

Krzysztof Postek — Alessandro Zocca — Joaquim Gromicho — Jeff Kantor

Version of April 3, 2022

Contents

Contents				
1	Mat 1.1 1.2 1.3 1.4 1.5	A motivating example – A glass of water	5 6 7 10 11	
2	Line	ear optimization	13	
	2.1	Formulation	13	
	2.2	Modeling techniques	15	
		2.2.1 Absolute values	15	
		2.2.2 Minimax objective	21	
		2.2.3 Fractional objective	21	
	2.3	Duality	24	
	2.4	Solution methods	27	
	2.5	A complete example	29	
		2.5.1 The model	30	
		2.5.2 The Pyomo implementation	30	
		2.5.3 The optimal solution	32	
9	ъл:-	xed-integer linear programming	37	
3	3.1	Formulation	37	
	$\frac{3.1}{3.2}$		42	
	3.2	Modelling techniques	$\frac{42}{42}$	
		3.2.2 Variable enforcing a given constraint or not	42	
		3.2.3 Cost function with a fixed component	43	
		3.2.4 Either-or constraints	$\frac{43}{43}$	
		3.2.5 If-then constraints	$\frac{43}{49}$	
		3.2.6 Products of variables	54	
	3.3	Solution methods	55	
	3.4	A complete example: BIM production revisited	59	
	5.4	3.4.1 Optimal solution	66	
		3.4.2 Impact on solving time	67	
		o.4.2 impact on solving time	01	
4	Net	twork optimization	73	
	4.1	Introduction	73	
	4.2	Totally unimodular matrices and integrality of the solutions	75	
	4.3	Special network problems	75	
		4.3.1 Minimum-cost flow	75	
		4.3.2 Shortest path	76	
		4.3.3 Transportation	76	
		4.3.4 Maximum-weight bipartite matching	80	
		4.3.5 Max Flow and Min Cut	80	
		4.3.6 (Bipartite) Maximum matching	81	

CONTENTS 3

	4.4 4.5 4.6	4.3.8 Graph coloring	83 84 87 90
5	Con	vex optimization	91
	5.1		91
	5.2	Convex functions	93
	5.3	Convex sets	96
	5.4	Convex optimization	96
	5.5	Duality for convex optimization	97
		Ov	97
		0 •	98
		5.5.3 Karush-Kuhn-Tucker (KKT) conditions	
	5.6	Solution methods	
	- -	5.6.1 Analytical	
	5.7	A complete example	
	5.8	Exercises	04
6	Con	ic optimization 10	05
Ŭ	6.1	Introduction	
	6.2	Modelling constraints with cones	
		6.2.1 Specific constraint examples	
		6.2.2 Calculus of SOCP representable sets	
	6.3	Duality in conic optimization	
	6.4	Numerical solution methods	
	6.5	A complete example	
	6.6	Exercises	13
7		y	15
	7.1	Introduction	
	7.2	Impact and sources of uncertainty	
	7.3	Modelling with uncertainty in mind	
	7.4	Outlook and assumptions for the remainder of the book	20
8	Rob	oust optimization – Single stage problems	21
Ŭ		Introduction	
	8.2	Modelling issues	
		8.2.1 Robustness shrinks the feasible set	
		8.2.2 Removing equality constraints affected by uncertainty	23
		8.2.3 Non-equivalence of 'equivalent' robust problems	
		8.2.4 Removing uncertainty from the objective	25
		8.2.5 Modelling - summary	25
	8.3	Building the uncertainty set	25
		8.3.1 Introduction	25
		8.3.2 Box uncertainty	26
		8.3.3 Budgeted uncertainty	26
		8.3.4 Ellipsoidal uncertainty	27
		8.3.5 General conic uncertainty set	27
		8.3.6 Calibrating the uncertainty set	27
		8.3.7 Summary	28
		Solution methods	00
	8.4	Solution methods	28
	8.4	8.4.1 Adversarial approach	28
	8.4	8.4.1Adversarial approach	$\frac{28}{29}$
	8.4	8.4.1 Adversarial approach	$\frac{28}{29}$

4 CONTENTS

9		chastic optimization - Single stage problems	135
	9.1	Introduction	
	9.2	How to obtain distributional information	
	9.3	Dealing with expectations	
		9.3.1 Expectation as a known, deterministic function	137
		9.3.2 Sample average approximation	137
	9.4	Chance constraints	138
		9.4.1 Modeling using chance constraints	138
		9.4.2 Discrete distributions: the MILP reformulation	139
		9.4.3 General distributions: log-concavity and convexity of chance constraints	140
		9.4.4 Sampling-based approach	
	9.5	Risk measures	
	9.6	Sequel: distributionally robust optimization	
	9.7	A complete example	
	9.8	Exercises	
	0.0	Zirotoko	110
10	Rob	oust optimization – Two-stage problems	147
		Introduction	
	10.2	Modelling two-stage problems	148
	10.3	Solution approaches	149
		10.3.1 Column and constraint generation	149
		10.3.2 Decision rules	150
	10.4	A complete example	151
	10.5	Exercises	151
	G.		 .
11	Stoc	chastic optimization - Two stage problems	153
	11.1	Introduction	153
	11.2	Solution methods	
		11.2.1 The SAA method	
		11.2.2 The L -shaped algorithm	
		11.2.3 Convergence of the L -shaped algorithm	
		11.2.4 Additional discussion	
		A complete example	
	11.4	Exercises	
	.1	Lagrange Duality for MILO	
		.1.1 Constrained shortest path problem	
		.1.2 Lagrangian relaxation	
		.1.3 Constrained shortest path problem – pt.2	
		.1.4 Lagrangian duality for MILO	170
	.2	Subgradients and separation	173
	.3	Descent algorithms	
		.3.1 Descent algorithm in the convex case: the subgradient method	
		.3.2 Example of subgradient method	
	.4	Subgradient method for Lagrangian dual	