

EXAM1 1/30

01

CHEMISTRY

วิชาสามัญเคมี มี.ค. 61

จงตอบคำถามต่อไปนี้

1. ธาตุ G มีเลขอะตอม 31 และเลขมวล 70 ธาตุนี้อยู่ในคาบใดของตารางธาตุ และอะตอมของ G มีเวเลนซ์อิเล็กตรอนเป็นจำนวนเท่าใด

	คาบ	จำนวนเวเลนซ์อิเล็กตรอน	
1)	3	3	
2)	3	4	
3)	4	1	
4)	4	3	
5)	6	2	

2. พิจารณาตำแหน่งของธาตุ 4 ชนิดในตารางธาตุต่อไปนี้

ข้อใดแสดงอะตอมที่มีอิเล็กตรอนเดี่ยวน้อยที่สุดและมากที่สุดได้ถูกต้อง

	อะตอมที่มีอิเล็กตรอนเดี่ยว		
	น้อยที่สุด	มากที่สุด	
1)	А	Χ	
2)	X	М	
3)	М	Z	
4)	Z	М	
5)	Z	A	

4	
ର୍ମ୍ବ	•

01

วิชาสามัญเคมี มี.ค. 61

CHEMITRY

3. พิจารณาพลังงานไอออไนเซชันลำดับที่ 2 ของธาตุ A, D, Q และ R ซึ่งมีเลขอะตอม 3, 9, 13 และ 20 ตามลำดับ ธาตุใดมีค่า IE₂ ต่ำที่สุด และ ธาตุใดมีค่า IE₂ สูงที่สุด

	ธาตุที่มีค่า IE ₂ ต่ำที่สุด	ธาตุที่มีค่า IE ₂ สูงที่สุด
1)	А	R
2)	R	А
3)	Q	D
4)	R	Q
5)	Q	А

- 4. โมเลกุลคู่ใดมีมุมระหว่างพันธะใกล้เคียงกัน
 - 1) SO₂ LIAT CO₂
 - 2) BeCl₂ และ O₃
 - 3) NCI3 และ CCI4
 - 4) BF₃ และ CO₂
 - 5) XeF₄ และ CH₄

EXAM1 3/30

01

วิชาสามัญเคมี มี.ค. 61

- 5. เมื่อผสมแก๊ส CH₄ กับแก๊ส CI₂ ปริมาณมากเกินพอในภาชนะปิดใส แล้วฉายแสงที่อุณหภูมิห้อง พบว่า ภาชนะร้อนขึ้นและมีหยดของเหลวเกิดขึ้นภายในภาชนะ ซึ่งภายหลังพิสูจน์ได้ว่าเป็น CCI₄ นอกจากนี้ เมื่อเปิดภาชนะออกยังพบว่าในภาชนะมีแก๊สที่เปลี่ยนสีกระดาษลิตมัสชื้นจากน้ำเงินเป็นแดง จากข้อมูลข้างต้นและแนวใน้มสมบัติตามตารางธาตุ ข้อความใดถูต้อง
 - 1) พลังงานพันธะ CI-CI มีค่ามากกว่า พลังงานพันธะ H-CI
 - 2) ความยาวพันธะ C H ค่ามากกว่า ความยาวพันธะ C Cl
 - 3) แก๊สที่สามารถเปลี่ยนสีกระดาษลิตมัสชื้นจากน้ำเงินเป็นแดงคือแก๊ส CH₄ ที่เหลืออยู่
 - 4) ปฏิกิริยาเคมีที่เกิดขึ้นมีจำนวนพันธะเคมีที่สร้างขึ้นเท่ากับจำนวนพันธะเคมีที่สลายไป
 - 5) ผลรวมพลังงานพันธะ C H กับ CI CI มีค่ามากกว่าผลรวมพลังงานพันธะ C CI กับ H CI

ขื่อ:

เบอร์โทร:

m@nkey e**veryddy**

วิชาสามัญเคมี มี.ค. 61

CHEMITRY

6. กำหนดแผนภาพและพลังงานบางชนิดที่เกี่ยวข้องในการเกิดสารประกอบ Nal ดังนี้

พลังงานแลตทิช = 690 kJ/mol
พลังงานในการเกิดสารประกอบ = 271 kJ/mol
พลังงานในการระเหิด = 108 kJ/mol
พลังงานใอออในเซซันลำดับที่ 1 = 502 kJ/mol
พลังงานในการเกิดเป็นอะตอมไอโอดีน = 107 kJ/mol

ข้อใด<u>ไม่</u>ถูกต้อง

- 1) ΔH_2 คือพลังงานที่ใช้ในการสลายพันธะของไอโอดีน 1 mol
- 2) $\Delta H_{_1}$ เป็นพลังงานที่ใช้เพื่อระเหิดโซเดียม ทำให้เกิดอะตอม 1 mol
- 3) กระบวนการ $I(g) + e^- \rightarrow I^-(g)$ มีการคายพลังงาน 289 kJ/mol
- 4) $\Delta H_{_3}$ เป็นพลังงานที่ใช้เพื่อดึงอิเล็กตรอนออกจากอะตอมโซเดียม 1 mol
- 5) $\Delta H_{_{\rm f}}$ เป็นพลังงานที่เกี่ยวข้องกับปฏิกิริยา Na(s) + I $_{_2}$ (s) \longrightarrow NaI(s)

EXAM1 5/30

01

วิชาสามัญเคมี มี.ค. 61

- 7. ธาตุ X มีเลขอะตอมเท่ากับ 53 ข้อใดไม่ถูกต้องเกี่ยวกับสมบัติของธาตุและสารประกอบของ X
 - 1) บางไอโซโทปของ X เป็นไอโซโทปกัมมันตรังสี
 - 2) X มีความสามารถในการเกิดปฏิกิริยามากกว่าคลอรีน
 - 3) สารประกอบคลอไรด์ของ X ไม่นำไฟฟ้าเมื่อหลอมเหลว
 - 4) สารประกอบออกไซด์ของ X แสดงความเป็นกรดเมื่อละลายน้ำ
 - 5) สารประกอบระหว่าง X กับโซเดียม เป็นของแข็งที่อุณหภูมิห้อง ซึ่งนำไฟฟ้าได้เมื่อหลอมเหลว

8. ครูนำปีกเกอร์ที่มีสารละลายไม่มีสี เข้มข้น 0.1 mol/dm³ ปริมาตร 100 cm³ มา 3 ปีกเกอร์ โดยติดฉลาก 1, 2 และ 3 แล้วให้นักเรียนแบ่งสารละลายมาทดสอบ ได้ผลดังตาราง

การทดสอบ	สารละลาย 1	สารละลาย 2	สารละลาย 3
หยดสารละลาย Mg(NO ₃) ₂	ไม่เกิดตะกอน	ตะกอนขาว	ไม่เกิดตะกอน
หยดสารละลาย Ba(NO ₃) ₂	ไม่เกิดตะกอน	ตะกอนขาว	ตะกอนขาว
หยดสารละลาย HNO ₃	ไม่เห็น	เกิดแก๊ส	ไม่เห็น
	การเปลี่ยนแปลง	111111111111111111111111111111111111111	การเปลี่ยนแปลง

สารละลาย 1, 2 และ 3 ในข้อใดเป็นไปได้

	สารละลาย 1	สารละลาย 2	สารละลาย 3
1)	NaNO ₃	NaCl	K ₂ CrO ₄
2)	Na ₂ CO ₃	Na ₂ SO ₄	Na ₂ HPO ₄
3)	NaNO ₃	K ₂ CrO ₄	NaCO ₃
4)	Na ₂ HPO ₄	NaCO ₃	Na ₂ SO ₄
5)	NaCl	NaCO ₃	Na ₂ SO ₄

ط	
ର୍ମ୍ବ	•
шП	•

เบอร์โทร:

m@nkey e**veryddy**

วิชาสามัญเคมี มี.ค. 61

CHEMITRY

- 9. Db (Dubnium) เป็นธาตุกัมมันตรังสีที่สังเคราะห์ขึ้นด้วยปฏิกิริยานิวเคลียร์ มีเลขอะตอม 105 ธาตุ X เป็นสมาชิกที่มีเลขอะตอมน้อยที่สุดที่อยู่ในหมู่เดียวกับ Db พิจารณาข้อความต่อไปนี้
 - ก. สารประกอบคลอไรด์ของ X มีมากกว่า 1 ชนิด และมีสีต่าง ๆ กัน
 - ข. สารประกอบออกไซด์ของ Db ควรมีสูตร $\mathsf{Db}_2\mathsf{O}_5$
 - ค. Db เป็นธาตุทรานซิชันที่มี 5 อิเล็กตรอนเดี่ยว
 - v. Db ไม่ควรเกิดสารประกอบเชิงซ้อน เนื่องจากเป็นธาตุกัมมันตรังสี

ข้อใดถูกต้อง

- 1) กและข
- 3) ข และ ค เท่านั้น
- 5) ขคและง

- 2) ค และ ง เท่านั้น
- 4) กและง

- 10. ไอโซโทปกัมมันตรังสี TI-206 สลายตัวให้ Pb-206 โดยมีค่าครึ่งชีวิต 4.20 นาที ถ้าเริ่มต้นมี TI-206 จำนวน 5.0 × 10²² อะตอม เมื่อเวลาผ่านไป 21.0 นาที จะเกิด Pb-206 กี่อะตอม
 - 1) 1.56×10^{21}

2) 3.13×10^{21}

3) 4.69×10^{22}

4) 4.84×10^{22}

5) 4.92×10^{22}

EXAM1 7/30

01

CHEMISTRY

วิชาสามัญเคมี มี.ค. 61

- 11. จำนวนโมลของกำมะถัน (S) ในข้อใดมีค่ามากที่สุด (กำหนดให้ มวลสูตรของ $As_2S_3=246$, $FeS_2=120$ และ มวลโมเลกุลของ $SO_2=64$, $H_2S=34$)
 - 1) ตะกอน As₂S₃ 0.4 mol
 - 2) แร่ไพไรต์ (pyrite, FeS₂) 18 g
 - 3) แก๊สซัลเฟอร์ไดออกไซด์ (SO₂) 11.2 dm³ ที่ STP
 - 4) แก๊สไฮโดรเจนซัลไฟด์ (H₂S) ที่มีกำมะถันอยู่ 12.8 g
 - 5) แก๊สไฮโดรเจนซัลไฟด์ (H_2 S) ที่มีกำมะถันอยู่ 2.408 imes 10 23 อะตอม

วิชาสามัญเคมี มี.ค. 61

CHEMITRY

12. สารละลาย A มีข้อมูลระบุไว้ข้างขวดดังนี้

ความเข้มข้น ร้ายละ 50 โดยมวล

2.0 g/cm³ ความหนาแน่น

มวลโมเลกุลของ A = 200

หากต้องการเจือจางสารละลาย A ให้มีความเข้มข้น 0.50 mol/dm³ ปริมาตร 500 cm³ ต้องใช้สารละลาย A กี่ลูกบาศก์เซนติเมตร

1) 6.25

2) 50

3) 100

4) 200

5) 400

13. สารอินทรีย์ชนิดหนึ่งมี C, H, N, และ O เป็นองค์ประกอบ มวลโมเลกุลเท่ากับ 292 เมื่อนำไปวิเคราะห์ พบว่ามี C 41.1%, H 5.5% และ N 9.6% โดยมวล สูตรโมเลกุลของสารชนิดนี้คือข้อใด

1) $C_5H_8NO_4$

2) $C_8H_8N_2O_{10}$

3) $C_{0}H_{14}N_{3}O_{8}$

4) $C_{10}H_{16}N_2O_8$

5) $C_{10}H_{20}N_{4}O_{6}$

14. ปฏิกิริยาการเผาใหม้แก๊สเอทิลีน ($\mathbf{C_2H_4}$) ในอากาศอย่างสมบูรณ์ เป็นดังสมการ

 $C_2H_4(g) + O_2(g) \longrightarrow CO_2(g) + H_2O(g)$ (สมการยังไม่คุล)

ถ้าเผาใหม้แก๊สเอทิลีน 20 dm³ ที่ STP ในอากาศอย่างสมบูรณ์ จะเกิดแก๊สคาร์บอนไดออกไซด์กี่ ลูกบาศก์เดซิเมตรที่ STP

1) 1.8

2) 10

3) 20

4) 30

5) 40

EXAM1 9/30

01

CHEMISTRY

วิชาสามัญเคมี มี.ค. 61

15. แก๊สอะเซทิลีนซึ่งใช้ในการบ่มผลไม้ให้สุกเตรียมได้จากปฏิกิริยาระหว่าง แคลเซียมคาร์ไบด์กับน้ำดังสมการ

$$CaC_2(s) + 2H_2O(I) \rightarrow C_2H_2(g) + Ca(OH)_2(aq)$$

ถ้านำถ่านแก๊ส 5.00 g ซึ่งมี CaC₂ ร้อยละ 80.0 โดยมวลมาทำปฏิกิริยากับน้ำมากเกินพอ

1) 1.63

2) 2.03

3) 2.54

4) 9.85

5) 15.38

16. สารละลาย KBrO₃ เข้มข้น 0.100 mol/dm³ ปริมาตร 10.0 cm³ ทำปฏิกิริยากับ KBr 1.19 g ใน สารละลายที่มีกรด HCl มากเกินพอ ดังสมการ

 ${\rm BrO_3}^-({\rm aq}) + 5{\rm Br}^-({\rm aq}) + 6{\rm H}^+ \longrightarrow 3{\rm Br_2}({\rm aq}) + 3{\rm H_2O(I)}$ ใบรมีน (Br₂) ที่เกิดขึ้นมีปริมาตรกี่กรัม

1) 0.053

2) 0.16

3) 0.48

4) 0.96

5) 2.67

17. แก๊สชนิดหนึ่งมีความหนาแน่นที่ STP เท่ากับความหนาแน่นของแก๊สไนโตรเจนที่อุณหภูมิ 273 °C ความดัน 1,410 Torr แก๊สชนิดนี้อาจเป็นแก๊สชนิดใด

(กำหนดให้ 1 Torr = 1 mmHg)

1) ฟลูออรีน

2) อะเซทิลีน

3) แอมโมเนีย

4) คาร์บอนไดออกไซด์

5) ในโตรเจนมอนอกไซด์

mônkey e**veryddy**

วิชาสามัญเคมี มี.ค. 61

CHEMITRY

18. จุดเดือดปกติของของเหลว 5 ชนิดเป็นดังแสดงในตาราง

ของเหลว	HF	CH ₃ CI	CH ₃ F	HCI	HBr
จุดเดือดปกติ(°C)	19.5	-24.2	-78.4	-85	-66

ของเหลวชนิดใดมีแรงยึดเหนี่ยวระหว่างโมเลกุลสูงที่สุด

1) HF

2) CH₃Cl

3) CH₃F

4) HCl

5) HBr

19.

จากกราฟแสดงความสัมพันธ์ระหว่างอุณหภูมิกับความดันใอของของเหลว ABC และ D จุดเดือดปกติของของเหลว C มีค่าเท่าใด

1) 40 °C

2) 60 °C

3) 70 °C

4) 75 °C

5) 80 °C

EXAM1 11/30

01

CHEMISTRY

วิชาสามัญเคมี มี.ค. 61

2)

20. จากการวัดปริมาตรของแก๊สที่ความดันต่าง ๆ โดยให้อุณหภูมิคงที่ที่ 100 200 และ 300 K กราฟในข้อใดถูกต้อง

วิชาสามัญเคมี มี.ค. 61

CHEMITRY

21. จากปฏิกิริยาออกซิเดชันของแอมโมเนีย $4NH_3(g) + 3O_2(g) \rightarrow 2N_2(g) + 6H_2O(I)$ ข้อใดแสดงอัตราการเกิดปฏิกิริยาได้ถูกต้อง

1) อัตราการเกิดปฏิกิริยา =
$$-rac{\Delta[O_2]}{\Delta t}$$

2) อัตราการเกิดปฏิกิริยา =
$$-rac{\Delta[{
m N_2}]}{\Delta {
m t}}$$

3) อัตราการเกิดปฏิกิริยา =
$$\frac{1}{3} \frac{\Delta[O_2]}{\Delta t}$$

4) ชัตราการเกิดปฏิกิริยา =
$$-\frac{1}{3}\frac{\Delta[O_2]}{\Delta t}$$

5) อัตราการเกิดปฏิกิริยา =
$$\frac{1}{4} \frac{\Delta[NH_3]}{\Delta t}$$

วิชาสามัญเคมี มี.ค. 61

22. อุณหภูมิ 400 K สังกะสีทำปฏิกิริยากับกรดไฮโดรคลอริก เกิดเป็นแก๊สไฮโดรเจนและซิงค์ (II) คลอไรด์ ดังสมการ

$$Zn(s) + 2HCI(aq) \rightarrow H_2(g) + ZnCI_2(aq)$$

เมื่อใส่ผงสังกะสีลงในกรดไฮโดรคลอริกเข้มข้น 0.1 mol/dm³ ปริมาตร 1 dm³ และวัดปริมาณสังกะสี ขณะเกิดปฏิกิริยา ได้ผลดังตาราง

เวลา (s)	มวลของสังกะสี (g)
0	0.016
4	0.0085
8	0.0055
12	0.0050
16	0.0045
20	0.0040

อัตราการเกิดปฏิกิริยาเฉลี่ยในช่วงเวลา $0-20 \mathrm{s}$ เป็นเท่าใด

1) 0.0019 g/s

2) 0.0013 g/s

3) 0.0009 g/s

4) 0.0007 g/s

5) 0.0006 g/s

m@nkey everyddy

วิชาสามัญเคมี มี.ค. 61

CHEMITRY

23. ปฏิกิริยาการสลายตัวของ N_2O_5 เป็นดังสมการ

$$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$$

ถ้าบรรจุแก๊ส $N_2^{}O_5^{}$ 2.0 dm³ ในกระบอกสูบที่อุณหภูมิ 27 °C ความดัน 1 atm แล้วปล่อยให้ เกิดปฏิกิริยาที่อุณหภูมิและความดันคงที่ เมื่อเวลาผ่านไป 20 s พบว่า แก๊สในกระบอกสูบมีปริมาตร เพิ่มขึ้นอีก 60 cm³ อัตราเฉลี่ยของการเกิดแก๊ส $O_2^{}$ มีค่าเท่าใด

(กำหนด R = 0.08 dm³.atm/K.mol)

1) $2 \times 10^{-5} \text{ mol/dm}^3$.s

2) $4 \times 10^{-5} \text{ mol/dm}^3.\text{s}$

3) $6 \times 10^{-5} \text{ mol/dm}^3.\text{s}$

4) $1 \times 10^{-4} \text{ mol/dm}^3$.s

5) $2 \times 10^{-2} \text{ mol/dm}^3.\text{s}$

24. กราฟการเปลี่ยนแปลงพลังงานของปฏิกิริยาหนึ่งเป็นดังนี้

ข้อใดถูกต้อง

	พลังงานก่อกัมมันต์	สารเชิงซ้อนกัมมันต์	ปฏิกิริยา A → D ดูด/คายความร้อน
1)	E	В	ମୁମ
2)	В	Е	คาย
3)	E	D	ମ୍ମୁମ
4)	В	D	คาย
5)	В	E	ମ୍ବୁମ

EXAM1 15/30

01

CHEMISTRY

วิชาสามัญเคมี มี.ค. 61

25. สารละลายอิ่มตัวของ Mg(OH)₂ ที่อุณหภูมิ 25 °C มี pH เท่ากับของสารละลาย NaOH

เข้มข้น $3.2 \times 10^{-4} \, \mathrm{mol/dm^3}$ ค่าคงที่สมดุลของการละลายดังสมการ

 $Mg(OH)_{2}(s) \rightleftharpoons Mg^{2+}(aq) + 2OH^{-}(aq)$ มีค่าเท่ากับข้อใด

1) 1.6×10^{-11}

2) 3.3×10^{-11}

3) 6.6×10^{-11}

4) 5.1×10^{-8}

5) 1.0×10^{-7}

26. บิวทีนสายตรงสามารถเกิดปฏิกิริยาไอโซเมอไรเซชันระหว่าง 3 ไอโซเมอร์แสดงได้ด้วยสมดุล 2 ขั้น ดังนี้

1-butene cis-2-butene

 $K_{\scriptscriptstyle 1}$

cis-2-butene == trans-2-butene

 K_{2}

ค่าคงที่สมดุลในช่วงอุณหภูมิ 684 – 824 K เป็นดังนี้

อุณหภูมิ (K)	K ₁	K ₂
684	1.25	1.44
719	1.20	1.40
824	0.88	1.32

ข้อใด<u>ไม่</u>ถูกต้อง

- 1) trans-2-butene เป็นไอโซเมอร์ที่มีพลังงานต่ำที่สุด
- 2) สมดุลที่อุณหภูมิ 824 K ไอโซเมอร์ 1-butene มีอยู่มากที่สุด
- ที่อุณหภูมิ 684 K อัตราส่วน [trans-2-butene]/[1-butene] = 1.8
- 4) ปฏิกิริยา trans-2-butene 💳 1-butene เป็นปฏิกิริยาดูดความร้อน
- 5) สมดูลที่อุณหภูมิต่ำจะมี trans-2-butene > cis-2-butene > 1-butene

m@nkey everyddy

วิชาสามัญเคมี มี.ค. 61

CHEMITRY

27. เมื่อแก๊สในโตรซิลคลอไรด์ (NOCI) 0.1 mol สลายตัวในภาชนะปิดขนาด 50 dm³ ดังสมการ

$$2NOCI(g) \rightleftharpoons 2NO(g) + CI_2(g)$$

ที่สมดุล NOCI สลายตัวไปครึ่งหนึ่ง ค่าคงที่สมดุลของปฏิกิริยามีค่าเท่าใด

1) 5.0×10^{-4}

2) 1.0×10^{-3}

3) 2.0×10^{-3}

4) 2.5×10^{-2}

5) 5.0 × 10⁻²

28. เริ่มต้นบรรจุแก๊ส NH₃ 2.0 mol ในภาชนะปิดปริมาตรคงที่ 1.0 dm³ อุณหภูมิ 800 K เมื่อปฏิกิริยาเข้าสู่สมดุลที่อุณหภูมิละปริมาตรคงที่ดังสมการ

$$2NH_3(g) \rightleftharpoons N_2(g) + 3H_2(g)$$

พบว่าที่สมดุลมี N₂ 20.0% โดยโมล ค่าคงที่สมดุลมีค่าเท่าใด

1) 1

2) 3

3) 4

4) 8

- 5) 12
- 29. ตามทฤษฎีของเบรินสเตด ลาวรี่ โมเลกุลหรือไอออนคู่ใดต่อไปน<u>ี้ไม่</u>ใช่กรดและคู่เบสของกรดนั้น

	กรด	คู่เบส
1)	HIO ₃	1O ₃
2)	H ₃ O ⁺	H ₂ O
3)	HSO ₄	SO ₄ ²⁻
4)	HPO ₄ ²⁻	H ₂ PO ₄
5)	CH ₃ NH ₃ ⁺	CH ₃ NH ₂

EXAM1 17/30

01

วิชาสามัญเคมี มี.ค. 61

30. พิจารณากราฟของการไทเทรตกรดอ่อน 4 ชนิดได้แก่ HA, HB, HC, และ HD ที่มีความเข้มข้นเท่ากัน ปริมาตร 50 cm³ ด้วยสารละลาย NaOH จากบิวเรตต์ ดังรูป

ข้อใดถูกต้อง

- 1) ค่าคงที่การแตกตัวของกรดอ่อน HA > HB > HC > HD
- 2) กรดอ่อน HA แตกตัวเป็นใอออนได้มากกว่ากรดอ่อน HD
- 3) ก่อนเติมสารละลาย NaOH พบว่า ความเข้มข้นของกรดที่ไม่แตกตัว [HA] > [HB]
- 4) ร้อยละการแตกตัวของกรดอ่อน HC น้อยกว่าร้อยละการแตกตัวของกรดอ่อน HB
- 5) ก่อนไทเทรต ความเข้มข้นของ $\rm H_3O^+$ ในสารละลายกรดอ่อน $\rm HA>HB>HC>HD$

ط	
ର୍ଶନ	
1111	

m@nkey e**veryddy**

วิชาสามัญเคมี มี.ค. 61

CHEMITRY

31. น้ำสารละลาย $\mathrm{NH_4CI}$ เข้มข้น 0.2 $\mathrm{mol/dm^3}$ ใส่หลอดทดลอง 4 หลอด แต่ละหลอด หยดอินดิเคเตอร์ 1 ชนิด ข้อมูลของอินดิเคเตอร์ที่ใช้แสดงดังตาราง

อินดิเคเตอร์	ไทมอลบลู	เมทิลเรด	ฟีนอลเรด	อะลิซารินเยลโล
ช่วง pH เปลี่ยนสี	1.2 – 2.8	4.2 – 6.3	6.8 – 8.4	10.1 – 12.0
สีที่เปลี่ยน	แดง – เหลือง	แดง – เหลือง	เหลือง – แดง	เหลือง – แดง

สีของสารละลายแต่ละหลอดเป็นดังข้อใด

(กำหนด K_b ของ NH₃ = 2 × 10⁻⁵)

	หลอดที่ 1	หลอดที่ 2	หลอดที่ 3	หลอดที่ 4
	ไทมอลบลู	เมทิลเรด	ฟีนอลเรด	อะลิซารินเยลโล
1)	ู ชุม	แดง	เหลือง	เหลือง
2)	เหลือง	ส้ม	เหลือง	เหลือง
3)	เหลือง	เหลือง	แดง	เหลือง
4)	เหลื่อง	เหลือง	แดง	ส้ม
5)	เหลือง	เหลือง	ส้ม	เหลือง

- 32. เมื่อเติมสารละลาย NaOH เข้มข้น 0.1 mol/dm³ ปริมาตร 15.00 cm³ ลงในสารละลายกรดฟอสฟอริก (H_3PO_4) เข้มข้น 0.1 mol/dm³ ปริมาตร 10.00 cm³ ข้อใดถูกต้อง (กำหนดให้ ค่าคงที่การแตกตัวของ H_3PO_4 : $K_{a1} = 7 \times 10^{-3}$, $K_{a2} = 6 \times 10^{-7}$, $K_{a3} = 5 \times 10^{-13}$)
 - 1) NaOH ทำปฏิกิริยาหมดในสารละลายมี ${
 m Na_3PO_4}$ เป็นองค์ประกอบหลัก
 - 2) ในสารละลายมี NaOH และ NaH₂PO₄ เป็นองค์ประกอบหลักจึงมี pH มากกว่า 7
 - 3) ในสารละลายมี $\mathrm{Na_2HPO_4}$ และ $\mathrm{Na_3PO_4}$ เป็นองค์ประกอบหลักจึงมีสมบัติเป็นบัพเฟอร์
 - 4) ในสารละลายมี ${
 m Na_2HPO_4}$ และ ${
 m NaH_2PO_4}$ เป็นองค์ประกอบหลักจึงมีสมบัติเป็นบัพเฟอร์
 - 5) H_3PO_4 ทำปฏิกิริยาหมดในสารละลายมี NaOH เป็นองค์ประกอบหลักจึงมี PH มากกว่า 7

EXAM1 19/30

วิชาสามัญเคมี มี.ค. 61

01

- 33. กรดอ่อน HA มีมวลโมเลกุล = 50 และ $K_a = 1 \times 10^{-5}$ ถ้านำสารละลายของกรดอ่อน HA ปริมาตร 50 cm³ ที่มี HA 0.20 g มาไทเทรตด้วยสารละลาย NaOH เข้มข้น 0.1 mol/dm³ ข้อใดถูกต้อง
 - 1) ต้องใช้ NaOH 0.004 mol ในการสะเทิน
 - 2) ใช้สารละลาย NaOH น้อยกว่า 40 cm³ ในการสะเทิน
 - 3) สารละลาย HA ที่นำมาไทเทรตมีความเข้มข้น 0.004 mol/dm³
 - 4) เมื่อใช้ฟีนอล์ฟทาลีนเป็นอินดิเคเตอร์ สารละลายเปลี่ยนจากสีชมพูเป็นไม่มีสี
 - 5) เมื่อกรดอ่อน HA กับ NaOH ทำปฏิกิริยากันหมดพอดี สารละลายมีค่า pH น้อยกว่า 7

34. ถ้าต้องการเตรียมสารละลายบัพเฟอร์ pH เท่ากับ 4.0 ปริมาตร 1 dm³ จากสารละลาย NaA และ สารละลาย HA ที่มีความเข้มข้น NaA และ HA รวมกันเป็น 0.3 mol/dm³ จะต้องใช้ NaA และ HA อย่างละกี่กรัม

(กำหนดให้ มวลสูตรของ NaA = 72 และมวลโมเลกุลของ HA = 50 และ K_{a} ของ HA = 5 imes 10 $^{ imes}$)

	มวล NaA (g)	มวล HA (g)
1)	5.0	14.4
2)	7.2	10.0
3)	10.0	7.2
4)	10.8	7.5
5)	14.4	5.0

ظ	
ର୍ମ୍ଭ	•
шЦ	•

EXAM1 20/30

ข้อสอบ > วิชาสามัญเคมื

วิชาสามัญเคมี มี.ค. 61

CHEMITRY

ชื่อ:

เบอร์โทร:

01

CHEMISTRY

วิชาสามัญเคมี มี.ค. 61

35. ตัวเลขจำนวนเต็ม a, b, c และ d ที่ทำให้สมการนี้ดุลมีค่าเท่ากับเท่าใดตามลำดับ

$$aC_2H_5OH + bCr_2O_7^{2-} + cH^+ \longrightarrow aCH_3COOH + 2bCr^{3+} + dH_2O$$

- 1) 3, 2, 16, 11
- 2) 1, 2, 24, 13
- 3) 1, 1, 10, 6
- 4) 3, 1, 2, 4
- 5) 2, 1, 6, 5

36. ปฏิกิริยาใดต่อไปนี้<u>ไม่</u>ใช่ปฏิกิริยารีดอกซ์

1)
$$2F_2 + 2H_2O \rightarrow 4HF + O_2$$

2)
$$Ag_2O(s) + 4NH_3 + 2NaNO_3 + H_2O \rightarrow 2Ag(NH_3)_2NO_3 + NaOH$$

3)
$$C_3H_5N_3O_9(I) \longrightarrow 3CO_2 + \frac{5}{2}H_2O + \frac{3}{2}N_2 + \frac{1}{4}O_2$$

4)
$$2MnO_4^- + 5H_2C_2O_4 + 6H_3O^+ \rightarrow 2Mn^{2+} + 10CO_2 + 14H_2O$$

5)
$$C_6H_8O_6 + 2[Fe(CN)_6]^{3-} \longrightarrow C_6H_6O_6 + 2[Fe(CN)_6]^{4-} + 2H^+$$

m@nkey e**veryddy**

วิชาสามัญเคมี มี.ค. 61

CHEMITRY

37. เมื่อดุลสมการ $H_2O_2 + Cr(OH)_4^- \longrightarrow CrO_4^{2-} + H_2O$ จำนวนโมลของ H_2O_2 กับของ $Cr(OH)_4^-$ จะสัมพันธ์กันอย่างไร

	สภาวะของสารละลาย	จำนวนโมล H ₂ O ₂	จำนวนโมล Cr(OH)₄ _
1)	กรด	1	1
2)	กรด	2	3
3)	เบส	2	1
4)	เบส	2	3
5)	เบส	3	2

- 38. สำหรับเซลล์เชื่อเพลิงโพรเพน-ออกซิเจน ข้อใดถูกต้อง
 - 1) ที่แอโนด เกิดปฏิกิริยาได้แก๊สออกซิเจน ดังสมการ $10H_2O(g) \longrightarrow 5O_2(g) + 20H^+(aq) + 20e^-$
 - 2) ที่แอโนด โพรเพนเกิดปฏิกิริยาได้แก๊สคาร์บอนไดออกไซด์ดังสมการ $C_3H_3(g) + 6H_2O(g) \longrightarrow 3CO_3(g) + 20H^+(aq) + 20e^-$
 - 3) ที่แคโทด ต้องใช้แก๊สออกซิเจนเพื่อให้เกิดปฏิกิริยาการสันดาปของโพรเพนได้ไอน้ำอุณหภูมิสูง $C_3H_8(g) + 5O_2(g) \longrightarrow 4H_2O(g) + 3CO_2(g)$
 - 4) ปฏิกิริยารวมที่เกิดขึ้นจริงในเซลล์เชื้อเพลิงโพรเพน-ออกซิเจนซึ่งทำให้ได้แก๊สไฮโดรเจน เป็นแหล่งพลังงานคือ

$$C_3H_8(g) + 6H_2O(g) \rightarrow 3CO_2(g) + 10H_2(g)$$

5) ที่แคโทดต้องใช้แก๊สออกซิเจนทำปฏิกิริยากับแก๊สคาร์บอนไดออกไซด์ที่ได้จากแอโนด เพื่อทำให้เกิดคาร์บอเนต หลังจากนั้นแยกออกจากเซลล์อีกครั้งโดยให้สลายตัวกลายเป็น คาร์บอนไดออกไซด์

$$\frac{1}{2}O_{2}(g) + CO_{2}(g) + 2e^{-} \rightarrow CO_{3}^{2-}(aq)$$

EXAM1 23/30

01

วิชาสามัญเคมี มี.ค. 61

39. เมื่อดุลสมการรีดอกซ์ต่อไปนี้

 $aCH_{_3}OH(I) + bCr_{_2}O_{_7}^{^{2-}}(aq) + cH^{^+}(aq) \longrightarrow dCH_{_2}O(aq) + eCr^{^{3+}}(aq) + fH_{_2}O(I)$ สัมประสิทธิ์ a, b, c, d, e และ f มีค่าเท่าใด

	а	b	С	d	е	f
1)	1	1	14	1	2	7
2)	3	1	8	3	2	7
3)	3	1	8	3	2	8
4)	3	1	14	3	2	8
5)	1	1	14	3	2	8

- 40. การปรับปรุงหรือแปรรูปวัสดุทางธรรมชาติให้เป็นผลิตภัณฑ์ที่ต้องการในอุตสาหกรรมมักอาศัยความรู้
 เกี่ยวกับสมบัติและปฏิกิริยาเคมีของธาตุและสารประกอบต่าง ๆ โดยเฉพาะอย่างยิ่งปฏิกิริยารีดอกซ์
 กระบวนการในข้อใด<u>ไม่</u>เกี่ยวข้องกับปฏิกิริยารีดอกซ์
 - 1) การผลิตสารฟอกขาวจากเกลือแกง
 - 2) การผลิตแก้วโซดาไลม์จากทรายแก้ว
 - 3) การเตรียมกรดซัลฟิวริกจากกำมะถัน
 - 4) การถลุงทองแดงจากแร่คาลโคไพไรต์
 - 5) การเตรียมแก๊สแอมโมเนียจากอากาศ

EXAM1	24/30

m@nkey everyddy

วิชาสามัญเคมี มี.ค. 61

CHEMITRY

- 41. พิจารณาข้อความเกี่ยวกับการใช้ประโยชน์ของแก๊สออกซิเจนในอุตสาหกรรมต่อไปนี้
 - ก. ใช้เผากับแร่บางชนิด เพื่อเปลี่ยนองค์ประกอบของแร่ให้เป็นสารประกอบออกไซด์
 - ข. ใช้เผาแร่ เพื่อออกซิไดซ์แร่ให้เปลี่ยนเป็นโลหะ
 - ค. ใช้ทำปฏิกิริยากับแก๊สธรรมชาติโดยมีตัวเร่งปฏิกิริยาเพื่อเตรียมแก๊สไฮโดรเจนสำหรับการผลิตปุ๋ยยูเรีย
 - ง. ใช้เผากับกำมะถัน เพื่อให้เกิดแก๊ส SO₂ สำหรับการผลิตกรดซัลฟิวริก

ข้อใดถูกต้อง

1) กและขเท่านั้น

2) ขและค

3) ค และ ง เท่านั้น

4) กคและง

5) กขและง

EXAM1 25/30

01

วิชาสามัญเคมี มี.ค. 61

42. สารในข้อใดต่อไปนี้<u>ไม่</u>ได้เป็นไอโซเมอร์กันทั้งหมด

$$H_3C$$
 $C=C$
 H_3C
 H_3C

2)

3)

4)

5)

EXAM1	26/30

m@nkey e**veryddy**

วิชาสามัญเคมี มี.ค. 61

CHEMITRY

43. คาร์บอนไดออกไซด์เป็นแก๊สที่มีส่วนสำคัญในการทำให้เกิดปรากฏการณ์โลกร้อน ส่วนใหญ่เกิดจากการเผาไหม้น้ำมันที่ใช้ยานพาหนะ สารประกอบไฮโดรคาร์บอนใดเมื่อเผาไหม้จะให้ปริมาณคาร์บอนไดออกไซด์ต่อมวลของสารมากที่สุด

1) โพรเพน

2) เฮปเทน

3) ไอโซออกเทน

4) เฮกซะเดกเคน

5) ไซโคลเพนเทน

- 44. สารประกอบอินทรีย์ที่มีออกซิเจนเป็นองค์ประกอบชนิดหนึ่งมีมวลโมเลกุล 60 และมีคาร์บอนร้อยละ 60 โดยมวล ข้อความใดต่อไปนี้สรุปได้ถูกต้อง
 - 1) สารมีโครงสร้างที่เป็นไปได้ 3 โครงสร้าง
 - 2) สารไม่รวมตัวกับน้ำโดยลอยอยู่ชั้นบน
 - 3) สารทำปฏิกิริยากับโซเดียมได้ฟองแก๊ส
 - 4) สารเผาได้เปลวไฟที่มีเขม่า
 - 5) สารฟอกจางสีโบรมีนในที่มืด

ਕ	
୩୭	•
шЦ	•

EXAM1 27/30

01

วิชาสามัญเคมี มี.ค. 61

45.การเปรียบเทียบสมบัติทางกายภาพของสารอินทรีย์ ข้อใด<u>ไม่</u>ถูกต้อง

- 1) สภาพขั้ว : $CH_3CH_2 CH_2COOH > CH_3CH_2 COOCH_3$
- 2) จุดเดือด : $\mathrm{CH_3CH_2CH_2CH_2OH} > \mathrm{CH_3CH_2} \; \mathrm{CH_2CHO}$
- 3) การละลายน้ำ : $CH_3CH(OH) CH_2CH_3 > CH_3CH_2CH_2OH$
- 4) ความเป็นกรด : $CH_3CH_2CH_2CH_2OH > HCOOCH_2CH_2CH_3$
- 5) พีเอชของสารละลาย : $CH_3CH_2CH_2CH_2NH_2 > CH_3CH_2CH_2CONH_2$

46. แก๊สธรรมชาติที่ได้จากโรงแยกแก๊สแห่งหนึ่งมีส่วนผสมของมีเทนและอีเทน ซึ่งเมื่อนำแก๊สนี้ 94 g มาเผาไหม้โดยสมบูรณ์ได้แก๊สคาร์บอนไดออกไซด์ 264 g แก๊สธรรมชาตินี้มีอีเทนอยู่ร้อยละเท่าใดโดยปริมาตร

1) 20

2) 25

3) 32

4) 68

5) 80

วิชาสามัญเคมี มี.ค. 61

CHEMITRY

47. สาร 2 ชนิดทำปฏิกิริยากันเป็นพอลิเมอร์แบบควบแน่นและสารโมเลกุลขนาดเล็กอีกชนิดหนึ่ง

A + B → พอลิเมอร์แบบควบแน่น + สารโมเลกุลขนาดเล็ก

พิจารณาพอลิเมอร์สังเคราะห์ที่เตรียมจากปฏิกิริยาการเกิดพอลิเมอร์แบบควบแน่นต่อไปนี้

$$\begin{bmatrix}
O & O \\
C & C
\end{bmatrix}$$

$$C - OCH_2CH_2$$

พคลิเคทิลีนเทเรฟทาเลต

$$\begin{array}{c|c} CH_3 & O \\ C & -C \\ CH_3 & -C \\ C$$

พคลิคาร์บคเนต

-[
$$\mathrm{CH_2}$$
-NH-CO-NH- $\mathrm{CH_2}$] $_{\mathrm{n}}$ - พอลิยูเรียฟอร์มาลดีไฮด์

พอลิเมอร์แบบควบแน่นที่เกิดขึ้นพร้อมกับสารโมเลกุลขนาดเล็กตามที่ระบุ ข้อใดถูกต้อง

	พอลิเมอร์ + สารโมเลกุลขนาดเล็ก	พอลิเมอร์ + สารโมเลกุลขนาดเล็ก
1)	พอลิไมด์(ในลอน-6,6) + HCI	พอลิยูเรียฟอร์มาลดีไฮด์ + CH ₃ OH
2)	พอลิเอทิลีนเทเรฟทาเลต + CH ₃ OH	พอลิคาร์บอเนต + HCl
3)	พอลิคาร์บอเนต + H ₂ O	พอลิไมด์(ในลอน-6,6) + H ₂ O
4)	พอลิยูเรียฟอร์มาลดีไฮด์ + H ₂ O	พอลิเอทิลีนเทเรฟทาเลต + H ₂ O
5)	พอลิยูเรียฟอร์มาลดีไฮด์ + HCI	พอลิคาร์บอเนต + CH ₃ OH

EXAM1 29/30

วิชาสามัญเคมี มี.ค. 61

01

48. อะไมเลสเป็นเอนไซม์ที่ทำหน้าที่ย่อยแป้งเป็นน้ำตาลโมเลกุลเล็ก ประสิทธิภาพในการทำงานของ อะไมเลสที่อุณหภูมิและ pH ต่าง ๆ แสดงในกราฟข้างล่าง

ในชุดการทดลองหนึ่งได้ผสมอะไมเลสกับน้ำแป้งในปริมาณที่ควบคุมให้เท่ากันทุกการทดลอง และใช้เวลาในการทดลองเท่ากันภายใต้ภาวะที่ระบุจากนั้นนำไปทดสอบกับสารละลายไอโอดีนและ สารละลายเบเนดิกต์

การทดลอง	อุณหภูมิ (°C)	рН
1. น้ำแป้ง + อะไมเลส	0	6
2. น้ำแป้ง + อะไมเลส	50	9
3. น้ำแป้ง + อะไมเลส	50	6
4. น้ำแป้ง + อะไมเลสที่ผ่านการต้มแล้วทิ้งให้เย็น	50	6
5. น้ำแป้งที่ไม่เติมอะไมเลส (ชุดควบคุม)	50	6

ผลการทดสอบ ข้อใด<u>ไม่</u>ถูกต้อง

		สารละลายไอโอดีน	สารละลายเบเนดิกต์
1)	การทดลองที่ 1	สารละลายสีน้ำเงิน	ไม่เกิดตะกอน
2)	การทดลองที่ 2	สารละลายสีน้ำตาลปนม่วง	เกิดตะกอนแดงเล็กน้อย
3)	การทดลองที่ 3	สารละลายสีน้ำตาล	เกิดตะกอนแดง
4)	การทดลองที่ 4	สารละลายสีน้ำตาล	ไม่เกิดตะกอน
5)	การทดลองที่ 5	สารละลายสีน้ำเงิน	ไม่เกิดตะกอน

ชื่อ:

เบอร์โทร:

CHEMITRY

วิชาสามัญเคมี มี.ค. 61

49. ไซโคลสปอรินเป็นเพปไทด์ที่มีโครงสร้างดังแสดง มีฤทธิ์กดภูมิคุ้มกันซึ่งนำมาใช้เป็นยาสำหรับผู้ที่ปลูก ถ่ายอวัยวะ ใช้รักษาเยื่อตาขาวอักเสบ โรคจากภูมิคุ้มกันผิดปกติและโรคทางผิวหนัง

โครงสร้าง 2 มิติขคงไซโคลสาโคริน

จำนวนพันธะเพปไทด์ในโครงสร้าง 2 มิติของไซโคลสปอรินเท่าใด

1) 9

2) 10

3) 11

4) 12

- 5) 13
- 50. ข้อใด<u>ไม่</u>ถูกต้องเกี่ยวกับไขมันและกรดไขมัน
 - 1) เมื่อต้มไขมันกับสารละลายโซเดียมไฮดรอกไซด์จะได้สบู่
 - 2) การเหม็นหืนของไขมันไม่อิ่มตัวป้องกันได้โดยการเติมสาร BHA
 - 3) กรดไขมันอิ่มตัวสายยาวมีจุดหลอมเหลวสูงกว่ากรดไขมันอิ่มตัวสายสั้น
 - 4) กรดไขมันอิ่มตัวมีจุดหลอมเหลวสูงกว่ากรดไขมันไม่อิ่มตัวที่มีจำนวนคาร์บอนเท่ากัน
 - 5) กรดไขมันไม่อิ่มตัวที่มีพันธะคู่สองตำแหน่งมีจุดหลอมเหลวสูงกว่ากรดไขมันไม่อิ่มตัวที่มี จำนวนคาร์บอนเท่ากันแต่มีพันธะคู่ตำแหน่งเดียว