Math 4301 Mathematical Analysis I

Lecture 14

Topic: Number Series

• Number Series

Definition Let $(a_n)_{n\geq 1}$ be a sequence of real numbers and define sequence $(S_n)_{n\geq 1}$ by

$$S_n = \sum_{k=1}^n a_n = a_1 + a_2 + \dots + a_n.$$

then

$$a_1 + a_2 + \dots = \sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^{n} a_k$$

is called an *infinite number series*.

• We say that the series $\sum_{n=1}^{\infty} a_n$ is convergent to $S \in \mathbb{R}$ if $S_n \to S$ as $n \to \infty$ and we write

$$S = \sum_{n=1}^{\infty} a_n.$$

and we call S the sum of the series $\sum_{n=1}^{\infty} a_n$.

• If $\sum_{n=1}^{\infty} a_n$ is not convergent, we say that the series is divergent. Moreover, if

$$\lim_{n \to \infty} \sum_{k=1}^{n} a_n = \pm \infty$$

then we say that the series is diverges to $\pm \infty$ and we write

$$\sum_{n=1}^{\infty} a_n = \begin{cases} +\infty & if & \lim_{n \to \infty} \sum_{k=1}^n a_n = +\infty \\ -\infty & if & \lim_{n \to \infty} \sum_{k=1}^n a_n = -\infty \end{cases}$$

Definition Let $\{a_n\}$ be a sequence of real numbers. The series

$$\sum_{n=1}^{\infty} \left(\underbrace{a_n - a_{n+1}}_{b_n} \right)$$

is called a telescoping series.

Exercise Given a telescoping series

$$\sum_{n=1}^{\infty} \left(a_n - a_{n+1} \right),\,$$

show that such a series converges iff

$$\lim_{n\to\infty}a_n=a.$$

Example: We show that

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

1

• Since

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

it follows that

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} (a_n - a_{n+1})$$

is a telescoping series.

• Moreover,

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} (a_n - a_{n+1}) = a_1 - \lim_{n \to \infty} a_{n+1}$$
$$= \frac{1}{1} - \lim_{n \to \infty} \frac{1}{n+1} = 1 - 0 = 1.$$

Example The series $\sum_{n=1}^{\infty} 1$ diverges to ∞ .

• Indeed, we see that

$$S_n = \sum_{k=1}^n 1 = n.$$

- Since for all $M \ge 0$, there is n > M.
- Thus, for every $M \geq 0$, there is $n \in \mathbb{N}$, such that $S_n > M$.
- ullet It follows that

$$\lim_{n\to\infty} S_n = \infty$$

and therefore

$$\sum_{n=1}^{\infty} 1 = \infty.$$

Example: The series $\sum_{n=1}^{\infty} (-1)^{n+1}$ diverges.

• We see that

$$S_n = \sum_{k=1}^n (-1)^{n+1} = \begin{cases} 1 & if & n \text{ is odd} \\ 0 & if & n \text{ is even} \end{cases}$$

hence $S_n = \frac{1 - (-1)^{n+1}}{2}$.

- We see that $S_{2n}=0$, for all $n\in\mathbb{N}$ and $S_{2n-1}=1$ for all $n\in\mathbb{N}$.
- Since $\{S_{2n}\}$ and $\{S_{2n-1}\}$ are subsequences of $\{S_n\}$ and

$$\lim_{n \to \infty} S_{2n} = 0 \neq 1 = \lim_{n \to \infty} S_{2n-1}$$

it follows that $\{S_n\}$ diverges.

• Therefore, $\sum_{n=1}^{\infty} (-1)^{n+1}$ diverges.

Remark

• We defined the infinite sum

$$\sum_{n=1}^{\infty} a_n = a_1 + a_1 + \dots$$

as $\lim_{n\to\infty} S_n$, where

$$S_1 = a_1$$

$$S_n = S_{n-1} + a_n, \ n \ge 2$$

Remark: For a series $\sum_{n=1}^{\infty} a_n$ its sums can be defined in a different way, for example its *Cesàro sum* C

is defined by

$$C = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} S_k$$

Example: Find Cesàro sum for $\sum_{n=1}^{\infty} (-1)^{n+1}$.

• In particular, for

$$a_n = \left(-1\right)^{n+1},$$

since

$$S_1 = 1$$
, $S_2 = 0$, $S_3 = 1$, ..., $S_n = \frac{1 + (-1)^{n+1}}{2}$, ...

it follows that

$$\frac{1}{n} \sum_{k=1}^{n} S_k = \frac{1}{n} \sum_{k=1}^{n} \frac{1 + (-1)^{k+1}}{2} = \frac{1}{2n} \sum_{k=1}^{n} \left(1 + (-1)^{k+1} \right)$$

$$= \frac{1}{2n} \left(n + \sum_{k=1}^{n} (-1)^{k+1} \right)$$

$$= \frac{1}{2} + \frac{1}{2n} \sum_{k=1}^{n} (-1)^{k+1} = \begin{cases} \frac{1}{2} + \frac{1}{2n} & \text{if } n \text{ is odd} \\ \frac{1}{2} & \text{if } n \text{ is even} \end{cases}$$

and

$$C = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} S_k = \frac{1}{2}.$$

- Cesàro summation is important in the theory of Fourier series.
- There are also other notions of summation for series.

Remark: Algebraic rules for finite sums cannot be blindly apply to infinite sums,

For instance

$$S = \sum_{n=1}^{\infty} (-1)^n = -1 + 1 - 1 + \dots = (-1+1) + (-1+1) + \dots$$
$$= 0 + 0 + \dots = 0$$

but

$$S = \sum_{n=1}^{\infty} (-1)^n = -1 + 1 - 1 + \dots = -1 + (1-1) + (1-1) + \dots$$
$$= -1 + 0 + 0 + \dots = -1.$$

Example: Assume that |q| < 1 then the series

$$\sum_{n=0}^{\infty} q^n = \sum_{n=1}^{\infty} q^{n-1}$$

converges to $\frac{1}{1-q}$.

- Notice that, by the definition, the series $\sum_{n=1}^{\infty} q^{n-1}$ if the sequence of its partial sums converges.
- We will start from determining the sequence of partial sums.
- We know that

$$S_n = 1 + q + q^2 + \dots + q^n$$

SO

$$qS_n = q + q^2 + q^3 + \dots + q^{n+1}$$

 \bullet hence

$$S_n(q-1) = qS_n - S_n = (q+q^2+q^3+...+q^{n+1}) - (1+q+q^2+...+q^n)$$

= $q^{n+1}-1$,

so

$$S_n(q-1) = q^{n+1} - 1$$

• Since |q| < 1, then $q \neq 1$, so $q - 1 \neq 0$ and we can solve for S_n :

$$S_n = \frac{q^{n+1} - 1}{q - 1} = \frac{1 - q^{n+1}}{1 - q}$$

• We see that

$$S_n = \sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$$

so

$$|S_n - S| = \left| \frac{1 - q^{n+1}}{1 - q} - \frac{1}{1 - q} \right| = \frac{|q|^{n+1}}{|1 - q|}$$

- Since $|q|^{n+1} \to 0$ as $n \to \infty$.
- Let $\epsilon > 0$ be given.

• Since |q| < 1, then $|q|^{n+1} \to 0$ as $n \to \infty$, there is $N \in \mathbb{N}$, such that for n > N,

$$\left|q\right|^{n+1} < \epsilon \left|1 - q\right|,$$

• Therefore, for n > N,

$$|S_n - S| = \frac{|q|^{n+1}}{|1 - q|} < \frac{\epsilon |1 - q|}{|1 - q|} = \epsilon.$$

• Therefore,

$$\lim_{n \to \infty} S_n = \frac{1}{1 - q},$$

hence

$$\sum_{n=0}^{\infty} q^n = \frac{1}{1-q} \text{ if } |q| < 1.$$

Proposition Let $a_n \geq 0$ for all $n \in \mathbb{N}$.

Series $\sum_{n=1}^{\infty} a_n$ converges iff the sequence $\{S_n\}$ of its partial sums is bounded.

Proof. Let $\{S_n\}$ be a sequence of partial sums of the series $\sum_{n=1}^{\infty} a_n$.

- If the series converges then $\{S_n\}$ is convergent, so $\{S_n\}$ is bounded.
- Conversely, assume that $\{S_n\}$ is bounded, since $a_n \geq 0$, then

$$0 \le S_1 \le S_2 \le \dots$$

- Hence $\{S_n\}$ is non-decreasing.
- Since $\{S_n\}$ is bounded, by theorem, $\{S_n\}$ converges, so by the definition, $\sum_{n=1}^{\infty} a_n$ converges.

This finishes our proof. ■

Theorem 0.1 (Cauchy Condition) The series $\sum_{n=1}^{\infty} a_n$ converges if and only if for every $\epsilon > 0$ there is $N \in \mathbb{N}$, such that, for all n > m > N

$$\left| \sum_{k=m+1}^{n} a_n \right| < \epsilon$$

Proof. Exercise.

• Proposition If $\sum_{n=1}^{\infty} a_n$ converges then

$$\lim_{n \to \infty} a_n = 0.$$

Proof. Exercise. ■

• **Remark**: Observe that we can use the above to show that $\sum_{n=1}^{\infty} (-1)^{n+1}$ diverges.

• Indeed, since $a_n = (-1)^n$ has no limit, $\sum_{n=1}^{\infty} (-1)^{n+1}$ cannot converge.

Example: Show that

$$\sum_{n=1}^{\infty} \frac{n}{n+1}$$

diverges.

• We see that

$$\lim_{n \to \infty} \frac{n}{n+1} = 1 \neq 0,$$

so by the proposition, $\sum_{n=1}^{\infty} \frac{n}{n+1}$ diverges.

Example: We show that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

- We show that the sequence $\{S_n\}$ is not bounded above.
- We see that

$$S_{2^{0}} = S_{1} = 1$$

$$S_{2^{1}} = S_{2} = 1 + \frac{1}{2}$$

$$S_{2^{2}} = S_{4} = \left(1 + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) > \left(1 + \frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4}\right) = 1 + 2 \cdot \frac{1}{2}$$

$$\vdots$$

$$S_{2^{n}} = \left(1 + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \dots + \left(\frac{1}{2^{n-1}} + \frac{1}{2^{n-1} + 1} + \dots + \frac{1}{2^{n}}\right)$$

$$> \left(1 + \frac{1}{2}\right) + \underbrace{\left(\frac{1}{4} + \frac{1}{4}\right)}_{2} + \dots + \underbrace{\left(\frac{1}{2^{n}} + \dots + \frac{1}{2^{n}}\right)}_{2^{n-1}} = 1 + \underbrace{\frac{1}{2} + \dots + \frac{1}{2}}_{n}$$

$$= 1 + \frac{n}{2}$$

- It follows that $\{S_n\}$ is not bounded, so $\{S_n\}$ diverges to ∞ .
- Therefore

$$\sum_{n=1}^{\infty} \frac{1}{n} = \lim_{n \to \infty} S_n = \infty.$$

Proposition The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges iff p > 1.

Proof. If p = 1 then, as we showed, the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

• If $0 \le p < 1$, then

$$1 \le n^p \le n$$
,

 \mathbf{SO}

$$\frac{1}{n} \le \frac{1}{n^p}$$

 \bullet Hence, for all n

$$\sum_{k=1}^{n} \frac{1}{k} \le \sum_{k=1}^{n} \frac{1}{k^p}.$$

• Since the sequence $\left\{\sum_{k=1}^{n} \frac{1}{k}\right\}_{n}$ is not bounded above,

$$\left\{\sum_{k=1}^{n} \frac{1}{k^{p}}\right\}$$
 is also not bounded above.

• Thus,

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

diverges, for all $0 \le p \le 1$.

• If p < 0, then

$$\lim_{n \to \infty} \frac{1}{n^p} = \lim_{n \to \infty} n^{-p} = \infty, \text{ since } -p > 0.$$

- Hence $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges.
- Assume that p > 1 and let

$$S_n = \sum_{k=1}^n \frac{1}{k^p}$$

• It is clear that

$$0 \le S_n < S_{n+1}$$
, for all $n \in \mathbb{N}$.

- Therefore, the sequence $\{S_n\}$ is increasing.
- It suffices to show that $\{S_n\}$ is bounded above.
- Indeed,

$$S_{2^{n}-1} = \frac{1}{1^{p}} + \left(\frac{1}{2^{p}} + \frac{1}{3^{p}}\right) + \left(\frac{1}{4^{p}} + \frac{1}{5^{p}} + \frac{1}{6^{p}} + \frac{1}{7^{p}}\right) + \dots$$

$$+ \left(\frac{1}{(2^{n-1})^{p}} + \frac{1}{(2^{n-1}+1)^{p}} + \dots + \frac{1}{(2^{n-1}-1)^{p}}\right)$$

$$\leq \frac{1}{1^{p}} + \frac{2}{2^{p}} + \frac{4}{4^{p}} + \dots + \frac{2^{n-1}}{(2^{n-1})^{p}} = \frac{1}{1^{p-1}} + \frac{1}{2^{p-1}} + \frac{1}{4^{p-1}} + \dots + \frac{1}{(2^{n-1})^{p-1}}$$

$$= 1 + \left(\frac{1}{2^{p-1}}\right)^{1} + \left(\frac{1}{2^{p-1}}\right)^{2} + \dots + \left(\frac{1}{2^{p-1}}\right)^{n-1}$$

$$= \frac{1 - \left(\frac{1}{2^{p-1}}\right)^{n}}{1 - \frac{1}{2^{p-1}}} < \frac{1}{1 - \frac{1}{2^{p-1}}} = \frac{2^{p-1}}{2^{p-1} - 1}$$

• Therefore, for all $n \in \mathbb{N}$,

$$S_{2^{n}-1} \le \frac{2^{p-1}}{2^{p-1}-1}.$$

- If $m \in \mathbb{N}$ is given, then there is $n \in \mathbb{N}$, such that $2^n 1 \ge m$.
- Therefore, for all $m \in \mathbb{N}$.

$$S_m \le S_{2^n - 1} \le \frac{2^{p - 1}}{2^{p - 1} - 1}.$$

- Thus, $\{S_n\}$ is bounded.
- Since $\{S_n\}$ is increasing and bounded above, $\{S_n\}$ is converges.
- This shows that, if p > 1, then $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges.
- \bullet In summary we showed that

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

• converges iff p > 1.

This finishes our proof. ■

• **Definition** A series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ converges and

it is conditionally convergent if $\sum_{n=1}^{\infty} a_n$ but $\sum_{n=1}^{\infty} |a_n|$ is divergent.

Example: Let us consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.

• We see that

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}.$$

- Thus, the series is not absolutely convergent.
- One can show that

$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{n}$$

converges.

• Therefore, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is conditionally convergent.

Theorem Let $\{a_n\} \subset \mathbb{R}$ and assume that

- i) $0 \le a_{n+1} \le a_n$, for all $n \in \mathbb{N}$
- ii) $\lim_{n\to\infty} a_n = 0$.

Then
$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$
 converges.

Proof. Let

$$S_n = \sum_{k=1}^n (-1)^{k+1} a_k.$$

• Since $0 \le a_{n+1} \le a_n$,

$$S_1 = a_1 \ge 0,$$

$$S_2 = a_1 - a_2 \ge 0,$$

$$S_3 = (a_1 - a_2) + a_3 \ge 0,$$
...
$$S_n = \sum_{k=1}^{n} (-1)^{k+1} a_k \ge 0.$$

- Therefore, $\{S_n\}$ is bounded below by 0.
- Consider $\{S_{2n}\}$ and $\{S_{2n-1}\}$.
- For $\{S_{2n}\}$ since

$$S_{2n+2} = S_{2n} + (a_{2n+1} - a_{2n+2}) \ge S_{2n}$$
 as $a_{2n+1} - a_{2n+2} \ge 0$,

it follows that

$$S_{2n} \leq S_{2n+2}$$

- Therefore, $\{S_{2n}\}$ is non-decreasing.
- Furthermore, since

$$S_{2} = a_{1} - a_{2} \le a_{1}$$

$$S_{4} = a_{1} - a_{2} + a_{3} - a_{4}$$

$$= a_{1} - (a_{2} - a_{3}) - a_{4} \le a_{1}$$

$$...$$

$$S_{2n} = \sum_{k=1}^{n} (-1)^{k+1} a_{k}$$

$$= a_{1} - (a_{2} - a_{3}) - ... - (a_{2n-2} - a_{2n-1}) - a_{2n} \le a_{1}.$$

it follows that $\{S_{2n}\}$ is non-decreasing and bounded above by a_1 .

- By the Monotone Sequence Property of \mathbb{R} , $\{S_{2n}\}$ is convergent.
- Let

$$S_{2n} \to L_1 \text{ as } n \to \infty.$$

• Analogously, since $a_{2n} - a_{2n+1} \ge 0$,

$$S_{2n+1} = a_1 - a_2 + a_3 - \dots - a_{2n} + a_{2n+1}$$
$$= S_{2n-1} - (a_{2n} - a_{2n+1}) \le S_{2n-1}.$$

• Thus,

$$S_{2n-1} \ge S_{2n+1}$$

i.e. $\{S_{2n-1}\}$ is non-increasing.

- Since $\{S_n\}$ is bounded below by 0, $\{S_{2n-1}\}$ is also bounded below by 0.
- It follows that $\{S_{2n-1}\}$ is non-increasing and bounded below.
- By the Monotone Sequence Property, $\{S_{2n-1}\}$ converges in \mathbb{R} .
- Let

$$S_{2n-1} \to L_2 \text{ as } n \to \infty.$$

• Since for all $n \in \mathbb{N}$:

$$S_{2n} = S_{2n-1} - a_{2n}$$

and sequences $\{a_n\}$, $\{S_{2n}\}$ and $\{S_{2n-1}\}$ converge, $\{a_{2n}\}$ converges (as a subsequence of a convergent sequence) and

$$L_1 = \lim_{n \to \infty} S_{2n} = \lim_{n \to \infty} (S_{2n-1} - a_{2n}) = \lim_{n \to \infty} S_{2n-1} - \lim_{n \to \infty} a_{2n}$$
$$= L_2 - 0 = L_2.$$

• Therefore,

$$L_1 = L_2 = L$$
.

- We show that $\{S_n\}$ is convergent.
- Let $\epsilon > 0$ be given.
- Since $S_{2n} \to L$ and $S_{2n-1} \to L$, there are $N_1, N_2 \in \mathbb{N}$, such that, if $n > N = \max\{N_1, N_2\}$, then

$$|S_{2n} - L| < \epsilon$$
 and $|S_{2n-1} - L| < \epsilon$.

• Therefore, if n > N,

$$|S_n - L| < \epsilon$$
.

This finishes our argument. ■

• **Definition** Let $x \in \mathbb{R}$, denote by

$$x^+ = \max\{0, x\}$$

and call it the positive part of x. Analogously,

$$x^- = \max\{0, -x\}$$

is called the negative part of x.

• We observe that, for any $x \in \mathbb{R}$,

$$0 \le x^{+} \le |x| \text{ and } 0 \le x^{-} \le |x|,$$

 $x = x^{+} - x^{-} \text{ and}$
 $|x| = x^{+} + x^{-}$

Example: Let us consider the series $\sum_{n=1}^{\infty} a_n$, where $a_n = \frac{(-1)^{n+1}}{n}$.

• Notice that

$$a_n^+ = \begin{cases} 0 & if & n \text{ is even} \\ \frac{1}{n} & if & n \text{ is odd} \end{cases}$$
 and $a_n^- = \begin{cases} 0 & if & n \text{ is odd} \\ \frac{1}{n} & if & n \text{ is even} \end{cases}$

• Then

$$\sum_{n=1}^{\infty} a_n^+ = 1 + 0 + \frac{1}{3} + \dots = \sum_{n=1}^{\infty} \frac{1}{2n-1} \text{ and}$$

$$\sum_{n=1}^{\infty} a_n^- = 0 + \frac{1}{2} + 0 + \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{1}{2n}$$

$$= \frac{1}{2} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots \right) = \frac{1}{2} \left(\sum_{n=1}^{\infty} \frac{1}{n} \right)$$

so

$$\sum_{n=1}^{\infty} a_n^- \text{ diverges.}$$

• Since $\sum_{n=1}^{\infty} a_n^+ \ge \sum_{n=1}^{\infty} a_n^-$, $\sum_{n=1}^{\infty} a_n^+$ also diverges.

Theorem If $\sum_{n=1}^{\infty} a_n$ absolutely converges then it converges.

Moreover, $\sum_{n=1}^{\infty} a_n$ converges absolutely iff

$$\sum_{n=1}^{\infty}a_n^+$$
 and $\sum_{n=1}^{\infty}a_n^-$ converge and

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^- \text{ and}$$

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} a_n^+ + \sum_{n=1}^{\infty} a_n^-.$$

Proof. Let $\{\overline{S_n}\}$ denotes the sequence of partial sums of $\sum_{n=1}^{\infty} |a_n|$.

- Assume that $\sum_{n=1}^{\infty} a_n$ absolutely converges.
- Since $\sum_{n=1}^{\infty} a_n$ absolutely converges,

$$\sum_{n=1}^{\infty} |a_n| \text{ converges.}$$

• Therefore, for $\epsilon > 0$, there is $N \in \mathbb{N}$, such that, for all n > m > N

$$\left|\overline{S_n} - \overline{S_m}\right| = \sum_{k=m+1}^n |a_n| < \epsilon$$

• Since

$$|S_n - S_m| = \left| \sum_{k=m+1}^n a_n \right| \le \sum_{k=m+1}^n |a_n| < \epsilon$$

- It follows that the sequence of partial sums $\{S_n\}$ of $\sum_{n=1}^{\infty} a_n$ satisfies Cauchy condition.
- Therefore, $\{S_n\}$ converges, so $\sum_{n=1}^{\infty} a_n$ converges.
- Let $\{S_n^+\}$ and $\{S_n^-\}$ be partial sums of $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ respectively.
- Since

$$0 \le |\overline{S_n} - \overline{S_m}| = \sum_{k=m+1}^n |a_n| = \sum_{k=m+1}^n (a_n^+ + a_n^-) = \sum_{k=m+1}^n a_n^+ + \sum_{k=m+1}^n a_n^-$$
$$= |S_n^+ - S_m^+| + |S_n^- - S_m^-|$$

and

$$0 \le |S_n^+ - S_m^+| = \sum_{k=m+1}^n a_n^+ \le \sum_{k=m+1}^n |a_n| = |\overline{S_n} - \overline{S_m}|$$

$$0 \le |S_n^- - S_m^-| = \sum_{k=m+1}^n a_n^- \le \sum_{k=m+1}^n |a_n| = |\overline{S_n} - \overline{S_m}|$$

- It follows that $\{\overline{S_n}\}$ is Cauchy iff both sequences $\{S_n^+\}$ and $\{S_n^-\}$ are Cauchy sequences.
- Therefore, $\sum_{n=1}^{\infty} a_n$ converges absolutely iff both $\sum_{n=1}^{\infty} a_n^+$ and $\sum_{n=1}^{\infty} a_n^-$ converge.

• Finally, if $\sum_{n=1}^{\infty} a_n$ converges absolutely,

then the sequences $\{S_n\}$, $\{\overline{S_n}\}$, $\{S_n^+\}$ and $\{S_n^-\}$ converge and

$$\sum_{n=1}^{\infty} |a_n| = \lim_{n \to \infty} \overline{S_n} = \lim_{n \to \infty} \left(S_n^+ + S_n^- \right)$$
$$= \lim_{n \to \infty} S_n^+ + \lim_{n \to \infty} S_n^- = \sum_{n=1}^{\infty} a_n^+ + \sum_{n=1}^{\infty} a_n^-.$$

• Analogously,

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(S_n^+ - S_n^- \right)$$

$$= \lim_{n \to \infty} S_n^+ - \lim_{n \to \infty} S_n^- = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^-.$$

This finishes our proof. \blacksquare

• Theorem (Comparison Test) Assume that $b_n \geq 0$ and $|a_n| \leq b_n$, for all $n \in \mathbb{N}$.

If $\sum_{n=1}^{\infty} b_n$ converges then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

If the series $\sum_{n=1}^{\infty} |a_n|$ diverges then the series $\sum_{n=1}^{\infty} b_n$ diverges.

Proof. Exercise

• Example: Determine if the series

$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$$

converges?

• Since $\frac{1}{n} \in [0, \pi]$,

$$0 \le \sin\left(\frac{1}{n}\right),\,$$

for all n = 1, 2, ...

• We will show that

$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$$

diverges.

• Since

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

and $\frac{1}{n} \to 0$,

$$\lim_{n \to \infty} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} = 1$$

• Therefore, for $\epsilon = \frac{1}{2}$, there is $N \in \mathbb{N}$, such that, for n > N,

$$\left| \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} - 1 \right| < \frac{1}{2}, \text{ so}$$

$$-\frac{1}{2} < \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} - 1 < \frac{1}{2}, \text{ hence}$$

$$\frac{1}{2} = 1 - \frac{1}{2} < \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} < 1 + \frac{1}{2} = \frac{3}{2}.$$

• It follows that

$$\frac{1}{2} < \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}}$$
, for $n > N$.

• In particular,

$$\frac{1}{2n} < \sin\left(\frac{1}{n}\right), \text{ for } n > N.$$

• Since $\sum_{n=1}^{\infty} \frac{1}{2n}$ diverges, by comparison test,

$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right) \text{ diverges.}$$

Theorem (Ratio Test) Let $\{a_n\} \subset \mathbb{R}$ and $a_n \neq 0$, for all $n \in \mathbb{N}$, and

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$$

where $L \in [0, \infty)$ or $L = \infty$.

If $0 \le L < 1$ then $\sum_{n=1}^{\infty} a_n$ converges absolutely.

If
$$L > 1$$
 or $L = \infty$ then $\sum_{n=1}^{\infty} a_n$ diverges.

If L = 1, then the ratio test is inconclusive.

Proof. Suppose that $0 \le L < 1$, then

 \bullet there is K, such that

$$L < K < 1$$
.

- Let $\epsilon = (K L) > 0$.
- Since

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L,$$

there is $N \in \mathbb{N}$, such that, for n > N

$$\left| \frac{a_{n+1}}{a_n} \right| - L < (K - L), \text{ so}$$

$$\left| \frac{a_{n+1}}{a_n} \right| < K, \text{ for } n > N.$$

• It follows that

$$|a_{n+1}| < K |a_n|$$
, for $n > N$.

• In particular,

$$|a_{N+2}| < K |a_{N+1}|$$

• Therefore,

$$|a_{N+3}| < K |a_{N+2}| < K^2 |a_{N+1}|$$

and one shows that

$$|a_{N+m}| < K^{m-1} |a_{N+1}|, \text{ for } m \ge 2.$$

• It follows that, if n > N+1, then $n-N \ge 2$ and

$$|a_n| < K^{(n-N)-1} |a_{N+1}|.$$

• Therefore,

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{N} |a_n| + \sum_{n=N+1}^{\infty} |a_n|$$

$$\leq \sum_{n=1}^{N} |a_n| + |a_{N+1}| + \sum_{n=N+2}^{\infty} |a_n|$$

$$= \sum_{n=1}^{N} |a_n| + |a_{N+1}| + \sum_{n=N+2}^{\infty} K^{n-N-1} |a_{N+1}|$$

$$= \sum_{n=1}^{N} |a_n| + |a_{N+1}| \left(1 + \sum_{n=N+2}^{\infty} K^{n-N-1}\right)$$

$$= \sum_{n=1}^{N} |a_n| + |a_{N+1}| \left(1 + \sum_{n=1}^{\infty} K^n\right)$$

$$= \sum_{n=1}^{N} |a_n| + |a_{N+1}| \sum_{n=0}^{\infty} K^n$$

$$\leq \sum_{n=1}^{N} |a_n| + \frac{|a_{N+1}|}{1 - K} < \infty$$

• It follows that, $\sum_{n=1}^{\infty} |a_n|$ converges, so

$$\sum_{n=1}^{\infty} a_n$$
 also converges.

• If L > 1, then there is K, such that L > K > 1.

• Let
$$\epsilon = (L - K) > 0$$
.

• Since

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L,$$

there is $N \in \mathbb{N}$, such that, for n > N

$$-(L-K) < \left| \frac{a_{n+1}}{a_n} \right| - L$$
, so
 $K < \left| \frac{a_{n+1}}{a_n} \right|$, for $n > N$.

• Therefore,

$$K\left|a_{n}\right| < \left|a_{n+1}\right|,$$

for n > N.

• In particular,

$$K |a_{N+1}| < |a_{N+2}|$$

 $K^2 |a_{N+1}| < K |a_{N+2}| < |a_{N+3}|$,

so by induction

$$K^{m-1}|a_{N+1}| < |a_{N+m}|, \text{ for } m \ge 2.$$

• Consequently,

$$K^{n-N-1}|a_{N+1}| < |a_n|, \text{ for } n > N+1$$

- Since $K^{n-N-1}|a_{N+1}| \to \infty$ as $n \to \infty$.
- It follows that $\lim_{n\to\infty} |a_n| = \infty$.
- In particular, $\lim_{n\to\infty} a_n$ cannot be 0.
- Hence $\sum_{n=1}^{\infty} a_n$ diverges.

This finishes our proof. ■

• Example: Consider series

$$\sum_{n=1}^{\infty} \frac{1}{n}.$$

• As we know this series diverges and

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{\frac{1}{n+1}}{\frac{1}{n}}=\lim_{n\to\infty}\frac{n}{n+1}=1.$$

• However, $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, and also

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1$$

• Thus in both cases

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1.$$

Theorem (Root Test) Let $\{a_n\}$ be sequence of real numbers and

$$\lim \sup_{n \to \infty} \sqrt[n]{|a_n|} = L$$

where $L \in [0, \infty)$ or $L = \infty$.

If $0 \le L < 1$ then $\sum_{n=1}^{\infty} a_n$ converges absolutely.

If L > 1 or $L = \infty$ then $\sum_{n=1}^{\infty} a_n$ diverges.

If L=1 then the root test is inconclusive.

Proof. Exercise ■