

• Métodos computacionales: Alejandro Segura

• Integración

- a) Incluir el código Notebook (.ipynb).
- b) Guardar la información en una carpeta llamada Semana5_Nombre1_Nombre2
- c) Comprimir en formato zip la carpeta para tenga el nombre final Semana5_Nombre1_Nombre2.zip
- d) Hacer una sola entrega por grupo.

Contents

1	Integration		
	1.1	Cuadratura Gaussiana	4
	1.2	Gauss-Laguerre quadrature	5

${f List}$	of	Figures	,

1 Integration

1.1 Cuadratura Gaussiana

1. (30 Puntos) Dada la aproximación de cuadratura gausiana:

$$\int_{-1}^{1} f(x) = \sum_{k=0}^{n} w_k f(x_k),\tag{1}$$

donde $w_0, w_1, ... w_n$ son los coeficientes ponderados ó pesos. Use el paquete Symbol para realizar los siguientes cálculos:

- (a) Halle los ceros de los primeros 30 polinomios de Legendre.
- (b) Halle los pesos de ponderación para los primeros 30 polinomios de Legendre.
- 2. (10 puntos) Halle el polinomio $p_2(x) = 1 + 2x + x^2$ en la base de Legendre.
- 3. (30 Puntos) Estime la siguiente integral usando el método de cuadratura de Gaus-Legendre:

$$\int_0^\infty \frac{1}{x^4 + 1} \approx 1.110721 \tag{2}$$

Hint: Dividir la integral para tener dos integrales con límites [-1,1] y [0,1].

1.2 Gauss-Laguerre quadrature

1. (30 Points) In the black-body radiation problem the following integral appears:

$$\int_0^\infty \frac{x^3}{e^x - 1} dx = \frac{\pi^4}{15}.$$
 (3)

- a) Compute this integral using the Gauss-Laguerre quadrature method for n=3 evaluation points.
- b) For this estimation, plot the relative error $(\epsilon_r(n) = I_{estimated}(n)/I_{exact})$ as a function of the evaluation points, with n = [2, 3, ..., 10] [1].

Hint: For the Gauss-Laguerre method, the weights are given by:

$$w_k = \frac{x_k}{(n+1)^2 [L_{n+1}(x_k)]^2} \tag{4}$$

Figure 1: Accurracy vs n-points for the Gauss-Laguerre quadrature.