

Answer Keys and Solutions

nswer Keys and Solutions							J	EE Main Crash	Course
6. (1) Explanation of the correct option: Step1. Define the cube root of unity.									
Given, 1, ω and ω^2 are cube root of unity. $1 + \omega + \omega^2 = 0 \dots (i)$									
$ \left[\because \text{ From definition, } \omega = \frac{-1 + \mathrm{i}\sqrt{3}}{2}, \right. $	$\omega^2=rac{-1-\mathrm{i}\chi}{2}$	$\frac{\sqrt{3}}{2}$							
$1 \times \omega \times \omega^2 = 1 \dots (ii)$ Step 2. Find the value of $(3 + \omega^2 + \omega^4)^6$ $(3 + \omega^2 + \omega^4)^6$	mathongo								
$= (3 + \omega^2 + (\omega^3) (\omega))^6$ $= (3 + \omega^2 + \omega)^6 [\because \text{From}(2), \omega^3 = (2 + 1 + \omega^2 + \omega)^6]$	1)athongo								
$= (2+1)^6 [\because \text{From}(1), 1+\omega+\omega^2]$ $= 2^6 \text{mathong}$ $= 64$ Hence, Option(A) is the correct answer.									
// (1)athongo /// mathongo ///									
$\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2} i \text{ (cube root of unity)}$ Mathongo Mathongo Mathongo									
So. $1+\omega+\omega^2=0 \ \ ext{and} \ \omega^3=1$									
mathongo /// mathongo ///									
$\begin{vmatrix} 1 & 1 & 1 \ 1 & \omega & \omega^2 \ 1 & \omega^2 & \omega \end{vmatrix} = 3(\omega^2 - \omega)$									
So, $k=\omega^2-\omega=\left(-rac{1}{2}-rac{\sqrt{3}}{2}i ight)-\left(-rac{1}{2}+rac{\sqrt{3}}{2}i ight)$	$(\sqrt{3})^{1}$ thongo								
$ = -z \text{ mathongo } $ $ \cdot \textbf{(3) As, } 4 + 5\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{334} - 3\left(\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{334} $	$\frac{i\sqrt{3}}{2}\biggr)^{365}$								
$\Rightarrow 4+5(\omega)^{334}-3\left(\omega^2 ight)^{365}$									
$\Rightarrow 4 + 5\omega + 3\omega^2$ mathongo ///									
$1+2\omega+3\left(1+\omega+\omega^2\right)$ mathongo /// mathongo /// $1+2\left(-\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)$									
$\sqrt[m]{3}i$ thongo /// mathongo ///									
2. (4) $z = \frac{\sqrt{3}}{2} + \frac{i}{2} = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}$									
$\Rightarrow z^5 = \cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6} = \frac{-\sqrt{3} + i\sin\frac{5\pi}{6}}{2}$ $\text{and } z^8 = \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3} = -\left(\frac{1}{2}\right)$	$+i\sqrt{3}\over 2$								
$(1+iz+z^5+iz^8)^9=\left(1+rac{i\sqrt{3}}{2} ight)$	$=\frac{1}{2}-\frac{\sqrt{3}}{2}$	$+\frac{1}{2}$	$-rac{i}{2}+rac{\sqrt{3}}{2}igg)^9$						
$= \left(\frac{1+i\sqrt{3}}{2}\right)^9 = \cos 3\pi + \sin 3\pi =$	-1 mathongo		mathongo						

10.	(4) Thongo Let $ w = r$ and										
	then $z = r(\cos \theta + \cos \theta)$	$i\sin i$	$(\theta) + i\sin(\pi - \theta) = -\overline{w}$	$\theta))$							