

PowerFactory 2021

Technical Reference

Siemens 7UM62X

Publisher:

DIgSILENT GmbH Heinrich-Hertz-Straße 9 72810 Gomaringen / Germany Tel.: +49 (0) 7072-9168-0 Fax: +49 (0) 7072-9168-88

info@digsilent.de

Please visit our homepage at: https://www.digsilent.de

Copyright © 2021 DIgSILENT GmbH

All rights reserved. No part of this publication may be reproduced or distributed in any form without written permission of DIgSILENT GmbH.

November 15, 2019 PowerFactory 2021 Revision 924

Contents

1	Mod	lel info	rmation	1
2	Gen	eral de	escription	1
3	Sup	ported	features	2
	3.1	Meası	urement and acquisition	2
		3.1.1	Available Units	2
		3.1.2	Functionality	2
		3.1.3	Data input	3
	3.2	Sieme	ens 7UM62X overcurrent elements (50/ subrelay	3
		3.2.1	Available Units	3
		3.2.2	Functionality	3
		3.2.3	Data input	4
	3.3	Sieme	ens 7UM62X voltage elements (F27/59) subrelay	5
		3.3.1	Available Units	5
		3.3.2	Functionality	5
		3.3.3	Data input	5
	3.4	Sieme	ens 7UM62X frequency (F81) subrelay	7
		3.4.1	Available Units	7
		3.4.2	Functionality	7
		3.4.3	Data input	7
	3.5	Sieme	ens 7UM62X power (F32) elements (F21) subrelay	9
		3.5.1	Available Units	9
		3.5.2	Functionality	9
		3.5.3	Data input	9
	3.6	Sieme	ens 7UM62X loss of field (F40) subrelay	10
		3.6.1	Available Units	10
		3.6.2	Functionality	10
		3.6.3	Data input	10
	3.7	Sieme	ens 7UM62X distance elements (F21) subrelay	12

Contents

5	Refe	erences		19
4	Feat	tures n	ot supported	18
		3.9.3	Data input	17
		3.9.2	Functionality	17
		3.9.1	Available Units	17
	3.9	Outpu	t logic	17
		3.8.3	Data input	15
		3.8.2	Functionality	14
		3.8.1	Available Units	14
	3.8	Sieme	ns 7UM62X differential subrelay	14
		3.7.3	Data input	13
		3.7.2	Functionality	12
		3.7.1	Available Units	12

1 Model information

Manufacturer Siemens

Model 7UM62X

Variants The Siemens 7UM62X PowerFactory relay models can be used to simulate the different firmware versions of the Siemens 7UM621, and 7UM622 Multifunction Generator, Motor and Transformer Protection relays. The relay version used to implement the model is Siemens 7UM62X V4.6. However please consider that the model has been implemented with a reduced set of the features available in the relays.

2 General description

The SIPROTEC 4 7UM62 is a numerical machine protection unit from the "7UM6 Numerical Protection" series. It provides all functions necessary for protection of generators, motors and transformers. As the scope of functions of the 7UM62 can be customized, it is suited for small, medium-sized and large generators. The 7UM62 device is usable for further applications such as

- Transformer protection, as the 7UM62 has in addition to differential and overcurrent protection a large variety of protection functions that allow, for instance, monitoring of the voltage and frequency load.
- · Protection of synchronous and asynchronous motors.

The Siemens 7UM62X relays has been modeled using two PowerFactory relay models; the following relay models are available:

- Siemens 7UM62X 1 A
- Siemens 7UM62X 5 A

Each relay model consists of a main relay and of the following seven sub relays:

- Siemens 7UM62X overcurrent elements (50/.
- Siemens 7UM62X voltage elements (F27/59).
- Siemens 7UM62X frequency (F81).
- Siemens 7UM62X power (F32).
- Siemens 7UM62X loss of field (F40).
- Siemens 7UM62X distance elements (F21).
- · Siemens 7UM62X differential.

The main relays includes the measurement and acquisition elements, the seven subrelays and the output logic.

The model implementation has been based on the information available in the relay documentation provided by the manufacturer and freely available [1].

3 Supported features

3.1 Measurement and acquisition

It represents the interface between the power system and the relay protective elements. The currents flowing in the power system are converted by two elements which model two 3 phase CTs, one element modeling a single phase CT which measures the neutral current and by an element which models a 3 phase VT; the secondary currents and voltages are then measured by five elements which model the digital filters of the relay and calculate the voltage and frequency RMS values and vector components.

3.1.1 Available Units

- Two 3 phase current transformers ("Ct" and "Remote Ct" block).
- One single phase current transformers ("Neutral Ct" block).
- One three phase voltage transformer ("Vt" block).
- One 3 phase current and voltage measurement element ("Side 1 Measurement" block).
- One sequence current and voltage measurement element ("Side 1 Measurement Seq" block).
- One 3 phase phase-phase voltage measurement element ("Side 1 Measurement DVoltage" block).
- One single phase measurement element ("Meas Neutral I" block).
- One 3 phase current measurement element ("Side 2 Measurement" block).

3.1.2 Functionality

The "Ct", the "Remote Ct", and the "Neutral Ct" block represent ideal CTs. Using the CT default configuration the current at the primary side are converted to the secondary side using the CT ratio. The CT saturation and/or its magnetizing characteristic are not considered. Please set the "Detailed Model" check box in the "Detailed Data" tab page of the CT dialog and insert the data regarding the CT burden, the CT secondary resistance and the CT excitation parameter if more accurate simulation results are required.

The input currents are sampled at 20 samples/cycle.

The measurement blocks calculate the first harmonic components of the currents using a DFT filter operating over a full cycle.

The 3phase voltage measurement element ("Side 1 Measurement DVoltage" block) calculates the phase-phase voltages which, depending upon the relay settings, can be used by the over/under voltage elements instead of the phase-ground voltages.

The "Side 2 Measurement" block measure the 3phase current at a remote location and represent the 2^{nd} measurement source for the differential elements.

The single phase measurement element ("Meas Neutral I" block) measures the neutral current converted by the core Ct ("Neutral Ct" block). If no core CT is available please select the 3 phases CT also in the "Neutral Ct" slot: the earth current will be calculated assuming that an Holmgreen's connection of the phases is used.

3.1.3 Data input

No user input is required but the relay model version with the secondary rated value which matches the CT rated current must be used.

3.2 Siemens 7UM62X overcurrent elements (50/ subrelay

3.2.1 Available Units

- One 3 phase definite time overcurrent element with seal in feature ("I> (50-51)", "U< (I>)", and "tI>" block).
- One 3 phase direction definite time overcurrent element ("I>>" block).
- One 3 phase directional element ("Line angle" block).
- One simplified thermal image element ("Thermal image" block).
- One 3 phase overcurrent element with voltage restraint ("Ip 51V" and "V restraint" block).
- One negative sequence element with $I^2T=k$ characteristic ("I2>" block).
- On negative sequence define time element ("I2>>" block).
- One earth directional definite time overcurrent element acting as 90-%-Stator Earth Fault Protection ("3lo>" block).
- One earth directional element ("Ground Dir. Angle" block).
- Two definite time sensitive earth fault elements ("IEE>" and "IEE>>" block).

3.2.2 Functionality

The overcurrent subrelay consists of a thermal image element and of a set of phase, negative sequence and zero sequence overcurrent elements. One phase overcurrent element ("I>>" block) and one zero sequence element ("3lo>" block) are directional elements. One phase overcurrent element (("I> (50-51)" block) can be set with the seal in feature activated by the voltage collapse and one phase overcurrent element ("Ip 51V" block) has a more common voltage restrain feature.

The inverse time overcurrent element ("Ip 51V") supports the following inverse characteristics:

- · ANSI Definite Inverse.
- ANSI Extremly Inverse.
- · ANSI Inverse.
- ANSI Moderately Inverse.
- · ANSI Very Inverse.
- Definite Time.
- · IEC Extremely Inverse.
- · IEC Normal Inverse.
- · IEC Very Inverse.

The inverse time trip characteristic equations comply with the IEC 60255-3 and the IEEE standard equations. The thermal image element ("Thermal overload" block) calculates the trip time using the IEC 60255-8 equation.

3.2.3 Data input

Address	Relay Setting	Model block	Model setting	Note
1201	O/C I>	l> (50-51)	Out of service (outserv)	
1202	l>	l> (50-51)	Pickup Current (Ipsetr)	
1203	T >	t>	Time Setting (Tdelay)	
1204	U< SEAL-IN	U< (>)	Out of service (outserv)	
1205	U<	U< (>)	Pickup Voltage (Usetr)	
1206	T-SEAL-IN	T-SEAL IN	Time Setting (Tdelay)	
1301	O/C I>>	l>>	Out of service (outserv)	
1302	l>>	l>>	Pickup Current (Ipsetr)	
1303	T l>>	l>>	Time Setting (Tset)	
1304	Phase Direction	l>>	Tripping Direction (idir)	
1305	LINE ANGLE	Line angle	Max Torque Angle (mtau)	In the "Voltage Polarizing" tab page
1401	O/C Ip	lp 51V	Out of service (outserv)	
1402	lp	lp 51V	Current Setting (Ipsetr)	
1403	Т Ір	lp 51V	Time Dial (Tpset)	Active when the trip characteristic is inverse time
1404	TIME DIAL: TD	lp 51V	Time Dial (Tpset)	Active when the trip characteristic is <i>Definite time</i>
1405	IEC CURVE	lp 51V	Characteristic(pcharac)	
1406	ANSI CURVE	lp 51V	Characteristic(pcharac)	
1407	VOLT. INFLUENCE	V restraint	VrestraintON	In the "Logic" tab page, set equal to 1 when the realy setting is <i>Volt. restraint</i>
1601	Ther. OVER LOAD	Thermal image	Out of service (outserv)	
1602	K-FACTOR	Thermal image	Current Setting (Ipset)	
1603	TIME CONSTANT	Thermal image	Time Dial (Tpset)	
1701	UNBALANCE LOAD	12>	Out of service (outserv)	
1702	12>	12>	Current Setting (Ipset)	
1704	FACTOR K	12>	Time Dial (Tpset)	
1705	T COOL DOWN	12>	Reset Delay (ResetT)	
1706	12>>	12>>	Pickup Current (Ipset)	
1707	T I2>>	12>>	Time Setting (Tset)	
5001	S/E/F PROT.	3lo>	Out of service (outserv)	
5002	U0>	Ground Dir. Angle	Polarizing Voltage (upolur)	In the "Voltage Polarizing" tab page
5003	310>	3lo>	Pickup Current (Ipsetr)	
5004	DIR. ANGLE	Ground Dir. Angle	Max. Torque Angle (mtau)	In the "Voltage Polarizing" tab page
5005	T S/E/F	3lo>	Time Setting (Tset)	
5101	O/C PROT. IEE	IEE>	Out of service (outserv)	
		IEE>>	Out of service (outserv)	
5102	IEE>	IEE>	Pickup Current (Ipsetr)	
5103	T IEE>	IEE>	Time Setting (Tset)	
5104	IEE>>	IEE>>	Pickup Current (Ipsetr)	
5105	T IEE>>	IEE>>	Time Setting (Tset)	

3.3 Siemens 7UM62X voltage elements (F27/59) subrelay

The Siemens 7UM62X voltage elements (F27/59) subrelay contains a set of phase-phase and phase-ground overvoltage elements, one set of positive sequence undervoltage elements and two overfluxing elements.

3.3.1 Available Units

- Two phase-ground define time overvoltage elements ("U> Ph-E" and "U>> Ph-E" block).
- Two phase-phase define time overvoltage elements ("U> Ph-Ph" and "U>> Ph-Ph" block).
- One positive sequence definite time undervoltage element("Up<" block).
- Two positive sequence define time undervoltage elements ("U<" and "U<< " block).
- One inverse time overfluxing element ("U/f>" block).
- One definite time overfluxing element ("U/f>>" block).

3.3.2 Functionality

The set consisting of two 3 phase overvoltage and two 3phase undervoltage elements is duplicated: one set is fed by the phase-phase voltages, one set is fed by the phase-ground voltages; only one set, accordingly with the value of the "VALUES" (address 4107A) relay parameter, can be active at the same time.

The flux value is calculated by the "V/Hz calculator" block.

3.3.3 Data input

Address	Relay Setting	Model block	Model setting	Note
4001	UNDERVOLTAGE	U<	Out of Service (outserv)	
		U<<	Out of Service (outserv)	
4002	U<	U<	Pickup Voltage(Usetr)	
4003	T U<	U<	Time Delay (Tdel)	
4004	U<<	U<<	Pickup Voltage(Usetr)	
4005	T U<<	U<<	Time Delay (Tdel)	
4101	OVERVOLTAGE	U> Ph-Ph	Out of Service (outserv)	
		U>> Ph-Ph	Out of Service (outserv)	
		U>> Ph-E	Out of Service (outserv)	
		U>> Ph-E	Out of Service (outserv)	
4102	U>	U> Ph-Ph	Pickup Voltage (Usetr)	
	U>	U> Ph-E	Pickup Voltage(Usetr)	
4103	T U>	U> Ph-Ph	Time Delay (Tdel)	
	T U>	U> Ph-E	Time Delay (Tdel)	
4104	U>>	U>> Ph-Ph	Pickup Voltage(Usetr)	
	U>>	U>> Ph-E	Pickup Voltage(Usetr)	
4105	T U>>	U>> Ph-Ph	Time Delay (Tdel)	
	T U>>	U>> Ph-Ph	Time Delay (Tdel)	

3.4 Siemens 7UM62X frequency (F81) subrelay

The Siemens 7UM62X frequency (F81) subrelay contains the elements which simulate the Frequency Protection (ANSI 81) and the Rate-of-Frequency-Change Protection df/dt (ANSI 81R) protective feature.

3.4.1 Available Units

- Eight frequency elements ("f1 (1st threshold)", "f1 (2nd threshold)", "f2 (1st threshold)", "f2 (2nd threshold)", "f3 (1st threshold)", "f3 (2nd threshold)", "f4 (1st threshold)" and "f4 (2nd threshold)" block).
- Two definite time undervoltage elements ("U MIN" and "Umin" block).
- Four rate of frequency change elements ("df1/dt", "df2/dt", "df3/dt", and "df4/dt" block).
- One frequency calculation element ("Meas Freq" block).

3.4.2 Functionality

Two independent under voltage elements can be used to block the frequency element set ("Umin" block) and the rate of frequency change element set ("U MIN" block).

The frequency is measured by the "Meas Freq" block which uses by default the phase A - phase B voltage.

3.4.3 Data input

Address	Relay Setting	Model block	Model setting	Note
4201	O/U FREQUENCY	f1 (1st threshold)	Out of Service (outserv)	
		f1 (2nd threshold)	Out of Service (outserv)	
		f2 (1st threshold)	Out of Service (outserv)	
		f2 (2nd threshold)	Out of Service (outserv)	
		f3 (1st threshold)	Out of Service (outserv)	
		f3 (2nd threshold)	Out of Service (outserv)	
		f4 (1st threshold)	Out of Service (outserv)	
		f4 (2nd threshold)	Out of Service (outserv)	
4202	f1 PICKUP	f1 (1st threshold)	Frequency (Fset)	
4203	f1 PICKUP	f1 (2nd threshold)	Frequency (Fset)	
4204	T f1	f1 (1st threshold)	Time Delay (Tdel)	
		f1 (2nd threshold)	Time Delay (Tdel)	
4205	f2 PICKUP	f2 (1st threshold)	Frequency (Fset)	
4206	f2 PICKUP	f2 (2nd threshold)	Frequency (Fset)	
4207	T f2	f2 (1st threshold)	Time Delay (Tdel)	
		f2 (2nd threshold)	Time Delay (Tdel)	
4208	f3 PICKUP	f3 (1st threshold)	Frequency (Fset)	
4209	f3 PICKUP	f3 (2nd threshold)	Frequency (Fset)	
4210	T f3	f3 (1st threshold)	Time Delay (Tdel)	
		f3 (2nd threshold)	Time Delay (Tdel)	

3 Supported features

Address	Relay Setting	Model block	Model setting	Note
4211	f4 PICKUP	f4 (1st threshold)	Frequency (Fset)	
4212	f4 PICKUP	f4 (2nd threshold)	Frequency (Fset)	
4213	T f4	f4 (1st threshold)	Time Delay (Tdel)	
		f4 (2nd threshold)	Time Delay (Tdel)	
4215	Umin	Umin	Pickup Voltage (Usetr)	
4501	df/dt Protect.	df1/dt	Out of Service (outserv)	
		df2/dt	Out of Service (outserv)	
		df3/dt	Out of Service (outserv)	
		df4/dt	Out of Service (outserv)	
4503	STAGE df1/dt	df1/dt	Gradient df/dt (dFset)	
4504	T df1/dt	df1/dt	Time Delay (Tdel)	
4507	STAGE df2/dt	df2/dt	Gradient df/dt (dFset)	
4508	T df2/dt	df2/dt	Time Delay (Tdel)	
4511	STAGE df3/dt	df3/dt	Gradient df/dt (dFset)	
4512	T df3/dt	df3/dt	Time Delay (Tdel)	
4515	STAGE df4/dt	df4/dt	Gradient df/dt (dFset)	
4516	T df4/dt	df4/dt	Time Delay (Tdel)	
4518	U MIN	U MIN	Pickup Voltage (Usetr)	

Separated blocks are use to model each frequency element (i.e. "f1 (1st threshold)" and "f1 (2nd threshold)" are modeling the "f1" relay element); please consider that the time delay is an unique value so the same time delay must be set in both blocks.

3.5 Siemens 7UM62X power (F32) elements (F21) subrelay

The Siemens 7UM62X power (F32) elements (F21) subrelay models the main features of the active over/underpower elements and of the reverse power element.

3.5.1 Available Units

- One forward over activepower definite time element ("Pf>" block).
- One forward under activepower definite time element ("Pf<" block).
- Two reverse over active power definite time elements ("P> Reverse T-SV-OPEN" and "P>Reverse T-SV-CLOSED" block).
- Two elements calculating the forward and the reverse active power ("PQ calc" and "Power Calculator" block).

3.5.2 Functionality

The "P> Reverse T-SV-OPEN" or the "P>Reverse T-SV-CLOSED" block must be enabled manually to simulate the effect of the binary input which transfer the emergency tripping valve position. Both blocks must be set with an identical trip threshold.

3.5.3 Data input

Address	Relay Setting	Model block	Model Parameter	Note
3101	REVERSE POWER	P> Reverse T-SV-OPEN	Out of Service (outserv)	
		P> Reverse T-SV-CLOSED	Out of Service (outserv)	
3102	P> REVERSE	P> Reverse T-SV-OPEN	Pickup Current (Ipsetr)	
		P> Reverse T-SV-CLOSED	Pickup Current (Ipsetr)	
3103	T-SV-OPEN	P> Reverse T-SV-OPEN	Time Setting (Tset)	
3104	T-SV-CLOSED	P> Reverse T-SV-CLOSED	Time Setting (Tset)	
3201	FORWARD POWER	Pf>	Out of Service (outserv)	
		Pf<	Out of Service (outserv)	
3202	Pf<	Pf<	Pickup Current (Ipsetr)	
3203	Pf>	Pf>	Pickup Current (Ipsetr)	
3204	T-Pf<	Pf<	Time Setting (Tset)	
3205	T-Pf>	Pf>	Time Setting (Tset)	

3.6 Siemens 7UM62X loss of field (F40) subrelay

The Siemens 7UM62X loss of field (F40) subrelay models 3 loss of field characteristics with voltage supervisioning.

3.6.1 Available Units

- Five admittance blinder elements ("Characteristic1-A", "Characteristic1-B", "Characteristic2", "Characteristic3-A", and "Characteristic3-B" block).
- Three timers ("Characteristic 1 Trip delay", "Characteristic 2 Trip delay", and "Characteristic 3 Trip delay" block).
- One overvoltage element ("Voltage supervision" block).
- One polarizing element ("Polarizing" block).

3.6.2 Functionality

The subrelay processes all three phase currents all three phase voltages. The "Characteristic1-A" admittance blinder and the "Characteristic1-B" admittance blinder model the *Characteristic 1* shape. The "Characteristic3-A" admittance blinder and the "Characteristic3-B" admittance blinder simulate the *Characteristic 3* shape. A different timer is associated to each characteristic.

The admittance blinder elements are not displayed in the PowerFactory R-X digram.

3.6.3 Data input

Address	Relay Setting	Model block	Model Parameter	Note
3001	IMPEDANCE PROT.	Characteristic1-A	Out of Service (outserv)	
		Characteristic1-B	Out of Service (outserv)	
		Characteristic2	Out of Service (outserv)	
		Characteristic3-A	Out of Service (outserv)	
		Characteristic3-B	Out of Service (outserv)	
3002	1/xd CHAR. 1	Characteristic1-A	Admittance (B)	
		Characteristic1-B	Admittance (B)	
3003	ANGLE 1	Characteristic1-A	Relay Angle (phi)	
		Characteristic1-B	Relay Angle (phi)	
3004	T CHAR. 1	Characteristic 1 Trip delay	Time Setting (Tdelay)	
3005	1/xd CHAR. 2	Characteristic2	Admittance (B)	
3006	ANGLE 2	Characteristic2	Relay Angle (phi)	
3007	T CHAR. 2	Characteristic 3 Trip delay	Time Setting (Tdelay)	
3008	1/xd CHAR. 3	Characteristic3-A	Admittance (B)	
		Characteristic3-B	Admittance (B)	
3009	ANGLE 3	Characteristic3-A	Relay Angle (phi)	
		Characteristic3-B	Relay Angle (phi)	
3010	T CHAR 3	Characteristic 3 Trip delay	Time Setting (Tdelay)	
3012	EXCIT. VOLT.	Voltage supervision	Out of Service (outserv)	
3014A	Umin	Voltage supervision	Pickup Voltage (Usetr)	

\sim	Supported	f 1
	SIINNARTAA	TOOTHINGS

The "Polarizing" block doesn't require any input.

3.7 Siemens 7UM62X distance elements (F21) subrelay

The Siemens 7UM62X distance elements (F21) subrelay contains 3 polygonal distance zones which check both the phase and the ground loop impedances and two out of step zones with phase and negative sequence release logic.

3.7.1 Available Units

- One distance starting element ("Starting" block).
- One polarizing element ("Polarizing" block).
- Three polygonal distance elements ("Z1", "Z1b", and "Z2" block).
- Three timers associated to the polygonal zones ("Zone#1 Trip delay", "Zone#1b Trip delay", and "Zone#2 Trip delay" block).
- · One power swing detector element ("Power Swing" block).
- Two out of step detector elements ("Out of Step Characteristic 1" and "Out of Step Characteristic 2" block).
- Two out of step zone elements ("OOS Characteristic 1" and "OOS Characteristic 2" block).
- One positive sequence overcurrent element ("I1> Release" block).
- One negative sequence overcurrent element ("I2< Release" block).
- One additional timer ("T END" block).

3.7.2 Functionality

The polygonal zones, controlled by an overcurrent starting logic ("Starting" block), check both the phase and the ground loops impedances calculated by the polarizing element ("Polarizing" block). A separate timer is associate to each distance zone ("Zone#1 Trip delay", "Zone#1b Trip delay", and "Zone#2 Trip delay" block). The distance zones are blocked when a power swing condition has been detected by the power swing detector element ("Power Swing" block).

Two separate elements ("Out of Step Characteristic 1" and "Out of Step Characteristic 2" block) can be used to detect an out of step condition and to trip the relay. The out of step zones ("OOS Characteristic 1" and "OOS Characteristic 2" block) are enabled only when the positive sequence current is greater than an user defined threshold ("I1> Release" block) and the negative sequence current is smaller than another user defined threshold ("I2< Release" block).

A backup delayed trip can be triggered by an additional timer ("T END" block).

3.7.3 Data input

Address	Relay Setting	Model block	Model Parameter	Note
3301	IMPEDANCE	Z1	Out of Service (outserv)	
	PROT.			
		Z1b	Out of Service (outserv)	
		Z2	Out of Service (outserv)	
3302	IMP I>	Starting	lph> (lphg)	In the "Under- impedance / Overcurrent" tab page
3306	ZONE Z1	Z1	+X Reach (Xmax)	
		Z1	+R Resistance (PH-E) (REmax)	
3307	T-Z1	Zone#1 Trip delay	Time Setting (Tdelay)	
3308	ZONE Z1B	Z1b	+X Reach (Xmax)	
		Z1b	+R Resistance (PH-E) (REmax)	
3309	T-Z1B	Zone#1b Trip delay	Time Setting (Tdelay)	
3310	ZONE Z2	Z2	+X Reach (Xmax)	
		Z2	+R Resistance (PH-E) (REmax)	
3311	T-Z2	Zone#2 Trip delay	Time Setting (Tdelay)	
3312	T END	T END	Time Setting (Tdelay)	
3313	POWER SWING	Power Swing	Out of Service (outserv)	
3314	P/SPOL-TPOL	Power Swing	Delta Z (dZ)	In the "External Polygon Settings" tab page
3317A	T-ACTION P/S	Power Swing	tH(tH)	In teh "Timers" tab page
3501	OUT-OF-STEP	Out of Step Characteristic 1	Out of Service (outserv)	
		Out of Step Characteristic 2	Out of Service (outserv)	
3502	I1> RELEASE	I1> Release	Pickup Current (Ipset)	
3503	12< RELEASE	I2< Release	Pickup Current (Ipset)	
3504	Za	OOS Characteristic 1	+R Resistance (Rmax)	
		OOS Characteristic 2	+R Resistance (Rmax)	
3505	Zb	OOS Characteristic 1	-X Reach (Xmin)	
3506	Zc	OOS Characteristic 1	+X Reach (Xmax)	
3507	Zd-Zc	OOS Characteristic 2	+X Reach (Xmax)	+X Reach ="Zd- Zc"+"Zc"
3508	PHI POLYGON	Out of Step Characteristic 1	Relay Angle (phi)	
		Out of Step Characteristic 2	Relay Angle (phi)	
3509	REP. CHAR. 1	Out of Step Characteristic 1	OOS, No. of Crossings (iooscrossnum)	
3510	REP. CHAR. 2	Out of Step Characteristic 2	OOS, No. of Crossings (iooscrossnum)	

3.8 Siemens 7UM62X differential subrelay

The *Siemens 7UM62X differential* subrelay contains a 3 phase differential element with harmonic blocking and a REF differential element.

3.8.1 Available Units

- One 3 phase differential element ("Phase Differential" block).
- One 3 phase differential current measurement element ("Ph Diff RMS Measure" block, ancillary to the 3 phase differential element).
- One single phase differential element ("Earth differential" block).
- One single phase current measurement element ("Earth Diff RMS Measure" block, ancillary to the single phase differential element).
- Four frequency measurement elements ("CT1 2nd Harmonic Measurement", "CT1 5th Harmonic Measurement", "CT2 2nd Harmonic Measurement", and "CT2 5th Harmonic Measurement" block).
- One 3 phase definite time overcurrent element ("REF I> BLOCK" block).
- One single phase definite time overvoltage element ("REF Uo> RELEASE" block).

3.8.2 Functionality

Differential Protection (ANSI 87G/87M/87T) :

The following features are available in the 3phase differential element ("Phase Differential" block):

- Double bias current percentage restraint differential with user configurable differential threshold and user configurable restraint slopes and slopes thresholds.
- · Unrestrained differential with user configurable threshold.
- User configurable time delay (shared by both differentials).
- ullet 2 nd harmonic restraint of the first differential with user configurable threshold.
- ullet 5 harmonic restraint of the first differential with user configurable threshold.

The differential element calculates for each phase the average of the input currents. The average values are then used to calculate the differential threshold considering the user configurable double bias current percentage restraint.

The measurement element ("Ph Diff RMS Measure" block) is used to calculate the RMS value of the differential current. The differential current vector components (or instantaneous values during the EMT simulation) are calculated by the differential element.

The second restrain uses the 5^{th} harmonic.

Earth Current Differential Protection (ANSI 87GN,TN) :

The earth differential element is a REF(Restricted Earth Fault) differential which compares the neutral current with the zero sequence current measured by the "Ct" CT.

The following features are available in the earth differential element ("Earth differential" block):

- · Single bias current percentage restraint differential with user configurable differential threshold and user configurable restraint slope.
- · User configurable time delay.
- Minimum phase current threshold ("REF I> BLOCK" block).
- Minimum zero sequence voltage activation threshold ("REF Uo> RELEASE" block).

The restricted earth fault element calculates the average of the neutral current and of the zero sequence current. This value is used to calculate the earth fault differential threshold considering the user configurable single bias current percentage restraint.

The measurement element ("Earth Diff RMS Measure" block) is used to calculate the RMS value of the restricted earth fault differential current. The restricted earth fault differential current vector components (or instantaneous values during the EMT simulation) are calculated by the differential element.

The differential element is blocked when the zero sequence voltage is below the threshold set in the "REF Uo> RELEASE" block or when the phase current is above the threshold set in the "REF I> BLOCK" block.

3.8.3 Data input

Differential Protection (ANSI 87G/87M/87T) :

Address	Relay Setting	Model block	Model Parameter	Note
2001	DIFF PROT.	Phase Differential	Out of Service (outserv)	
2006	INRUSH 2.HARM.	Phase Differen- tial	Disable harmonic blocking (harmblockdisable)	In the "Harmonic blocking" tab page, shared with 2007
2007	RESTR. n.HARM.	Phase Differen- tial	Disable harmonic blocking (harmblockdisable)	In the "Harmonic blocking" tab page, shared with 2006
2021	I-DIFF>	Phase Differen- tial	Differential Current base threshold (Idiff)	
2026A	T I-DIFF>	Phase Differen- tial	Time Setting (Tset)	In the model unique parameter shared with 1236A
2031	I-DIFF>>	Phase Differential	Unrestrained Differential threshold (Idiffunrest)	
2036A	T I-DIFF>>	Phase Differential	Time Setting (Tset)	In the model unique parameter shared with 1236A
2041A	SLOPE 1	Phase Differential	Restrain Percentage 1 (Irestepercent1)	
2042A	BASE POINT 1	Phase Differential	Restraint Current 1st Threshold (lpset1)	

3 Supported features

Address	Relay Setting	Model block	Model Parameter	Note
2043A	SLOPE 2	Phase Differential	Restrain Percentage 2 (Irestepercent2)	
2044A	BASE POINT 2	Phase Differential	Restraint Current 2nd Threshold (Ipset2)	
2071	2. HARMONIC	Phase Differential	2nd Harmonic blocking threshold (H2threshold)	In the "Harmonic blocking" tab page
2076	n. HARMONIC	Phase Differential	5th Harmonic blocking threshold (H5threshold)	In the "Harmonic blocking" tab page
2078A	IDIFFmax n.HM	Phase Differential	Harm blocking disabling threshold(hblckdisthr)	In the "Harmonic blocking" tab page

Earth Current Differential Protection (ANSI 87GN,TN) :

Address	Relay Setting	Model block	Model Parameter	Note
2101	REF PROT.	Earth differential	Out of Service (outserv)	
2102	REF I> BLOCK	REF I> BLOCK	Pickup Current (Ipset)	
2103	REF U0> RELEASE	REF Uo> RELEASE	Pickup Voltage (Usetr)	
2110	I-REF>	Earth differentialt	Differential Current base threshold (Idiff)	
2112	T I-REF>	Earth differential	Time Setting (Tset)	
2113A	SLOPE	Earth differential	Restrain Percentage 1 (Irestepercent1)	
2114A	BASE POINT	Earth differential	Restraint Current 1st Threshold (lpset1)	

Output logic 3.9

It represents the output stage of the relay; it's the interface between the relay and the power breaker. A set of eleven relay output contacts is available and can be configured using any custom logic.

3.9.1 Available Units

• One output element ("OutputLogic" block).

3.9.2 Functionality

The "OutputLogic" block gets the trip signals coming from the differential element, the restricted earth fault element and from the seven subrelay; it operates the relay output contacts and the power breaker.

The following relay output contacts are available:

- OUT1
- · OUT2
- · OUT3
- OUT4
- OUT5
- OUT6
- OUT7
- OUT8
- OUT9
- OUT10
- OUT11

They are operated by any (differential/restricted earth fault element or subrelay elements) protection element trip. By default the behavior of these output contacts is identical. Any custom relay output logic can be inserted in the "Logic" tab page of the "OutputLogic" block.

The relay output contact which operates the breaker is "OUT1".

3.9.3 Data input

To disable completely the relay model ability to open the power circuit breaker disable the "OutputLogic" block.

4 Features not supported

The following features are not supported:

- Startup overcurrent Protection (ANSI 51).
- 100% stator earth fault protection with 3rd harmonics and with 20Hz Voltage injection (ANSI 64G).
- Sensitive earth fault protection B (ANSI 51 GN).
- Interturn protection (ANSI 59N).
- Rotor earth fault protection (ANSI 64 R).
- Sensitive Rotor Earth Fault Protection with 1 to 3 Hz Square Wave Voltage Injection 8 ANSI 64 R).
- Motor starting time supervision (ANSI 48).
- · Restart inhibit for motors (ANSI 66).
- Breaker failure protection (ANSI 50BF).
- Inadvertent energization (ANSI 50,27).
- · Loss of field (F40) excitation voltage supervision pickup.
- DC voltage current protection (ANSI 59NDC/51NDC).

5 References

[1] Siemens, P. O. Box 48 06, D-90026 Nurnberg, Germany. SIPROTEC Multifunctional Machine Protection 7UM62 V4.6 Manual C53000-G1176-C149-5, 1995.