вариант	ф. номер	група	вариант	курс	специалност
KP1.2	0MI0600041	1	1	I	Софтуерно инженерство
Име:	Филип Красимиров Филчев				

Контролна работа № 1.2

27.11.2021

Задача 1.

а) (2т.) Да се запише в тригонометричен вид числото

$$\sqrt[21]{\left(\frac{-2\sqrt{3}-10i}{6\sqrt{3}+2i}\right)^{53}}.$$

б) (2т.) Нека $\omega_0, \, \omega_1, \dots, \, \omega_{35}$ са тридесет и шестите корени на единицата, където $\omega_k = \cos\frac{2k\pi}{36} + i\sin\frac{2k\pi}{36}$. Да се пресметне израза

$$\omega_0^{198} + \omega_1^{198} + \dots + \omega_{35}^{198}.$$

Задача 2. (4т.) Да се реши системата в зависимост от стойностите на параметъра λ :

$$\begin{vmatrix} x_1 - 2x_2 & - x_4 = -2\lambda \\ 3x_1 - 4x_2 - & 32x_3 - 5x_4 = 0 \\ -x_1 + x_2 + & 16x_3 + 2x_4 = -\lambda \\ -3x_1 + 4x_2 + (16 + \lambda^2)x_3 + 5x_4 = \lambda - 4 \end{vmatrix}$$

Задача 3. (4т.) В зависимост от стойностите на параметъра λ да се пресметне детерминантата

(където i е имагинерната единица).

Задача 4. а)(2,5т.) Да се реши матричното уравнение AXB = C, където

$$A = \begin{pmatrix} 1 & -2 & -2 \\ -2 & 3 & 6 \\ -2 & 6 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 6 \\ -1 & 5 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & -19 \\ -3 & 53 \\ -6 & 16 \end{pmatrix}.$$

б) (1,5т.) В линейното пространство \mathbb{R}^5 разглеждаме множеството

$$\mathbb{U} = \{ (b_1, b_2, b_3, b_4, b_5) \mid b_3 + b_4 + b_5 = b_1 + b_2 \}.$$

Да се докаже, че \mathbb{U} е подпространство на \mathbb{R}^5 .