

HABIB UNIVERSITY

Data Structures & Algorithms

CS/CE 102/171 Spring 2023 Instructor: Maria Samad

Searching Binary Search Trees

Student Name: _____

For the given trees, answer the following:

Search Node 5:

Root: $7 \rightarrow$ Left: $1 \rightarrow$ Right: $3 \rightarrow$ Right: $5 \rightarrow$

Successfully Found!

Search Node 11:

Root: $7 \rightarrow \text{Right: } 9 \rightarrow \text{Right: } 10 \rightarrow \text{Right: Null}$

Not found

Minimum:

Root: $7 \rightarrow \text{Left: } 1 \rightarrow \text{Left: } 0 \rightarrow \text{Left: Null}$

Therefore, minimum = Node 0

Maximum:

Root: $7 \rightarrow \text{Right: } 9 \rightarrow \text{Right: } 10 \rightarrow \text{Right: Null}$

Therefore, $\underline{\text{maximum}} = \underline{\text{Node } 10}$

Successor of Node 3:

- Node 3 exists, and has a right subtree
- Successor of Node 3 will be the left most child of its right subtree
- Start: $3 \rightarrow \text{Right: } 5 \rightarrow \text{Left: A} \rightarrow \text{Left: Null}$

Therefore, Successor of Node 3 = Node 4

Predecessor of Node 7:

- Node 7 exists, and has a left subtree
- Predecessor of Node 7 will be the right most child of its left subtree
- Start: 7 → Left: 1 → Right: 3 → Right: 5 → Right: 6
 → Right: Null

Therefore, Predecessor of Node 7 = Node 6

Search Kyri:

Root: John → Right: Leon → Left: Kyle → Right: Kyri

Successfully Found!

Search James:

Root: John → Left: Bob → Right: Dave → Right: Null

Not found

Minimum:

Root: John \rightarrow Left: Bob \rightarrow Left: Alan \rightarrow Left: Adam \rightarrow

Left: Null

Therefore, minimum = Adam

Maximum:

Root: John → Right: Leon → Right: Zack → Right: Zara

→ Right: Null

Therefore, maximum = Zara

Successor of Sam:

- Sam exists, and has a right subtree
- As there is only one right child, it will become its successor
- Start: Sam → Right: Theo → Left: Null

Therefore, <u>Successor of Sam = Theo</u>

Predecessor of Dave:

- Dave exists, and has a left subtree
- As there is only one left child, it will become its predecessor
- Start: Dave → Left: Dale → Right: Null

Therefore, <u>Predecessor of Dave = Dale</u>

Search Node O:

Root: $T \rightarrow Left: R \rightarrow Left: N \rightarrow Right: O$

Successfully found

Search Node U:

Root: $T \rightarrow Right: V \rightarrow Left: U$

Successfully found

Minimum:

Root: $T \rightarrow Left: R \rightarrow Left: N \rightarrow Left: H \rightarrow Left: E \rightarrow$

Left: Null

Therefore, $\underline{\text{minimum}} = \underline{\text{Node } E}$

Maximum:

Root: $T \rightarrow Right: V \rightarrow Right: Y \rightarrow Right: Z \rightarrow Right:$

Null

Therefore, maximum = Node Z

Successor of Node P:

- Node P exists, and is a leaf node
- As it is a leaf node, its successor will be its ancestor that has immediately bigger value than P
- Start: P \rightarrow Parent: O \rightarrow Parent: N \rightarrow Parent: R
- As R is bigger than P, then:
 - Successor of Node P = Node R

Predecessor of Node X:

- Node X exists, and is a leaf node
- As it is a leaf node, its predecessor will be one of its ancestors whose value is immediately smaller than X
- Start: $X \rightarrow Parent: Y \rightarrow Parent: V$
- As V is smaller than X, then:
- Predecessor of Node X = Node V

Search Node 19:

Root: $30 \rightarrow \text{Left: } 20 \rightarrow \text{Left: } 15 \rightarrow \text{Right: } 18 \rightarrow \text{Right: Null}$

Not found

Search Node 48:

Root: $30 \rightarrow \text{Right: } 40 \rightarrow \text{Right: } 50 \rightarrow \text{Left: } 45 \rightarrow \text{Right:}$

Null Not found

Minimum:

Root: $30 \rightarrow \text{Left: } 20 \rightarrow \text{Left: } 15 \rightarrow \text{Left: } 5 \rightarrow \text{Left: Null}$

Therefore, $\underline{\text{minimum}} = \underline{\text{Node 5}}$

Maximum:

Root: $30 \rightarrow \text{Right: } 40 \rightarrow \text{Right: } 50 \rightarrow \text{Right: } 60 \rightarrow \text{Right: }$

Null

Therefore, maximum = Node 60

Successor of Node 60:

- Node 60 exists, and is a leaf node
- As it is a leaf node, its successor will be its ancestor that has immediately bigger value than 60
- Start: 60 → Parent: 50 → Parent: 40 → Parent: 30 → Parent: Null
- All ancestors have been checked, and there is no value bigger than 60 for any ancestor, therefore:
 - Successor of Node 60 = Does Not Exist

Predecessor of Node 5:

- Node 5 exists, and is a leaf node
- As it is a leaf node, its predecessor will be its ancestor that has immediately smaller value than 5
- Start: 5 → Parent: 15 → Parent: 20 → Parent: 30 →
 Parent: Null
- All ancestors have been checked, and there is no value smaller than 5 for any ancestor, therefore:
 - Predecessor of Node 5 = Does Not Exist