

Yes, Queries Can Be Spatial, Too

Michael Olkin, GISP
Springfield Water and Sewer Commission
michael.olkin@waterandsewer.org

Time for some Vitamin SQL

My Cat Doesn't Care About SQL

Why should we?

Geoprocessing is a bit of a Black Box

SQL is somewhere inside of the Black Box

We can speak directly with our data

Today: Spatial Queries in Two Environments

SQL Server Management Studio

OGC Simple Feature Specification

Standard for storing & querying spatial data

the way back to

ArcSDE 9.0

Default Esri Enterprise GDB storage format

Why Bother with Spatial Queries?

Be CrossPlatform:
Get Spatial
without any
ArcGIS
Software

Avoid hard-coding redundant attributes

Basics: Line Length & Polygon Area

- ArcGIS automatically displays calculated lengths & areas
 - We can do the same via queries

(fe)Line Length

SELECT [SHAPE].STLength() as [Length (Ft)]
,CAST([SHAPE].STLength() as int) as [Rounded (Ft)]

Length (Ft)	Rounded (Ft)		
1056.36436184714	1056		

Polygon Area

SELECT SHAPE.**STArea()** as [Area (SqFt)]
,CAST([SHAPE].**STArea()** as int) as [Rounded (SqFt)]

Area (SqFt)	Rounded (SqFt)		
5165.25909423828	5165		

ArcGIS Attribute Table Includes Length & Area

Courtesy of the .**STArea()** & .**STLength()** OGC standard SQL methods

MA Community Boundaries						
TOWN	TOWN_ID *	TYPE	Shape *	П	Shape.STArea()	Shape.STLength()
AGAWAM	5	TC	Polygon		678359450.582886	124870.856014
BLANDFORD	33	T	Polygon		1489822147.959229	151837.038478
BRIMFIELD	43	T	Polygon		984585267.367065	139455.497565
CHESTER	59	T	Polygon		1036066948.710754	123169.940193
CHICOPEE	61	С	Polygon		665489578.487732	113703.429529
EAST LONGMEADO	85	T	Polygon		362622827.615417	76395.572426
GRANVILLE	112	T	Polygon		1201935274.76178	143192.252252
HAMPDEN	120	T	Polygon		547499195.579956	96518.837234
HOLLAND	135	T	Polygon		363809057.05542	78802.091849
HOLYOKE	137	С	Polygon		635590489.577759	130582.871378
LONGMEADOW	159	T	Polygon		267481704.531372	65052.317277
LUDLOW	161	Т	Polygon		789950776.076111	121351.862216

Using .STArea() & .STLength() in our own Query

A word about querying Versioned Feature Classes

Versioned Feature Classes have a "Versioned View"

The Versioned View provides the current posted Default version of the data

Naming convention: <Feature Class Name> EVW

http://desktop.arcgis.com/en/arcmap/10.5/manage-data/ using-sql-with-gdbs/what-is-a-versioned-view.htm

Spatial Data Can Be Rendered Via SQL Queries

Latitude Longitude Points from X/Y or Lat/Lon fields -72.83398931 42.11638925 SPRINGFIELD Points from Polygon Centroids Buffers from any features Points from line Start or End nodes

Basics: Make Your Point

Constructing a GIS-readable point from x/y or lat/long columns

SELECT Latitude, Longitude, SpatialRef

Latitude	Longitude	SpatialRef
42.11638925	-72.83398931	4326

SELECT GEOMETRY::STGeomFromText('POINT(' +
CONVERT(VARCHAR, Longitude) + ' ' +
CONVERT(VARCHAR, Latitude) + ')', SpatialRef)
as Shape

Shape		
0xE6100000010C79EAB214603552C0902DC	\Rightarrow	×

SELECT [Shape].ToString() as ShapeString

Basics: Draw The Line

LINESTRING (373574.7 2886328.4, 373524.0 2886355.7, 373481.9 2886369.7, 373447.6 2886379.8, 373392.2 2886393.9, 373326.7 2886407.9, 372787.8 2886494.5, 372543.0 2886538.8)

Basics: Create a Polygon

POLYGON ((356803.4 2876290.2, 356789.6 2876393.7, 356739.7 2876390.1, 356753.2 2876288.8, 356803.4 2876290.2))

Another way of looking at ArcToolbox

Distance: Point to Point

Where's the Nearest Hydrant?

DECLARE @PT GEOMETRY
SET @PT = (SELECT SHAPE
FROM AddressPts as a
WHERE a.Address = '555 MAIN ST')

SELECT TOP 1 h.HydrantID ,h.SHAPE.STDistance(@PT) as Distance ,h.SHAPE.ToString() as HydrantGeometry FROM Hydrants as h ORDER BY h.SHAPE.STDistance(@PT)

HydrantID	Distance	HydrantGeometry	
888	47.05	POINT (361358.95999999344 2863573.450000003)	

Point in Polygon

In which neighborhood is this address?

SELECT a.Address, n.Neighborhood FROM AddressPts as a JOIN Neighborhoods as n ON n.Shape.**STContains(**a.Shape**)** = 1 WHERE a.Address = '555 MAIN ST'

Address	Neighborhood
555 MAIN ST	Happyville

Polygon Center in Polygon

SELECT t.TOWN as Community ,c.COUNTY as County ,format((t.SUM_ACRES / c.AREA_ACRES),'P1') as [% Coverage of County] FROM MGIS_TOWNBOUNDSSURVEY t JOIN MGIS_COUNTYBOUNDARIES c ON c.shape.STIntersects(t.shape.STCentroid()) = 1 WHERE t.TOWN = 'SPRINGFIELD'

Community	County	% Coverage of County
SPRINGFIELD	HAMPDEN	5.2 %

Polygon Overlap Area

Percentage of parcel in Zone A, B or C watershed protection area

SELECT DISTINCT swp.SWPZONE as [SWP Zone]

,format(sum(swp.Shape.STIntersection(p.Shape).STArea()) / p.Shape.STArea(), 'P1') as [Overlap Pct]

FROM [MGIS_Parcels] p

JOIN [MGIS_SurfaceWaterProtection_ZoneABC] swp ON p.Shape.**STIntersection(**swp.shape**).STArea()** > 0

WHERE p.LOC_ID = 'M_78537_875189'

GROUP BY swp.SWPZONE, p.Shape.STArea()

SWP Zone	Overlap Pct
A	23.8 %
С	76.2 %

Roll your own SHAPE field from x/y or lat/lon fields

"Live" point data

Available for ArcGIS Server Map Services

Buffer via a Query Layer

"Live" Buffer

Not recommended for large selection sets

use a good WHERE clause to narrow the scope

Line / Point Connectivity

Selecting upstream / downstream manhole IDs by joining to the coincident start & end nodes of the pipes

```
SELECT g.[ASSETID] as GravityPipeAssetID

,F_MH_XY.ASSETID as Calculated_F_Node

,T_MH_XY.ASSETID as Calculated_T_Node

FROM [GRAVITYPIPE] g

JOIN [MANHOLE] as F_MH_XY

on (g.Shape.STStartPoint()).STX = F_MH_XY.Shape.STX

and (g.Shape.STStartPoint()).STY = F_MH_XY.Shape.STY

JOIN [MANHOLE] as T_MH_XY

on (g.Shape.STEndPoint()).STX = T_MH_XY.Shape.STX

and (g.Shape.STEndPoint()).STY = T_MH_XY.Shape.STY
```


41C3

4880

P5011

P18C2

41CB

3FBF

Line / Point Connectivity

Checking for errors or miscodes with upstream/downstream node values

```
SELECT g.[ASSETID] as GravityPipeAssetID ,(g.Shape.STEndPoint()).STX as PipeStartX, m.Shape.STX as ManholeX ,(g.Shape.STEndPoint()).STY as PipeStartY, m.Shape.STY as ManholeY, g.[F_NODE] as Current_F_Node ,case isnull(mxy.ASSETID,") WHEN "THEN 'Spatial Mismatch' ELSE mxy.ASSETID END as Correct_F_Node FROM GRAVITYPIPE as g join SMH as m on g.F_NODE = m.ASSETID join SMH as mxy on (g.Shape.STStartPoint()).STX = mxy.Shape.STX and (g.Shape.STStartPoint()).STX = mxy.Shape.STX where m.Shape.STX <> (g.Shape.STStartPoint()).STX and m.Shape.STY <> (g.Shape.STStartPoint()).STY
```

GravityPipeAssetID	PipeStartX	ManholeX	PipeStartY	ManholeY	Current_F_Node	Correct_F_Node
P47EE	363865.05325	363865.05325	2875992.89775001	2875992.89775001	1B5A	4B01A
P4655	367720.359999999	361807.003999993	2865468.90449999	2875011.37774999	1BA2	Spatial Mismatch
P1122	379845.25	379906.25	2863031.75	2863499.5	24B0	Spatial Mismatch
P1E7B	362723.322750002	362786.249750003	2868109.30374999	2868147.99950001	33C7	Spatial Mismatch
P20CB	356680.140249997	356514.886749998	2866862.92325	2867068.1145	3DD7	Spatial Mismatch
P3F67	389488 972499996	389463 520999998	2879242 9945	2879427 88375001	3FF9	Spatial Mismatch

Practical Benefits of Start/End Node Attributes

Upstream / Downstream Trace

```
SET @NewInsertCount = @@ROWCOUNT;
-- the tree traversal:
WHILE @NewInsertCount > 0
-- enter the loop if there was something inserted in the previous statement
BEGIN
   --We insert into #CHILDREN all ASSETIDs which are "children"
   --The @NewInsertCount will indicate how many children are added for each iteration; v
   INSERT INTO #CHILDREN(ID, ASSETID, Location, F NODE, T NODE, PipeType
       SELECT @NewInsertCount, ASSETID, Location, F_NODE, T_NODE
               ,[PipeSubType] as [PipeType]
                                     Pipes WHERE EXISTS
              (SELECT ASSETID, Location, F_NODE, T_NODE, PipeSubType FROM #CHILDREN
                              Pipes.F NODE = #CHILDREN.T NODE)
        AND NOT EXISTS
             (SELECT ASSETID, Location, F_NODE, T_NODE, PipeSubType FROM #CHILDREN
                                   Pipes.ASSETID = #CHILDREN.ASSETID)
        SET @NewInsertCount = @@ROWCOUNT;
   -- if the value is 0 then there were no new children inserted thus no "grandchildren"
```


FND

Practice Data & Sample Code

SOYLENT GREEN IT'S SQL!

Yes, Queries Can Be Spatial, Too

Michael Olkin, GISP
Springfield Water and Sewer Commission

michael.olkin@waterandsewer.org https://github.com/MikeOlkinSwsc/SpatialSQL

