Geometaia Licenciatura em Ciências da Computação

Segundo teste 02 junho de 2017

Proposta de Resolução

1. A espaço 3D Homotetia de centro 2 = (1,-1,0) e Ratão 1=-3 h(A) = 2+1 ex = 2+1 (M-2)= (1-1) 2+14 le(x, y, t) = 4(1,-1,0)-3(x, y, t) = (4-3x, -4-3y, -32)

2 A flano agim euclidiano.

$$p(x,y) = (1+y, 1-x)$$
 $f(x,y) = (-1+y, 1+x)$
a Representação modercial de p

93 0 0 0 -3 23

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Seja A a matrit principal de p. Ternos AA = Id logo P e uma isometria do plano.

Temos que det A = 1 logo p é ema rotação de como trom sação. Clasamente praio é sema termlação (A # IJ) logo pé uma Rotação.

O contro da notação de
$$p$$
 é o sénico porto dixo de p . Temos:
 $p(x,y) = (x,y)$ (>>) $1+y=x$ (>>) $2-x=x$ (>>) $x=1$
 $1-x=y$ $y=0$

Paetamto, o centro de p é 2 = (2,0).

A motert principal de uma Rotação e da guerna coso -seno

Comparando com a matriz A, resulta que o, àngulo de rotação de p, é tal que 0 = - 1/2.

6 Representação material de T $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \times 1$

Seja B a materz principal de O. Temos que BB - Id logo o é cema isometria do plano.

Temos que det B = -1 logo S é sema seflexas ou some conflexa deslizante. Partos fixos de S: $S(x,y) = (x,y) \iff J-1+y = x \iff x-y+1=0$ 1+x=yO tem cema peta de portos fixos: A Reta 92 de apração caetoriama x-g+1=0 logo o é coma peflexão e a peta do peflexão é a Reta 92. Temos Goplagl= 5(1+g, 1-x) = (-1+1-x, 1+1+g) = (-2,2+g) Matricial mente: $\begin{bmatrix} g_1 \\ g_2 \end{bmatrix} = \begin{bmatrix} 0 \\ g_2 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix}$ A composta de deas ésometaias é en a isometaia, poetante sop é isometaia. Seja C a matriz principal de sop. Temos det C = -1 logo sop e econa reflexas ore coma reflexas deslizante. Postos fixos de $Gop(x,y) = (x,y) \in S - x = x$ 2+y = yComo O o p não posseri pontos dixos, teata-se de coma seflexão deslizante. 3 A plano enclidiamo a Seja da teamsvegão de todos 1 $\Theta = T_{4}$ centrada na origem e divigida for o Temos: d= P-Ty 0 92 0 PT/4 onde se é a toransveção de totre o centrada na origem na direção de es= (1,0), por e a notação centrada na origem de angulo 1/4 e p-1/4 é a Rotação centrada na oxigem de angulo - 1/4. Usando consdenadas homogéneas tomas: $\begin{bmatrix}
y_1 \\
y_2 \\
1
\end{bmatrix} = \begin{bmatrix}
1/\sqrt{2} & 1/\sqrt{2} & 0 \\
-1/\sqrt{2} & 1/\sqrt{2} & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1/\sqrt{2} & 1/\sqrt{2} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1/\sqrt{2} & 1/\sqrt{2} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$ Todanto, f(x, y) = (3x+1y, -2x+1y) E seja g a transvecció de fate a na clireção de vo conteada em A. Temos g = toão o do toão, ende toão é a translação segundo o

vetre -oñ, et é a aficação da alinea anterior e toñ é a translação segundo o votor or. Usando coorde nadas homogéneas temos: $\begin{bmatrix} y_1 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 3/2 & 1/2 & 0 \\ 1/2 & 1/3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0$ $= \begin{bmatrix} 3/2 & 1/2 & 0 \\ -1/2 & 1/6 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 3/2 & 1/2 \\ -1/2 & 1/2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 \\ 0$ Taxtanto, $g(x,y) = \left(\frac{3}{2}x + \frac{1}{2}y - \frac{1}{2}, -\frac{1}{2}x + \frac{1}{2}y + \frac{1}{2}\right)$ 4 A espaço 3D. Seja M= (20, yo, 20) & A. Termos que P(N) = 90 M OTI, orde Ty é a seta que incide con se e M. Como I(re) & Sur, existe le R tal que P(14) = (20, 90, 20) + 1 (20-2, 90-1, 20) = = (x0+1(x0-2), y0+1(y0-1), 20+12) Como I(M) ETT então: yo+ l (go-s) - 20 - 120 = 3 => l=3-go+20 Postanto: 40-20-1 $P(x_0, g_0, z_0) = (x_0 + 3 - y_0 + z_0) (x_0 - 2), g_0 + 3 - y_0 + z_0 (y_0 - z_0), z_0 + 3 - y_0 + z_0}$ $y_0 - z_0 - z_0$ $y_0 - z_0 - z_0$ = (2 20+30-20-3, 340-20-3, 220 90-20-1 40-20-1 40-20-1 O plano de pentis excecionais é o plano paralelo a Ti incidente em 52, ou seja, o plano de escação carterana y-2-1=0 (conjunto dos pentes para os quais P não está definida). 5 A espaço euclidiano de dimensão n. deja & a sometaria central de centro se EA. Temos S(H) = Q - ZA. Quenemos ver que & é ema isometria, isto é, que d(sin), s(N)) = d(H,N), para quaisquer que sejam os pontos M, N E A. Temps: d(8(M), 8(N)) = ||8(M)8(N)||= ||8(N)-8(H)||= = || (x-4) - (x-4) || = || (x-2) - (x-2) |= || (x-2) - (x-2) |= = 11 N-MI = 11 MRI = d(H, N), como queriamos de monstrar.