SUR LE GRAPHE DIVISORIEL

Nicolas CLOAREC

10 Juillet 2015

Qu'est ce qu'un graphe divisoriel?

On définit sur l'ensemble des entiers de 1 à n la relation ${\cal R}$ suivante :

$$(a \mathcal{R} b)$$
 si et seulement si $(a \mid b \text{ ou } b \mid a)$

On appelle **graphe divisoriel** le graphe de la relation \mathcal{R} .

Notion de recouvrement

- On appelle **chaîne** de longueur I toute suite $(n_i)_{1 \le i \le I}$ vérifiant pour tout $1 \le i < I$: $n_i \mathcal{R} n_{i+1}$.
- On appelle recouvrement du graphe un ensemble de chaînes disjointes tel que chaque entier de 1 à n apparaît exactement une fois dans l'une de ces chaînes.

Introduction du problème

Exemple de graphe divisoriel

Exemples de graphes pour n = 9

$$(9,3,1,5)$$
 , $(8,4,2,6)$
 $C = \{(9,3,6,2,8,4), (7,1,5)\}$

$$\Longrightarrow$$
 chaînes

Aspects du problème

Questions

- Quel est le nombre minimal de chaînes dans un recouvrement?
- Quelle est la **longueur maximale** d'une chaîne?

Résultats

Théorème 1 (Erdös-Saias) (1995)

Désignons par $\varphi(x)$ le nombre minimal de chaînes d'un recouvrement du graphe divisoriel pour $n=\lfloor x\rfloor$. Il existe une constante strictement positive c telle que pour tout

$$c \cdot x \leqslant \varphi(x) \leqslant \frac{x}{2}$$

Théorème 2 (Saias) (2003)

 $x \ge 2$, on ait :

Pour tout réel x suffisamment grand, on a :

$$\frac{x}{6} \leqslant \varphi(x) \leqslant \frac{x}{4}$$

Lemmes généraux

Lemme 1

Désignons par $P^-(n)$ le plus petit facteur premier de l'entier n>1 et par $\Phi(x,z)$ la fonction suivante

$$\Phi(x,z) = card\{n \leqslant x \mid P^{-}(n) > z\}$$

On a alors pour $x \geqslant 2z \geqslant 4$ et x suffisamment grand :

$$\Phi(x,z) = \mathcal{O}\left(x \cdot \prod_{p \leqslant z} \left(1 - \frac{1}{p}\right)\right)$$

Lemme 2 (Mertens)

Il existe c > 0 tel que

$$\prod_{p \le z} \left(1 - \frac{1}{p} \right) = \frac{c}{\ln z} \left(1 + \mathcal{O}\left(\frac{1}{\ln z}\right) \right)$$

Démonstration du théorème (I)

Montrons que :

$$\varphi(x) \leqslant \frac{x}{2}$$

On construit le recouvrement suivant :

A tout **nombre impair** m inférieur ou égale à x, on associe la chaîne $C_m = \{m, 2m, 2^2m, \dots, 2^{\alpha}m\}$ où α est la plus grande puissance de 2 telle que $2^{\alpha}m \leq x$.

En groupant les chaînes \mathcal{C}_1 et \mathcal{C}_3 en une chaîne $\mathcal{C}_3 - \mathcal{C}_1$, on a

$$\varphi(x) \leqslant \left\lfloor \frac{x+1}{2} \right\rfloor - 1 \leqslant \frac{x}{2}$$

Démonstration du théorème (II)

Montrons qu'il existe c > 0 telle que,

$$\varphi(x) \geqslant c \cdot x$$

Soient $(C_i)_{1 \leqslant i \leqslant k(x)}$ un recouvrement de k(x) chaînes et z un paramètre.

Notons $\mathcal{N}_{x,z}$ les entiers vérifiant :

$$\begin{cases} \frac{x}{2} < n \leqslant x & \text{et} \quad P^{-}(n) > z \\ \text{la chaîne } C_i \text{ qui contient } n \text{ n'est pas réduite à } \{n\} \end{cases}$$
 (2)

la chaîne
$$C_i$$
 qui contient n n'est pas réduite à $\{n\}$ (2)

Soit *n* un entier de $\mathcal{N}_{x,z}$. D'après (2) il admet un voisin *v* dans sa chaîne et v divise n. En notant q le plus petit facteur premier de n, on a $v \leqslant \frac{n}{q} < \frac{x}{z}$. d'après (1)

Démonstration du théorème (II)

On construit ainsi une application

$$\mathcal{V}: \mathcal{N}_{x,z} \longrightarrow \mathcal{V}_{x,z} = \left\{ v : v < \frac{x}{z} \right\}$$

Comme chaque entier de $\mathcal{V}_{x,z}$ admet au plus deux antécédents par \mathcal{V} , on a :

$$\frac{\operatorname{card} \mathcal{N}_{x,z}}{2} \leqslant \operatorname{card} \mathcal{V}_{x,z}$$
 ie $\operatorname{card} \mathcal{N}_{x,z} < \frac{2x}{z}$ (*)

De plus, on a d'après les lemmes pour $2 \leqslant z \leqslant \ln x$ et x suffisamment grand :

card
$$\underbrace{\left\{\frac{x}{2} < n \leqslant x \mid P^{-}(n) > z\right\}}_{:= A_{x,z}} = \mathcal{O}\left(\frac{x}{\ln z}\right)(**)$$

Démonstration du théorème (II)

On a donc le schéma asymptotique suivant :

On peut donc choisir un z_0 suffisement grand pour que :

$$\operatorname*{\it card} \mathcal{N}_{x,z_0} \leqslant \frac{\operatorname*{\it card} \mathcal{A}_{x,z_0}}{2}$$
 ie

$$card \mathcal{N}_{x,z_0} \leqslant \frac{1}{2} \cdot card \left\{ \frac{x}{2} < n \leqslant x \mid P^-(n) > z_0 \right\}$$

Donc au moins la moitié des entiers de A_{x,z_0} ne vérifient pas la condition (2) et donc leurs chaînes se réduisent à un entier.

Comme card
$$A_{x,z_0} = \mathcal{O}(x)$$
, on a bien $k(x) = \mathcal{O}(x)$

Lemme

Soient \mathcal{A} et \mathcal{B} deux parties de $\{1, 2, \dots, n\}$ vérifiant la condition suivante :

"Pour toute chaîne $\mathcal C$ d'entiers inférieurs à n et toute paire $\{a_1,a_2\}$ d'éléments distincts de $\mathcal C\cap\mathcal A$, il existe dans $\mathcal C$ au moins un élément de $\mathcal B$ entre a_1 et a_2 "

Alors

$$\varphi(n)\geqslant card\mathcal{A}-card\mathcal{B}$$

Démonstration du lemme

Soit $\mathcal{C} = \{\mathcal{C}_1, \dots, \mathcal{C}_{\varphi(n)}\}$ un recouvrement minimal du graphe en différentes chaînes. On a pour toute chaîne \mathcal{C}_i que

$$card\left(\mathcal{A}\cap\mathcal{C}_{i}\right)\leqslant card\left(\mathcal{B}\cap\mathcal{C}_{i}\right)+1$$

En sommant sur toutes les chaînes, on obtient alors

$$\sum_{i=1}^{\varphi(n)} \operatorname{card} \left(\mathcal{A} \cap \mathcal{C}_i \right) \leqslant \sum_{i=1}^{\varphi(n)} \operatorname{card} \left(\mathcal{B} \cap \mathcal{C}_i \right) + \varphi(n)$$

Comme les C_i forment une partition, on a bien le résultat souhaité

$$card \mathcal{A} \leqslant card \mathcal{B} + \varphi(n)$$

Démonstration du théorème

On applique le lemme aux ensembles $\mathcal A$ et $\mathcal B$ suivant

$$\mathcal{A} = \left\{ k \mid \frac{n}{2} < k \leqslant n \right\} \quad \text{et} \quad \mathcal{B} = \left\{ k \mid 1 \leqslant k \leqslant \frac{n}{3} \right\}$$

On a alors

$$\varphi(n) \geqslant \left\lfloor \frac{n+1}{2} \right\rfloor - \left\lfloor \frac{n}{3} \right\rfloor \geqslant \frac{n}{6}$$

