Project Documentation - Diabetes Prediction Model Deployment CAD_Phase5

Project Overview

- Objective: The primary goal of our project is to deploy a diabetes prediction model via IBM Cloud Watson Studio to enable real-time predictions, supporting informed healthcare decisions.
- **Design Thinking Process:** We followed a structured design thinking process to ensure an effective problem-solving approach and create a robust solution.

Development Phases

Data Collection

 Data Collection: We initiated our project by obtaining a suitable dataset, a fundamental step in model training and validation.

Data Preprocessing

• **Data Preprocessing:** Data preprocessing involved cleaning, transforming, and feature engineering to make the dataset suitable for model training.

Model Training

• **Model Training:** We selected a machine learning model, detailed its architecture and hyperparameters, and explained the choice of performance metrics for model evaluation.

Model Deployment

 Model Deployment: This phase involved the actual deployment of the trained model using IBM Cloud Watson Studio.s

= S'Content-Type' 'analication/ison' 'Authorization' 'Reaver ' + mltokeni

Predictive Use Case

• **Predictive Use Case:** Our project addresses the critical issue of predicting diabetes in patients, significantly impacting healthcare management.

Dataset Selection

• Dataset Selection: We carefully chose a relevant dataset

6 1 8 1 0 5 3 10 2 8 4 10 10	148 85 183 89 137 116 78 115 197 125	72 66 64 66 40 74 50 0	35 29 0 23 35 0 32	0 0 94 168 0 88	33.6 26.6 23.3 28.1 43.1 25.6	0.627 0.351 0.672 0.167 2.288 0.201	50 31 32 21 33	1 0 1 0
8 1 0 5 3 10 2 8 4 10 10 10	183 89 137 116 78 115 197	64 66 40 74 50 0	0 23 35 0 32	0 94 168 0	23.3 28.1 43.1 25.6	0.672 0.167 2.288	32 21 33	1
1 0 5 3 10 2 8 4 10 10	89 137 116 78 115 197 125	66 40 74 50 0 70	23 35 0 32	94 168 0	28.1 43.1 25.6	0.167 2.288	21 33	0
0 5 3 10 2 8 4 10 10	137 116 78 115 197 125	40 74 50 0 70	35 0 32	168 0	43.1 25.6	2.288	33	
5 3 10 2 8 4 10 10	116 78 115 197 125	74 50 0 70	0 32	0	25.6			1
3 10 2 8 4 10 10 1 5	78 115 197 125	50 0 70	32			0.201		
10 2 8 4 10 10 1 5	115 197 125	0 70		88	24		30	0
2 8 4 10 10 1 5	197 125	70	0		31	0.248	26	1
8 4 10 10 1 1	125			0	35.3	0.134	29	0
4 10 10 1 5			45	543	30.5	0.158	53	1
10 10 1 5	110	96	0	0	0	0.232	54	1
10 1 5		92	0	0	37.6	0.191	30	0
1 5	168	74	0	0	38	0.537	34	1
5	139	80	0	0	27.1	1.441	57	0
	189	60	23	846	30.1	0.398	59	1
7	166	72	19	175	25.8	0.587	51	1
7	100	0	0	0	30	0.484	32	1
0	118	84	47	230	45.8	0.551	31	1
7	107	74	0	0	29.6	0.254	31	1
1	103	30	38	83	43.3	0.183	33	0
1	115	70	30	96	34.6	0.529	32	1
3	126	88	41	235	39.3	0.704	27	0
8	99	84	0	0	35.4	0.388	50	0
7	196	90	0	0	39.8	0.451	41	1
9	119	80	35	0	29	0.263	29	1
11	143	94	33	146	36.6	0.254	51	1
10	125	70	26	115	31.1	0.205	41	1
7	147	76	0	0	39.4	0.257	43	1
1	97	66	15	140	23.2	0.487	22	0

Model Training

• **Model Training:** Insights into the architecture of the machine learning model used for diabetes prediction were provided, along with an explanation of key hyperparameters. We also detailed the metrics used to evaluate model performance.

Deployment Process

 Deployment Process: This section provides detailed steps in deploying our model using IBM Cloud Watson Studio, accompanied by screenshots and diagrams illustrating the deployment process.

Integration Steps

• **Integration Steps:** Here, we explain how other applications or services can integrate with our deployed model and provide information on API endpoints.

Real-Time Predictions

• **Real-Time Predictions:** This section elaborates on how users can access and utilize our deployed model for real-time predictions. API requests are provided for users to understand how to make predictions through the deployed model.

Conclusion

Our project aimed to deploy a diabetes prediction model for real-time predictions, empowering better healthcare decisions. We followed a structured approach to address this problem effectively.

Throughout the project, we completed essential phases:

- **Data Collection:** We gathered a suitable dataset for model training.
- **Data Preprocessing:** We cleaned and transformed the dataset to make it ready for the model.
- **Model Training:** We explained the model's architecture and performance metrics for evaluation.
- Model Deployment: We successfully deployed the model using IBM Cloud Watson Studio

The deployment process was explained with screenshots, ensuring clarity. Integration steps and real-time predictions through API were highlighted.

In conclusion, our project has a meaningful impact on healthcare decisions, and our model stands as a tool to make a positive difference. We are committed to further improvements in the future.