VERMES MIKLÓS Fizikaverseny 2017. április 8. III. forduló

Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fizika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

X. osztály

I. feladat

Az l=1 m hosszúságú mindkét végén nyitott üvegcsövet a közepéig higanyba merítjük függőleges helyzetben. A felső végét az ujjunkkal befogjuk és először megemeljük a távolsággal, amíg a higany szintje a csőben $h_1=10$ cm-el az edényben lévő szabad higanyfelszín fölé emelkedik. Ezután a közepéig higanyba merített mindkét végén nyitott üvegcső szabad végét újra befogjuk és b távolsággal lefele nyomjuk, amíg a csőben lévő higany szintje $h_2=15$ cm-el az edényben lévő szabad higanyszint alá süllyed. Ismerve a légnyomás értékét $p_0=10^5$ Pa, a higany sűrűségét

 $\rho = 13600 \frac{kg}{m^3}$ valamint a gravitációs gyorsulást $g = 10 \frac{m}{s^2}$, határozzátok meg:

a) mindkét helyzetben a csőbe bezárt levegő nyomását,

2 p

b) az a és b távolságokat,

4 p

c) Megtörténhet ha ugyanakkora a = b távolsággal emeljük és süllyesztjük a csövet a víz felszínéhez képest, ugyanakkora legyen a távolság a csőben lévő higany és az edényben lévő szabad higanyfelszín között? Igazold számításokkal a válaszod! 4 p

II. feladat

Egy kétatomos ideális gáz a mellékelt ábrának megfelelő körfolyamatban vesz részt. Ismerve: $p_1 = 2 \cdot 10^5 Pa, V_1 = 4 l, p_2 = 4 \cdot 10^5 Pa, V_3 = 8 l$

Határozzátok meg:

- a) A körfolyamat során végzett mechanikai munkát.
 2 p
- b) Annak a Carnot ciklus szerint működő hőerőgépnek a hatásfokát, amelyik a mellékelt körfolyamat szélső hőmérsékletértéki között működne.
 4 p
- c) A körfolyamat hatásfokát. 4 p

III. feladat

Az ábrán látható áramkört $E=20\,V$ elektromotoros feszültségű és $r=1\,\Omega$ belső ellenállású áramforrásról tápláljuk. Az F és G pontok közé egy $l=1\,m$ hosszúságú, S = 0,05 mm^2 keresztmetszetű és $\rho=50\cdot10^{-8}\Omega m$ fajlagos ellenállású konstantán huzalt feszítünk ki. A C csúszóérintkező, a huzalon elcsúszhat, ezzel tökéletes érintkezés biztosítva.

Ismerve az
$$R_1 = 8 \Omega$$
, illetve az $R_3 = 10 \Omega$ ellenállások értékeit, határozzátok meg:

- a) Az R_2 ellenállás értékét tudva, hogy az ampermérő akkor nem jelez áramot amikor a csúszóérintkező a huzal F végétől x = 0.4 m távolságra található.
- 3 p
- b) Az R₃ ellenálláson átfolyó áram erősségét, ha a csúszóérintkező az előző alpontban megadott helyzetben marad.
- 5 p
- c) Az R₃ ellenálláson és az áramforráson átfolyó áramok erősségét, ha az A és B pontok közé elhanyagolható ellenállású vezetőt kötünk.

