Databases Systems

The Conceptual/Semantic Model Entity Relationship Diagrams (ERD)

Entity Relationship Diagram (ERD)

- Based on database requirements and driven by use cases
- Abstract perspective of the database design
- High level
- Clarify two important concepts:
- The major entities within the system scope
- The interrelationships among those entities

ER Model Basics

Weak key

Relation becomes an entity

ER Model Basics Crow's foot notation

ER Model Basics

Many-to-Many (M:N):

An employee shall work in **many** departments A department shall have **many** employees.

Many-to-One (M:1):

A department shall have **many** employees A employee shall work in **only one** department

One-to-Many (1:M):

Only and Only One:

An employee shall have only and only one unique SSN.

Recursive:

An employee shall have a supervisor which is also an employee

ISA:

Type of relationships

An employee shall work in **only one** department An employee **is a hourly or contract** A department shall have **many** employees. **employee**.

One-to-One (1:1):

Aggregation:

An employee shall work in **only one** department An employee shall be assigned to the SW A department shall have **only one** employee. engineering, and testing team, **but not to**the marketing team

ER Basics

Relationship Set (RS): Collection of similar relationships.

The same **entity** could participate in different relationships sets:

e.g Employee <Works_In> Dept, and Employee <Reports_To> supervisor

In this specific example, supervisor and subordinate are called roles indicators

ER MODEL ENTITIES Strong Entities

Weak Entities

Ternary Relationship

Hierarchies ISA ('is a')

If we declare A ISA B, every A entity is also considered to be a B entity.

Aggregation

allows us to treat a relationship set as an entity set for the purposes of participating in another relationship.

ER MODEL ATTRIBUTES Key Attributes

Composite Attributes

Multivalued Attributes

Derived Attributes

ER MODEL ENTITY SETS RELATIONSHIPS AND CONSTRAINTS

1:1 Relationship

An employee shall manage **only one** department A department shall have **only one** employee as a manager

1:1 Relationship

Employee

Department

ssn	name	dob
617335456	John	08/03/75
345444567	Mary	03/06/90
345223456	Jane	05/12/99

did	name	budget	manager
1234	eng	35000	617335456
1235	marketing	50000	345444567
1236	HR	30000	345223456

Manager is FK and unique

An employee shall manage only one department A department shall have only one employee as a manager

1:1 Relationship

Employee Department

ssn	name	dol
617335456	John	08/03
345444567	Mary	03/06
345223456	Jane	05/12

did	name	budget
1234	eng	35000
1235	marketing	50000
1236	HR	30000

Manages is FK and unique

An employee shall manage at most one department A department shall have only one employee as a manager

1:M Relationship

An employee shall manage **multiple** departments A department shall have **only one** employee as a manager

1:M Relationship

Employee Department

ssn		dob
617335456	John	08/03/75
345444567	Mary	03/06/90
345223456	Jane	05/12/99

did	name		manager
1234	eng	35000	617335456
1235	marketing	50000	617335456
1236	HR	30000	345223456

Entity Sets Relationships

Manager is FK and not unique

An employee shall manage **multiple** departments
A department shall have **only one** employee as a manager

Degrees of Cardinality

Entity Sets Relationships

M:1 Relationship

An employee shall manage **only** in one department A department shall be managed by **multiple** managers

M:1 Relationship

Employee

ssn	name	dob	dept
617335456	John	08/03/75	1234
345444567	Mary	03/06/90	1234
345223456	Jane	05/12/99	1236

did	name	budget
1234	eng	35000
1235	marketing	50000
1236	HR	30000

dept is FK and not unique

An employee shall manage **only** one department A department shall be managed by **multiple** managers

M:N Relationship

An employee shall manage **multiple** departments A department shall be managed by **multiple** employee

M:N Relationship

Employee

ssn	name	dob
617335456	John	08/03/75
345444567	Mary	03/06/90
345223456	Jane	05/12/99

Managers

manager	dept
617335456	1234
345444567	1234
345223456	1235
345223456	1236

Department

did	name	Budget
1234	eng	35000
1235	market	50000
1236	HR	30000

An employee shall manage **multiple** departments A department shall be managed by **multiple** employee

Recursive Relationship

Employees can supervise other employees

Recursive Relationship

ssn	name	dob	supervised_by
617335456	John	08/03/75	345444567
345444567	Mary	03/06/90	617335456

Type of Constrains

- Keys are attributes or sets of attributes that uniquely identify an entity within its entity set.
- Single-value constraints require that a value be unique in certain contexts.
- Referential integrity constrains or participation constrains require that a value referred to actually exists in the database. Total and partial
- Domain constraints specify what set of values an attribute can take.
- General constraints are arbitrary constraints that should hold in the database.
- Constraints are part of the schema of a database.

Participation Constraints

Every employee must manage a department?

NO!!!

Every department must have an employee?

YES!!!

Participation Constraints and Cardinality Constraints

- Rules:
- Cardinality Constraints: total or partial participation
- Total Participation Constraints: At least or Minimum
- Weak entities: must have total participation

Strong entities: may have total or partial participation

Class Exercise Reading a ERD Model

1. How many Entity Set are in this model?

Two entity sets: Students and Courses

2. How many Relationships are in this model?

One relationship: Enrolls_in

3. What are the keys constraints in this model?

PK: sid: distinct students in the Students entity set

PK: cid: distinct courses in the Course entity set

FK: cid, and sid must exist in the Enroll relationship as foreign keys

Class Exercise Reading a ER Model

4. Which are the cardinality constraints in this model?

Many-to-Many: A student must be enrolled in at least one course, and a course can have zero, one or multiple students. 5. Which are the participation constraints in this model?

Students entity set has a partial participation.

So, courses can have <u>zero</u>, <u>one or many</u> students enrolled. However, Courses entity set has total participation, meaning that Students must be enrolled in <u>at least</u> one course.

34

Class Exercise Reading a ER Model

6. Define which entity set is strong or weak.

Both of them are strong. Students can exist without being enrolled in any course, and courses can exist without students enrolled.

7. Prove that Students and Courses are strong entity sets.

Let's create an ERD representing a store ordering database Business Rules

- 1. Customers can order multiple items.
- 2. Customers pay one order at a time.
- 3. Supplier sends multiple stocks by request

- 4. Requests can have many stocks
- 5. Stocks must contain at least one product
- 6. Orders, payments and stocks can be monitored by the system

Identifying Entities and Attributes

- Customer:
- cid: PK, name: composite (first name, last name), dob: multi-value
- Supplier:
- sid: PK, organization
- Stock:
- stkid: PK, supplier: FK, num_products: derived
- System:

• Stid: PK, oid: FK, sid: FK

Identifying Entities and Attributes

- Product:
- pid: PK, oid: FK, barcode: multi-value (UPC, EAN, ISBN)
- Invoice:
- iid: PK, oid: PK, date: multi-value (month, day, year), subtotal, total
- Orders:

oid: PK, quantity

Identifying Strong Entities

- Strong Entities:
- Customer
- Supplier
- Stock
- Product
- System
- Weak Entities:

- Orders
- Payment

ERD
Customers can order multiple items.

ERD

Customers pay one order at a time.

ERD Supplier sends stocks by request

ERD Stocks must contain one or more products

ERD

Orders, payments and stocks can be monitored by the system

How to test ERD models

"Customers can order multiple items."

Testing the system

Testing the system "Supplier sends stocks by request"

Testing the system "Supplier sends stocks by request"

Testing the system "Supplier sends stocks by request"

Testing the system "Stocks must contain one or more products"

Testing the system

"Stocks must contain one or more products"

Testing the system "Stocks must contain one or more products"

Testing the system "Orders, payments and stocks can be monitored"

Testing the system "participation constraints"

Relationships that become tables/entities

Non-Functional Specs

- Performance
- Scalability
- Maintainability
- Memory usage
- Storage capacity
- DBMS