#### 1 Mark Questions

...

1. If  $R = \{(a, a^3) : a \text{ is a prime number less than } \}$ 5} be a relation. Find the range of R. Foreign 2014

Given,  $R = \{(a, a^3): a \text{ is a prime number less}\}$ than 5}

We know that, 2 and 3 are the prime numbers less than 5.

: a can take values 2 and 3.

Then, 
$$R = \{(2,2^3), (3,3^3)\} = \{(2,8), (3,27)\}$$
  
Hence, the range of  $R$  is  $\{8,27\}$ . (1)

**2.** If  $f: \{1,3,4\} \rightarrow \{1,2,5\}$  and  $g: \{1,2,5\} \rightarrow \{1,3\}$ given by  $f = \{(1,2), (3,5), (4,1)\}$  and  $q = \{(1,3), (2,3), (5,1)\}$ . Write down gof. All India 2014C

The functions  $f:\{1,3,4\} \rightarrow \{1,2,5\}$  and  $g:\{1,2,5\} \rightarrow \{1,3\}$  are defined as  $f = \{(1,2), (3,5), (4,1)\}$  and  $g = \{(1,3), (2,3), (5,1)\}$ gof(1) = g(f(1)) = g(2) = 3[:: f(1) = 2 and g(2) = 3] gof(3) = g(f(3)) = g(5) = 1[:: f(3) = 5 and g(5) = 1] gof(4) = g(f(4)) = g(1) = 3[:: f(4) = 1 and g(1) = 3] $gof = \{(1,3), (3,1), (4,3)\}$ **(1)** 

3. Let R is the equivalence relation in the set  $A = \{0,1,2,3,4,5\}$  given by  $R = \{(a,b): 2 \text{ divides }$ (a - b). Write the equivalence class [0]. Delhi 2014C

Given,  $R = \{(a, b): 2 \text{ divides } (a-b)\}$ Here, all even integers are related to zero, i.e. (0, 2)(0, 4).

Hence, equivalence class of  $[0] = \{2,4\}$ (1) **4.** If  $R = \{(x, y) : x + 2y = 8\}$  is a relation on N, then write the range of R. All India 2014

Given, the relation R is defined on the set of natural numbers, i.e. N as

$$R = \{(x, y) : x + 2y = 8\}$$

To find the range of R, x + 2y = 8 can be rewritten as  $y = \frac{8 - x}{2}$ .

On putting 
$$x = 2$$
, we get  $y = \frac{8-2}{2} = 3$ 

On putting 
$$x = 4$$
, we get  $y = \frac{8-4}{2} = 2$ 

On putting 
$$x = 6$$
, we get  $y = \frac{8-6}{2} = 1$ 

As, 
$$x, y \in N$$
, then  $R = \{(2, 3) (4, 2) (6, 1)\}$   
Hence, range of relation is  $\{3, 2, 1\}$ . (1)

**5.** If 
$$A = \{1, 2, 3\}$$
,  $B = \{4, 5, 6, 7\}$  and  $f = \{(1, 4), (2, 5), (3, 6)\}$  is a function from  $A$  to  $B$ . State whether  $f$  is one-one or not.

All India 2011

Given, 
$$A = \{1, 2, 3\}$$
 and  $B = \{4, 5, 6, 7\}$ 

Now,  $f: A \rightarrow B$  is defined as

$$f = \{(1, 4), (2, 5), (3, 6)\}$$

Therefore, 
$$f(1) = 4$$
,  $f(2) = 5$  and  $f(3) = 6$ .

It is seen that the images of distinct elements of A under f are distinct. So, f is one-one. (1)

**6.** If 
$$f: R \to R$$
 is defined by  $f(x) = 3x + 2$ , then define  $f[f(x)]$ . Foreign 2011; Delhi 2010

Given, 
$$f(x) = 3x + 2$$
  
Now,  $f[f(x)] = f(3x + 2) = 3(3x + 2) + 2$   
 $= 9x + 6 + 2 = 9x + 8$ 

7. Write fog, if  $f: R \to R$  and  $g: R \to R$  are given by f(x) = |x| and g(x) = |5x - 2|. Foreign 2011

Given, 
$$f(x) = |x|, g(x) = |5x - 2|$$
  
Now,  $f \circ g(x) = f[g(x)] = f\{|5x - 2|\}$   
 $= ||5x - 2|| = |5x - 2|$ 

**8.** Write  $f \circ g$ , if  $f : R \to R$  and  $g : R \to R$  are given by  $f(x) = 8x^3$  and  $g(x) = x^{1/3}$ . Foreign 2011

Given, 
$$f(x) = 8x^3$$
 and  $g(x) = x^{1/3}$   
Now,  $f \circ g(x) = f[g(x)] = f(x^{1/3}) = 8(x^{1/3})^3 = 8x(1)$ 

**9.** State the reason for the relation R in the set  $\{1, 2, 3\}$  given by  $R = \{(1, 2), (2, 1)\}$  not to be transitive. **Delhi 2011** 

We know that, for a relation to be transitive  $(x, y) \in R$  and  $(y, z) \in R$ 

$$\Rightarrow$$
  $(x, z) \in R$ 

Here,  $(1, 2) \in R$  and  $(2, 1) \in R$  but  $(1, 1) \notin R$ . Hence, R is not transitive. (1) 10. What is the range of the function

$$f(x) = \frac{|x-1|}{x-1}, x \neq 1$$
?

Delhi 2010; HOTS

Given, function is  $f(x) = \frac{|x-1|}{|x-1|}, x \ne 1$ 

The above function may be written as

$$f(x) = \begin{cases} \frac{x-1}{x-1}, & \text{if } x > 1 \\ -\frac{(x-1)}{x-1}, & \text{if } x < 1 \end{cases}$$
$$f(x) = \begin{cases} 1, & \text{if } x > 1 \\ -1, & \text{if } x < 1 \end{cases}$$

- $\therefore$  Range of f(x) is the set  $\{-1, 1\}$ .
- **11.** If  $f: R \to R$  is defined by  $f(x) = (3 x^3)^{1/3}$ , then find  $f \circ f(x)$ .

  All India 2010

Given, function is  $f: R \to R$  such that  $f(x) = (3 - x^3)^{1/3}$ .

Now, fof 
$$(x) = f[f(x)] = f[(3 - x^3)^{1/3}]$$
  

$$= [3 - \{(3 - x^3)^{1/3}\}^3]^{1/3}$$

$$= [3 - (3 - x^3)]^{1/3} = (x^3)^{1/3}$$

$$= x$$
(1)

12. If f is an invertible function, defined as

$$f(x) = \frac{3x - 4}{5}$$
, then write  $f^{-1}(x)$ . Foreign 2010

Given,  $f(x) = \frac{3x-4}{5}$  and is invertible.

Let 
$$y = \frac{3x-4}{5} \Rightarrow 5y = 3x-4$$

$$\Rightarrow 3x = 5y + 4 \Rightarrow x = \frac{5y + 4}{3}$$

$$f^{-1}(y) = \frac{5y+4}{3} \implies f^{-1}(x) = \frac{5x+4}{3}$$

**13.** If  $f: R \to R$  and  $g: R \to R$  are given by  $f(x) = \sin x$  and  $g(x) = 5x^2$ , then find gof(x).

Foreign 2010

Given,  $f(x) = \sin x$  and  $g(x) = 5x^2$ .

$$gof(x) = g[f(x)] = g(\sin x)$$
$$= 5(\sin x)^2 = 5 \sin^2 x$$

**14.** If  $f(x) = 27x^3$  and  $g(x) = x^{1/3}$ , then find gof(x).

Foreign 2010

Given, 
$$f(x) = 27x^3$$
 and  $g(x) = x^{1/3}$ .

$$gof(x) = g[f(x)] = g(27x^3)$$

$$= (27x^3)^{1/3} = (27)^{1/3} \cdot (x^3)^{1/3}$$

$$= (3^3)^{1/3} \cdot (x^3)^{1/3} = 3x$$

$$\therefore gof(x) = 3x$$

**15.** If the function  $f: R \to R$ , defined by f(x) = 3x - 4 is invertible, then find  $f^{-1}$ .

All India 2010C

Given, function is f(x) = 3x - 4 and is invertible.

Let 
$$y = 3x - 4 \Rightarrow 3x = y + 4$$
  

$$\Rightarrow \qquad x = \frac{y + 4}{3}$$

$$\therefore \qquad f^{-1}(y) = \frac{y + 4}{3} \Rightarrow f^{-1}(x) = \frac{x + 4}{3} \quad (1)$$

**16.** If  $f: R \to R$  defined by  $f(x) = \frac{3x + 5}{2}$  is an invertible function, then find  $f^{-1}(x)$ .

All India 2009C

Do same as Que 12. 
$$\left[ \text{Ans. } \frac{2x-5}{3} \right]$$

17. State whether the function  $f: N \to N$  given by f(x) = 5x is injective, surjective or both.

All India 2008C; HOTS

For injective function, it should be one-one and for surjective function, it should be onto.

Given function is f(x) = 5x.

As, 
$$f(x_1) = f(x_2) \Rightarrow 5x_1 = 5x_2$$

$$\Rightarrow \qquad x_1 = x_2, \ \forall \ x_1, x_2 \in N$$

So, f(x) is an injective function.

(1/2)

Also, range of f(n) = 5n,  $n \in \mathbb{N}$ .

But codomain = N

- Range ≠ Codomain
- $\therefore f(x)$  is not surjective.

Hence, the given function is injective.

**18.** If 
$$f: R \to R$$
 defined by  $f(x) = \frac{2x - 7}{4}$  is an invertible function, then find  $f^{-1}(x)$ .

Delhi 2008C

Ans. 
$$\frac{4x+7}{2}$$

#### **4 Marks Questions**

**19.** If  $f: W \to W$ , is defined as f(x) = x - 1, if x is odd and f(x) = x + 1, if x is even. Show that f is invertible. Find the inverse of f, where W is the set of all whole numbers. Foreign 2014  $f: W \to W$  is defined as

$$f(x) = \begin{cases} x - 1, & \text{if } x \text{ is odd} \\ x + 1, & \text{if } x \text{ is even} \end{cases}$$

First, we need to show that f is one-one.

Let 
$$f(x_1) = f(x_2)$$

Case 1 When  $x_1$  and  $x_2$  are odd.

Then, 
$$f(x_1) = f(x_2) \implies x_1 - 1 = x_2 - 1$$
  
 $\Rightarrow x_1 = x_2, \forall x_1, x_2 \in W$  (1)

Case II When  $x_1$  and  $x_2$  are even.

Then, 
$$f(x_1) = f(x_2)$$
  
 $\Rightarrow x_1 + 1 = x_2 + 1$   
 $\Rightarrow x_1 = x_2, \forall x_1, x_2 \in W$ 

So, from case I and II, we observe that

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \in W$$
  
Hence,  $f(x)$  is a one-one function. (1)

Now, we need to show that f is onto.

Any odd number 2y + 1, in the codomain W, is the image of 2y in the domain W.

Also, any even number 2y in the codomain W, is the image of 2y-1 in the domain W.

Thus, every element in W (codomain) has its image in W (domain).

So, f is onto. Therefore, f is bijection. So, it is invertible. (1)

Let  $x, y \in W$ , such that

$$f(x) = y$$

$$\Rightarrow x - 1 = y, \text{ if } x \text{ is odd}$$

$$x + 1 = y, \text{ if } x \text{ is even}$$

$$\Rightarrow x = \begin{cases} y + 1, & \text{if } y \text{ is even} \\ y - 1, & \text{if } y \text{ is odd} \end{cases}$$
Clearly,  $f = f^{-1}$  (1)

**20.** If  $f,g: R \to R$  are two functions defined as f(x) = |x| + x and  $g(x) = |x| - x, \forall x \in R$ , Then, find fog and gof. All India 2014C

Given, f(x) = |x| + x and g(x) = |x| - x for all  $x \in R$ .

$$\Rightarrow f(x) = \begin{cases} 2x, & x > 0 \\ 0, & x < 0 \end{cases} \text{ and } g(x) = \begin{cases} 0, & x > 0 \\ -2x, & x < 0 \end{cases}$$
 (1)

Thus, for x > 0, gof(x) = g(2x) = 0

and for 
$$x < 0$$
,  $gof(x) = g(0) = 0$   
 $\Rightarrow gof(x) = 0, \forall x \in R$  (1½)

and for x > 0,  $f \circ g(x) = f(0) = 0$ 

for x < 0,  $f \circ g(x) = f(-2x) = -$ 

$$\Rightarrow \qquad fog(x) = \begin{cases} 0, & x > 0 \\ -4x, & x < 0 \end{cases}$$
 (11/2)

**21.** If *R* is *a* relation defined on the set of natural numbers *N* as follows:

 $R = \{(x,y), x \in N, Y \in N \text{ and } 2x + y = 24\}$ , then find the domain and range of the relation R. Also, find if R is an equivalence relation or not.

Delhi 2014C

Given 
$$R = \{(x, y), x \in N, y \in N \text{ and } 2x + y = 24\}$$
  
When,  $x = 1 \Rightarrow y = 22 ; x = 2 \Rightarrow y = 20$   
 $x = 3 \Rightarrow y = 18; x = 4 \Rightarrow y = 16$   
 $x = 5 \Rightarrow y = 14; x = 6 \Rightarrow y = 12$   
 $x = 7 \Rightarrow y = 10; x = 8 \Rightarrow y = 8$   
 $x = 9 \Rightarrow y = 6; x = 10 \Rightarrow y = 4$   
 $x = 11 \Rightarrow y = 2$ 

So, domain of  $R = \{1,2,3,....,11\}$ . and range of  $R = \{2,4,6,8,10,12,14,16,18,20,22\}$ and  $R = \{(1,22)(2,20)(3,18)(4,16)(5,14)(6,12)$  $(7,10)(8,8)(9,6)(10,4)(11,2)\}$  (1)

#### Reflexive

Since, for  $a \in \text{domain of } R$ ,  $(a, a) \notin R$ . Hence, R is not reflexive. (1)

### **Symmetric**

Since,  $(1,22) \in R$  but  $(22,1) \notin R$ . Hence, R is not symmetric (1)

#### **Transitive**

There are no elements such that that  $(a, b) \in R$  and  $(b, c) \in R \Rightarrow (a, c) \in R$ . Hence, R is not transitive and so, it is not an equivalence relation. (1)

**22.** If  $A = R - \{3\}$  and  $B = R - \{1\}$ . Consider the function  $f: A \to B$  defined by  $f(x) = \frac{x-2}{x-3}$  for all  $x \in A$ . Then show that f is bijective. Find  $f^{-1}(x)$ . Delhi 2014C; Delhi 2012

Given, function is  $f: A \rightarrow B$ , where  $A = R - \{3\}$  and  $B = R - \{1\}$ , such that  $f(x) = \frac{x-2}{x-3}$ .

One-one Let 
$$f(x_1) = f(x_2), \forall x_1, x_2 \in A$$
  

$$\Rightarrow \frac{x_1 - 2}{x_2 - 2} = \frac{x_2 - 2}{x_1 + x_2}$$

$$\Rightarrow \frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3}$$

$$\Rightarrow$$
  $(x_1 - 2)(x_2 - 3) = (x_2 - 2)(x_1 - 3)$ 

$$\Rightarrow x_1x_2 - 3x_1 - 2x_2 + 6 = x_1x_2 - 3x_2 - 2x_1 + 6$$

$$\Rightarrow$$
  $-3x_1 - 2x_2 = -3x_2 - 2x_1$ 

$$\Rightarrow$$
 -3  $(x_1 - x_2) + 2 (x_1 - x_2) = 0$ 

$$\Rightarrow \qquad -(x_1 - x_2) = 0$$

$$\Rightarrow$$
  $x_1 - x_2 = 0 \Rightarrow x_1 = x_2$ 

 $f(x_1) = f(x_2) \Rightarrow x_1 = x_2, \forall x_1, x_2 \in A. \text{ So, } f(x) \text{ is a one-one function.}$ 

**Onto** To show f(x) is onto, we show that range of f(x) and its codomain are same.

Now, let 
$$y = \frac{x-2}{x-3} \implies xy - 3y = x-2$$

$$\Rightarrow xy - x = 3y - 2 \Rightarrow x(y - 1) = 3y - 2$$

$$\Rightarrow \qquad x = \frac{3y - 2}{y - 1} \qquad \dots (i)$$

Since,  $x \in R - \{3\}$ ,  $\forall y \in R - \{1\}$ , so range of  $f(x) = R - \{1\}$ .

Also, given codomain of  $f(x) = R - \{1\}$ 

∴ Range = Codomain

Hence, f(x) is an onto function. (11/2)

Therefore, f(x) is an bijective function.

From Eq. (i), we get

$$f^{-1}(y) = \frac{3y-2}{y-1} \implies f^{-1}(x) = \frac{3x-2}{x-1}$$

which is the inverse function of f(x). (1)

**23.** If  $A = \{1, 2, 3, ..., 9\}$  and R be the relation in  $A \times A$  defined by (a, b) R(c, d). If a + d = b + c for (a, b), (c, d) in  $A \times A$ . Prove that R is an equivalence relation, Also, obtain the equivalence class [(2, 5)]. **Delhi 2014** 

Given, relation R defined by (a, b) R(c, d), if a + d = b + c for (a, b), (c, d) in  $A \times A$ .

Here,  $A = \{1, 2, 3, ..., 9\}$ 

We observe the following properties on R:

**Reflexive** Let (1, 2) be an element of  $A \times A$ .

Then,  $(1, 2) \in A \times A \implies 1, 2 \in A$ 

 $\Rightarrow$  1+2 = 2 +1 [: addition is commutative]

**(1)** 

 $\Rightarrow$  (1, 2) R (1, 2)

Thus,  $(1, 2) R (1, 2), \forall (1, 2) \in A \times A$ 

So, R is reflexive on  $A \times A$ .

Symmetric Let  $(1, 2), (3, 4) \in A \times A$  such that (1, 2) R (3, 4)Then, 1+4=2+33+2=4+1 [: addition is commutative] (3, 4) R (1, 2)Thus, (1, 2) R (3, 4)  $\Rightarrow$  (3, 4) R (1, 2),  $\forall$  (1, 2), (3, 4)  $\in$  A  $\times$  A So, R is symmetric on  $A \times A$ . **(1) Transitive** Let  $(1, 2), (3, 4), (5, 6) \in A \times A$  such that (1, 2) R (3, 4) and (3, 4) R (5, 6). Then, (1, 2) R (3, 4)1+4=2+3 $\Rightarrow$ (3, 4) R (5, 6)3+6=4+5 $\Rightarrow$ (1+4)+3+6=(2+3)+(4+5) $1+6=2+5 \implies (1,2) R(5,6)$  $\Rightarrow$ Thus, (1, 2) R (3, 4) and (3, 4) R (5, 6)  $\Rightarrow$  (1, 2) R (5, 6),  $\forall$  (1, 2), (3, 4), (5, 6)  $\in$  A  $\times$  A So, R is transitive on  $A \times A$ . (1) Hence, it is an equivalence relation on  $A \times A$ . Equivalence class containing element x of A is  $[x]_R = \{y: (x, y) \in R\}$ given by Hence, equivalence class  $[(2,5)] = \{(1,4), (2,5), (3,6), (4,7), (5,8), (6,9)\}$ **24.** If the function  $f: R \longrightarrow R$  is given by  $f(x) = x^2 + 2$  and  $g: R \rightarrow R$  is given by  $g(x) = \frac{x}{x-1}$ ;  $x \ne 1$ , then find fog and gof and hence, find fog (2) and gof (-3). All India 2014

We have 
$$f(x) = x^2 + 2$$
 and  $g(x) = \frac{x}{x-1}$ ;  $x \ne 1$ 

Since, range f = domain gand range g = domain f $\therefore$  fog and gof exist.

For any  $x \in R$ , we have  $(f \circ g)(x) = f[g(x)]$ 

$$= f \left[ \frac{x}{x-1} \right] = \left( \frac{x}{x-1} \right)^2 + 2$$

$$= \frac{x^2 + 2(x-1)^2}{(x-1)^2} = \frac{x^2 + 2(x^2 + 1 - 2x)}{(x-1)^2}$$

$$= \frac{3x^2 + 2 - 4x}{(x-1)^2}$$

 $\therefore$  fog: $R \rightarrow R$  is defined by

$$(fog)(x) = \frac{3x^2 - 4x + 2}{(x - 1)^2}, \forall x \in R$$
 ...(i) (1)

For any  $x \in R$ , we have

$$(gof)(x) = g[f(x)]$$

$$= g[x^2 + 2] = \frac{x^2 + 2}{x^2 + 2 - 1} = \frac{x^2 + 2}{x^2 + 1}$$
 (1)

 $\therefore$  gof :  $R \rightarrow R$  is defined by

$$(gof)(x) = \frac{x^2 + 2}{x^2 + 1}, \forall x \in R$$
 ...(ii)

On putting x = 2 in Eq.(i), we get

$$fog(2) = \frac{3 \times (2)^2 - 4(2) + 2}{(2-1)^2} = \frac{3 \times 4 - 8 + 2}{(1)^2}$$
(1)

$$=12-6=6$$

On putting x = -3 in Eq. (ii), we get

$$(gof)(-3) = \frac{(-3)^2 + 2}{(-3)^2 + 1}$$
$$= \frac{9 + 2}{9 + 1} = \frac{11}{10}$$
 (1)

**25.** If  $A = R - \{2\}$  and  $B = R - \{1\}$ . If  $f : A \rightarrow B$  is a function defined by  $f(x) = \frac{x-1}{x-2}$ , then show that f is one-one and onto. Hence, find  $f^{-1}$ .

Delhi 2013C

Given, 
$$f(x) = \frac{x-1}{x-2}$$
 and  $f: A \to B$ , where

$$A = R - \{2\}$$
 and  $B = R - \{1\}$ .

One-one Let  $f(x_1) = f(x_2), \forall x_1, x_2 \in A$ 

$$\Rightarrow \frac{x_1 - 1}{x_1 - 2} = \frac{x_2 - 1}{x_2 - 2}$$
 (1/2)

$$\Rightarrow$$
  $(x_1 - 1)(x_2 - 2) = (x_2 - 1)(x_1 - 2)$ 

$$\Rightarrow x_1x_2 - 2x_1 - x_2 + 2 = x_1x_2 - 2x_2 - x_1 + 2$$

$$\Rightarrow$$
  $-x_1 = -x_2 \Rightarrow x_1 = x_2$ 

: 
$$f(x_1) = f(x_2) \implies x_1 = x_2, \forall x_1, x_2 \in A$$
 (1)

Therefore, f(x) is one-one.

Onto Let 
$$y = \frac{x-1}{x-2} \implies xy - 2y = x - 1$$

$$\Rightarrow \qquad x(y-1) = 2y - 1 \tag{1/2}$$

$$\Rightarrow x(y-1) = 2y - 1 
\Rightarrow x = \frac{2y - 1}{y - 1}$$
(1/2)
...(i)

Since,  $x \in R - \{2\}, \forall y \in R - \{1\}$ So, range of  $f(x) = R - \{1\}$ 

∴ Range = Codomain

Therefore, 
$$f(x)$$
 is onto. (1)

Also, from Eq. (i), we get

$$f^{-1}(y) = \frac{2y-1}{y-1}$$
 [:  $x = f^{-1}(y)$ ]

$$\Rightarrow \qquad f^{-1}(x) = \frac{2x - 1}{x - 1} \tag{1}$$

**26.** Show that the function f in

$$A = R - \left\{\frac{2}{3}\right\} \text{ defined as } f(x) = \frac{4x + 3}{6x - 4} \text{ is}$$

one-one and onto. Hence, find  $f^{-1}$ . Delhi 2013

Given, 
$$f(x) = \frac{4x+3}{6x-4}$$

Let 
$$x_1, x_2 \in A = R - \left\{ \frac{2}{3} \right\}; x_1 \neq x_2$$

**One-one** Consider,  $f(x_1) = f(x_2)$ 

$$\therefore \frac{4x_1+3}{6x_1-4} = \frac{4x_2+3}{6x_2-4}$$

$$\Rightarrow$$
  $(4x_1 + 3)(6x_2 - 4) = (4x_2 + 3)(6x_1 - 4)$ 

$$\Rightarrow 24x_1x_2 - 16x_1 + 18x_2 - 12$$

$$= 24x_1x_2 - 16x_2 + 18x_1 - 12$$

$$\Rightarrow -34x_1 = -34x_2 \Rightarrow x_1 = x_2$$

So, *f* is one-one.

 $(1\frac{1}{2})$ 

**Onto** Let 
$$y = \frac{4x + 3}{6x - 4} \implies 6xy - 4y = 4x + 3$$

$$\Rightarrow$$
  $(6y - 4) x = 3 + 4y$ 

$$\Rightarrow x = \frac{3+4y}{6y-4} \text{ and } y \neq \frac{4}{6}, \text{ i.e. } y \neq \frac{2}{3}$$

$$y \in R - \left\{ \frac{2}{3} \right\}$$

Thus, f is onto.

 $(1\frac{1}{2})$ 

Since, f is one-one and onto.

$$\therefore x = f^{-1}(y) = \frac{3 + 4y}{6y - 4} \Rightarrow f^{-1}(x) = \frac{3 + 4x}{6x - 4}$$
 (1)

**27.** Consider  $f: R_+ \to [4, \infty)$  given by  $f(x) = x^2 + 4$ . Show that f is invertible with the inverse  $f^{-1}$  of f given by  $f^{-1}(y) = \sqrt{y - 4}$ , where  $R_+$  is the set of all non-negative real numbers.

All India 2013; Foreign 2011; HOTS

will show that f is both one-one and onto function.

Here, function  $f: R_+ \to [4, \infty)$  is given by  $f(x) = x^2 + 4$ .

Let  $x, y \in R_+$ , such that f(x) = f(y).

$$\Rightarrow x^2 + 4 = y^2 + 4$$

$$\Rightarrow x^2 = y^2 \Rightarrow x = y$$

[: we take only positive sign as  $x, y \in R_+$ ] Therefore, f is a one-one function. (1) For  $y \in [4, \infty)$ ,

let 
$$y = x^2 + 4$$
  

$$\Rightarrow x^2 = y - 4 \ge 0$$

$$\Rightarrow x = \sqrt{y - 4} \ge 0$$
[::  $y \ge 4$ ]

[we take positive sign, as  $x \in R_+$ ]

Therefore, for any  $y \in R_+$ , there exists  $x = \sqrt{y - 4} \in R_+$ , such that

$$f(x) = f(\sqrt{y-4}) = (\sqrt{y-4})^2 + 4$$
$$= y-4+4=y$$

Therefore, f is onto. Thus, f is one-one and onto and therefore,  $f^{-1}$  exists. (1)

Let us define  $g:[4, \infty) \to R_+$ , by  $g(y) = \sqrt{y-4}$ .

Now, 
$$gof(x) = g(f(x)) = g(x^2 + 4)$$
  
=  $\sqrt{(x^2 + 4) - 4} = \sqrt{x^2} = x$ 

and  $fog(y) = f[g(y)] = f(\sqrt{y-4})$ =  $(\sqrt{y-4})^2 + 4$ = (y-4) + 4 = y (1)

Therefore, 
$$gof = I_{R_+}$$
 and  $fog = I_{[4, \infty)}$   

$$\Rightarrow f^{-1}(y) = g(y) = \sqrt{y - 4}$$
(1)

one-one and onto, specially when the actual inverse of f is not to be determined.

**28.** Show that  $f: N \to N$ , given by

$$f(x) = \begin{cases} x + 1, & \text{if } x \text{ is odd} \\ x - 1, & \text{if } x \text{ is even} \end{cases}$$

is bijective (both one-one and onto).

All India 2012

Given function is  $f: N \to N$  such that

$$f(x) = \begin{cases} x + 1, & \text{if } x \text{ is odd} \\ x - 1, & \text{if } x \text{ is even} \end{cases}$$

One-one From the given function, we observe that

Case I When x is odd.

Let 
$$f(x_1) = f(x_2)$$
  
 $\Rightarrow x_1 + 1 = x_2 + 1 \Rightarrow x_1 = x_2$   
 $\therefore f(x_1) = f(x_2)$   
 $\Rightarrow x_1 = x_2, \forall x_1, x_2 \in \mathbb{N}.$   
So,  $f(x)$  is one-one. (1)

Case II When x is even.

Let 
$$f(x_1) = f(x_2)$$
  
 $\Rightarrow x_1 - 1 = x_2 - 1 \Rightarrow x_1 = x_2$   
 $\therefore f(x_1) = f(x_2)$   
 $\Rightarrow x_1 = x_2, \forall x_1, x_2 \in \mathbb{N}.$ 

So, f(x) is one-one.

Hence, from case I and case II, we observe that,  $f(x_1) = f(x_2)$ 

$$\Rightarrow x_1 = x_2, \forall x_1, x_2 \in N$$
Therefore,  $f(x)$  is a one-one. (1)

**Onto** To show f(x) is onto, we show that its

range and codomain are same.

From the definition of given function, we observe that

$$f(1) = 1 + 1 = 2$$
  
 $f(2) = 2 - 1 = 1$   
 $f(3) = 3 + 1 = 4$   
 $f(4) = 4 - 1 = 3$  and so on. (1)

So, we get set of natural numbers as the set of values of f(x).

$$\Rightarrow$$
 Range of  $f(x) = N$ 

Also, given that codomain = N

$$\begin{bmatrix} :: f: N \to N \\ \text{domain} & \text{codomain} \end{bmatrix}$$

Thus, range = codomain

Therefore, f(x) is an onto function.

Hence, the function 
$$f(x)$$
 is bijective. (1)

**29.** If  $f: R \to R$  is defined as f(x) = 10x + 7. Find the function  $g: R \to R$ , such that  $gof = fog = I_R$ . All India 2011

Given, 
$$f(x) = 10x + 7$$

Let 
$$y = 10x + 7 \Rightarrow 10x = y - 7$$
  

$$\Rightarrow x = \frac{y - 7}{10}$$
(1)

Now, let 
$$g(x) = \frac{x-7}{10}$$

Then, gof(x) may be written as

$$gof(x) = g[f(x)] = g(10x + 7)$$

$$= \frac{10x + 7 - 7}{10} = x$$
(1)

Also, fog(x) may be written as

$$fog(x) = f[g(x)] = f\left(\frac{x-7}{10}\right) = 10\left(\frac{x-7}{10}\right) + 7(1)$$

$$\Rightarrow$$
  $fog(x) = x$ 

Hence, required function  $g:R \to R$  is given by

$$g(x) = \frac{x - 7}{10}$$
 (1)

**30.** Show that the function  $f: W \to W$  defined by

$$f(n) = \begin{cases} n+1, & \text{if } n \text{ is even} \\ n-1, & \text{if } n \text{ is odd} \end{cases}$$

is a bijective function.

All India 2011C

# Do same as Que19.

**31.** If  $f: R \to R$  is the function defined by  $f(x) = 4x^3 + 7$ , then show that f is a bijection. Delhi 2011C

The given function is  $f: R \rightarrow R$  such that

$$f(x) = 4x^3 + 7$$

#### One-one

Let 
$$f(x_1) = f(x_2), \ \forall \ x_1, x_2 \in R$$
  
 $\Rightarrow 4x_1^3 + 7 = 4x_2^3 + 7$   
 $\Rightarrow 4x_1^3 = 4x_2^3 \Rightarrow x_1^3 - x_2^3 = 0$   
 $\Rightarrow (x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2) = 0$   
 $[\because a^3 - b^3 = (a - b)(a^2 + ab + b^2)]$   
Either  $x_1 - x_2 = 0$  ...(i)  
or  $x_1^2 + x_1x_2 + x_2^2 = 0$  ...(ii)  
But Eq. (ii) is not possible as  $x_1, x_2 \in R$ . (1/2)  
 $\therefore x_1 - x_2 = 0 \Rightarrow x_1 = x_2$   
Thus  $f(x_1) = f(x_2)$   
 $\Rightarrow x_1 = x_2, \ \forall x_1, x_2 \in R$   
Therefore,  $f(x)$  is a one-one function. (1)  
Onto To show that  $f(x)$  is an onto function, we show that  
Range of  $f(x)$  = Codomain of  $f(x)$   
Given, codomain of  $f(x) = R$   
Now, let  $y = 4x^3 + 7 \Rightarrow 4x^3 = y - 7$ 

 $\Rightarrow \qquad x = \left(\frac{y-7}{4}\right)^{1/3} \qquad \dots \text{(iii) (1/2)}$ 

 $x^3 = \frac{y-7}{4}$ 

From Eq. (iii), it is clear that for every  $y \in R$ , we get  $x \in R$ .

 $\therefore$  Range of f(x) = RThus, range of f(x) = codomain of f(x) $\Rightarrow$  f(x) is an onto function. (1)Since, f(x) is both one-one and onto, so it is a bijective. (1)**32.** If Z is the set of all integers and R is the relation on Z defined as  $R = \{(a, b) : a, b \in Z \text{ and } a - b \text{ is divisible by 5}\}.$ Prove that R is an equivalence relation. Delhi 2010; HOTS The given relation is  $R = \{(a, b) : a, b \in Z \text{ and } d \in Z \}$ a - b is divisible by 5}. We shall prove that R is reflexive, symmetric and transitive. (i) **Reflexive** As for any  $x \in Z$ , we have x - x = 0 and 0 is divisible by 5. (x - x) is divisible by 5.  $(x, x) \in R, \forall x \in Z$ Therefore, R is reflexive. (1) (ii) **Symmetric** As  $(x, y) \in R$ , where  $(x, y) \in Z$ (x - y) is divisible by 5. [by definition of R] x - y = 5A for some  $A \in Z$  $\Rightarrow$  y - x = 5(-A) $\Rightarrow$  (y - x) is also divisible by 5  $(y, x) \in R$  $\Rightarrow$ Therefore, *R* is symmetric. **(1)** (iii) **Transitive** As  $(x, y) \in R$ , where  $x, y \in Z$  $\Rightarrow$  (x - y) is divisible by 5.

⇒ (x - y) is divisible by 5. ⇒ x - y = 5A for some  $A \in Z$ Again, for  $(y, z) \in R$ , where  $y, z \in Z$ ⇒ (y - z) is divisible by 5.

$$\Rightarrow y - z = 5B$$
 for some  $B \in Z$ 

Now, 
$$(x - y) + (y - z) = 5A + 5B$$

$$\Rightarrow$$
  $x - z = 5(A + B)$ 

$$\Rightarrow$$
  $(x - z)$  is divisible by 5 for some

$$A + B \in Z$$

Therefore, *R* is transitive.

 $(1\frac{1}{2})$ 

Thus, *R* is reflexive, symmetric and transitive. Hence, it is an equivalence relation. (1/2)

**NOTE** If atleast one of the relation is not satisfied, we do not say it is an equivalence relation.

33. Show that the relation S in the set R of real numbers defined as, S = {(a b) : a, b ∈ R and a ≤ b³} is neither reflexive nor symmetric nor transitive.
Delhi 2010; HOTS

# Given relation is

$$S = \{(a, b) : a, b \in R \text{ and } a \le b^3\}$$

(i) **Reflexive** As  $\frac{1}{3} \le \left(\frac{1}{3}\right)^3$ , where  $\frac{1}{3} \in R$  is not true.

$$\Rightarrow \qquad \left(\frac{1}{3}, \frac{1}{3}\right) \notin S$$

Therefore, *S* is not reflexive. (1)

(ii) **Symmetric**  $As -2 \le (3)^3$ , where -2,  $3 \in R$  is true but  $3 \le (-2)^3$  is not true.

i.e.  $(-2, 3) \in S$  but  $(3, -2) \notin S$ Therefore, S is not symmetric. (1)

(iii) **Transitive** As  $3 \le \left(\frac{3}{2}\right)^3$  and  $\frac{3}{2} \le \left(\frac{4}{3}\right)^3$ ,

where  $3, \frac{3}{2}, \frac{4}{3} \in R$  are true but  $3 \le \left(\frac{4}{3}\right)^3$  is not true.

$$\Rightarrow \left(3, \frac{3}{2}\right) \in S \text{ and } \left(\frac{3}{2}, \frac{4}{3}\right) \in S$$
but  $\left(3, \frac{4}{3}\right) \notin S$  (1½)

Therefore, S is not transitive.

Hence, S is none of these, i.e. not reflexive, not symmetric and not transitive. (1/2)

**NOTE** There are certain ordered pairs like (1, 1) for which the relation is reflexive, so it is important to pick example suitably.

34. Show that the relation S in set

 $A = \{x \in Z : 0 \le x \le 12\}$  given by

 $S = \{(a, b) : a, b \in Z, |a - b| \text{ is divisible by 4} \} \text{ is an equivalence relation. Find the set of all elements related to } A.$ All India 2010

The given relation is  $S = \{(a, b) : |a - b| \text{ is divisible by 4, where } a, b \in Z\}$ 

and  $A = \{x : x \in Z \text{ and } 0 \le x \le 12\}$ 

Now, A can be written as

$$A = \{0, 1, 2, 3, \dots, 12\}$$
 (1/2)

(i) **Reflexive** As for any  $x \in A$ , we get |x - x| = 0, which is divisible by 4.

$$\Rightarrow$$
  $(x, x) \in S, \forall x \in A$ 

Therefore, *S* is reflexive. (1)

(ii) **Symmetric** As for any  $(x, y) \in S$ , we get |x - y| is divisible by 4.

[by using definition of given relation]

$$\Rightarrow$$
  $|x-y|=4\lambda$ , for some  $\lambda \in Z$ 

$$\Rightarrow$$
  $|y-x|=4\lambda$ , for some  $\lambda \in Z$ 

$$\Rightarrow$$
  $(y, x) \in S$ 

Thus,  $(x, y) \in S \Rightarrow (y, x) \in S, \forall x, y \in Z$ 

Therefore, *S* is symmetric. (1)

(iii) **Transitive** For any  $(x, y) \in S$  and  $(y, z) \in S$ , we get |x - y| is divisible by 4 and |y - z| is divisible by 4.

[by using definition of given relation]

$$\Rightarrow |x-y| = 4\lambda \text{ and } |y-z| = 4\mu,$$
 for some  $\lambda, \mu \in Z$ 

Now, 
$$x - z = (x - y) + (y - z)$$
  
=  $\pm 4\lambda \pm 4\mu = \pm 4(\lambda + \mu)$ 

$$\Rightarrow$$
 |x - z| is divisible by 4.

$$\Rightarrow$$
  $(x, z) \in S$ 

Thus,  $(x, y) \in S$  and  $(y, z) \in S$ 

$$\Rightarrow$$
  $(x, z) \in S, \forall x, y, z \in Z$ 

Therefore, *S* is transitive.

(1)

Since, S is reflexive, symmetric and transitive, so it is an equivalence relation. Now, set of all elements related to

$$A = \{0,1,2,3,4,5,6,7,8,9,10,11,12\} \quad \textbf{(1/2)}$$

**35.** Show that the relation 5 defined on set  $N \times N$  by (a, b)  $S(c, d) \Rightarrow a + d = b + c$  is an equivalence relation. All India 2010

Do same as Que 23.

**36.** Consider  $f: R_+ \to [-5, \infty)$  given by  $f(x) = 9x^2 + 6x - 5$ , show that f is invertible with  $f^{-1}(y) = \left(\frac{\sqrt{y+6}-1}{3}\right)$ . Foreign 2010

Given function is 
$$f: R_+ \rightarrow [-5, \infty)$$
, such that  $f(x) = 9x^2 + 6x - 5$ 

We shall show that it is both one-one and onto.

#### One-one

Let 
$$f(x_1) = f(x_2)$$
,  $x, x_2 \in R_+$   
 $\Rightarrow 9x_1^2 + 6x_1 - 5 = 9x_2^2 + 6x_2 - 5$   
 $\Rightarrow 9x_1^2 - 9x_2^2 + 6x_1 - 6x_2 = 0$   
 $\Rightarrow 9(x_1^2 - x_2^2) + 6(x_1 - x_2) = 0$   
 $\Rightarrow 9(x_1 - x_2)(x_1 + x_2) + 6(x_1 - x_2) = 0$   
 $\Rightarrow (x_1 - x_2)[9x_1 + 9x_2 + 6] = 0$   
Now, either  $x_1 - x_2 = 0$   
or  $9x_1 + 9x_2 + 6 = 0$   
But  $9x_1 + 9x_2 + 6 = 0$ 

$$\therefore x_1 - x_2 = 0 \implies x_1 = x_2$$

Therefore, f(x) is a one-one function. (1)

### Onto

Let 
$$y = 9x^{2} + 6x - 5$$

$$\Rightarrow 9x^{2} + 6x = y + 5$$

$$\Rightarrow 9\left(x^{2} + \frac{6x}{9}\right) = y + 5$$

$$\Rightarrow 9\left(x^2 + \frac{2x}{3} + \frac{1}{9} - \frac{1}{9}\right) = y + 5$$

$$\Rightarrow \qquad 9\left(x+\frac{1}{3}\right)^2 - 1 = y+5$$

$$\Rightarrow 9\left(x + \frac{1}{3}\right)^2 = y + 6$$

$$\Rightarrow \left(x + \frac{1}{3}\right)^2 = \frac{y + 6}{9} \Rightarrow x + \frac{1}{3} = \frac{\sqrt{y + 6}}{3}$$

[taking positive sign as  $x \in R_+$ ]

$$\Rightarrow \qquad x = \frac{\sqrt{y+6}-1}{3} \tag{1}$$

From above equation, we get that for every  $y \in [-5, \infty)$ , we have  $x \in R_+$ .

 $\therefore$  Range of  $f(x) = [-5, \infty)$ 

Given, codomain of  $f(x) = [-5, \infty)$ 

Thus, range of f(x) = Codomain of f(x)

Therefore, f(x) is an onto function. (1)

Since, f(x) is both one-one and onto, so it is an invertible function with

$$f^{-1}(y) = \frac{\sqrt{y+6} - 1}{3} \tag{1}$$

**37.** If  $f: X \to Y$  is a function. Define a relation R on X given by  $R = \{(a, b) : f(a) = f(b)\}$ . Show that R is an equivalence relation on X.

All India 2010C

```
The given relation is
      R = \{(a, b) : f(a) = f(b)\}, f : X \to Y
 (i) Reflexive Since, for every x \in X, we have
                     f(x) = f(x)
     [by using definition of R, i.e. f(a) = f(b),
                                             \forall a, b \in X
             (x, x) \in R, \forall x \in X
     Therefore, R is reflexive.
                                                        (1)
(ii) Symmetric Let (x, y) \in R, \forall x, y \in X
     Then, f(x) = f(y) \implies f(y) = f(x)
                    (x, y) \in R, \quad \forall x, y \in R
     ٠.
                     (y, x) \in R, \forall x, y \in X
     \Rightarrow
     Therefore, R is symmetric.
                                                        (1)
(iii) Transitive Let x, y, z \in X
     Then
                       (x, y) \in R and (y, z) \in R
                     f(x) = f(y), \forall x, y \in X
                                                     ...(i)
     \Rightarrow
                     f(y) = f(z), \forall y, z \in X
     and
                                                     ...(ii)
     From Eqs. (i) and (ii), we get
                     f(x) = f(z), \forall x, z \in X
                   (x, z) \in R, \forall x, z \in X
     \Rightarrow
     Thus,
                    (x, y) \in R and (y, z) \in R
                 (x, z) \in R, \forall x, y, z \in X
 Therefore, R is transitive.
                                                        (1\frac{1}{2})
 Since, R is reflexive, symmetric
 transitive. So, it is an equivalence relation.
                                                        (1/2)
38. Show that a function f: R \rightarrow R given by
      f(x) = ax + b, a, b \in R, a \ne 0 is a bijective.
                                                 Delhi 2010C
```

The given function is

$$f(x) = ax + b$$
;  $f: R \rightarrow R$ ,  $a, b \in R$ ,  $a \neq 0$ 

To show that f(x) is a bijective, we show that f(x) is both one-one and onto.

(i) One-one Let 
$$f(x_1) = f(x_2)$$
,  $\forall x_1, x_2 \in R$   
 $\Rightarrow ax_1 + b = ax_2 + b$   
 $\Rightarrow ax_1 = ax_2 \Rightarrow x_1 = x_2$   
Thus,  $f(x_1) = f(x_2)$ ,  $\forall x_1, x_2 \in R$   
 $\Rightarrow x_1 = x_2$  (1½)

Therefore, f(x) is a one-one function.

(ii) **Onto** Let 
$$y = ax + b$$
  

$$\Rightarrow x = \frac{y - b}{a} \dots (i)$$

From Eq. (i), it is observed that for every  $y \in R$ ,  $x \in R$ .

$$\therefore$$
 Range of  $f(x) = R$ 

Also, given codomain = R

Thus, range of f(x) = Codomain of f(x)

Therefore, f(x) is an onto function. (1½)

As f(x) is both one-one and onto, so it is a bijective function. (1)

**39.** Prove that the relation R in set  $A = \{1, 2, 3, 4, 5\}$  given by  $R = \{(a, b) : |a - b| \text{ is even}\}$  is an equivalence relation. **Delhi 2009** 

The given relation is  $R = \{(a, b) : |a - b| \text{ is even}\}$  defined on set  $A = \{1, 2, 3, 4, 5\}$ .

(i) **Reflexive** As |x - x| = 0 is even,  $\forall x \in A$ .

$$\Rightarrow$$
  $(x, x) \in R, \forall x \in A$ 

Therefore, R is reflexive.

(1)

(ii) Symmetric As  $(x, y) \in R \implies |x - y|$  is even

[by the definition of given relation]

$$\Rightarrow$$
 |y - x| is also even

$$[::|a|=|-a|, \forall a \in R]$$

$$\Rightarrow$$
  $(y, x) \in R, \forall x, y \in A$ 

Thus,  $(x, y) \in R$ 

$$\Rightarrow$$
  $(y, x) \in R, \forall x, y \in A$ 

Therefore, R is symmetric.

(1)

(iii) **Transitive** As  $(x, y) \in R$  and  $(y, z) \in R$ 

$$\Rightarrow$$
  $|x-y|$  is even and  $|y-z|$  is even.

[by using definition of given relation]

```
Now, |x-y| is even
\Rightarrow x and y both are even or odd
and |y-x| is even
\Rightarrow y and x both are even or odd.
Then two cases arises:
Case I When y is even.
Now, (x, y) \in R and (y, z) \in R.
\Rightarrow |x-y| is even and |y-z| is even
\Rightarrow x is even and z is even
\Rightarrow |x-z| is even
:: difference of two even numbers is also
                                         evenl
                                          (1/2)
         (x, z) \in R
Case II When y is odd.
Now, (x, y) \in R and (y, z) \in R
\Rightarrow |x-y| is even and |y-z| is even
\Rightarrow x is odd and z is odd
\Rightarrow | x - z | is even
[: difference of two odd numbers is even]
        (x, z) \in R
                                          (1/2)
\Rightarrow
Thus, (x, y) \in R and (y, z) \in R
    (x, z) \in R, \forall x, y, z \in A
                                          (1/2)
Therefore, R is transitive.
Since, R is reflexive, symmetric and
transitive. So, it is an equivalence relation.
                                          (1/2)
```

**40.** If  $f: N \to N$  is defined by

$$f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$$

Find whether the function f is bijective.

All India 2009

The given function is  $f: N \to N$  such that

$$f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$$

(i) One-one

Let

$$f(1) = \frac{1+1}{2} = \frac{2}{2} = 1$$
 [put  $n = 1$  in  $f(n) = \frac{n+1}{2}$ ]

and 
$$f(2) = \frac{2}{2} = 1$$
  $\left[ \text{put } n = 2 \text{ in } f(n) = \frac{n}{2} \right]$ 

- f(n) is not a one-one function because at two distinct values of domain (N), f(n) has same image. (1½)
- (ii) **Onto** If n is an odd natural number, then 2n-1 is also an odd natural number.

Now, 
$$f(2n-1) = \frac{2n-1+1}{2} = n$$
 ...(i)

Again, if *n* is an even natural number, then 2*n* is also an even natural number. Then,

$$f(2n) = \frac{2n}{2} = n$$
 ...(ii)

From Eqs. (i) and (ii), we observe that for each n (whether even or odd) there exists its pre-image in N.

i.e. Range = Codomain

Therefore, f is onto. (1½)

Hence, f(x) is not one-one but it is onto. So, it is not a bijective function. (1)

41. Show that relation R in the set of real numbers, defined as  $R = \{(a, b) : a \le b^2\}$  is neither reflexive, nor symmetric nor transitive. Foreign 2009

## Do same as Que 33.

42. If the function  $f: R \rightarrow R$  is given by  $f(x) = x^2 + 3x + 1$  and  $g: R \rightarrow R$  is given by g(x) = 2x - 3, then find (i) fog and (ii) gof.

All India 2009, 2008C

Given,  $f: R \to R$  such that  $f(x) = x^2 + 3x + 1$  and  $g: R \to R$  such that g(x) = 2x - 3.

(i) 
$$(fog)(x) = f[g(x)] = f(2x - 3)$$
  
 $= (2x - 3)^2 + 3(2x - 3) + 1$   
[:  $f(x) = x^2 + 3x + 1$ , so replace  $x$   
by  $2x - 3$  in  $f(x)$ ]  
 $= 4x^2 + 9 - 12x + 6x - 9 + 1$   
 $= 4x^2 - 6x + 1$  (2)

(ii) 
$$(gof)(x) = g[f(x)] = g(x^2 + 3x + 1)$$
  

$$= [2(x^2 + 3x + 1)] - 3$$
  
[:  $g(x) = 2x - 3$ , so replace x by  $x^2 + 3x + 1$  in  $g(x)$ ]  

$$= 2x^2 + 6x + 2 - 3$$
  

$$= 2x^2 + 6x - 1$$
 (2)

**43.** If the function  $f: R \to R$  is given by  $f(x) = \frac{x+3}{3}$  and  $g: R \to R$  is given by

$$g(x) = 2x - 3$$
, then find

(ii) 
$$gof$$
. Is  $f^{-1} = g$ ?

Delhi 2009C; HOTS

Given  $f: R \to R$  such that  $f(x) = \frac{x+3}{3}$  and  $g: R \to R$  such that g(x) = 2x - 3.

(i) 
$$(fog)(x) = f[g(x)] = f(2x - 3) = \frac{(2x - 3) + 3}{3}$$

[: 
$$f(x) = \frac{x+3}{3}$$
, so replace x

by 2x - 3 in f(x)

$$\Rightarrow (fog)(x) = \frac{2x}{3} \qquad (11/2)$$

(ii) (gof)(x) = g[f(x)]

$$= g\left(\frac{x+3}{3}\right) = \left[2\left(\frac{x+3}{3}\right)\right] - 3$$

[: g(x) = 2x - 3, so replace x by  $\frac{x+3}{3}$ 

in g(x)

$$=\frac{2x+6}{3}-3=\frac{2x+6-9}{3}$$

$$\Rightarrow (gof)(x) = \frac{2x-3}{3}$$
 (11/2)

Now, we find  $f^{-1}$ . For that, let  $y = \frac{x+3}{3}$ .

$$\Rightarrow \qquad 3y = x + 3 \Rightarrow x = 3y - 3$$

$$f^{-1}(y) = 3y - 3 \qquad [\because x = f^{-1}(y)]$$

or 
$$f^{-1}(x) = 3x - 3$$

But g(x) = 2x - 3.

$$f^{-1} \neq g \tag{1}$$

**NOTE**  $f^{-1} = g$  exists, only if  $gof = I_R$  and  $fog = I_R$ .