GATE - 2021 - ST

1

EE1030 : Matrix Theory Indian Institute of Technology Hyderabad

Satyanarayana Gajjarapu AI24BTECH11009

1 40 - 52

- 1) Let A be a 3×3 real matrix such that I_3+A is invertible and let $B=(I_3+A)^{-1}(I_3-A)$, where I_3 denotes the 3×3 identity matrix. Then which one of the following statements is true?
 - a) If B is orthogonal, then A is invertible
 - b) If B is orthogonal, then all the eigenvalues of A are real
 - c) If B is skew-symmetric, then A is orthogonal
 - d) If B is skew-symmetric, then the determinant of A equals -1
- 2) Let *X* be a random variable having Poisson distribution such that $E(X^2) = 110$. Then which one of the following statements is NOT true?
 - a) $E(X^n) = 10E[(X+1)^{n-1}]$, for all $n = 1, 2, 3, \cdots$
 - b) $P(X \text{ is even}) = \frac{1}{4} (1 + e^{-20})$
 - c) P(X = k) < P(X = k + 1), for $k = 0, 1, \dots, 8$
 - d) P(X = k) > P(X = k + 1), for $k = 10, 11, \dots$
- 3) Let *X* be a random variable having uniform distribution on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Then which one of the following statements is NOT true?
 - a) $Y = \cot(X)$ follows standard Cauchy distribution
 - b) $Y = \tan(X)$ follows standard Cauchy distribution
 - c) $Y = -\log_e\left(\frac{1}{2} + \frac{X}{\pi}\right)$ has moment generating function $M(t) = \frac{1}{1-t}$, t < 1
 - d) $Y = -2\log_e\left(\frac{1}{2} + \frac{X}{\pi}\right)$ follows central chi-square distribution with one degree of freedom
- 4) Let $\Omega = \{1, 2, 3, \dots\}$ represent the collection of all possible outcomes of a random experiment with probabilities $P(\{n\}) = \alpha n$ for $n \in \Omega$. Then which one of the following statements is NOT true?
 - a) $\lim_{n \to \infty} \alpha_n = 0$
 - b) $\sum_{n=1}^{n\to\infty} \sqrt{\alpha_n}$ converges
 - c) For any positive integer k, there exist k disjoint events A_1, A_2, \dots, A_k such that $P(\bigcup_{i=1}^k A_i) < 0.001$

- d) There exists a sequence $\{A_i\}_{i\geq 1}$ of strictly increasing events such that $P\left(\bigcup_{i=1}^k A_i\right) < 0.001$
- 5) Let (X, Y) have the joint probability density function

$$f_{X,Y}(x,y) = \begin{cases} \frac{4}{(x+y)^3}, & x > 1, y > 1, \\ 0, & \text{otherwise.} \end{cases}$$

Then which one of the following statements is NOT true?

a) The probability density function of X + Y is

$$f_{X+Y}(z) = \frac{4}{z^3}(z-2), z > 2,$$

0.otherwise.

- b) $P(X + Y > 4) = \frac{3}{4}$
- c) $E(X + Y) = 4 \log_{e} 2$
- d) E(Y|X=2)=4
- 6) Let X_1 , X_2 and X_3 be three uncorrelated random variables with common variance $\sigma^2 < \infty$. Let $Y_1 = 2X_1 + X_2 + X_3$, $Y_2 = X_1 + 2X_2 + X_3$ and $Y_3 = X_1 + X_2 + 2X_3$. Then which of the following statements is/are true?

P: The sum of eigenvalues of the variance covariance matrix of (Y_1, Y_2, Y_3) is $18\sigma^2$.

Q: The correlation coefficient between Y_1 and Y_2 equals that between Y_2 and Y_3 .

- a) P only
- b) Q only
- c) Both P and Q
- d) Neither P nor Q
- 7) Let $\{X_n\}_{n\geq 0}$ be a time-homogeneous discrete time Markov chain with either finite or countable state space S. Then which one of the following statements is true?
 - a) There is at least one recurrent state
 - b) If there is an absorbing state, then there exists at least one stationary distribution
 - c) If all the states are positive recurrent, then there exists a unique stationary distribution
 - d) If $\{X_n\}_{n\geq 0}$ is irreducible, $S=\{1,2\}$ and $[\pi_1]$, $[\pi_2]$ is a stationary distribution, then $\lim_{n\to\infty} P(X_n=i|X_0=i)=\pi_i$ for i=1,2
- 8) Let customers arrive at a departmental store according to a Poisson process with rate 10. Further, suppose that each arriving customer is either a male or a female with probability $\frac{1}{2}$ each, independent of all other arrivals. Let N(t) denote the total number of customers who have arrived by time t. Then which one of the following statements is NOT true?
 - a) If S_2 denotes the time of arrival of the second female customer, then $P(S_2 \le 1) = 25 \int_0^1 se^{-5s} ds$

- b) If M(t) denotes the number of male customers who have arrived by time t, then $P\left(M\left(\frac{1}{3}\right) = 0 | M(1) = 1\right) = \frac{1}{3}$
- c) $E[(N(t))^2] = 100t^2 + 10t$
- d) $E[N(t)N(2t)] = 200t^2 + 10t$
- 9) Let $X_{(1)} < X_{(2)} < X_{(3)} < X_{(4)} < X_{(5)}$ be the order statistics corresponding to a random sample of size 5 from a uniform distribution on $[0, \theta]$, where $\theta \in (0, \infty)$. Then which of the following statements is/are true?

P: $3X_{(2)}$ is an unbiased estimator of θ .

Q: The variance of $E[2X_{(3)}|X_{(5)}]$ is less than or equal to the variance of $2X_{(3)}$.

- a) P only
- b) Q only
- c) Both P and Q
- d) Neither P nor Q
- 10) Let X_1, X_2, \dots, X_n be a random sample of size $n \ge 2$ from a distribution having the probability density function

$$f(x; \theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0, \\ 0, & \text{otherwise,} \end{cases}$$

where $\theta \in (0, \infty)$. Let $X_{(1)} = \min\{X_1, X_2, \dots, X_n\}$ and $T = \sum_{i=1}^n X_i$. Then $E(X_{(1)}|T)$ equals

- a) $\frac{T}{n^2}$
- b) $\frac{I}{n}$
- c) $\frac{(n+1)T}{2n}$
- d) $\frac{(n+1)^2 T}{4n^2}$
- 11) Let X_1, X_2, \dots, X_n be a random sample of size $n (\ge 2)$ from a uniform distribution on $[-\theta, \theta]$, where $\theta \in (0, \infty)$. Let $X_{(1)} = \min\{X_1, X_2, \dots, X_n\}$ and $X_{(n)} = \max\{X_1, X_2, \dots, X_n\}$. Then which of the following statements is/are true ? P: $(X_{(1)}, X_{(n)})$ is a complete statistic.

Q: $X_{(n)} - X_{(1)}$ is an ancillary statistic.

- a) P only
- b) Q only
- c) Both P and Q
- d) Neither P nor Q
- 12) Let $\{X_n\}_{n\geq 1}$ be a sequence of independent and identically distributed random variables having common distribution function $F(\cdot)$. Let a < b be two real numbers such that F(x) = 0 for all $x \leq a$, 0 < F(x) < 1 for all a < x < b, and F(x) = 1 for all $x \geq b$. Let $S_n(x)$ be the empirical distribution function at x based on $X_1, X_2, \dots, X_n, n \geq 1$. Then which one of the following statements is NOT true?

- a) $P\left[\lim_{n\to\infty} \sup_{-\infty < x < \infty} |S_n(x) F(x)| = 0\right] = 1$
- b) For fixed $x \in (a,b)$ and $t \in (-\infty,\infty)$, $\lim_{n\to\infty} P\left[\frac{\sqrt{n}|S_n(x)-F(x)|}{\sqrt{S_n(x)(1-S_n(x))}} \le t\right] = P(Z \le t)$, where Z is the standard normal random variable
- c) The covariance between $S_n(x)$ and $S_n(y)$ equals $\frac{1}{n}F(x)(1-F(y))$ for all $n \ge 2$ and for fixed $-\infty < x, y < \infty$
- d) If $Y_n = \sup_{-\infty < x < \infty} (S_n(x) F(x))^2$, then $\{4n \ Y_n\}_{n \ge 1}$ converges in distribution to a central chi-square random variable with 2 degrees of freedom
- 13) Let the joint distribution of random variables X_1, X_2, X_3 and X_4 be $N_4(\mu, \Sigma)$, where

$$\underline{\mu} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \text{ and } \Sigma = \begin{bmatrix} 1 & 0.2 & 0 & 0 \\ 0.2 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0.2 \\ 0 & 0 & 0.2 & 1 \end{bmatrix}.$$

Then which one of the following statements is true?

- a) $\frac{5}{17} \left[(X_1 + X_2)^2 + (X_3 + X_4 1)^2 \right]$ follows a central chi-square distribution with 2
- degrees of freedom

 b) $\frac{1}{3} \left[(X_1 + X_2)^2 + (X_3 + X_4 1)^2 \right]$ follows a central chi-square distribution with 2 degrees of freedom

 c) $E \left[\sqrt{\left| \frac{X_1 + X_2 1}{X_3 + X_4 1} \right|} \right]$ is NOT finite

 d) $E \left[\left| \frac{X_1 + X_2 + X_3 + X_4 2}{X_1 + X_2 X_3 X_4} \right| \right]$ is NOT finite