

第八章 非线性方程(组)的数值解法

在科学研究的数学问题中更多的是非线性问题, 它们又常常归结为非线性方程或非线性方程组的 求解问题。

第一节预备知识

第二节非线性方程求根的迭代法

第三节非线性方程组的简单迭代法

第四节非线性方程组的Newton型迭代法

第五节无约束优化算法

第一节 预备知识

非线性方程的一般形式 f(x)=0 (1)

这里f(x)是单变量x 的函数, 它可以是代数多项式

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$
 $(a_n \neq 0)$

也可以是超越函数,即不能表示为上述形式的函数。

满足方程(1)的x值通常叫做方程的根或解, 也叫函数f(x) = 0的零点。

非线性方程求根的基本问题包括:根的存在性、根的隔离和根的精确化

根的存在定理(零点定理):

f(x)为[a,b]上的连续函数,若 $f(a)\cdot f(b)<0$,则[a,b]中至少有一个实根。如果f(x)在[a,b]上还是单调递增或递减的,则f(x)=0仅有一个实根。

在用近似方法时,需要知道方程的根所在区间。若区间[a,b]含有方程f(x)=0的根,则称[a,b]为f(x)=0的有根区间;若区间[a,b]仅含方程f(x)=0的一个根,则称[a,b]为f(x)=0的一个隔根区间。

求隔根区间有两种方法:

(1)描图法

画出y=f(x)的略图,从而看出曲线与x轴交点的大致位置。也可将f(x)=0等价变形为 $g_1(x)=g_2(x)$ 的形式, $y=g_1(x)$ 与 $y=g_2(x)$ 两曲线交点的横坐标所在的子区间即为含根区间。

例如,求方程 $3x-1-\cos x=0$ 的隔根区间。

将方程等价变形为 $3x-1=\cos x$, 易见y=3x-1与 $y=\cos x$ 的图像只有一个交点位于[0.5, 1]内。

(2)逐步搜索法

运用零点定理可以得到如下逐步搜索法:

先确定方程f(x)=0的所有实根所在的区间为 [a,b],从 $x_0=a$ 出发,以步长

$$h=(b-a)/n$$

其中n是正整数,在[a,b]内取定节点:

$$x_i = x_0 + ih$$
 (i=0,1,2,, n)

计算f(x;)的值,依据函数值异号及实根的个数确定 隔根区间,通过调整步长,总可找到所有隔根区 间。

对于m次代数方程 $f(x) = x^m + a_{m-1}x^{m-1} + \dots + a_1x + a_0 = 0$ 其根的模的上下界有如下结论:

$$(1)$$
若 μ = max { $|a_{m-1}|$,, $|a_1|$, $|a_0|$ },则方程根的模小于 μ +1

(2)若
$$v = \frac{1}{|a_0|} max \{1, |a_{m-1}|, \dots, |a_1|\},$$
则方程根的模大于 $\frac{1}{\nu+1}$

例2.2 求方程 x^3 -3.2 x^2 +1.9x+0.8=0的隔根区间。

解:设方程的根为α,

$$\mu = max \{ |-3.2|, |1.9|, |0.8| \} = 3.2$$

$$v = \frac{1}{0.8} max \{1, |-3.2|, |1.9|\} = 4$$

故 $0.2 < |\alpha| < 4.2$,即有根区间为(-4.2,-0.2)和(0.2,4.2)

h=1

- -1.377160000000e+002
- -70.81600000000002
- -29.51600000000001
- **-7.81600000000000**
- 0.284000000000000
- 1.060000000000000
- 0.200000000000000
- 0.140000000000000
- 6.880000000000000
- 26.42000000000000

h=0.8

- -1.377160000000e+002
- -81.95600000000002
- -43.34800000000001
- -18.81999999999999
- -5.30000000000000
- 0.284000000000000
- 1.060000000000000
- 0.500000000000000
- -0.316000000000000
- 1.68400000000000
- 9.57200000000000
- 26.42000000000000

有根区间 (-1.2,-0.2)

有根区间 (-1,-0.2)和(1.0,1.8)

定义1 若有 x^* 满足 $f(x^*)=0$, 则称 x^* 为方程 的根或函数f(x)的零点,特别地,如果函数f(x)可分 $f(x) = (x - x^*)^m g(x)$ \coprod $g(x^*) \neq 0$, 解为 则称x*是f(x)的m重零点或f(x)=0的m重根。

当m=1时,称x*是f(x)的单根 或单零点。

定理1 设函数 $f(x) \in \mathbb{C}^m[a,b]$, 则点 $p \in (a,b)$ 是f(x)的m重零点,当且仅当 $f(p) = f'(p) = f''(p) = \cdots = f^{(m-1)}(p) = 0$, 但 $f^{(m)}(p) \neq 0$

证明:(充分性)将f(x)在点p作m-1阶Taylor展开

$$f(x) = f(p) + f'(p)(x-p) + \dots + \frac{f^{(m-1)}(p)}{(m-1)!}(x-p)^{m-1} + \frac{f^{(m)}(\xi_x)}{m!}(x-p)^m$$

 ξ_x 位于x与p之间。

曲假设
$$f(x) = \frac{f^{(m)}(\xi_x)}{m!} (x-p)^m = (x-p)^m g(x)$$

由定义 1, p是 f(x)的 m 重零点.

证毕

例: 给定方程: x-sinx =0,问x*=0是几重零点.

解: 设
$$f(x) = x-\sin x$$
, 则 $f(0)=0$;
$$f'(x) = 1-\cos x, f'(0)=0;$$

$$f''(x) = \sin x, f''(0)=0;$$

$$f^{(3)}(x) = \cos x, f^{(3)}(0)=1;$$

由定理1, $x^*=0$ 是3重零点.

第二节非线性方程求根的迭代法

一、简单迭代法

简单迭代法又称为不动点迭代法,基本思想是 首先构造不动点方程 $x=\varphi(x)$,即由方程 f(x)=0变换 为等价形式 $x=\varphi(x)$, 式中 $\varphi(x)$ 称为迭代函数。然后建 立迭代格式: $x_{k+1} = \varphi(x_k)$ 称为不动点迭代格式

当给定初值 x_0 后,由迭代格式 $x_{k+1} = \varphi(x_k)$ 可求得数 列 $\{x_k\}$ 。如果 $\{x_k\}$ 收敛于 α ,且 $\varphi(x)$ 在 α 连续,则 α 就是 不动点方程的根。因为:

$$\lim_{k\to\infty} x_{k+1} = \lim_{k\to\infty} \varphi(x_k) = \varphi(\lim_{k\to\infty} x_k)$$

 $\mathbf{M}\alpha = \varphi(\alpha)$,即 $\{x_k\}$ 收敛于方程的根 α 。

迭代法的几何意义

 $i \partial y_1 = x, y_2 = \varphi(x)$,它们交点的横坐标 α 即为方程的根

对于迭代法需要讨论的基本问题是,迭代函数的构 造,迭代序列的收敛性和收敛速度以及误差估计。

问题: $\varphi(x)$ 的形式不唯一, 如:

$$x - 10^x + 2 = 0 \Leftrightarrow x = 10^x - 2$$

$$x_{n+1} = 10^{x_n} - 2$$

$$\Leftrightarrow x = \lg(x+2)$$

$$\Leftrightarrow x = \lg(x+2)$$
 $x_{n+1} = \lg(x_n+2)$

取初始值 $x_0 = 0.3$,计算结果如下:

	$x_{n+1} = 10^{x_n} - 2$	$x_{n+1} = \lg(x_n + 2)$
x_0	0.3	0.3
x_1	-0.0047	0.3617
x_2	-1.0108	0.3732
x_3		0.3753
x_4		0.3757

若从任何可取的初值出发都能保证收敛,则称它为大范围收敛。如若为了保证收敛性必须选取初值充分接近于所要求的根,则称它为局部收敛。

通常局部收敛方法比大范围收敛方法收敛得快。因此,一个合理的算法是先用一种大范围收敛方法求得接近于根的近似值(如对分法),再以其作为新的初值使用局部收敛法(如迭代法)

这里讨论迭代法的收敛性时,均指的是局部 收敛性。

定理2(收敛定理)

考虑方程 $x = \varphi(x), \ \varphi(x) \in C[a, b], \$ 若 (I) 当 $x \in [a, b]$ 时, $\varphi(x) \in [a, b]$;

(II)対 $\forall x \in [a, b]$,有 $|\varphi'(x)| \le L < 1$ 成立。

则任取 $x_0 \in [a, b]$, 由 $x_{k+1} = \varphi(x_k)$ 得到的序列 $\{x_k\}_{k=0}^{\infty}$ 收敛于 $\varphi(x)$ 在[a, b]上的唯一不动点。并且有误差估计式:

①
$$|x^*-x_k| \le \frac{L}{1-L} |x_k-x_{k-1}|$$
 $(k=1,2,...)$

$$|x^*-x_k| \le \frac{L^k}{1-L} |x_1-x_0|$$

且存在极限 $\lim_{k\to\infty}\frac{x^*-x_{k+1}}{x^*-x_k}=\varphi'(x^*)$

证明: ① $\varphi(x)$ 在[a,b]上存在不动点?

$$\therefore f(a) = \varphi(a) - a \ge 0, \quad f(b) = \varphi(b) - b \le 0$$

$$\Rightarrow f(x)$$
 有根

② 不动点唯一?

反证: 若不然, 设还有 $\tilde{x} = \varphi(\tilde{x})$, 则

$$x^* - \tilde{x} = \varphi(x^*) - \varphi(\tilde{x}) = \varphi'(\xi)(x^* - \tilde{x}), \xi \mathbf{E} x^* \mathbf{n} \tilde{x} \mathbf{Z} \mathbf{n}$$

$$\Rightarrow (x^* - \tilde{x})(1 - \varphi'(\xi)) = 0 \quad \mathbf{n} |\varphi'(\xi)| < 1 \quad \therefore x^* = \tilde{x}$$

③ 当 $k \to \infty$ 时, x_k 收敛到 x^* ?

$$|x^* - x_k| = |\varphi(x^*) - \varphi(x_{k-1})| = |\varphi'(\xi_{k-1})| \cdot |x^* - x_{k-1}|$$

$$\leq L |x^* - x_{k-1}| \leq \dots \leq L^k |x^* - x_0| \to 0$$

$$|x*-x_{k}| \le \frac{1}{1-L}|x_{k+1}-x_{k}| \le \frac{L}{1-L}|x_{k}-x_{k-1}|$$

(5)
$$|x*-x_k| \le \frac{L^k}{1-L} |x_1-x_0|$$
?

$$|x_{k+1} - x_k| \le L|x_k - x_{k-1}| \le \dots \le L^k|x_1 - x_0|$$

6
$$\lim_{k\to\infty}\frac{x^*-x_{k+1}}{x^*-x_k}=\varphi'(x^*)$$
?

$$\lim_{k \to \infty} \frac{x^* - x_{k+1}}{x^* - x_k} = \lim_{k \to \infty} \frac{\varphi'(\xi_k)(x^* - x_k)}{x^* - x_k} = \varphi'(x^*)$$

控制误差 ε 的方法:

(1) 先计算满足误差要求的迭代次数n,再迭代。由

$$|x_n - \alpha| \leq \frac{L^n}{1 - L} |x_1 - x_0| \leq \varepsilon$$

可得

$$n \ge \frac{\ln \frac{\varepsilon (1-L)}{|x_1 - x_0|}}{\ln L}$$

(2) 事后误差估计法。由于

$$|x_n - \alpha| \leq \frac{L}{1 - L} |x_n - x_{n-1}|$$

因而可用 $|x_{n}-x_{n-1}| \leq \varepsilon$ 来控制迭代过程。

注: 定理条件非必要条件,可将[a,b]缩小,定义局部收敛性: 若在 x^* 的某 δ 领域 $B_{\delta} = \{x \mid |x - x^*| \leq \delta\}$ 有 $\varphi \in C^1[a,b]$ 且 $|\varphi'(x^*)| < 1$,则由 $\forall x_0 \in B_{\delta}$ 开始的迭代 收敛。即调整初值可得到收敛的结果。

定理3 (迭代法的局部收敛定理)

设 α 是方程 $x = \varphi(x)$ 的根,如果

- (1)迭代函数 $\varphi(x)$ 在 α 的邻域可导;
- (2)在 α 的某个邻域 $S = \{x: | x \alpha | \le \delta \}$,对于任意的 $x \in S$ 有

$$|\varphi'(x)| \leq L < 1$$

则对于任意的初值 $x_0 \in S$, 迭代公式 $x_{n+1} = \varphi(x_n)$

产生的数列 $\{x_n\}$, 收敛于方程的根 α 。

定理3'(迭代法的局部收敛定理)

设 α 是方程 $x=\varphi(x)$ 的根,如果

- (1)迭代函数 $\varphi(x)$ 在 α 的邻域一阶导数连续;
- $(2) |\varphi'(\alpha)| < 1$

则存在 α 的某个邻域 $S = \{x: | x - \alpha | \le \delta \}$ 及正数L<1, 使对于任意的 $x \in S$ 有 $| \varphi'(x) | \le L < 1$

取任意的初值 $x_0 \in S$, 迭代公式 $x_{n+1} = \varphi(x_n)$ 产生的数列 $\{x_n\}$, 收敛于方程的根 α 。

例:证明对任何初值
$$x_0 \in R$$
 ,由迭代公式 $x_{k+1} = \cos x_k$, $k = 0,1,2,...$

所产生的序列 $\{x_k\}_{k=0}^{\infty}$,都收敛于方程 $x = \cos x$ 的根。

(1) 先考虑区间[-1, 1], 当 $x \in [-1,1]$ 时,

$$\varphi(x) = \cos x \in [-1,1], \ |\varphi'(x)| \le |\varphi'(1)| = \sin 1 < 1$$
 对任何初值 $x_0 \in [-1,1]$, 由迭代公式

$$x_{k+1} = \cos x_k$$
, $k = 0, 1, 2, ...$

所产生的序列 $\{x_k\}_{k=0}^{\infty}$,都收敛于方程 $x = \cos x$ 的根。

(2) 对任何初值 $x_0 \in \mathbb{R}$, 有 $x_1 = \cos x_0 \in [-1,1]$,

将此 x_1 看成新的迭代初值,则由(1)可知,由迭代公式

$$x_{k+1} = \cos x_k, \qquad k = 0, 1, 2, \dots$$

所产生的序列 $\{x_k\}_{k=0}^{\infty}$,都收敛于方程 $x = \cos x$ 的根。

例: 求解方程 $x^2-5=0$, 可以构造一个迭代格式 $x_{k+1}=x_k+c(x_k^2-5)$, k=0,1,2,...

其中c为非零的常数,

(1) 当c取何值时,由 $x_{k+1} = x_k + c(x_k^2 - 5)$, k = 0,1,2,... 产生的迭代序列收敛到 $\overline{5}$.

(2) c取何值时收敛最快?

解: 迭代函数为 $\varphi(x) = x + c(x^2 - 5)$, $(1) |\varphi'(x^*)| < 1, \text{即} |1 + 2cx^*| < 1, x^* = \sqrt{5} \Rightarrow \text{当} c \in (-\frac{1}{\sqrt{5}}, 0)$ 时 迭代收敛。

$$(2)\varphi'(x^*)=1+2cx^*=0$$
, $c=-\frac{1}{2\sqrt{5}}$, c 取 $-\frac{1}{2\sqrt{5}}$ 时收敛最快

送代法收敛阶

定义 设数列 $\{x_n\}$ 收敛于 α ,令误差 $e_n = x_n - \alpha$,如果存在某个实数 $p \ge 1$ 及正常数 C , 使

$$\lim_{n\to\infty}\frac{|e_{n+1}|}{|e_n|^p}=C$$

则称数列 $\{x_n$ 为p 阶收敛,也称相应的迭代法为p 阶方法。当p=1且0 < C < 1 时,称数列 $\{x_n\}$ 为线性收敛.当 p=2 时,称数列 $\{x_n\}$ 平方收敛(或二阶收敛).当 p>1 时,称数列 $\{x_n\}$ 为超线性收敛。

显然 p 越大,数列收敛的越快。所以迭代法的收敛阶是对迭代法收敛速度的一种度量。

定理 对于迭代过程 $X_{k+1} = \varphi(X_k)$,如果 $\varphi^{(p)}(X)$ 在所求根 X^*

的邻近连续,并且
$$\varphi'(x^*) = \varphi''(x^*) = \dots = \varphi^{(p-1)}(x^*) = 0$$
 (*) $\varphi^{(p)}(x^*) \neq 0$ 则该迭代过程在点 x^* 邻近是**P**阶收敛的。

证明:由于 $\varphi'(x^*)=0$ 。据上定理,立即可以断定迭代过程 $x_{k+1} = \varphi(x_k)$ 具有局部收敛性。再将 $\varphi(x_k)$ 在根 x^*

处展开,利用条件(*),则有 $\varphi(x_k) = \varphi(x^*) + \frac{\varphi^{(p)}(\zeta)}{n!} (x_k - x^*)^p$

注意到 $\varphi(x_k) = x_{k+1} \quad \varphi(x^*) = x^*$,由上式得

 $x_{k+1} - x^* = \frac{\varphi^{(p)}(\zeta)}{p!} (x_k - x^*)^p$ 因此对迭代误差有: $\frac{e_{k+1}}{e_k^p} \to \frac{\varphi^{(p)}(x^*)}{p!}$ 。 这表明迭代过程 $X_{k+1} = \varphi(X_k)$ 确实为P阶收敛,证毕。

例 用迭代法求 x^3 - x^2 -1=0在隔根区间[1.4,1.5] 内的根,要求准确到小数点后第4位。

解: (1)由方程的等价形式

$$x = \sqrt[3]{x^2 + 1} = \varphi(x)$$

构造迭代公式

$$x_{n+1} = \sqrt[3]{x_n^2 + 1}$$

$$\mathbf{\dot{\mu}} \qquad \varphi'(x) = \frac{2x}{3\sqrt[3]{(x^2+1)^2}}$$

知 $\varphi(x)$ 在 (1.4,1.5)可导,且 $|\varphi'(x)| \le 0.5 < 1$ 故迭代法收敛。

数值分析

二、牛顿送代法

用切线代替曲线,用 线性函数的零点作为 f(x)的零点的近似值。

任取初始值 $x_0 \in [a,b]$, y = f(x)上过点 $(x_0, f(x_0))$ 的切线方程 为: $y = f(x_0) + f'(x_0)(x - x_0)$

与*x*轴交于点*x*1

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

过点 $(x_1, f(x_1))$ 的切线方程为

$$y = f(x_1) + f'(x_1)(x - x_1)$$

与x轴交于点 x_2

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

如此下去得牛顿迭代公式:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

定理4 (收敛的充分条件) 设 $f \in C^2[a,b]$, 若

(1) f(a) f(b) < 0;

- 根唯一
- (2) 在整个[a, b]上f"不变号且f' $(x) \neq 0$;
- (3) 选取 $x_0 \in [a, b]$ 使得 $f(x_0) f''(x_0) > 0$;

则Newton's Method产生的序列 $\{x_k\}$ 收敛到f(x)

在 [a,b] 的唯一根。

产生的序列单调有界,保证收敛。

$$f(x_0) f''(x_0) > 0$$

列 用迭代法求 $x^3 - x^2$ 在隔根区间[1.4,1.5] 内的根,要求准确到小数点后第4位。

解: (1) 牛顿迭代公式为

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^3 - x_n^2 - 1}{3x_n^2 - 2x_n} = \frac{2x_n^3 - x_n^2 + 1}{3x_n^2 - 2x_n}$$

$$(2) \quad f(1.4) \approx -0.2 \quad f(1.5) \approx 0.2$$

当 $x \in [1.4,1.5]$ 时有,

$$f'(x) = 3x^2 - 2x > 0$$
 $f''(x) = 6x - 2 > 0$

因f(1.5)f''(1.5) > 0 ,故取 $x_0 = 1.5$,牛顿迭代法收敛。

```
function y=newton(fname,dfname,x0,e,N)
y=x0;
x0=y+2*e;
k=0;
while abs(x0-y)>e&k<N
  k=k+1;
  x0=y;
  y=x0-fname(x0)/dfname(x0);
  disp(y)
end
if k==N
  disp('warning')
end
     f=inline('x^3-x^2-1');
     df=inline('3*x^2-2*x');
     y = newton(f, df, 1.5, 10^{(-4)}, 500);
```

<u>1.4667</u>

1.4656

1.4656

定理5 (局部收敛性) 设 $f \in C^2[a,b]$, 若 x^* 为f(x)在[a,b]上的根,且 $f'(x^*) \neq 0$,则存在 x^* 的邻域 $B_s(x^*)$ 使得任取初值 $x_0 \in B_s(x^*)$,Newton's Method产生的序列 $\{x_k\}$ 收敛到 x^* ,且满足

$$\lim_{k \to \infty} \frac{x^* - x_{k+1}}{(x^* - x_k)^2} = -\frac{f''(x^*)}{2f'(x^*)}$$

证明: Newton's Method 事实上是一种特殊的不动点迭代

其中
$$\varphi(x) = x 则 \frac{f(x)}{f'(x)}$$

$$\left|\varphi'(x^*)\right| = \left|\frac{f''(x^*)f(x^*)}{f'^2(x^*)}\right| = 0 < 1 \implies \text{$\not \triangle$}$$

由 Taylor 展开:

$$0 = f(x^*) = f(x_k) + f'(x_k)(x^* - x_k) + \frac{f''(\xi_k)}{2!}(x^* - x_k)^2$$

由 Taylor 展开:

$$0 = f(x^*) = f(x_k) + f'(x_k)(x^* - x_k) + \frac{f''(\xi_k)}{2!}(x^* - x_k)^2$$

$$\Rightarrow x^* = x_k - \frac{f(x_k)}{f'(x_k)} - \frac{f''(\xi_k)}{2!f'(x_k)}(x^* - x_k)^2$$

$$\Rightarrow \frac{x^* - x_{k+1}}{(x^* - x_k)^2} = -\frac{f''(\xi_k)}{2f'(x_k)}$$
 只要 $f'(x^*) \neq 0$, 则令 $k \to \infty$

注: 在单根 附近收敛快,是平方收敛的.

例:若方程f(x) = 0有m重根 $a(m \in Z)$,试证明牛顿迭代法是线性收敛的,而改用修改的格式

$$x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)} (k \ge 0)$$
才是局部平方收敛的.

证明: (1)对牛顿格式, 迭代函数 $\varphi(x) = x - \frac{f(x)}{f'(x)}$

因f(x) = 0有m重根,故有

$$f(x) = (x-a)^m h(x), \exists h(a) \neq 0.$$

$$f'(x) = m(x-a)^{m-1}h(x) + (x-a)^mh'(x)$$

代入迭代函数式

$$\varphi(x) = x - \frac{(x-a)h(x)}{mh(x) + (x-a) h'(x)}$$

$$\phi'(x) = 1 - \frac{h(x)}{mh(x) + (x-a)h'(x)}
 -(x-a)\frac{d}{dx}(\frac{h(x)}{mh(x) + (x-a)h'(x)})$$
代入 $x = a$,有 $\varphi'(a) = 1 - \frac{1}{m} \neq 0$.
于是,由

$$a - x_{k+1} = \varphi(a) - \varphi(x_k) = -(\varphi(x_k) - \varphi(a))$$

= $-\varphi'(a)(x_k - a) + o(x_k - a)$

$$\lim_{k \to \infty} \frac{|a - x_{k+1}|}{|a - x_k|} = C = \varphi'(a) = 1 - \frac{1}{m} \neq 0$$

故这种牛顿迭代法只有线性收敛速度.

$$\varphi(x) = x - m \frac{(x-a)h(x)}{mh(x) + (x-a)h'(x)}$$

$$\varphi'(x) = 1 - \frac{mh(x)}{mh(x) + (x - a)h'(x)}$$

$$-m(x - a)\frac{d}{dx}(\frac{h(x)}{mh(x) + (x - a)h'(x)})$$

此时, $\varphi'(a) = 0$

再由
$$a - x_{k+1} = -\varphi'(a)(x_k - a) - \frac{1}{2}(x_k - a)^2 \varphi''(\xi_k)$$

$$= -\frac{1}{2}(a - x_k)^2 \varphi''(\xi_k)$$

再由
$$a - x_{k+1} = -\varphi'(a)(x_k - a) - \frac{1}{2}(x_k - a)^2 \varphi''(\xi_k)$$

$$= -\frac{1}{2}(a - x_k)^2 \varphi''(\xi_k)$$

得到

$$\frac{|a-x_{k+1}|}{|a-x_k|^2} = \frac{1}{2} |\varphi''(\xi_k)| \to C = \frac{1}{2} |\varphi''(a)| \neq 0$$

因此修改后的牛顿格式是平方收敛的.

例8-8: 用牛顿迭代法和修改的牛顿迭代法求解方程 $e^x - x - 1 = 0$.

解: 令 $f(x) = e^x - x - 1$ 那么 $x^* = 0$ 是 2 重根.

用牛顿迭代法

y = 4.3399e-005

k = 15

用修改的牛顿迭代法

y = 1.0872e-011

k = 4

牛顿迭代法的优缺点

- 1、优点: 牛顿迭代法具有平方收敛的速度,所以 在迭代过程中只要迭代几次就会得到很精确的解。 这是牛顿迭代法比简单迭代法优越的地方。
- 2、缺点:选定的初值要接近方程的解,否则有可能 得不到收敛的结果。再者,牛顿迭代法计算量比较大。 因每次迭代除计算函数值外还要计算微商值。

牛顿法主要有两个缺点:局部收敛,计算量大。

(1)简易Newton法

$$x_{k+1} = x_k - \frac{f(x_k)}{M}$$
 $(k = 0, 1, 2, \dots)$

(2)割线法

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k)$$
 $(k = 1, 2, \dots)$

(3)牛顿下山法

$$x_{k+1} = x_k - \omega \frac{f(x_k)}{f'(x_k)}$$
 $(k = 0, 1, 2, \dots)$

可引入一个下山因子 $\omega(0 < \omega \le 1)$,

使每一步有 $|f(x_{k+1})| < |f(x_k)|$

 $\mathcal{M}_{\omega}=1$ 开始逐步减半进行计算,以确保迭代收敛。

用割线代替曲线,用 线性函数的零点作为 f(x)的零点的近似值。

割线法

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k)$$
 $(k = 1, 2, \dots)$

收敛阶为 P=1.618

例8-9 应用牛顿法求解方程

$$f(x) = \frac{1}{2} + \frac{1}{4}x^2 - x\sin x - \frac{1}{2}\cos 2x = 0$$

解 建立牛顿迭代公式

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{0.5 + 0.25x_k^2 - x_k \sin x_k - \frac{1}{2}\cos 2x_k}{0.5x_k - \sin x_k - x_k \cos x_k + \sin 2x_k}$$

初值: p ₀	计算结果	迭代次数
9.5π	1.8955	21
-9.5π	-1.8955	21
10π	-1.8955	13052

取 $tol=10^{-5}$,N=20000

例8-9 取 x_0 = 10 π,应用牛顿下山法求解方程

$$f(x) = \frac{1}{2} + \frac{1}{4}x^2 - x\sin x - \frac{1}{2}\cos 2x = 0$$

解 建立牛顿下山迭代公式

$$x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)} = x_k - \lambda \frac{0.5 + 0.25x_k^2 - x_k \sin x_k - \frac{1}{2}\cos 2x_k}{0.5x_k - \sin x_k - x_k \cos x_k + \sin 2x_k}$$

取 tol= 10^{-5} , e= 10^{-8} , N=2000, 应用牛顿下山法求得 $x*\approx -1.8955$, k=18. 在算 x_1 , x_2 , x_3 , x_4 时, λ 分别二分4、11、7、3次, x_5 以后, λ 均取值为1.

显然,对于较差初值,牛顿下山法优于牛顿法,在一般情况下,牛顿下山法比牛顿法收敛得慢.

例题: 设 $f(x) = (x^3 - a)^2$, $(a \neq 0)$

- (1) 写出解 f(x) = 0的 Newton 迭代格式;
- (2) 证明此迭代格式是线性收敛的。

解: (1) 因
$$f(x)=(x^3-a)^2$$
, 故 $f'(x)=6x^2(x^3-a)$

由Newton迭代公式:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \qquad k = 0, 1, 2, \dots$$

得

$$x_{k+1} = x_k - \frac{(x_k^3 - a)^2}{6x_k^2(x_k^3 - a)} = \frac{5}{6}x_k + \frac{a}{6x_k^2}, \quad k = 0, 1, 2, \dots$$

$$x_{k+1} = x_k - \frac{(x_k^3 - a)^2}{6x_k^2(x_k^3 - a)} = \frac{5}{6}x_k + \frac{a}{6x_k^2}, \quad k = 0, 1, 2, \dots$$

(2) 上述迭代格式对应的迭代函数为 $\varphi(x) = \frac{5}{6}x + \frac{a}{6x^2}$

于是
$$\varphi'(x) = \frac{5}{6} - \frac{a}{3}x^{-3}$$
 又 $x^* = \sqrt[3]{a}$

则有
$$\varphi'(x^*) = \frac{5}{6} - \frac{a}{3}(\sqrt[3]{a})^{-3} = \frac{5}{6} - \frac{1}{3} = \frac{1}{2} < 1$$
 且 $\neq 0$

故此迭代格式是线性收敛的。