Chapter 5 Limit Theorems

5.1 Limits of sums, products, and quotients

Theorem. Assume that $a_n \to L$ and $b_n \to M$ as $n \to \infty$

(1) Linearity theorem $ra_n + sb_n \rightarrow rL + sM$ for every $r, s \in \mathbb{R}$

(2) Product theorem $a_n b_n \to LM$

(3) Quotient theorem $\frac{b_n}{a_n} \to \frac{M}{L}$ if $L \neq 0$ & $a_n \neq 0$ for all n

Pf. (1) $e_n^{\text{let}} = a_n - L$ $e_n'^{\text{let}} = b_n - M$

Then $e_n \to 0$ and $e'_n \to 0$ as $n \to \infty$

So, given $\varepsilon > 0$, $|e_n| < \varepsilon$ & $|e'_n| < \varepsilon$ for n >> 1

$$|ra_n + sb_n - (rL + sM)| \le |r(a_n - L)| + |s(b_n - M)|$$

$$= |r||e_n| + |s||e'_n| < |r||\mathcal{E} + |s||\mathcal{E}| = (|r| + |s|)\mathcal{E} \quad \text{for} \quad n >> 1$$

Thus by $K - \varepsilon$ Principle, $ra_n + sb_n \rightarrow rL + sM$

(2) By hypo, given $\varepsilon > 0$, $|e_n| < \varepsilon$ & $|e'_n| < \varepsilon$ for n >> 1

Notice that

 $|a_nb_n - LM| < \varepsilon$ holds when $\varepsilon < 1 \implies |a_nb_n - LM| < \varepsilon'$ is (automatically) true for all $\varepsilon' \ge 1$ Thus we may and do assume $\varepsilon < 1$. Then

$$a_n b_n - LM = (e_n + L)(e'_n + M) - LM = e_n M + e'_n L + e_n e'_n$$

$$\therefore |a_n b_n - LM| \le |M| |e_n| + |L| |e'_n| + |e_n| |e'_n|$$

$$< \varepsilon |M| + \varepsilon |L| + \varepsilon \cdot \varepsilon < (|M| + |L| + 1)\varepsilon \equiv K\varepsilon$$

Thus by $K - \varepsilon$ Principle, $a_n b_n \to LM$

(3) Enough to show $\frac{1}{a_n} \to \frac{1}{L} (L \neq 0)$ because (2) will then give

$$\frac{b_n}{a_n} = b_n \bullet \frac{1}{a_n} \quad \to \quad M \bullet \frac{1}{L} = \frac{M}{L}$$

Since $\left| \frac{1}{a_n} - \frac{1}{L} \right| = \frac{|a_n - L|}{|a_n||L|}$, to show the quotient on the right is *small*,

we must show the denominator is *not too small* (i.e., must show $|a_n|$ is not too small)

Given $\varepsilon > 0$, $a_n = L + e_n$ where $|e_n| < \varepsilon$ for n >> 1

$$\mid a_{\scriptscriptstyle n}\mid = \mid L + e_{\scriptscriptstyle n}\mid \geq \mid L\mid -\mid e_{\scriptscriptstyle n}\mid >\mid L\mid -\varepsilon \ \text{ for } n>>1 \text{ , since } \mid e_{\scriptscriptstyle n}\mid <\varepsilon \ \text{ for } n>>1$$

$$> \frac{|L|}{2}$$
 for $n >> 1$, since we can take $\varepsilon < \frac{|L|}{2}$.

$$\therefore \quad \left| \frac{1}{a_n} - \frac{1}{L} \right| = \frac{|a_n - L|}{|a_n| |L|} = \frac{|e_n|}{|a_n| |L|} < \frac{\varepsilon}{\frac{|L|}{2} \cdot |L|} = \frac{2\varepsilon}{|L|^2} \quad \text{for} \quad n >> 1$$

Thus by $K - \varepsilon$ Principle, $\frac{1}{a_{r}} \to \frac{1}{L}$ when $L \neq 0$

Remark to (3): $\lim_{n\to\infty} a_n = L \quad \& \quad L\neq 0 \qquad \Rightarrow \qquad a_n\neq 0 \quad \text{for} \quad n>>1$

Pf. By hypo, given $\varepsilon > 0$, $L - \varepsilon < a_n < L + \varepsilon$ for n >> 1

If L > 0, take $\varepsilon = \frac{L}{2} (> 0)$, then $0 < \frac{L}{2} < a_n$ for n >> 1

$$\therefore a_n \neq 0 \text{ for } n >> 1$$

If L < 0, take $\varepsilon = -\frac{L}{2}(>0)$, then $a_n < \frac{L}{2} < 0$ for n >> 1

$$\therefore a_n \neq 0 \text{ for } n >> 1$$

Consequently, in each case, we have $a_n \neq 0$ for n >> 1

In particular, $\frac{1}{a_n}$ is defined for n >> 1

Alternative (short) pf.

By hypo, given $\varepsilon > 0$, $a_n \approx L$ for n >> 1

Take $\varepsilon = \frac{|L|}{2} (>0)$. Then

$$|a_n - L| < \frac{|L|}{2}$$
 for $n >> 1$

Thus, for n >> 1,

$$|a_n| = |a_n - L + L| = |L - (L - a_n)| \ge |L| - |L - a_n| > |L| - |L|/2 = |L|/2 (> 0)$$

 $\therefore a_n \ne 0 \text{ for } n >> 1$

Exa A.
$$\lim_{n\to\infty} \frac{3n^2 - 2n - 1}{n^2 + 1} = ?$$

Sol.
$$\frac{3n^2 - 2n - 1}{n^2 + 1} = \frac{3 - \frac{2}{n} - \frac{1}{n^2}}{1 + \frac{1}{n^2}} \rightarrow \frac{3}{1} = 3 \quad (\because \frac{1}{n} \to 0, \frac{1}{n^2} \to 0)$$

Theorem (Algebraic operations for infinite limits)

(1)
$$a_n \to \infty$$
 and $b_n \to \infty$ { or $b_n \to L(\text{finite})$, or $b_n \ge (\text{some number})C$ for all n } $\Rightarrow a_n + b_n \to \infty$

(2)
$$a_n \to \infty$$
 and $b_n \to \infty$ { or $b_n \to L(>0)$, or $b_n \ge$ (some number) $K > 0$ for all n } $\Rightarrow a_n \cdot b_n \to \infty$

(3)
$$a_n \to \infty \implies \frac{1}{a_n} \to 0$$
 (but the converse is *false* in general)

(4)
$$a_n \to 0$$
 & $a_n > 0$ for all $n \Rightarrow \frac{1}{a_n} \to \infty$

Pf (1) Assume $a_n \to \infty$ and $b_n \ge C$ for all n. Then

given M > 0, $a_n > M + |C|$ for n >> 1

Thus $a_n + b_n > M + |C| + C \ge M$ for n >> 1

That is, $a_n + b_n > M$ for n >> 1

$$\therefore \qquad \lim_{n\to\infty} (a_n + b_n) = \infty$$

(2), (3), (4): Exercise

Note: The converse of (3) is false:

$$a_n = -1/n \rightarrow 0$$
 but $1/a_n = -n \rightarrow -\infty$

Exa B Find $\lim_{n\to\infty} n(a+\cos n\pi)$, for different values of a

Sol.
$$\cos n\pi = (-1)^n$$
 for all n

If
$$a > 1$$
, then $a + \cos n\pi = a + (-1)^n \ge a - 1 > 0$ for all n
 $n(a + \cos n\pi) \ge n(a - 1) \to \infty$ \therefore $n(a + \cos n\pi) \to \infty$

If
$$a < -1$$
, then $a + \cos n\pi = a + (-1)^n \le a + 1 < 0$ for all n
 $n(a + \cos n\pi) \le n(a+1) \to -\infty$ \therefore $n(a + \cos n\pi) \to -\infty$

If
$$a=1$$
, then $n(a+\cos n\pi) = n(a+(-1)^n) = n(1+(-1)^n) = \begin{cases} 2n, & n=\text{even} \\ 0, & n=\text{odd} \end{cases}$

If
$$a = -1$$
, then $n(a + \cos n\pi) = n(a + (-1)^n) = n(-1 + (-1)^n) = \begin{cases} 0, & n = \text{even} \\ -2n, & n = \text{odd} \end{cases}$

$$\lim_{n\to\infty} n(a+\cos n\pi)$$
 does not exist if $a=1$ or $a=-1$

If
$$|a| < 1$$
, then $n(a + \cos n\pi) = n(a + (-1)^n) = \begin{cases} n(a+1) & (\to \infty), & n = \text{even} \\ n(a-1) & (\to -\infty), & n = \text{odd} \end{cases}$

$$\lim_{n \to \infty} n(a + \cos n\pi)$$
 does not exist if $|a| < 1$

5.2 Comparison theorems

Theorem (Squeeze Theorem or Sandwich Theorem)

Suppose that there are three sequences (a_n) , (b_n) , and (c_n) satisfying

$$a_n \le b_n \le c_n$$
 for $n >> 1$

If $a_n \to L$ & $c_n \to L$, then $b_n \to L$ also.

Pf. By hypo, given $\varepsilon > 0$, $a_n \underset{\varepsilon}{\approx} L$ & $c_n \underset{\varepsilon}{\approx} L$ for n >> 1

That is, given $\varepsilon > 0$, $L - \varepsilon < a_n < L + \varepsilon$ & $L - \varepsilon < c_n < L + \varepsilon$ for n >> 1

So,
$$L - \varepsilon < a_n \le b_n \le c_n < L + \varepsilon$$
 for $n >> 1$

This shows: given $\varepsilon > 0$, $b_n \approx L$ for n >> 1

Exa A. Show that $\sqrt[n]{2 + \cos na} \rightarrow 1$, for any fixed number a

Pf. Recall easy facts:

•
$$a,b>0$$
 & $a \le b \Rightarrow \sqrt[n]{a} \le \sqrt[n]{b}$ (대우로 증명가능)

•
$$a > 0 \implies \lim_{n \to \infty} \sqrt[n]{a} = 1$$

Pf of the second fact:

Case 1.
$$a > 1 \implies \sqrt[n]{a} > 1$$

$$\sqrt[n]{a} \stackrel{\text{let}}{=} 1 + h_n, \quad h_n > 0$$
 Have to show $h_n \to 0$

$$a = (1 + h_n)^n = 1 + nh_n + \frac{n(n-1)}{2!}h_n^2 + \frac{n(n-1)(n-2)}{3!}h_n^3 + \dots + h_n^n$$

$$\geq 1 + nh_n > nh_n$$

$$\therefore \quad \lim_{n\to\infty}h_n=0$$

Case 2.
$$0 < a < 1 \implies 1/a > 1$$

$$\stackrel{\text{Casel}}{\Rightarrow} \lim_{n \to \infty} \sqrt[n]{1/a} = 1 \text{ (i.e., } \lim_{n \to \infty} \frac{1}{\sqrt[n]{a}} = 1 \text{)}$$

$$\Rightarrow \lim_{n \to \infty} \sqrt[n]{a} = 1 \quad (\because \quad \lim_{n \to \infty} a_n = L (\neq 0) \ \Rightarrow \ \lim_{n \to \infty} 1 / a_n = 1 / L)$$

Case 3. a = 1: Trivial

Remark (later):
$$a > 0 \Rightarrow \lim_{n \to \infty} \sqrt[n]{a} = \lim_{n \to \infty} a^{\frac{1}{n}} = a^{x} \text{ is continuous on } \mathbb{R} = a^{\frac{1}{n} + \infty} = a^{0} = 1$$

We turn now to the problem:

$$1 = \sqrt[n]{1} \le \sqrt[n]{2 + \cos na} \le \sqrt[n]{3}$$

$$\downarrow \qquad \qquad \downarrow$$

$$1 \qquad 1 \quad \text{as} \quad n \to \infty$$

Hence by Squeeze Theorem, $\sqrt[n]{2 + \cos na} \rightarrow 1$

Theorem (Squeeze Theorem for infinite limits)

$$b_n \ge a_n$$
 & $a_n \to \infty$ \Rightarrow $b_n \to \infty$

Review

$$1+1/2+1/3+\dots+1/n > \ln(n+1) > \ln n \to \infty$$

$$\therefore \lim_{n \to \infty} (1+1/2+1/3+\dots+1/n) = \infty$$

Exa B
$$a > 1 \Rightarrow a^n \to \infty$$

Pf. $a > 1 \Rightarrow a = 1 + k, k > 0$
 $\Rightarrow a^n = (1 + k)^n = 1 + nk + \text{positive terms}$
 $\Rightarrow 1 + nk \to \infty \text{ as } n \to \infty$
 $\therefore a^n \to \infty$

Exa C $(n! \sim ? \text{ when } n \text{ is large enough})$

Show that
$$\lim_{n\to\infty} \frac{\ln n!}{n \ln n} = 1$$
 (In symbols, $\ln n! \sim n \ln n$)

Sol.
$$\ln n! = \ln 1 + \ln 2 + \dots + \ln n$$

the total area of the above rectangles

$$= \ln 1 + \ln 2 + \dots + \ln n$$

$$\int_{1}^{n} \ln x dx \le \ln 1 + \ln 2 + \dots + \ln n \le n \ln n \quad (\text{ or } \int_{2}^{n+1} \ln x dx)$$

Integral in the LHS =
$$\left[x \ln x - x\right]_1^n = n \ln n - n + 1$$

$$\times \frac{1}{n \ln n} \Rightarrow 1 - \frac{1}{\ln n} + \frac{1}{n \ln n} \leq \frac{\ln n!}{n \ln n} \leq 1$$

$$\downarrow \qquad \qquad \downarrow$$

$$1 \qquad \qquad 1$$

$$\therefore \lim_{n\to\infty} \frac{\ln n!}{n \ln n} = 1$$

5.3 Location Theorems

Theorem A (*Limit Location Theorem*: **LLT** for short)

If (a_n) is convergent, then

(a)
$$a_n \le M$$
 for $n >> 1$ $\Rightarrow \lim_{n \to \infty} a_n \le M$

(b)
$$a_n \ge M$$
 for $n >> 1$ $\Rightarrow \lim_{n \to \infty} a_n \ge M$

[결론: ≤ (또는 ≥)의 양변에 limit를 택한 결과가 성립한다; if the limit is known to exist]

For example, $a_n \ge 0$ for $n >> 1 \Rightarrow \lim_{n \to \infty} a_n \ge 0$ if (a_n) is convergent.

Caution: It is *not* true that " $a_n > 0$ for $n >> 1 \Rightarrow \lim_{n \to \infty} a_n > 0$ " even if (a_n) is convergent.

For example,
$$\frac{1}{n} > 0$$
 for all n ($\therefore \frac{1}{n} > 0$ for $n >> 1$) but $\lim_{n \to \infty} \frac{1}{n} = 0$

Pf of (a). The statement (a) can be written as

$$a_n \le M$$
 for $n >> 1$, $a_n \to L \implies L \le M$

$$a_n \to L \implies \text{given } \varepsilon > 0, \quad a_n \underset{\varepsilon}{\approx} L \quad \text{for } n >> 1$$

That is, $L - \varepsilon < a_n < L + \varepsilon$ for n >> 1

Since $a_n \le M$ for n >> 1, we have

$$L - \varepsilon < M$$
, for any $\varepsilon > 0$ ---- (*)

This implies $L \leq M$.

(: If
$$L > M$$
, choose $\varepsilon = L - M (> 0)$, then

$$L - \varepsilon = L - (L - M) = M$$
; contradiction to (*)

(b) can be proved in a similar way.

Note: Only the following conclusion can be guaranteed:

(i)
$$a_n < M$$
 for $n >> 1$ $\Rightarrow \lim_{n \to \infty} a_n \le M$ if (a_n) is convergent

(ii)
$$a_n > M$$
 for $n >> 1$ $\Rightarrow \lim_{n \to \infty} a_n \ge M$ if (a_n) is convergent

O A variant of the Limit Location Theorem

$$(a_n)$$
 & (b_n) : convergent, $a_n \le b_n$ for $n >> 1$ $\Rightarrow \lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$

Pf.
$$a_n - b_n \le 0$$
 for $n >> 1$ $\stackrel{\text{(a)}}{\Rightarrow} \lim_{n \to \infty} (a_n - b_n) \le 0$ (since $\lim_{n \to \infty} (a_n - b_n)$ exists; why?)
$$\Rightarrow \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n \le 0$$

$$\Rightarrow \lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$$

Theorem B (Sequence Location Theorem: **SLT** for short)

Assuming (a_n) converges,

(a)
$$\lim_{n \to \infty} a_n < M \implies a_n < M \text{ for } n >> 1$$

(b)
$$\lim_{n \to \infty} a_n > M \implies a_n > M \text{ for } n >> 1$$

Pf. (a) Let
$$L = \lim_{n \to \infty} a_n$$
. Then

given
$$\varepsilon > 0$$
, $L - \varepsilon < a_n < L + \varepsilon$ for $n >> 1$

Hypo means L < M.

Take
$$\varepsilon = M - L(>0)$$
. Then

$$a_n < L + \varepsilon = L + (M - L) = M$$
 for $n >> 1$

(b) can be proved in a similar way.

Caution: It is *not* true that $\lim_{n\to\infty} a_n \le M \implies a_n \le M$ for n >> 1

$$\lim_{n\to\infty} a_n = 0$$
 (:. $\lim_{n\to\infty} a_n \le 0$) but $a_n > 0$ only for every even $n(>0)$

5.4 Subsequences (Commonly used for proving "non-existence of limits")

Def. A subsequence of (a_n) is a sequence consisting of terms (a_n) and having the form $a_{n_1}, \ a_{n_2}, \ a_{n_3}, \cdots, \ a_{n_i}, \ \cdots, \ \text{ where } \ n_1 < n_2 < n_3 < \cdots < n_i < \cdots.$

(Remember: n_i 's are nonnegative integers & "strictly" increasing)

Exa. Let
$$(a_n)$$
: 1, 2, 1, 3, 1, 4, 1, 5, ...

Each list in the left is a subseq of (a_n) : Each list in the right is **not** a subseq of (a_n) :

3, 4, 5, 6, ...

Theorem (Subsequence Theorem)

If (a_n) converges, every subsequence also converges, and to the same limit. In other words,

$$\lim_{n \to \infty} a_{\scriptscriptstyle n} = L \quad \Rightarrow \quad \lim_{i \to \infty} a_{\scriptscriptstyle n_i} = L \ \ \text{ for every subsequence } \ (a_{\scriptscriptstyle n_i})$$

$$\text{Pf.} \quad \lim_{n \to \infty} a_n = L \quad \Rightarrow \quad \text{given} \ \ \varepsilon > 0, \quad \ a_n \mathop{\approx}_{\varepsilon} L \quad \text{ for } \ n \gg 1$$

That is, \exists a number N (depending only on ε) such that

$$a_n \underset{\varepsilon}{\approx} L \quad \text{ for } n > N \quad ---(*)$$

Remind the indices $n_1, n_2, \dots, n_i, \dots$ are strictly increasing & nonnegative integers.

$$\begin{array}{cccc} \text{(Thus } n_i \text{ is strictly} \uparrow & \& & \lim_{i \to \infty} n_i = \infty \,) \\ & & \therefore & n_i > N \quad \text{for } i \gg 1 & --- (**) \\ \\ \text{(*)} & \& & (**) & \Rightarrow & a_{n_i} \underset{\varepsilon}{\approx} L \quad \text{for } i \gg 1 & & \therefore & \lim_{i \to \infty} a_{n_i} = L \end{array}$$

Exa A. It is true that
$$\lim_{n \to \infty} a_n^{\ 2} = 0 \quad \Rightarrow \quad \lim_{n \to \infty} a_n = 0$$

What's wrong in the following argument?

Wrong pf: By contraposition, we shall show that $\lim_{n\to\infty} a_n \neq 0 \implies \lim_{n\to\infty} a_n^2 \neq 0$

Suppose therefore that $\lim_{n\to\infty}a_n=L, \text{ where } L\neq 0.$

Then
$$\lim_{n \to \infty} {a_n}^2 = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} a_n = L^2 \neq 0$$

Note:
$$\bigcap^{\text{negation}} \left(\lim_{n\to\infty} a_n = 0\right) \quad \text{is } {\it not} \text{ equivalent to } \lim_{n\to\infty} a_n \neq 0$$

In fact,

$$\sim (\lim_{n\to\infty} a_n = 0) \quad \Leftrightarrow \quad \begin{cases} \text{either } \lim_{n\to\infty} a_n \text{ does not exist, or} \\ \lim_{n\to\infty} a_n \text{ exists } \& \lim_{n\to\infty} a_n \neq 0 \end{cases}$$

Right pf:

$$\begin{split} \lim_{n \to \infty} a_n^{\ 2} &= 0 \quad \Rightarrow \quad \text{given} \ \ \varepsilon > 0, \quad a_n^{\ 2} \underset{\varepsilon^2}{\approx} 0 \quad \text{ for } \ n \gg 1 \\ & \stackrel{\text{clearly}}{\Rightarrow} \quad \text{given} \ \ \varepsilon > 0, \quad a_n \underset{\varepsilon}{\approx} 0 \quad \text{ for } \ n \gg 1 \\ & \quad \therefore \quad \lim_{n \to \infty} a_n = 0 \end{split}$$

Exa B. Prove $\lim_{n\to\infty} \sin\frac{n\pi}{2}$ does not exist.

Pf. Note that

$$\sin \frac{n\pi}{2} = 0 \quad \text{if} \quad \frac{n\pi}{2} = k\pi$$

$$\sin \frac{n\pi}{2} = 1 \quad \text{if} \quad \frac{n\pi}{2} = (2k + \frac{1}{2})\pi$$
(where $k \in \mathbb{N}$)

Thus $(\sin\frac{2k\pi}{2})_{k=1}^{\infty}$ & $(\sin\frac{(4k+1)\pi}{2})_{k=1}^{\infty}$ are two subsequences of $(\sin\frac{n\pi}{2})_{1}^{\infty}$ such that

$$\sin \frac{2k\pi}{2} = 0 \rightarrow 0 \neq 1 \leftarrow 1 = \sin \frac{(4k+1)\pi}{2}$$

Therefore, $\lim_{n \to \infty} \sin \frac{n\pi}{2}$ does not exist, by Subsequence Theorem,

*****Exa C. Prove that $\lim_{n\to\infty} \sin n$ does not exist.

(This is harder than the preceding example, since we don't know the exact values of $\sin n$) Pf.

From the graph, we see that there are infinitely many intervals of length $\frac{\pi}{2}$ on which $\sin x \geq \frac{\sqrt{2}}{2}$.

Since each of these intervals has length > 1, in each of them we can choose an integer; let k_i be the integer chosen from the i-th interval.

This gives a subsequence $(\sin k_i)$ such that

$$\sin k_i \ge \frac{\sqrt{2}}{2} \quad ---(\circledast)$$

Similarly, we can choose an integer m_i from each of the successive intervals of length $\frac{\pi}{2}$

on which $\sin x \leq -\frac{\sqrt{2}}{2}$, giving a subsequence $(\sin m_i)$ such that

$$\sin m_i \le -\frac{\sqrt{2}}{2} \quad ---(\circledast\circledast)$$

Suppose now that $\lim_{n \to \infty} \sin n \stackrel{\text{let}}{=} L$ exists. Then by Subsequence Theorem,

$$\lim_{i \to \infty} \sin k_i = L \quad \& \quad \lim_{i \to \infty} \sin m_i = L$$

But (\circledast) & $(\circledast\circledast)$ & LLT imply that

$$\begin{split} \lim_{i \to \infty} \sin k_i & \geq \frac{\sqrt{2}}{2} & \& \quad \lim_{i \to \infty} \sin m_i \leq -\frac{\sqrt{2}}{2} \\ \text{i.e.,} \quad L & \geq \frac{\sqrt{2}}{2} & \& \quad L \leq -\frac{\sqrt{2}}{2} & : \text{contradiction} \end{split}$$

 $\therefore \lim_{n\to\infty} \sin n \text{ does not exist.}$

5.5 Two common mistakes

Exa A. Prove: $a_n \to 0$ & b_n is bounded $\Rightarrow a_n b_n \to 0$

What's wrong in the following argument?

Wrong pf. Since (b_n) is bounded, \exists two real numbers L & M such that

$$L \leq b_n \leq M$$

$$\downarrow \qquad \qquad \downarrow$$

$$a_n L \leq a_n b_n \leq a_n M$$

$$\downarrow \qquad \qquad \downarrow \quad \text{as } n \to \infty$$

$$0 \qquad \qquad 0$$

$$\therefore \quad a_n b_n \to 0$$

Note: In the above, $\ \downarrow \$ is not true $\$ (; $\ \downarrow \$ is true only if $\ a_n \geq 0$)

 \odot A modification of the above argument: Start with " $L \leq b_n \leq M$ " (\Leftarrow (b_n) is bounded) Casel $a_n \geq 0$ \Rightarrow

$$a_n L \le a_n b_n \le a_n M$$

$$\downarrow \qquad \qquad \downarrow \quad \text{as } n \to \infty$$

$$0 \qquad \qquad 0$$

$$\therefore \quad a_n b_n \to 0$$

Case $a_n \leq 0 \implies$

$$a_n L \ge a_n b_n \ge a_n M$$

$$\downarrow \qquad \qquad \downarrow \quad \text{as } n \to \infty$$

$$0 \qquad \qquad 0$$

$$\therefore \quad a_n b_n \to 0$$

This is also wrong, since a_n might alternate between positive & negative.

Right argument (use absolute values)

Since (b_n) is bounded, \exists a number K > 0 such that

$$|b_n| \le K$$
 for all n

Then
$$0 \le |a_n b_n| = |a_n| |b_n| \le |a_n| \cdot K \to 0 \cdot K = 0$$
 as $n \to \infty$

By Squeeze Theorem, $\lim_{n\to\infty} |a_n b_n| = 0$. This clearly implies $\lim_{n\to\infty} a_n b_n = 0$.

Exa B. Prove:
$$a_n \rightarrow L, L \neq 0 \Rightarrow \frac{1}{a_n} \rightarrow \frac{1}{L}$$

Sol. (a reproof of the result) Hypo says: given $\varepsilon > 0, \quad |a_n - L| < \varepsilon$ for $n \gg 1$

Assume first that L>0. Then $\lim_{n\to\infty}a_n>\frac{L}{2}(>0)$.

Then
$$\left| \frac{1}{a_n} - \frac{1}{L} \right| = \frac{\mid a_n - L \mid}{a_n \cdot L} < \frac{\varepsilon}{\frac{L}{2} \cdot L} = \frac{2\varepsilon}{L^2}$$
 for $n \gg 1$

$$\therefore \lim_{n\to\infty}\frac{1}{a}=\frac{1}{L} \quad \text{by } K-\varepsilon \text{ Principle.}$$

If L < 0, then

$$a_n \to L \ \underset{\rm know}{\Rightarrow} \ -a_n \to -L \ \ \underset{\rm prev \; case}{\Rightarrow} \ \ \frac{1}{-a_n} \to -\frac{1}{L} \ \ \underset{\rm know}{\Rightarrow} \ \ \frac{1}{a_n} \to \frac{1}{L}$$