## Microeconomics Homework 6: Producer Theory

## Javier Tasso

- 1. Consider the Cobb-Douglas production function  $f(k,l) = Ak^{\alpha}l^{\beta}$  for constants  $A, \alpha, \beta > 0$ .
  - (a) For what values of  $\alpha + \beta$  does this production function has constant, decreasing and increasing returns to scale?
  - (b) Set  $\alpha = \beta = 0.5$ . Plot the marginal product of labor  $MP_L = \frac{\partial f(k,l)}{\partial l}$  when k = 1 and A = 1 or A = 2.
  - (c) The parameter A is called total factor productivity (TFP). Intuitively explain how A affects the marginal product of labor and the marginal product of capital.
- 2. Consider the production function  $f(k, l) = \min\{k, l\}$ .
  - (a) Argue this production function has constant returns to scale.
  - (b) Fix k = 4 and plot the marginal product of labor.
- 3. Consider the production function  $f(k,l) = (\min\{k,l\})^{\gamma}$  with  $\gamma > 0$ .
  - (a) Classify the returns to scale according to the value of  $\gamma$ .
  - (b) Solve the cost minimization problem.
  - (c) Find the marginal cost.
  - (d) Fix w = r = 1/2. Plot the marginal cost when  $\gamma = 1/2$ ,  $\gamma = 1$ , and  $\gamma = 2$ .
  - (e) Set w = r = 1/2,  $\gamma = 1/2$ , and p = 4, what's the quantity that maximizes profits?
  - (f) Explain why the profit maximization problem won't have a solution if  $\gamma > 1$ .
  - (g) Assume  $\gamma < 1$  and solve the profit maximization problem.
- 4. Given the production function  $f(k,l) = \sqrt{k} + \sqrt{l}$ .
  - (a) Solve the profit maximization problem:  $\max_{k,l} pf(k,l) wl rk$ .
  - (b) Find the supply of the firm y(p, w, r).
  - (c) Set w = r = 1 and p = 10. How many units does this firm produce? Find the total cost and the profits.
  - (d) With l in the horizontal axis and k in the vertical plot the isoquant and isocost lines. Verify that the firm is effectively minimizing costs.
  - (e) What's the value of the marginal rate of technical substitution at the optimal solution?
- 5. The cost function is  $c(q) = 0.1q^2 + 10q + 50$ . Suppose the firm takes p as given. Find the supply curve
- 6. Suppose y = f(k, l) is constant returns to scale. Denote  $f'_K$  and  $f'_L$  the partial derivatives. Show that  $y = f'_K \cdot k + f'_L \cdot l$ .

- 7. Suppose  $y = f(k, l) = \sqrt{kl}$ .
  - (a) Determine the returns to scale.
  - (b) Solve the cost minimization problem.
  - (c) Whenever possible, find the supply of the firm.
- 8. Suppose  $y = f(k, l) = (kl)^{1/4}$ .
  - (a) Determine the returns to scale.
  - (b) Solve the cost minimization problem.
  - (c) Verify Shephard's lemma.
  - (d) Solve the profit maximization problem. Find the supply of the firm and the profit function.
  - (e) Verify Hotteling's lemma.
- 9. For the following production functions solve the cost minimization problem. The parameter  $\gamma > 0$  controls the returns to scale.
  - Cobb Douglas:  $f(k, l) = k^{\alpha} l^{\beta}$  with  $\alpha, \beta > 0$ .
  - Perfect Substitutes:  $f(k, l) = (k + l)^{\gamma}$
  - Perfect Complements:  $f(k, l) = (\min\{k, l\})^{\gamma}$

## **Answers**

- 1. (a)  $\alpha + \beta = 1$  means constant returns to scale.  $\alpha + \beta < 1$  is decreasing returns to scale.
  - (b) See figure.
  - (c)  $MP_L = A\beta k^{\alpha}l^{\beta-1}$  and similarly for hte marginal product of capital. An increase of the TFP increases both marginal products of labor and capital.
- 2. (a) Multiply both K and L by some constant  $\lambda > 0$ . You can pull out the constant from the  $\min\{\cdot,\cdot\}$ .
  - (b) See graph.
- 3. (a)  $\gamma = 1$  is CRS.  $\gamma > 1$  is IRS.
  - (b)  $c(q, w, r) = (w + r)q^{1/\gamma}$ , with  $K(w, r, q) = L(w, r, q) = q^{1/\gamma}$
  - (c)  $mc(q, w, r) = (w + r)\frac{1}{\gamma}q^{\frac{1}{\gamma}-1}$
  - (d) See graph.
  - (e)  $q^* = 2$ .
  - (f) If  $\gamma > 1$  there are increasing returns to scale and the marginal cost is decreasing with output. A competitive firm that takes the price given would like to produce as much as possible.
  - (g)  $l(p, w, r) = k(p, w, r) = \left(\frac{\gamma p}{w+r}\right)^{\frac{1}{1-\gamma}}$  the supply is  $y(p, w, r) = \left(\frac{\gamma p}{w+r}\right)^{\frac{\gamma}{1-\gamma}}$



Figure 1: Exercises 1, 2, 3, and 4

- 4. (a)  $K(p, w, r) = \left(\frac{p}{2r}\right)^2$ ,  $L(p, w, r) = \left(\frac{p}{2w}\right)^2$ 
  - (b)  $y(p, w, r) = \frac{p}{2r} + \frac{p}{2w}$
  - (c) y(10,1,1) = 10 using K(10,1,1) = 25 and L(10,1,1) = 25. The total cost is 50 and the profits are 100 50 = 50.

- (d) See graph.
- (e) MRTS =  $\frac{\text{MP}_L}{\text{MP}_K} = \left(\frac{K}{L}\right)^{\frac{1}{2}}$ . In the optimal values this is just 1 and it matches the price ratio w/r.
- 5.  $y(p) = \max\{5(p-10), 0\}.$
- 6. Start with  $F(\lambda K, \lambda L) = \lambda F(K, L)$ . Differentiate both sides with respect to  $\lambda$ . Evaluate at  $\lambda = 1$ .

$$F(\lambda K, \lambda L) = \lambda F(K, L)$$
$$\frac{\partial F(\lambda K, \lambda L)}{\partial K} \cdot K + \frac{\partial F(\lambda K, \lambda L)}{\partial L} \cdot L = F(K, L)$$
$$\frac{\partial F(K, L)}{\partial K} \cdot K + \frac{\partial F(K, L)}{\partial L} \cdot L = F(K, L)$$

- 7. (a) Constant.
  - (b)  $K(\cdot) = \sqrt{\frac{w}{r}} \cdot q$ ,  $L(\cdot) = \sqrt{\frac{r}{w}} \cdot q$ , and  $c(q, w, r) = 2 \cdot \sqrt{wr} \cdot q$
  - (c) Set p = mc whenever possible. Note that the marginal cost is  $2\sqrt{wr}$ .

$$y(p) = \begin{cases} 0 & \text{if} \quad p < 2\sqrt{wr} \\ [0, \infty) & \text{if} \quad p = 2\sqrt{wr} \\ \text{undefined} & \text{if} \quad p > 2\sqrt{wr} \end{cases}$$

- 8. (a) Decreasing.
  - (b)  $L(\cdot) = \sqrt{\frac{r}{w}} \cdot q^2$ ,  $K(\cdot) = \sqrt{\frac{w}{r}} \cdot q^2$ , and  $c(q, r, w) = 2\sqrt{wr}q^2$
  - (c) Just take derivatives of the cost function with respect to w and r.
  - (d)  $y(p, w, r) = \frac{p}{4\sqrt{rw}}$  and  $\pi(p, w, r) = \frac{p^2}{8\sqrt{rw}}$ .
  - (e) Just take derivatives of the profit function with respect to p.
- 9. You can apply Shephard's lemma to find the conditional input demands.
  - $l^C(w,r,q) = \left(\frac{r\beta}{w\alpha}\right)^{\frac{\alpha}{\alpha+\beta}} \cdot q^{\frac{1}{\alpha+\beta}}$  and  $k^C(w,r,q) = \left(\frac{w\alpha}{r\beta}\right)^{\frac{\beta}{\alpha+\beta}} \cdot q^{\frac{1}{\alpha+\beta}}$
  - $c(q, w, r) = \min\{w, r\} \cdot q^{\frac{1}{\gamma}}$
  - $c(q, w, r) = (w + r) \cdot q^{\frac{1}{\gamma}}$