

WIT[®]

Vellore Institute of Technology

(Deemed to be University under section 3 of UGC Act, 1956)

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING(SCOPE)

WINTER SEMESETER 2021-22

LAB-1

NAME: RISHABH SINGH

REG NO: 19BCE1500

COURSE: ESSENTIAL OF DATA ANALYTIC(CSE3506)

FACULTY: DR.LASKHMI PATHI JAKKAMPUTI

SLOT: L21+L22

Tasks for Week-1: Regression

Understand the following operations/functions on random dataset and perform similar operations on mtcars and 'data.csv' dataset based on given instructions.

Aim: To develop linear regression model for the given data using R programming and to verify the null hypothesis

Algorithm:

- 1. Set the current working directory.
- 2. Loat all the required library using library() function.
- 3. Load the dataset using read.csv () function.
- 4. Using sample () function split the data for train and testing. (We are taking the 75% data for training purpose and 25% for testing purpose).
- 5. Plot the weight(wt) vs Mileage(mpg).
- 6. Find the correlation between wt and mpg using cor.test() function.
- 7. Prepare the model using lm(mpg~wt,data) function.
- 8. Print the summary of the model using summary(lmodel) function.
- 9. Now predict the value for testing data.
- 10.Using MAE() function find the mean absolute error in the predicted and the original values.

Statistic Case 1: mtcars

Residuals:

Min 1Q Median 3Q Max

-4.6037 -2.6129 -0.1983 1.3715 6.5714

Coefficients:	Estimate Std. Error		t value	Pr(> t)	
(Intercept)	38.2943	2.2919	16.71	5.50e-14	
wt	-5.6437	0.7171	-7.87	7.73e-08	

Residual standard error: 3.336 on 22 degrees of freedom

Multiple R-squared: 0.7379, Adjusted R-squared: 0.726

F-statistic: 61.94 on 1 and 22 DF, **p-value:** 7.733e-08

Statistic Case 2: data.csv

Residuals:

Min 1Q Median 3Q Max -30.307 -13.598 1.082 13.168 28.924

Coefficients:

	Es ⁻	timate Std. Error	t value	Pr(> t)
(Intercept)	170.562451	2.772873	61.511	<2e-16
weight .	-0.004918	0.025536	-0.193	0.847

Residual standard error: 16.22 on 373 degrees of freedom

Multiple R-squared: 9.944e-05, Adjusted R-squared: -0.002581

F-statistic: 0.03709 on 1 and 373 DF, **p-value:** 0.8474

Inference:

CASE 1: mtcars

The p-value(7.733e-08) is less than the 0.05 which means the model is accepted.

CASE 2: data.csv

The p-value(0.8474) is greater than 0.05 which means the model is rejected.

Program:

1.Mtcars:

```
rm(list=ls())
library(dplyr)
library(Metrics)
## 75% of the sample size
```

```
smp_size <- floor(0.75 * nrow(mtcars))
#setting the seed to make your partition reproducible
set.seed(123)
train_ind <- sample(seq_len(nrow(mtcars)), size = smp_size)
train <- mtcars[train_ind, ]
test <- mtcars[-train_ind, ]

correlation<-cor.test(train$wt,train$mpg)

print(correlation)

plot(train$wt,train$mpg,xlab = "Wt",ylab = "mpg",main="Wt VS MPG")
##Linear model

lmodel<-lm(mpg~wt,data=train)
abline(lmodel,col="red")

print(lmodel)
summary(lmodel)

predicted<-predict(lmodel,data=test)
mae(test$mpg,predicted)</pre>
```

OUTPUT:

Wt VS MPG

2.data.csv:

```
rm(list=ls())
library(dplyr)
setwd("D:/6th_Semester/Data_Analytics_Lab/Lab 1")
data<-read.csv('data.csv')</pre>
smp_size <- floor(0.75 * nrow(data))</pre>
set.seed(123)
train_ind <- sample(seq_len(nrow(data)), size = smp_size)</pre>
train <- data[train ind, ]
test <- data[-train_ind, ]</pre>
correlation<-cor.test(train$Height,train$Weight)</pre>
print(correlation)
plot(train$Weight,train$Height,xlab = "Weight",ylab =
"Height", main="Weight vs Height")
lmodel<-lm(Height~Weight,data=train)</pre>
abline(lmodel,col="red")
summary(lmodel)
predicted<-predict(lmodel,data=test)</pre>
mae(test$Height,predicted)
```

OUTPUT:

Weight vs Height

VIT[®]

Vellore Institute of Technology

(Deemed to be University under section 3 of UGC Act, 1956)

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING(SCOPE)

WINTER SEMESETER 2021-22

LAB-2

NAME: RISHABH SINGH

REG NO: 19BCE1500

COURSE: ESSENTIAL OF DATA ANALYTIC(CSE3506)

FACULTY: DR.LASKHMI PATHI JAKKAMPUTI

SLOT: L21+L22

Tasks for Week-2: Forecasting

Understand the following operations/functions on random dataset and perform similar operations on gold and gdp dataset based on given instructions.

Aim: To develop a forecasting model that forecasts the value 24 units ahead of time

Algorithm:

- 1. Set the current working directory.
- 2. Loat all the required library using library() function.
- 3. Load the dataset using read.csv () function.
- 4. Convert the dataset into timeseries data using the 'ts' function.
- 5. Using acf and pacf check if the data is stationary visually, if the readings are below the blue line then the data is stationary
- 6. Using adf.test check if the data is stationary using p-value.
- 7. Using auto ARIMA, find out which model is the best.
- 8. Pass the best model to the forecast function so that the forecasting is done with 95% confidence for the next 24 units of data.

Inference:

1.Gold

The given data is not stationary. We can see this using p value and acf and pacf graph.

p-value = 0.4359

Best Arima Model

Auto ARIMA

ARIMA(2,1,2) with drift : Inf

ARIMA(0,1,0) with drift : 457.5809

ARIMA(1,1,0) with drift : 459.3633

ARIMA(0,1,1) with drift : 459.385

ARIMA(0,1,0) : 459.9305

ARIMA(1,1,1) with drift : 461.3121

Best model: ARIMA(0,1,0) with drift

Accuracy of the Model

ME RMSE MAE MPE MAPE MASE

Training set 0.08218409 155.5098 116.6965 -0.1799051 2.960037 0.9286895

ACF1

Training set -0.07882193

2.GDP.csv

The given data is stationary. We can see this using p value and acf and pacf graph.

p-value – 0.01

Series gdpts

Series gdpts

Best Model

Auto ARIMA

ARIMA(2,1,2) with drift : Inf

ARIMA(0,1,0) with drift : 341.4397

ARIMA(1,1,0) with drift : 332.4653

ARIMA(0,1,1) with drift : Inf

ARIMA(0,1,0) : 339.554

ARIMA(2,1,0) with drift : 326.0715

ARIMA(3,1,0) with drift : 327.9755

ARIMA(2,1,1) with drift : Inf

ARIMA(1,1,1) with drift : Inf

ARIMA(3,1,1) with drift : Inf

ARIMA(2,1,0) : 324.2097

ARIMA(1,1,0) : 330.5929

ARIMA(3,1,0) : 326.1139

ARIMA(2,1,1) : 317.8228

ARIMA(1,1,1) : 316.651

ARIMA(0,1,1) : 314.6516

ARIMA(0,1,2) : 316.6508

ARIMA(1,1,2) : 316.6275

Best model: ARIMA(0,1,1)

Accuracy of the Model

ME RMSE MAE MPE MAPE MASE ACF1

Training set 0.2704179 3.287709 2.345416 121.6616 161.0542 0.7720211 -0.02667223

Program:

1.GOLD:

```
rm(list=ls())
setwd("D:/6th_Semester/Data_Analytics_Lab/Lab 2")
gold <- read.csv("gold.csv")
library(forecast)
library(tseries)
view(gold)
goldts<-ts(gold$Price, start = min(gold$Month), end = max(gold$Month),
frequency = 1)
class(goldts)
plot(goldts)
acf(goldts)
pacf(goldts)
pacf(goldts)
adf.test(goldts) # stationary only if p value <0.05
# To make it stationary, differentiate
goldmodel=auto.arima(goldts, ic='aic', trace = TRUE)</pre>
```

```
goldf=forecast(goldmodel, level=c(95), h=24)
goldf
plot(goldf)
accuracy(goldmodel)
```

2.GDP:

```
rm(list=ls())
setwd("D:/6th_Semester/Data_Analytics_Lab/Lab 2")
gdp <- read.csv("gdp.csv")</pre>
library(forecast)
library(tseries)
view(gdp)
gdpts<-ts(gdp$GDP_gr, start = min(gdp$Year), end = max(gdp$Year),</pre>
frequency = 1)
class(gdpts)
plot(gdpts)
acf(gdpts)
pacf(gdpts)
adf.test(gdpts) # stationary only if p value <0.05
# To make it stationary, differentiate
gdpmodel=auto.arima(gdpts, ic='aic', trace = TRUE)
gdpf=forecast(gdpmodel, level=c(95), h=24)
gdpf
plot(gdpf,col = 'red')
accuracy(gdpmodel)
```

Result:

1.Forecast for Gold

```
Point Forecast Lo 95 Hi 95

37 5081.371 4767.741 5395.001

38 5138.743 4695.203 5582.283

39 5196.114 4652.891 5739.338

40 5253.486 4626.226 5880.746

41 5310.857 4609.559 6012.155

42 5368.229 4599.995 6136.462
```

43	5425.600 4595.813 6255.387
44	5482.971 4595.892 6370.051
45	5540.343 4599.453 6481.233
46	5597.714 4605.929 6589.500
47	5655.086 4614.892 6695.279
48	5712.457 4626.011 6798.904
49	5769.829 4639.019 6900.638
50	5827.200 4653.704 7000.696
51	5884.571 4669.887 7099.255
52	5941.943 4687.423 7196.463
53	5999.314 4706.184 7292.444
54	6056.686 4726.066 7387.305
55	6114.057 4746.975 7481.139
56	6171.429 4768.832 7574.025
57	6228.800 4791.566 7666.034
58	6286.171 4815.116 7757.227
59	6343.543 4839.426 7847.660
60	6400.914 4864.447 7937.382

Forecasts from ARIMA(0,1,0) with drift

2.Forecast for GDP

Point	Forecast Lo 95 Hi 95
2021	5.177274 -1.376684 11.73123
2022	5.177274 -1.401989 11.75654
2023	5.177274 -1.427197 11.78174
2024	5.177274 -1.452309 11.80686
2025	5.177274 -1.477327 11.83187
2026	5.177274 -1.502250 11.85680
2027	5.177274 -1.527082 11.88163
2028	5.177274 -1.551821 11.90637
2029	5.177274 -1.576470 11.93102
2030	5.177274 -1.601029 11.95558
2031	5.177274 -1.625500 11.98005
2032	5.177274 -1.649882 12.00443

Forecasts from ARIMA(0,1,1)

VIT®

Vellore Institute of Technology

(Deemed to be University under section 3 of UGC Act, 1956)

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING(SCOPE)

WINTER SEMESETER 2021-22

LAB-3

NAME: RISHABH SINGH

REG NO: 19BCE1500

COURSE: ESSENTIAL OF DATA ANALYTIC(CSE3506)

FACULTY: DR.LASKHMI PATHI JAKKAMPUTI

SLOT: L21+L22

Tasks for Week-3: Regression and Forecasting on Weather Data

Perform multi-regression and forecasting on weather related dataset "weatherHistory2016.csv"

Aim: To develop a multi-regression and forecasting model for the given data using R programming and to predict the temperature.

Algorithm:

- **Step 1:** Import the dataset and load the dplyr, forecast and tseries library.
- **Step 2:** Take random samples from the dataset and store it in trail.
- **Step 3:** Create Time series of weather data frame starting from 1st Jan 2016 to 31st Dec 2016 iterating with a frequency of 24.
- **Step 4:** Check the correlation between dependent and independent variables and select the significant values.
- **Step 5**: Train a multiple regression model using lm function for dependent and independent variables(cor>0.5).
- **Step 6:** generate the summary and analyze the F-statistics
- **Step 7:** If p-value<0.05, then the model is accepted otherwise it is not.
- **Step 8:** Plot the time series.
- **Step 9:** Check whether the time series is stationary or not using the Auto Correlation Function, Partial Auto Correlation Function and Augmented Dickey-Fuller Test.
- **Step 10:** Apply Auto Arima to find the best model.
- Step 11: Using this model, forecast the temperature for the next month.
- **Step 12:** Plot the forecasted values with low and high range.
- **Step 13:** Measure the accuracy of the model and check the acceptance.

Statistics/Result:

1. Correlation values of the three significant attributes.

Pearson's product-moment correlation

a) Apparent Temperature

```
data: a$Temperature..C. and a$Apparent.Temperature..C.
t = 136.24, df = 198, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.9930099    0.9959955
sample estimates:
    cor</pre>
```

b) Humidity

0.9947087

```
Pearson's product-moment correlation
```

c) Visibility

2. F-statistics and Summary of the multiple regression model

```
call:
lm(formula = a\$Temperature..c. \sim a\$Apparent.Temperature..c. +
    a$Humidity + a$Visibility..km.)
Residuals:
   Min
             1Q Median
                             3Q
                                    Max
-3.2769 -0.5062 0.1693 0.6139 2.1758
Coefficients:
                            Estimate Std. Error t value Pr(>|t|)
                            4.624238
                                       0.431299
                                                10.722
                                                         <2e-16 ***
(Intercept)
a$Apparent.Temperature..C.
                            0.855291
                                       0.007776 109.993
                                                          <2e-16 ***
a$Humidity
                           -2.828868
                                       0.425982 -6.641
                                                           3e-10 ***
a$visibility..km.
                                                           0.221
                            0.018346
                                       0.014927
                                                  1.229
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.8869 on 196 degrees of freedom Multiple R-squared: 0.9916, Adjusted R-squared: 0.9915 F-statistic: 7739 on 3 and 196 DF, p-value: < 2.2e-16

3. Plotting the data time series:

4. Autocorrelation of time series: acf(data)

Series data

5. Partial acf(gdpts)

Series data

6. adf test

> adf.test(data)

Augmented Dickey-Fuller Test

data: data

Dickey-Fuller = -6.287, Lag order = 12, p-value = 0.01

alternative hypothesis: stationary

7. Auto Arima model

>model=auto.arima(data,ic="aic",trace=TRUE)

Fitting models using approximations to speed things up...

ARIMA(2,0,2)(1,1,1)[24] with drift : Inf

ARIMA(0,0,0)(0,1,0)[24] with drift : 11466.33

ARIMA(1,0,0)(1,1,0)[24] with drift : 5676.337

ARIMA(0,0,1)(0,1,1)[24] with drift : 8977.075

ARIMA(0,0,0)(0,1,0)[24] : 11473.89

ARIMA(1,0,0)(0,1,0)[24] with drift : 6252.305

ARIMA(1,0,0)(2,1,0)[24] with drift : 5438.054

ARIMA(1,0,0)(2,1,1)[24] with drift : Inf

ARIMA(1,0,0)(1,1,1)[24] with drift : Inf

ARIMA(0,0,0)(2,1,0)[24] with drift : 11281.55

ARIMA(2,0,0)(2,1,0)[24] with drift : 5374.887

ARIMA(2,0,0)(1,1,0)[24] with drift : 5600.859

ARIMA(2,0,0)(2,1,1)[24] with drift : Inf

ARIMA(2,0,0)(1,1,1)[24] with drift : Inf

ARIMA(3,0,0)(2,1,0)[24] with drift : 5331.394

ARIMA(3,0,0)(1,1,0)[24] with drift : 5559.53

ARIMA(3,0,0)(2,1,1)[24] with drift : Inf

ARIMA(3,0,0)(1,1,1)[24] with o	drift :	Inf
ARIMA(4,0,0)(2,1,0)[24] with o	drift :	5332.032
ARIMA(3,0,1)(2,1,0)[24] with o	drift :	5331.313
ARIMA(3,0,1)(1,1,0)[24] with o	drift :	5558.243
ARIMA(3,0,1)(2,1,1)[24] with o	drift :	Inf
ARIMA(3,0,1)(1,1,1)[24] with o	drift :	Inf
ARIMA(2,0,1)(2,1,0)[24] with o	drift :	5340.401
ARIMA(4,0,1)(2,1,0)[24] with o	drift :	5334.033
ARIMA(3,0,2)(2,1,0)[24] with o	drift :	5332.077
ARIMA(2,0,2)(2,1,0)[24] with o	drift :	5330.361
ARIMA(2,0,2)(1,1,0)[24] with o	drift :	5556.545
ARIMA(2,0,2)(2,1,1)[24] with o	drift :	Inf
ARIMA(1,0,2)(2,1,0)[24] with o	drift :	5343.612
ARIMA(2,0,3)(2,1,0)[24] with o	drift :	5331.938
ARIMA(1,0,1)(2,1,0)[24] with o	drift :	5390.12
ARIMA(1,0,3)(2,1,0)[24] with o	drift :	5332.634
ARIMA(3,0,3)(2,1,0)[24] with o	drift :	5334.228
ARIMA(2,0,2)(2,1,0)[24]	:	5329.467
ARIMA(2,0,2)(1,1,0)[24]	:	5555.177
ARIMA(2,0,2)(2,1,1)[24]	:	Inf
ARIMA(2,0,2)(1,1,1)[24]	:	Inf
ARIMA(1,0,2)(2,1,0)[24]	:	5342.563
ARIMA(2,0,1)(2,1,0)[24]	:	5339.546
ARIMA(3,0,2)(2,1,0)[24]	:	5331.22
ARIMA(2,0,3)(2,1,0)[24]	:	5331.029
ARIMA(1,0,1)(2,1,0)[24]	:	5388.923
ARIMA(1,0,3)(2,1,0)[24]	:	5331.69

```
ARIMA(3,0,1)(2,1,0)[24] : 5330.489

ARIMA(3,0,3)(2,1,0)[24] : Inf

Now re-fitting the best model(s) without approximations...
```

ARIMA(2,0,2)(2,1,0)[24] : 5384.374

Best model: ARIMA(2,0,2)(2,1,0)[24]

8. Forecasting temperature for next 1 day

	Point Forecast	Lo 95	ні 95
17166.04	11.248803	9.608901	12.88871
17166.08	10.731641	8.285073	13.17821
17166.12	10.136301	6.972405	13.30020
17166.17	9.559795	5.800959	13.31863
17166.21	8.281384	4.035497	12.52727
17166.25	8.287412	3.641851	12.93297
17166.29	10.885030	5.909181	15.86088
17166.33	13.721924	8.470936	18.97291
17166.38	15.721102	10.239178	21.20303
17166.42	17.608383	11.931330	23.28544
17166.46	19.327787	13.484923	25.17065
17166.50	19.884300	13.899869	25.86873
17166.54	20.491771	14.385993	26.59755
17166.58	20.578257	14.368124	26.78839
17166.62	19.558943	13.258821	25.85906
17166.67	19.521777	13.143878	25.89968
17166.71	18.510491	12.065241	24.95574
17166.75	15.073873	8.570209	21.57754
17166.79	13.978204	7.423805	20.53260
17166.83	13.325428	6.726914	19.92394
17166.88	13.118927	6.482017	19.75584
17166.92	12.649515	5.979158	19.31987
17166.96	11.722233	5.022720	18.42175
17167.00	11.328230	4.603285	18.05318

9. Plotting the forecast

Forecasts from ARIMA(2,0,2)(2,1,0)[24]

10. Calculating Accuracy of the Model

> accuracy(model)

Inference:

a.From Multiple regression Model:

Multivariate Regression The best model was made after considering 3 variable which were highly correlated to the dependent variable and those variables were Apparent.Temperature (0.9931), Humidity(-0.67) and Visibility(0.519).

As seen in the summary of the model, the p-value in the F-Statistics is less than 0.05, hence the model is accepted. The correlation test of all the independent attributes with the dependent variable was conducted and the significant attributes have been displayed and considered for multiple regression model.

b. From Forecasting Model:

Since, the p-value in Augmented Dickey-Fuller Test is found to be 0.01, being less than 0.05, the **time series is stationary.** The Best ARIMA model found was **model: ARIMA(2,0,2)(2,1,0)[24]** . The forecast has been plotted with its low and high range. The forecasted values have been displayed for the next month. The **mean error** in the auto Arima model was found to be **0.01742321**.

Program:

1. Mulitple Linear Regression Model:

```
rm(list=ls())
setwd("D:/6th_Semester/Data_Analytics_Lab/Lab_3")
df=read.csv("weatherHistory2016.csv")
head(df)
library(dplyr)
library(tidyr)
library(GGally)
a=sample n(df, 200)
a %>% drop_na()
a \leftarrow a[,c(4:9)]
head(a)
cor.test(a$Temperature..C.,a$Apparent.Temperature..C.)
cor.test(a$Temperature..C.,a$Humidity)
cor.test(a$Temperature..C.,a$Wind.Speed..km.h.)
cor.test(a$Temperature..C.,a$Wind.Bearing..degrees.)
cor.test(a$Temperature..C.,a$Pressure..millibars.)
cor.test(a$Temperature..C.,a$Visibility..km.)
ggcorr(a, label = TRUE)
lmodel=lm(a$Temperature..C.~a$Apparent.Temperature..C.+a$Humidity+a$Visibilit
y..km.)
summary(lmodel)
```

2.Time Series Forecasting:

```
rm(list=ls())
setwd("D:/6th_Semester/Data_Analytics_Lab/Lab 3")
df=read.csv("weatherHistory2016.csv")
library(forecast)
library(tseries)
data<-ts(df$Temperature..C.,start = as.Date("2016-10-01"),end =</pre>
as.Date("2016-12-31"), frequency = 24)
plot(data)
acf(data)
pacf(data)
adf.test(data)
model=auto.arima(data,ic="aic",trace=TRUE)
forecastedVal=forecast(model,level=c(95),h=24)
print(forecastedVal)
plot(forecastedVal)
accuracy(model)
```


Vellore Institute of Technology

(Deemed to be University under section 3 of UGC Act, 1956)

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING(SCOPE)

WINTER SEMESETER 2021-22

LAB-4

NAME: RISHABH SINGH

REG NO: 19BCE1500

COURSE: ESSENTIAL OF DATA ANALYTIC(CSE3506)

FACULTY: DR.LASKHMI PATHI JAKKAMPUTI

SLOT: L21+L22

Tasks for Week-4: Analysis of Variance (ANOVA)

Perform ANOVA test and determine the statistical differences between the means of individual groups given in the data.

Aim: To perform an ANOVA test and determine the statistical differences between the means of individual groups given in the data.

- Step 1: Load the dplyr library and import the dataset.
- Step 2: Using the group_by function, group the data based on color.
- Step 3: Apply ANOVA using response with respect to color and generate summary.
- Step 4: If the Pr(>F) -value is less than 0.05, then perform the Tukey HSD test.
- Step 5: If the pair's p-adjusted value is less than 0.05, they're significantly different; otherwise, they're not.

Statistics

1) Applying group by

group_by(data,color) %>% summarise(count = n(),mean = mean(response, na.rm=TRUE))

color <chr></chr>	count <int></int>	mean <dbl></dbl>
blue	24	10.632083
green	24	8.530417
red	24	2.491667

³ rows

2) Summary of ANOVA

ANOVA <- aov(response~color, data = data)
summary(ANOVA)

```
Df Sum Sq Mean Sq F value Pr(>F)
color 2 857.2 428.6 14.81 4.44e-06 ***
Residuals 69 1996.4 28.9
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

3) Conducting Tukey HSD Test

TukeyHSD(ANOVA)

Inference:

As seen in the summary of ANOVA, the profit value (Pr(>F)) is less than 0.05, hence the null hypothesis is rejected and the Tukey HSD test is required.

As seen in the Tukey HSD test results,

- a) green and blue are not significantly different since p adj is more than 0.05.
- b) red and blue are significantly different since p adj is less than 0.05.
- c) green and red are significantly different since p adj is less than 0.05.

PROGRAM:

```
rm(list=ls())
data <- read.csv("color-anova-example.csv")
library(dplyr) # To group the data
group_by(data,color) %>% summarise(count = n(),mean = mean(response, na.rm =
TRUE))
# ANOVA
ANOVA <- aov(response~color, data = data)
summary(ANOVA)
TukeyHSD(ANOVA)</pre>
```


VIT®

Vellore Institute of Technology

(Deemed to be University under section 3 of UGC Act, 1956)

SCHOOL OF COMPUTER SCIENCE AND

ENGINEERING(SCOPE)

WINTER SEMESETER 2021-22

LAB-5

NAME: RISHABH SINGH

REG NO: 19BCE1500

COURSE: ESSENTIAL OF DATA ANALYTIC(CSE3506)

FACULTY: DR.LASKHMI PATHI JAKKAMPUTI

SLOT: L21+L22

Tasks for Week-5: Logistic Regression

Understand the following operations/functions to perform logistic Regression and perform similar operations on the 'Social_Network_Ads' dataset based on given instructions.

Aim: To perform logistic Regression and perform similar operations on the 'Social Network Ads' dataset.

Algorithm:

- 1. Import the dataset and load the caTools library.
- 2. Split the data using split function into test and train data in a ratio=0.8.
- **3.** Convert the purchased and Gender variable to categorical variable using as.factor.
- **4.** Apply the generalized linear model using glm command for the dependent and independent variables and print the summary.
- **5.** Using the trained model, predict the output for the test data and observe the accuracy and plot the graphs.
- **6.** Generate and Display the confusion matrix

Statistics

1) Summary of the applied model

```
call:
glm(formula = Purchased ~ Age + Gender + EstimatedSalary, family = "binomial",
    data = train)
Deviance Residuals:
                           3Q
                 Median
             10
-3.0223 -0.4848 -0.1298 0.3453
                                   1.8205
Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
(Intercept)
               -1.372e+01 1.647e+00 -8.328 < 2e-16 ***
                2.534e-01 3.208e-02
                                     7.899 2.81e-15 ***
                5.388e-01 3.520e-01
GenderMale
                                     1.531 0.126
EstimatedSalary 3.952e-05 6.308e-06
                                     6.266 3.71e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 417.96 on 319 degrees of freedom
Residual deviance: 213.93 on 316 degrees of freedom
AIC: 221.93
Number of Fisher Scoring iterations: 6
> cfmatrix
  pred
ACT FALSE TRUE
 0 45
      - 5
           23
> Acc=(cfmatrix[[1,1]]+cfmatrix[[2,2]])/sum(cfmatrix)
> Acc
[1] 0.85
```

2) Graph of predicted train data

3) Graph of Predicted Test

Inference:

- 1) As seen in the summary of glm model, the profit value (Pr(>|z|)) is less than 0.05 for all variables apart from GenderMale. Hence, all but one are accepted in the model.
- 2) The accuracy of the trained model is observed to be 0.85 i.e., 85%.
- 3) There are a total of 80 objectives as seen from the confusion matrix.
- **4**) The graph shows the actual and predicted values of the trained model for the train and test data.

Program:

```
rm(list=ls())
setwd("C:\\Users\\risha\\Desktop\\6thSemester\\EDA\\Lab\\05")
mydata<-read.csv("Social Network Ads.csv")</pre>
library(caTools)
splitd<-sample.split(mydata, SplitRatio = 0.8)</pre>
train=subset(mydata,splitd=="TRUE")
test=subset(mydata,splitd=="FALSE")
train
mydata$Gender<-as.factor(mydata$Gender)</pre>
mydata$Purchased<-as.factor(mydata$Purchased)</pre>
mymodel <- glm(Purchased ~ Age+Gender+EstimatedSalary, data=train,</pre>
                family='binomial')
summary(mymodel)
restrain<-predict(mymodel,train,type='response')</pre>
plot(restrain)
restest<-predict(mymodel,test,type='response')</pre>
plot(restest,col='red')
par(new=TRUE)
plot(test$Purchased)
cfmatrix<-table(Act=test$Purchased, pred=restest>0.5)
cfmatrix
Acc=(cfmatrix[[1,1]]+cfmatrix[[2,2]])/sum(cfmatrix)
Acc
plot(restest)
```


VIT®

Vellore Institute of Technology

(Deemed to be University under section 3 of UGC Act, 1956)

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING(SCOPE)

WINTER SEMESETER 2021-22

Lab -6

NAME: RISHABH SINGH

REG NO: 19BCE1500

COURSE: ESSENTIAL OF DATA ANALYTIC(CSE3506)

FACULTY: DR.LASKHMI PATHI JAKKAMPUTI

SLOT: L21-L22

Tasks for Week-6: K-NN Algorithm

Aim: Understand the following operations/functions on to perform K- NN algorithm and perform similar operations on 'wdbc' dataset based on given instructions.

Algorithm:

- 1. Removing all the values from the global environment
- 2. Because our dataset isn't in a csv format, we're going to use a file.choose() is used to select a dataset for prediction.
- 3. Use the view() function to see the dataset.
- 4. The Mynorm function was built to normalise the values that separate each other.
- 5. Combining each value with its min value, dividing the difference between the max and min values.
- 6. Make a new dataframe called mydata and put all of the normalised values in it. except the first column, which is a category, in that new dataframe data.
- 7. For comparing the original dataset and normalized dataset take 2 to 5 columns of both data set and apply summary() function to find summary.
- 8. Divide the first 400 values into a train dataset and the remaining 169 values into a passenger dataset. from mydata's test dataset (normalized dataset). Use the library() function to import a class.
- 9. Perform the knn algorithm and save all predicted values to the pred variable.
- 10. Using the expected data from the pred variable, create a confusion matrix. In the first dataset, there are 401 to 569 rows.
- 11. Find the accuracy of the data by adding the [1,1] element and [2,2] element and dividing its summation with the whole sum.

Inference: The accuracy of the model is 97%. so, we can say that the model is best fit model.

Confusion matrix:

Pred	В	M
В	128	3
M	2	36

Accuracy: 0.9704142

Program:

```
rm(list=ls())
setwd("D:\6th_Semester\Data_Analytics_Lab\New folder")
wdbc<-read.table(file.choose(),sep=',')</pre>
view(wdbc)
wdbc<-wdbc[,-1]
mynorm<-function(x){((x-min(x))/(max(x)-min(x)))}</pre>
mydata<-as.data.frame(lapply(wdbc[,-1], mynorm))</pre>
summary(wdbc[,2:5])
summary(mydata[,1:4])
train<-mydata[1:400,]</pre>
test<-mydata[401:569,]
library(class)
pred<-knn(train,test,wdbc[1:400,1],k=21)</pre>
cf<-table(pred,wdbc[401:569,1])</pre>
acc=(cf[[1,1]]+cf[[2,2]])/sum(cf)
acc
```


VIT®

Vellore Institute of Technology

(Deemed to be University under section 3 of UGC Act, 1956)

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING(SCOPE)

WINTER SEMESETER 2021-22

Lab -7

NAME: RISHABH SINGH

REG NO: 19BCE1500

COURSE: ESSENTIAL OF DATA ANALYTIC(CSE3506)

FACULTY: DR.LASKHMI PATHI JAKKAMPUTI

SLOT: L21-L22

Tasks for Week-7: Partition Based clustering

<u>Aim:</u> Understand the following operations/functions on 'iris' data and perform similar operations on 'USArrests' dataset based on given instructions.

Algorithm:

- 1. Remove all the values from the global environment.
- 2. Set the working directory to the dataset where we store by using setwd().
- 3. To see the dataset use view() function.
- 4. By using scale function. We scale the data and store it in another variable.
- 5. Using kmeans function we find the kmeans clustering with 2 center at first it can be of any centers and store the result in fit
- 6. By using fit\$cluster we can find the cluster values.
- 7. By using fit\$size we can find the size of each cluster.
- 8. By using fit\$withnss we can find with in cluster sum of squares for each cluster.
- 9. By using fit\$tot.withnss we can find with in cluster sum of squares with respective to all clusters.
- 10. Create the no of iterations we need to find the perfect cluster and size of wcss and the nclust list.
- 11. To find the best no of center from 1 to 15 we create a for loop.
 - a. find the kmeans cluster with each center value in for loop
 - b. put to the total with in cluster sum of squares for each iteration in wcss
 - c. put the size of cluster in nclust.
- 12. plot the graph between the no of center and the wcss values for each center. the place where we find the bend that is our no of cluster should be taken.
- 13. In other way we can use factoextra libaray.

- 14. Using fviz_nbclust function we can find the graph
- 15. Using fviz_cluster function we can find the clusters
- 16. Call cluster library
- 17. We use pam function to find the k medoid clusters and store the values in fitm.
- 18. By using the fitm\$medoid we can find no of medoid.
- 19. Using fviz_cluster function we can find the medoids.

Result

1.Dataset: iris.csv

1.Optimal number of clusters:

2.K-means centers:

3.K-medoid centers:

2.Dataset: USArrest.csv

1.Optimal number of clusters:

Optimal number of clusters

2.K-means centers:

3.K-medoid centers:

Statistics

Dataset: iris.csv

K-means centers

X	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
-1.15087068	-1.01119138	0.85041372	-1.3006301	-1.2507035
0.07534946	0.03881135	-0.73324663	0.3059615	0.2137533
1.13936197	1.03196952	-0.07784286	1.0386287	1.0894947

K-medoid centers

X	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
-1.07030973	-0.7769106	0.7861738	-1.3357516	-1.3110521
-0.08056095	0.3099591	-0.5903951	0.1370873	0.1320673
0.95522266	0.7930124	-0.1315388	0.9868021	0.7880307

Dataset: USArrest.csv

K-means centers

Murder	Assault	UrbanPop	Rape
-0.4469795	-0.3465138	0.4788049	-0.2571398
-0.9615407	-1.1066010	-0.9301069	-0.9667633
1.0049340	1.0138274	0.1975853	0.8469650

K-medoid centers

Murder	Assault	UrbanPop	Rape
0.8292944	1.3708088	0.3081225	1.1603196
-0.2727580	-0.2371077	0.1699510	-0.1315342
-1.2829727	-1.3770485	-0.5899924	-1.0603878

Program:

Dataset: iris.csv:

```
rm(list=ls())
setwd("D:/6th Semester/Data Analytics Lab/lab 7")
data1<-read.csv("iris.csv")</pre>
View(data1)
df<-scale(data1)</pre>
fit<-kmeans(df,centers=2)</pre>
fit$cluster
fit$size
fit$withinss
fit$tot.withinss
Kmax<-15
wcss<-rep(NA,Kmax)</pre>
nClust<- list()</pre>
for(i in 1:Kmax){
 fit<-kmeans(df,i)</pre>
  wcss[i]<-fit$tot.withinss
  nClust[[i]]<-fit$size</pre>
plot(1:Kmax,wcss,type="b",pch=19)
fit<-kmeans(df,centers=3)</pre>
fit$cluster
fit$size
fit$center
library(factoextra)
fviz_nbclust(df, kmeans, method = "wss")
fviz_cluster(fit, data1)
library(cluster)
fitm <- pam(df, 3, metric = "manhattan")</pre>
fitm
fitm$medoids
fviz_cluster(fitm, data1)
```

Dataset: USArrest.csv:

```
rm(list=ls())
setwd("D:/6th Semester/Data Analytics Lab/lab 7")
data2<-read.csv("USArrests.csv")</pre>
view(data2)
data2<-data2[,-1]</pre>
df1<-scale(data2)</pre>
fit1<-kmeans(df1,centers=2)</pre>
fit1scluster
fit1$size
fit1\suithinss
fit1$tot.withinss
Kmax1<-15
wcss1<-rep(NA,Kmax1)</pre>
nClust1<- list()</pre>
for(i in 1:Kmax1){
  fit1<-kmeans(df1,i)</pre>
  wcss1[i]<-fit1$tot.withinss
  nClust1[[i]]<-fit1$size</pre>
plot(1:Kmax1,wcss1,type="b",pch=19)
fit1<-kmeans(df1,centers=3)</pre>
fit1$cluster
fit1size
fit1scenter
library(factoextra)
fviz_nbclust(df1, kmeans, method = "wss")
fviz cluster(fit1, data2)
library(cluster)
fitm1 <- pam(df1, 3, metric = "manhattan")</pre>
fitm1
fitm1<mark>$</mark>medoids
fviz cluster(fitm1, data2)
```


VIT®

Vellore Institute of Technology

(Deemed to be University under section 3 of UGC Act, 1956)

SCHOOL OF COMPUTER SCIENCE AND

ENGINEERING(SCOPE)

WINTER SEMESETER 2021-22

LAB-8

NAME: RISHABH SINGH

REG NO: 19BCE1500

COURSE: ESSENTIAL OF DATA ANALYTIC(CSE3506)

FACULTY: DR.LASKHMI PATHI JAKKAMPUTI

SLOT: L21+L22

Tasks for Week-8: Hierarchical Clustering

Aim: To understand the following operations/functions on 'USArrests' data and perform similar operations on 'iris' dataset based on given instructions.

Algorithm:

- 1. Removing all the values from the global environment
- 2. Set the working directory to the dataset where we store by using setwd().
- 3. To see the dataset use view() function.
- 4. By using scale function, we scale the data and store it in another variable.
- 5. Using dist function we find the Euclidean distances for the scaled data.
- 6. By using the Euclidean distances and helust function we can create and then plot the hierarchical clustering dendogram.
- 7. By using cutree we divide the elements of the dendogram into k number of clusters (k=4 in our case).
- 8. Then, by using rect.hclust function we can divide the dendogram into k clusters (k=4 in our case) i.e. create k rectangular divisions/borders in the dendogram

Result

Dataset: iris.csv

Cluster:

> c	lust	er																																							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2
43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84
1	1	1	1	1	1	1	1	3	3	3	2	3	2	3	2	3	2	2	3	2	3	3	3	3	2	2	2	3	3	3	3	3	3	3	3	3	2	2	2	2	3
85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126
3	3	3	2	3	2	2	3	2	2	2	3	3	3	2	2	3	3	3	3	3	4	2	4	3	4	3	3	3	3	3	3	3	4	4	2	3	3	4	3	3	4
127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150																		
2	2	2	4	4	4	2	2	2	- 4	2	2	2	2	2	2	2	2	2	2	2	2	2	2																		

Cluster Dendogram

Dataset: USArrest.csv

Cluster:

> cluster										
Alabama	Alaska	Arizona	Arkansas	California	Colorado	Connecticut	Delaware	Florida	Georgia	Hawaii
1	1	2	3	2	2	3	3	2	1	3
Idaho	Illinois	Indiana	Iowa	Kansas	Kentucky	Louisiana	Maine	Maryland	Massachusetts	Michigan
4	2	3	4	3	3	1	4	2	3	2
Minnesota	Mississippi	Missouri	Montana	Nebraska	Nevada	New Hampshire	New Jersey	New Mexico	New York	North Carolina
3	1	3	4	4	2	4	3	2	2	1
North Dakota	Ohio	oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina	South Dakota	Tennessee	Texas	Utah
4	3	3	3	3	3	1	4	1	2	3
Vermont	Virginia	Washington	West Virginia	Wisconsin	Wyoming					
			- ,	-						

Cluster Dendogram

Program:

Dataset: iris.csv

```
rm(list=ls())
setwd("D:\\EDA\\Lab\\08")
data <- read.csv("iris.csv",row.names=1)
View(data)
df <- scale(data)
View(df)
ed <- dist(df, method = 'euclidean')
hierClust <- hclust(ed, method = 'complete')
plot(hierClust)
cluster <- cutree(hierClust, k = 4)
cluster
rect.hclust(hierClust, k = 4, border = 2:4)</pre>
```

Dataset: USArrest.csv

```
rm(list=ls())
setwd("D:\EDA\\Lab\\08")
data <- read.csv("USArrests.csv",row.names=1)
View(data)
df <- scale(data)
View(df)
ed <- dist(df, method = 'euclidean')
hierClust <- hclust(ed, method = 'complete')
plot(hierClust)
cluster <- cutree(hierClust, k = 4)
cluster
rect.hclust(hierClust, k = 4, border = 2:4)</pre>
```


VIT[®]

Vellore Institute of Technology

(Deemed to be University under section 3 of UGC Act, 1956)

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING(SCOPE)

WINTER SEMESETER 2021-22

<u>Lab -9</u>

NAME: RISHABH SINGH

REG NO: 19BCE1500

COURSE: ESSENTIAL OF DATA ANALYTIC(CSE3506)

FACULTY: DR.LASKHMI PATHI JAKKAMPUTI

SLOT: L21-L22

Week 9 Task

AIM: To calculate the value of a and b for y=ax+b using gradient descent method.

ALGORITHM:

Step 1: Initialize the weights (a & b) with random values and calculate the loss function.

Step 2: Calculate the gradient. This helps us move the values of a & b in the direction in which loss function is minimized.

Step 3: Adjust the weights with the gradients to reach the optimal values where loss function is minimized.

Step 4: Use the new weights for prediction and to calculate the new loss function.

Step 5: Repeat steps 2 and 3 till further adjustments to weights don't significantly reduce the Error.

STATISTICS:

Values using Gradient Descent method:

FIELD	VALUE
Optimum Slope	-5.33401243341807
Optimum Intercept	37.2487084651956
Number of iterations	580
Loss function	0.00411973531571587

Values using Linear Regression:

FIELD	VALUE
(Intercept)	37.285
Slope	-5.344

RESULT:

We can see that slope and intercept we have calculated using gradient descent method is almost same as values of Linear Regression. Therefore, we have calculated the values of m and c for y=mx+c.

INFERENCE:

Hence, we have obtained the optimal value of the weights **m** and **c**.

CODE:

```
rm(list=ls())
gd<-function(x,y,m,c,alpha,conv_thr,iter){</pre>
  iterations=0
  Lf=0
  while(iterations<=iter){</pre>
    y_pred=m*x+c
    Lf_new=0.5*(sum(y_pred-y)^2)
    m=m-alpha*sum((y_pred-y)*x)
    c=c-alpha*sum(y_pred-y)
    if(abs(Lf-Lf_new)<conv_thr){</pre>
      break;
    Lf=Lf new
    iterations=iterations+1
  return(paste('Optimum Slope',m,"Optimum Intercept",c,"Number of
iterations",iterations,"Loss function",Lf))
data<-mtcars
gd(data$wt,data$mpg,32,-0.2,0.005,0.0001,10000)
reg<-lm(data$mpg~data$wt)</pre>
reg
```


VIT[®]

Vellore Institute of Technology

(Deemed to be University under section 3 of UGC Act, 1956)

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING(SCOPE)

WINTER SEMESTER 2021-22

Lab -10

NAME: RISHABH SINGH

REG NO: 19BCE1500

COURSE: ESSENTIALS OF DATA ANALYTIC(CSE3506)

FACULTY: DR.LASKHMI PATHI JAKKAMPUTI

SLOT: L21-L22

Tasks for Week-10: Gradient Descent with Momentum Optimizer

Aim – Apply multiple regression on mtcars dataset using momentum optimized gradient descent.

Algorithm:

- 1. Select columns for multiple regression
- 2. Give learn rate, gamma(momentum) and max iterations in function
- 3. Pick values for m1, m2 & c.
- 4. Initialize values for nu_m1, nu_m2 and nu_c to be 0.
- 5. Initialize iteration=0
- 6. If iteration<max iteration
 - a. Calculate y_pred
 - b. Calculate loss function
 - c. Update nu_m1,nu_m2 and nu_c using the below formula:
 - i. Nu m1=gamma*nu m1+alpha*sum((y pred-y)*x1)
 - ii. Nu_m2=gamma*nu_m2+alpha*sum((y_pred-y)*x2)
 - iii. Nu_c=gamma*nu_c+alpha*sum(y_pred-y)
 - d. Update m1,m2,c &Lf
 - e. Print intercept, slope and loss function
- 7. Repeat step 5 continuously.
- 8. Use Im function to check for linear model.

Statistics-

1. Momentum optimizer

С	37.2272414172067
M1	-3.87782187933926
M2	-0.0317729604979703

2. Using Im function Multilinear regression

С	37.22727
M1	-3.87783
M2	-0.03177

```
> mgd(data$wt,data$hp,data$mpg,-0.2,-0.2,32,0.000002,0.98,50000)
[1] "Optimal intercept: 37.2272414172067 Optimal slope: -3.87782187933926 -0.0317729604979703
Loss function 97.5238773718236"
```

Using Im() function multilinear regression:

```
> summary(model)
call:
lm(formula = data$mpg ~ data$hp + data$wt)
Residuals:
   Min
          1Q Median
                        3Q
                              Max
-3.941 -1.600 -0.182 1.050 5.854
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.22727    1.59879    23.285    < 2e-16 ***
           -0.03177
data$hp
                       0.00903 -3.519 0.00145 **
data$wt
           -3.87783
                       0.63273 -6.129 1.12e-06 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.593 on 29 degrees of freedom
Multiple R-squared: 0.8268, Adjusted R-squared: 0.8148
F-statistic: 69.21 on 2 and 29 DF, p-value: 9.109e-12
```

Inferences:

- 1. In momentum gradient, descent loss function is not important but in gradient descent, loss function is important as it is used for convergence
- 2. If we put gamma as 0 the model behaves like gradient descent.
- 3. We can decrease the learning rate or increase the number of iterations to increase the accuracy

CODE:

```
mgd=function(x1,x2,y,m1,m2,c,alpha,gamma,iter){
  iterations=0
  nu_m1=0
  nu m2=0
  nu c=0
  while(iterations<=iter){</pre>
    y_pred=m1*x1+m2*x2+c
    Lf new=0.5*sum((y pred-y)^2)
    nu_m1=gamma*nu_m1+alpha*sum((y_pred-y)*x1)
    nu m2=gamma*nu m2+alpha*sum((y pred-y)*x2)
    nu_c=gamma*nu_c+alpha*sum(y_pred-y)
    m1=m1-nu_m1
    m2=m2-nu_m2
    c=c-nu c
    Lf=Lf_new
    iterations=iterations+1
  paste("Optimal intercept:",c,"Optimal slope:",m1,m2,"Loss function",Lf)
data=mtcars
mgd(data$wt,data$hp,data$mpg,-0.2,-0.2,32,0.000002,0.98,50000)
model=lm(data$mpg~data$hp+data$wt)
summary(model)
```