Esquemas de cifrado monoalfabéticos

José Galaviz

Cifrado de César

- Se pone el alfabeto en correspondencia con él mismo pero desplazado un cierto número de caracteres.
- Si el alfabeto tiene n símbolos, esto define n diferentes mapeos (el tamaño del espacio de búsqueda).
- Formalmente hablando el caracter en la posición i del alfabeto se reemplaza, en el criptograma, por el caracter en la posición: $f(i) = i + k \pmod{n}$; donde k es el tamaño del desplazamiento.
- El tamaño del desplazamiento es la clave.
- Para n=26 se tienen 25 opciones más la identidad.

a	b	U	d	Φ	f	g	h	i	j	k	1	m
D	E	F	G	Н	I	J	K	L	М	N	0	P
n	0	р	q	r	S	t	u	V	W	Х	У	Z
Q	R	S	Т	U	V	M	Х	Y	Z	A	В	С

Alfabeto decimado (diezmado)

- Se pone el alfabeto en correspondencia con él mismo, pero multiplicando en vez de sumando.
- Formalmente hablando el caracter en la posición i del alfabeto se reemplaza, en el criptograma, por el caracter en la posición: $f(i) = i * k \pmod{n}$; donde k es el factor de desplazamiento.
- El factor es la clave.
- No cualquier factor es útil: k = 2 usa sólo las posiciones pares y por tanto termina repitiendo letras: f(a) = f(b) con a distinto de b, por lo que e inútil.
- En general k debe ser primo relativo con n.
- Hay menos opciones que en el cifrado de César: para n = 26 se tienen, por ejemplo 1, 3, 5, 7, 9, 11, 15, 17, 19, 21. Doce opciones en vez de las 26 (25 de facto, de César).

Factor 2

0	1	2	3	4	5	6	7	8	9	10	11	12
a	b	U	d	Θ	f	g	h	i	j	k	1	m
А	C	E	G	I	K	М	0	Q	S	IJ	W	Y
13	14	15	1.0	17	1.0	1.0	0.0	0.1	0.0	0.0	0.4	0.5
13	11	15	16	1 /	18	19	20	21	22	23	24	25
n	0	15 р	q 16	r	18 S	19 t	20 u	V 21	22 W	23 X	У У	25 z

Factor 5

0	1	2	3	4	5	6	7	8	9	10	11	12
a	b	С	d	е	f	g	h	i	j	k	1	m
А	F	K	P	U	Z	E	J	0	Т	Y	D	I
13	14	15	16	17	18	19	20	21	22	23	24	25
n	0	р	q	r	S	t	u	V	W	Х	У	Z
N	S	X	С	Н	М	R	M	В	G	L	Q	V

Cifrado afín

- Combinación de los previos: $f(i) = k_1 * i + k_2 \pmod{n}$.
- El factor debe cumplir las restricciones del decimado.
- Con n=26, hay 12*26=312 posibilidades, de las cuales una es la identidad.
- Ejemplo:

$$f(i) = 5*i + 2 \pmod{26}$$

i	f(i)	i	f(i)
0	2	13	15
1	7	14	20
2	12	15	25
3	17	16	4
4	22	17	9
5	1	18	14
6	6	19	19
7	11	20	24
2	16	21	3
9	21	22	8
10	0	23	13
11	5	24	18
12	10	25	23

Afín
$$f(i) = 5 * i + 2 \pmod{26}$$

0	1	2	3	4	5	6	7	8	9	10	11	12
a	b	С	d	е	f	g	h	i	j	k	1	m
С	Н	М	R	W	В	G	L	Q	V	А	F	K
13	14	15	16	17	18	19	20	21	22	23	24	25
n	0	р	đ	r	s	t	u	V	W	Х	У	Z
P	U	Z	E	J	0	Т	Y	D	I	N	S	Х

Alfabeto mezclado

- El caso más general es cuando se permuta arbitrariamente el alfabeto.
- Con n=26 se tiene un espacio de búsqueda de 26! posibilidades: del orden de 10²⁶ mapeos.

Sistemas monoalfabéticos

- A los sistemas previos se les denomina monoalfabéticos: el disfraz de cada letra es único y permanente.
- Los cifrados monoalfabéticos preservan la distribución de frecuencias del idioma original.

Criptoanálisis de sistemas monoalfabéticos

- Sin embargo el criptoanalista resuelve todos los esquemas previos del mismo modo: buscando deducir la correspondencia con base en las estadísticas del idioma original del texto claro. Análisis de frecuencias.
- 2. La tabla de frecuencias, de digramas, de contactos, etc. Son muy útiles.
- 3. Elementos de un lenguaje (idioma), invariantes bajo cifrados monoalfabéticos.
 - a. Distribución de frecuencias.
 - b. Palabras frecuentes por tamaño.
 - c. Terminaciones, inicios y conectivos frecuentes.
 - d. Contactos.
- 4. Al estilo de The Gold-Bug de Edgar Allan Poe (1843).

Inglés

Letra	Frecuencia %	Letra	Frecuencia %
E	12.70	М	2.41
Т	9.06	W	2.36
А	8.17	F	2.23
0	7.51	G	2.02
I	6.97	Y	1.97
N	6.75	P	1.93
S	6.33	В	1.49
Н	6.09	V	0.98
R	5.99	K	0.77
D	4.25	J	0.15
L	4.03	Х	0.15
С	2.78	Q	0.10
U	2.76	Z	0.07

$\textbf{Español} \ \ (\textbf{alfabeto de 26 letras}, \ \textbf{sin \~n no acentos})$

Letra	Frecuencia %	Letra	Frecuencia
E	13.06	P	2.32
А	12.43	В	1.73
0	9.96	Н	1.12
S	7.28	Y	1.10
N	7.02	V	1.07
I	6.47	Q	1.06
R	6.46	G	1.06
L	5.92	F	0.58
D	4.78	J	0.54
Т	4.30	Z	0.45
U	4.11	Х	0.10
С	4.10	K	0.04
М	2.91	W	0.02

Ejemplos

En español.

- Si hay palabras de dos letras, una es consonante y otra vocal.
- Es raro que haya dos consonantes juntas en palabras cortas.
- Es raro que haya secuencias de consonantes.
- Las vocales preceden una gran variedad de letras.
- Las consonantes preceden a unas pocas letras.
- o La Q siempre va seguida de la U y luego de E o I.

Ejemplos

- En español.
 - o El 46% de las letras son vocales.
 - Las consonantes N,R y S acumulan el 22% de la frecuencia.
 - o 7 letras EAOINRS, acumulan el 65%.
 - o PCDESA son frecuentes al inicio de una palabra.
 - EN, ES, ON son frecuentes al derecho y al revés.
 - o DE, LA, EL, EN, ES son frecuentes.
 - o QUE, LOS, UNA, POR
 - o OASEN al final de palabra.

Lo que se preserva

- Luego de cifrar usando un sistema monoalfabético se preserva la distribución de frecuencias de aparición de cada símbolo, salvo el orden.
- Buscar el orden adecuado es más sencillo que explorar todas las permutaciones si la muestra es suficientemente grande (representativa) del idioma en que se escribió el texto claro.
- Cuanto mayor sea la muestra (criptograma), mejor para el criptoanálisis. No hay regla general porque depende de la distribución del idioma, pero suele ser mínimo de 3 a 5 veces el tamaño del alfabeto.

La clave del criptoanálisis

- En el criptograma se preserva algo de la información presente en el texto claro del que proviene.
- En general, uno de los mecanismos del criptoanálisis es encontrar lo que se mantiene invariante luego del cifrado.