MATH 420 - FALL 2019 ASSIGNMENT 4

Note: Some of these problems are taken from Partial Differential Equations, by L.C. Evans. Assume that U is a bounded domain in \mathbb{R}^n with smooth boundary ∂U , unless otherwise stated.

(1) Recall that Young's inequality, which we proved in class, states that for real numbers p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$ then for a, b > 0,

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}.$$

(a) Prove Hölder's inequality that for $u \in L^p(U)$ and $v \in L^q(U)$, with $\frac{1}{p} + \frac{1}{q} = 1$,

$$\int_{U} uv dx \leqslant ||u||_{p} ||v||_{q},$$

where we are writing $||u||_p = \left(\int_U |u|^p dx\right)^{1/p}$ for the $L^p(U)$ norm.

(b) Prove that if Vol(U) = 1 and $u \in L^p(U)$ then

$$||u||_r \leqslant ||u||_p,$$

if $1 \leqslant r \leqslant p$.

(c) Prove the generalized Hölder's inequality

$$\int_{U} u_1 \cdots u_m dx \leqslant ||u_1||_{p_1} \cdots ||u_m||_{p_m},$$

for
$$u_i \in L^{p_i}(U)$$
 and $\frac{1}{p_1} + \dots + \frac{1}{p_m} = 1$.

(2) The goal of this problem is to give a direct proof of the *Poincaré inequalities*: for every $u\in W^{1,p}_0(U)$ with $1\leqslant p<\infty$ we have

$$\int_{U} |u|^{p} dx \leqslant (\operatorname{diam}(U))^{p} \int_{U} |Du|^{p} dx.$$

(a) Explain briefly why we may assume without loss of generality that

$$U \subset [-a, a] \times \mathbb{R}^{n-1},$$

for a = diam (U)/2.

(b) Suppose that $u \in C_c^1(U)$ (extend by 0 outside U) and show that

$$|u(x)| \leqslant \int_{-a}^{a} |Du(t, x_2, \dots, x_n)| dt.$$

Then integrate in x to prove the Poincaré inequality for p=1.

(c) Jensen's inequality says that for a convex function $\varphi: \mathbb{R} \to \mathbb{R}$ and (X, Σ, μ) a measure space with $\int_X d\mu = 1$ we have

$$\varphi\left(\int_X g d\mu\right) \leqslant \int_X \varphi(g) d\mu,$$

for all integrable functions $g:X\to\mathbb{R}$. Using this inequality, prove the Poincaré inequality for general $1\leqslant p<\infty$ by obtaining a pointwise bound for $|u(x)|^p$ and then integrating in x.

- (d) Is there a version of Poincaré's inequality for $p=\infty$? If so what is it?
- (3) For $k=0,1,2,\ldots$ and $\gamma\in(0,1],$ prove that $C^{k,\gamma}(\overline{U})$ is a Banach space.
- (4) Assume $0 < \beta < \gamma \leqslant 1$. For $u \in C^1(\overline{U})$, prove

$$||u||_{C^{0,\gamma}(\overline{U})} \le ||u||_{C^{0,\beta}(\overline{U})}^{\frac{1-\gamma}{1-\beta}} ||u||_{C^{0,1}(\overline{U})}^{\frac{\gamma-\beta}{1-\beta}}.$$