

Simulador Para Estacionamento de Carros Autônomos Não Articulados Usando Lógica Difusa

Acadêmico: Ewerton Rocha Machado ewerton@inf.furb.br

Orientador: Mauro Marcelo Mattos mattos@furb.br

dezembro de 2009

Roteiro da Apresentação

- Introdução
 - Contextualização e Objetivos
- Fundamentação Teórica
 - Lógica Difusa
 - JMonkey Engine
 - Trabalhos Correlatos
- Desenvolvimento do Simulador
 - Principais Requisitos
 - Especificação
 - Implementação
 - Resultados e Discussão
- Conclusão e Extensões

Introdução

Contextualização

- União entre a indústria automobilística e a área de automação.
- Dificuldades para estacionar.
- IA contribuindo para o aumento da realidade nos simuladores.
- Simulador provendo um ambiente atrativo para desenvolvimento e testes.

Objetivos do Trabalho

- Desenvolver uma aplicação que simule o processo de estacionamento de um veículo autônomo.
- Objetivos Específicos:
 - Construir uma base de regras difusas que possibilite a simulação do ato de estacionar;
 - Disponibilizar uma interface gráfica que permita o acompanhamento do processo de simulação.

Fundamentação Teórica

- Uma das diversas técnicas de implementação de inteligência artificial;
- Desenvolvida a partir de 1965 por Lotfi Zadeh, para tratar do aspecto do vago da informação;
- Tratar incertezas oriundas de informações parciais ou incompletas.
- Grau de pertinência em conjuntos.

Lógica Difusa

- Variáveis lingüísticas.
- Expressões qualitativas.
- Sistema de controle Fuzzy:

Lógica Difusa

- FuzzyJ ToolKit:
 - Permite lidar com conceitos nebulosos.
 - Explora as idéias da lógica Fuzzy em um ambiente Java.

Lógica Difusa

- Exemplo de áreas benefíciadas pelo uso da lógica difusa:
 - Câmeras de vídeo;
 - Máquinas de lavar roupa;
 - Aparelhos de ar-condicionado;
 - Indústria automobilística.

JMonkey Engine

- Open-source.
- Escrita totalmente em Java delegando tarefas de renderização a biblioteca nativa OpenGL.
- Baseada em grafo de cena.

JMonkey Engine

- JNI acopla a biblioteca nativa de renderização a engine JME
- Física usando o framework JME Physics.

JMonkey Engine

Trabalhos Correlatos

- Lima: sistema *fuzzy* que movimenta um robô através de obstáculos.
- Tan e Seng: Protótipo de um robô que estaciona em vagas paralelas.
- Britton: Algoritmo para estacionar de ré um caminhão articulado.

Desenvolvimento do Simulador

Principais Requisitos

• Funcionais:

- Estacionar um veículo autonomamente em espaços paralelos ao veículo.
- Procurar em linha reta um espaço adequado para estacionar.
- Parar o veículo após o mesmo estar estacionado.
- Continuar procurando uma vaga, caso ache uma não adequada.
- Estacionar o carro em vagas no lado direito, excluindo cenários com mão inglesa.

Principais Requisitos

- Não funcionais:
 - Ambiente de desenvolvimento Eclipse Europa.
 - Linguagem de programação Java.
 - JMonkey Engine.

- Técnicas e ferramentas utilizadas:
 - Ferramenta Enterprise Architect.
 - Linguagem especificação UML.

Diagrama de caso de uso tendo como ator o usuário:

Diagrama de caso de uso tendo como ator o veículo:

Diagrama de classes:

Diagrama de responsável pela criação do veículo:

Implementação

- Técnicas e ferramentas utilizadas:
 - IDE Eclipse Galileo Java.
 - Blender 2.43 Modelo 3D do carro.
 - Adobe Photoshop CS Texturas do terreno.

Implementação

- Operacionalidade da implementação / Passos:
 - Pressionar a tecla **K** para iniciar uma procura por vaga.

Implementação

- Operacionalidade da implementação / Passos:
 - Pressionar a tela M para iniciar o processo de estacionamento.

Resultados e Discussões

• Engine JME:

Grafo de cena = performance, otimização e abstração.

Cenário 3D com bom nível de imersão:
 Massa, colisão e suspensões.

Lógica difusa:
 Tratamento de informações imprecisas.

Conclusão

Conclusão

- Resultados obtidos satisfatórios.
- Lógica difusa:
 Estudos e pesquisa.
- JME:Abstração e performance.
- FuzzyJ ToolKit:

 Pouca documentação e exemplos.

Extensões

- Novos modelos de terrenos e veículos.
- Expansão das regras difusas para estacionar também do lado esquerdo.
- Mecanismo que estacione em vagas de 45 e 90 graus.
- Embarcar a solução desenvolvida em um protótipo real.
- Adaptar o simulador para veículos articulados, como caminhões.

Obrigado pela atenção

Contato:

ewerton@inf.furb.br ewertonrmachado@gmail.com