Poli 30D Political Inquiry Descriptive Statistics & Visualization

Shane Xinyang Xuan ShaneXuan.com

October 15, 2016

Contact Information

Shane Xinyang Xuan xxuan@ucsd.edu

We have someone to help you every day!

 Professor Desposato
 M
 1330-1500 (Latin American Center)

 Shane Xuan
 Tu
 1600-1800 (SSB332)

 Cameron Sells
 W
 1000-1200 (SSB352)

 Kelly Matush
 Th
 1500-1700 (SSB343)

 Julia Clark
 F
 1200-1400 (SSB326)

Supplemental Materials

Our class oriented

ShaneXuan.com

UCLA SPSS starter kit

www.ats.ucla.edu/stat/spss/sk/modules_sk.htm

Princeton data analysis

http://dss.princeton.edu/training/

Variables and Measurement

Variable

- Nominal (categorical)
 i.e. Hillary, Donald, Gary, Jill
- Ordinal (can rank)
 i.e. strongly agree > agree > neutral > disagree > strongly disagree
- Interval (different by how much?)
 i.e. grade in school, happiness index, election fraud index

Variables and Measurement

Ratio Variable

- Interval, but with a meaningful zero
- Does it make sense to compare this to 0?
- Could I divide this by a number or another variable, and would it still make sense?
- i.e. age, distance in miles

Variables and Measurement

Viasulize our measurement

- Bar chart
- Scatterplot
- Pie chart
- Histogram
- Other visualization

Let's go through some examples!

Bar Chart

Explain the following bar chart to me (Arriola 2013)

Scatter plot

Explain the following scatter plot to me

(Acemoglu, Johnson, Robinson 2002)

Histogram

Explain the following histogram to me

(Yahoo! Finance and Commodity Systems) S&P 500, January 2001 - December 2001 -2 s.d. -1 s.d. mean +1 s.d. +2 s.d. +3 s.d. +4 s.d. 9 20 Frequency 30 40 8 9 0 5,000 10,000 15,000 20,000 25,000

Volume (thousands)

What else? Map!

Explain the following figure to me (Arriola 2013)

Central Tendency

Now that we're done with visualization, let's dig into more concepts

Mean

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Mode

In {3, 4, 6, 6, 6, 7, 7, 9}, the mode is 6 (most often)

- Median

When n= odd, check $\frac{n+1}{2}$ When n= even, take the average of $\frac{n}{2}$ and $\left(\frac{n}{2}+1\right)$

Dispersion

Positive Skew: Mean > Median

Dispersion

Positive Skew: Mean > Median

Negative Skew: Mean < Median

Dispersion

Positive Skew: Mean > Median Negative Skew: Mean < Median

Variance is defined as

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{X})^2}{n}$$

Standard deviation is defined as

$$\sigma \equiv \sqrt{\sigma^2}$$

$$= \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{X})^2}{n}}$$

Example

x_i	$x_i - \overline{X}$	$(x_i - \overline{X})^2$
1		
2		
3		
4		
5		

Find the mean

$$\overline{X} = \frac{1+2+3+4+5}{5} = 3$$

Example

x_i	$x_i - \overline{X}$	$(x_i - \overline{X})^2$
1	-2	
2	-1	
3	0	
4	1	
5	2	

Calculate the 2nd column

$$x_1 - \overline{X} = 1 - 3 = -2$$

$$x_2 - \overline{X} = 2 - 3 = -1$$

$$\vdots$$

$$x_5 - \overline{X} = 5 - 3 = 2$$

Example

x_i	$x_i - \overline{X}$	$(x_i - \overline{X})^2$
1	-2	4
2	-1	1
3	0	0
4	1	1
5	2	4

Square the $2^{\rm nd}$ column

$$(x_1 - \overline{X})^2 = (-2)^2 = 4$$

 $(x_2 - \overline{X})^2 = (-1)^2 = 1$
 \vdots
 $(x_5 - \overline{X})^2 = 2^2 = 4$

Example

x_i	$x_i - \overline{X}$	$(x_i - \overline{X})^2$
1	-2	4
2	-1	1
3	0	0
4	1	1
5	2	4

Let me remind you the formula

$$\sigma^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{X})^{2}}{n}$$
$$= \frac{4 + 1 + 0 + 1 + 4}{5}$$

Conclusion

I will see you next week!

Contact me if you have question xxuan@ucsd.edu