

Andro Milanović, Danko Ivošević

Automati, formalni jezici i jezični procesori 1

Auditorne vježbe

Zagreb, listopad 2004.

27. Konstruirati Turingov stroj u osnovnom obliku koji oduzima dva binarna broja zapisana na traci. Najznačajnija znamenka je lijevo, a brojevi su odvojeni znakom –. Drugi broj se oduzima od prvog pri čemu prvi broj sigurno nije manji od drugog. Glava se nalazi na početku ulaznog niza, a s obje strane ulaznog niza nalaze se praznine.

$$\begin{split} TS \ M &= (Q, \! \Sigma, \! \Gamma, \! \delta, \! q_0, \! B, \! q_9) \\ Q &= \{q_0, \! q_1, \! q_2, \! q_3, \! q_4, \! q_5, \! q_6, \! q_7, \! q_8, \! q_9\}, \ \Sigma &= \{0, 1, \text{-}\}, \ \Gamma &= \{0, 1, \text{-}, N, J, B\} \end{split}$$

	0	1	-	N	J	В
q_0	q ₀ ,0,R	q ₀ ,1,R	q ₀ ,-,R	q ₀ ,N,R	q ₀ ,J,R	q ₁ ,B,L
q_1	q_2,B,L	q_3,B,L	q_7,B,L	-	-	-
q_2	$q_{2},0,L$	$q_{2},1,L$	q ₄ ,-,L	-	-	-
q_3	$q_{3},0,L$	$q_{3},1,L$	q ₅ ,-,L	-	-	-
q_4	q_0,N,R	q_0,J,R	-	q_4,N,L	q_4,J,L	-
q_5	q_6,J,L	q_0,N,R	-	q_5,N,L	q_5,J,L	-
q_6	$q_{6},1,L$	$q_{0},0,R$	-	-	-	-
q_7	$q_{7},0,L$	$q_{7}, 1, L$	-	$q_{7},0,L$	$q_{7},1,L$	q_8,B,R
q_8	q_8,B,R	q ₉ ,1,L	-	-	-	$q_{9},0,L$

	1	0	0	1	1	0	-	1	0	1	0	
\rightarrow	q_0	q_0	q_0	q_0	q_0	q_0	q_0	q_0	q_0	q_0	q_0	q_0
						q_4	q_2	q_2	q_2	q_2	q_1	←
	1	0	0	1	1	N	-	1	0	1		
						\rightarrow	q_0	q_0	q_0	q_0	q_0	
					q_5	q_5	q_3	q_3	q_3	q_1	←	
	1	0	0	1	N	N	-	1	0			
					\rightarrow	q_0	q_0	q_0	q_0	q_0		
				q_4	q_4	q_4	q_2	q_2	q_1	←		
	1	0	0	J	N	N	-	1				
				\rightarrow	q_0	q_0	q_0	q_0	q_0			
			q_5	q_5	q_5	q_5	q_3	q_1	←			
	1	0	J	J	N	N	-					
		q_6	←									
	1	1	J	J	N	N	-					
	q_6											
	0	1	J	J	N	N	-					
	\rightarrow	q_0	q_0	q_0	q_0	q_0	q_0	q_0				
							q_1	\leftarrow				
	0	1	J	J	N	N						
						q_7	←					
	0	1	1	1	0	0						_
q_7	q_7	q_7	q_7	q_7	q_7	←						
\rightarrow	q_8	q_8										
	q 9	\leftarrow										

28. Konstruirati Turingov stroj koji redom generira sve potencije broja 2. Vrijednost jednog broja na traci je zapisana odgovarajućim brojem jedinica. Na ulaznoj traci Turingovog

stroja na početku je zapisan niz \$1. Brojevi su međusobno odvojeni graničnikom \$. S obje strane ulaznog niza nalaze se praznine.

TS M=(Q,
$$\Sigma$$
, Γ , δ ,q₀,B,F) – Turingov stroj s dva traga Q={q₀,q₁,q₂,q₃,q₄}, Σ ={\$,1}, Γ ={[\$,B],[1,B],[1,*],[B,B]}, B=[B,B], F= \varnothing

	[1,B]	[B,B]	[\$,B]	[1,*]
q_0	q ₁ ,[1,*],R	-	q ₀ ,[\$,B],R	-
q_1	$q_{1},[1,B],R$	$q_2,[\$,B],R$	$q_2,[\$,B],R$	-
q_2	$q_2,[1,B],R$	$q_3,[1,B],R$	-	-
q_3	-	q ₄ ,[1,B],L	-	-
q_4	q ₄ ,[1,B],L	-	q ₄ ,[\$,B],L	q ₀ ,[1,*],R

primjer rada automata:

	\$	1	\$	1	1	\$	1	1	1	1	\$	1	1	1	1	1	1	1	1
		*		*	*		*	*	*	*									
\rightarrow	q_0	q_0	q_1	q_2	q_3														
		q_4	q_4	q_4	←														İ
		\rightarrow	q_0	q_0	q_1	q_1	q_2	q_3											İ
				q_4	q_4	q_4	q_4	\leftarrow											İ
				\rightarrow	q_0	q_1	q_2	q_2	q_2	q_3									1
					q_4	q_4	q_4	q_4	q_4	\leftarrow									İ
					\rightarrow	q_0	q_0	q_1	q_1	q_1	q_1	q_2	q_3						İ
							q_4	q_4	q_4	q_4	q_4	q_4	\leftarrow						İ
							\rightarrow	q_0	q_1	q_1	q_1	q_2	q_2	q_2	q_3				İ
								q_4	q_4	q_4	q_4	q_4	q_4	q_4	\leftarrow				1
								\rightarrow	q_0	q_1	q_1	q_2	q_2	q_2	q_2	q_2	q_3		İ
									q_4	q_4	q_4	q_4	q_4	q_4	q_4	q_4	\leftarrow		İ
									\rightarrow	q_0	q_1	q_2	q_2	q_2	q_2	q_2	q_2	q_2	q_3
										q_4	q_4	q_4	q_4	q_4	q_4	q_4	q_4	q_4	\leftarrow
										\rightarrow	q_0	q_0	itd.						

29. Konstruirati Turingov stroj koji prihvaća nizove iz jezika $L=\{w\in(a+b+c)^*\mid n_a=n_b=n_c\}$. Nakon što Turingov stroj završi s radom stanje na traci mora biti isto kao početno. S obje strane ulaznog niza nalaze se praznine.

 $TS\ M \!\!=\!\! (\{q_0,\!q_a,\!q_b,\!q_c,\!q_{bc},\!q_{ac},\!q_{ab},\!q_V,\!q_{PC},\!q_{OC},\!q_P\}, \{a,\!b,\!c\}, \{a,\!b,\!c,\!A,\!B,\!C,\!P\}, \delta,\!q_0,\!P,\!q_P)$

	a	b	c	A	В	C	P
q_0	q _a ,A,R	q _b ,B,R	q _c ,C,R	q ₀ ,A,R	q ₀ ,B,R	q ₀ ,C,R	q _{PC} ,P,L
q_a	q _a ,a,R	q_{ab},B,R	q_{ac} ,C,R	q _a ,A,R	q_a,B,R	q_a,C,R	q _{OC} ,P,L
q_b	q _{ab} ,A,R	q_b,b,R	q_{bc} ,C,R	q_b,A,R	q_b,B,R	q_b,C,R	q _{OC} ,P,L
q_c	q _{ac} ,A,R	q_{bc} ,B,R	q_c,c,R	q _c ,A,R	q _c ,A,R	q_c,A,R	q _{OC} ,P,L
q_{bc}	q_V,A,L	q_{bc},b,R	q_{bc},c,R	q_{bc},A,R	q_{bc} ,B,R	q_{bc} , C , R	q _{OC} ,P,L
q_{ac}	q _{ac} ,a,R	q_{V},B,L	q_{ac},c,R	q _{ac} ,A,R	q _{ac} ,B,R	q_{ac} , C , R	q _{OC} ,P,L
q_{ab}	q _{ac} ,a,R	q _{ac} ,b,R	q_V,C,L	q _{ab} ,A,R	q_{ab},B,R	q_{ab} , C , R	q _{OC} ,P,L
q_{V}	q _V ,a,L	q_{V},b,L	$q_{V,c,L}$	q_{V},A,L	q_{V},B,L	q_V,C,L	q_0,P,R
$q_{\rm OC}$	q _{OC} ,a,L	q _{OC} ,b,L	q _{OC} ,c,L	q _{OC} ,a,L	q _{OC} ,b,L	q _{OC} ,c,L	-
q_{PC}	-	-	-	q_{PC},a,L	q_{PC},b,L	q_{PC},c,L	q_P,P,R

30. Konstruirati gramatiku koja generira nizove oblika aⁱb^jc^kdⁱe^j pri čemu su *i,j,k*≥1.

gramatika sa neograničenim produkcijama

S→aAbBcCde	$B\rightarrow bBE$	$Db\rightarrow bD$	Ec→cE
$A\rightarrow aAD$	В→ε	Dc→cD	Ed→dE
Α→ε	$C\rightarrow cC$	Dd→dd	Ee→ee
	C→ε		

primjer generiranja niza aabbccddee

 $\underline{S} \rightarrow \underline{a}\underline{A}\underline{D}\underline{b}\underline{B}\underline{c}\underline{C}\underline{d}\underline{e} \rightarrow \underline{a}\underline{A}\underline{D}\underline{b}\underline{B}\underline{c}\underline{C}\underline{d}\underline{e} \rightarrow \underline{a}\underline{D}\underline{b}\underline{b}\underline{E}\underline{c}\underline{C}\underline{d}\underline{e} \rightarrow \underline{a}\underline{D}\underline{b}\underline{b}\underline{c}\underline{C}\underline{d}\underline{e} \rightarrow \underline{a}\underline{a}\underline{D}\underline{b}\underline{b}\underline{c}\underline{C}\underline{d}\underline{e} \rightarrow \underline{a}\underline{b}\underline{b}\underline{c}\underline{C}\underline{d}\underline{e} \rightarrow \underline{a}\underline{b}\underline{b}\underline{c}\underline{C}\underline{d}\underline{e} \rightarrow \underline{a}\underline{a}\underline{b}\underline{b}\underline{c}\underline{C}\underline{d}\underline{e}\underline{e} \rightarrow \underline{a}\underline{a}\underline{b}\underline{b}\underline{c}\underline{C}\underline{d}\underline{e}\underline{e} \rightarrow \underline{a}\underline{b}\underline{b}\underline{c}\underline{C}\underline{d}\underline{e}\underline{e} \rightarrow \underline{a}\underline{a}\underline{b}\underline{b}\underline{c}\underline{C}\underline{d}\underline{e}\underline{e} \rightarrow \underline{a}\underline{b}\underline{b}\underline{c}\underline{C}\underline{d}\underline{e}\underline{e} \rightarrow \underline{a}\underline{a}\underline{b}\underline{b}\underline{c}\underline{C}\underline{d}\underline{e}\underline{e} \rightarrow \underline{a}\underline{b}\underline{b}\underline{c}\underline{C}\underline{d}\underline{e}\underline{e}$

31. Konstruirati gramatiku koja generira nizove oblika $0^n 1^n 2^n$ pri čemu je $n \ge 0$.

S
$$\rightarrow$$
0A12 A \rightarrow 0AB B1 \rightarrow 11C
S \rightarrow ϵ A \rightarrow ϵ C1 \rightarrow 1C
C2 \rightarrow 22

32. Konstruirati gramatiku koja generira nizove iz jezika L= $\{w \in (a+b+c)^* \mid n_a \neq n_b, n_a \neq n_c, n_b \neq n_c\}$.

$S\rightarrow ABCS$	$T\rightarrow ABT$	$X \rightarrow AX$	$AB\rightarrow BA$	A→a
$S\rightarrow ABT$	$T \rightarrow AX$	X→ε	$AC \rightarrow CA$	$B\rightarrow b$
$S\rightarrow ACU$	$T\rightarrow BY$	$Y\rightarrow BY$	$BC \rightarrow CB$	$C\rightarrow c$
S→BCV	U→ACU	Y→ε	$BA \rightarrow AB$	
	$U\rightarrow AX$	$Z\rightarrow CZ$	$CA \rightarrow AC$	
	$U\rightarrow CZ$	$Z\rightarrow \varepsilon$	$CB \rightarrow BC$	
	$V\rightarrow BCV$			
	$V\rightarrow BY$			
	$V\rightarrow CZ$			

33. Pretvoriti zadanu gramatiku s neograničenim produkcijama u konteksno ovisnu gramatiku.

S→aAbBcCde	$B\rightarrow bBE$	$C \rightarrow cC$	$Db\rightarrow bD$	$Ec \rightarrow cE$
A→aAD	B→ε	C→ε	Dc→cD	Ed→dE
A→ε			Dd→dd	Ee→ee

rješenje koje se temelji na općenitijem postupku pretvorbe (svi nezavršni znakovi moraju biti grupirani s nekim završnim znakom)

$S \rightarrow [aA][bB][cC]de$	[bB]→b[bBE]	$[Db] \rightarrow [bD]$	$[Ec] \rightarrow [cE]$
$[aA]\rightarrow a[aAD]$	[bB]→b	$[bD]b \rightarrow b[Db]$	$[cE]c \rightarrow c[Ec]$
[aA]→a	$[bBE]c \rightarrow [bB][Ec]$	[bD]c→b[Dc]	$[cE]d \rightarrow c[Ed]$
$[aAD]b \rightarrow [aA][Db]$	$[cC]\rightarrow c[cC]$	$[Dc] \rightarrow [cD]$	$[Ed] \rightarrow [dE]$
	$[cC]\rightarrow c$	$[cD]c \rightarrow c[Dc]$	$[dE]d \rightarrow d[Ed]$
		[cD]d→cdd	[dE]e→dee

ako se gornji postupak provede samo za prazne nezavršne znakove, dobije se nešto kraće rješenje (isto rješenje dobije se i uklanjanjem ε produkcija!)

$S\rightarrow [aA][bB][cC]de$	[bB]→b[bB]E	$[cC]\rightarrow c[cC]$	Db→bD	Ec→cE
$[aA]\rightarrow a[aA]D$	[bB]→b	$[cC]\rightarrow c$	$Dc\rightarrow cD$	Ed→dE
$[aA] \rightarrow a$			Dd→dd	Ee→ee

34. Konstruirati konteksno ovisnu gramatiku koja generira nizove iz jezika L={0ⁿ1ⁿ2ⁿ | n≥1}.

$$S \rightarrow AX$$
 $BX \rightarrow 12$
 $A \rightarrow 0AB$ $B1 \rightarrow 1B$
 $A \rightarrow 0B$ $B2 \rightarrow 122$

35. Konstruirati gramatiku koja generira nizove iz jezika koji prihvaća TS $M=(\{q_0,q_1,q_2,q_3,q_4,q_5,q_P\},\{0,1\},\{0,1,B\},\delta,q_0,B,q_P)$.

	0	1	В
\mathbf{q}_0	q ₁ , B , R	q ₂ ,B,R	q _P ,B,R
$\mathbf{q_1}$	$q_{1},0,R$	$q_{1},1,R$	q_3,B,L
$\mathbf{q_2}$	$q_{2},0,R$	$q_{2},1,R$	q_4,B,L
\mathbf{q}_3	q_5,B,L	-	-
$\mathbf{q_4}$	-	q_5,B,L	-
\mathbf{q}_{5}	$q_{5},0,L$	q5,1,L	q_0,B,R

$$G=(V,\{0,1\},P,A_1)$$

početne produkcije:

$$A_1 \rightarrow q_0 A_2$$
 $A_2 \rightarrow [0,0]A_2$ $A_3 \rightarrow [\epsilon,B]A_3$ $A_2 \rightarrow [1,1]A_2$ $A_3 \rightarrow \epsilon$ $A_2 \rightarrow A_3$

za prijelaz $\delta(q_0,0)=(q_1,B,R)$:

$$q_0[0,0] \rightarrow [0,B]q_1$$

za prijelaz $\delta(q_0,1)=(q_2,B,R)$:

$$q_0[1,1] \rightarrow [1,B]q_2$$

za prijelaz $\delta(q_0,B)=(q_P,B,R)$:

$$q_0[0,B] {\rightarrow} [0,B] q_P \qquad q_0[1,B] {\rightarrow} [1,B] q_P \qquad q_0[\epsilon,B] {\rightarrow} [\epsilon,B] q_P$$

za prijelaz $\delta(q_1,0)=(q_1,0,R)$:

$$q_1[0,0] \rightarrow [0,0]q_1$$

za prijelaz $\delta(q_1,1)=(q_1,1,R)$:

$$q_1[1,1] \rightarrow [1,1]q_1$$

za prijelaz $\delta(q_1,B)=(q_3,B,L)$:

$$\begin{array}{lll} [0,0]q_1[0,B] \to q_3[0,0][0,B] & [0,B]q_1[0,B] \to q_3[0,B][0,B] \\ [0,0]q_1[1,B] \to q_3[0,0][1,B] & [0,B]q_1[1,B] \to q_3[0,B][1,B] \\ [0,0]q_1[\epsilon,B] \to q_3[0,0][\epsilon,B] & [0,B]q_1[\epsilon,B] \to q_3[0,B][\epsilon,B] \\ [1,1]q_1[0,B] \to q_3[1,1][0,B] & [1,B]q_1[0,B] \to q_3[1,B][0,B] \\ [1,1]q_1[1,B] \to q_3[1,1][1,B] & [1,B]q_1[1,B] \to q_3[1,B][1,B] \\ [1,1]q_1[\epsilon,B] \to q_3[1,1][\epsilon,B] & [1,B]q_1[\epsilon,B] \to q_3[1,B][\epsilon,B] \\ \end{array}$$

za prijelaz $\delta(q_2,0)=(q_2,0,R)$:

$$q_2[0,0] \rightarrow [0,0]q_2$$

za prijelaz $\delta(q_2,1)=(q_2,1,R)$:

$$q_2[1,1] \rightarrow [1,1]q_2$$

```
za prijelaz \delta(q_2,B)=(q_4,B,L):
          [0,0]q_2[0,B] \rightarrow q_4[0,0][0,B]
                                                           [0,B]q_2[0,B] \rightarrow q_4[0,B][0,B]
          [0,0]q_2[1,B] \rightarrow q_4[0,0][1,B]
                                                           [0,B]q_2[1,B] \rightarrow q_4[0,B][1,B]
          [0,0]q_2[\varepsilon,B] \to q_4[0,0][\varepsilon,B]
                                                           [0,B]q_2[\varepsilon,B] \rightarrow q_4[0,B][\varepsilon,B]
          [1,1]q_2[0,B] \rightarrow q_4[1,1][0,B]
                                                           [1,B]q_2[0,B] \rightarrow q_4[1,B][0,B]
          [1,1]q_2[1,B] \rightarrow q_4[1,1][1,B]
                                                           [1,B]q_2[1,B] \rightarrow q_4[1,B][1,B]
          [1,1]q_2[\varepsilon,B] \rightarrow q_4[1,1][\varepsilon,B]
                                                           [1,B]q_2[\varepsilon,B] \rightarrow q_4[1,B][\varepsilon,B]
za prijelaz \delta(q_3,0)=(q_5,B,L):
          [0,0]q_3[0,0] \rightarrow q_5[0,0][0,B]
                                                           [0,B]q_3[0,0] \rightarrow q_5[0,B][0,B]
          [1,1]q_3[0,0] \rightarrow q_5[1,1][0,B]
                                                           [1,B]q_3[0,0] \rightarrow q_5[1,B][0,B]
za prijelaz \delta(q_4,1)=(q_5,B,L):
          [0,0]q_4[1,1] \rightarrow q_5[0,0][1,B]
                                                           [0,B]q_4[1,1] \rightarrow q_5[0,B][1,B]
                                                           [1,B]q_4[1,1] \rightarrow q_5[1,B][1,B]
          [1,1]q_4[1,1] \rightarrow q_5[1,1][1,B]
za prijelaz \delta(q_5,0)=(q_5,0,L):
          [0,0]q_5[0,0] \rightarrow q_5[0,0][0,0]
                                                           [0,B]q_5[0,0] \rightarrow q_5[0,B][0,0]
          [1,1]q_5[0,0] \rightarrow q_5[1,1][0,0]
                                                           [1,B]q_5[0,0] \rightarrow q_5[1,B][0,0]
za prijelaz \delta(q_5,1)=(q_5,1,L):
          [0,0]q_5[1,1] \rightarrow q_5[0,0][1,1]
                                                           [0,B]q_5[1,1] \rightarrow q_5[0,B][1,1]
          [1,1]q_5[1,1] \rightarrow q_5[1,1][1,1]
                                                           [1,B]q_5[1,1] \rightarrow q_5[1,B][1,1]
za prijelaz \delta(q_5,B)=(q_0,B,R):
          q_5[0,B] \rightarrow [0,B]q_0
                                              q_5[1,B] \rightarrow [1,B]q_0
završni prijelazi za prihvaćanje niza:
```

 $q_P[0,B] \rightarrow q_P 0 q_P$

 $q_P[1,B] \rightarrow q_P 1q_P$

 $q_P[\varepsilon,B] \rightarrow q_P$

 $q_P \rightarrow \epsilon$

 $[0,B]q_P \rightarrow q_P 0q_P$

 $[1,B]q_P \rightarrow q_P 1q_P$

 $[\epsilon,B]q_P \rightarrow q_P$