TRƯỜNG ĐẠI HỌC BÁCH KHOA THÀNH PHỐ HỒ CHÍ MINH

BÁO CÁO THÍ NGHIỆM

Môn học: Thí nghiệm mạch điện tử

Giáo viên hướng dẫn: Nguyễn Phước Bảo Duy

Nhóm: Bộ thí nghiệm số O7

Danh sách thành viên nhóm

Họ và tên	MSSV	Ghi chú
Nguyễn Thanh Toàn	2014777	Remenber
Nguyễn Lê Thiện	1912112	Remenber

Bài 4: KHẢO SÁT ĐÁP ỨNG TẦN SỐ MẠCH KHUẾCH ĐẠI BJT GHÉP E CHUNG Phần 1: Mục tiêu thí nghiệm:

Khảo sát đáp ứng tần số mạch khuếch đại BJT ghép E chung

- Tính toán lý thuyết độ lợi áp dãy giữa của mạch, tần số cắt cao, tần số cắt thấp từ các thông số đã cho, các thông số còn thiếu lấy kết quả thí nghiệm của bài 1. So sánh kết quả khảo sát với lý thuyết.
- Hiểu được nguyên lý hoạt động của mạch khuếch đại BJT ghép E chung ở các tần số khác nhau: tần số thấp, tần số dãy giữa, tần số cao của mạch có hồi tiếp và không hồi tiếp.
- Dùng máy đo, đo phân cực DC của các mạch để đảm bảo mạch hoạt động ở chế độ tích cực.
- Thay đổi các giá trị của các tụ ghép CC, CE và tụ Cobext và quan sát sự khác nhau giữa các độ lợi áp của các mạch bao gồm mạch có hồi tiếp và không hồi tiếp.
- Biết cách xác định độ lợi áp dãy giữa (ở tần số dãy giữa).
- Thay đổi tần số từ 100Hz tới 100kHz và quan sát các giá trị của độ lợi áp, biết các xác định tần số cắt thông qua việc thay đổi biên độ ngõ ra.
- Sử dụng dao động kí để quan sát dạng sóng ngõ vào và ngõ ra ở các tần số khác nhau và tính được độ lợi áp.
- Từ các độ lợi áp tính được từ tần số thấp đến tần số cao, vẽ đáp ứng tần số của các mạch.
- Hiểu được ảnh hưởng của các tụ Cobext lên độ lợi áp của mạch và các tần số cắt.

Phần 3: Lựa chọn các dữ kiện đầu vào và phường pháp đo đạc các đại lượng:

3.1. Đo phân cực DC:

Ngắn mạch các thành phần DC, cấp nguồn DC 12V để mạch hoạt động, lắp mạch theo sơ đồ nguyên lý ở module thí nghiệm. Đo các thành phần ICQ IBQ VCEQ β VBE

- 3.2. Đo vo và vẽ đáp ứng tần số
- Đảm bảo mạch hoạt động ở chế độ AC tín hiệu nhỏ, đo Av tại tần số dãy giữa
- Chọn Vi từ vài chục mV đến vài trăm mV, tần số khoảng 1kHz đến 5kHz. Thông số cụ thể chọn ở phần dưới bảng.

	f(Hz)	100	200	300	500	1k	5k	10k	50k	70k	
- 1											i.

Phần 4: Kết quả thí nghiệm:

4.1. Đo phân cực DC:

Tiến hành thí nghiệm trên mạch khuếch đại E chung – hoạt động ở chế độ DC tích cực ta có bảng giá trị sau:

Icq	IBQ	VCEQ	β	V_{BE}
0.02mA	5.18mA	5.07V	259.5	0.628V

- 4.2. Đo vo và vẽ đáp ứng tần số
- a) Mạch khuếch đại ghép E chung không hồi tiếp

TN1: Cobext = 0 (F)

f(Hz)	100	200	300	500	1k	5k	10k	50k	70k
V _{o-pp}	2.9	4.3	4.9	5.45	5.55	5.6	5.65	5.1	4.9
Av	36.25	53.75	61.25	68.125	69.375	70	70.625	63.75	61.25
20 logA	31.19	34.61	35.74	36.666	36.824	36.9	36.98	36.09	35.74

Biểu đồ đáp ứng tần số:

TN2: Cobext = 15pF

					- 1	r -			
f(Hz)	100	200	300	500	1k	5k	10k	50k	70k
V _{o-pp}	2.75	4	4.7	5.2	5.5	5.6	5.55	4.3	3.7
Av	34.375	50	58.75	65	68.75	70	69.375	53.75	46.25
20 logA	30.725	33.98	35.38	36.26	36.745	36.9	36.824	34.61	33.3

Biểu đồ đáp ứng tần số TN2:

TN3: Cobext = 33pF

f(Hz)	100	200	300	500	1k	5k	10k	50k	70k
V _{o-pp}	2.65	3.6	4.1	4.5	4.65	5.5	5.4	3.5	3
Av	33.125	45	51.25	56.25	58.125	68.75	67.5	43.75	37.5
20 logA	30.4	33.06	34.19	35	35.287	36.745	36.58	32.82	31.48

Biểu đồ đáp ứng tần số:

Ghi chú: Vẽ biểu đồ với sự hổ trợ của Excell.

b) mạch khuyết đại ghép EC có hồi tiếp.

TN1: Cobext = O(F)

F(Hz)	100	200	300	500	1k	5k	10k	50k	70k
Vout	1.6	1.65	1.7	1.88	1.92	2	2	2	2
Av	15.38462	15.86538	16.34615	18.07692	18.46154	19.23077	19.23077	19.23077	19.23077
20LOG(AV)	23.74173	24.00901	24.26831	25.14249	25.32536	25.67993	25.67993	25.67993	25.67993

Biểu đồ đáp ứng tần số:

TN2: Cobext = 1nF

f(Hz)	100	200	300	500	1k	5k	10k	50k	70k
Vo-pp(V)	0.756	0.836	0.836	0.876	0.876	0.718	0.538	135.6m	99.6m
Av	17.260	19.087	19.087	20	20	16.393	12.283	3.096	2.274
20logA _v	24.74	25.614	25.614	26.02	26.02	24.293	21.786	9.816	7.136

Đồ thị đáp ứng tần số:

Phần 5. Phân tích so sánh vá kết luân

5.1. Đo phân cực DC

Kết quả đo giống với lý thuyết, có sự thay đổi do đặc trưng của mạch và thiết bị đo chưa đo được chính xác.

- 5.2. Đo vo, Av và vẽ đáp ứng tần số
- a) Mạch khuếch đại E chung không hồi tiếp
- + Độ lợi áp tại tần số dãy giữa có sự sai lệch so với lý thuyết nhưng không quá lớn do β thay đổi chứ không cố định, sai số của máy đo, quan sát bằng dao động ký nên không thể chính xác tuyệt đối.
- + Điện áp ngõ ra ngược pha so với điện áp ngõ vào phù hợp với bài toán.
- + Khi Cobext=0, tần số cắt cao quá lớn nên không thể đo chính xác giá trị là bao nhiêu.
- + Từ đáp ứng tần số thu được ta thấy khi lắp thêm tụ Cobext thì ở tần số cao độ lợi áp và tần số cắt trên giảm so với khi Cobext=0.

Cụ thể, khi Cobext =0, tần số cắt trên fHC = ∞ khi Cobext =15pF, tần số cắt trên fHC = 65.3 kHz khi

Cobext = 30pF, tần số cắt trên fHC = 45.9 kHz

- + Trường hợp Cobext=15pF do sai số trong quá trình đo dẫn đến hình dạng đáp ứng tần số không như mong muốn.
- + Trong quá trình tiến hành thí nghiệm có nhiều lần dây bị lỏng dẫn đến dạng sóng bị nhiễu hoặc không quan sát được.
- b) Mạch khuếch đại E chung có hồi tiếp

Từ các công thức của phần cơ sở lý thuyết và ICQ tính được kết quả đo gần giống với lý thuyết, sai lệch ít do thiết bị đo và thay đổi, các dây dẫn bị lỏng nên kết quả quan sát bị nhiễu, ảnh hưởng bởi nhiệt độ,...

Vậy kết quả đo gần giống với lý thuyết, sai lệch do thiết bị đo, sóng bị nhiễu, không ổn định.

Phần 6: Phân công nhiệm vụ và đánh giá chéo.

Thí nghiệm trên lớp và bài báo cáo đều được phần việc đều nhau.

Bảng chấm điểm chéo:

Thành viên	Người chấm	Điểm số(1)	Chữ ký xác nhận người chấm	Chữ ký đồng ý với số điểm được chấm
Nguyễn Thanh Toàn	Nguyễn Lê Thiện	100%		
Nguyễn Lê Thiện	Nguyễn Thanh Toàn	100%		

(1): Đơn vị là % số điểm chung của bài báo cáo.