第四章作业

第一次作业

练习 4.2.1

- 1) S=>SS*=>SS+S*=>aS+S*=>aa+S*=>aa+a*
- 2) S=>SS*=>Sa*=>SS+a*=>Sa+a*=>aa+a*

3)

4) 没有二义性。

- (1) 先证明一个该文法产生串的长度的结论: 设串的推导过程中使用产生式 S=>SS+和 S=>SS*的次数为 m,则串的长度 <math>L=2*m+1,且串中包含 m 个运算符(+或*)和(m+1)个 a。
- 1) 当 m=0 时,仅有 S=>a 一种情况,L=1,串由 1 个 a 和 0 个运算符构成,结论成立:
- 2) 设当 m<k(k>=1)时结论成立,则当 m=k 时,第一步推导必然为 S=>S1S2*op*

op 为+或*,S 下标仅用于区分 S 的多次出现。设 S1 $\stackrel{*}{\Rightarrow}$ α,S2 $\stackrel{*}{\Rightarrow}$ β,α、β 均为使用 S=>S1S2op 少于 k 次得到的串,设二者推导过程中分别使用该产生式 k1 和 k2 次,根据假设有:

$$L(\alpha)=2*k_1+1$$
, $L(\beta)=2*k_2+1$

串长度 L= L(α)+ L(β)+1=2*(k₁+k₂+1)+1=2*k+1; 且串中 a 的个数为(k₁+1)+(k₂+1)=k+1; 运算符个数为 k₁+k₂+1=k,故结论成立。

- (2)下面证明该文法无二义性,对串的长度做归纳。由前述证明可知,该文法产生的串长 L 可为任意非负奇数。对由该文法得到的长度为 L=2*k+1 串 ω:
- 1) 当 k=0 时, L=2*0+1=1, 只有 S=>a 一种情况,显然没有二义性。

2) 设当 k<n 时结论成立。 $S \Rightarrow \omega$,根据 ω 末尾运算符可确定第一步推导使用的产生式,不妨设为:

S=>S1S2+

从后向前处理串 ω ,除去末尾的运算符,找到可以由 S 推导出的最短的串 α ,设 α 长度为 m_1 ,由前述结论可知 m_1 =2* k_1 +1,且 α 包含 k_1 个运算符与(k_1 +1)个 a,

由归纳假设可知 α 无二义性,存在唯一的最左推导 $S \Rightarrow \alpha$;

设串 ω 剩余部分为 β,设 β 长度为 m_2 ,同理可知 $m_2=2*k_2+1$,β 包含 k_2 个运算符与 (k_2+1) 个 a,存在唯一最左推导 S $\underset{lm}{\overset{*}{\Rightarrow}}$ β,且满足 $k=k_1+k_2$ 。

此时串 ω 可表示成如下形式:

$$ω=βα+$$

故存在唯一的最左推导:

$$S \Rightarrow SS+ \Rightarrow_{lm}^{*} \beta S+ \Rightarrow_{lm}^{*} \beta \alpha+$$

此时仍不存在二义性。综上所述,该文法不具有二义性。

5) 由字符 a 与运算符+、*构成的后缀表达式。

练习 4.2.3

S->01S | 1S | ε

练习 4.3.1

- 1) 该文法无左公因子
- 2) 不能, 因为有左递归存在
- 3) rexpr->rterm rexpr' rexpr'->+rterm rexpr' | ε rterm->rfactor rterm' rterm'->rfactor rterm' | ε rfactor->rprimary rfactor' rfactor'->* rfactor' | ε rprimary->a | b
- 4) 适合

第二次作业

1.

即使当非终结符用某个产生式匹配成功,但是这种成功可能只是暂时的,因为没有足够的信息来唯一地确定可能的产生式,所以分析过程就会产生回溯。不可以。例如对于产生式 $A=>\alpha\mid\beta$, $FIRST(\alpha)$ 与 $FIRST(\beta)$ 交集为空集,但 ϵ 是其中某个 FIRST 集合的元素,不是一般性,假设 $\epsilon\in FIRST(\alpha)$,想要避免回溯,则还需要考虑 FOLLOW(A)与 $FIRST(\beta)$ 的情况

2.

a)消除左递归

```
lexp → atom | list
atom → number | identifier
list → (lexp-seq)
lexp-seq → lexp lexp-seq' | ε
lexp-seq' → lexp lexp-seq' | ε
```

b) 求该文法的 FIRST 集合和 FOLLOW 集合

```
FIRST(lexp)={ number, identifier, ( }
FIRST (atom)={ number, identifier }
FIRST(list)={ ( }
FIRST(lexp-seq)={ number, identifier, ( }
FIRST(lexp-seq')={ ε, number, identifier, ( }
FOLLOW(lexp)={ $, ), number, identifier, ( }
FOLLOW (atom)={ $, ), number, identifier, ( }
FOLLOW (list)={ $, ), number, identifier, ( }
FOLLOW (lexp-seq)={ ) }
FOLLOW (lexp-seq')={ ) }
```

c) 说明所得的文法是 LL(1)文法

可以根据 LL(1)文法的定义来证明

因为对于: 1) lexp 为左部的产生式,有 FIRST (atom) ∩ FIRST (list) = φ,且

- 2) atom 为左部的产生式,FIRST(number) ∩FIRST(identifier) = φ,且
- 3)lexp 为左部的产生式,FIRST (lexp lexpseq') ∩FIRST (ε) = FIRST (lexp)

 \cap FIRST (ϵ) = ϕ ,oxdot FIRST (lexp-seq') \cap FOLLOW(lexp-seq') = ϕ

所以该文法是 LL(1)文法

d) 为所得的文法构造 LL(1)分析表

非终结符	输入符号						
	Number	Identifier	()	\$		
lexp	lexp → atom	lexp → atom	lexp → list				
atom	atom → atom → number identifie						
list			list → (lexp- seq)				
lexp-seq	lexp-seq → lexp lexp-seq'	lexp-seq → lexp lexp- seq'	lexp-seq → lexp lexp-seq'				
lexp-seq'	lexp-seq' → lexp lexp-seq'	lexp-seq' → lexp lexp- seq'	lexp-seq' → lexp lexp-seq'	lexp-seq' → ε			

e) 对输入串(a (b (2)) (c))给出相应得 LL(1)分析程序的动作

记 lexp 为 E, list 为 L, atom 为 A, lexp-seq 为 S, lexp-seq'为 S', number 为 num, identifier 为 id,则分析过程如下:

栈	输入	动作	
\$ E	(a(b(2))(c))\$	$E \rightarrow L$	
\$ L	(a(b(2))(c))\$	$L \rightarrow (S)$	
\$)S((a(b(2))(c))\$	match	
\$)S	a(b(2))(c))\$	$S \rightarrow E S'$	
\$) S'E	a(b(2))(c))\$	$E \rightarrow A$	
\$) S'A	a(b(2))(c))\$	$A \rightarrow id$	
\$) S'id	a(b(2))(c))\$	match	
\$) S'	(b(2))(c))\$	S' → E S'	
\$) S'E	(b(2))(c))\$	$E \rightarrow L$	
\$) S'L	(b(2))(c))\$	$L \rightarrow (S)$	
\$) S') S ((b(2))(c))\$	match	
\$) S') S	b(2))(c))\$	$S \rightarrow E S'$	
\$) S') S'E	b(2))(c))\$	$E \rightarrow A$	
\$) S') S'A	b(2))(c))\$	$A \rightarrow id$	
\$) S') S'id	b(2))(c))\$	match	
\$) S') S'	(2))(c))\$	S' → E S'	
\$) S') S'E	(2))(c))\$	$E \rightarrow L$	
\$) S') S'L	(2))(c))\$	$L \rightarrow (S)$	
\$) S') S') S ((2))(c))\$	match	
\$) S') S') S	2))(c))\$	$S \rightarrow E S'$	
\$) S') S') S'E	2))(c))\$	$E \rightarrow A$	
\$) S') S') S'A	2))(c))\$	A → num	
\$) S') S') S'num	2))(c))\$	match	
\$) S') S') S'))(c))\$	$S' \rightarrow \epsilon$	
\$) S') S')))(c))\$	match	

\$) S') S')(c))\$	$S' \rightarrow \epsilon$
\$) S'))(c))\$	match
\$) S'	(c))\$	S'→ES
\$) S'E	(c))\$	$E \rightarrow L$
\$) S'L	(c))\$	$L \rightarrow (S)$
\$) S')S((c))\$	match
\$) S')S	c))\$	$S \rightarrow E S'$
\$) S')S'E	c))\$	$E \rightarrow A$
\$)S ')S'A	c))\$	$A \rightarrow id$
\$) S')S'id	c))\$	match
\$) S')S'))\$	$S' \rightarrow \varepsilon$
\$) S')))\$	match
\$) S')\$	$S' \rightarrow \varepsilon$
\$))\$	Match
\$	\$	Accept

练习 4.5.2

1. SS+

2. SS+

3.第一个 a

练习 4.6.2

增广文法如下:

1)S' -> S

2)S -> SS+

3)S -> SS*

4)S -> a

GOTO 函数见下图:

FOLLOW(S) = { a, \$,+,* }

语法分析表如下:

状态	ACTION				GOTO	
	а	+	*	\$	S	
0	S1				2	
1	R4	R4	R4	R4		
2	S1			acc	3	
3	S1	S4	S5		3	
4	R2	R2	R2	R2		
5	R3	R3	R3	R3		

因为没有冲突, 所以是 SLR 文法。

练习 4.7.1

增广文法如下:

1)S' -> S

2)S -> SS+

3)S -> SS*

4)S -> a

1. 正规 LR 项目集族如下:

 I_0

S'->.S,\$

S->.SS+, \$/a

S->.SS*, \$/a

S->.a, \$/a

Ιı

S->a., \$/a

 I_2

```
S'->S.,$
S->S.S+, $/a
S->S.S*, $/a
S->.SS+, +/*/a
S->.SS*, +/*/a
S->.a, +/*/a
l<sub>3</sub>
```

I4 S->SS.+, \$/a S->SS.*, \$/a S->S.S+, +/*/a S->S.S*, +/*/a S->.SS+, +/*/a S->.SS*,+/*/a S->.a,+/*/a

l₇ S->SS.+, +/*/a S->SS.*, +/*/a S->S.S+, +/*/a S->S.S*, +/*/a S->.SS+, +/*/a S->.SS*, +/*/a S->.a, +/*/a

S->SS*.,+/*/a 状态转换图如下:

语法分析表如下:

旧公力 仍 农 知 :					
状态	ACTION				GOTO
	а	+	*	\$	S
0	S1				2
1	R4			R4	
2	S3			acc	4
3	R4	R4	R4		
4	S3	S5	S6		7
5	R2			R2	
6	R3			R3	
7	S3	S8	S9		7
8	R2	R2	R2		
9	R3	R3	R3		

2. 归并得到 LALR 项目集族如下:

10

S'->.S,\$

S->.SS+, \$/a

S->.SS*, \$/a

S->.a,\$/ a

113

S->a., \$/+/*/a

12

S'->S.,\$

S->S.S+, \$/a

S->S.S*,\$/ a S->.SS+, +/*/a S->.SS*, +/*/a S->.a, +/*/a

147

S->SS.+, +/*/a/\$ S->SS.*, +/*/a/\$ S->S.S+, +/*/a S->S.S*, +/*/a S->.SS+, +/*/a S->.SS*, +/*/a S->.a, +/*/a

158

S->SS+.,+/*/a/\$

169

S->SS*.,+/*/a/\$