Homework 3

CIS-623 STRUCTURED PROGRAMMING & FORMAL METHODS

PROF. MEHMET KAYA

1/27/2022

Anthony Redamonti SYRACUSE UNIVERSITY

Question 1:

Are the following formulas valid, satisfiable, or unsatisfiable?

- $P(a) \rightarrow ExP(x)$
- ExP(x)→P(a)
- ExP(x) V Ex!P(x) → AxP(x)

P(a) -> ExP(x) is valid based on the inductive Ex rule.

 $ExP(x) \rightarrow P(a)$ is satisfiable.

 $ExP(x) \ V \ Ex!P(x) -> AxP(x)$. The right side of the disjunction is always false. The left side is satisfiable. Therefore, the formula is satisfiable.

Question 2:

For each of the following sequences, give a formal proof if entailment holds.

- AxP(X) F ExP(x)
- Ax(P(x)→Q(x)), AxP(x) ⊢ AxQ(x)
- Ax(P(x)→Q(x)), ExP(x) ⊢ ExQ(x)
- !ExP(x) ⊢ Ax!P(X)
- !AxP(x) + Ex!P(x)
 - 1. See proof in picture below.

2. See proof in picture below.

3. See proof in picture below.

$$A \times (P \times) \rightarrow Q(x)$$
, $E \times P(x) \rightarrow E \times Q(x)$
1. $A \times (P(x) \rightarrow Q(x))$ gramise
2. $E \times P(x)$ gramise
3. $P(x_0) \rightarrow Q(x_0)$ $\forall e \mid$
4. $P(x_0)$ assumption
5. $Q(x_0)$ $\rightarrow e 3, 4$
6. $Q(x_0)$ $\exists e 2, 4-5$
7. $E \times (Q(x))$ $\exists 1 6$

4. See proof in picture below.

5. See proof in picture below.

