Learning a Protocol for Minimum Probability of Detection Wireless Transmissions: A DQN Experiment

Mac Carr, Kyle McClintick, Bryan Nguon

WPI: Wireless Innovation Laboratory

1 Non-Adversarial Case

Wireless communications operate under many parameters (PHY) and policies (NET, LINK). Given a few minutes of power, time, and frequnecy data (spectrograms), can an optimal wireless communications policy be learned?

Figure 1: The sequential model for estimating wirelessly transmitted binary data across a noisy wireless channel

$BER = \frac{correctbits}{incorrectbits}$	(1)
$reward = \log(1/(BER + \epsilon))$	(2)
$f_c \in \{f_s/10, f_s/2\}$	(3)
$power \in \{0.1, 1.0\}$	(4)
$action \in \{(power, f_c)\}$	(5)
$state \in \mathbb{R}^{(BS,1,257,311)}$	(6)

Figure 2: Training reaches a maximum reward very quickly as exploration ceases in this simple problem. Testing average over 100 episodes gave 31.30 reward ($\sim 2.5 \times 10^{-14}$ BER)

2 Adversarial Case

Signal to Interference and Noise Ratio (SINR) is computed as in-band signal power divided by the sum of noise and interference power: $P_s/(P_i+P_n)$. An adversary is assumed to be able to detect our transmission if this ratio exceeds 0dB or a one to one ratio. Can a policy be learned to operate as close to this unknown SINR but not above it?

Figure 3: An example state with actions chosen a_t : $\{(gain = 1, f_c = 0.5)\}$. Tone exists at .83Hz, hopping tones at 1.16, 1.5Hz, and wide band signal from 1.2Hz to 2Hz. SINR exceeds 0dB, so detection and jamming occurs.

Figure 4: Training reaches a maximum reward more slowly. Testing average over 100 episodes gave 9 reward ($\sim 1 \times 10^{-4}$ BER). A larger sliding window for the average is used to capture the smaller margin between good and bad performance (~ 1 and $\sim 5-10$ average reward per time step instead of ~ 1 and ~ 36 non-adversarial margin). DQN additionally learned to avoid wide band interference, SINR equal.

