7.1 Laplace Transforms (starting from the definition) a lesson for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

March 21, 2019

for textbook: D. Zill, A First Course in Differential Equations with Modeling Applications, 11th ed.

the definition

• the Laplace transform of a function f(t) defined on $(0,\infty)$ is

$$\mathcal{L}\left\{f(t)\right\} = \int_0^\infty e^{-st} f(t) dt$$

- this is the book's notation
- the result of applying the Laplace transform is a function of s
 - so slightly better notation would be

$$\mathcal{L}\left\{f\right\}\left(s\right) = \int_0^\infty e^{-st} f(t) dt$$

o a common (and good) way to write it is

$$F(s) = \int_0^\infty e^{-st} f(t) dt$$

why do we use \mathcal{L} in differential equations?

why do we use

$$\mathcal{L}\left\{f(t)\right\} = \int_0^\infty e^{-st} f(t) dt ?$$

- because the Laplace transform converts a linear DE (in t) into an algebra problem (in s)
 - o this is especially useful for solving nonhomogeneous DEs
 - o ...it's how many engineers think about nonhomogeneous DEs
 - o the Laplace transform linear, that is,

$$\mathcal{L}\left\{f(t) + g(t)\right\} = \mathcal{L}\left\{f(t)\right\} + \mathcal{L}\left\{g(t)\right\}, \; ext{and} \ \mathcal{L}\left\{lpha f(t)\right\} = lpha \mathcal{L}\left\{f(t)\right\}$$

the Laplace transform is basically limited to linear DEs

practice with integrals on $[a, \infty)$

- a Laplace transform is an integral $\int_0^\infty \dots$
- we need practice!
- practice 1. compute

$$\int_{2}^{\infty} e^{-3t} dt =$$

$$=\frac{1}{3}e^{-6}$$

• practice 2. compute and sketch

$$\int_{1}^{\infty} \frac{1}{t} dt =$$

$$=+\infty$$

practice integrals, cont.

• practice 3. compute and sketch

$$\int_0^\infty t e^{-t} dt =$$

$$= +1$$

Laplace transforms, from the definition

- the technique in Chapter 7 requires pre-computing the Laplace transforms of some familiar functions, and then using these to solve DEs
- example 1. compute $\mathcal{L}\left\{e^{kt}\right\}$

• example 2. compute $\mathcal{L}\left\{1\right\}$

from the definition, cont.

• example 3. compute $\mathcal{L}\left\{t\right\}$

• example 4. compute $\mathcal{L}\left\{\cos(kt)\right\}$

from the definition, cont.²

• example 5. compute $\mathcal{L}\left\{t^{n}\right\}$

$$\mathcal{L}\left\{t^{n}\right\} = \frac{n}{s}\mathcal{L}\left\{t^{n-1}\right\}$$
 $\implies \mathcal{L}\left\{t^{n}\right\} = \frac{n!}{s^{n+1}}$

first table

Theorem 7.1.1 Transforms of Some Basic Functions

(a)
$$\mathscr{L}{1} = \frac{1}{s}$$

(b)
$$\mathscr{L}\{t^n\} = \frac{n!}{s^{n+1}}$$
, $n = 1, 2, 3, \dots$

(c)
$$\mathscr{L}\lbrace e^{at}\rbrace = \frac{1}{s-a}$$

(d)
$$\mathscr{L}\{\sin kt\} = \frac{k}{s^2 + k^2}$$

(e)
$$\mathscr{L}\{\cos kt\} = \frac{s}{s^2 + k^2}$$

(f)
$$\mathscr{L}\{\sinh kt\} = \frac{k}{s^2 - k^2}$$

(g)
$$\mathscr{L}\{\cosh kt\} = \frac{s}{s^2 - k^2}$$

- you will have a table like this on quizzes and exams
- and it is a fair question to ask you to show any one from the definition

another example from the definition

• example 6. compute $\mathcal{L}\{f\}$ if

$$f(t) = \begin{cases} 0, & 0 \le t < a \\ 1, & t > a \end{cases}$$

$$\mathcal{L}\left\{f\right\} = \frac{e^{-as}}{s}$$

several WebAssign problems are piecewise like this

key fact from §7.2

• example 7. let $Y(s) = \mathcal{L}\{y(t)\}$. use the definition to show

$$\mathcal{L}\left\{y'(t)\right\} = sY(s) - y(0)$$

an actual example

- so far, examples just compute $\mathcal{L}\{f(t)\}$ for particular f(t)
- ...they don't show how \mathcal{L} is actually used!
- example 8. solve by using \mathcal{L} :

$$y' + 5y = t, y(0) = 0$$

$$y(t) = \frac{1}{25}(e^{-5t} - 1) + \frac{t}{5}$$

the old way, to check

• example 8'. solve by using Chapter 2 methods:

$$y' + 5y = t, y(0) = 0$$

can you always compute \mathcal{L} ?

- your function f(t) has to be defined on the interval $[0,\infty)$ so you can do the integral $\int_0^\infty e^{-st} f(t) dt$
- even then, the function has to not blow-up too fast
 - o bad example. try to compute

$$\mathcal{L}\left\{ e^{t^{2}}\right\} =$$

- the result may not be defined for all s
 - example. explain why this result only makes sense for s > 7:

$$\mathcal{L}\left\{e^{7t}\right\} = \frac{1}{s-7}$$

can you always compute \mathcal{L} ? cont.

• definition. a function f(t), defined on $[0, \infty)$, is of exponential order c if there are constants M and c so that

$$|f(t)| \leq Me^{ct}$$

for all t in $[0,\infty)$

Theorem

if f(t) is piecewise continuous on $[0,\infty)$ and of exponential order c then $\mathcal{L}\left\{f(t)\right\}$ is defined for s>c

the Laplace transform strategy

- example 8 used this strategy
- we get serious about this strategy in §7.2 and §7.3

beating a dead DE . . .

- by then end of this Chapter we will have a third good way of solving linear, constant-coefficient DEs:
- Chapter 4 use auxiliary equation and undetermined coefficients
- Chapter 6 use power series
- Chapter 7 use Laplace transform
 - both homogenous and nonhomogeneous
 - all these methods use linearity ... they are not suited to nonlinear DEs
 - o only Chapter 6 methods are well-suited to variable coefficients
 - o in Chapter 8 we will get one more method

expectations

- just watching this video is not enough!
 - see "found online" videos and stuff at bueler.github.io/math302/week11.html
 - read section 7.1 in the textbook
 - o do the WebAssign exercises for section 7.1