SPACE SYSTEMS ENGINEERING Mass Minimization of an N-Stage Rocket

Problem: The following parameters are given for each stage i of an N-stage rocket:

The required burnout velocity \mathcal{V}_{bo} Specific Impulse Isp_i Structural mass ratio ε_i Payload mass m_{PL}

Find the minimum propellant mass for each stage.

Let $c_i = Isp_i g_0$

Solve iteratively for the Lagrange multiplier λ :

$$V_{bo} = \sum c_i \ln (c_i \lambda - 1) - c_i \ln (c_i \lambda \epsilon_i)$$

Find the optimum mass ratio n_i for each stage: $n_i = (c_i \lambda - 1) / (c_i \lambda \epsilon_i)$

Verify minimization:
$$\lambda c_i (\varepsilon_i n_i - 1)^2 + 2 \varepsilon_i n_i - 1 > 0$$
 for $i = 1, 2 ... N$

Then the minimized stage masses are:

$$\begin{split} m_{\scriptscriptstyle N} &= m_{\scriptscriptstyle PL} \left(n_{\scriptscriptstyle N} - 1 \right) / (1 - n_{\scriptscriptstyle N} \, \epsilon_{\scriptscriptstyle N}) \\ m_{\scriptscriptstyle N-1} &= \left(m_{\scriptscriptstyle N} + m_{\scriptscriptstyle PL} \right) \left(n_{\scriptscriptstyle N-1} - 1 \right) / (1 - n_{\scriptscriptstyle N-1} \, \epsilon_{\scriptscriptstyle N-1}) \\ m_{\scriptscriptstyle N-2} &= \left(m_{\scriptscriptstyle N-1} + m_{\scriptscriptstyle N} + m_{\scriptscriptstyle PL} \right) \left(n_{\scriptscriptstyle N-2} - 1 \right) / (1 - n_{\scriptscriptstyle N-2} \, \epsilon_{\scriptscriptstyle N-2}) \\ \cdot \\ \cdot \\ \cdot \\ m_{\scriptscriptstyle 1} &= \left(m_{\scriptscriptstyle 2} + m_{\scriptscriptstyle 3} + \ldots \, m_{\scriptscriptstyle N} \, + m_{\scriptscriptstyle PL} \right) \left(n_{\scriptscriptstyle 1} - 1 \right) / (1 - n_{\scriptscriptstyle 1} \, \epsilon_{\scriptscriptstyle 1}) \end{split}$$

Stage masses are $m_i = m_{Ei} + m_{pi}$

 m_{Ei} is the structural mass for each stage: $m_{Ei} = \epsilon_i m_i$

 m_{pi} is the propellant mass for each stage: $m_{pi} = m_i - m_{Ei}$

Tandem 2-stage booster

