0.1 Mozgások leírására szolgáló mennyiségek definíciói

0.1.1 Hely, elmozdulás, sebesség és sebességvektor

Vegyük fel mindenekelőtt egy egydimenziós koordinátarendszert, jelöljük ki az origót és a pozitív x tengelyt. Tegyük fel, hogy a P részecske a t_2 időpillanatban az x_1 helyen van. Ha a részecske mozog, akkor a t_2 időpillanatban új, x_2 helyre kerül; azt mondjuk, hogy a részecske elmozdulása $x_2 - x_1$. Ezt gyakran a görög Δ jellel fejezzük ki, ami általában egy mennyiség megváltozására utal. Így az

Elmozdulás
$$\Delta x = (x_2 - x_1) \tag{1-1}$$

A Δx kifejezés mindig az adott x mennyiség $v\acute{e}gs\emph{o}$ és kezdeti értékének különbségét jelentik. A pozitív Δx érték pozitív x irányú, a negatív -x irányú elmozdulást jelöl.

Az **átlagsebességet** a pálya mentén megtett teljes út és a megtételéhez szükséges összes idő hányadosa adja.

A következőkben az egyenesvonalú mozgás irányának figyelembevételére definiáljuk a $v_{\rm \acute{a}tl}$ átlagsebesség-vektort.

$$V_{\text{átl}} = \frac{\text{Elmozdulás}}{\ddot{\text{O}}\text{sszes idő}}$$

$$V_{\text{átl}} = \frac{\Delta x}{\Delta t} = \frac{(x_2 - x_1)}{t_2 - t_1} \tag{1-3}$$

Itt $v_{\text{átl}}$ az elmozdulás előjelétől függően pozitív és negatív is lehet. A pozitív érték azt jelenti, hogy a sebesség a pozitív x irányba mutat, a negatív pedig azt, hogy a sebesség -x irányú.

0.1.1.1 A pillanatnyi sebesség. A mozgás finomabb részleteire figyelve definiálható a *pillanatnyi sebesség*, ami a mozgást egy adott időpillanatban jellemzi.

A (1-3) egyenlet szerint a t_1, t_2 időintervallumra az átlagsebesség $v_{\text{átl}} = \Delta x/\Delta t$. Ez az arány a t_1 időpillanathoz tartozó P_1 pontból a t_2 időpillanathoz tartozó P_2 végpontig tartó egyenes meredeksége.

A $\Delta x/\Delta t$ arány (melyet különbségi hányadosnak is nevezünk), egy jól meghatározott értékhez, a t_1 időpillanathoz tartozó érintő iránytangenséhez tart. Ezt az értéket nevezzük a t_1 -hez tartozó v pillanatnyi sebességnek.

Pillanatnyi sebesség,
$$v$$
 (a t időpontban)
$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$
 (1-4)

A t_1 időpillanatban a görbe meredeksége pozitív, így a pillanatnyi sebesség is pozitív irányba mutat. A t_2 meredekség 0, ami azt jelzi, hogy (ekkor fordul meg a test) a sebesség zérus. A t_3 időpontban a meredekség negatív, s ez azt mutatja, hogy a sebesség negatív irányú.

A pillanatnyi sebesség nagysága megegyezik a pillanatnyi sebesség abszolút értékével.

A későbbiekben gyakran használjuk majd az előző feladatban kapott általános szabályt, ha x másodfokú függvény (azaz $x=Ct^2$, ahol C állandó), akkor a v=dx/dt derivált v=C't lineáris függvény, ahol C' a C-től különböző állandó. Általában fennáll

Ha
$$x = Ct^n$$
, akkor $\frac{dx}{dt} = nCt^{n-1}$

A v=v(t) függvényábra minden pontban az x=x(t) függvényábra megfelelő pontbeli érintőjének meredekségét adja meg. Negatív t értékek esetén a meredekség is negatív és abszolút értékben annál nagyobb, minél meredekebb a görbe. A t=0 pontban az érintő iránytangense zérus. Pozitív t-értékekre pedig pozitívvá válik.

0.2 A gyorsulás

Mindenki, aki már vezetett autót, és rálépett a gázra, tudja, hogy mindennapi értelemben a gyorsulás a gépkocsi sebességének növekedését jelenti. A fizikában azonban ez a kifejezés általánosabb értelmet nyer és a lassulást is magában foglalja. Ha a $\Delta t = t_2 - t_1$ időtartam alatt egy test pillanatnyi sebessége $\Delta v = v_2 - v_1$ -értékkel változik, akkor átlagos gyorsulása definíció szerint

Átlagos gyorsulás
$$a_{\text{átl}} = \frac{\Delta v}{\Delta t}$$

A definíció tartalmazza mind a gyorsulást ($a_{\text{átl}}$ pozitív), mind pedig a lassulást ($a_{\text{átl}}$ negatív). A gyorsulás tehát az időegységre eső sebességváltozás. Az SI rendszerben ez m/s osztva másodperccel, azaz m/s^2

A pillanatnyi gyorsulást a pillanatnyi sebesség definíciójához hasonlóan határértékként értelmezhetjük, azaza a pillanatnyi gyorsulás a $\Delta v/\Delta t$ különbségi hányados határértéke, mindőn Δt zérushoz tart¹.

Pillanatnyi gyorsulás
$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$$

Szavakban: "a gyorsulás egyenlő a $\Delta v/\Delta t$ különbségi hányados határértékével, midőn Δt zérushoz tart. Ezt a határértéket a sebesség idő szerinti deriváltjának nevezzük és dv/dt-vel jelüljük. A v=v(t) grafikonon a t pillanatbeli a gyorsulást a sebességgrafikon t időpillanathoz tartozó ponthában meghúzott érintő iránytangense adja meg. A gyorsulás szó az esetek többségében pillanatnyi gyorsulást jelent, ha kifejezetten $a_{\rm \acute{a}tl}$ -ról kivánunk beszélni, akkor az átlagos gyorsulás kifejezést használjuk.

0.3 Az egyenesvonalú egyenletesen gyorsuló mozgás kinematikai egyenletei

Azért, hogy a megoldás a legáltalánosabb kezdeti feltételeket kielégítse, feltesszük, hogy t_0 kezdeti időpontban adott az x_0 kezdeti elmozdulás és v_0 kezdeti sebesség. Állandó gyorsulású mozgások esetén az a pillanatnyi gyorsulás megegyezik az $a_{\text{átl}}$ átlagos gyorsulással:

$$a = \frac{DeltaV}{\Delta t} = \frac{v - v_0}{t - 0} = \frac{v - v_0}{t}$$

amiből átrendezéssel a

$$v = v_0 + at$$
 (állandó a esetén) (1-7)

összefüggéshez jutottunk. Ez a kinematikai feladatok megoldásában rendkívül hasznos un. első kinematikai egyenlet. Legyen a t_0 időpontban a kezdősebesség v_0 . Egy későbbi t időpontban a sebességet a $v = v_0 + at$ egyenes adja, amelynek meredeksége éppen $a = \Delta v/\Delta t$. Az ábrán az egyenes alatti satírozott terület két részre bontható. Az alső, sötétebb téglalap területe v_0t , a felső, enyhébben árnyékolt háromszög területe pedig $1/2(v-v_0)t$. Összeadva ezeket a területeket, azt kapjuk, hogy

[Az egyenes alatti jeles terület] =
$$v_0 t + \frac{1}{2}(v - v_0)t = \left(v_0 = \frac{v}{2} - \frac{v_0}{2}\right)t$$

Terület =
$$\left(\frac{v_0 + V}{2}t\right)$$

¹A pillanatnyi gyorsulás második deriváltként is kifejezhető. Mivel $a = \frac{dv}{dt}$; $a = \frac{d}{dt}(\frac{dx}{dt}) = \frac{d^2x}{dt^2}$

Az utóbbi formulában a tázójelben éppen a kezdeti és a végsebesség átlaga szerepel, ami a gyorsulás állandósága miatt a $a_{\text{átl}} = \frac{\Delta x}{\Delta t}$ átlagsebességvektorral egyenlő. Felhasználva, hogy $t_0 = 0$ következtében fennáll a $\Delta t = t$ -összefüggés, a $\Delta x = x - x_0$, valamint a $\Delta x = a_{\text{átl}}t$ formulák egybevetéséből azt kapjuk, hogy

$$x - x_0 = \left\lceil \frac{v_0 + v}{2} table of contents \right\rceil$$
 (állandó a esetén) (1-8)

Összehasonlítva a két utolsó egyenletet, látható, hogy az $x-x_0$ eredő elmozdulás megegyezik a v = v(t) grafikon alatti területtel.

Behelyettesítve a (1-7) egyenletbe a $v = v_0 + at$ összefüggést, majd az eredményt átrendezve megkapjuk a második kinematikai egyenletnek nevezett formulát:

$$x = x_0 = v_0 t + \frac{1}{2} a t^2$$
 (állandó gyorsulás esetén) (1-9)

A harmadik szintén nagyon hasznos kinematikai egyenlethez úgy juthatunk el, ha a (1-7) és (1-9) egyenletekből elimináljuk az időt. Eredményül a

$$v^{2} = v_{0}^{2} + 2a(x - x_{0})$$
 (állandó a esetén) (1-10)

formulát kapjuk.

Ez utóbbi összefüggés olyan feladatok lehet hasznos, amelyekben az időt nem ismerjük.

A kinematikai egyenletek tovább egyszerüsíthetők, ha a koordinátarendszer kezdőpontját ott vesszük fel, ahol a részecske a $t_0 = 0$ időpontban tartózkodik. Ekkor $x_0 = 0$ és így két kinematikai egyenlet is egyszerűbbé válik. Természetesen az origó nem mindig választható meg így, amennyiben azonban ez lehetséges, akkor már kezdettől fogya eggyel kevesebb paraméterrel kell dolgoznunk.

Az egyenesvonalú egyenletesen gyorsuló mozgás kinematikai egyenletei

$$v = v_0 + at \tag{1-11}$$

$$v = v_0 + at$$

$$v = x_0 + v_0 t + \frac{1}{2}at^2$$

$$= (\text{állandó gyorsulás esetén})$$

$$(1-11)$$

$$v_2 = v_0^2 + 2a(x - x_0)$$
 (1-13)

További hasznos összefüggéseket kaphatunk az átlagsebesség felhasználásával. Ha a gyorsulás állandó, akkor:

$$v_{\text{átl}} = \frac{v_0 + v}{2} \tag{1-14}$$

$$x = x_0 + v_{\text{átl}}t \tag{1-15}$$

A fenti egyenletek - mint már hangsúlyoztuk - csak állandó gyorsulás mellett érvényesek. Ha a gyorsulás időben változik, akkor az integrálszámítás felhasználásával nyerhetünk a sebességre és a helykoordinátára vonatkozó összefüggéseket ((??), (1-7) példa). Bár a helykoordináta jelölésére mindig x-et használtunk, természetesen hasonló egyenletek írhatók fel az y és z irányú egyenesvonalú mozgásokra is.

Megjegyzés az előjelekre vonatkozóan: A kinematikai egyenleteket mindig pontosan a (1-11) - (1-15) formulákkal megadott alakban kell felírni.

A szabadon eső testek gyorsulás-vektora például mindig lefelé mutat. E vektor nagyságát mindig q jelöli.

 $q = 9.81 m/s^2$ A gravitációs gyorsulás a föld felszínén (három értékes jegyre)

Amennyiben a felfelé mutató irányt választjuk pozitívnak, akkor a gravitációs gyorsulás helyére a képletekben -g-t kell írni, ha választásunk szerint a lefelé mutató irány a pozitív, akkor a gyorsulás +g-vel egyenlő.

0.4 A kinematikai egyenletek levezetése differenciálszámítással

Α

$$v = \frac{dx}{dt}$$
és $a = \frac{dv}{dt}$

definiáló egyenletek a deriválási művelet megfordításával az integrálással a

$$x = \int v dt$$
 és $v = \int a dt$

alakban is kifejezhetők. Állandó gyorsulás esetén a sebességre

$$v = \int adt = a \int dt = at + C_1$$

adódik, ahol a C_1 integrálási állandó a "kezdeti feltételek" figyelembevételével határozható meg, azaz t=0 időpontban a sebesség $v=v_0$. Behelyettesítve a kezdeti feltételt a,

$$v = at + C_1$$

egyenletbe azt kapjuk, hogy

$$v_0 = (a) \cdot (0) + C_1$$

ahonnan $C_1=0$. Ezzel éppen az első kinematikai egyenlethez jutottunk:

$$v = v_0 + at$$
 (állandó a esetén)

Tovább léphetünk a levezetésben, ha a sebességre kapott kifejezést Behelyettesítjük a helykoordinátát meghatározható integrálba.

$$x = \int vdt = \int (v_0 + at)dt$$
$$x = v_0t + \frac{1}{2}at^2 + C_2$$

A C_2 integrálási állandót ismét a kezdeti feltételekből határozhatjuk meg, azaz abból, hogy t=0 időpontban a mozgó test az x_0 helyen van. Ebből azonnal adódik a második kinematikai egyenlet:

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$
 (állandó gyorsulás esetén)

Az első tag a részecske kezdeti helyzete, azaz a helykoordináta a t=0 időpontban, a másik két tag összege pedig éppen a (0,t) időintervallum alábbi eredő elmozdulás.

0.5 A dimenzióanalízís

Alapvetően a fizikai egyenletek csak akkor teljesülhetnek, ha a bennük szereplő tagok **demenziója** azonos. Az egyenletekben csak *azonos dimenziójú tagok szerepelhetnek*.

Példaként vizsgáljuk meg a dimenziók egyezése szempontjából a következő kinematikai egyenletet.

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$[L] = [L] + \left[\frac{L}{T}\right][T] + \frac{\left[\frac{L}{T}\right]}{[T]}[T^2] \tag{2}$$

Összefoglalás 0.6

Az egyenesvonalú mozgások leírásakor Kinematikai egyenletek: bevezettük az egydimenziós koordinátarendszert, kijelöltük az origót és az x (vagy y, ill z) tengely pozitív irányát. Ezután definiáltuk a következő mennyiségeket:

Helyzet:

Elmozdulás: $\Delta x = x_2 - x_1$

Átlagsebesség-vektor: $v_a = \frac{\Delta x}{\Delta t} = \frac{(x_2 - x_1)}{(t_2 - t_1)}$

Átlagos gyorsulás: $a_a = \frac{\Delta v}{\Delta t} = \frac{(v_2 - v_1)}{(t_2 - t_1)}$

Azígy bevezetett mennyiségeknek nagyságuk (a mértékegységgel együtt) és pozitív, ill. negatív irányuk van. Α Δ szimbólum a szóban forgó mennyiség $\Delta v = v_2 - v_1.$ megváltozását jelzi. Pl. (Figyeljük meg, hogy a változást mindig az adott mennyiség végső és kezdeti értékeinek különbsége adja meg!)

kinematikai jellemzők pillanatnyi értékének definíciója a következő:

Helyzet:

 $v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$ Sebesség:

 $a = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$ Gyorsulás:

A megtett út segítségével képzett ds/dtidőderivált megegyezik a pillanatnyi sebesség abszlút értékével. (Az átlagsebességekre vonatkozó analóg állítás nem igaz, hiszen az s/t átlagsebesség többnyire nem egyenlő az átlagsebesség-vektorral.)

A fenti definíciókból néhány, a feladatmegoldásban rendkívül hasznos kinematikai egyenlet vezethető le. Ezek a követketők:

$$v = v_0 + at$$

Kinematikai egyenletek $v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$

$$a = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

Az állandó gyorsulású mozgások esetén hasznos lehet az alábbi két összefüggés is:

$$v_{\text{átl}} = \frac{v_0 + V}{2}$$

$$x = x_0 + v_{\text{átl}}t$$

Ezek az összefüggések csak állandó gyorsulás mellett érvényesek. Ha a gyorsulás az időben változik, akkor a

$$x = \int adt$$
 és $v = \int vdt$

összefüggéseket kell használni.

A formulák egyszerűbbé válnak, ha a koordinátarendszer origóját a $t_0 = 0$ és $x_0 = 0$ feltételeknek megfelelően választjuk meg. Az y és z irányú mozgásra hasonló kinematikai összefüggések írhatók fel.

A mozgásokkal kapcsolatos feladatok a következő, szabványos módszerrel oldhatók meg:

- (1) Megállapítjuk, hogy milyen típusú feladattal van dolgunk. Ha a gyorsulás állandó, a kinematikai egyenleteket alkalmazzuk.
- (2) Vázlatot készítünk. Kijelöljük a kezdőpontot és a pozitív tengelyirányokat, valamint fetüntetjük az alkalmazott jelöléseket. Az ábrára annyi információ kerüljön amennyi világossá teszi a feladatok különböző részei közötti összefüggéseket.
- (3) Csoportosítsuk az ismert adatokat és a keresett mennyiségeket. Ugyeljünk arra, hogy azonos mértékrendszert használjunk - ha szükséges számítsuk át az adatokat.

Hasonlítsuk össze az adatsort a kinematikai egyenletekben szereplő mennyiségekkel. Ha lehetséges, akkor az origót a t=0 időponthoz tartozóan vagyük fel, hogy x_0 ne szerepeljen a kinematikai egyenletekben.

(4) A megoldás után vizsgáljuk meg, hogy a kapott eredménynek van-e "értelme". A furcsának tűnő eredmény arra utalhat, hogy hibát követtünk el.

A gravitációs gyorsulás nagyságát g-vel jelöljük ($g=9,81m/s^2$). A föld felszíne közelében g lefelé mutat. Az, hogy előjele pozitív vagy negatív, attól függ, hogy a pozitív irányt felfelé vagy lefelé vesszük fel.

A dimenzióanalízís az egyenletek mérték szerinti összehasonlításának megállapítására szolgál. Csak azonos mértékegységben kifejezett mennyiségeket szabad összeadni.