

Basics of Quantum Information

States, Measurements, Operations, Entanglement

Felix Zilk, MSc

Classical bit is in 0 or 1 state

bit = 0, or bit = 1

Coin is either face up or down

coin = heads, or coin = tails

Classical bit is in 0 or 1 state

$$bit = |0\rangle$$
, or $bit = |1\rangle$

Coin is either face up or down

$$coin = |heads\rangle$$
, or $coin = |tails\rangle$

Probabilistic state: Coin toss

$$coin = \frac{1}{2} |heads\rangle + \frac{1}{2} |tails\rangle$$

	Bits	Probabilistic Bits	Qubits
State of Single System	$bit \in \{ 0\rangle, 1\rangle \}$	$b = a 0\rangle + b 1\rangle$ $a + b = 1,$ $a, b \in \mathbb{R}_{+}$	

Probability of $|1\rangle$

Quantum bit

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

with
$$|\alpha|^2 + |\beta|^2 = 1$$
, $\alpha, \beta \in \mathbb{C}$

Superposition of $|0\rangle$ and $|1\rangle$

Classical bit is in 0 or 1 state

$$bit = |0\rangle$$
, or $bit = |1\rangle$

Coin is either face up or down

$$coin = |heads\rangle$$
, or $coin = |tails\rangle$

Probabilistic state: Coin toss

$$coin = \frac{1}{2} |heads\rangle + \frac{1}{2} |tails\rangle$$

→ Result of incomplete knowledge!

Quantum bit

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

with
$$|\alpha|^2 + |\beta|^2 = 1$$
, $\alpha, \beta \in \mathbb{C}$

Superposition of 0 and 1

→ Complete knowledge about the system!

	Bits	Probabilistic Bits	Qubits
State of Single System	$bit \in \{ 0\rangle, 1\rangle \}$	$b = a 0\rangle + b 1\rangle$ $a + b = 1,$ $a, b \in \mathbb{R}_{+}$	$ \psi\rangle = \alpha 0\rangle + \beta 1\rangle$ $ \alpha ^2 + \beta ^2 = 1,$ $\alpha, \beta \in \mathbb{C}$

Probability of $|0\rangle$

Probability of |1>

	Bits	Probabilistic Bits	Qubits
State of Single System	$bit \in \{ 0\rangle, 1\rangle \}$	$b = a 0\rangle + b 1\rangle$ a + b = 1, $a, b \in \mathbb{R}_{+}$	$ \psi\rangle = \alpha 0\rangle + \beta 1\rangle$ $ \alpha ^2 + \beta ^2 = 1,$ $\alpha, \beta \in \mathbb{C}$

Graphic: "Getting Started with Liqui: > and Quantum Computing." TECHCOMMUNITY.MICROSOFT.COM, March 21, 2019.

Pure vs. mixed states

	Classical	Quantum
Well known state (Pure state)	$bit = 0\rangle$, or $bit = 1\rangle$ coin = heads, or coin = tails	$ \psi\rangle = \alpha 0\rangle + \beta 1\rangle$
Statistical mix (Mixed state; ensemble)	$coin = \frac{1}{2} heads\rangle + \frac{1}{2} tails\rangle$	Density matrix $ ho$

Single-Qubit States

Quantum two-level system

We can represent pure states as vectors in 2-dim. vector space over $\ensuremath{\mathbb{C}}$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \equiv \alpha \begin{bmatrix} 1\\0 \end{bmatrix} + \beta \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} \alpha\\\beta \end{bmatrix}$$
$$p_0 = |\alpha|^2, \ p_1 = |\beta|^2$$

$$|0\rangle \equiv \begin{bmatrix} 1 \\ 0 \end{bmatrix}, |1\rangle \equiv \begin{bmatrix} 0 \\ 1 \end{bmatrix} \in \mathcal{H} = \mathbb{C}^2$$
 Basis $\mathcal{B} = \{|0\rangle, |1\rangle\}$

 $|\alpha|^2 + |\beta|^2 = 1$, $\alpha, \beta \in \mathbb{C} \to \text{qubit states are complex vectors of length } 1$

Single-Qubit States

Examples of pure states

$$\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

$$\Rightarrow p_0 = \left| \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2} = p_1$$

$$\frac{1}{\sqrt{3}}|0\rangle + \frac{\sqrt{2}}{\sqrt{3}}|1\rangle$$

$$\Rightarrow p_0 = \left| \frac{1}{\sqrt{3}} \right|^2 = \frac{1}{3}; \ p_1 = \left| \frac{\sqrt{2}}{\sqrt{3}} \right|^2 = \frac{2}{3}$$

$$0|0\rangle + 1|1\rangle = |1\rangle$$

$$\rightarrow p_0 = 0; p_1 = 1$$

You measure 100 Qubits in the state $\frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$. What do you expect?

Result depends on the amplitudes!

$$p_0 = |\alpha|^2 \quad p_1 = |\beta|^2$$

Qubit states and operations

Visualization on the Bloch-sphere

$$|\psi\rangle = \cos\left(\frac{\vartheta}{2}\right)|0\rangle + e^{i\varphi}\sin\left(\frac{\vartheta}{2}\right)|1\rangle$$

Operations on Single-Qubits

Unitary evolution describes qubit in isolation!

Single-qubit operations described by 2×2 unitary matrices U

$$U^{\dagger}U = \mathbb{I}d$$

Example: Hadamard gate

$$H = \begin{bmatrix} 1/_2 & 1/_2 \\ 1/_2 & -1/_2 \end{bmatrix}$$

$$H|0\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

$$H|1\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$

Realisation:

 Laser- or Microwavepulses, magnetic fields, birefringent crystals, etc.

Later:

 Quantum circuits consist of multiple gates that perform unitary transformations on qubits

Commonly used Single-Qubit-Gates

Operator	$\mathbf{Gate}(\mathbf{s})$	Matrix
Pauli-X (X)	_x	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	$-\mathbf{Y}$	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli-Z (Z)	$- \boxed{\mathbf{Z}} -$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$-\mathbf{H}$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
Phase (S, P)	$- \boxed{\mathbf{S}} -$	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8~(\mathrm{T})$	$-\!$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$

Graphic taken from:

https://en.wikipedia.org/wiki/Quantum_logic_gate

Qubit states and operations

Visualization on the Bloch-sphere

Visualization of different gate actions on Bloch-sphere

Bloch sphere visualizer (kherb.io)

	Bits	Probabilistic Bits	Qubits
State of Single System	$bit \in \{ 0\rangle, 1\rangle \}$	$b = a 0\rangle + b 1\rangle$ $a + b = 1,$ $a, b \in \mathbb{R}_{+}$	$ \psi\rangle = \alpha 0\rangle + \beta 1\rangle$ $ \alpha ^2 + \beta ^2 = 1,$ $\alpha, \beta \in \mathbb{C}$
Operations	Boolean Logic	Stochastic Operations	Unitary Operations $U^{\dagger}U=\mathbb{I}\mathrm{d}$

How would you measure the spinning coin?

You would just stop it.

What would happen?

$$coin = \frac{1}{2} |heads\rangle + \frac{1}{2} |tails\rangle$$

$$\Rightarrow p(heads) = \frac{1}{2}$$
 $p(tails) = \frac{1}{2}$

$$\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

$$\Rightarrow p_0 = \left| \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2} = p_1$$

$$\frac{1}{\sqrt{3}}|0\rangle + \frac{\sqrt{2}}{\sqrt{3}}|1\rangle$$

$$\Rightarrow p_0 = \left| \frac{1}{\sqrt{3}} \right|^2 = \frac{1}{3}; \ p_1 = \left| \frac{\sqrt{2}}{\sqrt{3}} \right|^2 = \frac{2}{3}$$

$$0|0\rangle + 1|1\rangle = |1\rangle$$

$$\rightarrow p_0 = 0; \ p_1 = 1$$

This involves intrinsic randomness! **NOT** due to incomplete knowledge

We are not able to make any predictions on an individual event

However, the statistical behavior for repetitions of the experiment can be predicted

Observables

Mathematically, such a $\{|0\rangle, |1\rangle\}$ measurement is described by the observable σ_z

 $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Definition: An observable is a measurable physical quantity

(Math.) Definition: An observable is described by a hermitian operator A on Hilbert space (state space) $A^{\dagger} = A$

Remarks:

- Hermitian operators have real eigenvalues
- Possible measurement outcomes upon measuring observable A of a system in the state $|\psi\rangle$ are the eigenvalues of A

- → Quantum state only stable in isolation
- → If we want to read the state, we need to measure
- → Measurement destroys the initial superposition
- → We will NOT recover the initial superposition state!
- → We will recover one bit of information
- → Measurement result of an individual event is random!
- → Observable quantities are described by hermitian operators
- → Eigenvalues are possible measurement outcomes

	Bits (classical)	Probabilistic Bits (classical)	Qubits (quantum)
State of Single System	$bit \in \{ 0\rangle, 1\rangle \}$	$b = a 0\rangle + b 1\rangle$ a + b = 1, $a, b \in \mathbb{R}_{+}$	$ \psi\rangle = \alpha 0\rangle + \beta 1\rangle$ $ \alpha ^2 + \beta ^2 = 1,$ $\alpha, \beta \in \mathbb{C}$
Operations	Boolean Logic	Stochastic Operations	Unitary Operations $U^{\dagger}U = \mathbb{I}d$
Observable	Real-valued function on phase space	Real-valued function on phase space	Hermitian Operator on state space ${\cal H}$

Expansion with respect to different basis (same state):

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \alpha'|+\rangle + \beta'|-\rangle$$

 \rightarrow We can measure in the 0/1 basis and obtain the result

 $|0\rangle$ with $p_0=|\alpha|^2$, and result $|1\rangle$ with $p_1=|\beta|^2$ respectively.

Corresponds to asking: Are you $|0\rangle$ or $|1\rangle$?

Expansion with respect to different basis (same state):

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \alpha'|+\rangle + \beta'|-\rangle$$

 \rightarrow If we measure in the +/- basis and obtain the result

$$|+\rangle$$
 with $p_+ = |\alpha'|^2$, and result $|-\rangle$ with $p_- = |\beta'|^2$ respectively.

We can also ask the qubit: Are you $|+\rangle$ or $|-\rangle$?

- \rightarrow This corresponds to a measurement of the observable σ_x
- → We can measure in an arbitrary basis (needs to be ONB!)

50-50 Beamsplitter

https://www.standrews.ac.uk/physics/quvis/simulations_html5/sims/SinglePhotonLab/SinglePhotonLab/SinglePhotonLab.html

A beam splitter reflects 50% of the incident light and transmits 50% of the incident light.

Weak Laser Light

https://www.standrews.ac.uk/physics/quvis/simulations_html5/sims/SinglePhotonLab/Single

Low-intensity light is a stream of single photons.

Single photon passing through Beamsplitter

https://www.standrews.ac.uk/physics/quvis/simulations_html5/sims/SinglePhotonLab/Single
ePhotonLab.html

A single photon is sent at a beam splitter and the outcome is measured with detectors to see whether the beam splitter transmits or reflects.

Single photon passing through Beamsplitter

https://www.standrews.ac.uk/physics/quvis/simulations_html5/sims/SinglePhotonLab/Single
ePhotonLab.html

What would happen if a classical particle passes through the beamsplitter?

Let's fire some photons!

Which detectors are triggered?

Single photon passing through Beamsplitter

https://www.st-

<u>andrews.ac.uk/physics/quvis/simulations_html5/sims/SinglePhotonLab/SinglePhot</u>

The beam splitter puts the photon into a superposition state.

But how do we know that?

Single photon passing two Beamsplitters

https://www.st-

<u>andrews.ac.uk/physics/quvis/simulations_html5/sims/SinglePhotonLab/SinglePhot</u>

Single photon passing two Beamsplitters

https://www.st-

<u>andrews.ac.uk/physics/quvis/simulations_html5/sims/SinglePhotonLab/SinglePhot</u>

Put multiple qubits together

Example: Two-qubits

$$|\psi_1\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle$$
 $|\psi_2\rangle = \beta_0|0\rangle + \beta_1|1\rangle$

Joint state:

$$\begin{split} |\psi\rangle &= |\psi_{1}\rangle \otimes |\psi_{2}\rangle = (\alpha_{0}|0\rangle + \alpha_{1}|1\rangle) \otimes (\beta_{0}|0\rangle + \beta_{1}|1\rangle) \\ &= \alpha_{0}\beta_{0}|0\rangle \otimes |0\rangle + \alpha_{0}\beta_{1}|0\rangle \otimes |1\rangle + \alpha_{1}\beta_{0}|1\rangle \otimes |0\rangle + \alpha_{1}\beta_{1}|1\rangle \otimes |1\rangle \\ &= \gamma_{00}|0\rangle|0\rangle + \gamma_{01}|0\rangle|1\rangle + \gamma_{10}|1\rangle|0\rangle + \gamma_{11}|1\rangle|1\rangle \\ &= \gamma_{00}|00\rangle + \gamma_{01}|01\rangle + \gamma_{10}|10\rangle + \gamma_{11}|11\rangle \end{split}$$

 $\gamma_{ij} = \alpha_i \beta_i$

result from amplitudes of both bits

Put multiple qubits together

Example: Two-qubits

$$|\psi_1\rangle = \alpha_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad |\psi_2\rangle = \beta_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Joint state:

$$\begin{split} |\psi\rangle &= |\psi_{1}\rangle \otimes |\psi_{2}\rangle = (\alpha_{1}\begin{bmatrix}1\\0\end{bmatrix} + \alpha_{2}\begin{bmatrix}0\\1\end{bmatrix}) \otimes (\beta_{1}\begin{bmatrix}1\\0\end{bmatrix} + \beta_{2}\begin{bmatrix}0\\1\end{bmatrix}) \\ &= \alpha_{0}\beta_{0}\begin{bmatrix}1\\0\end{bmatrix} \otimes \begin{bmatrix}1\\0\end{bmatrix} + \alpha_{0}\beta_{1}\begin{bmatrix}1\\0\end{bmatrix} \otimes \begin{bmatrix}0\\1\end{bmatrix} + \alpha_{1}\beta_{0}\begin{bmatrix}0\\1\end{bmatrix} \otimes \begin{bmatrix}0\\1\end{bmatrix} + \alpha_{1}\beta_{1}\begin{bmatrix}0\\1\end{bmatrix} \otimes \begin{bmatrix}0\\1\end{bmatrix} \\ &= \gamma_{00}\begin{bmatrix}1\\0\\0\\0\end{bmatrix} + \gamma_{01}\begin{bmatrix}0\\1\\0\\0\end{bmatrix} + \gamma_{10}\begin{bmatrix}0\\0\\1\\0\end{bmatrix} + \gamma_{10}\begin{bmatrix}0\\0\\1\\0\end{bmatrix} + \gamma_{11}\begin{bmatrix}0\\0\\0\\1\end{bmatrix} \end{split}$$

Quantum Register

Put multiple qubits together

General case of N qubits

$$\dim \widetilde{\mathcal{H}} = (\dim \mathbb{C}^2)^N = 2^N$$

$$\begin{split} |\psi\rangle &= |\psi_1\rangle \otimes |\psi_2\rangle \otimes \cdots \otimes |\psi_N\rangle \\ &= \gamma_1 |00 \dots 0\rangle + \gamma_2 |00 \dots 1\rangle + \cdots + \gamma_{2^N} |11 \dots 1\rangle \\ &= \gamma_1 \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} + \gamma_2 \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix} + \cdots + \gamma_{2^N} \begin{bmatrix} 0\\0\\\vdots\\1 \end{bmatrix} \in \widetilde{\mathcal{H}} = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 \end{split}$$

Joint state of N qubit register can be in a superposition of all basis states! Grows exponential in N!

Quantum Register

Put multiple qubits together

General case of N qubits

$$\dim \widetilde{\mathcal{H}} = (\dim \mathbb{C}^2)^N = 2^N$$

$$|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle \otimes \cdots \otimes |\psi_N\rangle$$
$$= \gamma_1 |00 \dots 0\rangle + \gamma_2 |00 \dots 1\rangle + \cdots + \gamma_{2^N} |11 \dots 1\rangle$$

$$= \gamma_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \gamma_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + \gamma_{2^N} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \in \widetilde{\mathcal{H}} = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2$$

Number of atoms in the universe: estimated $10^{78} - 10^{82}$

E.g. state of n=300 qubits, has $2^{300} = 10^{90}$ complex amplitudes

Operations on a Quantum Register

Consider Two Qubits

Operations on two qubits described by 4x4 unitary matrices

Example: CNOT

$$|00\rangle \rightarrow |00\rangle$$

$$|01\rangle \rightarrow |01\rangle$$

$$|10\rangle \rightarrow |11\rangle$$

$$|11\rangle \rightarrow |10\rangle$$

Changes amplitudes of $|01\rangle$ and $|11\rangle$

$$CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

input		output
Χ	У	x y+x
0>	0>	0> 0>
0>	1>	0> 1>
1>	0>	1> 1>
1>	1>	1> 0>

Operations on a Quantum Register

Consider Two Qubits

Operations on two qubits described by 4x4 unitary matrices

Another Example: Hadamard on both quits

$$\begin{aligned} H \otimes H | 0 \rangle \otimes | 0 \rangle &= H | 0 \rangle \otimes H | 0 \rangle \\ &= \frac{1}{\sqrt{2}} (| 0 \rangle + | 1 \rangle) \otimes \frac{1}{\sqrt{2}} (| 0 \rangle + | 1 \rangle) \\ &= \frac{1}{2} (| 0 \rangle \otimes | 0 \rangle + | 0 \rangle \otimes | 1 \rangle + | 1 \rangle \otimes | 0 \rangle + | 1 \rangle \otimes | 1 \rangle) \\ &= \frac{1}{2} (| 0 0 \rangle + | 0 1 \rangle + | 1 0 \rangle + | 1 1 \rangle) \end{aligned}$$

Operations "space by space"

Operations on a Quantum Register

Consider Two Qubits

Operations on two qubits described by 4x4 unitary matrices

Another Example: Hadamard on first of two quits

$$H \otimes Id |0\rangle \otimes |0\rangle = H|0\rangle \otimes Id|0\rangle$$

$$= \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \otimes |0\rangle$$

$$= \frac{1}{\sqrt{2}} (|0\rangle \otimes |0\rangle + |1\rangle \otimes |0\rangle)$$

$$= \frac{1}{\sqrt{2}} (|00\rangle + |10\rangle)$$

Measurements on a Quantum Register

We measure the first qubit

$$|\psi\rangle = \gamma_{00}|0\rangle|0\rangle + \gamma_{01}|0\rangle|1\rangle + \gamma_{10}|1\rangle|0\rangle + \gamma_{11}|1\rangle|1\rangle$$

If the result is $|0\rangle$ then system state remains in $span \{|0\rangle|0\rangle, |0\rangle|1\rangle\}$

$$p(q_1 = 0) = |\gamma_{00}|^2 + |\gamma_{01}|^2$$

And the remaining state after measurement needs to be normalized

$$|\psi'\rangle = \frac{\gamma_{00}|0\rangle|0\rangle + \gamma_{01}|0\rangle|1\rangle}{\sqrt{|\gamma_{00}|^2 + |\gamma_{01}|^2}}$$

Measurements on a Quantum Register

We measure the first qubit

$$|\psi\rangle = \gamma_{00}|0\rangle|0\rangle + \gamma_{01}|0\rangle|1\rangle + \gamma_{10}|1\rangle|0\rangle + \gamma_{11}|1\rangle|1\rangle$$

If the result is $|1\rangle$ then system state remains in $span\{|1\rangle|0\rangle, |1\rangle|1\rangle\}$

$$p(q_1 = 1) = |\gamma_{10}|^2 + |\gamma_{11}|^2$$

And the remaining state after measurement needs to be normalized

$$|\psi'\rangle = \frac{\gamma_{10}|1\rangle|0\rangle + \gamma_{11}|1\rangle|1\rangle}{\sqrt{|\gamma_{10}|^2 + |\gamma_{11}|^2}}$$

We only retrieve the value of the measured qubit! NOT the amplitudes of the remaining nor initial state

Qubits, Operations, Measurements

Quantum states are represented by vectors in a complex vector space

 \rightarrow state of an N-qubit register described by 2^N -dimensional vector

Operations on a quantum register are linear and can be described by unitary matrices

 \rightarrow operations on N-qubits described by N \times N unitary matrix

Measurements on a quantum register project the state onto a subspace of the larger vector space

- Schrödinger 1937: "the characteristic feature of quantum mechanics"
- Consequence of the superposition principle
- Underlying feature of quantum teleportation and other protocols

Generate Entanglement

We apply an H-gate to the first qubit

$$H \otimes Id |0\rangle|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |0\rangle$$

Now, we apply a CNOT-gate to the two-qubits

CNOT
$$\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes |0\rangle$$

= CNOT $\frac{1}{\sqrt{2}}(|0\rangle \otimes |0\rangle + |1\rangle \otimes |0\rangle)$
= $\frac{1}{\sqrt{2}}(|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle)$

Circuit picture

Let's measure!

$$\frac{1}{\sqrt{2}}(|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle)$$

$$\Rightarrow$$
 If $q_1 = |0\rangle$ we know that $q_2 = |0\rangle$ (analogue for $q_1 = |1\rangle$)

Outcomes are correlated, although invidual outcomes are undetermined!

Bell states

$$\begin{split} |\Phi^{+}\rangle &= \frac{1}{\sqrt{2}}(|0\rangle_{A} \otimes |0\rangle_{B} + |1\rangle_{A} \otimes |1\rangle_{B}) \\ |\Phi^{-}\rangle &= \frac{1}{\sqrt{2}}(|0\rangle_{A} \otimes |0\rangle_{B} - |1\rangle_{A} \otimes |1\rangle_{B}) \\ |\Psi^{+}\rangle &= \frac{1}{\sqrt{2}}(|0\rangle_{A} \otimes |1\rangle_{B} + |1\rangle_{A} \otimes |0\rangle_{B}) \\ |\Psi^{-}\rangle &= \frac{1}{\sqrt{2}}(|0\rangle_{A} \otimes |1\rangle_{B} - |1\rangle_{A} \otimes |0\rangle_{B}) \end{split}$$

Remark: Bell states form an orthonormal basis

Entanglement and separability

$$\frac{1}{\sqrt{2}}(|0\rangle \otimes |0\rangle + |1\rangle \otimes |0\rangle) = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |0\rangle = |+\rangle \otimes |0\rangle$$

$$H \otimes H |1\rangle \otimes |1\rangle = \frac{1}{2}(|0\rangle \otimes |0\rangle - |0\rangle \otimes |1\rangle - |1\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle)$$

$$= |-\rangle \otimes |-\rangle$$

→ states are separable

Definition: Separability. Any state that can be expressed as a tensor product of basis states is called separable

Definition: Entanglement. A state $|\Psi\rangle$ is called entangled if it is not separable, i.e.

$$|\Psi\rangle \neq |\psi_1\rangle \otimes |\psi_2\rangle$$

*in any basis!

Degree of entanglement

$$\frac{1}{\sqrt{2}}(|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle)$$

→ Maximally entangled!

$$\frac{1}{2}(|0\rangle \otimes |0\rangle + \frac{\sqrt{3}}{2}|1\rangle \otimes |1\rangle)$$

→ Entangled but not as strongly correlated

$$|1\rangle \otimes |1\rangle$$

→ Also perfectly correlated! But not entangled, outcomes are predetermined!

For maximally entangled states (like Bell states) the outcomes are correlated in infinitely many bases!

Correlations

Classical correlations depend on choosing one particular basis

→ basis-dependent, there is no correlation in other bases

Quantum correlations (entanglement) are basis-independent

$$|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$= \frac{1}{\sqrt{2}}\left[\left(\frac{1}{\sqrt{2}}|+\rangle + |-\rangle\right)\left(\frac{1}{\sqrt{2}}|+\rangle + |-\rangle\right) + \left(\frac{1}{\sqrt{2}}|+\rangle - |-\rangle\right)\left(\frac{1}{\sqrt{2}}|+\rangle - |-\rangle\right)\right]$$

$$= \frac{1}{2\sqrt{2}}[|++\rangle + |+-\rangle + |--\rangle + |++\rangle - |+-\rangle + |--\rangle]$$

$$= \frac{1}{\sqrt{2}}[|++\rangle + |--\rangle]$$
Exact same type of correlations in new basis!

This is not the end of the story!

- Philosophical aspects of quantum theory and entanglement
- Entanglement detection and quantification
- Noise and decoherence → requires treatment of quantum system with density matrices (error correction)
- We did not talk about: Heisenberg uncertainty
- Entanglement → Multipartite entanglement beyond Bell-states → How are 3 or more systems entangled?
- And more...