

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

Институт информационных технологий (ИИТ) Кафедра цифровой трансформации (ЦТ)

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ

по дисциплине «Разработка баз данных»

Практическое занятие N_{0} 3

Студенты группы	ИКБО-50-23 Враженко Д.О.	
	•	(подпись)
Преподаватель	Мажей Я.В.	
		(подпись)
Отчет представлен	« » 2025 г.	

Цель работы:

Работа направлена на формирование глубокого понимания и практического применения инструментов для реализации сложной бизнеслогики непосредственно на уровне базы данных.

По завершении работы студент должен уметь:

- Реализовывать сложную условную логику внутри SQL-запросов с использованием выражения CASE для категоризации данных, обработки исключительных ситуаций и динамического вычисления значений.
- Сформировать концептуальное понимание подзапросов, их классификации (скалярные, многострочные, коррелированные) и практического применения для выполнения динамической фильтрации и вычислений, основанных на результатах других запросов.
- Освоить синтаксис и методологию использования обобщенных табличных выражений (СТЕ) для декомпозиции сложных запросов, повышения их читаемости, структурированности и поддерживаемости.
- Приобрести навыки работы с иерархическими и древовидными структурами данных, научившись составлять рекурсивные запросы с помощью WITH RECURSIVE для обхода и анализа таких структур.

Постановка задачи:

Задание 1: использование оператора CASE

- 1. Составить запрос, использующий поисковое выражение CASE для категоризации данных по какому-либо числовому признаку из вашей БД (например, цена, количество, возраст). Запрос должен содержать не менее трех условий WHEN и ветку ELSE.
- 2. Составить запрос, в котором оператор **CASE** используется внутри **агрегатной функции** (например, SUM или COUNT) для выполнения условной агрегации.

Задание 2: использование подзапросов

Составить и выполнить три запроса, демонстрирующих разные типы подзапросов

- 1. **Скалярный подзапрос**: найти все записи в таблице, у которых значение в некотором числовом столбце превышает среднее (или максимальное/минимальное) значение по этому столбцу.
- 2. **Многострочный подзапрос с IN**: вывести информацию из одной таблицы на основе идентификаторов, полученных из связанной таблицы по определенному критерию (в данном случае, **обязательно по дате**).
- 3. **Коррелированный подзапрос с EXISTS**: найти все записи из родительской таблицы, для которых существует хотя бы одна связанная запись в дочерней таблице, удовлетворяющая текстовому условию.
- 4. **Альтернативное решение с JOIN**: решите задачу из пункта выше (2.3, Коррелированный подзапрос с EXISTS), но на этот раз с использованием оператора соединения **JOIN**.

Задание 3: использование обобщенных табличных выражений (СТЕ).

- 1. **Стандартное СТЕ**: переписать запрос из Задания 2.3 (с коррелированным подзапросом) с использованием обобщенного табличного выражения (СТЕ).
- 2. **Рекурсивное CTE**: используя имеющуюся в вашей схеме данных таблицу с иерархической структурой (например, pharmacists), написать рекурсивный запрос с помощью **WITH RECURSIVE** для вывода всей иерархии с указанием уровня вложенности.

ХОД ВЫПОЛНЕНИЯ РАБОТЫ

Все используемые таблицы индивидуальной схемы данных:

Таблица 1. Таблица employee (Сотрудник)

•	123 · id_employee V	123 [™] id_position ▼	A-Z last_name ▼	A-Z first_name ▼	A-Z phone_number ▼	AZ registration_address	Ø employment_date ▼	
1	1		Петров	Иван	9123456789	ул. Ленина, 10	2020-01-15	2025-01-15
2						пр. Мира, 5		2024-05-20
3	3		Иванов	Алексей	9345678901	ул. Советская, 3	2021-03-10	2026-03-10
4	4		Васильев	Дмитрий		ул. Гагарина, 7	2022-02-01	2023-02-01
5	5			Ольга		пр. Победы, 12	2021-07-15	2024-07-15
6	6		Смирнов	Андрей		ул. Лесная, 9		2023-12-31

Таблица 2. Таблица position (Должность)

•	123 did_position	A-Z position_name ▼	A-Z access_category ▼	123 salary ▼
1	1	Менеджер	Администрация	50 000
2	2	Повар	Кухня	35 000
3	3	Кассир	Обслуживание	30 000
4	4	Уборщик	Обслуживание	25 000

Таблица 3. Таблица employee inventory (Связующая таблица Сотрудник-Инвентарь)

Таблица 4. Таблица inventory (Инвентарь)

Таблица 5. Таблица termination request (Запрос на увольнение)

Таблица 6. Таблица department (Отдел)

Таблица 7. Таблица раутепт (Выплата)

•	123 · id_payment ·	123 did_termination_request	123 amount		A-Z comment ▼
	1		25 000	2023-12-31	Окончательный расчет по увольнению

Таблица 8. Таблица document (Архив документов)

Таблица 9. Таблица request_termination_type (Связующая таблица Запрос на увольнение-Вид увольнения)

Таблица 10. Таблица termination type (Вид увольнения)

Задание 1: использование оператора CASE.

1. Запрос с WHEN и ELSE:

Рисунок 1 – WHEN и ELSE

2. Запрос с CASE внутри SUM:

Рисунок 2 – CASE внутри SUM

Задание 2: использование подзапросов.

1. Скалярный подзапрос:

Рисунок 3 – Скалярный подзапрос

2. Многострочный подзапрос с IN:

Рисунок 4 – Многострочный подзапрос с IN

3. Коррелированный подзапрос с EXISTS:

Рисунок 5 – Коррелированный подзапрос с EXISTS

4. Альтернативное решение с JOIN:

Рисунок 6 – Альтернативное решение с JOIN

Задание 2: использование обобщенных табличных выражений (СТЕ).

1. Стандартное СТЕ:

Рисунок 7 – Стандартное СТЕ

2. Рекурсивное СТЕ:

Рисунок 8 – Рекурсивное СТЕ