МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ПРИКЛАДНОЙ МАТЕМАТИКИ КАФЕДРА МАТЕМАТИЧЕСКОЙ КИБЕРНЕТИКИ

КУРСОВАЯ РАБОТА

ПЕРЕЧИСЛЕНИЕ ПУТЕЙ ОРИЕНТИРОВАННОГО ГРАФА МЕТОДОМ ЛАТИНСКОЙ КОМПОЗИЦИИ

Студент: Березнев Н.В.

Группа 80-103Б

Преподаватель: Смерчинская С.О.

Оценка:

Дата:

Задание

Вариант 4

1. Определить для орграфа, заданного матрицей смежности:

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

- а) матрицу односторонней связности;
- б) матрицу сильной связности;
- в) компоненты сильной связности;
- г) матрицу контуров;
- д) изображение графа и компонент сильной связности;
- 2. Используя алгоритм Терри, определить замкнутый маршрут, проходящий ровно по два раза (по одному в каждом направлении) через каждое ребро графа.

3. Используя алгоритм "фронта волны", найти все минимальные пути из первой вершины в последнюю орграфа, заданного матрицей смежности.

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

4. Используя алгоритм Форда, найти минимальные пути из первой вершины во все достижимые вершины в нагруженном графе, заданном матрицей длин дуг.

$$C = \begin{pmatrix} \infty & 3 & 5 & \infty & 6 & \infty & \infty & \infty \\ 2 & \infty & 1 & 4 & \infty & \infty & \infty & \infty \\ 3 & \infty & \infty & 4 & 2 & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & \infty & 3 & 5 & \infty \\ 4 & \infty & \infty & \infty & \infty & 6 & \infty & 7 \\ \infty & \infty & \infty & \infty & \infty & \infty & 3 & 2 \\ 6 & \infty & \infty & \infty & \infty & \infty & \infty & 1 \\ 8 & \infty & \infty & \infty & 11 & \infty & \infty & \infty \end{pmatrix}$$

5. Найти остовное дерево с минимальной суммой длин входящих в него ребер.

6. Пусть каждому ребру неориентированного графа соответствует некоторый элемент электрической цепи. Составить линейно независимые системы уравнений Кирхгофа для токов и напряжений. Пусть первому и пятому ребру соответствуют источники тока с ЭДС E1 и E2, а остальные элементы являются сопротивлениями. Используя закон Ома, и, предполагая внутренние сопротивления источников тока равными нулю, получить систему уравнений для токов.

7. Построить максимальный поток по транспортной сети.

- 8. Перечисление путей ориентированного графа методом латинской композиции.
 - 1. Изучить алгоритм.
 - 2. Составить программу алгоритма.
 - 3. Отладить тестовые примеры.
 - 4. Провести оценку сложности алгоритма.
 - 5. Составить прикладную задачу, для решения которой используется данный алгоритм.

а) Способ №1

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

$$A^2 = egin{pmatrix} 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 \end{pmatrix} * egin{pmatrix} 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 \end{pmatrix} = egin{pmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 0 \ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} * \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$T = E \lor A \lor A^2 \lor A^3 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Способ №2

$$k = 0$$

$$T^{(0)} = E \lor A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \lor \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$
$$k = 1, \quad k - 1 = 0$$

$$T^{(1)} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \vee \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

.

Очевидно, что
$$T^{(4)}=\begin{pmatrix}1&1&1&0\\1&1&1&0\\0&0&1&0\\1&1&1&1\end{pmatrix}$$
, значит $T=\begin{pmatrix}1&1&1&0\\1&1&1&0\\0&0&1&0\\1&1&1&1\end{pmatrix}$

$$\text{6) } \overline{S} = T \& T^T = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \& \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\overline{S} = egin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 - матрица сильной связности

$$(V_1)$$
 (V_2)

$$V_4$$
 V_3

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 1 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow 1 \rightarrow 5 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Найдем промежуточные вершины кратчайших путей:

- 1) v_7
- 2) $w_3(v_1) \cap \Gamma^{-1}v_8 = \{v_2, v_3\} \cap \{v_2, v_3\} = \{v_2, v_3\}$
- 3.1) $w_2(v_1) \cap \Gamma^{-1}v_2 = \{v_6\} \cap \{v_3, v_6, v_7\} = \{v_6\}$
- 3.2) $w_2(v_1) \cap \Gamma^{-1}v_3 = \{v_6\} \cap \{v_2, v_6\} = \{v_6\}$
- 4.1) $w_1(v_1) \cap \Gamma^{-1}v_6 = \{v_4, v_5\} \cap \{v_2, v_4, v_5, v_7\} = \{v_4, v_5\}$
- 4.2) $w_1(v_1) \cap \Gamma^{-1}v_6 = \{v_4, v_5\} \cap \{v_2, v_4, v_5, v_7\} = \{v_4, v_5\}$
- 5.1.1) $w_0(v_1) \cap \Gamma^{-1}v_4 = \{v_1\} \cap \{v_1, v_2, v_3, v_5, v_6\} = \{v_1\}$
- 5.1.2) $w_0(v_1) \cap \Gamma^{-1}v_5 = \{v_1\} \cap \{v_1, v_3, v_4, v_7\} = \{v_1\}$
- 5.2.1) $w_0(v_1) \cap \Gamma^{-1}v_4 = \{v_1\} \cap \{v_1, v_2, v_3, v_5, v_6\} = \{v_1\}$
- 5.2.2) $w_0(v_1) \cap \Gamma^{-1}v_5 = \{v_1\} \cap \{v_1, v_3, v_4, v_7\} = \{v_1\}$

Кратчайших путей 4:

1)
$$v_1 - v_4 - v_6 - v_2 - v_7$$

2)
$$v_1 - v_4 - v_6 - v_3 - v_7$$

3)
$$v_1 - v_5 - v_6 - v_2 - v_7$$

4)
$$v_1 - v_5 - v_6 - v_3 - v_7$$

$$C = \begin{pmatrix} \infty & 3 & 5 & \infty & 6 & \infty & \infty & \infty \\ 2 & \infty & 1 & 4 & \infty & \infty & \infty & \infty \\ 3 & \infty & \infty & 4 & 2 & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & \infty & 3 & 5 & \infty \\ 4 & \infty & \infty & \infty & \infty & 6 & \infty & 7 \\ \infty & \infty & \infty & \infty & \infty & \infty & 3 & 2 \\ 6 & \infty & \infty & \infty & \infty & \infty & \infty & 1 \\ 8 & \infty & \infty & \infty & 11 & \infty & \infty & \infty \end{pmatrix}$$

Составим таблицу итераций:

	V_1	V_2	V_3	V_4	V_5	V_6	V_7	V_8	$\lambda_i^{(0)}$	$\lambda_i^{(1)}$	$\lambda_i^{(2)}$	$\lambda_i^{(3)}$	$\lambda_i^{(4)}$	$\lambda_i^{(5)}$	$\lambda_i^{(6)}$	$\lambda_i^{(7)}$
V_1	∞	3	5	∞	6	∞	∞	∞	0,	0	0	0	0	0	0	0
V_2	2	∞	1	4	∞	∞	∞	∞	∞	*3	3	3	3	3	3	3
V_3	3	∞	∞	4	2	∞	∞	∞	∞	5	4	4	4	4	4	4
V_4	∞	∞	∞	∞	∞	3	5	∞	∞	∞	7	7	7	7	7	7
V_5	4	∞	∞	∞	∞	6	∞	7	∞	6	6	6	6	6	6	6
V_6	∞	∞	∞	∞	∞	∞	3	2	∞	∞	12	10	10	10	10	10
V_7	6	∞	∞	∞	∞	∞	∞	1	∞	∞	∞	12	$\sqrt{12}$	12	12	12
V_8	8	∞	∞	∞	11	∞	∞	∞	∞	∞	13	13	12	12	12	12

Найдем вершины, входящие в минимальные пути из v_1 во все остальные вершины графа.

1. Минимальный путь из v_1 в v_2 : v_1 - v_2 , его длина равна 3.

•
$$\lambda_1^{(0)} + C_{12} = 0 + 3 = 3 = \lambda_2^{(1)}$$

2. Минимальный путь из v_1 в v_3 : v_1 - v_2 - v_3 , его длина равна 4.

•
$$\lambda_1^{(0)} + C_{12} = 0 + 3 = 3 = \lambda_2^{(1)}$$

•
$$\lambda_2^{(0)} + C_{23} = 3 + 1 = 4 = \lambda_3^{(2)}$$

3. Минимальный путь из v_1 в v_4 : v_1 - v_2 - v_4 , его длина равна 7.

•
$$\lambda_1^{(0)} + C_{12} = 0 + 3 = 3 = \lambda_2^{(1)}$$

$$\bullet \ \lambda_2^{(0)} + C_{24} = 0 + 7 = 7 = \lambda_4^{(2)}$$

4. Минимальный путь из v_1 в v_5 : v_1 - v_5 , его длина равна 6.

•
$$\lambda_1^{(0)} + C_{15} = 0 + 6 = 6 = \lambda_5^{(1)}$$

5. Минимальный путь из v_1 в v_6 : v_1 - v_2 - v_4 - v_6 , его длина равна 10.

•
$$\lambda_1^{(0)} + C_{12} = 0 + 3 = 3 = \lambda_2^{(1)}$$

•
$$\lambda_2^{(1)} + C_{24} = 3 + 4 = 7 = \lambda_4^{(2)}$$

•
$$\lambda_4^{(2)} + C_{46} = 7 + 3 = 10 = \lambda_6^{(3)}$$

6. Минимальный путь из v_1 в v_7 : v_1 - v_2 - v_4 - v_7 , его длина равна 12.

•
$$\lambda_1^{(0)} + C_{12} = 0 + 3 = 3 = \lambda_2^{(1)}$$

•
$$\lambda_2^{(1)} + C_{24} = 3 + 4 = 7 = \lambda_6^{(2)}$$

•
$$\lambda_4^{(2)} + C_{47} = 7 + 5 = 12 = \lambda_7^{(3)}$$

7. Минимальный путь из v_1 в v_8 : v_1 - v_2 - v_4 - v_6 - v_8 , его длина равна 12.

•
$$\lambda_1^{(0)} + C_{12} = 0 + 3 = 3 = \lambda_2^{(1)}$$

•
$$\lambda_2^{(1)} + C_{24} = 3 + 4 = 7 = \lambda_6^{(2)}$$

•
$$\lambda_4^{(2)} + C_{46} = 7 + 3 = \lambda_6^{(3)}$$

•
$$\lambda_4^{(3)} + C_{68} = 10 + 2 = 12 = \lambda_8^{(4)}$$

Возможные остовные деревья с минимальной суммой длин ребер, равной 44:

1. Зададим произвольную ориентацию

2. Построим произвольное остовное дерево D

3. Найдем базис циклов и соответствующие вектор-циклы

$$(D+q_8): \mu_1: v_1-v_3-v_2-v_1 \Rightarrow C(\mu_1) = (0,-1,-1,0,0,0,0,1,0)$$

$$(D+q_4): \mu_2: v_3-v_4-v_5-v_1-v_2-v_3 \Rightarrow C(\mu_2) = (1,1,1,1,1,0,0,0,0)$$

$$(D+q_6): \mu_3: v_5-v_2-v_1-v_5 \Rightarrow C(\mu_3) = (-1,-1,0,0,0,1,0,0,0)$$

$$(D+q_7): \mu_4: v_3-v_5-v_1-v_2-v_3(\mu_4) = (1,1,1,0,0,0,1,0,0)$$

$$(D+q_9): \mu_5: v_2-v_4-v_5-v_1-v_2(\mu_5) = (1,1,0,0,1,0,0,0,1)$$

4. Составим цикломатическую матрицу

$$C = \begin{pmatrix} 0 & -1 & -1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

5. Запишем закон Кирхгова для напряжений

$$\begin{pmatrix} 0 & -1 & -1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \\ u_8 \\ u_9 \end{pmatrix} = 0$$

$$\begin{cases} u_8 - u_2 - u_3 = 0 \\ u_1 + u_2 + u_3 + u_4 + u_5 = 0 \\ u_6 - u_1 - u_2 = 0 \\ u_1 + u_2 + u_3 + u_7 = 0 \\ u_1 + u_2 + u_5 + u_9 = 0 \end{cases}$$

$$\begin{cases} u_8 = u_2 + u_3 \\ u_1 = -u_2 - u_3 - u_4 - u_5 \\ u_6 = u_1 + u_2 \\ u_1 = -u_2 - u_3 - u_7 \\ u_1 = -u_2 - u_5 - u_9 \end{cases}$$

6,7. Выпишем закон и уравнения Кирхгова для токов

Найдем матрицу инцидентности

	q_1	q_2	q_3	q_4	q_5	q_6	q_7	q_8	q_9
v_1	1	-1	0	0	0	0	0	-1	0
v_2	0	1	-1	0	0	1	0	0	-1
v_3	0	0	1	-1	0	0	-1	1	0
v_4	0	0	0	1	-1	0	0	0	1
v_5	-1	0	0	0	1	-1	1	0	0

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & -1 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 & 1 & -1 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \\ I_7 \\ I_8 \\ I_9 \end{pmatrix} = 0$$

$$\begin{cases} I_1 - I_2 - I_8 = 0 \\ I_2 - I_3 + I_6 - I_9 = 0 \\ I_3 - I_4 + I_8 - I_7 = 0 \\ I_4 - I_5 + I_9 = 0 \\ I_5 - I_1 - I_6 + I_7 = 0 \end{cases} \begin{cases} I_1 = I_2 + I_8 \\ I_3 = I_4 + I_7 - I_8 \\ I_4 = I_5 - I_9 \\ I_5 = I_1 + I_6 - I_7 \end{cases}$$

8. Подставим закон Ома

$$\begin{cases}
0 = -I_8 R_8 + I_2 R_2 + I_3 R_3 \\
E_1 + E_2 = -I_2 R_2 - I_3 R_3 - I_4 R_4 \\
E_1 = I_6 R_6 - I_2 R_2 \\
E_1 = -I_2 R_2 - I_3 R_3 - I_7 R_7 \\
E_1 + E_2 = -I_2 R_2 - I_9 R_9
\end{cases}$$

9. Совместная система имеет вид

$$\begin{cases} I_1 = I_2 + I_8 \\ I_3 = I_4 + I_7 - I_8 \\ I_4 = I_5 - I_9 \\ I_5 = I_1 + I_6 - I_7 \\ 0 = -I_8R_8 + I_2R_2 + I_3R_3 \\ E_1 + E_2 = -I_2R_2 - I_3R_3 - I_4R_4 \\ E_1 = I_6R_6 - I_2R_2 \\ E_1 = -I_2R_2 - I_3R_3 - I_7R_7 \\ E_1 + E_2 = -I_2R_2 - I_9R_9 \end{cases}$$

9 уравнений и 9 неизвестных: $(I_1,I_2,I_3,I_4,I_5,I_6,I_7,I_8,I_9)$ ЭДС E_1E_2 и сопротивления $R_2,R_3,R_4,R_5,R_6,R_7,R_8,R_9$ известны

Полный поток:

1.
$$v_1 - v_2 - v_3 - v_4 - v_9$$

•
$$\min\{3, 3, 9, 11\} = 3$$

2.
$$v_1 - v_6 - v_7 - v_8 - v_9$$

•
$$\min\{3, 3, 7, 13\} = 3$$

3.
$$v_1 - v_5 - v_9$$

•
$$\min\{5,4\} = 4$$

4.
$$v_1 - v_3 - v_4 - v_9$$

$$\bullet \ \min\{10, 9-3, 11-3\} = 6$$

5.
$$v_1 - v_7 - v_8 - v_9$$

$$\bullet \min\{7, 7-3, 13-3\} = 4$$

6.
$$v_1 - v_5 - v_8 - v_9$$

•
$$\min\{5-4, 5, 13-7\} = 1$$

Величина полного потока $\Phi_{\text{пол.}} = 3 + 3 + 4 + 6 + 4 + 1 = 21$

Максимальный поток:

1.
$$v_1 - v_3 - v_2 - v_5 - v_4 - v_9$$

•
$$\Delta_1 = \min\{10 - 6, 3, 2, 3, 11 - 9\} = 2$$

2.
$$v_1 - v_7 - v_6 - v_5 - v_8 - v_9$$

•
$$\Delta_2 = \min\{7 - 4, 3, 6, 5, 13 - 8\} = 3$$

Величина максимального потока $\Phi_{\text{макс.}} = 11 + 4 + 11 = 26$

Перечисление путей ориентированного графа методом латинской композиции

1. Основные понятия и определения

Определение 1. Тензор - матрица, элементами которой могут быть переменные, векторы, матрицы, символы, текстовые строки или другие тензоры.

Определение 2. Метод латинской композиции - матричный (тензорный) способ перечисления путей в графе и орграфе. Способ основывается на построении матрицы с обозначением путей, которые идут от і к ј вершине графа (i,j — строка и столбец матрицы соответственно), а затем возведение этой матрицы в степень до тех пор, пока матрица не станет нулевой. Каждая степень исходной матрицы будет содержать пути определённой длин - таким образом будут перечислены все пути в орграфе.

2. Описание алгоритма

В данной работе используется адаптированный для задачи раскраски вершин графа алгоритм поиска в глубину:

- 1. В интерактивном окне указывается число вершин графа.
- 2. После этого в том же окне отмечаются вершины, между которыми есть связь.
- 3. После указания желаемого количества связей между вершинами в графе программа автоматически заполняет матрицу, после чего возводит ее в (n-2) степень.
- 4. В результате возведения матрицу в степень m, мы будем получать простые пути длины m. Возведение матрицы происходит до тех пор, пока она не станет нулевой или число возведений в степень не достигнет (n-2) раз.
- 5. После того, как в результате возведения матрицы в степень получается нулевая матрица, программа выводит полученные графы.
- 6. После вывода всех графов с окрашенными путями, можно продолжить пользоваться программой, указав новое число вершин в графе или изменив связи между вершинами.

3. Блок-схема

5. Вычисление сложности алгоритма

Поскольку в программе осуществляется только умножение матриц (n-2) раз, то сложность данного алгоритма равна (n - 2) * $O(n^3)$.

6. Тестовый пример

Для примера был взят орграф с 5 вершинами, содержащий 8 рёбер:

1. При вводе данных создаётся матрица и вводится информация о рёбрах графа:

	V1	V2	V3	V4	V5
V1	[0]	[1,2]	[1,3]	[0]	[0]
	[0]	[0]	[2,3]	[2,4]	[0]
V3	[0]	[0]	[0]	[3,4]	[0]
V4	[4,1]	[4,2]	[0]	[0]	[4,5]
V5	[0]	[0]	[0]	[0]	[0]

[0]

[0]

2. Исходная матрица умножается на саму себя, т.е. возводится в квадрат:

[0]	[1,2]	[1,3]	[0]	[0]]	[0]	[1,2]	[1,3]	[0]	[0]	
[0]	[0]	[2,3]	[2,4]	[0]]	[0]	[0]	[2,3]	[2,4]	[0]	
[0]	[0]	[0]	[3,4]	[0]	*	[0]	[0]	[0]	[3,4]	[0]	=
[4,1]	[4,2]	[0]	[0]	[4,5]]	[4,1]	[4,2]	[0]	[0]	[4,5]	
[0]	[0]	[0]	[0]	[0]	-	[0]	[0]	[0]	[0]	[0]	
	r - 1	[-]	[-]	[-]		[0]	[0]	[O]	[0]	[0]	
1	1-1	[-]	[0]	[0]	[1,2,3]	[1,2,4] [1,3,4]	[0]	[0]	[0]	[0]	
	1 2 2				[1,2,3]	[1,2,4]		[O]	[0]	[0]	
1. 1			[0]	[0]		[1,2,4] [1,3,4]	[0]	[[0]	[0]	[O]	
		=	[0]	[0]	[0]	[1,2,4] [1,3,4] [2,3,4]	[0]	[[]	[6]	[10]	

[4,2,3]

[0]

[0]

3. Полученные пути выводим на экран. Далее полученную матрицу домножаем на начальную.

									- 1				
[0]	[0]	[1,2,3]	[1,2,4		7	[0]]	[1,2]		[1,3]	[0]	[0]	
[2 4 4]	[0]	[0]	[1,3,4		_	[0]]	[0]		[2,3]	[2,4]	[0]	1
[2,4,1]	[0]	[0] [0]	[2,3,4	[2,4,5] [3,4,5]	*	[0	1	[0]	\neg	[0]	[3,4]	[0]	1
[0]	[4,1,2]	[4,1,3]	[0]	[0]	T	+	,1]	[4,2]		[0]	[0]	[4,5]	
[0]	[0]	[4,2,3] [0]	[0]	[0]		[0]	[0]		[0]	[0]	[0]	
		[0]		[1,3,4,2]	[0]		[1,2	,3,4]	[1	1,2,4,5]]		
									[1	1,3,4,5]			
		[2,3,4	1,1]	[0]	[2,4,1	,3]	[0]		[2	2,3,4,5]			
		[0]		[3,4,1,2]	[0]	[0]		[0]		0]]		
		[0]		[0]	[4,1,2	,3]	[0]		[0	0]]		
		[0]		[0]	[0]		[0]		[0	0]	1		

4. Аналогично 3 пункту выводим пути путём считывания матрицы и ещё раз домножаем полученную матрицу на начальную

[0]	[1,3,4,2]			[0]	[1,2]	[1,3]	[0]	[0]			
				[1,3,4,5]		[0]	[0]	[2,3]	[2,4]	[0]	
[2,3,4,1]	[0]	[2,4,1,3]	[0]	1 [2.3.4.5]		[0]	[0]	[0]	[3,4]	[0]	
[0]	[3,4,1,2]	[0]	[0]	[0]	-	+					
[0]	[0]	[4,1,2,3]	[0]	[0]		[4,1]	[4,2]	[0]	[0]	[4,5]	
[0]	[0]	[0]	[0]	[0]		[0]	[0]	[0]	[0]	[0]	
	=	[0] [0] [0] [0]	[0] [0] [0] [0]		[0] [0] [0] [0])])])])])])])]	[1, [0, [0] [0] [0] [0] [0] [0]]	<u>[]</u>	

5. Был получен единственный простой путь длины 5, поэтому последующие матрицы будут нулевые, выводим путь путём считывания матрицы и завершаем алгоритм.

7. Скриншот программы для данного примера

8. Прикладная задача

Если дополнить орграф информацией о длине путей, то данный алгоритм можно будет применять для построения всех возможных обходов пунктов, необходимых для посещения. В частности, речь может идти о курьерах, которым будет крайне удобно оптимизировать свой маршрут путем расчёта минимального пути, по которому можно обойти как все пункты, так и их часть.