

IMD0033 - Probabilidade Lesson 21 - Visualizing Frequency Distributions

Ivanovitch Silva November, 2018

Agenda

- Visualizing distributions
- Bar, Pie, Histograms plots
- Skewed distributions
- Symmetrical distributions

Atualizar o repositório

git clone https://github.com/ivanovitchm/imd0033_2018_2.git

Ou

git pull

PREVIOUSLY ON...

Id	Name	Salary	 Gender
1	Mary Ann	\$35 000	 Female
2	Marc Downey	\$55 000	 Male
 51	 Juliet Ali	\$45 000	 Female
317	Jane Ace	\$95 000	 Female

Visualize the patterns

Gender	Frequency		
Male	147		
Female	170		

Organize the data in comprehensible forms to find patterns

Visualizing Distributions

Graphs make easy to scan and compare frequencies, providing us with a single picture of the entire distribution of a variable (**nominal** or **ordinal scale**)

Bar Plots

horizontal bar plots are ideal to use when the labels of the unique values are long

wnba['Pos'].value_counts().plot.bar()

wnba['Pos'].value_counts().plot.barh()

Pie Charts

Pie Charts

Percentage of players in WNBA by level of experience

Histograms

interval

We can see that 75% of the values are distributed within a relatively narrow interval (between 2 and 277), while the remaining 25% are distributed in an interval that's slightly larger.

this interval

>> wnba['PTS'].describe(
count	143.000000
mean	201.790210
std	153.381548
min	2.000000
25%	75.000000
50%	177.000000
75%	277.500000
max	584.000000

The Statistics Behind Histograms


```
>> wnba['PTS'].describe()
count
         143.000000
         201.790210
mean
std
         153.381548
min
           2.000000
25%
          75.000000
50%
         177.000000
75%
         277.500000
         584.000000
max
Name: PTS, dtype: float64
```

```
>> wnba['PTS'].plot.hist()
```


Binning for Histograms

Skewed Distributions

Skewed Distributions

Skewed Distributions

Symmetrical Distributions

Symmetrical Distribution (uniform)

The values are distributed uniformly

ld	Name	Salary	 Gender
1	Mary Ann	\$35 000	 Female
2	Marc Downey	\$55 000	 Male
 51	 Juliet Ali	\$45 000	 Female
 317	 Jane Ace	\$95 000	 Female

Understand how the data is **structured** and **measured**

Visualize the patterns

50 %

Gender	Frequency		
Male	147		
Female	170		

Organize the data in comprehensible forms to find patterns

