LAB 2 Distance-based Classification

ชื่อ-	สกุลรหัสนักศึกษา ตอนเรียน ตอนเรียน							
จาก	าไฟล์ Pima_diab.csv ตอบคำถาม ข้อ 1 – 10 ต่อไปนี้							
1.	อ่านไฟล์ข้อมูลดังกล่าว แสดงข้อมูล 20 แถวแรก							
2.	จำนวน samples ของผู้ป่วยที่เป็นเบาหวาน (tested_positive) และจำนวน samples ของผู้ป่วย							
	ที่ไม่ได้เป็นเบาหวาน (tested_negative)							
3.	สร้างฟังก์ชั่น (function) เพื่อ clean ชุดข้อมูลนี้ ดังต [่] อไปนี้							
	3.1 ลบคอลัมน์ 'unnamed:0'							
	3.2 เติม missing value ด้วยคาเฉลี่ย (mean) ในแต่ละคอลัมน์ประเภท numeric และเติมด้วย most							
	frequent value สำหรับคอลัมน์ประเภท categorical							
	3.3 แทนค่าในคอลัมน์ class โดยแทน 'tested_negative' ด้วย 0 และ 'tested_positive ด้วย 1							
	โดยส [่] งค [่] ากลับเป็น dataframe ที่ถูก clean แล้ว							
4.	สร้างฟังก์ชั่นเพื่อเลือก features ที่มีค่า correlation กับ class สูงสุด 4 อันดับแรก พร้อมนำมาสร้าง							
	dataframe ใหม่ ตั้งชื่อ newdf โดย feature ที่ถูกเลือกคือ							
5.	จากผลลัพธ์ dataframe ในข้อที่ 4 แบ่งข้อมูลสำหรับฝึกฝน (training data) ออกเป็น 70% และข้อมูลสำหรับ							
	ทดสอบ (test data) 30% ให้แสดงรูปร [่] างมิติของข้อมูลฝึกฝน และข้อมูลทดสอบ							
6.	สร้างโมเดล K-NN โดยกำหนดให [้] k = 5 จากนั้นแสดงความแม [่] นยำบนชุดข้อมูลทดสอบ							
7.	ทำนาย label ของข้อมูลแถวที่ 3 บนชุดข้อมูลทดสอบ ลาเบลที่โมเดลทำนาย							
8.	แสดงรายการของ training sample 5 อันดับแรก ที่อยู่ใกล้กับข้อมูลทดสอบแถวที่ 3							
9.	ใช้ GridSeaerchCV เพื่อหาค่า k ที่เหมาะสม โดยเริ่มจาก k = 1 ถึง 20 บนชุดข้อมูลฝึกฝน ค่า k ที่ถูกเลือก							
	โดย GridSearch คือ							
10.	แสดงความแม [่] นยำของโมเดลที่ใช [้] ค่า k ที่ได้รับจากข้อ 9							
11.	1. บันทึกโมเดลข [้] อ 9 ในรูปของไฟล์ pickle ตั้งชื่อ knn.pkl							
จาก	าชุดข้อมูลภาพใบหน้า fetch_olivetti _faces ใน sk-learn ตอบคำถามข้อที่ 12 ถึง 16							
12.	แสดงรูปร [่] างมิติของชุดข้อมูลดังกล [่] าว และจำนวน label							
13.	แบ่งชุดข้อมูลนี้ออกเป็น 80% สำหรับข้อมูลฝึกฝน และ 20% สำหรับข้อมูลทดสอบ โดยจำนวนข้อมูลฝึกฝน							
	เท่ากับ และจำนวนข้อมูลทดสอบ							

LAB 2 Distance-based Classification

ชื่อ-	สกุล				ตอนเรียน				
14.	ำ สร้างโมเดล	ชื่อ	'model1'	โดยวิธี	centroid	พร้อมแสดงความแม่นยํ	าบนชุดข้อมูลทดสอบ		
15.	. บันทึกโมเดลในข้อ 14 ในรูปของไฟล์ pickle ตั้งชื่อ face_centroid.pkl								
16.	สร้างโมเดล ชื่	อ 'mc	del2' โดยวิธี	el2' โดยวิธี 1-NN พร้อมเปรียบเทียบผลลัพธ์บนชุดข้อมูลทดสอบกับโมเดล centroi					
	โดย โมเดลที่มี	ีความแ	ม ^{ุ่} นยำในการแย	กแยะใบหน	้ เาคือ				