Hugo Marquerie date

Teorema de existencia y unicidad de una estructura diferenciable

Teorema 1. Sea A un atlas diferenciable en (X, \mathcal{T}) espacio topológico

 $\implies \exists ! \mathcal{B} \text{ estructura diferenciable en } X \text{ que lo contiene.}$

Demostración: Sea \mathcal{D} el conjunto de todas las cartas de M que son C^{∞} -compatibles con todas las cartas de \mathcal{A} . Veamos que \mathcal{D} es una estructura diferenciable y que es única.

Está claro que \mathcal{D} cubre a M porque $\mathcal{A} \subset \mathcal{D}$ y \mathcal{A} ya cubría a M:

$$M = \bigcup_{(U,\psi)\in\mathcal{A}} U \subset \bigcup_{(U,\psi)\in\mathcal{D}} U.$$

Veamos que las cartas de \mathcal{D} son C^{∞} -compatibles entre sí: Sean (U_1, ψ_1) y (U_2, ψ_2) dos cartas de \mathcal{D} . Tenemos que ver que la composición

$$\psi_1(U_1 \cap U_2) \xrightarrow{\psi_2 \circ \psi_1^{-1}} \psi_2(U_1 \cap U_2)$$

es diferenciable. Sea $p \in U_1 \cap U_2$, y sea $(V, \varphi) \in \mathcal{A}$ una carta que contiene a p. Entonces, como (U_1, ψ_1) y (U_2, ψ_2) son compatibles con (V, φ) , tenemos que la composición

$$\psi_2 \circ \psi_1^{-1} : \psi_1(U_1 \cap U_2 \cap V) \xrightarrow{\varphi \circ \psi_1^{-1}} \varphi(U_1 \cap U_2 \cap V) \xrightarrow{\psi_2 \circ \varphi^{-1}} \psi_2(U_1 \cap U_2 \cap V)$$

es diferenciable, y por tanto $\psi_2 \circ \psi_1^{-1}$ es diferenciable en $\psi_1(p)$. Como esto es cierto para todo $p \in U_1 \cap U_2$ (Ojo: al cambiar de p quizá haya que cambiar la carta (V, φ)), deducimos que $\psi_2 \circ \psi_1^{-1} : \psi_1(U_1 \cap U_2) \to \psi_2(U_1 \cap U_2)$ es diferenciable.

Veamos ahora que \mathcal{D} es maximal: Si $\mathcal{D} \subset \mathcal{D}'$ es otro atlas que contiene a \mathcal{D} , entonces cualquier carta de \mathcal{D}' tiene que ser C^{∞} -compatible con el resto de las cartas de \mathcal{D}' , en particular lo ha de ser con las cartas de \mathcal{A} , y por tanto será una carta de \mathcal{D} , así que $\mathcal{D}' = \mathcal{D}$.

Si \mathcal{D}' es otro atlas maximal que contiene a \mathcal{A} , entonces todas sus cartas son C^{∞} -compatibles con \mathcal{A} y por tanto son cartas de \mathcal{D} , así que $\mathcal{D}' \subset \mathcal{D}$. Como \mathcal{D}' es maximal, tenemos que $\mathcal{D}' = \mathcal{D}$.

Referenciado en

• Esp-proyectivo-real