Fine-tuning BERT for Text Classification

Overview with Example Code

Shaw Talebi

Fine-tuning BERT for Text Classification 1 2 3

Fine-tuning

Adapting a pre-trained model to a particular task (through additional training)

Fine-tuning

Adapting a pre-trained model to a particular task (through additional training)

Fine-tuned Model

Additional Fine-tuning

BERT

Language model developed for fine-tuning

Task #1: Masked LM

BERT

Language model developed for fine-tuning

Task #2: Next Sentence Prediction

[CLS] BERT is conceptually simple and empirically powerful. [SEP] It obtains new state-of-the-art results on 11 NLP tasks [SEP]

BERT

→ IsNext

BERT

Language model developed for fine-tuning

Task #2: Next Sentence Prediction

Text Classification

Assigning a label to text sequences

Spam Detection

Categorizing IT Tickets

Review Sentiment Analysis

Epoch	Training Loss	Validation Loss	Accuracy
1	No log	0.423429	{'accuracy': 0.876}
2	0.412400	0.551401	{'accuracy': 0.878}
3	0.412400	0.593060	{'accuracy': 0.899}
4	0.211600	0.640572	{'accuracy': 0.894}
5	0.211600	0.839775	{'accuracy': 0.891}
6	0.064300	0.930830	{'accuracy': 0.887}
7	0.064300	0.988515	{'accuracy': 0.889}
8	0.020000	1.007572	{'accuracy': 0.884}
9	0.020000	1.040836	{'accuracy': 0.888}
10	0.009500	1.034907	{'accuracy': 0.896}

Overfitting

Imports

Load Data

```
dataset_dict = load_dataset("shawhin/phishing-site-classification")
```

[https://huggingface.co/datasets/shawhin/phishing-site-classification]

Load Pre-trained Model

```
# define pre-trained model path
model_path = "google-bert/bert-base-uncased"
# load model tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path)
# load model with binary classification head
id2label = {0: "Safe", 1: "Not Safe"}
label2id = {"Safe": 0, "Not Safe": 1}
model = AutoModelForSequenceClassification.from_pretrained(model_path,
                                                           num_labels=2,
                                                            id2label=id2label,
                                                            label2id=label2id,)
```

Set Trainable Parameters

```
# freeze all base model parameters
for name, param in model.base_model.named_parameters():
    param.requires_grad = False

# unfreeze base model pooling layers
for name, param in model.base_model.named_parameters():
    if "pooler" in name:
        param.requires_grad = True
```

Data Pre-processing

```
# define text preprocessing
def preprocess_function(examples):
    # return tokenized text with truncation
    return tokenizer(examples["text"], truncation=True)

# preprocess all datasets
tokenized_data = dataset_dict.map(preprocess_function, batched=True)
```

```
# create data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
```

Define Evaluation Metrics

```
# load metrics
accuracy = evaluate.load("accuracy")
auc_score = evaluate.load("roc_auc")
def compute_metrics(eval_pred):
   # get predictions
   predictions, labels = eval_pred
   # apply softmax to get probabilities
   probabilities = np.exp(predictions) / np.exp(predictions).sum(-1,
                                                                 keepdims=True)
   # use probabilities of the positive class for ROC AUC
   positive_class_probs = probabilities[:, 1]
   # compute auc
   auc = np.round(auc_score.compute(prediction_scores=positive_class_probs,
                                     references=labels)['roc_auc'],3)
   # predict most probable class
   predicted_classes = np.argmax(predictions, axis=1)
   # compute accuracy
   acc = np.round(accuracy.compute(predictions=predicted_classes,
                                     references=labels)['accuracy'],3)
   return {"Accuracy": acc, "AUC": auc}
```

Training Parameters

```
# hyperparameters
lr = 2e-4
batch_size = 8
num_epochs = 10
training_args = TrainingArguments(
    output_dir="bert-phishing-classifier_teacher",
    learning_rate=lr,
    per_device_train_batch_size=batch_size,
    per_device_eval_batch_size=batch_size,
    num_train_epochs=num_epochs,
    logging_strategy="epoch",
    eval_strategy="epoch",
    save_strategy="epoch",
    load_best_model_at_end=True,
```

Fine-tune Model

```
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_data["train"],
    eval_dataset=tokenized_data["test"],
    tokenizer=tokenizer,
    data_collator=data_collator,
    compute_metrics=compute_metrics,
trainer.train()
```

Training Loss	Epoch	Step	Validation Loss	Accuracy	Auc
0.4916	1.0	263	0.4228	0.784	0.915
0.3894	2.0	526	0.3586	0.818	0.932
0.3837	3.0	789	0.3144	0.86	0.939
0.3574	4.0	1052	0.4494	0.807	0.942
0.3517	5.0	1315	0.3287	0.86	0.947
0.3518	6.0	1578	0.3042	0.871	0.949
0.3185	7.0	1841	0.2900	0.862	0.949
0.3267	8.0	2104	0.2958	0.876	0.95
0.3153	9.0	2367	0.2881	0.867	0.951
0.3061	10.0	2630	0.2963	0.873	0.951

Validation Data

```
# apply model to validation dataset
predictions = trainer.predict(tokenized_data["validation"])
# Extract the logits and labels from the predictions object
logits = predictions.predictions
labels = predictions.label_ids
# Use your compute_metrics function
                                                     Make LLMs
metrics = compute_metrics((logits, labels))
print(metrics)
                                                         Smaller
# >> {'Accuracy': 0.889, 'AUC': 0.946}
```

Fine-tuning BERT for Text Classification

A Hackable Example with Python Code

Although today's 100B+ parameter transformer models are state-of-the-art in AI, there's still much we can accomplish with smaller (< 1B parameter) models. In this article, I will walk through one such example, fine-tuning BERT (110M parameters) to classify phishing URLs. I'll start by covering key concepts and then share example Python code.

Friend Link in Description

