Uncertainty

Certain means 100% sure

uncertain means not 100% sure

(2 type)

Using a rulor to measure something

| L= 11.2 cm | L (range) | L (quality)

| L-112+0.1cm (relative) uncertainty percentage uncortainty

The true value lies between the relative uncertainty gape

112

Quality of

data

UL relative uncertainty

measurement:

(for 99% of measurement)

Imm gap > uncertanity is \(\frac{1}{2}\) of smallest gap

[TITTI] \(\delta(\text{Start point} + \text{end point}) = 1\) smallest yap.

(Succertantly = smallest division

owever there is some law exception.

however there is some few exception

the zero is already deal with by
the design

tro design

Duncertanity = = 5 mullest gap (division)

cylinder thermonoter

Calculation:

| b=3-1cm a= 8.2 cm

no multiplication

find P = 2(a+b) = a+a+b+b.

p= 2(a+b)=22.6cm ap= 0.1+0.1+0.1+0.1+0.1=64

p=22.6 I o.4 Cm

Contain multiplication

p= 22-6 I o.4 Cm

decimal point need to be identical > $\Delta A = A \cdot \frac{\Delta A}{A} = 25.400 0.044 = 1.1$

however if

$$A = \frac{C^3 \cdot V^2}{\sqrt{t}}$$
 find each individual and then combine together

Do the example at home on the ppt in a seprate sheet

Run the uncertainty ppt

Assignment book p16-18

Bring AS Lab book

 \star If we are having multiple Δ for calculation, the Δ is the <u>smallest</u> possible number of decimal point in all of the number

9/6: Inertia
Wednesday, September 6, 2017 10:32 AM
Inertia
Inertia is reluctance of objects to change the speed It takes time for an object to change the speed
 Mass is the measure of inertia The longer the mass, the longer the time require to change the speed

 $2aS = 2u(v-u) + (v-u)^{2} = 2u(v-2u^{2}+V^{2}-2v(v+u)^{2}=V^{2}-u^{2}$ the first five seconds of motion initial speed = 0

Varyeque average speed = total distance traveled total time taken volume varyeque = volume value = volume varyeque varyeque volume varyeque volume varyeque volume varyeque varyeque varyeque volume varyeque v