Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection

Khursheed ali (16305009), Ayush Goyal (16305
R011) $\,$

November 24, 2017

Chapter 1

Methods

1.1 Correlation

attr database Accuracy: 0.14 Yale database Accuracy: 0.7

Observation: Does't handle pose and illumination changes

1.2 EigenFace

1.2.1 Experiments

X-axis: Number of eigen Vectors(k)

Y-axis: Recognition rate

1. Attr Database

Accuracy: 0.95 for k=29

Figure 1.1: attr database

2. Yale Database

Accuracy: 0.39 for k=289

Figure 1.2: Yale database

3. Yale Database handling Illumination changes

Accuracy: 0.68 for k=477

Figure 1.3: Yale database handing illumination changes

1.3 Fisher Face

Function for Fisher Face:

 $W_{opt} = argmax_W \mid W_T S_B W \mid / \mid W_T S_W W \mid$ where W_{opt} is optimal projection S_B is between class scatter S_W is within class scater

Problem: To obtain the Fisherfaces, we need to compute the inverse of S_w , i.e., S_w^{-1} . If the sample feature vectors are defined in a p-dimensional space and p is larger than the total number of samples n, then S_w is singular. **Solutions**: There are three typically used solutions to this problem.

- 1. In the first solution, we project the sample vectors onto the PCA space of r dimensions, with $r <= rank(S_w)$ and compute the Fisherfaces in this PCA space.
- 2. The second solution is to project the between- and within-class scatter matrices onto the PCA space of r dimensions, with $r <= rank(S_w)$ and compute the Fisherfaces in this PCA space.
- 3. The third solution is to add a regularising term to S_w . That is, $S_w + \epsilon I$, where I is the identity matrix and ϵ is a small constant.

We have tested for both Second and third Method. Both methods give almost same results.

1.3.1 Optimization used for second method

Problem: Size of image vector was i.e d=H*W(32256 \times 1 for Yale database). So Size of S_B and S_W (scatter matix) was d \times d(i.e 32256 \times 32256), which is equal to 7.8 gb each. Finding S_W and S_B was a computation and memory overhead

Optimization: To reduce computation and memory overhead we have used following method.

1. For finding projected value of S_B :

Mean vector for a particular class of Image= μ_i

Mean Image vector all class images= $\overline{\mu}$

$$\overline{\mu_i} = \mu_i - \overline{\mu}$$

$$A = [\overline{\mu_1} * \sqrt{n_1} \quad \overline{\mu_2} * \sqrt{n_2} \quad \dots]$$

$$S_B = AA^T$$

$$W_{PCA}^T S_B W_{PCA} = W_{PCA}^T . A. A^T . W_{PCA}$$

$$W_{PCA}^T S_B W_{PCA} = (W_{PCA}^T . A).(A^T . W_{PCA})$$

Dimension of $W^T_{PCA}.A = (N-c) \times (N)$, where N in number of images and c in number of class

2. For finding projected value of S_W

Image vector of a class= X_i

Mean Image vector of a particular class = $\overline{\mu_{ci}}$

$$\overline{X_i} = X_i - \overline{\mu_{ci}}$$

$$B=[\overline{X_1} \quad \overline{X_2} \quad \dots]$$

$$S_W = BB^T$$

$$W_{PCA}^T S_W W_{PCA} = W_{PCA}^T . B.B^T . W_{PCA}$$

$$W_{PCA}^{T}S_{W}W_{PCA} = (W_{PCA}^{T}.B).(B^{T}.W_{PCA})$$

Dimension of $W^T_{PCA}.B = (N-c) \times (N)$, where N in number of images and c in number of class

1.3.2 Experiments

1. Attr Database

Accuracy: 0.906250

Figure 1.4: Fisher Faces for Attr Databse

2. Yale Database

Scaling: 1

Accuracy: 0.739474

Figure 1.5: Fisher Faces for Yale Databse

3. Yale Database

Scaling: 0.5

Accuracy: 0.781579

Figure 1.6: Fisher Faces for Yale Databse

4. Extended Yale Database Accuracy: 0.93

Figure 1.7: projection of test images on first 3 Fisher Face Vectors