Carbon Taxes in Spatial Equilibrium

SF Fed Brown Bag, August 2021

John M. Morehouse

Research Overview

Carbon emissions create well-recognized negative externalities

- Despite popular support, success of global policy efforts has been fairly limited
- Sallee (2019): designing pareto improving pigouvian taxes is hard!

Research Qs: How would a carbon tax impact US labor markets?

- How does incidence from carbon pricing vary by education level? City and Sector?
- Does the tax-regressivity vary across locations/sectors?
- How much of the tax incidence is driven by coal?
- How much of the tax burden comes from HH energy expenditures? Changes in wages?

Literature

I am not the first to recognize—or model—the **distributional impacts of carbon pricing**:

- Employment impacts from BC carbon tax (Yamazaki, 2018)
- Employment effects in general eq. (Hafstead & Williams, 2018)
- Equity and Efficiency from carbon tax (Goulder et al., (2018))
- CGE model w/ 15k HHs to recover incidence (Rausch et al., 2011)
- CGE model with two cases: perfect mobility and perfect immobility (Castellanos & Heutel, 2019)

Quantitative Spatial Equilibrium (QSE) Models:

- Endogeneous amenities and college wage premia (Diamond, 2015)
- Impacts of immigration on wages (Piyapromdee, 2019)
- Land Use regs and HH carbon emissions (Colas & Morehouse, 2021)

Contributions

I make **three** main contributions

- 1) **Policy Relevant:** Recover HH distribution of CV across cities and sectors
 - Use model to understand role that coal electricity has in incidence
- 2) **Methodological**: Add and estimate new elements to QSE models
 - Choice across cities and sectors
 - Energy in production function
- 3) Equity-Emissions tradeoff: Lower-wage workers are in more emissions intensive sectors.
 - This implies more equitable re-distribution schemes will lead to higher overall levels of emissions
 - Still ongoing

Preview of Results

Road map

- Intro: ✓
- Model
- Data + Estimation
- Results (preliminary)

Model

Model: Households

Indirect utility for HH i of skill level e in city j, sector n:

$$V_{ijn} = eta_e^w \log(W_{ejn}) - eta_e^r \log R_j - \sum_m lpha_{ej}^m \log P_j^m + f(\mathcal{D}(j,\mathcal{B}_i)) + \hat{\lambda}_{ijn}$$

where

- W_{ejn} is income, R_j is rents
- ullet P_{i}^{m} is price of energy type $m \in \{\mathrm{elec,gas,oil}\}$
- $f(\mathcal{D}(j,\mathcal{B}_i))$ moving cost as a function of euclidean distance \mathcal{D} from j to i's birthstate

$$ullet f(\cdot) = arTheta_e^{div} \mathbb{I}\left(\mathcal{B}_{ij}^{div}
ight) + arTheta_e^{ ext{dist}} \phi\left(j, \mathcal{B}_i^{st}
ight) + arTheta_e^{ ext{dist}2} \phi^2\left(j, \mathcal{B}_i^{st}
ight)$$

- $\hat{\lambda}_{ijn} = \xi_{ejn} + \sigma_e \epsilon_{ijn}$ amenities:
 - \circ ξ_{ejn} unobserved (to me), shared by all agents in skill group/city/sector
 - $\circ \ \epsilon_{ijn}$ iid pref shock with shape parameter σ_e

Model: Firms

Firms in perfectly competitive markets produce the output good with tech:

$$Y_{jn} = A_{jn} K_{jn}^{\eta} \mathcal{I}_{jn}^{1-\eta}$$

where

$$\mathcal{I}_{jn} = \left(lpha_{jn} \mathcal{E}_{jn}^{
ho_{el}^n} + (1-lpha_{jn}) \mathcal{L}_{jn}^{
ho_{el}^n}
ight)^{rac{1}{
ho_{el}^n}}$$

$$\mathcal{E}_{jn} = \left(\zeta_{jn}E_{jn}^{
ho_e^n} + (1-\zeta_{jn})G_{jn}^{
ho_e^n}
ight)^{rac{1}{
ho_e^n}}$$

E and G: Energy and Gas consumed

 $\zeta:$ city-sector electricity intensity

 $ho_e^n = rac{\sigma_e^n - 1}{\sigma_e^n}$: sector elasticity of sub. for energy

$$\mathcal{L}_{jn} = \left(heta_{jn} S_{jn}^{
ho_l^n} + (1- heta_{jn}) U_{jn}^{
ho_l^n}
ight)^{rac{1}{
ho_e^n}}$$

S and U skilled and unskilled labor quantities

 θ : city-sector educated labor intensity

 $ho_l = rac{\sigma_l - 1}{\sigma_l}$: sector elasticity of sub. for energy

Electricity and Emissions

Electricity is supplied in one of 9 distinct NERC regions. LR supply curve is given by:

$$\log(P_{mj}^{
m elec}) = a_{mj} + \kappa \log(Q_{\mathcal{R}}(j))$$

where

- \bullet a_{mj} is an intercept that varies across cities and sectors within a region, reflecting different costs of delivery
- ullet $Q_{\mathcal{R}}(j)$ is the quantity of electricity supplied in NERC region ${\mathcal{R}}$

Emissions

- Emissions for natural gas and oil are fixed across space
- Regional emission factor for elec is the weighted avg. carbon intensity of all plants in the region:

$$\delta_{\mathcal{R}}^{elec} = \sum_{g \in \mathcal{R}} rac{ ext{elec}_g}{ ext{elec}_{\mathcal{R}}} imes rac{ ext{CO}_{2,g}}{ ext{elec}_g}$$

NERC Map

Rents

I posit a long-run upward sloping rental supply curve:

$$R_j = eta_j H_j^{\gamma_j}$$

Differences in:

- β_j : refelect differences in construction/materials costs across cities
- γ_j : reflect differences in amount of land for dev. and land use regs

Model Summary

Households

- Static; discrete choice: locations & sectors
- Consume numeraire, housing, and energy

Locations

- Wages, rents, and energy prices (endogenous)
- Carbon efficiency of power plants
- Amenities (location–specific consumption)

Firms

- Use energy, labor; produce numeraire
- Vary across sector by: Input use intensities & elasticities of sub

Mechanism:

- Carbon price \implies higher energy prices
 - \circ Price Δ depends on carbon efficiency of regional power plants
 - Energy prices enter utility for home consumption and production function
- Change in energy prices \implies change in wages
 - This change varies by city + sector (due to differences in prod. params)
- Change in wages \implies **sorting!** New location-sector choices further change prices.

Road map

- Intro: ✓
- Model: <
- Data + Estimation
- Results (preliminary)

Data

Data comes from multiple sources:

- 1) Census and ACS: HH level data with location, birth-location, education, rent, wages, and energy expenditure
 - Use HH data to:
 - Estimate choice model. **Unit of choice:** Core-Based Statistical Area-Sector
 - Wages, energy cons, rent indices via OLS (fairly standard, robust to selection correction)
- **2)** EIA: Energy prices
 - Uses prices + expenditures to back out HH energy consumption
- **3)** EPA: Emissions data + Aggregated Energy Consumption

Estimation + Calibration

The model has a *ton* oparameters. Some details:

Parameter Name	Notation	Source			
Labor Supply					
Moving Costs	$\Theta_e^{div}, \Theta_e^{dist}, \Theta_e^{dist2}$	MLE			
Marginal Utility of Income/Rents	Θ_e^w, Θ_e^r	IV			
Variance of pref. shock	σ_e	Algebra			
Housing Parameter	$lpha_e^H$	Algebra			
Energy Share of Budget	α_{ej}^m	Algebra			
Wage Index	W_{ejn}	Mincered (OLS)			
Firm Parameters					
Energy-Lab, Gas- Elec EoS	$\sigma_{el}^n, \sigma_e^n$	Koesler & Shymura (2012)			
College-No College EoS	σ_l	Card (2009)			
Factor Intensities	$\alpha_{jn}, \theta_{jn}, \zeta_{jn}$	Algebra			
TFP	A_{jn}	Algebra			
Energy and Rent Parameters					
Intercepts	eta_j, a_{mj}	Algebra			
Energy Supply Elasticity	κ	Dahl & Duggan (1996)			
Rent Supply Elasticity	γ_j	Saiz (2010)			
Carbon Emissions Factor	δ^m	Data			
Rent Index	R_j	Hedonic Reg			

Estimation + Calibration

The model has a *ton* oparameters. Some details:

Parameter Name	Notation	Source		
Labor Supply				
Moving Costs	$\Theta_e^{div}, \Theta_e^{dist}, \Theta_e^{dist2}$	MLE		
Marginal Utility of Income/Rents	$oldsymbol{arTheta}_e^w, oldsymbol{arTheta}_e^r$	IV		
Variance of pref. shock	σ_e	Algebra		
Housing Parameter	$lpha_e^H$	Algebra		
Energy Share of Budget	α_{ej}^m	Algebra		
Wage Index	W_{ejn}	Mincered (OLS)		
Firm Parameters				
Energy-Lab, Gas- Elec EoS	$\sigma_{el}^n, \sigma_e^n$	Koesler & Shymura (2012)		
College-No College EoS	σ_l	Card (2009)		
Factor Intensities	$\alpha_{jn}, \theta_{jn}, \zeta_{jn}$	Algebra		
TFP	A_{jn}	Algebra		
Energy and Rent Parameters				
Intercepts	eta_j, a_{mj}	Algebra		
Energy Supply Elasticity	κ	Dahl & Duggan (1996)		
Rent Supply Elasticity	γ_j	Saiz (2010)		
Carbon Emissions Factor	δ^m	Data		
Rent Index	R_j	Hedonic Reg		

Let's zoom in on labor supply. Ready for some math? 😁

Estimation

I'll focus briefly on labor supply. I use a **two-step** estimation procedure

- 1) Treat locations-sectors as "products" with characteristics by skill group
 - Recover moving cost parameters using "micro-BLP" (Berry, 1995)
 - Use repeated cross-sections of census. Estimate parameters and corresponding mean utilities for 4 sample years
- **2)** Estimate β_e^w and β_e^r in **first-differences with IV**
 - Bartik labor demand shocks identifies eta_w^e
 - ullet Bartik labor demand shocks imes city housing supply elasticity identifies eta_r^e

Estimation: Step 1

With EV1 assumption on error term, choice probabilities are:

$$Pr_{i}(oldsymbol{\Theta}^{\gamma_{et}}) = rac{\exp\left(\delta_{ejnt} + \varTheta_{et}^{div}\mathbb{I}\left(j \in \mathcal{B}_{i}^{div}
ight) + \varTheta_{et}^{ ext{dist}}\phi\left(j, \mathcal{B}_{i}^{st}
ight) + \varTheta_{et}^{ ext{dist2}}\phi^{2}\left(j, \mathcal{B}_{i}^{st}
ight)
ight)}{\sum\limits_{j' \in J}\sum\limits_{n' \in N} \exp\left(\delta_{ej'n't} + \varTheta_{et}^{div}\mathbb{I}\left(j' \in \mathcal{B}_{i}^{div}
ight) + \varTheta_{et}^{ ext{dist}}\phi\left(j', \mathcal{B}_{i}^{st}
ight) + \varTheta_{et}^{ ext{dist2}}\phi^{2}\left(j', \mathcal{B}_{i}^{st}
ight)
ight)}$$

where

•
$$\delta_{ejnt} = eta_{et}^w \log(W_{ejnt}) + eta_{et}^r \log(R_{jt}) + \sum_m eta_{ejt}^m \log P_{jt}^m + \xi_{ejnt}$$
 is the mean utility

Given this, the LL function is:

$$\mathbf{L}_{et}(\mathbf{\Theta}^{\gamma_{et}}) = \sum_{i=1}^{N^d} \sum_{n \in N} \sum_{j \in J} \mathbb{I}_i(j,n) \log(Pr_i(\mathbf{\Theta}^{\gamma_{et}}))$$

Estimation: Step 2

With $\Theta^{\gamma_{et}}$, can recover the "true" mean utilities. Estimating eqn is:

$$\Delta \delta_{ejn} = eta_e^w \Delta \log(W_{ejn}) + eta_e^r \Delta \log(R_j) + \Delta \epsilon_{ejn}$$

Need instruments:

- Consider a school built in j (unobservable amenity increase) $\implies \delta_{ejn} \uparrow \implies$ workers in, wages down and rents up (mechanically)
- Wages: Bartik-Style instrument: $\Delta Z_{ejnt} = \sum_{\iota \in n} \omega_{ej\iota}^{1990} imes \left(\Delta \mathrm{Hours}_{e,-j,\iota} \right)$
 - $\circ \ \omega_{ej\iota}^{1990}$: initial shares in *industry* ι
 - $\circ \ \Delta \mathrm{Hours}_{e,-j,\iota}$ is the change in national hours worked in all cities except city j
- **Rents:** $\Delta Z_{ejnt} imes \gamma_j$ where γ_j is the housing supply elasticity of city j
 - \circ Two cities with identical labor demand shocks but different supply elasticities \implies different change in rental prices

Estimates: Labor Supply

Indirect utility: (HH *i*, education *e*, city *j*, sector *n*)

$$ullet \ V_{ijn} = \delta_{ejn} + f(\mathcal{D}(j,\mathcal{B}_i)) + \epsilon_{ijn}$$

•
$$\delta_{ejn} = \beta_w \log(w) + \beta_r \log(R) + \xi_{ejn}$$

Estimation procedure:

- 1) "Micro BLP": estimate moving cost parameters
- 2) Bartik Instruments: marginal utilities of income and rents parameters

$$f(\cdot) = oldsymbol{arTheta_e^{div}} \mathbb{I}\left(\mathcal{B}_{ij}^{div}
ight) + oldsymbol{arTheta_e^{dist}} \phi\left(j, \mathcal{B}_i^{st}
ight) + oldsymbol{arTheta_e^{dist2}} \phi^2\left(j, \mathcal{B}_i^{st}
ight)$$

	No College			College		
	$oldsymbol{arTheta}_{ut}^{div}$	Θ_{ut}^{dist}	\mathcal{O}_{ut}^{dist2}	$oldsymbol{arTheta}_{st}^{div}$	$m{arTheta}_{st}^{dist}$	$\boldsymbol{\Theta}_{st}^{dist2}$
2017	1.698	-3.218	0.696	1.489	-2.609	0.644
IV-Estimated Parameters	No College			College		
$oldsymbol{eta}_e^w$	3.558***			7.0362***		
	(0.59124)			(0.815)		
eta_e^r	-2.160***			-3.731***		
	(0.37206)			(0.348)		
Adjusted-R ² : 0.2183	F-Statistic: 83.7	' 2				

Model Fit

Road map

- Intro: ✓
- Model: <
- Data + Estimation: ✓
- Results (preliminary)

Counterfactuals

I use the estimated model to solve for counterfactual equilibrium under two scenarios \$

- 1: Baseline carbon tax, \$31 per ton (SCC à la Nordhaus (2017))
 - Look at incidence by region and sector
- 2: Carbon tax under a "no-coal" scenario
 - I re-calculate electricity emissions by region without coal and implement a \$31 tax in the model

Compensating Variation: Dollar amount HH would need (yearly) to be indifferent between tax and no tax:

$$CV_i = \underbrace{(\mathbb{E}[V(au>0)] - \mathbb{E}[V(au=0)])}_{\%\Delta ext{Expected Utility}} imes \underbrace{rac{w_i}{eta^w}}_{ ext{Wage conversion}}$$

An **equilibrium** in this model is characterized by price vectors (wages, rents, and electricity prices) that satisfy: i) utility and profit maximization and ii) relevant markets clear

Main Results

Results: Geography

Results: Industry

No Coal

Results

Conclusions

Main Takeaways:

- Recovered HH distribution of CV from a national carbon tax across cities and sectors
- Significant heterogeneity across cities and sectors in tax incidence
 - Carbon taxes are regressive in all areas and regions.
 - Incidence is largest in energy intensive sectors and regions (manufacturing and midwest)
 - Estimate that coal powered electricity drives roughly 50% of incidence
- Wage changes are small and thus general equilibrium effects are small
- **Preliminary:** General equilibrium effects much more important with distortionary transfers

Thank You!!

John Morehouse

jmorehou@uoregon.edu

johnmmorehouse.com