ASICS1 Project (2015) 25%

Project Description.

A lottery checker system is modelled to the block diagram (Figure 1) and pin description tables (Table 1 and Table 2).

The winning numbers (from 1 to 31) are presented through inputs **W1,W2,W3** and **W4**. The numbers to be checked come from an external scanner and are presented through a synchronisation input (**scan**) and a data input (**N_in**). Up to 6 sets of numbers can be read at a single scan. There are four control/information outputs (**SYSRDY**, **winner**, **not_a_win**, and **RD_ERR**), and the monetary value of the win is displayed in BCD form through outputs **Eur100**, **Eur010** and **Eur001**.

Matching any 1 number wins €1, any 2 numbers wins €5, any 3 numbers wins €25, and all 4 numbers wins €125. The maximum possible winning total is €750.

Proj_2015 Page 1 of 6

Table 1: Inputs Pin Description

PIN	Input / Output	Description
reset	Input	Active low reset pulse, to reset the system. It should set the
		outputs winner , not_a_win , and RD_ERR low, and the winning
		cash value (as defined by Eur100 , Eur010 and Eur001 outputs)
		to 000.
		It should also reset the system internally so that the scan input is
		waiting for "number of lines" input (see N_in description below),
		and should reset all appropriate internal registers.
		For normal operation, this input pin should be 1.
scan	Input	An active high scan valid input (if reset is low). If scan is high
		the data on input N_in is read into the system.
N_in	Input (5-bit)	A 5-bit data input. This should use either the positive or negative
		edge of scan to load valid data (N_in) to the system.
		The first data read defines the "number of lines" which is the
		number of sets of numbers to be read. Valid values are 1 to 6. If a
		0 or a number greater than 6 is read, then RD_ERR should be set
		high and nothing further should happen, until the system is reset
		by reset . If a valid number is read, winner , not_a_win , and
		RD_ERR outputs should be set to 0.
		The next 4 to 24 numbers (as defined by "number of lines")
		should read a lottery number between 1 and 31. The numbers are
		read in sequences of 4. If any of these numbers is 0, or if any two
		of the sequence of 4 are the same, then RD_ERR should be set
		high and nothing further should happen, until the system is reset
		by reset.
		When the final number is read, the system should check the
		numbers. If there is a winning combination, the winner output
		should go high and the winning cash value should appear on the Eur100, Eur010 and Eur001 outputs. If there is no winning
		combination, the not_a_win output should go high, and 000
		should appear on the Eur100 , Eur010 and Eur001 outputs.
W1	Input (5-bit)	A hard-wired winning number (provided by the lottery organiser).
**1	mput (5-01t)	Valid values are 1 to 31. If this number is 0, the SYSRDY output
		should be forced to a 0.
W2	Input (5-bit)	As the W1 input description.
W3	Input (5-bit)	As the W1 input description.
W4	Input (5-bit)	As the W1 input description.
_	IIIput (3-01t)	115 the 111 input description.

Proj_2015 Page 2 of 6

Table 2: Output Pin Description

PIN	Input / Output	Description
SYSRDY	Output	The SYSRDY (System Ready) will go high if there is a valid input on pins W1,W2,W3 and W4. If any of the input pins W1,W2,W3 and W4 are 0, then SYSRDY will go low. If SYSRDY is low, nothing further should happen, until there are valid values on inputs W1,W2,W3 and W4 .
winner	Output	This will go high after a valid read cycle if there is a match of 1, 2, 3 or 4 between the scanned sets of 4 numbers and the winning numbers (W1,W2,W3 and W4), and reset is high. This will remain high, until reset goes low, or until the next read cycle is started, which will bring winner back low.
not_a_win	Output	This will go high after a valid read cycle if there is no match of 1, 2, 3 or 4 between the scanned sets of 4 numbers and the winning numbers (W1,W2,W3 and W4), and reset is high. This will remain high, until reset goes low, or until the next read cycle is started, which will bring not_a_win back low.
RD_ERR	Output	This will go high if an invalid value is read through the N_in input. (See "Input Pin Description"). This will then remain high, until reset goes low which will bring RD_ERR back low.
Eur100	Output (3-bit)	If output winner is 1, this is the winning value in multiples of €100. Valid values are 0 to 7.
Eur010	Output (4-bit)	If output winner is 1, this is the winning value in multiples of €10. Valid values are 0 to 9.
Eur001	Output (4-bit)	If output winner is 1, this is the winning value in multiples of €1. Valid values are 0 to 9.

Proj_2015 Page 3 of 6

	Figure 2: Typical Sample Valid Read Waveform	
W1	04	
W 2	21	
W 3	22	
W4	30	
reset		
scan		
N_in	4 01 03 22 26 21 22 23 24 04 28 29 31 04 21 23 30	3
Eur100 _		
Eur010 _	3	B
Eur001	2	2
SYSRDY -	1	
winner		
not_a_win_	0	
RD_ERR	0	
_		-

Input Numbers to be checked	Numbers Matched	Winning Outcome
01 03 <u>22</u> 26	1	€ 1
21 22 23 24	2	€ 5
04 28 29 31	1	€ 1
<u>04</u> <u>21</u> 23 <u>30</u>	3	€ 25
		₹ 32

Proj_2015 Page 4 of 6

	Figure 3: Typical Sample Read Waveform with Erro	or		
W 1	04			
W 2	21			
W 3	22			
W4 [30			
reset				
scan				
N_in [4 01 03 22 26 21 21 23 24 04 28 29 31 04 21 23 30	3		
Eur100 _	0			
Eur010	0			
Eur001	0			
SYSRDY	1			
winner	0			
not_a_win	0			
RD_ERR		0		
		i i		

Design the Verilog Behavioural Code for the above system.

```
module lottery (.....);
.
.
.
.
.
.
endmodule
```

Complete the following test stimulus to test the full functionality of the circuit.

```
module test;
.
.
.
.
lottery i1 (.....);
.
.
.
endmodule
```

Simulate and Synthesise the design.

Work to be done.

Task	Marks
Write a behavioural VERILOG description of the lottery checker.	10
Compile without Errors.	
Simulate the full functionality of the design with an appropriate set of	9
test vectors.	
Synthesize the design.	5

Project Deadline.

End of Week 13. (Friday 4 December 2015).

Proj_2015 Page 6 of 6