Program constructs and their verification rules

Sequence

 $S = (S_1; S_2)$ is the sequence of two programs S_1 , S_2 . Q, R and Q' are logical functions over A. If

1.
$$Q \implies wp(S_1, Q')$$
 and

2.
$$Q' \implies wp(S_2, R)$$

then
$$Q \implies wp(S,R)$$

Selection

 $IF = (\pi_1: S_1, \dots, \pi_n: S_n)$ is a branches constructed from programs S_1, \dots, S_n and logical functions π_1, \dots, π_n . Q and R are logical functions over A. If

1.
$$Q \implies \bigvee_{i=1}^{n} \pi_i$$
 and

2.
$$Q \implies \bigwedge_{i=1}^{n} (\pi_i \vee \neg \pi_i)$$
 and

3.
$$\forall i \in [1..n] : Q \wedge \pi_i \implies wp(S_i, R)$$

then
$$Q \implies wp(IF, R)$$

	(IF)	
$\setminus \pi_1$	•••	$\setminus \pi_n$
S_1		S_n

Loop

 $DO = (\pi, S_0)$ denotes the loop constructed from the program S_0 and the logical function π . Inv, Q, R are logical functions over A and $t: A \to \mathbb{Z}$ is a function. If

- 1. $Q \implies Inv$ and
- 2. $Inv \wedge \neg \pi \implies R$ and
- 3. $Inv \implies \pi \vee \neg \pi$ and
- 4. $Inv \wedge \pi \implies t > 0$ and
- 5. $Inv \wedge \pi \wedge t = t_0 \implies wp(S_0, Inv \wedge t < t_0)$ for any t_0 integer number

then $Q \implies wp(DO, R)$

(Inv is called loop invariant, t is called variant function.)

