# A Mixture Model for Grouping Annotations in Learning from Crowds CIARP 2019

### Francisco Mena and Ricardo Ñanculef

Departamento de Informática Universidad Técnica Federico Santa María Chile

October 2019





# Summary

- Introduction
- 2 Background
  - Problem
  - State of the Art
- Proposal
  - Model
- Experiments
  - Setting
  - Results
  - Analysis
- Conclusion

#### Motivation

- Machine learning methods has been widely spread to different areas.
- Supervised learning relies on correctly labelled data to learn some task.
- Unfortunately, human annotators are imprecise.
  - In some cases it can be very difficult or infeasible to obtain accurate labels.
  - Subjective task: Sentiment Analysis, Product Rating or Medical Judgment.



| Label        | Dog | Cat |
|--------------|-----|-----|
| Ground Truth | ?   | ?   |

# Crowdsourcing Solution

- We can collect multiple subjective and possible innacurate labels and try to infer the *ground truth* from these annotations.
  - More feasible and cheaper through crowdsourcing platforms.
    - As Amazon Mechanical Turk (AMT) and CrowdFlower.
  - Annotators together generate one or more annotations per item.



# What is the difficulty of crowdsourcing?

- Annotators can have varying levels of expertise and ability.
- There could be bad scenarios where the annotations obtained were generated by
  - Inaccurate
  - Spammers
  - Malicious

#### Base of the Problem Definition

#### Supervised scenario

- Consider an input pattern x, with  $x \sim p(x)$  unknown, and a ground truth label  $z \in \{1, 2, \dots, K\}$ , with  $z \sim p(z|x)$  unknown.
- Given a sample  $\{(x_i, z_i)\}_{i=1}^N$  drawn from p(x, z) = p(z|x)p(x).

**Objective**: Learn p(z|x) or its properties (mode, expected value or others).



# Crowdsourcing scenario:

ullet Annotations y are produced by a labelling process  $y \sim p(y|x,z)$ , that depends on the **ability** of the annotator to detect the ground truth.

#### Individual scenario

- Consider T annotators and  $T_i$  annotations per item  $x_i$ .
- Given the sample  $\{(x_i, \{y_i^{(\ell)}\}_{\ell=1}^{T_i})\}_{i=1}^N$  from p(x, y).

**Objective**: (i) Learn p(z|x) and (ii) learn the ability of each annotator.

#### Problem Definition II

### Crowdsourcing scenario:

ullet Annotations y are produced by a labelling process  $y \sim p(y|x,z)$ , that depends on the **ability** of the annotator to detect the ground truth.

#### Global scenario

- It is not known or care who provided the annotations.
- Given the sample  $\{(x_i, r_i)\}_{i=1}^N$  to learn *crowdsourcing* task (i).
- $r_{ij} \in \{0, 1, \dots, T_i\}$  is the number of annotations j given for item i.

# State of the Art: Simple Aggregation



- Methods that use summary statistics to reduce annotations into a single label.
- Most used and simple technique: Majority Voting (MV)
  - ullet hard-MV:  $z_i = mode\{y_i^{(1)}, \ldots, y_i^{(T_i)}\} = rg \max_j r_{ij}$
  - $\bullet$  soft-MV:  $z_{ij} = \frac{1}{T_i} \sum_{\ell}^{T_i} y_{ij}^{(\ell)} = \frac{1}{T_i} \cdot r_{ij}$
- The MV has a limited performance in some cases:
  - Quite different ability among annotators.
  - Few annotations by data.

#### State of the Art: Without Predictive Model

#### Setting

- **Objective**: Learn ground truth  $z_i$  through annotations  $\{y_i^{(t)}\}_t^T$ .
- Assumptions:
  - Input pattern is not available: p(z|x) = p(z).
- Annotator labels every data  $x_i$ :  $T_i = T$  (dense labels).
- It needs a second step to learn a predictive model over z: f(x).
- Dawid and Skene 1979 (DS) pioneer work that deal with annotators of varying expertise.
- DS models annotator ability as a confusion matrix,  $p(y^{(t)}|z)$ , and infers the ground truth with EM algorithm.
  - Zhang et al. 2016 proposed another way to initialize EM that allows to speed up the convergence.

#### State of the Art: With Predictive Model

#### Setting

- Objective: Include the predictive model into the learning process.
- Predictive model: binary problems, usually logistic regression (*LR*).
- Same assumption of dense labeling:  $T_i = T$ .

#### DS extension:

- Raykar et al. 2010
  - At the M step, learn the predictive model with confusion matrices.
  - At the E step, infer the ground truth to use on the M step.
- Annotator ability as a learning model (LR): Yan et al. 2010 and Kajino 2012 (convex).
- Annotator reliability as binary latent variable: Rodrigues et al. 2013.

## State of the Art: Deep Learning

- The LR model is replaced by a deep learning (DL) model.
- Albarqouni et al. 2016 applied Raykar's model in a cancer detection, replacing LR by a CNN.
- Rodrigues et al. 2018 extended Albarqouni to multiple classes.
  - They also proposed to encode the confusion matrix into the DL model.
- Patrini et al. 2017 faced the label noise problem (1 annotator) with neural net assuming known the confusion matrix.



Figure 1: AggNet of Albarqouni et al.

# Proposal

Nowadays, there is no method that is superior to the others in all the cases (Zheng et al. 2017).

Different assumptions have to be fulfilled to achieve good results.

#### We focus on:

- Large scale scenarios in terms of annotators (T >> 0).
  - Avoid having an explicit model per annotator (computational efficiency).
- Scenarios with a small number of annotations per annotator.
  - Group similar annotations (statistical efficiency).

#### Model: Global

### Setting

- Global scenario: we do not known who gives the annotations.
- Sparse annotations: variable number by input pattern and annotator.
- Assumption: there exist groups of annotations with similar ability.



#### Model: Mixture Model and Ground Truth

#### Finite Mixture Model (groups)

$$p(y \mid x) = \sum_{m=1}^{M} p(y \mid x, g = m) \cdot p(g = m)$$
 (1)

We model the groups g with an a priori distribution: p(g|x) = p(g).

### Labeling Pattern and Ground Truth

$$p(y = j \mid x, g = m) = \sum_{k=1}^{K} p(y = j \mid g = m, z = k) \cdot p(z = k \mid x)$$
 (2)

We model the observed labels using a confusion matrix by group. We also assume that the *ground truth* depends only on x.

## Crowd Mixture Model (CMM)

$$p(y \mid x) = \sum_{k=0}^{K} \sum_{m=0}^{M} p(y \mid g = m, z = k) \cdot p(z = k \mid x) \cdot p(g = m)$$
 (3)

Three components to model:

| Term     | Model                                                                             | # Parameters  |
|----------|-----------------------------------------------------------------------------------|---------------|
| p(y g,z) | Confusion matrix $\beta^{(m)}$ for group $m$                                      | MK(K-1)       |
|          | p(y=j g=m,z=k)                                                                    |               |
| p(z x)   | DL model $f(x; \theta)$                                                           | Indep. of $T$ |
| p(g)     | $p(y=j g=m,z=k)$ DL model $f(x;\theta)$ Mixing coefficients $\alpha^{(m)}=p(g=m)$ | M-1           |
|          |                                                                                   |               |

# Observed annotations $\{y_i^{(\ell)}\}_{\ell=1}^{T_i}$ are drawn from a Multinomial distribution

$$r_i \sim Mu(T_i, p(y|x_i))$$
.

The conditional log-likelihood is thus given by

$$\ell(\Theta) = \log p(r \mid x, \Theta) = \log \left( C \cdot \prod_{j}^{K} p(y = j \mid x)^{r_{\cdot j}} \right),$$

$$= C + \sum_{j}^{K} r_{\cdot j} \log \left( \sum_{m,k} \beta_{k,j}^{(m)} \cdot f_k(x; \theta) \cdot \alpha^{(m)} \right)$$
(4)

The hidden variable model is optimized with the use of the Jensen inequality and the EM algorithm.

#### Using the EM algorithm to optimize the lower bound:

• E-step. For grouping the annotations based on ground-truth estimation:

$$q_{ij}(m,k) = \tfrac{1}{N_{ij}} \beta_{k,j}^{(m)} f_k(x^{(i)};\theta) \alpha_m, \text{ with } N_{ij} = \sum_{m',k'} \beta_{k',j}^{(m')} f_{k'}(x^{(i)};\theta) \alpha_{m'}.$$

• M-step. For the mixing coefficients and confusion matrices, we obtain

$$\alpha_m = \frac{\sum_{ij} r_j^{(i)} \cdot q_{ij}(m, \cdot)}{\sum_{ij} r_j^{(i)}}, \quad \beta_{k,j}^{(m)} = \frac{\sum_{i} q_{ij}(m, k) \cdot r_j^{(i)}}{\sum_{ij'} q_{ij'}(m, k) \cdot r_j^{(i)}}.$$

For the DL model, the objective is to minimize:

$$J(\theta) = \sum_{i,k} -\left(\sum_{j} q_{ij}(\cdot, k) r_{j}^{(i)}\right) \cdot \log f_{k}(x^{(i)}; \theta) = \sum_{i,k} -\bar{r}_{k}^{(i)} \cdot \log f_{k}(x^{(i)}; \theta)$$

Where 
$$q_{ij}(m,\cdot) = \sum_k q_{ij}(m,k)$$
 and  $q_{ij}(\cdot,k) = \sum_m q_{ij}(m,k)$ .

## Methods and Optimization

#### We compare:

- Ideal: DL model trained with the ground truth (as upper bound).
- DL model trained on: hardMV and softMV (Rodrigues et al. 2013).
- DL-DS: DL model trained over DS inferred labels (D&S 1979).
- DL-EM: DL model inside the EM algorithm of DL-DS (Albarqouni et al. 2016/Rodrigues et al. 2018).

### Training details

- Methods are trained until convergence up to a maximum of 50 iterations.
- EM algorithm initialization is done with softMV.
- We perform 20 runs of each experiment and average the results.

### **Evaluation**

#### **Evaluation metrics**

- To evaluate the predictive model (test set):
  - Accuracy over the ground truth.
- To evaluate the confusion matrices estimation (train set):
  - I-JS (Individual Jensen-Shannon divergence): average divergence between the real and the predicted matrices of each annotator.
  - G-JS (Global Jensen-Shannon divergence): divergence between the real and predicted global matrices.

#### Simulation

### Simulation process as in previous work:

- Train a neural network model over the ground truth.
- $oldsymbol{0}$  Randomly perturb the model weights with M different noise levels.
- Oreate the confusion matrix (ability) of each perturbed model.
- Create T annotators by selecting one of the M ability levels based on p(g).
- **3** Each data point is labelled by a random subset  $T_i$  of all the annotators T.

   In average, we obtain  $\overline{T}_i$  annotations per data.
- Each annotator provides a label based on the ground truth and her ability.

#### **Datasets**

- Fully synthetic data (Setup (1)):
  - Three Gaussians, 1000 data points each, K=3
  - Set  $\bar{T}_i = 5$
  - Set M=3 (experts, inexperts, spammers)
  - Set p(g) = (0.25; 0.55; 0.20)
- Semi synthetic data (Setup (2)):
  - CIFAR-10 dataset, 60000 real images, K = 10
  - Set  $\bar{T}_i = 3$
  - ullet Set M=4 (experts, inexperts, highly inexpert, spammers)
  - Set p(g) = (0.20; 0.45; 0.15; 0.20).
- Real data (from AMT):
  - LabelMe, 2688 real images, K=8
  - $\bullet$  T=59 annotators
  - ullet  $ar{T}_i=2.6$  annotations by image in average

# Results on Synthetic Data

Table 1: Test accuracy of the different methods on a simulated crowd-sourcing scenario for values of T (columns) ranging from T=100 to T=10000. Marker  $\dagger$  represents that the method could not be executed due to insufficient memory (16GB available).

|        | Setup (1) |       |       |       |       |       |
|--------|-----------|-------|-------|-------|-------|-------|
| Method | 100       | 500   | 1500  | 3500  | 6000  | 10000 |
| softMV | 69.34     | 66.21 | 66.87 | 68.48 | 67.00 | 66.49 |
| hardMV | 79.57     | 82.49 | 80.51 | 81.57 | 74.30 | 79.07 |
| DL-DS  | 94.66     | 93.89 | 92.28 | 90.00 | 89.69 | 85.13 |
| DL-EM  | 93.97     | 93.99 | 92.18 | 88.27 | 76.47 | 67.01 |
| CMM    | 90.53     | 91.07 | 91.66 | 90.45 | 90.26 | 90.46 |
| Ideal  | 94.75     |       |       |       |       |       |

|        | Setup (2) |       |       |       |       |       |
|--------|-----------|-------|-------|-------|-------|-------|
| Method | 100       | 500   | 1500  | 3500  | 6000  | 10000 |
| softMV | 63.35     | 65.90 | 63.59 | 60.07 | 63.21 | 64.20 |
| hardMV | 71.09     | 69.50 | 68.48 | 69.09 | 70.08 | 66.01 |
| DL-DS  | 71.33     | 68.49 | 68.08 | 66.86 | †     | †     |
| DL-EM  | 81.38     | 80.42 | 77.81 | 69.81 | †     | †     |
| CMM    | 78.83     | 78.36 | 79.35 | 77.92 | 78.45 | 78.96 |
| Ideal  | 83.77     |       |       |       |       |       |

#### Results on Real Data

Table 2: Performance of the different methods in a real crowd-sourcing scenario (LabelMe). Marker  $\diamond$  represents no change with respect to the setting. Acc. stands for Accuracy. Iters stands for iterations to converge.

|        | Individual Setting |            |           |       | Global Setting |       |            |           |           |
|--------|--------------------|------------|-----------|-------|----------------|-------|------------|-----------|-----------|
| Method | Iters              | Train Acc. | Test Acc. | I-JS  | G-JS           | Iters | Train Acc. | Test Acc. | G-JS      |
| softMV | 9.2                | 83.32      | 81.69     | 0.216 | 0.024          |       | <b>♦</b>   | <b>♦</b>  | <b>\$</b> |
| hardMV | 11.8               | 80.34      | 79.95     | 0.225 | 0.035          |       | <b>♦</b>   | <b>♦</b>  | <b>\$</b> |
| DL-DS  | 10.6               | 84.30      | 83.57     | 0.153 | 0.036          | 4.1   | 12.63      | 14.08     | 0.473     |
| DL-EM  | 3.9                | 85.18      | 83.07     | 0.295 | 0.259          | 3.0   | 78.02      | 75.92     | 0.467     |
| СММ    | 7.2                | 84.58      | 83.10     | 0.234 | 0.054          |       | <b>♦</b>   | <b>♦</b>  | <b>♦</b>  |
| Ideal  | 8                  | 97.90      | 92.09     |       |                |       | <b>♦</b>   | <b>♦</b>  |           |

# Groups found by the Method I

- Confusion matrices found on the LabelMe dataset
- M = 3







| Group | $\alpha^{(m)}$ | $I_{sim}$ | $\mathbb{H}$ |
|-------|----------------|-----------|--------------|
| 1     | 0.99           | 0.91      | 0.48         |
| 2     | 0.01           | 0.02      | 2.08         |
| 3     | 0.00           | 0.03      | 2.08         |

## Groups found by the Method II



Figure 1: Examples of confusion matrices (True vs Estimated) on the LabelMe dataset.

# Computational Efficiency

- Increasing T on simulated data setup (1).
- DL-EM: blue
- CMM: green



#### Conclusion

- We presented a model with a fixed number of components into which annotations can be grouped together.
- Grouping annotations has have some advantages:
  - The method is more scalable in case with large number of annotators.
  - The method adapts naturally when we do not know which annotations are given by which annotator (Global setting).
- Our results on synthetic and real data show that CMM can outperform the baselines when the labels are sparse or many annotators are present.
- Future work: Generate an extension that avoid the use of EM algorithm.

## Francisco Mena and Ricardo Ñanculef

Departamento de Informática Universidad Técnica Federico Santa María Chile

October 2019





# Model: Group Assignment

• When we need to estimate the group corresponding to an annotator, we used her annotations  $\mathcal{L} = \{x_i, y_i\}_{i \in N_c}$  to a group and compute:

$$p(g = m | \mathcal{L}, X) = \frac{p(\mathcal{L}|g = m, X) p(g = m | X)}{\sum_{m'} p(\mathcal{L}|g = m', X) p(g = m' | X)}$$
$$= \frac{p(y_i^{(\ell)} | x^{(i)}, g = m) \cdot \alpha^{(m)}}{\sum_{m'} p(y_i^{(\ell)} | x^{(i)}, g = m') \cdot \alpha^{(m')}}$$

• The confusion matrix of an annotator a is estimated as:

$$\beta^{(a)} = \sum_{m} p(g = m|a) \cdot \beta^{(m)}$$

# Additional Optimization Details

#### EM optimization details:

- MV methods are deterministic.
- DS inference with closed equations is also deterministic.
- DL-EM and our method (CMM) are stochastic (due to neural net's optimization).
  - (M step) The DL models are trained one epoch using the Adam optimizer.
  - Multiple restarts (20) of the EM algorithm were applied.

#### Theoretical framework - EM

#### EM algorithm

Optimize iteratively the parameters  $\Theta$  model over all the variables. An auxiliary model  $q(\cdot)$  over the latent variable is used.

- ullet E-xpectation step: Infer some latent variable c distribution, through the auxiliary model  $q(\cdot)$ , with  $\Theta$  fixed. Initialization required.
- $\bullet$  M-aximization step: Learn the model parameters  $\Theta,$  maximizing a lower-bound of the log-likelihood, with q(c) fixed.

```
\begin{array}{lll} \text{Mixture} & \text{Models} & p(y|x) = \sum_k \alpha_k p_k(y|x) & \text{The mixture coefficients } \{\alpha_k\} \\ \text{(MM)} & \text{are hidden values} \\ \text{Mixture of Experts} & p(y|x) = \sum_i \alpha_k(x) p_k(y|x) & \text{The mixture coefficients are function of some variable} \\ \text{(MoE)} & \text{function of some variable} \end{array}
```

Table 3: Examples of hidden variable models