

Project 4 (Group 2)

PREDICTING WEST NILE VIRUS IN CHICAGO

Problem Statement

- To build an effective classifier and make predictions of outbreaks of the West Nile virus in mosquitoes.
- People infected with the virus can develop fever and serious neurological illnesses leading to death.
- Success will be evaluated via ROC-AUC and sensitivity.

Data Cleaning & Preprocessing

EDA (Training Dataset)

CARRIERS OF VIRUS:

- CULEX PIPIENS/RESTUANS
- CULEX RESTUANS
- CULEX PIPIENS

PEAKS IN AUGUST

EDA (Training Dataset)

SILHOUETTE -0.129 SCORE:

NUMBER OF 291 OUTLIERS:

NUMBER OF 64 **CLUSTERS:**

EDA (Training Dataset)

CLUSTERS

OUTLIERS

EDA (Weather Dataset)

OVERLAPS BETWEEN:

- wetbulb & dewpoint
- wetbulb & tavg

EDA (Weather Dataset)

HIGH CORRELATION BETWEEN:

- wetbulb & dewpoint
- wetbulb & tavg

EDA (Spray Dataset)

SPRAY AND TRAP LOCATIONS

- K Nearest
 Neighbours
- LogisticRegression
- Extra Trees
- Random Forests
- Decision Trees
- ADA Boost

- Accuracy

- ROC AUC

Sensitivity

Applied SMOTE to Imbalanced Data Chose Classifier Models

Evaluated Models

	model	parameters	Best AUC cross validation score	Training dataset accuracy	Validation dataset accuracy	Training dataset AUC score	Validation dataset AUC score	Validation dataset sensitivity
0	lr	{'lr_solver': 'liblinear', 'lr_penalty': 'l1', 'lr_C': 1274.2749857031336}	0.795892	0.705891	0.681931	0.705891	0.667216	0.650794
1	etree	{'etree_min_samples_split': 6, 'etree_min_samples_leaf': 1, 'etree_max_features': None, 'etree_max_depth': 50}	0.975960	0.981863	0.885726	0.981863	0.650928	0.388889
2	dtree	{'dtree_min_samples_split': 20, 'dtree_min_samples_leaf': 5,	0.941361	0.932313	0.859736	0.932313	0.648473	0.412698
3	knn	{'knn_n_neighbors': 7}	0.938260	0.903511	0.787129	0.903511	0.647685	0.492063
4	ada	{'ada_n_estimators': 2000, 'ada_learning_rate': 1.5}	0.977900	0.931442	0.898927	0.931442	0.639138	0.349206
5	rf	{'rf_min_samples_split': 6, 'rf_min_samples_leaf': 1, 'rf_max_features': None, 'rf_max_depth': 2000}	0.977095	0.983604	0.896040	0.983604	0.615110	0.301587

	model	parameters	Best AUC cross validation score	Training dataset accuracy	Validation dataset accuracy	Training dataset AUC score	Validation dataset AUC score	Validation dataset sensitivity
0	lr	{'lr_solver': 'liblinear', 'lr_penalty': 'l1', 'lr_C': 1274.2749857031336}	0.795892	0.705891	0.681931	0.705891	0.667216	0.650794
1	etree	{'etree_min_samples_split': 6, 'etree_min_samples_leaf': 1, 'etree_max_features': None, 'etree_max_depth': 50}	0.975960	0.981863	0.885726	0.981863	0.650928	0.388889
2	dtree	{'dtree_min_samples_split': 20, 'dtree_min_samples_leaf': 5,	0.941361	0.932313	0.859736	0.932313	0.648473	0.412698
3	knn	{'knn_n_neighbors': 7}	0.938260	0.903511	0.787129	0.903511	0.647685	0.492063
4	ada	{'ada_n_estimators': 2000, 'ada_learning_rate': 1.5}	0.977900	0.931442	0.898927	0.931442	0.639138	0.349206
5	rf	{'rf_min_samples_split': 6, 'rf_min_samples_leaf': 1, 'rf_max_features': None, 'rf_max_depth': 2000}	0.977095	0.983604	0.896040	0.983604	0.615110	0.301587

Our model achieved a Kaggle Greatness Index (KGI) score of **0.64734**

Quantitative Benefit Factors

VS

Qualitative COST Factors

Qualitative Benefit Factors

luman and Qualicecologic CO

Qualitativa COST Factors - Loss in Income
- Hosp/Medical
Expenses
(WNV & non WNV,
businesses, tourism)
- US\$1.23mil

Qualitative Benefit Factors Difficulty
in quantifying
Increased quality
of life
Increased
productivity

Estimated cost of pesticides

2 methods
Cost of Zenivex E4
Cost of pesticide trucks
US\$1.6\$3.25mil

- Loss in Income
- Hosp/Medical
Expenses
(WNV & non WNV,
businesses, tourism)

- US\$1.23mil

Qualitative
Benefit
Factors

Difficulty
in quantifying
Increased quality
of life
Increased
productivity

Estimated cost of pesticides

2 methods

Cost of **Zenivex E**

trucks

US\$1.6

\$3.25mil

Quantitative COST

VS

Human and ecologic

cost

Factors

Qualitative Benefit Factors Difficulty
in quantifying
Increased quality
of life
- Increased
productivity

Estimated cost of pesticides

2 methods

Cost of **Zenivex E**

trucks

US\$1.6-

\$3.25mil

Quantitative COST

VS

Human and ecologic risks

COSTFactors

Aversion

- **Hosp/Me**Expense
(WNV & non

US\$1.23mil

Qualitative
Benefit
Factors

Difficulty
in quantifying
Increased quality
of life
Increased
productivity

Factors

risks

Quantitative Benefit Factors **Aversion**

Loss in Income
 Hosp/Medical
 Expenses
 (WNV & non WNV,
 businesses, tourism)

US\$1.23mil

Qualitative Benefit Factors Difficulty
in quantifying
Increased quality
of life
Increased
productivity

VS

Quantitative
Benefit
Factors

- Loss in Income
- Hosp/Medical
Expenses
(WNV & non WNV,
businesses, tourism)

US\$1.23mil

Qualitative
Benefit
Factors

Difficulty
in quantifying
Increased quality
of life
Increased
productivity

US\$1.6-\$3.25mil **US\$1.23mil**

30 to 60

cases go unreported.

Conclusion

Logistic Regression with sensitivity rate of 65%

Limitations:

- 1. Use of time-series data.
- Inclusion of all dates in the training and testing dataset.

Further Explorations:

The effect of number of mosquitoes on presence of WNV

TARGET
GEOGRAPHICAL
CLUSTERS WITH WNV

- CULEX PIPIENS/RESTUANS
- CULEX RESTUANS
- CULEX PIPIENS

INCREASE SPRAYING FREQUENCY IN AUGUST

USE OF LARVICIDES VS ADULTICIDES

Thank You