

Master professionnel II: Ingénierie mathématique: Option Statistique

Statistique Bayésienne.

Anne Philippe
Université de Nantes
Laboratoire de Mathématiques Jean Leray

Fiche 4. Inférence Bayésienne. [suite]

Exercice 1.

Soit $\theta > 0$ un paramètre. Soit $\mathbf{X} = (X_1, \dots, X_n)$ des variables aléatoires indépendantes et identiquement distribuées suivant la loi uniforme sur $[\theta, 2\theta]$. On note $m_n = \min\{X_1, \dots, X_n\}$ et $M_n = \max\{X_1, \dots, X_n\}$.

- 1) Écrire la vraisemblance du modèle. Indication : commencer par montrer que presque sûrement, $M_n \leq 2m_n$
- 2) Montrer que $\pi(\theta) \propto \mathbb{I}_{\mathbb{R}^+}(\theta)$ est une loi a priori impropre.
- 3) Calculer la loi a posteriori associée.
- 4) Représenter graphiquement l'allure de la densité de la loi a posteriori .
- 5) En déduire que les régions de confiance HPD pour le paramètre θ sont de la forme $\left[\frac{M_n}{2}, b_{\alpha}\right]$.
- 6) Donner l'expression b_{α} en fonction de $1-\alpha$ le niveau de la région de confiance.
- 7) a) Si $\mathbf{X} = (X_1, \dots, X_n)$ sont iid suivant la loi uniforme sur $[\theta, 2\theta]$, quelle est la fonction de répartition de M_n ?
 - b) Calculer le niveau fréquentiste de la région HPD de niveau $1-\alpha$

Exercice 2. Calcul numérique des intervalles de crédibilité

On dispose de n=50 observations $X_1,...,X_n$ iid suivant une loi exponentielle de paramètre $\theta > 0$. Pour tester et comparer les méthodes numériques, on utilisera les n premières données du fichier de durées de fonctionnement d'ampoules (cf. Fiche 2). On suppose que la loi a priori sur θ est la loi Gamma de paramètre (1,1).

- 1) Calculer et représenter graphiquement tous les intervalles de crédibilité de niveau 95% en utilisant la fonction ggamma (qui retourne les quantiles d'une loi Gamma)
- 2) Rechercher le plus court intervalle de crédibilité à 95%.
- 3) Écrire une fonction qui calcule et représente graphiquement tous les intervalles de crédibilité de niveau 95% à partir d'un échantillon de nombres pseudo aléatoires suivant la loi a posteriori.
- 4) Écrire une fonction qui calcule le plus court intervalle de crédibilité de niveau 95% à partir d'un échantillon de nombres pseudo aléatoires suivant la loi a posteriori.
- 5) Simuler un échantillon de taille N (à choisir) suivant la loi a posteriori, puis donner une approximation du plus court intervalle de crédibilité.
- 6) Comparer avec les résultats des questions 1-2