Airline Satisfaction

1) Use the dataset named 'Airline Satisfaction.xlsx': It contains the data of 10000 airline customers and their details. Build a classification model to solve the below questions. Satisfaction is the target column a) What is the accuracy if the problem is solved using Random Forest model? b) What is the accuracy if the problem is solved using Support Vector Machine model?

Ans 1a

```
In [1]: #Step1 import the data set
  import pandas as pd
  AS=pd.read_excel("Airline Satisfaction.xlsx")
  AS
```

Out[1]:

	id	Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure/Arrival time convenient	
0	70172	Male	Loyal Customer	13	Personal Travel	Eco Plus	460	3	4	
1	5047	Male	disloyal Customer	25	Business travel	Business	235	3	2	
2	110028	Female	Loyal Customer	26	Business travel	Business	1142	2	2	
3	24026	Female	Loyal Customer	25	Business travel	Business	562	2	5	
4	119299	Male	Loyal Customer	61	Business travel	Business	214	3	3	
•••										
9995	124365	Male	Loyal Customer	50	Business travel	Business	3599	3	3	
9996	22044	Male	Loyal Customer	38	Business travel	Business	3873	5	5	
9997	14057	Female	Loyal Customer	39	Business travel	Business	319	4	4	
9998	113848	Male	Loyal Customer	52	Business travel	Business	1363	5	5	
9999	1865	Female	Loyal Customer	41	Business travel	Business	3938	4	4	

10000 rows × 24 columns

```
In [2]: AS.isnull().sum()
```

```
id
Out[2]:
         Gender
                                                a
         Customer Type
                                                0
         Age
                                                0
         Type of Travel
                                                0
         Class
                                                0
         Flight Distance
                                                0
         Inflight wifi service
         Departure/Arrival time convenient
         Ease of Online booking
         Gate location
                                                0
         Food and drink
                                                0
         Online boarding
                                                0
         Seat comfort
                                                0
         Inflight entertainment
                                                0
        On-board service
                                                a
         Leg room service
                                                0
         Baggage handling
                                                0
         Checkin service
                                                0
         Inflight service
                                                0
         Cleanliness
         Departure Delay in Minutes
                                                0
         Arrival Delay in Minutes
                                               26
         satisfaction
         dtype: int64
```

In [3]: AS.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 24 columns):

```
Column
                                     Non-Null Count Dtype
___
   ____
                                      _____
0
    id
                                     10000 non-null int64
                                     10000 non-null object
1
    Gender
2
   Customer Type
                                     10000 non-null object
3
   Age
                                     10000 non-null int64
                                     10000 non-null object
    Type of Travel
4
5
    Class
                                     10000 non-null object
    Flight Distance
                                     10000 non-null int64
6
7
    Inflight wifi service
                                     10000 non-null int64
    Departure/Arrival time convenient 10000 non-null int64
    Ease of Online booking
                                     10000 non-null int64
9
10 Gate location
                                     10000 non-null int64
                                     10000 non-null int64
11 Food and drink
12 Online boarding
                                     10000 non-null int64
13 Seat comfort
                                     10000 non-null int64
14 Inflight entertainment
                                     10000 non-null int64
                                     10000 non-null int64
15 On-board service
                                     10000 non-null int64
16 Leg room service
                                     10000 non-null int64
17 Baggage handling
18 Checkin service
                                     10000 non-null int64
19 Inflight service
                                     10000 non-null int64
20 Cleanliness
                                     10000 non-null int64
                                     10000 non-null int64
21 Departure Delay in Minutes
                                     9974 non-null
22 Arrival Delay in Minutes
                                                     float64
                                     10000 non-null int64
23 satisfaction
```

dtypes: float64(1), int64(19), object(4)

memory usage: 1.8+ MB

In [4]: # We have 26 missing values in the field 'Arrival Delay in Minutes' these rows can
to decide with which value to fill we check for skewness
AS['Arrival Delay in Minutes'].skew()

dtype: int64

In [7]: AS.info()

```
7.681208890883187
Out[4]:
In [5]: # the skewness value is >1 therefore we can fillna with median
         AS['Arrival Delay in Minutes'].fillna(AS['Arrival Delay in Minutes'].median(), inpl
In [6]: AS.isnull().sum()
                                              0
        id
Out[6]:
        Gender
                                              0
        Customer Type
                                              0
                                              0
        Age
        Type of Travel
                                              0
        Class
                                              0
        Flight Distance
                                              0
        Inflight wifi service
                                              0
        Departure/Arrival time convenient
                                              0
        Ease of Online booking
                                              0
        Gate location
                                              0
        Food and drink
                                              0
        Online boarding
                                              0
        Seat comfort
                                              0
        Inflight entertainment
                                              0
        On-board service
                                              0
        Leg room service
                                              0
        Baggage handling
                                              0
        Checkin service
                                              0
        Inflight service
                                              0
                                              0
        Cleanliness
        Departure Delay in Minutes
                                              0
        Arrival Delay in Minutes
                                              0
        satisfaction
                                              0
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 24 columns):

```
# Column
                                   Non-Null Count Dtype
--- -----
                                    _____
                                    10000 non-null int64
   id
0
1
   Gender
                                   10000 non-null object
2 Customer Type
                                   10000 non-null object
3 Age
                                   10000 non-null int64
   Type of Travel
                                   10000 non-null object
                                   10000 non-null object
5
   Class
                                  10000 non-null int64
6
   Flight Distance
7
   Inflight wifi service
                                  10000 non-null int64
8 Departure/Arrival time convenient 10000 non-null int64
9 Ease of Online booking
                                  10000 non-null int64
10 Gate location
                                   10000 non-null int64
11 Food and drink
                                  10000 non-null int64
                                   10000 non-null int64
12 Online boarding
13 Seat comfort
                                  10000 non-null int64
14 Inflight entertainment
                                  10000 non-null int64
15 On-board service
                                  10000 non-null int64
16 Leg room service
                                  10000 non-null int64
                                  10000 non-null int64
17 Baggage handling
                                  10000 non-null int64
18 Checkin service
19 Inflight service
                                  10000 non-null int64
20 Cleanliness
                                  10000 non-null int64
21 Departure Delay in Minutes
                                 10000 non-null int64
22 Arrival Delay in Minutes
                                  10000 non-null float64
                                   10000 non-null int64
23 satisfaction
```

dtypes: float64(1), int64(19), object(4)

memory usage: 1.8+ MB

In [8]: # we have 4 categorical variables, with no order of importance # Applying Dummy variable (get_dummies) to convert the text columns into numerical ASF= pd.get_dummies(AS, columns = ['Gender','Customer Type','Type of Travel','Class

ASF

Out[8]:

	id	Age	Flight Distance	Inflight wifi service	Departure/Arrival time convenient	Ease of Online booking	Gate location	Food and drink	Online boarding	con
0	70172	13	460	3	4	3	1	5	3	
1	5047	25	235	3	2	3	3	1	3	
2	110028	26	1142	2	2	2	2	5	5	
3	24026	25	562	2	5	5	5	2	2	
4	119299	61	214	3	3	3	3	4	5	
•••										
9995	124365	50	3599	3	3	3	3	4	5	
9996	22044	38	3873	5	5	5	5	5	5	
9997	14057	39	319	4	4	4	4	5	4	
9998	113848	52	1363	5	5	5	5	2	5	
9999	1865	41	3938	4	4	4	4	2	4	

10000 rows × 25 columns

In [9]: ASF.info() # confirming that no null values & no string values in data

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 25 columns):

#	Column	Non-Nu	ıll Count	Dtype
0	id	10000	non-null	int64
1	Age	10000	non-null	int64
2	Flight Distance	10000	non-null	int64
3	Inflight wifi service	10000	non-null	int64
4	Departure/Arrival time convenient	10000	non-null	int64
5	Ease of Online booking	10000	non-null	int64
6	Gate location	10000	non-null	int64
7	Food and drink	10000	non-null	int64
8	Online boarding	10000	non-null	int64
9	Seat comfort	10000	non-null	int64
10	Inflight entertainment	10000	non-null	int64
11	On-board service	10000	non-null	int64
12	Leg room service	10000	non-null	int64
13	Baggage handling	10000	non-null	int64
14	Checkin service	10000	non-null	int64
15	Inflight service	10000	non-null	int64
16	Cleanliness	10000	non-null	int64
17	Departure Delay in Minutes	10000	non-null	int64
18	Arrival Delay in Minutes	10000	non-null	float64
19	satisfaction	10000	non-null	int64
20	Gender_Male	10000	non-null	uint8
21	Customer Type_disloyal Customer	10000	non-null	uint8
22	Type of Travel_Personal Travel	10000	non-null	uint8
23	Class_Eco	10000	non-null	uint8
24	Class_Eco Plus	10000	non-null	uint8
dtvp	es: float64(1), int64(19), uint8(5)			

dtypes: float64(1), int64(19), uint8(5)

memory usage: 1.6 MB

```
# Step 2: Define our X and Y
In [10]:
         Y = ASF[['satisfaction']]
         X = ASF.drop(columns=['satisfaction','id'])
In [11]: # Step 3: to split the data into train and test
         from sklearn.model_selection import train_test_split
         X_train, X_test, Y_train, Y_test = train_test_split(X,Y, train_size=0.8, random_sta
        len(X_train), len(X_test), len(Y_train), len(Y_test)
In [12]:
         (8000, 2000, 8000, 2000)
Out[12]:
In [13]: # Step 4: Building the model
         # Create our model object
         from sklearn.ensemble import RandomForestClassifier
          rf = RandomForestClassifier(n_estimators=500)
          # fit the object on the training the data (fit command)
          model = rf.fit(X_train, Y_train)
          model
         C:\Users\Administrator\AppData\Local\Temp\ipykernel_44672\1582908817.py:10: DataCo
         nversionWarning: A column-vector y was passed when a 1d array was expected. Please
         change the shape of y to (n_samples,), for example using ravel().
           model = rf.fit(X_train, Y_train)
         RandomForestClassifier(n_estimators=500)
Out[13]:
In [14]: # Step 5: Predicting the test cases
         Y test
         Y_test['pred_RFC'] = model.predict(X_test)
          Y_test
```

Out[14]:		satisfaction	pred_RFC
	2374	1	1
	1784	0	0
	6301	1	0
	1600	0	0
	7920	0	0
	•••		
	8623	0	0
	5928	0	0
	6714	1	1
	5885	0	0
	7289	0	0

2000 rows × 2 columns

```
# Step 6: We will build our confusion matrix to check the accuracy of the model
In [15]:
          from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
          accuracy_score(Y_test['satisfaction'], Y_test['pred_RFC'])
         0.9465
Out[15]:
In [16]:
          confusion_matrix(Y_test['satisfaction'], Y_test['pred_RFC'])
         array([[1090,
                         42],
Out[16]:
                 [ 65, 803]], dtype=int64)
          print(classification_report(Y_test['satisfaction'], Y_test['pred_RFC']))
In [17]:
                                     recall f1-score
                        precision
                                                        support
                     0
                             0.94
                                       0.96
                                                 0.95
                                                           1132
                     1
                             0.95
                                       0.93
                                                 0.94
                                                            868
                                                 0.95
                                                           2000
             accuracy
                             0.95
                                       0.94
                                                 0.95
                                                           2000
            macro avg
         weighted avg
                             0.95
                                       0.95
                                                 0.95
                                                           2000
```

Ans 1b

```
In [18]: # we can reuse step 1 ) filling missing values, & step 2) defining X&Y from above
# after that, Since there are some columns where the maximum value and minimum valu
# we can standardize / scale our data using StandardScaler

# (X1 - average of column) / (maximum of column - minimum of column)

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

X_scal = sc.fit_transform(X)
In [19]: pd.DataFrame(X_scal)
```

Out[19]:		0	1	2	3	4	5	6	7	
	0	-1.740155	-0.737552	0.202159	0.628992	0.175602	-1.533190	1.337013	-0.177909	1.198
	1	-0.946280	-0.962165	0.202159	-0.679908	0.175602	0.024218	-1.648724	-0.177909	-1.818
	2	-0.880123	-0.056726	-0.550762	-0.679908	-0.537070	-0.754486	1.337013	1.302818	1.198
	3	-0.946280	-0.635728	-0.550762	1.283442	1.600946	1.581625	-0.902290	-0.918273	-1.064
	4	1.435347	-0.983129	0.202159	-0.025458	0.175602	0.024218	0.590579	1.302818	1.198
	•••									
	9995	0.707627	2.396045	0.202159	-0.025458	0.175602	0.024218	0.590579	1.302818	0.443
	9996	-0.086248	2.669574	1.708003	1.283442	1.600946	1.581625	1.337013	1.302818	1.198
	9997	-0.020092	-0.878310	0.955081	0.628992	0.888274	0.802921	1.337013	0.562454	0.443
	9998	0.839940	0.163894	1.708003	1.283442	1.600946	1.581625	-0.902290	1.302818	1.198
	9999	0.112221	2.734462	0.955081	0.628992	0.888274	0.802921	-0.902290	0.562454	1.198

10000 rows × 23 columns

In [20]: X

Out[20]:

•		Age	Flight Distance	Inflight wifi service	Departure/Arrival time convenient	Ease of Online booking	Gate location	Food and drink	Online boarding	Seat comfort	en
	0	13	460	3	4	3	1	5	3	5	
	1	25	235	3	2	3	3	1	3	1	
	2	26	1142	2	2	2	2	5	5	5	
	3	25	562	2	5	5	5	2	2	2	
	4	61	214	3	3	3	3	4	5	5	
	•••										
	9995	50	3599	3	3	3	3	4	5	4	
	9996	38	3873	5	5	5	5	5	5	5	
	9997	39	319	4	4	4	4	5	4	4	
	9998	52	1363	5	5	5	5	2	5	5	
	9999	41	3938	4	4	4	4	2	4	5	

10000 rows × 23 columns

→

In [21]: # Step 3: split into train & test set
from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X_scal, Y, train_size=0.8, rance)

n [22]: # Step 4: building the model:

```
# create model object
          from sklearn.svm import SVC
          svm = SVC()
          # fit the object on training data
          model = svm.fit(X train, Y train)
          mode1
          C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:993: DataCo
          nversionWarning: A column-vector y was passed when a 1d array was expected. Please
          change the shape of y to (n_samples, ), for example using ravel().
            y = column_or_1d(y, warn=True)
          SVC()
Out[22]:
In [23]: # Predict the test cases
          Y_test['pred_svm'] = model.predict(X_test)
          Y_test
In [24]:
Out[24]:
               satisfaction pred_svm
          7830
                        0
                                 0
          5466
                                  1
           647
                        0
                                 0
          7801
                        1
                                  1
          8846
                        0
                                 0
          1287
                        0
                                 0
           768
                        0
                                 0
          6616
                        0
                                 0
          8385
                        0
                                 0
          8639
                        1
                                 1
         2000 rows × 2 columns
In [25]: # Step 6: We will build our confusion matrix to check the accuracy of the model
          #from sklearn.metrics import accuracy_score, confusion_matrix, classification_repor
          accuracy_score(Y_test['satisfaction'], Y_test['pred_svm'])
          0.9405
Out[25]:
In [26]:
          confusion_matrix(Y_test['satisfaction'], Y_test['pred_svm'])
          array([[1119,
                          50],
Out[26]:
                 [ 69,
                         762]], dtype=int64)
          # Check the accuracy of the model
In [27]:
          from sklearn.metrics import classification report
```

print(classification_report(Y_test['satisfaction'], Y_test['pred_svm']))

	precision	recall	f1-score	support	
0	0.94 0.94	0.96 0.92	0.95 0.93	1169 831	
1	0.94	0.92			
accuracy			0.94	2000	
macro avg	0.94	0.94	0.94	2000	
weighted avg	0.94	0.94	0.94	2000	

Conclusion

The results of RF & SVM are very similar, both models perform equally well. The data is not imbalanced, therefore the correct prediction of satisfaction - true or false are both equally probable

HR Data

Ans 2c

In [29]:

```
#import the data set
In [28]:
           import pandas as pd
           HR=pd.read csv("hr data.csv")
Out[28]:
                  employee_id number_project average_montly_hours time_spend_company
                                                                                           Work_accident
               0
                          1003
                                             2
                                                                 157
                                                                                         3
                                                                                                        0
                          1005
                                             5
                                                                 262
                                                                                                        0
                                                                                         6
               2
                          1486
                                             7
                                                                 272
                                                                                         4
                                                                                                        0
                          1038
                                                                 223
                                                                                         5
                                                                                                        0
               4
                          1057
                                             2
                                                                 159
                                                                                         3
                                                                                                        0
           14994
                        87670
                                             2
                                                                 151
                                                                                         3
                                                                                                        0
           14995
                        87673
                                                                                         3
                                                                 160
                                                                                                        0
                                             2
                                                                                         3
           14996
                        87679
                                                                 143
                                                                                                        0
           14997
                        87681
                                                                 280
                                                                                                        0
           14998
                        87684
                                             2
                                                                 158
                                                                                         3
                                                                                                        0
          14999 rows × 9 columns
```

HR.drop(columns=['employee_id'], inplace=True)

```
HR.isnull().sum() # No null values
In [30]:
         number_project
                                   0
Out[30]:
         average_montly_hours
                                   0
         time_spend_company
                                   0
         Work_accident
                                   0
         attrition
                                   0
         promotion_last_5years
                                   0
         department
                                   0
         salary
                                   0
         dtype: int64
In [31]: HR.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 14999 entries, 0 to 14998
         Data columns (total 8 columns):
          #
              Column
                                      Non-Null Count Dtype
          ---
              -----
                                      -----
          0
              number_project
                                      14999 non-null int64
              average_montly_hours
                                      14999 non-null int64
          1
          2
              time spend company
                                      14999 non-null int64
          3
              Work_accident
                                      14999 non-null int64
              attrition
                                      14999 non-null object
          4
          5
              promotion_last_5years 14999 non-null int64
          6
              department
                                      14999 non-null object
          7
                                      14999 non-null object
              salary
         dtypes: int64(5), object(3)
         memory usage: 937.6+ KB
         # we have 3 categorical variables, with no order of importance
In [32]:
          # Applying Dummy variable (get_dummies) to convert the text columns into numerical
          HRF= pd.get_dummies(HR, columns = ['attrition','department','salary'], drop_first =
          HRF
                number_project average_montly_hours time_spend_company Work_accident promotion_las
Out[32]:
             0
                            2
                                              157
                                                                   3
                                                                                 0
                            5
                                              262
                                                                   6
                                                                                 0
             2
                            7
                                              272
                                                                   4
                                                                                 0
             3
                            5
                                              223
                                                                   5
                                                                                 0
             4
                            2
                                              159
                                                                   3
                                                                                 0
          14994
                            2
                                              151
                                                                   3
                                                                                 0
          14995
                                              160
                                                                   3
                                                                                 0
                            2
          14996
                                              143
                                                                   3
                                                                                 0
          14997
                            6
                                              280
                                                                   4
                                                                                 0
                                                                   3
                                                                                 0
          14998
                            2
                                              158
         14999 rows × 17 columns
```

file:///C:/Users/Administrator/OneDrive - 60q0hy/PGPDS5/ePortfolio/2 DIWAKAR SINHA MOD 6 ASSIGNMENT.html

'attrition' was changed to 'attrition stayed' because of get dummies # renaming b

HRF.rename(columns={'attrition stayed': 'attrition'}, inplace=True)

HRF

Out[33]:		number_project	average_montly_hours	time_spend_company	Work_accident	promotion_las
	0	2	157	3	0	
	1	5	262	6	0	
	2	7	272	4	0	
	3	5	223	5	0	
	4	2	159	3	0	
	•••					
	14994	2	151	3	0	
	14995	2	160	3	0	
	14996	2	143	3	0	
	14997	6	280	4	0	
	14998	2	158	3	0	

14999 rows × 17 columns

```
In [34]: # define X & Y # The target variable 'attrition' has changed to 'attrition_stayed'
# but that really does not make a difference because
Y= HRF[['attrition']]
X = HRF.drop(columns=['attrition'])

In [35]: #Since there are some columns where the maximum value and minimum value is in very
# we can standardize / scale our data using StandardScaler
# (X1 - average of column) / (maximum of column - minimum of column)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_scal = sc.fit_transform(X)

In [36]: pd.DataFrame(X_scal)
```

Out[36]:		0	1	2	3	4	5	6	7	
	0	-1.462863	-0.882040	-0.341235	-0.411165	-0.147412	-0.235321	-0.232148	-0.227647	-0.20
	1	0.971113	1.220423	1.713436	-0.411165	-0.147412	-0.235321	-0.232148	-0.227647	-0.20
	2	2.593763	1.420657	0.343655	-0.411165	-0.147412	-0.235321	-0.232148	-0.227647	-0.20
	3	0.971113	0.439508	1.028546	-0.411165	-0.147412	-0.235321	-0.232148	-0.227647	-0.20
	4	-1.462863	-0.841993	-0.341235	-0.411165	-0.147412	-0.235321	-0.232148	-0.227647	-0.20
	•••									
	14994	-1.462863	-1.002181	-0.341235	-0.411165	-0.147412	-0.235321	-0.232148	-0.227647	-0.20
	14995	-1.462863	-0.821970	-0.341235	-0.411165	-0.147412	-0.235321	-0.232148	-0.227647	-0.20
	14996	-1.462863	-1.162368	-0.341235	-0.411165	-0.147412	-0.235321	-0.232148	-0.227647	-0.20
	14997	1.782438	1.580845	0.343655	-0.411165	-0.147412	-0.235321	-0.232148	-0.227647	-0.20
	14998	-1.462863	-0.862016	-0.341235	-0.411165	-0.147412	-0.235321	-0.232148	-0.227647	-0.20
	4.4000	4.6								

14999 rows × 16 columns

4				•

In [37]: X

Out[37]:		number_project	average_montly_hours	time_spend_company	Work_accident	promotion_la
	0	2	157	3	0	
	1	5	262	6	0	
	2	7	272	4	0	
	3	5	223	5	0	
	4	2	159	3	0	
	•••					
	14994	2	151	3	0	
	14995	2	160	3	0	
	14996	2	143	3	0	
	14997	6	280	4	0	
	14998	2	158	3	0	

14999 rows × 16 columns

```
In [38]: # split into train & test set
    from sklearn.model_selection import train_test_split
        X_train, X_test, Y_train, Y_test = train_test_split(X_scal, Y, train_size=0.8, rance)
In [39]: #building the model:
    # create model object
    from sklearn.svm import SVC
```

```
svm = SVC()
          # fit the object on training data
          model = svm.fit(X_train,Y_train)
          mode1
          C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:993: DataCo
          nversionWarning: A column-vector y was passed when a 1d array was expected. Please
          change the shape of y to (n_samples, ), for example using ravel().
           y = column_or_1d(y, warn=True)
         SVC()
Out[39]:
In [40]: # Predict the test cases
          Y_test['pred_svm'] = model.predict(X_test)
In [41]:
         Y_test
Out[41]:
                attrition pred sym
           7914
                                1
                      1
          14558
                      0
                                0
          12046
                      0
                                0
          11354
                                1
          12729
                      0
                                0
           8933
                      1
                                1
           3699
                                1
          12477
                      0
                                0
            162
                      0
                                0
          12719
                      0
                                0
         3000 rows × 2 columns
In [42]: # Step 6: We will build our confusion matrix to check the accuracy of the model
          #from sklearn.metrics import accuracy_score, confusion_matrix, classification_repor
          accuracy_score(Y_test['attrition'], Y_test['pred_svm'])
         0.922
Out[42]:
          confusion_matrix(Y_test['attrition'], Y_test['pred_svm'])
In [43]:
         array([[ 615, 120],
Out[43]:
                 [ 114, 2151]], dtype=int64)
          # Check the accuracy of the model
In [44]:
          from sklearn.metrics import classification report
          print(classification report(Y test['attrition'], Y test['pred svm']))
```

	precision	recall	f1-score	support	
0	0.84 0.95	0.84 0.95	0.84 0.95	735 2265	
1	0.55	0.55	0.55	2203	
accuracy			0.92	3000	
macro avg	0.90	0.89	0.89	3000	
weighted avg	0.92	0.92	0.92	3000	

Ans 2d

```
HRF['attrition'].value_counts()
In [45]:
              11428
Out[45]:
               3571
         Name: attrition, dtype: int64
          # applying normal LogisticRegression
In [46]:
In [47]: # Create our model object
          from sklearn.linear_model import LogisticRegression
         LR = LogisticRegression()
         # fit the object on training data
         model = LR.fit(X_train, Y_train)
         model
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:993: DataCo
         nversionWarning: A column-vector y was passed when a 1d array was expected. Please
         change the shape of y to (n_samples, ), for example using ravel().
           y = column_or_1d(y, warn=True)
         LogisticRegression()
Out[47]:
In [48]:
         # predicting the valye
          Y_test['pred_LR'] = model.predict(X_test)
        Y_test
In [49]:
```

ut[49]:		attrition	pred_svm	pred_LR
	7914	1	1	1
	14558	0	0	1
	12046	0	0	1
	11354	1	1	1
	12729	0	0	1
	•••			
	8933	1	1	1
	3699	1	1	1
	12477	0	0	1
	162	0	0	1
	12719	0	0	0
	2000	2		

3000 rows × 3 columns

```
accuracy_score(Y_test['attrition'], Y_test['pred_LR'])
In [50]:
         0.743
Out[50]:
In [51]:
          confusion matrix(Y test['attrition'], Y test['pred LR'])
         array([[ 24, 711],
Out[51]:
                   60, 2205]], dtype=int64)
         # Check the accuracy of the model
In [52]:
          print(classification_report(Y_test['attrition'], Y_test['pred_LR']))
                                     recall f1-score
                        precision
                                                         support
                     0
                             0.29
                                       0.03
                                                 0.06
                                                             735
                     1
                             0.76
                                       0.97
                                                 0.85
                                                            2265
                                                 0.74
                                                            3000
             accuracy
                             0.52
                                       0.50
                                                 0.45
             macro avg
                                                            3000
         weighted avg
                             0.64
                                       0.74
                                                 0.66
                                                            3000
```

from the results it is observed that the precision, recall & f-1 score of attrition =0 is far lower than attrition =1 this is because the data is imbalanced there are far more occurances of attrition =1 (i.e. people left the org) than attrition=0 (people stayed)! LogisticRegression does not perform well in these conditions Therefore SMOT must be used

LogisticRegression with SMOT

```
In [53]: # lets find the number of datapoints in training dataset for target variable
Y_train['attrition'].value_counts()
# we can see that the data is imbalanced
```

```
9163
         1
Out[53]:
              2836
         Name: attrition, dtype: int64
In [54]: # import the functionality of smote
         from imblearn.over sampling import SMOTE
          # we will balance the training data X_train and Y_train
          # we will create a smote object
          sm = SMOTE(random_state = 9999)
          # we will fit the smote object on X_train and Y_train ---> fit.resample
          X_train_new, Y_train_new = sm.fit_resample(X_train, Y_train)
In [55]: # lets again find the number of datapoints in the balanced training dataset for tar
         Y_train_new['attrition'].value_counts()
          # we can see that the data is now balanced
              9163
Out[55]:
              9163
         Name: attrition, dtype: int64
In [56]: # Step 4: Create the model using training dataset
         from sklearn.linear_model import LogisticRegression
          LR = LogisticRegression()
          model = LR.fit(X_train_new,Y_train_new)
          model
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:993: DataCo
         nversionWarning: A column-vector y was passed when a 1d array was expected. Please
         change the shape of y to (n_samples, ), for example using ravel().
           y = column_or_1d(y, warn=True)
         LogisticRegression()
Out[56]:
In [57]: # Predict the Test cases
         Y_test['pred_LRS'] = model.predict(X_test)
In [58]: Y_test
```

ut[58]:		attrition	pred_svm	pred_LR	pred_LRS
	7914	1	1	1	0
	14558	0	0	1	0
	12046	0	0	1	0
	11354	1	1	1	0
	12729	0	0	1	0
	•••				
	8933	1	1	1	1
	3699	1	1	1	1
	12477	0	0	1	0
	162	0	0	1	0
	12719	0	0	0	0

3000 rows × 4 columns

```
In [59]:
          accuracy_score(Y_test['attrition'], Y_test['pred_LRS'])
         0.635
Out[59]:
In [60]:
          confusion_matrix(Y_test['attrition'], Y_test['pred_LRS'])
         array([[ 534, 201],
Out[60]:
                 [ 894, 1371]], dtype=int64)
          # Check the accuracy of the model
In [61]:
          print(classification_report(Y_test['attrition'], Y_test['pred_LRS']))
                                     recall f1-score
                        precision
                                                         support
                     0
                             0.37
                                       0.73
                                                  0.49
                                                             735
                     1
                             0.87
                                        0.61
                                                  0.71
                                                            2265
                                                  0.64
                                                            3000
              accuracy
                             0.62
                                       0.67
                                                  0.60
             macro avg
                                                            3000
         weighted avg
                             0.75
                                       0.64
                                                  0.66
                                                            3000
```

Conclusion

LogisticRegression with SMOT performs better than LogisticRegression without SMOT (recall values are closer to each other)

but LogisticRegression as a model (with and without SMOT) performs inferior to SVM in this case

Bollywood

Ans 3a

```
In [62]: # Step 1: Read and access data
import pandas as pd
bo = pd.read_csv('bollywood.csv')
bo
```

[62]:		SINo	Release Date	MovieName	ReleaseTime	Genre	Budget	BoxOfficeCollection	YoutubeVi
	0	1	18-Apr- 14	2 States	LW	Romance	36	104.00	8576
	1	2	4-Jan- 13	Table No. 21	N	Thriller	10	12.00	1087
	2	3	18-Jul- 14	Amit Sahni Ki List	N	Comedy	10	4.00	572
	3	4	4-Jan- 13	Rajdhani Express	N	Drama	7	0.35	42
	4	5	4-Jul- 14	Bobby Jasoos	N	Comedy	18	10.80	3113
	•••								
	144	145	27-Feb- 15	Dum Laga Ke Haisha	N	Comedy	15	30.00	3250
	145	146	13- Mar-15	NH10	N	Thriller	13	32.10	5592
	146	147	20- Mar-15	Dilliwali Zaalim Girlfriend	N	Comedy	32	12.00	2316
	147	148	20- Mar-15	Hunterrr	N	Comedy	5	11.89	4674

149 rows × 10 columns

149

148

23-

May-14

Kochadaiiyaan

```
In [63]:
          bo.isnull().sum()
         SlNo
                                  0
Out[63]:
                                  0
         Release Date
         MovieName
                                  0
         ReleaseTime
                                  0
                                  0
         Genre
          Budget
                                  0
         BoxOfficeCollection
                                  0
         YoutubeViews
                                  0
         YoutubeLikes
                                  0
         YoutubeDislikes
                                  0
         dtype: int64
          bo.info()
In [64]:
```

HS

Action

150

120.00

4740

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 149 entries, 0 to 148
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	SlNo	149 non-null	int64
1	Release Date	149 non-null	object
2	MovieName	149 non-null	object
3	ReleaseTime	149 non-null	object
4	Genre	149 non-null	object
5	Budget	149 non-null	int64
6	BoxOfficeCollection	149 non-null	float64
7	YoutubeViews	149 non-null	int64
8	YoutubeLikes	149 non-null	int64
9	YoutubeDislikes	149 non-null	int64
44	£1+C4/1\+C4	(F) = b = = + (4)	

dtypes: float64(1), int64(5), object(4)

memory usage: 11.8+ KB

- assuming that SINo, Release Date, MovieName have no effect on Box Office collections, that can be modelled with a Linear Regression, and can be ignored
- we have 2 categorical columns that could have an effect on Box Office Collections, viz: ReleaseTime & Genre, therefore we will convert them to numerical using get_dummies
- there are multiple input values to model one output --- This is a Multiple Linear Regression problem

```
In [65]: bo1= pd.get_dummies(bo, columns = ['ReleaseTime', 'Genre'], drop_first = True)
In [66]: bo1
```

4.00

0.35

10.80

30.00

32.10

12.00

11.89

120.00

572336

42626

3113427

3250917

5592977

2316047

4674795

4740727

2

3

144

145

146

147

148

3

4

5

145

146

147

148

149

14

13

14

15

13-

20-

20-

23-

4-Jan-

4-Jul-

27-Feb-

Mar-15

Mar-15

Mar-15

May-14

4, 12:08 AM	DIWAKAR SINHA MOD 6 ASSIGNMENT-Copy1								
Out[66]: SIN		SINo	Release Date	MovieName	Budget	BoxOfficeCollection	YoutubeViews	YoutubeLikes	You
	0	1	18-Apr- 14	2 States	36	104.00	8576361	26622	
	1	2	4-Jan- 13	Table No. 21	10	12.00	1087320	1129	
	2	2	18-Jul-	Amit Sahni Ki	10	4.00	F72226	F06	

10

7

18

15

13

32

5

150

List

Rajdhani

Express

Bobby Jasoos

Dum Laga Ke

Haisha

NH10

Dilliwali

Zaalim

Girlfriend

Hunterrr

Kochadaiiyaan

149 rows × 17 columns

In [67]: #Spliting the data into X and YX = bo1.drop(['SlNo', 'Release Date', 'MovieName', 'BoxOfficeCollection'], axis = 1 Y = bo1[['BoxOfficeCollection']] In [68]:

586

86

4512

8185

15464

4289

3706

13466

Out[68]:		BoxOfficeCollection
	0	104.00
	1	12.00
	2	4.00
	3	0.35
	4	10.80
	•••	
	144	30.00
	145	32.10
	146	12.00
	147	11.89
	148	120.00

149 rows × 1 columns

LinearRegression()

Out[70]:

In [69]: #Dividing the data into training and test data

```
from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_stalen(X_train), len(X_test), len(Y_train), len(Y_test)

Out[69]:

(119, 30, 119, 30)

In [70]: #Creating the model using on the training data set from sklearn.linear_model import LinearRegression lr = LinearRegression()

#Fit the model object into training data to build a model model=lr.fit(X_train, Y_train) model
```

Find the values of slope, intercept and R Square (Applicable only when we build Regression based model) For linear model R-sq >=75

rsq

Out[73]:

0.5949046896114394

	1_00	3.0	
Out[74]:		BoxOfficeCollection	predicted
	111	10.00	-1.458531
	75	37.80	94.781344
	136	56.00	26.020935
	56	36.00	76.717975
	110	35.50	48.715068
	9	0.01	3.470497
	65	3.75	33.393999
	15	0.09	-61.501217
	30	1.50	11.980225
	63	0.70	7.627056
	88	14.05	10.127115
	62	45.00	24.292409
	83	40.00	46.540339
	112	4.00	14.156968
	138	125.00	136.087759
	41	111.00	140.692088
	102	4.00	55.714393
	66	2.50	7.512839
	90	100.00	84.412100
	141	38.00	83.965879
	69	61.00	57.694435
	2	4.00	7.196061
	22	76.70	36.997091
	51	8.78	-9.962917
	12	105.50	122.828194
	11	10.25	-4.411023
	140	14.02	2.101446
	133	22.00	57.151939
	16	162.00	133.867196
	84	55.00	44.303060

```
In [75]: # Step 7: Calculate the RMSE value from test data. RMSE - Root <- Mean <- Square <-
Y_test['error'] = Y_test['BoxOfficeCollection'] - Y_test['predicted']</pre>
```

```
Y_test['sq-error'] = (Y_test['BoxOfficeCollection'] - Y_test['predicted']) **2

Error_mean = Y_test['sq-error'].mean()
Error_mean #This is mean of sq_Error

#Find the root of Error mean -> RMSE
import math
RMSE = math.sqrt(Error_mean)
RMSE
```

Out[75]:

27.294169764305966

we know from theory that A Linear Regression model with HIGH value of R Square and LOW RMSE is an ideal model. however we observe here that the Rsquare = 60(approx) which is not very high and RMSE = 27 (approx) which is not considered very low:

We can therefore conclude that the Box Office performance of a movie cannot be very well explained/ predicted by a LinearRegression model

```
In [76]: Y_test
```

Out[76]:		BoxOfficeCollection	predicted	error	sq-error
	111	10.00	-1.458531	11.458531	131.297934
	75	37.80	94.781344	-56.981344	3246.873544
	136	56.00	26.020935	29.979065	898.744360
	56	36.00	76.717975	-40.717975	1657.953462
	110	35.50	48.715068	-13.215068	174.638027
	9	0.01	3.470497	-3.460497	11.975036
	65	3.75	33.393999	-29.643999	878.766705
	15	0.09	-61.501217	61.591217	3793.477965
	30	1.50	11.980225	-10.480225	109.835108
	63	0.70	7.627056	-6.927056	47.984112
	88	14.05	10.127115	3.922885	15.389027
	62	45.00	24.292409	20.707591	428.804329
	83	40.00	46.540339	-6.540339	42.776030
	112	4.00	14.156968	-10.156968	103.163999
	138	125.00	136.087759	-11.087759	122.938400
	41	111.00	140.692088	-29.692088	881.620095
	102	4.00	55.714393	-51.714393	2674.378495
	66	2.50	7.512839	-5.012839	25.128554
	90	100.00	84.412100	15.587900	242.982630
	141	38.00	83.965879	-45.965879	2112.862037
	69	61.00	57.694435	3.305565	10.926763
	2	4.00	7.196061	-3.196061	10.214806
	22	76.70	36.997091	39.702909	1576.320945
	51	8.78	-9.962917	18.742917	351.296951
	12	105.50	122.828194	-17.328194	300.266297
	11	10.25	-4.411023	14.661023	214.945592
	140	14.02	2.101446	11.918554	142.051921
	133	22.00	57.151939	-35.151939	1235.658787
	16	162.00	133.867196	28.132804	791.454650
	84	55.00	44.303060	10.696940	114.424534

In []: