C	B3C067S	Pages: 2		
Reg. N	To Name:			
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, JULY 2			
	Course Code: IT201			
	Course Name: DIGITAL SYSTEM DESIGN (IT)			
Max.	Marks: 100 Dura	tion: 3 Hours		
	PART A			
	Answer any two questions.			
1.	a. Simplify $F(W,X,Y,Z) = \sum m (1,2,3,5,9,12,14,15) + \sum d(4,8,11)$ us	sing tabulation		
	method.	(6)		
	b. Find the dual of $F = \bar{x}y\bar{z} + \bar{x}\bar{y}z$.	(2)		
	c. Determine the radix r, $(191)_{10} = (362)_{r}$.	(3)		
	d. Express (-51) in sign magnitude form, 1's complement form and 2	s complement		
	form.	(4)		
2.	a. Using K-map, minimize the given Boolean function $F(A, B, C)$	$= \bar{A}C + \bar{A}B +$		
	$A\bar{B}C + BC$.	(5)		
	b. Perform $(305.5)_{BCD} - (168.8)_{BCD}$ using r's complement.	(4)		
	c. Convert the following:	(6)		
	i. (7346) ₈ to hexadecimal			
	ii. (36.54) ₁₀ to binary			
	iii. $(2AC5.D)_{16}$ to decimal			
3.	a. Find the reduced POS and SOP form of	the function		
	$F(A, B, C, D) = \sum (1,3,7,11,15) + \sum d(0,2,5)$ and draw the logic d	iagram of the		
	reduced expressions.	(6)		
	b. Perform $(5427.65)_8 - (236.43)_8$ using $(r-1)$'s complement.	(3)		
	c. List the postulates of Boolean algebra.	(2)		
	d. Write a note on character coding scheme.	(4)		
	PART B			
Answer any two questions.				

	Answer any two questions.			
4.	a. Design a binary to BCD code converter.	(7)		
	b. Differentiate between combinational circuit and sequential circuit.	(4)		
	c. Explain the basic flip-flop circuit.	(4)		

	B3C067S P	ages: 2		
5.	a. With neat diagram, explain the working of carry-look-ahead adder.	(8)		
	b. Explain the working of master-slave JK flip-flop.	(7)		
6.	a. Design a full adder using two half adders.	(6)		
	b. Using a 8:1 MUX, realize the function $F = \sum (0,1,5,6,7)$	(3)		
	c. Explain the terms state equation, state table and state diagram.	(6)		
	PART C			
Answer any two questions.				
7.	a. Design a 4-bit bidirectional shift register with parallel load.	(10)		
	b. Write a note on PLA.	(3)		
	c. Realize the function $F_1 = A\bar{B} + AC + \bar{A}B\bar{C}$ and $F_2 = \overline{(AC + BC)}$ using PLA	A. (7)		
8.	a. Design a synchronous 3-bit up-down counter using JK-flip-flop.	(10)		
	b. Write a note on error detection and correction.	(10)		
9.	a. Design a combinational circuit using a ROM. The circuit accepts a 3-bit r	number		
	and generates an output binary number equal to the square of the input number.	(10)		
	b. Differentiate between asynchronous counter and synchronous counter.	(3)		
	c. Design a Mod-10 Asynchronous counter using T flip-flop.	(7)		
