Exam 3

Matthew Tiger

May 20, 2017

Problem 1. Solve the non-homogeneous diffusion problem by the Hankel transform

$$u_t = a\left(u_{rr} + \frac{1}{r}u_r\right) + Q(r,t), \qquad 0 < r < \infty, \quad 0 < t$$

$$u(r,0) = f(r), \qquad 0 < r < \infty.$$

Solution. Application of the 0-th order Hankel transform will transform the above Partial Differential Equation into an Ordinary Differential Equation. The following property of the 0-th order Hankel transform will aid in the application; if $\mathcal{H}_0\{u(r,t)\} = \tilde{u}_0(\kappa,t)$, then

$$\mathcal{H}_0\left\{\frac{1}{r}\frac{\partial}{\partial r}\left[u(r,t)\right] + \frac{\partial^2}{\partial r^2}\left[u(r,t)\right]\right\} = -\kappa^2 \tilde{u}_0(\kappa,t). \tag{1}$$

Now, with the above property, we see that applying the 0-th order Hankel transform to the diffusion problem yields

$$\frac{d}{dt} \left[\tilde{u}_0(\kappa, t) \right] + a\kappa^2 \tilde{u}_0(\kappa, t) = \tilde{Q}_0(\kappa, t), \qquad 0 < \kappa < \infty, \quad 0 < t$$

$$\tilde{u}_0(\kappa, 0) = \tilde{f}_0(\kappa), \qquad 0 < \kappa < \infty.$$

This is a first order linear Ordinary Differential Equation, the solution to which is

$$\tilde{u}_0(\kappa, t) = c_1(\kappa)e^{-a\kappa^2t} + e^{-a\kappa^2t} \int_0^t e^{a\kappa^2x} \tilde{Q}_0(\kappa, x) dx.$$

Thus, from this solution and the transformed boundary condition, we see that $c_1(\kappa) = \tilde{f}_0(\kappa)$ and the solution to the transformed boundary value problem is

$$\tilde{u}_0(\kappa, t) = \tilde{f}_0(\kappa)e^{-a\kappa^2t} + e^{-a\kappa^2t} \int_0^t e^{a\kappa^2x} \tilde{Q}_0(\kappa, x) dx.$$

Therefore, the solution to the initial diffusion problem is

$$u(r,t) = \mathcal{H}_0^{-1} \left\{ \tilde{u}_0(\kappa,t) \right\} = \mathcal{H}_0^{-1} \left\{ \tilde{f}_0(\kappa) e^{-a\kappa^2 t} + e^{-a\kappa^2 t} \int_0^t e^{a\kappa^2 x} \tilde{Q}_0(\kappa,x) dx \right\}$$
$$= \int_0^\infty \kappa J_0(\kappa r) \left[\tilde{f}_0(\kappa) e^{-a\kappa^2 t} + e^{-a\kappa^2 t} \int_0^t e^{a\kappa^2 x} \tilde{Q}_0(\kappa,x) dx \right] d\kappa,$$

where $J_0(\kappa r)$ is the Bessel function of order 0.

Matthew Tiger

Exam 3

Problem 2.

Solution.

Problem 3. Solve the following integral equation by the Mellin transform

$$f(x) = \sin ax + \int_0^\infty \frac{f(xt)}{1+t^2} dt.$$

Solution. Let $g(x) = \frac{1}{1+x^2}$ and $h(x) = \sin ax$. Recall that $(f \circ g)(x)$ is defined to be

$$(f \circ g)(x) = \int_0^\infty f(xt)g(t)dt.$$

Thus, with this knowledge, the integral equation becomes

$$f(x) = h(x) + \int_0^\infty f(xt)g(t)dt$$
$$= h(x) + (f \circ g)(x).$$

Let $\mathscr{M}\{f(x)\}=\tilde{f}(p),\,\mathscr{M}\{g(x)\}=\tilde{g}(p),\,\text{and}\,\mathscr{M}\{h(x)\}=\tilde{h}(p).$ Then from the Convolution Type theorem regarding the Mellin transform, we see that application of the Mellin transform to the integral equation yields

$$\tilde{f}(p) = \mathcal{M} \{h(x)\} + \mathcal{M} \{(f \circ g)(x)\}$$
$$= \tilde{h}(p) + \tilde{f}(p)\tilde{g}(1-p).$$

Solving the above algebraic equation shows that

$$\tilde{f}(p) = \frac{\tilde{h}(p)}{1 - \tilde{g}(1 - p)}.$$

From our table of Mellin transforms we know that

$$\tilde{g}(p) = \frac{\pi}{2}\csc\left(\frac{\pi p}{2}\right)$$

and

$$\tilde{h}(p) = a^{-p}\Gamma(p)\sin\left(\frac{\pi p}{2}\right).$$

Therefore, we see that

$$\tilde{f}(p) = \frac{a^{-p}\Gamma(p)\sin\left(\frac{\pi p}{2}\right)}{1 - \frac{\pi}{2}\csc\left(\frac{\pi(1-p)}{2}\right)}$$
$$= \frac{2a^{-p}\Gamma(p)\sin\left(\frac{\pi p}{2}\right)}{2 - \pi\sec\left(\frac{\pi p}{2}\right)}$$

and the solution to the integral equation is

$$f(x) = \mathcal{M}^{-1} \left\{ \tilde{f}(p) \right\} = \mathcal{M}^{-1} \left\{ \frac{2a^{-p}\Gamma(p)\sin\left(\frac{\pi p}{2}\right)}{2 - \pi \sec\left(\frac{\pi p}{2}\right)} \right\}$$
$$= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} x^{-p} \left[\frac{2a^{-p}\Gamma(p)\sin\left(\frac{\pi p}{2}\right)}{2 - \pi \sec\left(\frac{\pi p}{2}\right)} \right] dp.$$

Problem 4.

 \Box

Problem 6.

 \Box

Problem 7.

 \Box

Matthew Tiger

Problem 8.

Solution.