

Lecture 7

Charts

Announcements

- Lab 3 is posted
- Clicker questions start Friday
 - Register your clicker on Blackboard
 - Bring your clicker to class on Friday
- Homework 3 will be released Friday, due next Thursday

Census Continued

Data Visualization

Discussion Question

Which of the following questions can be answered by this chart?

Among survey responders...

- What proportion did **not** use their phone for online banking?
- What proportion either used their phone for online banking or to look up real estate listings?
- Did everyone use their phone for at least one of these activities?
- Did anyone use their phone for both online banking and real estate?

More than Half of Smartphone Owners Have Used Their Phone to get Health Information, do Online Banking

% of smartphone owners who have used their phone to do the following in the last year

Area Principle

Areas should be proportional to the values they represent

In 2013,

30% of accidental deaths of males were due to automobile accidents

20% of accidental deaths of females were due to automobile accidents

Numerical Data

How Do You Generate This Chart?

Types of Data

All values in a column should be both the same type **and** be comparable to each other in some way

- Numerical Each value is from a numerical scale
 - Numerical measurements are ordered
 - Differences are meaningful
- Categorical Each value is from a fixed inventory
 - May or may not have an ordering
 - Categories are the same or different

"Numerical" Data

Just because the values are numbers, doesn't mean the variable is numerical

- Census example had numerical SEX code (0, 1, and 2)
- It doesn't make sense to perform arithmetic on these "numbers", e.g. 1 0 or (0+1+2)/3 are nonsense here
- The variable SEX is still categorical, even though numbers were used for the categories

Terminology

- Individuals: those whose features are recorded
- Variables: features; these vary across individuals
- Variables have different values
- Values can be numerical, or categorical, or of many other types
- Distribution: For each different value of the variable, the frequency of individuals that have that value
- Frequency is measured in counts. Later we will use proportions or percents.

Plotting Two Numerical Variables

Scatter plot: scatter

Line graph: plot

Categorical Data

Bar Charts of Counts

Distributions:

- The distribution of a variable (a column) describes the frequency of its different values
- The group method counts the number of rows for each value in a column

Bar charts can display the distribution of categorical values

- Proportion of how many US residents are male or female
- Count of how many top movies were released by each studio

Categorical Distributions

bar chart: barh

(But when the values of the variable have a rank ordering, or fixed sizes relative to each other, more care might be needed.)