## Seminarul 4

1. Fie S mulțimea tuturor numerelor naturale cel mult egale cu 50, cu exact două cifre de parități diferite. Un număr este alea aleator din S. Fie X suma cifrelor num?rului ales. Scrieți distribuția lui X, apoi calculați valoarea sa medie E(X).

R: Fie Y numărul ales aleator. Avem

- X = 1, dacă  $Y \in \{10\}$ .
- X = 3, dacă  $Y \in \{12, 21, 30\}$ .
- X = 5, dacă  $Y \in \{14, 41, 23, 32, 50\}$ .
- X = 7, dacă  $Y \in \{16, 25, 34, 43\}$ .
- X = 9, dacă  $Y \in \{18, 27, 36, 45\}$ .
- X = 11, dacă  $Y \in \{29, 38, 47\}$ .
- X = 13, dacă  $Y \in \{49\}$ .

Deci, 
$$X \sim \begin{pmatrix} 1 & 3 & 5 & 7 & 9 & 11 & 13 \\ \frac{1}{21} & \frac{3}{21} & \frac{5}{21} & \frac{4}{21} & \frac{4}{21} & \frac{3}{21} & \frac{1}{21} \\ 11 \cdot \frac{3}{21} + 13 \cdot \frac{1}{21} = \frac{1+9+25+28+36+33+13}{21} = \frac{145}{21} \approx 6,9.$$

- 2. Considerăm următoarea problemă de clasificare naivă Bayes a unor restaurante (R), în
- clasele: recomandat sau nerecomandat,

în funcție de următoarele atribute cu valorile lor posibile:

- cost (C): ieftin, mediu, scump;
- $\bullet$  timp de aşteptare (T): puţin, mediu, îndelungat;
- $\bullet$ mâncare (M): fadă, acceptabilă, bună, delicioasă.
- $\mathbf{R}$ , C, T, M sunt variabelele aleatoare (categoriale) şi  $\mathbf{r}$ ,  $\mathbf{n}$ , i, m, s, p, m,  $\hat{\imath}$ , f, a, b, d valorile de mai sus, în ordinarea în care sunt menționate.

Considerăm următorul tabel de date furnizat de clienții unor restaurante:

|    | Cost                   | Timp de așteptare           | $M \hat{a} n care$ | $\mathbf{Restaurant}$  |
|----|------------------------|-----------------------------|--------------------|------------------------|
| 1  | mediu                  | $\hat{n}$ indelungat        | acceptabilă        | ${f nerecomandat}$     |
| 2  | scump                  | puţin                       | bună               | ${f recomandat}$       |
| 3  | ieftin                 | $\hat{\mathbf{n}}$ delungat | delicioasă         | ${f recomandat}$       |
| 4  | mediu                  | puţin                       | bună               | ${f recomandat}$       |
| 5  | ieftin                 | $\operatorname{mediu}$      | acceptabilă        | ${f nerecomandat}$     |
| 6  | ieftin                 | puţin                       | fadă               | ${f nerecomandat}$     |
| 7  | mediu                  | puţin                       | acceptabilă        | ${f nerecomandat}$     |
| 8  | mediu                  | $\operatorname{mediu}$      | delicioasă         | ${f recomandat}$       |
| 9  | scump                  | puţin                       | delicioasă         | ${f recomandat}$       |
| 10 | ieftin                 | $\hat{n}$ indelungat        | bună               | ${f nerecomandat}$     |
| 11 | scump                  | puţin                       | acceptabilă        | ${f nerecomandat}$     |
| 12 | mediu                  | $\operatorname{mediu}$      | bună               | ${f recomandat}$       |
| 13 | mediu                  | $\hat{\mathbf{n}}$ delungat | fadă               | ${f nerecomandat}$     |
| 14 | $\operatorname{scump}$ | $\operatorname{mediu}$      | delicioasă         | ${f recomandat}$       |
| 15 | ieftin                 | $\operatorname{mediu}$      | fadă               | ${f nerecomandat}$     |
| 16 | mediu                  | puţin                       | delicioasă         | ${f recomandat}$       |
| 17 | ieftin                 | puţin                       | acceptabilă        | ${f recomandat}$       |
| 18 | $\operatorname{scump}$ | $\hat{\mathbf{n}}$ delungat | bună               | ${f nerecomandat}$     |
| 19 | ieftin                 | puţin                       | fadă               | ${f recomandat}$       |
| 20 | scump                  | $\hat{n}$ delungat          | delicioasă         | ${f nere}{f comandat}$ |

- i) Folosind datele din tabel, determinați probabilitățile claselor și probabilitățile condiționate ale atributelor, știind clasa.
- ii) Considerăm evenimentul dat de vectorul de atribute:  $E = (C = s) \cap (T = m) \cap (M = m)$
- b). Alegeți o clasă pentru E, stabilind care din următoarele probabilități este mai mare:  $P(\mathbf{R} = \mathbf{r}|E)$  sau  $P(\mathbf{R} = \mathbf{n}|E)$ .
- iii) Determinați P(E).

R.:

i)

| R = r | R = n | $P(\mathbf{R} = \mathbf{r})$ | $P(\mathbf{R} = \mathbf{n})$ |
|-------|-------|------------------------------|------------------------------|
| 10    | 10    | $\frac{1}{2}$                | $\frac{1}{2}$                |

| C | R = r | R = n | $P(C =   \mathbf{R} = \mathbf{r})$ | $P(C = \mathbf{R} = \mathbf{n})$ |
|---|-------|-------|------------------------------------|----------------------------------|
| i | 3     | 4     | $\frac{3}{10}$                     | $\frac{4}{10}$                   |
| m | 4     | 3     | $\frac{4}{10}$                     | $\frac{3}{10}$                   |
| s | 3     | 3     | $\frac{3}{10}$                     | $\frac{3}{10}$                   |

| T | R = r | R = n | $P(T = \mathbf{R} = \mathbf{r})$ | $P(T = \mathbf{R} = \mathbf{n})$ |
|---|-------|-------|----------------------------------|----------------------------------|
| p | 6     | 3     | $\frac{6}{10}$                   | $\frac{3}{10}$                   |
| m | 3     | 2     | $\frac{3}{10}$                   | $\frac{2}{10}$                   |
| î | 1     | 5     | $\frac{1}{10}$                   | $\frac{5}{10}$                   |

| M | R = r | R = n | $P(M =   \mathbf{R} = \mathbf{r})$ | $P(M =   \mathbf{R} = \mathbf{n})$ |
|---|-------|-------|------------------------------------|------------------------------------|
| f | 1     | 3     | $\frac{1}{10}$                     | $\frac{3}{10}$                     |
| a | 1     | 4     | $\frac{1}{10}$                     | $\frac{4}{10}$                     |
| b | 3     | 2     | $\frac{3}{10}$                     | $\frac{2}{10}$                     |
| d | 5     | 1     | $\frac{5}{10}$                     | $\frac{1}{10}$                     |

ii) Pe baza formulei lui Bayes și a ipotezei de independență condiționată, deducem că:

$$P(\mathbf{R} = \mathbf{r}|E) = \frac{P(E|\mathbf{R} = \mathbf{r})P(\mathbf{R} = \mathbf{r})}{P(E)} = \frac{P(C = s, T = m, M = b|\mathbf{R} = \mathbf{r})P(\mathbf{R} = \mathbf{r})}{P(E)}$$

$$= \frac{P(C = s | \mathbf{R} = \mathbf{r}) P(T = m | \mathbf{R} = \mathbf{r}) P(M = b | \mathbf{R} = \mathbf{r}) P(\mathbf{R} = \mathbf{r})}{P(E)} = \frac{\frac{3}{10} \cdot \frac{3}{10} \cdot \frac{3}{10} \cdot \frac{3}{10} \cdot \frac{1}{2}}{P(E)} = \frac{1}{P(E)} \cdot \frac{27}{2000}$$

şi

$$P(\mathbf{R} = \mathbf{n}|E) = \frac{P(E|\mathbf{R} = \mathbf{n})P(\mathbf{R} = \mathbf{n})}{P(E)} = \frac{P(C = s, T = m, M = b|\mathbf{R} = \mathbf{n})P(\mathbf{R} = \mathbf{n})}{P(E)}$$

$$=\frac{P(C=s|\mathbf{R}=\mathbf{n})P(T=m|\mathbf{R}=\mathbf{n})P(M=b|\mathbf{R}=\mathbf{n})P(\mathbf{R}=\mathbf{n})}{P(E)}=\frac{\frac{3}{10}\cdot\frac{2}{10}\cdot\frac{2}{10}\cdot\frac{1}{2}}{P(E)}=\frac{1}{P(E)}\cdot\frac{12}{2000}.$$

Deoarece  $P(\mathbf{R} = \mathbf{r}|E) > P(\mathbf{R} = \mathbf{n}|E)$ , asociem vectorului de atribute E clasa  $\mathbf{R} = \mathbf{r}$ .

iii) Din ii) rezultă

1 = 
$$P(\mathbf{R} = \mathbf{r}|E) + P(\mathbf{R} = \mathbf{n}|E) = \frac{1}{P(E)} \cdot \frac{27 + 12}{2000}$$
,

deci

$$P(E) = \frac{19, 5}{1000} = 0,0195.$$

**3.** Ce valoare teoretică estimează programul următor? Calculați valoarea teoretică corespunzătoare.

## []: import numpy as np

N = 2000

```
S = np.concatenate((np.zeros(50),np.ones(70),2*np.ones(80)))
X=[]
for _ in range(N):
    k=0
    i= np.random.randint(len(S))
    while S[i] != 0:
        i= np.random.randint(len(S))
        k=k+1
    X.append(k)
print(" . . . . . : ",np.mean(X))
```

R: Programul generează numere aleatoare pentru o variabilă aleatoare  $X \sim Geo(p)$ , unde  $p = \frac{50}{50+70+80} = \frac{1}{4}$  =probabilitatea de a alege un element nul din vectorul S:

$$P(X = k) = p(1 - p)^k, k = 0, 1, 2, \dots$$

Programul estimează valoarea medie E(X). Valoarea sa teoretică este  $E(X) = \sum_{k=0}^{\infty} kp(1-p)^k$ . Pe baza criteriului raportului, seria cu termeni pozitivi

$$\sum_{k=0}^{\infty} kp(1-p)^k \text{ este convergentă.}$$

$$E(X) = \sum_{k=0}^{\infty} kp(1-p)^k = (1-p)\sum_{k=1}^{\infty} kp(1-p)^{k-1}$$

$$\stackrel{k=j+1}{=} (1-p)\sum_{j=0}^{\infty} (j+1)p(1-p)^j = (1-p)\sum_{j=0}^{\infty} jp(1-p)^j + (1-p)\sum_{j=0}^{\infty} p(1-p)^j$$

$$= (1-p)E(X) + (1-p) \Longrightarrow E(X) = \frac{1-p}{p}.$$

 $\implies E(X) = \frac{\frac{3}{4}}{\frac{1}{4}} = 3$ , deci în medie sunt necesare 3 iterații până apare primul 0.

**4.** Fie  $a, b \in \mathbb{Z}$ ,  $a \leq b$ , și  $c \in (0, 1)$ . Spunem că variabila aleatore X are o distribuție uniform discretă dacă

$$X \sim \begin{pmatrix} a & a+1 & \dots & b \\ c & c & \dots & c \end{pmatrix}.$$

- a) Determinati valoarea lui c.
- b) Pentru a = 3 și b = 21, calculați

$$P\Big(\Big\{X \le \frac{a+b}{2}\Big\} \cup \Big\{\frac{a+b}{6} \le X\Big\}\Big) \text{ si } P\Big(\Big\{X \le \frac{a+b}{2}\Big\} \cap \Big\{\frac{a+b}{6} \le X\Big\}\Big).$$

c) Determinația și b, știind că<br/>  $P(X=a)=\frac{1}{3}$  și E(X)=1.

R: a) Deoarece 
$$\sum_{k=a}^{b} P(X=k) = 1$$
 are  $b-a+1$  termeni (egali cu  $c$ ), avem  $c = \frac{1}{b-a+1}$ .  
b)  $a=3$  and  $b=21 \Longrightarrow \frac{a+b}{2} = 12, \frac{a+b}{6} = 4$ . Calculăm 
$$P\big(\{X \le 12\} \cup \{4 \le X\}\big) = 1 - P\big(\{12 < X\} \cap \{X < 4\}\big) = 1 - 0 = 1.$$
$$P\big(\{X \le 12\} \cap \{4 \le X\}\big) = P\big(X \in \{4,5,...,12\}\big) = \frac{12-4+1}{19} = \frac{9}{19}.$$
c)  $c = \frac{1}{b-a+1} = \frac{1}{3} \Longrightarrow b-a = 2$ .  $E(X) = \frac{a+(a+1)+\cdots+b}{b-a+1} = \frac{a(b-a+1)+1+2+\cdots+(b-a)}{b-a+1} = a + \frac{(b-a)(b-a+1)}{2(b-a+1)} = a + \frac{b-a}{2} = \frac{b+a}{2} = 1 \Longrightarrow b+a = 2$ . Deci,  $a=0,b=2$ .

5. Un punct material se deplasează pe axa reală dintr-un nod spre un nod vecin, la fiecare pas, cu probabilitatea  $p \in (0,1)$  la dreapta și cu probabilitea 1-p la stânga. Nodurile sunt centrate în numerele întregi:



Fie X variabila aleatoare care indică poziția finală a punctului material după  $n \in \mathbb{N}$  pași ai unei deplasări ce pornește din nodul 0. Determinați distribuția și valoarea medie lui X.

R: Dacă 
$$Y_i$$
 reprezintă pasul  $i$ , atunci  $Y_i \sim \begin{pmatrix} -1 & 1 \\ 1-p & p \end{pmatrix} \implies Y_i = 2X_i - 1$  cu  $X_i \sim Bernoulli(p), i \in \{1,\ldots,n\}.$   $X = Y_1 + \ldots + Y_n = (2X_1 - 1) + \ldots + (2X_n - 1), X_1 + \ldots + X_n \sim Bino(n,p) \implies X \sim \begin{pmatrix} 2k - n \\ C_n^k p^k (1-p)^{n-k} \end{pmatrix}_{k=\overline{0,n}}$  și  $E(X) = 2np - n$ .

6. Considerăm vectorul aleatoar discret (X,Y) cu distribuția dată sub formă tabelară:

$$\begin{array}{c|ccccc}
Y & -2 & 1 & 2 \\
\hline
1 & 0.2 & 0.1 & 0.2 \\
\hline
2 & 0.1 & 0.1 & 0.3 \\
\end{array}$$

- a) Să se determine distribuțiile de probabilitate ale variabilelor aleatoare X și Y.
- b) Calculați probabilitatea ca |X Y| = 1, știind că Y > 0.
- c) Sunt evenimentele X = 2 şi Y = 1 independente?
- d) Sunt variabilele aleatoare X şi Y independente?
- e) Sunt evenimentele X = 1 şi Y = 1 condițional independente, cunoscând X + Y = 2?

- f) Este variabila aleatoare X conditional independentă de Y, cunoscând X + Y?
- g) Calculați valoarea medie a variabilei aleatoare  $2X + Y^2$ .

R: a) 
$$X \sim \begin{pmatrix} 1 & 2 \\ 0.5 & 0.5 \end{pmatrix}, Y \sim \begin{pmatrix} -2 & 1 & 2 \\ 0.3 & 0.2 & 0.5 \end{pmatrix}$$

b) 
$$P(|X - Y| = 1|Y > 0) = \frac{P(|X - Y| = 1, Y > 0)}{P(Y > 0)} = \frac{P(X = 1, Y = 2) + P(X = 2, Y = 1)}{P(Y > 0)} = \frac{0.3}{0.7} = \frac{3}{7}$$
.

- R: a)  $X \sim \begin{pmatrix} 1 & 2 \\ 0.5 & 0.5 \end{pmatrix}$ ,  $Y \sim \begin{pmatrix} -2 & 1 & 2 \\ 0.3 & 0.2 & 0.5 \end{pmatrix}$ . b)  $P(|X Y| = 1 | Y > 0) = \frac{P(|X Y| = 1, Y > 0)}{P(Y > 0)} = \frac{P(X = 1, Y = 2) + P(X = 2, Y = 1)}{P(Y > 0)} = \frac{0.3}{0.7} = \frac{3}{7}$ . c)  $P(X = 2, Y = 1) = 0.1 = 0.5 \cdot 0.2 = P(X = 2) \cdot P(Y = 1) \implies X = 2 \text{ §i } Y = 1 \text{ sunt}$ independente.
- d)  $P(X = 2, Y = 2) = 0.3 \neq 0.25 = 0.5 \cdot 0.5 = P(X = 2) \cdot P(Y = 2) \implies X \text{ si } Y \text{ nu sunt}$ independente.

e) 
$$P(X = 1, Y = 1 | X + Y = 2) = 1 = P(X = 1 | X + Y = 2) \cdot P(Y = 1 | X + Y = 2) \implies X = 1$$
 și  $Y = 1$  sunt condițional independente, cunoscând  $X + Y = 2$ .

E) 
$$F(X = 1, Y = 1|X + Y = 2) = 1 = F(X = 1|X + Y = 2) \cdot Y (Y = 1|X + Y = 2) \implies X = 1 \text{ si } Y = 1 \text{ sunt conditional independente, cunoscând } X + Y = 2.$$

f)  $P(X = 1, Y = 2|X + Y = 3) = \frac{P(X = 1, Y = 2)}{P(X + Y = 3)} = \frac{0.2}{0.3} \neq \frac{0.2}{0.3} \cdot \frac{0.2}{0.3} = P(X = 1|X + Y = 3) \cdot P(Y = 2|X + Y = 3) \implies X \text{ si } Y \text{ nu sunt conditional independente, cunoscând } X + Y.$ 

g)  $E(2X + Y^2) = 2E(X) + E(Y^2) = 2(1 \cdot 0.5 + 2 \cdot 0.5) + (-2)^2 \cdot 0.3 + 1^2 \cdot 0.2 + 2^2 \cdot 0.5 = 6.4.$ 

g) 
$$E(2X + Y^2) = 2E(X) + E(Y^2) = 2(1 \cdot 0.5 + 2 \cdot 0.5) + (-2)^2 \cdot 0.3 + 1^2 \cdot 0.2 + 2^2 \cdot 0.5 = 6.4.$$

- 7. O monedă este aruncată de 10 ori. Fie X variabila aleatoare care indică diferența dintre numărul de capete și numărul de pajuri obținute. Determinați:
- i) distribuția de probabilitate a lui X;
- ii) valoarea medie a lui X.
- R: i) Dacă C și P indică numărul de capete, respectiv de pajuri, atunci  $C, P \sim \text{Bino}(10, \frac{1}{2})$ ,

$$P = 10 - C \text{ si } X = C - P = 2C - 10 \implies X \sim \left( \begin{array}{c} 2k - 10 \\ C_{10}^{k} \frac{1}{2^{10}} \end{array} \right)_{k = \overline{0, 10}}.$$

ii) E(X) = E(C - P) = E(C) - E(P) = 0, deoarece C și P au aceeași distribuție.