Cálculo Vetorial Um Livro Colaborativo

11 de julho de 2022

Organizadores

Esequia Sauter - UFRGS

Fabio Souto de Azevedo - UFRGS

Pedro Henrique de Almeida Konzen - UFRGS

Licença

Este trabalho está licenciado sob a Licença Creative Commons Atribuição-CompartilhaIgual 3.0 Não Adaptada. Para ver uma cópia desta licença, visite https://creativecommons.org/licenses/by-sa/3.0/ ou envie uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Nota dos organizadores

Nosso objetivo é de fomentar o desenvolvimento de materiais didáticos pela colaboração entre professores e alunos de universidades, institutos de educação e demais interessados no estudo e aplicação do cálculo nos mais diversos ramos da ciência e tecnologia.

Para tanto, disponibilizamos em repositório público GitHub (https://github.com/reamat/Calculo) todo o código-fonte do material em desenvolvimento sob licença Creative Commons Atribuição-CompartilhaIgual 3.0 Não Adaptada (CC-BY-SA-3.0). Ou seja, você pode copiar, redistribuir, alterar e construir um novo material para qualquer uso, inclusive comercial. Leia a licença para maiores informações.

O sucesso do projeto depende da colaboração! Participe diretamenta da escrita dos recursos educacionais, dê sugestões ou nos avise de erros e imprecisões. Toda a colaboração é bem vinda. Veja mais sobre o projeto em:

https://www.ufrgs.br/reamat/Calculo

Desejamos-lhe ótimas colaborações!

Prefácio

Em construção ... Gostaria de participar na escrita deste livro? Veja como em:

https://www.ufrgs.br/reamat/participe.html

Sumário

C	apa		i
Organizadores			
Li	cenç	a	iii
N	ota d	los organizadores	iv
Pı	refác	io	\mathbf{v}
Sı	ımár	io	vii
1	Intr	rodução	1
2	Cur 2.1 2.2 2.3 2.4	rvas e trajetórias Funções vetoriais de uma variável - curvas e trajetórias Comprimento de arco	2 7 9 14
3	Sup 3.1 3.2 3.3 3.4	Funções vetoriais de duas variáveis reais - superfícies	26 26 27 28 29
4	Car 4.1 4.2 4.3	mpos vetoriais Campos escalares e campos vetoriais Representação gráfica dos campos vetoriais Cálculo com o operador nabla 4.3.1 Operador $\vec{\nabla}$ Operadores diferenciais de segunda ordem	30 30 31 33 33 35

SUMÁRIO vii

		4.3.3 Derivada direcional e gradiente	37	
		4.3.4 Divergente		
		4.3.5 Rotacional		
	4.4	Identidades envolvendo o operador nabla	38	
	4.5	Campos conservativos	38	
	4.6	Campos radiais e potenciais centrais		
	4.7	Exercícios finais		
5	Inte	egral de Linha	43	
	5.1	A integral de linha para um campo escalar	43	
	5.2	A integral de linha para um campo vetorial		
	5.3	O Teorema Fundamental para Integral de Linha	44	
	5.4	Relação entre campos irrotacionais e conservativos		
	5.5	O Teorema de Green	48	
6	Inte	egral de Superfície	49	
	6.1	Definição de integral de superfície para um campo escalar	40	
		6.1.1 Superfície definida como função de duas variáveis	50	
	6.2	Definição de integral de superfície para um campo vetorial	52	
		6.2.1 Superfície definida como função de duas variáveis	53	
	6.3	O Teorema da Divergência de Gauss	62	
	6.4	O Teorema de Stokes	65	
R	e ferê	encias Bibliográficas	66	
Ín	indice Remissivo			

Capítulo 1

Introdução

Em construção ... Gostaria de participar na escrita deste livro? Veja como em:

https://www.ufrgs.br/reamat/participe.html

Capítulo 2

Curvas e trajetórias

Neste capítulo, estudamos funções vetoriais do tipo $\vec{r}(t)$, ou seja, uma função que associa um parâmetro real a vetores no plano ou espaço. Funções vetoriais que dependem de apenas uma variável são os exemplos mais simples de funções que estudaremos.

2.1 Funções vetoriais de uma variável - curvas e trajetórias

Uma função vetorial de uma variável é uma função da forma

$$\vec{r}: D \to \mathbb{R}^3$$
.

onde $D\subseteq\mathbb{R}$ é o domínio de definição de \vec{r} e t é um parâmetro - podendo ser interpretado como o tempo ou não. Em coordenadas cartesianas, uma função vetorial assume a seguinte forma:

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$$

onde $\vec{i} = (1; 0; 0), \vec{j} = (0; 1; 0)$ e $\vec{k} = (0; 0; 1)$ são mostrados na figura 2.1.

Exemplo 2.1.1. São exemplos de funções vetoriais

a)
$$\vec{f}(t) = \operatorname{sen}(t)\vec{i} + \cos(t)\vec{j}$$

b)
$$\vec{g}(t) = t\vec{i} + \cosh(t)\vec{k}$$

c)
$$\vec{h}(t) = 2\cos(t)\vec{i} + 4\sin(t)\vec{j} + t\vec{k}$$
, $0 < t < 8\pi$

Figura 2.1: Os vetores canônicos $\vec{i}, \vec{j}, \vec{k}$.

Figura 2.2: Hélice circular dextrogira associada à função vetorial do Exemplo 2.1.3.

Uma curva no espaço pode ser representada pelo conjunto de pontos de uma função vetorial $\vec{r}(t)$ não constante em todo o seu domínio. Um ponto $\vec{r}(t)$ de uma parametrização é dito regular se $\frac{d\vec{r}(t)}{dt} \neq 0$. Uma parametrização é dita regular em t se $\frac{d\vec{r}(t)}{dt} \neq 0$ em todos os pontos. É possível definir orientação para uma curva regularmente parametrizada, a orientação é dada pelo sentido de crescimento do parâmetro t.

Exemplo 2.1.2. A função vetorial $\vec{f}(t) = \cos(t)\vec{i} + \sin(t)\vec{j}$ para $0 \le t \le 2\pi$ descreve uma circunferência de raio 1 centrada na origem sobre o plano xy orientada no sentido anti-horário.

Exemplo 2.1.3. A função vetorial $\vec{f}(t) = \cos(t)\vec{i} + \sin(t)\vec{j} + t\vec{k}$ para $t \in \mathbb{R}$ descreve uma hélice circular, como mostra a figura 2.2.

O limite, a derivação e a integração vetorial são definidas componente a com-

ponente no sistema de coordenadas cartesiano:

$$\lim_{t \to a} \vec{r}(t) = \lim_{t \to a} x(t)\vec{i} + \lim_{t \to a} y(t)\vec{j} + \lim_{t \to a} z(t)\vec{k}$$
 (2.1)

$$\frac{d\vec{r}(t)}{dt} = \frac{dx(t)}{dt}\vec{i} + \frac{dy(t)}{dt}\vec{j} + \frac{dz(t)}{dt}\vec{k}$$
 (2.2)

$$\int_{a}^{b} \vec{r}(t)dt = \int_{a}^{b} x(t)dt \, \vec{i} + \int_{a}^{b} y(t)dt \, \vec{j} + \int_{a}^{b} z(t)dt \, \vec{k}$$
 (2.3)

$$\int \vec{r}(t)dt = \int x(t)dt \,\vec{i} + \int y(t)dt \,\vec{j} + \int z(t)dt \,\vec{k}$$
 (2.4)

Teorema 2.1.1 (Regras de derivação). A derivada de funções vetoriais satisfaz as seguintes propriedades:

1. Se $\vec{r}(t)$ é um vetor constante, então $\frac{d\vec{r}(t)}{dt} = \vec{0}$.

2.
$$\frac{d}{dt} \left[\alpha \vec{r_1}(t) + \beta \vec{r_2}(t) \right] = \alpha \frac{d\vec{r_1}(t)}{dt} + \beta \frac{d\vec{r_2}(t)}{dt}$$

3. Se f(t) é uma função real, então $\frac{d}{dt}[f(t)\vec{r}(t)] = f'(t)\vec{r}(t) + f(t)\frac{d\vec{r}(t)}{dt}$

4.
$$\frac{d}{dt}\left[\vec{r}_1(t)\cdot\vec{r}_2(t)\right] = \vec{r}_1(t)\cdot\frac{d\vec{r}_2(t)}{dt} + \frac{d\vec{r}_1(t)}{dt}\cdot\vec{r}_2(t)$$

5.
$$\frac{d}{dt} \left[\vec{r}_1(t) \times \vec{r}_2(t) \right] = \vec{r}_1(t) \times \frac{d\vec{r}_2(t)}{dt} + \frac{d\vec{r}_1(t)}{dt} \times \vec{r}_2(t)$$

Demonstração. Os dois primeiros ítens podem ser obtidos diretamente de (2.2). A verificação fica a cargo do leitor. O item três pode ser obtido de uma aplicação da regra da cadeia a (2.2):

$$\begin{split} \frac{d}{dt} \left[f(t) \vec{r}(t) \right] &= \frac{d}{dt} \left[f(t) x(t) \vec{i} + f(t) y(t) \vec{j} + f(t) z(t) \vec{k} \right] \\ &= \left[f'(t) x(t) + f(t) x'(t) \right] \vec{i} + \left[f'(t) y(t) + f(t) y'(t) \right] \vec{j} + \left[f'(t) z(t) + f(t) z'(t) \right] \vec{k} \\ &= f'(t) \left[x(t) \vec{i} + y(t) \vec{j} + z(t) \vec{k} \right] + f(t) \left[x'(t) \vec{i} + y'(t) \vec{j} + z'(t) \vec{k} \right] \\ &= f'(t) \vec{r}(t) + f(t) \frac{d\vec{r}(t)}{dt} \end{split}$$

A derivada do produto escalar de duas funções vetoriais é dado por:

$$\frac{d}{dt} \left[\vec{r}_1(t) \cdot \vec{r}_2(t) \right] = \frac{d}{dt} \left[x_1(t) x_2(t) + y_1(t) y_2(t) + z_1(t) z_2(t) \right]
= \left[x_1'(t) x_2(t) + x_1(t) x_2'(t) \right] + \left[y_1'(t) y_2(t) + y_1(t) y_2'(t) \right]
+ \left[z_1'(t) z_2(t) + z_1(t) z_2'(t) \right]
= \vec{r}_1(t) \cdot \frac{d\vec{r}_2(t)}{dt} + \frac{d\vec{r}_1(t)}{dt} \cdot \vec{r}_2(t)$$

Finalmente a derivada do produto vetorial pode ser obtida de:

$$\frac{d}{dt} \left[\vec{r}_1(t) \times \vec{r}_2(t) \right] = \frac{d}{dt} \left[y_1(t) z_2(t) - z_1(t) y_2(t) \right] \vec{i} \\
+ \frac{d}{dt} \left[z_1(t) x_2(t) - x_1(t) z_2(t) \right] \vec{j} \\
+ \frac{d}{dt} \left[x_1(t) y_2(t) - y_1(t) x_2(t) \right] \vec{k} \\
= \left[y_1'(t) z_2(t) + y_1(t) z_2'(t) - z_1'(t) y_2(t) - z_1(t) y_2'(t) \right] \vec{i} \\
+ \left[z_1'(t) x_2(t) + z_1(t) x_2'(t) - x_1'(t) z_2(t) - x_1(t) z_2'(t) \right] \vec{j} \\
+ \left[x_1'(t) y_2(t) + x_1(t) y_2'(t) - y_1'(t) x_2(t) - y_1(t) x_2'(t) \right] \vec{k} \\
= \left[y_1'(t) z_2(t) - z_1'(t) y_2(t) \right] \vec{i} \\
+ \left[z_1'(t) y_2(t) - x_1'(t) z_2(t) \right] \vec{j} \\
+ \left[y_1(t) z_2'(t) - z_1(t) y_2'(t) \right] \vec{i} \\
+ \left[z_1(t) x_2'(t) - x_1(t) z_2'(t) \right] \vec{i} \\
+ \left[z_1(t) y_2'(t) - y_1(t) x_2'(t) \right] \vec{k} \\
= \vec{r}_1(t) \times \frac{d\vec{r}_2(t)}{dt} + \frac{d\vec{r}_1(t)}{dt} \times \vec{r}_2(t)$$

Demonstraremos agora um importante teorema do cálculo vetorial:

Teorema 2.1.2. Uma função vetorial $\vec{u}(t)$ possui norma constante se e somente se $\vec{u}(t) \cdot \frac{d\vec{u}(t)}{dt} = 0$.

Demonstração. Como $||u||^2 = \vec{u}(t) \cdot \vec{u}(t)$, temos

$$\frac{d\|u\|^2}{dt} = \frac{d}{dt} \left[\vec{u}(t) \cdot \vec{u}(t) \right] = \vec{u} \cdot \frac{d\vec{u}}{dt} + \frac{d\vec{u}}{dt} \cdot \vec{u} = 2\vec{u} \cdot \frac{d\vec{u}}{dt}$$

Assim, se ||u|| for constante, a derivada à esquerda é nula e temos $\vec{u}(t) \cdot \frac{d\vec{u}(t)}{dt} = 0$. Reciprocamente se $\vec{u}(t) \cdot \frac{d\vec{u}(t)}{dt} = 0$, então ||u|| deve ser constante.

Observação 2.1.1. Uma importante interpretação deste teorema é que se $\vec{v}(t)$ representa a velocidade de uma partícula no instante de tempo t, então se o módulo da velocidade, v(t), for constante e não nulo então a aceleração $\vec{a} = \frac{d\vec{v}(t)}{dt}$ é perpendicular a $\vec{v}(t)$ sempre que for não nula.

Exercícios resolvidos

Exercícios

E 2.1.1. Reconheça e represente graficamente as curvas descritas pelas seguintes funções vetoriais:

a)
$$\vec{f}(t) = \sin(t)\vec{i} + \cos(t)\vec{j} + \vec{k}, \ 0 < t < \pi$$

b)
$$\vec{f}(t) = \text{sen}(t)\vec{i} + 2\cos(t)\vec{k}, \ 0 \le t \le 2\pi$$

c)
$$\vec{f}(t) = \operatorname{sen}(t)\vec{i} + \cos(t)\vec{k}, -\infty < t < \infty$$

d)
$$\vec{f}(t) = t\vec{i} + \sqrt{4 - t^2} \vec{j}, -2 \le t \le 2$$

e)
$$\vec{f}(t) = t\vec{i} + \cosh(t)\vec{j}, -\infty < t < \infty$$

f)
$$\vec{f}(t) = \operatorname{senh}(t)\vec{i} + \cosh(t)\vec{j}, -\infty < t < \infty$$

E 2.1.2. Seja $\vec{r}(t)$ o vetor posição de uma partícula dado por

$$\vec{r}(t) = a\cos(wt)\vec{i} + a\sin(wt)\vec{j}$$

Calcule o vetor velocidade \vec{v} e o vetor aceleração \vec{a} dados por $\vec{v} = \frac{d\vec{r}(t)}{dt}$ e $\vec{a} = \frac{d\vec{v}(t)}{dt}$.

E 2.1.3. Dada a função vetorial $\vec{r}(t) = t^2 \vec{i} + e^t \vec{j} - 2\cos \pi t \vec{k}$, calcule:

- a) $\lim_{t\to 0} \vec{r}(t)$
- b) $\frac{d\vec{r}(t)}{dt}$
- c) $\frac{d\vec{r}(1)}{dt}$
- $\mathrm{d}) \int_0^1 \vec{r}(t)dt$
- e) $\int \vec{r}(t)dt$

E 2.1.4. Verifique que a função vetorial dada por $\vec{f}(t) = \frac{1-t^2}{1+t^2}\vec{i} + \frac{2t}{1+t^2}\vec{j}$, $-\infty < t < \infty$ representa uma curva contida em uma circunferência no plano xy centrada na origem. Identifique o raio desta circunferência, identifique a curva e isole os quatro quadrantes.

Figura 2.3: Aproximação poligonal do comprimento do arco

 ${f E}$ 2.1.5. Encontre a derivada de cada uma das funções vetoriais do exemplo 2.1.1

E 2.1.6. Sendo $\hat{r}(t) = \frac{1}{r(t)}\vec{r}(t)$, onde $r(t) = ||\vec{r}(t)||$, mostre as seguintes identidades:

a)
$$r'(t) = \frac{d\vec{r}(t)}{dt} \cdot \hat{r}(t)$$

b)
$$\frac{d}{dt} \left[\vec{r}(t) \times \frac{d\vec{r}(t)}{dt} \right] = \vec{r}(t) \times \frac{d^2 \vec{r}(t)}{dt^2}$$

c)
$$r'(t) = \frac{\vec{r}(t) \cdot \frac{d\vec{r}(t)}{dt}}{r(t)}$$

d)
$$\frac{d\hat{r}(t)}{dt} = \frac{1}{r(t)} \frac{d\vec{r}(t)}{dt} - \frac{\vec{r}(t) \cdot \frac{d\vec{r}(t)}{dt}}{r(t)^3} \vec{r}(t)$$

2.2 Comprimento de arco

Seja $a = t_0 < t_1 < t_2 < \cdots < t_n = b$ uma partição equidistante do domínio com $\Delta t = t_i - t_{i-1}$ e $P_i = \vec{r}(t_i)$, $i = 0,1,\cdots,n$, pontos sobre a curva, como mostra a figura 2.3. Uma possível aproximação para o comprimento da curva é dado pelo comprimento da poligonal determinada por essa partição. Observe que

o comprimento do segmento $P_{i-1}P_i$ é dado por $||P_i - P_{i-1}||$, logo, a aproximação para o comprimento da curva é

$$L_{n} = \sum_{i=1}^{n} \|P_{i} - P_{i-1}\|$$

$$= \sum_{i=1}^{n} \sqrt{(x_{i} - x_{i-1})^{2} + (y_{i} - y_{i-1})^{2} + (z_{i} - z_{i-1})^{2}}$$

$$= \sum_{i=1}^{n} \Delta t \sqrt{\frac{(x_{i} - x_{i-1})^{2}}{(\Delta t)^{2}} + \frac{(y_{i} - y_{i-1})^{2}}{(\Delta t)^{2}} + \frac{(z_{i} - z_{i-1})^{2}}{(\Delta t)^{2}}}$$

$$= \sum_{i=1}^{n} \sqrt{\left(\frac{x_{i} - x_{i-1}}{\Delta t}\right)^{2} + \left(\frac{y_{i} - y_{i-1}}{\Delta t}\right)^{2} + \left(\frac{z_{i} - z_{i-1}}{\Delta t}\right)^{2}} \Delta t.$$

Naturalmente, $L = \lim_{n\to\infty} L_n$. Como o lado direito da última igualdade é uma soma de Riemann, temos:

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx(t)}{dt}\right)^{2} + \left(\frac{dy(t)}{dt}\right)^{2} + \left(\frac{dz(t)}{dt}\right)^{2}} dt = \int_{a}^{b} \left\|\frac{d\vec{r}(t)}{dt}\right\| dt.$$
 (2.5)

Logo, o comprimento do arco s quando a parâmetro corre de a até t é

$$s(t) = \int_{a}^{t} \left\| \frac{d\vec{r}(\tau)}{dt} \right\| d\tau, \qquad a \le t \le b.$$
 (2.6)

Exercícios resolvidos

E 2.2.1. Mostre que o comprimento de arco da curva parametrizada $\vec{r}(t) = t\vec{i} + t^2\vec{j}$, definida para $-2 \le t \le 2$ é $L = 2\sqrt{17} + \frac{\ln(4+\sqrt{17})}{2}$. Tal curva pertence a parábola $y = x^2$, e pode ser visualizada na figura 2.4.

 $\frac{d\vec{r}}{dt} = \vec{i} + 2t\vec{j} \text{ e portanto } L = \int_{-2}^{2} \sqrt{4t^2 + 1} dt = 2\int_{0}^{2} \sqrt{4t^2 + 1} dt. \text{ Com a mudança de variável } 2t = \tan(u), 0 \le u \le \alpha, \text{ onde } \alpha = \arctan(4) \text{ temos } 2dt = \sec^2(u) du \text{ e então } L = \int_{0}^{\alpha} |\sec(u)| \sec^2(u) du = \int_{0}^{\alpha} \sec^3(u) du = \left[\frac{\sec(u)\tan(u) + \ln|\sec(u) + \tan(u)|}{2}\right]_{0}^{\arctan(4)}.$

E 2.2.2. Mostre que o comprimento de arco da curva parametrizada $\vec{r}(t) = 5(1-t^2)\vec{i} + 4t^{5/2}\vec{j} + 5t^2\vec{k}$, definida para $0 \le t \le 1$ é $L = \frac{32}{3}\sqrt{2} - 4\sqrt{3}$. Essa curva pode ser visualizada na figura 2.4.

pode set visitatizatati ila ilgara 2.1.
$$\frac{d\vec{r}}{dt} = -10t\vec{i} + 10t^{3/2}\vec{j} + 10t\vec{k} \text{ e portanto } L = \int_0^1 \sqrt{100t^3 + 100t^2 + 100t^2} dt = 10 \int_0^1 t\sqrt{t + 2} dt = 10 \int_2^3 (s - 2)s^{1/2} ds = 10 \int_2^3 (s^{3/2} - 2s^{1/2}) ds$$

Figura 2.4: (esq) Curva do exercício E 2.2.1; (dir) curva do exercício E 2.2.2.

Exercícios

E 2.2.3. Mostre que o comprimento de arco da curva parametrizada $\vec{r}(t) = (1+t)\vec{i} + (1-t^2)\vec{j}$, definida para $-1 \le t \le 1$ é $L = \sqrt{5} + \frac{\ln(\sqrt{5}+2)}{2}$.

E 2.2.4. Mostre que o comprimento de arco da curva parametrizada $\vec{r}(t) = (1-t^2)\vec{i} + (t^2+t^3)\vec{j} + (1+t^2-t^3)\vec{k}$, definida para $0 \le t \le 1$ é $L = \frac{5\sqrt{30}-4\sqrt{3}}{9}$.

E 2.2.5. Mostre que o comprimento de arco da curva parametrizada $\vec{r}(t) = 2t^3\vec{i} + (1-t^3+2t^{9/2})\vec{j} + (t^3+2t^{9/2})\vec{k}$, definida para $0 \le t \le 1$ é $L = \frac{14\sqrt{6}}{9}$.

2.3 Triedro de Frenet-Serret

Seja a curva descrita pela função vetorial $\vec{r}(t)$. Queremos encontrar um vetor que seja tangente à curva em um dado ponto. Para tal tomamos o limite

$$\lim_{h \to 0} \frac{\vec{r}(t+h) - \vec{r}(t)}{h}$$

Este limite converge para $\frac{d\vec{r}(t)}{dt}$ e, geometricamente, para o vetor tangente à curva no ponto P relativo a $\vec{r}(t)^1$ sempre que $\frac{d\vec{r}(t)}{dt} \neq \vec{0}$. O sentido do vetor $\frac{d\vec{r}(t)}{dt}$ é dado pela parametrização da curva, em outras palavras, o vetor $\frac{d\vec{r}(t)}{dt}$ aponta no sentido em que o parâmetro t cresce.

¹O leitor atento ao formalismo pode tomar esta como uma definição de vetor tangente. Adiante, veremos que esta definição é consistente com o vetor tangente do cálculo de funções de uma variável.

Figura 2.5: O vetor tangente $\frac{d\vec{r}(t)}{dt}$

Observe que a norma do vetor tangente depende de como a curva é parametrizada e não apenas da curva em si. A fim de trabalhar com um objeto que independe da parametrização, é natural definirmos o vetor tangente unitário, denotado por \vec{T} (veja figura 2.6):

$$\vec{T}(t) = \frac{1}{\left\|\frac{d\vec{r}(t)}{dt}\right\|} \frac{d\vec{r}(t)}{dt}, \qquad \frac{d\vec{r}(t)}{dt} \neq \vec{0}.$$
 (2.7)

A condição de existência para o vetor \vec{T} é que a função vetorial que parametriza a curva seja diferenciável e que sua derivada seja diferente de zero, ou seja, que a parametrização seja regular.

Observação 2.3.1. Quando $\vec{r}(t)$ representa a trajetória de uma partícula ao longo do tempo, a derivada $\frac{d\vec{r}(t)}{dt}$ é a velocidade $\vec{v}(t)$ da partícula. Neste caso, o vetor tangente unitário é o versor associado a $\vec{v}(t)$:

$$\vec{v}(t) = v(t)\hat{v}(t) = v(t)\vec{T}(t).$$

A norma de $\vec{v}(t)$, denotada por v(t), é chamada de velocidade escalar. O vetor $\vec{T}(t)$ indica o sentido e a direção da velocidade.

O vetor \vec{T} pode ser definido de forma alternativa como segue: consideramos s como função de t na expressão (2.6) e observamos que $s'(t) = \left\|\frac{d\vec{r}(t)}{dt}\right\| > 0$. Assim, s(t) é uma função contínua e monótona de t. Por outro lado, usando a Regra da Cadeia, temos:

$$\frac{d\vec{r}}{dt} = \frac{d\vec{r}}{ds}\frac{ds}{dt} = \frac{d\vec{r}}{ds} \left\| \frac{d\vec{r}(t)}{dt} \right\|.$$

Figura 2.6: Triedro de Frenet-Serret

Como $\frac{d\vec{r}(t)}{dt}$ representa o vetor tangente, então

$$\frac{d\vec{r}}{ds} = \frac{1}{\left\|\frac{d\vec{r}(t)}{dt}\right\|} \frac{d\vec{r}}{dt} = \vec{T}$$

representa um vetor tangente unitário.

Agora, queremos definir um vetor ortogonal a \vec{T} que esteja no plano determinado por $\frac{d\vec{r}(t)}{dt}$ e $\frac{d^2\vec{r}(t)}{dt^2}$. Para isso, usamos o resultado do teorema 2.1.2. Observe que a função vetorial $\vec{T}(t)$ possui módulo constante e, portanto, $\vec{T}(t) \cdot \frac{d\vec{T}(t)}{dt} = 0$. Observe ainda que

$$\frac{d^2\vec{r}(t)}{dt^2} = \frac{d(v\vec{T})}{dt} = v'(t)\vec{T}(t) + v(t)\frac{d\vec{T}(t)}{dt} = \frac{v'(t)}{v(t)}\frac{d\vec{r}(t)}{dt} + v(t)\frac{d\vec{T}(t)}{dt}$$

implica

$$\frac{d\vec{T}(t)}{dt} = \frac{1}{v(t)} \frac{d^2 \vec{r}(t)}{dt^2} - \frac{v'(t)}{v(t)^2} \frac{d\vec{r}(t)}{dt}$$

e assim $\vec{T}(t)$ e $\frac{d\vec{T}(t)}{dt}$ pertencem ao plano gerado por $\frac{d\vec{r}(t)}{dt}$ e $\frac{d^2\vec{r}(t)}{dt^2}$ e são ortogonais entre si. Entretanto, $\frac{d\vec{T}(t)}{dt}$ não é necessariamente unitário. Logo, faz sentido definir

o vetor normal unitário como

$$\vec{N} = \frac{1}{\left\| \frac{d\vec{T}(t)}{dt} \right\|} \frac{d\vec{T}(t)}{dt}.$$

A figura 2.6 contém a representação do triedro de Frenet-Serret em alguns pontos de uma hélice dextrogira.

Finalmente, vamos definir um vetor unitário que é simultanemente ortogonal a \vec{T} e \vec{N} . A forma natural de obter um vetor ortogonal a outros dois vem do produto vetorial. Assim, o vetor binormal unitário é definido como

$$\vec{B} = \vec{T} \times \vec{N}.$$

Das propriedades de produto vetorial, temos que \vec{B} , além de ortogonal a \vec{T} e \vec{N} , é unitário e forma um sistema dextrogiro. O trio \vec{T} , \vec{N} e \vec{B} é chamado de triedro de Frenet-Serret. A figura 2.6 apresenta a representação de alguns triedros de Frenet-Serret.

Exercícios resolvidos

Esta seção carece de exercícios resolvidos. Participe da sua escrita.

Veja como em:

https://www.ufrgs.br/reamat/participe.html

E 2.3.1. Considere a curva $\vec{r}(t)$ definida no exercício E 2.2.4. Encontre o triedro de Frenet-Serret \vec{T} , \vec{N} e \vec{B} .

triedro de Frenet-Serret
$$T, N \in B$$
.
$$\vec{v}(t) = \frac{d\vec{r}}{dt} = -2t\vec{i} + t(2+3t)\vec{j} + t(2-3t)\vec{k}. \text{ Então } ||\vec{v}||^2 = 4t^2 + t^2(2+3t)^2 + t^2(2-3t)^2 = t^2(12+18t^2) \text{ e assim } \vec{T} = \frac{\vec{v}}{||\vec{v}||} = \frac{-2}{\sqrt{12+18t^2}}\vec{i} + \frac{2+3t}{\sqrt{12+18t^2}}\vec{j} + \frac{2-3t}{\sqrt{12+18t^2}}\vec{k}.$$
 Derivando em relação a t :
$$\frac{d\vec{T}}{dt} = \frac{36t}{(12+18t^2)^{3/2}}\vec{i} + \frac{36(1-t)}{(12+18t^2)^{3/2}}\vec{j} - \frac{36(1+t)}{(12+18t^2)^{3/2}}\vec{k} \text{ e para normalizar sem trocar seu sentido definimos } \vec{u} = t\vec{i} + (1-t)\vec{j} - (1+t)\vec{k}, \text{ que implica } ||\vec{u}||^2 = t^2 + (1-t)^2 + (1+t)^2 = 3t^2 + 2, \text{ e então } \vec{N} = \frac{d\vec{v}}{||\vec{u}||} = \frac{\vec{u}}{||\vec{u}||} = \frac{t}{\sqrt{3t^2+2}}\vec{i} + \frac{1-t}{\sqrt{3t^2+2}}\vec{j} - \frac{1}{\sqrt{3t^2+2}}\vec{k}.$$
 Finalmente $\vec{B} = \vec{T} \times \vec{N}$ calculado via
$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{-2}{\sqrt{12+18t^2}} & \frac{2+3t}{\sqrt{12+18t^2}} & \frac{2-3t}{\sqrt{12+18t^2}} \\ \frac{t}{\sqrt{3t^2+2}} & \frac{1-t}{\sqrt{3t^2+2}} & \frac{-1-t}{\sqrt{3t^2+2}} \end{vmatrix} = \frac{(-4-6t^2)\vec{i} - (2+3t^2)\vec{j} - (2+3t^2)\vec{k}}{\sqrt{12+18t^2}\sqrt{3t^2+2}} = \frac{-2}{\sqrt{6}}\vec{i} - \frac{1}{\sqrt{6}}\vec{j} - \frac{1}{\sqrt{6}}\vec{k}.$$

Exercícios

E 2.3.2. Represente graficamente o terno de vetores \vec{T}, \vec{N} e \vec{B} e verifique através da regra da mão direita as seguintes identidades:

a)
$$\vec{B} = \vec{T} \times \vec{N}$$

b)
$$\vec{T} = \vec{N} \times \vec{B}$$

c)
$$\vec{N} = \vec{B} \times \vec{T}$$

Use a identidade vetorial dada por

$$\vec{u} \times (\vec{v} \times \vec{w}) = \vec{v} (\vec{u} \cdot \vec{w}) - \vec{w} (\vec{u} \cdot \vec{v})$$

para obter as identidades $b \in c$ a partir de a.

E 2.3.3. Considere a trajetória dada pela equações paramétricas

$$x = t \operatorname{sen}(t)$$

$$y = t \cos(t)$$

$$z = 0$$

Esboce gráfico dessa trajetória para $0 \le t \le 2\pi$, indicando os pontos inicial e final. Esboce o triedro \vec{T} , \vec{N} e \vec{B} nos instantes $t = \pi/4$, $t = 3\pi/4$, $t = 5\pi/4$, $t = 7\pi/4$.(Obs.: Não é necessário calcular analiticamente o triedro.) Considere a identidade vetorial $\frac{dr^2}{dt} = 2\vec{r} \cdot \frac{d\vec{r}}{dt}$ no instante $t = \pi/2$, ela é compatível com seu desenho?

E 2.3.4. Um erro comum entre estudantes é substituir a definição de vetor binormal unitário $\vec{B} = \vec{T} \times \vec{N}$ pela expressão espúria dada por

$$\frac{\frac{d\vec{N}}{dt}}{\left\|\frac{d\vec{N}}{dt}\right\|}.$$

Calcule esta expressão para o movimento circular uniforme e verifique que ela é igual a $-\vec{T}$ e, portanto, perpendicular a \vec{B} .

E 2.3.5. Considere a curva $\vec{r}(t)$ definida no exercício E 2.2.5. Obtenha o triedro de Frenet-Serret $\vec{T} = \frac{2}{\sqrt{6+18t^3}} \vec{i} + \frac{-1+3t^{3/2}}{\sqrt{6+18t^3}} \vec{j} + \frac{1+3t^{3/2}}{\sqrt{6+18t^3}} \vec{k}, \ \vec{N} = \frac{-2t^{3/2}}{\sqrt{6+18t^3}} \vec{i} + \frac{1+t^{3/2}}{\sqrt{6+18t^3}} \vec{j} + \frac{1-t^{3/2}}{\sqrt{6+18t^3}} \vec{k}$ e $\vec{B} = -\frac{\vec{i}}{\sqrt{3}} - \frac{\vec{j}}{\sqrt{3}} + \frac{\vec{k}}{\sqrt{3}}$.

Esta seção carece de exercícios. Participe da sua escrita.

Veja como em:

https://www.ufrgs.br/reamat/participe.html

Figura 2.7: Noção de curvatura em um ponto.

2.4 Curvatura e Torção

Nessa seção, estamos interessados em definir, a cada ponto da curva, funções que medem o quanto ela está torcida ou curvada, isto é, se a curva é muito diferente de uma reta ou se está fora de qualquer plano do espaço. Primeiro, definiremos uma função chamada de curvatura, que mede a cada ponto do domínio, a norma da variação do vetor tangente com respeito ao comprimento de arco s. Naturalmente, queremos que a reta tenha curvatura nula, pois ela não difere da sua tangente em ponto algum. Para facilitar a visualização, podemos começar pensando apenas nas curvas que estão contidas em algum plano. A figura 2.7 apresenta uma noção de curvatura em um ponto.

O vetor normal \vec{N} , sendo paralelo a $\frac{d\vec{T}}{dt}$ por definição, também é paralelo a $\frac{d\vec{T}}{ds}$, onde s é comprimento do arco definido pela curva da trajetória de $\vec{r}(t)$. Assim,

$$\frac{d\vec{T}}{ds} = \kappa \vec{N},\tag{2.8}$$

onde $\kappa(t)>0$ é uma função escalar chamada de curvatura. Por outro lado, calculamos a variação do vetor tangente com respeito ao comprimento de arco s usando a regra da cadeia

$$\frac{d\vec{T}}{ds} = \frac{d\vec{T}}{dt}\frac{dt}{ds} = \frac{d\vec{T}}{dt}\frac{1}{|s'(t)|},$$

onde s(t) é a função que mede o comprimento do arco dado pela expressão (2.6). Usando o fato que² $s'(t) = \left\| \frac{d\vec{r}(t)}{dt} \right\|$, temos:

$$\frac{d\vec{T}}{ds} = \frac{1}{\left\|\frac{d\vec{r}(t)}{dt}\right\|} \frac{d\vec{T}}{dt}.$$

²Teorema Fundamental do Cálculo, parte 2

Figura 2.8: Círculo de curvatura

Portanto, podemos escrever

$$\kappa(t) = \frac{\left\|\frac{d\vec{T}(t)}{dt}\right\|}{\left\|\frac{d\vec{r}(t)}{dt}\right\|}.$$

Definimos também, para cada ponto t do domínio, o raio de curvatura $\rho(t)$ da forma:

$$\rho(t) = \frac{1}{\kappa(t)}.$$

O raio de curvatura tem a seguinte interpretação geométrica: considere um ponto $\vec{r}(t_0)$ onde da curvatura não é nula e defina o ponto $\vec{r}(t_0) + \kappa(t_0)\vec{N}$, chamado de centro de curvatura. O círculo centrado no centro de curvatura e raio $\rho(t_0)$ é tangente a curva em t_0 e possui a mesma curvatura (veja a figura 2.8).

Exemplo 2.4.1. A curva descrita por $\vec{r} = a\cos(t)\vec{i} + a\sin(t)\vec{j}$, $a > 0, 0 \le$

 $t \leq 2\pi$ é uma cincunferência. Sua curvatura pode ser obtida da seguinte forma:

$$\frac{d\vec{r}(t)}{dt} = -a \operatorname{sen}(t)\vec{i} + a \cos(t)\vec{j}, \tag{2.9}$$

$$\left\| \frac{d\vec{r}(t)}{dt} \right\| = \sqrt{a^2 \operatorname{sen}^2(t) + a^2 \cos^2(t)} = \sqrt{a^2} = |a| = a, \tag{2.10}$$

$$\vec{T}(t) = \frac{-a \sin(t)\vec{i} + a \cos(t)\vec{j}}{a} = -\sin(t)\vec{i} + \cos(t)\vec{j}, \qquad (2.11)$$
(2.12)

Exemplo 2.4.2. Dada a curva $y=x^2$, vamos encontrar a curvatura e o raio de curvatura no ponto x=1. Primeiro, encontramos uma parametrização para essa curva, por exemplo, $\vec{r}=t\vec{i}+t^2\vec{j}$. Calculamos:

$$\frac{d\vec{r}(t)}{dt} = \vec{i} + 2t\vec{j},$$

$$\left\| \frac{d\vec{r}(t)}{dt} \right\| = \sqrt{1 + 4t^2},$$

$$\vec{T}(t) = \frac{1}{\sqrt{1 + 4t^2}} \left(\vec{i} + 2t\vec{j} \right)$$

$$\frac{d\vec{T}(t)}{dt} = -\frac{4t}{\sqrt{(1 + 4t^2)^3}} \vec{i} + \left(-\frac{8t^2}{\sqrt{(1 + 4t^2)^3}} + \frac{2}{\sqrt{1 + 4t^2}} \right) \vec{j},$$

e

Em t = 1, temos:

$$\left\| \frac{d\vec{r}(t)}{dt} \right\| = \sqrt{5},$$

$$\frac{d\vec{T}(t)}{dt} = -\frac{4}{\sqrt{5^3}} \vec{i} + \left(-\frac{8}{\sqrt{5^3}} + \frac{2}{\sqrt{5}} \right) \vec{j} = -\frac{4}{\sqrt{5^3}} \vec{i} + \frac{2}{\sqrt{5^3}} \vec{j},$$

$$\left\| \frac{d\vec{T}(t)}{dt} \right\| = \sqrt{\frac{16}{5^3} + \frac{4}{5^3}} = \frac{2}{5}.$$

е

Portanto,

$$\kappa(1) = \frac{\left\|\frac{d\vec{T}}{dt}\right\|}{\left\|\frac{d\vec{r}}{dt}\right\|} = \frac{2}{5\sqrt{5}}$$

е

$$\rho(1) = \frac{5\sqrt{5}}{2}.$$

veja representação geométrica na figura 2.8.

O leitor deve ter observado que conhecendo somente a curvatura não é possível reconstruir uma curva a partir de um ponto dado. Um curva pode não estar contida em plano algum no espaço e, por isso, precisamos definir uma função escalar, chamada torção, que mede a magnitude da variação do vetor binormal. A figura 2.9 apresenta uma ideia de torção: uma curva contida em algum plano no espaço tem torção nula e quando maior a variação com respeito ao plano definido por \vec{T} e \vec{N} , maior a torção. O leitor deve tomar cuidado na interpretação da figura 2.9, pois se esticarmos indefinidamente a hélice circular representada, ela voltará a se aproximar de uma reta, que tem torção nula (veja problema 2.4.2). Sabendo que a torção será definida em termos da variação do vetor binormal com respeito ao comprimento de arco s(t), fazendo algumas observações:

$$\frac{d\vec{B}}{ds} = \frac{d}{ds} \left(\vec{T} \times \vec{N} \right) = \frac{d\vec{T}}{ds} \times \vec{N} + \vec{T} \times \frac{d\vec{N}}{ds}.$$

Usando a expressão (2.8), temos que $\frac{d\vec{T}}{ds} = \kappa \vec{N}$, logo

$$\frac{d\vec{B}}{ds} = \vec{T} \times \frac{d\vec{N}}{ds}.$$

Isso implica que $\frac{d\vec{B}}{ds}$ é ortogonal a \vec{T} . Mas, pelo teorema 2.1.2, temos que $\frac{d\vec{B}}{ds}$ é ortogonal a \vec{B} . Logo, $\frac{d\vec{B}}{ds}$ é paralelo a \vec{N} , ou seja, podemos definir

$$\frac{d\vec{B}}{ds} = -\tau \vec{N},\tag{2.13}$$

onde τ é chamado de torção. O sinal negativo tem um propósito: quando $\tau>0$, $\frac{d\vec{B}}{ds}$ está no sentido de $-\vec{N}$; então se P é um ponto sobre a curva movendo-se no sentido positivo, \vec{B} gira em torno de \vec{T} como um parafuso de rosca direita sendo apertado (veja a figura 2.10). Em alguns contextos, calculamos a módulo da torção, dada por

$$|\tau| = \left\| \frac{d\vec{B}}{ds} \right\| = \frac{\left\| \frac{d\vec{B}(t)}{dt} \right\|}{\left\| \frac{d\vec{r}(t)}{dt} \right\|}.$$

Ainda, definimos o raio de torção por

$$\sigma(t) = \frac{1}{\tau(t)}.$$

Podemos calcular $\frac{d\vec{N}}{ds}$ em termos da curvatura e da torção:

$$\frac{d\vec{N}}{ds} = \frac{d}{ds} \left(\vec{B} \times \vec{T} \right) = \frac{d\vec{B}}{ds} \times \vec{T} + \vec{B} \times \frac{d\vec{T}}{ds}.$$

Figura 2.9: Ideia de torção.

Usando as expressões (2.8) e (2.13), escrevemos

$$\frac{d\vec{N}}{ds} = -\tau \vec{N} \times \vec{T} + \vec{B} \times \kappa \vec{N}.$$

ou seja,

$$\frac{d\vec{N}}{ds} = -\kappa \vec{T} + \tau \vec{B}.$$
 (2.14)

As equações (2.8), (2.13) e (2.14) são chamadas de Fórmulas de Frenet-Serret.

Como esperávamos, se $\kappa=0$, então $\frac{d\vec{T}}{ds}=\vec{0}$, o que implica que \vec{T} não varia ao longo da curva, ou seja, a curva é uma reta. Agora, se $\tau=0$, então $\frac{d\vec{B}}{ds}=\vec{0}$ e \vec{B} é um vetor constante. Como $\vec{B}\cdot\vec{T}=\vec{B}\cdot\frac{d\vec{r}}{ds}=0$, então podemos integrar para obter $\vec{B}\cdot(\vec{r}-\vec{r_0})=0$, onde r_0 é um vetor constante da integração. Logo \vec{r} está contido no plano ortogonal a \vec{B} .

Exemplo 2.4.3. Vamos calcular curvatura, raio de curvatura e o módulo da torção para a hélice circular $\vec{r}(t) = \cos(t)\vec{i} + \sin(t) + t\vec{k}$:

$$\frac{d\vec{r}(t)}{dt} = -\sin(t)\vec{i} + \cos(t) + \vec{k},$$

$$\left\| \frac{d\vec{r}(t)}{dt} \right\| = \sqrt{2},$$

$$\vec{T}(t) = -\frac{\sin(t)}{\sqrt{2}}\vec{i} + \frac{\cos(t)}{\sqrt{2}} + \frac{1}{\sqrt{2}}\vec{k},$$

$$\frac{d\vec{T}(t)}{dt} = -\frac{\cos(t)}{\sqrt{2}}\vec{i} - \frac{\sin(t)}{\sqrt{2}},$$

$$\left\| \frac{d\vec{T}(t)}{dt} \right\| = \frac{1}{\sqrt{2}},$$

$$\kappa(t) = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{1}{2},$$

$$\rho(t) = 2,$$

$$\vec{N}(t) = -\cos(t)\vec{i} - \sin(t)\vec{j},$$

$$\vec{B}(t) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -\frac{\sin(t)}{\sqrt{2}} & \frac{\cos(t)}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\cos(t) & -\sin(t) & 0 \end{vmatrix}$$

$$= \frac{\sin(t)}{\sqrt{2}}\vec{i} - \frac{\cos(t)}{\sqrt{2}}\vec{j} + \frac{1}{\sqrt{2}}\vec{k}.$$

$$\frac{d\vec{B}(t)}{dt} = \frac{\cos(t)}{\sqrt{2}}\vec{i} + \frac{\sin(t)}{\sqrt{2}}\vec{j},$$

$$\left\| \frac{d\vec{B}(t)}{dt} \right\| = \frac{1}{\sqrt{2}},$$

$$|\tau(t)| = \frac{1}{2}.$$

E 2.4.1. Calcule a curvatura, o raio de curvatura e o módulo da torção das curvas abaixo:

- a) $\vec{r} = a \cosh(t) \vec{i} + b \sinh(t) \vec{j}$, $-\infty < t < \infty$, a > 0, b > 0.
- b) $\vec{r} = a\cos(t)\vec{i} + b\sin(t)\vec{k}$, $0 \le t \le 2\pi$, a > 0, b > 0.
- c) $\vec{r} = a\cos(t)\vec{i} + a\sin(t) + ct\vec{k}, t \ge 0, a > 0, c > 0.$

E 2.4.2. Dada a hélice circular $\vec{r} = a\cos(t)\vec{i} + a\sin(t) + ct\vec{k}$, $t \ge 0$, a > 0, calcule o valor de c para que a torção seja máxima.

A curvatura e a torção podem ser calculadas de maneira mais simples. Para concluir isso, começamos calculando as derivadas de \vec{r} . Usamos aqui que $s'(t) = \left\|\frac{d\vec{r}(t)}{dt}\right\|$, obtida da equação (2.6):

$$\frac{d\vec{r}}{dt} = \frac{d\vec{r}}{ds}\frac{ds}{dt} = s'\vec{T},$$

Figura 2.10: Curvatura e Torção

$$\begin{split} \frac{d^2\vec{r}}{dt^2} &= s''\vec{T} + s'\frac{d\vec{T}}{dt} \\ &= s''\vec{T} + s'\|\frac{d\vec{T}}{dt}\|\vec{N} \\ &= s''\vec{T} + (s')^2\kappa\vec{N} \end{split}$$

е

$$\frac{d^{3}\vec{r}}{dt^{3}} = s'''\vec{T} + s''\frac{d\vec{T}}{dt} + 2s's''\kappa\vec{N} + s'^{2}\left(\kappa\frac{d\vec{N}}{dt} + \kappa'\vec{N}\right)
= s'''\vec{T} + s''s'\kappa\vec{N} + \left(2s's''\kappa + s'^{2}\kappa'\right)\vec{N}
+ s'^{3}\kappa(-\kappa\vec{T} + \tau\vec{B})
= \left(s''' - \kappa^{2}s'^{3}\right)\vec{T} + \left(3s''s'\kappa + s'^{2}\kappa'\right)\vec{N} + s'^{3}\kappa\tau\vec{B},$$

onde usamos as expressões (2.8) e (2.14). Agora, tomamos os seguintes produtos:

$$\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} = s'^3 \kappa \vec{B} \qquad e \qquad \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \cdot \frac{d^3\vec{r}}{dt^3} = s'^6 \kappa^2 \tau.$$

Isso implica em

$$\left\| \frac{d\vec{r}}{dt} \times \frac{d^2 \vec{r}}{dt^2} \right\| = |s'|^3 \kappa \qquad \text{e} \qquad \frac{d\vec{r}}{dt} \times \frac{d^2 \vec{r}}{dt^2} \cdot \frac{d^3 \vec{r}}{dt^3} = \left\| \frac{d\vec{r}}{dt} \times \frac{d^2 \vec{r}}{dt^2} \right\|^2 \tau.$$

ou seja,

$$\kappa = \frac{\left\|\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}\right\|}{\left\|\frac{d\vec{r}}{dt}\right\|^3} \tag{2.15}$$

e

$$\tau = \frac{\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \cdot \frac{d^3\vec{r}}{dt^3}}{\left\| \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \right\|^2}.$$
 (2.16)

Observação 2.4.1. Uma aplicação natural é a decomposição da aceleração em suas componentes tangencial e normal. Observe que

$$\frac{d\vec{r}}{dt} = \vec{v} = v\vec{T} = s'\vec{T}$$

е

$$\vec{a} = v'\vec{T} + v^2 \kappa \vec{N}.$$

Concluímos que a aceleração está no plano normal a \vec{B} e possui componentes tangencial e normal:

$$\vec{a} = a_T \vec{T} + a_N \vec{N},$$

onde $a_T = v'$ e $a_N = v^2 \kappa$. Então, se a velocidade possui normal constante, temos que v' = 0 e a aceleração possui apenas componente normal.

Exemplo 2.4.4. Consideremos agora, a curva gerada pelas seguintes equações paramétricas:

$$x(t) = \cos(t)$$
 $y(t) = \sin(t)$ $z(t) = f(t)$.

Onde f(t) é uma função dada. Observe que a projeção desta curva no plano xy é uma circuferência de raio 1. A curva é, portanto, gerada pela trajetória de ponto cuja projeção do movimento no plano xy é cirvular e a altura é dada pela função f(t). Podemos calcular a curvatura e a torção conforme a seguir:

$$\vec{r}(t) = \cos(t)\vec{i} + \sin(t)\vec{j} + f(t)\vec{k}$$

$$\frac{d\vec{r}}{dt} = -\sin(t)\vec{i} + \cos(t)\vec{j} + f'(t)\vec{k}$$

$$\frac{d^2\vec{r}}{dt^2} = -\cos(t)\vec{i} - \sin(t)\vec{j} + f''(t)\vec{k}$$

$$\frac{d^3\vec{r}}{dt^3} = \sin(t)\vec{i} - \cos(t)\vec{j} + f'''(t)\vec{k}$$

Assim, calculamos:

$$\frac{d\vec{r}}{dt} \times \frac{d^{2}\vec{r}}{dt^{2}} = [f''(t)\cos(t) + f'(t)\sin(t)]\vec{i} + [-f'(t)\cos(t) + f''(t)\sin(t)]\vec{j} + \vec{k}$$

$$\frac{d\vec{r}}{dt} \times \frac{d^{2}\vec{r}}{dt^{2}} \cdot r'''(t) = f'(t) + f'''(t)$$

$$\|\frac{d\vec{r}}{dt} \times \frac{d^{2}\vec{r}}{dt^{2}}\| = \sqrt{1 + (f'(t))^{2} + (f''(t))^{2}}$$

$$\|\frac{d\vec{r}}{dt}\| = \sqrt{1 + (f'(t))^{2}}$$

E finalmente, obtemos:

$$\kappa = \frac{\sqrt{1 + (f'(t))^2 + (f''(t))^2}}{\left(1 + (f'(t))^2\right)^{3/2}}$$

$$\tau = \frac{f'(t) + f'''(t)}{1 + (f'(t))^2 + (f''(t))^2}$$

Podemos, agora, explorar diversos casos particular:

- a) Caso f(t) = c constante. Neste caso, recaímos na circunferência de raio 1, cuja curvatura é 1 e a torção é nula.
- b) Caso f(t)=ct com c constante. Recaímos na hélice cicular uniforme, já estudada, cuja curvatura é $\frac{1}{1+c^2}$ e a torção é $\frac{c}{1+c^2}$.

- c) Caso $f(t)=ct^2$ com c constante. Recaímos na hélice cicular com espaçamento linearmente crescente, cuja curvatura é dada por $\frac{\sqrt{4c^2+1+4c^2t^2}}{(1+4c^2t^2)^{3/2}}$ e cuja torção é dada por $2\frac{ct}{4c^2+1+4c^2t^2}$.
- d) Caso $f(t)=\mathrm{sen}\,(t)$. Recaímos na elipse de semieixos 1 e $\sqrt{2}$ no plano y=z. Neste caso, a curvatura é $\kappa=\frac{\sqrt{2}}{(1+\cos(t)^2)^{3/2}}$ e a torção é nula.
- e) Caso $\tau=0$, isto é, f'(t)+f'''(t)=0, o que é equivalente a $f(t)=a+b\cos(t)+c\sin(t)$ onde a,b e c são constantes. Recaímos na elipse de semieixos 1 e $\sqrt{1+b^2+c^2}$ no plano z=bx+cy. Neste caso, a curvatura é $\kappa=\frac{\sqrt{b^2+c^2+1}}{(1-bc\sin(2t)+c^2\cos^2(t)+b^2\sin^2(t))^{3/2}}$ e a torção é nula.

Exercícios resolvidos

Esta seção carece de exercícios resolvidos. Participe da sua escrita.

Veja como em:

https://www.ufrgs.br/reamat/participe.html

Exercícios

E 2.4.3. Considere a hélice dada por

$$x = a\cos(t),$$

$$y = a\sin(t),$$

$$z = ct,$$

onde a > 0.

a) Encontre a curvatura desta hélice usando a fórmula

$$\kappa = \frac{\|\vec{r}'(t) \times \vec{r}''(t)\|}{\|r'(t)\|^3}$$

b) Encontre a torção desta curva usando a seguinte fórmula para calcular o vetor binormal unitário:

$$\vec{B} = \frac{\vec{r}'(t) \times \vec{r}''(t)}{\|\vec{r}'(t) \times \vec{r}''(t)\|}$$

c) Encontre a torção máxima e a torção mínima para um dado a.

E 2.4.4. Considere as funções vetoriais dadas por

$$\vec{f}(t) = \cos(\pi t)\vec{i} + \sin(\pi t)\vec{j}$$

$$\vec{g}(t) = \cos(\pi t^3)\vec{i} + \sin(\pi t^3)\vec{j}$$

Verifique que ambas parametrizam a mesma curva quando $-1 \le t \le 1$. Verifique se as parametrizações são regulares e compare o comportamento da derivada em t = 0. Que consequências isso tem para a existência do vetor tangente unitário?

- **E 2.4.5.** Uma motocicleta percorre uma trajetória circular de raio 20m com velocidade constante em módulo. A motocicleta poderá derrapar se a aceleração normal exceder $2m/s^2$. Qual é a velocidade máxima do motocicleta para que ela não derrape?
- **E 2.4.6.** Mostre que se a_N e a_T indicam as acelerações normal e tangencial, respectivamente, então

$$\|\vec{a}\|^2 = a_N^2 + a_T^2$$

onde \vec{a} é o vetor aceleração.

E 2.4.7. Mostre que a curvatura do gráfico da função

$$y = f(x)$$

sobre o plano xy é dada pela expressão

$$\kappa(x) = \frac{|f''(x)|}{(1 + f'(x)^2)^{3/2}}.$$

Use esta expressão para obter a curvatura das seguintes curvas planas:

- a) y = ax + b
- b) $y = \sqrt{a^2 x^2}$, -a < x < a onde a > 0.
- c) $y = x^4$
- $d) y = ax^2$
- e) $y = \cosh(x)$
- f) $y = \operatorname{senh}(x)$
- g) $y = \cos(x)$

Como você interpreta os casos a) e b)? As curvas dos ítens c) e g) possuem pontos onde a curvatura é zero. Que implicação isso tem sobre a existência do vetor normal unitário \vec{N} ? Interprete geometricamente.

E 2.4.8. Calcule o valor mínimo e o valor máximo do raio de curvatura de uma elipse de semi-eixos a e b quando 0 < a < b. O que acontece quando a = b? Quais são os semi-eixos da elipse cujo raio de curvatura varia entre 50m e 400m?

Esta seção carece de exercícios. Participe da sua escrita. Veja como em:

https://www.ufrgs.br/reamat/participe.html

Capítulo 3

Superfícies

Neste capítulo, estudamos funções vetoriais do tipo $\vec{f}(u,v)$, ou seja, uma função que associa um ponto do plano real a vetores no espaço.

3.1 Funções vetoriais de duas variáveis reais - superfícies

Uma função vetorial de duas variáveis é uma função da forma

$$\vec{r}: D_1 \times D_2 \to \mathbb{R}^3,$$

onde $D_1 \times D_2 \subseteq \mathbb{R}^2$ é o domínio de definição de \vec{r} e $(u,v) \in D_1 \times D_2$ são os parâmetros ou as coordenadas de superfície. Em coordenadas cartesianas, uma função vetorial assume a seguinte forma:

$$\vec{r}(u,v) = x(u,v)\vec{i} + y(u,v)\vec{j} + z(u,v)\vec{k}$$

Exemplo 3.1.1. São exemplos de funções vetoriais

a)
$$\vec{f}(u,v) = \operatorname{sen}(u)\vec{i} + \cos(v)\vec{j} + uv\vec{k}$$

b)
$$\vec{g}(u,v) = \operatorname{sen}(u)\cos(v)\vec{i} + \cosh(u)\operatorname{senh}(v)\vec{j} + u\vec{k}$$

Uma superfície no espaço pode ser representada pelo conjunto de pontos de uma função vetorial $\vec{r}(u,v)$ não constante em todo o seu domínio. A seguinte interpretação ajuda entender essa função: se fixamos v e temos que $\vec{r}(u,v)$ descreve uma curva e $\vec{r}_u(u,v)$ é um vetor tangente a essa curva. Da mesma forma, se fixamos u temos que $\vec{r}(u,v)$ descreve uma curva e $\vec{r}_v(u,v)$ é um vetor tangente a essa curva. Se essas curvas não forem paralelas, temos um sistema de coordenadas curvilíneo para escrever todos os pontos da superfície. Pense no globo terrestre, o medidiano

Figura 3.1: Um esfera centrada na origem com meridianos e paralelos traçados.

de Greenwich e a linha do Equador: o globo como uma superfície, Greenwich e Equador como duas curvas e longitude e latitude como um sistema de coordenadas curvilíneo, veja Figura 3.1 Observe que esse sistema curvilíneo fica bem definido quando \vec{r}_u e \vec{r}_v não são paralelos nos pontos do domínio. Chamamos de superfície regular aquela que satisfaz

$$\vec{r}_u \times \vec{r}_v \neq \vec{0}$$
.

Exemplo 3.1.2. A superfície

 $\vec{r} = a \operatorname{sen}(u) \cos(v) \vec{i} + a \operatorname{sen}(u) \operatorname{sen}(v) \vec{j} + a \cos(u) \vec{k}, \ a > 0, \ 0 \le u < \pi, \ 0 \le v < 2\pi$ descreve uma esfera centrada na origem e raio a. De fato, colocando

$$x = a \operatorname{sen}(u) \cos(v), \qquad y = a \operatorname{sen}(u) \operatorname{sen}(v) \qquad e \qquad z = a \cos(u),$$

temos que

$$x^2 + y^2 + z^2 = a^2.$$

Além disso, se (x,y,z) é um ponto qualquer nesta esfera, então existem u e v na parametrização. Para tal, basta escolher $u=\cos^{-1}\left(\frac{z}{a}\right)$ e escolher $v\in[0,2\pi)$ tal que:

$$cos(v) = \frac{x}{a \operatorname{sen}(u)}$$
 e $\operatorname{sen}(v) = \frac{y}{a \operatorname{sen}(u)}$, $u \neq 0$ e $u \neq \pi$.

3.2 Quádricas

A figura 3.2 apresenta uma lista das principais quádricas estudadas na disciplina de Cálculo Diferencial e Integral com funções de várias variáveis. As equações são as seguintes:

- a) Cone elíptico: $z^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.
- b) Elipsóide: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
- c) Parabolóide Elíptico: $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$
- d) Paraboló
ide Hiperbólico: $z=\frac{x^2}{a^2}-\frac{y^2}{b^2}$
- e) Hiperbolóide de uma folha: $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$
- f) Hiperbolóide de duas folhas: $-\frac{x^2}{a^2} \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Parabolóide Hiperbólico Hiperbolóide de uma folha Hiperbolóide de duas folhas

Figura 3.2: Quádricas

3.3 Caso particular onde a superfícies é definida por uma função

O caso particular da superfície representada por uma função z = f(x,y), podemos assumir uma parametrização natural $\vec{r} = u\vec{i} + v\vec{j} + f(u,v)\vec{k}$. Analogamente para os casos y = f(x,z) ou x = f(y,z), podemos assumir, respectivamente, as

parametrizações $\vec{r} = u\vec{i} + f(u,v)\vec{j} + v\vec{k}$ ou $\vec{r} = f(u,v)\vec{i} + v\vec{j} + u\vec{k}$. Para o caso z = f(x,y) (analogamente para os demais), a condição $\vec{r}_u \times \vec{r}_v \neq \vec{0}$ assume a forma

$$\vec{r}_u \times \vec{r}_v = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & f_u(u,v) \\ 0 & 1 & f_v(u,v) \end{vmatrix}$$

$$= -f_u \vec{i} - f_v \vec{j} + \vec{k} \neq \vec{0}.$$

Isso implica que $\vec{r}_u \times \vec{r}_v \neq 0$, ou seja, a superfície é regular. Voltaremos a discutir esse assunto nos próximos capítulos, quando o vetor gradiente estiver definido.

3.4 Vetor unitário normal

Para os fins de teoria de integração sobre superfícies, que discutiremos mais adiante, é fundamental definir o vetor unitário normal. Dado uma superfície e um ponto nela, dizemos que um vetor é normal à superfícies, se ele é perpendicular no ponto a cada curva contida na superfícies. Em especial, um vetor normal à superfícies no ponto $x_0 = x(u_0,v_0)$, $y_0 = y(u_0,v_0)$ e $z_0 = z(u_0,v_0)$, deve ser perpendicular às curvas $\vec{r}(u_0,v)$ e $\vec{r}(u,v_0)$, isto é, as curvas geradas quando se fixa um dos parâmetros u_0 ou v_0 , respectivamente. Assim, podemos concluir que cada vetor normal está da mesma direção do produto vetorial $\vec{r}_u \times \vec{r}_v$. Finalmente, o vetor normal unitário deve ter normal unitário, portanto, deve ser da forma:

$$\vec{n} = \pm \frac{\vec{r}_u \times \vec{r}_v}{\|\vec{r}_u \times \vec{r}_v\|}.$$
(3.1)

Aqui o sinal indica para qual lado o vetor normal aponta.

Capítulo 4

Campos vetoriais

4.1 Campos escalares e campos vetoriais

Campo é termo usado para designar funções definidas em uma porção do espaço tridimensional (ou bidimensional), isto é, funções cujo domínio D é um subconjunto de \mathbb{R}^3 (ou \mathbb{R}^2). Trabalharemos com dois tipos de campos: os campos escalares e os campos vetoriais. Os campos vetoriais são funções cuja imagem é composta de vetores no \mathbb{R}^3 , já a imagem dos campos escalares são números reais, isto é, escalares.

Exemplo 4.1.1. São exemplos de campos escalares.

- a) A função que liga a posição de um ponto dentro de uma sala à temperatura neste ponto.
- b) A pressão do ar como função da posição na atmosfera.

c)
$$f(x,y,z) = 100 + 20e^{-\sqrt{x^2+y^2+z^2}}$$
.

d)
$$f(x,y,z) = \vec{r} \cdot \vec{r} = x^2 + y^2 + z^2$$
, onde $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$.

Exemplo 4.1.2. São exemplos de campos vetoriais.

- a) A função que liga a posição de um ponto dentro de uma fluido à velocidade (vetor) neste ponto.
- b) O campo magnéticos, elétrico, gravitacional etc.

c)
$$\vec{F}(x,y,z) = x\vec{i} + z\vec{j} - y\vec{k}$$
.

d)
$$\vec{F}(x,y,z) = \vec{r} \times \vec{k}$$

4.2 Representação gráfica dos campos vetoriais

Um campo vetorial é representado graficamente por um conjunto de setas partindo de pontos (x,y,z) e de comprimento proporcional ao módulo de $\vec{F}(x,y,z)$ e mesma direção e sentido de $\vec{F}(x,y,z)$. O conjunto de pontos é escolhido de forma arbitrária de forma a permitir interpretar o campo.

Exemplo 4.2.1. Represente graficamente o campo vetorial $\vec{F}(x,y) = \sqrt{y}\vec{i}, y \ge 0$.

Exemplo 4.2.2. Represente graficamente o campo vetorial $\vec{F}(x,y) = x\vec{i}, y \ge 0$.

Exemplo 4.2.3. Represente graficamente o campo vetorial $\vec{F}(x,y) = -y\vec{i} + x\vec{j}$.

4.3 Cálculo com o operador nabla

4.3.1 Operador $\vec{\nabla}$

No cálculo vetorial, o operador $\vec{\nabla}$, pronunciado nabla ou del, é um símbolo usado para denotar uma série de operadores diferenciais definidos em campos escalares e vetorias, como gradiente, divergente e rotacional. Ele é definido simbolicamente como:

$$\vec{\nabla} \equiv \vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z} \tag{4.1}$$

Rigorosamente falando, o operador del não é um operador diferencial, mas um mnemônico que ajuda a lembrar de uma série de operadores diferenciais:

$$\vec{\nabla} f = \vec{i} \frac{\partial f}{\partial x} + \vec{j} \frac{\partial f}{\partial y} + \vec{k} \frac{\partial f}{\partial z} \quad \text{(Gradiente)},$$

$$\vec{\nabla} \cdot \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \quad \text{(Divergente)},$$

$$\vec{\nabla} \times \vec{F} = \vec{i} \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) + \vec{j} \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x} \right) + \vec{k} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \quad \text{(Rotacional)}.$$

O rotacional pode ser representado pelo seguinte determinante simbólico, que funciona como um mnemônico para lembrar facilmente de sua definição:

$$ec{
abla} imes ec{F} = \left| egin{array}{ccc} ec{i} & ec{j} & ec{k} \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ F_1 & F_2 & F_3 \end{array}
ight|.$$

Exemplo 4.3.1. Calule o gradiente do campo escalar dado por f(x,y,z) = xy + z.

$$\vec{\nabla}f = \vec{i}\frac{\partial f}{\partial x} + \vec{j}\frac{\partial f}{\partial y} + \vec{k}\frac{\partial f}{\partial z} = y\vec{i} + x\vec{j} + \vec{k}$$
(4.2)

Exemplo 4.3.2. Calule o divergente e o rotacional do campo vetorial dado por $\vec{F} = (yz + x)\vec{i} + z^2\vec{j} + z^3\vec{k}$.

$$\vec{\nabla} \cdot \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} = 1 + 0 + 3z^2 = 3z^2 + 1 \tag{4.3}$$

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ yz + x & z^2 & z^3 \end{vmatrix}$$

$$(4.4)$$

$$= (0-2z)\vec{i} + (y-0)\vec{j} + (0-z)\vec{k}$$
 (4.5)

$$= -2z\vec{i} + y\vec{j} - z\vec{k}. \tag{4.6}$$

Exemplo 4.3.3. Dado o campo vetorial dado por $\vec{F} = x^5 \vec{i} + y^2 \vec{j}$, calcule o gradiente do divergente, $\vec{\nabla} \vec{\nabla} \cdot \vec{F}$, de \vec{F}

$$\vec{\nabla} \cdot \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} = 5x^4 + 2y \tag{4.7}$$

$$\vec{\nabla}\vec{\nabla}\cdot\vec{F} = 20x^3\vec{i} + 2\vec{j} \tag{4.8}$$

4.3.2 Operadores diferenciais de segunda ordem

Operadores diferenciais de segunda ordem podem ser definidos através da composição de operadores diferenciais de segunda ordem. Combinando o gradiente, rotacional e divergente, encontramos as seguintes possibilidades:

$$\vec{\nabla} \cdot \vec{\nabla} f$$
 (Divergente do gradiente ou laplaciano) (4.9)

$$\vec{\nabla} \times \vec{\nabla} f$$
 (Rotacional do gradiente) (4.10)

$$\vec{\nabla}\vec{\nabla}\cdot\vec{F}$$
 (Gradiente do divergente) (4.11)

$$\vec{\nabla} \cdot \nabla \times \vec{F}$$
 (Divergente do rotacional) (4.12)

$$\vec{\nabla} \times \nabla \times \vec{F}$$
 (Rotacional do rotacional) (4.13)

(4.14)

As expressões $\vec{\nabla} \times \vec{\nabla} f$ e $\vec{\nabla} \cdot \nabla \times \vec{F}$ são identicamente nulas para campos duas vezes continuamente diferenciáveis, o que pode ser provado por simples inspeção:

$$\vec{\nabla} \times \vec{\nabla} f = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \end{vmatrix}$$

$$(4.15)$$

$$= \vec{i} \left(\frac{\partial^2 f}{\partial z \partial y} - \frac{\partial^2 f}{\partial y \partial z} \right) \tag{4.16}$$

$$+ \vec{j} \left(\frac{\partial^2 f}{\partial x \partial z} - \frac{\partial^2 f}{\partial z \partial x} \right) \tag{4.17}$$

$$+ \vec{k} \left(\frac{\partial^2 f}{\partial y \partial x} - \frac{\partial^2 f}{\partial x \partial y} \right) \tag{4.18}$$

Sob a regularidade exigida, as derivadas parciais podem ser comutadas e cada termo do rotacional é nulo, isto é:

$$\vec{\nabla} \cdot \vec{\nabla} \times \vec{F} \equiv 0 \tag{4.19}$$

A demonstração é análoga para o divergente do gradiente.

Exercícios resolvidos

ER 4.3.1. Mostre que $\vec{\nabla} \cdot (\vec{\nabla} f \times \vec{\nabla} g) = \vec{0}$

Solução.

$$E = \vec{\nabla} \cdot (\vec{\nabla} f \times \vec{\nabla} g)$$

$$= \vec{\nabla} g \cdot (\vec{\nabla} \times \vec{\nabla} f) + \vec{\nabla} f \cdot (\vec{\nabla} \times \vec{\nabla} g) \quad tab(11) \text{ com } \vec{F} = \nabla f \text{ e } \vec{G} = \nabla g.$$

$$= 0 \quad tab(8)$$

 \Diamond

ER 4.3.2. Simplifique $\vec{\nabla} \times (\vec{F} \vec{\nabla} \cdot \vec{F}) + \vec{F} \times [\vec{\nabla} \times \vec{\nabla} \times \vec{F}] + \vec{F} \times \vec{\nabla}^2 \vec{F}$ e mostre que esta expressão equivale a $(\vec{\nabla} \cdot \vec{F})(\vec{\nabla} \times \vec{F})$

Solução.

$$\begin{split} \vec{E} &= \vec{\nabla} \times \left(\vec{F} \vec{\nabla} \cdot \vec{F} \right) + \vec{F} \times \left[\vec{\nabla} \times \vec{\nabla} \times \vec{F} \right] + \vec{F} \times \vec{\nabla}^2 \vec{F} \\ &= \vec{\nabla} \times \left(\vec{F} \vec{\nabla} \cdot \vec{F} \right) + \vec{F} \times \left[\vec{\nabla} \times \vec{\nabla} \times \vec{F} + \vec{\nabla}^2 \vec{F} \right] \\ &= \vec{\nabla} \times \left(\vec{F} \vec{\nabla} \cdot \vec{F} \right) + \vec{F} \times \vec{\nabla} (\vec{\nabla} \cdot \vec{F}) \quad tab(10) \\ &= \left[\vec{\nabla} (\vec{\nabla} \cdot \vec{F}) \times \vec{F} + (\vec{\nabla} \cdot \vec{F}) (\vec{\nabla} \times \vec{F}) \right] + \vec{F} \times \vec{\nabla} (\vec{\nabla} \cdot \vec{F}), \quad tab(6) \text{ com } f = \vec{\nabla} \cdot \vec{F}. \\ &= (\vec{\nabla} \cdot \vec{F}) (\vec{\nabla} \times \vec{F}) \end{split}$$

Onde se usou que $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$.

 \Diamond

ER 4.3.3. Verifique
$$tab(10)$$
, isto é, $\vec{\nabla} \times \vec{\nabla} \times \vec{F} = \vec{\nabla} \vec{\nabla} \cdot \vec{F} - \vec{\nabla}^2 \vec{F}$ para

$$\vec{F} = x^2 y \vec{i} + x y z \vec{j} + z^2 y \vec{k}.$$

Solução.

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 y & xyz & z^2 y \end{vmatrix}$$
$$= (z^2 - xy)\vec{i} + (0 - 0)\vec{j} + (yz - x^2)\vec{k}$$

Licença CC-BY-SA-3.0. Contato: reamat@ufrgs.br

$$\vec{\nabla} \times \vec{\nabla} \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ (z^2 - xy) & 0 & (yz - x^2) \end{vmatrix}$$
$$= (z - 0)\vec{i} + (2z + 2x)\vec{j} + (0 + x)\vec{k}$$

$$\vec{\nabla}(\vec{\nabla} \cdot \vec{F}) = \vec{\nabla}(2xy + xz + 2yz)$$

$$= (2y + z)\vec{i} + (2x + 2z)\vec{j} + (x + 2y)\vec{k}$$

$$\vec{\nabla}^2 \vec{F} = 2y\vec{i} + 0\vec{j} + 2y\vec{k}$$

Vemos que a identidade se verifica.

\Diamond

4.3.3 Derivada direcional e gradiente

ER 4.3.4. A temperatura da um ponto P(x,y) de uma placa metálica é:

$$T(x,y) = \frac{xy}{1 + x^2 + y^2}$$

Encontre a taxa de variação da temperatura em (1,1) na direção do vetor $\vec{a}=2\vec{i}-\vec{j}$.

Solução. Primeiro normalizamos o vetor \vec{a} para obter o versor com sua direção e sentido:

$$\vec{u} = \frac{\vec{a}}{\|\vec{a}\|} = \frac{2\vec{i} - \vec{j}}{\sqrt{2^2 + 1^2}}$$

$$= \frac{\sqrt{5}}{5} (2\vec{i} - \vec{j}).$$

Agora calculamos o gradiente da função dada:

$$\vec{\nabla}T(x,y) = \frac{y(1-x^2+y^2)\vec{i} + x(1+x^2-y^2)\vec{j}}{(1+x^2+y^2)^2}.$$

Substituimos no ponto x = y = 1:

$$\vec{\nabla}T(1,1) = \frac{\vec{i} + \vec{j}}{9}.$$

A derivada direcional é dada por:

$$\vec{u} \cdot \vec{\nabla} T(1,1) = \frac{\sqrt{5}}{5} \left(2\vec{i} - \vec{j} \right) \cdot \frac{\vec{i} + \vec{j}}{9} = \frac{\sqrt{5}}{45}$$

 \Diamond

4.3.4 Divergente

4.3.5 Rotacional

4.4 Identidades envolvendo o operador nabla

Nesta seção, discutimos alguma identidades envolvendo o operador $\vec{\nabla}$. Sejam f=f(x,y,z) e g=g(x,y,z) campos escalares e $\vec{F}=\vec{F}(x,y,z)$ e $\vec{G}=\vec{G}(x,y,z)$ campos vetoriais. Então, valem as identidades da tabela 4.1.

4.5 Campos conservativos

Definição 4.5.1. Um campo $\vec{F}(x,y,z)$ é dito conservativo se existe um campo escalar $\varphi(x,y,z)$ tal que

$$\vec{F}(x,y,z) = \vec{\nabla}\varphi$$

Neste caso φ é chamado de campo potencial de

$$\vec{F}(x,y,z)$$

Observação 4.5.1. Campos conservativos também são conhecidos como campos gradientes ou campos irrotacionais, este último nome advém do fato que

$$\vec{\nabla} \times \vec{F}(x, y, z) = \vec{\nabla} \times \vec{\nabla} \varphi = \vec{0}.$$

Esta identidade é oriunda da Tabela 4.1, item 8.

Exemplo 4.5.1. O campo $\vec{F} = 2xy\vec{i} + x^2\vec{j}$ é conservativo por $\vec{F} = \vec{\nabla} (x^2y)$.

Teorema 4.5.1. Seja $\vec{F}: \mathbb{R}^3 \to \mathbb{R}^3$ um campo vetorial contínuo e $\vec{\nabla} \times \vec{F} = \vec{0}$, então \vec{F} é conservativo.

Tabela 4.1: Tabela do operador $\vec{\nabla}$

	Tabela 4.1. Tabela do operador v
1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$ec{ abla} \cdot \left(ec{F} + ec{G} ight) = ec{ abla} \cdot ec{F} + ec{ abla} \cdot ec{G}$
3.	$ec{ abla} imes \left(ec{F} + ec{G} ight) = ec{ abla} imes ec{F} + ec{ abla} imes ec{G}$
4.	$\vec{\nabla}\left(fg\right) = f\vec{\nabla}g + g\vec{\nabla}f$
5.	$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
6.	$\vec{\nabla} \times (f\vec{F}) = \vec{\nabla} f \times \vec{F} + f\vec{\nabla} \times \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$\vec{\nabla} \times \left(\vec{\nabla} f \right) = 0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes\left(ec{ abla} imesec{F} ight)=ec{ abla}\left(ec{ abla}\cdotec{F} ight)-ec{ abla}^2ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) -$
	$-\left(ec{F}\cdot ec{ abla} ight) ec{G}+ec{F}\left(ec{ abla}\cdot ec{G} ight)$
13.	$ec{ abla}\left(ec{F}\cdotec{G} ight)=\left(ec{G}\cdotec{ abla} ight)ec{F}+\left(ec{F}\cdotec{ abla} ight)ec{G}+$
	$+ \vec{F} imes \left(\vec{ abla} imes \vec{G} ight) + \vec{G} imes \left(\vec{ abla} imes \vec{F} ight)$
14.	$\vec{\nabla} \varphi(r) = \varphi'(r)\hat{r}$

Demonstração. Como $\vec{\nabla} \times \vec{F} = \vec{0}$, temos:

$$\frac{\partial F_3}{\partial y} = \frac{\partial F_2}{\partial z},\tag{4.20}$$

$$\frac{\partial F_1}{\partial z} = \frac{\partial F_3}{\partial x}, \qquad (4.21)$$

$$\frac{\partial F_3}{\partial x} = \frac{\partial F_1}{\partial y}. \qquad (4.22)$$

$$\frac{\partial F_3}{\partial x} = \frac{\partial F_1}{\partial y}. (4.22)$$

Defina, agora, a função $\varphi: \mathbb{R}^3 \to \mathbb{R}$ dada por

$$\varphi(x,y,z) = \int_0^x F_1(s,y,z) + \int_0^y F_2(0,s,z) + \int_0^z F_3(0,0,s).$$

Basta provar que $\nabla \varphi(x,y,z) = \vec{F}$, isto é

$$\frac{\partial \varphi}{\partial z} = F_1, \qquad (4.23)$$

$$\frac{\partial \varphi}{\partial y} = F_2, \qquad (4.24)$$

$$\frac{\partial \varphi}{\partial y} = F_2, \tag{4.24}$$

$$\frac{\partial \varphi}{\partial z} = F_3. \tag{4.25}$$

A primeira desigualdade advém diretamente do teorema fundamental do cálculo. Para obter a segunda desigualdade, derivamos o potencial em relação a y:

$$\frac{\partial}{\partial y}\varphi(x,y,z) = \int \int_0^x \frac{\partial}{\partial y} F_1(s,y,z) ds + F_2(0,y,z)
= \int_0^x \frac{\partial}{\partial s} F_2(s,y,z) ds + F_2(0,y,z)
= (F_2(x,y,z) - F_2(0,y,z)) + F_2(0,y,z) = F_2(x,y,z)$$

Onde usamos a Identidade 4.21.

Finalmente, para obter a terceira desigualdade, derivamos o potencial em re-

$$\frac{\partial}{\partial z}\varphi(x,y,z) = \int_0^x \frac{\partial}{\partial z} F_1(s,y,z) ds + \int_0^y \frac{\partial}{\partial z} F_2(0,s,z) ds + F_3(0,0,z)
= \int_0^x \frac{\partial}{\partial s} F_3(s,y,z) ds + \int_0^z \frac{\partial}{\partial s} F_3(0,s,z) ds + F_3(0,0,z)
= \int_0^x (F_3(x,y,z) - F_3(0,y,z)) + (F_3(0,y,z) - F_3(0,0,z)) + F_3(0,0,z)
= F_3(x,y,z)$$

Onde usamos as Idendidade 4.20 e 4.22.

4.6 Campos radiais e potenciais centrais

Campos radiais vetoriais são campos da forma $\vec{F} = f(r)\hat{r}$, isto é campos vetoriais cujo módulo depende apenas da distância até a origem, isto é, de $r = ||\vec{r}|| = \sqrt{x^2 + y^2 + z^2}$ e cuja direção é sempre paralela ao vetor posição, \vec{r} .

Exemplo 4.6.1. Represente graficamente o campo vetorial $\vec{F} = \vec{r}$ no plano xy.

Esta seção (ou subseção) está sugerida. Participe da sua escrita. Veja como em: https://www.ufrgs.br/reamat/participe.html

Exercícios resolvidos

Esta seção carece de exercícios resolvidos. Participe da sua escrita.

Veja como em:

https://www.ufrgs.br/reamat/participe.html

ER 4.6.1. Um exercício.

Solução. Resolução do exercício.

\Diamond

Exercícios

Esta seção carece de exercícios. Participe da sua escrita.

Veja como em:

https://www.ufrgs.br/reamat/participe.html

E 4.6.1. Um exercício.

4.7 Exercícios finais

Esta seção carece de exercícios. Participe da sua escrita.

Veja como em:

https://www.ufrgs.br/reamat/participe.html

E 4.7.1. Um exercício.

Capítulo 5

Integral de Linha

Neste capítulo, estudamos a integral de linha e teoremas relacionados.

5.1 A integral de linha para um campo escalar

Para um campo escalar $f:D\to\mathbb{R},\,D\subset\mathbb{R}^3$, a integral de linha ao longo de uma curva suave por partes é definida por

$$\int_{\mathcal{C}} f(\vec{r}) ds = \int_{a}^{b} f(\vec{r}(t)) |\vec{r}'(t)| dt,$$

onde \vec{r} é uma parametrização para C tal que $\vec{r}(a)$ e $\vec{r}(b)$ são os pontos iniciais e finais da curva.

5.2 A integral de linha para um campo vetorial

Para um campo vetorial $\vec{F}:D\to\mathbb{R}^3,\,D\subset\mathbb{R}^3,$ a integral de linha ao longo de uma curva suave por partes C é definida por

$$\int_{C} \vec{F}(\vec{r}) \cdot d\vec{r} = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

onde \vec{r} é uma parametrização para C tal que $\vec{r}(a)$ e $\vec{r}(b)$ são os pontos iniciais e finais da curva, que está no sentido $\vec{r}(a) \to \vec{r}(b)$.

5.3 O Teorema Fundamental para Integral de Linha

Teorema 5.3.1. Seja \vec{F} um campo vetorial definido numa região R do espaço e $P_0(x_0,y_0,z_0)$ e $P_1(x,y,z)$ dois pontos em R. Se \vec{F} é conservativo, isto é, $\vec{F} = \vec{\nabla}\varphi$ para algum potencial φ , então

$$\int_{C} \vec{F} \cdot d\vec{r} = \varphi(x, y, z) - \varphi(x_0, y_0, z_0), \tag{5.1}$$

para qualquer curva C suave por partes em R com início em P_0 e extremidade em P

Reciprocamente, se

$$\int_C \vec{F} \cdot d\vec{r}$$

é independente da curva que começa em P_0 e termina em P_1 , então o campo é conservativo.

Demonstração. Sem perda de generalidade, suponha C uma curva suave parametrizada por $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$, $t_0 \le t \le t_1$, com início em $\vec{r}(t_0) = P_0$ e fim em $\vec{r}(t_1) = P$. Então, supondo que \vec{F} é conservativo, isto é, $\vec{F} = \vec{\nabla} \varphi$, temos

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} \vec{\nabla} \varphi \cdot d\vec{r}
= \int_{t_{0}}^{t_{1}} \vec{\nabla} \varphi \cdot \vec{r}'(t) dt
= \int_{t_{0}}^{t_{1}} \left(\frac{\partial \varphi}{\partial x} \vec{i} + \frac{\partial \varphi}{\partial y} \vec{j} + \frac{\partial \varphi}{\partial z} \vec{k} \right) \cdot \left(\frac{\partial x}{\partial t} \vec{i} + \frac{\partial y}{\partial t} \vec{j} + \frac{\partial z}{\partial t} \vec{k} \right) dt
= \int_{t_{0}}^{t_{1}} \left(\frac{\partial \varphi}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial \varphi}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial \varphi}{\partial z} \frac{\partial z}{\partial t} \right) dt.$$

Usando a regra da cadeia, temos que o termo

$$\frac{D\varphi}{Dt} = \frac{\partial\varphi}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial\varphi}{\partial y}\frac{\partial y}{\partial t} + \frac{\partial\varphi}{\partial z}\frac{\partial z}{\partial t}$$

é a derivada total de φ com respeito a t. Logo, pelo Teorema Fundamental do Cálculo, temos:

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{t_{0}}^{t_{1}} \frac{D\varphi}{Dt} dt
= \varphi(x(t_{1}), y(t_{1}), z(t_{1})) - \varphi(x(t_{0}), y(t_{0}), z(t_{0}))
= \varphi(x, y, z) - \varphi(x_{0}, y_{0}, z_{0}).$$

Reciprocamente, dado que a expressão (5.1) é válida para qualquer curva C que liga dois pontos na região, definimos a função

$$\varphi(x,y,z) = \int_{C} \vec{F} \cdot d\vec{r} = \int_{P_0}^{P_1} \vec{F} \cdot d\vec{r} = \int_{(x_0,y_0,z_0)}^{(x,y,z)} \vec{F} \cdot d\vec{r},$$

onde C é uma curva qualquer que começa em P_0 e termina em P. Mostraremos que ϕ é o potencial do campo $\vec{F} = F_1 \vec{i} + F_2 \vec{j} + F_3 \vec{k}$, ou seja, $\vec{F} = \vec{\nabla} \varphi$. De fato, observe que

$$\varphi(x + \Delta x, y, z) - \varphi(x, y, z) = \int_{(x_0, y_0, z_0)}^{(x + \Delta x, y, z)} \vec{F} \cdot d\vec{r} - \int_{(x_0, y_0, z_0)}^{(x, y, z)} \vec{F} \cdot d\vec{r}
= \int_{(x_0, y_0, z_0)}^{(x + \Delta x, y, z)} \vec{F} \cdot d\vec{r} + \int_{(x, y, z)}^{(x_0, y_0, z_0)} \vec{F} \cdot d\vec{r}
= \int_{(x, y, z)}^{(x + \Delta x, y, z)} \vec{F} \cdot d\vec{r}.$$

Parametrizando um caminho reto entre (x,y,z) e $(x+\Delta x,y,z)$ por $\vec{r}=t\vec{i}+y\vec{j}+z\vec{k},$ $x\leq t\leq \Delta x,$ temos:

$$\varphi(x + \Delta x, y, z) - \varphi(x, y, z) = \int_{x}^{x + \Delta x} \vec{F} \cdot \vec{r}' dt$$

$$= \int_{x}^{x + \Delta x} \left(F_{1} \vec{i} + F_{2} \vec{j} + F_{3} \vec{k} \right) \cdot \vec{i} dt$$

$$= \int_{x}^{x + \Delta x} F_{1}(t, y, z) dt.$$

Logo, pelo teorema do valor médio,

$$\frac{\varphi(x + \Delta x, y, z) - \varphi(x, y, z)}{\Delta x} = \frac{1}{\Delta x} \int_{x}^{x + \Delta x} F_{1}(t, y, z) dt$$
$$= \frac{1}{\Delta x} F_{1}(\xi, y, z), \qquad x \le \xi \le x + \Delta x.$$

Portanto,

$$\frac{\partial \varphi}{\partial x} = \lim_{\Delta x \to 0} \frac{\varphi(x + \Delta x, y, z) - \varphi(x, y, z)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{1}{\Delta x} F_1(\xi, y, z)$$

$$= F_1(x, y, z).$$

Analogamente, podemos demonstrar que

$$\frac{\partial \varphi}{\partial y} = F_2(x, y, z)$$
 e $\frac{\partial \varphi}{\partial z} = F_3(x, y, z),$

ou seja, $\vec{F} = \vec{\nabla}\varphi$.

5.4 Relação entre campos irrotacionais e conservativos

Teorema 5.4.1. Seja \vec{F} um campo vetorial definido numa região R do espaço. Então \vec{F} é conservativo, isto é, $\vec{F} = \vec{\nabla} \varphi$ para algum potencial φ , se e somente se \vec{F} é irrotacional, isto é, $\vec{\nabla} \times \vec{F} = \vec{0}$.

Demonstração. Se \vec{F} é conservativo, isto é, $\vec{F} = \vec{\nabla} \varphi$, então pelo item 8 da tabela de indentidades 4.1,

$$\vec{\nabla} \times \vec{F} = \vec{\nabla} \times \vec{\nabla} \varphi = \vec{0}.$$

Reciprocamente, dado $\vec{F} = F_1 \vec{i} + F_2 \vec{j} + F_3 \vec{k}$ com

$$ec{
abla} imes ec{F} = \left| egin{array}{ccc} ec{i} & ec{j} & ec{k} \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ F_1 & F_2 & F_3 \end{array}
ight| = ec{0},$$

temos

$$\frac{\partial F_3}{\partial y} = \frac{\partial F_2}{\partial z},\tag{5.2}$$

$$\frac{\partial F_1}{\partial z} = \frac{\partial F_3}{\partial x} \tag{5.3}$$

e

$$\frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial y}. (5.4)$$

Agora, defina

$$\varphi(x,y,z) = \int_C \vec{F} \cdot d\vec{r},\tag{5.5}$$

onde C é a curva que liga os pontos (x_0,y_0,z_0) ao ponto (x,y,z) através das arestas do paralelepípedo de vértices (x_0,y_0,z_0) , (x,y_0,z_0) , (x_0,y,z_0) , (x,y,z_0) , (x

$$C_1: \vec{r_1}(t) = t\vec{i} + y_0\vec{j} + z_0\vec{k}, \qquad x_0 \le t \le x,$$

$$C_2: \vec{r_2}(t) = x\vec{i} + t\vec{j} + z_0\vec{k}, \quad y_0 \le t \le y$$

е

$$C_3: \vec{r_3}(t) = x\vec{i} + y\vec{j} + t\vec{k}, \quad z_0 \le t \le z.$$

Mostraremos que φ é um potencial para o campo \vec{F} , isto é, $\vec{F} = \vec{\nabla} \varphi$. De fato, da equação (5.5), usamos as parametrizações das curvas C_1 , C_2 e C_3 para obter

$$\varphi(x,y,z) = \int_{C_1} \vec{F} \cdot d\vec{r} + \int_{C_2} \vec{F} \cdot d\vec{r} + \int_{C_3} \vec{F} \cdot d\vec{r}
= \int_{x_0}^x \vec{F} \cdot \vec{r}_1'(t)dt + \int_{y_0}^y \vec{F} \cdot \vec{r}_2'(t)dt + \int_{z_0}^z \vec{F} \cdot \vec{r}_3'(t)dt
= \int_{x_0}^x F_1(t,y_0,z_0)dt + \int_{y_0}^y F_2(x,t,z_0)dt + \int_{z_0}^z F_3(x,y,t)dt. \quad (5.6)$$

Pelo Teorema Fundamental do Cálculo, derivamos a expressão (5.6) em z e obtemos a última componente do campo:

$$\frac{\partial \varphi}{\partial z} = F_3(x, y, z). \tag{5.7}$$

Agora, derivamos a expressão (5.6) em y

$$\frac{\partial \varphi}{\partial y} = F_2(x, y, z_0) + \frac{\partial}{\partial y} \int_{z_0}^z F_3(x, y, t) dt$$

$$= F_2(x, y, z_0) + \int_{z_0}^z \frac{\partial F_3(x, y, t)}{\partial y} dt$$

$$= F_2(x, y, z_0) + \int_{z_0}^z \frac{\partial F_2(x, y, t)}{\partial z} dt.$$

onde usamos a expressão (5.2) na última passagem. Assim, usamos o Teorema Fundamental do Cálculo para obter

$$\frac{\partial \varphi}{\partial y} = F_2(x, y, z_0) + F_2(x, y, z) - F_2(x, y, z_0) = F_2(x, y, z). \tag{5.8}$$

Finalmente, derivamos a expressão (5.6) com respeito a x:

$$\frac{\partial \varphi}{\partial x} = F_1(x, y_0, z_0) dt + \frac{\partial}{\partial x} \int_{y_0}^y F_2(x, t, z_0) dt + \frac{\partial}{\partial x} \int_{z_0}^z F_3(x, y, t) dt$$

$$= F_1(x, y_0, z_0) dt + \int_{y_0}^y \frac{\partial F_2(x, t, z_0)}{\partial x} dt + \int_{z_0}^z \frac{\partial F_3(x, y, t)}{\partial x} dt$$

$$= F_1(x, y_0, z_0) dt + \int_{y_0}^y \frac{\partial F_1(x, t, z_0)}{\partial y} dt + \int_{z_0}^z \frac{\partial F_1(x, y, t)}{\partial z} dt,$$

onde usamos as expressões (5.3) e (5.4) na última passagem. Assim, usamos o Teorema Fundamental do Cálculo para concluir que

$$\frac{\partial \varphi}{\partial x} = F_1(x, y_0, z_0) + F_1(x, y, z_0) - F_1(x, y_0, z_0) + F_1(x, y, z) - F_1(x, y, z_0)
= F_1(x, y, z)$$
(5.9)

Portanto, das expressões (5.9), (5.8) e (5.7), concluímos que $\vec{F} = \vec{\nabla} \varphi$, ou seja, \vec{F} é um campo conservativo.

5.5 O Teorema de Green

Teorema 5.5.1. Seja C uma curva simples, fechada e derivável, D a região do plano delimitada por C, e P e Q duas funções reais de variável real com derivadas parciais contínua numa região contendo D, então:

$$\int_{C} (Pdx + Qdy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA.$$

Em termo de notação, também se costuma usar \oint_C para enfatiza que o caminho C é fechado. Nesse caso, supondo $\vec{F} = P\vec{i} + Q\vec{j}$, podemos escrever o teorema da forma

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA.$$

Capítulo 6

Integral de Superficie

Neste capítulo, estudamos a integral de superfície e teoremas relacionados.

6.1 Definição de integral de superfície para um campo escalar

Seja $h: \mathbb{R}^3 \to \mathbb{R}$, h = h(x,y,z), um campo escalar definido em todos os pontos de uma superfície regular S. Assumimos que $\vec{r}(u,v) = x(u,v)\vec{i} + y(u,v)\vec{j} + z(u,v)\vec{k}$, $(u,v) \in R \subset \mathbb{R}^2$ seja uma parametrização para S. A integral de superfície de h sobre S é definida por:

$$\iint_{S} h dS = \iint_{R} h(x(u,v), y(u,v), z(u,v)) \|\vec{r}_{u} \times \vec{r}_{v}\| du dv, \tag{6.1}$$

onde dS é o elemento infinitesimal de área sobre a superfície.

Exemplo 6.1.1. Considere a esfera de raio a

$$\vec{r} = a \operatorname{sen}(u) \cos(v) \vec{i} + a \operatorname{sen}(u) \operatorname{sen}(v) \vec{j} + a \cos(u) \vec{k}, \ a > 0, \ 0 \le u < \pi, \ 0 \le v < 2\pi$$

e o campo h(x,y,z)=1. Vamos calcular a área da esfera dada por $\iint_S h dS$. Começamos com as derivadas parciais de \vec{r} , dadas por

$$\vec{r_u} = a\cos(u)\cos(v)\vec{i} + a\cos(u)\sin(v)\vec{j} - a\sin(u)\vec{k}$$

е

$$\vec{r}_v = -a \operatorname{sen}(u) \operatorname{sen}(v) \vec{i} + a \operatorname{sen}(u) \cos(v) \vec{j}.$$

Então, temos

$$\vec{r}_{u} \times \vec{r}_{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a\cos(u)\cos(v) & a\cos(u)\sin(v) & -a\sin(u) \\ -a\sin(u)\sin(v) & a\sin(u)\cos(v) & 0 \end{vmatrix}$$

$$= a^{2}\sin^{2}(u)\cos(v)\vec{i} + a^{2}\sin^{2}(u)\sin(v)\vec{j}$$

$$+ (a^{2}\cos(u)\sin(u)\cos^{2}(v) + a^{2}\cos(u)\sin(u)\sin^{2}(v))\vec{k}$$

$$= a^{2}\sin^{2}(u)\cos(v)\vec{i} + a^{2}\sin^{2}(u)\sin(v)\vec{j} + a^{2}\cos(u)\sin(u)\vec{k}.$$
(6.2)

е

$$\|\vec{r}_{u} \times \vec{r}_{v}\| = a^{2} \sqrt{\operatorname{sen}^{4}(u)(\cos^{2}(v) + \operatorname{sen}^{2}(v)) + \cos^{2}(u) \operatorname{sen}^{2}(u)}$$

$$= a^{2} \sqrt{\operatorname{sen}^{4}(u) + \cos^{2}(u) \operatorname{sen}^{2}(u)}$$

$$= a^{2} \operatorname{sen}(u) \sqrt{\operatorname{sen}^{2}(u) + \cos^{2}(u)}$$

$$= a^{2} \operatorname{sen}(u).$$

onde usamos que $0 \le \text{sen}(u) \le 1$, visto que $0 \le u \le \pi$. Portanto,

$$\iint_{S} hdS = \iint_{R} h(x(u,v),y(u,v),z(u,v)) \|\vec{r}_{u} \times \vec{r}_{v}\| dudv$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} a^{2} \operatorname{sen}(u) dudv$$

$$= 2\pi a^{2} \left[-\cos(u)\right]_{0}^{\pi}$$

$$= 4\pi a^{2}.$$

6.1.1 Superfície definida como função de duas variáveis

Nessa seção, vamos calcular a versão particular da definição (6.1) quando a superfície é definida como função de duas variáveis, isto é, z = f(x,y) ou y = f(x,z) ou ainda x = f(y,z). Considere o caso onde a superfície S é dado pela função $f: D \subset \mathbb{R}, D \subset \mathbb{R}^2, z = f(x,y)$ (os outros dois casos são análogos). Uma parametrização para a superfície S é

$$\vec{r}(x,y) = x\vec{i} + y\vec{j} + f(x,y)\vec{k}.$$

Calculamos as derivadas $\vec{r}_x = \vec{i} + f_x \vec{k}$, e $\vec{r}_y = \vec{j} + f_y \vec{k}$ e fazemos

$$ec{r}_x imes ec{r}_y = \left| egin{array}{ccc} ec{i} & ec{j} & ec{k} \ 1 & 0 & f_x \ 0 & 1 & f_y \end{array}
ight| = f_x ec{i} + f_y ec{j} + ec{k}.$$

Agora, definimos G tal que a superfície seja reescrita como G(x,y,z) = 0, isto é, G(x,y,z) = z - f(x,y) e observamos que

$$\vec{r}_x \times \vec{r}_y = \vec{\nabla}G. \tag{6.3}$$

Analogamente, em qualquer dos outros dois casos y = f(x,z) ou x = f(y,z), definimos G tal que a superfície seja reescrita como G(x,y,z) = 0 e a expressão (6.3) continua válida, isto é,

$$\vec{r}_x \times \vec{r}_z = \vec{\nabla} G$$
 ou $\vec{r}_y \times \vec{r}_z = \vec{\nabla} G$.

Portanto, a versão da definição (6.1) para o caso onde a superfície é definida por uma função de duas variáveis f é dada por

$$\iint_{S} h dS = \iint_{R} h \|\vec{\nabla}G\| dA,\tag{6.4}$$

onde R é o domínio de h e h deve estar sobre os pontos da superfície.

Exemplo 6.1.2. Vamos calcular novamente a integral de supefície do exemplo 6.1.1. Considere a equação da esfera de raio a, $x^2 + y^2 + z^2 = a^2$ e o campo h(x,y,z) = 1. Vamos calcular a área da superfície da esfera dada por $\iint_S h dS$. Para aplicar a expressão (6.4), separamos a esfera em duas superfícies: S_1 de equação $z = h_1(x,y) = \sqrt{a^2 - x^2 - y^2}$ e S_2 de equação $z = h_2(x,y) = -\sqrt{a^2 - x^2 - y^2}$. Assim,

$$\iint_{S} h dS = \iint_{S_1} h dS + \iint_{S_2} h dS.$$

Definimos $G_1 = z - \sqrt{a^2 - x^2 - y^2}$ e $G_2 = z + \sqrt{a^2 - x^2 - y^2}$ e calculamos

$$\vec{\nabla}G_1 = \frac{x}{\sqrt{a^2 - x^2 - y^2}}\vec{i} + \frac{y}{\sqrt{a^2 - x^2 - y^2}}\vec{j} + \vec{k}$$

е

$$\vec{\nabla}G_2 = -\frac{x}{\sqrt{a^2 - x^2 - y^2}}\vec{i} - \frac{y}{\sqrt{a^2 - x^2 - y^2}}\vec{j} + \vec{k}$$

Logo,

$$\|\vec{\nabla}G_1\| = \|\vec{\nabla}G_2\| = \sqrt{\frac{x^2 + y^2}{a^2 - x^2 - y^2} + 1} = \sqrt{\frac{x^2 + y^2 + a^2 - x^2 - y^2}{a^2 - x^2 - y^2}} = \frac{a}{\sqrt{a^2 - x^2 - y^2}}.$$

Como h(x,y,z) = 1, temos:

$$\iint_{S} h dS = \iint_{D} \frac{a}{\sqrt{a^2 - x^2 - y^2}} dA + \iint_{D} \frac{a}{\sqrt{a^2 - x^2 - y^2}} dA = 2 \iint_{D} \frac{a}{\sqrt{a^2 - x^2 - y^2}} dA,$$

onde D é o disco de raio a no plano xy. Portanto, integrando em coordenadas polares, temos:

$$\iint_{S} hdS = 2 \iint_{D} \frac{a}{\sqrt{a^2 - x^2 - y^2}} dy dx$$

$$= 2 \int_{0}^{2\pi} \int_{0}^{a} \frac{a}{\sqrt{a^2 - r^2}} r dr d\theta$$

$$= 2\pi a \int_{0}^{a} \frac{2r}{\sqrt{a^2 - r^2}} dr$$

$$= 2\pi a \left[\frac{-\sqrt{a^2 - r^2}}{1/2} \right]_{0}^{a}$$

$$= 4\pi a^2$$

6.2 Definição de integral de superfície para um campo vetorial

Considere S uma superfície orientável e $\vec{r}(u,v) = x(u,v)\vec{i} + y(u,v)\vec{j} + z(u,v)\vec{k}$, $(u,v) \in R \subset \mathbb{R}^2$ uma parametrização regular, sendo $\vec{n} = \frac{\vec{r}_u \times \vec{r}_v}{\|\vec{r}_u \times \vec{r}_v\|}$ o vetor normal à S. Seja $\vec{F}: \mathbb{R}^3 \to \mathbb{R}^3$, $\vec{F} = \vec{F}(x,y,z)$ um campo vetorial definido em todos em pontos de S. Então definimos a integral de superfície do campo vetorial \vec{F} sobre S como:

$$\iint_{S} \vec{F} \cdot \vec{n} dS = \iint_{R} \vec{F}(x(u,v),y(u,v),z(u,v)) \cdot (\vec{r}_{u} \times \vec{r}_{v}) du dv. \tag{6.5}$$

Exemplo 6.2.1. Seja S a esfera de raio a parametrizada por

$$\vec{r} = a \operatorname{sen}(u) \cos(v) \vec{i} + a \operatorname{sen}(u) \operatorname{sen}(v) \vec{j} + a \cos(u) \vec{k}, \ a > 0, \ 0 \le u < \pi, \ 0 \le v < 2\pi$$

e o campo $\vec{F}(x,y,z) = x\vec{i} + y\vec{j} + z\vec{k}$. Vamos calcular o fluxo do campo \vec{F} através da superfície S dado por $\Phi = \iint_S \vec{F} \cdot \vec{n} dS$. O produto vetorial

$$\vec{r}_u \times \vec{r}_v = a^2 \operatorname{sen}^2(u) \cos(v) \vec{i} + a^2 \operatorname{sen}^2(u) \operatorname{sen}(v) \vec{j} + a^2 \cos(u) \operatorname{sen}(u) \vec{k}$$

foi calculado na equação (6.2). Observe que a parametrização define uma orientação para fora da superfície. De fato, basta pegar um ponto, por exemplo, $u=v=\pi/2$ e calcular $\vec{r}=a\vec{j}$ e $\vec{r}_u\times\vec{r}_v=a^2\vec{j}$, ou seja, no ponto (0,a,0), a normal aponta para fora. Como

$$\vec{F}(x(u,v),y(u,v),z(u,v)) = x(u,v)\vec{i} + y(u,v)\vec{j} + z(u,v)\vec{k}$$

= $a \operatorname{sen}(u) \cos(v)\vec{i} + a \operatorname{sen}(u) \operatorname{sen}(v)\vec{j} + a \cos(u)\vec{k}$,

temos

$$\vec{F} \cdot (\vec{r}_u \times \vec{r}_v) = a^3 \operatorname{sen} {}^3(u) \cos^2(v) + a^3 \operatorname{sen} {}^3(u) \operatorname{sen} {}^2(v) + a^3 \cos^2(u) \operatorname{sen} (u)$$

$$= a^3 \operatorname{sen} {}^3(u) + a^3 \cos^2(u) \operatorname{sen} (u)$$

$$= a^3 \operatorname{sen} (u).$$

Portanto,

$$\Phi = \iint_{S} \vec{F} \cdot \vec{n} dS$$

$$= \iint_{R} \vec{F} \cdot (\vec{r}_{u} \times \vec{r}_{v}) du dv$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} a^{3} \operatorname{sen}(u) du dv$$

$$= 2\pi a^{3} \int_{0}^{\pi} \operatorname{sen}(u) du$$

$$= 4\pi a^{3}$$

6.2.1 Superfície definida como função de duas variáveis

Nessa seção, vamos calcular a versão particular da definição (6.5) quando a superfície é definida como função de duas variáveis, isto é, z = f(x,y) ou y = f(x,z) ou ainda x = f(y,z). Considere o caso onde a superfície S é dado pela função $f: D \subset \mathbb{R}, D \subset \mathbb{R}^2, z = f(x,y)$ (os outros dois casos são análogos). Uma parametrização para a superfície S é

$$\vec{r}(x,y) = x\vec{i} + y\vec{j} + f(x,y)\vec{k},$$

onde o vetor normal a superfície é

$$\vec{n} = \pm \frac{\vec{r}_x \times \vec{r}_y}{\|\vec{r}_x \times \vec{r}_y\|}.$$

Aqui, o sinal \pm é escolhido para ajustar a orientação da parametrização à orientação da superfície definida por f. Calculamos as derivadas $\vec{r}_x = \vec{i} + f_x \vec{k}$, e $\vec{r}_y = \vec{j} + f_y \vec{k}$ e fazemos

$$ec{r_x} imes ec{r_y} = \left| egin{array}{ccc} ec{i} & ec{j} & ec{k} \ 1 & 0 & f_x \ 0 & 1 & f_y \end{array}
ight| = f_x ec{i} + f_y ec{j} + ec{k}.$$

Agora, definimos G tal que a superfície seja reescrita como G(x,y,z)=0, isto é, G(x,y,z)=z-f(x,y) e observamos que

$$\vec{r}_x \times \vec{r}_y = \vec{\nabla}G. \tag{6.6}$$

Analogamente, em qualquer dos outros dois casos y = f(x,z) ou x = f(y,z), definimos G tal que a superfície seja reescrita como G(x,y,z) = 0 e a expressão (6.6) continua válida, isto é,

$$\vec{r}_x \times \vec{r}_z = \vec{\nabla} G$$
 ou $\vec{r}_y \times \vec{r}_z = \vec{\nabla} G$.

Portanto, a versão da definição (6.5) para o caso onde a superfície é definida por uma função de duas variáveis f é dada por

$$\iint_{S} \vec{F} \cdot \vec{n} dS = \pm \iint_{R} \vec{F} \cdot \vec{\nabla} G dA, \tag{6.7}$$

onde R é o domínio de f, \vec{F} deve estar sobre os pontos da superfície e o sinal \pm deve ser escolhido para que $\pm \vec{\nabla} G$ esteja no sentido da orientação da superfície.

Exemplo 6.2.2. Vamos calcular o fluxo do campo $\vec{F} = x^2\vec{i} + 3y^2\vec{j}$ através da superfície plana S dada pela equação x + y + z = 1, limitada ao primeiro octante e orientada no sentido da origem em direção ao primeiro octante. Primeiro, definimos z = f(x,y) = 1 - x - y e G = z - 1 + x + y e calculamos $\vec{\nabla}G = \vec{i} + \vec{j} + \vec{k}$. Observamos que a orientação de $\vec{\nabla}G$ está no mesmo sentido que o vetor normal, então escolhemos o sinal positivo na expressão (6.7). Também, observe que o campo é constante na variável z, ou seja, $\vec{F}(x,y,z) = \vec{F}(x,y,1-x-y) = x^2\vec{i} + 3y^2\vec{j}$. Portanto,

$$\iint_{S} \vec{F} \cdot \vec{n} dS = + \iint_{R} \vec{F} \cdot \vec{\nabla} G dA$$

$$= \int_{0}^{1} \int_{0}^{1-x} x^{2} + 3y^{2} dy dx$$

$$= \int_{0}^{1} \left[x^{2}y + y^{3} \right]_{y=0}^{y=1-x} dx$$

$$= \int_{0}^{1} x^{2} (1-x) + (1-x)^{3} dx$$

$$= \left[\frac{x^{3}}{3} - \frac{x^{4}}{4} - \frac{(1-x)^{4}}{4} \right]_{0}^{1}$$

$$= \left(\frac{1}{3} - \frac{1}{4} - 0 \right) - \left(0 - 0 - \frac{1}{4} \right) = \frac{1}{3}.$$

Exemplo 6.2.3. Nesse exemplo vamos calcular o fluxo do campo $\vec{F} = 3z^2\vec{i} + 6\vec{j} + 6xz\vec{k}$ através da superfície S dada pela equação $y = x^2$, $0 \le x \le 2$, $0 \le z \le 3$, orientada no sentido em que a componente \vec{i} do vetor normal é sempre positiva. Primeiro, definimos $y = f(x,z) = x^2$ e $G = y - x^2$ e calculamos $\nabla G = -2x\vec{i} + \vec{j}$. Observamos que a orientação de ∇G está com componente \vec{i} negativa, então escolhemos o sinal negativo na expressão (6.7). Também, observe que o campo é constante na variável y, ou seja, $\vec{F}(x,y,z) = \vec{F}(x,x^2,z) = 3z^2\vec{i} + 6\vec{j} + 6xz\vec{k}$. Portanto,

$$\iint_{S} \vec{F} \cdot \vec{n} dS = -\iint_{R} \vec{F} \cdot \vec{\nabla} G dA$$

$$= -\int_{0}^{2} \int_{0}^{3} -6xz^{2} + 6dz dx$$

$$= -\int_{0}^{2} \left[-2xz^{3} + 6z \right]_{z=0}^{z=3} dx$$

$$= -\int_{0}^{2} -54x + 18 dx$$

$$= -\left[-27x^{2} + 18x \right]_{0}^{2}$$

$$= -(-108 + 36) = 72.$$

Exemplo 6.2.4. Nesse exemplo, vamos recalcular o fluxo do exemplo 6.2.1. Seja S a esfera de raio a dada por

$$x^2 + y^2 + z^2 = a^2$$

orientada para fora, e o campo $\vec{F}(x,y,z) = x\vec{i} + y\vec{j} + z\vec{k}$. Vamos calcular o fluxo do campo \vec{F} através da superfície S dado por $\Phi = \iint_S \vec{F} \cdot \vec{n} dS$. Para aplicar a expressão (6.7), separamos a esfera em duas superfícies: S_1 de equação $z = h_1(x,y) = \sqrt{a^2 - x^2 - y^2}$ e S_2 de equação $z = h_2(x,y) = -\sqrt{a^2 - x^2 - y^2}$. Assim,

$$\iint_{S} \vec{F} \cdot \vec{n} dS = \iint_{S_1} \vec{F}_1 \cdot \vec{n} dS + \iint_{S_2} \vec{F}_2 \cdot \vec{n} dS.$$

Definimos $G_1 = z - \sqrt{a^2 - x^2 - y^2}$ e $G_2 = z + \sqrt{a^2 - x^2 - y^2}$ e calculamos

$$\vec{\nabla}G_1 = \frac{x}{\sqrt{a^2 - x^2 - y^2}}\vec{i} + \frac{y}{\sqrt{a^2 - x^2 - y^2}}\vec{j} + \vec{k}$$

$$\vec{\nabla}G_2 = -\frac{x}{\sqrt{a^2 - x^2 - y^2}}\vec{i} - \frac{y}{\sqrt{a^2 - x^2 - y^2}}\vec{j} + \vec{k}.$$

е

Observe que $\vec{\nabla}G_1$ está no sentido para fora da superfície e $\vec{\nabla}G_2$ no sentido para dentro. Logo, vamos escolher um sinal positivo e outro negativo na definição (6.7). Assim, sabendo que o campo na superfície S_1 é dado por $\vec{F_1} = x\vec{i} + y\vec{j} + \sqrt{a^2 - x^2 - y^2}\vec{k}$ e, o campos na superfície S_2 é dado por $\vec{F_2} = x\vec{i} + y\vec{j} - \sqrt{a^2 - x^2 - y^2}\vec{k}$, temos:

$$\iint_{S} \vec{F} \cdot \vec{n} dS = \iint_{D} \vec{F}_{1} \cdot \vec{\nabla} G_{1} dA - \iint_{D} \vec{F}_{2} \cdot \vec{\nabla} G_{2} dA$$

$$= \iint_{D} \frac{x^{2}}{\sqrt{a^{2} - x^{2} - y^{2}}} + \frac{y^{2}}{\sqrt{a^{2} - x^{2} - y^{2}}} + \sqrt{a^{2} - x^{2} - y^{2}} dA$$

$$- \iint_{D} -\frac{x^{2}}{\sqrt{a^{2} - x^{2} - y^{2}}} - \frac{y^{2}}{\sqrt{a^{2} - x^{2} - y^{2}}} - \sqrt{a^{2} - x^{2} - y^{2}} dA$$

$$= 2 \iint_{D} \frac{x^{2} + y^{2}}{\sqrt{a^{2} - x^{2} - y^{2}}} + \sqrt{a^{2} - x^{2} - y^{2}} dA$$

$$= 2 \iint_{D} \frac{a^{2}}{\sqrt{a^{2} - x^{2} - y^{2}}} dA,$$

onde D é o disco de raio a no plano z=0. Portanto,

$$\Phi = \iint_{S} \vec{F} \cdot \vec{n} dS$$

$$= 2 \int_{0}^{2\pi} \int_{0}^{a} \frac{a^{2}}{\sqrt{a^{2} - r^{2}}} r dr d\theta$$

$$= 2\pi a^{2} \left[-\frac{\sqrt{a^{2} - r^{2}}}{1/2} \right]_{0}^{a}$$

$$= 4\pi a^{3}.$$

Exemplo 6.2.5. Considere a superfície S

$$z = 0, \, x^2 + y^2 \le 1,$$

orientada no sentido decrescente do eixo z, isto é, $\vec{n} = -\vec{k}$. Considere também o campo vetorial dado por $\vec{F} = (2 + z^2 + x)\vec{k}$. Vamos calcular o valor do fluxo $\Phi = \iint_S \vec{F} \cdot \vec{n} dS$.

Como $z=f(x,y)=0,\,x^2+y^2\leq 1,$ definimos a função G(x,y,z)=z e calculamos

$$\vec{\nabla}G = \vec{k}.$$

Observe que ∇G e \vec{n} estão em sentidos oposto e, portanto, na aplicação da expressão (6.7), vamos escolher o sinal negativo. Aplicamos o campo $\vec{F} = (2 + z^2 + x)\vec{k}$

sobre a superfície z=0 e obtemos $\vec{F}=(2+x)\vec{k}$. Assim,

$$\begin{split} \Phi &:= &\iint_{S} \vec{F} \cdot \vec{n} dS \\ &= &- \iint_{A} \vec{F} \cdot \vec{\nabla} G dA \\ &= &- \iint_{A} (2+x) \, dA \end{split}$$

Resolvemos em coordenadas polares da seguinte forma:

$$\begin{split} \Phi &= -\int_0^1 \int_0^{2\pi} \left(2 + r \cos(\theta) \right) r d\theta dr \\ &= -\int_0^1 \int_0^{2\pi} \left(2r + r^2 \cos(\theta) \right) d\theta dr \\ &= -2\pi \int_0^1 2r dr - \int_0^1 \left(\left[r^2 \sin(\theta) \right]_{\theta=0}^{\theta=2\pi} \right) dr \\ &= -2\pi. \end{split}$$

Exemplo 6.2.6. Considere a superfície S

$$z = f(x,y) = 1 - \sqrt{x^2 + y^2},$$

orientada na direção crescente do eixo z, isto é, o vetor \vec{n} tem componente na direção \vec{k} sempre positiva. Considere também o campo vetorial dado por $\vec{F} = (2 + z^2 + x)\vec{k}$. Vamos calcular o valor do fluxo $\Phi = \iint_S \vec{F} \cdot \vec{n} dS$.

Como $z = f(x,y) = 1 - \sqrt{x^2 + y^2}$, definimos $G(x,y,z) = z - 1 + \sqrt{x^2 + y^2}$ e calculamos

$$\vec{\nabla}G = \frac{x}{\sqrt{x^2 + y^2}}\vec{i} + \frac{y}{\sqrt{x^2 + y^2}}\vec{j} + \vec{k}.$$

Observe que $\vec{\nabla}G$ e \vec{n} estão no mesmo sentido e, portanto, na aplicação da expressão (6.7), vamos escolher o sinal positivo. Aplicamos o campo $\vec{F} = (2+z^2+x)\vec{k}$ sobre a superfície z=0 e obtemos $\vec{F}=(2+(1-\sqrt{x^2+2})^2+x)\vec{k}$. Assim,

$$\begin{split} \Phi &:= \iint_{S} \vec{F} \cdot \vec{n} dS \\ &= \iint_{A} \vec{F} \cdot \vec{\nabla} G dA \\ &= \iint_{A} \left(2 + \left(1 - \sqrt{x^2 + y^2} \right)^2 + x \right) dA \end{split}$$

Resolvemos em coordenadas polares e obtemos

$$\begin{split} \Phi &= \int_0^1 \int_0^{2\pi} \left(2 + (1 - r)^2 + r \cos(\theta) \right) r d\theta dr \\ &= \int_0^1 \int_0^{2\pi} \left(3r - 2r^2 + r^3 + r^2 \cos(\theta) \right) d\theta dr \\ &= 2\pi \int_0^1 \left(3r - 2r^2 + r^3 \right) dr + \int_0^1 \left(\left[r^2 \sin(\theta) \right]_{\theta=0}^{\theta=2\pi} \right) dr \\ &= 2\pi \left[3\frac{r^2}{2} - 2\frac{r^3}{3} + \frac{r^4}{4} \right]_0^1 \\ &= 2\pi \left[\frac{3}{2} - \frac{2}{3} + \frac{1}{4} \right]_0^1 = \frac{13\pi}{6}. \end{split}$$

Exercícios resolvidos

ER 6.2.1. Seja S a porção da superfície $z=1-x^2-y^2$, acima do plano xy, orientada com componente \vec{k} do vetor normal positiva. Encontre o fluxo Φ através de S para o campo $\vec{F} = x\vec{i} + y\vec{j} + z\vec{k}$.

Solução. Definimos $z = f(x,y) = 1 - x^2 - y^2$, $G = z - 1 + x^2 + y^2$ e calculamos $\nabla G = 2x\vec{i} + 2y\vec{j} + \vec{k}$. Também, como a componente \vec{k} desse gradiente é positiva, escolheremos a sinal positivo na expressão (6.7). Colocamos o campo sobre a superfície, isto é, $\vec{F} = x\vec{i} + y\vec{j} + z\vec{k} = x\vec{i} + y\vec{j} + (1 - x^2 - y^2)\vec{k}$ e obtemos

$$\Phi := \iint_{S} \vec{F} \cdot \vec{n} dS$$
$$= + \iint_{D} \vec{F} \cdot \vec{\nabla} G dA,$$

onde D é o disco de raio unitário no plano z=0. Portanto,

$$\begin{split} \Phi &= \iint_D (x\vec{i} + y\vec{j} + (1 - x^2 - y^2)\vec{k}) \cdot (2x\vec{i} + 2y\vec{j} + \vec{k})dA \\ &= \iint_D (2x^2 + 2y^2 + (1 - x^2 - y^2))dA \\ &= \iint_D (x^2 + y^2 + 1)dA \\ &= \iint_0 (r^2 + y^2 + 1)dA \\ &= \int_0^{2\pi} \int_0^1 (r^2 + 1)rdrd\theta \\ &= 2\pi \left[\frac{r^4}{4} + \frac{r^2}{2}\right]_0^1 = \frac{6\pi}{4}. \end{split}$$

 \Diamond

 \Diamond

ER 6.2.2. Dados o campo vetorial $\vec{F} = \vec{i} + \vec{j} + \vec{k}$ e a porção da superfície S de equação $z = \sqrt{x^2 + y^2}$, situada abaixo do plano z = 1, orientada com componente \vec{k} do vetor normal positiva, calcule o fluxo $\Phi = \iint_S \vec{F} \cdot \vec{n} dS$.

Solução. Definimos $z = f(x,y) = \sqrt{x^2 + y^2}$, $G = z - \sqrt{x^2 + y^2}$ e calculamos $\vec{\nabla}G = -\frac{x}{\sqrt{x^2 + y^2}}\vec{i} - \frac{y}{\sqrt{x^2 + y^2}}\vec{j} + \vec{k}$. Também, como a componente \vec{k} desse gradiente é positiva, escolheremos a sinal positivo na expressão (6.7). O campo é constante na variável z, isto é, $\vec{F}(x,y,z) = \vec{F}(x,y,f(x,y)) = \vec{i} + \vec{j} + \vec{k}$. Então, temos:

$$\Phi := \iint_{S} \vec{F} \cdot \vec{n} dS
= + \iint_{D} \vec{F} \cdot \vec{\nabla} G dA,$$

onde D é o disco de raio unitário no plano z=0. Portanto,

$$\Phi = \iint_{D} (\vec{i} + \vec{j} + \vec{k}) \cdot \left(-\frac{x}{\sqrt{x^{2} + y^{2}}} \vec{i} - \frac{y}{\sqrt{x^{2} + y^{2}}} \vec{j} + \vec{k} \right) dA$$

$$= \iint_{D} \left(-\frac{x}{\sqrt{x^{2} + y^{2}}} - \frac{y}{\sqrt{x^{2} + y^{2}}} + 1 \right) dA$$

$$= \int_{0}^{2\pi} \int_{0}^{1} \left(-\frac{r \cos(\theta) + r \sin(\theta)}{r} + 1 \right) r dr d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{1} r \left(-\cos(\theta) - \sin(\theta) + 1 \right) dr d\theta$$

$$= \int_{0}^{2\pi} \left[\left(-\cos(\theta) - \sin(\theta) + 1 \right) \frac{r^{2}}{2} \right]_{r=0}^{r=1} d\theta$$

$$= \frac{1}{2} \left[-\sin(\theta) + \cos(\theta) + \theta \right]_{0}^{2\pi} = \pi.$$

ER 6.2.3. Seja S a superfície do cubo dado pelos planos $x=\pm 1,\ y=\pm 1$ e $z=\pm 1,$ orientada para fora. Calcule o fluxo através de S para os seguintes campos vetoriais:

a)
$$\vec{F} = x\vec{i}$$

b)
$$\vec{F} = x\vec{i} + y\vec{j} + z\vec{k}$$

c)
$$\vec{F} = x^2 \vec{i} + y^2 \vec{i} + z^2 \vec{k}$$

Solução. Em cada um dos itens, temos que calcular seis integrais de superfície em cada face do cubo, a saber, $S_1: x=1, S_2: x=-1, S_3: y=1, S_4: y=-1, S_5: z=1$ e $S_6: z=-1$.

a) Começamos com a face S_1 , definimos $x = f_1(y,z) = 1$, $G_1 = x - 1$ e calculamos $\vec{\nabla}G_1 = \vec{i}$. Observe que $\vec{\nabla}G_1$ está orientado no sentido de $\vec{n} = \vec{i}$ e $\vec{F} = x\vec{i} = \vec{i}$. Calculamos

$$\iint_{S_1} \vec{F} \cdot \vec{n} dS = \iint_{S_1} dA = 4,$$

onde 4 é a área do quadrado de lado 2. Analogamente,

$$\iint_{S_2} \vec{F} \cdot \vec{n} dS = \iint_{S_2} (-\vec{i}) \cdot (-\vec{i}) dS = \iint_{S_2} dA = 4.$$

As demais integrais são nulas, visto que o fluxo só tem componente na direção \vec{i} . Logo,

$$\iint_{S} \vec{F} \cdot \vec{n} dS = 8.$$

b) Começamos com a face S_1 , definimos $x = f_1(y,z) = 1$, $G_1 = x - 1$ e calculamos $\vec{\nabla}G_1 = \vec{i}$. Observe que $\vec{\nabla}G_1$ está orientado no sentido de $\vec{n} = \vec{i}$ e $\vec{F} = x\vec{i} + y\vec{i} + z\vec{k} = \vec{i} + y\vec{i} + z\vec{k}$. Calculamos

$$\iint_{S_1} \vec{F} \cdot \vec{n} dS = \iint_{S_1} dA = 4,$$

onde 4 é a área do quadrado de lado 2. Analogamente,

$$\iint_{S_2} \vec{F} \cdot \vec{n} dS = \iint_{S_2} (-\vec{i} + y\vec{i} + z\vec{k}) \cdot (-\vec{i}) dS = \iint_{S_2} dA = 4.$$

Pela simetria do problema, vemos que as demais integrais são todas iguais a 4. Logo,

$$\iint_{S} \vec{F} \cdot \vec{n} dS = 24.$$

c) Começamos com a face S_1 , definimos $x=f_1(y,z)=1,~G_1=x-1$ e calculamos $\vec{\nabla}G_1=\vec{i}$. Observe que $\vec{\nabla}G_1$ está orientado no sentido de $\vec{n}=\vec{i}$ e $\vec{F}=x^2\vec{i}+y^2\vec{i}+z^2\vec{k}=\vec{i}+y^2\vec{i}+z^2\vec{k}$. Calculamos

$$\iint_{S_1} \vec{F} \cdot \vec{n} dS = \iint_{S_1} dA = 4,$$

onde 4 é a área do quadrado de lado 2. Analogamente, como em $S_2: x=-1$ o campo assume a forma $\vec{F}=x^2\vec{i}+y^2\vec{i}+z^2\vec{k}=\vec{i}+y^2\vec{i}+z^2\vec{k}$, temos

$$\iint_{S_2} \vec{F} \cdot \vec{n} dS = \iint_{S_2} (\vec{i} + y^2 \vec{i} + z^2 \vec{k}) \cdot (-\vec{i}) dS = \iint_{S_2} dA = 4.$$

Observe que

$$\iint_{S_1} \vec{F} \cdot \vec{n} dS + \iint_{S_2} \vec{F} \cdot \vec{n} dS = 0$$

Pela simetria do problemas, teremos de forma análoga

e
$$\iint_{S_3} \vec{F} \cdot \vec{n} dS + \iint_{S_4} \vec{F} \cdot \vec{n} dS = 0$$

$$\iint_{S_5} \vec{F} \cdot \vec{n} dS + \iint_{S_6} \vec{F} \cdot \vec{n} dS = 0.$$
 Logo,
$$\iint_S \vec{F} \cdot \vec{n} dS = 0.$$

ER 6.2.4. Calcule o fluxo de $\vec{F} = z\vec{k}$ através da esfera $x^2 + y^2 + z^2 = a^2$, orientada para fora.

 \Diamond

Solução. Começamos separando a esfera nos seguintes dois hemisférios: $S_1: z = f_1(x,y) = \sqrt{a^2 - x^2 - y^2}$ e $S_2: z = f_2(x,y) = -\sqrt{a^2 - x^2 - y^2}$. Definimos $G_1 = z - \sqrt{a^2 - x^2 - y^2}$ e $G_2 = z - \sqrt{a^2 - x^2 - y^2}$ e calculamos

$$\vec{\nabla}G_1 = \frac{x}{\sqrt{a^2 - x^2 - y^2}}\vec{i} + \frac{y}{\sqrt{a^2 - x^2 - y^2}}\vec{j} + \vec{k}$$

e

$$\vec{\nabla}G_2 = -\frac{x}{\sqrt{a^2 - x^2 - y^2}}\vec{i} - \frac{y}{\sqrt{a^2 - x^2 - y^2}}\vec{j} + \vec{k}.$$

Observe que ∇G_1 está orientada para fora e ∇G_2 está orientada para dentro. Logo, escolheremos para as integrais sobre S_1 e S_2 os sinais positivo e negativo, respectivamente, na expressão (6.7). O campo sobre cada umas das superfícies tem às formas: $\vec{F}_1 = \sqrt{a^2 - x^2 - y^2} \vec{k}$ e $\vec{F}_2 = -\sqrt{a^2 - x^2 - y^2} \vec{k}$. Assim,

$$\begin{split} \Phi &= \iint_{S} \vec{F} \cdot \vec{n} dS \\ &= \iint_{S_{1}} \vec{F_{1}} \cdot \vec{n} dS + \iint_{S_{2}} \vec{F_{2}} \cdot \vec{n} dS \\ &= \iint_{D} \vec{F_{1}} \cdot \vec{\nabla} G_{1} dA - \iint_{D} \vec{F_{2}} \cdot \vec{\nabla} G_{2} dA, \end{split}$$

onde D é o disco de raio a no plano z=0. Portanto,

$$\Phi = \iint_{D} \sqrt{a^{2} - x^{2} - y^{2}} dA - \iint_{D} (-\sqrt{a^{2} - x^{2} - y^{2}}) dA$$

$$= 2 \iint_{D} \sqrt{a^{2} - x^{2} - y^{2}} dA$$

$$= 2\pi \left[-\frac{(a^{2} - r^{2})^{3/2}}{3/2} \right]_{0}^{a} = \frac{4\pi a^{3}}{3}.$$

6.3 O Teorema da Divergência de Gauss

Teorema 6.3.1. Seja V o volume de um sólido cuja superfície S é orientada para fora. Seja o campo vetorial \vec{F} dado por

$$\vec{F} = f(x,y,z)\vec{j} + g(x,y,z)\vec{i} + h(x,y,z)\vec{k},$$

onde as funções f, g e h possuem todas as derivadas parciais de primeira ordem contínuas em algum conjunto aberto contendo V. Então:

$$\iint_{S} \vec{F} \cdot \vec{n} dS = \iiint_{V} \vec{\nabla} \cdot \vec{F} dV.$$

Exemplo 6.3.1. Considere a superfície fechada orientada para fora composta superiormente pela superfície de rotação descrita como

$$z = f(x,y) = 1 - \sqrt{x^2 + y^2}$$

e inferiormente por

$$z = 0, \ x^2 + y^2 \le 1.$$

Seja o campo vetorial dado por $\vec{F} = (2 + z^2 + x)\vec{k}$. Vamos calcular o valor do fluxo $\iint_S \vec{F} \cdot \vec{n} dS$ via teorema da divergência.

Temos $\vec{\nabla} \cdot \vec{F} = 2z$. Assim,

$$\Phi = \iint_{S} \vec{F} \cdot \vec{n} dS
= \iiint_{V} \vec{\nabla} \cdot \vec{F} dV
= \int_{0}^{1} \int_{0}^{2\pi} \int_{0}^{1-r} 2zrdzd\theta dr
= \int_{0}^{1} \int_{0}^{2\pi} (1-r)^{2}rd\theta dr
= 2\pi \int_{0}^{1} (1-r)^{2}rdr
= 2\pi \int_{0}^{1} (r-2r^{2}+r^{3}) dr
= 2\pi \left[\frac{r^{2}}{2}-2\frac{r^{3}}{3}+\frac{r^{4}}{4}\right]_{0}^{1}
= 2\pi \left(\frac{1}{2}-\frac{2}{3}+\frac{1}{4}\right) = \frac{\pi}{6}.$$

Observe que as superfícies dos exemplos 6.2.5 e 6.2.5 foram a superfície fechada do exemplo 6.3.1. De fato, o fluxo calculado naqueles dois exemplos via parametrização direta foram -2π e $\frac{13\pi}{6}$, cuja soma é $\frac{\pi}{6}$, o mesmo valor calculado pelo Teorema da Divergência.

Exercícios resolvidos

ER 6.3.1. Seja S a superfície do cubo dado pelos planos $x=\pm 1,\ y=\pm 1$ e $z=\pm 1,$ orientada para fora. Calcule o fluxo através de S para os seguintes campos vetoriais:

a)
$$\vec{F} = x\vec{i}$$

b)
$$\vec{F} = x\vec{i} + y\vec{j} + z\vec{k}$$

c)
$$\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$$

Solução. Vamos utilizar o teorema da divergência de Gauss

$$\iint_{S} \vec{F} \cdot \vec{n} dS = \iiint_{V} \vec{\nabla} \cdot \vec{F} dV.$$

a) Como $\nabla \cdot \vec{F} = 1$, temos:

$$\iint_{S} \vec{F} \cdot \vec{n} dS = \iiint_{V} 1 dV = 8,$$

onde 8 é o volume do cubo de lado 2.

b) Como $\nabla \cdot \vec{F} = 3$, temos:

$$\iint_S \vec{F} \cdot \vec{n} dS = \iiint_V 3 dV = 24.$$

c) Como $\nabla \cdot \vec{F} = 2x + 2y + 2z$, temos:

$$\iint_{S} \vec{F} \cdot \vec{n} dS = \iiint_{V} (2x + 2y + 2z) dV = = = = = = =$$

ER 6.3.2. Calcule o fluxo de $\vec{F} = z\vec{k}$ através da esfera $x^2 + y^2 + z^2 = a^2$, orientada para fora.

Solução. Como $\nabla \cdot \vec{F} = 1$, temos:

onde o valor $\frac{4\pi a^3}{3}$ é o voluma de uma esfera de raio a.

ER 6.3.3. Use o teorema da divergência para calcular o fluxo do campo $\vec{F} = x^3\vec{i} + y^3\vec{j} + z^2\vec{k}$ através da superfície fechada e orientada para fora composta pelos planos z = 0 e z = 2 e a superfície $x^2 + y^2 = 9$.

Solução. Como $\nabla \cdot \vec{F} = 3x^2 + 3y^2 + 2z$, temos:

$$\iint_{S} \vec{F} \cdot \vec{n} dS = \iiint_{V} 3x^{2} + 3y^{2} + 2zdV.$$

onde V é a região cilíndrica do enunciado. Vamos integrar em coordenadas cilíndricas:

$$\oint \int_{S} \vec{F} \cdot \vec{n} dS = \int_{0}^{2\pi} \int_{0}^{3} \int_{0}^{2} 3(r^{2} + 2z) r dz dr d\theta$$

$$= 2\pi \int_{0}^{3} \left[3r^{3}z + z^{2}r \right]_{z=0}^{z=2} dr$$

$$= 2\pi \left[\frac{6r^{4}}{4} + 2r^{2} \right]_{0}^{3} = 279\pi.$$

 \Diamond

 \Diamond

ER 6.3.4. Use o teorema da divergência para calcular o fluxo do campo $\vec{F} = x^3\vec{i} + y^3\vec{j} + z^3\vec{k}$ através da superfície fechada e orientada para fora composta pelo plano z = 0 e o hemisfério $z = \sqrt{a^2 - x^2 - y^2}$.

Solução. Como $\nabla \cdot \vec{F} = 3x^2 + 3y^2 + 3z^2$, temos:

$$\iint_{S} \vec{F} \cdot \vec{n} dS = \iiint_{V} 3x^{2} + 3y^{2} + 3z^{2} dV.$$

onde V é o hemisfério do enunciado. Vamos integrar em coordenadas esféricas:

$$\oint \int_{S} \vec{F} \cdot \vec{n} dS = \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{a} 3\rho^{2} \rho^{2} \sin(\phi) d\rho d\phi d\theta
= 2\pi \int_{0}^{\pi/2} \int_{0}^{a} 3\rho^{4} \sin(\phi) d\rho d\phi
= 2\pi \int_{0}^{\pi/2} \left[\frac{3\rho^{5}}{5} \sin(\phi) \right]_{\rho=0}^{\rho=a} d\phi
= \frac{6\pi a^{5}}{5} \left[-\cos(\phi) \right]_{0}^{\pi/2} = \frac{6\pi a^{5}}{5}.$$

6.4 O Teorema de Stokes

Teorema 6.4.1. Seja S uma superfície orientável, suave por partes, limitada por uma curva C, fechada, suave por partes e positivamente orientada com respeito a S. Seja o campo vetorial \vec{F} dado por

$$\vec{F} = f(x,y,z)\vec{j} + g(x,y,z)\vec{i} + h(x,y,z)\vec{k},$$

onde as funções f, g e h possuem todas as derivadas parciais de primeira ordem contínuas em algum conjunto aberto contendo S. Então:

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S \vec{\nabla} \times \vec{F} \cdot \vec{n} dS.$$

Referências Bibliográficas

Índice Remissivo

aceleração	parametrização regular, 3
normal, 21	
tangencial, 21	quádricas, 27
campo	raio de curvatura, 15
conservativo, 38, 44, 46	raio de torção, 17
·	
gradiente, 38	superfície, 26
irrotacional, 38, 46	
campos radiais, 41	teorema fundamental para integral de li-
campos vetoriais, 30	nha, 44
centro de curvatura, 15	torção, 17
curva, 3	trajetórias, 2
curvas e trajetórias, 2	velocidade escalar, 10
curvatura, 14	•
	vetor binormal unitário, 12
derivada de uma função vetorial de uma	vetor normal unitário, 12
variável, 3	vetor normal à uma superfície, 29
derivada do produto de um escalar por	vetor tangente, 9
um vetor, 4	vetor tangente unitário, 10
derivada do produto escalar, 4	
derivada do produto vetorial, 5	
integral de linha, 43	
integral de superfície, 49	
integral de uma função vetorial de uma	
variável, 3	
variavei, o	
limite de uma função vetorial de uma	
variável, 3	
,	
operador	
de segunda ordem, 35	
laplaciano, 35	
orientação de uma curva. 3	