

Develop a sheet music reader to classify each music note then produce the music

Data Collection

J

Music Sheets

J

Predefined Model

5,000 Images

To label the notes

The dataset contains 44,980 notes and their labels & ID

Labeling Process

Original Sheet

First 10 Notes

['c4', 'c4', 'g4', 'g4', 'a4', 'a4', 'g4', 'g4', 'f4', 'f4']

Model: Convolutional Neural Network

with 5 convolution layers

Activation Functions	Softmax & Relu
Loss Function	Categorical Cross Entropy
Optimizer	Adam
Metric	Accuracy

Results

Training

3k Music Sheets

Validation

1k Music Sheets

Testing

1k Music Sheets

Can we produce music with Python?

How to produce music with Python?

- scipy.io.wavfile
 - Method: write
 - Writes a NumPy array as a Waveform (WAV) Audio File Format

**

Note Frequencies

Scraped from Wikipedia

The dataset contains 15 notes and their frequency

Output Example

