LINEAR ALGEBRA II

Ch. V SCALAR PRODUCTS AND ORTHOGONALITY

- iunes product
- Let *V* be a vector space over a field *K*.
- A scalar product on V is an association which to any pair of elements v, w of V associates a scalar, denoted by $\langle v, w \rangle$, or also $v \cdot w$, satisfying: $\forall u$, $v, w \in V$ and $x \in K$, $\langle \cdot \rangle : \forall x \vee v \Rightarrow K$
 - **SP 1.** $\langle v, w \rangle = \langle w, v \rangle$. 2689. $\langle w, v \rangle = \langle w, v \rangle + \langle w, w \rangle$. $\langle u, v \rangle = \langle u, v \rangle + \langle v, w \rangle$. **SP 3.** $\langle xu, v \rangle = x \langle u, v \rangle$ and $\langle u, xv \rangle = x \langle u, v \rangle$. $\langle u, v \rangle = \langle u, v \rangle$.
- The scalar product is said to be non-degenerate if in addition it also satisfies the condition: if $v \in V$, and $\langle v, w \rangle \forall w \in V$, then v = O.

- The dot product in $V = K^n$ is a non-degenerate scalar product.
- $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$ is a non-degenerate scalar product in the space of continuous real-valued functions on the interval [0, 1].
- v, w are said to be orthogonal or perpendicular, and write $v \perp w$, if $\langle v, w \rangle = 0$.
- Let S be a subset of V, then $S^{\perp} = \{v \in V | \langle v, s \rangle = 0 \text{ for all } s \in S\}$ is a subspace of V, called the orthogonal space of S.
- $s \in S^{\perp} \Leftrightarrow s \perp S$.
- Let U be the subspace generated by S. Then $S^{\perp} = U^{\perp}$.

$$V = \text{span(S)}$$

$$\forall v \in S^{+} \forall u \in U,$$

$$\forall v \in S^{+} \forall u \in U,$$

$$\exists u_{1}, \dots, u_{n} \in S, a_{1}, \dots, a_{n} \in K, s, t \in U = a_{1}u_{1} + \dots + a_{n}u_{n}$$

$$\langle v, u \rangle = a \langle v, u_{1} \rangle + \dots + a_{n} \langle v, u_{n} \rangle = a_{1}u_{1} \wedge \dots + a_{n}u_{n} \rangle$$

$$\langle v, u_{1} \rangle = a_{1}u_{1} \wedge \dots + a_{n}u_{n} \rangle = \langle v, a_{1}u_{1} \rangle + \dots + \langle v, a_{n}u_{n} \rangle$$

• A system of linear equations:

$$a_{11}x_1 + \dots + a_{1n}x_n = 0$$

$$\dots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = 0$$

- \bullet AX = O.
- $\bullet A_1 \cdot X = 0, \ldots, A_m \cdot X = 0.$
- $W = \operatorname{span}\{A_1, \ldots, A_m\}.$
- The solution set U of AX = O is a subspace of K^n and $U = \{A_1, \dots, A_m\}^{\perp} = W^{\perp}$.

- Let V be a vector space over the field K, with a scalar product.
- Let $\{v_1, \ldots, v_n\}$ be a basis of \underline{V} . We shall say that it is an orthogonal basis, if $\langle v_i, v_j \rangle = 0$ for all $i \neq j$.
- We shall show later that if V is a finite dimensional vector space, with a scalar product, then there always exists an orthogonal basis.
- We shall first discuss important special cases over the real and complex numbers.

- The real positive definite case
- Let V be a vector space over R, with a scalar product. We shall call this scalar product positive definite if $\langle v, v \rangle \ge 0$ for all $v \in V$ and $\langle v, v \rangle > 0$ for all $v \ne O$
- The dot product in $V = \mathbb{R}^n$ is a positive definite scalar product.
- $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$ is a positive definite scalar product in the space of continuous real-valued functions on the interval [0, 1].
- Let V be a vector space over R, with a positive definite scalar product denoted by \langle , \rangle . Let W be a subspace. Then W has a scalar product defined by the same rule defining the scalar product in V.

- Norm. $\|v\| = \sqrt{\langle v, v \rangle}$
- $\sqrt{\bullet} \|cv\| = |c|\|v\|$. Z Fey homogeneous
- - dist(v, w) = ||v w||.
 - v is called a unit vector if ||v|| = 1. For any $0 \neq v \in V$, v/||v|| is a unit vector.
 - The Pythagoras theorem. If $v \perp w$, then $||v + w||^2 = ||v||^2 + ||w||^2$.
 - The parallelogram law. $\forall v, w, \|v + w\|^2 + \|v w\|^2 = 2\|v\|^2 + 2\|w\|^2$.
 - Let $w \in V$ and $||w|| \neq 0$. For any v there exists a unique number c such that $v cw \perp w$.
 - $c = \frac{\langle v, w \rangle}{\langle w, w \rangle} (= \langle v, w \rangle \text{ when } ||w|| = 1)$, the component of v along w.
 - We call cw the projection of v along w.

- Schwarz inequality. $|\langle v, w \rangle| \le ||v|| ||w||$.
- Triangle inequality. $||v + w|| \le ||v|| + ||w||$.
 - Let v_1, \ldots, v_n be non-zero elements of V which are mutually perpendicular. Let c_i be the component of v along v_i . Then

$$v - c_1 v_1 - \cdots - c_n v_n \perp v_i, \forall i = 1, \ldots, n.$$

- $||v c_1v_1 \cdots c_nv_n|| \le ||v a_1v_1 \cdots a_nv_n||, \forall a_i \in R.$
- Bessel inequality. $\sum_{i=1}^{n} c_i^2 \leq ||v||^2$.

(a.c.) 1- N= V- C, Vi- ----- C, V, Vi> - C, Vi, Vi> - C, Vi, Vi> - C, Vi, Vi> - C, Vi, Vi>

- Let V be a vector space with a positive definite scalar product throughout this section. A basis $\{v_1, \ldots, v_n\}$ of V is said to be orthogonal if its elements are mutually perpendicular.
- · Orthonormal basis. リグリニー おれる心な、これは言言
- Gram-Schmidt orthogonalization (orthonormalization) process.
- **Theorem 2.1.** Let V be a finite dimensional vector space, with a positive definite scalar product. Let W be a subspace of V, and let $\{w_1, \ldots, w_m\}$ be an orthogonal basis of W If $W \neq V$, then there exist elements w_{m+1}, \ldots, w_n of V such that w_1, \ldots, w_n is an orthogonal basis of V.
- Corollary 2.2. Let V be a finite dimensional vector space with a positive definite scalar product. Assume that $V \neq \{O\}$. Then V has an orthogonal basis.

• **Theorem 2.3.** Let V be a vector space over R with a positive definite scalar product, of dimension n. Let W be a subspace of V of dimension r. Let W^{\perp} be the subspace of V consisting of all elements which are perpendicular to W. Then V is the direct sum of W and W^{\perp} , and W^{\perp} has dimension n-r. In other words,

$$\dim W + \dim W^{\perp} = \dim V.$$

- W^{\perp} is called the orthogonal complement of W.
- Let V be a finite dimensional vector space over R, with a positive definite scalar product. Let $\{e_1, \ldots, e_n\}$ be an orthonormal basis.

$$v = x_1 e_1 + \dots + x_n e_n$$
 and $w = y_1 e_1 + \dots + y_n e_n$.

Then $\langle v, w \rangle = x_1 y_1 + \dots + x_n y_n$.

• Homework: Ch. V, §2, 0, 2, 3, 5.

$$\begin{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ 2 \end{pmatrix} = 2$$

LINEAR ALGEBRA II

Ch. V SCALAR PRODUCTS AND ORTHOGONALITY

- Let *V* be a vector space over a field *K*.
- A scalar product on V is an association which to any pair of elements v, w of V associates a scalar, denoted by $\langle v, w \rangle$, or also $v \cdot w$, satisfying: $\forall u$, $v, w \in V$ and $x \in K$,

SP 1.
$$\langle v, w \rangle = \langle w, v \rangle$$
.

SP 2.
$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$$
.

SP 3.
$$\langle xu, v \rangle = x \langle u, v \rangle$$
 and $\langle u, xv \rangle = x \langle u, v \rangle$.

• The scalar product is said to be non-degenerate if in addition it also satisfies the condition: if $v \in V$, and $\langle v, w \rangle = 0 \ \forall w \in V$, then v = O.

- The dot product in $V = K^n$ is a non-degenerate scalar product.
- $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$ is a non-degenerate scalar product in the space of continuous real-valued functions on the interval [0, 1].
- v, w are said to be orthogonal or perpendicular, and write $v \perp w$, if $\langle v, w \rangle = 0$.
- Let S be a subset of V, then $S^{\perp} = \{v \in V | \langle v, s \rangle = 0 \text{ for all } s \in S\}$ is a subspace of V, called the orthogonal space of S.
- $s \in S^{\perp} \Leftrightarrow s \perp S$.
- Let U be the subspace generated by S. Then $S^{\perp} = U^{\perp}$.

• A system of linear equations:

$$a_{11}x_1 + \dots + a_{1n}x_n = 0$$

$$\dots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = 0$$

- \bullet AX = O.
- $\bullet \ A_1 \cdot X = 0, \ldots, A_m \cdot X = 0.$
- $W = \operatorname{span}\{A_1, \ldots, A_m\}.$
- The solution set U of AX = O is a subspace of K^n and $U = \{A_1, \dots, A_m\}^{\perp} = W^{\perp}$.

- Let V be a vector space over the field K, with a scalar product.
- Let $\{v_1, \ldots, v_n\}$ be a basis of V. We shall say that it is an orthogonal basis, if $\langle v_i, v_j \rangle = 0$ for all $i \neq j$.
- We shall show later that if V is a finite dimensional vector space, with a scalar product, then there always exists an orthogonal basis.
- We shall first discuss important special cases over the real and complex numbers.

The Real Positive Definite Case

- Let *V* be a vector space over *R*, with a scalar product. We shall call this scalar product positive definite if $\langle v, v \rangle \ge 0$ for all $v \in V$ and $\langle v, v \rangle > 0$ for all $v \ne O$
- The dot product in $V = \mathbb{R}^n$ is a positive definite scalar product.
- $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$ is a positive definite scalar product in the space of continuous real-valued functions on the interval [0, 1].
- Let V be a vector space over R, with a positive definite scalar product denoted by \langle , \rangle . Let W be a subspace. Then W has a scalar product defined by the same rule defining the scalar product in V.

- Norm. $||v|| = \sqrt{\langle v, v \rangle}$
- ||cv|| = |c|||v||.
- $||v|| \ge 0$ for all $v \in V$ and ||v|| > 0 for all $v \ne O$
- dist(v, w) = ||v w||.

Pythagoras, 580 BC-500 BC.

- v is called a unit vector if ||v|| = 1. For any $0 \neq v \in V$, v/||v|| is a unit vector.
- The Pythagoras theorem. If $v \perp w$, then $||v + w||^2 = ||v||^2 + ||w||^2$.
- The parallelogram law. $\forall v, w, \|v + w\|^2 + \|v w\|^2 = 2\|v\|^2 + 2\|w\|^2$.
- Let $w \in V$ and $||w|| \neq 0$. For any v there exists a unique number c such that $v cw \perp w$.
- $c = \frac{\langle v, w \rangle}{\langle w, w \rangle} (= \langle v, w \rangle \text{ when } ||w|| = 1)$, the component of v along w.
- We call cw the projection of v along w.

- Schwarz inequality. $|\langle v, w \rangle| \le ||v|| ||w||$.
- Triangle inequality. $||v + w|| \le ||v|| + ||w||$.

H. A. Schwarz, 1843-1921.

• Let v_1, \ldots, v_n be non-zero elements of V which are mutually perpendicular. Let c_i be the component of v along v_i . Then

$$v-c_1v_1-\cdots-c_nv_n\perp v_i, \forall i=1,\ldots,n.$$

• $\|v - c_1v_1 - \cdots - c_nv_n\| \le \|v - a_1v_1 - \cdots - a_nv_n\|$.

• Bessel inequality. $\sum_{i=1}^{n} c_i^2 \leq ||v||^2$.

F. W. Bessel, 1784-1846.

- Let V be a vector space with a positive definite scalar product throughout this section. A basis $\{v_1, \dots, v_n\}$ of V is said to be orthogonal if its elements are mutually perpendicular.
- Orthonormal basis.
- Gram-Schmidt orthogonalization (orthonormalization) process.

• **Theorem 2.1.** Let V be a finite dimensional vector space, with a positive definite scalar product. Let W be a subspace of V, and let $\{w_1, \ldots, w_m\}$ be an orthogonal basis of W If $W \neq V$, then there exist elements w_{m+1}, \ldots, w_n of V such that w_1, \ldots, w_n is an orthogonal basis of V.

• Corollary 2.2. Let V be a finite dimensional vector space with a positive definite scalar product. Assume that $V \neq \{O\}$. Then V has an orthogonal basis.

• **Theorem 2.3.** Let V be a vector space over R with a positive definite scalar product, of dimension n. Let W be a subspace of V of dimension r. Let W^{\perp} be the subspace of V consisting of all elements which are perpendicular to W. Then V is the direct sum of W and W^{\perp} , and W^{\perp} has dimension n-r. In other words,

 $\dim W + \dim W^{\perp} = \dim V.$ Proof. If W= 803, then w= V. If W= V, then W= 803 => The results hold. If W=V, and W= EOJ, bet twin, word be a orthonormal basis of W. By Th 21, 7 cher, --, Un, s.t. 2 W. --, Wr, Urr, Un's is anorthonormal basis of V. Let uE W, Then I dy, ..., of ER, Sit. o U= oh withthe wrtdom Une + - + dn Un の一人り、から> = からくい、いかっ = なら M = Day Urn + ... + Da Un

- W^{\perp} is called the orthogonal complement of W.
- Let V be a finite dimensional vector space over R, with a positive definite scalar product. Let $\{e_1, \ldots, e_n\}$ be an orthonormal basis.

$$v = x_1 e_1 + \dots + x_n e_n$$
 and $w = y_1 e_1 + \dots + y_n e_n$.

Then $\langle v, w \rangle = x_1 y_1 + \dots + x_n y_n$.

• Homework: Ch. V, §2, 0, 2, 3, 5.

Hermitian Products on VSs Over C

the Party

Charles Hermite, 1822-1901.

- The dot product of the nonzero vector (i) $\in C^1$ with itself is -1!
- The dot product of the nonzero vector $(1,i) \in \mathbb{C}^2$ with itself is 0!
- Dot product is not a good scalar product.

• Let V be a vector space over the complex numbers. A hermitian product on V is a rule which to any pair of elements v, w of V associates a complex number, denoted again by $\langle v, w \rangle$, satisfying the following properties:

HP 1. We have
$$\langle v, w \rangle = \overline{\langle w, v \rangle}$$
 for all $v, w \in V$.

HP 2. If u, v, w are elements of V, then

$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle.$$

HP 3. If $\alpha \in C$, $u, v \in V$, then

$$\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$$
 and $\langle u, \alpha v \rangle = \bar{\alpha} \langle u, v \rangle$.

• The Hermitian product is said to be positive definite, if $\langle v, v \rangle \ge 0$ for all $v \in V$, and $\langle v, v \rangle > 0$ for all $0 \ne v \in V$.

- Orthogonal , perpendicular, orthogonal basis, orthogonal complement can be defined same as before.
- For $X = {}^{\mathbf{t}}(x_1, \dots, x_n), Y = {}^{\mathbf{t}}(y_1, \dots, y_n) \in \mathbb{C}^n$, define $\langle X, Y \rangle = x_1 \bar{y}_1 + \dots + x_n \bar{y}_n$.

It is a positive definite Hermitian product.

- The Hermitian product of the nonzero vector (i) $\in C^1$ with itself is 1!
- The Hermitian product of the nonzero vector $(1, i) \in \mathbb{C}^2$ with itself is 2!

• Let V be the space of continuous complex-valued functions on the interval $[-\pi, \pi]$. If $f, g \in V$, we define

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt.$$

- It is a positive definite Hermitian product.
- Let $f_n(t) = e^{int}$.
 - $\langle f_n, f_m \rangle = 0$ for $m \neq n$;
 - $\langle f_n, f_m \rangle = 2\pi$;
- The Fourier coefficients of f w.r.t. f_n is

$$\frac{\langle f, f_n \rangle}{\langle f_n, f_n \rangle} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt.$$

• **Theorem 2.4.** Let V be a finite dimensional vector space over C, with a positive definite Hermitian product. Let W be a subspace of V, and let $\{w_1, \ldots, w_m\}$ be an orthogonal basis of W If $W \neq V$, then there exist elements w_{m+1}, \ldots, w_n of V such that w_1, \ldots, w_n is an orthogonal basis of V.

• Corollary 2.5. Let V be a finite dimensional vector space over C with a positive definite scalar product. Assume that $V \neq \{O\}$. Then V has an orthogonal basis.

- Let *V* be a vector space over *C*, with a positive definite hermitian product.
- Norm. $||v|| = \sqrt{\langle v, v \rangle}$
- Schwarz inequality. $|\langle v, w \rangle| \le ||v|| ||w||$.
- $||v|| \ge 0$ for all $v \in V$ and ||v|| = 0 iff v = O
- ||cv|| = |c|||v|| for all $c \in C$.

$$||V+w||^2 = \langle v+w, v+w \rangle = \langle v, v \rangle + \langle v, w \rangle + \langle v, v \rangle + \langle v, w \rangle$$

$$= ||v||^2 + ||w||^2 + 2 ||v||||w|||$$

$$= ||v|| + ||w|||^2$$

$$= ||v|| + ||w|||^2$$

$$\leq ||v|| + ||v|||^2$$

$$\leq ||v|| + ||v|||^2$$

$$\leq ||v|| + ||v|||^2$$

$$\leq ||v|| + ||v|||^2$$

- The Pythagoras theorem.
- The parallelogram law.
- A unit vector, orthonormal, orthonormal basis.
- The component of v along w, the projection of v along w, the projection of v onto span $\{v_1,\ldots,v_n\}$.
- Bessel inequality.
- Let V be a finite dimensional vector space over C, with a positive definite Hermitian product. Let $\{e_1, \ldots, e_n\}$ be an orthonormal basis.

$$v = x_1 e_1 + \dots + x_n e_n$$
 and $w = y_1 e_1 + \dots + y_n e_n$.

Then $\langle v, w \rangle = x_1 \overline{y}_1 + \dots + x_n \overline{y}_n$.

• Theorem 2.6. and 2.7. Let V be a vector space over R with a positive definite scalar product, or a vector space over C with a positive definite scalar product. Assume that V has finite dimension n. Let W be a subspace of V of dimension r. Let W^{\perp} be the subspace of V consisting of all elements which are perpendicular to W. Then V is the direct sum of W and W^{\perp} , and W^{\perp} has dimension n - r. In other words,

 $\dim W + \dim W^{\perp} = \dim V$.

• Homework: V, §2, 6, 8, 9

• A system of linear equations:

$$a_{11}x_1 + \dots + a_{1n}x_n = 0$$

$$\dots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = 0$$

- $\bullet \ x_1A^1+\cdots+x_nA^n=O.$
- $AX = O, X \in \text{Ker } A$.
- $A_1 \cdot X = 0, \ldots, A_m \cdot X = 0.$
- The solution set U of AX = O is a subspace of K^n and $U = \{A_1, \dots, A_m\}^{\perp} = W^{\perp}$. Where, $W = \text{span}\{A_1, \dots, A_m\}$.

• A system of linear equations:

$$a_{11}x_1 + \dots + a_{1n}x_n = 0$$

$$\dots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = 0$$

- $\bullet \ x_1A^1 + \dots + x_nA^n = O.$
- $AX = O, X \in \text{Ker } A$.
- $A_1 \cdot X = 0, \ldots, A_m \cdot X = 0.$
- The solution set U of AX = O is a subspace of K^n and $U = \{A_1, \dots, A_m\}^{\perp} = W^{\perp}$. Where, $W = \text{span}\{A_1, \dots, A_m\}$.
- The row rank of A: the dimension of W.
- The column rank of A: dim span $\{A^1, \dots, A^m\}$ =dim Im L_A .

- Even if the scalar product is not positive definite, the following theorem (Th. 2.3, for a VS over *R* with a positive definite scalar product) is true (§6, Th. 6.4).
- Theorem 3.1. Let W be a subspace of K^n . Then

$$\dim W + \dim W^{\perp} = n$$
.

- **Theorem 3.2.** Let $A = (a_{ij})$ be an $m \times n$ matrix. Then the row rank and the column rank of A are equal to the same number r. Furthermore, n r is the dimension of the space of solutions of the system of linear equations AX = O.
- The rank of $A \Rightarrow$ determinant

