第三章 大气化学反应动力学基础

3.1 化学反应动力学基本原理

化学动力学 chemical kinetics 是研究化学反应速率 rate of reaction 和反应机理 mechanism of reaction 的化学分支

化学反应 有的进行得很快,例如**爆炸反应**、强酸和强碱的中和反应等,几乎在顷刻之间完成;有的进行的很慢,

例如岩石风化、钟乳石生长、放射性元素镭的衰变等. 历时千百万年才有显著的变化。

我们希望找到方法加快有益污染物消除的反应,减缓有害污染物生成的反应。

中心问题 研究化学转化如何进行: 反应机理 (反应历程)

研究化学转化进行速率: 化学动力学(环境(温度、压力、浓度、介质和催化剂)对过程速率的影响)

中心任务 大气化学反应动力学具体任务:定量地研究大气污染物种在大气中的化学反应速率,解释化学反应机理,并为大气化学模式提供各种重要参数。

3.1.1 化学反应速率与方程

3.1.1.1 化学反应

通用描述 aA+bB → cC+dD A、B、C、D 是反应参与物和生成物物种名称

a、b、c、d 为对应上述物的化学计量系数

基元反应 elementary reaction 反应物微粒(分子、原子、离子或自由基)在碰撞中相互作用**直接转化**为生成物分子,简称基元反应

总包反应 overall reaction 生成产物的反应由若干个基元反应所构成,只代表了最终的结果

示例 H_2 与 I_2 生成 HI 的气相反应: 经研究证实是分三步进行的:

① $I_2 + M \rightarrow 2I^{\cdot} + M$ ② $2I^{\cdot} + M \rightarrow I_2 + M$ ③ $2I^{\cdot} + H_2 \rightarrow 2HI$ 总反应 ④: $H_2 + I_2 = 2HI$ 反应①~③为基元反应,反应④它是由三个基元反应所构成的总包反应。

反应机理 表示一个反应是由哪些基元反应组成或从反应形成产物的具体过程,又称反应历程。

注意 ① 化学反应方程式是否为基元反应必须通过实验才能确定

② 一般的化学反应方程式只是一个计量方程式,只代表**反应总结果**,不能反映进行的实际途径。

3.1.1.2 反应速率

引入 Δt 时间内反应物浓度和生成物浓度的变化值

 t_1 时的浓度 $c(A)_1$ $c(B)_1$ $c(C)_1$ $c(D)_1$ 则每个反应物的速率有 $\Delta t = t_2 - t_1$ $\Delta c = c_2 - c_1$

则 $\bar{r}(A) = -\frac{\Delta c(A)}{\Delta t}$ $\bar{r}(D) = \frac{\Delta c(D)}{\Delta t}$ 单位: $\mathbf{mol} \cdot \mathbf{L}^{-1} \cdot s^{-1}$

示例 反应: $2N_2O_5 = 4NO_2 + O_2$ $r(N_2O_s) = -\frac{1.95 - 2.10}{100} = 1.5 \times 10^{-3} \text{mol} \cdot L^{-1} \cdot s^{-1}$

由此可见:不同物质表示的反应速率数值是不同的 上例中, $r(N_2O_s)$: $\bar{r}(NO_2)$: $\bar{r}(O_2) = 2$:4:1 即反应速率之比等于方程式相应物质分子式之前的系数之比

定义式 $r = -\frac{1}{a}\frac{d[A]}{dt} = -\frac{1}{b}\frac{d[B]}{dt} = \frac{1}{c}\frac{d[C]}{dt} = \frac{1}{d}\frac{d[D]}{dt} \qquad [A], [B], [C], [D]代表A, B, C, D的浓度$

定义为**反应物反应速率**除以**反应物计量**系数。上式反映了质量的守恒,称为**质量作用定律**。

特点 ① 对同一反应、数值的大小与选择的物质种类无关、只有一个值

- ② 对于反应物,浓度变化为负值
- ③ 在实际应用中,常选浓度变化易测定那种物质来表示化学反应速率

3.1.1.3 反应速率方程

定义 在一定温度下,反应速率往往可以表示为反应体系中各组分浓度的某种函数关系

m, n, p, q 称为此反应对反应物的<mark>级数</mark>,可以为零,整数或分数

 $r = K[A]^m[B]^n[C]^p[D]^q$

速率常数 K为速率常数。其不是绝对常数:与反应物的**本性**、反应**温度**、反应**介质、催化剂**的存在有否、反应

容器的**器壁性质**等有关,<mark>但与浓度无关</mark>

注意 ① 气相反应中,产物级数一般为0,反应速率只与反应物浓度有关,与产物浓度无关 $r = k[A]^m[B]^n$

② 当温度不变时,若有基元反应 aA + bB = cC + dD,级次等于系数,方程可得 $r = k[A]^a[B]^b$

③ 非基元反应的速率方程式中,反应物的级数不一定与化学计量系数有直接对应关系,不能由化学反应方程式直接写出,而要由实验确定。

3.1.1.4 反应级次

级数

反应级次 $r = k[A]^a[B]^b$ a 称为A的分级数, b 称为B的分级数, 分别表示A、B浓度对反应速率影响的程度。 总反应级数 $n = a + b + \cdots$

注意 ① 对于复合反应a、b ...和n的数值**完全是由实验测定**的,它们的值可以是零、正整数、分数或负数。

- ② 如反应中某一组分大量存在, 前后浓度基本不变, 反应级次可以约减。
- ③ 它们并不一定和化学计量系数有直接的对应关系。

④ 反应级数的大小表示浓度对反应速率的影响程度, 反应级数越大, 反应速率受到浓度的影响越大

示例 卤化氢在 700K 以上的生成反应的计量式分别为: $H_2 + CI_2 \rightarrow 2HCI$ $H_2 + I_2 \rightarrow 2HI$

实验测得速率方程为 $V_1 = k_1[H_2][Cl_2]^{1/2}$ $V_2 = k_2[H_2][I_2]$

反应 1: 对 H_2 是 1 级, Cl_2 是 0.5 级, 总级数为 1.5 级; **反应 2**: 对 H_2 和 I_2 都是 1 级, 总级数为 2 级即便是很相似的反应, 其反应级数也可能有不同。

零级反应 反应速率是常数,与反应物浓度无关。常见的零级反应有表面催化反应和酶催化反应、氨在铂或钨金

属表面分解。 速率方程: $-\frac{d[A]}{dt} = k_0$ $[A] = a - k_0 t$ 浓度线性递减

一级反应 反应速率与反应物浓度成正比。如放射性衰变等。 速率方程: $-\frac{d[A]}{dt} = k_1[A]$

 $[A] = ae^{-k_1t}$ 浓度指数递减

二级反应 常见的二级反应有乙烯、丙烯的二聚作用,碘化氢的热分解反应等。

3.1.2 半衰期与寿命

半衰期 即反应物浓度**达到0.5**a的时间 $t_{0.5}$, $t_{0.5} = \frac{1}{k_1} \ln 2$ 可见半衰期与反应物的初始浓度无关,**与速率常数 成反比**。常用来测定岩石、骨骼和古代艺术品等考古文物的年代。

自然寿期 τ 反应物浓度下降到初始浓度的1/e时的反应时间,用 τ 表示,也称平均寿命。对一级反应: $\tau = \frac{1}{k}$

应用实例 通过测定¹⁴C和¹²C的比值,可估计古生物遗骸的年龄。¹⁴C由宇宙线中的高能中子与大气中¹⁴N的碰撞而产生,¹⁴C是放射性核素,一经产生,立即开始衰变 $_6^{14}C \to _7^{14}N + _{-1}^{0}e = t_{1/2} = 5770$ 年由于不断产生和衰变, ¹⁴C大气中的浓度被认为是稳定不变的。¹⁴C在大气中结合进 CO2 中,通过光合作用进入植物,然后进入动物。只要动植物有生命,新陈代谢就使得它们体内的¹⁴C的浓度稳定不变。一旦它们死亡,也就停止了对¹⁴C的摄取。由于衰变,其遗体内的¹⁴C浓度不断降低。如果¹⁴C的浓度降低到稳定浓度的一半,可推断该生物距今约有 5770 年的历史。

3.1.3 反应速率常数

例题

3.1.3.1 阿伦尼乌斯经验公式

3.1.3.1	. 阿伦尼乌斯经验公	公 式		N O	Br ₂		
单位	零级反应	反应速率方程 $r = k$, 单位cm ⁻³ s ⁻¹	1	0.10	0.10	1 2	
干ഥ	令纵以应	及应还学月在F - K, 丰世CIII 3	2	0.10	0.20	2 4	
	一级反应	反应速率方程 $r = k[A]$,单位 s^{-1}	3	0.10	0.30	3 6	
		- > 1 + - > 1	4	0.20	0.10	48	
	二级反应	反应速率方程 $r = k[A][B]$,单位cm 3 s $^{-1}$	5	0.30	0.10	108	
	三级反应	反应速率方程 $r = k[A]^2[B]$,单位cm ⁶ s ⁻¹					

实验

引**例** 由右侧实验数据推断速率方程并计算反应速率常数 $2NO + Br_2 \rightarrow 2NOBr$ 由 $1\2\3$ 组可见反应速率线性增加,则 $[Br_2]^1$,由 $1\4\5$ 可见 $[NO]^2$,反代可求K

公式 $K = Ae^{-\frac{L_a}{RT}}$ 其中 K为速率常数,R为摩尔气体常量,单位 $J/mol \cdot K$ T为热力学温度,单位K E_a 为表观活化能,单位为J/mol A为指前因子(也称频率因子)

解释 ① 该式表明反应速率常数与温度呈指数关系. 故此式称为反应速率随温度而变的指数定律

- ② 该定律除对所有的基元反应适用外,对于一大批(不是全部)复杂反应也适用
- ③ 阿伦尼乌斯方程一般<mark>适用于温度变化范围不大的情况</mark>,这时A和 E_a 变化不大。若温度范围较大,则 阿伦尼乌斯方程会产生误差
- 注意 ① E_a 对K有显著影响,在室温下每增加 $4kJ \cdot mol^{-1}$,K值降低约80%。

$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{T_2 - T_1}{T_2 T_1} \right)$$

初始浓度

m ol · 1-1 · s-1

- ② T↑K↑ 一般反应温度每升高10℃, K将增大2~4倍
- ③ 对同一反应,升高一定温度,在高温区值增加较少,因此对于原本反应温度不高的反应,可采用升温的方法提高反应速率
- ④ 对不同反应,升高相同温度, E_a 大的反应K增大倍数多,<mark>升高温度对反应慢的反应有大的加速作用</mark> 1. 某种酶催化反应 $E_a = 50 \ kJ/mol$,求从正常体温37°C发烧到40°C时,仅从反应速率理论上考虑,此 酶催化反应速率应增大多少倍?

实际上、酶的催化反应具有很严格的生理生化条件、高温会使酶部分失活。

2. 某一级反应,在300K时反应完成50%需时20min,在350K时反应完成50%需时5.0min,计算该反应的活化能。

$$\because \frac{v_1}{v_2} = \frac{t_2}{t_1} \qquad \therefore \ln \frac{20}{5.0} = \frac{Ea}{8.314} \left(\frac{350^2 - 300}{350^2 \times 300} \right) \qquad E_a = 2.42 \times 10^4 \text{J. mol}^{-1}$$