

Global United Technology Services Co., Ltd.

Report No.: GTS201608000121E01

FCC REPORT

Quantum Creations LLC. **Applicant:**

Address of Applicant: 16410 NE 19th Avenue Suite 102 North, Miami Beach, Florida

United States 33162

Equipment Under Test (EUT)

Product Name: PC Stick

Model No.: A-1063-AAP, A-1063-AAP-1, A-1063-AAP-2, A-1063-AAP-3,

A-1063-AAP-4, A-1063-AAP-5, A-1063-AAP-6, A-1063-AAP-7,

A-1063-AAP-8

Trade Mark: Azulle

FCC ID: 2AFJI20161063

FCC CFR Title 47 Part 15 Subpart C Section 15.407:2015 **Applicable standards:**

Date of sample receipt: August 25, 2016

Date of Test: August 26-September 02, 2016

September 07, 2016 Date of report issue:

PASS * Test Result:

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	September 07, 2016	Original

Prepared By:	Tiger. Che	Date:	September 07, 2016
	Project Engineer		
	,		

Check By: Date: September 07, 2016

3 Contents

			Page
1	CO	VER PAGE	1
2	VE	RSION	2
3	CO	NTENTS	3
4	TES	ST SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GE	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST MODE	
	5.4	TEST FACILITY	
	5.5	TEST LOCATION	
	5.6 5.7	DESCRIPTION OF SUPPORT UNITS	
	5. <i>1</i> 5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	TEST INSTRUMENTS LIST	
5	TES	ST RESULTS AND MEASUREMENT DATA	9
	5.1	Antenna requirement:	9
	5.2	CONDUCTED EMISSIONS	
	5.3	EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH	
	5.4	PEAK TRANSMIT POWER	
	5.5	PEAK POWER SPECTRAL DENSITY	
	5.6	BAND EDGE	
	5.7 5.8	RADIATED EMISSIONFREQUENCY STABILITY	
6	TES	ST SETUP PHOTO	
7	E11-	T CONSTRUCTIONAL DETAILS	60
•		I GONGINOGIONAL DETAILS	DU

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	PASS
AC Power Line Conducted Emission	15.207	PASS
Peak Transmit Power	15.407(a)(1)	PASS
Power Spectral Density	15.407(a)(1)	PASS
Undesirable Emission	15.407(b)(6), 15.205/15.209	PASS
Radiated Emission	15.205/15.209	PASS
Band Edge	15.205	PASS
Frequency Stability	15.407(f)	PASS

Remark:

Pass: The EUT complies with the essential requirements in the standard.

Fail: The EUT does not comply with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 40GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

Remark: Test according to ANSI C63.10:2013 and ANSI C63.4:2014

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 General Information

5.1 Client Information

Applicant:	Quantum Creations LLC.		
Address of Applicant:	16410 NE 19th Avenue Suite 102 North, Miami Beach, Florida United States 33162		
Manufacturer:	SHENZHEN MELE STAR TECHNOLOGY LIMITED		
Address of Manufacturer:	3F,Bldg#1,28 Cuijing Road, Pingshan New District, Shenzhen, PR China.		
Factory:	Shenzhen MeLE Precision Technology Limited		
Address of Factory:	3F East,Bldg#1,28 Cuijing Road, Pingshan New District, Shenzhen, PR China.		

5.2 General Description of EUT

Product Name:	PC Stick
Model No.:	A-1063-AAP, A-1063-AAP-1, A-1063-AAP-2, A-1063-AAP-3,
	A-1063-AAP-4, A-1063-AAP-5, A-1063-AAP-6, A-1063-AAP-7,
	A-1063-AAP-8
Operation Frequency:	802.11a/802.11n(HT20)/802.11ac(HT20): 5180MHz ~ 5240MHz;
	802.11n(HT40)/ 802.11ac(HT40): 5190MHz ~ 5230MHz
	802.11ac(HT80): 5210MHz
Channel numbers:	802.11a/802.11n(HT20)/802.11ac(HT20): 4;
	802.11n(HT40)/ 802.11ac(HT40): 2
	802.11ac(HT80): 1
Channel separation:	802.11a/802.11n(HT20)/802.11ac(HT20): 20MHz;
	802.11n(HT40)/ 802.11ac(HT40): 40MHz
	802.11ac(HT80): 80MHz
Modulation technology:	OFDM
Antenna Type:	ANT 1: FPCB Antenna
	ANT 2: Integral Antenna
Antenna gain:	ANT 1: 0.5dBi
	ANT 2: 3.7dBi
Power supply:	SWITCHING ADAPTER:
	Model No.:FJ-SW0503000N
	Input: AC 100~240V~50/60Hz 0.6A Max
	Output: DC 5V 3A

REMARK:

802.11a:SISO MODE ONLY

802.11n(HT20)/802.11ac(HT20)/802.11n(HT40)/ 802.11ac(HT40)/802.11ac(HT80): MIMO MODE ONLY

5.3 Test mode

Transmitting mode	Keep the EUT in MIMO transmitting with modulation.
	EUT was test with 98% duty cycle at its maximum power control level.
Domonto Divina the test	the test values was timed from OEO/ to 11EO/ of the remained mated example.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, the duty cycle is 98% and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Description of Support Units

None.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTS201608000121

Page 6 of 68

5.10 Test Instruments list

Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 29 2016	June. 28 2017
4	Spectrum analyzer	Agilent	E4447A	GTS516	June. 29 2016	June. 28 2017
5	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 29 2016	June. 28 2017
6	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 29 2016	June. 28 2017
7	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June. 29 2016	June. 28 2017
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 29 2016	June. 28 2017
9	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
10	Coaxial Cable	GTS	N/A	GTS213	June. 29 2016	June. 28 2017
11	Coaxial Cable	GTS	N/A	GTS211	June. 29 2016	June. 28 2017
12	Coaxial cable	GTS	N/A	GTS210	June. 29 2016	June. 28 2017
13	Coaxial Cable	GTS	N/A	GTS212	June. 29 2016	June. 28 2017
14	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 29 2016	June. 28 2017
15	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June. 29 2016	June. 28 2017
16	Amplifier (18-40GHz)	MITEQ	AMF-6F-18004000-29- 8P	GTS534	June. 29 2016	June. 28 2017
17	Band filter	Amindeon	82346	GTS219	June. 29 2016	June. 28 2017
18	Constant temperature and humidity box	Oregon Scientific	BA-888	GTS248	June. 29 2016	June. 28 2017
19	D.C. Power Supply	Instek	PS-3030	GTS232	June. 29 2016	June. 28 2017
20	Universal radio communication tester	Rohde & Schwarz	CMU200	GTS235	June. 29 2016	June. 28 2017
21	Splitter	Agilent	11636B	GTS237	June. 29 2016	June. 28 2017
22	Power Meter	Anritsu	ML2495A	GTS540	June. 29 2016	June. 28 2017
23	Power Sensor	Anritsu	MA2411B	GTS541	June. 29 2016	June. 28 2017

Con	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date	Cal.Due date
				_	(mm-dd-yy)	(mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May 16 2014	May 15 2019
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June 29 2016	June 28 2017
3	Pulse Limiter	R&S	ESH3-Z2	GTS224	June 29 2016	June 28 2017
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 29 2016	June 28 2017
5	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June 29 2016	June 28 2017
6	Coaxial Cable	GTS	N/A	GTS227	June 29 2016	June 28 2017
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Thermo meter	KTJ	TA328	GTS233	June 29 2016	June 28 2017

Gen	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	cry No. Cal.Date Cal.Due date (mm-dd-yy)		
	1.01						
1	Barometer	ChangChun	DYM3	GTS257	June 29 2016	June 28 2017	

5 Test results and Measurement Data

5.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is Integral antenna. The best case gain of the antenna is 3.7dBi.

ANT 1 ANT 2

Directional Gain Calculations is below:

The same digital data are transmitted from the two antennas in a given symbol period, thus the antennas is categorization as correlated.

Accroding to KDB 662911 D01 Multiple Transmitter Output v02r01 Section F)2)a)(i), the Directional Gain = G_{ANT} + 10log(2) dBi = 3.7 + 3.01 dBi = 6.71dBi.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz					
Limit:	Limit (dBuV)					
	Frequency range (MHz)	Frequency range (MHz) Quasi-peak Average				
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
			00			
Test procedure	* Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.					
Test setup:	Reference Plane					
	AUX Equipment Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
Test Instruments:	Refer to section 5.10 for detail	Refer to section 5.10 for details				
Test mode:	Refer to section 5.3 for details. All of list mode were tested, and found the 802.11n(HT40) mode as the worst case. Only the data of worst case is reported.					
Test results:	Pass					
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		·			

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Line:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Job No. : 0121

Test mode : 5G Transmitting mode

Test Engineer: Boy

	Freq	Read Level	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	d₿	dBu₹	dBuV	dB	
1	0.186	42.23	0.00	0.13	42.50	64.20	-21.70	QP
2	0.186	30.76	0.00	0.13	31.03	54.20	-23.17	Average
3	0.516	39.26	0.00	0.11	39.49	56.00	-16.51	QP _
4	0.516	31.48	0.00	0.11	31.71	46.00	-14.29	Average
4 5 6	0.984	34.51	0.00	0.13	34.78	56.00	-21.22	QP _
6	0.984	23.36	0.00	0.13	23.63	46.00	-22.37	Average
7	1.388	33.29	0.00	0.13	33.54	56.00	-22.46	QP _
8	1.388	21.80	0.00	0.13	22.05	46.00	-23.95	Average
9	1.839	33.78	0.00	0.14	34.04	56.00	-21.96	QP _
10	1.839	22.86	0.00	0.14	23.12	46.00	-22.88	Average
11	3.328	32.63	0.00	0.15	32.96	56.00	-23.04	QP _
12	3.328	22.13	0.00	0.15	22.46	46.00	-23.54	Average

Neutral:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. Test mode : 0121

: 5G Transmitting mode

Test Engineer: Boy

	Freq	Read Level	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBu₹	dB	
1	0.317	36.44	0.00	0.10	36.60	59.80	-23.20	QP
2 3	0.317	28.08	0.00	0.10	28.24	49.80	-21.56	Average
	0.505	39.76	0.00	0.11	39.93	56.00	-16.07	QP
4	0.505	30.99	0.00	0.11	31.16	46.00	-14.84	Average
4 5	1.464	32.79	0.00	0.13	33.01	56.00	-22.99	QP
6	1.464	21.33	0.00	0.13	21.55	46.00	-24.45	Average
7	2.622	33.41	0.00	0.15	33.66	56.00	-22.34	QP
8	2.622	21.92	0.00	0.15	22.17	46.00	-23.83	Average
9	3.799	33.22	0.00	0.15	33.51	56.00	-22.49	QP _
10	3.799	22.88	0.00	0.15	23.17	46.00	-22.83	Average
11	18.622	37.02	0.00	0.22	37.68	60.00	-22.32	QP
12	18.622	31.07	0.00	0.22	31.73	50.00	-18.27	Average

5.3 Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	FCC Part15 E Section 15.407					
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v01					
Limit:	N/A					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test procedure:	According to KDB 789033 D02 General UNII Test Procedures New Rules v01.					
Test Instruments:	Refer to section 5.10 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Measurement Data:

ANT:1

CH.	Fraguanay	99% Occ	upied Bandwi	dth (MHz)	26dB Occupied Bandwidth (MHz)			
No.		802.11a	802.11n(HT 20)	802.11ac(H T20)	802.11a	802.11n(HT 20)	802.11ac(H T20)	
36	5180.00	16.5334	17.5439	17.5621	19.516	19.663	19.858	
40	5200.00	16.5410	17.5425	17.5480	19.434	19.941	19.962	
48	5240.00	16.5061	17.5498	17.5657	19.240	19.774	19.952	

CH.	Frequency	99% Occupied E	Bandwidth (MHz)	26dB Occupied Bandwidth (MHz)		
No.	(MHz)	802.11n(HT40)	2.11n(HT40) 802.11ac(HT40)		802.11ac(HT40)	
38	5190.00	35.9657	35.9089	39.914	39.845	
46	5230.00	35.9010	35.9732	39.678	39.668	

CH.	Frequency	99% Occupied Bandwidth (MHz)	26dB Occupied Bandwidth (MHz)
No.	(MHz)	802.11ac(HT80)	802.11ac(HT80)
42	5210.00	74.8604	80.643

ANT:2

CH.	Fraguanay	99% Occ	upied Bandwi	dth (MHz)	26dB Occupied Bandwidth (MHz)			
No.	Frequency (MHz)	802.11a	802.11n(HT 20)	802.11ac(H T20)	802.11a	802.11n(HT 20)	802.11ac(H T20)	
36	5180.00	16.4994	17.5614	17.5648	19.430	19.805	19.759	
40	5200.00	16.5361	17.5347	17.5526	19.613	19.741	19.654	
48	5240.00	16.5395	17.5498	17.5509	19.335	19.755	19.918	

CH.	Frequency	99% Occupied E	Bandwidth (MHz)	26dB Occupied Bandwidth (MHz)		
No.	(MHz) 802.11n(HT40) 80		802.11ac(HT40)	802.11n(HT40)	802.11ac(HT40)	
38	5190.00	35.9114	35.9215	39.719	39.798	
46	5230.00	35.9867	35.9812	39.746	39.862	

CH.	Frequency	99% Occupied Bandwidth (MHz)	26dB Occupied Bandwidth (MHz)
No.	(MHz)	802.11ac(HT80)	802.11ac(HT80)
42	5210.00	74.7723	80.773

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test plots as followed:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

ANT:2

5.4 Peak Transmit Power

Test Requirement:	FCC Part15 E Section 15.407					
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v01					
Limit:	29.29dBm					
Test setup:	Power Meter E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test procedure:	 (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied a) The EUT is configured to transmit continuously or to transmit with a constant duty cycle. b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B). (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter. (iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10log(1/0.25) if the duty cycle is 25 percent). 					
Test Instruments:	Refer to section 5.10 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Measurement Data

	802.11a(HT20) mode (SISO)											
				Measur	ed Power (dBm)							
CH No.	Frequency (MHz)	ANT1 ANT2 Duty		Duty Factor	Total ANT1 Output Power (dBm)	Total ANT2 Output Power (dBm)	Limit (dBm)	Result				
36	5180.00	12.24	11.98	0.08	12.32	12.06	24	Pass				
40	5200.00	10.11	11.82	0.08	10.19	11.90	24	Pass				
48	5240.00	12.37	11.56	0.08	12.45	11.64	24	Pass				

ANT1 + ANT2:

	ANTI + ANTZ:								
			8	02.11n(H	IT20) mod	de (MIMO)		
СН	Frequency		Measu	red Powe	` ,		MIMO Output	Limit	
No.	(MHz)	ANT1	ANT2	Duty Factor	Total ANT1	Total ANT2	Power (dBm)	(dBm)	Result
36	5180.00	13.03	11.12	0.08	13.11	11.20	15.27	24	Pass
40	5200.00	12.76	10.36	0.08	12.84	10.44	14.81	24	Pass
48	48 5240.00 11.98 10.09 0.08 12.06 10.1							24	Pass
			80	02.11ac(H	HT20) mo	de (MIMC))		
CII	Frequency		Measu	red Powe	er (dBm)		MIMO Output	Limeia	
CH No.	(MHz)	ANT1	ANT2	Duty Factor	Total ANT1	Total ANT2	Power (dBm)	Limit (dBm)	Result
36	5180.00	11.88	10.20	0.08	11.96	10.28	14.21	24	Pass
40	5200.00	10.96	10.34	0.08	11.04	10.42	13.75	24	Pass
48	5240.00	10.75	10.73	0.08	10.83	10.81	13.83	24	Pass
			8	02.11n(H	IT40) mod	de (MIMO)		
СН	Frequency	Measured Power (dBm)					MIMO Output	Limit	
No.	(MHz)	ANT1	ANT2	Duty Factor	Total ANT1	Total ANT2	Power (dBm)	(dBm)	Result
38	5190.00	12.19	11.03	0.08	12.27	11.11	14.74	24	Pass
46	5230.00	11.37	10.72	0.08	11.45	10.80	14.13	24	Pass
			80	02.11ac(H	1T40) mo	de (MIMC))		
СН	Frequency		Measu	red Powe	er (dBm)		MIMO Output	Limit	
No.	(MHz)	ANT1	ANT2	Duty Factor	Total ANT1	Total ANT2	Power (dBm)	(dBm)	Result
38	5190.00	12.07	11.77	0.08	12.15	11.85	15.01	24	Pass
46	5230.00	12.48	10.02	0.08	12.56	10.10	14.51	24	Pass
			80	02.11ac(H	HT80) mo	de (MIMC))		
СН	Frequency		Measu	red Powe	er (dBm)		MIMO Output	Limit	
No.	(MHz)	ANT1	ANT2	Duty Factor	Total ANT1	Total ANT2	Power (dBm)	(dBm)	Result
	5210.00	12.48	11.26	0.08	12.56	11.34	15.00	24	Pass

Note: Output Power = Measured Power + Duty Factor

Duty Factor = 10 log (1/Duty Cycle)

5.5 Peak Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407			
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General UNII Test Procedures New Rules v01			
Limit:	16.29 dBm/MHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test procedure:	 Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power". Use the peak search function on the instrument to find the peak of the spectrum. Make the following adjustments to the peak value of the spectrum, if applicable: a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum. b) If Method SA-3 Alternative was used and the linear mode was used in step E)2)g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. 			
Test Instruments:	4) The result is the PPSD.			
Test mode:	Refer to section 5.10 for details Refer to section 5.3 for details			
Test results:	Pass			
root roodito.				

Measurement Data

ANT:1

802.11a mode (SISO)						
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)	Limit (dBm/MHz)	Result	
36	5180.00	6.01	6.09	11.00	Pass	
40	5200.00	5.91	6.09	11.00	Pass	
48	5240.00	4.62	6.09	11.00	Pass	

ANT:2

802.11a mode (SISO)					
Channel No.	Frequency (MHz)	Measured PPSD (dBm/MHz)	Total PPSD (dBm/MHz)		
36	5180.00	5.58	5.66	11.00	Pass
40	5200.00	5.72	5.80	11.00	Pass
48	5240.00	5.70	5.78	11.00	Pass

ANT 1+ANT 2

	N1 Z						
	802.11n(HT20) mode (MIMO)						
Channel No.	Frequency (MHz)	ANT 1 Total PPSD (dBm/MHz)	ANT 2 Total PPSD (dBm/MHz)	Total	(dBm/MHz)	Result	
36	5180.00	5.26	4.83	8.06	11.00	Pass	
40	5200.00	3.96	3.94	6.96	11.00	Pass	
48	5240.00	3.66	3.38	6.53	11.00	Pass	
		802.11ac	(HT20) mode (MIMO)				
Channel No.	Frequency (MHz)	ANT 1 Total PPSD (dBm/MHz)	ANT 2 Total PPSD (dBm/MHz)	Total	(dBm/MHz)	Result	
36	5180.00	4.86	4.82	7.85	11.00	Pass	
40	5200.00	5.38	5.55	8.48	11.00	Pass	
48	5240.00	3.85	4.43	7.16	11.00	Pass	
802.11n(HT40) mode (MIMO)							
Channel No.	Frequency (MHz)	ANT 1 Total PPSD (dBm/MHz)	ANT 2 Total PPSD (dBm/MHz)	Total	(dBm/MHz)	Result	
38	5190.00	1.08	1.17	4.14	11.00	Pass	
46	5230.00	0.37	0.20	3.30	11.00	Pass	
	802.11ac(HT40) mode (MIMO)						
Channel No.	Frequency (MHz)	ANT 1 Total PPSD (dBm/MHz)	ANT 2 Total PPSD (dBm/MHz)	Total	(dBm/MHz)	Result	
38	5190.00	1.10	1.37	4.25	11.00	Pass	
46	5230.00	-0.54	-0.32	2.58	11.00	Pass	
802.11ac(HT80) mode (MIMO)							
Channel No.	Frequency (MHz)	ANT 1 Total PPSD (dBm/MHz)	ANT 2 Total PPSD (dBm/MHz)	Total	(dBm/MHz)	Result	
42	5210.00	-2.24	-0.21	1.90	11.00	Pass	

Note: Total PSD= PSD + 10 log (1/Duty Cycle) =PSD+0.08

Worse case is 8.48+0.08=8.56dBm<11dBm

Test plots as followed:

ANT:1

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

ANT:2

5.6 Band Edge

Test Requirement:	FCC Part15 E Se	ection 15.407 a	nd 5.205					
Test Method:	ANSI C63.10:201	13						
Test site:	Measurement Dis	stance: 3m (Se	emi-Anecho	ic Chambe	r)			
Receiver setup:		T _						
	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	100KHz 1MHz	300KHz 3MHz	Quasi-peak Value Peak Value			
	Above 1GHz	Peak RMS						
Limit: Test Procedure:	Undesirable emission limits: (1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band. (3) For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz. a. The EUT was placed on the top of a rotating table 1.5 m above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.							
Test setup:	Above 1GHz							

Remark:

According to KDB 789033 D02V01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Measurement Data:

Report No.: GTS201608000121E01

Мо	de:	802.1	1a	Frequer	ncy:	5180	OMHz	
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
Н	5150.00	34.57	17.18	51.75	68.20	-16.45	PK	
V	5150.00	36.06	17.18	53.24 68.20		-14.96	PK	
Мо	de:	802.1	1a	Frequer	ncy:	5180	OMHz	
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Limit Level(dBuV/m) (dBuV/m)		Margin (dB)	Detector	
Н	5150.00	31.43	17.18	48.61	54	-5.39	AV	
V	5150.00	29.33	17.18	46.51 54		-3.49	AV	
Мо	de:	802.1	1a	Frequer	ncy:	5240MHz		
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
Н	5350.00	34.12	17.2	51.32	68.2	-16.88	PK	
V	5350.00	37.76	17.2	54.96	68.2	-13.24	PK	
Мо	de:	802.1	1a	Frequer	ncy:	5240	OMHz	
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
Н	5350.00	28.89	17.2	46.09	54	-7.91	AV	
V	5350.00	28.47	17.2	45.67	54	-8.33	AV	

REMARK: For 802.11a mode, ANT 1 and ANT 2 mode SISO mode all have been tested, only worse case is reported

Мо	de: MIMO	802.11n(H	HT20)	Frequer	ncy:	5180	OMHz	
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
Н	5150.00	37.27	17.18	54.45	68.2	-13.75	PK	
V	5150.00	44.20	17.18	61.38	68.2	-6.82	PK	
Мо	de: MIMO	802.11n(H	HT20)	Frequer	ncy:	5180	OMHz	
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
Н	5150.00	33.21	17.18	50.39	54	-3.61	AV	
V	5150.00	33.51	17.18	50.69 54		-3.31	AV	
Мо	de: MIMO	802.11n(H	HT20)	Frequer	ncy:	5240MHz		
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
Н	5350.00	36.13	17.2	53.33	68.2	-14.87	PK	
V	5350.00	37.09	17.2	54.29	68.2	-13.91	PK	
Мо	de: MIMO	802.11n(H	HT20)	Frequer	ncy:	5240	OMHz	
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
Н	5350.00	32.56	17.2	49.76	54	-4.24	AV	
V	5350.00	28.00	17.2	45.20	54	-8.80	AV	

Мс	de: MIMO	802.11ac(HT20)	Frequer	ncy:	5180	OMHz
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Н	5150.00	38.15	17.18	55.33	68.20	-12.87	PK
V	5150.00	38.75	17.18	55.93	68.20	-12.27	PK
Мо	de: MIMO	802.11ac(HT20)	Frequer	ncy:	518	OMHz
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Н	5150.00	27.82	17.18	45.00	54.00	-9.00	AV
V	5150.00	26.30	17.18	43.48 54.00		-10.52	AV
Мо	de: MIMO	802.11ac(HT20)		Frequency:		5240MHz	
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Н	5350.00	34.32	17.20	51.52	68.20	-16.68	PK
V	5350.00	35.11	17.20	52.31	68.20	-15.89	PK
Мо	de: MIMO	802.11ac(HT20)	Frequer	ncy:	524	OMHz
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Н	5350.00	27.64	17.20	44.84	54.00	-9.16	AV
V	5350.00	26.11	17.20	43.31	54.00	-10.69	AV

Mo	ode: MIMO	802.11n(l	HT40)	Frequer	ncy:	5190	OMHz
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Н	5150.00	39.31	17.18	56.49	68.20	-11.71	PK
V	5150.00	38.76	17.18	55.94	68.20	-11.26	PK
Mo	ode: MIMO	802.11n(l	HT40)	Frequer	ncy:	5190	OMHz
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Н	5150.00	27.65	17.18	44.83	54.00	-9.17	AV
V	5150.00	28.38	17.18	45.56 54.00		-8.44	AV
Mo	ode: MIMO	802.11n(l	HT40)	Frequer	ncy:	5230	OMHz
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Н	5350.00	40.40	17.20	57.60	68.20	-10.60	PK
V	5350.00	39.77	17.20	56.97	68.20	-11.23	PK
Мо	ode: MIMO	802.11n(l	HT40)	Frequer	ncy:	5230	OMHz
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Н	5350.00	28.33	17.20	45.53	54.00	-8.47	AV
V	5350.00	27.36	17.20	44.56	54.00	-9.44	AV

Mo	ode: MIMO	802.11ac(HT40)	Frequer	ncy:	5190	OMHz
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Н	5150.00	38.70	17.18	55.88	68.20	-12.32	PK
V	5150.00	39.77	17.18	56.95	68.20	-11.25	PK
Мо	ode: MIMO	802.11ac(HT40)	Frequer	ncy:	5190)MHz
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Н	5150.00	27.92	17.18	45.10	54.00	-8.90	AV
V	5150.00	29.83	17.18	47.01 54.00		-6.99	AV
		ı					
Mo	de: MIMO	802.11ac(HT40)	Frequency:		5230MHz	
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Н	5350.00	38.31	17.20	55.51	68.20	-12.69	PK
V	5350.00	39.66	17.20	56.86	68.20	-11.34	PK
Мс	ode: MIMO	802.11ac(HT40)	Frequer	ncy:	5230	OMHz
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Н	5350.00	28.45	17.20	45.65	54.00	-8.35	AV
V	5350.00	27.73	17.20	44.93	54.00	-9.07	AV

Мс	de: MIMO	802.11ac(HT80)	Frequer	ncy:	5210	5210MHz	
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
Н	5150.00	36.71	17.18	53.89	68.20	-14.31	PK	
Н	5350.00	37.23	17.20	54.43	68.20	-13.77	PK	
V	5150.00	36.08	17.18	53.26	68.20	-14.94	PK	
V	5350.00	38.44	17.20	55.64	68.20	-12.56	PK	
Мс	de: MIMO	802.11ac(HT80)	Frequer	ncy:	5210MHz		
Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
Н	5150.00	27.41	17.18	44.59	54.00	-9.41	AV	
Н	5350.00	28.29	17.20	45.49	54.00	-8.51	AV	
V	5150.00	27.60	17.18	44.78	54.00	-9.22	AV	
V	5350.00	29.03	17.20	46.23	54.00	-7.77	AV	

5.7 Radiated Emission

 Radiated Emission								
Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205					
Test Method:	ANSI C63.10:20	013						
Test Frequency Range:	30MHz to 40GH	łz						
Test site:	Measurement D	istance: 3m (Semi-Anecho	ic Chambe	r)			
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
	30MHz- 1GHz	Quasi-peak		300KHz	Quasi-peak Value			
	Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz	Peak Value Average Value			
Limit:	Freque	ency	Limit (dBuV	/m @3m)	Remark			
	30MHz-8		40.0		Quasi-peak Value			
	88MHz-2		43.5		Quasi-peak Value			
					Quasi-peak Value			
	11 Abova 1(=H7							
Test Procedure:	960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz 54.0 Average Value							

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	Report No.: GTS201608000121E01
	 The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
	The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
	4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
	Repeat step 4 for test frequency with the test antenna polarized horizontally.
	6. Remove the transmitter and replace it with a substitution antenna
	7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
	Repeat step 7 with both antennas horizontally polarized for each test frequency.
	9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:
	EIRP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBi) where:
	Pg is the generator output power into the substitution antenna.
Test setup:	Below 1GHz

Report No.: GTS201608000121E01 < 3m >+ Test Antenna < 1m ... 4m > EUT. < 80cm > Tum Table₽ Preamplifier₽ Receiver Above 1GHz < 3m >+ Test Antenna-< 1m ... 4m >* EUT Turn Table+ <150cm> Preamplifier-Receiver+ Test Instruments: Refer to section 5.10 for details Test mode: Refer to section 5.3 for details Test results: Pass

Measurement

Data: Below 1GHz

802.11a ANT1:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
51.48	45.99	15.19	0.79	29.99	31.98	40.00	-8.02	Vertical
127.22	47.14	11.32	1.41	29.53	30.34	43.50	-13.16	Vertical
256.52	52.44	14.06	2.16	29.70	38.96	46.00	-7.04	Vertical
428.02	47.69	17.51	2.99	29.44	38.75	46.00	-7.25	Vertical
599.32	41.41	20.45	3.72	29.30	36.28	46.00	-9.72	Vertical
768.75	42.42	21.68	4.35	29.20	39.25	46.00	-6.75	Vertical
209.31	43.17	12.87	1.89	29.29	28.64	43.50	-14.86	Horizontal
341.98	44.52	16.15	2.58	29.77	33.48	46.00	-12.52	Horizontal
389.36	49.17	16.83	2.80	29.55	39.25	46.00	-6.75	Horizontal
465.60	45.79	17.71	3.16	29.37	37.29	46.00	-8.71	Horizontal
560.69	45.03	19.77	3.56	29.30	39.06	46.00	-6.94	Horizontal
684.75	42.52	20.75	4.04	29.21	38.10	46.00	-7.90	Horizontal

802.11a ANT2:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
35.25	47.06	14.39	0.61	30.07	31.99	40.00	-8.01	Vertical
143.83	45.46	10.22	1.53	29.44	27.77	43.50	-15.73	Vertical
341.98	46.46	16.15	2.58	29.77	35.42	46.00	-10.58	Vertical
513.63	46.84	18.89	3.36	29.30	39.79	46.00	-6.21	Vertical
684.75	40.46	20.75	4.04	29.21	36.04	46.00	-9.96	Vertical
942.13	37.20	23.37	5.01	29.10	36.48	46.00	-9.52	Vertical
228.49	41.61	13.57	2.01	29.47	27.72	46.00	-18.28	Horizontal
379.91	50.88	16.59	2.76	29.59	40.64	46.00	-5.36	Horizontal
428.02	48.98	17.51	2.99	29.44	40.04	46.00	-5.96	Horizontal
513.63	47.32	18.89	3.36	29.30	40.27	46.00	-5.73	Horizontal
599.32	43.78	20.45	3.72	29.30	38.65	46.00	-7.35	Horizontal
768.75	42.27	21.68	4.35	29.20	39.10	46.00	-6.90	Horizontal

ANT1 + ANT2: all MIMO mode have been tested, only worse case is reported

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
34.88	46.14	14.30	0.61	30.07	30.98	40.00	-9.02	Vertical
51.84	44.52	15.16	0.79	29.98	30.49	40.00	-9.51	Vertical
106.39	37.84	14.59	1.25	29.65	24.03	43.50	-19.47	Vertical
129.92	45.74	10.93	1.44	29.51	28.60	43.50	-14.90	Vertical
204.24	42.67	12.70	1.86	29.25	27.98	43.50	-15.52	Vertical
428.02	43.10	17.51	2.99	29.44	34.16	46.00	-11.84	Vertical
54.45	40.82	15.05	0.81	29.96	26.72	40.00	-13.28	Horizontal
134.56	42.63	10.56	1.47	29.49	25.17	43.50	-18.33	Horizontal
232.53	43.85	13.72	2.03	29.50	30.10	46.00	-15.90	Horizontal
399.03	49.43	17.06	2.85	29.51	39.83	46.00	-6.17	Horizontal
513.63	48.78	18.89	3.36	29.30	41.73	46.00	-4.27	Horizontal
742.26	42.61	21.34	4.24	29.20	38.99	46.00	-7.01	Horizontal

Above 1GHz:

ANT1:

Only the data of worst case at each channel plan (nominal bandwidth =20MHz) is reported.

	802.11 a mode									
CH. No.	Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	Н	10360.00	14.22	21.64	35.86	54(Note3)	-18.14	PK		
36	Н	15540.00	15.06	21.80	36.86	54(Note3)	-17.14	PK		
30	V	10360.00	22.19	21.64	43.83	54(Note3)	-10.17	PK		
	V	15540.00	15.73	21.80	37.53	54(Note3)	-16.47	PK		
	Н	10400.00	13.92	21.67	35.59	54(Note3)	-18.41	PK		
40	Н	15600.00	19.98	21.83	41.81	54(Note3)	-12.19	PK		
40	V	10400.00	20.38	21.67	42.05	54(Note3)	-11.95	PK		
	V	15600.00	18.23	21.83	40.06	54(Note3)	-13.94	PK		
	Н	10480.00	13.42	21.64	35.06	54(Note3)	-18.94	PK		
48	Н	15720.00	13.46	22.16	35.62	54(Note3)	-18.38	PK		
40	V	10480.00	20.31	21.64	41.95	54(Note3)	-12.05	PK		
	V	15720.00	16.47	22.16	38.63	54(Note3)	-15.37	PK		

ANT2:

Only the data of worst case at each channel plan (nominal bandwidth =20MHz) is reported.

	802.11 a mode									
CH. No.	Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	Н	10360.00	19.31	21.64	40.95	54(Note3)	-13.05	PK		
36	Н	15540.00	19.42	21.80	41.22	54(Note3)	-12.78	PK		
30	V	10360.00	13.56	21.64	35.20	54(Note3)	-18.80	PK		
	V	15540.00	18.14	21.80	39.94	54(Note3)	-14.06	PK		
	Н	10400.00	20.85	21.67	42.52	54(Note3)	-11.48	PK		
40	Н	15600.00	20.34	21.83	42.17	54(Note3)	-11.83	PK		
40	V	10400.00	18.52	21.67	40.19	54(Note3)	-13.81	PK		
	V	15600.00	19.60	21.83	41.43	54(Note3)	-12.57	PK		
	Н	10480.00	13.06	21.64	34.70	54(Note3)	-19.30	PK		
48	Н	15720.00	11.67	22.16	33.83	54(Note3)	-20.17	PK		
40	V	10480.00	15.18	21.64	36.82	54(Note3)	-17.18	PK		
	V	15720.00	21.32	22.16	43.48	54(Note3)	-10.52	PK		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

ANT1 + ANT2: MIMO mode

Only the data of worst case at each channel plan (nominal bandwidth =20MHz, 40MHz, 80MHz) is reported.

	802.11 n(HT20) mode									
CH. No.	Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	Н	10360.00	14.40	21.64	36.04	54(Note3)	-17.96	PK		
36	Н	15540.00	13.37	21.80	35.17	54(Note3)	-18.83	PK		
30	V	10360.00	18.51	21.64	40.15	54(Note3)	-13.85	PK		
	V	15540.00	14.23	21.80	36.03	54(Note3)	-17.97	PK		
	Н	10400.00	19.28	21.67	40.95	54(Note3)	-13.05	PK		
40	Н	15600.00	16.30	21.83	38.13	54(Note3)	-15.87	PK		
40	V	10400.00	16.42	21.67	38.09	54(Note3)	-15.91	PK		
	V	15600.00	15.30	21.83	37.13	54(Note3)	-16.87	PK		
	Н	10480.00	11.88	21.64	33.52	54(Note3)	-20.48	PK		
48	Н	15720.00	13.11	22.16	35.27	54(Note3)	-18.73	PK		
40	V	10480.00	18.34	21.64	39.98	54(Note3)	-14.02	PK		
	V	15720.00	20.08	22.16	42.24	54(Note3)	-11.76	PK		

802.11n(HT40) mode									
CH. No.	Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	Н	10380.00	19.09	21.64	40.73	54(Note3)	-13.27	PK	
38	Н	15570.00	19.88	21.80	41.68	54(Note3)	-12.32	PK	
30	V	10380.00	13.36	21.64	35.00	54(Note3)	-19.00	PK	
	V	15570.00	18.89	21.80	40.69	54(Note3)	-13.31	PK	
	Н	10460.00	14.38	21.67	36.05	54(Note3)	-17.95	PK	
46	Н	15690.00	11.46	21.83	33.29	54(Note3)	-20.71	PK	
40	V	10460.00	18.76	21.67	40.43	54(Note3)	-13.57	PK	
	V	15690.00	11.39	21.83	33.22	54(Note3)	-20.78	PK	

	802.11ac(HT80) mode									
CH. No.	Antenna Pol.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB/m)	Measure Level(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	Н	10420.00	16.51	21.65	38.16	54(Note3)	-15.84	PK		
42	Н	15630.00	16.00	21.81	37.81	54(Note3)	-16.19	PK		
42	V	10420.00	15.68	21.65	37.33	54(Note3)	-16.67	PK		
	V	15630.00	21.14	21.81	42.95	54(Note3)	-11.05	PK		

Note:

- 1. Measure Level = Reading Level + Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

5.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)					
Test Method:	ANSI C63.10:2013, FCC Part 2.105	ANSI C63.10:2013, FCC Part 2.1055				
Limit:	stability such that an emission is ma	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified				
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.					
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on A	Temperature Chamber EUT Variable Power Supply Antenna connector				
Test Instruments:	Refer to section 5.10 for details					
Test mode:	Refer to section 5.3 for details	Refer to section 5.3 for details				
Test results:	Pass					

Measurement data:

ANT:1

Report No.: GTS201608000121E01

Frequency stability versus Temp.								
Power Supply: DC 3.7V								
Temp.	Operating	0 minute	2 minute	5 minute	10 minute			
(°C)	Frequency	Measured	Measured	Measured	Measured			
(0)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)			
	5180	5179.3900	5180.4302	5181.2834	5179.3409			
-30	5200	5199.7358	5200.8922	5200.4664	5199.6501			
-30	5220	5219.8152	5220.9935	5220.0400	5219.5366			
	5240	5239.0317	5240.8838	5240.6395	5239.0413			
	5180	5179.8594	5180.5304	5180.9920	5179.6644			
-20	5200	5199.2254	5200.9459	5200.3614	5199.2621			
-20	5220	5219.6799	5220.4225	5220.3316	5219.7227			
	5240	5239.8509	5240.6913	5240.4697	5239.3872			
	5180	5179.4833	5180.9986	5180.7941	5179.6366			
40	5200	5199.1111	5200.7852	5200.4042	5199.7067			
-10	5220	5219.5915	5220.4426	5220.8519	5219.6115			
	5240	5239.8505	5240.2472	5240.8283	5239.6368			
	5180	5179.9053	5180.8093	5180.5005	5179.0738			
0	5200	5199.5049	5200.1406	5200.5802	5199.0456			
0	5220	5219.5402	5220.4818	5220.9114	5219.1127			
	5240	5239.1087	5240.6540	5240.1344	5239.7148			
	5180	5179.7970	5180.1279	5180.6510	5179.5427			
40	5200	5199.7431	5200.1663	5200.7023	5199.2366			
10	5220	5219.4983	5220.1503	5220.8579	5219.5115			
	5240	5239.6791	5240.3988	5240.6535	5239.1430			
	5180	5179.1699	5180.5235	5180.0540	5179.0170			
00	5200	5199.5293	5200.6272	5200.5161	5199.7583			
20	5220	5219.2271	5220.0538	5220.5960	5219.9666			
	5240	5239.9081	5240.7387	5240.3496	5239.6423			
	5180	5179.9892	5180.9680	5180.8311	5179.2188			
	5200	5199.0612	5200.8695	5200.9199	5199.8172			
30	5220	5219.1244	5220.9173	5220.7411	5219.3485			
	5240	5239.4150	5240.7036	5240.6642	5239.0037			
	5180	5179.5698	5180.2898	5180.2626	5179.9924			
	5200	5199.9012	5200.0612	5200.7691	5199.7898			
40	5220	5219.3615	5220.3309	5220.5997	5219.4002			
	5240	5239.1021	5240.3280	5240.6689	5239.0056			
	5180	5179.6074	5180.9497	5180.8072	5179.8478			
	5200	5199.8604	5200.7754	5200.4974	5199.8040			
50	5220	5219.0129	5220.3957	5220.9845	5219.9772			
	5240	5239.5926	5240.5795	5240.2278	5239.5200			

Frequency stability versus Voltage									
Temperature: 25°C									
Power	Operating	0 minute	2 minute	5 minute	10 minute				
Supply	Frequency	Measured	Measured	Measured	Measured				
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)				
	5180	5182.0173	5180.4796	5176.6915	5178.2778				
3.3	5200	5201.6467	5200.9769	5196.8010	5198.5261				
3.3	5220	5220.9301	5220.2484	5219.3765	5219.6535				
	5240	5240.6515	5240.8189	5239.8425	5239.8743				
	5180	5180.6673	5180.5956	5179.5673	5179.5044				
2.7	5200	5200.7179	5200.5907	5199.0971	5199.5995				
3.7	5220	5220.9683	5220.8501	5219.8751	5219.3421				
	5240	5240.9025	5240.5040	5239.7319	5239.3985				
	5180	5180.4227	5180.0247	5179.4972	5179.8079				
4.4	5200	5200.1771	5200.5086	5199.2319	5199.7188				
4.1	5220	5220.1390	5220.9114	5219.5367	5219.9357				
•	5240	5240.7299	5240.3372	5239.9980	5239.9725				

Note: The worst case is FL=5176.6915MHz, FH=5240.9025MHz

ANT:2

remp. (°C) Frequency (MHz) Measured Frequency (MHz)	minute 10 minute easured Measured ency (MHz) Frequency (MHz) 32.9222 5177.9548 01.1477 5198.5778 20.5525 5219.6804 40.6150 5239.3338 30.3976 5179.2823
Frequency (MHz)	easured Measured Frequency (MHz) 82.9222 5177.9548 01.1477 5198.5778 20.5525 5219.6804 40.6150 5239.3338
(°C) (MHz) Frequency (MHz) Fre	ency (MHz) Frequency (MHz) 82.9222 5177.9548 01.1477 5198.5778 20.5525 5219.6804 40.6150 5239.3338
-30 S180 S178.3589 S181.0946 S18 S200 S199.9456 S201.6159 S20 S220 S219.2729 S220.5043 S22 S240 S239.6953 S240.2424 S24 S180 S179.6148 S180.8542 S180	32.9222 5177.9548 01.1477 5198.5778 20.5525 5219.6804 40.6150 5239.3338
-30 5200 5199.9456 5201.6159 520 5220 5219.2729 5220.5043 522 5240 5239.6953 5240.2424 524 5180 5179.6148 5180.8542 518	01.1477 5198.5778 20.5525 5219.6804 40.6150 5239.3338
5220 5219.2729 5220.5043 522 5240 5239.6953 5240.2424 524 5180 5179.6148 5180.8542 518	20.5525 5219.6804 40.6150 5239.3338
5220 5219.2729 5220.5043 522 5240 5239.6953 5240.2424 524 5180 5179.6148 5180.8542 518	40.6150 5239.3338
5180 5179.6148 5180.8542 518	
	30.3976 5179.2823
-20 <u>5200</u> <u>5199.5001</u> <u>5200.7894</u> <u>520</u>	00.4607 5199.9911
⁻²⁰ 5220 5219.3561 5220.2611 522	20.4452 5219.9200
5240 5239.3401 5240.1185 524	40.5004 5239.4842
5180 5179.9966 5180.3709 518	80.2947 5179.5970
-10 5200 5199.4133 5200.2082 520 -10 5200 5200.2082 5200.2082 5200.2082 5200.2082 5200.2082 5200.2082 5200.2082	00.6751 5199.1162
5220 5219.8482 5220.4841 522	20.1326 5219.5593
5240 5239.4227 5240.2076 524	40.6139 5239.5086
5180 5179.7428 5180.4294 518	80.3857 5179.0747
0 5200 5199.3727 5200.3878 520	00.8998 5199.7142
5220 5219.5825 5220.5819 522	20.4828 5219.9071
5240 5239.4100 5240.2057 524	40.8300 5239.4985
5180 5179.6808 5180.7160 518	80.0223 5179.9576
5200 5199.5241 5200.6118 520	00.3646 5199.3489
10 5220 5219.8301 5220.3228 522	20.5387 5219.4471
5240 5239.9064 5240.3986 524	40.9744 5239.3937
5180 5179.1005 5180.8360 518	30.8886 5179.4737
20 5200 5199.9510 5200.6527 520	00.8079 5199.4268
5220 5219.8274 5220.5385 522	20.7170 5219.6150
5240 5239.5639 5240.8652 524	40.0839 5239.4132
5180 5179.5815 5180.0059 518	80.3535 5179.3311
30 5200 5199.6355 5200.0613 520	00.4067 5199.1067
5220 5219.7176 5220.6410 522	20.4598 5219.4024
5240 5239.8276 5240.2588 524	40.2614 5239.0384
5180 5179.2389 5180.5886 518	30.4026 5179.5478
	00.4443 5199.3288
5220 5219.0141 5220.0310 522	20.1750 5219.8016
5240 5239.4384 5240.2146 524	40.5233 5239.0957
5180 5179.2625 5180.4555 518	30.5123 5179.8817
5200 5199 7017 5200 0638 520	00.9747 5199.5205
	20.1893 5219.2247
5240 5239.9705 5240.2311 524	

	Frequency stability versus Voltage								
Temperature: 25°C									
Power	Operating	0 minute	2 minute	5 minute	10 minute				
Supply	Frequency	Measured	Measured	Measured	Measured				
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)				
	5180	5182.7863	5180.4771	5178.5313	5177.2606				
3.3	5200	5201.0274	5200.2066	5199.2261	5198.3794				
3.3	5220	5221.9433	5220.3855	5219.4848	5219.4078				
	5240	5240.7702	5240.3231	5239.5184	5239.4016				
	5180	5180.5039	5180.2776	5179.0776	5179.6903				
2.7	5200	5200.2532	5200.8549	5199.2132	5199.8860				
3.7	5220	5220.4412	5220.4675	5219.5046	5219.3331				
	5240	5240.4837	5240.2999	5239.8342	5239.3040				
	5180	5180.9396	5180.0360	5179.6778	5179.6201				
4.4	5200	5200.2361	5200.3572	5199.1549	5199.9635				
4.1	5220	5220.0027	5220.2017	5219.1266	5219.8602				
	5240	5240.4295	5240.2689	5239.3707	5239.1850				

Note: The worst case is FL=5177.2606MHz, FH=5240.9744MHz

6 Test Setup Photo

Radiated Emission

Conducted Emission

7 EUT Constructional Details

---END---