

Introduction to the Course

Rob Reider
Adjunct Professor, NYU-Courant
Consultant, Quantopian

Example of Time Series: Google Trends

Example of Time Series: Climate Data

Example of Time Series: Quarterly Earnings Data

Example of Multiple Series: Natural Gas and Heating Oil

Goals of Course

- Learn about time series models
- Fit data to a times series model
- Use the models to make forecasts of the future
- Learn how to use the relevant statistical packages in Python
- Provide concrete examples of how these models are used

Some Useful Pandas Tools

Changing an index to datetime

```
df.index = pd.to_datetime(df.index)
```

• Plotting data

```
df.plot()
```

• Slicing data

```
df['2012']
```


Some Useful Pandas Tools

Join two DataFrames

```
dfl.join(df2)
```

• Resample data (e.g. from daily to weekly)

```
df = df.resample(rule='W', how='last')
```


More pandas Functions

Computing percent changes and differences of a time series

```
df['col'].pct_change()
df['col'].diff()
```

pandas correlation method of Series

```
df['ABC'].corr(df['XYZ'])
```

pandas autocorrelation

```
df['ABC'].autocorr()
```


Let's practice!

Correlation of Two Time Series

Rob Reider
Adjunct Professor, NYU-Courant
Consultant, Quantopian

Correlation of Two Time Series

Plot of S&P500 and JPMorgan stock

Correlation of Two Time Series

Scatter plot of S&P500 and JP Morgan returns

More Scatter Plots

• Correlation = 0.9

• Correlation = 0.4

• Correlation = -0.9

• Corelation = 1.0

Common Mistake: Correlation of Two Trending Series

Dow Jones Industrial Average and UFO Sightings (www.nuforc.org)

- Correlation of levels: 0.94
- Correlation of percent changes: ≈ 0

Example: Correlation of Large Cap and Small Cap Stocks

- Start with stock prices of SPX (large cap) and R2000 (small cap)
- First step: Compute percentage changes of both series

```
df['SPX_Ret'] = df['SPX_Prices'].pct_change()
df['R2000_Ret'] = df['R2000_Prices'].pct_change()
```


Example: Correlation of Large Cap and Small Cap Stocks

Visualize correlation with scattter plot

```
plt.scatter(df['SPX_Ret'], df['R2000_Ret'])
plt.show()
```


Example: Correlation of Large Cap and Small Cap Stocks

Use pandas correlation method for Series

```
correlation = df['SPX_Ret'].corr(df['R2000_Ret'])
print("Correlation is: ", correlation)

Correlation is: 0.868
```


Let's practice!

Simple Linear Regressions

Rob Reider
Adjunct Professor, NYU-Courant
Consultant, Quantopian

What is a Regression?

• Simple linear regression:

$$y_t = lpha + eta x_t + \epsilon_t$$

What is a Regression?

• Ordinary Least Squares (OLS)

Python Packages to Perform Regressions

• In statsmodels:

```
import statsmodels.api as sm
sm.OLS(y, x).fit()
```

• In numpy:

```
np.polyfit(x, y, deg=1)
```

• In pandas:

```
pd.ols(y, x)
```

• In scipy:

```
from scipy import stats
stats.linregress(x, y)
```

Beware that the order of x and y
is not consistent across
packages

Example: Regresssion of Small Cap Returns on Large Cap

Import the statsmodels module

```
import statsmodels.api as sm
```

As before, compute percentage changes in both series

```
df['SPX_Ret'] = df['SPX_Prices'].pct_change()
df['R2000_Ret'] = df['R2000_Prices'].pct_change()
```

Add a constant to the DataFrame for the regression intercept

```
df = sm.add_constant(df)
```


Regresssion Example (continued)

Notice that the first row of returns is NaN

```
SPX_Price R2000_Price SPX_Ret R2000_Ret
Date
2012-11-01 1427.589966 827.849976 NaN NaN
2012-11-02 1414.199951 814.369995 -0.009379 -0.016283
```

Delete the row of NaN

```
df = df.dropna()
```

• Run the regression

```
results = sm.OLS(df['<mark>R2000_Ret'],</mark>df[['const','SPX_Ret']]).fit()
print(results.summary())
```


Regresssion Example (continued)

Regression output

- Intercept in results.params[0]
- Slope in results.params[1]

Regresssion Example (continued)

• Regression output

Dep. Variable:		R2000 Ret		R-squ	ared:	0.753	
Model:		OLS		Adj.	R-squared:	0.753	
Method: Date:				F-sta	tistic:	3829. 0.00	
				Prob	(F-statistic):		
Time:		13:29:55		Log-L	ikelihood:	4882.4	
No. Observations:		1257		AIC:		-9761.	
Df Residuals:			1255	BIC:			-9751.
Df Model:			1				
Covariance Type:		nonr	obust				
	coef	f std err		t	P> t	[95.0% Con	f. Int.]
const	-4.964e-05	0.000) -	0.353	0.724	-0.000	0.000
SPX_Ret	1.1412	0.018	3 6	1.877	0.000	1.105	1.177
Omnibus:		61.950		Durbi	n-Watson:	1.991	
Prob(Omnibus):		0.000		Jarqu	e-Bera (JB):	148.100	
Skew:		0.266		Prob(JB):	6.93e-33	
Kurtosis:		4.595		Cond.	No.	131.	

Relationship Between R-Squared and Correlation

- $[\operatorname{corr}(x,y)]^2 = R^2$ (or R-squared)
- sign(corr) = sign(regression slope)
- In last example:
 - \blacksquare R-Squared = 0.753
 - Slope is positive
 - correlation = $+\sqrt{0.753} = 0.868$

Let's practice!

Autocorrelation

Rob Reider
Adjunct Professor, NYU-Courant
Consultant, Quantopian

What is Autocorrelation?

Correlation of a time series with a lagged copy of itself

Series	Lagged Series	
5		
10	5	
15	10	
20	15	
25	20	
•	•	

- Lag-one autocorrelation
- Also called serial correlation

Interpretation of Autocorrelation

• Mean Reversion - Negative autocorrelation

Interpretation of Autocorrelation

• Momentum, or Trend Following - Positive autocorrelation

Traders Use Autocorrelation to Make Money

- Individual stocks
 - Historically have negative autocorrelation
 - Measured over short horizons (days)
 - Trading strategy: Buy losers and sell winners
- Commodities and currencies
 - Historically have positive autocorrelation
 - Measured over longer horizons (months)
 - Trading strategy: Buy winners and sell losers

Example of Positive Autocorrelation: Exchange Rates

Start with daily data of \(\frac{4}{5}\) exchange rates in DataFrame df from

FRED

Convert index to datetime

```
df.index = pd.to_datetime(df.index)
```

Downsample from daily to monthly data

```
df = df.resample(rule='M', how='last')
```

Compute returns from prices

```
df['Return'] = df['Price'].pct_change()
```

Compute autocorrelation

```
autocorrelation = df['Return'].autocorr()
print("The autocorrelation is: ",autocorrelation)
The autocorrelation is: 0.0567
```


Let's practice!