

Content (c) 2017 Readers Question Bank Group. Logo is trademark Readers Question Bank Group.

**For individual teachers:** Readers Question Bank(tm) Question Sets are for in-classroom use only. Usage is free. In particular, the questions may not be posted online, except by authorized publishers. Any additional distribution of the Readers Question Bank(tm) Question Sets may result in the termination of access to questions.

For further information: interested parties should contact sam.a.forman@readersquestionbank.org.

The College Board is not affiliated with, and does not endorse, these question sets.

1. What value of A would make the output of the logic circuit false?



- (A) true
- (B) false
- (C) The output will be false no matter what the value of A is
- (D) There is no value of A such that the output of the logic circuit will be false

| Enduring                                                                                            |                                | Computational             | Essential   |            |  |
|-----------------------------------------------------------------------------------------------------|--------------------------------|---------------------------|-------------|------------|--|
| Understandings                                                                                      | <b>Learning Objectives</b>     | <b>Thinking Practices</b> | Knowledge   | Difficulty |  |
| <b>2.2</b> Multiple levels of                                                                       | <b>2.2.3</b> Identify multiple | P3 Abstracting            | 2.2.3F      | 4          |  |
| abstraction are used                                                                                | levels of abstractions         |                           |             |            |  |
| to write programs or                                                                                | being used when writing        |                           |             |            |  |
| to create other                                                                                     | programs. [P3]                 |                           |             |            |  |
| computational                                                                                       |                                |                           |             |            |  |
| artifacts                                                                                           |                                |                           |             |            |  |
| (A) This option is inc                                                                              | correct. true OR true =        | true, true AND            | true = true | 2          |  |
| (B) This option is incorrect. true OR false = true, true AND true = true                            |                                |                           |             |            |  |
| (C) This option is incorrect. Both 'A' being true and 'A' being false results in an output of true  |                                |                           |             |            |  |
| (D) This option is correct. The output of the OR-gate will always be true, making the output of the |                                |                           |             |            |  |
| circuit always to                                                                                   | cue as well                    |                           |             |            |  |

2. In the following code block, assume that the variables Rainy and too cold are boolean.

```
IF (NOT (Rainy OR too_cold))
{
     DISPLAY("It's a good beach day")
}
```

Which of the following are equivalent to the above code block?

| Enduring                                                                                               |                                                                           | Computational           | Essential |            |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------|-----------|------------|
| Understandings                                                                                         | <b>Understandings</b> Learning Objectives                                 |                         | Knowledge | Difficulty |
| 5.5 Programming uses mathematical and logical concepts                                                 | 5.5.1 Employ appropriate mathematical and logical concepts in programming | P1 Connecting computing | 5.5.1E    | 3          |
| (A) This option is in                                                                                  | correct. NOT can't be distrib                                             | uted over OR            |           |            |
|                                                                                                        | correct. NOT needs to be app                                              |                         | as well   |            |
| (C) <b>This option is correct.</b> This option makes sense in a real-world setting and also adheres to |                                                                           |                         |           |            |
| DeMorgan's law                                                                                         |                                                                           |                         |           |            |
| (D) This option is incorrect. NOT needs to be applied to each clause                                   |                                                                           |                         |           |            |

- 3. In the process of digging, a landscaping company cuts a fiber line. Transmission of Internet traffic is still possible through additional pathways that provide alternate routes between the source and destination. The additional pathways describe a concept known as:
- (A) bandwidth
- (B) hierarchy
- (C) latency
- (D) redundancy

failure and unavailability.

| End          | uring                                                                                                     |                               | Computational             | Essential          |               |  |
|--------------|-----------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|--------------------|---------------|--|
| Und          | erstandings                                                                                               | <b>Learning Objectives</b>    | Thinking Practices        | Knowledge          | Difficulty    |  |
| <b>6.1</b> T | The Internet is a                                                                                         | <b>6.1.1</b> Explain the      | P3 Abstracting            | 6.1.1B             | 3             |  |
| netw         | ork of                                                                                                    | abstractions in the           |                           |                    |               |  |
| autor        | nomous systems.                                                                                           | Internet and how the          |                           |                    |               |  |
|              |                                                                                                           | Internet functions.           |                           |                    |               |  |
| (A)          | (A) This option is incorrect. Bandwidth is the data throughput of a network. If a connection is broken,   |                               |                           |                    |               |  |
|              | there will be no t                                                                                        | hroughput.                    |                           |                    |               |  |
| (B)          | This option is inc                                                                                        | correct. Designing networks   | in a hierarchal manner al | lows a complex p   | problem to    |  |
|              | be broken into sn                                                                                         | naller manageable parts.      |                           |                    |               |  |
| (C)          | This option is inc                                                                                        | correct. Network latency is a | n expression of how muc   | h time it takes fo | r a packet of |  |
|              | data to get from one point to another.                                                                    |                               |                           |                    |               |  |
| (D)          | (D) <b>This option is correct</b> . Network redundancy is a process through which additional or alternate |                               |                           |                    |               |  |
|              | instances of network devices, equipment and communication mediums are installed within network            |                               |                           |                    |               |  |
|              | infrastructure. It is a method for ensuring network availability in case of a network device or path      |                               |                           |                    |               |  |

- 4. You decide you are going to take your internet privacy seriously. Which of the following action poses the greatest risk to your internet privacy?
  - (A) Sharing your email address with those who request it.
  - (B) Connecting to secured networks using the provided network name and password when visiting hotels.
  - (C) Encrypting your files and sharing your private key to ensure others who you choose to share files with can read them.
  - (D) Using cloud storage to ensure access to your files from all your devices.

| Enduring                                         |                                                                                                         | Computational               | Essential         |            |  |  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|------------|--|--|
| Understandings                                   | <b>Learning Objectives</b>                                                                              | Thinking Practices          | Knowledge         | Difficulty |  |  |
| <b>6.3</b> Cybersecurity is an important concern | <b>6.3.1</b> Identify existing cybersecurity concerns                                                   | P1 Connecting computing     | 6.3.1C            | 2          |  |  |
| for the Internet and                             | and potential options to                                                                                | 1 6                         |                   |            |  |  |
| the systems built on                             | address these issues with                                                                               |                             |                   |            |  |  |
| it.                                              | the Internet and the                                                                                    |                             |                   |            |  |  |
| -                                                | systems built on it.                                                                                    |                             |                   |            |  |  |
| • •                                              | ncorrect. While sharing your                                                                            |                             |                   | ase the    |  |  |
| likelihood of Sp                                 | oam, it is not the greatest priva                                                                       | acy infraction of the optic | ons.              |            |  |  |
| • /                                              | ncorrect. Given that the netwo                                                                          | •                           |                   |            |  |  |
| •                                                | assword, it is not a major priv                                                                         | vacy concern unless the he  | otel IT structure | is         |  |  |
| compromised.                                     |                                                                                                         |                             |                   |            |  |  |
| • •                                              | correct. When encrypting file                                                                           | 0 2                         | •                 | •          |  |  |
|                                                  | the public key. If a private key is shared, all files encrypted by this user are able to be able to be  |                             |                   |            |  |  |
| unencrypted wh                                   | unencrypted which is a major privacy risk.                                                              |                             |                   |            |  |  |
| • •                                              | D) This option is incorrect. Cloud storage itself is not a privacy risk. While one should ensure proper |                             |                   |            |  |  |
| security setting                                 | s when signing up for any clo                                                                           | ud storage, the risk is mir | nimal compared t  | o other    |  |  |
| options given.                                   |                                                                                                         |                             |                   |            |  |  |

5. You are writing a function called swap (list, x, y) which will exchange the position of the two values at indexes x and y in the list.

Example: before and after a call to swap (list, 2, 3) on the list shown below



The function header is defined below. Choose the three lines of code that will perform the swap correctly.

| Enduring         |                                                                                                         |                                 | Computational              | Essential              |                   |
|------------------|---------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|------------------------|-------------------|
| Understa         | indings                                                                                                 | Learning Objectives             | <b>Thinking Practices</b>  | Knowledge              | Difficulty        |
| <b>5.4</b> Progr | ams are                                                                                                 | <b>5.4.1</b> Evaluate the       | P4 Analyzing               | 5.4.1F                 | 3                 |
| develope         | d,                                                                                                      | correctness of a program.       | Problems and               |                        |                   |
| maintaine        | ed, and used                                                                                            |                                 | Artifacts                  |                        |                   |
| by people        | for                                                                                                     |                                 |                            |                        |                   |
| different        | purposes.                                                                                               |                                 |                            |                        |                   |
| (A) Th           | is option is in                                                                                         | correct. The data at index x is | s being overwritten by th  | ne data in temp before | ore storing it at |
| inc              | lex y.                                                                                                  |                                 |                            |                        |                   |
| Re               | sulting array:                                                                                          | list[40, 85, 85]                |                            |                        |                   |
| (B) Th           | is option is in                                                                                         | correct. The value of temp is   | being assigned before the  | ne variable has been   | n initialized     |
| lea              | ding to unpred                                                                                          | dictable results. Resulting arr | ay: unpredictable          |                        |                   |
| (C) Th           | is option is in                                                                                         | correct. The data at index y is | s overwritten by the data  | at index x and is t    | hereby lost       |
| be               | fore the swap                                                                                           | is complete. Resulting array:   | list[40, 90, 90]           |                        |                   |
| (D) Th           | is option is co                                                                                         | orrect. It's important to note  | e that swapping x to y, ar | nd then y to x will    | not work. It is   |
| ne               | necessary to temporarily store the data of one of the variables to successfully swap the numbers. To do |                                 |                            |                        |                   |
| thi              | this, create a temp variable that holds the data at index y. Swap the data at y with x (move data from  |                                 |                            |                        |                   |
| inc              | lex x to index                                                                                          | y), and then set the data at x  | to temp which holds the    | original value of t    | he index y.       |
| Re               | sulting array:                                                                                          | list[40, 85, 90]                |                            |                        |                   |

- 6. What is a disadvantage of the open standard of Internet addressing and routing? Select <u>two</u> answers.
  - (A) censorship
  - (B) possibility of denial of service attacks
  - (C) redundancy
  - (D) hierarchy

| Enduring<br>Understandings                          | Learning Objectives                                                                                          | Computational Thinking Practices | Essential<br>Knowledge | Difficulty |  |  |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------|------------|--|--|
|                                                     | <u> </u>                                                                                                     |                                  |                        |            |  |  |
| <b>6.3</b> Cybersecurity is                         | <b>6.3.1</b> Identify existing                                                                               | P1 Connecting                    | 6.3.1C                 | 2          |  |  |
| an important concern                                | cybersecurity concerns                                                                                       | computing                        |                        |            |  |  |
| for the Internet and                                | and potential options that                                                                                   |                                  |                        |            |  |  |
| the systems built on                                | address these issues with                                                                                    |                                  |                        |            |  |  |
| it.                                                 | the Internet and the                                                                                         |                                  |                        |            |  |  |
|                                                     | systems built on it.                                                                                         |                                  |                        |            |  |  |
| (A) This option is c                                | orrect. The open standard of                                                                                 | addressing used on the In        | nternet makes it       | easy to    |  |  |
| censor websites                                     | censor websites by redirecting internet traffic from the censored website to another website.                |                                  |                        |            |  |  |
| (B) This option is c                                | (B) <b>This option is correct.</b> The open standard of addressing and routing used on the Internet makes it |                                  |                        |            |  |  |
| vulnerable to security issues such as DDoS attacks. |                                                                                                              |                                  |                        |            |  |  |
| (C) This option is in                               | This option is incorrect. Redundant nature of Internet addressing is an advantage because it                 |                                  |                        |            |  |  |

- (C) This option is incorrect. Redundant nature of Internet addressing is an advantage because it provides multiple paths between users on the Internet. Having different paths makes the Internet more reliable.
- (D) This option is incorrect. The hierarchical structure of Internet addressing is an advantage since it makes the Internet scalable.
- 7. If Alice wishes to send Bob an encrypted message using public-key encryption, she should encrypt her message with \_\_\_\_\_\_\_,
  - (A) her private key
  - (B) her public key
  - (C) Bob's private key
  - (D) Bob's public key

| Enduring                                                                                                     |                                                                                                                                                                             | Computational             | Essential |            |  |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|------------|--|
| Understandings                                                                                               | Learning Objectives                                                                                                                                                         | <b>Thinking Practices</b> | Knowledge | Difficulty |  |
| <b>6.3</b> Cybersecurity is an important concern for the Internet and the systems built on it.               | 6.3.1 Identify existing cybersecurity concerns and potential options that address these issues with the Internet and the systems built on it.                               | P1 Connecting computing   | 6.3.1L    | 3          |  |
| (A) This option is in her public key.                                                                        | (A) This option is incorrect. Alice uses her private key to decrypt a message that was encrypted using                                                                      |                           |           |            |  |
| · /                                                                                                          | (B) This option is incorrect. Anyone wanting to send Alice a message would use her public key to encrypt the message.                                                       |                           |           |            |  |
| (C) This option is incorrect. Alice does not have Bob's private key, only Bob should have Bob's private key. |                                                                                                                                                                             |                           |           |            |  |
| ` /                                                                                                          | (D) <b>This option is correct</b> . In order for Alice to send an encrypted message to Bob, she uses Bob's public key. Bob will use his private key to decrypt the message. |                           |           |            |  |

- 8. A student is taking a survey of her class in order to determine their average hours of sleep per night. She is tracking the number of students in her class that have replied. She sees that the number of students who have replied is represented by the digits "12" but she does not remember what base she used. Which of the following are possible bases that the number 12 could be in?
  - I. Binary (base 2)
  - II. Decimal (base 10)
  - III. Hexadecimal (base 16)
  - (A) I and II
  - (B) I and III
  - (C) II and III

(D)

(D) I, II, and III

| Enduring         |                          |                 | Computational                | Essential          |              |
|------------------|--------------------------|-----------------|------------------------------|--------------------|--------------|
| Understandin     | gs Learning (            | Objectives      | Thinking Practices           | Knowledge          | Difficulty   |
| 2.1 A variety of | of <b>2.1.2</b> Expla    | in how binary   | P3 Abstracting               | 2.1.1D             | 3            |
| abstractions by  | uilt sequences a         | re used to      |                              |                    |              |
| upon binary      | represent d              | igital data.    |                              |                    |              |
| sequences can    | be                       |                 |                              |                    |              |
| used to represe  | ent all                  |                 |                              |                    |              |
| digital data.    |                          |                 |                              |                    |              |
| (A) This opt     | tion is incorrect. 12 is | a number in bas | e 10, it is not a number th  | at can be represe  | ented in     |
| binary b         | ecause there is no 2 d   | igit in binary. |                              | •                  |              |
| (B) This opt     | ion is incorrect. 12 is  | a number in bas | e 16, but it is not a number | er that can be rep | presented in |
| binary           |                          |                 |                              |                    |              |
| (C) This op      | tion is correct. 12 is   | a number in bot | h base 10 and base 16. 1     | and 2 are both v   | alid digits  |
| in base          | 10 and base 16.          |                 |                              |                    | -            |

This option is incorrect. 12 is a number in base 10 and base 16, but not base 2.

- 9. Which of the following can be represented by a sequence of 3 bits?
  - I. The seven days of the week
  - II. Between zero and eight pints of ice cream
  - III. The nine innings in a standard baseball game
  - (A) I only
  - (B) I and II
  - (C) I, II and III
  - (D) None of the Above

| Enduring                                                                                            |                                                                                                       | Computational              | Essential         |               |  |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------|-------------------|---------------|--|
| Understandings                                                                                      | Learning Objectives                                                                                   | Thinking Practices         | Knowledge         | Difficulty    |  |
| <b>2.1</b> A variety of                                                                             | <b>2.1.2</b> Explain how binary                                                                       | P3 Abstracting             | 2.1.2F            | 3             |  |
| abstractions built                                                                                  | sequences are used to                                                                                 |                            |                   |               |  |
| upon binary                                                                                         | represent digital data.                                                                               |                            |                   |               |  |
| sequences can be                                                                                    |                                                                                                       |                            |                   |               |  |
| used to represent all                                                                               |                                                                                                       |                            |                   |               |  |
| digital data.                                                                                       |                                                                                                       |                            |                   |               |  |
| (A) This option is o                                                                                | correct. The numbers 0-7 can                                                                          | be represented with 3 bit  | s, so you can rep | present the 7 |  |
| days of the wee                                                                                     | k.                                                                                                    |                            |                   |               |  |
| (B) This option is in                                                                               | ncorrect. The number 8 cannot                                                                         | t be represented with just | 3 bits, while zer | o through     |  |
| seven can be represented, you would need one more bit to represent 8 pints of ice cream.            |                                                                                                       |                            |                   |               |  |
| (C) This option is incorrect The number 9 cannot be represented with just 3 bits, so you would need |                                                                                                       |                            |                   |               |  |
| one more bit to represent 9 innings.                                                                |                                                                                                       |                            |                   |               |  |
| (D) This option is in                                                                               | (D) This option is incorrect. The numbers 0-7 can be represented with 3 bits, making Option I correct |                            |                   |               |  |

- 10. Which type of chart would best display the individual data from 1,000 individuals' daily time spent in social media?
  - (A) Pie Chart
  - (B) Bar Chart
  - (C) Line Chart
  - (D) Scatter Plot

| Enduring<br>Understandings                                                                                                     | Learning Objectives                                 | Computational Thinking Practices    | Essential<br>Knowledge | Difficulty  |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------|------------------------|-------------|
| 3.1 People use computer programs to process information to gain insight and knowledge                                          | <b>3.1.3</b> Explain the insight                    | P2 Creating Computational Artifacts | 3.1.3B                 | 2           |
| ` /                                                                                                                            | and precise language correct. Pie Charts require ca | tegorization so it would            | not show 1000 in       | dividual    |
| data points  (B) This option is incorrect. Bar Charts require categorization so it would not show 1000 individual data points. |                                                     |                                     |                        |             |
| (C) This option is in this data set.                                                                                           | correct. Line Charts are design                     | gned to show change ove             | r time which doe       | s not occur |
| (D) <b>This option is correct</b> Scatter Plots can show a large number of individual data points                              |                                                     |                                     |                        |             |

- 11. An architecture company is planning to build a tower in California but they are worried about earthquakes. They decide to use a computer simulation in order to test the safety of different designs when an earthquake occurs. Which of the following are reasons to use a simulation in this context?
  - I. Using the simulation software can save the company money because it allows them to test building materials for safety without purchasing physical materials.
  - II. Using the simulation software will perfectly predict what will happen in the event of an earthquake.
  - III. Using the simulation software can help ensure the safety of the building during an earthquake without endangering people.
  - (A) I only
  - (B) III only
  - (C) I and III only
  - (D) I, II and III

| Enduring                                                                                              |                                 | Computational              | Essential          |             |  |
|-------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|--------------------|-------------|--|
| Understandings                                                                                        | <b>Learning Objectives</b>      | <b>Thinking Practices</b>  | Knowledge          | Difficulty  |  |
| 2.3 Models and                                                                                        | 2.3.1 Use models and            | P3 Abstracting             | 2.3.1D             | 2           |  |
| simulations use                                                                                       | simulations to represent        |                            |                    |             |  |
| abstraction to                                                                                        | phenomena                       |                            |                    |             |  |
| generate new                                                                                          |                                 |                            |                    |             |  |
| understanding and                                                                                     |                                 |                            |                    |             |  |
| knowledge                                                                                             |                                 |                            |                    |             |  |
| (A) This option is c                                                                                  | orrect. A is correct because    | only I a correct answer.   |                    |             |  |
| (B) This option is in                                                                                 | correct. B is incorrect because | e it does not include I wh | ich is also a corr | ect answer. |  |
| (C) This option is in                                                                                 |                                 |                            |                    |             |  |
| (D) This option is incorrect. D is incorrect because II is incorrect. Simulations cannot make perfect |                                 |                            |                    |             |  |
| predictions                                                                                           |                                 |                            |                    |             |  |

12. FOUR INDEPENDENT ALGORITHMS listed below can be executed on a row of NUMBER cards (Not FACE cards) on a table. There are an EVEN number of cards, and they are in no special order. Which of the Algorithms involves BOTH Selection and Iteration?

For this question select **TWO** correct answers

- (A) Look over all the cards to find the smallest one, and move it to the leftmost position.
- (B) Compare the first two cards. If the one on the left is greater, switch them
- (C) Compare the values of each pair of cards. For example, compare cards 0 and 1, compare cards 2 and 3, and so on for all pairs. Swap positions when the first card is greater than the second of the pair.
- (D) Find the middle card and switch it with the card in the rightmost position

| Enduring                                                                                                                               |                                                                                              | Computational                      | Essential         |            |  |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------|-------------------|------------|--|
| Understandings                                                                                                                         | <b>Learning Objectives</b>                                                                   | Thinking Practices                 | Knowledge         | Difficulty |  |
| 4.1 Algorithms are precise sequences for processes that can be executed by a computer and are implemented using programming languages. | <b>4.1.1</b> Develop an algorithm for implementation in a program                            | P2 Creating computational artifact | 4.1.1A            | 3          |  |
| (A) This option is c                                                                                                                   | orrect. The algorithm utilize                                                                | s both iteration (look over        | all the cards) as | well as    |  |
| selection (move                                                                                                                        | to leftmost position)                                                                        |                                    |                   |            |  |
| (B) This option is in                                                                                                                  | (B) This option is incorrect. This algorithm only uses selection (if one is greater, switch) |                                    |                   |            |  |
| (C) This option is correct This algorithm utilizes both iteration (compare the values of each pair of                                  |                                                                                              |                                    |                   |            |  |
| cards) and selection (swap positions)                                                                                                  |                                                                                              |                                    |                   |            |  |
| (D) This option is in                                                                                                                  | correct. This algorithm only                                                                 | utilizes selection (find the       | middle and mov    | ve)        |  |

13. A crime investigator is accessing an online database of crimes within a certain radius of the city center. The database contains the following information:

Date of crime

Name of offender

Neighborhood of crime

The investigator is looking for other crimes that occurred in a certain area on a certain date. Which of the following algorithms can be used to find all crimes that occurred in a certain neighborhood on a certain day?

- I. Make a new list by filtering the data so only the crimes from a certain neighborhood are on the list. Perform multiple binary searches to find all crimes that occurred in that neighborhood on a certain day, adding each new occurrence to a final list.
- II. Make a new list by filtering the data so only the crimes from a certain neighborhood are on the list. Perform multiple linear searches to find all crimes that occurred on the given day, adding each new occurrence to a final list.
- (A) Both algorithms work correctly
- (B) Algorithm I always works correctly, but Algorithm II only works correctly when the date data is sorted.
- (C) Algorithm II always work correctly, but Algorithm I only works correctly when the date data is sorted.
- (D) Neither algorithm will correctly find all crimes.

| Enduring<br>Understandings                                                                                                                                 | Learning<br>Objectives                                            | Computational Thinking Practices   | Essential<br>Knowledge | Difficulty |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------|------------------------|------------|
| 4.1 Algorithms are the precise sequences of instructions for processes that can be executed by a computer and are implemented using programming languages. | <b>4.1.1</b> Develop an algorithm for implementation in a program | P2 Creating computational artifact | 4.1.1B                 | 3          |
| (A) This option is incorrec                                                                                                                                | t. The binary sort only                                           | works if the data has              | been sorted            |            |

- (B) This option is incorrect. Algorithm II will work regardless of whether the data is sorted or not. and Algorithm I's binary sort algorithm needs the Date data to be sorted
- (C) **This option is correct**. Algorithm II (Linear search) will work regardless of whether the data is sorted or not. Algorithm I (Binary sorting) will work once the Date data is sorted
- (D) This option is incorrect.

- 14. Imagine you are playing an online game with your friends. You are at a crucial stage in the basketball game and need just one more free throw to win the game. You see the entire complex scene display quickly. You aim at the hoop to shoot your free throw. You click the shoot button but there is a momentary freeze on your screen only to discover that you have lost the game. What is demonstrated by this situation?
  - (A) High bandwidth, high latency
  - (B) Low bandwidth, high latency
  - (C) High bandwidth, low latency
  - (D) Low bandwidth, low latency

| Enduring               |                             | Computational               | Essential         |            |
|------------------------|-----------------------------|-----------------------------|-------------------|------------|
| Understandings         | Learning Objectives         | <b>Thinking Practices</b>   | Knowledge         | Difficulty |
| EU 6.2                 | LO 6.2.2 Explain how        | P4 Analyzing                | 6.2.2K            | 3          |
| Characteristics of the | the characteristics of the  | problems and                |                   |            |
| Internet influence the | Internet influence the      | artifacts                   |                   |            |
| systems built on it    | systems built on it         |                             |                   |            |
| (A) This option is a   | ammant The garaan leads imp | andiataly, indiantag high l | andryidth and the | manantarr  |

- (A) **This option is correct**. The screen loads immediately indicates high bandwidth and the momentary freezing of the screen and losing the game indicates high latency.
- (B) This option is incorrect. The screen will not load immediately with low bandwidth and the momentary freezing of the screen and losing the game indicates high latency.
- (C) This option is incorrect. The screen loads immediately indicates high bandwidth, low latency would have resulted in the player being able to shoot the ball.
- (D) This option is incorrect. The screen will not load immediately with low bandwidth, low latency would have resulted in the player being able to shoot the ball.

## 15. The Domain Name System (DNS) is designed to

- I. Allow for nested domain naming (e.g., digitalportfolio.collegeboard.org)
- II. Allow for centralized access and administration
- III. Use cache and redundant servers for quick matching of IP addresses to domain names
- IV. Use a static database for matching IP address to domain names
- (A) I only
- (B) II only
- (C) I and III only
- (D) II and IV only

| Enduring                                                                                           |                            | Computational          | Essential |            |  |
|----------------------------------------------------------------------------------------------------|----------------------------|------------------------|-----------|------------|--|
| Understandings                                                                                     | <b>Learning Objectives</b> | Thinking Practices     | Knowledge | Difficulty |  |
| EU 6.2                                                                                             | LO 6.2.1 Explain           | P4 Analyzing           | 6.2.1B    | 3          |  |
| Characteristics of the                                                                             | characteristics of the     | problems and artifacts |           |            |  |
| Internet influence the                                                                             | Internet and the systems   |                        |           |            |  |
| systems built on it.                                                                               | built on it                |                        |           |            |  |
| (A) This option is incorrect. DNS syntax is hierarchical so sub domains are nested within the main |                            |                        |           |            |  |
| domain name but there is one additional characteristic that also defines the DNS.                  |                            |                        |           |            |  |

- (B) This option is incorrect. DNS does not have a centralized administration, it is designed on distributed administration and access.
- (C) **This option is correct**. DNS syntax is hierarchical so sub domains are nested within the main domain name and it uses cache and redundant servers to quickly match the IP address to the domain name.
- (D) This option is incorrect. DNS does not have a centralized administration, it is designed on distributed administration and access. DNS database is constantly updated to accommodate new devices and networks.

16. The figure below shows a circuit composed of two logic gates. The output of the circuit is true.



Which of the following is a true statement about input A and B?

- (A) Input A must be true regardless of Input B's value
- (B) Input A must be false regardless of Input B's value
- (C) Input A can be either true or false if Input B is true
- (D) There is no possible value of Input A or Input B that will cause the circuit to have the output true

| Enduring                                                                                                 |                                                                                 | Computational      | Essential |            |  |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------|-----------|------------|--|
| Understandings                                                                                           | Learning Objectives                                                             | Thinking Practices | Knowledge | Difficulty |  |
| 2.2 Multiple levels of abstraction are used to write programs or to create other computational artifacts | 2.2.3 Identify multiple levels of abstractions being used when writing programs | P3 Abstracting     | 2.2.3F    | 2          |  |
| (A) This option is inc                                                                                   |                                                                                 |                    |           |            |  |

- (B) This option is incorrect. While Input A can be false, if Input B is then false the entire logic gate will be false.
- (C) This option is correct. The and gate needs both inputs to be true in order for the output to be true. So, the output of the and gate will be false regardless of Input A's value because one of the inputs is already false. The or gate needs only one of the inputs to be true for the output to be true. Therefore, since one of the inputs from the and gate will be false, Input B must be true.
- (D) This option is incorrect. Answer choice C illustrates that there is a possible value that works.

- 17. A high school surveys all of its 1,750 students to determine the average number of hours U.S. high school students sleep per night. Which of the following is a true statement?
- (A) The high school should not use the data from this study because it is based on direct observation.
- (B) The high school can use this data to determine the average number of hours U.S. high school students sleep per night.
- (C) The high school cannot draw meaningful conclusions from this data because the sample size is too small.
- (D) The high school can use the results of this survey to conclude that U.S. high school students do not get enough sleep.

| Enduring                                                                                                                          |                                                                                                                                               | Computational              | Essential        |               |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|---------------|--|
| Understandings                                                                                                                    | Learning Objectives                                                                                                                           | Thinking Practices         | Knowledge        | Difficulty    |  |
| <b>3.2</b> Computing facilitates explora and the discovery of connections in information.                                         |                                                                                                                                               | P1 Connecting computing    | 3.2.1            | 1             |  |
| (A) This option gather the c                                                                                                      | is incorrect. The study is not base lata.                                                                                                     | ed on direct observation b | pecause a survey | was used to   |  |
| ` '                                                                                                                               | (B) The school cannot draw conclusions about all U.S. high school students because the sample size is too small and not randomly distributed. |                            |                  |               |  |
| (C) <b>This option is correct.</b> The results from one high school in the U.S. cannot be extrapolated out to a nationwide scale. |                                                                                                                                               |                            |                  |               |  |
| (D) This option                                                                                                                   | is incorrect. This is a value judger                                                                                                          | ment that in any case is r | not supported by | the data that |  |

18. Which algorithm best describes the program below?

```
items ← 0
FOR EACH name IN nameList
  items ← items + 1
DISPLAY items
```

was gathered.

- (A) An algorithm to find a specific name in a list of names
- (B) An algorithm to find the number of names in a list.
- (C) An algorithm to find the name stored at the end of a list
- (D) An algorithm to search a list of names

| Enduring                                                                          |                                | Computational               | Essential          |            |
|-----------------------------------------------------------------------------------|--------------------------------|-----------------------------|--------------------|------------|
| Understandings                                                                    | <b>Learning Objectives</b>     | Thinking Practices          | Knowledge          | Difficulty |
| <b>5.2</b> Programs can be                                                        | <b>5.2.1</b> Develop a correct | P4 Analyzing                | 5.2.1A             | 3          |
| developed to solve                                                                | program to solve               | problems and artifacts      |                    |            |
| problems.                                                                         | problems.                      |                             |                    |            |
| (A) This option is in                                                             | correct because the loop blo   | ck does not reference a spe | ecific name in the | he list.   |
| (B) This option is c                                                              | orrect because the loop bloc   | k increments by one for ea  | ach name in the    | list.      |
| (C) This option is incorrect because the last name in the list is not referenced. |                                |                             |                    |            |
| (D) This option is in                                                             | correct because the loop blo   | ck does not perform a test  | on any name in     | the list.  |

19. Frances wants to develop an algorithm to compute the **arithmetic mean** of a list of numbers. After four attempts to implement the algorithm, the following code was tested and found to correctly compute and display the **total sum** of all the numbers in the list.

```
total ← 0
items ← 0

FOR EACH number IN numList {
  total ← total + number
  <MISSING CODE 1>
}

DISPLAY total

DISPLAY items
<MISSING CODE 2>
```

Which lines of code need to be added so that the algorithm displays the arithmetic mean of the numbers in numList?

```
(A) Missing code 1: items ← items+1, Missing code 2: DISPLAY average
```

- (B) Missing code 1: average ← items / total, Missing code 2: DISPLAY average
- (C) Missing code 1: total ← total+1, Missing code 2: DISPLAY (total / items)
- (D) Missing code 1: items ← items+1, Missing code 2: DISPLAY (total / items)

| Enduring                   |                                 | Computational           | Essential |            |  |
|----------------------------|---------------------------------|-------------------------|-----------|------------|--|
| Understandings             | <b>Learning Objectives</b>      | Thinking Practices      | Knowledge | Difficulty |  |
| <b>5.1</b> Programs can be | <b>5.1.2</b> Develop a correct  | P4 Analyzing            | 5.1.2A    | 4          |  |
| developed to solve         | program to solve                | problems and artifacts  |           |            |  |
| problems.                  | problems.                       |                         |           |            |  |
| (A) This option is in      | correct because it never defin  | nes average.            |           |            |  |
| (B) This option is in      | correct because items is no     | ever iterated.          |           |            |  |
| (C) This option is in      | correct because it results in a | a divide by zero error. |           |            |  |
| (D) This option is c       |                                 |                         |           |            |  |
| gives the mean.            |                                 |                         |           |            |  |

- 20. A student draws a gorgeous digital image on her school computer. She decides she wants to show her brother, so she saves it and later downloads the image onto her home computer. When she opens and resizes the image at home, the quality is noticeably inferior to the original she saved. Which of the following is a reasonable explanation for the reduced quality?
  - (A) Low bandwidth of her Wi-Fi connection caused a slow download.
  - (B) High latency of her Wi-Fi connection caused a delay in starting the download.
  - (C) The process she used to save the image utilized a "lossless" compression algorithm.
  - (D) The process she used to save the image utilized a "lossy" compression algorithm.

| Enduring               |                                 | Computational               | Essential          |              |
|------------------------|---------------------------------|-----------------------------|--------------------|--------------|
| Understandings         | Learning Objectives             | Thinking Practices          | Knowledge          | Difficulty   |
| <b>3.3</b> There are   | 3.3.1 Analyze how data          | P4 Analyzing                | 3.3.1D             | 3            |
| trade-offs when        | representation, storage,        | Problems and                |                    |              |
| representing           | security, and                   | Artifacts                   |                    |              |
| information as digital | transmission of data            |                             |                    |              |
| data.                  | involve computational           |                             |                    |              |
|                        | manipulation of                 |                             |                    |              |
|                        | information.                    |                             |                    |              |
| (A) This option is in  | correct. Low bandwidth can      | result in perceived slow d  | lownloads howev    | er the       |
| quality of the da      | ta transmitted is not affected. |                             |                    |              |
| (B) This option is in  | correct. High latency can res   | ult in perceived slow dov   | vnloads however    | the quality  |
| of the data transi     | nitted is not affected.         |                             |                    |              |
| (C) This option is in  | correct. Lossless compressio    | n allows complete recons    | truction of the or | riginal      |
| data.so this type      | of compression can not be re    | esponsible for data loss re | sulting in a lowe  | r quality    |
| image.                 |                                 |                             |                    |              |
| (D) This option is co  | orrect. Lossy compression t     | rades some data loss for i  | ncreased compre    | ession. As a |
| result computers       | are only able to reconstruct    | an approximation of the     | original data      |              |

21. Consider the following algorithms to store a color digital image. Which algorithms are examples of "lossy" compression?

Select two answers:

- (A) The algorithm breaks the image into quadrants, and those quadrants into sub-quadrants creating 16 uniformly sized parts. The parts are saved in separate smaller files along with the information needed to completely reassemble the original image.
- (B) The image is divided into squares that are 2 by 2 pixels each. Each square is translated into a single pixel whose color is the average of the color values from the 4 pixels in the square.
- (C) The algorithm find runs of identical pixels. It saves the same information by saving the pixel value once and then the number of consecutive identical pixels.
- (D) The algorithm translates a color image into a grayscale version of the color original storing only averages of the data used to store the original colors in the picture.

| Enduring                                                                |                                                                                                                                                                                          | Computational                      | Essential         |               |  |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------|---------------|--|
| Understandings                                                          | <b>Learning Objectives</b>                                                                                                                                                               | Thinking Practices                 | Knowledge         | Difficulty    |  |
| 3.3 There are trade-offs when representing information as digital data. | 3.3.1 Analyze how data representation, storage, security, and transmission of data involve computational manipulation of information.                                                    | P4 Analyzing Problems and Artifact | 3.3.1C            | 4             |  |
| • /                                                                     | correct. A lossy algorithm ca<br>ginal data is normally lost                                                                                                                             | n not be used to complete          | ly reassemble ar  | n image.      |  |
| •                                                                       | (B) <b>This option is correct</b> . An average can not be reversed into its original components so this algorithm reduces the amount of data in a way that can not be reliably reversed. |                                    |                   |               |  |
| (C) This option is in originals.                                        | correct. Lossy compression t                                                                                                                                                             | echniques result in files w        | rith less informa | tion than the |  |
| ` ′                                                                     |                                                                                                                                                                                          |                                    |                   |               |  |

## 22. What will be displayed when the following program is executed?

```
list \leftarrow [1, 3, 5]
FOR EACH item IN list
   DISPLAY (item MOD 3)
}
(A)
    4
          6
              8
(B)
     0
              1
         1
     3
              15
(C)
          9
(D)
     1
          0
              2
```

| Enduring<br>Understandings                                                                                                                             | Learning Objectives                              | Computational Thinking Practices | Essential<br>Knowledge | Difficulty |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------|------------------------|------------|
| 4.1 Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using programming languages. | <b>4.1.2</b> Express an algorithm in a language. | P5 Communicating                 | 4.1.2A                 | 4          |

- (A) Incorrect. This student, unsure of the meaning of MOD, added 3 to each item in the list.
- (B) (B) Incorrect. This student, aware that MOD was associated with division, reported the number of times each number could be divided by 3 (rather than the remainder).
- (C) (C) Incorrect. This student multiplied the list items by 3.
- (D) **This option is correct**. This student correctly reported the remainder when each list item was divided by 3.

23. Consider the following program that is intended to calculate the sum of all items in a list:

```
FOR EACH item IN list
{
    sum ← 0
    sum ← sum + number
}
DISPLAY ( sum )
```

What will be the output printed if list  $\leftarrow [0, 5, -3, 4]$ ?

- (A) 6
- **(B)** 0
- (C) 4
- (D) 9

| Enduring                                                                                                                                               |                                                  | Computational      | Essential |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------|-----------|------------|
| Understandings                                                                                                                                         | <b>Learning Objectives</b>                       | Thinking Practices | Knowledge | Difficulty |
| 4.1 Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using programming languages. | <b>4.1.2</b> Express an algorithm in a language. | P5 Communicating   | 4.1.2A    | 4          |

- (A) This option is incorrect. Although 6 is the intended answer to this code, the logic of the code will not calculate this correctly. The variable named 'sum' is assigned the value of 0 EVERY TIME the list is iterated through. This will cause the code to not meet its intended purpose.
- (B) This option is incorrect. Assuming that the initial value of the variable sum will continue to persist after the for loop is executed
- (C) **This option is correct**. Since sum is initialized INSIDE the for loop, it gets reset to 0 every time the loop is executed. Thus only the last value in the list is added onto the variable named 'sum'.
- (D) This option is incorrect. This student is incorrectly assuming that negative numbers will be ignored

24. The figure below shows a circuit composed of two logic gates. The output of the circuit is true.



Which of the following is a true statement about inputs A and B?

- (A) Both inputs must be false
- (B) At least one input must be true
- (C) Both inputs must be true
- (D) There are no values of A and B that will make the output of the circuit true

| Enduring                                                                    |                                                                                    | Computational             | Essential |            |  |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------|-----------|------------|--|
| Understandings                                                              | Learning Objectives                                                                | Thinking Practices        | Knowledge | Difficulty |  |
| <b>2.2</b> Multiple levels of                                               | <b>2.2.3</b> Identify multiple                                                     | P3 Abstracting            | 2.2.3F    | 4          |  |
| abstraction are used                                                        | levels of abstractions                                                             |                           |           |            |  |
| to write programs or                                                        | being used when writing                                                            |                           |           |            |  |
| to create other                                                             | programs                                                                           |                           |           |            |  |
| computational                                                               |                                                                                    |                           |           |            |  |
| artifacts                                                                   |                                                                                    |                           |           |            |  |
| (A) This option is inc                                                      | correct. The output will be fa                                                     | alse if both inputs are f | alse      |            |  |
| (B) This option is co                                                       | (B) This option is correct. So long as A or B are true, the entire circuit is true |                           |           |            |  |
| (C) This option is incorrect. It is only necessary for one input to be true |                                                                                    |                           |           |            |  |
| (D) This option is inc                                                      | correct. The output will be t                                                      | rue so long as one input  | is true   |            |  |

25. In the following code block, assume that the variables rainy and too\_Cold are boolean.

```
IF (NOT(rainy) AND NOT(too_Cold))
{
         DISPLAY("It's a good beach day")
}
```

Which of the following are equivalent to the above code block?

| Enduring                                                                                               |                            | Computational      | Essential |            |
|--------------------------------------------------------------------------------------------------------|----------------------------|--------------------|-----------|------------|
| Understandings                                                                                         | <b>Learning Objectives</b> | Thinking Practices | Knowledge | Difficulty |
| <b>5.5</b> Programming                                                                                 | <b>5.5.1</b> Employ        | P1 Connecting      | 5.5.1E    | 4          |
| uses mathematical                                                                                      | appropriate                | computing          |           |            |
| and logical concepts                                                                                   | mathematical and           |                    |           |            |
|                                                                                                        | logical concepts in        |                    |           |            |
|                                                                                                        | programming                |                    |           |            |
| (A) This option is incorrect. This is a literal replacement of AND and OR                              |                            |                    |           |            |
| (B) <b>This option is correct.</b> This option makes sense in a real-world setting and also adheres to |                            |                    |           |            |
| DeMorgan's law                                                                                         |                            |                    |           |            |
| (C) This option is incorrect. NOT would need to be applied to the second clause as well                |                            |                    |           |            |
| (D) This option is incorrect. This option eliminates NOT without making other changes                  |                            |                    |           |            |