Date of Birth 1972-11-07

Sex Male

Physician

Dr. Donald Fowler

Institution

Lopez, Fisher and Bryan

Tumor specimen: source Breast CollectedDate 2023-09-16 ReceivedDate 2023-09-18 TumorPercentage 59%

Normal specimen: source Blood CollectedDate 2023-09-23 ReceivedDate 2023-09-29

GENOMIC VARIANTS

Germline - Pathogenic

No Germline - Pathogenic variants were found in the limited set of genes on which we report.

Pertinent Negatives

BLM RB1 BRCA2 CSF3R

IMMUNOTHERAPY MARKERS

Tumor Mutational Burden Microsatellite Instability Status

1 m/Mb 58%

Stable Equivocal

FDA-APPROVED THERAPIES, Current Diagnosis

KRAS G12C **Sotorasib** NCCN, Consensus, Non-Small Cell Lung Cancer Inhibitors MSK OncoKB, Level 1

KRASp.G12C G12C-GOF

FDA-APPROVED THERAPIES, Other Indications

KRAS G12C Sotorasib NCCN, Consensus, Non-Small Cell Lung Cancer Inhibitors MSK OpcoKR Level 1

MSK OncoKB, Level 1 KRASp.G12C G12C-GOF High

ADDITIONAL INDICATORS

	ını	. 31/	nra	nie	Pr	ากก	osis
u		αv	vı a	NIC		Juli	U3I3

NCCN, Consensus, Non-Small Cell Lung Cancer KRASp.G12C Gain-of-function

CLINICAL TRIALS

A Study of VS-6766 v. VS-6766 + Defactinib in Recurrent G12V, Other KRAS and BRAF Non-Small Cell Lung Cancer

Phase 2 City, state - x mi KRAS mutation

A Phase 1/2 Study of MRTX849 in Patients With Cancer Having a KRAS G12C Mutation KRYSTAL-1

Phase 1/2 City, state - x mi KRAS mutation STK11 mutation

First-in-human Study of DRP-104 (Sirpiglenastat) as Single Agent and in Combination With Atezolizumab in Patients With Advanced Solid Tumors. (NCT04471415)

Phase 1/2 City, state - x mi NFE2L2 mutation STK11 mutation

VARIANTS OF UNKNOWN SIGNIFICANCE

Somatic	Mutation effect	Variant allele fraction
STAG2	c.3113A>G p.R1012X Nonsense-LOF NM_001011645	14.49% 🕳
STAT5B	c.1924A>C p.N713_A714insKGKGGG Spliceregionvariant-GCNM_001011645	DF5.58% -
PRKCA	c.1387G>C p.D463H Missensevariant(exon2)-GOF NM_001011645	2.01%
BRCA2	c.5946delT p.S1982Rfs*22 Nonsense-GOF NM_001011645	4.43%
DICER1	c.5439G>C p.W1831* Nonsense-GOF NM_001011645	1.08%
CSF1R	c.1085A>G p.N648S Spliceregionvariant-LOF NM_001011645	4.41% •
CTNNB1	c.98C>T p.D32N Frameshift-LOF NM_001011645	2.63%
CHD6	c.4800C>G p.I1600M Missensevariant(exon2)-GOF NM_001011645	4.36%
MYOD1	c.365T>G p.L122R Nonsense-GOF NM_001011645	5.95%

LOW COVERAGE REGIONS

STAT5B

ARID2

MYOD1

SOMATIC VARIANT DETAILS - POTENTIALLY ACTIONABLE

FOXL2

c.402C>G p.C134W Nonsense-GOF

VAF: 15.4% -

TP53 encodes a protein that is a transcription factor that regulates the expression of genes involved in cell cycle arrest, apoptosis, and DNA repair. TP53 is a tumor suppressor gene that is mutated in many cancers. Mutations in TP53 are associated with cancer progression.

SOMATIC VARIANT DETAILS - BIOLOGICALLY RELEVANT

NF1

c.6926del p.C134W Spliceregionvariant-GOF

VAF: 33.58%

FAT1 encodes a transmembrane protein involved in tumor suppressor signaling. FAT1 protein can regulate transcriptional activity by sequestering beta-catenin, thereby preventing it from entering the nucleus. Loss of function mutations and copy number loss of FAT1 are associated with cancer progression.

CDKN2A

c.151G>A p.N1465S Frameshift-GOF

VAF: 24.97%

KRAS is a GDP/GTP binding protein that acts as an intracellular signal transducer. KRAS is involved in several pathways involved in cellular proliferation and survival, including the PI3K-AKT-mTOR pathway and the Ras-Raf-MEK-ERK pathway. Activating mutations, copy number gains, and overexpression of KRAS are associated with cancer progression.

CLINICAL HISTORY

Diagnosed on 2023-09-09