TALLER

DISTRIBUCIONES CONJUNTAS

1. Se consideran dos variables aleatorias: *X*, que toma los valores -1 y 1, e *Y* que toma los valores 0,1,y 2 con las probabilidades conjuntas dadas en la siguiente tabla:

X/Y	0	1	2
-1	0.4	0.2	0.1
1	0.05	¿؟	0.15

- a) Halle las probabilidades marginales
- b) ¿Son X e Y independientes?
- 2. Los contratos para dos trabajos de construcción se asignan al azar a una o más de tres empresas, A, B y C. Sea Y_1 el número de contratos asignados a la empresa A y Y_2 el número de contratos asignados a la empresa B. Recuerde que cada empresa puede recibir 0, 1 o 2 contratos.
 - a) Encuentre la función de probabilidad conjunta para Y_1 e Y_2 .
 - b) Encuentre F(1,0)
 - c) Encuentre la distribución de probabilidad marginal de Y_1 .
 - d) ¿Son Y_1 e Y_2 independientes?
 - e) $E(Y_1)$.
 - f) $V(Y_1)$.
 - g) $E(Y_1 Y_2)$
 - h) $Cov(Y_1, Y_2)$
- 3. De los nueve ejecutivos de una empresa comercial, cuatro están casados, tres nunca se han casado y dos están divorciados. Tres de los ejecutivos serán seleccionados para ascenso. Sea Y_1 el número de ejecutivos casados y Y_2 el número de ejecutivos que nunca se han casado entre los tres seleccionados para la promoción. Suponiendo que los tres se seleccionan al azar de los nueve disponibles, encuentre la función de probabilidad conjunta de Y_1 e Y_2 .
 - a) Calcular $P(Y_1 = 1 | Y_2 = 2)$
 - b) ${ 4 \text{Son } Y_1 \text{ e } Y_2 \text{ independientes?} }$

4. Sean Y_1 e Y_2 la función de densidad de probabilidad conjunta dada por

$$f(y_1, y_2) = \begin{cases} ky_1y_2, & 0 \le y_1 \le 1, \ 0 \le y_2 \le 1 \\ 0, & en \ otro \ caso \end{cases}$$

- a) Encuentre el valor de k que hace que esta sea una función de densidad de probabilidad.
- b) Encuentre la función de distribución conjunta para Y_1 e Y_2 .
- c) Encuentre $P(Y_1 \le 1/2, Y_2 \le 3/4)$.
- d) Muestre que $Cov(Y_1, Y_2) = 0$
- 5. Sean Y_1 e Y_2 la función de densidad de probabilidad conjunta dada por

$$f(y_1, y_2) = \begin{cases} k(1 - y_2), & 0 \le y_1 \le y_2 \le 1 \\ 0, & en \ otro \ caso \end{cases}$$

- a) Encuentre el valor de k que hace que esta sea una función de densidad de probabilidad.
- b) Encuentre $P(Y_1 \le 3/4, Y_2 \ge 1/2)$.
- c) $E(Y_1)$ y $E(Y_2)$.
- d) $V(Y_1)$ y $V(Y_2)$.
- e) $E(Y_1 3Y_2)$
- f) $Corr(Y_1, Y_2)$
- 6. Suponga que las variables aleatorias Y_1 e Y_2 tienen una función de densidad de probabilidad conjunta $f(y_1, y_2)$ dada por

$$f(y_1, y_2) = \begin{cases} 6y_1^2 y_2, & 0 \le y_1 \le y_2, & y_1 + y_2 \le 2\\ 0, & en \ otro \ caso \end{cases}$$

- a) ¿Cuál es la probabilidad de que $Y_1 + Y_2$ sea menor que 1?
- b) la función de densidad condicional de Y_1 dado $Y_2 = y_2$
- c) la función de densidad condicional de Y_2 dado Y_1 = y_1