Проектирование архитектуры метода определения местоположения космического объекта на основе снимка звёздного неба

Ключевые слова: обработка изображений, идентификация космических объектов, астрономические ежегодники, определение местоположения объекта

Аннотация

Статья посвящена разработке архитектуры метода для автоматизированного определения местоположения космических объектов на изображениях звёздного неба с применением данных астрономических ежегодников. В работе рассмотрена проблема точности астрономических наблюдений за неизвестными объектами в условиях ограниченных данных и ограниченной видимости. Для улучшения точности вычислений предложена интеграция множества астрономических источников и использование современных методов обработки изображений, включая автоматическое определение и идентификацию космических объектов. Приведен анализ существующих технологий и инструментов для решения аналогичных задач. Основной акцент сделан на улучшение точности определения местоположения объектов путем повышения качества обрабатываемых изображений и сопоставления с данными разнообразных астрономических каталогов. Предлагаемая архитектура позволит эффективно решать задачу в условиях неопределенности и низкой видимости, обеспечивая более достоверные результаты астрономических исследований.

Введение

Определение координат космических объектов становится важной задачей в условиях ограниченных данных и ограниченной видимости[1]. С каждым годом увеличивается количество неизвестных объектов[2], в связи с чем автоматизация нахождения их местоположения становится важной задачей для обеспечения безопасности спутников и космических миссий[3].

Цель данной статьи является разработка архитектуры метода для автоматизированного определения местоположения космического объекта на основе снимка звёздного неба с использованием данных астрономического ежегодника для повышения точности астрономических наблюдений. Объектом исследования являются методы обнаружения космических объектов на основе снимков звёздного неба, предметом - точность методов обнаружения космического объекта на снимках звёздного неба.

В ходе проведения исследования были решены следующие задачи:

- 1. Обзор существующих методов обнаружения космического объекта по снимкам звёздного неба.
- 2. Определение критериев для сравнения найденных методов.
- 3. Сравнение выбранных методов по составленным критериям.

4. Разработка математической модели.

Обзор предметной области

Принцип отбора аналогов

В качестве аналогов рассматривались программы, которые определяют космические объекты на снимке, а также их местоположение. Для поиска аналогов использовалась система для поиска научных статей 'Google Scholar', а также сервис 'GitHub'. Поисковые запросы включали следующие ключевые слова: "blind astrometric calibration", "lost in space identification", "detect astronomical images".

Astrometry

Данное приложение предназначено для автоматического определения космических объектов на снимках и их местонахождения. В основе работы приложения лежит алгоритм, который использует индексированную базу данных звёздных каталогов и сопоставляет их со звёздами, определенными на снимках, автоматически определяя координаты изображения [4].

SExtractor

SExtractor (Source Extractor) - это инструмент, который используется для автоматического извлечения космических объектов со снимков звёздного неба. В данный инструмент встроены алгоритмы для детекции и классификации объектов на основе их светимости и формы. Программа выделяет источники на изображении и предоставляет их параметры [5].

Tetra3

Программа для решения задачи определения положения звезд на снимках звёздного неба. Она использует метод, который включает идентификацию характерных звездных образований на изображении с использованием звёздных каталогов, и вычисляет их координаты, такие как прямое восхождение и склонение [6].

Openstartracker

Программа с открытым исходынм кодом для отслеживания звезд, предназначенная для использования в космических аппаратах и спутниках. Она использует байесовские алгоритмы для идентификации звезд на изображениях и отслеживания их перемещений. Система сопоставляет звездные изображения с данными из каталогов, что позволяет точно определять ориентацию космического аппарата в пространстве [7].

StellarSolver

StellarSolver [8] — инструмент разработанный для определения местоположения объектов на изображениях звездного неба. Данный инструмент сочетает алгоритмы обработки изображений SExtractor, и методы астрометрического решения, реализованные в Astrometry.

Критерии сравнения аналогов

Определяемые объекты

Данный критерий оценивает, какие именно объекты система может обнаружить на снимках звездного неба. Важным аспектом является определение, ограничивается ли система только анализом небесных объектов, информация о которых уже известна, или же она может идентифицировать неизвестные раннее объект.

Астрономические ежегодники

Этот критерий описывает какие астрономические ежегодники используются для сопоставления и анализа объектов на снимках звездного неба. Астрономические ежегодники представляют собой источники высокоточных данных о положении небесных объектов, таких как звезды, планеты, спутники, кометы и другие астрономические тела, в заданные моменты времени. Использование различных типов данных и их актуальность в контексте задачи имеют важное значение для точности вычислений, поскольку они позволяют корректно привязать вычисленные координаты к реальному положению объектов на небесной сфере, что в свою очередь способствует повышению точности измерений и улучшению обработки различных типов объектов.

Точность определения местоположения

Данный критерий описывает насколько точно происходит определение местоположения объектов на основе снимка звездного неба. Чем выше точность, тем более достоверным считается инструмент для научных и прикладных астрономических исследований. Измеримым показателем для сравнения точности является угловая ошибка — мера, выраженная в угловых единицах, таких как угловые секунды (") или миллисекунды (mas). Угловая ошибка показывает, на сколько отклоняется реальное местоположение объекта от его вычисленного положения.

Таблица сравнения аналогов

Таблица 1 - Сравнение аналогов по критериям.

Аналоги	Определяемые объекты	Астрономические ежегодники	Точность определения местоположения (Значение угловой ошибки)
Astrometry	Известные космические объекты	Звёздный	0.5" - 1"
SExtractor	Известные космические объекты	-	1" - 2"
Tetra3	Звёзды	Звёздный	0.5" - 2"
Openstartracker	Звёзды	Звёздный	0.1"
StellarSolver	Известные космические объекты	Звёздный	0.1" - 0.3"

Выводы по итогам сравнения

На основе результатов, представленных в таблице 1, можно сделать вывод, что не существует универсального решения, которое позволило бы определить местоположение космического объекта, если о нем нет предварительной информации. Каждое из рассматриваемых решений имеет свои преимущества, однако ни одно из них не объединяет все ключевые критерии:

- Ограничения по определяемым объектам. Все программы, кроме SExtractor, работают с набором данных о звездах или других известных объектах. SExtractor может быть использован для создания астрономических ежегодников, но не предоставляет функционала для обработки объектов.
- Использование астрономических ежегодников. Большинство программ используют звёздные ежегодники, но существует множество других астрономических объектов, таких как планеты, спутники и кометы, которые также могут быть важными для анализа. В SExtractor, в свою очередь, не используются астрономические ежегодники, так как его основная функция заключается в извлечении объектов и их фотометрическом анализе, а не в точном определении их местоположения. SExtractor может служить основой для создания таких ежегодников, что расширяет возможности для его дальнейшего использования.
- Точность определения местоположения. Точность решения задачи каждой программой находится в пределах от 0.1" до 2", то есть значение угловой ошибки не велико. Возможно добиться повышения точности, если учитывать не только звезды, но и другие космические объекты.

Выбор метода решения

На основе проведенного анализа, разрабатываемое решение должно включать следующие характеристики:

- Идентификация всех объектов на снимке. После предварительного обнаружения объектов необходимо провести их идентификацию, как известных, так и неизвестных объектов.
- Использование множества астрономических ежегодников. Для повышения точности и учета различных типов космических объектов следует использовать широкий набор ежегодников, включая не только звездные, но и содержащие данные о планетах, спутниках, кометах и других объектах.
- Повышение точности определения местоположения. Точность можно повысить путем расширения базы данных и применения различных методов для восстановления изображений, снятых в условиях ограниченной видимости.

Описание метода решения

Метод определения местонахождения космического объекта можно представить в виде математической модели. Данная модель представляет собой процесс обработки изображений, интеграции данных астрономических ежегодников и анализа координат объектов.

Модель можно описать следующим образом:

$$M = (I, A, D, C, L)$$
, где

- I изображение, поступающие на обработку программе. С помощью следующей формулы можно конкретизировать, какой набор данных подразумевает под собой изображение: $I = \langle s, p, w, o \rangle$,где
 - *s* множество видимых известных объектов,
 - *w* "белые пятна", например, облака или другие природные явления, которые перекрывают участок неба,
 - *о* космический объект, местоположение которого нужно определить.
- A = a это высокоточные каталоги, включающие положения звёзд, планет, спутников и комет. Используются для уточнения положения видимых объектов.
- D(I) функция выделения объектов на изображении. Она определяет координаты всех элементов, требующих дальнейшего анализа.
- $C:(D,A) \to (x_i,y_i)$ функция определения местоположения объектов, обнаруженных функцией D, с учетом данных, представленных в астрономическом ежегоднике (a).
- $L:(x_i,y_i)\mid i\in D\to (x_o,y_o)$ определение местоположения искомого космического объекта, данные о котором не занесены в астрономический ежегодник.

На основе описанной модели последовательность действий для определения местоположения космического объекта на снимке неизвестного участка неба при неизвестных погодных условий будет следующая:

- Предобработка изображения; На данном этапе обрабатывается снимок для устранения шумов, улучшения качества и повышения контрастности изображения. Такая обработка позволяет устранить помехи, возникающие из-за погодных условий, например, в виде облаков или атмосферных искажений. Затем происходит выделение ключевых объектов на снимке, таких как звёзды, движущиеся объекты и искомый космический объект для последующей обработки.
- Калибровка координат по изображению; На основе объектов, выделенных на предыдущем этапе, вычисляются их координаты в пиксельной системе. Затем эти данные преобразуются в небесные координаты, что обеспечивает связь между изображением и данными из астрономического ежегодника.
- Сопоставление полученных координат с данными астрономического ежегодника; Рассчитанные небесные координаты сопоставляются с базами данных астрономических ежегодников. Этот этап позволяет идентифицировать известные космические объекты и уточнить положение участка неба.
- Прогнозирование местоположения искомого космического объекта. На основе полученных данных рассчитывается положение искомого объекта относительно дргуих изветсных объектов, видимых на снимке. Координаты звёзд и других небесных тел, определённые на предыдущих этапах, формируют систему ориентира, с помощью которой уточняется позиция искомого объекта.

Данную последовательность действий можно интерпретировать в качестве следующих компонент архитектурны:

- Компонент обработки изображений, который отвечает за устранение шума, стандартизацию снимков (например, преобразование в черно-белый формат, настройка яркости) и детектирование объектов для дальнейшего анализа;
- Компонент взаимодействия с хранилищем данных астрономического ежегодника осуществляет преобразование пиксельных координат в небесные и их дальнейшее сопоставление с данными астрономического ежегодника для идентификации объектов;
- Компонент локализации неизвестного источника на основе координат известных космических объектов прогнозирует местоположение искомого объекта.

На рисунке 1 представлена архитектура решения.

architecture

Рис.1 - Архитектура метода определения местоположения космического объекта

Заключение

В данной статье представлена архитектура метода для автоматизированного определения местоположения космического объекта на основе снимков звёздного неба, с использованием данных астрономического ежегодника.

В процессе отбора и сравнения аналогов были выделены ключевые параметры для их сравнения: точность определения местоположения, поддержка различных типов объектов и использование астрономических ежегодников. Сравнение существующих решений показало, что универсального на данный момент не существует. Выявленные сильные и слабые стороны каждого из методов были учтены при разработке собственного.

Разработанная архитектруа включает в себя последовательность шагов, таких как предобработка изображений, калибровка координат, сопоставление с различными астрономическими данными и прогнозирование местоположения объектов, что позволяет повысить точность и достоверность астрономических наблюдений.

Направление дальнейших исследований будут направлены на реализацию предложенного метода на практике, а также на его дальнейшее совершенствование для повышения точности в условиях ограниченных данных и низкой видимости.

Список использованных источников

- 1. Martin, Dennis J., "The Visibility of an Object in a Space Environment", 1962.
- 2. European Space Agency, "Space Environment Report", 2021.
- 3. Хутровский З.Н., Каменский С.Ю., Бойков В.Ф., Смелов В.Л. "Столкновения в космическим пространстве", 1995.
- 4. Dustin Lang, David W. Hogg, Keir Mierle, Michael Blanton, and Sam Roweis. ASTROMETRY.NET: BLIND ASTROMETRIC CALIBRATION OF ARBITRARY ASTRONOMICAL IMAGES, 2010. 1782-1787.
- 5. E. Bertin and S. Arnouts. SExtractor: Software for source extraction, 1996. 393-395.
- 6. Tetra3 Repository // URL
- 7. Openstartracker Repository // URL
- 8. StellarSolver Repository // URL