A Book of Abstract Algebra (2nd Edition)

Shantar 97 Droblam GE I	Bookmark	Show all steps: ON
Chapter 27, Problem 6EJ	DOOKIIIAIK	Show all steps: ON
	Problem	
Suppose $a(x) \cong F[x]$, and K is an of $a(x)$ if $(x - c)^m a(x)$ for some $m > 1$. are different, or not.		
We now consider a method for determ multiple roots in any extension of <i>F</i> .	nining whether an arbitrary polyr	nomial $a(x) \cong F[x]$ has
Let K be any field containing all the roo	ots of $a(x)$. Suppose $a(x)$ has a	multiple root c.
Conclude that $a(x)$ and $a'(x)$ have no c	common factor of degree >1 in I	Ţ <i>x</i>].
This important result is stated as follow a' (x) have a common factor of degree		s a multiple root iff a(x) and
St	tep-by-step solution	
	Step 1 of 3 ^	
Consider that K is any field that contain Assume that $a(x)$ has no multiple room		
$a(x) = (x - c_1) \cdots (x - c_n)$		
where $c_1,,c_n$ are all distinct. Objective of degree > 1 in $F[x]$.	ve is to prove that $a(x)$ and $a'(x)$	r) have no common factor
Consider the following result:		
If $a(x), b(x) \in F[x]$ have a common refactor of positive degree in $F[x]$.	oot c in some extension of F , the	ey may have a common
Comment		
	Step 2 of 3 ^	
The derivative of polynomial $a(x)$ will	l be the sum of terms of the follo	owing form:
$(x-c_1)\cdots(x-c_{i-1})(x-c_{i+1})\cdots(x-c_n)$,).	
Here, each time, differentiation of one	·	
Observe that, in $a'(x)$, the factor $(x - c_i)$ in $a'(x)$, the derivative will not get		
Thus, both $a(x)$ and $a'(x)$ have no ro	ots in common.	
Comment		
	Step 3 of 3 ^	
Hence, by this result it can be conclud > 1 in $F[x]$.	le that $a(x)$ and $a'(x)$ have no	common factor of degree

2 4 B