Group Report

1964-26

A Remark
on Orthonormal Bases
of Continuous Functions
in a Hilbert Space

T. S. Pitcher

12 May 1964

Prepared under Electronic Systems Division Contract AF 19 (628)-500 by

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Lexington, Massachusetts

ESD RECORD COPY

SCIENTIFIC & TECHNICAL INFORMATION DIVISION
(ESTIL BUILDING 121)

ESTI PROCESSED

DOC TAB PROJ OFFICER

ACCESSION MASTER FILE

DATE JUN 1 0 1968

ESTI CONTROL NR. AL YE 665

CY NR CY

AD 600534

The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology, with the support of the U.S. Air Force under Contract AF 19(628)-500.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY LINCOLN LABORATORY

A REMARK ON ORTHONORMAL BASES OF CONTINUOUS FUNCTIONS IN A HILBERT SPACE

T. S. PITCHER

Group 66

GROUP REPORT 1964-26

12 MAY 1964

Abstract

It is shown that an orthonormal set of continuous functions on a finite interval can always be completed by the addition of continuous functions if it is a finite set but cannot always be so completed if it is an infinite set.

Accepted for the Air Force Franklin C. Hudson, Deputy Chief Air Force Lincoln Laboratory Office

A Remark on Orthonormal Bases of Continuous Functions in a Hilbert Space

The following problem has been proposed: let H be the Hilbert space of square integrable functions on a finite interval I and let (φ_i) be an orthonormal set of continuous functions in H — when can (φ_i) be extended to a complete orthonormal set of continuous functions? This problem occurs under certain circumstances when approximating white noise by sums $\sum \theta_i \varphi_i(t)$ where the θ_i are independent Gaussian random variables.

In this note we prove that (φ_i) can be so extended if it is a finite set and present an example to show that (φ_i) cannot always be extended if it is infinite. Both the proof and the example apply equally well if continuity is replaced by n-times differentiability.

Theorem If $\varphi_1,\ldots,\varphi_n$ is an orthonormal set of continuous functions then continuous functions $\varphi_{n+1},\ \varphi_{n+2},\ldots$ can be found such that φ_i , $i=1,2,\ldots$ is a complete orthonormal set.

Proof Let (ψ_i) be a complete orthonormal set of continuous functions (e.g., the trigonometric functions). Set

$$\varphi_{n+1} = \alpha_1(\psi_1 - \sum_{j=1}^{n} (\psi_1, \varphi_j)\varphi_j)$$

where α_l is 0 if ψ_l is a linear combination of the φ_i 's and is chosen to normalize φ_{n+1} otherwise. Continuing in this way, i.e., setting

$$\varphi_{\mathrm{n+k+1}} = \alpha_{\mathrm{k+1}} (\psi_{\mathrm{k+1}} - \sum_{\mathrm{j=1}}^{\mathrm{n+k}} (\psi_{\mathrm{k+1}}, \varphi_{\mathrm{j}}) \varphi_{\mathrm{j}}),$$

deleting the φ_{n+k} with α_k = 0 and then renumbering gives the desired sequence.

We will need the following lemma in constructing the example.

Lemma On any finite interval I with end point a there exists a complete orthonormal set φ_0 , φ_1 ,... satisfying

- (1) $\varphi_0 = 1$
- (2) φ_i is continuous
- (3) $\varphi_{i}(a) = 0$, if i > 0.

Proof There exist continuous functions ψ_i such that φ_o , ψ_1 , ψ_2 ,... is a complete orthonormal set. Let η be a continuous function with $\eta(a)=0$ and $(\varphi_o,\eta)=1$. Given any continuous function ξ and any $\varepsilon>0$ we can, by modifying ξ in a sufficiently small neighborhood of a, construct a continuous function ξ' with $\xi'(a)=0$ and $\|\xi-\xi'\|<\varepsilon$. Then $\xi''=\xi'-(\varphi_o,\xi')\eta$ is continuous and satisfies

(i)
$$\xi''(a) = 0$$

(ii)
$$(\xi'', \varphi_0) = 0$$

(iii)
$$\| \xi - \xi'' \| \le \| \xi - \xi' \| + | (\varphi_0, \xi') | \| \eta \|$$

$$\leq \epsilon (1 + || \eta ||) + (\varphi_{\Omega}, \xi) || \eta || .$$

In particular taking $\xi = \psi_i$ so that the last term vanishes and choosing $\varepsilon = 2^{-k}/(1 + ||\eta||)$ we can construct a continuous function $\psi_{i,k}$ with

(iv)
$$\psi_{i,k}(a) = 0$$

$$(v) \qquad (\psi_{i,k}, \varphi_{0}) = 0$$

(vi)
$$\|\psi_{i} - \psi_{i,k}\| \le 2^{-k}$$
.

Now when we apply the Gram-Schmidt procedure to the sequence $\varphi_0, \psi_1, 1'$, $\psi_1, 2', \psi_2, 1', \psi_2, 2 \dots$ none of the linear combinations after the first involve φ_0 by (v) so they all vanish at a. The resulting orthonormal sequence approximates the ψ_1 's arbitrarily closely, hence is complete, and hence satisfies the requirements of the lemma.

We will now construct a complete orthonormal set ψ_1,\dots with ψ_1 discontinuous and all the ψ_i , i>l continuous. This if we take ψ_2 , ψ_3,\dots for our orthonormal set of continuous functions it can only be completed by adjoining the discontinuous function ψ_1 or $-\psi_1$. We divide the interval I into subintervals I_1 and I_2 at the point a and choose complete orthonormal sets φ_0^i , φ_1^i ,... in I_i according to the previous lemma. Then the set $\psi_1=\varphi_0^1-\varphi_0^2$, $\psi_2=\varphi_0^1+\varphi_0^2$, φ_1^1 , φ_1^2 , φ_2^1 , φ_2^1 , φ_2^2 ,... is complete and orthonormal and has ψ_1 as its only discontinuous member.

In the above example $(\varphi_i)^{\perp}$, the orthogonal complement of the given set of φ^i s was finite dimensional. An example with infinite dimensional $(\varphi_i)^{\perp}$ can be constructed by breaking I into three intervals, say $I_1 = [0, a]$, $I_2 = [a, b]$ and $I_3 = [b, 1]$. We will need the following modification of the above lemma. Lemma There exists a complete orthonormal set φ_1^2 , φ_2^2 ,... on [a, b] in which each φ_i is a continuous function with $\varphi_i(a) = \varphi_i(b) = 0$.

Proof The proof is similar to that of the preceding lemma except that (iv) is changed to

(iv')
$$\psi_{i,k}(a) = \psi_{i,k}(b) = 0$$

and (v) is dropped.

Now we take sets $(\varphi_0^1, \varphi_1^1, \dots)$, $(\varphi_1^2, \varphi_2^2, \dots)$ and $(\varphi_0^3, \varphi_1^3, \dots)$ such that (φ_i^j) is a complete orthonormal set in I_j , $\varphi_0^1 = 1$ on I_1 , $\varphi_0^3 = 1$ on I_3 , and $\varphi_i^1(a) = \varphi_i^2(a) = \varphi_i^2(b) = \varphi_i^3(b) = 0$ for $i \ge 1$. We take for our set of continuous orthonormal functions the union of the sets $(\varphi_1^1, \varphi_2^1, \dots)$ and $(\varphi_1^2, \varphi_2^2, \dots)$. The orthogonal compliment of this set is all functions of the form $c\varphi_0^1 + f$ where f vanishes outside I_3 . No matter how the set is completed it will contain at least one function of the above form with $c \ne 0$ and hence with a discontinuity at a.

DISTRIBUTION

Group 28

P. L. Falb

L. A. Gardner, Jr.

F. C. Schweppe

Group 37

H. E. Moses

Division 6

G. P. Dinneen

W. E. Morrow, Jr.

Group 62

K. L. Jordan, Jr.

I. L. Lebow

Group 63

R. M. Lerner

Group 64

E. J. Kelly, Jr.

M. J. Levin

R. Price

Group 66

T. J. Goblick, Jr.

J. R. Kinney

T. S. Pitcher

B. Reiffen

E. Weiss