Continuous Assessment Test - II - May 2023

Programme Course Faculty	B.Tech (ECE/ECM) Electronic Materials and Devices Dr. Ashish Kumar Dr. Chandrasekaran N	Semester Code Slot Class Nbr(s)	: Winter 2022-23 : BECE201L : E2+TE2 : CH2022232300106 CH2022232300107 CH2022232300108
	Dr. Rahul Narasimhan Dr. Anith Nelleri Dr. Deepak Punetha Dr. Mangal Das		CH2022232300109 CH2022232300110 CH2022232300111
Time	: 90 Minutes	Max. Marks	: 50

Answer ALL the questions

	Question Description	Marks
Q.No. Sub Sec	2 .	10
2	"It is known that for a P-type semiconductor, the fermi level (E _F) is nearer to the valence band of the semiconductor. When a very high concentration of electrons is injected near the origin of the P type semiconductor, the P-type semiconductor tends to become a N-type semiconductor near the origin". Consider a P-type semiconductor with acceptor concentration of 10 ¹⁷ atoms/cm ⁻³ equilibrium, when electrons are injected into a very long P-type silicon semiconductor the origin, the steady state excess electron concentration at the origin (x = 0) 5×10^{18} cm ⁻³ . Find the steady state separation between the fermi level (E _F) and the intrins level (E _I) at origin x = 0 and at a distance of 90 nm from the origin (x = 90 nm). Assume the intrinsic carrier concentration is 1.5 x 10^{10} cm ⁻³ , T = 300K, Mobility electrons = $500 \text{ cm}^2/\text{V}$ -s and hole carrier life time = 10^{-10} s.	at at is sic

3	An ideal silicon PN junction diode at $T = 300$ K is uniformly doped on both sides of the metallurgical junction. It is found that under zero bias, the doping concentration is $N_A = 10 N_D$ and the built-in potential barrier is $V_{bi} = 0.74$ V. Determine the value of the following: (a) N_A and N_D [4 marks] (b) Width of the Space Charge Region [3 marks] (c) $ E_{max} $ [3 marks] Note: $\epsilon_r = 11.7$, $\epsilon_0 = 8.854 \times 10^{-12}$ F/m	ne is e
4	Discuss how a metal-semiconductor junction works instead of a semiconductor-semiconductor junction in conventional diodes. Compare the advantages of each of these above junctions with the help of energy band diagrams and mention some of their uses.	10
5	Design a silicon PN junction diode of area $A = 10^{-4}$ cm ² to operate at $T = 300$ K such that the total diode current is $I = 10$ mA at a forward voltage of $V_a = 0.65$ V. The ratio of electron current to total current is to be 0.70. Use the semiconductor parameters as $D_n = 25$ cm ² /s, $D_p = 10$ cm ² /s, $\tau_{n0} = \tau_{p0} = 5 \times 10^{-7}$ s, $n_i = 1.5 \times 10^{10}$ cm ⁻³	10
	Total Marks	[50]

 $\Leftrightarrow \Longrightarrow$