

Distributed Fiber Optic Chemical Sensing for marine CO2 Detection and Removal applications

Devika Mohan, Jahid Inam Chowdhury, Tulika Khanikar and Dr. Paul Ohodnicki

Department of Mechanical Engineering and Materials Science, University of Pittsburgh, PA, USA.

Introduction

Accurate, low-concentration CO₂ detection is crucial for environmental monitoring, particularly in oceanographic studies. Exceptional absorption of anthropogenic-derived CO₂ emissions has decreased the pH of the surface oceans, known as ocean acidification (OA) which will significantly impact the marine environment.

Fiber optic sensors which are immune to EM interference offer more stable distributed chemical sensing with high sensitivity, resolution as well as fast responses in extreme harsh conditions.

Research Objectives

- Hybrid Distributed fiber optic pH and CO₂ Sensing for Monitoring and Verification of Marine Carbon Dioxide Removal Applications
 - Quantitative characterization of carbon-related oceanographic properties
 - ➤ Distributed Chemical (pH and CO₂) Sensing (DCS) using sensing layer integrated fibers
 - ➤ Selection and synthesis of polymer-based sensing layers and additives for pH and CO₂ sensing
 - ➤ Demonstration of distributed pH and CO₂ sensing in seawater application

Initial specifications for evanescent-wave-based distributed sensing

	Distributed pH sensing	Distributed CO ₂ sensing	
Range	pH 5.00 - pH 9.00 (point)	200 – 1500 ppm (point)	
Resolution	0.01 pH (point)	+/- 5 ppm (point)	
Spatial range	≥ 1Km	≥ 1Km	
Spatial resolution	≤ 5m	≤ 5m	

Sensing test setups

Primary pH sensing mechanisms

Absorbance-based pH sensing

- Principle: Change in absorption or fluorescence properties of a pH sensitive indicator results in a change in the intensity of the light transmitted through the fiber
- Sensing element: pH sensitive indicator
- Measured parameter: Intensity of transmitted light

Strain-based pH sensing

- Principle: Swelling or shrinking of pH sensitive material induces strain on the fiber causing change in refractive index and hence light propagation through the fiber
- Sensing element: pH sensitive hydrogel or polymer
- Measured parameter: Wavelength shift or intensity

FBG or interfero meter Broadband Light source Optical Spectrum Analyzer

Sensing materials for pH sensing

Sensing mechanism	pH sensing layer	Synthesis method	Compatibility with reel-to-reel coating	Advantages
Absorption	TOES-DDS sol-gel Indicator: meta- Cresol Purple	Entrapment of indicator dye in sol gel matrix	Could be (Dip coating)	Promote hydrophobicity, reduce dye leaching, reduce film cracking, fast response
Strain	Conducting polymer: Polyaniline (PANI)	Oxidative polymerization	May not be (In situ polymerization)	Excellent environmental stability in its different forms, resistance to solvent, Absorption coefficient in visible and NIR region
	Smart Hydrogel: polyacrylamide	Photopolymerization	Yes (Dip coating)	Excellent linearity over pH $5-9$, stability, repeatability and fast response

Sensing materials for CO₂ sensing

Material	Refractive	Hydrophobicity	CO ₂	Notable
	Index		Detection	Properties
			Limit	
PDMS	~1.41	High	To Be	Biocompatible,
			Determined	flexible
ZIF-8	~1.4	Moderate	TBD	High surface
				area, tunable
				porosity

Synthesis of CO₂ sensing layer and coating

- 1. PDMS Preparation: Mix with curing agents at a 10:1 weight ratio.
- 2. Incorporation of Fillers: Add ten wt% of ZIF-8 and Silicalite; ensure thorough mixing.
- 3. Coating: Coat optical fiber with the mixed matrix material.
- 4. Curing: Cure the coated fiber in a controlled environment.

Future Work

- > Conduct long-term testing to evaluate sensor stability in varying environmental conditions.
- Explore additional sensing materials compatible with reel-to-reel coating and demonstration of distributed sensing

References

- . https://pubs.acs.org/doi/abs/10.1021/acssensors.7b00808?ref=vi_sensors-and-industry
- 2. https://pubs.acs.org/doi/10.1021/acs.est.2c02723?ref=pdf

Acknowledgments: University of Pittsburgh, ARPA-E, NETL, SOFAR, OFS