

1과목

전자계산기 일반

001

제어장치의 구성 요소

- 프로그램 카운터(PC)
- 명령어 레지스터(IR)
- 부호기(Encoder)
- 명령어 해독기(Decoder)
- 번지 해독기

002 👶

연산장치의 구성 요소

- 가산기(Adder)
- 누산기(AC; Accumulator)
- 보수기(Complementor)
- 데이터 레지스터
- 상태 레지스터
- 오버플로 검출기
- 시프트 레지스터 등

003

레지스터(Register)

- CPU 내부에서 처리할 명령어나 연산의 중간 결과값 등을 일시적으로 기억하는 임시 기억장소이다.
- 메모리 중에서 속도가 가장 빠르다.
- 레지스터에 새로운 데이터가 전송되면 기존에 있던 내용은 지워지고 새로운 내용만 기억된다.

004 🖨

프로그램 카운터 (PC; Program Counter)

다음 번에 실행할 명령어의 번지를 기억하는 레지스터 이다.

005

명령 레지스터 (IR; Instruction Register)

실행중인 명령의 내용을 기억하는 레지스터이다.

006

누산기(AC; Accumulator)

연산된 결과를 일시적으로 저장하는 레지스터이다.

007

마이크로프로세서 (Microprocessor)

- 제어장치, 연산장치, 레지스터가 하나의 대규모 집적회로 칩(IC)에 내장된 것이다.
- 개인용 컴퓨터(PC)에서 중앙처리장치로 사용되고 있다.
- 주요 기능 : 제어 기능, 기억 기능, 산술 및 논리 연산 등

008

RISC와 CISC의 비교

구분	RISC	CISC
명령어	적음	마으
명령어 길이	고정	가변
실행 사이클	단일	다중
주소 지정	간단	복잡
레지스터	많음	적음
전력 소모	적음	많은
처리 속도	빠름	느림

009 🖨

불 대수의 기본 공식

- 멱등법칙 : A + A = A, A · A = A
- 보수법칙 : $A + \overline{A} = 1$, $A \cdot \overline{A} = 0$
- 항등법칙 : A + 0 = A, A + 1 = 1, A · 0 = 0, A · 1 = A
- 드모르강 법칙 : $\overline{A} + \overline{B} = \overline{A} \cdot \overline{B}$, $\overline{A} \cdot \overline{B} = \overline{A} + \overline{B}$
- 교환법칙 : A + B = B + A, A · B = B · A
- 결합법칙 : A + (B + C) = (A + B) + C,
 - $A \cdot (B \cdot C) = (A \cdot B) \cdot C$
- 분배법칙 : $A \cdot (B + C) = A \cdot B + A \cdot C$, $A + B \cdot C = (A + B) \cdot (A + C)$

010 🖨

논리식의 간소화

- 불 대수의 기본 공식을 이용해 간소화한다.
- ① 합의 곱 표현을 곱의 합 표현으로 변환한다.
- ② 공통 인수를 뽑아 묶는다.
- ③ 멱등법칙, 보수법칙, 항등법칙 등의 기본 공식 형태로 유도하여 줄여 나간다.
- **데** 다음 불 함수를 간략화하시오.
- $A + A \cdot B = A \cdot (1 + B) = A \cdot 1 = A$
- $A(A+B) = A \cdot A + A \cdot B = A + A \cdot B = A \cdot (1 + B) = A \cdot 1$
- $\bullet A + \overline{A} \cdot B = (A + \overline{A})(A + B) = 1 \cdot (A + B) = A + B$
- $A (\overline{A} + B) = A \cdot \overline{A} + A \cdot B = 0 + A \cdot B = A \cdot B$

011 🖨

주요 논리 게이트

게이트	기호	의미	논리식
AND	A	입력 신호가 모두 1 일 때 1 출력	$Y = A \cdot B$ Y = AB
OR	A	입력 신호 중 1개만 1이어도 1 출력	Y = A + B
NOT, 인버터	A — Y	입력된 정보를 반대 로 변환하여 출력	$Y = \underline{A}'$ $Y = \overline{A}$

NAND	A	NOT+AND, 즉 AND의 부정	$ Y = \overline{A \cdot B} Y = \overline{AB} $
XOR	A B	입력되는 값이 모두 같으면 0, 1개라도 다르면 1 출력	$Y = A \oplus B$ $Y = \overline{A}B + A\overline{B}$

012

논리회로의 이해

에 다음 논리회로를 논리식으로 표현하시오.

- $\bullet \bullet \bullet = A \cdot \overline{B}$
- **2** = $\overline{A} \cdot B$
- $\mathbf{3} = \mathbf{1} + \mathbf{2} = A \cdot \overline{B} + \overline{A} \cdot B = A \oplus B$

013

반가산기(HA; Half Adder)

- 반가산기는 1Bit짜리 2진수 2개를 덧셈한 합(S)과 자리 올림수(C)를 구하는 회로이다.
- 논리식 : $C = A \cdot B$, $S = \overline{A} \cdot B + A \cdot \overline{B} = A \oplus B$

논리회로

014

전가산기(FA; Full Adder)

2개의 반가산기(HA)와 1개의 OR 게이트로 구성된다.

015

플립플롭(FF; Flip-Flop)

- 전원이 공급되고 있는 한, 상태의 변화를 위한 신호가 발생할 때까지 현재의 상태를 그대로 유지하는 논리회로이다.
- 플립플롭 1개가 1Bit를 저장할 수 있다.

016

T플립플롭

- T=0인 경우는 변화가 없고, T=1인 경우에 현재의 상태를 토글(Toggle)시킨다.
- 누를 때마다 ON, OFF가 교차되는 스위치를 만들고자 할 때 사용되다.

017

10진수를 2진수, 8진수, 16진수로 변환하기

- 정수 부분 : 10진수의 값을 변환할 진수로 나누어 더 이 상 나눠지지 않을 때까지 나누고, 몫을 제외한 나머지 를 역순으로 표시함
- 소수 부분: 10진수의 값에 변환할 진수를 곱한 후 결과 의 정수 부분만을 차례대로 표기하되, 소수 부분이 0 또 는 반복되는 수가 나올 때까지 곱하기를 반복함
- 예 (47.625)10를 2진수, 8진수, 16진수로 변환하기
- 정수 부분

2진수	8진수	16진수
2 47 2 23 ··· 1 2 11 ··· 1 2 5 ··· 1 2 2 ··· 1 1 ··· 0	8 47 5 ··· 7	16 47 2 ··· 15(F)
$(47)_{10} = (101111)_2$	$(47)_{10} = (57)_8$	$(47)_{10} = (2F)_{16}$

• 소수 부분

2진수	8진수	16진수
$\begin{array}{c cccc} 0.625 & & & & & & & & & & & & & $	0,625 × 8 <u>5</u> ,000	0.625 × 16 10(<u>A</u>).000
$(0.625)_{10} = (0.101)_2$	$(47.625)_{10} = (57.5)_{8}$	$(0.625)_{10} = (0.A)_{16}$
$(47.625)_{10} \rightarrow (101111.101)_{2}$	(47.625) ₁₀ → (57.5) ₈	(47,625) ₁₀ → (2F,A) ₁₆

018

2진수, 8진수, 16진수를 10진수로 변환하기

정수 부분과 소수 부분을 나누어서 변환하려는 각 진수의 자릿값과 자리의 지수승을 곱한 결과값을 모두 더하여 계 산한다.

예1 (101111,101)₂을 10진수로 변환하기

예2 (57.5)₈을 10진수로 변환하기

 $(5 7.5)_8$ $\times \times \times$ $8^1 8^0.8^{-1}$

 $= 40 + 7 \cdot 0.625 = 47.625$

예3 (2F.A)₁₆을 10진수로 변환하기

 $(2 F . A)_{16}$ $\times \times \times$ $16^{1} 16^{0} . 16^{-1}$

 $= 32 + 15 \cdot 0.625 = 47.625$

019

EBCDIC (확장 2진화 10진 코드)

- 8Bit 코드로 1개의 문자를 4개의 Zone 비트와 4개의 Digit 비트로 표현한다.
- 2⁸ = 256가지의 문자를 표현할 수 있다.

020 🖨

2진수를 그레이 코드로 변환하는 방법

- ① 첫 번째 그레이 비트(Gray Bit)는 2진수 비트를 그대로 내려쓴다.
- ② 두 번째 그레이 비트부터는 변경할 2진수의 해당 번째 비트와 그 왼쪽의 비트를 XOR 연산하여 쓴다.
- 에 2진수 1011을 그레이 코드(Gray Code)로 변환하시오.

※ '그' 자를 기억해 두세요.

021 🖨

명령어의 구성 -연산자(Operation Code)부

- 수행해야 할 동작에 맞는 연산자를 표시하는 부분이다.
- 구성 요소 : 명령어 형식, 동작코드, 데이터 종류 등

022

명령어의 구성 - 자료(Operand)부

- 실제 데이터에 대한 정보를 표시하는 부분이다.
- 구성 요소 : 기억장소의 주소, 레지스터 번호, 사용할 데이터. 명령어 순서 등

023

연산자의 기능

- 함수 연산 기능
- 자료 전달 기능
- 제어 기능
- 입 · 출력 기능

024

피연산자의 수에 따른 연산자의 분류

- 단항 연산자 : NOT, Complement, Shift, Rotate, MOVE 등
- 이항 연산자 : 사칙 연산, AND, OR, XOR, XNOR 등

025

명령어 형식 - 0주소 명령어

- Operand부 없이 연산자(OP-Code)부만으로 구성된다.
- 주소의 사용 없이 스택(Stack)을 이용하여 연산을 수행 한다.

026

채널(Channel)

- 주변장치에 대한 제어 권한을 CPU로부터 넘겨받아 CPU 대신 입·출력을 관리한다.
- 주기억장치와 입 · 출력장치의 중간에 위치한다.

027

EPROM(Erasable PROM)

자외선을 이용하여 기록된 내용을 여러 번 수정하거나 새로운 내용을 기록할 수 있는 ROM이다.

028 🗓

캐시 메모리(Cache Memory)

중앙처리장치(CPU)와 주기억장치 사이에 위치하여 컴퓨터의 처리 속도를 향상시키는 역할을 한다

029 🖨

가상 메모리(Virtual Memory)

- 보조기억장치(하드디스크)의 일부를 주기억장치처럼 사용하는 메모리 기법이다.
- 주기억장치보다 큰 프로그램을 불러와 실행해야 할 때 유용하게 사용된다.

030 🐞

자기 디스크 관련 용어

- 트랙(Track) : 회전축(스핀들 모터)을 중심으로 데이터가 기록되는 동심원
- 실린더(Cylinder): 여러 장의 디스크 판에서 같은 위치에 있는 트랙의 모임
- Access Time(접근 시간) : 데이터를 읽고 쓰는 데 걸 리는 시간의 합(Seek Time + Search Time + Transmission Time)

2과목

패키지 활용

031

DBMS (데이터베이스 관리 시스템)

사용자와 데이터베이스 사이에 위치하여 데이터베이스를 관리하고, 사용자의 요구에 따라 정보를 생성해 주는 소 프트웨어를 말한다.

032

DBMS의 필수 기능

- 정의 기능 : 데이터베이스에 저장될 데이터의 타입과 구조에 대한 정의와 데이터를 이용하는 방식을 정의하는 기능
- 조작 기능: 데이터의 검색, 갱신, 삽입, 삭제 등을 체계적으로 처리하기 위해 데이터 접근 수단을 정의하는 기능
- 제어 기능: 데이터의 정확성과 보안성을 유지하기 위한 무결성, 보안 및 권한 검사, 병행 제어 등의 기능을 정 의하는 기능

033

스키마(Schema)

데이터베이스를 구성하는 개체, 속성, 관계 등 구조에 대한 정의와 이에 대한 제약 조건 등을 기술하는 것을 말한다.

034

스키마의 종류

- 개념 스키마
- 외부 스키마
- 내부 스키마

035

데이터베이스 관리자(DBA; Database Administrator)

데이터베이스 시스템을 관리하고 운영에 관한 모든 것을 책임지는 사람이나 그룹이다.

036

관계형 데이터베이스의 구성 요소

- 테이블: 데이터들을 행과 열로 표현한 것
- 튜플(Tuple): 테이블의 행을 구성하는 개체
- 속성(Attribute) : 테이블의 열을 구성하는 항목으로 개체 의 성질이나 특성을 기술함
- 도메인(Domain) : 하나의 속성(Attribute)에서 취할 수 있는 값의 범위
- 치수(Degree) : 속성의 개수
 기수(Cardinality) : 튜플의 개수

037 🖨

기본키(Primary Key)

- 후보키 중에서 선택한 주 키이다.
- 한 릴레이션에서 특정 레코드를 유일하게 구별할 수 있는 속성이다.

038

널(Null) 값

아직 알려지지 않았거나 모르는 값으로서, 해당 없음 등의 이유로 정보부재를 나타내기 위해 사용하는, 이론적으로 아무것도 없는 값을 의미한다.

039

SQL - DDL(데이터 정의어)

- CREATE : 스키마, 도메인, 테이블, 뷰, 인덱스를 정의함
- ALTER : 테이블에 대한 정의를 변경하는 데 사용함
- DROP : 스키마, 도메인, 테이블, 뷰, 인덱스를 삭제함

040

DROP의 옵션

- CASCADE : 삭제할 요소를 참조하는 다른 모든 개체를 함께 삭제함
- RESTRICT : 삭제할 요소를 다른 개체가 참조중일때는 삭제를 취소함

041 🖨

SQL -DML(데이터 조작어)의 종류

- SELECT(검색) : SELECT ~ FROM ~ WHERE
- INSERT(삽입): INSERT INTO ~ VALUES ~
- DELETE(삭제) : DELETE FROM \sim WHERE
- UPDATE(수정): UPDATE ~ SET ~ WHERE

042

SELECT문

• 기본 구문

SELECT [DISTINCT] 필드이름

FROM 테이블이름

[WHERE 조건식];

• DISTINCT : 검색의 결과가 중복되는 레코드는 검색 시 한 번만 표시함

043

SELECT문 - 정렬

SELECT [DISTINCT] 필드이름

FROM 테이블이름 [WHERE 조건식];

[ORDER BY 필드이름 정렬방식, …];

- ORDER BY문 : 특정 필드를 기준으로 <u>레코드를 정렬</u>하 여 검색할 때 사용함
- 정렬 방식
 - ASC : 오름차순, DESC : 내림차순
 - 정렬 방식을 생략하면 기본적으로 오름차순(ASC) 정 렬이 수행됨

044

스프레드시트(Spread Sheet)

입력 데이터에 대한 수치 계산과 처리 기능, 문서 작성 기능, 그래프 작성 기능, 데이터 관리 업무 등을 효율적으로 수행할 수 있도록 지원하는 응용 프로그램이다.

045

워크시트의 구성 - 셀(Cell)

행과 열이 교차되면서 만들어지는 사각형으로, 데이터가 입력되는 기본 단위이다.

046

엑셀의 주요 기능 - 매크로(Macro)

엑셀에서 사용되는 다양한 명령들을 일련의 순서대로 기록해 두었다가 필요할 때마다 해당 키나 도구를 이용하여 호출하면 기록해 둔 처리 과정이 자동으로 수행되도록 하는 기능이다.

047

엑셀의 주요 기능 - 필터(Filter)

데이터 목록에서 설정된 조건에 맞는 데이터만을 추출하여 화면에 나타내는 기능이다.

048

프레젠테이션(Presentation)

기업의 제품소개나 연구발표, 회의내용 요약 등 각종 그림이나 도표, 그래프 등을 이용하여 많은 사람에게 효과 적으로 의미를 전달할 때 사용되는 응용 프로그램이다.

049

프레젠테이션의 구성 요소 -슬라이드

프레젠테이션을 구성하는 내용을 하나의 화면 단위로 나 타낸 것이다.

050

프레젠테이션의 구성 요소 -시나리오

프레젠테이션의 흐름을 기획한 것이다.

3과목

PC 운영체제

051

운영체제(OS; Operating System)

- 사용자들이 보다 쉽고 간편하게 컴퓨터 시스템을 이용 할 수 있도록 제어하는 시스템 소프트웨어이다.
- 운영체제의 종류 : DOS, Windows, UNIX, LINUX
- 운영체제의 목적 : 처리 능력 향상, 사용 가능도 향상, 신 뢰도 향상, 반환 시간 단축 등

052 🐞

운영체제의 기능

- 사용자와 컴퓨터 간의 인터페이스 제공
- 시스템의 효율적인 운영 및 관리
- 자원 스케줄링 및 주변장치 관리
- 사용자 간의 데이터 호환

053

제어 프로그램 (Control Program)

- 감시 프로그램(Supervisor Program)
- 작업 제어 프로그램(Job Control Program)
- 자료 관리 프로그램(Data Management Program)

054 👶

처리 프로그램 (Processing Program)

- 언어 번역 프로그램(Language Translate Program)
- 서비스 프로그램(Service Program)
- 문제 프로그램(Problem Program)

055

로더(Loader, Module Loader)의 기능

- 할당(Allocation)
- 연결(Linking)
- 재배치(Relocation)
- 적재(Loading)

056

일괄 처리 시스템 (Batch Processing System)

- 일정량 또는 일정 기간 동안 데이터를 모아서 한꺼번에 처리하는 방식이다.
- 급여 계산, 지불 계산, 연말 결산 등의 업무에 사용 된다.

057 👵

시분할 시스템 (Time Sharing System)

- 일정한 시간 간격 동안 CPU를 사용함으로써 단독으로 CPU를 사용하는 것과 같은 효과를 가지는 시스템이다.
- 라운드 로빈(Round Robin) 방식이라고도 한다.

058

실시간 처리 시스템 (Real Time Processing System)

데이터 발생 즉시, 또는 데이터 처리 요구가 있는 즉시 처 리하여 결과를 산출하는 방식이다.

059

프로세스의 정의

- 실행중인 프로그램, 작업(Job), 태스크(Task)
- 실기억장치에 저장된 프로그램
- 프로세서가 할당되는 실체
- 운영체제가 관리하는 실행 단위

060

디스패치(Dispatch)

준비 상태에서 대기하고 있는 프로세스 중 우선순위가 가 장 높은 프로세스가 CPU를 할당받아 실행 상태로 전이되 는 과정이다

061

프로세스 스케줄링

프로세스가 생성되어 실행될 때 필요한 시스템의 여러 자 원을 해당 프로세스에게 할당하는 작업을 의미하며, 이를 수행하는 것을 스케줄러(Scheduler)라고 한다.

062

비선점(Non-Preemptive) 스케줄링의 종류

FCFS(FIFO), SJF, HRN, 우선순위 등

063

FIFO(FCFS)

준비상태 큐에 도착한 순서에 따라 차례로 CPU를 할당하 는 기법이다.

064

선점(Preemptive) 스케줄링의

SRT, 라운드 로빈(Round Robin), 다단계 큐, 다단계 피 드백 큐 등

065

교착상태(DeadLock)

자신이 점유하고 있는 자원을 포기하지 않은 상태에서 다 른 프로세스가 자원을 요구하여 두 프로세스 모두 실행을 할 수 없게 되는 현상을 의미한다.

066

교착상태 발생의 필요 충분 조건

- 상호 배제(Mutual Exclusion)
- 점유와 대기(Hold and Wait)
- 비선점(Non-preemption)
- 환형 대기. 순환 대기(Circular Wait)

067

LRU(Least Recently Used)

계수기를 두어 가장 오랫동안 참조되지 않은 페이지를 교 체하는 기법이다.

068 🗓 부팅(Booting)

- 컴퓨터에 전원을 넣은 순간부터 디스크로부터 주기억장 치로 읽어 내어 컴퓨터를 이용할 수 있는 상태로 만들어 주는 과정을 의미한다.
- 부팅에 반드시 필요한 시스템 파일에는 MS-DOS. SYS, IO, SYS, COMMAND, COM이 있다.

069

웜 부팅 / 콜드 부팅

- 웜 부팅(Warm Booting): Ctrl + Alt + Delete 를 눌러 컴퓨 터를 재부팅하는 소프트웨어적 부팅
- 콜드 부팅(Cold Booting) : 컴퓨터 본체의 전원 스위치를 눌러 켜거나 본체의 리셋(Reset) 단추를 눌러 재부팅하 는것

070

DOS - 내부 명령어

- COMMAND.COM이 실행됨과 동시에 주기억장치에 상 주하는 명령어이다.
- 주기억장치에 상주하므로 언제든지 실행이 가능하다.
- 경로(Path)와 관계없이 어떤 디렉터리에서도 실행이 가 능하다.
- 종류 : CLS, DIR, VER, COPY, DATE, TIME, MD, CD, RD, PROMPT, VOL, TYPE 등

071

DOS - 외부 명령어

- 보조기억장치에 저장되어 있다가 사용자가 명령을 입력 하면 주기억장치에 적재시킨 후 실행하는 명령어이다.
- •종류 : ATTRIB. FORMAT. CHKDSK. FDISK. LABEL, SCANDISK, DISKCOPY, SORT, SYS 등

072

DOS - FORMAT

- 디스크에 데이터가 저장될 수 있도록 트랙과 섹터를 만 드는 초기화 작업을 수행한다.
- FORMAT 명령의 옵션
 - /S : 포맷한 후 시스템 파일을 복사하여 부팅 가능한 디스크로 만듦
 - /Q: 이미 사용하던 디스크의 빠른 포맷

073

DOS의 주요 명령어

- FDISK : 하드디스크를 논리적으로 여러 개의 디스크로 나누어, 별개의 드라이브로 동작하도록 설정함
- CHKDSK: 디스크의 상태를 점검하고 결과를 표시함
- DIR : 디스크 내에 수록된 파일 및 디렉터리에 대한 정 보를 표시함
- UNDELETE : DEL이나 ERASE를 사용하여 삭제한 파일
- ATTRIB: 파일의 속성을 표시, 해제, 지정함

074 🛞

WINDOWS의 주요 특징

- 선점형 멀티태스킹 제공
- 32비트 또는 64비트 데이터 처리
- 플러그 앤 플레이(PnP; Plug & Play) 방식

075

플러그 앤 플레이 (PnP; Pluq & Play)

컴퓨터 시스템에 새로운 하드웨어를 장착하고 시스템을 가동시키면 자동으로 하드웨어를 인식하고 실행하는 기능 이다.

076 🗓 주요 바로 가기 키

- [Alt] + [Tab] : 현재 실행중인 프로그램들의 목록을 화면 중앙에 나타냄
- [Alt] + [F4] : 실행중인 창이나 응용 프로그램을 종료함
- [Ctrl] + [A] : 폴더 및 파일을 모두 선택함
- Shift+Delete : 폴더나 파일을 휴지통을 거치지 않고 바로 삭제함

077 👵

바로 가기 아이콘

- 자주 사용하는 문서나 프로그램을 빠르게 실행시키기 위한 아이콘이다.
- 확장자는 LNK이다.
- 바로 가기 아이콘을 삭제하더라도 원본 파일은 삭제되지 않는다.

078

파일/ 폴더 선택

- 연속적인 항목 : 첫 항목을 클릭한 후 Shiftl를 누른 상태에서 마지막 항목을 클릭함
- 비연속적인 항목 : Ctml을 누른 상태에서 선택할 항목을 차례로 클릭함

079

클립보드

- 데이터를 일시적으로 보관해 두는 임시 저장 공간이다.
- 클립보드의 내용은 여러 번 사용이 가능하지만, 가장 최근에 저장된 것 하나만 기억한다.
- 시스템을 재시작하면 클립보드에 저장된 데이터는 지워 진다.

080

휴지통 사용하기

- 삭제된 파일이나 폴더가 임시 보관되는 장소이다.
- 휴지통에 보관된 파일이나 폴더는 복원하기 전에는 사용할 수 없다.
- 휴지통 비우기를 수행하고 나면 복원할 수 없다.

081

메모장

- 특별한 서식이 필요 없는 간단한 텍스트(.TXT) 파일만 작성할 수 있는 문서 작성 프로그램이다.
- 메모장에서는 그림, 차트 등의 OLE 개체를 삽입할 수 없다.
- 문서 전체에 대해서만 글꼴의 종류, 속성, 크기를 변경 할 수 있다.

082

스풀 기능

중앙처리장치와 같이 처리 속도가 빠른 장치와 프린터와 같이 처리 속도가 느린 장치들 간의 처리 속도 문제를 해 결하기 위해 사용하는 기능이다.

083

디스크 조각 모음

- 단편화로 인해 여기저기 분산되어 저장된 파일들을 연속된 공간으로 최적화시켜 디스크의 접근 속도를 향상 시키는 기능이 있다.
- 디스크의 용량 증가와는 관계가 없다.
- CD-ROM 드라이브, 네트워크 드라이브는 디스크 조각 모음을 수행할 수 없다.

084

UNIX의 특징

- 대화식 운영체제로, 소스가 공개된 개방형 시스템이다.
- 대부분 C 언어로 작성되어 있어 이식성이 높으며 장치, 프로세스 간의 호환성이 높다.
- 다중 사용자(Multi-User), 다중 작업(Multi-Tasking) 을 지원한다.
- UNIX에서 사용 가능한 파일 시스템 유형에는 일반 파일, 디렉터리 파일, 특수 파일 등이 있다

085 🖨

커널(Kernel)

- 컴퓨터가 부팅될 때 주기억장치에 적재된 후 상주하면 서 실행된다.
- 프로세스 관리, 기억장치 관리, 파일 관리, 입·출력 관리 등의 기능을 수행한다.

086

쉘(Shell)

- 사용자의 명령어를 인식하여 프로그램을 호출하고 명령을 수행하는 명령어 해석기이다.
- 공용 쉘(Bourne Shell, C Shell, Korn Shell)이나 사용 자 자신이 만든 쉘을 사용할 수 있다.

087

UNIX의 주요 명령어

- kill: 현재 실행중인 프로세스를 종료(삭제)함
- ps : 현재 작업중인 프로세스의 상태 정보를 표시함
- pwd: 현재 작업중인 디렉터리 경로를 화면에 출력함
- ls : 현재 작업중인 디렉터리의 모든 파일을 표시함
- rm : 파일을 삭제함
- cat : 파일의 내용을 화면에 표시함

4과목

정보 통신 일반

088

정보 통신 시스템의 기본 구성

- 데이터 전송계
- 단말장치(DTE)
- 데이터 전송 회선(신호 변환장치(DCE), 통신 회선)
- 통신 제어장치(CCU)
- 데이터 처리계: 컴퓨터(하드웨어, 소프트웨어)

089

전송 선로의 특성

- 1차 정수 : 저항(R), 정전용량(C), 인덕턴스(L), 누설 컨덕턴스(G)
- 2차 정수 : 감쇠정수, 위상정수, 전파정수, 특성 임피던스

090

광섬유 케이블

- 빛의 전반사 원리를 이용하여 전송한다.
- 유선 매체 중 가장 높은 주파수 대역폭을 제공한다.
- 대용량, 장거리 전송이 가능하며, 가늘고 가볍다.
- 무유도성, 보안성이 뛰어나다.

데이터 신호 속도(Bps)

변조 속도(Baud) × 변조 시 상태 변화 수

092 🗓

변조 속도(Baud)

데이터 신호 속도(Bps) / 변조 시 상태 변화 수

093 🖨

변조 시 상태 변화 수

- 모노비트(Monobit) = 1비트
- 디비트(Dibit) = 2비트
- 트리비트(Tribit) = 3비트
- 쿼드비트(Quadbit) = 4비트

094 🚯

통신 방식

- 반이중(Half-Duplex) 통신 : 동시에 양쪽 방향에서 전송할 수 없는 방식
- 전이중(Full-Duplex) 통신 : 동시에 양방향 전송이 가능한 방식

095 🖨

디지털 변조 -위상 편이 변조(PSK)

- 2진수 0과 1을 서로 다른 위상을 갖는 신호로 변조하는 방식이다.
- 종류
 - 2위상 편이 변조(DPSK) : 1비트
 - 4위상 편이 변조(QPSK, QDPSK): 2비트
- 8위상 편이 변조(ODPSK) : 4비트

096 🖨

디지털 변조 -진폭 위상 변조(QAM)

진폭과 위상을 상호 변환하여 신호를 얻는 변조 방식 이다.

097 🐌

신호 변환 방식 -펄스 코드 변조(PCM)

- 아날로그 데이터를 디지털 신호로 변환하는 것이다.
- 코덱(CODEC)을 이용한다.
- 누화의 영향을 거의 받지 않는다.

098 👵

펄스 코드 변조(PCM) 순서

표본화 → 양자화 → 부호화 → 복호화 → 여과화

099 🖨

충격성 잡음(Impulse Noise)

- 외부적인 충격 또는 기계적인 충격에 의해 생기는 잡음 이다.
- 비연속적이고 불규칙적인 진폭을 갖는다.

100 🖨

자동 반복 요청(ARQ) 종류

- 정지-대기(Stop and Wait) ARQ
- Go-Back-N ARQ
- 선택적 재전송(Selective Repeat) ARQ
- 적응적(Adaptive) ARQ

101

정지-대기 ARQ

송신 측에서 한 개의 블록을 전송한 후 수신 측으로부터 응답(ACK/NAK)을 기다리는 방식이다.

102 👵

해밍 코드(Hamming Code) 방식

- 수신 측에서 오류가 발생한 비트를 검출한 후 직접 수정 하는 방식이다.
- 정정 가능한 최대 오류의 수

 $tc = \frac{dmin - 1}{2}$

(dmin: 최소 해밍 거리, tc: 정정 가능 오류 수)

103 🖨

RS-232C 커넥터

- DTE와 DCE 사이의 접속 규격이다.
- 25핀으로 구성된다.
- 전송 거리는 15m 이하이다.

104 🖨

신호변환장치 - 모뎀(MODEM)

- 변조와 복조를 수행하는 장치이다.
- 변조(MOdulation) : 디지털 데이터를 아날로그 회선에 적 합한 아날로그 신호로 변환
- 복조(DEModulation) : 아날로그 신호를 컴퓨터에 적합한 디지털 신호로 변환

105 🐞

다중화기 -주파수 분할 다중화기(FDM)

- 통신 회선의 주파수를 여러 개로 분할하여 여러 대의 단 말기가 동시에 사용할 수 있도록 한 것이다.
- 상호 간섭을 방지하기 위한 보호 대역(Guard Band)이 필요하다

106

통신 프로토콜

서로 다른 기기들 간의 데이터 교환을 정확하고 원활하게 수행할 수 있도록 표준화한 통신 규약이다.

107 🖨

프로토콜의 기본 요소

- 구문(Syntax)
- 의미(Semantics)
- 시간(Timing)

108

HDLC 구조

플래그 주소부 제어부 정보부 FCS 플래그

109

OSI 7계층

- 하위 계층 : 물리 계층 → 데이터 링크 계층 → 네트워크 계층
- 상위 계층 : 전송 계층 → 세션 계층 → 표현 계층 → 응용 계층

110

OSI 7계층 -표현 계층(Presentation Layer)

- 응용 계층으로부터 받은 데이터를 세션 계층에 보내기 전에 통신에 적당한 형태로 변환한다.
- 기능 : 코드 변환, 데이터 암호화, 데이터 압축, 구문 검 색, 포맷 변환 등

111 🖨

OSI 7계층 -응용 계층(Application Layer)

- 사용자(응용 프로그램)가 OSI 환경에 접근할 수 있도록 서비스를 제공한다.
- 서비스 : 전자 사서함(SMTP), 파일 전송(FTP), 원격 접속(TELNET) 등

112 🖨

LAN(근거리 통신망)

- 한 건물이나 일정 지역 내에서 컴퓨터나 단말장치들을 고속 전송 회선으로 연결하여 데이터나 주변장치를 공 유할 수 있도록 한 네트워크 형태이다.
- 고속 통신이 가능하므로 방송 형태로 서비스가 가능하다.
- 망의 구성 형태 : 성형, 버스형, 링형, 계층형(트리형)

113 🐞

다중 접속 방식의 종류

- FDMA(주파수 분할 다중 접속) 방식
- TDMA(시분할 다중 접속) 방식
- CDMA(코드 분할 다중 접속) 방식

114 🐌

다중 접속 방식 - CDMA 방식

- FDMA와 TDMA의 혼합 방식이다.
- 시간과 주파수를 공유하면서 서로 다른 코드를 부여한 신호를 확산하여 보내는 방식이다

115 🖨

IPv6

- IPv4의 주소 부족 문제를 해결하기 위해 개발되었다.
- 16비트씩 8부분, 총 128비트로 구성되어 있다.
- 주소의 각 부분은 4자리의 16진수를 콜론(:)으로 구분하여 표현한다.
- 호환성, 확장성, 융통성, 연동성이 뛰어나다.

116 👵

뉴미디어 - 비디오 텍스(Videotex)

- 전화망을 통해 TV나 단말장치에 접속하여 필요한 정보 를 문자나 그림의 형태로 검색할 수 있도록 하는 서비스 이다.
- 대화형 양방향 미디어로서, 요구하는 정보를 즉시 제공 받을 수 있다.

