

Surface Simplification

Michael Thomas Institut für Informatik Freie Universität Berlin

Proseminar Computational Geometry 2010

ı

Ziel

Beispiel

Motivation

Forderungen

Methoden

Edge Contraction

Formal

Multiresolutional Modelling

Fehlerkontrolle

Topologieerhaltung

Literatur

Was wollen wir erreichen?

ganz einfach: Oberflächen vereinfachen!

Was wollen wir erreichen?

- ganz einfach: Oberflächen vereinfachen!
- wir haben sehr komplexe Polygonnetze

- ganz einfach: Oberflächen vereinfachen!
- wir haben sehr komplexe Polygonnetze
- ...und wollen daraus einfachere Polygonnetze erzeugen

Etwas genauer

Oberflächen werden durch triangulierte Polygonnetze dargestellt

- ► Oberflächen werden durch triangulierte Polygonnetze dargestellt
- Sie bestehen aus vielen Vertices, Kanten und Dreiecken, sogenannten Facetten

- ► Oberflächen werden durch triangulierte Polygonnetze dargestellt
- Sie bestehen aus vielen Vertices, Kanten und Dreiecken, sogenannten Facetten
- ► Eine Surface Simplification reduziert die Anzahl dieser Facetten

Ein Beispiel

Original

Ein Beispiel

▶ 2500 Facetten

Ein Beispiel

▶ 2500 Facetten

▶ 1000 Facetten

Original

▶ 2500 Facetten

▶ 1000 Facetten

Quelle:

http://www.gustavgahm.com/wp-content/upload/moa/Gustav_ Gahm_Mesh_Decimation.pdf

► Erzeugung von Polygonnetzen oft nur in hohen Auflösungen möglich

- ► Erzeugung von Polygonnetzen oft nur in hohen Auflösungen möglich
- hohe Auflösung sieht auch besser aus!

- ► Erzeugung von Polygonnetzen oft nur in hohen Auflösungen möglich
- hohe Auflösung sieht auch besser aus!
- aber: Laufzeit der Algorithmen auf Polygonnetzen ist abhängig von deren Komplexität

- Erzeugung von Polygonnetzen oft nur in hohen Auflösungen möglich
- hohe Auflösung sieht auch besser aus!
- aber: Laufzeit der Algorithmen auf Polygonnetzen ist abhängig von deren Komplexität
- d.h. je kleiner die Netze, desto schneller die Verarbeitung

- Erzeugung von Polygonnetzen oft nur in hohen Auflösungen möglich
- hohe Auflösung sieht auch besser aus!
- aber: Laufzeit der Algorithmen auf Polygonnetzen ist abhängig von deren Komplexität
- d.h. je kleiner die Netze, desto schneller die Verarbeitung
- ...und benötigen weniger Speicherplatz!

- Erzeugung von Polygonnetzen oft nur in hohen Auflösungen möglich
- hohe Auflösung sieht auch besser aus!
- aber: Laufzeit der Algorithmen auf Polygonnetzen ist abhängig von deren Komplexität
- d.h. je kleiner die Netze, desto schneller die Verarbeitung
- ...und benötigen weniger Speicherplatz!

Also:

Wir brauchen ein Kompromiss zwischen Auflösung der Oberflächen und Geschwindigkeit in der Berechnung

► Rendern von Objekten aus Millionen von Dreiecken ist nicht möglich in Echtzeit

- ▶ Rendern von Objekten aus Millionen von Dreiecken ist nicht möglich in Echtzeit
- Man will aber trotzdem eine möglichst detaillierte Szene

- ▶ Rendern von Objekten aus Millionen von Dreiecken ist nicht möglich in Echtzeit
- ► Man will aber trotzdem eine möglichst detaillierte Szene
- Beobachtung: Detailgrad der Objekte ist auch Abhängig von der Größe ihrer Darstellung!

- ▶ Rendern von Objekten aus Millionen von Dreiecken ist nicht möglich in Echtzeit
- ► Man will aber trotzdem eine möglichst detaillierte Szene
- Beobachtung: Detailgrad der Objekte ist auch Abhängig von der Größe ihrer Darstellung!
- Lösung:

- ► Rendern von Objekten aus Millionen von Dreiecken ist nicht möglich in Echtzeit
- ► Man will aber trotzdem eine möglichst detaillierte Szene
- ▶ **Beobachtung:** Detailgrad der Objekte ist auch Abhängig von der Größe ihrer Darstellung!
- ► Lösung:
 - Für Objekte die n\u00e4her an der Kamara sind werden Modelle mit h\u00f6heren Aufl\u00f6sungen benutzt

- ▶ Rendern von Objekten aus Millionen von Dreiecken ist nicht möglich in Echtzeit
- Man will aber trotzdem eine möglichst detaillierte Szene
- Beobachtung: Detailgrad der Objekte ist auch Abhängig von der Größe ihrer Darstellung!
- ► Lösung:
 - Für Objekte die n\u00e4her an der Kamara sind werden Modelle mit h\u00f6heren Aufl\u00f6sungen benutzt
 - ► für entfernte Objekte entsprechend Modelle mit kleinerer Auflösung

- ▶ Rendern von Objekten aus Millionen von Dreiecken ist nicht möglich in Echtzeit
- Man will aber trotzdem eine möglichst detaillierte Szene
- Beobachtung: Detailgrad der Objekte ist auch Abhängig von der Größe ihrer Darstellung!
- ► Lösung:
 - Für Objekte die n\u00e4her an der Kamara sind werden Modelle mit h\u00f6heren Aufl\u00f6sungen benutzt
 - ► für entfernte Objekte entsprechend Modelle mit kleinerer Auflösung

Fazit:

- ▶ Rendern von Objekten aus Millionen von Dreiecken ist nicht möglich in Echtzeit
- Man will aber trotzdem eine möglichst detaillierte Szene
- Beobachtung: Detailgrad der Objekte ist auch Abhängig von der Größe ihrer Darstellung!
- ► Lösung:
 - Für Objekte die n\u00e4her an der Kamara sind werden Modelle mit h\u00f6heren Aufl\u00f6sungen benutzt
 - ► für entfernte Objekte entsprechend Modelle mit kleinerer Auflösung

Fazit:

Surface Simplification macht Anwendung in Echtzeit oft erst möglich!

- ▶ Rendern von Objekten aus Millionen von Dreiecken ist nicht möglich in Echtzeit
- Man will aber trotzdem eine möglichst detaillierte Szene
- Beobachtung: Detailgrad der Objekte ist auch Abhängig von der Größe ihrer Darstellung!
- ► Lösung:
 - Für Objekte die n\u00e4her an der Kamara sind werden Modelle mit h\u00f6heren Aufl\u00f6sungen benutzt
 - ► für entfernte Objekte entsprechend Modelle mit kleinerer Auflösung

Fazit:

- Surface Simplification macht Anwendung in Echtzeit oft erst möglich!
- ▶ Die Veränderung der Auflösung soll möglichst kontinuierlich erfolgen

- ► Detailgrad von Oberflächen reduzieren um Anwendungen zu beschleunigen
- dabei soll die geometrische Struktur der Modelle so gut wie möglich erhalten bleiben
- Kontrolle über den Grad der Vereinfachung
- kontinuierliche Veränderung der Auflösung (multiresolutional modelling)
- Effizienz

Vertex Decimation

Vertex Decimation

 Entfernung von einzelnen Vertices, und die mit ihm verbundenen Kanten und Dreiecke

Vertex Decimation

- Entfernung von einzelnen Vertices, und die mit ihm verbundenen Kanten und Dreiecke
- Triangulierung des enstandenen Lochs

- Entfernung von einzelnen Vertices, und die mit ihm verbundenen Kanten und Dreiecke
- Triangulierung des enstandenen Lochs

- Entfernung von einzelnen Vertices, und die mit ihm verbundenen Kanten und Dreiecke
- Triangulierung des enstandenen Lochs

- Entfernung von einzelnen Vertices, und die mit ihm verbundenen Kanten und Dreiecke
- Triangulierung des enstandenen Lochs

- Entfernung von einzelnen Vertices, und die mit ihm verbundenen Kanten und Dreiecke
- Triangulierung des enstandenen Lochs

- Entfernung von einzelnen Vertices, und die mit ihm verbundenen Kanten und Dreiecke
- Triangulierung des enstandenen Lochs

Edge Contraction

 Zusammenziehen einer Kante zu einem Vertex

- Entfernung von einzelnen Vertices, und die mit ihm verbundenen Kanten und Dreiecke
- Triangulierung des enstandenen Lochs

- Zusammenziehen einer Kante zu einem Vertex
- dabei verschwinden zwei Dreiecke

- Entfernung von einzelnen Vertices, und die mit ihm verbundenen Kanten und Dreiecke
- Triangulierung des enstandenen Lochs

- Zusammenziehen einer Kante zu einem Vertex
- dabei verschwinden zwei Dreiecke

- Entfernung von einzelnen Vertices, und die mit ihm verbundenen Kanten und Dreiecke
- Triangulierung des enstandenen Lochs

- Zusammenziehen einer Kante zu einem Vertex
- dabei verschwinden zwei Dreiecke

- Entfernung von einzelnen Vertices, und die mit ihm verbundenen Kanten und Dreiecke
- Triangulierung des enstandenen Lochs

Edge Contraction

- Zusammenziehen einer Kante zu einem Vertex
- dabei verschwinden zwei Dreiecke

Beobachtung

- beide Algorithmen arbeiten iterativ
- d.h. in jedem Schritt wird eine Dezimierungsoperation ausgeführt

- Entfernung von einzelnen Vertices, und die mit ihm verbundenen Kanten und Dreiecke
- Triangulierung des enstandenen Lochs

Edge Contraction

- Zusammenziehen einer Kante zu einem Vertex
- dabei verschwinden zwei Dreiecke

Beobachtung

- beide Algorithmen arbeiten iterativ
- d.h. in jedem Schritt wird eine Dezimierungsoperation ausgeführt

► Die Kante ab und alle angrenzenden Kanten und Dreiecke werden entfernt

- Die Kante ab und alle angrenzenden Kanten und Dreiecke werden entfernt
- ► Es wird ein neuer Vertex c eingefügt

- Die Kante ab und alle angrenzenden Kanten und Dreiecke werden entfernt
- ► Es wird ein neuer Vertex c eingefügt
- Alle Vertices im Link von ab werden mit c verbunden

- Die Kante ab und alle angrenzenden Kanten und Dreiecke werden entfernt
- ► Es wird ein neuer Vertex c eingefügt
- Alle Vertices im Link von ab werden mit c verbunden

Lemma

Formale Definition: $L = K - St \overline{ab} \cup c \cdot Lk \overline{ab}$

- Die Kante ab und alle angrenzenden Kanten und Dreiecke werden entfernt
- ► Es wird ein neuer Vertex c eingefügt
- Alle Vertices im Link von ab werden mit c verbunden

Lemma

Formale Definition: $L = K - St \overline{ab} \cup c \cdot Lk \overline{ab}$

- Die Kante ab und alle angrenzenden Kanten und Dreiecke werden entfernt
- ► Es wird ein neuer Vertex c eingefügt
- Alle Vertices im Link von ab werden mit c verbunden

Lemma

Formale Definition: $L = K - St \overline{ab} \cup c \cdot Lk \overline{ab}$

- Die Kante ab und alle angrenzenden Kanten und Dreiecke werden entfernt
- ► Es wird ein neuer Vertex c eingefügt
- Alle Vertices im Link von ab werden mit c verbunden

Lemma

Formale Definition: $L = K - St \overline{ab} \cup c \cdot Lk \overline{ab}$

- Die Kante ab und alle angrenzenden Kanten und Dreiecke werden entfernt
- ► Es wird ein neuer Vertex c eingefügt
- Alle Vertices im Link von ab werden mit c verbunden

Lemma

Formale Definition: $L = K - St \overline{ab} \cup c \cdot Lk \overline{ab}$

- der Algorithmus erzeugt eine Folge von Kontraktionsoperationen
- eine einzelne Kontraktion ist wohldefiniert durch eine Abbildung der Vertices ab auf den neuen Vertex c

- der Algorithmus erzeugt eine Folge von Kontraktionsoperationen
- eine einzelne Kontraktion ist wohldefiniert durch eine Abbildung der Vertices ab auf den neuen Vertex c

- man speichert die Folge aller Operationen
- ...und können damit das modell in jeder beliebiger Auflösung rekunstruieren
- und das in linearer Zeit!

- der Algorithmus erzeugt eine Folge von Kontraktionsoperationen
- eine einzelne Kontraktion ist wohldefiniert durch eine Abbildung der Vertices ab auf den neuen Vertex c

- man speichert die Folge aller Operationen
- ...und können damit das modell in jeder beliebiger Auflösung rekunstruieren
- und das in linearer Zeit!

- der Algorithmus erzeugt eine Folge von Kontraktionsoperationen
- eine einzelne Kontraktion ist wohldefiniert durch eine Abbildung der Vertices ab auf den neuen Vertex c

- man speichert die Folge aller Operationen
- ...und können damit das modell in jeder beliebiger Auflösung rekunstruieren
- und das in linearer Zeit!

- der Algorithmus erzeugt eine Folge von Kontraktionsoperationen
- eine einzelne Kontraktion ist wohldefiniert durch eine Abbildung der Vertices ab auf den neuen Vertex c

- man speichert die Folge aller Operationen
- ...und können damit das modell in jeder beliebiger Auflösung rekunstruieren
- und das in linearer Zeit!

- der Algorithmus erzeugt eine Folge von Kontraktionsoperationen
- eine einzelne Kontraktion ist wohldefiniert durch eine Abbildung der Vertices ab auf den neuen Vertex c

- man speichert die Folge aller Operationen
- ...und können damit das modell in jeder beliebiger Auflösung rekunstruieren
- und das in linearer Zeit!

- der Algorithmus erzeugt eine Folge von Kontraktionsoperationen
- eine einzelne Kontraktion ist wohldefiniert durch eine Abbildung der Vertices ab auf den neuen Vertex c

- man speichert die Folge aller Operationen
- ...und können damit das modell in jeder beliebiger Auflösung rekunstruieren
- und das in linearer Zeit!

- der Algorithmus erzeugt eine Folge von Kontraktionsoperationen
- eine einzelne Kontraktion ist wohldefiniert durch eine Abbildung der Vertices ab auf den neuen Vertex c

- man speichert die Folge aller Operationen
- ...und können damit das modell in jeder beliebiger Auflösung rekunstruieren
- und das in linearer Zeit!

- der Algorithmus erzeugt eine Folge von Kontraktionsoperationen
- eine einzelne Kontraktion ist wohldefiniert durch eine Abbildung der Vertices ab auf den neuen Vertex c

- man speichert die Folge aller Operationen
- ...und können damit das modell in jeder beliebiger Auflösung rekunstruieren
- und das in linearer Zeit!

- der Algorithmus erzeugt eine Folge von Kontraktionsoperationen
- eine einzelne Kontraktion ist wohldefiniert durch eine Abbildung der Vertices ab auf den neuen Vertex c

- man speichert die Folge aller Operationen
- ...und können damit das modell in jeder beliebiger Auflösung rekunstruieren
- und das in linearer Zeit!

- der Algorithmus erzeugt eine Folge von Kontraktionsoperationen
- eine einzelne Kontraktion ist wohldefiniert durch eine Abbildung der Vertices ab auf den neuen Vertex c

- man speichert die Folge aller Operationen
- ...und können damit das modell in jeder beliebiger Auflösung rekunstruieren
- und das in linearer Zeit!

- der Algorithmus erzeugt eine Folge von Kontraktionsoperationen
- eine einzelne Kontraktion ist wohldefiniert durch eine Abbildung der Vertices ab auf den neuen Vertex c

- man speichert die Folge aller Operationen
- ...und können damit das modell in jeder beliebiger Auflösung rekunstruieren
- und das in linearer Zeit!

- der Algorithmus erzeugt eine Folge von Kontraktionsoperationen
- eine einzelne Kontraktion ist wohldefiniert durch eine Abbildung der Vertices ab auf den neuen Vertex c

- man speichert die Folge aller Operationen
- ...und können damit das modell in jeder beliebiger Auflösung rekunstruieren
- und das in linearer Zeit!

- der Algorithmus erzeugt eine Folge von Kontraktionsoperationen
- eine einzelne Kontraktion ist wohldefiniert durch eine Abbildung der Vertices ab auf den neuen Vertex c

- man speichert die Folge aller Operationen
- ...und können damit das modell in jeder beliebiger Auflösung rekunstruieren
- und das in linearer Zeit!

Problem

Problem

 nicht jeder Kontraktion erhält die Form gleichermaßen

- nicht jeder Kontraktion erhält die Form gleichermaßen
- wo soll der neuer Vertex eingefügt werden?

Fehlerkontrolle

Problem

- nicht jeder Kontraktion erhält die Form gleichermaßen
- wo soll der neuer Vertex eingefügt werden?

- nicht jeder Kontraktion erhält die Form gleichermaßen
- wo soll der neuer Vertex eingefügt werden?

- ▶ nicht jeder Kontraktion erhält die Form gleichermaßen
- wo soll der neuer Vertex eingefügt werden?

Fazit

wir brauchen eine Fehlerkontrolle

- nicht jeder Kontraktion erhält die Form gleichermaßen
- wo soll der neuer Vertex eingefügt werden?

Fazit

- wir brauchen eine Fehlerkontrolle
- die uns die Abweichung zum Original angibt

- nicht jeder Kontraktion erhält die Form gleichermaßen
- wo soll der neuer Vertex eingefügt werden?

Fazit

- wir brauchen eine Fehlerkontrolle
- die uns die Abweichung zum Original angibt
- der Fehler soll dabei möglichst klein sein

▶ die Differenz zum Originalmodell auszurechnen ist sehr teuer

Fehlerkontrolle

- ▶ die Differenz zum Originalmodell auszurechnen ist sehr teuer
- deshalb: berechne Differenz zur letzten Iteration

Fehlerkontrolle

- die Differenz zum Originalmodell auszurechnen ist sehr teuer
- deshalb: berechne Differenz zur letzten Iteration
- es reicht sich dabei die lokale Umgebung anzusehen

- ▶ die Differenz zum Originalmodell auszurechnen ist sehr teuer
- deshalb: berechne Differenz zur letzten Iteration
- es reicht sich dabei die lokale Umgebung anzusehen

Zusammenfassung

Wir brauchen...

- ▶ die Differenz zum Originalmodell auszurechnen ist sehr teuer
- deshalb: berechne Differenz zur letzten Iteration
- es reicht sich dabei die lokale Umgebung anzusehen

Zusammenfassung

Wir brauchen...

eine Kostenfunktion, welche den Fehler für eine Kontraktion berechnet

- ▶ die Differenz zum Originalmodell auszurechnen ist sehr teuer
- deshalb: berechne Differenz zur letzten Iteration
- es reicht sich dabei die lokale Umgebung anzusehen

Zusammenfassung

Wir brauchen...

- eine Kostenfunktion, welche den Fehler für eine Kontraktion berechnet
- der neue Vertex wird wird so gewählt, dass die Kosten minimal sind

 für jeden Vertex definieren wir eine Abstandsfunktion zu seinen Dreiecksebenen

Wozu das Ganze?

- für jeden Vertex definieren wir eine Abstandsfunktion zu seinen Dreiecksebenen
- ▶ genauer: die Summe der quadratischen Distanzen

$$E(x) = \sum_{H \in planes(v)} d(x, H)^2$$

Wozu das Ganze?

- für jeden Vertex definieren wir eine Abstandsfunktion zu seinen Dreiecksebenen
- genauer: die Summe der quadratischen Distanzen

$$E(x) = \sum_{H \in planes(v)} d(x, H)^2$$

Wozu das Ganze?

► Diese Abstandsfunktionen lassen sich durch eine 4x4 Matrix beschreiben

- für jeden Vertex definieren wir eine Abstandsfunktion zu seinen Dreiecksebenen
- genauer: die Summe der quadratischen Distanzen

$$E(x) = \sum_{H \in planes(v)} d(x, H)^2$$

Wozu das Ganze?

- Diese Abstandsfunktionen lassen sich durch eine 4x4 Matrix beschreiben
- Die Kostenfunktion für eine Kontraktion entsteht durch Addition der Matrizen für beide Vertices

- für jeden Vertex definieren wir eine Abstandsfunktion zu seinen Dreiecksebenen
- ▶ genauer: die Summe der quadratischen Distanzen

$$E(x) = \sum_{H \in planes(v)} d(x, H)^2$$

Wozu das Ganze?

- ► Diese Abstandsfunktionen lassen sich durch eine 4x4 Matrix beschreiben
- Die Kostenfunktion für eine Kontraktion entsteht durch Addition der Matrizen für beide Vertices

- für jeden Vertex definieren wir eine Abstandsfunktion zu seinen Dreiecksebenen
- ▶ genauer: die Summe der quadratischen Distanzen

$$E(x) = \sum_{H \in planes(v)} d(x, H)^2$$

Wozu das Ganze?

- Diese Abstandsfunktionen lassen sich durch eine 4x4 Matrix beschreiben
- Die Kostenfunktion für eine Kontraktion entsteht durch Addition der Matrizen für beide Vertices

Zusammenfassung

 Wir erhalten eine Funktion, welche die Summe der Distanzen von einem Vertex zu einer Menge von Ebenen berechnet

- für jeden Vertex definieren wir eine Abstandsfunktion zu seinen Dreiecksebenen
- genauer: die Summe der quadratischen Distanzen

$$E(x) = \sum_{H \in planes(v)} d(x, H)^2$$

Wozu das Ganze?

- Diese Abstandsfunktionen lassen sich durch eine 4x4 Matrix beschreiben
- Die Kostenfunktion für eine Kontraktion entsteht durch Addition der Matrizen für beide Vertices

- Wir erhalten eine Funktion, welche die Summe der Distanzen von einem Vertex zu einer Menge von Ebenen berechnet
- die Kosten f
 ür eine Kontraktion ab ist die Summe der Distanzen zu den Ebenen von a und b

- für jeden Vertex definieren wir eine Abstandsfunktion zu seinen Dreiecksebenen
- genauer: die Summe der quadratischen Distanzen

$$E(x) = \sum_{H \in planes(v)} d(x, H)^2$$

Wozu das Ganze?

- Diese Abstandsfunktionen lassen sich durch eine 4x4 Matrix beschreiben
- Die Kostenfunktion für eine Kontraktion entsteht durch Addition der Matrizen für beide Vertices

- Wir erhalten eine Funktion, welche die Summe der Distanzen von einem Vertex zu einer Menge von Ebenen berechnet
- die Kosten f
 ür eine Kontraktion ab ist die Summe der Distanzen zu den Ebenen von a und b
- dies ergibt eine (quadratische) Funktion!

- für jeden Vertex definieren wir eine Abstandsfunktion zu seinen Dreiecksebenen
- ▶ genauer: die Summe der quadratischen Distanzen

$$E(x) = \sum_{H \in planes(v)} d(x, H)^2$$

Wozu das Ganze?

- Diese Abstandsfunktionen lassen sich durch eine 4x4 Matrix beschreiben
- Die Kostenfunktion für eine Kontraktion entsteht durch Addition der Matrizen für beide Vertices

- Wir erhalten eine Funktion, welche die Summe der Distanzen von einem Vertex zu einer Menge von Ebenen berechnet
- die Kosten f
 ür eine Kontraktion ab ist die Summe der Distanzen zu den Ebenen von a und b
- dies ergibt eine (quadratische) Funktion!
- ▶ wir können diese minimieren und erhalten den optimalen Punkt c

Ein kleines Beispiel

Ein kleines Beispiel

Ein kleines Beispiel

1. Berechne Abstandsfunktion für alle Vertices

- 1. Berechne Abstandsfunktion für alle Vertices
- 2. Bestimme die Kostenfunktion für alle Kanten ab

- 1. Berechne Abstandsfunktion für alle Vertices
- 2. Bestimme die Kostenfunktion für alle Kanten ab
- Finde für jede Kante einen optimalen neuen Punkt c durch Minimierung der Kostenfunktion

- 1. Berechne Abstandsfunktion für alle Vertices
- 2. Bestimme die Kostenfunktion für alle Kanten ab
- Finde für jede Kante einen optimalen neuen Punkt c durch Minimierung der Kostenfunktion
- 4. Füge alle Kanten in einen Heap ein, geordnet nach den Kosten

- 1. Berechne Abstandsfunktion für alle Vertices
- 2. Bestimme die Kostenfunktion für alle Kanten ab
- Finde für jede Kante einen optimalen neuen Punkt c durch Minimierung der Kostenfunktion
- 4. Füge alle Kanten in einen Heap ein, geordnet nach den Kosten
- 5. Entnehme iterativ eine Kante aus dem Heap, und führe eine Kontraktion aus

- Berechne Abstandsfunktion f
 ür alle Vertices
- 2. Bestimme die Kostenfunktion für alle Kanten ab
- Finde für jede Kante einen optimalen neuen Punkt c durch Minimierung der Kostenfunktion
- 4. Füge alle Kanten in einen Heap ein, geordnet nach den Kosten
- 5. Entnehme iterativ eine Kante aus dem Heap, und führe eine Kontraktion aus
- 6. Aktualisiere die Abstandsfunktionen für alle gänderten Vertices

- Berechne Abstandsfunktion f
 ür alle Vertices
- Bestimme die Kostenfunktion f
 ür alle Kanten ab
- Finde für jede Kante einen optimalen neuen Punkt c durch Minimierung der Kostenfunktion
- 4. Füge alle Kanten in einen Heap ein, geordnet nach den Kosten
- 5. Entnehme iterativ eine Kante aus dem Heap, und führe eine Kontraktion aus
- 6. Aktualisiere die Abstandsfunktionen für alle gänderten Vertices
- Schritt 5. und 6. werden so lange wiederholt, bis die gewünschte Qualität erreicht wurde

- Die Topologie k\u00f6nnte ver\u00e4ndert werden
- ► Beispiel: Oberflächen mit Löchern
- das Loch könnte geschlossen werden!
- das gleiche gilt für einen Torus...

- ► Die Topologie könnte verändert werden
- ► Beispiel: Oberflächen mit Löchern
- das Loch könnte geschlossen werden!
- ▶ das gleiche gilt für einen Torus...

- ► Die Topologie könnte verändert werden
- ► Beispiel: Oberflächen mit Löchern
- das Loch könnte geschlossen werden!
- ▶ das gleiche gilt für einen Torus...

- ► Die Topologie könnte verändert werden
- ► Beispiel: Oberflächen mit Löchern
- das Loch könnte geschlossen werden!
- ▶ das gleiche gilt für einen Torus...

- Die Topologie könnte verändert werden
- ► Beispiel: Oberflächen mit Löchern
- das Loch könnte geschlossen werden!
- ▶ das gleiche gilt für einen Torus...

- Die Topologie könnte verändert werden
- Beispiel: Oberflächen mit Löchern
- das Loch könnte geschlossen werden!
- das gleiche gilt für einen Torus...

Fazit:

- ► Man muss vorher überprüfen ob eine Kontraktion die Topologie verändert!
- wie das geht, steht in meiner Ausarbeitung...

M. Garland and P. Heckbert

Surface Simplification Using Quadric Error Metrics

SIGGRAPH 1997, 209–216

http://www.cs.cmu.edu/~garland/quadrics/

M. Garland

Multiresolution Modeling: Survey & Future Opportunities EUROGRAPHICS 1999 http://mgarland.org/files/papers/STAR99.pdf

T.K. Dey et al.

Topology Preserving Edge Contraction

Publ. Inst. Math. (Beograd), 1998