Machine Learning for Humans

Ryan Marcus Brandeis University Los Alamos National Lab, HPC-5

July 28, 2015

Machine Learning

Optimize

$$\min_{\vec{d}} \left(\left(f(\vec{p}, \vec{d}) -_{\delta} \vec{L} \right)^2 - \alpha \sum (\vec{d} \vec{\omega}) \right)$$

Subject to

$$P(\vec{d}|\vec{D}) \le \beta \int_{x} P(x|\vec{D})$$

- $ightharpoonup \vec{d}$, model parameters
- ▶ f, model function
- \vec{p} , normalized feature vector
- $ightharpoonup -_{\delta}$, expectation loss function
- $ightharpoonup \vec{L}$, normalized sample labels

- ightharpoonup lpha, complexity penalty coefficient
- ightharpoonup $\vec{\omega}$, parameter importance vector
- $ightharpoonup \vec{D}$, domain parameter space
- \triangleright β , parameter penalty
- x, feature space

What is ML?

History

A Framework for Machine Learning Software packages

Task: Predicting MPG

Linear regression Cross validation

Task: Restaurant Performance

Decision trees

Task: Hardware Failure Prediction

Random forest Gradient boosting

General Advice

What is ML?

How can we build computer systems that automatically improve with experience, and what are the fundamental laws that govern all learning processes?

- Professor Tom Mitchell, Carnegie Melon University

What is ML?

▶ 1950: Turing Test

▶ 1952: Checkers

► 1990: Statistical Machine Learning

▶ 1997: Deep Blue

▶ 2014: Watson

Machine Learning in Literature Machine Learning Compilers **Popularity** Time

Examples

- Spam detection
- Credit card fraud detection
- Digit recognition
- Adversary analysis
- ► Medical diagnostic
- Stock prediction
- Customer segmentation

What do we mean by "learning"?

Intuition Extraction System

"You don't know it until you can teach it."

- Find basic patterns
- Extract general rules
- Simplicity valued over correctness

What do we mean by "learning"?

Intuition Extraction System

"You don't know it until you can teach it."

- Find basic patterns
- Extract general rules
- Simplicity valued over correctness

Expert Prediction System

"You don't know it until you can predict it."

- Find exact patterns
- Extract precise relationships
- Correctness valued over simplicity

Most machine learning tasks are labeling tasks:

- ▶ features → label
- ▶ car weight, engine size → MPG
- ▶ purchase location, amount → fraudulent?
- ightharpoonup image of face ightarrow name
- ▶ historic stock values → future value

Most machine learning tasks are labeling tasks:

- ▶ features → label
- ▶ car weight, engine size → MPG
- ▶ purchase location, amount → fraudulent?
- ightharpoonup image of face ightarrow name
- ▶ historic stock values → future value

Numeric labels? **Regression** Categorical labels? **Classification**

Two main types of learning algorithms...

Supervised Learning

- Learn through labeled examples
- Starting knowledge: training set
- Example: database of cars and mileage
- Algorithm will map cars to mileage

Two main types of learning algorithms...

Supervised Learning

- Learn through labeled examples
- Starting knowledge: training set
- Example: database of cars and mileage
- Algorithm will map cars to mileage

Unsupervised Learning

- Learn likely labels from "raw" data
- Starting knowledge: a priori information
- Example: a list of senators and how they vote
- Algorithm will cluster senators

	Supervised	Unsupervised
"Expert"	Ensemble	Clustering
(black box)	SVM	Gaussian Mixture
"Intuition"	Linear fit	Signal separation
(white box)	Trees	

Today

Linear fit, trees, ensemble

Software packages

- ▶ No "one package to rule them all"
- Weka: point-and-click ML sandbox
- scikit-learn: a Python ML package

Task: Predicting MPG

Features

- ► Cylinders = *c*
- ▶ Displacement = d
- ▶ Horsepower = h
- ▶ Weight = w
- ► Acceleration = a
- ightharpoonup Year = y

Label

► Mileage = *m*

Goal

Given features, predict the label. Given information about a car, predict its mileage.

Dataset

398 labeled cars

Supervised or unsupervised?

Task: Predicting MPG

Features

- ► Cylinders = *c*
- ▶ Displacement = d
- ▶ Horsepower = h
- ▶ Weight = w
- ► Acceleration = a
- ightharpoonup Year = y

Label

▶ Mileage = m

Goal

Given features, predict the label. Given information about a car, predict its mileage.

Dataset

398 labeled cars

Supervised or unsupervised?

Supervised

The oft-forgotten ancestor of machine learning

The oft-forgotten ancestor of machine learning

$$\textit{m} = \alpha_\textit{c} * \textit{c} + \alpha_\textit{d} * \textit{d} + \alpha_\textit{h} * \textit{h} + \alpha_\textit{w} * \textit{w} + \alpha_\textit{a} * \textit{a} + \alpha_\textit{y} * \textit{y} + \beta$$

The oft-forgotten ancestor of machine learning

$$m = \alpha_c * c + \alpha_d * d + \alpha_h * h + \alpha_w * w + \alpha_a * a + \alpha_y * y + \beta$$

$$m = \vec{\alpha} \cdot \vec{f} + \beta$$

Demo!

Feature	Coefficient
Year	0.758260124408
Cylinders	-0.253094820718
Acceleration	0.0948814284056
Weight	-0.00699036036498
Displacement	0.00690031871391
Horsepower	0.00302869962434

Questions

- 1. Simple random sample?
- 2. Features independent?

Coefficient analysis can tell you quite a bit about the general patterns of your data.

Model Evaluation

But how good is our model for prediction? It should be good at predicting the training set, but how will it **generalize**?

- ▶ Don't just use R²
- Don't just use root mean squared error

Model Evaluation

But how good is our model for prediction? It should be good at predicting the training set, but how will it **generalize**?

- ▶ Don't just use R²
- Don't just use root mean squared error
- ... don't use anything from running the model on the entire training set

Instead, use cross validation!

Suppose you had 9 training samples, a through i.

Fold 1

	Test		Train					
а	b	С	d	е	f	g	h	i

Fold 2

Train			Test			Train		
a	b	С	d	е	f	g	h	i

Fold 3

			Test					
а	b	С	d	е	f	g	h	i

Suppose you had 9 training samples, a through i.

Fold 1

Test			Train					
а	b	С	d	е	f	g	h	i

Fold 2

Train			Test			Train		
a	b	С	d	е	f	g	h	i

Fold 3

1 010 5										
			Test							
а	b	С	d	e	f	g	h	i		

Demo!

Suppose you had 9 training samples, a through i.

Fold 1

	Test		Train					
а	b	С	d	е	f	g	h	i

Fold 2

Train			Test			Train		
а	b	С	d	е	f	g	h	i

Fold 3

		•	Test					
а	b	С	d	е	f	g	h	i

Demo! Our absolute mean error: -3.37825068688.

- You can always get 0 error in the training set
- ... but you generally don't want to

- You can always get 0 error in the training set
- ... but you generally don't want to

Source: shapeofdata.wordpress.com

Helps...

- Prevent overfitting
- Compare different models

Assumes...

- No skew in sampling
- ▶ No "twinning" (uniqueness)

Do customers stay or go?

Dataset: Cold Rocks Java Cafe

Meal	Weather	Wait	Temperature	Action
Lunch	Sunny	None	48F	Stay
Lunch	Rain	Short	40F	Left
Lunch	Cloudy	Long	78F	Left
Lunch	Sunny	None	88F	Stay
Dinner	Rain	None	65F	Stay
Dinner	Sunny	Long	97F	Stay
Dinner	Rain	Long	92F	Left
Dinner	Rain	Short	88F	Stay

Dataset: Cold Rocks Java Cafe

Features				Labels
Categorical			Scalar	
Meal	Weather	Wait	Temperature	Action
Lunch	Sunny	None	48F	Stay
Lunch	Rain	Short	40F	Left
Lunch	Cloudy	Long	78F	Left
Lunch	Sunny	None	88F	Stay
Dinner	Rain	None	65F	Stay
Dinner	Sunny	Long	97F	Stay
Dinner	Rain	Long	92F	Left
Dinner	Rain	Short	88F	Stay

Goal

To understand what variables affect customer retention.

Expert or Intuition?

Goal

To understand what variables affect customer retention.

Expert or Intuition?

Intuition

Tools

We'll use Weka. Demo!

- Decision trees identify important factors
- ... can help explain decision processes
- ... are (somewhat) robust to noise

Parameters

Like most ML methods, decision tree learners generally have a lot of parameters...

- Minimum leaf size (increase to generalize)
- Maximum depth (decrease to generalize)

Decision Tree Issues

- Without CV, can create very complex trees
- "Prior sensitivity" (class distribution)
- ▶ Verifying that a tree is optimal is NP-complete¹

¹Computer science speak for "takes way too long". □ > ←♂ > ← ≧ > ← ≧ > ← ≧ > ← ≥ ← ⊘ へ ?

- ▶ The Oak Ridge/U of Tennessee Kraken Supercomputer
- 2008 2014
- ▶ 112,896 cores for 1.17 petaflops (2% of Trinity)
- ▶ 147 TB of memory (6% of Trinity)

JMTTI

- ▶ Big machines have failures.
- Average time between failures: JMTTI (6 12 hours)
- We want to increase that.

- ▶ The Oak Ridge/U of Tennessee Kraken Supercomputer
- 2008 2014
- ▶ 112,896 cores for 1.17 petaflops (2% of Trinity)
- ▶ 147 TB of memory (6% of Trinity)

JMTTI

- Big machines have failures.
- Average time between failures: JMTTI (6 12 hours)
- We want to increase that.
- Can we predict which nodes will fail?

Dataset

- ▶ 1000 training samples (small!)
- ▶ 200 obfuscated features (all numeric) represent pre-event measurments
- ▶ Labels, fail or nofail
- ▶ 568 non-failures, 432 failures

What to do?

Dataset

- ▶ 1000 training samples (small!)
- ▶ 200 obfuscated features (all numeric) represent pre-event measurments
- ▶ Labels, fail or nofail
- ▶ 568 non-failures, 432 failures

What to do?

➤ The Data Scientist carefully considers the pros and cons of different models, applies and validates a few of them based on experience and the model's mathematical properties.

Dataset

- ▶ 1000 training samples (small!)
- ▶ 200 obfuscated features (all numeric) represent pre-event measurments
- ▶ Labels, fail or nofail
- ▶ 568 non-failures, 432 failures

What to do?

- ► The Data Scientist carefully considers the pros and cons of different models, applies and validates a few of them based on experience and the model's mathematical properties.
- ... we're going to throw models at the wall and see what sticks.

Ensemble Methods

Ensemble methods **combine simple methods** into expert systems. They are...

- Slow to train
- Opaque
- Often what gives the best result

Ensemble Methods

Ensemble methods **combine simple methods** into expert systems. They are...

- ► Slow to train
- Opaque
- ▶ Often what gives the best result

In scikit-learn, using ensemble methods is easy. Just change:

```
linear_reg = sklearn.linear_model.LinearRegression()
to (for example)
```

linear_reg = sklearn.ensemble.GradientBoostingRegressor()

Ensemble Methods

Ensemble methods to try...

- Bagging: combine any learner. Great way to improve an already-OK model
- ▶ Random forest: fast(er) approach, a classic
- Gradient boosting: more "state of the art", very slow, poor scaling

Model	Description
Logistic	Fit a logistic to the data
Tree	Use a decision tree
bag(Log)	Use b ootstrap ag gregating (bagging) on logs
bag(Tree)	Use bagging on trees
Random forest	Use a random forest of trees
Gradient Boosting	Use gradient boosting to fit trees

Model	Description
Logistic	Fit a logistic to the data
Tree	Use a decision tree
bag(Log)	Use b ootstrap ag gregating (bagging) on logs
bag(Tree)	Use bagging on trees
Random forest	Use a random forest of trees
Gradient Boosting	Use gradient boosting to fit trees

Demo!

Training Time vs Model Accuracy

Note the log scale on the x-axis

General Advice

We are data science. Your discipline's methodological and technological distinctiveness will be added to our own. Resistance is futile.

General Advice

Most common mistake: overfitting

Good fit, captures pattern

Lower error, bad fit!

General Advice

When possible, avoid complexity.

- Start with linear regression
- ► Then try a decision tree
- ► Then kNN, SVM
- Random forest
- Bagging
- Gradient boosting

Resources

- ► GitHub Repo: https://github.com/RyanMarcus/MLForHumans
- scikit-learn user guide: http://scikit-learn.org/stable/user_guide.html
- Weka: http://www.cs.waikato.ac.nz/ml/weka/
- "The Book": http://amazon.com/ Elements-Statistical-Learning-Prediction-Statistics/ dp/0387848576/
- ► A more general, higher level, extremely well-regarded Al book: http://amazon.com/ Artificial-Intelligence-Modern-Approach-Edition/ dp/0136042597/

Ryan Marcus, Brandeis University, LANL HPC-5

- ▶ **У** @RyanMarcus
- RyanMarcus
- ▶ in RyanCMarcus
- ▶ ♦ http://ryanmarc.us
- ► ☑ rmarcus@lanl.gov

Copyright 2015 Ryan Marcus

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.