Ciências / Ciência da computação / Introduction to the Theory of Computation (3rd Edition)

Exercício 4

Capítulo 3, Página 187

Introduction to the Theory of Computation

ISBN: 9781133187790

Índice

Solução 🕏 Certificado

Passo 1

Here is one attempt. Enumerator is formally a 7-tuple ($Q, \Sigma, \Gamma, \delta, q_0, q_{\text{print}}, q_{\text{halt}}$), where Q is finite set of states, Σ is output alphabet, Γ is tape alphabet, $\delta: Q \times \Gamma^2 \to Q \times \Gamma^2 \times \{L, R\}^2$ is transition function, and $q_0, q_{\text{print}}, q_{\text{halt}} \in Q$ are initial, printing and halting state respectively.

Definition of configurations and then computation of enumerator is the same as corresponding definition for Turing machines: configuration is a snapshot of enumerator's state, position and tapes, and computation is a sequence of configurations, wherein each configuration after first is produced by previous one, according to transition function. State q_{halt} denotes the end of enumeration, and state q_{print} is responsible for printing: when we are in this state and if content of second tape is $w_{\sqcup} \ldots$, where $w \in \Sigma^*$, we say that word w gets printed, i.e. it is in language of enumerator.

Resultado 2 de 2

We introduce printing and halting state.

Avaliar esta solução

Exercício 5 >

Privacidade Termos de serviço

< Exercício 3

Português (BR) Y