Scilab Textbook Companion for Electronic Circuits by M. H. Tooley¹

Created by
Karan Bhargava
b.tech
Electronics Engineering
Uttarakhand Technical University
College Teacher
Vatsalya Sharma
Cross-Checked by
Ganesh R

May 28, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electronic Circuits

Author: M. H. Tooley

Publisher: Elsevier, New Delhi

Edition: 3

Year: 2008

ISBN: 978-81-312-0650-8

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	hist of Scilab Codes	
1	Electrical Fundamentals	5
2	Passive Components	15
3	DC Circuits	28
4	Alternating voltage and current	36
5	Semiconductors	44
6	Power Supplies	48
7	Amplifiers	51
8	Operational Amplifiers	56
9	Oscillators	59
12	The 555 timer	61
13	Radio	63

List of Scilab Codes

Exa 1.4	Express angle of 215 degree in radians	5
Exa 1.5	Express angle in degrees	5
Exa 1.6	Calculate the current in milliamp	6
Exa 1.7	Express the freq in Mhz of 1495 kHz radio transmitter	6
Exa 1.8	Express the capacitance in microfarad of 27000 pF	6
Exa 1.9	Express current in amp	7
Exa 1.10	Express the voltage in millivolt using exp notation	7
Exa 1.11	Calculate the voltage dropped across 33kohm with 3mA	
	current	7
Exa 1.12	Calculate the charge transferred in 20ms by 45 microamp	
	current	8
Exa 1.13	Calculate the current supplied to the circuit when 1500V	
	is applied dissipating 300 mW	8
Exa 1.14	Calculate the current through resistor 12ohm with 6V	
	battery	8
Exa 1.15	Calculate the voltage developed across 56ohm with 100mA	
	current	9
Exa 1.16	Calculate the resistance with 15 volt applied with 1mA	
	current	9
Exa 1.17	Calculate the resistance of 8m length cooper wire	10
Exa 1.18	Calculate the voltage drop between the ends of the 20m	
	wire carring 5A current	10
Exa 1.19	Calculate the power supplied by 3 V battery	10
Exa 1.20	Calculate the power dissipated in 100ohm with 4V drop	11
Exa 1.21	Calculate the power dissipated in 100ohm with 4V drop	11
Exa 1.22	Calculate the electric field strength if 2 parallel plates	
	seperated by 25mm are fed by 600V supply	12

Exa 1.23	Calculate the flux density at 50mm from st wire carrying
.	20A
Exa 1.24	Calculate the total flux by flux density
Exa 1.25	Calculate the relative permittivity of steel at different
_	given flux density
Exa 1.26	Calculate the current to establish given flux
Exa 2.1	Determine the tolerance of resistor
Exa 2.2	Nominal current taken from supply and Max and Min
	value of supply current
Exa 2.3	Determine value and type of resistor used for 100mA.
Exa 2.4	Determine the value and tolerance of resistor of brown
	black red silver
Exa 2.5	Determine the value and tolerance of resistor of red vi-
	olet orange gold
Exa 2.6	Determine the value and tolerance of resistor of green
	blue black gold
Exa 2.7	Determine the value and tolerance of resistor of red
	green black brown
Exa 2.8	Determine the bands coressponding to 2pt kohm of tol-
	erance 2 percent
Exa 2.9	Determine the bands coressponding to 4R7K
Exa 2.10	Determine the bands coressponding to 330RG
Exa 2.11	Determine the bands coressponding to R22M
Exa 2.12	Determine the effective resistance in Series and Parallel
Exa 2.13	Determine the effective resistance of the circuit
Exa 2.14	Determine the resistance required to realize 50 ohm at
	2W
Exa 2.15	Determine the resistance at 80 degree
Exa 2.16	Determine the resistance at 90 degree
Exa 2.17	Determine the resistor temperature coeff
Exa 2.18	Determine the current flow
Exa 2.19	Determine the charged stored
Exa 2.20	Determine the potential diff that be applied to 47 uF-
	capacitor
Exa 2.21	Determine the required plate area for 1 nF capacitor .
Exa 2.22	Determine the value of capacitance
Exa 2.23	Determine the value of capacitor 103K

Exa 2.24	Determine the value of tubular capacitor with brown	
	green brown red brown	24
Exa 2.25	Determine the effective capacitance	24
Exa 2.26	Determine the series combination of capacitos and their	
	voltage rating	25
Exa 2.27	Determine the voltage induced	25
Exa 2.28	Determine the current that be applied to an inductor.	25
Exa 2.29	Determine the numbers of turns required	26
Exa 2.30	Determine the parallel combination for 5mH inductor	
	rated at 2A	26
Exa 2.31	Determine the effective inductance	27
Exa 3.1	Determine the value of current flowing between A B and	
	value of I3	28
Exa 3.2	Determine the value of V2 and value of E3	28
Exa 3.3	Determine the voltage and current in circuit	29
Exa 3.4	Determine the output when no load and loaded by 10kohm	29
Exa 3.5	Determine the value of parallel shunt resistor	30
Exa 3.6	Determine the range of resistances that can be measured	30
Exa 3.7	Determine the current flow in 100 ohm load	31
Exa 3.8	Determine the voltage produced	31
Exa 3.9	Determine the voltage produced	32
Exa 3.10	Determine the initial charging current and current that	
	flow 50ms and 100ms after connecting supply After what	
	time does capacitor fully charge	32
Exa 3.11	Determine the time taken by the capacitor to fall below	
	10V	33
Exa 3.12	Determine the capacitor voltage 1 minute later	33
Exa 3.13	Determine the C R values for sq wave of 1kHz	34
Exa 3.14	Determine the C R values for sq wave of 1kHz	34
Exa 3.15	Determine the current in the inductor after supply first	
	connected	34
Exa 3.16	Determine the inductor voltage 20ms after supply first	
	connected	35
Exa 4.1	Determine the instanteous voltage	36
Exa 4.2	Determine the time period of 400 Hz waveform	36
Exa 4.3	Determine the freq of 40 ms waveform	37
Exa 4.4	Determine the peak value of 240V rms	37
Exa 4.5	Determine the rms value of 50mA peak to peak	37

Exa 4.6	Determine the rms current	38
Exa 4.7	Determine the reactance of $1\mathrm{uF}$ at $100\mathrm{Hz}$ and $10\mathrm{kHz}$.	38
Exa 4.8	Determine the current flow in capacitor	39
Exa 4.9	Determine the reactance of 1mH at 100Hz and 10kHz	39
Exa 4.10	Determine the reactance of 1mH at 100Hz and 10kHz	39
Exa 4.11	Determine the impedance of the circuit and current fro	
	supply	40
Exa 4.12	Determine the power factor of choke and currentt from	
_	supply	40
Exa 4.13	Determine the value of capacitance required	41
Exa 4.14	Determine the current supplied and voltage developed across 100 ohm	41
D 4.15		41
Exa 4.15	Determine the value of secondry voltage	42
Exa 4.16	Determine the number of secondary turns and primary current	42
Exa 5.1	Determine the resistance of diode when forward current	
	is given and when forward voltage is given	44
Exa 5.2	Determine the series resistor required	44
Exa 5.3	Determine the Ie emitter current and hfe	45
Exa 5.4	Determine the Ie emitter current and hfe	45
Exa 5.5	Determine the Ib base current and hfe	46
Exa 5.6	Determine the hfe required and collector power dissipa-	
	tion	46
Exa 5.7	Determine the I base current and change in collector	
	current	47
Exa 5.8	Determine the change in drain current	47
Exa 6.1	Determine the peak voltage that appear across load .	48
Exa 6.2	Determine the amt of ripple at output	48
Exa 6.3	Determine the amt of ripple at output	49
Exa 6.4	Determine the series resistor for operation in conjunc-	
	tion with 9V	49
Exa 6.5	Determine equiv output resistance and regulation of power	
	supply	50
Exa 7.1	Determine voltage gain and current gain and power gain	51
Exa 7.2	Determine voltage gain and upper and lower cutoff freq	51
Exa 7.3	Determine overall voltage gain with negative feedback	52
Exa 7.4	Determine percentage increase in overall voltage gain .	52
Exa 7.5	Determine amount of feedback required	53

Exa 7.6	Determine output voltage produced by input signal of
	10mV
Exa 7.7	Determine of load resistance required
Exa 7.8	Determine static value of current gain and voltage gain
Exa 7.9	Determine quiescent value of collector current and volt-
	age and peak to peak output voltage
Exa 8.1	Determine the value of open loop voltage gain
Exa 8.2	Determine the value of input current
Exa 8.3	Determine the slew rate of device
Exa 8.4	Determine the time taken to change level
Exa 8.6	Determine the circuit parameters using opamps
Exa 9.1	Determine the freq of oscillation
Exa 9.2	Determine the output freq
Exa 9.3	Determine the value of R3 and R4
Exa 12.1	Determine the parameters of timer circuit
Exa 12.2	Determine the parameters of timer circuit that produce
	5V
Exa 12.3	Design of pulse generator
Exa 12.4	Design of 5V square wave generator
Exa 13.1	Determine the frequency of radio signal of wavelength
	15m
Exa 13.2	Determine the frequency of radio signal of 150MHz
Exa 13.3	Determine the velocity of propagation of radio signal of
	30MHz and 8m wavelength
Exa 13.4	Determine the two possible BFO freq
Exa 13.5	Determine the range the local oscillator be tuned
Exa 13.6	Determine the range the local oscillator be tuned
Exa 13.7	Determine the radiated power
Exa 13.8	Determine the power and radiation efficiency

Chapter 1

Electrical Fundamentals

Scilab code Exa 1.4 Express angle of 215 degree in radians

```
1 //Exa:1.4
2 clc;
3 clear;
4 close;
5 ang_d=215;//given
6 ang_r=ang_d*%pi/180;
7 printf("%f degree angle is %f radians",ang_d,ang_r);
```

Scilab code Exa 1.5 Express angle in degrees

```
1 //Exa:1.5
2 clc;
3 clear;
4 close;
5 ang_r=2.5;//given
6 ang_d=2.5*180/%pi;//angle in degrees
7 printf("%f radians angle is %f degrees",ang_r,ang_d);
;
```

Scilab code Exa 1.6 Calculate the current in milliamp

```
1 //Exa:1.6
2 clc;
3 clear;
4 close;
5 i_amp=0.075; // given
6 i_milamp=i_amp*1000; // current in milliamp.
7 printf("%f amp current is %f mA",i_amp,i_milamp);
```

Scilab code Exa 1.7 Express the freq in Mhz of 1495 kHz radio transmitter

```
1 //Exa:1.7
2 clc;
3 clear;
4 close;
5 fq_khz=1495; //given
6 fq_Mhz=fq_khz/1000;
7 printf("%f kHz frequency is %f MHz",fq_khz,fq_Mhz);
```

Scilab code Exa 1.8 Express the capacitance in microfarad of 27000 pF

Scilab code Exa 1.9 Express current in amp

```
1 //Exa:1.9
2 clc;
3 clear;
4 close;
5 c_mA=7.25; //given
6 c_A=c_mA*1000;
7 printf("%f milliampere current is %f ampere",c_mA, c_A);
```

Scilab code Exa 1.10 Express the voltage in millivolt using exp notation

```
1 //Exa:1.10
2 clc;
3 clear;
4 close;
5 vg_v=3.75*10^-6; //given
6 vg_mv=vg_v*1000;
7 printf("%f volt voltage is %e mV",vg_v,vg_mv);
```

Scilab code Exa 1.11 Calculate the voltage dropped across 33kohm with $3\mathrm{mA}$ current

```
1 //Ex:1.11
2 clc;
3 clear;
4 close;
5 r=33000;//in ohms
```

```
6 i=0.003; //in amp
7 v=i*r;
8 printf("Voltage dropped = %d volts",v);
```

Scilab code Exa 1.12 Calculate the charge transferred in 20ms by 45 microamp current

```
1 //Ex:1.12
2 clc;
3 clear;
4 close;
5 t=20*10^-3; //in sec
6 i=45*10^-6; //in amp
7 q=i*t*10^9;
8 printf("Charge transferred = %f nC",q);
```

Scilab code Exa 1.13 Calculate the current supplied to the circuit when 1500V is applied dissipating 300 mW

```
1 //Ex:1.13
2 clc;
3 clear;
4 close;
5 p=0.3; //in watts
6 v=1500; //in volts
7 i=(p/v)*10^6;
8 printf("Current supplied = %d microamp",i);
```

Scilab code Exa 1.14 Calculate the current through resistor 12ohm with 6V battery

```
1 //Ex:1.14
2 clc;
3 clear;
4 close;
5 r=12; //in ohms
6 v=6; //in volts
7 i=(v/r);
8 printf("Current = %f Amp",i);
```

Scilab code Exa 1.15 Calculate the voltage developed across 56ohm with $100 \mathrm{mA}$ current

```
1 //Ex:1.15
2 clc;
3 clear;
4 close;
5 r=56;//in ohms
6 i=0.1;//in amp
7 v=i*r;
8 printf("Voltage dropped = %f volts",v);
```

Scilab code Exa 1.16 Calculate the resistance with 15 volt applied with 1 mA current

```
1 //Ex:1.16
2 clc;
3 clear;
4 close;
5 v=15;//in volts
6 i=0.001;//in amp
7 r=v/i;
8 printf("Resistance = %d ohms",r);
```

Scilab code Exa 1.17 Calculate the resistance of 8m length cooper wire

```
1 //Ex:1.17
2 clc;
3 clear;
4 close;
5 p=1.724*10^-8; //in ohm-meter
6 l=8; //in meters
7 a=1*10^-6; //in sq. meter
8 r=(p*1)/a;
9 printf("Resistance = %f ohms",r);
```

Scilab code Exa 1.18 Calculate the voltage drop between the ends of the 20m wire carring 5A current

```
1 //Ex:1.18
2 clc;
3 clear;
4 close;
5 p=1.724*10^-8; //in ohm-meter
6 l=20; //in meters
7 a=1*10^-6; //in sq. meter
8 i=5; //in amperes
9 r=(p*1)/a;
10 v=i*r;
11 printf("Voltage dropped = %f volts",v);
```

Scilab code Exa 1.19 Calculate the power supplied by 3 V battery

```
1 //Ex:1.19
2 clc;
3 clear;
4 close;
5 v=3;//in volts
6 i=1.5;//in amperes
7 p=v*i;
8 printf("Power supplied = %f watts",p);
```

Scilab code Exa 1.20 Calculate the power dissipated in 100ohm with 4V drop

```
1 //Ex:1.20
2 clc;
3 clear;
4 close;
5 v=4;//in volts
6 r=100;//in ohms
7 p=(v^2)/r;
8 printf("Power dissipated = %f watts",p);
```

Scilab code Exa 1.21 Calculate the power dissipated in 100ohm with 4V drop

```
1 //Ex:1.21
2 clc;
3 clear;
4 close;
5 i=20*10^-3; //in amps
6 r=1000; //in ohms
7 p=(i^2)*r;
8 printf("Power dissipated = %f watts",p);
```

Scilab code Exa 1.22 Calculate the electric field strength if 2 parallel plates seperated by 25mm are fed by 600V supply

```
1 //Ex:1.22
2 clc;
3 clear;
4 close;
5 v=600;//in volts
6 d=25*10^-3;//in meters
7 E=(v)/d;
8 printf("Electric Field Strength = %d kV/m", E/1000);
```

Scilab code Exa 1.23 Calculate the flux density at 50mm from st wire carrying 20A

```
1 //Ex:1.23
2 clc;
3 clear;
4 close;
5 u=4*%pi*10^-7;//in H/m
6 i=20;//in amps
7 d=50*10^-3;//in meters
8 B=(u*i)/(2*%pi*d);
9 printf("Flux Density = %e Tesla",B);
```

Scilab code Exa 1.24 Calculate the total flux by flux density

```
1 //Ex:1.24
2 clc;
```

```
3 clear;
4 close;
5 B=(2.5*10^-3); //in Tesla
6 a=(20*10^-4); //in sq. meter
7 flux=B*a;
8 printf("Flux = %e webers",flux);
```

Scilab code Exa 1.25 Calculate the relative permitivity of steel at different given flux density

```
1 //Ex:1.25
2 clc;
3 clear;
4 close;
5 B1=0.6; //in Tesla
6 u1=B1/800;
7 u_r1=u1/(4*%pi*10^-7);
8 printf("reltive permitivity at 0.6T = %f",u_r1);
9 B2=1.6; //in Tesla
10 u2=0.2/4000;
11 u_r2=u2 /(4*%pi*10^-7);
12 printf("\n reltive permitivity at 1.6T = %f",u_r2);
```

Scilab code Exa 1.26 Calculate the current to establish given flux

```
1 //Ex:1.26
2 clc;
3 clear;
4 close;
5 flux=0.8*10^-3;
6 a=(500*10^-6);//in sq. meter
7 l=0.6;//in meter
8 N=800;
```

```
9 B=flux/a;
10 printf("Flux Density = %e Tesla",B);
11 H=3500; //in A/m
12 i=(H*1)/N;
13 printf("\n Current required = %f amp.s",i);
```

Chapter 2

Passive Components

Scilab code Exa 2.1 Determine the tolerance of resistor

```
1  //Ex:2.1
2  clc;
3  clear;
4  close;
5  marked=220; //in ohms
6  measured=207; //in ohms
7  err=marked-measured;
8  tol=(err/marked)*100;
9  printf("Tolerance = %f %%", tol);
```

Scilab code Exa 2.2 Nominal current taken from supply and Max and Min value of supply current

```
1 //Ex:2.2
2 clc;
3 clear;
4 close;
5 r=39;//in ohms
```

```
6  v=9; //in volts
7  i=(v/r); //in Amps
8  printf("Current = %d mA",i*1000);
9  tol=0.1; //i.e, 10%
10  r_min=r-(tol*r);
11  i_max=v/r_min;
12  r_max=r+(tol*r);
13  i_min=v/r_max;
14  printf("\n Max.Current = %f mA & Min Current= %f mA",i_max*1000,i_min*1000);
```

Scilab code Exa 2.3 Determine value and type of resistor used for 100mA

```
1  //Ex:2.3
2  clc;
3  clear;
4  close;
5  v=28; //in volts
6  i=0.1; //in A
7  r=v/i;
8  p=v*i;
9  printf("Resistance Value = %f ohms & Power dissipated = %f W",r,p);
```

Scilab code Exa 2.4 Determine the value and tolerance of resistor of brown black red silver

```
1 //Ex:2.4
2 clc;
3 clear;
4 close;
5 r=10*(10^2);
6 printf("Resistor value = %d ohm",r);
```

```
7 printf("\nTolerance = 10 \%");
```

Scilab code Exa 2.5 Determine the value and tolerance of resistor of red violet orange gold

```
1 //Ex:2.5
2 clc;
3 clear;
4 close;
5 r=27*(10^3);
6 printf("Resistor value = %d ohm",r);
7 printf("\nTolerance = 5 %%");
```

Scilab code Exa 2.6 Determine the value and tolerance of resistor of green blue black gold

```
1 //Ex:2.6
2 clc;
3 clear;
4 close;
5 r=56*(10^0);
6 printf("Resistor value = %d ohm",r);
7 printf("\nTolerance = 5 %%");
```

Scilab code Exa 2.7 Determine the value and tolerance of resistor of red green black brown

```
1 //Ex:2.7
2 clc;
3 clear;
```

```
4 close;
5 r=25*(10^0);
6 printf("Resistor value = %d ohm",r);
7 printf("\nTolerance = 20 %%");
```

Scilab code Exa 2.8 Determine the bands coressponding to 2pt kohm of tolerance 2 percent

```
1 //Ex:2.8
2 clc;
3 clear;
4 close;
5 r=22*(10^3);
6 printf("Bands are Red, Red, Red, Red");
```

Scilab code Exa 2.9 Determine the bands coressponding to 4R7K

```
1 //Ex:2.9
2 clc;
3 clear;
4 close;
5 printf("Resistance = 4.7 ohm with 10%% tolerance");
```

Scilab code Exa 2.10 Determine the bands coressponding to 330RG

```
1 //Ex:2.10
2 clc;
3 clear;
4 close;
5 printf("Resistance = 330 ohms with 2%% tolerance");
```

Scilab code Exa 2.11 Determine the bands coressponding to R22M

```
1  //Ex:2.11
2  clc;
3  clear;
4  close;
5  printf("Resistance = 0.22 ohm with 20%% tolerance");
```

Scilab code Exa 2.12 Determine the effective resistance in Series and Parallel

```
1 //Ex:2.12
2 clc;
3 clear;
4 close;
5 r1=22; //in ohms
6 r2=47; //in ohms
7 r3=33; //in ohms
8 r_ser=r1+r2+r3;
9 printf("Effective resistance in series = %d ohms", r_ser);
10 r_parel=((1/r1)+(1/r2)+(1/r3))^-1;
11 printf("\n Effective resistance in parallel = %f ohms",r_parel);
```

Scilab code Exa 2.13 Determine the effective resistance of the circuit

```
1 //Ex:2.13
2 clc;
```

```
3 clear;
4 close;
5 r1=4.7; //in ohms
6 r2=47; //in ohms
7 r3=12; //in ohms
8 r4=27; //in ohms
9 r5=r3+r4;
10 r_parel=((1/r5)+(1/r2))^-1;
11 r_eff=r_parel+r1;
12 printf("Effective resistance = %d ohms", r_eff);
```

Scilab code Exa 2.14 Determine the resistance required to realize 50 ohm at 2W

```
1 //Ex:2.14
2 clc;
3 clear;
4 close;
5 printf("Two 100 ohm resistor of 1 W");
```

Scilab code Exa 2.15 Determine the resistance at 80 degree

```
1 //Ex:2.15
2 clc;
3 clear;
4 close;
5 temp_coeff=0.001;//in per degree centigrade
6 r_o=1500;//in ohm
7 t=80;//temperature diff.
8 r_t=r_o*(1+(temp_coeff)*t)
9 printf("Resistance at %d degree = %d ohms",t,r_t);
```

Scilab code Exa 2.16 Determine the resistance at 90 degree

```
1 //Ex:2.16
2 clc;
3 clear;
4 close;
5 temp_coeff=0.0005; //in per degree centigrade
6 r_t1=680; //in ohm
7 t1=20; //temperature diff.
8 t2=90;
9 r_o=r_t1/(1+(temp_coeff)*t1);
10 r_t2=r_o*(1+(temp_coeff)*t2);
11 printf("Resistance at %d degree = %f ohms",t2,r_t2);
```

Scilab code Exa 2.17 Determine the resistor temperature coeff

```
1 //Ex:2.17
2 clc;
3 clear;
4 close;
5 r_o=40; // resis at 0 degree
6 r_t=44; //at 100 degree
7 t=100; // temperature diff.
8 temp_coeff=(1/t)*((r_t/r_o)-1);
9 printf("Temperature Coefficient = %f per degree centigrade", temp_coeff);
```

Scilab code Exa 2.18 Determine the current flow

```
1 //Ex:2.18
2 clc;
3 clear;
4 close;
5 V_1=50;
6 V_2=10;
7 dV=V_1-V_2;//in volts
8 dt=0.1;//in seconds
9 C=22*10^-6;
10 i=C*(dV/dt)*1000;//in mA
11 printf("Current flow = %f milliAmps",i);
```

Scilab code Exa 2.19 Determine the charged stored

```
1 //Ex:2.19
2 clc;
3 clear;
4 close;
5 C=10*10^-6;
6 V=250; //in volts
7 Q=V*C*1000; //in millicoulomb
8 printf("Charged stored =%f mC",Q);
```

Scilab code Exa 2.20 Determine the potential diff that be applied to 47 uFcapacitor

```
1 //Ex:2.20
2 clc;
3 clear;
4 close;
5 C=47*10^-6; //in farads
6 W=4; //energy in joules
7 V=sqrt(W/(0.5*C));
```

```
8 printf("Voltage tht be applied = %d volts", V);
```

Scilab code Exa 2.21 Determine the required plate area for 1 nF capacitor

```
1 //Ex:2.21
2 clc;
3 clear;
4 close;
5 E_o=8.85*10^-12;
6 E_r=5.4;
7 C=1*10^-9;
8 d=0.1*10^-3;
9 A=(C*d)/(E_o*E_r)*10^4;
10 printf("Required plate area = %f sq. cm",A);
```

Scilab code Exa 2.22 Determine the value of capacitance

```
1 //Ex:2.22
2 clc;
3 clear;
4 close;
5 E_o=8.85*10^-12;
6 E_r=4.5;
7 n=6;//no. of plates
8 d=0.2*10^-3;//in meter
9 A=20*10^-4;//in sq.meter
10 C={(E_o*E_r*(n-1)*A)/d}*10^11;
11 printf("Capacitance = %d pF",C);
```

Scilab code Exa 2.23 Determine the value of capacitor 103K

```
1 //Ex:2.23
2 clc;
3 clear;
4 close;
5 printf("Capacitance = 10000 pF of 10%%");
```

Scilab code Exa 2.24 Determine the value of tubular capacitor with brown green brown red brown

```
1  //Ex:2.24
2  clc;
3  clear;
4  close;
5  printf("Capacitance = 150 pF of 2%% tolerance at 100 V");
```

Scilab code Exa 2.25 Determine the effective capacitance

```
1 //Ex:2.25
2 clc;
3 clear;
4 close;
5 C1=2; // in nF
6 C2=4; // in nF
7 C3=2;
8 C4=4;
9 C_a=C1+C2;
10 C_b=C_a*C3/(C_a+C3);
11 C_eff=C4+C_b;
12 printf("Capacitance = %f nF", C_eff);
```

Scilab code Exa 2.26 Determine the series combination of capacitos and their voltage rating

```
1 //Ex:2.26
2 clc;
3 clear;
4 close;
5 C=100; //in uF
6 C_eff=C*C/(C+C);
7 printf("Two capacitors of %d uF be in parallel used to make %d uF capacitance", C, C_eff);
```

Scilab code Exa 2.27 Determine the voltage induced

```
1 //Ex:2.27
2 clc;
3 clear;
4 close;
5 L=600*10^-3; //in H
6 I1=6; //in A
7 I2=2; //in A
8 dI=I1-I2;
9 dt=250*10^-3; //in sec.
10 E=-L*(dI/dt);
11 printf("Induced voltage = %f volts", E);
```

Scilab code Exa 2.28 Determine the current that be applied to an inductor

```
1 //Ex:2.28
2 clc;
3 clear;
4 close;
```

```
5 E=2.5; // energy in joules
6 L=20*10^-3; // in henry
7 I=sqrt(E/(0.5*L));
8 printf("Current = %f A",I);
```

Scilab code Exa 2.29 Determine the numbers of turns required

```
1 //Ex:2.29
2 clc;
3 clear;
4 close;
5 u_o=12.57*10^-7;
6 u_r=500;
7 A=15*10^-4;//area of cross-section in sq. meters
8 l=20*10^-2;//length
9 L=100*10^-3;//in henry
10 n=sqrt((L*1)/(u_r*u_o*A));
11 printf("Inductor requires %d turns of wire",n);
```

Scilab code Exa 2.30 Determine the parallel combination for 5mH inductor rated at 2A

```
1  //Ex:2.30
2  clc;
3  clear;
4  close;
5  //L=(L1*L2)/(L1+L2)
6  L_eq=5;//in millihenry
7  printf("Inductor of 10 mH wired in parallel would provide %d mH", L_eq);
```

Scilab code Exa 2.31 Determine the effective inductance

```
1 //Ex:2.31
2 clc;
3 clear;
4 close;
5 L1=60; //in mH
6 L2=60; //in mH
7 L_a=L1+L2;
8 L3=120; //in mH
9 L_b=L_a*L3/(L_a+L3);
10 L4=50; //in mH
11 L_eq=L4+L_b;
12 printf("Equivalent Inductance = %d mH", L_eq);
```

Chapter 3

DC Circuits

Scilab code Exa 3.1 Determine the value of current flowing between A B and value of I3

```
1 //Ex:3.1
2 clc;
3 clear;
4 close;
5 i1=1.5;
6 i2=2.7; //in amp.s
7 i5=i1+i2;
8 i4=3.3;
9 i3=i4+i5;
10 printf("Current b/w A & B = %f A",i5);
11 printf("\n Current I3 = %f A",i3);
```

Scilab code Exa 3.2 Determine the value of V2 and value of E3

```
1 //Ex:3.2
2 clc;
3 clear;
```

```
4 close;
5 E1=6;
6 E2=3;
7 V2=E1-E2;
8 V1=4.5;
9 E3=V1-E2;
10 printf("Value of V2 = %f A", V2);
printf("\n Value of E3 = %f A", E3);
```

Scilab code Exa 3.3 Determine the voltage and current in circuit

```
1 / Ex: 3.3
2 clc;
3 clear;
4 close;
5 V1=7.5; //in volts
6 \quad V2=4.5;
7 V3=4.5;
8 \text{ r1=110; } // \text{in ohms}
9 r2=33;
10 \text{ r3}=22;
11 i1=V1/r1;
12 i2=V2/r2;
13 i3 = V3/r3;
14 printf ("Current I1 = \%f A", i1);
15 printf("\n Current I2 = \%f A",i2);
16 printf("\n Current I3 = \%f A",i3);
```

Scilab code Exa 3.4 Determine the output when no load and loaded by $10 \mathrm{kohm}$

```
1 //Ex:3.4
2 clc;
```

```
3 clear;
4 close;
5 V_in=5;//in volts
6 r1=4000;
7 r2=1000;
8 r_p=r1*r2/(r1+r2);
9 V_out=V_in*(r2/(r1+r2));
10 V_out_p=V_in*(r_p/(r_p+r2));
11 printf("output voltage at no load = %f A", V_out);
12 printf("\n output voltage when loaded by 10kohms = %f A", V_out_p);
```

Scilab code Exa 3.5 Determine the value of parallel shunt resistor

```
1 //Ex:3.5
2 clc;
3 clear;
4 close;
5 I_in=5;//in mA
6 R_m=100;
7 I_m=1;
8 R_s=R_m*I_m/(I_in-1);
9 printf("Value of parallel shunt resistor = %d A",R_s
);
```

Scilab code Exa 3.6 Determine the range of resistances that can be measured

```
1 //Ex:3.6
2 clc;
3 clear;
4 close;
5 r1=100;
```

```
6  r2=1000;
7  R_x_1=(r2/r1)*10000;
8  R_x_2=(r1/r2)*10;
9  printf("Range extends from %d ohms to %d ohms", R_x_2, R_x_1);
```

Scilab code Exa 3.7 Determine the current flow in 100 ohm load

```
1 / Ex: 3.7
2 clc;
3 clear;
4 close;
5 E=10;
6 \text{ r1} = 500;
7 r2=600;
8 \text{ r3} = 500;
9 \text{ r4}=400;
10 V_a=E*(r2/(r1+r2));
11 V_b=E*(r4/(r3+r4));
12 V_oc=V_a-V_b;
13 r=((r1*r2)/(r1+r2))+((r3*r4)/(r3+r4));
14 i=(V_oc/(r+100))*1000;
15 printf("Current flow in 100 ohm resistor = %f mA",i
      );
```

Scilab code Exa 3.8 Determine the voltage produced

```
1 //Ex:3.8
2 clc;
3 clear;
4 close;
5 I_sc=19;//in uA
6 R=1000;
```

```
7 R_m=968;
8 V_out=I_sc*(R*R_m/(R+R_m));
9 printf("Voltage produced = %d uV", V_out);
```

Scilab code Exa 3.9 Determine the voltage produced

```
1 //Ex:3.9
2 clc;
3 clear;
4 close;
5 c=1*10^-6; //in farads
6 r=3.3*10^6; //in ohms
7 t=1; //in sec.
8 V_s=9; //in volts
9 V_c=V_s*(1-%e^(-t/(r*c)));
10 printf("Voltage produced = %f V", V_c);
```

Scilab code Exa 3.10 Determine the initial charging current and current that flow 50ms and 100ms after connecting supply After what time does capacitor fully charge

```
1 //Ex:3.10
2 clc;
3 clear;
4 close;
5 c=100*10^-6; //in farads
6 r=1*10^3; //in ohms
7 t1=50*10^-3; //in sec.
8 t2=100*10^-3; //in sec.
9 V_s=350; //in volts
10 i1=(V_s/1000)*(%e^(-t1/(r*c)));
11 i2=(V_s/1000)*(%e^(-t2/(r*c)));
```

```
12 printf("Charging current after %f sec = %f A",t1,i1)
;
13 printf("\n Charging current after %f sec = %f A",t2,
i2);
```

Scilab code Exa 3.11 Determine the time taken by the capacitor to fall below 10V

```
1 //Ex:3.11
2 clc;
3 clear;
4 close;
5 c=10*10^-6; //in farads
6 r=47*10^3; //in ohms
7 V_s=20; //in volts
8 V_c=10;
9 t=-c*r*log(V_c/V_s);
10 printf("time taken = %f sec.",t);
```

Scilab code Exa 3.12 Determine the capacitor voltage 1 minute later

```
1 //Ex:3.12
2 clc;
3 clear;
4 close;
5 c=150*10^-6; //in farads
6 r=2*10^6; //in ohms
7 V_s=150; //in volts
8 V_c=0.8187*V_s;
9 printf("Capacitor voltage = %f V", V_c);
```

Scilab code Exa 3.13 Determine the C R values for sq wave of 1kHz

```
1 //Ex:3.13
2 clc;
3 clear;
4 close;
5 r=10*10^3; //in ohms
6 t=1*10^-3;
7 c=(0.1*t/r)*10^9;
8 printf("Capacitor = %d nF",c);
```

Scilab code Exa 3.14 Determine the C R values for sq wave of 1kHz

```
1 //Ex:3.14
2 clc;
3 clear;
4 close;
5 r=10*10^3; //in ohms
6 t=1*10^-3;
7 c=(10*t/r)*10^6;
8 printf("Capacitor = %d uF",c);
```

Scilab code Exa 3.15 Determine the current in the inductor after supply first connected

```
1 //Ex:3.15
2 clc;
3 clear;
4 close;
5 L=6;//in henry
6 r=24;//in ohms
7 t=0.1;//in sec.
8 V_s=12;//in volts
```

```
9 i=(V_s/r)*(1-%e^(-t*r/L));
10 printf("current = %f A",i);
```

Scilab code Exa 3.16 Determine the inductor voltage 20ms after supply first connected

```
1 //Ex:3.16
2 clc;
3 clear;
4 close;
5 V_s=5;//in volts
6 V_c=0.8647*V_s;
7 printf("Inductor voltage = %f V", V_c);
```

Alternating voltage and current

Scilab code Exa 4.1 Determine the instanteous voltage

```
1 //Ex:4.1
2 clc;
3 clear;
4 close;
5 V_m=20; //in volts
6 f=50; //in Hz
7 t1=2.5*10^-3;
8 t2=15*10^-3;
9 V1=V_m*sin(2*%pi*f*t1);
10 V2=V_m*sin(2*%pi*f*t2);
11 printf("Voltage at 2.5ms = %f V", V1);
12 printf("\n Voltage at 15ms = %f V", V2);
```

Scilab code Exa 4.2 Determine the time period of 400 Hz waveform

```
1 //Ex:4.2
2 clc;
3 clear;
```

```
4 close;
5 f=400;//in Hz
6 T=1/f;
7 printf("Time period of %d Hz waveform = %f sec",f,T)
;
```

Scilab code Exa 4.3 Determine the freq of 40 ms waveform

```
1 //Ex:4.3
2 clc;
3 clear;
4 close;
5 T=40*10^-3; //in Hz
6 f=1/T;
7 printf("Frequency of 40 ms waveform = %f Hz",f);
```

Scilab code Exa 4.4 Determine the peak value of 240V rms

Scilab code Exa 4.5 Determine the rms value of 50mA peak to peak

```
1 / Ex : 4.5
```

Scilab code Exa 4.6 Determine the rms current

```
1  //Ex:4.6
2  clc;
3  clear;
4  close;
5  V=10;//pk-pk  voltage
6  r=1000;//ohms
7  I_pk=V/r;//in  Amps
8  I_rms=0.353*I_pk*1000;//milliamps
9  printf("RMS current of 10V peak-peak voltage = %f mA", I_rms);
```

Scilab code Exa 4.7 Determine the reactance of 1uF at 100Hz and 10kHz

```
1 //Ex:4.7
2 clc;
3 clear;
4 close;
5 c=1*10^-6;
6 f1=100;
7 f2=10000;
8 X_c1=1/(2*%pi*f1*c);
9 X_c2=1/(2*%pi*f2*c);
10 printf("Reactance at 100Hz = %f mA", X_c1);
```

```
11 printf("\n Reactance at 10 \,\mathrm{kHz} = \% \mathrm{f} \,\mathrm{mA}", X_c2);
```

Scilab code Exa 4.8 Determine the current flow in capacitor

```
1 //Ex:4.8
2 clc;
3 clear;
4 close;
5 V=240;
6 c=100*10^-9;
7 f=50;
8 X_c=1/(2*%pi*f*c);
9 I_c=V/X_c;
10 printf("Current flow = %f A",I_c);
```

Scilab code Exa 4.9 Determine the reactance of 1mH at 100Hz and 10kHz

```
1 //Ex:4.9
2 clc;
3 clear;
4 close;
5 L=1*10^-3;
6 f1=100;
7 f2=10000;
8 X_L1=(2*%pi*f1*L);
9 X_L2=(2*%pi*f2*L);
10 printf("Reactance at 100Hz = %f ohm", X_L1);
11 printf("\nReactance at 10kHz = %f ohm", X_L2);
```

Scilab code Exa 4.10 Determine the reactance of 1mH at 100Hz and 10kHz

```
1 //Ex:4.10
2 clc;
3 clear;
4 close;
5 L=1*10^-3;
6 f1=100;
7 f2=10000;
8 X_L1=(2*%pi*f1*L);
9 X_L2=(2*%pi*f2*L);
10 printf("Reactance at 100Hz = %f ohm", X_L1);
11 printf("\nReactance at 10kHz = %f ohm", X_L2);
```

Scilab code Exa 4.11 Determine the impedance of the circuit and current fro supply

```
1 //Ex:4.11
2 clc;
3 clear;
4 close;
5 C=2*10^-6;
6 f=400;
7 V=115;
8 X_C=1/(2*%pi*f*C);
9 r=199;
10 z=sqrt(r^2+X_C^2);
11 I_s=V/z;
12 printf("Reactance = %f ohm", X_C);
13 printf("\n Current = %f A", I_s);
```

Scilab code Exa 4.12 Determine the power factor of choke and currentt from supply

```
1 / Ex : 4.12
```

```
2 clc;
3 clear;
4 close;
5 L=150*10^-3;
6 f=400;
7 V=115;
8 X_L=(2*%pi*f*L);
9 r=250;
10 z=sqrt(r^2+X_L^2);
11 I_s=V/z;
12 printf("Reactance = %f ohm", X_L);
13 printf("\n Current = %f A", I_s)
```

Scilab code Exa 4.13 Determine the value of capacitance required

```
1 //Ex:4.13
2 clc;
3 clear;
4 close;
5 L=100*10^-3;
6 f=400;
7 C=(1/(4*%pi*%pi*f*f*L))*10^6;
8 printf("Capacitance required = %f uF",C);
```

Scilab code Exa 4.14 Determine the current supplied and voltage developed across 100 ohm

```
1 //Ex:4.14
2 clc;
3 clear;
4 close;
5 L=20*10^-3;
6 f=2000;
```

```
7 V=1.5;
8 r=100;
9 C=10*10^-9;
10 X_L=(2*%pi*f*L);
11 X_C=1/(2*%pi*f*C);
12 z=sqrt(r^2+(X_L-X_C)^2);
13 i=V/z;
14 v=i*r;
15 printf("Current supplied = %f mA",i);
16 printf("\nVoltage developed = %f V",v);
```

Scilab code Exa 4.15 Determine the value of secondry voltage

```
1 //Ex:4.15
2 clc;
3 clear;
4 close;
5 N_s=120;
6 V_p=220;
7 N_p=2000;
8 V_s=N_s*V_p/N_p;
9 printf("Secondry voltage = %f V", V_s);
```

Scilab code Exa 4.16 Determine the number of secondary turns and primary current

```
1 //Ex:4.16
2 clc;
3 clear;
4 close;
5 V_p=200;
6 V_s=10;
7 N_p=1200;
```

```
8  N_s=N_p*V_s/V_p;
9  i_s=2.5;
10  i_p=N_s*i_s/N_p;
11  printf("Secondry turns = %d ",N_s);
12  printf("\nprimary current = %f A",i_p);
```

Semiconductors

Scilab code Exa 5.1 Determine the resistance of diode when forward current is given and when forward voltage is given

```
1 //Ex:5.1
2 clc;
3 clear;
4 close;
5 v1=0.43; // volts
6 i1=2.5*10^-3; // in Amps.
7 v2=0.65; // volts
8 i2=7.4*10^-3; // in Amps.
9 r1=v1/i1;
10 r2=v2/i2;
11 printf("Diode resistance for 2.5A current = %d ohms", r1);
12 printf("\n Diode resistance for 0.65V = %f ohms", r2);
;
```

Scilab code Exa 5.2 Determine the series resistor required

```
1 //Ex:5.2
2 clc;
3 clear;
4 close;
5 i=15*10^-3;
6 R=(21-2.2)/i;
7 v=18.8;//in volts
8 P=i*v*1000;
9 printf("Resistor %d ohms of %d mW',R,P);
```

Scilab code Exa 5.3 Determine the Ie emitter current and hee

Scilab code Exa 5.4 Determine the Ie emitter current and hee

```
1 //Ex:5.4
2 clc;
3 clear;
4 close;
5 I_c=30;//in mA
6 I_b=0.6;
7 I_e=I_c+I_b;
8 hfe=I_c/I_b;
```

```
9 printf("Emitter current = %f ohms & hfe = %d", I_e,hfe);
```

Scilab code Exa 5.5 Determine the Ib base current and hee

Scilab code Exa 5.6 Determine the hfe required and collector power dissipation

```
1 //Ex:5.6
2 clc;
3 clear;
4 close;
5 I_c=1.5; //in A
6 I_b=50*10^-3;
7 V_ce=6; // volts
8 hfe=I_c/I_b;
9 P=I_c*V_ce;
10 printf("hfe required = %d",hfe);
11 printf("\n collector power dissipation = %d W",P);
```

Scilab code Exa 5.7 Determine the I base current and change in collector current

```
1 //Ex:5.7
2 clc;
3 clear;
4 close;
5 hfe=200
6 I_c=10*10^-3;
7 dI_b=I_c/hfe;
8 dI_c=hfe*dI_b/100;
9 printf("Base current = %f A ",dI_b);
10 printf("\nChange in collector current = %f mA",dI_c);
;
```

Scilab code Exa 5.8 Determine the change in drain current

```
1 //Ex:5.8
2 clc;
3 clear;
4 close;
5 dV_gs=0.025;
6 g_fs=-0.5;
7 dI_d=dV_gs*g_fs;//in mA
8 I_d1=50*10^-3;//in mA
9 I_d2=dI_d+I_d1;
10 printf("Change in drain current = %f A",dI_d);
11 printf("\nNew value of drain current = %f A",I_d2);
```

Power Supplies

Scilab code Exa 6.1 Determine the peak voltage that appear across load

```
1 //Ex:6.1
2 clc;
3 clear;
4 close;
5 V_p=220;
6 V_s=V_p/44;
7 V_pk=1.414*V_s;//in volts
8 V_l=V_pk-0.6;
9 printf("Peak voltage that appear across load = %f V", V_l);
```

Scilab code Exa 6.2 Determine the amt of ripple at output

```
1 //Ex:6.2
2 clc;
3 clear;
4 close;
5 X_c=3.18;
```

```
6 R=100;
7 V_rip=1*(X_c/sqrt(R^2+X_c^2));
8 printf("Ripple voltage = %f V", V_rip);
```

Scilab code Exa 6.3 Determine the amt of ripple at output

```
1 //Ex:6.3
2 clc;
3 clear;
4 close;
5 f=50;
6 L=10;
7 X_1=2*%pi*f*L;
8 X_c=3.18;
9 V_rip=1*(X_c/sqrt(X_1^2+X_c^2));
printf("Ripple voltage = %f V", V_rip);
```

Scilab code Exa 6.4 Determine the series resistor for operation in conjunction with 9V

Scilab code Exa 6.5 Determine equiv output resistance and regulation of power supply

```
1 //Ex:6.5
2 clc;
3 clear;
4 close;
5 dI_i=20;
6 dV_o=0.5;
7 dV_o_reg=0.1;
8 dI_o=2;
9 R_out=dV_o/dI_o;
10 Regulation=(dV_o_reg/dI_i)*100;
11 printf(" output resis. = %f ohm", R_out);
12 printf(" \n regulation. = %f %%", Regulation);
```

Amplifiers

Scilab code Exa 7.1 Determine voltage gain and current gain and power gain

```
1 //Ex:7.1
2 clc;
3 clear;
4 close;
5 I_i=4;
6 V_o=2;
7 V_i=50*10^-3;
8 I_o=200;
9 A_v=V_o/V_i;
10 A_i=I_o/I_i;
11 printf(" Volt gain = %f ",A_v);
12 printf("\n Current gain = %f ",A_i);
13 printf("\n Power gain = %f ",A_i*A_v);
```

Scilab code Exa 7.2 Determine voltage gain and upper and lower cutoff freq

```
1 //Ex:7.2
2 clc;
3 clear;
4 close;
5 A_v_max=35;
6 A_v_cutoff=0.707*A_v_max;
7 printf(" Mid-band Volt gain = %f ",A_v_cutoff);
8 printf("\n upper freq = 590Hz & lower freq = 57Hz");
```

Scilab code Exa 7.3 Determine overall voltage gain with negative feedback

```
1 //Ex:7.3
2 clc;
3 clear;
4 close;
5 A=50;
6 b=0.1;
7 G=A/(1+b*A);
8 printf(" overall Volt gain = %f ",G);
```

Scilab code Exa 7.4 Determine percentage increase in overall voltage gain

```
1 //Ex:7.4
2 clc;
3 clear;
4 close;
5 A=50;
6 A_new=A+0.2*A;
7 b=0.1;
8 G=A_new/(1+b*A_new);
9 dG=8.33-G/8.33;
```

```
10 printf(" percentage change in overall volt gain = \%f \%\%",dG);
```

Scilab code Exa 7.5 Determine amount of feedback required

```
1 //Ex:7.5
2 clc;
3 clear;
4 close;
5 A=100;
6 G=20;
7 b=(1/G)-(1/A);
8 printf("amount of feedback required = %f ",b);
```

Scilab code Exa 7.6 Determine output voltage produced by input signal of $10 \mathrm{mV}$

```
1 //Ex:7.6
2 clc;
3 clear;
4 close;
5 h_oe=80*10^-6;
6 R_l=10000;
7 I_f=320*10^-6;
8 I_c=I_f*(1/h_oe)/((1/h_oe)+R_l);
9 V_out=I_c*R_l;
10 printf("Output voltage = %f V", V_out);
```

Scilab code Exa 7.7 Determine of load resistance required

```
1 //Ex:7.7
2 clc;
3 clear;
4 close;
5 b=200;
6 h_ie=1.5*10^3; //in ohms
7 h_fe=150;
8 R_l=b*h_ie/h_fe;
9 printf("Load resistance = %d ohms", R_l);
```

Scilab code Exa 7.8 Determine static value of current gain and voltage gain

```
1 / Ex: 7.8
2 clc;
3 clear;
4 close;
5 V = 9;
6 V_e = 2;
7 R4 = 1000;
8 V_b=2.6;
9 R2=33*10^3;
10 R1=68000;
11 I_r1 = (V - V_b)/R1;
12 R3=2.2*10^3;
13 I_b=15.1*10^-6;
14 I_c=2.0151*10^-3;
15 V_r3=I_c*R3;
16 V_c=V-V_r3;
17 printf("Collector voltage = %f V", V_c);
```

Scilab code Exa 7.9 Determine quiescent value of collector current and voltage and peak to peak output voltage

```
1 //Ex:7.9
2 clc;
3 clear;
4 close;
5 V_pp=14.8-3.3;
6 printf("Collector quiescent voltage = 9.2 V");
7 printf("\nCollector quiescent current = 7.3mA");
8 printf("\nOutput peak-peak voltage = %f V", V_pp);
```

Operational Amplifiers

Scilab code Exa 8.1 Determine the value of open loop voltage gain

```
1 //Ex:8.1
2 clc;
3 clear;
4 close;
5 V_out=2;
6 V_in=400*10^-6;
7 A_v=V_out/V_in;
8 A_v_dB=ceil (20*(log (A_v)/log (10)));
9 printf("open loop voltage gain = %d dB", A_v_dB);
```

Scilab code Exa 8.2 Determine the value of input current

```
1 //Ex:8.2
2 clc;
3 clear;
4 close;
5 V_in=5*10^-3;
6 R_in=2*10^6;
```

```
7 I_in=V_in/R_in;
8 printf("Input current = %e A",I_in);
```

Scilab code Exa 8.3 Determine the slew rate of device

```
1 //Ex:8.3
2 clc;
3 clear;
4 close;
5 V_out=10;
6 t=4;
7 SR=V_out/t;
8 printf("Slew rate = %f V/us", SR);
```

Scilab code Exa 8.4 Determine the time taken to change level

```
1  //Ex:8.4
2  clc;
3  clear;
4  close;
5  V_out=2;
6  SR=15; //in  V/us
7  t=V_out/SR;
8  printf("Time taken = %f us",t);
```

Scilab code Exa 8.6 Determine the circuit parameters using opamps

```
1 //Ex:8.6
2 clc;
3 clear;
```

```
4 close;
5 R_in=10000;
6 f1=250;
7 f2=15000;
8 C_in=0.159/(f1*R_in);
9 C_f=0.159/(f2*R_in);
10 printf("C_f = %e F",C_f);
```

Oscillators

Scilab code Exa 9.1 Determine the freq of oscillation

```
1 //Ex:9.1
2 clc;
3 clear;
4 close;
5 C=10*10^-9;
6 R=10000;
7 f=(1/(2*%pi*sqrt (6)*C*R));
8 printf("The freq of oscillation = %f Hz",f);
```

Scilab code Exa 9.2 Determine the output freq

```
1 //Ex:9.2
2 clc;
3 clear;
4 close;
5 r1=1000;
6 r2=1000;
7 c=100*10^-9;
```

```
8 f=(1/(2*%pi*c*r1));
9 printf("The freq of oscillation at 1 kohm= %f Hz",f);
10 R1=6000;
11 R2=6000;
12 F=(1/(2*%pi*c*R1));
13 printf("\nThe freq of oscillation at 6 kohm= %f Hz", F);
```

Scilab code Exa 9.3 Determine the value of R3 and R4

```
1 //Ex:9.3
2 clc;
3 clear;
4 close;
5 f=1000;
6 t=1/f;
7 C=10*10^-9;
8 R=t/(1.4*C);
9 printf("R= %d kohm",R/1000);
```

The 555 timer

Scilab code Exa 12.1 Determine the parameters of timer circuit

```
1 //Ex:12.1
2 clc;
3 clear;
4 close;
5 C=100*10^-9;
6 t_on=10*10^-3;
7 R=(t_on/(1.1*C))/1000;
8 printf("R= %f kohm",R);
```

Scilab code Exa 12.2 Determine the parameters of timer circuit that produce 5V

```
1 //Ex:12.2
2 clc;
3 clear;
4 close;
5 C=100*10^-6;
6 t_on=60;
```

```
7 R=(t_on/(1.1*C))/1000;
8 printf("R= %f kohm",R);
```

Scilab code Exa 12.3 Design of pulse generator

```
1 //Ex:12.3
2 clc;
3 clear;
4 close;
5 //R1=R2=R
6 prf=10;
7 C=1*10^-6;
8 R=0.48/(prf*C);
9 printf("R= %d ohm",R);
```

Scilab code Exa 12.4 Design of 5V square wave generator

```
1 //Ex:12.4
2 clc;
3 clear;
4 close;
5 prf=50;
6 C=100*10^-9;
7 R=0.72/(prf*C);//in ohms
8 printf("R= %d kohm",R/1000);
```

Radio

Scilab code Exa 13.1 Determine the frequency of radio signal of wavelength 15m

```
1 //Ex:13.1
2 clc;
3 clear;
4 close;
5 c=3*10^8;
6 wl=15;
7 f=c/wl;
8 printf("The frequency =%d Hz",f);
```

Scilab code Exa 13.2 Determine the frequency of radio signal of 150MHz

```
1 //Ex:13.2
2 clc;
3 clear;
4 close;
5 c=3*10^8;
6 f=150*10^6;
```

```
7 wl=c/f;
8 printf("The wavelength =%d m", wl);
```

Scilab code Exa 13.3 Determine the velocity of propagation of radio signal of 30MHz and 8m wavelength

```
1 //Ex:13.3
2 clc;
3 clear;
4 close;
5 wl=8;
6 f=30*10^6;
7 v=f*wl;
8 printf("The veocity of propagation =%d m/s",v);
```

Scilab code Exa 13.4 Determine the two possible BFO freq

```
1  //Ex:13.4
2  clc;
3  clear;
4  close;
5  f_rf=162.5; //in kHz
6  f_af=1.25; //in kHz
7  f_bfo_max=f_rf+f_af;
8  f_bfo_min=f_rf-f_af;
9  printf("The two possible BFO freq. =%f kHz and %f kHz", f_bfo_max, f_bfo_min);
```

Scilab code Exa 13.5 Determine the range the local oscillator be tuned

```
1 //Ex:13.5
2 clc;
3 clear;
4 close;
5 f_rf_1=88; //in MHz
6 f_rf_2=108; //in MHz
7 f_if=10.7; //in MHz
8 f_lo_1=f_rf_1+f_if;
9 f_lo_2=f_rf_2+f_if;
10 printf("The range local oscillator be tuned =%f MHz
& %f MHz",f_lo_1,f_lo_2);
```

Scilab code Exa 13.6 Determine the range the local oscillator be tuned

```
1 //Ex:13.6
2 clc;
3 clear;
4 close;
5 f_rf_1=88; //in MHz
6 f_rf_2=108; //in MHz
7 f_if=10.7; //in MHz
8 f_lo_1=f_rf_1+f_if;
9 f_lo_2=f_rf_2+f_if;
10 printf("The range local oscillator be tuned =%f MHz
& %f MHz",f_lo_1,f_lo_2);
```

Scilab code Exa 13.7 Determine the radiated power

```
1 //Ex:13.7
2 clc;
3 clear;
4 close;
5 r=12;//in ohms
```

```
6  i=0.5; //in amps
7  P_r=i*i*r; //in W
8  printf("Power radiated = %d W", P_r);
```

Scilab code Exa 13.8 Determine the power and radiation efficiency

```
1 //Ex:13.8
2 clc;
3 clear;
4 close;
5 r=2; //in ohms
6 i=0.5; //in amps
7 P_r=4; //in W
8 P_loss=i*i*r;
9 P_eff=(P_r/(P_r+P_loss))*100;
10 printf("The power loss = %f W",P_loss);
11 printf("\n The power loss = %f %%",P_eff);
```