SEQUENTIAL LOGIC

FLIP FLOP D- FLIP FLOP JK- FLIP FLOP T- FLIP FLOP

DIGITAL LOGIC DESIGN

Iqra Chaudhary (Lecturer CS dept. NUML)

★ Controlled latches are level-triggered

★ Flip-Flops are edge-triggered

D Latch (D = Data)....(Repeat)

★ Flip flop are constructed by combining two D Latches with a clock signal *Timing Diagram*

 $C = \frac{\overline{S}}{\overline{R}}$

C D	Q
0 x	Q_0
1 0	0
1 1	1

No change Reset Set

★ Master-Slave *D* **Flip-Flop**

$\star JK$ Flip-Flop

$$D=Q(t+1)=JQ'+K'Q$$

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
dhary(I	ecturer	CS COLUMN

Iqra chaudhary

★ T Flip-Flop

$$D = T \oplus Q$$

T	Q(t+1)
0	Q(t)
1	Q'(t)

Flip-Flop Characteristic Tables

D	Q(t+1)
0	0
1	1

Reset Set

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q'(t)

No change

Reset

Set

Toggle

T	Q(t+1)
0	Q(t)
1	Q'(t)

No change Toggle

Iqra chaudhary (Lecturer CS dept. NUML)

Flip-Flop Characteristic Equations

D	Q(t+1)
0	0
1	1

$$Q(t+1) = D$$

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q'(t)

$$Q(t+1) = JQ' + K'Q$$

T	Q(t+1)
0	Q(t)
1	Q'(t)

$$Q(t+1) = T \oplus Q$$

Iqra chaudhary(Lecturer CS dept. NUML)