Pranav Tikkawar 01:640:481 Cheat Sheet

Distributions

Normal: Pars: μ (mean), σ^2 (variance) PDF: $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ MGF: $M_X(t) = \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)$ Mean: $\mathbb{E}[X] = \mu$ Var: $Var(X) = \sigma^2$

<u>Chi-Squared:</u> Pars: k (degrees of freedom) PDF: $f(x) = \frac{1}{2^{k/2}\Gamma(k/2)}x^{k/2-1}\exp\left(-\frac{x}{2}\right)$ MGF: $M_X(t) = (1-2t)^{-k/2}$ Mean: $\mathbb{E}[X] = k$ Var: Var(X) = 2k IMP Is Gamma with $\alpha = \nu/2, \beta = 2$. If $X \sim N, X^2 \sim \chi^2$

<u>Gamma:</u> Pars: α , β PDF: MGF: $M_X(t) = (1 - \beta t)^{-\alpha}$ Mean: $\mathbb{E}[X] = \frac{\alpha}{\beta}$ Var: $Var(X) = \frac{\alpha}{\beta^2}$

Exponential: Pars: λ (rate) PDF: $f(x) = \lambda \exp(-\lambda x)$ MGF: $M_X(t) = \frac{\lambda}{\lambda - t}$ Mean: $\mathbb{E}[X] = \frac{1}{\lambda}$ Var: $Var(X) = \frac{1}{\lambda^2}$

Samples

Sample Mean: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ Mean: $\mathbb{E}[\bar{X}] = \mu$ Var: $Var(\bar{X}) = \frac{\sigma^2}{n}$ Dist: $\bar{X} \sim N(\mu, \sigma^2/n)$

Sample Variance: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ Mean: $\mathbb{E}[S^2] = \sigma^2$ Var: $Var(S^2) = \frac{2\sigma^4}{n-1}$ Dist:

Chebyshev's $\mathbb{P}(|X - \mu| < k) \ge 1 - \frac{\sigma^2}{k^2}$ and $\mathbb{P}(|X - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}$

<u>Law of Large Numbers:</u> $\bar{X} \in (\mu \pm c) \ge 1 - \frac{\sigma^2}{nc^2}$

Central Limit Theorem: $Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$ as $n \to \infty$

Order Statistics: The rth smallest value of an n sample. $f_{X_{(r)}}(x) = \frac{n!}{(r-1)!(n-r)!} F(x)^{r-1} (1 - F(x))^{n-r} f(x)$ or $= \frac{n!}{(r-1)!(n-r)!} f(x) \int_{-\infty}^{x} f(y) dy^{r-1} \int_{x}^{\infty} f(y) dy^{n-r}$

<u>Max Likelihood</u> $\hat{\theta}$ is max of $L(\theta) = \prod_{i=1}^n f(x_i|\theta)$ or $l(\theta) = \sum_{i=1}^n \log f(x_i|\theta)$