsilon}$ (unique!)

For irred. Q of rank >2.

These new invatiant series depend on what we call a

solution of a combinatorial problem on the root lattice

Ex Consider the root lattice Az

= sertex atrangement

of the Liling

of the Enclidean plane

by equilatoral triangles

A zoot puzzle for de in a fet $c: A_2 \longrightarrow \mathbb{R}$ a commutative ting $d \longmapsto c(\alpha)$ such that: 1 Ya, ((nx)=0 for n>>0 or n≪0 3 Yhexagon 9... **?** • • • • • u 3 2 one han if her in centered at o $-p+q-t+s-t+u=\begin{cases} 1 \\ 0 \end{cases}$ otherwise. Ex • • • • • • • • • • • • • • • • • K • • • • • • • • . · · . · · . × · · · · 1 1 1 . . . *.* • • • • • • • • 2 . . 2 . . 1 ••••• 3. 3. 4 cfr. Kostant partition fet for aebitrary KER

=> only many vatiations!

The inspariant series

1) a reduced w. neg. def. plumbing tree T

② a root lattice Q,

3 a gen. Spin-str. > \(\(\deg \tau_1 \), deg \(\tau_2 \), \(\tau_2 \)

(4) and a root prizzle c: 29+22 -> R

Where
$$\begin{array}{l}
\text{No. Seties:} \\
\text{No. Set$$

$$C_{\Gamma}(\ell) := \frac{1}{|\Xi|} \underbrace{\sum_{s \in \Xi} \sum_{s \in Y(\Gamma)} \left[P_{degs}^{S_s} (z_s) \right]_{\ell,s}}_{\mathcal{E}_{s}}$$

$$C_{T}(\ell) := \frac{1}{|\mathcal{L}|} \sum_{\xi \in \mathcal{L}} \int_{S \in V(T)} \left[P_{deg S}(\xi_{S}) \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left[\left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \int_{S \in \mathcal{L}} \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left[\left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \int_{S \in \mathcal{L}} \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left[\left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \int_{S \in \mathcal{L}} \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left[\left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \int_{S \in \mathcal{L}} \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left[\left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \int_{S \in \mathcal{L}} \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left[\left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \int_{S \in \mathcal{L}} \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left[\left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \int_{S \in \mathcal{L}} \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left[\left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \int_{S \in \mathcal{L}} \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left[\left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \int_{S \in \mathcal{L}} \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left[\left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \int_{S \in \mathcal{L}} \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left[\left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \int_{S \in \mathcal{L}} \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left[\left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \int_{S \in \mathcal{L}} \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left[\left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \int_{S \in \mathcal{L}} \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left[\left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \int_{S \in \mathcal{L}} \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left[\left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \int_{S \in \mathcal{L}} \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left[\left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \int_{S \in \mathcal{L}} \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left[\left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \int_{S \in \mathcal{L}} \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left[\left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \int_{S \in \mathcal{L}} \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left[\left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right]_{\ell_{0}}$$

$$P_{n}(\xi) := \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right)_{\ell_{0}}$$

$$P_{n}(\xi) := \left(\frac{1}{|\mathcal{L}|} \right)_{\chi \in V} \right)_{\ell_{0}}$$

$$P_{n}(\xi) := \left(\frac$$

Open Problems

with graded Enler char = / (9)

* Extend /2, 19) to all 3-mfds