Some Algebraic Geometry Notes

peter lundgaard

July 2024

Preface

This is a collection of notes about algebraic geometry based mainly on Fulton's *Algebraic Curves* and Hartshorne's *Algebraic Geometry* + some other stuff. They are wildly unpolished and are only meant to help structure my own studying.

Contents

1	Alge	ebra		9
	1.1	Monoi	ds	10
		1.1.1	Definitions and Basic Properties	10
		1.1.2	Morphisms of Monoids	12
		1.1.3	Product Monoids & Restricted Product of Monoids	14
		1.1.4	The Free Monoid Generated by a Set	17
		1.1.5	The Opposite Monoid	17
	1.2	Groups	s	18
		1.2.1	Definition & Basic Properties	18
		1.2.2	Morphisms of groups	20
		1.2.3	Product Groups, Direct Sums & and Other Enumerated Construc-	
			tions	21
		1.2.4	Quotient Groups	24
	1.3	Rings		28
		1.3.1	Definition & Basic Properties	28
		1.3.2	Morphisms of Rings	29
		1.3.3	Product Rings	29
		1.3.4	The Set of Integers: \mathbb{Z}	30

1.4	Modul	les	32
	1.4.1	Initial Definitions, Basic Properties & Constructions	32
	1.4.2	Ideals	42
	1.4.3	Quotient Rings	43
	1.4.4	Noetherian Modules and Noetherian Rings	44
	1.4.5	A First Look at Algebras over Rings	46
1.5	Abelia	n Categories	48
	1.5.1	Preadditive Categories	48
	1.5.2	Additive, Pre-abelian & Abelian Categories	49
1.6	Homo	logical Algebra	49
	1.6.1	Exact Sequences	49
	1.6.2	Isomorphism Theorems	50
	1.6.3	Free Modules	56
1.7	Vector	Spaces	56
	1.7.1	Finite Dimensional Vector Spaces	56
	1.7.2	Projective Space	58
	1.7.3	The Projective Span	60
	1.7.4	Normed Vector Spaces	60
1.8	Ring th	heory	62
	1.8.1	Matrix Rings	62
	1.8.2	Fields, Integral Domains & some Important Ideals	64
	1.8.3	Comaximal ideals	69
	1.8.4	Greatest Common Divisor and Least Common Multiples	70
	1.8.5	Unique Factorization Domains and Euclidean Domains	71
	1.8.6	Principal Ideal Domains	74
	1.8.7	Local Rings, Localizations & Field of Fractions	75
	1.8.8	Discrete Valuation Rings	82
1.9	Polyno	omial Rings & Formal Power Series	87
	1.9.1	Defining the Polynomial Ring	88
	1.9.2	Specializations of Polynomials	93
	1.9.3	Degree, Evaluation & Roots	94
	1.9.4	Some Results about Polynomials that I proper subsubsections for .	101
	1.9.5	Polynomials over Infinite Rings	102
	1.9.6	The Hilbert Basis Theorem	103
	1.9.7	Polynomials over Fields	104
	108	More on Power Series	104

		1.9.9	Formal Power Series & DVRs	105
		1.9.10	Term Orders & a Polynomial Division Algorithms	107
		1.9.11	Gröbner Bases and Buchbergers Algorithm	112
		1.9.12	Polynomials over UFD's	123
		1.9.13	Eisenstein's Criterion	126
		1.9.14	Homogeneous Polynomials	126
		1.9.15	Multi- and Bihomogeneous Polynomials	134
		1.9.16	Differentiation of Polynomials	135
	1.10	Ring E	extensions and Algebras over Rings	136
		1.10.1	Finitely Generated Ring Extensions	137
		1.10.2	Integral- & Algebraic Extensions	139
		1.10.3	Field Extensions	144
		1.10.4	Theorem of the Primitive Element	146
		1.10.5	Transcendence Degree & Transcendence Bases	147
		1.10.6	Graph Ideals & Algebraic Dependence of Polynomials	152
		1.10.7	Finite Algebra Homomorphisms	153
		1.10.8	Perron's Theorem of Effective Algebraic Dependence of Polyno-	
			mials	153
		1.10.9	Noether Normalizations	158
2	The	Real an	nd Complex Numbers	161
_	2.1		blogical Aside: Completion - a construction of \mathbb{R}	
	2.2	-	\mathbb{R}^2 to \mathbb{C}	
3	Clas	sical Af	fine Algebraic Geometry	169
	3.1	Introdu	acing Algebraic Sets	169
		3.1.1	Introducing Affine Algebraic Sets & the Affine Zariski Topology .	169
		3.1.2	Miscellaneous Result about Algebraic sets, Examples & Non-example	es 173
		3.1.3	A Correspondence between Algebraic sets and Polynomial Ideals	182
	3.2	Affine	Varieties	185
		3.2.1	Classifying Algebraic Subsets of the Plane	189
		3.2.2	Hilbert's Nullstellensatz	192
		3.2.3	Introduction to Effective Nullstellensätze: Degree Bounds and a	
			Gröbner Basis Method	200
	3.3	A Theo	ory of Affine Varieties	203
		3.3.1	Morphisms of Affine Varieties: Polynomial maps	204

		3.3.2	(Affine) Coordinate Changes					
		3.3.3	The Field of Rational Functions on a Variety & the Local Ring of					
			Rational Functions Defined at a Point					
		3.3.4	Rational Functions and DVR's					
		3.3.5	Ideals with a Finite Number of Zeroes					
	3.4	Local l	Properties of Affine Plane Curves					
		3.4.1	Aside on Hypersurfaces and Tangent Spaces					
		3.4.2	Multiplicities & Local Rings of Rational Function 239					
		3.4.3	Intersection Numbers					
		3.4.4	The Dimension of an Affine Variety					
		3.4.5	Finite Polynomial Maps					
		3.4.6	A Second Approach to an ENS					
4	Proj	ective &	& Multiprojective Algebraic Geometry 256					
	4.1	Project	tive Algebraic Sets & Projective Varieties					
		4.1.1	Basic Definitions					
		4.1.2	The Cone of a Projective Algebraic Set					
		4.1.3	The Projective Nullstellensatz					
		4.1.4	Rational Functions and Local Rings of Projective Varieties 261					
		4.1.5	(Projective) change of coordinates					
		4.1.6	Affine and Projective Varieties					
	4.2	Multip	rojective Algebraic Sets & Multiprojective Varieties					
		4.2.1	Basic Definitions					
		4.2.2	Algebraic Geometry in Multispaces					
	4.3	Project	tive Plane Curves					
		4.3.1	Definitions and Basic Results					
		4.3.2	Linear Systems Of Curves					
		4.3.3	Bézout's Theorem					
		4.3.4	Bounds on the Number of Multiple Points of a Curve 302					
		4.3.5	Max Noether's Fundamental Theorem					
		4.3.6	Applications of Noether's Theorem					
5	Alge	braic G	Seometry with Abstract Irreducible Varieties 313					
	5.1	Some 7	Topology					
	5.2	Redefin	ning notions					
	5.2.1 Varieties and Regular Functions on Varieties							

		5.2.2	Morphisms of Varieties
	5.3	Develo	pping Theory
		5.3.1	Products & Graphs
		5.3.2	A Necessary and Sufficient Condition for the Existence Final Syzy-
			gies over $\mathbb C$
		5.3.3	A Little Something about Algebraic Groups
		5.3.4	Dimension of Varieties
		5.3.5	Rational Maps & Birational Equivalence
	5.4	The St	udy of Curves & Resolution of Singularities
		5.4.1	Rational Maps of Curves
		5.4.2	Blowing up Points in \mathbb{A}^2
		5.4.3	Blowing up Points in \mathbb{P}^2
		5.4.4	Quadratic Transformations
		5.4.5	Non-singular Models of Curves
	5.5	Riema	nn-Roch
		5.5.1	Divisors
		5.5.2	The Vector Spaces L_d
		5.5.3	Riemann's Theorem
		5.5.4	Differentials of a Curve
		5.5.5	Canonical Divisors
		5.5.6	The Riemann-Roch Theorem
6	Alge	braic G	Geometry using Schemes 350
	6.1		es & Presheaves
			Presheaves
		6.1.2	Sheaves
	6.2	Schem	es
		6.2.1	Affine Schemes
		6.2.2	Schemes
A	Logi	ic	363
В	First	t Order	Predicate Logic 363
	B.1		etatheory of First Order Logic
		B.1.1	Classical Metatheory
		B.1.2	Strong Metatheory
	B.2		lphabet of First Order Logic

		B.2.1	The Non-logical Symbols	365
		B.2.2	Terms and Formulae	365
	B.3	Axiom	s and Inference Rules	367
		B.3.1	Logical Axioms: Assigning Truth Values to Formulae	367
		B.3.2	Non-logical Axioms: Defining a Theory	368
		B.3.3	Proofs	368
		B.3.4	Tautology and Logical Equivalence	369
		B.3.5	Proofs in Natural Deduction	369
		B.3.6	The Deduction Theorem	370
		B.3.7	Consistency and Compactness	370
		B.3.8	Sentences in PNF and sPNF	372
	B.4	Seman	tics of First Order Logic	373
		B.4.1	Structures and Interpretations	373
		B.4.2	Universal closure	374
		B.4.3	Isomorphisms of \mathcal{L} -structures	375
		B.4.4	Soundness and the Soundness Theorem	376
	B.5	Gödels	S Completeness Theorem	378
		B.5.1	Maximally Consistent Theories	379
		B.5.2	Universal List of Sentences	380
		B.5.3	Lindenbaum's Lemma	381
		B.5.4	An Extension of a Signature & of a Theory	383
		B.5.5	Gödel's Completeness Theorem (for Countable Signatures)	387
		B.5.6	Construction of a Model of \widetilde{T} & the Proof of Gödel's Complete-	
			ness Theorem	389
	B.6	The Ax	xioms and Standard Model of Peano Arithmetic	393
		B.6.1	The Axioms	393
		B.6.2	The Standard Model of PA	393
		B.6.3	Gödels Incompleteness Theorem	394
C	Set T	Theory		394
Ŭ	C.1	•	omatization of set theory	
	٠,1	C.1.1	Zermelos axioms	
		C.1.2	ZF Set Theory	
	C.2		ons	
	~· ~	C.2.1	Functions	
			Products of Sets	
		J.2.2		.02

		C.2.3	ZFC: Adding the Axiom of Choice	403
		C.2.4	Orderings	404
		C.2.5	Equivalence Relations	406
	C.3	ordina	theory	407
		C.3.1	The Set ω	407
		C.3.2	ordinal numbers	408
		C.3.3	ω and ordinal numbers	411
		C.3.4	The Well-ordering Principle & the Axiom of Choice	412
		C.3.5	Transfinite Recursion and Transfinite Induction	415
	C.4	Model	s of ZF(C) \dots	415
		C.4.1	The standard model V of $ZF(C)$	415
		C.4.2	Non-standard models of $ZF(C)$	416
		C.4.3	Gödel's Model of ZF and of ZFC: The Relative Consistency of	
			ZF and AC	416
	C.5	A Mod	lel of PA in V	416
	C.6	NGB S	Set Theory: A Formal Treatment of Classes	418
	C.7	MK Se	et Theory: Quantification over Classes	418
_	C .4			410
D	Cate	egory T	·	418
		D.0.1	Initial Definitions	
		D.0.2	Examples of Categories	
		D.0.3	Functors	
		D.0.4	Functors on Groups	
		D.0.5	Categories of Categories	
			Natural Transformations	
		D.0.7	Equivalence of Categories	
		D.0.8	Diagrams	
	D 1	D.0.9	Natural Transformations as Morphisms	
	D.1		oneda Lemma	
		D.1.1	Representable Functors	
		D.1.2	Currying	
		D.1.3	Statement & Proof of The Yoneda Lemma	
		D.1.4	Corollaries of The Yoneda Lemma	
	D.2		rsal Properties & Universal Elements	
		D.2.1	The Category of Elements	
	D.3	Limits	& Colimits	477

D.3.1	Universal Cones & Cocones		•								477
D.3.2	Examples of Limits										479
D.3.3	Limits in Set										480
D.3.4	Products & Coproducts										481
D.3.5	Direct systems and direct limits										483

1 Algebra

The field of abstract algebra can be defined as the study of sets with operations and the study of structure preserving maps between such objects. I.e. an object of study in algebra would be a set with some non-empty collection of functions, which somehow act upon elements in the set and a map of such objects is a map that commute with these operations. An example of such an operation would be a *binary operation* on a set, M say, i.e. a function taking a pair in $M \times M$ to an element in M. Such a pair of a set and a binary operation is called a *magma*. Examples of magmas are 2^X (where X is some set) with the binary operation

$$2^X \times 2^X \to 2^X$$
$$(A, B) \mapsto A \cup B$$

or 2^X with the binary operation

$$2^X \times 2^X \to 2^X$$
$$(A, B) \mapsto A \cap B$$

Another example example of another algebraic structure on a set could also be that another set S acting on M, i.e. there is a function taking a pair of elements in $S \times M/M \times S$ to an element in M. When we ask that such operations or the overlying sets adhere to certain axioms we obtain a rich family of sub-classes of objects having a certain kind of algebraic structure which will be preserved by certain maps. For instance $(2^X, \cup)$ and $(2^X, \cap)$ have the property of having associative operations, making them semi-groups. Moreover \emptyset resp. X possess the property of being neutral with respect to the respective operation making them so-called monoids. The operations are even commutative, so these are examples of commutative monoids We will in the following be focusing broadly on the classes of rings and modules. However, it will be useful to also introduce groups and monoids in this context.

1.1 Monoids

1.1.1 Definitions and Basic Properties

Definition 1.1.1. For a subcategory C of Set, a C-monoid is an object M in C together with morphisms $\circ: M \times M \to M$, $e: \{*\} \to M$ such that

commute. When C is Set, we simply refer to such an object as a *monoid*.

Remark 1.1.2. 1. For a pair of elements $m_1, m_2 \in M$, we use the notational convention $m_1m_2 := m_1 \circ m_2 := m_1m_2$.

- 2. The first diagram is a compact way of saying that \circ is an associative binary operation on M.
- 3. We may identify e with the element $e(*) \in M$. This element has the property that for any $m \in M$,

$$em = 0e \times 1_{M}(e, m) = \pi_{1}(e, m) = m = \pi_{2}(m, e) = 0.1_{m} \times e(m, e) = me$$

we call this the *neutral element with respect to* o

- 4. As we saw in Example D.0.34 B $M := (\{M\}, M)$ is a one object category, where composition is given by evaluation of the binary operation on M and the neutral element is the identity morphism. As an immediate consequence, e is unique.
- 5. For an element $m \in M$ and a non-negative integer n we define

$$m^n = \underbrace{m \cdot \cdot \cdot m}_n$$

with the convention that $m^0 = e$.

The data specifying a monoid is often written as the tuple (M, \circ) or (M, \circ, e) .

Definition 1.1.3. A commutative monoid is a monoid M such that for every $m_1, m_2 \in M$,

$$m_1m_2 = m_2m_1.$$

Definition 1.1.4. Let (M, \circ) be a monoid. A subset $N \subset M$ is called a *submonoid* (of M) if

- 1. $e \in N$
- 2. For every $n_1, n_2 \in N$,

$$n_1n_2 \in N$$
.

Remark 1.1.5. $(N, \circ|_N)$ is a monoid. Indeed, Since $n_1 n_2 \in N$ for every $n_1, n_2 \in N$, the operation $\circ \mid_{N \times N} : N \times N \to N$ is well-defined. The operation \circ is associative on N since it is associative on M. By the definition of a submonoid $e \in N$ and again clearly the property of being the neutral element with respect to \circ on N is inherited by e being so with respect to \circ on M.

- **Example 1.1.6.** 1. The non-negative integers \mathbb{N} is a monoid with respect to addition and multiplication.
 - 2. Once constructed, $(\mathbb{Z}, +)$, (\mathbb{Z}, \cdot) , $(\mathbb{Q}, +)$, (\mathbb{Q}, \cdot) , $(\mathbb{R}, +)$, (\mathbb{R}, \cdot) , $(\mathbb{C}, +)$, (\mathbb{C}, \cdot) are monoids.
 - 3. Let A be a set. Consider $Set(A, A) := \{f : A \to A\}$. This a monoid under function composition.
 - 4. Given a non-empty set X and a monoid M the set

with the binary operation

$$\operatorname{Set}(X, M) \times \operatorname{Set}(X, M) \to \operatorname{Set}(X, M)$$

 $(f, g) \mapsto fg$

where for $f, g \in Set(X, M)$

$$fg: X \to M$$

 $x \mapsto f(x)g(x)$

Indeed, for each $x \in X$ the diagram

$$\begin{split} \operatorname{Set}(X,M) \times \operatorname{Set}(X,M) \times \operatorname{Set}(X,M)^{\operatorname{ev}_x \times \operatorname{ev}_x \times \operatorname{ev}_x} \!\!\!\! M \times M \times M \xrightarrow{\begin{subarray}{c} \mathbb{I}_M \times \circ \\ \\ \times \mathbb{I}_M \end{subarray}} M \times M \times M \xrightarrow{\begin{subarray}{c} \mathbb{I}_M \times \circ \\ \\ \end{array}} M \times M \xrightarrow{\begin{subarray}{c} \\ \circ \times \mathbb{I}_M \end{subarray}} M \end{split}$$

commutes Moreover, for the function $e:X\to M$, mapping every element in X to e_M we have that

$$ef(x) = e(x)f(x) = e_M f(x) = f(x)$$
 and $f(x) = f(x)e(x) = f(x)e_M = f(x)$.

- 5. Let M be a monoid. Then $M \subset M$ is a submonoid.
- 6. Let M be a monoid. Then $\{e\} \subset M$ is a submonoid.
- 7. Let M be a monoid and $L \subset N \subset M$ be submonoids of M. Then L is a submonoid of N. Similarly if $N \subset M$ is a submonoid and $L \subset N$ is a submonoid, then $L \subset M$ is a submonoid.

1.1.2 Morphisms of Monoids

Definition 1.1.7. Let M, N be monoids. A monoid homomorphism/map of monoids/morphism of monoids is a map $\rho: M \to N$ such that

1. For every $m_1, m_2 \in M$

$$\rho(m_1m_2) = \rho(m_1)\rho(m_2).$$

2.

$$\rho(e_M) = e_N.$$

Remark 1.1.8. The collection of monoids and the collection of monoid homomorphisms form a subcategory of Set denoted Mon. Indeed, given monoid homomorphisms $f: A \to B$, $g: B \to C$, then for each $x, y \in A$,

$$gf(xy) = g(f(x)f(y)) = gf(x)gf(y)$$

and

$$gf(e_A) = g(e_B) = e_C,$$

hence gf is a monoid homomorphism.

Example 1.1.9. By a prior example (cf. Example 1.1.6) we have seen that Set(M, N) is a monoid. $Mon(M, N) \subset Set(M, N)$ is a submonoid if N is commutative. Indeed, for $f, g \in Mon(M, N)$ and $x, y \in M$. Then

$$fg(xy) = f(xy)g(xy) = f(x)f(y)g(x)g(y) = f(x)g(x)f(y)g(y) = fg(x)fg(y),$$

hence $fg \in Mon(M, N)$ Furthermore, we have

$$e(xy) = e_M(xy) = xy = (e_N x)(e_N y) = e(x)e(y) \implies e \in Mon(M, N).$$

Lemma 1.1.10. Let $\rho: M \to N$ be a monoid homomorphism and $L \subset M$ a submonoid. Then $\rho(L) \subset N$ is a submonoid.

Proof. Let $\rho(l_1), \rho(l_2) \in \rho(L)$. Then since $l_1 l_2 \in L$,

$$\rho(l_1)\rho(l_2) = \rho(l_1l_2) \in \rho(L).$$

Clearly $e_N = \rho(e_M) \in \rho(L)$.

Corollary 1.1.11. The image of a monoid homomorphism $\rho: M \to N$ is a submonoid of N.

Proof. This follows from the above lemma (cf. Example 1.1.6). \Box

Definition 1.1.12. Let $\rho: M \to N$ be a monoid homomorphism. We define *the kernel of* ρ to be the set

$$\ker \rho := \rho^{-1}(e_N) = \{ m \in M : \rho(m) = e_N \} \subset M$$

Lemma 1.1.13. Let $\rho: M \to N$ be a monoid homomorphism, and $L \subset N$ a submonoid. Then $\rho^{-1}(L) \subset M$ is a submonoid.

Proof. Let $m_1, m_2 \in \rho^{-1}(L)$. Then since $\rho(m_1), \rho(m_2) \in L$,

$$\rho(m_1 m_2) = \rho(m_1)\rho(m_2) \in L,$$

hence $m_1m_2 \in \rho^{-1}(L)$. Since $\rho(e_M) = e_N \in L$, it follows that $\rho^{-1}(L)$ is a submonoid of N.

Corollary 1.1.14. The kernel of a monoid homomorphism $\rho: M \to N$ is a submonoid of M.

Proof. Since $\{e_N\}$ is a submonoid of N it follows by the above lemma that ker $\rho = \rho^{-1}(\{e_N\})$ (cf. Example 1.1.6) is a submonoid.

Lemma 1.1.15. Let M be a commutative monoid and $N \subset M$ a submonoid. Then N is a commutative monoid.

Proof. By Lemma 1.1.5 N is a monoid. Let $n_1, n_2 \in N$, then since $n_1, n_2 \in M$, $n_1 n_2 = n_2 n_1$.

Lemma 1.1.16. Let $\rho: M \to N$ be a monoid homomorphism. Let $L \subset M$ be a submonoid. If M is commutative, then $\rho(L) \subset N$ is a commutative monoid.

Proof. Since $\rho(L) \subset N$ is a submonoid, it is a monoid. Let $\rho(l_1), \rho(l_2) \in \rho(L)$. Then since L is a commutative by Lemma 1.1.15 it follows that

$$\rho(l_1)\rho(l_2) = \rho(l_1l_2) = \rho(l_2l_1) = \rho(l_2)\rho(l_1).$$

1.1.3 Product Monoids & Restricted Product of Monoids

Theorem 1.1.17. Let A be a set and $\{M_{\alpha}\}_{{\alpha}\in A}$ a family of monoids. We define a binary operation on the product $\prod_{{\alpha}\in A} M_{\alpha}$ by $(m_{\alpha})(m'_{\alpha}) = (m_{\alpha}m'_{\alpha})$ for $(m_{\alpha}), (m'_{\alpha}) \in \prod_{{\alpha}\in A} M_{\alpha}$. With this operation $\prod_{{\alpha}\in A} M_{\alpha}$ becomes a monoid. If M_{α} is commutative for every ${\alpha}\in A$ so is $\prod_{{\alpha}\in A} M_{\alpha}$.

Proof. We define $e := (e) := (e_{\alpha})$ where e_{α} is the neutral element in M_{α} for each α . Let $(m_{\alpha}), (m'_{\alpha}), (m''_{\alpha}) \in \prod_{\alpha \in A} M_{\alpha}$. We then have that

$$(m_{\alpha})((m'_{\alpha})(m''_{\alpha})) = (m_{\alpha})(m'_{\alpha}m''_{\alpha}) = (m_{\alpha}(m'_{\alpha}m''_{\alpha})) = ((m_{\alpha}m'_{\alpha})m''_{\alpha}) = (m_{\alpha}m'_{\alpha})(m''_{\alpha})$$
$$= ((m_{\alpha})(m'_{\alpha}))(m''_{\alpha})$$

and that

$$e(m_{\alpha}) = (e)(m_{\alpha}) = (e_{\alpha}m_{\alpha}) = (m_{\alpha})$$
 and $(m_{\alpha})e = (m_{\alpha})(e) = (m_{\alpha}e_{\alpha}) = (m_{\alpha})$,

hence $(\prod_{\alpha\in A} M_{\alpha}, \cdot)$ is a monoid. Suppose M_{α} is commutative for each $\alpha\in A$. Then

$$(m_{\alpha})(m_{\alpha}') = (m_{\alpha}m_{\alpha}') = (m_{\alpha}'m_{\alpha}) = (m_{\alpha})(m_{\alpha}').$$

Lemma 1.1.18. Let A be a set and $\{M_{\alpha}\}_{{\alpha}\in A}$ a family of monoids. Then

$$\pi_{\beta}: \prod_{\alpha \in A} M_{\alpha} \to M_{\beta}$$

is monoid homomorphism. Given a monoid N and a family monoid homomorphisms $\{f_{\alpha}: N \to M_{\alpha}\}_{\alpha \in A}$ then the unique map $f: N \to \prod_{\alpha \in A}$ (cf. Proposition D.3.17) such that $\pi_{\alpha} \circ f = f_{\alpha}$ for every $\alpha \in A$ is monoid homomorphism. Hence the cartesian product is the product in the category of monoids.

Proof. Let $(m_{\alpha}), (m'_{\alpha}) \in \prod_{\alpha \in A} M_{\alpha}$ and fix $\beta \in A$. Then

$$\pi_{\beta}((m_{\alpha})(m'_{\alpha}))$$

$$= \pi_{\beta}((m_{\alpha}m'_{\alpha})) = m_{\beta}m'_{\beta} = \pi_{\beta}((m_{\alpha}))\pi_{\beta}((m'_{\alpha})).$$

Lastly

$$\pi_{\beta}(e) = \pi_{\beta}((e_{\alpha})) = e_{\beta}.$$

Let $n, n' \in N$. Then

$$f(nn') = (f_{\alpha}(nn')) = (f_{\alpha}(n)f_{\alpha}(n')) = (f_{\alpha}(n))(f_{\alpha}(n')) = f(n)f(n'),$$

and

$$f(e_N) = (f_{\alpha}(e_N)) = (e_{\alpha}) = e$$

Proposition 1.1.19. Let A be a set and $\{M_{\alpha}\}_{{\alpha}\in A}$ a family of monoids. Consider a family of sets $\{N_{\alpha}\}_{{\alpha}\in A}$ such that $N_{\alpha}\subset M_{\alpha}$ is a submonoid for each $\alpha\in A$. Then

$$\prod_{\alpha \in A} N_{\alpha} \subset \prod_{\alpha \in A} M_{\alpha}$$

is a submonoid.

Proof. Since $e_{\alpha} \in N_{\alpha}$ for each $\alpha \in A$. Then $e = (e_{\alpha}) \in \prod_{\alpha \in A} N_{\alpha}$. Let $(n_{\alpha}), (n'_{\alpha}) \in \prod_{\alpha \in A} N_{\alpha}$. Then since $n_{\alpha}n'_{\alpha} \in N_{\alpha}$ for each $\alpha \in A$. This implies that $(n_{\alpha})(n'_{\alpha}) = (n_{\alpha}n'_{\alpha}) \in \prod_{\alpha \in A} N_{\alpha}$.

Example 1.1.20. Not every submonoid of a product monoid arises in this fashion. For instance consider $N = \{(n,n) \in \mathbb{N} \times \mathbb{N}\}$ which is a proper submonoid of $(\mathbb{N} \times \mathbb{N}, +)$. Indeed, $0_{\mathbb{N} \times \mathbb{N}} = (0,0) \in N$ and if $(n_1,n_1), (n_2,n_2) \in N$, then $(n_1,n_1) + (n_2,n_2) = (n_1+n_2,n_1+n_2) \in N$. Let any two submonoids $A,B \subset \mathbb{N}$ be given and suppose neither are trivial. take any pair of elements $a \in A, b \in B$. It is clear that we can add a to itself to the point where the outcome is not equal to b. I.e. there is an $n \in \mathbb{N}$ such that $na \neq b$. Then $(na,b) \notin N$, hence $N \neq A \times B$. This means N cannot be the product monoid of submonoids of \mathbb{N} .

Definition 1.1.21. Let A be a set and $\{M_{\alpha}\}_{{\alpha}\in A}$ a family of monoids. We define the *finitely supported direct product* of M_{α} over A as the set

$$\prod_{\alpha \in A, \mathrm{fin}} M_\alpha \coloneqq \left\{ (m_\alpha) \in \prod_{\alpha \in A} M_\alpha : m_\alpha = e_\alpha \text{ for all but finitely many } \alpha \in A \right\}$$

Lemma 1.1.22. Let A be a set and $\{M_{\alpha}\}_{{\alpha}\in A}$ a family of monoids. $\prod_{{\alpha}\in A, \text{fin}} M_{\alpha}$ is a submonoid of $\prod_{{\alpha}\in A} M_{\alpha}$.

Proof. Let $(m_{\alpha}), (m'_{\alpha}) \in \prod_{\alpha \in A, \text{fin}} M_{\alpha}$. For some distinct $\alpha_1, \ldots, \alpha_r \in A$ and $\beta_1, \ldots, \beta_p \in A$, $m_{\alpha} = e_{\alpha}$ for every $\alpha \in A \setminus \{\alpha_1, \ldots, \alpha_r\}$ and $m'_{\alpha} = e_{\alpha}$ for every $\alpha \in A \setminus \{\beta_1, \ldots, \beta_p\}$. Then $m_{\alpha}m'_{\alpha} = e_{\alpha}$ for every $\alpha \in A \setminus \{\alpha_1, \ldots, \alpha_r, \beta_1, \ldots, \beta_p\}$ hence $(m_{\alpha})(m'_{\alpha}) = (m_{\alpha}m'_{\alpha}) \in \prod_{\alpha \in A, \text{fin}} M_{\alpha}$. Clearly $e = (e_{\alpha}) \in \prod_{\alpha \in A, \text{fin}} M_{\alpha}$.

Here is a note on notation: Given a finite set of elements $E \subset M$ in a monoid (M, e), we define when E is empty,

$$\prod_{m \in E} m := e.$$

When $E = \{m_1, \dots, m_n\}$ we define

$$\prod_{x \in E} := \left(\prod_{m \in E \setminus \{m_n\}} m\right) m_n$$

In the non empty case we often use the notation

$$\prod_{1}^{n} m_i := \prod_{m \in E} m.$$

When (M, +) is commutative we opt to write

$$\sum_{m \in E} m$$

instead of

$$\prod_{m \in E} m$$

Definition 1.1.23. Given a monoid M and a set X, for a function $f: X \to M$, we define the support of f to be the set

$$\operatorname{supp} f := \{ x \in X : f(x) \neq e \}$$

Lemma 1.1.24. Given a monoid M and a set X, for functions $f, g: X \to M$,

$$\operatorname{supp} fq \subset \operatorname{supp} f \cup \operatorname{supp} q$$

Proof. If $x \in X$ is such that f(x) = e = g(x), then fg(x) = e.

Lemma 1.1.25. Given a family of submonoids $\{M_{\alpha}\}_{{\alpha}\in A}$ of a commutative monoid (M, +), there is a monoid map

$$\prod_{\alpha \in A, \mathrm{fin}} M_\alpha \to M$$

$$(m_\alpha) \mapsto \sum_{\alpha \in A} m_\alpha \coloneqq \sum_{\alpha \in \mathrm{supp}\ f} m_\alpha$$

We denote the image of this monoid map by

$$\sum_{\alpha} M_{\alpha}$$
.

Proof. Indeed,

$$\begin{split} \left(m_{\alpha}\right) + \left(n_{\alpha}\right) &\mapsto \sum_{\alpha \in \text{supp } (m_{\alpha} + n_{\alpha})} m_{\alpha} + n_{\alpha} = \sum_{\alpha \in \left(\text{supp } (m_{\alpha})\right) \cup \left(\text{supp } (n_{\alpha})\right)} m_{\alpha} + n_{\alpha} \\ &= \sum_{\alpha \in \text{supp } (m_{\alpha})} m_{\alpha} + \sum_{\alpha \in \text{supp } (n_{\alpha})} n_{\alpha}, \end{split}$$

using Lemma 1.1.24 in the first equality. It is clear that (0) is mapped to 0.

Definition 1.1.26. Let X be a set and M a monoid. We define the monoid over M generated by X to be the set

$$M[X] := \{(m_x) \in \operatorname{Set}(X, M) : \operatorname{supp}(m_x) \text{ is finite}\}.$$

When (M, +, 0) is a commutative monoid, we denote an element of M[X] by

$$\sum_{x \in X} m_x x$$

In this case, we call M[X] the free commutative monoid generated by X over M

Remark 1.1.27. From Lemma 1.1.24 it follows that M[X] is submonoid of Set(X, M). Alternatively, note that $Set(X, M) = \prod_{x \in X} M$ and that M[X] just the finitely supported product.

1.1.4 The Free Monoid Generated by a Set

Definition 1.1.28. Given a set X, we define the free monoid generated by X to be the set

$$X_{\mathbb{N}} := \bigsqcup_{n \in \mathbb{N}} X^n$$

with the convention that X^0 is a singleton set. We call the element of this set *the empty string* in $\mathbb{N}[X]$. Given

$$x = (x_1, \dots, x_n) \in X^n \text{ and } y = (y_1, \dots, y_m) \in X^m,$$

we define concatenation

$$xy := (x_1, \dots, x_n, y_1, \dots, y_m) \in X^{n+m}$$

Lemma 1.1.29. The free monoid generated by a set X with concatenation is a monoid with the neutral element being the empty string.

Proof. the operation of concatenation is clearly associative and the empty string is also clearly seen to be neutral element with respect to concatenation. \Box

1.1.5 The Opposite Monoid

Definition 1.1.30. Consider a monoid (M, \circ) . The opposite category is then $M^{\text{op}} := \text{End}(\mathbf{B}M^{\text{op}})$.

Remark 1.1.31. In other words, M^{op} is the monoid (M, \star) , where for $x, y \in M$

$$x \star y := y \circ x$$
.

The upshot of having such a construction is in many cases we are interested in statements that involve some sort of action from the left and a notion of an action from the right. The statement about the right action can be reduced to a statement about the left action in the opposite monoid, allowing us prove only one statement.

Note that in the case of a commutative monoid M,

$$(M^{\operatorname{op}}, \star) = (M, \circ)$$

1.2 Groups

1.2.1 Definition & Basic Properties

Definition 1.2.1. A group is a monoid (G, \circ) where for every $g \in G$ there is an element $g^{-1} \in G$ such that

$$gg^{-1} = g^{-1}g = e.$$

For $g \in G$ we refer to g^{-1} as the *inverse of* g. The data specifying a group is also often written as the tuple (G, \circ, e) or (G, \circ) .

Remark 1.2.2. Not that for $g \in G$ the inverse g^{-1} is the mutually inverse morphism of g, when we interpret G as the groupoid $BG = (\{G\}, G)$. For the same reason we have that

$$(g_1g_2)^{-1} = g_2^{-1}g_1^{-1}$$

for each $g_1, g_2 \in G$ and that

$$\left(g^{-1}\right)^{-1} = g$$

Remark 1.2.3. For an element $g \in G$ and a non-negative integer n, we define

$$g^{-n} := (g^{-1})^n$$
.

It is easy to check that $(g^n)^{-1} = g^{-n}$.

Definition 1.2.4. A group (G, +) is called *abelian* or *additive*, if it is also a commutative monoid with respect to +. We denote the inverse of $g \in G$ with respect to addition by -g, and for $g_1, g_2 \in G$ we define

$$g_1 - g_2 := g_1 + (-g_2).$$

and
$$ng_1 = \underbrace{g_1 + \ldots + g_1}_{n \text{ times}}$$

Lemma 1.2.5. Let (G, \circ) be a group. Let $g, g', a \in G$. If ag = ag', then g = g'. Similarly, if ga = g'a, then g = g'.

Proof. This follows from each $g \in G$ being an isomorphism in BG, which in particular implies that they are epimorphisms and monomorphisms.

Definition 1.2.6. Let G be a group. A subset $H \subset G$ is called a *subgroup* if it is a submonoid of G and for every $h \in H$ we have that $h^{-1} \in H$.

Remark 1.2.7. (H, \circ) is a group. Indeed, (H, \circ) is a monoid since $H \subset G$ is a submonoid. Since $h^{-1} \in H$ for every $h \in H$, it follows that every element in H has in inverse in H, hence H is a group.

Example 1.2.8. 1. For $n \in \mathbb{Z}$, the set $n\mathbb{Z} := \{nm : m \in \mathbb{Z}\}$ is a subgroup of $(\mathbb{Z}, +)$.

- 2. $\mathbb{R} \subset \mathbb{C}$ is a subgroup of $(\mathbb{C}, +)$. $\mathbb{R} \setminus \{0\} \subset \mathbb{C} \setminus \{0\}$ is a subgroup of $(\mathbb{C} \setminus \{0\}, \cdot)$
- 3. Let G be a group. Then G and $\{e\}$ are subgroups of G.
- 4. Given a set A. The set of invertible maps $A \to A$, denoted $\operatorname{Aut}(A)$ forms a submonoid of $\operatorname{Set}(A,A)$ under composition, furthermore it is a group, when picking the inverse elements to be inverse maps and the neutral to be the identity on A.
- 5. Given a non-empty set X and a group G the monoid Set(X,G) forms a group. Indeed for $f \in Set(X,G)$, define $f^{-1}: X \to G$ by $f^{-1}(x) = (f(x))^{-1}$. Then

$$ff^{-1}(x) = f(x) (f(x))^{-1} = e_N = e(x).$$

6. Let G be a group and consider $I \subset H \subset G$. Then $I, H \subset G$ are subgroups if and only if $I \subset H$ and $H \subset G$ are subgroups.

Definition 1.2.9. Let G be a group and $S \subset G$. Then we define the subgroup generated by S to be the set

$$\langle S \rangle = \{ s_1^{v_1} \cdots s_n^{v_n} \in G : n \ge 1, s_1, \dots, s_n \in S, v_1, \dots, v_n \in \{\pm 1\} \}.$$

Our convention will be that $\langle \emptyset \rangle = \{e\}$

Remark 1.2.10. Disallowing negative exponents in $\langle S \rangle$ gives the definition of the submonoid generated by S. From the following, we can derive that this is a submonoid even if we allow G to just be a monoid. If S is empty, it is clearly a subgroup. So suppose S is non-empty. Let $s_1^{v_1} \cdots s_n^{v_n}, t_1^{w_1} \cdots t_m^{w_m} \in \langle S \rangle$. Then if we define $s_i = t_{i-n}$ and $v_i = w_{i-n}$ for $i \in \{n+1, \ldots, n+m\}$. Then

$$s_1^{v_1}\cdots s_n^{v_n}t_1\cdots^{w_1}\cdots t_m^{w_m}=s_1^{v_1}\cdots s_{n+m}^{v_{n+m}}\in\langle S\rangle$$

Clearly $e \in \langle S \rangle$. We also have

$$(s_1^{v_1}\cdots s_n^{v_n})^{-1}=s_n^{-v_n}\cdots s_1^{-v_1}\in \langle S\rangle.$$

It follows that $\langle S \rangle$ is a subgroup. Let $H \subset G$ be a subgroup containing S. Then clearly $s_1^{v_1} \cdots s_n^{v_n} \in H$. Thus $\langle S \rangle$ is the smallest subgroup containing S.

 $S,T\subset G$ such that $S\subset T\subset G$. Then $\langle S\rangle\subset \langle T\rangle$. If $H\subset G$ is a subgroup, then $\langle H\rangle=H$, since H is the smallest subgroup containing H.

Definition 1.2.11. A group G is *finitely generated* if $G = \langle g_1, \ldots, g_n \rangle$ for some $g_1, \ldots, g_n \in G$. If G is generated by one element it is called *cyclic*.

Lemma 1.2.12. Let G be a cyclic group. Then any subgroup of G is cyclic.

Proof. Let $H \subset G$ be a subgroup. If $H = \{e\}$ we are done, so suppose it is not. We have that $G = \langle g \rangle$ for some g. The set $\{n > 0 : g^n \in H\}$ is non-empty and thus have a minimum by the well-ordering of the natural numbers. Call this number m. We claim that $\langle g^m \rangle = H$. The first inclusion is trivial. Let $h \in H$. Then $h = g^l$ for some $l \in \mathbb{Z}$. It is sufficient to check that $h \in \langle g^m \rangle$ the case where l > 0, so we assume this. By minimality $l \geq m$. Then $h = g^l = g^{qm+r}$ for some $q, r \geq 0$ and r < m. Then $g^r = g^{qm+r-qm} = q^{qm+r}q^{-qm} \in H$, hence by minimality r = 0, hence $h = g^{qm} \in \langle g^m \rangle$

1.2.2 Morphisms of groups

Definition 1.2.13. Let G, H be groups. A map $\rho : G \to H$ is called a *group homomorphism/map of groups/morphism of groups*, if for every $g_1, g_2 \in G$,

$$\rho(g_1g_2) = \rho(g_1)\rho(g_2).$$

Remark 1.2.14. 1. Denote the neutral elements of G and H by e_G and e_H respectively. Then $\rho(e_G) = e_H$. Indeed,

$$\rho(e_G)e_H = \rho(e_Ge_G) = \rho(e_G)\rho(e_G),$$

hence by Lemma 1.2.5, $e_H = \rho(e_G)$. Thus a group homomorphism is a monoid homomorphism. It follows that the collection of all groups together with group homomorphisms form a subcategory of Mon, denoted Grp.

We also have that $\rho(g^{-1}) = \rho(g)^{-1}$. Indeed,

$$\rho(g)\rho(g)^{-1} = e_H = \rho(e_G) = \rho(gg^{-1}) = \rho(g)\rho(g^{-1}),$$

hence by uniqueness of inverse elements $\rho\left(g^{-1}\right)$ = $\rho(g)^{-1}$.

- 2. The class of all groups together with group homomorphisms being morphisms is a subcategory of Set, denoted Grp. As a subcategory of Grp, we have the category of abelian groups, denoted ab. The zero object in these categories is the trivial group.
- 3. Suppose H is commutative. Let $\rho \in \operatorname{Grp}(G, H)$ and $x \in M$. Then

$$\rho(x) (\rho(x))^{-1} = e_N = e(x),$$

implying that ${\rm Grp}(G,H)\subset {\rm Set}(G,H)$ is a subgroup. Let $f\in {\rm Grp}(G,H)$ and $x,y\in G$, then

$$f^{-1}(xy) = (f(xy))^{-1} = (f(x)f(y))^{-1} = (f(x))^{-1} (f(y))^{-1} = f^{-1}(x)f^{-1}(y)$$

$$\implies f^{-1} \in \operatorname{Grp}(G, H)$$

The following lemma follows directly from Lemmas 1.1.10 and 1.1.13

Lemma 1.2.15. Let $\rho: G \to H$ be a group homomorphism and $I \subset G$, $J \subset H$ be subgroups. Then $\rho(I) \subset H$ and $\rho^{-1}(J) \subset G$ are subgroups. In particular, the kernel and image of a ρ are subgroups of G and H respectively.

Proof. By Lemma 1.1.10 and Lemma 1.1.13 both sets in question are submonoids of H and G respectively. Let $g \in \rho^{-1}(J)$. Then by Remark 1.2.14,

$$\rho\left(g^{-1}\right) = \rho(g)^{-1} \in J \implies g^{-1} \in \rho^{-1}(J),$$

hence $\rho^{-1}(J)$ is a subgroup of G. Let $\rho(i) \in \rho(I)$. Then by Remark 1.2.14

$$\rho(i)^{-1} = \rho\left(i^{-1}\right) \in \rho(I),$$

hence $\rho(I)$ is a subgroup of H.

Proposition 1.2.16. Let G be an additive group and $H \subset G$ a subgroup. Then H is an additive subgroup.

Proof. This follows from Lemma 1.2.7 and Lemma 1.1.15. \Box

1.2.3 Product Groups, Direct Sums & and Other Enumerated Constructions

Lemma 1.2.17. Given a family of groups $\{G_{\alpha}\}$. The product monoid

$$\prod_{\alpha} G_{\alpha}$$

is a group where the inverse of an element (g_{α}) is given by (g_{α}^{-1}) .

Proof. Indeed, given $(g_{\alpha}) \in \prod_{\alpha} G_{\alpha}$ we have that

$$(g_{\alpha})(g_{\alpha})^{-1} = (g_{\alpha})(g_{\alpha}^{-1}) = (g_{\alpha}g_{\alpha}^{-1}) = (e_{\alpha}) = e$$

proving that $(g_{\alpha})^{-1}$ is the left inverse of (g_{α}) follows from a dual argument. \Box

Definition 1.2.18. Let A be a set and $\{G_{\alpha}\}$ a family of additive groups. We define the direct sum of G_{α} over A denoted

$$\bigoplus_{\alpha \in A} G_{\alpha}$$

to be the finitely supported product monoid of $\{G_{\alpha}\}$.

One readily verifies that if an element (g_{α}) is finitely supported then $(g_{\alpha})^{-1}$ is finitely supported, so the above construction defines an additive group.

Remark 1.2.19. Let $\{G_{\alpha}\}$ a family of subgroups of an additive group G. Then

$$\sum_{\alpha \in A} G_{\alpha} \in G,$$

Lemma 1.1.25 defines a subgroup of G, since $(g_{\alpha}) \mapsto \sum_{\alpha} g_{\alpha}$ defines a group homomorphism, $\bigoplus_{\alpha} G_{\alpha} \to G$.

Remark 1.2.20. 1. The kernel of s is contained in

$$\left\{(h_\alpha)\in\bigoplus_{\alpha\in A}: h\alpha\in H_\alpha\cap\sum_{\beta\in A\setminus\{\alpha\}}H_\beta \text{ for each }\alpha\in A\right\}.$$

Indeed, let $(h_{\alpha}) \in \ker s$. Then $\sum_{1}^{n} h_{\alpha_{i}} = \sum_{\alpha} h_{\alpha} = 0$. Let $\alpha \in A$. If $h_{\alpha} = 0$, then it is trivially in $H_{\alpha} \cap \sum_{\beta \in A \setminus \{\alpha\}} H_{\beta}$. Otherwise $\alpha = \alpha_{i}$ for some $i \in \{1, \ldots, n\}$. Then $h_{\alpha_{i}} = \sum_{\beta \in A \setminus \{\alpha_{i}\}} h_{\alpha} \in \sum_{\beta \in A \setminus \{\alpha_{i}\}} H_{\beta}$, hence $h_{\alpha_{i}} \in H_{\alpha_{i}} \cap \sum_{\beta \in A \setminus \{\alpha_{i}\}} H_{\beta}$.

2. One should note that

$$\sum_{\alpha \in A} H_{\alpha} = \left\langle \bigcup_{\alpha \in A} H_{\alpha} \right\rangle.$$

Indeed, $h_{\alpha} \in \bigcup_{\alpha \in A} H_{\alpha}$ for every $\alpha \in A$, hence

$$\sum_{\alpha \in A} h_{\alpha} = \sum_{1}^{n} h_{\alpha} \in \left\langle \bigcup_{\alpha \in A} H_{\alpha} \right\rangle.$$

Let $\sum_{1}^{n} m_{i} h_{\alpha_{i}} \in \langle \bigcup_{\alpha \in A} H_{\alpha} \rangle$ where $m_{i} \geq 0$, $\alpha_{i} \in A$, $h_{\alpha_{i}} \in H_{\alpha_{i}}$. For each i we then have that

$$m_i h_{\alpha_i} = \sum_{i=1}^{m_i} h_{\alpha_i} \in H_{\alpha_i},$$

Hence upon putting $h'_{\alpha} = 0$ for $\alpha \in A \setminus \{\alpha_1, \dots, \alpha_n\}$ and $h'_{\alpha_i} = m_i h_{\alpha_i}$, implying

$$\sum_{1}^{n} m_{i} h_{\alpha_{i}} = \sum_{\alpha \in A} h'_{\alpha} \in \sum_{\alpha \in A} H_{\alpha}.$$

Proposition 1.2.21. Let A be a set and $\{G_{\alpha}\}_{{\alpha}\in A}$ a family of groups. Then

$$\pi_{\beta}: \prod_{\alpha \in A} G_{\alpha} \to G_{\beta}$$

is group homomorphism. Given a group H and a family of group homomorphisms $\{f_{\alpha}: H \to G_{\alpha}\}_{\alpha \in A}$ then the unique group homomorphism $f: H \to \prod_{\alpha \in A} G_{\alpha}$ (cf. Lemma 1.1.18) such that $\pi_{\alpha} \circ f = f_{\alpha}$ for every $\alpha \in A$ is group homomorphism.

Proof. π_{β} and f being monoid homomorphism they are automatically group homomorphisms.

Proposition 1.2.22. Let A be a set and $\{G_{\alpha}\}_{{\alpha}\in A}$ a family of groups. Consider a family of sets $\{H_{\alpha}\}_{{\alpha}\in A}$ such that $H_{\alpha}\subset G_{\alpha}$ is a subgroup for each $\alpha\in A$. Then

$$\prod_{\alpha \in A} H_{\alpha} \subset \prod_{\alpha \in A} G_{\alpha}$$

is a subgroup.

Proof. By Proposition 1.1.19 it follows that $\prod_{\alpha \in A} H_{\alpha}$ is a submonoid. It thus suffices to check that it is closed under inversion of elements. Let $(h_{\alpha}) \in \prod_{\alpha \in A} H_{\alpha}$. Then $h_{\alpha}^{-1} \in H_{\alpha}$ for each $\alpha \in A$, hence $(h_{\alpha})^{-1} = (h_{\alpha}^{-1}) \in \prod_{\alpha \in A} H_{\alpha}$.

Example 1.2.23. Not all subgroups of $\prod_{\alpha} G_{\alpha}$ arise in this fashion. For instance $\{(n,n) \in \mathbb{Z} \times \mathbb{Z} : n \in \mathbb{Z}\}$, which is a subgroup of $(\mathbb{Z} \times \mathbb{Z}, +)$, is not the product of pair of subgroups of \mathbb{Z} .

Lemma 1.2.24. Let $\rho: G \to H$ be a group homomorphism where G is an abelian group and $J \subset G$ be a subgroup. Then $\rho(J)$ is an abelian group

Proof. Since $\rho(J) \subset H$ is a subgroup it is a group. It remains to check that $\rho(J)$ is abelian. Let $\rho(g_1)\rho(g_2) \in \rho(J)$. Then

$$\rho(g_1)\rho(g_2) = \rho(g_1g_2) = \rho(g_2g_1) = \rho(g_2)\rho(g_1).$$

Proposition 1.2.25. Let A be a set, G a group and $\{H_{\alpha}\}_{{\alpha}\in A}$ be a family of subgroups of G. Then

$$\bigcap_{\alpha \in A} H_{\alpha}$$

is a subgroup of G

Proof. Clearly $e \in H_{\alpha}$ for each $\alpha \in A$, hence $e \in \bigcap_{\alpha \in A} H_{\alpha}$. Fix a $\beta \in A$. Let $h, h' \in \bigcap_{\alpha \in A} H_{\alpha}$. Then $hh', h^{-1} \in H_{\alpha}$ for each $\alpha \in A$, hence $hh', h^{-1} \in \bigcap_{\alpha \in A} H_{\alpha}$.

1.2.4 Quotient Groups

Definition 1.2.26. Let G be a group and $X,Y \subset G$ we then define

$$XY := \circ (X \times Y) = \{xy \in G : (x,y) \in X \times Y\},\$$

and

$$X^{-1} := i(X) = \left\{ x^{-1} \in G : x \in X \right\}.$$

Remark 1.2.27. One easily sees for $X,Y,Z\subset G$ that X(YZ)=(XY)Z and that $(XY)^{-1}=Y^{-1}X^{-1}$.

Definition 1.2.28. Let G be a group, $H \subset G$ be a subgroup and $g \in G$. The *left coset of* H with respect to g is defined to be the set

$$gH := \{g\}H = \{gh : h \in H\}$$

The right coset of H with respect to q is defined to be the set

$$Hg := H\{g\} = \{hg : h \in H\}$$
.

Remark 1.2.29. Note that clearly hH = H = Hh for any $h \in H$. If $gH \neq H$, then $gh \notin H$ for some $h \in H$, meaning $g \notin H$. Since eg = g = ge, it also follows that $g \in gH$ and $g \in Hg$ for every $g \in G$. It is also easy to check that $H^{-1} = H$.

Proposition 1.2.30. *Let* G *be a group and* $H \subset G$ *a subgroup. Then the sets*

$$\sim_l := \{(g_1, g_2) \in G \times G : g_1H = g_2H\} \text{ and } \sim_r := \{(g_1, g_2) \in G \times G : Hg_1 = Hg_2\}$$

define equivalence relations. We define $G/H := G/\sim_l$ and $G \setminus H := G/\sim_r$.

Proof. We only check the left case, since the right case is dual. Let $g_1, g_2, g_3 \in G$. Obviously $g_1H = g_1H$, hence $g_1 \sim_l g_1$. Suppose $g_1 \sim_l g_2$. Then $g_1H = g_2H$, hence $g_2H = g_1H$, meaning $g_2 \sim_l g_1$. Suppose $g_1 \sim_l g_2$ and $g_2 \sim_l g_3$. Then $g_1H = g_2H = g_3H$, hence $g_1 \sim_l g_3$.

Lemma 1.2.31. Let G be a group and $H \subset G$. Then for $g, g' \in G$

$$g \sim_l g' \iff g^{-1}g' \in H.$$

Proof. Indeed,

$$g \sim_l g' \iff gH = g'H \iff g^{-1}(gH) = g^{-1}(g'H) \iff H = \left(g^{-1}g\right)H = \left(g^{-1}g'\right)H$$
$$\iff g^{-1}g' \in H,$$

where the last bi-implication follows from Remark 1.2.29.

Proposition 1.2.32. A group G with a subgroup $H \subset$ is the disjoint union of the elements of G/H respectively $G \setminus H$.

Proof. We check the left case. The right case is dual. Since $g \in gH$ for every $g \in G$, it follows that

$$G = \bigcup_{gH \in G/H} gH.$$

Let $g_1, g_2 \in G$. Suppose $g_1H \cap g_2H \neq \emptyset$. Then there is an element $x \in g_1H \cap g_2H$, hence $g_1h_1 = x = g_2h_2$ for suitable $h_1, h_2 \in H$. This implies that

$$g_1^{-1}g_2 = h_1h_2^{-1} \in H \implies g_1H = g_2H.$$

Thus if $g_1H \neq g_1H$, then $g_1H \cap g_2H = \emptyset$.

Definition 1.2.33. A subgroup $H \subset G$ is *normal* if

$$gNg^{-1} = N$$

for every $g \in G$.

Remark 1.2.34. Note that

$$gNg^{-1} = N \iff gN = gN(g^{-1}g) = (gNg^{-1})g = Ng,$$

Hence any subgroup of an abelian group is normal. Furthermore \sim_l and \sim_r define the same set. Thus we may define \sim to be \sim_l . Let $X \subset G$. Then XN = NX. Indeed, if $xn \in XN$, then $xn \in xN = Nx$, hence $XN \subset NX$. The other inclusion is shown in a similar way.

Lemma 1.2.35. The kernel of a group homomorphism $\rho: G \to H$ is a normal subgroup of G.

Proof. Let $g \in G$ and $k \in \ker \rho$. Then

$$\rho(gkg^{-1}) = \rho(g)\rho(k)\rho(g)^{-1} = \rho(g)e\rho(g)^{-1} = e,$$

hence $g(\ker \rho)g^{-1} \subset \ker \rho$. Conversely $k \in g(\ker \rho)g^{-1}$ since $k = g(g^{-1}kg)g^{-1}$ and $g^{-1}kg \in \ker \rho$ by the above computation.

Proposition 1.2.36. Let G be a group and $H, N \subset G$ be subgroup, where N is normal. Then $HN, NH \subset G$ are subgroups of G.

Proof. Let $h_1n_1, h_2n_2 \in HN$. Then

$$h_1 n_1 h_2 n_2 \in (HN)(HN) = (NH)(HN) = (N(HH))N = (NH)N = (HN)N = H(NN) = HN.$$

Since $e \in H$ and $e \in N$, $ee \in HN$. Thus HN is a subgroup of G. Since HN = NH, it follows that NH is also a subgroup of G.

Proposition 1.2.37. *Let* G *be a group and* $H \subset G$ *a normal subgroup. Then the operation*

$$\cdot: G/H \times G/H \to G/H$$

given by $(g_1H)(g_2H) := g_1g_2H := (g_1g_2)H$ for $g_1H, g_2H \in G/H$ is well-defined and $(G/H, \cdot)$ is a group.

Proof. We first need to check that the group operation is well-defined. Let $g_1, g_2 \in G$. We need to check that $(g_1H)(g_2H) = (g_1g_2)H$. Let $g_1h_1g_2h_2 \in g_1Hg_2H$. Then $h_1g_2 \in Hg_2 = g_2H$, hence $h_1g_2h_2 \in g_2Hh = g_2H$, hence $g_1(h_1g_2h_2) = g_1(g_2H) = (g_1g_2)H$. If $g_1g_2h \in g_1g_2H$, then $g_1g_2h = g_1eg_2h \in (g_1H)(g_2H)$. Thus the operation is well-defined, since if $(g_1H, g_2H) = (g_1'H, g_2'H)$, then trivially

$$(g_1g_2)H = (g_1H)(g_2H) = (g_1'H)(g_2'H) = (g_1'g_2')H.$$

For $g_1H, g_2H, g_3H \in G/H$, it follows by Remark 1.2.27 that

$$(q_1H)((q_2H)(q_3H)) = (q_1Hq_2H)(q_3H).$$

Define the neutral element with respect to \cdot to be eH. Indeed

$$(eH)(gH) = (eg)H = gH,$$

for every $gH \in G/H$. We inverse element of $gH \in G/H$ to be $(g^{-1}H) = H^{-1}g^{-1} = Hg^{-1} = g^{-1}H$. Indeed

$$(g^{-1}H)(gH) = (g^{-1}g)H = eH.$$

Corollary 1.2.38. *If* (G, +) *is an additive group and* $H \subset G$ *is a subgroup, then* (G/H, +) *(where* + *is defined as in the above proposition) is an additive group*

Proof. By Remark 1.2.34 H is normal and by the above proposition G/H is a group. Let $g_1 + H$, $g_2 + H \in G/H$ be given. Then

$$(g_1 + H) + (g_2 + H) = (g_1 + g_2) + H = (g_2 + g_1) + H = (g_2 + H) + (g_1 + H).$$

Lemma 1.2.39. Let G be a group and N a normal subgroup. Let $N \subset H \subset G$ a subgroup. Then $N \subset H$ is normal and $H/N \subset G/N$ is a subgroup.

Proof. For every $h \in H$, $hNh^{-1} = N$, since $h \in G$. Let $h_1N, h_2N \in H/N$. Then since $h_1h_2 \in H$,

$$(h_1N)(h_2N) = h_1h_2N \in H/N.$$

Furthermore since $e \in H$, $eN \in H/N$.

Proposition 1.2.40. Let G be a group and N a normal subgroup. Then

 $S = \{H \subset G : H \text{ is a subgroup of } G, N \subset H\}$ is in one-to-one correspondence with the set $S' = \{K \subset G/N : K \text{ a subgroup of } G/N\}$. Any subgroup $K \subset G/N$ is of the form H/N for some $H \in S$.

Proof. We show that $u:S\to S', H\mapsto H/N$ is a bijection. This map is well-defined by the above lemma. For $K\in S'$, let $H(K)=\{g\in G:gN\in K\}$. We check that H(K) is a subgroup G containing N. Let $h_1,h_2\in H(K)$. Then $h_1N,h_2N\in K$, hence $h_1h_2N\in K$, implying $h_1h_2\in H(K)$. Clearly $eN\in K$, hence $e\in H(K)$. Let $n\in N$. Then $nN=eN\in K$, hence $n\in H(K)$. Then the map $u':S'\to S, K\to H(K)$ is well-defined. We check that u and u' are mutual inverses. Let $K\in S'$. We need to check that uu'(K)=H(K)/N=K. Let $k\in K$, then k=gN for some $g\in G$, then $g\in H(K)$, hence $k=gN\in H(K)/N$. Let $k\in K$, then k=gN for some $k\in K$. Let $k\in K$. Let $k\in K$. Let $k\in K$. Then we need to check that u'u(K)=H(K)/N. Then by definition $u\in K$. Let $u\in K$. Let $u\in K$. Then we need to check that u'u(K)=H(K)/N. Then by definition $u\in K$. Let $u\in K$. Let $u\in K$. Then we need to check that u'u(K)=H(K)/N, hence $u\in K$. Let $u\in K$. Let $u\in K$. Then $u\in K$. Let $u\in K$. Let $u\in K$. Let $u\in K$. Then $u\in K$. Let $u\in K$. Let $u\in K$. Then $u\in K$. Let $u\in K$. Let $u\in K$. Then $u\in K$. Let $u\in K$. Let $u\in K$. Then $u\in K$. Let $u\in K$. Let $u\in K$. Then $u\in K$. Let $u\in K$. Let $u\in K$. Then $u\in K$. Let $u\in K$. Let $u\in K$. Then $u\in K$. Let $u\in K$. Let $u\in K$. Let $u\in K$. Let $u\in K$. Then $u\in K$. Let $u\in K$. Let

Proposition 1.2.41. Let G be a group and $N \subset G$ a normal subgroup. The surjection $\pi: G \to G/N, g \mapsto gN$ is a group map

Proof. Let
$$g_1, g_2 \in G$$
. Then $\pi(g_1g_2) = g_1g_2N = g_1Ng_2N = \pi(g_1)\pi(g_2)$.

1.3 Rings

1.3.1 Definition & Basic Properties

Definition 1.3.1. A ring (with unity) is a set R with operations $+: R \times R \to R$ and $\cdot: R \times R \to R$ called multiplication such that (R, +) is an additive group, (R, \cdot) is a monoid and for $r_1, r_2, r_3 \in R$

$$r_1(r_2 + r_3) = r_1r_2 + r_1r_3 & (r_1 + r_2)r_3 = r_1r_3 + r_2r_3.$$

We denote the neutral element with respect to multiplication by 1. The data specifying a ring is often written $(R, +, \cdot)$.

Lemma 1.3.2. Let R be a ring and $r \in R$. The following identities are true for rings

1.
$$0 \cdot r = 0$$
.

2.
$$(-1)r = -r$$
, $r(-1) = -r$.

Proof. 1. follows from the following computation.

$$0r = 0r + 0 = 0r + r - r = 0r + 1r - r = (0 + 1)r - r = 1r - r = r - r = 0$$

2. follows from the following computation.

$$(-1)r = (-1)r + 0 = (-1)r + r - r = (-1)r + 1r - r = (-1 + 1)r - r = 0r - r = 0 - r = -r$$

the other statement is proven similarly.

Definition 1.3.3. Let R be a ring. If (R, \cdot) is a commutative monoid, then R is called a *commutative ring*.

Definition 1.3.4. Let R be a ring. A *subring* is a subset $S \subset R$ such that S is a subgroup of (R, +) and a submonoid of (R, \cdot) .

Remark 1.3.5. $(S, +, \cdot)$ is a ring. Indeed, clearly (S, +) is an additive group since $S \subset R$ is a subgroup and (S, \cdot) is a monoid since $S \subset R$ is a submonoid. Let $r_1, r_2, r_3 \in S$, then since $S \subset R$,

$$r_1(r_2 + r_3) = r_1r_2 + r_1r_2 & (r_1 + r_2)r_3 = r_1r_3 + r_2r_3.$$

One should also note that R is commutative then S is commutative

Example 1.3.6. 1.
$$(\mathbb{Z}, +, \cdot), (\mathbb{Q}, +, \cdot), (\mathbb{R}, +, \cdot), (\mathbb{C}, +, \cdot)$$
 are rings.

2. Given a ring R we may form the opposite ring $(R^{(op)}, +, *)$ where $(R^{(op)}, +) = (R, +)$ and multiplication is defined by $r * r' = r' \cdot r$ for $r, r' \in R$. checking that this is a ring is easy. Clearly $(R^{(op)}, +)$ is an additive group. Let $r_1, r_2, r_3 \in R^{(op)}$. Then

$$r_1 * (r_2 * r_3) = (r_3 r_2)r_1 = r_3(r_2 r_1) = (r_1 * r_2) * r_3$$

and

$$r_1 * 1 = 1$$
 $r_1 = r_1 = r_1 1 = 1 * r_1$

and lastly

$$r_1 * (r_2 + r_3) = (r_2 + r_3)r_1 = r_2r_1 + r_3r_1 = r_1 * r_2 + r_1 * r_3,$$

where last identity to be checked is omitted as it is dual to the one above. One also easily verifies that $(R^{(op)})^{(op)} = R$

- 3. For a non-empty set X and a ring R, the set $\operatorname{Fun}(X,R)$ is a monoid and an additive group with respect to multiplication and addition defined earlier. One easily verifies that it is also a ring.
- 4. For rings R, S, if $\operatorname{Hom}^{\operatorname{Ring}}(R, S) \neq \emptyset$ is never a subring of $\operatorname{Fun}(R, S)$. Indeed, note that the zero map is never a ring homomorphism since it maps 1 to 0.

1.3.2 Morphisms of Rings

Definition 1.3.7. Let R, S be rings. A map $\sigma: R \to S$ is called a *ring homomorphism/map of rings/morphism of rings* if σ is a group homomorphism between (R, +) and (S, +) and a monoid homomorphism between (R, \cdot) and (S, \cdot) . The set of ring homomorphisms between R to S is denoted $\operatorname{Hom}^{Ring}(R, S)$.

Here are some examples of rings

Lemma 1.3.8. Let $\sigma: R \to S$ be a ring homomorphism and $T \subset R$, $U \subset S$ be subrings. Then $\sigma(T) \subset S$ and $\sigma^{-1}(U)$ are subrings. If T is commutative then so is $\sigma(T)$.

Proof. Prior lemmas ensure that these sets are appropriate additive subgroups and submonoids. \Box

1.3.3 Product Rings

Proposition 1.3.9. Let A be a set, $\{R_{\alpha}\}_{{\alpha}\in A}$ a family of rings. Then $(\prod_{{\alpha}\in A}R_{\alpha},\cdot)$ is a monoid and $(\prod_{{\alpha}\in A}R_{\alpha},+)$ an additive group by Theorem 1.1.17 resp. Proposition ??. In addition $(\prod_{{\alpha}\in A}R_{\alpha},+,\cdot)$ is a ring. HERE

Proof. It remains to check that multiplication distributes over addition. Let $(r_{\alpha}), (r'_{\alpha}), (r''_{\alpha}) \in \prod_{\alpha \in A} R_{\alpha}$. Then

$$(r_{\alpha})((r'_{\alpha}) + (r''_{\alpha})) = (r_{\alpha})(r'_{\alpha} + r''_{\alpha}) = (r_{\alpha}(r'_{\alpha} + r''_{\alpha})) = (r_{\alpha}r'_{\alpha} + r_{\alpha}r''_{\alpha}) = (r_{\alpha}r'_{\alpha}) + (r_{\alpha}r''_{\alpha})$$
$$= (r_{\alpha})(r'_{\alpha}) + (r_{\alpha})(r''_{\alpha}).$$

Remark 1.3.10. The above ring is called *the product ring* (of $\{R_{\alpha}\}_{{\alpha}\in A}$ over A).

Corollary 1.3.11. *The direct sum of rings is a subring of the direct product.*

Proof. This follows from Lemma 1.1.22 and Lemma ??.

Proposition 1.3.12. Let A be a set and $\{R_{\alpha}\}_{{\alpha}\in A}$ a family of rings. Then

$$\pi_{\beta}: \prod_{\alpha \in A} R_{\alpha} \to R_{\beta}$$

is ring homomorphism. Given a ring S and a family of ring homomorphisms $\{f_{\alpha}: S \to R_{\alpha}\}_{\alpha \in A}$ then the unique group and monoid homomorphism $f: S \to \prod_{\alpha \in A} R_{\alpha}$ (cf. Lemma 1.1.18 and Proposition 1.2.21) such that $\pi_{\alpha} \circ f = f_{\alpha}$ for every $\alpha \in A$ is a ring homomorphism.

Proof. This follows immediately from the fact both π_{β} and f are both group and monoid homomorphisms.

1.3.4 The Set of Integers: \mathbb{Z}

Definition 1.3.13. For $(a,b),(c,d) \in \mathbb{N}$ we define $(a,b) \sim (c,d)$ if a+d=b+c. On easily checks that this is an equivalence relation. We define

$$\mathbb{Z} := \mathbb{N}^2 / \sim$$
.

Proposition 1.3.14. *On* \mathbb{Z} *we define*

$$[(a,b)] + [(c,d)] := [(a+c,b+d)]$$

and

$$[(a,b)][(c,d)] := [(ac+bd,ad+bc)].$$

Moreover we define 0 := [(0,0)], -[(a,b)] := [(b,a)] and 1 := [(1,0)]. With these definitions, \mathbb{Z} becomes a commutative ring. The $\{[(a,0)] \in \mathbb{Z} : a \in \mathbb{N}\}$ is a sub-semi-ring isomorphic to \mathbb{N} .

Proof. Suppose first that ([(a,b)],[(c,d)]) = ([(x,y)],[(v,w)]). Then

$$a + y = b + x$$
, $c + w = d + v$

hence

$$(a+c)+(y+w) = (a+y)+(c+w) = (b+x)+(d+v) = (b+d)+(x+v) \implies [(a+c,b+d)] = [(x+v,y+w)].$$

So addition is well-defined. We also have that We check that \mathbb{Z} is a group. Associativity of addition on \mathbb{Z} readily follows from associativity of addition on \mathbb{N} . Let $[(a,b)],[(c,d)]\in\mathbb{Z}$ be arbitrary. Then

$$[(a,b)] + [(0,0)] = [(a+0,b+0)] = [(a,b)]$$

and

$$[(a,b)] + (-[(a,b)]) = [(a,b)] + [(b,a)] = [(a+b,a+b)] = [(0,0)] = 0$$

and

$$[(a,b)] + [(c,d)] = [(a+c,b+d)] = [(c+a,d+b)] = [(c,d)] + [(a,b)]$$

hence \mathbb{Z} is a commutative group. It is easy to check that $\{[(a,0)] \in \mathbb{Z} : a \in \mathbb{N}\}$ is a submonoid isomorphic to \mathbb{N} . Suppose again ([(a,b)],[(c,d)]) = ([(x,y)],[(v,w)]). We find that

$$\begin{aligned} ac + bd + xw + yv + yc + xd + xc + yd &= \\ &= c(a + y) + d(b + x) + x(c + w) + y(d + v) \\ &= c(b + x) + d(a + y) + x(d + v) + y(c + w) \\ &= ad + bc + xv + yw + yc + xd + xc + yd. \end{aligned}$$

implying that, using a fact from group theory,

$$ac + bd + xw + yv = ad + bc + xv + yw \implies [(ac + bd, ad + bc)] = [(xv + yw, xw + yv)].$$

We now find that

$$\begin{split} ([(a,b)][(c,d)])[(e,f)] &= [(ac+bd,ad+bc)][(e,f)] \\ &= [(ace+bde+adf+bcf,acf+bdf+ade+bce)] \\ &= [(a(ce+df)+b(cf+de),a(cf+de)+b(ce+df)] \\ &= [(a,b)][(ce+df,cf+de)] = [(a,b)]([(c,d)][(e,f)]). \end{split}$$

and

$$[(a,b)][(1,0)] = [(a+b\cdot 0, a\cdot 0 + b)] = [(a,b)]$$

and easily we check that

$$[(a,b)][(c,d)] = [(c,d)][(a,b)].$$

Lastly,

$$[(a,b)]([(c,d)] + [(e,f)]) = [(a,b)][(c+e,d+f)] = [(ac+ae+bd+bf,ad+af+bc+be)]$$
$$= [(ac+bd,ad+bc)] + [(ae+bf,af+be)]$$
$$= [(a,b)][(c,d)] + [(a,b)][(e,f)],$$

making \mathbb{Z} a commutative ring. One readily verifies that $\{[(a,0)] \in \mathbb{Z} : a \in \mathbb{N}\}$ is a submonoid of \mathbb{Z} with respect to multiplication. The isomorphism from \mathbb{N} is given by $a \mapsto [(a,0)].$

1.4 Modules

1.4.1 Initial Definitions, Basic Properties & Constructions

Definition 1.4.1. Let R be a ring. A *left* R-module is an additive group (M, +) with a *left* scalar multiplication $\cdot : R \times M \to M$, where $rm := r \cdot m := \cdot (r, m)$ for $(r, m) \in R \times M$ satisfying the following axioms

1. For every $r \in R$, $m, m' \in M$,

$$r(m+m') = rm + rm'.$$

2. For every $r, r' \in R$, $m \in M$,

$$(r+r')m = rm + r'm.$$

3. For every $r, r' \in R$, $x \in M$,

$$(rr')m = r(r'm).$$

4. For every $m \in M$,

$$1m = m$$
.

To emphasise that a module M is a left R-module, we may write $_RM:=M$.

A right R-module is an additive group (M,+) with a right scalar multiplication $\cdot: M \times R \to M$, where $mr := m \cdot r := \cdot (m,r)$, satisfying axioms dual to ones for left scalar multiplication. To emphasise that a module M is a right R-module, we may write $M_R := M$

Let S be a ring. An (R, S)-bimodule is an additive group (M, +), that is a left R-module and a right S-module satisfying

$$(rm)s = r(ms),$$

for every $r \in R$, $s \in S$, $m \in M$. To emphasise that a module M is an (R, S)-bimodule, we may write $_RM_S := M$.

Lemma 1.4.2. Let M be an additive group and R a ring. Then M is a left R-module if and only if M is a right $R^{(op)}$ -module.

Proof. " \Longrightarrow ": 'pose M is a left R-module. We define a right scalar multiplication of $R^{(\text{op})}$ on M by mr = rm. Checking the first 3 axioms is straight forward. For the 4th axiom, let $r_1, r_2 \in R^{(\text{op})}$ and $m \in M$ be given. Then

$$m(r_1 * r_2) = (r_2r_1)m = r_2(r_1m) = r_2(mr_1) = (mr_1)r_2.$$

" \Leftarrow ": This is very similar.

The consequence of the above lemma is that any theorem about right R-modules that is true for left R-modules, can be proven by applying said left case theorem to $R^{(op)}$. Using the fact that $R^{(op)} = R$ when R is commutative, implies that left/right R-modules coincide. In this case left/right R-modules will be referred to simply as R-modules.

For a field K, we call a K-module a vector space over K We give simple initial examples of modules.

Definition 1.4.3. Let M be a left/right R-module. A left/right R-submodule is a subset $N \subset M$ such that N is a subgroup of (M, +) and for every $r \in R$, $n \in N$ we have that $rn \in N$ resp. $nr \in N$.

Remark 1.4.4. A left/right R-submodule $N \subset M$ is a left/right R-module. Indeed (N,+) is group since it is a subgroup of (M,+). N being closed under left/right scalar multiplication ensures that $\cdot := \cdot \mid_{R \times N}: R \times N \to N$ respectively $\cdot := \cdot \mid_{N \times R}: N \times R \to N$ are well-defined and M being a left/right R-module, these left/right actions respect the axioms for left/right scalar multiplication. If M is a (R,S)-bimodule and N is a left R-submodule and a right S-submodule of M then it is also an (R,S)-bimodule. Indeed, if $r \in R$, $n \in N$ and $s \in S$, then since $n \in M$, r(ns) = (rn)s.

Example 1.4.5. 1. Let (G, +) be an additive group. Then G is a \mathbb{Z} -module under the left/right scalar multiplication

$$ng = \sum_{1}^{n} g \& gn = \sum_{1}^{n} g.$$

Under this definition gn = ng hence if G is a left \mathbb{Z} -module, it is automatically a \mathbb{Z} -module. Let $n, m \in \mathbb{Z}$ and $g, g' \in G$. Then

1.
$$n(g+g') = \sum_{1}^{n} (g+g') = \sum_{1}^{n} g + \sum_{1}^{n} g' = ng + ng'$$

2.
$$(n+m)g = \sum_{1}^{n+m} g = \sum_{1}^{n} g + \sum_{n+1}^{n+m} g = ng + \sum_{1}^{m} g = ng + mg$$

3.
$$n(mg) = n \sum_{1}^{m} g = \sum_{1}^{n} \sum_{1}^{m} g = \sum_{1}^{nm} g = (nm)g$$

4.
$$1g = \sum_{1}^{1} g = g$$

To prove the second to last equality 3. one should really use induction in m. Note that the induction start uses 4.

- 2. Let $(R, +, \cdot)$ be a ring. Then (R, +) is an additive group, which becomes an (R, R)-bimodule under the action $rx := r \cdot x$ and $xs := x \cdot s$ for $r, s, x \in R$.
- 3. A left/right R-submodule of $I \subset R$ is called a *left/right ideal in* R. If I is an (R, R)-bimodule, it is called a *both-sided ideal in* R. If R is commutative a left/right ideal is simply referred to as an *ideal in* R.
- 4. Let A be a set and R a ring, then $\prod_{\alpha \in A} R$ is an R-module, under the left/right scalar multiplication given by $a(r_{\alpha}) := (ar_{\alpha})/(r_{\alpha})a = (r_{\alpha}a)$ for $a \in R$ and $(r_{\alpha}) \in \prod_{\alpha \in A} R$. This is easily checked using 2. together with the fact that $(a)(r_{\alpha}) = a(r_{\alpha})$ and $(r_{\alpha})(a) = (r_{\alpha})a$ for every $a \in R$, $(r_{\alpha}) \in \prod_{\alpha \in A} R$. It in particular follows that the matrix ring is an R-module.
- 5. Let R be a ring and $I \subset R$ an ideal. Then R/I is an R-module, when equipped with the left/right scalar multiplication r(a+I) := (ra+I). One sees this from the fact that (r+I)(a+I) = r(a+I).
- 6. Let S be a ring and R a subring of S. Then $R \times S \ni (r,s) \mapsto rs \in S$ defines a left scalar multiplication of R on S, hence S is a left R-module. One turns S into a right R-module via $S \times R \ni (s,r) \mapsto sr \in S$

Lemma 1.4.6. Let R be a ring and M a left/right R-module.

1. 0m = 0 for every $m \in M$.

2.
$$(-1)m = -m$$
 for every $m \in M$.

- 3. r(-m) = -rm for every $r \in R$, $m \in M$.
- 4. r0 = 0 for every $r \in R$.

Proof. 1. Really this is just a generalization of Lemma 1.3.2 1. Indeed,

$$0m = 0m + m - m = 0m + 1m - m = (0 + 1)m - m = 1m - m = m - m = 0.$$

2. Really this is just a generalization of Lemma 1.3.2 2. Indeed,

$$(-1)m = (-1)m + m - m = (-1)m + 1m - m = (-1 + 1)m - m = 0m - m = 0 - m = -m$$

3. Indeed,

$$r(-m) = r((-1)m) = (r(-1))m = ((-1)r)m = -rm.$$

4. Indeed,

$$r0 = r(0 - 0) = r0 + r(-0) = r0 - r0 = (r - r)0 = 0 \cdot 0 = 0.$$

Definition 1.4.7. Let R be a ring. An element m of a left/right R-module M is called a torsion *torsion element* if there is an $r \in R$ that is not a left/right zero-divisor satisfying rm = 0 (resp. mr = 0). A module is a torsion module if every element is a torsion element and *torsion free* if the only torsion element is 0.

Remark 1.4.8. An example of a torsion free module is a domain R.

Definition 1.4.9. Let $_RM,_RN$ be left R-modules. A map $\rho: M \to N$ is a *left* R-module homomorphism/map of left R-modules/morphism of left R-modules if for every $r \in R$, $m, m' \in M$,

$$\rho(rm + m') = r\rho(m) + \rho(m').$$

right R-module homomorphisms are defined in a dual manner. (R,S)-bimodule homomorphisms is a map that is both a left R-module homomorphism and a right S-module homomorphism.

Remark 1.4.10. A left/right/bimodule module homomorphisms $(M, +) \to (N, +)$ are automatically group homomorphisms. Similarly for every $r \in R$ and $m \in M$,

$$\rho(rm) = r\rho(m),$$

which is seen by setting m' = 0 when $\rho : M \to N$ is a left R-module. This is also true from the right if ρ was a right R-module.

Lemma 1.4.11. Let M,N be additive groups, R a ring and $\rho: M \to N$ a group homomorphism. Then ρ is a left R-module homomorphism if and only if ρ is a right $R^{(op)}$ -module.

Proof. " \Longrightarrow ": We make M and N right $R^{(\text{op})}$ -modules as in Lemma 1.4.2. Let $r \in R^{(\text{op})}$ and $m \in M$. It is sufficient to check that $\rho(mr) = \rho(m)r$. Indeed,

$$\rho(mr) = \rho(rm) = r\rho(m) = \rho(m)r.$$

"
$$\Leftarrow$$
 ": This is proven by using $(R^{(op)})^{(op)} = R$ and applying " \Longrightarrow ".

The consequence of the above lemma is that we get a way of automatically check a theorem for R-module homomorphisms, whenever we have a proof of the left case. This akin to what we gained in Lemma 1.4.2.

Lemma 1.4.12. If $\rho: M \to N$ is a left R-module/right S-module homomorphism, then for a left R-submodule/right S-module $L \subset M$, $\sigma(L) \subset N$ is a left R-submodule/ right R-submodule. If M and N are (R,S)-bimodules and ρ is an (R,S)-bimodule homomorphism, then $\sigma(L)$ is an (R,S)-bimodule. The two statements present are thus in particular true for the image of ρ .

Proof. We only check left case, as the right case is dual. We already know that $\sigma(L)$ is a subgroup. Let $r \in R$ and $\sigma(l) \in \sigma(L)$. Then

$$r\sigma(l)=\sigma(rl)\in\sigma(L).$$

Let $r \in R$, $\sigma(l) \in \sigma(L)$, $s \in S$. Then

$$r(\sigma(l)s) = r\sigma(ls) = \sigma(r(ls)) = \sigma((rl)s) = \sigma(rl)s = (r\sigma(l))s.$$

Lemma 1.4.13. Let R, S be rings, A a set and $\{M_{\alpha}\}_{{\alpha}\in A}$ be a family of left R-modules/right S-modules/(R,S)-bimodules. Then

$$\prod_{\alpha \in A} M_{\alpha}$$

is a left R-modules/right S-module/(R, S)-bimodule.

Proof. Note that by Proposition 1.2.22 the direct product of a family of left/right modules is an additive group. We check the left case. Let $r_1, r_2 \in R$, $(m_\alpha), (m'_\alpha) \in \prod_{\alpha \in A} M_\alpha$. Then

- 1. $(r_1 + r_2)(m_\alpha) = ((r_1 + r_2)m_\alpha) = (r_1m_\alpha + r_2m_\alpha) = (r_1m_\alpha) + (r_2m_\alpha) = r_1(m_\alpha) + r_2(m_\alpha)$.
- $2. \quad r_1((m_\alpha) + (m'_\alpha)) = r_1(m_\alpha + m'_\alpha) = (r_1m_\alpha + r_1m'_\alpha) = (r_1m_\alpha) + (r_1m'_\alpha) = r_1(m_\alpha) + r_1(m'_\alpha).$
- 3. $1(m_{\alpha}) = (1m_{\alpha}) = (m_{\alpha}).$
- 4. $(r_1r_2)(m_\alpha) = ((r_1r_2)m_\alpha) = (r_1(r_2m_\alpha)) = r_1(r_2m_\alpha) = r_1(r_2(m_\alpha)).$

Suppose $\{M_{\alpha}\}_{{\alpha}\in A}$ is a family of (R,S)-modules and let $r\in R, s\in S$. Then

$$r((m_\alpha)s) = r(m_\alpha s) = (r(m_\alpha s)) = ((rm_\alpha)s) = (rm_\alpha)s = (r(m_\alpha))s.$$

Proposition 1.4.14. Let A be a set, R a ring and $\{M_{\alpha}\}_{{\alpha}\in A}$ a family of left/right modules. Then

$$\pi_{\beta}: \prod_{\alpha \in A} M_{\alpha} \to M_{\beta}$$

is a left/right R-module homomorphism. Given a left/right R-module N and a family of left/right R-module homomorphisms $\{f_{\alpha}: N \to M_{\alpha}\}_{\alpha \in A}$ then the unique group homomorphism $f: N \to \prod_{\alpha \in A} M_{\alpha}$ (cf. Proposition 1.2.21) such that $\pi_{\alpha} \circ f = f_{\alpha}$ for every $\alpha \in A$ is a left/right R-module homomorphism.

Proof. Let $r \in R$ and $(m_{\alpha}) \in \prod_{\alpha \in A} M_{\alpha}$, $n \in N$. Then for $\beta \in A$,

$$\pi_{\beta}(r(m_{\alpha})) = \pi_{\beta}((rm_{\alpha})) = rm_{\beta} = r\pi_{\beta}((m_{\alpha})).$$

Furthermore, we have that

$$f(rn) = (f_{\alpha}(rn)) = (rf_{\alpha}(n)) = r(f_{\alpha}(n)) = rf(n).$$

Lemma 1.4.15. Let R be a ring, M a left/right R-module, A a set and $\{M_{\alpha}\}_{{\alpha}\in A}$ a family of left/right R-submodules. Then

$$\bigcap_{\alpha \in A} M_{\alpha}$$

is a left/right R-submodule.

Proof. From Proposition 1.2.25 we already know that $\bigcap_{\alpha \in A} M_{\alpha}$ is an additive subgroup. Let $r \in R$ and $m \in \bigcap_{\alpha \in A} M_{\alpha}$ then $rm \in M_{\alpha}$ for every $\alpha \in A$, meaning $rm \in \bigcap_{\alpha \in A} M_{\alpha}$.

Proposition 1.4.16. Let A be a set, R a ring and $\{M_{\alpha}\}_{{\alpha}\in A}$ a family of left/right R-modules. Then

$$\bigoplus_{\alpha \in A} M_{\alpha}$$

is a submodule of $\prod_{\alpha \in A} M_{\alpha}$.

Proof. We already know it to be an additive subgroup. Let $r \in R$ and $(m_{\alpha}) \in \bigoplus_{\alpha \in A} M_{\alpha}$. Then for some finite subset $B \subset A$, $m_{\alpha} = 0$ for every $\alpha \in A \setminus B$. Hence $rm_{\alpha} = 0$ for every $\alpha \in A \setminus B$. It thus follows that $r(m_{\alpha}) = (rm_{\alpha}) \in \bigoplus_{\alpha \in A} M_{\alpha}$.

Lemma 1.4.17. Let R be a ring M be a left/right R-module. Let $N \subset M$ be a left/right R-submodule. Then M/N is a left/right submodule under the left/right scalar multiplication r(m+N) := rm + N resp. (m+N)r := mr + N. If M is an (R,S)-bimodule for some ring S and N is a left R-submodule and a right S-submodule. Then M/N is an (R,S)-bimodule.

Proof. Let $r_1, r_2 \in R$, m + N, $m' + N \in M/N$. Then

1.
$$(r_1 + r_2)(m + N) = (r_1 + r_2)m + N = (r_1m + r_2m) + N = (r_1m + N) + (r_2m + N)$$

= $r_1(m + N) + r_2(m + N)$.

2.
$$r_1((m+m')+N) = r_1(m+m')+N = (r_1m+r_1m')+N = (r_1m+N)+(r_1m'+N)$$

= $r_1(m+N)+r_1(m'+N)$.

3.
$$1(m+N) = 1m + N = m + N$$

4.
$$(rr')(m+N) = (rr')m + N = r(r'm) + N = r(r'm+N) = r(r'(m+N))$$

Suppose M is an (R, S)-bimodule. Let $r \in R$, $s \in S$. Then

$$r((m+N)s) = r(ms+N) = r(ms) + N = (rm)s + N = (rm+N)s = (r(m+N))s.$$

Corollary 1.4.18. The canonical surjective group map $\pi: M \to M/N$ is a left/right module map

Proof. Let
$$r \in R$$
, $m \in M$. Then $\pi(rm) = rm + N = r(m + N) = r\pi(m)$.

Lemma 1.4.19. Let R be a ring and M a left/right R-module and $N \subset M$ a submodule. Then there is one-to-one correspondence between the sets

$$U = \{L \subset M : L \text{ is a submodule of } M \text{ containing } N\}$$

and

$$U' = \{K \subset M/N : K \text{ is a submodule of } M/N\}.$$

Proof. This is a corollary of Proposition 1.2.40. Note that by Lemma 1.4.17, $u:U\to U'.L\mapsto L/N$ is well-defined- Note that $U\subset S$ and $U'\subset S'$. Let $K\in U'$, we check that $L(K):=\{m\in M:m+N\in K\}$ is a submodule. Let $r\in R,m\in L(K)$. Then $(rm+N)=r(m+N)\in M/N$, hence $rm\in L(K)$. Then $u':U'\to U,K\mapsto L(K)$ is well-defined. One easily verifies that u and u' are mutual inverses. \square

Lemma 1.4.20. Let R be a ring, M a left/right R-module, A a set and $\{M_{\alpha}\}_{{\alpha}\in A}$ a family of left/right R-submodules of M. Then $s:\bigoplus_{{\alpha}\in A}M_{\alpha}\to M$ (cf. Proposition ??), hence

$$\sum_{\alpha \in A} M_{\alpha}$$

is a left/right R-submodule.

Proof. Indeed for $r \in R$, $(m_{\alpha}) \in \bigoplus_{\alpha \in A} M_{\alpha}$,

$$s(r(m_{\alpha})) = s((rm_{\alpha})) = \sum_{\alpha \in A} rm_{\alpha} = \sum_{1}^{n} rm_{\alpha_{i}} = r \sum_{1}^{n} m_{\alpha_{i}} = r \sum_{\alpha \in A} m_{\alpha} = rs((m_{\alpha})),$$

where $\alpha_1, \ldots, \alpha_n \in A$ are chosen suitably.

Remark 1.4.21. We define $\sum_{i=1}^{n} M_1 = \sum_{i \in \{1,\dots,n\}} M_i$ for left/right R-submodules M_1,\dots,M_n of M and $M_1 + M_2 := \sum_{i=1}^{n} M_i$.

Lemma 1.4.22. Let R be a ring, $I, J \subset R$ be a left resp. right ideal, M a left/right R-module and $m \in M$. Then

$$Im := \{rm : r \in I\} \& mJ := \{mr : r \in J\}$$

is a left resp. right R-submodule of M. Let $X \subset M$. Then

$$IX := \sum_{x \in X} Rx \& XJ := \sum_{x \in X} xR$$

is a left resp. right R-submodule of M.

Proof. Indeed for the first statement let $a, b \in I$ and $r \in R$. Then $ra \in I$, hence

$$r(am) = (ra)m \in Im.$$

Furthermore, since $a + b \in I$, hence

$$am + bm = (a + b)m \in Im$$
.

The right case follows from J being a left $R^{(op)}$ -module hence mJ is a left $R^{(op)}$ -module, hence mJ is a right R-module. IX, XJ being left/right modules follows from the first statement and Lemma 1.4.20.

Definition 1.4.23. Let R be a ring and M a left/right R-module. Then M is said to be finitely generated over R if there is a finite sequence $m_1, \ldots, m_n \in M$ such that $M = \sum_{i=1}^{n} Rm_i$.

Definition 1.4.24. Let A be a set, R a ring and $\{M_{\alpha}\}_{{\alpha}\in A}$ a family of left/right R-modules. We say that $\sum_{{\alpha}\in A} M_{\alpha}$ is *direct*, if for every $\beta\in A$,

$$M_{\beta} \cap \sum_{\alpha \in A \setminus \{\beta\}} M_{\alpha} = 0.$$

Lemma 1.4.25. Let A be a set, R a ring and $\{M_{\alpha}\}_{{\alpha}\in A}$ a family of left/right R-modules such that $\sum_{{\alpha}\in A} M_{\alpha}$ is direct. Then

$$\sum_{\alpha \in A} M_{\alpha} \simeq \bigoplus_{\alpha \in A} M_{\alpha}.$$

Proof. We define the map

$$\rho: \bigoplus_{\alpha \in A} M_{\alpha} \to \sum_{\alpha \in A} M_{\alpha}$$
$$(m_{\alpha}) \mapsto \sum_{\alpha \in A} m_{\alpha},$$

where $\sum_{\alpha\in A} m_{\alpha}$ is defined to be the sum of non-zero entries of (m_{α}) . Let $\sum_{1}^{n} m_{\alpha_{i}}$, where $n\geq 1$ and $\alpha_{1},\ldots,\alpha_{n}\in A$. One easily finds that this is a module homomorphism. For $\alpha\in A$, we then define $m_{\alpha}=m_{\alpha_{i}}$ if $\alpha=\alpha_{i}$ for some i and $m_{\alpha}=0$ if not. Then Clearly

$$\sum_{1}^{n} m_{\alpha_i} = \sum_{\alpha \in A} m_{\alpha} = \rho((m_{\alpha})),$$

which means ρ is surjective. Suppose $(m_{\alpha}) \in \ker \rho$. Then

$$0 = \rho((m_{\alpha})) = \sum_{\alpha \in A} m_{\alpha} = \sum_{1}^{n} m_{\alpha_{1}},$$

for some distinct $\alpha_1, \ldots, \alpha_n \in A$. Let $j \in \{1, \ldots, n\}$. Then

$$-m_{\alpha_j} = \sum_{i \in \{1,\dots,n\} \backslash \{j\}} m_{\alpha_i} \in \sum_{\alpha \in A \backslash \{\alpha_j\}} M_{\alpha}.$$

This implies $m_{\alpha_j} \in M_{\alpha_j} \cap \sum_{\alpha \in A \setminus \{\alpha_j\}} M_\alpha = 0$, hence $m_{\alpha_j} = 0$, which means $m_\alpha = 0$ for each $\alpha \in A$ and so $(m_\alpha) = 0$. By the 1st Isomorphism Theorem for modules it follows that $\sum_{\alpha \in A} M_\alpha \simeq \bigoplus_{\alpha \in A} M_\alpha$.

Definition 1.4.26. Let R be a ring and M a left/right R-module. A subset $X \subset M$ is said to be *left/right linearly independent over* R (or if R is commutative just *linearly independent*), if for every finite sequence $m_1, \ldots, m_n \in M$ and every finite sequence $r_1, \ldots, r_n \in R$,

$$\sum_{1}^{n} r_{i} m_{i} = 0 \iff r_{i} = 0 \ \forall i \in \{1, \dots, m\} \text{ resp. } \sum_{1}^{n} m_{i} r_{i} = 0 \iff r_{i} = 0 \ \forall i \in \{1, \dots, m\}$$

Remark 1.4.27. One should note that $0 \notin X$, since $1 \cdot 0 = 0$ and $1 \neq 0$.

Proposition 1.4.28. Let R be a ring, M a left/right R-module and $X \subset M$ a subset. Then if X is left/right linearly independent over R, $\sum_{x \in X} Rx$ is direct.

Proof. When X is empty the statement is trivial, hence suppose $X \neq \emptyset$.

Let $y \in X$ and let $m \in Ry \cap \sum_{x \in X \setminus \{y\}} Rx$. Then

$$r_{n+1}y = m = \sum_{i=1}^{n} r_i x_i,$$

for suitable $x_1, \ldots, x_n \in X \setminus \{y\}$ and $r_1, \ldots, r_{n+1} \in R$. Thus, we have that

$$r_{n+1}y + \sum_{i=1}^{n} r_i x_i = 0 \implies 0 = r_1 = r_2 = \dots = r_{n+1} \implies m = 0.$$

We then conclude that $Ry \cap \sum_{x \in X \setminus \{y\}} Rx = 0$.

Definition 1.4.29. Let R be a ring, M a left/right R-module. A subset $X \subset M$ is called a basis of M over R if X is linearly independent over R and M = RX respectively M = XR. If X is finite and a basis of M over R it is called a *finite basis*.

Proposition 1.4.30. Let S be a ring and $R \subset S$ a subring. Consider $(M, \cdot, +)$, a left/right S-module, then $rm := r \cdot m$, for $r \in R$, defines a structure of left/right R-modules. If in addition Q is a subring of a ring T and M is an (S, T)-bimodule, then M is an (R, Q)-bimodule.

Proof. Let $m_1, m_2 \in M, r_1, r_2 \in R$. Then

- 1. $r_1(m_1 + m_2) = r_1 \cdot (m_1 + m_2) = r_1 \cdot m_1 + r_1 \cdot m_2 = r_1 m_1 + r_1 m_2$
- 2. $(r_1 + r_2)m_1 = (r_1 + r_2) \cdot m_1 = r_1 \cdot m_1 + r_2 \cdot m_1 = r_1 m_1 + r_2 m_1$
- 3. $(r_1r_2)m_1 = (r_1r_2) \cdot m_1 = r_1(r_2 \cdot m_1) = r_1(r_2m_1),$
- 4. $1m_1 = 1 \cdot m_1 = m_1$.

Let $r \in R$, $q \in Q$, $m \in M$. Then

$$r(mq) = r \cdot (m \cdot q) = (r \cdot m) \cdot q = (rm)q.$$

1.4.2 Ideals

Definition 1.4.31. Recall that a *left/right ideal* in a ring R, is a left/right R-submodule of R. If it is an (R,R)-module it is called a *both-sided ideal*. If R is a commutative a left/right ideal is simply referred to as an ideal.

Definition 1.4.32. Let $\sigma: R \to S$ be a ring homomorphism. When we refer to the kernel of σ , we refer to the kernel of σ when seen as a group homomorphism between (R, +) and (S, +), i.e. ker $\sigma := \sigma^{-1}(0)$.

Lemma 1.4.33. Let $\sigma: R \to S$ be a ring homomorphism and $I \subset S$ be a left/right/both-sided ideal. Then $\sigma^{-1}(I) \subset R$ is a left/right/both-sided ideal.

Proof. By Lemma 1.2.15 it follows that $\sigma^{-1}(I) \subset R$ is an additive subgroup. Let $r \in R$ and $a \in \sigma^{-1}(I)$. Then

$$\sigma(ra) = \sigma(r)\sigma(a) \in I$$
,

hence $ra \in \sigma^{-1}(I)$.

Corollary 1.4.34. The kernel of a ring homomorphism $\sigma: R \to S$ is an ideal in R

Proof. This follows immediately from the above lemma.

Lemma 1.4.35. Let $\sigma: R \to S$ be a surjective ring homomorphism and $I \subset R$ be a left/right/both-sided ideal. Then $\sigma(I) \subset S$ is a left/right/both-sided ideal.

Proof. By Lemma 1.2.15 $\sigma(I)$ is an additive subgroup of S. Let $s \in S$ and $\sigma(a) \in \sigma(I)$. Then for some $r \in R$, $s = \sigma(r)$. It follows that

$$s\sigma(a) = \sigma(r)\sigma(a) = \sigma(ra) \in \sigma(I).$$

Remark 1.4.36. We call RX and XR the left/right ideal generated by X. The ideal generated by X is the ideal $\langle X \rangle := R(XR) = (RX)R$.

Suppose R is commutative. For $M \subset R$, one can easily check that RM = MR, and hence the left/right ideal generated by M over R is a two-sided ideal. Thus $\langle M \rangle = RM = MR$.

Example 1.4.37. One may note that quite clearly R = R1 = 1R and hence that $R = \langle 1 \rangle$.

Lemma 1.4.38. Let R be a ring and $I \subset R$ a left/right/both-sided ideal. Then

$$1 \in I \iff I = R$$
.

Proof. We need only work with the assumption that I is a left ideal.

" \Longrightarrow ": Let $r \in R$. Then $r = r1 \in I$, hence $R \subset I \Longrightarrow R = I$.

"
$$\Leftarrow=$$
 ": This is trivial, since $1 \in R = I$.

Definition 1.4.39. An ideal in a ring generated by only one element is called a *principal ideal*. A ring in which every ideal is principal is called a *principal ideal domain* or a *PID*

An example of a PID is \mathbb{Z} . Indeed $(\mathbb{Z}, +)$ is a cyclic group generated by 1, thus every subgroup of the form $\langle n \rangle = n\mathbb{Z}$ for some $n \geq 0$, in particular every ideal is of this form.

Proposition 1.4.40. Let S be a ring and $R \subset S$ a subring. Consider a left/right ideal $I \subset S$. Then $I \cap R \subset R$ is an ideal.

Proof. R and I are both left/right R-submodules of S, hence so is $R \cap I$.

Lemma 1.4.41. Let R be a commutative ring and $I, J \subset R$ ideals. Then

$$IJ \subset I \cap J$$
.

Proof. Let $ij \in IJ$. Then since $j \in J$, $ij \in J$ and since $i \in I$, $ij \in I$, hence $ij \in I \cap J$.

1.4.3 Quotient Rings

Proposition 1.4.42. Let R be a ring and $I \subset R$ an ideal. View I as a subgroup of the additive group (R, +). Then (R/I, +) is an additive group by Corollary 1.2.38. Define

$$\cdot: R/I \times R/I \to R/I$$

by (r+I)(r'+I) := (rr'+I). This is a well-defined operation and $(R/I, +, \cdot)$ is a ring. It is also commutative if R is commutative.

Proof. Let $(r_1 + I, r_2 + I) = (r'_1 + I, r'_2 + I) \in R/I \times R/I$. Then

$$r_1r_2 - r_1'r_2' = r_1r_2 - r_1r_2' + r_1r_2' - r_1'r_2' = r_1(r_2 - r_2') + (r_1 - r_1')r_2' \in I,$$

hence $r_1r_2+I=r_1'r_2'+I$ and it follows that \cdot is well-defined. Let $r_1+I, r_2+I, r_3+I\in R/I$. Then

$$(r_1 + I)((r_2 + I)(r_3 + I)) = (r_1 + I)(r_2r_3 + I) = (r_1(r_2r_3)) + I = (r_1r_2)r_3 + I$$
$$= (r_1r_2 + I)(r_3 + I) = ((r_1 + I)(r_2 + I))(r_3 + I).$$

We also have that

$$(1+I)(r+I) = (1r+I) = (r1+I) = r+I.$$

Furthermore

$$(r_1 + I)((r_2 + I) + (r_3 + I)) = (r_1 + I)((r_2 + r_3) + I) = (r_1(r_2 + r_3)) + I = (r_1r_2 + r_1r_3) + I$$
$$= (r_1r_2 + I) + (r_1r_3 + I) = (r_1 + I)(r_2 + I) + (r_1 + I)(r_3 + I).$$

Suppose R is commutative. Then

$$(r_1 + I)(r_2 + I) = (r_1r_2) + I = (r_2r_1) + I = (r_2 + I)(r_1 + I).$$

Corollary 1.4.43. The canonical surjective group map $\pi: R \mapsto R/I$ is a ring map.

Proof. Let
$$r_1, r_2 \in R$$
. Then $\pi(r_1 r_2) = r_1 r_2 + I = (r_1 + I)(r_2 + I) = \pi(r_1)\pi(r_2)$. Lastly $\pi(1) = 1 + I$.

1.4.4 Noetherian Modules and Noetherian Rings

Definition 1.4.44. Let M be a left/right R-module and

$$\mathcal{M} := \left\{ N \in 2^M : N \text{ is a left/right submodule of } M \right\}$$

be a chain. We say that M is left/right noetherian if every ascending chain stabilizes and left/right artinian if every descending chain stabilizes. A ring S is left/right noetherian/artinian, if it is noetherian/artinian as a left/right S-module or simply artinian/noetherian if is both left and right artinian/noetherian.

Definition 1.4.45. A simple left/right R-module is one whose only submodules are 0 and M.

Example 1.4.46. Any simple left/right R-module M is noetherian/artinian. A family of submodules of M is of the form $\{0, M\}, \{M\}$ or $\{0\}$. These are all finite sets, hence any chain C is finite and thus has an upper/lower bound in C.

Simple rings are simple modules. This means division rings and fields are both noetherian/artinian.

Proposition 1.4.47. If M is a left/right R-module and X is a non-empty set of submodules of M, and M is noetherian/artinian then X has maximal/minimal element

Proof. If M is noetherian/artinian, then every chain C in X has an upper/lower bound in C by Lemma C.2.31. Using Zorn's Lemma, this implies that X has a maximal/minimal element.

Theorem 1.4.48. Let M be a left/right R module. Then M is left/right noetherian if ad only if every submodule of M is finitely generated over R.

Proof. " \Longrightarrow ": Suppose M is not finitely generated. Let $m_1 \in M$. Then $M_1 := Rm_1 \subsetneq M$ since M is not finitely generated. We then recursively define $M_{n+1} = Rm_{n+1} + M_n$ where $m_{n+1} \in M \setminus M_n$ which we can do since every M_n is finitely generated and thus by assumption a proper submodule of M. We thus obtain an strictly ascending chain of submodules

$$M_1 \subseteq M_2 \subseteq M_3 \subseteq \dots$$

Hence this is an ascending chain that does not stabilize.

" \Leftarrow ": Suppose every submodule of M is finitely generated over R. Let an ascending chain of submodules, say

$$M_1 \subset M_2 \subset \dots$$

be given. Then by Lemma 1.8.14 $N:=\bigcup_1^\infty M_n$ is a submodule. By assumption $N=\sum_1^m Rn_k$ for some $n_1,\ldots,n_m\in N$. For each $k\in\{1,\ldots,m\}$ there is a $j(k)\geq 0$ such that $n_k\in M_{j(k)}$. Let $p=\max\{j(1),\ldots,j(k)\}$. Thus we have that $n_1,\ldots,n_m\in M_p$. Hence, $M_p=\sum_1^m Rn_k=N$. Hence for $d\geq 0$, $N=M_p\subset M_{p+d}$, implying $M_p=M_{p+d}$. In other words, every ascending chain of submodules of M stabilizes.

Corollary 1.4.49. A PID is a Noetherian ring.

Lemma 1.4.50. Let a left/right R-module M and a submodule $N \subset M$ be given. Then M is left/right noetherian/artinian if and only if N and M/N is left/right noetherian/artinian.

Proof. We prove the left noetherian version.

" \Longrightarrow ": An ascending chain of submodules of N, is in particular an ascending chain of submodules of M, which by assumption stabilizes. A chain of submodules in M/N is of the form

$$L_1/N \subset L_2/N \subset L_3/N \subset \dots$$

where $L_i \subset M$ is a submodule of M containing N by Lemma 1.4.19. For some $n \geq 0$, $L_n = L_{n+d}$ for every $d \geq 0$, hence $L_n/N = L_{n+d}/N$ for every $d \geq 0$.

" $\Leftarrow=$ ": Let $M_1 \subset M_2 \subset M_3 \subset \ldots$ Then

$$M_1 + N \subset M_2 + N \subset \dots$$

is an ascending chain of submodules of M containing N. Hence

$$(M_1+N)/N \subset (M_2+N)/N \subset \dots$$

is an ascending chain of submodules of M/N. Hence for some $n \ge 1$, $M_n + N = M_{n+d} + N$ for every $d \ge 0$. Then by Lemma 1.4.19 $M_n + N = M_{n+d} + N$ for every $d \ge 0$. We also have that

$$M_1 \cap N \subset M_2 \cap N \subset \dots$$

is an ascending chain of submodules of N. Thus for some $m \geq 1$, $M_m \cap N = M_{m+d} \cap N$ for every $d \geq 0$. Put k = n + m and let $d \geq 0$ be given. Let $x \in M_{k+d}$. Then $x \in M_{k+d} + N = M_k + N$. Hence x = y + z for some $y \in M_k$ and $z \in N$. It thus follows that $z = x - y \in N \cap M_{k+d} = N \cap M_k$. In particular, $z \in M_k$, hence $x = z + y \in M_k$, hence $M_k = M_{k+d}$. Thus $M_1 \subset M_2 \subset \ldots$ stabilizes

We proceed to prove the left artinian case. " \Longrightarrow " is dual to the noetherian case.

" \Leftarrow ": Consider a descending chain of submodules of M,

$$M_1 \supset M_2 \supset \dots$$

Similarly as above $M_1+N\supset M_2+N\supset\dots$ and $M_1\cap N\supset M_2\cap N\supset\dots$ give descending chain stabilizing some positive n respectively m. Put k=n+m and let $d\geq 0$. Consider $x\in M_k$. Then in particular $x\in M_k+N=M_{k+d}+N$. Thus x=y+z for some $y\in M_{k+d}$ and $z\in N$. Then $z=x-y\in M_k\cap N=M_{k+d}\cap N$, hence $x=z+y\in M_{k+d}$, hence $M_k=M_{k+d}$, meaning $M_1\subset M_2\subset\dots$ stabilizes.

1.4.5 A First Look at Algebras over Rings

Definition 1.4.51. By a *ring extension* S *over* R we mean a ring S containing a ring R as a subring. Such a pair is denoted $S \supset R$. Such a pair is a *field extension* if S is a field and R is a subfield.

Remark 1.4.52. This defines a partial order. Indeed any ring is a ring extension of itself. If $S \supset R$ and $R \supset S$ then R = S. Lastly, if $T \supset S$ and $S \supset R$ are ring extensions, then $T \supset R$ and R is a subring of T.

Definition 1.4.53. Let R be a ring. We define the center of R to be the set

$$Z(R) := \{x \in R : xy = yx \text{ for every } y \in R\}$$

Remark 1.4.54. The center R is a subring of R. Indeed, let $x, x' \in Z(R)$. Then given $y \in R$,

$$y(x + x') = yx + yx' = xy + x'y = (x + x')y \implies x + x' \in Z(R).$$

We also have that y0 = 0 = 0y for every $y \in R$, hence $0 \in Z(R)$. In addition,

$$y(-x) = -(yx) = -xy \implies -x \in Z(R).$$

This means Z(R) is a subgroup of R. Furthermore,

$$y(xx') = (yx)x' = (xy)x' = x(yx') = x(x'y) = (xx')y \implies xx' \in Z(R)$$

and y1 = y = 1y, hence $1 \in Z(R)$. We thus see that Z(R) is the largest commutative subring of R

Definition 1.4.55. Let R be a commutative ring. A ring A is an R-algebra, if (A, +) is an R-module such that

$$r(a_1 a_2) = (ra_1)a_2$$

for every $r \in R$, $a_1, a_2 \in A$.

Remark 1.4.56. An equivalent definition is that an algebra is a ring A together with ring homomorphism $R \to A$ whose image is contained in Z(A).

Definition 1.4.57. Let A be an R-algebra. A subset B of A is an R-subalgebra of A if it is a subring of A and an R-submodule of A.

Remark 1.4.58. One easily checks that indeed an R-subalgebra is itself an R-algebra.

Definition 1.4.59. Let S be an algebra over commutative ring R and $s_1, \ldots, s_n \in Z(S)$. We define the *algebra over* R *generated by* s_1, \ldots, s_n to be the set

$$R[s_1,\ldots,s_n] := \left\{ \sum_{v = (v_1,\ldots,v_n) \in \mathbb{N}^n} a_v s_1^{v_1} \cdots s_n^{v_n} : a_v \in R \\ \forall v \in \mathbb{N}^n, a_v = 0 \text{ for all but finitely many } v \in \mathbb{N}^n \right\}.$$

If $S \supset R$, then the above set is the *ring extension over* R *generated by* $s_1 \dots, s_n$

Lemma 1.4.60. Let S be an algebra over a commutative ring R and $s_1, \ldots, s_n \in Z(S)$. $R[s_1, \ldots, s_n]$ is an R-subalgebra of S. Furthermore, $R[s_1, \ldots, s_n]$ is the smallest subalgebra over R containing s_1, \ldots, s_n .

Proof. Clearly $1, 0 \in R[s_1, \dots, s_n]$. Let $\sum_{v \in \mathbb{N}^n} a_v s_1^{v_1} \cdots s_n^{v_n}, \sum_{v \in \mathbb{N}^n} b_v s_1^{v_1} \cdots s_n^{v_n} \in R[s_1, \dots, s_n]$. Then

$$\sum_{v \in \mathbb{N}^n} a_v s_1^{v_1} \cdots s_n^{v_n} + \sum_{v \in \mathbb{N}^n} b_v s_1^{v_1} \cdots s_n^{v_n} = \sum_{v \in \mathbb{N}^n} (a_v s_1^{v_1} \cdots s_n^{v_n} + b_v s_1^{v_1} \cdots s_n^{v_n})$$

$$= \sum_{v \in \mathbb{N}^n} (a_v + b_v) s_1^{v_1} \cdots s_n^{v_n} \in R[s_1, \dots, s_n].$$

and

$$\left(\sum_{v\in\mathbb{N}^n} a_v s_1^{v_1} \cdots s_n^{v_n}\right) \left(\sum_{w\in\mathbb{N}^n} b_w s_1^{w_1} \cdots s_n^{w_n}\right) = \sum_{v\in\mathbb{N}^n} \sum_{w\in\mathbb{N}^n} a_v b_w s_1^{v_1+w_1} \cdots s_n^{v_n+w_n}$$

$$= \sum_{u\in\mathbb{N}^n} \left(\sum_{v,w\in\mathbb{N}^n: v+w=u} a_v b_w\right) s_1^{u_1} \cdots s_n^{u_n} \in R[s_1,\dots,s_n]$$

Let $r \in R$. Then

$$r \sum_{v \in \mathbb{N}^n} a_v s_1^{v_1} \cdots s_n^{v_n} = \sum_{v \in \mathbb{N}^n} (r a_v) s_1^{v_1} \cdots s_n^{v_n} \in R[s_1, \dots, s_n].$$

Lemma 1.4.61. Let $S \supset R$ be a ring extension of commutative rings and $s_1, \ldots, s_n, t_1, \ldots, t_m \in S$. Then $R[s_1, \ldots, s_n, t_1, \ldots, t_m] = R[s_1, \ldots, s_n][t_1, \ldots, t_m]$.

Proof. We already have that $R[s_1,\ldots,s_n,t_1,\ldots,t_m]\supset R[s_1,\ldots,s_n]$, hence $R[s_1,\ldots,s_n,t_1,\ldots,t_m]\supset R[s_1,\ldots,s_n][t_1,\ldots,t_m]$. Let $\sum_{(v,w)\in\mathbb{N}^{n+m}}a_vs_1^{v_1}\cdots s_n^{v_n}t_1^{w_1}\cdots t_m^{w_m}\in R[s_1,\ldots,s_n,t_1,\ldots,t_m]$. We then see that

П

$$\sum_{(v,w)\in\mathbb{N}^{n+m}}a_{vw}s_1^{v_1}\cdots s_n^{v_n}t_1^{w_1}\cdots t_m^{w_m} = \sum_{w\in\mathbb{N}^m}\left[\sum_{v\in\mathbb{N}^n}a_{vw}s_1^{v_1}\cdots s_n^{v_n}\right]t_1^{w_1}\cdots t_m^{w_m} \in R[s_1,\ldots,s_n][t_1,\ldots,t_m].$$

Definition 1.4.62. Let R be a ring and consider R-algebras A, B. A map $\sigma: A \to B$ is an R-algebra homomorphism if it is both a ring homomorphism and an R-module homomorphism.

Lemma 1.4.63. Let R be a ring, consider R-algebras A, B and a map $\sigma: A \to B$. Then σ is an R-algebra homomorphism if and only if σ is a multiplicative map fixing R, i.e. for every $a_1, a_2 \in A$, $\sigma(a_1a_2) = \sigma(a_1)\sigma(a_2)$ and for every $r \in R$, $\sigma(r) = r$.

1.5 Abelian Categories

1.5.1 Preadditive Categories

Definition 1.5.1. A category \mathcal{C} is *preadditive* if every $\operatorname{Hom}(A, B)$ is an additive group and

$$f(g+h) = fg + fh, \quad (f+g)h = fh + gh.$$

Example 1.5.2. 1.

48

1.5.2 Additive, Pre-abelian & Abelian Categories

Definition 1.5.3. A preadditive category \mathcal{C} with zero objects is called *additive* if it admits binary coproducts. by some theorem

Definition 1.5.4. In an additive category C of a pair of objects A, B in C a *biproduct* of A and B is an object $A \oplus B$ such that

$$A \stackrel{p_1}{\underset{i_1}{\longleftarrow}} A \oplus B \stackrel{p_2}{\underset{i_2}{\longleftarrow}} B$$

 $i_1p_1 = \mathbb{1}_A$, $p_2i_2 = \mathbb{1}_B$ and $p_1i_1 + i_2p_2 = \mathbb{1}_{A \oplus B}$

Lemma 1.5.5. Any additive category admits a biproduct. In particular it admits a product and finite coproducts and products are isomorphic.

Proof.
$$\Box$$

Definition 1.5.6. In an additive category \mathcal{C} a *kernel* of a morphism $f:A\to B$ is an object K and a morphism $k:K\to A$ such that

$$K \xrightarrow{0} B$$

$$\downarrow^k \xrightarrow{f}$$

$$A$$

commutes. A *cokernel* in C is a kernel in C^{op}

1.6 Homological Algebra

1.6.1 Exact Sequences

Definition 1.6.1. A sequence of left/right R-modules, is a collection of pairs

$$\{(M_i,\rho_i): i\in\mathbb{Z}, M_i \text{ is a left/right }R\text{-module }, \rho_i\in \operatorname{Hom}(M_i,M_{i+1})\}.$$

A sequence is finite if $M_i = 0$ for every but finitely many i. A sequence is in general denoted

$$\cdots \xrightarrow{\rho_{i-1}} M_i \xrightarrow{\rho_i} M_{i+1} \xrightarrow{\rho_{i+1}} \cdots$$

When the maps are obvious we opt to not explicitly denote them. When a sequence is finite we of often opt to denote it

$$0 \longrightarrow M_s \longrightarrow M_{s+1} \longrightarrow \cdots \longrightarrow M_{b-1} \longrightarrow M_b \longrightarrow 0$$

Where s,b are respectively the largest and smallest index for which $M_s \neq 0$ and $M_b \neq 0$.

Definition 1.6.2. A finite sequence

$$M \xrightarrow{\rho} M' \xrightarrow{\rho'} M''$$

is said to be exact (at M') if im $\rho = \ker \rho'$. In general a sequence

$$\cdots \xrightarrow{\rho_{i-1}} M_i \xrightarrow{\rho_i} M_{i+1} \xrightarrow{\rho_{i+1}} \cdots$$

is said to be exact if

$$M_{i-1} \xrightarrow{\rho_i} M_i \xrightarrow{\rho_i} M_{i+1}$$

is exact for each $i \in \mathbb{Z}$

Remark 1.6.3. Equivalently a sequence $M \xrightarrow{\rho} M' \xrightarrow{\rho'} M''$ is exact if $\rho' \circ \rho = 0$.

Lemma 1.6.4. Consider a sequence

$$0 \longrightarrow M \stackrel{\rho}{\longrightarrow} M' \stackrel{\rho'}{\longrightarrow} M'' \longrightarrow 0$$

The following are equivalent:

- 1. The sequence is exact
- 2. ρ is injective and ρ' is surjective

Proof. "1.
$$\Longrightarrow$$
 2.": by exactness $\ker \rho = \operatorname{im} 0 = 0$ and $\operatorname{im} \rho' = \ker 0 = M''$. "2. \Longrightarrow 1.": $\operatorname{im} 0 = 0 = \ker \rho$ and $\ker 0 = M'' = \operatorname{im} \rho'$

Corollary 1.6.5. Given a left/right R-module map $\rho: M \to N$, the sequence

$$0 \longrightarrow \ker \rho \hookrightarrow M \longrightarrow \operatorname{im} \rho \longrightarrow 0$$

is exact.

1.6.2 Isomorphism Theorems

We are going to construct ways of identifying certain algebraic structures given certain maps. We will develop these theorems for groups, rings, modules and algebra homomorphisms in a sense separately. However, in a certain categorical setting $which\ I\ don't\ know$ we would be able to develop them all at once.

Definition 1.6.6. An *isomorphism of groups* is a bijective group homomorphism. A *isomorphism of rings* is a bijective ring homomorphism. If there exists an isomorphism between groups/rings G, H/R, S then G, H/R, S are said to be *isomorphic as groups/rings* and we write $G \simeq H/R \simeq S$, when this does not lead to confusion.

Remark 1.6.7. One easily check that the inverse of of a bijective group/ring homomorphism is automatically a group/ring homomorphism itself. Indeed, if $\rho: G \to H$ is a bijective monoid map, let $h, h' \in H$, then for some $g, g' \in G$, $h = \rho(g)$ and $h' = \rho(g')$. Then

$$\rho^{-1}(hh') = \rho^{-1}(\rho(g)\rho(g')) = \rho^{-1}(\rho(gg')) = gg' = \rho^{-1}(h)\rho^{-1}(h').$$

Lastly

$$\rho^{-1}(e_H) = \rho^{-1}(\rho(e_G)) = e_G.$$

Example 1.6.8. Let R be a commutative ring. Consider the identity map

$$id: (R, \cdot) \to (R, *) = R^{(op)}, r \mapsto r$$

Then this clearly a bijective map of groups. Let $r, r' \in R$ then

$$id(rr') = rr' = r'r = id(r')id(r) = id(r) * id(r'),$$

hence $R \simeq R^{(\text{op})}$.

Lemma 1.6.9. Let $\rho: G \to H$ be a group homomorphism. Then $\ker \rho = \{e\}$ if and only if ρ is injective.

Proof. " \Longrightarrow ": Let $g_1, g_2 \in G$ be given such that $\rho(g_1) = \rho(g_2)$. Then

$$\rho(g_1g_2^{-1}) = \rho(g_1)\rho(g_2)^{-1} = e \implies g_1g_2^{-1} = e \implies g_1 = g_2.$$

" \longleftarrow ": Let $k \in \ker \rho$. Then $\rho(k) = e = \rho(e)$, implying k = e, hence $k \in \{e\}$.

Corollary 1.6.10. Let $\sigma : R \to S$ be a ring homomorphism. Then $\ker \sigma = 0$ if and only if σ is injective.

Lemma 1.6.11. Let G, H be groups, $\rho : G \to H$ a group homomorphism and $I \subset G$ $J \subset H$ be normal subgroups. Then $\varrho : G/I \to H/J$, $gI \mapsto \rho(g)J$ is a well-defined group homomorphism if and only if $\rho(I) \subset J$.

Proof. " \Longrightarrow ": Suppose ϱ is a well-defined group homomorphism. Let $\rho(i) \in \rho(I)$. Then since iI = eI,

$$\rho(i)J=\varrho(iI)=\varrho(eI)=\rho(e)J=eJ,$$

hence $\rho(i) \in J$.

" \Leftarrow ": Suppose $\rho(I) \subset J$. Let $g_1I = g_2I \in G/I$. Then $g_1g_2^{-1} \in I$, hence

$$\varrho(g_1I)\varrho(g_2I)^{-1} = \rho(g_1)\rho(g_2)^{-1}J = \rho\left(g_1g_2^{-1}\right)J = eJ \implies \varrho(g_1I) = \varrho(g_2I).$$

We now check that ϱ is a group homomorphism. Let $g_1I, g_2I \in G/I$. Then

$$\varrho((g_1I)(g_2I)) = \varrho(g_1g_2I) = \rho(g_1g_2) = \rho(g_1)\rho(g_2) = \varrho(g_1I)\varrho(g_2I).$$

Corollary 1.6.12. Let R, S be rings, $\sigma: R \to S$ a ring homomorphism and $I \subset R$, $J \subset S$ be left/right ideals. Then the $\vartheta: R/I \to S/J$, $r+I \mapsto \sigma(r)+J$ is a well-defined ring homomorphism if and only if $\sigma(I) \subset J$

Proof. By the above proposition ϑ being a well-defined ring homomorphism implies $\sigma(I) \subset J$. Conversely if $\sigma(I) \subset J$ it remains to check that ϑ is a ring homomorphism. Let $r_1 + I, r_2 + I \in R/I$. Then

$$\vartheta((r_1 + I)(r_2 + I)) = \vartheta(r_1 r_2 + I) = \sigma(r_1 r_2) + J = \sigma(r_1)\sigma(r_2) + J = \vartheta(r_1 + I)\vartheta(r_2 + I).$$

Furthermore,

$$\vartheta(1+I) = \sigma(1) + J = 1 + J.$$

Corollary 1.6.13. Let R be a subring of a ring S. Let $I \subset R$ be a left/right ideal. Then $\sigma: R/I \to S/IS, r+I \mapsto r+SI$ is a well defined ring map in the left case and so is $r+I \mapsto r+IS$ in the right case.

Proof. Consider $\iota: R \hookrightarrow S, r \mapsto r$. Then since $\iota(I) \subset SI$, it follows that $\sigma: R/I \mapsto S/SI, r+I \mapsto \iota(r) + SI = r + SI$ is a well-defined ring map.

Corollary 1.6.14. Let R be a ring, M, N left/right R-modules, $\rho: M \to N$ a left/right module homomorphism and $L \subset M$, $K \subset N$ be submodules. Then the $\vartheta: M/L \to N/K$, $m + L \mapsto \rho(m) + K$ is a well-defined module homomorphism if and only if $\rho(L) \subset K$

Proof. The above proposition again tells us that if ϑ is a well defined module homomorphism, then $\rho(L) \subset K$. Conversely if $\rho(L) \subset K$, we just need to check the map is homogeneous of degree 1. Indeed let $r \in R$, $m \in M$. Then

$$\vartheta(rm+L)=\sigma(rm)+K=r(\sigma(m)+K)=r\vartheta(m+L).$$

Proposition 1.6.15. Let G, H be groups, $\rho : G \to H$ a group homomorphism and $N \subset G$ a normal subgroup such that $N \subset \ker \rho$. Consider the canonical surjection $\pi : G \to G$

G/N, i.e. $g \mapsto gN$. Then $\varrho : G/N \to H$, $gN \mapsto \rho(g)$ is the unique group homomorphism with the property that $\rho = \rho \pi$. In other words the diagram

$$G \xrightarrow{\pi} G/N$$

$$\downarrow^{\rho} \qquad \exists ! \varrho$$

$$H$$

commutes.

Proof. The assumption that $I \subset \ker \rho$ implies that $\rho(I) = \{e\}$ hence the above lemma shows that ϱ is a well-defined group homomorphism. Since $H/\{e\} = H$. Indeed, for $g \in G$,

$$\varrho \pi(g) = \varrho(\pi(g)) = \varrho(gI) = \rho(g) \implies \varrho \pi = \rho.$$

Uniqueness: Consider another group homomorphism $\varrho':G/I\to H$ such that $\varrho\pi=\rho$. Let $gI\in G/I$. Then

$$\varrho'(gI) = \varrho'(\pi(g)) = \rho(g) = \varrho(\pi(g)) = \varrho(gI) \implies \varrho' = \varrho.$$

Corollary 1.6.16. Let R, S be rings, $\sigma : R \to S$ and $I \subset R$ an ideal such that $I \subset \ker \sigma$. Define $\pi : R \to R/I$ to be the canonical surjection, i.e. $r \mapsto r + I$. Then there is a unique ring homomorphism $\varrho : R/I \to S$ such that

$$\sigma = \rho \pi$$
.

Proof. This follows from the above proposition together with corollary 1.6.12. \Box

Corollary 1.6.17. Let R be a ring and M, N be left/right R-modules. Consider $\rho: M \to N$ a left/right module map and $L \subset M$ a submodule such that $L \subset \ker \sigma$. Define $\pi: M \to M/L$ to be the canonical surjection, i.e. $r \mapsto r + L$. Then there is a unique ring homomorphism $\varrho: M/L \to N$ such that

$$\rho = \rho \pi$$
.

Proof. This follows from the above proposition together with corollary 1.6.14. \Box

Theorem 1.6.18. (1st Isomorphism Theorem for Groups)

Let G, H be a group and $\rho: G \to H$ a group homomorphism. Then $G/\ker \rho \simeq \rho(G)$ via the group homomorphism $\varrho: G/\ker \rho \to H$, $g(\ker \rho) \mapsto \rho(g)$

Proof. By Proposition 1.6.15, $\varrho:G/\ker\rho\to H$, $g(\ker\rho)\mapsto\varrho(g)$ is a well-defined group homomorphism. Then $\overline{\varrho}:G/\ker\rho\to\overline{\varrho}(G/\ker\rho)$, $g(\ker\rho)\mapsto\varrho(g)$ is a surjective group homomorphism. We check that $\varrho(G/\ker\rho)=\varrho(G)$. Indeed, let $\varrho(g(\ker\rho))\in\varrho(G/\ker\rho)$. Then $\varrho(g(\ker\rho))=\varrho(g)\in\varrho(G)$. Similarly, if $\varrho(g)\in\varrho(G)$, then $\varrho(g)=\varrho(g(\ker\rho))\in\varrho(G/\ker\rho)$. It remains to check that $\overline{\varrho}$ is injective. Suppose $0=\overline{\varrho}(g(\ker\rho))$. Then $\varrho(g)=0$, which implies $g\in\ker\rho$, hence $\varrho(\ker\rho)=\varrho(\ker\rho)$, meaning $\ker\overline{\varrho}=0$. By Lemma 1.6.9 $\overline{\varrho}$ is injective. We thus conclude that $\overline{\varrho}$ is a bijective group homomorphism, which means

$$G/\ker \rho \simeq \overline{\varrho}(G/\ker \rho) = \varrho(G/\ker \rho) = \varrho(G).$$

Corollary 1.6.19. (1st Isomorphism Theorem for Rings)

Let R, S be rings and $\sigma: R \to S$ a ring homomorphism. Set $I = \ker \sigma$. Then $R/I \simeq \sigma(R)$ via the ring homomorphism $\vartheta: R/I \to \sigma(R)$, $r + I \mapsto \sigma(r)$.

Proof. By Corollary 1.6.16 and the above theorem ϑ is a bijective ring homomorphism, hence $R/I \simeq \sigma(R)$.

Corollary 1.6.20. (1st Isomorphism Theorem for Modules) Let R be a ring, M, N be a left/right R-modules and consider a left/right R-module homomorphism $\rho: M \to N$. Then $M/\ker \rho \simeq \rho(M)$ via the left/right R-module homomorphism $\varrho: M/\ker \rho \to \rho(M), m + \ker \rho \mapsto \rho(m)$

Proof. Theorem 1.6.18 and Corollary 1.6.17 ensures that $\varrho: M/\ker \rho \to \rho(M)$ is a bijective module homomorphism.

Corollary 1.6.21. (1st Isomorphism Theorem for Algebras) Let R be a commutative ring and A, B be R-algebras. Consider an R-algebra homomorphism $\sigma: A \to B$. Then $A/\ker \sigma \simeq \sigma(A)$ via the R-algebra homomorphism $\vartheta: A/\ker \sigma \to \sigma(A), a + \ker \sigma \mapsto \sigma(a)$.

Proposition 1.6.22. Let G be a group, $N', N \subset G$ normal subgroups with $N' \subset N$. Then

$$\frac{G/N'}{N/N'} \simeq G/N.$$

Proof. Consider the surjective group map

$$\pi: G \to G/N, q \mapsto qN'.$$

Then by Lemma 1.6.11

$$\varpi: G/N' \to G/N, gN' \mapsto gN,$$

is a surjective group map, since $N' \subset \ker \pi$. Clearly $N'/N \subset \ker \varpi$. Let $gN' \in \ker \varpi$. Then gN = 0, hence $g \in N$. Thus $gN' \in N/N'$. Then $\ker \varpi = N/N'$, hence by the 1st isomorphism theorem

$$\frac{G/N'}{N/N'} = \frac{G/N'}{\ker \varpi} \stackrel{\varpi}{\simeq} G/N.$$

Corollary 1.6.23. *Let* R *be a ring* $I, J \subset R$ *left/right ideals with* $J \subset I$. *Then*

$$\frac{R/J}{I/J} \simeq R/I.$$

Proof. Follows from the 1st isomorphism for rings and the fact that π is also a ring homomorphism.

Corollary 1.6.24. Let R be a ring M a left/right R-module. Consider submodules $N, N' \subset M$ with $N' \subset N$. Then

$$\frac{M/N'}{N/N'} \simeq M/N.$$

Proof. Follows from the 1st isomorphism theorem for modules together with the fact that π is also a module homomorphism.

Lemma 1.6.25. Consider $_RL \leq _RN \leq _RM$. Then

$$0 \longrightarrow N/L \longrightarrow M/L \longrightarrow M/N \longrightarrow 0$$

is exact

Proof. This is an immediate consequence of Lemma 1.6.4

Theorem 1.6.26. Let $N, L \leq M$. Then $N/(N \cap L) \simeq (N + L)/N$.

Proof. We get the chain of modules $N \cap L \leq N \leq N + L$, hence we have an exact sequence

$$0 \longrightarrow N/(N \cap L) \stackrel{\rho}{\longrightarrow} (N+L)/(N \cap L) \stackrel{\rho'}{\longrightarrow} (N+L)/N \longrightarrow 0$$

Substituting $(N+L)/(N\cap L)$ for im ρ we preserve exactness, i.e.

$$0 \longrightarrow N/(N \cap L) \xrightarrow{\overline{\rho}} \operatorname{im} \rho \xrightarrow{\rho'|_{\operatorname{im} \rho}} (N+L)/N \longrightarrow 0$$

where $\overline{\rho}(n+N\cap L) = \rho(n+N\cap L)$. Note that for $n+N\cap L\in \text{im }\rho$,

$$\rho'\mid_{\operatorname{im}\,\rho}(n+N\cap L)=\rho'(n+N\cap L)=n+N=0\implies \rho'\mid_{\operatorname{im}\,\rho}=0.$$

It follows that im $\overline{\rho} = \ker \rho' \mid_{\text{im } \rho} = \ker 0 = (N+L)/N$, hence ρ is surjective. By exactness ρ is also injective hence $N/(N \cap L) \stackrel{\rho}{\simeq} (N+L)/N$.

1.6.3 Free Modules

1.7 Vector Spaces

1.7.1 Finite Dimensional Vector Spaces

Definition 1.7.1. Let V be an n-dimensional vector space over a field K with basis $\mathcal{V} = \{v_1, \ldots, v_n\}$. Let $\mathcal{W} = \{w_1, \ldots, w_n\} \subset V$. Write $w_i = \sum_{1}^n a_{ij}v_j$ for suitable (unique!) $a_{ij} \in K$ and consider the matrix

$$\nu T_{\mathcal{W}} := (a_{ij})^T \in M_n(K).$$

When $_{\mathcal{V}}T_{\mathcal{W}}$ is invertible we call it the basis transformation of \mathcal{V} to \mathcal{W} or a change-of-basis

Remark 1.7.2. We canonically identify $\nu T_{\mathcal{W}}$ with an endomorphism on V:

$$vT_{\mathcal{W}}: V \to V, v = \sum_{1}^{n} \alpha_{i} v_{i} \mapsto \sum_{1}^{n} \left(\sum_{1}^{n} a_{ji} a_{j}\right) v_{i}$$

Note that

$$v_{\mathcal{V}} T_{\mathcal{W}} v_i = \sum_{1}^{n} \left(\sum_{1}^{n} a_{kj} \delta_{ki} \right) v_j = \sum_{1}^{n} a_{ij} v_j = w_i$$

Theorem 1.7.3. Let V be an n-dimensional vector space over a field K with basis $V = \{v_1, \ldots, v_n\}$. Consider $W = \{w_1, \ldots, w_n\} \subset V$. Then W is a basis of V over K if and only if V_W is invertible.

Proof. " \Longrightarrow ": write $v_i = \sum_{1}^{n} b_{ij} w_j$. Note that $w_i =_{\mathcal{V}} T_{\mathcal{W}} v_i =_{\mathcal{V}} T_{\mathcal{W}} T_{\mathcal{V}} w_i$, and that $v_i =_{\mathcal{W}} T_{\mathcal{V}} w_i =_{\mathcal{W}} T_{\mathcal{V}} T_{\mathcal{W}} v_i$. Since a module homomorphism is uniquely characterized by its behavior on the basis elements to be written it follows that $_{\mathcal{V}} T_{\mathcal{W}} T_{\mathcal{V}} =_{\mathcal{W}} T_{\mathcal{V}} T_{\mathcal{W}} = I_n$, hence $_{\mathcal{V}} T_{\mathcal{W}}$ is invertible with inverse $_{\mathcal{W}} T_{\mathcal{V}}$.

" \Leftarrow ": by An invertible linear map, maps a basis to a basis, hence $W =_{\mathcal{V}} T_{\mathcal{W}}(\mathcal{V})$ is a basis of V.

Lemma 1.7.4. Given an exact sequence of vector spaces

$$0 \longrightarrow V \stackrel{\rho}{\longrightarrow} V' \stackrel{\rho'}{\longrightarrow} V'' \longrightarrow 0$$

we have that

$$\dim V = \dim V' + \dim V''$$

Proof. This follows from the above Lemma 1.6.4 and theorem not yet written about finite dimensional vector spaces.

Proposition 1.7.5. For sequence of vector spaces

$$0 \longrightarrow V_1 \stackrel{\rho_1}{\longrightarrow} V_2 \stackrel{\rho_2}{\longrightarrow} V_3 \stackrel{\rho_3}{\longrightarrow} V_4 \longrightarrow 0$$

we have that dim $V_4 = \dim V_3 - \dim V_2 + \dim V_1$.

Proof. Set $W := \text{im } \rho_2 = \text{ker } \rho_3$. Then

$$0 \longrightarrow V_1 \stackrel{\rho_1}{\longrightarrow} V_2 \stackrel{\rho_2}{\longrightarrow} W \longrightarrow 0$$

and

$$0 \longrightarrow W \hookrightarrow V_3 \xrightarrow{\rho_3} V_4 \longrightarrow 0$$

are exact, hence by the above lemma dim $V_2 = \dim V_1 + \dim W$ implying dim $W = \dim V_2 - \dim V_1$. Moreover,

$$\dim V_3 = \dim V_4 + \dim W = \dim V_4 + \dim V_2 - \dim V_1$$

hence dim V_4 = dim V_3 - dim V_2 + dim V_1 .

Lemma 1.7.6. Let $U \subset W \subset V$ be vector spaces where V/U finite dimensional. Then

$$\dim V/U = \dim V/W + \dim W/U,$$

In particular we get that V/W and W/U are finite dimensional.

Proof. This follows directly from the above proposition and Lemma 1.6.25. \Box

Lemma 1.7.7. *Let*

$$0 \xrightarrow{\rho_0} V_1 \xrightarrow{\rho_1} \cdots \xrightarrow{\rho_{n-1}} V_n \xrightarrow{\rho_n} 0$$

be an exact sequence of finite dimensional vector spaces. Then $\sum_{i=1}^{n} (-1)^{i} \dim V_{i} = 0$

Proof. In the case n=1, it's easy to see that $V_1=0$. Denote the first 0-map In general for a finite sequence of elements in an additive group, a_0,\ldots,a_n , say $\sum_1^1 (-1)^i (a_{i-1}+a_i)=-a_0+(-1)^{n-1}a_n$. By the rank nullity theorem and exactness we have for each $i\in\{1,\ldots,n\}$ that dim $V_i=\dim\ker\rho_i+\dim\inf\rho_i=\dim\rho_i$. Hence picking $a_i=\dim\inf\rho_i$, it follows that

$$\sum_{1}^{n} (-1)^{i} \dim V_{i} = \sum_{1}^{n} (-1)^{i} (a_{i-1} + a_{i}) = -a_{0} + (-1)^{n} a_{n} = -\dim \operatorname{im} \rho_{0} + (-1)^{n} \dim \operatorname{im} \rho_{n}$$

$$= -\dim \operatorname{im} 0 + (-1)^{n} \dim \operatorname{im} 0 = 0.$$

Lemma 1.7.8. Let V be a finite dimensional vector space and V_1, \ldots, V_n be subspaces. Then

$$\operatorname{codim} \bigcap_{1}^{n} V_{i} \leq \sum_{1}^{n} \operatorname{codim} V_{i}.$$

Proof. Pick a basis of V, B and bases of $V_1, \ldots, V_n, \bigcap_1^n V_i$, denoted respectively $V_1, \ldots, V_n, V \subset B$. Then

$$\operatorname{codim} \ \bigcap_{1}^{n} V_{i} = \# \left(B \setminus \mathcal{V} \right) = \# \left(\bigcup_{1}^{n} B \setminus \mathcal{V}_{i} \right) \leq \sum_{1}^{n} \# \left(B \setminus \mathcal{V}_{i} \right) = \sum_{1}^{n} \operatorname{codim} V_{i}.$$

1.7.2 Projective Space

Definition 1.7.9. Let V be a vector space over some field K. For $v, w \in V \setminus 0$ we write $v \sim w$ if there exists a $\lambda \in K \setminus 0$ such that $w = \lambda v$

Remark 1.7.10. This an equivalence relation. Indeed $v=1\cdot v$, hence $v\sim v$. If $v\sim w$, then $w=\lambda v$, hence $v=\lambda^{-1}w$, meaning $w\sim v$. Suppose $v\sim w$ and $w\sim u$. Then $w=\lambda v$ and $u=\mu w$, hence $u=\mu\lambda v$, implying $v\sim u$.

Definition 1.7.11. We define the projective space of V over K to be the set

$$\mathbb{P}(V) := (V \setminus 0) / \sim.$$

We furthermore define $\mathbb{P}^n:=\mathbb{P}^n(K):=\mathbb{P}(K^{n+1})$ which is called *the projective n-space* over K. We denote an element $[v]=[(v_1,\ldots,v_{n+1})]\in\mathbb{P}^n$ by $[v_1,\ldots,v_n]$. We call \mathbb{P}^1 the projective line over K and \mathbb{P}^2 the projective plane over K.

Remark 1.7.12. Note that $[\lambda v] = [v]$ for every $\lambda \in K \setminus 0$ and $[v] \in \mathbb{P}(V)$, hence $[\lambda v_1, \ldots, \lambda v_{n+1}] = [v_1, \ldots, v_{n+1}]$ for every $[v_1, \ldots, v_{n+1}] \in \mathbb{P}^n$.

Consider the category of Vector Spaces with morphism being maps that are homogeneous of degree 1. Consider also category of sets P with a (K^*,\cdot) -action, satisfying $p=\lambda p$ for every $p\in P$, with morphisms being maps that are homogeneous of degree 1 with respect to this K^* -action. Then $V\mapsto \mathbb{P}(V)$ and $f:V\to W\mapsto \widehat{f}:\mathbb{P}(V)\to \mathbb{P}(W),[v]\mapsto [f(v)]$, defines a functor. Restricting all sets to be topological spaces (with vector spaces being topological vector spaces) and all maps to be continuous, we get two subcategories of category of topological spaces such that the functor $(V,f)\mapsto (\mathbb{P}(f),\widehat{f})$ restricts to a functor between these categories. Indeed if $f:X\to Y$ is continuous and $\pi:X\to X/\sim_X$, $\tau:Y\to Y/\sim_Y$, denotes quotient maps to some quotient spaces and $\widehat{f}:X/\sim_X\to Y/\sim_Y$, $[x]\mapsto [f(x)]$ is well-defined, then $\widehat{f}\pi=\tau f$, hence \widehat{f} is continuous, by the universal property of quotient space perhaps write some point set topology?.

Definition 1.7.13. For each $i \in \{1, ..., n+1\}$ we define the i'th copy of K^n in \mathbb{P}^n to be the set

$$U_i := \{ [v_1, \dots, v_{n+1}] \in \mathbb{P}^n : v_i \neq 0 \}.$$

We furthermore define the *i'th hyperplane at infinity in* \mathbb{P}^n to be the set

$$H_{\infty,i} := \{ [v_1, \dots, v_{n+1}] \in \mathbb{P}^n : v_i = 0 \}.$$

We define the hyperplane at infinity in \mathbb{P}^n to be $H_\infty := H_{\infty,n+1}$

- **Remark 1.7.14.** 1. Suppose V is a topological vector space. Consider the map m_{λ} : $\mathbb{P}(V) \to \mathbb{P}(V), [v] \mapsto [\lambda v]$ for $\lambda \in K \setminus 0$. One clearly has that $m_{\lambda} = \mathrm{id}$, hence it is continuous.
 - 2. One notes that $\mathbb{P}^n = \bigcup_1^{n+1} U_i$. Note that $\varphi: K^n \to U_i, v \mapsto [v_1, \dots, v_{i-1}, 1, v_{i+1}, \dots, v_n]$ is a bijection. Indeed the map

$$\varphi^{-1}: U_i \to K^n, [v_1, \dots, v_i, \dots, v_{n+1}] \mapsto (v_1/v_i, \dots, v_{i-1}/v_i, v_{i+1}/v_i, \dots, v_{n+1}/v_i)$$

is well-defined, since

$$((\lambda v_1)/(\lambda v_i), \dots, (\lambda v_{i-1})/(\lambda v_i), (\lambda v_{i+1})/(\lambda v_i), \dots, (\lambda v_{n+1})/(\lambda v_i)) = (v_1/v_i, \dots, v_{i-1}/v_i, v_{i+1}/v_i, \dots, v_{n+1}/v_i).$$

Clearly φ and φ^{-1} are mutual inverses. Suppose K is a topological field. Then K^m becomes a topological vector space and we can endow \mathbb{P}^m with the quotient topology. Note that φ is continuous, since it is given by pre-composition of $\iota: K^n \to \pi^{-1}(U_i) \setminus 0, v \mapsto (v_1, \ldots, v_{i-1}, 1, v_{i+1}, \ldots, v_{n+1})$ with $\pi \mid_{\pi^{-1}(U_i)} : \pi^{-1}(U_i) \to U_i$, which are continuous maps. Let $U \subset K^n$ be open. Let $Q := \{v \in K^{n+1} : v_i \in K, (v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n+1}) \in KU\} \simeq_{\mathcal{S}_{n+1}} K \times KU$. Define $O := Q \setminus 0$. One easily verifies that $O = Q \cap K^{n+1} \setminus 0$ and that $\pi^{-1}(\pi(O)) = O$, implying that $\pi(O)$ is open. One checks that $\varphi(U) = U_i \cap \pi(O)$, hence $\varphi(U)$ is open in U_i , hence φ^{-1} is continuous. We thus conclude that K^n is homeomorphic to U_i for each i. Hence \mathbb{P}^n is locally homeomorphic to K^n .

- 3. Consider the map $\pi \mid_{S^n(\mathbb{R})}: S^n(\mathbb{R}) \to \mathbb{P}^n(\mathbb{R}), \ S^n(K) = \{v \in \mathbb{R}^{n+1}: \|v\| = 1\}.$ Then for $[v] \in \mathbb{P}^n(\mathbb{R}), \ [v] = [1/\|v\|v] = \pi_{S^n(\mathbb{R})}(1/\|v\|v), \ \text{hence } \mathbb{P}^n(\mathbb{R}) \ \text{is compact.}$ Since $\mathbb{C}^n \simeq \mathbb{R}^{2n}$, it follows from functoriality that $\mathbb{P}^n(\mathbb{C}) \simeq \mathbb{P}^{2n+1}(\mathbb{R})$. Moreover for every [v] = [w] for $v, w \in S^n(\mathbb{R})$, then $w = \lambda v$, hence $1 = \|\lambda v\| = |\lambda| \|v\| = |\lambda|, \ \text{hence } w = \pm v.$ So $\mathbb{P}^n(\mathbb{R})$ is homeomorphic to the northern hemisphere, i.e. $S^n(\mathbb{R})/(x \sim -x)$.
- 4. Another thing to note is that $\mathbb{P}^n = U_i \sqcup H_{\infty,i}$

1.7.3 The Projective Span

Definition 1.7.15. For $[v_1], \ldots, [v_m] \in \mathbb{P}^n$ we define

$$\mathrm{Span}([v_1],\ldots,[v_m])\coloneqq\left\{\left[\sum_1^m\lambda_iv_i\right]:(\lambda_1,\ldots,\lambda_m)\in K^m\setminus 0\right\}$$

Remark 1.7.16. Of course one should ask if this is well-defined. Suppose we are given $\alpha_1, \ldots, \alpha_m \in K \setminus 0$. Then for any $(\lambda_1, \ldots, \lambda_m) \in K^m \setminus 0$,

$$\sum_{1}^{m} \lambda_{i}(\alpha_{i}v_{i}) = \sum_{1}^{m} (\lambda_{i}\alpha_{i})v_{i} \in \left\{ \left[\sum_{1}^{m} \lambda_{i}v_{i}\right] : (\lambda_{1}, \dots, \lambda_{m}) \in K^{m} \setminus 0 \right\}$$

and conversely

$$\sum_{1}^{m} \lambda v_{i} = \sum_{1}^{m} (\lambda_{i} \alpha_{i}^{-1}) \alpha_{i} v_{i} \in \left\{ \left[\sum_{1}^{m} \lambda_{i} (\alpha_{i} v_{i}) \right] : (\lambda_{1}, \dots, \lambda_{m}) \in K^{m} \setminus 0 \right\}.$$

A further thing to note with this construction, is that if $v_1, \ldots, v_m \in \mathbb{A}^{n+1} \setminus 0$ span \mathbb{A}^{n+1} (this can only happen for $m \geq n+1$, then $\mathrm{Span}([v_1], \ldots, [v_m]) = \mathbb{P}^n$.

Lemma 1.7.17. $v_1, \ldots, v_m \in \mathbb{P}^n$ are linearly independent if and only if $[v_i] \notin \text{Span}([v_1], \ldots, [\widehat{v_i}], \ldots, [v_m])$ for any i.

Proof. " \Longrightarrow ": Suppose there is a $[v_i] \in \operatorname{Span}([v_1], \dots, [\widehat{v_i}], \dots, [v_m])$. Then for some $\lambda_1, \dots, \lambda_m \in K^m$ with $\lambda_i \neq 0$,

$$-\lambda_i v_i = \sum_{j \neq i} \lambda_j v_j \implies \sum_{1}^m \lambda_j v_j = 0,$$

hence v_1, \ldots, v_m are not linearly independent. " \Leftarrow ": Suppose there are $(\lambda_1, \ldots, \lambda_m) \in K^m \setminus 0$ such that $\sum_{i=1}^m \lambda_i v_i = 0$. Then for some $j \in \{1, \ldots, m\}$, $\lambda_j \neq 0$, hence

$$v_j = \lambda_j^{-1} \sum_{i \neq j} \lambda_i v_i \in \operatorname{Span}([v_1], \dots, [\widehat{v_j}], \dots, [v_m])$$

1.7.4 Normed Vector Spaces

Definition 1.7.18. An *ordered field* is a field K together with a total ordering \leq on K, satisfying, for every $a, b, c \in K$

1.
$$a < b \implies a + c < b + c$$

2.
$$0 < a, 0 < b \implies 0 < ab$$

Example 1.7.19. In this example we endow $\mathbb Q$ with the structure of ordered field. For $\frac{a}{b}, \frac{c}{d} \in \mathbb Q$ we define $\frac{a}{b} \leq \frac{c}{d}$ if $ad \leq cb$ and b,d>0. Note that we can always find a representative of a rational number whose numerator is greater than 0. It is easy to check that this is a partial order on $\mathbb Q$. Given any two $\frac{a}{b}, \frac{c}{d} \in \mathbb Q$ with b,d>0 we get that bd>0 and $ad \leq bc$ or $ad \geq bc$, since $(\mathbb Z, \leq)$ is totally ordered. It follows that \leq is a total ordering. Suppose $\frac{x}{y}, \frac{z}{w}, \frac{v}{u} \in \mathbb Q$ with y, w, u>0 are given. Suppose $\frac{x}{y} \leq \frac{z}{w}$. Then yu, wu>0 and

$$wu(xu+vy) \leq u(yzu+vwy) = yu(zu+vw) \implies \frac{x}{y} + \frac{v}{u} = \frac{xu+vy}{yu} \leq \frac{zu+vw}{wu} = \frac{z}{w} + \frac{v}{u}.$$

Suppose instead now that $0 \le \frac{x}{y}$ and $0 \le \frac{z}{w}$. Then $0 \le x$ and $0 \le z$, hence $0 \le xz$, meaning $0 \le \frac{xz}{yw}$.

Definition 1.7.20. On an ordered field K, we define *the absolute value* to be the function $|\cdot|: K \to K_{>0} := \{a \in K : a \ge 0\}$ to be given by

$$|a| = \begin{cases} a & \text{if } a \ge 0\\ -a & \text{if } a < 0 \end{cases}$$

Definition 1.7.21. A normed vector space is a vector space V over an ordered field K with a map $\|\cdot\|:V\to K$ satisfying

- 1. For every $v \in V$, $||v|| \ge 0$.
- 2. For every $v \in V$, $||v|| = 0 \iff v = 0$.
- 3. For every $v \in V$, $a \in K$, ||av|| = |a|||v||.
- 4. For every $v, w \in V$, $||v + w|| \le ||v|| + ||w||$.

We call such a function a norm on V over K.

Lemma 1.7.22. On an ordered field K, the absolute value defines a norm on K over K, making K a normed vector space over K.

Proof. 1. This is trivial, since if a < 0, then -a > 0.

- 2. Suppose |a| = 0. Then $a \ge 0$, hence a = |a| = 0.
- 3. Let $a, b \in K$. Then if $a, b \ge 0$ we have that $ab \ge 0$, hence |ab| = ab = |a||b|. If a, b < 0, then -a, -b > 0, hence ab = (-a)(-b) > 0. It follows that |ab| = ab = (-a)(-b) = |a||b|. If $a \ge 0$ and b < 0, then $ab \le 0$, hence |ab| = -ab = a(-b) = |a||b|. The case a < 0 and $b \ge 0$ is symmetric.
- 4. Let $a, b \in K$. Observe that in any case $-c, c \le |c|$ for any $c \in K$. If $a + b \ge 0$, then $|a + b| = a + b \le |a| + |b|$. In the other case $|a + b| = -a b \le |a| + |b|$.

1.8 Ring theory

1.8.1 Matrix Rings

Definition 1.8.1. Let R be a ring and n, m be positive integers. We define the set of $n \times m$ $(n \ by \ m)$ matrices over R to be the set

$$M_{n \times m}(R) = \prod_{i \in \{1, \dots, n\}, j \in \{1, \dots, m\}} R.$$

For an element $(a_{i,j}) \in M_{n \times m}(R)$ we define $(a_{ij}) := (a_{i,j})$, when no disambiguity arises from this notation. An element of $M_{n \times m}(R)$ is called an $(n \times m)$ matrix. We define $M_n(R) := M_{n \times n}(R)$.

Remark 1.8.2. By Lemma **??** $M_{n,m}(R)$ is an additive group.

Example 1.8.3. Let $R = \mathbb{Z}$, n = 2 and m = 3 and consider $a_{11} = 1$, $a_{12} = 2$, $a_{13} = 3$ and $a_{21} = 2$, $a_{22} = 3$, $a_{23} = 2$. We opt to write the element (a_{ij}) as table with 2 rows and 3 columns, i.e.

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \end{pmatrix} := (a_{ij}).$$

For arbitrary rings positive integers n, m, we in general can write an element $(a_{ij}) \in M_{n \times m}$ as a table with n rows and m columns, i.e.

$$\begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{pmatrix} := (a_{ij})$$

Lemma 1.8.4. Let R be a ring and n, m, l be positive integers. We define matrix multiplication to be the operation

$$\cdot: M_{n \times m}(R) \times M_{m \times l}(R) \to M_{n \times l}(R)$$

defined by

$$(a_{ij})(b_{ij}) := \left(\sum_{k=1}^m a_{ik}b_{kj}\right).$$

Suppose we have an additional positive integer p and let $(a_{ij}) \in M_{n \times m}(R), (b_{ij}) \in M_{m \times l}(R), (c_{ij}) \in M_{l \times p}(R)$. Then

$$(a_{ij})((b_{ij})(c_{ij})) = ((a_{ij})(b_{ij}))(c_{ij}).$$

Suppose $(a_{ij}) \in M_{n \times m}(R), (b_{ij}), (c_{ij}) \in M_{m \times l}(R)$. Then

$$(a_{ij})((b_{ij}) + (c_{ij})) = (a_{ij})(b_{ij}) + (a_{ij})(c_{ij})$$

Proof. Indeed for $(a_{ij}) \in M_{n \times m}(R), (b_{ij}) \in M_{m \times l}(R), (c_{ij}) \in M_{l \times p}(R),$

$$(a_{ij}) ((b_{ij})(c_{ij})) = (a_{ij}) \left(\sum_{k=1}^{l} b_{yk} c_{kz} \right) = \left(\sum_{h=1}^{m} a_{xh} \sum_{k=1}^{l} b_{hk} c_{kz} \right) = \left(\sum_{h=1}^{m} \sum_{k=1}^{l} a_{xh} (b_{hk} c_{kz}) \right)$$

$$= \left(\sum_{k=1}^{l} \sum_{h=1}^{m} (a_{xh} b_{hk}) c_{kz} \right) = \left(\sum_{k=1}^{l} \left(\sum_{h=1}^{m} a_{xh} b_{hk} \right) c_{kz} \right) =$$

$$= \left(\sum_{h=1}^{m} a_{xh} b_{hk} \right) (c_{ij}) = ((a_{ij})(b_{ij})) (c_{ij}) = ((a_{ij})(b_{ij})) (c_{ij}).$$

Furthermore, for $(a_{ij}) \in M_{n \times m}(R), (b_{ij}), (c_{ij}) \in M_{m \times l}(R),$

$$(a_{ij}) ((b_{ij}) + (c_{ij})) = (a_{ij})(b_{ij} + c_{ij}) = \left(\sum_{k=1}^{m} a_{ik}(b_{kj} + c_{kj})\right) = \left(\sum_{k=1}^{m} a_{ik}b_{kj} + a_{ik}c_{kj}\right)$$
$$= \left(\sum_{k=1}^{m} a_{ik}b_{kj} + \sum_{k=1}^{m} a_{ik}c_{kj}\right) = \left(\sum_{k=1}^{m} a_{ik}b_{kj}\right) + \left(\sum_{k=1}^{m} a_{ik}c_{kj}\right)$$
$$= (a_{ij})(b_{ij}) + (a_{ij})(c_{ij})$$

Lemma 1.8.5. Let R be a ring and n a positive integer. Then $(M_n(R), +, \cdot)$, where \cdot is matrix multiplication of matrices in $M_n(R)$ and $M_n(R)$, is a ring called the $(n \times n)$ matrix ring (over R).

Proof. $M_n(R)$ is an additive group by Remark 1.8.2. Let $I := 1 := (\delta_{ij})$ (where $\delta_{ii} = 1$ for $i \in \{1, ..., n\}$ and $\delta_{ij} = 0$ for $i, j \in \{1, ..., n\}$ with $i \neq j$). Then for $(r_{ij}) \in M_n(R)$

$$1(r_{ij}) = \left(\sum_{k=1}^{n} \delta_{ik} r_{kj}\right) = \left(\delta_{ii} a_{ij} + \sum_{k \in \{1, \dots, n\} \setminus \{i\}} \delta_{ik} a_{kj}\right) = (1a_{ij} + 0) = (a_{ij}).$$

In a dual way one can prove that

$$(a_{ij})1 = (a_{ij}).$$

By Lemma 1.8.4 it follows that $(M_n(R), +, \cdot)$ is a ring.

Example 1.8.6. A matrix ring is never a commutative ring: Take $(a_{ij}) \in M_n(R)$ where $a_{11} = 1$ and $a_{ij} = 0$ when $a_{ij} = 0$ for $i \neq 1$ or $j \neq 1$. Take $(b_{ij}) \in M_n(R)$ where $b_{1m} = 1$ and $b_{ij} = 0$ when $i \neq 1$ or $j \neq m$. Then it is easy to check that $(a_{ij})(b_{ij}) = (b_{ij})$ while $(b_{ij})(a_{ij}) = 0$.

1.8.2 Fields, Integral Domains & some Important Ideals

Definition 1.8.7. Let R be a ring. An element $r \in R$ is called a *unit* if there is an element $r' \in R$ such that rr' = r'r = 1. We denote the set of units of R by R^* .

Remark 1.8.8. I. Suppose there are two elements r_1, r_2 such that $rr_i = r_i r = 1$. Then

$$r(r_1 - r_2) = rr_1 - rr_2 = 1 - 1 = 0 \implies r_1 - r_2 = r_1 r(r_1 - r_2) = 0 \implies r_1 = r_2.$$

Hence an element satisfying rr' = r'r = 1 is unique. We denote it by r^{-1} and refer to it as the multiplicative inverse of r.

II. (R^*, \cdot) is a group. We check that R^* is a submonoid of R and hence a monoid. Clearly $1 \in R^*$. Let $r, r' \in R^*$. Then

$$(rr')\left(r'^{-1}r^{-1}\right) = r\left(r'\left(r'^{-1}r^{-1}\right)\right) = r\left(\left(r'r'^{-1}\right)r^{-1}\right) = r\left(er^{-1}\right) = rr^{-1} = 1,$$

and similarly one can check that $(r'^{-1}r^{-1})(rr') = 1$, hence $rr' \in R^*$ a. Let $r \in R^*$. Then $r^{-1}r = rr^{-1} = 1$, hence r^{-1} is a unit, hence R^* is a group.

III. If R is commutative it is sufficient to check that rr' = 1 to verify that r is a unit.

Definition 1.8.9. A commutative ring K where $K^* = K \setminus \{0\}$ is called a *field*. Removing the restriction of K being commutative, K is called a *division ring* or *skew field*.

Definition 1.8.10. An left/right ideal $M \subsetneq R$ is called a *left/right maximal* ideal, if for every left/right ideal $I \subset R$ with $M \subset I$, either I = M or I = R. If M is an ideal with aforementioned property it is called a *maximal ideal*.

Definition 1.8.11. A ring R is called *simple* if the only ideals in R are the trivial ones, i.e. 0 and R.

Lemma 1.8.12. Any division ring is simple.

Proof. Let D be a division ring and consider a non-zero ideal $I \subset R$. Then there is an $x \in I \setminus 0$. Since D is a division ring, there exists x^{-1} s.t. $1 = x^{-1}x \in I$, meaning I = D.

Lemma 1.8.13. Let R be a ring. Let $I \subset R$ be an ideal. Then I is a maximal ideal if and only if R/I is a simple.

Proof. " \Longrightarrow ": Let $J/I \subset R/I$ be a non-zero ideal, i.e. assume $I \subsetneq J \subset R$ for some ideal J in R. Then J=R, hence J/I=R/I, implying R/I is simple.

" \Leftarrow ": Conversely, consider and ideal $J \subset R$ such that $I \subsetneq J$. Then $0 \neq J/I \subset R/I$, implying that J/I = R/I and hence that J = R.

Lemma 1.8.14. Let M be a left/right R-module. Consider a chain C of submodules of M. Then

$$\bigcup_{N \in C} N$$

is a submodule.

Proof. Let $m_1, m_2 \in \bigcup_{N \in C} N$. $m_1 \in N_1$ and $m_2 \in N_2$ for some $N_1, N_2 \in C$. WLOG $N_1 \subset N_2$, hence $m_1 \in N_2$, which means $m_1 + m_2 \in N_2 \subset \bigcup_{N \in C} N$. Clearly $0 \in \bigcup_{N \in C} N$. Let $r \in R$, clearly $rm_1 \in \bigcup_{N \in C} N$.

Proposition 1.8.15. Assuming choice, any non-zero ring has a maximal ideal.

Proof. Let R be a non-zero ring and consider the family

$$X := \{ I \subset R : I \text{ is a proper ideal} \},$$

partially ordered by inclusion. Every chain in X has an upper bound, namely the union of the ideals in the chain (cf. the prior lemma). By Zorn's lemma, X has a maximal element, and by definition such a maximal element is a maximal ideal in R.

Proposition 1.8.16. Let R be a commutative ring. Let $I \subset R$ be an ideal. Then I is a maximal ideal if and only if R/I is a field.

Proof. " \Longrightarrow ": We need to prove that every non-zero element of R/I is a unit. Consider $a+I\in R/I\setminus\{0+I\}$, i.e. an element in R/I, where $a\notin I$. Since I is maximal we have that I+Ra=R=R1. This implies that we can find $b\in I$ and $r\in R$ such that 1=b+ra, hence

$$(r+I)(a+I) = (ra+I) + (b+I) = (ra+b) + I = 1+I,$$

and since R/I is commutative, this implies a + I is a unit.

" \Leftarrow ": Since R/I is a field, it is in particular a division ring. Then by Lemma 1.8.12 R/I is simple. By Lemma 1.8.16 I is maximal.

Definition 1.8.17. Let R be a ring, $r \in R$. $d \in R$ is called a *left divisor of* r if $r \in Rd$ and a *right divisor of* r if $r \in dR$. If d is both a left and a right divisor of r, we write $d \mid r$. Hence if R is commutative, $d \mid r \iff r \in \langle d \rangle$.

Definition 1.8.18. Let R be a ring. An element $a \in R$ is called a *left/right zero divisor* if there is an element $r \in R \setminus 0$ such that ar = 0 respectively ra = 0. In a commutative ring an element is a left zero divisor if and only if it is a right zero divisor, hence we just call a left/right zero divisor in a commutative ring a *zero divisor*.

Definition 1.8.19. Let R be a ring. If the only left/right zero divisor of R is 0, then R is called a *left/right domain*. If R is a commutative ring and a domain it is called an *integral domain*.

Lemma 1.8.20. Suppose $S \supset R$ is a ring extension where S is a left/right domain. Then so is R.

Proof. Let $a \in R \setminus 0$, hence in particular in $S \setminus 0$ then for every $R \setminus 0$, $ar \neq 0$.

Proposition 1.8.21. A division ring D is a domain. Hence a field is an integral domain.

Proof. Let $a \in D \setminus 0$. Then $\langle a \rangle = D$ since D is simple, hence $1 \in \langle a \rangle$, meaning there is some $b \in a$ such that ba = ab = 1.

Lemma 1.8.22. Let $x, y, a \in R$ where a is not a zero divisor. If ax = ay, then x = y. The same result can be proven if xa = ya. In particular, if R is a domain, then for $x, y \in R$, $a \in R \setminus 0$, ax = ay xor xa = ya implies x = y.

Proof. We have that a(x-y) = ax - ay = 0 implies x-y = 0. The other result is dual.

Definition 1.8.23. Let R be a commutative ring. An ideal $I \subsetneq R$ is said to be *prime* if for any $a, b \in R$ such that $ab \in I$, then $a \in I$ or $b \in I$

Lemma 1.8.24. Let R be a commutative ring and $I \subset R$ and ideal. Then I is prime if and only if R/I is an integral domain

Proof. " \Longrightarrow ": Let $a+I, b+I \in R/I$ be given such that ab+I=0+I. Then $ab \in I$, hence by assumption $a \in I$ or $b \in I$, meaning a+I=0 or b+I=0.

"\(\infty\)": Let $a, b \in R$ such that $ab \in I$. Then ab + I = 0 + I, hence by assumption a + I = 0 or b + I = 0, hence $a \in I$ or $b \in I$.

Corollary 1.8.25. A maximal ideal M in commutative ring R is prime.

Proof. Indeed R/M is a field and a field is an integral domain, hence M is prime. \square

Proposition 1.8.26. Let $S \supset R$ be a commutative ring extension. Let $I \subset S$ be prime. Then $I \cap R \subset R$ is prime.

Proof. By Proposition 1.8.24 S/I is an integral domain. Note that $S/I \supset (R+I)/I$ (cf. res saying R+I is subring). Hence from Lemma 1.8.20 (R+I)/I is an integral. It follows from Isomorphism theorem not yet written that $(R+I)/I \simeq R/(I\cap R)$, hence $I\cap R$ is prime.

Definition 1.8.27. Let R be a commutative ring. A non-unit and non-zero element $p \in R$ is called a *prime element* if for every $a, b \in R$, $p \mid ab$ implies $p \mid a$ or $p \mid b$.

Lemma 1.8.28. Let R be a commutative ring. Then for a non-zero $p \in R \setminus R^*$, p is prime if and only if $\langle p \rangle$ is prime.

Proof. This is seen by the fact that $x \in \langle p \rangle$ is by definition equivalent to $p \mid x$.

Definition 1.8.29. Consider a commutative ring R and an ideal $I \subset R$. We define the radical of I to be the set

$$rad(I) = \{r \in R : r^n \in I \text{ for some } n > 0\}.$$

An ideal with the property that I = rad(I) is called a *radical ideal*.

Remark 1.8.30. Trivially we have that if $a \in I$, then $a = a^1 \in I$, hence $a \in rad(I)$. In other words, $I \subset rad(I)$.

Lemma 1.8.31. The radical of an ideal $I \subset R$ is an ideal in R.

Proof. Let $a, b \in \text{rad}(I)$ and $r \in R$. Clearly $0^1 = 0 \in I$, hence $0 \in \text{rad}(I)$. For some n, m > 0, $a^n, b^m \in I$. Thus, we also have that

$$(a+b)^{n+m} = \sum_{k=0}^{n+m} \binom{n+m}{k} a^{n+m-k} b^k,$$
 (1)

For $k \in \{0, ..., m\}$, $n+m-k \ge n$, implying $a^{n+m-k} \in I$. For $k \in \{m+1, ..., n\}$, $b^k \in I$. Then using (1), it follows that $(a+b)^{n+m} \in I$ and hence that $a+b \in \operatorname{rad}(I)$. Finally we also have that

$$(ra)^n = r^n a^n \in I \implies ra \in rad(I).$$

Lemma 1.8.32. *Let* $I \subseteq R$ *be a prime ideal. Then* I *is a radical ideal.*

Proof. Let $a \in I$ and n > 0. We prove by induction in n that if $a^n \in I$ then $a \in I$. For n = 1, $a = a^1 \in I$. Suppose $a^{n+1} \in I$. Then $aa^n \in I$. Using that I is prime we get that $a \in I$ or $a^n \in I$. If we land in the first case, we are done. In the second case it follows by induction that $a \in I$. From the above it follows that if $a \in \text{rad}(I)$, then $a \in I$. Hence it follows from Remark 1.8.30 that I = rad(I).

Lemma 1.8.33. Consider ideals $I, J \subset R$. Then

$$rad(I \cap J) = rad(I) \cap rad(J) = rad(IJ)$$

Proof. For the first equality, note that

$$a \in \operatorname{rad}(I \cap J) \iff \exists n \ge 0 (a^n \in I \cap J) \iff \exists n \ge 0 (a^n \in I) \land \exists n \ge 0 (a^n \in J)$$
$$\iff a \in \operatorname{rad}(I) \cap \operatorname{rad}(J).$$

If $a \in \operatorname{rad}(I) \cap \operatorname{rad}(J)$, then $a^n \in I$ for some n and $a^m \in J$ for some m. Then $a^{n+m} \in IJ$, hence $a \in \operatorname{rad}(IJ)$.

If $a \in \operatorname{rad}(IJ)$ then $a^n = xy$ for some $x \in I$ and $y \in J$. In particular, a^n is in I and in J, hence $a \in \operatorname{rad}(I) \cap \operatorname{rad}(J)$.

Lemma 1.8.34. Let $I \subset R$ be an ideal. Then rad(I) is the intersection of all prime ideals containing I.

Proof. Note that

$$\bigcap_{\mathfrak{p} \text{ prime, } \mathfrak{p} \supset I} \mathfrak{p},$$

is a radical ideal, hence

$$\operatorname{rad}(I) \subset \operatorname{rad}\left(\bigcap_{\mathfrak{p} \text{ prime, } \mathfrak{p} \supset I} \mathfrak{p}\right) = \bigcap_{\mathfrak{p} \text{ prime, } \mathfrak{p} \supset I} \mathfrak{p}.$$

Suppose $a \notin rad(I)$. Consider the family

$$X := \{ J \subset R : J \supset I \text{ is an ideal}, a^n \notin J \text{ for all } n \ge 0 \}.$$

This is a non-empty family of sets, since it contains I and it is partially ordered by inclusion. By Lemma 1.8.14 every chain in X has an upper bound, hence it contains a maximal element $\mathfrak{p} \supset I$ by Zorn's Lemma. Take a pair of elements $x,y \in R$ such that $x,y \notin \mathfrak{p}$. Then by maximality $\langle x \rangle + \mathfrak{p}, \langle y \rangle + \mathfrak{p} \notin X$, hence $a \in \operatorname{rad}(\langle x \rangle + \mathfrak{p}), \operatorname{rad}(\langle y \rangle + \mathfrak{p})$, hence a is in the intersection of the radicals of $\langle x \rangle + \mathfrak{p}$ and $\langle y \rangle + \mathfrak{p}$, which is just $\langle xy \rangle + \mathfrak{p}$. This ideal is then not in X, hence $xy \notin \mathfrak{p}$. This proves that \mathfrak{p} is prime and therefor that a is not in the intersection of all prime ideals containing I.

The following definition will be important way later on.

Definition 1.8.35. Let R be a commutative ring. We define the *spectrum of* R to be the set

Spec
$$R := \{I \subset R : I \text{ is a prime ideal}\}$$

Proposition 1.8.36. Let R be a commutative ring and $I \subset R$ an ideal. Then there is a one-to-one correspondence between radical/prime/maximal ideals in R containing I and radical/prime/maximal ideals in R/I

Proof. Radical: Let $J \subset R$ be a radical ideal containing I. Let $x + I \in \text{rad}(J/I)$, then for some $n \geq 1$, $x^n + I \in J/I$, hence $x^n \in J$, implying $x \in \text{rad}(J) = J$. This means $x + I \in J/I$.

Let $K \subset R/I$ be a radical ideal. Then K = J/I for some ideal $J \subset R$ containing I. Let $x \in \operatorname{rad}(J)$. Then for some $n \geq 1$, $x^n + I \in J/I$, hence $x + I \in \operatorname{rad}(J/I) = J/I$, implying $x \in J$.

Prime: J/I is prime if and only if $R/J \simeq \frac{R/I}{J/I}$ is an integral domain which is equivalent to J being prime.

Maximal: J/I is maximal if an only if $R/J \simeq \frac{R/I}{J/I}$ is maximal which is equivalent to J being maximal.

Lemma 1.8.37. Let I, J be ideals in a commutative ring R. Suppose $I = \langle a_1 \dots, a_m \rangle$ for suitable $a_1, \dots, a_m \in I$ and $I \subset \text{rad}(J)$. Then $I^n \subset J$ for some $n \geq 0$.

Proof. Let $n_i \ge 0$ be given such that $a_i^{n_i} \in J$. Let $n = \sum_{i=1}^{m} n_i$. We prove the statement by induction in m. For m = 1 the statement is trivial.

$$\lambda_{i,j} \in R \quad (i \in \{1, \dots, m\}, j \in \{1, \dots, 2n\})$$

Then

$$\prod_{1}^{n} \left(\sum_{1}^{m} \lambda_{i,j} a_i \right) = \sum_{v \in \mathbb{N}^m} \mu_v a_1^{v_1} \cdots a_m^{v_m}.$$

A simple induction argument shows that if $v_i < n_i$ for some i then $v_j > n_j$ for some j, hence $a_i^{v_1} \cdots a_m^{v_m} \in J$ for each $v \in \mathbb{N}^m$ with $\sum_1^m v_i = n$. It follows that $\prod_1^n \left(\sum_1^m \lambda_{i,j} a_i\right) \in J$, hence $I^n \subset J$.

1.8.3 Comaximal ideals

In this subsection every ring will be assumed commutative.

Definition 1.8.38. Let R be a ring. A pair of ideals I, J in R are said to be *comaximal* if I + J = R.

Lemma 1.8.39. Let I, J be comaximal ideals in a ring R. Then

$$IJ = I \cap J$$

Proof. The first inclusion is implied by Lemma 1.4.41. Let $a \in I \cap J$. Since I and J are comaximal we can write 1 = i + j for suitable $i \in I$ and $j \in J$. Then

$$a = a(i+j) = ai + aj = ia + aj \in IJ,$$

since $ia, aj \in IJ$.

Lemma 1.8.40. Let I, J be comaximal ideals in a ring R. Then I^n and J^m are comaximal for every $n, m \ge 1$.

Proof. Claim 1: We first show that I, J^m are comaximal for every $m \ge 1$ by way of induction in m. The base case is true by assumption. Let $m \ge 1$ and $x \in R$. By induction $R = I + J^m$, hence x = a + b for suitable $a \in I$ and $b \in J^m$. Moreover, 1 = i + j for suitable $i \in I$ and $j \in J$. Then

$$x = a + b = a + b(i + j) = (a + bi) + bj \in I + J^{m+1}$$
.

We now fix $m \geq 1$ it follows by a similar induction argument in n that I^n and J^m are comaximal. \Box

Lemma 1.8.41. Let R be a ring. Consider ideals I_1, \ldots, I_N in R and set $J_i := \bigcap_{j \neq i} I_j$. Suppose I_i and J_i are comaximal for each i. Then

$$\bigcap_{1}^{N} I_{i}^{n} = \left(\prod_{1}^{N} I_{i}\right)^{n} = \left(\bigcap_{1}^{N} I_{i}\right)^{n}$$

Proof. Let $n \geq 1$. Note for each $N \geq 1$, $I_1 J_1 = I_1 \cap J_1$, by lemma 1.8.39, hence by induction we have that $\prod_1^N I_i = \bigcap_1^N I_i$, hence for each $n \geq 1$, $\left(\prod_1^N I_i\right)^n = \left(\bigcap_1^N I_i\right)^n$. By assumption and induction I_1^n and $\bigcap_2^{N+1} I_i^n = \left(\bigcap_2^{N+1} I_i\right)^n$ are comaximal, hence

$$\bigcap_{1}^{N+1} I_i = I_1^n \cap \bigcap_{2}^{N+1} I_i^n = \prod_{1}^{N+1} I_i^n = \left(\prod_{1}^{N+1} I_i\right)^n.$$

1.8.4 Greatest Common Divisor and Least Common Multiples

Definition 1.8.42. A greatest common divisor of two elements a, b in a commutative ring is an element d where for every $c \in R$ such that $c \mid a$ and $c \mid b$ we have that $c \mid d$.

Remark 1.8.43. Note that gcd(a, 0) = a since if $a \mid a$ and any element divides 0.

Definition 1.8.44. A *Least common multiple* of two elements a, b in a commutative ring is an element $m \in R$ where for every $c \in R$ such that $a \mid c$ and $b \mid c$ we have that $m \mid c$.

Remark 1.8.45. lcm(a, 0) = since 0 is the only element that is a multiple of 0.

1.8.5 Unique Factorization Domains and Euclidean Domains

In our exploration of unique factorization domains and Euclidean Domains we will mean fix an integral domain R.

Definition 1.8.46. Let a non-unit and non-zero element $a \in R$ be given. a is said to be an *irreducible element* if for every $b, c \in R$

$$a = bc \implies b \in R^* \text{ or } c \in R^*.$$

Lemma 1.8.47. A prime element is irreducible.

Proof. Let $p \in R$ be prime. Consider $a, b \in R$ such that p = ab, then $p \mid ab$, hence either $p \mid a$ or $p \mid b$. Suppose $p \mid a$. Then a = pr for some $r \in R$. This means p = prb, which by Lemma 1.8.22 means rb = 1, hence that b is a unit. In the case $p \mid b$, we can similarly show that a is a unit. It thus follows that p is irreducible.

Definition 1.8.48. R is called a *Unique factorization domain (UFD)* if for every $r \in R \setminus \{R^* \cup \{0\}\}$ has unique factorization into irreducible elements, i.e. there are distinct irreducible elements $p_1, \ldots, p_n \in R$ unique and $v_1, \ldots, v_n \geq 1$ such that

$$r = \prod_{1}^{n} p_i^{v_i}.$$

Remark 1.8.49. By uniqueness we more precisely mean that given $q_1, \ldots, q_m \in R$ another sequence of distinct irreducible elements and $w_1, \ldots, w_m \geq 1$ such that

$$r = \prod_{1}^{m} q_i^{w_i},$$

then m=n and there is some bijection $\omega:\{1,\ldots,n\}\to\{1,\ldots,n\}$ (i.e. a permutation $\omega\in\mathcal{S}_n$) and units $a_1,\ldots,a_n\in R$ such that

$$p_i = a_i q_{\tau(i)}$$
 and $v_i = w_{\tau(i)}$,

for each $i \in \{1, \ldots, n\}$.

Proposition 1.8.50. Let R be a ring in which every element that is not zero or a unit can be written as a product of irreducible elements. R is a UFD if and only if every irreducible element is a prime.

Proof. " \Longrightarrow ": Let $p \in R$ be irreducible and suppose there are $a, b \in R$ such that $p \mid ab$. We aim to prove that $p \mid a$ or $p \mid b$. Since $p \mid 0$, we are done if a = 0 or

b=0. So assume $a,b\neq 0$. In general for $x,y,z\in R$ if $x\mid y$, then $x\mid yz$. Hence if a is a unit, then $p\mid b=a^{-1}(ab)$, and similarly if b is a unit then $p\mid a=b^{-1}(ab)$. So assume that a and b are not units. For some $q\in R$, pq=ab. q is not a unit, for otherwiser $p=abq^{-1}$ contradicting the irreduciblity of p. We can then find irreducible $q_1,\ldots,q_n,p_1,\ldots,p_m,p_{m+1},\ldots,p_l\in R$ and $v_1,\ldots,v_m,w_1,\ldots,w_m,w_{m+1},\ldots,v_l\geq 1$ such that

$$q = \prod_{1}^{n} q_i^{v_i}$$
 and $a = \prod_{1}^{m} p_i^{w_i}$ and $b = \prod_{m+1}^{l} p_i^{w_i}$.

From this it follows that

$$p\prod_{1}^{n}q_i^{v_i} = \prod_{1}^{l}p_i^{w_i}.$$

Since the above is a factorization into irreducible it follows from the assumption that R is a UFD that there exists an $i \in \{1, \ldots, l\}$ and a unit $s \in R$ such that $w_i = 1$ and $p = sp_i$. If $i \in \{1, \ldots, m\}$ then

$$a = \prod_{1}^{m} p_{j}^{w_{j}} = s^{-1} p \prod_{j \in \{1, \dots, m\} \setminus \{i\}} p_{j}^{w_{j}} \implies p \mid a.$$

By a similar argument, if $i \in \{m+1,\ldots,l\}$, then $p \mid b$. " \iff ": Suppose there are irreducible elements $p_1,\ldots,p_n,q_1,\ldots,q_m \in R$ and positive integers $v_1,\ldots,v_n,w_1,\ldots,w_m \geq 1$ such that

$$\prod_{1}^{n} p_k^{v_k} = \prod_{1}^{m} q_k^{w_k}.$$

Let $i \in \{1,\ldots,n\}$. Then $p_i \mid \prod_1^m q_k^{w_k}$. By assumption p_i is prime, hence $p_i \mid q_{\tau(i)}$ for some $\tau(i) \in \{1,\ldots,m\}$, hence for some $s_i \in R$, $q_{\tau(i)} = s_i p_i$, by irreducibility, we get that s_i is a unit. Similarly for $j \in \{1,\ldots,m\}$, we can find $\omega(j) \in \{1,\ldots,n\}$ and $t_j \in R^*$ such that $p_{\omega(j)} = t_j q_j$. Thus $p_i = s_i q_{\tau(i)} = s_i t_j p_{\omega(\tau(i))}$, hence $\omega(\tau(i)) = i$. Conversely one can show that $\tau(\omega(j)) = j$, hence n = m and τ is a bijection. Now we show that $v_i = w_{\tau(i)}$ for each i. WLOG $v_i \geq w_{\tau(i)}$, Then

$$p_i^{v_i-w_{\tau(i)}}p^{w_{\tau(i)}}\prod_{k\in\{1,\dots,n\}\backslash\{i\}}p_k^{v_k}=p_i^{v_i}\prod_{k\in\{1,\dots,n\}\backslash\{i\}}p_k^{v_k}=p_i^{w_{\tau(i)}}\prod_{k\in\{1,\dots,n\}\backslash\{\tau(i)\}}p_k^{w_k},$$

which implies that

$$p_i^{v_i - w_{\tau(i)}} \prod_{k \in \{1, \dots, n\} \backslash \{i\}} p_k^{v_k} = \prod_{k \in \{1, \dots, n\} \backslash \{\tau(i)\}} p_k^{w_k} \implies p^{v_i - w_{\tau(i)}} \mid \prod_{k \in \{1, \dots, n\} \backslash \{\tau(i)\}} p_k^{w_k},$$

and if $v_i - w_{\tau(i)} \neq 0$ then since p_i is prime $p_i \mid p_k$ for some $k \in \{1, \dots, n\} \setminus \{\tau(i)\}$ which is not possible since p_i and p_k are distinct. So we conclude that $v_i = w_{\tau(i)}$.

Definition 1.8.51. Let R be a UFD \mathcal{P} be the set of prime/irreducible elements in R. We say two element $p, q \in \mathcal{P}$ are associated if there is a unit $a \in R$ such that p = aq.

Remark 1.8.52. Write $p \sim q$ if p and q are associated. Being associated is an equivalence relation on \mathcal{P} . Indeed for $p,q,r\in\mathcal{P}$. If p=1p implying $p\sim p$. $p\sim q$, then for some $a\in R^*$, p=aq, hence $q=a^{-1}p$, hence $q\sim p$. Suppose $p\sim q$, $q\sim p$, then for $a,b\in R^*$, p=aq and q=br. Then p=(ab)r, hence $p\sim r$. We may then write any element as a product over \mathcal{P}

$$\prod_{[p]_{\sim}\in\mathcal{P}/\sim}p^{v_p},$$

where v_p is equal to 0 for all but finitely many p.

Lemma 1.8.53. Let R be a UFD. Then $\prod_{[p]_{\sim} \in \mathcal{P}/\sim} p^{v_p} \mid \prod_{[p]_{\sim} \in \mathcal{P}/\sim} p^{w_p}$ if and only if $v_p \leq w_p$ for every $p \in \mathcal{P}$.

Proof. We that

$$\prod_{[p]_{\sim} \in \mathcal{P}/\sim} p^{w_p} = \left(\prod_{[p]_{\sim} \in \mathcal{P}/\sim} p^{v_p}\right) \left(\prod_{[p]_{\sim} \in \mathcal{P}/\sim} p^{u_p}\right) = \prod_{[p]_{\sim} \in \mathcal{P}/\sim} p^{v_p + u_p}$$

for suitable $u_p \ge 0$. By uniqueness $v_p + u_p = w_p$ implying that $v_p \le w_p$ for every $p \in \mathcal{P}$. Conversely if $v_p \le w_p$ then there is some $u_p \ge 0$ such that $v_p + u_p = w_p$ and hence

$$\left(\prod_{[p]_{\sim} \in \mathcal{P}/\sim} p^{v_p}\right) \left(\prod_{[p]_{\sim} \in \mathcal{P}/\sim} p^{u_p}\right) = \left(\prod_{[p]_{\sim} \in \mathcal{P}/\sim} p^{v_p + u_p}\right) = \left(\prod_{[p]_{\sim} \in \mathcal{P}/\sim} p^{w_p}\right)$$

 \Box

Lemma 1.8.54. Let $a, b \in R \setminus 0$. Then $a = \prod_{[p]_{\sim} \in \mathcal{P}/\sim} p^{v_p(a)}$ and $b = \prod_{[p]_{\sim} \in \mathcal{P}/\sim} p^{v_p(b)}$. One finds that

$$\gcd(a,b) = \prod_{[p]_{\sim} \in \mathcal{P}/\sim} p^{\min(v_p(a),v_p(b))} \ \text{and} \ \operatorname{lcm}(a,b) = \prod_{[p]_{\sim} \in \mathcal{P}/\sim} p^{\max(v_p(a),v_p(b))},$$

and these are unique up to multiplication by units.

Proof. Let $c \in R$ such that $c \mid a$ and $c \mid b$, then

$$c = \prod_{[p]_{\sim} \in \mathcal{P}/\sim} p^{v_p(c)}$$

with $v_p(c) \leq v_p(a)$ and $v_p(c) \leq v_p(b)$ by the above lemma, hence $v_p(c) \leq \min(v_p(a), v_p(b))$. Suppose $d \in R$ is a greatest common divisor of a and b, Then $d \mid \gcd(a,b)$ and $\gcd \mid d$, hence $v_p(d) = \max(v_p(a), v_p(b))$. Let $c \in R$ such that $a \mid c$ and $b \mid c$. Then $v_p(a) \leq v_p(c)$ and $v_p(b) \leq v_p(c)$ by the above lemma, hence $\max(v_p(a), v_p(b)) \leq v_p(c)$. Showing that $\operatorname{lcm}(a,b)$ is that unique up to multiplication by a unit is similar to the gcd-case. \square

Lemma 1.8.55. Let R be an integral $r = \prod_{i=1}^{m} p_i^{v_i} \in R$ where $p_1, \dots, p_m \in R$ are distinct primes and $v_1, \dots, v_m \geq 1$. Then $rad(\langle r \rangle) = \langle \prod_{i=1}^{m} p_i \rangle$.

Proof. Clearly $\prod_{i=1}^{m} p_i \in \text{rad}(\langle r \rangle)$, since for $n = \max v_i$, $r = \prod_{i=1}^{m} p_i^{v_i} \mid \prod_{i=1}^{m} p_i^n$. Conversely, if $a \in \text{rad}(\langle r \rangle)$, then for some $n \geq 0$, $r \mid a^n$, implying $\prod_{i=1}^{m} p_i \mid a^n$, hence $\prod_{i=1}^{m} p_i \mid a$.

Lemma 1.8.56. Let R be a UFD. The prime ideals of R are R, 0 and principal ideals generated by $\langle p \rangle$ for an irreducible element $p \in R$. This means that a proper non-zero prime ideal in a UFD contains no non-trivial prime ideal.

Proof. This follows from Lemma 1.8.28 and Lemma 1.8.50. A non-trivial prime ideal contained in $\langle p \rangle$ is on the form $\langle q \rangle$. Then q = ap for some $a \in K$. Since q is irreducible a is a unit hence $\langle p \rangle = \langle q \rangle$.

1.8.6 Principal Ideal Domains

Definition 1.8.57. An ideal $I \subset R$ is *principal*. A domain in which every ideal is principal is called a *principal ideal domain* or a *PID*.

Lemma 1.8.58. Let R be a PID. The non-trivial maximal ideals of R are those generated by primes.

Proof. A maximal ideal is generated by some p that is non-zero and a non-unit. Since a maximal ideal is prime we have that p is prime.

Let a prime p be given. Suppose $\langle p \rangle \subset \langle x \rangle$. Then p = qx. Then $q \in R^*$ or $x \in R^*$, since p is in particular irreducible. Then $\langle p \rangle = \langle q \rangle$ or $\langle p \rangle = R$, hence $\langle p \rangle$ is maximal. \square

Lemma 1.8.59. Let R be a PID. Irreducible elements in R are prime.

Proof. p be irreducible. Suppose $\langle p \rangle \subset \langle p' \rangle$. Then p = qp' for some q, then $q \in R^*$ or $p' \in R^*$. In the first case $\langle p \rangle = \langle p' \rangle$ and in the second case $\langle p' \rangle = R$. Then $\langle p \rangle$ is maximal, hence p is prime.

Lemma 1.8.60. *A PID is a UFD.*

Proof. Let R be a PID. If we can prove that any non-unit non-zero element in R decomposes into a product of irreducible elements, we are done by Proposition 1.8.50, having the prior lemma in mind. Let $a \in R \setminus 0$ be a non-unit. Since R is Noetherian we can find a maximal ideal $\langle p_1 \rangle \supset \langle a \rangle$. Note that then $\langle p_1 \rangle$ is prime, hence p_1 is prime and that $a = a_1p_1$ for some a_1 . Define a_{n+1} to be an element such that $a_n = a_{n+1}p_n$ for some p_n . We get an ascending chain

$$\langle a \rangle \subset \langle a_1 \rangle \subset \dots$$

Since R is Noetherian, for some m, $\langle a_m \rangle = \langle a_n \rangle$ for $n \geq m$. Pick m to be the smallest such. If a_m was reducible, then $\langle a_m \rangle \subsetneq \langle a_{m+1} \rangle$. So it follows by induction that $a = a_m \prod_{1}^m p_i$; a product of irreducible elements.

The following is an immediate result of the prior two lemmas

Corollary 1.8.61. The non-zero maximal ideals of a PID are those generated by irreducible elements

1.8.7 Local Rings, Localizations & Field of Fractions

Definition 1.8.62. A ring R is called *local* if it has unique maximal left ideal, \mathfrak{m}_R . A homomorphism of local rings is a homomorphism of rings $f: R \to S$ if $f^{-1}(\mathfrak{m}_S) = \mathfrak{m}_R$.

Proposition 1.8.63. Let R be ring. R is local if and only if $\mathfrak{m} := R \setminus R^*$ is a left ideal.

Proof. " \Longrightarrow ": Let I be the unique maximal left ideal of R. Then since I is proper, $I \subset \mathfrak{m}$. Note that for every $x \in \mathfrak{m}$, $\langle x \rangle$ is a proper ideal in R, hence $x \in I$. Therefor $\mathfrak{m} = I$, hence \mathfrak{m} is an ideal.

" \Leftarrow ": Let $I \subsetneq R$ be an ideal. Then every element of I is a non-unit, hence $I \subset \mathfrak{m}$, thus \mathfrak{m} is the unique maximal left ideal in R.

Definition 1.8.64. Let R be a commutative ring and $X \subset R$ a subset that is a submonoid of (R,\cdot) . For $(r,x),(r',x')\in R\times X$ we define a relation that $(r,x)\sim (r',x')$ if rx'=r'x. We define $X^{-1}R:=R/\sim$ and denote an $(r,x)\in X^{-1}R$ by $\frac{r}{x}$. Hence

$$X^{-1}R = \left\{ \frac{r}{x} : r \in R, x \in X \right\}.$$

This is called the *localization of* R *with respect to* X. For an $x \in X$, if

$$X := \{x^n : n \ge 0\},\,$$

we define $R_x := X^{-1}R$. When $X = R \setminus \{0\}$, we define $Q(R) := X^{-1}R$. In this case, when R is an integral domain, Q(R) is called the *field of fractions* of R.

Remark 1.8.65. We give some properties of this construction. Note that every $x, y \in X$

$$0y = 0x \implies \frac{0}{x} = \frac{0}{y}$$

and that for every $r, r' \in R$

$$r = r' \implies \frac{r}{1} = \frac{r'}{1},$$

thus we may regard R as a subset of $X^{-1}R$ via the map $r\mapsto \frac{r}{1}$. We also have that

$$xy = yx \implies \frac{x}{x} = \frac{y}{y}.$$

Furthermore,

$$(rx)x = rx^2 \implies \frac{rx}{x^2} = \frac{r}{x}$$

Definition 1.8.66. Let R be a commutative ring and $\mathfrak{p} \subset R$ a prime ideal. Then we define the *localization with respect to* \mathfrak{p} to be

$$R_{\mathfrak{p}} := (R \setminus \mathfrak{p})^{-1}R$$

Remark 1.8.67. Note that $X := R \setminus \mathfrak{p}$ is a submonoid of (R, \cdot) . Indeed, take $x, y \in X$. Then $xy \notin \mathfrak{p}$ since otherwise x or y would be in \mathfrak{p} . Moreover, X does not contain 0 since $0 \in \mathfrak{p}$. It does contain 1 since \mathfrak{p} is a proper ideal.

Lemma 1.8.68. Let R be a commutative ring and $\mathfrak{p} \subset R$ a prime ideal. $R_{\mathfrak{p}}$ is a commutative ring. The ring structure is given by

$$\frac{r}{x} + \frac{s}{y} := \frac{ry + sx}{xy} \quad \left(\frac{r}{x}, \frac{s}{y} \in R_{\mathfrak{p}}\right)$$

and

$$\frac{r}{x}\frac{s}{y} := \frac{rs}{xy} \quad \left(\frac{r}{x}, \frac{s}{y} \in R_{\mathfrak{p}}\right)$$

with $1 := \frac{1}{1}$ *and* $0 := \frac{0}{1}$. *The set*

$$\{\frac{r}{1} \in R_{\mathfrak{p}} : r \in R\}$$

is a subring of $R_{\mathfrak{p}}$ isomorphic to R.

Proof. We first check that addition and multiplication are well-defined. :et $\frac{r_1}{x_1} = \frac{r_1'}{x_1'} \in R_{\mathfrak{p}}$ and $\frac{r_2}{x_2} = \frac{r_2'}{x_2'} \in R_{\mathfrak{p}}$. Then $r_1 x_1' = r_1' x_1$ and $r_2 x_2' = r_2' x_2$, which means

$$(r_1x_2 + r_2x_1)x_1'x_2' = r_1x_1'x_2x_2' + r_2x_2'x_1x_1' = r_1'x_1x_2x_2' + r_2'x_2x_1x_1' = (r_1'x_2' + r_2'x_1')x_1x_2,$$

implying

$$\frac{r_1}{x_1} + \frac{r_2}{x_2} = \frac{r_1 x_2 + r_2 x_1}{x_1 x_2} = \frac{r_1' x_2' + r_2' x_1'}{x_1' x_2'} = \frac{r_1'}{x_1'} + \frac{r_2'}{x_2'},$$

hence addition is well-defined. In the same vein

$$r_1 r_2 x_1' x_2' = r_1 x_2' r_2 x_1' = r_1' x_2 r_2' x_1 = r_1' r_2' x_1 x_2,$$

implies

$$\frac{r_1}{x_1} \frac{r_2}{x_2} = \frac{r_1 r_2}{x_1 x_2} = \frac{r_1' r_2'}{x_1' x_2'} = \frac{r_1'}{x_1'} \frac{r_2'}{x_2'}.$$

We proceed to check the ring axioms. Let, in addition, $\frac{r_3}{x_3} \in R_{\mathfrak{p}}$ be given. Then

$$\frac{r_1}{x_1} + \left(\frac{r_2}{x_2} + \frac{r_3}{x_3}\right) = \frac{r_1}{x_1} + \frac{r_2x_3 + r_3x_2}{x_2x_3} = \frac{r_1x_2x_3 + r_2x_3x_1 + r_3x_2x_1}{x_1x_2x_3} = \frac{(r_1x_2 + r_2x_1)x_3 + r_3x_2x_1}{x_1x_2x_3}$$

$$= \frac{r_1x_2 + r_2x_1}{x_1x_2} + \frac{r_3}{x_3} = \left(\frac{r_1}{x_1} + \frac{r_2}{x_2}\right) + \frac{r_3}{x_3}.$$

We get

$$0 + \frac{r_1}{x_1} = \frac{0x_1 + r_1 \cdot 1}{1x_1} = \frac{r_1}{x_1}.$$

One should note that for any $x \in X$ $x \cdot 0 = 1 \cdot 0$, hence

$$\frac{0}{1} = \frac{0}{x}.$$

We define $-\frac{r_1}{x_1} := \frac{-r_1}{x_1}$ with which we get

$$\frac{r_1}{x_1} - \frac{r_1}{x_1} = \frac{r_1 x_1 - r_1 x_1}{x_1 x_1} = \frac{0}{x_1 x_1} = 0.$$

Lastly

$$\frac{r_1}{x_1} + \frac{r_2}{x_2} = \frac{r_1 x_2 + r_2 x_1}{x_1 x_2} = \frac{r_2 x_1 + r_1 x_2}{x_2 x_1} = \frac{r_2}{x_2} + \frac{r_1}{x_1},$$

hence $(R_{\mathfrak{p}}, +)$ is an additive group. We also have that

$$\frac{r_1}{x_1}\left(\frac{r_2}{x_2}\frac{r_3}{x_3}\right) = \frac{r_1}{x_1}\frac{r_2r_3}{x_2x_3} = \frac{r_1(r_2r_3)}{x_1(x_2x_3)} = \frac{(r_1r_2)r_3}{(x_1x_2)x_3} = \left(\frac{r_1r_2}{x_1x_2}\right)\frac{r_3}{x_3} = \left(\frac{r_1}{x_1}\frac{r_2}{x_2}\right)\frac{r_3}{x_3}.$$

1 is the identity with respect to multiplication since

$$1\frac{r_1}{x_1} = \frac{1r_1}{1x_1} = \frac{r_1 \cdot 1}{x_1 \cdot 1} = \frac{r_1}{x_1}.$$

Furthermore,

$$\frac{r_1}{x_1} \left(\frac{r_2}{x_2} + \frac{r_3}{x_3} \right) = \frac{r_1}{x_1} \frac{r_2 x_3 + r_3 x_2}{x_2 x_3} = \frac{r_1 r_2 x_3 + r_1 r_3 x_2}{x_1 x_2 x_3} = \frac{r_1 r_2 x_3 x_1 + r_1 r_3 x_2 x_1}{x_1 x_2 x_1 x_3} = \frac{r_1 r_2}{x_1 x_2} + \frac{r_1 r_3}{x_1 x_3} = \frac{r_1 r_2}{x_1 x_3} + \frac{r_1 r_3}{x_1 x_3} = \frac{r_1$$

Thus $(R_{\mathfrak{p}}, +, \cdot)$ is a ring. We check that it is commutative. Indeed

$$\frac{r_1}{x_1} \frac{r_2}{x_2} = \frac{r_1 r_2}{x_1 x_2} = \frac{r_2 r_1}{x_2 x_1} = \frac{r_2}{x_2} \frac{r_1}{x_1}.$$

Let $r, r' \in R$. Then

$$r + r' = \frac{r}{1} + \frac{r'}{1} = \frac{r + r'}{1} \in R,$$

$$-r = \frac{-r}{1} \in R$$

$$0 = \frac{0}{1} \in R$$

$$rr' = \frac{r}{1} \frac{r'}{1} = \frac{rr'}{1} \in R$$

$$1 = \frac{1}{1} \in R.$$

These computations prove that im $R \hookrightarrow X^{-1}R$ is a subring of $X^{-1}R$ (or that $R \hookrightarrow X^{-1}R$ is a ring homomorphism), hence im $R \hookrightarrow X^{-1}R \simeq R$.

Definition 1.8.69. Let R be an integral domain. Let X be a submonoid of $(R \setminus \{0\}, \cdot)$. We define the *saturation* of X to be the set

$$\widehat{X} \coloneqq \{r \in R : \exists r' \in R, r'r \in X\} .$$

A submonoid $X \subset R \setminus \{0\}$ is *saturated*, if

$$\widehat{X} = X$$

Remark 1.8.70. Let $x \in X$, then $1x \in X$, hence $x \in \widehat{X}$. We thus have $X \subset \widehat{X}$. Let $r,s \in \widehat{X}$, then for some $r',s' \in R$, $r'r \in X$ and $s's \in X$. Then $r's'rs \in X$, hence $rs \in \widehat{X}$. Clearly $1 \in \widehat{X}$. Thus \widehat{X} is a submonoid of $R \setminus \{0\}$. The saturation of X is clearly saturated. Let Y be a saturated submonoid of $R \setminus \{0\}$ containing X. Let $r \in \widehat{X}$. Then for some $r' \in R$, $r'r \in X \subset Y$. Thus $\widehat{X} \subset Y$, hence \widehat{X} is the smallest saturated submonoid of $R \setminus \{0\}$ containing X.

Lemma 1.8.71. Let R be an integral domain and $X \subset R \setminus \{0\}$ a subset that is a submonoid of $(R \setminus \{0\}, \cdot)$. Then X is saturated if and only if for every $x, y \in R$ s.t. $xy \in X$, $x, y \in X$

Proof. " \Longrightarrow ": Suppose X is saturated. Let $x,y\in R$ s.t. $xy\in X$. Then $y\in \widehat{X}=X$ and since $yx=xy\in X, x\in \widehat{X}=X$.

" \Longleftarrow ": Let $r \in \widehat{X}$, then for some $r' \in R$, $r'r \in X$, which by assumption means $r \in X$.

Lemma 1.8.72. Let R be an integral domain and $X \subset R \setminus \{0\}$ a subset that is a submonoid of $(R \setminus \{0\}, \cdot)$. Consider the map

$$\iota: R \hookrightarrow X^{-1}R$$
$$r \mapsto \frac{r}{1}$$

Let $\frac{r}{x} \in X^{-1}R$. Then

$$\frac{r}{r} \in \left(X^{-1}R\right)^* \iff r \in Y := \iota^{-1}\left(\left(X^{-1}R\right)^*\right).$$

Furthermore, $\widehat{X} = Y$. Thus

$$\left(X^{-1}R\right)^* = \left\{\frac{r}{x} \in X^{-1}R : r \in \widehat{X}\right\}.$$

Proof. " \Longrightarrow ": Suppose $\frac{r}{x} \in (X^{-1}R)^*$. Then for some $\frac{s}{y} \in X^{-1}R$, $\frac{r}{x}\frac{s}{y} = \frac{s}{y}\frac{r}{x} = 1$. From this we get that

$$r\frac{s}{xy} = \frac{rx}{x}\frac{s}{xy} = \frac{r}{x}x\frac{1}{x}\frac{s}{y} = 1,$$

hence $r \in Y$.

" \Leftarrow ": If $r \in Y$, then $r\frac{s}{y} = 1$ for some $\frac{s}{y} \in X^{-1}R$, hence $\frac{r}{x}\frac{sx}{y} = 1$, implying $\frac{r}{x} \in (X^{-1}R)^*$.

If $r \in \widehat{X}$. Then for some $r' \in R$, $r'r \in X$. Then

$$r\frac{r'}{r'r} = \frac{r'r}{r'r} = 1 \implies r \in Y.$$

Let $r \in Y$. Then for some $\frac{s}{y} \in X^{-1}S$, $r\frac{s}{y} = 1$, meaning

$$sr = sr \frac{1}{y}y = r \frac{s}{y}y = y \in X \implies r \in \widehat{X}.$$

Corollary 1.8.73. When R is an integral domain, and X is a multiplicative submonoid of R not containing 0, we have that Q(R) is a field and $X^{-1}R$ is a subring of Q(R). Moreover Q(R) is the smallest field containing R.

Proof. By the assumption that R is an integral domain, 0 i a prime ideal, hence Q(R) is a commutative ring. The monoid $(R \setminus 0, \cdot)$ is obviously saturated. Hence, by the above lemma,

$$Q(R)^* = \left\{ \frac{r}{s} \in Q(R) : r \in R \setminus \{0\} \right\} = Q(R) \setminus \{0\}.$$

This means Q(R) is a field. Let K be a field containing R as a subring. Let $\frac{r}{s} \in Q(R)$. Then $r \in K$ and $\frac{1}{s} = s^{-1} \in K$, hence $\frac{r}{s} = r\frac{1}{s} \in K$. This means $Q(R) \subset K$, hence Q(R) is the smallest field containing R as a subring. If $\frac{x}{r}, \frac{y}{s} \in X^{-1}R$, then since $sr \in X$, $\frac{x}{r} + \frac{y}{s} \in X^{-1}R$. The same argument show $\frac{x}{r} \frac{y}{s} \in X^{-1}R$. Clearly $1, 0 \in X^{-1}R$.

Corollary 1.8.74. When R is an integral domain, for a prime ideal $\mathfrak{p} \subset R$, $R_{\mathfrak{p}}$ is an integral domain.

Remark 1.8.75. From the above we conclude that if K is a field then we can canonically (to be shown) make the identification K = Q(K), and in general Q(R) = Q(Q(R)).

Definition 1.8.76. We define the *rational numbers* to be the field $\mathbb{Q} := Q(\mathbb{Z})$.

Lemma 1.8.77. Let R and S be integral domains. Let $X \subset R \setminus 0$ be a submonoid of (R,\cdot) . Let $\sigma: R \to S$ such that $\sigma(X) \subset S \setminus 0$. Then

$$\overline{\sigma}: X^{-1}R \to \sigma(X)^{-1}S$$
$$\frac{a}{b} \mapsto \frac{\sigma(a)}{\sigma(b)}$$

is unique well-defined ring homomorphism such that $\overline{\sigma}\mid_R=\sigma$

Proof. By assumption $\sigma(X)$ is a submonoid of (S, \cdot) not containing 0. Let $\frac{a}{b} = \frac{c}{d} \in X^{-1}R$. Then ad = bc, hence

$$\sigma(a)\sigma(d) = \sigma(ad) = \sigma(bc) = \sigma(b)\sigma(c) \implies \overline{\sigma}\left(\frac{a}{b}\right) = \frac{\sigma(a)}{\sigma(b)} = \frac{\sigma(c)}{\sigma(d)} = \overline{\sigma}\left(\frac{c}{d}\right).$$

Let $\frac{a}{b}, \frac{c}{d} \in X^{-1}R$ be arbitrary. Then

$$\overline{\sigma}\left(\frac{a}{b} + \frac{c}{d}\right) = \frac{\sigma(ad + bc)}{\sigma(bd)} = \frac{\sigma(a)\sigma(d) + \sigma(b)\sigma(c)}{\sigma(b)\sigma(d)} = \frac{\sigma(a)}{\sigma(b)} + \frac{\sigma(c)}{\sigma(d)} = \overline{\sigma}\left(\frac{a}{b}\right) + \overline{\sigma}\left(\frac{c}{d}\right),$$

and

$$\overline{\sigma}\left(\frac{a}{b}\frac{c}{d}\right) = \frac{\sigma(ac)}{\sigma(bd)} = \frac{\sigma(a)\sigma(c)}{\sigma(b)\sigma(d)} = \frac{\sigma(a)}{\sigma(b)}\frac{\sigma(c)}{\sigma(d)} = \overline{\sigma}\left(\frac{a}{b}\right)\overline{\sigma}\left(\frac{c}{d}\right).$$

Lastly, let $r \in R$. Then

$$\overline{\sigma}(r) = \overline{\sigma}\left(\frac{r}{1}\right) = \frac{\sigma(r)}{\sigma(1)} = \frac{\sigma(r)}{1} = \sigma(r),$$

hence in particular $\overline{\sigma}(1) = \sigma(1) = 1$. Let $\sigma': X^{-1}R \mapsto \sigma(X)^{-1}S$ be another homomorphism with the property that $\sigma'|_{R} = \sigma$. Let $a, b \in R$ with $b \neq 0$. Then

$$\sigma'\left(\frac{1}{b}\right) = \sigma'\left(\frac{b}{1}\right)^{-1} = \sigma'(b)^{-1} = \frac{1}{\sigma(b)}.$$

One then sees that

$$\sigma'\left(\frac{a}{b}\right) = \sigma'(a)\sigma'\left(\frac{1}{b}\right) = \sigma(a)\frac{1}{\sigma(b)} = \frac{\sigma(a)}{\sigma(b)} = \overline{\sigma}\left(\frac{a}{b}\right) \implies \sigma' = \sigma.$$

Lemma 1.8.78. The collection of pairs (R, X) where R is an integral domain $X \subset R \setminus 0$ a multiplicative submonoid of R with morphisms being ring homomorphisms $\sigma : (R, X) \to (S, Y)$ with $\sigma(X) \subset Y \subset R \setminus 0$, X defines a category.

Proof. If $\sigma \in \text{Hom}((R,X),(S,Y))$ and $\tau \in \text{Hom}((S,Y),(T,Z))$, then $\sigma(X) \subset Y$ hence

$$\tau \circ \sigma(X) = \tau(\sigma(X)) \subset \tau(Y) \subset Z \subset T \setminus 0.$$

Clearly $\mathbb{1}_{(R,X)} := \mathrm{id}_R \in \mathrm{Hom}((R,X),(R,X)).$

Proposition 1.8.79. Call the category described in the above lemma C. The assignment of a pair $((R, X), \sigma)$ in (Ob(C), Hom(C)) to $(X^{-1}R, \overline{\sigma})$ in the category of integral domains defines a covariant functor.

Proof. Let $\tau \in \text{Hom}((S,Y),(T,Z)), \sigma \in \text{Hom}((R,X),(S,Y))$ and $\frac{a}{b} \in X^{-1}R$. Then

$$\overline{\tau \circ \sigma} \left(\frac{a}{b} \right) = \frac{(\tau \circ \sigma)(a)}{(\tau \circ \sigma)(b)} = \frac{\tau(\sigma(a))}{\tau(\sigma(b))} = \overline{\tau} \left(\frac{\sigma(a)}{\sigma(b)} \right) = \overline{\tau} \left(\overline{\sigma} \left(\frac{a}{b} \right) \right) = (\overline{\tau} \circ \overline{\sigma}) \left(\frac{a}{b} \right),$$

hence $\overline{\tau \circ \sigma} = \overline{\tau} \circ \overline{\sigma}$. Lastly

$$\overline{\mathbb{1}_{(R,X)}}\left(\frac{a}{b}\right) = \frac{a}{b} = \mathrm{id}_{X^{-1}R}\left(\frac{a}{b}\right) = \mathbb{1}_{X^{-1}R}\left(\frac{a}{b}\right).$$

Corollary 1.8.80. Let R and S be integral domains and $X \subset R \setminus 0$ a submonoid. Then $R \stackrel{\sigma}{\simeq} S \implies X^{-1}R \simeq \sigma(X)^{-1}R$.

Definition 1.8.81. Let R be an integral domain and $X \subset R \setminus 0$ a multiplicative submonoid of R. Consider an ideal $I \subset R$. We define the *localization ideal of* I *in* $X^{-1}R$. To be the set

$$X^{-1}I := \left\{ \frac{a}{x} \in X^{-1}R : a \in I, x \in X \right\}$$

Lemma 1.8.82. Let R be an integral domain and $X \subset R \setminus 0$ a multiplicative submonoid of R. Let $I \subset R$ be an ideal. Then $(X^{-1}R)I = X^{-1}I$. Consequentially, $X^{-1}I$ is an ideal.

Proof. Let $\sum_{1}^{n} \frac{r_i}{x_i} a_i \in (X^{-1}R)I$ where $\frac{r_i}{x_i} \in X^{-1}R$ and $a_i \in I$. Then

$$\sum_{1}^{n} \frac{r_i}{x_i} a_i = \frac{\sum_{i=1}^{n} \left(\prod_{j \in \{1, \dots, n\}, j \neq i} x_j \right) r_i a_i}{\prod_{j=1}^{n} x_i} \in X^{-1} I.$$

The converse inclusion is trivial.

Lemma 1.8.83. Let R be an integral domain and $X \subset R \setminus 0$ a multiplicative submonoid of R. Let $I \subset X^{-1}R$ be an ideal. Then $X^{-1}(I \cap R) = I$.

Proof. Let $\frac{a}{x} \in X^{-1}(I \cap R)$, where $a \in I$, $x \in X$. Then

$$\frac{a}{x} = \frac{1}{x}a \in I.$$

Conversely, let $\frac{a}{x} \in I$. Then $a = x \frac{a}{x} \in I$, hence $\frac{a}{x} \in X^{-1}(I \cap R)$.

Proposition 1.8.84. Given a commutative ring R and a prime ideal \mathfrak{p} of R, $R_{\mathfrak{p}}$ is local ring.

Proof. We check that $R \setminus \mathfrak{p}$ is saturated. Suppose $x \in R$ such that there is some $x' \in R$ such that $xx' \notin \mathfrak{p}$. Then $x \notin \mathfrak{p}$ for otherwise $xx' \in \mathfrak{p}$. It follows that $\widehat{R \setminus \mathfrak{p}} = R \setminus \mathfrak{p}$. The units of $R_{\mathfrak{p}}$ are thus those elements $\frac{x}{r}$ where $x \notin \mathfrak{p}$. Hence

$$R_{\mathfrak{p}} \setminus (R_{\mathfrak{p}})^* = \left\{ \frac{x}{r} \in R_{\mathfrak{p}} : x \in \mathfrak{p} \right\}$$

is an ideal, which means R_p is local by Proposition 1.8.63.

Lemma 1.8.85. A local ring R with principal maximal ideal is Noetherian

1.8.8 Discrete Valuation Rings

Definition 1.8.86. Let R be a non-field integral domain. R is a discrete valuation ring (DVR) if it is noetherian and local with the maximal ideal is principal.

Proposition 1.8.87. Let R be a non-field integral domain. Then R is a DVR if and only if there is an irreducible element $t \in R$ such that for every $z \in R \setminus 0$ there are unique $u \in R^*$ and $n \ge 1$ satisfying $z = ut^n$

Proof. " \Longrightarrow ": Let $\mathfrak{m}=\langle t\rangle$ be the maximal ideal of R. Then t is prime hence irreducible by the maximality. Let $z\in R\setminus 0$. Then either z is a unit in which case $z\notin \mathfrak{m}$ or z is not a unit hence $z\in \mathfrak{m}$. There is a $u\in R\setminus 0$ with $t\nmid u$ and a maximal n such that $z=ut^n$. Since $u\notin \langle t\rangle$ it is a unit by maximality. Suppose $u'\in R^*$ and $n'\geq 0$ are given such that $ut^n=u't^{n'}$. Then n=n', since otherwise $t\mid u'$, hence u=u'.

" \Leftarrow ": Let $\mathfrak{m}=\langle t \rangle$. Every non-unit is of the form ut^n , where $n\geq 1$, hence $R\setminus R^*=\mathfrak{m}$, hence R is local by Proposition 1.8.63. Let $I\subsetneq R$ be an ideal, then $I\subset\mathfrak{m}$. Then $I=\langle t^r\rangle$, where $r=\min\{n\geq 0: t^n\in I\}$. Indeed if $a\in I$, then $a=ut^n$ for some $n\geq r$, hence $a=ut^{n-r}t^r\in I$. Then R is a PID, and hence Noetherian.

Remark 1.8.88. We refer to an element such as t as an uniformizing parameter. The uniformizing parameters of a DVR are of the form ut where u is a unit and t is a uniformizing parameter. Set K = Q(R). Then every $z \in K \setminus 0$ can be written uniquely on the form $z = ut^n$ for a unit $u \in R$ and an integer n. The integer n is called the order of z denoted z. We set z one sees that z order is independent of uniformizing parameter. Since if z is a uniformizing parameter and z is a unique z is a uniqueness z is an z is a uniqueness z is a unique

Proposition 1.8.89. The localization of \mathbb{Z} with respect to a maximal ideal $\langle p \rangle$ $(p \in \mathbb{Z} \text{ is prime})$, $\mathbb{Z}_{\langle p \rangle}$ is a DVR whose quotient field is \mathbb{Q} .

Proof. One notes that $\mathbb{Z}_{\langle p \rangle} = \{ \frac{a}{n} \in \mathbb{Q} : p \nmid n \}$. Suppose $p = \frac{a}{n} \frac{b}{m}$. Then $mn \mid ab$, WLOG mn = 1, hence m = 1 and n = 1. Then p = ab hence a or b is a unit, meaning p is irreducible in $\mathbb{Z}_{\langle p \rangle}$. For $\frac{a}{n} \in \mathbb{Z}_{\langle p \rangle}$ let $\nu_p\left(\frac{a}{n}\right) = \max(\{n \geq 0 : p^n \mid \frac{a}{n}\})$. One eaily checks that $p \mid \frac{a}{n}$ if and only if $p \mid a$, hence $\nu_p(\frac{a}{n}) = \nu_p(a)$. We thus get that

$$\frac{a}{n} = \frac{q}{n} p^{\nu_p(a)},$$

where $p \nmid q$. Note that $\frac{n}{q}$ is the inverse of $\frac{q}{n}$. The uniqueness of this decomposition follows from p not being being a unit. Proposition 1.8.87 shows that $\mathbb{Z}_{\langle p \rangle}$ is a DVR. Every element

in $\mathbb Q$ can be written as $\frac{a}{b} = \frac{s}{t} p^{\nu_p(a) - \nu_p(b)} = \frac{s}{t} p^{\operatorname{ord}(\frac{a}{b})}$, where $p \nmid s, t$, hence $\mathbb Q \subset Q(\mathbb Z_{\langle p \rangle}) \subset \mathbb Q$.

Lemma 1.8.90. Let R be a DVR. Set K = Q(R). Let $\mathfrak{m} = \langle t \rangle$ be the maximal ideal in R. If $z = \frac{a}{b} t^{\operatorname{ord}(z)} \in K \setminus R$, then $z^{-1} \in \mathfrak{m}$.

Proof. Note that

$$K \setminus R = \left\{ u \frac{1}{t^n} : u \in R^*, n \ge 0 \right\},\,$$

hence $z = ut^{-n}$ for suitable $u \in \mathbb{R}^*$, $n \ge 0$. Then $z^{-1} = u^{-1}t^n \in \mathfrak{m}$.

Proposition 1.8.91. Let S be a DVR containing a subring R which is also a DVR. Set K = Q(R) and suppose $S \subset K$. Let $\mathfrak{m} = \langle t \rangle$ be the maximal ideal in R. If the maximal ideal of S, $\mathfrak{n} = \langle s \rangle$, contains \mathfrak{m} , then S = R.

Proof. Since $t \in \mathfrak{n}$, $t = us^n$ for some $n \geq 1$. By irreducibility of t, t = us. Let $v \in S^*$. Then $v^{-1} \notin \mathfrak{n} \supset \mathfrak{m}$, hence $v \in R$ by the prior lemma. This means $R^* = S^*$. Thus if $x \in S$, $x = vs^n = ut^n$ for some $n \geq 0$, $v \in S^* = R^*$, hence $x \in R$.

Definition 1.8.92. An *order function* on a field K is a function $\nu: K \to \mathbb{Z} \cup \{\infty\}$, satisfying:

- 1. for every $a \in K$, $\nu(a) = \infty \iff a = 0$,
- 2. for every $a, b \in K$, $\nu(ab) = \nu(a) + \nu(b)$,
- 3. for every $a, b \in K$, $\nu(a+b) \ge \min(\nu(a), \nu(b))$.

Definition 1.8.93. Let K be a field with an order function ν . We define the ring induced by ν to be the set

$$R_{\nu}(K) := R_{\nu} := \nu^{-1}(\mathbb{Z}_{>0} \cup \{\infty\}) = \{r \in K : \nu(r) \ge 0\}.$$

Define the ideal induced by ν to be the set

$$\mathfrak{m}_{\nu} := \nu^{-1}(\mathbb{Z}_{>1} \cup \{\infty\}) = \{r \in R_{\nu} : \nu(r) > 0\} \subset R_{\nu}$$

Lemma 1.8.94. Let K be a field with an order function ν . We collect the following facts about R_{ν} and \mathfrak{m}_{ν} :

- (i) R_{ν} is subring of K and hence is an integral domain.
- (ii) For every $u \in R_{\nu}$,

$$u \in R_{\nu}^* \iff \nu(u) = 0.$$

- (iii) \mathfrak{m}_{ν} is the unique maximal ideal of R_{ν} , hence R_{ν} is local.
- (iv) $R_{\nu} = K$ if and only if ν is trivial. If ν is non-trivial, R_{ν} is not a field.

Proof. (i) Property 2. ensures that R_{ν} is closed under multiplication while property 3. ensures that R_{ν} is closed under addition. $0 \in R_{\nu}$ by property 1. Note that $\nu(1) = \nu(1 \cdot 1) = \nu(1) + \nu(1)$, hence $\nu(1) = 0$, hence $1 \in R_{\nu}$. Let $u \in R_{\nu}^*$. Then $0 = \nu(1) = \nu(uu^{-1}) = \nu(u) + \nu(u^{-1})$, hence $\nu(u^{-1}) = -\nu(u)$ and since $\nu(u) \geq 0$, it follows that $\nu(u^{-1}) = 0$. We thus in particular find that $\nu(-1) = 0$, hence for any $v \in R_{\nu}$ we have that $\nu(-r) = \nu(-1 \cdot r) = \nu(-1) + \nu(r) = \nu(r)$. It thus follows that $-r \in R_{\nu}$. We thus get that R_{ν} is a subring of K.

(ii) " \Longrightarrow ": This was already proven in the proof of (i).

" \Leftarrow ": Let $u \in R_{\nu}$ such that $\nu(u) = 0$. For some $v \in K \setminus 0$, uv = vu = 1. Then $0 = \nu(1) = \nu(uv) = \nu(u) + \nu(v) = \nu(v)$, hence $v \in R_{\nu}$, which means u is a unit in R_{ν} .

(iii) $\mathfrak{m}_{\nu}=R_{\nu}\setminus R_{\nu}^{*}$, hence it is sufficient to prove that \mathfrak{m}_{ν} is an ideal by Proposition 1.8.63. \mathfrak{m}_{ν} is closed under addition by property 3. Let $r\in R_{\nu}, x\in \mathfrak{m}_{\nu}$. Then $\nu(rx)=\nu(r)+\nu(x)\geq 0+1=1$, hence $rx\in \mathfrak{m}_{\nu}$. (iv) "\improx": Suppose ν is not trivial. Then there is some $x\in K\setminus 0$ such that $\nu(x)\geq 1$, then $\nu(x^{-1})\leq 1$, hence $x^{-1}\notin R_{\nu}$.

" \Leftarrow ": Suppose ν is trivial. Then for $x \in K$

$$\nu(x) = \begin{cases} 0 & \text{if } x \neq 0 \\ \infty & \text{otherwise} \end{cases},$$

in any case $\nu(x) \geq 0$, hence $x \in R_{\nu}$.

Theorem 1.8.95. Let K be a field and ν a non-trivial order function on K. Then $R = \{z \in K : \nu(z) \geq 0\}$ is a DVR with maximal ideal $\mathfrak{m} := \{z \in R : \nu(z) > 0\}$ such that $Q(R_{\nu}) = K$. Conversely, if R is a DVR with quotient field K, then $\mathrm{ord} : K \to \mathbb{Z} \cup \{\infty\}$ is an order function. We thus obtain a one-to-one correspondence between DVR's and order functions.

Proof. By the above lemma it is sufficient to check that R_{ν} is a PID. Let $I \subset R_{\nu}$ be a non-zero ideal. Let $s \in I$ be given such that $\nu(s) = \min(\nu(I))$. Let $x \in I$. For some $q \in K$, x = qs. Since

$$\nu(x) = \nu(q) + \nu(s) \implies \nu(q) = \nu(x) - \nu(s) > 0,$$

it follows that $s \mid x$ in R_{ν} , hence $I = \langle s \rangle$. Let $k \in K$. Then either $k \in R_{\nu}$ or $k^{-1} \in R_{\nu}$. In the first trivially $k \in Q(R_{\nu})$. In the second case $k = (k^{-1})^{-1} = \frac{1}{k^{-1}} \in Q(R_{\nu})$.

For the second statement, we have for $a \in R$ that $\operatorname{ord}(a) = \infty$ if and only if a = 0. Let $a, b \in K$. Then $a = ut^m$ and $b = vt^l$ for unique $u, v \in R^*$ and $l := \operatorname{ord}(b)$, $m := \operatorname{ord}(a)$. First, we get that

$$ab = uvt^{m+l} \implies \operatorname{ord}(ab) = m + l = \operatorname{ord}(a) + \operatorname{ord}(b),$$

hence ord satisfies property 2. Secondly,

$$a+b=\underbrace{\left(ut^{m-\min(m,l)}+vt^{l-\min(m,l)}\right)}_{q}t^{\min(m,l)}.$$

Note that $q \in R$ since $m - \min(m, l), l - \min(m, l) \ge 0$. We then have that $q = \alpha t^d$ for a unique unit $\alpha \in R^*$ and $d := \operatorname{ord}(q) \ge 0$. This implies that $a + b = \alpha t^{d + \min(l, m)}$, hence

$$\operatorname{ord}(a+b) = d + \min(m, l) > \min(m, l) = \min(\operatorname{ord}(a), \operatorname{ord}(b)),$$

proving property 3.
$$\Box$$

Remark 1.8.96. One notes from the above proof that the uniformizing parameter for R_{ν} is $t \in R_{\nu}$ where $\nu(t) = \min(\nu(\mathfrak{m}_{\nu}))$.

Lemma 1.8.97. Let R be a DVR with K := Q(R). If $a_1, \ldots, a_n \in K$ where for some i ord $(a_i) < \operatorname{ord}(a_j)$ for every $j \neq i$, then $\operatorname{ord}(\sum_{1}^{n} a_j) = a_i$ and $\sum_{1}^{n} a_j \neq 0$

Proof. We prove the first statement using induction in $n \geq 2$. Consider first the case n = 2. WLOG $m_1 := \operatorname{ord}(a_1) < \operatorname{ord}(a_2) := m_2$. Write $a_1 = u_1 t^{m_1}$ and $a_2 = u_2 t^{m_2}$ for suitable $u_1, u_2 \in R^*$. Then $a_1 + a_2 = (u_1 + u_2 t^{m_2 - m_1}) t^{m_1}$ and since $t \nmid u_1$ and $t \mid u_2 t^{m_2 - m_1}$, it follows that $t \nmid u := u_1 + u_2 t^{m_2 - m_1}$, hence u is a unit in R, meaning $\operatorname{ord}(a_1) = \operatorname{ord}(a_1 + a_2)$. WLOG i = n + 1. Note that $\operatorname{ord}(a_n + a_{n+1}) = \operatorname{ord}(a_{n+1})$, hence setting $a'_n = a_n + a_{n+1}$, we get $\operatorname{ord}(a'_n) = \operatorname{ord}(a_{n+1}) < a_j$ for every $j \in \{1, \ldots, n-1\}$. By induction it follows that

$$\operatorname{ord}(\sum_{1}^{n+1} a_j) = \operatorname{ord}(\sum_{1}^{n-1} a_j + (a_n + a_{n+1})) = \operatorname{ord}(\sum_{1}^{n-1} a_i + a'_n) = \operatorname{ord}(a'_n) = \operatorname{ord}(a_{n+1}).$$

Since $\operatorname{ord}(\sum_{1}^{n}a_{j})<\operatorname{ord}(a_{j})\leq\infty$, it follows that $\sum_{1}^{n}a_{j}\neq0$ by property 1. of order functions.

Lemma 1.8.98. Let R be a DVR with maximal ideal \mathfrak{m} , L:=Q(R) and a subring K that is a field. Suppose that the composition $\sigma: K \hookrightarrow R \twoheadrightarrow L$ is an isomorphism. Then for any $z \in R$ there is a unique $\lambda \in K$ such that $z - \lambda \in \mathfrak{m}$.

Proof. The case $z \in \mathfrak{m}$: Pick $\lambda = 0$. By the prior lemma for any $\mu \in K \setminus 0$ ord $(z - \mu) = \operatorname{ord}(\mu) = 0$, hence $z - \mu \notin \mathfrak{m}$.

The case $z \notin \mathfrak{m}$: Then z is a unit in R. By a result in the "A First Look a Algebras"-subsubsection σ is a K-algebra isomorphism. For some $\lambda \setminus 0$, $\lambda = \sigma(\lambda) = z$, hence $z - \lambda = 0 \in \mathfrak{m}$. Since σ is injective it follows that λ is unique.

Proposition 1.8.99. We assume the same setup as the prior lemma. Let t be a uniformizing parameter of R and $z \in R$. For any $n \ge 0$ there are unique $\lambda_0, \ldots, \lambda_n \in K$, $z_n \in R$ such that

$$z = \sum_{i=0}^{n} \lambda_i t^i + z_n t^{n+1}.$$

Proof. Existence: For the case n = 0 the statement follows from Lemma 1.8.98. Assuming the statement is true for some $n \ge 0$, we can write

$$z = \sum_{i=0}^{n} \lambda_i t^i + z_n t^{n+1}.$$

If $z_n \in R^* = K \setminus 0$, pick $\lambda_{n+1} := z_n$ and $z_{n+1} := 0$. Otherwise write $z_n = ut^l$, $l \ge 1$ and pick $\lambda_{n+1} := 0$, $z_{n+1} := ut^{l-1}$.

Uniqueness: Suppose there are $\lambda_0, \ldots, \lambda_n, \mu_1, \ldots, \mu_n \in K$ and $z_n, w_n \in R$ such that

$$\sum_{i=0}^{n} \lambda_i t^i + z_n t^{n+1} = \sum_{i=0}^{n} \mu_i t^i + w_n t^{n+1},$$

Then $\sum_{0}^{n}(\lambda_{i}-\mu_{i})t^{i}+(z_{n}-w_{n})t^{n+1}=0$, hence $\operatorname{ord}((\lambda_{i}-\mu_{i})t^{i})=\operatorname{ord}((\lambda_{j}-\mu_{j})t^{j})$ for every i,j hence $(\lambda_{i}-\mu_{i})t^{i}=0$ for every i, implying $\lambda_{i}=\mu_{i}$. Similarly one can conclude that $z_{n}=w_{n}$.

Lemma 1.8.100. We keep the same setup as the above two results. Then $\dim_K \mathfrak{m}^n/\mathfrak{m}^{n+1} = 1$ for every $n \geq 0$.

Proof. We use induction in $n \ge 0$. We first prove that

$$\mathfrak{m}^n/\mathfrak{m}^{n+1} = \{\lambda t^n + \mathfrak{m}^{n+1} : \lambda \in K\}.$$

This is clear since any element in \mathfrak{m}^n , is equal to $\lambda t^n + z t^{n+1}$ for some $\lambda \in K$, $z \in R$ as by Lemma 1.8.97 $\operatorname{ord}(\sum_0^n \lambda_i t^i) = l$ where l is the smallest index such that $\lambda_l \neq 0$. Hence in the image of $\mathfrak{m}^n/\mathfrak{m}^{n+1}$ such an element is given by $\lambda t^n + z t^{n+1} + \mathfrak{m}^{n+1} = \lambda t^n + \mathfrak{m}^{n+1}$. It follows that

$$\sigma: K \to \mathfrak{m}^n/\mathfrak{m}^{n+1}$$
$$\lambda \mapsto \lambda t^n + \mathfrak{m}^{n+1}$$

is a surjective K-algebra. Suppose $\lambda t^n \in \mathfrak{m}^{n+1}$. Then $\operatorname{ord}(\lambda) > 0$, hence $\lambda = 0$. We thus conclude that $\mathfrak{m}^n/\mathfrak{m}^{n+1} \simeq K$, meaning dim $\mathfrak{m}^n/\mathfrak{m}^{n+1} = \dim K = 1$.

Lemma 1.8.101. We keep the setup from the prior results. For each $n \ge 0$, dim $R/\mathfrak{m}^n = n$. It follows that $\operatorname{ord}(z) = \dim R/\langle z \rangle = \dim R/\mathfrak{m}^{\operatorname{ord}(z)}$ for each $z \in R$.

Proof. We prove the result by induction in n. The base case is trivial. By Lemma 1.6.25 and Lemma 1.7.4 and the induction hypothesis it follows that

$$\dim R/\mathfrak{m}^{n+1} = \dim \mathfrak{m}^n/\mathfrak{m}^{n+1} + \dim R/\mathfrak{m}^n = n+1,$$

where we also use the prior lemma. We now that $z = \lambda t^{\operatorname{ord}(z)}$, hence $\langle z \rangle = \langle t \rangle^{\operatorname{ord}(z)} = \mathfrak{m}^{\operatorname{ord}(z)}$, hence $\operatorname{ord}(z) = \dim R/\mathfrak{m}^{\operatorname{ord}(z)}$.

1.9 Polynomial Rings & Formal Power Series

In this subsection every ring will be commutative, unless we explicitly declare it to not (necessarily) be the case. Really the base ring for a polynomial ring need not be commutative, but for our purposes we do not need to explore the non-commutative case. A motivation to not be too general is that non-commutative polynomial rings do not admit a nice notion of evaluation.

By a polynomial in n variables over a ring R, we mean some expression of the form

$$\sum_{v=(v_1,\dots,v_n)\in\mathbb{N}^n} a_v x_1^{v_1} \cdots x_n^{v_n},$$

where x_1,\ldots,x_n are *variables* and $a_v=0$ for all but finitely many $a_v\in R$. Thus we want to consider elements of the algebra over R generated by x_1,\ldots,x_n , i.e. $R[x_1,\ldots,x_n]$. The term variable is informal, and a goal of this section is be equip *variable* with a mathematical definition. There are some properties that we want these variables to have. For instance we do not want $x_i=x_j$ when $i\neq j$. In general, we want $x_1^{v_1}\cdots x_n^{v_n}\neq x_1^{w_1}\cdots x_n^{w_n}$ whenever $(v_1,\ldots,v_n)\neq (w_1,\ldots,w_n)$. To do this, we first introduce the notion of algebraic (in)dependence

Definition 1.9.1. Let S be an R-algebra. We say a finite sequence of elements $s_1, \ldots, s_n \in Z(S)$ are algebraically independent over R if for every finite sequence $(a_v) \in \prod_{v \in \mathbb{N}^n} R$, which is not the sequence $(0) \in \prod_{v \in \mathbb{N}^n} R$, we get that

$$\sum_{v \in \mathbb{N}^n} a_v s_1^{v_1} \cdots s_n^{v_n} \neq 0.$$

If a finite sequence of elements in S are not algebraically independent over R, we say that they are *algebraically dependent*.

One quickly sees that the concept over algebraic independence is really just a special case of linear independence.

Lemma 1.9.2. Let S be an R-algebra. Then a finite sequence in $s_1, \ldots, s_n \in Z(S)$ is algebraically independent over R if and only if $\{s_1^{v_1} \cdots s_n^{v_n}\}_{(v_1, \ldots, v_n) \in \mathbb{N}^n}$ is linearly independent over R.

We also want that elements of R can be seen as polynomials, so a ring of polynomials should contain its base ring as a subring in a nice canonical way. Before proceeding with actually constructing a polynomial ring that does the job we will present the approach that at first might seem fruitful, but will not quite capture the behaviour we desire. That is to define $R[x_1, \ldots, x_n]$ as the set of functions

$$\operatorname{Pol}(R^n,R) := \left\{ f: R^n \to R: \begin{array}{c} f(x_1,\ldots,x_n) = \sum_{v \in \mathbb{N}^n} a_v x_1^{v_1} \cdots x_n^{v_n} \text{ for some } \\ \text{finite sequence } \{a_v\}_{v \in \mathbb{N}^n} \subset R \text{ for all } (x_1,\ldots,x_n) \in R^n \end{array} \right\},$$

i.e. the set of polynomial functions, which is a subring of $\operatorname{Fun}(R^n,R)$, the set of functions from R^n to R. The main issue is that we cannot always distinguish terms of form $x_1^{v_1}\cdots x_n^{v_n}$. For instance, if $\#R < \infty$, then clearly $\#\operatorname{Pol}(R^n,R) < \infty$, but we want the number of distinct terms $x_1^{v_1}\cdots x_n^{v_n}$ to be countably infinite in every case. To be concrete, taking $R:=\mathbb{Z}/2\mathbb{Z}$ then $x\mapsto x$ and $x\mapsto x^2$ is the same function, hence $x=x^2\iff x^2-x=0$, thus $\operatorname{Pol}(R^n,R)$ fails to produce the right notion of variable in a lot of cases. Instead we will present an alternative approach.

1.9.1 Defining the Polynomial Ring

In this subsection we give a rigorous construction of the polynomial ring.

Definition 1.9.3. Consider the function

$$| \bullet | : \mathbb{N}^n \to \mathbb{N}$$

 $v = (v_1, \dots, v_n) \mapsto \sum_{1}^{n} v_i,$

For an *n*-tuple $v \in \mathbb{N}^n$ we will refer to the quantity |v| as the *modulus* of v.

Remark 1.9.4. One easily sees that a sequence $(a_v) \in \bigoplus_{v \in \mathbb{N}^n} R$ for some ring R is finite if and only if $a_v = 0$ whenever |v| > N for some $N \ge 0$

One recalls that $(\mathbb{N}^n, +)$ is a commutative monoid for every $n \geq 1$, where for $v = (v_1, \ldots, v_n)$ and $w = (w_1, \ldots, w_n)$ in \mathbb{N}^n ,

$$v + w := (v_1 + w_1, \dots, w_n + v_n).$$

We have the following result.

Lemma 1.9.5. For every $n \ge 1$, the modulus function is additive.

Proof. Let $v, w \in \mathbb{N}^n$ with $v = (v_1, \dots, v_n)$ and $w = (w_1, \dots, w_n)$. Then

$$|v+w| = |(v_1+w_1,\ldots,v_n+w_n)| = \sum_{i=1}^{n} (v_i+w_i) = \sum_{i=1}^{n} v_i + \sum_{i=1}^{n} w_i = |v| + |w|.$$

Definition 1.9.6. Let R be a ring and n a positive integer. By a polynomial in n variables over R, we mean an element (a_v) in the R-module $\bigoplus_{v \in \mathbb{N}^n} R$. We denote the set of polynomials in n variables over R by $R[\mathbb{N}^n]$, i.e. $R[\mathbb{N}^n] := \bigoplus_{v \in \mathbb{N}^n} R$.

With this definition we already have that $R[\mathbb{N}^n]$ is a R-module, since it is an R-submodule of $\prod_{v\in\mathbb{N}^n}R$. The set $\{e_v:v\in\mathbb{N}^n\}$ where $e_v=(\delta_{vw})\in\prod_{w\in\mathbb{N}^n}R$ is a basis of $R[\mathbb{N}^n]$. We now aim to equip $R[\mathbb{N}^n]$ with a suitable multiplication. We do this by adding structure of ring on $\prod_{v\in\mathbb{N}^n}R$ and showing that $R[\mathbb{N}^n]$ is a subring. The set $\prod_{v\in\mathbb{N}^n}R$ with this structure of ring is called the ring of formal power series in n variables over R.

Lemma 1.9.7. We define multiplication on $\prod_{v \in \mathbb{N}^n} R$ by

$$(a_v)(b_v) = \left(\sum_{v,w \in \mathbb{N}^n: v+w=u} a_v b_v\right) \in \prod_{u \in \mathbb{N}^n} R.$$

This multiplication makes $\prod_{v \in \mathbb{N}^n} R$ a commutative ring. $R[\mathbb{N}^n]$ is a subring of $\prod_{v \in \mathbb{N}^n} R$.

Proof. Let $(a_v), (b_v), (c_v) \in \prod_{v \in \mathbb{N}^n} R$. Then

$$((a_v)(b_v))(c_v) = \left(\sum_{v,w\in\mathbb{N}^n:v+w=u} a_v b_w\right)(c_v) = \left(\sum_{r,u\in\mathbb{N}^n:r+u=s} \left(\sum_{v,w\in\mathbb{N}^n:v+w=u} a_v b_w\right) c_r\right)$$

$$= \left(\sum_{r,v,w\in\mathbb{N}^n:r+v+w=s} (a_v b_w) c_r\right) = \left(\sum_{r,v,w\in\mathbb{N}^n:r+v+w=s} a_v (b_w c_r)\right)$$

$$= \left(\sum_{u,v\in\mathbb{N}^n u+v=s} a_v \left(\sum_{r,w\in\mathbb{N}^n:r+w=u} b_w c_r\right)\right) = (a_v) \left(\sum_{r,w\in\mathbb{N}^n:r+w=u} b_w c_r\right)$$

$$= (a_v)((b_v)(c_v)).$$

Put $\mathbf{0} := (0, \dots, 0) \in \mathbb{N}^n$. We then define $1 := e_{\mathbf{0}} = (\delta_{\mathbf{0}v})$. Then

$$1(a_v) = \left(\sum_{v,w \in \mathbb{N}^n: v+w=u} \delta_{\mathbf{0}v} a_w\right) = \left(\sum_{w \in \mathbb{N}^n: w=u} a_w\right) = (a_v).$$

Similarly it is easy to check that $(a_v)1 = (a_v)$. Finally we have that

$$(a_{v}) (((b_{v}) + (c_{v})) = \left(\sum_{v,w \in \mathbb{N}^{n}: v+w=u} a_{v}(b_{w} + c_{w}) \right) = \left(\sum_{v,w \in \mathbb{N}^{n}: v+w=u} a_{v}b_{w} + a_{v}c_{w} \right)$$

$$= \left(\sum_{v,w \in \mathbb{N}^{n}: v+w=u} a_{v}b_{w} + \sum_{v,w \in \mathbb{N}^{n}: v+w=u} a_{v}c_{w} \right)$$

$$= \left(\sum_{v,w \in \mathbb{N}^{n}: v+w=u} a_{v}b_{w} \right) + \left(\sum_{v,w \in \mathbb{N}^{n}: v+w=u} a_{v}c_{w} \right) = (a_{v})(b_{v}) + (a_{v})(c_{v}).$$

This means $\prod_{v \in \mathbb{N}^n} R$ is a ring with this multiplication. Note also that

$$(a_v)(b_v) = \left(\sum_{v,w \in \mathbb{N}^n: v+w=u} a_v b_w\right) = \left(\sum_{v,w \in \mathbb{N}^n: v+w=u} b_v a_w\right) = (b_v)(a_v).$$

Hence $\prod_{v\in\mathbb{N}^n}R$ is a commutative ring with this multiplication.

To check that $R [\mathbb{N}^n]$ is a subring of $\prod_{v \in \mathbb{N}^n} R$, we need to check that $1 \in R [\mathbb{N}^n]$ and that $R [\mathbb{N}^n]$ is closed under multiplication. Since $\delta_{\mathbf{0},v} = 0$ for every $v \in \mathbb{N}^n \setminus \{\mathbf{0}\}$, it follows that $1 \in R [\mathbb{N}^n]$. Let $(a_v), (b_v) \in R[\mathbb{N}^n]$. We note that for some $N, M \geq 0$, $a_v = 0$ for $v \in \mathbb{N}^n$ with $|v| \geq N$ and $b_w = 0$ for $w \in \mathbb{N}^n$ with $|w| \geq M$. Let $u \in \mathbb{N}^n$ with $|u| \geq N + M$. Consider then $v, w \in \mathbb{N}^n$ such that v + w. Then using LEMMA?

$$|v| + |w| = |v + w| = |u| \ge N + M \implies |v| \ge N \text{ or } |w| \ge M \implies a_v b_w = 0.$$

Thus
$$\sum_{v,w\in\mathbb{N}^n:v+w=u}a_vb_w=0$$
, meaning $(a_v)(b_v)\in R[\mathbb{N}^n]$.

Remark 1.9.8. As a notational trick one often denotes an $(a_v) \in \prod_{v \in \mathbb{N}^n}$ by $\sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v$, where \mathbf{x}^v is a short-hand notation for $x_1^{v_1} \cdots x_n^{v_n}$. With this choice of notation the elements of $\prod_{v \in \mathbb{N}^n} R$ are seen to act like some sort of power series in n variables with coefficients in R, where we of course "forget" the notion of convergence. The ring of formal power series in n variables is denoted $R[x_1, \dots, x_n]$, but for now we will make no more remarks about this ring and focus on the polynomial ring. We will see that the notation $\sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v$ is actually on the nose in the sense of Remark 1.2.19 for the ring of polynomials.

Definition 1.9.9. Let R be a ring and n a positive integer. Consider a $w \in \mathbb{N}^n$. We define the *monomial* associated with w as the polynomial

$$e_v = (\delta_{vw}) \in R[\mathbb{N}^n].$$

For $i \in \{1, ..., n\}$ we define the *i'th variable* in $R[\mathbb{N}^n]$ to be monomial associated with the n-tuple of non-negative integers for which the i'th entry is 1 and for which the remaining entries are 0.

Remark 1.9.10. A note on notation: We choose to denote the i'th variable by some letter, say x, subscripted by x_i , i.e. we denote the n variables by x_1, \ldots, x_n . With this choice of letter we choose denote a monomial associated with a $v \in \mathbb{N}^n$ by \mathbf{x}^v . Later on this notation will be motivated. Had we chosen y as our letter we would get variables y_1, \ldots, y_n and monomials \mathbf{y}^v . This remark is not of a mathematical nature and serves only as an excuse to not explicitly state what is meant by a notation a'la \mathbf{x}^v every time we make use of it.

Lemma 1.9.11. Any element $f = (a_v) \in R[\mathbb{N}^n]$ can be written uniquely as

$$\sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v,$$

Proof. This is just a matter of book keeping. Since $\{\mathbf{x}^v : v \in \mathbb{N}^n\} = \{e_v : v \in \mathbb{N}^n\}$ is a basis of $R[\mathbb{N}^n] = \bigoplus_{v \in \mathbb{N}^n} R$, it follows that for some finite set $X \subset \mathbb{N}^n$, $a_v \neq 0$ for every $v \in \mathbb{N}^n$. Hence

$$f = \sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v.$$

The uniqueness of this representation follows from $\{\mathbf{x}^v : v \in \mathbb{N}^n\}$ being a basis. \square

Remark 1.9.12. A further consequence is that for $f = \sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v$, $g = \sum_{v \in \mathbb{N}^n} b_v \mathbf{x}^v \in R[\mathbb{N}^n]$

$$fg = \sum_{u \in \mathbb{N}^n} c_u \mathbf{x}^u,$$

where $(c_u) = \left(\sum_{v,w \in \mathbb{N}^n: v+w=u} a_v b_w\right)$. Suppose $f = \mathbf{x}^{\nu}$ and $g = \mathbf{x}^{\mu}$. Then

$$fg = (c_u) = \left(\sum_{v,w \in \mathbb{N}^n: v+w=u} \delta_{\nu v} \delta_{\mu w}\right).$$

Note that

$$\delta_{\nu\nu}\delta_{\mu w} = 0 \iff \delta_{\nu\nu} = 0 \text{ or } \delta_{\mu w} = 0 \iff \nu = v \text{ or } \mu = w,$$

hence $\delta_{\nu v}\delta_{\mu w}=1$ if $\nu=v$ and $\mu=w$ and 0 else. Thus $c_u=1$ when $u=\nu+\mu$ and else it is 0. This means $f=(\delta_{v,\nu+\mu})=\mathbf{x}^{\nu+\mu}$. It follows that $\mathbf{x}^{\mu}=x_1^{\mu_1}\cdots x_n^{\mu_n}$. Any polynomial can thus uniquely be represented as sum

$$\sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v = \sum_{v = (v_1, \dots, v_n) \in \mathbb{N}^n} a_v x_1^{v_1} \cdots x_n^{v_n}.$$

One useful fact that one should note is that this means that for some $v_1, \ldots, v_m \in \mathbb{N}^n$, we have that the above is equal to

$$\sum_{1}^{n} a_{v_i} \mathbf{x}^{v_i}.$$

Another way of representing the above, which also may be useful is that for some N, the above is equal to

$$\sum_{v \in \mathbb{N}^n : |v| \le N} a_v \mathbf{x}^v$$

We record the fact that R is embedded as a subring in a polynomials in the most natural way

Lemma 1.9.13. R1 is a subring of $R[x_1, \ldots, x_n]$ contained in $R[x_1, \ldots, x_n]$, ring isomorphic to R. Furthermore, $R1[x_1, \ldots, x_n] = R[x_1, \ldots, x_n]$. Lastly x_1, \ldots, x_n are algebraically independent over R.

Proof. We consider the map

$$\sigma: R \to R1$$
$$r \mapsto r1 = r$$

This is clearly a surjective ring homomorphism hence R1 is subring of $R[x_1, \ldots, x_n]$ whose inverse is

$$\sigma^{-1}: R1 \to R$$
$$r1 \mapsto r$$

We already know that $R1[x_1, \ldots, x_n]$ is a subring of $R[\mathbb{N}^n]$. Furthermore we have already seen in the above remark that any element in $R[x_1, \ldots, x_n]$ can be written as finite linear combination over R of elements in $\{x_1^{v_1} \cdots x_n^{v_n} : (v_1, \ldots, v_n) \in \mathbb{N}^n\}$. The fact that this set constitutes a basis of $R[x_1, \ldots, x_n]$ over R, means that x_1, \ldots, x_n are algebraically independent over R (cf. Lemma 1.9.2).

Remark 1.9.14. We have now fully justified the existence of a polynomial ring with the properties described in the introduction to this subsection. In summary, we found that the set of finite sequences in R indexed by elements in \mathbb{N}^n could be endowed with the structure we sought after. From now we we will "forget" the underlying structure.

We collect all the data established about the polynomial ring in the following theorem

Theorem 1.9.15. The rings $R[x_1,\ldots,x_n]$ and

$$R[x_1, \dots, x_n] = \left\{ \sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v : a_v \in R, a_v = 0 \text{ whenever } |v| > N \text{ for some } N \ge 0 \right\},$$

are rings containing R as a subring. $R[x_1, \ldots, x_n]$ is generated by x_1, \ldots, x_n . Furthermore, x_1, \ldots, x_n are algebraically independent over R.

1.9.2 Specializations of Polynomials

Proposition 1.9.16. Let R and S be commutative rings and consider a ring homomorphism $\sigma: R \to S$. Then σ induces a well-defined ring homomorphism given by

$$\overline{\sigma}: R[x_1, \dots, x_n] \to S[x_1, \dots, x_n]$$
$$\sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v \mapsto \sum_{v \in \mathbb{N}^n} \sigma(a_v) \mathbf{x}^v$$

Proof. Suppose $\sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v = \sum_{v \in \mathbb{N}^n} b_v \mathbf{x}^v \in R[\mathbf{x}]$ then $a_v = b_v$ for every $v \in \mathbb{N}^n$ hence $\sigma(a_v) = \sigma(a_v)$ for every $v \in \mathbb{N}^n$, meaning

$$\overline{\sigma}\left(\sum_{v\in\mathbb{N}^n}a_v\mathbf{x}^v\right)=\sum_{v\in\mathbb{N}^n}\sigma(a_v)\mathbf{x}^v=\sum_{v\in\mathbb{N}^n}\sigma(b_v)\mathbf{x}^v=\overline{\sigma}\left(\sum_{v\in\mathbb{N}^n}b_v\mathbf{x}^v\right),$$

we thus conclude that $\overline{\sigma}$ is well-defined.

Consider arbitrary $\sum_{v\in\mathbb{N}^n}a_v\mathbf{x}^v,\sum_{v\in\mathbb{N}^n}b_v\mathbf{x}^v\in R[\mathbf{x}].$ Then

$$\overline{\sigma}\left(\sum_{v\in\mathbb{N}^n}a_v\mathbf{x}^v + \sum_{v\in\mathbb{N}^n}b_v\mathbf{x}^v\right) = \sum_{v\in\mathbb{N}^n}\sigma(a_v + b_v)\mathbf{x}^v = \sum_{v\in\mathbb{N}^n}\left(\sigma(a_v) + \sigma(b_v)\right)\mathbf{x}^v$$

$$= \sum_{v\in\mathbb{N}^n}\sigma(a_v)\mathbf{x}^v + \sum_{v\in\mathbb{N}^n}\sigma(b_v)\mathbf{x}^v = \overline{\sigma}\left(\sum_{v\in\mathbb{N}^n}a_v\mathbf{x}^v\right) + \overline{\sigma}\left(\sum_{v\in\mathbb{N}^n}b_v\mathbf{x}^v\right)$$

hence $\overline{\sigma}$ is additive. It also multiplicative. Indeed,

$$\overline{\sigma} \left(\left[\sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v \right] \left[\sum_{v \in \mathbb{N}^n} b_v \mathbf{x}^v \right] \right) = \sum_{u \in \mathbb{N}^n} \left[\sum_{v, w \in \mathbb{N}^n : v + w = u} \sigma(a_v b_w) \right] \mathbf{x}^u \\
= \sum_{u \in \mathbb{N}^n} \left[\sum_{v, w \in \mathbb{N}^n : v + w = u} \sigma(a_v) \sigma(b_w) \right] \mathbf{x}^u \\
= \left[\sum_{v \in \mathbb{N}^n} \sigma(a_v) \mathbf{x}^v \right] \left[\sum_{v \in \mathbb{N}^n} \sigma(b_v) \mathbf{x}^v \right] \\
= \overline{\sigma} \left(\sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v \right) \overline{\sigma} \left(\sum_{v \in \mathbb{N}^n} b_v \mathbf{x}^v \right).$$

Lastly, $\overline{\sigma}(1) = \sigma(1) = 1$.

Definition 1.9.17. For a ring extension $R \supset K$ where K is a field, given a ring map $\sigma: R \to K$, we call $\overline{\sigma}$ a *specialization of* R *in* K.

Lemma 1.9.18. Let rings R, S, T be given and consider $\sigma \in \text{Hom}(R, S)$, $\tau \in \text{Hom}(S, T)$. Then $\overline{\tau \circ \sigma} = \overline{\tau} \circ \overline{\sigma}$. We also have that $\overline{id_R} = id_{R[x_1, ..., x_n]}$. In other words $(R, \sigma) \mapsto (R[x_1, ..., x_n], \overline{\sigma})$ is a covariant functor for every $n \geq 1$. *Proof.* Indeed, for $\sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v \in R[\mathbf{x}]$

$$\overline{\tau \circ \sigma} \left(\sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v \right) = \sum_{v \in \mathbb{N}^n} \tau(\sigma(a_v)) \mathbf{x}^v = \overline{\tau} \left(\sum_{v \in \mathbb{N}^n} \sigma(a_v) \mathbf{x}^v \right) = \overline{\tau} \circ \overline{\sigma} \left(\sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v \right),$$

and lastly

$$\overline{\mathrm{id}_R}\left(\sum_{v\in\mathbb{N}^n}a_v\mathbf{x}^v\right)=\sum_{v\in\mathbb{N}^n}\mathrm{id}_R(a_v)\mathbf{x}^v=\sum_{v\in\mathbb{N}^n}a_v\mathbf{x}^v=\mathrm{id}_{R[\mathbf{x}]}\left(\sum_{v\in\mathbb{N}^n}a_v\mathbf{x}^v\right).$$

Corollary 1.9.19. Suppose $R \stackrel{\sigma}{\simeq} R$. Then $R[x_1, \ldots, x_n] \stackrel{\overline{\sigma}}{\simeq} S[x_1, \ldots, x_n]$.

Proof. An immediate consequence of functoriality.

Example 1.9.20. It is in general not true that if $R[x_1, ..., x_n] \simeq S[x_1, ..., x_n]$, then $R \simeq S$. Reference example.

1.9.3 Degree, Evaluation & Roots

Definition 1.9.21. Let $S \supset R$ be a ring extension. We define *evaluation* to be the map

$$\operatorname{ev}: S^{n} \times R[x_{1}, \dots, x_{n}]$$

$$((s_{1}, \dots, s_{n}), f) = \left((s_{1}, \dots, s_{n}), \sum_{v \in \mathbb{N}^{n}} a_{v} \mathbf{x}^{v}\right) \mapsto \sum_{v \in \mathbb{N}^{n}} a_{v} s_{1}^{v_{1}} \cdots s_{n}^{v_{n}}$$

Let $s_1, \ldots, s_n \in S$. We define evaluation in $(s_1, \ldots, s_n) \in S^n$ as the map

$$\operatorname{ev}_{s_1,\dots,s_n} : R[x_1,\dots,x_n] \to S$$

$$f = \sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v \mapsto \operatorname{ev}((s_1,\dots,s_n),f) = \sum_{v \in \mathbb{N}^n} a_v s_1^{v_1} \cdots s_n^{v_n}$$

For an $f \in R[x_1, \ldots, x_n]$ we define $f(s_1, \ldots, s_n) := \operatorname{ev}_{s_1, \ldots, s_n}(f)$.

Lemma 1.9.22. Evaluation is a well-defined map. Moreover, the map $ev_{s_1,...,s_n}$ is a well-defined ring homomorphism such $ev_{s_1,...,s_n}(r) = r$ for every $r \in R$, therefor it is also an R-module homomorphism. In other words, evaluation in an element is an R-algebra homomorphism.

Proof. The map is well-defined: Let $(s_1, \ldots, s_n) := (t_1, \ldots, t_n) \in S^n$ and $f = \sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v$, $g = \sum_{v \in \mathbb{N}^n} b_v \mathbf{x}^v$ be polynomials in $R[x_1, \ldots, x_n]$ such that f = g. Note that for a polynomial $h := \sum_{v \in \mathbb{N}^n} c_v \mathbf{x}^v$ that

$$ev((s_1, ..., s_n), h) = \sum_{v \in \mathbb{N}^n} c_v s_1^{v_1} \cdots s_n^{v_n} = \sum_{v \in \mathbb{N}^n} c_v t_1^{v_1} \cdots t_n^{v_n} = ev((t_1, ..., t_n), h).$$

By Theorem 1.9.15 it follows that $a_v = b_v$ for every $v \in \mathbb{N}^n$. Thus in particular

$$\operatorname{ev}(s_1, \dots, s_n), f) = \sum_{v \in \mathbb{N}^n} a_v s_1^{v_1} \cdots s_n^{v_n} = \sum_{v \in \mathbb{N}^n} b_v s_1^{v_1} \cdots s_n^{v_n} = \operatorname{ev}((s_1, \dots, s_n), g) = \operatorname{ev}((t_1, \dots, t_n), g), f$$

which means the evaluation map is well defined.

evaluation is a ring homomorphism: Let $f = \sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v$ and $g = \sum_{v \in \mathbb{N}^n} b_v \mathbf{x}^v$ be polynomials in $R[x_1, \dots, x_n]$ and $s_1, \dots, s_n \in S$. The map is additive

$$\operatorname{ev}_{s_1,\dots,s_n}(f+g) = \sum_{v \in \mathbb{N}^n} (a_v + b_v) s_1^{v_1} \cdots s_n^{v_n} = \sum_{v \in \mathbb{N}^n} a_v s_1^{v_1} \cdots s_n^{v_n} + \sum_{v \in \mathbb{N}^n} b_v s_1^{v_1} \cdots s_n^{v_n}$$
$$= \operatorname{ev}_{s_1,\dots,s_n}(f) + \operatorname{ev}_{s_1,\dots,s_n}(g).$$

The map is multiplicative:

$$\begin{split} \operatorname{ev}_{s_1,\dots,s_n}(fg) &= \sum_{v,w \in \mathbb{N}^n} a_v b_w s_1^{v_1 + w_1} \cdots s_n^{v_n + w_n} = \sum_{v,w \in \mathbb{N}^n} a_v s_1^{v_1} \cdots s_n^{v_n} b_v s_1^{w_1} \cdots s_n^{w_n} \\ &= \left(\sum_{v \in \mathbb{N}^n} a_v s_1^{v_1} \cdots s_n^{v_n} \right) \left(\sum_{v \in \mathbb{N}^n} b_v s_1^{w_1} \cdots s_n^{w_n} \right) = \operatorname{ev}_{s_1,\dots,s_n}(f) \operatorname{ev}_{s_1,\dots,s_n}(g). \end{split}$$

Evaluation fixes R: Let $r \in R$. Then

$$\operatorname{ev}_{s_1,\dots,s_n}(r) = \operatorname{ev}_{s_1,\dots,s_n}(r\mathbf{x}^{(0,\dots,0)}) = rs_1^0 \cdots s_n^0 = r.$$

Remark 1.9.23. Given a commutative R-algebra S and elements $s_1, \ldots, s_n \in S$, we note that the R-algebra generated by these elements, i.e. $R[s_1, \ldots, s_n]$ is given as the image of $\operatorname{ev}_{s_1, \ldots, s_n} : R[x_1, \ldots, x_n] \to S$.

Lemma 1.9.24. Let R be a ring and $J \subset R[y_1, \ldots, y_m]$ be an ideal. Consider $\overline{f_1} := f_1 + J, \ldots, \overline{f_n} := f_n + J \in R[\mathbf{y}]/J$. Then for each $f \in R[\mathbf{x}]$

$$\operatorname{ev}_{\overline{f_1},\dots,\overline{f_n}}(f) = \operatorname{ev}_{f_1,\dots,f_n}(f) + J$$

Proof. This is a simple matter of using the definition addition and multiplication in the quotient ring. Indeed we can write $f = \sum_{1}^{k} a_{v_i} \mathbf{x}^{v_i}$ for suitable distinct $v_1, \dots, v_k \in \mathbb{N}^n$ and $a_{v_i} \in R$. Then

$$\operatorname{ev}_{\overline{f_1},\dots,\overline{f_n}}(f) = \sum_{1}^{k} a_{v_i} (f_1 + J)^{v_{i_1}} \cdots (f_n + J)^{v_{i_n}} = \sum_{1}^{k} a_{v_i} (f_1^{v_{i_1}} + J) \cdots (f_n^{v_{i_n}} + J)$$

$$= \left[\sum_{1}^{k} a_{v_i} f_1^{v_{i_1}} \cdots f_n^{v_{i_n}} \right] + J = \operatorname{ev}_{f_1,\dots,f_n}(f) + J$$

Proposition 1.9.25. Let S be a commutative R-algebra. Let $\sigma: R[x_1, \ldots, x_n] \to S$ be an R-algebra homomorphism. Then $\sigma = \operatorname{ev}_{\sigma(x_1), \ldots, \sigma(x_n)}$. Hence any element of $\operatorname{Hom}^{R-alg}(R[x_1, \ldots, x_n], S)$ is uniquely determined by it's behavior on the variables of $R[x_1, \ldots, x_n]$.

Proof. Let $f = \sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v \in R[x_1, \dots, x_n]$. Then using the multiplicativity and additivity of σ we have that

$$\sigma(f) = \sigma\left(\sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v\right) = \sum_{v \in \mathbb{N}^n} \sigma(a_v) \sigma\left(x_1^{v_1} \cdots x_n^{v_n}\right) = \sum_{v \in \mathbb{N}^n} a_v \sigma\left(x_1^{v_1}\right) \cdots \sigma\left(x_n^{v_n}\right) = \operatorname{ev}_{\sigma(x_1), \dots, \sigma(x_n)}(f)$$

Corollary 1.9.26. Let S be a commutative R-algebra. Then

$$\operatorname{Hom}^{R-Alg}(R[x_1,\ldots,x_n],S) = \{\operatorname{ev}_{s_1,\ldots,s_n}: (s_1,\ldots,s_n) \in S^n\}.$$

Corollary 1.9.27. Let $I \subset R[x_1, \ldots, x_n]$, $J \subset R[y_1, \ldots, y_n]$ be ideals. Then $\operatorname{Hom}^{R-Alg}(R[\mathbf{x}]/I, R[\mathbf{y}]/J)$ is equal to

$$\{f + I \mapsto ev_{f_1,...,f_n}(f) + J : f_1,...,f_n \in R[y], ev_{f_1,...,f_n}(f) = 0 \text{ for every } f \in I\} =: F$$

Proof. It is easy to check that $F \subset \operatorname{Hom}^{K-\operatorname{Alg}}(R[\mathbf{x}]/I, R[\mathbf{y}]/J)$. Indeed, consider such a map σ for given $f_1, \ldots, f_n \in R[\mathbf{y}]$. Consider

$$\sigma':R[\mathbf{x}]\to R[\mathbf{y}]/J, f\mapsto \operatorname{ev}_{f_1+J,\dots,f_n+J}(f)=\operatorname{ev}_{f_1,\dots,f_n}(f)+J,$$

is clearly a ring homomorphism satisfying $\sigma'(r) = r$ for $r \in R$, since it is equal to $\pi \circ \operatorname{ev}_{f_1,\dots,f_n}$, where $\pi: R[\mathbf{y} \to R[y]/J]$ is the canonical surjection. Since $\operatorname{ev}_{f_1,\dots,f_n}(f) = 0$ for every $f \in I$, it thus follows that σ is a well-defined ring homomorphism satisfying $\sigma(r) = r$ for every $r \in R$ and hence an R-algebra homomorphism.

Let $\sigma \in \operatorname{Hom}^{R-\operatorname{Alg}}(R[\mathbf{x}]/I, R[\mathbf{y}]/J)$. Then $\sigma \circ \pi \in \operatorname{Hom}^{R-\operatorname{Alg}}(R[\mathbf{x}], R[\mathbf{y}]/J)$, where $\pi : R[\mathbf{x}] \to R[\mathbf{x}]/I$ is the canonical surjection. Hence by the prior corollary, $\sigma \circ \pi = \operatorname{ev}_{f_1+J,\dots,f_n+J}$ for suitable $f_1+J,\dots,f_n+J\in R[\mathbf{y}]/J$. Let $f+I\in R[\mathbf{x}]/I$. Then by Lemma 1.9.24

$$\sigma(f+I) = \sigma \circ \pi(f) = \operatorname{ev}_{f_1+J,\dots,f_n+J}(f) = \operatorname{ev}_{f_1,\dots,f_n}(f) + J,$$

hence $\sigma \in F$.

Lemma 1.9.28. Let $S \supset R$ be a ring extension and s_1, \ldots, s_n be algebraically independent over R. When $R[x_1, \ldots, x_n]$ denotes the polynomial over R in n variables then $R[s_1, \ldots, s_n] \simeq R[\mathbf{x}]$.

Proof. $\operatorname{ev}_{s_1,\ldots,s_n}:R[\mathbf{x}]\to R[s_1,\ldots,s_n]$ defines a surjective ring homomorphism. Let $f\in R[\mathbf{x}]$. By the definition of algebraic independence

$$\text{ev}_{s_1, \dots, s_n}(f) = 0 \iff f = 0.$$

. $\text{ev}_{s_1,\ldots,s_n}$ is therefor injective, implying $R[s_1,\ldots,s_n]\simeq R[\mathbf{x}]$

Corollary 1.9.29. Consider the ring extension $R[x_1, ..., x_n, y_1, ..., y_m] \supset R$. Then the subring of $R[\mathbf{x}, \mathbf{y}]$ generated by $x_1, ..., x_n$ is isomorphic to the polynomial ring in n variables.

Corollary 1.9.30. Consider the ring extension $R[x_1, ..., x_n, y_1, ..., y_m] \supset R$. Then $R[\mathbf{x}, \mathbf{y}] = R[\mathbf{x}][\mathbf{y}]$. Furthermore $R[\mathbf{x}, \mathbf{y}] \simeq R[z_1, ..., z_n][w_1, ..., w_m]$.

Definition 1.9.31. Let $f \in R[x_1, \dots, x_n] \setminus \{0\}$, we define the *degree* of $f = \sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v$, denoted deg f, as the non-negative integer

$$\max\{|v|:v\in\mathbb{N}^n,a_v\neq0\}.$$

Remark 1.9.32. For a polynomial $f = \sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v \in K[x_1, \dots, x_n]$ with $d := \deg f$ we may write

$$f = \sum_{v \in \mathbb{N}^n : |v| \le d} a_v \mathbf{x}^v.$$

Definition 1.9.33. Let $f \in R[x_1, ..., x_n] \setminus \{0\}$, we define a *leading coefficient* of $f = \sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v$, to be a coefficient $a_v \in R \setminus 0$, where $|v| = \deg f$.

Lemma 1.9.34. If R is an integral domain, then $R[x_1, \ldots, x_n]$ is an integral domain.

Proof. We proceed by induction in n. Suppose n=1 and let $f,g\in R[x]\setminus 0$. Then $f=\sum_{0}^{d}a_{i}x^{i},\,g=\sum_{0}^{d'}b_{i}x^{i},$ for $d,d'\geq 0,\,a_{d}\neq 0\neq b_{d'}.$ Then

$$fg = \sum_{k=0}^{d+d'} \left(\sum_{0 \le i \le d, 0 \le j \le d': i+j=k} a_i b_j \right) x^k.$$

Note that for $i \leq d$ and $j \leq d'$, i+j=k if and only if i=d and j=d', hence $\sum_{0\leq i\leq d, 0\leq j\leq d': i+j=k} a_i b_j = a_d b_{d'} \neq 0$, using that R is a domain. Since $\{x^i: i\in \mathbb{N}\}$ is linearly independent over R it follows that $fg\neq 0$. Suppose $R[x_1,\ldots,x_n]$ is a domain for some $n\geq 1$. Then by the one variable case $R[x_1,\ldots,x_{n+1}]\simeq (R[x_1,\ldots,x_n])[x_{n+1}]$ is a domain.

Lemma 1.9.35. *The function*

$$deg: R[x_1, \dots, x_n] \setminus 0 \to \mathbb{N}$$

$$f \mapsto deg f$$

has the following properties

- 1. The degree function is sub-additive for pairs of distinct polynomials, i.e. deg $f+g \le \max(\deg f, \deg g)$ for every $f, g \in R[\mathbf{x}] \setminus 0$ with $f \ne g$.
- 2. For every $f, g \in R[\mathbf{x}] \setminus 0$, deg $f > \deg g \implies \deg f + g = \deg f$.
- 3. The degree function is sub-multiplicative, i.e. deg $fg \leq \deg f + \deg g$ for every $f,g \in R[\mathbf{x}] \setminus 0$
- 4. Suppose R is an integral domain. Then deg fg = deg f + deg g for every $f, g \in R[\mathbf{x}] \setminus 0$.

Proof. Put $d = \deg f$ and $d' = \deg g$, and write $f = \sum_{v \in \mathbb{N}^n : |v| \le d} a_v \mathbf{x}^v$, $g = \sum_{v \in \mathbb{N}^n : |v| \le d'} b_v \mathbf{x}^v$ 1. Let $v \in \mathbb{N}^n$ such that $|v| > \max(d, d')$. Then in particular |v| > d and |v| > d', meaning $a_v = 0$ and $b_v = 0$, hence $a_v + b_v = 0$. This means

$$\max\{|v|: v \in \mathbb{N}^n, a_v + b_v = 0\} \le \max(d, d')$$

- 2. From 1. we have that deg $f+g \leq \max(d,d')=d$, hence it suffices to show that $a_v+b_v\neq 0$ for some $v\in \mathbb{N}^n$ with |v|=d. There exists a $v\in \mathbb{N}^n$ with |v|=d and $a_v\neq 0$. Since |v|=d>d', $b_v=0$ hence $a_v+b_v=a_v\neq 0$.
- 3. Let $u \in \mathbb{N}^n$ be given such that |u| > d + d'. Consider $v \in \mathbb{N}^n$ and $w \in \mathbb{N}^n$ with v + w = u. Then |v| + |w| = |u| > d + d', hence |v| > d or |w| > d', implying $a_v = 0$ or $b_w = 0$, hence $\sum_{v,w \in \mathbb{N}^n: v + w = u} a_v b_w = 0$, implying

$$\deg fg = \max \left\{ |u| : \sum_{v,w \in \mathbb{N}^n : v + w = u} a_v b_w \neq 0 \right\} \le d + d' = \deg f + \deg g.$$

4. Let $f' = \sum_{v \in \mathbb{N}^n: |v| = d} a_v \mathbf{x}^v$ and $g' = \sum_{w \in \mathbb{N}^n: |w| = d'} b_w \mathbf{x}^w$. For some $v, w \in \mathbb{N}^n$ with |v| = d and |w| = d' we have that $a_v \neq 0$ and $b_w \neq 0$, hence $f' \neq 0$ and $g' \neq 0$ implying that $f'g' \neq 0$ by Lemma 1.9.34. Furthermore deg f'g' = d + d'. Let $r_f = \sum_{v \in \mathbb{N}^n: |v| < d} a_v \mathbf{x}^v$ and $r_g = \sum_{w \in \mathbb{N}^n: |w| < d'} b_w \mathbf{x}^w$. Note that deg $r_f < d$ and deg $r_g < d'$, hence by 3.

$$\label{eq:deg_f_r_g} \begin{split} \deg \ f'r_g & \leq d + \deg \ r_g < d + d', \\ \deg \ g'r_f & \leq d' + \deg \ r_f < d + d', \\ \deg \ r_f r_g & \leq \deg \ r_f + \deg \ r_g < d + d'. \end{split}$$

We thus get that

$$\deg f'r_g + g'r_f + r_f r_g \le \max(f'r_g, g'r_f, r_f, r_g) < d + d' = \deg f'g'.$$

By 2. we get

$$\deg \ fg = \deg \left(f' + r_f\right) \left(g' + r_g\right) = \deg \ f'g' + \left(f'r_g + g'r_f + r_fr_g\right) = \deg \ f'g' = d + d' = \deg \ f + \deg \ g.$$

Definition 1.9.36. Let $S \supset R$ be a commutative ring extension. Let $f \in R[x_1, \ldots, x_n]$, we say that $(s_1, \ldots, s_n) \in S^n$ is a zero (over S) of f if $f(s_1, \ldots, s_n) = 0$. If $f \in R[x]$ and $s \in S$ is a zero of f we call it a root (in S).

Definition 1.9.37. Let $S \supset R$ be a commutative ring extension. Given a polynomial $f \in R[x_1, \dots, x_n]$, we denote the set of zeroes over S of f by

$$V_S(f)$$
.

The above definitions are central to the classical treatment of algebraic geometry, since the geometric objects considered are build from set zeroes of polynomials over a field K.

Proposition 1.9.38. Let S be an R-algebra. Let $f \in R[x_1, \ldots, x_n] \subset S[x_1, \ldots, x_n]$ and $(s_1, \ldots, s_n) \in S^n$, set $I := \langle x_1 - s_1, \ldots, x_n - s_n \rangle \subset S[x_1, \ldots, x_n]$. Then (s_1, \ldots, s_n) is a zero of f if and only if $f \in I$. We call I the **point ideal of** (s_1, \ldots, s_n) .

Proof. Write $f = \sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v$. " \Longrightarrow ": Suppose (s_1, \dots, s_n) is a zero of f. Then, since $x_i + I = s_i + I$ for each i,

$$f + I = \left(\sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v\right) + I = \sum_{v \in \mathbb{N}^n} a_v (x_1 + I)^{v_1} \cdots (x_n + I)^{v_n} = \sum_{v \in \mathbb{N}^n} a_v (s_1 + I)^{v_1} \cdots (s_n + I)^{v_n}$$
$$= \left(\sum_{v \in \mathbb{N}^n} a_v s_1^{v_1} \cdots s_n^{v_n}\right) + I = f(s_1, \dots, s_n) + I = 0 + I,$$

thus $f \in I$

" \Leftarrow ": Suppose $f \in I$. Then there are $\lambda_1, \ldots, \lambda_n \in S[x_1, \ldots, x_n]$ such that $f = \sum_{i=1}^{n} \lambda_i \cdot (x_i - s_i)$. It then follows that

$$f(s_1, ..., s_n) = \sum_{1}^{n} \lambda_i(s_1, ..., s_n)(s_i - s_i) = 0,$$

hence
$$(s_1, \ldots, s_n)$$
 is a zero of f .

Corollary 1.9.39. Let $(r_1, \ldots, r_n) \in R^n$. If $\operatorname{ev}_{r_1, \ldots, r_n}$ is surjective, then $R[x_1, \ldots, x_n]/\langle x_1 - r_1, \ldots, x_n - r_n \rangle \simeq R$. Hence if R is a field, then $\langle x_1 - r_1, \ldots, x_n - r_n \rangle$ is maximal.

Corollary 1.9.40. Let $S \supset R$ be a commutative ring extension and consider $f \in R[x]$ and $a \in S$. Then a is a root of f if and only if $x - a \mid f$ in S[x].

The following theorem is useful when one wants to eliminate certain variables in a finitely generated R-algebra.

Corollary 1.9.41. Let $f_1, \ldots, f_m, g_1, \ldots, g_l \in R[x_1, \ldots, x_n]$, where R is a commutative ring. Set $I := \langle g_1, \ldots, g_l \rangle \subset R[\mathbf{x}]$ and $J := \langle g_1, \ldots, g_l, y_1 - f_1, \ldots, y_m - f_m \rangle \subset R[\mathbf{x}, y_1, \ldots, y_m]$. Then $R[\mathbf{x}, \mathbf{y}]/J \simeq R[\mathbf{x}]/I$

Proof. Consider the surjective ring homomorphism

$$\sigma := \operatorname{ev}_{\mathbf{x}, f_1, \dots, f_m} : R[\mathbf{x}, \mathbf{y}] \to R[\mathbf{x}] / I$$
$$h \mapsto h(\mathbf{x}, f_1, \dots, f_m) + I$$

Clearly $J \subset \ker \sigma$. Let $h \in \ker \sigma$. Then $h(x_1, \dots, x_n, f_1, \dots, f_m) \in I$ and hence is also an element of J. It follows that

$$h + J = h(\mathbf{x}, f_1, \dots, f_m) + J = 0 + J \implies h \in J.$$

We thus see by the isomorphism theorem that

$$R[\mathbf{x}, \mathbf{y}]/J \simeq R[\mathbf{x}]/I$$

Lemma 1.9.42. Let $S \supset R$ be an integral domain extension. Let $f, g \in R[x_1, ..., x_n]$ and $v \in S^n$. Then v is a zero of fg if and only if v is a zero of f or g. In other words $V_S(fg) = V_S(f) \cup V_S(g)$.

Proof. Since R is an integral domain,

$$0 = (fg)(v) = f(v)g(v) \iff f(v) = 0 \text{ or } g(v) = 0.$$

Proposition 1.9.43. Let R be an integral domain. Consider $f \in R[x] \setminus \{0\}$ with $d := \deg f$. Then there at most d roots of f in R.

Proof. We proceed by induction in d. Let d = 1. If f has no roots we are done. Suppose it does have a root $a \in R$. Then Corollary 1.9.40 tells us that f = q(x - a), for some $q \in R[x]$. Since $f \neq 0$, we have that $q \neq 0$. By Lemma 1.9.35 4. it follows that

$$1 = \deg f = \deg q(x - a) = \deg q + \deg x - a = q + 1 \implies \deg q = 0$$

hence q is a non-zero constant. It follows from 1.9.42 that f has exactly 1 root.

Now consider a polynomial $f \in R[x]$ of degree d+1 for some $d \geq 1$. If f has no roots, we are done. Suppose then that f has a root $a \in R$. Then by Corollary 1.9.40 $(x-a) \mid f$, hence $f = g \cdot (x-a)$ for some $g \in R[x]$, again since $f \neq 0$, we have that $g \neq 0$, by Lemma 1.9.35 4. it follows that

$$d+1 = \deg f = \deg g + \deg x - a = \deg g + 1 \implies \deg g = d$$

it follows by induction hypothesis that g has at most d roots. By Lemma 1.9.42 $V(f) = V(g) \cup V(x-a)$, hence $\#V(f) = \#(V(g) \cup V(x-a)) \le \#V(g) + \#V(x-a) \le d+1$

Lemma 1.9.44. Let R be an integral domain. Consider $f \in R[x_1, \ldots, x_n] \setminus 0$ and $f_1, \ldots, f_n \in R[y_1, \ldots, y_m] \setminus 0$ with $d_i := \deg f_i$. Then

$$\deg f(f_1, \dots, f_n) \le \deg f(x_1^{d_1}, \dots, x_n^{d_n})$$

Proof. Write $f = \sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v$. Let $v \in \mathbb{N}^n$ such that $a_v \neq 0$ and set $M_v = \mathbf{x}^v$. Then

$$\deg M_v(x_1^{d_1},\ldots,x_n^{d_n}) = \sum_{i=1}^n v_i d_i = \sum_{i=1}^n \deg f_i^{v_i} = \deg f_1^{v_1} \cdots f_n^{v_n} = \deg M_v(f_1,\ldots,f_n).$$

Note that the map $(v_1, \ldots, v_n) \mapsto (v_1 d_1, \ldots, v_n d_n)$ is injective hence,

$$\deg \ f(f_1, \dots, f_n) \leq \max_{v \in \mathbb{N}^n : a_v \neq 0} \ \deg \ M_v(f_1, \dots, f_n) = \max_{v \in \mathbb{N}^n : a_v \neq 0} \ \deg \ M_v(x_1^{d_1}, \dots, x_n^{d_n}) = \deg \ f(x_1^{d_1}, \dots, x_n^{d_n})$$

Remark 1.9.45. The above result doesn't always hold with equality. take for instance $f = x_1x_2 - x_3$, take $f_1 = y_1$, $f_2 = y_2$ and $f_3 = -y_1y_3$. Then $f(f_1, f_2, f_3) = 0$, while $f(x_1, x_2, x_3^2) = x_1x_2 - x_3^2$.

1.9.4 Some Results about Polynomials that I proper subsubsections for

Lemma 1.9.46. Let $f = \sum_{i=0}^{d} a_i x^i \in K[x] \setminus 0$ and set $I = \langle f \rangle$. Then K[x]/I is a vector space of dimension d with basis $\{x^i + I : i \in \{0, \dots, d-1\}\}$.

101

Proof. One finds that

$$0 = \left[\sum_{i=0}^{d} a_i x^i \right] + I \implies x^d = -\sum_{i=0}^{d-1} \left(a_d^{-1} a_i x^i + I \right),$$

so $\{x^i+I:i\in\{0,\ldots,d-1\}\}$ generates K[x]/I over K. Suppose $g+I=\left[\sum_0^{d-1}b_ix^i\right]+I=0$. Then $g\in I$. This means either g=0 or $\deg g\geq d$, hence g=0 and $a_i=0$ for $i\in\{1,\ldots,d-1\}$. So $\{x^i+I:i\in\{0,\ldots,d-1\}\}$ is linearly independent over K and is thus a basis for K[x]/I, which means $\dim_K K[x]/I=d$.

1.9.5 Polynomials over Infinite Rings

Proposition 1.9.47. Let R be an infinite integral domain an $f \in R[x_1, ..., x_n]$. Then f = 0 if and only if f(v) = 0 for every $v \in K^n$.

Proof. " \Longrightarrow ": This is trivial " \Longleftrightarrow ": We prove that if $f \neq 0$, then there is a $v \in \mathbb{R}^n$ such that $f(v) \neq 0$. We prove this by induction in n.

Base case: Consider first the case n=1. Since $f \neq 0$, the number of roots is bounded by the non-negative integer deg f by Proposition 1.9.43. Then since $\#R = \infty$, there is an $a \in R$ such that $f(a) \neq 0$.

Induction hypothesis: Suppose that there is an $n \ge 1$ s.t. if $h \in R[x_1, \dots, x_n] \setminus 0$, then there is a $v \in R^n$ such that $f(v) \ne 0$.

Induction Step: Let $f \in R[x_1, \ldots, x_{n+1}] \setminus 0$. We can write

$$f = \sum_{0}^{d} f_i x_{n+1}^i,$$

for some $d \geq 0$ and suitable $f_0, \ldots, f_d \in R[x_1, \ldots, x_n]$ where $f_j \neq 0$ for some $j \in \{0, \ldots, d\}$. By the induction hypothesis, there is a $(v_1, \ldots, v_n) \in R^n$ such that $f_j(v) \neq 0$. Then

$$R[x_{n+1}] \ni f' := f(v_1, \dots, v_n, x_{n+1}) = \sum_{i=0}^{d} f_i(v_1, \dots, v_n) x_{n+1}^i \neq 0.$$

By the base case there is a $v_{n+1} \in R$ such that $f'(v_{n+1}) \neq 0$. Hence upon putting $v = (v_1, \ldots, v_n, v_{n+1})$ we get that

$$f(v) = f'(v_{n+1}) \neq 0.$$

1.9.6 The Hilbert Basis Theorem

Theorem 1.9.48. (Hilbert Basis Theorem) Let R be a left/right noetherian ring. Then R[x] is left/right noetherian. Furthermore $R[x_1, \ldots, x_n]$ is left/right noetherian.

Proof. We prove the contrapositive. Suppose That R[x] is not noetherian, or equivalently by Theorem 1.4.48 suppose there is an ideal $I \subset R[x]$ that is not finitely generated. Let $d_1 = \min\{\deg f: f \in I\}$. Let $f_1 \in I$ such that $\deg f_1 = d_1$. We then let $I_1 = R[x]f_1$ and recursively define $I_n = \sum_{1}^{n} R[x]f_i$, where $f_n \in I \setminus I_{n-1}$ where $\deg f_n = d_n = \min\{\deg f: f \in I \setminus I_{n-1}\}$. Note that since $I \setminus I_n \supset I \setminus I_{n+1}$, $d_n \leq d_{n+1}$ for each $n \geq 1$. For each $n \in I$ we can write

$$f_n = \sum_{i=0}^{d_n} a_i^{(n)} x^i,$$

for suitable $a_i^{(n)} \in R$. Set $a(n) = a_{d_n}^{(n)}$ We then have an ascending chain $J_1 \subset J_2 \subset \ldots$ in R where $J_n = \sum_{1}^{n} Ra(i)$. Suppose for a contradiction that $J_n = J_{n+1}$ for some $n \geq 1$. Then

$$a(n+1) = \sum_{1}^{n} b_i a(i),$$

for suitable $b_1, \ldots, b_n \in R$. Put

$$g = f_{n+1} - \sum_{i=1}^{n} \alpha_i x^{d_{n+1} - d_i} f_i$$
.

Then $g \in I$, $h \in I_n$ and $f_{n+1} = g + h \in I \setminus I_n$, thus $g \in I \setminus I_n$. However, upon further inspection, we find

$$\begin{split} g &= a(n+1)x^{d_{n+1}} - \sum_{i=1}^{n} \alpha_i x^{d_{n+1} - d_i} \sum_{j=1}^{d_i} a_j^{(i)} x^j + \underbrace{\sum_{i=1}^{d_{n+1} - 1} a_i^{(n+1)} x^i}_{r} \\ &= a(n+1)x^{d_{n+1}} - \sum_{i=1}^{n} \alpha_i a(i)x^{d_{n+1} - d_i} x^{d_i} - \underbrace{\sum_{i=1}^{n} \sum_{j=1}^{d_i - 1} a_j^{(i)} x^i}_{r'} + r \\ &= a(n+1)x^{d_{n+1}} - \left(\sum_{i=1}^{n} \alpha_i a(i)\right) x^{d_{n+1}} + r' + r = a(n+1)x^{d_{n+1}} - a(n+1)x^{d_{n+1}} + r' + r \\ &= \sum_{i=1}^{n+1} \sum_{j=1}^{d_i - 1} a_j^{(i)} x^i. \end{split}$$

Thus deg $g = \max\{d_1 - 1, \dots, d_{n+1} - 1\} = d_{n+1} - 1 < d_{n+1} = \min\{\deg f : f \in I \setminus I_n\}$, leading to a contradiction. This means that $J_1 \subset J_2 \subset \dots$ is a non-stabilizing ascending

chain hence R is not noetherian.

Suppose that R is noetherian. Then by induction $R[x_1, \ldots, x_n] \simeq (R[x_1, \ldots, x_{n-1}])[x_n]$ is noetherian.

Corollary 1.9.49. Let K be a field. Then $K[x_1, \ldots, x_n]$ is noetherian.

1.9.7 Polynomials over Fields

Definition 1.9.50. A field K is called algebraically closed if every non-constant $f \in K[x] \setminus 0$ has a root $a \in K$.

Lemma 1.9.51. Let K be a field. Then K[x] is a PID.

Proof. The trivial ideals are trivially principal. So consider a non-zero proper ideal $I \subset K[x]$. Let $d := \min\{\deg f : f \in I\} \ge 1$. Pick an $f \in I$ of degree d. Let $g \in I$. Then there is a $q, r \in K[x]$ where r = 0 or deg $r < \deg f$ such that g = qf + r. By minimality r = 0, hence $f \mid g$, hence $I = \langle f \rangle$

Lemma 1.9.52. Let K be a field and $f = \sum_{i=0}^{d} a_i x^i \in K[x]$ an irreducible polynomial. Set $I := \langle f \rangle$. Then F := K[x]/I is a field and x + I is a root of $g := \sum_{i=0}^{d} a_i y^i \in F[y]$.

Proof. Lemma 1.8.58 and Lemma 1.8.59 shows that I is maximal. Then K[x]/I is a field by Proposition 1.8.16. Secondly,

$$g(x+I) = \sum_{i=0}^{d} a_i(x+I) = \left(\sum_{i=0}^{d} a_i x\right) + I = 0 + I.$$

1.9.8 More on Power Series

Lemma 1.9.53. Let R be any commutative ring. Then

$$R[x_1, \dots, x_n, y_1, \dots, y_m] \simeq R[x_1, \dots, x_n][y_1, \dots, y_m] := (R[x_1, \dots, x_n])[y_1, \dots, y_m].$$

Proof. Consider the map $\sigma: R[\![\mathbf{x}, \mathbf{y}]\!] \to R[\![\mathbf{x}]\!][\![\mathbf{y}]\!], \sum_{v \in \mathbb{N}^n, w \in \mathbb{N}^m} a_v \mathbf{x}^v \mathbf{y}^w \mapsto \sum_{w \in \mathbb{N}^n} \left(\sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v\right) \mathbf{y}^w$. Note that σ is actually just currying of functions $\mathbb{N}^m \times \mathbb{N}^n \to R$. This is trivially a ring homomorphism. The inverse is given by uncurrying.

Lemma 1.9.54. If R is an integral domain, so is $R[x_1, \ldots, x_n]$.

Proof. In the case n=1. Consider $f=\sum_{i\in\mathbb{N}}a_ix^i, g=\sum_{i\in\mathbb{N}}b_ix^i\in R[x]$. Let $k,l\geq 0$ be the smallest integers such that $a_i\neq 0,\,b_i\neq 0$. Consider $i,j\in\mathbb{N}$ such that i+j=k+l. If i>k then j< l and vice versa, hence

$$\sum_{i,j\in\mathbb{N}:i+j=k+l}a_ib_j=a_kb_l\neq 0.$$

By the prior lemma $R[x_1, \ldots, x_{n+1}] \simeq R[x_1, \ldots, x_n][x_{n+1}]$, which by induction and the case n = 1 is an integral domain.

1.9.9 Formal Power Series & DVRs

Lemma 1.9.55. Suppose R is an integral domain. Then

$$R[x]^* = \left\{ \sum_{i \in \mathbb{N}} a_i \in R[x] : a_i \in R^* \right\}$$

Proof. Let $s = \sum_{i \in \mathbb{N}} a_i x^i$ be an element of the right-hand side. Set $b_0 := a_0^{-1}$ and $b_k := -a_0^{-1} \sum_{j=1}^k a_j b_{k-j}$ for $k \geq 1$. Define $t = \sum_{i \in \mathbb{N}^n} b_i x^i$. We prove by induction that $\sum_{j,k \in \mathbb{N}: j+k=i} a_j b_k = 0$ for $i \geq 1$. For i = 1 we have that

$$\sum_{j,k\in\mathbb{N}:j+k=1}a_jb_k=0=a_0b_1+a_1b_0=-a_0a_0^{-1}\sum_{h=1}^1a_hb_{1-h}+a_1a_0^{-1}=-a_1a_0^{-1}+a_1a_0^{-1}=0.$$

Then for $i \geq 0$,

$$\sum_{j,k \in \mathbb{N}: j+k=i+1} a_j b_k = \sum_{j,k \in \mathbb{N}: j+k=i+1} -a_j a_0^{-1} \sum_{h=1}^k a_h b_{k-h}$$

Lemma 1.9.56. For an integral domain $R, x \in R[x]$ is irreducible.

Proof. x is a non-zero, non-unit. Suppose x = ab for $a, b \in R[x]$. Then $a_0b_0 = 0$, hence $a_0 = 0$ or $b_0 = 0$. Furthermore, $a_0b_1 + a_1b_0 = 1$, hence $a_0b_1 = 1$ or $a_1b_0 = 1$, hence $a_0 \in R^*$ or $b_0 \in R^*$, hence either a or b is a unit in R[x]. We thus have that x is irreducible in R[x]

Proposition 1.9.57. The ring of power series $K[\![x]\!]$ is a DVR with uniformizing parameter x when K is a field.

Proof. x is irreducible by the above lemma. Let $t \in K[x]$. Put $n := \max(\{k \geq 1 : x^k \mid t\})$. Note for $h \in K[x]$, $x \mid h$ if and only if h is not a unit, hence $t = sx^n$, where s a unit. uniqueness of this representation follows from the maximality of n and the irreducibility of x. It thus follows that K[x] is a DVR with uniformizing parameter x by Proposition 1.8.87.

Definition 1.9.58. For an integral domain R, we take $R(x_1, \ldots, x_n)$ to mean $Q(R[x_1, \ldots, x_n])$.

Proposition 1.9.59. Consider the setup and statement of Proposition 1.8.99. Then to each $z \in R$ there is a unique (possibly infinite) sequence $(\lambda_i) \in \prod_{i \in \mathbb{N}} K$. In other words the map

$$\sigma: R \to K[\![x]\!]$$
$$z \mapsto \sum_{i \in \mathbb{N}} \lambda_i x^i$$

is a well-defined map. It is furthermore an injective ring K-algebra homomorphism. It extends to a homomorphism of L = Q(R) onto K(x).

Proof. clearly map fixes K. Let $z, w \in R$ be given with associated power series $\sum_{i \in \mathbb{N}} \lambda_i x^i$ resp. $\sum_{i \in \mathbb{N}} \mu_i x^i$. Then for any $n \geq 0$, $z = \sum_{i=0}^n \lambda_i t^i + z_n t^{n+1}$, $w = \sum_{i=0}^n \mu_i t^i + w_n t^{n+1}$ for suitable unique $z_{n+1}, w_{n+1} \in R$, hence

$$z + w = \sum_{i \in \mathbb{N}^n}^n (\lambda_i + \mu_i) t^i + (w_n + z_n) \implies \sigma(z + w) = \sum_{i \in \mathbb{N}}^n (\lambda_i + \mu_i) x^i$$
$$= \sum_{i \in \mathbb{N}^n}^n \lambda_i x^i + \sum_{i \in \mathbb{N}^n}^n \mu_i x^i = \sigma(z) + \sigma(w).$$

Let $n \geq 0$. Then

$$zw = \sum_{0}^{2n} \left(\sum_{i,j \in \mathbb{N}: i+j=h} \lambda_i \mu_j \right) t^h + \underbrace{\sum_{0}^{n} (\lambda_i w_k + \mu_i z_k) t^{i+n+1} + w_n z_n t^{n+2}}_{r}.$$

Since $\operatorname{ord}(r) \geq n+1$, it follows that the n'th coefficient of the formal power series of zw is equal to $\sum_{i+j=n} \lambda_i \mu_i$, hence

$$\sigma(zw) = \sum_{h \in \mathbb{N}} \left(\sum_{i,j \in \mathbb{N}: i+j=h} \lambda_i \mu_j \right) x^h = \sigma(z)\sigma(w).$$

Injectivity follows from the uniqueness of the coefficients in the power series. Hence $\ker \sigma = 0$, hence Lemma 1.8.77 implies that

$$\overline{\sigma}: L \to K(x), \frac{z}{w} \mapsto \frac{\sigma(z)}{\sigma(w)}$$

is the unique extension of σ to a K-algebra homomorphism between the fraction fields of R and $K[\![x]\!]$.

Remark 1.9.60. The unique formal power series $\sum_{i \in \mathbb{N}} \lambda_i \in K[x]$ associated with $z \in R$ is called *the power series expansion of z in terms of t*,

1.9.10 Term Orders & a Polynomial Division Algorithms

Definition 1.9.61. A term order is total order \leq on \mathbb{N}^n such that

- 1. $0 \le v$ for every $v \in \mathbb{N}^n$,
- 2. for every $v_1, v_2, v \in \mathbb{N}^n$, $v_1 \le v_2 \implies v_1 + v \le v_2 + v$.

Example 1.9.62. 1. A simple example of a term order is \leq on \mathbb{N} .

2. The lexicographic term order, denoted \leq_{lex} , on \mathbb{N}^n for $v = (v_1, \dots, v_n), w = (w_1, \dots, w_n) \in \mathbb{N}^n$ is defined by $v \leq_{\text{lex}} w$ if v = w or there is an $i \in \{1, \dots, n\}$ such that $v_j = w_j$ for j < i and $v_i < w_i$. For example $\left(2, 10^6, 10^{10^6}\right) \leq_{\text{lex}} (3, 1, 1)$ since 2 < 3. This is indeed a term order: We first check that it is a total order. By definition it is reflexive. Let $v, w, u \in \mathbb{N}^n$.

Note that if $v \neq w$, then there is a minimal i such that $v_i \neq w_i$, hence either $v <_{\text{lex}} w$ or $w <_{\text{lex}} v$. Hence in general $v \leq_{\text{lex}} w$ or $w \leq_{\text{lex}} v$.

If there is an i such $v_i < w_i$ and $v_j = w_j$ for j < i then $v \neq w$. Hence if $v \leq_{\text{lex}} w$ and $w \leq_{\text{lex}} v$, then necessarily v = w.

Suppose $v \leq_{\text{lex}} w$ and $w \leq_{\text{lex}} u$. We check by cases that $v \leq_{\text{lex}} u$.

Case 1: Suppose first v = w and w = u. Then v = u, implying $v \leq_{\text{lex}} u$.

Case 2: Suppose v = w and that there is an i such that $w_i < u_i$ and $w_j = u_j$ for every j < i. Then $v_i = w_i < u_i$ and $v_j = w_j = u_j$ for j < i hence $v \leq_{\text{lex}} u$.

Case 3: Suppose there are $h, i \in \{1, ..., n\}$ such that $v_h < w_h, w_i < u_i$ and $v_j = w_j$, $w_k = u_k$ for h < j, i < k. If $h \le i$, then $v_h < w_h \le u_h$ and $v_j = w_j = u_j$ for j < h. If i < h, then $v_i = w_i < u_i$ and $v_j = w_j = u_j$ for j < i. In any case $v \le_{lex} u$.

Case 4: Suppose there is an i such that $v_i < w_i$ and $v_j = w_j$ for every j < i and w = u. Then $v_i < w_i = u_i$ and $v_j = w_j = u_j$ for every j < i, hence $v \leq_{\text{lex}} u$.

In conclusion \leq_{lex} is a total order. Note that $0 \leq v_i$ for every $i \in \{1, \dots, n\}$. Hence either $0 = v_i$ for every i or there is an i such that $0 < v_i$, meaning $0 \leq_{\text{lex}} v$. Suppose $v \leq_{\text{lex}} w$. If v = w then, v + u = w + u, hence $v + u \leq_{\text{lex}} w + u$. Suppose there is an i such that $v_i < w_i$ and $v_j = w_j$ for each j < i. Then $v_i + u_i < w_i + u_i$ and $v_j + u_j = w_j + u_j$ for every j < i, which implies $v + u \leq_{\text{lex}} w + u$.

For $v \in \mathbb{N}^n$ define

$$v + \mathbb{N}^n = \{v + w : w \in \mathbb{N}^n\}.$$

Theorem 1.9.63. (Dickson's Lemma)

Let $S \subset \mathbb{N}^n$ be non-empty. Then there are vectors $v_1, \ldots, v_m \in S$ such that

$$S \subset \bigcup_{1}^{m} \left(v_{i} + \mathbb{N}^{n} \right)$$

Proof. We proceed by induction in n. For n = 1, S has a minimal element s by the well ordering of the natural numbers, hence any element of S can be written as s + t for some $t \in \mathbb{N}$. Suppose Dickson's lemma is true for some $n \geq 1$. Let S be some non-empty subset of \mathbb{N}^{n+1} . Consider the canononical surjection

$$\pi: \mathbb{N}^{n+1} \to \mathbb{N}^n$$
$$(v_1, \dots, v_n, v_{n+1}) \mapsto (v_1, \dots, v_n)$$

Consider the set

$$S' := \pi(S) = \{(x_1, \dots, x_n) \in \mathbb{N}^n : (x_1, \dots, x_n, x_{n+1}) \in S \text{ for some } x_{n+1} \in \mathbb{N}\}.$$

By induction there are $s_1 = (s_{11}, \dots, s_{1,n+1}), \dots, s_m = (s_{m1}, \dots, s_{m,n+1}) \in S$ such that upon defining $s_i' := (s_{i1}, \dots, s_{in}) \in S'$

$$S' \subset \bigcup_{1}^{m} \left(s_i' + \mathbb{N}^n \right).$$

Let $s_{\text{max}} = \max_{i \in \{1,\dots,m\}} s_{i,(n+1)}$. Define

$$S_i := \{ v = (v_1, \dots, v_{n+1}) \in S : v_1 = i \} \quad (i \in \{0, \dots, s_{\text{max}}\})$$

and put

$$S_{\max} := \{ v = (v_1, \dots, v_{n+1}) \in S : v_{n+1} \ge s_{\max} \}.$$

Note that $S_{\max} \subset \bigcup_1^m \left(s_i + \mathbb{N}^{n+1}\right)$. Indeed, if $x \in S_{\max}$, then $(x_1, \dots, x_n) \in \bigcup_1^m \left(s_i' + \mathbb{N}^n\right)$. In particular, for some $i \in \{1, \dots, m\}$ $x = (s_{i1} + v_1, \dots, s_{in} + v_n) \in s_i' + \mathbb{N}^n$. Since $x_{n+1} \geq s_{\max}$, it follows that $x_{n+1} = s_{i,n+1} + v_{n+1}$, and thus that

$$x = (s_{i1} + v_1, \dots, s_{in} + v_n, s_{i,n+1} + v_{n+1}) \in s_i + \mathbb{N}^{n+1} \subset \bigcup_{1}^{m} (s_j + \mathbb{N}^{n+1}).$$

. We furthermore have that $S=S_{\max}\cup\bigcup_0^{s_{\max}-1}S_i$. Again using induction there are $s_1^{(i)},\ldots,s_{m_i}^{(i)}\in\pi(S_i)$ such that

$$\pi(S_i) \subset \bigcup_{j=1}^{m_i} \left(s_j^{(i)} + \mathbb{N}^n \right)$$

Then

$$S_i \subset \bigcup_{j=1}^{m_i} \left(\left(s_{j1}^{(i)}, \dots, s_{jn}^{(i)}, i \right) + \mathbb{N}^{n+1} \right).$$

We also have that

$$S_{\max} \subset \bigcup_{1}^{m} \left(s_j + \mathbb{N}^{n+1} \right).$$

It thus follows that

$$S \subset \bigcup_{1}^{m} \left(s_j + \mathbb{N}^{n+1} \right) \cup \bigcup_{i=0}^{s_{\max}} \bigcup_{j=1}^{m_i} \left(\left(s_{j1}^{(i)}, \dots, s_{jn}^{(i)}, i \right) + \mathbb{N}^{n+1} \right).$$

Corollary 1.9.64. A term ordering \leq on \mathbb{N}^n is a well-ordering.

Proof. Let $S \subset \mathbb{N}^n$ be a non-empty subset. By Dickson's lemma there are $s_1, \ldots, s_m \in S$ such that $S \subset \bigcup_1^m (s_i + \mathbb{N}^n)$. Since \leq is a total order, we can define $s_{\min} := \min_{i \in \{1, \ldots, m\}} s_i$. Let $s \in S$. For some $j \in \{1, \ldots, m\}$, $s = s_j + v$ for some $v \in \mathbb{N}^n$. Now we have the following implications using properties of term orders,

$$0 \le v \text{ and } s_{\min} \le s_j \implies s_{\min} \le s_{\min} + v \le s_j + v = s,$$

hence s_{\min} is a least element of S, implying \leq is a well-ordering.

A term order on \mathbb{N}^n defines a total order on the monomials in $R[x_1,\ldots,x_n]$ by defining $x^v \leq x^w$ if $v \leq w$. This total order will have the property that $x^{v_1} \leq x^{v_2} \implies x^{v_1+v} \leq x^{v_2+v}$ and $1 \leq x^v$. From this definition we gain a way of comparing polynomials using initials terms with respect to a term order.

Definition 1.9.65. Let $f = \sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v \in R[x_1, \dots, x_n] \setminus 0$ and \leq a term order on \mathbb{N}^n . We define the *initial term of f with respect to* \leq to be the monomial

$$\operatorname{in}_{\leq} f := \max_{v \in \mathbb{N}^n : a_v \neq 0} a_v \mathbf{x}^v.$$

Lemma 1.9.66. Let $f, g \in R[x_1, \ldots, x_n] \setminus 0$. Then one finds that

- 1. $(\operatorname{in}_{<} f + g) \leq \max(\operatorname{in}_{<} f, \operatorname{in}_{<} g)$
- 2. If $in_{<} f < in_{<} g$, then $(in_{<} f + g) = in_{<} g$.
- 3. If the leading terms of f and g are equal then $\inf_{\le} (f-g) < \inf_{\le} f = \inf_{\le} g$.
- 4. $\inf \{ fg \le (lm < f) (lm < g) \}$.
- 5. Suppose R is an integral domain. Then $\inf fg = (\inf f) (\inf g)$.

Proof. Write $f = \sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v$ and $g = \sum_{v \in \mathbb{N}^N} b_v \mathbf{x}^v$. Let $w, u \in \mathbb{N}^n$ be given such that $a_v \mathbf{x}^w = \operatorname{in}_{\leq} f$ and $b_w \mathbf{x}^u = \operatorname{in}_{\leq} g$. The proofs here are very similar Lemma 1.9.35 in some

respects. 1. Let $v \in \mathbb{N}^n$ be given such that $v > \max(w, u)$. Then $a_v, b_v = 0$ hence $a_v + b_v = 0$. It thus follows that

$$(\operatorname{in}_{\leq} f + g) = \max_{v \in \mathbb{N}^n: a_v + b_v \neq 0} (a_v + b_v) \mathbf{x}^v \leq \max(\operatorname{in}_{\leq} f, \operatorname{in}_{\leq} g).$$

- 2. When $\operatorname{in}_{\leq} f < \operatorname{in}_{\leq} g$, $(\operatorname{in}_{\leq} f + g) \leq \max(\operatorname{in}_{\leq} f, \operatorname{in}_{\leq} g)$. Note that $a_u + b_u = b_u \neq 0$, hence $(\operatorname{in}_{\leq} f + g) = \operatorname{in}_{\leq} g$.
- 3. Since leading terms of f and g are equal w = u and $a_w = b_w$. Hence if $v \in \mathbb{N}^n$ is given such that $v \ge w$, we have that $a_v b_v = 0$, thus it follows that

$$\operatorname{in}_{\leq} (f - g) = \max_{v \in \mathbb{N}^n : a_v - b_v \neq 0} (a_v - b_v) \mathbf{x}^v < \operatorname{in}_{\leq} f.$$

4. & 5. Let $v_1, v_2 \in \mathbb{N}^n$ such that $v_1 + v_2 = w + u$ and $v_1 \neq w$. If $v_1 > w$ or $v_1 < w$. Hence

$$a_{v_1} = 0 \implies a_{v_1} b_{v_2} = 0.$$

In the other case $v_2 > u$, because otherwise $v_1 + v_2 < u + w$. Hence

$$b_{v_2} = 0 \implies a_{v_1} b_{v_2} = 0.$$

It thus follows that

$$\sum_{v_1,v_2 \in \mathbb{N}^n: v_1 + v_2 = w + u} a_{v_1} b_{v_2} = a_w b_u.$$

Let v > u + w. Let $v_1, v_2 \in \mathbb{N}^n$ such that $v_1 + v_2 = v$. Then $a_{v_1}b_{v_2} = 0$, implying $\sum_{v_1, v_2 \in \mathbb{N}^n : v_1 + v_2 = v} a_{v_1}b_{v_2} = 0$. We thus have that

$$\operatorname{in}_{\leq} fg = \max_{v \in \mathbb{N}^{n}: \sum_{v_{1}, v_{2} \in \mathbb{N}^{n}: v_{1} + v_{2} = v} a_{v_{1}} b_{v_{2}} \neq 0} \left[\sum_{v_{1}, v_{2} \in \mathbb{N}^{n}: v_{1} + v_{2} = v} a_{v_{1}} b_{v_{2}} \right] \mathbf{x}^{v} = \mathbf{x}^{w + u} = (\operatorname{in}_{\leq} f) (\operatorname{in}_{\leq} g).$$

If R is an integral domain we get that

$$\operatorname{in}_{\leq} fg = \left[\sum_{v_1, v_2 \in \mathbb{N}^n : v_1 + v_2 = v_1 + v_2} a_{v_1} b_{v_2} \right] \mathbf{x}^{w+u} = (a_w \mathbf{x}^w) (b_u \mathbf{x}^u) = (\operatorname{in}_{\leq} f) (\operatorname{in}_{\leq} g).$$

The upshot of introducing this tool of bookkeeping is that it allows to do polynomial division. For $\mathbf{x}^v \mid \mathbf{x}^w$ we define $\frac{a\mathbf{x}^w}{b\mathbf{x}^v} := \frac{a}{b}\mathbf{x}^{w-v}$.

Theorem 1.9.67. Let R be an integral domain. Let $f, f_1, \ldots, f_m \in R[x_1, \ldots, x_n] \setminus 0$. Put $F = \{f_1, \ldots, f_m\}$. Then there are $\lambda_1, \ldots, \lambda_m, f^F \in R[x_1, \ldots, x_n]$ such that

$$f = \left[\sum_{1}^{m} \lambda_i f_i\right] + f^F,$$

and $\operatorname{in}_{\leq} \lambda_i f_i \leq \operatorname{in}_{\leq} f$ for every $i \in \{1, \ldots, m\}$ with $\lambda_i \neq 0$ and $f^F = 0$ or $\operatorname{in}_{\leq} f_i \nmid f^F$ for every i.

Proof. We aim to provide a division algorithm that produces the desired the $\lambda_1,\ldots,\lambda_m,f^F$. Define $\lambda_i^{(0)}:=0$ for every $i\in\{1,\ldots,m\}$, $r^{(0)}=0$ and $s^{(0)}=f$. We note that

$$f = \left[\sum_{1}^{m} \lambda_i^{(0)} f_i \right] + \left(r^{(0)} + s^{(0)} \right).$$

We want to recursively define $\lambda_1^{(j)},\dots,\lambda_m^{(j)},r^{(j)},s^{(j)}\in R[\mathbf{x}]$ such that

$$f = \left[\sum_{1}^{m} \lambda_{i}^{(j)} f_{i} \right] + \left((r^{(j)} + s^{(j)}) \right)$$
 (2)

for every j and have that $s^{(N)}=0$ at some N such that putting $\lambda_i=\lambda_i^{(N)},\,f^F=s^{(N)}$ these polynomials will have the remaining desired properties. For $j\geq 0$ if $s^{(j)}=0$ put N=j and terminate, otherwise if there is an $i\in\{1,\ldots,m\}$ such $\inf_{i\leq j} f_i \mid \inf_{i\leq j} s^{(j)}$, and pick the smallest such. We then define

$$\begin{cases} s^{(j+1)} := s^{(j)} - \frac{\inf_{\leq s^{(j)}}}{\inf_{\leq f_i}} f_i, \\ \lambda_i^{(j+1)} := \lambda_i^{(j)} + \frac{\inf_{\leq s^{(j)}}}{\inf_{\leq f_i}}, \\ \lambda_k^{(j+1)} = \lambda_k^{(j)} \text{ for } k \neq i, \\ r^{(j+1)} := r^{(j)}. \end{cases}$$
(3)

We note that indeed the identity (2) is fulfilled for j+1 since it is obtained by adding and subtracting $\frac{\ln_{\leq} s^{(j)}}{\ln_{<} f_{i}} f_{i}$. If no such i exists we instead define

$$\begin{cases} r^{(j+1)} := r^{(j)} + \operatorname{in}_{\leq} s^{(j)}, \\ s^{(j+1)} := s^{(j)} - \operatorname{in}_{\leq} s^{(j)}, \\ \lambda_i^{(j+1)} := \lambda_i^{(j)}. \end{cases}$$
(4)

Again clearly (2) is still true for j + 1, since $r^{(j+1)} + s^{(j+1)} = r^{(j)} + s^{(j)}$.

We now show that the above algorithm terminates. Let $j \ge 0$ such that $s^{(j+1)} \ne 0$.

Consider that we land in case (3). We denote $\inf s^{(j)} = \alpha_v \mathbf{x}^v$ and $\inf s = \beta_w \mathbf{x}^w$, where i is the minimal index for which the initial term of f_i divides the initial term of $s^{(j)}$. Then

$$\operatorname{in}_{\leq} \left(\frac{\operatorname{in}_{\leq} s^{(j)}}{\operatorname{in}_{<} f_{i}} f_{i} \right) = \frac{a_{v}}{b_{w}} \mathbf{x}^{v-w} b_{w} \mathbf{x}^{w} = a_{v} \mathbf{x}^{v} = \operatorname{in}_{\leq} s^{(j)}$$

we have thus have that

$$\operatorname{in}_{\leq} s^{(j+1)} = \operatorname{in}_{\leq} \left(s^{(j)} - \frac{\operatorname{in}_{\leq} s^{(j)}}{\operatorname{in}_{<} f_i} f_i \right) < \operatorname{in}_{\leq} s^{(j)}.$$

Landing in case (4) we have that

$$\operatorname{in}_{\leq} s^{(j+1)} = \operatorname{in}_{\leq} \left(s^{(j)} - \operatorname{in}_{\leq} s^{(j)} \right) < \operatorname{in}_{\leq} s^{(j)}.$$

Then sequence of non-zero $s^{(j)}$ is thus a strictly decreasing sequence. Let S denote the set of these elements. Since $s^{(0)} = f \neq 0$, $S \neq \emptyset$. This means S has a minimal element $s^{(N-1)}$, since a term order is a well-ordering. Then $s^{(N)} = 0$, for otherwise $s^{(N)} < s^{(N-1)}$.

As advertised we put $a_i := a_i^{(N)}$ for $i \in \{1, \dots, m\}$ and $f^F := r^{(N)}$. For each $j \ge 0$ for each $i \in \{1, \dots, m\}$ for which $a_i^{(j)} = 0$ and $a_i^{(j+1)} \ne 0$ we have that

$$\operatorname{in}_{\leq} a_i^{(j+1)} f_i = \operatorname{in}_{\leq} \left(\left(a_i^{(j)} + \frac{\operatorname{in}_{\leq} s^{(j)}}{\operatorname{in}_{\leq} f_i} \right) f_i \right) = \operatorname{in}_{\leq} \left(\frac{\operatorname{in}_{\leq} s^{(j)}}{\operatorname{in}_{\leq} f_i} f_i \right) = \operatorname{in}_{\leq} s^{(j)} \leq \operatorname{in}_{\leq} f$$

It thus follows by induction in the j for which $a_i^{(j)} \neq 0$ that

$$\begin{cases} \operatorname{in}_{\leq} a_i^{(j+1)} f_i = \operatorname{in}_{\leq} a_i^{(j)} f_i \leq \operatorname{in}_{\leq} f, \\ \operatorname{or} \\ \operatorname{in}_{\leq} a_i^{(j+1)} f_i = \operatorname{in}_{\leq} \left(\left(a_i^{(j)} + \frac{\operatorname{in}_{\leq} s^{(j)}}{\operatorname{in}_{\leq} f_i} \right) f_i \right) \leq \max \left(a_i^{(j)} f_i, \operatorname{in}_{\leq} s^{(j)} \right) \leq \operatorname{in}_{\leq} f. \end{cases}$$

It thus follos that if $a_i \neq 0$,

$$\operatorname{in} \langle a_i f_i \leq \operatorname{in} \langle f \rangle$$

Note lastly that each $r^{(j)}$ is 0 or a sum of terms not divisible by any $\inf \leq f_i$, and hence f^F is either 0 or not divisible by any $\inf \leq f_i$.

1.9.11 Gröbner Bases and Buchbergers Algorithm

For the exploration of Gröbner bases we fix a field K.

Definition 1.9.68. Let $I \subset K[x_1, \ldots, x_n]$ be an ideal. Let \leq be a term ordering on $K[\mathbf{x}]$. A finite set of polynomials $G \subset K[\mathbf{x}] \setminus 0$ is called a *Gröbner basis* for I with respect to \leq , if $G \subset I$ and for every $f \in I \setminus 0$ there is a $g \in G$ such that $\inf_{\leq g} g \mid \inf_{\leq g} f$.

A finite set $G = \{f_1, \dots, f_m\} \subset K[\mathbf{x}] \setminus 0$ is called a Gröbner basis with respect to \leq if it is a Gröbner basis for $\langle f_1, \dots, f_m \rangle$ with respect to \leq .

Proposition 1.9.69. Let $G = \{f_1, \ldots, f_m\} \subset I$ be a Gröbner basis for an ideal $I \subset K[x_1, \ldots, x_n]$ with respect to a term order \leq . For $f \in K[\mathbf{x}]$,

$$f \in I \iff f^G = 0$$

Proof. " \Leftarrow ": If $f^G = 0$ there are $\lambda_1, \ldots, \lambda_m \in K[x_1, \ldots, x_n]$ such that $f = \sum_{1}^{m} \lambda_i f_i \in I$ using the division algorithm.

" \Longrightarrow ": Suppose $f \in I$. Suppose for a contradiction that $f^G \neq 0$. Using the division algorithm with respect to \leq we obtain $\lambda_1, \ldots, \lambda_m \in K[\mathbf{x}]$ such that

$$f = \left\lceil \sum_{1}^{m} \lambda_i f_i \right\rceil + f^G \implies f^G = f - \sum_{1}^{m} \lambda_i f_i \in I.$$

Then since G is a Gröbner basis there is some $i \in \{1, ..., m\}$ such that $\inf f^G$, but since $f^G \neq 0$ this is not possible.

As a corollary we obtain that every Gröbner basis of an ideal with respect to some term order will be a generating set for said ideal.

Corollary 1.9.70. Let $I \subset K[x_1, ..., x_n]$ be an ideal and $G \subset I$ a Gröbner basis for I with respect to some term order \leq . Then $I = \langle G \rangle$.

Proof. By definition $G \subset I \implies \langle G \rangle \subset I$. Let $f \in I$. By the above proposition, $f^G = 0$, meaning there are $\lambda_1, \ldots, \lambda_m \in K[\mathbf{x}]$ such that

$$f = \sum_{1}^{m} \lambda_{i} f_{i} \in \langle G \rangle$$

A somewhat curious consequence of the introduction of Gröbner bases is that it provides us with a rather simple way to prove the Hilbert basis theorem over fields. I.e. one can prove that any polynomial ideal over a field has a Gröbner basis, which by the above corollary constitutes a finite generating set.

Corollary 1.9.71. (Hilbert's basis theorem over fields) Let $I \subset K[x_1, ..., x_n]$ be a non-zero ideal and \leq a term order. Then there is a Gröbner basis $G = \{f_1, ..., f_m\} \subset I$ for I with respect to \leq , hence $I = \langle f_1, ..., f_m \rangle$ by the prior corollary.

Proof. Put $S = \{v \in \mathbb{N}^n : \mathbf{x}^v = \text{in}_{\leq} f \text{ for some } f \in I\}$. Clearly $S \neq \emptyset$, hence by Dickson's lemma we may find $v_1, \ldots, v_m \in S$ such that

$$S \subset \bigcup_{1}^{m} \left(v_i + \mathbb{N}^n \right)$$

Let $f_i \in I$ be given such that $\operatorname{in}_{\leq} f_i = \mathbf{x}^{v_i}$ for $i \in \{1, \ldots, m\}$ and put $G = \{f_1, \ldots, f_m\} \subset I$. Let $f \in I \setminus 0$, and pick $v \in \mathbb{N}^n$ such that $a_v \mathbf{x}^v = \operatorname{in}_{\leq} f$. Since, $v \in S$, $v = v_j + w$ for some $j \in \{1, \ldots, m\}$ and $w \in \mathbb{N}^n$. Then

$$\operatorname{in}_{\leq} f = a_v \mathbf{x}^v = a_v \mathbf{x}^{v_j + w} = (a_v \mathbf{x}^w) \, \mathbf{x}^{v_j} = (a_v \mathbf{x}^w) \operatorname{in}_{\leq} f_j \implies \operatorname{in}_{\leq} f_j \mid \operatorname{in}_{\leq} f.$$

This verifies that G is a Gröbner basis for I.

The machinery of Gröbner bases provides a way to perform the division algorithm with respect to a term order in a fashion that ensures uniqueness of remainders and the indifference of the order of the divisor polynomials.

Theorem 1.9.72. Let \leq be a term order on $K[x_1, \ldots, x_n]$ and $G = \{f_1, \ldots, f_m\} \subset K[\mathbf{x}] \setminus 0$ a Gröbner basis with respect to \leq . Let $f \in K[\mathbf{x}] \setminus 0$. Then any polynomial r satisfying the properties of f^G obtained from the division algorithm of f by f_1, \ldots, f_m is equal to f^G . Furthermore, the remainder outputted by the division algorithm remains unchanged after a permutation of f_1, \ldots, f_m .

Proof. Let $\lambda_1, \ldots, \lambda_m \in K[\mathbf{x}]$ such that

$$f = \left[\sum_{1}^{m} \lambda_i f_i\right] + f^G.$$

Suppose there is an $r \in K[\mathbf{x}]$ with r = 0 or r is not divisible by the initial term of any f_i such that there are $\lambda'_1, \ldots, \lambda'_m \in K[\mathbf{x}]$ satisfying

$$f = \left\lceil \sum_{1}^{m} \lambda_i' f_i \right\rceil + r.$$

Then

$$f^G - r = \sum_{1}^{m} (\lambda_i - \lambda_i') f_i \in I.$$

Suppose for a contradiction $f^G - r \neq 0$. Then there is a $j \in \{1, \ldots, m\}$ such that $\inf f_j \mid \inf (f^G - r)$ implying $\inf f_j \mid \inf f_j \mid$

Let $\omega \in \mathcal{S}(m)$ be a permutation. Let $\lambda'_1, \ldots, \lambda'_m, (f^G)' \in K[\mathbf{x}]$ be the outcome of the division with respect to \leq of f with $f_{\omega(1)}, \ldots, f_{\omega(m)}$. Then by uniqueness of the remainder $f^G = (f^G)'$.

We have now to some extend motivated the usefulness of Gröbner bases (even though we are yet to see the most impressive applications!). However, as a computational tool, they are unimpressive if there is no way to compute. The introduction of S-polynomials and Buchberger's S-criterion will lead us to Buchberger's algorithm for computing Gröbner bases.

Definition 1.9.73. Let $f \in K[x_1, ..., x_n]$ and $F = \{f_1, ..., f_m\} \subset K[\mathbf{x}] \setminus 0$. We say that f reduces to zero modulo F if there are $\lambda_1, ..., \lambda_m \in K[\mathbf{x}]$ such that

$$f = \sum_{1}^{m} \lambda_i f_i$$

and $\inf_{i \leq i} \lambda_i f_i \leq \inf_{i \leq j} f$ for $i \in \{1, \ldots, m\}$ with $a_i f_i \neq 0$. This will be denoted $f \to_F 0$.

Note that this definition does not depend on a term order, however this definition leads us to the following reformulation of Proposition 1.9.69. Before formulating this consider the following lemmas

Lemma 1.9.74. Let $F = \{f_1, \ldots, f_m\} \subset K[\mathbf{x}] \setminus 0$ and let $f \in I := \langle F \rangle$ be non-zero with initial term $a_v \mathbf{x}^v$. Consider $\lambda_1, \ldots, \lambda_m \in K[\mathbf{x}]$ such that

$$f = \sum_{1}^{m} \lambda_i f_i.$$

For each $i \in \{1, ..., m\}$ where $\lambda_i \neq 0$, pick $v_i, w_i \in \mathbb{N}^n$ such that $b_i \mathbf{x}^{v_i} = \inf_{i \in \mathbb{N}} \lambda_i$ and $c_i \mathbf{x}^{w_i} = \inf_{i \in \mathbb{N}} f_i$. set

$$\kappa = \max \{v_i + w_i \in \mathbb{N}^n : i \in \{1, \dots, m\}, \lambda_i \neq 0\}.$$

Then $v \leq \kappa$ and the following statements hold

1.
$$v = \kappa \iff \inf_{i \in I} f_i \lambda_i \le \inf_{i \in I} f$$
 for every $i \in \{1, ..., m\}$ such that $\lambda_i \ne 0$.

2.
$$v = \kappa \implies \text{in} < f_i \mid \text{in} < f \text{ for some } i \in \{1, \dots, m\}$$

Proof. Forgetting briefly that we assumed $f = \sum_{i=1}^{m} \lambda_i f_i$, if $v > \kappa$, then

$$\operatorname{in}_{\leq} f > \max_{i \in \{1, \dots, m\}: \lambda_i \neq 0} \operatorname{in}_{\leq} \lambda_i f_i = \operatorname{in}_{\leq} \left(\sum_{1}^m \lambda_i f_i \right) \implies f \neq \sum_{1}^m \lambda_i f_i.$$

It thus follows that since we assumed $f = \sum_{i=1}^{m} \lambda_i f_i$, we get the bound $v \leq \kappa$.

1. For every $i \in \{1, ..., m\}$ such that $\lambda_i f_i \neq 0$ we have that

$$b_i c_i \mathbf{x}^{v_i + w_i} = \operatorname{in}_{\leq} \lambda_i \leq \operatorname{in}_{\leq} f = a_v \mathbf{x}^v \iff \mathbf{x}^{v_i + w_i} \leq \mathbf{x}^v \iff v_i + w_i \leq v$$

hence

$$\kappa = v \iff \operatorname{in}_{\leq} \lambda_i f_i \leq .$$

2. Suppose $v = \kappa$. Then $v = v_i + w_i$ and hence $b_i c_i = a_v$ for some $i \in \{1, ..., m\}$. WLOG we may then write

$$\operatorname{in}_{\leq} f = a_{v} \mathbf{x}^{v} = \left[\sum_{1}^{l} b_{i} c_{i} \right] \mathbf{x}^{v_{1}} \mathbf{x}^{w_{1}} = \left(\left[\sum_{1}^{l} b_{i} \frac{c_{i}}{c_{1}} \right] \mathbf{x}^{v_{1}} \right) c_{1} \mathbf{x}^{w_{1}} = \left(\left[\sum_{1}^{l} b_{i} \frac{c_{i}}{c_{1}} \right] \mathbf{x}^{v_{1}} \right) \operatorname{in}_{\leq} f_{i} \implies \operatorname{in}_{\leq} f_{i} \mid \operatorname{in$$

for some $l \leq m$.

Lemma 1.9.75. Let $F = \{f_1, \dots, f_m\} \subset K[x_1, \dots, x_n] \setminus 0$ and set $I = \langle F \rangle$. The following statements hold

- 1. If $f \to_F 0$ for every $f \in I$ then F is a Gröbner basis.
- 2. If F is a Gröbner basis then for $f \in I \setminus 0$,

$$f^F = 0 \iff f \to_F 0$$

Proof. 1. Let $f \in I \setminus 0$. Then there are $\lambda_1, \ldots, \lambda_m \in K[\mathbf{x}]$ such that

$$f = \sum_{1}^{m} \lambda_i f_i,$$

and $\inf \lambda_i f_i \leq \inf f$ for every $i \in \{1, \dots, m\}$ with $\lambda_i \neq 0$. Then by the above lemma

$$\kappa \coloneqq \max \ \left\{ \operatorname{in}_{\leq} \lambda_i f_i : i \in \{1, \dots, m\}, \lambda_i \neq 0 \right\} = \operatorname{in}_{\leq} f$$

and by the same lemma we then have that $\inf f_i \mid \inf f$ for some $i \in \{1, \dots, m\}$, hence F is a Gröbner basis.

2. " \Longrightarrow ": If $f^F = 0$ then there are $\lambda_1, \ldots, \lambda_i \in K[\mathbf{x}]$ such that

$$f = \sum_{1}^{m} \lambda_i f_i$$

and $\operatorname{in}_{\leq} \lambda_i f_i \leq \operatorname{in}_{\leq} f$ for $i \in \{1, \dots, m\}$ with $\lambda_i \neq 0$ hence by definition $f \to_F 0$.

"\(\Lefta_i \) ": This follows from Proposition 1.9.69.

We now introduce S-polynomials

Definition 1.9.76. Let $f, g \in K[x_1, \dots, x_n] \setminus 0$. Pick $w \in \mathbb{N}^n$ such that $\mathbf{x}^w = \text{lcm}(\text{in}_{\leq} f, \text{in}_{\leq} g)$. We define *the S-polynomial* or *the syzygy* of f and g to be

$$S(f,g) := \frac{\mathbf{x}^w}{\operatorname{in}_{\leq} f} f - \frac{\mathbf{x}^w}{\operatorname{in}_{\leq} g} g.$$

Remark 1.9.77. Recall that $w = \left(\max\left(w_1^f, w_1^g\right), \dots, \max\left(w_n^f, w_n^g\right)\right)$, where $a_{w^f}\mathbf{x}^{w^f} = \inf_{\leq f} and b_{w^g}\mathbf{x}^{w^g} = \inf_{\leq g} g$.

Note this simple fact about S-polynomials

Lemma 1.9.78. Let $f, g \in K[x_1, \ldots, x_n] \setminus 0$. Pick $w \in \mathbb{N}^n$ such that $\mathbf{x}^w = \operatorname{lcm}(\operatorname{in}_{\leq} f, \operatorname{in}_{\leq} g)$. Then $\operatorname{in}_{\leq} S(f, g) < \mathbf{x}^w$. In other words, the initial term of $\frac{\mathbf{x}^w}{\operatorname{in}_{\leq} f} f$ cancels with the initial term of $-\frac{\mathbf{x}^w}{\operatorname{in}_{\leq} g} g$.

Proof. Indeed, note that

$$\begin{split} \operatorname{in}_{\leq} \frac{\mathbf{x}^w}{\operatorname{in}_{\leq} f} f - \operatorname{in}_{\leq} \frac{\mathbf{x}^w}{\operatorname{in}_{\leq} g} g &= \left(\operatorname{in}_{\leq} \frac{\mathbf{x}^w}{\operatorname{in}_{\leq} f} \right) \left(\operatorname{in}_{\leq} f \right) - \left(\operatorname{in}_{\leq} \frac{\mathbf{x}^w}{\operatorname{in}_{\leq} g} \right) \left(\operatorname{in}_{\leq} g \right) \\ &= \frac{\mathbf{x}^w}{\operatorname{in}_{<} f} \operatorname{in}_{\leq} f - \frac{\mathbf{x}^w}{\operatorname{in}_{<} g} \operatorname{in}_{\leq} g = \mathbf{x}^w - \mathbf{x}^w = 0 \end{split}$$

hence the result follows from Lemma 1.9.66 3.

These polynomials will be make the criterion for checking that a generating set is a Gröbner basis that Lemma 1.9.75 1. provides more practical. To be precise, we can reduce this criterion to just check that a finite set of S-polynomials reduce to zero modulo F.

Lemma 1.9.79. Let $F = \{f_1, \ldots, f_m\} \subset K[x_1, \ldots, x_n] \setminus 0$ and let $1 \leq l \leq m$ and $\sum_{i=1}^{m} \lambda_i f_i \in \langle F \rangle$ with $b_i \mathbf{x}^{v_i} = \operatorname{in}_{\leq} \lambda_i$, $c_i \mathbf{x}^{w_i} = \operatorname{in}_{\leq} f_i$ be given such that

$$b_i c_i x^{v_i + w_i} = \operatorname{in}_{\leq} \lambda_i f_i = \kappa := \max_{j \in \{1, \dots, m\}} \operatorname{in}_{\leq} \lambda_j f_i$$

for every $i \in \{1, ..., l\}$ and $\sum_{i=1}^{l} b_i c_i \neq 0$. Define

$$\mu_{\lambda_1,\dots,\lambda_m,F} := \sum_{1}^{m} (\operatorname{in}_{\leq} \lambda_i) f_i.$$

Then $\mu_{\lambda_1,\ldots,\lambda_m,F} \in I := \langle S(f_1,f_2),S(f_2,f_3),\ldots,S(f_{l-1},f_l) \rangle$, and $\inf \leq \mu_{\lambda_1,\ldots,\lambda_m,F} < \kappa$.

Proof. Put $g_i := \mathbf{x}^{v_i} \frac{f_i}{c_i}$ for $i \in \{1, \dots, l\}$. Then

$$\begin{split} \mu_{\lambda_1,\dots,\lambda_m,F} &= \sum_1^l b_i c_i \left(\mathbf{x}^{v_i + w_i} + \dots \right) = \sum_1^l b_i c_i g_i \\ &= \left[\sum_{j=1}^{l-1} \left[\sum_{i=1}^j b_i c_i \right] \left(g_j - g_{j+1} \right) \right] + \underbrace{\left[\sum_1^l b_i c_i \right]}_{=0} g_l. \end{split}$$

Put $x^{u_{ij}} := \text{lcm}(\mathbf{x}^{w_i}, \mathbf{x}^{w_j})$ for $i, j \in \{1, \dots, l\}$ and note that

$$g_i - g_j = \frac{\mathbf{x}^{v_i}}{c_i} f_i - \frac{\mathbf{x}^{v_j}}{c_j} f_j = \frac{\mathbf{x}^{v_i + w_i}}{c_i \mathbf{x}^{w_i}} f_i - \frac{\mathbf{x}^{v_j + w_j}}{c_j \mathbf{x}^{w_j}} f_j \overset{(*)}{=} \mathbf{x}^{\xi_{ij}} \left(\frac{\mathbf{x}^{u_{ij}}}{\operatorname{in}_{<} f_i} f_i - \frac{\mathbf{x}^{u_{ij}}}{\operatorname{in}_{<} f_j} f_j \right) = \mathbf{x}^{\xi_{ij}} S(f_i, f_j),$$

where we in step (*) use that $u_{ij} < w_i + v_i = w_j + v_j$ to see that

$$v_i + w_i = v_j + w_j \implies \underbrace{v_i + w_i - u_{ij}}_{\xi_{ij}} = v_j + w_j - u_{ij}.$$

Upon setting $\xi_i := \xi_{i,i+1}$ we find

$$\mu_{\lambda_1,\dots,\lambda_l,F} = \sum_{1}^{l-1} \mathbf{x}^{\xi_i} S(f_i, f_{i+1}) \in I.$$

Set $u_i = u_{i(i+1)}$. Then additionally we have that

$$\mathrm{in}_{\leq} \; \mu_{\lambda_1, \dots, \lambda_m, F} = \max_{i \in \{1, \dots, l-1\}} \; x^{\xi_i} \mathrm{in}_{\leq} \; S(f_i, f_{i+1}) < \max_{i \in \{1, \dots, l-1\}} \; \mathbf{x}^{\xi_i + u_i} = \max_{i \in \{1, \dots, l-1\}} \; \mathbf{x}^{v_i + w_i} = \kappa.$$

Theorem 1.9.80. Let $F = \{f_1, \ldots, f_m\} \subset K[x_1, \ldots, x_n] \setminus 0$. If $S(f_i, f_j) \to_F 0$ for every $i, j \in \{1, \ldots, m\}$, then $f \to_F 0$ for every $f \in I := \langle F \rangle$ meaning F is a Gröbner basis (cf. Lemma 1.9.75).

Proof. Let $f = \sum_{i=1}^{m} \lambda_i f_i \in I$. If $\operatorname{in}_{\leq} \lambda_i f_i \leq \operatorname{in}_{\leq} f$ for every i, we are done.

Suppose this is not the case. We aim to re-express f as an element of I. We do this via a **right-hand side initial term reduction** (this is non-standard terminology), which we will describe now. WLOG we may assume, adopting the notation from Lemma 1.9.79, that

$$b_i c_i x^{v_i + w_i} = \text{in} < \lambda_i f_i = \kappa.$$

Then we have that $\inf \leq f < \kappa$ by Lemma 1.9.74, hence necessarily $\sum_{1}^{l} b_i c_i = 0$, which implies $\mu_{\lambda_1,\dots,\lambda_m,F} \in \langle S(f_1,f_2),S(f_2,f_3),\dots,S(f_{l-1},f_l) \rangle$ and $\inf \leq \mu_{\lambda_1,\dots,\lambda_m} < \kappa$. By assumption there are $\psi_1^{(i)},\dots,\psi_m^{(i)} \in K[\mathbf{x}]$ such that $S(f_i,f_{i+1}) = \sum_{j=1}^m \psi_j^{(i)} f_j$ with $\inf \leq \psi_j^{(i)} f_j \leq \inf \leq S(f_i,f_{i+1})$ for every $i \in \{1,\dots,l-1\}$ and $j \in \{1,\dots,m\}$. This means that

$$\mu_{\lambda_1,\dots,\lambda_m,F} = \sum_{j=1}^m \underbrace{\left[\sum_{i=1}^{l-1} \mathbf{x}^{\xi_i} \psi_j^{(i)}\right]}_{\chi_i} f_j$$

with

$$\mathrm{in}_{\leq} \; \chi_j f_j = \max_{i \in \{1, \dots, l-1\}} \; \mathbf{x}^{\xi_i} \left(\mathrm{in}_{\leq} \; \psi_j^{(i)} \right) (\mathrm{in}_{\leq} \; f_j) \leq \max_{i \in \{1, \dots, l-1\}} \; \mathbf{x}^{\xi_i} \mathrm{in}_{\leq} \; S(f_i, f_{i+1}) = \mathrm{in}_{\leq} \; \mu_{\lambda_1, \dots, \lambda_m, F} < \kappa.$$

Now note that

$$f = \mu_{\lambda_1, \dots, \lambda_m, F} + \sum_1^l (\lambda_i - \operatorname{in}_{\leq} \lambda_i) f_i + \sum_{l+1}^m \lambda_i f_i,$$

and that every term on the right-hand side of the above expression is strictly smaller then κ . We now obtain another expression for f: Upon putting $\delta_j = 1$ if $j \leq l$ and $\delta_j = 0$ otherwise we have

$$f = \sum_{j=1}^{m} \underbrace{(\chi_j + \lambda_j - \delta_j \operatorname{in}_{\leq} \lambda_j)}_{\lambda'_j} f_j.$$

This is exactly the right-hand side initial term reduction we wanted to describe. If

$$\operatorname{in}_{\leq} f = \kappa' := \max_{i \in \{1, \dots, m\}} \ \lambda'_i f_i,$$

we have $\operatorname{in}_{\leq} \lambda_i' f_i \leq \operatorname{in}_{\leq} f$ for every i and we are done. Otherwise we perform another right-hand side initial term reduction. Note that $\kappa' < \kappa$. If we follow the algorithm of terminating if the right-hand side expression leads to concluding $f \to_F 0$ or otherwise performing a right-hand side reduction we see that by the well-ordering of term orders we can only perform a finite number of iterations of right-hand side reductions, hence this algorithm will have to terminate. We thus conclude that $f \to_F 0$.

from this theorem we readily collect Buchberger's criterion for checking that a generating set is a Gröbner basis

Corollary 1.9.81. (Buchberger's S-criterion) Let $F \subset K[x_1, ..., x_n] \setminus 0$. Then F is a Gröbner basis if and only if $S(f_i, f_j) \to_F 0$ or equivalently $S(f_i, f_j)^F = 0$ (cf. 1.9.75) for every $i, j \in \{1, ..., m\}$.

Proof. If F is a Gröbner basis then $S(f_i, f_j)^F = 0$ for every $i, j \in \{1, \ldots, m\}$ since $S(f_i, f_j) \in I := \langle F \rangle$ by Proposition 1.9.69, hence $S(f_i, f_j) \to_F 0$ by Lemma 1.9.75. If conversely $S(f_i, f_j) \to_F 0$ for every i and j, it follows from Theorem 1.9.80 that F is a Gröbner basis and hence that $S(f_i, f_j)^F = 0$ by Proposition 1.9.69.

This leads to Buchberger's algorithm for finding a Gröbner basis for an ideal $I = \langle f_1, \dots, f_m \rangle \subset K[x_1, \dots, x_n] \setminus 0$, which we will discuss in the following remark

Remark 1.9.82. (Buchberger's algorithm) We now describe an algorithm for computing a Gröbner basis given an arbitrary generating set for an ideal I. Let $F_0 = \left\{f_1^{(0)}, \dots, f_{m(0)}^{(0)}\right\} \subset I$ where $m(0) \geq 1$ be a generating set for I. For $i \geq 0$ if $S\left(\left(f_j^{(i)}, f_k^{(i)}\right)^{F_i} = 0$ for every $f_j^{(i)}, f_k^{(i)} \in F_i = \left\{f_1^{(i)}, \dots, f_{m(i)}^{(i)}\right\}$ put $F_{i+1} = F_i$ or simply terminate, for then F_i is a Gröbner basis. Otherwise if there are $f_j^{(i)}, f_k^{(i)} \in F_i$ such that $S\left(f_j^{(i)}, f_k^{(i)}\right)^{F_i} \neq 0$ put

$$F_{i+1} = F_i \cup \left\{ S\left(f_j^{(i)}, f_k^{(i)}\right)^{F_i} \right\}.$$

Note that $S\left(f_j^{(i)},f_k^{(i)}\right)^F=\sum_1^m\lambda_if_i-S\left(f_j^{(i)},f_k^{(i)}\right)\in I$, hence $\langle F_{i+1}\rangle=I$. The claim is that the ascending chain $F_0\subset F_1\subset\ldots$ will in fact stabilize, hence there we produce a Gröbner basis at some point. We check this claim in the next theorem.

Lemma 1.9.83. Let $\{t_i\}_{i\geq 0} \subset K[x_1,\ldots,x_n]$ be some sequence of which an element is either a term or 0, i.e. $t_i = a_i \mathbf{x}^{v_i}$ for some $a_i \in K$, $v_i \in \mathbb{N}^n$. Then for some $N \geq 0$ for every $i \geq N$, $t_j \mid t_i$ for some j < N

Proof. If $a_i = 0$ for every $i \ge 0$ then the statement is trivial. Suppose this is not the case and put $S = \{v_i : i \ge 0, a_i \ne 0\} \subset \mathbb{N}^n$, then by Dickson's lemma there are $v_{i(1)}, \ldots, v_{i(k)} \in S$ such that

$$S \subset \bigcup_{i=1}^{k} \left(v_{i(j)} + \mathbb{N}^n \right).$$

Set $N = \max_{j \in \{1,\dots,k\}} i(j)$ and let $i \geq N$. Then $v_i = v_{i(j)} + w$ for some $j \in \{1,\dots,k\}$, $w \in \mathbb{N}^n$, hence

$$t_i = a_i \mathbf{x}^{v_i} = a_i \mathbf{x}^{v_{i(j)} + w} = \left(a_{i(j)} \mathbf{x}^{v_{i(j)}}\right) \left(\frac{a_i}{a_{i(j)}} \mathbf{x}^w\right) = t_{i(j)} \left(\frac{a_i}{a_{i(j)}} \mathbf{x}^w\right) \implies t_{i(j)} \mid t_i$$

Theorem 1.9.84. Buchberger's algorithm terminates and outputs a Gröbner basis.

Proof. Buchberger's gives rise to an infinite sequence of polynomials in the following way: start with the initial elements of $F_0 = \{f_1, \ldots, f_m\}$. For $i \geq m+1$ if F_{i-m} is the union of F_{i-m-1} and $\{S(f_j, f_k)^{F_{i-m-1}}\}$ for some $j, k \in \{1, \ldots, i-1\}$ then put $f_i = S(f_j, f_k)^{F_{i-m-1}}$ otherwise put $f_i = 0$. We then put $t_i = \inf_{\leq i \neq 0} f_i$ if $f_i \neq 0$ or $t_i = 0$ otherwise for every $i \geq 0$. By the above lemma there is an $N \geq 0$ such that for every $l \geq N$, $t_h \mid t_l$ for some l < N. For each $l \geq m$, if $l = S(f_j, f_k)^{F_{l-m-1}}$, then any term of l = l is not divisible by l = l for any l = l and l = l consider then $l \geq l$ and hence that l = l and hence that l = l satisfies Buchberger's criterion.

The below proposition will give an easy criterion for checking whether two polynomials in a generating reduce modulo said generating set.

Proposition 1.9.85. Let \leq be a term order on $K[x_1, \ldots, x_n]$. Let $f, g \in K[\mathbf{x}] \setminus 0$. Suppose $\gcd(f, g) = 1$, then $S(f, g) \rightarrow_{\{f, g\}} 0$.

Proof. By assumption,

$$\operatorname{lcm}(\operatorname{in}_{\leq} f, \operatorname{in}_{\leq} g) = (\operatorname{in}_{\leq} f) (\operatorname{in}_{\leq} g) = \operatorname{in}_{\leq} fg.$$

Put $r = f - \inf_{\le} f$ and $s = g - \inf_{\le} g$. Then $\inf_{\le} r < \inf_{\le} f$ or $\inf_{\le} r = 0$ and $\inf_{\le} s < \inf_{\le} g$ or $\inf_{\le} s = 0$. Then

$$S(f,g) = (\operatorname{in}_{\leq} g) \, f - (\operatorname{in}_{\leq} f) \, g = (g-s) f - (f-r) g = rg - sf.$$

Suppose r=0, then S(f,g)=-sf, implying $\inf \leq f \leq \inf \leq S(f,g)$ and hence $S(f,g) \to_{\{f,g\}} 0$. Suppose $\inf \leq r < \inf \leq f$. Suppose for a contradiction

$$\left(\operatorname{in}_{\leq}r\right)\left(\operatorname{in}_{\leq}g\right)=\left(\operatorname{in}_{\leq}s\right)\left(\operatorname{in}_{\leq}f\right).$$

Then $\operatorname{in}_{\leq} f \mid \operatorname{in}_{\leq} r$ (since $\operatorname{in}_{\leq} g \nmid \operatorname{in}_{\leq} f$), but then $\operatorname{in}_{\leq} f \leq \operatorname{in}_{\leq} r$ leading to a contradiction. We then find that

$$\operatorname{in} \leq S(f,g) = \operatorname{in} \leq (rg - sf) = \max(\operatorname{in} \leq rg, \operatorname{in} \leq sf)$$

hence by Lemma 1.9.74, $S(f,g) \to_{\{f,g\}} 0$.

Definition 1.9.86. A Gröbner basis $G = \{f_1, \ldots, f_m\} \subset K[x_1, \ldots, x_n] \setminus 0$ is called *minimal*, if

- 1. $\operatorname{in} \leq f_i \nmid \operatorname{in} \leq f_j$ for every $i, j \in \{1, \dots, m\}$ with $i \neq j$.
- 2. in $f_i = \mathbf{x}^{v_i}$ for some $v_i \in \mathbb{N}^n$ for every $i \in \{1, \dots, m\}$.

G is reduced if it is minimal and if every term in f_i is not divisible by $\text{in}_{\leq} f_j$ for every $i, j \in \{1, ..., m\}$ with $i \neq j$.

Remark 1.9.87. We describe an algorithm for computing a minimal Gröbner basis for a non-zero ideal $I \subset K[x_1, \ldots, x_n]$. Let $G = \{f_1, \ldots, f_m\} \subset I \setminus 0$ be a Gröbner basis. Let a_i be the leading coefficient for f_i for each i. Then define

$$G_0 := \left\{ a_1^{-1} f_1, \dots, a_m^{-1} f_m \right\}$$

For $k \geq 0$, if there are some $f, g \in G_k \setminus 0$ with $f \neq g$ such that that $\inf g \mid \inf f$, define $G_{k+1} := G_k \setminus \{f\}$, otherwise terminate.

Lemma 1.9.88. Every ideal $0 \neq I \subset K[x_1, \dots, x_n]$ has a minimal Gröbner basis.

Proof. We prove that the algorithm described above always produces a minimal Gröbner basis. Let $G = \{f_1, \ldots, f_m\} \subset I \setminus 0$ be a Gröbner basis for I. We prove the statement by induction in m. For m = 1, $G = \{g\}$ for some $g \in I \setminus 0$. Let $a \in K \setminus 0$ be the leading coefficient of g. Then $G_0 = \{a^{-1}g\}$ defines a minimal Gröbner basis. Suppose the algorithm always terminates with a minimal Gröbner basis with mm elements for some $m \geq 1$. Let $G = \{f_1, \ldots, f_{m+1}\}$ be a Gröbner basis and assume WLOG that the coefficient of the polynomials in G are all 1, i.e. that $G_0 = G$. Then if there are no $i, j \in \{1, \ldots, m+1\}$ with $i \neq j$ such that in $f_0 = f_0 \setminus \{f_i\}$ we terminate and indeed $f_0 = f_0 = \{f_0, \ldots, f_m\}$ with $f_0 = f_0 = f_0 = f_0 = f_0 = f_0$. Let $f_0 = f_0 = f$

Proposition 1.9.89. Every ideal $0 \neq I \subset K[x_1, ..., x_n]$ has a unique reduced Gröbner basis.

Proof. Uniqueness: Consider two reduced Gröbner bases $G = \{f_1, \ldots, f_m\}$ and $G' = \{f'_1, \ldots, f'_{m'}\}$. We first check that the cardinality of these Gröbner bases match. Let $i \in \{1, \ldots, m\}$, then for some $\tau(i) \in \{1, \ldots, m'\}$, $\operatorname{in}_{\leq} f'_{\tau(i)} \mid \operatorname{in}_{\leq} f_i$. Let $j \in \{1, \ldots, m'\}$ then for some $\omega(j) \in \{1, \ldots, m\}$, $\operatorname{in}_{\leq} f_{\omega(j)}$ in $\leq f'_j$. Then we have that

$$\operatorname{in} \leq f_{\omega(\tau(i))} \mid \operatorname{in} \leq f'_{\tau(i)} \text{ and } \operatorname{in} \leq f'_{\tau(i)} \mid \operatorname{in} \leq f_i \implies \operatorname{in} \leq f_{\omega(\tau(i))} \mid \operatorname{in} \leq f_i$$

by minimality of the Gröbner bases $i = \omega(\tau(i))$. A similar argument shows that $\tau(\omega(j))$ for every $j \in \{1, \ldots, m'\}$, thus τ is a bijection, implying m = m'. We proceed by checking that the sets are equal. Note that the above argument also shows that $\inf f'_{\tau(i)} = \inf f_i$ for every $i \in \{1, \ldots, m\}$ since the coefficient of every initial term is 1.

Let $i \in \{1, \dots, m\}$. Since $\inf_{\leq} f_i = \inf_{\leq} f'_{\tau(i)}$, either $f_i = f_{\tau(i)}$ or $\inf_{\leq} \left(f_i - f'_{\tau(i)}\right) < \inf_{\leq} f_i$. We shall that the second case implies $f_i = f_{\tau(i)}$ as well. In this case no term in $f_i - f'_{\tau(i)}$ is divisible by $\inf_{\leq} f_i$. Any term in $f_i - f'_{\tau(i)}$ is a term in $f'_{\tau(i)}$ subtracted from f_i , where at least one of these terms in non-zero. Then by the Gröbner bases being reduced, $\inf_{\leq} f_j$ does not divide such a term for any $j \in \{1, \dots, m\} \setminus \{i\}$. Then $f_i - f'_{\tau(i)} = \left(f_i - f'_{\tau(i)}\right)^G$, but since $f_i - g_i \in I$, this must imply that $f_i = f'_{\tau(i)}$ by Proposition 1.9.69.

Existence: By the prior lemma there is a minimal for Gröbner basis $G = \{f_1, \ldots, f_m\}$ for I. Define $g_i := f_i^{\{g_1, \ldots, g_{i-1}, f_i, \ldots, f_m\} \setminus \{f_i\}}$ for every $i \in \{1, \ldots, m\}$. Since $\inf_i f_i$ is divisible by any $\inf_i f_j$ for $j \in \{i+1, \ldots, m-1\}$ we see that g_i is of the form $\inf_i f_i + \ldots$. Thus if $f \in I$, there is some g_j such that $\inf_i g_j = \inf_i f_j \mid \inf_i f_i$, meaning that each set $\{g_1, \ldots, g_i \} \mid f_i \mid f_i$

Remark 1.9.90. Note that the existence proof above is of an algorithmic nature. I.e. given an ideal, use Buchberger's algorithm to produce a Gröbner basis, then use the already presented algorithm for producing a minimal gröbner basis, then apply the division algorithmic in the way we described above to produce the elements of the reduced Gröbner basis.

Theorem 1.9.91. Let G be a Gröbner basis for an ideal $I \subset K[x_1, \ldots, x_n]$ with respect to the lexicographic term order with $x_1 < \cdots < x_n$. Then $G \cap K[x_1, \ldots, x_i] \subset K[x_1, \ldots, x_i]$ is a Gröbner basis for the ideal $I \cap K[x_1, \ldots, x_i] \subset K[x_1, \ldots, x_i]$ with respect to the lexicographic term order with $x_1 < \cdots < x_i$ for every $i \in \{1, \ldots, i\}$.

Proof. Let $G' = G \cap K[x_1, \ldots, x_i]$. Let $f \in I' = I \cap K[x_1, \ldots, i]$. For some $g \in G$, $\operatorname{in}_{\leq} g \mid \operatorname{in}_{\leq} f$. Let $t = a\mathbf{x}^v$ be a term of g and write $b\mathbf{x}^w = \operatorname{in}_{\leq} f$. Then $a\mathbf{x}^v \leq b\mathbf{x}^w$, or in other words $v \leq w$. Let $u \in \mathbb{N}^n$. If $u_j \neq 0$ for $j \in \{i+1, \ldots, m\}$, then $w <_{\operatorname{lex}} u$. Hence we conclude that $v_j = 0$ for every $j \in \{i+1, \ldots, m\}$, implying $t \in K[x_1, \ldots, x_i]$ and ultimately that $g \in K[x_1, \ldots, x_i]$.

The above theorem is a great tool for computing solutions to complicated polynomial equations.

1.9.12 Polynomials over UFD's

We aim to prove that polynomials over unique factorization domains are unique factorization domains. For this reason we fix a UFD R (unless something else is explicitly stated).

Lemma 1.9.92. Let R be an integral domain. If $p \in R$ is prime then $p \in R[x_1]$ is prime. Therefor if $p \in R$ is prime, then $p \in R[x_1, \ldots, x_n]$ is prime.

Proof. $p \neq 0$ and $p \notin R[x]^* = R^*$. Let $f = \sum_0^k a_i x^i, g = \sum_0^h b_i x^i \in R[x]$ such that $p \nmid f, g$. Set $s := \max \{i \in \{1, \dots, k\} : p \nmid a_i\}$ and $t := \max \{i \in \{1, \dots, h\} : o \nmid b_i\}$. Note that if i > s or j > r, then $p \mid a_i$ or $p \mid b_j$. This means that since i + j = s + t implies $i \geq s$ or $j \geq t$, one finds that p divides every term in $\sum_{i=1}^h \sum_{j=1}^k \sum_{i+j=s+t} a_i b_j$ other than $a_s b_t$, hence

$$p \nmid \sum_{i=1,\dots,h,j=1,\dots,ki+j,=s+t} a_i b_j \implies p \nmid fg.$$

Definition 1.9.93. A polynomial $f = \sum_{i=0}^{n} a_i x^i \in R[x]$ is said to be *primitive* if $gcd(a_0, \dots, a_n : a_i \neq 0) = 1$.

Lemma 1.9.94. Let R be a UFD, K := Q(R) and consider a monic $f = x^d + \sum_0^{d-1} \frac{a_i}{b_i} x^i$. Let c be the least common multiple of the b_i 's. If $gcd(a_i, b_i) = 1$ whenever $a_i \neq 0$ then g := cf is primitive.

Proof. Take any prime divisor p of c. Pick i where p has maximal multiplicity among all b_i 's. Then $p \nmid \frac{c}{b_i}$ and $p \nmid a_i$, since $c = \prod_{p \in \mathcal{P}} p^{\max(\nu_p(b_0), \dots, \nu_p(b_0))}$. Then $p \nmid c \frac{a_i}{b_i}$. So for any divisor of c there is some i for which this is not a divisor of $c \frac{a_i}{b_i}$, implying $\gcd(c, ca_i/b_i : a_i \neq 0) = 1$, hence cf is primitive.

Lemma 1.9.95. (Gauss' Lemma) If $f, g \in R[x]$ is primitive, then fg is primitive. This property extends to multivariable polynomials by induction.

Proof. Suppose fg is not primitive then the greatest common divisor of the coefficients of fg is divisible by some prime $p \in R$. This means $p \mid fg$, hence $p \mid f$ or $p \mid g$ by Lemma 1.9.92, hence the p divides all of the coefficients f or g, hence f primitive or g is primitive.

Lemma 1.9.96. Let $f, g \in R[x]$. If f is primitive and $f \mid g$ in Q(R)[x], then $f \mid g$ in R[x].

Proof. By assumption we can find an $h \in Q(R)[x]$ such that g = hf. If h = 0, then g = 0 and we are done. Suppose $h \neq 0$. Then for some $c \in R \setminus 0$, $ch \in R[x]$. For some $d \in R \setminus 0$ and primitive $h' \in R[x]$, ch = dh', implying cg = chf = dh'f. Note h'f is primitive by the prior lemma, hence d is the greatest common divisor for the coefficients of dh'f. This implies d is the greatest common divisor of the coefficients of cg. Since $c \mid cg$, it follows that $c \mid d$, hence $\frac{d}{c} \in R$. This implies that

$$g = \frac{d}{c}h'f \in R[x],$$

which means $f \mid g$ in R[x].

In the following lemma we classify all the irreducible polynomials in R[x].

Lemma 1.9.97. 1. Let $f \in R[x]$ be primitive. If f is irreducible in Q(R)[x], then f is prime in R[x].

- 2. Any non-zero, non-unit element in R[x] can be written as a product of irreducible elements.
- 3. The irreducible elements in R[x] are the primes in R and the polynomials described in I.

Proof. 1. Let $a, b \in R[x]$ such that $f \mid ab$ in R[x]. Using **Result that shows** K[x] is UFD we get that f is prime by Proposition 1.8.50 in K[x], hence $f \mid a$ or $f \mid b$ in K[x], hence by Lemma 1.9.96 $f \mid a$ or $f \mid b$ in R[x].

2. Let $f \in R[x]$ be a non-zero, non-unit element. If $\deg f = 0$ it is an element in R, which is a UFD, hence f has a factorization into irreducibles. If $\deg f > 0$, then there primes/irreducibles $g_1, \ldots, g_m \in Q(R)[x]$ such that $f = \prod_1^m g_i$. For suitable $a_1, \ldots, a_m \in K$ and primitive $f_1, \ldots, f_m \in R[x]$ such that $g_i = a_i f_i$ for each $i \in \{1, \ldots, m\}$. Since g_i is irreducible in Q(R)[x] for each i, so is f_i in Q(R)[x]. Set $a := \prod_1^m a_i$. Then $f = a \prod_1^m f_i$, hence $\prod_1^m f_i \mid f$ in Q(R)[x], and hence also in R[x] by Lemma 1.9.96. This means $a \in R$. If a is a unit, set $f'_1 = a f_1$. Then we get a factorization into irreducibles,

$$f = f_1' \prod_{i=1}^{m} f_i.$$

If a is not a unit, we write $a = \prod_{i=1}^{l} p_i$ for primes/irreducibles in R, getting a factorization intio irreducibles

 $f = \left(\prod_{1}^{l} p_{i}\right) \left(\prod_{1}^{m} f_{i}\right).$

3. We have already established that the two types of elements in question are irreducible in R[x] (cf. 1 and Lemma 1.9.92). Let f be irreducible in R[x]. If deg f = 0, then $f \in R$, hence f is prime as R is a UFD. If deg f > 0, then we saw in 2. that f can be written as a product of primes in R and primitive polynomials in R[x] irreducible in Q(R)[x]. Writing $f = af_1 \cdots f_m$ for f_1, \ldots, f_m polynomials being of the second type of irreducibles. We see that m = 1 and a is a unit for otherwise this would contradict the irreducibility of f.

Theorem 1.9.98. R[x] is a UFD. By induction $R[x_1, \ldots, x_n]$ is a UFD.

Proof. Every non-zero non-unit element is a product irreducible elements in R[x] by Lemma 1.9.97 2. Let f be an irreducible element in R[x]. Then either f is a prime in R or is primitive in R[x] and irreducible in Q(R)[x] by Lemma 1.9.97 3. In the second case f is also prime by Lemma 1.9.97 1. It follows by Proposition 1.8.50 that R[x] is a UFD. Since $R[x_1,\ldots,x_n]\simeq (R[x_1,\ldots,x_{n-1}])[x_n]$ it follows by induction that $R[x_1,\ldots,x_n]$ is a UFD.

Proposition 1.9.99. Let $f \in R[x]$ such that f is monic and deg $f \in \{2,3\}$. Then f is irreducible if and only if f has not roots.

Proof. " \Longrightarrow ": Suppose f has a root $\alpha \in R$. Then $f \in \langle x - \alpha \rangle$, hence $f = (x - \alpha)g$ for some $g \in R[x]$. In either case of deg f = 2 or deg f = 3, we have that deg $g \ge 1$, implying g is not a unit. This means f is reducible.

" \Leftarrow ": Suppose f is reducible. Since the irreducible non-constant polynomials in R[x] are monic, there is, In any case of f having degree f or f a polynomial f = f (f) f such that

$$f = qh$$
,

for some $h \in R[x]$. It hence follows that f has a root α .

Corollary 1.9.100. The polynomial $x^2 - a \in R[x]$ is irreducible if and only if a is not a square.

1.9.13 Eisenstein's Criterion

1.9.14 Homogeneous Polynomials

Definition 1.9.101. A polynomial $f \in R[x_1, ..., x_n]$ is homogeneous of degree d, if there is a $d \ge 0$ such that $f = \sum_{v \in \mathbb{N}^n: |v| = d} a_v \mathbf{x}^v$.

Remark 1.9.102. Note that if $f \neq 0$ then f is homogeneous if and only if every non-zero term is equal to d, hence deg f = d. Note also that 0 is homogeneous of degree d for every $d \geq 0$.

One readily verifies that the set of degree d homogeneous polynomials in $R[\mathbf{x}]$ is an R-module, which we will denote $V_R(d,n)$. The set $\{\mathbf{x}^v \in R[x_1,\ldots,x_n]: |v|=d\}$ forms a basis for $V_R(d,n)$.

Lemma 1.9.103. Let $f, g \in R[x_1, ..., x_n]$.

- 1. If f, g are homogeneous of degree respectively d and e, then fg is homogeneous of degree d + e. Suppose R is an integral domain and $f, g \neq 0$. Then if fg is homogeneous, so is f and g.
- 2. If f, g are homogeneous of degree d, so is f + g.

Proof. 1. Write $f = \sum_{v \in \mathbb{N}^n: |v| = d} a_v \mathbf{x}^v$ and $g = \sum_{w \in \mathbb{N}^n: |w| = e} b_w \mathbf{x}^w$. Then

$$fg = \sum_{v \in \mathbb{N}^n: |v| = d} \sum_{w \in \mathbb{N}^n: |w| = e} a_v b_w \mathbf{x}^{v+w} = \sum_{u \in \mathbb{N}^n: |u| = d+e} \left[\sum_{v, w \in \mathbb{N}^n: v+w=u} a_v b_w \right] \mathbf{x}^u.$$

Suppose f is not homogeneous. Since f is not homogeneous the set $\{l \geq 0 : \text{ there is a } u \in \mathbb{N}^n \text{ with } |u| = l, a$ has at least 2 elements. Let m be the minimum of this set and M the maximum. Note that $m \neq M$. Pick $u_m, u_M \in \mathbb{N}^n$ such that $|u_m| = m$ and $|u_M| = M$. Pick $b_{q_k} \mathbf{x}^{q_k}$, $b_{q_K} \mathbf{x}^{q_K}$ to be respectively a lowest degree term and a highest degree term of g. Then $\sum_{v,w \in \mathbb{N}^n: v+w=u_k+u_m} a_v b_w = a_{u_m} b_{u_k} \neq 0$ and $\sum_{v,w \in \mathbb{N}^n: v+w=u_K+u_M} a_v b_w = a_{u_M} b_{u_K} \neq 0$. fg therefor has two non-zero monomial terms of different degree and therefor is not homogeneous.

2. We get that

$$f + g = \sum_{v \in \mathbb{N}^n : |v| = d} a_v \mathbf{x}^v + \sum_{v \in \mathbb{N}^n : |v| = d} b_v \mathbf{x}^v = \sum_{v \in \mathbb{N}^n : |v| = d} (a_v + b_v) \mathbf{x}^v.$$

Definition 1.9.104. Let $f \in R[x_1, ..., x_n]$. We define the dehomogenization of f at x_i to be the polynomial

$$f_{*,i} := f(x_1, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_n).$$

Remark 1.9.105. We define $f_* := f_{*,n}$

Lemma 1.9.106. Let $f \in R[x_1, ..., x_n]$. There are unique homogeneous polynomials $f_0, ..., f_d \in R[\mathbf{x}]$ where deg $f_i = i$ for $f_i \neq 0$ such that

$$f = \sum_{1}^{d} f_i.$$

If $f \neq 0$, then $f_d \neq 0$

Proof. If f=0 the statement is trivial. So suppose $f\neq 0$. Set $d=\deg f$ and write $f=\sum_{v\in\mathbb{N}^n}a_v\mathbf{x}^v$. Set $f_i=\sum_{v\in\mathbb{N}^n:|v|=i}a_v\mathbf{x}^v$. Then clearly $f=\sum_1^d f_i$. For some $v\in\mathbb{N}^n$ with |v|=d, $a_v\neq 0$, hence $f_d\neq 0$. Uniqueness follows from uniqueness of the monomial representation of a polynomial.

Corollary 1.9.107. $R_d[x_1, ..., x_n] = \sum_{i=0}^{d} V_R(n, i)$. This sum is direct.

Definition 1.9.108. Let $f \in R[x_1, \dots, x_n]$, write $f = \sum_{i=0}^{d} f_i$ (cf. the above lemma). Then the homogenization of f is the polynomial

$$f^* := \sum_{0}^{d} x_{n+1}^{d-i} f_i$$

Remark 1.9.109. An alternative definition is that $f^* = x_{n+1}^d f\left(\frac{x_1}{x_{n+1}}, \dots, \frac{x_n}{x_{n+1}}\right)$ (in $Q(R[x_{n+1}])[x_1, \dots, x_n]$ for instance). Indeed,

$$\begin{aligned} x_{n+1}^d f\left(\frac{x_1}{x_{n+1}}, \dots, \frac{x_n}{x_{n+1}}\right) &= x_{n+1}^d \sum_{v \in \mathbb{N}^n} a_v \frac{x_1^{v_1}}{x_{n+1}^{v_1}} \cdots \frac{x_n^{v_n}}{x_{n+1}^{v_n}} \\ &= x_{n+1}^d \sum_{0}^d \sum_{v \in \mathbb{N}^n : |v| = i} a_v \frac{x_1^{v_1} \cdots x_n^{v_n}}{x_{n+1}^{v_1 + \cdots + v_n}} \\ &= \sum_{0}^d \sum_{v \in \mathbb{N}^n : |v| = i} x_{n+1}^{d-i} a_v \mathbf{x}^v = \sum_{0}^d x_{n+1}^{d-i} f_i. \end{aligned}$$

Note also $x_{n+1}^{d-i}f_i$ is homogeneous of degree d-i+i=d, hence $f^*=x_{n+1}^df_0+x_{n+1}^{d-1}f_1+\cdots+f_d$ is homogeneous of degree d. Note that $f^*=0$ if and only if f=0. Indeed if $f\neq 0$, Then $x_{n+1}^{d-i}f_i\neq 0$, furthermore any monomial in $x_{n+1}^{d-i}f_i$ is different from any monomial in $x_{n+1}^{d-j}f_j$ since their x_{n+1} -degree is d-i resp. d-j.

We observe the following facts about homogenization and de-homogenization.

Proposition 1.9.110. Let $f, g \in R[x_1, \ldots, x_n]$ and $F \in R[x_1, \ldots, x_{n+1}]$ be homogeneous.

1. $x_{n+1}^{\deg f + \deg g - \deg(f+g)}(f+g)^* = x_{n+1}^{\deg g}f^* + x_{n+1}^{\deg g}g^*$. Suppose additionally that R is an integral domain. Then $(fg)^* = f^*g^*$.

2.
$$(fg)_{*,i} = f_{*,i}g_{*,i} & (f+g)_{*,i} = F_{*,i} + G_{*,i}$$
.

3.
$$(f^*)_* = f$$
.

4. Let
$$r := \max \left(\left\{ j \ge 0 : x_{n+1}^j \mid F \right\} \right)$$
. Then $x_{n+1}^r(F_*)^* = F$

Proof. 1. For the first identity one finds that

$$x_{n+1}^{\deg f + \deg g - \deg(f+g)}(f+g)^* = x_{n+1}^{\deg f + \deg g - \deg(f+g) + \deg(f+g)} \left[f\left(\frac{x_1}{x_{n+1}}, \dots, \frac{x_n}{x_{n+1}}\right) + g\left(\frac{x_1}{x_{n+1}}, \dots, \frac{x_n}{x_{n+1}}\right) \right]$$

$$= x_{n+1}^{\deg g} \left[x_{n+1}^{\deg f} f\left(\frac{x_1}{x_{n+1}}, \dots, \frac{x_n}{x_{n+1}}\right) \right] + x_{n+1}^{\deg f} \left[x_{n+1}^{\deg g} g\left(\frac{x_1}{x_{n+1}}, \dots, \frac{x_n}{x_{n+1}}\right) \right]$$

$$= x_{n+1}^{\deg g} f^* + x_{n+1}^{\deg f} g^*.$$

For the second see that

$$(fg)^* = x_{n+1}^{\deg f + \deg g} f\left(\frac{x_1}{x_{n+1}}, \dots, \frac{x_n}{x_{n+1}}\right) g\left(\frac{x_1}{x_{n+1}}, \dots, \frac{x_n}{x_{n+1}}\right)$$

$$= x_{n+1}^{\deg f} f\left(\frac{x_1}{x_{n+1}}, \dots, \frac{x_n}{x_{n+1}}\right) x_{n+1}^{\deg g} g\left(\frac{x_1}{x_{n+1}}, \dots, \frac{x_n}{x_{n+1}}\right) = f^*g^*.$$

- 2. This follows from evaluation being a ring homomorphism.
- 3. Indeed

$$(f^*)_* = \left(\sum_{0}^{d} x_{n+1}^{d-i} f_i\right)_* = \sum_{0}^{d} f_i = f.$$

4. Write $F = \sum_{v \in \mathbb{N}^{n+1}} a_v \mathbf{x}^v$. Note that if $x_{n+1}^j \mid F$, then $F = x_{n+1}^j Q$ for some $Q \in R[x_1, \ldots, x_{n+1}]$. By Lemma 1.9.103 1. Q is homogeneous of degree d-j where $d := \deg F$. Then x_{n+1}^j divides every term F. Set

$$d' = \deg F(x_1, \dots, x_n, 1) = \max_{v \in \mathbb{N}^{n+1} : a_v \neq 0} \sum_{i=1}^{n} v_i = \max_{v \in \mathbb{N}^{n+1} : a_v \neq 0} d - v_{n+1}.$$

For some $w \in \mathbb{N}^{n+1}$ with $a_w \neq 0$, $w_{n+1} = r$. Then $d' = d - w_{n+1} = d - r$, since if there were a $u \in \mathbb{N}^{n+1}$ with $a_u \neq 0$ and $u_{n+1} < r$ then $x_{n+1}^r \nmid a_u x_{n+1}^{u_{n+1}}$. As F is homogeneous $d = \sum_{i=1}^{n+1} v_i$ for every $v \in \mathbb{N}^n$ with $a_v \neq 0$, hence $d' = -r + \sum_{i=1}^{n+1} v_i$. We get

$$x_{n+1}^{r}(F_{*})^{*} = \sum_{v \in \mathbb{N}^{n}} a_{v} x_{1}^{v_{1}} \cdots x_{n}^{v_{n}} x_{n+1}^{d'+r-\sum_{0}^{n} v_{i}}$$

$$= \sum_{v \in \mathbb{N}^{n}} a_{v} x_{1}^{v_{1}} \cdots x_{n}^{v_{n}} x_{n+1}^{\sum_{1}^{n+1} v_{i}-r+r-\sum_{0}^{n} v_{i}}$$

$$= \sum_{v \in \mathbb{N}^{n}} a_{v} x_{1}^{v_{1}} \cdots x_{n}^{v_{n}} x_{n+1}^{v_{n+1}} = F.$$

Corollary 1.9.111. Suppose R is an integral and consider $F \in R[x_1, ..., x_{n+1}]$ a homogeneous polynomial. Then a factorization of F determines a factorization of F_* up to a factor x_{n+1}^r . If R = K an algebraically closed field and $F \in K[x,y]$ then F factors into a product of linear factors.

Proof. Indeed, $F = x_{n+1}^r Q$ for some homogeneous $Q \in R[x_1, \ldots, x_n, x_{n+1}]$. Then suppose $Q = q_1 \cdots q_l$ for some $q_1, \ldots, q_l \in R[x_1, \ldots, x_n, x_{n+1}]$. Then $F_* = q_{1*} \cdots q_{l*}$. Conversely, if $F_* = q_1 \cdots q_l$, then $F = x_{n+1}^* q_1^* \cdots q_l^*$.

For the second statement we can again write $F = y^r Q$ for some homogeneous $Q \in K[x,y]$. Then $Q_* = a \prod_1^l (x - a_i)^{r_i}$ for some $a, a_1, \ldots, a_l \in K$ where $a \neq 0$. Then $F = y^r (F_*)^* = ay^r \prod_1^l (x - a_i y)^{r_i}$.

Proposition 1.9.112. Let R be an integral domain. Consider $f, g \in R[x_1, \ldots, x_n]$ homogeneous of degree d respectively degree d+1 with gcd(f,g) = 1. Then f+g is irreducible.

Proof. We proof that if f+g is reducible, then f and g has common factor. Let $a,b\in R[\mathbf{x}]$ with deg a, deg b>1 such that f+g=ab. We can write $a=\sum_m^M a_m$ and $b=\sum_l^L b_j$ where m,l>1 and $a_m,\ldots,a_M,b_l,\ldots,b_L\in R[\mathbf{x}]$ are homogeneous with degree being the index such that $a_m,a_M,b_l,b_L\neq 0$. Note that $d=\deg a_mb_l=m+l$. Note also that $d+1=\deg a_Mb_L=L+M$, hence (WLOG) L=l+1 and M=m. We thus find that $ab=a_mb_l+a_mb_{l+1}$. Then $f=a_mb_l$ and $g=a_mb_{l+1}$, hence f,g has a common factor a_m .

Definition 1.9.113. Let $I \subset R[x_1, \dots, x_{n+1} \text{ and } J \subset R[x_1, \dots, x_n]$. We define the *dehomogenization of I at* $i \in \{1, \dots, n+1\}$ and the *homogenization of J* to be

$$I_{*,i} = \{f_{*,i} : f \in I\} \text{ resp. } J^* := \langle \{f^* : f \in J\} \rangle \subset R[x_1, \dots, x_{n+1}].$$

We furthermore define $I_* := I_{*,n+1}$

Lemma 1.9.114. $I_{*,i}$ is an ideal. $I = \langle f_1, \dots, f_m \rangle$, then $I_{*,i} = \langle (f_1)_{*,i}, \dots, (f_m)_{*,i} \rangle$. If $J = \langle f \rangle$, then $J^* = \langle f^* \rangle$.

Proof. The first statement is a trivial consequence of evaluation being a ring homomorphism. The second statement is a matter of checking the definition. \Box

Example 1.9.115. Consider $I:=\langle y-x^2,z-x^3\rangle R[x,y,z]$, Note that $f:=z-xy=z-x^3-x(y-x^2)\in I$, hence $f^*=zw-xy\in I^*$, however $f^*\notin J:=\langle (y-x^2)^*,(z-x^3)^*\rangle=\langle yw-x^2,zw^2\rangle$, since any term containing z in a polynomial in J has w-degree ≥ 2 or y-degree ≥ 1 or x-degree ≥ 2 , therefor no polynomial in J can contain the term zw. We thus see that for a finitely generated ideal $I=\langle f_1,\ldots,f_m\rangle$, while trivially $\langle f_1^*,\ldots,f_m^*\rangle\subset I^*$, it is not necessarily the case that this holds with equality.

Lemma 1.9.116. *For every* $n \ge 1$, $m \ge 1$

$$\sum_{0}^{m} \binom{k+n}{n} = \binom{m+n+1}{n+1}$$

Proof. One readily verifies the m = 1 case. By induction we get that

$$\sum_{0}^{d+1} \binom{k+n}{n} = \binom{m+n+1}{n+1} + \binom{m+n+1}{n} = \binom{(m+1)+n+1}{n+1}.$$

Lemma 1.9.117. For every $n \ge 1$, $d \ge 0$, the set

$$\Delta_{n,d} := \left\{ v \in \mathbb{N}^n : \sum_{1}^n v_i = d \right\}.$$

is of size $\binom{d+n-1}{n-1}$.

Proof. Fix $n \ge 1$. In the case d = 0, then clearly $\Delta_{n,0} = \{\mathbf{0}\}$, hence $\#\Delta = 1 = \binom{0+n-1}{n-1}$. Suppose the statement is true for some $d \ge 0$. Then for n = 1, we see that $\#\Delta_{1,d+1} = 1 = \binom{d+1+(1-1)}{0}$. So for arbitrary $n \ge 1$,

$$\Delta_{n+1,d+1} = \bigcup_{0}^{d+1} \Delta_j,$$

where

$$\Delta_j := \left\{ v \in \mathbb{N}^{n+1} : v_n = j, \sum_{i=0}^{n+1} v_i = d+1 \right\}.$$

Note that these are pairwise disjoint sets and that each for j, Δ_i is in bijection with

$$\left\{ v \in \mathbb{N}^n : \sum_{1}^{n} v_i = d + 1 - j \right\},\,$$

hence by induction $\#\Delta_j = \binom{d+1-j+n-1}{n-1}$ for $j=0,\ldots,d+1$. We thus have that

$$\#\Delta_{n+1,d+1} = \sum_{0}^{d+1} \#\Delta_{j} = \sum_{0}^{d+1} \binom{j+n-1}{n-1} = \binom{d+n+1}{n} = \binom{(d+1)+(n+1)-1}{(n+1)-1}.$$

Proposition 1.9.118. For a field K, the dimension of $V_K(d,n)$ is $\binom{d+n-1}{n-1}$.

Proof. With the notation of the above lemma $\{\mathbf{x}^v \in K[x_1, \dots, x_n] : v \in \Delta_{n,d}\}$ forms a basis of $V_K(d, n)$, hence by said lemma

$$\dim_K V_K(d,n) = \#\Delta_{n,d} = \binom{d+n-1}{n-1}$$

Example 1.9.119. dim $V_K(d,1) = 1$, dim $V_K(d,2) = d+1$, dim $V_K(d,3) = \binom{d+2}{2} = \frac{(d+2)(d+1)}{2}$

Proposition 1.9.120. *For each* $n \ge 1$, $d \ge 0$,

$$\dim K_{\leq d}[x_1, \dots, x_n] = \begin{pmatrix} d+n \\ d \end{pmatrix}$$

Proof. One readily verifies that $K_{\leq d}[x_1,\ldots,x_n] = \sum_{0}^{d} V_K(d,n)$, hence by Proposition 1.9.118 and Lemma 1.9.116.

$$\dim \, K_{\leq d}[x_1,\ldots,x_n] = \sum_0^d \dim \, V_K(d,n) = \sum_0^d \#\Delta_{n,j} = \sum_0^d \binom{j+n-1}{n-1} = \binom{d+n}{n} = \frac{(d+n)!}{d!n!} = \binom{d+n}{d!n!} = \binom{d+n}{d!} = \binom{d+n}{d!n!} = \binom{d+n}{d!n!} = \binom{d+n}{d!n!} = \binom{d+n}{d!n!} = \binom{d+n}{d!n!} = \binom{d+n}{d!n!} = \binom{d+n}{d!n!$$

Example 1.9.121. We in particular get for $d \geq 1$ that dim $K_{\leq d-1}[x,y] = \binom{d+1}{d-1} = \frac{(d+1)!}{(d+1-d+1)!(d-1)!} = \frac{d(d+1)}{2} = \sum_{1}^{d} i$.

Definition 1.9.122. Let K be any field and $f \in K[x_1, ..., x_n] \setminus 0$. A point $[v] \in \mathbb{P}^n$ is said to be a zero of f if $f(\lambda v) = 0$ for every $\lambda \in K \setminus 0$. We thus write f([v]) = 0.

Remark 1.9.123. For a fixed $[v] \in \mathbb{P}^n$ we thus get a well-defined evaluation function on the space of polynomials for which [v] is a zero, mapping to 0. If f is homogeneous of degree d, then if $v \in K \setminus 0$ is a zero of f, [v] is a zero of f. Indeed, for any non-zero $\lambda \in K \setminus 0$ and an $s = (s_1, \ldots, s_{n+1}) \in S^{n+1}$ where $S \supset K$ is a K-algebra. Then

$$f(\lambda s) = \sum_{v \in \mathbb{N}^n} a_v \lambda^{v_1} s_1^{v_1} \cdots \lambda^{v_{n+1}} s_{n+1}^{v_{n+1}} = \lambda^{\sum_{i=1}^{n+1} v_i} \sum_{v \in \mathbb{N}^n} a_v s_1^{v_1} \cdots s_{n+1}^{v_{n+1}} = \lambda^d f(s).$$

In particular, if v is a zero of f, then

$$f(\lambda v) = \lambda^d f(v) = 0 \implies f([v]) = 0.$$

Note that if $[v] \in \mathbb{P}^n$ is a zero of f, g then (f+g)([v]) = f([v]) + g([v]) = 0 and (fg)([v]) = f([v])g([v]) = 0, hence [v] is a zero of f+g and fg.

Lemma 1.9.124. Let K be an infinite field. Consider $f = \sum_{0}^{d} f_i \in K[x_1, \dots, x_{n+1}]$ where f_i is homogeneous of degree i. Let $[v] \in \mathbb{P}^n$ be a zero of f. Then [v] is a zero of f_i for each i.

Proof. Fix $v \in [v]$ and consider

$$g := f(tv_1, \dots, tv_{n+1}) = \sum_{i=0}^{f} t^i f_i(v) \in K[t].$$

Then $g(\lambda) = 0$ for every $\lambda \in K \setminus 0$, hence g = 0. This implies that $f_i(tv_1, \dots, tv_{n+1}) = t^i f_i(v) = 0$ for each i, meaning $f_i(\lambda v) = 0$ for each $\lambda \in K \setminus 0$. We thus conclude that $f_i([v]) = 0$.

Definition 1.9.125. Let R be any commutative ring. An ideal $I \subset R[x_1, \ldots, x_n]$ is called *homogeneous* if for every $f = \sum_{i=0}^{d} f_i \in R[\mathbf{x}]$ where f_i is homogeneous of degree i, then $f_i \in I$.

Lemma 1.9.126. For a commutative ring R and a finitely generated $I \subset R[x_1, \ldots, x_n]$, I is a homogeneous if and only if I is finitely generated by a finite set of homogeneous polynomials.

Proof. " \Longrightarrow ": Write $I = \langle f_1, \dots, f_m \rangle$ and $f_i = \sum_{0}^{d_i} f_{ij}$ with $f_i j$ being homogeneous of degree j. Then $I = \langle \{f_{ij}\} \rangle$. Indeed $I \subset \langle \{f_{ij}\} \rangle$ obviously and $\langle \{f_{ij}\} \rangle \subset I$ since $f_{ij} \in I$ by the assumption that I is homogeneous.

" \Leftarrow ": Suppose $I = \langle F_1, \dots, F_m \rangle$ for homogeneous F_i of degree d_i . Write $f = \sum_0^d f_i \in I$ with f_i homogeneous of degree i. Write also $f = \sum_1^m \lambda_i F_i$ for $\lambda_1, \dots, \lambda_m \in K[\mathbf{x}]$. If we consider $\lambda_i = \sum_0^{\delta_i} \lambda_{ij}$ with λ_{ij} homogeneous of degree j. Then $f_d = \sum_1^m \lambda_{i,d-d_i} F_i \in I$. By induction in number of non-zero homogeneous f_i , it follows that $f_i \in I$, hence I is homogeneous.

Remark 1.9.127. Note that it's very clear that an ideal is homogeneous if and only if it is (not necessarily finitely) generated by a set of homogeneous polynomials. We therefor note that the homogenization of an ideal is a homogeneous ideal.

Lemma 1.9.128. Let $I \subset R[x_1, ..., x_n]$ be a homogeneous ideal. Then I is prime if and only if $fg \in I$ implies $f \in I$ or $g \in I$ for every form $f, g \in R[\mathbf{x}]$.

Proof. " \Longrightarrow ": This follows from the definition of prime ideals.

" \Leftarrow ": Let $\lambda, \mu \in R[\mathbf{x}]$ such that $\lambda \mu \in I$. Write $\lambda = \sum_{0}^{d} \lambda_{i}$ and $\mu = \sum_{0}^{e} \mu_{i}$. Then $\lambda \mu = \sum_{i,j} \lambda_{i} \mu_{j}$. Since I is homogeneous $\lambda_{d} \mu_{e} \in I$, hence $\lambda_{d} \in I$ for $\mu_{e} \in I$. Suppose $\lambda_{d} \in I$. Then $(\lambda - \lambda_{d})\mu \in I$. By induction in the degree of $\lambda \mu$ it follows that $\lambda \in I$ or $\mu \in I$.

Lemma 1.9.129. If $I \subset R[x_1, \ldots, x_n]$ is prime, then $I^* \subset R[x_1, \ldots, x_{n+1}]$ is prime

Proof. Let $a,b \in R[x_1,\ldots,x_{n+1}]$ such that $ab \in I^*$. Then $a_*b_*=(ab)_* \in I$, hence $a_* \in I$ or $b_* \in I$. WLOG $a_* \in I$. Then $(a_*)^* \in I^*$, meaning for a suitable $r \geq 0$, $a = x_{n+1}^r(a_*)^* \in I^*$.

Proposition 1.9.130. *If* $I \subset R[x_1, ..., x_n]$ *is homogeneous, then* rad(I) *is homogeneous.*

Proof. Let $f = \sum_{0}^{d} f_{i} \in \operatorname{rad}(I)$. We must prove that $f_{i} \in \operatorname{rad}(I)$. Note that $f^{n} = f_{d}^{n} + r \in I$ where deg r < dn. Then $f_{d}^{n} \in I$, hence $f_{d} \in \operatorname{rad}(I)$. We thus have that $f - f_{d} \in \operatorname{rad}(I)$ by induction degree it follows that $f_{i} \in \operatorname{rad}(I)$ for the remaining i.

Lemma 1.9.131. If $\{I_{\alpha}\}_{{\alpha}\in A}$ is a family of homogeneous ideals in $R[x_1,\ldots,x_n]$, then so is $\sum_{{\alpha}\in A}I_{\alpha}$ and $\bigcap_{\alpha}I_{\alpha}$.

Proof. Indeed, for $(f_{\alpha}) \in \bigoplus_{\alpha \in A} I_{\alpha}$, we may for some $d \geq 0$ write $(f_{\alpha}) = (\sum_{i=0}^{d} f_{\alpha,i})$, where $f_{\alpha,i}$ is homogeneous of degree i for each i and α . Then

$$\sum_{\alpha \in A} f_{\alpha} = \sum_{0}^{d} \sum_{\alpha \in A} f_{\alpha,i}.$$

Note that since each I_{α} is homogeneous $f_{\alpha,i} \in I_{\alpha}$. Then $\sum_{\alpha \in A} f_{\alpha,i} \in \sum_{\alpha \in A} I_{\alpha}$, which means $\sum_{\alpha \in A} I_{\alpha}$ is homogeneous.

Consider $f = \sum_{i=0}^{d} f_i \in \bigcap_{\alpha \in A} I_{\alpha}$. Then for each $\alpha \in A$, $f \in I_{\alpha}$, hence $f_i \in I_{\alpha}$. We thus have that $f_i \in \bigcap_{\alpha \in A} I_{\alpha}$, which means $\bigcap_{\alpha \in A} I_{\alpha}$ is homogeneous.

Lemma 1.9.132. Let $I, J \subset R[x_1, ..., x_n]$ be homogeneous ideals. Then IJ is homogeneous.

Proof. Let $f = \sum_{0}^{d} f_i \in I$ and $g = \sum_{0}^{e} g_j \in J$. Then each $f_i \in I$ and each $g_j \in J$, meaning $f_i g_j \in IJ$ for each $0 \le i \le d$ and $0 \le j \le e$. Then since $fg = \sum_{k=0}^{d+e} \sum_{i,j:i+j=k} f_i g_j$ where $\sum_{i,j:i+j=k} f_i g_j$ is a homogeneous polynomial of degree k for each $0 \le k \le d + e$ we get that IJ is homogeneous.

Definition 1.9.133. Let $I \subset R[x_1, ..., x_n]$ be a homogeneous ideal. An element $\alpha \in R[\mathbf{x}]/I$ is called *homogeneous of degree* d if there is a homogeneous polynomial of degree d, $f \in R[\mathbf{x}]$, such that $\alpha = f + I$.

Lemma 1.9.134. Let $I \subset R[x_1, ..., x_n]$ be a homogeneous polynomial. Let $\alpha \in R[\mathbf{x}]/I$. Then for some unique $d \geq 0$, there are unique $\alpha_i \in R[\mathbf{x}]/I$, $i \in \{0, ..., d\}$ homogeneous of degree i such that

$$\alpha = \sum_{i=0}^{d} \alpha_i.$$

Proof. Existence: Let $f+I \in R[\mathbf{x}]$, then $f = \sum_0^d f_i$ where f_i is homogeneous of degree i for each i. Then we are done picking $\alpha_i := f_i + I$. Uniqueness: Suppose we are given two such representations $\sum_0^d (f_i + I) = \sum_0^d (g_i + I)$ (we can always let d be the largest of the two degrees obtained from each respective representation and then set undefined forms to be equal to 0). Then $f_i - g_i$ is a form of degree i for each i, hence $f_i - g_i \in I$ using the fact that I is homogeneous. Consequently $f_i + I = g_i + I$ for each i.

Remark 1.9.135. Consider $V_R(d, n, I) = \{\alpha \in R[\mathbf{x}]/I : \alpha \text{ homogeneous of degree } d\}$ is an R-submodule of $R[\mathbf{x}]/I$ finitely generated by $\{\mathbf{x}^v + I : |v| = d\}$. In particular $V_K(d, n, I)$

is a finite dimensional vector space for fields K. In general, it takes some work to say anything about the dimension of this vector space, below we give an example in the case n = 3 and d > n This is exercise 4.10.

Example 1.9.136.

Lemma 1.9.137. Let $f \in K[x_1, ..., x_n]$ be a non-zero form of degree d. Then f_* is non-zero.

Proof.
$$0 \neq f = x_{n+1}^r(f_*)^*$$
 for some $r \geq 0$, hence $(f_*)^* \neq 0$, so by Remark 1.9.109, $f_* \neq 0$.

1.9.15 Multi- and Bihomogeneous Polynomials

Definition 1.9.138. Let $\{x_{ij}: 1 \leq i \leq m, 1 \leq j \leq n_i\}$ be algebraically independent variables over a ring R. A polynomial in $R[\mathbf{x}]$ is called an m-homogeneous polynomial or an m-form of m-degree $(d_1, \ldots, d_m) \in \mathbb{Z}_{\geq 0}^m$, if it is form of degree d_i when seen as an element in $R[x_{kj}: k \neq i][x_{i1}, \ldots, x_{in_i}]$ for each i. When m = 2 an 2-form is called a bihomogeneous polynomial or a biform of bidegree (d_1, d_2) .

Lemma 1.9.139. When the same notation as above a polynomial $f \in K[\mathbf{x}] \setminus 0$ of degree d has unique decomposition

$$f = \sum_{(i_1, \dots, i_m): \sum_1^m i_j \le d} f_{i_1, \dots, i_m},$$

where $f_{i_1,...,i_m}$ is an m-form of m-degree $(i_1,...,i_m)$ such that for some $(i_1,...,i_m)$ with $\sum_{i=1}^{m} i_i = d$, $f_{i_1,...,i_m} \neq 0$.

Proof. Write

$$f = \sum_{(i_1, \dots, i_m): \sum_{1}^{m} i_j \le d} \sum_{\substack{\mathbf{v} \in \prod_{1}^{m} \mathbb{N}^{n_k}: \\ \forall k, \sum v_{kj} = i_k}} a_{\mathbf{v}} \mathbf{x_1}^{v_1} \cdots \mathbf{x_m}^{v_m},$$

each monomial in $f_{i_1,...,i_m}$ is a homogeneous of degree i_k in $R[x_{kj}:k\neq i][x_{i1},...,x_{in_i}]$ for each k, hence $f_{i_1,...,i_m}$ is m-homogeneous of m-degree $(i_1,...,i_m)$. Uniqueness follows from $\{\mathbf{x^v}\}$ being linearly independent over R.

Definition 1.9.140. For an $f \in R[\mathbf{x_1}, \dots, \mathbf{x_m}]$ we say that $([v_1], \dots, [v_m]) \in \mathbb{P}^{n_1} \times \mathbb{P}^{n_m}$ is a zero of f if for every $(\lambda_1, \dots, \lambda_m) \in K^m$, $\lambda_i \neq 0$, $f(\lambda_1 v_1, \dots, \lambda_m v_m) = 0$.

Remark 1.9.141. If f were an m-form of m-degree (d_1,\ldots,d_m) note that $f(\lambda_1v_1,\ldots,\lambda_mv_m)=\left(\prod_{i=1}^m\lambda_i^{d_i}\right)f(v_1,\ldots,v_m)$. Hence if (v_1,\ldots,v_m) is a zero of f, then so is $([v_1],\ldots,[v_m])$.

Definition 1.9.142. An ideal $I \subset R[\mathbf{x_1}, \dots, \mathbf{x_m}]$ is called m-homogeneous if for each $f = \sum_{i_1, \dots, i_m} f_{i_1, \dots, i_m} \in I$, $f_{i_1, \dots, i_m} \in I$

Remark 1.9.143. The above is equivalent to I being a homogeneous ideal in $R[\mathbf{x_1}, \dots, \widehat{\mathbf{x_k}}, \dots, \mathbf{x_m}]$ for each k. Any result proven about homogeneous ideals therefor naturally generalizes to m-homogeneous ideals.

1.9.16 Differentiation of Polynomials

Definition 1.9.144. We define differentiation (with respect to x) in polynomial ring R[x] as the R-module map

$$D_x: R[x] \to R[x]$$

mapping 1 to 0 and x^n to x^{n-1} for $n \ge 1$. For a polynomial $f \in R[x]$, we call the polynomial $D_x f$ the derivative of f (with respect to x), which we may denote by f'.

Remark 1.9.145. One easily checks that $D_x fg = (D_x f)g + f(D_x g)$, i.e. that is satisfies the Leibniz rule. It also satisfies the chain rule, i.e.

$$D_x(f(g)) = (D_x g) \cdot (D_x f)(g).$$

By definition **over an integral domain of characteristic** 0, $\deg f' = \deg f - 1$ when $\deg f \geq 1$. In positive characteristic this may not be the case. For instance, when char R = p > 0, we get that $D_x x^p = p x^{p-1} = 0$. We can also come up with pathological examples over commutative rings of characteristic 0. Indeed take $R = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$ with the usual structure of product ring. Then $D_x(1,0)x^2 = (2,2)(1,0)x = (0,2)(1,0)x = 0$.

Definition 1.9.146. In a polynomial ring $R[x_1, ..., x_n]$, the partial derivative of f with respect to x_i is the polynomial $D_{x_i}f$, where

$$D_{x_i}: R[x_1, \dots, x_n] = R[x_1, \dots, x_{i-1}, \widehat{x_i}, x_{i+1}, x_n][x_i] \rightarrow R[x_1, \dots, x_n] = R[x_1, \dots, x_{i-1}, \widehat{x_i}, x_{i+1}, x_n][x_i],$$

' is differentiation with respect to x_i . We sometimes denote it by $\frac{\partial f}{\partial x_i} := \frac{\partial}{\partial x_i} f := f_{x_i}$.

Lemma 1.9.147. Let T be translation of one variable, x_1 say, by some element $a \in K$. Then $D_{x_i}T = TD_{x_i}$. Hence in general translation commutes with partial derivatives.

Proof. Indeed,

$$(D_{x_1}T)f = D_{x_1}f(x_1+a,x_2,\ldots,x_n) = (D_{x_1}(x_1+a))\cdot(D_{x_1}f)(x_1+a,x_2,\ldots,x_n) = (TD_{x_1})f.$$

(Here we implicitly use that differentiation commutes with permutation of variables). \Box

Lemma 1.9.148. (Euler's theorem) Let R be an integral domain, $f \in R[x_1, \ldots, x_n] \setminus 0$ be homogeneous of degree d > 0. Then

$$\sum_{1}^{n} x_{i} \frac{\partial f}{\partial x_{i}} = df.$$

Proof. Let $a_v \mathbf{x}^v$ be a term of f. Then

$$\frac{\partial}{\partial x_i} a_v \mathbf{x}^v = \begin{cases} v_i a_v \mathbf{x}^{v - e_i} & \text{if } v_i > 0\\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{1}^{n} x_{i} \frac{\partial}{\partial x_{i}} a_{v} \mathbf{x}^{v} = \sum_{i:v_{i}>0} v_{i} a_{v} x_{i} \mathbf{x}^{v-e_{i}} = \left(\sum_{i:v_{i}>0} v_{i}\right) a_{v} x^{v} = da_{v} \mathbf{x}^{v}.$$

It thus follows that

$$\sum_{1}^{n} x_{i} \frac{\partial f}{\partial x_{i}} = \sum_{1}^{n} x_{i} \sum_{v \in \mathbb{N}^{n}} \frac{\partial}{\partial x_{i}} a_{v} \mathbf{x}^{v} = \sum_{v \in \mathbb{N}^{n}} \sum_{1}^{n} x_{i} \frac{\partial}{\partial x_{i}} a_{v} \mathbf{x}^{v} = d \sum_{v \in \mathbb{N}^{n}} a_{v} \mathbf{x}^{v} = df.$$

We provide a lemma which alleviate some ugly cases in characteristic p > 0 cases

Lemma 1.9.149. Let R be an integral domain of characteristic p > 0. Let $f \in R[x_1, \ldots, x_n]$ be a non-constant polynomial such that $f_{x_i} = 0$ for each i. Then $f = g(x_1^p, \ldots, x_n^p)$ for some g.

Proof. For any $k \in \mathbb{Z}$, let k_R denote the image of k in R. Consider the case where n=1. Write $f=\sum_0^d a_i x^i$. Then $0=f_x=\sum_1^d i_R a_i x^{i-1}$. For each i, we then get that $i_R a_i=0$, hence $a_i=0$ or $i_R=0$. If i < p, then $i_R \ne 0$, hence $a_i=0$. We furthermore have that if $a_i \ne 0$ then $p \mid i$ It thus follows that $f=\sum_1^k a_{jp} x^{jp}$, where k is chosen such that d=kp. Hence picking $g=\sum_1^k a_{jp} x^j$ we are done. We prove the general case by induction using the fact that char $R[x_1,\ldots,x_n]=p$, $R[x_1,\ldots,x_{n+1}]\simeq R[x_1,\ldots,x_n][x_{n+1}]$ in conjunction with the validity of the 1-variable case.

1.10 Ring Extensions and Algebras over Rings

We proceed with considerations of the theory of algebras over rings in conjunction with some of the theory modules already developed. We could have noted this earlier, but it is more relevant to note it now.

1.10.1 Finitely Generated Ring Extensions

Definition 1.10.1. A ring extension $S \supset R$ is said to be *module-finite (over R)* if S is finitely generated as an R-module.

Definition 1.10.2. A ring extension $S \supset R$ is a said to be *finitely generated* R-algebra or ring-finite if $S = R[s_1, \ldots, s_n]$ for suitable $s_1, \ldots, s_n \in S$.

Proposition 1.10.3. Let $S \supset R$ be a ring-finite ring extension. Then

$$S \simeq R[x_1, \dots, x_n]/I,$$

for some $n \ge 1$ and some ideal $I \subset R[x_1, \dots, x_n]$.

Proof. For suitable $s_1, \ldots, s_n \in S$, $S = R[s_1, \ldots, s_n]$, hence $\operatorname{ev}_{s_1, \ldots, s_n} : R[x_1, \ldots, x_n] \to S$ is a surjective R-algebra homomorphism. Then by the first isomorphism theorem $S \simeq K[\mathbf{x}]/\ker \operatorname{ev}_{s_1, \ldots, s_n}$.

Proposition 1.10.4. Let $S \supset R$ is a ring extension that is also a finitely generated R-module. Then S is a finitely generated R-algebra.

Proof. For suitable $s_1, \ldots, s_n \in S$, $S = \sum_{1}^{n} Rs_i$. We prove that $S = R[s_1, \ldots, s_n]$. We already know that $S \supset R[s_1, \ldots, s_n]$. Let $s \in S$. Then $s = \sum_{1}^{n} r_i s_i$ for suitable $r_1, \ldots, r_n \in R$, hence $s \in R[s_1, \ldots, s_n]$.

Example 1.10.5. The converse implication of the above proposition is clearly not true. Consider for instance $R[x_1, \ldots, x_n] \supset R$. given $f_1, \ldots, f_m \in R[\mathbf{x}]$. If these are all 0, clearly $R[\mathbf{x}] \supseteq \sum_{1}^{m} Rf_i$. Otherwise putting $D = \max_{i \in \{1, \ldots, m\}} \{\deg f_i\}$, we see that for $r_1, \ldots, r_m \in R$,

$$\label{eq:rifine} \deg \; \sum_{1}^{m} r_i f_i \leq D < D + 1 = \deg \; x_1^{D+1},$$

hence $x_1^{D+1} \notin \sum_{i=1}^m Rf_i$, hence $R[\mathbf{x}] \supseteq \sum_{i=1}^m Rf_i$.

Definition 1.10.6. A ring extension $L \supset K$ is called a *field extension (over K)* if both L and K are fields.

Let $S \supset R$ be a ring extension where S is an integral domain. For $s_1, \ldots, s_n \in S$, $R[s_1, \ldots, s_n]$ is also an integral domain. We denote the fraction field of $R[s_1, \ldots, s_n]$ by $R(s_1, \ldots, s_n)$

Definition 1.10.7. A field extension $L \supset K$ is said to be *finite*, if there exist a_1, \ldots, a_n such that $L = K(a_1, \ldots, a_n)$.

Lemma 1.10.8. Let K be a field. Consider $K[x_1, \ldots, x_n]$ as a subring of $K[\mathbf{x}, y_1, \ldots, y_m]$ Then $K(x_1, \ldots, x_n)(y_1, \ldots, y_m) = K(x_1, \ldots, x_n, y_1, \ldots, y_m)$.

Proof. Clearly $K(\mathbf{x}) \subset K(\mathbf{x}, \mathbf{y})$ and one easily verifies that this is a subfield of $K(\mathbf{x}, \mathbf{y})$. To be very precise, this means $K(\mathbf{x}, \mathbf{y}) \supset K(\mathbf{x})$ is a ring extension. Hence $K(\mathbf{x}, \mathbf{y}) \supset K(\mathbf{x})[\mathbf{y}]$. This means $K(\mathbf{x}, \mathbf{y}) = Q(K(\mathbf{x}, \mathbf{y})) \supset Q(K(\mathbf{x})[\mathbf{y}]) = K(\mathbf{x})(\mathbf{y})$.

Remark 1.10.9. Of course this statement What?

Lemma 1.10.10. Consider $L := K(x_1, \ldots, x_n)$ and $R := K\left[\frac{a_1}{b_1}, \ldots, \frac{a_m}{b_m}\right]$ for $\frac{a_1}{b_1}, \ldots, \frac{a_m}{b_m} \in K(\mathbf{x})$. Then there is a $b \in K[\mathbf{x}]$ such that $b^d z \in K[\mathbf{x}]$ for every $z \in R$ for some $d \geq 0$.

Proof. If $lcm(b_1, \ldots, b_m) = 1$ the statement is trivial. Set $b := lcm(b_1, \ldots, b_m)$ and assume $deg \ b > 0$. Let $z \in R$. If z = 0, then $b^0z \in K[\mathbf{x}]$. Suppose $z \neq 0$. For some $f \in K[y_1, \ldots, y_m] \setminus 0$, $z = f\left(\frac{a_1}{b_1}, \ldots, \frac{a_m}{b_m}\right)$. Set $d := deg \ f$. Let $v \in \mathbb{N}^m$ with $|v| \leq d$. Then

$$\prod_1^m b_i^{v_i} \mid \prod_1^m b^{v_i} = b^{|v|} \text{ and } b^{|v|} \mid b^d \implies \prod_1^m b_i^{v_i} \mid b^d \implies b^d \prod_1^m \left(\frac{a_i}{b_i}\right)^{v_i} \in K[\mathbf{x}] \implies b^d z \in K[\mathbf{x}].$$

Proposition 1.10.11. Consider $L := K(x_1, ..., x_n) \supset K$. Then L is a finite field extension over K, but not a finitely generated K-algebra.

Proof. The first statement is obvious as $K(x_1,\ldots,x_n)$ is finitely generated as field extension over K by $x_1,\ldots,x_n\in K(x_1,\ldots,x_n)$. To prove the second statement, let $\frac{a_1}{b_1},\ldots,\frac{a_m}{b_m}\in K(\mathbf{x})$. Set $b:=\mathrm{lcm}(b_1,\ldots,b_m)$. Then there is a $c\in K[\mathbf{x}]$ such that $c\nmid b^d$ for any $d\geq 0$, since There are infinitely many irreducible pol. over K and $K[\mathbf{x}]$ is a UFD, hence $b^d\frac{1}{c}\notin K[x]$ for any $d\geq 0$. By lemma 1.10.10, it follows that $\frac{1}{c}\notin K\left[\frac{a_1}{b_1},\ldots,\frac{a_m}{b_m}\right]$, hence $K(\mathbf{x})\supsetneq K\left[\frac{a_1}{b_1},\ldots,\frac{a_m}{b_m}\right]$. This means $K(\mathbf{x})$ is not a finitely generated K-algebra.

Lemma 1.10.12. These finiteness conditions are transitive, i.e. the following three statements are true:

- 1. Let $T \supset S, S \supset R$ be module-finite. Then $T \supset R$ is module-finite.
- 2. Let $T \supset S$, $S \supset R$ be ring-finite. Then $T \supset R$ is ring-finite.
- 3. Let $M \supset L$, $L \supset K$ be finite field extensions. Then $M \supset K$ is a finite field extension.

Proof. 1. We can find $s_1, \ldots, s_n \in S$ such that $S = \sum_{1}^{n} R s_i$ and $t_1, \ldots, t_m \in T$ such that $T = \sum_{1}^{m} S t_i$. Let $t \in T$. Then there are $a_1, \ldots, a_m \in S$ such that $t = \sum_{1}^{m} a_i t_i$. For each $i, a_i = \sum_{j=1}^{n} b_{ij} s_j$ for suitable $b_{ij} \in R$, hence

$$t = \sum_{1}^{m} \sum_{1}^{n} b_{ij} t_i s_j \in \sum_{1}^{n} \sum_{1}^{m} Rt_i s_j.$$

Hence T is finitely generated as an R-module by the elements of $\{t_is_j: i \in \{1, \ldots, m\}, j \in \{1, \ldots, n\}\}$. 2. We can find $s_1, \ldots, s_n \in S$ such that $S = R[s_1, \ldots, s_n]$ and $t_1, \ldots, t_m \in T$ such that $T = S[t_1, \ldots, t_m]$. Let $t \in T$. Then there are $a_v \in S$ such that

$$t = \sum_{v \in \mathbb{N}^m} a_v t_1^{v_1} \cdots t_m^{v_m}.$$

For each $v \in \mathbb{N}^m$,

$$a_v = \sum_{w \in \mathbb{N}^n} b_{vw} s_1^{w_1} \cdots s_n^{w_n} a_v$$

for suitable $b_{vw} \in R$, hence

$$t = \sum_{v \in \mathbb{N}^m} \sum_{w \in \mathbb{N}^n} b_{vw} t_1^{v_1} \cdots t_m^{v_m} s_1^{w_1} \cdots s_n^{w_n} \in R[s_1, \dots, s_n, t_1, \dots, t_m].$$

Hence T is finitely generated as an R-algebra by the elements of $s_1, \ldots, s_n, t_1, \ldots, t_m \in T$. 3. There are $\alpha_1, \ldots, \alpha_m \in M$ such that $M = L(\alpha_1, \ldots, \alpha_m)$ and $\beta_1, \ldots, \beta_n \in L$ such that $L = K(\beta_1, \ldots, \beta_n)$. Then

$$M = L(\alpha_1, \dots, \alpha_m) = K(\beta_1, \dots, \beta_n)(\alpha_1, \dots, \alpha_m) = K(\alpha_1, \dots, \alpha_m, \beta_1, \dots, \beta_n).$$

1.10.2 Integral- & Algebraic Extensions

Definition 1.10.13. Let $S \supset R$ be a ring extension. An element of $s \in S$ is said to be *integral (over R)* if it is algebraically dependent over R, i.e. there is a monic $f \in R[x] \setminus 0$ such that f(s) = 0.

Let $L \supset K$ be a field extension. An element of L is algebraic (over K) if it is integral over K. An element that is not algebraic over K is transcendental over K.

Remark 1.10.14. In the case R is a field, consider $d = \min(\{k > 0 : \exists f \in R[x] \setminus 0, f(s) = 0\})$. Let f_s be a polynomial of degree d vanishing on s. Consider another polynomial $g \in R[x] \setminus 0$ vanishing on s. We can write $g = qf_s + r$, where r = 0 or deg r < d. Then

$$r(s) = g(s) - q(s)f_s(s) = 0.$$

By minimality r=0, hence $f_s \mid g$. There f_s is the unique non-zero polynomial vanishing on s of minimal degree. We call this polynomial the defining polynomial of s over K. Note that ker $\operatorname{ev}_s = \langle f_s \rangle$, hence $R[s] \simeq R[x]/\langle f_s \rangle$. We refer to deg f_s as the degree of s over R. We can extend this result to the case where R is a UFD. By the same argument as before $f_s \mid g$ in Q(R)[x], hence since f is primitive, $f_s \mid g$ in R[x] by Lemma 1.9.96

Remark 1.10.15. Note that if $a_1, \ldots, a_n \in L \supset K$ are algebraic over $K(L \supset K)$ is a field extension), then

$$K[a_1,\ldots,a_n]=K(a_1,\ldots,a_n).$$

Indeed, in the case n=1, $K[a]\simeq K[x]/\langle f_a\rangle$. Then K[a] is a subfield of K(a), and since K(a) is the smallest subfield containing K[a], K[a]=K(a). By induction $K[a_1,\ldots,a_n]=K(a_1,\ldots,a_n)$, so it is sufficient to prove that $K(a_1,\ldots,a_n)[a_{n+1}]=K(a_1,\ldots,a_n)(a_{n+1})$. Since a_{n+1} is algebraic over K it is algebraic over $K(a_1,\ldots,a_n)$, hence by the base case, $K(a_1,\ldots,a_n)[a_{n+1}]=K(a_1,\ldots,a_n)(a_{n+1})$.

Example 1.10.16. Let R be an integral domain. Then $Q(R) \supset R$ is integral. Indeed consider $\alpha = \frac{a}{b} \in Q(R)$. Then α vanishes on $bx - a \in R[x] \setminus 0$

Lemma 1.10.17. Let $S \supset R$ be ring extension where S is an integral domain. Furthermore, let $s \in S$. The following are equivalent

- 1. s is integral over R.
- 2. $R[s] \supset R$ is module-finite.
- 3. There is a subring of S containing R[s], R' say, which is finitely generated as an R-module.

Proof. "1. \implies 2.": We may find $a_0, \ldots, a_{n-1} \in R$ such that

$$s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0} = 0.$$

It follows that $s^n \in \sum_1^{n-1} Rs^i$. By a simple induction argument it follows that $s^{n+j} \in \sum_1^{n-1} Rs^i$ for every $j \geq 0$. Let $\sum_1^m b_j s^j \in R[s]$. Then by the considerations prior to this, $\sum_1^m b_j s^j \in \sum_1^{n-1} Rs^i$, hence $R[s] = \sum_1^{n-1} Rs^i$.

"2. \implies 3.": Putting R' = R[s] we have such a subring of S.

"3. \implies 1.": We can write $R' = \sum_{i=1}^{n} a_i t_i$ for suitable $t_1, \ldots, t_n \in R[s] \setminus 0$. Then

$$st_i = \sum_{1}^{n} a_{ij} t_i$$

for suitable $a_{ij} \in R$. Note then that

$$s \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix} = (a_{ij}) \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix}.$$

This implies that s is a root of the characteristic polynomial

$$\det\left(x\mathbb{1}-(a_{ij})\right)\in R[x]\setminus 0$$

which is monic ref . It thus follows that s is integral over R.

Lemma 1.10.18. Consider a tower of ring extensions $T \supset S \supset R$ where T is a domain. Suppose T is integral over S and S is integral over R, then T is integral over R.

Proof. Let $t \in T$, then there is a monic $f = x^n + \sum_0^{n-1} a_i x^i \in S[x] \setminus 0$ such that f(t) = 0. By the above lemma $R' := R[a_1, \ldots, a_n, t] = R[a_1, \ldots, a_n][t] \supset R[a_1, \ldots, a_n]$ is module-finite. By the above lemma we also find that $R[a_1] \supset R$ is module-finite. Recursive usage of the above and the transitivity of module-finiteness thus implies that $R[a_1, \ldots, a_{n-1}] \supset R$ is module-finite and hence that $R' = R[a_1, \ldots, a_{n-1}, t] \supset R$ is module-finite. We have thus found a subring of T containing R[t], which is module-finite over R. Hence using the above lemma yet another time it follows that t is integral over R, hence T is integral over R.

Proposition 1.10.19. Let $S \supset R$ be an integral domain and a ring extension. Then

$$\{s \in S : s \text{ is integral over } R\}$$

is a subring S.

Proof. Let $a,b \in S$ be integral over R. We repeatably use Lemma 1.10.17. Note that b is integral over R[a] hence $R[a,b] \subset R$ is module-finite. Since $a+b,ab \in R[a,b]$, it follows that R[a,b] is a ring contained in S, containing R[a+b] and R[ab] that is module-finite over R, meaning a+b and ab are integral over R.

Lemma 1.10.20. If $S \supset R$ is module-finite then $S \supset R$ is integral.

Proof. Let $s \in S$. The ring S is a subring of S containing R[s] which is finitely generated as an R-module. It thus follows by Lemma 1.10.17 that s is integral over R. Hence $S \supset R$ is integral.

Lemma 1.10.21. Let $S \supset R$ be a ring extension with S an integral domain. Then $S \supset R$ is module-finite if and only if $S = R[s_1, \ldots, s_n]$ where $s_i \in S$ is integral over R.

Proof. " \Longrightarrow ": This follows from Lemma 1.10.20 " \Longleftrightarrow ": By assumption there are $s_1, \ldots, s_n \in S$ such that $S = R[s_1, \ldots, s_n]$. Since $s_i \in S$ is integral over R, it follows by Lemma 1.10.17 that $R[s_1] \supset R$ is module-finite and by induction $S = R[s_1, \ldots, s_n] \supset R$ is module-finite.

Lemma 1.10.22. Let $L \supset K$ be a field extension with K algebraically closed.

- 1. Every $f \in K[x] \setminus 0$ with $n := \deg f > 0$ has exactly n roots all in K.
- 2. If $a \in L$ is algebraic over K, then $a \in K$.
- 3. If $L \supset K$ is module-finite, then L = K.

Proof. 1. We proceed by induction in n. For n = 1, f has a root $a \in K$, and since f has exactly one root, this is the only root.

Suppose now f has degree n+1, then f has a root $a \in K$, hence f=(x-a)g for a polynomial $g \in K[x] \setminus 0$ with deg g=n. By induction g has exactly n roots in K. Using that K is an integral domain it follows that f has n+1 roots.

- 2. If $a \in L$ is algebraic over L, then there is a polynomial $f \in K[x] \setminus 0$ such that a is a root f. Since $V(f) \subset K$ by 1. it follows that $a \in K$.
- 3. If $L \supset K$ is module-finite, then it is algebraic by Lemma 1.10.20. Let $a \in L$. Then a is algebraic over K, hence $a \in K$ by 2. We thus get that L = K.

Lemma 1.10.23. *Let* K *be a field and set* L := Q(K[x]) = K(x). *Then*

- 1. $a \in L$ is integral then $a \in K[x]$.
- 2. There is no $f \in K[x] \setminus 0$ such that for every $a \in L$, $F^n a$ is integral over K[x] for some n > 0.

Proof. 1. We may write $a = \frac{f}{g}$ for $f, g \in K[x]$ with $g \neq 0$ and gcd(f, g) = 1. We can then find $a_0, \ldots, a_{n-1} \in K[x]$ such that

$$\frac{f^n}{g^n} + \sum_{i=0}^{n-1} a_i \frac{f^i}{g^i} = 0 \implies f^n = \sum_{i=0}^{n-1} a_i g^{n-i} f^i = g \sum_{i=0}^{n-1} a_i g^{n-(i+1)} f^i,$$

hence $g \mid f^n$, meaning $g \mid f$, hence $g \in K \setminus 0$. This implies that $a = \frac{f}{g} = g^{-1}f \in K[x]$. 2. By Proposition 1.10.11 $K(x) \supseteq R := K[z_1, \ldots, z_m]$ for any $z_1, \ldots, z_m \in K(x)$. Recall that we proved this by showing that for any $f \in K[x] \setminus 0$ there is some $c \in K[x]$ such that $f^d = f(x)$ for any $f \in K[x]$ for any $f \in$ **Proposition 1.10.24.** *Let* $L \supset K$ *be a field extension. The set*

$$\{a \in L : a \text{ is integral}/K\}$$

is a subfield of L.

Proof. We already know that it is a subring by Proposition 1.10.19. Let $a \in L \setminus 0$ be integral over K. Then there are $a_0, \ldots, a_{n-1} \in K$ such that

$$0 = a^n + \sum_{i=0}^{n-1} a_i a^i,$$

where choosing n minimal implies, $a_0 \neq 0$, hence $a\left(a^{n-1}(-a_0)^{-1}\sum_{1}^{n-1}a_ia^i\right) = 1$, implying a is a unit.

Proposition 1.10.25. Let $L \supset K$ be a module-finite field extension. Consider a subring R of L containing K as a subring. Then R is a field.

Proof. By Lemma 1.10.20, $L \supset K$ is algebraic. Let $r \in R \setminus 0$. Then r has a multiplicative inverse $r^{-1} \in L \setminus 0$. We can thus find $a_0, a_1, \ldots, a_{n-1} \in K$ such that

$$r^{-n} + \sum_{i=0}^{n-1} a_i r^{-i} = 0,$$

This implies that

$$r^{-1} = r^{n-1}r^{-n} = -\sum_{i=0}^{n-1} a_i r^{n-1} r^{-i} = -\sum_{i=0}^{n-1} a_i r^{n-1-i} \in R,$$

hence R is a subfield of L.

Theorem 1.10.26. Let $L \supset K$ be a ring-finite field extension generated by $a_1, \ldots, a_n \in L$. Then $L \supset K$ is module finite and hence also algebraic.

Proof. We use induction in n. For n=1, suppose L=K[a] for some $a\in L$. Consider $\rho=\operatorname{ev}_a:K[x]\to L$. Since K[x] is a PID add $\operatorname{result}!$, we find that $\ker \rho=\langle g\rangle$ for some $g\in K[x]$. Then $K[x]/\langle g\rangle\simeq K[a]=L$. We claim that $g\neq 0$

Proof of the claim: Suppose $K[x] \simeq K[a]$, then $K(x) \simeq K(a)$, but then L is not ring-finite over K, by Proposition 1.10.11 leading to a contradiction.

So we may WLOG assume g is monic. Then a is algebraic over K.

Assume the statement is true for some $n \geq 1$. Suppose $L = K[a_1, \ldots, a_n]$. Set $K' = K(a_1)$. Then by induction $L = K'[a_2, \ldots, a_{n+1}]$ is algebraic. Suppose a_1 is algebraic over K. Then $K' \supset K$ is algebraic, hence $L \supset K$ is algebraic. Suppose for a contradiction

that a_1 is not algebraic over K. We note that this implies that $K[a_1] \stackrel{\sigma}{\simeq} K[x]$ add reference!. We have identities

$$a_i^{n_i} + \sum_{j=0}^{n_i-1} \alpha_{ij} a_i^j = 0,$$

for each $i \geq 2$ for suitable $n_i \geq 1$, $\alpha_{ij} \in K'$. Let $\alpha \in K[a_1]$ be the common denominator of the α_{ij} . Let $M \geq \max_{i \in \{2,...,n+1\}} n_i$. Then

$$(\alpha a_i)^M + \sum_{j=0}^{n_i - 1} \alpha^{M-j} \alpha_{ij} (\alpha a_i)^j = 0,$$

hence $\alpha^M a_i$ is integral over $K[a_1]$. Let $z = \sum_{v \in \mathbb{N}^{n+1}} c_v a_1^{v_1} \cdots a_{n+1}^{v_{n+1}} \in L$. Then taking $N \geq 0$ sufficiently large we get that $\alpha^N z$ is integral over $K[a_1]$ by Proposition 1.10.19. However taking $z \in K(a_1)$, this implies that $\sigma(z) \in K(x)$ is a polynomial such that $\sigma(\alpha_1)^N \sigma(z)$ is integral over K[x], leading to a contradiction by Lemma 1.10.23. \square

Corollary 1.10.27. Let $L \supset K$ be a field extension where K is algebraically closed. Suppose also that there is a surjective K-algebra homomorphism from $K[x_1, \ldots, x_n]$ to L for some n > 0. Then K = L.

Proof. Let $\sigma: K[x_1,\ldots,x_n] \to L$ be a surjective K-algebra map. By Corollary 1.9.26 there are $a_1,\ldots,a_n\in L$ such that $\sigma=\operatorname{ev}_{a_1,\ldots,a_n}$. It thus follows that $L=\sigma(K[\mathbf{x}])=\operatorname{ev}_{a_1,\ldots,a_n}(K[\mathbf{x}])=K[a_1,\ldots,a_n]$, hence by the above theorem L is module-finite over K. It follows from Lemma 1.10.22 that L=K.

Corollary 1.10.28. Let K be algebraically closed and $I \subset K[x_1, \ldots, x_n]$ be a maximal ideal. Then $K[x_1, \ldots, x_n]/I = K$ (thinking about K as the canonical embedding of K in $K[\mathbf{x}]/I$). This implies $I = \langle x_1 - a_1, \ldots, x_n - a_n \rangle$.

Proof. The quotient map $\pi: K[\mathbf{x}] \to K[\mathbf{x}]/I$, $f \mapsto f+I$ is a canonically a surjective K-algebra homomorphism. It follows by the above corollary that $K[\mathbf{x}]/I = K$. Then for each $i, x_i + I = a_i + I$ for some $a_i \in K$, this means $J := \langle x_1 - a_1, \dots, x_n - a_n \rangle \subset I$. J is maximal by Corollary 1.9.39, hence J = I.

1.10.3 Field Extensions

Lemma 1.10.29. Let $L \supset K$ be a field extension and $a \in L$. Then a is module finite if and only if $\dim_K K[a] < \infty$. If a is algebraic, let d denote $\deg f_a$. Then $\{1, a, \ldots, a^{d-1}\}$ is a basis for K[a].

Proof. The first statement follows immediately from Proposition 1.10.17. Set $I = \langle f_a \rangle$. By Lemma 1.9.46, $\{1+I, x+I, \dots, x^{d-1}+I\}$ is a basis of $K[x]/I \stackrel{\overline{\operatorname{ev}_a}}{\simeq} K[a]$, since ev_a is a K-algebra homomorphism, it is in particular a K-linear map, hence $\{1, a, \dots, a^{d-1}\}$ is a basis of K[a]

Definition 1.10.30. If $L \supset K$ is a module finite field extension we define $[L : K] := \dim_K L$ to be *the degree of* L *over* K

Lemma 1.10.31. Let $L \supset K$ be a field extension. Then $L \supset K$ is module finite if and only if $L \supset K$ is a finite field extension generated by some $a_1, \ldots, a_n \in L$ that are algebraic over K.

Proof. " \Longrightarrow ": By Lemma 1.10.21 $L = K[a_1, \ldots, a_n]$ for suitable $a_1, \ldots, a_n \in L$ that are algebraic over K, hence $L \subset K[a_1, \ldots, a_n] \subset K(a_1, \ldots, a_n) \subset L$, hence $L = K(a_1, \ldots, a_n)$.

" \Leftarrow ": Suppose $L = K(a_1, \ldots, a_n)$ for some $a_i \in L$. If n = 1, then $L = K(a_1) = K[a_1]$ which is module finite over K due to Proposition 1.10.17. Set $L' = K(a_1, \ldots, a_n)$ which by induction is module finite over K. Note that a_{n+1} is algebraic over L', hence applying Proposition 1.10.17, $L \supset L'$ is module finite. By the transitive property of module finite extensions, it follows that $L \supset K$ is module finite.

Lemma 1.10.32. Let $L \supset K$ be a field extension and $f \in K[x]$ irreducible. Suppose there is an $a \in L$ such that f(a) = 0. Then $L \simeq K[x]/I$ where $I := \langle f \rangle$.

Proof. Consider the K-algebra map

$$\sigma := \operatorname{ev}_a : K[x] \to L$$

This induces an isomorphism

$$\overline{\sigma}: K[x]/\ker \sigma \simeq \operatorname{im} \sigma$$

 $\mu + \ker \sigma \mapsto \mu(a)$

Since K[x] is a PID, ker $\sigma = \langle f' \rangle$ for some f' and since $f \in \ker \sigma$ it follows that $f' \mid f$, hence $\langle f \rangle = \langle f' \rangle$ by the irreducibility of f. Note that K[x]/I is a field (cf. Lemma 1.9.52). Let $z = \frac{g(a)}{h(a)} \in K(a)$. Then since $h(a) \neq 0$, $f \nmid h$, hence $h + I \neq 0$. Then

$$z = \frac{g(a)}{h(a)} = \frac{\sigma(g)}{\sigma(h)} = \frac{\overline{\sigma}(g+I)}{\overline{\sigma}(h+I)} = \overline{\sigma}\left((g+I)(h+I)^{-1}\right) \in \operatorname{im}\overline{\sigma} = \operatorname{im}\sigma.$$

Lemma 1.10.33. Let $L \supset K$ be a field extension and $f \in K[x]$ an irreducible, monic polynomial. Suppose there is an $a \in L$ such that f(a) = 0. Set $L' := K[x]/I \simeq K(a)$, where $I := \langle f \rangle$

- 1. Suppose there is a $g \in k[x]$ that also vanishes on a. Then $f \mid g$.
- 2. identifying K canonically with a subfield of L' and K(a) with L' we find $f = (y (x + I))f_1$ for some $f_1 \in L[y]$.

Proof. 1. From the proof of the last lemma we learned that $ev_a(g) = 0$ if and only if $g \in I$, hence $f \mid g$.

2. Since x + I is a zero of f in L the result follows.

Theorem 1.10.34. (Existence Theorem for Splitting Fields) Let K be a field and $f \in K[x]$. There is a field L extending K such that f can be written as a product of linear polynomials over L

Proof. When deg f=1 the statement is trivial by taking K=L. If f is of degree d+1 for some $d\geq 1$, pick a monic irreducible factor of f, g say. Then over $L'=K[x]/\langle g\rangle$, $g=(y-(x+I))g_1$ for some $g_1\in L'[y]$. The $f=qg=qg_1(y-(x+I))$ for some $q\in L'[y]$ and the result follows by induction in the degree.

Definition 1.10.35. The above L is called the splitting field of f over K.

Lemma 1.10.36. Let K be a characteristic 0 field and $f \in K[x]$ irreducible monic. Let L be the splitting field of f over K and write $f = \prod_{i=1}^{d} (x - \alpha_i)$ for suitable $\alpha_i \in L$.

Proof. Suppose L is a field extension over K, and suppose there is an $\alpha \in L$ such that $(x - \alpha^2) \mid f$. Then g := Df also has α as a root. Then $g \nmid f$, hence by Lemma 1.10.33 f cannot be irreducible. In particular if L was the splitting field, and f has a multiple linear factor, then f is not irreducible. \Box

1.10.4 Theorem of the Primitive Element

Theorem 1.10.37. Let K be a characteristic 0 field and $L \supset K$ a module-finite extension. Then there is a $c \in L$ such that L = K(c).

Proof. Suppose L=K(a,b). Then there are monic irreducible polynomials $f,g\in K[x]$ such that f(a)=0 and g(b)=0. Let S be the splitting field of f and g. Write $f=(x-a)\prod_1^l(x-\alpha_i)$ and $g=(x-b)\prod_1^k(x-\beta_i)$. We may pick $\lambda\neq 0$ such that $c:=\lambda a+b\neq \lambda\alpha_i+\beta_j$ for any i,j, since $V_{ij}:=V(\alpha_it+\beta_j-(at+b))$ can have at most finitely many points. So

pick any $\lambda \notin \{0\} \cup \bigcup V_{ij}$. Set K' := K(c) and $h := g(c - \lambda x) \in K'[x]$. Note that h(a) = g(b) = 0 and $h(\alpha_i) = g(\lambda a + b - \lambda \alpha_i)$ and since $\lambda a + b - \lambda \alpha_i \neq \beta_j$ for any j, $h(\alpha_i) \neq 0$. Then $\gcd(f, h) = x - a \in K'[x]$, implying $a \in K'$, and so $b = c - \lambda a \in K'$. In conclusion, L = K(c).

Suppose $L = K(a_1, \ldots, a_{n+1})$ for some $n \ge 1$. By induction there are $\lambda_1, \ldots, \lambda_n \in K \setminus 0$, so that upon defining $c = \sum_{1}^{n} \lambda_i a_i$, $K(a_1, \ldots, a_n) = K(c)$, hence L = K(c, a) = K(c') by the first case.

1.10.5 Transcendence Degree & Transcendence Bases

Definition 1.10.38. Let $L \supset K$ be a field extension. We say that L has *transcendence* degree d over K if there is a set $X = \{a_1, \ldots, a_d\} \subset L$ such that X is algebraically independent over K and every other set $Y \subset L$ with more than n elements is algebraically dependent over K. We define

$$\operatorname{trdeg}_K L := \operatorname{trdeg} L = d.$$

If there is not such d we write $\operatorname{trdeg}_K L = \infty$.

A finite field extension over K of transcendence degree n is called an algebraic function field (over K) in n variables

Remark 1.10.39. If $\delta < d$ is a positive integer such that there are b_1, \ldots, b_{δ} that are algebraically independent, then a_1, \ldots, a_{δ} are algebraically independent over K, hence the transcendence degree of L over K is unique.

Definition 1.10.40. Let $L \supset K$ be a field extension. A set $X = \{a_1, \ldots, a_d\} \subset L$ is a *transcendence basis of L over K* if X is algebraically independent over K and $K(a_1, \ldots, a_d) \supset K$ is algebraic.

Remark 1.10.41. When $L \supset K$ is algebraic, then \emptyset is a transcendence basis of L over K.

Lemma 1.10.42. Let $L \supset K$ be a field extension and $X = \{a_1, \ldots, a_d\} \subset L$ be algebraically dependent. Consider an element $a \in L$. $X \cup \{a\}$ is algebraically dependent over K if and only if a is algebraic over $K(a_1, \ldots, a_d)$. Therefor $a_1, \ldots, a_d \in L$ forms a transcendence basis of L over K if and only if a_1, \ldots, a_d are algebraically independent over K and every $a \in L$ is algebraic over $K(a_1, \ldots, a_d)$.

Proof. " \Longrightarrow ": Let $f \in K[x_1, \ldots, x_{d+1}] \setminus 0$ be given such that $f(a_1, \ldots, a_d, a) = 0$. Then $f = \sum_{0}^{m} f_i x_{d+1}^i$, with $f_m \neq 0$. Since X is algebraically independent over K, this implies $f_m(a_1, \ldots, a_d) \neq 0$. Then

$$g := f_m(a_1, \dots, a_d)^{-1} f(a_1, \dots, a_d, x)$$

is non-zero, monic and has a as a root, implying a is algebraic over $K(a_1, \ldots, a_d)$.

" \longleftarrow ": There is some $f = y^m + \sum_0^{m-1} b_i y^i \in K(a_1, \ldots, a_d)[y] \setminus 0$ such that f(a) = 0.

Then $g := cf \in K[a_1, \ldots, a_d][y] \setminus 0$, where c is a common denominator of the b_i 's, hence

$$g = \sum_{0}^{m} g_i(a_1, \dots, a_d) y^i,$$

for suitable $g_i \in K[x_1, \dots, x_d]$, with $g_m = c \neq 0$. It follows that

$$h := \sum_{i=0}^{m} g_i y^i \in K[x_1, \dots, x_d, y],$$

such that $h(a_1, \ldots, a_d, a) = g(a) = 0$, hence $X \cup \{a\}$ is algebraically dependent over K.

Lemma 1.10.43. Let $L \supset K$ and $L' \supset K$ be field extensions. Suppose there is a surjective K-algebra homomorphism $\sigma: L \to L'$. Then $\operatorname{trdeg}_K L \ge \operatorname{trdeg}_K L'$.

Proof. Let $\alpha \in L'$ and set $n := \operatorname{trdeg} L$. Pick $\alpha_1, \ldots, \alpha_n \in L'$ and pick $\beta, \beta_1, \ldots, \beta_n \in L$ such that $\sigma(\beta), \sigma(\beta_i) = \alpha$. Pick $f \in K(\beta_1, \ldots, \beta_n)[x] \setminus 0$ be monic such that $f(\beta) = 0$. Let $\overline{\sigma}$ denote the restriction of $L[x] \to L'[x]$, the induced K-algebra map induced by σ to a K-algebra map $K(\beta_1, \ldots, \beta_n) \to K(\alpha_1, \ldots, \alpha_n)$. Then

$$\overline{\sigma}(f)(\alpha) = \overline{\sigma}(f)(\sigma(\beta)) = \sigma(f(\beta)) = \sigma(0) = 0,$$

and since $\overline{\sigma}(f)$ is monic, this shows that α is algebraic over $K(\alpha_1,\ldots,\alpha_n)$. So every sequence of n elements in L' are algebraically dependent over K by the prior lemma. It follows that $\operatorname{trdeg}_K L' \leq n = \operatorname{trdeg}_K L$.

Remark 1.10.44. Note that the assumption that X is algebraically independent over K is not necessary to prove " \Leftarrow ".

Lemma 1.10.45. Let $L \supset K$ be a finite field extension generated by $a_1, \ldots, a_d \in L$.

- 1. There is a subset of $X := \{a_1, \dots, a_r\}$ that is a transcendence basis for L over K.
- 2. Let $Y = \{a \in X : a \text{ is transcendental over } K(b_1, \ldots, b_s)\}$. If $b_1, \ldots, b_s \in L$ are algebraically independent over K, then for some $Z \subset Y$, $\{b_1, \ldots, b_s\} \cup Y$ is a transcendence basis of L over K

Proof. 1. If no subset of X is algebraically independent over K, then each a_i is algebraic over K, hence L is algebraic over K. This means that \emptyset is a transcendence basis for L over K.

Suppose now that there is a subset of $\{a_1,\ldots,a_r\}$ whose elements are algebraically independent over K. Let $Y\subset\{a_1,\ldots,a_r\}$ be a maximal subset of elements that are algebraically independent over K. After a permutation, we can write $Y=\{a_1,\ldots,a_k\}$ for some k< r. Then a_1,\ldots,a_k,a_i are algebraically dependent over K for each $i\in\{k+1,\ldots,r\}$. Then by Lemma 1.10.42, a_i is algebraic over $K(a_1,\ldots a_k)$ for each $i\in\{k+1,\ldots,r\}$. Then L is algebraic over $K(a_1,\ldots,a_k)$, implying Y is a transcendence basis of L over K.

2. We proceed by induction in k: if a_i is algebraic over $K(b_1, \ldots, b_s)$ for every $i \in \{1, \ldots, r\}$, then L is algebraic over $K(b_1, \ldots, b_s)$, hence $\{b_1, \ldots, b_s\}$ is a transcendence basis for L over K by Lemma 1.10.42.

Suppose the statement is true for some k < n. Consider WLOG $Y = \{a_1, \ldots, a_{k+1}\}$. By Lemma 1.10.42 b_1, \ldots, b_s, a_1 are algebraically independent over K. Every element in $X \setminus Y$ is algebraic over $K(b_1, \ldots, b_s, a_1)$, hence $Y' := \{a \in X : a \text{ is transcendental over } K\} \subset Y$. It thus follows by induction that for some $Z' \subset Y'$,

$$\{b_1,\ldots,b_s\}\cup\underbrace{\{a_1\}\cup Z'}_{=:Z}$$

is a transcendence basis of L over K.

Theorem 1.10.46. Let $L \supset K$ be a field extension. L has a transcendence basis $X = \{a_1, \ldots, a_d\}$ if and only if $\operatorname{trdeg}_K L = d$

Proof. " \Longrightarrow ": To prove this we make the following claim: L is algebraic over $K(b_1, \ldots, b_k, a'_{k+1}, \ldots, a'_d)$ for any $k \in \{0, \dots, d\}$ for some subset $\{a'_{k+1}, \dots, a'_d\} \subset \{a_1, \dots, a_d\}$ with d-k elements. We prove this using induction in r. For k = 0, we have that $L \supset K(a_1, \ldots, a_d)$ is algebraic by the assumption that $\{a_1, \ldots, a_d\}$ is a transcendence basis for L over K. Suppose that we the statement holds for some $k \in \{0, \dots, d-1\}$. Then by induction hypothesis L is algebraic over $M:=K(b_1,\ldots,b_k,a'_{r+1},\ldots,a'_d)$ for a suitable subset $\{a'_{k+1},\ldots,a'_d\}\subset A$ $\{a_1,\ldots,a_d\}$. This means b_{k+1} is algebraic over M, hence by Lemma 1.10.42 $b_1,\ldots,b_{k+1},a'_{r+1},\ldots,a_d$ are algebraically dependent over K. By Lemma 1.10.45 there is an integer $r \leq s < 1$ d and a subset $\{a''_{k+1},\ldots,a''_{s+1}\}\subset\{a'_{k+1},\ldots,a'_d\}$ such that $b_1,\ldots,b_{k+1},a''_{k+2},\ldots,a''_{s+1}$ are algebraically independent over K and $b_1, \ldots, b_{r+1}, a''_{k+1}, \ldots, a''_{s+1}$ are algebraically dependent over K. Again by Lemma 1.10.42, we have that a''_{k+1} is algebraic over M' := $K(b_1,\ldots,b_{k+1},a''_{k+2},\ldots,a''_d)$. Now $L\supset M(b_{r+1})$ is algebraic and $M'(a''_{r+1})\supset M'$ is algebraic. Since $M(b_{r+1}) = M'(a''_{r+1})$ we find that L is algebraic over M', finishing the proof of the claim. Application of the claim: Suppose for a contradiction that there are $b_1, \ldots, b_{d+1} \in L$ that are algebraically independent over K. Then b_1, \ldots, b_d are algebraically independent over K. But then by the claim $L \supset K(b_1, \ldots, b_d)$ is algebraic, hence

 b_{d+1} is algebraic over $K(b_1, \ldots, b_d)$, but then b_1, \ldots, b_{d+1} are algebraically dependent over K.

" \Leftarrow ": There are algebraically independent $a_1, \ldots, a_d \in L$ and for every $a \in L$ a, a_1, \ldots, a_d are algebraically dependent, hence by Lemma 1.10.42 $\{a_1, \ldots, a_d\}$ is a transcendence basis of L over K.

Remark 1.10.47. Note the claim of " $\Leftarrow=$ ", simply proves that every algebraically independent b_1, \ldots, b_d forms a transcendence basis of L over K

Corollary 1.10.48. Two transcendence bases have the same cardinality.

Example 1.10.49. Consider $L = K(x_1, \ldots, x_n) = Q(K[x_1, \ldots, x_n])$. The elements $x_1, \ldots, x_n \in K[x_1, \ldots, x_n]$ are algebraically independent over K, hence $x_1, \ldots, x_n \in K(x_1, \ldots, x_n)$ are algebraically independent over K. It follows that $\{x_1, \ldots, x_n\}$ is a transcendence basis of $K(\mathbf{x}) \supset K$, hence $\operatorname{trdeg}_K K(\mathbf{x}) = n$.

Corollary 1.10.50. Consider a tower of field extensions $M \supset L \supset K$. Let $X = \{a_1, \ldots, a_n\} \subset L$ be a transcendence basis for L over K. Suppose M is finitely generated L-module (in other words a finite dimensional vector space over L). Then X is transcendence basis for M over K and hence $\operatorname{trdeg}_K M = \operatorname{trdeg}_K L$.

Proof. We need to check that M is algebraic over $K(a_1,\ldots,a_n)$. Note that $M\supset L$ being module-finite, implies $M\supset L$ is algebraic (cf. Lemma 1.10.21), hence $M\supset K(a_1,\ldots,a_n)$ is algebraic.

Lemma 1.10.51. Let $L \supset K$ and $M \supset K$ be field extension with an injective K-algebra homomorphism $\sigma: L \hookrightarrow M$. If $a_1, \ldots, a_n \in L$ are algebraically independent over K, then so are $\sigma(a_1), \ldots, \sigma(a_n)$. It follows that $\operatorname{trdeg}_K L \leq \operatorname{trdeg}_K M$.

Proof. Let $a_1, \ldots, a_n \in L$ be algebraically independent over K. Let $f \in K[x_1, \ldots, x_n] \setminus 0$. Note that $\sigma(k) = k$ for every $k \in K$ and $f(a_1, \ldots, a_n) \neq 0$ by the assumption that a_1, \ldots, a_n are algebraically independent over K. It follows that

$$f(\sigma(a_1),\ldots,\sigma(a_n)) = \sigma(f(a_1,\ldots,a_n)) \neq 0,$$

hence $\sigma(a_1), \ldots, \sigma(a_n)$ are algebraically independent. Hence for any $n \leq \operatorname{trdeg} L$ there are algebraically independent $b_1, \ldots, b_n \in M$, hence $\operatorname{trdeg} L \leq \operatorname{trdeg} M$.

Remark 1.10.52. Note that $trdeg_K$ is an integer invariant (cf. Example D.0.45) of the category with objects being field extensions over K and morphisms being injective K-algebra homomorphism.

Lemma 1.10.53. Let $M \supset L \supset K$ be a tower of field extensions.

$$\operatorname{trdeg}_K M = \operatorname{trdeg}_K L + \operatorname{trdeg}_L M$$
.

If L has transcendence basis $X = \{a_1, \ldots, a_d\}$ over K and M has transcendence basis $Y = \{b_1, \ldots, b_\delta\}$ over L, then $X \cup Y$ is a transcendence basis for M over K. It follows that

Proof. If $\operatorname{trdeg}_L M = \infty$, then $\operatorname{trdeg}_K M = \infty$. Suppose this is not the case. Then we may assume that L has transcendence basis $X = \{a_1, \ldots, a_d\}$ over K and M has transcendence basis $Y = \{b_1, \ldots, b_\delta\}$ over L. Then $M \supset L(b_1, \ldots, b_\delta)$ is algebraic and $L \supset K(a_1, \ldots, a_d)$ is algebraic, hence

$$L(b_1,\ldots,b_{\delta})\supset K(a_1,\ldots,a_d)(b_1,\ldots,b_{\delta})=K(a_1,\ldots,a_d,b_1,\ldots,b_{\delta})$$

is algebraic. It follows that $M \supset K(a_1, \ldots, a_d, b_1, \ldots, b_\delta)$ is algebraic. Let $f \in K[x_1, \ldots, x_d, y_1, \ldots, y_\delta] \setminus 0$. Write

$$f = \sum_{v \in \mathbb{N}^{\delta}} f_v \mathbf{y}^v.$$

For some $v, f_v \neq 0$, hence since a_1, \ldots, a_d are algebraically independent over $K, f_v(a_1, \ldots, a_d) \neq 0$. Then

$$g := f(a_1, \dots, a_d, \mathbf{y}) = \sum_{v \in \mathbb{N}^{\delta}} f_v(a_1, \dots, a_d) \mathbf{y}^v \in L[\mathbf{y}] \setminus 0.$$

Since b_1, \ldots, b_δ are algebraically independent over L, it follows that

$$f(a_1,\ldots,a_d,b_1,\ldots,b_\delta)=q(b_1,\ldots,b_\delta)\neq 0,$$

hence $a_1, \ldots, a_d, b_1, \ldots, b_\delta$ are algebraically independent over K. Hence $X \sqcup Y$ is a transcendence basis for M over K, hence

$$\operatorname{trdeg}_K M = d + \delta = \operatorname{trdeg}_K L + \operatorname{trdeg}_L M$$
.

Lemma 1.10.54. Let $L \supset K$ be an algebraic function field in one variable with K algebraically closed. Let $a \in L \setminus K$. Then

- 1. $L \supset K(a)$ is algebraic
- 2. Suppose char K = 0. Then there is a $b \in L$ such that L = K(a, b).
- 3. Consider an integral domain R with Q(R) = L, $K \subset R$ algebraically closed. Suppose there is a non-trivial prime ideal $I \subset R$. Then $\sigma : K \to R/I$, $a \mapsto a + I$ is an isomorphism.

- *Proof.* 1. L is algebraic over K(t) for some $t \in L$. Then a is algebraic over K(t), hence we may find $f \in K[x,y] \setminus 0$ such that f(a,t) = 0. Note that since $a \notin K$, a cannot be algebraic over K (Lemma 1.10.22). Then $\deg_y f > 0$, hence $g = f(a,y) \neq 0$ is polynomial that vanishes on t, hence $K(a,t) \supset K(a)$ is algebraic and since $L \supset K(a,t)$ is algebraic, it follows that $L \supset K(a)$ is algebraic.
- 2. Since $L \supset K(a)$ is algebraic it is finite, hence by the Theorem of the Primitive Element L = K(a,b) for some b.
- 3. We prove the contrapositive: Let $I \supset R$ be any prime ideal. Suppose $\sigma: K \hookrightarrow R/I$ is not surjective. Pick $a \in R$ such that $a+I \in R/I$ is not in K and pick $b \in I$. Note that b=0 or $b \in R \setminus K$, since otherwise $1 \in I$. Then since $L \supset K(a)$ is algebraic, we can find a $f = \sum_{0}^{d} g_{i}(a)y^{i} \in K[a][y] \setminus 0$ of minimal degree such that f(b) = 0. By Lemma 1.10.22 $g_{0} = 0$ or $g_{0}(a) \neq 0$. In the first case we clearly have that b = 0, since then $f = y(\sum_{1}^{d} g_{i}(a)y^{i-1})$, hence f = y by minimality. In the second case $f_{0}(a) \in I$, hence a+I is integral over K which would imply that $a+I \in K$ by Lemma 1.10.22, leading to a contradiction. Since b was chosen arbitrarily it follows that I = 0.

1.10.6 Graph Ideals & Algebraic Dependence of Polynomials

Definition 1.10.55. Consider a ring R. The graph ideal for polynomials $f_1, \ldots, f_m \in R[x_1, \ldots, x_n]$ is defined to be ideal $\langle y_1 - f_m, \ldots, y_m - f_m \rangle \subset R[\mathbf{x}, y_1, \ldots, y_m]$

Remark 1.10.56. Note that the graph ideal of f_1, \ldots, f_m is just the point ideal (cf. Proposition 1.9.38) of $(x_1, \ldots, x_n, f_1, \ldots, f_m) \in R[\mathbf{x}, \mathbf{y}]^{n+m}$. Hence a polynomial $f \in K[\mathbf{x}, \mathbf{y}]$ is in the graph ideal of f_1, \ldots, f_m if and only if $f(\mathbf{x}, f_1, \ldots, f_m) = 0$.

Lemma 1.10.57. Let K be a field. Consider $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$ and denote the graph ideal of f_1, \ldots, f_m by I. Then I is a proper ideal by Lemma 1.4.38

Proof. Since 1 doesn't vanish on $(\mathbf{x}, f_1, \dots, f_m)$ it follows that $1 \notin I$. Hence I is proper by Lemma 1.4.38

Proposition 1.10.58. Consider $f_1, \ldots, f_{n+1} \in K[x_1, \ldots, x_n]$ and let I denote the graph ideal in $K[\mathbf{x}, y_1, \ldots, y_{n+1}]$ for these polynomials. Let $G \subset K[\mathbf{x}, \mathbf{y}]$ be a Gröbner basis for I with respect to the lexicographic term order with $x_1 > \cdots > x_n > y_1 > \cdots > y_{n+1}$. Then there is a non-zero polynomial $g \in G \cap K[\mathbf{x}]$ such that $g(f_1, \ldots, f_{n+1}) = 0$.

Proof. By Example 1.10.49 there is a polynomial $h \in K[\mathbf{y}] \setminus 0$ such that $h(f_1, \dots, f_{n+1}) = 0$. Then $h \in I$ and in particular $h \in I \cap K[\mathbf{y}]$. By Proposition 1.9.91, $G' := G \cap K[\mathbf{y}]$ is a Gröbner basis for $I \cap K[\mathbf{y}]$ with respect to the lexicographic term order with $y_1 < 0$

 $\cdots < y_{n+1}$. Then $h^{G'} = 0$ by Proposition 1.9.69, meaning G' must contain a non-zero polynomial g. Since $g \in I$ we again by Lemma 1.9.91 get that $g(f_1, \ldots, f_{n+1}) = 0$. \square

1.10.7 Finite Algebra Homomorphisms

Definition 1.10.59. Let S, T be R-algebras. An R-algebra homomorphism, $\sigma: S \to T$ is called *finite* if $T \supset \sigma(S)$ is module finite.

Lemma 1.10.60. Let S, T, Q be R-algebras and $\sigma: S \to T$ and $\omega: T \to Q$ be finite R-algebra homomorphisms. Then $\omega \sigma: S \to Q$ is finite.

Proof. For some $t_1, \ldots, t_m \in T$ and $q_1, \ldots, q_n \in Q$ we have $S = \sum_{i=1}^{m} \sigma(S)t_i$ and $Q = \sum_{i=1}^{k} \omega(T)q_i$. We Then get that

$$= \sum_{1}^{k} \omega(T) q_i = \sum_{1}^{k} \omega\left(\sum_{1}^{m} \sigma(S) t_j\right) q_i = \sum_{1}^{k} \sum_{1}^{m} (\omega \circ \sigma) (S) \omega(t_j) q_i,$$

hence Q is a finitely generated over $(\alpha \circ \beta)(R)$ with generators

$$\omega(t_i)q_i, (1 \le i \le k, 1 \le j \le m).$$

Therefor, we can conclude that $\omega \circ \sigma$ is finite.

Lemma 1.10.61. Let S,T be R-algebras and $\sigma:S\to T$ be a surjective R-algebra homomorphism. Then σ is finite.

Proof. Trivial since
$$T = \sigma(S)$$
.

1.10.8 Perron's Theorem of Effective Algebraic Dependence of Polynomials

Lemma 1.10.62. Let K be any field and $d_1, \ldots, d_n > 0$, $S \subset \mathbb{N}^n$ containing $d_i e_i \in S$ for each i. Set $L := K(y_v^{[i]} : v \in S) = Q(K[y_v^{[i]} : v \in S)$. For each $i \in \{1, \ldots, n\}$, set

$$g_i := \sum_{v \in S} y_v^{[i]} \mathbf{x}^v \in L[x_1, \dots, x_n]$$

and $d_i := \deg g_i$ Let $N \geq 0$ be given. Define $\Delta := \{v \in \mathbb{N}^n : |v| \leq N\}$. Then

$$B := \{g_1^{q_1} \cdots g_n^{q_n} x_1^{r_1} \cdots x_n^{r_n} : 0 \le r_i < d_i, \sum_{i=1}^n q_i d_i + r_i \le N\}$$

is a basis for $L[\mathbf{x}]_{\leq N}$ over K.

Proof. For each $v = (v_1, \dots, v_n) \in \Delta$ there are unique pair of tuples

$$(q_1(v_1), \ldots, q_n(v_n)), (r_1(v_1), \ldots, r_n(v_n)) \in \mathbb{N}^n$$

such that for each $i \in \{1, ..., n\}$, $0 \le r_i < d_i$ and $v = (q_1d_1 + r_1, ..., q_nd_n + r_n)$. We $\nabla = \{(q_1, ..., q_n), (r_1, ..., r_n) \in \mathbb{N}^n : 0 \le r_i < d_i, \sum_{1}^{n} (q_id_i + r_i) \le N\}$. We thus have that

$$(q,r): \Delta \to \nabla$$

$$v = (v_1, \dots, v_n) \mapsto ((q_1(v_1), \dots, q_n(v_n)), (r_1(v_1), \dots, r_n(v_n)))$$

defines a bijection. We define for each $v \in \Delta$,

$$\Lambda_v := \Lambda_{q(v), r(v)} := \left(\prod_1^n g_i^{r_i(v_i)}\right) \left(\prod_1^n x_i^{r_i(v_i)}\right) \in K[\mathbf{x}][y_v^{[i]} : v \in \mathcal{S}].$$

We thus have that $B = \{\Lambda_v : v \in \Delta\}$. Note that $\deg \Lambda_v = |v|$ for each $v \in \Delta$, which for one means that $\Lambda_v \in L[\mathbf{x}]_{\leq N}$. Let $\sigma : K[y_v^{[i]} : v \in \mathcal{S}] \to K$ be the unique K-algebra homomorphism defined by $y_v^{[i]} \mapsto 0$ when $(v,i) \neq (d_1e_1,1)\dots,(d_ne_n,n)$ and $y_{d_ie_i}^{[i]} \mapsto 1$. This map naturally extends to a $K[\mathbf{x}]$ -algebra homomorphism which we also denote σ . Then $\sigma(g_i) = \mathbf{x_i}^{d_i}$ and $\sigma(\mathbf{x}^v) = \mathbf{x}^v$, hence

$$\sigma(\Lambda_v) = x_1^{q_1(v_1)d_1 + r_1(v_1)} \cdots x_n^{q_n(v_n)d_n + r_n(v_n)} = \mathbf{x}^v.$$
 (5)

Write for each $v \in \Delta$

$$\Lambda_v = \sum_{v \in \Delta} c_{vw} \mathbf{x}^w.$$

By (5)

$$\sigma(c_{vw}) = \begin{cases} 1 & \text{if } w = v \\ 0 & \text{if } w \neq v \end{cases}$$

Let D denote $\#\Delta = \frac{N(N+1)}{2}$. σ naturally induces a homomorphism

$$\sigma: M_D(K[y_v:v\in\mathcal{S}]) \to M_D(K) \subset M_D(K[y_v:v\in\mathcal{S}])$$

defined by entry-wise application for which $\sigma((c_{vw})) = (\sigma(c_{vw})) = (e_{vw}) = I_D$. Set \mathcal{V} to be equal to $\{\mathbf{x}^v : v \in \Delta\}$; i.e. the standard basis for $L[\mathbf{x}]_{\leq N}$ over L. Then $v_i T_B = (c_{vw}) \in M_D([y_v : v \cup S_i])$. Moreover,

$$\sigma(\det \nu T_B) = \det \sigma(\nu T_B) = \det I_D = 1 \neq 0 \implies \det \nu T_B \neq 0.$$

This means $_{\mathcal{V}}T_B$ is invertible in $M_D(L)$, hence B is a basis by Theorem 1.7.3.

Remark 1.10.63. In the above setup we can therefor given any $f \in K[\mathbf{x}]$ find a family of polynomials

$$f_{r_1,...,r_n} \in L[z_1,...,z_n] \quad (0 \le r_i < d_i),$$

such that

1.
$$f = \sum_{r_1, \dots, r_n} f_{r_1, \dots, r_n}(g_1, \dots, g_n) x_1^{r_1} \cdots x_n^{r_n}$$

2. deg
$$f_{r_1,\dots,r_n}(z_1^{d_1},\dots,z_n^{d_n}) + \sum_{1}^n r_i \leq \deg f$$
.

Indeed set $N := \deg f$ and write

$$f = \sum_{v \in \Delta} a_v \Lambda_v = \sum_{(r_1, \dots, r_n) \in \mathbb{N}^n : r_i < d_i} \left[\sum_{(q_1, \dots, q_n) : \sum_{1}^{n} (q_i d_i + r_i) \le N} a_{(q_1 d_1 + r_1, \dots, q_n d_n + r_n)} g_1^{q_1} \cdots g_n^{q_n} \right] x_1^{r_1} \cdots x_n^{r_n}.$$

Setting

$$f_{r_1,\dots,r_n} := \sum_{(q_1,\dots,q_n) \in \mathbb{N}^n: \sum_{1}^n (q_id_i + r_i) \le N} a_{(q_1d_1 + r_1,\dots,q_nd_n + r_n)} z_1^{q_1} \cdots z_n^{q_n} \quad (0 \le r_i < d_i)$$

These polynomials will satisfy property 1. Secondly,

$$\deg f_{r_1,\dots,r_n}(z_1^{d_1},\dots,z_n^{d_n}) + \sum_{1}^{n} r_i \leq \max_{(q_1,\dots,q_n):\sum_{1}^{n}(q_id_i+r_i)} \deg z_1^{q_1d_1} \cdots z_n^{q_nd_n} + \sum_{1}^{n} r_i$$

$$= \max_{(q_1,\dots,q_n):\sum_{1}^{n}(q_id_i+r_i)} \sum_{1}^{n} (q_id_i+r_i) \leq N = \deg f.$$

Lemma 1.10.64. Let K be any field and $d_1, \ldots, d_n > 0$, $S \subset \mathbb{N}^n$ containing $d_i e_i \in S$ for each i. Set $L := K(y_v^{[i]} : v \in S) = Q(K[y_v^{[i]} : v \in S)$. For each $i \in \{1, \ldots, n\}$, set

$$g_i := \sum_{v \in \mathcal{S}} y_v^{[i]} \mathbf{x}^v \in L[x_1, \dots, x_n]$$

and $d_i := \deg g_i$ Then for every $g_{n+1} \in L[\mathbf{x}]$ with $d_{n+1} := \deg g_{n+1}$ there is polynomial $P \in L[z_1, \ldots, z_{n+1}]$ that is monic in $L[z_1, \ldots, z_n][z_{n+1}]$ satisfying

1.
$$P(g_1,\ldots,g_{n+1})=0$$

2. deg
$$P(z_1^{d_1}, \dots, z_{n+1}^{d_{n+1}}) \le \prod_{i=1}^{n+1} d_i$$
.

Proof. There is $d := \prod_{i=1}^{n} d_i$ elements in $\Omega = \{v \in \mathbb{N}^n : v_i < d_i\}$. Denote the elements in $\{\mathbf{x}^v : v \in \Omega\} = \{M_1, \dots, M_d\}$. Then by Lemma 1.10.62 for each $i \in \{1, \dots, d\}$ there are polynomials

$$P_{ij} \in L[\mathbf{x}] \quad (j \in \{1, \dots d\})$$

such that

a.
$$M_ig_{n+1}=\sum_1^d P_{ij}(g_1,\ldots,g_n)M_i$$

b. $\deg\ P_{ij}(z_1^{d_1},\ldots,z_n^{d_n})+\deg M_i\leq \deg\ g_{n+1}M_i=d_{n+1}+\deg\ M_i.$

Property a. shows that

$$g_{n+1} \begin{pmatrix} M_1 \\ \vdots \\ M_d \end{pmatrix} = (P_{ij}(g_1, \dots, g_n)) \begin{pmatrix} M_1 \\ \vdots \\ M_d \end{pmatrix},$$

I.e. g_{n+1} is an eigenvalue of $(P_{ij}(g_1,\ldots,g_n))$, hence by Cramer's rule,

$$\det(P_{ij}(g_1,\ldots,g_n)-\delta_{ij}g_{n+1})=0$$

. Then $P := (-1)^d \det(P_{ij} - \delta_{ij}g_{n+1}) = \sum_{\pi \in S_d} \prod_{1}^d (P_{i\pi(i)} - \delta_{ij}g_{n+1}) \in L[\mathbf{x}] \setminus 0$ satisfies $P(g_1, \dots, g_{n+1}) = 0$. From b. we find that

$$\deg P_{ij}(z_1^{d_1},\ldots,z_n^{d_n}) - \delta_{ij}z_{n+1}^{d_{n+1}} \le d_{n+1} + \deg M_i - \deg M_j.$$

For an arbitrary permutation $\pi \in S_d$,

$$\begin{split} \deg \ \prod_{1}^{d} (P_{i\pi(i)}(z_{1}^{d_{1}},\ldots,z_{d}^{d_{n}}) - \delta_{i\pi(i)}z_{n+1}^{d_{n+1}}) &\leq \sum_{1}^{d} (d_{n+1} + \deg \ M_{\pi(i)} - \deg \ M_{i}) \\ &= \sum_{1}^{d} d_{n+1} + \sum_{1}^{d} \deg \ M_{i} - \sum_{1}^{d} \deg \ M_{i} \\ &= dd_{n+1} = \prod_{1}^{n+1} d_{i}. \end{split}$$

Lemma 1.10.65. Let K be some field. For $f_1, \ldots, f_n \in K[x_1, \ldots, x_n]$ with $d_i := \deg f_i > 0$, and

$$f_i = \sum_{v \in \mathbb{N}^n} a_v^{[i]} \mathbf{x}^v.$$

Define $L:=K\left(y_v^{[i]}:v\in\mathbb{N}^n,a_v^{[i]}\neq 0 \text{ or }v=d_ie_i\right)$ and set $Y:=\left\{y_v^{[i]}:v\in\mathbb{N}^n,a_v^{[i]}\neq 0 \text{ or }v=d_ie_i\right\}$. Lastly define

$$g_i := \sum_{v \in \mathbb{N}^n} y_v^{[i]} \mathbf{x}^v$$

for every i. Then there is a $K[\mathbf{x}]$ -algebra homomorphism $\sigma: K[Y][\mathbf{x}] \to K[\mathbf{x}]$ such that $\sigma(g_i) = f_i$

Proof. Indeed, take σ to be the K-algebra homomorphism such that $y_v^{[i]} \mapsto a_v^{[i]}$. This trivially extends to a $K[\mathbf{x}]$ -algebra homomorphism.

Theorem 1.10.66. (Perron's Theorem) Let K be any field and let $f_1, \ldots, f_{n+1} \in K[x_1, \ldots, x_n]$ and put $d_i := \text{deg } f_i$ for each i. Then there is a $P \in K[z_1, \ldots, z_{n+1}] \setminus 0$ satisfying

1.
$$P(f_1,\ldots,f_{n+1})=0$$
,

2. deg
$$P(z_1^{d_1}, \dots, z_{n+1}^{d_{n+1}}) \leq \prod_{i=1}^{n+1} d_i$$
.

Proof. First a slight reformulation. Let M be some field and consider $H = \{h_1, \dots, h_{n+1}\} \subset M[x_1, \dots, x_n], \ \delta_i := \deg h_i$. Set

$$\Delta_{\delta_1,\dots,\delta_{n+1}} := \left\{ v \in \mathbb{N}^{n+1} : \sum_{1}^{n+1} v_i \delta_i \le \prod_{1}^{n+1} \delta_i \right\}.$$

Then define

$$B(H) := \{h_1^{q_1} \cdots h_{n+1}^{q_{n+1}} : (q_1, \dots, q_{n+1}) \in \Delta_{\delta_1, \dots, \delta_{n+1}}\}.$$

And let \mathcal{V} be the standard basis of $\{\mathbf{z}^v : v \in \Delta_{\delta_1,\dots,\delta_n}\}$. If $_{\mathcal{V}}T_{B(H)}$ is not invertible if and only if for suitable $a_v \in M$

$$\sum_{v \in \Delta} a_v h_1^{v_1} \cdots h_{n+1}^{v_{n+1}} = \operatorname{ev}_{h_1, \dots, h_{n+1}} \underbrace{\left(\sum_{v \in \Delta} a_v \mathbf{z}^v\right)}_{P_H},$$

where

$$\deg \ P_{H}(z_{1}^{\delta_{1}}, \dots, z_{n+1}^{\delta_{n+1}}) \leq \max_{v \in \Delta} \deg \ \mathbf{z}^{(\delta_{1}v_{1}, \dots, \delta_{n+1}v_{n+1})} = \max_{v \in \Delta} \ \sum_{1}^{n+1} \delta_{i}v_{i} \leq \prod_{1}^{n+1} \delta_{i}.$$

Set $F = \{f_1, \ldots, f_{n+1}\}$ and $B := \{\mathbf{z}^v : v \in \Delta_{d_1, \ldots, d_{n+1}}\}$. To prove the theorem we can equivalently prove that det ${}_BT_{B(F)} = 0$. With this in mind, we proceed with the proof of the theorem. Write $f_i = \sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v$. Define L, g_i and σ as in the prior lemma. By Lemma 1.10.64, there is a $Q \in L[\mathbf{x}] \setminus 0$ such that

1.
$$Q(g_1,\ldots,g_n,f_{n+1})=0,$$

2. deg
$$Q(z_1^{d_1}, \dots, z_{n+1}^{d_{n+1}}) \le \prod_{i=1}^{n+1} d_i$$
.

Set $G := \{g_1, \dots, g_n, f_{n+1}\}$. By small easy lemma $\sigma(B^*T_{B(G)}) = B^*T_{B(F)}$. It thus follows that

$$\det {}_BT_{B(F)} = \det {}_{\sigma}({}_BT_{B(G)}) = \sigma(\det {}_BT_{B(G)}) = \sigma(0) = 0.$$

1.10.9 Noether Normalizations

Lemma 1.10.67. Let K be a field and let $f = \sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v \in K[x_1, \dots, x_n]$ be given with $d := \deg f > 0$. Then we have the following

1. There are elements $y_1, \ldots, y_{n-1} \in K[x_1, \ldots, x_n]$ such that $x_i = y_i + x_n^{r_i}$ for $i \in \{1, \ldots, n-1\}$ for suitable $r_i > 0$ and

$$f = ax_n^m + \sum_{i=1}^{m-1} G_i x_n^i,$$

for some $a \in K \setminus \{0\}$, m > 0 and $G_i \in K[y_1, \dots, y_{n-1}]$.

2. If $\#K = \infty$ we get the same result as in (a) with $x_i = y_i + a_i x_n$ for

Proof. 1. Set k = d + 1 and put $r_i = k^i$ for $i \in \{1, ..., n - 1\}$. Then for $v, w \in \mathbb{N}^n$ with $|v|, |w| \le d$ and $v \ne w$ we get

$$v_n + \sum_{i=1}^{n-1} v_i r_i = v_n + \sum_{i=1}^{n-1} v_i k^i \neq w_n + \sum_{i=1}^{k} w_i k^i = w_n + \sum_{i=1}^{n} w_i r_i,$$

by the uniqueness of k-adic expansions. This mean that we can define $m:=\max_{v\in\mathbb{N}^n:|v|\leq d,a_v\neq 0}\big\{v_n+\sum_1^{n-1}v_ir_i\big\},\ v_m=\mathrm{argmax}_{v\in\mathbb{N}^n:|v|\leq d,a_v\neq 0}\big\{v_n+\sum_1^{n-1}v_ir_i\big\}.$ We thus pick $y_i=x_i-x_n^{r_i}$ and see that

$$f = f\left(y_1 + x_n^{r_1}, \dots, y_{n-1} + x_n^{r_{n-1}}, x_n\right) = \sum_{v \in \mathbb{N}^n : |v| \le d} a_v \left(\prod_{1}^{n-1} \left(y_i + x_n^{r_i}\right)^{v_i}\right) x_n^{v_n}$$

$$= \sum_{v \in \mathbb{N}^n : |v| \le d} a_v \left(x_n^{v_n + \sum_{1}^{n-1} v_i r_i} + \dots \right) = \sum_{v \in \mathbb{N}^n : |v| \le d} a_v x_n^{v_n + \sum_{1}^{n-1} v_i r_i} + \dots \right)$$

$$= a_{v_m} x_n^m + \dots$$

$$\log e^{-1} \log e^{-1$$

We can write the lower order terms on the form $\sum_{1}^{m-1} G_i x_n^i$ for suitable $G_i \in K[y_1,\ldots,y_{n-1}]$. 2. Write $f=\sum_{0}^d f_i$ with $f_d \neq 0$ for homogeneous $f_i \in K[x_1,\ldots,x_n]$ of degree i. By Lemma 1.9.137, $f_d(x_1,\ldots,x_{n-1},1) \neq 0$. Since $\#K=\infty$ we get that there are $a_1,\ldots,a_{n-1}\in K$ such that $f_d(a_1,\ldots,a_{n-1},1)\neq 0$. We now pick $y_i=x_i-a_ix_i$ for $i\in\{1,\ldots,n-1\}$. Note that

$$\sum_{v \in \mathbb{N}^n : |v| = d} a_v(a_1 x_n)^{v_1} \cdots (a_{n-1} x_n)^{v_{n-1}} x_n^{v_n} = \left[\sum_{v \in \mathbb{N}^n : |v| = d} a_v a_1^{v_1} \cdots a_{n-1}^{v_{n-1}} \cdot 1^{v_n} \right] x_n^d = f_d(a_1, \dots, a_{n-1}, 1) x_n^d.$$

From this it follows that

$$f = f(y_1 + a_1 x_n, \dots, y_{n-1} + a_{n-1} x_n, x_n)$$

$$= \sum_{v \in \mathbb{N}^n : |v| = d} a_v (y_1 + a_1 x_n)^{v_1} \cdots (y_{n-1} + a_{n-1} x_n)^{v_{n-1}} x_n^{v_n} + \sum_{1}^{m-1} \sigma(F_i)$$

$$\stackrel{(*)}{=} \left[\sum_{v \in \mathbb{N}^n : |v| = d} a_v a_1^{v_1} \cdots a_{n-1}^{v_{n-1}} \cdot 1^{v_n} \right] x_n^d + \cdots = f_d(a_1, \dots, a_{n-1}, 1) x_n^d + \dots$$

We then set $a = f_d(a_1, \ldots, a_{n-1}, 1)$. The \ldots in the expressions following (*) in the above signify remaining terms. One readily verifies that these have x_n -degree strictly smaller than d. Again these terms can clearly be written on the form $\sum_1^{d-1} G_i x_n^i$ for suitable $G_i \in K[y_1, \ldots, y_{n-1}]$.

Theorem 1.10.68. (Noether Normalization Theorem) Let $A = K[x_1, ..., x_n]/J$ for some field K and some ideal $J \subseteq K[x_1, ..., x_n]$. Let also $I \subseteq A$ be an ideal.

- (a) Then there are elements $y_1, \ldots, y_d \in A$, which are algebraically independent such that A is a finitely generated $K[y_1, \ldots, y_d]$ -module. Furthermore, for some $\delta \leq d$, $I \cap K[y_1, \ldots, y_d] = \langle y_{\delta+1}, \ldots, y_d \rangle$.
- (b) In addition if $\#K = \infty$, we have that $y_i = \sum_{j=i}^n a_{ij} x_j$ for suitable $a_{ij} \in K$.

Proof. 1. **case 1:** We first consider the case where $A = K[\mathbf{x}]$ and $I = \langle f \rangle$ for some $f \in A$ with deg f > 0. We put $y_n = f$ and apply Lemma 1.10.67 1. to obtain $y_i = x_i - x_n^{r_i} \in A$ for suitable $r_i > 0$ for $i \in \{1, \ldots, n-1\}$, such that

$$y_n = f = ax_n^m + \sum_{i=1}^{m-1} G_i(y_1, \dots, y_{n-1})x_n^i \iff y_n - ax_n^m + \sum_{i=1}^{m-1} G_i(y_1, \dots, y_{n-1})x_n^i = 0,$$

for some $a \in K \setminus \{0\}$, m > 0, $G_i \in K[y_1, \dots, y_{n-1}]$. Then x_n is integral over $K[y_1, \dots, y_n]$. Since $x_i = y_i + x_n^{r_i} \in A$ we get that $A = K[y_1, \dots, y_n][x_n]$, hence A is a finitely generated $K[y_1, \dots, y_n]$ -module.

We now claim that y_1, \ldots, y_n are algebraically independent over K. Suppose for contradiction that this is not the case. Then $Y := \{y_1, \ldots, y_n\}$ is not a transcendence basis of $K(y_1, \ldots, y_n)$. However, by Lemma 1.10.45 (a) there is a subset of Y, say y_{l_1}, \ldots, y_{l_k} for k < n, which constitutes a transcendence basis for $K(y_1, \ldots, y_n)$. Then by Corollary 1.10.50

$$k = \operatorname{trdeg} K(y_1, \dots, y_n) = \operatorname{trdeg} K(x_1, \dots, x_n) = n > k,$$

leading to a contradiction.

Let $\lambda \in I \cap K[y_1, \dots, y_n]$. Then $\lambda = gf = gy_n$ for some $g \in A$. g is integral over $K[y_1, \dots, y_n]$, hence for suitable $h_1, \dots, h_{k-1} \in K[y_1, \dots, y_n]$,

$$g^k + \sum_{i=1}^{k-1} h_i g^i = 0 \implies \lambda^k = f^k g^k = -\sum_{i=1}^{k-1} h_i f^k g^i = -\sum_{i=1}^{k-1} h_i \lambda^i y_n^{k-i}.$$

This means $y_n \mid \lambda^k$, implying $y_n \mid \lambda$. From this we conclude $I \cap K[y_1, \dots, y_n] = \langle y_n \rangle$.

Case 2: We now prove the statement for $A = K[x_1, ..., x_n]$ and an arbitrary ideal $I \subsetneq A$. For I = 0, we are done after choosing $y_i = x_i$ and $\delta = n$. We prove the statement for $I \neq 0$ by induction in $n \geq 1$. For n = 1, A is a PID, so I is generated by some non-zero polynomial. Then the statement follows from case 1.

Suppose now that n>1 and let $f\in I\setminus\{0\}$. Again using Lemma 1.10.67 we find $y_1,\ldots,y_n\in A$ that are algebraically independent over K with $y_n=f$. Then y_1,\ldots,y_{n-1} are also algebraically independent over K. By the induction hypothesis, we can find elements $t_1,\ldots,t_{d-1}\in K[y_1,\ldots,y_{n-1}]$ algebraically independent over K such that $K[y_1,\ldots,y_{n-1}]$ is a finitely generated $K[t_1,\ldots,t_{d-1}]$ -module and $I\cap K[t_1,\ldots,t_{d-1}]=\langle t_{\delta+1},\ldots,t_{d-1}\rangle$ for some $\delta< d$. We then get that $K[y_1,\ldots,y_n]$ is a finitely generated $K[t_1,\ldots,t_{d-1},y_n]$ -module, and hence A is a finitely generated $K[t_1,\ldots,t_{d-1},y_n]$ -module. Thus by a similar contradiction argument to that of case 1 I feel there is an argument that captures the fact better, we conclude that d=n and t_1,\ldots,t_{n-1},y_n are algebraically independent over K.

Let $\lambda \in I \cap K[t_1, \dots, t_{n-1}, y_n]$. Then $\lambda = g + hy_n$ for some $g \in I \cap K[t_1, \dots, t_{n-1}] = \langle t_{\delta+1}, \dots, t_{n-1} \rangle$ and $h \in K[t_1, \dots, t_{n-1}, y_n]$, then $I \cap K[t_1, \dots, t_{n-1}, y_n] = \langle t_{\delta+1}, \dots, t_{n-1}, y_n \rangle$.

case 3: We now generalize to the case where $A = K[x_1, \ldots, x_n]/J$ and $I \subsetneq A$ for an ideal $J \subsetneq K[x_1, \ldots, x_n]$. We apply case 2 to J and find $y_1, \ldots, y_n \in A$ algebraically independent over K such that $K[x_1, \ldots, x_n]$ is a finitely generated $K[y_1, \ldots, y_n]$ -module and $J \cap K[x_1, \ldots, x_n] = \langle y_{d+1}, \ldots, y_n \rangle$ for some $d \leq n$. Consider the embedding $\iota : K[y_1, \ldots, y_n] \hookrightarrow A$. By construction we have that A is a finitely generated $\iota(K[y_1, \ldots, y_n])$ -module. It is easy to check that

$$\iota(K[y_1,\ldots,y_n]) \simeq \frac{K[y_1,\ldots,y_n]}{(J\cap K[y_1,\ldots,y_n])} = \frac{K[y_1,\ldots,y_n]}{\langle y_{d+1},\ldots,y_n\rangle} \simeq K[y_1,\ldots,y_d].$$

From which it follows that A is a finitely generated $K[y_1,\ldots,y_d]$ -module.

Let $I' = I \cap K[y_1, \ldots, y_d]$. Then using case 2 we find $t_1, \ldots, t_d \in K[y_1, \ldots, y_d]$ algebraically independent over K such that $K[y_1, \ldots, y_d]$ is a finitely generated $K[t_1, \ldots, t_d]$ -module and $I' \cap K[t_1, \ldots, t_d] = \langle t_{\delta+1}, \ldots, t_d \rangle$ for some $\delta \leq d$. It then also follows that A

is a finitely generated $K[t_1, \ldots, t_d]$ -module.

2. Suppose now that $\#K = \infty$. In case 1 the construction is also valid with $y_i = x_i - a_i x_n$ for suitable $a_i \in K$ by Lemma 1.10.67 2.

In case 2 we can choose t_1, \ldots, t_{n-1} and y_1, \ldots, y_{n-1} in the same way. In case 3 we can again choose $y_i = x_i - a_i x_n$ for suitable $a_i \in K$. It follows from case 2 that we can choose

$$t_i = y_i - b_i y_d = x_i - x_d - (a_i - b_i a_d) x_n + J,$$

which is of the desired form.

Definition 1.10.69. Let A be a finitely generated K-algebra. A sequence of elements $y_1, \ldots, y_d \in A$ with the properties specified in the above theorem is called a *Noether normalization* of A.

Corollary 1.10.70. Consider $A = K[x_1, ..., x_n]/I$, with $I \subset K[\mathbf{x}]$ a prime ideal.

- 1. If y_1, \ldots, y_d is a Noether normalization of A, then $X = \{y_1, \ldots, y_d\}$ defines a transcendence basis of $L := Q(A) \supset K$.
- 2. If $\operatorname{trdeg}_K Q(A) = d$, then A has a Noether normalization y_1, \ldots, y_d

Proof. 1. By assumption y_1, \ldots, y_d are algebraically independent over K. Secondly A is a finitely generated $K[\mathbf{y}]$ -module, hence A is integral over $K[\mathbf{y}]$. Then L is integral over $K[\mathbf{y}]$. It follows that since $L \supset K(\mathbf{y}) \supset K[\mathbf{y}] K(\mathbf{y})$ must be algebraic Lemma not yet written.

2. NNT there is a Noether normalization $y_1,\ldots,y_\delta\in A$. By 1. $\delta=\mathrm{trdeg}_KQ(A)=d$. \square

Corollary 1.10.71. Let A be finitely generated K-algebra and $y_1, \ldots, y_d \in A$ be its Noether normalization. Then $\iota: K[y_1, \ldots, y_d] \hookrightarrow A$ is finite K-algebra homomorphism.

2 The Real and Complex Numbers

2.1 A Topological Aside: Completion - a construction of \mathbb{R}

Definition 2.1.1. Let X be a non-empty set, K an ordered field. A map $d: X \times X \to K_{\geq 0} := \{a \in K : a \geq 0\}$ is called a *metric over* K if for every $x, y, z \in X$

- 1. $d(x,y) = 0 \iff x = y$.
- 2. d(x, y) = d(y, x).

3.
$$d(x,y) + d(y,z) \ge d(x,z)$$
.

A set X with such a map d is called a *metric space over* K

Remark 2.1.2. Consider a normed vector space V over an ordered field K. Then

$$V \times V \to K_{>0}, (v, w) \mapsto ||v - w||$$

defines a metric on V.

- 1. $||v w|| = 0 \iff v w = 0 \iff v = w$.
- 2. ||v w|| = |-1|||v w|| = ||-(v w)|| = ||w v||.
- 3. $||v w|| = ||(v u) + (u w)|| \le ||v u|| + ||w u||$.

Definition 2.1.3. Let (X, K, d) be a metric space and $\xi \in K_{>0} := \{a \in K : a > 0\}, x \in X$. We define the ball of radius ξ with center x to be

$$B_{\xi}(x) := \{ y \in X : d(x,y) < \xi \}.$$

Lemma 2.1.4. Let (X, K, d) be a metric space. Then

$$\tau := \{ U \subset X : \forall x (x \in U \implies \exists \xi > 0, B_{\varepsilon} \},\$$

defines a topology on X

Proof. Trivially $\emptyset \in \tau$, since $x \in \emptyset$ is false. It is also obvious that $X \in \tau$, since a ball of any radius is a subset of X. Consider a family of sets in τ , $\{U_{\alpha}\}_{\alpha \in A}$. Then any point x in the union of these subsets is in at least one of these subsets, U_{β} say. Then there is an $\xi > 0$ such that $B_{\xi}(x) \subset U_{\beta} \subset \bigcup_{\alpha \in A} U_{\alpha}$. Consider $U_1, \ldots, U_n \in \tau$. Then for each point x in the intersection of these sets there are $\xi_1, \ldots, \xi_n > 0$, such $B_{\xi_i}(x) \subset U_i$. picking $\xi = \min_{i \in \{1, \ldots, n\}} \xi_i$, it follows that $B_{\xi}(x) \subset \bigcap_{1}^{n} U_i$.

Definition 2.1.5. Let (X, K, d) be a metric space. A sequence $(q_n) \in \prod_{\mathbb{N}} X$ is said to converge to q if for all $\xi > 0$ there exists a $N \ge 1$ such that for every $n \ge N$, $q_n \in B_{\xi}(q)$. We call q the limit of q_n as n approaches infinity and denote it $\lim_{n\to\infty} q_n$. We shall see that such a limit is unique.

A sequence is called *Cauchy* if for every $\xi > 0$ there exists an $N \geq 0$ such that for every $n, m \geq N, q_n - q_m \in B_{\xi}(0)$. We say that two Cauchy sequences $(a_n), (b_n) \in \prod_{\mathbb{N}} X$ are equivalent if $\lim_{n \to \infty} d(x_n, y_n) = 0$. We write $(a_n) \equiv_d (b_n)$. We define the completion of X with respect to d to be the set

$$\overline{X} := \left\{ (q_n) \in \prod_{\mathbb{N}} X : (q_n) \text{ is Cauchy} \right\} / \equiv_d.$$

Remark 2.1.6. Let (x_n) be a convergent sequence with limit x. Let $y \in X \setminus \{x\}$. Set $\epsilon := d(x,y)/2$. Then for every $n \geq N$ for some $N \geq 1$, $x_n \notin B_{\epsilon}(y)$, hence the limit of a convergent sequence is unique. If V is a normed vector space, $\lim_{n \to \infty}$ defines a linear operator from the space of convergent sequences to K which readily follows from the homogeneity of the norm and from the triangle inequality. One also easily checks that $\lim_{n \to \infty} 0 \|\cdot\| = \|\lim_{n \to \infty} \|$. On K consider convergent sequences $(a_n), (b_n) \in \prod_{\mathbb{N}} K$. Then for any $\xi > 0$ for sufficiently large n

$$|a_n b_n - ab| \le |b_n||a_n - a| + |a||b_n - b| \stackrel{n \to \infty}{\to} 0.$$

On K consider a sequence $(a_n) \in \prod_{\mathbb{N}} K \setminus 0$ that is convergent with limit $a \in K \setminus 0$. Let $\xi > 0$. For large enough N for $n \geq N$, $|a_n||a_n - a| < \xi$. Pick $0 < \delta < |a|$. For some M, for $n \geq M$, $|a_n| \in B_{|a|-\delta}(|a|)$, hence $|a| - |a_n| < |a| - \delta$. Then setting $\epsilon := \min\{|a_1|, \ldots, |a_{\max(N,M)}|, \delta\}$. Then for $n \geq \max(N, M)$,

$$\left| \frac{1}{a_n} - \frac{1}{a} \right| = \left| \frac{a_n - a}{a_n a} \right| < \frac{\xi}{|a|\epsilon}.$$

Lemma 2.1.7. Let (X, K, d) be a metric space. Let (x_n) be a Cauchy sequence in X. Then (x_n) is bounded.

Proof. Let $\xi > 0$ be given, then for a sufficiently large N, $d(x_n, x_N) < \xi$ for every $n \ge N$. Pick $\delta = \max\{d(x_1, x_N), \dots, d(x_{N-1}, x_N), \xi\}$. Then $x_n \in B_{\delta}(x_N)$ for every $n \ge 1$.

Definition 2.1.8. A function between metric spaces over a fixed field $f: X \to Y$ is said to be *sequentially continuous* if for every convergent sequence $(x_n) \in \prod_{\mathbb{N}} X$, $\lim_{n\to\infty} f(x_n) = f(\lim_{n\to\infty} x_n)$.

Remark 2.1.9. Being sequentially continuous is equivalent to being continuous with respect to the topology induced by the metric on X, respectively on Y.

In general, it may be difficult to endow the completion of a metric space with a topology. If we are working over complete (i.e. every Cauchy sequence is convergent) ordered field, $([a_n], [b_n]) \mapsto \lim_{n \to \infty} d(a_n, b_n)$ defines a metric on the completion of X. Any two complete ordered fields are isomorphic as topological fields. Moreover, the completion of an ordered field can be endowed with structure of a complete ordered field.

Lemma 2.1.10. Let K be an ordered field. We define addition on \overline{K} to be

$$[(a_n)] + [(b_n)] := [(a_n + b_n)] \quad ([(a_n)], [(b_n)] \in \overline{K}).$$

We also define multiplication by

$$[(a_n)][(b_n)] := [(a_nb_n)].$$

For $[(a_n)], [(b_n)] \in \overline{K}$ we say that $[(a_n)] \ge [(b_n)]$ if there is an $N \ge 0$ such that for $n \ge N$, $a_n \ge b_n$. With these definitions \overline{K} becomes an ordered field. The subfield

$$K' := \{ [(a)] \in \overline{K} : a \in K \}$$

is isomorphic to K as topological fields.

Proof. Suppose $([(a_n)], [(b_n)]) = ([(a'_n)], [(b'_n)])$. Then addition is well-defined by a single application of the triangle inequality. Multiplication is also well-defined since

$$|a_n b_n - a'_n b'_n| = |a_n b_n - a_n b'_n + a_n b'_n - a'_n b'_n| = |a_n (b_n - b'_n) + b'_n (a_n - a'_n)|$$

$$\leq |a_n| |b_n - b'_n| + |b'_n| |a_n - a'_n| \leq \epsilon |b_n - b'_n| + \delta |a_n - a'_n| \stackrel{n \to \infty}{\to} 0$$

where $\epsilon, \delta > 0$ are obtained from Lemma 2.1.7. It is fairly easy to check that upon defining $0_{\overline{K}} := 0 := [(0)], \ 1_{\overline{K}} := 1 := [(1)], \ -[(a_n)] := [(-a_n)], \ \text{for } [(a_n)] \in \overline{K}, \ \overline{K} \ \text{becomes a commutative ring.}$ Let $[(a_n)] \neq 0$. Then for n greater than some $N, \ a_n \neq 0$. Indeed, suppose (c_n) is Cauchy such that $c_n = 0$ for infinitely many n. Then for any $\xi > 0$ there is an $N \geq 0$ such that $|c_n - c_m| < \xi$ for $n, m \geq N$. In particular we may choose m such that $c_m = 0$, hence $|c_n - 0| < \xi$, implying $\lim_{n \to \infty} c_n = 0$, hence $[(c_n)] = 0$. We then define $b_n = 0$ for n < N and $b_n = a_n^{-1}$ for $n \geq N$ and see that $[(a_n)][(b_n)] = [(1)]$, implying \overline{K} is a field. It is fairly easy to check that \le defines a partial order on \overline{K} . We now check that \le , defines a total order. Let $[(a_n)], [(b_n)] \in \overline{K}$. We prove first that the statement is true for $[(b_n)] = 0 = [(0)]$. The statement is obvious when $[(a_n)] = 0$. Note that $a_n > 0$ or $a_n < 0$ for every sufficiently large n. Suppose now (c_n) is Cauchy and $c_n > 0$ for infinitely many n and $c_n < 0$ for infinitely many n. Let (c'_n) and (c''_n) the sequences entries of (c_n) being > 0 resp. < 0. Then for sufficiently large n,

$$|c'_n| + |c''_n| = c'_n - c''_n = |c'_n - c''_n| < \xi$$

for every $\xi>0$, using the fact that (c_n) is Cauchy, meaning $\lim_{n\to\infty}c_n=0$. It thus follows that $a_n>0$ for every sufficiently large n or $a_n<0$ for every sufficiently large n, hence $[(a_n)]>0$ or $[(a_n)]<0$. In the general setting, we thus have that $[(a_n-b_n)]\geq 0$ or $[(a_n-b_n)]\leq 0$. This is equivalent to $a_n-b_n\geq 0$ for every large n or $a_n-b_n\leq 0$ for every large n. It follows that $[(a_n)]\geq [(b_n)]$ or $[(a_n)]\leq [(b_n)]$. It is easy to check that \overline{K} becomes an ordered field with this total ordering. For instance if $[(a_n)]\leq [(b_n)]$ then

 $a_n + c_n \le b_n + c_n$ for sufficiently large n, hence $[(a_n)] + [(c_n)] \le [(b_n)] + [(c_n)]$. The map

$$K \to K'$$

$$a \mapsto [(a)]$$

is readily seen to be a ring isomorphism with mutual inverse $[(a)] \mapsto a$. Both of these maps are sequentially continuous, hence K and K' are isomorphic as topological fields. \square

Remark 2.1.11. From this point on we identify K' with K.

Lemma 2.1.12. Let $(K, |\cdot|)$ be an ordered field considered with structure of metric space in the natural way. Then K is a topological field.

Proof. Using sequential continuity, the result follows from Remark 2.1.6. \Box

Lemma 2.1.13. *An ordered field is characteristic* 0.

Proof. Indeed,
$$0 < 1$$
. Suppose $0 < n$ for some $n \ge 1$. Then $1 < n+1$, hence $0 < 1 < n+1$.

Remark 2.1.14. The utility of this lemma is that we may regard \mathbb{Z} and \mathbb{Q} as subrings in a canonical way.

Proposition 2.1.15. For an ordered field K, we have that \overline{K} is Dedekind complete, i.e. every non-empty bounded set has a least upper bound.

Proof. Let $\emptyset \neq B \subset \overline{K}$ be bounded from above. Let $[(b_n)]$ be an upper bound. (b_n) is bounded, hence $[(b_n)] < [(u)]$ for some $u \in K$. Let $[(c_n)] \in B$ be arbitrary. Again, since $([c_n])$ is bounded, $([l]) < ([c_n])$ for some $l \in K$. Set $u_1 := u$ and $l_1 := l$. For each $n \geq 1$, if $(u_n + l_n)/2$ is an upper bound, set $u_{n+1} := (u_n + l_n)/2$ and $l_{n+1} := l_n$. Note that $|u_n - l_n| = \frac{1}{2^n}(u - l)$, which is easily verified by induction in n, hence $\lim_{n \to \infty} u_n - l_n = 0$. Then

$$|u_n - u_m| = |u_n - l_n| + |l_n - u_m| < \epsilon$$

for every $\epsilon>0$ and sufficiently large n,m, hence (u_n) is Cauchy. A similar argument shows that (l_n) is Cauchy. We then have that $[(l_n)]=[(u_n)]$. By construction each u_n is an upper bound and each l_n is not an upper bound. We thus have that $[(u_n)]$ is an upper bound. Let $u':=[(a'_n)]\leq [(u_n)]$ be another upper bound of B. Then for every $\epsilon>0$, for sufficiently large n

$$|a'_n - l_n| = a'_n - l_n \le u_n - l_n = |u_n - l_n| < \epsilon,$$

hence $[(u_n)] = [(l_n)] = [(u_n)]$, proving that $[(u_n)]$ is the least upper bound. \Box

Lemma 2.1.16. Let K be a Dedekind complete ordered field. Then a monotone sequence bounded sequence is convergent.

Proof. Let (a_n) be an increasing sequence in K. Since the image of (a_n) is bounded, it has a least upper bound a. We claim that (a_n) converges to a. Let $\epsilon > 0$. For some $N \ge 0$, $a - \epsilon < a_N \le a < a + \epsilon$, hence for every $n \ge N$, $-\epsilon < a_n - a < \epsilon$, hence $a_n \in B_{\epsilon}(a)$. \square

Definition 2.1.17. We define the field of real numbers as $\mathbb{R} := \overline{Q}$.

Definition 2.1.18. An ordered field K is Archimedean if $\mathbb{Q} \subset K$ is not bounded from above

Lemma 2.1.19. Let K be an Archimedean ordered field. Then \mathbb{Q} is dense in K.

Proof. Let $0 < c \le d$. There is a least upper bound u to the set $\{n \in \mathbb{N} : nc \le d\}$. Since K is Archimedean we may pick a natural number N > u, hence Nc > d. The cases $a \le 0 < b$ and $a < 0 \le b$ are obvious. Suppose 0 < a < b. Claim: if c < d are such that d - c > 1, then $\{m \in \mathbb{Z} : c < m < d\} \ne \emptyset$. Let m_0 be the greatest integer smaller than c. Then $c < m_0 + 1$ and $d - m_0 > d - c > 1$ hence $c < m_0 + 1 < d$. This proves that if 0 < a < b such that a - b > 1 then there is a rational number in between a and b. Suppose a - b < 1. Then there is a positive integer n such that n(a - b) > 1 and by the claim there is then an integer m such that na < m < nb hence a < m/n < b.

Definition 2.1.20. A metric space (X, K, d) is called *Cauchy complete* if every Cauchy sequence is convergent

Lemma 2.1.21. An ordered field K is Dedekind complete if and only if it is Archimedean and Cauchy complete.

Proof. " \Longrightarrow ": Suppose for a contradiction that $\mathbb Q$ is bounded from above. Set $s:=\sup\mathbb Q$. We must have that s is not rational, since if it were s+1 would be a rational greater than s. Then $s-1 \leq q < s$ for some $q \in \mathbb Q$, but then q+1 is a rational number greater than s, leading to a contradiction. Let (a_n) be a Cauchy sequence in K. Set $(u_n):=(\sup_{k\geq n} a_n)$. This is a decreasing bounded sequence, hence u_n converges to some a. Let $\epsilon>0$. Then there is some $N\geq 1$ such that $|a_n-a_m|<\epsilon/3$ and $|u_n-l|<\epsilon/3$ for every $n,m\geq N$. We may also find an $M\geq N$ such $u_N-\epsilon/3< a_M$. It thus follows that

$$|a_n - a| = |a_n - a_M + a_M - u_N + u_N - a| \le |a_n - a_M| + |a_M - u_N| + |u_N - a| < \epsilon,$$

meaning (a_n) converges to a.

" \Leftarrow ": Let S be a non-empty, bounded subset of K. Let u be a rational upper bound of S

(we may pick this as K is Archimedean) and l be a rational number smaller than an $s \in S$ (we may pick such a rational number since $\mathbb Q$ is dense in K which follows from K being Archimedean). Define (u_n) and (l_n) as in the prior proposition. Then (u_n) and (l_n) are Cauchy sequences, which are convergent by the assumption that K is Cauchy complete. It follows that since $|l_n - u_n| \to 0$, $\lim_{n \to \infty} u_n = \lim_{n \to \infty} l_n = u$. Since every u_n is an upper bound of S so is u. Let v < u. Then for large n, $u - l_n < u - v$, hence $l_n > v$. Since l_n is never an upper bound of S, we may pick a $t \in S$ such that $t \ge l_n > v$, hence u is the smallest upper bound of S. This shows that K is Dedekind complete. \square

Definition 2.1.22. We say that a function $f: X \to Y$ of metric space is *uniformly continuous* if for every $\epsilon > 0$ there is a $\delta > 0$ such that for every $x, y \in X$, $d(x, y) < \delta \implies d(f(x), f(y)) < \epsilon$

Lemma 2.1.23. If $f: X \to Y$ is uniformly continuous and (x_n) is Cauchy, then $(f(x_n))$ is Cauchy.

Proof. Let $\epsilon > 0$. We can pick $\delta > 0$ such that for $x, y \in X$, if $d(x, y) < \delta$, $d(f(x), f(y)) < \epsilon$. Pick $N \ge 1$ such that $d(x_n, x_m) < \delta$ for every $n, m \ge N$. Then $d(f(x_n), f(x_m)) < \epsilon$ for every $n, m \ge N$.

Remark 2.1.24. Every uniformly continuous function is clearly continuous.

Lemma 2.1.25. Let X, Y be metric spaces, where Y is complete and $f: A \to B$ be uniformly continuous where $A \subset X$ and $B \subset Y$. Then f can be uniquely extended to a uniformly continuous function $f: cl(A) \to cl(B)$.

Proof. Let (x_n) be a convergent sequence in A. Then $(f(x_n))$ in Y is Cauchy and hence also convergent by completeness. We then define

$$f: \operatorname{cl}(A) \to \operatorname{cl}(B)$$

 $x \to \lim_{n \to \infty} f(x_n),$

where (x_n) is a sequence in A converging to x. We need to check that this is well-defined. Note first that $f(A) \subset B \implies \operatorname{cl}(f(A)) \subset \operatorname{cl}(B)$, hence $\lim_{n \to \infty} f(x_n) \in \operatorname{cl}(B)$. Let $(x_n), (y_n)$ be two sequences in A converging to $x \in \operatorname{cl}(A)$. By uniform continuity (skipping a step) for large n, we get that $d(f(x_n), f(y_n)) < \epsilon$ for every $\epsilon > 0$, hence $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(y_n)$. Let $\epsilon > 0$ be given. Pick $\delta > 0$ small enough such that for every $p, q \in A$ with $d(p, q) < 2\delta \implies d(f(p), f(q)) < \epsilon/3$. Pick $x, y \in \operatorname{cl}(A)$ such that $d(x, y) < \delta$. Pick sequences $(x_n), (y_n)$ in A converging to x respectively y. Then for large enough $n, d(x_n, y_n) \le d(x_n, x) + d(y_n, y) < 2\delta$, hence, again for large n,

$$d(f(x),f(y)) \leq d(f(x_n),f(x)) + d(f(x_n),f(y_n)) + d(f(y_n),f(y)) < \epsilon.$$

It follows that the constructed extension of f is uniformly continuous. Let g be another such extension. Let $x \in cl(A)$ and (x_n) a sequence in A converging to x. Then since g is continuous,

$$g(x) = g(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} f(x_n) = f(x).$$

Proposition 2.1.26. Any two Dedekind complete ordered fields are isomorphic as topological fields.

Proof. Let K, L be two such fields. There is a canonical isomorphism between the rational numbers in K and the rational numbers in L. each copy of $\mathbb Q$ is a dense subset of the respective fields. It is easy to show that any point in a metric space over a complete metric space can be approximated by a Cauchy sequence in a dense subset. The isomorphism $\sigma: \mathbb Q \subset K \to \mathbb Q \subset L, q \mapsto q$ is clearly uniformly continuous and can therefor by the prior lemma be extended to an isomorphism $\sigma: \mathrm{cl}(\mathbb Q) = K \to \mathrm{cl}(\mathbb Q) = L$.

2.2 From \mathbb{R}^2 to \mathbb{C}

Note that $(\mathbb{R}^2, +, |\cdot|)$ is a normed topological vector space. We seek to endow this vector space with a multiplication such that it becomes a topological field, containing \mathbb{R} as a topological subfield. We will call this field *the complex numbers* and denote it \mathbb{C} .

Definition 2.2.1. We define

$$: \mathbb{R}^2 \to \mathbb{R}^2$$
$$((a,b),(c,d)) \mapsto (ac-bd,ad+cb)$$

Proposition 2.2.2. With this operation $\mathbb{C} := (\mathbb{R}^2, +, \cdot)$ is a field. The multiplication is obviously continuous w.r.t. $|\cdot|$ making \mathbb{C} a topological field. The set

$$R := \{(a,0) \in \mathbb{C} : a \in \mathbb{R}\}\$$

is a subfield of \mathbb{C} isomorphic to \mathbb{R} .

Proof. Let $(a,b),(c,d),(e,f) \in \mathbb{C}$. We then have that

$$\begin{aligned} ((a,b)(c,d))(e,f) &= (ac - bd, ad + cb)(e,f) = (ace - bde - adf - cbf, acf - bdf + ade + cbe) \\ &= (a(ce - df) - b(de + cf), a(cf + de) + b(ce - df)) = (a,b)(ce - df, cf + de) \\ &= (a,b)((c,d)(e,f)). \end{aligned}$$

We define $1_{\mathbb{C}} = (1,0)$. One easily checks that (a,b)(c,d) = (c,d)(a,b). Then

$$1_{\mathbb{C}}(a,b) = (1,0)(a,b) = (1a-0b,1b+0a) = (a,b),$$

shows that $1_{\mathbb{C}}$ is the neutral element with respect to the multiplication. We moreover have that

$$(a,b)(c+e,d+f) = (ac+ae-bd-bf,ad+bf+bc+be)$$
$$= (ac-bd,ad+bc) + (ae-bf,bf+be) = (a,b)(c,d) + (a,b)(e,f).$$

Suppose $(a, b) \neq 0$. Then

$$(a,b)\left(\frac{1}{a^2+b^2}(a,-b)\right) = \left(\frac{a^2+b^2}{a^2+b^2}, \frac{-ab+ab}{a^2+b^2}\right) = (1,0).$$

We have thus shown that \mathbb{C} is a field. Note that R is subspace of \mathbb{C} and that for $(a,0),(b,0)\in R$,

$$(a,0)(b,0) = (ab-0,a0+0b) = (ab,0) \in R.$$

Moreover, we clearly have that $(1,0) \in R$ and that for $a \neq 0$ (a,0)(1/a,0) = (1,0). We thus see that R is a subfield of \mathbb{C} . The map

$$\mathbb{R} \to R, a \mapsto (a, 0),$$

clearly defines a bijective \mathbb{R} -algebra homomorphism, hence $R \simeq \mathbb{R}$.

Remark 2.2.3. One further notices that \mathbb{C} is an \mathbb{R} vector space with basis $\{1, i\}$, where we define i = (0, 1). Note that $\pm i$ are the roots of the polynomial $x^2 + 1 \in \mathbb{C}[x]$. We therefor also write $i = \sqrt{-1}$.

3 Classical Affine Algebraic Geometry

3.1 Introducing Algebraic Sets

3.1.1 Introducing Affine Algebraic Sets & the Affine Zariski Topology

Definition 3.1.1. Let K be any field. By the affine n-space over K, for some positive integer n, we mean the n-fold cartesian product of K with itself. We denote affine n-space over K by $\mathbb{A}^n(K)$ or just \mathbb{A}^n when this will not lead to ambiguity. Thus we have

$$\mathbb{A}^n(K) := \mathbb{A}^n := K^n.$$

We also refer to Affine 1-space as the affine line, and Affine 2-space as the affine plane.

Remark 3.1.2. Whenever we write \mathbb{A}^n and no field is given prior, implicitly a field K is given and we mean $\mathbb{A}^n = \mathbb{A}^n(K)$.

Definition 3.1.3. Consider a field K. we define the vanishing set of S over K denoted $V_K^{\mathbb{A}}(S) := V_K(S) := V(S)$ to be the set

$$\{v \in \mathbb{A}^n(K) : f(v) = 0 \text{ for every } f \in S\}$$
.

similarly we define the vanishing set of S over L denoted $V_L(S)$ to be the set

$$\{v \in \mathbb{A}^n(L) : f(v) = 0 \text{ for every } f \in S\}.$$

When M is finite, say $M = \{f_1, \dots, f_m\}$, we define

$$V_F(f_1,\ldots,f_m):=V_F(\{f_1,\ldots,f_m\})$$
 $V_L(f_1,\ldots,f_m):=V_L(\{f_1,\ldots,f_m\}).$

Our convention will be that $V(M) := V_K(M)$

Definition 3.1.4. Let K be any field. A subset $X \subset \mathbb{A}^n$ is called an *affine algebraic subset*, or an *algebraic subset* when no ambiguity arises, if there is a subset $M \subset K[x_1, \dots, x_n]$ such that X = V(M)

Lemma 3.1.5. Let $M, M' \subset K[x_1, \ldots, x_n]$ with $M \supset M'$. Then $V(M) \subset V(M')$.

Proof. Let $v \in V(M)$ and $f \in M'$. Then by assumption $f \in M$ and hence f(v) = 0, implying $v \in V(M')$.

Proposition 3.1.6. For any subset $M \subset K[x_1, ..., x_n]$. Set $I := \langle M \rangle$. Then V(M) = V(I)

Proof. Let $v \in V(M)$. Let $f \in I$. Then for some $f_1, \ldots, f_m \in S$

$$f = \sum_{1}^{m} c_i f_i,$$

for suitable $c_1, \ldots, c_m \in K[x_1, \ldots, x_n]$. Then $f_i(v) = 0$ for every $i \in \{1, \ldots, m\}$ and hence

$$f(v) = \sum_{1}^{m} c_i(v) f_i(v) = \sum_{1}^{m} c_i(v) \cdot 0 = 0,$$

meaning $v \in V(I)$ and hence $V(M) \subset V(I)$.

The converse inclusion follows from Lemma 3.1.5 since $I \supset M$.

It follows as a corollary that every affine algebraic set arises as a vanishing of some polynomial ideal.

Corollary 3.1.7. Let $X \subset \mathbb{A}^n$ be algebraic. Then X = V(I) for some ideal $I \subset K[x_1, \ldots, x_n]$.

As another corollary to the above proposition we have that every algebraic set arises as .

Corollary 3.1.8. Let $X \subset \mathbb{A}^n$ be an algebraic subset. Then $X = V(f_1, \ldots, f_m)$ for suitable $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$.

Proof. By Corollary 3.1.7 X = V(I) for some ideal $I \subset K[x_1, \ldots, x_n]$. By Corollary 1.9.49 $I = \langle f_1, \ldots, f_m \rangle$ for suitable $f_1, \ldots, f_m \in K[\mathbf{x}]$. Thus it follows from the above proposition that

$$X = V(I) = V(\langle f_1, \dots, f_m \rangle) = V(f_1, \dots, f_m).$$

Remark 3.1.9. Let an algebraic subset $X \subset \mathbb{A}^n$ be given. We can find $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$ such that $X = V(f_1, \ldots, f_m)$. Consider the map

$$\varphi: \mathbb{A}^n \to \mathbb{A}^m$$

$$v \mapsto (\operatorname{ev}_v(f_1), \operatorname{ev}_v(f_2), \dots, \operatorname{ev}_v(f_m)) = (f_1(v), f_2(v), \dots, f_m(v)).$$

It is then clear that $V(f_1, ..., f_m) = \varphi^{-1}(\mathbf{0})$. Thus one concludes that every algebraic subset of \mathbb{A}^n arises the zero set of a map of the same form as φ . We shall later see that φ is an element of a special class of maps, called *polynomial maps*, which are central to study of affine algebraic geometry.

Lemma 3.1.10. We collect the following results

- (i) Let A be some indexing set. Consider a family of algebraic sets $\{X_{\alpha}\}_{{\alpha}\in A}$ in \mathbb{A}^n . Then $\bigcap_{\alpha} X_{\alpha}$ is an algebraic set.
- (ii) Consider algebraic sets $X, Y \subset \mathbb{A}^n$. Then $X \cup Y$ is algebraic. It follows by induction that $\bigcup_{i=1}^k X_i$ is algebraic for any finite sequence of algebraic sets X_1, \dots, X_k in \mathbb{A}^n .

Proof. (i) By Corollary 3.1.7 for every $\alpha \in A$, we can find an ideal $I_{\alpha} \subset K[x_1, \dots, x_n]$ such that $X_{\alpha} = V(I_{\alpha})$. We claim that $\bigcap_{\alpha} V(I_{\alpha}) = V(\bigcup_{\alpha} I_{\alpha})$.

Let $v \in \bigcap_{\alpha} V(I_{\alpha})$. Let $f \in \bigcup_{\alpha} I_{\alpha}$. Then $f \in I_{\beta}$ for some $\beta \in A$. Then since $v \in \bigcap_{\alpha} V(I_{\alpha})$, in particular $v \in V(I_{\beta})$, implying f(v) = 0, hence $v \in V(\bigcup_{\alpha} I_{\alpha})$.

Let $\beta \in A$, then $I_{\beta} \subset \bigcup_{\alpha} I_{\alpha}$. By Lemma 3.1.5 $V(\bigcup_{\alpha} I_{\alpha}) \supset V(I_{\beta})$, hence $V(\bigcup_{\alpha} I_{\alpha}) \supset I(I_{\beta})$

 $\bigcap_{\alpha} V(I_{\alpha}).$

It follows that

$$\bigcap_{\alpha} X_{\alpha} = \bigcap_{\alpha} V(I_{\alpha}) = V\left(\bigcup_{\alpha} I_{\alpha}\right).$$

(ii) We have that X = V(I) and Y = V(J) for some ideals $I, J \subset K[x_1, \dots, x_n]$. We claim that $V(I) \cup V(J) = V(IJ)$.

 $IJ \subset I$ and $IJ \subset J$, hence by Corollary 3.1.5 $V(I), V(J) \subset V(IJ)$, meaning $V(I) \cup V(J) \subset V(IJ)$.

Let $v \in V(IJ)$. If $v \in V(I)$ we find that $v \in V(I) \cup V(J)$. Suppose $v \notin V(I)$. Then for some $f \in I$ $f(v) \neq 0$. Let $g \in J$ be given. then $fg \in IJ$, hence 0 = (fg)(v) = f(v)g(v), since $f(v) \neq 0$ it follows that g(v) = 0, hence $v \in V(J) \subset V(I) \cup V(J)$.

It follows that

$$X \cup Y = V(I) \cup V(J) = V(IJ).$$

We collect the most fundamental examples of (affine) algebraic sets

Example 3.1.11. Fix a field K

- 1. Trivially the vanishing set of some subset $M \subset K[x_1, \ldots, x_n]$ is a an algebraic set.
- 2. Affine *n*-space is an algebraic set. Indeed, see that

$$\mathbb{A}^n = V(0)$$

3. The empty set $\emptyset \subset \mathbb{A}^n$ is an algebraic set. Indeed one readily verifies that

$$\emptyset = V(1)$$
.

4. A singleton or *point*, $\{(a_1, \ldots, a_n)\}$ for $a_1, \ldots, a_n \in K$, is an algebraic set. Indeed, one checks that

$$\{(a_1,\ldots,a_n)\}=V(x_1-a_1,\ldots,x_n-a_n).$$

It thus follows that from Lemma 3.1.10 (ii) that any finite subset of \mathbb{A}^n is algebraic

We can represent some of the data collected thus far as a topology on affine n-space

Theorem 3.1.12. Consider the family of sets

$$\tau_{\mathcal{Z}} := \{ \mathbb{A}^n \setminus X : X \subset \mathbb{A}^n \text{ is an algebraic set} \}.$$

This constitutes a topology on \mathbb{A}^n called the Zariski topology.

Proof. One sees from example 3.1.11 2. & 3. that \mathbb{A}^n , $\emptyset \in \tau_{\mathbb{Z}}$.

Consider some indexing set A. Let $\{B_{\alpha}\}_{{\alpha}\in A}\subset \tau_{\mathcal{Z}}$ be given. For each ${\alpha}\in A$ we can find $X_{\alpha}\subset \mathbb{A}^n$ such that $B_{\alpha}=\mathbb{A}^n\setminus X_{\alpha}$. Then it follows from Proposition 3.1.10 (i) that

$$\bigcup_{\alpha} B_{\alpha} = \bigcup_{\alpha} \mathbb{A}^n \setminus X_{\alpha} = \mathbb{A}^n \setminus \left(\bigcap_{\alpha} X_{\alpha}\right) \in \tau_{\mathcal{Z}}$$

Let $B_1, \ldots, B_k \in \tau_{\mathcal{Z}}$. For suitable $X_1, \ldots, X_k \subset \mathbb{A}^n$, $B_i = \mathbb{A}^n \setminus X_i$. Then it follows from Proposition 3.1.10 (ii) that

$$\bigcap_{1}^{k} B_{i} = \bigcap_{1}^{k} \mathbb{A}^{n} \setminus X_{i} = \mathbb{A}^{n} \setminus \left(\bigcup_{1}^{k} X_{i}\right) \in \tau_{\mathcal{Z}}.$$

Remark 3.1.13. The closed subsets of \mathbb{A}^n under the Zariski topology are exactly the algebraic sets in \mathbb{A}^n . Thus we may opt to say that an algebraic subset $X \subset \mathbb{A}^n$ is a *Zariski closed subset*.

3.1.2 Miscellaneous Result about Algebraic sets, Examples & Non-examples

Proposition 3.1.14. The Zariski closed subsets of $\mathbb{A}^1 = K$ are the finite subsets of \mathbb{A}^1 and \mathbb{A}^1 itself.

Proof. Let $X \subset \mathbb{A}^1$ be Zariski closed. Suppose $X \neq V(0) = \mathbb{A}^1$, i.e. that $X = V(f_1, \ldots, f_m)$ for $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$, where $f_i \neq 0$ for at least one $i \in \{1, \ldots, m\}$. Then $X \subset V(f_i)$ by Lemma 3.1.5. $V(f_i)$ is the set of roots of f_i . Since $f_i \neq 0$, $\#V(f_i) \leq \deg f_i < \infty$ **GIVE REFERENCE**, hence

$$\#X \leq \#V(f_i) \leq \deg f_i < \infty.$$

Proposition 3.1.15. Let K be a field with $\#K < \infty$. Let $X \subset \mathbb{A}^n$. Then X is Zariski closed.

Proof. By assumption $\#X < \infty$, hence there are points $v_1, \ldots, v_k \in \mathbb{A}^n$ such that

$$X = \bigcup_{1}^{k} \{v_i\}.$$

By Example 3.1.11 X is Zariski closed.

We now give an example of a countable family of algebraic subsets whose union is not algebraic.

Example 3.1.16. Let $K = \mathbb{Q}$ and let and consider the family of algebraic sets $\{\{i\}\}_{i \in \mathbb{N}}$. The only algebraic subset of \mathbb{A}^1 are \mathbb{A}^1 it self and the finite subsets of \mathbb{A}^1 (cf. Proposition 3.1.14), but $\bigcup_{i \in \mathbb{Z}} \{i\} = \mathbb{Z}$, which is neither finite or equal to $\mathbb{A}^1 = \mathbb{Q}$.

Here are some examples of algebraic subsets

Example 3.1.17. 1. Let $X = \{(t, t^2, t^3) \in \mathbb{A}^3 : t \in K\}$. We prove that $X = V(f_1, f_2)$, where $f_1 = x^2 - y$, $f_2 = x^3 - z \in K[x, y, z]$. Let $v \in X$. Then $v = (t, t^2, t^3)$ for some $t \in K$. Note that

$$f_1(v) = t^2 - t^2 = 0$$
 and $f_2(v) = t^3 - t^3 = 0$,

implying that $v \in V(f_1, f_2)$.

Let $v = (v_1, v_2, v_3) \in V(f_1, f_2)$. Put $t = v_1$. Then $t^2 = v_1^2 = v_2$ and $t^3 = v_1^3 = v_3$, hence $v = (v_1, v_2, v_3) = (t, t^2, t^3) \in X$.

- 2. Let $X = \{(\cos(t), \sin(t)) \in \mathbb{A}^2(\mathbb{R}) : t \in \mathbb{R}\}$. One sees that $X = V(x^2 + y^2 1)$. Indeed, for $v = (\cos(t), \sin(t)) \in X$, $\sin^2(t) + \cos^2(t) = 1$, implying that $v \in V(x^2 + y^2 1)$. For $v = (v_1, v_2) \in V(x^2 + y^2 1)$, we have that $|v|^2 = v_1^2 + v_2^2 = 1$, implying that $v \in S^1 = \operatorname{im}(\mathbb{R} \ni t \mapsto (\cos(t), \sin(t) \in \mathbb{A}^2(\mathbb{R}))$.
- 3. Let $X = \{(\sin(t)\cos(t), \sin^2(t)) \in \mathbb{A}^2(\mathbb{R}) : t \in [0, 2\pi)\}$, i.e. the points in $\mathbb{A}^2(\mathbb{R})$ with polar coordinates (r, t) such that $r = \sin(t)$. Recall the trigonometric identities

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\alpha) + \sin(\beta)\cos(\alpha),$$
$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

for $\alpha, \beta \in [0, 2\pi)$. For $t \in [0, 2\pi)$ this is equivalent to

$$\sin(2t) = 2\sin(t)\cos(t) \iff \sin(t)\cos(t) = \frac{1}{2}\sin(2t) \text{ and}$$

 $\cos(2t) = \cos^2(t) - \sin^2(t) = 1 - 2\sin^2(t) \iff \sin^2(t) = \frac{1}{2}(1 - \cos(2t)),$

hence $X = \left\{ \left(\frac{1}{2} \sin(2t), \frac{1}{2} \left(1 - \cos(2t) \right) \right) : t \in [0, 2\pi) \right\}$. Let $f = x^2 + \left(\frac{1}{2} - y \right)^2 - \frac{1}{4}$. One sees that X = V(f). Indeed, if $v = \left(\left(\frac{1}{2} \sin(2t), \frac{1}{2} \left(1 - \cos(2t) \right) \right) \in X$ we have that

$$f(v) = \frac{1}{4}\cos^2(2t) + \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2}\sin(2t)\right)^2 - \frac{1}{4} = \frac{1}{4}\left(\cos^2(2t) + \sin^2(2t)\right) - \frac{1}{4} = \frac{1}{4} - \frac{1}{4} = 0,$$

thus we conclude $v \in V(f)$. Let $v = (v_1, v_2) \in V(f)$. We set $t = \frac{1}{2} \arcsin(2v_1)$. Then one easily checks that $\cos(2t) = v_1$. We also note that

$$v_1^2 = -\left(\frac{1}{2} - v_2\right)^2 + \frac{1}{4}.$$

Therefor we get that

$$\begin{split} \frac{1}{2}(1-\cos(2t)) &= \frac{1}{2}\left(1-\cos\left(2\frac{1}{2}\arcsin(2v_1)\right)\right) = \frac{1}{2}\left(1-\sqrt{1-4v_1^2}\right) \\ &= \frac{1}{2}\left(1-\sqrt{1+4\left(\left(\frac{1}{2}-v_2\right)^2-\frac{1}{4}\right)}\right) = \frac{1}{2}\left(1-\sqrt{1-1+4\left(\frac{1}{2}-v_2\right)^2}\right) \\ &= \frac{1}{2}\left(1-2\left(\frac{1}{2}-v_2\right)\right) = \frac{1}{2}\cdot 2v_2 = v_2. \end{split}$$

Hence $v=\left(v_{1},v_{2}\right)=\left(\frac{1}{2}\sin\left(2t\right),\frac{1}{2}\left(1-\cos\left(2t\right)\right)\right)\in X$

Figure 1: The algebraic curve given by $V(x^2-(1/2-y)^2-1/4)$ is a circle of radius 1/2 and center (0,1/2)

Definition 3.1.18. An algebraic subset of an \mathbb{A}^2 is called an *algebraic curve*.

Definition 3.1.19. The vanishing set of a non-zero polynomial $f \in K[x_1, ..., x_n]$ is called a *hypersurface*. If deg f = 1, then its vanishing set is called a *hyperplane*.

Definition 3.1.20. A hypersurface in \mathbb{A}^2 is called an *affine plane curve*. A hyperplane in \mathbb{A}^2 is called a *line*.

Remark 3.1.21. Consider a line $V(f) \subset \mathbb{A}^2$, where f = ax + by + c, for $a, b, c \in K$ where a or b are non-zero. Without loss of generality we may assume that $b \neq 0$. Thus

$$V(f) = V(f) \cup \emptyset = V(f) \cup V\left(b^{-1}\right) = V\left(b^{-1}(ax + by + c)\right) = V\left(y + ab^{-1}x + cb^{-1}\right).$$

This means that any can be expressed as the vanishing set of some polynomial of the form

$$y - Ax + B$$
,

for some $A, B \in K$.

Proposition 3.1.22. Consider $l = y - (ax + b) \in K[x, y]$ and a line L = V(l) and an affine plane curve C = V(f), where $f \in K[x, y]$ with $n = \deg f$ such that $L \not\subset C$. Then $C \cap L$ is a finite set containing at most n points.

Proof. The case where $\#K < \infty$ is trivial. Suppose then that $\#K = \infty$. Set

$$X := \{(t, at + b) \in \mathbb{A}^2 : f(t, at + b) = 0\}.$$

Note that $t \in V(f(x, ax + b))$ if and only if $(t, at + b) \in X$ and thus that there is a $t \in \mathbb{A}^1 \setminus V(f(x, ax + b), \text{ since } L \not\subset C$. This then implies that $\#V(f(x, ax + b)) \leq n$ (cf. Example 3.1.14), and hence $\#X \leq n$. It is then sufficient to prove that $C \cap L = X$. Let $v = (v_1, v_2) \in C \cap L$. Since $v \in L$ we have that

$$v_2 = av_1 + b,$$

meaning $v = (v_1, v_2) = (v_1, av_1 + b) \in X$. Conversely, let $v = (t, at + b) \in X$. Then

$$l(v) = at + b - (at + b) = 0,$$

hence $v \in L$. Clearly we also have that $v \in C$, meaning $v \in C \cap L$.

Corollary 3.1.23. An algebraic curve $X \subset \mathbb{A}^2$ intersects a line L not contained in X in only finitely many points.

Proof. $X = V(f_1, \ldots, f_m)$, for some $f_1, \ldots, f_m \in K[x, y]$, where without loss of generality $f_1 \neq 0$. Then $X \subset V(f_1)$ and $L \not\subset V(f_1)$, which by Proposition 3.1.22 implies that $\#X < \#V(f_1) < \deg f_1 < \infty$.

We use this result to give some non-examples of algebraic subsets

Example 3.1.24. 1. Consider the graph of the sine function,

$$G\coloneqq\{(t,\sin(t))\in\mathbb{A}^2(\mathbb{R}):t\in\mathbb{R}\}$$

Consider also the line L:=V(y). One easily verifies that $L=\{(t,0)\in\mathbb{A}^2(\mathbb{R}):t\in\mathbb{R}\}$. Thus $G\cap L=\{(n\pi,0)\in\mathbb{A}^2(\mathbb{R}):n\in\mathbb{Z}\}\neq L$, hence $\#(G\cap L)=\infty$, and G is not algebraic by Corollary 3.1.23.

2. Consider the sphere

$$S := \left\{ (z, w) \in \mathbb{A}^2(\mathbb{C}) : |z|^2 + |w|^2 = 1 \right\}.$$

Consider again the line L := V(y). Note that $S \cap L = \{(z,0) \in \mathbb{A}^2(\mathbb{C}) : |z| = 1\} \neq L$ and that this set is in bijection with S^1 . But clearly $\#S^1 = \infty$, hence S cannot be algebraic by Corollary 3.1.23.

Definition 3.1.25. Given an algebraic set $X \subset \mathbb{A}^n$ and $(b_1, \dots, b_n) \in \mathbb{A}^n$, a translation is a map

$$\varphi: X \to \mathbb{A}^n$$
$$(v_1, \dots, v_n) \mapsto (v_1 + b_1, \dots, v_n + b_n)$$

Lemma 3.1.26. Algebraic sets are closed under translation. In other words, let $X := V(f_1, \ldots, f_m) \subset \mathbb{A}^n$ be an algebraic set. Let $b_1, \ldots, b_n \in K$. Then the image of the map

$$\varphi: X \to \mathbb{A}^n$$
$$(v_1, \dots, v_n) \mapsto (v_1 + b_1, \dots, v_n + b_n)$$

is an algebraic set

Proof. One checks that im $\varphi = V(f_1(x_1 - b_1, \dots, x_n - b_n), \dots, f_m(x_1 - b_1, \dots, x_n - b_n))$. Indeed, let $(v_1 + b_1, \dots, v_n + b_n) \in \text{im } \varphi$. Then

$$f_i(v_1 + b_1 - b_1, \dots, v_n + b_n - b_n) = f_i(v_1, \dots, v_n) = 0.$$

On the other hand, let

$$(v_1,\ldots,v_n)\in V(f_1(x_1-b_1,\ldots,x_n-b_n),\ldots,f_m(x_1-b_1,\ldots,x_n-b_n)),$$
 Then $(v_1-b_1,\ldots,v_n-b_n)\in V(f_1,\ldots,f_n)$ and

$$(v_1,\ldots,v_n) = \varphi(v_1-b_1,\ldots,v_n-b_n) \implies (v_1,\ldots,v_n) \in \operatorname{im} \varphi.$$

Lemma 3.1.27. Let $X \subset \mathbb{A}^n$ be algebraic and $\omega \in \mathcal{S}_n$. Then the image of

$$\varphi: X \to \mathbb{A}^n$$
$$(v_1, \dots, v_n) \mapsto (v_{\omega(1)}, \dots, v_{\omega(n)})$$

is algebraic.

Proof. For suitable $f_1, \ldots, f_m \in K[x_1, \ldots, x_n], X = V(f_1, \ldots, f_m)$. Clearly,

im
$$\varphi = V\left(f_1\left(x_{\omega^{-1}(1)}, \dots, x_{\omega^{-1}(n)}\right), \dots, f_m\left(x_{\omega^{-1}(1)}, \dots, x_{\omega^{-1}(n)}\right)\right)$$
.

Indeed, if $w = (v_{\omega(1)}, \dots, v_{\omega(n)}) \in \text{im } \varphi$. Then

$$f_i(w_{\omega^{-1}(1)},\ldots,w_{\omega^{-1}(n)}) = f_i(v_{\omega^{-1}(\omega(1))},\ldots,v_{\omega^{-1}(\omega(n))}) = f_i(v_1,\ldots,v_n) = 0.$$

Conversely, if $v = (v_1, \dots, v_n)$ is an element of the right-hand side, then picking $w = ((v_{\omega^{-1}(1)}, \dots, v_{\omega^{-1}(n)}))$, then $f_i(w) = 0$ and $\varphi(w) = v$.

Definition 3.1.28. We define a *line* in \mathbb{A}^n given by $a_1, \ldots, a_n, b_1, \ldots, b_n \in K$, where $a_j \neq 0$ for some j to be the set

$$\left\{ \begin{pmatrix} a_1t + b_1 \\ \vdots \\ a_nt + b_n \end{pmatrix} \in \mathbb{A}^n : t \in K \right\}$$

Lemma 3.1.29. A line in \mathbb{A}^n is Zariski closed.

Proof. We consider first the case where $a_1 \neq 0$. It is easy to check that

$$V(\{a_1x_i - a_ix_1 - a_1b_i + a_ib_1 : i \neq 1\}) = \left\{ \begin{pmatrix} a_1t + b_1 \\ a_2t + b_2 \\ \vdots \\ a_nt + b_n \end{pmatrix} \in \mathbb{A}^n : t \in K \right\}.$$

Any other line can be obtained as the image translation composed with a map induced by a permutation of a line of the above form, hence by Lemmas 3.1.26 and 3.1.27 any line is Zariski closed.

The intersection of a proper configuration of n-1 hyperplanes is a line for $n \geq 2$.

Proposition 3.1.30. Consider a hyperplanes $V(p_1 + b_i), \dots, V(p_{n-1} + c_{n-1})$, with $p_i = \sum_{i=1}^{n} a_{ij}x_j \in K[x_1, \dots, x_n]$, $b_i \in K$ such that the vectors

$$a_i := \begin{pmatrix} a_{i1} \\ \vdots \\ a_{in} \end{pmatrix}, \quad (i \in \{1, \dots, n-1\})$$

are linearly independent. The intersection of these hyperplanes, L say, is a line.

Proof. Our assumptions lets us show that WLOG

$$L = \left\{ v \in \mathbb{A}^n : \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{(n-1)1} & \cdots & a_{(n-1)n} \\ 0 & \cdots & 0 \end{pmatrix} v = \begin{pmatrix} b_1 \\ \vdots \\ b_{n-1} \\ 0 \end{pmatrix} \right\} = \left\{ v \in \mathbb{A}^n : \left(c_{ij} \right) v = \begin{pmatrix} b'_1 \\ \vdots \\ b'_{n-1} \\ 0 \end{pmatrix} \right\}$$

where $c_{ii} = 1$ for $i \in \{1, ..., n-1\}$, $c_{nn} = 0$ and $c_{ij} = 0$ for $i, j \in \{1, ..., n\}$ where i > j and n > j > i. In other words

$$L = \bigcap_{1}^{n-1} V(x_i - c_i x_n - b_i'),$$

for suitable $c_i'b_i' \in K$. This means that

$$L = \{ (c_1t + b'_1, \dots, c_{n-1}t + b'_{n-1}, t) \in \mathbb{A}^n : t \in K \}.$$

We can extend the result in Proposition 3.1.22 in the following way

Proposition 3.1.31. Consider also a hypersurface $H := V(f) \subset \mathbb{A}^n$ with $d := \deg f > 0$ and a line $L \subset \mathbb{A}^n$ with $n \geq 2$ such that $L \not\subset H$. Then $\#(L \cap H) \leq d$

Proof. For suitable $a_1, \ldots, a_n, b_1, \ldots, b_n \in K$ with $a_j \neq 0$ for some j we have that

$$L = \left\{ \begin{pmatrix} a_1 t + b_1 \\ \vdots \\ a_n t + b_n \end{pmatrix} \in \mathbb{A}^n : t \in K \right\}$$

We may then easily prove that

$$L \cap H = \{(a_1t + b_1, \dots, a_nt + b_n) \in \mathbb{A}^n : f(a_1t + b_1, \dots, a_nt + b_n) = 0\}$$

and that $(a_1t + b_1, \dots, a_nt + b_n) \in L \cap H$ if and only if

$$t \in V(f(a_1x + b_1, \dots, a_nx + b_n)).$$

Since $L \cap H \neq L$, there is a $t \in \mathbb{A}^1$ such that $t \notin V(f(a_1x + b_1, \dots, a_nx + b_n))$, hence

$$\#(L \cap H) = \#V(f(a_1x + b_1, \dots, a_nx + b_n)) < d$$

Corollary 3.1.32. Consider a line $L \in \mathbb{A}^n$. Then L intersects any algebraic set not containing L only finitely many times.

Example 3.1.33. Consider the helix

$$H \coloneqq \left\{ (\cos(t), \sin(t), t) \in \mathbb{A}^3(\mathbb{R}) : t \in \mathbb{R} \right\}.$$

Consider also the line $L := \{(0, 1, t) \in \mathbb{A}^3(\mathbb{R}) : t \in \mathbb{R}\}$ and note that $L \cap H = \{(0, 1, 2n\pi + \pi/2) : n \in \mathbb{Z}\} \neq \mathbb{A}^1$, but we also have that $\#L \cap H = \infty$, hence H cannot be algebraic by 3.1.32.

Proposition 3.1.34. Suppose K is an infinite field. Let $f \in K[x_1, \ldots, x_n]$ with deg f > 0

1. Suppose
$$n \geq 1$$
. Then $\#(\mathbb{A}^n \setminus V(f)) = \infty$.

2. Suppose that K is algebraically closed and that $n \geq 2$. Then $\#V(f) = \infty$

Proof. 1. In the one variable case every algebraic subset that is not affine n-space is finite, hence $\#(\mathbb{A}^1 \setminus V(f)) = \infty$. Suppose then that $n \geq 2$. Since f is non-constant, we can write (cf. ref)

$$f = \sum_{0}^{d} f_i x_n^i,$$

for a $d \ge 1$ and for suitable $f_i \in K[x_1, \dots, x_{n-1}]$ with $f_j \ne 0$ for some $j \in \{1, \dots, d\}$. By Proposition ?? there is a point $v \in \mathbb{A}^{n-1}$ such that $f_j(v) \ne 0$. Hence

$$f' := \sum_{0}^{d} f_i(v) x_n^i \in K[x_n]$$

is a non-zero polynomial in one variable, implying that that for every infinitely many $v_n \in K$ such that $f'(v_n) = f(v_1, \dots, v_n) \neq 0$, hence $\mathbb{A}^n \setminus V(f)$ is infinite.

2. We again write $f = \sum_{0}^{d} f_{i}x_{n}^{i}$, for suitable $f_{i} \in K[x_{1}, \dots, x_{n-1}]$, with $f_{j} \neq 0$ for some $j \in \{1, \dots, d\}$. If every non-zero f_{i} is constant, then for any choice of $v \in \mathbb{A}^{n}$, there exists $a_{v} \in K$ such that for $f_{v} = \sum_{0}^{d} f_{i}(v)x_{n}^{i}$,

$$0 = f_v(a_v) = f(v_1, \dots, v_{n-1}, a_v).$$

If deg $f_j > 0$ for some j. Then there are infinitely many $v \in \mathbb{A}^{n-1}$ such $f_j(v) \neq 0$. For such a v there is at least one $a_v \in K$ that is a root in $f(v_1, \ldots, v_{n-1}, x_n)$. Thus in any case f has infinitely many zeroes, i.e. V(f) is infinite.

We present a way of constructing algebraic sets via Cartesian product

Proposition 3.1.35. Let $X \subset \mathbb{A}^n$ and $Y \subset \mathbb{A}^m$ be algebraic then. $X \times Y \subset \mathbb{A}^{n+m}$ is algebraic.

Proof. For suitable $f_1,\ldots,f_k\in K[x_1,\ldots,x_n]$ and $g_1,\ldots,g_l\in K[y_1,\ldots,y_m]$, we have $X=V(f_1,\ldots,f_m)$ and $Y=V(g_1,\ldots,g_l)$. We prove that $X\times Y=V(f_1,\ldots,f_k,g_1,\ldots,g_l)$, where we consider $f_1,\ldots,f_k,g_1,\ldots,g_l$ as elements of $K[x_1,\ldots,x_n,y_1,\ldots,y_m]$. Let $(v,w)\in X\times Y$. then clearly $f_i(v,w)=0$ and $g_j(v,w)=0$ for every $i\in\{1,\ldots,k\}$ and every $j\in\{1,\ldots,l\}$. Let $(v,w)\in V(f_1,\ldots,f_k,g_1,\ldots,g_l)$. Considering f_1,\ldots,f_k and g_1,\ldots,g_l as elements of the subsrings $K[x_1,\ldots,x_n]$ and $K[y_1,\ldots,y_m]$ respectively. We easily see that $f_i(v)=0$ for every i and $g_j(w)=0$ for every j, hence $v\in X$ and $w\in Y$, meaning $(v,w)\in X\times Y$.

3.1.3 A Correspondence between Algebraic sets and Polynomial Ideals

Definition 3.1.36. Let $X \subset \mathbb{A}^n$ be any subset. We define the *ideal of* X to be the set

$$I^{\mathbb{A}}(X) := I(X) := \{ f \in K[x_1, \dots, x_n] : f(v) = 0 \text{ for every } v \in \mathbb{A}^n \}$$

Lemma 3.1.37. The ideal of any subset $X \subset \mathbb{A}^n$ is an ideal in $K[x_1, \dots, x_n]$.

Proof. Let $f,g \in I(X)$ and $h \in K[x_1,\ldots,x_n]$. Let $v \in X$. Note first that $0 \in K[x_1,\ldots,x_n]$ trivially vanishes on v, hence $0 \in I(X)$. Furthermore we have that

$$(f+g)(v) = f(v) + g(v) = 0 \implies f+g \in I(X)$$

and that

$$(hf)(v) = h(v)f(v) = h(v) \cdot 0 = 0 \implies hf \in I(X).$$

Example 3.1.38. We consider some initial examples of ideals of subsets of \mathbb{A}^n .

1. $I(\emptyset) = K[x_1, \dots, x_n]$. For $f \in K[x_1, \dots, x_n]$, the statement, f vanishes on every $v \in \emptyset$ is vacuously true, hence $1 \in I(\emptyset)$.

2. Suppose # $K = \infty$. Then $I(\mathbb{A}^n) = 0$. Since K is infinite, if $f \in I(\mathbb{A}^n)$, then f(v) = 0 for every $v \in \mathbb{A}^n$, hence f = 0 by Proposition ??

3. Consider a point $v \in \mathbb{A}^n$. Then $I(\{v\}) = \langle x_1 - v_1, \dots, x_n - v_n \rangle$. This follows from Proposition 1.9.38.

Lemma 3.1.39. Let $X,Y \subset \mathbb{A}^n$ with $X \subset Y$. Then $I(X) \supset I(Y)$.

Proof. Let $f \in I(Y)$, and let $v \in X$. Then $v \in Y$, hence f(v) = 0, which implies $f \in I(X)$.

Lemma 3.1.40. Let $M \subset K[x_1, \ldots, x_n]$ and $X \subset \mathbb{A}^n$. Then we have the following

- 1. $I(V(M)) \supset M$.
- 2. $V(I(X)) \supset X$.
- 3. V(I(V(M))) = V(M). Hence if X is algebraic X = V(I(X)).
- 4. I(V(I(X))) = I(X). Hence if M is an ideal of some algebraic set, M = I(V(M))

Proof. 1. Let $f \in M$. Let $v \in V(M)$. Then f(v) = 0, hence $f \in I(V(M))$.

- 2. Let $v \in X$. Let $f \in I(X)$. Then f(v) = 0, hence $v \in V(I(X))$.
- 3. By 1. $I(V(M))\supset M$, hence $V(M)\supset V(I(V(M)))$ by Lemma 3.1.5. By 2. $V(I(V(M)))\supset V(M)$.
- 4. Since $V(I(X)) \supset X$ by 2, it follows that $I(V(I(X))) \subset I(X)$ by Lemma 3.1.39. By 1. $I(V(I(X))) \supset I(X)$.

Lemma 3.1.41. *Let* $X \subset \mathbb{A}^n$. *Then* I(X) *is radical.*

Proof. Let $F \in \text{rad}(I(X))$, then $F^n \in I(X)$ for some n > 0. Let $v \in X$. Then

$$F(v)^n = (F^n)(v) = 0.$$

Since K is an integral domain, this implies that F(v) = 0, hence $F \in I(X)$.

Lemma 3.1.42. Let $X, Y \subset \mathbb{A}^n$ be algebraic subsets. Then

$$X = Y \iff I(X) = I(Y).$$

Proof. " \Longrightarrow ": Follows from Lemma 3.1.39.

" ⇐= ": By Lemma 3.1.40 3.

$$X = V(I(X)) = V(I(Y)) = Y.$$

Corollary 3.1.43. *Let* $X \subseteq \mathbb{A}^n$ *be an algebraic subset.*

- 1. Consider $p \in \mathbb{A}^n \setminus X$. Then there is some polynomial $f \in K[x_1, \dots, x_n]$ such that f(q) = 0 for every $q \in X$ and f(p) = 1.
- 2. Consider distinct points $p_1, \ldots, p_k \in \mathbb{A}^n \backslash X$. Then there are polynomials $f_1, \ldots, f_k \in I(X)$ such that $f_i(p_j) = 0$ whenever $i \neq j$ and $f_i(p_i) = 1$.
- 3. Let $p_1, \ldots, p_k \in \mathbb{A}^n \setminus X$ and $a_{ij} \in K$ for $i, j \in \{1, \ldots, k\}$. Then there are $G_i \in I(X)$ with $G_i(p_j) = a_{ij}$ for every i and j.

Proof. 1.Note that $X \subsetneq X \cup \{p\}$. By Lemma 3.1.39 and Lemma 3.1.42, this implies $I(X) \supsetneq I(X \cup \{p\})$. Hence there is some $g \in I(X) \setminus I(X \cup \{p\})$. Clearly g(q) = 0 for every $q \in X$, while $g(q) \neq 0$, for otherwise $g \in I(X \cup \{p\})$. Upon taking

$$f = g(p)^{-1}g \in K[x_1, \dots, x_n],$$

we are done.

2. Let $i \in \{1, \dots, k\}$ and put

$$Y = X \cup \bigcup_{j \in \{1, \dots, k\}: j \neq i} \{p_j\}.$$

Using 1. we can then find $f_i \in K[x_1, \dots, x_n]$ such that $f_i(v) = 0$ for every $v \in Y$ and $f_i(p_i) = 1$. In particular, $f_i(p_i) = 0$ whenever $i \neq j$.

3. We construct $f_1, \ldots, f_k \in I(X)$ as in 2. Set

$$G_i = \sum_{k=1}^k a_{ij} f_j \in I(X).$$

Then

$$G_i(p_j) = \sum_{h=1}^k a_{ih} f_h(p_j) = a_{ij} f_j(p_j) = a_{ij}.$$

From Lemma 3.1.42 we get that

$$I(\bullet): \tau_{\mathcal{Z}} \ni X \mapsto I(X) \in \{I \subset K[x_1, \dots, x_n]: I \text{ is a radical ideal}\},$$

is an injective well defined function. A simple counter example shows that it is not surjective

Example 3.1.44. Consider $I:=\langle x^2+1\rangle\subset\mathbb{R}[x]$. We prove that I is prime and therefor radical by Lemma 1.8.32. Put $f=x^2+1$ and let $f_1,f_2\in\mathbb{R}[x]$ such that $f_1f_2\in I$, i.e. such that $f\mid f_1f_2$. Note that f has no roots in \mathbb{R} and therefor is irreducible in $\mathbb{R}[x]$. Since $\mathbb{R}[x]$ is a UFD it follows that $f\mid f_1$ or $f\mid f_2$, hence $f_1\in I$ or $f_2\in I$. From the fact that x^2+1 vanishes on no points in \mathbb{R} , it follows that $x^2+1\notin I(X)$ for any non-empty $X\subset\mathbb{R}$, hence $I(X)\neq I$. Since deg 1=0 it follows that $x\notin I$, hence $I\subseteq I(\emptyset)=\langle 1\rangle=\mathbb{R}[x]$. In conclusion, $I\neq I(X)$ for any set $X\subset\mathbb{R}$.

Lemma 3.1.45. Let $I \subset K[x_1, \ldots, x_n]$ be an ideal. Then $V(I) = V(\operatorname{rad}(I))$.

Proof. Since $I \subset \operatorname{rad}(I)$, $V(I) \supset V(\operatorname{rad}(I))$ by Lemma 3.1.5. Let $v \in V(I)$ and let $f \in \operatorname{rad}(I)$. Then for some n > 0, $f^n \in I$. Then $0 = f(v)^n$, and since K is an integral domain, this implies f(v) = 0, hence $v \in V(\operatorname{rad}(I))$. In conclusion $V(I) = V(\operatorname{rad}(I))$.

Lemma 3.1.46. Since $I \subset K[x_1, \ldots, x_n]$ be an ideal. Then $rad(I) \subset I(V(I))$.

Proof. Let $f \in \text{rad}(I)$. Then for some n > 0, $f^n \in I$. Let $v \in V(I)$. Then $f^n(v) = 0$ hence f(v) = 0, implying that $f \in I(V(I))$.

Lemma 3.1.47. Let $a_1, \ldots, a_n \in K$ and $I := \langle x_1 - a_1, \ldots, x_n - a_n \rangle$. Then I is maximal ideal and $K \simeq K[x_1, \ldots, x_n]/I$ via the canonical embedding of K in $K[x_1, \ldots, x_n]/I$

Proof. Proving that I is maximal is equivalent to proving that $K[x_1,\ldots,x_n]/I$ is a field. Hence if we prove that $K\simeq K[x_1,\ldots,x_n]/I$ the first claim follows. Consider the canonical embedding of K in $K[x_1,\ldots,x_n]/I$

$$\iota: K \to K[x_1, \dots, x_n]/I$$

$$a \to a + I$$

which is a injective ring homomorphism by Lemma Make lemma. It remains to check that ι is surjective. Let $f+I\in K[x_1,\ldots,x_n]/I$. Then $f+I=f(a_1,\ldots,a_n)+I$ by Make Lemma?, hence

$$\iota(f(a_1,\ldots,a_n)) = f(a_1,\ldots,a_n) + I = f + I.$$

3.2 Affine Varieties

Definition 3.2.1. An algebraic subset $X \subset \mathbb{A}^n$ is said to be *reducible* if there are algebraic subsets $Y, Z \subsetneq X$ such that $X = Y \cup Z$. An algebraic subset $V \subset \mathbb{A}^n$ that is not reducible is said to be *irreducible*. An irreducible algebraic subset is also called an *(affine)* variety.

Remark 3.2.2. If $f \in K[x_1, \dots, x_n]$ is a reducible polynomial. Then V(f) is reducible. Indeed, f = gh for some non-constant $g, h \in K[\mathbf{x}]$, hence $V(f) = V(gh) = V(g) \cup V(h)$. We also have that $\langle f \rangle \subsetneq \langle g \rangle$ and $\langle f \rangle \subsetneq \langle h \rangle$, since $g, h \mid f$ and deg g, deg $h < \deg f$. We shall later see an example of a variety V(f) where f is not irreducible.

Proposition 3.2.3. Let $V \subset \mathbb{A}^n$ be a finite non-empty algebraic set. Then V is a variety if and only if V is a point

Proof. " \Longrightarrow ":Suppose V is not a point. Then $V = \{p_1, \ldots, p_m \text{ for } m > 1, \text{ hence } V = \{p_1\} \cup \bigcup_2^m \{p_i\}$. Noting that $\{p_1\}$ and $\bigcup_2^m \{p_i\}$ are disjoint algebraic sets contained in V, it follows that V is reducible.

" \Leftarrow ": Suppose V is a point. Then if $V = X \cup Y$ for algebraic sets $X, Y \subset \mathbb{A}^n$, then either X = V or Y = V, hence V is a variety.

Definition 3.2.4. Let $V \subset \mathbb{A}^n$ be a variety. We define *the coordinate ring of* V to be the ring $\Gamma(V) := K[x_1, \dots, x_n]/I(V)$.

Proposition 3.2.5. Let $V \subset \mathbb{A}^n$ be an algebraic set. The following are equivalent:

- 1. V is a variety.
- 2. I(V) is a prime ideal.
- 3. $\Gamma(V)$ is an integral domain.

Proof. "1. \Longrightarrow 2.": Suppose I(V) is not prime. Then there are $f_1, f_2 \in K[x_1, \dots, x_n] \setminus I(V)$ such that $f_1 f_2 \in I(V)$ then $V \subset V(f_1 f_2)$, hence

$$V = V \cap V(f_1 f_2) = V \cap (V(f_1) \cup V(f_2)) = (V \cap V(f_1)) \cup (V \cap V(f_2)).$$

Since $f_1, f_2 \notin I(V), I(V) \subsetneq I(V) + \langle f_i \rangle$ for i = 1, 2, hence

$$V \subseteq V(I(V) + \langle f_i \rangle) = V(I(V)) \cap V(f_i) = V \cap V(f_i),$$

meaning V is reducible.

"2. \Longrightarrow 1.": Suppose V is reducible. Then $V = V_1 \cup V_2$ for algebraic subsets $V_1, V_2 \subsetneq V$. Then $I(V_1), I(V_2) \supsetneq I(V)$, meaning that there exists $f_1 \in I(V_1) \setminus I(V)$ and $f_2 \in I(V_2) \setminus I(V)$. Furthermore, $f_1 f_2$ vanish on ever point in $V_1 \cup V_2 = V$, hence $f_1 f_2 \in I(V)$, meaning I(V) is not prime.

"2.
$$\iff$$
 3.": This follows from Lemma 1.8.24.

We demonstrate the strength of the above theorem in the following example

Example 3.2.6. 1. Let $f = y - x^2 \in \mathbb{C}[x,y]$. Since $\deg_y f = 1$ and f is monic with respect to x, f is irreducible in $(\mathbb{C}[y])[x] \simeq \mathbb{C}[x,y]$ $\mathbf{Result!!!}$, hence since $\mathbb{C}[x,y]$ is a UFD $\mathbf{Result!!!}$, f is prime, and thus $\langle f \rangle$ is prime. Suppose $a \in I(V(f))$. We aim to prove that $a(x,x^2) = 0$, which would imply

$$a(x,y) + \langle f \rangle = a(x,x^2) + \langle f \rangle = 0 + \langle f \rangle \implies a \in \langle f \rangle.$$

Indeed every point in V(f) is of the form $(\alpha, \alpha^2) \in \mathbb{A}^2(\mathbb{C})$, hence upon putting $b = a(x, x^2) \in \mathbb{C}[x]$, we see that $b(\alpha) = 0$ for every $\alpha \in \mathbb{C}$, implying $a(x, x^2) = b = 0$. We thus conclude $I(V(f)) = \langle f \rangle$, which means $V(f) \subset \mathbb{A}^2(\mathbb{C})$ is irreducible by the above theorem.

2. Let $g = y^4 - x^2 \in \mathbb{C}[x, y]$ and $h = y^4 - x^2y^2 + xy^2 - x^3 \in \mathbb{C}[x, y]$. Setting $g_1 = y^2 - x$ and $g_2 = y^2 + x$, then $g = g_1g_2$. We can thus write

$$V(g,h) = V(g) \cap V(h) = V(g_1g_2) \cap V(h) = (V(g_1) \cup V(g_2)) \cap V(h) = V(g_1,h) \cup V(g_2,h).$$

Note also that

$$h = y^4 - x^2y^2 + xy^2 - x^3 = y^2(y^2 + x) - x^2(y^2 - x) = -x^2g_1 + y^2g_2 \in \langle g_1, g_2 \rangle.$$

We aim to prove that $V(g_i,h)=\{0\}$. Let $v\in V(g_1,h)$. Then $v_1=v_2^2$. Then $h(v)=v_2^2g_2(v)$, hence $0=v_2^2=v_1$, in which case v=0, or $g_2(v)=0$. Since $V(g_1)\cap V(g_2)=\{0\}$, it follows that in the second case v=0. One proves $V(g_2,h)=\{0\}$ similarly. We may write $\{0\}=V(x,y)$. Trivially a singleton is irreducible, since if $\{0\}=V\cup W$, then $V=\{0\}$ or $W=\{0\}$.

3. One should note that a polynomial being irreducible, does not imply that its vanishing set is irreducible. Take for instance, $f = y^2 + x^2(x-1)^2 \in \mathbb{R}[x,y]$. Consider f as a polynomial in $\mathbb{C}[x,y]$ we have that

$$f = (y - ix(x - 1))(y + ix(x - 1)),$$

hence since the prime factorization of f is unique (since $\mathbb{C}[x,y]$ is a UFD) and $y-ix(x-1),y+ix(x-1)\in\mathbb{C}[x,y]\setminus\mathbb{R}[x,y]$, there is no non-trivial factors of f in $\mathbb{R}[x,y]$, which means f is irreducible in $\mathbb{R}[x,y]$. Note that

$$V(f) \supset \{(0,1)\} \cup \{(0,0)\} = V(x-1,y) \cup V(x,y).$$

Let $(v_1, v_2) \in V(f)$. Then $v_2^2 = -v_1^2(v_1 - 1)^2$. Note that $v_2^2 \ge 0$, and $v_1^2(v_1 - 1)^2 = (v_1(v_1 - 1))^2 \ge 0$, hence $v_2^2 = -v_1^2(v_1 - 1)^2 \le 0$. This implies $v_2 = 0$, hence $v_1^2 = 0$ or $(v_1 - 1)^2 = 0$, implying $v_1 = 0$ or $v_1 - 1 = 0$. In conclusion $(v_1, v_2) = (0, 0)$ or $(v_1, v_2) = (1, 0)$, meaning $(v_1, v_2) \in \{(0, 1)\} \cup \{(0, 0)\}$. We thus see that

$$V(f) = V(x-1,y) \cup V(x,y).$$

Lemma 3.2.7. Let X be a set and $\mathcal{X} \subset 2^X$ be a non-empty family of subsets of X. Set

$$\mathcal{Y} \coloneqq \{X \in \mathcal{X} : X \subset Y \text{ for some } Y \in \mathcal{X}\}$$

and $\mathcal{Z} := \mathcal{X} \setminus \mathcal{Y}$. Then

$$\bigcup_{X \in \mathcal{X}} X = \bigcup_{X \in \mathcal{Z}} X.$$

Proof. The inclusion $\bigcup_{X \in \mathcal{X}} X \supset \bigcup_{X \in \mathcal{Z}} X$ is trivial. Let $x \in \bigcup_{X \in \mathcal{X}} X$. Then $x \in X$, for some $X \in \mathcal{X}$. To prove the inclusion, we need to show that $x \in Y$ for some $Y \in \mathcal{Z}$

Theorem 3.2.8. Let $X \subset \mathbb{A}^n$ be an algebraic set. Then there is a finite sequence of varieties $V_1, \ldots, V_n \subset \mathbb{A}^n$ unique (up to re-ordering) such that

$$X = \bigcup_{1}^{n} V_{i}$$

and $V_i \not\subset V_j$ for $i \neq j$.

Proof. Existence: Consider the set

 $\mathcal{A} := \{X \subset \mathbb{A}^n : X \text{ is algebraic and not a finite union of varieties} \}$.

Suppose for a contradiction that $\mathcal{A} = \emptyset$. Then by Lemma ??, there is a minimal element $X_0 \in \mathcal{A}$. On the one hand X_0 is not irreducible. Hence There are $Y, Z \subsetneq X_0$ such that $X_0 = Y \cup Z$. However, by minimality $Y, Z \notin \mathcal{A}$, hence $Y = \bigcup_1^k V_i$ and $Z = \bigcup_1^l W_i$ for varieties $V_1, \ldots, V_k, W_1, \ldots, W_l \subset \mathbb{A}^n$. But then

$$X_0 = Y \cup Z = \bigcup_{1}^{k} V_i \cup \bigcup_{1}^{l} W_i,$$

leading to a contradiction. This means $A = \emptyset$. Hence every algebraic set can be written as a union of varieties.

Let $X \subset \mathbb{A}^n$ be an algebraic set, and pick varieties $V_1, \ldots, V_m \subset \mathbb{A}^n$ whose union is equal to X. Let V_{k_1}, \ldots, V_{k_l} be the maximal elements of $\{V_1, \ldots, V_m\}$. Let $j \in \{1, \ldots, m\}$. The set $S := \{V_i : V_j \subset V_i\}$ has a maximal element V_k . Let $h \in \{1, \ldots, m\}$ and suppose $V_k \subset V_h$. Then in particular $V_j \subset V_h$, hence $V_h \in S$, implying $V_h = V_k$. This means V_k is a maximal element of $\{V_1, \ldots, V_m\}$. In other words $k = k_i$ for some k_i , hence k_i implying

$$X = \bigcup_{1}^{m} V_i = \bigcup_{1}^{l} V_{k_i}$$

Uniqueness: Suppose $X \subset \mathbb{A}^n$ be algebraic sets. Suppose there are varieties $V_1, \ldots, V_l, W_1, \ldots, W_m \subset \mathbb{A}^n$ such that

$$\bigcup_{1}^{l} V_i = X = \bigcup_{1}^{m} W_i,$$

and $V_i \not\subset V_j$ for $j \neq i$ and $W_i \not\subset W_j$ for $i \neq j$. For each $i \in \{1, \dots, l\}$ we have that

$$V_i = V_i \cap V = V_i \cap \bigcup_{1}^{m} W_j = \bigcup_{1}^{m} (V_i \cap W_j).$$

Then there is a j(i) such that $V_i \subset W_{j(i)}$. By similar argument, $W_{i(j)} \subset V_k$ for some k hence i = k, implying $V_i = W_{j(i)}$. similarly $W_j = V_{i(j)}$ for every j some i(j). Hence there is a one-to-one correspondence of $\{V_1, \ldots, V_l\}$ and $\{W_1, \ldots, W_m\}$.

Definition 3.2.9. The varieties $V_1, \ldots, V_m \subset \mathbb{A}^n$ involved in the *decomposition*, described in the above theorem, of an algebraic set $X \subset \mathbb{A}^n$ are called the *(irreducible) components* of X.

Proposition 3.2.10. Let $X, Y \subset \mathbb{A}^n$ be algebraic subsets such that $X \subset Y$ with irreducible components V_1, \ldots, V_m respectively W_1, \ldots, W_l . Then for each $i \in \{1, \ldots, m\}$, V_i is contained in W_i for some $j \in \{1, \ldots, l\}$.

Proof. Let $v \in V_i$. Then since

$$\bigcup_{1}^{m} V_{i} = X \subset Y = \bigcup_{1}^{l} W_{j},$$

 $v \in W_j$ for some $j \in \{1, \dots, l\}$, hence $V_i \subset W_j$.

Proposition 3.2.11. Let $X \subset \mathbb{A}^n$ be an algebraic subset with irreducible components V_1, \ldots, V_m . Then for each $i \in \{1, \ldots, m\}$,

$$V_i \not\subset \bigcup_{j \in \{1, \dots, m\} \setminus \{i\}} V_j.$$

Proof. If m=1, then $\bigcup_{j\in\{1,\ldots,m\}\setminus\{i\}}V_j=\emptyset$, hence clearly $V_i\not\subset\bigcup_{j\in\{1,\ldots,m\}\setminus\{i\}}V_j$. Suppose $m\geq 2$, i.e. that X is reducible. Note that $X\setminus V_i\subset\bigcup_{j\in\{1,\ldots,m\}\setminus\{i\}}V_j$. Then since $V_i\subsetneq X$, there is a point $v\in X\setminus\ldots$

Proposition 3.2.12. For an infinite field K, $\mathbb{A}^n(K)$ is irreducible.

Proof. When K is infinite, $I(\mathbb{A}^n(K)) = 0$ **ref result!!!**, which is trivially prime, hence $\mathbb{A}^n(K)$ is prime by Theorem 3.2.5

3.2.1 Classifying Algebraic Subsets of the Plane

Theorem 3.2.13. Let $f, g \in K[x, y]$ such that gcd(f, g) = 1. Then $\#V(f, g) < \infty$.

Proof. By Add result 1 is also greatest common divisor of f and g in K(x)[y]. since K(x)[y] is a PID it follows that $\langle f,g\rangle=\langle 1\rangle\subset K(x)[y]$ Result. Then there are $\mu,\lambda\in K(x)[y]$ such that $\mu f+\lambda g=1$. For some $\delta\in K[x]$, we have that $\alpha f+\beta g=\delta$. Hence if $(v_1,v_2)\in V(f,g)$, then $v_1\in V(\delta)$. Since $\#V(\delta)<\infty$, we have that

$$V_1 := \{v_1 \in K : (v_1, v_2) \in V(f, g) \text{ for some } v_2 \in K\}$$

is finite. We can similarly show by a symmetric argument that

$$V_2 := \{v_2 \in K : (v_1, v_2) \in V(f, q) \text{ for some } v_1 \in K\}$$

is finite. One easily sees that $V(f,g)\subset V_1\times V_2$, hence $\#V(f,g)<\infty$. \square

Corollary 3.2.14. Let $f \in K[x,y]$ be irreducible such that $\#V(f) = \infty$. Then $I(V(f)) = \langle f \rangle$ and V(f) is irreducible.

Proof. If $g \in I(V(f))$ then $V(f,g) \supset V(f)$, hence $\#V(f,g) = \infty$. Then f and g has a non-trivial common factor by the above theorem. Then since f is assumed irreducible this means $f \mid g$ or equivalently that $g \in \langle f \rangle$, hence $I(V(f)) \subset \langle f \rangle$, implying $I(V(f)) = \langle f \rangle$ by Lemma 3.1.40, this implies that I(V(f)) is prime by Lemma 1.8.28 and the fact that K[x,y] is a UFD. This implies that V(f) is irreducible by Proposition 3.2.5.

Corollary 3.2.15. Suppose K is infinite. The varieties in \mathbb{A}^2 are \mathbb{A}^2 , \emptyset , points and plane curves V(f) where $f \in K[x,y]$ is irreducible and $\#V(f) = \infty$.

Proof. Suppose $V \subset \mathbb{A}^2$ is a non-empty variety. By Proposition 3.2.3, V is finite if and only if V is a point. Suppose V is infinite. If I(V) = 0 then $V = \mathbb{A}^2$. So suppose I(V) contains a non-constant f. Since K[x,y] is a UFD, we can write f as a product irreducible factors $f_1, \dots, f_m \in K[x,y]$, since I(V) is prime by Proposition 3.2.5 it follows that $f_i \in I(V)$ for some i. Suppose for a contradiction $\mathbf{Dowhout}$ contradiction $\mathbf{Proof!}$ that there is a $g \in I(V) \setminus \langle f_i \rangle$, then $\langle g, f_i \rangle \subset I(V)$ and $f_i \nmid g$, hence $\gcd(g, f_i) = 1$ and $V(g, f_i) \supset V(I(V)) = V$, implying that V would be finite by the above theorem. It thus follows that $I(V) = \langle f_i \rangle$, hence $V = V(I(V)) = V(f_i)$. □

Corollary 3.2.16. Let K be an algebraically closed field, $f \in K[x,y]$, $\deg f > 0$. Let distinct irreducible polynomials $f_1, \ldots, f_l \in K[x,y]$ and positive integers r_1, \ldots, r_l be given such that $f = \prod_1^r f_i^{r_i}$. Then $V_i := V(f_i)$ for $i = 1, \ldots, l$ are the irreducible components of V := V(f) and $V(f) = \left\langle \prod_1^l f_i \right\rangle$.

Proof. Proposition 3.1.34 2. shows that $V(f_i)$ is an infinite set for each i. Hence by Corollary 3.2.14 V_i is irreducible and $I(V_i) = \langle f_i \rangle$ for each i. Furthermore, for each i, $V(f_i^{r_i}) = V(\operatorname{rad}(f_i^{r_i})) = V(f_i)$, hence $V = \bigcup_{1}^{l} V_i$. Since $f_i \nmid f_j$ for $i \neq j$, $\langle f_j \rangle \not\subset \langle f_i \rangle$, hence $V_i \not\subset V_j$. Note that

$$I\left(\bigcup_{1}^{l} V_{i}\right) = \bigcap_{1}^{l} I(V_{i}) = \bigcap_{1}^{l} \langle f_{i} \rangle.$$

It follows from Reference small lemma from algebra section that $\bigcap_{1}^{l} \langle f_{i} \rangle = \langle \prod_{1}^{l} f_{i} \rangle$.

Example 3.2.17. We give some examples of why it's not too much fun to work over non-algebraically closed field

1. Let $f = x^2 + y^2 + 1 \in \mathbb{R}[x, y], I = \langle f \rangle$. Note that for any $(v_1, v_2) \in \mathbb{A}^2(\mathbb{R}), v_1^2 + v_2^2 \geq 0$, hence $v_1^2 + v_2^2 + 1 \geq 1 > 0$, hence $V(I) = \emptyset$. Hence $I(V(I)) = I(\emptyset) = \langle 1 \rangle$ Let $f_1 = a_1x + b_1y + c_1, f_2 = a_2x + b_2y + c_2 \in \mathbb{R}[x, y]$. Then

$$f_1f_2 = a_1a_2x^2 + b_1b_2y^2 + (a_1b_2 + a_2b_1)xy + (a_1c_2 + a_2c_1)x + (b_1c_2 + b_2c_1)y + c_1c_2.$$

Consider the following system of equations

$$\begin{cases} a_1 a_2 = \alpha & b_1 b_2 = \beta \\ (a_1 b_2 + a_2 b_1) = 0 \end{cases}$$

where $\alpha, \beta > 0$ This system of equations clearly cannot have any real solutions since using $a_1a_2 = 1$ and $b_1b_2 = 1$, we get that

$$(a_1b_2 + a_2b_1) = 0 \iff a_1b_2 = -a_2b_1 \iff a_1^2b_2^2 = -a_2a_1b_1b_2 = -1.$$

It thus follows that any polynomial in $\mathbb{R}[x,y]$ of the form $\alpha x^2 + \beta y^2 + 0xy + \ldots \in \mathbb{R}[x,y]$ where α,β cannot be a product of two degree 1 polynomials in $\mathbb{R}[x,y]$ and therefor is irreducible in $\mathbb{R}[x]$. Alternatively one could also see this by applying the rational root theorem and result saying that second degree pol. over field is red. iff has roots to $x^2 + y^2 + 1 \in \mathbb{R}(x)[y]$.

The point in any case is that $I(V(I)) \neq I$.

2. Every algebraic subset of $\mathbb{A}^2(\mathbb{R})$ can be written as V(f) for some $f \in \mathbb{R}[x,y]$: If $P = \{(v_1,v_2)\}$, then P = V(g), where $g = (x-v_2)^2 + (y-v_1)^2$. Indeed, $g(v_1,v_2) = 0$ and if $(w_1,w_2) \in V(g)$, then since $(w_1-v_1)^2, (w_2-v_2)^2 \geq 0$ and $(w_1-v_1)^2 + (w_2-v_2)^2 = 0$, we have $w_1-v_1 = 0$ and $w_2-v_2 = 0$. Now if V is an arbitrary algebraic subset of $\mathbb{A}^2(\mathbb{R})$, it has a decomposition into irreducible components V_1, \ldots, V_l . By Corollary 3.2.15 and the remark we made about points at the beginning, it follows that $V_i = V(f_i)$ for some $f_i \in \mathbb{R}[x,y]$, hence

$$V = \bigcup_{1}^{l} V(f_i) = V\left(\prod_{1}^{l} f_i\right).$$

Example 3.2.18. We have now classified the varieties of the plane over an infinite field K. Let's determine the irreducible decompositions of some algebraic subsets

1. Let $f = y^2 - xy - x^2y + x^3$. Set $f_1 = x - y$ and $f_2 = y - x^2$. Then one sees that $f = f_1 f_2$ and hence $V(f) = V(f_1) \cup V(f_2)$. Eisenstein's criterion **Write!!!** shows that $f_1 \in K(x)[y]$, $f_2 \in K(y)[x]$ are irreducible, since $x \nmid 1, x \mid x, x^2 \nmid x$ and $y \nmid 1, y \mid y, y^2 \nmid y$. We then have that (since f_1, f_2 are primitive **Ref result**) that $f_1, f_2 \in K[x, y]$ are irreducible (This is for any field K). Note that $V_{\mathbb{R}}(f_1) = \{(\lambda, \lambda) \in \mathbb{R}^2 : \lambda \in \mathbb{R}\}$, which is infinite. Note also that $V_{\mathbb{R}}(f_2) = \{(\lambda, \lambda^2) \in \mathbb{R}^2 : \lambda \in \mathbb{R}\}$, which is also infinite since it is the graph of the function $\lambda \mapsto \lambda^2$. We thus see that $V_{\mathbb{R}}(f_1), V_{\mathbb{R}}(f_2)$ and $V_{\mathbb{C}}(f_1), V_{\mathbb{C}}(f_2)$ are the irreducible components of $V_{\mathbb{R}}(f)$ resp. $V_{\mathbb{C}}(f)$ by Corollary 3.2.15, since $V_{\mathbb{C}}(f_1) \cap V_{\mathbb{C}}(f_2) = \{(0,0),(1,1)\}$ implying that neither set is contained in the other.

2. Consider $f=y^2-x$ (x^2-1) . The set V(f) is an example of an elliptic curve (these are in general of the form $V(y^2-(ax^3+bx^2+cx+d))$. Using Eisenstein's criterion for f in K[x][y] performing the testing the criterion against $x\in K[x]$, it follows that $f\in K[x,y]$ is irreducible. We aim to show that $V_{\mathbb{R}}(f)$ is infinite. Let $\lambda\in\mathbb{R}_{\geq 1}$. Then $\lambda^2-1\geq 0$, hence λ $(\lambda^2-1)\geq 0$. It thus follows that

$$\left\{ \left(\lambda, \pm \sqrt{\lambda \left(\lambda^2 - 1\right)}\right) \in \mathbb{R}^2 : \lambda \in \mathbb{R} \right\} \subset V_{\mathbb{R}}(f) \subset V_{\mathbb{C}}(f).$$

Since this subset is infinite, it follows that both $V_{\mathbb{R}}(f), V_{\mathbb{C}}(f)$ are irreducible by Corollary 3.2.15.

3. Consider $f = x^3 + x - x^2y - y$. Put $f_1 = x - y$, $f_2 = x^2 + 1$. Then $f = f_1f_2$. We have already seen that f_1 is irreducible in K[x,y] and that $V(f_1)$ is infinite. We also know that $V_{\mathbb{R}}(f_2) = \emptyset$. It thus follows that $V_{\mathbb{R}}(f) = V_{\mathbb{R}}(f_1) \cup V_{\mathbb{R}}(f_2) = V_{\mathbb{R}}(f_1)$, hence $V_{\mathbb{R}}(f_1)$ is the only irreducible component over \mathbb{R} . Note that $f_2 = (x+i)(x-i)$ in $\mathbb{C}[x,y]$, and $f_2' = x+i$, and f_2'' are irreducible in $\mathbb{C}[x,y]$ being of degree 1. Since $V_{\mathbb{C}}(f_2') = \{(-i,\lambda) \in \mathbb{C}^2 : \lambda \in \mathbb{C}\}$ and $V_{\mathbb{C}}(f_2'') = \{(i,\lambda) \in \mathbb{C}^2 : \lambda \in \mathbb{C}\}$ are infinite sets, it thus follows that $V_{\mathbb{C}}(f_2'), V_{\mathbb{C}}(f_2'')$ are also irreducible sets in $\mathbb{A}^2(\mathbb{C})$. Clearly $V_{\mathbb{C}}(f_2')$ and $V_{\mathbb{C}}(f_2'')$ are disjoint. Furthermore, $V_{\mathbb{C}}(f_1) \cap V_{\mathbb{C}}(f_2') = \{(-i,-i)\}$ and $V_{\mathbb{C}}(f_1) \cap V_{\mathbb{C}}(f_2'') = \{(i,i)\}$, hence there is no containment of these sets in each other. It thus follows that the irreducible components of $V_{\mathbb{C}}(f)$ are $V_{\mathbb{C}}(f_1), V_{\mathbb{C}}(f_2'), V_{\mathbb{C}}(f_2'')$.

3.2.2 Hilbert's Nullstellensatz

In the discussion involving Hilbert's Nullstellensatz, we shall assume that K is algebraically closed. Before presenting the full Hilbert Nullstellensatz we prove a weak version, which we shall see implies Hilbert's Nullstellensatz.

Theorem 3.2.19. (The Weak Nullstellensatz/WNS)

Let K be an algebraically closed field and consider $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. Then $V(f_1, \ldots, f_m) = \emptyset$ if and only if there are polynomials $\lambda_1, \ldots, \lambda_m \in K[\mathbf{x}]$ such that

$$\sum_{1}^{m} \lambda_i f_i = 1.$$

In other words

$$V(f_1,\ldots,f_m) = \emptyset \iff \langle f_1,\ldots,f_m \rangle = \langle 1 \rangle = K[\mathbf{x}].$$

Proof. Set
$$I := \langle f_1, \dots, f_m \rangle$$
.
"\(\infty\) if $I = \langle 1 \rangle$, then $V(I) = V(1) = \emptyset$.

" \Longrightarrow ": Suppose $I \neq \langle 1 \rangle$, i.e. I is a proper ideal. We aim to show $V(I) \neq \emptyset$. $I \subset I'$ for some maximal ideal by reference to proper theorem. Hence $V(I) \supset V(I')$. This means that if $V(I') \neq \emptyset$, then $V(I) \neq \emptyset$. It is then sufficient to prove the statement in the case where I is maximal. It follows from Corollary 1.10.28 that $I = \langle x_1 - a_1, \dots, x_n - a_n \rangle$ for suitable $a_i \in K$. Hence $V(I) = \{(a_1, \dots, a_n)\} \neq \emptyset$.

Remark 3.2.20. The equation

$$\sum_{1}^{m} f_i y_i = 1 \tag{6}$$

is called the Hilbert equation associated with f_1, \ldots, f_m . Thus WNS says that f_1, \ldots, f_m has no common zeros if and only if the Hilbert equation associated with f_1, \ldots, f_m is soluble over $K[\mathbf{x}]$

Theorem 3.2.21. (Hilbert's Nullstellensatz/HNS)

Let K be an algebraically closed field and consider $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. Put $I := \langle f_1, \ldots, f_m \rangle$. Then for every $f \in I(V(I))$ there are $\lambda_1, \ldots, \lambda_n \in K[\mathbf{x}]$ and an integer $k \geq 0$ such that

$$\sum_{1}^{m} \lambda_i f_i = f^k.$$

In other words I(V(I)) = rad(I).

Proof. $\operatorname{rad}(I) \subset I(V(I))$ by Lemma 3.1.46. Let $g \in I(V(I))$. Put $J := \langle f_1, \ldots, f_m, x_{n+1}g - 1 \rangle \subset K[x_1, \ldots, x_{n+1}]$. Suppose $v \in \mathbb{A}^{n+1}$ vanishes on f_1, \ldots, f_m . Then $v_{n+1}g(v) - 1 = -1 \neq 0$. If $v \in \mathbb{A}^{n+1}$ vanishes on $x_{n+1}g - 1$. Then $v_{n+1}g(v) = 1 \neq 0$, hence v doesn't vanish on f_1, \ldots, f_m . This means $V(J) = \emptyset$. By the weak Nullstellensatz we can then find $\lambda_1, \ldots, \lambda_{m+1} \in K[x_1, \ldots, x_{n+1}]$ such that

$$1 = \left[\sum_{1}^{m} \lambda_{i} f_{i}\right] + \lambda_{m+1} (x_{n+1} G - 1),$$

Let $y = \frac{1}{q} \in K(x_1, \dots, x_{n+1})$. Then

$$\begin{split} 1 &= \mathrm{ev}_{x_1, \dots, x_n, y}(1) = \mathrm{ev}_{x_1, \dots, x_n, y} \left(\left[\sum_{1}^{m} \lambda_i f_i \right] + \lambda_{m+1} (x_{n+1} G - 1) \right) \\ &= \left[\sum_{1}^{m} \lambda_i (x_1, \dots, x_n, y) f_i \right] + \lambda_{m+1} (x_1, \dots, x_n, y) (yG - 1) = \sum_{1}^{m} \lambda_i (x_1, \dots, x_n, y) f_i. \end{split}$$

Then taking $N \geq \max_{i \in \{1,\dots,m\}} (\deg_{x_{n+1}} \ \lambda_i f_i),$

$$g^{N} = g^{N} \sum_{1}^{m} \lambda_{i}(x_{1}, \dots, x_{n}, y) f_{i} = \sum_{1}^{m} \lambda'_{i} f_{i},$$

for suitable $\lambda_i' \in K[x_1, \dots, x_n]$. This implies $g \in \operatorname{rad}(I)$

We give a few corollaries the first of which is apparent.

Corollary 3.2.22. The mapping taking a radical ideal $I \subset K[x_1, ..., x_n]$ to $V(I) \subset \mathbb{A}^n$ and the mapping taking an algebraic set $V = V(I) \subset \mathbb{A}^n$ to $I(V) = \operatorname{rad}(I)$ establishes a one-to-one correspondence between algebraic sets and polynomial radical ideals for each $n \geq 1$.

Corollary 3.2.23. The mapping taking a prime ideal $I \subset K[x_1, ..., x_n]$ to $V(I) \subset \mathbb{A}^n$ and the mapping taking a variety $V = V(I) \subset \mathbb{A}^n$ to $I(V) = \operatorname{rad}(I)$ establishes a one-to-one correspondence between irreducible algebraic sets and polynomial prime ideals for each n > 1.

Proof. Let $I \subset K[\mathbf{x}]$ be a prime ideal. By Lemma 1.8.32 and HNS,

$$I(V(I)) = \operatorname{rad}(I) = I, \tag{7}$$

hence by Proposition 3.2.5, V(I) is indeed irreducible. Given a variety $V \subset \mathbb{A}^n$, also by Proposition 3.2.5, I(V) is prime. Furthermore, V(I(V)) = V by Lemma 3.1.40. This with (7) shows the mappings are mutual inverses.

Corollary 3.2.24. The mapping taking a maximal ideal $I \subset K[x_1, \ldots, x_n]$ to $V(I) \subset \mathbb{A}^n$ and the mapping taking a point $P = \{(a_1, \ldots, a_n)\} = V(x_1 - a_1, \ldots, x_n - a_n) \subset \mathbb{A}^n$ to $I(P) = \operatorname{rad}(x_1 - a_1, \ldots, x_n - a_n)$ establishes a one-to-one correspondence between and polynomial maximal ideals for each $n \geq 1$.

Proof. Let $I \subset K[\mathbf{x}]$ be a maximal ideal. Then $I = \langle x_1 - a_1, \dots, x_n - a_n \rangle$, hence $V(I) = \{(a_1, \dots, a_n)\}$. Since I is maximal, it is prime, hence radical, and thus I(V(I)) = I by HNS. Let $P = \{(a_1, \dots, a_n)\} \subset \mathbb{A}^n$. Then $I(P) = I(V(\langle x_1 - a_1, \dots, x_n - a_n \rangle)) = \langle x_1 - a_1, \dots, x_n - a_n \rangle$, which is maximal, and of course we know V(I(P)) = P.

HNS establishes a hands-on way of decomposing ANY hypersurface into its irreducible components, which generalizes the result already obtained in the two variable case.

Corollary 3.2.25. Consider a hypersurface $X := V(f) \subset \mathbb{A}^n$. We can write

$$f = \prod_{1}^{r} f_i^{v_i},$$

for suitable distinct irreducible polynomials $f_1, \ldots, f_r \in K[x_1, \ldots, x_n]$ and $v_1, \ldots, v_r \geq 1$. The irreducible components of X are V_1, \ldots, V_r , where $V_i := V(f_i)$. We thus establish a one-to-one correspondence between irreducible hypersurfaces and irreducible polynomials up to scalar multiplication from K. Lastly $I(X) = \langle \prod_{i=1}^r f_i \rangle$

Proof. Since the ideal $\langle f_i \rangle$ are prime, it follows from HNS that $V_i = V(f_i)$ is irreducible. Since $f_i \nmid f_j$ for $i \neq j$, it follows that $V_i \not\subset V_j$, hence V_1, \ldots, V_r are the irreducible components of V. To prove the last statement, it is sufficient, by HNS, to prove that $\operatorname{rad}(\langle f \rangle) = \langle \prod_{i=1}^r f_i \rangle$. This follows from Lemma 1.8.55.

Corollary 3.2.26. Consider $I := \langle f_1, \dots, f_m \rangle \subset K[x_1, \dots, x_n]$. V(I) is finite if and only if $K[\mathbf{x}]/I$ is a finite dimensional vector space over K. If this occurs $\#V(f) \leq \dim_K K[\mathbf{x}/I]$.

Proof. " \Longrightarrow ": Suppose $V(I) = \{p_1, \ldots, p_l\}$, where $p_i = (a_{i1}, \ldots, a_{il}) \in \mathbb{A}^n$. Define for $j \in \{1, \ldots, n\}$, $g_j := \prod_{i=1}^l (x_j - a_{ij})$. Then $g_j \in I(V(I)) = \operatorname{rad}(I)$, hence for some $N_j \geq 1$, $g_j^{N_j} \in I$. Take $N = \max N_j$. Then for suitable $\lambda_{ij} \in K$,

$$0+I=F_j^N+I=\left[X_j^{lN}+\sum_0^{lN-1}\lambda_{ij}X_j^i\right]+I\implies X_j^{lN}+I=\left[-\sum_0^{lN-1}\lambda_{ij}X_j^i\right]+I.$$

For each $s \ge 0$, we thus find that $X_j^s + I$ is a linear combination of 1 + I, $X_j + I$, ..., $X_j^{rN-1} + I$. This means

$$K[\mathbf{x}]/I = \operatorname{Span}_K\left(\left\{x_j^k + I : j \in \{1, \dots, n\}, k \in \{0, \dots, lN\}\right\}\right),$$

hence $K[\mathbf{x}]/I$ is finite dimensional.

" \Leftarrow ": Set $d := \dim_K K[\mathbf{x}]/I$ and let distinct points $p_1, \ldots, p_l \in V(I)$ be given. There are polynomials $g_1, \ldots, g_l \in K[\mathbf{x}]$ such that $g_i(p_i) = 1$ and $g_i(p_j) = 0$ for $i \neq j$ (which exist by **Some result. Insert ref!**). Let $\lambda_1, \ldots, \lambda_l \in K$ be given such that

$$\left[\sum_{1}^{l} \lambda_{i} g_{i}\right] + I = 0 + I.$$

Then $\left[\sum_{1}^{l} \lambda_{i} g_{i}\right] \in I$, so for each i,

$$\lambda_i = \lambda_i g_i(p_i) = \sum_{1}^{m} \lambda_j f_j(p_i) = 0,$$

hence $\{g_1+I,\ldots,g_l+I\}\subset K[\mathbf{x}]/I$ are linearly independent over K. Then $\sum_1^l K(g_i+I)\subset K[\mathbf{x}]/I$ has dimension l, and $l\leq d$. This means there can be at most d distinct points in V(I).

Example 3.2.27. 1. In general the Nullstellensatz provides a way to find irreducible components. Consider for example $f:=x^2+y^2-1, g:=x^2-z^2-1\in\mathbb{C}[x,y,z]$ and set X:=V(f,g). The fact that f,g are both irreducible will make the task of

providing the irreducible components for X difficult. It is therefor useful to find an alternative generating set for $I:=\langle f,g\rangle$. Note that $h:=y^2+z^2=f-g\in I$ and $f=(f-g)+g=h+g\in J:=\langle h,g\rangle$. It thus follows that I=J. Setting $h_1:=y-iz$ and $h_2:=y+iz$, one sees that $h=h_1h_2$. This means

$$X = V(I) = V(J) = (V(h_1) \cup V(h_2)) \cap V(g) = \underbrace{(V(h_1) \cap V(g))}_{V_1} \cup \underbrace{(V(h_2) \cap V(g))}_{V_2}.$$

We now claim that V_1, V_2 are the irreducible components of X. Consider the ring homomorphism

$$\sigma: \mathbb{C}[x, y, z] \to \mathbb{C}[x, z]/\langle g \rangle$$

$$f \mapsto f(x, iz, z)$$

This is clearly a surjective ring homomorphism. Note that $\sigma(h_1) = 0$ and $\sigma(g) = 0$, hence $\langle h_1, f \rangle \subset \ker \sigma$. Let $f \in \ker \sigma$. Then $f(x, iz, z) + \langle g \rangle = 0$. This means

$$f + \langle h_1, g \rangle = f(x, iz, z) + \langle h_1, g \rangle = 0 + \langle h_1, g \rangle$$

hence ker $\sigma = \langle h_1, g \rangle$, which shows that

$$\mathbb{C}[x,y,z]/\langle h_1,g\rangle\simeq\mathbb{C}[x,z]/\langle g\rangle.$$

Since g is irreducible, it is prime and thus $\mathbb{C}[x,z]/\langle g \rangle$ is an integral domain hence $\mathbb{C}[x,y,z]/\langle h_1,g \rangle$ is an integral, meaning $\langle h_1,g \rangle$ is a prime ideal. By HNS, it follows that V_1 is irreducible. Similarly one can show that $\mathbb{C}[x,y,z]/\langle h_2,g \rangle$ is an integral domain, and hence $\langle h_2,g \rangle$ is prime, meaning V_2 is irreducible. Any point vanishing on h_1 clearly does not vanish on h_2 , hence $V_i \not\subset V_j$ for $i \neq j$. We thus conclude that V_1, V_2 are the irreducible components of X.

2. Set $X:=\{(v,v^2,v^3):v\in\mathbb{C}^3\}$. Note that by Example 3.1.17, X=V(f,g), where $f_1=x^2-y$ and $f_2=x^3-z$. How does one determine I(X)?. Consider the surjective ring homomorphism

$$\sigma: \mathbb{C}[x, y, z] \to \mathbb{C}[t]$$

 $f \mapsto f(t, t^2, t^3)$

Note that $I(V)=\ker\sigma$. Indeed, $f\in\mathbb{C}[x,y,z]$ vanishes on (v,v^2,v^3) , then $f(t,t^2,t^3)=0$, since \mathbb{C} is infinite. Conversely if $f(t,t^2,t^3)=0$, then for any $v\in\mathbb{C}$, $f(v,v^2,v^3)=0$. Since V(I(V))=V, it would be nice to compute the generators of I(V), as this perhaps leads to a nicer sets of generators, that allows

us to say something about irreducible components. Note that $\ker \sigma = \mathbb{C}[x,y,z] \cap \langle x-t,y-t^2,z-t^3 \rangle$. This is indeed just a reformulation of Lemma 1.9.38. In general, how do we compute the generators of $\mathbb{C}[x,y,z] \cap \langle x-t,y-t^2,z-t^3 \rangle$? First let \leq be the lexicographic term order where x < y < z < t or x < y < z. The answer is that we turn Gröbner basis theory to compute a Gröbner basis for the ideal $I := \langle x-t,y-t^2,z-t^3 \rangle \subset \mathbb{C}[x,y,z,t]$ with respect to \leq using Buchberger's algorithm and then determine $G \cap K[x,y,z]$ which will be a Gröbner basis for $K[x,y,z] \cap I$ with respect to \leq by Theorem 1.9.91. Set $g_1 := -t + x, g_2 := -t^2 + y, g_3 := -t^3 + z$. We follow Buchberger's algorithm

$$S(g_1, g_2) = tx - y,$$

which has residue $f_1 = -y + x$ when divided by $\{g_1, g_2, g_3\}$. For step 2 we find that

$$S(g_1, g_3) = t^2 x - z,$$

which has residue $f_2 = -z + x^3$ when divided by $\{g_1, g_2, g_3, f_1\}$. For step 3 we find that

$$S(g_2, g_3) = ty - z,$$

which one verifies to have residue 0 when divided by $\{g_1,g_2,g_3,f_1,f_2\}$. Note now that $S(g_i,g_j) \to_{\{g_1,g_2,g_3,f_1,f_2\}} 0$ and the initial terms of the remaining pairs have pairwise greatest common divisor 1, hence the S-polynomial of these pairs also reduce to 0 modulo $\{g_1,g_2,g_3,f_1,f_2\}$ by Proposition 1.9.85. Thus $G:=\{g_1,g_2,g_3,f_1,f_2\}$ is a Gröbner basis for I, hence $G':=G\cap\mathbb{C}[x,y,z]=\{f_1,f_2\}$ is a Gröbner basis for ker $\sigma=I(V)$. From this one concludes that $\langle x-y^2,x-z^3\rangle$ is radical. However, we can say even more! We actually find that

$$K[x, y, z]/I(V) = K[x, y, z]/\langle f_1, f_2 \rangle \simeq K[t].$$

This means K[x, y, z]/I(V) is an integral domain, implying V is irreducible by Proposition 3.2.5.

Example 3.2.28. Consider $f = y^2 - x(x-1)(x-a) \in K[x,y]$ where K is an algebraically closed field and $a \in K$. V(f) is irreducible. Indeed, when $a \neq 1$, $x-1 \nmid y^2$, $x \mid f$ and $(x-1)^2 \nmid f$ thus by Eisenstein's criterion f is irreducible/prime. When a = 1, $a \neq 0$, hence $x \nmid y^2, x \mid f$ and $x^2 \nmid f$ implies again by Eisenstein's criterion that f is irreducible/prime. The ideal $\langle f \rangle$ is thus prime, hence by HNS V(f) is irreducible.

Example 3.2.29. Consider $f_1 = x^2 - y^2 = (x + y)(x - y) \in \mathbb{C}[x, y]$ and $f_2 = x^2 + y^2 = (x + iy)(x - iy) \in \mathbb{C}[x, y]$. Set $V := V(f_1, f_2)$. Let's find the irreducible components. There is a naive approach: Note that

$$\begin{split} V &= (V(x+y) \cup V(x-y)) \cap (V(x+iy) \cup V(x-iy)) \\ &= V(x+y,x+iy) \cup V(x+y,x-iy) \cup V(x-y,x+iy) \cup V(x-y,x-iy). \end{split}$$

We can thus decompose V into 4 linear equations all of which has $\{(0,0)\}$ as there only solution, hence $V = \{(0,0)\}$.

One can be more smarter: Note that $1/2(f_1+f_2)=x^2$ and $1/2(f_2-f_1)=y^2$, hence $I=J:=\langle x^2,y^2\rangle$, hence clearly if $v\in V(I),\,v=(0,0)$. Note now that

$$\mathbb{C}[x,y]/I = \mathbb{C}[x,y]/J = \{ax + by + cxy + d + J : a,b,c,d \in \mathbb{C}\},\$$

and hence is isomorphic to the 4 dimensional vector space $\mathrm{Span}_{\mathbb{C}}(1,x,y,xy)\subset\mathbb{C}[x,y].$ So the inequality from Corollary 3.2.26 doesn't always hold with equality. One notes, however that when decomposing V into a system of linear equations, we get 4 "copies" of the point (0,0), hence it seems that the dimension of the vector space $\mathbb{C}[x,y]/I$ matches the number of points in V(I) with some sort of multiplicity.

Corollary 3.2.30. If a variety $V \subset \mathbb{A}^n$ is a hypersurface. It is either \mathbb{A}^n , \emptyset or V(f) where f is irreducible. As a consequence, such a hypersurface is of the third type, it contains no variety W.

Proof. This follows from Lemma 1.8.56 and HNS.

Definition 3.2.31. Let $V \subset \mathbb{A}^n$ be a variety. A variety $W \subset \mathbb{A}^n$ is a *subvariety of* V if it is also a subset of V.

Proposition 3.2.32. Let $V \subset \mathbb{A}^n$ be a variety. We have one-to-one correspondences between

- 1. Algebraic subsets contained in V and radical ideals of $\Gamma(V)$.
- 2. Subvarieties of V and prime ideals of $\Gamma(V)$.
- 3. Points of V and maximal ideals of $\Gamma(V)$.

Proof. This follows from HNS (or more precisely the one-to-one correspondences obtained from it) and Proposition 1.8.36.

Definition 3.2.33. Let $V \subset \mathbb{A}^n$ be a variety and $W \subset V$ a subvariety. We define $I_V(W)$ to be the ideal $I(W)/I(V) \subset \Gamma(V)$.

Lemma 3.2.34. Let $V \subset \mathbb{A}^n$ be a variety and $W \subset V$ a subvariety. Then $\Gamma(W) \simeq \Gamma(V)/I_V(W)$

Proof. This follows from Is written since

$$\Gamma(V)/I_V(W) = \frac{K[\mathbf{x}]/I(V)}{I(W)/I(V)} \simeq K[\mathbf{x}]/I(W) = \Gamma(W).$$

Proposition 3.2.35. Let $V \subset \mathbb{A}^n$ be a non-empty variety. The following are equivalent:

- 1. V is a point.
- 2. $\Gamma(V) = K$.
- 3. $\dim_K \Gamma(V) < \infty$.

Proof. "1. \Longrightarrow 2.": By HNS, $\Gamma(V)$ is a field, and $K[x] \to \Gamma(V)$, $f \mapsto f + I(V)$ is surjective K-algebra homomorphism hence by Corollary 1.10.27, $\Gamma(V) = K$.

"2. \Longrightarrow 3.": In this case $\dim_K \Gamma(V) = \dim_K K = 1 < \infty$.

"3. \Longrightarrow 1.": Since $\dim_K \Gamma(V) < \infty$, V is finite by Corollary 3.2.26, and since V it cannot consist of multiple points.

Example 3.2.36. Set $f:=x^2-y^3, g:=y^2-z^3$ and $I:=\langle f,g\rangle$. Consider the K-algebra homomorphism

$$\alpha: K[x, y, z] \to K[t]$$

 $x \mapsto t^9, y \mapsto t^6, z \mapsto t^4$

Let $h = \sum_{v=(a,b,c)\in\mathbb{N}^3} \alpha_v x^a y^b z^c \in K[x,y,z]$. Note that for $a \geq 2$, $x^a + I = x^{2q_a + r_a} + I = x^{r_a} y^{3q_a} + I$ for some $q_a, r_a \geq 0$ with $r_a \in \{0,1\}$. For $b \geq 2$, $y^b = y^{2q_b + r_b} + I = y^{r_b} z^{3q_b} + I$ for some $q_b, r_b \geq 0$, $r_b \in \{0,1\}$. So for a monomial $x^a y^b z^c$ we get that

$$x^{a}y^{b}z^{c} + I = x^{r_{a}}y^{r_{b}}z^{q_{a}+q_{b}+c} + I = \begin{cases} z^{q_{a}+q_{b}+c} + I \\ xz^{q_{a}+q_{b}+c} + I \\ yz^{q_{a}+q_{b}+c} + I \\ xyz^{q_{a}+q_{b}+c} + I \end{cases}$$

. This means that

$$h + I = Ax + By + Cz + Dxy + I,$$

for some $A,B,C,D\in K[z]$. We aim to prove that $I=\ker\alpha$. Suppose h is such that $h(t^9,t^6,t^4)=0$. Then $\alpha(Ax+By+Cy+Dxy)=0$, hence $A(t^4)t^9+B(t^4)t^6+C(t^4)t^4+D(t^4)t^{15}=0$. One notes that terms in $A(t^4)t^9$ have degree $4d_A+1$; in $B(t^4)t^6$, $4d_B+2$; in $C(t^4)t^4$, $4d_C$; in $D(t^4)t^{15}$, $4d_D+3$, so $A(t^4)=B(t^4)=C(t^4)=D(t^4)=0$, hence A=B=C=D=0. Then h+I=0, meaning $h\in I$. Then I is prime hence V(f,g) is irreducible

3.2.3 Introduction to Effective Nullstellensätze: Degree Bounds and a Gröbner Basis Method

We fix an algebraically closed field K. An *effective Nullstellensatz* (*ENS*) is a theorem that proves the weak Nullstellensatz in a way that gives rise to an algorithm for computing a solution to Hilbert Equations. The proof of the weak Nullstellensatz provided in these notes thus far does not give a way for constructing an explicit solution to the Hilbert Equation associated with polynomials $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$, which vanish nowhere simultaneously and is therefor not an ENS. We are thus presented with the question of how to construct a solution to this Hilbert equation explicitly.

One way to accomplish this, is to prove that there is an upper bound $B \ge 0$ (which will typically dependent on deg $f_1, \ldots, \deg f_m$) on $\{\deg \lambda_i\}_1^m$ or equivalently on $\{\deg \lambda_i f_i\}_1^m$. To see that this is indeed the case, write

$$f_i = \sum_{v \in \mathbb{N}^n} a_v^{(i)} \mathbf{x}^v \in K[\mathbf{x}],$$

for suitable $a_v^{(i)} \in K$, $i \in \{1, ..., m\}$. Define for $u \in \mathbb{N}^n$ with $|u| \leq B$,

$$c_u = \sum_{\substack{i \in \{1,\dots,m\},\\v,w \in \mathbb{N}^n:\\v+w=u}} a_v^{(i)} y_w^{(i)},$$

where $y_w^{(i)}$ (say for $|w| \leq B$) are unknowns. Consider the equation:

$$1 = \sum_{1}^{m} \sum_{v \in \mathbb{N}^{n}} \sum_{w \in \mathbb{N}^{n}} a_{v}^{(i)} y_{w}^{(i)} \mathbf{x}^{v+w} = \sum_{u \in \mathbb{N}^{n}: |u| \le B} c_{u} \mathbf{x}^{u}.$$
 (8)

This equation has a solution if and only if the following linear equation has a solution,

$$\begin{cases} c_u = 0 & \text{for } 0 < |u| \le B, \\ c_{(0,\dots,0)} = 1. \end{cases}$$
 (9)

The upshot is that the existence of a solution $b_w^{(i)} \in K$ to (8) is seen to be equivalent the existence of a solution to the Hilbert equation bounded by B when putting

$$\lambda_i = \sum_{w \in \mathbb{N}^n} b_w^{(i)} \mathbf{x}^v.$$

Indeed we get that

$$\sum_{1}^{m} \lambda_i f_i = \sum_{u \in \mathbb{N}^n : |u| \le B} c_u \mathbf{x}^u = 1$$

and by construction deg $\lambda_i f_i \leq B$. Conversely if a solution to the Hilbert equation $\lambda_i \in K[x_1, \ldots, x_n]$ with deg $\lambda_i f_i \leq B$ exists then the coefficients of λ_i constitutes a solution to (8). Then we can produce an explicit solution to the Hilbert equation by solving the system of linear equations (9) and we know that a solution to this system of equations exists exactly when a degree bounded solution to the Hilbert equation exists.

Another approach to providing an ENS relies exclusively on Gröbner basis theory. We present this approach here. We first need to reformulate WNS such that the statement can be observed by a Gröbner basis. To do this we give the following definition

Definition 3.2.37. Consider polynomials $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. A polynomial $p(\mathbf{x}, y_1, \ldots, y_m) \in K[\mathbf{x}, y_1, \ldots, y_m]$ is called a *final polynomial for* f_1, \ldots, f_m if

1.
$$p(\mathbf{x}, f_1, \dots, f_m) = 0$$

2.
$$p(\mathbf{x}, \mathbf{0}) \in K \setminus \{0\}.$$

Furthermore, if $p \in K[\mathbf{y}] \subset K[\mathbf{x}, \mathbf{y}]$ is a final polynomial for f_1, \ldots, f_m , it is called a *final syzygy* (for f_1, \ldots, f_m).

Lemma 3.2.38. Let $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. Then there is a final polynomial for f_1, \ldots, f_m if and only if there is a solution to the Hilbert equation for f_1, \ldots, f_m .

Proof. " \Longrightarrow ": Suppose $p \in K[\mathbf{x}, y_1, \dots, y_m]$ is a final polynomial for f_1, \dots, f_m . We can then write

$$p = -c + \sum_{1}^{m} G_i y_i,$$

for suitable $G_i \in K[\mathbf{x}, \mathbf{y}]$ and $c \in K$. The second defining property of final polynomials shows that $c \neq 0$. Put $\lambda_i = G_i(\mathbf{x}, f_1, \dots, f_m) \in K[\mathbf{x}]$ for each i. From the first defining property for final polynomials it follows that

$$c = p(\mathbf{x}, f_1, \dots, f_m) = \sum_{1}^{m} G_i(\mathbf{x}, f_1, \dots, f_m) f_i = \sum_{1}^{m} \lambda_i f_i,$$

hence (after scaling by c^{-1}), $\{\lambda_i\}_1^m$ is a solution to the Hilbert equation for f_1, \ldots, f_m . " \longleftarrow ": Let $\lambda_1, \ldots, \lambda_m \in K[\mathbf{x}]$ be a solution to the Hilbert equation for f_1, \ldots, f_m . Put $p = 1 - \sum_{i=1}^{m} \lambda_i y_i \in K[\mathbf{x}, \mathbf{y}]$. Then

$$p(\mathbf{x}, f_1, \dots, f_m) = 1 - \sum_{i=1}^{m} \lambda_i f_i = 1 - 1 = 0,$$

hence p satisfies the first defining property for final polynomials. Secondly, we have that

$$p(\mathbf{x}, \mathbf{0}) = 1 - \sum_{1}^{m} \lambda_i \cdot 0 = 1 \in K \setminus 0,$$

hence p is a final polynomial for f_1, \ldots, f_m .

This gives rise to the following reformulation of the weak Nullstellensatz

Theorem 3.2.39. Let K be algebraically closed and consider $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. Then $V(f_1, \ldots, f_m) = \emptyset$ if and only if there exists a final polynomial for f_1, \ldots, f_m .

Proposition 3.2.40. Let $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$, denote the graph ideal of these polynomials by I and let G be a Gröbner basis for I with respect \leq_{lex} with $x_1 > \cdots > x_n > y_1 > \cdots > y_m$. Then f_1, \ldots, f_m has a final syzygy if and only if G contains a final syzygy for f_1, \ldots, f_m .

Proof. Note by Theorem 1.9.91 that $G' = G \cap K[\mathbf{y}] \subset G$ is a Gröbner basis for the ideal $I \cap K[\mathbf{y}]$ with respect to the \leq_{lex} with $y_1 < \ldots < y_m$. Suppose $p \in K[\mathbf{y}]$ is a final syzygy for f_1, \ldots, f_m . We see that $p \in I \cap K[y]$ by Proposition 1.9.38, which implies $\widehat{G} \cap K[\mathbf{y}]$ contains a non-zero polynomial. The final syzygy p is on the form $-[\sum_1^m h_i y_i] + c$ for suitable $h_i \in K[\mathbf{y}]$, $c \in K \setminus 0$ and $p^{G'} = 0$ by Proposition 1.9.69. For this to be true there must be a polynomial $p' \in G'$ with non-zero constant term, implying $p'(0) \in K \setminus 0$. Since $p' \in I$, it satisfies $p'(f_1, \ldots, f_m) = 0$. One thus concludes that p' is a final syzygy for f_1, \ldots, f_m .

To extend this approach to the case where only a final polynomial to exist we need to modify the definition of final polynomial slightly.

Definition 3.2.41. Consider $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. A polynomial $p(z, \mathbf{x}, \mathbf{y}) \in K[z, \mathbf{x}, y_1, \ldots, y_n]$ is called an *extended final polynomial* if

1.
$$p(z, \mathbf{x}, zf_1(\mathbf{x}), \dots, zf_m(\mathbf{x})) = 0$$

2.
$$p(z, \mathbf{x}, 0) = cz \quad (c \in K \setminus \{0\}).$$

Remark 3.2.42. It is easy to see that an extended final polynomial $p(z, \mathbf{x}, \mathbf{y})$ for $f_1, \dots, f_m \in K[\mathbf{x}]$ gives rise to a final polynomial for f_1, \dots, f_m given by $p(1, \mathbf{x}, \mathbf{y})$.

Conversely, if f_1, \ldots, f_m admits a final polynomial $p(\mathbf{x}, \mathbf{y}) = 1 - \sum_{i=1}^{m} \lambda_i y_i \in K[\mathbf{x}, \mathbf{y}]$ where $\lambda_i \in K[\mathbf{x}]$, we can construct an extended final polynomial for f_1, \ldots, f_m given by $z - \sum_{i=1}^{m} \lambda_i y_i$.

Theorem 3.2.43. Let $f_1, \ldots, f_m \in K[\mathbf{x}]$ and let $I = \langle zf_1 - y_1, \ldots, zf_m - y_m \rangle \subset K[z, \mathbf{x}, y_1, \ldots, y_m]$. Let \leq be a term order on $K[z, \mathbf{x}, \mathbf{y}]$, where z^k is greater than any monomial in $K[\mathbf{x}, \mathbf{y}]$ for $k \geq 1$ (e.g. \leq_{lex} with $z > x_1 > \cdots > x_n > y_1 > \cdots > y_m$). Consider a Gröbner basis $G \subset K[z, \mathbf{x}, \mathbf{y}]$ of I with respect to \leq . Then $V(\mathcal{F}) = \emptyset$ if and only if G contains an extended final polynomial for f_1, \ldots, f_m .

Proof. The first direction is trivial. For the converse statement, suppose $V(\mathcal{F}) = \emptyset$. Then by the Nullstellensatz there exist $\lambda_i \in K[\mathbf{x}]$ such that

$$1 = \sum_{1}^{m} \lambda_i f_i,$$

hence

$$p(z, \mathbf{x}, \mathbf{y}) = z - \sum_{1}^{m} \lambda_i y_i,$$

defines an extended final polynomial for f_1, \ldots, f_m . By Lemma 1.10.57, $p \in I$. Then, since G is a Gröbner basis, there is a $g \in G$ such that $\inf_{\leq g} g \mid \inf_{\leq g} p = z$. Again by Lemma 1.10.57, $1 \notin I$, hence we can assume that $\inf_{\leq g} g = cz$ for some $c \in K \setminus \{0\}$. Since $g \in I$, we have that

$$g = \sum_{1}^{m} \mu_i(z, \mathbf{x}, \mathbf{y})(zf_i - y_i),$$

for suitable $\mu_i \in K[z, \mathbf{x}, \mathbf{y}]$. This, for one, implies that $g(z, \mathbf{x}, zf_1, \dots, zf_m) = 0$. Furthermore, we can rearrange terms in the above expression to write

$$g = z \sum_{1 \atop s_1}^m \mu'_i f_i - \sum_{1 \atop s_2}^m \mu''_i y_i,$$

for suitable $\mu_i' \in K[z, \mathbf{x}]$ and $\mu_i'' \in K[z, \mathbf{x}, \mathbf{y}]$. Since $s_2 \in \langle y_1, \dots, y_m \rangle$ and $s_1 \in K[z, \mathbf{x}, \mathbf{y}] \setminus \langle y_1, \dots, y_m \rangle$ there is no cancellation between terms of s_1 and s_2 . This means $\sum_1^m \mu_i' f_i = c$ and hence $g(z, \mathbf{x}, 0) = cz$, which implies g is an extended final polynomial for f_1, \dots, f_m .

3.3 A Theory of Affine Varieties

In this section we will assume that any field is algebraically closed.

3.3.1 Morphisms of Affine Varieties: Polynomial maps

Definition 3.3.1. Let $V \subset \mathbb{A}^n$ and $W \subset \mathbb{A}^m$ be affine varieties. A map $\varphi : V \to W$ is called a *polynomial map* if there are polynomials $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$ such that for $v \in V$,

$$\varphi(v) = (f_1(v), \dots, f_m(v)).$$

When W = K, we call such a polynomial map a polynomial function. We denote the set of polynomial maps from V to W by Pol(V, W)

Remark 3.3.2. 1. Note that $\operatorname{Pol}(V, K)$ admits a structure of ring where $0, 1 \in \operatorname{Pol}(V, K)$ are the constant functions mapping every point to respectively 0 and 1 and where for $f, g \in \operatorname{Pol}(V, K)$, $f + g \in \operatorname{Pol}(V, K)$ is defined by

$$(f+g)(v) := f(v) + g(v) \quad (v \in V)$$

and $fg \in Pol(V, K)$ is defined by

$$(fg)(v) = f(v)g(v) \quad (v \in V).$$

2. Suppose we have polynomials $f_1, \ldots, f_m, g_1, \ldots, g_m \in K[x_1, \ldots, x_n]$ such that for $v \in V$

$$(f_1(v),\ldots,f_m(v))=\varphi(v)=(g_1(v),\ldots,g_m(v)),$$

then $(f_i - g_i)(v) = f_i(v) - g_i(v) = 0$ for every $v \in V$ and $i \in \{1, ..., m\}$, i.e. $f_i - g_i \in I(V)$. Hence a polynomial map is uniquely defined up to I(V)-residues.

Example 3.3.3. Here are a few examples of polynomial maps.

1. Consider for $1 \le i \le j \le n$ the map

$$\pi_{i,j}: \mathbb{A}^n \to \mathbb{A}^m$$
$$(v_1, \dots, v_n) \mapsto (v_i, \dots, v_j)$$

Note that setting $f_i = x_i \in K[x_1, \dots, x_n]$ we get that

$$(f_i(v), \ldots, f_j(v)) = (v_i, \ldots, v_j) = \pi_{i,j}(v),$$

for every $v \in \mathbb{A}^n$, hence $\pi_{i,j}$ is polynomial. In particular the projection map $\pi_i = \pi_{i,i}$ is polynomial.

2. Let $\omega \in \mathcal{S}_n$, i.e. a permutation of n elements. Then

$$\varphi: \mathbb{A}^n \to \mathbb{A}^n$$
$$(v_1, \dots, v_n) \mapsto (v_{\omega(1)}, \dots, v_{\omega(n)})$$

Setting $f_i = x_{\omega(i)}$ for each i, we get that

$$(f_1(v),\ldots,f_n(v))=(v_{\omega(1)},\ldots,v_{\omega(n)})=\varphi(v),$$

for every $v \in \mathbb{A}^n$.

- 3. Given a variety $V \subset \mathbb{A}^n$. The identity map is a polynomial map, given by $x_1, \ldots, x_n \in K[x_1, \ldots, x_n]$.
- 4. A simple example is given varieties $V \subset \mathbb{A}^n$, $W \subset \mathbb{A}^m$ and $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$, where $f_1(v), \ldots, f_m(v) \in W$. $V \ni v \mapsto (f_1(v), \ldots, f_m(v)) \in W$ is a polynomial map.

Lemma 3.3.4. Let $V \subset \mathbb{A}^n$, $W \subset \mathbb{A}^m$ be varieties and $\varphi : V \to W$ a polynomial map defined by $f_1 \ldots, f_m$. Let $X = V(g_1, \ldots, g_l) \subset \mathbb{A}^m$ be an algebraic set, where $g_1, \ldots, g_l \in K[y_1, \ldots, y_m]$. We then have that

- 1. $\varphi^{-1}(X) \subset V$ is an algebraic set.
- 2. If $\varphi^{-1}(X)$ is a variety and $X \subset \text{Im } \varphi$, then X is irreducible.

Proof. 1. We prove that $\varphi^{-1}(X) = V(g_1(f_1, \ldots, f_m), \ldots, g_l(f_1, \ldots, f_m))$. Indeed,

$$v \in \varphi^{-1}(X) \iff (f_1(v), \dots, f_m(v)) = \varphi(v) \in X \in X = V(g_1, \dots, g_l)$$
$$\iff g_i(f_1, \dots, f_m)(v) = g_i(f_1(v), \dots, f_m(v)) = 0 \ \forall i$$
$$\iff v \in V(g_1(f_1, \dots, f_m), \dots, g_l(f_1, \dots, f_m))$$

2. Suppose $X=Y\cup Z$ for some algebraic sets $Y,Z\subset X$. Then $\varphi^{-1}(Y),\varphi^{-1}(Z)$ are algebraic sets contained in V such that

$$\varphi^{-1}(X) = \varphi^{-1}(Y \cup Z) = \varphi^{-1}(Y) \cup \varphi^{-1}(Z),$$

hence WLOG $\varphi^{-1}(Y)$ = $\varphi^{-1}(X).$ Then since $X\subset \varphi(V),$

$$Y = \varphi(\varphi^{-1}(Y)) = \varphi(\varphi^{-1}(X)) = X.$$

The above result can be used to determine wether an algebraic set is a variety.

Example 3.3.5. 1. Consider the algebraic set $V = \{(t, t^2, t^3) : t \in \mathbb{C}\} \subset \mathbb{A}^3(\mathbb{C})$ from Example 3.2.27. There is an easier way of showing that it is a variety. Indeed consider the surjective polynomial map

$$\varphi : \mathbb{A}^1(\mathbb{C}) \to V$$

$$t \mapsto (t, t^2, t^3)$$

This has an inverse given by projection onto the first coordinate, i.e. the inverse is the map

$$\varphi^{-1}: V \to \mathbb{A}^1(\mathbb{C})$$
$$(t, t^2, t^3) \mapsto t$$

This mean $\varphi^{-1}(V) = \mathbb{A}^1(\mathbb{C})$ which is a variety, hence by part 2. of the above proposition V is a variety.

2. Consider $I = \langle f_1, f_2, f_3 \rangle \subset \mathbb{C}[x, y, z]$, where $f_1 = xz - y^2$, $f_2 = yz - x^3$, $f_3 = z^2 - x^2y$ and set V = V(I). Consider

$$\varphi : \mathbb{A}(\mathbb{C})^1 \to V$$

$$t \mapsto (t^3, t^4, t^5)$$

One easily sees that $f_i(t^3,t^4,t^5)=0$ for i=1,2,3. Let $v\in V$. And let t be any solution to the equation $X^3-v_1=0$. If $v_1=0$, then $0=v_1v_3-v_2^2=-v_2^2$, hence $v_2=0$. Furthermore $v_3=v_1^2v_2=0$. In this case, we then have $\varphi(0)=v$. Suppose $v_1\neq 0$. Then $v_1v_3=v_2^2$, hence $v_3=v_2^2/v_1$, hence $v_2v_2^2/v_1=v_2v_3=v_1^3$, implying $v_2^3=v_1^4=t^{12}$, hence t is a solution to $X^4-v_2=0$. Lastly $v_3^2=v_1^2v_2=t^6t^4=t^{10}$, hence t is a solution to $t^5-v_3=0$. It thus follows that $t^5-v_3=0$. Note that $t^5-v_3=0$. It thus follows that $t^5-v_3=0$. Note that $t^5-v_3=0$. Again by part 2. of the above theorem $t^5-v_3=t^5$.

Proposition 3.3.6. Affine varieties with polynomial maps chosen as morphisms define a category.

Proof. It is clear that composition of polynomial maps is associative and the identity function $\mathrm{id}_V: \mathbb{A}^n \supset V \ni v \mapsto v \in V$ is the identity morphism, since this map is polynomial (defined by $x_1, \ldots, x_n \in K[x_1, \ldots, x_n]$).

Proposition 3.3.7. A polynomial map is continuous in the Zariski topology.

Proof. Let varieties $V \subset \mathbb{A}^n$ and $W \subset \mathbb{A}^m$ be given. Consider a polynomial map $\varphi : V \to W$ defined by $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. Consider a Zariski closed subset $U \subset W$. Then by Proposition 3.3.4 1. $\varphi^{-1}(U)$ is Zariski closed, hence it is know from topology that φ is continuous.

Definition 3.3.8. A polynomial map $\varphi: V \to W$, where $V \subset \mathbb{A}^n$ and $W \subset \mathbb{A}^m$ are affine varieties is called an *isomorphism* (of affine varieties) if it is bijective and $\varphi^{-1}: W \to V$ is a polynomial map. In other words an isomorphism of affine varieties is a *bi-polynomial map*.

Proposition 3.3.9. Let $V \subset \mathbb{A}^n$ be an affine variety. Then

$$\Gamma(V) \simeq Pol(V, K)$$
.

Proof. Consider the ring homomorphism

$$\sigma: K[x_1, \dots, x_n] \to \text{Pol}(V, K)$$

 $f \mapsto (V \ni v \mapsto f(v) \in K),$

This is obviously surjective. Indeed, a polynomial function $\operatorname{Pol}(V,K)$ is given by $v\mapsto f(v)$ for some $f\in K[x_1,\ldots,x_n]$ by definition. If $f\in K[x_1,\ldots,x_n]$, is given such that $f(v)=\sigma(f)(v)=0$ for all $v\in V$, then $f\in I(V)$. Hence one sees that $I(V)=\ker\sigma$. Then by Theorem 1.6.19,

$$\Gamma(V) = K[\mathbf{x}]/I(V) = K[\mathbf{x}]/\ker\ \sigma \simeq \operatorname{Pol}(V,K).$$

 \Box

Definition 3.3.10. Let $V \subset \mathbb{A}^n, W \subset \mathbb{A}^n$ be varieties and $\varphi : V \to W$ be a polynomial map defined by polynomials $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. The K-algebra homomorphism induced by φ is the map

$$\widetilde{\varphi}: \Gamma(W) \to \Gamma(V)$$

$$f + I(W) \mapsto f \circ \varphi + I(V)$$

where $f \circ \varphi + I(V) = f(f_1, \dots, f_m) + I(V)$

Remark 3.3.11. This map is well-defined. Indeed the map described above is due to Proposition 3.3.9 given by the composition

$$\Gamma(W) \xrightarrow{\sim} \operatorname{Pol}(W, K) \to \operatorname{Pol}(V, K) \xrightarrow{\sim} \Gamma(V)$$

$$f + I(W) \mapsto \operatorname{ev}_{\bullet}(f) \mapsto \operatorname{ev}_{\bullet}(f) \circ \varphi \mapsto f(f_1, \dots, f_m) + I(V).$$

207

Proposition 3.3.12. Let $V \subset \mathbb{A}^n$, $W \subset \mathbb{A}^n$ be varieties and $\varphi : V \to W$ be a polynomial map defined by $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. $\widetilde{\varphi} \in \operatorname{Hom}^{K-Alg}(\Gamma(W), \Gamma(V))$.

Proof. The map

$$\sigma: K[y_1, \dots, y_m] \to \Gamma(V)$$

 $f \mapsto f \circ \varphi + I(V)$

is clearly a ring homomorphism. Suppose $f \in I(W)$. Then for every $v \in V$, $\varphi(v) \in W$. Hence $(f \circ \varphi)(v) = f(\varphi(v)) = 0$, hence $\sigma(f) = f \circ \varphi \in I(V)$, hence by Corollary 1.6.12, $\widetilde{\varphi}$ is a well-defined ring homomorphism. Let $k \in K$. Then

$$\widetilde{\varphi}(k+I(W)) = k \circ \varphi + I(V) = k+I(V) = k(1+I(V)) = k\widetilde{\varphi}(1+I(W))$$

Lemma 3.3.13. The mapping taking a variety V to $\Gamma(V)$ and a polynomial map $\varphi \in \operatorname{Pol}(V,W)$ to $\widetilde{\varphi} \in \operatorname{Hom}^{K-Alg}(\Gamma(W),\Gamma(V))$ is a contravariant functor.

Proof. For varieties $V \subset \mathbb{A}^n$, $W \subset \mathbb{A}^m$, $U \subset \mathbb{A}^l$, let $\varphi \in \operatorname{Pol}(V, W)$ and $\psi \in \operatorname{Pol}(W, U)$ be defined by polynomials $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$ and $g_1, \ldots, g_l \in K[y_1, \ldots, y_m]$. Then viewing an arbitrary $f + I(W) \in \Gamma(W)$ as an element $f \in \Gamma(W, K)$, we have that

$$\widetilde{\psi\varphi}(f) = f(\psi\varphi) = (f\psi)\varphi = \widetilde{\varphi}(f\psi) = (\widetilde{\varphi}\widetilde{\psi})(f) \implies \widetilde{\psi\varphi} = \widetilde{\varphi}\widetilde{\psi}.$$

Furthermore we have that

$$\widetilde{\mathrm{id}_V}(f) = f\mathrm{id}_V = f = \mathrm{id}_{\Gamma(V)}f \implies \widetilde{\mathrm{id}_V} = \mathrm{id}_{\Gamma(V)}.$$

Theorem 3.3.14. For varieties $V \subset \mathbb{A}^n$ and $W \subset \mathbb{A}^m$, the map

$$\widetilde{\bullet}: Pol(V,W)\ni \varphi \mapsto \widetilde{\varphi} \in Hom^{K-Alg}(\Gamma(W),\Gamma(V)),$$

is bijective.

Proof. Let $\sigma \in \text{Hom}(\Gamma(W), \Gamma(V))$. For each $i \in \{1, \dots, m\}$ there is some $f_i \in K[x_1, \dots, x_n]$ such that $\sigma(y_i + I(W)) = f_i + I(V)$ for each $i \in \{1, \dots, m\}$. Define

$$\psi_{\sigma}: \mathbb{A}^n \to \mathbb{A}^m$$

$$v \mapsto (f_1(v), \dots, f_m(v))$$

which is a polynomial map. Note that for $f \in I(W)$ Some lemmas on polynomial commuting with homomorphism need to be added

$$\widetilde{\psi_{\sigma}}(f) + I(V) = f(f_1, \dots, f_m) + I(V) = f(f_1 + I(V), \dots, f_m + I(V))$$

$$= f(\sigma(y_1 + I(W)), \dots, \sigma(y_m + I(W))) = \sigma(f(y_1 + I(W), \dots, y_m + I(W)))$$

$$= \sigma(f(y_1, \dots, y_m) + I(W)) = \sigma(f + I(W)) = \sigma(0 + I(W)) = 0 + I(V).$$

From this we see that $\widetilde{\psi_{\sigma}}(I(W)) \subset I(V)$. Note that by HNS V = V(I(V)) and W = V(I(W)). So given $\psi_{\sigma}(v) \in \psi_{\sigma}(V)$, if $f \in I(W)$, then $f(\psi_{\sigma}(v)) = \psi_{\sigma}(f)(v) = 0$, hence $\psi_{\sigma}(V) \subset W$. This implies that

$$\varphi_{\sigma}: V \to W$$
$$v \mapsto \widetilde{\psi_{\sigma}}(v)$$

is a well-defined polynomial map. It remains to check that $\sigma \mapsto \varphi_{\sigma}$ is the mutual inverse of $\varphi \mapsto \widetilde{\varphi}$. Indeed, for $\varphi \in \operatorname{Pol}(V, W)$ defined by $f_1, \ldots, f_m \in K[\mathbf{y}]$, since $\widetilde{\varphi}(y_i + I(W)) = f_i + I(V)$, we have for any $v \in V$ that

$$\varphi_{\widetilde{\varphi}}(v) = (f_1(v), \dots, f_m(v)) = \varphi(v) \implies \varphi_{\widetilde{\varphi}} = \varphi.$$

Conversely for $\sigma \in \operatorname{Hom}(\Gamma(W), \Gamma(V))$ for any $f + I(W) \in \Gamma(W)$

$$\widetilde{\varphi_{\sigma}}(f + I(W)) = f \circ \varphi_{\sigma} + I(W) = f(f_1, \dots, f_m) + I(W) = f(f_1 + I(W), \dots, f_m + I(W))$$

= $f(\sigma(y_1 + I(V)), \dots, \sigma(y_m + I(V))) = \sigma(f(y_1 + I(V), \dots, y_m + I(V))$
= $\sigma(f(y_1, \dots, y_m) + I(V)) = \sigma(f + I(V)),$

implying
$$\widetilde{\varphi_{\sigma}} = \sigma$$
.

Remark 3.3.15. We thus have a contravariant functor $(\Gamma(\bullet), \widetilde{\bullet})$ between the category of affine varieties over K with polynomial maps and integral finitely generated K-algebras mapping a variety V to $\Gamma(V)$ and a polynomial map $\varphi \in \operatorname{Pol}(V,W)$ to $\widetilde{\varphi} \in \operatorname{Hom}(\Gamma(W),\Gamma(V))$. The above theorem shows that this functor is fully faithful. The functor is also essentially surjective on objects. Indeed, if A is a finitely generated K-algebra that is also an integral domain, then $A \simeq K[x_1,\ldots,x_n]/I$ for some prime ideal $I \subset K[x_1,\ldots,x_n]$, hence $A \simeq K[x_1,\ldots,x_n]/I(V(I)) = \Gamma(V(I))$. We can thus conclude that $\Gamma(\bullet)$ defines an equivalence of categories.

Corollary 3.3.16. Let $V \subset \mathbb{A}^n$, $W \subset \mathbb{A}^m$ be varieties. Then

$$V \simeq W \iff \Gamma(V) \simeq \Gamma(W),$$

where \simeq refers to an isomorphism of varieties, resp. K-algebras.

Proposition 3.3.17. Let $V \subset \mathbb{A}^n$ be a variety and $W \subset V$ a subvariety. The ideal $I_V(W) \subset \Gamma(V)$ corresponds to the ideal of polynomial functions in $\operatorname{Pol}(V,K)$ vanishing on W, which we therefor also denote by $I_V(W)$. Thus the map $\operatorname{Pol}(V,K) \to \operatorname{Pol}(W,K)$, $f \mapsto f|_W$ has kernel $I_V(W)$.

Proof. This follows from the above proposition and Proposition 3.2.33. \Box

Proposition 3.3.18. Let $\varphi: V \to W$ be a polynomial map and $V' \subset V$, $W' \subset W$ subvarieties. Suppose $\varphi(V') \subset W'$. Thus $\varphi|_{V'}: V' \to W'$ is a polynomial map. Furthermore $\widetilde{\varphi}(I_W(W')) \subset I_V(V')$.

Proof. Let $f + I(W) \in I(W')/I(W)$ and $v \in V'$. Then $\varphi(v) \in W'$, hence $f \circ \varphi(v) = 0$, meaning $f \circ \varphi \in I(W')$, hence $\widetilde{\varphi}(f + I(W)) = f \circ \varphi + I(V) \in I_V(V')$.

Lemma 3.3.19. Let $V \subset \mathbb{A}^n$ and $W \subset \mathbb{A}^m$ be algebraic set and $\varphi : V \to W$ be a map such that $\varphi(v) = (f_1(v), \ldots, f_m(v))$ for $v \in V$ where $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. We then have

1. The graph of φ ,

$$G_{\varphi} := \{(v_1, \dots, v_n, \varphi(v)) \in \mathbb{A}^{n+m} : v \in V\} \subset V \times W,$$

is an algebraic set.

2. If V, W are varieties, φ is a polynomial map. In this case G_{φ} is a variety isomorphic to V

Proof. For suitable $I = \langle g_1, \dots, g_l \rangle \subset K[x_1, \dots, x_n], V = V(I)$.

- 1. One easily verifies that $G_{\varphi} = V(g_1, \ldots, g_l, y_1, \ldots, y_m)$. Indeed, if $(v, w) \in G_{\varphi}$, $v \in V$, and $w_i = f_i(v)$, hence $g_i(v, w) = 0$ (here we think of g_i in the canonical way as an element of $K[\mathbf{x}, \mathbf{y}]$) and $\operatorname{ev}_{(v,w)}(y_i f_i) = f_i(v) f_i(v) = 0$. Conversely, if (v, w) is in the right-hand side. Then $g_i(v) = 0$ for every i, hence $v \in V$. Furthermore $w_i f_i(v) = 0$, hence $w_i = f_i(v)$, hence $w = \varphi(v)$.
- 2. By HNS we can choose I to be a prime ideal. Let $J = \langle g_1, \dots, g_l, y_1 f_1, \dots, y_m f_m \rangle \subset K[\mathbf{x}, \mathbf{y}]$. By Corollary 1.9.41

$$K[\mathbf{x}]/I \simeq K[\mathbf{x}, \mathbf{y}]/J,$$

hence J is prime. It follows that $G_{\varphi} = V(J) \subset \mathbb{A}^{n+m}$ is a variety. We can see more from this isomorphism. By HNS I = I(V) and $J = I(G_{\varphi})$, thus $\Gamma(V) \simeq \Gamma(G_{\varphi})$, hence by Corollary 3.3.16 $V \simeq G_{\varphi}$. Another way to explicitly construct an isomorphism. Is to consider $\phi: V \to G_{\varphi}, v \mapsto (v, \varphi(v))$ and $\pi: G_{\varphi} \to V, (v, \varphi(v)) \mapsto v$. These are clearly mutually inverse polynomial maps.

Example 3.3.20. Let us consider a couple of examples of a bijective polynomial map that is NOT isomorphisms of varieties and a central example of an elliptic curve "almost" being in bijection with the affine line.

1. Consider the map

$$\varphi: \mathbb{A}^1 \to V := V(y^2 - x^3)$$
$$t \mapsto \left(t^2, t^3\right)$$

This is clearly a well-defined polynomial map. Let $(a,b) \in V$. Let t be a solution to the equation $X^2-a=0$. Then $t^2=a$. Moreover, $b^2=a^3=t^6$, hence $\pm t$ is a solution to $X^3-b=0$, since then $(b+t^3)(b-t^3)=0$. Suppose $(t^2,t^3)=(s^2,s^3)$. Then $0=t^2-s^2=(t+s)(t-s)$. Then either t=-s or t=s. In the first case, we get $s^3=t^3=-s^3$, hence $2s^3=0$, implying s=0, and hence t=0. It follows that φ is a bijection. Note that y^2-x^3 is irreducible hence $\Gamma(V)=K[x,y]/I$. The induced K-algebra homomorphism is given by

$$\widetilde{\varphi}: \Gamma(V) \to K[z]$$

 $f + I \mapsto f(z^2, z^3)$

One notes that $\widetilde{\varphi}(\Gamma(V)) = K[z^2, z^3] \subsetneq K[z]$, meaning that $\widetilde{\varphi}$ is not an isomorphism. By Corollary 3.3.16 it follows that φ cannot be an isomorphism.

2. This is a continuation of Example 3.2.36. In this example we considered $f=x^2-y^3$, $g=y^2-z^3$, $I=\langle f,g\rangle$ and saw that V:=V(I) was irreducible by showing that I is the kernel of $\alpha:=\operatorname{ev}_{T^9,T^6,T^4}:K[x,y,z]\to K[T]$. One recovers a polynomial map $\varphi:\mathbb{A}^1\to V$ by applying the inverse functor to $\overline{\alpha}:\Gamma(V)=K[x,y,z]/I\to K[T]=\Gamma(\mathbb{A}^1)$. Then $\varphi(s):=(s^9,s^6,s^4)$, since $\widetilde{\varphi}(f+I)=f(T^9,T^6,T^4)=\overline{\alpha}$. Suppose $(\mu^9,\mu^6,\mu^4)=(\nu^9,\nu^6,\nu^4)$. $\mu^4=\nu^4$ implies $\mu^2=\pm\nu^2$. $(\pm\nu^2)^3=(\mu^2)^3=\mu^6=\nu^6=(\nu^2)^3$ implies $\mu^2=\nu^2$, hence $\mu=\pm\nu$. Then $(\pm\nu)^9=\mu^9=\nu^9$, hence $\mu=\nu$. Let $(\alpha,\beta,\gamma)\in V(I)$. Note that

$$\alpha = \pm \beta^{3/2} = \pm (\pm \gamma^{3/2})^{3/2} = \pm \beta^{3/2} = (\pm (\pm \gamma^{1/2})^{1/2})^9.$$

Note also that

$$\beta = \pm \gamma^{3/2} = (\pm \gamma^{1/2})^3 = (\pm \gamma^{1/2})^{6/2} = (\pm (\pm \gamma^{1/2})^{1/2})^6.$$

So picking

$$t = \begin{cases} (\gamma^{1/2})^{1/2} & \text{if } \beta = \gamma^{3/2}, \alpha = \beta^{3/2} \\ -(-\gamma^{1/2})^{1/2} & \text{if } \beta = -\gamma^{3/2}, \alpha = -\beta^{3/2} \\ -(\gamma^{1/2})^{1/2} & \text{if } \beta = \gamma^{3/2}, \alpha = -\beta^{3/2} \\ (-\gamma^{1/2})^{1/2} & \text{if } \beta = -\gamma^{3/2}, \alpha = \beta^{3/2} \end{cases},$$

we get that $\varphi(t)=(\alpha,\beta,\gamma)$. Then φ is a bijection. However the image of $\widetilde{\varphi}=\overline{\alpha}$ is $K[T^9,T^6,T^4]\subsetneq K[T]$, hence φ is not an isomorphism by the full faithfulness of $(\Gamma(\bullet),\widetilde{\bullet})$.

3. Consider the polynomial map

$$\varphi: \mathbb{A}^1 \to V := V(y^2 - x^2(x+1))$$
$$t \mapsto (t^2 - 1, t(t^2 - 1))$$

One readily verifies that this is well-defined. Let $(a,b) \in V$. Let t be a solution to $X^2 - a + 1$. Then

$$b^2 = (t^2 - 1)^2 t^2 \implies b = \pm t(t^2 - 1).$$

It thus follows that

$$\varphi(\pm t) = (t^2 - 1, \pm t(t^2 - 1)) = (a, b).$$

Suppose $(t^2-1,t(t^2-1))=(s^2-1,s(s^2-1))$ for $t \neq \pm 1$. Then $t^2=s^2$, hence $s=\pm t$. If s=-t, then

$$0 = t(t^2 - 1) - s(s^2 - 1) = -2t(t^2 - 1) \implies t = 0 \text{ or } t^2 - 1 = 0.$$

by the assumption $t \neq \pm 1$, one concludes s = t = 0. Note that $\varphi(\pm 1) = (0,0)$. One thus concludes that φ is onto and injective but for a double point (0,0).

3.3.2 (Affine) Coordinate Changes

Definition 3.3.21. Let $I = \langle g_1, \dots, g_l \rangle \subset K[y_1, \dots, y_m]$ and $\varphi : \mathbb{A}^n \to \mathbb{A}^m$ a polynomial map given by polynomials $f_1, \dots, f_m \in K[x_1, \dots, x_m]$. We define

$$I(\varphi) = \langle \{ f(f_1, \dots, f_m) \in K[x_1, \dots, x_n] : f \in I \} \rangle$$

Remark 3.3.22. One easily checks that

$$\langle \{f(f_1,\ldots,f_m)\in K[x_1,\ldots,x_n]:f\in I\}\rangle = \langle g_1(f_1,\ldots,f_m),\ldots,g_m(f_1,\ldots,f_m)\rangle.$$

Note that the set $I(\varphi)$ is independent of choice of representative of φ , since φ is uniquely determined by it's defining polynomials. Let $W \subset \mathbb{A}^m$ be a variety. Note that $V^{\varphi} := \varphi^{-1}(W) = V(I(\varphi))$, setting I := I(W).

Definition 3.3.23. Let $\varphi : \mathbb{A}^n \to \mathbb{A}^n$ given by polynomials $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. φ is called an affine change of coordinates, if deg $f_i = 1$ and φ is bijective for each i.

Remark 3.3.24. For a moment let us remove the condition that φ is bijective. We may write $f_i = b_i + \sum_{j=1}^n a_{ij} x_i$, hence for each $v \in \mathbb{A}^n$ we get

$$\varphi(v) = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} v + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}.$$

In other words φ is a given by a composition $t \circ l$, where $t : \mathbb{A}^n \to \mathbb{A}^n$ is a translation and $l : \mathbb{A}^n \to \mathbb{A}^n$ is a linear map. It follows that φ is an affine change of coordinates if and only if l is bijective, as t is always bijective. Note that the inverse of a linear map and a translation is also respectively a linear map and a translation, hence in particular these are polynomial maps. An affine change of coordinates is there automatically an isomorphism of affine varieties.

Definition 3.3.25. A variety $V \subset \mathbb{A}^n$ is called a *linear subvariety* if $V = V(f_1, \dots, f_m)$ for degree 1 polynomials $f_1, \dots, f_m \in K[x_1, \dots, x_n]$

Lemma 3.3.26. Let R be a commutative ring. Let $f_1, \ldots, f_n, g \in R[x_1, \ldots, x_n]$ with $f_i = a_i + \sum_{j=1}^n a_{ij}x_j$ such that $(a_{ij}) \in M_n(R)$ is invertible and $g = c + \sum_{i=1}^n b_ix_i \in R[x]$. Then

$$g(f_1,\ldots,f_n)=0\iff g=0.$$

If deg g = 1, then deg $g(f_1, \ldots, f_n) = 1$

Proof. " \Leftarrow ": This is obvious.

" \Longrightarrow ": Note that

$$g(f_1, \dots, f_n) = c + \sum_{i=1}^n b_i \left(a_i + \sum_{j=1}^n a_{ij} x_j \right) = c + \sum_{i=1}^n a_i b_i + \sum_{j=1}^n b_i \sum_{j=1}^n a_{ij} x_j$$
$$= c + \sum_{i=1}^n a_i b_i + \sum_{j=1}^n \left[\sum_{i=1}^n b_i a_{ij} \right] x_j.$$

Thus

$$g(f_1, \dots, f_n) = 0 \iff \begin{cases} c + \sum_{i=1}^n a_i b_i = 0, \\ \sum_{i=1}^n b_i a_{ij} = 0 \end{cases}$$

Note that

$$\begin{pmatrix} \sum_{i=1}^{n} b_{i} a_{i1} \\ \vdots \\ \sum_{i=1}^{n} b_{i} a_{in} \end{pmatrix} = \mathbf{0} \iff (a_{ij})^{T} \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix} = \mathbf{0} \iff \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix} = \mathbf{0}. \tag{10}$$

We thus also have that c=0, hence g=0. If deg g=1, then $b_i \neq 0$ for some i. Then $\sum_{i=1}^{n} b_i a_{ij} \neq 0$ for some j by (10).

Lemma 3.3.27. 1. Let $\varphi, \psi : \mathbb{A}^n \to \mathbb{A}^n$ be polynomial maps and $V \subset \mathbb{A}^n$ a variety such that V^{φ} is a variety. Then

$$(V^{\varphi})^{\psi} = V^{\varphi \circ \psi}.$$

2. Let $\varphi: \mathbb{A}^n \to \mathbb{A}^n, v \mapsto (f_1(v), \dots, f_n(v))$ be an isomorphism. Let $V = V(g_1, \dots, g_m) \subset \mathbb{A}^n$ be a variety. Then

$$(V^{\varphi})^{\varphi^{-1}} = V.$$

3. Let $\varphi: \mathbb{A}^n \to \mathbb{A}^n$ be a polynomial map. Then

$$\emptyset^{\varphi} = \emptyset.$$

Proof. Let $V = V(f_1, \ldots, f_m)$.

1. Then

$$(V^{\varphi})^{\psi} = V(f_1 \circ \varphi, \dots, f_m \circ \varphi)^{\psi} = V((f_1 \circ \varphi) \circ \psi, \dots, (f_m \circ \varphi) \circ \psi)$$
$$= V(f_1 \circ (\varphi \circ \psi), \dots, f_m \circ (\varphi \circ \psi)) = V^{\varphi \circ \psi}.$$

2. From 1. we find

$$(V^{\varphi})^{\varphi^{-1}} = V^{\varphi \circ \varphi^{-1}} = V^{\operatorname{id}} = V(f_1 \circ \operatorname{id}, \dots, f_m \circ \operatorname{id}) = V(f_1, \dots, f_m) = V.$$

Proposition 3.3.28. *Let* $V \subset \mathbb{A}^n$ *be a linear subvariety.*

- 1. If $\varphi : \mathbb{A}^n \to \mathbb{A}^n$ given by $f_1, \ldots, f_n \in K[x_1, \ldots, x_n]$ is an affine change of coordinates, then $V^{\varphi} \subset \mathbb{A}^n$ is a linear subvariety.
- 2. If $V \neq \emptyset$, then there is an affine change of coordinates $\varphi : \mathbb{A}^n \to \mathbb{A}^n$ such that $V^{\varphi} = V(x_{d+1}, \dots, x_n)$ for some $1 \leq d \leq n$. Moreover, it thus follows that a linear subvariety is a variety.

3. The integer d above is unique, i.e. independent of choice of affine change of coordinates.

Proof. Let degree 1 polynomials $g_1, \ldots, g_m \in K[x_1, \ldots, x_n]$ be given such that $V = V(g_1, \ldots, g_m)$.

- 1. Since deg $g_i = 1$ for each i, deg $f_j(g_1, \ldots, g_n) = 1$ by Lemma 3.3.26, hence $V^{\varphi} = V(g_1(f_1, \ldots, f_n), \ldots, g_m(f_1, \ldots, f_n))$ is a linear subvariety.
- 2. For the case n=1, note $g_i=g_j$ for every i and j, hence V=V(b+ax) where $a\neq 0$. Let $\varphi:v\mapsto a^{-1}v-a^{-1}b$. Then $g\circ\varphi=aa^{-1}x-a^{-1}b+b=x$, hence $V^\varphi=V(x_n)$.

We prove the result for $n \geq 2$ by induction in m.

Consider first the case m=1. Let V=V(g), where $g=b+\sum_1^n a_ix_i\in K[\mathbf{x}]$ is of degree 1. WLOG $a_n\neq 0$. Put $f_i:=a_nx_i$ for $i\in\{1,\ldots,n-1\}$ and $f_n:=\left[-\sum_1^{n-1}a_ix_i\right]+a_n^{-1}x_n-a_n^{-1}b$. Then

$$g(f_1, \dots, f_n) = b + \sum_{1}^{n} a_i f_i = b + \sum_{1}^{n-1} a_i a_n x_i - \left[\sum_{1}^{n-1} a_i a_n x_i \right] + a_n a_n^{-1} x_n - a_n a_n^{-1} b = x_n.$$

Choosing $\varphi: \mathbb{A}^n \to \mathbb{A}^n, v \mapsto (f_1(v), \dots, f_n(v))$, one finds that $V^{\varphi} = V(g(f_1, \dots, f_n)) = V(x_n) = V(x_{n-1+1})$. It remains to check that φ is invertible. Note that for each $v \in \mathbb{A}^n$, that $\varphi = (a_{ij})v + be_n$, where $a_{ii} = a_n$, $a_{ni} = -a_i$ for $i \in \{1, \dots, n-1\}$, $a_{nn} = a_n^{-1}$. A is a lower triangular matrix, hence det $A = \prod_{i=1}^n a_{ii} = a_n^{n-2} \neq 0$ MULTIPLE LINEAR ALGEBRA THEOREMS NEED TO BE ADDED, meaning A is invertible.

Suppose the statement is true for some $m \geq 1$. Consider $V = V(g_1, \ldots, g_{m+1})$ for degree 1 polynomials $g_1, \ldots, g_{m+1} \in K[\mathbf{x}] \setminus 0$. Consider $W = V(g_1, \ldots, g_m)$. There is an affine change of coordinates $\varphi : \mathbb{A}^n \to \mathbb{A}^n$ such that $W^\varphi = V(x_{d+1}, \ldots, x_n)$ for some $1 \leq d \leq n$. Then

$$V^{\varphi} = V(x_{d+1}, \dots, x_n) \cap V(g_{m+1} \circ \varphi)) = V(x_{d+1}, \dots, x_n) \cap V(\underbrace{(g_{m+1} \circ \varphi)(x_1, \dots, x_d, \mathbf{0})}_{h}).$$

If h=0, $V^{\varphi}=V(x_1,\ldots,x_d)$. Otherwise deg h=1, since if not $V(h)=\emptyset$, hence $V^{\varphi}=\emptyset$, hence $V=\emptyset$ leading to a contradiction (here we only rely on the fact that φ is bijective). In this case there following the same procedure as for m=1 is a polynomial map $\psi:\mathbb{A}^d\to\mathbb{A}^d$, such that $V(h)=V(x_d)$. Setting $\phi:\mathbb{A}^n\to\mathbb{A}^n, v\mapsto (\psi(v_1,\ldots,v_d),v_{d+1},\ldots,v_n)$, it follows that

$$V^{\varphi \circ \phi} = V(x_{d+1}, \dots, x_n)^{\phi} \cap V(h \circ \phi) = V(x_d, \dots, x_n),$$

hence d-1 works.

3. Suppose there are affine change of coordinates φ, ϕ such that $V^{\varphi} = V(x_{d+1}, \dots, x_n)$

and $V^{\phi} = V(x_{\delta+1}, \dots, x_n)$. Hence setting $\psi := \varphi^{-1} \circ \phi$, one gets $(V^{\varphi})^{\psi} = V^{\phi}$. One observation that could make now is that since ψ is an isomorphism, $V^{\varphi} \simeq V^{\phi}$. Then

$$K[x_1, \ldots, x_d] \simeq \Gamma(V^{\varphi}) \simeq \Gamma(V^{\phi}) \simeq K[x_1, \ldots, x_{\delta}].$$

This then implies that $\delta = d$ by result about transcendence degrees.

Here we are invoking a lot of theory. One can take a more elementary approach to arguing d=e only using linear algebra. WLOG $d\leq \delta$. Pick $f_1,\ldots,f_n\in K[\mathbf{x}]$ such that $\psi(v)=(f_1(v),\ldots,f_n(v))$. Write $f_i=b_i+\sum_{j=1}^n a_{ij}x_j$. Then

$$\psi(v) = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} v + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \quad (v \in \mathbb{A}^n).$$

Note that (a_{ij}) is invertible, hence it's rows are linearly independent. Consider the polynomial map,

$$\kappa: \mathbb{A}^n \to \mathbb{A}^{n-d}$$
$$v \mapsto (f_{d+1}(v), \dots, f_n(v)).$$

Note that

$$\kappa(v) = \underbrace{\begin{pmatrix} a_{d+1,1} & \cdots & a_{d+1,n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}}_{A} v + \underbrace{\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}}_{\mathbf{b}} \quad (v \in \mathbb{A}^{n-d}).$$

Then $A = \kappa - \mathbf{b}$ is a linear map whose kernel is 0. We also have that

$$\{v \in \mathbb{A}^n : v = (v_1, \dots, v_\delta, \mathbf{0})\} = V(x_{\delta+1}, \dots, x_n) = V(x_{d+1}, \dots, x_n)^{\psi} = \{v \in \mathbb{A}^n : Av = -\mathbf{b}\}.$$

If $d < \delta$, we get that $e_d, e_{d+1} \in V(x_{d+1}, \dots, x_n)^{\psi}$. Here is the catch

$$0 = \psi(-e_j) = -\begin{pmatrix} a_{j1} \\ \vdots \\ a_{jn} \end{pmatrix} + \mathbf{b} \iff \begin{pmatrix} a_{j1} \\ \vdots \\ a_{jn} \end{pmatrix} = \mathbf{b}.$$

This implies that $A(e_d - e_{d+1}) = \mathbf{b} - \mathbf{b} = 0$, which contradicts the fact that ker A = 0, since $e_d \neq e_{d+1}$.

Remark 3.3.29. A further note on V^{φ} , is that since the pre-image is equal to the image of the inverse of φ , we have that if $V^{\varphi} = W$ for some variety W, then $V = \varphi(W) = W^{\varphi^{-1}}$.

Definition 3.3.30. The integer k above is called the *dimension* of V, denoted dim V.

Remark 3.3.31. One easily sees that the concept of dimension defined above generalizes the concept of dimension of finite dimensional vector spaces. We shall see later reference that the above notion of dimension can be generalized to any non-empty variety, through the concept of transcendence degree or equivalently Krull-dimension Give reference once these sections are written.

Lemma 3.3.32. Consider linear subvarieties $V, W \subset \mathbb{A}^n$ such that there exists an affine change of coordinates $\varphi : \mathbb{A}^n \to \mathbb{A}^n$ with $\varphi(V) = W$. Then $V \stackrel{\varphi}{\simeq} W$ and dim $V = \dim W$.

Proof.
$$\Box$$

Definition 3.3.33. Let $v, w \in \mathbb{A}^n$ be distinct points. The *line through* v *and* w is the set

$$L(v, w) := \{t(w - v) + v : t \in K\}$$

Remark 3.3.34. L(v, w) is clearly a line in the sense of Definition 3.1.28

Lemma 3.3.35. Let $v, w \in \mathbb{A}^n$ be distinct points and $\varphi : \mathbb{A}^n \to \mathbb{A}^n$ an affine change of coordinates. Then

$$\varphi(L(v, w)) = L(\varphi(v), \varphi(w)).$$

Proof. Pick $A \in M_n(K)$ and $u \in \mathbb{A}^n$ such that $\varphi(x) = Ax + u$ for $x \in \mathbb{A}^n$. Let $t \in K$. The statement follows directly from the following computation

$$t(\varphi(w)-\varphi(v))+\varphi(v)=t(Aw+u-Av-u)+Av+u=A(t(w-v)+v)+u=\varphi(t(w-v)+v).$$

Lemma 3.3.36. A line $L \subset \mathbb{A}^n$ is a linear subvariety of dimension 1.

Proof. Lemma 3.1.29 shows that L. WLOG

$$L = \left\{ \begin{pmatrix} a_1t + b_1 \\ a_2t + b_2 \\ \vdots \\ a_nt + b_n \end{pmatrix} \in \mathbb{A}^n : t \in K \right\},$$

where $a_1 \neq 0$. From the proof of Lemma 3.1.29 we see that

$$L = V(\{\underbrace{a_1x_i - a_ix_1 - a_1b_i + a_ib_1}_{g_i} : i \in \{2, \dots, n\}).$$

Let $A=(a_{ij})\in M_n(K)$ be the matrix with $a_{11}=1$, $a_{ii}=a_1^{-1}$ for i>1, $a_{i1}=a_1^{-1}a_i$, $a_{ij}=0$ for j>1 and $i\neq j$. Since (a_{ij}) is lower triangular, $\det(a_{ij})=\prod_1^n a_{ii}=a_1^{-(n-1)}\neq 0$, meaning (a_{ij}) is invertible. Set $w=(b_1,\ldots,b_n)^T$. Then $\varphi:\mathbb{A}^n\to\mathbb{A}^n,v\mapsto Av+w$ is an affine change of coordinates, given by $f_1=x_1+b_1$ and $f_i=a_1^{-1}x_i+a_1^{-1}a_ix_1+b_i$. We thus find that

$$g_i \circ \varphi = a_1 a_1^{-1} x_i + a_1 a_1^{-1} a_i x_1 + a_1 b_i - a_i x_1 - a_i b_1 - a_1 b_i + a_i b_1 = x_i$$

for i > 1. We thus find that

$$L^{\varphi} = V(g_2 \circ \varphi, \dots, g_n \circ \varphi) = V(x_2, \dots, x_n),$$

hence dim L = 1.

Proposition 3.3.37. Let $v, v' \in \mathbb{A}^2$, L_1, L_2 distinct lines through v and L'_1, L'_2 distinct lines through v'. There is an affine change of coordinates \mathbb{A}^2 such that $\varphi(v) = v'$ and $\varphi(L_i) = L'_i$ for both i.

Proof. There are distinct $w_1, w_2, w_1', w_2' \in \mathbb{A}^2$ such that $L_i = L(v, w_i)$ for i = 1, 2 and $L_i' = L(v, w_i')$ for i = 1, 2. We first perform a translation $T : \mathbb{A}^2 \to \mathbb{A}^2, x \mapsto Ix - v$. Then by Lemma 3.3.35,

$$\Lambda_i := T(L_i) = L(0, \underbrace{w_i - v}_{u_i}),$$

and since T is bijective $\Lambda_1 \neq \Lambda_2$. Note also that $u_1 \neq u_2$. Since Λ_1 and Λ_2 are distinct and intersect at 0, $tu_1 \neq su_2$ for each $s, t \in K \setminus 0$ by Proposition 3.1.22, hence u_1 and u_2 are algebraically independent. This means that the matrix $u = (u_{ij}) \in M_2(K)$ is invertible. Then

$$\Lambda_i' := u^{-1}\Lambda_i = L(0, e_i).$$

One notes that $w_1'-v', w_2'-v'$ are linearly independent again since $L(0, w_1'-v')$ intersect only in 0. Thus taking $\psi: \mathbb{A}^n \to \mathbb{A}^n, x \mapsto (w_{ij}'-v_j')x + v'$. Then

$$\psi(0) = v', \psi(e_i) = \begin{pmatrix} w'_{i1} - v_1 \\ w'_{i2} - v_2 \end{pmatrix} + v' = w'_i - v' + v' = w'_i,$$

hence putting $\varphi = \psi \circ u \circ T$,

$$\varphi(v) = v', \varphi(w_i) = w'_i, \varphi(L_i) = L'_i.$$

Lemma 3.3.38. Let $\mathbb{A}^n(\mathbb{C})$ be equipped with the usual metric induced topology. For any countable set $S \subset \mathbb{A}^n(\mathbb{C})$, $\mathbb{A}^n(\mathbb{C}) \setminus S$ is path-connected.

 \Box

Proof. Let $S=\{v_1,\ldots,v_m\}$ we prove the statement by induction in m. for m=1, let $p,q\in\mathbb{A}^n(\mathbb{C})\setminus S$ be given suppose L is the line parametrized by $[0,1]\to\mathbb{A}^n(\mathbb{C}),t\mapsto (1-t)p+tq$. If $v_1\notin L$ we are done. If $v_1\in L$, pick a point $w\in\mathbb{C}\setminus L$. Let $\psi:[0,1]\to\mathbb{C}$ be the composition of the line from p to w with the line from w to q. The line segments parametrized by ψ_i have each exactly one intersection with L at p respectively q. One sees this from the fact that these three line segments are each respectively subsets of L(p,q), L(p,w) and L(w,q) (as lines in $\mathbb{A}^n(\mathbb{C})$ viewed as $\mathbb{A}^{2n}(\mathbb{R})$) and it follows from Proposition 3.1.31 that $\#(L(p,q)\cap L(p,w))=1$ and $\#(L(p,q)\cap L(w,q))=1$. It thus follows that v is not an element in the line path ψ , hence $\mathbb{A}^n(\mathbb{C})$ is path-connected in the case m=1.

Suppose for each set $S = \{v_1, \dots, v_m\}$, $p, q \in \mathbb{A}^n(\mathbb{C}) \setminus S$ there is a finite composition of line segments in $\mathbb{A}^n(\mathbb{C})$ connecting p and q.

Let $S = \{v_1, \ldots, v_{m+1} \text{ and } p, q \in \mathbb{A}^n(\mathbb{C}) \setminus S$, let ψ be the composition of line segments in $A^n(\mathbb{C}) \setminus \{v_1, \ldots, v_m\}$. If $v_{m+1} \notin \psi$ we are done. If $v_{m+1} \in \psi$, let x, y be the respective start and end point of the line segment containing v_{m+1} denoted ρ . We can write this line segment as the composition of a line ρ_1 from x to v_{m+1} and ρ_2 from v_{m+1} to y to Let $0 < \epsilon < \min_{i \in \{1, \ldots, m\}} |v_i - v_{m+1}|$. By continuity of ρ_1 and ρ_2 there are points $x' \in B_{\epsilon}(v_{m+1}) \cap \rho_1$ and $y' \in B_{\epsilon}(v_{m+1}) \cap \rho_2$ distinct from v_{m+1} . Let ρ'_1 be the line segment from x to x' and ρ'_2 be the line segment from y' to y. Consider a third point $z \in B_{\epsilon}(v_{m+1})$ distinct from x', y', v. Let ξ_1 and ξ_2 be the line segment from x' to z respectively z to y'. By convexity of $B_{\epsilon}(v)$, $\xi_i \subset B_{\epsilon}(v)$ for i=1,2. We thus get a path $\rho':=\rho'_1 \cup \xi_1 \cup \xi_2 \cup \rho'_2$ from x to y not containing v_{m+1} or indeed any v_1, \ldots, v_m by the choice of ϵ . Replacing ρ by ρ' we get a composition of line segments in $\mathbb{A}^n(\mathbb{C}) \setminus S$ from p to q. Thus $\mathbb{A}^n(\mathbb{C}) \setminus S$ is path-connected.

Proposition 3.3.39. *Let* $V \subset \mathbb{A}^n(\mathbb{C})$ *be Zariski closed.* $\mathbb{A}^n(\mathbb{C}) \setminus V$ *is path-connected with respect to the metric induced topology.*

Proof. Let $p,q \in \mathbb{A}^n(\mathbb{C}) \setminus V$. $L(p,q) \cap V = \{w_1,\ldots,w_m\}$ by Corollary 3.1.32. By Lemma 3.3.36, $L(p,q) \simeq V(x_2,\ldots,x_n) \simeq \mathbb{A}^1(\mathbb{C})$. Note that a polynomial map $\varphi: \mathbb{A}^k(\mathbb{C}) \to \mathbb{A}^l(\mathbb{C})$ is continuous with respect to the usual metric topologies on $\mathbb{A}^k(\mathbb{C})$ and $\mathbb{A}^l(\mathbb{C})$. Hence L(p,q) is homeomorphic to $\mathbb{A}^1(\mathbb{C})$ via a map, ψ , say. Let $S:=\psi(L(p,q)\cap V)=\{v_1,\ldots,v_m\}$. Then $\mathbb{A}^1(\mathbb{C})\setminus S$ is path-connected by Lemma 3.3.38, hence $L(p,q)\setminus V=L(p,q)\setminus V=L(p,q)\setminus V$ is path-connected.

3.3.3 The Field of Rational Functions on a Variety & the Local Ring of Rational Functions Defined at a Point

Definition 3.3.40. Given a non-empty variety $V \subset \mathbb{A}^n$, we define the *the field of rational* functions on V to be the field

$$K(V) := Q(\Gamma(V)).$$

The elements of K(V) are called *rational functions on* V.

Remark 3.3.41. This is well-defined by Proposition 3.2.5. The term rational functions is well chosen as $\Gamma(V) \simeq \operatorname{Pol}(V, K)$ (cf. Proposition 3.3.9), hence indeed

$$K(V) = Q(\operatorname{Pol}(V, K)) = \left\{ \frac{f}{g} : f, g \in \operatorname{Pol}(V, K), g \neq 0 \right\}.$$

Definition 3.3.42. For a variety $V \subset \mathbb{A}^n$ and a point $v \in V$, a rational function $f \in K(V)$ is *defined at* v if there are $a, b \in \Gamma(V)$ with $f = \frac{a}{b}$ such that $b(v) \neq 0$.

Remark 3.3.43. If $\Gamma(V)$ is a UFD there is are unique (up to scalar multiplication over K) polynomial functions $a, b \in \Gamma(V)$ with $\gcd(a, b) = 1$ such that $f = \frac{a}{b}$. Hence f is defined at v if and only if $b(v) \neq 0$.

Definition 3.3.44. Let $V \subset \mathbb{A}^n$ be a variety and $P \in \mathbb{A}^n$. The local ring of V at P is the ring

$$\mathcal{O}_P(V) := \{ q \in K(V) : q \text{ defined at } P \}$$

Remark 3.3.45. One readily verifies that $\mathcal{O}_P(V)$ is a subring of K(V) containing $\Gamma(V)$. Indeed, if $\frac{f}{g}, \frac{f'}{g'} \in \mathcal{O}_P(V)$, then $gg'(P) \neq 0$

$$\frac{f}{g} + \frac{f'}{g'} = \frac{fg' + f'g}{gg'} \in \mathcal{O}_P(V).$$

Furthermore,

$$\frac{f}{g}\frac{f'}{g'} = \frac{ff'}{gg'} \in \mathcal{O}_P(V).$$

Let $f \in \Gamma(V)$. Then $f = \frac{f}{1}$, and since $1(P) \neq 0$, $f \in \mathcal{O}_P(V)$. It thus also follows that $1, 0 \in \mathcal{O}_P(V)$.

An alternative way to go about defining the local ring of V at P, is to set $X := \{ f \in \Gamma(V) : f(P) \neq 0 \}$ and define

$$\mathcal{O}_P(V) := X^{-1}\Gamma(V).$$

One readily verifies that the first definition gives rise to ring that is isomorphic to second ring defined.

Note that X is saturated. Indeed, for $f \in \widehat{X}$ there is an $f'\Gamma(V)$ such that $f'f \in X$. Then $f'(P)f(P) \neq 0$, hence $f(P) \neq 0$.

Definition 3.3.46. Let $V \subset \mathbb{A}^n$ be a variety, $f \in K(V)$. We define the pole set of f in V to be the set

$$\mathcal{P}(f) := \{ v \in V : f \text{ is not defined at } v \}$$

Definition 3.3.47. Let $f \in K(V)$. Define $J_f := \{g \in K[\mathbf{x}] : (g + I(V))f \in \Gamma(V)\} \subset K[\mathbf{x}]$.

Remark 3.3.48. The above set is an ideal containing I(V). Indeed, if $g, h \in J_f$, then $(g + I(V))f, (h + I(V))f \in \Gamma(V)$, hence

$$((g+h)+I(V))f = (g+I(V))f + (h+I(V))f \in \Gamma(V) \implies g+h \in J_f$$

let $r \in K[\mathbf{x}]$. Then

$$(rg + I(V))f = (r + I(V))(g + I(V))f \in \Gamma(V) \implies rg \in J_f.$$

Suppose $g \in I(V)$. Then $(g+I(V))f = (0+I(V))f = 0+I(V) \in \Gamma(V)$, hence $I(V) \subset J_f$.

Lemma 3.3.49. Let $V \subset \mathbb{A}^n$ be a variety, $f \in K(V)$. $\mathcal{P}(f) = V(J_f)$, hence $\mathcal{P}(f)$ is algebraic.

Proof. Let $v \in V(J_f)$. Let $(a+I(V)), (b+I(V)) \in \Gamma(v)$ such that $f = \frac{a+I(V)}{b+I(V)}$. Then $b \in J_f$, hence b(v) = 0, implying (b+I(V))(v) = 0, hence $v \in \mathcal{P}(f)$. Let $v \in \mathcal{P}(f)$ Let $v \in \mathcal{P}(f)$. Let $v \in \mathcal{P}(f)$ Let $v \in \mathcal{P}(f)$. Let $v \in$

Example 3.3.50. Let $V=V(xw-yz)\subset \mathbb{A}^4$. By a simple application of for instance Eisenstein's criterion xw-yz is indeed irreducible, hence we can consider $\Gamma(V)=K[x,y,z,w]/\langle xw-yz\rangle$. Denote every $a+I(V)\in \Gamma(V)$ by \overline{a} . Define $f:=\frac{\overline{x}}{\overline{z}}=\frac{\overline{y}}{\overline{w}}$. Note the following fact. Let $a,b\in K[x,y,z,w]$ be given such that $f=\frac{\overline{a}}{\overline{b}}$. Then $az-bx\in I(V)=\langle xw-yz\rangle$. We can thus find $q\in K[x,y,z,w]$ with az-bx=q(xw-yz), hence z(a+qy)=x(qw+b), implying $z\mid qw+b$. One therefor finds that b=sz-qw for some $s\in K[x,y,z,w]$.

A feature of the rational function f is that given a representation of f there is a point $P \in V$ where f is defined at which the denominator vanishes. Indeed, suppose for a contradiction, $f = \frac{\overline{a}}{\overline{b}}$ for some $a, b \in K[x, y, z, w]$ with $\overline{b}(P) \neq 0$ for every $P \in V \setminus \mathcal{P}(f)$. Note that $P_{\alpha,\beta} = (0,0,\alpha,\beta) \in V \setminus \mathcal{P}(f)$ for every $\alpha,\beta \in K$ with $\alpha \neq 0$ or $\beta \neq 0$. Hence in particular $b(0,0,\alpha,\beta) \neq 0$ for every $(\alpha,\beta) \in \mathbb{A}^2$ with $\beta \neq 0$, hence by Proposition Write proposition later! $b(0,0,z,w) \in K[w]$. A symmetric argument

shows that $b(0,0,z,w) \in K[z]$, hence b is constant. However note that the fact noted at the beginning implies b(0,0,0,0) = 0. Then b = 0, leading to a contradiction with b not vanishing on points at which f is defined.

One can show that $J_f = \langle z, w \rangle$, which implies that f is defined exactly at the points where \overline{z} or \overline{w} do not vanish. Clearly $z, w \in J_f$. Let $b \in J_f$, then setting $\overline{a} = \overline{b}f$, $f = \frac{\overline{a}}{\overline{b}}$. The fact proven in the beginning of this section shows the other inclusion.

Example 3.3.51. Let $V:=V(y^2-x^2(x+1))\subset \mathbb{A}^2$. Since the generating polynomial is irreducible, $I(V)=\langle y^2-x^2(x+1)\rangle$ by HNS. Set $\overline{a}:=a+I(V)$ for every $a+I(V)\in \Gamma(V)$. Let $f=\frac{\overline{y}}{\overline{x}}$. We determine $\mathcal{P}(f)$. Note that

$$f = \frac{\overline{y}}{\overline{x}} = \frac{\overline{y}^2}{\overline{xy}} = \frac{\overline{x^2(x+1)}}{\overline{xy}} = \frac{\overline{x(x+1)}}{\overline{y}} \implies x, y \in J_f.$$

If we can prove that $(0,0) \in \mathcal{P}(f)$ it follows that $\mathcal{P}(f) = V(x,y) = \{(0,0)\}$. Let $\frac{\overline{a}}{\overline{b}} = f$. Then

$$\overline{by} = \overline{ax} \implies \overline{b}(0,c) = \overline{b}(0,c)c = \overline{a}(0,c)0 = 0,$$

for every $c \in K \setminus 0$, hence b(0,y) has infinitely many roots, meaning b(0,y) = 0 for a representative $b \in K[x,y]$ of \overline{b} . This means that b has no terms not divisible by x. It follows that $\overline{b} = \overline{qx}$ for some $q \in K[x,y]$, hence $\overline{b}(0,0) = \overline{q}(0,0)0 = 0$.

Secondly, let's determine $\mathcal{P}(f^2)$. Then

$$f^2 = \frac{\overline{y}^2}{\overline{x}^2} = \frac{\overline{x^2(x+1)}}{\overline{x}^2} = \frac{x+1}{1},$$

hence $1 \in J_{f^2}$, meaning $\mathcal{P}\left(f^2\right) = V(J_{f^2}) = V(1) = \emptyset$ by WNS.

Proposition 3.3.52. Let $V \subset \mathbb{A}^n$ be a variety. Then

$$\Gamma(V) = \bigcap_{P \in V} \mathcal{O}_P(V).$$

Proof. As $\Gamma(V) \subset \mathcal{O}_P(V)$ for every $P \in V$, the first inclusion is obvious.

Let $f \in \bigcap_{P \in V} \mathcal{O}_P(V)$. Then f is defined at every $P \in V$, hence $V(J_f) = \mathcal{P}(f) = \emptyset$. By the weak Nullstellensatz, we then have that $1 \in J_f$, hence $f = (1 + I(V))f \in \Gamma(V)$. \square

Definition 3.3.53. Let $V \subset \mathbb{A}^n$ be a variety, $P \in V$ and $f \in \mathcal{O}_P(V)$. Pick $a, b \in \Gamma(V)$ with $f = \frac{a}{b}$ and $b(P) \neq 0$. We define the value of f at P to be

$$f(P) \coloneqq \frac{a(P)}{b(P)}$$

Remark 3.3.54. This is well-defined. Indeed, if there additionally are $a', b' \in \Gamma(V)$ with $f = \frac{a'}{b'}$ and $b'(P) \neq 0$, then

$$\frac{a}{b} = \frac{a'}{b'} \implies ab' = a'b \implies a(P)b'(P) = a'(P)b(P) \implies \frac{a(P)}{b(P)} = \frac{a'(P)}{b'(P)}.$$

Definition 3.3.55. Let $V \subset \mathbb{A}^n$ be a variety $P \in V$. The maximal ideal of V at P. Is the set

$$\mathfrak{m}_P(V) := \{ f \in \mathcal{O}_P(V) : f(P) = 0 \}$$

Remark 3.3.56. Consider the map

$$\operatorname{ev}_P: \mathcal{O}_P(V) \to K$$

$$f \mapsto f(P)$$

This is easily verifed to be a K-algebra homomorphism. Note that

$$\mathfrak{m}_P(V) = \ker \operatorname{ev}_P$$

hence $\mathfrak{m}_P(V)$ is an ideal.

One can furthermore show that $\mathfrak{m}_P(V)$ is the maximal ideal containing every proper ideal of $\mathcal{O}_P(V)$, hence $\mathcal{O}_P(V)$ will be a local ring (hence the name given to this ring is well chosen). The following proposition will be sufficient to prove this.

Proposition 3.3.57. Consider $V \subset \mathbb{A}^n$ a variety and $P \in V$. Let $f \in \mathcal{O}_P(V)$.

$$f \in \mathcal{O}_P(V)^* \iff f(P) \neq 0,$$

Hence,

$$\mathfrak{m}_P(V) = \{ f \in \mathcal{O}_P(V) : f \notin \mathcal{O}_P(V)^* \}$$

Proof. Consider the set $X:=\{f\in\Gamma(V):a(P)\neq0\}$. Note that X is saturated and $\mathcal{O}_P(V)=X^{-1}\Gamma(V)$ (cf. Remark 3.3.45). Let $f=\frac{a}{b}$ with $b(P)\neq0$. Then

$$0 \neq f(P) = \frac{a(P)}{b(P)} \iff a(P) \neq 0 \iff a \in X = \widehat{X} \iff f = \frac{a}{b} \in \mathcal{O}_P(V)^*.$$

The last bi-implication is due to Lemma 1.8.72.

Corollary 3.3.58. Consider $V \subset \mathbb{A}^n$ a variety and $P \in V$. $\mathfrak{m}_P(V)$ is the maximal ideal containing every proper ideal of $\mathcal{O}_P(V)$, hence $\mathcal{O}_P(V)$ is local. In addition $\mathcal{O}_P(V)$ is Noetherian.

Proof. By the above proposition, $\mathcal{O}_P(V) \setminus \mathcal{O}_P(V)^*$ is an ideal, hence by Proposition 1.8.63 $\mathcal{O}_P(V)$ is local where $\mathfrak{m}_P(V)$ is the unique maximal ideal.

Hilbert's basis theorem shows that $K[\mathbf{x}]$ is Noetherian, by Lemma 1.4.50 $\Gamma(V)$ is Noetherian. Let $I \subset \mathcal{O}_P(V)$. Let $J := I \cap \Gamma(V) \subset \Gamma(V)$. Then by Theorem 1.4.48 there are $f_1, \ldots, f_m \in \Gamma(V)$ such that $J = \langle f_1, \ldots, f_m \rangle$. Let $f \in I$ and pick $f = \frac{a}{b}$ with $b(P) \neq 0$. Then $bf \in \Gamma(V)$, hence $bf = \sum_1^m \lambda_i f_i$ for suitable $\lambda_1, \ldots, \lambda_m \in \Gamma(V)$, hence $f = \sum_1^m \frac{\lambda_i}{b} f_i$. Then f is generated by f_1, \ldots, f_m in $\mathcal{O}_P(V)$.

Corollary 3.3.59. Consider $V \subset \mathbb{A}^n$ a variety and $P \in V$. Let $I \subset \mathcal{O}_P(V)$ be a proper ideal. Then $I \subset \ker (\operatorname{ev}_P : \mathcal{O}_P(V) \to K)$, hence in addition $I \cap \Gamma(V) \subset \ker (\operatorname{ev}_P : \Gamma(V) \to K)$

Proof. By the above corollary $I \subset \mathfrak{m}_P(V) = \ker(\operatorname{ev}_P : \mathcal{O}_P(V) \to K)$. One readily verifies that $\ker(\operatorname{ev}_P : \mathcal{O}_P(V) \to K) \cap \Gamma(V) = \ker(\operatorname{ev}_P : \Gamma(V) \to K)$.

Lemma 3.3.60. Let V be an affine variety and $P \in V$. There is a one-to-one correspondence between prime ideals in $\mathcal{O}_P(V)$ and prime ideals in $\Gamma(V)$ contained in $\ker(\operatorname{ev}_P : \Gamma(V) \to K)$

Proof. Let $I \subset \mathcal{O}_P(V)$ be prime. Then $I \cap \Gamma(V) \subset \Gamma(V)$ is prime by Proposition 1.8.26. By Corollary 3.3.59 $I \cap \Gamma(V) \subset \ker (\operatorname{ev} : P : \Gamma(V) \to K)$.

Let $J \subset \Gamma(V)$ be a prime ideal whose elements all vanish on P. Then $X^{-1}J$ is a proper ideal of $\mathcal{O}_P(V)$. Let $\frac{a}{x}, \frac{b}{x} \in \mathcal{O}_P(V)$ with $\frac{ab}{xy} \in X^{-1}I$, hence for some $\frac{c}{z} \in X^{-1}I$, $\frac{ab}{xy} = \frac{c}{z}$. Then $abz \in I$, hence $ab \in I$ or $z \in I$. Since $z(P) \neq 0, z \notin I$. Then $ab \in I$, meaning $a \in I$ or $b \in I$. It thus follows that $\frac{a}{x} \in X^{-1}I$ or $\frac{b}{y} \in X^{-1}I$.

Lemma 3.3.61. Let V be an affine variety and $P \in V$. There is a one-to-one correspondence between prime ideals in $\Gamma(V)$ contained in ker ev_P and subvarieties W of V containing P.

Proof. Let $I \subset \Gamma(V)$ be prime with $I \subset \ker \operatorname{ev}_P$. By Proposition 3.2.32 there is a subvariety $W \subset V$ such that $I = I_V(W)$. Let $f \in I(W)$, then $f(P) = \operatorname{ev}_P(f + I(V)) = 0$, hence $P \in V(I(W)) = W$.

Let $W \subset V$ be a subvariety containing P. Then $I_V(W)$ is prime and $\operatorname{ev}_P(f+I(V))=0$ for every $f+I(V)\in I_V(W)$.

Proposition 3.3.62. Let V be an affine variety and $P \in V$. There is a one-to-one correspondence between prime ideals in $\mathcal{O}_P(V)$ and subvarieties of V containing P.

Proof. This follows directly from the two above lemmas.

Proposition 3.3.63. Let V be an affine variety. Denote h + I(V) by \overline{h} for $h \in K[\mathbf{x}]$. Consider $f = \frac{\overline{a}}{\overline{b}} \in K(V)$. Let $U = \{P \in V : f \text{ defined at } P\}$. Consider the function $\operatorname{ev}_{\bullet}(f) : U \to K$. f is uniquely determined by this function.

Proof. Let $g=\frac{\overline{c}}{\overline{d}}\in K(V)$ be given such that $\operatorname{ev}_{\bullet}(g)=\operatorname{ev}_{\bullet}(f)$. Let $P\in U$. Then $\overline{a}(P)\overline{d}(P)=\overline{c}(P)\overline{b}(P)$ hence $(ad-cb)(P)=\overline{a}(P)\overline{d}(P)-\overline{c}(P)\overline{b}(P)=0$. We thus see that (ad-cb)(v)=0 for every $v\in V$, hence $ad-cb\in I(V)$, meaning $\overline{a}\overline{d}-\overline{c}\overline{b}=0$, hence f=g.

Proposition 3.3.64. Let $\varphi: V \to W$ a polynomial map and $P \in V$. $\widetilde{\varphi}: \Gamma(W) \to \Gamma(V)$ extends uniquely to a K-algebra homomorphism $\widetilde{\varphi}: \mathcal{O}_{\varphi(P)}(W) \to \mathcal{O}_P(V)$. Furthermore $\widetilde{\varphi}(\mathfrak{m}_{\varphi(P)}(W)) \subset \mathfrak{m}_P(V)$.

Proof. Let $X = \{a \in \Gamma(W) : a(\varphi(P)) \neq 0\}$. Let $a \circ \varphi \in \widetilde{\varphi}(X) = \{\widetilde{\varphi}(a) = a \circ \varphi \in \widetilde{\varphi}(X) : a \in X\}$. Then $a \circ \varphi(P) = a(\varphi(P)) \neq 0$, hence the first statement follows from Lemma 1.8.77.

Let $f \in \mathfrak{m}_{\varphi(P)}(W) = \{ f \in \mathcal{O}_{\varphi(P)}(W) : f(\varphi(P)) = 0 \}$. Then

$$\widetilde{\varphi}(f)(P) = (f \circ \varphi)(P) = f(\varphi(P)) = 0 \implies \widetilde{\varphi}(f) \in \mathfrak{m}_P(V).$$

Corollary 3.3.65. Let V, W be varieties, $P \in V$ and $\varphi : V \to W$ an isomorphism. Then $\mathcal{O}_{\varphi(P)}(W) \simeq \mathcal{O}_P(V)$.

Proof. This follows from the above proposition and Corollaries 3.3.16, 1.8.80. \Box

Corollary 3.3.66. Let $V \subset \mathbb{A}^n$ be a subvariety and $P \in V$. Let $\varphi : \mathbb{A}^n \to \mathbb{A}^n$, $v \mapsto Av + w$ be an affine change of coordinates. Then $\widetilde{\varphi} : \mathcal{O}_{\varphi(P)}(\mathbb{A}^n) \to \mathcal{O}_P(\mathbb{A}^n)$ is an isomorphism. Furthermore, $\widetilde{\varphi}$ induces an isomorphism between $\mathcal{O}_{\varphi(P)}(V) \simeq \mathcal{O}_P(V^{\varphi})$.

Proof. The first statement follows from the above corollary. One notes that $V^{\varphi} \overset{\varphi'}{\simeq} V$, where φ' is the restriction of φ to V. Hence $\Gamma(V) \overset{\tilde{\varphi}'}{\simeq} \Gamma(V^{\varphi})$, $v + I(V) \mapsto \varphi(v) + I(V^{\varphi})$. The above corollary shows that $\varphi' : \mathcal{O}_{\varphi(P)}(V) \to \mathcal{O}_P(V^{\varphi})$, $\frac{a}{b} \mapsto \frac{\tilde{\varphi}'(a)}{\tilde{\varphi}'(b)}$ is an isomorphism.

Proposition 3.3.67. Let $P = \mathbf{0} \in \mathbb{A}^n$. Set $\mathcal{O} := \mathcal{O}_P(\mathbb{A}^n)$ and $\mathfrak{m} := \mathfrak{m}_P(\mathbb{A}^n)$. Let $I := \langle x_1, \dots, x_n \rangle \subset K[x_1, \dots, x_n]$. Then $I\mathcal{O} = \mathfrak{m}$, hence $I^r\mathcal{O} = \mathfrak{m}$.

Proof. Firs note that for $f = \sum_{i=1}^{n} \frac{a_i}{b_i} x_i \in I\mathcal{O}$,

$$f(P) = \sum_{i=1}^{n} 0 \frac{a_i(P)}{b_i(P)} = 0 \implies f \in \mathfrak{m}.$$

Hence $I\mathcal{O}$ is a proper ideal. Let $f = \frac{a}{b} \in \mathfrak{m}$. Then a(P) = 0, hence $a \in \langle x_1, \dots, x_n \rangle = I$ (cf. Proposition 1.9.38).

Proposition 3.3.68. Let $V \subset \mathbb{A}^n$ be an affine variety, set $I := I(V) \subset K[x_1, \dots, x_n]$, pick $P \in V$ and let $J \subset K[\mathbf{x}]$ be an ideal containing I. Let J' = J/I. Then $\mathcal{O}_P(\mathbb{A}^n)/J\mathcal{O}_P(\mathbb{A}^n) \simeq \mathcal{O}_P(V)/J'\mathcal{O}_P(V)$ as K-algebras. In particular $\mathcal{O}_P(\mathbb{A}^n)/I\mathcal{O}_P(\mathbb{A}^n) \simeq \mathcal{O}_P(V)/0\mathcal{O}_P(V) = \mathcal{O}_P(V)$.

Proof. Consider the surjective ring homomorphism, $\sigma: \mathcal{O}_P(\mathbb{A}^n) \twoheadrightarrow \mathcal{O}_P(V)$ given by restriction, i.e $\frac{a}{b} \mapsto \frac{a+I}{b+I}$. Note that for $j\frac{a}{b} \in J\mathcal{O}_P(\mathbb{A}^n)$,

$$\sigma(j\frac{a}{b}) = (j+I)\frac{a+I}{b+I} \in (J/I)\mathcal{O}_P(V) = J'\mathcal{O}_P(V).$$

Conversely if $\sigma(\frac{g}{h}) \in J'\mathcal{O}_P(V)$, then $\frac{g+I}{h+I} = (j+I)\frac{a+I}{b+I}$, gb+I = jha+I, hence $gb+I \in J'\mathcal{O}_P(V)$, hence $gb \in J$, implying $\frac{g}{h} = \frac{bg}{bh} \in J\mathcal{O}_P(\mathbb{A}^n)$. This means

$$\varsigma: \mathcal{O}_P(\mathbb{A}^n)/J\mathcal{O}_P(\mathbb{A}^n) \to \mathcal{O}_P(V)/J'\mathcal{O}_P(V), f + J\mathcal{O}_P(\mathbb{A}^n) \mapsto f + J'\mathcal{O}_P(V),$$

is an isomorphism of K-algebras.

Lemma 3.3.69. I feel that this lemma should be added earlier Consider ideal $I, J \subset K[x_1, ..., x_n]$. I, J are comaximal iff $V(I) \cap V(J) = \emptyset$

Proof. This follows immediately from the weak Nullstellensatz:

$$I + J = \langle 1 \rangle \iff \emptyset = V(I + J) = V(I) \cap V(J).$$

3.3.4 Rational Functions and DVR's

Example 3.3.70. Let $V = \mathbb{A}^1$. Then K(V) = K(X). Let $a \in V$. Then $\mathcal{O}_a(V)$ is a non-field integral domain which is local and Noetherian. We prove that $\mathfrak{m}_a(V) = \langle x - a \rangle$. Indeed, $\operatorname{ev}_a(x-a) = 0$, proving the first inclusion. If $f \in \mathfrak{m}_a(V)$, then f(a), hence $x-a \mid f$. The maximal ideal of $\mathcal{O}_a(V)$ is thus principal ideal with uniformizing parameter x-a.

Definition 3.3.71. We define the local ring at infinity to be the ring

$$\mathcal{O}_{\infty} := \left\{ \frac{f}{g} \in K(X) : \deg f \le \deg g \right\}.$$

Remark 3.3.72. One readily verifies that this is a subring of K(X) by noting that if $a,b,c,d\in K[x]$ with deg $a\leq \deg b$ and deg $c\leq \deg d$, then deg $ac=\deg a+\deg c\leq \deg b+\deg d$ and deg $ad+cb\leq \max(\deg ad,\deg cb)\leq bd$. Furthermore, $1,0\in\mathcal{O}_{\infty}$ Change def of degree?, since $1=\frac{1}{1}$ and $0=\frac{0}{1}$. It is a subring of K(X), hence it is an integral domain. It is not a field since $\frac{1}{x}\in\mathcal{O}_{\infty}$ but $x\notin\mathcal{O}_{\infty}$. One can check that the units of \mathcal{O}_{∞} are the fractions $\frac{f}{g}$ with deg $f=\deg g$. Indeed, $\frac{g}{f}$ is the inverse of such elements. Conversely, if $\frac{f}{g}$ is invertible, then $\frac{g}{f}\in\mathcal{O}_{\infty}$.

Proposition 3.3.73. \mathcal{O}_{∞} *is a DVR*.

Proof. We prove that $t := \frac{1}{x}$ is a uniformizing parameter. Suppose $\frac{1}{t} = \frac{a}{b} \frac{c}{d}$. Then

$$1 + \deg a + \deg c = \deg t + \deg a + \deg d = \deg b + \deg d$$
.

Then deg $a=\deg b$ or deg $c=\deg d$, hence $\frac{a}{b}$ is a unit or $\frac{c}{d}$ is a unit. Consequently, t is irreducible. Let $\frac{f}{g}\in\mathcal{O}_{\infty}\setminus 0$ with $n=\deg f$ and $m:=\deg g$. Set $u=\frac{fx^{m-n}}{g}$. This has a mutual inverse $\frac{g}{fx^{m-n}}$ in \mathcal{O}_{∞} . Then

$$\frac{f}{g} = \frac{fx^{m-n}}{g} \frac{1}{x^{m-n}}.$$

The uniqueness really just follows from t being irreducible. Since if $ut^{m-n} = vt^l$ for some other unit v and $l \ge 0$, then m-n-l=0 and hence u=v. By Proposition 1.8.87, \mathcal{O}_{∞} is a DVR.

Proposition 3.3.74. The only DVR's with quotient field K(X) (recall K is assumed algebraically closed) containing K are \mathcal{O}_{∞} and $\mathcal{O}_{a}(\mathbb{A}^{1}) = \left\{\frac{f}{g}(x-a)^{n} : \frac{f}{g} \in K(x), (x-a) \nmid g, n \geq 0\right\}$, where $a \in K$.

Proof. $K \subset R \subsetneq K(x)$ be a DVR. Let $\mathfrak{m} = \left\langle \frac{f}{g} \right\rangle$ be the maximal ideal of R with $\gcd(f,g)=1$.

Suppose first that $K[x] \subset R$. Then $I := K[x] \cap \mathfrak{m} = \langle h \rangle$ (recall that K[x] is a PID) is a prime ideal in K[x] by Proposition 1.8.26. Since $\frac{f}{g}$ is irreducible, it is non-zero. Then $f = g\frac{f}{g} \in \mathfrak{m} \cap K[x]$, meaning $h \neq 0$. Then h = x - a for some $a \in K$ using the assumption that K is algebraically closed. We prove that $R = \mathcal{O}_a(\mathbb{A}^1)$. Let $\frac{\lambda}{\mu} \in R \setminus 0$ with $\gcd(\lambda, \mu) = 1$. Suppose for a contradiction that $h \mid \mu$. Then $\mu \in \mathfrak{m}$, but then $\lambda = \mu \frac{\lambda}{\mu} \in \mathfrak{m} \cap K[x] = \langle h \rangle$, contracting the assumption $\gcd(\lambda, \mu) = 1$. Then

 $\mu(a) \neq 0$, which implies $\frac{\mu}{\lambda} \in \mathcal{O}_a(\mathbb{A}^1)$, hence $R \subset \mathcal{O}_a(\mathbb{A}^1)$. In particular we get that $\frac{1}{g} \in \mathcal{O}_a(\mathbb{A}^1)$. This means that $\mathfrak{m} \subset \mathcal{O}_a(\mathbb{A}^1)\mathfrak{m} = \mathcal{O}_a(\mathbb{A}^1)f \subset \mathcal{O}_a(\mathbb{A}^1)h$. It follows from Proposition 1.8.91 that $\mathcal{O}_a(\mathbb{A}^1) = R$.

Suppose now that $K[x] \not\subset R$. In particular we must then have that $x-a \notin R$ for any $a \in K$. Then $x-a \in K(x) \setminus R$, which implies that $\frac{1}{x-a} \in \mathfrak{m}$ by Lemma 1.8.90. Note that for $a,b \in K$,

$$\frac{x-a}{x-b} = 1 + \frac{b-a}{x-b} \in R.$$

This means that $\frac{x-b}{x-a} \in R^*$. Now, let $\frac{h}{k} \in R \setminus 0$ with $\gcd(h,k) = 1$. Suppose for a contradiction that deg $h > \deg k$. Then we can write $\frac{h'}{k}h''$ with $h',h'' \in K[x]$ such that deg $h' = \deg k$ and deg $h'' \geq 1$. But then

$$h'' = \frac{k}{h''} \frac{h}{k} \in R.$$

Then for some $\alpha \in K$ and $l \in K[x]$, $(x - \alpha) = \frac{h''}{l} \in R$, but then $K[x] \subset R$, leading to a contradiction. We thus conclude that $R \subset \mathcal{O}_{\infty}$. By irreducibility of $\frac{f}{g}$ it is clear that since $\frac{f}{g} \mid \frac{1}{x}$, $\frac{f}{g} = u \frac{1}{x}$ for some unit $u \in R$. We thus get that $\mathfrak{m} \subset \mathcal{O}_{\infty} \frac{1}{x}$. It follows from Proposition 1.8.91 that $\mathcal{O}_{\infty} = R$.

3.3.5 Ideals with a Finite Number of Zeroes

Theorem 3.3.75. Let $I \subset K[x_1, ..., x_n]$ and suppose $\#V(I) < \infty$. Denote the points of V(I) by $P_1, ..., P_m$. Set $\mathcal{O}_i := \mathcal{O}_{P_i}(\mathbb{A}^n)$. Then

$$K[\mathbf{x}]/I \simeq \prod_{1}^{m} \mathcal{O}_{i}/I\mathcal{O}_{i}$$

Proof. Set $I_i := I(\{P_i\}) = \langle x_1 - P_{i1}, \dots, x_n - P_{in} \rangle$. We can construct

$$\sigma_i: K[\mathbf{x}]/I \to \mathcal{O}_i/I\mathcal{O}_i$$

$$f + I \mapsto f + I\mathcal{O}_i$$

We thus get a ring homomorphism

$$\sigma: K[\mathbf{x}]/I \to \prod_{1}^{m} \mathcal{O}_{i}/I\mathcal{O}_{i}$$
$$f + I \mapsto (\sigma_{1}(f+I), \dots, \sigma_{m}(f+I))$$

We aim to prove that σ is an isomorphism. We need to make few constructions before we are able to do so. Note that by HNS, $rad(I) = I(V(I)) = I(P_1, \dots, P_m) = \bigcap_{i=1}^{m} I_i$. Note

also that $V(I_i) \cap V(\bigcap_{j \neq i} I_j) = \emptyset$, hence by Lemma 3.3.69 I_i and $\bigcap_{j \neq i} I_j$ are comaximal. Thus by Lemma 1.8.37 and Lemma 1.8.41,

$$\bigcap_{1}^{m} I_{i}^{d} = \left(\prod_{1}^{m} I_{i}\right)^{d} = \left(\bigcap_{1}^{m} I_{i}\right)^{d} \subset I,$$

for some $d \ge 0$. For each $i \in \{1, ..., m\}$ pick $F_i \in K[\mathbf{x}]$ such that $F_i(P_j) = 0$ and $F_i(P_i) = 1$ for $j \ne i$ (such a polynomial exist do to Corollary 3.1.43). Set $E_i := 1 - (1 - F_i^d)^d$ for each i. Note that

$$E_i + \langle F_i^d \rangle = 1 - (1 - F_i^d)^d + \langle F_i^d \rangle = 1 - 1 + \langle F_i^d \rangle = 0 + \langle F_i^d \rangle \implies E_i \in \langle F_i^d \rangle \subset \bigcap_{i \neq i} I_j^d,$$

hence $E_i E_j \in \bigcap_{1}^m I_i^d \subset I$. Furthermore,

$$1 - \sum_{1}^{m} E_j + I_i^d = (1 - E_i) - \sum_{j \neq i} E_j + I_i^d = 0 + I_i^d,$$

for each i, hence $1 - \sum_{1}^{m} E_{j} \in \bigcap_{1}^{m} I_{j}^{d}$. Note also that

$$E_i^2 - E_i = E_i(E_i - 1) = E_i(1 - (1 - F_i^d)^d - 1) = -E_i(1 - F_i^d)^d \in I_i^d \bigcap_{i \neq i} I_j^d = \bigcap_{1 \neq i} I_j^d \subset I.$$

Set $e_i := E_i + I$. Then $e_i e_j = 0$ for each $i \neq j$, $e_i^2 = e_i$ for each i and $\sum_{i=1}^{m} e_i = 1$.

Claim: If $G \in K[\mathbf{x}]$ and $G(P_i) \neq 0$. Then there is a $t \in K[\mathbf{x}]/I$ such that $tg = e_i$ where g := G + I.

Proof of Claim: WLOG $G(P_i) = 1$. Set H := 1 - G and h := H + I. Since $H(P_i) = 0$, $H_i \in I_i$, hence $H_i^d E_i \in I_i^d \bigcap_{j \neq i} I_j^d = \bigcap_1^m I_j^d \subset I$. Note that

$$(1-H)\sum_{i=0}^{d-1} E_i H^k = E_i - E_i H^d.$$

Considering the image of the left- and right-hand side in $K[\mathbf{x}]/I$ we therefor get that

$$g\left(-\sum_{i=0}^{d-1}e_{i}h^{k}\right)=e_{i}.$$

Equipped with the above claim we can proceed by proving σ is injective. Suppose $f:=F+I\in K[\mathbf{x}]/I$ is given such that $f\in I\mathcal{O}_i$ for each i. For each i we can then pick a $G_i\in K[\mathbf{x}]$ such that $G_i(P_i)\neq 0$ and $G_iF\in I$. Set $g_i=G_i+I$. Then there is a $t_ig_i=e_i$. Then

$$f = f \sum_{1}^{m} e_i = \sum_{1}^{m} t_i g_i f = 0 \implies \ker \sigma = 0.$$

Before we prove that σ is surjective we record a few facts. Since $E_i(P_i) \neq 0$, E_i is a unit in \mathcal{O}_i , hence e_i is a unit in $\mathcal{O}_i/I\mathcal{O}_i$. This in particular means,

$$\sigma_i(e_i)\sigma_i(e_j) = \sigma_i(e_ie_j) = 0 \implies \sigma_i(e_j) = 0.$$

This means

$$\sigma_i(e_i) = \sigma_i(e_i) + \sigma_i \left(\sum_{j \neq i} e_j\right) = \sigma_i \left(\sum_1^m e_j\right) = \sigma_i(1) = 1.$$

Consider an arbitrary element $z = \left(\frac{a_1}{s_1}, \dots, \frac{a_m}{s_m}\right) \in \prod_{i=1}^m \mathcal{O}_i / I\mathcal{O}_i$. For a suitable t_i , $s_i t_i = e_i$. Then

$$\frac{a_i}{s_i} = \frac{a_i t_i}{s_i t_i} = \frac{a_i t_i}{e_i} = a_i t_i \sigma_i(e_i)^{-1} = a_i t_i.$$

Then we get that

$$\sigma_i \left(\sum_{1}^{m} a_j t_j e_j \right) = \sigma_i(a_i t_i) = \frac{a_i}{s_i} \Longrightarrow$$

$$\sigma \left(\sum_{1}^{m} a_j t_j e_j \right) = \left(\sigma_1 \left(\sum_{1}^{m} a_j t_j e_j \right), \dots, \sigma_m \left(\sum_{1}^{m} a_j t_j e_j \right) \right) = \left(\frac{a_1}{s_1}, \dots, \frac{a_m}{s_m} \right) = z,$$

meaning σ is surjective.

Corollary 3.3.76. Let $I \subset K[x_1, ..., x_n]$ and suppose $\#V(I) < \infty$. Denote the points of V(I) by $P_1, ..., P_m$. Set $\mathcal{O}_i := \mathcal{O}_{P_i}(\mathbb{A}^n)$. Then

$$\dim_k K[\mathbf{x}]/I = \dim_k \left(\prod_{1}^m \mathcal{O}_i / I \mathcal{O}_i \right) = \sum_{1}^m \dim_k \mathcal{O}_i / I \mathcal{O}_i$$

Corollary 3.3.77. *In the setup above suppose* m = 1 *then*

$$K[\mathbf{x}]/I \simeq \mathcal{O}_P(\mathbb{A}^n)/I\mathcal{O}_P(\mathbb{A}^n).$$

Corollary 3.3.78. Suppose $R \supset K$ and $\dim_k R < \infty$. Then $R \simeq \prod_{i=1}^m R_i$ where R_i are local.

Proof. Since R is finite dimensional over K it is also ring finite over K generated by some linear basis $\{a_1, \ldots, a_n\}$ of R over K, hence $R \simeq K[x_1, \ldots, x_n]/I$ (cf. Proposition 1.10.3). Then by a suitable corollary of HNS,

$$V(I) \le \dim_K K[\mathbf{x}]/I = \dim_K R < \infty.$$

It follows by the theorem of this subsection that $R \simeq K[\mathbf{x}]/I \simeq \prod_{i=1}^{m} R_i$, where R_i is local for each i.

3.4 Local Properties of Affine Plane Curves

Fix again an algebraically closed field K. Sometimes we will need that char K = 0 (we will have to make some considerations with derivatives, so to make things more simple we makes this assumption about characteristic). We first define an equivalence relation of polynomials in K[x, y].

Definition 3.4.1. We say that a pair of polynomials $f, g \in K[x, y]$ are (factor) equivalent (the "factor"-part is non-standard) if $f = \lambda g$ for some $\lambda \in K \setminus 0$. (This is the definition of \sim from Definition 1.7.9 in the special case $V = K[x, y]_{>1}$).

Definition 3.4.2. An affine plane curve C is an equivalence class under factor equivalence, i.e. an element of $K[x,y]/\sim$. The degree of C (denoted deg C) is the degree of a representative of C (This is notion is clearly independent of choice of representative). A degree 1 curve is called a *line*. The irreducible factors of any representative of C up to multiplication by a scalar are called *components* of C. A component with multiplicity 1 in the factorization of a representative of C is called a *simple* components. A non-simple component is called a *multiple* component.

Remark 3.4.3. We already now that $I(V(C)) = f_1 \cdots f_m$ where f_1, \ldots, f_m are the components of C. We thus lose information about multiplicities. For an irreducible polynomial $f \in K[x,y]$, V(f) is a variety. We define $\Gamma(f) := \Gamma(V(f))$, K(f) := K(V(f)), $\mathcal{O}_P(f) := \mathcal{O}_P(V(f))$. We know that each curve in \mathbb{A}^2 arises as V(f) for some $f \in K[x,y]$. It thus follows that there is a bijection between algebraic curves in \mathbb{A}^2 and algebraic curves in $(K[x,y]_{\geq 1}\setminus 0)/\sim$, so the choice of terminology is well-chosen.

Definition 3.4.4. let f be a curve and $P = (a, b) \in f$. P is called *simple* if $f_x(P) \neq 0$ or $f_y(P) \neq 0$. The *tangent line* at a simple point is the line

$$f_x(P)(x-a) + f_y(P)(y-b).$$

If P is not simple it is called *multiple/singular*. If every point on a curve is simple, then the curve is called *non-singular*.

Example 3.4.5. Each of the described curves will be in an algebraically closed field of characteristic 0 (think \mathbb{C}).

1. A parabola, $f = y - ax^2 - bx - c$, $a, b, c \in K$ with $a \neq 0$ is a non-singular curve since $f_y = 1$

- 2. Consider the curve $f = y^2 x^3 + x$, an example of an *elliptic curve*. In this instance f is non-singular. Indeed, $f_x = -3x^2 + 1$, $f_y = y$. If $f_y(a,b) = 0$, then $0 = f(x,b) = -x^3 + x = -x(x^2 1) = x(x-1)(x+1)$, has solution $a \in \{0,\pm 1\}$. Then $f_x(a,b) \in \{1,-2\}$. On the other hand, if $f_x(a,b) = 0$, then $a = \pm \frac{1}{\sqrt{3}}$. Then $0 = f(\pm a,y)$ has solutions $b \in \{\pm \sqrt{-a^3 + a}, \pm \sqrt{a^3 a}\}$, hence $b \neq 0$. It follows that $f_y(b) \neq 0$.
- 3. Consider the curve $f = y^2 x^3$. It has its only singular point at (0,0). Indeed, $f_x = -3x^2$ and $f_y = 2y$. Therefor $-3a^2 = f_x(a,b) = 0$ and $2b = f_y(a,b) = 0$ if and only if (a,b) = (0,0).
- 4. Consider the curve $f = y^2 x^3 x^2$. It has its only singular point at (0,0). Indeed, $f_x = -3x^2 2x = -3x(x+2/3)$ and $f_y = 2y$. Thus the only common zeroes of f_x and f_y are (0,0) and (-2/3,0). The only common zero of f_x and f_y lying on f is thus (0,0).

Definition 3.4.6. For a curve f write $f = \sum_{m=0}^{n} f_i$, where f_m, \ldots, f_n are homogeneous polynomials with degree corresponding to their index and $f_m \neq 0$. We call the value m the multiplicity of f at (0,0), we denote it $m_0(f)$. If m=2 we call (0,0) a double point, if m=3 we call (0,0) a triple point, etc.

Lemma 3.4.7. Let f be a curve. Then $m_0(f) > 0$ if and only if $(0,0) \in f$.

Proof. $m_0(f) > 0$ is equivalent to f having constant term zero which is equivalent to $(0,0) \in f$.

Lemma 3.4.8. Let f be a curve with $(0,0) \in f$. Then $m_0(f) = 1$ if and only if (0,0) is a simple point in f. In this case f_1 is the tangent line at 0.

Proof. " \Longrightarrow :" If $m_0(f) = 1$. Then $f_1 = ax + by$ where $a \neq 0$ or $b \neq 0$. Then $(f_1)_x = a \neq 0$ or $(f_1)_y = b \neq 0$, hence (0,0) is a simple point of f.

" \Leftarrow ": Let $f_1 = ax + by$ the degree 1 homogeneous polynomial in the term expansion of f. We write $f = f_1 + g$ where deg g > 1. Given a term t in g we thus have that deg $t_x \ge 1$ resp. deg $t_y \ge 1$ or $t_x = 0$ resp. $t_y = 0$. Thus any term in g_x and g_y is divisible by x or y. Then $a = f_x(0,0) \ne 0$ or $b = f_y(0,0) \ne 0$, hence $m_0(f) = 1$.

Writing $f_1 = ax + by \in K[x, y]$, we find that the degree 0 homogeneous polynomial terms in f_x is exactly $(f_1)_x = a$ and $(f_1)_y = b$, hence $f_x(0, 0)x + f_y(0, 0)y = ax + by = f_1$.

Remark 3.4.9. In the case $m_0(f) > 1$, f_m has multiple tangent lines corresponding to those obtained from its factorization into linear forms (cf Corollary 1.9.111). Each of

these tangent lines have a multiplicity in the factorization of f_m . If the multiplicity of each tangent line is 1 and m > 1 we call (0,0) an *ordinary multiple point* of f. An ordinary double point is called a *node*.

Lemma 3.4.10. Consider a curve and its factorization into irreducible factors $f = \prod_{i=1}^{r} p_i^{e_i}$. Then $m_0(f) = \sum_{i=1}^{m} m_0(p_i)e_i$.

Proof. Indeed, write $p_i = \sum_{m_i}^{n_i} p_{ij}$, as the representation of p_i as a sum of homogeneous polynomials where $p_{im_i} \neq 0$. We get that

$$\sum_{m}^{n} f_{i} = f = \prod_{1}^{m} p_{i}^{e_{i}} = \prod_{1}^{m} \left(\sum_{m_{i}}^{n_{i}} p_{ij}\right)^{e_{i}} = \prod_{1}^{m} p_{im_{i}}^{e_{i}} + \underbrace{\cdots}_{\text{strictly higher degree terms}} \implies f_{m} = \prod_{1}^{m} p_{im_{i}}^{e_{i}},$$

hence
$$m_0(f) = m = \deg \prod_1^m p_{im_i}^{e_i} = \sum_1^m m_i e_i = \sum_1^m m_0(p_i) e_i$$

Definition 3.4.11. Let $P=(a,b)\in\mathbb{A}^2\setminus 0$. Let $T_P:\mathbb{A}^2\to\mathbb{A}^2$ be translation by P. We extend all above to definitions pertaining to a (0,0) and a curve f to involve an arbitrary point P by considering $f^T=f(x+a,y+b)$. Then $m_P(f):=m_0(f^T)$. Writing $f^T=\sum_{m_P(f)}^n g_i$. We define the tangent lines at P to be $l_i^{T^{-1}}$, where l_i are the linear factors of $g_{m_P(f)}$. Moreover, we assert that $m_P(0)=\infty$.

Remark 3.4.12. Note that $f_x(P) = f_x^T(P)$ and $f_y(P) = f_y^T(0)$, so the choice of definition of tangent line is sensible, since then P is simple if and only if $m_P(f) = 1$ and in this case the tangent line at P is exactly $g_{m_P(f)}^{T^{-1}}$.

Example 3.4.13. Show some examples of multiple points and tangent lines for a few different points for a few different curves

Proposition 3.4.14. If a curve f of degree d has a point $P \in f$ of multiplicity d. Then

$$f = \prod_{1}^{d} l_i,$$

where l_i are (possibly non-distinct) lines.

Proof. Suppose P=(a,b) is a point of multiplicity d. Then f(x+a,y+b) is a non-zero homogeneous polynomial of degree d, since the lowest degree term in the homogeneous polynomial expansion of f(x+a,x+b) is d (as $m_P(f)=d$) and deg $f(x+a,x+b) \leq \deg f=d$. It follows from Corollary 1.9.111 that $f(x+a,x+b)=\prod_1^d l_i$, where l_i are lines and hence $f=f(x+a,x+b)^{T^{-1}}=\prod_1^d l_i(x-a,x-b)$, note that $l_i(x-a,x-b)$ are lines, since otherwise f=0.

Proposition 3.4.15. Let P be a double point on a curve f. P is a node if and only if

$$f_{xy}(P)^2 \neq f_{xx}(P)f_{yy}(P)$$
.

Proof. By Lemma 1.9.147 it is sufficient to prove the result for P=(0,0). We translate the statement into one of linear algebra, by noting that since f has a double point, $f_2=l_1l_2$ where $l_1=ax+by$, $l_2=cx+dy$. Furthermore, the constant term of f_{xx} , f_{yy} , f_{xy} is respectively $(l_1l_2)_{xx}=2ac$, $(l_1l_2)_{yy}=2bd$ and $(l_1l_2)_{xy}=ad+bc$. We thus notice that

$$f_{xy}(P)^2 - f_{xx}(P)f_{yy}(P) = (ad + bc)^2 - 4adbc = (ad - bc)^2 = \left(\det \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right)^2.$$

Note that l_1 and l_2 are distinct (i.e. not factor equivalent) if and only if (a, b) and (c, d) are linearly independent. Hence P is a node if and only if

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq 0 \iff f_{xy}(P)^2 - f_{xx}(P)f_{yy}(P) \neq 0.$$

Proposition 3.4.16. Suppose char K = 0. For a point P on a curve f, $m_P(f)$ is the smallest integer such that for some i, j with $i + j = m_P(f)$,

$$\left(\frac{\partial^{m_P(f)}}{\partial x^i \partial y^j} f\right)(P) \neq 0.$$

The lowest degree homogeneous polynomial of f at P in terms of these partial derivatives in the following way

$$f_{m_P} = \sum_{i,j:i+j=m} \frac{1}{i!j!} \left(\frac{\partial^m}{\partial x^i \partial y^j} f \right) (P) x^i y^j.$$

Proof. Again we may assume WLOG that P=(0,0), since it again follows from Lemma 1.9.147 that $\left(\frac{\partial^{m_P(f)}}{\partial x^i \partial y^j}f\right)(P) = \left(\frac{\partial^{m_P(f)}}{\partial x^i \partial y^j}f^{T_P}\right)(0,0)$. We prove the result by induction in the multiplicity at P. (we define the 0'th partial derivative at any variable to be the identity map). If $m_P(f)=0$, then $P\notin f$, hence $f(P)\neq 0$. If this is isn't satisfactory, when $m_P(f)=0$, then $f_x(P)\neq 0$ or $f_y(P)\neq 0$. Suppose the statement is true for every polynomial of multiplicity $m\geq 0$. Consider a curve f of multiplicity m+1 at f. Then f or f is curve of multiplicity f and the result follows by applying the induction hypothesis. Note here that we implicitly use that f characteristic f is assumption it follows that f and f is f and f in f in f in f is f and f is f and f in f in

An alternative way (perhaps a more algorithmic approach) is to write $f = \sum_{m=1}^{n} f_i$ in the

homogeneous polynomial expansion. Then a term in f_m is of the form $a_{ij}x^iy^j$ where i+j=m. Then $\frac{\partial^m}{\partial x^iy^j}a_{ij}x^iy^j=a_{ij}j!i!$ and $\frac{\partial^m}{x^ky^l}a_{k,l}x^ky^l=0$, meaning $\left(\frac{\partial^m}{\partial x^i\partial y^j}f\right)(P)=i!j!a_{ij}$. Hence,

$$f_m = \sum_{i,j:i+j=m} \frac{1}{i!j!} \left(\frac{\partial^m}{\partial x^i \partial y^j} f \right) (P) x^i y^j.$$

Proposition 3.4.17. Let l_1, \ldots, l_n be lines all vanishing at (0,0) in \mathbb{A}^2 and r_1, \ldots, r_n a sequence of positive integers. Set $m := \sum_{1}^{n} r_i$ and $f_m = \prod_{1}^{n} l_i^{r_i}$, pick a form f_{m+1} of degree m+1 such that $\gcd(f_m, f_{m+1}) = 1$. Then $f_m + f_{m+1}$ is an irreducible curve with tangent lines l_1, \ldots, l_n with respective multiplicities r_i

Proof. This follows immediately from Proposition 1.9.112.

Definition 3.4.18. For a polynomial map $\varphi = (\varphi_1, \dots, \varphi_m) : \mathbb{A}^n \to \mathbb{A}^m$ and a point $P \in \mathbb{A}^n$ we define the *jacobian of* φ *at* P to be the matrix

$$J_PT := \left(\frac{\partial \varphi_i}{\partial x_j}(P)\right) = \begin{pmatrix} \frac{\partial \varphi_1}{\partial x_1}(P) & \cdots & \frac{\partial \varphi_1}{\partial x_n}(P) \\ \vdots & \ddots & \vdots \\ \frac{\partial \varphi_m}{\partial x_1}(P) & \cdots & \frac{\partial \varphi_m}{\partial x_n}(P) \end{pmatrix} \in M_{m \times n}(K)$$

Proposition 3.4.19. Let $\varphi = (\varphi_1, \varphi_2) : \mathbb{A}^2 \to \mathbb{A}^2$ be a polynomial map such that f^{φ} is non-constant. Let f be a curve and Q a point. Set $P = \varphi(Q)$. We then have the following:

- 1. $m_Q(f^{\varphi}) \ge m_P(f)$.
- 2. the above is true with equality if $J_Q \varphi$ is invertible.

Proof. 1. We consider first the case Q=P=(0,0). Then $\varphi_i(0,0)=0$ for i=1,2, hence the constant term of φ_i is 0 for i=1,2. Then the degree of any monomial under composition with φ does not decrease. Thus writing $f=\sum_m^n$ and $f^\varphi=\sum_l^k g_i$ as sums of homogeneous polynomials we have that $m_0(f^\varphi)=\deg g_l\geq \deg f_m=m_0(f)$. Note that any translation T is a polynomial such that h^T is a non-constant whenever h is non-constant. Suppose now φ is an arbitrary polynomial map restricted to the assumption. Let $\varphi'=T_P^{-1}\varphi T_Q$ Note that $\varphi'(0,0)=(T_P^{-1}\varphi T_Q)(0,0)=T_P^{-1}(P)=(0,0)$, hence

$$m_Q(f^{\varphi}) = m_0(f^{\varphi T_Q}) = m_0(f^{T_P T_P^{-1} \varphi T_Q}) = m_0((f^{T_P})^{\varphi'}) \ge m_0(f^{T_P}) = m_P(f).$$

2. Consider again first the case of Q=P=(0,0). We have that $\frac{\partial \varphi_1}{\partial x}(Q), \frac{\partial \varphi_2}{\partial y}(Q) \neq 0$ or $\frac{\partial \varphi_1}{\partial y}(Q), \frac{\partial \varphi_2}{\partial x}(Q) \neq 0$. Meaning the jacobian of φ at (0,0) is given by

$$\begin{pmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{pmatrix},$$

where $\lambda_1 = \alpha_1 x + \beta_1 y$ and $\lambda_2 = \alpha_2 x + \beta_2 y$ are the linear homogeneous forms of φ_1 resp. φ_2 such that $\alpha_1, \beta_2 \neq 0$ or $\alpha_2, \beta_1 \neq 0$. There is a natural invertible, linear map on linear forms in 2 variables given by

$$J_0\varphi: V(1,2) \to V(1,2)$$
$$l \mapsto l(\alpha_1 x + \beta_1 y, \alpha_2 x + \beta_2 y).$$

In particular we thus have that $J_0\varphi(l)=0 \iff l=0$. Write $\varphi_i=\lambda_i+\mu_i$, where μ_i is 0 or of degree>1. By Corollary 1.9.111 $f_i=\prod_1^{m_0(f)+i}l_j$ for suitable (non-zero!) linear forms $l_j:=c_{1j}x+c_{2j}y$. Then

$$l_j(\varphi_1, \varphi_2) = \underbrace{J_0 \varphi(l_j)}_{=:l'_j \neq 0} + c_{1j} \mu_1 + c_{2j} \mu_2.$$

We thus get that

$$f_i^{\varphi} = \prod_{1}^{m_0(f)+i} l_j' + h$$

where h is 0 or a polynomial of degree>1. It thus follows that the lowest degree term of f^{φ} is equal to the lowest degree term $f_{m_0(f)}$, which by the above (maybe overly thorough) considerations (that therefor should be reorganized and rewritten in smaller lemmas at a later point) that $m_0(f) = m_0(f^{\varphi})$. Let P, Q be arbitrary, and define φ' as in 1. It is easy to check that

$$J_v T_w = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

for any $v,w\in\mathbb{A}^n$ By the chain rule for polynomial maps we find that

$$J_{(0,0)}\varphi' = J_P T_P^{-1} \varphi T_Q = (J_{\varphi(Q)} T_P^{-1})(J_Q \varphi)(J_{(0,0)} T_Q) = J_Q \varphi.$$

Hence $J_{(0,0)}\varphi'$ is invertible, meaning

$$m_Q(f^{\varphi}) = m_0((f^{T_p}))^{\varphi'}) = m_0(f^{T_p}) = m_P(f).$$

Example 3.4.20. The converse of 2. in the above proposition is not true in general. Consider $\varphi=(x^2,y), \ f=y-x^2, \ P=Q=(0,0)$. We note that $f^\varphi=y-x^4$, hence $m_0(f)=m_0(f^\varphi)$. But the jacobian of φ at (0,0) is equal to

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

This result maybe is not in the right place

Lemma 3.4.21. Let char K = p > 0 (and K algebraically closed). If $f \in K[x_1, ..., x_n]$ is non-constant with $f_{x_i} = 0$ for each i, then $f = h^p$ for some polynomial h. In particular f is not irreducible.

Proof. By lemma 1.9.149 $f = g(x_1^p, \dots, x_n^p)$ for some $g = \sum_{v \in \mathbb{N}^n} a_v \mathbf{x}^v \in K[x_1, \dots, x_n]$. Then set $h = \sum_{v \in \mathbb{N}^n: a_v \neq 0} a_v^{1/p} \mathbf{x}^v$. Then using Freshman's dream we get that

$$h^{p} = \left(\sum_{v \in \mathbb{N}^{n}: a_{v} \neq 0} a_{v}^{1/p} \mathbf{x}^{v}\right)^{p} = \sum_{v \in \mathbb{N}^{n}: a_{v} \neq 0} a_{v} \mathbf{x}^{(pv_{1}, \dots, pv_{n})} = g(x_{1}^{p}, \dots, x_{n}^{p}) = f.$$

Proposition 3.4.22. An irreducible curve f has only finitely many multiple points.

Proof. A point of f is multiple at a point P if and only if $f_x(P) = f_y(P) = 0$. It is thus sufficient to prove that $V(f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$ is finite. It is again sufficient to prove that $\gcd(f, f_x) = 1$ or due to Theorem 3.2.13. We prove the result in the char K = 0 case first. WLOG f_x is non-constant and deg $f_x < \deg f$, hence $f \nmid f_x$, meaning $\gcd(f, f_x) = 1$, proving the statement in this case. For the char K = p > 0, we use the assumption that f is irreducible in conjunction with the contrapositive of the above lemma to see that f_x and f_y cannot both be identically 0. Hence WLOG $f_x \neq 0$, hence $\deg f_x < \deg f$, meaning $\gcd(f_x, f) = 1$.

3.4.1 Aside on Hypersurfaces and Tangent Spaces

Definition 3.4.23. Let $f \in K[x_1, ..., x_n]$ be a non-constant polynomial and $P \in \mathbb{A}^n$. We define the multiplicity of f at P to be the degree of the lowest degree term in f^{T_P} , where $T_P : \mathbb{A}^n \to \mathbb{A}^n$ is translation by P. If $m_P(f) = 1$, then we can write f^{T_P} as a sum of homogeneous polynomial $\sum_{1}^{n} f_i$, where $f_1 = \sum_{1}^{n} a_i x_i \neq 0$. We define the tangent hyperplane at P to be the vanishing set of f_1 . A simple point of a hypersurface is a point at which all the partial derivatives vanish.

Remark 3.4.24. It is easy to see that a point is simple if and only if $m_P(f) = 1$.

Example 3.4.25. Let's examine $f = x^2 + y^2 - z^2$ have tangent hyperplanes at (0,0). Can we write $f = l_1 l_2$ for homogeneous planes $l_1 := a_1 x + b_1 y + c_1 y$, $l_2 = a_2 x + b_2 y + c_2 z$. We have that

$$l_1l_2 = a_1a_2x^2 + b_1b_2y^2 + c_1c_2z^2 + (a_1b_2 + b_1a_2)xy + (a_1c_2 + c_1a_2)xz + (b_1c_2 + c_1b_2)yz.$$

To satisfy the identity we thus have that

$$\begin{cases} a_1 a_2 = 1 \\ b_1 b_2 = 1 \\ c_1 c_2 = -1 \\ a_1 b_2 + b_1 a_2 = 0 \\ b_1 c_2 + c_1 a_2 = 0 \\ b_1 c_2 + c_1 b_2 = 0 \end{cases} \iff \begin{cases} a_1 = \frac{1}{a_2} \\ b_1 = \frac{1}{b_2} \\ c_1 = \frac{-1}{c_1} \\ \frac{a_1}{b_1} + \frac{b_1}{a_1} = 0 \\ -\frac{a_1}{c_1} + \frac{c_1}{a_1} = 0 \\ -\frac{b_1}{c_1} + \frac{c_1}{b_1} = 0 \end{cases} \iff \begin{cases} a_2 = \frac{1}{a_1} \\ b_2 = \frac{1}{b_1} \\ c_2 = \frac{-1}{c_1} \\ \frac{a_1^2 + b_1^2}{b_1 a_1} = 0 \\ \frac{a_1^2 + b_1^2}{b_1 a_1} = 0 \\ -\frac{b_1}{c_1} + \frac{c_1}{b_1} = 0 \end{cases}$$

It is thus sufficient to find $(a_1,b_1,c_1) \in V(X^2+Y^2) \cap V(X^2-Z^2) \cap V(Y^2-Z^2)$ such that $a_1,b_1,c_1\neq 0$. However for any given point in the intersection, $a_1^2=-b_1^2$ and $c_1^2=b_1^2$, implying $b_1^2=c_1^2=a_1^2=b_1^2$, hence $c_1=0$. It is therefor not possible to write f as a product of linear homogeneous polynomials. The theory, therefor does not extend naively to a theory of the behavior of hypersurfaces.

Example 3.4.26. Proposition 3.4.22 is not true for general irreducible hypersurfaces. Indeed, consider a curve f with a multiple point P = (a, b). Let $g = zf \in K[x, y, z]$. Then V(g) has infinitely many multiple points since (a, b, c) is a multiple point of g for each $c \in K \setminus 0$.

Definition 3.4.27. Let $V \subset \mathbb{A}^n$ be an affine variety, $P \in V$. We define the tangent space of V at P to the linear subspace

$$T_P(V) := \{ v \in \mathbb{A}^n : \forall g \in I(V), (\nabla g)(P) \cdot v = 0 \}$$

Lemma 3.4.28. Let $f \in K[x_1, ..., x_n]$ be irreducible, $P \in \mathbb{A}^n$, set V := V(f). Then

$$T_P(V) = \{ v \in \mathbb{A}^n : (\nabla f)(P) \cdot v = 0 \}.$$

Proof. If f is irreducible $I(V) = \langle f \rangle$ by HNS. It is clear that $T_P(V) \subset \{v \in \mathbb{A}^n : (\nabla f)(P) \cdot v = 0\}$. Note

$$(\nabla gf)_i = (gf)_{x_i} = gf_{x_i} + g_{x_i}f \implies (\nabla gf)_i(P) = g(P)f_{x_i}(P) \quad \forall g \in K[\mathbf{x}], P \in V.$$

Therefor, if $v \in \mathbb{A}^n$ such that $(\nabla f)(P) \cdot v = 0$, then $(\nabla h)(P) \cdot v = 0$ for any $h \in \langle f \rangle$, implying the converse inclusion.

Remark 3.4.29. One readily sees that if P is a multiple point, then $T_P(V) = \mathbb{A}^n$. If P is simple then dim $T_P(V) < n$ it seems that one show that for simple points dim $T_P(V) = \dim V$. The tools for this is not developed at this point in fultons curves, so let's leave it

3.4.2 Multiplicities & Local Rings of Rational Function

For a pair of a point and a curve $P \in f$ and $g \in K[x,y]$, $\overline{g} := g + I(f) \in \Gamma(f) \subset \mathcal{O}_P(f)$.

Lemma 3.4.30. Let $P \in f$ where f is an irreducible curve. If P is a simple point of f, then $\mathcal{O}_P(f)$ is a DVR.

Proof. WLOG P=(0,0). Since An affine transformation has invertible jacobian, hence by Proposition 3.4.19 we don't lose generality either by assuming the tangent line of f at P is y (recall that the tangent line has (affine) dimension 1). Then l=x is a line passing through P which is not tangent to f at P. If we can prove that $\mathfrak{m}_P(f)=\langle\overline{x}\rangle$ in $\mathcal{O}_P(f)$, then we are done by definition of a DVR, since the local ring of any nontrivial variety at any point is a non-field integral domain that is Noetherian and local (cf. Corollary 3.3.58). By Proposition 3.3.67 $\mathfrak{m}_P(\mathbb{A}^2)=\mathcal{O}_P(\mathbb{A}^2)\langle x,y\rangle$. By Proposition 3.3.68, $\mathcal{O}_P(\mathbb{A}^2)/\langle f\rangle\mathcal{O}_P(\mathbb{A}^2)\simeq\mathcal{O}_P(f)$, hence $\mathfrak{m}_P(f)=\overline{\mathfrak{m}_P(\mathbb{A}^2)}=\langle\overline{x},\overline{y}\rangle$. Now write $f=gy-hx^2$, where g=1+g', where g'=0 or deg g'>0 (we can do this since g is the linear term of g) and where g0. Note also that we obtain a factor of g1 by the fact that no linear term of g2 is divisible by g3. Then

$$\overline{yg} = \overline{x^2 h} \implies \overline{y} = \frac{\overline{x^2 h}}{\overline{g}} \in \langle \overline{x} \rangle \implies \mathfrak{m}_P(f) = \langle \overline{x}, \overline{y} \rangle = \langle \overline{x} \rangle.$$

Remark 3.4.31. To spell out the assumption of P = (0,0). Note that f is simple at P if and only if f^{T_P} is simple at (0,0) and that $\mathcal{O}_{(0,0)}(f^{T_P}) \simeq \mathcal{O}_P(f)$ by Corollary 3.3.65, since $f^{T_P} \overset{T_P^{-1}}{\simeq} f$.

Definition 3.4.32. Let P be a simple point on an irreducible curve f. Then ord_P^f is the order function on K(f) induced by the DVR $\mathcal{O}_P(f)$.

Remark 3.4.33. It readily follows that $\operatorname{ord}_P^f \circ \varphi^{-1} = \operatorname{ord}_0^{f^{\varphi}}$, where φ is the affine change of coordinates mapping P to 0 and the tangent of f at (0,0) to Y, again since $\mathcal{O}_{(0,0)}(f^{\varphi}) \simeq \mathcal{O}_P(f)$ **Perhaps add little diagram**. Note then that given a non-tangent line l of f passing through P we have that $\operatorname{ord}_P^f(\overline{l}) = \operatorname{ord}_P^f(\varphi^{-1}(\overline{x+by})) = \operatorname{ord}_0^{f^{\varphi}}(\overline{x+by}) = 1$. If l is tangent to f at P, then

$$\operatorname{ord}_P^f(\overline{l})=\operatorname{ord}_0^{f^\varphi}(\overline{y})=\operatorname{ord}_0^{f^\varphi}(\overline{x}^2)+\operatorname{ord}_0^{f^\varphi}\left(\frac{\overline{h}}{\overline{g}}\right)\geq 2>1.$$

Theorem 3.4.34. Let $P \in f$ where f is an irreducible curve. Then for sufficiently large n,

$$m_P(f) = \dim \mathfrak{m}_P(f)^n/\mathfrak{m}_P(f)^{n+1},$$

where we recall that $\mathfrak{m}_P(f)$ is the maximal ideal of $\mathcal{O}_P(f)$.

Proof. WLOG P = (0,0).Set $R := \mathcal{O}_P(f)$ and $\mathfrak{m} := \mathfrak{m}_P(f)$. For each n we get an exact sequence

$$0 \longrightarrow \mathfrak{m}^n/\mathfrak{m}^{n+1} \longrightarrow R/\mathfrak{m}^{n+1} \longrightarrow R/\mathfrak{m}^n \longrightarrow 0$$

We thus note that

$$\dim \mathfrak{m}^n/\mathfrak{m}^{n+1} = \dim R/\mathfrak{m}^{n+1} - \dim R/\mathfrak{m}^n,$$

hence if we can prove that dim $R/\mathfrak{m}^n = nm_P(f) + s$ for some $s \in \mathbb{Z}$ for every $n \geq m_P(f)$ we get for such n that

dim
$$\mathfrak{m}^n/\mathfrak{m}^{n+1} = (n+1)m_P(f) + s - (nm_P(f) + s) = m_P(f)$$
.

Set $I := \langle x, y \rangle$. Fix $n \geq m_P(f)$. Then $\mathfrak{m}^n = I^n R$ by Proposition 3.3.67. $V(I^n) = \{P\}$, hence

$$K[x,y]/\langle I^n,f\rangle \simeq \mathcal{O}_P(\mathbb{A}^2)/(I^n,f)\mathcal{O}_P(\mathbb{A}^2) \simeq R/I^nR \simeq R/\mathfrak{m}^n$$

by Theorem 3.3.75, Proposition 3.3.68. We will be using the fact that

$$K[x,y]/I^d \simeq K_{\leq d-1}[x,y],$$

repeatedly ref. Recall that dim $K_{\leq d-1}[x,y] = \frac{d(d+1)}{2}$ (cf. Example 1.9.121. Since the lowest degree term of f is of degree $m:=m_P(f)$ we have that $f\in I^m$. Hence for $g\in K[x,y], g\in I^{n-m}$ if and only if $fg\in I^n$. Let $\sigma:K[x,y]/I^n \twoheadrightarrow K[x,y]/\langle f,I^n\rangle$ and $\tau:K[x,y]/I^{n-m}\hookrightarrow K[x,y]/I^n, g+I^{n-m}\mapsto fg+I^n$. We then get an exact sequence

$$0 \longrightarrow K[x,y]/I^{n-m} \stackrel{\tau}{\longleftrightarrow} K[x,y]/I^n \stackrel{\sigma}{\longrightarrow} K[x,y]/\langle f,I^n\rangle \longrightarrow 0$$

Then

$$\begin{split} \dim \ K[x,y]/\langle f,I^n\rangle &= \dim \ K[x,y]/I^n - \dim \ K[x,y]/I^{n-m} = \frac{n(n+1)}{2} - \frac{(n-m)(n-m+1)}{2} \\ &= \frac{n(n+1)}{2} - \frac{n^2 - nm + n - nm + m^2 + m}{2} = \frac{n(n+1)}{2} + nm - \frac{n(n+1)}{2} - \frac{m(m+1)}{2} \\ &= nm - \underbrace{\frac{m(m+1)}{2}}_{2}. \end{split}$$

Remark 3.4.35. Consider an arbitrary curve f with components f_1, \ldots, f_m such that $f = \prod_i^m f_i^{e_i}$. Then the multiplicity f at a point $P \in f$ depends only on the local rings of the components at P and the positive integers e_1, \ldots, e_m .

Theorem 3.4.36. Let $P \in f$ where f is curve. P is a simple point of f if and only if $\mathcal{O}_P(f)$ is a DVR. In this case, if l = ax + by + c is a line through P such that l is not tangent to f at P, then $l + \Gamma(f) \in \mathcal{O}_P(f)$ is a uniformizing parameter of $\mathcal{O}_P(f)$.

Proof. The first implication follows from Lemma 3.4.30. If $\mathcal{O}_P(f)$ is a DVR, then by ref and the prior theorem for sufficiently large n,

$$m_P(f) = \dim \mathfrak{m}_P(f)^n / \mathfrak{m}_P(f)^{n+1} = 1.$$

The remaining statement was already proven in Lemma 3.4.30.

Remark 3.4.37. For a local ring R, the function

$$\chi_R: \mathbb{N} \to \mathbb{N}$$
 $n \mapsto \dim R/\mathfrak{m}$

is called the *Hilbert-Samuel polynomial of R*.

Example 3.4.38. 1. Let $R = \mathcal{O}_P(\mathbb{A}^2)$, $P \in \mathbb{A}^2$. Then $\chi_R(n) = \dim R/\mathfrak{m}^n = \dim K[x,y]/\langle x,y\rangle^n = \frac{n(n+1)}{2}$ for each n.

2. We determine χ for $R:=\mathcal{O}_P(\mathbb{A}^k)$ at a point $P\in\mathbb{A}^k$. We then have that

$$\chi_R(n) = \dim R/\mathfrak{m}^n = \dim K[x_1, \dots, x_k]/\langle x_1, \dots, x_k \rangle^n = \dim K_{\leq n-1}[x_1, \dots, x_k] = \binom{k+n-1}{k}$$

$$= \frac{(n-1+k)!}{(n-1)!k!} = \frac{1}{k!} \prod_{k=n-1}^{n-1+k} h = \frac{1}{k!} n^k + \cdots$$

The *n*'th Hilbert-Samuel polynomial for R is thus a polynomial over \mathbb{Q} of degree k with leading coefficient $\frac{1}{n!}$.

Proposition 3.4.39. Let $f \in K[x_1, ..., x_k]$ define an irreducible hypersurface containing $P = 0 \in \mathbb{A}^k$. Let $f_{m_P(f)}$ be the polynomial of lowest degree terms in f. Set $R := \mathcal{O}_P(V(f))$ and denote its maximal ideal by \mathfrak{m} . For sufficiently large n, $\chi(n)$ is a polynomial n of degree k-1 with leading coefficient $m_P(f)/(k-1)$!

Remark 3.4.40. Given a local ring R we are enclined to define m(R) (the *Hilbert-Samuel multiplicity of* R) as $\chi(1)$.

Definition 3.4.41. A point simple point P on a curve f is called a *flex* if $\operatorname{ord}_P^f(l) \geq 3$, where l is tangent of f at P. It is called *ordinary* if the inequality is true with equality, otherwise it is called *higher*.

Example 3.4.42. 1. Let $f_n = y - x^n$, $n \ge 1$ and P = (0, 0).

For n = 1, $l_1 = y - x$ is tangent to f_1 at P. x is a non-tangent line to f_1 at P. Hence

$$\overline{l_1} = 0 \implies \operatorname{ord}_P^{f_1}(\overline{l_1}) = \infty,$$

and hence P is a higher flex.

For $n \geq 2$, $l_n = y$ is the tangent of f_n at P, hence x is a non-tangent to f_n at P, meaning \overline{x} is a uniformizing parameter of $\mathcal{O}_P(f_n)$. We thus get that

$$\operatorname{ord}_{P}^{f_n}(\overline{l}) = \operatorname{ord}_{P}^{f_n}(\overline{x}^n) = n,$$

so for n = 2, P is not a flex, for n = 3, P is an ordinary flex and for $n \ge 4$, P is a higher flex.

2. Let $f = y - \sum_{i=1}^{n} a_i x^i$, where the polynomial in x is non-zero. Then P = (0,0) is a flex of P if and only if $a_2 = 0$. Indeed, y is the tangent of f at P and \overline{x} is a uniformizing parameter of $\mathcal{O}_P(f)$, hence

$$\operatorname{ord}_P^f(\overline{y}) = \operatorname{ord}_P^f\left(\sum_{i=1}^n a_i \overline{x}^i\right) = \min(\{i : a_i \neq 0\}).$$

Hence if $a_2 = 0$, $\operatorname{ord}_P^f(\overline{y}) \ge 3$; otherwise $\operatorname{ord}_P^f(\overline{y}) = 2$.

Proposition 3.4.43. Let P be a point on an irreducible curve f. Then

$$\dim \, \mathfrak{m}_P(f)^n/\mathfrak{m}_P(f)^{n+1} = n+1, \quad (0 \le n < m_P(f)),$$

hence P is simple if and only if dim $\mathfrak{m}_P(f)/\mathfrak{m}_P(f)^2 = 1$; otherwise dim $\mathfrak{m}_P(f)/\mathfrak{m}_P(f)^2 = 2$.

Proof. With the notation used in Theorem 3.4.34 we see that $R/\mathfrak{m}^k \simeq K[x,y]/\langle f,I^k\rangle$ for each $k \geq 0$. In particular for $k \leq m$, $\langle f,I^k\rangle = I^k$ since $f \in I^m$, hence $R/\mathfrak{m}^k \simeq K[x,y]/I^k$. For each $n \in \{0,\ldots,m-1\}$ we get an exact sequence

$$0 \longrightarrow \mathfrak{m}^n/\mathfrak{m}^{n+1} \longrightarrow R/\mathfrak{m}^{n+1} \longrightarrow R/\mathfrak{m}^n \longrightarrow 0$$

Hence,

$$\dim \, \mathfrak{m}^n/\mathfrak{m}^{n+1} = \dim \, R/\mathfrak{m}^{n+1} - \dim \, R/\mathfrak{m}^n = \frac{(n+1)(n+2)}{2} - \frac{n(n+1)}{2} = \frac{(n+1)(n+2-n)}{2} = n+1.$$

Example 3.4.44. Set $f_1:=x^2-y^3, f_2:=y^2-z^3\in K[x,y,z], P=(0,0,0)$ and $V:=V(f_1,f_2)\subset \mathbb{A}^3$. Furthermore set $\mathcal{O}:=\mathcal{O}_P(V)$ and $\mathfrak{m}:=\mathfrak{m}_P(V)$. We aim to compute $\mathfrak{m}/\mathfrak{m}^2$. Note that dim $\mathcal{O}\mathfrak{m}=1$. Elements of $\mathcal{O}/\mathfrak{m}^2$ are on the form $\frac{a\overline{x}+b\overline{y}+c\overline{z}+d}{\beta}$. An element of $\mathfrak{m}/\mathfrak{m}^2$ is of the form $a\overline{x}+b\overline{y}+c\overline{z}+d\beta$, since $\overline{t}\in\mathfrak{m}$ for any non-constant monomial, meaning $\overline{s}\in\mathfrak{m}^2$ for any monomial of degree >2. One readily verifies that if $\alpha+\mathfrak{m}$ is such that $\alpha(P)=0$, then

$$\frac{\alpha}{\beta} + \mathfrak{m}^2 = \frac{\alpha}{\beta(P)} + \mathfrak{m}^2,$$

by checking the statement for the image of a mononimal in \mathfrak{m} modulo \mathfrak{m}^2 . So $\mathfrak{m}/\mathfrak{m}^2 = K(\overline{x}+\mathfrak{m}^2)+K(\overline{y}+\mathfrak{m}^2)+K(\overline{z}+\mathfrak{m}^2)$. It remains to argue that these elements are linearly independent. Indeed if $a\overline{x}+b\overline{y}+c\overline{z}=\overline{\mu}\overline{\lambda}$ where μ and λ are linear polynomials in x,y,z vanishing at P, then $ax+by+cz-\mu\lambda\in\langle f,g\rangle$, which means a=b=c=0, since any term of a polynomial in $\langle f,g\rangle$ has x-degree >2 or y-degree >2 or z-degree >3 and there can be no cancellation of ax,by,cz with terms in $\mu\lambda$, since these are all degree 2 monomials. We conclude that dim $\mathfrak{m}/\mathfrak{m}^2=3$.

3.4.3 Intersection Numbers

For this subsection, we begin by fixing curves f and g together with a point $P \in \mathbb{A}^2$. We allow that f or g be non-zero constants. We will see that allowing this will make definitions simpler and that it will inconsequential for counting intersections of curves.

Definition 3.4.45. f and g intersect properly at P, if f and g have no common components passing through P. I.e. for f and g to intersect properly at P we require that for any common factor h of f and g, $h(P) \neq 0$

Definition 3.4.46. If P is simple for both f and g such that f and g have distinct tangents at P we say that f and g intersect *transversally* at P.

Definition 3.4.47. An *intersection number of* f *and* g *at* P is a value $I(P, f \cap g) \in \mathbb{Z} \cup \{\infty\}$ satisfying the following 7 axioms:

- 1. When f and g intersect properly at $P, I(P, f \cap g) \ge 0$; otherwise $I(P, f \cap g) = \infty$.
- 2. $I(P, f \cap g) = 0 \iff P \notin F \cap G \text{ and } I(P, f \cap g) \text{ depends only on the components}$ of f and g passing through P, i.e if f_1, \ldots, f_m and g_1, \ldots, g_l are these components, then

$$I(P, f \cap g) = I\left(P, \prod f_i \cap \prod g_i\right)$$

3. If T is an affine change of coordinates on \mathbb{A}^2 with T(Q) = P, then

$$I(P, f \cap g) = I(Q, f^T \cap g^T).$$

- 4. $I(P, f \cap g) = I(P, g \cap f)$.
- 5. $I(P, f \cap g) \ge m_P(f)m_P(g)$ with equality holding if and only if f and g have no tangents in common. In particular $I(P, f \cap g) = 1$ if and only if f and g intersect transversally.
- 6. If $f = \prod_{i=1}^{m} f_i^{r_i}$ and $g = \prod_{i=1}^{l} g_i^{s_i}$, then

$$I(P, f \cap g) = \sum_{1}^{m} \sum_{1}^{l} r_i s_j I(P, f_i \cap g_j).$$

7. $I(P, f \cap g)$ depends only on the image of g in $\Gamma(f)$, i.e. for every $h \in K[x, y]$,

$$I(P, f \cap g) = I(P, f \cap g + hf).$$

The intuition for the above definition is that we want to be able count the number of intersections f and g. We detect an intersection if $P \in f \cap g$. We want this way of counting to be sensitive to the fact that intersections may occur with multiplicity. For example if P vanishes on two components of f and on one component of g, then an intersection in a sense actually occurs twice. To be more concrete take f = x and $g = y^2 - x$. Then g intersects f only at (0,0), however g(0,y) has a double root at (0,0), so this intersection should really be counted twice. This is indeed the case: $I((0,0), f \cap g) = I((0,0), f \cap g + f) = I((0,0), x \cap y^2 = 2I((0,0), x \cap y) = 2$. We want to describe this number in terms of rational functions on the affine plane at each P. To do this we need some technical lemmas.

Lemma 3.4.48. Set $m := m_P(f)$ and $n := m_P(g)$. Suppose f and g intersect properly, have no common tangents and pass through P. Then for $I := \langle x, y \rangle$, we have

$$I^t \subset \langle f, g \rangle \mathcal{O}_P(\mathbb{A}^2),$$

For sufficiently large $t \geq 0$.

Proof. Note that $\gcd(f,g)=0$, hence $f\cap g=\{Q_1,\ldots,Q_k,P\}$. Then there is an $h\in K[x,y]$ such that $h(Q_i)=0$ and h(P)=1. Then $xh,yh\in I(f\cap g)$, hence for a suitably large $N,\,(xh)^N,\,(yh)^N\in\langle f,g\rangle$ (cf. HNS). In $\mathcal{O}_P(\mathbb{A}^2)$, h is a unit, since it doesn't pass through P, hence $x^N,y^N\in\langle f,g\rangle$, implying the result for $t\geq 2N$

Lemma 3.4.49. With the same setup as the above lemma we have that

$$I^t \subset \langle f, g \rangle \mathcal{O}_P(\mathbb{A}^2),$$

whenever $t \ge m + n - 1$

Proof. Let l_1,\ldots,l_m and $\lambda_1,\ldots,\lambda_n$ be the tangents of f resp. g. for i>m define $l_i:=l_m$ and for j>n define $\lambda_j:=\lambda_n$ Define $a_{ij}:=\left(\prod_1^i l_i\right)\left(\prod_1^j \lambda_i\right)$ for every $i\in\{0,\ldots,m\}$ and $j\in\{0,\ldots,n\}$. Then $\{a_{ij}:i+j=t\}$ forms a basis for $V_K(t,2)=I^t$ by $\operatorname{\mathbf{dO}}$ **EXERCISE!**. Hence it is sufficient to prove that $a_{ij}\in\langle f,g\rangle\mathcal{O}_P(\mathbb{A}^2)$ for every i,j with $i+j\geq m+n-1$. If we are given i,j such that $i+j\geq m+n-1$. Then $i\geq m$ or $j\geq n$. By the lemma above there is a $T\geq 0$ such that $I^T\subset\langle f,g\rangle$. Hence if we can prove that $a_{ij}\in\langle f,r\rangle$ where $\deg r\geq T$ in the case where $i\geq m$ and symmetrically that $a_{ij}\in\langle g,s\rangle$ when $j\geq n$ we are done. Indeed in the case $i\geq m$ we would have that $a_{ij}=bf+cr\in\langle f,g\rangle$. The other case follows by an identical argument. Suppose $i\geq m$. Then $a_{ij}=a_{m0}b$ for some homogeneous b of degree t:=i+j-m. Writing $f=A_{m0}+f'$ where $\deg f'\geq m+1$ we get that

$$a_{ij} = bf - bf'$$

where bf'=0 or the terms of bf' are of degree $\geq i+j+1$. In the second case write all terms in bf' as an appropriate linear combination of elements in $\{a_{kh}: k+h \geq m'\}$. Then $a_{ij}=cf-ch'$ where h'=0 or has terms of degree $\geq m'+1$. Repetition of this argument yields an expression $a_{ij}=uf+r$ with $r\in I^T$.

Lemma 3.4.50. With the same setting as above, the map $\rho: K[x,y]/I^m \times K[x,y]/I^n \to K[x,y]/I^{n+m}$, $(\lambda + I^m, \mu + I^n) \mapsto \lambda f + \mu g + I^{n+m}$ is injective if and only if f and g have distinct tangents at P.

Proof. " \Longrightarrow ": If f and g had a common tangent, l say, write $f_m = lf'_{m-1}$ and $g_n = lg'_{n-1}$. Let F and G, denote term of degree > m resp. n. Then $f'_{m-1} \notin I^m$ and $g'_{n-1} \notin I^n$ and

$$g_{n-1}'f+f_{m-1}'g=f_{m-1}'g_n+g_{n-1}'F-f_{m-1}'g_n-f_{m-1}'G=g_{n-1}'F-f_{m-1}'G\in I^{m+n}.$$

implying $\rho(g'_{n-1}+I^m,-f'_{m-1}+I^n)=0$, which means ρ is not injective. "= ": Suppose the tangents are distinct. Suppose then that $af+bg\in I^{n+m}$. Suppose for a contradiction that $m_P(a):=r< m$ or $m_P(b):=s< n$. Write $a=a_r+\ldots$ and $b=b_s+\ldots$. The terms in a_rf_m and b_sg_n must cancel, hence r+m=s+n and $a_rf_m=-b_sg_n$. Then, since f_m and g_n have no common factors. Then $f_m\mid a_r$ and $g_n\mid b_s$, leading to a contradiction. This means $r\geq m$ and $s\geq n$, hence $a\in I^m$ and $b\in I^n$.

Remark 3.4.51. We describe an algorithm $J(_, _ \cap _)$ for computing intersection numbers given that an intersection number exists for every $P \in \mathbb{A}^2$ and every pair of curves f and g. We first describe it in the special case P = (0, 0):

- (I) If $P \neq (0,0)$, return $J((0,0), f^{T_P} \cap g^{T_p})$.
- (II) If f and g do not intersect properly, then return ∞ .
- (III) If $P \notin f \cap g$, return 0.
- (IV) Set $r := \deg_x f$ and $s := \deg_x g$. If $r \le s$, proceed, otherwise swap the role of f and g in the next steps
- (V) If r = 0, write f = yh for a suitable unique $h \in K[x, y]$ and return $m_P(g(x, 0)) + J(P, h \cap g)$.
- (VI) If r > 0 scale f and g such that f(x,0) and g(x,0) become monic, and set $h := g x^{s-r}f$. Return J(P,h).

We will prove that the algorithm will always terminate in the theorem below.

Theorem 3.4.52. dim $\mathcal{O}_P(\mathbb{A}^2)/\langle f,g\rangle$ is the unique intersection number of f and g at P.

Proof. Uniqueness: We prove that if there is an intersection number $I(P, f \cap g)$ for each $P \in \mathbb{A}^2$ and each pair of curves f, g, then the algorithm above returns that intersection value. Trivially, if there were two candidates for intersection numbers $I(_, _ \cap _)$, $I'(_, _ \cap _)$, then

$$I(_, _ \cap _) = J(_, _ \cap _) = I'(_, _ \cap _).$$

By property 3, if $P \neq (0,0)$, then $I(P,f\cap g) = I((0,0),f^{T_P}\cap g^{T_P})$, hence, if the algorithm terminates correctly in the P=(0,0)-case so will it in the general case. So assume P=(0,0). If $I(P,f\cap g)=\infty$, then f and g do not intersect properly by property 1, hence $J(P,f\cap g)=\infty$. Suppose $I(P,f\cap g)<\infty$. Suppose $I(P,f\cap g)=0$. Then $P\notin f\cap g$ by property 2, hence $J(P,f\cap g)=0$. Suppose $I(P,f\cap g)>0$. Suppose $J(P,A\cap B)=I(P,A\cap B)$, whenever $I(P,A\cap B)<0$ for some $I(P,f\cap g)=0$. If $I(P,f\cap g)=0$, set $I(P,f\cap g)=0$ and $I(P,f\cap g)=0$. Suppose $I(P,f\cap g)=0$.

When $\mathbf{r} = \mathbf{0}$, we land in (V). We get that $y \mid f$, since $P = (0,0) \in f$, hence we can write f = yh for a unique $h \in K[x,y]$. Then

$$n = I(P, f \cap g) = I(P, y \cap g) + I(P, h \cap g).$$

Write $g = \lambda + yk$ for some unique $\lambda \in K[x]$ and $k \in K[x,y]$. Note that $\lambda \neq 0$ for otherwise g and f would not intersect properly. We also have that $m_P(\lambda) > 0$ since $\lambda(P) = \text{ev}_P(\lambda + yk) = g(P) = 0$. Then

$$I(P, y \cap g) = I(P, y \cap \lambda + yk) = I(P, y \cap \lambda) = m_P(y)m_P(\lambda) = m_P(\lambda) > 0.$$

For the second equality we use property 7. For the third equality we use property 5. We thus have that

$$I(P, h \cap g) = n - m_P(\lambda) < n.$$

Note that $\lambda = g(x, 0)$. Then by induction hypothesis

$$I(P, f \cap g) = m_P(g(x, 0)) + I(P, h \cap g) = m_P(g(x, 0)) + J(P, h \cap g) = J(P, f \cap g).$$

When r > 0 we land in (VI). WLOG f and g are monic. We set $a_0 := \frac{1}{\operatorname{lc}(g)}g$, $b_0 := \frac{1}{\operatorname{lc}(f)}f$ and define

$$h_i := a_{i-1} - x^{\deg_x \ a_{i-1} - \deg_x \ b_{i-1}} b_{i-1}.$$

We pick a_i to be the polynomial with largest x-degree of b_{i-1} and h_i scaled by the inverse of its leading coefficient and let b_i be the polynomial with smaller x-degree of the two scaled by the inverse of it leading coefficient. We thus note that $\deg_x h_1 < \deg_x g$ and that $\deg_x h_i < \deg_x h_{i+1}$. Hence for some $N \ge 1$, $\deg_x b_N = 0$ with $\deg_x a_N \ge \deg b_N$. We repeatedly use property 7 and 4 to find that

$$I(P, f \cap q) = I(P, a_0 \cap b_0) = \dots = I(P, a_N \cap b_N) = J(P, a_N \cap b_N),$$

where the last equality follows from case r = 0. Applying the algorithm to P, f and g clearly yields

$$J(P, f \cap g) = J(P, a_0 \cap b_0) = \dots = J(P, a_N \cap b_N) = I(P, f \cap g),$$

finishing the proof of uniqueness Check if can be written better later!.

Existence: We first show that property 2 is fulfilled. Note that $\mathcal{O}_P(\mathbb{A}^2)/\langle f,g\rangle=0$ if and only if f or g is a unit which is equivalent to f or g not passing through P. Note that if f_1,\ldots,f_m and g_1,\ldots,g_l are the components of f resp. g. passing through O, then in $\mathcal{O}_P(\mathbb{A}^2)$, $\langle f,g\rangle=\langle \prod_1^m f_i,\prod_1^l g_i\rangle$ since every other component is a unit in $\mathcal{O}_P(\mathbb{A}^2)$. Property 4 is obviously also fulfilled. As for property 7 note that clearly $\langle f,g\rangle=\langle f,g+hf\rangle$ for every curve h. For an isomorphism φ an affine change of coordinates on \mathbb{A}^2 taking Q to P is an isomorphism it follows that

$$\mathcal{O}_P(\mathbb{A}^2)/\langle f, g \rangle \simeq \mathcal{O}_{T(Q)}(\mathbb{A}^2)/\langle f^T, g^T \rangle$$

by Corollary 3.3.66, which shows that property 3 holds. From this point forward we therefor need only consider the case where P = (0,0) and P passes through every component of f and g. We now check that property 1 is satisfied. If f and g have no common components then $f \cap g = \{P_1, \ldots, P_n\}$ is finite, hence if $P_i = (a_i, b_i)$,

$$\dim \mathcal{O}_{P_i}(\mathbb{A}^2)/\langle f,g\rangle = \dim K[x,y]/\langle f,g\rangle < \infty$$

by Theorem 3.3.75 and a Corollary of HNS. If f and g have a common component h, then $\langle f, g \rangle \subset \langle h \rangle$, hence we get that dim $\mathcal{O}_P(\mathbb{A}^2)/\langle f, g \rangle \geq \mathcal{O}_P(\mathbb{A}^2)/\langle h \rangle$ since we have a K-algebra surjection

$$\mathcal{O}_P(\mathbb{A}^2)/\langle f, g \rangle \longrightarrow \mathcal{O}_P(\mathbb{A}^2)/\langle h \rangle$$

Note that $\mathcal{O}_P(\mathbb{A}^2)/\langle h \rangle \simeq \mathcal{O}_P(h)$ by Proposition 3.3.68. Note also that $\mathcal{O}_P(h) \supset \Gamma(f)$ and that dim $\Gamma(f) = \infty$ by a corollary of HNS, hence dim $\mathcal{O}_P(\mathbb{A}^2)/\langle f,g \rangle \geq \dim \Gamma(f) = \infty$. We move on to prove that property 6. holds. It is sufficient to prove that $I(P,f\cap gh) = I(P,f\cap g) + I(P,f\cap h)$ since 6 then follows by induction arguments. When f and gh have a common component, the result is trivial. So suppose this is not the case. We get an injective K-algebra map $\mathcal{O}_P(\mathbb{A}^2)/\langle f,g \rangle \to \mathcal{O}_P(\mathbb{A}^2)/\langle f,gh \rangle$, $\lambda + \langle f,g \rangle \mapsto \lambda h + \langle f,gh \rangle$. It is well-defined K-algebra homomorphism, since if $\lambda = af + bg$, then $h\lambda = afh + bgh \in \langle f,gh \rangle$. Suppose $z \in \mathcal{O}_P(\mathbb{A}^2)$ is given such that $zh \in \langle f,gh \rangle$. Then for suitable $b,c\in \mathcal{O}_P(\mathbb{A}^2)$,

$$hz = bf + cah$$

For some $\mu \in K[x,y] \setminus 0$, μb , $\mu c \in K[x,y]$, hence

$$\mu z h = \mu b f + \mu c g h \implies \mu b f = (\mu z - \mu c g) h.$$

Then since gcd(f, h) = 1, we get that $f \mid \mu z - \mu cg$ in K[x, y], hence $\mu z - \mu cg = qf$, meaning

$$z = \frac{q}{\mu}f + cg \in \langle f, g \rangle$$

We thus get a short exact sequence

$$0 \longrightarrow \mathcal{O}_P(\mathbb{A}^2)/\langle f, g \rangle \longrightarrow \mathcal{O}_P(\mathbb{A}^2)/\langle f, gh \rangle \longrightarrow \mathcal{O}_P(\mathbb{A}^2)/\langle f, h \rangle \longrightarrow 0 ,$$

hence dim $\mathcal{O}_P(\mathbb{A}^2)/\langle f,gh\rangle = \dim \mathcal{O}_P(\mathbb{A}^2)/\langle f,g\rangle + \dim \mathcal{O}_P(\mathbb{A}^2)/\langle f,h\rangle$ which is what we wanted to show.

We know just need to prove that property 5 holds. Set $m := m_P(f)$, $n := m_P(g)$ and

 $I = \langle x, y \rangle \subset K[x, y]$. Consider the diagram

$$K[x,y]/I^{m} \times K[x,y]/I^{n} \xrightarrow{\rho} K[x,y]/I^{m+n} \xrightarrow{\sigma} K[x,y]/\langle I^{n+m}, f, g \rangle \longrightarrow 0$$

$$\downarrow^{\alpha}$$

$$\mathcal{O}_{P}(\mathbb{A}^{2})/\langle f, g \rangle \xrightarrow{\pi} \mathcal{O}_{P}(\mathbb{A}^{2})/\langle I^{n+m}, f, g \rangle \longrightarrow 0$$

Where $\rho(\lambda+I^m,\mu+I^n)=\lambda f+\mu g+I^{m+n}$, σ and π are the canonical surjections. Note that $V(I^{n+m},f,g)\subset V(I)=\{P\}$, hence α is the isomorphism $K[x,y]/\langle I^{n+m},f,g\rangle\simeq \mathcal{O}_P(\mathbb{A}^2)/\langle I^{n+m},f,g\rangle$ (cf. Theorem 3.3.75). Clearly $\sigma\circ\rho=0$, hence the top sequence is exact

 $\dim K[x,y]/I^m + \dim K[x,y]/I^n = \dim (\ker \rho) + \dim (\operatorname{im} \rho) = \dim (\ker \rho) + \dim (\ker \sigma),$

hence dim $K[x,y]/I^m$ + dim $K[x,y]/I^n \ge \dim (\ker \sigma)$, which is true with equality if and only if ρ is injective. Furthermore,

 $\dim \ K[x,y]/I^{m+n} = \dim \ (\operatorname{im} \ \sigma) + \dim \ (\operatorname{ker} \ \sigma) = \dim \ K[x,y]/\langle I^{n+m},f,g\rangle + \dim \ \operatorname{ker} \ \sigma,$

hence dim $K[x,y]/\langle I^{m+n},f,g\rangle=\dim K[x,y]/I^{m+n}-\dim \ker \sigma.$ It thus follows that

$$\begin{split} I(P,f\cap g) &= \dim \ \mathcal{O}_P(\mathbb{A}^2)/\langle f,g\rangle \geq \dim \mathcal{O}_P(\mathbb{A}^2)/\langle I^{m+n},f,g\rangle \\ &= \dim \ K[x,y]/\langle I^{m+n},f,g\rangle = \dim \ K[x,y]/\langle I^{m+n}\rangle - \dim \ (\ker \ \sigma) \\ &\geq \dim \ K[x,y]/\langle I^{m+n}\rangle - \dim \ K[x,y]/I^m - \dim \ K[x,y]/I^n \\ &= mn \end{split}$$

which holds with equality if and only if ρ is injective and π is an isomorphism. The last equality follows from verifying the computation,

$$\frac{(m+n)(m+n+1)}{2} - \frac{m(m+1)}{2} - \frac{n(n+1)}{2} = mn.$$

That π is an isomorphism is ensured by the assumption that f and g have no common tangents due to Lemma 3.4.49. Indeed, $m+n \geq m+n-1$, meaning $\langle I^{n+m}, f, g \rangle = \langle f, g \rangle$. That ρ is injective also follows from the assumption that f and g have no common tangents due to Lemma 3.4.50.

Example 3.4.53. 1. Over \mathbb{C} , let $e = (x^2 + y^2)^2 + 3x^2y - y^3$, $f = (x^2 + y^2)^3 - 4x^2y^2$. Then

$$f - e(x^2 + y^2) = y(\underbrace{(x^2 + y^2)(y^2 - 3x^2) - 4x^2y}_g) = yg.$$

Note now that

$$g + 3e = y(\underbrace{5x^2 - 3y^2 + 4y^3 + 4x^2y}_{h}) = yh.$$

The tangent lines of e are two copies of y, $(\sqrt{3}x + y)$ and $\sqrt{3}x - y$ and the tangent lines of h are two copies of x, hence e and h have no tangent lines in common. Then for P = (0,0).

$$\begin{split} I(P,e\cap f) &= I(P,e\cap f - e(x^2+y^2)) = I(P,e\cap yg) = I(P,e\cap y) + I(P,e\cap g) \\ &= I(P,e\cap y) + I(P,e\cap g + 3e) = I(P,e\cap y) + I(P,e\cap yh) \\ &= 2I(P,e\cap y) + I(P,e\cap h) = 2I(P,y\cap e - y^4 - 2x^2y^2 - 3x^2y + y^3) + m_P(e)m_P(h) \\ &= 2I(P,y\cap x^4) + 6 = 8I(P,y\cap x) + 6 = 8 + 6 = 14. \end{split}$$

Note that instead of religiously following the steps of the algorithm presented it is often better to intuitively use the properties of the intersection numbers.

2. Consider $a=y-x^2$, $b=y^2-x^3+x$. Then $I((0,0),a\cap b)=m_0(a)m_0(b)=1$. We then see that a and b intersect once in (0,0). Note that $a\cap b=\{c\in\mathbb{C}:c^4-c^3+c\}=\{(c,c^2):c\in V(x,x^3-x^2+1)\}$. Hence we get an intersection at (0,0) and another real intersection (c,c^2)

$$c = \frac{1}{3} \left(1 - \sqrt[3]{\frac{2}{25 - \sqrt{69}}} - \sqrt[3]{\frac{1}{2}(25 - 3\sqrt{69})} \right),$$

together with a pair of distinct non-real solutions. We thus have that a and b have 4 intersections each of multiplicity 1.

3. Consider a as before and $c = y^2 - x^3$. It is clear that $a \cap c = \{(\alpha, \alpha^2) : \alpha V(x, x - 1)\} = \{(0, 0), (1, 1)\}.$

$$I((0,0),a\cap c)=I((0,0),a\cap c-ay)=I((0,0),a\cap x^3+x^2y)=I((0,0),a\cap x^2(y+x))$$

$$=2I((0,0),a\cap x)+I((0,0),a\cap y+x)=2m_0(a)m_0(x)+m_0(a)m_0(y+x)=3.$$

We also have that $a(x+1,y+1) = -x^2 + y - 2x$ and $b(x+1,y+1) = y^2 + 2y + 1 - x^3 - 3x^2 - 3x - 1 = -x^3 + y^2 - 3x^2 + 2y - 3x$. These polynomials clearly intersect transversally, hence $I((1,1),a\cap b)=I((0,0),a(x+1,y+1)\cap b(x+1,y+1))=1$. a and b therefor have 4 intersections; 3 at (0,0) and 1 at (1,1).

Proposition 3.4.54. If P is a simple point of f, then $I(P, f \cap g) = \operatorname{ord}_P^f(g)$.

Proof. We note that when writing f as a product of it's components p_1, \ldots, p_n . Then $m_P(f) = \sum_{1}^{n} m_P(p_i)$, hence WLOG, P is passed through by only one p_i . We thus have that it is sufficient to consider the case where f is irreducible by property 2. and 6. We thus get that $\operatorname{ord}_P^f(g) = \dim \mathcal{O}_P(f)/\langle g \rangle$ by Lemma 1.8.101. We note that $\langle f \rangle \subset \langle f, g \rangle \subset K[x,y]$. Note also that

$$\langle f, g \rangle / \langle f \rangle = \langle g \rangle / \langle f \rangle \subset \Gamma(f).$$

Then

$$\mathcal{O}_P(\mathbb{A}^2)/\langle f, g \rangle \simeq \mathcal{O}_P(f)/\langle g \rangle,$$

by Proposition 3.3.68. We thus conclude that

$$\operatorname{ord}_P^f(g) = \dim \mathcal{O}_P(f)/\langle g \rangle = \dim \mathcal{O}_P(\mathbb{A}^2)/\langle f, g \rangle = I(P, f \cap g),$$

where the second equality is due to Lemma 1.8.101

Remark 3.4.55. Deduce only using 1-7

Proposition 3.4.56. If $\gcd(f,g)=1$, then $\sum_{P\in\mathbb{A}^2}I(P,f\cap g)=\dim\ K[x,y]/\langle f,g\rangle$

Proof. Note that $f\cap g$ only pass through finitely many $P\in \mathbb{A}^2$ by Theorem 3.2.13. It follows from Corollary 3.3.76 that

$$\sum_{P\in\mathbb{A}^2}I(P,f\cap g)=\dim\ K[x,y]/\langle f,g\rangle$$

Corollary 3.4.57. A line l is tangent to f if and only if $I(P, f \cap l) > m_P(f)$.

Proof. This follows immediately from property 5. Indeed, l is a tangent of f if and only if l and f has a tangent in common, which by 5. is equivalent to

$$I(P, f \cap l) > m_P(f)m_P(l) = m_P(f).$$

Proposition 3.4.58. *If* P *is a simple point on* f, *then*

$$I(P,f\cap g+h)\geq \min(I(P,f\cap g),I(P,f\cap h)).$$

Proof. Indeed, it follows from Proposition 3.4.54 that

$$I(P, f \cap g + h) = \operatorname{ord}_{P}^{f}(g + h) \ge \min(\operatorname{ord}_{P}^{f}(g), \operatorname{ord}_{P}^{f}(h)) = \min(I(P, f \cap g), I(P, f \cap h)).$$

Example 3.4.59. Show bound is not true when point is multiple

Proposition 3.4.60. Let f be a curve and l a line that is not a component of f. If $l = \{(a+tb,c+td): t \in K\}$. Define $g := f(a+bz,c+dz) \in K[x]$. For suitable distinct $\alpha_i \in K$, $r_i \geq 1$ we may write

$$g = \alpha \prod_{1}^{m} (z - \alpha_i)^{r_i}.$$

Then there is a one-to-one correspondence between roots of g and points in $l \cap f$ given by $\alpha_i \mapsto P_i := (a + b\alpha_i, c + d\alpha_i)$. Moreover $I(P_i, f \cap l) = r_i$ and

$$\sum_{P \in \mathbb{A}^2} I(P, l \cap f) \le \deg f.$$

Proof. The one-to-one correspondence is established in Proposition 3.1.22. WLOG l=x and $P_i=(0,0)$. Then

$$f(0,z) = g = z^{r_i} \underbrace{\prod_{h} (z - \lambda_j)^{r_j}}_{h}.$$

We can therefor write $f = y^{r_i}h + h'$ where h'(0, y) = 0. Note that $h' = xh'' h(P_i) \neq 0$ by assumption. Then

$$I(P_i,l\cap f)=I(P_i,x\cap f-xh'')=I(P_i,x\cap y^{r_i}h)=I(P_i,x\cap y^{r_i})+I(P_i,x\cap h)=r_iI(P_i,x\cap y)=r_i.$$

It then readily follows that.

$$\sum_{P} I(P, l \cap f) = \sum_{1}^{m} e_i = \deg g \le \deg f.$$

The last inequality follows from the fact evaluating f in linear polynomials cannot increase the degree (when we use the convention that deg 0 = 0).

Definition 3.4.61. Let f be a curve with only one tangent l at a double point P. f is said to have an *(ordinary) cusp* at P if $I(P, f \cap l) = 3$.

Lemma 3.4.62. Let f be a curve with a tangent l at a double point P. Then $I(P, f \cap l) \geq 3$.

Proof. It follows from Corollary 3.4.57 that

$$I(P, f \cap l) > m_P(f) \ge 2.$$

Lemma 3.4.63. Suppose char $K \neq 2, 3$. Let P = (0,0) and l = y be the only tangent of f at a double point P. Then P is a cusp if and only if $f_{xxx}(P) \neq 0$

Proof. " \Longrightarrow ": $f = y^2 + h$, where every term in h has degree greater than 2. Then $3 = I(P, y \cap f) = I(P, y \cap h) \ge m_P(h) = 3$, which means y is not tangent to h. Then x^3 must divide the lowest degree term of h, hence $f_{xxx}(P) = h_{xxx}(P) = (cx^3 + \dots)_{xxx} = 6c \ne 0$. " \Leftarrow ": If $f_{xxx}(P) = 0$, then y is tangent to h (using the same notation as for the first implication). Then $I(P, l \cap f) = I(P, l \cap h) > m_P(h) = 3$

Remark 3.4.64. Since every technique used above is indifferent to an affine change of coordinates we get the above result for general tangents and points.

Proposition 3.4.65. If P is a cusp on f, then only one component of f passes through P.

Proof.
$$\Box$$

Definition 3.4.66. A point P on a curve f is called a *hypercusp* if $m_P(f) > 1$, f has a single tangent l and $I(P, f \cap l) = m_P(f) + 1$.

Lemma 3.4.67.

$$\square$$

Proposition 3.4.68.

Proof.
$$\Box$$

3.4.4 The Dimension of an Affine Variety

Definition 3.4.69. Let $V \subset \mathbb{A}^n$ be an affine variety. We define the *dimension* of V to be

$$\dim V = \operatorname{trdeg}_K K(V)$$

Remark 3.4.70. Note that dim is just the functor $\operatorname{trdeg}_K \circ Q \circ \Gamma$. It is thus an integer invariant. Hence if $V \simeq W$, then dim $V = \dim W$. Note that $K(\mathbb{A}^n) = K(x_1, \dots, x_n)$, hence dim $\mathbb{A}^n = n$. If V is a linear subvariety, then $V \simeq V(x_{d+1}, \dots, x_n) \simeq \mathbb{A}^d$ for some d, hence dim V = d, hence this generalizes the notion of dimension in definition 3.3.30. By Lemma 1.10.70 every variety has finite dimension.

Lemma 3.4.71. If $V \subset W$ is a subvariety of an affine variety W, then dim $V \leq \dim W$. Furthermore, dim $V = \dim W \iff V = W$.

Proof. Note that $\Gamma(W) \to \Gamma(V)$ is given by restriction of a polynomial function on W to V, which is clearly surjective. Let $\widetilde{\varphi}: K(W) \twoheadrightarrow K(V)$ be the surjection between rational functions on W to a rational functions on V induced by this map. Since this is a

surjective K-algebra homomorphism, dim $W = \operatorname{trdeg} K(W) \geq \operatorname{trdeg} K(V) = \dim V$ by Lemma 1.10.43. Suppose $n := \dim V = \dim W$. Let $f \in I(V)$. Take $\overline{g} \in \gamma(W)$ such that $\overline{g}|_V = \overline{f} \in \Gamma(V)$. There is a monic, non-zero $H \in K[x_1, \ldots, x_n][y]$ $(x_1, \ldots, x_n$ are polynomial variables over K) such that $H(\overline{g}) = 0$. Then $H(\overline{f}) = 0$, and the minimal monic polynomial in $K[x_1, \ldots, x_n][y]$ vanishing on \overline{f} is y, hence H = y, meaning $g \in I(W)$. It follows that I(V) = I(W), hence V = W by Lemma 3.1.42.

3.4.5 Finite Polynomial Maps

Definition 3.4.72. Let $V \subset \mathbb{A}^n$ and $W \subset \mathbb{A}^m$ be affine varieties and $\varphi : V \to W$ a polynomial map. φ is said to be *finite* if $\widetilde{\varphi} : \Gamma(W) \to \Gamma(V)$ is finite.

Lemma 3.4.73. Let $V \subset \mathbb{A}^n$, $W \subset \mathbb{A}^m$ and $Z \subset \mathbb{A}^l$ be affine varieties and $\varphi : V \to W$, $\psi : W \to Z$ be finite polynomial maps. Then $\psi \varphi$ is finite

Proof. This follows from functoriality of $\Gamma(\bullet)$ and Lemma 1.10.60.

Lemma 3.4.74. Let $V \subset \mathbb{A}^n$ be a d-dimensional, affine variety. Then there is a finite polynomial map $\pi = (y_1, \dots, y_d) : V \to \mathbb{A}^d$ where deg $y_i = 1$.

Proof. By Corollary 1.10.71 there is a finite K-algebra homomorphism $\iota: K[y_1,\ldots,y_d] \hookrightarrow \Gamma(V)$, where $y_1,\ldots,y_n\in\Gamma(v)$ is a Noether normalization of $\Gamma(V)$. By the Noether normalization theorem for infinite fields we may pick $y_i=\sum_1^n a_{ij}x_j$ for suitable $a_{ij}\in K$. Then upon defining

$$\pi: V \to \mathbb{A}^d$$
$$v \mapsto (y_1(v), \dots, y_d(v))$$

we see that $\widetilde{\pi} = \iota$, hence π is finite.

3.4.6 A Second Approach to an ENS

Theorem 3.4.75. Consider non-constant $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$ such that $V(f_1, \ldots, f_m) = \emptyset$ and $d_1 \ge \cdots \ge d_m$. Suppose $m \le n$. Then there are $\lambda_1, \ldots, \lambda_m \in K[\mathbf{x}]$ such that

$$I. \sum_{1}^{m} \lambda_i f_i = 1,$$

2.
$$\deg \lambda_i f_i \leq \prod_{1}^m d_i \leq D^m \quad (i \in \{1, \dots, m\}, D := \max(d_1, \dots, d_m).$$

Proof. Using WNS we can find $\mu_1, \ldots, \mu_m \in K[x_1, \ldots, x_n]$ such that

$$\sum_{1}^{n} \mu_i f_i = 1.$$

Consider the polynomial map

$$\varphi: \mathbb{A}^n \times \mathbb{A}^1 \to \mathbb{A}^n \times \mathbb{A}^m$$
$$(v, a) \mapsto (v, af_1(v), \dots, af_m(v)).$$

. We prove that X = Y. It is clear that $X \subset Y$. Let $(v, w) \in Y$. WLOG $f_1(v) \neq 0$. Set $a = \frac{w_1}{f_1(v)}$. For each i we $w_i f_1(v) = w_1 f_i(v)$, hence $w_i = a f_i(v)$. It follows that

$$(v,w) = (v, af_1(v), \dots, af_m(v)) = \varphi(v,a) \in X.$$

Since $\varphi^{-1}(X) = \mathbb{A}^n \times \mathbb{A}^1$ is a variety and $X = \operatorname{im} \varphi$ it follows that X is a variety by Lemma 3.3.4. Then $\varphi : \mathbb{A}^n \times \mathbb{A}^1 \to X$ is a polynomial map with inverse

$$\phi^{-1}: X \to \mathbb{A}^n \times \mathbb{A}^1$$
$$(v, w) = (v, af_1(v), \dots, af_m(v)) \mapsto \left(v, a\sum_{1}^m g_i(v)f_i(v)\right) = (v, a).$$

Then ϕ is finite by Lemma ?? and dim $X = \dim \mathbb{A}^n \times \mathbb{A}^1 = n + 1$. Then it follows by Lemma 3.4.74 that there is a finite affine change of coordinates

$$\pi: X \to \mathbb{A}^{n+1}$$

Defined by linear forms $l_1 + \sum_1^m a_{1j}y_j, l_2 + \sum_2^m a_{2j}y_j, \dots, l_m + a_{mm}y_m, l_{m+1}, \dots, l_{n+1} \in K[\mathbf{y}, \mathbf{y}]$ where $l_i \in K[\mathbf{x}]$ are linear forms for each i. Then $\psi = \pi \circ \phi$ is a finite polynomial map by Lemma 3.4.73. This polynomial map is defined by $h_1 := l_1 + \sum_1^m a_{1j}zf_j, h_2 := l_2 + \sum_2^m a_{2j}zf_j, \dots, h_m := l_m + a_{mm}zf_m, h_{m+1} := l_{m+1}, \dots, h_{n+1} := l_{n+1} \in K[\mathbf{x}][z]$. Set L := K(z). When viewing $h_i \in L[\mathbf{x}]$, we see that deg $h_i = d_i$ for $i \leq m$ and deg $h_i = 1$ for i > m. By finiteness the map

$$\widetilde{\psi}: K[\mathbf{x}][z] \to K[\mathbf{x}][z], f \mapsto f(h_1, \dots, h_{n+1})$$

is finite. Then $K[\mathbf{x}][z]$ is finitely generated as a $K[h_1,\ldots,h_n,h_{n+1}]$ -module, hence $K[\mathbf{x}][z]\supset K[h_1,\ldots,h_n,h_{n+1}]$ is integral. Then there is a monic polynomial $P_z\in K[Y_1,\ldots,Y_{n+1},t]\setminus 0$ of minimal degree in t such that $P_z(h_1,\ldots,h_{n+1},z)=0$ (cf. Remark 1.10.14). By Perron's theorem there is a $Q\in L[Y_1,\ldots,Y_{n+1}]\setminus 0$ such that

a.
$$Q(h_1, \ldots, h_{n+1}) = 0$$

b. deg
$$Q(Y_1^{d_1}, \dots, Y_m^{d_m}, Y_{m+1}, \dots, Y_{n+1}) \le \prod_{i=1}^m d_i$$

After scaling Q by an appropriate power of z, we get a polynomial P such that

a.
$$P(h_1, \ldots, h_{n+1}, z) = 0$$

b.
$$\deg_{\mathbf{Y}} P(Y_1^{d_1}, \dots, Y_m^{d_m}, Y_{m+1}, \dots, Y_{n+1}, z) \leq \prod_{1}^m d_i$$

Then $P_z \mid P$, hence $\deg_{\mathbf{Y}} P_z(Y_1^{d_1}, \dots, Y_m^{d_m}, Y_{m+1}, \dots, Y_{n+1}, z) \leq \prod_1^m d_i$. Write $P_z(Y_1, \dots, Y_{n+1}, z) = z^N + \sum_0^{N-1} b_i z^i$, $b_i \in K[\mathbf{Y}]$. Set $b_N := 1$ and write

$$b_i(h_1, \dots, h_{n+1})z^i = \mu_i z^N + \sum_{j \neq N} \nu_{ij} t^j,$$

for suitable $\mu_i, \nu_i \in K[\mathbf{x}]$. Then

$$0 = P_z(h_1, \dots, h_{n+1}, z) = z^N + \sum_{i=0}^{N-1} b_i(h_1, \dots, h_n) t^i = (1 + \sum_{i=0}^{N-1} \mu_i) z^N + \sum_{j \neq N} \left[\sum_{i=0}^{N-1} \nu_{ij} \right] z^j$$

which implies that $1+\sum_0^{N-1}\mu_i=0$ hence $1=-\sum_0^{N-1}\mu_i$. Note that $\deg_z b_i(h_1,\ldots,h_{n+1})z^i\geq N$, implies $\deg_z b_i(h_1,\ldots,h_{n+1})>0$. Now note that each $h_j=\omega_j+\kappa_j z$, where $\omega_j,\kappa_j\in K[\mathbf{x}]$ and $\kappa_j\in\langle f_1,\ldots,f_m\rangle$, hence $\mu_i\in\langle f_1,\ldots,f_m\rangle$, hence for suitable $\lambda_1,\ldots,\lambda_m\in K[\mathbf{x}]$,

$$1 = -\sum_{i=0}^{N-1} \mu_i = \sum_{i=1}^{m} \lambda_i f_i.$$

Secondly using Lemma 1.9.44,

$$\begin{split} \deg \ \lambda_i f_i & \leq \max_{1,\dots,N-1} \ \deg \ \mu_i \leq \deg_{\mathbf{X}} \ P_z(h_1,\dots,h_{n+1},z) \\ & \leq \deg_{\mathbf{Y}} \ P_z(Y_1^{d_1},\dots,Y_m^{d_m},Y_{m+1},\dots,Y_{n+1},z) \leq \prod_1^m d_i. \end{split}$$

Remark 3.4.76. Suppose m > n. Then we still get the bound by considering f_1, \ldots, f_m as elements of $K[x_1, \ldots, x_n, \ldots, x_m]$.

4 Projective & Multiprojective Algebraic Geometry

4.1 Projective Algebraic Sets & Projective Varieties

4.1.1 Basic Definitions

Definition 4.1.1. Let $S \subset K[x_1, ..., x_{n+1}]$ then we define the projective vanishing of S over K to be the set

$$V^{\mathbb{P}}(S) \coloneqq V(S) \coloneqq \{[v] \in \mathbb{P}^n : [v] \text{ is a zero for every } f \in S\}$$

Definition 4.1.2. A set $X \subset \mathbb{P}^n$ is said to be a *projective algebraic set* if

$$X = V(S)$$

for some $S \subset K[x_1, ..., x_{n+1}]$. X is called a *(projective) hypersurface* if X = V(F) for some homogeneous $F \in K[\mathbf{x}]$. If deg F = 1 we call it a *(projective) hyperplane*.

Remark 4.1.3. One notes that the hyperplanes $V(x_i)$ are the i'th hyperplanes at infinity.

Proposition 4.1.4. Let K be an infinite field, $S \subset K[x_1, \ldots, x_{n+1}]$ and $I := \langle S \rangle = \langle f_1, \ldots, f_m \rangle \subset K[x_1, \ldots, x_{n+1}]$. Write

$$f_i = \sum_{0}^{d_i} f_{ij},$$

where f_{ij} are forms of degree j. Then

$$V(S) = V(I) = V(\{f_{ij} : 1 \le i \le m, 0 \le j \le d_i\}).$$

Proof. The first equality is trivial and the second equality follows from Lemma 1.9.124.

Remark 4.1.5. It thus follows that if $X \subset \mathbb{P}^n$ is a projective algebraic set, we may assume that $X = V(F_1, \ldots, F_m)$ for homogeneous polynomials $F_1, \ldots, F_m \in K[x_1, \ldots, x_{n+1}]$. As a consequence if given a homogeneous ideal $I \subset K[\mathbf{x}]$, then $V^{\mathbb{A}}(I) \setminus 0 \neq \emptyset$ implies $V^{\mathbb{P}}(I) \neq \emptyset$. Indeed, we may write $I = \langle F_1, \ldots, F_m \rangle$ for suitable homogeneous polynomials $F_1, \ldots, F_m \in K[\mathbf{x}]$. Meaning if $v \in \mathbb{A}^{n+1} \setminus 0$ is a zero of each F_i , then so is [v].

Lemma 4.1.6. If $K[x_1,\ldots,x_{n+1}]\supset M\supset M'$, then $V^{\mathbb{P}}(M)\subset V^{\mathbb{P}}(M')$.

Proof. The proof is almost identical to the proof of Lemma 3.1.5. \Box

Lemma 4.1.7. We collect the following results which are projective analogues of Lemma 3.1.10

- (i) Let A be some indexing set. Consider a family of algebraic sets $\{X_{\alpha}\}_{{\alpha}\in A}$ in \mathbb{A}^n . Then $\bigcap_{\alpha} X_{\alpha}$ is an algebraic set.
- (ii) Consider algebraic sets $X, Y \subset \mathbb{A}^n$. Then $X \cup Y$ is algebraic. It follows by induction that $\bigcup_{i=1}^k X_i$ is algebraic for any finite sequence of algebraic sets X_1, \dots, X_k in \mathbb{A}^n .

Proof. 1. Writing $X_{\alpha} = V(I_{\alpha})$ for homogeneous I_{α} , we prove the statement in the same manner as for the affine case, i.e. by proving $\bigcap_{\alpha} X_{\alpha} = V(\bigcup_{\alpha} I_{\alpha}) = V(\langle \bigcup_{\alpha} I_{\alpha} \rangle) = V(\sum_{\alpha} I_{\alpha})$. The proof of this is identical to the one given in Lemma 3.1.10 1.

2. For homogeneous ideals $I, J \subset K[\mathbf{x}]$. We prove that $V(I) \cup V(J) = V(IJ)$ for which the proof is identical to that of Lemma 3.1.10 2.

Example 4.1.8. 1. $V^{\mathbb{P}}(0) = \mathbb{P}^n$. Indeed 0([v]) = 0 for every $[v] \in \mathbb{P}^n$.

- 2. $V^{\mathbb{P}}(1) = \emptyset$. Indeed $1(v) = 1 \neq 0$ for every $v \in \mathbb{A}^{n+1} \setminus 0$.
- 3. $V^{\mathbb{P}}(x_1-x_{n+1}a_1,\ldots,x_n-x_{n+1}a_n)=\{[(a_1,\ldots,a_n,1)]\}$. Indeed, set $v=a_1,\ldots,a_n,1)\in \mathbb{A}^{n+1}$. Then evaluating each of the n polynomials in λv for $\lambda\in K\setminus 0$, we get 0. Conversely if $w_i=w_{n+1}a_i$ for each i, note that necessarily $w_{n+1}\neq 0$, hence $(w_1,\ldots,w_{n+1})=w_{n+1}v$, hence [w]=[v]. After permutation of indices we see that any point in \mathbb{P}^n is a projective algebraic set, hence any finite subset of \mathbb{P}^n is algebraic

Remark 4.1.9. The system

$$\tau_{\mathcal{Z}} := \{ \mathbb{P}^n \setminus X : X \subset \mathbb{P}^n \text{ is an algebraic set} \}$$

(analogously to the affine case) defines a topology on \mathbb{P}^n which we also call *Zariski topology*.

Definition 4.1.10. For a set $X \subset \mathbb{P}^n$ we form

$$I^{\mathbb{P}}(X) := I(X) := \{ f \in K[x_1, \dots, x_n] : f([v]) \text{ for every } [v] \in X \}$$

which we call the (homogeneous) ideal of X

Remark 4.1.11. The above set is a homogeneous ideal. That it is an ideal is trivial. Again by Lemma 1.9.124 it is homogeneous. We also have that I(X) is generated by a finite set of homogeneous polynomials due to Lemma 1.9.126.

Lemma 4.1.12. If $X, Y \subset \mathbb{P}^n$ are algebraic such that $X \subset Y$, then $I(X) \supset I(Y)$.

Proof. The proof is identical to the affine case

Lemma 4.1.13. Let $M \subset K[x_1, \ldots, x_{n+1}]$ and $X \subset \mathbb{P}^n$. Then we have the following

- 1. $I(V(M)) \supset M$.
- 2. $V(I(X)) \supset X$.
- 3. V(I(V(M))) = V(M). Hence if X is algebraic X = V(I(X)).
- 4. I(V(I(X))) = I(X). Hence if M is an ideal of some algebraic set, M = I(V(M))

Proof. The proof is identical to the affine case.

Lemma 4.1.14. Let $X \subset \mathbb{A}^n$. Then I(X) is radical.

Proof. The proof is identical to the affine case.

Lemma 4.1.15. Let $X, Y \subset \mathbb{A}^n$ be algebraic subsets. Then

$$X = Y \iff I(X) = I(Y).$$

Proof. The proof is identical to the affine case.

Example 4.1.16. 1. $I(\emptyset) = K[x_1, \dots, x_{n+1}]$

- 2. If $\#K = \infty$, $I(\mathbb{P}^n) = 0$. Indeed, if f([v]) = 0 for every [v], then $f_0([v]) = 0$, hence f(0) = 0. It thus follows that f(v) = 0 for every $v \in \mathbb{A}^{n+1}$, hence f = 0.
- 3. $I(\{[v_1,\ldots,v_n,1]\}) = \langle x_1 x_{n+1}v_1,\ldots,x_n x_{n+1}v_n \rangle.$

Definition 4.1.17. An algebraic set is *reducible* if can be written as the union of two strictly smaller algebraic set. It is called *irreducible* or *a (projective) variety*, if it is not reducible.

Lemma 4.1.18. An algebraic set $V \subset \mathbb{P}^n$ is a variety if and only if I(V) is prime if and only if $K[x_1, \ldots, x_{n+1}]/I(V)$ is an integral domain.

Proof. " \Longrightarrow ": Suppose I(V) is not prime. Then there are homogeneous $F_1, F_2 \in K[x_1, \ldots, x_{n+1}] \setminus I(V)$ such that $F_1F_2 \in I(V)$, by Lemma 1.9.128. Then $V \cap V(F_i) \subsetneq V$ and

$$V = V \cap V(F_1 F_2) = (V \cap V(F_1)) \cup (V \cap V(F_2)).$$

" \Leftarrow ": Conversely if $V = V_1 \cup V_2$ where $V_i \subsetneq V$, then $I(V_i) \supsetneq I(V)$. Pick $F_i \in I(V_i) \setminus I(V)$, then $F_1F_2 \in I(V_1 \cup V_2) = I(V)$, hence I(V) is not prime.

Again using that $K[x_1, \ldots, x_{n+1}]$ is noetherian, we can prove that any projective algebraic set has unique decomposition into a union of projective varieties.

4.1.2 The Cone of a Projective Algebraic Set

Definition 4.1.19. Let $X \subset \mathbb{P}^n$ be algebraic. We define *the cone over* X to be the set

$$C(X)\coloneqq\{v\in\mathbb{A}^{n+1}:[v]\in X\text{ or }v=0\}.$$

Lemma 4.1.20. Let $V \subset \mathbb{P}^n$ be a non-empty algebraic set. Then

$$I^{\mathbb{A}}(C(V)) = I^{\mathbb{P}}(V).$$

Proof. " \subset ": Let $f \in I^{\mathbb{A}}(C(V))$ and $[v] \in V$. Then $\lambda v \in C(V)$ for every $\lambda \in K \setminus 0$, meaning $f(\lambda v) = 0$. Then f([v]) = 0, hence $f \in I^{\mathbb{P}}(V)$.

"": Let $f \in I^{\mathbb{P}}(V)$ and $v \in C(V)$. If $[v] \in V$, then f([v]) = 0, hence in particular f(v) = 0. If v = 0, note that writing $f = \sum_{i=0}^{d} f_i$, we get that $f_i(w) = 0$ for a $[w] \in V$, hence $f_i = 0$. Then trivially f(0) = 0.

Lemma 4.1.21. If $I \subset K[x_1, \dots, x_{n+1}]$ is homogeneous, then $V^{\mathbb{P}}(I) \neq \emptyset$ implies $C(V^{\mathbb{P}}(I)) = V^{\mathbb{A}}(I)$

Proof. " \subset ": Let $v \in C(V^{\mathbb{P}}(I))$ and $f = \sum_{i=0}^{d} f_i \in I$. Then if $[v] \in V^{\mathbb{P}}(I)$, f([v]) = 0, hence f(v) = 0. If v = 0, then for a given $[w] \in V^{\mathbb{P}}(I)$, $f_i([w]) = 0$, hence $f_i = 0$, meaning $f_i(0) = 0$. In any case $v \in V^{\mathbb{A}}(I)$.

">": Let $v \in V^{\mathbb{A}}(I)$ and $f = \sum_{0}^{d} f_{i} \in I$. If v = 0, then $v \in C(V^{\mathbb{P}}(I))$ trivially. So suppose $v \neq 0$. Note that $f_{i}(v) = 0$ for each i since $f_{i} \in I$, hence $f_{i}(\lambda v) = 0$ for each $\lambda \in K \setminus 0$. It thus follows that f([v]) = 0, hence $v \in C(V^{\mathbb{P}}(I))$.

Lemma 4.1.22. If $I \subset K[x_1, \ldots, x_{n+1}]$ is homogeneous and not contained in $\langle x_1, \ldots, x_{n+1} \rangle$, then $V^{\mathbb{P}}(I) \neq \emptyset$ if and only if $C(V^{\mathbb{P}}(I)) = V^{\mathbb{A}}(I)$. In the case $I \not\subset \langle x_1, \ldots, x_{n+1} \rangle$, $V^{\mathbb{A}}(I) = \emptyset$. In the case $I = \langle x_1, \ldots, x_{n+1} \rangle^d$, then $C(V^{\mathbb{P}}(I)) = \{0\} = V^{\mathbb{A}}(I)$.

Proof. " \Longrightarrow ": Follows immediately from the prior lemma.

" \Leftarrow ": If $V^{\mathbb{P}}(I) = \emptyset$, then $C(V^{\mathbb{P}}(I)) = \{0\}$ and $V^{\mathbb{A}}(I) \setminus 0 = \emptyset$ (cf. Remark 4.1.5). Note also that " \supset " in the prior lemma holds true in any case. Then $V^{\mathbb{A}}(I) \in \{\emptyset, \{0\}\}$. If $V^{\mathbb{A}}(I) = \{0\}$, then $I \subset I(V^{\mathbb{A}}(I)) = \langle x_1, \dots, x_n \rangle$, so we conclude that $V^{\mathbb{A}}(I) = \emptyset \subsetneq \{0\} = C(V^{\mathbb{P}}(I))$.

If
$$I = \langle x_1, \dots, x_{n+1} \rangle^d$$
, then $v \in V^{\mathbb{A}}(I) \iff v = 0$, hence $V^{\mathbb{P}}(I) = \emptyset$

Proposition 4.1.23. Each irreducible component of a cone $C(V^{\mathbb{P}}(I))$ is itself a cone.

Proof. Claim: Let $W \subset V^{\mathbb{P}}(I)$ be a component of $V^{\mathbb{P}}(I)$. Then $C(W) \subset C(V^{\mathbb{P}}(I))$ is a component. Suppose $V := V^{\mathbb{P}}(I) = V_1 \cup V_2$ with $V_i \subsetneq V$. Then there is a $[v_i] \in V$ such that $[v_i] \notin V_i$. Then $v_i \in C(V) \setminus C(V_i)$.

Let U be a component of C(V). By uniqueness of decomposition into components U = C(W) for some component of V.

4.1.3 The Projective Nullstellensatz

Lemma 4.1.24. Let $I \subset K[x_1, ..., x_{n+1}]$ be an homogeneous ideal. The following are equivalent.

- 1. $V^{\mathbb{P}}(I) = \emptyset$.
- 2. $V^{\mathbb{A}}(I) \subset \{0\}.$
- 3. $\operatorname{rad}(I) = I^{\mathbb{A}}(V^{\mathbb{A}}(I)) \supset \langle x_1, \dots, x_{n+1} \rangle$.
- 4. $\langle x_1, \ldots, x_{n+1} \rangle^d \subset I$ for a suitably large $d \geq 0$

Proof. "1. \iff 2.": This follows from the prior lemma. "2. \iff 3.": This follows from HNS. "3. \iff 4.": This follows from Lemma 1.8.37.

Theorem 4.1.25. (*Projective Nullstellensatz/PNS*)

Let $I \subset K[x_1, ..., x_{n+1}]$ be a homogeneous ideal. Then

- 1. $V^{\mathbb{P}}(I) = \emptyset$ if and only if $V(d, n+1) \subset I$ for some $d \geq 0$.
- 2. If $V^{\mathbb{P}}(I) \neq \emptyset$, then $I^{\mathbb{P}}(V^{\mathbb{P}}(I)) = \operatorname{rad}(I)$.

Proof. 1. Is an immediate consequence of the above lemma.

2. By Lemma 4.1.21 $V^{\mathbb{A}}(I) = C(V^{\mathbb{P}}(I))$ and by Lemma 4.1.20

$$I^{\mathbb{P}}(V^{\mathbb{P}}(I)) = I^{\mathbb{A}}(C(V^{\mathbb{P}}(I))) = I^{\mathbb{A}}(V^{\mathbb{A}}(I)) = \operatorname{rad}(I),$$

where the last equality is just HNS.

write relevant corollaries to the PNS

4.1.4 Rational Functions and Local Rings of Projective Varieties

Definition 4.1.26. For a projective variety, $V \subset \mathbb{P}^n$ we define the *homogeneous coordinate* ring of V to be the integral domain (recall that I(V) is prime)

$$\Gamma^h(V) \coloneqq \Gamma(V) \coloneqq K[\mathbf{x}]/I^{\mathbb{P}}(V).$$

Remark 4.1.27. In general it is not true that the homogeneous coordinate ring can be thought of as a subring of $\operatorname{Fun}(V,K)$, indeed consider for example $f=\sum_0^d f_i\in K[x_1,\ldots,x_n]$, then for a $v\in\mathbb{A}^{n+1}\setminus 0$, $f(\lambda v)=\sum_0^d \lambda^i f_i(v)$. Note then that the function $\lambda\mapsto f(\lambda v)$ is constant if and only if $f_i=0$ for i>0. Hence for some $\lambda,\lambda'\in K\setminus 0$, $f(\lambda v)\neq f(\lambda' v)$, meaning f([v]) is not well-defined unless f is constant. What then can be said is that for $V\neq\emptyset$, $\{c+I(V):c\in K\}\simeq\{([v]\mapsto c)\in\operatorname{Fun}(V,K):c\in K\}$, which is trivial.

Definition 4.1.28. For a projective variety, $V \subset \mathbb{P}^n$ we define the *homogeneous function field of* V to be the field

$$K^h(V) := Q(\Gamma^h(V).$$

Remark 4.1.29. It is also clear that the homogeneous function field is not isomorphic to some subring of $Q(\operatorname{Fun}(V,K))$. We can however make an amendment to this consider $\phi = \frac{f+I(V)}{g+I(V)} \in K^h(V)$, where f+I(V), g+I(V) are homogeneous of degree $d \geq 0$. Then for every $v \in V$ with $(g+I(V))(v) = g(v) \neq 0$ and every $\lambda \in K \setminus 0$,

$$\frac{f(\lambda v)}{g(\lambda v)} = \frac{\lambda^d f(v)}{\lambda^d g(v)} = \frac{f(v)}{g(v)}.$$

We thus get that $\phi([v]) := \frac{f(v)}{g(v)}$ is well-defined. It is also independent of choice of representative of ϕ , since evaluation of $\frac{f+I(V)}{g+I(V)}$ is independent of representatives.

Inspired by the above remark we introduce the following definition.

Definition 4.1.30. For a projective variety, $V \subset \mathbb{P}^n$ we define the function field of V to be

$$K(V) \coloneqq \left\{z \in K^h(V): \exists d \geq 0 \\ f, g \in V(d, n+1), g \neq 0, z = \frac{f+I(V)}{g+I(V)} \right\}.$$

Remark 4.1.31. This is a subfield of $K^h(V)$ and a K-algebra. Indeed, consider $f,g \in V(d,n+1)$ and $\lambda,\mu \in V(e,n+1)$. Then $f\lambda,g\mu,f\mu,g\lambda$ and there sums are in V(d+e,n+1). This implies that $\frac{f+I(V)}{g+I(V)}+\frac{\lambda+I(V)}{\mu+I(V)},\frac{f+I(V)}{g+I(V)}\frac{\lambda+I(V)}{\mu+I(V)}\in K(V)$. If $f\neq 0$, then clearly $\left(\frac{f+I(V)}{g+I(V)}\right)^{-1}=\frac{g+I(V)}{f+I(V)}$. We see that an element of this ring can be viewed as a function $[v]\mapsto \frac{f}{g}(v)$ away from the points where g([v])=0. We therefor also call these elements f rational functions on f.

Definition 4.1.32. Let $V \subset \mathbb{P}^n$ be a projective variety, $\phi \in K(V)$. We define *the pole set* of ϕ to be the set

$$\mathcal{P}(\phi) := \{ P \in \mathbb{P}^n : \phi \text{ not defined at } P \}$$

Definition 4.1.33. For $\phi \in K(V)$, we define $J_{\phi} := \{g \in K[\mathbf{x}] : (g + I(V))\phi \in \Gamma^h(V)\}$, which we know to be an ideal already (cf. Remark 3.3.48).

Remark 4.1.34. The ideal is also homogeneous. Indeed, write $g = \sum_0^d g_i \in J_\phi$ and $\phi = \frac{\alpha}{\beta}$ where $\alpha, \beta \in \Gamma^h(V)$ are homogeneous of degree δ . Note that $\sum_0^d (g_i + I(V))\alpha$ is a decomposition into a sum of forms of degree $\delta + i$ for $i \leq d$. We have that $(g + I(V))\phi = \sum_0^e h_i$ for suitable homogeneous $h_i \in \Gamma^h(V)$. Then

$$\sum_{i=0}^{d} (g_i + I(V))\alpha = \sum_{i=0}^{e} h_i \beta$$

hence e = d and $(g_i + I(V))\alpha = h_i\beta$ for each i, implying $(g_i + I(V))\phi \in \Gamma^h(V) \implies g_i \in J_{\phi}$.

Lemma 4.1.35. Let V be a variety and $\phi \in K(V)$. Then $\mathcal{P}(\phi) = V(J_{\phi})$.

Proof. The proof is identical to the affine case.

Definition 4.1.36. Let $V \subset \mathbb{P}^n$ be a projective variety. Consider $\phi = \frac{\alpha}{\beta} \in K(V)$, where α and β are homogeneous of degree $d \geq 0$ and a point $P \in V$. We say that ϕ is defined at P if P is not a zero of q.

In continuation of this we define the local ring of V at P to be

$$\mathcal{O}_P(V) := \{ z \in K(V) : z \text{ is defined at } P \}.$$

Remark 4.1.37. One readily verifies that this is a subring of K(V) containing K and that $\mathfrak{m}_P(V) := \mathcal{O}_P(V) \setminus \mathcal{O}_P(V)^* = \{z \in \mathcal{O}_P(V) : z = \frac{\alpha}{\beta}, \alpha(P) = 0\}$ is an ideal, meaning $\mathcal{O}_P(V)$ is a local ring.

Definition 4.1.38. For a variety V with a point $P \in V$ we define *evaluation at* P to be the function

$$\operatorname{ev}_P : \mathcal{O}_P(V) \to K$$

 $\phi \mapsto \phi(P)$

Remark 4.1.39. One readily verifies that this is a *K*-algebra homomorphism.

4.1.5 (Projective) change of coordinates

Definition 4.1.40. Consider an affine change of coordinates $\varphi: \mathbb{A}^{n+1} \to \mathbb{A}^{n+1}, v \mapsto Av$, i.e. an affine change of coordinates that maps 0 to 0. We define *the projective change of coordinates* induced by φ to be the function

$$\varphi: \mathbb{P}^n \to \mathbb{P}^n$$
$$[v] \mapsto [Av]$$

Remark 4.1.41. The above function is well-defined: Since A is invertible $Av \neq 0$, hence [Av] is an element of \mathbb{P}^n . For any $[v] \in \mathbb{P}^n$, $[v] = L(v,0) \setminus 0$. Hence by Lemma 3.3.35 and using A being invertible,

$$A(L(\lambda v,0)) \setminus 0 = A(L(v,0) \setminus 0) = L(Av,0) \setminus 0.$$

Note that the inverse of φ is the affine change of coordinates induced by A^{-1} .

Lemma 4.1.42. If $V \subset \mathbb{P}^n$ is a projective variety and $\varphi : \mathbb{P}^n \to \mathbb{P}^n$, $[v] \mapsto [Av]$ is a projective change of coordinates, then $\varphi^{-1}(V)$ is a projective variety.

Proof. One readily verifies that if $V = V(F_1, \ldots, F_m)$ for homogeneous F_1, \ldots, F_m , and φ is induced by linear forms $\varphi_1, \ldots, \varphi_{n+1}$, then $F_i(\varphi_1, \ldots, \varphi_{n+1})$ is homogeneous and $\varphi^{-1}(V) = V(F_1(\varphi_1, \ldots, \varphi_{n+1}), \ldots, F_m(\varphi_1, \ldots, \varphi_{n+1}))$ is therefor a projective algebraic set. Suppose $\varphi^{-1}(V) = V_1 \cup V_2$. Then $V = \varphi(V_1) \cup \varphi(V_2) = (\varphi^{-1})^{-1}(V_1) \cup (\varphi^{-1})^{-1}(V_2)$, hence WLOG $V = \varphi(V_1)$. Then $\varphi^{-1}(V) = V_1$.

Lemma 4.1.43. For a projective variety V and a projective change of coordinates φ induced by linear forms φ_i , we get induced isomorphisms K-algebras

$$\widetilde{\varphi}: \Gamma^h(V) \to \Gamma^h(\varphi^{-1}(V))$$

$$f + I(V) \mapsto f(\varphi_1, \dots, \varphi_{n+1}) + I(\varphi^{-1}(V))$$

(It has inverse $f + I(\varphi^{-1}) \mapsto f(\varphi_1^{-1}, \dots, \varphi_{n+1}^{-1}) + I(V)$). We thus get an induced isomorphism

$$\widetilde{\varphi}: K(V) \to K(\varphi^{-1}(V))$$

and if $\varphi(Q) = P$ an isomorphism

$$\widetilde{\varphi}: \mathcal{O}_P(V) \to \mathcal{O}_Q(\varphi^{-1}(V))$$

Proof. $\widetilde{\varphi}: \Gamma^h(V) \to \Gamma^h(\varphi^{-1}(V))$ is well-defined for the same reason it is in the affine case (i.e. $f(\varphi_1,\ldots,\varphi_{n+1}) \in I(\varphi^{-1}(V))$ for every $f \in I(V)$). The inverse is $\widetilde{\varphi^{-1}}$. We get an induced isomorphism $K^h(V) \to K^h(\varphi^{-1}(V))$

Example 4.1.44. Let $V=\mathbb{P}^1$ and set $t=\frac{x}{y}\in K(V)$. Then $K(V)=K(t)\simeq K(z)$ (i.e. K(t) can be viewed as the quotient field of the polynomial ring in 1 variable over K, since t is algebraically independent over K). It remains to check that $K(V)\subset K(t)$. It is sufficient to check that $\frac{f}{g}\in K(V)$ where f,g are homogeneous of degree $d\geq 1$ are elements of K(t). Consider $\frac{\alpha x + \beta y}{\lambda x + \mu y} \in K(V)$ where $(\alpha,\beta),(\lambda,\mu)\neq (0,0)$. Then

$$\frac{\alpha x + \beta y}{\lambda x + \mu y} = \frac{\alpha x}{\lambda x + \mu y} + \frac{\beta y}{\lambda x + \mu y}$$
$$= \left(\frac{\lambda}{\alpha} + \frac{\mu}{\alpha} t^{-1}\right)^{-1} + \left(\frac{\lambda}{\beta} t + \frac{\mu}{\beta}\right)^{-1} \in K(t)$$

Since f and g can be written as product of linear forms it follows that $\frac{f}{g} \in K(t)$. Using Proposition 3.3.74 we obtain the following one-to-one correspondence

 $\mathbb{P}^1 = K \cup \{\infty\} \to \{ \text{DVRs containing } K \text{ with quotient field } K(t) \}$

$$P \mapsto \begin{cases} \mathcal{O}_P(\mathbb{A}^1) & \text{if } P \in K \\ \mathcal{O}_{\infty} & \text{if } P = \infty \end{cases}$$

Definition 4.1.45. A *projective linear subvariety* is a projective algebraic set of the form $V(L_1, \ldots, L_m)$ where $L_1, \ldots, L_m \in K[x_1, \ldots, x_{n+1}] \setminus 0$ are linear homogeneous polynomials.

Lemma 4.1.46. The pre-image of a projective linear subvariety under a projective change of coordinates is again a projective linear subvariety.

Proof. This follows from Lemma 4.1.42 the fact that a non-zero linear homogeneous polynomial evaluated in non-zero linear homogeneous polynomial is itself a non-zero linear homogeneous polynomials.

Proposition 4.1.47. Let $V := V(L_1, ..., L_m)$ be a projective linear subvariety. Then $\varphi^{-1}(V) = V(x_{d+2}, ..., x_{n+1})$ for some projective change of coordinates $\varphi : \mathbb{P}^n \to \mathbb{P}^n$, $-1 \le d \le n-1$ (in particular V is a projective variety). This d is independent of choice of change of coordinates.

Proof. In the projective we have the ability to handle the case where $V = \emptyset$. Indeed setting d = -1 we are done since $V^{\mathbb{P}}(x_1, \dots, x_{n+1}) = \emptyset$. In this case any projective change of coordinates will do the trick, by bijectivity.

Suppose $V \neq \emptyset$. In the m=1, we use the same construction as in the proof of Proposition 3.3.28. Note that this yields an invertible linear transformation and hence a projective change of coordinates. We then get that $\varphi^{-1}(V) = V(x_{n+1})$ and there for d=n-1 works. We proceed by induction in m. So consider $V=V(L_1,\ldots,L_{m+1})$ and $W=V(L_1,\ldots,L_m)$. Then there is an affine change of coordinates $\varphi:\mathbb{P}^n\to\mathbb{P}^n$ induced by some invertible linear transform of the same name such that $\varphi^{-1}(W)=V(x_{d+2},\ldots,x_{n+1})$. Then

$$V^{\varphi} = V(x_{d+2}, \dots, x_{n+1}) \cap V(h),$$

where $h := (L_{m+1} \circ \varphi)(x_1, \dots, x_{d+1}, \mathbf{0})$. As with the affine case (cf. Proposition 3.3.28), h = 0, in which case we are done, or deg h = 1 and h is homogeneous. In the second case as there is linear transform $\phi : \mathbb{A}^{d+1} \to \mathbb{A}^{d+1}$ inducing a projective change of coordinates $\psi : \mathbb{P}^d \to \mathbb{P}^d$ such that $\psi^{-1}(V(h)) = V(x_{d+1})$. Taking

$$\phi: \mathbb{A}^{n+1} \to \mathbb{A}^{n+1}$$
$$v \mapsto (\psi(v_1, \dots, v_{d+1}), v_{d+2}, \dots, v_{n+1})$$

it follows that $(\varphi \circ \phi)^{-1}(V) = V(x_{d+1}, \dots, v_{n+1})$. The uniqueness follows from the same linear algebra as it did in the affine case.

Remark 4.1.48. This integer invariant d, will be denoted dim V and will be referred to as the *dimension of* V (over K). Note that upon writing $L_i = \sum_{1}^{n+1} a_{ij} x_j$, the dimension of a projective variety under this definition is the same as dim ker $(a_{ij}) - 1$. In fact $V^{\mathbb{P}}(L_1, \ldots, L_m)$ is the projection of $(\ker(a_{ij})) \setminus 0$ into \mathbb{P}^{n+1} . One therefor sees that a d-dimension linear subvariety is just the projective span of some $[v_1], \ldots, [v_{d+1}]$ where v_1, \ldots, v_{d+1} are linearly independent, since for a suitable projective change of coordinates, A,

$$V(L_1, \ldots, L_m) = A(V(x_{d+2}, \ldots, x_{n+1})) = A(Span([e_1], \ldots, [e_{d+1}])) = Span([Ae_1], \ldots, [Ae_{d+1}])$$

by lemma 4.1.50. Conversely, if $v_1, \ldots v_{d+1} \in \mathbb{A}^{n+1} \setminus 0$ are linearly independent, then $\mathrm{Span}([v_1], \ldots, [v_{d+1}])$ is also a linear subvariety of dimension d.

Definition 4.1.49. Let $[v] \neq [w] \in \mathbb{P}^n$. We define the line through [v] and [w] to be

$$L([v], [w]) := Span([v], [w]).$$

If $[v_1], \ldots, [v_n] \in \mathbb{P}^n$ such that $[v_i] \notin \operatorname{Span}([v_1], \ldots, [\widehat{v_i}], \ldots, [v_n])$, we define the *hyper-plane through* $[v_1], \ldots, [v_n]$ to be $H([v_1], \ldots, [v_n]) := \operatorname{Span}([v_1], \ldots, [v_n])$

Lemma 4.1.50. Let $[v_1], \ldots, [v_m] \in \mathbb{P}^n$ and $\varphi : \mathbb{P}^n \to \mathbb{P}^n$ a projective change of coordinates. Then $\varphi(\operatorname{Span}([v_1], \ldots, [v_m])) = \operatorname{Span}([\varphi(v_1)], \ldots, [\varphi(v_m)])$

Proof. Set $A \in M_{n+1}(K)$ to be the linear transform inducing ϕ . Then for any $(\lambda_1, \ldots, \lambda_m) \in K^m \setminus 0$,

$$\left[\sum_{1}^{m} \lambda_{i}(Av_{i})\right] = \left[A\left(\sum_{1}^{m} \lambda_{i}v_{i}\right)\right] = \varphi\left(\left[\sum_{1}^{m} \lambda_{i}v_{i}\right]\right),$$

and the result follows.

Lemma 4.1.51. Consider $[v_1], \ldots, [v_m] \in \mathbb{P}^n$ with v_1, \ldots, v_m linearly independent over K. Then $\mathrm{Span}([v_1], \ldots, [v_m])$ is linear subvariety of dimension m-1 if $m \leq n$, of dimension n otherwise. In particular, we have that a line between distinct points $[v], [w] \in \mathbb{P}^n$ is a projective linear variety of dimension 1. And that the hyperplane through $[v_1], \ldots, [v_m]$ is of dimension n

Proof. In the case $m \geq n+1$ the result is obvious since then $\mathrm{Span}([v_1],\ldots,[v_m]) = \mathbb{P}^n$. In other case, we complete the basis of \mathbb{A}^{n+1} , with v_{m+1},\ldots,v_{n+1} such that v_1,\ldots,v_{n+1} spans \mathbb{A}^{n+1} . We set $A=(v_{ij})^T$ and using the above lemma find that

$$A^{-1}\mathrm{Span}([v_1],\ldots,[v_m])=\mathrm{Span}([A^{-1}v_1],\ldots,[A^{-1}v_m])=\mathrm{Span}([e_1],\ldots,[e_m])=V(x_{m+1},\ldots,x_{n+1}),$$

hence $\mathrm{Span}([v_1],\ldots,[v_m])$ is a linear subvariety and its dimension is m-1.

Lemma 4.1.52. Let $[v_1], \ldots, [v_{n+1}], [w_1], \ldots, [w_{n+1}] \in \mathbb{P}^n$ such that $[v_1], \ldots, [v_{n+1} \text{ resp.}]$ $[w_1], \ldots, [w_{n+1}]$ do not lie on a hyperplane, i.e. for any $j \in \{1, \ldots, n+1\}$, $[v_j] \notin H([v_1], \ldots, [v_j], \ldots, [v_{n+1}]) := \left\{ \left[\sum_{i \neq j} \lambda_i v_i \right] : (\lambda_i) \in K^n \setminus 0 \right\}$ (the same is true for the w_i' s). Then there is a projective change of coordinates $\varphi : \mathbb{P}^n \to \mathbb{P}^n$ such that $\varphi[v_i] = [w_j]$

Proof. By Lemma 1.7.17, we have that v_1, \ldots, v_{n+1} resp. w_1, \ldots, w_{n+1} are linearly independent. Set $A = (v_{ij})^T$ and $B = (w_{ij})^T$, and pick $\varphi = BA^{-1}$. Then

$$\varphi([v_i]) = [BA^{-1}v_i] = [Be_i] = [w_i].$$

The result in other words amount to a linear change of basis.

Lemma 4.1.53. *let* L = L([v], [w]) *and* $\Lambda = L([u], [r])$ *be distinct lines in* \mathbb{P}^2 . *Then* $L \cap \Lambda$ *is a point.*

Proof. WLOG $[u] \notin L$, hence $[r] \in \text{Span}([v], [w], [u])$, implying that there exist a unique(!) solution $(\lambda, \mu, \nu) \in K^3 \setminus 0$ to the equation

$$Ax = r$$

where $A \in M_3(K)$ has columns v, w, u. We thus find that

$$L \cap \Lambda = \{ [\lambda v + \mu w] \} = \{ [\nu u + r] \}.$$

Lemma 4.1.54. Let $H_1, \ldots, H_m \subset \mathbb{P}^n$, hyperplanes with $m \leq n$. Then $\bigcap_1^m H_i \neq \emptyset$. Write $H_i = V(\sum_1^{n+1} a_{ij}x_j)$. If $(a_{i1}, \ldots, a_{i,n+1})$ are linearly independent, then $\bigcap_1^m H_i$ is an n-m-dimensional linear subvariety. In particular, the intersection of n such hyperplanes is a point.

Proof. Since $(a_{ij}): \mathbb{A}^{n+1} \to \mathbb{A}^m$ is a non-zero map it follows by rank-nullity that dim $\bigcap_1^m H_i \geq 0$, hence $\bigcap_1^m H_i \neq \emptyset$. Under the further assumptions that (a_{ij}) have linearly independent, it follows that dim $\bigcap_1^n H_i = \dim \ker((a_{ij}) - 1 = n + 1 - m - 1 = n - m$

Lemma 4.1.55. Let H_1, \ldots, H_{n+1} (defined by $\sum_{1}^{n+1} a_{ij}x_j$) and H'_1, \ldots, H'_{n+1} be hyperplanes in \mathbb{P}^n that respectively do not all pass through a common point. Then there is a projective change of coordinates $\varphi : \mathbb{P}^n \to \mathbb{P}^n$ such that $\varphi(H_i) = H'_i$.

Proof. The assumption that H_1, \ldots, H_{n+1} resp. H'_1, \ldots, H'_{n+1} do not pass through a common point means that $\bigcap_{1}^{n+1} H_i = \bigcap_{1}^{n+1} H'_i = \emptyset$, hence (a_{ij}) has null space 0, hence any selection of n rows in this matrix will be linearly independent. Then for each $i \in \{1, \ldots, n+1\}$

1}, $P_i := \bigcap_{j \neq i} H_i$ (cf. the above lemma) is a point not contained in $H(P_1, \dots, \widehat{P_i}, \dots, P_{n+1}) = H_i$, which is also true for $P_i' := \bigcap_{j \neq i} H_i'$. We apply Lemma 4.1.52 to find a projective change of coordinates $\varphi : \mathbb{P}^n \to \mathbb{P}^n$ such that $\varphi(P_i) = P_i'$. By Lemma 4.1.50 it follows that

$$\varphi(H_i) = H(\varphi(P_1), \dots, \widehat{\varphi(P_i)}, \dots, \varphi(P_{n+1})) = H(P'_1, \dots, P'_i, \dots, P'_{n+1}) = H'_i$$

Proposition 4.1.56. There is a one-to-one correspondence

$$\mathbb{P}^n \longleftrightarrow \{H \subset \mathbb{P}^n : H \text{ is a hyperplane }\}$$

Proof. We map a point $[v_1,\ldots,v_{n+1}]$ to $V\left(\sum_1^{n+1}v_ix_i\right)$ which is well-defined since $I=\lambda I$ for any ideal $I\subset R$, for any ring $R,\lambda\in R^*$. Given a hyperplane H=V(f) where f is a form of degree 1, then $f=\sum_1^{n+1}a_ix_i$ for suitable $a_1,\ldots,a_{n+1}\in K^{n+1}$ where at least one $a_i\neq 0$. Then $[a_1,\ldots,a_{n+1}]\mapsto V(f)$. If $V\left(\sum_1^{n+1}v_ix_i\right)=V\left(\sum_1^{n+1}v_i'x_i\right)$, then $\sum_1^{n+1}v_i'x_i=\lambda\sum_1^{n+1}v_ix_i$ for some $\lambda\in K\setminus 0$, hence $\lambda(v_1',\ldots,v_{n+1}')=(v_1,\ldots,v_{n+1})$, meaning [v]=[v']

Remark 4.1.57. Denote the hyperplane corresponding to a point P by P^* and the point corresponding to a hyperplane H by H^* .

Corollary 4.1.58. Given a point P and a hyperplane H in \mathbb{P}^n , $P^{\star\star} = P$ and $H^{\star\star} = H$. Furthermore $P \in H \iff H^{\star} \in P^{\star}$

Proof. The first statement is obvious since the functions are mutual inverses. For second statement suppose $[v_1, \ldots, v_{n+1}] \in H = V\left(\sum_{1}^{n+1} w_i x_i\right)$. Then

$$\operatorname{ev}_{[w_1,\dots,w_{n+1}]}\left(\sum_{1}^{n+1}v_ix_i\right) = \sum_{1}^{n+1}w_iv_i = \operatorname{ev}_{[v_1,\dots,v_{n+1}]}\left(\sum_{1}^{n+1}w_ix_i\right) = 0 \implies H^\star = [w_1,\dots,w_{n+1}] \in P^\star.$$

The converse implication follows from the first statement of this corollary and the first implication. \Box

4.1.6 Affine and Projective Varieties

For this section we denote the identification of \mathbb{A}^n with $U_{n+1} \subset \mathbb{P}^n$ by φ_{n+1} . Recall that this is given by $v \mapsto [v_1, \dots, v_n, 1]$

Definition 4.1.59. Given an affine algebraic set $V = V(I) = V(f_1, \dots, f_m) \subset \mathbb{A}^n$ we define the *homogenization of* V to be the projective algebraic set

$$V^* := V(I^*) \subset \mathbb{P}^n$$
.

Conversely given a projective algebraic set $V = V(I) = V(F_1, ..., F_m) \subset \mathbb{P}^n$, $I \subset K[x_1, ..., x_{n+1}]$, and $F_1, ..., F_m \in K[x_1, ..., x_{n+1}]$ are homogeneous, we define the *de-homogenization of* V to be the affine algebraic set

$$V_* := V(I_*) = V((F_1)_*, \dots, (F_m)_*)$$

Example 4.1.60. With the same setup as Example 1.9.115 where R = K and consider V := V(I). Note that $V = \{(a, a^2, a^3) : a \in K\}$. Let $f \in I(V)$, Then $f(a, a^2, a^3) = 0$ for any $a \in K$, hence $f(x, x^2, x^3) = 0$. In other words $(x, x^2, x^3) \in K[x, y, z]^3 = K[x][y, z]^3$ is a zero of f and hence $f \in \langle x - x, y - x^2, z - x^3 \rangle = I$ by Proposition 1.9.38.

This illustrates that homogenization of a variety cannot be written as the vanishing set of the homogenization of the finite polynomials defining the affine variety.

Lemma 4.1.61. Let $V \subset \mathbb{A}^n$ be algebraic. Then $I(V)^* \subset I(V^*)$. We also have that $\varphi_{n+1}(X_*) \subset X$ for $X = V(I) \subset \mathbb{P}^n$ algebraic.

Proof. This follows from
$$V^* = V(I(V)^*)$$
. Let $[v,1] \in \varphi_{n+1}(X_*) = \varphi_{n+1}(V(I_*))$ and $f \in I(X)$. Then $f_* \in I(X)_* \supset I_*$, hence $f(v,1) = f_*(v)$

Lemma 4.1.62. Let $V = V(I), W = V(J) \subset \mathbb{A}^n$, $X, Y \subset \mathbb{P}^n$ be algebraic sets. We have the following results:

- 1. $\varphi_{n+1}(V) = V^* \cap U_{n+1}$ and $(V^*)_* = V$, $(X_*)^* \subset X$.
- 2. If $V \subset W$, then $V^* \subset W^*$. If $X \subset Y \subset$, then $X_* \subset Y_*$.
- 3. If V is a variety so is V^* .
- 4. $V^* = \overline{\varphi_{n+1}(V)}$, where $\overline{\bullet}$ is the Zariski-closure in \mathbb{P}^n .
- 5. If $\bigcup_{i=1}^{k} V_i$ is the decomposition of V into affine varieties, then $\bigcup_{i=1}^{k} V_i^*$ is the decomposition of V^* into projective varieties.
- 6. If $\emptyset \neq V \subseteq \mathbb{A}^n$, then no component of V^* lies in H_{∞} or contains it.
- 7. If an algebraic $X \subset \mathbb{P}^n$ and no component of X is in or contains H_{∞} , then $X_* \subsetneq \mathbb{A}^n$ and $(X_*)^* = X$.

Proof. 1. Let $v \in V$, then $\varphi(V) \in U_{n+1}$. Let $f^* \in I^*$, $f \in I$. Then for $\lambda \in K \setminus 0$,

$$f^*(\lambda(v_1,\ldots,v_n,1)) = \lambda^d(f^*)_*(v) = \lambda^d f(v) = 0 \implies f^*(\varphi(v)) = 0 \implies \varphi(v) \in V^* \cap U_{n+1}.$$

Conversely, if $[v_1, \ldots, v_n, 1] \in V^*$, then by the same computation $f(v) = f^*([v_1, \ldots, v_n, 1]) = 0 \implies v \in V \implies \varphi(v) \in \varphi(V)$.

The second equality follows from $(I^*)_* = I$. The second inclusion follows from $f = x^r_{n+1}(f_*)^*$ for some $r \geq 0$ for every $f \in I(V)$. 2. Since $I(V) \supset I(W)$, we have $I(V)^* \supset I(W)^*$ implying $V^* = V(I(V)^*) \subset V(I(W)^*) = W^*$. The second statement follows from $I(X) \supset I(Y) \implies I(X)_* \subset I(Y)_*$. 3. Since I is prime I^* is prime, hence $V^* = V(I^*)$ is a variety.

- 4. Let $U \subset \mathbb{P}^n$ be algebraic with $\varphi_{n+1}(V) \subset W$. Let $f \in I(W)$, then $f \in I(\varphi_{n+1}(V))$, hence f_* vanishes on every [v,1] where $v \in V$, implying $f_* \in I(V)$. Then $(f_*)^* \in I(V)^*$, hence $f = x_{n+1}^r(f_*)^* \in I(V)^*$ for some $r \geq 0$. We therefor see that $I(U) \subset I(V)^*$, hence $V = V(I(V)^*) \subset V(I(U)) = U$.
- 5. 4. and 2. implies $V^* = (\bigcup V_i)^* = \bigcup V_i^*$. 3. implies each V_i^* . We have that $(V_i^*)_* = V_i \not\subset V_j = (V_i^*)_*$ implying that $V_i^* \not\subset V_j^*$ by the second statement of 2.
- 6. Let C be a component of V. Then $\neq C \subsetneq \mathbb{A}^n$. Then by 1. $C^* \cap U_{n+1} = \varphi_{n+1}(C) \neq \emptyset$, hence $C^* \not\subset H_{\infty}$. Suppose $\emptyset \neq B \subset \mathbb{A}^n$ is algebraic such that $B^* \supset H_{\infty}$. Then $I(B)^* \subset I(B^*) \subset I(H_{\infty}) = \langle x_{n+1} \rangle$ by PNS. Pick $f \in I(B)$. Then $f^*(v,0) = 0$ for every $v \in \mathbb{A}^n$. This correspondence to the highest degree terms of f being 0, implying f = 0, hence I(B) = 0, meaning $B = \mathbb{A}^n$. We thus have that $V \not\supset H_{\infty}$.
- 7. If $X_* = \mathbb{A}^n$, $X \supset (X_*)^* = \mathbb{P}^n \supset H_\infty$, hence trivially $X_* \subsetneq \mathbb{A}^n$. Let Z = V(I) be a component of X. Then no component of Z lies in H_∞ . By 1. it is sufficient to check that $Z \subset (Z_*)^*$, meaning it is sufficient to check that $I(Z) \supset I(Z_*)^*$, since in general $I(V)^* \subset I(V^*)$ implies that $V(I(V)^*) \supset V^*$. Let $f \in I(Z_*)$. Then, since PNS tells us that $I(Z_*) = \operatorname{rad}(I_*) = \operatorname{rad}(I)_* = I(Z)_*$, we get that for some $N \geq 0$, $f^N \in I(Z)_*$, hence for some $r \geq 0$, $x_{n+1}^r(f^n)^* \in I(V)$. Note that I(Z) is prime and $x_{n+1} \notin I(Z)$ since $Z \not\subset H_\infty$, we get that $f^* \in I(Z)$, hence $I(Z_*)^* \subset I(Z)$.

Remark 4.1.63. V^* is called the *projective closure of* V.

Lemma 4.1.64. Let $V \subset W \subset \mathbb{P}^n$ be varieties, where V = V(f) is a hypersurface (where f is a form). Then V = W or $W = \mathbb{P}^n$

Proof. The case $f \in K$ is trivial. So suppose deg $f \geq 1$. Since V is a variety $I(V) = \langle f \rangle$ and f is prime and therefor irreducible. Then $\langle f \rangle \supset I(W)$, hence if $g \in I(W)$, then g = qf. Then $I(W) = \langle f \rangle J$ for some $J \subset K[x_1, \ldots, x_{n+1}]$. Then $W = V(f) \cup V(J)$,

hence W = V(f) = V or W = V(J). Note that if J is non-trivial, then V(J) and V are components of W, hence J = 0 or $J = K[\mathbf{x}]$. Only the first case is possible and in this case $W = \mathbb{P}^n$.

Lemma 4.1.65. Let $H_{\infty} \subset V \subset \mathbb{P}^n$ be a variety. Then $V = H_{\infty}$ or $V = \mathbb{P}^n$. If $\mathbb{P}^n_* = \mathbb{A}^n$ and if $(H_{\infty})_* = \emptyset$.

Proof. The first statement follows from the prior lemma. $\mathbb{P}^n_* = V^{\mathbb{A}}(0_*) = V^{\mathbb{A}}(0) = \mathbb{A}^n$ and $(H_{\infty})_* = V^{\mathbb{A}}((x_{n+1})_*) = V^{\mathbb{A}}(1) = \emptyset$.

Remark 4.1.66. There is a one-to-one correspondence between varieties in \mathbb{P}^n that do not lie in H_{∞} and non-empty varieties in \mathbb{A}^n , established via $V \mapsto V_*$ with mutual inverse $\emptyset \neq W \mapsto W^*$ (cf. statements 6. and 7. of the main lemma and the above lemma). The map

$$\Gamma(\mathbb{P}^n) = K[x_1, \dots, x_{n+1}] \to K[x_1, \dots, x_n] = \Gamma(\mathbb{A}^n), f \mapsto f_*,$$

is surjective with kernel $\langle x_{n+1}-1\rangle$. Therefor $\Gamma(\mathbb{P}^n)/\langle x_{n+1}-1\rangle\simeq\Gamma(\mathbb{A}^n)$. We thus establish that $K^h(V)/\langle x_{n+1}-1\rangle K^h(V)\simeq Q(\Gamma^h(V)/\langle x_{n+1}-1\rangle)\simeq K(V_*)$. Let $f\in K[x_1,\ldots,x_n]$. Then $x_{n+1}^df^*+\langle x_{n+1}-1\rangle=f+\langle x_{n+1}-1\rangle$. We therefor get a surjective K-algebra map,

$$K(V) \to Q(\Gamma^h(V)/\langle x_{n+1} - 1 \rangle), \frac{f}{g} \mapsto \frac{f + \langle x_n - 1 \rangle}{g + \langle x_{n+1} - 1 \rangle}.$$

It is clearly also surjective, since for a form $F \in K[x_1, \dots x_{n+1}]$, $\operatorname{ev}_{x_{n+1} \mapsto 1}(F) = 0$ if and only if F = 0, hence $F \in \langle x_{n+1} - 1 \rangle$ if and only if F = 0. Therefor $K(V) \simeq K^h(V)/K^h(V)\langle x_{n+1} - 1 \rangle \simeq K(V_*)$. Suppose V is a variety not containing or contained in H_∞ . Consider the map

$$K[x_1,\ldots,x_{n+1}]\to K[x_1,\ldots,x_n]/I(V_*), f\mapsto f_*+I(V_*),$$

Since $I(V)_*=I(V_*)$ we establish an identification of $\Gamma^h(V)\simeq\Gamma(V_*)$. This induces an isomorphism $K^h(V)\simeq K(V_*)$. We claim that $K^h(V)=K(V)$. We note that $x_{n+1}+I(V)\mapsto 1+I(V_*)$, implying $x_{n+1}+I(V)=1+I(V)$ hence $\langle x_{n+1}-1\rangle\subset I(V)$. If $f+I(V)\in\Gamma^h(V)$, then $f+I(V)=f_*+I(V)=x_{n+1}^r(f_*)^*+I(V)$ for any sufficiently large r. Then for $\frac{\alpha}{\beta}\in K^h(V)$, we may find representatives for α and β that are homogeneous of the same degree, meaning $\frac{\alpha}{\beta}\in K(V)$. This means $K(V)=K^h(V)\simeq K(V_*)$.

The above is just a way of saying that the map

$$K(V) \to K(V_*), \frac{a + I(V)}{b + I(V)} \mapsto \frac{a_* + I(V_*)}{b_* + I(V_*)}$$

is an isomorphism. Although not strictly necessary, I feel that this detour somewhat illuminating, simply due to the fact that along the way, we saw the exact relationship between

 $\Gamma^h(V)$ and $\Gamma(V_*)$, $K^h(V)$, K(V) and $K(V_*)$ in any possible case. Let $P = [v_1, \ldots, v_n, 1] \in V \cap U_{n+1}$. Then if $\frac{\alpha}{\beta} \in K(V)$ is defined at P, then $0 \neq \beta(P) = \beta_*(v_1, \ldots, v_n)$, hence $\frac{\alpha_*}{\beta_*} \in K(V_*)$ is defined at (v_1, \ldots, v_n) as well. Therefor $\mathcal{O}_P(V) \simeq \mathcal{O}_(v_1, \ldots, v_n)(V)$.

Example 4.1.67. 1. A quick note on the algebraic subsets of \mathbb{P}^1 . Consider such a set $V = V(F_1, \dots, F_m)$ where F_i are non-zero forms. We may write $F_i = \prod_{1}^{d_i} L_{ij}$ for linear forms L_{ij} . Then

$$X = \bigcup_{(i_1,\ldots,i_m)} V(L_{1i_1},\ldots,L_{mi_m}).$$

Note that the vanishing set of a linear form in \mathbb{P}^1 is a point. For each (i_1, \ldots, i_m) , if $L_{1i_1}, \ldots, L_{mi_m}$ are distinct (up to multiplication by a unit), then $V(L_{1i_1}, \ldots, L_{mi_m}) = \emptyset$. If they are equal then $V(L_{1i_1}, \ldots, L_{mi_m})$ is a point. The algebraic subsets of \mathbb{P}^1 are therefor \mathbb{P}^1 , \emptyset or finite union of points.

- 2. By the above, we conclude that the varieties of \mathbb{P}^1 are therefor \mathbb{P}^1 , \emptyset and hyperplanes, which in \mathbb{P}^1 are the same as points
- 3. Suppose $\emptyset \neq V \subset \mathbb{P}^2$ is a variety that is not contained or does not contain H_∞ . Then $\emptyset \neq V_* \subsetneq \mathbb{A}^n$ and $(V_*)^* = V$. Then V_* is a variety since V_* has the same number of components as V. This means $V_* = V(f)$ where $f \in K[x,y]$ for $\deg f \geq 1$ or $V_* = \{x-a,y-b\}$ for $a,b \in K$, hence $V = V(f^*)$ or V = V(x-az,y-bz). If V contains H_∞ , $V = H_\infty$ or $V = \mathbb{P}^2$. Suppose $V = V(I) \subsetneq H_\infty$. Note that V(I) is in bijection with $W = \{[v_1,v_2] \in \mathbb{P}^1 : \forall f \in I, f(v_1,v_2,0)\}$, which is a finite set for otherwise $V(I) = H_\infty$. Then in particular #V = 1, hence V is a point V(bx-ay,z) where $[a,b] \in \mathbb{P}^1$. In conclusion the varieties in \mathbb{P}^2 are $\mathbb{P}^2 = (\mathbb{A}^2)^*, \emptyset$, $V(f^*)$, where $f \in K[x,y]$ is irreducible, $V(I(P)^*)$ where P is a point in $\mathbb{A}^2, V = H_\infty$, or $V(bx-ay,z) \subsetneq H_\infty$ for $[a,b] \in \mathbb{P}^1$.
- **Example 4.1.68.** 1. Let's classify the lines through $P = [0,1,0] \in \mathbb{P}^2$. Note that $\{P\} = V(x,z)$. Let l = ax + by + cz. Suppose L := V(l) passes through P, i.e. that l(0,1,0) = 0. Then b = 0, hence l = ax + cz, where $[a,c] \in \mathbb{P}^1$. If a = 0, then $L = L_\infty$. If $a \neq 0$, then L is a *vertical line*, i.e. for a suitable $\lambda \in K$ $L = L_\lambda := V(x \lambda z) = \{[\lambda, t, 1] : t \in K\} \cup \{P\}$. In other words, L_λ is the vertical line x = 1 in the affine xy-plane with an added point P on the line at infinity.
 - 2. Consider an arbitrary collection of points $P_1, \ldots, P_m \in \mathbb{P}^n$. Then since there is a one-to-one correspondence between \mathbb{P}^n and the hyperplanes in \mathbb{P}^n via the map $P \mapsto$

 P^{\star} . Then pick a point P not in P_i^{\star} for any i. We may do this since the intersection of proper subsets (of \mathbb{P}^n) itself is a proper subset (of \mathbb{P}^n). Then $P_i = P_i^{\star\star} \notin P^{\star}$. Here we use Corollary4.1.58 a few times together with the fact that \mathbb{P}^n is an infinite set for $n \geq 1$. It should be noted that one can deduce the fact from more simple principles.

4.2 Multiprojective Algebraic Sets & Multiprojective Varieties

4.2.1 Basic Definitions

Definition 4.2.1. Let $S \subset K[x_{ij} : i \in \{1, ..., m\}, j \in \{1, ..., n_i + 1\}, n_i \geq 1]$. We define the *multiprojective vanishing set* S to be

$$V^{\text{mulP}}(S) := V(S) := \{([v_1], \dots, [v_m]) \in \mathbb{P}^{n_1} \times \dots \times \mathbb{P}^{n_m} : f([v_1], \dots, [v_m]) = 0 \text{ for all } f \in S\}.$$

A set $X \subset \mathbb{P}^{n_1} \times \cdots \mathbb{P}^{n_m}$ is called a *(multiprojective) algebraic set* if it the multiprojective vanishing set of some subset of $K[\mathbf{x}]$. X is a *(multiprojective) hypersurface* if X = V(F) for some m-homogeneous $F \in K[\mathbf{x}]$. If deg F = 1 it is called a *(multiprojective) hyperplane*.

Remark 4.2.2. By Lemma 1.9.124 we may assume that any multiprojective algebraic set may be written as the multiprojective vanishing set of some m-homogeneous ideal, i.e. as the multiprojective vanishing set of a finite set of m-forms. The system of multiprojective algebraic sets form the Zariski topology on $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$ with $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m} = V^{\text{mulP}}(0)$ and $\emptyset = V^{\text{mulP}}(K[\mathbf{x}])$. Vanishing sets interact with \subset as expected.

Definition 4.2.3. Let $X \subset \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$. We define *the ideal of X* to be

$$I^{\text{mulP}}(X) \coloneqq I(X) \coloneqq \{ f \in K[\mathbf{x_1}, \dots, \mathbf{x_m}] : f([v_1], \dots, [v_m]) = 0 \text{ for every } ([v_1], \dots, [v_m]) \in X \} \ .$$

Remark 4.2.4. $I^{\text{mulP}}(X)$ is an m-homogeneous ideal. The interactions of $I^{\text{mulP}}(\bullet)$ with \subset and $V^{\text{mulP}}(\bullet)$ are as expected.

Definition 4.2.5. An algebraic set $X \subset \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$ is called *reducible* if there a proper algebraic subsets of X, Y, Z say, such that $X = Y \cup Z$. If an algebraic set $V \subset \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$ is not reducible, it is called *irreducible* or is said to be a *multiprojective* variety.

Remark 4.2.6. As expected any multiprojective set has a unique decomposition into multiprojective varieties. An algebraic set V is a variety if and only if $I^{\text{mulP}}(V)$ is prime.

Definition 4.2.7. For a variety $V \subset \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$ we define the cone of V to be

$$C(V) := \{(v_1, \dots, v_m) \in \mathbb{A}^{n_1+1} \times \dots \times \mathbb{A}^{n_m+1} : ([v_1], \dots, [v_m]) \in V \text{ or } v_i = 0\}$$

Remark 4.2.8. Lemmas 4.1.20 and 4.1.21 are easily generalizable to the multiprojective case.

There is a natural way of "embedding" a projective algebraic set $V \subset \mathbb{P}^{n_i}$ in $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$ by considering

$$\mathbb{P}^{n_1} \times \cdots \mathbb{P}^{n_{i-1}} \times V \times \mathbb{P}^{n_{i+1}} \times \cdots \mathbb{P}^{n_m}$$
.

We do find that if $V = V^{\mathbb{P}}(I)$, then $\mathbb{P}^{n_1} \times \cdots \mathbb{P}^{n_{i-1}} \times V \times \mathbb{P}^{n_{i+1}} \times \cdots \mathbb{P}^{n_m} = V^{\text{mulP}}(I)$. In general, given $V_i = V(I_i) \subset \mathbb{P}^{n_i}$ algebraic sets, we have that

$$V^{\text{mul}\mathbb{P}}(\langle \bigcup I_i \rangle) = V_1 \times \cdots \times V_m \subset \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}.$$

Lemma 4.2.9. Let I be an m-homogeneous ideal in $K[\mathbf{x_1}, \dots, \mathbf{x_m}]$. The following are equivalent.

- 1. $V^{\text{mul}\mathbb{P}}(I) = \emptyset$.
- 2. $V^{\mathbb{A}}(I) \subset \{0\}.$
- 3. $rad(I) = I^{\mathbb{A}}(V^{\mathbb{A}}(I)) \supset \langle \mathbf{x_1}, \dots \mathbf{x_m} \rangle.$
- 4. $\langle \mathbf{x_1}, \dots \mathbf{x_m} \rangle^D \supset I$ for a suitable large $D \geq 0$.

Proof. The proof is the same as the singly projective version using proper generalizations of the results involved \Box

Theorem 4.2.10. Let $I \subset K[\mathbf{x_1}, \dots, \mathbf{x_m}]$ be an m-homogeneous ideal. Then

- 1. $V^{mulP}(I) = \emptyset$ if and only if $\langle \mathbf{x_1}, \dots, \mathbf{x_m} \rangle^D \subset I$ for some $D \geq 0$.
- $2. \ \ \textit{If} \ V^{\text{mulP}}(I) \neq \emptyset, \ \textit{then} \ I^{\text{mulP}}(V^{\text{mulP}}(I)) = \text{rad}(I).$

Proof. 1. follows from the prior lemma. 2. follows from the generalizations of the results about cones. \Box

Definition 4.2.11. We define the *multiprojective coordinate ring of a variety* V to be the integral domain.

$$\Gamma^m(V) := K[\mathbf{x_1}, \dots, \mathbf{x_m}]/I^{\mathrm{mulP}}(V)$$

We set $K^b(V) := Q(\Gamma^m(V))$. We define the function field of V to be

$$K(V) := \left\{ z \in K^b(V) : z = \frac{f}{g} \text{ for suitable } m\text{-forms } f, g \in \Gamma^m(V) \right\}.$$

We say for an element $z \in K(V)$ and a point $P \in \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$ that z is defined at P if there are m-forms of the same m-degree, $\alpha, \beta \in \Gamma^m(V)$, such that $z = \frac{\alpha}{\beta}$ and P is not a zero of β . We define the local ring of V at P to be

$$\mathcal{O}_P(V) = \{ z \in K(V) : z \text{ defined at } P \}$$

Remark 4.2.12. Suppose $z = \frac{\alpha}{\beta} \in K(V)$. Then for a $P = ([v_1], \dots, [v_m]) \in \mathbb{P}^{n_1} \times \dots \times \mathbb{P}^{n_m}$ with $\beta(v_1, \dots, v_n) \neq 0$. We have for each $\lambda_1, \dots, \lambda_m \in K \setminus 0$ that

$$\frac{\alpha(\lambda_1 v_1, \dots, \lambda_m v_m)}{\beta(\lambda_1 v_1, \dots, \lambda_m v_m)} = \frac{\prod_{i=1}^{m} \lambda_i^{d_i}}{\prod_{i=1}^{m} \lambda_i^{d_i}} \frac{\alpha(v_1, \dots, v_m)}{\beta(v_1, \dots, v_m)} = \frac{\alpha(v_1, \dots, v_m)}{\beta(v_1, \dots, v_m)}.$$

Hence we get a well-defined evaluation at P of multiprojective rational functions defined at P, given by $\mathcal{O}_P(V) \ni \frac{\alpha}{\beta} \mapsto \frac{\alpha(v_1, \dots, v_m)}{\beta(v_1, \dots, v_m)}$.

Definition 4.2.13. For $(i_1, ..., i_m)$, define

$$\varphi_{i_1,\dots,i_m}: \mathbb{A}^{n_1} \times \dots \times \mathbb{A}^{n_m} \to U_{i_1} \times \dots \times U_{i_m} \subset \mathbb{P}^{n_1} \times \dots \times \mathbb{P}^{n_m}$$

$$(v_1,\dots,v_m) \mapsto ([v_{11},\dots,v_{1,i_1-1},1,v_{1,i_1+1},\dots,v_{1n_1}],\dots,[v_{m1},\dots,v_{m,i_m-1},1,v_{m,i_m+1},\dots,v_{mn_m}])$$

Remark 4.2.14. In this way we identify $U_{i_1} \times \cdots \times U_{i_m}$ with $\mathbb{A}^{n_1} \times \cdots \times \mathbb{A}^{n_m}$.

Definition 4.2.15. The *multiprojective closure* of an affine algebraic set $V = V(I) \subset \mathbb{A}^{n_1} \times \cdots \times \mathbb{A}^{n_m}$ is the set

$$V^* := V(I^*)$$

where for an $f \in K[x_{ij}: i \in \{1, ..., m\}, j \in \{1, ..., n_i\}]$, f^* denotes polynomial obtained from the following recursive process: set $f_0 = f$ and $f_{i+1} = f_i^*$ where $f_i \in K[\mathbf{x_1}, ..., \widehat{\mathbf{x_i}}, ..., \mathbf{x_m}, x_{n_1+1}, ..., x_{n_{i-1}+1}][\mathbf{x_i}]$ for $i \in \{1, ..., m\}$. We therefor define $I^* := \langle \{f^*: f \in I\} \rangle$.

For a polynomial $f \in K[x_{ij} : i \in \{1, ..., m\}, j \in \{1, ..., n_i + 1\}]$ we define f_* to be the image of f under the evaluation map taking x_{i,n_i+1} to 1 and x_{ij} to x_{ij} for every other pair of indices.

Lemma 4.2.16. Let $V = V(I), W = V(J) \subset \mathbb{A}^{n_1} \times \cdots \times \mathbb{A}^{n_m}$, $X, Y \subset \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$ be algebraic sets. We have the following results:

1.
$$\varphi_{n_1+1,...,n_m+1}(V) = V^* \cap U_{n_1+1} \times \cdots \times U_{n_m+1}$$
 and $(V^*)_* = V$, $(X_*)^* \subset X$.

- 2. If $V \subset W$, then $V^* \subset W^*$. If $X \subset Y \subset$, then $X_* \subset Y_*$.
- 3. If V is a variety so is V^* .
- 4. $V^* = \overline{\varphi_{n_1+1,\ldots,n_m+1}(V)}$, where $\overline{\bullet}$ is the Zariski-closure in $\mathbb{P}^{n_1} \times \cdots \mathbb{P}^{n_m}$.
- 5. If $\bigcup_{i=1}^{k} V_i$ is the decomposition of V into affine varieties, then $\bigcup_{i=1}^{k} V_i^*$ is the decomposition of V^* into projective varieties.
- 6. If $\emptyset \neq V \subsetneq \mathbb{A}^n$, then no component is contained in or contains $\mathbb{P}^{n_1} \times \cdots \mathbb{P}^{n_{i-1}} \times H^i_{\infty} \times \mathbb{P}^{n_{i+1}} \times \cdots \times \mathbb{P}^{n_m}$ for each i where $H^i_{\infty} := V^{\mathbb{P}}(x_{i,n_i+1})$.
- 7. If $X \subset \mathbb{P}^n$ is an algebraic set lies not in or is contained in any $\mathbb{P}^{n_1} \times \cdots \mathbb{P}^{n_{i-1}} \times H^i_{\infty} \times \mathbb{P}^{n_{i+1}} \times \cdots \times \mathbb{P}^{n_m}$ for each i, then $X_* \subseteq \mathbb{A}^n$ and $(X_*)^* = X$.

Proof. 1. If $f \in I^a st$, then $f(\varphi_{n_1+1,\dots,n_m+1}(v_1,\dots,v_m)) = f([v_1,1],\dots,[v_m,1]) = f_*(v_1,\dots,v_m) = 0$ for every $\varphi(v_1,\dots,v_m) \in \varphi_{n_1+1,\dots,n_m+1}(V)$. Conversely if $v \in V^* \cap U_{n_1+1} \times \dots \times U_{n_m+1}$. Then for a $f \in I$, $f(v_1,\dots,v_m) = f^*([v_1,1],\dots,[v_m,1]) = 0$, hence $v = \varphi(v_1,\dots,v_m)$. It is fairly obvious that $(I^*)_*$, hence the second equality follows. Similarly $f = \left[\prod_{1}^m x_{n_i+1}^{r_i}\right](f_*)^*$, hence we get the inclusion of $(X_*)^*$ in X.

- 2. 5. follow from the exact same arguments using the proper generalizations.
- 6. Let C be a component of V. Then $\emptyset \neq C \subsetneq \mathbb{A}^{n_1} \times \cdots \times \mathbb{A}^{n_m}$. Then $C^* \cap U_{n_1+1} \times \cdots \times U_{n_m+1} = \varphi_{n_1+1,\dots,n_m+1}(C) \neq \emptyset$. Suppose $\emptyset \neq B \subset \mathbb{A}^n$ is algebraic such that $B^* \supset \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_{i-1}} \times H^i_{\infty} \times \mathbb{P}^{n_{i+1}} \times \cdots \times \mathbb{P}^{n_m}$ for some i. Then $I(B)^* \subset I(B^*) \subset \langle x_{n_i+1} \rangle$ by the generalization of PNS. Let $f \in I(B) \subset K[\mathbf{y_j}: j \neq i][\mathbf{y_i}]$. Then $f^*([v_i, 0]) = 0$ for every $v_i \in \mathbb{A}^{n_i}$. Suppose d_i was the $\mathbf{y_i}$ -degree of f. Writing $f = f_{d_i} + \sum_{j \leq d_i} f_j$, we see that

$$f^* = f_{d_i} + \sum_{j \le d_i} x_{n_i+1}^{d_i-j} f_j.$$

The vanishing condition on f^* , hence corresponds to $f_{d_i} = 0$, implying I(B) = 0, meaning $B = \mathbb{A}^{n_1} \times \cdots \times \mathbb{A}^{n_m}$. We therefor conclude that $V \not\supset \mathbb{P}^{n_1} \times \cdots \mathbb{P}^{n_{i-1}} \times H_\infty^i \times \mathbb{P}^{n_{i+1}} \times \cdots \times \mathbb{P}^{n_{i+1}}$. The case $X_* = \mathbb{A}^{n_1} \times \cdots \times \mathbb{A}^{n_m}$ is trivially not possible under the assumptions. We thus have that $X_* \subsetneq \mathbb{A}^{n_1} \times \cdots \times \mathbb{A}^{n_m}$. Let $Z = V^{\text{mull}}(a)$ be a component of X. Then Z lies not in $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_{i-1}} \times H_\infty^i \times \mathbb{P}^{n_{i+1}} \times \cdots \times \mathbb{P}^{n_m}$ for any i. It is sufficient to prove that $Z \subset (Z_*)^*$ and therefor sufficient to check that $I(Z) \supset I(Z_*)^*$ in $K[\mathbf{x_1}, \dots, \widehat{\mathbf{x_i}}, \dots, \mathbf{x_m}][\mathbf{x_i}]$. For an $f \in I(Z_*)$ we utilize the generalization of PNS to get that for suitably large $N \geq 0$, and for suitable $r, x_{n_i+1}^r(f^N)^* \in I(Z)$, using the fact that $x_{n_i+1} \notin I(Z)$ and that Z is irreducible we get that $f^* \in I(Z)$.

Lemma 4.2.17. Let $V \subset W \subset \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$ be multiprojective varieties such that $V = V^{\text{mulP}}(f)$ for some m-form f. Then V = W or $W = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$. It follows that if $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_{i-1}} \times H^i_{\infty} \times \mathbb{P}^{n_{i+1}} \times \cdots \times \mathbb{P}^{n_m} \subset W \subset \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$, then $W = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_{i-1}} \times H^i_{\infty} \times \mathbb{P}^{n_{i+1}} \times \cdots \times \mathbb{P}^{n_m}$ or $W = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$

Proof. The proof of the first statement is identical to the projective case, the second statement immediately follows from the first due to $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_{i-1}} \times H^i_{\infty} \times \mathbb{P}^{n_{i+1}} \times \cdots \times \mathbb{P}^{n_m} = V(x_{i,n_{i+1}}).$

4.2.2 Algebraic Geometry in Multispaces

We extend the theory to so-called *multispaces* which are defined to be $\mathbb{A}^n \times \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$ for $n, n_1, \ldots, n_m \geq 1$ with the convention that \mathbb{A}^0 is a point.

Definition 4.2.18. We say that a point $P = (v, [v_1], \dots, [v_m]) \in \mathbb{A}^n \times \mathbb{P}^{n_1} \times \dots \times \mathbb{P}^{n_m}$ is a *zero* of a polynomial $f \in K[x_1, \dots, x_n, \mathbf{y_1}, \dots, \mathbf{y_m}]$. If for every $\lambda_1, \dots, \lambda_m \in K \setminus 0$

$$f(v, \lambda_1 v_1, \dots, \lambda_m v_m) = 0$$

and we write f(P) = 0.

Remark 4.2.19. If $f \in K[x_1, \dots, x_n][\mathbf{y_1}, \dots, \mathbf{y_m}]$ is an m-form, then if $(v, v_1, \dots, v_m) \in \mathbb{A}^n \times \mathbb{A}^{n_1+1} \times \cdots \mathbb{A}^{n_m+1}$ is a zero of f so is $(v, [v_1], \dots, [v_m]) \in \mathbb{A}^n \times \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$.

Definition 4.2.20. Let $S \subset K[x_1, \ldots, x_n, \mathbf{y_1}, \ldots, \mathbf{y_m}]$. We define the *vanishing set of* S in multispace to be

$$V(S) := \{ P \in \mathbb{A}^n \times \mathbb{P}^{n_1} \times \dots \times \mathbb{P}^{n_m} : \forall f \in S, f(P) = 0 \}.$$

A subset X in a multispace is said to be *algebraic* if it is the vanishing set of such an S

Remark 4.2.21. Again it is readily verifiable $V(S) = V(\langle S \rangle)$. By Lemma 1.9.124 we may therefor assume that any algebraic set is the vanishing set of some ideal $I \subset K[\mathbf{x}, \mathbf{y_1}, \dots, \mathbf{y_m}]$ such that $I \subset K[\mathbf{x}][\mathbf{y_1}, \dots, \mathbf{y_m}]$ is m-homogeneous. Hence we may assume that an algebraic set arises as the vanishing set of $f_1, \dots, f_l \in K[\mathbf{x}, \mathbf{y_1}, \dots, \mathbf{y_m}]$ such that when seen as elements of $K[\mathbf{x}][\mathbf{y_1}, \dots, \mathbf{y_m}]$ these are m-forms. The algebraic sets define closed sets in a Zariski topology on multispaces and interacts with C as expected. This therefor lays the ground for a natural generalization of the affine and multiprojective (therefor also projective) theory we have already developed.

To completely reconcile the above claim of generalization we also introduce the ideal of subsets of multispace.

Definition 4.2.22. Let $X \subset \mathbb{A}^n \times \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$. The *ideal of* X is the ideal

$$I(X) = \{ f \in K[\mathbf{x}, \mathbf{y_1}, \dots, \mathbf{y_m}] : \forall P \in X, f(P) = 0 \}.$$

Remark 4.2.23. If X is algebraic, then $I(X) \subset K[\mathbf{x}][\mathbf{y_1}, \dots, \mathbf{y_m}]$ is m-homogeneous. $I(\bullet)$ interacts with $V(\bullet)$ and \subset in the way one expects.

Definition 4.2.24. An algebraic set in multispace is *reducible* if it is the union of two proper algebraic subsets. An algebraic that is not reducible is called *irreducible* and is a *variety*.

Remark 4.2.25. An algebraic subset of multispace is a variety if and only if the ideal of the subset is prime. There is a unique decomposition of an algebraic set in multispace into a union of varieties that are not subsets of each other.

We could define the cone of a algebraic set in multispace and write generalizations of proper lemmas to prove. Things to check!

Theorem 4.2.26. Let $I \subset K[\mathbf{x}][\mathbf{y_1}, \dots, \mathbf{y_m}]$ be m-homogeneous. Then $I(V(I)) = \operatorname{rad}(I)$.

Definition 4.2.27. For (i_1, \ldots, i_m) we define

$$\varphi_{i_1,\dots,i_m}: \mathbb{A}^n \times \mathbb{A}^{n_1} \times \dots \times \mathbb{A}^{n_m} \to \mathbb{A}^n \times U_{i_1} \times \dots \times U_{i_m}$$
$$(v, v_1, \dots, v_m) \mapsto (v, \varphi_{i_1,\dots,i_m}(v_1, \dots, v_m))$$

We homogenize an element f in $K[\mathbf{x}, \mathbf{y_1}, \dots, \mathbf{y_m}]$ by homogenizing f with respect to each set of the y-variables which we denote f^* . We homogenize an ideal in the obvious way and take the projective closure in the obvious way.

Remark 4.2.28. A generalization of Proposition 4.2.16 goes through. The addition of an affine coordinates changes nothing in the approach of the proof. The conditions in 6. and 7. of this result should be given in terms of $\mathbb{A}^n \times \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_{i-1}} \times H^i_\infty \times \mathbb{P}^{n_{i+1}} \times \cdots \times \mathbb{P}^{n_m}$. What we obtain from this result is, given a variety $V \subset \mathbb{A}^n \times \mathbb{A}^{n_1} \times \cdots \times \mathbb{A}^{n_m}$, V^* defines a variety in $\mathbb{A}^n \times \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$ which is neither contained or contains $V(x_{n_i+1})$ for any i. If $V = \mathbb{A}^n \times \mathbb{A}^{n_1} \times \cdots \times \mathbb{A}^{n_m}$ then $V^* = \mathbb{A}^n \times \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$. Conversely given a variety $Z \subsetneq \mathbb{A}^n \times \mathbb{P}^{n_1} \times \mathbb{P}^{n_m}$ satisfying the conditions of 7. we get that X_* is a non-empty variety, not equal to $\mathbb{A}^n \times \mathbb{A}^{n_1} \times \cdots \times \mathbb{A}^{n_m}$, and if $X = \mathbb{A}^n \times \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$, then $X_* = \mathbb{A}^n \times \mathbb{A}^{n_1} \times \cdots \times \mathbb{A}^{n_m}$. The maps \bullet^* and \bullet_* are mutual inverses under the restrictions of 6. and 7. Hence we get a one-to-one correspondence between non-empty varieties in $\mathbb{A}^n \times \mathbb{A}^{n_1} \times \cdots \times \mathbb{A}^{n_m}$ and varieties in $\mathbb{A}^n \times \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$ intersecting $\mathbb{A}^n \times U_{n_1+1} \times \cdots \times U_{n_m+1}$.

Definition 4.2.29. Let V be a variety in multispace. We define the *coordinate ring of* V to be

$$\Gamma(V) := K[\mathbf{x}, \mathbf{y_1}, \dots, \mathbf{y_m}]/I(V).$$

Define the ring of ration functions on V to be

$$K(V) := \left\{ z = \frac{\alpha}{\beta} \in Q(\Gamma(V)) : \alpha, \beta \text{ are } m\text{-forms of the same degree} \right\}.$$

In the above we view $I(V) \subset K[\mathbf{x}][\mathbf{y_1}, \dots, \mathbf{y_m}]$, hence we identify $Q(\Gamma(V))$ with $Q(K[\mathbf{x}][\mathbf{y_1}, \dots, \mathbf{y_m}]/I(V))$.

The coordinate ring is an integral domain an K(V) is a field. These are generalizations of the affine/projective/multiprojective cases. Given a point $P=(v,[v_1],\ldots,[v_m])\in V\subset \mathbb{A}^n\times\mathbb{P}^{n_1}\times\cdots\times\mathbb{P}^{n_m}$ where V is a variety and a rational function $\frac{\alpha}{\beta}\in K(V)$, where P is not a zero of β . Then for every $\lambda_1,\ldots,\lambda_m\in K\setminus 0$

$$\frac{\alpha(v, \lambda_1 v_1, \dots, \lambda_m v_m)}{\beta(v, \lambda_1 v_1, \dots, \lambda_m v_m)} = \frac{\alpha(v, v_1, \dots, v_m)}{\beta(v, v_1, \dots, v_m)}$$

A rational function on V is defined at P if it has a representation where the denominator does not vanish on P. The local ring of such functions is denoted $\mathcal{O}_P(V)$. The pole set of a rational function on V, ϕ ; i.e. the set of points in V on which ϕ is not defined is denoted $\mathcal{P}(\phi)$.

Remark 4.2.30. (cf. Remark 4.1.66) Consider $V = \mathbb{A}^n \times \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$. Then

$$\Gamma(V)/\langle y_{n_1+1}-1,\ldots,y_{n_m+1}-1\rangle \to \Gamma(V_*), f+\langle y_{n_1+1}-1,\ldots,y_{n_m+1}-1\rangle \mapsto f_*.$$

One sees that

$$K(V) \simeq Q(\Gamma(V)/\langle y_{n_1+1}-1,\ldots,y_{n_m+1}-1\rangle) \simeq K(V_*)$$

defines an isomorphism. When V does not contain or is not contained in $V_{y_{n_i+1}}$ for some i, then

$$\Gamma(V) \to \Gamma(V_*), f + I(V) \mapsto f_* + I(V_*),$$

defines an isomorphism. From this we get that $x_{n+1} + I(V) = 1 + I(V)$, and hence that

$$K(V) = Q(\Gamma(V)) \simeq Q(\Gamma(V_*)) = K(V_*).$$

In any case it is clear to see that if $\alpha(P) \neq 0$ for some $P = (v, [v_1, 1], \dots, [v_m, 1]) \in V \subset \mathbb{A}^n \times U_{n_1+1} \times \dots \times U_{n_m+1}$, then $0 \neq \alpha(P) = \alpha_*(v, v_1, \dots, v_m)$, hence $\mathcal{O}_P(V) \simeq \mathcal{O}_{(v, v_1, \dots, v_m)}(V)$.

Remark 4.2.31. The pole set of a rational function $\phi \in K(V)$ is an algebraic set. Indeed, $J_{\phi} := \{g \in K[\mathbf{x}][\mathbf{y_1}, \dots, \mathbf{y_m}] : (g + I(V))\phi \in \Gamma(V)\}$ is a m-homogeneous such that $\mathcal{P}(\phi) = V(J_{\phi})$.

Definition 4.2.32. We define the *Segre embedding* of $\mathbb{P}^{n_1} \times \mathbb{P}^{n_2}$ to be the map

$$S_{n_1n_2} := S : \mathbb{P}^{n_1} \times \mathbb{P}^{n_2} \to \mathbb{P}^{n_1+n_2+n_1n_2}$$

$$([v_1], [v_2]) \mapsto [v_{11}v_{21}, \dots, v_{11}v_{2,n_2+1}, \dots, v_{1,n_1+1}v_{21}, \dots, v_{1,n_1+1}v_{2,n_2+1}]$$

Remark 4.2.33. This map is well-defined. First of all $\#\{(i,j): 1 \leq i \leq n_1+1, 1 \leq j \leq n_2+1\} = (n_1+1)(n_2+1) = n_1n_2+n_1+n_2+1$ and for some pair $(i,j), v_{1i} \neq 0 \neq v_{2j}$, hence the image of S is within the assigned co-domain. Secondly, if $(v_1,v_2) = (\lambda_1v_1,\lambda_2v_2)$ for some $\lambda_1,\lambda_2 \in K \setminus 0$, then for each $\lambda \in K \setminus 0$,

$$(\lambda \lambda_1 \lambda_2 v_{1i} v_{2j}) = \lambda \lambda_1 \lambda_2 (v_{1i} v_{2j}),$$

hence S is well-defined. Note also that if $v_{1i}v_{2i} = \lambda v_{1i}v_{2j}$ for a pair (i, j) with $v_{1i}, v_{2j} \neq 0$, then $v_{1i} = \lambda v_{1i}$ and $v_{2j} = \lambda v_{2j}$ which implies the map is injective.

Lemma 4.2.34. Let $n_1, n_2 \ge 1$, and $W = V(f_1, ..., f_m) \subset \mathbb{P}^{n_1 + n_2 + n_1 n_2}$ be a variety. Define

$$g_i := f_i(x_{11}x_{21}, \dots, x_{11}x_{2,n_2+1}, \dots, x_{1,n_1+1}x_{21}, \dots, x_{1,n_1+1}x_{2,n_2+1}),$$

which are polynomials in $K[\mathbf{x_1}, \mathbf{x_2}]$. Then

$$S^{-1}(W) = V(g_1, g_2, \dots, g_m).$$

Proof. Indeed, substituting v into g_i is the same as substituting S(v) into f_i , hence

$$v \in S^{-1}(W) \iff g_i(v) = f_i(S(v)) = 0 \iff v \in V(g_1, \dots, g_m).$$

Lemma 4.2.35. Set $V := V(\{y_{ij}y_{kl} - y_{il}y_{kj} : i, k \in \{1, ..., n_1 + 1\}, j, l \in \{1, ..., n_2 + 1\}\})$. Then $S(\mathbb{P}^{n_1} \times \mathbb{P}^{n_2}) = V$, $S(U_i \times U_j) = V \cap U_{ij}$ and V is a variety.

Proof. Let $S(v) \in S(\mathbb{P}^{n_1} \times \mathbb{P}^{n_2})$. Then

$$ev_{S(v)}(y_{ij}y_{kl} - y_{il}y_{kj}) = v_{1i}v_{2j}v_{1k}v_{2l} - v_{1i}v_{2l}v_{1k}v_{2j} = 0.$$

Conversely, if $v \in V$, then $v_{ij}v_{kl} = v_{il}v_{kj}$. For some pair $k, l, v_{kl} \neq 0$. Then for any $(i, j) \neq (k, l)$,

$$v_{ij} = (v_{il}v_{kj})/v_{kl}$$

280

. Define $w_{1i} = v_{il}/v_{kl}$ and $w_{2j} = v_{kj}/v_{kl}$. Define $w_1 = (w_{11}, \dots, w_{1,n_1+1})$ and $w_2 = (w_{21}, \dots, w_{2,n_2+1})$. Consider $\overline{S} : \mathbb{A}^{n_1} \setminus 0 \times \mathbb{A}^{n_2} \setminus 0 \to \mathbb{A}^{n_1+n_2+n_1n_2} \setminus 0, (u_1, u_2) \mapsto (u_{1i}u_{2j})$. Then

$$\overline{S}(w_1, w_2)_{ij} = w_{1i}w_{2j} = v_{il}v_{kj}/v_{kl} = v_{ij} \implies S([w_1], [w_2]) = [\overline{S}(w_1, w_2)] = [v].$$

In particular if $([v_1], [v_2]) \in U_i \times U_j$, then

$$\overline{S}(v_1, v_2)_{ij} = v_{1i}v_{2j} \neq 0 \implies S([v_1], [v_2]) = [\overline{S}(v_1, v_2)] \in U_{ij}.$$

Suppose $V = V_1 \cup V_2$ is a decomposition of V. Then

$$S^{-1}(V_1) \cup S^{-1}(V_2) = S^{-1}(V_1 \cup V_2) = S^{-1}(V) = S^{-1}(S(\mathbb{P}^{n_1} \times \mathbb{P}^{n_2})) = \mathbb{P}^{n_1} \times \mathbb{P}^{n_2}$$

is a decomposition of $\mathbb{P}^{n_1} \times \mathbb{P}^{n_2}$, meaning $S^{-1}(V_i) = \mathbb{P}^{n_1} \times \mathbb{P}^{n_2}$ for some i, hence $V_i = V$ for some i.

4.3 Projective Plane Curves

4.3.1 Definitions and Basic Results

Definition 4.3.1. We say that two non-constant forms $F, G \in K[x, y, z]$ are equivalent if there is a $\lambda \in K \setminus 0$ such that $G = \lambda F$. In this case we write $F \sim G$. An element of $\{F \in V_K(d,3) : d \geq 1\}/\sim$ is called a *projective plane curve*. The *degree* of a curve is just the degree of a representative of curve.

Remark 4.3.2. Every non-trivial algebraic set is characterized by such curves. Consider the factors of F, F_1, \ldots, F_m , Then $I(V(F)) = F_1 \cdots F_m$, we thus (as in the affine case) lose information about multiplicities. We call these factors *components*. For an irreducible f, V(f) is irreducible. There is a one-to-one correspondence between projective varieties in \mathbb{P}^2 and irreducible projective plane curves f. We define $\Gamma(F) := \Gamma^h(V(F))$, K(F) := K(V(F)), for a point $P \in F$, $\mathcal{O}_P(F) := \mathcal{O}_P(V(F))$, when F is irreducible. If $P = [v, w, 1] \in U_3$ then V(F) does not contain, and is not contained in L_∞ , hence $\mathcal{O}_P(F) \simeq \mathcal{O}_{(v,w)}(F_*)$, since if $\frac{\beta}{\alpha} \in K(F)$, then P is a zero of α if and only if $\alpha_*(v,w) = 0$. We thus find that the isomorphism, $\Gamma(F) \simeq \Gamma(F_*)$ extends to an isomorphism $\mathcal{O}_P(F) \simeq \mathcal{O}_{(v,w)}(F_*)$. This result is obviously also true for U_1, U_2 with $F_{*,1}, F_{*,2}$. The upshot of this is that the results of 3.4.2 carries over to projective curves. Thus upon, for an arbitrary curve F, $P \in U_i$, i = 1, 2, 3 we define $m_P(F) := m_{(v_k,v_l)}(F_{*,i})$, $k, l \neq i$ which will only depend the local ring of each component of F (with multiplicity) by Corollary 1.9.111. This definition is independent of choice of U_i . Indeed for a component C passing through

 $P = [v_1, v_2, v_3] \in U_i \cap U_j$. Then $L_{\infty,k} = \{[w_1, w_2, w_3] \in \mathbb{P}^3 : w_k = 0\}$ is not contained in and does not contain C. Then $\mathcal{O}_{(v_k, v_h)}(C_{*,i}) \simeq \mathcal{O}_P(C) \simeq \mathcal{O}_{(v_l, v_m)}(C_{*,j})$ for $k, h \neq i$, $l, m \neq j$. From this point we therefor let \bullet_* denote dehomogenization with respect to the appropriate variable. The multiplicity is also invariant under a projective change of coordinates. Let $\varphi = (l_1, l_2, l_3)$ be a projective change of coordinates. Then

$$\mathcal{O}_{\varphi^{-1}(P)}(C(\varphi_1, \varphi_2, \varphi_3)) \simeq \mathcal{O}_P(C).$$

We say that a point on F is simple if $m_P(F) = 1$ and multiple if $m_P(F) > 1$.

Lemma 4.3.3. Let F be a projective plane curve and $P \in F$. Then P is a multiple point of F if and only if $F_x(P) = F_y(P) = F_z(P) = 0$

Proof. WLOG $P = [v_1, v_2, 1] \in U_3$, since multiplying with z commutes with $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}$,

$$(F_x)_* = (F_*)_x$$
 and $(F_y)_* = (F_*)_y$.

Using Euler's formula we get (in any characteristic)

$$dF = xF_x + yF_y + zF_z$$
.

" \Longrightarrow ": If P is a multiple point of F. Then $F_x(P) = (F_x)_*(v_1, v_2) = (F_*)_x(v_1, v_2) = 0$ and $F_y(P) = (F_y)_*(v_1, v_2) = (F_*)_y(v_1, v_2) = 0$. Then

$$0 = dF(P) = v_1 F_x(P) + v_2 F_y(P) + F_z(P) = F_z(P).$$

(Note that morally in the above, we take evaluation in P to evaluation in an arbitrary representative of P).

"
$$\Leftarrow$$
 ": We get that $(F_*)_x(v_1, v_2) = F_x(P) = 0$ and $(F_*)_y(v_1, v_2) = F_y(P) = 0$. It follows that $m_P(F) = m_{(v_1, v_2)}(F_*) > 1$.

Definition 4.3.4. Let F be a projective curve and $P_1, \ldots, P_n \in \mathbb{P}^2$ be distinct points. Let L be a line that does pass through these points (cf. Example 4.1.68 2.). We define $F_* = \frac{F}{L^{\deg F}} \in K(\mathbb{P}^2)$.

Remark 4.3.5. 1. Suppose Λ is another line that does not pass through P_1, \ldots, P_n . Then

$$\frac{F}{\Lambda^{\text{deg }F}} = \left(\frac{L}{\Lambda}\right)^d \frac{F}{L^d},$$

and since $L/\Lambda \in K(\mathbb{P}^2)^*$, F_* is unique up to multiplication by a unit.

- 2. After an appropriate projective change of coordinates, φ say. We may arrange that $\varphi(L) = L_{\infty} = z$ is line passing through no $Q_i = \varphi(P_i)$. Hence $Q_1, \ldots, Q_n \in U_3$ are distinct point that L_{∞} does not pass through and $G = F \circ \varphi$ is curve of degree deg F. Therefor, under the identification $K(\mathbb{P}^2) \simeq K(\mathbb{A}^2), \alpha/\beta \mapsto \alpha_*/\beta_*, G_* = G/z^{\deg F} \mapsto G(x,y,1)/1^{\deg F}$, hence in this case \bullet_* is in fact just dehomogenization under the aforementioned identification.
- 3. If F is an irreducible curve, then F_* is irreducible by Corollary 1.9.111. Therefor if P is simple, then $\mathcal{O}_P(F)$ is a DVR. Then we have an order function ord_P^F on $Q(\mathcal{O}_P(F)) = K(F)$.

Definition 4.3.6. Let F be an irreducible projective curve with $P \in F$ a simple point. Consider a form $G \in K[x, y, z]$. We then define $\operatorname{ord}_P^F(G) := \operatorname{ord}_P^F(G_*)$.

Remark 4.3.7. Let H be any form of degree deg G such that $H(P) \neq 0$. Then since $\frac{1}{H+I(F)}$ is unit in $\mathcal{O}_P(F)$, $\operatorname{ord}_P^F(G/H) = \operatorname{ord}_P^F(G)$.

Definition 4.3.8. Let F, G be projective plane curves and $P \in \mathbb{P}^2$. We define the *intersection number of* F *and* G *at* P to be

$$I(P, F \cap G) := \dim \mathcal{O}_P(\mathbb{P}^2)/\langle F_*, G_* \rangle$$

Remark 4.3.9. One should have in mind that we dehomogenize with respect to a non-zero coordinate of P and that the definition is independent of which one we choose (if there is more than one). This has the properties of the affine version (cf. 3.4.3), in 3. however φ should be a projective change of coordinates and in 7. h should be a form of degree deg G – deg F (simply to ensure that g + hf is a form).

Definition 4.3.10. A projective line L is a *tangent* of a curve projective plane F if $I(P, L \cap F) > m_P(F)$. A multiple point $P \in F$ is called *ordinary* if F has $m_P(f)$ distinct tangents at P.

Remark 4.3.11. Let the Q be appropriate affine coordinates that are identified with P under some φ_i . We see that $I(P, L \cap F) > m_P(F)$ if and only if $I(Q, L_* \cap F_*) > m_Q(F_*)$ if and only if L_* is tangent to F_* at Q (cf. Corollary 3.4.57).

Proposition 4.3.12. Let F be a curve at $P \in U_i$ and Q be the identification with P in \mathbb{A}^2 . Then the tangents of F at P are the tangents of F_* at Q.

Proof. Let $F_* = \prod_{i=1}^n l_i^{r_i} + \dots$, where l_1, \dots, l_m are the tangents of F.

$$I(P,l_i\cap F)=I(Q,l_i\cap F_*)>m_Q(F_*)=m_P(F),$$

hence l_i is a tangent of F. Suppose conversely that L is a tangent of F. Then

$$I(Q, L_* \cap F_*) = I(P, L \cap F) > m_P(F) = m_Q(F_*).$$

Note that L_* is a 1-degree polynomial, for otherwise $I(P, L \cap F) \in \{0, \infty\}$. Therefor L_* is a tangent for F_* at Q, hence L_* is a form, meaning $L_* = L$.

Example 4.3.13. 1. Consider the curve $F = xy^4 + yz^4 + xz^4$ over K with characteristic 0. Consider the system of polynomial equations

$$\begin{cases} F = 0 \\ F_x = y^4 + z^4 = 0 \\ F_y = 4xy^3 + z^4 = 0 \\ F_z = 4yz^3 + 4xz^3 = 0 \end{cases}$$

Suppose z=1, then y needs to be a solution to y^4+1 , which we denote by s. Then x has to be a common zero of $4s^3x+1$ and 4s+4x, hence there is no solution in U_3 . If y=1, we find that z=s and again x has to be a common zero of 4x+1 and $4s^3+4xs^3$, which is not possible in characteristic 0. Suppose x=1. Then $4yz^3+4z^3=0$, hence y=-1 or z=0. In the first case $z^4-4=0$, hence $z=\pm 2$, but then $y^2+z^2=5\neq 0$, hence no such solution can exist. If z=0, then $4y^3=0$, hence y=0. Hence in U_1 the only solution is [1,0,0]. Note that $F(1,y,z)=y^4+z^4+yz^4$. Then the lowest degree form of F(1,x,y) at (0,0) is

$$y^4 + z^4 = (y^2 + s^2 z^2)(y^2 - s^2 z^2) = \underbrace{(y + s^3 z)}_{l_1} \underbrace{(y - s^3 z)}_{l_2} \underbrace{(y + sz)}_{l_3} \underbrace{(y - sz)}_{l_3},$$

hence by the prior proposition these are the tangents of F at [1,0,0]. Consider also $F(x-s,y+s,1)=(x-s)(y+s)^4+y+s+x-s=(x-s)(y^4+4sy^3+6s^2y^2)$.

2. Set $F = x^2y^3 + x^2z^3 + y^2z^3$. The multiple points of F are the solution to the system of polynomial equations

$$\begin{cases} F = 0 \\ F_x = 2xy^3 + 2xz^3 = 0 \\ F_y = 3x^2y^2 + 2yz^3 = 0 \\ F_z = 3x^2z^2 + 3y^2z^2 = 0 \end{cases}$$

We first aim to find a solution in U_3 . We identify that (0,0) is a valid solution. Note that x = 0 if and only if y = 0. We investigate whether there can exist others. Suppose $x \neq 0$. Then $2xy^3 + 2x = 0 \iff y^3 = -1$ call any solution to this equation α . Then x must satisfy $3\alpha^2x^2 + 2\alpha = 0$, hence $x^2 = \frac{-2}{3\alpha}$. Call this value β . Note however that

$$\alpha(3\beta^2 + 3\alpha^2) = -2 - 3 = -5 \neq 0.$$

So the only solution is [0,0,1]. In U_2 , [0,1,0] is a solution. again x=0 if and only if z=0. Suppose $x\neq 0$. Then $2x+2xz^3=0$, hence we must have that $z=\alpha$. Then we must have that $3x^2\alpha^2+3\alpha^2=0\iff x^2=-1$. Call any solution of this equation i. Then $-3\alpha^2+2\alpha=0\iff \alpha(-3\alpha+2)=0$, hence [0,1,0] is the only solution. In U_1 we get that [1,0,0] is a solution with $y=0\iff z=0$. We must have that $y^3=-z^3$ and $0=3z^2+3y^2z^2=3z^2(y^2+1)$, hence y=i for a solution with $y\neq 0$ to exist. But then $z^3=-i^3$, hence $0=-3-2ii^3=-3-2=-5\neq 0$, which implies [1,0,0] is the only possible solution.

Note that $F(x,y,1)=x^2y^3+x^2+y^2$, hence the tangents of F at [0,0,1] are (x+iy)(x-iy). Note secondly that $F(x,1,z)=x^2+x^2z^3+z^3$, hence F has x as a double tangent at [0,1,0]. Note lastly $F(1,y,z)=y^3+z^3+y^2z^3$, hence the tangents of F at [1,0,0] are $x+z,2x+(1+i\sqrt{3})z,2x+(1-i\sqrt{3})z$.

3. Consider $F = y^2z - x(x-z)(x-\lambda z) = y^2z - (x^2-xz)(x-\lambda z) = y^2z - x^3 + (z+\lambda z)x^2 - \lambda xz^2$ where $\lambda \in K$. To find multiple points of F in \mathbb{P}^2 we solve the system of polynomial equations

$$\begin{cases} F = 0 \\ F_x = 3x^2 - 2(1+\lambda)zx + \lambda z^2 = 0 \\ F_y = 2yz = 0 \\ F_z = y^2 + (1+\lambda)x^2 + 2\lambda xz = 0 \end{cases}$$

Note that either y=0 or z=0. If z=0, then $3x^2=0$, hence x=0, but then $y^2=0$. Assume z=1, then y=0 and x must be a common zero of $3x^2-2(1+\lambda)x+\lambda$ and $F(x,0,1)=x(x-1)(x-\lambda)$. [0,0,1] is a multiple point if and only if $\lambda=0$, since $F_x(0,0,1)=\lambda$. If x=1

$$F_x(1,0,1) = 1 - \lambda,$$

then [1, 0, 1] is a multiple point if and only if $\lambda = 1$. Similarly, if $x = \lambda$,

$$F(\lambda, 0, 1) = 3\lambda^2 - 2\lambda - 2\lambda^2 + \lambda = \lambda^2 - \lambda = \lambda(\lambda - 1),$$

hence $[\lambda, 0, 1]$ is a multiple point if and only $\lambda = 0$ or $\lambda = 1$. In conclusion, when $\lambda = 0$, [0, 0, 1] is a multiple point, in which case $F(x, y, 1) = y^2 + x^2 - x^3$, hence

the tangents at this point are x+iy and x-iy. When $\lambda=1$, [1,0,1] is a multiple point and $F(x+1,y,1)=y^2-x^2(x+1)=y^2+x^2-x^3$, hence the tangent at this point are x+iy and x-iy as well. For every other value of λ , F is non-singular.

- 4. Consider F = x + y + z. Then $F_x = F_y = F_z = 1$, hence F has no multiple points
- 5. Consider $F = x^n + y^n + z^n$, n > 1, Then $F_x = nx^{n-1}$, $F_y = ny^{n-1}$ and $F_z = nz^{n-1}$, we see that the only solution to $F_x = F_y = F_z = 0$ is x = y = z = 0, hence F has no multiple points.

Example 4.3.14. 1. Let $F = y^2z - x(x-2z)(x+z)$ and $G = y^2 + x^2 - 2xz$. Note that

$$\begin{cases} F_* = y^2 - x^3 + x^2 + 2x \\ G_* = y^2 + x^2 - 2x \end{cases}$$

We check whether there are common zeros of F and G in U_3 . (a,b) is a common zero of F(x,y,1) and G(x,y,1) if and only if a is a zero of $x(x-2)(x+1)-x(x-2)=x(x-2)(x+1-1)=x^2(x-2)$, hence a=0 or a=2 and b=0. The common zeros of F and G in U_3 therefor are $P_1=[0,0,1]$ and $P_2=[2,0,1]$.

$$\begin{split} I(P_1, F \cap G) &= I((0,0), y^2 - x^3 + x^2 + 2x \cap y^2 + x^2 - 2x) = I((0,0), y^2 - x^3 + x^2 + 2x \cap x^3 - 4x) \\ &= I((0,0), y^2 - x^3 + x^2 + 2x, x) + I((0,0), y^2 - x^3 + x^2 + 2x \cap x^3 - 4) \\ &= I((0,0), y^2, x) = 2. \end{split}$$

Secondly, note that

$$\begin{cases} F_*(x+2,y) = y^2 - x(x+2)(x+3) \\ G_*(x+2,y) = y^2 + x(x+2) \end{cases}$$

$$\begin{split} I(P_2,F\cap G) &= I((0,2),F_*\cap G_*) = I((0,0),F_*(x,y+2,1)\cap G(x,y+2,1)) \\ &= I((0,0),y^2-x(x+2)(x+3)\cap y^2+x(x+2)) = I((0,0),y^2\cap y^2+x^2+2x) \\ &= 2I((0,0),y\cap y^2+x^2+2x) = 2. \end{split}$$

Note that $F(x, y, 0) = x^3$ and $G(x, y, 0) = y^2 + x^2$. It thus follows that F and G have no other common zeros.

Definition 4.3.15. Two curves F and G are *projectively equivalent* if there is a projective change of coordinates φ such that $\varphi^{-1}(F) = G$

Remark 4.3.16. Any statement that only depends on local rings of curves will thus be true for any curve in an equivalence class under this equivalence relation. This is useful since we may prove a general statement on projective curves by reducing it to a statement to nicer equivalent curves

Lemma 4.3.17. Let P be a simple point of a projective curve F. Then the tangent of F at P is given by

$$F_x(P)x + F_y(P)y + F_z(P)z$$

Proof. WLOG $P = [0,0,1] \in U_3$. Then then tangent of F at P is equal to the tangent of F_* at (0,0) which is given by $L = (F_x)_*(0,0)x + (F_y)_*(0,0)y$. Set $d := \deg F$. Using Euler's formula

$$0 = dF(P) = F_z(P),$$

hence we find that

$$L = F_x(P)x + F_y(P)y + F_z(P)z.$$

Lemma 4.3.18. Let P be a point on a projective curve F. Then

$$m_P(F_x) \ge m_P(F) - 1.$$

Proof. WLOG P = [0, 0, 1]. Set $m := m_P(F) = m_0(F_*)$. We consider $F_* = F(x, y, 1) = \sum_{m=0}^{d} f_i$. Then

$$(F_*)_x = \sum_{m}^{d} (f_i)_x.$$

If $(f_i)_x = 0$ for every i, then trivially $\infty = m_P(F_x) = m_0((F_*)_x) > m_0(F_*) = m_P(F)$. So let $n \ge m$ be the smallest index such that $(f_n)_x \ne 0$. Then $(f_n)_x$ is a form degree n-1, hence

$$m_P(F_x) = m_0((F_*)_x) = n - 1 \ge m_P(F) - 1$$

Proposition 4.3.19. Any two curves F and G with no common components, have only finitely many points of intersection

Proof. If F and G have no common zeroes, then $gcd(F_{*,i}, G_{*,i}) = 1$, i = 1, 2, 3 by Corollary 1.9.111. Hence

$$\#V(F,G) \le \sum_{1}^{3} \#(V(F,G) \cap U_i) < \infty.$$

It can also be seen from the fact that

$$\sum_{P} I(P, F \cap G) \le \sum_{1}^{3} \sum_{P} I(P, F_{*,i} \cap G_{*_i}) < \infty,$$

by Corollary 3.4.56. □

Proposition 4.3.20. Let F be an irreducible projective curve. F has only finitely many multiple points.

Proof. By proposition 3.4.22, F has only finitely many multiple points in each U_i (note that this proof works in any characteristic).

(Note to self: In Fulton this is marked as an obligatory exercise while the proposition is not. The (I think) intended proof uses the fact that WLOG $F_x \neq 0$ (since F is nonconstant), implying $(F_x)_* \neq 0$ hence $\deg(F_x)_* < \deg(F_*, \operatorname{implying} F_* \nmid (F_x)_*$, hence $\gcd(F_*, (F_x)_*) = 1$, hence $F(P) = F_x(P) = F_y(P) = F_z(P) = 0$ for only finitely many P in each U_i . This ONLY works in characteristic 0. To prove the characteristic p > 0 case, we would apply Lemma 3.4.21 to F in each U_i , before using the char K = 0-argument. This is just to say, I haven't strayed from the books approach in going to the simple two line proof.)

Example 4.3.21. 1. Let C be an irreducible conic; i.e. a projective curve of degree 2. In this example we aim to show that up to projective equivalence $C = yz - x^2$. Suppose P = [0,0,1] is a simple point of C with y as tangent line of C at P. Write $C = ax^2 + by^2 + cz^2 + dxy + exz + fyz$. Then $C_* = ax^2 + by^2 + c + dxy + ex + fy$. Then c = e = 0 and $f \neq 0$, hence $C = ax^2 + by^2 + dxy + fyz$. If a = 0, C is reducible. If $a \neq 0$, it follows from Eisenstein's criterion using y that $C \in K[z,y][x]$ is irreducible. WLOG $C = fyz - (ax^2 + by^2 + dxy)$ with $a, f \neq 0$. Set φ equal to the projective change of coordinates induced by diag $(a^{-1}, f^{-1}, 1)$. Then $C^{\varphi} = yz - x^2 - \alpha y^2 - \beta xy$. Consider then the projective change of coordinates φ induced by

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
\beta & \alpha & 1
\end{pmatrix}$$

Then

$$(C^{\varphi})^{\phi} = y(\beta x + \alpha y + z) - x^2 - \alpha y^2 - \beta xy$$
$$= \beta xy + \alpha y^2 + yz - x^2 - \alpha y^2 - \beta xy = yz - x^2.$$

Given an arbitrary irreducible conic we apply a projective change of coordinates such that it has P as a simple point and y as a tangent line at P to see that it will be projectively equivalent to $F := yz - x^2$. Note that

$$\begin{cases} F_x = 2x \\ F_y = z \\ F_z = y \end{cases}$$

hence any irreducible conic will be non-singular when char $K \neq 2$ and the only common zero of the partial derivatives when char K = 2, is [1,0,0] which is not a zero of F.

2. Consider an irreducible cubic C with a cusp P:=[0,0,1] and tangent y at P. We aim to show that up to projective equivalence an irreducible cubic with a cusp is y^2z-x^3 . Write

$$C = a_{300}x^3 + a_{030}y^3 + a_{003}z^3 + a_{210}x^2y + a_{201}x^2z$$

$$+ a_{120}xy^2 + a_{021}y^2z + a_{102}xz^2 + a_{012}yz^2 + a_{111}xyz$$

Then

$$C_* = a_{300}x^3 + a_{030}y^3 + a_{003} + a_{210}x^2y + a_{201}x^2 + a_{120}xy^2 + a_{021}y^2 + a_{102}x + a_{012}y + a_{111}xy.$$

Then since P is a double point and y is the only tangent of C, we necessarily have that $a_{003} = a_{102} = a_{012} = a_{111} = a_{201} = 0$ and $a_{021} \neq 0$ hence

$$C = ay^{2}z - bx^{3} - cy^{3} - dx^{2}y - exy^{2},$$

where $a \neq 0$. If b = 0, then $y \mid C$, hence $b \neq 0$. Take φ to be the projective change of coordinates induced by

$$\begin{pmatrix} b^{-1} & 0 & 0 \\ 0 & a^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Then $C^{\varphi}=y^2z-x^3-\alpha y^3-\beta x^2y-\gamma xy^2$ Let ϕ be the projective change of coordinates induced by

$$\begin{pmatrix} 1 & -\beta/3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

We thus get that

$$\begin{split} (C^{\varphi})^{\phi} &= y^2 z - (x - \beta/3y)^3 - \alpha y^3 - \beta (x - \beta/3y)^2 y - \gamma (x - \beta/3y) y^2 \\ &= y^2 z - x^3 + \beta x^2 y - \beta^2/3xy^2 + \beta^3/27y^3 - \alpha y^3 - \beta x^2 y - \beta^2/9y^3 + 2\beta/3xy^2 - \gamma xy^2 + \gamma \beta/3y^2 \\ &= y^2 z - x^3 - (\underbrace{\beta^2/3 - 2\beta/3 + \gamma}_A) xy^2 - \underbrace{(-\beta^3/27 + \alpha^3 + \beta^2/9 - \gamma \beta/3)}_B y^3 \end{split}$$

Let ψ be the projective change of coordinates induced by

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ A & B & 1 \end{pmatrix}$$

Then

$$((C^{\varphi})^{\phi})^{\psi} = y^2(Ax + By + z) - x^3 - Axy^2 - By^3 = y^2z - x^3 =: F.$$

Then

$$\begin{cases} F_x = 2x \\ F_y = 2yz \\ F_z = y^2 \end{cases}$$

Then we see that [0,0,1] is a singularity. It is clear that it's the only singularity for char $K \neq 2$. In characteristic 2 another candidate would be $[\alpha,0,\beta]$, $(\alpha,\beta) \neq 0$, but for such a point to be a zero of F, $\beta = 0$. Therefor any irreducible cubic with a cusp has only one multiple point, namely the cusp.

3. Up to projective equivalence there is only one irreducible cubic with a node. Consider an irreducible cubic C with a node (a double point at which there are distinct tangents of the curve) at P := [0, 0, 1] and tangents x and y Write

$$C = a_{300}x^3 + a_{030}y^3 + a_{003}z^3 + a_{210}x^2y + a_{201}x^2z$$
$$+ a_{120}xy^2 + a_{021}y^2z + a_{102}xz^2 + a_{012}yz^2 + a_{111}xyz$$

Then

$$C_* = a_{300}x^3 + a_{030}y^3 + a_{003} + a_{210}x^2y + a_{201}x^2 + a_{120}xy^2 + a_{021}y^2 + a_{102}x + a_{012}y + a_{111}xy.$$

Then $a_{003} = a_{201} = a_{021} = a_{102} = a_{012} = 0$ and $a_{111} \neq 1$. Hence

$$C = axyz - bx^3 - cy^3 - dx^2y - exy^2$$

with $a \neq 0$. If b or c are 0, then $x \mid C$ respectively $y \mid C$, hence $b, c \neq 0$. Changing coordinates by φ induced by $diag(b^{-1}, c^{-1}, a^{-1})$, we get

$$C^{\varphi} = xyz - x^3 - y^3 - \alpha x^2y - \beta xy^2.$$

Let ϕ be the projective change of coordinates induced by

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
\alpha & \beta & 1
\end{pmatrix}$$

Then we find that

$$(C^{\varphi})^{\phi} = xy(z + \alpha x + \beta y) - x^3 - y^3 - \alpha x^2 y - \beta xy^2 = xyz - x^3 - y^3 =: F$$

See that

$$\begin{cases} F_x = yz - 3x^2 \\ F_y = xz - 3y^2 \\ F_z = xy \end{cases}$$

In any characteristic it is true that x = 0 or y = 0, plugging this into F, we see that both x and y have to be 0, hence any irreducible cubic with a node has only the node as a multiple point.

Lemma 4.3.22. Let F be a curve of degree d > 0 passing through Q := [0, 0, 1]. Then

$$\sum_{P} I(P, F \cap x) = d \text{ or } \sum_{P} I(P, F \cap y) = 0$$

Proof. Since F(0,0,1)=0, $F_*=ax^d+by^d+\ldots$ where $a\neq 0$ or $b\neq 0$, then $x\nmid F_*$ or $y\nmid F_*$. Note that F does not pass through $[\alpha,\beta,0]$. Suppose $x\nmid F_*$. It follows from Proposition 3.4.56 that

$$\sum_P I(P,F\cap x) = \sum_{P\in\mathbb{A}^2} I(P,F_*\cap x) = \dim\ K[x,y]/\langle F_*,x\rangle = \dim\ K[y]/\langle F_*(0,y)\rangle = d,$$

where the last equality follows from Lemma 1.9.46.

Remark 4.3.23. Given an arbitrary curve F of degree d and line L not contained in F that intersect at a point Q, we may take a projective change of coordinates taking Q to [0,0,1], L to x and F to some degree n curve G. Then

$$\sum_{P} I(P, F \cap L) = \sum_{P} I(P, G, x) = d.$$

Proposition 4.3.24. An irreducible cubic is either non-singular or has exactly one double point.

Proof. Let F be an irreducible curve of degree n with two multiple points $P_1, P_2 \in F$. Let L be the line through these two points. Note that since F is irreducible, $L \not\subset F$. Then by prior lemma

$$n = \sum_{P} I(P, F \cap L) = I(P_1, F \cap L) + I(P_2, F \cap L) + \dots \ge m_{P_1}(F) + m_{P_2}(F) \ge 4,$$

hence any irreducible curve of degree <4 has at most one multiple point. Could it be a triple point? No, since any cubic with a triple is projectively equivalent to $x^3 + y^3 = (x+y)(x^2-xy+y^2)$. Note that if an irreducible cubic admits a double point, the tangents at that point are either distinct or not, hence up to projective equivalence the curve is either y^2z-x^3 (the irreducible cubic with a cusp) or $xyz-x^3-y^3$ (the irreducible cubic with a node).

This hints at another proof: An irreducible cubic cannot have $m_P(F) > 3$ for any point. We have also seen that it cannot have $m_P(F) = 3$ at any point. So if it has a multiple point it is either a node or a cusp in which case the curve is either projectively equivalent to $y^2z - x^3$ resp. $xyz - x^3 - y^3$, meaning such a curve has only one double point. \Box

Lemma 4.3.25. Let $P, P_1, \ldots, P_n \in \mathbb{P}^2$ be distinct points. Then there are infinitely many lines passing through P not passing through P_1 .

Proof. the set of lines through P is in one-to-one correspondence with points distinct from P. Indeed, set P = [v] and consider Q = [w], Q' = [w'], L(Q, P) = L(Q', P). Then for suitable $\alpha, \beta, \gamma \in K$, we have that $w = \alpha v + \beta w' = \alpha v + \gamma w$, implying $\alpha = 0$ and $w = \beta w'$ with $\beta \neq 0$. This means that $\mathbb{P}^2 \setminus \{P_1, \dots, P_n, P\}$ is in bijection with the lines passing through P and not passing through P_1, \dots, P_n , implying that there are infinitely many such lines.

Remark 4.3.26. Let $P \in F$ be a simple point on a curve. Let $P_1, \ldots, P_n \in \mathbb{P}^2$ be distinct points distinct from P. Then there are infinitely many lines not passing through P_1, \ldots, P_n that intersect F transversely at P.

Lemma 4.3.27. Let C be an irreducible projective plane curve. Consider $P_1, \ldots, P_n \in C$ all distinct and simple with integers m_1, \ldots, m_n . Then there is a $z \in K(C)$ with $\operatorname{ord}_{P_i}^C(z) = m_i$ for each i.

Proof. By the prior lemma and remark we can for each i pick a line L_i passing through P_i and not passing through P_j for $j \neq i$ that intersects C transversally at P_i . We may also

pick a line L_0 that passes through no P_i . Pick

$$z := \prod_{1}^{n} L_i^{m_i} L_0^{-\sum_{j \neq i} m_j}.$$

Indeed notice first that by Proposition 3.4.54

$$\operatorname{ord}_{Q_i}^{C_*} \left(\prod_{1}^n (L_i)_*^{m_i} \right) = I \left(P_i, C \cap \prod_{1}^n L_i^{m_i} \right) = m_i,$$

where Q_i is the appropriate affine coordinate corresponding to P_i . Since the element $\prod_1^n (L_i)_*^{m_i} \in \mathcal{O}_{Q_i}(C_*)$ is identified with $z \in \mathcal{O}_{P_i}(C)$, we find that $\operatorname{ord}_{P_i}(z) = \operatorname{ord}_{Q_i}(\prod_1^n (L_i)_*^{m_i}) = m_i$.

Lemma 4.3.28. Let $P \in F$ be a point on an irreducible curve. Suppose $I(P, F \cap z) = 1$ and $P \neq [1, 0, 0]$. Then $F_x(P) \neq 0$.

Proof. We prove the contrapositive: If G is a curve that intersect with z at a point P and $G_x(P) = 0$, then $P = [\alpha, \beta, 0]$ and by Euler's formula

$$0 = (\deg G)G(P) = \beta G_u(P).$$

Then P = [1, 0, 0] or $G_y(P) = 0$, which implies $G_z(P) = 0$, meaning $I(P, F \cap z) > 1$. \square

4.3.2 Linear Systems Of Curves

The projective plane curves of V(d,3), (d>1) has $\{\mathbf{x}^v: |v|=d\}$ as a basis over K. Set $N=\binom{d+2}{2}=\frac{(d+1)(d+2)}{2}$, we then get a commutative diagram

$$V(d,3) \xrightarrow{\sim} \mathbb{A}^{N}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$V(d,3) \setminus 0 \xrightarrow{\sim} \mathbb{A}^{N} \setminus 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(V(d,3) \setminus 0) / \sim \xrightarrow{\sim} \mathbb{P}^{N-1}$$

which is a natural motivation to study the behavior of curves of fixed degree via the identification of these with points in $\mathbb{P}^{N-1} = \mathbb{P}^{\frac{d(d+3)}{2}}$. We denote this space by \mathcal{L}_d .

Definition 4.3.29. Let d be some fixed positive integer. Let S be a subset of \mathcal{L}_d . We then have a natural identification of S with a subset of $\mathbb{P}^{\frac{d(d+3)}{2}}$. If $S \subset \mathbb{P}^{\frac{d(d+3)}{2}}$ is a linear subvariety, we say that it is *linear system of plane curves*.

Remark 4.3.30. Throughout this subsection we fix a positive integer d; and make the choice to denote (d+1)(d+2)/2 by N and the standard basis elements of V(d,3) be M_1, \ldots, M_d .

Proposition 4.3.31. Let d be some fixed positive integer and F ix a point $P \in \mathbb{P}^2$. The set S of curves passing through P is a linear system of plane curves (in particular a hyperplane).

Proof. Let $F = \sum_{1}^{N} a_i M_i$, $[a_1, \dots, a_N] \in \mathbb{P}^{N-1}$ be degree d curve. Then F(P) = 0 if and only if $\sum_{1}^{d} a_i M_i(P) = 0$. There is at least one monomial that does not vanish on P. This means that $\sum_{1}^{N} M_i(P) y_i \in K[y_1, \dots, y_N] \setminus 0$ and that $S = V(\sum_{1}^{N} M_i(P) y_i)$, meaning S is a hyperplane.

Corollary 4.3.32. Let $P_1, \ldots, P_n \in \mathbb{P}^2$ be an arbitrary set of points. If $n \leq N-1$ The set of curves passing through these points is a linear system of plane curve.

Corollary 4.3.33. Let $P_1, \ldots, P_{N-1} \in \mathbb{P}^2$ be distinct points. There is exactly one curve of degree d passing through each of these points.

Proof. This follows from Lemma 4.1.54.

Lemma 4.3.34. Let $\varphi = be$ a projective change of coordinates on \mathbb{P}^2 . Then the map $\mathcal{L}_d \to \mathcal{L}_d$, $F \mapsto F^{\varphi}$ induces a projective change of coordinates on \mathbb{P}^{N-1} .

Proof. We define $\phi: \mathbb{P}^{N-1} \simeq \mathcal{L}_d \stackrel{\varphi}{\to} \mathcal{L}_d \simeq \mathbb{P}^{N-1}$. Let $F\mathcal{L}_d$. Note that since φ is invertible F^{φ} is a degree d curve, since otherwise $F = (F^{\varphi})^{\varphi^{-1}} = 0$, hence $\phi([v_1, \dots, v_N])$ is an element of \mathbb{P}^{N-1} . For each M_i we get that

$$M_i \circ \varphi = \sum_{1}^{d} b_{ij} M_j,$$

hence

$$F^{\varphi} = \sum_{1}^{d} a_i M_i \circ \varphi = \sum_{1}^{d} a_i \sum_{1}^{d} b_{ij} M_j = \sum_{j=1}^{d} \left[\sum_{i=1}^{d} b_{ij} a_i \right] M_j.$$

Therefor

$$\phi([v_1,\ldots,v_N]) = [\sum_{i=1}^{d} b_{i1}v_i,\ldots,\sum_{i=1}^{d} b_{iN}v_i]$$

hence ϕ is induced by the linear transformation on \mathbb{A}^N , $(b_{ij})^T$. This is invertible since it has mutual inverse induced by $F \mapsto F^{\varphi^{-1}}$, and is thus a projective change of coordinates. \square

Definition 4.3.35. Let $P_1, \ldots, P_n \in \mathbb{P}^2$ be distinct points and $1 \leq r_i \leq d+1$ for each i. We define

$$V(d; r_i P_1, \dots, r_n P_n) := \{ F \in \mathcal{L}_d : m_{P_i}(F) \ge r_i, 1 \le i \le n \}$$

Lemma 4.3.36. Let $P \in \mathbb{P}^2$ and $1 \le r \le d+1$. $V(d; rP) \subset \mathbb{P}^{N-1}$ is a linear subvariety of dimension

$$N-1-\frac{r(r+1)}{2}.$$

In other words codim $V(d; rP) = \frac{r(r+1)}{2}$

Proof. By the prior lemma we may assume that P = [0,0,1]. Note that $F \in \mathcal{L}_d$ has multiplicity greater than r if and only if the coefficient of F at $x^i y^j z^k$ is 0 for every (i,j) with i+j < r, which is readily seen by writing $F = \sum_0^d F_i z^{d-i}$ for forms F_i . There are $D := \#\{(i,j): i+j < r\} = \binom{r-1+2}{r} = \binom{r+1}{r} = \frac{r(r+1)}{2}$ It follows that V(d;rP) can be identified with

$$\{[v_1,\ldots,v_{N-D},0\ldots,0]\in\mathbb{P}^{N-1}\}=V(y_{N-D+1},\ldots,y_N)$$

It thus follows that dim V(d; rP) = N - 1 - D.

Lemma 4.3.37. Let $P_1, \ldots, P_n \in \mathbb{P}^2$ be distinct points and let r_1, \ldots, r_n be positive integers $\leq d+1$. Then $V(d; r_1P_1, \ldots, r_nP_n)$ is linear subvariety of dimension

$$\geq N - 1 - \sum_{1}^{n} \frac{r_i(r_i + 1)}{2}.$$

Proof. Note that

$$V(d; r_1 P_1, \dots, r_n P_n) = \bigcap_{1}^{n} V(d; r_i P_i),$$

hence by Lemma 1.7.8 and the prior lemma, it follows that

$$\dim V(d; r_1 P_1, \dots, r_n P_n) = N - 1 - \operatorname{codim} V(d; r_1 P_1, \dots, r_n P_n) \ge N - 1 - \sum_{1}^{n} \operatorname{codim} V(d; r_i P_i)$$

$$= N - 1 - \sum_{1}^{n} \frac{r_i(r_i + 1)}{2}$$

Theorem 4.3.38. Let $P_1, \ldots, P_n \in \mathbb{P}^2$ be distinct points and let r_1, \ldots, r_n be positive integers. Suppose $d \geq [\sum_{i=1}^{n} r_i] - 1$. Then

dim
$$V(d; r_1 P_1, \dots, r_n P_n) = N - 1 - \sum_{i=1}^{n} r_i$$
.

Proof. We prove statement by induction in value $m := [\sum_{i=1}^{n} r_i] - 1$. In the case m = 0 we get that $r_i = 1$ for some i and $r_j = 0$ for $j \neq i$. Then

$$V(d; r_1 P_1, \dots, r_n P_n) = V(d; r_i P_i) \implies \dim V(d; r_1 P_1, \dots, r_n P_n) = N - 1 - \frac{r_i (r_i + 1)}{2}$$
$$= N - q - \sum_{i=1}^{n} \frac{r_j (r_j + 1)}{2}.$$

So assume m > 1, d > 1.

Case 1: Suppose first that $r_i = 1$ for each i. Then $V(d; P_1, \ldots, P_n)$ is the intersection of n hyperplanes. By induction $\dim\ V(d; P_1, \ldots, P_{n-1}) = N - n$. Choose lines through L_i through P_i not passing through P_j for $j \neq i$ for $i \in \{1, \ldots, n-1\}$ and L_0 a line not passing through P_1, \ldots, P_{n-1} . Then $F = L_0^{d-n+1} \prod_1^{n-1} L_i \in V(d; P_1, \ldots, P_{n-1})$ but not in $V(d; P_1, \ldots, P_n)$, hence the hyperplanes generating $V(d; P_1, \ldots, P_n)$ are linearly independent (since $V(d; P_1, \ldots, P_n) \subsetneq V(d; P_1, \ldots, P_{n-1})$, meaning dim $V(d; P_1, \ldots, P_n) = N - n - 1 = N - 1 - \sum_1^n \frac{r_i(r_i+1)}{2}$.

Case 2: Suppose some $r_i > 1$; WLOG $r := r_1 > 1$ and $P := P_1 = [0, 0, 1]$. Set

$$V_0 := V(d; (r-1)P, r_2P_2, \dots, r_nP_n),$$

and define

$$V_i := \left\{ F \in V_0 : F_* = \sum_{j=i}^{r-1} a_j x^j y^{r-1-j} + \text{ higher order terms} \right\}, \quad (i = 1, \dots, r).$$

Note that $V_r = V(d; rP, \dots, r_nP_n)$ and in particular that

$$V_0 \supset V_1 \supset \cdots \supset V_{r-1} \supset V_r = V(d; rP, \ldots, r_nP_n).$$

If we can prove that non of these inclusions hold with equality, then by the induction hypothesis

$$N-1-\frac{(r_1-1)(r_1)}{2}-\sum_{i=2}^n\frac{r_i(r_i+1)}{2}=\dim\ V_0>\dim\ V_1>\ldots>\dim\ V_{r-1}>\dim V_r,$$

hence

$$\begin{split} \dim \ V &\leq N-1-\sum_{2}^{n}\frac{r_{i}(r_{i}+1)}{2}-\frac{(r_{1}-1)r_{1}}{2}+r_{1}=N-1-\sum_{2}^{n}\frac{r_{i}(r_{i}+1)}{2}-\frac{(r_{1}-1)r_{1}+2r_{1}}{2}\\ &=N-1-\sum_{1}^{n}\frac{r_{i}(r_{i}+1)}{2}\leq \dim \ V, \end{split}$$

where the last bound is due to Lemma 4.3.37. We would then conclude that dim $V = N - 1 - \sum_{i=1}^{n} \frac{r_i(r_{i+1})}{2}$.

We proceed to prove the sufficient claim: Set

$$W_0 := V(d-1; (r-2)P, r_2P_2, \dots, r_nP_n)$$

and

$$W_i \coloneqq \left\{ F \in W_0 : F_* = \sum_{j=i}^{r-2} a_j x^j y^{r-2-j} + \text{ higher order terms} \right\} \quad (i=1,\ldots,r-1),$$

by induction

$$W_0 \supseteq W_1 \supseteq \cdots \supseteq W_{r-2} \supseteq W_{r-1} = V(d-1; (r-1)P, r_2P_2, \dots, r_nP_n).$$

Fix an $i \in \{0, \dots, r-2\}$ and pick an $F \in W_i \setminus W_{i+1}$. Then $F_* = \sum_{j=i}^{r-2} a_j x^j y^{r-2-j} + \dots$ with $a_i \neq 0$, hence

$$(yF)_* = yF_* = \sum_{j=i}^{r-2} a_j x^j y^{r-1-j} + \dots,$$

implying $yF \in V_i \setminus V_{i+1}$. Pick $F \in W_{r-2} \setminus W_{r-1}$. Then

$$F_* = a_{r-2}x^{r-2} + \cdots$$

where $a_{r-2} \neq 0$. Then

$$(xF)_* = a_{r-2}x^{r-1} + \cdots,$$

 \Box

hence $xF \in V_{r-1} \setminus V_r$ establishing the desired claim.

Example 4.3.39. 1. Let $P_1, \ldots, P_4 \in \mathbb{P}^2$ be distinct and set $V := V(2; P_1, \ldots, P_4)$. Suppose all 4 points lie on a line. WLOG $P_1 = [1, 0, 0], P_2 = [0, 1, 0], P_3 = [\alpha, \beta, 0]$ and $P_4 = [\gamma, \beta, 0]$ with $\alpha, \beta, \gamma, \delta \neq 0$ Let

$$F = ax^{2} + by^{2} + cxy + dz^{2} + exz + fyz \in V(2; P_{1}, \dots, P_{4})$$

Then we need have that

$$\begin{cases}
0 = F(P_1) = a \\
0 = F(P_2) = b \\
0 = F(P_3) = a\alpha^2 + b\beta^2 + c\alpha\beta \\
0 = F(P_4) = a\gamma^2 + b\delta^2 + c\gamma\delta
\end{cases}$$

Hence a=b=c=0, hence $V\simeq \mathrm{Span}([e_4],[e_5],[e_6])$ hence dim V=2. If one of P_1,\ldots,P_4 does not sit on a common line with the other points, we may WLOG assume that $P_1=[1,0,0],\ P_2=[0,1,0],\ P_3=[0,0,1]$ and $P_4=[\alpha,\beta,0]$ with $\alpha,\beta\neq 0$. Let $F=ax^2+by^2+cz^2+dxy+exz+fyz\in V(2;P_1,\ldots,P_4)$. Then

$$\begin{cases} 0 = F(P_1) = a \\ 0 = F(P_2) = b \\ 0 = F(P_3) = c0 = F(P_4) = \alpha^2 a + \beta^2 b + \alpha \beta d \end{cases}$$

Then we see that a=b=c=d=0, hence $V\simeq \mathrm{Span}([e_4],[e_5])$, hence dim V=1.

2. Consider the points $[1,0,0],[0,1,0],[0,0,1],[1,1,1],[1,2,3] \in \mathbb{P}^2$. Denote them P_i . A curve

$$F = ax^2 + by^2 + cz^2 + dxy + exz + fyz$$

is in $V(2; P_1, \dots, P_5)$ if and only if

$$\begin{cases}
0 = F(P_1) = a \\
0 = F(P_2) = b \\
0 = F(P_3) = c \\
0 = F(P_4) = a + b + c + d + e + f \\
0 = F(P_5) = a + 4b + 9c + 2d + 3e + 6f
\end{cases}$$

hence F is in $V(2; P_1, \ldots, P_5)$ if and only if (a, b, c, d, e, f) is in the null-space of

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 4 & 9 & 2 & 3 & 6
\end{pmatrix}$$

We thus see that a = b = c = 0 and d = 3f and e = -4f, hence there is only one curve passing through these five points, namely 3xy - 4xz + yz. Note that by Eisenstein in K[x,y][z] using x this is irreducible. By Example 4.3.21 1. there (up to projective equivalence) is only one such curve, which is non-singular.

3. Consider the nine points

$$[0,0,1],[0,1,1],[1,0,1],[1,1,1],[0,2,1],[2,0,1],[1,2,1],[2,1,1],[2,2,1] \in \mathbb{P}^2,$$

which we denote P_1, \ldots, P_9 . By a result seen in this subsection, we know only that dim $V(3; P_1, \ldots, P_9) \ge 0$, so it may be that there are only one. We aim to show that there are in fact infinitely many such. Below is a sketch of the positions of the points in U_3 (in $\mathbb{P}^2(\mathbb{R})$):

We see that any of the points lie on either x, x-z or x-2z and on either y, y-z or y-2z. It follows that f:=x(x-z)(x-2z) and g:=y(y-z)(y-2z) are two distinct cubics passing through each of the 9 points. It follows that $L(f,g) \subset V(3; P_1, \ldots, P_9)$, hence $\#V(3; P_1, \ldots, P_9) \geq \#L(f,g) = \infty$.

4.3.3 Bézout's Theorem

Theorem 4.3.40. (Bezout's Theorem)

Let F and G be projective plane curves with no common components. Then

$$\sum_{P} I(P, F \cap G) = (\deg F)(\deg G)$$

Proof. By Proposition 4.3.19 F and G have only finitely many points of intersection. WLOG non of these lie on L_{∞} . Then

$$\sum_P I(P,F\cap G) = \sum_P I(P,F_*\cap G_*) = \dim\ K[x,y]/\langle F_*,G_*\rangle.$$

We define

$$\Gamma_* \coloneqq K[x,y]/\langle F_*,G_*\rangle, \qquad \Gamma \coloneqq K[x,y,z]/\langle F,G\rangle, \qquad R = K[x,y,z].$$

We let Γ_d denote the space of forms of degree d, and $R_d := V(d,3)$ for $d \ge 1$. Set $n := \deg F$ and $m := \deg G$. It is sufficient to prove that dim $\Gamma_* = \dim \Gamma_d$ and that dim $\Gamma_d = mn$ for some (large enough) d.

Claim 1: dim $\Gamma_d = mn$ for every $d \ge m + n$. Consider the sequence

$$0 \longrightarrow R \stackrel{\tau}{\longrightarrow} R \times R \stackrel{\sigma}{\longrightarrow} R \stackrel{\pi}{\longrightarrow} \Gamma \longrightarrow 0$$

where $\tau:C\mapsto (GC,-FC)$, $\sigma:(A,B)\mapsto AF+BG$ and π is the canonical surjection. It is clear that $\sigma\tau=0=\pi\sigma$ hence the sequence is exact. Note that τ restricts to a linear map from R_{d-m-n} to $R_{d-m}\times R_{d-n}$, that σ restricts to a linear map from $R_{d-m}\times R_{d-n}$ to R_d and that π restricts to linear map from R_d to Γ_d . We thus get by exactness (due to Lemma 1.7.4) that

$$\dim \ \Gamma_d = \dim \ R_d - \dim \ R_{d-m} \times R_{d-n} + \dim \ R_{d-m-n}$$

$$= \frac{(d+1)(d+2) + (-d+m-1)(d-m+2) + (-d+n-1)(d-n+1) + (d-m-n+1)(d-m-n+1)}{2}$$

$$= mn.$$

Let $\overline{\bullet}$ denote $\bullet + \langle F, G \rangle$.

Claim: The map $\alpha: \Gamma \to \Gamma, \overline{H} \mapsto \overline{zH}$ is injective. Suppose zH = AF + BG. Note that since $z \cap F = \emptyset, z \cap G = \emptyset$, one sees that $F_0 := F(x, y, 0), G_0 := G(x, y, 0)$ are non-zero forms in K[x, y] that are coprime.

Indeed, suppose $J, I \in K[x_1, \ldots, x_{n+1}]$ such that $J(x_1, \ldots, x_n, 0) \neq 0 \neq I(x_1, \ldots, x_n, 0)$ have a non-trivial common factor D, then $\emptyset \neq H \subset J(x_1, \ldots, x_n, 0), H(x_1, \ldots, x_n, 0)$, meaning $x_{n+1} \subset J(x_1, \ldots, x_{n+1}), H(x_1, \ldots, x_{n+1})$.

Set $A_0 := A(x, y, 0)$ and $B_0 := B(x, y, 0)$. Then

$$A_0F_0 = -B_0G_0.$$

Hence for some $C \in K[x,y]$, $A_0 = -G_0C$ and $B_0 = F_0C$. Set $A_1 := A + CG$ and $B_1 := B - CF$. Note that

$$A_1(x, y, 0) = 0$$
, $B_1(x, y, 0) = 0$,

hence $A_1 = zA'$ and $B_1 = zB'$ for some $A', B' \in K[x, y, z]$, hence

$$zH = AF + BG + CFG - CFG = A_1F + B_1F = z(A'F + B'G) \implies H = A'F + B'G \in \langle F, G \rangle$$
 proving that $\ker \alpha = 0$.

Combining results: Let $d \geq m+n$ be given. Pick a basis $\{\overline{A_1}, \ldots, \overline{A_{nm}}\} \subset \Gamma_d$ for suitable $A_i \in R_d$. Consider the restriction of α to $\Gamma_d \to \Gamma_{d+1}, \overline{H} \mapsto \overline{zH}$, since ker $\alpha|_{\Gamma_d} = 0$. It follows by rank-nullity that the restriction of α is an isomorphism. Therefor $\{\overline{zA_i}: 1 \leq i \leq mn\}$ constitutes a basis of Γ_{d+1} , and by induction $\{\overline{z^rA_i}: 1 \leq i \leq mn\}$ form a basis for Γ_{d+r} for every $r \geq 0$. We claim that setting $a_i := (A_i)_* + \langle F_*, G_* \rangle, \{a_1, \ldots, a_{mn}\} \subset \Gamma_*$ constitutes a basis. Let $h = H + \langle F_*, G_* \rangle \in \Gamma_*$, then $\overline{z^NH^*} \in \Gamma_{d+r}$ for some sufficiently large $N \geq 0$ and $r \geq 0$, hence

$$z^N H^* = \sum_1^{mn} \lambda z^r A_i + BF + CG$$

for some $\lambda \in K$, $B, C \in K[x, y, z]$. One then sees that

$$H = (z^N H^*)_* = \sum_{i=1}^{nm} \lambda_i (A_i)_* + B_* F_* + C_* G_* \implies h = \sum_{i=1}^{nm} \lambda_i a_i.$$

Suppose, $\sum_{1}^{nm} \lambda_i a_i = 0$. Then $\sum_{1}^{nm} \lambda(A_i)_* = BF_* + CG_*$ for some $B, C \in K[x, y]$. We then for suitably large $r, s, t \ge 0$ that

$$z^{s}B^{*}G + z^{t}C^{*} = z^{r}(BF_{*} + CG_{*})^{*} = z^{r}\left(\sum_{i=1}^{m} \lambda_{i}A_{i}\right)^{*} = \sum_{i=1}^{m} \lambda_{i}z^{r_{i}}A_{i}\sum_{i=1}^{m} R_{d+r_{i}},$$

implying that $0 = \sum_{1}^{mn} \overline{\lambda_i z^{r_i} A_i} \in \sum \Gamma_{d+r_i}$. Since $\Gamma_{d+l} \cap \Gamma_{d+k} = 0$ (this is seen readily), it follows that $\{z^{r_i} A_i\}$ is a basis of $\sum \Gamma_{d+r_i}$, hence in particular $\{z^{r_i} A_i\}$ are algebraically independent, meaning $\lambda_i = 0$. It follows that dim $\Gamma_* = \dim \Gamma_d = mn$.

Corollary 4.3.41. Let F and G be curves with no common components. Then

$$\sum_{P} m_{P}(F) m_{P}(G) \le (\deg F) (\deg G).$$

Proof. This follows from property 5 of intersection numbers in conjunction with Bezout's theorem. \Box

Corollary 4.3.42. If F and G (still have no common components) meets in $(\deg F)(\deg G)$ distinct points, then these points are simple.

Proof. Under this extra assumption, $m_P(F)m_P(G) \ge 1$ for each point of intersection, meaning $\sum_P m_P(F)m_P(G) \ge (\deg F)(\deg G)$, hence $\sum_P m_P(F)m_P(G) = (\deg F)(\deg G)$. Then $m_P(G)m_P(F) = 1$ at each point of intersection, for otherwise we would have a strict inequality. We thus conclude that $m_P(F) = m_P(G) = 1$ at every point of intersection. \square

Corollary 4.3.43. If F and G have exactly $(\deg F)(\deg G)$ common points, then they have no common components.

Proof. This just follows from Bezout and the fact that $\sum_{P} I(P, F \cap G) < \infty$ if and only if F and G intersect properly at every point.

Proposition 4.3.44. Every non-singular projective curve F is irreducible.

Proof. Suppose F is reducible with two components G, H. G and H have at least one point in common, since if they have a component in common, then they intersect at infinitely many points and if they have no components in common, then by Bezout $\sum_P I(P, G \cap H) = (\deg G)(\deg H) > 1$, meaning they have at least one point in common. Let $P \in G \cap H \subset F$. Then $m_P(F) = m_P(GH) = m_P(G) + m_P(H) \geq 2$, hence F is singular.

Remark 4.3.45. It is not the case that the above is true in the affine case. Consider for example f = y(y+1). The zeroes of this curve are $(\alpha,0)$ and $(\alpha,-1)$ where $\alpha \in K$. Since $f(x+\alpha,y+0) = f(x,y) = y^2 + y$ and $f(x+\alpha,y-1) = y(y-1) = y^2 - y$, hence f is non-singular.

4.3.4 Bounds on the Number of Multiple Points of a Curve

Proposition 4.3.46. Let F be an irreducible projective plane curve of degree d with $F_x \neq 0$. Then

$$\sum_{P} m_{P}(F)(m_{P}(F) - 1) \le d(d - 1),$$

hence F has at most $\frac{d(d-1)}{2}$ multiple points.

Proof. Since $F_x \neq 0$, we have that deg $F_x = d - 1$, hence the first bound follows from Corollary 4.3.41 and Lemma 4.3.18,

$$\sum_{P} m_{P}(F)(m_{P}(F) - 1) \le \sum_{P} m_{P}(F)m_{P}(F_{x}) \le d(d - 1)$$

. Note that the number of multiple points is given by $\sum_{P} (m_P(F) - 1)$. It then follows that

$$2\sum_{P}(m_{P}(F)-1) \leq \sum_{Q \text{ multiple}} \sum_{P} m_{Q}(F)(m_{P}(F)-1) \leq \sum_{P} m_{P}(F)(m_{P}(F)-1) \leq d(d-1).$$

It thus follows that

$$\sum_{P} (m_P(F) - 1) \le \frac{d(d-1)}{2}.$$

Another way to derive the bound:

$$\sum_{P} (m_P(F) - 1) \le \sum_{P} \frac{m_P(F)(m_P(F) - 1)}{2} \le \frac{d(d - 1)}{2}.$$

In Example 4.3.21 we saw that the optimal bound on the number of multiple points for an irreducible conic is 0 and for an irreducible cubic 1, indicating that there is a better bound in the general case.

Theorem 4.3.47. Let F be an irreducible curve of degree $d \geq 1$. Then

$$\sum_{P} (m_P(F) - 1) \le \frac{(d-1)(d-2)}{2}.$$

Proof. Set

$$r := \frac{(d-1)(d-1+3)}{2} - \sum_{P} \frac{m_P(F)(m_P(F)-1)}{2} \ge \frac{d(d-1)}{2} - \sum_{P} \frac{m_P(F)(m_P(F)-1)}{2} \ge 0.$$

Pick $Q_1, \ldots, Q_r \in F$ simple. Let $P_1, \ldots, P_l \in F$ be the multiple points. Then

$$V := V(d-1; Q_1, \dots, Q_r, (m_{P_1}(F)-1)P_1, \dots, (m_{P_l}(F)-1)P_l)$$

is a linear subvariety of dimension greater then $\frac{(d-1)(d-1+3)}{2} - r - \sum_P \frac{m_P(F)(m_P(F)-1)}{2} = 0$. It follows that can pick a curve $G \in V$. Note that if $P \neq Q_i$ is simple, then $m_P(G) \geq 0 = m_P(F) - 1$. so $m_P(G) \geq m_P(F) - 1$ for each $P \in F$ Since $\deg G = d - 1 < d = \deg F$ and F is irreducible, $\gcd(G,F) = 1$, implying

$$r + \sum_{P \neq Q_i} m_P(F)(m_P(F) - 1) \le \sum_{1}^{r} m_{Q_i}(G) m_{Q_i}(F) + \sum_{P \neq Q_i} m_P(G) m_P(F)$$

$$= \sum_{P} m_P(G) m_P(F) \le d(d - 1).$$

Here we use Corollary 4.3.41 for the last upper bound. Inserting the value of r into the left-hand side, we see that

$$\frac{(d-1)(d+2)}{2} + \sum_{P} \frac{m_{P}(F)(m_{P}(F)-1)}{2} \leq \frac{2d(d-1)}{2} \implies \sum_{P} \frac{m_{P}(F)(m_{P}(F)-1)}{2} \leq \frac{(d-1)(2d-d-2)}{2} = \frac{(d-1)(d-2)}{2}.$$

We therefor immediately get that $\sum_{P} (m_P(F) - 1) \le \frac{(d-1)(d-2)}{2}$

Remark 4.3.48. This bound is sharp in the cases d = 1, 2, 3.

Proposition 4.3.49. Let F be a projective plane curve of degree $d \ge 1$ with c components, each of which is not multiple. Then

$$\sum_{P} \frac{m_P(F)(m_P(F)-1)}{2} \le \frac{(d-1)(d-2)}{2} + c - 1 \le \frac{d(d-1)}{2}.$$

Proof. write $F = F_1F_2$ where F_1 is a component and F_2 is a product of c-1 remaining simple components with c>1. Set $d_1:=\deg F_1$ and $d_2:=\deg F_2$. By induction and

Bezout, it follows that

$$\sum_{P} \frac{m_{P}(F)(m_{P}(F) - 1)}{2} = \sum_{P} \frac{m_{P}(F_{1})(m_{P}(F_{1}) + m_{P}(F_{2}) - 1)}{2} + \sum_{P} \frac{m_{P}(F_{2})(m_{P}(F_{1}) + m_{P}(F_{2}) - 1)}{2}$$

$$= \sum_{1}^{2} \sum_{P} \frac{m_{P}(F_{i})(m_{P}(F_{i}) - 1)}{2} + \sum_{P} m_{P}(F_{1})m_{P}(F_{2})$$

$$\leq \frac{(d_{1} - 1)(d_{1} - 2) + (d_{2} - 1)(d_{2} - 2) + 2d_{1}d_{2}}{2} + c - 1 - 1$$

$$= \frac{d_{1}^{2} + 2 - d_{1} - 2d_{1} + d_{2}^{2} + 2 - d_{2} - 2d_{2} + 2d_{1}d_{2}}{2} + c - 1 - 1$$

$$= \frac{(d_{1} + d_{2})^{2} - (d_{1} + d_{2}) - 2(d_{1} + d_{2}) + 2}{2} + c - 1$$

$$= \frac{(d - 1)(d - 2)}{2} + c - 1.$$

Note that in the last step we use $d_1 + d_2 = d$.

Proposition 4.3.50. Assume char K = 0. Let F be an irreducible curve of degree $d \ge 1$. Let $P \in \mathbb{P}^2$ and set $r = m_P(F)$. For all but finitely many lines L through P, L intersects F in d - r distinct points.

Proof. WLOG P = [0, 0, 1]. The lines through P are

$$L_{\lambda} \coloneqq V(x - \lambda y) = \{[\lambda, 1, t] : t \in K\} \cup \{P\} \quad (\lambda \in K)$$

(cf. Example 4.1.68 1.) together with L=V(y). It is therefor sufficient to prove the statement for the L_{λ} . Write $F=\sum_{r}^{d}H_{i}z^{d-i}$ with $H_{i}\in K[x,y]$ a form degree i and $H_{r}\neq 0$. Consider for each $\lambda\in K$ the polynomial

$$G_{\lambda} := F(\lambda, 1, T) \in K[T]$$

whose roots are in one-to-one correspondence with $L_{\lambda} \cap F$. It is therefor sufficient to prove that G_{λ} has n-r distinct roots for all but finitely many $\lambda \in K$. Suppose $\lambda \in K$ is given such that $H_r(\lambda,1) \neq 0$ (making G_{λ} a d-r-degree polynomial) and $F \cap F_z \cap L_{\lambda} = \{P\}$, or equivalently that the common roots of G_{λ} and $(G_{\lambda})_T = F_z(\lambda,1,T)$ is the empty set. Then by the contrapositive of \mathbf{result} the d-r roots of G_{λ} are all distinct. Clearly $H_r(\lambda,1) \neq 0$ for all but finitely many λ . Since $H_i(0,0) = 0$ for all $i \geq 1$, it follows that $P \in F_z$. Note that since F is irreducible so is F(x,1,z) by Corollary 1.9.111, hence F(x,1,z) and $F_z(x,1,z)$ are co-prime. It then follows that $F(x,1,z) \cap F_z(x,1,z)$ is finite. In particular there are only finitely $\lambda \in K$ such that $\emptyset \neq F(\lambda,1,T) \cap F_z(\lambda,1,T) = G_{\lambda} \cap (G_{\lambda})_T$. It follows that G_{λ} has d-r distinct roots for all but finitely many λ .

Proposition 4.3.51. The above proposition extends to curves F with no multiple components.

Proof. Write $F = \prod_{i=1}^{n} F_i$. Set $r_i := m_P(F_i)$ and $d_i := \deg F_i$. There are infinitely many lines passing through P that do not pass through $\bigcap_{i=1}^{n} F_i$. Denote this set \mathcal{L} . Then for each i, all but finitely many lines in \mathcal{L} , intersect F_i in $d_i - r_i$ points. Then L intersect each F_i in $d_i - r_i$ points for all but finitely many i. Let such an L be given. Then

$$L \cap F = L \cap \bigcup_{1}^{n} F_i = \bigsqcup_{1}^{n} L \cap F_i,$$

hence

$$\#(L \cap F) = \#\left(\bigsqcup_{1}^{n} L \cap F_{i}\right) = \sum_{1}^{n} d_{i} - r_{i} = d - \sum_{1}^{n} m_{P}(F_{i}) = d - m_{P}(F) = d - r.$$

Example 4.3.52. Suppose char K=p>0. Set $F:=x^{p+1}-y^pz$ and P:=[0,1,0]. $L_{\infty}\cap F=\{P\}$. Let $\lambda\in K$. Then $L_{\lambda}\cap F=\{t:\lambda^{p+1}-t^p=0\}\cup \{P\}=\left\{\left[\lambda,1,\lambda^{\frac{1}{p}}\lambda\right]\right\}\cup \{P\}$ More explicit description?. Note that

$$\begin{cases} F_x = x^p \\ F_y = 0 \\ F_z = y^p \end{cases}$$

4.3.5 Max Noether's Fundamental Theorem

Definition 4.3.53. A *zero-cycle* on \mathbb{P}^2 is an element of the free abelian group generated by \mathbb{P}^2 , i.e. $\mathbb{Z}[\mathbb{P}^2]$.

Definition 4.3.54. We define the *degree* of a zero-cycle $s = \sum_P n_P P \in \mathbb{Z}[\mathbb{P}^2]$ is the quantity

$$\deg s := \sum_{P} n_{P}.$$

For a $t = \sum_P m_P \in \mathbb{Z}[\mathbb{P}^2]$, we write $s \geq t$ if $n_P \geq m_P$ for each $P \in \mathbb{P}^2$.

Definition 4.3.55. Let F and G be curves with no common components. We define the intersection cycle of F and G to be

$$F \, \bullet \, G := \sum_P I(P, F \cap G)P \in \mathbb{Z}[\mathbb{P}^2]$$

Remark 4.3.56. By Bezout deg $F \cdot G = (\text{deg } F)(\text{deg } G)$

The following properties of intersection cycles are trivial consequences of properties of intersection numbers:

Lemma 4.3.57. Let F, G, H be curves and A a form of degree $\deg G - \deg F$. Then

- 1. $F \cdot G = G \cdot F$.
- 2. $F \cdot GH = F \cdot G + F \cdot H$.
- 3. $F \cdot G + AF = F \cdot G$.

Definition 4.3.58. Consider projective plane curves F, G, H where F and G have not common components. Let $P \in \mathbb{P}^2$. We say that *Noether's condition (with respect to* F, G and H) is satisfied at P if $H_* \in \langle F_*, G_* \rangle \subset \mathcal{O}_P(\mathbb{P}^2)$.

Theorem 4.3.59. (Max Noether's Fundamental Theorem/MNFT)

Let F, G, H be projective plane curves where F and G have no common components. Then there are curves A and B with $\deg A = \deg H - \deg F$ and $\deg B = \deg H - \deg G$ such that

$$H = AF + BG$$

if and only if Noether's conditions are satisfied at every $P \in F \cap G$.

Proof. " \Longrightarrow ": Is trivial

" $\Leftarrow=$ ": WLOG $F \cap G \cap z = \emptyset$. Since

$$K[x,y]/(K[x,y]F_* + K[x,y]G_*) \simeq \prod_{P=[v,1] \in F \cap G} \mathcal{O}_v/(\mathcal{O}F_* + \mathcal{O}_vG_*)$$

and $H_* \in \mathcal{O}F_* + \mathcal{O}_v G_*$ for each $P = [v, 1] \in F \cap G$, we get that $H_* \in K[x, y]F_* + K[x, y]G_*$, hence for suitable $a, b \in K[x, y]$, $H_* = aF_* + bG_*$. For a suitably large $N \ge 0$,

$$z^{r}H = z^{N}(H_{*})^{*} = z^{N}(aF_{*} + bG_{*})^{*} = a^{*}z^{s}(F_{*})^{*} + b^{*}z^{t}(G_{*})^{*} = a^{*}z^{s'}F + b^{*}z^{t'}F,$$

hence $z^rH = AF + BG$ for suitable forms $A, B \in K[x, y, z]$. By the proof of Bezout, $K[x, y, z]/\langle F, G \rangle \to K[x, y, z]/\langle F, G \rangle$, $\Lambda \mapsto z^r\Lambda$ is injective, hence

$$H = A'F + B'G$$

for some $A', B' \in K[x, y, z]$, hence writing $A' = A'_{\text{deg }H-\text{deg }F} + \dots$ and $B' = B'_{\text{deg }H-\text{deg }G} + \dots$, as a result of cancellations

$$H = A'_{\text{deg }H-\text{deg }F}F + B'_{\text{deg }H-\text{deg }G}G.$$

Proposition 4.3.60. Let F, G, H be projective plane curves and $P \in F \cap G$. Noether's condition at P are satisfied if:

- 1. F and G intersect transversally at P and $P \in H$.
- 2. P is simple on F and $I(P, H \cap F) \ge I(P, G \cap F)$.
- 3. F and G have distinct tangents at P and $m_P(H) \ge m_P(F) + m_P(G) 1$.

Proof. 1. Note that 1. implies 2. since then $I(P, H \cap F) \ge 1 = I(P, F \cap G)$, so it is sufficient to prove 2.

- 2. We get that $\operatorname{ord}_P^F(H) = I(P, H \cap F) \geq I(P, G \cap G) = \operatorname{ord}_P^F(F)$, hence $\mathcal{O}_P(F) \ni \overline{H_*} = uL^k$ and $\mathcal{O}_P(F) \ni \overline{G_*} = uL^k$ with $h \leq k$, hence $\overline{H_*} \in \langle \overline{G_*} \rangle \in \mathcal{O}_P(F)$. Then using $\mathcal{O}_P(F)/\langle \overline{G_*} \rangle \simeq \mathcal{O}_P(\mathbb{P}^2)/\langle F_*, G_* \rangle$, we find that $H_* + \langle F_*, G_* \rangle = 0$.
- 3. WLOG P = [0, 0, 1]. Note that then $m_P(H_*) \ge m_P(F_*) + m_P(G_*) 1$. This implies that $H_* \in \langle x, y \rangle^{m_P(F_*) + m_P(G_*) 1}$, hence by Lemma 3.4.48, $0 = H_* + \langle F_*, G_* \rangle \in \mathcal{O}_{(0,0)}(\mathbb{A}^2)/\langle F_*, G_* \rangle \simeq \mathcal{O}_P(\mathbb{P}^2)/\langle F_*, G_* \rangle$

Corollary 4.3.61. Let F and G be projective plane curves with no common components. Then there is a curve B where $B \cdot F = H \cdot F - G \cdot F$ if one of following two conditions are satisfied:

- 1. F and G intersect in $(\deg F)(\deg G)$ points and H passes through each of these points.
- 2. All points of $F \cap G$ are simple points of F and $H \cdot F \geq G \cdot F$.

Proof. If 1. is satisfied, then F and G intersect transversally at every point of intersection, hence by 1. of the prior proposition Noether's condition is satisfied at every point of intersection.

If 2. is satisfied then $I(P, H \cap F) \ge I(P, G \cap F)$, hence 2. of the prior propositions shows that Noether's condition is satisfied at every $P \in F \cap G$.

In either case, this means H = AF + BG for suitable forms A, B by Max Noether's Fundamental Theorem.

Proposition 4.3.62. Let F, G, H be plane curves where gcd(F, G) = 1, $P \in F \cap G$.

- 1. When P is simple, then Noether's condition at P is satisfied at P if and only if $I(P, F \cap H) \ge I(P, F \cap G)$.
- 2. When F and G meet transversally at P, then Noether's condition at P is satisfied at P if and only if $P \in H$.

Proof. WLOG P = [0, 0, 1]. 1" \Longrightarrow ": Write $H_* = \frac{\alpha}{\beta} F_* + \frac{\lambda}{\mu} G_*$ for some $\frac{\alpha}{\beta}, \frac{\lambda}{\mu} \in \mathcal{O}_{0,0}(\mathbb{A}^2)$. Then

$$\zeta H_* = \alpha F_* + \lambda G_*, \quad (\zeta := \beta \mu).$$

Then

$$I(P, H \cap G) = I((0, 0), H_* \cap G_*) = I((0, 0), \zeta H_* \cap G_*) = I((0, 0), \alpha F_* \cap G_*)$$
$$= I((0, 0), \alpha \cap G_*) + I((0, 0), F_* \cap G_*) > I((0, 0), F_* \cap G_*) = I(P, F \cap G)$$

" \Leftarrow ": Follows from Proposition 4.3.60.

2. Follows from 1.
$$\Box$$

Remark 4.3.63. The above shows that in Proposition 4.3.60 in case 1. resp. case 2. if we presuppose the condition on F and G, then the condition on H is equivalent to Noether's condition being satisfied for F, G and P. The next example shows that the same augmentation can not be made in case 3.

Example 4.3.64. Consider $F = x^2 + x + y$, $G = x^2$ and H = x + y and P = [0, 0, 1]. Note that F and G have distinct tangents, namely x + y resp. x. One sees that $H_* = H = F - G = F_* - G_*$, so Noether's condition is satisfied at P wrt. F and G. Note that $1 = m_P(H) < 2 = m_P(F) + m_P(G) - 1$. So the condition on H in case 3. in Proposition 4.3.60 is not equivalent to Noether's condition on P for curves F, G, H with $\gcd(F, G) = 1$, $P \in F \cap G$ and F and G having distinct tangents.

Proposition 4.3.65. Let F be an irreducible projective plane curve. Suppose $z \in K(F)$ is given such that $z \in \mathcal{O}_P(F)$ for every $P \in F$. Then $z \in K$.

Proof. write $z=\frac{H+\langle F\rangle}{G+\langle F\rangle}$, for some equidegree forms $H,G\in K[\mathbf{x}]$, where $G(P)\neq 0$ for every $P\in F$. Then $F\cap G=\emptyset$ hence Noether's condition is vacuously satisfied for every $P\in F\cap G$. Then by MNFT there are forms $A,B\in K[\mathbf{x}]$ such that deg $AF=\deg H$, deg $BG=\deg H=\deg G$. Then $B\in K$ and

$$z = \frac{H + I(F)}{G + I(F)} = \frac{AF + BG + I(F)}{G + I(F)} = \frac{BG + I(F)}{G + I(F)} = B + I(F) \in K.$$

4.3.6 Applications of Noether's Theorem

Proposition 4.3.66. Let C, C' be cubics such that $C \cdot C' = \sum_{1}^{9} P_i$. Let Q be a conic such that $Q \cdot C = \sum_{1}^{6} P_i$. Assume P_1, \ldots, P_6 are simple on C. Then P_7, P_8 and P_9 lie on a line.

Proof. Since P_1, \ldots, P_6 are distinct, $I(P_i, C' \cap C) \ge 1 = I(P_i, Q \cap C)$ for $i = 1, \ldots, 6$. For i = 7, 8, 9 (7 8 9?! I guess that's why 6 is afraid of 7), $I(P_i, C' \cap C) \ge 1 \ge I(P_i, Q \cap C)$, since $I(P_i, Q \cap C) = 1$ if $P_i \in Q \cap C$ and 0 otherwise. It follows that $C' \cdot C \ge Q \cdot C$. By Corollary 4.3.61 there is an L such that $L \cdot C = C' \cdot C - Q \cdot C = P_7 + P_8 + P_9$. Since deg C = 3 and (deg L)(deg C) = deg $L \cdot C = 3$, we get that deg L = 1, hence L is a line passing through P_7, P_8, P_9 . □

Definition 4.3.67. Given 2n points in the projective plane P_1, \ldots, P_{2n} , we form a 2n-gon by connecting these points via 2n lines $L_i := L(P_i, P_{i+1})$ for $i \in \{1, \ldots, 2n-1\}$ and $L_{2n} := L(P_{2n}, P_1)$. For the first n lines, we define the *opposite side of* L_i , denoted op(L_i) to be L_{i+n} . For the remaining lines, the opposite to L_i is L_{i-n} .

Remark 4.3.68. Thus we get bijection of any collection of n line segments, LS satisfying that the opposite segment of any $L \in LS$ is not LS, to the opposite line segments to those in LS, via op.

Corollary 4.3.69. (Pascal's Theorem) Let Q be an irreducible conic (an ellipse, parabola or hyperbola). Pick 6 distinct points on Q, in some ordering P_1, \ldots, P_6 and form the hexagon containing these points. Then the points $P_i := L_i \cap \operatorname{op}(L_i)$, i := 1, 2, 3 lie on a line. More generally given a set $LS := \{L_{i_1}, L_{i_2}, L_{i_3}\}$, satisfying the conditions of the prior remark, the points $Q_j := L_{i_j} \cap \operatorname{op}(L_{i_j})$ lie on a line.

Proof. Indeed, consider the cubics $C := L_{i_1}L_{i_2}L_{i_3}$ and $C' := op(L_{i_1})op(L_{i_2})op(L_{i_3})$ and apply the prior proposition.

Corollary 4.3.70. (Pappus' Theorem) Let L_1, L_2 be two lines, $P_1, P_2, P_3 \in L_1$ and $Q_1, Q_2, Q_3 \in L_2$ such that $P_i, Q_j \notin L_1 \cap L_2$. Set $L_{ij} := L(P_i, Q_j)$. For each i, j, k with $\{i, j, k\} = \{1, 2, 3\}$, set $R_k := L_{ij} \cdot L_{ji}$. Then R_1, R_2, R_3 lie on a line.

Proof. Indeed, Consider $Q := L_1L_2$, $C := L_{12}L_{13}L_{23}$ and $C' := L_{21}L_{31}L_{32}$. By construction non of the L_{ij} 's are components of Q. We see that $C \cdot C' = \sum_{1}^{3} P_i + Q_i + R_i$ and $Q \cdot C = \sum_{1}^{3} P_i + Q_i$ and also note that we chose P_i, Q_i such that they are simple. We are thus in position where we can apply the proposition to see that R_1, R_2, R_3 are on a line.

Proposition 4.3.71. Let C, C', C'' be cubics with C irreducible, and $Q \in C$. Suppose $C' \cdot C = \sum_{i=1}^{9} P_i$, where the P_i are simple but not necessarily distinct points on C and that $C'' \cdot C = Q + \sum_{i=1}^{8} P_i$, then $Q = P_9$.

Proof. Take any line L passing through P_9 . Note that $L \cdot C = P_9 + R + S$ for some $R, S \in C$. Then $LC''' \cdot C = C' \cdot C + Q + R + S$. By Noether's Theorem there is a line L' passing through Q, R, S. But then L = L', hence $P_9 + R + S = L \cdot C = L' \cdot C = Q + R + S$, meaning $P_9 = Q$.

Definition 4.3.72. Let C be a non-singular cubic. Take any two points P,Q on C. Take the unique line L such that $L \cdot C = P + Q + R_{P,Q}$ for some unique $R_{P,Q} \in C$. When $P \neq Q$, L = L(P,Q) and when P = Q, L is the tangent at P. Define a binary operation on C

$$\exists: C \times C \to C$$

$$(P,Q) \mapsto R_{P,Q}$$

Remark 4.3.73. With this operation C becomes a commutative magma I.e. \square is a commutative operation.

Definition 4.3.74. Let C be a non-singular cubic. Choose any point O on C. Define a binary operation

$$\bigoplus_O := \bigoplus : C \times C \to C$$
$$(P,Q) \mapsto O^{\boxminus}(P^{\boxminus}Q)$$

Proposition 4.3.75. *Let* C *be a non-singular cubic. With* \oplus , C *becomes an additive group with* O *being the identity.*

Proof. We first show that the operation is associative. Let $P, Q, R \in C$. We pick unique lines $L_1, L_2, L_3, M_1, M_2, M_3$ such that

$$L_{1} \cdot C = P + Q + P \square Q$$

$$L_{2} \cdot C = P \oplus Q + R + (P \oplus Q) \square R$$

$$L_{3} \cdot C = O + Q \square R + O \square (Q \square S)$$

$$Q \oplus R$$

$$M_{1} \cdot C = O + P \square Q + O \square (P \square Q)$$

$$P \oplus Q$$

$$M_{2} \cdot C = Q + R + Q \square R$$

$$M_{3} \cdot C = P + Q \oplus R + P \square (Q \oplus R)$$

Set $C' := L_1 L_2 L_3$ and $C'' := M_1 M_2 M_3$. Then

$$C' \cdot C = O + P + Q + R + P \boxplus Q + Q \boxplus R + P \oplus Q + Q \oplus S + (P \oplus Q) \boxplus R,$$

$$C'' \cdot C = O + P + Q + R + P \boxplus Q + Q \boxplus R + P \oplus Q + Q \oplus S + P \boxplus (Q \oplus R).$$

Applying the prior proposition, it follows that $(P \oplus Q)^{\boxplus}R = P^{\boxplus}(Q \oplus R)$. Then $O + (P \oplus Q)^{\boxplus}R(P \oplus Q) \oplus R = O + P^{\boxplus}(Q \oplus R) + P \oplus (Q \oplus R)$, hence $(P \oplus Q) \oplus R = P \oplus (Q \oplus R)$. Moreover, the line through O and $O \oplus P$ is the line through O and $O \oplus P = P$. Define $-P := P^{\boxplus}(O^{\boxplus}O)$. Then the third intersection of C with the line through O and $O \oplus O$ is O, hence $O \oplus O = O$ intersection of $O \oplus O$ is O, hence $O \oplus O = O$ intersection of $O \oplus O$ is O, hence $O \oplus O = O$ intersection of $O \oplus O$ is O, hence $O \oplus O = O$ intersection of $O \oplus O$ is O, hence $O \oplus O = O$ intersection of $O \oplus O$ is O, hence $O \oplus O = O$ intersection of $O \oplus O$ is O, hence $O \oplus O = O$ intersection of $O \oplus O$ is O, hence $O \oplus O = O$ intersection of $O \oplus O$ is O, hence $O \oplus O = O$ intersection of $O \oplus O$ is O in O intersection of O intersectio

Definition 4.3.76. Let C be a cubic with no multiple components. Define

$$C^o := \{ P \in C : P \text{ simple} \}.$$

Remark 4.3.77. When C is irreducible, we may define \Box as in the non-singular case, since L(P,Q) is not a component of C in this case there is a unique point $R_{P,Q}$ such that $L(P,Q) \cdot C = P + Q + R_{P,Q}$. We see that $I(R_{P,Q}, L(P,Q) \cap C) = 1$, hence $R_{P,Q}$ is simple, meaning \Box is indeed well-defined. Pick a point $O \in C^o$. Upon for $P,Q \in C^o$ defining, $P \oplus Q := O^{\Box}(P^{\Box}Q)$, the same computations as in the nonsingular case shows that (C^o, \oplus) is an additive group.

If C has a non-trivial component Then I don't know.

Proposition 4.3.78. Consider an irreducible cubic C. Let $O, O' \in C^{\circ}$ be given. Set $Q := O^{\boxminus}O'$. Then

$$\alpha: (C^{\circ}, \oplus_{O}) \to (C^{\circ}, \oplus_{O'})$$

$$P \mapsto Q^{\boxplus}P$$

defines a group isomorphism.

Proof. \Box

Proposition 4.3.79. Let P_1 , P_2 , P_3 be distinct points on an irreducible conic Q. Let L_1 , L_3 , L_5 be the tangents at each of the respective points. Let $L_2 := L(P_1, P_2)$, $L_4 := L(P_2, P_3)$ and $L_6 := L(P_3, P_1)$. Then $Q_i := L_i \cap \operatorname{op}(L_i) = L_i \cap L_{i+3}$ for i = 1, 2, 3 are collinear

Proof. Set $C = L_1L_3L_5$, $C' := L_2L_4L_6$. For each i note that there are exactly two lines in C' intersecting P_i . Since neither of these points are tangents to Q, they intersect the tangent to P_i transversally. It follows that $I(P_i, C \cap C') = 2$, hence

$$C \cdot C' = \sum_{1}^{3} 2P_i + Q_i.$$

Additionally

$$Q \cdot C' = \sum_{1}^{3} 2P_i,$$

it follows from a Corollary 4.3.61 2. that there is a line L for which $L \cdot C' = \sum_{i=1}^{3} Q_i$, hence Q_1, Q_2, Q_3 are collinear.

Proposition 4.3.80. Let P_1, \ldots, P_5 be distinct points on an irreducible conic Q. Let L_1 be the tangent at P_1 and connect the points with 5 lines L_i as before. Defining Q_1, Q_2, Q_3 as before, we get that these are collinear.

Proof. Define C and C' as before. Then

$$C \cdot C' = 2P_1 + \sum_{i=2}^{5} P_i + Q_1 + Q_2 + Q_3$$

and

$$C \cdot Q = 2P_1 + \sum_{i=1}^{5} P_i.$$

П

We get a line through Q_1, Q_2, Q_3 in the usual way.

Remark 4.3.81. The above result gives a way to construct a tangent to a point on an irreducible conic using only a straightedge: Call the point P. Draw 4 other distinct points also distinct from P. Call these points P_1, \ldots, P_4 . Find the intersection of the line $L(P_4, P)$ and $L(P_1, P_2)$. Call that point Q_1 . Do the same with $L(P_1, P)$ and $L(P_3, P_4)$. Call that point Q_2 . Find the intersection of $L(P_2, P_3)$ and $L(Q_1, Q_2)$. Call that point Q_3 . Then $L(P, Q_3)$ is the tangent of the conic at P.

Proposition 4.3.82. Consider the hexagon formed by points P_1, \ldots, P_6 . Suppose the intersections of the sides with their opposite side lie on a line. Then P_1, \ldots, P_6 lie on a conic.

$$\square$$

Proposition 4.3.83. Let C be an irreducible cubic and L a line such that $L \cdot C = P_1 + P_2 + P_3$ for P_1, P_2, P_3 distinct. Let L_i be the tangent to C at P_i . Then $L_i \cdot C = 2P_i + Q_i$ for some Q_i . Then Q_1, Q_2, Q_3 are collinear.

Proposition 4.3.84. On a cubic, a line through two flexes on the cubic, passes through a third flex on the cubic.

5 Algebraic Geometry with Abstract Irreducible Varieties

We have thus far been studying algebraic geometry by studying systems of polynomial equations in some space in which this makes sense. We want to study properties of such objects independently of the space in which they are embedded. This will be accomplished by relying the fact that on the spaces of study there is a topology - namely the Zariski topology. We thus aim to study algebraic geometry through the lens of this topology. We thus aim to define varieties in terms of this topology and have these definitions be consistent with our prior studies and also adding some more substance to the theory. One upshot of what we will develop is that we get a notion of a ring of regular functions/coordinate ring on any variety that on the nose will correspond to some ring of K-valued functions on that variety.

5.1 Some Topology

Lemma 5.1.1. The Zariski topology on a variety V is never Hausdorff (It is however Frechét (T_1) since points are closed) and every non-empty open subset of V is dense in V.

Proof. Let $U_1 \cap V$ and $U_2 \cap V$ be open such that $U_1 \cap U_2 \cap V = \emptyset$. Then $V \setminus U_1 \cup V \setminus U_2 = V$, hence WLOG $V \setminus U_1 = V$, implying $U_1 = \emptyset$. Hence for any two open subsets of V, their intersection will never be empty. So consider distinct point P and Q. Any open neighborhood of P will then intersect any open neighborhood of Q, meaning V is not Hausdorff.

Any open neighborhood of a point P would intersect U, hence any point in V is a point of closure in U, hence cl(U) = V.

We denote the subspace topology of a subset Y of topological space (X, τ) by τ_Y^{τ} .

Lemma 5.1.2. Let (X, τ) be a topological space and $Z \subset Y \subset X$. Then $\tau_Z^{\tau_Y^\tau} = \tau_Z^\tau$.

Proof. "C": Let $U \cap Z \in \tau_Z^{\tau_T^{\tau}}$. Then $U = U' \cap Y$ for some $U' \in \tau$, hence

$$U \cap Z = U' \cap Z$$
.

"">": Conversely, given $U \cap Z \in \tau_Z^{\tau}$, set $U' := U \cap Y \in \tau_Y^{\tau}$. Then

$$U\cap Z=U'\cap Z\in\in\tau_Z^{\tau_Y^\tau}$$

Lemma 5.1.3. Let (X, τ) be topological space with an open covering $\{U_{\alpha}\}_{{\alpha}\in A}$.

- 1. $V \subset X$ closed if and only if $V \cap U_{\alpha}$ is closed in U_{α} with respect to $\tau_{U_{\alpha}}^{\tau}$ for every $\alpha \in A$.
- 2. Consider an additional topological space (Y, τ') with an open covering $\{V_{\alpha}\}$ and a function $f: X \to Y$ with $f(U_{\alpha}) \subset V_{\alpha}$ for each α . f is then continuous if and only if $f_{\alpha} := f|_{U_{\alpha}}: U_{\alpha} \to V_{\alpha}$ is continuous for each $\alpha \in A$.

Proof. 1. Only if follows from

$$X \setminus V = \bigcup_{\alpha} (U_{\alpha} \setminus V) = \bigcup_{\alpha} (U_{\alpha} \setminus (V \cap U_{\alpha}))$$

and if $X \setminus V$ is open then so is $U_{\alpha} \setminus (V \cap U_{\alpha}) = U_{\alpha} \setminus V = X \setminus V \cap U_{\alpha}$ in the subspace topology for each α .

2. For only if, let $V \subset Y$ be open. Then $V = \bigcup_{\alpha} (V \cap V_{\alpha})$ with $V'_{\alpha} := V \cap V_{\alpha}$ being open in τ' for each α . Then $f_{\alpha}^{-1}(V'_{\alpha})$ is open in $\tau_{U_{\alpha}}^{\tau}$, for each α by continuity. Upon suitably writing $f_{\alpha}^{-1}(V'_{\alpha}) = O_{\alpha} \cap U_{\alpha}$, we find that $f_{\alpha}^{-1}(V'_{\alpha})$ is open in τ . We thus get that

$$f^{-1}(V) = f^{-1}\left(\bigcup_{\alpha} V_{\alpha}'\right) = \bigcup f_{\alpha}^{-1}(V_{\alpha}') \in \tau.$$

For the if part, let $V_{\alpha} \cap V \in \tau_{V_{\alpha}}^{\tau'}$, then $V_{\alpha} \cap V \in \tau'$, hence $f_{\alpha}^{-1}(V_{\alpha} \cap V) = f^{-1}(V_{\alpha} \cap V) \cap U_{\alpha} \in \tau_{U_{\alpha}}^{\tau}$.

Example 5.1.4. The map $\varphi_i: \mathbb{A}^n \to U_i \subset \mathbb{P}^n$ is a homeomorphism when U_i is induced with Zariski subspace topology. Indeed this is a consequence of Lemma 4.1.62. 6. and 7. Note that each U_i is open since $U_i = \mathbb{P}^n \setminus V(x_i)$. It thus follows from 1. of the prior lemma that $W \subset \mathbb{P}^n$ is closed if and only if $W \cap U_i$ is closed in the Zariski subspace topology for each i if and only if $\varphi_i^{-1}(W) = \varphi_i^{-1}(W \cap U_i)$ is closed in \mathbb{A}^n for each i.

Proposition 5.1.5. Let S be an infinite subset of an (irreducible!) plane curve $V(f) \subset \mathbb{A}^2$. Then cl(S) is dense V(f). I don't see that the statement could be true as stated in Fulton. Take for instance f to be the product of two distinct lines l_1 and l_2 . Then $V(f) \setminus V(l_1) = (\mathbb{A}^2 \setminus V(l_1)) \cap V(f)$, implying that $V(l_1)$ is closed in V(f), but then $cl(V(l_1)) = V(l_1) \subsetneq V(f)$

Proof. Note that cl(S) is infinite and therefor must contain a plane curve g. This g is thus component of f and since f is irreducible, f = g.

Proposition 5.1.6. Any bijection from an irreducible curve f to an irreducible curve g is a homeomorphism.

Proof. Call such a map ϕ . To prove that ϕ is continuous, we prove that $\phi(\operatorname{cl}(S)) \subset \operatorname{cl}(\phi(S))$ for any $S \subset f$. Note that if S is finite, then S is closed in f, hence $\phi(\operatorname{cl}(S)) = \phi(S)$ which is a finite subset of g, and therefor also closed in g, implying $\phi(\operatorname{cl}(S)) = \phi(S) = \operatorname{cl}(\phi(S))$. If S is infinite, then by the prior proposition $\phi(\operatorname{cl}(S)) = \phi(f) = g$. We also have that $\phi(S)$ is infinite since ϕ is injective, hence $\operatorname{cl}(\phi(S)) = g$. Applying the same argument to ϕ^{-1} , we find that ϕ is bicontinuous.

Lemma 5.1.7. Let X be a topological space and $\phi: X \to \mathbb{A}^n$ some map. Then ϕ is continuous if and only if $\phi^{-1}(V(f))$ is closed for every non-constant polynomial $f \in K[x_1, \ldots, x_n]$. In particular for n = 1, ϕ is continuous if and only if $\phi^{-1}(\lambda)$ is closed for any $\lambda \in K$.

Proof. This follows from the fact that $\{V(f): f \in K[\mathbf{x}], f \text{ non-constant}\}$ forms a basis for the Zariski closed sets in \mathbb{A}^n except for the trivially closed sets \mathbb{A}^n and \emptyset , but under the preimage of ϕ these will always be closed. Moreover for n=1, $\{V(f): f \in K[\mathbf{x}], f \text{ non-constant}\}$ correspond to finite unions of points in \mathbb{A}^1 .

Lemma 5.1.8. Let V be an affine variety and $f \in \Gamma(V)$. Define $V(f) := \{P \in V : f(P) = 0\}$. $V(f) \subset V$ is closed and

$$V \neq V(f) \iff f \neq 0.$$

Proof. Write f = F + I(V) for some F. Then $V \setminus V(f) = V \setminus V(F) = (\mathbb{A}^n \setminus V(F)) \cap V$. So $V \setminus V(f)$ is open, hence V(f) is closed. If f = 0, then clearly every point on V is mapped to 0, hence V = V(f). If $f \neq 0$, then there is a point on V that is not mapped to 0, hence $V(f) \subsetneq V$.

Lemma 5.1.9. Let V be an affine variety. Suppose $U \subset V$ is dense and f(P) = 0 for every $P \in U$. Then f = 0.

Proof. Since f is a polynomial function, it is Zariski-continuous from V to K. We thus find that $f(V) = f(\operatorname{cl}(U)) \subset \operatorname{cl}(f(U)) = \operatorname{cl}(\{0\}) = \{0\}$, where the last equality is due to points being Zariski-closed. It follows that $f(V) = \{0\}$.

Lemma 5.1.10. Let U be an open subset of a variety V. Consider some rational function $z \in K(V)$. Then $U_z := \{P \in U : z(P) \neq 0\}$ is open in V. Furthermore $U \to K, P \mapsto z(P)$ is continuous.

Proof. Write z = f/g. Note that $U_z = \{P \in U : f(P) \neq 0\}$, hence

$$U \setminus U_z = \{P \in U : f(P) = 0\} = (\{P \in V : f(P) = 0\} \cup \mathcal{P}_z) \cap U.$$

By a similar argument as in the prior lemma $V(f):=\{P\in V: f(P)=0\}$ is closed in V and we already know that the pole set of a rational function is closed in V, hence $U\setminus U_z$ is closed, meaning U_z is open. Let $\lambda\in K$. To check continuity of evaluation of z on U, let $\lambda\in K$. Then $z^{-1}(\lambda)=\{P\in U: z-\lambda=0\}$, and since $z-\lambda\in \mathcal{O}_P(V)$ for every $P\in U$, it follows that by the first statement that $z^{-1}(\lambda)$ is closed. By Lemma 5.1.7 it follows that $\operatorname{ev}_{\bullet}(z)$ is continuous as a function from U to K.

5.2 Redefining notions

5.2.1 Varieties and Regular Functions on Varieties

Definition 5.2.1. Let $\emptyset \neq V \subset \mathbb{A}^m \times \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_l}$ be an irreducible algebraic set. A *variety of* V is a Zariski open subset X. We endow this with the *Zariski topology*, which will just be be subspace topology of X in V. We define K(X) := K(V) and $\mathcal{O}_P(X) := \mathcal{O}_P(V)$ for $P \in X$.

Remark 5.2.2. By Lemma 5.1.2 if $U \subset X$ is open, then $U \subset V$ is also open, hence it is also variety. Such a set is called an *open subvariety of* X.

Definition 5.2.3. A closed subset Y of a variety $X \subset V$ is called *reducible* if it is the union of two proper subsets that are closed in X. Otherwise, it is called *irreducible*.

Remark 5.2.4. Suppose $\operatorname{cl}_V(Y) = A \cup B$ where A and B are closed in V. Then $Y \subset A \cup B$, hence $Y = (Y \cap A) \cup (Y \cap B)$. Then WLOG $Y \cap A = Y$. Then

$$Y = Y \cap A \subset \operatorname{cl}_V(Y \cap A) \subset \operatorname{cl}_V(Y) \cap A = A,$$

hence $\operatorname{cl}_V(Y) = A$. It thus follows that $\operatorname{cl}_V(Y)$ is irreducible.

Definition 5.2.5. A an irreducible set $Y \subset X \subset V$ is called a closed subvariety of X

Remark 5.2.6. Let U be a subvariety of $X \subset V$ and Y a closed subvariety U. Then Y is also closed in X and clearly also irreducible in X since writing $Y = A \cup B$ where A and B are closed in X, we would also have that A and B are closed in U, hence Y = A or Y = B. It thus follows that Y is also a closed subvariety in X. From topology we know that $Y = \operatorname{cl}_U(Y) = U \cap \operatorname{cl}_X(Y)$, hence Y is a variety in $\operatorname{cl}_X(Y)$. Taking X to be Y itself, it follows that Y is a variety in Y and there an open subvariety of Y.

Definition 5.2.7. Let $X \subset V$ be a variety and $U \subset X$ an open subvariety. Define

$$\Gamma(U, \mathcal{O}_X) := \Gamma(U) := \bigcap_{P \in U} \mathcal{O}_P(X),$$

which is a subring of K(X).

Remark 5.2.8. Note that if $U' \subset U$ are open subvarieties of X, then

$$\Gamma(U') \supset \Gamma(U),$$

and if X = U is an affine variety, then $\Gamma(X)$ is the coordinate ring on X (cf. Proposition 3.3.52).

Proposition 5.2.9. Let $U \subset X$ be an open subvariety of a variety $X \subset V$. Consider $z \in \Gamma(U)$ such that z(P) = 0 for every $P \in U$. Then z = 0.

Proof. Since $K(X) = K(V)K(\operatorname{cl}_V(X))$, we may WLOG assume X is a closed subvariety of V. In general we are situated in some multispace $\mathbb{A}^n \times \mathbb{P}^{n_1} \times \cdots \mathbb{P}^{n_m}$. Let i_1,\ldots,i_m be given such that $X \cap \mathbb{A}^n \times U_{i_1} \times \cdots U_{i_m} \neq \emptyset$. We then apply Remark 4.2.28 to see it is sufficient to consider the affine variety $\varphi_{i_1,\ldots,i_m,n}^{-1}(X) \subset \mathbb{A}^{n+n_1+\cdots+n_m}$. In other words X is an affine variety and U is an open subvariety of X. Write $z = \frac{f}{g}$ and set $U' := \{P \in U : g(P) \neq 0\} \subset U$ which is open by Lemma 5.1.10. By Remark 5.2.8, $\Gamma(U') \supset \Gamma(U)$, hence $z \in \Gamma(U')$. Then since f(P) = 0 for every $P \in U'$ and due the fact that open subsets of X are dense in X it follows Lemma 5.1.9 that f = 0, hence z = 0.

Remark 5.2.10. The above proposition shows that the K-algebra homomorphism,

$$\Gamma(U) \to \operatorname{Fun}(U, K)$$
$$z \mapsto \operatorname{ev}_{\bullet}(z)$$

is injective. This means that we may identify $\Gamma(U)$ with some ring of K-valued functions on U

Example 5.2.11. Set $X := \mathbb{A}^2 \setminus \{(0,0)\}$ which is an open subvariety of \mathbb{A}^2 . We claim that $\Gamma(X) = \Gamma(\mathbb{A}^2)$. Let $z = f/g \in \Gamma(X)$. Since g can only have finitely many zeros, it must be constant \mathbf{ref} . $z = f' \in K[x,y] = \Gamma(\mathbb{A}^2)$.

Proposition 5.2.12. Let $\{X_{\alpha}\}$ be a family of closed subset of some variety X. Such a family has a minimal element.

Proof. Set $V := \operatorname{cl}(X)$. Set $V_{\alpha} := \operatorname{cl}(X_{\alpha})$ for each α . The family of algebraic sets $\{V_{\alpha}\}$ has a minimal element V_{β} ref to proper result. We claim that X_{β} is minimal for $\{X_{\alpha}\}$. Indeed, suppose $X_{\alpha} \subset X_{\beta}$. Then $V_{\alpha} \subset V_{\beta} \implies V_{\alpha} = V_{\beta}$. In general $X_{\gamma} = \operatorname{cl}_X(X_{\gamma}) = X \cap \operatorname{cl}(X_{\gamma}) = X \cap V_{\gamma}$, hence $X_{\alpha} = X \cap V_{\alpha} = X \cap V_{\beta} = X_{\beta}$.

Proposition 5.2.13. Let X be a variety with an open cover $\{U_{\alpha}\}_{{\alpha}\in A}$. Then X has a finite subcover $\{U_{\alpha_i}\}_{1}^n$.

Proof. If A is finite we are done, so suppose this is not the case. By the prior proposition, the family $\{X \setminus \bigcup_{1}^{n} U_{\alpha_{i}} : n \geq 1, \alpha_{1}, \dots, \alpha_{n} \in A\}$ has a minimal element $X \setminus \bigcup_{1}^{m} U_{\beta_{i}}$. This means that $\bigcup_{1}^{m} U_{\beta_{i}}$ is a maximal element of the family

$$S := \left\{ \bigcup_{1}^{n} U_{\alpha_i} : n \ge 1, \alpha_1, \dots, \alpha_n \in A \right\}.$$

Let $x \in X$. Then $x \in U_{\alpha_x}$ for some $\alpha_x \in A$, hence

$$\bigcup_{1}^{m} U_{\beta_{i}} \subset U_{\alpha_{x}} \cup \bigcup_{1}^{m} U_{\beta_{i}} \in S \implies x \in U_{\alpha_{x}} \cup \bigcup_{1}^{m} U_{\beta_{i}} = \bigcup_{1}^{m} U_{\beta_{i}} \implies X = \bigcup_{1}^{m} U_{\beta_{i}}.$$

Remark 5.2.14. A topological space for which every open cover has a finite subcover is called *quasi-compact*. If such a space is also Hausdorff it is called *compact*. A variety is thus always quasi-compact, but never compact.

Lemma 5.2.15. Let X be a variety, $z \in K(X)$. The pole set, $\mathcal{P}_X(z) := \{P \in X : z \text{ not defined at } P\}$ is closed in X. If $z \in \mathcal{O}_P(X)$ for some $P \in X$. Then there is some open neighborhood of P in X, U such that $z \in \Gamma(U)$, hence

$$\mathcal{O}_P(X) = \bigcup_{U \ open \ neighborhood \ of \ P} \Gamma(U).$$

Proof. Note first that $\mathcal{P}_{cl(X)}(z)$ is an algebraic set $\mathbf{ref!}$ and hence closed, hence $\mathcal{P}_X(z) = \mathcal{P}_{cl(X)}(z) \cap X$ is closed in X.

Set $U:=X\setminus \mathcal{P}_X(z)$, which we have just seen is open in X. Since z is defined at P, $P\notin \mathcal{P}_X(z)$. In particular, if $Q\in U$, then z is defined at Q, hence $z\in \mathcal{O}_Q(X)$, meaning $z\in \bigcap_{Q\in U}\mathcal{O}_Q(X)=\Gamma(U)$. We already knew that

$$\mathcal{O}_P(X)\supset \bigcup_{U \text{ open neighborhood of }P}\Gamma(U)$$

and we have just established the converse inclusion.

Lemma 5.2.16. Let X be a variety and $f = \frac{g}{h} \in \Gamma(X)$.

1. Set
$$z := \frac{1}{f-\lambda} \in K(X)$$
. For every $\lambda \in K$, $\mathcal{P}_X(z) = \text{ev}_{\bullet}(f)^{-1}(\lambda)$.

2. $ev_{\bullet}(f)$ is a morphism.

Proof. 1. Indeed, we have $z = \frac{h}{q - \lambda h}$, hence

$$x \in \mathcal{P}_X(z) \iff g(x) = \lambda h(x) \iff \lambda = \frac{g(x)}{h(x)} = f(x) \iff x \in \text{ev}_{\bullet}(f)^{-1}(\lambda).$$

Here we use that $h(x) \neq 0$ for every $x \in X$.

2. $\operatorname{ev}_{\bullet}$ is continuous by Lemma 5.1.7. Let $\gamma \in \Gamma(\mathbb{A}^1) = K[x]$. Then $\gamma(f) \in \Gamma(X)$. Let $U \subset \mathbb{A}^1$ be open. Note that $\operatorname{ev}_{\bullet}(f)^{-1}(U) \subset X$, meaning $\Gamma(X) \subset \Gamma(\operatorname{ev}_{\bullet}(f)^{-1}(U))$. Suppose $\gamma(P) \neq 0$ for every $P \in U$. Then for every $Q \in \operatorname{ev}_{\bullet}(f)^{-1}(U)$,

$$\gamma(f)(P) = \gamma(f(P)) \neq 0$$
,

hence $\gamma(f)$ is a unit in Γ (ev $_{\bullet}(f)^{-1}(U)$). Note also that $\widetilde{\operatorname{ev}_{\bullet}(f)}(\gamma) = \gamma(f) \in \Gamma$ (ev $_{\bullet}(f)^{-1}(U)$). It follows that

$$\widetilde{\operatorname{ev}_{\bullet}(f)} : \Gamma(\mathbb{A}^1) \to \Gamma\left(\operatorname{ev}_{\bullet}(f)^{-1}(U)\right)$$
$$\gamma \to \gamma \circ \operatorname{ev}_{\bullet}(f)$$

is a well-defined K-algebra homomorphism which extends to a well-defined K-algebra homomorphism

$$\underbrace{\operatorname{ev}_{\bullet}(f)}_{\bullet}: \Gamma(U) \to \Gamma\left(\operatorname{ev}_{\bullet}(f)^{-1}(U)\right)
\frac{\alpha}{\beta} \to \frac{\alpha \circ \operatorname{ev}_{\bullet}(f)}{\beta \circ \operatorname{ev}_{\bullet}(f)}$$

meaning $ev_{\bullet}(f)$ is a morphism.

5.2.2 Morphisms of Varieties

There is a functor $(\operatorname{Fun}(_,K),\widetilde{\bullet})$ from the category of sets to the category of sets to the category of rings of K-valued functions on sets, taking a set X to $\operatorname{Fun}(X,K)$ and a map $\varphi:X\to Y$ to

$$\widetilde{\varphi}:\operatorname{Fun}(Y,K)\to\operatorname{Fun}(X,K)$$

$$f\mapsto f\circ\varphi$$

For affine varieties we have seen that this functor restricts to a fully faithful functor between the category of affine varieties with polynomial maps and the category of rings of K-valued polynomial functions on varieties with K-algebra homomorphism.

We want the choice of notion of morphism on this generalized notion of variety to generalize the affine theory. This motivates the following definitions

Definition 5.2.17. Let X and Y be varieties. A morphism from X to Y is a Zariski-continuous map $\varphi: X \to Y$ such that for every $U \subset Y$ open, if $f \in \Gamma(U, \mathcal{O}_Y)$, then $\widetilde{\varphi}(f) = f \circ \varphi$.

- **Example 5.2.18.** 1. If $V \subset \mathbb{A}^n$ and $W \subset \mathbb{A}^m$ are affine varieties, then a polynomial map $\varphi : V \to W$ is a morphism.
 - 2. For any variety $\mathrm{id}_X:X\to X, x\mapsto x$ is a morphism. Indeed it is continuous and $\mathrm{id}=\mathrm{id}_{\Gamma(U)}$ for each open $U\subset X$.
 - 3. For morphisms $\varphi: X \to Y$ and $\phi: Y \to Z$, $\phi \circ \varphi: X \to Z$ is a again a morphism. Indeed, the composition is continuous. Let $U \subset Z$ be open and $f \in \Gamma(U)$. Note that $\widetilde{\phi}(f) \in \Gamma(\phi^{-1}(U))$. Note then that $\phi^{-1}(U) \subset Y$ is open by continuity, hence $\widetilde{\phi \circ \varphi}(f) = \widetilde{\varphi}(\widetilde{\phi}(f)) \in \Gamma(\varphi^{-1}(\phi^{-1}(U))) = \Gamma((\phi \circ \varphi)^{-1}(U))$
 - 4. 2. and 3. shows that varieties and morphisms define a category.
 - 5. Consider an open/closed subvariety Y of a variety X. Consider the map

$$\iota: Y \hookrightarrow X, y \mapsto y.$$

This is a morphism: We already (from general topology) know that embeddings are continuous. Let $U \subset X$ be open. Then $\iota^{-1}(U) = Y \cap U \subset U$. Let $f \in \Gamma(U)$, and consider a point $P \in Y \cap U$. Then f is defined at $P = \varphi(P)$, hence $\widetilde{\varphi}(f) = f \circ \varphi$ is defined at P, meaning $\widetilde{\varphi}(f) \in \Gamma(\iota^{-1}(U))$.

6. Set $A:=\mathbb{A}^n\times\mathbb{P}^{n_1}\times\cdots\times\mathbb{P}^{n_k}$ and $B:=\mathbb{A}^m\times\mathbb{P}^{m_1}\times\cdots\times\mathbb{P}^{m_l}$. Consider the map $\pi:A\times B\to A, (v,w)\mapsto v$. Note that $\pi^{-1}(V)=V\times B$ for every closed $V\subset A$ and this set is clearly just given by $V(I(V))\subset A\times B$, meaning π is continuous. Consider K(A) canonically as a subring of $K(A\times B)$. Explicitly a multiform in $(K[x_1,\ldots,x_n])[\mathbf{y}]$ is in particular an $(n_1,\ldots,n_k,m_1,\ldots,m_l)$ -form in $(K[x_1,\ldots,x_n,z_1,\ldots,z_m])[\mathbf{y},\mathbf{w}]$, hence a rational function a/b where $a,b\in K[\mathbf{x},\mathbf{y}]$ are same degree (n_1,\ldots,n_k) -forms is canonically a rational function a/b in $Q(K[\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{w}])$. Denote this identification by i Let $U\subset A$ be open. Note that $\pi^{-1}(U)=U\times B$. We can then canonically consider K(U)=K(A) as a subring of $K(U\times B)=K(A\times B)$ via i. Given a point $P\in U$ and a rational function on U defined at P, f say, we may consider f as a rational function on f f say we may consider f as a rational function on f f say. The forms is canonically consider f and a rational function on f f say. We may consider f as a rational function on f f say. We may consider f as a rational function on f f say. The forms of f is a rational function of f say. The forms of f is a rational function of f say. The first f is a rational function of f say. The first f is a rational function of f say. The first f is a rational function of f is a rational function of f say. The first f is a rational function of f is f in the first f is a rational function of f is f in the first f is f in the first f in the first f is f in the first f in the first f in the first f is f in the first f

$$i(f)(P, w) = f(P) = f(\pi(P, w)) = (f \circ \pi)(P, w) = \widetilde{\pi}(f)(P, w),$$

meaning $\widetilde{\pi} = i$. This, in particular, shows that $\widetilde{\pi}(f) \in \Gamma(\pi^{-1}(U))$ for every $f \in \Gamma(U)$, hence π is a morphism.

7. Consider the map $\pi: \mathbb{A}^{n+1} \setminus 0 \to \mathbb{P}^n$. Let $V = V^{\mathbb{P}}(F_1, \dots, F_m)$ where F_i are homogeneous. We claim that $\pi^{-1}(V) = V^{\mathbb{A}}(F_1, \dots, F_m)$. Indeed, for each i

$$v \in \pi^{-1}(V) \iff F_i([v]) = 0 \iff F_i(v) = 0 \iff v \in V^{\mathbb{A}}(F_1, \dots, F_m).$$

It follows that ϕ is continuous. Let $U \subset \mathbb{P}^n$ be open. Consider the K-algebra map

$$\alpha: K(\mathbb{P}^n) = \left\{\frac{f}{g} \in Q(K[\mathbf{x}]): f, g \text{ forms, deg } f = \deg g\right\} \to K(V) = K\left(\mathbb{A}^{n+1}\right) = Q(K[\mathbf{x}])$$

$$f/g \mapsto f/g$$

Let $v \in \pi^{-1}(U)$ and consider $f/g \in \Gamma(U)$. Then [v] is not a zero of g, hence $g(\lambda v) \neq 0$ for every $\lambda \in K \setminus 0$, hence $g(v) \neq 0$. It follows that α restrict to a K-algebra map

$$\alpha: \Gamma(U) \to \Gamma\left(\pi^{-1}(U)\right)$$

$$\frac{f}{g} \mapsto \frac{f}{g}$$

and for each $v \in \pi^{-1}(U)$ and $z := f/g \in \Gamma(U)$

$$\alpha(z)(v) = z(v) = z([v]) = (z \circ \pi)(v) = \widetilde{\pi}(z)(v) \implies \alpha = \widetilde{\pi},$$

hence π is a morphism. Suppose $U\subset \mathbb{P}^n$ is open in the quotient topology on \mathbb{P}^n induced by the Zariski topology on \mathbb{P}^n is the quotient topology on \mathbb{P}^n induced by the Zariski topology on \mathbb{P}^n is the quotient topology on \mathbb{P}^n induced by the Zariski topology on $\mathbb{A}^{n+1}\setminus 0$. It is sufficient to check that $V:=\mathbb{P}^n\setminus U$ is closed. Note that the complement of $\pi^{-1}(U)$ in $\mathbb{A}^{n+1}\setminus 0$ is $\pi^{-1}(V)$. Let $v\in \pi^{-1}(V)$ and $\lambda\in K\setminus 0$. Then $[\lambda v]=[v]\in V$, hence $\lambda v\in \pi^{-1}(V)$. WLOG write $\pi^{-1}(V)=V^{\mathbb{A}}(f)\setminus 0$. We claim that $\pi^{-1}(V)=V^{\mathbb{P}}(f)$. Indeed, if $v\in \pi^{\mathbb{A}}(V)$, then $\lambda v\in V^{\mathbb{A}}(f)$ for every $\lambda\in K\setminus 0$, hence $[v]\in V^{\mathbb{P}}(f)$. The other inclusion is trivial. It then follows that $U=\mathbb{P}^n\setminus V^{\mathbb{P}}(f)$, meaning U is open. The same argument also shows that $\pi(V)$ is closed for every closed $V\subset \mathbb{A}^{n+1}\setminus 0$, hence if V is a variety, so is $\pi(V)$.

Definition 5.2.19. A variety that is isomorphic to a closed subvariety of \mathbb{A}^n for some n is called *an affine variety*. A variety that is isomorphic to a closed subvariety of \mathbb{P}^n is called *a projective variety*.

As to not confuse these notions with prior notions of affine and projective variety; " $X \subset \mathbb{A}^n$ is an affine variety", means that X is an affine variety in the sense developed in chapter 4, while "X is an affine variety" refers to the more general notion of being affine described in this definition. A similar clarification of notation also applies to the notion of projective varieties.

Remark 5.2.20. The functor $(X,\varphi)\mapsto (\operatorname{Fun}(X,K),\widetilde{\varphi})$ where X is affine and φ is a morphism of affine varieties is a fully faithful functor. Indeed let X and Y be affine varieties. In the case $X\subset \mathbb{A}^n$ and $Y\subset \mathbb{A}^m$ any morphism $\varphi:X\to Y$ induces a K-algebra homomorphism $\widetilde{\varphi}:\Gamma(Y)\to\Gamma(X)$ and there is a unique polynomial map $\phi:X\to Y$ such that $\widetilde{\phi}=\widetilde{\varphi}$. Denote $\varphi=(\varphi_1,\ldots,\varphi_m)$ and $\varphi=(\phi_1,\ldots,\phi_m)$. Then applying $\widetilde{\varphi}$ to each $y_i+I(Y)$, we find that $\phi_i+I(V)=\varphi_i+I(V)$ for each i, hence $\varphi=\phi$. In particular, an affine morphism between affine varieties both embedded in affine space is a polynomial map.

In the general setting, suppose $X \stackrel{\varphi_X}{\simeq} X' \subset \mathbb{A}^n$ affine and $Y \stackrel{\varphi_Y}{\simeq} Y' \subset \mathbb{A}^m$ affine. Then given two morphisms ϕ, ϕ' inducing a K-algebra homomorphism $\sigma: \Gamma(Y) \to \Gamma(X)$ we get at K-algebra homomorphism, $\widetilde{\varphi_X}^{-1}\sigma\widetilde{\varphi_Y}:\Gamma(Y')\to\Gamma(X')$, which is induced by $\varphi_Y\phi\varphi_X^{-1}$ and $\varphi_Y\phi'\varphi_X^{-1}$. It follows from the special case that these maps are equal, hence $\phi=\phi'$. Given any K-algebra homomorphism $\sigma:\Gamma(Y)\to\Gamma(X)$, there is a polynomial map $\phi:X'\to Y'$ inducing $\widetilde{\varphi_X}^{-1}\sigma\widetilde{\varphi_Y}$. Then $\varphi_Y^{-1}\phi\varphi_X$ induces σ . In other words to prove the general case we just translate morphisms of affine varieties to polynomial maps via isomorphisms Surely this is a trivial thing using some category theory. Develop this.

Example 5.2.21. Consider $V := \mathbb{A}^2 \setminus \{(0,0)\}$ and the morphism $\iota : V \to \mathbb{A}^2$. By Example 5.2.11 the map

$$\widetilde{\iota}: \Gamma\left(\mathbb{A}^2\right) \to \Gamma(V) = \Gamma\left(\mathbb{A}^2\right)$$

$$f \to f$$

is an isomorphism.

In general, consider varieties X and Y and a morphism $\phi: X \to Y$. By the prior remark, if X and Y are affine, then either both ϕ and $\widetilde{\phi}$ are isomorphisms or both of the maps are not isomorphisms.

So since since ι is not an isomorphism and $\widetilde{\iota}$ is an isomorphism, it follows that the domain or codomain is not affine. Since \mathbb{A}^2 is affine it follows that $\mathbb{A}^2 \setminus \{(0,0)\}$ is not affine.

Lemma 5.2.22. $\mathbb{A}^n \times U_{i_1} \times \cdots \times U_{i_m}$ is an open subvariety of $\mathbb{A}^n \times \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$. Let V be a closed subvariety of $\mathbb{A}^n \times \mathbb{P}^{n_1} \times \mathbb{P}^{n_m}$. Then $V_{n,i_1,\dots,i_m} := \varphi_{n,i_1,\dots,i_m}^{-1}(V)$ is a closed subvariety in $\mathbb{A}^{n+n_1+\dots+n_m}$ The map $\varphi_{n,i_1,\dots,i_m} : \mathbb{A}^{n+n_1+\dots+n_m} \to \mathbb{A}^n \times U_{i_1} \times \cdots \times U_{i_m}$ is an isomorphism.

Proof. Indeed $\mathbb{A}^n \times U_{i_1} \times \cdots \times U_{i_m}$ is the complement of $\bigcap_{1}^{m} V(x_{ki_k})$. We see that $V_{n,i_1,\dots,i_m} = V_{*,n,i_1,\dots,i_m}$. If V does not intersect $\mathbb{A}^n \times U_{i_1} \times \cdots \times U_{i_m}$, then $V_{n,i_1,\dots,i_m} = \emptyset$,

which is a closed subvariety of $\mathbb{A}^{n+n_1+\cdots+n_m}$. Otherwise if $V_{*,n,i_1,\dots,i_m}\cap \mathbb{A}^n\times U_{i_1}\times \cdots \times U_{i_m}\neq \emptyset$, due to Remark 4.2.28, V_{n,i_1,\dots,i_m} is an affine variety in $\mathbb{A}^{n+n_1+\cdots+n_m}$, hence in particular it is a closed subvariety of $\mathbb{A}^{n+n_1+\cdots+n_m}$. This shows that $\varphi_{n,i_1,\dots,i_n}^{-1}$ sends closed sets in $\mathbb{A}^n\times U_{i_1}\times \cdots \times U_{i_m}$ are mapped to closed sets in $\mathbb{A}^{n+n_1+\cdots+n_m}$ and $\varphi_{n,i_1,\dots,i_m}$ maps closed sets in $\mathbb{A}^{n+n_1+\cdots+n_m}$ to closed sets in $\mathbb{A}^n\times \mathbb{P}^{n_1}\times \mathbb{P}^{n_m}$ by the proper generalization of Lemma 4.2.16, hence $\varphi_{n,i_1,\dots,i_m}$ is a continuous map. Let $U=U'\cap \mathbb{A}^n\times U_{i_1}\times \cdots \times U_{i_m}\subset \mathbb{A}^n\times U_{i_1}\times \cdots \times U_{i_m}$ be open and let $P\in U$. Consider $f\in \mathcal{O}_P(\mathbb{A}^n\times U_{i_1}\times \cdots \times U_{i_m})$. Then $f\circ \varphi=f\circ \mathrm{ev}_{x_{1i_1},\dots,x_{mi_m}\mapsto 1}=f_*$, hence $\varphi_{n,i_1,\dots,i_m}$ is the isomorphism

$$\mathcal{O}_P\left(\mathbb{A}^n \times U_{i_1} \times \cdots \times U_{i_m}\right) \simeq \mathcal{O}_{\varphi_{n,i_1,\dots,i_m}^{-1}}\left(\mathbb{A}^{n+n_1+\dots+n_m}\right)$$

and $\widetilde{\varphi_{n,i_1,\dots,i_m}^{-1}}$ is its inverse. It thus follows that $\widetilde{\varphi_{n,i_1,\dots,i_m}}(g)\in\Gamma\left(\varphi_{n,i_1,\dots,i_m}^{-1}(U)\right)$ for every $g\in\Gamma\left(\mathbb{A}^{n+n_1+\dots+n_m}\right)$. Similarly if $U\subset\mathbb{A}^{n+n_1+\dots+n_m}$ is open, then for every $f\in\Gamma(U)$, $\widetilde{\varphi_{n,i_1,\dots,i_m}}^{-1}(f)\in\Gamma(\varphi_{n,i_1,\dots,i_m}(U))$.

Lemma 5.2.23. Consider a morphism $\varphi: X \to Y$ and subvarieties $X' \subset X$ and $Y' \subset Y$ such that $\varphi(X') \subset Y'$. Then $\varphi|_{X'}: X' \to Y'$ is a morphism

Proof. Clearly $\varphi|_{X'}: X' \to Y'$ is continuous. Let $U = U' \cap Y' \subset Y$ be open where $U' \subset Y$ is open. Let $f \in \Gamma(U)$. Note that $Y' \cap U'$ is open in Y, hence

$$\widetilde{\varphi|_{X'}}(f) = f \circ \varphi|_{X'} = f \circ \varphi = \widetilde{\varphi}(f) \in \Gamma\left(\varphi^{-1}(U)\right).$$

Note that $\varphi^{-1}(U)\supset \varphi|_{X'}^{-1}(U)$ (there may be points outside of X' that map to U, so equality may not hold). So $\widetilde{\varphi|_{X'}}(f)\in\Gamma\left(\varphi|_{X'}^{-1}(U)\right)$, hence $\varphi|_{X'}$ is a morphism. \square

Example 5.2.24. Set $A := \mathbb{A}^n \times \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_k}$ and $B := \mathbb{A}^m \times \mathbb{P}^{m_1} \times \cdots \times \mathbb{P}^{m_l}$. Let $v \in B$. Consider the map

$$\iota: A \to A \times B$$

$$a \mapsto (a, v)$$

Let $V = V(F_1, \ldots, F_t) \subset A \times B$ for $F_1, \ldots, F_t \in K[\mathbf{x}_0, \ldots, \mathbf{x}_k, \mathbf{y}_0, \ldots, \mathbf{y}_t]$. We readily verify that $\iota^{-1}(V) = V(F_1(\mathbf{x}, w), \ldots, F_t(\mathbf{x}, w))$, where $(w_0, [w_1], \ldots, [w_k]) = v$. Using this and the fact that $\iota^{-1}(V \times \{v\}) = V$, we readily verify that $V \times \{v\}$ is irreducible by the usual argument. Let $U \subset A \times B$ be open such that $\iota^{-1}(U) \neq \emptyset$. Consider a multiform $f \in \Gamma(A \times B) = K[\mathbf{x}, \mathbf{y}]$ that does not vanish on any $P \in U$. Then in particular, f does not vanish on any point $(u, v) \in U$. For any chosen representative of v, w say, we then have that $f(\mathbf{x}, w)$ does not vanish on any $u \in \iota^{-1}(U)$. Then for any $z \in \Gamma(U)$, $\widetilde{\iota}(z) \in \Gamma(\iota^{-1}(U))$. It

then follows that $\iota|_V$ is an isomorphism with inverse $\pi|_{V\times\{v\}}:V\times\{v\}\to V.$ It follows that

$$V \times \{v\} \simeq V$$
.

Lemma 5.2.25. Let X, Y be varieties $\varphi : X \simeq Y$ an isomorphism, $X' \subset X$ a closed subvariety. Then $\varphi|_{X'}$ is an isomorphism onto its image.

Proof. Indeed, by the prior lemma it suffices to show that $\varphi(X')$ is a closed subvariety in Y. Since φ is a homeomorphism it and its inverse are closed maps, hence $\varphi(X')$ is closed. Write $\varphi(X') = A \cup B$ for closed subsets A and B. Then $X' = \varphi^{-1}(A) \cup \varphi^{-1}(B)$, hence WLOG $X' = \varphi^{-1}(A) \implies \varphi(X') = A$.,

Proposition 5.2.26. Let V be a closed subvariety of $\mathbb{A}^n \times \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$. $\varphi_{n,i_1,\dots,i_m}|_{V_i}: V_i \to V \cap \mathbb{A}^n \times U_{1i_1} \times \cdots \times U_{mi_m}$ is an isomorphism of varieties, hence $V \cup \mathbb{A}^n \times U_{1i_1} \times \cdots \times U_{mi_m}$ is an affine variety. A projective variety is therefor the union of a finite number of affine varieties.

Proof. From the first of the prior lemmas $\varphi_{n,i_1,\dots,i_m}|$ defines a morphism. Consider an open set $U\cap V\cap \mathbb{A}^n\times U_{1i_1}\times \cdots \times U_{mi_m}$. From the second of the prior lemmas a restriction of morphisms to a subvariety is again a morphism. Consider a closed multiprojective projective variety $V\subset \mathbb{P}^{n_1}\times \cdots \times \mathbb{P}^{n_m}$ and write

$$V = \bigsqcup_{i_1, \dots, i_m} V \cap U_{1i_1} \times \dots \times U_{mi_m}.$$

each of these $V \cap U_{1i_1} \times \cdots \times U_{mi_m}$ is an affine variety by the first part of this proposition.

Lemma 5.2.27. Let X, Y be varieties and $\varphi : X \to Y$ be some function. Let $\{U_{\alpha}\}$ be a cover of X of open subvarieties of X and $\{V_{\alpha}\}$ be a cover of Y of open subvarieties of Y such that $\varphi(U_{\alpha}) \subset V_{\alpha}$ for each α .

- 1. Then φ is a morphism if and only if $\varphi_{\alpha} = \varphi|_{U_{\alpha}}$ is a morphism for each α .
- 2. If we furthermore assume that each U_{α} , V_{α} are affine, then φ is a morphism if and only if each $\widetilde{\varphi}(\Gamma(V_{\alpha})) \subset \Gamma(U_{\alpha})$.

Proof. 1. " \Longrightarrow ": This follows from Lemma 5.2.23.

" \Leftarrow ": That φ is continuous follows from Lemma 5.1.3. Let $U \subset Y$ be open and $f \in \Gamma(U)$. Then we have in particular that $f \in \Gamma(U \cap V_\alpha)$ for every α . To prove that φ is a

morphism, we need to prove that $\widetilde{\varphi}(f) \in \Gamma(\varphi^{-1}(U))$. Note that $\varphi^{-1}(U) = \bigcup_{\alpha} \varphi_{\alpha}(U \cap V_{\alpha})$. Then

$$\Gamma\left(\varphi^{-1}(U)\right) = \bigcap_{\alpha} \Gamma\left(\varphi_{\alpha}^{-1}(U \cap V_{\alpha})\right).$$

It is thus sufficient to prove that for every α , $\widetilde{\varphi}(f) \in \Gamma(\varphi_{\alpha}^{-1}(U \cap V_{\alpha}))$.

We already know that $\widetilde{\varphi_{\alpha}}(f) \in \Gamma\left(\varphi_{\alpha}^{-1}(U \cap V_{\alpha})\right)$. On every point Q in $\varphi_{\alpha}^{-1}(U \cap V_{\alpha})$,

$$(\widetilde{\varphi_{\alpha}}(f))(Q) = (\widetilde{\varphi}(f))(Q),$$

hence $\widetilde{\varphi}(f) = \widetilde{\varphi_{\alpha}}(f) \in \Gamma(\varphi_{\alpha}^{-1}(U \cap V_{\alpha}).$

2. " \Longrightarrow ": Since $\varphi(U_{\alpha}) \subset V_{\alpha}$, it follows that $U_{\alpha} \subset \varphi^{-1}(V_{\alpha})$, hence if $f \in \Gamma(V_{\alpha})$ using that φ is a morphism,

$$\widetilde{\varphi}(f) \in \Gamma\left(\varphi^{-1}(V_\alpha)\right) \subset \Gamma(U_\alpha) \implies \widetilde{\varphi}\left(\Gamma(V_\alpha)\right) = \Gamma(U_\alpha).$$

" \Leftarrow ":Let α be given. By assumption,

$$\widetilde{\varphi_{\alpha}}: \Gamma(V_{\alpha}) \to \Gamma(U_{\alpha})$$

$$f \mapsto f \circ \varphi_{\alpha} = f \circ \varphi$$

is a well-defined K-algebra homomorphism. Since U_{α} and V_{α} are affine, there is a unique morphism $\phi:U_{\alpha}\to V_{\alpha}$ inducing $\widetilde{\varphi_{\alpha}}$. Considering these two varieties as subsets of affine spaces, we may identify $\Gamma(V_{\alpha})$ with some $K[y_1,\ldots,y_m]/I$ and transport the two maps via suitable isomorphisms to maps φ'_{α} , $\phi:U'_{\alpha}\subset \mathbb{A}^n\to V'_{\alpha}\subset \mathbb{A}^m$ given by coordinate maps $(\varphi_{\alpha})'_i$ and ϕ'_i respectively. Then

$$(\varphi_{\alpha})'_i = \widetilde{\varphi'_{\alpha}}(y_i + I) = \widetilde{\phi'}(y_i + I) = \phi'_i \implies \varphi'_{\alpha} = \phi',$$

hence transporting back via the isomorphisms we get that $\varphi_{\alpha} = \phi$. Then φ_{α} is a morphism for each α , hence by 1. φ is a morphism.

Proof. By Lemma 4.2.35 is in bijection with V. We have a covering of $\mathbb{P}^n \times \mathbb{P}^m$ by

$$\{U_i \times U_i : 1 \le i \le n+1, 1 \le j \le m+1\}$$

and a covering of V by

$${U_{ij} \cap V : 1 \le i \le n+1, 1 \le j \le m+1}.$$

By Lemma 5.2.27, it suffices to show that $S_{ij} := S|_{U_i \times U_j}$ is an isomorphism for arbitrary i and j. We have the following commutative diagram

$$U_{i} \times U_{j} \xrightarrow{S_{ij}} V \cap U_{ij}$$

$$\downarrow^{\simeq} \qquad \qquad \downarrow^{\simeq}$$

$$\mathbb{A}^{n+m} \xrightarrow{S_{*}} V_{*}$$

where

$$S_*(v, w)_{pq} = \begin{cases} v_p & \text{if } q = i \\ w_q & \text{if } p = j \\ v_p w_q & \text{otherwise} \end{cases}$$

and the isomorphisms are given by $\varphi_{i,j}$ and the restriction of φ_{ij} to V_* . Since $U_i \times U_j$ is affine and $V \cap U_{ij}$ is affine it suffices to show that the induced map of S_{ij} is an isomorphism or indeed that the induced map of S_* is an isomorphism. Define

$$\sigma: K[\{z_{pi}\} \cup \{z_{jq}\}][z_{pq}: p \neq j, q \neq i] \to K[\{z_{pi}\} \cup \{z_{jq}\}]$$

 z_{pq} to $z_{pi}z_{jq}$ for $q \neq j$, $p \neq i$. This is clearly surjective, so by Corollary 1.9.39,

$$K[z_{pq}:(p,q)\neq(i,j)]/\langle\{z_{pq}-z_{pi}z_{jq}:p\neq i,q\neq j\}\rangle\simeq K[\{z_{pi}\}\cup\{z_{jq}\}]\simeq K[\mathbf{x},\mathbf{y}].$$

Note that $\langle \{z_{pq} - z_{pi}z_{jq} : p \neq i, q \neq j\} \rangle = I(V_*)$ and that \widetilde{S}_* is equal to the map given by $f + I(V_*) \mapsto \sigma(f)$, hence S_* is an isomorphism.

Proposition 5.2.29. A closed subvariety Y of $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$ is a projective variety. A variety is isomorphic to an open subvariety of a projective variety.

Proof. The result is obviously true for m = 1. For $m \ge 2$, define $S_2 = S$ and

$$S_{m+1}: \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_{m+1}} \to \mathbb{P}^{(n_1+1)\cdots(n_{m+1}+1)-1}$$
$$(v, w) \mapsto S(S_m(v), w)$$

By induction $W:=\operatorname{im} S_m$ is a projective variety. We claim that $W\times \mathbb{P}^{n_{m+1}}\subset \mathbb{P}^{(n_1+1)\cdots (n_m+1)-1}\times \mathbb{P}^{n_{m+1}}$ is a variety. Consider the map

$$\varphi: \mathbb{P}^{n_1} \times \dots \times \mathbb{P}^{n_{m+1}} \to W \times \mathbb{P}^{n_{m+1}}$$
$$(v, w) \mapsto (S_m(v), w)$$

Let $Z = V(F_1, \dots, F_k) \subset \mathbb{P}^{(n_1+1)\cdots(n_m+1)-1} \times \mathbb{P}^{n_{m+1}}$ for $F_i \in K[x_1, \dots, x_{(n_1+1)\cdots(n_m+1)}, y_1, \dots, y_{n_{m+1}+1}]$. Set

$$G_i := F_i(w_1, \dots, w_{(n_1+1)\cdots(n_m+1)}, z_{m+1,1}, \dots, z_{m+1,n_{m+1}})$$

sitting in the polynomial ring $K[\{z_{ij}: 1 \leq i \leq m+1, 1 \leq j \leq n_i+1\}]$ where w_i are products on the form

$$\prod_{1}^{m} z_{ki_k}$$

ordered in a suitable way. One readily verifies that

$$\varphi^{-1}(Z) = V(G_1, \dots, G_k).$$

By a similar argument to the one given in the proof of Lemma 3.3.4, $W \times \mathbb{P}^{n_{m+1}}$ is a biprojective variety. Then since we already know that S restricted to a closed varieties is isomorphic to a projective variety, it follows that S_{m+1} is an isomorphism to a projective variety in $\mathbb{P}^{(n_1+1)\cdots(n_{m+1}+1)-1}$, namely $S(W \times \mathbb{P}^{n_{m+1}})$. It follows that a closed subvariety of some multiprojective space is projective.

For the second statement note that

$$\mathbb{P}^{n_1} \times \dots \times \mathbb{P}^{n_m} \times \mathbb{A}^n \to \mathbb{P}^{n_1} \times \dots \times \mathbb{P}^{n_m} \times U_1$$
$$([v_1], \dots, [v_m], v) \mapsto ([v_1], \dots, [v_m], [v])$$

defines an isomorphism, hence by the first statement it is isomorphic to an open subvariety of $\mathbb{P}^{(n_1+1)\cdots(n_m+1)(n+1)-1}$.

Remark 5.2.30. If one knows that the cartesian product of two closed subvarieties is again a closed subvariety, then the above argument can be simplified.

Lemma 5.2.31. Let R be an integral domain, with K := Q(R). Consider $f \in R \setminus 0$. Consider also a ring map $\sigma : R \to S$ such that $\sigma(f)$ is a unit in S. Then σ uniquely extends to a ring map $R[1/f] \subset K \to S$. The map

$$\gamma:R[x]\to R[1/f], x\mapsto 1/f$$

induces an isomorphism, $R[x]/\langle xf-1\rangle \simeq R[1/f]$

Proof. Let $X=\{f^n:n\geq 0\}$. Then $X^{-1}R\simeq R\left[\frac{1}{f}\right]$ and $\sigma(X)^{-1}S\simeq S$ canonically, so by Lemma 1.8.77, there is a unique ring homomorphism extending σ to a map $R\left[\frac{1}{f}\right]\to S$. It is clear that

$$\alpha: R[x] \to R\left[\frac{1}{f}\right]$$

$$x \mapsto \frac{1}{f}$$

is surjective. Suppose g(1/f)=0, then $g\in \langle x-\frac{1}{f}\rangle\subset R[1/f]$. Since f is a unit in R[1/f], it follows that $g\in (R[1/f])[x](fx-1)$. Then $g=a/f^k(fx-1)$ implying $f^kg\in R[x]\langle fx-1\rangle$ which is a prime ideal, and since deg $f=0, f\notin \langle fx-1\rangle$, hence $g\in \langle fx-1\rangle$. One sees that $\ker \alpha=\langle fx-1\rangle$, and therefor that α is an isomorphism. \square

Proposition 5.2.32. *Let* V *be an affine variety and* $f \in \Gamma(V) \setminus 0$ *. Set*

$$V_f := \{ P \in V : f(P) \neq 0 \},$$

which is an open subvariety of V. Then

1.
$$\Gamma(V_f) = \Gamma(V) \left[\frac{1}{f}\right] \subset K(V)$$
.

2. V_f is affine

Proof. WLOG $V \subset \mathbb{A}^n$. Set I := I(V). Then $\Gamma(V) = K[x_1, \dots, x_n]/I$ and pick $F \in K[\mathbf{x}]$ such that f = F + I.

1. Let $z \in \Gamma(V_f)$. The pole set of z is equal to V(J) where

$$J = \{ G \in K[\mathbf{x}] : GF + I \in \Gamma(V) \},$$

(cf. Lemma 3.3.49). Since $V(J)\subset V(F)$, by HNS there is an N such that $F^N\in J$. Then $zf^N\in \Gamma(V)$, hence $z=(zf^N)\frac{1}{f^N}\in \Gamma(V)\left[\frac{1}{f}\right]$. Since $V_f\subset V$, $\Gamma(V_f)\supset \Gamma(V)$, hence $\Gamma(V)\left[\frac{1}{f}\right]\subset \Gamma(V_f)$.

2. Set $I' := \langle I \cup \{x_{n+1}F - 1\} \rangle \subset K[x_1, \dots, x_{n+1}]$. Set V' := V(I'). Consider

$$\alpha: K[x_1,\ldots,x_{n+1}] \to \Gamma(V_f)$$

defined by $x_i \mapsto x_i + I$ for i = 1, ..., n and $x_{n+1} \mapsto \frac{1}{f}$. 1. shows that α is surjective. Lemma 5.2.31 shows that $\ker \alpha = I'$. Then I' is prime since $\Gamma(V_f) = \Gamma(V)[1/f]$ is an integral domain, meaning V' is an affine variety. Denote the induced isomorphism of $\Gamma(V')$ and $\Gamma(V_f)$ by β . Consider the morphism $\pi: \mathbb{A}^{n+1} \to \mathbb{A}^n$ which restricts to a morphism $\varphi: V' \to V_f$. We claim that this is a bijection inducing β^{-1} . Indeed define

$$\phi: V_f \to V'$$
$$v \mapsto (v, f(v)^{-1})$$

This is well-defined since $v \in V$ implies that $(v, f(v)^{-1})$ is a zero of every polynomial in $\langle I \rangle \subset K[x_1, \ldots, x_{n+1}]$. Moreover, $\operatorname{ev}_{(v, f(v)^{-1})}(fx_{n+1} - 1) = f(v)f(v)^{-1} - 1 = 0$. It is clear that $\pi \phi = \operatorname{id}$. Note that for $v \in V'$, $v_{n+1}f(v) = 1$, hence $v_{n+1} = f(v_1, \ldots, v_n)^{-1}$. It follows that

$$\phi \pi(v) = \phi(v_1, \dots, v_n) = (v_1, \dots, v_n, f(v)^{-1}) = v.$$

Let $v = (v_1, \dots, v_n, f(v)^{-1}) \in V'$ and $\frac{g}{f^k} \in \Gamma(V_f)$. Then

$$\left(\widetilde{\varphi}\left(\frac{g}{f^k}\right)\right)(v) = \frac{g(v_1, \dots, v_n)}{f(v)} = \operatorname{ev}_v\left(g(x_{n+1} + I(V))^k\right) = \left(\overline{\alpha}^{-1}\left(\frac{g}{f^k}\right)\right)(v) \implies \widetilde{\varphi} = \overline{\alpha}^{-1}.$$

Suppose $W:=V(H_1,\ldots,H_k)\subset V'$ with $H_i\in K[x_1,\ldots,x_{n+1}]$. Then we claim that $\varphi(W)=V\left(F^NH_1(x_1,\ldots,x_n,1/F),\ldots,F^{N_i}H_k(x_1,\ldots,x_n,1/F)\right)$ for $N_i\geq \deg F_i$. Indeed,

$$w = (u, f(u)^{-1}) \in W \iff \forall i, 0 = H_i(u, F(u)^{-1}) \iff \forall i, 0 = F(u)^{N_i} H_i(u, F(u)^{-1}) \iff u \in V(F^{N_1} H_1(x_1, \dots, x_n, 1/F), \dots, F^{N_k} H_k(x_1, \dots, x_n, 1/F).$$

So ϕ is continuous. Lastly by functoriality,

$$\widetilde{\phi} = \widetilde{\varphi}^{-1} = \overline{\alpha},$$

hence ϕ is a morphism. It follows that $V_f \stackrel{\varphi}{\simeq} V'$, hence V_f is affine.

Example 5.2.33. Consider that rational functions $x, y \in \Gamma(\mathbb{A}^2) = K[x, y]$. Then

$$V_x \cup V_y = \mathbb{A}^2 \setminus \{(0, v_2) : v_2 \in K\} \cup \mathbb{A}^2 \setminus \{(v_1, 0) : v_1 \in K\} = \mathbb{A}^2 \setminus \{(0, 0)\},$$

which shows (cf. Example 5.2.21) that the union of two open affine subvarieties need not be affine.

Corollary 5.2.34. Let X be a variety, U an open neighborhood of some point $P \in X$. Then there is some open neighborhood V of P contained in U, which is affine.

Proof. By Proposition 5.2.29 X is isomorphic to an open subvariety of a projective variety. I.e. WLOG $X \subset V \subset \mathbb{P}^n$. Suppose $P \in U_i$. WLOG we may replace X with V. In other words we may assume that $X \subset \mathbb{P}^n$ is a projective variety. Then $U \cap U_i$ is an open neighborhood of P sitting in $X \cap U_i$. If we can find an affine open neighborhood of P contained in $U \cap U_i$, then we are done, since this will also be an open subset of U. I.e. WLOG we may assume that $X \subset \mathbb{A}^n$ is an affine variety. $X \setminus U$ is an algebraic set. By Proposition 3.1.43 1. we can find a polynomial $F \in K[x_1, \ldots, x_n]$ such that $F(P) \neq 0$ and F(Q) = 0 for every $Q \in X \setminus U$. Define $f := F + I(X) \in \Gamma(X)$. Then $P \in X_f$ and $X_f \subset U$, by the construction of F. The prior proposition shows that X_f is affine. \square

Proposition 5.2.35. A variety is the union of a finite number of affine varieties.

Proof. Let X be a variety. By Corollary 5.2.34 there is a covering of X, $\{U_P\}_{P\in X}$, where U_P is an affine open neighborhood of P. Since varieties are quasi-projective, we may then find finite set of points P_1, \ldots, P_n such that $\{U_{P_i}\}_1^n$ is a covering of X.

Lemma 5.2.36. Let $X \subset \mathbb{P}^n$ be a projective variety and H a hyperplane in \mathbb{P}^n not containing X.

- 1. There is an $X_* \subset \mathbb{A}^n$ isomorphic to $X \setminus (H \cap X) \setminus X$.
- 2. if L is a linear form defining H, then $\Gamma(X_*) \simeq K[x_1/L, \ldots, x_{n+1}/L] \subset K(x_1, \ldots, x_{n+1})$.

Proof. 1. $X \cap H$ is closed in \mathbb{P}^n , hence $Y := X \setminus (X \cap H)$ is a subvariety of X. Write $H = V\left(\sum_{1}^{n+1} a_i x_i\right)$ and let A be the projective change of coordinates such that $H^A = H_\infty$. Then $Y \simeq Y' := X' \setminus (X' \cap H_\infty)$ for some $X' \subset \mathbb{P}^n$ projective variety not containing H_∞ . Note that $Y' = X' \cap U_{n+1}$, hence $X_* := Y'_* \subset \mathbb{A}^n$ is an affine variety and $\phi : [v] \mapsto (v_1/v_{n+1}, \ldots, v_n/v_{n+1})$, defines an isomorphism of Y' with Y, hence $\varphi := \phi \circ A^{-1}$ is an isomorphism of Y with X_* .

2. Note that

$$\varphi([v]) = (v_1/l(v), \dots, v_n/l(v))$$

for every $[v] \in Y$. We thus get a K-algebra isomorphism

$$\widetilde{\varphi}: \Gamma(X_*) \to \Gamma(Y)$$

$$z \Longrightarrow z\left(\frac{x_1}{L}, \dots, \frac{x_n}{L}\right)$$

It thus follows that $\Gamma(X_*) \simeq \Gamma(Y) = K\left[\frac{x_1}{L}, \dots, \frac{x_n}{L}\right] = K\left[\frac{x_1}{L}, \dots, \frac{x_{n+1}}{L}\right]$, where the first equality is due to $\widetilde{\varphi} = \operatorname{ev}_{\frac{x_1}{L}, \dots, \frac{x_n}{L}}$ being surjective.

Lemma 5.2.37. Let X be a variety and P,Q points on X. There is an open affine subvariety in X containing P and Q.

Proof. As in Corollary 5.2.34 assume WLOG $X \subset \mathbb{A}^n$ is affine. Let $U \ni P, U' \ni Q$ be open neighborhoods in X and set $U'' := U \cup U'$. Then $X \setminus U''$ is algebraic, hence by Corollary 3.1.43 3. we can pick $G_1, G_2 \in K[\mathbf{x}]$ such that $G_i(P), G_i(Q) = 1$ and G_i vanishing on every point in $X \setminus U''$. Consider $g_i := G_i + I(X)$. Then $P, Q \in X_{g_1g_2} \subset U''$ and we are done.

Remark 5.2.38. By induction we find that there is an open affine neighborhood containing k distinct points.

Lemma 5.2.39. Let X be a variety and P,Q be two distinct points on X. There is an $f \in K(X)$ defined at both P and Q satisfying f(P) = 0 and $f(Q) \neq 0$. It thus follows that $\mathcal{O}_P(X)$ and $\mathcal{O}_Q(X)$ are distinct subrings of K(X).

Proof. There is some open affine variety U in X that is a neighborhood of P and Q. Then $U \simeq V$ for some affine variety $V \subset \mathbb{A}^n$. By Corollary 3.1.43 there is a polynomial $g \in K[x_1,\ldots,x_n]$ such that $g(\varphi(P))=0$ and $g(\varphi(Q))=1$. Since $\widetilde{\varphi}:\Gamma(V)\to\Gamma(U)$ is an isomorphism, there is an $f\in\Gamma(U)$ such that $f=\widetilde{\varphi}(g)$, hence $f(P)=\widetilde{\varphi}(g)(P)=0$ and $f(Q)=\widetilde{\varphi}(g)(Q)=1$. Then $f\in\mathfrak{m}_P(X)$ and hence $\frac{1}{f}\notin\mathcal{O}_P(X)$, while $f\notin\mathfrak{m}_Q(X)$, meaning $\frac{1}{f}\in\mathcal{O}_Q(X)$.

Lemma 5.2.40. Suppose $\varphi: X \to Y$ is a surjective morphism. Then $\widetilde{\varphi}: \Gamma(Y) \to \Gamma(X)$ is injective.

Proof. Suppose
$$f \in \ker \widetilde{\varphi}$$
 and let $P \in X$. Note that $P = \varphi(Q)$ for some $Q \in Y$. Then $f(P) = f(\varphi(Q)) = (\widetilde{\varphi}(f))(Q) = 0$, hence $f = 0$.

Lemma 5.2.41. Consider the following commutative diagram of sets

$$X \downarrow^{\pi} \quad \psi \downarrow X \longrightarrow Z$$

- 1. If X, Y, Z are topological space, π, ψ are continuous and π is open, then ϕ is continuous.
- 2. If, in addition, X, Y, Z are varieties, π, ψ are morphisms and π is surjective, then ϕ is a morphism.

Proof. 1. Let $U \subset Z$ be open. Then $\pi^{-1}(\phi^{-1})(U) = \psi^{-1}(U)$ is open, hence using that π is open, $\phi^{-1}(U) = \pi(\pi^{-1}(\phi^{-1}(U)))$ is open.

2. By 1. ϕ is continuous. Let $U \subset Z$ be open and let

$$\alpha:\operatorname{im}\widetilde{\pi}\subset\Gamma\left(\psi^{-1}(U)\right)=\Gamma\left(\pi^{-1}\left(\phi^{-1}(U)\right)\right)\to\Gamma\left(\phi^{-1}(U)\right)$$

be the inverse of $\widetilde{\pi}$ as a function onto its image, which exists by the assumption that π is surjective due to the prior lemma. Let $f \in \Gamma(U)$. Then

$$(\widetilde{\phi}(f))(P) = (\alpha \widetilde{\pi} \widetilde{\phi}(f))(P) = (\alpha \widetilde{\psi}(f))(P),$$

П

and since $\alpha\widetilde{\psi}(f)\subset\Gamma\left(\phi^{-1}(U)\right)$, the result follows.

Lemma 5.2.42. The map $\varphi^{(n)} := \varphi : H_{\infty} \subset \mathbb{P}^n \to \mathbb{P}^{n-1}, [v_1, \dots, v_n, 0] \mapsto [v_1, \dots, v_n]$ is an isomorphism. If V is a variety in \mathbb{P}^n contained in H_{∞} , then $\varphi|_V$ is an isomorphism to it image, which is a variety in \mathbb{P}^{n-1} . As a consequence, any projective variety is isomorphic to some closed subvariety $V \subset \mathbb{P}^n$ not contained in a hyperplane.

Proof. We have the following commutative diagram

$$\mathbb{A}^{n-1} \setminus 0 \times \{0\} \xrightarrow{\phi} \mathbb{A}^{n-1} \setminus 0$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\tau}$$

$$H_{\infty} \xrightarrow{\varphi} \mathbb{P}^{n-1}$$

where ϕ is the isomorphism $(v,0)\mapsto v$, and π,τ are the appropriate restrictions of the quotient maps, which we note are surjective, open morphisms. Checking that φ is a bijection is easy. The prior lemma shows that φ and φ^{-1} are morphisms. We know that isomorphisms map varieties to varieties, hence the second statement follows. The third statement follows from any projective variety being isomorphic to some projective variety $V\subset\mathbb{P}^n$ for some v0 can be contained in at most v0 hyperplanes (cf. Lemma 4.1.54) call these v1, ..., v2 and v3. Alternately applying an appropriate change of coordinates and an appropriate choice v3, we get that the image of v4 under this composition is a closed subvariety of v4.

5.3 Developing Theory

5.3.1 Products & Graphs

Proposition 5.3.1. Let $V \subset A$ and $W \subset B$ be closed subvarieties of some mixed spaces A and B. Then $V \times W \subset A \times B$ is a closed subvariety.

Proof. That $V \times W$ is a closed set in $A \times B$ is obvious since it is just given by the vanishing set of the polynomials defining V and W considered as elements of a larger polynomial ring. Suppose $V \times W = X_1 \cup X_2$ with $X_i \subset A \times B$ closed. Set

$$U_i := \{ w \in W : V \times \{w\} \not\subset X_i \} .$$

Note that in general if a closed set Z is contained in the union of two closed sets Z_1 and Z_2 but not in either of the two sets by themselves, then $Z=(Z_1\cap Z)\cup (Z_2\cap Z)$ is a composition of Z into the union of two non-trivial closed sets, meaning Z is reducible. Since $V\times\{w\}$ is a closed variety for every $w\in W$, it follows that $U_1\cap U_2=\emptyset$. Since W is a variety and no points in a variety can be separated by open sets, it follows that if U_1 and U_2 are open, then U_1 or U_2 is empty, hence $V\times W=X_1$ or $V\times W=X_2$. To prove that U_i is open, note that for $X_i=V(F_1,\ldots,F_k)$, there is for each $w\in U_i$ a j and a $v\in V$ such that $F_j(v,w)\neq 0$. Then setting $G_j:=F_j(v,y)$. Then $w\in\{u\in W:G_j(u)\neq 0\}\subset U_i$, which is an open neighborhood of w in U_i , hence U_i is open.

Remark 5.3.2. The product of open subvarieties $X \times Y \subset V \times W$ is an open subvariety in $A \times B$ since

$$A \times B = A \times W \cap V \times B$$

and $V \times W \setminus V \times B = V \times W \setminus B$ which is closed. A similar argument shows that $A \times W$ is closed.

Proposition 5.3.3. 1. If $\varphi: Z \to X$ and $\phi: Z \to Y$ is a morphism, then $(\varphi, \phi): Z \to X \times Y, z \mapsto (\varphi(z), \phi(z))$ is a morphism.

- 2. If $\psi: X' \to X$ and $\xi: Y' \to Y$ is a morphism, then $\psi \times \xi: X' \times Y' \to X \times Y, (x,y) \mapsto (\psi(x), \xi(y))$ is a morphism.
- 3. The diagonal:

$$\Delta_X := \{(x, y) \in X \times X : x = y\},\$$

is a closed subvariety of $X \times X$. The map

$$\delta_X: X \to \Delta_X$$
$$x \mapsto (x, x)$$

is an isomorphism.

Proof. 1. It is sufficient to prove the statement in the case $X:=\mathbb{A}^n\times\mathbb{P}^{n_1}\times\cdots\times\mathbb{P}^{n_k}$ and $Y=\mathbb{A}^m\times\mathbb{P}^{m_1}\times\cdots\times\mathbb{P}^{m_l}$. Covering X by $U_{n,i_1,\dots,i_k}:=\mathbb{A}^n\times U_{1i_1}\times\cdots\times U_{mi_m}$ and Y by $U_{m,j_1,\dots,j_l}:=\mathbb{A}^m\times U_{1j_1}\times\cdots\times U_{lj_l}$ we get an open covering $X\times Y$ by $\{U_{n,i_1,\dots,i_k}\times U_{m,j_1,\dots,j_l}\}$ and hence an open covering of Z by $\{\varphi^{-1}(U_{n,i_1,\dots,i_k})\cup\varphi^{-1}(U_{m,j_1,\dots,j_l})\}$ satisfying the condition. So we may assume $X=\mathbb{A}^n$ and $Y=\mathbb{A}^m$ (cf. Lemma 5.2.27). We can cover Z by open affine varieties $\{U_\alpha\}$. Setting $V_\alpha:=X\times Y$, again applying Lemma 5.2.27, we may assume that $Z\subset\mathbb{A}^r$ is affine. Then $\varphi=(\varphi_1,\dots,\varphi_n)$ and $\varphi=(\varphi_1,\dots,\varphi_m)$ are polynomial maps, hence $(\varphi,\varphi)=(\varphi_1,\dots,\varphi_n,\varphi_1,\dots,\varphi_m)$ is a polynomial map.

- 2. Consider the morphisms $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$. Then $(\psi \pi_1, \xi \pi_2)(v, w) = (\psi \pi_1(v, w), \xi \pi_2(v, w)) = (\psi(v), \xi(w)) = \psi \times \xi(v, w)$, hence $\psi \times \xi$ is a morphism by 1.
- 3. In the case $X=\mathbb{P}^n$, $\Delta_X=V(x_iy_j-x_jy_i:1\leq i,j\leq n+1)$. In the general case we may assume that $X\subset V\subset \mathbb{P}^n$ for some n and some closed subvariety V, hence $X=V(x_iy_j-x_jy_i:1\leq i,j\leq n+1)\cap V$ is closed. $\delta_X=(\mathrm{id}_X,\mathrm{id}_X)$ is a morphism whose inverse is π_1 . It follows that Δ_X is irreducible. \square

Corollary 5.3.4. If $\varphi, \phi: X \to Y$ are morphisms, then $\{x \in X : f(x) = g(x)\}$ is closed in X. If f and g agree on a dense set, then f = g.

Proof. The set in question is equal to $(\varphi, \phi)^{-1}(\Delta_Y)$. Let A be a dense set on which φ and ϕ agree. Then $A \subset \{x \in X : \varphi(x) = \phi(x)\}$, hence $X = \text{cl}(A) = \text{cl}(\{x \in X : \varphi(x) = \phi(x)\}) = \{x \in X : \varphi(x) = \phi(x)\}$.

Definition 5.3.5. Let $\varphi: X \to Y$ be a morphism. The graph of φ is the set

$$G_{\varphi} := \{(x, f(x)) \in X \times Y : x \in X\}.$$

Proposition 5.3.6. Let $\varphi: X \to Y$ be a morphism. $G_{\varphi} \subset X \times Y$ is a closed subvariety and $\pi|_{G_{\varphi}}: G_{\varphi} \to X$ is an isomorphism.

Proof. One sees that $G_{\varphi} = (\varphi \times \mathrm{id}_Y)^{-1}(\Delta_Y)$. The inverse to $\pi|_{G_{\varphi}} : G_{\varphi} \to X$ is (id_X, φ) .

Lemma 5.3.7. Let $\varphi: X \to Y$ be a morphism of varieties.

- 1. Suppose $\varphi(X)$ is dense in Y. Then $\widetilde{\varphi}: \Gamma(Y) \to \Gamma(X)$ is injective
- 2. Suppose Y is affine. Then $\varphi(X)$ is dense in Y if and only if φ is injective

Proof. 1. Suppose $f \in \Gamma(Y)$ is given such that $0 = \widetilde{\varphi}(f) = f \circ \varphi$. Then 0 and f agree on $\varphi(X)$, hence by Corollary 5.3.4 they agree on all of Y, i.e. f = 0.

2. " \Longrightarrow ": follows from 1.

" \Leftarrow ": Assume WLOG $Y \subset \mathbb{A}^m$ is a closed subvariety and there is $P \in Y \setminus \operatorname{cl}_Y(\varphi(X))$. We may then pick $f \in \Gamma(Y)$ vanishing on every point in $\operatorname{cl}_Y(\varphi(X))$ and f(P) = 1. Then $0 \neq f \in \ker \widetilde{\varphi}$.

Remark 5.3.8. When Y is not affine then the "if"-part of the 2. is not true. Indeed, consider $\varphi: \mathbb{P}^n \to \mathbb{P}^{n+1}, [v] \mapsto [v,0]$ whose image is the algebraic set $H_\infty \subsetneq \mathbb{P}^{n+1}$, but $\widetilde{\varphi}: \Gamma(\mathbb{P}^{n+1}) = K \to K = \Gamma(\mathbb{P}^n), a \mapsto a$ is injective.

Proposition 5.3.9. Let U, V be open subvarieties of a variety X.

- 1. Then $U \cap V \simeq (U \times V) \cap \Delta_X$.
- 2. Suppose U and V are affine. Then $U \cap V$ is affine.

Proof. 1. Indeed, define $\iota_U:U\cap V\to U, u\mapsto u$ and $\iota_V:U\cap V\to V, v\mapsto v$. Note that $\iota_U(x)=\iota_V(x)$ for every $x\in U\cap V$, hence $(\iota_U,\iota_V)(x)\in \Delta_X$ and clearly $(\iota_U,\iota_V)(x)\in U\times V$. Define $\varphi:=\pi_1|_{U\times V\cap \Delta_X}$. This is easily seen to be the inverse of (ι_U,ι_V) .

2. Pick $V',W'\subset \mathbb{A}^n$ affine varieties such that $V\stackrel{\varphi}{\simeq} V'$ and $W\stackrel{\phi}{\simeq}$. The inverse of $\varphi\times\phi|_{U\times V}\cap\Delta_X$ is $\varphi^{-1}\times\phi^{-1}|_{U'\times V'\cap\Delta_{\mathbb{A}^{2n}}}$ By 1. $U\cap V\simeq U\times V\cap\Delta_X\simeq V'\times W'\cap\Delta_{\mathbb{A}^{2n}}$.

Proposition 5.3.10. Let $d \geq 1$ and set $N := \frac{(d+1)(d+2)}{2}$ and let M_1, \ldots, M_d be the monomials generating V(d,3). Consider $V := V\left(\sum_1^N M_i t_i\right) \subset \mathbb{P}^2 \times \mathbb{P}^{N-1}$. Let π denote the morphism given by restriction to V of the projection onto the first coordinate. For each $[v] \in \mathbb{P}^{N-1}$, let $C_{[v]} := V\left(\sum_1^N M_i\right) \subset \mathbb{P}^{N-1}$ denote the associated curve. Then V is an irreducible algebraic set in $\mathbb{P}^2 \times \mathbb{P}^{N-1}$ and $\pi^{-1}([v]) = C_{[v]} \times \{[v]\}$, hence every curve can be identified with some fiber under π .

Proof. V being irreducible follows from the polynomial in question being linear in $K[x,y,z][t_1,\ldots,t_N]$. Suppose $(P,[v])\in\pi^{-1}([v])\subset V$. Then $P\in V\left(\sum_1^N v_iM_i\right)$. Conversely if $(P,[v])\in C_{[v]}\times\{[v]\}$, then $P\in V\left(\sum_1^N v_iM_i\right)$, hence $(P,[v])\in V$, hence $(P,[v])\in\pi^{-1}([v])$. \square

The following lemma is useful

Lemma 5.3.11. (Main Theorem of Elimination Theory) Let $Z \subset \mathbb{P}^n \times \mathbb{P}^m$ be closed. Then $\pi_1(Z)$ is closed. It follows that for any variety $X \subset \mathbb{P}^n \times \mathbb{P}^m$, if $\pi_1(X)$ is a variety, then closed subvarieties of X are mapped to a closed set by π_1 .

Proof. Since we can cover $\mathbb{P}^n \times \mathbb{P}^m$ by sets $U_i \times \mathbb{P}^m \simeq \mathbb{A}^n \times \mathbb{P}^m$ it is sufficient to prove that closed sets in $\mathbb{A}^n \times \mathbb{P}^m$ are projected to closed sets. Let $V = V(f_1, \ldots, f_k) \subset \mathbb{A}^n \times \mathbb{P}^m$ be closed where f_i is homogeneous in $K[\mathbf{x}][\mathbf{y}]$. We prove that the complement of $\pi_1(V)$ is open. Note that $v \notin \pi_1(V)$ if and only if for every $[w] \in \mathbb{P}^m$ there is an $i_{[w]}$ such that [w] is not a zero of $f_{i_{[w]}}$, or equivalently $V(f_1(v,\mathbf{y}),\ldots,f_k(v,\mathbf{y}))=\emptyset$. By the projective Nullstellensatz we then get that $v \notin \pi_1(V)$ if and only if there is a $d \geq 0$ such that $\langle y_1,\ldots,y_{m+1}\rangle^d \subset \langle f_1(v,\mathbf{y}),\ldots,f_k(v,\mathbf{y})\rangle$, hence

$$\mathbb{A}^n \setminus \pi_1(V) = \bigcup_{d \ge 0} A_d$$

where $A_d := \{v \in \mathbb{A}^n : \langle y_1, \dots, y_{m+1} \rangle^d \subset \langle f_1(v, \mathbf{y}), \dots, f_k(v, \mathbf{y}) \rangle \}$. It is therefor sufficient to prove that A_d is open for each $d \geq 0$. For l < 0, $q \geq 1$, and a commutative ring R, set $V_R(l,q) := 0$. Fix $d \geq 0$ and set $d_i := \deg_{\mathbf{y}} f_i$ for each i. Define

$$T^{(d)}: \bigoplus_{1}^{k} V_{K[\mathbf{x}]}(d-d_i,m) \to V_d$$

 $(g_1, \dots, g_k) \mapsto \sum_{1}^{k} f_i g_i$

which is a $K[\mathbf{x}]$ -linear map, and hence induced by some matrix $(T_{ij}^{(d)}) \in M_{n_d \times m_d}(K[\mathbf{x}])$. For each $v \in \mathbb{A}^n$, $v \in A_d$ if and only if $T^{(d)}(v) = (T_{ij}^{(d)}(v))$ is surjective, which is equivalent to the existence of m_d linearly independent rows of $(T_{ij}^{(d)}(v))$, i.e. the existence of a

non-zero minor of $(T_{ij}^{(d)}(\boldsymbol{v}))$ whose determinant is non-zero. We thus get that

$$A_d = \bigcup_{M \text{ minor of } (T_{ij}^d)} \mathbb{A}^n \setminus V(\det M),$$

which shows that A_d is open.

Lemma 5.3.12. The image of a morphism $\kappa: X \subset \mathbb{P}^n \to Y \subset \mathbb{P}^m$ is closed

Proof. By Lemma 5.3.6 the graph of κ , G_{κ} , is a closed subvariety of $X \times Y$, by the prior lemma it follows that im $\kappa = \pi_2(G_{\kappa})$ is closed.

5.3.2 A Necessary and Sufficient Condition for the Existence Final Syzygies over C

In Theorem 3.2.40 we saw a Gröbner basis method for checking whether a final syzygy exists for some finite set of polynomials. One may also find topological conditions that are necessary and sufficient for the existence of a final syzygy. For polynomials $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$ we for purposes of this discussion define the polynomial map

$$\varphi := \varphi_{f_1, \dots, f_n} : \mathbb{A}^n \to \mathbb{A}^m$$
$$v \mapsto (f_1(v), \dots, f_m(v))$$

We can state the weak Nullstellensatz in the following way

Theorem 5.3.13. Consider $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. These polynomials admit a final polynomial if and only if $0 \notin \text{im } \varphi$.

We can deform the setup this theorem to one about final syzygies:

Lemma 5.3.14. Let K be an infinite field and consider $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. These polynomials admit a final syzygy if and only if $0 \notin \operatorname{cl}(\operatorname{im} \varphi)$

Proof. " \Longrightarrow ": Suppose $0 \in \operatorname{cl}(\operatorname{im} \varphi)$. Let $p \in K[y_1, \ldots, y_m]$ be given such that $p(f_1, \ldots, f_m) = 0$. Then p vanishes on $\operatorname{im} \varphi$, hence $\operatorname{im} \varphi \subset V(p)$. It follows that

$$\operatorname{cl}(\operatorname{im}\varphi)\subset V(p),$$

hence p(0) = 0, meaning p is not a final syzygy. It follows that there are no polynomial in $K[\mathbf{y}]$ satisfying both conditions for being a syzygy.

" \Leftarrow ": Suppose $0 \notin \operatorname{cl}(\operatorname{im} \varphi)$. Then for some $0 \in U = \mathbb{A}^m \setminus V(p_1, \dots, p_k) \subset \mathbb{A}^m$ open, $U \cap \operatorname{im} \varphi = \emptyset$, hence $\operatorname{im} \varphi \subset V(p_1, \dots, p_k)$, hence for each $i, (f_1(v), \dots, f_m(v)) \in \operatorname{im} \varphi$

$$p_i(f_1(v),\ldots,f_m(v))=0,$$

implying that $p_i(f_1, \ldots, f_m) = 0$ since K is infinite. Note that for some $j, p_j(0) \neq 0$ since $0 \notin \mathbb{A}^m \setminus U = V(p_1, \ldots, p_m)$, which means $p := p_j$ is a final syzygy for f_1, \ldots, f_m . \square

In the special case $K = \mathbb{C}$, one can reformulate the above condition to one about the euclidean topology on \mathbb{A}^m . To do this need to consider how the projective Zariski topology on \mathbb{P}^m , the affine Zariski topology on \mathbb{A}^m , the euclidean quotient topology on \mathbb{P}^m and the euclidean topology on \mathbb{A}^m relate to each other. In the canonical way we may consider φ as a map $U_{n+1} \to U_{m+1}$. Moreover, we can extend φ to a map

$$\phi: \mathbb{P}^n = U_{n+1} \sqcup H_{\infty} \to \mathbb{P}^m$$
$$[v] \mapsto [v_{n+1} f_1^*(v), \dots, v_{n+1} f_m^*(v), 1]$$

Indeed, for $P = [v_1, \dots, v_n, 1] \in U_{n+1}$, $\phi(P) = [f_1^*(v), \dots, f_m^*(v), 1] = [f_1(v), \dots, f_m(v), 1]$. Note for $P \in H_\infty$, $\phi(P) = [0, \dots, 0, 1]$. This is a morphism since it fits in the following commutative diagram

$$\mathbb{A}^{n+1} \setminus 0 \xrightarrow{\psi} \mathbb{A}^{m}$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\varphi_{m+1}}$$

$$\mathbb{P}^{n} \xrightarrow{\phi} \mathbb{P}^{m}$$

where $\psi : v \mapsto (v_{n+1}f_1^*(v), \dots, v_{n+1}f_m^*(v))$, due to Lemma 5.2.41.

For the next result we will need some notation. Let the Zariski closure in $\mathbb{P}^n(\mathbb{C})$ and $\mathbb{A}^m(\mathbb{C})$ be denoted by $\mathrm{cl}_{\mathcal{Z}}$ and the closure with respect to respectively the quotient topology on $\mathbb{P}^n(\mathbb{C})$ induced by the Euclidean topology on $\mathbb{A}^{m+1}(\mathbb{C})\setminus 0$ and the Euclidean topology on $\mathbb{A}^m(\mathbb{C})$ be denoted by $\mathrm{cl}_{\mathcal{E}}$. We write $\mathrm{cl}_{\mathcal{Z},A}$, $\mathrm{cl}_{\mathcal{E},A}$ for the closure in some affine or projective subset A with respect to respectively the Zariski and Euclidean topologies.

Lemma 5.3.15. Set $K = \mathbb{C}$ and let $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. Then $\operatorname{cl}_{\mathcal{Z}}(\operatorname{im} \varphi) = \operatorname{cl}_{\mathcal{E}}(\operatorname{im} \varphi)$.

Proof. Note that im ϕ is Zariski closed by Lemma 5.3.1 and therefor also closed with respect to the Euclidean quotient topology. We then get that

$$\operatorname{cl}_{\mathcal{Z}}(\phi(\operatorname{cl}_{\mathcal{Z}}(U_{n+1}))) = \operatorname{cl}_{\mathcal{Z}}(\phi(\mathbb{P}^n)) = \operatorname{cl}_{\mathcal{E}}(\phi(\mathbb{P}^n)) = \operatorname{cl}_{\mathcal{E}}(\phi(\operatorname{cl}_{\mathcal{E}}(U_{n+1}))),$$

by continuity of ϕ in both topologies, we have that $\phi(\operatorname{cl}(A)) \subset \operatorname{cl}(\phi(A)) \subset \operatorname{cl}(\phi(\operatorname{cl}(A)))$, hence $\operatorname{cl}(\phi(A)) = \operatorname{cl}(\phi(\operatorname{cl}(A)))$, hence

$$\operatorname{cl}_{\mathcal{Z}}(\phi(U_{n+1})) = \operatorname{cl}_{\mathcal{E}}(\phi(U_{n+1})).$$

We then get that

$$\operatorname{cl}_{\mathcal{Z}}(\operatorname{im}\varphi) = \varphi_{m+1}(\operatorname{cl}_{\mathcal{Z}}(\phi(U_{n+1})) \cap U_{m+1}) = \varphi_{m+1}(\operatorname{cl}_{\mathcal{E}}(\phi(U_{n+1})) \cap U_{m+1}) = \operatorname{cl}_{\mathcal{E}}(\operatorname{im}\varphi),$$

where we use the fact that φ_{m+1} is a homeomorphism of \mathbb{A}^m with U_{n+1} in both topologies.

Theorem 5.3.16. Set $K = \mathbb{C}$ and consider $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$. Then f_1, \ldots, f_m admit a final syzygy if and only if $0 \notin \operatorname{cl}_{\mathcal{E}}(\operatorname{im} \varphi)$

Proof. This follows from Lemma 5.3.14 and the prior lemma

Definition 5.3.17. A system of polynomial equations over \mathbb{C} , $V(f_1, \ldots, f_m) \subset \mathbb{A}^n(\mathbb{C})$ is called *stably inconsistent* if there is a $\epsilon > 0$ such that for every $\delta_1, \ldots, \delta_m \in (-\epsilon, \epsilon)$, $V(f_1 + \delta_1, \ldots, f_m + \delta_m)$

Remark 5.3.18. One thus find that f_1, \ldots, f_m have a final syzygy if and only if $V(f_1, \ldots, f_m)$ is stably inconsistent.

Example 5.3.19. Some examples

5.3.3 A Little Something about Algebraic Groups

Definition 5.3.20. A variety V is called an *algebraic group* if (V, +) is a group such that $V \times V \to V, (v, w) \mapsto vw$ and $V \to V, v \mapsto v^{-1}$ are morphisms.

Example 5.3.21. 1. $\mathbb{A}^1 = K$ with addition is an algebraic group. Indeed, $\mathbb{A}^1 \times \mathbb{A}^1 \to \mathbb{A}^1$, $(a,b) \mapsto a+b$ is a polynomial map and so is $\mathbb{A}^1 \to \mathbb{A}^1$, $a \mapsto -a$. This group is also denoted \mathbb{G}_a .

2. $\mathbb{A}^1 \setminus 0$ with multiplication is an algebraic group. Multiplication is just a restriction of the polynomial map $\mathbb{A}^1 \times \mathbb{A}^1 \to \mathbb{A}^1$, $(a,b) \mapsto ab$. Let $V := V(f_1,\ldots,f_m) \setminus 0 \subset \mathbb{A}^1 \setminus 0$. For each i pick $n_i \geq 0$ such that $x^{n_i}f(1/x) \in K[x]$. Then if a is in the preimage of V under \bullet^{-1} , a^{-1} is a zero of each f_i , hence a is a zero of f(1/x) and therefor also of $x^{n_i}f(1/x)$. Let $a \in V(x^{n_i}f_i(1/x):1 \leq i \leq m) \setminus 0$. Then $a^{n_i}f_i(a^{-1}) = 0$ for each i, hence $f_i(a^{-1}) = 0$, hence a is in the preimage of V under \bullet^{-1} . Let $U \subset \mathbb{A}^1 \setminus 0$ be open. Define

$$\alpha: \Gamma(U) \to \Gamma\left(\operatorname{im}^{-1} \bullet^{-1}(U)\right)$$

$$f \mapsto f(1/x)$$

is a well-defined K-algebra map and it is readily verified to agree with \bullet^{-1} . We also denote this group \mathbb{G}_m .

3. \mathbb{A}^n is an algebraic group with addition. Indeed, $(v, w) \mapsto v + w = (v_1 + w_1, \dots, v_n + w_n)$ is a polynomial map and so is $v \mapsto -v = (-v_1, \dots, -v_n)$.

4. The group $\operatorname{GL}_n(K)$ is an algebraic group. Indeed, $\operatorname{GL}_n(K) = M_n(K) \setminus V(\det(x_{ij})) \subset M_n(K) = \mathbb{A}^{2n}$. One sees that $((a_{ij}), (b_{ij})) \mapsto (\sum_k a_{ik}b_{kj})$ is the restriction of a polynomial map where the i, j'th coordinate function is defined by the polynomial $\sum_k x_{ik}y_{kj}$. Note that $A \mapsto \operatorname{adj}(A)$ is a polynomial map hence this restricts to a morphism on $\operatorname{GL}_n(K)$. To prove that $A \mapsto A^{-1}$ defines a morphism, it, due to Cramer's rule, suffices to prove that $A \mapsto 1/\det(A)$ is a morphism, for then the operation of taking inverse is given by the composition,

$$\mu \circ (1/\det, \operatorname{adj}),$$

where $\mu:(a,v)\mapsto av$ is scalar multiplication which is clearly the restriction of a polynomial map. Note that det is a polynomial map and that $1/\det = \nu \circ \det|_{\mathrm{GL}_n(K)}$, where $\nu: \mathbb{A}^1 \setminus 0 \to \mathbb{A}^1 \setminus 0$, $a \mapsto a^{-1}$ which we know to be a morphism from 2. It follows that $1/\det$ is a morphism.

5.3.4 Dimension of Varieties

In this section we develop the notion of dimension to our new general notion of variety. The definition is obvious.

Definition 5.3.22. Let X be a variety. Then *the dimension of* X, denoted dim X, is defined to be $\operatorname{trdeg}_K K(X)$.

Remark 5.3.23. A one-dimensional variety is called a curve and a two-dimensional variety is called a surface. This will make sense in a second.

Lemma 5.3.24. 1. Let $U \subset X$ be an open subvariety of a variety X. Then dim $U = \dim X$.

- 2. Let V be an affine variety. Then dim $V = \dim V^*$.
- 3. The only zero-dimensional varieties are points.
- 4. The only proper closed sub varieties of curves are points.
- 5. The only one-dimensional varieties in \mathbb{A}^2 (resp. \mathbb{P}^2) are affine (resp. projective) curves.

Proof. 1. follows from the fact K(U) = K(X) by definition.

- 2. follows from the fact that $K(V) \simeq K(V^*)$.
- 3. Any variety is isomorphic to some open projective subvariety of projective variety V

and the dimension these varieties coincide. Moreover, V is isomorphic to some W^* for some affine variety W whose dimension coincide with that of W. So all in all we lose no generality by assuming that our given variety, X say is affine.

If dim X = 0, then $K(X) \supset K$ is algebraic, so by Lemma 1.10.22, K(X) = K, hence $\Gamma(X) = K$. By a corollary of the Nullstellensatz we already know that X is a point if and only if $K = \Gamma(X)$. This fact also proves the converse implication.

- 4. Again we may assume a curve V is affine. Let $W \subset V$ be a proper, closed subvariety. Then $\Gamma(W) \simeq \Gamma(V)/I_V(W)$. Then we are in a situation where we can apply 3. of the prior lemma: Let $R = \Gamma(V)$, L = K(V). Since $\emptyset \neq W \subsetneq V$, $0 \subsetneq I_V(W) \subsetneq \Gamma(V)$. Then $\Gamma(V)/I_V(W) \simeq K$. So $\dim(K(W)) = 0$ and W is a point.
- 5. We can always reduce to the case $V \subset \mathbb{A}^2$ or $V \subset \mathbb{P}^2$. In the case $V \subset \mathbb{A}^2$, V is a point, a plane curve V = V(f), or $V = \mathbb{A}^2$. If dim V = 1, then V is not a point, since this would be 0 dimensional and it is not the entire plane since this is a surface. Suppose V = V(f) is a plane curve. Note that K(V) = K(x + I(V), y + I(V)). Note that f(x + I(V), y + I(V)) = 0, hence $K(x + I(V), y + I(V)) \supset K(x + I(V))$ is algebraic, meaning dim $V \in \{0,1\}$ and since V is not a point, dim V = 1. In the case $V \subset \mathbb{P}^2$, we apply the affine case to V_* .

Proposition 5.3.25. Let Y be a closed subvariety of a variety X. dim $Y \leq \dim X$ and dim $X = \dim Y \iff X = Y$.

Proof. We can reduce the problem to $Y \subset X \subset \mathbb{P}^n$, and then again to $Y \subset X \subset \mathbb{A}^n$ where X is also an affine variety by the prior lemma. We have already proven this case in Lemma 3.4.71.

Proposition 5.3.26. Let $M \supset L$ be a module-finite field extension over a characteristic 0 field L. Let $V \subsetneq \mathbb{A}^n(K)$ (K is still algebraically closed) be an algebraic set. Then $M = L(\sum_{1}^{n} \lambda_i a_i)$ for some $(\lambda_1, \ldots, \lambda_n) \in \mathbb{A}^n \setminus V$.

Proof. The case n=1 is trivial. Assume the statement true for some $n\geq 1$. Consider $M=L(a_1,\ldots,a_{n+1}).$ Write $V=V(f_1,\ldots,f_m).$ Since V is proper we may WLOG assume that there is a $\mu_{n+1}\neq 0$ and an i such that $f_i(x_1,\ldots,x_n,\mu_{n+1})\neq 0$, i.e. setting $g_j:=f_j(x_1,\ldots,x_n,\mu_{n+1}),\, W:=V(g_1,\ldots,g_m)$ is a proper algebraic set in $\mathbb{A}^n.$ In the proof of the prime element theorem we saw that we can choose $(\lambda_1,\ldots,\lambda_n)\in\mathbb{A}^n$ such that $c:=\sum_1^n\lambda_ia_i$ is such that $L(a_1,\ldots,a_n)=L(c)$ and $M=L(\nu c+\mu_{n+1}a_{n+1})$ for some $\nu\neq 0.$ By induction there is also $(\mu_1,\ldots,\mu_n)\in\mathbb{A}^n\setminus W$ where $c':=\sum_1^n\mu_ia_i$ is such that $L(a_1,\ldots,a_n)=L(c')=L(\nu c).$ Then $(\mu_1,\ldots,\mu_n,\mu_{n+1})\in\mathbb{A}^{n+1}\setminus V$ and

$$M = L(c', a_{n+1}) = L(\nu c + \mu_{n+1} a_{n+1}) = L(c' + \mu_{n+1} a_{n+1}) = L\left(\sum_{1}^{n+1} \mu_i a_i\right).$$

Proposition 5.3.27. Consider a function field $K(\alpha_1, ..., \alpha_n) \supset K$ in r variables. There is an affine variety $V \subset \mathbb{A}^n$ such that we may identify $K(\alpha_1, ..., \alpha_n)$ with K(V).

Proof. $K[\alpha_1,\ldots,\alpha_n]\simeq K[x_1,\ldots,x_n]/\ker\operatorname{ev}_{\alpha_1,\ldots,\alpha_n}$, and since $K[\alpha_1,\ldots,\alpha_n]$ is an integral domain, $\ker\operatorname{ev}_{\alpha_1,\ldots,\alpha_n}$ is prime hence setting $V:=V(\ker\operatorname{ev}_{\alpha_1,\ldots,\alpha_n})$ we are done.

Proposition 5.3.28. (char K = 0). In the same setup as above, we may find an affine variety $V \subset \mathbb{A}^{r+1}$ such that $K(\alpha_1, \dots, \alpha_n)$ may be identified with K(V).

Proof. We may find $y_1, \ldots, y_r \in K(\alpha_1, \ldots, \alpha_n)$ that are algebraically independent over K. Then $K(\alpha_1, \ldots, \alpha_n) = K(y_1, \ldots, y_r, \alpha)$ for some $\alpha \in K(\alpha_1, \ldots, \alpha_n)$. Then

$$K[x_1,\ldots,x_{r+1}]/\ker\operatorname{ev}_{\alpha}\simeq K[y_1,\ldots,y_r,\alpha].$$

Picking $V := V(\ker \operatorname{ev}_{\alpha})$, we are done.

5.3.5 Rational Maps & Birational Equivalence

Definition 5.3.29. Let X, Y be varieties and $U_1, U_2 \subset X$ open subvarieties. Two morphisms $\varphi_i : U_i \to Y$ are equivalent if $\varphi_1(v) = \varphi_2(v)$ for every $v \in U_1 \cap U_2$.

An equivalence class of such morphisms is called a rational map from X to Y.

We define the *domain* of a rational map Φ to be the union over the domain of all representatives of Φ . We denote this by dom Φ

Remark 5.3.30. Given a rational map $\Phi = [\varphi_{\alpha}]$ with domain U pick for each $P \in U$, an α_P such that $P \in U_{\alpha_P}$. We define

$$\varphi: U \to A \times U \to Y$$

$$P \mapsto (\alpha_P, P) \to \varphi_\alpha(P)$$

If $(\alpha, P) = (\beta, Q)$, then $\varphi_{\alpha}(P) = \varphi_{\beta}(Q)$, hence the above is well-defined. It is a morphism since a $\varphi|_{\alpha} = \varphi_{\alpha}$ is a morphism for each α . Note that $\varphi \in \Phi$. Thus a rational map can equivalently be considered as a morphism $\varphi : U \to Y$ for some open subvariety in X that cannot be extended to a morphism from any larger open subset of X to Y.

Definition 5.3.31. A rational map $\Phi = [\varphi] : X \to Y$ is said to be *dominant* if $\varphi(U) \subset Y$ is dense.

Remark 5.3.32. Note that this is independent of the choice of representative of Φ . Indeed if (φ_1, U_1) and (φ_2, U_2) are two representations of Φ , then using the continuity of φ_i a couple of times (Note in particular that we use the fact that $U_1 \cap U_2 \neq \emptyset$)

$$\begin{aligned} \operatorname{cl}_{Y}(\varphi_{1}(U_{1})) &= \operatorname{cl}_{Y}(\varphi_{1}(\operatorname{cl}_{U_{1}}(U_{1} \cap U_{2}))) = \operatorname{cl}_{Y}(\varphi_{1}(U_{1} \cap U_{2})) = \operatorname{cl}_{Y}(\varphi_{2}(\operatorname{cl}_{U_{2}}(U_{1} \cap U_{2}))) \\ &= \operatorname{cl}_{Y}(\varphi_{2}(\operatorname{cl}_{U_{2}}(U_{1} \cap U_{2}))) = \operatorname{cl}_{Y}(\varphi_{2}(U_{2})). \end{aligned}$$

hence if the image of one representative is dense in Y, then this is also the case for the image of any other representative.

Definition 5.3.33. Let A, B be a pair of local rings with $B \supset A$. We say that B dominates A if the maximal ideal of B contains the maximal ideal of A.

- **Proposition 5.3.34.** 1. Let $\Phi: X \to Y$ be a dominant rational map. Let $U \subset X$, $V \subset Y$ be open affine varieties, $\varphi: U \to V$ a representative of Φ . Then $\widetilde{\varphi}: \Gamma(V) \to \Gamma(U)$ is injective and it extends to an injective K-algebra homomorphism, $\widetilde{\Phi}: K(Y) = K(V) \to K(X) = K(U)$. This homomorphism is independent of the choice of such a (φ, U, V) .
 - 2. Consider a point $P \in \text{dom } \Phi$ and set $Q := \Phi(P)$. Then $\mathcal{O}_P(X)$ dominates $\widetilde{\Phi}(\mathcal{O}_Q(Y))$. Conversely, if $P \in X$, $Q \in Y$ and $\mathcal{O}_P(X)$ dominates $\widetilde{\Phi}(\mathcal{O}_Q(Y))$, then $P \in \text{dom } \Phi$ and $\Phi(P) = Q$.
 - 3. For every injective $\sigma \in \operatorname{Hom}^{K-\operatorname{Alg}}(K(Y),K(X))$, there is a unique dominant rational map $\Phi: X \to Y$ such that $\widetilde{\Phi} = \sigma$.
- Proof. 1. Lemma 5.3.7 shows that $\widetilde{\varphi}:\Gamma(V)\to\Gamma(U)$. Since $\widetilde{\varphi}(f)=0\iff f=0$ it follows that $\widetilde{\Phi}:K(V)\to K(U), f/g\mapsto \widetilde{\varphi}(f)/\widetilde{\varphi}(g)$. Consider another representative $\varphi':U'\to V'$ of Φ . Note that $Q(\Gamma(V\cap V'))=K(Y)$. So we may write $f\in K(Y)$ as a ratio a/b, where $a,b\in\Gamma(V\cap V'),\,b\neq0$. Note that the induced maps of φ and φ' agree on $\Gamma(V\cap V')$, so $\frac{\widetilde{\varphi}(a)}{\widetilde{\varphi}(b)}=\frac{\widetilde{\varphi}'(a)}{\widetilde{\varphi}'(b)}$.
- 2. The maximal ideal in $\widetilde{\Phi}(\mathcal{O}_Q(Y))$ is equal to $\{\widetilde{\Phi}(f) \in \widetilde{\Phi}(\mathcal{O}_Q(Y)) : \widetilde{\Phi}(f)(P) = 0\}$ which is clearly a subset of the maximal ideal of $\mathcal{O}_P(X)$. Pick affine neighborhoods $V \ni P$ and $W \ni Q$. Then $\Gamma(W)$ is a ring-finite extension of K, with generators z_1, \ldots, z_n . Since $\widetilde{\Phi}\Big|_{\Gamma(W)} : \Gamma(W) \to K(V) = Q(\Gamma(V))$ is well-defined, we see that upon writing $\widetilde{\Phi}(z_i) = \frac{a_i}{b_i}$ for suitable $a_i, b_i \in \Gamma(V)$, $b_i(P) \ne 0$. Set $b := \prod b_i$. Then $\widetilde{\Phi}(f) = \frac{g}{b^m}$ for some $m \ge 0$, $g \in \Gamma(V)$ for every $f \in \Gamma(W)$. Then $\widetilde{\Phi}(\Gamma(W)) \subset \Gamma(V_b)$, hence $\sigma := \widetilde{\Phi}\Big|_{\Gamma(W)} : \Gamma(W) \to \Gamma(V_b)$ is well-defined. Since W and V_b are affine, there is a unique morphism $\varphi : V_b \to W$ inducing σ . Then $P \in V_b \subset \text{dom } \Phi$. Let $f \in \mathfrak{m}_Q(Y) \cap \Gamma(W) = 0$

 $I_W(\{Q\})$. Then $\widetilde{\Phi}(f) \in \mathfrak{m}_P(X)$, since $\mathcal{O}_P(X)$ dominates $\widetilde{\Phi}(\mathcal{O}_Q(Y))$, which means $f \in \mathfrak{m}_{\Phi(P)}(X) \cap \Gamma(W) = I_W(\{\Phi(P)\})$. Then by maximality $I_W(\{Q\}) = I_W(\{\Phi(P)\})$, hence $Q = \Phi(P)$.

3. We may assume that X,Y are affine, since X and Y in any case contains open affine sets and $K(\bullet)$ maps an open subset to the same field. Let $\sigma:K(Y)\to K(X)$ be an injective K-algebra map. By restricting to $\Gamma(Y)$, as in 2. we get an injective K-algebra map $\tau=\sigma|_{\Gamma(Y)}:\Gamma(Y)\to\Gamma(X_b)$ for a suitable $b\in\Gamma(X)$. Then τ is induced by a morphism $\varphi:X_b\to Y$, where $\mathrm{cl}(\varphi(X_b))=Y$ (cf. Lemma 5.3.7). Then setting $\Phi:=[\varphi]:X\dashrightarrow Y$, we are done.

Definition 5.3.35. A rational map $\Phi: X \to Y$ is called *birational* if there are open subvarieties $U \subset X$, $V \subset Y$ and an isomorphism $\varphi: U \to V$ that is a representative of Φ .

We say that two varieties X, Y are *birationally equivalent* if there exists a birational map $\Phi: X \to Y$. If this is the case we write $X \sim_{\text{bir}} Y$.

The following result is given to book keep the functoriality of the K-algebra maps induced by rational maps

Theorem 5.3.36. Varieties with dominant rational maps is a category. The assignment $(X, \Phi: Y \to Z) \mapsto (K(X), \widetilde{\Phi}: K(Z) \to K(Y))$ to the category of algebraic function fields/K with injective K-algebra maps is a fully faithful functor. Hence $K(X) \simeq K(Y) \iff X \sim_{\text{bir}} Y$.

Proof. We define composition of two rational maps $\Phi: X \dashrightarrow Y$ and $\Psi: Y \dashrightarrow Z$ to be

$$\Psi \circ \Phi = [\Psi \circ \Phi|_{\Phi^{-1}(\operatorname{dom} \, \Psi)}] : X \cdot \cdots \rangle \, Z,$$

where $\Phi^{-1}(\operatorname{dom} \Psi)$ is to be interpreted to be the preimage of $\operatorname{dom} Y$ under the map $\Phi: \operatorname{dom} \Phi \to Y$. One readily verifies that this operation is associative and that $[\operatorname{id}_A:A\to A]$ is the identity with respect to this composition. Note that since we consider dominant rational maps, $\operatorname{dom} \Psi \cap \Phi(\operatorname{dom} \Phi) \neq \emptyset$, hence composition is never the empty map, which is not always the case when we consider varieties with rational maps. The functor is contravariant. Indeed, consider $\Phi: X \dashrightarrow Y, \Psi: Y \dashrightarrow Z$. Then

$$\widetilde{\Psi \circ \Phi} = \Psi \circ \widetilde{\Phi}|_{\Phi^{-1}(\operatorname{dom}\,\Psi)} = \Phi|_{\Phi^{-1}(\operatorname{dom}\,\Psi)} \circ \widetilde{\Psi} = \widetilde{\Phi} \circ \widetilde{\Psi}.$$

In the second to last equality, we use faithfulness of the functor $(R, \sigma: S \to T) \mapsto (Q(R), \sigma: Q(S) \to Q(T))$. It is obvious that $\widetilde{\mathrm{id}}_A = \mathrm{id}_{K(A)}$. It follows from Proposition 5.3.34 3. that this functor is fully faithful.

Corollary 5.3.37. Every curve V is birationally equivalent to a plane curve V'.

Proof. By Lemma 1.10.54 1. K(V) = K(a,b). Set $I := \ker \operatorname{ev}_{a,b} \subset K[x,y]$, which is a prime ideal. Then $V' := V(I) \subset \mathbb{A}^2$ is a variety and $K(V') = Q(\Gamma(V')) = Q(K[x,y]/I) \simeq K(a,b) = K(V)$, hence $V \sim_{\operatorname{bir}} V'$. Then dim V' = 1, hence V' is a plane curve by Lemma 5.3.24.

Definition 5.3.38. A variety is said to be *rational* if it is birationally equivalent to some affine or projective space.

Example 5.3.39. $\mathbb{A}^n \times \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$ is isomorphic to $\mathbb{A}^n \times \mathbb{P}^{(n_1+1)\cdots(n_m+1)-1}$. In particular $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$ is rational.

Example 5.3.40. Let L, L' be lines in \mathbb{P}^1 . Consider points $P_L, P_{L'}$ which L resp. L' do not pass through. Then $L \times \{P_{L'}\} \cap \{P_L\} \times L' = \emptyset$ and $L \times \{P_{L'}\} \simeq L$, $\{P_L\} \times L'$. Then $\mathbb{P}^1 \times \mathbb{P}^1$ is not isomorphic to \mathbb{P}^2 since for a general isomorphism $\varphi: V \to \mathbb{P}^2$, if $\Lambda, \Lambda \subset V$ are dimension 1 closed subvarieties, then so are $\varphi(\Lambda), \varphi(\Lambda')$ in \mathbb{P}^2 , hence $\varphi(\Lambda) \cap \varphi(\Lambda') = P$ for some $P \in \mathbb{P}^2$.

Example 5.3.41. The following is a continuation of Example 3.3.20.Consider $f = x^2 - y^3$ and $g = y^2 - z^3$ and set $V := V(f,g) \subset \mathbb{A}^3$. Consider also the bijective polynomial map $\varphi : \mathbb{A}^1 \to V, t \mapsto (t^9, t^6, t^4)$. $\Gamma(V) \to K[T]$ is injective. Note that $t = \frac{t^9}{t^8} = \widetilde{\varphi}(\frac{\overline{x}}{z^2})$, so $K(V) \simeq K(t)$, hence φ is a birational map, so V is rational. V does not, however, have an open subvariety about P := (0,0,0) isomorphic to an open subvariety of a plane curve: In general, if two open subvarieties U,U' of a pair of varieties W,W' are isomorphic, then $\widetilde{\psi} : \Gamma(U) \simeq \Gamma(U')$ which restricts to an isomorphism $\mathcal{O}_P(U) = \mathcal{O}_Q(W) \simeq \mathcal{O}_{\psi(Q)}(W')$, meaning $\dim_K \mathfrak{m}_P(W)/\mathfrak{m}_P(W)^2 = \dim_K \mathfrak{m}_P(W')/\mathfrak{m}_P(W')^2$. In Example 3.4.44 we saw that $\dim_K \mathfrak{m}_P(V)/\mathfrak{m}_P(V)^2 = 3$, while for a plane curve C and a point R on C, $\dim_K \mathfrak{m}_R(C)/\mathfrak{m}_R(C)^2 \in \{1,2\}$ (cf. Proposition 3.4.43).

Proposition 5.3.42. Suppose there is a dominant rational map, $\Phi: X \dashrightarrow Y$. Then dim $Y < \dim X$.

Proof. Φ induces an injective K-algebra map $\widetilde{\Phi}: K(Y) \hookrightarrow K(X)$. Then by Lemma 1.10.51 $\dim Y = \operatorname{trdeg} K(Y) \leq \operatorname{trdeg} K(X) = \dim X.$

Proposition 5.3.43. Ever r-dimensional variety X over a characteristic 0 field How to generalize to positive characteristic? Every function field being seperable would suffice is birationally equivalent to a hypersurface in \mathbb{A}^{n+1} or \mathbb{P}^{n+1} .

Proof. By definition K(X) is a function field in r variables. We proceed as in the proof of Proposition 5.3.28. It follows that we just need to argue that $\ker ev_{\alpha}$ is principal. Indeed let f be the minimal irreducible monic polynomial in $K(y_1,\ldots,y_r)[x]$ vanishing on α . We may assume that the for each non-zero coefficient of f the numerator and denominator are co-prime. We may find a $g=cf\in K[y_1,\ldots,y_r,x]\setminus 0$ where c is the least common multiple of the denominators and this is primitive in $K[y_1,\ldots,y_r][x]$ (cf. Lemma 1.9.94) and vanishes on α , so $g\in \ker ev_{\alpha}$. Let $h\in \ker ev_{\alpha}$. Then h is in the kernel of the map $K(y_1,\ldots,y_r)[x]\to K(X), a\mapsto a(\alpha)$ which is generated by f, hence $f\mid h$, which implies that $g=cf\mid h$ in $K(y_1,\ldots,y_n)[x]$ and so by Gauss' lemma (cf. Lemma 1.9.95) $g\mid h$ in $K[y_1,\ldots,y_n,x]$. We thus get that $\ker ev_{\alpha}=\langle g\rangle$. So $K(X)\simeq K(V(g))$, hence $X\simeq V(g)$, since $(Y,\Phi:Z)\mapsto W(Y(g))\mapsto (K(Y),\widetilde{\Phi}:K(W)\hookrightarrow K(Z))$ is fully faithful. The projective version is accomplished by taking projective closure.

Proposition 5.3.44. Suppose X, Y are varieties, $P \in X, Q \in Y$ with $\mathcal{O}_P(X)$ is K-algebra isomorphic to $\mathcal{O}_Q(Y)$. Then there are open neighborhoods $U \ni P$ and $V \ni Q$ such that $U \simeq V$.

Proof. WLOG X,Y are affine. First note that $\sigma:\mathcal{O}_Q(Y)\simeq\mathcal{O}_P(X)$ implies $\sigma:K(Y)\simeq K(X)$. Then there is a unique birational $\Phi:X\sim_{\mathrm{bir}}Y$ such that $\widetilde{\Phi}=\sigma$. Since $\mathcal{O}_P(X)$ dominates $\sigma(\mathcal{O}_Q(Y))$ it follows that $Q=\Phi(P)$ (cf. Proposition 5.3.34 2.). As in the proof of Proposition 5.3.34 We may find $b\in\Gamma(X)$ and a $y\in\Gamma(Y)$ such that $\sigma(\Gamma(Y))\subset\Gamma(X_b)$ and $\sigma^{-1}(\Gamma(X))\subset\Gamma(Y_d)$. Then we also have that $\sigma(\Gamma(Y))\subset\Gamma((X_b)_{\sigma(d)})$ and that $\sigma^{-1}(\Gamma(X))\subset\Gamma((Y_d)_{\sigma^{-1}(b)})$. In general recall that $\Gamma(Z_\mu)=\Gamma(Z)[1/\mu]$ for Z affine (cf. Proposition 5.2.32). Hence if $f=\frac{a}{d^n\sigma^{-1}(b)^m}\in\Gamma((X_b)_{\sigma(d)})$, then $\sigma(f)=\frac{\sigma(a)}{\sigma(d)^nb^m}\in\Gamma((X_b)_{\sigma(d)})$. Conversely, if $g=\frac{c}{\sigma(d)^nb^m}\in\Gamma((X_b)_{\sigma(d)})$, we get that $g=\sigma\left(\frac{\sigma^{-1}(c)}{d^n\sigma^{-1}(b)^m}\right)$. This means $\sigma:\Gamma((Y_d)_{sigma^{-1}(b)})\to\Gamma((X_b)_{\sigma(d)})$ is a K-algebra isomorphism, which is induced by a representative $\varphi:U:=(X_b)_{\sigma(d)}\to V:=(Y_d)_{\sigma^{-1}(b)}$ of Φ . Note that by the construction of $b,b(P)\neq 0$ and $\sigma(d)(P)=\widetilde{\Phi}(d)(P)=d(\Phi(P))=d(Q)\neq 0$ by the construction of d, so $P\in U$. The fact that $Q=\Phi(P)=\varphi(Q)$ shows that $Q\in V$.

Proposition 5.3.45. Let C be a projective curve, $P \in C$. There is a birational map $\Phi: C \dashrightarrow C'$ where C' is projective plane curves such that $\Phi^{-1}(\Phi(P)) = P$.

Proof. We may assume $C \subset \mathbb{P}^{n+1}$ (in the case n=0, $\mathbb{P}^1 \simeq L_\infty$, $[a,b] \mapsto [a,b,0]$). Denote the n+2 coordinate hyperplanes by y,x_1,\ldots,x_n,z . After a change of coordinates we may choose that $C \not\subset y$, meaning $C \cap y$ is finite since it is closed in C and every component is a point (cf. Lemma 5.3.24 4.); we may choose that the C do not intersect $y \cap z$ (again we can arrange that $C \not\subset y \cap z$ and then move potential points of intersection); we may

choose that $P = [0, \dots, 0, 1]$. As a consequence $K(C) \supset K(\overline{y}/\overline{z})$ (by our choices z does not vanish on C and hence $\overline{z} \neq 0$) is algebraic.

For $v = (v_1, \dots, v_n) \in \mathbb{A}^n$ define

$$\varphi_v: C \to \mathbb{P}^2$$
$$[\mu, w_1, \dots, w_n, \nu] \mapsto [\mu, \sum_{i=1}^n v_i w_i, \nu]$$

This is well-defined since for every $[\mu, w_1, \ldots, w_n, \nu] \in C$, $\mu \neq 0$ or $\nu \neq 0$, since $C \cap y \cap z$ is empty. It is a morphism since it is covered by $U_1 \cap C$, $U_{n+2} \cap C$, on which it restricts to a polynomial map to the first resp. third copy of the affine plane in \mathbb{P}^2 . Observe that $\varphi_v(P) = [0,0,1]$. Set $C_v := \operatorname{cl}(\varphi_v(C))$. We now just need to argue that we can choose v such that φ_v becomes a birational map onto C_v' . First of all, C_v' is a closed subvariety of \mathbb{P}^2 , since if $C_v' = A \cup B$ a decomposition into a union of closed sets, then we assume $C = \varphi_v^{-1}(A)$. Then $\varphi(C) = \varphi_v(\varphi_v^{-1}(A))$, hence $C' = \operatorname{cl}(\varphi_v(\varphi_v^{-1}(A))) \subset A$, implying C' = A. Note that φ_v is a dominant rational map and therefor induces a well-defined (injective) field extension map over K, $\widetilde{\varphi_v} : K(C_v') \to K(C)$, $\overline{\frac{I}{g}} \mapsto \overline{\frac{f(y, \sum_1^n v_i x_i)}{g(y, \sum_1^n v_i x_i)}}$. We now choose $v \in \mathbb{A}^{n+1}$ such that $K(C) = K(u, \sum_1^n v_i \frac{\overline{x_i}}{z})$. Then $K(C_v') \simeq K(C)$, so φ_v . Write $C \cap y = \{Q_1, \ldots, Q_m, P\}$. Set $h := \sum_1^n y_i x_i \in K[\mathbf{x}, \mathbf{y}]$, $h_i := h(\mathbf{y}, Q_i)$ and $V := \bigcup V(h_1, \ldots, h_m)$. We may pick $v \in \mathbb{A}^n \setminus V$ so that φ_v is birational. This means that if $Q = [t, w, s] \in C \cap y$, then $\sum_1^n v_i w_i \neq 0$ or w = 0. In particular, if $\varphi_v([t, w_1, \ldots, w_n, s]) = [0, 0, 1]$, then $[t, w, s] \in C \cap y$ and $\sum_1^n v_i w_i = 0$, hence w = 0, and [t, w, s] = P.

Definition 5.3.46. We say that a rational map is *finite* if the induced K-algebra homomorphims between the algebraic function fields is finite.

Lemma 5.3.47. Let C and C' be curves, $\Phi: C' \longrightarrow C$ some rational map.

- 1. Φ is dominating or constant.
- 2. If Φ is dominating, then $\widetilde{\Phi}$ is finite.

Proof. 1. Note that $\operatorname{cl}(\Phi(\operatorname{dom}\Phi))$ is a closed subvariety of C and thus is either equal to C or, due to Lemma 5.3.24, a point.

2. Since $K(C')\supset K$ is field finite, then so is $K(C')\supset\widetilde{\Phi}(K(C))$. Let $f\in K(C)\backslash K$, then $\widetilde{\Phi}(f)\in K(C)\backslash K$, hence $K(C')\supset K(\widetilde{\Phi}(f))$ is algebraic by Lemma 1.10.54 1. hence $K(C')\supset\widetilde{\Phi}(K(C))=\widetilde{\Phi}(K(C))(\widetilde{\Phi}(f))$ is algebraic. It follows that $K(C')\supset\widetilde{\Phi}(K(C))$ is module-finite, hence Φ is finite. \Box

5.4 The Study of Curves & Resolution of Singularities

5.4.1 Rational Maps of Curves

Definition 5.4.1. Let P be a point on a curve C. P is called *simple* if $\mathcal{O}_P(C)$ is a DVR.

Remark 5.4.2. This agrees with the definition on plane curves by Theorem 3.4.36. We denote the order function on K(C) defined by $\mathcal{O}_P(C)$ by $\operatorname{ord}_P := \operatorname{ord}_P^C$.

Definition 5.4.3. A curve is called *non-singular* if every point on it is simple.

Where goes this?

Definition 5.4.4. Let $L \supset K$ be a field extension, and A a local ring. We say that A is a local ring of L if it is contained in L, Q(A) = K and $A \supset K$. Similarly, a DVR of L is a DVR that is a local ring of L.

Theorem 5.4.5. Let C be a projective curve, L := K(C). Suppose $M \supset L$ is some field and R is a DVR of M. Suppose $R \not\supset K$. Then there is a unique $P \in C$ such that R dominates $\mathcal{O}_P(C)$.

Proof. Denote the maximal ideal of R by \mathfrak{m} . Uniqueness: Suppose for a contradiction that there are two distinct points P,Q on C such that R dominates $\mathcal{O}_P(C)$ and $\mathcal{O}_Q(C)$. We may construct a rational function $f \in K(C)$ such that $f \in \mathfrak{m}_P(V) \subset \mathfrak{m}$ and $\frac{1}{f} \in \mathcal{O}_Q(C)$ (cf. Lemma 5.2.39). Then $\operatorname{ord}(f) > 0$, and since f is a unit in the local ring of C at Q so therefor also a unit in R, meaning $\operatorname{ord}(f) \geq 0$; this is a contradiction.

Existence: WLOG $C \subset \mathbb{P}^n$ for some $n \geq 1$. We may also assume that C is not contained in any coordinate hyperplane, hence that $C \cap U_i \neq \emptyset$ for every i (cf. Lemma 5.2.42). We have that $\Gamma^h(C) = K[x_1, \ldots, x_{n+1}]/I^{\mathbb{P}}(C) = K[\overline{x_1}, \ldots, \overline{x_{n+1}}]$. Set $N = \max_{i,j} \operatorname{ord}(\overline{x_i}/\overline{x_j})$. WLOG $\operatorname{ord}(\overline{x_j}/\overline{x_{n+1}}) = N$ for some j. Note that for each i

$$\operatorname{ord}(\overline{x_i}/\overline{x_{n+1}}) = \operatorname{ord}((\overline{x_j}/\overline{x_{n+1}})(\overline{x_i}/\overline{x_j})) = N - \operatorname{ord}(\overline{x_j}/\overline{x_i}) \geq 0.$$

It then follows that $R \supset K\left[\frac{\overline{x_1}}{\overline{x_{n+1}}},\ldots,\frac{\overline{x_n}}{\overline{x_{n+1}}}\right] \simeq \Gamma(C_*)$, where C_* is the affine curve corresponding to $C \cap U_{n+1}$. Set $J := \mathfrak{m} \cap \Gamma(C_*)$. Then J is a prime ideal and hence corresponds to some subvariety of C_* , W say. If $W = C_*$, then J = 0, hence $\Gamma(C_*) \setminus 0$ are all units in R, which would imply that $R \supset L$. So W is a proper subvariety of C_* and thus is a point, $\{P\}$ say, by Lemma 5.3.24 4. We may write elements of $\mathcal{O}_P(C)$ as a fraction $\frac{\alpha}{\beta} \in K(C)$, where $\alpha, \beta \in \Gamma(C_*)$, where $\beta(P) \neq 0$. Then $\beta \notin J$, hence $\beta \notin \mathbb{R}$. It thus follows that β is a unit in R, hence $\frac{\alpha}{\beta} \in R$. Moreover if $\frac{\alpha}{\beta} \in \mathfrak{m}_P(V)$, then $\alpha \in J$, hence $\alpha \in \mathfrak{m}$, so $\frac{\alpha}{\beta} \in \mathfrak{m}$. In conclusion, P is a point in C such that R dominates $\mathcal{O}_P(C)$.

Corollary 5.4.6. Let C, C' be curves, C projective, $\Phi : C' \longrightarrow C$ some rational map. Then the set of simple points in C' is contained in dom Φ . Then immediately it follows that if C' is nonsingular then Φ is a morphism, i.e dom $\Phi = C'$.

Proof. In the case of Φ not being dominant, it is constant (cf. Lemma 5.3.47 1.), hence dom $\Phi = C'$. Suppose Φ is dominant. Then $\widetilde{\Phi}$ is injective, so we can identify K(C) with a subfield of K(C'). Let P be a simple point of C' and set $R := \mathcal{O}_P(C')$, which is then a DVR of K(C'). If $R \not\supset K(C)$, then by the prior theorem there is a $Q \in C$ such that $\mathcal{O}_Q(C)$ (which we have identified with $\widetilde{\Phi}(\mathcal{O}_Q(C))$) is dominated by R, which means $P \in \text{dom } \Phi$ by Lemma 5.3.34 2. Suppose for a contradition that $K(C) \subset R \supset K(C')$. Note that $K(C') \supset K(C)$ is module-finite by Lemma5.3.47 2. Then R is a field by Proposition 1.10.25, leading to a contradiction with the fact that R is a DVR and therefor a non-field.

Corollary 5.4.7. Let C be the category nonsingular curves with dominant morphisms. Then the restriction C of the $\widetilde{\bullet}$ -functor to the category of 1 variable algebraic function fields over K with K-algebra homomorphisms is a fully faithful functor.

Definition 5.4.8. Let C be a nonsingular curve. Define

$$\mathsf{DVR}(C) \coloneqq \{R \subset K(C) : R \ \text{ is a DVR of } K(C)\}.$$

Corollary 5.4.9. *Let* C *be a nonsingular curve. The map*

$$\mathcal{O}_{\bullet}(C): C \to \mathsf{DVR}(C)$$

$$P \mapsto \mathcal{O}_P(C)$$

is a bijection.

Proof. It is obviously well-defined. Let $R \in DVR(C)$. By the prior theorem there is a unique $P_R \in C$ such that R dominates $\mathcal{O}_{P_R}(C)$. Then $R = \mathcal{O}_{P_R}(C)$ by Proposition 1.8.91. So the inverse of $\mathcal{O}_{\bullet}(C)$ is $R \mapsto P_R$.

Proposition 5.4.10. Let C be a nonsingular curve. The family of subsets of DVR(C),

$$\{\emptyset\} \cup \{U \subset \mathsf{DVR}(C) : \mathsf{DVR}(C) \setminus U \text{ is finite } \}$$

defines a topology on DVR(C) which turns $\mathcal{O}_{\bullet}(C)$ into a homeomorphism.

Proof. Let $\{U_{\alpha}\}$ be a family non-empty subsets of DVR(C) such that the complement of U_{α} is finite. The Demorgan's law shows that the complement of $\bigcup U_{\alpha}$ is also finite. Let

 $U_1, U_2 \subset \mathsf{DVR}(C)$ be non-empty subsets. Again by Demorgan's law the complement of $U_1 \cap U_2$ is finite. So the family of subset is indeed a topology. Note that if S is a closed subset of $\mathsf{DVR}(C)$ it is either all of $\mathsf{DVR}(C)$ or a finite set. In the first case $\mathcal{O}_{\bullet}^{-1}(S) = C$ and in the second $\mathcal{O}_{\bullet}^{-1}(S)$ is a finite union of points. In either case it is a closed subset of C. If $V \subset C$ is closed, it is either equal to C or a finite subset. In either case \mathcal{O}_{\bullet} maps it to a closed subset of $\mathsf{DVR}(C)$. We then conclude that \mathcal{O}_{\bullet} is a homeomorphism. \square

Proposition 5.4.11. A curve C has only finitely many multiple points.

Proof. C is birationally equivalent to a plane curve which may be identified with an open subset of a projective plane curve C'. So there is a birational equivalence $\Phi: C \to C'$. $K(C) \subset K(C')$.

Definition 5.4.12. Let C be a projective curve. A resolution of the singularities of C is a non-singular projective curve X with a birational map $\Phi: X \dashrightarrow C$.

In the next subsection we are going to work on how to "blow up" multiple points on a curve. The easy case is affine plane curves.

5.4.2 Blowing up Points in \mathbb{A}^2

We start by working through an example

Example 5.4.13. Consider the curve $C := V(y^2 - x^2(x+1)), P := (0,0) \in \mathbb{A}^2, U := \{(a,b) \in \mathbb{A}^2 : a \neq 0\}$. Consider a morphism

$$\varphi: U \to \mathbb{A}^1$$

 $(a,b) \mapsto b/a$

In the section introducing algebraic groups we saw that multiplication and taking multiplicative inverses are morphisms and φ is just the composition, $(a,b)\mapsto (a^{-1},b)\mapsto a^{-1}b$. Set $G:=G_{\varphi}\subset U\times \mathbb{A}^1\subset \mathbb{A}^3$ (the graph of φ). Then $G=\{(a,b,c)\in \mathbb{A}^3: a\neq 0, b=ac\}$. Set $B:=\{(a,b,c)\in \mathbb{A}^3: b=ac\}$. Define $\pi: B\to \mathbb{A}^2, (a,b,c)\mapsto (a,b)$. Note that $\pi(B)=U\cup \{P\}$. Set $L:=\pi^{-1}(P)=\{(0,0,c)\in \mathbb{A}^2: c\in K\}$ and that $\pi^{-1}(U)=G$. Then $\pi|_{\pi^{-1}(U)}: G\to U$, defines an isomorphism with inverse $(a,b)\mapsto (a,b,b/a)$. Futhermore, $G\subset \mathbb{A}^3$ is an open subvariety of B which is an affine variety. Then $\mathrm{cl}(G)=B$. We also see that L is a closed subvariety of B. Note that away from P, points in C are in U, hence $\pi^{-1}(C\setminus \{P\})=\{(a,b,c)\in \mathbb{A}^3: b^2=a^2(a+1), b=ac\}$. Upon setting

 $C'=\operatorname{cl}\left(\pi^{-1}(C\setminus\{P\})\right)$ the hope is that C' is a nonsingular curve with two points lying over P. Define

$$\phi: \mathbb{A}^2 \to B$$
$$(a,c) \mapsto (a,ac,c)$$

This is an isomorphism with inverse $(\lambda, \lambda \mu, \mu) \mapsto (\lambda, \nu)$. Set $\psi := \pi \circ \phi$. Then $\psi(a, c) = (a, ac)$. Set $E := \psi^{-1}(P) = \phi^{-1}(L) = \{(a, c) \in \mathbb{A}^2 : a = 0\}$.

- **5.4.3** Blowing up Points in \mathbb{P}^2
- 5.4.4 Quadratic Transformations
- 5.4.5 Non-singular Models of Curves
- 5.5 Riemann-Roch
- 5.5.1 Divisors
- **5.5.2** The Vector Spaces L_d
- 5.5.3 Riemann's Theorem
- 5.5.4 Differentials of a Curve
- 5.5.5 Canonical Divisors
- 5.5.6 The Riemann-Roch Theorem

6 Algebraic Geometry using Schemes

6.1 Sheaves & Presheaves

6.1.1 Presheaves

Definition 6.1.1. Consider a category C. A *presheaf* on C is a contravariant functor F: $C \to Set$.

For a subcategory \mathcal{C}' of Set, a \mathcal{C}' -valued presheaf on \mathcal{C} is a contravariant functor $\mathcal{F}:\mathcal{C}\to\mathcal{C}'$. We denote the image of a morphism $\varphi:V\to U$ under \mathcal{F} by φ_{UV} .

Remark 6.1.2. We will mainly be interested in the case of \mathcal{C} being obtained from a topological space: Consider a topological space (X, τ_X) . We consider the category $\mathcal{T}(X)$ induced by the preorder on τ_X . This will be called a *presheaf on* X. Moreover we will mainly

be interested in presheaves valued in algebraic categories such as Group, AbGroup, Ring, etc.

Example 6.1.3. Let X be a variety. Then

$$\Gamma: (\tau_X, \subset) \to \operatorname{FinAlg}_K, (U, W \subset V) \mapsto (\Gamma(U), \widetilde{\varphi}: \Gamma(V) \to \Gamma(W), f \mapsto f|_W)$$

defines a presheaf on $\mathcal{T}(X)$ respect to the Zariski topology.

Definition 6.1.4. For objects U, V in \mathcal{C} and a morphism $\varphi : V \to U$, for an $s \in \mathcal{F}(U)$, we define *restriction of s to V* to be

$$s|_{V} := \varphi_{UV}.$$

6.1.2 Sheaves

Definition 6.1.5. Consider a topological space X. Let \mathcal{F} be a presheaf on a category $\mathcal{T}(X)$. \mathcal{F} is called a *sheaf on* X if moreover,

- 1. For every open $U \subset X$ and every open cover $\{U_i\}$ of U and every $\phi, \varphi \in \mathcal{F}(U)$, if $\varphi|_{U_i} = \phi|_{U_i}$ for every i, then $\varphi = \phi$.
- 2. For every open $U \subset X$ and every open covering $\{U_i\}$ and for every collection of elements (functions)

$$\left\{ s_i \in \mathcal{F}(U_i) : s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j} \text{ for every } j \right\}_i$$

there is an element $s \in \mathcal{F}(U)$ such that $s|_{U_i} = s_i$ for each i.

A sheaf valued in a subcategory of Set is defined in a similar way for sheaves to how it was defined for presheaves.

Remark 6.1.6. By condition 1. an element $s \in \mathcal{F}(U)$ obtained as described in 2. is unique.

Lemma 6.1.7. Consider a topological space X and a presheaf \mathcal{F} on X valued in the category of abelian groups that satisfies the second condition of being a sheaf. Then \mathcal{F} is a sheaf on X if and only if for every open $U \subset X$ every open covering $\{U_i\}$ and every $s \in \mathcal{F}(U)$, if $s|_{U_i} = 0$ for every i, then s = 0.

Proof. " \Longrightarrow ": If $\mathcal F$ is a sheaf on X, then since $s|_{U_i}=0=0|_0$ for every i, then s=0. " \Longleftrightarrow ": If $s|_{U_i}=t|_{U_i}$ for every i, hence

$$0 = s|_{U_i} - t|_{U_i} = s - t|_{U_i}$$

for every i, which by assumption means s - t = 0.

Example 6.1.8. The presheaf Γ on a variety X seen as a space equipped with the Zariski topology is a sheaf. Consider an subvariety $U \subset X$ and open covering $\{U_i\}$ of U and suppose there is a regular function $f \in \Gamma(U)$ such that $f|_{U_i} = 0$ for every i. Viewing f as a function U it follows that given a point $x \in U$ since $x \in U_i$ for some i,

$$f(x) = f|_{U_i}(x) = 0 \implies f = 0.$$

Consider an open covering, $\{U_i\}$ of a subvariety $U \subset X$ and a collection of regular functions

$$\left\{f_i\in\Gamma(U_i): f_i|_{U_i\cap U_j}=f_j|_{U_i\cap U_j}\right\}_i,$$

then the function

$$f: U \to K$$
$$x \mapsto f_i(x) \quad \text{if } x \in U_i$$

is a regular function on U such that $f|_{U_i} = f_i$. Indeed, restriction in the sense of Definition 6.1.4 is in this instance literally restriction in the usual sence, so the definition of f is independent of the choice of U_i .

Recall the following definition Recall from D.3.5 the definition of a direct limit. We shall construct the direct limit in the category of groups

Definition 6.1.9. Let $G_{\bullet}: (I, \leq) \to \text{grp}$ be a direct system and the associated collections of objects and morphisms $(\{G_i\}, \{f_{ij}\})$. Given elements $(x_i, i), (x_j, j)$ in

$$\bigsqcup_{i \in I} G_i$$

we define an equivalence relation \sim , by postulating $x_i \sim x_j$ if there exists $k \in I$ with $i, j \leq k$ and

$$f_{ik}(x_i) = f_{jk}(x_j).$$

The direct limit of G_{\bullet} is defined to be the set

$$\varinjlim G_i := \bigcup_{i \in I} G_i / \sim .$$

Given a pair of elements $[x_i], [x_j] \in \underline{\lim} G_i$ we define

$$[x_i][x_j] := [f_{ik}(x_i)f_{jk}(x_j)]$$

where $k \in I$ is an element such that $i, j \leq k$. There is a canonical natural transformation $\phi: G_{\bullet} \Rightarrow \varinjlim G_i$ given by

$$\{G_i \to \underline{\lim} G_i, x_i \mapsto [x_i]\}$$

Remark 6.1.10. By functionality the definition of the binary operation of the direct limit of $\{G_i\}$ is independent of the choice of k. Since for $i \leq l$,

$$f_{il}(x_i) = f_{ll}f_{il}(x_i) \Longrightarrow [x_i] = [f_{il}(x_i)].$$

This means that for every $h \ge k$,

$$[f_{ik}(x_i)f_{jk}(x_j)] = [f_{kh}(f_{ik}(x_i)f_{jk}(x_j))] = [(f_{kh}f_{ik})(x_i)(f_{kh}f_{ik})(x_j)] = [f_{ih}(x_i)f_{jh}(x_j)].$$

Lemma 6.1.11. Keeping the notation from the prior definition, the set $\varinjlim G_i$ with the described binary operation is a group. When the direct system is valued in ab, the direct limit is an abelian group

Proof. first we check that the operation is well defined. Let $([x_i], [x_j]), ([x_p], [x_q])$ in the direct limit of $\{G_i\}$. Then $f_{ik}(x_i) = f_{pk}(x_p)$ and $f_{jh}(x_j) = f_{qh}(x_q)$ for suitable $k, h \in I$ with $i, p \le k$ and $j, q \le h$. Pick an $l \in I$ with $h, k \le l$. Then

$$[x_i][x_j] = [f_{il}(x_i)f_{jl}(x_j)] = [f_{pl}(x_p)f_{ql}(x_q)] = [x_p][x_q].$$

One readily verifies that this operation is associative. Note that since each f_{ij} is a group homomorphism, the identity of each G_i is in the same equivalence class and one sees that $e := [e_i]$ is neutral with respect to the binary operation in $\varinjlim G_i$. Lastly defining $[x_i]^{-1} = [x_i^{-1}]$, one readily verifies that this is independent of the choice of representative and that it is inverse element of $[x_i]$.

Lemma 6.1.12. Consider a direct system $(\{G_i\}, \{f_{ij}\})$ of groups. Then $\varinjlim G_i$ with $\phi: G_{\bullet} \Rightarrow \varinjlim G_i$ is the direct limit in the category theoretic sense.

Proof. Let a cocone (G, λ) of the direct system be given. We define

$$u: \varinjlim G_k \to G$$

 $[x_i] \mapsto \lambda_i(x_i)$

This is well defined by the naturality of $\{\lambda_i\}$. Let $i, j \in I$ with $i \leq j$ be given. Clearly, u is the unique homomorphism making

commute. We thus conclude that our construction is indeed the direct limit in the categorical sense. \Box

Definition 6.1.13. Consider a topological space X and a presheaf \mathcal{F} on X valued in ab. Let $P \in X$. We define the *stalk of* \mathcal{F} *at* P to be

$$\mathcal{F}_P := \varinjlim_{U \ni P} \mathcal{F} \in \mathrm{ab}.$$

given an element $s \in \mathcal{F}(U)$ we call $[s]_P := [s]$ a germ of f at P.

Remark 6.1.14. Note that by construction $(U, s), (V, t) \in \mathcal{F}_P$ are equal if and only if there is some open neighborhood of $P, W \subset U \cap V$ with

$$s|_W = t|_W.$$

There is a natural transformation

$$\phi: \mathcal{F}(U) \Rightarrow \mathcal{F}_p$$
$$s \mapsto (U, s)$$

Definition 6.1.15. Given a category \mathcal{C} a morphism of presheaves is just a morphism in the functor category $\operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}$, i.e. a morphism $\Phi: \mathcal{F} \to \mathcal{G}$ of parallel presheaves on \mathcal{C} is just a natural transformation $\Phi: \mathcal{F} \Rightarrow \mathcal{G}$.

An isomorphism of presheaves is therefor just a natural isomorphism of presheaves. A morphism of sheaves is just a morphism of presheaves in the category of sheaves, Sh(X), which is a subcategory of $Set^{\mathcal{T}(X)^{op}}$.

Definition 6.1.16. Consider a parallel pair of presheaves $\mathcal{F}, \mathcal{G}: X \to \text{ab}$ and fix a point $P \in X$. For a morphism of presheaves $\Phi: \mathcal{F} \Rightarrow \mathcal{G}$, there is an induced morphism of stalks at P given by

$$\Phi_P: \mathcal{F}_P \to \mathcal{G}_P$$

 $(U,s) \mapsto (U, \Phi_U(s))$

Remark 6.1.17. Alternatively, we can describe the above map as taking a germ $[s]_P$ to $[\Phi_U(s)]_P$ where U is any open neighborhood of P.

Proposition 6.1.18. Consider a parallel pair of sheaves $\mathcal{F}, \mathcal{G}: X \to \text{ab}$ and morphism of sheaves $\Phi: \mathcal{F} \Rightarrow \mathcal{G}$. Then Φ is an isomorphism if and only if $\Phi_P: \mathcal{F}_P \to \mathcal{G}_P$ is an isomorphism for each $P \in X$.

$$\square$$

Definition 6.1.19. Consider a parallel pair of presheaves $\mathcal{F}, \mathcal{G}: \mathcal{C} \to \text{ab}$ and morphism of sheaves $\Phi: \mathcal{F} \Rightarrow \mathcal{G}$.

• We define the presheaf kernel of Φ to be the presheaf

$$\ker \Phi : \mathcal{C} \to \mathrm{ab}$$

$$U \mapsto \ker \Phi_U$$

$$U \to V \mapsto \varphi_{UV}|_{\ker \Phi_V} : \ker \Phi_V \to \ker \Phi_U$$

• We define the presheaf cokernel of Φ to be the presheaf

pscoker
$$\Phi: \mathcal{C} \to \mathsf{ab}$$

$$U \mapsto \mathsf{coker} \ \Phi_U$$

$$U \to V \mapsto \mathsf{coker} \ \Phi_V \to \mathsf{coker} \ \Phi_U, x + \mathsf{im} \ \Phi_V \mapsto \pi_{UV}(x) + \mathsf{im} \ \Phi_U$$

• We define the presheaf image of Φ to be the presheaf

$$psim \ \Phi: \mathcal{C} \to ab$$

$$U \mapsto im \ \Phi_U$$

$$U \to V \mapsto \left. \pi_{UV} \right|_{im \ \Phi_V} im \ \Phi_V \to im \ \Phi_U, x \mapsto \pi_{UV}(x)$$

Remark 6.1.20. Unsurprisingly, the welldefinedness of the above presheaves are ensured by naturality. Functorially follows from the functionality of \mathcal{F} and \mathcal{G} .

Lemma 6.1.21. The presheaf kernel of a morphism of presheaves is sheaf.

Proof.
$$\Box$$

Lemma 6.1.22. Consider a presheaf $\mathcal{F}: X \to \text{ab}$ on topological space X. There is a sheaf $\mathcal{F}^+: X \to \text{ab}$ and morphism of presheaves $\Theta: \mathcal{F} \Rightarrow \mathcal{F}^+$ such that for any sheaf $\mathcal{G}: X \to \text{ab}$ and any morphism of presheaves $\Phi: \mathcal{F} \Rightarrow \mathcal{G}$ there is a unique morphism of sheaves $\Psi: \mathcal{F}^+ \Rightarrow \mathcal{G}$ such that $\Phi = \Psi\Theta$. Furthermore (\mathcal{F}^+, Θ) is unique up to unique isomorphism.

Proof. We construct a presheaf

$$X \to ab$$

Given an open subset U in X, we define $\mathcal{F}^+(U)$ to be the group of elements $([s]_P)$ in

$$\prod_{P \in U} \mathcal{F}_P$$

such that for each $P \in U$ there is an open neighborhood of $P, W \subset U$ with an element $t \in \mathcal{F}(W)$ such that for each $Q \in V$ the germ $[t]_Q \in \mathcal{F}_Q$ of t at Q satisfies

$$([s]_P)(Q) = [t]_Q.$$

Given $U \subset V$ we define $\varphi_U V : \mathcal{F}^+(V) \to \mathcal{F}^+(U)$ to be given by restriction. It thus readily follows that \mathcal{F}^+ is a sheaf. We have a natural transformation

$$\Theta: \mathcal{F} \Rightarrow \mathcal{F}^+$$
$$\{\Theta_U: \mathcal{F}(U) \to \mathcal{F}^+(U), s \mapsto ([s]_P)\}.$$

Indeed, (U, s) is a pair witnessing the fact that $[s]_P \in \mathcal{F}^+$, so this is well-defined. Let a natural transformation of presheaves $\Phi : \mathcal{F} \Rightarrow \mathcal{G}$ be given. We define a natural transformation of sheaves

$$\Psi: \mathcal{F}^{\scriptscriptstyle +} \Rightarrow \mathcal{G}$$

defined by the collection of morphisms

$$\{\Psi_U: \mathcal{F}^+(U) \to \mathcal{G}(U), ([s]_P) \mapsto \Psi_U(s) \mid U \subset X \text{ open}\}$$

This is well-defined since $\mathcal{G} \cong \mathcal{G}^+$ or in other words since $\mathcal{G}(U) \simeq \mathcal{G}^+(U)$. Ψ is the unique morphism of sheaves making the diagram

$$\mathcal{F}$$
 $\downarrow \Theta$
 $\mathcal{F}^+ \longrightarrow \mathcal{G}$

commute. Note that (\mathcal{F}^+,Θ) is thus the coequalizer two copies of the identity transformation of \mathcal{F} (cf. Example D.3.9) which means it is unique up to unique isomorphism.

Remark 6.1.23. We call \mathcal{F}^+ the sheaf associated with \mathcal{F}

Definition 6.1.24. A *subsheaf* of a sheaf \mathcal{F} is a sheaf \mathcal{F}' such that for every open set U in X, $\mathcal{F}'(U) \leq \mathcal{F}(U)$ and, letting $\varphi_{UV} : \mathcal{F}(V) \to \mathcal{F}(U)$ denote the image of $U \subset V$ under \mathcal{F} , the image of $U \subset V$ under \mathcal{F}' is the restriction of φ_{UV} to $\mathcal{F}(V)$.

Remark 6.1.25. Note that given $(U, s) \in \mathcal{F}'_P$, we have that $s \in \mathcal{F}'(U) \subset \mathcal{F}(U)$, hence $(U, s) \in \mathcal{F}_P$.

Example 6.1.26. The presheaf kernel of morphism of sheaves $\Phi : \mathcal{F} \Rightarrow \mathcal{G}$ is sheaf called the *sheaf kernel*. By construction (ker Φ)(U) = ker $\Phi_U \leq \mathcal{F}(U)$ and

$$(\ker \Phi)(U \subset V) = \varphi_{UV}|_{\ker \Phi_{UV}},$$

hence ker Φ is a subsheaf of \mathcal{F} .

Definition 6.1.27. A morphism of sheaves $\Phi : \mathcal{F} \Rightarrow \mathcal{G}$ is *injective* if ker $\Phi = 0$, i.e. the sheaf that takes every open subset of X to the trivial group.

Remark 6.1.28. Φ being injective is equivalent to Φ_U being injective for each open set U.

Definition 6.1.29. For a morphism of sheaves $\Phi : \mathcal{F} \Rightarrow \mathcal{G}$, we define the *image of* Φ to be im $\Phi := (\text{psim }\Phi)^+$

Proposition 6.1.30. Given a morphism of sheaves $\Phi : \mathcal{F} \Rightarrow \mathcal{G}$, the canonical morphism im $\Phi \Rightarrow \mathcal{G}$ is injective, hence it can be indentified with a subsheaf of \mathcal{G} .

Proof.
$$\Box$$

Definition 6.1.31. A morphism of sheaves $\Phi : \mathcal{F} \Rightarrow \mathcal{G}$ is *surjective* if im $\Phi = \mathcal{G}$.

Definition 6.1.32. A sequence

$$\dots \xrightarrow{\Phi^{i-1}} \mathcal{F}^{i-1} \xrightarrow{\Phi^i} \mathcal{F}^i \xrightarrow{\Phi^{i+1}} \mathcal{F}^{i+1} \Longrightarrow \dots$$

is *exact*, if ker $\Phi^i = \text{im } \Phi^{i-1}$ for each $i \in \mathbb{Z}$.

Definition 6.1.33. Consider a sheaf \mathcal{F} and subsheaf $\mathcal{F}' \subset \mathcal{F}$. We define the *quotient sheaf* \mathcal{F}/\mathcal{F}' to be the sheaf associated with

$$X \to \mathsf{ab}$$

$$U \mapsto \mathcal{F}(U)/\mathcal{F}'(U)$$

$$U \subset V \mapsto \mathcal{F}(V)/\mathcal{F}'(V) \to \mathcal{F}(U)/\mathcal{F}'(U), s + \mathcal{F}'(V) \mapsto s|_U + \mathcal{F}'(U)$$

Remark 6.1.34. Fix a point $P \in X$ and consider $(U, s) \in (\mathcal{F}/\mathcal{F}')_P$. Note that then $s \in \mathcal{F}(U)/\mathcal{F}'(U)$, hence $(U, s) \in \mathcal{F}_P/\mathcal{F}'_P$.

With the above in mind we can make the following definition

Definition 6.1.35. For a morphism of sheaves $\Phi : \mathcal{F} \Rightarrow \mathcal{G}$, we define the *cokernel of* Φ to be coker $\Phi := (\operatorname{pscoker} \Phi)^+$.

Definition 6.1.36. For a continuous map $f: X \to Y$ and a sheaf \mathcal{F} on X, we define the *direct image sheaf*, $f_*\mathcal{F}$, on Y, to be the sheaf

$$Y \to ab$$

$$U \mapsto \mathcal{F}(f^{-1}(U))$$

$$U \subset V \mapsto \varphi_{f^{-1}(U)f^{-1}(V)}$$

Remark 6.1.37. We check that this indeed a sheaf Check!

Definition 6.1.38. For a continuous map $f: X \to Y$ and a sheaf \mathcal{F} on Y, we define the *inverse image sheaf*, $f^{-1}\mathcal{G}$ on X to be the sheaf associated with the presheaf

$$X \to \mathrm{ab}$$

$$U \mapsto \varinjlim_{V \supset f(U)} \mathcal{G}(V)$$

$$U \subset V \mapsto \varphi_{\lim_{W \supset f(U)} \mathcal{G}(W) \lim_{W \supset f(V)} \mathcal{G}(W)}$$

Definition 6.1.39. Consider a topological space X, a subspace $Z \subset X$ and a sheaf \mathcal{F} on X. Let iota denote the inclusion map $Z \hookrightarrow X$. We define the restriction of \mathcal{F} to Z to be the sheaf $\mathcal{F}|_Z := \iota^{-1}\mathcal{F}$.

Remark 6.1.40. Fix a point $P \in Z$. Let $(U, s) \in (\mathcal{F}|_Z)_P$... Do!

6.2 Schemes

We adopt the convention that all rings are commutative.

6.2.1 Affine Schemes

Definition 6.2.1. For a ring R, we define the spectrum of R to be the set

Spec
$$R := \{I \subset R : I \text{ is a prime ideal}\}$$

For an ideal $I \subset R$, we define

$$V(I) := \{ J \in \operatorname{Spec} R : I \subset J \}$$

Lemma 6.2.2. If $I \subset J \subset R$ are ideals, then $V(I) \supset V(J)$.

Proof. This is trivial.

Lemma 6.2.3. For ideals $I, J \subset R$

$$V(IJ) = V(I) \cup V(J)$$
.

Proof. Consider a prime ideal $\mathfrak{P} \in \operatorname{Spec} R$ containing IJ. Then given $ab \in IJ$ with $a \in I$ and $b \in J$ we have that $a \in \mathfrak{P}$ or $b \in \mathfrak{P}$, hence $\mathfrak{P} \in V(I) \cup V(J)$. The converse inclusion follows from $I, J \supset IJ$ by the prior lemma.

Lemma 6.2.4. For a family of ideals $\{I_{\mu}\}$ in R,

$$V(\sum_{\mu} I_{\mu}) = \bigcap_{\mu} V(I_{\mu}).$$

Proof. Again one inclusion follows from $I_{\nu} \subset \sum_{\mu} I_{\mu}$. Suppose conversely that $\mathfrak{P} \in \operatorname{Spec} R$ is given such that it contains every I_{μ} , then since ideals are closed under addition it contains $\sum_{\mu} I_{\mu}$.

Proposition 6.2.5. For a ring R, the family of sets

$$\{V(I): I \text{ is an ideal in } R\}$$

are the closed set in a topology on Spec R.

Proof. Indeed, note that

$$\bigcap_{I\subset R}V(I)=V\left(\sum_{I\subset R}I\right)=V(R)=\emptyset.$$

and that Spec R = V(0). The two prior lemmas show that this family is closed under countable union and intersection over arbitrary index sets.

Remark 6.2.6. The topology in question is unsurprisingly called the Zariski topology on Spec R. For an algebraically closed field K and an affine variety $V \subset \mathbb{A}^n$, the points of V correspond to the maximal ideals of $\Gamma(V)$. In this way we can identify V with the subspace of maximal ideals of $\Gamma(V)$ in Spec $\Gamma(V)$. In this sense Spec $\Gamma(V)$ is a refinement of the notion of point in a variety. Namely, *point* in V have by definition come to mean the *subvariety* of V, when we take the view that our vantage point lies in Spec $\Gamma(V)$ when studying V.

Lemma 6.2.7. If $I, J \subset R$ are ideals, then $V(I) \subset V(J)$ if and only if $rad(I) \supset rad(J)$.

Proof. Note that $V(I) \subset V(J)$ if and only if every prime ideal that contains I also contains J which again is equivalent to

$$\bigcap_{\mathfrak{p}\supset I \text{ prime}} \mathfrak{p} \supset \bigcap_{\mathfrak{p}\supset J \text{ prime}} \mathfrak{p},$$

which by lemma 1.8.34 is equivalent to

$$rad(I) \supset rad(J)$$
.

Given a ring R and prime ideal \mathfrak{p} in R. We denote the localization of R with respect to \mathfrak{p} by $R_{\mathfrak{p}}$.

Definition 6.2.8. Given a ring R, we define a presheaf on Spec R by,

$$\begin{split} \mathcal{O}: (\operatorname{Spec} R, \tau_{\operatorname{Spec} R})^{\operatorname{op}} &\to \operatorname{Ring} \\ U &\mapsto \prod_{\mathfrak{p} \in U} R_{\mathfrak{p}} \\ U &\subset V \mapsto (\prod_{\mathfrak{p} \in V} R_{\mathfrak{p}} \to \prod_{\mathfrak{p} \in U} R_{\mathfrak{p}}, s \mapsto s|_{U}) \end{split}$$

Remark 6.2.9. Clearly this presheaf is a sheaf, since the elements of $\mathcal{O}(U)$ are functions and restriction is just set function restriction in the same we saw in the example discussing the presheaf Γ .

Definition 6.2.10. For $f \in R$, we define

$$D(f) := (\operatorname{Spec} R) \setminus V(\langle f \rangle)$$

Lemma 6.2.11. For a ring R,

$$\{D(f) \subset \operatorname{Spec} R : f \in A\}$$

forms a basis of the Zariski topology on Spec R.

Proof. Indeed, for $\mathfrak{p} \notin V(I)$, there is an $f \in I$ not in \mathfrak{p} , hence $\mathfrak{p} \notin V(\langle f \rangle)$, meaning $\mathfrak{p} \in D(f)$. Then $V(I) \cap D(f) = \emptyset$. This means that every point in an open subset U in Spec R has an open neighborhood contained in U. It follows that the collection in question forms an open basis for the Zariski topology.

Lemma 6.2.12. Consider a ring R. Then

1. For every point $\mathfrak{p} \in \operatorname{Spec} R$

$$\mathcal{O}_{\mathfrak{p}} \simeq R_{\mathfrak{p}}.$$

2. For any $f \in R$,

$$\mathcal{O}(D(f)) \simeq R_f$$
.

3. In particular,

$$\Gamma(\operatorname{Spec} R, \mathcal{O}) := \mathcal{O}(\operatorname{Spec} R) = D(1) \simeq R_1 = R.$$

Proof. \Box

Definition 6.2.13. A *ringed space* is a topological space X together with a sheaf

$$\mathcal{O}_X: X \to \mathsf{CRing}$$
.

A *locally ringed space* is a ringed space (X, \mathcal{O}_X) such that each stalk $\mathcal{O}_{X,P}$ for $P \in X$ is a local ring

Definition 6.2.14. A morphism of ringed spaces, $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a continuous map $f: X \to Y$ and a natural transformation $f^{\#}: \mathcal{O}_Y \Rightarrow f_{\star}\mathcal{O}_X$.

We wish to define a morphism between locally ringed spaces. To do this we first show how to construct a ring homomorphism between the stalks $\mathcal{O}_{Y,f(P)}$ and $\mathcal{O}_{X,P}$ for each $P \in X$. Indeed, $f^{\#}$ induces a ring homomorphism

$$\mathcal{O}_{Y,f(P)} = \varinjlim_{U \ni f(P)} \mathcal{O}(U) \to \varinjlim_{U \ni f(P)} \mathcal{O}_X\left(f^{-1}(U)\right) = \varinjlim_{f^{-1}(U) \ni P} \mathcal{O}_X\left(f^{-1}(U)\right)$$

Composing this with

$$\varinjlim_{f^{-1}(U)\ni P} \mathcal{O}_X\left(f^{-1}(U)\right) \hookrightarrow \varinjlim_{W\ni P} \mathcal{O}_X(W) = \mathcal{O}_{X,P}$$

We denote this composition by f_P^* .

Definition 6.2.15. A morphism of locally ringed spaces is a morphism of ringed spaces $(f, f^{\#}): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ such that $f_P^{\#}$ is local ring homomorphism (cf. Definition 1.8.62) for each $P \in X$.

Lemma 6.2.16. 1. Spec R is a locally ringed space for each ring R.

2. If $\sigma: A \to B$ is a map of rings, then it induces a morphism of locally ringed spaces

$$(f, f^{\sharp})_{\sigma} : (\operatorname{Spec} B, \mathcal{O}_{\operatorname{Spec} B}) \to (\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$$

3. The functor

$$Spec: CRing \rightarrow LRS$$

$$R \mapsto Spec \ R$$

$$\sigma: A \rightarrow B \mapsto (f, f^{\#})_{\sigma}$$

is fully faithful. Here LRS denotes the category of locally ringed spaces.

 \square

Definition 6.2.17. An *affine scheme* is a locally ringed space (X, \mathcal{O}_X) isomorphic to (Spec R, \mathcal{O}) for some ring R as locally ringed spaces.

6.2.2 Schemes

Definition 6.2.18. A *scheme* is a locally ringed space (X, \mathcal{O}_X) where for each $P \in X$ there is an open neighborhood of P such that $(U, \mathcal{O}_X|_U)$ is an affine scheme. I.e. there is an open covering of X where each open set in the covering is an affine scheme.

A Logic

B First Order Predicate Logic

The purpose of this section is to introduce a framework for doing mathematics. To be precise we want to define a formal language in which, we in principle could formalise the math described in the main sections of these note. We will choose first order logic FOL.

B.1 The Metatheory of First Order Logic

B.1.1 Classical Metatheory

We assume a notion of *finiteness*. With this notion consider symbols $\mathbf{0}$ and \mathbf{s} , from which we build a *potentially infinite* list \mathbf{N} of *natural numbers* of finite strings formed by appending \mathbf{s} to the left to the prior string in the list, where the list starts with $\mathbf{0}$. In other words the have a list

$$N = [0, s0, ss0, \dots]$$

where ... signify that to look up the next string in the list, we concatenate from the right \mathbf{s} the last formed string in the list. Each string is either the string $\mathbf{0}$ or $\sigma \mathbf{0}$, where σ is some non-empty finite string of \mathbf{s} 's. We thus have the following for possibly empty strings of \mathbf{s} 's, σ , π , ρ

$$\sigma \pi \mathbf{0} = \pi \sigma \mathbf{0},$$
 $\mathbf{s} \sigma \pi \mathbf{0} \equiv \mathbf{s} \pi \sigma \mathbf{0},$
 $\mathbf{s} \sigma \pi \mathbf{0} \equiv \sigma \mathbf{s} \pi \mathbf{0},$
 $\sigma \mathbf{0} \equiv \pi \mathbf{0} \stackrel{\text{meta}}{\Longleftrightarrow} \mathbf{s} \sigma \mathbf{0} \equiv \mathbf{s} \pi \mathbf{0},$
 $\sigma \mathbf{0} \equiv \pi \mathbf{0} \stackrel{\text{meta}}{\Longleftrightarrow} \sigma \rho \mathbf{0} \equiv \sigma \rho \mathbf{0},$

where " \equiv " means "identical to". For two elements in **N**, n, m we write n < m if n is formed earlier in the list than m and n > m if n is formed later in the list than m. By n+1 we mean the next element to be formed in the list. And if n is not **0** we write n-1 to be the string formed immediately before n. We define

$$\sigma \mathbf{0} + \mathbf{0} :\equiv \sigma \mathbf{0}$$
 and $0 + \pi \mathbf{0} :\equiv \pi \mathbf{0}$

and

$$\sigma$$
0 + π **0** : $\equiv \sigma \pi$ **0**.

We also have a principle of induction. I.e. if some statement P holds for $\mathbf{0}$ and whenever P holds for n, then it holds for n + 1, then P holds for all strings in \mathbf{N} .

We also have a principle of recursion. I.e. If we define X_0 and whenever X_n is defined, so is X_{n+1} , then X_m is defined for every string m in \mathbb{N} .

Note here that we have implicitly introduced the notion of indexing. Given a finite list of objects, initialize a point on \mathbf{N} at $\mathbf{0}$, pick out an element in the list of objects and assign the value point at in \mathbf{N} , move the point to the next element in \mathbf{N} and move pick out the next element in the list of objects. This lets us consider a length n list of object, e.g. t_1, \ldots, t_n . These informal metamathematical concepts form a sufficient *classical metatheory* for the syntax of first order logic.

B.1.2 Strong Metatheory

Sometimes we need to strengthen our metatheory with *the law of excluded middle* and *naive set theory*. The first of these notions is that a statement is either true or false. The last of which is the notion that we can consider a sufficiently small collection of objects and ask whether a given object is a member of such a collection. We will need this to define the semantics of first order logic.

B.2 The Alphabet of First Order Logic

The Logical Symbols

FOL is a framework for formalizing different theories. It is therefor has to flexible enough to be augmented to work in a large variety of contexts and domains. We therefor make distinctions between the role of the symbols that comprise FOL. The *logical symbols* in the language of FOL are those symbols that are not context specific. These are

- 1. Variables: These are play the role of placeholders for objects in the domain to which we want to apply FOL. Eg. x might be a placeholder for a set in Zermol-Fraenkel set theory or n might be a placeholder for a natural number in the standard model of Peano arithemetic or \mathcal{C} could be a placeholder for a category in Category Theory. We presuppose a potentially infinite list of such symbols. That is we may always generate sufficiently large number of distinct variables.
- 2. **Logical operators:** \neg (not), \wedge (and), \vee (or), \rightarrow (implies).
- 3. **Logical quantifiers:** \forall (universal quantifier, to be read as "for all" or "for every") and \exists (existential quantifier, to be read as "exists" or "there is").

4. **Equality symbol:** = a *relational symbol* (scroll down a little for a definition) which is not context specific.

B.2.1 The Non-logical Symbols

Those symbols that are introduced in some context to use FOL to talk about some domain. these are

- 1. Constant symbols: These are symbols that signify a specific object in a specific domain. Examples are \emptyset in for example Zermelo-Fraenkel set theory or 0 in Peano arithmetic.
- 2. **Function symbols:** A symbol that is a placeholder for an object that depends on finite list of objects in a domain called arguments. For instance if F is a function symbol that takes n arguments, then given variables x_1, \ldots, x_n , $F(x_1, \ldots, x_n)$ is some object. A function symbol has a natural number attached to them called an *arity*. A function symbol that takes n arguments is an n-ary function. Examples are n in Peano Arithmetic or n in Zermelo-fraenkel set theory.
- 3. **Relation symbols:** Symbol that signify relations of objects. Like function symbols these have a natural number arity and given a relation symbol R and objects $x_1, \ldots, x_n, R(x_1, \ldots, x_n)$ signifies that x_1, \ldots, x_n are in relation by R.

To actually give these syntactical meaning, we need to define rules for building well-formed. I.e. we need to define what strings of symbols we are allowed to write in the language. A set of non-logical symbols is called a *signature* often denoted \mathcal{L} .

B.2.2 Terms and Formulae

For a signature \mathcal{L} , a string of symbols is an \mathcal{L} -term if it is a result of finitely applying these rules in some order

T0: Each variable is an \mathcal{L} -term.

T1: Each constant symbol in \mathcal{L} is an \mathcal{L} -term.

T2: If τ_1, \ldots, τ_n are any \mathcal{L} -terms and F is an n-ary function symbol in \mathcal{L} , then $F(\tau_1, \ldots, \tau_n)$ is an \mathcal{L} -term.

When the symbols are not involving any non-logical symbols, it is called a *term*. Those terms of the form T0 or T1 are called *atomic terms*. Note that in the above, the τ 's are

placeholders for objects in the language **not** for objects in a domain of interest. If we want to prove a property Φ of terms, then we do that by proving that each of the three categories of terms satisfy Φ , which is called the *induction on term construction*.

An \mathcal{L} -formula is a string of symbols resulting from finite application of the rules

- F0: For \mathcal{L} -terms τ_1, τ_2 then $\tau_1 = \tau_2$ is an \mathcal{L} -formula.
- F1: For \mathcal{L} -terms τ_1, \ldots, τ_n and R a non-logical n-ary relation symbol in \mathcal{L} , then $R(\tau_1, \ldots, \tau_n)$ is an \mathcal{L} -formula.
- F2: if φ is an \mathcal{L} -formula, then $\neg \varphi$ is an \mathcal{L} -formula.
- F3: if φ and ψ are \mathcal{L} -formulae, then $\varphi \to \psi, \varphi \land \psi$ and $\varphi \lor \psi$ are \mathcal{L} -formulae.
- F4: if φ is an \mathcal{L} -formula, then given a variable x, $\exists x \varphi$ and $\forall x \varphi$ are \mathcal{L} -formulae.

When an \mathcal{L} -formula is build from terms, it is simply called a *formula*. F0- and F1-formulae are called *atomic formulae*. The *induction on formula construction* refers to the fact that proving a property Φ is satisfied by formulae, we can prove that it is satisfied for atomic formulae, and that for \mathcal{L} -formulae φ , ψ satisfying Φ , given a variable x, then $\neg \varphi$, $\varphi \land \psi$, $\varphi \lor \psi$, $\varphi \to \psi$, $\exists x \varphi$, $\forall x \varphi$ also satisfy Φ .

Consider a variable x and a formula φ of the form $\forall x\psi$ or $\exists x\psi$. If x is used to construct ψ and does not immediately appear after a logical quantifier at some position in ψ , it is said to be in the *range of* said logical quantifier. Such a variable is said to *bound at that position* by the last quantifier that it is in the range of. A variable that is not bound by a quantifier at a particular position is said to be *free* at position. A variable may appear in a formula as both bounded and free. For instance $(\forall x(x \neq x)) \to \exists z(x = x)$. The first two occurences of x are bound by the \forall and the last two are bound by the \exists . The set of free variables of a formula (a rule given later will show that this set is uniquely defined) is denoted free(φ). A formula φ is a *sentence* if free(φ) = \emptyset , so $x \neq x \to x = x$ is a formula while $\forall x(x \neq x \to x = x)$ is a sentence. A term is *closed* if it contains no variables. For a formula φ and variables x_1, \ldots, x_n with $\{x_1, \ldots, x_n\} \subset \text{free}(\varphi)$, we denote φ by $\varphi(x_1, \ldots, x_n)$. In the metalanguage of FOL, we write $\varphi \equiv \psi$ for formulas, if the strings comprising these are identical.

When τ is a term and x is a variable in τ , for a term ω , we get a new term by *substituting* x with ω , i.e. by replacing every instance of x by ω , which we may do considering τ as unary function symbol in \mathcal{L} . We denote this new term by $\tau(x/\omega)$.

For a formula φ and a variable x and τ a term, $\varphi(x/\tau)$ is the formula obtained by replacing every free instance of x in φ by τ . So we obtain a notion of substitution for formulas as well. A substitution of x in a formula φ with a term τ is called *admissible* if it is not in

the range of a quantifier that binds a variable in τ . If x does not occur as a free variable in φ , then trivially x is not bound hence, $\varphi(x/\tau)$ is admissible. In this case the string φ is unchanged, since no instance x is replaced by τ . So $\varphi \equiv \varphi(x/\tau)$. In general, for an admissible substitution, we write $\varphi(\tau)$ instead of $\varphi(x/\tau)$. When we declare that a symbol, φ , in the metalanguage denotes another, ψ , we write $\varphi := \psi$. For instance, $\varphi(\tau) := \varphi(x/\tau)$.

B.3 Axioms and Inference Rules

L0: $\varphi \lor \neg \varphi$

L9: $\neg \varphi \rightarrow (\varphi \rightarrow \psi)$.

An *axiom* is a special formula, which will be one ingredient in producing new formulas. In a looser sense (for now), think of axioms as statements that are valid in some context. Sometimes we also consider *axiom schemae*, defined to be a collection axioms taken to be valid for every instance of some fixed list of function symbols, a fixed list of relation symbols and a fixed list of formulae.

B.3.1 Logical Axioms: Assigning Truth Values to Formulae

The *logical axioms* are those axioms that are valid in any context. These are given by the following axiom schemae. Consider $\varphi, \varphi_1, \varphi_2, \varphi_3, \psi$ arbitrary formulae. We have formulae

L1:
$$\varphi \to (\psi \to \varphi)$$

L2: $(\psi \to (\varphi_1 \to \varphi_2)) \to ((\psi \to \varphi_1) \to (\psi \to \varphi_2))$
L3: $(\varphi \land \psi) \to \varphi$
L4: $(\varphi \land \psi) \to \psi$
L5: $\varphi \to (\psi \to (\varphi \land \psi))$
L6: $\varphi \to (\varphi \lor \psi)$
L7: $\psi \to (\varphi \lor \psi)$

L8: $(\varphi_1 \to \varphi_3) \to ((\varphi_2 \to \varphi_3) \to ((\varphi_1 \lor \varphi_2) \to \varphi_3))$

Moreover if x is a variable in φ and τ a term such that $\varphi(x/\tau)$ is admissible, then

L10:
$$\forall x \varphi(x) \to \varphi(\tau)$$

L11: $\varphi(\tau) \to \exists x \varphi(x)$.

Suppose x is a variable of ψ with $x \notin \text{free}(\psi)$. Then

L12:
$$\forall x(\psi \to \varphi(x)) \to (\psi \to \forall x \varphi(x))$$

L13: $\forall x(\varphi(x) \to \psi) \to (\exists \varphi(x) \to \psi).$

Lastly we have axioms for the binary relational symbol =, for general n-ary relational symbols and for n-ary functional symbols. Let $\tau, \tau_1, \ldots, \tau_n, \tau'_1, \ldots, \tau'_n$ be terms and R an n-ary relation symbol and F an n-ary function symbol.

L14:
$$\tau = \tau$$

L15: $\tau_1 = \tau'_1 \wedge \cdots \wedge \tau_n = \tau'_n \rightarrow (R(\tau_1, \dots, \tau_n) \rightarrow R(\tau'_1, \dots, \tau'_n))$
L16: $\tau_1 = \tau'_1 \wedge \cdots \wedge \tau_n = \tau'_n \rightarrow (F(\tau_1, \dots, \tau_n) = F(\tau'_1, \dots, \tau'_n))$

The above axioms when L_0 is excluded is called the logical axioms of *intuitionistic logic*. The inclusion of L_0 comprises the logical axioms of *classical logic*. We use : \iff to define relations on symbols in metalanguage of FOL. For instance, we define for formulae φ, ψ , terms τ, τ' and a variable x,

$$\varphi \leftrightarrow \psi : \stackrel{\mathsf{meta}}{\Longleftrightarrow} (\varphi \to \psi \land \psi \to \varphi)$$
$$\exists ! x \varphi : \stackrel{\mathsf{meta}}{\Longleftrightarrow} \exists x \varphi(x) \land \forall y (\varphi(y) \to x = y)$$
$$\tau \neq \tau' : \stackrel{\mathsf{meta}}{\Longleftrightarrow} \neg (\tau = \tau').$$

B.3.2 Non-logical Axioms: Defining a Theory

To the logical axioms we may add a set of formulae (non-logical axioms), formed from a signature \mathcal{L} , which we call an \mathcal{L} -theory. Examples of non-logical axioms are those of, ZF-axioms which forms Zermelo-Fraenkel set theory, the axioms of topology which forms the theory of topology, PA-axioms which forms number theory, etc. For mathematical theories such axioms are always sentences.

B.3.3 Proofs

To deduce new formulas from the axioms of some \mathcal{L} -theory, we introduce two *inference* rules:

$$\frac{\varphi \to \psi \quad \varphi}{\psi} \qquad \text{and} \qquad \frac{\varphi}{\forall x \varphi}.$$

These are called *modus ponens* and *generalization* respectively.

We want to use the notion of axiom and inference rule to prove statements in different \mathcal{L} -theories. Let Φ be a finite set of \mathcal{L} -formulae and ψ be an \mathcal{L} -formula. We say that ψ is

provable from Φ , denoted $\Phi \vdash \psi$ if there are \mathcal{L} -formulae $\varphi_1, \ldots, \varphi_n$, called a formal proof of ψ satisfying $\varphi_n \equiv \psi$ and for $i \leq n \varphi_i$ satisfies one of the following conditions

- 1. It is a logical axiom.
- 2. It is an element of Φ
- 3. There are j, k < i such that $\varphi_j \equiv \varphi_k \rightarrow \varphi_i$.
- 4. There is a j < i with $\varphi_i \equiv \forall x \varphi_j$, where $x \notin \text{free}(\phi)$ for any of the $\phi \in \Phi$.

We take $\vdash \psi$ to mean $\emptyset \vdash \psi$. In this case ψ is called a *tautology*. Φ is called a *context*. If ψ has no formal proof in a fixed context Φ , we write $\Phi \not\vdash \psi$. Rather than writing down formal proofs down in, for instance, a box proof, we will just note that this is possible to do and refer to tools like Lean and Rocq which uses an embedding of FOL in type theory to enable formal proof writing that can be checked automatically. Instead, we will write proofs in natural language in such a way that it to a sufficiently knowledgeable reader is somewhat clear what a formal proof would look like. At a certain point we also formulate formulae in natural language. Additionally we take certain basic proofs in FOL for granted. This treatment of FOL only serves to provide a clear and precise language for building mathematical theory and we will quickly become satisfied that it exists and be happy that if we properly formulate theory in natural language it will be formalizable in FOL.

B.3.4 Tautology and Logical Equivalence

We say that formulae φ and ψ are *logically equivalent* if $\vdash \varphi \leftrightarrow \psi$. We write

$$\varphi \iff \psi \stackrel{\mathsf{meta}}{\iff} \vdash \varphi \leftrightarrow \psi.$$

If $\Phi \vdash \varphi \leftrightarrow \psi$, we write $\varphi \iff {}_{\Phi}\psi$. In a natural language context, Φ will be a sequence of sentences in natural language and will not explicitly be written as a finite set, so therefore we usually just write $\varphi \iff \psi$ if we want to symbolically express that φ is equivalent to ψ in a given context (it should then be clear what the context is). In the same vein we write $\varphi \implies {}_{\Phi}\psi$ to mean $\Phi \vdash \varphi \to \psi$ and in a mathematical context we shorten it to $\varphi \implies \psi$.

B.3.5 Proofs in Natural Deduction

A different approach to building a system of deduction in FOL is to write inference rules which tells us how to introduce and eliminate certain formulae to obtain new formulae.

There is a different notion of proof in natural deduction. Luckily this approach is equivalent to that of introducing logical axioms, modus ponens and generalization. So when building proofs, we can also apply introduction and elimination rules.

B.3.6 The Deduction Theorem

Beyond the extra proof techniques that are provided by natural deduction which remain unmentioned we give a useful metatheoretic principical

Theorem B.3.1. (Deduction Theorem) Let a signature \mathcal{L} be given and Φ be a set of \mathcal{L} -formulae. Consider \mathcal{L} -formulae φ, ψ . Then

$$\Phi + \varphi \vdash \psi \stackrel{\mathsf{meta}}{\Longleftrightarrow} \Phi \vdash \varphi \to \psi,$$

where $\Phi + \varphi$ is $\Phi \cup \{\varphi\}$.

Sketch! Convert to Proof

Proof sketch. " \Leftarrow ": Suppose $\Phi \vdash \varphi \to \psi$. With the assumption $\Phi + \varphi$, we then get $\varphi \to \psi$, by the metatheoretic assumption, there is a formal proof $\varphi_1, \ldots, \varphi_n :\equiv \varphi \to \psi$ from Φ . Then using modus ponens on φ_n and $\varphi \in \Phi + \varphi$ we get ψ . Then from $\Phi + \varphi$, $\varphi_1, \ldots, \varphi_n, \psi$ is a sequence of formulae such that $\Phi + \varphi \vdash \psi$.

" \Longrightarrow ": Suppose $\Phi + \varphi \vdash \psi$. Then there is a formal proof $\varphi_1, \ldots, \varphi_n$ of ψ from $\Phi + \varphi$. We now aim to show $\Phi \vdash \varphi \to \varphi_n$ (note that $\varphi_n \equiv \psi$) for each $i \leq n$. Note that if $\varphi_i \in \Phi$ or is a logical axiom, we first using the logical axiom L_1 get $\sigma \equiv \varphi_i \to (\varphi \to \varphi_i)$ and using modus ponens on σ and φ_i we get $\varphi \to \varphi_i$. If $\varphi_i \equiv \varphi$, we get $\Phi \vdash \varphi \to \varphi$, since $\vdash \varphi \to \varphi$. From this we conclude $\Phi \vdash \varphi \to \varphi_0$, since φ_0 can only be obtained in the three ways described above. Suppose now that for j < i, $\Phi \vdash \varphi \to \varphi_j$. If we then can show that when φ_i is obtained from modus ponens or generalization, it will follow by (metatheoretical) induction on $i \leq n$ that $\Phi \vdash \varphi \to \varphi_n$.

B.3.7 Consistency and Compactness

To discuss the notion of consistency we first introduce the notion of ex falso quodlibet. given formulae φ and ψ , this is $\{\varphi, \neg \varphi\} \vdash \psi$. It is proven in the following way: we get φ and $\neg \varphi$ from the context. From modus ponens applied to $\neg \varphi \to (\varphi \to \psi)$ (from L9) and $\neg \varphi$ we get $\varphi \to \psi$. Applying modus ponens to $\varphi \to \psi$ and φ we get ψ as desired. An ex falso quadlibet introduction is $\Phi \vdash \varphi \land \neg \varphi$ where φ is some \mathcal{L} -formula. We denote the existence of such an instance, $\varphi \land \neg \varphi$ by False

A set of formulae Φ is called *consistent* if $\Phi \not\vdash \text{False}$. We denote this by $\text{Con}(\varphi)$. A set of

formulae that is not consistent is called *inconsistent*, denoted $\neg \text{Con}(\Phi)$. Note that if a set of formulae is not consistent then we may prove anything from that set of formulae. I.e. for a formula φ

$$\neg \text{Con}(\Phi) \stackrel{\text{meta}}{\Longrightarrow} \Phi \vdash \text{False} \stackrel{\text{meta}}{\Longrightarrow} \Phi \vdash \varphi.$$

If on the other hand Φ is a consistent set of formulae and we can prove a formula φ from Φ , then there is no way to prove $\neg \varphi$ from Φ ,

$$Con(\Phi)$$
 and $\Phi \vdash \varphi \stackrel{\mathsf{meta}}{\Longrightarrow} \Phi \not\vdash \neg \varphi$.

Indeed if $\Phi \vdash \neg \varphi$, and we suppose $\Phi \vdash \varphi$, then $\Phi \vdash \text{False}$, hence $\neg \text{Con}(\Phi)$.

A use case for the principle of ex falso quodlibet is contraposition

Theorem B.3.2. (Proof by Contraposition) Given \mathcal{L} -formulae φ and ψ ,

$$\vdash (\varphi \to \psi) \leftrightarrow (\neg \psi \to \neg \varphi).$$

Proof. We aim to apply \wedge -introduction. To do this we need to show $\vdash (\varphi \to \psi) \to (\neg \psi \to \varphi)$ and $\vdash (\neg \psi \to \neg \varphi) \to (\varphi \to \psi)$. First we show $\varphi \to \psi \vdash (\neg \psi \to \neg \varphi)$ which can be shown by $\varphi \to \psi + \neg \psi \vdash \neg \varphi$. Now note that $\{\varphi \to \psi, \neg \psi\} + \varphi \vdash \psi \wedge \neg \psi$, since by modus ponens on $\varphi \to \psi$ and φ results in ψ , hence upon applying \wedge -introduction we get $\psi \wedge \neg \psi$. We can therefor use ex falso to get $\neg \varphi$.

Next we show $\neg \psi \to \neg \varphi \vdash \varphi \to \psi$ which can be shown by $\{\neg \psi \to \neg \varphi, \varphi\} \vdash \psi$. Using L_0 we get $\psi \lor \neg \psi$. If ψ , then we are done. If $\neg \psi$, then using modus ponens on $\neg \psi \to \neg \varphi$ and $\neg \psi$ we get $\neg \varphi$, hence $\varphi \land \neg \varphi$. Then using ex falso we obtain ψ .

Remark B.3.3. Note that $\vdash (\varphi \to \psi) \to (\neg \psi \to \neg \varphi)$ can be done fully in intuitionistic logic. A more general statement then the above is

$$\Phi + \varphi \vdash \psi \stackrel{\mathrm{meta}}{\Longleftrightarrow} \Phi + \neg \psi \vdash \neg \varphi.$$

With the above in mind, it is easy to see how one proves this.

Theorem B.3.4. (Proof by Contradiction) Let Φ be a set of \mathcal{L} -formulae and φ, ψ be \mathcal{L} -formulae. Then

$$\Phi + \neg \varphi \vdash \text{False} \stackrel{\text{meta}}{\Longrightarrow} \Phi \vdash \varphi$$

Proof. There is some way to prove $\psi \wedge \neg \psi$ for some \mathcal{L} -formula from $\Phi + \neg \varphi$, hence $\Phi \vdash \neg \varphi \rightarrow \psi \wedge \neg \psi$. We then apply L_0 to get $\varphi \vee \neg \varphi$. If φ , we are done. If $\neg \varphi$ we get $\psi \wedge \neg \psi$ using modus ponens, hence using exfalso we get φ .

Given some \mathcal{L} -formula φ and a set of \mathcal{L} -formulae Φ we also have that

$$\neg \text{Con}(\Phi + \varphi) \stackrel{\text{meta}}{\Longrightarrow} \Phi \vdash \neg \varphi$$

since then $\Phi + \varphi \vdash$ False which is equivalent to $\Phi + \neg(\neg \varphi) \vdash$ False, so using contradiction we get $\Phi \vdash \neg \varphi$. Conversely if

(there is an
$$\mathcal{L}$$
-formula φ such that $\Phi \vdash \neg \varphi$) $\stackrel{\mathsf{meta}}{\Longrightarrow} \neg \mathsf{Con}(\Phi + \varphi)$,

since then get $\Phi + \varphi \vdash \varphi \land \neg \varphi$, hence by contradiction, $\Phi + \varphi \vdash \text{False}$.

Lemma B.3.5. Let Φ be a set of \mathcal{L} -formulae and $\Phi' \subset \Phi$. Then $\neg Con(\Phi')$ implies $\neg Con(\Phi)$

Proof. Indeed, if there is a formula φ such that $\Phi' \vdash \varphi \land \neg \varphi$, then trivially $\Phi \vdash \varphi \land \neg \varphi$. \square

Theorem B.3.6. (Compactness Theorem) A set of \mathcal{L} -formulae Φ is consistent if and only if every finite subset $\Phi' \subset \Phi$ is consistent

Proof. One implication follows immediately from the above lemma. Suppose Φ is not consistent. Then there is a formula φ and a sequence of formulae $\varphi_1,\ldots,\varphi_n$ with $\varphi_n=\varphi\wedge\neg\varphi$ that is a formal proof of $\varphi\wedge\neg\varphi$ from Φ . Now consider the finite subsequence $\varphi_{i_1},\ldots,\varphi_{i_m}\in\Phi$, with $1\leq i_1<\ldots< i_m\leq n$. Then setting $\Phi':=\{\varphi_{i_1},\ldots,\varphi_{i_m}\}\subset\Phi$ we get $\Phi'\vdash\varphi\wedge\neg\varphi$, hence $\neg\mathsf{Con}(\Phi')$.

B.3.8 Sentences in PNF and sPNF

Let \exists denote either \exists or \forall .

Definition B.3.7. For an \mathcal{L} -sentence σ , it is in *Prenex Normal Form of* σ , denoted *PNF*, if it is on the form

$$\exists y_0 x_0 \exists y_1 x_1 \dots \exists y_n x_n \sigma'$$

where σ' is quantifier free.

 σ is in *special Prenex Normal Form*, denoted *sPNF*, if it is in PNF as above where x_1, \ldots, x_n appear free in σ' .

Lemma B.3.8. Given an \mathcal{L} -sentence σ there is a sentence τ in sPNF such that

$$\sigma \iff \tau$$
.

Proof. We don't prove this result.

B.4 Semantics of First Order Logic

We are now going to assign truth values to formulae. That is we want for some signature \mathcal{L} to assign either false or true to each \mathcal{L} -formula. In propositional logic this can be done by asserting truth tabels for logical connectives, \wedge , \vee , \neg , \rightarrow . This simple approach does not extend to FOL. Take for instance the formula, $\forall x \exists y \varphi(x,y)$. Could we possibly assign a truthtable to such a formula. Suppose for instance that $\varphi \equiv x < y$. Then there is a dependency on what x and y is and we are therefor at a loss in computing a truth table in terms of φ in general. Introducing an algorithm for determining truth for \forall and \exists is not terrible, but we need a way to map formulas onto some sort of context. To discuss how to do this we need the notion of an *interpretatation* for which we will assume some notion of naive set theory and a notion of law of excluded middle, i.e. we assume that a statement (to be interpreted informally) is either true or false. We are thus working in the strong metatheory.

B.4.1 Structures and Interpretations

given a signature \mathcal{L} an \mathcal{L} -structure M is a pair of a non-empty set A (the domain of M) and a mapping from \mathcal{L} to A taking constant symbols $c \in \mathcal{L}$ to an element $c^M \in A$, n-ary relation symbols $R \in \mathcal{L}$ to a set of n-tuples $R^M \subset A^n$ and n-ary function symbols F to a function $F^M : A^n \to A$. An assignment on an \mathcal{L} -structure M is a mapping, ι , taking variables x in \mathcal{L} to A. An \mathcal{L} -interpretation I is then a pair consisting of an \mathcal{L} -structure M and an assignment ι on M where to a variable $x \in \mathcal{L}$ and an element $a \in A$, we define for variables y in \mathcal{L}

$$\iota[x \mapsto a](y) = \begin{cases} a & \text{if } x \equiv y \\ \iota(y) & \text{else} \end{cases}$$

 $\iota[x\mapsto a]$ is thus itself an assignment on M. We define

$$I[x \mapsto a] := (M, \iota[x \mapsto a]).$$

For an \mathcal{L} -term τ we define $I(\tau) \in A$ by recursion on terms in the following way: On a variable $x, I(x) := \iota(x)$, on a constant $c, I(c) := c^M$, for an n-ary function symbol and terms $\tau_1, \ldots, \tau_n, I(F(\tau_1, \ldots, \tau_n)) := F^M(I(\tau_1), \ldots, I(\tau_n))$. We now define how to assign truth value to formulae under an interpretation. When a formula φ is true in an interpretation I we write $I \models \varphi$. This mapping is constructed inductively on symbols that are used to construct formulae. So for instance given terms τ_1, τ_2 and variable $x, I \models \tau_1 = \tau_2 : \iff_{\text{meta}} I(\tau_1) = I(\tau_2)$ and $I \models \exists x \varphi : \iff_{\text{meta}} \text{ there exists } a \text{ in } A : I[x \mapsto a] \models \varphi \text{ and } I \models \neg \varphi : \iff_{\text{meta}} I \models \varphi \text{ is not true. I.e. we translate truth of a formula$

in some interpretation to statements in the metatheory. I feel that there is only a need to illustrate the idea as I don't want to write all of the rules down. Under the assumption of classical logic in the meta theory, we now have that $I \vDash \varphi$ or $I \vDash \neg \varphi$. It is still necessarily NOT true that $\Phi \vDash \varphi$ or $\Phi \vDash \neg \varphi$. That is there may be statements in some theory that is true but not provable or a statement that is true but where $\Phi \vDash \neg \varphi$.

Given a set of \mathcal{L} -formulae Φ and an \mathcal{L} -structure M, we say that M is a model of Φ if for every assignment ι and for each $\varphi \in \Phi$,

$$(M,j) \vDash \varphi$$
.

If this is the case, we write

$$M \models \Phi$$
.

We note that one can construct a signature \mathcal{L} and a domain A for which there is a set of sentences Φ and two \mathcal{L} -structures M_1 and M_2 where M_1 is a model of Φ and M_2 is not. Take $\mathcal{L} = \{c, f\}$ where c is constant and f is a unary function symbol, $A = \{0, 1\}$ and $\Phi = \{\varphi_1, \varphi_2\}$ with $\varphi_1 :\equiv \forall x(x = c \lor x = f(c))$ and $\varphi_2 :\equiv \exists (x \neq c)$. Now we define $c^{M_1} := 0$, $f^{M_1}(0) = 1$, $f^{M_2}(1) = 0$ and $c^{M_2} := 0$, $f^{M_2}(0) = 0$, $f^{M_2}(1) = 1$. Fix an assignment and consider the associated interpretatations I_1 and I_2 . It turns out that $I_i \vDash \varphi_2$ for i = 1, 2 while $I_1 \vDash \varphi_1$ and $I_2 \vDash \neg \varphi_1$. Indeed, $I_i \vdash \varphi_2$ is equivalent to $I_i[x\mapsto 0] \vDash x \neq c \text{ or } I_i[x\mapsto 1] \vDash x \neq c.$ We check that $I_i[x\mapsto 1] \vDash x \neq c.$ To do this we have to check that it isn't true that $I_i[x \mapsto 1](x)$ is equal to $I_i[x \mapsto 1](c)$. This is obvious since $I_i[x \mapsto 1](x) = 1$ and $I_i[x \mapsto 1](c) = c^{I_i} = 0$. To check that $M_1 \models \varphi_1$ it is sufficient to check that $I_1[x \mapsto 0] \models x = c$ and $I_1[x \mapsto 1] \models x = f(c)$. To check the first we simply note that $I_1[x \mapsto 0](x) = 0$ and $I[x \mapsto 0](c) = c^{M_1} = 0$. To check the second statement we again note that $I_1[x \mapsto 1](x) = 1$ and also note that $I_1[x \mapsto 1](f(c)) = f^{M_1}(I[x \mapsto 1](f(c)))$ $1](c)) = f^{M_1}(c^{M_1}) = f^{M_1}(0) = 1$. To see that $M_2 \models \neg \varphi_1$ (which is in fact equivalent to $M_2 \not\models \varphi_1$, since φ_1 is a sentence), we need to check that $I_2 \models \exists x (x \neq c \land x \neq f(c))$ and for this it is sufficient to check that $I_2[x \mapsto 1] \models x \neq c \land x \neg f(c)$. Indeed, $I_2[x \mapsto 1](x) = 1$ and $I_2[x \mapsto 1](c) = 0$. Furthermore, $I_2[x \mapsto 1](f(c)) = f^{M_2}(I_2[x \mapsto 1](c)) = f^{M_2}(c^{M_2}) = f^{M_2}(c^{M_2})$ $f^{M_2}(0) = 0.$

B.4.2 Universal closure

Consider an \mathcal{L} -formula φ and a model M and some variable x. Then $M \vDash \varphi$ if and only if $M \vDash \forall x \varphi$. Upon defining $\overline{\varphi} :\equiv \forall x_1 \forall x_2 \forall \ldots \forall x_n \varphi$ where x_1, \ldots, x_n are those variables that appear free in φ at some position, then we get that

$$M \vDash \varphi \iff {}_{\text{meta}}M \vDash \overline{\varphi}.$$

this $\bar{\cdot}$ -construction is called the *universal closure of* φ .

We also introduce the following notation. Let φ be an \mathcal{L} -formula with free variables x_1, \ldots, x_n and consider a sequence of elements in the domain A, a_1, \ldots, a_n . Then we define $M \models \varphi(a_1, \ldots, a_n)$ to mean that $(M, j[x \mapsto a_1][x \mapsto a_2] \ldots [x \mapsto a_n]) \models \varphi(a_1, \ldots, a_n)$ for every assignment j in M.

B.4.3 Isomorphisms of \mathcal{L} -structures

We now give following notion of checking that two models are essentially the same:

Definition B.4.1. Fix a signature \mathcal{L} . Consider two \mathcal{L} -structures M and N with domains A resp. B. We say that M and N are *isomorphic*, denoted $M \simeq N$, if there is a bijection $f: A \to B$ satisfying

1. For every constant symbol $c \in \mathcal{L}$

$$f(c^M) = f(c^N)$$

2. For n and every n-ary function symbol $F \in \mathcal{L}$ and all n-ary relation symbols $R \in \mathcal{L}$ and every $a_1, \ldots, a_n \in A$, we have that

$$f(F^{M}(a_{1},...,a_{n})) = F^{N}(f(a_{1}),...,f(a_{n})),$$

and that

$$(a_1,\ldots,a_n)\in R^M\iff (f(a_1),\ldots,f(a_n))\in R^N.$$

Two models are *isomorphic* if there respective underlying \mathcal{L} -structures are isomorphic.

Remark B.4.2. An immediate consequence is that if two models M and N are isomorphic, then for each \mathcal{L} -formula φ ,

$$M \vDash \varphi \iff {}_{\text{meta}}N \vDash \varphi.$$

It may happen that there is a pair of models M' and N' for which

$$M' \vDash \varphi \iff {}_{meta}N' \vDash \varphi$$

for every \mathcal{L} -sentence φ where M' and N' are NOT isomorphic. This leads us to the give the following definition:

We say that an \mathcal{L} -structures M is elementarily equivalent to an \mathcal{L} -structure N, denoted $M \equiv_e N$ if

$$M \vDash \varphi \implies {}_{\text{meta}}N \vDash \varphi$$

It turns out that with this definition we also have that $N \equiv_e M$ when $M \equiv_e N$. Applying the fact about universal closure it sufficient to check $M \vDash \varphi \iff_{\text{meta}} N \vDash \varphi$ for every \mathcal{L} -sentence φ .

B.4.4 Soundness and the Soundness Theorem

Definition B.4.3. A logical calculus L is sound if every statement that on syntactical side can be proven is true on the semantical side

Theorem B.4.4. Let Φ be a set of \mathcal{L} -formulae and M a model of Φ . Then for every \mathcal{L} -formula φ ,

$$\Phi \vdash \varphi \implies _{\text{meta}} M \vDash \varphi.$$

Sketch! Convert to Proof

Proof sketch. We first prove that given any model M, we have that $M \models \theta_i$ for $i \in \{0,\ldots,16\}$, where θ_i is an instance of L_i , which are the logical axioms of F0L. For L_0 this follows from the assumption that we have classical logic in the metatheory. Given the logical symbols $\vee, \wedge, \neg, \rightarrow$, and formulae φ, ψ to for instance show that $M \models \varphi \lor \psi$ we have to show that $M \models \varphi$ or $M \models \psi$. Setting $\Theta :\equiv_{\text{meta}} M \models \varphi \lor \psi$, $\Phi :\equiv_{\text{meta}} M \models \varphi$ and $\Psi :\equiv_{\text{meta}} M \models \psi$, we note that the truth value of Θ is dependent on the truth values of Φ and Ψ , by definition, via a truth table. We can for L_i , $i = 1, \ldots, 9$, set $\Theta_i :\equiv_{\text{meta}} M \models \theta_i$ and see that the truth of this formula can be verified using such truth tables.

We now consider the domain of M, A and fix an assignment j, denote the associated interpretation (M, j) by I.

"L₁₀ is valid in M": Fix an \mathcal{L} -formula φ , a term τ and a variable x such that $\varphi(x/\tau)$ is admissible. We need to prove that assuming $I \vDash \forall x \varphi(x)$ that $I \vdash \varphi(\tau)$. Our assumption is equivalent to for every $a \in A$, $I[x \mapsto a] \vDash \varphi(x)$. Then $I[x \mapsto I(\tau)] \vDash \varphi(x)$, which is equivalent to explain Why $I \vdash \varphi(\tau)$. So $(M, j) \vDash \forall x \varphi(x) \to \varphi(\tau)$ for every assignment j, hence $M \vDash \forall x \varphi(x) \to \varphi(\tau)$.

"L₁₁ is valid in M": Fix φ, x, τ as before. We need to show assuming $I \vDash \varphi(\tau)$ that there is an $a \in A$ such that $I[x \mapsto a] \vDash \varphi(x)$. Using the same fact as before, our assumption is equivalent to $I[x \mapsto I(\tau)] \vDash \varphi(x)$. Then $(M, j) \vDash \varphi(\tau) \to \exists x \varphi(x)$ for every interpretation j, hence $M \vDash \varphi(\tau) \to \exists x \varphi(x)$.

"L₁₂ is valid in M": Fix a non-free variable x of a formula ψ and let $\varphi(x)$ be an arbitrary formula. Suppose that forall $a \in A$, if $I[x \mapsto a] \vDash \psi$, then $I[x \mapsto a] \vDash \varphi(x)$. Note that by insert fact later $I[x \mapsto a] \vDash \psi$ is equivalent to $I \vDash \psi$ and that by definition $I[x \mapsto a] \vDash \varphi(x)$ is equivalent to $I \vDash \forall x \varphi(x)$. Assume then $I \vDash \psi$. From what have just noted it follows then that $I \vDash \forall x \varphi(x)$. So we conclude that $I \vDash \forall x (\psi \to \varphi(x)) \to (\psi \to \forall x \varphi(x))$,

and since j was arbitrary, it follows that $M \models \forall x(\psi \rightarrow \varphi(x)) \rightarrow (\psi \rightarrow \forall x\varphi(x))$.

"L₁₃ is valid in M": Assume that for every $a \in A$ if $I[x \mapsto a] \models \varphi(x)$, then $I[x \mapsto a] \models \psi$. Suppose there is a $b \in A$ such that $I[x \mapsto b] \models \varphi(x)$. Then by assumption $I[x \mapsto b] \models \psi$ which using the same fact as before is equivalent to $I \models \psi$. We thus conclude that $I \models \forall x(\varphi(x) \to \psi) \to (\exists x \varphi x \to \psi)$, and since j was arbitrarily chosen, $M \models \forall x(\varphi(x) \to \psi) \to (\exists x \varphi x \to \psi)$.

"L₁₄ is valid in M": Let τ be a term. Clearly $I(\tau)$ is the same element as $I(\tau)$, $I \vDash \tau = \tau$ and it immediately follows that $M \vDash \tau = \tau$.

"L₁₄ is valid in M": Let R be an n-ary relation symbol in \mathcal{L} and $\tau_1, \ldots, \tau_n, \tau'_1, \ldots, \tau'_n$ be \mathcal{L} -terms. Suppose $I(\tau_i)$ is the same object as $I(\tau'_i)$ for each i. Suppose moreover that $I \models R(\tau_1, \ldots, \tau_i)$. Then $(I(\tau'_1), \ldots, I(\tau'_n)) = (I(\tau_1), \ldots, I(\tau_n)) \in R^M \subset A$, hence by definition $I \models R(\tau'_1, \ldots, \tau'_n)$. This shows that

$$I \vDash \tau_1 = \tau_1' \land \ldots \land \tau_n = \tau_n' \rightarrow (R(\tau_1, \ldots, \tau_n) \rightarrow R(\tau_1', \ldots, \tau_n'))$$

which means

$$M \vDash \tau_1 = \tau'_1 \land \ldots \land \tau_n = \tau'_n \rightarrow (R(\tau_1, \ldots, \tau_n) \rightarrow R(\tau'_1, \ldots, \tau'_n)).$$

"L₁₅ is valid in M": Let F be an n-ary function symbol. Let $\tau_1, \ldots, \tau_n, \tau'_1, \ldots, \tau'_n$ be given as before. Suppose $I(\tau_i)$ is the same object as $I(\tau'_i)$ for each i. Then

$$F^{M}(I(\tau_1),\ldots,I(\tau_n)) = F^{M}(I(\tau_1'),\ldots,I(\tau_n'))$$

hence

$$I \vDash F(\tau_1, \dots, \tau_n) = F(\tau_1', \dots, \tau_n') \implies {}_{\text{meta}} M \vDash F(\tau_1, \dots, \tau_n) = F(\tau_1', \dots, \tau_n').$$

Now, let Φ be a set of \mathcal{L} -formulae and M a model of Φ . Let φ be an \mathcal{L} -formula. Suppose $\Phi \vdash \varphi$. Note now that every instance of modus ponens is obviously valid in M and that by insert fact every instance of generalization is valid in M. It thus follows that every application of these rules to conclude that $\Phi \vdash \varphi$ is valid in M. Since we know that the logical axioms of FOL are valid in M, it follows that if the formulae $\varphi_1, \ldots, \varphi_n$ that make up a formal proof of φ from Φ , are all valid. In particular, since $\varphi_n \equiv \varphi$, it follows that $M \vDash \varphi$, which finishes the proof (sketch)

Corollary B.4.5. 1. For every tautology φ we get that $M \vDash \varphi$ for any model M.

- 2. For a set of \mathcal{L} -formulae Φ , if there is a model M with $M \models \Phi$, then $Con(\Phi)$.
- 3. Every instance of a logical axiom is consistent.

4. For any sentence σ , model M and set of formulae Φ ,

if
$$(M \not\vDash \sigma \text{ and } M \vDash \Phi) \text{ then } \Phi \not\vdash \sigma$$

Proof. 1. Indeed, M is a model of the empty set (of formulae), hence by an application of the above theorem the result follows.

2. Indeed, given a formula $\varphi \in \Phi$,

$$M \not\models \varphi \land \neg \varphi$$
,

means $\Phi \not\vdash \varphi \land \neg \varphi$ by the soundness theorem note to self: write something about contraposition in metatheory.

- 3. Any model of a set of formulae is a model of any instance of logical axiom, hence by
- 2. such an instance is consistent.
- 4. This is just a special case of the contrapositive of the soundness theorem. \Box

B.5 Gödels Completeness Theorem

We now refine the definition of an \mathcal{L} -theory. A set T of \mathcal{L} -sentences is said to be an \mathcal{L} -theory. In mathematics a set of axioms will always consist of sentences. Note that as far as semantics is concerned we may replace every formula in a set of \mathcal{L} -formulae by the set of the universal closures of these formulae and nothing will change.

Definition B.5.1. An \mathcal{L} -theory T is (syntactically) complete if for every \mathcal{L} -sentence φ , either $T \vdash \varphi$ or $T \vdash \neg \varphi$. An \mathcal{L} -theory that is not complete is called incomplete

Remark B.5.2. Note that an inconsistent theory is incomplete.

Definition B.5.3. For an \mathcal{L} -theory T, let Th(T) denote the set of \mathcal{L} -sentences σ with $T \vdash \sigma$.

Remark B.5.4. Note that a consistent theory T is complete if and only if either $\sigma \in \text{Th}(T)$ or $\neg \sigma \in \text{Th}(T)$ for every \mathcal{L} -sentence σ .

Theorem B.5.5. Let T be an \mathcal{L} -theory such that there is a model M of T. Then there is a complete \mathcal{L} -theory \overline{T} with $\overline{T} \supset T$.

Proof. Define \overline{T} to be the sentences, σ , which satisfy $M \vDash \sigma$. Since for any sentence τ , either $M \vDash \tau$ or $M \vDash \neg \tau$, we get that either $\tau \in \overline{T}$ or $\neg \tau \in \overline{T}$. Let σ be any \mathcal{L} -sentence. If $\sigma \in \overline{T}$, then since $\sigma \vdash \sigma$, it follows that $\overline{T} \vdash \sigma$. Similarly, if $\neg \sigma \in \overline{T}$, then $\overline{T} \vdash \neg \sigma$. We thus conclude that \overline{T} is complete. Since $M \vDash T$, it follows that $T \subset \overline{T}$.

Definition B.5.6. Let M be a model of some theory T. Then $\operatorname{Th}(M) = \overline{T}$ is called the *model of* M

Remark B.5.7. Note that Th(M) is complete.

B.5.1 Maximally Consistent Theories

Definition B.5.8. An \mathcal{L} -theory T is *maximally consistent* if for Con(T) and for every \mathcal{L} -sentence $\sigma \in T$ or $\neg Con(T + \sigma)$.

Remark B.5.9. From the last two facts gathered about consistency in the section on consistency and compactness we get that for a consistent theory T,

$$\neg \text{Con}(T + \sigma) \stackrel{\text{meta}}{\iff} T \vdash \neg \sigma,$$

so a consistent \mathcal{L} -theory T is maximally consistent if and only if $\sigma \in T$ or $T \vdash \neg \sigma$.

Lemma B.5.10. For a consistent \mathcal{L} -theory T, T is maximally consistent if and only if $\sigma \in T$ or $\neg \sigma \in T$ for every \mathcal{L} -formula σ .

Proof. Suppose first that T is maximally consistent. Let σ be an \mathcal{L} -sentence. By assumption $\sigma \in T$ or $T \vdash \neg \sigma$. Suppose $\sigma \notin T$. Then $T \vdash \neg \sigma$, and since Con(T), $T \not\vdash \sigma$. This means $T \not\vdash \neg \neg \sigma$, hence $\neg \sigma \in T$.

Assume now $\sigma \in T$ or $\neg \sigma \in T$ for every \mathcal{L} -sentence σ . Let σ be an arbitrary \mathcal{L} -sentence. Suppose $\sigma \notin T$. Then $\neg \sigma \in T$. Hence, $\neg \sigma$ is by definition a formal proof of $T \vdash \neg \sigma$. \square

Lemma B.5.11. Let T be a consistent \mathcal{L} -theory. Then

- 1. If T is complete, then Th(T) is maximally consistent.
- 2. If T is maximally consistent, then T = Th(T).

Proof. 1. Since T is complete, it is consistent. Let σ be an \mathcal{L} -sentence. Since T is completeness we also get $T \vdash \sigma$ or $T \vdash \neg \sigma$ which is equivalent to $\sigma \in \text{Th}(T)$ or $\neg \sigma \in \text{Th}(T)$ which by the prior lemma means that Th(T) is maximally consistent.

2. Trivially $T \subset \operatorname{Th}(T)$. Let $\sigma \in \operatorname{Th}(T)$. Then $T \vdash \sigma$. By assumption $\sigma \in T$ or $\neg \sigma \in T$. For any there S where $\tau \in S$ or $\neg \tau \in S$ for a sentence $\tau \in \operatorname{Th}(S)$, if $\neg \tau \in S$, then $\neg \operatorname{Con}(T)$. So we see that $\neg \sigma \notin T$ which implies $\sigma \in T$. We thus conclude that $T = \operatorname{Th}(T)$.

Lemma B.5.12. If an \mathcal{L} -theory has a model M, then Th(M) is a maximally consistent extension of T.

Proof. Let $\sigma \in T$. Then $T \vdash \sigma$, hence by soundness, $M \vDash \sigma$ which means $\sigma \in \operatorname{Th}(M)$. Th $(M) = \overline{T}$ is readily seen to be maximally consistent. It is consistent since a theory with a model is automatically consistent (cf. Corollary B.4.5 2.) and for any \mathcal{L} -sentence σ , either $M \vDash \sigma$ or $M \vDash \neg \sigma$ which by definition is equivalent to either $\sigma \in \operatorname{Th}(M)$ or $\neg \sigma \in \operatorname{Th}(M)$

B.5.2 Universal List of Sentences

For this section and the one's on Lindenbaum's Lemma and Gödel's Completeness Theorem any signature \mathcal{L} is countable. I.e. the symbols of \mathcal{L} can be arranged in a list that is at most potentially infinite list $L_{\mathcal{L}}$. We now aim to encode every \mathcal{L} -sentence in an ordered list called the *universal list of* \mathcal{L} . Let ξ_i be the symbol at index i in $L_{\mathcal{L}}$. We encode this as

$$\#\xi_i := \underbrace{22\dots 2}_{i\ 2's},$$

i.e. we set $\#\xi_0 := 2$ and recursively define $\#\xi_{i+1} := \#\xi_i 2$. For logical symbols we also define an encoding using 1's. First we define encodings for the logical connectives We can order

Symbol ξ	Encoding # ξ
=	11
\neg	1111
\wedge	111111
V	11111111
\rightarrow	1111111111
3	111111111111
\forall	1111111111111111

the variables in a potentially infinite list. For x_0 we define $\#x_0 := 1$ for the i'th variable x_i we define $\#x_{i+1} := \#x_i 11$. Now given any string of symbols in the language associated with $\mathcal{L}, \xi := \xi_0 \xi_1 \dots \xi_n$ we define

$$\#\xi := \#\xi_0 0 \#\xi_1 0 \dots 0 \#\xi_n$$

i.e. we recursively define the encoding on strings through recursion in the length of the string. Now we define an order on strings $\#\xi$, where $\#\xi < \#\xi'$ if $|\#\xi| < |\#\xi'|$ ($|\bullet|$ is the length of a string) and when $|\#\xi| = |\#\xi'|$ if $\#\xi <_{lex} \#\xi'$, where $<_{lex}$ is the lexicographic ordering with 0 < 1 < 2. We assume WLOG that every relational or functional symbol uses Polish notation. We now obtain the desired universal list of \mathcal{L} -sentences, which is the potentially infinite list

$$\Lambda_{\mathcal{L}} := [\sigma_0, \sigma_1, \dots]$$

of \mathcal{L} -sentences where

$$\#\sigma_i < \#\sigma_j$$

for i < j. To see that is potentially infinite, note that there is a finite time algorithm for generating the next element in the list of possible strings,

- 1. Let $\#\sigma_n$ be some element generated in the list. Set $l := |\#\sigma_n|$. There are only finitely many possible strings of the form $\#\sigma$ of length l (since there are only finitely many strings consisting of 0's, 1's and 2's) where σ is a sentence.
- 2. If $\#\sigma_n$ is the largest of these strings compute the sentence σ with the smallest $\#\sigma$ of length l+1 otherwise compute the σ with the smallest $\#\sigma > \#\sigma_n$.

B.5.3 Lindenbaum's Lemma

Theorem B.5.13. (Lindenbaum's Lemma) Let \mathcal{L} be a countable signature and T a consistent \mathcal{L} -theory. If there is a sentence σ_0 with $T \not\vdash \sigma_0$. Then there is a maximally consistent theory $T_{\sigma_0}^* \supset T + \neg \sigma_0$.

Proof. Consider the universal list of \mathcal{L} -sentences

$$\Lambda_{\mathcal{L}} = [\sigma_1, \sigma_2, \dots].$$

We place $\neg \sigma_0$ at the beginning of this list to obtain a list

$$\Lambda'_{\mathcal{L}} := [\neg \sigma_0, \sigma_1, \sigma_2, \dots].$$

Set $T_0 := [\neg \sigma_0]$ and recursively define

$$T_{i+1} := \begin{cases} T_n + [\sigma_{n+1}] & \text{if } Con(T + T_n + \sigma_{n+1}) \\ T_n & \text{otherwise} \end{cases}$$

As a result of this process we obtain a potentially infinite list

$$T_{\sigma_0}^* := [\neg \sigma_0, \sigma_{i_1}, \sigma_{i_2}, \dots],$$

Where we assume $Con(T + T_n + \sigma_{n+1})$ or $\neg Con(T + T_n + \sigma_{n+1})$. For this we could use law of excluded middle, which we already use in model theory. A weaker assumption that one can take is the weak König's Lemma whose statement is

An infinite 0-1-tree has an infinite branch

where a 0-1-tree is a certain type of subtree of a binary tree.

We now prove that $T^*_{\sigma_0}$ is a maximally consistent theory containing $T+\neg\sigma_0$. Clearly $\neg\sigma_0$ is in $T^*_{\sigma_0}$. Note that for every sentence σ there is an n such that $\sigma_n\equiv\sigma$. Hence it is sufficient to prove for each n if $\sigma_n\in T$, then $\sigma_n\in T^*_{\sigma_0}$. We prove this by induction in n. For n=1, note that if $\sigma_1\in T$, then $\mathrm{Con}(T+\neg\sigma_0)$. Indeed, since $T\not\vdash\sigma_0$, we have that $\mathrm{Con}(T+\neg\sigma_0)$

by Remark B.5.9. It thus follows that $\operatorname{Con}(T+\sigma_1)$, hence $T_1=T_0+\sigma=[\neg\sigma_0,\sigma_1]$, hence $\sigma_1\in T_{\sigma_0}^*$. Suppose $\sigma_m\in T$ implies $\sigma\in T_{\sigma_0}^*$ for every $m\leq n$. Suppose $\sigma_{n+1}\in T$. Pick N to be the largest $N\leq n$ such that $\sigma_M\in T_{\sigma_0}^*$. Then $T_N=T_n$. Suppose for a contradiction that $\neg\operatorname{Con}(T+T_n+\sigma_{n+1})$. Then since $\sigma_{n+1}\in T$, $\neg\operatorname{Con}(T+T_n)$, which means $\neg\operatorname{Con}(T+T_N)$, but then $\sigma_N\notin T_{\sigma_0}^*$. Then $\operatorname{Con}(T+T_n+\sigma_{n+1})$, hence $T_{n+1}=T_n+\sigma_{n+1}\ni\sigma_{n+1}$. It thus follows that $\sigma_{n+1}\in T_{\sigma_0}^*$.

To show $\operatorname{Con}(T_{\sigma_0}^*)$, by the Compactness Theorem it is sufficient to prove that every finite subset of $T_{\sigma_0}^*$ is consistent. Any such finite subset is contained in T_n for some n. So it is sufficient to prove $\operatorname{Con}(T_n)$. Note that since $T \not\vdash \sigma_0$, we get $\operatorname{Con}(T + \neg \sigma_0)$, hence using the Compactness Theorem, $T_0 = \{\neg \sigma_0\}$ is consistent. Suppose $\operatorname{Con}(T_m)$ for each $m \leq n$ for some n. If $\neg \operatorname{Con}(T + T_n + \sigma_{n+1})$, then $T_n = T_{n+1}$ and we are done. Suppose then that $\operatorname{Con}(T + T_n + \sigma_{n+1})$. Then since $T_{n+1} = T_n + \sigma_{n+1}$ is a finite subset $T + T_n + \sigma_{n+1}$, we get $\operatorname{Con}(T_{n+1})$.

To conclude that $T_{\sigma_0}^*$ is maximally consistent, we prove that $\sigma \in T_{\sigma_0}^*$ or $\neg \text{Con}(T_{\sigma_0}^* + \sigma)$. Let an \mathcal{L} -sentence be given. Such a sentence is σ_n for some $n \geq 1$. Suppose $\text{Con}(T + T_{n-1} + \sigma_n)$, then $\sigma_n \in T_{n-1} + \sigma_n = T_n$. Suppose $\neg \text{Con}(T + T_{n-1} + \sigma_n)$. By Lemma B.3.5, $\neg \text{Con}(T_{\sigma_0}^* + \sigma_n)$.

Remark B.5.14. 1. Note that if $T \vdash \sigma$, then $\neg \text{Con}(T + \neg \sigma)$. Note that if for a consistent theory Φ and a formula $\varphi \in \Phi$, then $\text{Con}(\Phi + \varphi)$. Then since $T^*_{\sigma_0}$ is maximally consistent, we first have that $\neg \sigma \notin T^*_{\sigma_0}$ and then that $\sigma \in T^*_{\sigma_0}$.

- 2. $T_{\sigma_0}^* \vdash \sigma \stackrel{\text{meta}}{\Longleftrightarrow} \sigma \in T_{\sigma_0}^*$:

 " \Longrightarrow ": Using maximal consistency, if $T_{\sigma_0}^* \vdash \sigma$, then $\text{Con}(T_{\sigma_0}^* + \sigma)$. Note that $\sigma \equiv \sigma_n$. Then every finite subtheory of $T_{\sigma_0}^* + \sigma$ is consistent, hence any finite subtheory of $T + T_{n-1} + \sigma_n$ is consistent, which means $\text{Con}(T + T_{n-1} + \sigma_n)$. By construction $\sigma \equiv \sigma_n \in T_n \subset T_{\sigma_0}^*$.

 " \rightleftharpoons ": This is obvious.
- 3. Note also $\sigma \iff \sigma'$ then $\sigma \in T^*_{\sigma_0} \stackrel{\text{meta}}{\iff} \sigma' \in T^*_{\sigma_0}$.

One readily verifies the following lemma

Lemma B.5.15. Let T be an \mathcal{L} -theory where \mathcal{L} is countable and σ_0 be given as in Lindenbaum's Lemma. For any \mathcal{L} -sentences σ , σ_1 , σ_2 ,

1.
$$\neg \sigma \in T_{\sigma_0}^* \stackrel{\text{meta}}{\iff} not \ \sigma \in T_{\sigma_0}^*$$
.

 $2. \ \, \wedge \sigma_1\sigma_2 \in T_{\sigma_0}^* \stackrel{\mathsf{meta}}{\Longleftrightarrow} \sigma_1 \in T_{\sigma_0}^* \ \, \textit{and} \ \, \sigma_2 \in T_{\sigma_0}^*$

3.
$$\forall \sigma_1 \sigma_2 \in T_{\sigma_0}^* \stackrel{\mathsf{meta}}{\Longleftrightarrow} \sigma_1 \in T_{\sigma_0}^* \text{ or } \sigma_2 \in T_{\sigma_0}^*$$
.

4.
$$\rightarrow \sigma_1 \sigma_2 \in T^*_{\sigma_0} \stackrel{\mathsf{meta}}{\Longleftrightarrow} \sigma_1 \in T^*_{\sigma_0} \text{ then } \sigma_2 \in T^*_{\sigma_0}.$$

B.5.4 An Extension of a Signature & of a Theory

Definition B.5.16. Given a countable \mathcal{L} -signature a *term constant* is the term that results from applying one of these three rules recursively finitely many times.

C0: A variable-free *L*-term is a term constant.

C1: if $\tau_0, \ldots, \tau_{n-1}$ are term constants and F is an n-ary function, then $F\tau_1 \cdots \tau_{n-1}$ is a term constant.

C2: If i, n are natural numbers and $\tau_0, \ldots, \tau_{n-1}$ are term constants, then $(i, \tau_0, \ldots, \tau_{n-1}, n)$ is a term constant.

The strings of the form $(i, \tau_0, \dots, \tau_{n-1}, n)$ are called *special constants*. In particular (i, 0) is a special constant.

Remark B.5.17. Note that term constants build with only C0 and C1 are in the language induced by \mathcal{L} and are variable free, while those build with C2 may not be.

Definition B.5.18. Let a countable signature \mathcal{L} be given. Then we define \mathcal{L}_c to be \mathcal{L} together with the special constants (of which there are countably many).

$$\#c := \#(\#i\#, \#\tau_0\#, \dots \#, \#\tau_{n-1}\#, \#n\#)$$

As before we order strings build from \mathcal{L}_c first by their length and lexicographically with 0 < 1 < 2 < 3 < 4 < 5. We define potentially infinite ordered lists

$$\Lambda_{\tau} := [\tau_0, \tau_1, \dots]$$
 and $\Lambda_c := [c_0, c_1, \dots]$

of terms constants and special constants respectively.

Definition B.5.19. Let $\sigma_i \in T^*_{\sigma_0}$ and $c_j \equiv (i, \tau_0, \dots, \tau_{n-1}, n)$ a special constant. We say that c_j is a witness of σ_i if

1. $i \ge 1$ and σ_i is in special Prenex Normal Form.

- 2. $\exists x_n \text{ appears in } \sigma_i$.
- 3. For each m < n: If $\exists x_m$ appears in σ_i then $\tau_m \equiv (i, \tau_0, \dots, \tau_{m-1}, m)$.

We replace $\neg \sigma_0$ by its equivalent formula $\sigma_k \in T_{\sigma_0}^*$, which is in sPNF.

We now construct $T_{\sigma_0}^*(c)$. Suppose we have a sentence $\sigma_i \in T_{\sigma_0}^*$ that is in sPNF and $\forall x_n$ or $\exists x_n$ appear in σ_i , then it is on the form

$$\exists x_0 \exists x_1 \exists x_1 \dots \exists x_n \dots \exists x_m \sigma_i(x_0, x_1, \dots, x_n, \dots, x_m)'$$

where σ_i is quantifier free and in which x_1, \ldots, x_m appear free, hence

$$\sigma_i \equiv \Rightarrow_0 x_0 \Rightarrow_1 x_1 \dots \Rightarrow_n x_n \sigma_{i,n}(x_0, \dots, x_n)$$

where x_1, \ldots, x_n appear free in $\sigma_{i,n}(x_0, \ldots, x_n)$. Then if $c_j \equiv (i, \tau_0, \ldots, \tau_{n-1}, n)$ witnesses σ_i ,

$$\sigma_i \equiv \exists \gamma_0 x_0 \exists \gamma_1 x_1 \dots \exists x_n \sigma_{i,n}(x_0, \dots, x_n).$$

Set

$$\sigma_{i,n}[c_j] :\equiv \sigma_{i,n}(x_0/\tau_0, \dots, x_{n-1}/\tau_{n-1}, x_n/c_j).$$

Set $T_0^* := T_{\sigma_0}^*$. Suppose T_j^* is already defined and $c_j \equiv (i, \tau_0, \dots, \tau_{n-1}, n)$ is a special constant Then

$$T_{j+1}^* := \begin{cases} T_j^* & \text{if } c_j \text{ does not witness } \sigma \in T_{\sigma_0}^* \\ & \text{Insert } \sigma_{i,n}[c_j] \text{ into } T_j^* \\ & \text{such that the resulting list is ordered} & \text{otherwise} \end{cases}$$
 with respect to the #-encodings

Definition B.5.20. We set $T_{\sigma_0}^*(c) := \bigcup T_j^*$

Definition B.5.21. We define the *height* of term constants, denoted height(\bullet) by cases in the following way:

- 1. If τ is a closed term, then height(τ) := 0.
- 2. If $\tau_0, \ldots, \tau_{n-1}$ are term constants and $F \in \mathcal{L}$ is an n-ary function symbol, then $\operatorname{height}(F(\tau_0, \ldots, \tau_{n-1})) := \max(\operatorname{height}(\tau_0), \ldots, \operatorname{height}(\tau_{n-1})).$
- 3. If $\tau \equiv (n, \tau_0, \dots, \tau_{n-1}, i)$ is a special constant, define

$$height(\tau) := 1 + max(height(\tau_0), \dots, height(\tau_{n-1})).$$

Lemma B.5.22. The \mathcal{L}_c -theory $T_{\sigma_0}^*(c)$ is consistent.

Proof. Step 1: $T_{\sigma_0}^*$ is consistent with respect to \mathcal{L}_c :

Suppose for a contradiction that in \mathcal{L}_c

$$T_{\sigma_0}^* \vdash \text{False}.$$

Fix a formal \mathcal{L}_c -proof $\sigma_1, \ldots, \sigma_n$ of False from $T^*_{\sigma_0}$ for each special constant c fix a unique variable x_c that does not appear in any φ_i . Note that given an instance of a logical axiom L_i with respect to \mathcal{L}_c , if we replace each special constant with its x_c we get another instance of L_i . The same is the case for instances of modus ponens and generalization, since special constants never appear after quantifiers. This means that we obtain a formal proof of \mathcal{L} -sentences $\sigma'_1, \ldots, \sigma'_n$ of False from $T^*_{\sigma_0}$ by replacing special constants by variables in the way we just described. But then $\neg \text{Con}(T^*_{\sigma_0})$ with respect to \mathcal{L} , which contradicts the fact that with respect to the signature \mathcal{L} the extension $T^*_{\sigma_0}$ is maximally consistent and then in particular consistent.

Step 2: $T_{\sigma_0}^*(c)$ is consistent with respect to \mathcal{L}_c :

Suppose for a contradiction that $T_{\sigma_0}^*(c)$ is inconsistent. Using the compactness theorem there is a finite list of \mathcal{L}_c -sentences in $T_{\sigma_0}^*(c)$ that are inconsistent. In particular we get

$$\neg \text{Con}(T_{\sigma_0}^* + \{\sigma_{i_1,n_1}[c_{j_1}], \dots, \sigma_{i_m,n_m}[c_{j_m}]\})$$

for suitable distinct $\sigma_{i_1,n_1}[c_{j_1}],\ldots,\sigma_{i_m,n_m}[c_{j_m}]$. Choose these sentences such that $n_1+\cdots+n_m+m$ is minimal. WLOG

$$\mathsf{height}(c_{j_m}) \ge \mathsf{height}(c_{j_k})$$

for each k. We thus have that c_{j_m} does not appear in c_{j_k} for k < m for otherwise $c_{j_k} < c_{j_m}$ elaborate at some point. Set

$$\Sigma \coloneqq \{\sigma_{i_1,n_1}[c_{j_1}],\ldots,\sigma_{i_{m-1},n_{m-1}}[c_{j_{m-1}}]\}.$$

Write

$$c_{j_m} \equiv (i_m, \tau_0, \dots, \tau_{n-1}, n_m),$$

hence $\sigma_{i_m,n_m}[c_{j_m}] \equiv \sigma_{i_m}(x_0/\tau_0,\ldots,x_{n-1}/\tau_{n-1},x_n/c_{j_m})$. Note that $\exists x_n$ appears in σ_{i_m} since c_{j_m} witnesses σ_{i_m} , hence

$$\sigma_{i_m,n_m-1}(x_0,\ldots,x_{n-1}) \equiv \exists x_n \sigma_{i_m,n_m}(x_0,\ldots,x_n).$$

Define

$$\widetilde{\sigma}(x_n) \coloneqq \sigma_{i_m,n_m}(x_0/\tau_0,\ldots,x_{n-1}/\tau_{n-1},x_n)$$

and see that only x_n appears free in this formula. Claim:

$$\neg \mathrm{Con}(T_{\sigma_0}^* + \Sigma + \sigma_{i_m,n_m}[c_{j_m}]) \ \stackrel{\mathrm{meta}}{\Longrightarrow} \ \neg \mathrm{Con}(T_{\sigma_0}^* + \Sigma + \exists x_n \widetilde{\sigma}(x_n)).$$

Suppose $T_{\sigma_0}^*$ + Σ + $\sigma_{i_m,n_m}[c_{j_m}]$ is not consistent. Then we get

$$T_{\sigma_0}^* + \Sigma + \sigma_{i_m, n_m}[c_{i_m}] \vdash \text{False}, \tag{11}$$

hence by the deduction theorem

$$T_{\sigma_0}^* + \Sigma \vdash \sigma_{i_m,n_m}[c_{j_m}] \to \text{False}.$$

In this proof replace c_{j_m} by x; a variable that does not occur in σ_{i_m,n_m} or in any of the formulae comprising (11). Note that an instance of a logical axiom or an inference rule is still an instance of the same axiom or inference rule after this replacement. Any sentence in $T^*_{\sigma_0}$ remains unchanged upon such a replacement since these contain no special constants. The same is the case for the sentences in Σ since c_{j_m} is distinct from any other c_{j_k} . This means we get

$$T_{\sigma_0}^* + \Sigma \vdash \widetilde{\sigma}(x) \to \text{False}.$$

With generalization we get

$$T^*_{\sigma_0} + \Sigma \vdash \forall x (\widetilde{\sigma}(x) \to \mathsf{False}).$$

From L_{13} we get

$$T^*_{\sigma_0} + \Sigma \vdash \forall x (\widetilde{\sigma}(x) \to \mathsf{False}) \to (\exists x \widetilde{\sigma}(x) \to \mathsf{False}).$$

By modus ponens

$$T_{\sigma_0}^* + \Sigma \vdash (\exists x \widetilde{\sigma}(x) \to \mathsf{False}).$$

Since x_n does not appear in $\widetilde{\sigma}(x) \to \text{False}$ it is a tautology (which will be used without proof) that

$$T_{\sigma_0}^* + \Sigma \vdash (\exists x_n \widetilde{\sigma}(x_{n_m}) \to \mathsf{False}),$$

which means $\neg \text{Con}(T_{\sigma_0}^* + \Sigma + \exists x_{n_m} \widetilde{\sigma}(x_{n_m}))$. Set $i := i_m$. Let $p \le n$ be the largest integer such that for every $1 \le l \le p$, $\forall x_{n-l}$ appears in σ_i . Then σ_i is on the form

$$\sigma_i \equiv \exists \forall_0 x_0 \dots \exists \forall_{n_m - p - 2} \exists x_{n_m - p - 1} \forall x_{n_m - p} \dots \forall x_{n - 1} \exists x_n \sigma_{i_m, n_m}(x_0, \dots, x_n)$$

Define

$$\widetilde{\sigma}_p :\equiv \sigma_{i_m,n_m-p-1}(x_0/\tau_0,\ldots,x_{n_m-p-1}/\tau_{n_m-p-1})$$

for $p \leq n_m - 1$. When $p = n_m$, $\exists \gamma_{n'} \equiv \forall$ for each $n' < n_m$. In this case we set $\widetilde{\sigma}_p :\equiv \sigma_i \in T^*_{\sigma_0}$. When $p < n_m$, $\exists x_{n_m - p - 1}$ appears in σ_i .

In the first case,

$$\widetilde{\sigma}_p \equiv \forall x_0 \dots \forall x_{n_m-1} \exists x_{n_m} \sigma_{i,n_m}(x_0,\dots,x_{n_m})$$

then since $\tau_0, \ldots, \tau_{n_m-1}$ are variable free, it follows that $T^*_{\sigma_0} \vdash \exists x_{n_m} \widetilde{\sigma}(x_{n_m})$ by repeated use of L₁₀. The claim together with what we assumed towards contradiction shows that $\neg \text{Con}(T^*_{\sigma_0} + \Sigma + \exists x_{n_m} \widetilde{\sigma})$ and then $\neg \text{Con}(T^*_{\sigma} + \Sigma)$, i.e. since we can deduce $\exists x_{n_m} \widetilde{\sigma}(x_{n_m})$, we on only need to add Σ to $T^*_{\sigma_0}$ to get an inconsistent theory. But this contradicts the minimality of $n_1 + \cdots + n_m + m$.

In the second case, since c_{j_m} witnesses σ_i and $\exists x_{n_m-p-1}$ appears in σ_i , we get

$$\tau_{n_m-p-1} \equiv (i, \tau_0, \dots, \tau_{n_m-p-2}, n_m - p - 1)$$

which also by definition witnesses σ_i . Note

$$\sigma_{i,n_m-p-1}[\tau_{n_m-p-1}] \equiv \sigma_{i,n_m-p-1}(x_0/\tau_0,\ldots,x_{n_m-p-2}/\tau_{n_m-p-1},x_{n_m-p-1}/\tau_{n_m-p-1}).$$

From $T_{\sigma_0}^*$ and the above formula, we get

$$\forall x_{n_m-p} \dots \forall x_{n_m-1} \exists x_{n_m} \sigma_{i,n_m-p-1} [\tau_{n_m-p-1}].$$

Using L_{10} we thus get

$$T_{\sigma_0}^* + \sigma_{i,n_m-p-1}[\tau_{n_m-p-1}] \vdash \exists x_{n_m} \widetilde{\sigma}(x_{n_m}) \overset{\mathsf{meta}}{\Longleftrightarrow} T_{\sigma_0}^* \vdash \sigma_{i,n_m-p-1}[\tau_{n_m-p-1}] \to \exists x_{n_m} \widetilde{\sigma}(x_{n_m}).$$

So if we derive False from $T_{\sigma_0}^* + \Sigma + \exists$, then we also derive it from $T_{\sigma_0}^* + \Sigma + \sigma_{i,n_m-p-1}[\tau_{n_m-p-1}]$. But

$$n_0 + \cdots + n_{m-1} + n_m - p - 1 + m < n_0 + \cdots + n_m + m$$

leading to a contradiction.

We thus conclude that $T^*_{\sigma_0}(c)$ is a consistent \mathcal{L}_c -theory.

B.5.5 Gödel's Completeness Theorem (for Countable Signatures)

Lemma B.5.23. $T_{\sigma_0}^*(c)$ can be extended to a consistent list \widetilde{T} of \mathcal{L}_c -sentences such that the additional sentences contain no quantifiers or free variables and such that for each variable free \mathcal{L}_c -sentence σ ,

$$\sigma \in \widetilde{T} \ or \ \neg \sigma \in \widetilde{T}.$$

Proof. We construct the universal list for variable free \mathcal{L}_c -sentences of $T_{\sigma_0}^*(c)$ and go through list, setting $\Theta_0 := T_{\sigma}^*(c)$ and recursively add such a σ to Θ_{n+1} if $\operatorname{Con}(T_{\sigma_0}^*(c) + \Theta_n + \sigma)$. The same argument as in Lindenbaum's lemma shows that this theory, denoted \widetilde{T} , is consistent and has the property that

$$\sigma \in \widetilde{T} \vee \neg \sigma \in \widetilde{T}$$
.

Remark B.5.24. Note that \widetilde{T} is a maximally consistent theory. Indeed if

We now define a \mathcal{L}_c -structure M which we will show in the next is a model of \widetilde{T} and therefor also of T and indeed $T + \neg \sigma_0$.

Lemma B.5.25. Suppose

$$\sigma \equiv \forall x_k \forall \dots \forall x_{n-1} \exists x_n \sigma_{i,n}(x_0/\tau_0, \dots, x_{k-1}/\tau_{k-1}, x_k, \dots, x_n)$$

is in $T^*_{\sigma_0}(c)$. Let $\tau_k, \ldots, \tau_{n-1}$ be arbitrary term constants. Then for

$$c :\equiv (i, \tau_0, \dots, \tau_{n-1}, n),$$

we have that $\sigma_i[c] \in T^*_{\sigma_0}(c) \subset \widetilde{T}$.

Proof. Note that the special constant c will witness σ_i . Indeed,

$$\sigma \equiv \sigma_{i,k}[(i,\tau_0,\ldots,\tau_{k-1},k)],$$

hence $(i, \tau_0, \dots, \tau_{k-1}, k)$ witnesses σ_i , and this together with the fact that $\exists x_m$ does not appear in σ_i for $k \le m \le n-1$ shows that $(i, \tau_0, \dots, \tau_{n-1}, n)$ witnesses σ_i , hence

$$\sigma_{i,n}(x_0/\tau_0,\ldots,x_{n-1}/\tau_{n-1},x_n/c)$$

is in $T^*_{\sigma_0}(c)\subset \widetilde{T}$ by construction.

Lemma B.5.26. Suppose

$$\sigma \equiv \forall x_k \forall \ldots \forall x_n \sigma_{i,n}(x_0/\tau_0,\ldots,x_{k-1}/\tau_{k-1},x_k,\ldots,x_n)$$

is in $T_{\sigma_0}^*(c)$ where $\sigma_{i,n}$ is quantifier free. Let τ_k, \ldots, τ_n be arbitrary term constants. Then

$$\sigma' :\equiv \sigma_{i,n}(x_0/\tau_0,\ldots,x_n/\tau_n)$$

is in \widetilde{T} .

Proof. By L₁₀ we get $T_{\sigma_0}^*(c) \vdash \sigma'$, hence since $\widetilde{T} \vdash \sigma'$, which by maximal consistency of \widetilde{T} shows that $\sigma' \in \widetilde{T}$.

Remark B.5.27. Consider a $\sigma_{i,n}[c_j] \in T^*_{\sigma_0}(c)$ with $c_j \equiv (i,\tau_0,\ldots,\tau_{n-1},n)$. Then the next existential quantifier $\exists r_m \equiv \exists$ with m < n, then $\tau_m \equiv (i,\tau_0,\ldots,\tau_{m-1})$ witnesses σ_i , hence $\sigma_{i,m}[c_j] \in T^*_{\sigma_0}(c)$ and recall that

$$\sigma_{i,m} \equiv \exists_{m+1} x_{m+1} \dots \exists x_n \exists_{n+1} x_{n+1} \dots \exists_N x_N \sigma_{i,N}(x_0, \dots, x_N).$$

Then using L_{10} a potential bunch of times as we did in a proof above we can derive

$$\sigma_{i,N}(x_0/\tau_0,\ldots,x_k/\tau_k,x_{k+1},\ldots,x_N)$$

for any $m \leq k \leq N$ and using that \widetilde{T} is maximally consistent, it follows that this sentence is a an element of said theory. Of no such existential quantifier appear we obviously are in a position where we can just apply L_{10} a potential bunch of times to obtain the same conclusion. The upshot is that for each $\sigma \in T^*_{\sigma_0}(c)$, there is an sPNF sentence $\sigma' \in T^*_{\sigma_0}(c)$,

$$\sigma' \equiv \exists \gamma_0 x_0 \dots \exists \gamma_n x_n \sigma_{i,n}(x_0, \dots, x_n)$$

such that

$$\sigma \equiv \exists x_{k+1} x_{k+1} \dots \exists x_n \sigma_{i,n}(x_0/\tau_0, \dots, x_k/\tau_k, x_{k+1}, \dots, x_n)$$

for some k and term constants τ_0, \ldots, τ_k with $\tau_k \equiv (i, \tau_0, \ldots, \tau_{k-1}, k)$. This fact WILL BE VERY IMPORTANT SOON AND I AM VERY HAPPY THAT I FINALLY KNOW WHY IT IS TRUE!

B.5.6 Construction of a Model of \widetilde{T} & the Proof of Gödel's Completeness Theorem

First we construct the domain of the \mathcal{L}_c -structure. Recall that $\Lambda_{\tau} = [\tau_0, \tau_1, \dots]$ is the potentially infinite list of term constants with respect to \mathcal{L} . Set

$$A_0 := [].$$

If non of the sentences $\tau_n = \tau_0, \dots, \tau_n = \tau_{n-1}$ are in \widetilde{T} we set

$$A_{n+1} := A_n + [t_n].$$

If this is not the case, for each $0 \le m \le n$ for which $\tau_n = \tau_m$ is in \widetilde{T} , append τ_n to the list(s) in A_n which contain t_m . The resulting list, A, will be a potentially infinite list of potentially infinite lists of the form

$$A := [[\tau_{n_0}, \dots], [\tau_{n_1}, \dots], \dots].$$

A simple induction argument shows that each term constant τ shows up in at most one list in A. If so call this list $\widetilde{\tau}$. We define a mapping from \mathcal{L}_c to A, and this mapping will comprise the desired \mathcal{L}_c -structure which will be a model of \widetilde{T} .

• For constants of \mathcal{L} and special constants of \mathcal{L}_c , c

$$c^M:=\widetilde{c}$$

• For a function symbol F in \mathcal{L}_c , we define

$$F^{M}(\widetilde{\tau}_{1},\ldots,\widetilde{\tau}_{n}) := \widetilde{F(\tau_{1},\ldots,\tau_{n})} \quad (\widetilde{\tau}_{1},\ldots\widetilde{\tau}_{n}\in A).$$

• For a relation symbol R in \mathcal{L}_c , we define

$$(\widetilde{\tau}_1,\ldots,\widetilde{\tau}_n)\in R^M: \stackrel{\mathsf{meta}}{\Longleftrightarrow} R(\tau_1,\ldots,\tau_n)\in \widetilde{T}$$

Remark B.5.28. Note that this mapping is well-defined Check!

Theorem B.5.29. The \mathcal{L}_c -structure M defined above defines a model for \widetilde{T} and since T is a subset of \widetilde{T} , when we restrict \bullet^M to \mathcal{L} , it follows that this restriction is a model of $T + \neg \sigma_0$.

Proof. Note that the converse of $M \vDash \sigma \stackrel{\text{meta}}{\Longrightarrow} \sigma \in \widetilde{T}$ since if $M \vDash \sigma$ then $\sigma \in \operatorname{Th}(T) \supset \widetilde{T}$

Consider first the case where σ is variable free. We prove the statement for such σ by induction in the number of logical operators. In the base case $\sigma \equiv \tau = \tau'$ or, in general, $\sigma \equiv R(\tau_1, \ldots, \tau_n)$ for some n-ary relational symbol R and terms $\tau_1, \ldots, \tau_n, \tau, \tau'$. By definition, given any assignment j, for I = (M, j), $\tau = \tau'$ if and only if $I(\tau) = I(\tau')$ and $I(\tau_1, \ldots, \tau_n) \in \widetilde{T}$ if and only if $I(\tau_1, \ldots, \tau_n) \in R^M$.

Now fix σ to be a non-atomic sentence and assume that for every sentence σ' containing fewer logical operators than σ that $\sigma \in \widetilde{\sigma'} \stackrel{\text{meta}}{\Longleftrightarrow} M \vDash \sigma'$. It is a fact that one can find a sentence equivalent to σ which only uses the logical operators \wedge, \neg, \exists . By the soundness theorem we may WLOG assume that any sentence is of this form. Since σ is variable free, we need only consider two case:

 $\sigma \equiv \neg \sigma''$: By induction $\sigma'' \in \widetilde{T}$ if and only if $M \vDash \sigma''$. By definition we thus have

$$\neg \sigma'' \not\in \widetilde{T} \stackrel{\text{meta}}{\Longleftrightarrow} M \not \vDash \neg \sigma'',$$

which is equivalent to

$$\sigma \in \widetilde{T} \stackrel{\mathrm{meta}}{\Longleftrightarrow} M \vDash \sigma$$

 $\sigma \equiv \sigma_1 \wedge \sigma_2$: By induction $\sigma_i \in \widetilde{T} \stackrel{\text{meta}}{\iff} M \models \sigma_i$ for i = 1, 2, hence by elementary considerations in the metatheory it follows that

$$\sigma \equiv \sigma_1 \wedge \sigma_2 \in \widetilde{T} \stackrel{\mathsf{meta}}{\iff} M \vDash \sigma \equiv \sigma_1 \wedge \sigma_2.$$

We now allow σ to contain variables and prove the statement by induction in the number of variables used in σ . We covered the base case above. So assume that σ is not variable free and suppose that $\sigma' \in \widetilde{T} \stackrel{\text{meta}}{\Longrightarrow} M \vDash \sigma'$ for every sentence with less variables than σ . By construction every element in \widetilde{T} not in $T^*_{\sigma_0}(c)$ is a variable free \mathcal{L}_c -sentence. Then $\sigma \in T^*_{\sigma_0}(c)$. WLOG σ is in sPNF. There is a $\widetilde{\sigma} \in T^*_{\sigma_0}(c)$ in special prenex normal form,

$$\widetilde{\sigma} \equiv \mathcal{Y}_0 x_0 \mathcal{Y}_1 x_1 \dots \mathcal{Y}_n x_n \sigma_{i,n}(x_0, \dots, x_n)$$

such that for some $k \leq k$ and term constants $\tau_0, \ldots, \tau_{k-1}$,

$$\sigma \equiv \exists x_k x_k \dots \exists x_n \sigma_{i,n}(x_0/\tau_0, \dots, x_{k-1}/\tau_{k-1}, x_k, \dots, x_n)$$

by Remark B.5.27.

Case $\exists f_k \equiv \exists$: Since σ has variables it must be an element of $T^*_{\sigma_0}(c)$. Note that

$$\sigma' \equiv \exists \gamma_{k+1} x_{k+1} \dots \exists \gamma_n x_n \sigma_{i,n}(x_0/t_0, \dots, x_k/t_k, x_{k+1}, \dots, x_n) \in T_{\sigma_0}^*(c) \subset \widetilde{T}.$$

By induction $M \vDash \sigma'$ and by L_{11} , $\sigma' \vdash \sigma$, hence by the Soundness Theorem $M \vDash \sigma$.

Case $\exists \forall_k \equiv \forall$: We split this case into two cases:

Case 1: There is an existential quantifier appearing after $\exists y_k$:

In this case for some $k < m \le n$,

$$\sigma \equiv \forall x_k \dots \forall x_{m-1} \exists x_m \sigma_{i,m}(x_0/\tau_0, \dots, x_{k-1}/\tau_{k-1}, x_k, \dots, x_m).$$

Then setting

$$c_j \equiv (i, \tau_0, \dots, \tau_{m-1}, m),$$

where τ_k, \ldots, τ_m are arbitrary term constants, by Lemma B.5.25,

$$\sigma'' :\equiv \sigma_{i,m}(x_0/\tau_0,\ldots,x_{m-1}/\tau_{m-1},x_m/c_j) \in \widetilde{T}.$$

By induction it follows that $M \models \sigma''$. Take an arbitrary assignment j and consider I = (M, j). Note that then

$$I \vDash \sigma_{i,m}(x_0/\tau_0, \dots, x_{m-1}/\tau_{m-1}, x_m/c_j) \stackrel{\mathsf{meta}}{\Longleftrightarrow} I[x_m \mapsto I(c_j)] \sigma_{i,m}(x_0/\tau_0, \dots, x_{m-1}/\tau_{m-1}, x_m)$$

$$\stackrel{\mathsf{meta}}{\Longleftrightarrow} I \vDash \exists x_m \sigma_{i,m}(x_0/\tau_0, \dots, x_{m-1}/\tau_{m-1}, x_m)$$

$$\stackrel{\mathsf{meta}}{\Longleftrightarrow} I[x_k \mapsto \widetilde{\tau_k}] \dots [x_{m-1} \mapsto \widetilde{\tau_{m-1}}] \vDash \exists x_m \sigma_{i,m}(x_0/\tau_0, \dots, x_{k-1}/\tau_{k-1}, x_k, \dots, x_m)$$

Since $\tau_k, \ldots, \tau_{m-1}$ were taken arbitrarily it follows that

$$I \vDash \forall x_k \dots \forall x_{m-1} \exists x_m \sigma_{i,m}(x_0/\tau_0, \dots, x_{k-1}/\tau_{k-1}, x_k, \dots, x_m) \overset{\text{meta}}{\Longleftrightarrow} I \vDash \sigma \overset{\text{meta}}{\Longleftrightarrow} M \vDash \sigma$$

Case 2: Every quantifier appearing after $\exists \gamma_k$ is universal:

In this case

$$\sigma \equiv \forall x_k \dots \forall x_n \sigma_{i,n}(x_k, \dots, x_n).$$

Then using Lemma B.5.26,

$$\sigma'' \equiv \sigma_{i,n}(x_0/\tau, \dots, x_n/\tau_n) \in \widetilde{T}$$

for arbitrary term constants τ_k, \ldots, τ_n . By induction $M \models \sigma''$. Following a similar argument to that of case 1 we obtain

$$M \models \sigma$$
.

So we conclude that $M \vDash \sigma$ for any $\sigma \in \widetilde{T}$. It thus follows that $M \vDash \widetilde{T}$ and hence that $M \vDash T + \sigma_0$.

Theorem B.5.30. (Henkin's Existence Theorem). If \mathcal{L} is a countable signature and T is a consistent then it has a model M. Moreover, if σ_0 is a sentence such that $T \not\vdash \sigma_0$, then there is a model of $T + \neg \sigma_0$ and in particular a model of T.

Corollary B.5.31. *Every theory that can be completed has a model.*

Definition B.5.32. Let T be an \mathcal{L} -theory and σ an \mathcal{L} -sentence, then T is a model of σ , denoted $T \vDash \sigma$, if for every model M of T we have $M \vDash \sigma$

Corollary B.5.33. (Gödel's Completeness Theorem) Let \mathcal{L} be a countable signature. Consider an \mathcal{L} -theory T and an \mathcal{L} -sentence σ . Then

$$T \vDash \sigma \stackrel{\mathsf{meta}}{\iff} T \vdash \sigma.$$

Proof. $T \vdash \sigma \stackrel{\text{meta}}{\Longrightarrow} T \vDash \sigma$ is the soundness theorem. Suppose $T \vDash \sigma$. If T is inconsistent, then $T \vdash \sigma$. So suppose Con(T). Then if $T \not\vdash \sigma$, by Henkin's Existence Theorem we can find a model of $T + \neg \sigma$, i.e.

Exists
$$M(M \models T + \neg \sigma)$$

which is equivalent to

Exists
$$M(M \vDash T \text{ and } M \vDash \neg \sigma) \stackrel{\text{meta}}{\Longleftrightarrow} \text{not}(\text{ Forall } M(M \vDash T \stackrel{\text{meta}}{\Longrightarrow} M \vDash \sigma))$$

Corollary B.5.34. Let T be a theory. If every finite subset of T has a model then T has a model.

Proof. Indeed if every finite subset of T has a model, then every finite subset of T is consistent, hence by the Compactness Theorem T is consistent, so by Henkin's Existence Theorem, T has a model.

The above corollary is very useful for doing mathematics. Once we have argued for the formal proofs of basic theorems in ZF(C) and when we have a standard model of ZF(C), we have a way to prove mathematical statements without needing to do formal proofs. For instance instead of doing a formal proof of some sentence σ from the axioms of Group Theory (GT), Ring Theory(RT), Topology (T0P, which is an extension of the axioms of ZF(C)), or (almost) whatever set of axioms we desire, we simply prove GT $\models \sigma$, RT $\models \sigma$ or T0P $\models \sigma$. For example in group theory to prove that the neutral element is unique, we can take an arbitrary model of group theory and prove the result in this model.

B.6 The Axioms and Standard Model of Peano Arithmetic

B.6.1 The Axioms

We introduce to the language of first order predicate logic the following symbols, \mathcal{L}_{PA} := $\{0, s, +, \cdot\}$ and these symbols make up the language of Peano Arithmetic (PA). The axioms of Peano arithmetic are as follows.

Axiom(s).

 PA_0 : $\neg \exists x (sx = 0)$

 $PA_1: \quad \forall x \forall y (sx = sy \rightarrow x = y)$

 PA_2 : $\forall x(x+0=x)$

PA₃: $\forall x \forall y (x + sy = s(x + y))$

 PA_4 : $\forall x(x \cdot 0 = 0)$

PA₅: $\forall x \forall y (x \cdot sy = (x \cdot y) + x)$

 $PA_6: (\varphi(0) \land \forall x(\varphi(x) \to \varphi(s(x)))) \to \forall x\varphi(x)$

B.6.2 The Standard Model of PA

For the standard model we let the domain be \mathbb{N} , i.e. the naive notion of natural numbers we described earlier consisting of $\mathbf{0}$ and finite strings of the form $\mathbf{s} \dots \mathbf{s} \mathbf{0}$.

B.6.3 Gödels Incompleteness Theorem

C Set Theory

C.1 An axiomatization of set theory

C.1.1 Zermelos axioms

We introduce set theory first via the Zermelo-Frankel axioms of set theory with an added axiom of choice. This will be axioms with respect to the signature $\{\in\}$. For a pair of variables z, X we define $z \in X := \{(z, X), \text{ hence } \in \text{ is a binary relational symbol.}$ This is to be read as "z is an element of X" or "z belongs to X". We now introduce the axioms of Zermelos set theory, starting with the first four.

Axiom(s). 0. The axiom of empty set: $\exists \emptyset \forall z (\neg(z \in \emptyset))$

- 1. The axiom of extensionality: $\forall X \forall Y (\forall z (z \in X \iff z \in Y) \implies X = Y)$.
- 2. The axiom of pairing: $\forall x \forall y \exists P \forall z (z \in P \iff (z = x \lor z = y))$.
- 3. The axiom of Union: $\forall X \exists U \forall z (z \in U \iff \exists w \in X (z \in w))$.

To shorten notation we define $z \notin X : \iff \neg(z \in X)$. with the axioms above in mind we make some definitions. Before that we give a few remarks on the axioms given so far

Remark C.1.1. One should think about the set produced from the axiom of the empty set to be a set that contains no element.

The converse statement in the axiom of extensionality is also true, i.e.

$$\forall X \forall Y (X = Y \implies \forall z (z \in X \iff z \in Y)).$$

If $z \in X$ using substitution rule for formulas, $z \in Y$. Conversely by the same argument, if $z \in Y$ we get that $z \in X$.

The empty set is unique: For if \emptyset and \emptyset' satisfy axiom 0, then $\forall z (z \notin \emptyset \land z \notin \emptyset')$, meaning $\forall z (z \in \emptyset \iff z \in \emptyset')$, hence by axiom 1, $\emptyset = \emptyset'$.

The set P obtained from the axiom of pairing is uniquely given by x and y: Indeed, if given x and y, and P and P' are sets satisfying $\forall z(z \in P \iff (z = x \lor z = y))$ and $\forall z(z \in P' \iff (z = x \lor z = y))$, then $z \in P \iff z = x \lor z = y \iff z \in P$, hence by axiom 1 P = P'.

Given sets x, y we can therefor define $\{x, y\}$ to be the unique set satisfying the pairing

axiom. We also define $\{x\}$ to be the unique set satisfying the pairing axiom for the pair x, x and such a set is called *the singleton containing* x.

The set of pairs is unordered, i.e. $\forall X \forall Y (\{X,Y\} = \{Y,X\})$. This is an immediate consequence of \vee being commutative and the axiom of extensionality. We will return to the question of defining ordered pairs later on.

On the axiom of union: Loosely, it states that given a set, we may define the union over this set. The axiom of extensionality again implies that this is uniquely determined by the first set in the first universal quantifier presented in formula, i.e. there is a unique set, $\bigcup X$, satisfying $\forall z(z \in \bigcup X \iff \exists w \in X(z \in w))$. We may then form a binary functional symbol \cup , the union of X and Y, defined by

$$\cup (X,Y) \coloneqq X \cup Y \coloneqq \bigcup \{X,Y\}$$

Definition C.1.2. We introduce yet another binary relation symbol \subset , defined by

$$\subset (X,Y) :\equiv X \subset Y :\iff \forall z(z \in X \implies z \in Y),$$

i.e. if X and Y are sets we get that $X \subset Y$ to be read X is a subset of Y if every element of X is also an element of Y.

We introduce a another binary relation \subsetneq ,

$$X \subseteq Y : \iff X \subset Y \land \neg (X = Y)$$

We then say that X is a proper subset of Y

Remark C.1.3. Using the axiom of extensionality we get that if $X \subsetneq Y$ then $\neg(\forall z(z \in X \iff z \in Y))$, hence $\exists z((z \in X \land z \notin Y) \lor (z \in Y \land z \notin X))$, and since $X \subset Y$, we get $\exists z(z \in Y \land z \notin X)$. Note that $\emptyset \subset X$, since proving $\forall z(z \in \emptyset \implies z \in X)$ boils down to the fact that $z \in \emptyset$ definitionally is equal to False.

Definition C.1.4. A set X is called *inductive* if

$$\forall y (y \in X \implies (y \cup \{y\}) \in X).$$

We define

$$\operatorname{ind}(X) : \iff y(y \in X \implies (y \cup \{y\}) \in X)$$

Example C.1.5. Note that $ind(\emptyset)$ by ex falso.

To get more inductive sets we need the axiom of infinity

Axiom(s).

$$\exists I (\emptyset \in I \land \operatorname{ind}(I))$$

Remark C.1.6. One notes that for such an I, $\{\emptyset\} = \emptyset \cup \{\emptyset\} \in I$ and by the same argument $\{\emptyset, \{\emptyset\}\} \in I$ so from this we get a way to recursively construct non-empty sets.

The following is an axiom schema called the axiom schema of seperation

Axiom(s). For each formula $\varphi(z, p_1, \dots, p_n)$ where all the free variables of φ are among z, p_1, \dots, p_n , we postulate

$$\forall X \forall p_1 \dots \forall p_n \exists Y \forall z (z \in Y \iff (z \in X \land \varphi(z, p_1, \dots, p_n)))$$

The above axioms lets us form new sets by imposing some conditions on the elements of the set using a formula, i.e. we can in many instances construct sets of the form $\{z \in X : \varphi(z)\}$, i.e. given a set X and the sufficient data to write a term of the formula φ we can find a set Y such that $z \in Y \iff (z \in X \land \varphi(z,_))$. By the usual argument, once the sufficient data is provided to this axiom schema, the set Y which it produces is uniquely given by this data, so we may define

$$\{z \in X : \varphi(z, _)\}$$

as the unique set satisfying the axiom of seperation with respect to φ . Note that $\{z \in X : \varphi(z)\} \subset X$.

Example C.1.7. 1. Consider sets X, Y and consider the formula $\varphi(z, S) \equiv z \in S$. We then define

$$X \cap Y := \{ z \in Y : \varphi(z, X) \}.$$

Note that $z \in X \cap Y \iff (z \in X \land z \in Y)$, which shows that given arbitrary sets X and Y

$$\{z:z\in X\land z\in Y\}$$

can be uniquely defined. We call this set *the intersection of* X *and* Y, hence we obtain a binary function symbol \cap taking a pair of sets to their intersection.

2. A more general construction than the one above, is to consider $\varphi(z,S) \equiv \forall T \in S(z \in T)$. Than given a set X and applying the axiom schema of separation to $\bigcup X$ and the formula $\varphi(z,X)$ we get the set

$$\bigcap X \coloneqq \Big\{z \in \bigcup X : \forall Y \in X (z \in Y)\Big\}$$

which is a subset of $\bigcup X$. In this way we obtain a unary function symbol \bigcap taking X to the intersection of the elements in X. Note that $X \cap Y = \bigcap \{X, Y\} = \bigcap X \cup Y$.

3. We can also define *set difference* from this axiom schema. Consider sets X and Y and a formula $\varphi(z,Y) \equiv z \notin Y$. Then we can form

$$\{z \in X : z \notin Y\}.$$

The next axiom lets us form the set of all subsets of any set.

Axiom(s).

$$\forall X \exists PS \forall z (z \in PS \iff z \subset X)$$

By the axiom of extensionality we get that for each X there is a unique PS satisfying $\forall z(z \in PS \iff z \subset X)$. We from now on denote this set 2^X or $\mathcal{P}(X)$. At this point, we have enough axioms to build a lot of mathematics. We could at this point for instant diverge to construct a set of ordinal numbers ω , that assuming the consistency of Z, in a model of Z will let us construct a model of PA. We may also define cartesian products of a pair of sets from which, we could define relations such as orders, equivalence relations and functions and from thereon, we could define functions on $\mathbb N$ satisfying the Peano Axioms. Before doing this, however, we will opt to introduce two more axioms.

C.1.2 ZF Set Theory

The axioms of Zermelo set theory with the addition of the following two added axioms is called *Zermelo-Fraenkel set theory*. The first added axiom is in fact an axiom schema called *the axiom schema of replacement*. Before stating the axiom we introduce the notion of class function

Definition C.1.8. Consider a first order formula $\varphi(X, Y, p)$ where X, Y are free variables and p a tuple of variables of φ such that

$$\forall X \exists ! Y(\varphi(X, Y, p))$$

We define a unary function symbol F given by

$$F(X) = Y : \iff \varphi(X, Y, p)$$

Such a unary function symbol is called the *class function for* φ .

Axiom(s). Consider a first order formula $\varphi(x, y, p)$ where x, y and p a tuple of parameters are free variables of φ . We then have

$$\forall A \forall p (\forall x \in A \exists ! y \varphi(x, y, p) \implies \exists B \forall x \in A \exists y \in B \varphi(x, y, p))$$

Remark C.1.9. For a set A and a class function F, we can then find a set B containing the elements of the form F(x) where $x \in A$. We may then consider the set

$$F[A] := \{ y \in B : \exists x \in A(y = F(x)) \} = \{ F(x) : x \in A \}.$$

The axiom was introduced by Fraenkel and Skolem, who independently of each other in 1922 discovered that in Zermelo's axioms it is not possible to prove the existence of the set $\{\mathbb{N}, \mathcal{P}(\mathbb{N}), \mathcal{P}(\mathcal{P}(\mathbb{N})), \ldots\}$. With this axiom the class function $X \mapsto \mathcal{P}(X)$ gives rise to such a set.

The second axiom is called the axiom of foundation

Axiom(s).

$$\forall X (\exists z (z \in X) \implies \exists y \in X (y \cap X = \emptyset)).$$

This axiom was introduced in 1925 by John von Neumann in order to define ordinal numbers.

Example C.1.10. Suppose for a contradiction that there is a sequence of sets satisfying $x_1 \ni x_2 \ni x_3 \ni \ldots$ Consider the set containing these sets $X = \{x_1, x_2, x_3, \ldots\}$ (implicitly we are here assuming the existence of $\mathbb N$ and use the axiom schema of replacement with the formula $\varphi \equiv T$). Then take an element x_k of X. Note $x_{k+1} \in x_k$ and $x_{k+1} \in X$, hence $x_k \cap X \neq \emptyset$, which in contradiction with the axiom of foundation. We can therefor conclude that there is no set x with $x \in x$, since this would imply the existence of a descending sequence $x \ni x \ni \ldots$, which shows that we cannot run into Russels paradox in Zermelo-Fraenkel set theory. Nor can we have a sequence of sets x_1, \ldots, x_n satisfying

$$x_1 \in x_2 \in x_3 \in \dots \in x_n \in x_1$$

for then we would get a sequence $x_1 \ni x_n \ni \cdots \ni x_2 \ni x_1 \ni \ldots$. One can also prove that $\forall x (x \notin x)$ simply using the axiom of foundation on the set $\{x\}$. Indeed, there is an element $z \in \{x\}$, so there must be a $y \in \{x\}$ such that $y \cap \{x\} = \emptyset$, which implies that for any $w \in \{x\}$, $w \notin y$. Now note that y = w = x, which means $x \notin x$.

C.2 Relations

Definition C.2.1. Consider sets x, y. We define the ordered pair of x, y to be

$$(x,y) := \{\{x\}, \{x,y\}\}.$$

Remark C.2.2. $(x,y) = (x',y') \iff (x = x' \land y = y')$. Indeed, if (x,y) = (x',y'), then

$$\{x\} = \{x'\} \land \{x,y\} = \{x',y'\} \lor \{x\} = \{x',y'\} \land \{x,y\} = \{x'\}$$

In the first case we get that x = x' and that $x = x' \wedge y = y' \vee x = y' \wedge y = x'$. In either case it easily follows that x = x' and y = y'. In the second case $x = x' \wedge x = y'$ and $x' = x \wedge x' = y$, so trivially x = x' and y = y'.

Definition C.2.3. Consider sets X and Y. The axiom schema of separation, the axiom of powerset and the axiom of union lets us form the set

$$X \times Y := \{(x, y) \in \mathcal{P} (\mathcal{P}(X \cup Y)) : x \in X \land y \in Y\}.$$

Given sets X_1, \ldots, X_n we recursively define $X_1 \times \cdots \times X_n$ to be

$$(X_1 \times \cdots \times X_{n-1}) \times X_n$$
.

We denote an element of this set $((x_1, \ldots, x_{n-1}), x_n)$ by (x_1, \ldots, x_n)

Remark C.2.4. Using induction on the number of sets we can show that $(x_1, \ldots, x_n) = (x'_1, \ldots, x'_n)$ if and only if $x_i = x'_i$ for every $i \in \{1, \ldots, n\}$.

Definition C.2.5. An *n-ary relation* on *n* sets X_1, \ldots, X_n is a subset $R \subset X_1 \times \cdots \times X_n$. For an *n*-tuple $(x_1, \ldots, x_n) \in X_1 \times \cdots \times X_n$.

A 2-ary relation R on sets X, Y is called a *binary relation*. We define $xRy :\equiv (x, y) \in R$. If R is a relation on $S \times S$ for some set S, we call it a *(binary) relation on* S.

In the following we will investigate different notions of (binary) relations between elements in sets.

C.2.1 Functions

Definition C.2.6. We define a (set theoretical) function f from a set X to a set Y, denoted $f: X \to Y$, to be a relation $f \subset X \times Y$ satisfying

$$\forall x \in X \exists ! y \in B((x, y) \in f).$$

For an $x \in A$ we take f(x) to be the unique element in Y satisfying $(x, f(x)) \in f$. With this notation if x = x' then f(x) = f(x'). For a subset $Z \subset X$, the axiom schema of seperation lets us form the the image of Z under f, which we define as

$$f(Z) := \{ f(x) : x \in Z \}.$$

We can also define the *restriction of* f *to* Z as the set

$$f|_Z := \{(x, f(x)) \in f : x \in Z\}$$

We denote the set of function between X and Y by ${}^{X}Y$, i.e.

$${}^{X}Y := \{ f \subset X \times Y : \forall x \in X \exists ! y \in Y ((x, y) \in f) \}$$

Definition C.2.7. A function $f: X \to Y$ is called *surjective* or *onto* if

$$\forall y \in Y \exists x \in X(f(x) = y).$$

The short hand notation for a function being surjective is $f: X \rightarrow Y$.

Definition C.2.8. A function $f: X \to Y$ is called *injective* or *one-to-one* if

$$\forall x \forall x' (f(x) = f(x') \implies x = x').$$

The short hand notation for f being injective is $f: X \hookrightarrow Y$.

Definition C.2.9. If a function $f: X \to Y$ is both surjective and injective, then it is called *bijective*. The short hand notation for f being bijective is $f: X \xrightarrow{\sim} Y$.

Remark C.2.10. Note that if f is bijective, then

$$\forall y \in Y \exists ! x \in X((x, y) \in f),$$

or more succinctly for each $y \in Y$ we may find a unique $x \in X$ satisfying y = f(x). Indeed given a $y \in Y$, there is an $x \in X$ such that $(x,y) \in f$ (in other words y = f(x)) since f is surjective. If x' is another element in X satisfying $(x',y) \in f$. Then f(x) = y = f(x'), hence x = x' since f is injective. This lets us form the *the inverse of* f, which we take to be the set

$$f^{-1}\coloneqq \left\{(y,x)\in Y\times X: (x,y)\in f\right\}.$$

This is indeed a function, for if $y \in Y$ then there is a unique $x \in X$ such that $(x, y) \in f$, meaning x is unique such that $(y, x) \in f^{-1}$.

We can also define a way to compose certain compatible functions to form new functions.

Definition C.2.11. Let $f: X \to Y$, $g: Y \to Z$ be arbitrary functions. Then we define a set

$$g \circ f \coloneqq \left\{ (x,z) \in X \times Z : \exists y \in Y ((x,y) \in f \land (y,z) \in g) \right\}.$$

Lemma C.2.12. Let $f: X \to Y$, $g: Y \to Z$ be arbitrary functions. $g \circ f$ is a function from X to Z and for each $x \in X$, $(g \circ f)(x) = g(f(x))$.

Proof. Let $x \in X$. Then setting y := f(x), z := g(f(x)), $(x,y) \in f$ and $(y,z) \in g$, so $(x,z) \in g \circ f$. If z' is such that $(x,z') \in g \circ f$, then there is a $y' \in Y$ such that $(x,y') \in f$ and $(y',z') \in g$. Since f is a function, y' = f(x) and since g is a function z' = g(y') = g(f(x)) = z.

To get away from explicitly constructing functions as sets we prove the following lemma

Lemma C.2.13. Let $f, g: X \to Y$ be functions. f = g iff f(x) = g(x) for every $x \in X$.

Proof. " \Longrightarrow ": Suppose f = g. Let $x \in X$. Then $(x, f(x)) \in X$ by the converse statement of the axiom of extensionality $(x, f(x)) \in g$. Then since g is a function f(x) = g(x).

" \Leftarrow ": Suppose f(x) = g(x) for every $x \in X$. Let $(x,y) \in f$ be given. Then $(x,y) = (x,f(x)) = (x,g(x)) \in g$, so $f \subset g$. By symmetry $g \subset f$. Then $\forall z(z \in f \iff z \in g)$, so the axiom of extensionality tells us that f = g.

We may then construct a function $f:X\to Y$ only by specifying the image under each element in the *domain* X.

$$f: X \to Y$$

 $x \mapsto f(x)$

where f(x) is some set. Explictly this postulates that

$$\{(x,y) \in X \times Y : y = f(x)\},\$$

so one has to check that $f(x) \in Y$ i.e. check that f(x) is an element of the *codomain* (this to check that it forms a set that is a subset of $X \times Y$), and that it is in particular a function (so one has to check that if x = x' then f(x) = f(x')).

Example C.2.14. Here are some simple examples of functions:

1. Let X and Y be sets and fix a $y \in Y$. Consider the function

$$f: X \to Y$$
$$x \mapsto u$$

I.e. the set $f = \{(x, a) \in X \times Y : a = y\}$. Indeed, $f(x) = y \in Y$ for every $x \in X$. If x = x', then f(x) = y = f(x'). So f is a function.

2. Let X be a set. Then

$$\mathrm{id}_X:X\to X$$

$$x\mapsto x$$

i.e. the set $\{(x,y) \in X \times X : y = x\}$ defines a function. Indeed, if $(x,y) \in \mathrm{id}_X$, then $(x,y) = (x,x) \in X \times X$. Suppose x = x', then $\mathrm{id}_X(x) = x = x' = \mathrm{id}_X(x')$, so id_X is a function.

Lemma C.2.15. Let $f: X \to Y$ be a function. Then f is bijective if and only if there is a function $g: Y \to X$ such that $g \circ f = \mathrm{id}_X$ and $f \circ g = \mathrm{id}_Y$. If so g is unique.

Proof. " \Longrightarrow :" Set $g := f^{-1}$. Let $x \in X$. Since $(f(x), x) \in f^{-1}$, we get that $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x = \mathrm{id}_X(x)$. So $f^{-1} \circ f = \mathrm{id}_X$. By symmetry $f^{-1} \circ f = \mathrm{id}_Y$. " \leftrightarrows ": Let $g \in Y$ and set x = g(y). Then

$$f(x) = f(g(y)) = (f \circ g)(y) = y.$$

Suppose $x, x' \in X$ are given such that f(x) = f(x'). Then

$$x = (g \circ f)(x) = g(f(x)) = g(f(x')) = (g \circ f)(x') = x'.$$

Then f is both surjective and injective, so f is bijective.

Suppose g is a function satisfying $g \circ f = \mathrm{id}_X$ and $f \circ g = \mathrm{id}_Y$. Let $y \in Y$, then y = f(x) for some x, then $g(y) = g(f(x)) = x = f^{-1}(f(x)) = f^{-1}(y)$, so $g = f^{-1}$.

Definition C.2.16. For a function $f: X \to Y$ we call a function $g: Y \to X$ such that $g \circ f = \mathrm{id}_X$ and $f \circ g = \mathrm{id}_Y$ the *mutual inverse of* f (with respect to composition)

Remark C.2.17. We have just seen that a function has a mutual inverse if and only if it is bijective and that this inverse is equal to f^{-1} .

C.2.2 Products of Sets

Definition C.2.18. Consider a set I and a set X such that there is a surjective function

$$I \to X$$
 $i \mapsto x_i$

We call X a family of sets indexed by I and it is denoted $\{x_i\} := \{x_i\}_{i \in I}$. We introduce the notation

$$\bigcup_{i \in I} x_i := \bigcup \{x_i\} = \bigcup X$$

and

$$\bigcap_{i \in I} x_i := \bigcap \{x_i\} = \bigcap X.$$

Note that given a class function F and a set I, we get a well-defined function $I \to F[I], i \mapsto F(i)$ using the axiom schema of replacement. So given a class function we can think about F[I] as a family of sets indexed by I.

Definition C.2.19. Let a set I and a family of sets index by I, $\{X_i\}$ be given such that $X_i \neq \emptyset$ for each $i \in I$. We then define the cartesian/direct product of $\{X_i\}$ to be the set

$$\prod_{i \in I} X_i := \left\{ f \in {}^I \bigcup_{i \in I} X_i : \forall i \in I(f(i) \in X_i) \right\}.$$

With this definition presupposing the construction of the ordinals, we may construct a n-ary relation on an n-fold product of sets.

Definition C.2.20. Let $n \in \omega$ (where ω is the first infinite ordinal). We then define an n-ary relation on sets X_1, \ldots, X_n to be a subset $R \subset X_1 \times X_2 \times \cdots \times X_n$ where $X_1 \times X_2 \times \cdots \times X_n := \prod_{i \in n} X_i$.

C.2.3 ZFC: Adding the Axiom of Choice

The axiom of choice is a statement that seems obvious: If we have a set X that does not contain the empty set, then we can pick an element from each $x \in X$. This of course is not a precise statement, since there is no precise notion of "picking" an element that can be derived from the axioms of ZF in any case where we wish to do dish. To be precise, what we mean to say is that we may find a function, $f: X \to \bigcup X$ satisfying $\forall x \in X (f(x) \in x)$ and this statement if one thinks about satisfies our notion of picking an element from each $x \in X$. This is independent of ZF as proven by Paul Cohen in 1964. As it turns out some rather paradoxical things can happen when the axiom of choice (AC) is assumed, but it is in some sense a sufficient and nescessary statement for the study of something as "simple" as for instance finite dimensional vector spaces. In this example we need it to be able to be able to "pick" a basis for a finite dimensional vector space, which is an action the legality of which seems self-evident. Nonetheless it is equivalent to AC. If we take the cartesian product over any set that does contain the empty set (however you wish to interpret this), we run into the problem of proving that this is non-empty being equivalent to AC. So it is certainly nescessary in some cases. However, it allows for a solid ball in \mathbb{R}^3 being equidecomposable to two copies of itself. In other words there is way of constructing 2 solid balls in 3 dimensional euclidean space by simply gluing together pieces of 1 such ball in such a way that no stretching is involved.

Axiom(s). (AC)

$$\forall X \left(\emptyset \notin X \implies \exists f \left(f \in {}^{X} \bigcup X \land \forall x \in X (f(x) \in x) \right) \right).$$

The f in this axiom is called a choice function. We now construct the cartesian product over a set X and show that assuming AC we

Theorem C.2.21. The following are equivalent

- 1. AC
- 2. For every $X = \{X_i\}_{i \in I}$ where $X_i \neq \emptyset$ for every $i \in I$, $\prod_{i \in I} X_i \neq \emptyset$.

Proof. Assume AC. Let f be a choice function on X. By definition of the cartesian product, $f \circ (i \mapsto X_i) \in \prod_{i \in I} X_i$. Assume 2. Let X that does not have \emptyset as a member. We may view X as a family of sets indexed by X using id_X . Then using the assumption there is a function $f: X \to \bigcup_{x \in X} x = \bigcup X$ such that $f(x) \in x$ for every $x \in X$, meaning f is a choice function.

C.2.4 Orderings

Definition C.2.22. Let X be a non-empty set. A *Partial order* on X is a relation \leq on X satisfying,

1. reflexivity,

$$x \sim x$$
 for every $x \in X$

2. antisymmetry,

$$x \le y \text{ and } y \le x \implies x = y \text{ for every } x, y \in X$$

3. transitivity,

$$x \le y$$
 and $y \le z \implies x \le z$ for every $x, y, z \in X$.

Remark C.2.23. Given a partial order \leq , we have that \geq is a partial order as well.

Example C.2.24. Let X be a set and $\mathcal{X} \subset 2^X$. Then $\subset := \{(A, B) \in \mathcal{X} \times \mathcal{X} : \forall x (x \in A \implies x \in B)\}$ defines a partial order on \mathcal{X} .

Another example is that of \leq on \mathbb{N},\mathbb{Z} or \mathbb{Q} .

Definition C.2.25. Let X be a set with a partial order and $\{x_i\}_{i\in\mathbb{N}}\subset X$ be a sequence. We say that $\{x_i\}_{i\in\mathbb{N}}$ is descending with respect to \leq if $x_i\geq x_{i+1}$ for every $i\geq 0$ and ascending with respect to \leq if $x_i\leq x_{i+1}$ for every $i\geq 0$. A sequence $\{x_i\}_{i\in\mathbb{N}}$ is said to stabilize if there is a non-negative integer n such that $x_n=x_{n+d}$ for every $d\geq 0$.

Definition C.2.26. A partial order \leq on a non-empty set X is called *total order* if for every $x, y \in X$, $x \leq y$ or $y \leq x$.

Definition C.2.27. Let X be a set with a partial order \leq . A subset Y of X is called a *chain* if \leq defines a total order on Y.

Remark C.2.28. Any ascending/descending sequence $\{x_i\}_{i\in\mathbb{N}}$ is a chain and is denoted

$$x_1 \le x_2 \le \dots$$
 respectively $x_1 \ge x_2 \ge \dots$,

these are called ascending/descending chains

We give the following axiom which one check is equivalent to the axiom of choice

Axiom(s). (Zorn's Lemma) Let $X \neq \emptyset$ be a set with a partial order \leq such that for every chain $C \subset X$ there exists an $x \in C$ such that $c \leq x$ for every $c \in C$, (i.e. there is an upper bound x for C in C). Then there is a maximal element in $m \in X$, i.e. for every $y \in X$ if $m \leq y$, then m = y.

Theorem C.2.29. *In ZF Zorn's Lemma is equivalent to AC.*

Proof. Do at some point

Example C.2.30. In certain situations we do not need to assume Zorn's Lemma.

1. Suppose X is a non-empty finite set with n elements and a partial order \leq . Then X has a maximal element. Indeed, this is easily proven by induction in n. If X has one element this is trivially maximal. Consider for $n \geq 1$ $X = \{x_1, \ldots, x_{n+1}\}$. Then by induction $\{x_1, \ldots, x_n\}$ has a maximal element x_i . Then $\max_{\leq} (x_i, x_{n+1})$ is a maximal element of X.

2. A topology τ on some set X has X as a maximal element

We give a reformulation of every chain having a maximal/minimal element

Lemma C.2.31. Let $X \neq \emptyset$ be a set with a partial ordering \leq . Every ascending/descending sequence in X stabilizes if and only if every chain C in X has a upper/lower bound in C.

Proof. We only check the ascending case since a descending sequence is just an ascending sequence with respect to > and a minimal element is just a maximal element with respect to >.

" \Longrightarrow ":We prove the contrapositive. Suppose $C \subset X$ is a chain that does not have an upper bound in C. Let $c_1 \in C$. Then there exists $c_2 \in C$ such that $c_1 < c_2$. Continuing this process recursively we get a sequence $\{c_i\}_{i\in\mathbb{N}}$ such that $c_i < c_{i+1}$ for every $i \geq 0$, hence this is a sequence in X that does not stabilize.

" \Leftarrow ": Let $\{x_i\}_{i\in\mathbb{N}}$ be an ascending sequence in X. Then $\{x_i\}_{i\in\mathbb{N}}$ is a chain. Then there exists a $x_n \in \{x_i\}_{i\in\mathbb{N}}$ such that $x_j \leq x_n$ for every $j \geq 1$. Now since $x_n \leq x_{n+d}$ for every $d \geq 0$ it follows that $x_n = x_{n+d}$ for every $d \geq 0$, hence $\{x_i\}_{i\in\mathbb{N}}$ stabilizes.

Definition C.2.32. A total order \leq on a set X is called a *well-ordering* if every non-empty subset $Y \subset X$ has an element $y_0 \in Y$ such that for every $y \in Y$, $y_0 \leq y$. If X is a set that can be well ordered by a total order \leq , we write $\operatorname{wo}_{\leq}(X)$.

Definition C.2.33. The well-ordering principle refers to the statement

$$\forall X(X \neq \emptyset \implies \exists \leq \subset X \times X \; \mathrm{wo}_{\leq}(X))$$

We will later see that the well-ordering principle is in fact equivalent to the axiom of choice.

C.2.5 Equivalence Relations

Definition C.2.34. Let X be a non-empty set. We define an *equivalence relation* to be a relation \sim on X satisfying

1. reflexivity,

$$x \sim x$$
 for every $x \in X$

2. symmetry,

$$x \sim y \implies y \sim x \text{ for every } x, y \in X$$

3. transitivity

$$x \sim y \ \land y \sim z \implies x \sim z \text{ for every } x, y, z \in X.$$

Here we define $x \sim y$ to mean $(x,y) \in \sim$. For an $x \in X$ we define the *equivalence class* under \sim represented by x to be the set

$$[x]_{\sim} := \{ y \in X : y \sim x \}.$$

We denote the set of equivalence classes under \sim by X/\sim .

Lemma C.2.35. Let X be a non-empty set and \sim an equivalence relation on X. Let $x, y \in X$. Then

$$[x]_{\sim} = [y]_{\sim} \iff x \sim y$$

Proof. " \Leftarrow ": Let $z \in [x]_{\sim}$, then $z \sim x$ and $z \sim y$, since also $z \in [y]_{\sim}$. Then $x \sim z$ (by symmetry) and $z \sim y$, implying $x \sim y$ by transitivity.

"
$$\Leftarrow$$
 ": If $x \sim y$, then $x \in [y]_{\sim}$. By symmetry $y \sim x$, hence $y \in [x]_{\sim}$.

Lemma C.2.36. Let X be a non-empty set and \sim an equivalence relation on X. The function

$$\pi: X \to X/\sim$$
$$x \mapsto [x]_{\sim}$$

is a well-defined surjective function.

Proof. Suppose x = y, then $x \sim y$, hence by Lemma C.2.35 $p(x) = [x]_{\sim} = [y]_{\sim} = p(y)$. Let $[x]_{\sim} \in X/\sim$. Then $\pi(x) = [x]_{\sim}$, hence π is surjective.

Definition C.2.37. Let X be a set. P a predicate. We say that P(x) is true for all but finitely many $x \in X$, if there exists a $Y \subset X$, such that P(x) is true for all $x \in X \setminus y$

C.3 ordinal theory

C.3.1 The Set ω

Definition C.3.1. Let I_0 be an inductive non-empty set. Consider the formula $\varphi(X) \equiv \emptyset \in X \wedge \operatorname{ind}(X)$. Using power sets and separation we get the set

$$\omega := \bigcap \left\{ X \in \mathcal{P}(I_0) : \emptyset \in X \wedge \operatorname{ind}(X) \right\}$$

Lemma C.3.2. ω is the smallest with the property of being inductive and containing \emptyset , i.e. it is a subset of every other set with these properties. Immediately it is the unique smallest set with the property of being inductive and containing \emptyset .

Proof. The emptyset is an element of each $X \in \mathcal{P}(I_0)$ satisfying $\emptyset \in X$ and $\operatorname{ind}(X)$, so $\emptyset \in \omega$. If $x \in \omega$, then for every $X \in \mathcal{P}(I_0)$ with $\emptyset \in X$ and $\operatorname{ind}(X)$, $x \cup \{x\} \in X$, hence $x \cup \{x\} \in \omega$, implying that ω is inductive. Let I be any inductive set with $\emptyset \in I$. Consider $X_I := \omega \cap I \subset \omega \subset I_0$. Note that clearly $X_I \in \mathcal{P}(I_0)$, $\emptyset \in X_I$ and $\operatorname{ind}(X_I)$. Then $\omega \subset X_I$. This means $\omega = \omega \cap I \subset I$. So ω is contained in every inductive set containing the emptyset.

We thus get a kind of induction principle on ω :

$$\forall A(\operatorname{ind}(A) \land A \subset \omega \implies A = \omega).$$

So if we are given a formula φ , to prove $\forall x \in \omega \varphi(x)$, it is sufficient to prove $\varphi(\emptyset) \land \forall x (\varphi(x) \implies \varphi(x \cup \{x\}))$, since then $A := \{x \in \omega : \varphi(x)\}$, satisfies $\operatorname{ind}(A) \land A \subset \omega$.

C.3.2 ordinal numbers

Definition C.3.3. Let $z \in X$. Then z is \in -minimal in X if $\forall y (y \in z \implies y \notin X)$. We denote this $\min_{\in}(z,X)$.

Definition C.3.4. A set X is ordered by \in if

$$\forall y_1, y_2 \in X(y_1 \in y_2 \lor y_2 \in y_1 \lor y_1 = y_2).$$

We denote this formula by $\operatorname{ord}_{\in}(X)$.

Definition C.3.5. A set X is well-ordered by \in if

$$\operatorname{ord}_{\in}(X) \wedge \forall Y \in \mathcal{P}(X) (Y \neq \emptyset \implies \exists z \in Y \min_{\in}(z,Y)).$$

We denote this formula by $wo \in (X)$.

Definition C.3.6. A set X is *transitive* if

$$\forall y (y \in X \implies y \subset X).$$

This formula is denoted by trans(X).

Remark C.3.7. If $z \in y \in x$ and trans(x), then $z \in y \subset x$, hence $z \in x$.

Definition C.3.8. An *ordinal number* is a set α such that

$$trans(\alpha) \wedge wo_{\in}(\alpha)$$
.

We denote this formula by ordinal(α).

Remark C.3.9. Informally, we define Ω to be the collection of every ordinal number. By $\alpha \in \Omega$ we mean ordinal(α).

Theorem C.3.10. *1.* If $\alpha \in \Omega$, then $\alpha = \emptyset$ or \emptyset xor $\emptyset \in \alpha$.

2. Without assuming the axiom of foundation, if $\alpha \in \Omega$, then $\alpha \notin \alpha$.

- 3. If $\alpha, \beta \in \Omega$, then $\alpha \in \beta$ xor $\beta \in \alpha$ xor $\alpha = \beta$.
- 4. If $\alpha \in \beta \in \Omega$, then $\alpha \in \Omega$.
- 5. If $\alpha \in \Omega$, then $\alpha \cup \{\alpha\} \in \Omega$.
- 6. Ω is transitive and well-ordered by \in , i.e the collection is transitive and ordered by \in , and every non-empty collection in Ω has an \in -minimal element.

Proof. 1. α is well-ordered by \in . If $\alpha = \emptyset$, we are done. So if $\alpha \neq \emptyset$, then since $\alpha \in \mathcal{P}(\alpha)$ there is a $z \in \alpha$ such that $\min_{\in}(\alpha, z)$. Consider an element of $\alpha, x \neq \emptyset$. Pick $y \in x$. By transitivity, $x \subset \alpha$, so $y \in \alpha$. Then $y \in x \land y \in \alpha$, hence $\neg \min_{\in}(x, \alpha)$. Then $\emptyset = z \in \alpha$. 2. Suppose for a contradiction that $\alpha \in \alpha$. Then $\{\alpha\} \in \mathcal{P}(\alpha)$. There is then a $z \in \{\alpha\}$ that is \in -minimal for $\{\alpha\}$. We must have $z = \alpha$. So $\min_{\in}(\alpha, \{\alpha\})$. But then for $\alpha \in \alpha$, $\alpha \notin \{\alpha\}$ leading to a contradiction.

3. By 2. the three cases a mutually exclusive. Since then we cannot have $\alpha \in \beta \land \beta \in \alpha$, since then by transitivity $\alpha \in \alpha$. Similarly if $\alpha \in \beta \land \alpha = \beta$ or $\beta \in \alpha \land \alpha = \beta$, we would get $\alpha \in \alpha$. Suppose $\alpha \neq \beta$. Then WLOG $x \in \alpha \land x \notin \beta$, so $\alpha \setminus \beta \in \mathcal{P}(\alpha) \setminus \emptyset$.

We claim that $\alpha \cap \beta$ is the \in -minimal element of $\alpha \setminus \beta$: Let γ be an \in -minimal element of $\alpha \setminus \beta$. Using trans(α) and $\gamma \in \alpha$, we get that

$$\forall u(u \in \gamma \implies u \in \alpha) \quad (*)$$

And using $\min_{\in}(\gamma, \alpha \setminus \beta)$, $\forall u(u \in \gamma \implies u \notin \alpha \setminus \beta)$ or equivalently $u(u \in \gamma \implies (u \notin \alpha \lor u \in \beta))$. Then using (*), we get that $\forall u(u \in \gamma \implies u \in \beta)$. So $\gamma \subset \alpha \cap \beta$. Conversely, suppose for a contradiction that there is a $w \in \alpha \cap \beta \setminus \gamma$. Then since $\operatorname{ord}_{\in}(\alpha)$, $w \notin \gamma$ and $\gamma \neq w$ (since $\gamma \notin \beta \ni w$), we must have that $\gamma \in w \in \beta$, which implies that $\gamma \in \beta$ by transitivity of β . But this contradicts, $\gamma \in \alpha \setminus \beta$. So $\gamma = \alpha \cap \beta$ as we claimed. Now if $\beta \setminus \alpha$ was non-empty, then $\alpha \cap \beta$ would also be its \in -minimal element. But then $\alpha \cap \beta \notin \beta \land \alpha \cap \beta \in \beta$, leading to a contradiction. Then $\beta \setminus \alpha = \emptyset$, hence $\beta \subset \alpha$, meaning $\beta = \alpha \cap \beta \in \alpha$.

- 4. Let $\alpha \in \beta \in \Omega$. Let $y_1, y_2 \in \alpha$. By the transitivity of β , $y_1, y_2 \in \beta$ and since $\operatorname{ord}_{\in}(\beta)$, it follows readily that $y_1 \in y_2 \vee y_1 = y_2 \vee y_1 \ni y_2$, hence $\operatorname{ord}_{\in}(\alpha)$. Let $x \in \mathcal{P}(\alpha)$ be nonempty. By transitivity of β , $x \in \mathcal{P}(\beta)$, and since $(wo)_{\in}(\beta)$, there is a $y \in x$ satisfying $\min_{\in}(y,x)$, so $\operatorname{wo}_{\in}(\alpha)$. Let $\gamma \in \alpha$, and let $\delta \in \gamma$. By $\operatorname{trans}(\beta)$, $\delta \in \beta$, and using $\operatorname{ord}_{\in}(\beta)$, $\delta \in \alpha \vee \delta = \alpha \vee \alpha \in \delta$. Suppose $\delta = \alpha \vee \alpha \in \delta$. Then for $X := \{\alpha, \gamma, \delta\} \in \mathcal{P}(\beta)$, we have each element of X is an element of some element member of X, hence $\forall x \in X \neg (\min_{\in}(x,X))$. So we conclude $\delta \in \alpha$, hence $\operatorname{trans}(\alpha)$. Hence $\alpha \in \Omega$.
- 5. If $\beta \in (\alpha \cup \{\alpha\})$, then $\beta \in \alpha \vee \beta = \alpha$. In either case $\beta \subset \alpha$, since in the first case we

can use $\operatorname{trans}(\alpha)$ and in the second case we trivially have $\forall x(x \in \beta \implies x \in \alpha)$. We thus have $\beta \subset \alpha \subset \alpha \cup \{\alpha\}$. Note that if $\beta, \gamma \in \alpha \cup \{\alpha\}$ then $\beta, \gamma \in \alpha \vee \beta \in \alpha = \gamma \vee \gamma \in \alpha = \beta$. In the first case clearly $\beta \in \gamma \vee \beta = \gamma \vee \gamma \in \beta$ since $\operatorname{ord}_{\in}(\alpha)$. In the second and third case we also get this since $\beta \in \gamma \vee \gamma \in \beta$. So $\alpha \cup \{\alpha\}$ is ordered by \in . Let $x \in \mathcal{P}(\alpha \cup \{\alpha\})$ be a non-empty set. If $x = \{\alpha\}$, then we have already seen that α is \in -minimal of x. In the case where $x \cap \alpha \neq \emptyset$, this is a non-empty subset of α so it has a \in -minimal element, z say, which implies $z \cap x = \emptyset$, for otherwise there would be an element of z that is also in x, y say, which would contradict $\min_{\in}(z, x \cap \alpha)$, for then using that α is transitive we would have $y \in \alpha$, meaning $y \in \alpha \cap x$.

6. Ω is transitive by 4. and ordered by \in by 3. Let C be a non-empty collection of ordinals. If C is singleton, then this element is \in -minimal for C. If C is not a singleton, then given any two distinct elements of C, δ , $\delta' \in C$, we have that $\delta \in \delta'$ or $\delta' \in \delta$, since $\operatorname{ord}_{\in}(\Omega)$. We may thus pick a $\delta_0 \in C$ such that $\delta_0 \cap C \neq \emptyset$. Set $x := \delta_0 \cap C$. Let $\alpha \in x$. Pick an \in -minimal element in $x \cap (\alpha \cup \{\alpha\})$, γ say. Since $\gamma \in \alpha \cup \{\alpha\}$ and $\alpha \cup \{\alpha\} \in \Omega$, $\gamma \subset \alpha \cup \{\alpha\}$. Let $\gamma' \in \gamma$. Then $\gamma' \in \alpha \cup \{\alpha\}$. But $\gamma' \notin x \cap (\alpha \cup \{\alpha\})$. Then $\gamma' \notin x$, which means γ is an \in -minimal element of x and hence therefor also in C (recall that by definition of $x, \gamma \in C$).

Remark C.3.11. The above theorem implies that Ω cannot be a set, since if it were Ω would an ordinal number by 6. but then $\Omega \in \Omega$ leading to a contradiction by 2. We still wish to think about objects such as Ω as some kind of collection of elements. We will call a collection of sets satisfying some condition which cannot be described as a sets a *proper class*. Another example is the proper class of sets. I.e. the sets defined by tautology. If this were a set, then trivially it would have itself as an element, contradicting the axiom of foundation. The formal notion of a *class* will left undiscussed for now. It is indeed possible to define this notion rigourosly by extending the ZFC axioms to the Von Neumann–Bernays–Gödel axioms, which we will do later.

Definition C.3.12. For a pair of ordinal number α and β we define

$$\alpha < \beta : \iff \alpha \in \beta$$

$$\alpha \le \beta : \iff \alpha = \beta \lor \alpha < \beta.$$

Remark C.3.13. This in some sense defines a total order on the proper class of ordinal numbers and on the nose a total order on ever set of ordinal numbers.

Definition C.3.14. For a set X, define $X + 1 := X \cup \{X\}$.

Corollary C.3.15. 1. If $A \subset \Omega$ is a set of ordinals (a set whose elements are ordinals), then $\bigcup A \in \Omega$.

- 2. If $\alpha, \beta \in \Omega$ and $\alpha \in \beta$, then $\alpha + 1 \subset \beta$. So $\alpha + 1$ is the smallest ordinal containing α .
- 3. For every ordinal α , either $\alpha = \bigcup \alpha$ or there is an ordinal β such that $\alpha = \beta + 1$.

Proof. 1. Let $\beta \in \bigcup A$. Then there is some $\gamma \in A$ such that $\beta \in \gamma$, then $\beta \in \Omega$ by 4. of the last theorem. This means that $\bigcup A$ is a set of ordinal numbers. Then we can apply 6. of the last theorem to get that $\bigcup A$ is well-ordered by \in . Let $\beta \in \bigcup A$. Again $\beta \in \gamma$ for some $\gamma \in A$. Since γ is transitive, we get that $\beta \subset \gamma$ and since $\gamma \subset \bigcup A$, so $\beta \subset \bigcup A$.

- 2. $\{\alpha\} \subset \beta$ and using trans (β) , $\alpha \subset \beta$, so $\alpha + 1 \subset \beta$.
- 3. In any case since α is transitive, $\bigcup \alpha \subset \alpha$. Suppose $\bigcup \alpha \neq \alpha$. Then there is an \in -minimal element β of $\alpha \setminus \bigcup \alpha$. In particular $\beta \in \alpha$, so by 2. $\beta + 1 \subset \alpha$. If $\alpha \in \beta + 1$, then $\alpha \in \alpha$ contradicting 2. of the prior theorem. If $\beta + 1 \in \alpha$, then $\beta \in \bigcup \alpha$, which contradicts the choice of β . Then we must have $\alpha = \beta + 1$ since $\beta + 1$ is also an ordinal number.

Definition C.3.16. An ordinal α is called a *succesor ordinal* if there is an ordinal β satisfying $\alpha = \beta + 1$. If on the other hand $\alpha = \bigcup \alpha$, it is called a *limit ordinal*.

C.3.3 ω and ordinal numbers

Lemma C.3.17.

$$\forall x \in \omega(\operatorname{trans}(x)).$$

Proof. Consider the set

$$T := \{ x \in \omega : \forall y (y \in x \implies y \subset x) \}.$$

Clearly $\emptyset \in T$. Suppose $x \in T$. Let $y \in x \cup \{x\}$. If $y \in x$, then $y \subset x \subset x \cup \{x\}$. If $y \in \{x\}$, then $y = x \subset x \cup \{x\}$, hence

Lemma C.3.18.

$$\forall x \in \omega(\operatorname{ord}_{\subset}(x)).$$

Proof. Consider the set

$$O := \{ x \in \omega : \operatorname{ord}_{\epsilon}(x) \}.$$

Trivially, $\emptyset \in O$. Let $x \in O$. Suppose $\operatorname{ord}_{\in}(x)$. Let $y_1, y_2 \in x \cup \{x\}$. If $y_1, y_2 \in x$, then $y_1 \in y_2 \vee y_1 = y_2 \vee y_2 \in y_1$. If $y_1, y_2 \in \{x\}$, then $y_1 = y_2$. If $y_1 \in x$ and $y_2 \in \{x\}$, then $y_2 = x$, hence $y_1 \in y_2$. The case $y_1 \in \{x\}$ and $y_2 \in x$ likewise gives that $y_2 \in y_1$. It follows that $y_1 \in y_2 \vee y_1 = y_2 \vee y_2 \in y_1$, hence $\operatorname{ord}_{\in}(x \cup \{x\})$. It follows that $O = \omega$, hence $\forall x \in \omega(\operatorname{ord}_{\in}(x))$.

Lemma C.3.19.

$$\forall x \in \omega \forall y \in \mathcal{P}(x) (y \neq \emptyset \implies \exists z (\min_{\in} (z, y))).$$

With the previous series of lemmas in mind, it follows that each element of ω is an ordinal. Every non-empty element of ω is a successor ordinal.

Proof. Consider the set

$$A := \{ x \in \omega : \forall y \in \mathcal{P}(x) (y \neq \emptyset \implies \exists z (\min_{\in}(z, y))) \}$$

Trivially $\emptyset \in A$. Let $x \in A$ and $y \in \mathcal{P}(x \cup \{x\})$ with $y \neq \emptyset$. If $\{x\} \cap y = \emptyset$, then $y \in \mathcal{P}(x)$, hence there is a z with $\min_{\in}(z,y)$. If $x \in y$, then $x \subset y$, hence $y = x \cup \{x\}$. Let $z \in x$ be such that $\min_{\in}(z,x)$. Then for $\alpha \in z$, $\alpha \notin x$. Moreover $\alpha \notin \{x\}$, for if it were, then $\alpha = x$, meaning $z \in \alpha$, and by transitivity this would mean $z \subset x = \alpha$, but then there would be a $\beta \in z$ with $\beta \in x$ contradicting minimality. So we conclude that $\min_{\in}(z,x \cup \{x\})$. It follows that $A = \omega$.

With previous lemmas in mind, it follows that $\forall x \in \omega(\mathrm{wo}_{\in}(x) \wedge \mathrm{trans}(x))$, hence $\forall x \in \omega(x \in \Omega)$. Note also that if $x \in \omega \setminus \emptyset$, then $x = y \cup \{y\}$ for some $y \in \omega$. This is readily seen with an induction argument: Indeed, $\{\emptyset\} = \emptyset \cup \{\emptyset\}$, and if $x = y \cup \{y\}$ for some $y \in \omega$, then $x \cup \{x\} = y \cup \{y\} \cup \{y \cup \{y\}\} = y' \cup \{y'\}$, where $y' = y \cup \{y\} \in \omega$. So every non-empty element of ω is a successor ordinal. The empty set is a limit ordinal. \square

Lemma C.3.20. We have that

$$\omega = \bigcup \omega$$

Proof. Let $x \in \bigcup \omega$, then $x \in y$ for some $y \in \omega$. Then $x \in \omega$, hence $x' := x \cup \{x\} \in \omega$ and $x'' := x' \cup \{x'\} \in \omega$. Then $x \cup \{x\} \in x''$, hence $x \cup x \in \bigcup \omega$.

Proposition C.3.21. ω is a limit ordinal.

Proof. This follows from ω being a family of ordinals, $\omega = \bigcup \omega$ and Corollary C.3.15.

C.3.4 The Well-ordering Principle & the Axiom of Choice

Definition C.3.22. Let M be a non-emptyset. Set $\mathcal{P}^*(M) := \mathcal{P}(M) \setminus \{\emptyset\}$. Assuming the axiom of choice, pick a choice function

$$f: \mathcal{P}^*(M) \to \bigcup \mathcal{P}^*(M) = M$$

Let an ordinal $\alpha \in \Omega$ be given. An injective function

$$w_{\alpha}: \alpha \hookrightarrow M$$

is called an *f-set* if for all $\gamma \in \alpha$

$$w_{\alpha}(\gamma) = f(M \setminus \{w_{\alpha}(\delta) : \delta \in \gamma\}).$$

The data of a set w being an f-set for an ordinal α is distilled into the formula

$$f$$
-set $(w, \alpha) \equiv \alpha \in \Omega \land w$ is an f -set,

for future reference.

Lemma C.3.23. Assume AC and let a set M and a choice function f as in the above definition be given. Consider an ordinal $\alpha \in \Omega$. There is at most one f-set for α .

Proof. Suppose for a contradiction that there are two distinct f-sets w_{α} and w'_{α} . Consider the non-empty set $\{\beta \in \alpha : w_{\alpha}(\beta) \neq w'_{\alpha}(\beta)\} \in \mathcal{P}(\alpha)$. Since α is an ordinal, this set has an \in -minimal element γ . Now if $\delta \in \gamma$, then $w_{\alpha}(\delta) = w'_{\alpha}(\delta)$. But then

$$w_{\alpha}(\gamma) = f(M \setminus \{w_{\alpha}(\delta) : \delta \in \gamma\}) = f(M \setminus \{w_{\alpha}'(\delta) : \delta \in \gamma\}) = w_{\alpha}'(\gamma),$$

leading to a contradiction.

Remark C.3.24. Consider f-sets w_{α} and w_{β} with $\beta \in \alpha$. Then for every $\delta \in \beta$,

$$w_{\alpha|_{\beta}}(\delta) = w_{\alpha}(\delta) = f(M \setminus \{w_{\alpha}(\delta) : \delta \in \beta\}).$$

Hence $w_{\alpha}|_{\beta}$ is an f-set and is therefor equal to w_{β} by the above lemma.

Theorem C.3.25. The well-ordering principle is equivalent to the axiom of choice.

Proof. " \Longrightarrow ": Let X be a family of non-empty sets. Let \leq be a well-ordering on $\bigcup X$. For each $x \in X$, let $m_x \in x$ denote the element that is minimal with respect to \leq . Then

$$f: X \to \bigcup X$$
$$x \mapsto m_x$$

defines a choice function.

" \Leftarrow ": We claim that we may form the set

$$S := \{ w_{\alpha} : f - \operatorname{set}(w_{\alpha}, \alpha) \land \alpha \in \Omega \}$$

Let N be the elements n of M for which there is an f-set w, for some ordinal such that for some ordinal δ , $w(\delta) = n$. We may form this set by the axiom of seperation. Consider the formula

$$(\exists \alpha \in \Omega \exists w (f - \operatorname{set}(w, \alpha) \implies \exists \delta \in \alpha (w(\delta) = n)) \implies y = w) \vee \neg (\dots) \implies y = \emptyset.$$

This gives rise to the class function

$$G(n) := \begin{cases} w & \text{if } w \text{ is an } f\text{-set that maps to } n \\ \emptyset & \text{otherwise} \end{cases}$$

Then S = G(N) by the axiom schema of replacement I don't like this. Consider now the formula

$$((\exists \alpha \ f - \operatorname{set}(w, \alpha)) \implies y = \alpha) \lor (\neg(\exists \alpha \ f - \operatorname{set}(w, \alpha)) \implies y = \emptyset).$$

This induces the class function F defined by

$$F(w) = \begin{cases} \alpha & \text{if } w \text{ is an } f - \text{set with domain } \alpha \in \Omega \\ \emptyset & \text{otherwise} \end{cases}$$

By the axiom schema of replacement $F(S) = \{F(w) : w \in S\}$ is a family of ordinals, hence $\alpha_0 := \bigcup F(S)$ is an ordinal. For $w_\alpha, w_\beta \in S$, write $w_\alpha \preceq w_\beta$ if $\alpha \leq \beta$. This is easily verified to be a well-ordering on S, since essentially we get that the well-ordering is inherited by the well-ordering on families of ordinals due to $\alpha \mapsto w_\alpha$ being order preserving. Set $w_{\alpha_0} := \bigcup S = \{x : \exists w \in S(x \in w)\} = \{(\delta, w_\alpha(\delta) : \delta \in \alpha \land w_\alpha \in S)\}$. The claim is now that this is an f-set, $\alpha_0 \to M$. Let $(\delta, w_\alpha(\delta)), (\delta', w_{\alpha'}(\delta')) \in w_{\alpha_0}$ with $\delta = \delta'$. WLOG $\alpha \leq \alpha'$ and then $w_{\alpha'}(\delta') = w_\alpha(\delta') = w_\alpha(\delta)$, so w_{α_0} is well-defined. Suppose $\delta, \delta' \in \alpha_0$ is such that $w_{\alpha_0}(\delta) = w_{\alpha_0}(\delta')$. As before for some ordinal α , $w_\alpha(\delta) = w_{\alpha_0}(\delta) = w_{\alpha_0}(\delta') = w_\alpha(\delta')$, hence $\delta = \delta'$. Moreover, for $\delta \in \alpha_0$, we see that for a suitable $\alpha \in F(w_\alpha)$ for some $w_\alpha \in S$,

$$w_{\alpha_0}(\delta) = w_{\alpha}(\delta) = f(M \setminus \{w_{\alpha}(\gamma) : \gamma \in \delta\}) = f(M \setminus \{w_{\alpha_0}(\gamma) : \gamma \in \delta\}).$$

It follows that w_{α_0} is the maximal f-set, i.e. if w is an f-set, then $w \leq w_{\alpha_0}$. Consider now

$$M' := \{ m \in M : \exists \gamma (w_{\alpha_0}(\gamma) = m) \}.$$

Then M = M', since otherwise

$$w_{\alpha_0} \cup \{(\alpha_0, f(M \setminus M'))\}$$

is an f-set strictly greater than w_{α_0} . It follows that $w_{\alpha_0}: \alpha_0 \to M$ is a bijection. We then get a well-ordering on M, where for $x, y \in M$, we write $x \leq y$ if $w_{\alpha_0}^{-1}(x) \leq w_{\alpha_0}^{-1}(y)$. \square

C.3.5 Transfinite Recursion and Transfinite Induction

We provide without proof for now? recursion and induction principles that generalize to the proper class of ordinals.

Theorem C.3.26. (Transfinite Recursion) Let F be a class function defined for all sets. Then there is a unique class function G, defined on Ω such that for each $\alpha \in \Omega$,

$$G(\alpha) = F(G|_{\alpha})$$

where

$$G|_{\alpha} := \{ (\beta, G(\beta)) : \beta \in \alpha \}$$

Theorem C.3.27. (*Transfinite Induction*) Suppose $\varphi(\alpha)$ is an $\{\in\}$ -formula such that

- 1. $\varphi(0)$.
- 2. $\forall \alpha \in \Omega(\varphi(\alpha) \to \varphi(\alpha+1))$.
- 3. $(\forall \beta < \alpha(\varphi(\beta))) \rightarrow \varphi(\alpha)$ if $\alpha \in \Omega$ is a limit ordinal.

Then $\varphi(\alpha)$ *for every* $\alpha \in \Omega$.

$\mathbf{C.4}$ Models of $\mathbf{ZF}(\mathbf{C})$

C.4.1 The standard model V of ZF(C)

In this section we construct a model of ZF under the assumption that ZF is consistent. Then there is a model $(M, \in^{\mathbb{M}})$ of ZF. We define a set for each ordinal $\alpha \in \Omega$,

$$V_{\alpha} := \begin{cases} \emptyset & \text{if } \alpha = 0 \\ \bigcup_{\beta \in \alpha} & \text{if } \alpha \text{ is a limit ordinal} \\ \mathcal{P}(V_{\alpha}) & \text{if } \alpha \text{ is a succesor ordinal} \end{cases}$$

We claim that any element in M corresponds to some element of one of these sets. To see this consider the class function that is the empty set on a sets that are not set functions and where for x that is a function

$$F(x) := \begin{cases} \emptyset & \text{if } x = \emptyset \\ \mathcal{P}(x(\beta)) & \text{if dom } x \text{ is the succesor of an ordinal } \beta \\ \bigcup_{\delta \in \text{dom } x} \delta & \text{if dom } x \text{ is a nonempty limit ordinal} \\ \emptyset & \text{otherwise} \end{cases}$$

By transfinite recursion there is a class function G on Ω such that

$$G(\alpha) = F(G|_{\alpha})$$
.

Note that

$$G|_{\alpha}$$

is a function $\alpha \to G[\alpha]$, where $G[\alpha]$ is a set by the axiom schema of replacement. We see that

$$G(\alpha) = V_{\alpha}$$

for each $\alpha \in \Omega$, thus we have the following lemma on the above construction

Lemma C.4.1. V_{α} is a set for each $\alpha \in \Omega$.

Moreover we have the following

Lemma C.4.2. 1. V_{α} is inductive for each α .

- 2. The class $V := \bigcup_{\alpha \in \Omega}$ is inductive.
- 3. if $\alpha \in \beta \in \Omega$, then $V_{\alpha} \subset V_{\beta}$.
- 4. For $\alpha \in \Omega$, if $\alpha \subset V_{\alpha}$ and $\alpha \in V_{\alpha+1}$

Proof. do!

- **C.4.2** Non-standard models of ZF(C)
- C.4.3 Gödel's Model of ZF and of ZFC: The Relative Consistency of ZF and AC

C.5 A Model of PA in V

We aim to construct a \mathcal{L}_{PA} -structure within V which we denote \mathbb{N}_{ω} whose domain is ω and show that this is a model of PA, where $\mathcal{L}_{PA} = \{0, s, +, \cdot\}$. We then define

$$0^{\mathbb{N}_{\omega}} := \emptyset \in \omega$$

$$\mathbf{s}^{\mathbb{N}_{\omega}} : \omega \to \omega$$

$$n \mapsto n+1 := n \cup \{n\}$$

On ω we define a binary operation, called addition, recursively by n+0 := n and n+s(m) = s(n+m), hence we define

$$+^{\mathbb{N}_{\omega}}: \omega \times \omega \to \omega$$

 $(n,m) \mapsto n+m$

We also define a binary operation, called multiplication, recursively by $n \cdot 0 = 0$ and $n \cdot s(m) = n \cdot m + n$, hence we define

$$\cdot^{\mathbb{N}_{\omega}} : \omega \times \omega \to \omega$$
$$(n, m) \mapsto nm := n \cdot m$$

Theorem C.5.1.

$$\mathbb{N}_{\omega} \models PA$$

Proof. Fix an assignment j. We prove that $\mathbb{N}_{\omega} \models \mathrm{PA}_i$ for each $i \in \{0, 1, \dots, 6\}$. For i = 0, the prove will use the inductive definition on the complexity of verifying validity of a formula. This is a little cumbersome, so for the other axioms we will use a more natural language approach.

"(\mathbb{N}_{ω}, j) $\vDash \mathrm{PA}_0$ ": We need to show that $\mathbb{N}_{\omega} \vDash \neg \exists x (\mathrm{s}(x) = 0)$. Note that this means, we need to prove that $\mathbb{N}_{\omega} \vDash \forall x (\mathrm{s}(x) \neq 0)$. Let $n \in \omega$ be given. We then need to prove that $\mathbb{N}_{\omega}[x \mapsto n] \vDash \mathrm{s}(x) \neq 0$, i.e. that $\mathbb{N}_{\omega}[x \mapsto n] \vDash \mathrm{s}(x) = 0$ is not true. We thus have to verify that

$$\mathbb{N}_{\omega}[x \mapsto n](\mathbf{s}(x)) = \mathbf{s}^{\mathbb{N}_{\omega}}(\mathbb{N}_{\omega}[x \mapsto n](x)) = \mathbf{s}^{\mathbb{N}_{\omega}}(n) = n \cup \{n\}$$

is not equal to $0^{\mathbb{N}_{\omega}} = \emptyset$, but this is indeed obvious since $n \in n \cup \{n\}$.

"(\mathbb{N}_{ω}, j) \models PA₁": Let n and m in ω be given. Suppose $n \neq m$. Then $n \in m$ or $m \in n$. In the first case, by Corollary C.3.15 2. $n+1 \subset m$, hence $n+1 \in m$ or n+1 = m. In either case since $m \subsetneq m+1, n+1 \subsetneq m+1$ and in particular $n+1 \neq m+1$. I feel like I have explained some facts about ordinals multiple times different places — collect in lemma!

" $(\mathbb{N}_{\omega},j) \models PA_2$ ": The result follows from the base case of the definition of addition on ω . " $(\mathbb{N}_{\omega},j) \models PA_3$ ": The result follows from the recursion step of the definition of addition on ω . " $(\mathbb{N}_{\omega},j) \models PA_4$ ": Again it follows from the base case recursive definition of multiplication on ω .

"(\mathbb{N}_{ω}, j) $\models PA_5$ ": Again it follows from the recursion step in the definition of multiplication on ω .

" $(\mathbb{N}_{\omega},j) \models \mathsf{PA}_6$ ": Let a $\mathcal{L}_{\mathsf{PA}}$ -formula φ with $x \in \mathsf{free}(\varphi)$ be given. We need to show that

under the given interpretation, if

$$\psi :\equiv \varphi(\emptyset) \land \forall n \in \omega(\varphi(n) \to \varphi(n+1)),$$

then $\forall n \in \omega(\varphi(n))$. Set

$$E := \{ n \in \omega : \neg \varphi(n) \}.$$

If we can show that

$$E = \emptyset$$

then we are done. Suppose $E \neq \emptyset$. Then E has an \in -minimal element m. Since we assumed ψ , $m \neq \emptyset$ and m cannot be the successor of some m' for then $\neg \varphi(m')$ (since we with ψ assumed $\varphi(n) \to \varphi(n+1)$ which is equivalent to $\neg \varphi(n+1) \to \neg \varphi(n)$) and hence $m' \in E$ which would contradict the minimality of m. We must therefor have that E is empty. \Box

Theorem C.5.2. $\mathbb{N} \simeq \mathbb{N}_{\omega}$

Corollary C.5.3. ω is an ordered semi-ring, which we will from now on denote \mathbb{N} .

Proof. If one finishes the The Natural Number Game one can show that you can derive the axioms of an ordered semi-ring in PA. It thus follows from the Soundness Theorem that any model of PA will be an ordered semi-ring.

C.6 NGB Set Theory: A Formal Treatment of Classes

C.7 MK Set Theory: Quantification over Classes

D Category Theory

D.0.1 Initial Definitions

Definition D.0.1. A category C is a pair (Ob(C), Hom(C)) where

- 1. Ob(\mathcal{C}) denotes a class of *objects*.
- 2. Hom(\mathcal{C}) denotes a class of *morphisms*.
- 3. A morphism f in $\text{Hom}(\mathcal{C})$ is a binary relation between between members A, B of $\text{Ob}(\mathcal{C})$. We denote it by $f: A \to B$.

- 4. For objects A, B in $Ob(\mathcal{C})$ we denote the class of morphisms from A to B by Hom(A, B).
- 5. There is a binary operation \circ on the class of *composable* morphisms called *composition* such that for composable morphisms $f: B \to C$ and $g: A \to B$ we have a morphism

$$fg := f \circ g : A \to C$$
,

such that

$$(f \circ g) \circ h = f \circ (g \circ h)$$

where $f:C\to D$, $g:B\to C$ and $h:A\to B$ for objects A,B,C,D in $\mathrm{Ob}(\mathcal{C})$. Furthermore for each object X in $\mathrm{Ob}(\mathcal{C})$ there is a morphism $\mathbb{1}_X:X\to X$ called the *identity morphism* such that

$$\mathbb{1}_B f = f = f \mathbb{1}_A,$$

for a morphism $f: A \to B$.

Remark D.0.2. Here the notion of "class" depends on foundations. For instance, it could mean a set in the sense of ZFC or it could mean a proper class in the sense of NGB I guess what I really mean is that objects and morphisms live in a model of ZFC/NGB but I am not sure.

Definition D.0.3. In a category, a morphism $f: X \to X$ is called an *endomorphism*.

Definition D.0.4. Let \mathcal{C} be a category. An *isomorphism* $f:A\to B$ is a morphism in $\operatorname{Hom}(\mathcal{C})$ such that there is another morphism $f^{-1}:B\to A$ satisfying,

$$ff^{-1} = \mathbb{1}_B$$
 and $f^{-1}f = \mathbb{1}_A$.

An endomorphism that is an isomorphism is called an *automorphism*.

Definition D.0.5. A *subcategory* \mathcal{D} of a category \mathcal{C} is a subclass of $Ob(\mathcal{C})$ together with a subclass of $Hom(\mathcal{C})$ that constitutes a category.

Remark D.0.6. equivalently a subcategory of \mathcal{C} is a subclass $Ob(\mathcal{D})$ of $Ob(\mathcal{C})$ and a subclass $Hom(\mathcal{D})$ of $Hom(\mathcal{C})$ such that each domain A and codomain B for a morphism in $Hom(\mathcal{D})$, A, B are elements of $Ob(\mathcal{D})$ and such that $Hom(\mathcal{D})$ is closed under composition.

Definition D.0.7. Let C be a category and $f \in \text{Hom}(A, B)$, $g \in \text{Hom}(B, A)$. f is called a *retraction* of g and g a section of f if $fg = \mathbb{1}_B$

Lemma D.0.8. Let C be a category, $f \in \text{Hom}(A, B)$. Suppose $g, h \in \text{Hom}(B, A)$ are respectively a retraction and a section of f. Then g = h and f is an isomorphism. It follows that a morphism can have at most one inverse

Proof. Indeed

$$g = g \mathbb{1}_A = gfh = \mathbb{1}_B h = h.$$

Hence f is an isomorphism with $f^{-1} = g = h$. Let f_1 and f_2 be inverses of an isomorphism f. Note that both f_1 and f_2 is both a section and a retraction. Therefor, by the first statement, $f_1 = f_2$.

Definition D.0.9. Let \mathcal{C} be a category. We define *the opposite category of* \mathcal{C} denoted \mathcal{C}^{op} to be the category with $Ob(\mathcal{C}^{op}) := Ob(\mathcal{C})$ and where a morphism $f: A \to B$ in $Hom(\mathcal{C}^{op})$ is a morphism $f: B \to A$ in $Hom(\mathcal{C})$

Remark D.0.10. The above indeed does define a category. We define oop by

$$f \circ^{\text{op}} q = q \circ f : C \to A$$

where $f: B \to C$ and $g: A \to B$ are morphisms in $\text{Hom}(\mathcal{C}^{\text{op}})$. Then for morphisms $f: C \to D, g: B \to C$ and $h: A \to B$

$$(f \circ^{\operatorname{op}} g) \circ^{\operatorname{op}} h = h(gf) = (hg)f = f \circ^{\operatorname{op}} (g \circ^{\operatorname{op}} h).$$

Furthermore, we define the identity morphisms in $Hom(\mathcal{C}^{op})$ to be the identity morphisms in $Hom(\mathcal{C})$, hence

$$f \circ^{\text{op}} \mathbb{1}_A = \mathbb{1}_A f = f \text{ and } \mathbb{1}_B \circ^{\text{op}} f = f \mathbb{1}_B = f.$$

Definition D.0.11. A category C is *locally small* if Hom(A, B) is a set for every object A, B in Ob(C). It is *small* if Ob(C) is a set.

Definition D.0.12. In a category C a morphism $f \in \text{Hom}(A, B)$ is a *monomorphism* if for every pair of morphisms $g_1, g_2 \in \text{Hom}(C, A)$,

$$fg_1 = fg_2 \implies g_1 = g_2.$$

It is called an *epimorphism* if for every pair of morphisms $h_1, h_2 \in \text{Hom}(B, D)$,

$$h_1 f = h_2 f \implies h_1 = h_2$$

Remark D.0.13. Note that an epimorphism is just a monomorphism in C^{op} and vice versa

Lemma D.0.14. Let C be a category and $f: A \to B$ a morphism. Then if f is an isomorphism, then it is a monomorphism and an epimorphism.

Proof. Suppose f is an isomorphism. Let $g_1, g_2 : C \to A$ with $fg_1 = fg_2$. Then

$$g_1 = f^{-1}fg_1 = f^{-1}fg_2 = g_2.$$

Using the dual result, we get that for every $h_1, h_2 : B, D$, if $h_1 f = h_2 f$ then $h_1 = h_2$. We thus conclude that f is both an epimorphism and a monomorphism.

Definition D.0.15. A category for which the converse of the above lemma holds is called *balanced*.

Lemma D.0.16. In the category of Set, we have for a function $f: A \to B$

- 1. f is epi if and only if it is surjective.
- 2. f is mono if and only if is injective

In particular Set is balanced.

Proof. 1. Suppose f epimorphism. Note that in general for a subset $C \subset B$, if for each set X and each pair of maps $\lambda_1, \lambda_2 : B \to X$, $\lambda_1|_C = \lambda|_C$ implies $\lambda_1 = \lambda_2$, then C = B. Our assumption tells us that for each pair of functions $h_1, h_2 : B \to X$, $h_1|_{\text{im } f} = h_2|_{\text{im } f}$ implies $h_1 = h_2$, hence im f = B, meaning f is surjective.

Suppose conversely that f is surjective. Let $h_1, h_2 \in \text{Hom}(X, B)$ and suppose $h_1 f = h_2 f$. Let $b \in B$. Then there is an $a \in A$ such that b = f(a), hence

$$h_1(b) = h_1(f(a)) = h_1f(a) = h_2f(a) = h_2(f(a)) = h_2(b).$$

Since b was chosen arbitrarily it follows that $h_1 = h_2$.

2. Suppse f is mono. Suppose $a_1, a_2 \in A$ are given such that $f(a_1) = f(a_2)$. Consider the functions, $g_i : \{*\} \to A, * \mapsto a_i$. Then

$$fq_1 = fq_2$$

hence $g_1 = g_2$, which implies $a_1 = g_1(*) = g_2(*) = a_2$.

Suppose f is injective. Consider $g_1, g_2 : C \to A$ with $fg_1 = fg_2$. Let an arbitrary $x \in C$ be given. Then

$$f(q_1(x)) = f(q_2(x)) \implies q_1(x) = q_2(x).$$

Since x was chosen arbitrarily this means $g_1 = g_2$.

Remark D.0.17. Note that surjectivity implies epi, and dually injectivity, in any subcategory of Set.

Example D.0.18. There are non balanced categories. Consider the canonincal embedding

$$f_{\mathbb{Q}}: \mathbb{Z} \hookrightarrow \mathbb{Q}$$
$$n \mapsto n$$

a morphism in the category of rings. Since it is injective it is a monomorphism. Suppose $h_1, h_2 : \mathbb{Q} \to R$ are ring homomorphism such that

$$h_1 f_{\mathbb{Q}} = h_2 f_{\mathbb{Q}}$$

these are both ring homomorphisms $\mathbb{Z} \to \mathbb{Q}$. We shall later see that there is only one such homomorphism, namely

$$f_R: \mathbb{Z} \to R$$

$$n \mapsto \sum_{1}^{n} 1$$

The vocabulary that captures this fact is that \mathbb{Z} is the initial object in Ring. We conclude that $h_1 = h_2$ and hence that $f_{\mathbb{Q}}$ is epi. However, since $f_{\mathbb{Q}}$ is not surjective it cannot be an isomorphism.

Lemma D.0.19. Let C be a category and $f: A \to B$ a morphism

- 1. If f is a section of some $h: B \to A$, then it is a mono.
- 2. If f is a retraction of some $h: B \to A$, then it is epi.

Proof. 1. Consider $g_1, g_2 : C \to A$ and suppose $fg_1 = fg_2$. Since f is a section of h, then $hf = \mathbb{1}_A$. Then

$$g_1 = (hf)g_1 = h(fg_1) = h(fg_2) = (hf)g_2 = g_2.$$

2. Since a retraction is just a section in the opposite category, this result is dual to 1. \Box

Remark D.0.20. If a morphism is a section of some morphism, then it is called a *split monomorphism*. If a morphism is a retraction of some morphism it is called a *split epimorphism*.

Lemma D.0.21. For every category C, a morphism $f: A \to B$ is an isomorphism if and only if it is mono and split epi. Dually it is an isomorphism if and only if it is mono and split epi.

Proof. One direction follows from Lemma D.0.1. Suppose f is mono and split epi. Since it is split epi, there is a $g: B \to A$ such that $fg = \mathbb{1}_B$. Note that

$$f(qf) = (fq)f = \mathbb{1}_B f = f = f\mathbb{1}_A$$

hence $gf = \mathbb{1}_A$ by the assumption that f is mono.

Lemma D.0.22. Consider a category C. Then

- 1. The composition of two monos is a mono.
- 2. For $f: A \to B$ and $g: B \to C$ if gf is a mono, then so is f.

Dually

- 1. The composition of two epis is an epi.
- 2. For For $f: A \to B$ and $g: B \to C$ if gf is an epi, then so is g.

Proof. 1. Consider monos $f: B \to C$ and $g: A \to B$. Suppose $h_1, h_2: X \to A$ are given such that $(fg)h_1 = (fg)h_2$. Then

$$f(gh_1) = f(gh_2) \implies gh_1 = gh_2 \implies h_1 = h_2,$$

hence fg is a mono.

2. Consider $h_1, h_2 : X \to A$ such that $fh_1 = fh_2$. Then $(gf)h_1 = (gf)h_2$, hence by assumption, $h_1 = h_2$. We thus conclude that f is mono.

Remark D.0.23. From the above result it follows that $Ob(\mathcal{C})$ with morphisms being monos/epis in $Hom(\mathcal{C})$, defines a subcategory of \mathcal{C} .

Definition D.0.24. Let \mathcal{C} be a locally small category and fix an object X in \mathcal{C} . Given a morphism $f:A\to B$, define

$$f_*: \operatorname{Hom}(X, A) \to \operatorname{Hom}(X, B)$$

 $g \mapsto fg$

we also define the dual concept

$$f^*: \operatorname{Hom}(A,Y) \to \operatorname{Hom}(B,X)$$

$$h \mapsto hf$$

Remark D.0.25. Note that $f_*^{op} = f^*$, i.e. for $f^{op} : B \to A$, the morphism f interpreted as a morphism of \mathcal{C}^{op} we have

$$f_*^{\mathrm{op}}: \mathrm{Hom}^{\mathcal{C}^{\mathrm{op}}}(X,B) = \mathrm{Hom}(B,X) \to \mathrm{Hom}^{\mathcal{C}^{\mathrm{op}}}(X,A) = \mathrm{Hom}(A,X)$$

$$h: B \to X \mapsto f \circ^{\mathrm{op}} h = hf$$

hence $f_*^{\text{op}} = f^*$

Lemma D.0.26. For a locally small category C and morphism $f: A \to B$, the following are equivalent

- 1. f is an isomorphism
- 2. For every object X in C, f_* is a bijection.
- 3. For every object X in C, f^* is a bijection

Proof. "1. \Longrightarrow 2.": Let $g: B \to A$ be the inverse of f. Then given $h \in \text{Hom}(X, A)$,

$$(g_*f_*)h = g_*(f_*h) = g_*(fh) = gfh = h \implies g_*f_* = 1_{\text{Hom}(X,A)}$$

and similarly one proves that $f_*g_* = \mathbb{1}_{\text{Hom}(X,B)}$.

"2. \Longrightarrow 1.": Consider $f_*: \operatorname{Hom}(B,A) \to \operatorname{Hom}(B,B)$. This by assumption has an inverse $\lambda: \operatorname{Hom}(B,B) \to \operatorname{Hom}(B,A)$. Set $g:=\lambda(\mathbb{1}_B)$. Then for each

$$fg = f\lambda(1_B) = f_*(\lambda(1_B)) = (f_*\lambda)(1_B) = 1_{\text{Hom}(B,B)}(1_B) = 1_B.$$

Now consider the function

$$\mu: \operatorname{Hom}(A,A) \to \operatorname{Hom}(A,B)$$
$$h \mapsto fh$$

which is just another instance of an " f_* ", but we use different notation to not confuse it with $f_* : \text{Hom}(B, B) \to \text{Hom}(B, A)$. Then μ has an inverse μ^{-1} . Note then thats

$$\mu(gf) = f(gf) = (fg)f = \mathbb{1}_B f = f\mathbb{1}_A = \mu(\mathbb{1}_A)$$

hence

$$gf = (\mu^{-1}\mu)(gf) = \mu^{-1}(\mu(gf)) = \mu^{-1}(\mu(\mathbb{1}_A)) = (\mu^{-1}\mu)(\mathbb{1}_A) = \mathbb{1}_A.$$

"1. \iff 3.": This is dual to "1. \iff 2.".

Lemma D.0.27. Consider a locally small category C and a morphism $f: A \to B$.

- 1. f is a split epimorphism if and only if for each X, f_* : $\text{Hom}(X,A) \to \text{Hom}(X,B)$ is surjective.
- 2. Dually, f is a split monomorphism if and only if for each X, f^* : Hom $(B, X) \to$ Hom(A, X) is injective.

Proof. 1. Suppose f is a split epi. Then f has a right inverse g, i.e. $fg = \mathbbm{1}_B$. Let $h: X \to B$ be given. Then $f_*(gh) = f(gh) = (fg)h = h$, hence f_* is surjective. Suppose that $f_*: \operatorname{Hom}(X,A) \to \operatorname{Hom}(X,B)$ is surjective for each object X. Then $f_*: \operatorname{Hom}(B,A) \to \operatorname{Hom}(B,B)$ is surjective. hence for some $g: B \to A$,

$$\mathbb{1}_B = f_*(g) = fg$$

hence f is a retraction of g and therefor a split epimorphism. 2. This is dual to 1.

D.0.2 Examples of Categories

Example D.0.28. Consider the proper class of sets and the class of functions. This defines a category Set where composition is given by function composition and the identity morphism is the identity function.

Example D.0.29. The following are some examples of subcategories of Set.

- 1. There is the category of finite sets Fin, whose objects are finite sets and whose morphisms are maps.
- 2. Top has the proper class of topological spaces as objects and continuous functions as morphisms.
- 3. Htpy is the category whose objects are topological spaces and whose morphisms are homotopy classes of continuous maps. That is given continuous maps $f,g:X\to Y$, these maps are *homotopic* if there exists a continuous map $H:X\times [0,1]\to Y$ such that H(x,0)=f(x) and H(x,1)=g(x) for each $x\in X$. This defines an equivalence relation, \sim say. We define $[g]_{\sim}[f]_{\sim}:=[gf]_{\sim}$. Suppose $f,f':X\to Y$ are homotopic via a map $I:X\times [0,1]\to Y$ and $g,g':Y\to Z$ are homotopic via $J:Y\times [0,1]\to Z$. We define

$$H: X \times [0,1] \to Z$$

 $(x,t) \mapsto J(I(x,t),t)$

Then H(x,0) = J(I(x,0),0) = J(f(x),0) = gf(x) and H(x,1) = J(I(x,1),1) = J(f'(x),1) = g'f'(x), so this is homotopy, hence composition is well-defined. One readily verifies associativity. The identity morphism is the homotopy class of the identity map.

- 4. Given a (preferably algebraically closed) field K, a multiprojective variety over K is a solution to a set of polynomial equations (a socalled algebraic set) in a set of the form $\mathbb{A}^n(K) \times \mathbb{P}^{n_1}(K) \times \cdots \times \mathbb{P}^{n_m}(K)$ that cannot be written as the union of two proper subsets that are sets of solutions to systems of polynomial equations. The set of varieties in such a set forms a subbasis for a topology called the Zariski topology. A subset U of a multiprojective variety V is called a variety if it is open in Zariski subspace topology on V. The collection of all such varieties is the objects in a category Var_K . To discuss how the morphisms work in this category one has to go into a long explanation about some constructions in algebraic geometry. The jist is the following: Given a set A, $\mathrm{Hom}^{\mathrm{Set}}(A,K)$ defines a ring. In our context we are interested in the subring $\Gamma(A)$ of this ring consisting of maps that are essentially evaluation of fractions of polynomials. The morphisms of Var_K are then continuous maps of varieties $\varphi:X\to Y$ such given any open subset $U\subset Y$ and $f\in\Gamma(U)$, we have that $f\circ\varphi\in\Gamma(\varphi^{-1}(U))$. One checks that this defines a subcategory of Top.
- 5. As a subcategory of Var_K we have $AffVar_K$, the category of affine varieties, whose objects are varieties isomorphic to irreducible algebraic sets in \mathbb{A}^n for some n.
- 6. As a subcategory of Var_K we have $ProjVar_K$, the category of projective varieties, whose objects are varieties isomorphic to irreducible algebraic sets in \P^n for some n.
- 7. As another subcategory of Top, we have $Man_{\mathbb{R}}$, the category of smooth manifolds over \mathbb{R} with morphisms being smooth maps. One can also consider $Man_{\mathbb{C}}$ and as a subcategory RS of riemann surfaces.
- 8. There is the category Meas of measure spaces and measurable functions.
- 9. Mon has the proper class of monoids as objects and monoid homomorphisms as morphisms.
- 10. Group has groups as objects and group homomorphisms as morphisms.
- 11. Ab has abelian groups as objects and group homomorphisms as morphisms.

- 12. Ring has (unital) rings as objects and ring homomorphism as morphisms.
- 13. Rng has (not necessarily unital rings) as objects and maps that are monoid homomorphisms with respect to both addition and multiplication.
- 14. Given a ring, R $_R$ Mod is the category with objects being left R-modules with left R-module homomorphisms.
- 15. There is a dual notion of a category of right R-modules Mod_R .
- 16. Given rings R, S, there is a category ${}_{R}\text{Mod}_{S}$ of (R,S)-bimodules and (R,S)-bimodule homomorphisms.
- 17. Given a field K we have the category of vector spaces, Vect_K . As a subcategory there is the category of finite dimensional vector spaces $\text{Vect}_K^{\text{fd}}$
- 18. Given a commutative ring R, we have the category of algebras over R, denoted Alg_R .
- 19. Indeed, asking that a set is endowed with some structure and finding a class of maps that preserves this structure and is closed under composition readily leads to a category.

Example D.0.30. Given any subcategory \mathcal{C} of Set. We can form \mathcal{C}_* consisting of a pair (X,x) where $X \in \mathrm{Ob}(\mathcal{C})$ and $x \in X$ where a morphism $f:(X,x) \to (Y,y)$ is a map $f:X \to Y$ such that f(x)=y. This is the category of *pointed sets in* \mathcal{C} . For example, we could consider the category of pointed sets Set_* or the category of pointed topological spaces Top_* .

Example D.0.31. Given a (commutative say) ring R we can form the category of *chain complexes* Ch_R whose objects are families of R-modules $\{M_i\}_{i\in\mathbb{Z}}$ together with a family of R-module maps $\{d_i:M_i\to M_{i-1}\}_{i\in\mathbb{Z}}$ such that $d_{i-1}d_i=0$ which are called *boundary maps*. A morphism of chain complexes $f_{\bullet}:M_{\bullet}\to M'_{\bullet}$ is a collection of maps $\{f_i:M_i\to M'_i\}$ such that the square

$$M_{i} \xrightarrow{d_{i}} M_{i-1}$$

$$\downarrow^{f_{i}} \qquad \downarrow^{f_{i-1}}$$

$$M'_{i} \xrightarrow{d'_{i}} M'_{i-1}$$

commutes. Composition of $f_{\bullet}: M_{\bullet} \to M'_{\bullet}$ and $g_{\bullet}: M'_{\bullet} \to M''_{\bullet}$ is given by $\{g_i f_i: M_i \to M''_i\}$. Indeed, the square

$$M_{i} \xrightarrow{d_{i}} M_{i-1}$$

$$\downarrow g_{i}f_{i} \qquad \downarrow g_{i-1}f_{i-1}$$

$$M_{i}'' \xrightarrow{d_{i}''} M_{i-1}''$$

commutes, since

$$M_{i} \xrightarrow{d_{i}} M_{i-1}$$

$$\downarrow^{f_{i}} \qquad \downarrow^{f_{i-1}}$$

$$M'_{i} \xrightarrow{d'_{i}} M'_{i-1}$$

$$\downarrow^{g_{i}} \qquad \downarrow^{g_{i-1}}$$

$$M''_{i} \xrightarrow{d''_{i}} M''_{i-1}$$

commutes. The identity morphism is $\{\mathrm{id}_{M_i}\}_{i\in\mathbb{Z}}.$

Example D.0.32. Given a preordered set (X, \leq) , we can construct a category whose objects are X and where a morphisms are \leq . Composition of morphisms $a \leq b$ and $b \leq c$ is $a \leq c$. Indeed if $a \leq b$ and $b \leq c$, then $a \leq c$, so this is well-defined. One readily verifies that this is associative using transitivity a few times. The identity morphism is $a \leq a$ with exists by reflexivity.

This could for instance be an ordinal $\alpha \in \Omega$.

Definition D.0.33. A small category $\mathcal C$ is called a *groupoid* if every f in $\text{Hom}(\mathcal C)$ is an isomorphism

Example D.0.34. Let (M, \cdot, e) be a monoid. We define a category BM whose class of objects is $\{M\}$ and whose morphisms are $n, m \in M$ and where composition of morphisms $n, m \in M$ is given by

$$nm := n \cdot m$$
.

Since M is a monoid for $m_1, m_2, m_3 \in M$, we have

$$m_1(m_2m_3) = (m_1m_2)m_3.$$

The identity morphism is e. When $(G, \dot{,}e)$ is a group we get that every morphism is an isomorphism, since for each $g \in G$ there is a $g^{-1} \in G$ such that

$$gg^{-1} = g^{-1}g = e$$

Note that a groupoid with one object X is a group in the following sense: The set $\operatorname{Hom}(X,X)$ forms a group.

Example D.0.35. Consider a topological space X. We construct the *fundemental groupoid* of X to be the category with objects X and morphisms being homotopy classes of paths $f_{x,y}: [0,1] \to X$ such that for $f_1, f_2 \in [f]_{x,y}$, $f_1(0) = x = f_2(0)$ and $f_1(1) = y = f_2(1)$. Here composition of paths $[f]_{x,y}$ and $[g]_{y,z}$ is the homotopy class of $g \bullet f$, where

$$(g \bullet f)(t) := \begin{cases} f(2t) & \text{if } t \in [0, 1/2] \\ g(2t-1) & \text{if } t \in (1/2, 1] \end{cases}$$

one proves that this is independent of representatives by showing that one can construct a homotopy of any pair of composed paths. The identity morphism for an object $x \in X$ is $[0,1] \to X, t \mapsto x$. It is clear that this is a groupoid, since given a path $f:[0,1] \to X$ we construct $f^{-1}:[0,1] \to X, t \mapsto f(1-t)$.

Definition D.0.36. The *maximal groupoid* of a category \mathcal{C} is the subcategory of \mathcal{C} whose objects are $Ob(\mathcal{C})$ and whose morphisms are the isomorphisms of $Hom(\mathcal{C})$

Remark D.0.37. The maximal groupoid is a subcategory. Indeed, The domain and codomain of an isomorphism are trivially in Ob(C). Suppose $f:A\to B$ and $g:B\to C$ are isomorphisms. Then

$$f^{-1}g^{-1}gf = f^{-1}\mathbb{1}_B f = f^{-1}f = \mathbb{1}_A$$

and

$$gff^{-1}g^{-1} = g\mathbb{1}_Bg^{-1} = gg^{-1} = \mathbb{1}_C.$$

Hence $gf:A\to C$ is an isomorphism with inverse $f^{-1}g^{-1}$.

Definition D.0.38. A category C is *discrete*, if for each morphism $f: X \to Y$, Y = X and $f = id_X$.

Example D.0.39. Take any non-empty set X. We then have a category whose objects are X and whose morphisms are

$$\Delta_X := \{(x, x) \in X \times X : x \in X\}.$$

Upon defining (x, x)(y, y) = (x, x), we thus have that

$$((x,x)(y,y))(z,z) = (x,x)(z,z) = (x,x) = (x,x)(y,y) = (x,x)((y,y)(z,z)).$$

We define $\mathbb{1}_x = (x, x)$. Clearly this is neutral with respect to composition. Any morphism is by definition the identity morphism, so this is an example of a discrete category.

Definition D.0.40. Let \mathcal{C} be a category and A an object in \mathcal{C} . The slice category of \mathcal{C} under A denoted A/\mathcal{C} is the category whose objects are morphisms in $\operatorname{Hom}(\mathcal{C})$ with domain A and where a morphism from $f:A\to X$ and $g:A\to Y$ is a map $h:X\to Y$ such that

$$X \xrightarrow{f} A \xrightarrow{g} Y$$

commutes. The slice category of C over A denoted C/A has morphisms with codomain A as objects and a morphism from $f: X \to A$ to $g: Y \to A$ is a morphism $h: X \to Y$ satisfying

Remark D.0.41. Both these constructions are indeed categories: Consider morphisms h_{12} between $f_1:A\to X$ & $f_2:A\to Y$ and h_{23} between $f_2:A\to Y$ & $f_3:A\to Z$. Then we have commutative diagrams

to obtain the commutative diagram

$$X \xrightarrow{f_1} A \downarrow f_2 \downarrow f_3 \downarrow X \xrightarrow{h_{12}} Y \xrightarrow{h_{23}} Z$$

hence $h_{23}h_{12}$ is a morphism between f_1 and f_3 . For an object $f: A \to X$ in A/\mathcal{C} define the identity morphism to be $\mathbb{1}_X$. We thus get that associativity of composition and the identity morphisms being neutral with respect to composition is inherited from this being true in \mathcal{C} . Reversing arrows we get that \mathcal{C}/A is also a category.

D.0.3 Functors

Definition D.0.42. Let C_1, C_2 be categories. A *Covariant functor* from C_1 to C_2 is a mapping \mathcal{F} , denoted $\mathcal{F}: C_1 \to C_2$, which assigns to each object A in $Ob(C_1)$ to an object $\mathcal{F}(A)$ in $Ob(C_2)$ and to each morphism in $Hom(C_1)$, $f: A \to B$ a morphism in $Hom(C_2)$, $\mathcal{F}(f): \mathcal{F}(A) \to \mathcal{F}(B)$ such that

1. for every object X in $Ob(\mathcal{C}_1)$, $\mathcal{F}(1_X) = 1_{\mathcal{F}(X)}$.

2. for every pair of morphisms $f: B \to C$ and $g: A \to B$ in $\text{Hom}(\mathcal{C}_1)$, $\mathcal{F}(fg) = \mathcal{F}(f)\mathcal{F}(g)$.

Definition D.0.43. Consider categories C_1 and C_2 . A contravariant functor \mathcal{F} between C_1 and C_2 is a covariant functor between C_1^{op} and C_2 .

Lemma D.0.44. Consider two categories C_1 and C_2 with a functor $\mathcal{F}: C_1 \to C_2$. If $f: A \to B$ is an isomorphism in $\text{Hom}(C_1)$, then $\mathcal{F}(f): \mathcal{F}(A) \to \mathcal{F}(A)$ is an isomorphism in $\text{Hom}(C_2)$.

Proof. Indeed,

$$\mathcal{F}(f)\mathcal{F}\left(f^{-1}\right)=\mathcal{F}\left(ff^{-1}\right)=\mathcal{F}(\mathbb{1}_{B})=\mathbb{1}_{\mathcal{F}(B)}\text{ and }\mathcal{F}\left(f^{-1}\right)\mathcal{F}(f)=\mathcal{F}\left(f^{-1}f\right)=\mathcal{F}(\mathbb{1}_{A})=\mathbb{1}_{\mathcal{F}(A)}.$$

Example D.0.45. Suppose that there, for a category \mathcal{C} , is a well-defined assignment \mathcal{F} of objects in \mathcal{C} to integers and of morphisms $A \to B$ to $\mathcal{F}(A) \leq \mathcal{F}(B)$. This will define a functor from \mathcal{C} to (\mathbb{Z}, \leq) called *an integer invariant of objects in* \mathcal{C} . Indeed, $\mathcal{F}(A) \leq \mathcal{F}(A)$, hence $\mathcal{F}(\mathbb{1}_A) = \mathbb{1}_{\mathcal{F}(A)}$, so $\mathbb{1}_{\mathcal{F}(A)} = \mathcal{F}(A)$. Given morphisms $g: A \to B$, $f: B \to C$ in $\mathrm{Hom}(\mathcal{C})$,

$$\mathcal{F}(A) \leq \mathcal{F}(B)$$
 and $\mathcal{F}(B) \leq \mathcal{F}(C)$,

implying $\mathcal{F}(A) \leq \mathcal{F}(C)$, hence $\mathcal{F}(A \xrightarrow{fg} C) = \mathcal{F}(A \xrightarrow{f} B)\mathcal{F}(B \xrightarrow{g} C)$. Integer invariants are useful in a large variety of contexts. Some examples are:

- 1. Dimension (of vector spaces) defines an integer invariant of objects in $Vect^{fd}$.
- 2. Transcendence degree over a field K of field extensions over K is an integer the category of algebraic extensions over K. A closely related notion, when K is algebraically closed, is dimension of varieties in Var_K .
- 3. For a commutative ring R, | defines a preorder on $R[x_1, \ldots, x_n] \setminus 0$. An integer invariant on the category associated with this poset is the degree.
- 4. Genus in the category of category of compact smooth manifolds.
- 5. For a set X, the finite subsets of X is a poset with respect to inclusion
- 6. For the posets (\mathbb{R}, \leq) or (\mathbb{Q}, \leq) , the floor- and ceiling functions define an integer invariant.

One can generalize the above to any poset X to a notion of *invariants over* X *of objects* in C, which is useful if we for intance want to consider invariants over $\mathbb{Z} \cup \{\infty\}$, relevant to for instance dimension of vector spaces in Vect, degree for the poset $(R[x_1, \ldots, x_n], |)$ with the convention that deg $0 = \infty$ or cardinality for a family of subsets of some X. For a measure space (X, Ω, μ) , inclusion defines a poset on Ω and μ defines an invariant over $[0, \infty]$ of Ω -measurable sets.

Example D.0.46. The assignment

$$\mathcal{P} : \mathsf{Set} \to \mathsf{Set}$$

$$X \mapsto \mathcal{P}(X) := \{A : A \subset X\}$$

$$(f : X \to Y) \mapsto (A \mapsto f(A))$$

where for each $A \in \mathcal{P}(X)$,

$$f(A) := \{ f(x) \in Y : x \in A \}$$

defines a functor. Indeed, for $f: X \to Y, g: Y \to Z$,

$$gf(A) = \{gf(x) \in Z : x \in A\} = \{g(f(x)) \in Z : x \in A\} = g(\{f(x) \in Y : x \in A\}) = g(f(A)).$$

Moreover,

$$id_X(A) = A = id_{\mathcal{P}(X)}(A).$$

Example D.0.47. Given any function $f: X \to Y$, when considering both X and Y with the structure of discrete category, we get a functor

$$X \to Y$$
$$x \mapsto f(x)$$
$$\mathbb{1}_x \mapsto \mathbb{1}_{f(x)}$$

Example D.0.48. Consider a pair of monoids M, N and a functor $\mathcal{F} : BM \to [B]N$ this is just a function $M \to N, x \mapsto \mathcal{F}(x)$. By functoriality $\mathcal{F}(e_M) = e_N$ and $\mathcal{F}(xy) = \mathcal{F}(x)\mathcal{F}(y)$, so in particular \mathcal{F} corresponds to a monoid homomorphism. Conversely, any monoid homomorphism gives rise to functor of monoids. Similar considerations can be made to a ring R.

Definition D.0.49. A functor $\mathcal{F}:\mathcal{C}\to\mathcal{C}$ is called an *endofunctor*.

Definition D.0.50. For each subcategory \mathcal{C} of Set there is a *forgetful functor*

$$\mathcal{C} \to \operatorname{Set}$$

$$X \mapsto X$$

$$f: X \to Y \mapsto f: X \to Y$$

In general, given a pair of subcategories of Set, \mathcal{C} and \mathcal{D} say, such that \mathcal{D} is a subcategory of \mathcal{C} , we can construct a forgetful functor from \mathcal{D} to \mathcal{C} in the same fashion.

Example D.0.51. Consider for instance the forgetful functor taking rings $(R, +, \cdot)$ to the underlying set R, or intermediately, the underlying additive group (R, +) in Group and ring maps to maps or intermediately to group maps.

Example D.0.52. Another example is the forgetful functor

$$\mathsf{Mon} \to \mathsf{Set}_*$$

$$(M,\cdot,e) \mapsto (M,e)$$

$$f: (M,\cdot_M,e_M) \to (N,\cdot_N,e_N) \mapsto (f:(M,e_M) \to (N,e_N)), x \mapsto f(x)$$

which is well-defined since monoid homomorphisms fix the neutral element.

Example D.0.53. Given an algebraically closed field K, there is a contravariant functor

$$\Gamma: \mathrm{Var}_K \to \mathrm{FinGenAlg}_K$$

$$X \mapsto \Gamma(X)$$

$$\varphi: X \to Y \mapsto \widetilde{\varphi}: \Gamma(Y) \to \Gamma(X)$$

where $\operatorname{FinGenAlg}_K$ is the category of finitely generated algebras over K.

Definition D.0.54. Consider a locally small category C. We then for each object X in C get a covariant functor

$$\operatorname{Hom}(X,_):\mathcal{C}\to\operatorname{Set}$$

$$Y\mapsto\operatorname{Hom}(X,Y)$$

$$f:A\to B\mapsto f_*:\operatorname{Hom}(X,A)\to\operatorname{Hom}(X,B)$$

and a contravariant functor

$$\operatorname{Hom}(_,X):\mathcal{C}\to\operatorname{Set}$$

$$Y\mapsto\operatorname{Hom}(Y,X)$$

$$f:A\to B\mapsto f^*:\operatorname{Hom}(B,X)\to\operatorname{Hom}(A,X)$$

We say that these are the functors represented by X.

Remark D.0.55. Let $f: B \to C$ and $q: A \to B$ be given. Then for each $h \in \text{Hom}(X, A)$

$$(fg)_*(h) = (fg)h = f(gh) = f_*(gh) = f_*(g_*(h)) = f_*g_*(h) \implies (fg)_* = f_*g_*.$$

One easily checks that $(\mathbb{1}_A) = \mathbb{1}_{\operatorname{Hom}(X,A)}$. This verifies that $\operatorname{Hom}(X,\underline{\ })$ is a covariant functor. Note that $\operatorname{Hom}(\underline{\ },X)$ is just the covariant functor

$$\operatorname{Hom}(X,\underline{\ }):\mathcal{C}^{\operatorname{op}}\to\operatorname{Set}$$

and is therefor a contravariant functor from $\mathcal{C} \to \operatorname{Set}$.

Definition D.0.56. For categories C and C' we define the *the product category of* C *and* C' to be category $C \times C'$ whose objects are ordered pairs (X, X') where X is an object of C and X' is an object of C' and whose morphisms are ordered pairs of morphisms, denoted $(f, f') : (X, X') \to (Y, Y')$.

Given a pair of morphisms in the product, $(f, f'): (X, X') \to (Y, Y')$ and $(g, g'): (Y, Y') \to (Z, Z')$, composition is defined as

$$(g,g')(f,f') := (gf,g'f') : (X,X') \to (Z,Z').$$

Given an object (A, A'), we define $\mathbb{1}_{(A,A')} = (\mathbb{1}_A, \mathbb{1}_{A'})$ How do we know such ordered pairs exist in general?

Remark D.0.57. Consider morphisms $(f, f') : (Z, Z') \to (W, W'), (g, g') : (Y, Y') \to (Z, Z')$ and $(h, h') : (X, X') \to (Y, Y')$. Then

$$(f, f')((g, g')(h, h')) = (f, f')(gh, g'h') = (f(gh), f'(g'h')) = ((fg)h, (f'g')h')$$
$$= (fg, f'g')(h, h') = ((f, f')(g, g'))(h, h').$$

Moreover,

$$(h,h')\mathbb{1}_{(X,X')} = (h\mathbb{1}_X,h'\mathbb{1}_{X'}) = (h,h') = (\mathbb{1}_Y h,\mathbb{1}_{Y'} h') = \mathbb{1}_{(Y,Y')}(h,h').$$

One can thus conclude that $\mathcal{C} \times \mathcal{C}'$

Definition D.0.58. Given a locally small category C we define the *two-sides represented* functor

$$\operatorname{Hom}(_,_):\mathcal{C}^{\operatorname{op}}\times\mathcal{C}\to\operatorname{Set}$$

$$(X,Y)\mapsto\operatorname{Hom}(X,Y)$$

$$(f,h):(A,B)\to(C,D)\mapsto(f^*,h_*):\operatorname{Hom}(A,B)\to\operatorname{Hom}(C,D)$$

where $f: C \to A$ as a morphism in \mathcal{C} and $(f^*, h_*)(g) := hgf$ for $g \in \text{Hom}(A, B)$.

Lemma D.0.59. Consider categories C, D, \mathcal{E} and covariant functors, $\mathcal{F}: C \to D, \mathcal{G}: D \to \mathcal{E}$. Then

$$\mathcal{GF}: \mathcal{C} \to \mathcal{E}$$

$$X \mapsto \mathcal{G}(\mathcal{F}(X))$$

$$f: Y \to Z \mapsto \mathcal{G}(\mathcal{F}(f)): \mathcal{G}(\mathcal{F}(Y)) \to \mathcal{G}(\mathcal{F}(Z))$$

is a functor called the composition of \mathcal{G} with \mathcal{F} .

Proof. Indeed, for morphisms $f: X \to Y$ and $g: Y \to Z$,

$$\begin{split} (\mathcal{GF})(gf) &= \mathcal{G}(\mathcal{F}(gf)) = \mathcal{G}(\mathcal{F}(g)\mathcal{F}(f)) = \mathcal{G}(\mathcal{F}(g))\mathcal{G}(\mathcal{F}(f)) \\ &= (\mathcal{GF})(g)(\mathcal{GF})(f). \end{split}$$

Moreover,

$$(\mathcal{G}\circ\mathcal{F})(\mathbb{1}_X)=\mathcal{G}(\mathcal{F}(\mathbb{1}_X))=\mathcal{G}(\mathbb{1}_{\mathcal{F}(X)})=\mathbb{1}_{\mathcal{G}(\mathcal{F}(X))}=\mathbb{1}_{(\mathcal{GF})(X)}.$$

Lemma D.0.60. Composition of functors is associative.

Proof. Consider functors $\mathcal{F}: \mathcal{C} \to \mathcal{D}, \mathcal{G}: \mathcal{B} \to \mathcal{C}, \mathcal{H}: \mathcal{A} \to \mathcal{B}$. Given an object A in \mathcal{A} ,

$$(\mathcal{F} \circ (\mathcal{G} \circ \mathcal{H}))(A) = \mathcal{F}((\mathcal{G} \circ \mathcal{H})(A)) = \mathcal{F}(\mathcal{G}(\mathcal{H}(A))) = (\mathcal{F} \circ \mathcal{G})(\mathcal{H}(A))$$
$$((\mathcal{F} \circ \mathcal{G}) \circ \mathcal{H})(A).$$

Once also easily checks that for each morphism $f: X \to Y$

$$(\mathcal{F} \circ (\mathcal{G} \circ \mathcal{H}))(f) = ((\mathcal{F} \circ \mathcal{G}) \circ \mathcal{H})(f),$$

hence

$$\mathcal{F}\circ(\mathcal{G}\circ\mathcal{H})=(\mathcal{F}\circ\mathcal{G})\circ\mathcal{H}.$$

Remark D.0.61. In addition to functor composition being associative, there is an identity functor for each category

$$\mathcal{ID}_{\mathcal{C}}: \mathcal{C} \to \mathcal{C}$$

$$X \mapsto X$$

$$f: Y \to Z \mapsto f: Y \to Z$$

for which

$$\mathcal{FID}_{\mathcal{C}} = \mathcal{F} = \mathcal{ID}_{\mathcal{D}}\mathcal{F}.$$

Example D.0.62. Note that it is not true that if a functor maps a morphism to an isomorphism, then said morphism is an isomorphism. Indeed, consider for example any functor \mathcal{F} from a category \mathcal{C} to the category with one object and one morphism (which will need to be the identity morphism), $\mathbb{1}$. This will take any object to the one object and any morphism to identity morphism.

Definition D.0.63. Let $\mathcal{F}:\mathcal{D}\to\mathcal{C}$ and $\mathcal{G}:\mathcal{E}\to\mathcal{C}$ be functors. We define the *comma category* $\mathcal{F}\downarrow\mathcal{G}$ whose objects are triples $(D\in\mathcal{D},E\in\mathcal{E},f:\mathcal{F}(D)\to\mathcal{G}(E))$. A morphism $(D,E,f)\to(D',E',f')$ is a pair of morphisms $(h:D\to D',k:E\to E')$ so that

$$\mathcal{F}(D) \xrightarrow{f} \mathcal{G}(E)$$

$$\downarrow^{\mathcal{F}(h)} \qquad \downarrow^{\mathcal{G}(k)}$$

$$\mathcal{F}(D') \xrightarrow{f'} \mathcal{G}(E')$$

commutes

Remark D.0.64. Consider morphisms

$$(h: D \to D', k: E \to E'): (D, E, f) \to (D', E', f')$$

and

$$(h': D' \to D'', k': E' \to E''): (D', E', f') \to (D'', E'', f'').$$

We define composition by

$$(h', k')(h, k) := (h'h, k'k)$$

To see that this is well defined note that

$$\mathcal{F}(D) \xrightarrow{f} \mathcal{G}(E)$$

$$\downarrow^{\mathcal{F}(h'h)} \qquad \downarrow^{\mathcal{G}(k'k)}$$

$$\mathcal{F}(D'') \xrightarrow{f''} \mathcal{G}(E'')$$

commutes since $\mathcal{F}(h'h) = \mathcal{F}(h')\mathcal{F}(h)$, $\mathcal{G}(k'k) = \mathcal{G}(k')\mathcal{G}(k)$ and the diagram

$$\mathcal{F}(D) \xrightarrow{f} \mathcal{G}(E)
\downarrow_{\mathcal{F}(h)} & \downarrow_{\mathcal{G}(k)}
\mathcal{F}(D') \xrightarrow{f'} \mathcal{G}(E')
\downarrow_{\mathcal{F}(h')} & \downarrow_{\mathcal{G}(k')}
\mathcal{F}(D'') \xrightarrow{f''} \mathcal{G}(E'')$$

commutes. Clearly composition is associative. Define the identity morphism for (D, E, f) to be $(\mathbb{1}_D, \mathbb{1}_E)$. Note that this is indeed a morphism in $\mathcal{F} \downarrow \mathcal{G}$, since

$$\mathcal{F}(D) \xrightarrow{f} \mathcal{G}(E)
\mathcal{F}(\mathbb{1}_{D}) = \mathbb{1}_{\mathcal{F}(D)} \qquad \qquad \downarrow \mathcal{G}(\mathbb{1}_{E}) = \mathbb{1}_{\mathcal{G}(E)}
\mathcal{F}(D) \xrightarrow{f} \mathcal{G}(E)$$

clearly commutes. It is also clear that this is the identity morphism in $\mathcal{F} \downarrow \mathcal{G}$.

Definition D.0.65. Given functors $\mathcal{F}:\mathcal{D}\to\mathcal{C}$ and $\mathcal{G}:\mathcal{E}\to\mathcal{C}$ we define projection functors

$$\operatorname{dom}: \mathcal{F} \downarrow \mathcal{G} \to \mathcal{D}$$

$$(D, E, f) \mapsto D$$

$$(h, k): (D_1, E_1, f_1) \to (D_2, E_2, f_2) \mapsto h: D_1 \to D_2$$

and

$$\operatorname{cod}: \mathcal{F} \downarrow \mathcal{G} \to \mathcal{E}$$

$$(D, E, f) \mapsto E$$

$$(h, k): (D_1, E_1, f_1) \to (D_2, E_2, f_2) \mapsto k : E_1 \to E_2$$

Remark D.0.66. Note that C/\mathcal{C} is just a comma category; $\mathcal{F}_C \downarrow \mathcal{ID}_{\mathcal{C}}$, where $\mathcal{F}_C : \mathbb{1} \to \mathcal{C}$ is the constant functor from the category with one object and one morphism and $\mathcal{ID}_{\mathcal{C}}$ is the identity functor on \mathcal{C} . Indeed an object in this category is a triple $(* \in \mathbb{1}, X \in \mathcal{C}, f : C \to X)$, note that there is a unique such triple when given any morphism $f : C \to X$, so we may represent such a triple more succinctly by just providing a morphism. A morphism in $\mathcal{F}_C \downarrow \mathcal{ID}_{\mathcal{C}}$ from $f : C \to X$ to $g : C \to Y$ is a pair $(h : X \to Y, \mathrm{id}_C : C \to C)$ such that

$$\begin{array}{ccc}
C & \xrightarrow{f} & X \\
\downarrow^{\operatorname{id}_C} & & \downarrow^h \\
C & \xrightarrow{g} & Y
\end{array}$$

commutes. Note that the second data point in this pair is redundant and that this is equivalent to

$$X \xrightarrow{f} \xrightarrow{h} Y$$

commuting. So the data specifying the two categories is the same. Note that projection functor simply map a morphism $f:C\to X$ to its domain and codomain respectively. We can also construct \mathcal{C}/C as $\mathcal{ID}_{\mathcal{C}}\downarrow\mathcal{F}_{C}$.

D.0.4 Functors on Groups

Fix a group G and a category C. A functors $BG \to C$, maps G to an object X in C and a group element $g \in G$ to an endomorphism $g_* : X \to X$ with

$$(gh)_{\star} = g_{\star}h_{\star}$$

and $e_{\star} = \mathbb{1}_X$. Such a functor is called an *action*. When $\mathcal{C} = \operatorname{Set}$, it is a G-set. When $\mathcal{C} = \operatorname{Vect}_K$ for some field K it is called a G-representation. Each endomorphism induced by G is an isomorphism, again, by functoriality.

D.0.5 Categories of Categories

When our foundations are suitably developed we may consider a category of categories when we have the last lemma of the prior section in mind. Naively one cannot consider such a category, since the question of whether such a category is an object in the category of categories leads to an instance of Russel's paradox. Instead one needs to consider some more refined concepts such as the following,

Proposition D.0.67. Consider the class of small categories with morphisms being functors. This defines a locally small category denoted Cat.

Proof. Note that the class of subclasses of the proper class of all sets is itself a class (in e.g. Morse-Kelley set theory). Note that a functor between categories, whose objects and class of morphisms are sets, is a function. I.e. such a functor is a function

$$Ob(\mathcal{C}) \times Hom(\mathcal{C}) \to Ob(\mathcal{C}') \times Hom(\mathcal{C}').$$

Then the class of all such functors is a subclass of the class of all functions? By Lemma D.0.60 and Remark D.0.61, Cat is a category and it is locally small since $\text{Hom}(\mathcal{C}, \mathcal{D})$ is a set for each pair of small categories \mathcal{C}, \mathcal{D} .

Remark D.0.68. The collection of all locally small categories with functors as morphisms, which will be denoted CAT, will similarly define a category, which won't be locally small.

From the above we get a notion of isomorphism of categories with this we have for instance the following result

Proposition D.0.69. Given a category C and an object A, then

$$\mathcal{C}/A \simeq (A/\mathcal{C}^{\mathrm{op}})^{\mathrm{op}}$$

Proof. Define a functor

$$\mathcal{F}: \mathcal{C}/A \to (A/\mathcal{C}^{op})^{op}$$

which maps an object $f: X \to A$ to itself. Note that the objects of $(A/\mathcal{C}^{op})^{op}$ is the same as the objects of (A/\mathcal{C}^{op}) , which are morphisms of \mathcal{C}^{op} with domain A. Such morphisms are exactly morphisms of \mathcal{C} with codomain A. It follows that the assignment of objects is well-defined. Moreover \mathcal{F} maps a morphism

to itself. Indeed, a morphism from $\lambda \in \operatorname{Hom}^{\mathcal{C}^{\operatorname{op}}}(A,X)$ to $\mu \in \operatorname{Hom}^{\mathcal{C}^{\operatorname{op}}}(B,X)$ in $(A/\mathcal{C}^{\operatorname{op}})^{\operatorname{op}}$ is a morphism in $A/\mathcal{C}^{\operatorname{op}}$ from μ to $\lambda, \nu \in \operatorname{Hom}^{\mathcal{C}^{\operatorname{op}}}(Y,X)$ such that $\lambda = \nu \circ^{\operatorname{op}} \mu$. In \mathcal{C} , this corresponds to $\nu: X \to Y$ being a morphism satisfying $\lambda = \mu \circ \nu$. This is exactly a morphism in \mathcal{C}/A . It follows that \mathcal{F} is well-defined on morphisms as well. The above arguments also clearly shows that the functor

$$\mathcal{G}: (A/\mathcal{C}^{\mathrm{op}})^{\mathrm{op}} \to \mathcal{C}/A$$

taking objects and morphisms to themselves gives a well-defined functor whose left and right inverse is \mathcal{F} . It follows that $\mathcal{C}/A \simeq (A/\mathcal{C}^{\mathrm{op}})^{\mathrm{op}}$ at least when this category can be shown to live in some category.

Example D.0.70. Another example of an isomorphism of categories is the functor

$$(_)^{op}: CAT \to CAT$$

$$\mathcal{C} \mapsto \mathcal{C}^{op}$$

$$\mathcal{F}: \mathcal{C}^{op} \to \mathcal{C}^{op} \mapsto \mathcal{F}^{op}: \mathcal{C}^{op} \to \mathcal{D}^{op}$$

where for a given functor $\mathcal{F}:\mathcal{C}\to\mathcal{D}$

$$\mathcal{F}^{\mathrm{op}}: \mathcal{C}^{\mathrm{op}} o \mathcal{D}^{\mathrm{op}}$$
 $X \mapsto \mathcal{F}(X)$ $f: X o Y \mapsto f^{\mathrm{op}}: Y o X$

Note that clearly $(_)^{op}(_)^{op} = \mathcal{I}\mathcal{D}_{CAT}$.

Example D.0.71. Consider the category Set^{∂} whose objects are sets and whose morphisms are partial functions. For a given set X, we define

$$X_+ := X \cup \{X\}$$

and for a given partial map $f: X \cdots \rightarrow Y$ we define

$$f_+: X_+ \to Y_+$$

where

$$f_{+}(x) := \begin{cases} f(x) & \text{if } x \in \text{dom } f \\ Y & \text{otherwise} \end{cases}$$

We thus get a functor

$$(_)_{+}: \mathbf{Set}^{\partial} \to \mathbf{Set}_{*}$$

$$X \mapsto X_{+}$$

$$f: X \cdot \cdots \to Y \mapsto f: X_{+} \to Y_{+}$$

Indeed, given partial maps $f: X \dashrightarrow Y$ and $g: Y \dashrightarrow Z$, note that we have a partial map $gf: X \dashrightarrow Z$ with

$$\operatorname{dom} gf = \operatorname{dom} f \cap f^{-1}(\operatorname{dom} g).$$

If $x \in \text{dom } gf$, then $f(x) \in \text{dom } g$, hence

$$(gf)_+(x) = gf(x) = g(f(x)) = g_+(f(x)) = g_+(f_+(x)) = g_+f_+(x).$$

Suppose $x \notin \text{dom } gf \subset X_+$. Then $x \notin \text{dom } f$ or $x \notin f^{-1}(\text{dom } g)$. In the first case f(x) = Y, hence

$$(gf)_{+}(x) = Z = g_{+}(Y) = g_{+}(f_{+}(x)) = g_{+}f_{+}(x).$$

Suppose $x \in \text{dom } f$. Then $f(x) \notin \text{dom } g$, hence $g_+(f_+(x)) = Z$, hence

$$(gf)_{+}(x) = Z = g_{+}(f_{+}(x)) = g_{+}f_{+}(x).$$

We conclude that $(gf)_+ = g_+ f_+$. We define a left inverse to $(_)_+$, by

$$\begin{split} \mathcal{U}: \mathbf{Set}_* &\to \mathbf{Set}^\partial \\ (X,x) &\mapsto X \setminus \{x\} \\ f: (X,x) &\to (Y,y) \mapsto \mathcal{U}(f): X \setminus \{x\} \dashrightarrow Y \setminus \{y\} \end{split}$$

where

$$\operatorname{dom} \mathcal{U}(f) := X \setminus f^{-1}(y)$$

and on the domain of $\mathcal{U}(f)$, $\mathcal{U}(f)(a) = f(a)$. On objects X,

$$\mathcal{U}(X_+) = \mathcal{U}(X \cup \{X\}, X) = (X \cup \{X\}) \setminus \{X\} = X.$$

and on morphisms $f: X \longrightarrow Y$,

$$\operatorname{dom} \mathcal{U}(f_+) = (X \cup \{X\}) \setminus (f_+)^{-1}(Y) = (X \cup \{X\}) \setminus (X \setminus \operatorname{dom} f \cup \{X\}) = \operatorname{dom} f \cap X = \operatorname{dom} f.$$

Moreover for $x \in \text{dom } f$

$$\mathcal{U}(f_+)(x) = f_+(x) = f(x),$$

hence

$$\mathcal{U}(f_+) = f.$$

On the other hand

$$(\mathcal{U}(X,x))_{+} = (X \setminus \{x\})_{+} = (X \setminus \{x\}) \cup \{X \setminus \{x\}\}.$$

Thus \mathcal{U} and $(_)_+$ are not mutual inverses. However,

$$(X \setminus \{x\}) \cup \{X \setminus \{x\}\}$$
$$X \ni y \mapsto y$$
$$X \setminus \{x\} \mapsto x$$

Defines a bijection. So every set $X \in \operatorname{Set}^{\partial}$ is isomorphic to $\mathcal{U}(Y,y)$ for some $(Y,y) \in \operatorname{Set}_+$. Moreover, given a map of pointed sets $f: (X \cup \{X\}, X) \to (Y \cup \{Y\}, Y), \ f|_{X \setminus f^{-1}(Y)}: X \setminus f^{-1}(Y) \to Y$ gives rise to partial map $g: X \dashrightarrow Y$ where for $x \in \operatorname{dom} g$,

$$q_{+}(x) = f(x)$$

and for $x \notin \text{dom } g$,

$$g_+(x) = Y = f(x).$$

It thus follows that $g_+ = f$. Additionally, suppose for partial maps $f, g: X \longrightarrow Y$ that

$$f_+ = g_+.$$

If $x \in \text{dom } f$, then $Y \neq f(x) = f_+(x) = g_+(x)$, hence $g_+(x) = g(x)$, meaning $x \in \text{dom } g$. It follows by symmetry that dom f = dom g and thus readily that $f = f_+|_{\text{dom } f} = g_+|_{\text{dom } g} = g$. Later we will see that this shows that $(_)_+$ and $\mathcal U$ defines and equivalence of categories between Set^∂ and Set_+ .

D.0.6 Natural Transformations

Definition D.0.72. A *natural transformation* of functors $\mathcal{F}, \mathcal{G}: \mathcal{C} \to \mathcal{D}$,

$$\alpha: \mathcal{F} \Rightarrow \mathcal{G}$$

is a collection of morphisms

$$\{\alpha_X : \mathcal{F}(X) \to \mathcal{G}(X) : X \in \mathsf{Ob}(\mathcal{C})\}\$$

called *components* such that for any morphism $f: X \to X'$,

$$\mathcal{F}(X) \xrightarrow{\alpha_X} \mathcal{G}(X)$$

$$\downarrow^{\mathcal{F}(f)} \qquad \downarrow^{\mathcal{G}(f)}$$

$$\mathcal{F}(X') \xrightarrow{\alpha_{X'}} \mathcal{G}(X')$$

commutes

Remark D.0.73. A natural transformation is also denoted

$$\mathcal{C}$$
 $\downarrow \alpha \qquad \mathcal{D}$

Definition D.0.74. A *natural isomorphism* is a natural transformation for which every component is an isomorphism. If two functors $\mathcal{F}, \mathcal{G} : \mathcal{C} \to \mathcal{D}$ are naturally isomorphic via a natural transformation α , we write $\alpha : \mathcal{F} \cong \mathcal{G}$

Lemma D.0.75. Suppose $\alpha : \mathcal{F} \Rightarrow \mathcal{G}$ is a natural isomorphism with components $\{\alpha_X\}$. Then $\{\alpha_X^{-1}\}$ defines the components of a natural isomorphism $\alpha^{-1} : \mathcal{G} \Rightarrow \mathcal{F}$.

Proof. Let $f: X \to X'$ be a morphism. We need to check that the diagram

$$\mathcal{G}(X) \xrightarrow{\alpha_X^{-1}} \mathcal{F}(X)
\downarrow^{\mathcal{G}(f)} \qquad \downarrow^{\mathcal{F}(f)}
\mathcal{G}(X') \xrightarrow{\alpha_{X'}^{-1}} \mathcal{F}(X')$$

commutes. Indeed, using the fact that $\alpha_{X'}\mathcal{F}(f) = \mathcal{G}(f)\alpha_X$,

$$\mathcal{F}(f)\alpha_X^{-1} = \alpha_{X'}^{-1}\alpha_{X'}\mathcal{F}(f)\alpha_X^{-1} = \alpha_{X'}^{-1}\mathcal{G}(f)\alpha_X\alpha_X^{-1} = \alpha_{X'}^{-1}\mathcal{G}(f).$$

Lemma D.0.76. Let C be a locally small category. Consider a morphism $f \in Hom(X, Y)$. Then the collection of maps

$$\{f_*: \operatorname{Hom}(Z,X) \to \operatorname{Hom}(Z,Y), \operatorname{Hom}(Z,X) \ni g \mapsto fg \in \operatorname{Hom}(Z,Y) : Z \in \operatorname{Ob}(\mathcal{C})\}$$

defines a natural transformation $f_*: \operatorname{Hom}(_, X) \Rightarrow \operatorname{Hom}(_, Y)$. By duality $f^*: \operatorname{Hom}(Y, _) \Rightarrow \operatorname{Hom}(X, _)$ defines a natural transformation. Moreover if $f \neq f'$ for parallel morphisms f, f', then $f_* \neq f'_*$

Proof. Let a morphism $h: A \to B$ be given. Then

$$\begin{array}{ccc} \operatorname{Hom}(A,X) & \xrightarrow{Af_*} & \operatorname{Hom}(A,Y) \\ & & \downarrow_{Yh^*} & & \downarrow_{Xh^*} \\ \operatorname{Hom}(B,X) & \xrightarrow{Bf_*} & \operatorname{Hom}(B,Y) \end{array}$$

commutes by associativity of composition. Suppose $f \neq f'$. Then $_X f_*(\mathbb{1}_X) \neq _X f'_*(\mathbb{1}_X)$, hence $_X f_* \neq _X f'_*$, which implies $f_* \neq f'_*$.

Example D.0.77. Let V a vector space over some field K. Let for any vector space W over K, W^* denote Hom(W,K), the dual vector space of W, i.e. $(_)^* = \text{Hom}(_,K)$. Consider the linear maps

$$_{V}\mathrm{ev}:V
ightarrow V^{**}$$
 $v\mapsto \mathrm{ev}_{v}$

where ev_v is the linear map

$$V^* \to K$$

$$(l:V \to K) \mapsto l(v)$$

The collection $\{wev: W \to W^{**}: W \in Ob(Vect_K)\}$, defines a natural transformation of \mathcal{ID}_{Vect_K} with $(_)^{**}$. The square

$$V \xrightarrow{Vev} V^{**}$$

$$\downarrow l \qquad \qquad \downarrow l^{**}$$

$$W \xrightarrow{Wev} W^{**}$$

commutes. Indeed,

$$((_{W}evl)(v))(\phi) = ev_{l(v)}(\phi) = \phi(l(v)) = \phi l(v) = ev_{v}(\phi l) = (ev_{v}l^{*})(\phi) = (l^{**}(ev_{v}))(\phi)$$
$$= ((l^{**}_{V}ev)(v))(\phi)$$

D.0.7 Equivalence of Categories

Definition D.0.78. Let 2 denote the category with two objects 0, 1 and a single non-identity arrow $0 \to 1$.

We consider two functors

$$\iota_i: \mathbb{1} \to 2$$
$$* \mapsto i$$
$$\mathrm{id}_* \mapsto \mathrm{id}_i$$

for i = 0, 1.

Lemma D.0.79. Fix functors $\mathcal{F}, \mathcal{G} : \mathcal{C} \to \mathcal{D}$. There is a bijection of natural transformations $\alpha : \mathcal{F} \Rightarrow \mathcal{G}$ and witnessing functors $\mathcal{H} : \mathcal{C} \times 2 \to \mathcal{D}$ such that

commutes. Here $\mathcal{I}_i: X \mapsto (X,i), f: Y \to Z \mapsto (f,\mathrm{id}_i)$

Proof. Let a functor \mathcal{H} be given as described. For each object $X \in \mathcal{C}$, define

$$\alpha_X^{\mathcal{H}} = \mathcal{H}(\mathrm{id}_X, 0 \to 1)$$

This is a morphism with domain

$$\mathcal{H}(X,0) = \mathcal{H}\mathcal{I}_0(X) = \mathcal{F}(X)$$

and codomain

$$\mathcal{H}(X,1) = \mathcal{H}\mathcal{I}_1(X) = \mathcal{G}(X).$$

We see that the collection

$$\{\alpha_X^{\mathcal{H}}: \mathcal{F}(X) \to \mathcal{G}(X) \mid X \in \mathcal{C}\}$$

defines the components of a natural transformation, as

$$\begin{split} \mathcal{G}(f)\alpha_X &= \mathcal{G}(f)\mathcal{H}(\mathrm{id}_X, 0 \to 1) = \mathcal{H}\mathcal{I}_\infty(f)\mathcal{H}(\mathrm{id}_X, 0 \to 1) \\ &= \mathcal{H}(f, \mathrm{id}_1)\mathcal{H}(\mathrm{id}_X, 0 \to 1) \\ &= \mathcal{H}(f, 0 \to 1) = \mathcal{H}(\mathrm{id}_{X'}, 0 \to 1)\mathcal{H}(f, \mathrm{id}_0) \\ &= \alpha_{X'}\mathcal{H}\mathcal{I}_0(f) = \alpha_{X'}\mathcal{F}(f). \end{split}$$

We denote this natural transformation by $\alpha^{\mathcal{H}}$. Given a natural transformation $\alpha: \mathcal{F} \Rightarrow \mathcal{G}$, define a functor

$$\mathcal{H}_{\alpha}: \mathcal{C} \times 2 \to \mathcal{D}$$

$$(X,0) \mapsto \mathcal{F}(X)$$

$$(X,1) \mapsto \mathcal{G}(X)$$

$$(f, \mathrm{id}_0) \mapsto \mathcal{F}(f)$$

$$(f, \mathrm{id}_1) \mapsto \mathcal{G}(f)$$

$$(f: X \to Y, 0 \to 1) \mapsto \alpha_X$$

One readily verifies that $\mathcal{F} = \mathcal{H}\mathcal{I}_0$ and that $\mathcal{G} = \mathcal{H}\mathcal{I}_1$. Note that by definition

$$\alpha_X^{\mathcal{H}_{\alpha}} = \mathcal{H}(\mathrm{id}_X, 0 \to 1) = \alpha_X.$$

Suppose we are given two witnessing functors $\mathcal{H}, \mathcal{H}'$ with $\alpha^{\mathcal{H}} = \alpha^{\mathcal{H}'}$. For each object $X \in \mathcal{C}$

$$\mathcal{H}(X,0) = \mathcal{H}\mathcal{I}_0(X) = \mathcal{F}(X) = \mathcal{H}'\mathcal{I}_0(X) = \mathcal{H}'(X,0).$$

By a similar computation $\mathcal{H}(X,1)=\mathcal{H}'(X,1)$. Moreover, similar computations show that $\mathcal{H}(f,\mathrm{id}_i)=\mathcal{H}'(f,\mathrm{id}_i)$ for i=0,1. It remains to check that $\mathcal{H}(f,0\to1)=\mathcal{H}'(f,0\to)$ which readily follows from the fact that $\alpha_X^{\mathcal{H}}=\alpha_X^{\mathcal{H}'}$ for each X.

Definition D.0.80. Consider categories \mathcal{C} and \mathcal{D} . An *equivalence of categories* is a pair of functors $\mathcal{F}:\mathcal{C}\to\mathcal{D},\mathcal{G}:\mathcal{D}\to\mathcal{C}$ and natural isomorphisms $\alpha:\mathcal{ID}_{\mathcal{C}}\cong\mathcal{GF}$ and $\beta:\mathcal{ID}_{\mathcal{D}}\cong\mathcal{FG}$. We say two categories are *equivalent* if there is an equivalence of categories between them and in this case we may write $\mathcal{C}\cong\mathcal{D}$.

Remark D.0.81. Equivalence of categories is an equivalence relation.

- Two copies of $\mathcal{ID}_{\mathcal{C}}$ together with two copies of components $\{\mathrm{id}_X : X \in \mathcal{C}\}$ defines an equivalence of categories of \mathcal{C} with itself.
- Suppose $\mathcal{C} \cong \mathcal{D}$. Then there are functors $\mathcal{F}: \mathcal{C} \to \mathcal{D}$, $\mathcal{G}: \mathcal{D} \to \mathcal{C}$ together with natural isomorphisms $\alpha: \mathcal{ID}_{\mathcal{C}} \cong \mathcal{GF}$ and $\beta: \mathcal{ID}_{\mathcal{D}} \cong \mathcal{FG}$. This data by definition also expresses that $\mathcal{D} \cong \mathcal{C}$, when we implicitly use the commutativity of conjuction.
- Suppose $\mathcal{C} \cong \mathcal{D}$ and $\mathcal{D} \cong \mathcal{E}$. There are then functors $\mathcal{F}: \mathcal{C} \to \mathcal{D}, \mathcal{G}: \mathcal{D} \to \mathcal{C}$ together with natural isomorphisms $\alpha: \mathcal{ID}_{\mathcal{C}} \cong \mathcal{GF}$ and $\beta: \mathcal{ID}_{\mathcal{D}} \cong \mathcal{FG}$. Moreover there are functors $\mathcal{H}: \mathcal{D} \to \mathcal{E}, \mathcal{I}: \mathcal{E} \to \mathcal{D}$ with natural isomorphisms $\gamma: \mathcal{ID}_{\mathcal{D}} \cong \mathcal{IH}$ and $\kappa: \mathcal{ID}_{\mathcal{E}} \cong \mathcal{HI}$. Set

$$\mathfrak{F} := \mathcal{HF}$$
 and $\mathfrak{G} := \mathcal{GI}$.

Consider

$$\mu := \{ \mu_X := \mathcal{G}(\gamma_{\mathcal{F}(X)}) \alpha_X : X \to \mathfrak{G}\mathfrak{F}(X) \mid X \in \mathcal{C} \}$$

This is a natural isomorphism. Indeed,

$$\mathfrak{GF}(f)\mu_{X} = \mathcal{GIHF}(f)\mathcal{G}(\gamma_{\mathcal{F}(X)})\alpha_{X} = \mathcal{G}(\mathcal{IH}(\mathcal{F}(f))\gamma_{\mathcal{F}(X)})\alpha_{X}$$
$$= \mathcal{G}(\gamma_{\mathcal{F}(X')}\mathcal{F}(f))\alpha_{X} = \mathcal{G}(\gamma_{\mathcal{F}(X')})\mathcal{GF}(f)\alpha_{X}$$
$$= \mathcal{G}(\gamma_{\mathcal{F}(X')})\alpha_{X'}f = \mu_{X'}f.$$

so μ is a natural transformation of $\mathcal{ID}_{\mathcal{C}}$ to \mathfrak{GF} . Moreover, every component of μ is a composition of isomorphism, hence every component of μ is an isomorphism. We construct a natural isomorphims $\nu: \mathcal{ID}_{\mathcal{E}} \cong \mathfrak{FG}$, by considering the collection of morphisms

$$\nu := \left\{ \nu_Y := \mathcal{H}(\beta_{\mathcal{I}(Y)}) \kappa_Y : Y \to \mathcal{HFGI}(Y) \mid Y \in \mathcal{E} \right\}.$$

We thus conclude that $C \cong \mathcal{E}$.

Definition D.0.82. Let \mathcal{C}, \mathcal{D} be locally small categories and $\mathcal{F}: \mathcal{C} \to \mathcal{D}$ a functor. We say that \mathcal{F} is *full* if $\mathcal{F}(\bullet): \operatorname{Hom}(X,Y) \to \operatorname{Hom}(\mathcal{F}(X),\mathcal{F}(Y)), f \mapsto \mathcal{F}(f)$ is surjective for each pair of objects X,Y in \mathcal{C} . It is *faithful* if $\mathcal{F}(\bullet)$ is injective. If $\mathcal{F}(\bullet)$ is both full and faithful, we say that $\mathcal{F}(\bullet)$ is *fully faithful*.

Definition D.0.83. A functor $\mathcal{F}: \mathcal{C} \to \mathcal{D}$ is essentially surjective on objects if for every $D \in \mathsf{Ob}(\mathcal{D})$ there is a $C \in \mathsf{Ob}(\mathcal{C})$ such that $\mathcal{F}(C) \simeq D$.

Definition D.0.84. A faithful functor $\mathcal{F}: \mathcal{C} \to \mathcal{D}$ is an *embedding* if it is injective on objects, i.e. if $\mathcal{F}(C) = \mathcal{F}(C')$ implies C = C' for every pair of objects $C, C' \in \mathcal{C}$. If \mathcal{F} is fully faithful and injective on objects, then it is a *full embedding*.

Remark D.0.85. Given a full embedding $\mathcal{F}:\mathcal{C}\hookrightarrow\mathcal{D}$, we get a subcategory of \mathcal{D} called *the full subcategory of* \mathcal{D} *spanned by* \mathcal{F} , denoted $\mathcal{F}(\mathcal{C})$ whose objects are $\mathcal{F}(X)$ where $X\in \mathrm{Ob}(\mathcal{C})$ and whose morphisms are morphism $f:\mathcal{F}(X)\to\mathcal{F}(Y)$. Incidentally, $f=\mathcal{F}(g)$ for some $g:X\to Y$. So we may aswell characterise morphism as being of the form $\mathcal{F}(g):\mathcal{F}(X)\to\mathcal{F}(Y)$ where $g:X\to Y$ is a morphism in \mathcal{C} . By functoriality, this subclass of morphisms is closed under composition, hence the full subcategory of \mathcal{D} spanned by \mathcal{F} is a subcategory of \mathcal{D} .

Lemma D.0.86. Given a morphism $f: A \to B$ and isomorphisms $\alpha: A \simeq A'$, $\beta: B \simeq B'$ there is a unique morphism $f: A' \to B'$ so that the diagrams

commute.

Proof. **Diagram 1:** Pick $f' := \beta f \alpha$. Suppose $f'' : A' \to B'$ is another morphism making the diagram commute. Then $f'' = \beta f \alpha = f'$.

Diagram 2: Note that $f' = \beta f \alpha^{-1}$ is the unique morphism making

$$A \stackrel{\alpha^{-1}}{\downarrow} A'$$

$$\downarrow f \qquad \qquad \downarrow f'$$

$$B \stackrel{\beta}{\longrightarrow} B'$$

commute, hence it is the unique morphism such that $\alpha f' = \alpha \alpha^{-1} \beta f = \beta f$.

Diagram 3: Apply diagram 1 to $\alpha: A' \to A$, f and $\beta^{-1}: B' \to B$.

Diagram 4: Apply diagram 1 to α^{-1} , f and β^{-1} .

Lemma D.0.87. Consider a fully faithful functor $\mathcal{F}: \mathcal{C} \to \mathcal{D}$. For each $X, Y \in \mathsf{Ob}(\mathcal{C})$

$$X \simeq Y \iff \mathcal{F}(X) \simeq \mathcal{F}(Y).$$

Proof. Consider an isomorphism $h : \mathcal{F}(X) \to \mathcal{F}(Y)$. By fullness, there is an $f : X \to Y$ such that $\mathcal{F}(f) = h$. Moreover there is a $g : Y \to X$ such that $\mathcal{F}(g) = h^{-1}$. Then

$$\mathcal{F}(gf) = \mathcal{F}(g)\mathcal{F}(f) = h^{-1}h = \mathbb{1}_{\mathcal{F}(X)} = \mathcal{F}(\mathbb{1}_X) \implies gf = \mathbb{1}_X.$$

By symmetry, $fg = \mathbb{1}_Y$.

Theorem D.0.88. A functor that is one functor comprising an equivalence of categories is fully faithful and essentially surjective on objects. For locally small categories, assuming the axiom of choice any fully faithful functor that is essentially surjective on objects is one functor in an equivalence of categories.

Proof. Consider functors $\mathcal{F}:\mathcal{C}\to\mathcal{D}$ and $\mathcal{G}:\mathcal{D}\to\mathcal{C}$ with natural isomorphism $\alpha:\mathcal{ID}_{\mathcal{C}}\cong\mathcal{GF}$ and $\beta:\mathcal{ID}_{\mathcal{D}}\cong\mathcal{FG}$.

Suppose $f, g \in \text{Hom}(X, Y)$ are given such that $\mathcal{F}(f) = \mathcal{F}(g)$. Note that

$$\alpha_Y f = \mathcal{F}(f)\alpha_X = \mathcal{F}(g)\alpha_X = \alpha_Y g \implies f = g$$

since α_Y is an isomorphism and thus a monomorphism. We thus conclude that \mathcal{F} is faithful, and by a symmetric argument so is \mathcal{G} .

Consider any morphism $h \in \text{Hom}(\mathcal{F}(X), \mathcal{F}(Y))$. Then we have commutative diagrams

$$\mathcal{GF}(X) \leftarrow_{\alpha_X} X \\
\downarrow^{\mathcal{G}(h)} \qquad \downarrow^f \\
\mathcal{GF}(Y) \leftarrow_{\alpha_Y} Y$$

for some unique $f: X \to Y$. We thus by naturality get a commutative diagram

$$\mathcal{GF}(X) \leftarrow_{\alpha_X} X \\
\downarrow^{\mathcal{GF}(f)} \qquad \downarrow^{f} \\
\mathcal{GF}(Y) \leftarrow_{\alpha_Y} Y$$

Using the result of Lemma D.0.86 diagram 2 to these two diagrams, by uniqueness, $\mathcal{G}(\mathcal{F}(f)) = \mathcal{G}(h)$. By the faithfulness of \mathcal{G} ,

$$\mathcal{F}(f) = h.$$

We thus conclude that \mathcal{F} (and \mathcal{G}) are fully faithful functors.

Consider an object $D \in \mathcal{D}$. Set $C = \mathcal{G}(D)$. Then

$$D \xrightarrow{\beta_D} \mathcal{F}(C) = \mathcal{FG}(D)$$

$$\downarrow_{\mathrm{id}_D} \qquad \qquad \downarrow_{\mathrm{id}_{\mathcal{F}(C)}}$$

$$D \xrightarrow{\beta_D} \mathcal{F}(C) = \mathcal{FG}(D)$$

hence $D \simeq \mathcal{F}(C)$.

Consider a fully faithul functor $\mathcal{F}:\mathcal{C}\to\mathcal{D}$ that is essentially surjective on objects. We construct the functor

$$\mathcal{G}: \mathcal{D} \to \mathcal{C}$$

$$D \mapsto \mathcal{G}(D)$$

$$f: D_1 \to D_2 \mapsto \mathcal{G}(f): \mathcal{G}(D_1) \to \mathcal{G}(D_2)$$

to make $\mathcal F$ and $\mathcal G$ equivalence of categories. For objects, we do this by for each $D\in \mathrm{Ob}(\mathcal D)$ considering

$$\mathcal{C}_D := \{ C \in \mathsf{Ob}(\mathcal{C}) : \mathcal{F}(C) \simeq D \}$$

to obtain a family of sets indexed by objects in \mathcal{D}

$$\mathcal{X} := \{ \mathcal{C}_D : D \in \mathbf{Ob}(\mathcal{D}) \}.$$

Since \mathcal{F} is essentially surjective on objects, this is a family of non-empty set, hence by the axiom of choice there is a well-defined assignment

$$\mathcal{G}: \mathrm{Ob}(\mathcal{D}) \to \mathcal{X} \to \bigcup \mathcal{X} \subset \mathrm{Ob}(\mathcal{C})$$
$$D \mapsto \mathcal{C}_D \mapsto \mathcal{G}(D).$$

Hence $\mathcal{FG}(D) \simeq D$. Denote this isomorphism by α_D . Fix a morphism $f: D \to D'$

$$\begin{array}{ccc} \mathcal{FG}(D) & \xrightarrow{\alpha_D} & D \\ & & \downarrow^f \\ \mathcal{FG}(D') & \xrightarrow{\alpha_{D'}} & D' \end{array}$$

Since \mathcal{F} is full there is a morphism $\mathcal{G}(f): \mathcal{G}(D) \to \mathcal{G}(D')$, such that $\mathcal{F}(\mathcal{G}(f)) = h$. This assignment is well-defined, since if $k: \mathcal{G}(D) \to \mathcal{G}(D')$ is another morphism with $\mathcal{F}(k) = h = \mathcal{F}(\mathcal{G}(f))$, then by faithfulness of $\mathcal{F}, k = \mathcal{G}(f)$.

We now check that \mathcal{G} is a functor. Consider morphisms $f: X \to Y$ and $g: Y \to Z$. Note that

$$\mathcal{F}(\mathcal{G}(g)\mathcal{G}(f))\alpha_X = \mathcal{F}(\mathcal{G}(g))\mathcal{F}(\mathcal{G}(f))\alpha_X = \mathcal{F}(\mathcal{G}(g))\alpha_Y f = \alpha_Z g f,$$

hence $\mathcal{G}(g)\mathcal{G}(f) = \mathcal{G}(gf)$. We also have that

$$\mathcal{F}(\mathrm{id}_{\mathcal{G}(X)})\alpha_X=\mathrm{id}_{\mathcal{F}\mathcal{G}(X)}\alpha_X=\alpha_X\mathrm{id}_X=\mathcal{F}(\mathcal{G}(\mathrm{id}_X))\alpha_X \implies \mathrm{id}_{\mathcal{G}(X)}=\mathcal{G}(\mathrm{id}_X).$$

Note that for any morphism $f: D \to D'$ by definition

$$D \xrightarrow{\alpha_D^{-1}} \mathcal{FG}(D)$$

$$\downarrow_f \qquad \qquad \downarrow_{\mathcal{FG}(f)}$$

$$D' \xrightarrow{(\alpha_{D'})^{-1}} \mathcal{FG}(D')$$

commutes, so we have a natural isomorphism $\alpha : \mathcal{ID}_{\mathcal{D}} \simeq \mathcal{FG}$.

Fix an object $C \in \mathcal{C}$. Since \mathcal{F} is fully faithful, there is an isomorphism $\beta_C : C \to \mathcal{GF}(C)$ such that $\mathcal{F}(\beta_C) = \alpha_{\mathcal{F}(C)}^{-1} : \mathcal{F}(C) \to \mathcal{FGF}(C)$. Fix a morphism $f : C \to C'$. Then

$$\mathcal{F}(\mathcal{GF}(f)\beta_C) = \mathcal{F}(\mathcal{GF}(f))\mathcal{F}(\beta_C) = \mathcal{FG}(\mathcal{F}(f))\alpha_{\mathcal{F}(C)}^{-1} = \alpha_{\mathcal{F}(C')}^{-1}\mathcal{F}(f) = \mathcal{F}(\beta_{C'})\mathcal{F}(f)$$
$$= \mathcal{F}(\beta_{C'}f).$$

By the faithfulness of \mathcal{F} we thus have that

$$\mathcal{GF}(f)\beta_C = \beta_{C'}f,$$

hence $\beta: \mathcal{ID}_{\mathcal{D}} \cong \mathcal{GF}$. We thus conclude that $\mathcal{C} \cong \mathcal{D}$.

Example D.0.89. We aim to show a an equivalence of categories implicitly known from the linear algebra of finite dimensional vector space, which is for a fixed field K that the study of $n \times n$ matrices over K is the "same" as the study of finite dimensional vector spaces. To make this concrete, we consider two locally small categories:

- Mat_K , whose objects are $\mathbb{Z}_{\geq 1}$ and whose morphisms are $\{\operatorname{Mat}_{n\times m}(K):n,m\in\mathbb{Z}_{\geq 1}\}$. composition is given by matrix multiplication. Note we know (or will know) that for an $n\times m$ and an $m\times l$ matrix the resulting matrix from matrix multiplication is an $n\times l$ matrix. We also know that matrix multiplication is associative and the identity matrix is the neutral element with respect to matrix multiplication and thus plays the role of identity morphism in this context.
- $Vect_K^{fd}$, whose objects is the proper class of finite dimensional vector spaces and whose morphism are linear maps. This is a subcategory of Set.

We aim to show that $\operatorname{Mat}_K \cong \operatorname{Vect}_K^{\operatorname{fd}}$. To do this, we first introduce the category $\operatorname{Vect}_K^{\operatorname{basis}}$. An object in this category is a pair V, \mathcal{V} , where V is a finite dimensional vector space and \mathcal{V} is a basis of V. The morphisms are linear maps. Let \mathcal{E}_n denote the standard basis of K^n . Consider the assignment

$$K^{(_)}: \mathbf{Mat}_K o \mathbf{Vect}_K^{\mathrm{basis}}$$

$$n \mapsto (K^n, \mathcal{E}_n)$$

$$\mathbf{Mat}_{n \times m}(K) \ni A \mapsto (L_A: K^m \to K^n, v \mapsto Av)$$

one readily verifies that constitutes a functor. With some general linear algebra knowledge and it also easy to verify that it is fully faithful and essentially surjective on objects. Indeed, if V is an n-dimensional vector space with basis $\mathcal{V} = \{v_1, \ldots, v_n\}, (V, \mathcal{V}) \simeq K^n$, by the map

$$K^n \ni (a_1, \dots, a_n) \mapsto \sum_{i=1}^n a_i v_i,$$

showing that $K^{(_)}$ is essentially surjective on objects.

If $L_A = L_B$ for some $n \times m$ matrices A, B, we know that $A_{ij} = (L_A e_j)_i = (L_B e_j)_i = B_{ij}$, for each i and j, hence A = B. This means $K^{(_)}$ is faithful.

Consider a linear map $L:(K^m,\mathcal{E}_m)\to (K^n,\mathcal{E}_n)$. Set $A:=(L(e_j)_i)$. For an arbitrary $v\in K^m$ we have

$$L_A(v) = (L(e_j)_i)v = (\sum_{1}^{m} L(e_j)v_j) = \sum_{1}^{m} L(v_j e_j) = L(v).$$

We thus get that $L = L_A$, which means $K^{(_)}$ is full.

Consider the forgetful functor $\operatorname{Vect}_K^{\operatorname{basis}} \to \operatorname{Vect}_K^{\operatorname{fd}}$ which forgets the basis on objects. Clearly this is also a full faithful functor that is essentially surjective on objects. By Theorem D.0.88 we then get that $\operatorname{Mat}_K \simeq \operatorname{Vect}_K^{\operatorname{fd}}$.

Definition D.0.90. A category is *connected* if for each pair of objects X, Y there is a finite sequence of objects

$$X_0 := X, X_1, \dots, X_{n-1}, X_n := Y$$

and for each $i \in \{0, \dots, n-1\}$ there is a morphism $f: X_i \to X_{i+1}$ or $f: X_{i+1} \to X_i$.

Proposition D.0.91. A connected groupoid \mathcal{G} is equivalent to the category induced by the automorphism group $G_X := \operatorname{Aut}(X)$ for any object $X \in \operatorname{Ob}(\mathcal{G})$.

Proof. We construct a functor,

$$\mathcal{F}: \mathbf{B}G_X \to \mathcal{G}$$

$$G_X \mapsto X$$

$$(f: G_X \to G_X) \mapsto (f: X \to X)$$

This is full since any morphism $f: X \to X$ in \mathcal{G} is an isomorphism, hence f is a morphism in G_X and by definition $\mathcal{F}(f: G_X \to G_X) = f: X \to X$. It is also trivially faithful. Note that given an object Y in \mathcal{G} , there is a sequence of objects $X_0 = X, \ldots, X_n = Y$ and a morphism $f_i: X_i \to X_{i+1}$ or $f: X_{i+1} \to X_i$ for $i = 0, \ldots, n-1$. Each f_i is an isomorphism, hence $\mathcal{F}(G_X) = X \simeq Y$. This implies that \mathcal{F} is essentially surjective on objects. We conclude that $\mathcal{G} \cong BG_X$ for each $X \in Ob(\mathcal{G})$.

The upshot of the above result is that, as categories, a connected groupoid is just an automorphism group. In particular, a one object groupoid is, again, as categories, the same as the automorphism group of its one object. This makes precise the fact that, in category theory, groups are just one object groupoids.

Corollary D.0.92. The category of one object groupoids, GRP_1 , is equivalent to the category of groups Grp.

Proof. We construct the functor

$$\begin{aligned} \operatorname{Aut}: \mathcal{GRP}_1 \to \operatorname{Grp} \\ (\mathcal{G}, X) \mapsto \operatorname{Aut}(X) \\ \mathcal{F}: (\mathcal{G}, X) \to (\mathcal{G}', X') \mapsto \operatorname{Aut}(X) \ni f \mapsto \mathcal{F}(f) \in \operatorname{Aut}(X') \end{aligned}$$

This is a full. Indeed consider $\sigma: \operatorname{Aut}(X) \to \operatorname{Aut}(X')$. We construct a functor

$$\mathcal{F}_{\sigma}: (\mathcal{G}, X) \to (\mathcal{G}, X')$$
$$X \mapsto X'$$
$$g: X \to X \mapsto \sigma(g): X' \to X'$$

clearly $\operatorname{Aut}(\mathcal{F}_{\sigma}) = \sigma$. Suppose $\operatorname{Aut}(\mathcal{F}_{0}) = \operatorname{Aut}(\mathcal{F}_{1})$. Take a morphism $g: X \to X$. Then $\mathcal{F}_{0}(g) = \operatorname{Aut}(\mathcal{F}_{0})(g) = \operatorname{Aut}(\mathcal{F}_{1}(g)) = \mathcal{F}_{1}(g)$, hence $\mathcal{F}_{0} = \mathcal{F}_{1}$. We conclude that Aut is faithful. Take an arbitrary group $G \in \operatorname{Grp}$. Then $G \simeq \operatorname{Aut}(\operatorname{B} G, G)$ by the prior proposition. The result thus follows

Another application is to a basic result in algebraic topology

Example D.0.93. Consider a path-connected topological space X. In this example we see that given any pair of points x, x' in X,

$$\pi(X, x) \simeq \pi(X, x').$$

Note upon considering x as an object of $\Pi(X)$, the fundemental groupoid of X, we see that $\pi(X,x)=\operatorname{Aut}(x)$. Since X is path-connected there is a morphism between any pair objects in $\Pi(X)$, hence the fundemental groupoid of X is connected. We then get that $\operatorname{B}\pi(X,x)\cong \Pi(X)\cong \operatorname{B}\pi(X,x')$ by Proposition D.0.91. A fully faithful functor between categories with only one object is automatically a bijection on objects. It follows that $\pi(X,x)\simeq \pi(X,x')$.

Definition D.0.94. Consider a locally small category C. We define the *isomorphism class* of an object X in C to be the class of all objects isomorphic to X.

Definition D.0.95. A category C is *skeletal*, if each isomorphism class of C contains a single object.

Lemma D.0.96. An equivalence of skeletal categories is an isomorphism of categories.

Proof. Suppose \mathcal{C} and \mathcal{D} are equivalent skeletal categories via functors $\mathcal{F}:\mathcal{C}\to\mathcal{D}$ and $\mathcal{G}:\mathcal{D}\to\mathcal{C}$. We aim to show that $\mathcal{F}\mathcal{G}$ and $\mathcal{G}\mathcal{F}$ are not just naturally isomorphic to but equal to the identity functors. Indeed for each object X in \mathcal{C} , $\mathcal{G}\mathcal{F}(X)\simeq X$, since $\mathcal{G}\mathcal{F}\cong\mathcal{I}\mathcal{D}_{\mathcal{C}}$. Since \mathcal{C} is skeletal, it follows that $\mathcal{G}\mathcal{F}(X)=X$. A similar argument for $\mathcal{F}\mathcal{G}$ shows that \mathcal{F} and \mathcal{G} are mutual inverses on functors. Using that \mathcal{F} and \mathcal{G} fully faithful one easily sees that they are also mutual inverses on morphisms and the result follows. \square

Proposition D.0.97. Consider a category C. There is a skeletal category SkC equivalent to C. It is unique up to isomorphism.

Proof. The objects of $Sk\mathcal{C}$ are given by choosing one object from each isomorphism class (here implicitly we use some version of the axiom of choice, so some assumption on smallness is probably appropriate as to not discuss foundations). The morphisms are those with domain and codomain in the aforementioned objects. The inclusion of $Sk\mathcal{C}$ is trivially fully faithful and essentially surjective on objects. We thus conclude that $Sk\mathcal{C} \cong \mathcal{C}$. Another skeletal category equivalent to \mathcal{C} is by transitivity equivalent to $Sk\mathcal{C}$. This equivalence is upgraded to an isomorphism of categories via the prior lemma.

We have seen that equivalence of categories does not necessarily preserve smallness. For instance Mat_K is small while $\operatorname{Vect}_K^{\operatorname{fd}}$ is locally small but not small since the collection of finite dimensional vector spaces is a proper class. Indeed for any non-empty set X, we can form K[X], the free vector space generated by X. If $\operatorname{Vect}_K^{\operatorname{fd}}$ was a set, then $K[\{X\}]$ would be an element of $\operatorname{Vect}_K^{\operatorname{fd}}$ for every set X. Then $S := \{K[\{X\}] : X \text{ is a set}\}$ is a subset of $\operatorname{Vect}_K^{\operatorname{fd}}$. But then $\bigcup S$ is a set, which every set is an element of. But no such set can exist as an immediate consequence axiom of foundation (cf. Example C.1.10). In this sense smallness is an ugly notion. We can introduce a weaker notion of smallness, which is preserved by equivalence of categories.

Definition D.0.98. A category is *essentially small* if it is equivalent to a small category.

Another property not preserved by equivalence is discreteness. Take for instance the example of a poset (X, \leq) with non-trivial arrows, eg. $X = \mathbb{N}$. This also has an associated discrete category (cf. Example D.0.39). There is a fully faithful functor, surjective on objects,

$$X \to (X, \leq)$$
$$x \mapsto x$$
$$x \mapsto x \leq x$$

hence $X \cong (X, \leq)$. Again we may consider the class of *essentially discrete categories*, i.e. categories that are equivalent to a discrete category.

Proposition D.0.99. *If* C *is a locally small category that is equivalent to some category* D*, then* D *is locally small.*

Proof. There is a fully faithful functor $\mathcal{F}:\mathcal{C}\to\mathcal{D}$ that is essentially surjective on objects. Let X and Y be objects in \mathcal{D} . Then $\alpha:X\simeq\mathcal{F}(A)$ and $\beta:Y\simeq\mathcal{F}(B)$ for some objects A,B in \mathcal{C} . We consider the first order formula

$$\varphi :\equiv y = \mathcal{F}(f).$$

Note that for the set $\operatorname{Hom}(A,B)$, for every $f \in \operatorname{Hom}(A,B)$ we have that $\mathcal{F}(f)$ is the unique set satisfying $\varphi(f,\mathcal{F}(f))$. Via the axiom schema of replacemen, this gives rise to a class function, $f \mapsto \mathcal{F}(f)$, whose image $\mathcal{F}(\operatorname{Hom}(A,B)) := \{\mathcal{F}(f) : f \in \operatorname{Hom}(A,B)\}$ is a set. Let $g : \mathcal{F}(A) \to \mathcal{F}(B)$. since \mathcal{F} is full there is a morphism $f : A \to B$ such that $\mathcal{F}(f) = g$. Then $g \in \mathcal{F}(\operatorname{Hom}(A,B))$, so $\operatorname{Hom}(\mathcal{F}(A),\mathcal{F}(B))$ is the set $\mathcal{F}(\operatorname{Hom}(A,B))$. We also have a class function, $k \mapsto \beta k \alpha^{-1}$. This takes the set $\operatorname{Hom}(\mathcal{F}(A),\mathcal{F}(B))$ to the set $\beta \operatorname{Hom}(\mathcal{F}(A),\mathcal{F}(B))\alpha^{-1}$. Consider $g : X \to Y$. Then $h := \beta^{-1}g\alpha$ is a morphism in $\operatorname{Hom}(\mathcal{F}(A),\mathcal{F}(B))$. Then $g \in \beta \operatorname{Hom}(\mathcal{F}(A),\mathcal{F}(B))\alpha^{-1}$. We thus conclude that $\operatorname{Hom}(X,Y)$ is the set $\beta \operatorname{Hom}(\mathcal{F}(A),\mathcal{F}(B))\alpha^{-1}$. It follows that \mathcal{D} is a locally small category.

D.0.8 Diagrams

Definition D.0.100. A (*commutative*) diagram in a category C is a functor from a small category, called the *indexing category*, to C.

Example D.0.101. An example arises the category 2×2 . This category has objects (0,0),(0,1),(1,0),(1,1) and arrows $(\mathrm{id}_i,\mathrm{id}_j)$ where i,j=0,1 and $(\mathrm{id}_i,0\to 1),(0\to 1,\mathrm{id}_i)$ and $(0\to 1,0\to 1)$. We thus have a category with four objects, and five non-trivial arrows: one arrow from (0,0) to each of the other objects, one arrow from (0,1) and (1,0) to (1,1). We may illustrate this as a directed graph.

$$(0,0) \longrightarrow (0,1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(1,0) \longrightarrow (1,1)$$

A diagram $D: 2 \times 2 \to \mathcal{C}$ maps the four objects in 2×2 to four objects in \mathcal{C}, A, B, C, D say. Moreover the five non-trivial arrows of 2×2 to morphisms $f_{0001}: A \to B$, $f_{0010}: A \to C$, $f_{0011}: A \to D$, $f_{0111}: B \to D$ and $f_{1011}: C \to D$. Functoriality assures that the diagram (in the informal sense),

$$\begin{array}{c}
A \xrightarrow{f_{0001}} B \\
f_{0010} \downarrow f_{0011} \downarrow f_{0111} \\
C \xrightarrow{f_{1011}} D
\end{array}$$

commutes, i.e. $f_{0111}f_{0001} = f_{0011} = f_{1011}f_{0010}$

In general, the abstract definition of diagram lets us study the consequences of a list of morphism relations in terms of directed graph underlying these. This proof technique is called *diagram chasing*.

Lemma D.0.102. Functors preserve commutative diagram.

Proof. Indeed given a functor $\mathcal{F}: \mathcal{C} \to \mathcal{D}$ and a diagram $D: \mathcal{I} \to \mathcal{C}$. Then $\mathcal{F}D: \mathcal{I} \to \mathcal{D}$ is a diagram in \mathcal{D} .

Lemma D.0.103. Consider a composable sequence of morphisms f_1, \ldots, f_n in C. If

$$f_j f_{j-1} \cdots f_{i+1} f_i = g_m \cdots g_1$$

for some composable morphisms g_1, \ldots, g_m in C, then

$$f_n \cdots f_1 = f_n \cdots f_{i+1} g_m \cdots g_1 f_{i-1} \cdots f_1$$

Proof. Indeed, this is just a result of pre-composing with $f_{i-1} \cdots f_1$ and post-composing with $f_n \cdots f_{j+1}$ on both sides of the equality.

Definition D.0.104. An object $I \in Ob(\mathcal{C})$ is *initial* if for each $X \in Ob(\mathcal{C})$ there is a unique morphism $I \to X$.

An object $T \in \text{Ob}(\mathcal{C})$ is *terminal* if for each $X \in \text{Ob}(\mathcal{C})$ there is a unique morphism $X \to T$, i.e. T is an initial object in \mathcal{C}^{op} .

- **Example D.0.105.** 1. 0 is both initial and terminal in Group, Ab, Mod_R , $Vect_K$. It is also terminal in Ring (the category of initial rings) but not initial since there is no ring homomorphism from the zero ring.
 - 2. \mathbb{Z} is an initial object in Ring. Indeed

$$f_R: \mathbb{Z} \to R$$
$$n \mapsto \sum_{i=1}^{n} 1_R$$

defines a ring homomorphism and for any ring homomorphism $f: \mathbb{Z} \to R$ and integer $n \in \mathbb{Z}$,

$$f(n) = f\left(\sum_{1}^{n} 1\right) = \sum_{1}^{n} f(1) = \sum_{1}^{n} 1_{R} = f_{R}(n).$$

3. The rational numbers are initial in Field₀, the category of fields of characteristic 0. Indeed, there is a functor from the category of integral domains to the category of fields given by

$$R \mapsto \operatorname{Frac}(R)$$

$$f: R \to S \mapsto \operatorname{Frac}(f): \operatorname{Frac}(R) \ni \frac{x}{y} \mapsto \frac{f(x)}{f(y)} \in \operatorname{Frac}(S)$$

We claim that $\operatorname{Frac}(f_R)$ is the unique ring map from $\operatorname{Frac}(\mathbb{Z}) = \mathbb{Q}$ to K for any characteristic 0 field K. Note that given a homomorphism $f: \mathbb{Q} \to K$, $f|_{\mathbb{Z}}: \mathbb{Z} \to K$ is equal to f_K , hence

$$f(\frac{a}{b}) = f(a)f(b)^{-1} = f_K(a)f_K(b)^{-1} = \frac{f_K(a)}{f_K(b)} = \operatorname{Frac}(f_K)(\frac{a}{b}),$$

for each $\frac{a}{b} \in \mathbb{Q}$, hence $\operatorname{Frac}(f_K) = f$.

- 4. If a preordered set has a minimum this will be the initial object. For instance $0 \in \mathbb{N}$ is the initial object.
- 5. For a monoid M, the category $\mathbf{B}M$ only has an initial or terminal object when M is trivial.
- 6. The empty set, \emptyset , is the initial object in Set. Indeed, the only function with domain \emptyset is \emptyset .
- 7. In Set_{*}, $(\{*\}, *)$ is both initial and terminal.
- 8. In Cat, the category (\emptyset, \emptyset) is the initial object. Indeed, there is a functor that maps objects and morphisms via the empty function and these are the only mappings with the empty set as domain. \mathbb{I} is the terminal object. Indeed, for any locally small category \mathcal{C} , there is a functor

$$*: \mathcal{C} \to \mathbb{1}$$

$$X \mapsto *$$

$$f: X \to Y \mapsto \mathbb{1}_*$$

Since \mathbb{I} have only one object and one morphism any such functor must map every object to this one object and every morphism to this one morphism, hence it is equal to *.

Example D.0.106. Faithful functors need not preserve epimorphism. Indeed, the ring map $\mathbb{Z} \hookrightarrow \mathbb{Q}$ is epi but not surjective, but under the forgetful functor Ring \to Set, it is not an epi, since Set is balanced. In Ring^{op}, it is a mono but in Set^{op} it is not.

Proposition D.0.107. Consider a category with an intial object I and a terminal object T. If there is a map $g: T \to I$, then $I \simeq T$. It follows that T is initial.

Proof. There is a unique $f: I \to T$. Then the morphism $fg: T \to T$ is the identity on T since T is terminal and $gf: I \to I$ is the identity on I since I is initial.

Definition D.0.108. An object that is both initial and terminal is called a zero object

Remark D.0.109. Note that initial, terminal and zero objects are unique up to unique isomorphism, so we may aswell say THE initial, terminal and zero object. Indeed, take a initial objects I_1, I_2 . Then $f: I_1 \to I_2$ and $g: I_2 \to I_1$ define mutual inverses. A dual argument is made for terminal objects

Definition D.0.110. Consider an endofunctor $\mathcal{T}: \mathcal{C} \to \mathcal{C}$. A *coalgebra for* \mathcal{T} is an object X in \mathcal{C} with a morphism $\gamma: X \to \mathcal{T}(X)$. We define a category of coalgebras for \mathcal{T} by letting a morphism of coalgebras $(X, \gamma) \to (X', \gamma')$ be a morphism $f: X \to X'$ such that

$$X \xrightarrow{f} X'$$

$$\downarrow^{\gamma} \qquad \qquad \downarrow^{\gamma'}$$

$$\mathcal{T}(X) \xrightarrow{\mathcal{T}(f)} \mathcal{T}(X')$$

commutes. Composition is given by the composition inherited by \mathcal{C} and the identity morphisms are also inherited by \mathcal{C} .

Proposition D.0.111. For terminal coalgebras (X, γ) , we have that $\gamma : X \to \mathcal{T}(X)$ is an isomorphism.

Proof. There is a unique morphism $\delta : \mathcal{T}(X) \to X$. Note that $X \to X$ has to be the identity morphism. It follows that $\delta \gamma = \mathrm{id}_X$. Additionally, the square

$$\mathcal{T}(X) \xrightarrow{\delta} X
\downarrow_{\mathcal{T}(\gamma)} \qquad \downarrow_{\gamma}
\mathcal{T}\mathcal{T}(X) \xrightarrow{\mathcal{T}(\delta)} \mathcal{T}(X)$$

commutes. Note that $\mathbb{1}_{\mathcal{T}(X)} = \mathcal{T}(\mathbb{1}_X) = \mathcal{T}(\delta)\mathcal{T}(\gamma)$. Hence we get the commutative triangle

$$\mathcal{T}(X) \xrightarrow{\delta} X \\
\downarrow^{\gamma} \\
\mathcal{T}(X)$$

We thus conclude that γ is an isomorphism with mutual inverse δ .

Definition D.0.112. A *concrete category* is a category \mathcal{C} for which there is a faithful functor $\mathcal{C} \to \operatorname{Set}$.

Proposition D.0.113. Consider a morphism $f: X \to Y$ in a category C. Consider a faithful functor $F: C \to D$. If F(f) is mono so in f. Dually if F(f) is epi so is f.

Proof. Indeed, suppose fg = fh for a pair of parallel morphisms g, h, composable with f. Then

$$\mathcal{F}(f)\mathcal{F}(g) = \mathcal{F}(fg) = \mathcal{F}(fh) = \mathcal{F}(f)\mathcal{F}(h) \implies \mathcal{F}(g) = \mathcal{F}(h) \implies g = h.$$

To make the dual argument, note the functor $\mathcal{F}^{\mathrm{op}}:\mathcal{C}^{\mathrm{op}}\to\mathcal{D}^{\mathrm{op}}$ which maps a morphism $f\in \mathrm{Hom}(\mathcal{C}^{\mathrm{op}})$ with domain X and codomain Y to $\mathcal{F}:\mathcal{F}(Y)\to\mathcal{F}(X)$, which is a morphism from $\mathcal{F}(X)$ to $\mathcal{F}(Y)$ in $\mathcal{D}^{\mathrm{op}}$, is again a faithful functor. Since an epi is the dual concept to mono the result follows by applying the statement for monos to $\mathcal{F}^{\mathrm{op}}$.

Corollary D.0.114. *If* C *is a concrete category, if the image of a morphism* $f \in \text{Hom}(C)$ *in* Set *is an injection/surjection, then* f *is mono/epi.*

Example D.0.115. It may not always be that faithful functors preserve epimorphisms. Take any non-zero integer a. Then for any $x, y \in \mathbb{Z}$, if xa = ya, then x = y. That is in category $B(\mathbb{Z}, \cdot)$, a is an epimorphism. Consider the injective monoid homomorpism

$$\mathbb{Z} \hookrightarrow \operatorname{Mat}_2(\mathbb{Z}), n \mapsto \begin{pmatrix} n & 0 \\ 0 & 0 \end{pmatrix}.$$

This corresponds to a faithful functor

$$B\mathbb{Z} \to BMat_2(\mathbb{Z})$$
$$\mathbb{Z} \mapsto Mat_2(\mathbb{Z})$$
$$n \mapsto \begin{pmatrix} n & 0 \\ 0 & 0 \end{pmatrix}$$

Note that

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}.$$

So since

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

we conclude that

$$\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$$

is not an epimorphism in $BMat_2(\mathbb{Z})$. Dually, a faithful functor does not preserve monos, since these are just epis in \mathbb{Z}^{op} .

Lemma D.0.116. Consider a faithful functor $\mathcal{F}: \mathcal{C} \to \mathcal{D}$. If a diagram in \mathcal{C} (a directed graph of morphisms) commutes in the image of \mathcal{F} , then it commutes in \mathcal{C}

Proof. Indeed given sequences f_1, \ldots, f_n and g_1, \ldots, g_m of composable morphism in \mathcal{C} with the same domain and codomain with $\mathcal{F}(f_n) \cdots \mathcal{F}(f_n) = \mathcal{F}(g_m) \cdots \mathcal{F}(g_1)$, we have that

$$\mathcal{F}(f_n \cdots f_1) = \mathcal{F}(g_m \cdots g_1) \implies f_n \cdots f_1 = g_m \cdots g_1.$$

D.0.9 Natural Transformations as Morphisms

Proposition D.0.117. Consider categories C and D. Hom(C, D), i.e. functors between C and D define the objects in category where morphisms are natural transformations.

Proof. Given natural transformations $\alpha : \mathcal{F} \Rightarrow \mathcal{G}$ and $\beta : \mathcal{G} \Rightarrow \mathcal{H}$, we define

$$\beta\alpha:\mathcal{F}\Rightarrow\mathcal{H}$$

to be the collection of morphisms

$$\{\beta_X \alpha_X : \mathcal{F}(X) \to \mathcal{H}(X) : X \in \mathrm{Ob}(\mathcal{C})\}\$$
.

This is seen to be a natural transformation by

$$\mathcal{F}(X) \xrightarrow{\alpha_X} \mathcal{G}(X) \xrightarrow{\beta_X} \mathcal{H}(X)$$

$$\downarrow^{\mathcal{F}(f)} \qquad \downarrow^{\mathcal{G}(f)} \qquad \downarrow^{\mathcal{H}(f)}$$

$$\mathcal{F}(X') \xrightarrow{\alpha_{X'}} \mathcal{G}(X') \xrightarrow{\beta_{X'}} \mathcal{H}(X')$$

commuting for each morphism $f: X \to X'$. This composition is clearly associative. The identity morphism is

$$\{\mathrm{id}_{\mathcal{F}(X)}: \mathcal{F}(X) \to \mathcal{F}(X): X \in \mathrm{Ob}(\mathcal{C})\}.$$

Remark D.0.118. We call the composition of natural transformations defined above *vertical composition*.

An important instance of the above category is $\operatorname{Hom}(\operatorname{Hom}(X,_),\mathcal{F})$ where X lives in a locally small category $\mathcal C$ and $\mathcal F$ is another functor from $\mathcal C$ to Set. Its importance is due to the Yoneda lemma, which will tell us that this is a set that is isomorphic to the set $\mathcal F(X)$.

Definition D.0.119. Given a pair of natural transformations

We define *horizontal composition of* β *and* α denoted $\beta*\alpha$ to be the natural transformations whose components is the diagonal of the commutative square

$$\mathcal{HF}(X) \xrightarrow{\beta_{\mathcal{F}(X)}} \mathcal{KF}(X)$$

$$\mathcal{H}(\alpha_X) \downarrow \qquad \qquad \downarrow \mathcal{K}(\alpha_X)$$

$$\mathcal{HG}(X) \xrightarrow{\beta_{\mathcal{G}(X)}} \mathcal{KG}(X)$$

Proposition D.0.120. horizontal composition is well-defined.

Proof. The square commutes by naturality of β . We need to check that $\beta * \alpha : \mathcal{HF} \Rightarrow \mathcal{KG}$ is indeed a natural transformation. Indeed, consider the rectangle

$$\mathcal{HF}(X) \xrightarrow{\mathcal{H}(\alpha_X)} \mathcal{HG}(X) \xrightarrow{\beta_{\mathcal{G}(X)}} \mathcal{KG}(X)$$

$$\downarrow \mathcal{HF}(f) \qquad \downarrow \mathcal{HG}(f) \qquad \downarrow \mathcal{KG}(f)$$

$$\mathcal{HF}(X') \xrightarrow{\mathcal{H}(\alpha_{X'})} \mathcal{HG}(X') \xrightarrow{\beta_{\mathcal{G}(X')}} \mathcal{KG}(X')$$

commutes by the naturality of α . This shows that

$$\mathcal{KG}(f)(\beta * \alpha)_X = \mathcal{KG}(f)\beta_{\mathcal{G}(X)}(\beta_{\mathcal{G}(X)}\mathcal{H}(\alpha_X))$$
$$= (\beta_{\mathcal{G}(X')}\mathcal{H}(\alpha_{X'}))\mathcal{HF}(f) = (\beta * \alpha)_{X'}\mathcal{HF}(f)$$

hence $\beta * \alpha$ is a natural tranformation. Associativity follows by the trivial componentwise associativity

Lemma D.0.121. Consider the functors and natural transformations

$$\begin{array}{c|c}
\mathcal{F} & \mathcal{J} \\
 & & & & & & \downarrow \gamma \\
 & \mathcal{C} - \mathcal{G} \to \mathcal{D} - \mathcal{K} \to \mathcal{E} \\
 & & & \downarrow \beta & & \downarrow \delta & \uparrow \\
 & \mathcal{H} & & \mathcal{L}
\end{array}$$

Then

$$\delta \gamma * \beta \alpha = (\delta * \beta)(\gamma * \alpha).$$

Proof. By the naturality of δ we get that the square

$$\mathcal{K}(\mathcal{F}(X)) \xrightarrow{\delta_{\mathcal{F}(X)}} \mathcal{L}(\mathcal{F}(X))
\downarrow^{\mathcal{K}(\alpha_X)} \qquad \downarrow^{\mathcal{L}(\alpha_X)}
\mathcal{K}(\mathcal{G}(X)) \xrightarrow{\delta_{\mathcal{G}(X)}} \mathcal{L}(\mathcal{G}(X))$$

commutes. It thus follows that

$$(\delta \gamma * \beta \alpha)_X = \mathcal{L}(\beta_X \alpha_X)(\delta \gamma)_{\mathcal{F}(X)} = \mathcal{L}(\beta_X)\mathcal{L}(\alpha_X)\delta_{\mathcal{F}(X)}\gamma_{\mathcal{F}(X)}$$
$$= \mathcal{L}(\beta_X)\delta_{\mathcal{G}(X)}\mathcal{K}(\alpha_X)\gamma_{\mathcal{F}(X)} = (\delta * \beta)_X(\gamma * \alpha)_X$$
$$= ((\delta * \beta)(\gamma * \alpha))_X.$$

Proposition D.0.122. The objects of Cat form a category with morphisms being **cells** of the form

$$C \longrightarrow \mathcal{D}$$

where a composition of cells is horinzontal composition of the natural transformations.

Proof. This follows directly from the prior lemma, i.e. after one checks that horizontal composition is associative, which is readily verifiable. The identity cell is a pair of identity functors together with the identity transformation of these functors. \Box

Definition D.0.123. A 2-category \mathcal{C} is a class of objects, a class of 1-morphisms between objects, together with a class of 2-morphisms between parallel morphisms, where for $f,g:X\to Y$, we denote such an arrow α by $\alpha:f\Rightarrow g$. Moreover, this data has to adhere to the following restrictions:

- 1. objects and 1-morphisms form a category
- 2. There is an operation of 2-morphisms between 1-morphisms of any fixed pair of objects *X*, *Y* called *vertical composition* such that 1-morphisms between *X* and *Y* are objects in a category with 2-morphisms form a category.
- 3. There is a category whose objects are objects in C where morphisms are 2-cells of the form

$$X \bigvee_{\nearrow} Y$$

Morphisms are 2-morphisms and these compose by a binary operation called *horizontal composition*. Given a pair of 2-morphisms

$$X \Downarrow \alpha Y \Downarrow \beta Z$$

we denote this composition by $\beta * \alpha$.

4. For 1-morphisms $f: X \to Y$ and $g: Y \to Z$,

$$\mathbb{1}_g * \mathbb{1}_f = \mathbb{1}_{gf}.$$

5. For 2-cells,

Then

$$\delta \gamma * \beta \alpha = (\delta * \beta)(\gamma * \alpha).$$

Readily, we see that we have seen one example of a 2-category, namely the 2-category of small categories.

Proposition D.0.124. *Let* $C \in Cat$ *and* $D \in CAT$. *Then* $D^C \in CAT$.

Proof. For each pair of functors $\mathcal{F}, \mathcal{G} : \mathcal{C} \to \mathcal{D}$, we construct a class function whose image contains all natural transformations $\mathcal{F} \Rightarrow \mathcal{G}$. Consider the set $N(\mathcal{F}, \mathcal{G})$ given by

$$\left\{(\alpha_X) \in \prod_{X \in \mathrm{Ob}(\mathcal{C})} \mathrm{Hom}(\mathcal{F}(X), \mathcal{G}(X)) : \mathcal{G}(f)\alpha_Y = \alpha_Z \mathcal{F}(f) \ \forall Y, Z \in \mathrm{Ob}(\mathcal{C}), f \in \mathrm{Hom}(Y, Z)\right\}.$$

There is a class function taking an element (α_X) of $N(\mathcal{F}, \mathcal{G})$ to the natural transformation whose components are $\{\alpha_X : X \in Ob(\mathcal{C})\}$. Any natural transformation is obviously contained in the image of this class function, hence $Hom(\mathcal{F}, \mathcal{G})$ is a set.

D.1 The Yoneda Lemma

D.1.1 Representable Functors

We give an alternative definition of initial and terminal objects.

Lemma D.1.1. 1. An object I in a locally small category C is initial if and only if $Hom(I,_) \cong *$, where $*: C \to Set, S \mapsto \{*\}$.

2. An object T in a locally small category C is terminal if and only if $Hom(_, T) \cong *^{op}$, where $*^{op} : C^{op} \to Set, S \mapsto \{*\}.$

Proof. 1. Suppose I is initial. For each object X in C, Hom(I,X) is a singleton $\{f_X\}$. Then

$$\{*: \operatorname{Hom}(I, X) \to *(X), f_X \mapsto to\{*\} : X \in \operatorname{Ob}(\mathcal{C})\}$$

defines a natural isomorphism $\operatorname{Hom}(I,\underline{\ })\cong *.$ Indeed, each of these maps is a bijection with inverse, $\{*\}\mapsto f_X.$ Note that any square

$$\operatorname{Hom}(I,X) \xrightarrow{*} \{*\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Hom}(I,Y) \xrightarrow{*} \{*\}$$

must have vertical maps that are constant maps, so naturality follows.

Suppose now that $Hom(I, _) \cong *$. Then there is a collection of bijective maps

$$\{\operatorname{Hom}(I,X) \simeq \{*\} : X \in \operatorname{Ob}(\mathcal{C})\}.$$

In particular, $|\text{Hom}(I, X)| = |\{*\}| = 1$, for each object X in \mathcal{C} . It follows that Hom(I, X) is a singleton for each object and thus that I is the initial object in \mathcal{C} .

2. is to dual to 1.
$$\Box$$

Definition D.1.2. A co-/contravariant functor \mathcal{F} whose domain is locally small is *representable* if there is an object X such that $\operatorname{Hom}(X,_)$ resp. $\operatorname{Hom}(_,X)$ is naturally isomorphic to \mathcal{F} . We then say that \mathcal{F} is represented by X

Remark D.1.3. C has an initial resp. terminal object if and only if $*: C \to Set$ resp. $*^{op}: C^{op} \to Set$.

Definition D.1.4. A *representation* of a functor \mathcal{F} whose domain is locally small is a pair of an object X and a natural isomorphism of \mathcal{F} with $Hom(X,_)$ and $Hom(_,X)$ depending on variance.

The motivation for restating the notion of initial and terminal object is that these are special cases of objects with universal properties. We shall define what this means exactly.

Definition D.1.5. A *universal property* for an object X in a locally small category C is a co/contravariant representable functor $C \to \operatorname{Set}$ represented by X.

Example D.1.6. Consider the functor

$$\begin{aligned} \operatorname{Ob}: \operatorname{Cat} & \to \operatorname{Set} \\ \mathcal{C} & \mapsto \operatorname{Ob}(\mathcal{C}) \\ (\mathcal{F}: \mathcal{C} & \to \mathcal{D}) & \mapsto (\operatorname{Ob}(\mathcal{C}) \to \operatorname{Ob}(\mathcal{D}), X \mapsto \mathcal{F}(X)) \end{aligned}$$

Consider also the functor $\text{Hom}(\mathbb{1},\underline{\ })$. For any category \mathcal{C} , a functor $\mathbb{1}\to\mathcal{C}$ is of the form

$$1 \to \mathcal{C}$$
$$* \mapsto X$$
$$1_* \mapsto 1_X$$

for some object X in C. The functor Ob is represented by $\mathbb{1}_X$. Indeed,

$$\{f_{\mathcal{X}}: \operatorname{Hom}(\mathbb{1}, \mathcal{X}) \to \operatorname{Ob}(\mathcal{X}), \mathcal{F}_X \mapsto X \mid \mathcal{X} \in \operatorname{Cat}\}$$

is a family of isomorphisms, where $X \mapsto \mathcal{F}_X$ is the inverse. One should note that this is a collection of well defined maps, since if $\mathcal{F}_X = \mathcal{F}_Y$, then $X = \mathcal{F}_X(*) = \mathcal{F}_Y(*) = Y$. We check that for an arbitrary functor $\mathcal{G}: \mathcal{X} \to \mathcal{Y}$, the square

$$\begin{array}{ccc} \operatorname{Hom}(\mathbb{1},\mathcal{X}) & \stackrel{f_{\mathcal{X}}}{\longrightarrow} \operatorname{Ob}(\mathcal{X}) \\ & & & \downarrow \operatorname{Ob}(\mathcal{G}) \\ \operatorname{Hom}(\mathbb{1},\mathcal{Y}) & \stackrel{f_{\mathcal{Y}}}{\longrightarrow} \operatorname{Ob}(\mathcal{Y}) \end{array}$$

commutes. Indeed, given a functor $\mathcal{F}_X : \mathbb{1} \to \mathcal{X}$ for some object $X \in \mathcal{X}$,

$$Ob(\mathcal{G})f_{\mathcal{X}}(\mathcal{F}_X) = Ob(\mathcal{G})(X) = \mathcal{G}(X) = f_{\mathcal{Y}}(\mathcal{H}_{\mathcal{G}(X)}) = f_{\mathcal{Y}}(\mathcal{G}\mathcal{F}_X) = f_{\mathcal{Y}}\mathcal{G}_*(\mathcal{F}_X).$$

Example D.1.7. Consider the functor

$$\begin{aligned} \operatorname{mor}: \operatorname{Cat} &\to \operatorname{Set} \\ \mathcal{C} &\mapsto \operatorname{mor}(\mathcal{C}) \\ (\mathcal{F}: \mathcal{C} &\to \mathcal{D}) &\mapsto (\operatorname{mor}(\mathcal{C}) &\to \operatorname{mor}(\mathcal{D}), f: X \to Y \mapsto \mathcal{F}(f)) \end{aligned}$$

For a small category \mathcal{C} and a morphism $f: X \to Y$ consider the functor

$$\mathcal{F}_f: 2 \to \mathcal{C}$$
$$0 \mapsto X, 1 \mapsto Y$$
$$(0 \to 1) \mapsto f: X \to Y$$

Any functor $2 \to \mathcal{C}$ must be of this form. The category 2 represents the functor mor. Indeed, we get a natural isomorphism by considering the collection

$$\{g_{\mathcal{X}}: \operatorname{Hom}(2, \mathcal{X}) \to \operatorname{mor}(\mathcal{X}), \mathcal{F}_f \mapsto f \mid \mathcal{X} \in \operatorname{Cat}\}$$

where each local inverse is given by $f \mapsto \mathcal{F}_f$. Naturality is checked completely analogously to the prior example.

Example D.1.8. We aim to describe natural transformations between Ob and mor. Consider

$$\operatorname{dom} \coloneqq \left\{\operatorname{dom}_{\mathcal{X}}:\operatorname{mor}(\mathcal{X}) \to \operatorname{Ob}(\mathcal{X})f:X \to Y \mapsto X\right\}.$$

There is an analogous collection, cod, of maps between morphisms of categories and objects of categories that for a given category maps each morphism to its codomain.

$$\begin{array}{c} \operatorname{mor}(\mathcal{C}) \stackrel{\operatorname{dom}_{\mathcal{C}}}{\longrightarrow} \operatorname{Ob}(\mathcal{C}) \\ \downarrow^{\operatorname{mor}(\mathcal{F})} & \downarrow^{\operatorname{Ob}(\mathcal{F})} \\ \operatorname{mor}(\mathcal{D}) \stackrel{\operatorname{dom}_{\mathcal{D}}}{\longrightarrow} \operatorname{Ob}(\mathcal{D}) \end{array}$$

commutes. Indeed, let a morphism $f:X\to Y$ in $\mathcal C$ be given. Then

$$\operatorname{Ob}(\mathcal{F})\operatorname{dom}_{\mathcal{C}}(f) = \operatorname{Ob}(\mathcal{F})(X) = \mathcal{F}(X) = \operatorname{dom}_{\mathcal{D}}(\mathcal{F}(f)) = \operatorname{dom}_{\mathcal{D}}\operatorname{mor}(\mathcal{F})(f).$$

Proposition D.1.9. A representable functor $\mathcal{F}:\mathcal{C}\to\mathsf{Set}$ preserves mononomorphisms.

Proof. Let a monomorphism $f: X \to Y$ in \mathcal{C} be given. We need to show that $\mathcal{F}(f): \mathcal{F}(X) \to \mathcal{F}(Y)$ is injective. Let $x, x' \in \mathcal{F}(X)$ be given with $\mathcal{F}(f)(x) = \mathcal{F}(f)(x')$. Note that $\alpha: \mathcal{F} \cong \operatorname{Hom}(A, \underline{\ })$ for some A in \mathcal{C} . then $x = \alpha_X(g)$ for some $g: A \to X$ and $x' = \alpha_X(g')$ for some $g: A \to X$. By naturality we thus have that

$$\alpha_Y(fg) = \alpha_Y f_*(g) = \mathcal{F}(f)\alpha_X(g) = \mathcal{F}(f)(x) = \mathcal{F}(f)(x') = \mathcal{F}(f)\alpha_X(g')$$
$$= \alpha_Y f_*(g) = \alpha_Y(fg),$$

hence

$$fg = fg' \implies g = g' \implies x = \alpha_X(g) = \alpha_X(g') = x'.$$

Example D.1.10. The forgetful functor Ring \hookrightarrow Set is, by the above proposition, not a representable functor.

D.1.2 Currying

Consider the functor

$$\operatorname{Hom}(_\times A,B):\operatorname{Set}^{\operatorname{op}}\to\operatorname{Set}$$

$$X\mapsto\operatorname{Hom}(X\times A,B)$$

$$f:X\to Y\mapsto(\operatorname{Hom}(Y\times A,B)\to\operatorname{Hom}(X\times A,B),g\mapsto g\circ f\times\operatorname{id}_A)$$

Proposition D.1.11. This functor is represented by Hom(A, B), the set of functions from A to B.

П

Proof. Consider the family of uncurrying functions

$$\{\operatorname{uncur}_X : \operatorname{Hom}(X, \operatorname{Hom}(A, B)) \to \operatorname{Hom}(X \times A, B)\}\$$

where for a function $f: X \to \operatorname{Hom}(A, B)$ and $(x, a) \in X \times A$,

$$\operatorname{uncur}_X(f)(x,a) := (f(x))(a)$$

the inverse component is the function

$$\operatorname{cur}_X : \operatorname{Hom}(X \times A, B) \to \operatorname{Hom}(X, \operatorname{Hom}(A, B))$$

where for a function $g: X \times A \to B$ and an element $x \in X$

$$\operatorname{cur}_X(g)(x):A\to Ba\mapsto g(x,a)$$

That is, currying is the function obtained by fixing the first element in the cartesian product. Let $f \in \text{Hom}(X, \text{Hom}(A, B))$ and $x \in X$, $a \in A$ be given. Then

$$(\operatorname{cur}_X \operatorname{uncur}_X(f))(x)(a) = \operatorname{uncur}_X(f)(x,a) = f(x)(a) = \operatorname{id}_{\operatorname{Hom}(X,\operatorname{Hom}(A,B))}(f)(x)(a)$$

 $\implies \operatorname{cur}_X \operatorname{uncur}_X = \operatorname{id}_{\operatorname{Hom}(X,\operatorname{Hom}(A,B))}.$

Let $g \in \text{Hom}(X \times A, B)$ and $(x, a) \in X \times A$. Then

$$(\operatorname{uncur}_X \operatorname{cur}_X(f))(x, a) = \operatorname{cur}_X(f)(x)(a) = f(x, a) = \operatorname{id}_{\operatorname{Hom}(X \times A, B)}(f)(x, a)$$

 $\implies \operatorname{uncur}_X \operatorname{cur}_X = \operatorname{id}_{\operatorname{Hom}(X \times A, B)}.$

We check naturality of uncurrying. Let a function $F: X \to Y$ be given. To show naturality, we need to check that given a function $g \in \operatorname{Hom}(X, \operatorname{Hom}(A, B))$, then $\operatorname{uncur}_Y F^*(g) = (F \times \operatorname{id}_A)^* \operatorname{uncur}_X(g)$. Let $(x, a) \in X \times A$. Then

$$\operatorname{uncur}_{Y} F^{*}(g)(x, a) = (gF)(x)(a) = \operatorname{uncur}_{X}(g)(F(x), a) = (F \times \operatorname{id}_{A})^{*} \operatorname{uncur}_{X}(x, a).$$

D.1.3 Statement & Proof of The Yoneda Lemma

Theorem D.1.12. (The Yoneda Lemma) For any C in CAT, given a functor $F : C \to Set$ and an object $X \in Ob(C)$

$$\operatorname{Hom}^{\mathcal{C}^{\operatorname{Set}}}(\operatorname{Hom}(X,\underline{\ \ }),\mathcal{F})\simeq \mathcal{F}(X).$$

This bijection maps a natural transformation $\alpha: \text{Hom}(X,_) \Rightarrow \mathcal{F}$ to $\alpha_X(\mathbb{1}_X)$. The assignment of X resp. \mathcal{F} is natural. I.e.

1. Naturality in Functors: Fix an object X. For each functor \mathcal{F} we write $\Phi^{\mathcal{F}}$: $\operatorname{Hom}^{\mathcal{C}^{\operatorname{Set}}}(\operatorname{Hom}(X,\underline{\ \ \ \ }),\mathcal{F})\to \mathcal{F}(X)$ for the bijection. The claim is that

$$\Phi^{\bullet}: \operatorname{Hom}^{\mathcal{C}^{\operatorname{Set}}}(\operatorname{Hom}(X, _), \bullet) \Rightarrow \bullet(X)$$

given by the collection of morphisms

$$\left\{\Phi^{\mathcal{F}}: \mathcal{F} \in \mathcal{C}^{Set}\right\}$$

is natural. Here $\bullet(X)$ denotes the functor

$$\mathcal{C}^{\operatorname{Set}} o \operatorname{Set}$$

$$\mathcal{F} \mapsto \mathcal{F}(X)$$

$$\beta : \mathcal{F} \Rightarrow \mathcal{G} \mapsto \beta_X$$

2. Naturality in Objects: Fix a functor $\mathcal{F} \in \mathcal{C}^{Set}$. For each object X we write Φ_X : $\operatorname{Hom}^{\mathcal{C}^{Set}}(\operatorname{Hom}(X,_),\mathcal{F}) \to \mathcal{F}(X)$ for the bijection. The claim is that

$$\Phi_{ullet}: \operatorname{Hom}^{\mathcal{C}^{\operatorname{Set}}}(\operatorname{Hom}(ullet, _), \mathcal{F}) \Rightarrow \mathcal{F}(ullet)$$

given by the collection of morphisms

$$\{\Phi_X : X \in \mathrm{Ob}(\mathcal{C})\}\$$

is natural. Here $Hom^{\mathcal{C}^{Set}}(Hom(ullet,\underline{\ \ \ }),\mathcal{F})$ is the functor

$$\mathcal{C} \to \operatorname{Set}$$

$$X \mapsto \operatorname{Hom}^{\mathcal{C}^{\operatorname{Set}}}(\operatorname{Hom}(X,_),\mathcal{F})$$

$$f: X \to Y \mapsto \left((f^*)^* : \operatorname{Hom}^{\mathcal{C}^{\operatorname{Set}}}(\operatorname{Hom}(X,_),\mathcal{F}) \Rightarrow \operatorname{Hom}^{\mathcal{C}^{\operatorname{Set}}}(\operatorname{Hom}(Y,_),\mathcal{F}), \alpha \mapsto \alpha f^* \right)$$

Proof. Explicit construction of bijection: We define

$$\Phi: \operatorname{Hom}^{\mathcal{C}^{\operatorname{Set}}}(\operatorname{Hom}(X,_),\mathcal{F}) \to \mathcal{F}(X)$$
$$(\alpha: \operatorname{Hom}(X,_) \Rightarrow \mathcal{F}) \mapsto \alpha_X(\mathbb{1}_X)$$

We aim to construct an inverse to this (class) function. Let $y \in \mathcal{F}(X)$. We wish to find a natural transformation $\Psi(y) : \operatorname{Hom}(X,_) \Rightarrow \mathcal{F}$. For this to be a natural transformation we must in particular have that for any object Y and any morphism $f: X \to Y$, it must be that the square

$$\begin{array}{ccc} \operatorname{Hom}(X,X) & \xrightarrow{\Psi(y)_X} & \mathcal{F}(X) \\ & & \downarrow^{f_*} & & \downarrow^{\mathcal{F}(f)} \\ \operatorname{Hom}(X,Y) & \xrightarrow{\Psi(y)_Y} & \mathcal{F}(Y) \end{array}$$

commutes. Note that in particular

$$\mathcal{F}(f)(\Psi(y)_X(\mathbb{1}_X)) = \Psi(y)_Y f_*(\mathbb{1}_X) = \Psi(y)_Y(f)$$

We want

$$X = \Phi(\Psi(y)) = \Psi(y)_X(\mathbb{1}_X).$$

For this to hold we must then have that

$$\mathcal{F}(f)(X) = \Psi(y)_Y(f).$$

That is to say, we must define the inverse of Φ , to be

$$\Psi: \mathcal{F}(X) \to \mathrm{Hom}^{\mathcal{C}^{\mathrm{Set}}}(\mathrm{Hom}(X,_), \mathcal{F})$$

$$y \mapsto \Psi(y) \coloneqq \{\Psi(y)_Y : \mathrm{Hom}(X,Y) \to \mathcal{F}(Y), f \mapsto \mathcal{F}(f)(y) | Y \in \mathrm{Ob}(\mathcal{C})\}$$

We check that this is indeed maps to natural transformations. Let a morphism $g: Z \to W$ be given. Then for any $f \in \text{Hom}(X, Z)$,

$$\Psi(y)_W g_*(f) = \Psi(y)_W(gf) = \mathcal{F}(gf)(y) = \mathcal{F}(g)\mathcal{F}(f)(y) = \mathcal{F}(g)\Psi(y)_Z(f).$$

hence the square

$$\operatorname{Hom}(X,Z) \xrightarrow{\Psi(y)_Z} \mathcal{F}(Z)$$

$$\downarrow^{g_*} \qquad \qquad \downarrow^{\mathcal{F}(g)}$$

$$\operatorname{Hom}(X,W) \xrightarrow{\Psi(y)_W} \mathcal{F}(W)$$

commutes. Note that we constructed Ψ to be a right inverse of Φ , so it remains to check that it is also a left inverse. Let a natural transformation $\alpha: \operatorname{Hom}(X,_) \Rightarrow \mathcal{F}$ be given. Then for every $f \in \operatorname{Hom}(X,Y)$

$$\operatorname{Hom}(X,X) \xrightarrow{\alpha_X} \mathcal{F}(X)$$

$$\downarrow^{f_*} \qquad \qquad \downarrow^{\mathcal{F}(f)}$$

$$\operatorname{Hom}(X,Y) \xrightarrow{\alpha_Y} \mathcal{F}(Y)$$

commutes, hence

$$\Psi\Phi(\alpha)(f) = \Psi(\alpha_X(\mathbb{1}_X))(f) = \mathcal{F}(f)(\alpha_X(\mathbb{1}_X)) = \mathcal{F}(f)\alpha_X(\mathbb{1}_X) = \alpha_Y f_*(\mathbb{1}_X) = \alpha_Y(f).$$

We can thus conclude that $\Psi\Phi(\alpha)=\alpha$. Note that we have at this point worked with class functions. Since $\mathcal{F}(X)$ is a set, Ψ is a set function whose image are the natural transformations of $\operatorname{Hom}(X,_)$ to \mathcal{F} , which is therefor a set. This upgrades Φ to a set function Foundationally I don't if the functions are functions in the sense I think they are.

Naturality on functors: Let a natural transformation $\beta: \mathcal{F} \Rightarrow \mathcal{G}$ be given. We need to check that the square

$$\operatorname{Hom}^{\mathcal{C}^{\operatorname{Set}}}(\operatorname{Hom}(X,\underline{\ \ }),\mathcal{F}) \stackrel{\Phi^{\mathcal{F}}}{\longrightarrow} \mathcal{F}(X)$$

$$\downarrow^{\beta_{*}} \qquad \qquad \downarrow^{\beta_{X}}$$

$$\operatorname{Hom}^{\mathcal{C}^{\operatorname{Set}}}(\operatorname{Hom}(X,\underline{\ \ \ }),\mathcal{G}) \stackrel{\Phi^{\mathcal{G}}}{\longrightarrow} \mathcal{G}(X)$$

Indeed for any natural transformation $\alpha : \text{Hom}(X, _) \Rightarrow \mathcal{F}$,

$$\Phi^{\mathcal{G}}\beta_*(\alpha) = \Phi^{\mathcal{G}}(\beta\alpha) = (\beta\alpha)_X(\mathbb{1}_X) = \beta_X(\alpha_X(\mathbb{1}_X)) = \beta_X\Phi^{\mathcal{F}}(\alpha).$$

Naturality on Objects: Let a morphism be given $f: X \to Y$. We need to check that

$$\begin{array}{ccc} \operatorname{Hom}^{\mathcal{C}^{\operatorname{Set}}}(\operatorname{Hom}(X,\underline{\ \ \ }),\mathcal{F}) & \stackrel{\Phi_X}{\longrightarrow} \mathcal{F}(X) \\ & & \downarrow^{(f^*)^*} & & \downarrow^{\mathcal{F}(f)} \\ \operatorname{Hom}^{\mathcal{C}^{\operatorname{Set}}}(\operatorname{Hom}(Y,\underline{\ \ \ \ \ }),\mathcal{F}) & \stackrel{\Phi_Y}{\longrightarrow} \mathcal{F}(Y) \end{array}$$

commutes. Indeed, for a natural transformation $\alpha : \text{Hom}(X, _) \Rightarrow \mathcal{F}$,

$$\Phi_Y(f^*)^*(\alpha) = \Phi_Y(\alpha f^*) = \alpha_Y(f^*)_Y(\mathbb{1}_Y) = \alpha_Y(f) = \mathcal{F}(f)(\alpha_X(\mathbb{1}_X)) = \mathcal{F}(f)\Phi_X(\alpha).$$

D.1.4 Corollaries of The Yoneda Lemma

We first give an alternative characterization of the Yoneda lemma as a natural isomorphism of a pair of functors.

Definition D.1.13. The first of these functors is the *evaluation functor*: Given a locally small category C, we consider

$$\operatorname{ev}: \mathcal{C} \times \operatorname{Set}^{\mathcal{C}} \to \operatorname{Set}$$

$$(X, \mathcal{F}) \mapsto \mathcal{F}(X)$$

$$(f, \alpha): (X, \mathcal{F}) \to (Y, \mathcal{G}) \mapsto \alpha_{X} \mathcal{F}(f): \mathcal{F}(X) \to \mathcal{G}(Y)$$

Before constructing the second functor to consider we prove a lemma to provide a different characterization of bifunctors

Lemma D.1.14. Consider locally small categories C, D, \mathcal{E} . There is a one-to-one correspondence of bifunctors $C \times D \to \mathcal{E}$ onto functors $C \to \mathcal{E}^D$.

Proof. Let a bifunctor $\mathcal{F}: \mathcal{C} \times \mathcal{D} \to \mathcal{E}$ be given. We define a functor

$$\operatorname{Cur}: \mathcal{C} \to \mathcal{E}^{\mathcal{D}}$$

$$X \mapsto \mathcal{F}(X,_)$$

$$f: X \to Y \mapsto \mathcal{F}(f,_): \mathcal{F}(X,_) \Rightarrow \mathcal{F}(Y,_)$$

where

$$\mathcal{F}(X,\underline{\ }):\mathcal{D}\to\mathcal{E}$$

$$S\mapsto \mathcal{F}(X,S)$$
 $g:S\to T\mapsto \mathcal{F}(\mathbb{1}_X,g)$

and $\mathcal{F}(f,\underline{\ })$ is the collection

$$\{\mathcal{F}(f,S) := \mathcal{F}(f,\mathbb{1}_S) : \mathcal{F}(X,S) \to \mathcal{F}(Y,S)\}.$$

The square

$$\mathcal{F}(X,S) \xrightarrow{\mathcal{F}(f,S)} \mathcal{F}(Y,S)$$

$$\downarrow^{\mathcal{F}(X,g)} \qquad \downarrow^{\mathcal{F}(Y,g)}$$

$$\mathcal{F}(X,T) \xrightarrow{\mathcal{F}(f,T)} \mathcal{F}(Y,T)$$

commutes since

$$\mathcal{F}(Y,g)\mathcal{F}(f,S) = \mathcal{F}(\mathbb{1}_Y,g)\mathcal{F}(f,\mathbb{1}_S) = \mathcal{F}(\mathbb{1}_Yf,g\mathbb{1}_S) = \mathcal{F}(f\mathbb{1}_X,\mathbb{1}_Tg)$$
$$= \mathcal{F}((f,\mathbb{1}_T)(\mathbb{1}_X,g)) = \mathcal{F}(f,\mathbb{1}_T)\mathcal{F}(\mathbb{1}_X,g) = \mathcal{F}(f,T)\mathcal{F}(X,g).$$

So $\mathcal{F}(f,_)$ is a natural transformation. Given a functor $\mathcal{G}:\mathcal{C}\to\mathcal{E}^{\mathcal{D}}$, the functor

$$\mathcal{C} \times \mathcal{D} \to \mathcal{E}$$
$$(X,S) \mapsto \mathcal{G}(X)(S)$$
$$(f,g): (X,S) \to (Y,T) \mapsto (\mathcal{G}(f))_T(\mathcal{G}(X)(g))$$

is the bifunctor associated with \mathcal{G} . Given two bifunctors \mathcal{F} and \mathcal{F}' with the same image under this association, note that

$$\mathcal{F}(X,S) = \mathcal{F}(X,)(S) = \mathcal{F}'(X,)(S) = \mathcal{F}'(X,S).$$

Moreover,

$$\mathcal{F}(f,g) = \mathcal{F}(\mathbb{1}_Y,g)\mathcal{F}(f,\mathbb{1}_S) = \mathcal{F}(Y,g)\mathcal{F}(f,S) = \mathcal{F}'(Y,g)\mathcal{F}'(f,S) = \mathcal{F}'(f,g),$$
 hence $\mathcal{F} = \mathcal{F}'$.

Consider the bifunctor

$$\operatorname{Hom}(\underline{\ },\underline{\ }):\mathcal{C}^{\operatorname{op}}\times\mathcal{C}\to\operatorname{Set}.$$

We can then apply the prior lemma to obtain a contravariant functor

$$y: \mathcal{C}^{\mathrm{op}} o \operatorname{Set}^{\mathcal{C}}$$
 $X \mapsto \operatorname{Hom}(X,_)$ $f: X \to Y \mapsto f^*: \operatorname{Hom}(Y,_) \to \operatorname{Hom}(X,_)$

We may regard this as a functor $\mathcal{C} \to (\operatorname{Set}^{\mathcal{C}})^{\operatorname{op}}$ to obtain a functor

$$\operatorname{Hom}(y(\underline{\ }),\underline{\ }): \mathcal{C} \times \operatorname{Set}^{\mathcal{C}} \to (\operatorname{Set}^{\mathcal{C}})^{\operatorname{op}} \times \operatorname{Set}^{\mathcal{C}} \to \operatorname{SET}$$
(12)

$$(X, \mathcal{F}) \mapsto (\operatorname{Hom}(X, \underline{\ }), \mathcal{F}) \mapsto \operatorname{Hom}(\operatorname{Hom}(X, \underline{\ }), \mathcal{F})$$
 (13)

where SET is the category of sufficient notion of collection of objects to contain the collection of all natural transformations between of objects.

By the Yoneda lemma we are in a position where we know that we can replace SET by Set. We thus more succinctly express the Yoneda Lemma as the existence of a natural isomorphism

$$\mathcal{C} \times \operatorname{Set}^{\mathcal{C}}$$
 $\underset{\operatorname{ev}}{\underbrace{\operatorname{Hom}(y(_),_)}} \operatorname{Set}$

Corollary D.1.15. For a locally small category C consider the functor

$$\begin{split} y: \mathcal{C} &\hookrightarrow \mathsf{Set}^{\mathcal{C}^\mathsf{op}} \\ X &\mapsto \mathsf{Hom}(_, X) \\ f: X &\to Y \mapsto f_* : \mathsf{Hom}(_, X) \Rightarrow \mathsf{Hom}(_, Y) \end{split}$$

which we by Lemma D.1.14 may be identified with the functor

$$\begin{split} y: \mathcal{C}^{\mathrm{op}} \hookrightarrow \mathbf{Set}^{\mathcal{C}} \\ X \mapsto \mathrm{Hom}(X,_) \\ f: X \to Y \mapsto f^*: \mathrm{Hom}(Y,_) \Rightarrow \mathrm{Hom}(X,_) \end{split}$$

and $Hom(_, _)$. This (or these) functor(s) is a fully faithful embedding called the **Yoneda** embedding

Proof. It is clearly an embedding since if $X \neq Y$, then $\mathbb{1}_X \in \text{Hom}(X,X)$ and $\mathbb{1}_X \notin \text{Hom}(X,Y)$, hence $\text{Hom}(_,X) \neq \text{Hom}(_,Y)$. To prove fullness and faithfullness, it is equivalent to show that the mapping

$$\operatorname{Hom}(X,Y)\ni f\mapsto f_*\in \operatorname{Hom}(\operatorname{Hom}(_,X),\operatorname{Hom}(_,Y))$$

is a bijection. By Lemma D.0.76, it is injective. Let a natural transformation $\alpha \in \text{Hom}(\text{Hom}(_, X), \text{Hom}(_, X))$ be given. For an object A, set $f := \alpha_X(\mathbb{1}_X) : X \to Y$. Then f_* , takes a $\mathbb{1}_X$ to

$$f\mathbb{1}_X = f = \alpha_X(\mathbb{1}_X),$$

i.e. $\Phi(f_*) = \alpha_X(\mathbb{1}_X) = \Phi(\alpha)$, hence by the Yoneda Lemma,

$$f_* = \alpha$$
.

Corollary D.1.16. Given a ring R and an $n \times m$ matrix A, a row operation on A is uniquely determined by left multiplication by the matrix resulting from the same row operation performed on I_n .

Proof. Fix a positive integer n. For each $i, j \in \{1, ..., n\}$ and $a, b \in R$ consider the family of maps

$${}_{m}\alpha_{ij}^{a,b}: \operatorname{Mat}_{n\times m}(R) \simeq (R^{m})^{n} \to \operatorname{Mat}_{n\times m}(R) \simeq (R^{m})^{n}$$
$$(r_{1}, \ldots, r_{n}) \mapsto (r_{1}, \ldots, r_{i-1}, ar_{i} + br_{j}, \ldots, r_{n}) = (r_{1}, \ldots, ar_{i}, \ldots, r_{n}) + (b\delta_{ip}r_{pq})$$

over positive integers m. Clearly every row operation is a special case of such maps. We claim that ${}_{ullet} \alpha_{ij}^{a,b}$ defines a natural endomorphism of $\operatorname{Hom}(\underline{\ \ \ \ \ },n)$. Indeed, given a matrix $A \in \operatorname{Mat}_{kl} = \operatorname{Hom}(l,k)$, the square

$$\begin{array}{ccc}
\operatorname{Mat}_{nk} & \xrightarrow{k \alpha_{ij}^{a,b}} & \operatorname{Mat}_{nk} \\
\downarrow^{A^*} & & \downarrow^{A^*} \\
\operatorname{Mat}_{nl} & \xrightarrow{l \alpha_{ij}^{a,b}} & \operatorname{Mat}_{nl}
\end{array}$$

commutes. To see this let $B \in \operatorname{Mat}_{nk}$ be given. We shorten notation and let ${}_{\bullet}\alpha$ denote horinzontal maps and $r(C)_i$ denote the *i*'th row of a matrix C. We thus get that

$$l\alpha A^{*}(B) = l\alpha(BA) = (r(BA)_{1}, \dots, ar(BA)_{i} + br(BA)_{j}, \dots, r(BA)_{n})$$

$$= (r(B)_{1}A, \dots, ar(B)_{i}A + br(B)_{j}A, \dots, r(B)_{n}A)$$

$$= (r(B)_{1}A, \dots, (ar(B)_{i} + br(B)_{j})A, \dots, r(B)_{n}A)$$

$$= {}_{k}\alpha(B)A = A^{*}_{k}\alpha(B).$$

This proves naturality. To spell it out, we now have a natural transformation

$$\alpha_{ij}^{a,b}: \operatorname{Hom}(_, n) \Rightarrow \operatorname{Hom}(_, n)$$

This is given by the Yoneda embedding applied to some $n \times n$ matrix. The proof of fullness of the Yoneda embedding or simply applying the Yoneda Lemma tells that this $n \times n$ matrix is ${}_{n}\alpha_{ij}^{a,b}(I_{n})$. Thus in the special case where the map in question is a row operation, ρ say, it is via the Yoneda embedding uniquely determined by $\rho(I_{n})$.

D.2 Universal Properties & Universal Elements

Definition D.2.1. two objects X and Y in the same small category are *representably iso-morphic* if $\text{Hom}(X,_) \cong \text{Hom}(Y,_)$ and $\text{Hom}(_,X) \cong \text{Hom}(_,Y)$.

Lemma D.2.2. If X and Y in the same locally small category are isomorphic, then they are representably isomorphic.

Proof. This is a consequence functoriality of the Yoneda embeddings. \Box

Lemma D.2.3. Let X and Y be a pair of objects in a locally small category \mathcal{C} . If $\operatorname{Hom}(_, X) \cong \operatorname{Hom}(_, Y)$ or $\operatorname{Hom}(X, _) \cong \operatorname{Hom}(Y, _)$, then $X \simeq Y$. As a consequence, if $\mathcal{F} : \mathcal{C} \to \operatorname{Set}$ is a functor represented by X and Y, then $X \simeq Y$.

Proof. Suppose $\alpha: \operatorname{Hom}(_,X) \cong \operatorname{Hom}(_,Y)$ or $\alpha: \operatorname{Hom}(Y,_) \cong \operatorname{Hom}(X,_)$, then since the Yoneda embedding is fully faithful, then $\alpha=y(f)$ for some unique isomorphism $f:X\to Y$.

Remark D.2.4. With this result in mind, we have motivated the use of the definite article when referring to an object representing a representable functor, since given a pair of representations there is a unique isomorphism between the objects. In this way there is a canonical way of identifying objects in this context.

Definition D.2.5. A *universal property* of an object $X \in \mathcal{C}$, where \mathcal{C} is locally small, is a pair consisting of a representable functor \mathcal{F} together with a *universal element* $x \in \mathcal{F}(X)$ that defines a natural isomorphism of $\operatorname{Hom}(X,_)$ and \mathcal{F} or $\operatorname{Hom}(_,X)$ and \mathcal{F} via Φ (as seen in the Yoneda Lemma).

D.2.1 The Category of Elements

Definition D.2.6. Let $\mathcal{F}: \mathcal{C} \to \operatorname{Set}$, where \mathcal{C} is a locally small category, be a covariant functor. Then $\int \mathcal{F}$ is the category characterised by the following data:

- 1. Objects are pairs (A, x) where $A \in Ob(\mathcal{C})$ and $x \in \mathcal{F}(A)$.
- 2. A morphism $(A, x) \to (B, y)$ is a morphism $f : A \to B$ in \mathcal{C} so that $(\mathcal{F}(f))(x) = y$.

This category is called *the category of elements*.

Remark D.2.7. Note that $(\mathcal{F}(\mathbb{1}_A))(x) = \mathrm{id}_{\mathcal{F}(A)}(x) = x$, so $\mathbb{1}_A \in \mathrm{Hom}(\int \mathcal{F})$. Consider morphisms $f \in \mathrm{Hom}((A,x),(B,y))$ and $g \in \mathrm{Hom}((B,y),(C,z))$. Then

$$(\mathcal{F}(gf))(x) = (\mathcal{F}(g) \circ \mathcal{F}(f))(x) = \mathcal{F}(g)(\mathcal{F}(f)(x)) = \mathcal{F}(g)(y) = z,$$

so $gf \in \operatorname{Hom}(\int \mathcal{F})$. Clearly composition is associative and $\mathbb{1}_{(A,x)} := \mathbb{1}_A$ is the identity morphism for each object A. So $\int \mathcal{F}$ indeed does define a category.

We denote the forgetful functor

$$\int \mathcal{F} \to \mathcal{C}$$

$$(A, x) \mapsto A$$

$$f: (A, x) \to (B, y) \mapsto f: A \to B$$

by Π .

Lemma D.2.8. $\int _ : Set^{\mathcal{C}} \to CAT$ is functorial.

Proof. Given a natural transformation $\alpha: \mathcal{F} \Rightarrow \mathcal{G}$ is mapped to the functor

$$\int \alpha : \int \mathcal{F} \to \int \mathcal{G}$$

$$(A, x) \mapsto (A, \alpha_A(x))$$

$$f : (A, x) \to (B, y) \mapsto (A, \alpha_A(x)) \to (B, \alpha_B(y))$$

By naturality, $\mathcal{G}(f)(\alpha_A(x)) = \alpha_B \mathcal{F}(f)(x) = \alpha_B(y)$, which means the assignment of morphisms is well-defined. Functoriality is trivial. Given $\alpha : \mathcal{F} \Rightarrow \mathcal{G}$ and $\beta : \mathcal{G} \Rightarrow \mathcal{H}$, we need to prove that $\int \beta \alpha = \int \beta \int \alpha$. For an object (A, x) in \mathcal{C} , we have that

$$\left(\int \beta \alpha\right)(A,x) = (A,(\beta \alpha)_A(X)) = (A,\beta_A \alpha_A(x)) = \int \beta(A,\alpha_A(x)) = \left(\int \beta \int \alpha\right)(A,x).$$

It is similarly easy to verify that

$$\left(\int \beta \alpha\right)(f) = \left(\int \beta \int \alpha\right)(f)$$

for a morphism a $f:(A,x)\to (B,y)$.

Definition D.2.9. The *category of elements* for a contravariant functor $\mathcal{F}: \mathcal{C} \to \operatorname{Set}$ is just the category of elements of \mathcal{F} regarded as covariant functor $\mathcal{F}: \mathcal{C}^{\operatorname{op}} \to \operatorname{Set}$.

Example D.2.10. 1. Let $\mathcal C$ be a concrete category associated with a faithful functor $\mathcal U$: $\mathcal C \to \operatorname{Set}$. The objects of $\int \mathcal U$ are uniquely determined by sets $X \in \mathcal U(A)$ where A is an object of $\mathcal C$. A morphism $f:(A,x)\to(B,y)$ of $\int \mathcal U$ has an underlying function $\mathcal F(f):\mathcal F(A)\to\mathcal F(B)$ that maps x to y. In this way $\int \mathcal U$ defines the category of based objects, i.e. objects in $\mathcal C$ with a basepoint in the by $\mathcal U$ defined underlying set where a morphism is a morphism in $\mathcal C$ that as function in the underlying subcategory of sets preserves basepoints. With this in mind, we could choose to define $\mathcal C_* := \int \mathcal U$ as a generalization of the notion of a based subcategory of Set.

Lemma D.2.11. For a covariant functor $\mathcal{F}: \mathcal{C}^{op} \to \operatorname{Set}$,

$$\int \mathcal{F} \cong y \downarrow \mathcal{F}.$$

Here $y: \mathcal{C} \to \mathsf{Set}^{\mathcal{C}^{\mathsf{op}}}$ is the yoneda embedding and \mathcal{F} is regarded as functor $\mathbb{1} \to \mathsf{Set}^{\mathcal{C}^{\mathsf{op}}}$.

Proof. The objects of the comma category $y \downarrow \mathcal{F}$ are objects $(A, *, \alpha : \text{Hom}(\underline{\ }, A) \Rightarrow \mathcal{F})$ and a morphism $(A, *, \alpha) \rightarrow (B, *, \beta)$ is a pair of natural transformations $\mu : \text{Hom}(\underline{\ }, A) \Rightarrow \text{Hom}(\underline{\ }, B)$ and $\nu : \mathcal{F} \Rightarrow \mathcal{F}$ such that

$$\begin{array}{ccc} \operatorname{Hom}(_,A) & \stackrel{\alpha}{\Longrightarrow} & \mathcal{F} \\ \downarrow \mu & & & \downarrow \nu \\ \operatorname{Hom}(_,B) & \stackrel{\beta}{\Longrightarrow} & \mathcal{F} \end{array}$$

commutes. Note that necessarily $\nu = \mathrm{id}_{\mathcal{F}}$ and that via the Yoneda embedding $\mu = f_*$ for some morphism $f: A \to B$. A morphism $(A, *, \alpha) \to (B, *, \beta)$ is more succinctly described as natural transformation $f_*: \mathrm{Hom}(\underline{\ \ \ }, A) \Rightarrow \mathrm{Hom}(\underline{\ \ \ \ }, B)$ such that

$$\operatorname{Hom}(_,A) \xrightarrow{\alpha} \mathcal{F}$$

$$\downarrow f_* \qquad \qquad \beta$$

$$\operatorname{Hom}(_,B)$$

We now describe the isomorphism $\int \mathcal{F} \cong y \downarrow \mathcal{F}$,

$$\int \mathcal{F} \to y \downarrow \mathcal{F}$$

$$(A, x) \mapsto \Psi(x) : \operatorname{Hom}(_, A) \Rightarrow \mathcal{F}$$

$$(A, x) \to (B, y) \mapsto f_* : \operatorname{Hom}(_, A) \Rightarrow \operatorname{Hom}(_, B)$$

Note that by the Yoneda Lemma, the assignment of objects is a bijection. The assignment of morphisms is just that of the yoneda embedding, hence morphisms in $y \downarrow \mathcal{F}$ are in bijection with morphisms in $\int \mathcal{F}$. We thus conclude that the above functor defines an isomorphism.

Remark D.2.12. There is of course a dual result for the covariant case. In this case a morphism in the comma category is of the form $f^* : \text{Hom}(B,_) \to \text{Hom}(A,_)$ for a morphism $f : A \to B$.

Lemma D.2.13. For a locally small category C and a fixed object X in C,

$$\int \operatorname{Hom}(X,\underline{\ })\cong X/\mathcal{C}.$$

Proof. \Box

Proposition D.2.14. A covariant functor $\mathcal{F}: \mathcal{C} \to \operatorname{Set}$ is representable if and only if $\int \mathcal{F}$ has an initial object. For a contravariant functor, the same but the category of elements has a terminal object.

Proof. Suppose \mathcal{F} is representable. Then $\mathcal{F} \cong \operatorname{Hom}(X,_)$ for some object X in \mathcal{C} . By functoriality and the prior lemma, $\int \mathcal{F} \cong \int \operatorname{Hom}(X,_) \cong X/\mathcal{C}$. The initial object in X/\mathcal{C} is $\mathbb{1}_X$, hence $\int \mathcal{F}$ has an initial object.

Suppose conversely that $\int \mathcal{F}$ has an initial object (A, x). Let an object (B, y) be given. Then there is a unique morphism $f: A \to B$ with

$$\mathcal{F}(f)(x) = y.$$

Recall from the proof of the Yoneda lemma that $\Psi(x)_B(f) = \mathcal{F}(f)$. Then $\psi_B(x)$ is surjective by existence of f and injective by uniqueness of f, hence $\Psi(x) : \operatorname{Hom}(A, _) \Rightarrow \mathcal{F}$ is a natural isomorphism.

Remark D.2.15. A representation of a set-valued functor on a locally small category C can thus equivalently be defined as an initial object in $\int C$.

Definition D.2.16. A category C is a contractible groupoid, if

$$C \cong \mathbb{1} := (\{*\}, \{\mathbb{1}_*\}).$$

Lemma D.2.17. Consider a locally small category C. The subcategory of C consisting of the initial/terminal objects of C, init()/term(C) is either empty or a contractible groupoid

Proof. Suppose init(C) has an object. The functor

$$\operatorname{init}(\mathcal{C}) \to \mathbb{1}$$

$$X \mapsto *$$

$$f: X \to X' \mapsto \mathbb{1}_*$$

is clearly full and essentially surjective on objects. and since a morphism from an initial object is unique also faithful. \Box

Proposition D.2.18. Consider a set-valued functor \mathcal{F} on a locally small category \mathcal{C} . Then the full subcategory of $\int \mathcal{F}$ spanned by its representations, $rep(\mathcal{F})$, is either empty or a contractible groupoid.

Proof. If \mathcal{F} is not representable, then $\operatorname{rep}(\mathcal{F}) = \emptyset$. If \mathcal{F} is representable, then $\int \mathcal{F}$ has an initial object, hence by the prior lemma and $\operatorname{rep}(\mathcal{F}) = \operatorname{init}(\int \mathcal{F}) \cong \mathbb{1}$.

D.3 Limits & Colimits

D.3.1 Universal Cones & Cocones

Definition D.3.1. Consider categories C and \mathcal{J} . Let an object X in C be given. There is a constant functor

$$X := X_{\mathcal{J}} : \mathcal{J} \to \mathcal{C}$$

$$A \mapsto X$$

$$f : A \to B \mapsto \mathbb{1}_X$$

associated with X. We get an embedding

$$\Delta: \mathcal{C} \hookrightarrow \mathcal{J}^{\mathcal{C}}$$

$$X \mapsto X_{\mathcal{J}}$$

$$f: X \to Y \mapsto \{f: X = X_{\mathcal{J}}(A) \to Y = Y_{\mathcal{J}}(A): A \in \mathrm{Ob}(\mathcal{J})\}$$

One readily verifies that given a morphism $f: X \to Y$ in $\mathcal{C}, \Delta(f)$ is a natural transformation $X_{\mathcal{J}} \Rightarrow Y_{\mathcal{J}}$, which we refer to as the constant natural transformation associated with f.

Definition D.3.2. Consider a diagram $\mathcal{F}:\mathcal{J}\to\mathcal{C}$ on \mathcal{C} . A cone over \mathcal{F} with apex $X\in \mathrm{Ob}(\mathcal{C})$ is a natural transformation $\lambda:X\Rightarrow\mathcal{C}$

Lemma D.3.3. Consider a diagram $\mathcal{F}: \mathcal{J} \to \mathcal{C}$ on a category \mathcal{C} . Let an object X in \mathcal{C} be given. A family of morphisms $\{\lambda_j: X \to \mathcal{F}_j\}_{j \in \mathsf{Ob}(\mathcal{J})}$ is a cone over \mathcal{F} if and only if for each $f: j \to k$,

$$\mathcal{F}_j \xrightarrow{\lambda_j} X$$

$$\mathcal{F}_j \xrightarrow{\mathcal{F}(f)} \mathcal{F}_k$$

commutes.

Proof. Clearly the family of diagrams

$$X \xrightarrow{\lambda_{j}} \mathcal{F}_{j}$$

$$\downarrow^{\mathcal{F}(f)}$$

$$X \xrightarrow{\lambda_{k}} \mathcal{F}_{k}$$

commuting is equivalent to the family of diagrams in question commuting.

Definition D.3.4. A cocone under a diagram $\mathcal{F}: \mathcal{J} \to \mathcal{C}$ with nadir $X \in \mathrm{Ob}(\mathcal{C})$ is a natural transformation $\lambda: X_{\mathcal{J}} \Rightarrow \mathcal{F}$, i.e. a family of morphisms $\{\lambda_j: X \to \mathcal{F}_j\}$ indexed by J such that for each morphisms $f: j \to k$,

$$\mathcal{F}_j \xrightarrow[\lambda_j]{\mathcal{F}(f)} \mathcal{F}_k$$

commutes.

Remark D.3.5. A cocone under $\mathcal{F}:\mathcal{J}\to\mathcal{C}$ is just a cone over the associated diagram $\mathcal{F}:\mathcal{J}^{op}\to\mathcal{C}^{op}$.

Definition D.3.6. Given a diagram $\mathcal{F}: \mathcal{J} \to \mathcal{C}$ we consider the contravariant *cone functor*

$$\mathrm{Cone}(_,\mathcal{F}):\mathcal{C}^\mathrm{op} o \mathrm{Set}$$

$$X \mapsto \mathrm{Hom}(X_{\mathcal{F}},\mathcal{F})$$

$$(g:X \to Y) \mapsto (\mathrm{Hom}(Y_{\mathcal{F}},\mathcal{F}) \to \mathrm{Hom}(X_{\mathcal{F}},\mathcal{F}), \mu \mapsto g^*\mu)$$

A *limit of* \mathcal{F} is representation given by $X \in \mathrm{Ob}(\mathcal{C})$ and $\alpha \in \mathrm{Hom}(\mathrm{Hom}(\underline{\ \ },X),\mathrm{Cone}(\underline{\ \ \ },\mathcal{F}))$ of the contravariant cone functor.

Remark D.3.7. • We denote the object X by $\lim \mathcal{F}$. By Yoneda, such a representation corresponds to an element $\lambda \in \operatorname{Cone}(X, \mathcal{F})$.

• A dual notion of *colimit* similarly from the covariant cone functor

$$Cone(\mathcal{F},\underline{\ }):\mathcal{C}\rightarrow Set$$

that sends an object to the corresponding cone under \mathcal{F} and a morphism $g:X\to Y$ to the function

$$\operatorname{Hom}(\mathcal{F}, X_{\mathcal{F}}) \to \operatorname{Hom}(\mathcal{F}, Y_{\mathcal{F}})$$

$$\lambda \mapsto \lambda q_*$$

• An equivalent definition of the limit is that it is the terminal object in $\int \text{Cone}(_, \mathcal{F})$. Such an object is a summit $\lim \mathcal{F}$ together with a *limit cone* λ . The colimit is then the initial object in $\int \text{Cone}(\mathcal{F},_)$, i.e. a pair colim \mathcal{F} and *colimit cone*.

For clarity, consider the category of cones over a diagram $\mathcal{F}:\mathcal{J}\to\mathcal{C}$, namely $\int \operatorname{Cone}(_,\mathcal{F})$. An object in this category is a cone $(X,\lambda:X\Rightarrow\mathcal{F})$ and a morphism of cones $f:(X,\lambda)\to(Y,\mu)$ is a morphism $f:X\to Y$ such that $\lambda=f^*\mu$. With this in mind we present the following proposition.

Proposition D.3.8. A limit of a diagram $\mathcal{F}: \mathcal{J} \to \mathcal{C}$ is essentially unique, i.e. limits are unique up to unique isomorphism.

Proof. The subcategory of limit cones is the same as the subcategory of terminal objects in the category cones. These are unique up to unique isomorphism. \Box

D.3.2 Examples of Limits

Example D.3.9. Consider a diagram indexed by the category with two elements $\{0,1\}$ with only two distinct non-trivial arrows both from 0 to 1 to a category C. Such a diagram is of the form

$$A \xrightarrow{f} B$$

A cone with summit X of such a diagram is a pair of morphisms $a:X\to A$ and $b:X\to B$ such that the diagram

$$A \xrightarrow{g} B$$

commutes equivalently it is a single morphism $a:X\to A$ such that

$$X \xrightarrow{a} A \xrightarrow{f} B$$

commutes. The limit of a diagram

$$A \xrightarrow{f} B$$

is called an *equaliser* for f and g. This is an object E and a morphism $h: E \to A$ such that for every morphism $a: X \to A$, the diagram

$$\begin{array}{ccc}
X \\
& & \\
\downarrow & & \\
E & \xrightarrow{h} A \xrightarrow{f} B
\end{array}$$

A cocone with nadir Y is a morphism $b: B \to Y$ such that

$$A \xrightarrow{f \atop g} B \xrightarrow{b} Y$$

commutes. A coequaliser for f and g is a morphism $h:B\to C$ such that for each $b:B\to Y$

$$A \xrightarrow{g} B \xrightarrow{b} Y$$

$$\downarrow \exists ! k$$

$$C$$

Example D.3.10. Pullbacks

D.3.3 Limits in Set

Definition D.3.11. A diagram $\mathcal{F}: \mathcal{J} \to \mathcal{C}$ is *small* if \mathcal{J} is small.

Definition D.3.12. A category C is *complete*, if it every small diagram has a limit. It is *cocomplete* if every small diagram has a colimit.

Proposition D.3.13. Set is complete.

Proof. Given a diagram \mathcal{F} , we define

$$\lim \mathcal{F} := \operatorname{Cone}(1, \mathcal{F})$$

D.3.4 Products & Coproducts

Definition D.3.14. A *product* over a discrete category \mathcal{J} in a category \mathcal{C} is the limit of a diagram $\mathcal{F}: \mathcal{J} \to \mathcal{C}$. We denote this limit by

$$\prod_{j\in\mathcal{J}}\mathcal{F}_j$$
.

The components of the limit cone

$$\left\{ \pi_i : \prod_{j \in \mathcal{J}} X_j \to X_i \,\middle|\, i \in \mathcal{J} \right\}$$

are called the *projections* of the product.

Remark D.3.15. Note that any family of maps $\{\lambda_j : X \to \mathcal{F}_j\}$ trivially satisfies the naturality condition and is thus a cone over \mathcal{F} .

Example D.3.16. Consider a set I considered as discrete category in the canonical way. Suppose we have a diagram $X:I\to \mathrm{Set}$. The subcategory spanned by this diagram is a family of sets $\{X_i\}$ indexed by I. We will in the next proposition show that the cartesian product, $\prod_{i\in I}X_i$, is in fact the product of X.

Proposition D.3.17. Consider a set I. The objects of the category of products over I in Set are cartesian products over I.

Proof. Indeed, consider a cartesian product $\prod_{i \in I} X_i$ and the cone over X,

$$\pi := \left\{ \pi_i : \prod_{j \in I} X_j \to X_i, (x_j) \mapsto x_i \mid i \in I \right\}.$$

The claim is that this is the terminal object in the category of cones over X. Consider any cone $\phi := \{f_i : A \to X_i\}$ over X indexed by I. We define the function

$$f: A \to \prod_{i \in I} X_i$$

 $a \mapsto (f_i(a))$

we claim that is the unique morphism of cones from $(A, \{f_i\})$ to $(\prod_{i \in I} X_i, \{\pi_i\})$ such that

$$\phi = f^*\pi$$
.

Let $i \in I$. It is sufficient to check that f is the unique map making the diagram

commute. Indeed, for any $a \in A$,

$$\pi_i f(a) = \pi_i((f_i(a))) = f_i(a),$$

hence $pi_i f = f_i$. Suppose $g: A \to \prod_{j \in I} X_j$ is another map such that $\pi_i g = f_i$. Let an arbitrary $a \in A$ be given and set $(x_i) := g(a)$. Then $x_i = \pi_i g(a) = f_i(a)$, hence $f(a) = (f_i(a)) = (x_i) = g(a)$, which means f = g.

Definition D.3.18. A *coproduct* over a discrete category \mathcal{J} in a category \mathcal{C} is the colimit of a diagram $\mathcal{F}: \mathcal{J} \to \mathcal{C}$. We denote this colimit by

$$\coprod_{j\in\mathcal{J}}\mathcal{F}_j.$$

The components of the colimit cocone

$$\left\{ \iota_i : X_i \to \coprod_{j \in \mathcal{J}} X_j \,\middle|\, i \in \mathcal{J} \right\}$$

are called the *injections* of the coproduct.

Example D.3.19. In the category of sets, a coproduct $\coprod_{i \in I} X_i$ index by a set I is simply disjoint union over I, i.e.

$$\coprod_{i \in I} X_i = \bigsqcup_{i \in I} X_i.$$

injection maps simply the inclusion maps

$$\left\{ \iota_i : X_i \to \bigsqcup_{j \in I} X_j, x_i \mapsto (x_i, i) \mid i \in I \right\}.$$

Indeed, consider an arbitrary cocone $(A,\{f_i:X_i\to A\})$ over X. We define

$$f: \bigsqcup_{i\in I} X_i \to A$$

$$(x,i) \mapsto f_i(x)$$

We must then check for each $i \in I$ that $f \iota_i = f_i$ and that f is unique with this property. Indeed, for each $x \in X_i$

$$f\iota_i(x) = f(x,i) = f_i(x) \implies f\iota_i = f.$$

Consider another map $g: \bigsqcup_{i \in I} X_i \to A$ such that $g\iota_i = f_i$. Let $(x,i) \in \bigsqcup_{j \in I} X_j$ be given. Then

$$g(x,i) = g\iota_i(x) = f\iota_i(x) = f(x,i) \implies f = g.$$

D.3.5 Direct systems and direct limits

recall the following definition

Definition D.3.20. A preordered set (A, \leq) is a *directed set* if for each pair of elements $a, b \in A$ there is an element $c \in A$ such that $a \leq c$ and $b \leq c$.

Example D.3.21. Consider a topological space X and fix a point $P \in X$. Then the family of subsets in X

$$\{U \in \tau_X : P \in U\}$$

is a directed set. Indeed, a pair of open neighborhoods about P are contained in their union, which is an open neighborhood of P.

Definition D.3.22. Consider a directed set (I, \leq) and a category \mathcal{C} . A *direct system* is a diagram

$$X_{\bullet}:I\to\mathcal{C}$$

We aim to characterise colimits of direct systems. These are called *direct limits*. First we describe cocones of direct systems. Fix a direct system $X_{\bullet}: (I, \leq) \to \mathcal{C}$ and an object $X \in \mathrm{Ob}(\mathcal{C})$. A cocone over X_{\bullet} with summit X is then a natural transformation $\lambda: X_{\bullet} \Rightarrow X$. The subcategory in \mathcal{C} spanned by X_{\bullet} consists of a collection of objects

$$\{X_i: i \in I\}$$

and a collection of morphisms

$$\{f_{ij}: X_i \to X_j \mid i, j \in I, i \le j\}$$

When the colimit of such a diagram exist (for instance when C is complete), we denote it by

$$\varinjlim_{i\in I} X_i.$$

This object has the universal property that given another cocone (X, λ) the diagram

commutes for each $i, j \in I$ with $i \leq j$. When we get to describing sheafs valued in the category of groups, we will give an explicit construction of such an object.