Problem 1

Solution

We denote the ReLU function by σ . The neural network is $\tilde{f}(x) = \sigma(a_2\sigma(a_1x + b_1) + b_2)$, where $a_1 = -1/\epsilon$, $b_1 = 1$, $a_2 = -1$ and $b_2 = 1$.

Problem 2

Solution

We denote the ReLU function by σ . First, we construct a neural network $\tilde{f}(x)$ to mimic $\mathbb{I}_{x\geq 0}$ except in the region $x\in [-\epsilon,0]$. Simillar to Problem 1, $\tilde{f}(x)=\sigma(a_2\sigma(a_1x+b_1)+b_2)$, where $a_1=-1/\epsilon$, $b_1=0,\ a_2=-1$ and $b_2=1$.

Then, the final neural network is $4\sigma(\sum_{i=1}^{4} \tilde{f}(z_i) - 3.5) - 1$, where $z_1 = 1 - (x_1 + x_2)$, $z_2 = 1 - (x_1 - x_2)$, $z_3 = 1 - (-x_1 + x_2)$, $z_4 = 1 - (-x_1 - x_2)$. This neural network mimics the groud truth except for $\{x \mid 1 \le |x_1| + |x_2| \le 1 + \epsilon\}$. For $x \in \{x \mid |x_1| + |x_2| < 1\}$, we must have $z_i > 0$ and $\tilde{f}(z_i) = 1$ for all i. Thus, the output is 1. For $x \in \{x \mid |x_1| + |x_2| > 1 + \epsilon\}$, at least one $z_i < -\epsilon$ and $\tilde{f}(z_i) = 0$. Thus, $\sum_{i=1}^{4} \tilde{f}(z_i) \le 3$, and the output is -1.