Bilkent University	Ata Seren
CS353 Database Systems	Section-2
Homework 5 Answers	21901575

Q1)

	Α	В	С	D
Tuple 1	a1	b1	c1	d1
Tuple 2	a1	b2	c1	d1
Tuple 3	a2	b3	c1	d3
Tuple 4	a2	b3	c2	d3
Tuple 5	a3	b3	c2	d3
Tuple 6	a4	b4	c2	d4

A functional dependency does not hold on a relation if tuples does not agree on same attributes.

- a) A \rightarrow C does not hold on R because tuple 3 and 4 cause violation. In these tuples, A = a2 but C = c1 in tuple 3 and C = c2 in tuple 4.
- b) B \rightarrow D holds on R. No tuples cause violation.
- c) BCD \rightarrow A does not hold on R because tuple 4 and 5 cause violation. In these tuples, B = b3, C = c2 and D= d3 but A = a2 for tuple 4 and A = a3 for tuple 5.

According to the table, we can only say that $A \to D$ and $B \to D$ for A, B and D. Therefore, by applying a short loop of attribute closure algorithm, we get the following result:

d)
$$A^+ = AD B^+ = BD$$

e) AB is not a super key because AB \rightarrow R does not hold. Because of this, we can say that AB is not a candidate key either.

```
Q2)
```

$$R(A,B,C,D,E,F)$$
 {AB \rightarrow C, A \rightarrow D, F \rightarrow A, D \rightarrow E, BE \rightarrow F, AC \rightarrow B}

I used attribute closure algorithm on slides of Chapter 7.

a) A⁺

result = A

result = AD $(A \rightarrow D, A \subseteq result)$

result = ADE $(D \rightarrow E, D \subseteq result)$

 $A^+ = ADE$

b) CF⁺

result = CF

result = ACF $(F \rightarrow A, F \subseteq result)$

result = ABCF (AC \rightarrow B, AC \subseteq result)

result = ABCDEF $((A \rightarrow D, A \subseteq result, D \rightarrow E, D \subseteq result)$

 $CF^+ = ABCDEF$

c)

 $D \rightarrow E$

 $DB \rightarrow BE$ (augmentation)

 $BE \rightarrow F$

 $F \rightarrow A$

 $DB \rightarrow A$ (transitivity)

 $DB \rightarrow AB$ (augmentation)

 $AB \rightarrow C$

 $DB \rightarrow C$ (transitivity)

Q3)

- a) Candidate key of the relation is A since A \rightarrow R and there are no attributes that satisfies this condition.
- b) Relation does not satisfy BCNF. For A \rightarrow D and A \rightarrow BD, A is a super key. Therefore they satisfy a condition for BCNF. However, B \rightarrow C and D \rightarrow B dependency causes a violation because they are not trivial and B for first dependency is not a super key and D for second dependency is not a super key.
- c) Relation does not satisfy 3NF. As mentioned in previous part, $A \rightarrow D$ and $A \rightarrow BD$ satisfy BCNF but $B \rightarrow C$ and $D \rightarrow B$ do not. We need to check extra condition of 3NF. C B = C and not in a candidate key. B D = B and not in a candidate key either.

Q4)

- a) A \rightarrow D and BC \rightarrow E violates BCNF because they are not trivial and they do not have a super key on the left side (AF \rightarrow BC satisfies BCNF because AF is a super key. I found it by calculating AF⁺). Therefore, R does not satisfy BCNF.
- b) By using BC \rightarrow E, R is decomposed to BCE and ABCDF. BCE satisfies BCNF since BC in BC \rightarrow E is a super key. For ABCDF both dependencies violate BCNF. This one is decomposed to AD and ABCF. A \rightarrow D satisfies BCNF for AD and AF \rightarrow BC satisfies BCNF for ABCF. R decomposed to R1, R2 and R3. R1(B, C, E) R2(A, D) R3(A, B, C, F)
- c) Decomposition is dependency preserving because union of closures of decomposed sets involve closure of F.
- d) Decomposition is not lossless because their intersection, D, is not a super key for any of the decompositions.
- e) We can clearly see that dependencies with AF are lost with this decomposition. Therefore, it is not dependency preserving.

Q5)

a) To know if D is extraneous in BD \rightarrow C, I need to check if F implies B \rightarrow C.

 $B \rightarrow E$

 $E \rightarrow AD$

 $B \rightarrow AD$ (transitivity)

 $B \rightarrow AD$

 $AD \rightarrow C$

B → C (transitivity)

D is extraneous in BD \rightarrow C.

b) To know if C is extraneous in A \rightarrow BC, I need to check if A⁺ under (F – { $\alpha \rightarrow \beta$ }) U { $\alpha \rightarrow (\beta - A)$ } includes A where A is attribute inspected if it's extraneous.

A+:

result = A

result = AB $(A \rightarrow B)$

result = ABE $(B \rightarrow E)$

result = ABED $(E \rightarrow AD)$

result = ABCDE (AD \rightarrow CE)

A⁺ includes C. C is extraneous.

c) Other than the dependencies above, we need to check other dependencies for extraneous attributes to find the canonical cover.

Form after part a) and b) $\{A \rightarrow B, B \rightarrow CE, AD \rightarrow CE, E \rightarrow AD\}.$

 $B \rightarrow CE$:

(Check for C)

 $B^+ = BCE$

C is included. C is extraneous.

 $\{A \rightarrow B, B \rightarrow E, AD \rightarrow CE, E \rightarrow AD\}$

 $AD \rightarrow CE$:

(Check for D)

 $A \rightarrow B$

 $B \rightarrow E$

 $E \rightarrow AD$

 $AD \rightarrow CE$ (transitivity)

F implies A \rightarrow CE. D is extraneous.

 $\{A \rightarrow B, B \rightarrow E, A \rightarrow CE, E \rightarrow AD\}$

 $A \rightarrow CE$:

(Check for C)

 $A^+ = ABED$

C is not included. C is not extraneous.

(Check for E)

 $A^+ = ABCDE$

E is included. E is extraneous.

 $\{A \rightarrow B, B \rightarrow E, A \rightarrow C, E \rightarrow AD\} = \{A \rightarrow BC, B \rightarrow E, E \rightarrow AD\}$

 $E \rightarrow AD$:

(Check for A)

 $E^+ = ED$

A is not included. A is not extraneous.

(Check for D)

 $E^+ = ABCE$

D is not included. D is not extraneous.

 $\{A \rightarrow BC, B \rightarrow E, E \rightarrow AD\}$

Canonical cover is $\{A \rightarrow BC, B \rightarrow E, E \rightarrow AD\}$