L arge L anguage Models

A Primer

What is a Vector Database?

A Vector Database stores data as high-dimensional vectors.

Each vector represents a data item, such as a word, image, or document; capturing **essential features of the data**.

Unlike traditional databases that use rows and columns (e.g. SQL), vector databases <u>organize data in a multi-dimensional space</u>, <u>optimizing</u> <u>search and retrieval</u> for such data types.

• INPUT DATA

- "UAV tracking ship exiting canal"
- "UAV tracking ship off port"

• GOALS

- 1. Translate the input data to a set of ordered tokens.
- 2. Build a structure that helps predict the next, most likely token as part of formulating a response to a prompt.

▼ ▶	UAV	tracking	ship	exiting	canal	off	port
UAV		2					
tracking			2				
ship				1		1	
exiting					1		
canal							
off							1
port							

▼ ▶	UAV	tracking	ship	exiting	canal	off	port
UAV		100 %					
tracking			100 %				
ship				50 %		50 %	
exiting					50 %		
canal							
off							50 %
port							


```
LLM = {"UAV":{"tracking":100.0},

"tracking":{"ship":100.0},

"ship:{"exiting":50.0,"off":50.0},

"exiting":{"canal":100.0},

"off":{"port":100.0}}
```


			•	• • •	V	•	UA	W	trac	king	sl	nip	exi	ting	ca	nal	0	ff	port	
		•	•		U	AV			100) %										
	•	*			trac	king					10	0 %						,		
•	•	▼	•	UA	W	track	ing	sh	ip	exit	ing	can	al	of	f	po	rt			
• •		UA	V			100	%													
*		track	ing					100	0 %											
▼ ▶	Ţ	JAV	tra	cking	g	ship	ex	iting	g ca	anal		off]	port					50 %	
UAV			10	00 %															50 %	
tracking					1	.00 %														
ship							5	0 %								50	%		• •	
exiting									5	0 %						00	70	•	• •	1 1 0
canal			3														*	•		undreds ? sands ?
off													E	50 %		•		Bill	ions?	
port																·Tr	ill	ioı	ns?	

Chroma: A Vector Database Tool

Chroma : A Vector Database Tool

1. Access Chroma

import chromadb

2. Create a Chroma client

myclient = chromadb.Client()

3. Create a collection

naval llm = myclient.get or create collection(name="UAV scan")

4. Populate a collection

3. Query a collection

Chroma : A Vector Database Tool

```
import chromadb
myclient = chromadb.Client()
# create the naval messages LLM
naval llm = myclient.get or create collection(
                                      name="UAV scan")
# populate this LLM
naval_llm.upsert(
        documents=["UAV tracking ship exiting canal",
                       "UAV tracking corvette off port"],
        ids = ["msg1","msg2"])
# test the capability of this LLM
msg_options = naval_llm.query(
        query_texts = ["UAV tracking USV off starboard"],
            n results = 2)
# display results
print(msg_options)
```


Chroma: A Vector Database Tool

```
{'ids': [['msg2', 'msg1']], 'embeddings': None,
```

'documents': [['UAV tracking corvette off port', 'UAV tracking ship exiting canal']],

```
'uris': None, 'data': None, 'metadatas': [[None, None]],
```

'distances': [[0.8026132583618164, 1.1424219608306885]],

```
'included': [<IncludeEnum.distances: 'distances'>,
<IncludeEnum.documents: 'documents'>,
<IncludeEnum.metadatas: 'metadatas'>]}
```


LLM Resources

LLM basics

1. Blog

https://blog.miguelgrinberg.com/post/ how-llms-work-explained-without-math

2. AWS

"What is LLM (Large Language Model)?" https://aws.amazon.com/what-is/large-language-model

3. Geeks for Geeks

"What is Large Language Model" - https://www.geeksforgeeks.org/large-language-model-llm/

Chroma

Tutorial - https://docs.trychroma.com/docs/ overview/getting-started

Intallation - https://pypi.org/project/chromadb/

LLM Resources

LLM basics

1. Blog

https://blog.miguelgrinberg.com/post/ how-llms-work-explained-without-math

2. AWS

"What is LLM (Large Language Model)?" https://aws.amazon.com/what-is/large-language-model

3. Geeks for Geeks

"What is Large Language Model" - https://www.geeksforgeeks.org/large-language-model-llm/

Chroma

Tutorial - https://docs.trychroma.com/docs/ overview/getting-started

Intallation - https://pypi.org/project/chromadb/

QUESTIONS

