

2018 인하대 K-MOOC 강의 교재

인류의 그림자, 에너지 바로알기

신 현돈 교수 (<u>hyundon.shin@inha.ac.kr</u>)

인하대학교 에너지자원공학과

2018

11. 에너지 믹스란?

11-1: 에너지원의 구성 알아보기

에너지는 어디에서 오나

- 석탄, 석유, 가스: 화석연료
- ▶원자력
- 태양광, 풍력, 지열: 재생에너지
- 수소에너지, 연료전지

화석연료 원자력 재생에너지 수소에너지

에너지 유형별 수요 변동 예상

- 석유-석탄-가스 (2015) → 석유-가스-석탄 (2035년)
- 화석연료 비중은 감소하지만 수요량은 지속적으로 증가

Annual demand growth by fuel

에너지원과 사용분야-미국, 2012

Data: U.S. Energy Information Administration, 2012

미국의 에너지원 변화?-2017

- 석유(37%)-가스(29%)-석탄(14%): 80% (2017)
- 신재생 (11%) 중 바이오매스 45%, 수력 25%

Note: Sum of components may not equal 100% because of independent rounding. Source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 1.3 and 10.1, April 2018, preliminary data

인류와 에너지

- 인류의 역사와 함께 변화
- 깨끗한 재생에너지-화석연료-지속가능에너지

인류의 문명과 연료의 변천

- Wood- coal- petroleum-gas-?
- 인류의 문명과 산업 발전에 따라 변화

Share of U.S. energy consumption by major sources, 1776-2016

Souce: U.S. Energy Information Administration, Monthly Energy Review, April 2017, preliminary data for 2016

산업에 따른 에너지의 변천

- '■산업혁명이후 석탄으로 시작
 - 글로벌 에너지 석유의 등장
 - 원자력 에너지
 - 가스의 시대
 - 재생에너지

국가별 에너지 믹스

에너지의 부존상황, 수입여건, 경제발전 수준, 산업구조에 따라 다름

한국의 에너지 구성과 화석연료

- 화석연료: 1차 에너지원의 82%
- 용도: 전력, 수공, 산업용, 가정용

11-2: 에너지믹스의 문제점

국가별 에너지 믹스

에너지의 부존상황, 수입여건, 경제발전 수준, 산업구조에 따라 다름

한국의 에너지원 구성 현실

■ 화석연료: 1차 에너지원의 82%

■ 용도: 전력, 수송, 산업용, 가정용

한국의 전력수급 동향

석탄,원자력, LNG: 설비와 발전량 차이 발전단가 기준 급전

한국의 원료별 전력 생산량

■ 석탄, 원자력, 가스 비중: 95.5% (OECD 평균 77%)

< 연료원별 전력 생산량 비중 >

< 신재생에너지 발전설비 현황 >

100%		1	6.6%	미기타
80%	21.2%		13.0%	수력
60%	29.1%	1	23.9%	■석유 ■가스
40%			19.3%	■원자
20%	45.2%		34.5%	폐석탄
0%	한국		OECD	

자료: IEA, Energy Balances of OECD Countries 자료: 전력통계정보시스템 주: 2011년 발전량 기준.

구분	설비용량(MW)	비중
폐기물 등	1,737	51.2%
태양광	973	28.7%
풍력	513	15.1%
소수력	170	5.0%
합계	3,393	100.0%

주1) 2013.10.31 기준.

주2) 폐기물 등은 매립가스, 바이오가스, 바이오매스, 연료전지 등을 포함

국내 발전설비 현황

- 500 MW 대용량 설비 비중 : 50%
- 고 에너지 효율의 집단에너지 설비 낮음 : 3.6%

< 설비용량별 발전설비 현황 >

< 발전형식별 발전설비 현황 >

자료: 전력통계정보시스템 주: 2013.10.31 설비용량 기준.

자료: 전력통계정보시스템

주: 2013.10.31 설비용량 기준.

화석연료의 특징과 문제

- 석탄: 고체, C/H 높음 -> 생산의 어려움
- ■석유: 액체-> 채굴 및 운반 용이
- 가스: 기체, C/H 낮음 -> 채굴용이, 상대적으로 친환경, 운송 용이

경제적 편리함 이산화탄소 배출! 미세먼지!! 기후 변화 및 환경문제!!!

화석연료와 전력

- 환경문제의 화석연료 vs. 친환경 전력
- 전력의 공급원은 화석연료!

세계 석유 공급의 집중

전세계 셰일 가스 매장량

주요국가 셰일 가스 매장량

Shale gas reserves all over the world

China and the US are potentially the biggest shale gas exporters, with Argentina and Mexico not far behind. (Figures in trillion cubic feet)

China: 1275

USA: 862

Argentina: 774

Mexico: 681

S. Africa: 485

Canada: 388

아시아 - 북미 - 남미 - 아프리카 - 유럽

KRUGER, Graphics 24

세계 석탄 매장량

한국 신재생에너지 보급 현황

2.4%(2008) -> 4.8%(2016)

신.재생에너지 보급현황

출처: 한국에너지공단 신재생에너지센터「신재생에너지보급통계」

에너지원 및 원료-석유가스

- 동력, 열, 원료
 - ▶ 운송, 음식, 에너지, 전기, 건강, 통신

우리의 에너지 선택 기준은 ?

안전? 환경? 경제성 ???

원자력-화석연료-신재생

에너지 구성과 용도 발전비용, 발전설비의 수명 전기의 미래 각 국가별 자원보유 현황 신재생의 가능성

11-3: 에너지의 저장과 이동

에너지의 저장과 운송

- 석탄(고체)의 저장: 야적장
- 석유(액체) 가스(기체)의 저장과 운송
 - ▶ 탱크, 지하 공동에 비축
 - ▶ 파이프 라인 운송
 - > 유조선 운송
- 전기의 저장 및 운송: 신재생에너지 필수
 - ▶ 전기 배터리
- 기타: 압축공기로 저장

석유가스 파이프라인

- 전세계: 3.5 MM km (USA 65%, Russia 8%)
- 수집라인 주수송라인 분배라인
- 파이프 직경: 4~48"dia (Buried 3~6 ft), 40ft long 운반속도: 5km/hr(oil), 40km/hr(gas)

파이트라인 건설

■ 주로 육상, 근해, 국경을 넘어서

가스의 판매 및 운송

Major trade movements 2017
Trade flows worldwide (billion cubic metres)

■ PNG(동일 대륙)+LNG(타 대륙)

러시아 가스관과 한국의 에너지

충분한 가스전 개발 및 공급 가능?

LNG 도입

■ 도입선 - 인수기지 - 재기화 - 공급망

탱커(Tanker)

Very Large Crude Carrier(VLCC: 2백만)

Ultra Large Crude Carrier (ULCC: 3백만)

파나맥스 (50만) 아프라맥스 (80만) 수에즈맥스 (100만)

국내 원유비축

┛ 9개 비축기지: 146 MM bbls 용량 (93 MM bbls 비축)

■ 지하공동 또는 지상 탱크

신재생에너지의 저장

- 에너지저장시스템(ESS, Energy Storage System)
- 전기 생산시간과 실 사용시간 간의 차이 극복
- 전기 에너지의 저장 장치 필요
- 충전을 위한 인프라 필요

에너지로 전환 후 저장

- 지열을 이용한 발전설비
- 공기 압축 후 지하저장
- 양수 발전 활용

잉여 전력의 저장 및 활용

- 발전소 상시 가동
- 전력 소비는 낮 시간 집중
- 여분의 전력 저장 후 활용

11-4: 균형잡힌 에너지원은 가능할까?

한국의 에너지원 구성 현실

■ 화석연료: 1차 에너지원의 82%

■ 용도: 전력, 수송, 산업용, 가정용

화석연료와 전력

- 환경문제의 화석연료 vs. 친환경 전력
- 전력의 공급원은 화석연료!

G20 전력원 비율

수력: 브라질, 캐나다,

터키

풍력: 독일, 영국, 중국

태양광: 독일, 이탈리아

가스: 사우디 아라비아, 아르헨티나,멕시코

석탄: 중국, 인도. 인도네시아,남아공

장예진 기자 / 20170708 트위터 @vonhap graphics 페이스보 tuney kr/Le/N1

각 국의 다양한 전력 원 구성

- 선진국: 신재생 중심으로 재편
- 중국, 인도: 70% 이상 석탄-> 40% 예상('40)

에너지원별 수요 예상

■ 화석연료 비중은 감소하지만 수요량은 지속적으로 증가: 증가분의 50% 이상

Shares of primary energy

Annual demand growth by fuel

한국 에너지 소비 및 수입

지표 년도	1981	1991	2001	2012	연평균증기율		
					'81 ~'91	'91 ~'01	'01 ~'12
1차에너지 소비 (백만 TOE)	45.7	103.6	198.4	277.6	8.5%	6.7%	3.1%
에너지 수입액 (억\$)	78	128	339	1,853	5.1%	10.3%	16.7%

[우리나라 에너지 소비 및 수입 추이]

한국의 원별/부문별 에너지 소비

■ 화석연료: 85% 이상

[원별 에너지 소비비중, 2012년]

[부문별 에너지소비 비중, 2012년]

원료원별 전력 생산량

■ 석탄, 원자력, 가스 비중: 95.5% (OECD) 평균 77%)

< 연료원별 전력 생산량 비중 >

< 신재생에너지 발전설비 현황 >

100%		1	6.6%	미기타
80%	21.2%		13.0%	수력
60%	29.1%	1	23.9%	■석유 ■가스
40%			19.3%	■원자력
20%	45.2%		34.5%	■석탄
0%	한국		OECD	

자료: IEA, Energy Balances of OECD Countries 자료: 전력통계정보시스템 주: 2011년 발전량 기준.

구분	설비용량(MW)	비중	
페기물 등	1,737	51.2%	
태양광	973	28.7%	
풍력	513	15.1%	
소수력	170	5.0%	
합계	3,393	100.0%	

주1) 2013.10.31 기준.

주2) 폐기물 등은 매립가스, 바이오가스, 바이오매스, 연료전지 등을 포함

국내 발전설비 현황

- 500 MW 대용량 설비 비중 : 50%
- 고 에너지 효율의 집단에너지 설비 낮음: 3.6%

< 설비용량별 발전설비 현황 >

자료: 전력통계정보시스템 주: 2013.10.31 설비용량 기준.

< 발전형식별 발전설비 현황 >

자료: 전력통계정보시스템

주: 2013.10.31 설비용량 기준.

국가별 전기가격 비교

- 전기 가격 < 1차에너지원 가격 ?
- 싼 전기료가 에너지 믹스를 어렵게 하나 ?

< 경유 및 전기 가격 국제비교 >

< 최종에너지 소비량 및 전기화 추이 >

자료: IEA(2013), Energy Prices and Taxes

주1) 2012년 기준

주2) 경유는 비상업 자동차용, 전기는 주택용.

자료: 통계청 자료 이용 현대경제연구원 계산.

(자료: 현대경제연구소, **2013**)

국가별 전력소비 및 증가율 비교

■ 한국: OECD 국가 평균이상(7%/년)

■ 전력비중: 25%

전력 생산-소비의 불균형

■ 수도권 (경기도) 전력 사용량 급증

< 전국 6대 권역별 전력 자급률 > < 16개 광역시도별 전력 자급률 >

0	- AD - CO		(단위: TWh, %		
구분	소비량	자급률	구분	소비량	자급률
경기	100	28.5	전북	21	36.2
서울시	47	4.2	충북	21	5.9
경북	45	156.7	부산시	21	172.7
충남	44	266.9	강원	16	72.8
경남	33	226.0	대구시	15	1.8
울산시	29	49.8	대전시	9	2.6
전남	28	226.3	광주시	8	1.7
인천시	23	337.2	제주	4	79.7

자료: 한국전력통계 데이터를 이용하여 현대경제연구원 자체 계산

주1) 전력자급률 = 전력생산량 - 전력소비량

주2) 2012년 기준.

적정 전원구성 고려요소

■ 안전성, 경제성, 기후변화 대응, 전력부하

[적정 전원구성의 고려요소]

안정성 측면

- 연료궁급 및 가격 위험이 낮은 전원 확대
- 원자력은 연료공급 및 가격 위험도가 가장 낮은 발전원

경제성 측면

- ♥ 저비용 전원의 확대
 - 원전은 가장 경제적 발전원
 - 유가상승, 탄소비용 반영시 더욱 유리

적정 전원구성

기후변화 대응 측면

- 온실가스 저배출 전원의 확대
- 원전은 CO2 등 온실가스 배출 거의 없음
- ※ 발전원별 CO2 배출량 (g/kWh, IAEA) 석탄 991, 석유 782, LNG 549, 태양광 57, 등력 14, 원자력 10

전력부하 측면

- 부하형태를 고려한 전원구성
 - 연중 최대부하 대비 최저부하 비율
 41~42% 수준

에너지원 구성과 규제 관련성

■ 환경 규제로 에너지원 변화

THE . COOMS TH LIBETT

신재생에너지의 장점 활용

- 에너지 안보와 에너지원 다양성
- 친환경 에너지: 지구 변화 대응
- 지속 가능 경제성 확보
- 에너지 분권화, 소형화로 많은 사람들에게 에너지 공급 가능
- ESS, 빅 데이터, IoT, 블록체인 기술의 전력분야 이용

한국의 에너지 믹스 정책 방향

- 에너지 안보의 중요성
- 최적의 에너지 믹스
- 지속가능성
- 신재생의 적절한 활용

공급관리

효율 향상

수요관리

기존 에너지원 믹스 1차 에너지원 확보 안전성+환경+경제성