시계열 데이터

- datetime 오브젝트
- 사례별 시계열 데이터 계산하기

- datetime 오브젝트
 - datetime 으로 현재 시각 출력하기
 - datetime 라이브러리 가져오기

from datetime import datetime

- 현재 시각 출력

```
now1 = datetime.now()
print(now1)
now2 = datetime.today()
print(now2)
```

2021-02-12 15:10:51.689885 2021-02-12 15:10:51.690888

- datetime 오브젝트
 - datetime 으로 현재 시각 출력하기
 - 시간을 직접 입력하여 datetime 오브젝트 생성

```
t1 = datetime.now()
t2 = datetime(1970, 1, 1)
t3 = datetime(1970, 12, 12, 13, 24, 34)

print(t1)
print(t2)
print(t3)
```

2021-02-12 15:12:02.133773

1970-01-01 00:00:00 1970-12-12 13:24:34

- datetime 오브젝트 연산

```
diff1 = t1 - t2
print(diff1)
```

18670 days, 15:12:02.133773

- datetime 오브젝트
 - datetime 오브젝트로 변환하기 : to_datetime()
 - ebola 데이터 집합 가져오기

```
import pandas as pd
ebola = pd.read_csv('data/country_timeseries.csv')
print(ebola.info())
print(ebola.head(2))

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 122 entries, 0 to 121
Data columns (total 18 columns):
# Column Non-Null Count Dtype
```

0	Date	122 non-null	object
1	Day	122 non-null	int64
2	Cases_Guinea	93 non-null	float64
3	Cases Liberia	83 non-null	float64

	Date	Day	Cases_Guinea	Cases_Liberia
0	1/5/2015	289	2776.0	NaN
1	1/4/2015	288	2775.0	NaN

- datetime 오브젝트
 - datetime 오브젝트로 변환하기 : to_datetime()
 - Date 열의 자료형을 datetime 오브젝트로 변환

dtypes: datetime64[ns](1), float64(16), int64(1), object(1)

memory usage: 18.2+ KB

```
Deaths_UnitedStates Deaths_Spain Deaths_Mali date dt

NaN NaN NaN 2015-01-05

NaN NaN NaN 2015-01-04
```

- datetime 오브젝트
 - datetime 오브젝트로 변환하기 : to_datetime()
 - 시간 형식을 지정하여 datetime 오브젝트 생성

```
test_df1 = pd.DataFrame({'order_day':['01/01/15', '02/01/15', '03/01/15']})

test_df1['date_dt1'] = pd.to_datetime(test_df1['order_day'], format='%d/%m/%y')
test_df1['date_dt2'] = pd.to_datetime(test_df1['order_day'], format='%m/%d/%y')
test_df1['date_dt3'] = pd.to_datetime(test_df1['order_day'], format='%y/%m/%d')
print(test_df1)
```

	order_day	date_dt1	date_dt2	date_dt3
0	01/01/15	2015-01-01	2015-01-01	2001-01-15
1	02/01/15	2015-01-02	2015-02-01	2002-01-15
2	03/01/15	2015-01-03	2015-03-01	2003-01-15

- datetime 오브젝트
 - datetime 오브젝트로 변환하기
 - 시간 형식 지정자

지정자	설명	결과	지정자	설명	결과
% Y	년(4자리)	2002	%y	년(2자리)	02
% m	월	01-12	%B, %b	월(영어)	January, Jan
% d	일	01-31			
%H	시(24시간)	00-23	%l	시(12시간)	01-12
% M	분	00-59			
%S	초	00-59	%u	요일	1-7(월-일)
%w	요일	0-6(일-토)	%A, %a	요일(영어)	Sunday, Sun
%р	오전, 오후	AM, PM	%f	마이크로초	000000-999999
%z	UTC 차이	UTC+0900	%Z	기준 지역명	UTC, EST,
%j	올해 지난 일	001-366	%U	올해 지난 주	00-53
%с, %х	날짜와 시간				

- datetime 오브젝트
 - datetime 오브젝트로 변환하기 : to_datetime()
 - 시계열 데이터 분리 : strftime()

```
now = datetime.now()
nowDate = now.strftime('%Y-%m-%d')
nowTime = now.strftime('%H:%M:%S')
nowWeek = now.strftime('%w요일')

print(now)
print(nowDate)
print(nowTime)
print(nowWeek)
```

```
2021-02-12 16:49:16.533203
2021-02-12
16:49:16
5요일
```

- datetime 오브젝트
 - datetime 오브젝트로 변환하기 : read_csv(parse_dates=['열 이름'])
 - 에볼라 데이터 집합 가져오기

```
ebola1 = pd.read_csv('data/country_timeseries.csv', parse_dates=['Date'])
ebola1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 122 entries, 0 to 121
Data columns (total 18 columns):
    Column
                         Non-Null Count
                                         Dtype
    Date
                         122 non-null
                                         datetime64[ns]
                         122 non-null
                                         int64
    Day
                         93 non-null
                                         float64
   Cases Guinea
    Cases Liberia
                         83 non-null
                                         float64
```

- year / month / day 속성 사용

```
print(ebola1['Date'][0].year)
print(ebola1['Date'][0].month)
print(ebola1['Date'][0].day)
```

2015

1

5

- datetime 오브젝트
 - dt 접근자 사용하기
 - 인덱스를 사용하지 않고 dt 접근자로 년/월/일 추출하여 저장

```
ebola = pd.read_csv('data/country_timeseries.csv')
ebola['date_dt'] = pd.to_datetime(ebola['Date'])
ebola['year'] = ebola['date_dt'].dt.year
ebola['month'] = ebola['date_dt'].dt.month
ebola['day'] = ebola['date_dt'].dt.day

ebola[['Date', 'date_dt', 'year', 'month', 'day']].head()
```

	Date	date_dt	year	month	day
0	1/5/2015	2015-01-05	2015	1	5
1	1/4/2015	2015-01-04	2015	1	4
2	1/3/2015	2015-01-03	2015	1	3
3	1/2/2015	2015-01-02	2015	1	2
4	12/31/2014	2014-12-31	2014	12	31

- 사례별 시계열 데이터 계산하기
 - 에볼라 최초 발병일 계산하기
 - 최초 발병일

```
print(ebola['date_dt'].min())
print(ebola.loc[ebola['date_dt'] == ebola['date_dt'].min()])
```

2014-03-22 00:00:00

```
Date Day Cases_Guinea Cases_Liberia Cases_SierraLeone

121 3/22/2014 0 49.0 NaN NaN
```

1 rows × 22 columns

- 에볼라 진행 정도 확인

```
ebola['outbreak_d'] = ebola['date_dt'] - ebola['date_dt'].min()
print(ebola[['Date', 'Day', 'outbreak_d']].head())
```

```
Date Day outbreak_d

1/5/2015 289 289 days

1/4/2015 288 288 days

1/3/2015 287 287 days

1/2/2015 286 286 days

1/2/31/2014 284 284 days
```

■ 사례별 시계열 데이터 계산하기

- 파산한 은행의 수 계산
 - 은행 데이터 확인

```
banks = pd.read_csv('data/banklist.csv')
print(banks.info())
print(banks.head())
```

#	Column	Non-Null Count	Dtype
0	Bank Name	555 non-null	object
1	City	555 non-null	object
2	ST	555 non-null	object
3	CERT	555 non-null	int64
4	Acquiring Institution	555 non-null	object
5	Closing Date	555 non-null	object
6	Updated Date	555 non-null	object
_			

dtypes: int64(1), object(6)

	Bank Name	City	ST	CERT	Acquiring Institution	Closing Date	Updated Date
0	Washington Federal Bank for Savings	Chicago	IL	30570	Royal Savings Bank	15-Dec- 17	20-Dec- 17
1	The Farmers and Merchants State Bank of Argonia	Argonia	KS	17719	Conway Bank	13-Oct- 17	20-Oct- 17
2	Fayette County Bank	Saint Elmo	IL	1802	United Fidelity Bank, fsb	26-May- 17	26-Jul- 17
3	Guaranty Bank, (d/b/a BestBank in Georgia & Mi	Milwaukee	WI	30003	First-Citizens Bank & Trust Company	5-May- 17	26-Jul- 17
4	First NBC Bank	New Orleans	LA	58302	Whitney Bank	28-Apr- 17	5-Dec- 17

- 사례별 시계열 데이터 계산하기
 - 파산한 은행의 수 계산
 - 5번, 6번 열을 datetime 오브젝트로 변환

```
banks = pd.read_csv('data/banklist.csv', parse_dates=[5, 6])
print(banks.info())
```

```
Column
                        Non-Null Count Dtype
 Bank Name
                                       object
                        555 non-null
                       555 non-null
                                       object
City
 ST
                       555 non-null
                                       object
 CERT
                       555 non-null
                                       int64
Acquiring Institution 555 non-null
                                       object
Closing Date
                       555 non-null
                                       datetime64[ns]
 Updated Date
                       555 non-null
                                       datetime64[ns]
```

dtypes: datetime64[ns](2), int64(1), object(4)

- 사례별 시계열 데이터 계산하기
 - 파산한 은행의 수 계산
 - dt 접근자와 quarter(분기), year(연도) 사용

```
banks['closing_quarter'] = banks['Closing Date'].dt.quarter
banks['closing_year'] = banks['Closing Date'].dt.year
```

banks.head()

	Bank Name	City	ST	CERT	Acquiring Institution	Closing Date	Updated Date	closing_quarter	closing_year
0	Washington Federal Bank for Savings	Chicago	IL	30570	Royal Savings Bank	2017- 12-15	2017- 12-20	4	2017
1	The Farmers and Merchants State Bank of Argonia	Argonia	KS	17719	Conway Bank	2017- 10-13	2017- 10-20	4	2017
2	Fayette County Bank	Saint Elmo	IL	1802	United Fidelity Bank, fsb	2017- 05-26	2017- 07-26	2	2017
3	Guaranty Bank, (d/b/a BestBank in Georgia & Mi	Milwaukee	WI	30003	First- Citizens Bank & Trust Company	2017- 05-05	2017- 07-26	2	2017
4	First NBC Bank	New Orleans	LA	58302	Whitney Bank	2017- 04-28	2017- 12-05	2	2017

- 사례별 시계열 데이터 계산하기
 - 파산한 은행의 수 계산
 - 연도별 파산 현황 확인 1

```
banks['closing_year'].value_counts().head()
```

```
2010 157
2009 140
2011 92
2012 51
2008 25
Name: closing_year, dtype: int64
```

- 연도별 파산 현황 확인 – 2

banks.groupby(['closing_year']).size().head()

```
closing_year
2000 2
2001 4
2002 11
2003 3
2004 4
dtype: int64
```

- 사례별 시계열 데이터 계산하기
 - 파산한 은행의 수 계산
 - 연도별 / 분기별 파산 현황 확인

```
closing_year_q = banks.groupby(
    ['closing_year', 'closing_quarter']).size()
closing_year_q.head()
```

closing_year	closing_quarter	
2000	4	2
2001	1	1
	2	1
	3	2
2002	1	6
dtype: int64		

atype: Int64

import matplotlib.pyplot as plt
closing_year.plot()

import matplotlib.pyplot as plt
closing_year_q.plot()

