

Regression analysis and predictive models: demo notes

Multiple linear regression

Demo: mpg-regression.xlsx

1. Head to Data > Data Analysis > Regression.

- 2. The input Y range is our dependent variable, mpg. The X range is our three independent variables: displacement, horsepower and weight.
 - a. Check all boxes in the Residuals group.

- 3. We will start our analysis by checking the p-values of our regression, and dropping any non-significant variables.
 - a. displacement is a non-significant-value, so we will drop it from our next round.

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	44.8559357	1.195920013	37.50747142	4.1075E-131	42.50464109	47.2072303	42.50464109	47.2072303
displacement	-0.005768819	0.00658189	-0.876468422	0.381317748	-0.018709452	0.007171815	-0.018709452	0.007171815
horsepower	-0.041674144	0.012813862	-3.252270314	0.001245063	-0.066867438	-0.016480849	-0.066867438	-0.016480849
weight	-0.005351593	0.000712354	-7.512546915	4.03584E-13	-0.00675215	-0.003951036	-0.00675215	-0.003951036

- 4. Make a copy of the worksheet and delete over the old output. This time only include horsepower and weight in your X range. Leave the rest of the regression settings as-is.
 - a. All variables are now significant 🎉. Let's continue in interpreting the results given by the plots we selected to include.
- 5. First we get two plots of our independent variables with our actual versus predicted Y variable. We can visually see that there is indeed a line fit into each of the scatterplots. This is an assumption of regression.

6. We also got two plots of our independent variables against the *residuals*. Remember, these are supposed to look totally *random*, but there is a big clump in the left of each. We may have a problem meeting this assumption.

- 7. Finally, we want to check for influential cases. This is possible to do in Excel but takes some heavy set-up. Un-hide the influential-cases worksheet in your workbook.
 - a. I have calculated a measure called Cook's D to check for influential cases.
 Generally a Cook's D greater than 1 signals an influential case, however if there are any much different than the others, those could be considered influential.
 - In this case, it may be worth identifying two cases as possible influential cases.

Drill: penguins-linear.xlsx

- In this case, culmen length and culmen depth are not significant, so our only
 independent variable is flipper length. It's no longer multiple linear regression, but
 we can still check the same types of diagnostics.
 - a. Linearity checks out from the scatter plot.

b. There is no pattern in the residuals.

c. While none of the Cook's d values are over 1, it appears that some group of observations do have more influence over the curve than others. There are some ways to investigate that are outside the scope of this course.

Demo: mpg-regression-diagnostics.xlsx

- 1. Because this dataset uses multiple independent variables, we should use the *adjusted* r-square. That is available in the ToolPak results.
 - a. An adjusted r-square means that 70% of the variance in Y is explained by our X's.

SUMMARY OUTPUT		
Regression S	tatistics	
Multiple R	0.840461346	
R Square	0.706375274	
		<- 70% of the variance in Y is explained by
Adjusted R Square	0.704865635	X's
Standard Error	4.240169468	
Observations	392	

2. We can also use the estimated coefficients from our output to make point predictions. Use the intercept and slopes to predict a value of Y given some X's:

	F	G	Н	1	J	K	L	M
1		SUMMARY OUTPUT						
2								
3		Regression S	tatistics					
4		Multiple R	0.840461346					
5		R Square	0.706375274			200	3000	
							<- What is the	
				<- 70% of the			expected MPG of a car	
				variance in Y is			weighing 3,000 pounds	
				explained by			that has 200	
6		Adjusted R Square	0.704865635	X¹s		18.79716613	horsepower?	
7		Standard Error	4.240169468			=H17+(K5*H18	3)+(L5*H19)	
8		Observations	392					
9								
10		ANOVA						
11			df	SS	MS	F	Significance F	
12		Regression	2	16825.14803	8412.574016	467.9101535	3.0596E-104	
13		Residual	389	6993.845437	17.97903711			
14		Total	391	23818.99347				
15								
16			Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
17		Intercept	45.64021084	0.793195833	57.5396503	2.3171E-192	44.08072353	47.19969815
18		horsepower	-0.047302863	0.011085086	-4.267252507	2.48848E-05	-0.069097042	-0.025508684
19		weight	-0.005794157	0.000502327	-11.53463263	1.12436E-26	-0.006781773	-0.004806542
20		_						
21								

Drill: penguin-linear-diagnostics.xlsx

1. Follow the same steps as above. Notice that since this time we only have one independent variable, the r-square and adjusted r-square are the same.

Interaction terms

Demo: airquality-interaction.xlsx

It's not a bad idea to run the regression without the interaction terms at first to establish a baseline.

- 1. We will set up our interaction term in column E by multiplying columns C and D.
- 2. For our baseline (the DV on the two IV's), about 50% of the variability in Y is explained.

4	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0
id	(Ozone	Temp	Solar.R	temp * solar		SUMMARY OUTPUT								
	1	4:	1 6	57 1	90 12730										
	2	36	6	72 1	18 8496		Regression St	atistics							
	3	12	2	74 1	49 11026		Multiple R	0.71436457							
	4	18	В (52 3	13 19406		R Square	0.510316738							
	7	23	3 (55 2	99 19435		Adjusted R Square	0.50124853							
	8	19	9 5	59	99 5841		Standard Error	23.50026724							
	9	8	В (51	19 1159		Observations	111							
	12	16	6 (59 2	56 17664										
)	13	13	1 (56 2	90 19140		ANOVA								
	14	14	4 6	58 2	74 18632			df	SS	MS	F	Significance F			
	15	18	В .	8	65 3770		Regression	2	62157.5534	31078.7767	56.27536418	1.80063E-17			
3	16	14	4 (54 3	34 21376		Residual	108	59644.35651	552.2625603					
	17	34	4 6	56 3	07 20262		Total	110	121801.9099						
5	18	(6 !	57	78 4446										
5	19	30	0 (58 3	22 21896			Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
,	20	1:	1 (52	44 2728		Intercept	-145.7031551	18.44671758	-7.898595208	2.52933E-12	-182.2677495	-109.1385607	-182.2677495	-109.1385607
3	21		1 !	59	8 472		Temp	2.278466835	0.24599582	9.262217671	2.21556E-15	1.790860443	2.766073227	1.790860443	2.766073227
9	22	1:	1 7	73 3	20 23360		Solar.R	0.057109594	0.025718852	2.220534321	0.028470633	0.006130367	0.10808882	0.006130367	0.10808882
)	23	4	4 (51	25 1525										
	24	2.) (1	02 5612										

3. If we add the interaction term, our adjusted R-square increases to .54. Is it worth adding an extra variable?

Linear regression with categorical IV's

Demo: mpg-dummy.xlsx

- 1. We want to model the influence of weight and origin on mpg. Because origin is categorical, we will create dummy variables to include as IV's.
 - a. Origin takes three values: USA, Europe and Asia. We will encode Europe as one dummy variable, and Asia another. USA is implied when both dummies are set to zero. We will not include this column in our regression since it's all zeros.

	Α	В	С	D	E	F	G
			=IF(F3="E				
			urope",1,	=IF(F3="Asi	=IF(F3="U		
1			0)	a",1,0)	SA",0,0)		
			origin_eu				
2	mpg	weight	rope	origin_asia	origin_usa	origin	car name
3	18	3504	0	0	0	USA	chevrolet chevelle malibu
4	15	3693	0	0	0	USA	buick skylark 320
5	18	3436	0	0	0	USA	plymouth satellite
6	16	3433	0	0	0	USA	amc rebel sst
7	17	3449	0	0	0	USA	ford torino
8	15	4341	0	0	0	USA	ford galaxie 500
9	14	4354	0	0	0	USA	chevrolet impala
10	14	4312	0	0	0	USA	plymouth fury iii
11	14	4425	0	0	0	USA	pontiac catalina
12	15	3850	0	0	0	USA	amc ambassador dpl
13	15	3563	0	0	0	USA	dodge challenger se
14	14	3609	0	0	0	USA	plymouth 'cuda 340

- 2. Run the regression from the ToolPak, exporting the results to cell K1 of the same worksheet. You will get the following results.
 - a. These value give the coefficients to include with our dummy-coded variables.
 - Because the dummy-code for USA was left to zero, this becomes our reference category. We see here from the p-values that European cars do not have a significantly higher mileage from American cars, but Japanese cars do.
 - However, we cannot keep some dummy variables and drop others. That would lead to inaccurate comparisons across groups.
 Since this p-value is so close to .05, I will decide to keep it in the model.

	K	L	М	N	0	Р	Q	R	S
1	SUMMARY OUTPUT								
2						Weight	origin_europe	origin_asia	mpg_pred
3	Regression St	tatistics			American	3000	0	0	
4	Multiple R	0.837558007			European	3000	1	0	
5	R Square	0.701503415			Asian	3000	0	1	
6	Adjusted R Square	0.699230599							
7	Standard Error	4.286477069							
8	Observations	398							
9									
10	ANOVA								
11		df	SS	MS	F	Significance F			
12	Regression	3	17013.26452	5671.088175	308.6493667	4.8646E-103			
13	Residual	394	7239.310953	18.37388567					
14	Total	397	24252.57548						
15									
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
17	Intercept	43.69585641	1.104363368	39.56655724	2.5821E-139	41.5246745	45.86703833	41.5246745	45.86703833
18	weight	-0.007023439	0.000318398	-22.05865536	8.40858E-71	-0.007649411	-0.006397467	-0.007649411	-0.006397467
19	origin_europe	1.215471794	0.652373629	1.863152862	0.063184619	-0.067096849	2.498040436	-0.067096849	2.498040436
20	origin_asia	2.355434709	0.662030569	3.557894182	0.000419392	1.053880491	3.656988926	1.053880491	3.656988926
21									
22									

3. We can now use these coefficients to make point predictions in the range O2:S5. Notice that we could technically include each of the dummy-coded variables in our equations; but the non-necessary coefficients are multiplied by zero.

4	K	L	M	N	0	Р	Q	R	S	T	U	V	W
1 SI	UMMARY OUTPUT												
1 30	UIVIIVIART UUTPUT												
2						Weight	origin_europe	origin_asia	mpg_pred				
3	Regression St	atistics			American	3000	0	0	22.62553953	=L17+((P3	*\$L\$18)+(0	Q3*L19)+(R	3*L20))
4 N	Iultiple R	0.837558007			European	3000	1	0	23.84101132	=L17+(P4	*\$L\$18)+(Q	4*L19)+(R4	1*L20)
5 R	Square	0.701503415			Asian	3000	0	1	24.98097424	=L17+(P5	*\$L\$18)+(L	19*Q5)+(R	5*\$L\$20)
5 A	djusted R Square	0.699230599											
7 St	tandard Error	4.286477069											
3 0	bservations	398											
9													
0 A	NOVA												
1		df	SS	MS	F	Significance F							
2 R	egression	3	17013.26452	5671.088175	308.6493667	4.8646E-103							
3 Re	esidual	394	7239.310953	18.37388567									
4 To	otal	397	24252.57548										
5													
6		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%				
7 In	itercept	43.69585641	1.104363368	39.56655724	2.5821E-139	41.5246745	45.86703833	41.5246745	45.86703833				
8 w	reight	-0.007023439	0.000318398	-22.05865536	8.40858E-71	-0.007649411	-0.006397467	-0.007649411	-0.006397467				
9 01	rigin_europe	1.215471794	0.652373629	1.863152862	0.063184619	-0.067096849	2.498040436	-0.067096849	2.498040436				
0 01	rigin_asia	2.355434709	0.662030569	3.557894182	0.000419392	1.053880491	3.656988926	1.053880491	3.656988926				
1				•									
2													

Logistic regression

 The Analysis ToolPak does not include logistic regression, so you need to install XLMiner. Fortunately this is free and requires no external downloads: go to Insert > Get Add-Ins > XLMiner Analysis ToolPak.

Demo: occupancy.xlsx

- 1. Select your Y range (Occupancy) and X range (Temperature, Humidity, and Light).
 - a. The range selector tool in XLMiner is terribly user-unfriendly. It may be easier to grab a smaller range and fill it out by typing.
- 2. We will get some familiar output expressed in intercepts and p-values. All of our X's are significant.

Drill: penguin-logistic.xlsx

1. XLMiner requires that all variables be *numeric*. This means that the MALE/FEMALE labels for sex should be converted into 0's and 1's.

2. flipper_length_mm is not significant, so drop it and re-run.

Demo: occupancy-diagnostics.xlsx

1. The equation to find the probability is a doozy, but this comes from the logit equation. Read through it to interpret!

2. We can assume that any probability greater than 50% is a "yes," otherwise "no." Find this predicted outcome in column G.

3. Now we can simply find a TRUE/FALSE result as to whether the predicted outcome is the same as the actual one.

4. We can now calculate a basic predictive accuracy measure for this model. 98.7% isn't too bad for a first pass!

4	К	L	M	N	О	Р		
14								
15								
	Number							
16	observations	8143	=COUNT(A2:A8144)					
	Number							
	observations							
17	predicted correctly?	8039	=COUNTIF(H2:H8144,"TRUE")					
18	Pred. accuracy	98.7%	=L17/L16					
19								

5. Now that we have set up our equations in the table, we can easily plug in any pointestimates to predict a "yes" or "no" outcomes

a. For temperature 25, humidity 30 and light 400, it's a close call! Maybe making binary predictions isn't so straightforward after all.

Drill: penguin-logistic-diagnostics.xlsx

1. Follow the same steps as above. See if you can write the logit curve equation on your own!

