7 Scale Space Representations

- 7.1 Scale Space
- 7.2 Laplacian of Gaussian (LoG)
- 7.3 Scale Invariant Feature Transform (SIFT)
- 7.4 Speeded Up Robust Features (SURF)

7.1 Scale Space Features

Image features can appear similarly on all scales

(**)

**The proposed on the control of the co

Some features appear as such only on a specific scale

In addition to shift / rotation invariance, scale invariance is often a desirable feature property

Scale Space Representation

Parametric family of images smoothed by Gaussian filter

General argued in pulse response of Gaussian LP filter input
$$s[x,y,\sigma] = h_{\rm G}[x,y,\sigma] * s[x,y] \qquad \text{with} \qquad h_{\rm G}[x,y,\sigma] = \frac{1}{2\pi\sigma^2} {\rm e}^{-(x^2+y^2)/(2\sigma^2)}$$

Do you want to look at a leaf or at the entire tree?

Gaussian Derivatives

Gaussian filter is always positive

No keypoint detection

Hessian Matrix

Square matrix of second order derivatives

of. M in Hame's obtector

$$\boldsymbol{H} = \begin{bmatrix} \frac{\partial^2 s[x,y]}{\partial x^2} & \frac{\partial^2 s[x,y]}{\partial x \partial y} \\ \frac{\partial^2 s[x,y]}{\partial x \partial y} & \frac{\partial^2 s[x,y]}{\partial y^2} \end{bmatrix}$$

Special case: Hessian of Gaussian

her: s is gaussian fullhed unage

7.2 Laplacian of Gaussian (LoG)

Trace of Hessian of Gaussian
$$\left(\frac{\partial^2 h_G[x,y]}{\partial x^2} + \frac{\partial^2 h_G[x,y]}{\partial y^2}\right) = \nabla^2 s(x,y) = \frac{1}{2} \sqrt{2} s(x,y)$$

Sum of main diagonal

Zero-crossings indicate edges
of laptacian edge outledor chap. 6-16

Magnitude indicates presence of **blobs**

- Image regions whose properties differ from its surroundings
- Magnitude either positive or negative
- LoG is powerful blob detector

Maximum response if blob "fits" completely under LoG window

Laplacian of Gaussian (LoG)

Laplacian of Gaussian (LoG)

LoG response is **not** scale invariant

• Gaussian blur smooths contours → lower gradient

• Multiplication by σ^2 compensates for gradient decrease caused by Gaussian blur

LoG Example

For small (large) scales LoG magnitude highlights small (large) details.

Difference of Gaussians (DoG)

Computing LoG might be inefficient, i.e. computationally too costly

Gaussian kernel is solution to diffusion equation:

$$\frac{\partial h_{\mathbf{G}}[x, y, \sigma]}{\partial \mathbf{\sigma}} = \sigma \nabla^2 h_{\mathbf{G}}[x, y, \sigma]$$

Finite difference approximation:

$$\sigma \nabla^2 h_{G}[x, y, \sigma] = \frac{\partial h_{G}[x, y, \sigma]}{\partial \sigma} \approx \frac{h_{G}[x, y, k\sigma] - h_{G}[x, y, \sigma]}{k\sigma - \sigma}$$

Therefore:

$$DoG = h_{G}[x, y, k\sigma] - h_{G}[x, y, \sigma] \approx (k-1)\sigma^{2}\nabla^{2}h_{G}[x, y, \sigma]$$

Difference of Gaussians (DoG)

Approximation error $\rightarrow 0$

As k goes to 1

DoG
$$\approx (k-1)\sigma^2 \nabla^2 h_G[x, y, \sigma]$$

Advantage: DoG already incorporates scale normalization Efficient computation

Factor (k-1) is not a problem if k is constant over all scales

Usually we are interested in peak locations and relative magnitudes

Scale Invariant Feature Transform

- Patented by University of British Columbia
- Invariant to scale and rotation
- Robust to affine distortions, noise, illumination changes

Highly distinctive features

DOG used to detect features; plus new descriptor

Good for matching, recognition, etc.

SIFT

Consists of feature detector and feature descriptor

They are independent (e.g. SIFT descriptor can be used for Harris corners) (a any office)

Four stages:

- 1) Scale Space Extrema Detection => Hot delection, find in patant points
- 2) Keypoint Localization (across scale)
- 3) Orientation Assignment (use donni ant orientation)
- 4) Keypoint Descriptor (create busing description)

1) Scale Space Extrema Detection

use idea of Dob (mishad of Lob)

Scale Space Extrema Detection

Scale space extremum detected if larger (smaller) than any of

2) Keypoint Localization

We obtain a set of extrema points $DoG[x, y, \sigma]$

For each extremum: position, scale, magnitude

Position and magnitude are refined by Taylor expansion ?

An extremum may be located between two pixels

Sub-prxd

Discard weak extrema by thresholding $(|DoG[x,y,\sigma]<\theta|)$ 7 get and of Purposition Noise, unstable features with low contrast, etc.

Keypoint Localization

Eliminating edge responses (Pup only cornes)

DoG responds not only to keypoints but also to edges

Procedure analogous to Harris corner detector (d. 6-46, Hame oblished)

Based on Hessian matrix

$$\boldsymbol{H} = \begin{bmatrix} \frac{\partial^2 s[x,y]}{\partial x^2} & \frac{\partial^2 s[x,y]}{\partial x \partial y} \\ \frac{\partial^2 s[x,y]}{\partial y \partial x} & \frac{\partial^2 s[x,y]}{\partial y^2} \end{bmatrix} = \begin{bmatrix} s_{xx}[x,y] & s_{xy}[x,y] \\ s_{yx}[x,y] & s_{yy}[x,y] \end{bmatrix}$$

Edges exhibit highly disproportional eigenvalues of H

$$r=rac{\lambda_1}{\lambda_2}$$
 $r
eq 1$ for edges $r pprox 1$ for keypoints (because this is a corner)

Keypoint Localization

Eigenvalues are expensive to compute

Use Harris approach instead

$$\frac{\operatorname{Tr}(\boldsymbol{H})^{2}}{\det(\boldsymbol{H})} = \frac{(\lambda_{1} + \lambda_{2})^{2}}{\lambda_{1}\lambda_{2}} = \frac{(r+1)^{2}}{r} \approx r \quad (\sqrt{r})^{2}$$

Discard extrema that are edges, i.e. whose Hessian obeys

$$\frac{\operatorname{Tr}(\boldsymbol{H})^2}{\det(\boldsymbol{H})} \ge \frac{(r+1)^2}{r}$$
 =7 only keep comes

Typical value for r is 10

3) Orientation Assignment

Keypoints are assigned reference orientation

Keypoint descriptor relative to this orientation → invariance to rotation

For each keypoint at (x, y, σ)

Get gradient magnitude and orientation within a region around it

$$m[x,y] = \sqrt{(s[x+1,y,\sigma] - s[x-1,y,\sigma])^2 + (s[x,y+1,\sigma] - s[x,y-1,\sigma])^2}$$
The following the second se

$$\varphi[x,y] = \operatorname{atan} \frac{s[x,y+1,\sigma] - s[x,y-1,\sigma]}{s[x+1,y,\sigma] - s[x-1,y,\sigma]}$$

y I

-2,-2	-1,-2	0,-2	1,-2	2,-2
-2,-1	-1,-1	0,-1	1,-1	2,-1
-2,0	-1,0	x, y	1,0	2,0
-2,1	-1,1	0,1	1,1	2,1
-2,2	-1,2	0,2	1,2	2,2

With this information orientation histogram is formed

calculate orcitation_ al 5x5 points

Orientation Assignment

Votes proportional to:

- distance from keypoint (Gaussian window with 1.5σ)

Orientation Assignment

Extract dominant directions from histogram

- Most voted direction (histogram peak)
- Any local peak within 80% of the highest peak (if any)

If more than one dominant direction detected → multiple keypoints created (same location and scale, different orientation)

(4) Keypoint Descriptor

Goal: highly distinctive and highly invariant

Procedure

- 1) Compute <u>relative</u> orientation and magnitude in a <u>16×16 neighborhood</u> around keypoint => window to the rotationally vivenant
- 2) Form weighted histograms (8 bins) for 4×4 regions (weighted by magnitude, Gaussian window and distance from bin center)

Illustration with 8×8 neighborhood:

Keypoint Descriptor

We obtain 16 histograms of 8 bins each

Feature vector with 128 elements

Feature vector is normalized

Reduces effects of illumination change

Normalized vector is up-clipped by 0.2 and renormalized

- Reduces the effect of changes in contrast
- Distribution of orientations is more important than magnitudes of large gradients
- SIFT descriptor

SIFT Example

SIFT Example

SIFT keypoints (scale + orientation)

Size of circle corresponds to scale at which blob was detected

SIFT Example

Descriptors of random 50 SIFT keypoints

7.4 SURF

Speeded Up Robust Features (Herbert Bay, 2008)

- Consists of detector and descriptor, inspired by SIFT
- Idea: simplify methods to essential

Detection based on Hessian matrix (as Harris, SIFT) woung low hills

Simple approximation of Gaussian second order partial derivatives

Integral images s_{Σ} are used to calculate box filter output g

$$s_{\Sigma}[x,y] = \sum_{i=0}^{x} \sum_{j=0}^{y} s[i,j] \qquad g = s_{\Sigma}[\boldsymbol{a}] - s_{\Sigma}[\boldsymbol{b}] - s_{\Sigma}[\boldsymbol{c}] + s_{\Sigma}[\boldsymbol{d}]$$

$$g = s_{\Sigma}[\boldsymbol{a}] - s_{\Sigma}[\boldsymbol{b}] - s_{\Sigma}[\boldsymbol{c}] + s_{\Sigma}[\boldsymbol{d}]$$

SURF

Blob detection by determinant of Hessian

Non-maximum suppression in 3×3×3 neighborhood

$$\det(H_{\rm approx}) \approx s_{xx}s_{yy} - (0.9s_{xy})^2 = 7$$
 Mob response store in map our affect scales

Scale space is analyzed by up-scaling filter size

Image size is fixed (unlike SIFT)

SURF Descriptor

- 1) Orientation assignment by voting procedure
 - Haar wavelet responses in x and y directions

- Region around keypoint is split up into 4×4 sub-regions
 - Haar wavelet responses with respect to assigned orientation are computed for each sample (with Gaussian weighting as in SIFT)
 - Descriptor vector for each sub-region $v = (\sum d_x, \sum d_y, \sum |d_x|, \sum |d_y|)$

SURF Descriptor

SURF descriptor $4 \times 4 \times 4 = 64$ dimensional vector

Normalized for contrast invariance

Upright SURF (U-SURF)

- In many cases cameras do not rotate (much) so rotation invariance is an overkill
- Skips orientation assignment → faster to compute
- Robust to ±15° tilts

SURF Example

All SURF keypoints

10 strongest keypoints

Size of circle corresponds to scale at which blob was detected

