Algorithmen 1 SS 2013 - Tutorium 7

5. Tutorium

Sarah Lutteropp

21. Mai 2013

1 3. Übungsblatt

2 Sortieren

3 Kreativaufgaben

3. Übungsblatt

Abschreiben ...

Gibt 0 Punkte.

Zeitmanagement ...

Fangt rechtzeitig an, das Blatt zu machen. Gibt erwartet mehr Punkte.

Aufgabe 2.b

Darauf achten, dass die Fallunterscheidung komplett ist! $a \in \{a\}$, aber **nicht** $a \in a$!

3. Übungsblatt

Möchte jemand vorrechnen?

Das allgemeine Sortierproblem

Allgemeine Definition des Sortierproblems

- **Eingabe**: Folge von *n* Zahlen $< a_1, a_2, ..., a_n >$
- Ausgabe: Permutation (Umordnung) $< a'_1, a'_2, ..., a'_n >$, sodass $a'_1 \le a'_2 \le \cdots \le a'_n$ gilt
- Zu sortierende Zahlen sind sogenannte Schlüssel

Eigenschaften von Sortieralgorithmen

Stabil

Algorithmus behält Reihenfolge der Schlüssel bei, wenn diese gleich sind.

In-place

Der Algorithmus benötigt zum Sortieren keinen zusätzlichen Speicherplatz.

Insertion Sort

"Sortieren durch Einfügen"

Analog zum Einsortieren von Spielkarten in einer Hand

- Anfangen mit leerer Hand
- Schrittweises Aufnehmen und Einfügen der nächsten Karte
- Korrekte Einfügeposition wird durch Vergleichen der bereits aufgenommenen Karten von rechts nach links ermittelt

Karten auf der Hand sind zu jedem Zeitpunkt sortiert

Insertion Sort

```
INSERTIONSORT (A)

1 for j = 2 to A. länge

2  schlüssel = A[j]

3  // Füge A[j] in sortierte Sequenz A[1...j-1] ein

4  i = j-1

5  while i > 0 und A[i] > schlüssel

6  A[i+1] = A[i]

7  i = i-1

8  A[i+1] = schlüssel
```

Aktuell zu sortierender Schlüssel

Suche korrekte Einfügeposition

Verschiebe größere Schlüssel nach hinten

Füge Schlüssel an korrekter Position ein

Best-Case: $\mathcal{O}(n)$ Worst-Case: $\mathcal{O}(n^2)$ Average-Case: $\mathcal{O}(n^2)$

Aufgabe

Insertion Sort

Sortiere die Zahlenfolge 5,2,4,6,1,3 mit Insertion Sort.

Insertion Sort

Beispiel

"Sortieren durch Auswählen"

Grundlegender Ablauf

- Suche das Minimum in Folge $\langle a_1, a_2, ..., a_n \rangle$, also das Element mit dem kleinsten Sortierschlüssel
- Vertausche dieses Minimum mit dem ersten, unsortierten Element der Folge
- Man erhält im linken Teil der Folge eine sortierte Teilfolge der Länge 1 und rechts eine unsortierte Teilfolge der Länge n-1.
- Wiederhole Algorithmus für die unsortierte Teilfolge bis die sortierte Teilfolge die Länge n hat

Exkurs: Selection Sort

```
Initialisierung des Algorithmus
SELECTIONSORT(A)
     n = A. länge
                                                Starte Minimussuche
2
     links = 1
3
     repeat
                                           Bestimme neues Minimum durch
             min = links
                                          Vergleich mit aktuellem Minimum
5
             for i = links + 1 to n
6
                     if A[i] < A[\min]
                              min = i
8
             temp = A[min]
                                           Vertausche Minimum mit erstem
9
             A[\min] = A[links]
                                                      Element
10
             A[links] = temp
             links = links + 1
11
10
     until links \ge n
                                          Wiederhole dies für alle Elemente
```

Best-Case, Worst-Case, Average-Case: $\mathcal{O}(n^2)$

Exkurs: Selection Sort

Beispiel

Untere Schranke für das Sortierproblem

Für jeden vergleichenden Sortieralgorithmus sind $\Omega(n \log n)$ Operationen erforderlich.

Vergleichsbasierte Sortieralgorithmen

- Annahme: Eingabe der Form $\langle a_1, a_2,, a_n \rangle$
- Um relative Reihenfolge festzustellen, Vergleich zweier Elemente der Form $a_i < a_j, a_i > a_j, a_i == a_j, a_i \le a_j$ oder $a_i \ge a_j$
 - Werte werden nicht betrachtet

Untere Schranke für das Sortierproblem

Für jeden vergleichenden Sortieralgorithmus sind $\Omega(n \log n)$ Operationen erforderlich.

Entscheidungsbaum

$$n! \le 2^h \Rightarrow h \ge \log(n!) = \Omega(n \log n)$$

"Sortieren durch Mischen"

Analog zum mischen eines Stapels von Karten

- Besteht der Stapel nur aus einer Karte, sind wir fertig
- Ansonsten teile den Stapel in zwei Hälften und sortiere diese rekursiv
- Sobald die Teile sortiert sind, mische die beiden Stapel gleichzeitig von oben nach unten nach dem Reißverschlussprinzip

"Sortieren durch Mischen"

Vorgehen

- Teile Folge A in zwei Teilfolgen A₁, A₂ mit je n/2 Elementen auf
- Sortiere die zwei Teilfolgen A₁, A₂ rekursiv mithilfe von Mergesort
- Mische die zwei sortierten Teilfolgen A'₁, A'₂ um die sortierte Lösung zu erhalten

Rekursion bricht bei Teilfolgenlänge 1 ab

- Sortieren des Feldes A der Größe l
 - Algorithmus in Methoden MERGESORT und MERGE aufgeteilt
 - MERGESORT(A, p, r) sortiert alle Elemente im Feld A[p..r]
 - Erster Aufruf mit MERGESORT (A, 1, l)
 - MERGE(A, p, q, r) mischt die beiden sortierten Teilfelder A[p., q] und A[q + 1..r]

■ MERGESORT(A, p = 1, r = l) 1 if p < r2 q = $\lfloor (p+r)/2 \rfloor$ 3 MERGESORT(A, p, q) 4 MERGESORT(A, q + 1, r) 5 MERGE(A, p, q, r) Mitte des Feldes q bestimmen

MERGESORT rekursiv für beide Teilfelder aufrufen

MERGE führt Teilfelder zusammen

Best-Case, Worst-Case, Average-Case: $O(n \log n)$

- Sortieren des Feldes A der Größe l
 - Algorithmus in Methoden MERGESORT und MERGE aufgeteilt
 - MERGESORT(A, p, r) sortiert alle Elemente im Feld A[p..r]
 - Erster Aufruf mit MERGESORT(A, 1, l)
 - MERGE(A, p, q, r) mischt die beiden sortierten Teilfelder A[p..q] und A[q+1..r]

MERGESORT(A, p = 1, r = l)
1 if p < r
2 q = [(p + r)/2]
3 MERGESORT(A, p, q)
4 MERGESORT(A, q + 1, r)
5 MERGE(A, p, q, r)</pre>

Mitte des Feldes q bestimmen

MERGESORT rekursiv für beide Teilfelder aufrufen

MERGE führt Teilfelder zusammen

Best-Case, Worst-Case, Average-Case: $O(n \log n)$

```
MERGE(A, p, q, r)
      n_1 = q - p + 1
                                                     n_1, n_2Größe der Teilfelder
      n_2 = r - q
      // seien L[1..n_1+1], R[1..n_2+1] zwei neue Felder
4
      for i = 1 to n_1
                                                    Teilfelder L, R mit Daten aus
5
               L[i] = A[p+i-1]
                                                            Feld A füllen
6
      for j = 1 to n2
               R[j] = A[q+j]
8
      L[n_1 + 1] = R[n_2 + 1] = \infty
9
      i = j = 1
                                                   Der Reihe nach die Elemente
10
      for k = p to r
                                                   der Teilfelder L, R miteinander
11
               if L[i] <= R[j]
                                                             vergleichen
12
                         A[k] = L[i]
13
                         i = i + 1
                                                  Jeweils das kleinere in das Feld
14
               else
                                                             A einfügen
15
                         A[k] = R[j]
16
                         i = i + 1
```

Aufgabe

Mergesort

Sortiere die Zahlenfolge 2,4,3,1 mit Mergesort.

Beispiel

- 1. Eingabe
- 2. Teilen
- 3. Rekursiv weiter teilen
- 4. Mischen
- 5. Mischen

Quicksort

"Sortieren durch Zerlegen"

Function quickSort(s : Sequence of Element) : Sequence of Element if $|s| \le 1$ then return s pick "some" $p \in s$ $a := \langle e \in s : e <math display="block">b := \langle e \in s : e > p \rangle$ $c := \langle e \in s : e > p \rangle$ return concatenation of quickSort(a), b, and quickSort(c)

Best-Case, Average-Case: $\mathcal{O}(n \log n)$ Worst-Case: $\mathcal{O}(n^2)$

Heapsort

nächste Woche

Bucketsort

nächste Woche

Radixsort

nächste Woche

Vergleich

Algorithmus	Best-Case	Worst-Case	Average-Case
Bubblesort	O(n)	$O(n^2)$	$O(n^2)$
Insertionsort	$\theta(n)$	$\theta(n^2)$	$\theta(n^2)$
Selectionsort	$O(n^2)$	$O(n^2)$	$O(n^2)$
Mergesort	$\theta(n * \lg n)$	$\theta(n * \lg n)$	$\theta(n * \lg n)$
Quicksort	$\theta(n * \lg n)$	$\theta(n^2)$	$\theta(n * \lg n)$

Welche dieser Algorithmen sind stabil? Welche sind in-place?

3. Übungsblatt Sortieren **Kreativaufgaben**

Aufgabe

Perzentil, Median

Definition

Gegeben: Sortierte Menge M aus n Zahlen aus $\mathbb R$ mit Index von 1 bis n. Das q-Perzentil ist das Element mit Index $\lceil q \cdot n \rceil$. Das $\frac{1}{3}$ -Perzentil ist also das Element unter dem ein Drittel der Elemente der Menge liegen. Das $\frac{1}{2}$ -Perzentil ist der Median.

Kreativaufgabe 👸

Gegeben sei ein Array mit *n* verschiedenen Elementen (unsortiert, aber mit Ordnung) und eine Medianfunktion, die für ein (Teil-)Array mit m Elementen den Median deterministisch in $\mathcal{O}(m)$ berechnet.

1. Schwierigkeitsstufe

Finde einen Algorithmus, der das $\frac{1}{3}$ -Perzentil deterministisch in $\mathcal{O}(n)$ berechnet.

2. Schwierigkeitsstufe

Finde einen Algorithmus, der die $\frac{1}{3^{k-1}}, \frac{1}{3^{k-2}}, \dots, \frac{1}{3}$ -Perzentile deterministisch in $\mathcal{O}(n)$ berechnet. (Nicht $\mathcal{O}(nk)!$)

3. Schwierigkeitsstufe

Geht das auch inplace?

Bis zum nächsten Mal!

HOW TO CUT & PIZZA

