

Capacitors, Buzzer and Comparator

Instructed By: Mr. Supun Dissanayaka

Bhavat Ngamdeevilaisak

Capacitor

Capacitor: How it is made...

The structure of a real capacitor

Capacitor: Current & Voltage behavior

Capacitor: Current & Voltage behavior

$$I = C \frac{dv}{dt}$$

Capacitor: Series and Parallel

$$C_{eq} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}}$$

Series circuit C_1 C_2

$$C_{eq} = C_1 + C_2$$

Parallel circuit

Capacitor: Series and Parallel

Buzzers

Piezo buzzer

Buzzers (Contd.)

Magnetic buzzer

Push buttons

Push button

Rules of Op-Amp

- 1. The Op-Amp will try to keep the same voltage on both inputs
- 2. No current can be flow in or out of the inputs of the Op-Amp.

Vout = (Non inverting - inverting) * gain Non-inverting + Using Op-Amp as a comparator Output Op-amp Inverting

You can think of it likes a switch that switch the output to V+ or V-depending on the input condition

If V at non-inverting input is **greater** than inverting input output will be connected to **V+**

If V at non-inverting input is <u>less</u> than inverting input output will be connected to **V**-

Thanks for listening...