Definice

2.2	Matice		
Rál	ná matice typu $m \times n$ je obdélníkové schema (tabulka)		
2.3	Vektor		
Reálný n-rozměrný aritmetický sloupcový vektor je matice typu $m\times 1$			
2.4	* notace		
i-tý	řádek matice A se značí: $A_{i*} = (a_{i1}, a_{i2},, a_{in})$		
2.5	Soustava lineárních rovnic		
2.6	Matice soustavy		
2.8	Elementární řádkové úpravy		
2.12	Odstupňovaný tvar matice		
2.13	Hodnost matice		
2.18	Redukovaný odstupňovaný tvar matice		
3.1	Rovnost		
3.2	Součet		
3.3	Násobek		
3.7	Součin		
3.11	Transpozice		
3.14	Symetrická matice		

3.23	Regulární matice
3.30	Inverzní matice
4.1	Grupa
4.5	Podgrupa
4.8	Permutace
4.9	Inverzní permutace
4.1	Skládání permutací
4.13	Znaménko permutace
4.22	Těleso
4.35	Charakteristika tělesa
5.1	Vektorový prostor
5.4	Podprostor
5.8	Lineární obal
5.11	Lineární kombinace
5.21	Lineární nezávislost
5.22	Lineární nezávislost nekonečné množiny

5.29	Baze
5.32	Souřadnice
5.42	Dimenze
5.49	Spojení podprostorů
5.55	Maticové prostory
6.1	Lineární zobrazení
6.6	Obraz a jádro
6.14	Matice lineárního zobrazení
6.20	Matice přechodu
6.29	Isomorfismus
6.41	Prostor lineárních zobrazení
7.1	Afinní podprostor
7.7	Dimenze afinního podprostoru
7.10	Afinní nezávislost

Věty

1.1 Základní věta algebry

Každý polynom s komplexními koeficienty má alespoň jeden komplexní kořen.

dukaz

pres kruznici a jeji zmensovani v rovine komplexnich cisel. Snizujeme stupen polynomu az na nulu delenim kerenem.

2.22 Frobeniova věta

Soustava (A|b) má (aspoň jedno) řešení právě tehdy, když $\operatorname{rank}(A) = \operatorname{rank}(A|b)$

3.28 o regularni matici

Buď $A \in \mathbb{R}^{m \times n}$. Pak RREF(A) = QA pro nějakou regulární matici $Q \in \mathbb{R}m \times m$

dukaz

RREF(A) získáme aplikací konečně mnoha elementárních řádkových úprav. Nechť jdou reprezentovat maticemi E1, E2, ..., Ek. Pak RREF(A) = Ek...E2E1A = QA, kde Q = Ek...E2E1. Protože matice E1, E2, ..., Ek jsou regulární, i jejich součin Q je regulární

3.31 O existenci inverzní matice

Buď $A \in \mathbb{R}^{n \times n}$. Je-li A regulární, pak k ní existuje inverzní matice, a je určená jednoznačně. Naopak, existuje-li k A inverzní, pak A musí být regulární

dukaz

Existence - Vytvořme matici A^{-1} tak, aby její sloupce byly vektory x1,...,xn, to jest, $A^{-1}=(x1|x2|...|xn)$ Druha rovnost - $A(A^{-1}A-I)=AA^{-1}A-A=IA-A=0$ Jednoznacnost - $B=BI=B(AA^{-1})=(BA)A^{-1}=IA^{-1}=A^{-1}$

3.33 Jedna rovnost stačí

Buďte $A, B \in Rn \times n$. Je-li BA = I, pak obě matice A, B jsou regulární a navzájem k sobě inverzní, to jest $B = A^{-1}$ a $A = B^{-1}$

dukaz

vime ze I je regularni, $B = BI = B(AA^{-1}) = (BA)A^{-1} = IA^{-1} = A^{-1}$ a obracene

3.34 Výpočet inverzní matice

Buď $A, B \in \mathbb{R}^{n \times n}$. Nechť matice $(A|I_n)$ typu $n \times 2n$ má RREF tvar $(I_n|B)$. Pak $B = A^{-1}$. Netvoří-li první část RREF tvaru jednotkovou matici, pak A je singulární

dukaz

Je-li RREF $(A|I_n) = (I_n|B)$, potom existuje regulární matice Q taková, že $(I_n|B) = Q(A|I_n)$, neboli po roztržení na dvě části $I_n = QA$ a $B = QI_n$. První rovnost říká $Q = A^{-1}$ a druhá $B = Q = A^{-1}$. Netvoří-li první část RREF tvaru jednotkovou matici, pak RREF $(A) \neq I_n$ a tudíž A není regulární.

3.37 Soustava rovnic a inverzní matice

Buď $A \in \mathbb{R}^{n \times n}$ regulární. Pak řešení soustavy Ax = b je dáno vzorcem $x = A^{-1}b$.

dukaz

Protože A je regulární, má soustava jediné řešení x. Platí $x = Ix = (A^{-1}A)x = A^{-1}(Ax) = A^{-1}b$

3.41 Shermanova-Morrisonova formule

Buď $A \in \mathbb{R}^{n \times n}$ regulární a $b, c \in \mathbb{R}^n$. Pokud $c^T A^{-1} b = -1$, tak $A + b c^T$ je singulární, jinak

$$(A + bc^{T})^{-1} = A^{-1} - \frac{1}{1 + c^{T} A^{-1} b} A^{-1} b c^{T} A^{-1}$$

dukaz

V případě $c^TA^{-1}b = -1$ máme $(A + bc^T)A^{-1}b = AA^{-1}b + bc^TA^{-1}b = b(1 + c^TA^{-1}b) = 0$. Protože $b \neq 0$ a vzhledem k regularitě A je $A^{-1}b \neq 0$, musí matice $(A + bc^T)$ být singulární

3.43 Jednoznačnost RREF

RREF tvar matice je jednoznačně určen

dukaz

$$A = Q_1^{-1} A_1 = Q_2^{-1} A_2$$
, a tedy $A_1 = Q_1 Q_2^{-1} A_2 = A_1 = A_2$

4.15 O znaménku složení permutace a transpozice

Buď $p \in S_n$ a buď t = (i, j) transpozice. Pak $sgn(p) = -sgn(t \circ p) = -sgn(p \circ t)$

4.16 Každou permutaci lze rozložit na složení transpozic

4.27 Z_n je těleso právě tehdy, když n je prvočíslo

dukaz

Je-li n složené, pak n=pq, kde 1 < p,q < n. Kdyby Z_n bylo těleso, pak pq=0 implikuje podle tvrzení 4.25 buď p=0 nebo q=0, ale ani jedno neplatí

4.33 O velikosti konečných těles

Existují konečná tělesa právě o velikostech $p^n,$ kde pje prvočíslo a $n \geq 1$

4.38 Malá Fermatova věta

Buď p prvočíslo a buď $0 \neq a \in \mathbb{Z}_p$. Pak $a^{p-1} = 1$ v tělese \mathbb{Z}_p

5.15 o vektorovem prostoru a obalu

Buď Vvektorový prostor nad T,a mějme $v1,...,vn\in V.$ Pak $span\{v_1,...,v_n\}=\{\sum_{i=1}^n a_iv_i;a_1,...,a_n\in T\}$

5.26 vektor nad T ...

5.31 o bazi

5.38 O existenci báze

- 5.40 Steinitzova věta o výměně
- 5.44 Vztah počtu prvků systému k dimenzi
- 5.45 Rozšíření lineárně nezávislého systému na bázi
- 5.46 Dimenze podprostoru
- 5.50 Spojení podprostorů
- 5.52 Dimenze spojení a průniku
- 5.62 Maticové prostory a RREF
- 5.63 Pro každou matici $A \in Tm \times n$ platí $rank(A) = rank(A^T)$
- 5.66 O dimenzi jádra a hodnosti matice
- 6.10 Prosté lineární zobrazení
- 6.12 Lineární zobrazení a jednoznačnost vzhledem k obrazům báze
- 6.16 Maticová reprezentace lineárního zobrazení
- 6.18 Jednoznačnost matice lineárního zobrazení
- 6.24 Matice složeného lineárního zobrazeni
- 6.35 Isomorfismus n-dimenzionálních prosto
- 6.37 O dimenzi jádra a obrazu

- 7.4 Charakterizace afinního podprostoru
- 7.5 o Množina řešení soustavy rovni