

Clustering, Density Estimation, and Anomaly Detection

Assoc. Prof. Karl Ezra Pilario, Ph.D.

Process Systems Engineering Laboratory Department of Chemical Engineering University of the Philippines Diliman

Outline

- Clustering
 - K-means Clustering
 - Hierarchical Clustering
 - Density-based Clustering
 - Gaussian Mixture Model
- Density Estimation
 - Kernel Density Estimation (KDE)
- Anomaly Detection
 - Application of KDE
 - One-class SVM
 - Local Outlier Factor
 - Isolation Forest

Hastie et al. (2008) The Elements of Statistical Learning. 2nd Ed. Springer.

Bishop (2006)

Pattern Recognition and

Machine Learning. Springer.

What is Clustering?

The problem of identifying groups or clusters of data points in a multi-dimensional space.

- It is NOT the same as the *classification* problem.
 - In clustering, class labels are unknown. Groupings are established solely from the locations of points.
- Interpretation: Samples within the same cluster are more similar to each other than those assigned to other clusters.
- The central idea is the notion of "similarity".

Some applications of Clustering:

Customer segmentation

• Given the attributes of your customers, can they be grouped so we can target our ads to each group of common people?

Recommendation systems

- It has been reported that Netflix identified 2,000 clusters of subscribers of similar taste by tracking their viewing habits. For example, *Black Mirror* is favored by Clusters 290 and 56.
- **Source:** https://www.vulture.com/2018/06/how-netflix-swallowed-tv-industry.html

Image compression

- An image can be recolored by clustering "similar" colors as one.
- From left to right, there are 2, 3, and 10, clusters chosen. The last column is the original image.

Bishop (2006). Pattern Recognition and Machine Learning. Springer.

Side Note: Clustering ≠ Classification

This is clustering:

- Start with an unlabelled data set.
- After clustering, points are now assigned to clusters.
- There is no external annotator (e.g. human) defining or enforcing any labels.

This is classification:

- Start with a labelled data set.
- Labels are defined / enforced by an annotator (e.g. human).
- After classification, the model tries to predict how the annotator labelled the data.

Side Note: Centroids and Voronoi Diagrams

- Typically, the result of clustering is a set of cluster centroids.
- If clusters can be visualized in 2-D, we can use Voronoi Diagrams to delineate data points that belong to different clusters.

Cell

A partitioned region of space.

Centroids

Center (mean) of each cluster cell.

Voronoi Diagram

- A partitioning of space into cells, based on a given position of centroids.
- Each separating line is the locus of points that are equidistant from the 2 nearest centroids.
- Interpretation:

All points within a cell are closer to their assigned centroid than any other centroid.

Let's begin with some preliminaries.

Let:
$$\mathbf{x}_i \in \Re^M$$
, $i = 1, 2, ..., N$ be a data set of N samples $\mathbf{\mu}_j \in \Re^M$, $j = 1, 2, ..., K$ be the locations of K centroids $r_{ij} \in \{0, 1\}$, $i = 1, 2, ..., N$ be an indicator $j = 1, 2, ..., K$
$$\begin{cases} r_{ij} = 1 & \text{if sample } i \text{ is closest to centroid } j \\ r_{ij} = 0 & \text{otherwise} \end{cases}$$

Consider the 2-D data set to be clustered below:

An illustration of how the indicator r_{ij} works: (N = 8, K = 2)

	Cluster $j = 1$	Cluster $j = 2$
<i>i</i> = 1	1	0
2	0	1
3	1	0
4	1	0
5	0	1
6	1	0
7	0	1
8	0	1

 r_{ij}

	<u>'l</u>]	
	Cluster $j = 1$	Cluster $j=2$
<i>i</i> = 1	1	0
2	1	0
3	1	0
4	1	0
5	0	1
6	0	1
7	0	1
8	0	1

Let:
$$\mathbf{x}_i \in \Re^M$$
, $i = 1, 2, ..., N$ be a data set of N samples $\mathbf{\mu}_j \in \Re^M$, $j = 1, 2, ..., K$ be the locations of K centroids $r_{ij} \in \{0, 1\}$, $i = 1, 2, ..., N$ be an indicator:
$$j = 1, 2, ..., K$$

$$\begin{cases} r_{ij} = 1 & \text{if sample } i \text{ is closest to centroid } j \\ r_{ij} = 0 & \text{otherwise} \end{cases}$$

In K-means clustering, the goal is to find K centroids, μ_i , that minimize the *inertia* or *distortion measure*, *]*:

$$J = \sum_{i}^{N} \sum_{j}^{K} r_{ij} ||x_{i} - \mu_{j}||^{2}$$

Algorithm:

Data Set, $x_i \in \mathbb{R}^M$, i = 1, 2, ..., NGiven:

Initialization: Set a tolerance, *tol* (e.g. 10^{-3})

Set an assumed number of clusters, K Set an initial guess of K centroids, μ_i

1: Pre-allocate an old solution: $\mu_i^{\text{old}} = \mathbf{0} \in \Re^{K \times M}$.

2: WHILE $\|\boldsymbol{\mu}_i - \boldsymbol{\mu}_i^{\text{old}}\| > \text{tol}$

Save the <u>old</u> centroids: $\mu_j^{\text{old}} \coloneqq \mu_j$. Expectation

E-step Compute r_{ij} : Assign each x_i to the closest centroid.

M-step Compute the <u>new</u> centroids, μ_i :

Maximization

$$\boldsymbol{\mu}_j = \frac{\sum_i r_{ij} x_i}{\sum_i r_{ij}}$$

 $\mu_j = rac{\sum_i r_{ij} x_i}{\sum_i r_{ij}}$ Compute the new μ_j as the average position of all data points x_i assigned to cluster j.

6: END WHILE

7: Report the final centroids, μ_i .

Example 1:

Find K = 5 clusters of samples, and their centroids, from the following data set:

Answer:

However, note that different initializations may lead to local minima of J. Solution: Try to restart K-means many times.

There are different ways to initialize the centroids in K-means clustering:

Forgy Initialization

Select K existing data points at random, then use them as initial guess of centroids.

sklearn: cluster.Kmeans(...init='random')

K-means++

Arthur and Vassilvitskii (2006).

Random data points are selected one at a time and as far apart as possible, until you have *K* number of them.

sklearn: cluster.Kmeans(...init='k-means++')

Random Partition

Assign each data point to a random cluster, then compute the means of each cluster as the initial guess.

*Not recommended

Example 2: Covid-19 Cases

In this application, K-means clustering can be used to find *K* centroids where testing centers can be located.

Image of Covid cases from:

https://www.esquiremag.ph/politics/news/covid-19-case-distribution-map-metromanila-a00293-20200510

Finding **10 clusters** of NCR Covid-19 cases:

Finding **20 clusters** of NCR Covid-19 cases:

How to determine *K* in K-means?

- K-means cannot automatically learn the best number of clusters, *K*, from the data. We have to specify it ourselves prior to running it.
- Sometimes, the number of distinct clusters, K, is obvious (especially if data set is 2D). But this is not always the case.

How many clusters are in this data set?

Results for various choices of *K*:

Elbow Method

• Calculate the inertia for each *K*:

$$J = \sum_{i}^{N} \sum_{j}^{K} r_{ij} \|\boldsymbol{x}_{i} - \boldsymbol{\mu}_{j}\|^{2}$$

Find the elbow point in the inertia plot.

 For each K, calculate the average silhouette score:

$$s(i) = \begin{cases} \frac{b(i) - a(i)}{\max(a(i), b(i))}, & \text{if } |C_i| > 1\\ 0, & \text{if } |C_i| = 1 \end{cases}$$

$$a(i) = \frac{1}{|C_i| - 1} \sum_{i \in C_i} d(i, j)$$

$$b(i) = \min_{k \neq i} \frac{1}{|C_j|} \sum_{j \in C_k} d(i, j)$$

• Find the *K* with the maximum average silhouette score.

Results for various choices of *K*:

Silhouette Score

$$s(i) = \begin{cases} \frac{b(i) - a(i)}{\max(a(i), b(i))}, & \text{if } |C_i| > 1\\ 0, & \text{if } |C_i| = 1 \end{cases}$$

$$a(i) = \frac{1}{|C_i| - 1} \sum_{j \in C_i} d(i, j)$$

$$b(i) = \min_{k \neq i} \frac{1}{|C_j|} \sum_{j \in C_k} d(i, j)$$

Notation:

- d(i,j) = Euclidean distance of point i to point j.
- a(i) = mean distance between point i to all other points in the same cluster (cohesion).
- b(i) = mean distance between point i to all other points in the *next nearest* cluster (separation).
- $|C_i|$ = no. of points assigned to cluster i.
- s(i) = silhouette score for point i. It ranges from -1 to 1 only.

Other performance metrics for clustering:

Internal Cluster Validity Indices

(Correct labels are unknown)

- Calinski-Harabasz Index
- Davies-Bouldin Index
- Dunn Index
- Negentropy Increment
- C-index

External Cluster Validity Indices

(Correct labels are known)

- Rand
- Adjusted Rand
- Fowlkes-Mallows
- Jaccard
- Variation of Information

See Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Perez, J. M., & Perona, I. (2013). An extensive comparative study of cluster validity indices. *Pattern Recognition*, 46(1), 243–256.

Some drawbacks of K-means clustering:

1. The converged solution is not always optimal.

$$\min_{\mu} J = \sum_{i}^{N} \sum_{j}^{K} r_{ij} \|x_i - \mu_j\|^2$$

- 2. If the initial centroids are poorly chosen, some clusters may end up empty.
- 3. If number of data points is large and high-dimensional, the algorithm can take a long time to run.

Some workarounds:

- Use a tree data structure to compute distances faster (Moore, 2000).
- Use the triangle inequality instead of Euclidean distance (Elkan, 2003).

Some extensions of K-means clustering:

1. Instead of the Euclidean distance, we can use a different notion of distance, $\mathcal{V}(x_i, \mu_i)$.

$$\min_{\boldsymbol{\mu}} J = \sum_{i}^{N} \sum_{j}^{K} r_{ij} \mathcal{V}(\boldsymbol{x}_{i}, \boldsymbol{\mu}_{j})$$

2. Instead of hard clustering (each x_i is assigned to one and only one cluster), we can use soft clustering algorithms.

Fuzzy C-means Clustering
Fuzzy clustering by Local Approximation of MEmberships (FLAME)
Rough K-means Clustering
Gaussian Mixture Models

3. So far, we only have a batch version of K-means (the entire data set is used at once). Alternatively, we can use MiniBatch K-means.

We can also implement K-means clustering online: The clusters are updated as new data points arrive.

The K-means algorithm only works if we know the number of clusters, K, beforehand.

How can we view all results for any *K*? What about clusters within a cluster?

One solution: Hierarchical Clustering
(Hierarchical Cluster Analysis)

The main result of Hierarchical Clustering is a dendrogram.

- It is a binary tree.
- The *root* represents all the data as one cluster.
- Each *leaf* represents each data point as is its own cluster.
- Onwards from the root, only one new split occurs at a time. When a split is made, two separate clusters are formed.
- The tree can be cut at any height to give any number of clusters.

https://en.wikipedia.org/wiki/Hierarchical clustering#/media/File:Iris dendrogram.png

There are two main strategies to build the dendrogram.

https://quantdare.com/hierarchical-clustering/

Agglomerative Clustering

- Bottom-up approach
- Algorithm:
 - 1. Treat each data point as a cluster (N clusters)
 - 2. WHILE (No. of clusters is not equal to 1)
 - 3. Combine the 2 nearest clusters.
 - 4. END
 - 5. Report the result as a dendrogram.

Divisive Clustering (Bisecting K-means)

- Top-down approach
- Algorithm:
 - Treat the entire data set as 1 cluster.
 - 2. WHILE (No. of clusters is not equal to N)
 - 3. Identify new clusters using K-means.
 - 4. END
 - 5. Report the result as a dendrogram.

Different ways to **merge** clusters:

- Merges are determined in a greedy manner.
- Two clusters are merged if they are the "closest" pair to each other.
- The term "closest" can be defined in many ways:
 - Centroid-linkage
 - Single-linkage
 - Complete-linkage
 - Average-linkage
 - Ward's method

Centroid-linkage

• Two clusters are "closest" if their centroids are closest.
$$D(c_1, c_2) = D\left(\frac{1}{|c_1|} \sum_{x \in c_1} x, \frac{1}{|c_2|} \sum_{x \in c_2} x\right)$$

Single-linkage (SLINK)

- Two clusters are "closest" if the two nearest points between them is closest.
- · Favors long chains of clusters.

Complete-linkage (CLINK)

- Two clusters are "closest" if the two farthest points between them is closest.
- Favors spherical clusters with consistent diameter.

$$D(c_1, c_2) = \max_{x_1 \in c_1, \ x_2 \in c_2} D(x_1, x_2)$$

Average-linkage

- Two clusters are "closest" if the average distance between all pairs of points is closest.
- Less affected by outliers.

$$D(c_1, c_2) = \frac{1}{|c_1|} \frac{1}{|c_2|} \sum_{x_1 \in c_1} \sum_{x_2 \in c_2} D(x_1, x_2)$$

Ward's Method

• Two clusters are merged if there is a minimum increase in total within-cluster variance after merging.

$$D(c_1, c_2) = \sum_{\mathbf{x} \in c_1 \cup c_2} D(\mathbf{x}, \boldsymbol{\mu}_{c_1 \cup c_2})^2$$

Reference: https://www.youtube.com/watch?v=vg1w5ZUF5IA

In our example, Ward's method shows the most intuitive dendrogram.

Ward's method is the *default* method for Agglomerative Clustering in sklearn.

Dendrograms (top) and Cluster Visualizations (bottom)

Outline

- Clustering
 - K-means Clustering
 - Hierarchical Clustering
 - Density-based Clustering
 - Gaussian Mixture Model
- Density Estimation
 - Kernel Density Estimation (KDE)
- Anomaly Detection
 - Application of KDE
 - One-class SVM
 - Local Outlier Factor
 - Isolation Forest

Hastie et al. (2008) The Elements of Statistical Learning. 2nd Ed. Springer.

Bishop (2006)

Pattern Recognition and

Machine Learning. Springer.

Density-based Clustering

Two famous algorithms for density-based clustering are DBSCAN and OPTICS.

Difference between DBSCAN and K-means Clustering:

https://www.mygreatlearning.com/blog/dbscan-algorithm/

K-means Clustering

- Distance-based
- Cluster shapes tend to be spherical around the centroids.
- Each point will eventually belong to a cluster
- Sensitive to outliers

DBSCAN

- Density-based
- Clusters can be any shape of connected data points.
- Some points will be unclustered (outliers)
- Robust to outliers

DBSCAN

(Density-based Spatial Clustering of Applications with Noise)

This illustrates DBSCAN on a toy data set:

(https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.htm)

DBSCAN parameters: minPts and Epsilon (ε)

If there are at least 'minPts' points within a radius of ' ϵ ' to a point, then we consider all these points to be part of the same cluster.

Gaussian Mixture Models

- A soft-clustering version of K-means.
- Assumes that each cluster is Gaussian-distributed.
- The entire data set is then clustered as a mixture of K Gaussian distributions. K must be known.

$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$
--

 π_k = weight of kth cluster K = total number of clusters $\mathcal{N}(x|\mu_k, \Sigma_k) = k$ th Gaussian dist.

Recall: K-means clustering algorithm

Given: Data Set, $x_i \in \Re^M$, i = 1, 2, ..., N

Initialization: Set a tolerance, tol (e.g. 10^{-3})

Set an assumed number of clusters, KSet an initial guess of K centroids, μ_i

- **1**: Pre-allocate an old solution: $\mu_i^{\text{old}} = \mathbf{0} \in \mathfrak{R}^{K \times M}$.
- 2: WHILE $\|\boldsymbol{\mu}_i \boldsymbol{\mu}_i^{\text{old}}\| > \text{tol}$
- **3**: Save the <u>old</u> centroids: $\mu_i^{\text{old}} \coloneqq \mu_i$.
- **4**: Compute r_{ij} : Assign each x_i to the closest centroid.
- 5: Compute the <u>new</u> centroids, μ_i :

$$\mu_j = \frac{\sum_i r_{ij} x_i}{\sum_i r_{ij}}$$
 Compute the new μ_j as the average position of all data points x_i assigned to cluster j .

- 6: END WHILE
- **7**: Report the final centroids, μ_j .

The algorithm for GMMs is similar to K-means.

EM = Expectation Maximization

(Dempster et al., 1997)

• **E-step:** Calculate the responsibilities, r_{ij} , of each x to each μ .

$$r_{ij} = \frac{\pi_j \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$$

M-step: Update new μ and Σ .

$$\mu_j = \frac{\sum_i r_{ij} \mathbf{x}_i}{\sum_i r_{ij}}$$
 $\Sigma_j = \frac{1}{N_j} \sum_{n=1} r_{nj} (\mathbf{x}_n - \mu_j)^2$

How the EM algorithm works:

2-D Gaussian PDFs

A Comparison of Clustering Methods

So far, we discussed only:

- K-means
- Mini-batch K-means
- Hierarchical Clustering
 - Ward
- DBSCAN
- Gaussian Mixture

In scikit-learn, other clustering algorithms are available.

You can apply a performance metric (e.g. silhouette score) on all these results in order to compare them quantitatively.

A comparison of the clustering algorithms in scikit-learn

Outline

- Clustering
 - K-means Clustering
 - Hierarchical Clustering
 - Density-based Clustering
 - Gaussian Mixture Model
- Density Estimation
 - Kernel Density Estimation (KDE)
- Anomaly Detection
 - Application of KDE
 - One-class SVM
 - Local Outlier Factor
 - Isolation Forest

Hastie et al. (2008)
The Elements of Statistical Learning.
2nd Ed. Springer.

Bishop (2006)

Pattern Recognition and

Machine Learning. Springer.

Density Estimation

- Refers to the estimation of an unobservable underlying probability density function given only observed data.
- Usually, we only assume that the data is Gaussian-distributed. However, if the data is multi-modal or non-Gaussian, then we need to perform density estimation.

Gaussian vs. Non-Gaussian Data

Kernel Density Estimation

Estimate the probability, p(x), as a sum of kernel functions K(x):

$$p(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{h^{D}} K\left(\frac{x - x_{i}}{h}\right)$$

h = bandwidth

D = dimensions of the data

N = no. of data points

 $k(\cdot) = \text{kernel function}$

 x_i = training data

x =any new query data

Example:

Estimate the probability distribution of the following univariate non-Gaussian data:

0.0, 2.0, 3.5, 5.0, 5.5, 6.0

Density Estimation

Example:

Use the bivariate kernel density estimator to find the distribution of Covid cases using a bandwidth of h = [0.02, 0.02] and the Gaussian kernel.

Answer:

The areas with high density of cases will have higher peaks in the estimated distribution.

Anomaly Detection

One important application of KDE is *anomaly detection*: Finding data points that deviate from the expected distribution.

Practical uses of anomaly detection:

- Fault detection in any industrial system
- Defect detection in products
- Fraud detection in financial transactions
- Detecting cyber-attacks, network intrusions
- Detecting fake data (images, texts, etc.)
- Detecting anomalies in medical data
- Outliers and change points detection in time series
- Detecting unusual human behavior*

If the data is Gaussian-distributed: (Use Elliptic Envelope or just Quantiles)

- Fit a Gaussian distribution to the data. Find μ and Σ .
- Establish a confidence level, α , e.g. 95%.
- Calculate the thresholds at which the area under the distribution is a fraction of α .
- Use the thresholds as upper control limit and lower control limit.

If the data is <u>not</u> Gaussian-distributed: (Use KDE)

- Fit a distribution to the data using Kernel Density Estimation (KDE).
- Do the same steps as above.

Other Anomaly Detection Methods

One-Class SVM

Support Vector Data Description (SVDD)

Tax and Duin (2004)

- Minimize the volume of a *hyper-sphere* around the data points.
- All points outside the hyper-sphere are outliers.

$$\min_{R,a} R^2 + C \sum_{i=1}^n \epsilon_i$$

$$||x_i - \boldsymbol{a}||^2 \le R^2 + \epsilon_i \quad \forall i = 1, 2, \dots, n$$

$$\epsilon_i \ge 0 \qquad \forall i = 1, 2, \dots, n$$

sklearn.svm.OneClassSVM

Support Vector Method for Novelty Detection

Scholkopf et al. (1999)

- Separate the data points from the origin by maximizing the distance of a *hyper-plane* to the origin.
- All points outside the hyper-plane are outliers.

$$\min_{\mathbf{w}, \epsilon_i, \rho} \frac{1}{2} \|\mathbf{w}\|^2 + \frac{1}{\nu n} \sum_{i=1}^n \epsilon_i - \rho$$

$$\langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle \ge \rho - \epsilon_i \quad \forall i = 1, 2, ..., n$$

 $\epsilon_i \ge 0 \quad \forall i = 1, 2, ..., n$

Local Outlier Factor

Breunig (2000)

- Similar to DBSCAN in that it is density-based.
- Relevant Formula:
 - Reachability Distance (RD)

RD(A,B) and RD(A,C) are the same since B and C belong to the k-nearest neighbors of A. Meanwhile, RD(A,D) = dist(A,D) since D is not a neighbor of A.

• Local Reachability Density (LRD)

$$LRD(A) = \frac{1}{\frac{1}{|N_k(A)|} \sum_{B \in N_k(A)} RD(A, B)}$$

 $N_k(A)$ is the set of k-nearest neighbors of A.

Local Outlier Factor (LOF)

$$LOF(A) = \frac{\sum_{B \in N_k(A)} LRD(B)}{|N_k(A)| \cdot LRD(A)}$$
 Higher LOF, more likely an outlier

"Average LRD of the neighbors of point A divided by A's own LRD"

sklearn.neighbors.LocalOutlierFactor

Isolation Forest

Liu et al. (2008)

- Build a typical forest of Decision Trees.
- The shorter the average paths from the root to a leaf, the more likely the leaf is an outlier.

Source: https://wiki.datrics.ai/isolation-forest-model

sklearn.ensemble.IsolationForest

Anomaly Score

$$Score(x,n) = 2^{\frac{-E(h(x))}{c(n)}}$$

Higher score, more likely an outlier

Path length h(x) is the number of edges traversed from the root to a leaf node x.

c(n) = average path length of all leaves as if searched via a Binary Search Tree.

Side Note: Outlier Detection vs. Novelty Detection

- Anomalies can be: outliers that contaminate the existing training data.
- Anomalies can also be: novel test data that do not conform to a given training data.

Anomaly Detection

Example:

Identify outliers from this 2D data set using the following methods:

- Elliptic Envelope (contamination = 0.1)
- KDE at 95% confidence
- One-class SVM ($\nu = 0.05, \gamma = 1$)
- Local Outlier Factor (no. of neighbors = 5)
- Isolation Forest (contamination = 0.1)

Anomaly Detection using Elliptic Envelope

Anomaly Detection using KDE

Side Note: Anomaly Detection in Multivariate Data

In industry, statistical control charts are used to detect outliers / abnormal events.

Outline

- Clustering
 - K-means Clustering
 - Hierarchical Clustering
 - Density-based Clustering
 - Gaussian Mixture Model
- Density Estimation
 - Kernel Density Estimation (KDE)
- Anomaly Detection
 - Application of KDE
 - One-class SVM
 - Local Outlier Factor
 - Isolation Forest

Hastie et al. (2008)
The Elements of Statistical Learning.
2nd Ed. Springer.

Bishop (2006)

Pattern Recognition and

Machine Learning. Springer.

Further Reading

- https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html
- https://scikit-learn.org/stable/modules/clustering.html
- Daniel Mullner, "Modern hierarchical, agglomerative clustering algorithms", arXiv:1109.2378v1.
- Hamerly and Elkan (2002). Alternatives to the K-means algorithm that find better clusterings. https://dl.acm.org/doi/10.1145/584792.584890
- Arthur and Vassilvitskii (2006). K-means++: The Advantages of Careful Seeding. http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf
- Ward, J. H., Jr. (1963), "Hierarchical Grouping to Optimize an Objective Function", Journal of the American Statistical Association, 58, 236–244.
- Ng, Andrew Y and Jordan, Michael I and Weiss, Yair (2002). "On spectral clustering: analysis and an algorithm" (PDF). Advances in Neural Information Processing Systems. https://ai.stanford.edu/~ang/papers/nips01-spectral.pdf
- DBSCAN paper: Ester, M., H. P. Kriegel, J. Sander, and X. Xu, "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise". In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996
- Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). "DBSCAN revisited, revisited: why and how you should (still) use DBSCAN." ACM Transactions on Database Systems (TODS), 42(3), 19.
- https://towardsdatascience.com/clustering-algorithm-for-customer-segmentation-e2d79e28cbc3
- Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Perez, J. M., & Perona, I. (2013). An extensive comparative study of cluster validity indices. *Pattern Recognition*, 46(1), 243–256.
- Ruff, Lukas & Kauffmann, Jacob & Vandermeulen, Robert & Montavon, Gregoire & Samek, Wojciech & Kloft, Marius & Dietterich, Thomas & Müller, Klaus-Robert. (2021). <u>A Unifying Review of Deep and Shallow Anomaly Detection</u>. Proceedings of the IEEE. PP. 1–40. 10.1109/JPROC.2021.3052449.
- Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000, May). LOF: identifying density-based local outliers. In ACM sigmod record.
- Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou, "Isolation Forest", IEEE International Conference on Data Mining 2008 (ICDM 08).
- https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_anomaly_comparison.html