Seminar 4

DEPI

- 1. O sursă de informație furnizează două mesaje cu probabilitățile $p(a_0) = \frac{2}{3}$ și $p(a_1) = \frac{1}{3}$. Mesajele sunt codate prin semnale constante cu valorile $s_0(t) = -5$ (a_0) și $s_1(t) = 5$ (a_1) . Semnalele sunt afectate de zgomot uniform cu distribuția U[-6,6]. Le recepție se ia un singur eșantion r din semnal.
 - a. Care sunt regiunile de decizie, conform criteriului Neyman-Pearson cu valoarea maximă a $P_{fa} \leq 10^{-2}$?
 - b. Care este probabilitatea detecției corecte în acest caz?
- 2. Fie detecția unui semnal $s_1(t) = 3\sin(2\pi ft)$ care poate fi prezent (ipoteza H_1) sau absent ($s_0(t) = 0$, ipoteza H_0). Valoarea frecvenței este f = 1. Semnalul este afectat de zgomot alb gaussian (AWGN) cu distribuția $\mathcal{N}(0, \sigma^2 = 1)$. Receptorul ia două eșantioane r_1 și r_2 la momentele de timp t_1 și t_2 .
 - a. Care sunt momentele de timp t_1 și t_2 cele mai bune pentru detecție?
 - b. Eșantioanele au valorile $\{1.1, 4.4\}$, luate la momentele de timp $t_1 = 0.125$ și $t_2 = 0.625$. Ce decizie se ia cu criteriul Plauz. Maxime?
 - c. Ce decizie s-ar lua cu criteriul Prob. Minime de Eroare, considerând $P(H_0) = 1/10$ și $P(H_1) = 9/10$?
 - d. Ce decizie s-ar lua cu criteriul Riscului Minim, considerând $P(H_0) = 1/10$ și $P(H_1) = 9/10$, și $C_{00} = 0$, $C_{10} = 10$, $C_{01} = 20$, $C_{11} = 5$? e.Dacă receptorul ia un al treilea eșantion la momentul $t_3 = 0.5$, se îmbunătățește performanța detecției? Justificați.
- 3. Un semnal constant poate avea două valori, 0 (ipoteza H_0) sau 6 (ipoteza H_1). Semnalul este afectat de zgomot alb gaussian cu $\mathcal{N}(\mu = 0, \sigma^2 = 10)$. Receptorul ia 5 eșantioane cu valorile $\{1.1, 4.4, 3.7, 4.1, 3.8\}$.
 - a. Ce decizie se ia cu criteriul ML?
 - b. Ce decizie se ia cu criteriul MPE, știind că $P(H_0) = 2/3$ și $P(H_1) = 1/3$?
 - c. Ce decizie se ia cu criteriul MR, știind că $P(H_0) = 2/3$ și $P(H_1) = 1/3$, iar $C_{00} = 0$, $C_{10} = 100$, $C_{01} = 1$, $C_{11} = 0$?

d. În ipotezele de la b), cât de mare ar trebui să fie valoarea $P(H_0)$ pentru ca decizia să fie D_0 ?