≡	△ ma •
2023W / Module S	MT: Quantifier-Free First-O / S
SMT3Q	
Started on	Monday, 22 January 2024, 7:16 PM
State Completed on	Finished Monday, 22 January 2024, 7:29
Time taken	PM 12 mins 55 secs
	4.33 out of 5.00 (86.67 %)
Question 1	
Mark 1.00 out of 1.00 Flag question	
((x < y) ∨ (x+1 = y))	formula over integers $\land (\neg(x+1 = y) \lor (x >= 0)) \land (y$
= 2) ∧ (x >= 0) with its proposition	al skeleton
a ∨ b) ∧ (¬b ∨	/ d)∧c∧d onsistent propositional
solutions does the p formula have?	propositional skeleton of this
Thus we are seeking the number of different assignments to the propositional skeleton which not only satisfy it propositionally but also are theory consistent. Note that the formula can also be theory inconsistent.	
Answer:	
2	
The correct answer	is: 2
Question 2	
Partially correct Mark 1.33 out of 2.00	
₹ Flag question	
Given the following SMT formula: $((x=y) \lor (f(x)=y)) \to \neg (x=y)$ Which of the following formulas are a propositional skeleton (abstraction) of this formula? Logical simplifications are allowed.	
Select one or more:	
¬a ∧ (¬a ∨ ¬b) ¬a ∧ (¬a ∨ b)	•
(a ∨ b) → b (a ∨ b) → ¬c	
(a ∨ b) → a	
(a ∨ b) → ¬a •	/
Die Antwort ist teilw	veise richtig.
You have correctly s The correct answer	
(a ∨ b) → ¬a, ¬a ∧ (¬a ∨ ¬b),	
(a ∨ b) → ¬c	
Question 3	
Correct Mark 2.00 out of 2.00	
₹ Flag question	
Given the following set S of propositional formulas $\{\neg a, \neg b, (a \lor b \lor c), (a \lor \neg b), (a \lor \neg d), (d \lor \neg c), b \}$ Select among the following sets of of formulas all which are a minimal unsatisfable subset	
(MUS) of the giver Select one or more:	1 301 3.
{ ¬a, ¬b, (a ∨ b	∨ c)}
{a, ¬a} ⟨¬a, ¬b, (a ∨ b)	∨ c), (a ∨ ¬d), (d ∨ ¬c)} ✓
☐ {¬a, ¬b, (a ∨ b	∨ c), (a ∨ ¬d), (e ∨ ¬c)}
)} ✔
	∨ c), (a ∨ ¬d), (d ∨ ¬c), b}
Your answer is correct. The correct answers are: $\{-b, b\}$, $\{\neg a, \neg b, (a \lor b \lor c), (a \lor \neg d), (d \lor \neg c)\}$, $\{\neg a, b, (a \lor \neg b)\}$	
	Finish review