W14 - Homework

Stepwise problems - Thu. 11:59pm

Polar curves

01

Convert points: Cartesian to Polar

Convert the Cartesian (rectangular) coordinates for these points into polar coordinates:

(a) (1,0) (b) $(3,\sqrt{3})$ (c) (-2,2) (d) $(-1,\sqrt{3})$

02

Convert equations: Polar to Cartesian

Convert the polar equation to a Cartesian equation. Be sure to simplify.

(a) r = 7 (b) $r = 2\sin\theta$ (c) $r = \frac{1}{\cos\theta - \sin\theta}$

Calculus with polar curves

03

Polar curve - Vertical or horizontal tangent lines

Find all points on the given curve where the tangent line is horizontal or vertical.

$$r=\cos heta \qquad heta\in[0,2\pi)$$

Hint: First determine parametric Cartesian coordinate functions using θ as the parameter.

04

Arclength of one loop of a rose

Consider the graph of the polar curve $r = 2\cos 3\theta$.

Set up an integral which computes the arclength of one loop of this curve.

Regular problems - Sat. 11:59pm

Polar curves

05

Convert points: Polar to Cartesian

Convert the polar coordinates for these points into Cartesian (rectangular) coordinates:

(a)
$$(3, \frac{\pi}{6})$$

(a)
$$\left(3, \frac{\pi}{6}\right)$$
 (b) $\left(-6, \frac{3\pi}{4}\right)$ (c) $\left(0, \frac{\pi}{5}\right)$ (d) $\left(5, -\frac{\pi}{2}\right)$

(c)
$$(0, \frac{\pi}{5})$$

(d)
$$(5, -\frac{\pi}{2})$$

06

Convert equations: Cartesian to Polar

Convert the Cartesian equation to a polar equation. Be sure to simplify.

(a)
$$x^2 + y^2 = 25$$
 (b) $x = 5$ (c) $y = x^2$

(b)
$$x = 5$$

(c)
$$y = x^2$$

07

Sketching limaçons

Sketch the graphs of the following polar functions:

(a)
$$r = 2 + \sin \theta$$
 (b) $r = 2 \cos \theta$

(b)
$$r = 2\cos\theta$$

(c)
$$r = 1 + 2 \sin \theta$$
 (d) $r = 3 + 3 \cos \theta$

(d)
$$r = 3 + 3\cos\theta$$

08

Sketching roses

Sketch the graphs of the following polar functions.

Use numbers to label the *order* in which the leaves/loops are traversed.

(a)
$$r = \sin 2\theta$$

(b)
$$r = \sin 3\theta$$
 (c) $r = 2\cos 2\theta$

(c)
$$r = 2\cos 2\theta$$

Calculus with polar curves

09

Polar curve - Slope of tangent line

Find the slope of the tangent line to the given polar curve:

$$r = \sin \theta + 3\cos \theta$$
 at $\theta = \pi/2$

Hint: First determine parametric Cartesian coordinate functions using θ as the parameter.

10

Polar coordinates - lunar areas

- (a) Find the area of the green region.
- (b) Find the area of the yellow region.

11

$\ensuremath{\mathbb{Z}}$ Pickup region of a microphone - limaçon area

The pickup region of a microphone is described by a limaçon with equation $r=8+8\sin\theta$, and part of the region is on a stage.

Find the area of the part of the region on the stage.

12

Area of an inner loop

A limaçon is given as the graph of the polar curve $r=1+2\sin\theta$.

Find the area of the inner loop of this limaçon.