BOUT++ Results

Dmitry Meyerson

dmitry.meyerson@gmail.com

ABSTRACT

This document highlights some results from BOUT++ simulation

metadata

evolved: ['Ni' 'rho' 'jpar'] IC: [1.00000000e-08 0.00000000e+00 0.00000000e+00] ZMAX: 5e-05 TIMESTEP: 100.0 **ZMIN: 0.0** ShiftXderivs: false restart: false $grid: /home/cryosphere/BOUT/examples/drift-instability/uedge.grd_std.cdl$ MYG: 2.0 dump_format: nc MXG: 2.0 NYPE: 1.0 TwistShift: false NOUT: 200.0 MZ: 129.0 mxstep: 10000.0 RTOL: 1e-08 type: cvode ATOL: 1e-12 AA: 2.0 estatic: true nu_perp: 1e-20 phi_flags: 0.0 ZeroElMass: true apar_flags: 0.0 ShearFactor: 0.0 ZZ: 1.0 Zeff: 4.0 ys_mode: 1.0 scale: 1e-08 zs_opt: 3.0

ys_opt: 2.0

xs_opt: 0.0

bndry_all: neumann

zs_mode: 1.0 zs_phase: 0.5 Te_x: [50.] eV

Ti_x: [0.01] eV

hthe0: [5.33681965] m

Ni_x: [4.59999973e+13] cm^-3

nx: 5

ny: 32

dt: 100.0

rho_s: [0.102] cm

rho_i: [0.0014425] cm

rho_e: [0.00168291] cm

fmei: 0.000272301492212

lambda_ei: [12.18219185]

lambda_ii: [0.01584053]

wci: [47900000.]

wpi: [6.33049754e+09]

wce: [1.78000003e+11]

wpe: [3.82523408e+11]

v_the: [2.96277728e+08]

v_thi: [69225.75]

c_s: [6319418.]

v_A: [22728.07226562]

nueix: [4612339.]

nuiix: [24628646.]

nu_hat: [0.38516402]

L_d: [0.00077463]

L_i_inrt: [4.75412893]

L_e_inrt: [3.60141711e+12]

Ve_x: [2.09500006e+09]

R0: 5.40049982071

dz: [5.0000000e-05]

w_Ln: [0.00029361]

sig_par: [18695.37109375]

int physics_run(BoutReal t) { solve_phi_tridag(rho, phi, phi_flags); if(estatic || ZeroElMass) { Apar = 0.0; }else { solve apar tridag(Ajpar, Apar, apar flags); } mesh->communicate(comms); Nit = Ni0; Tit = Ti0; Tet = Te0; Vit = Vi0; nu = nu_hat * Nit / (Tet^1.5); mu_i = mui_hat * Nit / (Tit^0.5); kapa_Te = 3.2*(1./fmei)*(wci/nueix)*(Tet^2.5); kapa Ti = 3.9*(wci/nuiix)*(Tit^2.5); pei = (Te0+Ti0)*Ni + (Te+ Ti)*Ni0; pe = Te0*Ni + Te*Ni0; if(ZeroElMass) { jpar = ((Te0*Grad par(Ni, CELL YLOW)) -(Ni0*Grad par(phi, CELL YLOW)))/(fmei*0.51*nu); jpar = lowPass(jpar,8); /* for(int jx=MXG;jxngx-MXG;jx++) { for(int jy=MYG;jyngy-MYG;jy++) { for(int jz=0;jzngz;jz++) { jpar[jx][jy][jz] (fmei * 0.51 * nu[jx][jy][jz] * dy[jx][jy] * sqrt(mesh->g_22[jx][jy])); } } } */ jpar.applyBoundary(); mesh->communicate(jpar); Ve = Vi - jpar/Ni0; Ajpar = Ve; }else { Ve = Ajpar + Apar; jpar = Ni0*(Vi - Ve); } ddt(Ni) = 0.0; if(evolve_ni) { ddt(Ni) -= vE_Grad(Ni0, phi); /* ddt(Ni) -= Vpar_Grad_par(Vi, Ni0) + Vpar_Grad_par(Vi0, Ni) + Vpar_Grad_par(Vi, Ni); ddt(Ni) -= Ni0*Div_par(Vi) + Ni*Div_par(Vi0) + Ni*Div par(Vi); ddt(Ni) += Div par(jpar); ddt(Ni) += 2.0*V dot Grad(b0xcv, pe); ddt(Ni) -=2.0*(Ni0*V_dot_Grad(b0xev, phi)) + Ni*V_dot_Grad(b0xev, phi0) + Ni*V_dot_Grad(b0xev, phi)); */ $ddt(Ni) = lowPass(ddt(Ni),8); ddt(Vi) = 0.0; if(evolve vi) \{ ddt(Vi) -= vE Grad(Vi0, phi) + vE Grad(Vi, ph$ phi0) + vE Grad(Vi, phi); ddt(Vi) -= Vpar Grad par(Vi0, Vi) + Vpar Grad par(Vi, Vi0) + Vpar_Grad_par(Vi, Vi); ddt(Vi) -= Grad_par(pei)/Ni0; } ddt(Te) = 0.0; if(evolve_te) { ddt(Te) -= vE_Grad(Te0, phi) + vE_Grad(Te, phi0) + vE_Grad(Te, phi); ddt(Te) -= Vpar_Grad_par(Ve, Te0) + Vpar_Grad_par(Ve0, Te) + Vpar_Grad_par(Ve, Te); ddt(Te) += 1.333*Te0*(V_dot_Grad(b0xcv, pe)/Ni0 -V dot Grad(b0xcv, phi); ddt(Te) += 3.333*Te0*V dot Grad(b0xcv, Te); ddt(Te) +=(0.6666667/Ni0)*Div_par_K_Grad_par(kapa_Te, Te); } ddt(Ti) = 0.0; if(evolve_ti) { ddt(Ti) = vE_Grad(Ti0, phi) + vE_Grad(Ti, phi0) + vE_Grad(Ti, phi); ddt(Ti) -= Vpar_Grad_par(Vi, Ti0) + $Vpar_Grad_par(Vi0, Ti) + Vpar_Grad_par(Vi, Ti); ddt(Ti) += 1.333*(Ti0*V_dot_Grad(b0xcv, pe)/Ni0 -= 1.333*(Ti0*V_dot_Grad(b0xcv, pe)/Ni0 -= 1.333*(Ti0*V_dot_Grad(b0xcv, pe)/Ni0 -= 1.333*(Ti0*V_dot_Grad(b0x$ Ti*V dot Grad(b0xcv, phi); ddt(Ti) = 3.333*Ti0*V dot Grad(b0xcv, Ti); ddt(Ti) = 4.333*Ti0*V dot Grad(b0xcv, Ti)(0.6666667/Ni0)*Div_par_K_Grad_par(kapa_Ti, Ti); } ddt(rho) = 0.0; if(evolve_rho) { /* ddt(rho) = vE Grad(rho0, phi) + vE Grad(rho, phi0) + vE Grad(rho, phi); ddt(rho) -= Vpar Grad par(Vi, rho0) + Vpar Grad par(Vi0, rho) + Vpar Grad par(Vi, rho); */ ddt(rho) += mesh->Bxy*mesh->Bxy*Div par(jpar, CELL_CENTRE); ddt(rho) = smooth_y(ddt(rho)); /* for(int jx=MXG;jxngx-MXG;jx++) { for(int jy=MYG;jyngy-MYG;jy++) { for(int jz=0;jzngz;jz++) { ddt(rho)[jx][jy][jz] = Bxy[jx][jy]*Bxy[jx][jy] * $(\text{jpar}[\text{jx}][\text{jy}+1][\text{jz}] - \text{jpar}[\text{jx}][\text{jy}][\text{jz}]) / (\text{dy}[\text{jx}][\text{jy}] * \text{sqrt}(\text{mesh-}>g_22[\text{jx}][\text{jy}])); } } } } } } }$ if(evolve_ajpar) { /* for(int jx=MXG;jxngx-MXG;jx++) { for(int jy=MYG;jyngy-MYG;jy++) { for(int CELL_YLOW); ddt(Ajpar) -= (1./fmei)*(Te0/Ni0)*Grad_par(Ni, CELL_YLOW); ddt(Ajpar) += 0.51*interp_to(nu, CELL_YLOW)*jpar/Ni0; }

Dominant mode phase for Ni

Dominant mode behavior for Ni Ni phase, all runs, linear yscale 0.008 -0.2-0.40.001-0.6<u>5e</u>-05 -0.8-1.0• [1.0, 2500.0][1 1] at x= 2,0.0% 0.0 • [1.0, 200.0][1 1] at x= 2 ,0.058% 0.0 0.0002 [1.0, 400000.0][1 8] at x= 2, 0.0% 0.0• [1.0, 40000.0][1 8] at x= 2 ,0.0% 0.0001 • [1.0, 1000.0][1 1] at x= 2,0.004% 0.0 • [1.0, 125.0][1 1] at x= 2,0.854% 0.0 • [1.0, 160000.0][1 8] at x= 2,0.0% 0.0 100 150 200 50

Dominant mode phase for rho

Dominant mode amp for Ni

t

Dominant mode amp for rho

1e^{2.0}

1.5

1.5

2.0

1e2

Dominant mode amp for Ni

Dominant mode behavior for Ni Ni amp, all runs, log yscale 10⁻⁷ 0.00110⁻⁸ 10⁻⁹ • [1.0, 10000.0][1 4] at x= 2,0.0% 0.0001 • [1.0, 800.0][1 4] at x= 2,0.047% 0.0 • [1.0, 200000.0][1 4] at x= 2,0.001% 0.0 • [1.0, 20000.0][1 4] at x= 2,0.0% 0.0001 • $[1.0, 4000.0][1 \, 4]$ at $x = 2, 0.0\% \, 0.0$ • [1.0, 500.0][1 4] at x= 2,0.581% 0.0 • [1.0, 80000.0][1 4] at x= 2,0.0% 0.0 150 100 50

Dominant mode amp for Ni

Dominant mode behavior for Ni Ni amp, all runs, log yscale 10⁻⁷ 0.00110⁻⁸ 10⁻⁹ • [1.0, 10000.0][1 4] at x= 2,0.0% 0.0001 • [1.0, 800.0][1 4] at x= 2,0.047% 0.0 • [1.0, 200000.0][1 4] at x= 2,0.001% 0.0 • [1.0, 20000.0][1 4] at x= 2,0.0% 0.0001 • $[1.0, 4000.0][1 \, 4]$ at $x = 2, 0.0\% \, 0.0$ • [1.0, 500.0][1 4] at x= 2,0.581% 0.0 • [1.0, 80000.0][1 4] at x= 2,0.0% 0.0 150 100 50

Dominant mode phase for Ni

Dominant mode behavior for Ni Ni phase, all runs, linear yscale 0.008 -0.2-0.40.001 -0.65e-05 -0.8-1.0• [1.0, 2500.0][1 1] at x= 2,0.0% 0.0 • [1.0, 200.0][1 1] at x= 2 ,0.058% 0.0 [1.0, 350000.0][1 7] at x= 2, 0.0% 0.0• [1.0, 35000.0][1 7] at x= 2 ,0.0% 0.0001 • [1.0, 1000.0][1 1] at x= 2,0.004% 0.0 0.0002 • [1.0, 125.0][1 1] at x= 2,0.854% 0.0

100

150

200

• • [1.0, 140000.0][1 7] at x= 2 ,0.0% 0.0

50

Dominant mode phase for Ni

Dominant mode behavior for rho 10⁻⁶ [1.0, 10000.0][1 4] [1.0, 800.0][1 4] [1.0, 200000.0][1 4] [1.0, 20000.0][1 4] [1.0, 4000.0][1 4] [1.0, 500.0][1 4] [1.0, 80000.0][1 4] 10⁻⁷ 10⁻⁸ 10⁻⁹ 10⁻¹⁰ 5290 5300 5320 5260 5270 5280 5310 5330