3. Find the point (x_1, x_2) that lies on the line $x_1 + 2x_2 = 4$ and on the line $x_1 - x_2 = 1$. See the figure.

17. Do the three lines $2x_1 + 3x_2 = -1$, $6x_1 + 5x_2 = 0$, and $2x_1 - 5x_2 = 7$ have a common point of intersection? Explain.

In Exercises 19-22, determine the value(s) of h such that the matrix is the augmented matrix of a consistent linear system.

19.
$$\begin{bmatrix} 1 & h & 4 \\ 3 & 6 & 8 \end{bmatrix}$$
 20. $\begin{bmatrix} 1 & h & -5 \\ 2 & -8 & 6 \end{bmatrix}$

20.
$$\begin{bmatrix} 1 & h & -5 \\ 2 & -8 & 6 \end{bmatrix}$$

21.
$$\begin{bmatrix} 1 & 4 & -2 \\ 3 & h & -6 \end{bmatrix}$$

21.
$$\begin{bmatrix} 1 & 4 & -2 \\ 3 & h & -6 \end{bmatrix}$$
 22. $\begin{bmatrix} -4 & 12 & h \\ 2 & -6 & -3 \end{bmatrix}$

4. Find the point of intersection of the lines $x_1 + 2x_2 = -13$ and $3x_1 - 2x_2 = 1$

Determine if the systems in Exercises 15 and 16 are consistent. Do not completely solve the systems.

15.
$$x_1 - 6x_2 = 5$$

 $x_2 - 4x_3 + x_4 = 0$

$$-x_1 + 6x_2 + x_3 + 5x_4 = 3$$
$$-x_2 + 5x_3 + 4x_4 = 0$$

25. Find an equation involving g, h, and k that makes this augmented matrix correspond to a consistent system:

$$\begin{bmatrix} 1 & -4 & 7 & g \\ 0 & 3 & -5 & h \\ -2 & 5 & -9 & k \end{bmatrix}$$

26. Suppose the system below is consistent for all possible values of f and g. What can you say about the coefficients c and d? Justify your answer.

$$2x_1 + 4x_2 = f$$
$$cx_1 + dx_2 = g$$

In Exercises 17 and 18, determine the value(s) of h such that the matrix is the augmented matrix of a consistent linear system.

17.
$$\begin{bmatrix} 1 & -1 & 4 \\ -2 & 3 & h \end{bmatrix}$$
 18. $\begin{bmatrix} 1 & -3 & 1 \\ h & 6 & -2 \end{bmatrix}$

In Exercises 1 and 2, compute $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} - 2\mathbf{v}$.

1.
$$\mathbf{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$$
 2. $\mathbf{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

In Exercises 5 and 6, write a system of equations that is equivalent to the given vector equation.

$$\begin{bmatrix} 3 \\ -2 \\ 8 \end{bmatrix} + x_2 \begin{bmatrix} 5 \\ 0 \\ -9 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 8 \end{bmatrix}$$

6.
$$x_1 \begin{bmatrix} 3 \\ -2 \end{bmatrix} + x_2 \begin{bmatrix} 7 \\ 3 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

In Exercises 9 and 10, write a vector equation that is equivalent to the given system of equations.

9.
$$x_2 + 5x_3 = 0$$
 10. $3x_1 - 2x_2 + 4x_3 = 3$ $4x_1 + 6x_2 - x_3 = 0$ $-2x_1 - 7x_2 + 5x_3 = 1$ $-x_1 + 3x_2 - 8x_3 = 0$ $5x_1 + 4x_2 - 3x_3 = 2$ 14. $A = \begin{bmatrix} 1 & 0 & 5 \\ -2 & 1 & -6 \\ 0 & 2 & 8 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}$

In Exercises 11 and 12, determine if b is a linear combination of a1, a2, and a3.

11.
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \mathbf{a}_3 = \begin{bmatrix} 5 \\ -6 \\ 8 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}$$

12.
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} -2 \\ 3 \\ -2 \end{bmatrix}, \mathbf{a}_3 = \begin{bmatrix} -6 \\ 7 \\ 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 11 \\ -5 \\ 9 \end{bmatrix}$$

In Exercises 13 and 14, determine if b is a linear combination of the vectors formed from the columns of the matrix A.

13.
$$A = \begin{bmatrix} 1 & -4 & 2 \\ 0 & 3 & 5 \\ -2 & 8 & -4 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 3 \\ -7 \\ -3 \end{bmatrix}$

$$\mathbf{4.} \ \ A = \begin{bmatrix} 1 & 0 & 5 \\ -2 & 1 & -6 \\ 0 & 2 & 8 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}$$

15. Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} -5 \\ -8 \\ 2 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 3 \\ -5 \\ h \end{bmatrix}$. For what value(s) of h is \mathbf{b} in the plane spanned by \mathbf{a}_1 and \mathbf{a}_2 ?

16. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 1 \\ 7 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} h \\ -3 \\ -5 \end{bmatrix}$. For what

value(s) of h is y in the plane generated by v_1 and v_2 ?

In Exercises 17 and 18, list five vectors in Span $\{v_1, v_2\}$. For each vector, show the weights on v_1 and v_2 used to generate the vector and list the three entries of the vector. Do not make a sketch.

17.
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix}$$

21. Let
$$\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Show that $\begin{bmatrix} h \\ k \end{bmatrix}$ is in Span $\{\mathbf{u}, \mathbf{v}\}$ for all h and k .

solution? Is the solution unique? Use the figure to explain your answers.

1.4 EXERCISES

$$\begin{bmatrix} -4 & 2 \\ 1 & 6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ 7 \end{bmatrix}$$

5.
$$\begin{bmatrix} 1 & 2 & -3 & 1 \\ -2 & -3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -4 \\ 1 \end{bmatrix}$$

9.
$$5x_1 + x_2 - 3x_3 = 8$$

 $2x_2 + 4x_3 = 0$
10. $4x_1 - x_2 = 8$
 $5x_1 + 3x_2 = 2$

$$3x_1 - x_2 = 1$$

Given A and b in Exercises 11 and 12, write the augmented matrix for the linear system that corresponds to the matrix equation $A\mathbf{x} = \mathbf{b}$. Then solve the system and write the solution as a vector.

11.
$$A = \begin{bmatrix} 1 & 3 & -4 \\ 1 & 5 & 2 \\ -3 & -7 & 6 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -2 \\ 4 \\ 12 \end{bmatrix}$$

13. Let $\mathbf{u} = \begin{bmatrix} 0 \\ 4 \\ 4 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & -5 \\ -2 & 6 \\ 1 & 1 \end{bmatrix}$. Is \mathbf{u} in the plane in

 \mathbb{R}^3 spanned by the columns of A? (See the figure.) Why or why not?

15. Let $A = \begin{bmatrix} 3 & -1 \\ -9 & 3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$. Show that the equation $A\mathbf{x} = \mathbf{b}$ does not have a solution for all possible \mathbf{b} , and describe the set of all \mathbf{b} for which $A\mathbf{x} = \mathbf{b}$ does have a solution.

22. Let
$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ -3 \\ 9 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 4 \\ -2 \\ -6 \end{bmatrix}$. Does $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ span \mathbb{R}^3 ? Why or why not?

$$\begin{bmatrix} -3 \end{bmatrix} \begin{bmatrix} 9 \end{bmatrix} \begin{bmatrix} -6 \end{bmatrix}$$

 $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ span \mathbb{R}^3 ? Why or why not?

25. Note that
$$\begin{bmatrix} 4 & -3 & 1 \\ 5 & -2 & 5 \\ -6 & 2 & -3 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -7 \\ -3 \\ 10 \end{bmatrix}$$
. Use this

fact (and no row operations) to find scalars
$$c_1$$
, c_2 , c_3 such that
$$\begin{bmatrix} -7 \\ -3 \\ 10 \end{bmatrix} = c_1 \begin{bmatrix} 4 \\ 5 \\ -6 \end{bmatrix} + c_2 \begin{bmatrix} -3 \\ -2 \\ 2 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 5 \\ -3 \end{bmatrix}.$$

26. Let
$$\mathbf{u} = \begin{bmatrix} 7 \\ 2 \\ 5 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix}$. It can be shown that $2\mathbf{u} - 3\mathbf{v} - \mathbf{w} = \mathbf{0}$. Use this fact (and no row operations) to find x_1 and x_2 that satisfy the equation
$$\begin{bmatrix} 7 & 3 \\ 2 & 1 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix}.$$

shown that
$$2\mathbf{u} - 3\mathbf{v} - \mathbf{w} = \mathbf{0}$$
. Use this fact (and no row operations) to find x_1 and x_2 that satisfy the equation
$$\begin{bmatrix} 7 & 3 \\ 2 & 1 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix}.$$

1.5 EXERCISES

In Exercises 1-4, determine if the system has a nontrivial solution. Try to use as few row operations as possible.

1.
$$2x_1 - 5x_2 + 8x_3 = 0$$

 $-2x_1 - 7x_2 + x_3 = 0$
 $4x_1 + 2x_2 + 7x_3 = 0$
2. $x_1 - 2x_2 + 3x_3 = 0$
 $-2x_1 - 3x_2 - 4x_3 = 0$
 $2x_1 - 4x_2 + 9x_3 = 0$

18. As in Exercise 17, describe the solutions of the following system in parametric vector form, and provide a geometric comparison with the solution set in Exercise 6. $x_1 + 2x_2 - 3x_3 = 5$ $2x_1 + x_2 - 3x_3 = 13$ $-x_1 + x_2 = -8$ In Exercises 19 and 20, find the parametric equation of the line through a parallel to b.

19. $\mathbf{a} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$ 20. $\mathbf{a} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -7 \\ 6 \end{bmatrix}$

$$x_1 + 2x_2 - 3x_3 = 2x_1 + x_2 - 3x_3 = 1$$
$$-x_1 + x_2 = -$$

19.
$$\mathbf{a} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$$
 20. $\mathbf{a} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -7 \\ 6 \end{bmatrix}$

In Exercises 21 and 22, find a parametric equation of the line M through \mathbf{p} and \mathbf{q} . [Hint: M is parallel to the vector $\mathbf{q} - \mathbf{p}$. See the figure below.]

21.
$$\mathbf{p} = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$$
, $\mathbf{q} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ 22. $\mathbf{p} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$, $\mathbf{q} = \begin{bmatrix} 0 \\ -3 \end{bmatrix}$

check page

1.7 EXERCISES

In Exercises 1-4, determine if the vectors are linearly independent. Justify each answer.

1.
$$\begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 7 \\ 2 \\ -6 \end{bmatrix}$, $\begin{bmatrix} 9 \\ 4 \\ -8 \end{bmatrix}$ 2. $\begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ -8 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix}$

3.
$$\begin{bmatrix} 2 \\ -3 \end{bmatrix}$$
, $\begin{bmatrix} -4 \\ 6 \end{bmatrix}$ 4. $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$, $\begin{bmatrix} -3 \\ -9 \end{bmatrix}$

In Exercises 9 and 10, (a) for what values of h is v₃ in Span {v₁, v₂}, and (b) for what values of h is {v₁, v₂, v₃} linearly dependent? Justify each answer.

$$\mathbf{9.} \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -3 \\ 9 \\ -6 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 5 \\ -7 \\ h \end{bmatrix}$$

$$\mathbf{10.} \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ -3 \\ -5 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -3 \\ 9 \\ 15 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2 \\ -5 \\ h \end{bmatrix}$$