Curso de Álgebra Linear Prof^a Mara Freire

2- TRANSFORMAÇÕES LINEARES

2.1- INTRODUÇÃO

Uma Transformação Linear é uma aplicação que leva vetores de um espaço vetorial em outro e é denotada por T: $V \to W$, onde T é a $transformação\ linear$ (uma aplicação linear, mapeamento, função, etc) de V em W, onde V (um espaço vetorial) é o domínio e W (um espaço vetorial) é o contradomínio.

Exemplo: A quantidade em litros de óleo extraída por quilograma de cereal segundo um determinado processo pode ser descrita pela tabela.

	Soja	Milho	Algodão	Amendoim
Óleo (l)	0,2	0,06	0,13	0,32

A quantidade total de óleo produzido por x kg de soja, y kg de milho, z kg de algodão e w kg de amendoim é dada por

$$Q = 0.2x + 0.06y + 0.13z + 0.32w$$

Observe que a quantidade de óleo pode ser dada pela multiplicação da "matriz rendimento" pelo vetor quantidade.

$$Q = \begin{bmatrix} 0.2 & 0.06 & 0.13 & 0.32 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = 0.2x + 0.06y + 0.13z + 0.32w$$

Formalmente, estamos trabalhando com a função $Q: A \subset IR^4 \to R$,

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \rightarrow \begin{bmatrix} 0.2 & 0.06 & 0.13 & 0.32 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

que satisfaz as propriedades:

I)
$$Q$$
 $\begin{bmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ y_2 \\ z_2 \\ w_2 \end{bmatrix} = Q \begin{bmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{bmatrix} + Q \begin{bmatrix} x_2 \\ y_2 \\ z_2 \\ w_2 \end{bmatrix}$

II)
$$Q \left(k \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \right) = k. \ Q. \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

2.2- TRANSFORMAÇÃO LINEAR (APLICAÇÃO LINEAR)

Def.: Sejam V e W espaços vetoriais. Uma aplicação T: $V \rightarrow W$ é chamada transformação linear de V em W se, $\forall u, v \in V$ e $\forall \alpha \in IR$, temos:

- I) T(u + v) = T(u) + T(v). (T preserva a adição de vetores)
- II) $T(\alpha u) = \alpha T(u)$ (T preserva a multiplicação por escalar)

Exemplos:

1- Verifique se T: $IR^2 \rightarrow IR^3$, definida por T(x, y) = (3x, -2y, x - y) é linear.

2- Verifique se T: $IR \rightarrow IR$, definida por T(x) = 3x + 1 é linear.

3- Verifique se T: $IR \rightarrow IR$, definida por T(x) = 3x é linear.

4- Verifique se T: $IR \rightarrow IR$, definida por $T(x) = x^2$ é linear.

5- A transformação nula (ou zero), T: $V \rightarrow W$, T(v) = 0 é linear.

6- Seja o espaço vetorial $V = P_n$ dos polinômios de grau $\leq n$. A aplicação derivada D: $P_n \to P_n$, que leva $f \in P_n$ em sua derivada f', isto é, D(f) = f', é linear.

7- Seja a matriz $A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \\ 0 & 4 \end{bmatrix}$. Verifique se a matriz A determina a transformação T_A : $IR^2 \to IR^3$, definida por $T_A(v) = A(v)$

Curso de Álgebra Linear Prof^a Mara Freire

2.2.1- **Propriedade**:

Se T: $V \to W$, for uma transformação linear, então $\forall v_1, v_2 \in V$ e $\forall a_1, a_2 \in IR$, tem-se:

$$T(a_1v_1 + a_2v_2) = a_1T(v_1) + a_2T(v_2).$$

De forma análoga, tem-se:

$$T(a_1v_1 + a_2v_2 + ... + a_nv_n) = a_1T(v_1) + a_2T(v_2) + ... + a_nT(v_n)$$

 $\forall v_i \in V \text{ e } \forall a_i \in IR \text{ com } i \in IN$, isto é, a imagem de uma combinação linear de vetores é uma combinação linear das imagens desses vetores, com os mesmos coeficientes.

Exemplo: Seja T: $IR^3 o IR^3$ uma transformação linear e B = $\{v_1, v_2, v_3\}$ uma base do IR^3 , sendo v_1 = (0, 1, 0), v_2 = (1, 0, 1) e v_3 = (1, 1, 0). Determinar T(5, 3, -2), sabendo que T(v_1) = (1, -2), T(v_2) = (3, 1) e T(v_3) = (0, 2).

Exercícios

- 1- Nos exercícios abaixo são dadas transformações. Verificar quais delas são lineares.
- a) T: $IR^2 \rightarrow IR^3$, definida por T(x, y) = (x + y, x y, 3x).
- b) T: $IR^3 \rightarrow IR^3$, definida por T(x, y, z) = (x + 2, y + 3, z 1).
- c) A transformação identidade, T: $V \rightarrow W$, T(v) = v.
- d) A simetria em relação à origem O no IR^3 , T: $IR^3 \rightarrow IR^3$, definida por T(v) = -v.
- e) T: $IR^2 \rightarrow IR^2$, definida por T(x, y) = (x², y).
- 2- Sejam os espaços vetoriais $V = P_n$ e W = IR. Verifique se a transformação T: $P_n \to IR$ definida por $T(u) = \int_a^b u \, dt \ (a, b \in IR)$ que cada polinômio $u \in V$ associa sua integral definida $T(u) \in IR$, é linear.
- 3- Transformações matriciais: Seja T: $IR^n \to IR^m$ e A uma matriz de ordem m × n, então a transformação T(x) = Ax é linear. A verificação das condições decorre das propriedades das operações com matrizes.

RESPOSTAS

1- a) sim; b) não; c) sim; d) sim; e) não. 2- sim. 3- sim.