Algoritmi e Strutture Dati

a.a. 2015/16

Compito del 12/01/2017

I-INSERT. Qual è la complessità
I-INSERT. Qual è la complessità
I-INSERT. Qual è la complessità
i seguenti tempi di esecuzione:
r

3. Si completi la tabella sottostante, specificando le complessità degli algoritmi indicati in funzione della tipologia di grafo utilizzato (si indichi con *n* il numero dei vertici e con *m* il numero degli archi del grafo):

	Grafo sparso	Grafo denso
Kruskal		
Dijkstra (heap)		
Floyd-Warshall		

Algoritmi e Strutture Dati

a.a. 2015/16

Compito del 12/01/2017

Cognome:	Nome:		
Matricola:	E-mail:		
Parte II			

(2.5 ore; ogni esercizio vale 6 punti)

1. Scrivere una **procedura efficiente** *intersezione* che, date due liste di interi (con ripetizioni), la prima *l1* ordinata in modo crescente e la seconda *l2* ordinata in modo decrescente, modifica *l1* in modo che sia l'intersezione fra *l1* e *l2*, ordinata in modo crescente, tenendo conto anche della molteplicità delle occorrenze.

Scegliere un tipo di lista adeguato e motivare la scelta. Analizzare la complessità della funzione.

Per l'esame da 12 CFU, deve essere fornita una procedura C e si deve dare la definizione in C del tipo lista. Per l'esame da 9 CFU, è sufficiente specificare lo pseudocodice.

2. Dare la definizione di albero binario di ricerca.

Dato un albero binario con radice r, scrivere un algoritmo **efficiente** che verifichi se l'albero radicato in r è un albero binario di ricerca. L'algoritmo restituisce l se l'albero binario è di ricerca, l0 altrimenti. Analizzare la complessità dell'algoritmo.

[Suggerimento: Può essere utile fare in modo che l'algoritmo calcoli anche il massimo e il minimo delle chiavi presenti nell'albero.]

3. Sia G = (V, E) un grafo non orientato e connesso con funzione peso $w : E \to \mathbb{R}$, e sia $(u,v) \in E$ un arco arbitrario di G. E' sempre possibile costruire un albero di copertura di G (non necessariamente minimo) che contenga (u,v)? E un albero di copertura minimo? Cosa possiamo dire nel caso in cui l'arco abbia peso minimo (ovvero, $w(u,v) \le w(x,y)$ per ogni $(x,y) \in E$)?

Nota: Si forniscano giustificazioni formali. In caso contrario l'esercizio non verrà valutato pienamente, anche in presenza di risposte corrette.

4. Sia G = (V, E) un grafo orientato con funzione peso $w : E \to \mathbb{R}$ e vertici numerati da 1 a $n : V = \{1, 2, ..., n\}$. Dato un vertice $k \in V$, si scriva un algoritmo che, per ogni coppia di vertici $i, j \in V$, determini la lunghezza del cammino minimo tra i e j i cui vertici intermedi non superino k. Si dimostri la correttezza dell'algoritmo proposto e si determini la sua complessità.