BIOINFORMATYKA

edycja 2019 / 2020

wykład 3

Bazy danych

dr Jacek Śmietański jacek.smietanski@ii.uj.edu.pl http://jaceksmietanski.net

Plan wykładu

- 1. Źródła wiedzy biologicznej
- 2. GenBank / RefSeq
- 3. UniProt / SwissProt
- 4. PDB
- 5. Systemy powiązań
- 6. Inne popularne bazy
- 7. Poszukiwanie baz specjalistycznych

slajd 2

Źródła wiedzy biologicznej

slajd 3

(badania *in vitro*, *in vivo*) Dane eksperymentalne

- sekwencjonowanie
- eksperymenty mikromacierzowe
- rentgenografia (X-ray)
- rezonans magnetyczny (NMR) itp.

Dane obliczeniowe (badania *in silico*)

- analizy porównawcze (homologia)
- eksploracja danych odkrywanie wiedzy
- przewidywanie ab initio
- symulacje (dynamika molekularna, obliczenia kwantowo-mechaniczne) itp.

slajd 4

Jacek Śmietański, Kraków 2019

Dostęp do informacji

Bezpłatne bazy sekwencji nukleotydowych oraz struktur białkowych.

Ogromna liczba baz danych – w większości darmowych i dostępnych bez ograniczeń (on-line; FTP).

Narzędzia wyszukiwania dostępne on-line.

Liczne adnotacje i powiązania między różnymi bazami.

Wiele projektów open source.

Literatura naukowa coraz częściej udostępniana w trybie open access (za darmo dla wszystkich).

slajd 5

Instytut Informatyki UJ

Ile jest tych danych?

Liczba zdeponowanych danych rośnie bardzo szybko (chociaż w niektórych grupach natknęliśmy już na barierę).

Np. GenBank – ponad **260 mld** nukleotydów;

ponad 208 mln sekwencji genów;

(sierpień 2018; http://www.ncbi.nlm.nih.gov/genbank/statistics)

Dane WGS: 3,2 bln nukleotydów – sierpień 2018; 2,2 bln nukleotydów – sierpień 2018.

UniProt/SwissProt — 558 tys sekwencji białkowych (październik 2018; 552 tys – październik 2016), http://www.uniprot.org/statistics/Swiss-Prot)

UniProt/TrEMBL – 127 mln sekwencji aminokwasowych (październik 2018; 67 mln - wrzesień 2015, http://www.uniprot.org/statistics/TrEMBL)

PDB – 145 tys struktur (październik 2018,

http://www.rcsb.org/pdb/static.do?p=general_information/pdb_stat

Do pewnego momentu liczba deponowanych danych rosła w tempie wykładniczym (wykres obok z roku 1995). Dziś w większości baz nie obserwujemy już takiej tendencji.

Protein structures

Nucleotide sequences

Bibliographic

Cele przeszukiwania baz danych

- Poszukiwanie dodatkowych informacji o badanej sekwencji (np.literatura, adnotacje).
- Poszukiwanie sekwencji homologicznych.
- Określenie, czy dana sekwencja jest już zdeponowana w bazie danych.
- Poszukiwanie sekwencji DNA homologicznej do niekodujących regionów DNA (np. sekwencje regulatorowe, elementy powtarzające się).
- Poszukiwanie sekwencji nadających się do wykorzystania w PCR.
- Poszukiwanie charakterystycznych motywów sekwencyjnych lub strukturalnych.
- Poszukiwanie / przewidywanie struktury, aktywności lub funkcji nieznanej sekwencji.

slajd 7

itp.

Wyszukiwanie tekstowe (np. ENTREZ)

```
LOCUS
            SCU49845
                         5028 bp
                                     DNA
                                                     PLN
                                                               21-JUN-1999
          Saccharomyces cerevisiae TCP1-beta gene, partial cds, and Ax12p
DEFINITION
            (AXL2) and Rev7p (REV7) genes, complete cds.
            U49845
ACCESSION
            U49845.1 GI:1293613
VERSION
KEYWORDS
            Saccharomyces cerevisiae (baker's yeast)
SOURCE
  ORGANISM Saccharomyces cerevisiae
            Eukaryota; Fungi; Ascomycota; Saccharomycotina; Saccharomycetes;
            Saccharomycetales; Saccharomycetaceae; Saccharomyces.
            1 (bases 1 to 5028)
REFERENCE
 AUTHORS
            Torpey, L.E., Gibbs, P.E., Nelson, J. and Lawrence, C.W.
            Cloning and sequence of REV7, a gene whose function is required for
 TITLE
            DNA damage-induced mutagenesis in Saccharomyces cerevisiae
  JOURNAL
            Yeast 10 (11), 1503-1509 (1994)
```

Wyszukiwanie na podstawie sekwencji (np. BLAST)

slajd 8

Instytut Informatyki UJ

Problem zarządzania informacją

Przeszłość

Teraźniejszość

Przyszłość

Bezproblemowo

Potrzeba automatyzacji

Nowa jakość podziału zadań

Mała ilość informacji, nieduża złożoność zadań => użytkownik daje sobie radę

Trudność w dostępie do dużej ilości informacji, rośnie trudność zadań => użytkownik pod presją

slajd 9

Duża ilość informacji, duża trudność zadań + wspierające systemy decyzyjne => użytkownik daje sobie radę

Wiarygodność i użyteczność baz - przykładowe problemy

- błędne dane
- niekompletne dane
- powtarzające się dane (np. identyczne sekwencje)

slajd 10

- brak spójności
- niejednoznaczne nazewnictwo
- niejawne powiązania
- modyfikacja wpisu (wpływ na bazy zależne; dotychczasowe publikacje itp.)
- odnajdowanie i oznaczanie błędów
- itp.

Knowledge discovery

poszukiwanie powiązań między informacjami, których nie znano w momencie wprowadzania danych do bazy.

(wykorzystujemy metody eksploracji danych – *data mining*)

Rodzaje baz danych

Pierwszorzędowe (pierwotne) surowe dane eksperymentalne

Drugorzędowe (wtórne)

dane zawierające dodatkowe adnotacje, powiązania często nieredundantne

Specjalistyczne

przetworzone, bądź np. dedykowane konkretnym organizmom, chorobom itp.

slajd 12

GenBank / RefSeq

baza sekwencji nukleotydowych (baza genów)

GEO

baza eksperymentów mikromacierzowych

UniProt / Swiss-Prot

baza sekwencji aminokwasowych (baza białek)

PDB

baza struktur przestrzennych

GenBank / RefSeq

Baza sekwencji nukleotydowych, zarządzana przez NCBI (USA).

Analogiczne bazy funkcjonują również w Europie (EMBL) i Japonii (DDBJ).

Poszczególne bazy wymieniają informacje między sobą.

Dostępne on-line i przez FTP.

Autorzy samodzielnie wprowadzają nowe sekwencje (warunek publikacji).

Integracja baz NIH (GenBank), EBI (EMBL) i NIG (DDBJ)

GenBank - statystyka nukleotydów

GenBank and WGS Statistics

Skala wykładnicza...

http://www.ncbi.nlm.nih.gov/genbank/statistics

GenBank - statystyka sekwencji

Skala wykładnicza...

http://www.ncbi.nlm.nih.gov/genbank/statistics

Jacek Śmietański, Kraków 2019

Whole Genome Shotgun Submissions

https://www.ncbi.nlm.nih.gov/Traces/wgs/?view=WGS

# \$Pre			AT-week-d	‡ DIV	∕ ‡ Organism	\$ Bioproject	Biosample	Infraspecific Name	Other Source	▼Total length (Mbases)	Contigs				
	\$ Prefix		◆Targeted Locus Name								\$#	\$ # Prot	♦ Has Annot	\$#	\$ # Prot
1	LMTP01	WGS		PLN	Pinus lambertiana	PRJNA174450	SAMN03354659	isolate: USFS_5038	tissue_type: megagametophyte	26,323.9	4,253,097				
2	APFE02	WGS		PLN	Pinus taeda	PRJNA174450	SAMN02981512		tissue_type: needle	21,039.8	7,082,509				
3	JZKD01	WGS		PLN	Picea glauca	PRJNA242552	SAMN02736787		tissue_type: needles	20,925.9	5,261,503			3,353,683	
4	ALWZ04	WGS		PLN	Picea glauca	PRJNA83435	SAMN01120252		tissue_type: Flushing bud	19,229.5	6,221,640		Y	3,033,285	
5	LPNX01	WGS		PLN	Pseudotsuga menziesii	PRJNA174450	SAMN03333061	isolate: Weyco1	dev_stage: megagametophyte tissue_type: megagametophyte	13,993.5	1,236,665				
6	AUXO01	WGS		ENV	gut metagenome	PRJNA202380	SAMN02715735		host: Ovis aries isolation_source: sheep rumen	5,515.9	8,786,927		Y		
7	AVCP01	WGS		INV	Locusta migratoria	PRJNA185471	SAMN02261463		dev_stage: adult tissue_type: whole body	5,493	1,397,492		Y		
8	AZMS01	WGS		INV	Acanthoscurria geniculata	PRJNA222716	SAMN02720822			4,865.8	12,478,692		Y	4,986,575	
۵	AACV02	MCC		ENI\/	marino	DD INIA12604	QAMANO205/2/5		icolation course:	1 261 5	1 121 105			2 027 206	E 172 20

Organismal Divisions

Used in which database?

BCT	Bacterial	DDBJ - GenBank
FUN	Fungal	EMBL
HUM	Homo sapiens	DDBJ - EMBL
INV	Invertebrate	all
MAM	Other mammalian	all
ORG	Organelle	EMBL
PHG	Phage	all
PLN	Plant	all
PRI	Primate (also see HUM)	all (not same data in all)
PRO	Prokaryotic	EMBL
ROD	Rodent	all
SYN	Synthetic and chimeric	all
VRL	Viral	all
VRT	Other vertebrate	all

Functional Divisions

PAT Patent

EST Expressed Sequence Tags

STS Sequence Tagged Site

GSS Genome Survey Sequence

HTG High Throughput Genome (unfinished)

HTC High throughput cDNA (unfinished)

CON Contig assembly instructions

Organismal divisions:

BCT FUN INV MAM PHG PLN PRI ROD SYN VRL VRT

GenBank - odsyłacze

Strona domowa:

http://www.ncbi.nlm.nih.gov/genbank/

Przykładowy rekord, opis formatu:

http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html

Wyszukiwanie:

Entrez – nukleotydy:

http://www.ncbi.nlm.nih.gov/nucleotide/

Główna kolekcja GenBank (bez sekwencji EST):

http://www.ncbi.nlm.nih.gov/nuccore/

BLAST:

http://blast.ncbi.nlm.nih.gov/Blast.cgi

GenBank – format pliku GBFF [GenBank Flat File] (1): nagłówek

Bioinformatyka, wykład 3

GenBank - format pliku GBFF (2): właściwości

```
Location/Oualifiers
FEATURES
                     1..5028
     source
                     /organism="Saccharomyces cerevisiae"
                     /db xref="taxon:4932"
                     /chromosome="IX"
                     /map="9"
     CDS
                     <1..206
                     /codon start=3
                     /product="TCP1-beta"
                     /protein id="AAA98665.1"
                     /db xref="GI:1293614"
                     /translation="SSIYNGISTSGLDLNNGTIADMRQLGIVESYKLKRAVVSSASEA
                     AEVLLRVDNIIRARPRTANROHM"
                     687..3158
     gene
                     /gene="AXL2"
     CDS
                     687..3158
                     /gene="AXL2"
                     /note="plasma membrane glycoprotein"
                     /codon start=1
                     /function="required for axial budding pattern of S.
                     cerevisiae"
                     /product="Ax12p"
                     /protein id="AAA98666.1"
                     /db xref="GI:1293615"
                     /translation="MTQLQISLLLTATISLLHLVVATPYEAYPIGKQYPPVARVNESF
                     TFOISNDTYKSSVDKTAQITYNCFDLPSWLSFDSSSRTFSGEPSSDLLSDANTTLYFN
```

GenBank – format pliku GBFF (3): sekwencja

ORIGIN 1 gatcctccat atacaacggt atctccacct caggtttaga tctcaacaac ggaaccattg 61 ccgacatgag acagttaggt atcgtcgaga gttacaagct aaaacgagca gtagtcagct 121 ctgcatctga agccgctgaa gttctactaa gggtggataa catcatccgt gcaagaccaa 181 gaaccgccaa tagacaacat atgtaacata tttaggatat acctcgaaaa taataaaccg 241 ccacactgtc attattataa ttagaaacag aacgcaaaaa ttatccacta tataattcaa 301 agacgcgaaa aaaaaagaac aacgcgtcat agaacttttg gcaattcgcg tcacaaataa 361 attttggcaa cttatgtttc ctcttcgagc agtactcgag ccctgtctca agaatgtaat 421 aatacccatc qtaqqtatqq ttaaaqataq catctccaca acctcaaaqc tccttqccqa 481 gagtcgccct cctttgtcga gtaattttca cttttcatat gagaacttat tttcttattc 541 tttactctca catcctgtag tgattgacac tgcaacagcc accatcacta gaagaacaga 601 acaattactt aatagaaaaa ttatatcttc ctcgaaacga tttcctgctt ccaacatcta 661 cgtatatcaa gaagcattca cttaccatga cacagcttca gatttcatta ttgctgacag 721 ctactatatc actactccat ctagtagtgg ccacgcccta tgaggcatat cctatcggaa 781 aacaataccc cccagtggca agagtcaatg aatcgtttac atttcaaatt tccaatgata 841 cctataaatc gtctgtagac aagacagctc aaataacata caattgcttc gacttaccga 901 gctggctttc gtttgactct agttctagaa cgttctcagg tgaaccttct tctgacttac 961 tatctgatgc gaacaccacg ttgtatttca atgtaatact cgagggtacg gactctgccg 1021 acagcacgtc tttgaacaat acataccaat ttgttgttac aaaccgtcca tccatctcgc 1081 tatcqtcaqa tttcaatcta ttqqcqttqt taaaaaacta tqqttatact aacqqcaaaa 1141 acqctctqaa actaqatcct aatqaaqtct tcaacqtqac ttttqaccqt tcaatqttca 1201 ctaacqaaqa atccattqtq tcqtattacq qacqttctca qttqtataat qcqccqttac 1261 ccaattggct gttcttcgat tctggcgagt tgaagtttac tgggacggca ccggtgataa 1321 actcqqcqat tqctccaqaa acaaqctaca qttttqtcat catcqctaca qacattqaaq 1381 gattttctgc cgttgaggta gaattcgaat tagtcatcgg ggctcaccag ttaactacct

http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html

Jacek Śmietański, Kraków 2019

Wady modelu Flat File

- brak możliwości ograniczenia zapytania do pewnych pól (bez przeglądania całych plików);
- powolne zapytania, powolne dołączanie nowych wpisów (ponownie konieczność przeglądania całych plików);
- jednoczesność (co będzie jak kilka osób zmodyfikuje jednocześnie ten sam wpis?);
- spójność (jak sprawdzać czy wprowadzane wartości są prawidłowe – np. czy powiązania wskazują na istniejące zapisy?)

>gi(37993870)gb|CF805616.1]CF805616 TaRGA.C2 [...]

Bardzo prosty format – przydatny, gdy interesuje nas tylko sekwencja. Pierwszy wiersz (zaczynający się znakiem większości ">") – nagłówek (ID, nazwa itp.);

kolejne wiersze - sekwencja

Nieredundantna (nadzorowana, drugorzędowa) baza danych sekwencji.

Ograniczona tylko do najlepiej poznanych genetycznie organizmów.

(sekwencje z ok. 17tys. gatunków – w GenBanku 250tys.)

On-line:

za pośrednictwem Entrez

FTP:

ftp://ftp.ncbi.nih.gov/refseq/release/

Format danych podobnie jak w GenBanku. Dodatkowy prefiks przed identyfikatorem.

```
Accession prefix | Molecule type | Comment
AC
     Genomic Complete genomic molecule, usually alternate assembly
NC Genomic Complete genomic molecule, usually reference assembly
NG
    Genomic Incomplete genomic region
NT
   Genomic Contig or scaffold, clone-based or WGSa
NW Genomic Contig or scaffold, primarily WGSa
    Genomic Environmental sequence
NS
NZ b Genomic Unfinished WGS
NM
      mRNA
NR
       RNA
XM c mRNA Predicted model
              Predicted model
XR c RNA
AP
    Protein Annotated on AC_ alternate assembly
NP Protein Associated with an NM or NC accession
YP c Protein
XP c Protein Predicted model, associated with an XM accession
    Protein Predicted model, annotated on NZ genomic records
ZP c
```

UniProt / Swiss-Prot

slajd 30

Protein Information Resource

http://pir.georgetown.edu/

PIR-PSD – historycznie pierwsza adnotowana baza sekwencji aminokwasowych, bezpośredni następca atlasu białek (1965-1978) Margaret Dayhoff.

Obecnie włączona przez EBI i SIB do bazy UniProt.

Jacek Śmietański, Kraków 2019

Adnotowana baza sekwencji białkowych:

- obszerny opis;
- minimalna redundancja
- integracja z innymi bazami

Przykładowe dane zawarte w adnotacjach:

- funkcja białka
- modyfikacje potranslacyjne np. fosforylacja, acetylacja, glikozylacja
- domeny i miejsca wiążące, motywy (palec cynkowy itp.)
- struktura drugorzędowa
- struktura czwartorzędowa
- podobieństwo do innych białek
- choroby związane z funkcją biologiczną białka
- sprzeczności w wyznaczeniu sekwencji, odmiany

Jacek Śmietański, Kraków 2019

TrEMBL

Baza poddanych translacji sekwencji nukleotydowych

Zasoby bazy są uzupełniane i adnotowane automatycznie;

Część rekordów – po opracowaniu przez kuratora – jest dodawana do bazy Swiss-Prot

Podział:

Swiss-Prot TrEMBL – rekordy oczekujące na opracowanie i włączenie do Swiss-Prot REM-TrEMBL – rekordy, których włączenie do Swiss-Prot nie jest planowane

http://www.uniprot.org/

Meta-baza powstała z połączenia zasobów Swiss-Prot, TrEMBL i PIR

Jacek Śmietański, Kraków 2019

Statystyki: UniProt / Swiss-Prot

Total

100,000 50,000

0

1990

1995

2000

entries in the database

Entries with updated sequences

549,215

56

	Protein Existence (PE)	Number of entries
1	Evidence at protein level	90,456
2	Evidence at transcript level	57,714
3	Inferred from homology	387,606
4	Predicted	11,484
5	Uncertain	1,955

2010

2015

2005

Statystyki: UniProt / TrEMBL

Total	50,825,784
Entries with updated sequences	857
With a fragmented AA sequence	6,573,313
With known alternative products	0

Number of entries in UniProtKB/TrEMBL over time

	Protein Existence (PE)	Number of entri
1	Evidence at protein level	117,527
2	Evidence at transcript level	967,807
3	Inferred from homology	10,858,591
4	Predicted	38,881,859
5	Uncertain	0

UniProt - wyszukiwanie

,							
human antigen	All entries containing both terms.						
human AMD antigen							
human && antigen							
"human antigen"	All entries containing both terms in the exact order.						
human -antigen	All entries containing the term human but not antigen.						
human NOT antigen							
human ! antigen							
human OR mouse	All entries containing either term.						
human mouse							
antigen AND (human OR mouse)	Using parentheses to override boolean precedence rules.						
anti*	All entries containing terms starting with anti. Asterisks can also be used at the beginning and within terms. Note: Terms starting with an asterisk or a single letter followed by an asterisk can slow down queries considerably.						
author:Tiger*	Citations that have an author whose name starts with Tiger. To search in a specific field of a dataset, you must prefix your search term with the field name and a colon. To discover what fields can be queried explicitly, observe the query hints that are shown after submitting a query or use the query builder (see below).						
length:[100 T0 *]	All entries with a sequence of at least 100 amino acids.						
citation: (author: Arai author: Chung)	All entries with a publication that was coauthored by two specific authors.						

To use characters that have a special meaning in the query syntax literally in your query, you must escape them with a backslash, e.g. use gene: L\ (1\) 2CB to search for the gene name L(1) 2CB. The current list of special characters is:

+ - && || ! () { } [] ^ " ~ * ? : \

Jacek Śmietański, Kraków 2019

Format pliku UniProt / Swiss-Prot

```
147 AA.
                               Reviewed;
ID
     HBB HUMAN
AC
     P68871; A4GX73; B2ZUE0; P02023; Q13852; Q14481; Q14510; Q45KT0;
     Q549N7; Q6FI08; Q6R7N2; Q8IZI1; Q9BX96; Q9UCD6; Q9UCP8; Q9UCP9;
AC
\mathbf{DT}
     21-JUL-1986, integrated into UniProtKB/Swiss-Prot.
     23-JAN-2007, sequence version 2.
\mathbf{DT}
DT
     22-FEB-2015, entry version 104.
     RecName: Full=Hemoglobin subunit beta;
\mathbf{DE}
DE
     AltName: Full=Beta-globin;
     AltName: Full=Hemoglobin beta chain;
\mathbf{DE}
DE
     Contains:
\mathbf{DE}
       RecName: Full=LVV-hemorphin-7;
GN
     Name=HBB;
OS
     Homo sapiens (Human).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
OC
     Catarrhini; Hominidae; Homo.
     NCBI TaxID=9606;
OX
RN
     [1]
RP
     NUCLEOTIDE SEQUENCE [GENOMIC DNA].
RX
     MEDLINE=77126403; PubMed=1019344;
RA
     Marotta C., Forget B., Cohen-Solal M., Weissman S.M.;
RT
     "Nucleotide sequence analysis of coding and noncoding regions of human
RT
     beta-globin mRNA.";
     Prog. Nucleic Acid Res. Mol. Biol. 19:165-175(1976).
RL
     [2]
RN
RP
     NUCLEOTIDE SEQUENCE [GENOMIC DNA].
```

. . .

PDB

Protein Data Bank (PDB)

Baza struktur molekularnych http://www.pdb.org

synthetic antigen binder (sAB) Kossiakoff, A.A., Duguid, E.M., Sandstrom, A

Dokumentacja formatu danych:

http://www.wwpdb.org/docs.html#format

FTP:

ftp://ftp.wwpdb.org/

PDB - statystyki

Exp.Method	Proteins	Nucleic Acids	Protein/NA Complexes	Other	Total
X-RAY	121728	1962	6283	4	129977
NMR	10864	1259	250	8	12381
ELECTRON MICROSCOPY	1790	31	644	0	2465
HYBRID	121	5	2	1	129
other	244	4	6	13	267
Total	134747	3261	7185	26	145219

http://www.rcsb.org/pdb/statistics/holdings.do

Format mmCIF

```
data 1EJ9
 entry.id
                 1EJ9
audit conform.dict name
                                           mmcif pdbx.dic
 audit conform.dict version
                                            4.007
 audit conform.dict location
http://mmcif.pdb.org/dictionaries/ascii/mmcif p
dbx.dic
loop
database 2.database id
                                                            atom site.group PDB
 database 2.database code
                                                            atom site.id
PDB
     1EJ9
                                                            _atom_site.type_symbol
                                                            atom site.label atom id
      PD0125
NDB
                                                           atom site.label alt id
                                                            atom site.label comp id
RCSB RCSB010631
                                                            _atom_site.label_asym_id
                                                            atom site.label entity id
                                                            atom site.label seq id
loop
                                                            atom site.pdbx PDB ins code
                                                            atom site.Cartn x
database PDB rev.num
                                                            atom site.Cartn y
                                                            atom site.Cartn z
 database PDB rev.date
                                                            atom site.occupancy
 database PDB rev.date original
                                                            atom site.B iso or equiv
                                                            _atom_site.Cartn_x_esd
 database PDB rev.status
                                                            _atom_site.Cartn_y_esd
                                                            atom site.Cartn z esd
 database PDB rev.replaces
                                                            atom site.occupancy esd
 database PDB rev.mod type
                                                            atom site.B iso or equiv esd
                                                            _atom_site.pdbx_formal_charge
1 2000-08-03 2000-03-01 ? 1EJ9 0
                                                            atom site.auth seq id
2 2009-02-24 ?
                                                            atom site.auth comp id
                                  ? 1EJ9 1
                                                            atom site.auth asym id
                                                            _atom_site.auth_atom_id
                                                            atom site.pdbx PDB model num
 database PDB rev record.rev num
                                                                          . PRO A 1 5 ? -3.218 23.313 19.768 1.00 65.32 ? ? ? ? ? ? 4
                                                                          . PRO A 1 5 ? -2.926 24.681 19.350 1.00 62.03 ? ? ? ? ? ? 4
 database PDB rev record.type
                                                  VERSN
                                                                           . PRO A 1 5 ? -3.532 24.954 17.967 1.00 52.41 ? ? ? ? ? ? 4
 database PDB rev record.details
                                                                          . PRO A 1 5 ? -1.419 24.648
                                                                          . PRO A 1 5 ? -1.192 23.263 18.562
                                                                                                       1.00 39.23
                                                                          . PRO A 1 5 ? -2.288 22.354 19.126 1.00 51.55
                                                                          . ALA A 1 6 ? -3.090 26.021 17.294 1.00 52.98 ? ? ? ? ? ? 5 ALA A N
```

slajd 42

Format PDB: nagłówek

Przykładowe pola:

- HEADER
- TITLE
- COMPND
- SOURCE
- AUTHOR
- DATE
- JRNL
- REMARK
- SEQRES
- ATOM COORDINATES

```
SIGNAL TRANSDUCTION
HEADER
                                                    23-APR-97
                                                                1MPH
TITLE
          PLECKSTRIN HOMOLOGY DOMAIN FROM MOUSE BETA-SPECTRIN, NMR,
TITLE
         2 50 STRUCTURES
COMPND
          MOL ID: 1;
         2 MOLECULE: BETA SPECTRIN;
COMPND
COMPND
         3 CHAIN: NULL;
COMPND
         4 FRAGMENT: PLECKSTRIN HOMOLOGY;
COMPND
         5 SYNONYM: PH DOMAIN;
COMPND
         6 ENGINEERED: YES
SOURCE
          MOL ID: 1;
         2 ORGANISM SCIENTIFIC: MUS MUSCULUS;
SOURCE
SOURCE
         3 ORGANISM COMMON: MOUSE;
         4 ORGAN: BRAIN;
SOURCE
SOURCE
         5 EXPRESSION SYSTEM: ESCHERICHIA COLI;
SOURCE
         6 EXPRESSION SYSTEM STRAIN: BL21 (DE3);
         7 EXPRESSION SYSTEM PLASMID: PET21D
SOURCE
KEYWDS
          SIGNAL TRANSDUCTION, INOSITOL PHOSPHATES
EXPDTA
          NMR, 50 STRUCTURES
AUTHOR
          M.NILGES, M.J. MACIAS, S.I.O'DONOGHUE, H.OSCHKINAT
REVDAT
         1 16-JUN-97 1MPH
JRNL
            AUTH
                   M.NILGES, M.J. MACIAS, S.I.O'DONOGHUE, H.OSCHKINAT
JRNL
                   AUTOMATED NOESY INTERPRETATION WITH AMBIGUOUS
            TITL 2 DISTANCE RESTRAINTS: THE REFINED NMR SOLUTION
JRNL
JRNL
            TITL 3 STRUCTURE OF THE PLECKSTRIN HOMOLOGY DOMAIN FROM
JRNL
            TITL 4 BETA SPECTRIN
JRNL
            REF
                   TO BE PUBLISHED
                                                                     0353
JRNL
            REFN
```

Format PDB: sekwencja

Przykładowe pola:

HEADER

•	TITLE	REMARK REMARK		LMPH LMPH		3WS 3WS		Q6226 Q6226		230	1 - 05 -		8 NG	II TO		OMS I			
•	COMPND	DBREF SEQRES SEQRES	1MPH 1 2	1 106 106	10 MET HIS		sws GLY LYS			ASN	ARG	MOUS LYS ARG	HIS	219 GLU TRP		2304 GLU ASN	ALA		
•	SOURCE	SEQRES SEQRES SEQRES	3 4 5	106 106 106	ASP	ALA	LYS	SER		ALA	SER	GLU GLY GLU	ILE	PRO		TYR HIS GLU	SER		
•	AUTHOR	SEQRES SEQRES SEQRES	6 7 8	106 106 106		LEU LEU ASP	SER	ASP	GLY	ASN	GLU	LYS TYR TRP	LEU	PHE	GLN	LYS ALA ILE	LYS		
•	DATE	SEQRES HELIX HELIX	9 1 2	106 1 ALA 2 ASP	SER	ALA 41 93	SER SER		46 104	1								6 12	
•	JRNL	SHEET SHEET SHEET	1 2 3	A 7 PI A 7 GI A 7 TI	ū	55 34 23	SE	R R	57 38 -	0 -1 I		ET SN	35 31	0	VAI GL1		56 34		
•	REMARK	SHEET SHEET	4	A 7 GI A 7 GI	.υ .υ	2 85	TR:	P N	11 - 89 -	-1 I -1 I	N Al	RG	7 89	0	HIS ASI	5 1	24 6		
•	SEQRES	SHEET SHEET	6 7	A 7 VI A 7 II		75 62	AR AL		79 - 66 -			LA	78 66	0	TY! VAI		86 75		

ATOM COORDINATES

Format PDB: współrzędne atomów

Przykładowe pola:

- HEADER
- TITLE
- COMPND
- SOURCE
- AUTHOR
- DATE
- JRNL
- REMARK
- SEQRES
- ATOM COORDINATES

					V	V	7			
					X	Υ	Z			
MODEL		1								
ATOM	1	N	MET	1	-7.678	-13.900	-15.824	1.00	1.74	N
ATOM	2	CA	MET	1	-8.660	-12.928	-16.368	1.00	1.02	С
ATOM	3	С	MET	1	-8.995	-11.893	-15.292	1.00	0.87	С
ATOM	4	0	MET	1	-10.035	-11.971	-14.631	1.00	1.29	0
ATOM	5	CB	MET	1	-9.933	-13.643	-16.861	1.00	1.60	С
ATOM	6	CG	MET	1	-9.956	-13.743	-18.387	1.00	2.33	С
ATOM	7	SD	MET	1	-8.573	-14.694	-19.049	1.00	3.31	s
ATOM	8	CE	MET	1	-9.264	-16.356	-19.025	1.00	4.33	С
ATOM	9	1H	MET	1	-7.505	-13.691	-14.815	1.00	2.19	H
ATOM	10	2 H	MET	1	-8.056	-14.870	-15.918	1.00	2.25	H
ATOM	11	3 H	MET	1	-6.780	-13.823	-16.346	1.00	2.20	H
ATOM	12	HA	MET	1	-8.205	-12.416	-17.205	1.00	1.43	H
ATOM	13	1HB	MET	1	-9.969	-14.638	-16.440	1.00	1.91	H
ATOM	14	2 HB	MET	1	-10.805	-13.092	-16.540	1.00	2.17	H
ATOM	15	1HG	MET	1	-10.881	-14.212	-18.688	1.00	2.75	H
ATOM	16	2 HG	MET	1	-9.921	-12.744	-18.796	1.00	2.71	H
ATOM	17	1HE	MET	1	-10.194	-16.366	-19.578	1.00	4.65	H
ATOM	18	2HE	MET	1	-8.564	-17.040	-19.484	1.00	4.69	H
ATOM	19	3 HE	MET	1	-9.451	-16.650	-18.002	1.00	4.75	H
ATOM	20	N	GLU	2	-8.100	-10.919	-15.120	1.00	0.51	N
ATOM	21	CA	GLU	2	-8.269	-9.846	-14.133	1.00	0.37	С
ATOM	22	С	GLU	2	-7.885	-8.506	-14.763	1.00	0.34	С
ATOM	23	0	GLU	2	-7.123	-8.463	-15.734	1.00	0.48	0
ATOM	24	CB	GLU	2	-7.386	-10.094	-12.897	1.00	0.53	С
ATOM	25	CG	GLU	2	-7.554	-11.510	-12.325	1.00	0.96	С
ATOM	26	CD	GLU	2	-6.450	-12.435	-12.822	1.00	1.61	С
ATOM	27	OE1	GLU	2	-5.265	-12.079	-12.684	1.00	2.09	0
ATOM	28	OE2	GLU	2	-6.763	-13.524	-13.344	1.00	2.16	0
ATOM	29	H	GLU	2	-7.288	-10.919	-15.684	1.00	0.67	H
ATOM	30	HA	GLU	2	-9.304	-9.804	-13.824	1.00	0.41	H
ATOM	31	1HB	GLU	2	-6.351	-9.936	-13.169	1.00	1.25	H
MOT	32	2 HB	GLII	2	-7 657	-9 381	-12 132	1 00	1 17	H

Systemy powiązań

Wprowadzenie

Systemy integrujące informacje pochodzące z różnych baz; często z dodatkowymi narzędziami.

slajd 47

Przykłady:

- ENTREZ
- ExPASy
- RNA Central
- NDB

Instytut Informatyki UJ

Entrez

Entrez (zarządzany przez NCBI) jest zintegrowanym systemem wyszukiwania informacji w bazach danych.

https://www.ncbi.nlm.nih.gov/search/

Entrez – bazy wchodzące w skład sieci

Bioinformatyka, wykład 3

Instytut Informatyki UJ

Literature		Genes						
Books	books and reports	EST	expressed sequence tag sequences					
MeSH	ontology used for PubMed indexing	Gene	collected information about gene loci					
NLM Catalog	books, journals and more in the NLM Collections	GEO Data Sets	functional genomics studies					
PubMed	scientific & medical abstracts/citations	GEO Profiles	gene expression and molecular abundance profiles					
PubMed Central	full-text journal articles	HomoloGene	homologous gene sets for selected organisms					
Health		PopSet	sequence sets from phylogenetic and population studies					
ClinVar	human variations of clinical significance	UniGene	clusters of expressed transcripts					
dbGaP	genotype/phenotype interaction studies	Proteins						
GTR	genetic testing registry							
MedGen	medical genetics literature and links	Conserved Domains	conserved protein domains					
OMIM	online mendelian inheritance in man	Protein	protein sequences					
PubMed Health	clinical effectiveness, disease and drug reports	Protein Clusters	sequence similarity-based protein clusters					
Genomes		Structure	experimentally-determined biomolecular structures					
Genomes		Chemicals						
Assembly	genome assembly information							
BioCollections	museum, herbaria, and other biorepository collections	Bio Systems	molecular pathways with links to genes, proteins and chemicals					
BioProject	biological projects providing data to NCBI	PubChem BioAssay	bioactivity screening studies chemical information with structures, information and					
BioSample	descriptions of biological source materials	Tubellelli bioAssay						
Clone	genomic and cDNA clones	PubChem Compound	links					
dbVar	genome structural variation studies	PubChem Substance	deposited substance and chemical information					
Genome	genome sequencing projects by organism							
GSS	genome survey sequences							
Nucleotide	DNA and RNA sequences							
Probe	sequence-based probes and primers							
SNP	short genetic variations							
SRA	high-throughput DNA and RNA sequence read archive							
Taxonomy	taxonomic classification and nomenclature catalog							
			http://www.ncbi.nlm.nih.gov/sites/gquery					

Entrez - sieć powiązań

Bazy sekwencji DNA (nucleotide), sekwencje białek (protein), literatura (PubMed), polimorfizmy (SNP), PopSe systematyka (taxonomy), mutacje (OMIM), domeny białkowe (domains), eksperymenty mikromacierzowe (GEO), genomy (genome), itp.

Instytut Informatyki UJ

Entrez: wyszukiwanie - znaczniki

Link do tabeli z pełnym opisem:

http://www.ncbi.nlm.nih.gov/entrez/query/static/help/Summary_Matrices.html#Search_Fields_and_Qual ifiers

Wybrane znaczniki:

[ACCN] numer dostępu (accession number)

[ALL] wszystkie pola (all fields)

[AUTH] nazwisko autora (author name)

[FKEY] najważniejsze cechy (feature key)

[ORGN] organizm (organism)

[PROP] właściwości (properties)

[SLEN] długość sekwencji (sequence length)

Przykłady zastosowania:

2:100[SLEN] – sekwencje o długości co najwyżej 100 nukleotydów

slajd 51

Saccharomyces cerevisiae[ORGN] – sekwencje pochodzące

od wskazanego gatunku drożdzy

1999/07/25:1999/07/31[MDAT] – sekwencje zmodyfikowane w podanym przedziale czasowym

Expert Protein Analysis System http://expasy.org/

Jacek Śmietański, Kraków 2019

Examples: RNA, Homo sapiens, miRBase, HOTAIR, tRNA, 4V4Q.

Expert databases - API - Sequence search

RNAcentral provides unified access to the ncRNA sequence data supplied by the Expert Databases below Learn more

ENA

provides a comprehensive record of the world's nucleotide sequencing information

7.5 million sequences | Example Updated

Rfam

is a collection of non-coding RNA families represented by manually curated sequence alignments, consensus secondary structures, and predicted homologues

2.5 million sequences | Example

RefSea

is a comprehensive. integrated, non-redundant, well-annotated set of reference sequences

57,115 sequences | Example updated

Vega

is a repository for high-quality gene models produced by the manual annotation of vertebrate genomes. Human and mouse data from Vega are merged into GENCODE

32,429 sequences | Example Updated

Worm Base

curates, stores and displays genomic and genetic data about nematodes with primary emphasis on C. elegans and related nematodes.

24,907 sequences | Example New

gtRNAdb

contains tRNA gene predictions on complete or nearly complete genomes

10,625 sequences | Example

miRBase

is a database of miRBase published miRNA sequences and annotations that provides a

centralised system for assigning names to miRNA genes

8,795 sequences | Example

RDP

provides quality controlled, aligned and annotated rRNA

sequences and a suite of analysis

4,779 sequences | Example

Statistics

- > Release 3 (20 May 2015)
- > 8,607,919 distinct sequences
- 15 Expert Databases
- Number of sequences over time

News

- RNAcentral release 3
- New training course: Online resources for ncRNA
- > RNAcentral release 2
- > New RNAcentral paper is online
- > RNAcentral release 1.0

□ Blog RSS feed Follow 437 followers

Citing RNAcentral

If you use RNAcentral, please cite the following paper:

RNAcentral: an international database of ncRNA sequences

The RNAcentral Consortium, 2014 (NAR 🗹)

NDB

About NDB

Standards

Education

Tools

Software

Download

A Portal for Three-dimensional Structural Information about Nucleic Acids
As of 14-Oct-2015 number of released structures: 7796

Search DNA

Search RNA

Advanced Search

Enter an NDB ID or PDB ID

Search for released structures

Welcome to the NDB

The NDB contains information about experimentally-determined nucleic acids and complex assemblies.

Use the NDB to perform searches based on annotations relating to sequence, structure and function, and to download, analyze, and learn about nucleic acids.

Search Structures

Search DNA

Search DNA and its complexes

Search RNA

Search for RNA structures in the NDB archive or in the Non-Redundant list

Advanced Search

Search for structures based on structural features, chemical features, binding modes, citation and experimental information

Featured Tools

RNA 3D Motif Atlas, a representative collection of RNA 3D internal and hairpin loop motifs

Non-redundant Lists of RNA-containing 3D structures

RNA Base Triple Atlas, a collection of motifs consisting of two RNA basepairs

WebFR3D, a webserver for symbolic and geometric searching of RNA 3D structures

R3D Align, an application for detailed nucleotide to nucleotide alignments of RNA 3D structures

Inne popularne bazy

OMIM – baza ludzkich genów i genotypów

SNP – baza mutacji punktowych

EST – baza sekwencji z technik wysokoprzepustowych

CATH – hierarchiczna klasyfikacja białek

PFAM – baza rodzin białkowych

Bazy bibliograficzne

PubMed

http://www.ncbi.nlm.nih.gov/pubmed/ baza cytowań artykułów i książek naukowych z obszaru *life science* ponad 21 mln rekordów.

PubMed Central

http://www.ncbi.nlm.nih.gov/pmc/pełne teksty artykułów ponad 2 mln rekordów

BookShelf

http://www.ncbi.nlm.nih.gov/books/

Bioinformatyka, wykład 3

Jacek Śmietański, Kraków 2019

Poszukiwanie baz specjalistycznych

Lista baz danych – kolekcja NAR

Czasopismo Nucleic Acids Research corocznie wydaje specjalny numer opisujący nowe lub ulepszone niedawno bazy danych (w pojedynczym numerze opisane jest ok 100 baz).

Opisane bazy gromadzone są w kolekcji dostępnej dla każdego przez stronę czasopisma. Bazy można przeszukiwać alfabetycznie lub wg kategorii.

Kolekcja zawiera ponad 1500 baz danych.

UWAGA: w kolekcji są także bazy przestarzałe, zawierające nieaktualne lub niekompletne dane.

Nucleic Acids Research

ABOUT THIS JOURNAL C

CONTACT THIS JOURNA

SUBSCRIPTIONS

Oxford Journals > Life Sciences > Nucleic Acids Research > Database Summary

NAR Database Summary Paper Category List

Nucleotide Sequence Databases

RNA sequence databases

Protein sequence databases

Structure Databases

Genomics Databases (non-vertebrate)

Metabolic and Signaling Pathways

Human and other Vertebrate Genomes

Human Genes and Diseases

Microarray Data and other Gene Expression Databases

Proteomics Resources

Other Molecular Biology Databases

Organelle databases

Plant databases

Immunological databases

Cell biology

- Compilation Paper
- Category List
- ▶ Alphabetical List
- ▶ Category/Paper List
- ▶ Search Summary Papers

Lista baz wg kategorii: http://www.oxfordjournals.org/our_journals/nar/database/c/ Lista alfabetyczna: http://www.oxfordjournals.org/our_journals/nar/database/a/

Bioinformatics Links Directory (bioinformatics.ca)

https://links.bioinformatics.ca/

The Bioinformatics Links Directory features curated links to molecular resources, tools and databases. The links listed in this directory are selected on the basis of recommendations from bioinformatics experts in the field. We also rely on input from our community of bioinformatics users for suggestions. Starting in 2003, we have also started listing all links contained in the NAR Webserver issue.

Hide Tools (1548)

Computer Related (85)

This category contains links to resources relating to This category contains links to useful resources for programming languages often used bioinformatics. Other tools of the trade, such as web development and database resources, are also included here.

DNA (604)

in DNA sequence analyses such as tools for comparative sequence analysis and sequence assembly. Links to programs for sequence manipulation, primer design, and sequence retrieval and submission are also listed here

Education (75)

Links to information about the techniques, materials, people, places, and events of the greater bioinformatics community. Included are current news headlines, literature sources, educational material and links to bioinformatics courses and workshops.

Expression (396)

Links to tools for predicting the expression, alternative splicing, and regulation of a gene sequence are found here. This section also contains links to databases, methods, and analysis tools for protein expression, SAGE, EST, and microarray data.

Human Genome (240)

Literature (87)

This section contains links to draft annotations of the Links to resources related to published literature,

https://www.expasy.org

Instytut Informatyki UJ

Koniec ©

The Course of Science

Kolejny wykład: Dopasowanie par sekwencji

Jacek Śmietański, Kraków 2019