

Set 2: ISS mosaic of Enceladus' south pole: with/without control & photometry

- ☐ Level 1
 - Ingestion into ISIS3 (ciss2isis)
 - A priori SPICE (spiceinit)
 - Radiometric Calibration-I/F (cisscal)
 - Fill-in gaps with averages of surrounding pixels (lowpass)
 - 'Trim' off sides to remove 1-2 pixel noise (trim)
 - View footprints in QMOS (camstats, footprintinit)

Images:

N1602275390 1

N1604169204_2

N1597183216 2

N1597183061_2

N1597182896_2

N1597182735 2

Set 2: ISS mosaic of Enceladus' south pole: with/without control & photometry

- ☐ Level 2
 - Define a Map (maptemplate)
 - Map Project (cam2map)
 - Mosaic to create an uncontrolled mosaic (automos)
 - Check out an existing control network (qnet)
 - Adjust camera pointing (jigsaw)
 - Map Project with updated 'Level1' labels (cam2map)
 - Mosaic to create a controlled mosaic (automos)

Uncontrolled (before JIGSAW)

Controlled (after JIGSAW)

A So of Transport of the second of the secon

ASTROGEOLOGY SCIENCE CENTER

Set 2: ISS mosaic of Enceladus' south pole: with/without control & photometry

- ☐ Level 3
 - Normalize limb darkening (photomet-LunarLambert)
 - "Trim" limb and deep terminator areas (photomet)

$Image = N1602275390_1$

Input

Phase Angle Average=72.96

Incidence Angle

Emission Angle

SCIENCE for a changing world

ASTROGEOLOGY SCIENCE CENTER

Set 2: ISS mosaic of Enceladus' south pole: with/without control & photometry

Used 'photomet' to trim at maxemission=80 maxincidence=85

Input

LunarLambert L=0.3

LunarLambert L=0.9

Display Range = 0 - 1.0 DN

Set 2: ISS mosaic of Enceladus' south pole: with/without control & photometry

Input

LunarLambert L=0.3

LunarLambert L=0.9

Measure 'Qview' 2D Plots of DN brightness across the direction of phase angle gradient

Pixel Number

Set 2: ISS mosaic of Enceladus' south pole: with/without control & photometry

HANDS ON....
Let's get started!

Set 2: ISS mosaic of Enceladus' south pole: with/without control & photometry

- 1. 'cd' to the **Enceladus_ISS** directory
- 2. Open a second terminal window (make sure you are in the same directory...."pwd")
- 3. Find the command-line script: enc.scr
- 4. cat enc.scr (to display the contents on the screen)
- 5. "Batchlist" discussion first....
- 6. Then follow along and type (or copy/paste) the commands as seen in enc.scr in the 2nd window

Set 2: ISS mosaic of Enceladus' south pole: with/without control & photometry

Batchlist Parameter for ISIS Command Lines:

*Allows the user to run a single ISIS application multiple times on a list of input parameters:

http://isis.astrogeology.usgs.gov/documents/CommandLine/CommandLine.html

Type 'ls' to look at contents of your directory

> cat root.lis

"root.lis" is a single column ascii file containing the 'root' filenames

1st command in enc.scr (Ingestion; PDS to ISIS):

ciss2isis -batchlist=root.lis from=\\$1.LBL_label to=\\$1.cub

2nd command (load NAIF/SPICE kernel information onto labels)

spiceinit -batchlist=root.lis from=\\$1.cub

root.lis

N1597182735_2 N1597182896_2 N1597183061_2 N1597183216_2 N1602275390_1 N1604169204_2

Set 2: ISS mosaic of Enceladus' south pole: with/without control & photometry

Prep applications for 'QMOS'

> camstats -batchlist=root.lis from=\\$1.cub attach=true

Create footprint info; define footprint boundary at limb and terminator

footprintinit -batchlist=root.lis from=\\$1.cub maxemission=85 maxincidence=85

Radiometric Calibration

cisscal -batchlist=root.lis from=\\$1.cub to=\\$1_cal.cub fluxunits=I/F

Fill-in truncated 'NULL' lines and 'speckled' HRS noise

lowpass -batchlist=root.lis from=\\$1_cal.cub to=\\$1_fill.cub samples=3 lines=3 filter=outside replacement=center

Set 2: ISS mosaic of Enceladus' south pole: with/without control & photometry

'Trim' two pixels along all four sides (results are assigned to NULL; not 'cropped')

- trim -batchlist=root.lis from=\\$1_fill.cub to=\\$1_tr.cub top=2 bottom=2 left=2 right=2
- qview *390*.cal.cub *390*tr.cub (display versions of one of the images)

Create a "Map" Template

- maptemplate map=sp.map projection=POLARSTEREOGRAPHIC clat=-90 clon=180 targopt=user targetname=ENCELADUS resopt=mpp resolution=200
- cat sp.map

Set 2: ISS mosaic of Enceladus' south pole: with/without control & photometry

sp.map should look like:

```
Group = Mapping
           ProjectionName
                            = PolarStereographic
           CenterLongitude
                            = 180.0
           CenterLatitude = -90.0
           TargetName
                           = Enceladus
           EquatorialRadius = 256600.0 < meters >
           PolarRadius
                          = 248300.0 <meters>
           LatitudeType
                          = Planetocentric
           LongitudeDirection = PositiveEast
           LongitudeDomain = 360
           PixelResolution = 200.0 <meters/pixel>
End Group
```

Project the images to Polarstereographic

- cam2map -batchlist=root.lis from=\\$1_tr.cub to=\\$1_sp.cub map=sp.map pixres=map
- > Is *sp.cub > sp.lis

Set 2: ISS mosaic of Enceladus' south pole: with/without control & photometry

- qmos (Display footprints)
 - Select sp.map for Map Template
 - Open the cube file list: sp.lis
- > Select "View"
- Select "Show Resolution Column"
- Sort "Resolution" column in descending order
- Export "Cube List" ordered by group
 - > mosorder.lis

Create the uncontrolled mosaic

- automos fromlist=mosorder.lis mosaic=enc_uncontrolled.cub minlat=-90 maxlat=-10 minlon=0 maxlon=360 grange=user
- qview enc_uncontrolled.cub

Set 2: ISS mosaic of Enceladus' south pole: with/without control & photometry

- Qnet (Interactive view of existing control net)
 - Load Cube List: tr.lis
 - Load Network: control.net

Run jigsaw to adjust 'camera pointing' of images relative to each other

- jigsaw fromlist=tr.lis cnet=control.net onet=jig.net update=yes errorpropagation=yes file_prefix=jig
- Check out two jigsaw output files
 - 'jig_bundleout.txt'
 - 'jig_residuals.csv'

Set 2: ISS mosaic of Enceladus' south pole: with/without control & photometry

Project a 2nd time with the updated labels from jigsaw

cam2map -batchlist=root.lis from=\\$1_tr.cub to=\\$1_spjig.cub map=sp.map pixres=map

Create the controlled mosaic

automos fromlist=mosorder_jig.lis mosaic=enc.cub minlat=-90 maxlat=-10 minlon=0 maxlon=360 grange=user

Check out the Controlled v.s. Uncontrolled

qview enc_uncontrolled.cub enc.cub

> cat lunlam.pvl

```
Object = PhotometricModel
Group = Algorithm
    Name = LunarLambert
    L = 0.3
  \# L = 0.9
End Group
End_Object
Object = NormalizationModel
Group = Algorithm
   Name = Albedo
   Incref = 0.0
   Incmat = 0.0
   Thresh = 30.0
   Albedo = 1.0
End Group
End Object
```

Normalize the brightness with photomet

photomet -batchlist=root.lis from=\\$1_spjig.cub to=\\$1_ll.cub frompvl=lunlam.pvl maxemission=80 maxincidence=85

Create final controlled/photometrically normalized mosaic

automos fromlist=mosorder_II.lis mosaic=enc_II.cub minlat=-90 maxlat=-10 minlon=0 maxlon=360 grange=user

Overlay a map grid

grid from=enc_II.cub to=enc_grid.cub boundary=yes latinc=10 loninc=30 linewidth=3