CS772: Deep Learning for Natural Language Processing (DL-NLP)

Introduction cntd, flavour of neural computation, perceptron

Pushpak Bhattacharyya

Computer Science and Engineering

Department

IIT Bombay

Week 2 of 9th Jan, 2023

Course Content: Task vs. Technique Matrix

Task (row) vs. Technique (col) Matrix	Rules Based/Kn owledge- Based	Classical ML				Deep Learning		
		Perceptron	Logistic Regression	SVM	Graphical Models (HMM, MEMM, CRF)	Dense FF with BP and softmax	RNN- LSTM	CNN
Morphology								
POS								
Chunking								
Parsing								
NER, MWE								
Coref								
WSD								
Machine Translation								
Semantic Role Labeling								
Sentiment								
Question Answering								

Books

 1. Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016.

2. Dan Jurafsky and James Martin,
 Speech and Language Processing, 3rd Edition, 2019.

Books (2/2)

 4. Christopher Manning and Heinrich Schutze, Foundations of Statistical NaturalLanguage Processing, MIT Press, 1999.

 5. Pushpak Bhattacharyya, Machine Translation, CRC Press, 2017.

Journals and Conferences

 Journals: Computational Linguistics, Natural Language Engineering, Journal of Machine Learning Research (JMLR), Neural Computation, IEEE Transactions on Neural Networks

 Conferences: ACL, EMNLP, NAACL, EACL, AACL, NeuriPS, ICML

Useful NLP, ML, DL libraries

- NLTK
- Scikit-Learn
- Pytorch
- Tensorflow (Keras)
- Huggingface
- Spacy
- Stanford Core NLP

Nature of DL-NLP

3 Generations of NLP

- Rule based NLP is also called Model Driven NLP
- Statistical ML based NLP (Hidden Markov Model, Support Vector Machine)
- Neural (Deep Learning) based NLP
 Illustration with POS tagging

Neural Parsing

Data

```
[The man]<sub>NP</sub>
                      saw<sub>VBD</sub>
                      [[the boy]<sub>NP</sub>
           ]_{VP}
           [with [a telescope]<sub>NP</sub>]<sub>PP</sub>
]_{\mathsf{VP}}
```

Classification Decisions

- Are there any brackets to be inserted at a position p?
- If the answer to (a) is yes, which bracket- opening or closing?
- If closing bracket, which label to insert

Steps (1/2)

- In the first pass, the representation from two consecutive word-units is obtained by (a) concatenating the vectors of these words, and (b) passing the concatenation through the recurrent n/w.
- The resulting combination-unit is (a) premultiplied by a *learnt* weight vector, (b) the product added with a bias term, (c) the result passed through a non-linear function, to obtain a score for the unit.

Steps (2/2)

- The highest scoring combination-unit is retained and a new sequence obtained by deleting the word-units constituting the combination-unit.
- The new sequence is treated like in the previous pass, combining bi-grams.
- Retained combination-units also pass through a feedforward network with softmax final layer, to obtain the labels NP, VP, PP etc.
- The process stops with the finding of the start symbol S.

Example (1/2)

- ₀ the ₁ man ₂ saw ₃ the ₄ boy ₅ with ₆ a ₇ telescope ₈
- $_0$ C^1_{02} $_1$ C^1_{13} $_2$ C^1_{24} $_3$ C^1_{35} $_4$ C^1_{46} $_5$ C^1_{57} $_6$ C^1_{68} $_{7;}$ assume C^1_{02} ('the man') has the highest score; the upper right suffix '1' indicates pass-1; 'the man' is replaced with its representation C^1_{02} along with the label NP
- ₀C¹₀₂NP ₁ saw ₂ the ₃ boy ₄ with ₅ a ₆ telescope ₇; new sequence
- (after combining, scoring and filtering) ₀ C¹₀₂NP ₁ saw ₂ C²₂₄NP ₃ with ₄ a ₅ telescope ₆; upper right suffix '2' indicates pass-2

Example (2/2)

- $_0C^1_{02}NP$ $_1$ saw $_2C^2_{24}NP$ $_3$ with $_4C^3_{46}NP$ $_5$; 3rd pass; 'a telescope' is an NP
- ₀ C¹₀₂ NP ₁ C⁴₁₃ VP ₂ with ₄ C³₄₆ NP ₅; 4th
 pass; 'saw' and NP ('a boy') give rise to a VP
- ⁰ C¹₀₂ NP ₁ C⁴₁₃ VP ₂ C⁵₂₅ PP ₃; 5th pass; with and NP ('a telescope') produce a VP
- $_0C^1_{02}$ _NP $_1C^6_{13}$ _VP $_2$; 6th pass; VP ('saw the boy') + PP ('with a telescope') \rightarrow VP
- $_0C^7_{02}$ S; 7th pass; $S \rightarrow NP VP$; S found; TERMINATE

RcNN based parse tree of "the man...": Parse Tree-1 (man has telescope)

Neural parsing objective function

$$J = \sum_{i} [s(x_{i}, y_{i}) - \max_{y \in A(x_{i})} (s(x_{i}, y) + \Delta(y, y_{i}))]$$

$$s(x_i, y_i) = \sum_{d \in T(y_i)} s_d(c_p, c_q)$$

RcNN->RNN->FFNN->Perceptron

The Perceptron

The Perceptron Model

A perceptron is a computing element with input lines having associated weights and the cell having a threshold value. The perceptron model is motivated by the biological neuron.

 $\Sigma w_i x_i$

- Step function / Threshold function
- y = 1 for Σ wixi $>= \theta$
- =0 otherwise

Features of Perceptron

- Input output behavior is discontinuous and the derivative does not exist at Σwixi = θ
- Σwixi θ is the net input denoted as net

 Referred to as a linear threshold element linearity because of x appearing with power 1

 y= f(net): Relation between y and net is nonlinear

Computation of Boolean functions: AND

X1	x2	y
0	0	0
0	1	0
1	0	0
1	1	1

The parameter values (weights &thresholds) need to be found.

Computing parameter values

- $w1 * 0 + w2 * 0 <= \theta \rightarrow \theta >= 0$; since y=0
- $w1 * 0 + w2 * 1 <= \theta \rightarrow w2 <= \theta$; since y=0

• $w1 * 1 + w2 * 0 <= \theta \rightarrow w1 <= \theta$; since y=0

- $w1 * 1 + w2 * 1 > \theta \rightarrow w1 + w2 > \theta$; since y=1
- w1 = w2 = 0.5

 satisfy these inequalities and find parameters to be used for computing AND function.

Other Boolean functions

- OR can be computed using values of w1
 = w2 = 1 and = 0.5
- XOR function gives rise to the following inequalities:

$$w1 * 0 + w2 * 0 <= \theta \rightarrow \theta >= 0$$
 $w1 * 0 + w2 * 1 > \theta \rightarrow w2 > \theta$
 $w1 * 1 + w2 * 0 > \theta \rightarrow w1 > \theta$
 $w1 * 1 + w2 * 1 <= \theta \rightarrow w1 + w2 <= \theta$

Threshold functions

- n # Boolean functions (2^2^n) #Threshold Functions (2n2)
- 1 4
- 2 16 14
- 3 256 128
- 4 64K 1008
- Functions computable by perceptrons- threshold functions,
- #TF becomes negligibly small for larger values of #BF.
- For n=2, all functions except XOR and XNOR are

 $\Sigma w_i x_i$

- Step function / Threshold function
- y = 1 for Σ wixi $>= \theta$
- =0 otherwise

Features of Perceptron

- Input output behavior is discontinuous and the derivative does not exist at Σwixi = θ
- $\Sigma_{1,n} w_i x_i \theta$ is the net input denoted as net

- Referred to as a linear threshold element linearity because of x appearing with power 1
- y= f(net): Relation between y and net is nonlinear

Perceptron Training Algorithm (PTA)

Preprocessing:

1. The computation law is modified to

$$y = 1$$
 if $\sum w_i x_i > \theta$
 $y = 0$ if $\sum w_i x_i < \theta$

PTA – preprocessing cont...

2. Absorb θ as a weight

3. Negate all the zero-class examples

Example to demonstrate preprocessing

OR perceptron

```
1-class <1,1>, <1,0>, <0,1>
0-class <0,0>
```

Augmented x vectors:-

```
1-class <-1,1,1> , <-1,1,0> , <-1,0,1> 
0-class <-1,0,0>
```

Negate 0-class:- <1,0,0>

Example to demonstrate preprocessing cont..

Now the vectors are

$$X_0$$
 X_1 X_2 X_1 -1 0 1 X_2 -1 1 0 X_3 -1 1 1 X_4 1 0 0

Perceptron Training Algorithm

- 1. Start with a random value of w ex: <0,0,0...>
- 2. Test for wx_i > 0If the test succeeds for i=1,2,...nthen return w
- 3. Modify w, $w_{next} = w_{prev} + x_{fail}$

PTA on NAND

Preprocessing

NAND Augmented: NAND-0 class Negated

Vectors for which W=<W2~W1~W0> has to be found such that $W.~V_i>0$

PTA Algo steps

Algorithm:

1. Initialize and Keep adding the failed vectors until W. Vi > 0 is true.

Step 0: W =
$$<0, 0, 0>$$

W1 = $<0, 0, 0> + <0, 0, -1>$ {V0 Fails}
= $<0, 0, -1>$
W2 = $<0, 0, -1> + <-1, -1, 1>$ {V3 Fails}
= $<-1, -1, 0>$
W3 = $<-1, -1, 0> + <0, 0, -1>$ {V0 Fails}
= $<-1, -1, -1>$
W4 = $<-1, -1, -1> + <0, 1, -1>$ {V1 Fails}
= $<-1, 0, -2>$

Trying convergence

$$W5 = <-1, 0, -2> + <-1, -1, 1>$$
 {V3 Fails}
$$= <-2, -1, -1>$$

$$W6 = <-2, -1, -1> + <0, 1, -1>$$
 {V1 Fails}
$$= <-2, 0, -2>$$

$$W7 = <-2, 0, -2> + <1, 0, -1>$$
 {V0 Fails}
$$= <-1, 0, -3>$$

$$W8 = <-1, 0, -3> + <-1, -1, 1>$$
 {V3 Fails}
$$= <-2, -1, -2>$$

$$W9 = <-2, -1, -2> + <1, 0, -1>$$
 {V2 Fails}
$$= <-1, -1, -3>$$

Trying convergence

$$W_{10} = \langle -1, -1, -3 \rangle + \langle -1, -1, 1 \rangle$$
 {V3 Fails}
$$= \langle -2, -2, -2 \rangle$$
 W11 = $\langle -2, -2, -2 \rangle + \langle 0, 1, -1 \rangle$ {V1 Fails}
$$= \langle -2, -1, -3 \rangle$$
 W12 = $\langle -2, -1, -3 \rangle + \langle -1, -1, 1 \rangle$ {V3 Fails}
$$= \langle -3, -2, -2 \rangle$$
 W13 = $\langle -3, -2, -2 \rangle + \langle 0, 1, -1 \rangle$ {V1 Fails}
$$= \langle -3, -1, -3 \rangle$$
 W14 = $\langle -3, -1, -3 \rangle + \langle 0, 1, -1 \rangle$ {V2 Fails}
$$= \langle -2, -1, -4 \rangle$$

W15 =
$$<-2$$
, -1 , $-4> + <-1$, -1 , $1>$ {V3 Fails}
= <-3 , -2 , $-3>$
W16 = <-3 , -2 , $-3> + <1$, 0 , $-1>$ {V2 Fails}
= <-2 , -2 , $-4>$
W17 = <-2 , -2 , $-4> + <-1$, -1 , $1>$ {V3 Fails}
= <-3 , -3 , $-3>$
W18 = <-3 , -3 , $-3> + <0$, 1 , $-1>$ {V1 Fails}
= <-3 , -2 , $-4>$

$$W2 = -3$$
, $W1 = -2$, $W0 = \Theta = -4$

Succeeds for all vectors

PTA convergence

Statement of Convergence of PTA

Statement:

Whatever be the initial choice of weights and whatever be the vector chosen for testing, PTA converges if the vectors are from a linearly separable function.

Proof of Convergence of PTA

- Suppose w_n is the weight vector at the nth step of the algorithm.
- At the beginning, the weight vector is w₀
- Go from w_i to w_{i+1} when a vector X_j fails the test $w_i X_j > 0$ and update w_i as

$$W_{i+1} = W_i + X_j$$

- Since Xjs form a linearly separable function,
- there exits w* s.t. w*X_j > 0 for all j

Proof of Convergence of PTA (cntd.)

Consider the expression

$$G(w_n) = \underline{w_n \cdot w^*} \\ |w_n|$$

where w_n = weight at nth iteration

•
$$G(w_n) = w_n \cdot w^* \cdot cos\theta$$

$$|w_n|$$

where \Box = angle between w_n and w^*

- $G(w_n) = |w^*|$. cose
- $G(w_n) \le |w^*|$ (as $-1 \le \cos \le 1$)

Behavior of Numerator of G

$$w_n \cdot w^* = (w_{n-1} + X^{n-1}_{fail}) \cdot w^*$$
 $= w_{n-1} \cdot w^* + X^{n-1}_{fail} \cdot w^*$
 $= (w_{n-2} + X^{n-2}_{fail}) \cdot w^* + X^{n-1}_{fail} \cdot w^* \cdot \dots$
 $= w_0 \cdot w^* + (X^0_{fail} + X^1_{fail} + \dots + X^{n-1}_{fail}) \cdot w^*$
 $w^* \cdot X^i_{fail}$ is always positive: note carefully

- Suppose $|X_j| \ge \delta_{min}$, where δ_{min} is the minimum magnitude.
- Num of $G \ge |w_0 \cdot w^*| + n \delta_{min} |w^*|$
- So, numerator of G grows with n.

Behavior of Denominator of G

- $$\begin{split} \bullet & & |w_n| = (w_n \cdot w_n)^{1/2} \\ & = [(w_{n-1} + X^{n-1}_{fail})^2]^{1/2} \\ & = [(w_{n-1})^2 + 2 \cdot w_{n-1} \cdot X^{n-1}_{fail} + (X^{n-1}_{fail})^2]^{1/2} \\ & \leq [(w_{n-1})^2 + (X^{n-1}_{fail})^2]^{1/2} \qquad (as \ w_{n-1} \cdot X^{n-1}_{fail} \leq 0 \) \\ & \leq [(w_0)^2 + (X^0_{fail})^2 + (X^1_{fail})^2 + \dots + (X^{n-1}_{fail})^2]^{1/2} \end{split}$$
- $|X_j| \le \delta_{max}$ (max magnitude)
- So, Denom $\leq [(w_0)^2 + n \delta_{max}^2)]^{1/2}$
- Denom grows as n^{1/2}

Some Observations

- Numerator of G grows as n
- Denominator of G grows as n^{1/2}
 - => Numerator grows faster than denominator
- If PTA does not terminate, G(w_n) values will become unbounded.

Some Observations contd.

- But, as |G(w_n)| ≤ |w*| which is finite, this is impossible!
- Hence, PTA has to converge.
- Proof is due to Marvin Minsky.

Convergence of PTA proved

• Whatever be the initial choice of weights and whatever be the vector chosen for testing, PTA converges if the vectors are from a linearly separable function.

Possible project ideas

Semantics Extraction using Universal Networking Language

Sentence: I went with my friend, John, to the bank to withdraw some money but was disappointed to find it closed.

Current work:

Combine Machine learning with rule Based technique (Janardhan)

Agt(go,l)
Ptn(go,friend)
Nam(friend,John)
Plt(go,bank)
Pur(go, withdraw)
Obj(withdraw,money0
Mod(money,some)
And(go,disappoint)

Sentiment Analysis

"The water is boiling.": Objective

"He is boiling with anger.": Negative

Current work:

- 1. Tweet and Blog Sentiment
- 2. Indian Language Sentiment Analysis
- 3. Word Sense and Sentiment
- 4. Thwarting and (Subhabrata and Akshat, Balamurali)

Text Entailment

	TEXT	HYPOTHESIS	ENTAIL- MENT
	. The Hubble is the only large visible light and ultra-violet space telescope we have in operation.	Hubble is a Space telescope.	True
2	Google files for its long awaited IPO.	Google goes public.	True
3	After the deal closes, Teva will earn about \$7 billion a year, the company said.	Teva earns \$7 billion a year.	False

Current work: Do entailment from Semantic Graphs (Arindam, Janradhan)

Indowordnet and Multilingual Word Sense Disambiguation

Current work: Linking wordnets with SUMO Ontology; using resources of one Language for another for WSD (Salil Joshi, Arindam Chatterjee, Brijesh, Mitesh)

Cross Lingual Information Retrieval

Architecture of Sandhan

Current work: Performance Enhancement; Query expansion and disambiguation (Yogesh, Arjun, Swapnil)

Machine Translation

Large Projects funded by Yahoo, Xerox, Ministry of IT

Current work:

- 1. Indian Language to Indian Language
- 2. Statistical MT
- 3. Crowdsourcing and MT
- 4. Semantics and SMT(Mitesh, Anoop, Victor, Somya, Abhijit, Raj, Rahul)

Sites:

http://www,cse.iitb.ac.in/~pb

http://www.cfilt.iitb.ac.in