Challenge Cryptanalyse

Permutations

Une application $f:X\to Y$ est bijective si tout élément de Y admet un unique antécédent par f dans X, i.e. si pour tout $y\in Y$, il existe un unique $x\in X$, tel que f(x)=y. En notant $f^{-1}(y)$ cet unique x, on définit une application $f^{-1}:Y\to X$, appelée inverse de f. En particulier, pour tout $x\in X$, $f^{-1}\circ f(x)=x$ et, pour tout $y\in Y$, $f\circ f^{-1}(y)=y$.

Définition. Une permutation σ sur un ensemble \mathcal{E} (fini ou non) est une application bijective de \mathcal{E} dans \mathcal{E} . On note $\mathfrak{S}(\mathcal{E})$ l'ensemble des permutations de \mathcal{E} .

Exemple. Lors d'un chiffrage par substitution monoalphabétique, la substitution appliquée est une permutation sur l'alphabet. Pour déchiffrer, il faut appliquer la permutation inverse.

On pose $\mathbb{N}_n = \{1, \dots, n\}$ et $\mathfrak{S}_n = \mathfrak{S}(\mathbb{N}_n)$. On observe facilement que \mathfrak{S}_n contient n! éléments. Si \mathcal{E} est un ensemble fini de cardinal n, quitte à numéroter ses éléments de 1 à n, on peut identifier $\mathfrak{S}(\mathcal{E})$ à \mathfrak{S}_n . En particulier, si $\mathcal{A} = \{a, b, \dots, z\}$ désigne notre alphabet latin à 26 lettres, quitte à numéroter les lettres (par exemple dans l'ordre alphabétique), on peut assimiler $\mathfrak{S}(\mathcal{A})$ à \mathfrak{S}_{26} .

Dans la suite, on considérera toujours \mathcal{E} fini et l'on travaillera, sans perte de généralité, avec des permutations de \mathfrak{S}_n .

Notation. Si $\sigma \in \mathfrak{S}_n$, on note usuellement σ sous la forme d'une table $[\sigma(1), \sigma(2), \dots, \sigma(n)]$.

Exemple. La permutation associée au chiffrage rot13 est :

$$[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]$$

Cette notation signifie que 1 est envoyé sur 14, 2 sur 15, ..., 13 sur 16, 14 sur 1, 15 sur 2, ..., 26 sur 13. Cette permutation est son propre inverse.

Remarque culturelle. $\mathfrak{S}(\mathcal{E})$ muni de la loi de composition \circ forme un *groupe*, appelé *groupe symétrique* de \mathcal{E} .

Exemple. On note τ la permutation associée au brouilleur de la machine Enigma, α_t , β_t et γ_t les permutations associées aux trois rotors à un instant t (car les rotors tournent au cours du temps, donc les permutations associées changent) et ρ la permutation associée au réflecteur. Le chiffrage x' par la machine Enigma d'une lettre x à un instant t correspond formellement à la séquence suivante de permutations :

$$x' = \tau^{-1} \circ \alpha_t^{-1} \circ \beta_t^{-1} \circ \gamma_t^{-1} \circ \rho \circ \gamma_t \circ \beta_t \circ \alpha_t \circ \tau(x)$$

Définition. Si x_1,\ldots,x_p sont p entiers distincts de \mathbb{N}_n , on appelle p-cycle (ou cycle de longueur p) la permutation $\sigma\in\mathfrak{S}_n$ définie par $\sigma(x_i)=x_{i+1}$, où les indices sont pris modulo p, et $\sigma(x)=x$ pour tout $x\notin\{x_1,\ldots,x_p\}$. On appelle l'ensemble $\{x_1,\ldots,x_p\}$ le support du cycle et l'on note généralement $\sigma=(x_1,\ldots,x_p)$.

On se convainc aisément que si σ et σ' sont deux cycles à supports disjoints, alors ils commutent : $\sigma \circ \sigma' = \sigma' \circ \sigma$.

Exemple. Le cycle $(2,4,3) \in \mathfrak{S}_5$ correspond à la permutation [1,4,2,3,5]. Il envoie 2 sur 4, 4 sur 3 et 3 sur 2. Son support est l'ensemble $\{2,3,4\}$. Les autres éléments de \mathbb{N}_5 (1 et 5) sont laissés inchangés. On remarquera que la notation utilisée n'est pas unique : (2,4,3) = (3,2,4) = (4,3,2).

Exemple. Un chiffrage par décalage de César correspond à l'application d'une puissance (i.e. à l'itération un nombre donné de fois) du 26-cycle suivant :

```
\sigma = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26)
```

 σ envoie 1 sur 2, 2 sur 3, ..., 26 sur 1, et opère donc un décalage alphabétique d'une lettre. σ^5 (i.e. sigma appliqué 5 fois de suite) correspond à un décalage de 5 lettres (*exercice* : est-ce encore un cycle ?).

Théorème. Toute permutation se décompose de façon unique en produit de cycles à supports disjoints, à l'ordre des facteurs près (car des cycles à supports disjoints commutent).

Pratique de la décomposition. Il suffit de suivre les images itérées par σ des différents éléments de \mathcal{E} pour identifier les cycles. Par exemple pour la permutation $\sigma = [3, 5, 7, 8, 6, 2, 1, 4]$ de \mathfrak{S}_8 , on a $1 \to 3 \to 7 \to 1$, $2 \to 5 \to 6 \to 2$ et $4 \to 8 \to 4$. Ainsi σ se décompose en un produit de 3 cycles : $\sigma = (1, 3, 7) \circ (2, 5, 6) \circ (4, 8)$.

La décomposition en produit de cycles du rot13 est :

```
(1,14) \circ (2,15) \circ (3,16) \circ (4,17) \circ (5,18) \circ (6,19) \circ (7,20) \circ (8,21) \circ (9,22) \circ (10,23) \circ (11,24) \circ (12,25) \circ (13,26)
```

Petit exercice: Soit $\sigma \in \mathfrak{S}_n$.

- ▲ Justifier qu'il existe un k > 1 (fini) tel que $\forall x \in \mathbb{N}_n, \sigma^k(x) = x$.
- lacktriangle Exprimer le plus petit k>1 possible en fonction des tailles des cycles de la décomposition de σ .

Conjugaison. Si $\alpha, \sigma \in \mathfrak{S}_n$, on appelle conjuguée de σ par α la permutation $\sigma' = \alpha \circ \sigma \circ \alpha^{-1}$. On a alors $\sigma' \circ \alpha(x) = \alpha \circ \sigma(x)$. Ainsi, si σ envoie x sur y, σ' envoie $\alpha(x)$ sur $\alpha(y)$.