QUANTUM ERROR CORRECTION ON FPGA

FILIPPO CORNA AND DAVIDE SALONICO

{filippo.corna, davide.salonico}@mail.polimi.it

18/07/2024 @ DEIB - NECSTLab Meeting Room

Outline

- Introduction to Quantum Computing
- Quantum Error Correction
- Sparse Blossom Algorithm
- Hardware Acceleration
- Experimental Evaluation
- Conclusion

Quantum Computing & its limits

Quantum Error Correction

- Encode information in a redundant way
- Detect errors
- Correct errors

Fault tolerance

Errors are generated and start to accumulate very quickly

The only way to protect quantum information is constantly correct the newly occurring errors

Sparse Blossom Algorithm (SBA)

SBA components...

- Flooder: manages nodes-regions interactions
- Matcher: manages regions/blossoms interactions
- Tracker: keeps track of the events to be processed and/or invalidated

... and a more detailed view

Methodology

Goal: reduce execution time of the Sparse Blossom Algorithm by implementing an hardware FPGA-based version

- Estimation of bounds for data structures
 - Hybrid of theoretical and empirical estimations
- Optimization of data type
- Pipelining and Unrolling for subroutines
- Bottom-Up approach

Flooder analysis

DaCH Cache

- HLS level cache
- Dataflow (emulating LCS pattern)
- Two levels
- Multiport
- Highly customizable
- Profiling Functions
- Problems during synthesis

Source: Array-Specific Dataflow Caches for High-Level Synthesis of Memory-Intensive Algorithms on FPGAs (Brignone and others)

Experimental Setup

Vitis HLS and Vitis Unified IDE

Intel® Xeon® CPU E5-2680 v2

- @ 2.80GHz
- 396 GB RAM

Alveo U55C High Performance Compute Card

- ▶ 16 GB HBM with 460 GB/s bandwidth
- ▶ 1,304K LUTs
- 2,607 Registers
- ▶ DSP Slices 9,024

Source: https://www.xilinx.com/products/boards-and-kits/alveo/u55c.html

Experimental Results

Correctness

Manually tested on a small graph:

- 1. Modify PyMatching source code
- Generate a log of the events happening in the algorithm
- Checking correctness of results w.r.t. our hardware version

```
(pym venv) davide.salonico@nags21:~/PyMatching$ /home/users/davide.salonico/pym venv/bin/python /home/users/davide.
salonico/PyMatching/src/test.py
SET DESIRED EVENT NODE
TentativeEvent{.time=27677302, .type=LOOK AT NODE, .node=0x1c42598}
MATCHER DO RHB INTERACTION
MwpmEvent{.type=REGION HIT BOUNDARY, .dat={.region=0x2106840, .edge=CompressedEdge{.obs mask=0, .loc from=0x1c42598
TentativeEvent{.time=27677302, .type=LOOK AT NODE, .node=0x1c42598}
MATCHER NO EVENT
SET DESIRED EVENT NODE
SET DESIRED EVENT NODE
TentativeEvent{.time=16059418, .type=LOOK_AT_NODE, .node=0x1c426a8}
MATCHER DO NEIGH INTERACTION
MwpmEvent{.tvpe=REGION HIT REGION, .dat={.region1=0x2197630, .region2=0x2106840, .edge=CompressedEdge{.obs mask=0,
.loc from=0x1c426a8, .loc to=0x1c42598}}}
TentativeEvent{.time=16059418, .type=LOOK AT NODE, .node=0x1c426a8}
MATCHER NO EVENT
TentativeEvent{.time=27677302, .tvpe=LOOK AT NODE, .node=0x1c42598}
MATCHER NO EVENT
SET DESTRED EVENT NODE
SET DESIRED EVENT NODE
TentativeEvent{.time=16059418, .tvpe=LOOK AT NODE, .node=0x1c42620}
MATCHER DO NEIGH INTERACTION
MwpmEvent{.type=REGION HIT REGION, .dat={.region1=0x2197630, .region2=0x2106840, .edge=CompressedEdge{.obs mask=0.
.loc from=0x1c42620, .loc to=0x1c42510}}}
TentativeEvent{.time=16059418, .type=LOOK AT NODE, .node=0x1c42620}
MATCHER NO EVENT
TentativeEvent{.time=32118836, .type=LOOK AT NODE, .node=0x1c42510}
SET DESIRED EVENT NODE
```

Conclusions & future works

A meaningful speedup evaluation is not feasible at this stage of development

- Completing the acceleration & speedup evaluation
- Cache configuration space exploration
- RTL cache

THANK YOU FOR YOUR ATTENTION

FILIPPO CORNA AND DAVIDE SALONICO

{filippo.corna, davide.salonico}@mail.polimi.it

18/07/2024 @ DEIB - NECSTLab Meeting Room