AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) A compound represented by the following formula (I) below:

$$R^{4}$$
 R^{5}
 R^{6}
 $R^{6'}$
 $R^{1'}$
 R^{8}
 $R^{1'}$
 R^{8}
 $R^{1'}$
 $R^{1'}$
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}

wherein R¹, R¹, R², R², R³, R³, R⁴, R⁴, R⁵, R⁵, R⁶, and R⁶ are groups independently selected from the group consisting of :

- (i) a hydrogen atom;
- (ii) $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group);
 - (iii) a cyano group;
 - (iv) a nitro group;
 - (v) a carbamoyl group;
 - (vi) an N-(C₁ to C₄ alkyl)carbamoyl group;
 - (vii) an N,N-di(C₁ to C₄ alkyl)carbamoyl group;
- (viii) -NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched);
 - (ix) a C₁ to C₆ alkyl group that may be branched or form a cyclic group;

(x) a C_2 to C_6 alkenyl group that may be branched or form a cyclic group;

- (xi) a C₂ to C₆ alkynyl group that may be branched or form a cyclic group;
- (xii) an aralkyl group, wherein the aryl moiety of the aralkyl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,
 - a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

(xiii) a heteroaralkyl group having a heteroaryl moiety, wherein the heteroaryl moiety may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each

independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R^9 is a C_1 to C_4 alkyl group that may be branched), and

a halogen atom;

(xiv) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C_1 to C_4 alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), a halogen atom, and

-S-R, -SO-R, or -SO₂-R (where R is a C_1 to C_4 alkyl group that may be branched);

or may be substituted with $-O-CH_2-O-$ or $-O-(CH_2)_2-O-$ _at positions 3 and 4 taken together; and

(xv) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched), and

a halogen atom;

R⁷ and R⁸ are groups independently selected from the group consisting of:

- (i) a hydrogen atom;
- (ii) a C_1 to C_{12} alkyl group that may be branched or form a cyclic group;
- (iii) a C_2 to C_{12} alkenyl group that may be branched or form a cyclic group;

- (iv) a C₂ to C₁₂ alkynyl group that may be branched or form a cyclic group;
- (v) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,
 - a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C_1 to C_4 alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

(vi) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C_1 to C_4 alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4

alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

- (vii) - $(CH_2)_pOCONR^{10}R^{11}$ (where R^{10} and R^{11} are groups independently selected from the group consisting of:
 - (1) a hydrogen atom;
 - (2) a C₁ to C₄ alkyl group that may be branched;
- (3) a C_2 to C_6 alkenyl group that may be branched or form a cyclic group ;
- (4) a C_2 to C_6 alkynyl group that may be branched or form a cyclic group;
- (5) an aralkyl group, wherein the aryl moiety of the aralkyl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched), and

a halogen atom;

(6) a heteroaralkyl group having a heteroaryl moiety, wherein the heteroaryl moiety may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C_1 to C_4 alkyl)carbamoyl group,

-NHCOR 9 (where R^9 is a C_1 to C_4 alkyl group that may be

branched), and

a halogen atom;

(7) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C_1 to C_4 alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

and

(8) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C_1 to C_4 alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be

branched), and

a halogen atom;

and p [[n]] is an integer from 1 to 12);

(viii) - $(CH_2)_qCONR^{12}R^{13}$ (where R^{12} and R^{13} are groups independently selected from the group consisting of:

- (1) a hydrogen atom;
- (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C_1 to C_4 alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C_1 to C_4 alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C1 to C4 alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be

a halogen atom;

branched), and

and \underline{q} [[n]] is an integer from 1 to 12);

- (ix) -(CH₂)_rNR¹²COR¹³ (where R¹² and R¹³ are groups independently selected from the group consisting of:
 - (1) a hydrogen atom;
 - (2) a C_1 to C_4 alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C1 to C4 alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be

branched), and

a halogen atom;

and \underline{r} [[n]] is an integer from 1 to 12);

- (x) - $(CH_2)_sNR^{12}R^{13}$ (where R^{12} and R^{13} are groups independently selected from the group consisting of:
 - (1) a hydrogen atom;
 - (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C₁ to C₄ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C_1 to C_4 alkyl)carbamoyl group,

an N,N-di(C1 to C4 alkyl)carbamoyl group,

-NHCOR 9 (where R^9 is a C_1 to C_4 alkyl group that may be branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C_1 to C_4 alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

and s [[n]] is an integer from 1 to 12);

- (xi) - $(CH_2)_tY$ - OR^{12} (where Y is a C_1 to C_4 divalent saturated hydrocarbon group that may be branched, and R^{12} is a group selected from the group consisting of:
 - (1) a hydrogen atom;
 - (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C_1 to C_4 alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be

branched), and

a halogen atom;

and t [[n]] is an integer from 1 to 12);

(xii) - $(CH_2)_u$ - OR^{12} (where R^{12} is a group selected from the group consisting of:

- (1) a hydrogen atom;
- (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,
 - a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C_1 to C_4 alkyl)carbamoyl group,

an N,N-di(C_1 to C_4 alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be

branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C_1 to C_4 alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

and u [[n]] is an integer from 1 to 12);

(xiii) -(CH₂)_v-S-R¹² (where R¹² is a group selected from the group consisting of:

- (1) a hydrogen atom;
- (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each

independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

and \underline{v} [[n]] is an integer from 1 to 12);

(xiv) - $(CH_2)_w$ -SO- R^{12} (where R^{12} is a group selected from the group consisting of:

- (1) a hydrogen atom;
- (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,
 - a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of: a C_1 to C_4 alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be

branched), and

a halogen atom;

and w [[n]] is an integer from 1 to 12); and

(xv) - $(CH_2)_x$ - SO_2 - R^{12} (where R^{12} is a group selected from the group consisting of:

- (1) a hydrogen atom;
- (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4

alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an $N,N-di(C_1 \text{ to } C_4 \text{ alkyl})$ carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

and \underline{x} [[n]] is an integer from 1 to 12); or R^7 and R^8 are taken together to form a divalent group selected from the group consisting of: -(CH₂)_m (where m is an integer from 2 to 8);

$$\begin{array}{c} H_2C-CH_2\\ \\ CH_2 \end{array} ; \text{ and } \begin{array}{c} H_2 \\ -CH_2 \\ \hline \end{array} ; \text{ and } \begin{array}{c} CH_2 \\ \hline -CH_2 \\ \hline -CH_2 \\ \hline \end{array} ; \text{ and } \\ \vdots \text{ and$$

wherein X^- is an anion selected from the group consisting of a halide anion, SCN^- , HSO_4^- and HF_2^- ,

provided that in a case where R^1 , R^1 , R^2 , R^2 , R^3 , R^3 , R^4 , R^4 , R^5 , R^5 , R^6 , and R^6 are all hydrogen atoms and X- is a halide anion, R^7 and R^8 are not both methyl groups, a combination of a methyl group and an n-butyl group, a combination of a methyl group and an isopropyl group, or a combination of an allyl group and a hydrogen atom, or R^7 and R^8 are not taken together to form - $(CH_2)_{4^-}$, - $(CH_2)_{5^-}$ or

$$\begin{array}{c} -CH_{2} & CH_{2} - CH_{2} \\ -CH_{2} & C - O & O \\ -CH_{2} & CH_{2} - CH_{2} \\ -CH_{2} & CH_{2} - CH_{2} \\ -CH_{2} & CH_{2} - CH_{2} \\ \end{array}$$

further provided that in a case where R¹, R¹, R², R², R³, R³, R⁴, R⁴, R⁵, R⁵, R⁶, and R⁶ are all hydrogen atoms and X⁻ is a bromide ion or an iodide ion, R⁷ and R⁸ are not both cyclohexyl groups or allyl groups.

2. (previously presented) The compound of claim 1, wherein R^1 , R^1 , R^2 , R^2 , R^3 , R^3 , R^4 , R^4 , R^5 , R^5 , R^6 , and R^6 of the compound represented by the formula (I) are groups independently selected from the group consisting of:

- (i) a hydrogen atom;
- (xiv) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,
 - a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched),

a halogen atom, and

-S-R, -SO-R, or -SO $_2$ -R (where R is a C $_1$ to C $_4$ alkyl group that may be branched);

or may be substituted with -O-CH₂-O- or -O-(CH₂)₂-O-_at positions 3 and 4 taken together; and

(xv) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C1 to C4 alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be

branched), and

a halogen atom.

3. (Original) The compound of claim 2, wherein R¹, R¹, R², R², R³, R³, R⁴, R⁴, R⁵, R⁵, R⁶, and R⁶ of the compound represented by the formula (I) are groups independently selected from the group consisting of a hydrogen atom, a 3,4,5-trifluorophenyl group, a 3,4-difluorophenyl group, a 3-nitrophenyl group, a 3-cyanophenyl group, a benzothiophenyl-2-yl group, a 3,5-difluorophenyl group, a 3-trifluoromethylphenyl group, a 2,4-difluorophenyl group, a 3-methylsulfonylphenyl group, and a 2,3-bis(trifluoromethyl)phenyl group.

4. (previously presented) The compound of claim 1, wherein the compound represented by the formula (I) is a compound represented by the following formula (I'):

$$R^{1}$$
 R^{7}
 R^{8}
 $R^{1'}$
 R^{8}
 $R^{1'}$
 $R^{1'}$

(where R¹ and R^{1'} are groups independently selected from the group consisting of a hydrogen atom, a 3,4,5-trifluorophenyl group, a 3,4,5-trichlorophenyl group, a 3,4-difluorophenyl group, a 3-nitrophenyl group, a 3-cyanophenyl group, a benzothiophenyl-2-yl group, a 3,5-difluorophenyl group, a 3-trifluoromethylphenyl group, a 2,4-difluorophenyl group, a 3-methylsulfonylphenyl group, and a 2,3-bis(trifluoromethyl)phenyl group, and R⁷, R⁸ and X⁻ are groups independently as defined in claim 1).

- 5. (previously presented) The compound of claim 1, wherein R⁷ and R⁸ of the compound represented by the formula (I) are groups independently selected from the group consisting of:
- (ii) a C_1 to C_{12} alkyl group that may be branched or form a cyclic group; and
- (xii) -(CH₂)_u-OR¹² (where R¹² is a group selected from the group consisting of:
 - (1) a hydrogen atom,
 - (2) a C₁ to C₄ alkyl group that may be branched,
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,
 - a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom, and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be

branched), and

a halogen atom,

and u is an integer of 1 to 12).

- 6. (Original) The compound of claim 5, wherein R⁷ and R⁸ of the compound represented by the formula (I) are groups independently selected from the group consisting of a methyl group, an ethyl group, an n-butyl group, an isobutyl group, an n-decyl group, and a cyclohexyl group.
- 7. (Original) The compound of claim 6, wherein R^7 and R^8 of the compound represented by the formula (I) are the same.
- 8. (Currently amended) The compound of claim 1, wherein R^7 and R^8 of the compound represented by the formula (I) are taken together to form a divalent group selected from the group consisting of: $-(CH_2)_m$ (where m is an integer from 2 to 8);

$$\begin{array}{c} \text{H}_2\text{C}-\text{CH}_2 \\ \text{CH}_2 \\ \end{array} \text{; and } \begin{array}{c} \text{H}_2 \\ \text{-CH}_2^-\text{C}-\text{O} \\ \text{-CH}_2 \\ \end{array} \begin{array}{c} \text{CH}_2^-\text{CH}_2 \\ \text{-CH}_2 \\ \end{array} \begin{array}{c} \text{CH}_2 \\ \end{array} \begin{array}{c} \text{CH}_2 \\ \text{-CH}_2 \\ \end{array} \begin{array}{c} \text{CH}_2 \\ \end{array} \begin{array}{c} \text{CH}_2 \\ \end{array} \begin{array}{c} \text{CH}_$$

9. (Currently amended) A method for producing the compound represented by the formula (I) of claim 1, comprising:

a step of reacting a compound represented by the following formula (II):

$$R^{4}$$
 R^{5}
 R^{6}
 $R^{6'}$
 $R^{6'}$
 $R^{6'}$
 $R^{1'}$
 $R^{1'}$
 $R^{3'}$
 $R^{2'}$
 $R^{1'}$
 $R^{1'}$
 $R^{1'}$
 $R^{1'}$
 $R^{1'}$

with a secondary amine represented by the following formula (III):

$$HN \stackrel{R^7}{\underset{R^8}{\bigvee}}$$
 (III)

in an organic solvent in the presence of an acid scavenging agent, wherein in the formula (II), R¹, R¹, R², R², R³, R³, R⁴, R⁴, R⁵, R⁵, R⁶, and R⁶ are groups independently selected from the group consisting of:

- (i) a hydrogen atom;
- (ii) -NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C₁ to C₄ alkyl group);
 - (iii) a cyano group;
 - (iv) a nitro group;
 - (v) a carbamoyl group;
 - (vi) an N-(C₁ to C₄ alkyl)carbamoyl group;
 - (vii) an N,N-di(C₁ to C₄ alkyl)carbamoyl group;
- (viii) -NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched);
 - (ix) a C₁ to C₆ alkyl group that may be branched or form a cyclic group;

(x) a C_2 to C_6 alkenyl group that may be branched or form a cyclic group;

- (xi) a C₂ to C₆ alkynyl group that may be branched or form a cyclic group;
- (xii) an aralkyl group, wherein the aryl moiety of the aralkyl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,
 - a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched), and

a halogen atom;

(xiii) a heteroaralkyl group having a heteroaryl moiety, wherein the heteroaryl moiety may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each

independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

(xiv) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched), a halogen atom, and

-S-R, -SO-R, or -SO₂-R (where R is a C_1 to C_4 alkyl group that may be branched);

or may be substituted with -O-CH₂-O- or -O-(CH₂)₂-O- at positions 3 and 4 taken together; and

(xv) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C_1 to C_4 alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

and

Z is a halogen atom, and

in the formula (III), R^7 and R^8 are groups independently selected from the group consisting of:

(i) a hydrogen atom;

(ii) a C₁ to C₁₂ alkyl group that may be branched or form a cyclic group;

- (iii) a C_2 to C_{12} alkenyl group that may be branched or form a cyclic group;
- (iv) a C_2 to C_{12} alkynyl group that may be branched or form a cyclic group;
- (v) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,
 - a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

(vi) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C_1 to C_4 alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each

independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

- (vii) - $(CH_2)_pOCONR^{10}R^{11}$ (where R^{10} and R^{11} are each independently a group selected from the group consisting of:
 - (1) a hydrogen atom;
 - (2) a C₁ to C₄ alkyl group that may be branched;
- (3) a C_2 to C_6 alkenyl group that may be branched or form a cyclic group ;
- (4) a C_2 to C_6 alkynyl group that may be branched or form a cyclic group ;
- (5) an aralkyl group, wherein the aryl moiety of the aralkyl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4

alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched), and

a halogen atom;

(6) a heteroaralkyl group having a heteroaryl moiety, wherein the heteroaryl moiety may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

(7) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

and

(8) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a

carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched), and

a halogen atom;

and p [[n]] is an integer from 1 to 12);

(viii) - $(CH_2)_qCONR^{12}R^{13}$ (where R^{12} and R^{13} are groups independently selected from the group consisting of:

- (1) a hydrogen atom;
- (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be

branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C_1 to C_4 alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an $N,N-di(C_1 \text{ to } C_4 \text{ alkyl})$ carbamoyl group,

-NHCOR9 (where R9 is a C1 to C4 alkyl group that may be

branched), and

a halogen atom;

and g [[n]] is an integer from 1 to 12);

(ix) -(CH₂)_rNR¹²COR¹³ (where R¹² and R¹³ are groups independently selected from the group consisting of:

(1) a hydrogen atom;

- (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,
 - a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C_1 to C_4 alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

- a halogen atom; and
- (4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,
 - a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

10/587,467 NANP133US

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be

branched), and

a halogen atom;

and \underline{r} [[n]] is an integer from 1 to 12);

- (x) - $(CH_2)_sNR^{12}R^{13}$ (where R^{12} and R^{13} are groups independently selected from the group consisting of:
 - (1) a hydrogen atom;
 - (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR $^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C_1 to C_4 alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be

branched), and

a halogen atom;

and \underline{s} [[n]] is an integer from 1 to 12);

(xi) - $(CH_2)_t Y$ - OR^{12} (where Y is a C_1 to C_4 divalent saturated hydrocarbon group that may be branched, and R^{12} is a group selected from the group consisting of:

- (1) a hydrogen atom;
- (2) a C₁ to C₄ alkyl group that may be branched;

(3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an $N,N-di(C_1 \text{ to } C_4 \text{ alkyl})$ carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be

branched), and

a halogen atom;

and t [[n]] is an integer from 1 to 12);

(xii) - $(CH_2)_u$ - OR^{12} (where R^{12} is a group selected from the group consisting of:

- (1) a hydrogen atom;
- (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR 9 (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an $N,N-di(C_1 \text{ to } C_4 \text{ alkyl})$ carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C_1 to C_4 alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be

branched), and

a halogen atom;

and $\underline{\mathbf{u}}$ [[n]] is an integer from 1 to 12);

(xiii) -(CH₂)_v-S-R¹² (where R¹² is a group selected from the group consisting of:

- (1) a hydrogen atom;
- (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C₁ to C₄ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be

branched), and

a halogen atom;

and v [[n]] is an integer from 1 to 12);

(xiv) -(CH₂)_w-SO-R¹² (where R¹² is a group selected from the group consisting of:

- (1) a hydrogen atom;
- (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C1 to C4 alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be

branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched), and

a halogen atom;

and \underline{w} [[n]] is an integer from 1 to 12); and

- (xv) -(CH₂)_x-SO₂-R¹² (where R¹² is a group selected from the group consisting of:
 - (1) a hydrogen atom;
 - (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each

independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

10/587,467 NANP133US

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

and [[n]] \underline{x} is an integer from 1 to 12); or R^7 and R^8 are taken together to form a divalent group selected from the group constant R^8 are taken together to form a divalent group selected from the group constant R^8 are taken together to form a divalent group selected from 1 to 12);

$$\text{; and } \underbrace{ \begin{array}{c} H_2\text{C}-\text{CH}_2 \\ -\text{CH}_2 \\ -\text{CH}_2 \\ \end{array}}_{\text{CH}_2 - \text{CH}_2} \text{; and } \underbrace{ \begin{array}{c} H_2\text{-CH}_2\text{-CH}_2 \\ -\text{CH}_2\text{-C}-\text{O} \\ -\text{CH}_2 \\ -\text{CH}_2 - \text{CH}_2 \\ -\text{CH}_2 - \text{CH}_2 \\ \end{array}}_{\text{CH}_2 - \text{CH}_2} \text{; }$$

provided that in a case where R^1 , R^1 , R^2 , R^2 , R^3 , R^3 , R^4 , R^4 , R^5 , R^5 , R^6 , and R^6 are all hydrogen atoms and X- is a halide anion, R^7 and R^8 are not both methyl groups, a combination of a methyl group and an n-butyl group, a combination of a methyl group and an isopropyl group, or a combination of an allyl group and a hydrogen atom, or R^7 and R^8 are not taken together to form -(CH₂)₄₋₁, -(CH₂)₅₋ or

$$\begin{array}{c} -CH_{2} & CH_{2} - CH_{2} \\ -CH_{2} & C - O & O \\ \hline -CH_{2} & C - O & O - CH_{2} \\ \hline -CH_{2} & CH_{2} - CH_{2} \end{array}, \text{ and}$$

further provided that in a case where R¹, R¹, R², R², R³, R³, R⁴, R⁴, R⁵, R⁵, R⁶, and R⁶ are all hydrogen atoms and X⁻ is a bromide ion or an iodide ion, R⁷ and R⁸ are not both cyclohexyl groups or allyl groups.

10. (previously presented) The method of claim 9, wherein R^1 , R^1 , R^2 , R^2 , R^3 , R^3 , R^4 , R^4 , R^5 , R^5 , R^6 , and R^6 of the compound represented by the formula (II) are groups independently selected from the group consisting of:

(i) a hydrogen atom;

(xiv) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an $N,N-di(C_1 \text{ to } C_4 \text{ alkyl})$ carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched),

a halogen atom, and

-S-R, -SO-R, or -SO $_2$ -R_(where R is a C $_1$ to C $_4$ alkyl group that may be branched);

or may be substituted with -O-CH₂-O- or -O-(CH₂)₂-O-_at positions 3 and 4 taken together; and

(xv) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C_1 to C_4 alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom.

11. (Original) The method of claim 10, wherein R¹, R¹, R², R², R³, R³, R⁴, R⁴, R⁵, R⁵, R⁶, and R⁶ of the compound represented by the formula (II) are groups independently selected from the group consisting of a hydrogen atom, a 3,4,5-trifluorophenyl group, a 3,4-difluorophenyl group, a 3-nitrophenyl group, a 3-cyanophenyl group, a benzothiophenyl-2-yl group, a 3,5-difluorophenyl group, a 3-trifluoromethylphenyl group, a 2,4-difluorophenyl group, a 3-methylsulfonylphenyl group, and a 2,3-bis(trifluoromethyl)phenyl group.

10/587,467 NANP133US

12. (previously presented) The method of claim 9, wherein the compound represented by the formula (II) is a compound represented by the following formula (II'):

$$R^1$$
 CH_2Z
 $R^{1'}$
 (II')

(where R¹ and R^{1'} are groups independently selected from the group consisting of a hydrogen atom, a 3,4,5-trifluorophenyl group, a 3,4,5-trichlorophenyl group, a 3,4-difluorophenyl group, a 3-nitrophenyl group, a 3-cyanophenyl group, a benzothiophenyl-2-yl group, a 3,5-difluorophenyl group, a 3-trifluoromethylphenyl group, a 2,4-difluorophenyl group, a 3-methylsulfonylphenyl group, and a 2,3-bis(trifluoromethyl)phenyl group, and R⁷, R⁸ and Z are groups independently as defined in claim 9).

- 13. (previously presented) The method of claim 9, wherein R⁷ and R⁸ of the secondary amine represented by the formula (III) are groups independently selected from the group consisting of:
- (ii) a C_1 to C_{12} alkyl group that may be branched or form a cyclic group; and
- (xii) -(CH_2)_u- OR^{12} (where R^{12} is a group selected from the group consisting of:
 - (1) a hydrogen atom,
 - (2) a C_1 to C_4 alkyl group that may be branched,
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom, and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR9 (where R9 is a C1 to C4 alkyl group that may be

branched), and

a halogen atom,

and u is an integer of 1 to 12).

- 14. (previously presented) The method of claim 13, wherein R⁷ and R⁸ of the secondary amine represented by the formula (III) are groups independently selected from the group consisting of a methyl group, an ethyl group, an n-butyl group, an isobutyl group, an n-decyl group, and a cyclohexyl group.
- 15. (previously presented) The method of claim 14, wherein R^7 and R^8 of the secondary amine represented by the formula (III) are the same.
- 16. (Currently amended) The method of claim 9, wherein R^7 and R^8 of the secondary amine represented by the formula (III) are taken together to form a divalent group selected from the group consisting of: $\underline{-(CH_2)_{m^-}}$ - $\underline{-(CH_2)_{y^-}}$ (where \underline{m} \underline{y} is an integer from 2 to 8);

; and
$$\begin{array}{c} H_2C-CH_2 \\ -CH_2 \\ \hline \\ CH_2 \\ \hline \end{array}$$
; and
$$\begin{array}{c} H_2 \\ -CH_2 \\ \hline \\ -CH_2 \\ \hline \\ CH_2 \\ \hline \end{array}$$

17. (Withdrawn) A method for stereoselectively producing a compound represented by the formula (VI):

$$R^{14} \longrightarrow R^{16} \bigcirc R^{15} \longrightarrow R^{18} \bigcirc R^{17}$$
 (VI)

comprising:

alkylating a compound represented by the formula (IV)

$$R^{14}$$
 N^{16}
 N^{16}
 N^{16}
 N^{16}
 N^{15}
 N^{15}
 N^{15}
 N^{16}
 N

with a compound of the formula (V):

$$R^{18}-W$$
 (V)

using a compound represented by the formula (I) that is pure with respect to axis symmetry as a phase-transfer catalyst:

$$R^{5}$$
 R^{6} $R^{6'}$ $R^{1'}$ R^{8} $R^{1'}$ R^{8} $R^{1'}$ $R^{1'}$

in a medium in the presence of an inorganic base,

wherein in the formula (I), R^1 , R^1 , R^2 , R^2 , R^3 , R^3 , R^4 , R^4 , R^5 , R^5 , R^6 , and R^6 are groups independently selected from the group consisting of:

(i) a hydrogen atom;

- (ii) $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group);
 - (iii) a cyano group;
 - (iv) a nitro group;
 - (v) a carbamoyl group;
 - (vi) an N-(C₁ to C₄ alkyl)carbamoyl group;
 - (vii) an N,N-di(C₁ to C₄ alkyl)carbamoyl group;
- (viii) -NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched);
 - (ix) a C₁ to C₆ alkyl group that may be branched or form a cyclic group;
- (x) a C_2 to C_6 alkenyl group that may be branched or form a cyclic group;
- (xi) a C₂ to C₆ alkynyl group that may be branched or form a cyclic group;
- (xii) an aralkyl group, wherein the aryl moiety of the aralkyl group may be substituted with at least one group selected from the group consisting of:
 - a C_1 to C_4 alkyl group that may be branched,
 - a C₁ to C₅ alkoxy group that may be branched,
- an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),
 - a cyano group,
- $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),
 - a nitro group,
 - a carbamoyl group,
 - an N-(C1 to C4 alkyl)carbamoyl group,
 - an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

(xiii) a heteroaralkyl group having a heteroaryl moiety, wherein the heteroaryl moiety may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

(xiv) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a

carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched),

a halogen atom, and

 $-S(O)_n$ -R (where n is 0, 1 or 2, and R is a C_1 to C_4 alkyl group that may be branched);

or may be substituted with $-O-(CH_2)_m-O-$ (where m is 1 or 2) at positions 3 and 4 taken together; and

(xv) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C_1 to C_4 alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C1 to C4 alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched),

and

a halogen atom; and

R⁷ and R⁸ are each independently a monovalent organic group or are taken together to form a divalent organic group,

X- is a halide anion,

in the formulae (IV) and (VI),

R¹⁴ and R¹⁵ are each independently

- (i) a hydrogen atom; or
- (ii) an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a C_1 to C_5 alkoxy group that may be branched, or a halogen atom;

with the proviso the case where both R¹⁴ and R¹⁵ are hydrogen atoms is excluded,

R¹⁶ is a group selected from the group consisting of:

- (i) a hydrogen atom;
- (ii) a C₁ to C₁₀ alkyl group that may be branched or form a cyclic group;
- (iii) a C_2 to C_6 alkenyl group that may be branched or form a cyclic group;
- (iv) a C_2 to C_6 alkynyl group that may be branched or form a cyclic group;
- (v) an aralkyl group, wherein the aryl group of the aralkyl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,
 - a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4

alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C1 to C4 alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

- (vi) a heteroaralkyl group having a heteroaryl moiety, wherein the heteroaryl moiety may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,
 - a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

(vii) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom; and

(viii) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C_1 to C_4 alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4

alkyl)carbamoyl group, or -NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

 R^{17} is a C_1 to C_8 alkyl group that may be branched or form a cyclic group), in the formulae (V) and (VI),

R¹⁸ is a group selected from the group consisting of:

- (i) a C_1 to C_{10} alkyl group that may be branched or form a cyclic group;
- (ii) a C₃ to C₉ allyl group or substituted allyl group that may be branched or form a cyclic group;
- (iii) a C_2 to C_6 alkenyl group that may be branched or form a cyclic group;
- (iv) a C_2 to C_6 alkynyl group that may be branched or form a cyclic group;
- (v) an aralkyl group, wherein the aryl moiety of the aralkyl group may be substituted with at least one group selected from the group consisting of;

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an $N-(C_1$ to C_4 alkyl)carbamoyl group, an $N-(C_1$ to C_4 alkyl)carbamoyl group, or $-NHCOR^9$ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

NANP133US

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

(vi) a heteroaralkyl group having a heteroaryl moiety, wherein the heteroaryl moiety may be substituted with at least one group selected from the group

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C_1 to C_4 alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

10/587,467 NANP133US

(vii) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of;

- a C₁ to C₄ alkyl group that may be branched,
- a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched),

a halogen atom;

and

(viii) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

10/587,467 NANP133US

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched),

a halogen atom; and

(ix) a C_3 to C_9 propargyl group or substituted propargyl group that may be branched, and

in the formula (V),

and

W is a functional group having a leaving ability, and in the formula (VI),

- * shows a newly produced asymmetric center.
- 18. (Withdrawn) The method of claim 17, wherein R⁷ and R⁸ of the compound represented by the formula (I) are groups independently selected from the group consisting of:
- (i) a C_1 to C_{12} alkyl group that may be branched or form a cyclic group and/or may be substituted with a halogen atom;
- (ii) a C₂ to C₁₂ alkenyl group that may be branched or form a cyclic group and/or may be substituted with a halogen atom;
- (iii) a C_2 to C_{12} alkynyl group that may be branched or form a cyclic group and/or may be substituted with a halogen atom;
- (iv) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,
 - a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each

independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

(v) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

- (vi) -(CH₂)_nOCONR¹⁰R¹¹ (where R¹⁰ and R¹¹ are groups independently selected from the group consisting of:
 - (1) a hydrogen atom;
 - (2) a C₁ to C₄ alkyl group that may be branched;
- $\mbox{(3) a C_2 to C_6 alkenyl group that may be branched or form a cyclic group ;}$
- (4) a C_2 to C_6 alkynyl group that may be branched or form a cyclic group ;
- (5) an aralkyl group, wherein the aryl moiety of the aralkyl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C1 to C4 alkyl)carbamoyl group,

-NHCOR 9 (where R^9 is a C_1 to C_4 alkyl group that may be branched), and

a halogen atom;

(6) a heteroaralkyl group having a heteroaryl moiety, wherein the heteroaryl moiety may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C_1 to C_4 alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

(7) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4

alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom; and

(8) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

and n is an integer from 1 to 12);

(vii) -(CH₂)_nCONR¹²R¹³ (where R¹² and R¹³ are groups independently selected from the group consisting of:

- (1) a hydrogen atom;
- (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,
 - a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C₁ to C₄ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

and n is an integer from 1 to 12);

- (viii) - $(CH_2)_nNR^{12}COR^{13}$ (where R^{12} and R^{13} are groups independently selected from the group consisting of:
 - (1) a hydrogen atom;
 - (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR9 (where R9 is a C1 to C4 alkyl group that may be

branched), and

a halogen atom;

and n is an integer from 1 to 12);

- (ix) $-(CH_2)_nNR^{12}R^{13}$ (where R^{12} and R^{13} are groups independently selected from the group consisting of:
 - (1) a hydrogen atom;
 - (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,
 - a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

- a cyano group,
- -NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),
 - a nitro group,
 - a carbamoyl group,
 - an N-(C1 to C4 alkyl)carbamoyl group,
 - an N,N-di(C_1 to C_4 alkyl)carbamoyl group,
- -NHCOR 9 (where R^9 is a C_1 to C_4 alkyl group that may be branched), and
 - a halogen atom; and
- (4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:
 - a C_1 to C_4 alkyl group that may be branched,
 - a C_1 to C_5 alkoxy group that may be branched,
- an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a

carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be

branched), and

a halogen atom;

and n is an integer from 1 to 12);

- (x) - $(CH_2)_nY$ - OR^{12} (where Y is a C_1 to C_4 divalent saturated hydrocarbon group that may be branched, and R^{12} is a group selected from the group consisting of:
 - (1) a hydrogen atom;
 - (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C1 to C4 alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR $^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR9 (where R9 is a C1 to C4 alkyl group that may be

branched), and

a halogen atom;

and n is an integer from 1 to 12);

(xi) - $(CH_2)_n$ - OR^{12} (where R^{12} is a group selected from the group consisting of:

- (1) a hydrogen atom;
- (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,
 - a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an $N,N-di(C_1 \text{ to } C_4 \text{ alkyl})$ carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a

carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C1 to C4 alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

and n is an integer from 1 to 12);

(xii) - $(CH_2)_n$ -S- R^{12} (where R^{12} is a group selected from the group consisting of:

- (1) a hydrogen atom;
- (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR $^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C_1 to C_4 alkyl)carbamoyl group,

-NHCOR9 (where R9 is a C1 to C4 alkyl group that may be

branched), and

a halogen atom;

and n is an integer from 1 to 12);

(xiii) -(CH2)n-SO-R 12 (where R^{12} is a group selected from the group consisting of:

(1) a hydrogen atom;

- (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,
 - a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

- a cyano group,
- -NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),
 - a nitro group,
 - a carbamoyl group,
 - an N-(C_1 to C_4 alkyl)carbamoyl group,
 - an N,N-di(C1 to C4 alkyl)carbamoyl group,
- -NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and
 - a halogen atom; and
- (4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,
 - a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

-NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched), and

a halogen atom;

and n is an integer from 1 to 12); and

(xiv) -(CH₂)_n-SO₂-R¹² (where R¹² is a group selected from the group consisting of:

- (1) a hydrogen atom;
- (2) a C₁ to C₄ alkyl group that may be branched;
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C_1 to C_5 alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom; and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C1 to C4 alkyl)carbamoyl group,

an N,N-di(C_1 to C_4 alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom;

and n is an integer from 1 to 12); or R^7 and R^8 are taken together to form a divalent group selected from the group consisting of: -(CH_2)_m- (where m is an integer from 2 to 8);

19. (Withdrawn) The method of claim 18, wherein R¹, R¹, R², R², R³, R³, R⁴, R⁴, R⁵, R⁵, R⁶, and R⁶ of the compound represented by the formula (I) are groups independently selected from the group consisting of:

- (i) a hydrogen atom;
- (xiv) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,
 - a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

- a cyano group,
- -NR 20 R 21 (where R 20 and R 21 are each independently a hydrogen atom or a C $_1$ to C $_4$ alkyl group),
 - a nitro group,
 - a carbamoyl group,
 - an N-(C₁ to C₄ alkyl)carbamoyl group,
 - an N,N-di(C₁ to C₄ alkyl)carbamoyl group,
- -NHCOR⁹ (where R⁹ is a C₁ to C₄ alkyl group that may be branched),
 - a halogen atom, and
- $-S(O)_n$ -R (where n is 0, 1 or 2, and R is a C_1 to C_4 alkyl group that may be branched);
- or may be substituted with $-O-(CH_2)_m-O-$ (where m is 1 or 2) at positions 3 and 4 taken together; and
- (xv) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:
 - a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom.

20. (Withdrawn) The method of claim 19, wherein R¹, R¹, R², R², R³, R³, R⁴, R⁴, R⁵, R⁵, R⁶, and R⁶ of the compound represented by the formula (I) are groups independently selected from the group consisting of a hydrogen atom, a 3,4,5-trifluorophenyl group, a 3,4-difluorophenyl group, a 3,4-difluorophenyl group, a 3-nitrophenyl group, a 3-cyanophenyl group, a benzothiophenyl-2-yl group, a 3,5-difluorophenyl group, a 3-trifluoromethylphenyl group, a 2,4-difluorophenyl group, a 3-methylsulfonylphenyl group, and a 2,3-bis(trifluoromethyl)phenyl group.

21. (Withdrawn) The method of claim 20, wherein the compound represented by the formula (I) is a compound represented by the following formula (I'):

$$R^{1}$$
 R^{7}
 R^{8}
 $R^{1'}$
 $R^{1'}$
 $R^{1'}$
 $R^{1'}$

(where R¹ and R^{1'} are groups independently selected from the group consisting of a hydrogen atom, a 3,4,5-trifluorophenyl group, a 3,4,5-trichlorophenyl group, a 3,4-difluorophenyl group, a 3-cyanophenyl group, a benzothiophenyl-2-yl group, a 3,5-difluorophenyl group, a 3-trifluoromethylphenyl group, a 2,4-difluorophenyl group, a 3-methylsulfonylphenyl group, and a 2,3-bis(trifluoromethyl)phenyl group, and R⁷, R⁸ and X⁻ are groups independently as defined in claim 17).

- 22. (Wtihdrawn) The method of claim 17, wherein R⁷ and R⁸ of the compound represented by the formula (I) are groups independently selected from the group consisting of:
- (ii) a C_1 to C_{12} alkyl group that may be branched or form a cyclic group; and
- (xii) -(CH₂)_n-OR¹² (where R¹² is a group selected from the group consisting of:
 - (1) a hydrogen atom,
 - (2) a C₁ to C₄ alkyl group that may be branched,
- (3) an aryl group, wherein the aryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, -NR²⁰R²¹ (where R²⁰ and R²¹ are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R⁹ is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR 9 (where R 9 is a C $_1$ to C $_4$ alkyl group that may be branched), and

a halogen atom, and

(4) a heteroaryl group, wherein the heteroaryl group may be substituted with at least one group selected from the group consisting of:

a C₁ to C₄ alkyl group that may be branched,

a C₁ to C₅ alkoxy group that may be branched,

an aryl group that may be substituted with a C_1 to C_4 alkyl group that may be branched, a cyano group, $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group), a nitro group, a carbamoyl group, an N-(C_1 to C_4 alkyl)carbamoyl group, an N,N-di(C_1 to C_4 alkyl)carbamoyl group, or -NHCOR⁹ (where R^9 is a C_1 to C_4 alkyl group that may be branched),

a cyano group,

 $-NR^{20}R^{21}$ (where R^{20} and R^{21} are each independently a hydrogen atom or a C_1 to C_4 alkyl group),

a nitro group,

a carbamoyl group,

an N-(C₁ to C₄ alkyl)carbamoyl group,

an N,N-di(C₁ to C₄ alkyl)carbamoyl group,

-NHCOR9 (where R9 is a C1 to C4 alkyl group that may be

branched), and

a halogen atom,

and n is an integer of 1 to 12.

- 23. (Withdrawn) The method of claim 22, wherein R⁷ and R⁸ of the compound represented by the formula (I) are groups independently selected from the group consisting of a methyl group, an ethyl group, an n-butyl group, an isobutyl group, an n-decyl group, and a cyclohexyl group.
- 24. (Withdrawn) The method of claim 23, wherein R⁷ and R⁸ of the compound represented by the formula (I) are the same.
- 25. (Withdrawn) The method of claim 17, wherein R^7 and R^8 of the compound represented by the formula (I) are taken together to form a divalent group selected from the group consisting of: -(CH₂)_m- (where m is an integer from 2 to 8);

26. (Withdrawn) The method of claim 17, wherein the compound represented by the formula (I) is used in a ratio of 0.001 mol % to 0.1 mol % per 1 mol of the compound represented by the formula (IV).

27. (Withdrawn) The method of claim 17, wherein the compound represented by the formula (I) is used in a ratio of 0.005 mol % to 0.05 mol % per 1 mol of the compound represented by the formula (IV).

28. (Withdrawn) A method for producing an optically active α -amino acid, comprising: hydrolyzing an imino group (R¹⁴R¹⁵C=N-) and an ester group (-CO₂R¹⁷) of the compound represented by the formula (VI) that is obtained by the method of any one of claims 17 to 26, under an acidic condition:

$$\begin{array}{c} R^{14} \\ R^{14} \\ R^{15} \\ R^{18}O - R^{17} \\ (VI) \\ \text{(where R14, R15, R16, R17 and R18 are the same groups as defined} \\ \end{array}$$

(where R¹⁴, R¹⁵, R¹⁶, R¹⁷ and R¹⁸ are the same groups as defined above).

29. (Withdrawn) A method for producing an optically active α -amino acid, comprising:

hydrolyzing an imino group (R¹⁴R¹⁵C=N-) of the compound represented by the formula (VI) that is obtained by the method of any one of claims 17 to 26, under an acidic condition:

$$R^{14}$$
 R^{16}
 R^{16}
 R^{15}
 R^{18}
 R^{17}
 R^{18}
 R^{17}
 R^{18}
 R^{18}

(where $R^{14},\,R^{15},\,R^{16},\,R^{17}$ and R^{18} are the same groups as defined above), and

hydrolyzing an ester group (-CO₂R¹⁷) of the acid hydrolyzed product under an acidic or basic condition.

10/587,467

30. (Withdrawn) A method for producing an optically active α -amino acid, comprising:

hydrolyzing an ester group (-CO₂R¹⁷) of the compound represented by the formula (VI) that is obtained by the method of any one of claims 17 to 26, under a basic condition:

$$\begin{array}{c} R^{14} & R^{16} \\ \hline \\ R^{15} & * \\ \hline \\ R^{18} & (\mathrm{VI}) \\ \end{array}$$
 (where R¹⁴, R¹⁵, R¹⁶, R¹⁷ and R¹⁸ are the same groups as defined

above), and

hydrolyzing an imino group (R¹⁴R¹⁵C=N-) of the basic hydrolyzed product under an acidic condition.