

weakest extension of a partial ordering

 ${\bf Canonical\ name} \quad {\bf WeakestExtensionOfAPartialOrdering}$

Date of creation 2013-03-22 18:51:40 Last modified on 2013-03-22 18:51:40 Owner jocaps (12118)

Last modified by jocaps (12118)

Numerical id 9

Author jocaps (12118)
Entry type Definition
Classification msc 13J30
Classification msc 13J25

Defines weakest extension of a partial ordering

Let A be a commutative ring with partial ordering A^+ and suppose that B is a ring that admits a partial ordering. If $f: A \to B$ is a ring monomorphism (thus we regard B as an over-ring of A), then any partial ordering of B that can contain $f(A^+)$ will also contain the set $B^+ \subset B$ defined by

$$B^+ := \{ \sum_{i=1}^n f(a_i)b_i^2 : n \in \mathbb{N}, a_1, \dots, a_n \in A^+ \}$$

 B^+ is itself a partial ordering and it is called the weakest partial ordering of B that extends A^+ (through f). It is called "weakest" because this is the smallest partial ordering B^+ of B that will transform f into a poring monomorphism (i.e. a monomorphism in the category of partially ordered rings) $f:(A,A^+)\to (B,B^+)$ (for simplicity, we abuse the symbol f here).