Name: Li Xian Personal Code: 10713607

Task 1 Using the given diagrams and calculate how much (%) is the effect of applying different modifications on the U value with respect to a benchmark case of double layer with air and no coating (gap thickness = 13 mm)

2 parallel planes	U- value	Difference	percentage
w/air	2.8 W/m ²	0	0%
w/argon	2.65 W/m ²	0.15 W/m ²	5.36%
w/krypton	2.6 W/m ²	0.20 W/m ²	7.14%

3 parallel planes	U- value	Difference	percentage
w/air	1.8 W/m ²	1 W/m ²	35.7%
w/argon	1.7 W/m ²	1.1 W/m ²	39.2%
w/krypton	1.6 W/m ²	1.20 W/m ²	42.8

Task 2 Calculate the heating and cooling load of the other windows which are fixed 14.4 m2 on the west, fixed 3.6 m2 on the south and an operable 3.6 m2 on the south. How much does the total value change if I change the frame of the window from wooden one to aluminum?

PIACENZA, Italy										WMO#:	160840					
Lat:	44.92N	Long:	9.73E	Elev:	138	StdP:	99.68		Time Zone:	1.00 (EU	W)	Period:	89-10	WBAN:	99999	
Annual Heating and Humidification Design Conditions																
Coldest Heating DB			Humi	umidification DP/MCDB and HR			Coldest month WS/MCDB			MCWS/PCWD						
Month Heating DB	g DB	99.6%			99%		0.4% 1%		%	to 99.6% DB						
WOTH	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD		
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)		
1	-6.2	-4.8	-11.6	1.4	3.1	-8.8	1.8	1.8	8.8	5.6	7.7	6.2	2.1	250		(1)
Annual Cooling, Dehumidification, and Enthalpy Design Conditions																
Hottest Cooling DB/MCWB Evaporation WB/MCDB MCWS/PCWD																
Month Mo	Month	0.4% 1%							0.4% 1% 29			%				
	DB Range	DB	MCWB	DB	MCWB	DB Z	MCWB	WB	MCDB	WB .	MCDB	WB	MCDB	MCWS	PCWD	
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
8	11.9	33.1	22.7	31.9	22.4	30.3	21.8	24.6	30.2	23.7	29.2	22.9	28.3	2.4	90	(2)

 $DT_{cooling} = 31.9 - 24 = 7.9^{\circ}C$; $DT_{heating} = 20 + 4.8 = 24.8^{\circ}C$; $DR = 11.9^{\circ}C$

West window: fixed 14.4 m²

Wood frame: Cooling Load: Qw-window = A*CFw-window

 $CF_{w\text{-window}} = CF_{w\text{-window-con}} + CF_{w\text{-window-rad}}$

CF_{w-window}= U(DT - 0.46DR)+ PXI*SHGC*IAC*FFs

 $CF_{w-window-con} = 2.84(7.9-(0.46*11.9)=6.89 \text{ w/m}^2$

CF_{w-window-rad} = PXI*SHGC*IAC*FFs

PXI = ED- Ed = 559+188 = 747

CF_{w-window-rad}= 747*0.54*1*0.56= 225.89w/m²

CF_{w-window}= CF_{w-window-con} + CF_{w-window-rad}= 232.78 w/m²

So $Q_{w-window} = A*CF=3352.07W$

Wood frame: Heating Load: $CF_{w-window} = U_{w-window} * DT_{heating} = 70.43 \text{ W/m}^2$

Q = 14.4*70.43 = 1014.19W

Amluminum frame: Cooling Load: CF_{w-window-con} = 8.76W/m²

$$CF_{w-window-rad} = 234.26W/m^2$$

$$CF_{w-window} = 243.02W/m^2$$

$$Q_{w-window} = A*CF_{w-window} = 3499.7W$$

Amluminum frame: Heating Load: HF_{w-window} = 89.53W/m²

$$Q_{w-window} = A*HF_{w-window} = 1289.20W$$

Difference of total value: Cooling load: 147.4W

Heating load: 274.98W

South window: fixed 3.6 m² o and operable 3.6 m²

Wood frame: Cooling Load: Qw-window = A*CFw-window

$$F_{w-window-con} = 2.84*(7.9-(0.46*11.9)) = 6.89 \text{ W/m}^2$$

$$F_{w-window-rad} = 557*0354*0.47 = 141.37 \text{ W/m}^2$$

$$CF_{w-window} = CF_{w-window-con} + CF_{w-window-rad} = 148.26 \text{ W/m}^2$$

$$Q_{s-window} = 3.6*148.26 = 533.75W$$

Wood frame: Heating Load: $HF_{s-window} = U_{s-window} * DT_{heating} = 70.43 \text{ W/m}^2$

$$Q_{s-window} = 3.6*70.43 = 253W$$

Amluminum frame: Cooling Load: CF_{s-window-con} = 8.76W/m²

$$CF_{s-window-rad} = 146.60W/m^2$$

$$CF_{s-window} = 155.36W/m^2$$

$$Q_{s-window} = A*CF_{s-window} = 559W$$

Amluminum frame: Heating Load: $HF_{s-window} = 89.53W/m^2$

 $Q_{s-window} = A*HF_{s-window} = 322.31W$

Difference of total value: Cooling load: 25.25W

Heating load: 69.31W