EXPRESS MAIL NO. EV335397268US

JC20 Rec'd PCT/PTO 17 MAY 2005,

	<110>	HANMI PHARM. IND. CO., LTD.	
	<120>	Method for the mass production of immunoglobulin constant regio	n
5	<150> <151>	KR10-2003-0080299 2003-11-13	
	<160>	46	
10	<170>	KopatentIn 1.71	
15	<210> <211> <212> <213>	1 37 DNA Artificial Sequence	
	<220> <223>	primer	
20	<400> cccaagctt	1 g cetecaceaa gggeecateg gtettee	37
25	<210> <211> <212> <213>	2 33 DNA Artificial Sequence	
30	<220> <223>	primer	
35	<400> gggggatco	2 et catttacccg gagacaggga gag	33
40	<210> <211> <212> <213>	3 35 DNA Artificial Sequence	
45	<220> <223>	primer .	
	<400> cccaagetts	3 g acatecagtt gacceagtet ceate	35

_	<210> <211> <212> <213>	4 36 DNA Artificial Sequence		
5	<220> <223>	primer		
10	<400> gggggato	4 cct caacactete ecetgitgaa geteti	36	
15	<210> <211> <212> <213>	5 990 DNA Homo sapiens		
20	<400> gcctccac	5 ca agggeceate ggtetteece etggeaceet eetecaagag cacetetggg	60	
	ggcacago	egg ceetgggetg cetggteaag gactaettee eegaaceggt gaeggtgteg	120	
0.5	tggaactc	ag gegeeetgae eageggegtg caeacettee eggetgteet acagteetea	180	
25	ggactcta	ct ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cacccagacc	240	
	tacatctgo	a acgtgaatca caagcccagc aacaccaagg tggacaagaa agttgagccc	300	
30	aaatcttgt	g acaaaactca cacatgccca ccgtgcccag cacctgaact cctgggggga	360	
	ccgtcagt	ct teetetteee eecaaaaeee aaggacaeee teatgatete eeggaceeet	420	
25	gaggtcac	at gcgtggtggt ggacgtgagc cacgaagacc ctgaggtcaa gttcaactgg	480	
35	tacgtgga	cg gcgtggaggt gcataatgcc aagacaaagc cgcgggagga gcagtacaac	540	
	agcacgta	cc gtgtggtcag cgtcctcacc gtcctgcacc aggactggct gaatggcaag	600	
40	gagtacaa	gt gcaaggtete caacaaagee eteccageee ecategagaa aaccatetee	660	
	aaagccaa	ag ggcagccccg agagccacag gtgtacaccc tgcccccatc ccgggatgag	720	
45	ctgaccaa	ga accaggtcag cetgacetge etggtcaaag gettetatee cagegacate	780	
ŦU	gccgtgga	gt gggagagcaa tgggcagccg gagaacaact acaagaccac gcctcccgtg	840	
	ctggactco	eg acggeteett etteetetae ageaagetea eegtggacaa gageaggtgg	900	
50	cagcaggg	ga aegtettete atgeteegtg atgeatgagg etetgeacaa ceactacaeg	960	

	cagaagag	990				
5	<210> <211> <212> <213>	6 324 DNA Homo sapiens				
10	<400> cgaactgtg	6 gg ctgcaccatc tgtcttcatc ttcccgccat ctgatgagca gttgaaatct	60			
	ggaactgc	ct ctgttgtgtg cctgctgaat aacttctatc ccagagaggc caaagtacag	120			
15	tggaaggtg	gg ataacgccct ccaatcgggt aactcccagg agagtgtcac agagcaggac	180			
	agcaagga	ica gcacctacag cctcagcagc accctgacgc tgagcaaagc agactacgag	240			
20	aaacacaa	ag tetaegeetg egaagteace cateagggee tgagetegee egteacaaag	300			
20	agcttcaaca ggggagagtg ttag 324					
25	<210> <211> <212> <213>	7 30 DNA Artificial Sequence	,			
30	<220> <223>	primer				
35	<400> cggcctcca	7 ac caagggccca tcggtcttcc	30			
40	<210> <211> <212> <213>	8 33 DNA Artificial Sequence				
	<220> <223>	primer				
45	<400>	8				
		cc agcacctgaa ctcctggggg gac	33			
50	<210>	9				

	<211> <212>	33 DNA		
	<213>	Artificial Sequence		
5	<220> <223>	primer		
10	<400>	9 cc agcacctgaa ctcctggggg gac		33
10	egicaige	ee ageaeergaa ereergaga gae		50
	<210>	10		
	<211>	35		
15		DNA		
10	<213>	Artificial Sequence		
	<220>			
	<223>	primer		
20				
	<400>	10		
	cgtcatgo	cc agcacctgag ttcctggggg gacca		35
25				
	<210>	11		
	<211>	26		
	<212>	DNA		
30	<213>	Artificial Sequence		
00	<220>			
	<223>	primer		
35	<400>	11		
	cggcacct	ga actectgggg ggaccg		26
	2010 \	10		
40	<210> <211>	12 69		
40	<211>	DNA		
	<213>	Escherichia coli		
	<400>	12		
45		ga caategeatt tettettgea tetatgtteg ttttttetat tgetacaaat	60	
	gcccaggo	eg		69
50	<210>	13		

	<211>	45 DNA		
	<212> <213>	DNA Artificial Sequence		
	(210)	Artificial Sequence		
5	<220>			
	<223>	primer		
	<400>	13		
10	tctattgct	a caaatgeeca ggeetteeca accatteeet tatee	45	
	<210>	14		
	<211>	45		
15	<212>	DNA		
	<213>	Artificial Sequence		
	<220>			
	<223>	primer		
20	(220)	primer		
	<400>	14		
	agataacg	at gtttacgggt ccggaagggt tggtaaggga atagg	45	
25				
	<210>	15		
	<211>	984		
	<212>	DNA		
20	<213>	Homo sapiens		
30	<400>	15		
		ca agggeeeate egtetteece etggegeeet geteeaggag eaceteegag	60	
	J			
o =	agcacago	cg ccctgggctg cctggtcaag gactacttcc ccgaaccggt gacggtgtcg	120	
35	tagaaata	ng gegeetgee engeggegtg encoepties eggetgteet neogteetee	180	
	iggaacica	ag gegeeetgae eageggegtg cacacettee eggetgteet acagteetea	180	
	ggactctad	ct ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cacgaagacc	240	
40	tacacctgo	ca acgtagatca caagcccagc aacaccaagg tggacaagag agttgagtcc	300	
	aaatatggt	c ccccatgccc atcatgccca gcacctgagt teetgggggg accateagte	360	
4 E	ttcctgttcc	coccaaaacc caaggacact ctcatgatet cocggacece tgaggtcacg	420	
45	tacataata	g tggacgtgag ccaggaagac cccgaggtcc agttcaactg gtacgtggat	480	
	-0-0-00-6	o room-order vondomeden opphablice abitenatif biaceteent	100	
	ggcgtgga	gg tgcataatgc caagacaaag ccgcgggagg agcagttcaa cagcacgtac	540	
50	oatataata	an gogtaataan agtaatgan an goggaatgan tananggan goggan	600	
50	cgigiggic	a gegteeteae egteetgeae eaggaetgge tgaaeggeaa ggagtaeaag	600	

.

	tgcaaggt	ct ccaacaaagg cetecegtee tecategaga aaaceatete caaagecaaa	660				
-	gggcagc	ccc gagagccaca ggtgtacacc ctgcccccat cccaggagga gatgaccaag	720				
5	aaccaggt	ca geetgaeetg eetggteaaa ggettetaee eeagegaeat egeegtggag	780				
	tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc						
10	gacggeteet tetteeteta cageaggeta accgtggaca agageaggtg geaggagggg						
	aatgtettet eatgeteegt gatgeatgag getetgeaca accaetacae acagaagage						
15	ctctccctgt ctctgggtaa atga						
	<210> <211> <212>	16 35 DNA					
20	<213> <220> <223>	Artificial Sequence					
25	<400> cgtcatgc	16 cc agcacctgag ttcctggggg gacca	35				
30	<210> <211> <212> <213>	17 42 DNA Artificial Sequence					
35	<220> <223>	primer					
40	<400> gggggato	17 ect catttaccca gagacaggga gaggetette tg	42				
45	<210> <211> <212> <213>	18 29 DNA Artificial Sequence					
50	<220> <223>	primer					

```
<400>
                18
                                                                                29
      cggcacctga gttcctgggg ggaccatca
 5
      <210>
                19
      <211>
                30
      <212>
                DNA
      <213>
                Artificial Sequence
10
      <220>
      <223>
                primer
15
      <400>
               19
                                                                               30
      cggcttccac caagggccca tccgtcttcc
      <210>
               20
20
      <211>
               21
      <212>
               DNA
      <213>
               Artificial Sequence
      <220>
25
      <223>
               primer
      <400>
               20
                                                                               21
      cgcgaactgt ggctgcacca t
30
      <210>
               21
      <211>
               220
      <212>
               PRT
35
      <213>
               Homo sapiens
      <400>
               21
     Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe
                                           10
40
     Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
                                      25
     Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe
45
              35
                                  40
                                                       45
     Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro
          50
50
     Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr
```

	65		70		75		80
	Val Leu	His Gln Asp 85		Asn Gly I	ys Glu Tyr 90	Lys Cys	Lys Val 95
5	Ser Asn	Lys Ala Leu 100	ı Pro Ala	Pro Ile GI 105	u Lys Thr II	e Ser Lys 110	s Ala
10	Lys Gly	Gln Pro Arg 115	Glu Pro (Gln Val T 120	yr Thr Leu I	Pro Pro S 125	er Arg
	Asp Glu 130	Leu Thr Lys	s Asn Gln 135	Val Ser I	Leu Thr Cys 140		Lys Gly
15	Phe Tyr 145	· Pro Ser Ası	lle Ala V 150	'al Glu Tr	p Glu Ser A 155	sn Gly Gl	n Pro 160
20	Glu Asn	Asn Tyr Lys 165			Val Leu Asp 170		Gly Ser 175
20	Phe Phe	e Leu Tyr Se 180	r Lys Leu	Thr Val	Asp Lys Ser	Arg Trp 190	Gln Gln
25	Gly Asn	Val Phe Ser 195	Cys Ser	Val Met F 200	lis Glu Ala I	eu His A 205	sn His
	Tyr Thr 210	Gln Lys Ser	Leu Ser 215	Leu Ser F	Pro Gly Lys 220		
30							
25	<210><211><211><212><213>	22 220 PRT Homo sap	iens				
35	<400> Ser Cys 1	22 Pro Ala Pro 5	Glu Leu I	Leu Gly G	ly Pro Ser V 10	al Phe L	eu Phe 15
40	Pro Pro	Lys Pro Lys 20	Asp Thr	Leu Met 1 25	lle Ser Arg´	Γhr Pro C 30	ilu Val
4 E	Thr Cys	Val Val Val 35	Asp Val S	Ser His Gl 40	lu Asp Pro C	Glu Val Ly 45	s Phe
45	Asn Trp 50	Tyr Val Asp	Gly Val 55	Glu Val H	is Asn Ala I 60	ys Thr L	ys Pro
50	Arg Glu 65	Glu Gln Tyr	Asn Ser 7 70	Γhr Tyr A	arg Val Val S 75	Ser Val Lo	eu Thr 80

	85 90 95
5	Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala 100 105 110
10	Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg 115 120 125
10	Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly 130 135 140
15	Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro 145 150 155 160
	Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser 165 170 175
20	Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln 180 185 190
25	Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His 195 200 205
23	Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 210 215 220
30	<210> 23 <211> 220 <212> PRT <213> Homo sapiens
35	<400> 23 Ser Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe 1 5 10 15
40	Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val 20 25 30
	Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe 35 40 45
45	Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro 50 55 60
50	Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr 65 70 75 80

	Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val 85 90 95
5	Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala 100 105 110
	Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg 115 120 125
10	Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly 130 135 140
15	Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro 145 150 155 160
10	Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser 165 170 175
20	Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln 180 185 190
	Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His 195 200 205
25	Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 210 215 220
30	<210> 24 <211> 327 <212> PRT <213> Homo sapiens
35	<400> 24 Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg 1 5 10 15
40	Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30
40	Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45
45	Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60
	Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Lys Thr 65 70 75 80
50	Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys

85 90 95

5	Arg Val Glu Ser Lys 100		o Cys Pro Ser (05	Cys Pro Ala Pro 110
J	Glu Phe Leu Gly Gly 115	Pro Ser Val Ph 120	e Leu Phe Pro	Pro Lys Pro Lys 125
10	Asp Thr Leu Met Ile 130	Ser Arg Thr Pi 135	ro Glu Val Thr (140	
	Asp Val Ser Gln Glu 145	Asp Pro Glu Va 150	al Gln Phe Asn 1 155	Γrp Tyr Val Asp 160
15	Gly Val Glu Val His A		r Lys Pro Arg (170	Glu Glu Gln Phe 175
20	Asn Ser Thr Tyr Arg 180		al Leu Thr Val 1 85	Leu His Gln Asp 190
20	Trp Leu Asn Gly Lys 195	Glu Tyr Lys C 200	ys Lys Val Ser	Asn Lys Gly Leu 205
25	Pro Ser Ser Ile Glu L 210	ys Thr Ile Ser 215	Lys Ala Lys Gly 220	
	Glu Pro Gln Val Tyr 225	Thr Leu Pro Pr 230	o Ser Gln Glu C 235	Glu Met Thr Lys 240
30	Asn Gln Val Ser Leu 245	Thr Cys Leu V	al Lys Gly Phe 250	Tyr Pro Ser Asp 255
25	Ile Ala Val Glu Trp G 260		Gln Pro Glu As 65	n Asn Tyr Lys 270
35	Thr Thr Pro Pro Val 275	Leu Asp Ser A 280	sp Gly Ser Phe	Phe Leu Tyr Ser 285
40	Arg Leu Thr Val Asp 290	Lys Ser Arg T 295	rp Gln Glu Gly . 300	
	Cys Ser Val Met His 305	Glu Ala Leu Hi 310	s Asn His Tyr 1 315	Thr Gln Lys Ser 320
45	Leu Ser Leu Ser Leu 325	Gly Lys		
	<210> 25			

50

<211>

	<212> <213>		PRT Homo	sap	iens										
5	<400> Ala Se		25 Lys	Gly 5		Ser	Val	Phe	Pro 10		Ala	Pro	Ser	Ser I 15	.ys
	Ser Th	ır Sei	r Gly 20		Thr	Ala	Ala	Leu 25		Cys	Leu	Val	Lys 30		Tyr
10	Phe Pr	o Glu 35		Val	Thr	Val	Ser 40		Asn	Ser	Gly	Ala 1 45		Thr S	Ser
15	Gly Va 50		Thr	Phe	Pro	Ala 55		Leu	Gln	Ser :	Ser (.eu ´	Tyr S	Ser
	Leu Se 65	r Sei	r Val	Val	Thr 70		Pro	Ser	Ser	Ser 1		Gly T	Γhr (Gln T	`hr 80
20	Tyr Ile	Cys	Asn	Val 85	Asn	His	Lys	Pro	Ser 90		Thr	Lys	Val	Asp 95	Lys
0.5	Lys Va	ıl Glu	Pro 100		Ser	Cys	Asp	Lys 10		His	Thr	Cys	Pro		Cys
25	Pro Ala	a Pro 115		Leu	Leu	Gly	Gly 120		Ser	Val l	Phe :	Leu 125		Pro I	Pro
30	Lys Pro		s Asp	Thi	- Lei	ı Ме 135		Ser	Arg	Thr	Pro 140		Val	Thr (Cys
	Val Val 145	l Val	Asp	Val	Ser 1		Glu A	Asp.	Pro (Glu V 15		ys P	he A	Asn T	rp 160
35	Tyr Va	l Asp	Gly	Val 165	Glu	Val	His .	Asn	Ala 1		Thr I	Lys I	Pro .	Arg (175	
40	Glu Gln	ı Tyr	Asn 180	Ser	Thr	Tyr	Arg	Val 185		Ser	Val :	Leu	Thr 190		Leu
40	His Gln	Asp 195		Leu	Asn	Gly	Lys 200		Tyr	Lys	Cys	Lys 205		Ser	Asn
45	Lys Ala 210		Pro	Ala	Pro	Ile (215		ys T	Chr II	le Se	er Ly 220		a Ly	s Gly	7
	Gln Pro 225	Arg	Glu :	Pro	Gln ` 230		Γyr ΄	Thr	Leu	Pro 235		Ser A	Arg .	Asp (Glu 240
50	Leu Th	r Lvs	s Asn	Gln	Val	Ser	Leu	Thr	· Cvs	Lei	ı Val	Lvs	Glv	Phe	Tvr

245	250	255

5	Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 260 265 270
	Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 275 280 285
10	Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 290 295 300
٠	Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 305 310 315 32
15	Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 330
20	<210> 26 <211> 15 <212> PRT <213> Homo sapiens
25	<400> 26 Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro 1 5 10 15
30	<210> 27 <211> 217 <212> PRT <213> Homo sapiens
35	<400> 27 Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys 1 5 10 15
40	Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val 20 25 30
	Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr 35 40 45
45	Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu 50 55 60
	Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His 65 70 75 80
50	Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys

85 90 95

5	Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln 100 105 110
	Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu 115 120 125
10	Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro 130 135 140
	Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn 145 150 155 160
15	Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu 165 170 175
20	Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val 180 185 190
20	Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 195 200 205
25	Lys Ser Leu Ser Leu Ser Pro Gly Lys 210 215
30	<210> 28 <211> 12 <212> PRT <213> Homo sapiens
35	<400> 28 Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro 1 5 10
40	<210> 29 <211> 220 <212> PRT <213> Homo sapiens
45	<400> 29 Ser Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe 1 5 10 15
	Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val 20 25 30
50	Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe

35 40	45
-------	----

5	Asn Trp 50	Tyr Val	Asp Gly	Val Glu 55	Val His A	sn Ala Lys 7 60	Thr Lys Pro
	Arg Glu 65	Glu Gln l	Phe Asn 70		Tyr Arg V	/al Val Ser \ 75	/al Leu Thr 80
10	Val Leu	His Gln A	Asp Trp 85	Leu Asr	Gly Lys C 90	Glu Tyr Lys	Cys Lys Val 95
	Ser Asn	Lys Gly 100	Leu Pro	Ser Ser	lle Glu Ly 105	s Thr Ile Se	r Lys Ala 110
15		Gln Pro . 115	Arg Glu	Pro Gln 120		nr Leu Pro F 125	Pro Ser Gln
2.0	Glu Glu I 130	Met Thr	Lys Asn	Gln Val 135	Ser Leu T	hr Cys Leu 140	Val Lys Gly
20	Phe Tyr 145	Pro Ser	Asp Ile A		_	u Ser ⁻ Asn G 155	ly Gln Pro 160
25	Glu Asn		Lys Thr 165	Thr Pro	Pro Val I 170	Leu Asp Ser	Asp Gly Ser 175
	Phe Phe	Leu Tyr 180	Ser Arg	; Leu Th	r Val Asp 185	Lys Ser Arg	Trp Gln Glu 190
30		Val Phe 195	Ser Cys	Ser Val 200		lu Ala Leu F 205	lis Asn His
35	Tyr Thr 210	Gln Lys	Ser Leu	Ser Leu 215	Ser Leu C	Gly Lys 220	
	<210> <211> <212>	30 217 PRT					
40	<213>	Homo	sapiens				
4E	<400> Ala Pro 0	30 Glu Phe I	Leu Gly (Gly Pro	Ser Val Ph 10	e Leu Phe F	Pro Pro Lys 15
45	Pro Lys	Asp Thr 20	Leu Met	lle Ser	Arg Thr P 25	ro Glu Val T	`hr Cys Val 30
50	Val Val A	Asp Val S 35	Ser Gln (Glu Asp 1 40	Pro Glu Va	ol Gln Phe As	sn Trp Tyr

	vai Asp 50	Giy vai Giu vai	55	60	Arg Giu Giu	
5	Gln Phe 65	Asn Ser Thr Ty		Ser Val Leu Th 75	r Val Leu His 80	
10	Gln Asp	Trp Leu Asn Gl 85	y Lys Glu Tyr l	Cys Cys Lys V 90	al Ser Asn Lys 95	
10	Gly Leu	Pro Ser Ser Ile 100	Glu Lys Thr Ile 105	Ser Lys Ala I	ys Gly Gln 110	
15	Pro Arg	Glu Pro Gln Val 115	Tyr Thr Leu P 120		ı Glu Glu Met 25	
	Thr Lys 130	Asn Gln Val Ser	Leu Thr Cys I 135	Leu Val Lys G 140	y Phe Tyr Pro	
20	Ser Asp 145	Ile Ala Val Glu´		n Gly Gln Pro 155	Glu Asn Asn 160	
0.5	Tyr Lys	Thr Thr Pro Pro 165		Ser Asp Gly Se .70	er Phe Phe Leu 175	
25	Tyr Ser	Arg Leu Thr Va 180	l Asp Lys Ser A 185	Arg Trp Gln G	u Gly Asn Val 190	
30	Phe Ser	Cys Ser Val Me 195	t His Glu Ala L 200		s Tyr Thr Gln 05	
	Lys Ser 210	Leu Ser Leu Ser	Leu Gly Lys 215			
35						
	<210>	31				
	<211>	29				
	<212> <213>	DNA primer				
40	12107	primer				
	<400>	31				
	cgccgtgo	ccc agcacctccg g	tggcggga			29
15	<210>	32				
	<211>	33				
	<212>	DNA				
	<213>	primer				
		0.0				

```
<210>
               33
 5
               12
      <211>
               PRT
      <212>
               Homo sapiens
      <213>
      <400>
               33
10
      Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro
                       5
      <210>
               34
15
      <211>
               107
      <212>
               PRT
      <213>
               Homo sapiens
      <400>
               34
20
      Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
       1
                       5
                                           10
                                                               15
      Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe
                                      25
25
     Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln
                                   40
     Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser
30
                              55
     Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
      65
                                               75
                                                                   80
35
     Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser
     Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
                 100
                                      105
40
     <210>
               35
     <211>
               219
     <212>
               PRT
45
     <213>
               Homo sapiens
     <400>
     Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro
                       5
50
```

	Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Ar 20 25	g Thr Pro Glu Val Th 30	nr
5	Cys Val Val Val Asp Val Ser His Glu Asp Pro 35 40	o Glu Val Gln Phe Ası 45	n
	Trp Tyr Val Asp Gly Val Glu Val His Asn Al 50 55	a Lys Thr Lys Pro Ar 60	g
10	_		al 80
15	Val His Gln Asp Trp Leu Asn Gly Lys Glu Ty 85 90	yr Lys Cys Lys Val S 95	er
15	Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thi 100 105	r Ile Ser Lys Thr Lys 110	
20	Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Le 115 120	u Pro Pro Ser Arg Gli 125	u
	Glu Met Thr Lys Asn Gln Val Ser Leu Thr C 130 135	ys Leu Val Lys Gly P 140	he
25	•		160
30	Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu A 165 170	Asp Ser Asp Gly Ser l 175	Phe
	Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys S 180 185	er Arg Trp Gln Gln G 190	lly
35	Asn Val Phe Ser Cys Ser Val Met His Glu Al 195 200	a Leu His Asn His Ty 205	r'
	Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Ly 210 215	rs .	
40	<210> 36		
	<211> 23 <212> PRT <213> Escherichia coli		
45	<400> 36 Met Lys Lys Asn Ile Ala Phe Leu Leu Ala Se 1 5 10	r Met Phe Val Phe Se 15	er
50	Ile Ala Thr Asn Ala Tyr Ala		

```
<210>
               37
               23
 5
     <211>
               PRT
     <212>
     <213>
               Escherichia coli
     <400>
               37
10
     Met Lys Lys Thr Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe Ser
                       5
                                          10
     lle Ala Thr Asn Ala Gln Ala
                  20
15
     <210>
               38
     <211>
               23
     <212>
               PRT
20
     <213>
               Escherichia coli
     <400>
               38
     Met Lys Lys Thr Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe Ser
                       5
                                          10
                                                              15
      1
25
     Ile Ala Thr Val Ala Gln Ala
                  20
30
     <210>
               39
     <211>
               23
     <212>
               PRT
     <213>
               Escherichia coli
35
     <400>
               39
     Met Lys Lys Thr Ala Phe Leu Leu Ala Ser Met Phe Val Phe Ser
                                          10
                                                              15
     Ile Ala Thr Asn Ala Gln Ala
40
                  20
     <210>
               40
     <211>
               23
45
     <212>
               PRT
     <213>
               Escherichia coli
     <400>
     Met Lys Lys Ser Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe Ser
                       5
50
      1
                                          10
                                                              15
```

```
20
 5
      <210>
                41
                23
      <211>
      <212>
               PRT
      <213>
               Escherichia coli
10
      <400>
                41
     Met Lys Lys Ser Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe Ser
                                           10
                                                                15
                        5
     Ile Ala Thr Val Ala Gln Ala
15
                  20
      <210>
                42
20
      <211>
                23
      <212>
               PRT
      <213>
               Escherichia coli
      <400>
               42
25
     Met Lys Lys Thr Ile Ala Phe Leu Leu Ala Ser Gly Phe Val Phe Ser
                        5
                                           10
                                                                15
       1
     Ile Ala Thr Val Ala Gln Ala
                  20
30
     <210>
               43
      <211>
                23
               PRT
      <212>
35
     <213>
               Escherichia coli
     <400>
               43
     Met Lys Lys Thr Ile Ala Phe Leu Leu Ala Ser Leu Phe Val Phe Ser
                                           10
                                                                15
                        5
40
     Ile Ala Thr Val Ala Gln Ala
                  20
45
     <210>
               44
     <211>
               23
     <212>
               PRT
     <213>
               Escherichia coli
```

Ile Ala Thr Asn Ala Gln Ala

50

<400>

```
Met Lys Lys Ser Ala Phe Leu Leu Ala Ser Met Phe Val Phe Ser
       1
                       5
                                          10
     Ile Ala Thr Asn Ala Gln Ala
 5
                  20
     <210>
               45
     <211>
               23
     <212>
               PRT
10
     <213>
               Escherichia coli
     <400>
               45
     Met Val Lys Lys Thr Ala Phe Leu Leu Ala Ser Met Phe Val Phe Ser
                       5
15
                                         10
     Ile Ala Thr Asn Ala Gln Ala
                  20
20
     <210>
               46
     <211>
               23
     <212>
               PRT
     <213>
               Escherichia coli
25
     <400>
               46
     Met Lys Lys Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe Ser
                       5
30
     Ile Ala Thr Val Ala Gln Ala
```