Algebraic Number Theory (MA3A6) - Problem Sheet 8

This sheet is not for submission, but you may ask for help or feedback if you wish. You could also review questions from previous sheets.

- 1. Compute the class number of $\mathbb{Q}(\sqrt{-d})$ for
 - d = 23
 - d = 163
 - d = 29
 - d = 15
- 2. Let \mathcal{O}_K be the ring of algebraic integers of a number field. Prove that \mathcal{O}_K has infinitely many prime ideals.
- 3. Let I, J be non-zero integral ideals of a Dedekind domain R. Prove that there exists an integral ideal K such that IK is principal and K + J = R.
- 4. Give an example of a Dedekind domain that is not a field that has finitely many prime ideals.
- 5. Show that the absolute value of the discriminant d_K of a number field K tends to ∞ with the degree n of the field K.
- 6. Let L/K be an extension of number fields. If I is an ideal of \mathcal{O}_K , then $I\mathcal{O}_L$ is the ideal of \mathcal{O}_L generated by the elements of I.
 - Let I be an integral ideal of K and $I^m = (a)$. Show that I becomes a principal ideal in the field $L = K(\sqrt[m]{a})$, in the sense that $I\mathcal{O}_L = (\alpha)$ for some $\alpha \in L$.