

Contents lists available at ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Optimizing the performance of meta-polybenzimidazole membranes in vanadium redox flow batteries by adding an alkaline pre-swelling step

Chanho Noh a,1 , Dmytro Serhiichuk b,c,d,1 , Najibah Malikah b,d , Yongchai Kwon a,e,* , Dirk Henkensmeier b,d,f,*

- a Graduate School of Energy and Environment, Seoul National University of Science and Technology, Nowon-gu, Seoul 01811, Republic of Korea
- ^b Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
- ^c Chemical Technology Faculty, NTUU Igor Sykorsky Kyiv Polytechnic Institute, Kyiv 03056, Ukraine
- d Division of Energy & Environment Technology, KIST School, University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
- e Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Nowon-gu, Seoul 01811, Republic of Korea
- ^f Green School, Korea University, Seongbukgu, Seoul 02841, Republic of Korea

HIGHLIGHTS

- Alkaline pre-swelling increases conductivity of sulfuric acid doped PBI 3–10 times.
- Pre-swelling in 4 M NaOH reduces VO^{2+} permeability from 4 $10^{\cdot 15}$ to 1.6 $10^{\cdot 15}$ m² s⁻¹.
- Selectivity (conductivity/permeability) was increased 7 times.
- Energy efficiencies of 91.3% at 80 mA cm⁻² and 95.4% at 40 mA cm⁻² were achieved.

ARTICLE INFO

Keywords:
PBI
Alkaline pre-treatment
Conductivity
Vanadium permeability
VRFB

GRAPHICAL ABSTRACT

ABSTRACT

Polybenzimidazole (PBI) is a promising material for vanadium redox flow battery (VRFB) membranes. It shows a low permeability for vanadium ions, a conductivity in the range of 5 mS cm $^{-1}$ in contact with 2 M sulfuric acid, and resists degradation by VO $_2^+$. Recent literature showed that the conductivity of PBI can be increased to 18 mS cm $^{-1}$ by pre-swelling the membrane with phosphoric acid (PA), and up to 590 mS cm $^{-1}$ by casting a sulfonated para-PBI membrane from polyphosphoric acid before immersion in sulfuric acid. However, these membranes show an increased permeability towards VO $^2+$ ions, and thus reduced coulomb efficiency in the VRFB. Here we investigate pre-swelling in 4 M alkaline solution. It increases the conductivity in 2 M sulfuric acid to 56 (potassium hydroxide) and 12 mS cm $^{-1}$ (sodium hydroxide). In 3 M sulfuric acid, the NaOH swollen membrane (4N3S) shows 14 mS cm $^{-1}$, corresponding to an area resistance of 69 m Ω cm 2 for a 10 μ m thick membrane, lower than that of Nafion 115 (192 m Ω cm 2) and even Nafion 212 (89 m Ω cm 2). The selectivity (conductivity/permeability) is 9·10¹⁴ S s m $^{-3}$ 7, 30 and 1000 times higher than for standard PBI, PA and polyphosphoric acid pre-swollen membranes, respectively. A VRFB with a 5 μ m thick 4N3S membrane showed energy efficiencies of 91.3% at 80 mA cm $^{-2}$ and 95.4% at 40 mA cm $^{-2}$.

^{*} Corresponding authors at: Graduate School of Energy and Environment, Seoul National University of Science and Technology, Nowon-gu, Seoul 01811, Republic of Korea (Y. Kwon). Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea (D. Henkensmeier).

E-mail addresses: kwony@seoultech.ac.kr (Y. Kwon), henkensmeier@kist.re.kr (D. Henkensmeier).

¹ Both authors contributed equally.