- iii) Continúe el experimento con diferentes agrupaciones de datos. ¿Hay alguno para el que el ajuste por partes sea mejor?
- iv) Para el mejor ajuste por partes, determine la información que se proporciona sobre los niveles de desprendimiento y el desplazamiento horizontal [vea el subinciso i)].
- Escriba un informe para la compañía petrolera resumiendo su conclusión y sus recomendaciones

Nota. El método descrito viene de un artículo titulado "Excess Area and Depth to Detachment" de Jean-Luc Epard y Richard Groshong, Jr., publicado en el *American Association of Petroleum Geologists Bulletin*, agosto de 1993 (el artículo estudia también la manera en que un ajuste cuadrático, para los datos del área de exceso contra la profundidad del nivel de referencia, indicaría una compresión).

6.3 Espacios con producto interno y proyecciones

Esta sección utiliza los conocimientos sobre las propiedades elementales de los números complejos (resumidas en el apéndice B) y requiere alguna familiaridad con el material del primer año de cálculo.

En la sección 2.2 se vio cómo se podían multiplicar dos vectores en \mathbb{R}^n para obtener un escalar. Este producto escalar se denomina también *producto interno*. Otros espacios vectoriales tienen productos internos definidos de formas diversas. Antes de ofrecer una definición general, se observa que en \mathbb{R}^n el producto interno de dos vectores es un escalar real. En otros espacios (vea el ejemplo 6.3.2 siguiente) el resultado del producto interno es un escalar complejo. Por tanto, para incluir todos los casos, en la siguiente definición se supone que el producto interno es un número complejo.

Definición 6.3.1

Nota

Si $\alpha \in \mathbb{C}$ tal que $\alpha = \sigma + i\omega$, entonces $\overline{\alpha} = \sigma - i\omega$.

Espacio con producto interno

Un espacio vectorial complejo V se denomina **espacio con producto interno** si para cada par ordenado de vectores \mathbf{u} y \mathbf{v} en V existe un número complejo único $\langle u, v \rangle$, denominado **producto interno** de \mathbf{u} y \mathbf{v} , tal que si \mathbf{u} , \mathbf{v} y \mathbf{w} están en V y $\alpha \in \mathbb{C}$, entonces

- i) $\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$
- ii) $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ si y sólo si $\mathbf{v} = 0$
- iii) $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$
- iv) $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
- v) $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$
- vi) $\langle \alpha \mathbf{u}, \mathbf{v} \rangle = \alpha \langle \mathbf{u}, \mathbf{v} \rangle$
- **vii)** $\langle \mathbf{u}, \alpha \mathbf{v} \rangle = \overline{\alpha} \langle \mathbf{u}, \mathbf{v} \rangle$

La barra en las condiciones v) y vii) denota el conjugado complejo.

Nota. Si $\langle \mathbf{u}, \mathbf{v} \rangle$ es real, entonces $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$ y se puede eliminar la barra en \mathbf{v}).