Classical and quantum 3 and 4-sieves to solve SVP with low memory

Johanna Loyer

Joint work with André Chailloux

Lattice and SVP

Lattice

Given a basis $B = (\vec{b_1}, ..., \vec{b_d})$, the lattice \mathcal{L} generated by B is the set of all integer linear combinations of its basis vectors: $\mathcal{L}(B) = \left\{ \sum_{i=1}^d z_i \vec{b_i}, \ z_i \in \mathbb{Z} \right\}$.

Shortest Vector Problem (SVP)

Given a lattice \mathcal{L} , find the shortest non-zero vector $\vec{v} \in \mathcal{L}$.

Motivation to solve SVP

Cryptography

- NP-hard problem, hard in average, believed to be quantum-resistant.
- Problems derived from SVP: LWE, SIS, NTRU...
- Cryptosystems based on them: Kyber, Dilithium, Falcon (NIST standardization), FHE

Motivation to solve SVP

Cryptography

- NP-hard problem, hard in average, believed to be quantum-resistant.
- Problems derived from SVP: LWE, SIS, NTRU...
- Cryptosystems based on them: Kyber, Dilithium, Falcon (NIST standardization), FHE

Cryptanalysis

- Broken if we can find a reduced basis of the lattice.
- BKZ algorithm returns a reduced basis using an SVP-solver.
 - ⇒ The security of these cryptosystems directly relies on the complexity of solving SVP.

Overview

- 1. Lattice sieving Configuration problem
- 2. Filtering
 New Random Product Code for filtering
- 3. Framework to solve SVP
- 4. Trade-offs for classic and quantum k-sieves

Heuristic: Lattice vectors act as random vectors.

- Implies that vectors of norm at most R are w.h.p. of norm very close to R.
- Validated by experiments [NV08] for long vectors.

Heuristic: Lattice vectors act as random vectors.

- Implies that vectors of norm at most R are w.h.p. of norm very close to R.
- Validated by experiments [NV08] for long vectors.

Sieving step

Input: list L of N lattice vectors of norm at most R ; $\gamma < 1$.

Output: list L_{out} of N lattice vectors of norm at most $\gamma R < R$.

Heuristic: Lattice vectors act as random vectors.

- Implies that vectors of norm at most R are w.h.p. of norm very close to R.
- Validated by experiments [NV08] for long vectors.

Sieving step

Input: list *L* of *N* lattice vectors of norm at most *R* ; $\gamma < 1$.

Output: list L_{out} of N lattice vectors of norm at most $\gamma R < R$.

Initialization:

Generate N lattice vectors of norm $\leq R$ (Klein's algorithm)

Heuristic: Lattice vectors act as random vectors.

- Implies that vectors of norm at most R are w.h.p. of norm very close to R.
- Validated by experiments [NV08] for long vectors.

Sieving step

Input: list *L* of *N* lattice vectors of norm at most *R* ; $\gamma < 1$.

Output: list L_{out} of N lattice vectors of norm at most $\gamma R < R$.

After 1 iteration:

vectors of norm at most γR

Heuristic: Lattice vectors act as random vectors.

- Implies that vectors of norm at most R are w.h.p. of norm very close to R.
- Validated by experiments [NV08] for long vectors.

Sieving step

Input: list *L* of *N* lattice vectors of norm at most *R* ; $\gamma < 1$.

Output: list L_{out} of N lattice vectors of norm at most $\gamma R < R$.

After 2 iterations:

vectors of norm at most $\gamma^2 R$

Heuristic: Lattice vectors act as random vectors.

- Implies that vectors of norm at most R are w.h.p. of norm very close to R.
- Validated by experiments [NV08] for long vectors.

Sieving step

Input: list *L* of *N* lattice vectors of norm at most *R* ; $\gamma < 1$.

Output: list L_{out} of N lattice vectors of norm at most $\gamma R < R$.

After poly(d) iterations:

norm at most $\gamma^{\text{poly}(d)}R$.

Short vector found!

Nguyen-Vidick sieve [NV08] (2-sieve)

for
$$(\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2) \in L \times L$$
:
if $\|\vec{\mathbf{x}}_1 - \vec{\mathbf{x}}_2\| \leqslant \gamma R$:
add $\vec{\mathbf{x}}_1 - \vec{\mathbf{x}}_2$ to L_{out}

Sphere of dimension *d* and radius *R*:

Nguyen-Vidick sieve [NV08] (2-sieve)

for $(\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2) \in L \times L$: if $\|\vec{\mathbf{x}}_1 - \vec{\mathbf{x}}_2\| \leqslant \gamma R$: add $\vec{\mathbf{x}}_1 - \vec{\mathbf{x}}_2$ to L_{out}

Sphere of dimension *d* and radius *R*:

If $ec{\mathbf{x}}_1, ec{\mathbf{x}}_2 \in \mathcal{L}$ then $ec{\mathbf{x}}_1 - ec{\mathbf{x}}_2 \in \mathcal{L}$.

Nguyen-Vidick sieve [NV08] (2-sieve)

for $(\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2) \in L \times L$: if $||\vec{\mathbf{x}}_1 - \vec{\mathbf{x}}_2|| \leq \gamma R$: add $\vec{\mathbf{x}}_1 - \vec{\mathbf{x}}_2$ to L_{out}

Sphere of dimension *d* and radius *R*:

If $\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2 \in \mathcal{L}$ then $\vec{\mathbf{x}}_1 - \vec{\mathbf{x}}_2 \in \mathcal{L}$.

Condition of reduction:

For $\gamma=1$, $\|\vec{\mathbf{x}}_1\|=\|\vec{\mathbf{x}}_2\|=R$,

$$\|\vec{\mathbf{x}}_1 - \vec{\mathbf{x}}_2\| \leqslant \gamma R$$

 $\Leftrightarrow \mathsf{Angle}(\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2) \leqslant \frac{\pi}{3}$

Nguyen-Vidick sieve [NV08] (2-sieve)

for $(\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2) \in L \times L$: if $||\vec{\mathbf{x}}_1 - \vec{\mathbf{x}}_2|| \leq \gamma R$: add $\vec{\mathbf{x}}_1 - \vec{\mathbf{x}}_2$ to L_{out}

Sphere of dimension *d* and radius *R*:

If $\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2 \in \mathcal{L}$ then $\vec{\mathbf{x}}_1 - \vec{\mathbf{x}}_2 \in \mathcal{L}$.

Condition of reduction:

For $\gamma=1$, $\|\vec{\mathbf{x}}_1\|=\|\vec{\mathbf{x}}_2\|=R$,

$$\begin{aligned} &\|\vec{\mathbf{x}}_1 - \vec{\mathbf{x}}_2\| \leqslant \gamma R \\ \Leftrightarrow & \mathsf{Angle}(\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2) \leqslant \frac{\pi}{3} \\ \Leftrightarrow & \frac{1}{R^2} \langle \vec{\mathbf{x}}_1 | \vec{\mathbf{x}}_2 \rangle \geq \frac{1}{2}. \end{aligned}$$

3-sieve

for
$$(\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2, \vec{\mathbf{x}}_3) \in L^3$$
:
if $||\vec{\mathbf{x}}_1 + \vec{\mathbf{x}}_2 + \vec{\mathbf{x}}_3|| \leqslant \gamma R$:
add $\vec{\mathbf{x}}_1 + \vec{\mathbf{x}}_2 + \vec{\mathbf{x}}_3$ to L_{out}

4-sieve

for
$$(\vec{\mathbf{x}}_1, \vec{\mathbf{x}}_2, \vec{\mathbf{x}}_3, \vec{\mathbf{x}}_4) \in L^4$$

if $\|\vec{\mathbf{x}}_1 + \vec{\mathbf{x}}_2 + \vec{\mathbf{x}}_3 + \vec{\mathbf{x}}_4\| \leqslant \gamma R$:
add $\vec{\mathbf{x}}_1 + \vec{\mathbf{x}}_2 + \vec{\mathbf{x}}_3 + \vec{\mathbf{x}}_4$ to L_{out}

k-sieve

$$\begin{array}{l} \text{for } (\vec{\mathbf{x}}_1,...,\vec{\mathbf{x}}_k) \in L^k \\ \text{if } \|\vec{\mathbf{x}}_1+...+\vec{\mathbf{x}}_k\| \leqslant \gamma R: \\ \text{add } \vec{\mathbf{x}}_1+...+\vec{\mathbf{x}}_k \text{ to } L_{out} \end{array}$$

Minimal size of the list *L*

Sieving step

Input: List of *N* lattice vectors

Output: List of *N* reduced lattice vectors

 \Rightarrow We need that there exists N reduced vectors calculable from the N input vectors.

Notation: $2^{xd+o(d)}$

	Memory	Time (naive)
k	Ν	N^k
2	0.208	0.415
3	0.189	0.566
4	0.173	0.690
5	0.159	0.794
6	0.147	0.884

Reduction to the configuration problem

Configuration

k-tuple $(\vec{\mathbf{x}}_1,...,\vec{\mathbf{x}}_k)$ satisfies configuration $C=(C_{ij})_{i,j}\in\mathbb{R}^{k\times k}$ iff. $\langle \vec{\mathbf{x}}_i|\vec{\mathbf{x}}_j\rangle\leq C_{ij}$ (with $C_{ij}\leq 0$).

Configuration

 $\textit{k-tuple } (\vec{\mathbf{x}}_1,...,\vec{\mathbf{x}}_k) \text{ satisfies configuration } \textit{C} = (\textit{C}_{\textit{ij}})_{\textit{i},\textit{j}} \in \mathbb{R}^{k \times k} \text{ iff. } \langle \vec{\mathbf{x}}_{\textit{i}} | \vec{\mathbf{x}}_{\textit{j}} \rangle \leq \textit{C}_{\textit{ij}} \text{ (with } \textit{C}_{\textit{ij}} \leq 0).$

Valid configuration $C: (\vec{\mathbf{x}}_1, ..., \vec{\mathbf{x}}_k)$ satisfies $C \Rightarrow ||\vec{\mathbf{x}}_1 + ... + \vec{\mathbf{x}}_k|| \leq \gamma R$

Configuration problem

Input: List L, a valid configuration C **Output**: Tuples $(\vec{\mathbf{x}}_1,...,\vec{\mathbf{x}}_k)$ for $\vec{\mathbf{x}}_i \in L$ satisfying configuration C

Configuration problem

Input: List L, a valid configuration C **Output**: Tuples $(\vec{\mathbf{x}}_1,...,\vec{\mathbf{x}}_k)$ for $\vec{\mathbf{x}}_i \in L$ satisfying configuration C

k-sieve problem

 \Rightarrow

Input: List *L*

Output: Vectors $\sum_{i=1}^{k} \vec{\mathbf{x}}_i$ for $\vec{\mathbf{x}}_i \in L$ of norm $\leq \gamma R$.

Configuration problem

Input: Lists $L_1, ..., L_k$, a valid configuration C **Output**: Tuples $(\vec{\mathbf{x}}_1, ..., \vec{\mathbf{x}}_k) \in L_1 \times ... \times L_k$ satisfying configuration C

Input: List *L*

Output: Vectors $\sum_{i=1}^{k} \vec{\mathbf{x}}_i$ for $\vec{\mathbf{x}}_i \in L$ of norm $\leq \gamma R$.

Balanced configuration

- Fix $C_{ij} = -1/k$ for $i \neq j$
- The most common configuration for reducing k-tuples
 - \Rightarrow Minimizes the memory |L|.

Balanced configuration

- Fix $C_{ij} = -1/k$ for $i \neq j$
- The most common configuration for reducing k-tuples
 ⇒ Minimizes the memory |L|.

Any configuration

- Only constraint: $\|\vec{\mathbf{x}}_1 + ... + \vec{\mathbf{x}}_k\| \leq \gamma R$
- Rarer configurations ⇒ Require longer list, but the tuples can be easier to find.

Locality Sensitive Filtering (LSF)

Filtering

Locality Sentitive Filter

A filter $f_{\vec{s},\alpha}$ of center $\vec{s} \in \mathbb{R}^d$ and angle $\alpha \in [0,\pi/2]$ maps a vector \vec{x} to a boolean value:

- 1 if Angle(\vec{x}, \vec{s}) $\leq \alpha$,
- 0 else.

Filtering

Locality Sentitive Filter

A filter $f_{\vec{s},\alpha}$ of center $\vec{s} \in \mathbb{R}^d$ and angle $\alpha \in [0,\pi/2]$ maps a vector \vec{x} to a boolean value:

- 1 if Angle(\vec{x}, \vec{s}) $\leq \alpha$,
- 0 else.

Each filter is associated with a set that we can fill with vectors.

Random Product Code (RPC) of parameters [d, m, B]

$$oldsymbol{\mathfrak{C}} = Q \cdot (oldsymbol{\mathfrak{C}}_1 imes \cdots imes oldsymbol{\mathfrak{C}}_m) \subset \mathbb{R}^d$$

- $\mathfrak{C}_1,...,\mathfrak{C}_m$: sets of B vectors in $\mathbb{R}^{d/m}$ sampled unif. & indep. random of norm $\sqrt{1/m}$
- Q uniformly random rotation over \mathbb{R}^d

Codewords <

- Uniformly distributed over the sphere
- Each codeword = center of one filter
- Decode \vec{x} in efficient time (subexp. or poly)

$$\mathbf{C} = Q \cdot (\mathbf{C}_1 \times \cdots \times \mathbf{C}_m)$$

List Decoding Algorithm for RPC [BDGL16]

Input: Random Product Code \mathbf{C} , vector $\vec{\mathbf{x}}$, angle α

$${f C} = Q \cdot ({f C}_1 imes \cdots imes {f C}_m)$$

List Decoding Algorithm for RPC [BDGL16]

Input: Random Product Code ${\bf C}$, vector $\vec{\bf x}$, angle α

Output: List of all the filters $\mathbf{F} \in \mathbf{C}$ of angle at most α with $\vec{\mathbf{x}}$.

1. Apply Q^{-1} on $\vec{\mathbf{x}}$

$${f C} = Q \cdot ({f C}_1 imes \cdots imes {f C}_m)$$

List Decoding Algorithm for RPC [BDGL16]

Input: Random Product Code \mathbf{C} , vector $\vec{\mathbf{x}}$, angle α

- 1. Apply Q^{-1} on $\vec{\mathbf{x}}$
- 2. Identify with a tuple of m vectors: $Q^{-1}(\vec{\mathbf{x}}) := (\vec{\mathbf{x}}_1 || ... || \vec{\mathbf{x}}_m)$

$${f C} = Q \cdot ({f C}_1 imes \cdots imes {f C}_m)$$

List Decoding Algorithm for RPC [BDGL16]

Input: Random Product Code ${\bf C}$, vector $\vec{{\bf x}}$, angle α

- 1. Apply Q^{-1} on $\vec{\mathbf{x}}$
- 2. Identify with a tuple of m vectors: $Q^{-1}(\vec{\mathbf{x}}) := (\vec{\mathbf{x}}_1 || ... || \vec{\mathbf{x}}_m)$
- 3. Decode each $\vec{\mathbf{x}}_i$ with subcode \mathbf{C}_i (brute force)

$${f C} = Q \cdot ({f C}_1 imes \cdots imes {f C}_m)$$

List Decoding Algorithm for RPC [BDGL16]

Input: Random Product Code ${\bf C}$, vector $\vec{{\bf x}}$, angle α

- 1. Apply Q^{-1} on $\vec{\mathbf{x}}$
- 2. Identify with a tuple of m vectors: $Q^{-1}(\vec{\mathbf{x}}) := (\vec{\mathbf{x}}_1 || ... || \vec{\mathbf{x}}_m)$
- 3. Decode each $\vec{\mathbf{x}}_i$ with subcode \mathbf{C}_i (brute force)
- 4. Assemble the obtained codewords of $\mathfrak{C}_1,...,\mathfrak{C}_m$

$${f C} = Q \cdot ({f C}_1 imes \cdots imes {f C}_m)$$

List Decoding Algorithm for RPC [BDGL16]

Input: Random Product Code \mathbf{C} , vector $\vec{\mathbf{x}}$, angle α

- 1. Apply Q^{-1} on $\vec{\mathbf{x}}$
- 2. Identify with a tuple of m vectors: $Q^{-1}(\vec{\mathbf{x}}) := (\vec{\mathbf{x}}_1 || ... || \vec{\mathbf{x}}_m)$
- 3. Decode each $\vec{\mathbf{x}}_i$ with subcode \mathbf{C}_i (brute force)
- 4. Assemble the obtained codewords of $C_1, ..., C_m$
- 5. Apply rotation Q to recover \mathbb{C} 's codewords = nearest filters of $\vec{\mathbf{x}}$

Filtering - Solving SVP

2-sieve

For each vector: search a reducing vector within the whole list L.

2-sieve with filtering

- 1. Generate the filters \triangleright Sample a RPC
- 2. Add each vector to its filters of angle at most α . \triangleright List decoding algorithm
- 3. For each vector: search a reducing vector within its filters.

Filtering - Solving SVP

2-sieve

For each vector: search a reducing vector within the whole list L.

2-sieve with filtering

- 1. Generate the filters \triangleright Sample a RPC
- 2. Add each vector to its filters of angle at most α . \triangleright List decoding algorithm
- 3. For each vector: search a reducing vector within its filters.
 - Classically or by Grover's search

```
Time complexity (for minimal memory N = 2^{0.208d + o(d)}): Classical 2-sieve: 2^{0.415d + o(d)} Quantum 2-sieve: 2^{0.312d + o(d)} With filtering: 2^{0.292d + o(d)} With filtering: 2^{0.265d + o(d)}
```

New code for filtering

Constraint: $\langle \vec{\mathbf{x}}_1 | \vec{\mathbf{x}}_2 \rangle \geq \frac{1}{2}$

Constraints: $\langle \vec{\mathbf{x}}_i | \vec{\mathbf{x}}_j \rangle \leq C_{ij}$

Constraints: $\langle \vec{\mathbf{x}}_i | \vec{\mathbf{x}}_j \rangle \leq C_{ij}$

Constraints: $\langle \vec{\mathbf{x}}_i | \vec{\mathbf{x}}_j \rangle \leq C_{ij}$

k-Random Product Code

A k-RPC \mathfrak{C} is a code such that

$$\forall \mathsf{F}_1 \in \mathsf{C}, \exists \mathsf{F}_2, ..., \mathsf{F}_k \in \mathsf{C} \text{ st. } \sum_{i=1}^k \mathsf{F}_i = \vec{0}.$$

Framework for the k-sieve

k-sieve framework to solve SVP

Input: list L of N lattice vectors, parameters k, angle α , configuration C

Output: list *L*_{out} of *N* reduced lattice vectors

- 1. Generate the tuple-filters. **Prefilter** L: for each $\vec{x} \in L$, add \vec{x} to its nearest (unique) filter.
- 2. For each tuple-filter: **Find all solutions** satisfying *C* within the tuple-filter.
- 3. Repeat 1. and 2. until $|L_{out}| = N$.

Residual vectors

Search for a tuple $(\vec{\mathbf{x}}_1, ..., \vec{\mathbf{x}}_k)$ satisfying configuration C

 \Leftrightarrow

Search for their residual vectors $(\vec{\mathbf{y}}_1,...,\vec{\mathbf{y}}_k)$ satisfying configuration $C'_{C,\alpha}$

k-sieve framework to solve SVP

Input: list L of N lattice vectors, parameters k, angle α , configuration C

Output: list Lout of N reduced lattice vectors

- 1. Generate the filters. **Prefilter** L: for each $\vec{x} \in L$, add \vec{x} to its nearest (unique) filter.
- 2. For each tuple-filter: **Find all solutions** satisfying *C* within the tuple-filter.
- 3. Repeat 1. and 2. until $|L_{out}| = N$.

k-sieve framework to solve SVP

Input: list L of N lattice vectors, parameters k, angle α , configuration C

Output: list *L*_{out} of *N* reduced lattice vectors

- 1. Generate the filters. **Prefilter** L: for each $\vec{x} \in L$, add \vec{x} to its nearest (unique) filter.
- 2. For each tuple-filter: **Find all solutions** satisfying *C* within the tuple-filter.
- 3. Repeat 1. and 2. until $|L_{out}| = N$.

Subroutine Find All Solutions within a tuple-filter

Input: lists $L_1, ..., L_k$ of residual vectors, configuration C'.

Output: the list of all tuples $(\vec{y}_1, ..., \vec{y}_k) \in L_1 \times ... \times L_k$ that satisfy C'.

k-sieve framework to solve SVP

Input: list L of N lattice vectors, parameters k, angle α , configuration C

Output: list *L*_{out} of *N* reduced lattice vectors

- 1. Generate the filters. **Prefilter** L: for each $\vec{x} \in L$, add \vec{x} to its nearest (unique) filter.
- 2. For each tuple-filter: **Find all solutions** satisfying *C* within the tuple-filter.
- 3. Repeat 1. and 2. until $|L_{out}| = N$.

Subroutine Find All Solutions within a tuple-filter

Input: lists $L_1, ..., L_k$ of residual vectors, configuration C'.

Output: the list of all tuples $(\vec{y}_1, ..., \vec{y}_k) \in L_1 \times ... \times L_k$ that satisfy C'.

$$T(k ext{-sieve}) := \left(|L|_C + \textit{NbFilters}_{lpha} \cdot T(extsf{FAS}_{C'_{C,lpha}})
ight) \cdot \textit{NbRep}_{C,lpha}$$

Subroutine "Find All Solutions"

For k = 2:

• 2-sieve via quantum random walks [CL21, BCSS23]

```
k = 3:
```

- Classic 3-sieve
- Quantum 3-sieve

```
k = 4:
```

- Classic 4-sieve
- Quantum 4-sieve

Configuration problem

Input: Lists L_1 , L_2 , L_3 , configuration C'**Output**: All the tuples $(\vec{y}_1, \vec{y}_2, \vec{y}_3) \in L_1 \times L_2 \times L_3$

satisfying configuration C'

$$(\vec{\mathbf{y}}_1, \vec{\mathbf{y}}_2, \vec{\mathbf{y}}_3)$$
 satisfies C'

$$\Leftrightarrow \left\{ \begin{array}{ll} \langle \vec{\mathbf{y}}_1 | \vec{\mathbf{y}}_2 \rangle & \leq C'_{12} \\ \langle \vec{\mathbf{y}}_1 | \vec{\mathbf{y}}_3 \rangle & \leq C'_{13} \\ \langle \vec{\mathbf{y}}_2 | \vec{\mathbf{y}}_3 \rangle & \leq C'_{23} \end{array} \right.$$

L₁

 L_2

<u>L</u>3

Configuration problem

Input: Lists L_1, L_2, L_3 , configuration C'

Output: All the tuples $(\vec{y}_1, \vec{y}_2, \vec{y}_3) \in L_1 \times L_2 \times L_3$ satisfying configuration C'

 $(\vec{\mathbf{y}}_1, \vec{\mathbf{y}}_2, \vec{\mathbf{y}}_3)$ satisfies C'

$$\Leftrightarrow \begin{cases} \langle \vec{\mathbf{y}}_1 | \vec{\mathbf{y}}_2 \rangle & \leq C'_{12} \\ \langle \vec{\mathbf{y}}_1 | \vec{\mathbf{y}}_3 \rangle & \leq C'_{13} \\ \langle \vec{\mathbf{y}}_2 | \vec{\mathbf{y}}_3 \rangle & \leq C'_{23} \end{cases}$$

Configuration problem

Input: Lists L_1, L_2, L_3 , configuration C'

Output: All the tuples

 $(\vec{\mathbf{y}}_1, \vec{\mathbf{y}}_2, \vec{\mathbf{y}}_3) \in L_1 \times L_2 \times L_3$ satisfying configuration C'

 $(\vec{\mathbf{y}}_1, \vec{\mathbf{y}}_2, \vec{\mathbf{y}}_3)$ satisfies C'

$$\Leftrightarrow \left\{ \begin{array}{ll} \langle \vec{\mathbf{y}}_1 | \vec{\mathbf{y}}_2 \rangle & \leq C'_{12} \\ \langle \vec{\mathbf{y}}_1 | \vec{\mathbf{y}}_3 \rangle & \leq C'_{13} \\ \langle \vec{\mathbf{y}}_2 | \vec{\mathbf{y}}_3 \rangle & \leq C'_{23} \end{array} \right.$$

Configuration problem

Input: Lists L_1, L_2, L_3 , configuration C'

Output: All the tuples $(\vec{y}_1, \vec{y}_2, \vec{y}_3) \in L_1 \times L_2 \times L_3$ satisfying configuration C'

 $(\vec{\mathbf{y}}_1, \vec{\mathbf{y}}_2, \vec{\mathbf{y}}_3)$ satisfies C'

$$\Leftrightarrow \begin{cases} \langle \vec{\mathbf{y}}_1 | \vec{\mathbf{y}}_2 \rangle & \leq C'_{12} \\ \langle \vec{\mathbf{y}}_1 | \vec{\mathbf{y}}_3 \rangle & \leq C'_{13} \\ \langle \vec{\mathbf{y}}_2 | \vec{\mathbf{y}}_3 \rangle & \leq C'_{23} \end{cases}$$

Classic 3-sieve

Configuration problem

Input: Lists L_1, L_2, L_3, L_4 , configuration C'**Output**: All the tuples

Output: All the tuples
$$(\vec{y}_1, \vec{y}_2, \vec{y}_3, \vec{y}_4) \in L_1 \times L_2 \times L_3 \times L_4$$
 satisfying configuration C'

$$(\vec{\mathbf{y}}_1, \vec{\mathbf{y}}_2, \vec{\mathbf{y}}_3, \vec{\mathbf{y}}_4)$$
 satisfies C'

$$\Leftrightarrow \begin{cases} \langle \vec{\mathbf{y}}_{1} | \vec{\mathbf{y}}_{3} \rangle & \leq C'_{13} \\ \langle \vec{\mathbf{y}}_{1} | \vec{\mathbf{y}}_{4} \rangle & \leq C'_{14} \\ \langle \vec{\mathbf{y}}_{2} | \vec{\mathbf{y}}_{3} \rangle & \leq C'_{23} \\ \langle \vec{\mathbf{y}}_{2} | \vec{\mathbf{y}}_{4} \rangle & \leq C'_{24} \\ \langle \vec{\mathbf{y}}_{3} | \vec{\mathbf{y}}_{4} \rangle & \leq C'_{34} \end{cases}$$

 L_2

L

 L_4

Configuration problem

Input: Lists L_1, L_2, L_3, L_4 , configuration C'

Output: All the tuples

 $(\vec{y}_1, \vec{y}_2, \vec{y}_3, \vec{y}_4) \in L_1 \times L_2 \times L_3 \times L_4$ satisfying configuration C'

$$(\vec{\mathbf{y}}_1, \vec{\mathbf{y}}_2, \vec{\mathbf{y}}_3, \vec{\mathbf{y}}_4)$$
 satisfies C'

$$\Leftrightarrow \begin{cases} \langle \vec{\mathbf{y}}_1 | \vec{\mathbf{y}}_2 \rangle & \leq C'_{12} \\ \langle \vec{\mathbf{y}}_1 | \vec{\mathbf{y}}_3 \rangle & \leq C'_{13} \\ \langle \vec{\mathbf{y}}_1 | \vec{\mathbf{y}}_4 \rangle & \leq C'_{14} \\ \langle \vec{\mathbf{y}}_2 | \vec{\mathbf{y}}_3 \rangle & \leq C'_{23} \\ \langle \vec{\mathbf{y}}_2 | \vec{\mathbf{y}}_4 \rangle & \leq C'_{24} \\ \langle \vec{\mathbf{y}}_3 | \vec{\mathbf{y}}_4 \rangle & \leq C'_{34} \end{cases}$$

Configuration problem

Input: Lists L_1, L_2, L_3, L_4 , configuration C'

 $(\vec{\mathbf{y}}_1, \vec{\mathbf{y}}_2, \vec{\mathbf{y}}_3, \vec{\mathbf{y}}_4) \in L_1 \times L_2 \times L_3 \times L_4$ satisfying configuration C'

$$(\vec{\mathbf{y}}_1, \vec{\mathbf{y}}_2, \vec{\mathbf{y}}_3, \vec{\mathbf{y}}_4)$$
 satisfies C'

$$\Leftrightarrow \begin{cases} \langle \vec{\mathbf{y}}_1 | \vec{\mathbf{y}}_2 \rangle & \leq C'_{12} \\ \langle \vec{\mathbf{y}}_1 | \vec{\mathbf{y}}_3 \rangle & \leq C'_{13} \\ \langle \vec{\mathbf{y}}_1 | \vec{\mathbf{y}}_4 \rangle & \leq C'_{14} \\ \langle \vec{\mathbf{y}}_2 | \vec{\mathbf{y}}_3 \rangle & \leq C'_{23} \\ \langle \vec{\mathbf{y}}_2 | \vec{\mathbf{y}}_4 \rangle & \leq C'_{24} \\ \langle \vec{\mathbf{y}}_3 | \vec{\mathbf{y}}_4 \rangle & \leq C'_{34} \end{cases}$$

Classic 4-sieve

Classic k-sieves

$$|\psi_{L_1}\rangle \qquad |\psi_{L_2}\rangle \qquad |\psi_{L_3}\rangle$$

$$\begin{split} |\psi_{L_1}\rangle & |\psi_{L_2}\rangle & |\psi_{L_3}\rangle \\ & ||\\ \frac{1}{\sqrt{|L_1|}} \sum_{\vec{\mathbf{y}}_1 \in L_1} |\mathsf{i}_{\vec{\mathbf{y}}_1}\rangle |\vec{\mathbf{y}}_1\rangle \end{split}$$

$$\begin{split} |\psi_{L_1}\rangle & |\psi_{L_2}\rangle & |\psi_{L_3}\rangle \\ & \qquad \qquad | \qquad \qquad \Big| \text{Grover} \\ \frac{1}{\sqrt{|L_1|}} \sum_{\vec{\mathbf{y}}_1 \in L_1} |\mathsf{i}_{\vec{\mathbf{y}}_1}\rangle |\vec{\mathbf{y}}_1\rangle & |\psi_{L_2}(\vec{\mathbf{y}}_1)\rangle & \langle \vec{\mathbf{y}}_1|\vec{\mathbf{y}}_2\rangle \leq C_{12}' \end{split}$$

$$\begin{split} |\psi_{L_1}\rangle & |\psi_{L_2}\rangle & |\psi_{L_3}\rangle \\ & || & & \Big|\mathsf{Grover} & \Big|\mathsf{Grover} \\ \frac{1}{\sqrt{|L_1|}} \sum_{\vec{\mathbf{y}}_1 \in L_1} |\mathsf{i}_{\vec{\mathbf{y}}_1}\rangle |\vec{\mathbf{y}}_1\rangle & |\psi_{L_2}(\vec{\mathbf{y}}_1)\rangle & |\psi_{L_3}(\vec{\mathbf{y}}_1)\rangle & \langle \vec{\mathbf{y}}_1 |\vec{\mathbf{y}}_2\rangle \leq C_{12}' \\ \langle \vec{\mathbf{y}}_1 |\vec{\mathbf{y}}_3\rangle \leq C_{13}' \end{split}$$

$$\begin{split} |\psi_{L_1}\rangle & |\psi_{L_2}\rangle & |\psi_{L_3}\rangle \\ & \qquad || \qquad \qquad \Big|\mathsf{Grover} \qquad \Big|\mathsf{Grover} \\ \frac{1}{\sqrt{|L_1|}} \sum_{\vec{\mathbf{y}}_1 \in L_1} |\mathsf{i}_{\vec{\mathbf{y}}_1}\rangle |\vec{\mathbf{y}}_1\rangle & |\psi_{L_2(\vec{\mathbf{y}}_1)}\rangle & |\psi_{L_3(\vec{\mathbf{y}}_1)}\rangle & \langle \vec{\mathbf{y}}_1 | \vec{\mathbf{y}}_2\rangle \leq C_{12}' \\ & \qquad || \\ \frac{1}{\sqrt{|L_2(\vec{\mathbf{y}}_1)|}} \sum_{\vec{\mathbf{y}}_2 \in L_2(\vec{\mathbf{y}}_1)} |\mathsf{i}_{\vec{\mathbf{y}}_2}\rangle |\vec{\mathbf{y}}_2\rangle \end{split}$$

$$\begin{split} |\psi_{L_1}\rangle & |\psi_{L_2}\rangle & |\psi_{L_3}\rangle \\ & || & & \Big|\mathsf{Grover} & \Big|\mathsf{Grover} \\ \frac{1}{\sqrt{|L_1|}} \sum_{\vec{\mathbf{y}}_1 \in L_1} |\mathsf{i}_{\vec{\mathbf{y}}_1}\rangle |\vec{\mathbf{y}}_1\rangle & |\psi_{L_2(\vec{\mathbf{y}}_1)}\rangle & |\psi_{L_3(\vec{\mathbf{y}}_1)}\rangle & \langle \vec{\mathbf{y}}_1 | \vec{\mathbf{y}}_2\rangle \leq C'_{12} \\ & || & & \Big|\mathsf{Grover} \\ \frac{1}{\sqrt{|L_2(\vec{\mathbf{y}}_1)|}} \sum_{\vec{\mathbf{y}}_2 \in L_2(\vec{\mathbf{y}}_1)} |\mathsf{i}_{\vec{\mathbf{y}}_2}\rangle |\vec{\mathbf{y}}_2\rangle & |\psi_{L_3(\vec{\mathbf{y}}_1,\vec{\mathbf{y}}_2)}\rangle & \langle \vec{\mathbf{y}}_2 | \vec{\mathbf{y}}_3\rangle \leq C'_{23} \end{split}$$

$$|\psi_{L_1}\rangle|\psi_{L_2(\vec{\mathbf{y}}_1)}\rangle|\psi_{L_3(\vec{\mathbf{y}}_1,\vec{\mathbf{y}}_2)}\rangle$$

- Apply amplitude amplification
- Measure and get a reducing $(\vec{\mathbf{y}}_1, \vec{\mathbf{y}}_2, \vec{\mathbf{y}}_3)$
- Repeat to find all the solutions in $L_1 \times L_2 \times L_3$

Quantum 3-sieve

$$|\psi_{L_1}\rangle|\psi_{L_2(\vec{\mathbf{y}}_1)}\rangle|\psi_{L_3(\vec{\mathbf{y}}_1,\vec{\mathbf{y}}_2)}\rangle|\psi_{L_4(\vec{\mathbf{y}}_1,\vec{\mathbf{y}}_2)}\rangle$$

- Apply amplitude amplification
- Measure and get a reducing $(\vec{y}_1, \vec{y}_2, \vec{y}_3, \vec{y}_4)$
- Repeat to find all the solutions in $L_1 imes L_2 imes L_3 imes L_4$

Quantum 4-sieve

Quantum k-sieves

Conclusion

This work:

- Improves the 3-sieves trade-off
- New trade-offs for the 4-sieves

Conclusion

This work:

- Improves the 3-sieves trade-off
- New trade-offs for the 4-sieves

Further research:

- k-sieve for k > 4
- Mix our prefiltering with inner filtering as in [HKL18, KMPM19]
- Classical: Optimal merging trees
- **Quantum**: k-sieve via quantum random walks

3-sieve [KMPM19] (Alg. 4.1)

4-sieve [KMPM19] (Alg. 4.1)

0.28

0.24

Thank you for listening! Any questions?

References

- [BDGL16] A. Becker, L. Ducas, N. Gama and T. Laarhoven New directions in nearest neighbor searching with applications to lattice sieving ePrint 2015/1128
- [HKL18] G. Herold, E. Kirshanova and T. Laarhoven (2018) Speed-ups and time–memory trade-offs for tuple lattice sieving ePrint 2017/1228
- [KMPM19] E. Kirshanova, E. Mårtensson, E.W. Postlethwaite and S.R. Moulik Quantum algorithms for the approximate *k*-list problem and their application to lattice sieving ePrint 2019/1016
 - [this work] A. Chailloux and J. Loyer Classical and quantum 3 and 4-sieves to solve SVP with low memory ePrint 2023/200

Sample a RPC $\mathbb{C} = Q \cdot (\mathbb{C}_1 \times \cdots \times \mathbb{C}_m)$

Sample a RPC $\mathfrak{C} = Q \cdot (\mathfrak{C}_1 \times \cdots \times \mathfrak{C}_m)$ For each $F_1 \in \mathfrak{C}$:

k = 3

 $\mathsf{F}_1 \hspace{1cm} \in \mathsf{C}$

Sample a RPC $\mathfrak{C} = Q \cdot (\mathfrak{C}_1 \times \cdots \times \mathfrak{C}_m)$ For each $F_1 \in \mathfrak{C}$:

k = 3

Sample a RPC $\mathbb{C} = Q \cdot (\mathbb{C}_1 \times \cdots \times \mathbb{C}_m)$ For each $F_1 \in \mathbb{C}$:

k = 3

Choose a random $\mathbf{F}_2^{(1)}$ $\mathbf{F}_2^{(2)}$ \cdots $\mathbf{F}_2^{(m)}$ such that for $i \in [m], \langle \mathbf{F}_1^{(i)} | \mathbf{F}_2^{(i)} \rangle = -\frac{1}{2m}$.

Sample a RPC $\mathbb{C} = Q \cdot (\mathbb{C}_1 \times \cdots \times \mathbb{C}_m)$ For each $F_1 \in \mathbb{C}$:

k = 3

Compute $\mathbf{F}_3 = -\mathbf{F}_1 - \mathbf{F}_2$.

40/40

Sample a RPC $\mathfrak{C} = Q \cdot (\mathfrak{C}_1 \times \cdots \times \mathfrak{C}_m)$ For each $F_1 \in \mathbb{C}$:

 $\forall k$

$$egin{array}{|c|c|c|c|c|} oldsymbol{\mathsf{F}}_1 & oldsymbol{\mathfrak{C}} & oldsymbol{\mathfrak{C}} & oldsymbol{\mathfrak{C}} & oldsymbol{\mathfrak{C}} & oldsymbol{\mathfrak{C}}_1 & oldsymbol{\mathfrak{C}} & oldsymbol{\mathfrak{C}}_1 & oldsymbol{\mathfrak{C}} & oldsymbol{\mathfrak{C}}_1 & oldsymbol{\mathfrak{C}} & oldsymbol{\mathfrak{C}}_m & oldsymbol{\mathfrak{C}} & oldsymbol{\mathfrak{C}}_m & oldsymbol{\mathfrak{C}} & oldsymbol{\mathfrak{C}} & oldsymbol{\mathfrak{C}}_m & oldsymbol{\mathfrak{C}} & oldsymbo$$

For
$$j = 2...k - 1$$
, choose random $\mathbf{F}_{j}^{(1)}$ $\mathbf{F}_{j}^{(2)}$ \cdots $\mathbf{F}_{j}^{(m)}$ st. for $i \in [m], j' < j, \langle \mathbf{F}_{j'}^{(i)} | \mathbf{F}_{j}^{(i)} \rangle = -\frac{1}{(k-1)m}$.

$$egin{array}{c} igert Q \ igverbox{f F}_i & ext{with } \langle f F_1 | f F_2
angle = -rac{1}{k-1}. \end{array}$$

Compute
$$\mathbf{A}_k = -\sum_{i=1}^{k-1} \mathbf{F}_i$$
.

40/40

Tuple-filter $(\mathbf{F}_1, \mathbf{F}_2, \mathbf{F}_3)$

k-Random Product Code

A k-RPC \mathbb{C} is a code such that

$$\forall \mathbf{F}_1 \in \mathbf{C}, \exists \mathbf{F}_2, ..., \mathbf{F}_k \in \mathbf{C} \text{ st. } \sum_{i=1}^k \mathbf{F}_i = \vec{0}.$$

With an efficient decoding algorithm