Logika cyfrowa

Lista zadań nr 10+11

Termin: 20 i 22 maja 2024

Uwaga! Podczas zajęć należy znać pojęcia zapisane wytłuszczoną czcionką. W przypadku braku znajomości tych pojęć student może być ukarany punktami ujemnymi.

- 1. Pokaż, w jaki sposób można wykorzystać pamięci **SRAM** 4×4 (4 słowa po 4 bity) aby skonstruować pamięć 8×8 (8 słów po 8 bitów).
- 2. W jaki sposób należy podzielić bity **adresu** pamięci **ROM** 16-kilobitowej (16384 indywidualnie adresowanych bitów), aby zminimalizować liczbę wejść/wyjść dekodera i multipleksera wchodzących w skład tej pamięci?
- 3. Ile układów $32K \times 8$ należy użyć, aby uzyskać pamięć o pojemności 256K bajtów? Ile potrzeba linii adresowych? Ile z tych linii będzie bezpośrednio podłączonych do linii adresowych układów?
- 4. Pokaż, jak zaprogramować układ **PLA** (odpowiedniego rozmiaru), aby wykonywał operację podnesienia do kwadratu liczby 4-bitowej. Postaraj się, aby użyć jak najmniej zasobów.
- 5. Pokaż, jak wykorzystać **makrokomórkę CPLD** z wykładu, aby zaimplementować układ, którego wyjściem jest XOR dwóch wejść x, y oraz stanu przerzutnika z poprzedniego cyklu zegara (czyli $D_{t+1} = D_t \oplus x \oplus y$). Wyjście przerzutnika może być podłączone do jednego z wejść makrokomórki przez interconnect.
- 6. Dla poniższej tabeli stanów narysuj odpowiadający jej diagram stanów. **Zminimalizuj automat**, narysuj tabelę i diagram stanów zminimalizowanego automatu.

q	$q_{ m o}$	$q_{ m o}$	0	o
	\bar{x}	x	\bar{x}	x
a	f	b	0	0
b	d	c	0	0
c	f	e	0	0
d	g	a	1	0
e	d	c	0	0
f	f	b	1	1
g	g	h	0	1
h	g	a	1	0

7. Zaprojektuj obwód z trzema przerzutnikami JK na podstawie poniższego diagramu stanów. Nieużywane kombinacje stanów przerzutników należy traktować jako don't care.

8. Narysuj diagram algorytmiczny dla systemu liczącego osoby w pomieszczeniu. Pomieszczenie ma osobne drzwi wejściowe i wyjściowe, każde wyposażone w fotokomórkę. Fotokomórka zmienia stan z wysokiego na niski w momencie przerwania wiązki, stan niski może się utrzymywać przez wiele cykli, aż zmieni stan z powrotem na wysoki.

- 9. Wydziel **ścieżkę danych** z obwodu z poprzedniego zadania. Zmodyfikuj diagram z poprzedniego zadania, aby opisywał **ścieżkę sterowania** dla tej ścieżki danych.
- 10. Poniższy diagram stanów opisuje jednostkę sterującą o czterech stanach i dwóch wejściach $x,\,y.$ Narysuj odpowiadający mu diagram algorytmiczny.

