Chapitre 35

Intégrales sur un segment

Intégrale d'une fonction continue sur un segment 1

Ensemble $\mathcal{CM}(I,\mathbb{K})$ 1.1

Définition 1: Fonction continue par morceaux sur un intervalle.

Soit I un intervalle et $f: I \to \mathbb{K}$. On dit que f est **continue par morceaux** sur I si pour tout segment $[a,b] \subset I$, $f_{|[a,b]}$ est continue par morceaux sur [a,b].

On note $\mathcal{CM}(I,\mathbb{K})$ l'ensemble des fonctions continues par morceaux sur I.

Exemple 2: $x \mapsto \lfloor \frac{1}{x} \rfloor$

La fonction $x \mapsto \lfloor \frac{1}{x} \rfloor$ est continue par morceaux sur \mathbb{R}_+^* . Expliquer.

Preuve:

Soit $[a,b] \subset \mathbb{R}_+^*$. Notons $S = \{\frac{1}{n} \mid n \in \mathbb{N}^*\} \cap]a,b[$. Cet ensemble est finito : pour $n \in \mathbb{N}^*$, $a < \frac{1}{n} < b \iff \frac{1}{b} < n < \frac{1}{a} \iff \lfloor \frac{1}{b} \rfloor + 1 \le n \le \lfloor \frac{1}{a} \rfloor$.

S contient donc au plus $\lfloor \frac{1}{a} \rfloor - \lfloor \frac{1}{b} \rfloor$ points.

Notons n = |S| puis $S = \{a_1, ..., a_n\}$, avec $a_1 < a_2 < ... < a_n$.

Posons $\sigma = (a_0, a_1, ..., a_n, a_{n+1})$ avec $a_0 := a$ et $a_{n+1} := b$.

Soit $i \in [0,], f_{|a_i,a_{i+1}|}$ est constante, elle y est donc continue et prolongeable par continuité aux bords. Ainsi, $f \in \mathcal{CM}(\mathbb{R}_+^*, \mathbb{R})$.

Remarque: En posant f(0) := 0, ça ne marche plus car $f_{|[0,b]}$ n'est pas cpm sur [0,b].

Intégrale d'une fonction continue par morceaux entre deux bornes

Définition 3

Soit $f \in \mathcal{CM}(I,\mathbb{R})$ et $a,b \in I$. On note $\int_a^b f(x) dx$, ou plus simplement $\int_a^b f$ le réel défini par :

$$\int_{a}^{b} f(x) dx := \int_{a}^{a} a = \int_{a}^{b} f(x) dx := 0, \quad \text{et} \quad \int_{a}^{b} f(x) dx := -\int_{[b,a]} f \text{ si } a > b.$$

Proposition 4

Soit $f \in \mathcal{CM}(I,\mathbb{C})$.

Les fonctions $x \mapsto \text{Re}(f(x))$ et $x \mapsto \text{Im}(f(x))$ sont continues par morceaux sur I.

Pour $a, b \in I$, on pose :

$$\int_{a}^{b} f(x) dx := \int_{a}^{b} \operatorname{Re}(f(x)) dx + i \int_{a}^{b} \operatorname{Im}(f(x)) dx.$$

Ainsi, la partie réelle de l'intégrale est l'intégrale de la partie réelle, idem pour la partie imaginaire.

Preuve:

Pour prouver la continuité par morceaux de Re(f) et Im(f) à partir de celle de f, on introduit une subdivision adaptée à $f \sigma = (a_0, ..., a_n)$ et on prouve qu'elle est adaptée à sa partie réelle et à sa partie imaginaire. On peut utiliser:

$$\forall x \in I \ \mathrm{Re}(f(x)) = \frac{1}{2}(f(x) + \overline{f(x)}) \ \mathrm{et} \ \mathrm{Im}(f(x)) = \frac{1}{2i}(f(x) - \overline{f(x)}).$$

En effet, ces relations donnent que pour $i \in [0, n-1]$, les restrictions de Re(f) et Im(f) à a_i, a_{i+1} y sont continues, et prolongeables par continuité sur les bords.

Relation de Chasles.

Proposition 5: Relation de Chasles

Soient $f \in \mathcal{CM}(I, \mathbb{K})$ et $a, b, c \in I$.

$$\int_a^b f = \int_a^c f + \int_c^b f.$$

Preuve:

La relation a été établie dans le cours de construction pour une fonction à valeurs réelles dans le cas où a < c < b.

• cas a < b < c:

$$\int_{a}^{c} f + \int_{c}^{b} f = \int_{[a,c]} f - \int_{[b,c]} f = \int_{[a,b]} f + \int_{[b,c]} f - \int_{[b,c]} f = \int_{[a,b]} f = \int_{a}^{b} f.$$

• cas b=c < a: D'une part $\int_a^b f = -\int_{[b,a]} f$, d'autre part : $\int_a^c f + \int_c^b f = -\int_c^a f = -\int_[b,a] f$.

Les autres cas sont similaires.

1.4 Linéarité.

Proposition 6: Linéarité de l'intégrale.

Soient $f, g \in \mathcal{CM}(I, \mathbb{K})$, et $a, b \in I$. Pour tous scalaires $\lambda, \mu \in \mathbb{K}$,

$$\int_{a}^{b} (\lambda f + \mu g) = \lambda \int_{a}^{b} f + \mu \int_{a}^{b} g.$$

Preuve:

On l'a prouvé pour a < b et f, g à valeurs réelles. Il faut le vérifier dans les autres cas.

1.5 Intégrales et inégalités.

Proposition 7: Positivité

Soit $f \in \mathcal{CM}([a,b],\mathbb{R})$ où le segment [a,b] est tel que $|a \leq b|$.

Si f est positive sur [a, b], alors l'intégrale $\int_a^b f(x) dx$ est un nombre positif.

Si f est négative sur [a, b], alors cette intégrale est un nombre négatif.

Preuve:

On l'a déjà prouvé.

Proposition 8: Intégrale nulle d'une fonction positive et continue

Soit $f : [a, b] \to \mathbb{R}$, avec [a, b], continue et positive sur [a, b].

Si $\int_a^b f(x) dx = 0$, alors f est nulle sur [a, b].

Par contraposée, si $\exists c \in [a,b] \ f(c) > 0$, alors $\int_a^b f > 0$.

Preuve:

Il y a aussi la preuve suivante dans L'Exercice 79 de la banque CCINP :

On suppose f continue et positive sur [a,b] et $\int_a^b f = 0$.

Posons $F: x \mapsto \int_a^x f(t) dt$ définie sur [a,b], f étant continue sur [a,b], F est une primitive de f sur [a, b] d'après le TFA (prouvé plus loin).

Donc $\forall x \in [a, b], \ F'(x) = f(x) \ge 0$, ainsi F est croissante sur [a, b].

Or, $F(b) = \int_a^b f = 0$, de plus, $F(a) = \int_a^a f = 0$.

Par croissance, $\forall x \in [a, b], \ F(a) \le F(x) \le F(b) \ \text{donc} \ F(x) = 0.$

Donc F est constante sur [a, b], on a a < b donc $\forall x \in [a, b], F'(x) = f(x) = 0$.

Remarque: Pourquoi continue et pas continue par morceaux?

Soit
$$f: \begin{cases} [0,1] \to \mathbb{R} \\ x \mapsto \begin{cases} 0 \text{ si } x \neq \frac{1}{2} \\ 1 \text{ si } x = \frac{1}{2} \end{cases}$$
, son intégrale est nulle, mais f ne l'est pas.