LISTA SOBRE DEDUÇÃO NATURAL

Questão 1

a)

Construa uma prova para o argumento: $J \to \neg J :: \neg J$

1
$$J \rightarrow \neg J$$

2 J
3 $\neg J$ $\rightarrow E 1, 2$
4 \bot $\neg E 3, 2$
5 $\neg J$ $\neg I 2-4$

② Parabéns! Esta prova está correta.

b)

Construa uma prova para o argumento: $Q \rightarrow (Q \land \neg Q) :: \neg Q$

1
$$Q \rightarrow (Q \land \neg Q)$$

2 Q
3 $Q \land \neg Q$ $\rightarrow E1, 2$
4 $\neg Q$ $\land E3$
5 \bot $\neg E4, 2$
6 $\neg Q$ $\neg I2-5$

© Parabéns! Esta prova está correta.

c)

Construct a proof for the argument: $A \to (B \to C) :: (A \land B) \to C$

1
$$A \rightarrow (B \rightarrow C)$$

2 $A \wedge B$
3 $A \wedge B$
4 $B \rightarrow C \rightarrow E1,3$
5 $B \wedge E2$
6 $C \rightarrow E4,5$
7 $(A \wedge B) \rightarrow C \rightarrow I2-6$

|∓ NEW LINE ||∓ NEW SUBPROOF

Construct a proof for the argument: $K \wedge L :: K \leftrightarrow L$

1
$$K \wedge L$$
2 K
 $\Lambda E 1$
3 L
 $\Lambda E 1$
4 K
5 L
 $R 3$
6 L
 K
 $E 1$
 $E 2$
 $E 3$
 $E 4$
 $E 4$
 $E 5$
 $E 5$
 $E 5$
 $E 6$
 $E 7$
 $E 7$
 $E 7$
 $E 7$
 $E 8$
 $E 8$
 $E 9$
 $E 9$

© Congratulations! This proof is correct.

e)

Construct a proof for the argument: $(C \land D) \lor E :: E \lor D$

1
$$(C \land D) \lor E$$

2 $C \land D$

3 D
 $AE 2$

4 $E \lor D$

VI 3

5 E

6 $E \lor D$
 $VI 5$

7 $E \lor D$

VE 1, 2-4, 5-6

Construct a proof for the argument: $A \leftrightarrow B$, $B \leftrightarrow C \therefore A \leftrightarrow C$

1
$$A \leftrightarrow B$$

2 $B \leftrightarrow C$
3 A
4 B
5 C
6 C
7 B
8 A
 $A \leftrightarrow E 2, 4$
 $A \leftrightarrow E 1, 3$
 $A \leftrightarrow E 2, 4$
 $A \leftrightarrow E 1, 7$
9 $A \leftrightarrow C$
 $A \leftrightarrow E 1, 7$
9 $A \leftrightarrow C$
 $A \leftrightarrow E 1, 7$
 $A \leftrightarrow C$
 $A \leftrightarrow E 1, 7$
 $A \leftrightarrow E 1, 7$
 $A \leftrightarrow C$
 $A \leftrightarrow E 1, 7$
 $A \leftrightarrow E 1, 7$
 $A \leftrightarrow C$
 $A \leftrightarrow E 1, 7$
 $A \to E 1$

② Congratulations! This proof is correct.

g)

Construct a proof for the argument: $\neg F \rightarrow G, F \rightarrow H :: G \lor H$

1
$$\neg F \rightarrow G$$

2 $F \rightarrow H$
3 $\neg (F \lor \neg F)$
4 F
5 $F \lor \neg F$
6 \bot
7 $\neg F$
8 $F \lor \neg F$
9 \bot
10 $F \lor \neg F$
11 $\neg F$
12 G
13 $G \lor H$
15 H
16 $G \lor H$
17 $G \lor H$
18 $\lor F \lor F$
19 $\lor F \lor F$
10 $\lor F \lor F$
11 $\lor F \lor F$
12 $\lor F \lor F$
13 $\lor F \lor F$
14 $\lor F \lor F$
15 $\lor F \lor F$
16 $\lor G \lor H$
17 $\lor F \lor F$
18 $\lor F \lor F$
19 $\lor F \lor F$
10 $\lor F \lor F$
11 $\lor F \lor F$
12 $\lor F \lor F$
14 $\lor F \lor F$
15 $\lor F \lor F$
16 $\lor F \lor F$
17 $\lor F \lor F$
18 $\lor F \lor F$
19 $\lor F \lor F$
10 $\lor F \lor F$
11 $\lor F \lor F$
12 $\lor F \lor F$
12 $\lor F \lor F$
13 $\lor F \lor F$
14 $\lor F \lor F$
15 $\lor F \lor F$
16 $\lor F \lor F$
17 $\lor F \lor F$
18 $\lor F \lor F$
19 $\lor F \lor F$
10 $\lor F \lor F$
11 $\lor F \lor F$
12 $\lor F \lor F$
15 $\lor F \lor F$
16 $\lor F \lor F$
17 $\lor F \lor F$
18 $\lor F \lor F$
19 $\lor F \lor F$
10 $\lor F \lor F$
11 $\lor F \lor F$
12 $\lor F \lor F$
15 $\lor F \lor F$
16 $\lor F \lor F$
17 $\lor F \lor F$
18 $\lor F \lor F$
19 $\lor F \lor F$
10 $\lor F \lor F$
10 $\lor F \lor F$
11 $\lor F \lor F$
11 $\lor F \lor F$
12 $\lor F \lor F$
13 $\lor F \lor F$
14 $\lor F \lor F$
15 $\lor F \lor F$
16 $\lor F \lor F$
17 $\lor F \lor F$
18 $\lor F \lor F$
19 $\lor F \lor F$
10 $\lor F \lor$

Construct a proof for the argument: $(Z \land K) \lor (K \land M), K \rightarrow D :: D$

1
$$(Z \land K) \lor (K \land M)$$

2 $K \rightarrow D$
3 $Z \land K$
4 K $\land E 3$
5 D $\rightarrow E 2, 4$
6 $K \land M$
7 K $\land E 6$
8 D $\rightarrow E 2, 7$
9 D $\lor E 1, 3-5, 6-8$

② Congratulations! This proof is correct.

i)

Construct a proof for the argument: $P \land (Q \lor R), P \rightarrow \neg R :: Q \lor E$

1
$$P \land (Q \lor R)$$

2 $P \rightarrow \neg R$
3 $Q \lor R$ $\land E 1$
4 P $\land E 1$
5 $\neg R$ $\rightarrow E 2, 4$
6 R
7 \bot $\neg E 5, 6$
8 Q $X7$
9 Q
10 Q $R 9$
11 Q $\lor E 3, 6-8, 9-10$
12 $Q \lor E$ $\lor I 11$

Construct a proof for the argument: $S \leftrightarrow T :: S \leftrightarrow (T \lor S)$

1
$$S \leftrightarrow T$$

2 S
3 T \leftrightarrow E 1, 2
4 $T \lor S$ \lor I 3
5 $T \lor S$
6 T
7 S \leftrightarrow E 1, 6
8 S
9 S
10 S
10 S
11 $S \leftrightarrow (T \lor S)$ \longleftrightarrow I 2-4, 5-10

☺ Congratulations! This proof is correct.

k)

Construct a proof for the argument: $\neg(P \to Q) :: \neg Q$

1
$$\neg (P \rightarrow Q)$$
2 Q
3 P
4 Q
R 2
5 $P \rightarrow Q$
 \bot
7 $\neg Q$
 $\neg I 3-4$
 $\neg E 1, 5$
 $\neg I 2-6$

Construct a proof for the argument: $\neg(P \rightarrow Q) :: P$

1
$$\neg (P \rightarrow Q)$$
2 \boxed{P}
3 \boxed{P}
4 $\boxed{\bot}$ $\neg E 2, 3$
5 \boxed{Q} $X 4$
6 $\boxed{P \rightarrow Q}$ $\rightarrow I 3-5$
7 $\boxed{\bot}$ $\neg E 1, 6$
8 \boxed{P} $\boxed{IP 2-7}$

② Congratulations! This proof is correct.

Questão 2

a)

Construct a proof for the argument: $A \rightarrow B$, $A \rightarrow C :: A \rightarrow (B \land C)$

1
$$A \rightarrow B$$

2 $A \rightarrow C$
3 $A \rightarrow B$
4 $B \rightarrow E 1, 3$
5 $C \rightarrow E 2, 3$
6 $B \wedge C \rightarrow I 3-6$
 $A \rightarrow B \rightarrow E 1, 3$
 $A \rightarrow E 1, 4$
 $A \rightarrow E 1, 4$

Construct a proof for the argument: $(A \land B) \rightarrow C :: A \rightarrow (B \rightarrow C)$

1
$$(A \land B) \rightarrow C$$

2 A
3 $A \land B$
5 C
6 $B \rightarrow C$
7 $A \rightarrow (B \rightarrow C)$
NEW LINE FINEW SUBPROOF

② Congratulations! This proof is correct.

c)

Construct a proof for the argument: $A \to (B \to C)$:: $(A \to B) \to (A \to C)$

1
$$A \rightarrow (B \rightarrow C)$$

2 $A \rightarrow B$
3 $A \rightarrow B$
4 $B \rightarrow C$ $\rightarrow E 1, 3$
5 $B \rightarrow E 2, 3$
6 $C \rightarrow E 4, 5$
7 $A \rightarrow C \rightarrow I 3-6$
8 $(A \rightarrow B) \rightarrow (A \rightarrow C) \rightarrow I 2-7$

T NEW LINE

I NEW SUBPROOF

Construct a proof for the argument: $A \lor (B \land C) :: (A \lor B) \land (A \lor C)$

1
$$A \lor (B \land C)$$
2 A
3 $A \lor B$ $\lor I 2$
4 $A \lor C$ $\lor I 2$
5 $(A \lor B) \land (A \lor C)$ $\land I 3, 4$
6 $B \land C$
7 B $\land E 6$
8 $A \lor B$ $\lor I 7$
9 C $\land E 6$
10 $A \lor C$ $\lor I 9$
11 $(A \lor B) \land (A \lor C)$ $\land I 8, 10$
12 $(A \lor B) \land (A \lor C)$ $\lor E 1, 2-5, 6-11$

② Congratulations! This proof is correct.

e)

Construct a proof for the argument: $(A \land B) \lor (A \land C) :: A \land (B \lor C)$

1	$(A \wedge B) \vee (A \wedge C)$		
2	$A \wedge B$		
3	A	ΛE 2	
	В	∧E 2	
5	$B \vee C$	∨I 4	
6	$A \wedge (B \vee C)$	∧I 3, 5	
7	$A \wedge C$		
8	A	∧E 7	
9	С	∧E 7	
10	$B \vee C$	∨I 9	
11	$A \wedge (B \vee C)$	∧I 8, 10	
12 A \(\text{\(B \times C\)}\)		VE 1, 2-6, 7-11	
∓ NEW LINE		I ∓ NEW SUBPROOF	

Construct a proof for the argument: $A \lor B$, $A \to C$, $B \to D :: C \lor D$

1
$$A \lor B$$

2 $A \to C$
3 $B \to D$
4 A
5 C
6 $C \lor D$
7 B
8 D
9 $C \lor D$
VI 5
7 $VI B$
9 $C \lor D$
VI 8
VE 1, 4-6, 7-9

© Congratulations! This proof is correct.

g)

Construct a proof for the argument: $\neg A \lor \neg B : \neg (A \land B)$

Construct a proof for the argument: $A \wedge \neg B :: \neg(A \to B)$

1
$$A \land \neg B$$

2 $A \to B$
3 $A \land B$
4 $\neg B \land E 1$
5 $B \rightarrow E 2, 3$
6 $\bot \neg E 4, 5$
7 $\neg (A \to B) \rightarrow I 2-6$

∓ NEW LINE

I NEW SUBPROOF

② Congratulations! This proof is correct.

i)

Construct a proof for the argument: $\neg A \rightarrow \neg B :: B \rightarrow A$

1
$$\neg A \rightarrow \neg B$$

2 B
3 $A \rightarrow B$
4 $A \rightarrow B$
5 $A \rightarrow B$
6 $A \rightarrow B$
7 $B \rightarrow A$
 $A \rightarrow E 1, 3$
 $A \rightarrow E 4, 2$
 $A \rightarrow E 4, 3$
 $A \rightarrow E 4, 4$
 $A \rightarrow E 4$

② Congratulations! This proof is correct.

j)

Construct a proof for the argument: $A \rightarrow B :: \neg A \lor B$

1
$$A \rightarrow B$$

2 $\neg(\neg A \lor B)$
3 $A \rightarrow B$
4 $B \rightarrow E 1, 3$
5 $\neg A \lor B$ $\lor I 4$
6 $\bot \rightarrow E 5, 2$
7 $\neg A \rightarrow I 3-6$
8 $\neg A \lor B \rightarrow I 7$
9 $\bot \rightarrow E 2, 8$
10 $\neg A \lor B \rightarrow I P 2-9$

∓ NEW LINE

Construct a proof for the argument: $A \to (B \lor C) :: (A \to B) \lor (A \to C)$

1
$$A o (B \lor C)$$

2 $\neg ((A o B) \lor (A o C))$
3 A
4 $B \lor C$ $\to E 1, 3$
5 B
6 $A \to B$ $\to I 6-7$
8 $A \to B$ $\to I 6-7$
9 $A \to B$ $\to I 6-7$
10 $A \to C$ $\to I 11-12$
11 $A \to C$ $\to I 11-12$
12 $A \to B$ $A \to C$ $A \to$

|∓ NEW LINE

I NEW SUBPROOF

© Congratulations! This proof is correct.

Questão 3

a)

Construct a proof for the argument: $\therefore \neg A \rightarrow (A \rightarrow \bot)$

1
$$A$$
2 A
3 A
4 $A \rightarrow \bot$
5 $A \rightarrow (A \rightarrow \bot)$

FE 1, 2 $A \rightarrow I$ 2-3 $A \rightarrow I$ 1-4

Construct a proof for the argument: $\therefore \neg (A \land \neg A)$

© Congratulations! This proof is correct.

c)

Construct a proof for the argument: $:: [(A \to C) \land (B \to C)] \to [(A \lor B) \to C]$

1
$$(A \rightarrow C) \land (B \rightarrow C)$$
 $A \rightarrow C$
 $A \rightarrow C$

Construct a proof for the argument: $:: \neg(A \to B) \to (A \land \neg B)$

1
$$\neg (A \rightarrow B)$$

2 $\neg A$
3 $\downarrow A$
4 $\downarrow \bot$
5 $\downarrow B$
6 $\downarrow A \rightarrow B$
7 $\downarrow \bot$
8 $\downarrow A$
9 $\downarrow A$
10 $\downarrow B$
10 $\downarrow A$
11 $\downarrow B$
12 $\downarrow A \rightarrow B$
13 $\downarrow \bot$
14 $\downarrow B$
15 $\downarrow A \land \neg B$
16 $\downarrow \neg (A \rightarrow B) \rightarrow (A \land \neg B)$
17 $\downarrow A$
18 $\downarrow A$
19 $\downarrow A$
10 $\downarrow A$
11 $\downarrow A$
12 $\downarrow A$
13 $\downarrow A$
14 $\downarrow A$
15 $\downarrow A$
16 $\downarrow \neg (A \rightarrow B) \rightarrow (A \land \neg B)$
17 $\downarrow A$
18 $\downarrow A$
19 $\downarrow A$
10 $\downarrow A$
11 $\downarrow A$
12 $\downarrow A$
13 $\downarrow A$
14 $\downarrow A$
15 $\downarrow A$
16 $\downarrow A$
17 $\downarrow A$
18 $\downarrow A$
19 $\downarrow A$
11 $\downarrow A$
11 $\downarrow A$
12 $\downarrow A$
13 $\downarrow A$
14 $\downarrow A$
15 $\downarrow A$
16 $\downarrow A$
17 $\downarrow A$
18 $\downarrow A$
19 $\downarrow A$
11 $\downarrow A$
11 $\downarrow A$
12 $\downarrow A$
13 $\downarrow A$
14 $\downarrow A$
15 $\downarrow A$
16 $\downarrow A$
17 $\downarrow A$
18 $\downarrow A$
19 $\downarrow A$
10 $\downarrow A$
11 $\downarrow A$
11 $\downarrow A$
12 $\downarrow A$
13 $\downarrow A$
14 $\downarrow A$
15 $\downarrow A$
16 $\downarrow A$
17 $\downarrow A$
18 $\downarrow A$
19 $\downarrow A$
10 $\downarrow A$
11 $\downarrow A$
11 $\downarrow A$
12 $\downarrow A$
13 $\downarrow A$
14 $\downarrow A$
15 $\downarrow A$
16 $\downarrow A$
17 $\downarrow A$
18 $\downarrow A$
19 $\downarrow A$
10 $\downarrow A$
11 $\downarrow A$
11 $\downarrow A$
11 $\downarrow A$
12 $\downarrow A$
13 $\downarrow A$
14 $\downarrow A$
15 $\downarrow A$
16 $\downarrow A$
17 $\downarrow A$
18 $\downarrow A$
19 $\downarrow A$
10 $\downarrow A$
11 $\downarrow A$
12 $\downarrow A$
13 $\downarrow A$
14 $\downarrow A$
15 $\downarrow A$
16 $\downarrow A$
17 $\downarrow A$
18 $\downarrow A$
19 $\downarrow A$
10 $\downarrow A$
11 $\downarrow A$
11 $\downarrow A$
11 $\downarrow A$
11 $\downarrow A$
12 $\downarrow A$
13 $\downarrow A$
14 $\downarrow A$
15 $\downarrow A$
16 $\downarrow A$
17 $\downarrow A$
18 $\downarrow A$
19 $\downarrow A$
10 $\downarrow A$
11 $\downarrow A$
11 $\downarrow A$
11 $\downarrow A$
12 $\downarrow A$
13 $\downarrow A$
14 $\downarrow A$
15 $\downarrow A$
16 $\downarrow A$
17 $\downarrow A$
17 $\downarrow A$
18 $\downarrow A$
18 $\downarrow A$
19 $\downarrow A$
10 $\downarrow A$
10 $\downarrow A$
11 $\downarrow A$
11 $\downarrow A$
11 $\downarrow A$
12 $\downarrow A$
13 $\downarrow A$
14 $\downarrow A$
15 $\downarrow A$
16 $\downarrow A$
17 $\downarrow A$
18 $\downarrow A$
18 $\downarrow A$
18 $\downarrow A$
19 $\downarrow A$
10 $\downarrow A$
10 $\downarrow A$
11 $\downarrow A$
11 $\downarrow A$
11 $\downarrow A$
12 $\downarrow A$
13 $\downarrow A$
14 $\downarrow A$
15 $\downarrow A$
16 $\downarrow A$
17 $\downarrow A$
17 $\downarrow A$
18 $\downarrow A$
18 $\downarrow A$
19 $\downarrow A$
10 $\downarrow A$
10 $\downarrow A$
10 $\downarrow A$
10 $\downarrow A$
11 $\downarrow A$
11 $\downarrow A$
11 $\downarrow A$
12 $\downarrow A$
13 $\downarrow A$
14 $\downarrow A$
15 $\downarrow A$
16 $\downarrow A$
17 $\downarrow A$
18 $\downarrow A$
18 $\downarrow A$
18 $\downarrow A$
19 $\downarrow A$
10 $\downarrow A$
10

∓ NEW LINE

I NEW SUBPROOF

© Congratulations! This proof is correct.

e)

Construct a proof for the argument: $(\neg A \lor B) \to (A \to B)$

1
$$A \lor B$$
2 $A \lor B$
3 $A \lor B$
4 $A \lor B$
4 $A \lor B$
5 $A \lor B$
6 $A \lor B$
7 $A \lor B$
9 $A \lor B$
10 $A \lor B$
11 $A \lor B$
11 $A \lor B$
11 $A \lor B$
12 $A \lor B$
16 $A \lor B$
17 $A \lor B$
18 $A \lor B$
19 $A \lor B$
19 $A \lor B$
10 $A \lor B$
10 $A \lor B$
10 $A \lor B$
11 $A \lor B$
11 $A \lor B$

∓ NEW LINE

I NEW SUBPROOF

Construct a proof for the argument: $\because \neg \neg A \to A$

☺ Congratulations! This proof is correct.

g)

Construct a proof for the argument: $\because \neg(A \land B) \rightarrow (\neg A \lor \neg B)$

|∓ NEW LINE

I NEW SUBPROOF

Construct a proof for the argument: $:: (A \to B) \lor (B \to A)$

	$\neg((A \to B) \lor (B \to A))$	
	$\neg(A \rightarrow B)$	
	$\neg (B \rightarrow A)$	
	A	
	B	
	A	R 4
	$B \to A$	→I 5 - 6
		¬E 3, 7
	В	X 8
	$A \rightarrow B$	→I 4 - 9
	1	¬E 2, 10
	$B \to A$	IP 3-11
	$(A \rightarrow B) \lor (B \rightarrow A)$	VI 12
	1	¬E 1, 13
	$A \rightarrow B$	IP 2-14
	$(A \rightarrow B) \lor (B \rightarrow A)$	VI 15
	1	¬E 1, 16
(.	$A \to B$) \vee $(B \to A)$	IP 1-17
l±	NEW LINE	BPROOF
	_	$ \begin{array}{c c} \neg(A \to B) \\ \hline $

© Congratulations! This proof is correct.

i)

Construct a proof for the argument: $:: [(A \to B) \to A] \to A$

1
$$A \rightarrow B \rightarrow A$$
2 $A \rightarrow B \rightarrow A$
3 $A \rightarrow B \rightarrow I 3-5$
7 $A \rightarrow E 1, 6$
8 $A \rightarrow B \rightarrow E 1, 6$
8 $A \rightarrow B \rightarrow E 1, 6$
9 $A \rightarrow B \rightarrow E 1, 6$
10 $A \rightarrow B \rightarrow E 1, 6$
11 $A \rightarrow E 2, 7$
12 $A \rightarrow E 1, 6$
13 $A \rightarrow E 1, 6$
14 $A \rightarrow B \rightarrow E 1, 6$
15 $A \rightarrow E 1, 6$
16 $A \rightarrow B \rightarrow E 1, 6$
17 $A \rightarrow E 1, 6$
18 $A \rightarrow E 1, 6$
19 $A \rightarrow E 1, 6$
19 $A \rightarrow E 1, 6$
10 $A \rightarrow E 1, 6$
11 $A \rightarrow E 1, 6$
11 $A \rightarrow E 1, 6$
12 $A \rightarrow E 1, 6$
13 $A \rightarrow E 1, 6$
14 $A \rightarrow E 1, 6$
15 $A \rightarrow E 1, 6$
16 $A \rightarrow E 1, 6$
17 $A \rightarrow E 1, 6$
18 $A \rightarrow E 1, 6$
19 $A \rightarrow E 1, 6$
19 $A \rightarrow E 1, 6$
10 $A \rightarrow E 1, 6$
10 $A \rightarrow E 1, 6$
10 $A \rightarrow E 1, 6$
11 $A \rightarrow E 1, 6$
11 $A \rightarrow E 1, 6$
12 $A \rightarrow E 1, 6$
13 $A \rightarrow E 1, 6$
14 $A \rightarrow E 1, 6$
15 $A \rightarrow E 1, 6$
16 $A \rightarrow E 1, 6$
17 $A \rightarrow E 1, 6$
18 $A \rightarrow E 1, 6$
19 $A \rightarrow E 1, 6$
19 $A \rightarrow E 1, 6$
10 $A \rightarrow E 1, 6$
11 $A \rightarrow E 1, 6$
11 $A \rightarrow E 1, 6$
12 $A \rightarrow E 1, 6$
13 $A \rightarrow E 1, 6$
14 $A \rightarrow E 1, 6$
15 $A \rightarrow E 1, 6$
16 $A \rightarrow E 1, 6$
17 $A \rightarrow E 1, 6$
18 $A \rightarrow E 1, 6$
19 $A \rightarrow E 1, 6$
19 $A \rightarrow E 1, 6$
10 $A \rightarrow E 1, 6$
11 $A \rightarrow E 1, 6$
11 $A \rightarrow E 1, 6$
12 $A \rightarrow E 1, 6$
13 $A \rightarrow E 1, 6$
14 $A \rightarrow E 1, 6$
15 $A \rightarrow E 1, 6$
16 $A \rightarrow E 1, 6$
17 $A \rightarrow E 1, 6$
18 $A \rightarrow E 1, 6$
19 $A \rightarrow E 1, 6$
19 $A \rightarrow E 1, 6$
10 $A \rightarrow E 1, 6$
11 $A \rightarrow E 1, 6$
11 $A \rightarrow E 1, 6$
12 $A \rightarrow E 1, 6$
13 $A \rightarrow E 1, 6$
14 $A \rightarrow E 1, 6$
15 $A \rightarrow E 1, 6$
16 $A \rightarrow E 1, 6$
17 $A \rightarrow E 1, 6$
18 $A \rightarrow E 1, 6$
19 $A \rightarrow E 1, 6$
10 $A \rightarrow E 1, 6$
11 $A \rightarrow E 1, 6$
11 $A \rightarrow E 1, 6$
12 $A \rightarrow E 1, 6$
13 $A \rightarrow E 1, 6$
14 $A \rightarrow E 1, 6$
15 $A \rightarrow E 1, 6$
16 $A \rightarrow E 1, 6$
17 $A \rightarrow E 1, 6$
18 $A \rightarrow E 1, 6$
19 $A \rightarrow E 1, 6$
10 $A \rightarrow E 1, 6$
11 $A \rightarrow E 1, 6$
11 $A \rightarrow E 1, 6$
11 $A \rightarrow E 1, 6$
12 $A \rightarrow E 1, 6$
13 $A \rightarrow E 1, 6$
14 $A \rightarrow E 1, 6$
15 $A \rightarrow E 1, 6$
16 $A \rightarrow E 1, 6$
17 $A \rightarrow E 1$

 $\ensuremath{\boxdot}$ Congratulations! This proof is correct.

Questão 4

a)

Construct a proof for the argument: $A \vee B$, $\neg A : B$

② Congratulations! This proof is correct.

b)

Construct a proof for the argument: $A \lor B$, $\neg B :: A$

Construct a proof for the argument: $A \rightarrow B$, $\neg B :: \neg A$

1
$$A \rightarrow B$$

2 $\neg B$
3 $A \rightarrow B$
4 $B \rightarrow E 1, 3$
5 $A \rightarrow E 2, 4$
6 $A \rightarrow A \rightarrow I 3-5$

∓ NEW LINE

■ NEW SUBPROOF

② Congratulations! This proof is correct.

d)

Construct a proof for the argument: $:: \neg \neg A \to A$

1
$$\neg \neg A$$
2 $\neg A$
3 \bot
4 A
5 $\neg \neg A \rightarrow A$

FINEW LINE

FINEW SUBPROOF

Construct a proof for the argument: $A \rightarrow B$, $\neg A \rightarrow B :: B$

1
$$A \rightarrow B$$

2 $\neg A \rightarrow B$
3 $A \rightarrow B$
4 $A \rightarrow B$
5 $B \rightarrow E 1, 4$
6 $A \rightarrow E 3, 5$
7 $A \rightarrow B \rightarrow E 2, 7$
9 $A \rightarrow E 2, 7$
9 $A \rightarrow E 3, 8$
10 $B \rightarrow E 3, 8$
IP 3–9

② Congratulations! This proof is correct.

f)

Construct a proof for the argument: $\neg(A \land B) :: \neg A \lor \neg B$

1
$$\neg (A \land B)$$
2 A
3 A
4 $A \land B$
5 $A \land B$
7 $A \land B$
7 $A \lor B$
7 $A \lor B$
7 $A \lor B$
8 $A \lor B$
9 $A \lor B$
10 $A \lor B$
11 $A \lor B$
12. 3
13. 4
14. 4
15. 4
16. 4
16. 4
17. 4
18. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
19. 4
1

 $\ensuremath{\boxdot}$ Congratulations! This proof is correct.

Construct a proof for the argument: $\neg A \lor \neg B : \neg (A \land B)$

1
$$\neg A \lor \neg B$$
2 $A \land B$
3 $A \land B$
4 $B \land E 2$
5 $A \land E 2$
5 $A \land E 2$
6 $A \land E \Rightarrow A \land$

② Congratulations! This proof is correct.

h)

Construct a proof for the argument: $\neg(A \lor B) :: \neg A \land \neg B$

1
$$\neg (A \lor B)$$
2 A
3 $A \lor B$
5 $\neg A$
6 B
7 $A \lor B$
9 $\neg B$
10 $\neg A \land \neg B$
 $\lor I 2$
 $\neg E 1, 3$
 $\lor I 2 - 4$
 $\lor I 3$
 $\lor I 4$
 $\lor I 5$
 $\lor I 6$
 $\lor I 6$

② Congratulations! This proof is correct.

∓ NEW LINE

I NEW SUBPROOF

Construct a proof for the argument: $\neg A \land \neg B :: \neg (A \lor B)$

 $\ensuremath{\boxdot}$ Congratulations! This proof is correct.

Questão 5

a) Usando as regras derivadas

Construct a proof for the argument: $E \lor F$, $F \lor G$, $\neg F :: E \land G$

1
$$E \vee F$$

2 $F \vee G$
3 $\neg F$
4 E DS 1, 3
5 G DS 2, 3
6 $E \wedge G$ \wedge I 4, 5

 $\ensuremath{\odot}$ Congratulations! This proof is correct.

a) Sem usar regras derivadas

Construct a proof for the argument: $E \lor F$, $F \lor G$, $\neg F := E \land G$

© Congratulations! This proof is correct.

b)

Construct a proof for the argument: $M \lor (N \to M) :: \neg M \to \neg N$

1
$$M \lor (N \to M)$$

2 $\neg M$
3 $N \to M$ DS 1, 2
4 $\neg N$ MT 3, 2
5 $\neg M \to \neg N$ \to I 2-4

Construct a proof for the argument: $(M \vee N) \wedge (O \vee P), N \rightarrow P, \neg P :: M \wedge O$

1
$$(M \lor N) \land (O \lor P)$$

2 $N \rightarrow P$
3 $\neg P$
4 $\neg N$ MT 2, 3
5 $M \lor N$ \land E 1
6 M DS 5, 4
7 $O \lor P$ \land E 1
8 O DS 7, 3
9 $M \land O$ \land I 6, 8

② Congratulations! This proof is correct.

d)

Construct a proof for the argument: $(X \wedge Y) \vee (X \wedge Z)$, $\neg(X \wedge D)$, $D \vee M : M$

© Congratulations! This proof is correct.

I→ NEW SUBPROOF

TNEW LINE

Construct a proof for the argument: $C \to (E \land G)$, $\neg C \to G :: G$

1
$$C \rightarrow (E \land G)$$

2 $\neg C \rightarrow G$
3 C
4 $E \land G$ $\rightarrow E 1, 3$
5 G $\land E 4$
6 C
7 G $\rightarrow E 2, 6$
LEM 3-5, 6-7

 $\ensuremath{\boxdot}$ Congratulations! This proof is correct.

f)

Construct a proof for the argument: $M \wedge (\neg N \rightarrow \neg M) : (N \wedge M) \vee \neg M$

1
$$M \land (\neg N \rightarrow \neg M)$$

2 M $\land E 1$
3 $(\neg N \rightarrow \neg M)$ $\land E 1$
4 $\boxed{\neg N}$
5 $\boxed{\neg M}$ $\rightarrow E 3, 4$
6 $\boxed{\bot}$ $\neg E 5, 2$
7 N $\boxed{\bot}$ $\boxed{\bot$

Construct a proof for the argument: $(Z \land K) \leftrightarrow (Y \land M), D \land (D \rightarrow M) :: Y \rightarrow Z$

1
$$(Z \land K) \leftrightarrow (Y \land M)$$

2 $D \land (D \rightarrow M)$
3 Y
4 $D \rightarrow M$ $\land E 2$
5 D $\land E 2$
6 M $\rightarrow E 4, 5$
7 $Y \land M$ $\land I 3, 6$
8 $Z \land K$ $\leftrightarrow E 1, 7$
9 Z $\land E 8$
10 $Y \rightarrow Z$ $\rightarrow I 3-9$

© Congratulations! This proof is correct.

h)

Construct a proof for the argument: $(W \lor X) \lor (Y \lor Z), X \to Y, \neg Z : W \lor Y$

1
$$(W \lor X) \lor (Y \lor Z)$$

2 $X \to Y$
3 $\neg Z$
4 $W \lor X$
5 $W \lor Y$
8 $W \lor Y$
9 $W \lor Y$
10 $W \lor Y$
11 $Y \lor Z$
12 $Y \lor Z$
13 $Y \lor Y$
14 $W \lor Y$
15 $W \lor Y$
17 $W \lor Y$
18 $W \lor Y$
19 $W \lor Y$
10 $W \lor Y$
11 $W \lor Y$
12 $W \lor Y$
13 $W \lor Y$
14 $W \lor Y$
15 $W \lor Y$
16 $W \lor Y$
17 $W \lor Y$
18 $W \lor Y$
19 $W \lor Y$
10 $W \lor Y$
10 $W \lor Y$
11 $W \lor Y$
12 $W \lor Y$
13 $W \lor Y$
14 $W \lor Y$
15 $W \lor Y$
16 $W \lor Y$
17 $W \lor Y$
18 $W \lor Y$
19 $W \lor Y$
10 $W \lor Y$
11 $W \lor Y$
11 $W \lor Y$
12 $W \lor Y$
13 $W \lor Y$
14 $W \lor Y$
15 $W \lor Y$
16 $W \lor Y$
17 $W \lor Y$
18 $W \lor Y$
19 $W \lor Y$
10 $W \lor Y$
11 $W \lor Y$
11 $W \lor Y$
12 $W \lor Y$
13 $W \lor Y$
15 $W \lor Y$
16 $W \lor Y$
17 $W \lor Y$
18 $W \lor Y$
19 $W \lor Y$
10 $W \lor Y$
10 $W \lor Y$
11 $W \lor Y$
11 $W \lor Y$
12 $W \lor Y$
13 $W \lor Y$
14 $W \lor Y$
15 $W \lor Y$
16 $W \lor Y$
17 $W \lor Y$
17 $W \lor Y$
18 $W \lor Y$
19 $W \lor Y$
10 $W \lor Y$
10 $W \lor Y$
10 $W \lor Y$
11 $W \lor Y$
12 $W \lor Y$
13 $W \lor Y$
14 $W \lor Y$
15 $W \lor Y$
16 $W \lor Y$
17 $W \lor Y$
17 $W \lor Y$
18 $W \lor Y$
19 $W \lor Y$
10 $W \lor Y$
11 $W \lor Y$
11 $W \lor Y$
11 $W \lor Y$
12 $W \lor Y$
13 $W \lor Y$
14 $W \lor Y$
15 $W \lor Y$
16 $W \lor Y$
17 $W \lor Y$
17 $W \lor Y$
18 $W \lor Y$
19 $W \lor Y$
10 $W \lor Y$
11 $W \lor Y$
12 $W \lor Y$
13 $W \lor Y$
14 $W \lor Y$
15 $W \lor Y$
16 $W \lor Y$
17 $W \lor Y$
17 $W \lor Y$
18 $W \lor Y$
19 $W \lor Y$
10 $W \lor Y$
10