Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	M3215	К работе допущен
Студент	Гаджиев С. И.	Работа выполнена
Преподаватель	Тимофеева Э. О.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.02

"Изучение скольжения тележки по наклонной плоскости"

1. Цель работы.

- 1) Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
- 2) Определение величины ускорения свободного падения д.

2. Задачи, решаемые при выполнении работы.

- 1) Измерение времени движения тележки по рельсу с фиксированным углом наклона.
- 2) Измерение времени движения тележки по рельсу при различных углах наклона рельса к горизонту.
- 3) Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренности движения тележки.
- 4) Исследование зависимости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения.

3. Объект исследования.

Тележка, движущаяся по наклонной плоскости.

4. Метод экспериментального исследования.

Множественные измерения времени, за которое тележка проходит через оптические ворота. В ходе измерений происходили изменения угла наклона пути и положение вторых ворот.

5. Рабочие формулы и исходные данные.

1)
$$v_x(t) = v_{0x} + a_x t$$
,
 $x(t) = x_0 + v_{0x} t + \frac{a_x t^2}{2}$.
2) $x_2 - x_1 = \frac{a}{2} (t_2^2 - t_1^2)$
3) $Y = x_2 - x_1$
4) $Z = (t_2^2 - t_1^2)/2$

$$a = \frac{\sum\limits_{i=1}^{N} Z_i Y_i}{\sum\limits_{i=1}^{N} Z_i^2};$$
6)
$$a = g (\sin \alpha - \mu)$$
8)
$$a = g \sin \alpha - \mu g \cos \alpha$$

$$\sigma_a = \begin{cases} \sum\limits_{i=1}^{N} (Y_i - aZ_i)^2 \\ \frac{\sum\limits_{i=1}^{N} (Y_i - aZ_i)^2}{(N-1)\sum\limits_{i=1}^{N} Z_i^2}, \end{cases}$$

$$\Delta_a = 2\sigma_a$$
 $\Delta_a = \frac{\Delta a}{a} \cdot 100\%$

11)
$$a$$

$$12) Y(Z) = aZ$$

12)
$$x = \frac{12}{13}$$
 $\sin \alpha = \frac{(h_0 - h) - (h'_0 - h')}{x' - x}$

13)
$$\langle a \rangle = \frac{2(x_2 - x_1)}{\langle t_2 \rangle^2 - \langle t_1 \rangle^2}$$

$$\Delta a = \langle a \rangle \sqrt{\frac{(\Delta x_{\text{H}2})^2 + (\Delta x_{\text{H}1})^2}{(x_2 - x_1)^2} + 4\frac{(\langle t_1 \rangle \Delta t_1)^2 + (\langle t_2 \rangle \Delta t_2)^2}{\left(\langle t_2 \rangle^2 - \langle t_1 \rangle^2\right)^2}}$$
15)

$$B \equiv g = \frac{\sum_{i=1}^{N} a_i \sin \alpha_i - \frac{1}{N} \sum_{i=1}^{N} a_i \sum_{i=1}^{N} \sin \alpha_i}{\sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} \sin \alpha_i\right)^2};$$

17)
$$A = \frac{1}{N} \left(\sum_{i=1}^{N} a_i - B \sum_{i=1}^{N} \sin \alpha_i \right)$$

$$\sigma_g = \sqrt{\frac{\sum\limits_{i=1}^{N} d_i^2}{D(N-2)}},$$

$$19) d_i = a_i - (A + B \sin \alpha_i)$$

$$D = \sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} \sin \alpha_i \right)^2$$

$$\Delta g = 2\sigma_g$$

$$\varepsilon_g = \frac{\Delta g}{g} \cdot 100\%$$

23)
$$\langle t_{1,2} \rangle = \frac{1}{N} \sum_{i=1}^{N} t_{1_i,2_i}$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Линейка на рельсе	Механический	0–1,3 м	5 мм
2	Линейка на угольнике	Механический	0–250 мм	0,5 мм
3	ПКЦ-3 в режиме секундомера	Цифровой	0–5 c	0,1 c

7. Схема установки (перечень схем, которые составляют Приложение 1).

РИС. 2. Общий вид экспериментальной установки

- 1) Рельс с сантиметровой шкалой на лицевой стороне.
- 2) Тележка.
- 3) Воздушный насос.
- 4) Источник питания насоса ВС 4-12.
- 5) Опоры рельса.
- 6) Опорная плоскость (поверхность стола).
- 7) Фиксирующий электромагнит.
- 8) Оптические ворота.
- 9) Цифровой измерительный прибор ПКЦ-3.
- 10) Пульт дистанционного управления прибором ПКЦ-3.
- 11) Линейка угольник.

По рельсу «1» скользит тележка «2». Для уменьшения трения между поверхностями рельса и тележки создается воздушная подушка с помощью воздушного насоса «3», подключенного к источнику питания «4». Электрические провода, подключающие воздушный насос к источнику питания, на рисунке не показаны. Высота рельса над опорной плоскостью «6» регулируется с помощью винтовых ножек опор «5». Электромагнит «7» фиксирует тележку в начале шкалы. Тележка снабжена флажком с черными вертикальными рисками. Цифровой измерительный прибор «9» фиксирует момент времени, скорость и ускорение тележки при прохождении флажка через оптические ворота «8». Запуск тележки и изменение режимов осуществляется пультом дистанционного управления «10». Угольник «11» используется для измерения вертикальной координаты точек рельса.

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица №2. Параметры установки.

х, м	x', M	h_0, мм	h_0', мм
0,22	1	192	192

Таблица №3. Измерительные величины и результаты измерений. (Задание №1)

	V	1змеренные	величины		Рассчитанны	е величины
Nº	x_1, м	x_2, м	t_1, c	t_2, c	x_2 - x_1, м	$\frac{t_2^2 - t_1^2}{2}, \ c^2$
1	0,15	0,4	1,8	3,0	0,250	2,88
2	0,15	0,5	1,6	3,4	0,35	4,50
3	0,15	0,7	1,6	4,0	0,55	6,72
4	0,15	0,9	1,5	4,3	0,75	8,12
5	0,15	1,1	1,5	4,9	0,95	10,88

Таблица №4. Результаты прямых измерений. (Задание №2)

Таблица №4.	Результаты	прямых изк	лерен	ий. (Задани	ie №2)
N_пластин	h, мм	h', мм	Nº	t_1, c	t_2, c
			1	1,5	4,8
			2	1,5	4,9
1	201	192	3	1,8	5,1
			4	1,8	5,0
			5	1,7	4,9
			1	1,2	3,5
			2	1,1	3,3
2	211	193	3	1,2	3,4
			4	1,3	3,5
			5	1,2	3,4
			1	1,0	2,8
			2	1,0	2,7
3	221	194	3	0,9	2,6
			4	1,0	2,8
			5	1,0	2,8
			1	0,9	2,4
			2	0,8	2,4
4	230	195	3	0,9	2,5
			4	0,9	2,4
			5	0,9	2,4
			1	0,7	2,1
			2	0,8	2,1
5	238	195	3	0,7	2,1
			4	0,8	2,2
			5	0,8	2,2

Таблица №5. Результаты расчётов. (Задание №2)

N_пластин	sinα	$\langle t1 \rangle \pm \Delta t1$, c	$\langle t2 \rangle \pm \Delta t2$, c	$\langle a \rangle \pm \Delta a$, m/c^2
1	-0,012	1,66 ± 0,200	4,94 ± 0,157	0,023 ± 0,002
2	-0,023	1,2 ± 0,110	3,42 ± 0,124	0,068 ± 0,006
3	-0,035	0,98 ± 0,087	2,74 ± 0,130	0,168 ± 0,019
4	-0,045	0,88 ± 0,087	2,42 ± 0,087	0,295 ± 0,026
5	-0,055	0,76 ± 0,095	2,14 ± 0,095	0,475 ± 0,051

9. Графики.

График №1:

График №2:

10. Окончательные результаты.

Задание №1:

a =
$$[0.0869 \pm 0.004]$$
 m/c^2; $\mathcal{E}_{\alpha} = 4.98\%$; $\alpha = 0.90$;

Задание №2:

$$g$$
 = [9,800 ± 0,734] м/с^2; $\mathcal{E}_{\rm g}$ = 14,98%; α = 0,90; $|g_{\rm -}$ эксп — $g_{\rm -}$ табл $|$ = 0,020

11. Выводы и анализ результатов работы.

Вывод 1:

Движение тележки может быть рассмотрено как равноускоренное, потому что экспериментальные данные показывают, что точки на графике практически совпадают с линейной зависимостью перемещения. Кроме того, разница между квадратами значений времени, когда тележка проходит оптические ворота, незначительна, и погрешности абсолютных и относительных значений минимальны.

Вывод 2:

Результаты моих измерений могут считаться достоверными, поскольку разница между полученным экспериментальным значением ускорения свободного падения и табличным значением для Санкт-Петербурга намного меньше, чем абсолютная погрешность эксперимента.

Agnationer (Agnationer)
AP 1.02 (Agnationer) 8.09.2023

https://study.physics.itmo.ru

Таблица 3: Результаты прямых измерений (Задание 1)

No.	Измере	нные ве	личины	Рассчитанные величины		
245	x1, M	х2, м	t_1, c	t2, c	$x_2 - x_1$, M	$\frac{t_2^2-t_1^2}{2}$, c^2
1	0,15	0,4	1,8	3,0		
2	0,15	0,5	1,6	3,4		
3	0,15	0,7	1,6	4,0	0.1	
4	0,15	0,9	1,5	4,3		
5	0,15	1,1	1,5	4,9	Trea. N	Ties !

Tags. 2

X, M	1 x', u	ho, we	h'o , mal	
220	1000	192	192	

Физический факультет ФТМФ ИТМО

Таблица 4: Результаты прямых измерений (Задание 2)

Vпл	h, мм	h', мм	N ₂	t1, c	t2, c
			1	1.5	4,8
		32 3	2	1,5	4,9
1	410	192	3	1,6	5,1
	201		4	1,8	5,0
			5	1,7	4,9
			1	1,2	3,5
			2	1,1	3,3
2	211	193	3	1,2	3,4
			4	1,3	3,5
			5	1,2	3,4
		194	1	1,0	2,8
			2	1,0	2,7
	221		3	0,9	2,6
			4	1,0	2,8
			5	1,0	2,8
2		TE TE	1	0,9	2,4
			2	0,8	2,9
	230	195	3	0,9	2,5
			4	0,9	2,4
			5	0,9	2,4
			1	0,7	2,1
		-	2	0,8	2,1
	238	195	3	0,9	2,1
			4	0,8	2,2
		THE RESERVE	5	0,8	2,2

 $N_{\Pi\Pi}$ - количество пластин

h - высота на координате x=0,22 м

h' - высота на координате x'=1,00 м