# Regresión Lineal con R Clasica y Bayesiana

Jorge Mario Estrada A. MSc.

Comfamiliar Risaralda

¿ Qué revisaremos ?

- Objetivos e importancia (Conceptos teóricos)
- ▶ Procedimiento en R
- Ejemplo de aplicación

## Objetivo e importancia

- Estudia la relación entre variables: Describe, modela y predice
- Base para crear modelos mas avanzados
- Central en Data Science y Machine Learning

#### Condiciones iniciales para su implementación

1. Variable respuesta (Y): numericá, continua

Variables explicativas (X´s): continua, categórica.

 Supuestos: La relacion a modelar entre las variables es lineal y se desea describir de una forma mas detallada su relacion e incluso llegar a predecir la variables de respuesta en funcion de la(s) explicativa(s).

### El modelo lineal

Se supone en un principio que se tiene evidencia de una relación lineal (Y  $\sim$  x) con correlación entre ellas.

### Paso 1: cuantificar y observar dicha relación



$$\label{eq:correlacion} \begin{split} & \mathsf{Correlación} = 0.5605221 \\ & \mathsf{t} = \! 48 \\ & \mathsf{p-valor} = 2.302168 \times 10^{-5} \end{split}$$

#### Modelo lineal

Asumiendo que la relación entre las variables podria modelarse mediante una relación lineal, la distribución de los valores de Y se daria asi.

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k + \epsilon$$

con k = 1, 2, 3, ...k - variables y i = 1, 2, 3, ..., n

Supuesto estadistico: Y asume distribución Normal  $Y \sim N(\mu, \sigma)$ .

Problema a resolver: Conocer los valores que asume los  $\beta_k$ 

#### Metodos:

- ▶ Minimos cuadrados
- Maxima verosimilitud
- ► Enfoque bayesiano

# Interpretación de coeficientes $\beta_k$

Intercepto  $\beta_0$ : el valor esperado para la variable respuesta Y cuando la variable explicativa  $X_k$  toma el valor de cero. refleja la media de la variable respuesta.



# Interpretación de coeficientes $\beta_k$

Pendiente  $\beta_1$ : el aumento promedio en la variable respuesta asociado a una unidad de aumento en la variable explicativa.



$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k + \epsilon$$



## R para regresion lineal clasica

Función base lm(Y~x1+x2+x3, data = datos)

rls <- lm(Petal.Length ~ Sepal.Width, data = iris)</pre>

# R para regresion lineal clasica

Call:

Sepal.Width 0.8394 0.1790 4.689 2.3e-05 \*\*\*
--Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.05 '.' 0.1 '

(Intercept) 1.9349 0.4989 3.878 0.00032 \*\*\*

Residual standard error: 0.3932 on 48 degrees of freedom

Multiple R-squared: 0.3142, Adjusted R-squared: 0.2999 F-statistic: 21.99 on 1 and 48 DF, p-value: 2.302e-05

# Diagnostico del modelo



## Estimación clasica vs Estimación bayesiana

Frecuentista: Los datos muestreados de la población se consideran aleatorios y los valores de los parámetros de la población, son fijos (pero desconocidos). Para estimar buscamos los parámetros muestrales que maximicen la probabilidad de los datos.

x = Datos

 $\theta_i = \text{parametros a estimar}$ 

model oprobabilistico + datos

$$p(Datos,\theta) = f(x/\theta)$$

## Estimación clasica vs Estimación bayesiana

**El enfoque bayesiano**: Este enfoque se basa en el teorema de Bayes, por ejemplo, si tenemos un parámetro  $\theta$  de una población y tenemos algunos datos muestreados D al azar de esta población, se podría estimar la distribución de valores de  $\theta$  dado los datos muestreados D que se tienen.

$$p(\theta/D) = f(\theta/x) = f(x/\theta) \times f(\theta)$$

 $f(\theta/x)$ : Función de distribución posterior

 $f(x/\theta)$ : Función de verosimilitud

 $f(\theta)$ : Función a priori

## Resumiendo: Estimación bayesiana en RLS

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k + \epsilon$$
 
$$p(Y_i) = f(x/\beta, \sigma)$$

entonces los coeficientes son parametros a estimar por tanto su comportamiento depende de conocimiento previo, que se ve reflejado en una distribución de probabilidad conocida.

$$p(\beta_k) = f(\beta_k)$$

$$p(\sigma) = f(\sigma)$$

La distribución posterior estaria representada por:

$$f(\beta, \sigma/x) = f(x/\beta, \sigma) \times f(\beta, \sigma)$$

## R para regresión lineal bayesiana

```
stan_glm(formula = , # modelo
         family = gaussian(), # regesion lineal es
                              # normal por defecto
         data = , # dataset a usar
         prior = NULL, # define el prior para
                       # los coeficientes beta
         seed = , # semilla para la simulacion
         iter = 4000, # numero de iteraciones
         prior intercept = , # define un prior
         #diferente para el intercepto
         algorithm = "sampling", # metodo de muestrear
                                 # el posterior
         chains = 4, # numero de cadenas para MCMC
         warmup = 1000)
```

## R para regresion lineal bayesiana

# R para regresion lineal bayesiana

|               | mean        | sd         | 50%         |
|---------------|-------------|------------|-------------|
| (Intercept)   | 1.9137691   | 0.51349544 | 1.9114014   |
| Sepal.Width   | 0.8468717   | 0.18444708 | 0.8468133   |
| sigma         | 0.3999444   | 0.04153150 | 0.3966277   |
| mean_PPD      | 4.2603286   | 0.08183443 | 4.2594691   |
| log-posterior | -26.9060720 | 1.27836442 | -26.5678172 |

## R para regresion lineal bayesiana



#### rlsbayes\$coefficients

(Intercept) Sepal.Width 1.9114014 0.8468133

#### hdi(rlsbayes)

Highest Density Interval

| Parameter   |   | 95% HI |    | HDI  |
|-------------|---|--------|----|------|
|             |   |        |    |      |
| (Intercept) |   | [0.85, | 2. | .90] |
| Sepal.Width | Τ | [0.48, | 1. | .22] |

