

Projeto Didático: Forno de Indução

Uma abordagem didática baseada na literatura Rodrigo Nascimento | 4 de fevereiro de 2023

INSTRUMENTAÇÃO PARA O ENSINO DE EÍSICA II

Sumário

Rodrigo Nascimento

Section 1

Subsection 1.

Subsection 1.2

Section 2

- Section 1
 - Subsection 1.1
 - Subsection 1.2

Example slide A

Rodrigo Nascimento

Section 1

Subsection 1.1

Subsection 1.2

- PCM, Citation: becker2008a
- Bullet point 2
- ...

Example slide A

Rodrigo Nascimento

Section 1

Subsection 1.1

Subsection 1.2

- PCM, Citation: becker2008a
- Bullet point 2
- ..

Example slide B

Rodrigo Nascimento

Section 1

Subsection 1.

Subsection 1.2

Section 2

Block 1

- Bullet point 1
- Bullet point 2
- . .

Example slide B

Rodrigo Nascimento

Section 1

Subsection 1.

Subsection 1.2

Section 2

Block 1

- Bullet point 1
- Bullet point 2
- ...

Example slide C

Rodrigo Nascimento

Section 1

Subsection 1.

Subsection 1.2

Section 2

Example 1

- Bullet point 1
- Bullet point 2
-

Example slide C

Rodrigo Nascimento

Section 1

Subsection 1.

Subsection 1.2

Section 2

Example 1

- Bullet point 1
- Bullet point 2
- ..

Example slide D

Rodrigo Nascimento

Section 1

Subsection 1.

Subsection 1.2

Section 2

Alert 1

- Bullet point 1
 - Bullet point 2
- . . .

Example slide D

Rodrigo Nascimento

Section 1

Subsection 1.

Subsection 1.2

Section 2

Alert 1

- Bullet point 1
- Bullet point 2
- ...

Dilatação ΔL , ΔA e ΔV

Rodrigo Nascimento

Section

Subsection 1.1

Subsection 1.2

$$\Delta V = \gamma V_i \Delta T$$

$$lacktriangledown$$
 Dif. de volumes – ΔV ,
$$V_f - V_i = \frac{\gamma}{V_i} \frac{(T_f - T_i)}{(T_f - T_i)}$$

- Propriedade do material γ
- Volume inicial V_i
- Diferença de temperaturas ΔT

$$V_f = V_i \left[1 + \gamma \left(T_f - T_i \right) \right]$$

Dilatação ΔL , ΔA e ΔV

Rodrigo Nascimento

Section

Subsection 1.1

Subsection 1.2

Section 2

$$\Delta V = \gamma V_i \Delta T$$

■ Dif. de volumes – ΔV

- Propriedade do material γ
- Volume inicial V_i
- Diferença de temperaturas ΔT

$$V_f = V_i \left[1 + \gamma \left(T_f - T_i \right) \right]$$

Dilatação ΔL , ΔA e ΔV

Rodrigo Nascimento

Section

Subsection 1.1

Subsection 1.2

Section 2

$$\Delta V = \gamma V_i \Delta T$$

■ Dif. de volumes – ΔV

$$oxed{V_f - V_i} = oxed{\gamma} oxed{(T_f - T_i)}$$

- Propriedade do material γ
- Volume inicial V_i —
- Diferença de temperaturas ΔT

$$V_f = V_i \left[1 + \gamma \left(T_f - T_i \right) \right]$$

Dilatação ΔL , ΔA e ΔV

Rodrigo Nascimento

Section

Subsection 1.1

Subsection 1.2

$$\Delta V = \gamma V_i \Delta T$$

■ Dif. de volumes –
$$\Delta V$$

$$V_f - V_i = \gamma V_i (T_f - T_i)$$

- Propriedade do material γ
- Volume inicial V_i –
- Diferença de temperaturas ΔT

$$V_f = V_i \left[1 + \gamma \left(T_f - T_i \right) \right]$$

Dilatação ΔL , ΔA e ΔV

Rodrigo Nascimento

Section

Subsection 1.1

Subsection 1.2

$$\Delta V = \gamma V_i \Delta T$$

■ Dif. de volumes –
$$\Delta V$$

$$V_f - V_i = \gamma V_i (T_f - T_i)$$

- Propriedade do material γ
- Volume inicial $-V_i$
- Diferença de temperaturas ΔT

$$V_f = V_i \left[1 + \gamma \left(T_f - T_i \right) \right]$$

Short title References I

Rodrigo Nascimento