Numerical Implementation of the Doyle-Fuller-Newman (DFN) Model

Prof. Scott Moura | Energy, Controls, and Applications Lab (eCAL) | UC Berkeley

LAST UPDATED | June 14, 2016

In this note we document the numerical implementation of the DFN model.

1 Doyle-Fuller-Newman Model

We consider the Doyle-Fuller-Newman (DFN) model in Fig. 1 to predict the evolution of lithium concentration in the solid $c_s^{\pm}(x,r,t)$, lithium concentration in the electrolyte $c_e(x,t)$, solid electric potential $\phi_s^{\pm}(x,t)$, electrolyte electric potential $\phi_e(x,t)$, ionic current $i_e^{\pm}(x,t)$, molar ion fluxes $j_n^{\pm}(x,t)$, and bulk cell temperature T(t) [1]. The governing equations are given by

$$\frac{\partial c_s^{\pm}}{\partial t}(x,r,t) = \frac{1}{r^2} \frac{\partial}{\partial r} \left[D_s^{\pm} r^2 \frac{\partial c_s^{\pm}}{\partial r}(x,r,t) \right], \tag{1}$$

$$\varepsilon_e^j \frac{\partial c_e^j}{\partial t}(x,t) = \frac{\partial}{\partial x} \left[D_e^{\text{eff}}(c_e^j) \frac{\partial c_e^j}{\partial x}(x,t) + \frac{1 - t_c^0}{F} i_e^j(x,t) \right], \tag{2}$$

$$0 = \frac{\partial \phi_s^{\pm}}{\partial x}(x,t) - \frac{i_e^{\pm}(x,t) - I(t)}{\sigma^{\text{eff},\pm}}, \tag{3}$$

$$0 = \kappa^{\text{eff}}(c_e) \cdot \frac{\partial \phi_e}{\partial x}(x, t) + i_e^{\pm}(x, t)$$

$$0 = \frac{\partial i_e^{\pm}}{\partial x}(x,t) - a_s^{\pm} F j_n^{\pm}(x,t), \tag{4}$$

$$-\kappa^{\text{eff}}(c_e) \cdot \frac{2RT}{F} (1 - t_c^0) \times \left(1 + \frac{d \ln f_{c/a}}{d \ln c_e}(x, t) \right) \frac{\partial \ln c_e}{\partial x}(x, t), \tag{5}$$

$$0 = \frac{1}{F} i_0^{\pm}(x,t) \left[e^{\frac{\alpha_a F}{RT} \eta^{\pm}(x,t)} - e^{-\frac{\alpha_c F}{RT} \eta^{\pm}(x,t)} \right] - j_n^{\pm}(x,t), \tag{6}$$

$$\rho^{\text{avg}} c_P \frac{dT}{dt}(t) = h_{\text{cell}} \left[T_{\text{amb}}(t) - T(t) \right] + I(t) V(t) - \int_{0^-}^{0^+} a_s F j_n(x, t) \Delta T(x, t) dx, \quad (7)$$

where $D_e, \kappa, f_{c/a}$ are functions of $c_e(x,t)$ and $D_e^{\text{eff}} = D_e(c_e) \cdot (\varepsilon_e^j)^{\text{brug}}$, $\sigma^{\text{eff}} = \sigma \cdot (\varepsilon_s^j + \varepsilon_f^j)^{\text{brug}}$, $\kappa^{\text{eff}} = \kappa(c_e) \cdot (\varepsilon_e^j)^{\text{brug}}$ are the effective electrolyte diffusivity, effective solid conductivity, and

Figure 1: Schematic of the Doyle-Fuller-Newman model [1]. The model considers two phases: the solid and electrolyte. In the solid, states evolve in the x and r dimensions. In the electrolyte, states evolve in the x dimension only. The cell is divided into three regions: anode, separator, and cathode.

effective electrolyte conductivity given by the Bruggeman relationship. We also have

$$i_0^{\pm}(x,t) = k^{\pm} \left[c_{ss}^{\pm}(x,t) \right]^{\alpha_c} \left[c_e(x,t) \left(c_{s,\max}^{\pm} - c_{ss}^{\pm}(x,t) \right) \right]^{\alpha_a},$$
 (8)

$$i_0^{\pm}(x,t) = k^{\pm} \left[c_{ss}^{\pm}(x,t) \right]^{\alpha_c} \left[c_e(x,t) \left(c_{s,\max}^{\pm} - c_{ss}^{\pm}(x,t) \right) \right]^{\alpha_a},$$

$$\eta^{\pm}(x,t) = \phi_s^{\pm}(x,t) - \phi_e(x,t) - U^{\pm}(c_{ss}^{\pm}(x,t)) - FR_f^{\pm} j_n^{\pm}(x,t),$$
(9)

$$c_{ss}^{\pm}(x,t) = c_{s}^{\pm}(x, R_{s}^{\pm}, t),$$
 (10)

$$\Delta T(x,t) = U^{\pm}(\overline{c}_s^{\pm}(x,t)) - T(t) \frac{\partial U^{\pm}}{\partial T}(\overline{c}_s^{\pm}(x,t)), \tag{11}$$

$$\overline{c}_s^{\pm}(x,t) = \frac{3}{(R_s^{\pm})^3} \int_0^{R_s^{\pm}} r^2 c_s^{\pm}(x,r,t) dr$$
 (12)

Along with these equations are corresponding boundary and initial conditions. The boundary conditions for the solid-phase diffusion PDE (1) are

$$\frac{\partial c_s^{\pm}}{\partial r}(x,0,t) = 0, \tag{13}$$

$$\frac{\partial c_s^{\pm}}{\partial r}(x, R_s^{\pm}, t) = -\frac{1}{D_s^{\pm}} j_n^{\pm}. \tag{14}$$

The boundary conditions for the electrolyte-phase diffusion PDE (2) are given by

$$\frac{\partial c_e}{\partial x}(0^-, t) = \frac{\partial c_e}{\partial x}(0^+, t) = 0, \tag{15}$$

$$\varepsilon_e^- D_e^-(L^-) \frac{\partial c_e}{\partial x}(L^-, t) = \varepsilon_e^{\text{sep}} D_e^{\text{sep}}(0^{\text{sep}}) \frac{\partial c_e}{\partial x}(0^{\text{sep}}, t), \tag{16}$$

$$\varepsilon_e^{\text{sep}} D_e^{\text{sep}}(L^{\text{sep}}) \frac{\partial c_e}{\partial x}(L^{\text{sep}}, t) = \varepsilon_e^+ D_e^+(L^+) \frac{\partial c_e}{\partial x}(L^+, t), \tag{17}$$

$$c_e(L^-, t) = c_e(0^{\text{sep}}, t),$$
 (18)

$$c_e(L^{\text{sep}}, t) = c_e(0^+, t).$$
 (19)

The boundary conditions for the solid-phase potential ODE (3) are given by

$$\frac{\partial \phi_s^-}{\partial x}(L^-, t) = \frac{\partial \phi_s^+}{\partial x}(L^+, t) = 0. \tag{20}$$

The boundary conditions for the electrolyte-phase potential ODE (5) are given by

$$\phi_e(0^-, t) = 0, (21)$$

$$\phi_e(L^-, t) = \phi_e(0^{\text{sep}}, t), \tag{22}$$

$$\phi_e(L^{\text{sep}}, t) = \phi_e(L^+, t). \tag{23}$$

The boundary conditions for the ionic current ODE (4) are given by

$$i_e^-(0^-, t) = i_e^+(0^+, t) = 0$$
 (24)

and also note that $i_e(x,t) = I(t)$ for $x \in [0^{\text{sep}}, L^{\text{sep}}]$.

In addition, the parameters D_s^{\pm} , D_e , κ_e , k^{\pm} vary with temperature via the Arrhenius relationship:

$$\psi = \psi_{ref} \exp\left[\frac{E_{\psi}}{R} \left(\frac{1}{T} - \frac{1}{T_{ref}}\right)\right]$$
 (25)

where ψ represents a temperature dependent parameter, E_{ψ} is the activation energy [J/mol], and ψ_{ref} is the reference parameter value at reference temperature T_{ref} .

The input to the model is the applied current density I(t) [A/m²], and the output is the voltage measured across the current collectors

$$V(t) = \phi_s^+(0^+, t) - \phi_s^-(0^-, t) - R_c I(t)$$
(26)

Further details, including notation definitions, can be found in [1, 2].

2 Time-stepping

Ultimately, the equations are discretized to produce a DAE in the following format:

$$\dot{x} = f(x, z, u), \tag{27}$$

$$0 = g(x, z, u) (28)$$

with initial conditions x(0), z(0) that are consistent. That is, they verify (28). The time-stepping is done by solving the nonlinear equation

$$0 = F(x(t + \Delta t), z(t + \Delta t)),$$

$$0 = \begin{bmatrix} x(t) - x(t + \Delta t) + \frac{1}{2}\Delta t \left[f(x(t), z(t), u(t)) + f(x(t + \Delta t), z(t + \Delta t), u(t + \Delta t)) \right] \\ g(x(t + \Delta t), z(t + \Delta t), u(t + \Delta t)) \end{bmatrix}$$
(30)

for $x(t + \Delta t)$, $z(t + \Delta t)$. The function cfn_dfn.m returns the solution $(x(t + \Delta t), z(t + \Delta t))$ of (29)-(30), given x(t), z(t), u(t), $u(t + \Delta t)$. Note that we solve (29)-(30) using Newton's method, meaning analytic Jacobians of $F(\cdot, \cdot)$ are required w.r.t. x, z.

$$J = \begin{bmatrix} F_x^1 & F_z^1 \\ F_x^2 & F_z^2 \end{bmatrix}$$

$$= \begin{bmatrix} -I + \frac{1}{2}\Delta t \cdot \frac{\partial f}{\partial x}(x(t+\Delta t), z(t+\Delta t), u(t+\Delta t)) & \frac{1}{2}\Delta t \cdot \frac{\partial f}{\partial z}(x(t+\Delta t), z(t+\Delta t), u(t+\Delta t)) \\ \frac{\partial g}{\partial x}(x(t+\Delta t), z(t+\Delta t), u(t+\Delta t)) & \frac{\partial g}{\partial z}(x(t+\Delta t), z(t+\Delta t), u(t+\Delta t)) \end{bmatrix}$$
(32)

The analytic Jacobian is computed in two functions: (i) Function jac_dfn_pre.m computes Jacobian elements that are NOT state/time-dependent. (ii) Function jac_dfn.m computes Jacobian elements that are state/time-dependent.

3 DAEs

To perform the time-stepping in the previous section, we must compute functions f(x, z, u) and g(x, z, u). These functions, which represent the RHS of (27)-(28), are calculated by the Matlab function $\mathtt{dae_dfn.m}$, given the inputs x, z, u. The role of variables x, z, u are played by the DFN variables shown in Table 1.

	Tabl	e 1:	DAE	notation	for	DFN	states	in	Matlab	$\operatorname{Cod}\epsilon$
--	------	------	-----	----------	-----	-----	--------	----	--------	------------------------------

DAE Variable	DFN Variable
x	$c_s^-, c_s^+, c_e = [c_e^-, c_e^{sep}, c_e^+], T$
z	$\phi_s^-, \phi_s^+, i_e^-, i_e^+, \phi_e = [\phi_e^-, \phi_e^{sep}, \phi_e^+], j_n^-, j_p^+$
u	I

In the subsequent sections, we go through each DFN variable listed in Table 1 and document its numerical implementation.

4 Solid Concentration, c_s^-, c_s^+

[NEEDS REVISION TO REFLECT JORDAN FORM] The PDEs (1) and BCs (13)-(14) governing Fickian diffusion in the solid phase are implemented using third order Padé approximations of the two transfer functions from j_n^{\pm} to c_{ss}^{\pm} and \bar{c}_s^{\pm} .

$$\frac{C_{ss}^{\pm}(s)}{J_n^{\pm}(s)} = \frac{-\frac{21}{R_s^{\pm}}s^2 - \frac{1260D_s^{\pm}}{(R_s^{\pm})^3}s - \frac{10395(D_s^{\pm})^2}{(R_s^{\pm})^4}}{s^3 + \frac{189D_s^{\pm}}{(R_s^{\pm})^2}s^2 + \frac{3465(D_s^{\pm})^2}{(R_s^{\pm})^4}s},$$
(33)

$$\frac{\overline{C}_s^{\pm}(s)}{J_n^{\pm}(s)} = \frac{-3R_s^{\pm}}{s}.$$
(34)

These transfer functions are converted into controllable canonical state-space form , thus producing the subsystem:

$$\frac{d}{dt} \begin{bmatrix} c_{s1}^{\pm}(t) \\ c_{s2}^{\pm}(t) \\ c_{s3}^{\pm}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -\frac{3465(D_s^{\pm})^2}{(R_s^{\pm})^4} & -\frac{189D_s^{\pm}}{(R_s^{\pm})^2} \end{bmatrix} \begin{bmatrix} c_{s1}^{\pm}(t) \\ c_{s2}^{\pm}(t) \\ c_{s3}^{\pm}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} j_n^{\pm}(t) \tag{35}$$

$$\begin{bmatrix} c_{ss}^{\pm}(t) \\ \overline{c}_{s}^{\pm}(t) \end{bmatrix} = \begin{bmatrix} -\frac{10395(D_{s}^{\pm})^{2}}{(R_{s}^{\pm})^{5}} & -\frac{1260D_{s}^{\pm}}{(R_{s}^{\pm})^{3}} & -\frac{21}{R_{s}^{\pm}} \\ -\frac{3}{R_{s}^{\pm}} \cdot \frac{3465(D_{s}^{\pm})^{2}}{(R_{s}^{\pm})^{4}} & -\frac{3}{R_{s}^{\pm}} \cdot \frac{189D_{s}^{\pm}}{(R_{s}^{\pm})^{2}} & -\frac{3}{R_{s}^{\pm}} \cdot 1 \end{bmatrix} \begin{bmatrix} c_{s1}^{\pm}(t) \\ c_{s2}^{\pm}(t) \\ c_{s3}^{\pm}(t) \end{bmatrix}$$
(36)

for each discrete point in x.

5 Electrolyte Concentration, c_e

[NEEDS REVISION, FOR CONCENTRATION DEPENDENT DIFFUSIVITY AND BCS]

The electrolyte concentration PDE (2) and BCs (15)-(19) are implemented using the central difference method, which ultimately produces the matrix differential equation:

$$\frac{d}{dt}c_e(t) = A_{ce}(c_{e,x}) \cdot c_e(t) + B_{ce}(c_{e,x}) \cdot i_{e,x}(t)$$
(37)

where c_e , $i_{e,x}$ are vectors whose elements represent discrete points along the x-dimension of the DFN model. In particular $i_{e,x}$ and $c_{e,x}$ represent the entire electrolyte current and concentration, respectively, across the entire battery, including boundary values,

$$i_{e,x}(t) = \begin{bmatrix} 0, i_e^-(x,t), I(x,t), i_e^+(x,t), 0 \end{bmatrix}^T,$$
 (38)

$$c_{e,x}(t) = \begin{bmatrix} c_{e,bc,1}(t), & c_e^-(x,t), c_{e,bc,2}(t), & c_e^{sep}(x,t), c_{e,bc,3}(t), & c_e^+(x,t), & c_{e,bc,4}(t) \end{bmatrix}^T, (39)$$

$$c_{e,bc}(t) = C_{ce} c_e(t) (40)$$

Note that the system matrices (A_{ce}, B_{ce}) are also state-varying, but C_{ce} is not. These state matrices are computed online by Matlab function $c_e_{mats.m.}$ Matrix C_{ce} can be computed offline. The state matrices are computed by

$$A_{ce} = (M1) - (M2)(N2)^{-1}(N1), (41)$$

$$B_{ce} = (M3), (42)$$

$$C_{ce} = -(N2)^{-1}(N1) (43)$$

The first term on the RHS of PDE (2) is implemented by

$$(M1) = BlkDiag((M1n), (M1s), (M1p)), \qquad (44)$$

$$(M1) = BRDIag((M1n), (M1s), (M1p)),$$

$$(M2) = \begin{bmatrix} (M2n_{col1}) & (M2n_{col2}) & 0 & 0\\ 0 & (M2s_{col1}) & (M2s_{col2}) & 0\\ 0 & 0 & (M2p_{col1}) & (M2p_{col2}) \end{bmatrix}$$

$$(44)$$

and

$$(M1n) =$$

$$\alpha^{-} \cdot \begin{bmatrix} -(D_{e,0} + D_{e,n,2}) & D_{e,n,2} \\ D_{e,n,1} & -(D_{e,n,1} + D_{e,n,3}) & D_{e,n,3} \\ \vdots & \vdots & \ddots & \vdots \\ D_{e,n,i-1} & -(D_{e,n,i-1} + D_{e,n,i+1}) & D_{e,n,i+1} \\ \vdots & \vdots & \ddots & \vdots \\ D_{e,n,Nxn-2} & -(D_{e,n,Nxn-2} + D_{e,ns}) \end{bmatrix}$$

$$(46)$$

$$(M1s) =$$

$$\alpha^{sep} \cdot \begin{bmatrix}
-(D_{e,ns} + D_{e,s,2}) & D_{e,s,2} \\
D_{e,s,1} & -(D_{e,s,1} + D_{e,s,3}) & D_{e,s,3} \\
\vdots & \vdots & \vdots \\
D_{e,s,i-1} & -(D_{e,s,i-1} + D_{e,s,i+1}) & D_{e,s,i+1} \\
\vdots & \vdots & \vdots \\
D_{e,s,Nxs-2} & -(D_{e,s,Nxs-2} + D_{e,np})
\end{bmatrix}$$
(47)

$$(M1n) =$$

$$\alpha^{+} \cdot \begin{bmatrix} -(D_{e,sp} + D_{e,p,2}) & D_{e,p,2} \\ D_{e,p,1} & -(D_{e,p,1} + D_{e,p,3}) & D_{e,p,3} \\ \vdots & \vdots & \vdots \\ D_{e,p,i-1} & -(D_{e,p,i-1} + D_{e,p,i+1}) & D_{e,p,i+1} \\ \vdots & \vdots & \vdots \\ D_{e,p,Nxp-2} & -(D_{e,p,Nxp-2} + D_{e,N}) \end{bmatrix}$$

$$(48)$$

$$(M2n) = \alpha^{-} \begin{bmatrix} D_{e,0} & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & D_{e,ns} \end{bmatrix}, (M2s) = \alpha^{sep} \begin{bmatrix} D_{e,ns} & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & D_{e,sp} \end{bmatrix}, (M2p) = \alpha^{+} \begin{bmatrix} D_{e,sp} & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & D_{e,N} \end{bmatrix}$$

$$(49)$$

$$(M3) = \begin{bmatrix} -\beta^{-} & 0 & \beta^{-} \\ & \ddots & \ddots & \ddots \\ & & -\beta^{-} & 0 & \beta^{-} \\ & & & \ddots & \ddots & \ddots \\ & & & -\beta^{sep} & 0 & \beta^{sep} \\ & & & & -\beta^{+} & 0 & \beta^{+} \\ & & & \ddots & \ddots & \ddots \\ & & & & -\beta^{+} & 0 & \beta^{+} \end{bmatrix}$$

$$(50)$$

and

$$\alpha^{j} = \frac{1}{(L^{j}\Delta x^{j})^{2}}, \qquad \beta^{j} = \frac{1 - t_{c}^{0}}{2\varepsilon_{e}^{j}FL^{j}\Delta x^{j}}, \tag{51}$$

$$D_e(c_{e,x}(x,t)) = [D_{e,0} \mid D_{e,n}(x) \mid D_{e,ns} \mid D_{e,s}(x) \mid D_{e,sp} \mid D_{e,p}(x) \mid D_{e,N}]$$
 (52)

The boundary conditions (15)-(19) are implemented as

$$(N1) = \begin{bmatrix} \frac{1}{L^{-}\Delta x^{-}} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \frac{D_{e,ns}}{L^{-}\Delta x^{-}} \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} 0 & \cdots & 0 \\ \frac{D_{e,ns}}{L^{sep}\Delta x^{sep}} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \frac{D_{e,sp}}{L^{sep}\Delta x^{sep}} \\ 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ \frac{D_{e,sp}}{L^{+}\Delta x^{+}} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \frac{-1}{L^{+}\Delta x^{+}} \end{bmatrix},$$

$$(53)$$

$$(N2) = \begin{bmatrix} \frac{-1}{L - \Delta x^{-}} & 0 & 0 & 0\\ 0 & -\frac{D_{e,ns}}{L - \Delta x^{-}} - \frac{D_{e,ns}}{L^{sep} \Delta x^{sep}} & 0 & 0\\ 0 & 0 & -\frac{D_{e,sp}}{L^{sep} \Delta x^{sep}} - \frac{D_{e,sp}}{L^{+} \Delta x^{+}} & 0\\ 0 & 0 & 0 & \frac{1}{L + \Delta x^{+}} \end{bmatrix}$$
(54)

6 Temperature, T

[DONE] Temperature is scalar, so the ODE (7) is directly implemented as:

$$\rho^{\text{avg}} c_P \frac{dT}{dt}(t) = h_{\text{cell}} \left[T_{\text{amb}}(t) - T(t) \right] + I(t) V(t) - \int_{0^-}^{0^+} a_s F j_n(x, t) \Delta T(x, t) dx, \quad (55)$$

$$\Delta T(x,t) = U^{\pm}(\overline{c}_s^{\pm}(x,t)) - T(t) \frac{\partial U^{\pm}}{\partial T}(\overline{c}_s^{\pm}(x,t)), \tag{56}$$

$$\overline{c}_s^{\pm}(x,t) = \frac{3}{(R_s^{\pm})^3} \int_0^{R_s^{\pm}} r^2 c_s^{\pm}(x,r,t) dr$$
 (57)

7 Solid Potential, ϕ_s^-, ϕ_s^+

[DONE] The solid potential ODE (3) and BCs (20) are implemented using the central difference method, which ultimately produces the matrix equation:

$$\frac{d}{dt}\phi_s^-(t) = F_{psn}^1 \phi_s^-(t) + F_{psn}^2 i_{e,aug}^-(t) + G_{psn} I(t) = 0$$
 (58)

$$\frac{d}{dt}\phi_s^+(t) = F_{psp}^1 \phi_s^+(t) + F_{psp}^2 i_{e,aug}^+(t) + G_{psp} I(t) = 0.$$
 (59)

where $i_{e,aug}^{\pm}$ are

$$i_{e,aug}^{-}(t) = \begin{bmatrix} 0 \\ i_{e}^{-}(x,t) \\ I(t) \end{bmatrix}, \qquad i_{e,aug}^{+}(t) = \begin{bmatrix} I(t) \\ i_{e}^{+}(x,t) \\ 0 \end{bmatrix}$$
 (60)

This section also computes the terminal voltage V(t) from (26) using matrix equations

$$\phi_{s,bc}^{-}(t) = C_{psn} \, \phi_s^{-}(t) + D_{psn} \, I(t),$$
 (61)

$$\phi_{s,bc}^{+}(t) = C_{psp} \, \phi_s^{+}(t) + D_{psp} \, I(t),$$
 (62)

$$V(t) = \phi_{s,bc,2}^{+}(t) - \phi_{s,bc,1}^{-}(t) - R_c I(t)$$
(63)

where the following matrices are computed a priori by Matlab function phi_s_mats.m

$$(F1n) = (M1n) - (M2n)(N2n)^{-1}(N1n), \tag{64}$$

$$(F2n) = (M3n), \tag{65}$$

$$(Gn) = (M4n) - (M2n)(N2n)^{-1}(N3n), (66)$$

$$(F1p) = (M1p) - (M2p)(N2p)^{-1}(N1p), (67)$$

$$(F2p) = (M3p), (68)$$

$$(Gp) = (M4p) - (M2p)(N2p)^{-1}(N3p), (69)$$

$$(Cn) = -(N2n)^{-1}(N1n), (70)$$

$$(Dn) = -(N2n)^{-1}(N3n), (71)$$

$$(Cp) = -(N2p)^{-1}(N1p),$$
 (72)

$$(Dp) = -(N2p)^{-1}(N3p), (73)$$

where the (Mij) and N(ij) matrices result from central difference approximations of the

ODE in space (3) and boundary conditions (20).

$$(M1j) = \begin{bmatrix} 0 & \alpha_j & 0 & \dots & 0 \\ -\alpha_j & 0 & \alpha_j & \dots & 0 \\ 0 & -\alpha_j & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & & & \\ 0 & 0 & \dots & \dots & \alpha_j \\ 0 & 0 & \dots & -\alpha_j & 0 \end{bmatrix}, \quad (M2j) = \begin{bmatrix} -\alpha_j & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 0 & \alpha_j \end{bmatrix}, \tag{74}$$

$$(M3j) = \frac{1}{\sigma^{\text{ref},\pm}} \begin{bmatrix} 0 & -1 & 0 & \dots & 0 \\ 0 & 0 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & -1 & 0 & 0 \\ 0 & 0 & \dots & 0 & -1 & 0 \end{bmatrix}, \quad (M4j) = \frac{1}{\sigma^{\text{ref},\pm}} \mathbb{I}$$

$$(N1j) = \begin{bmatrix} 4\alpha_j & -\alpha_j & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 1\alpha_j & -4\alpha_j \end{bmatrix}, \quad (N2j) = \begin{bmatrix} -3\alpha_j & 0 \\ 0 & 3\alpha_j \end{bmatrix}, \quad (76)$$

$$(N1j) = \begin{bmatrix} 4\alpha_j & -\alpha_j & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 1\alpha_j & -4\alpha_j \end{bmatrix}, \quad (N2j) = \begin{bmatrix} -3\alpha_j & 0 \\ 0 & 3\alpha_j \end{bmatrix}, \tag{76}$$

$$(N3n) = \begin{bmatrix} 1\\0 \end{bmatrix}, \quad (N3p) = \begin{bmatrix} 0\\1 \end{bmatrix} \tag{77}$$

for $j \in \{n, p\}$, $\alpha_j = 1/(2L^j\Delta x^j)$. Note, we have used second-order accurate finite difference approximations for the boundary conditions.

Electrolyte Current, i_e^-, i_e^+ 8

[DONE] The electrolyte current ODE (4) and BCs (24) are implemented using the central difference method, which ultimately produces the matrix equation:

$$\frac{d}{dt}i_e^-(t) = F_{ien}^{1-}i_e^-(t) + F_{ien}^{2-}j_n^-(t) + F_{ien}^{3-}I(t)$$
 (78)

$$\frac{d}{dt}i_e^+(t) = F_{iep}^{1+} i_e^+(t) + F_{iep}^{2+} j_n^+(t) + F_{iep}^{3+} I(t)$$
 (79)

where the following matrices are computed a priori by Matlab function i_e_mats.m

$$F_{ien}^{1-} = (M1n) - (M2n)(N2n)^{-1}(N1n),$$

$$F_{ien}^{2-} = (M3n) - (M2n)(N2n)^{-1}(N3n),$$
(80)

$$F_{ien}^{2-} = (M3n) - (M2n)(N2n)^{-1}(N3n), \tag{81}$$

$$F_{ien}^{3-} = (M2n)(N2n)^{-1}(N4n),$$

$$F_{iep}^{1+} = (M1p) - (M2p)(N2p)^{-1}(N1p),$$
(82)

$$F_{iep}^{1+} = (M1p) - (M2p)(N2p)^{-1}(N1p), \tag{83}$$

$$F_{iep}^{2+} = (M3p) - (M2p)(N2p)^{-1}(N3p), \tag{84}$$

$$F_{iep}^{3+} = (M2p)(N2p)^{-1}(N4p)$$
(85)

where the (Mij) and N(ij) matrices result from central difference approximations of the ODE in space (4) and boundary conditions (24).

$$(M1j) = \begin{bmatrix} 0 & \alpha_{j} & 0 & \dots & 0 \\ -\alpha_{j} & 0 & \alpha_{j} & \dots & 0 \\ 0 & -\alpha_{j} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & & & \\ 0 & 0 & \dots & \alpha_{j} & 0 \end{bmatrix}, \quad (M2j) = \begin{bmatrix} -\alpha_{j} & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 0 & \alpha_{j} \end{bmatrix}, \quad (M3j) = -\beta_{j}\mathbb{I},$$

$$(86)$$

$$(N1j) = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}, \qquad (N2j) = \mathbb{I}, \qquad (N3j) = (N1j), \tag{87}$$

$$(N4n) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad (N4n) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 (88)

for $j \in \{n, p\}, \, \alpha_i = (2L^j \Delta x^j)^{-1}, \, \beta_i = a_{\circ}^j F$.

9 Electrolyte Potential, ϕ_e

[INCOMPLETE] The electrolyte potential is implemented using the central difference method, which ultimately produces the matrix equation:

$$\frac{d}{dt}\phi_e^-(t) = F_{pe}^1(c_{e,x}) \cdot \phi_e(t) + F_{pe}^2(c_{e,x}) \cdot i_{e,x}(t) + F_{pe}^3(c_{e,x}) \cdot \ln(c_{e,x}(t))$$
(89)

where vectors $i_{e,x}$, $c_{e,x}$ are given by (38),(39). Note that the system matrices F_{pe}^1 , F_{pe}^2 , F_{pe}^3 are state-varying. These state matrices are computed online by Matlab function phi_e_mats.m as follows

$$F_{pe}^{1} = \kappa^{\text{eff}} \cdot (M1) + (M2)(C),$$
 (90)
 $F_{pe}^{2} = (M3),$ (91)

$$F_{ne}^2 = (M3),$$
 (91)

$$F_{ne}^{3} = \kappa_{D}^{\text{eff}} \cdot (M4) \tag{92}$$

DO BOUNDARY CONDITIONS NEXT and

$$\alpha^{j} = \frac{1}{2L^{j}\Delta x^{j}}, \qquad \beta^{j} = \frac{RT}{\alpha F}(1 - t_{c}^{0})\frac{1 + 0}{2L^{j}\Delta x^{j}}, \qquad \gamma = \frac{RT}{\alpha F}(1 - t_{c}^{0})(1 + 0)(93)$$

$$\kappa(c_{e,x}(x,t)) = \left[\kappa_{0} \mid \kappa_{n}(x) \mid \kappa_{ns} \mid \kappa_{s}(x) \mid \kappa_{sp} \mid \kappa_{p}(x) \mid \kappa_{N}\right]$$

$$(94)$$

where the 0 is β^j and γ arises when $\frac{d \ln f_{c/a}}{d \ln c_e}(x,t)$ in (3) is zero.

Molar ion fluxes, i.e. Butler-Volmer Current, j_n^-, j_n^+ 10

[DONE] Since the Butler-Volmer equation (6) is algebraic, and we always assume $\alpha_a = \alpha_c =$ $0.5 = \alpha$, it is trivially implemented as:

$$\frac{d}{dt}j_n^-(t) = \frac{2}{F}i_0^-(t)\sinh\left[\frac{\alpha F}{RT}\eta^-(t)\right] - j_n^-(t), \tag{95}$$

$$\frac{d}{dt}j_n^+(t) = \frac{2}{F}i_0^+(t)\sinh\left[\frac{\alpha F}{RT}\eta^+(t)\right] - j_n^+(t)$$
(96)

where

$$i_0^{\pm}(t) = k^{\pm} \left[c_{ss}^{\pm}(t) c_e(t) \left(c_{s,\text{max}}^{\pm} - c_{ss}^{\pm}(t) \right) \right]^{\alpha},$$

$$\eta^{\pm}(t) = \phi_s^{\pm}(t) - \phi_e(t) - U^{\pm}(c_{ss}^{\pm}(t)) - F R_f^{\pm} j_n^{\pm}(t)$$
(98)

$$\eta^{\pm}(t) = \phi_s^{\pm}(t) - \phi_e(t) - U^{\pm}(c_{ss}^{\pm}(t)) - FR_f^{\pm}j_n^{\pm}(t)$$
 (98)

for each discrete point in x, in the electrodes only. Note that $\frac{d}{dt}j_n^{\pm}(t)$ is a dummy variable used to save the corresponding element of vector g(x, z, t).

Nomenclature 11

See Table 2.

References

- [1] K. Thomas, J. Newman, and R. Darling, Advances in Lithium-Ion Batteries. New York, NY USA: Kluwer Academic/Plenum Publishers, 2002, ch. 12: Mathematical modeling of lithium batteries, pp. 345 - 392.
- [2] N. A. Chaturvedi, R. Klein, J. Christensen, J. Ahmed, and A. Kojic, "Algorithms for advanced batterymanagement systems," IEEE Control Systems Magazine, vol. 30, no. 3, pp. 49 – 68, 2010.

Table 2: Symbol Definitions

Symbols in order of appearance

	Electrochemical model states, inputs, outputs					
c_s^{\pm}	Lithium concentration in solid phase [mol/m ³]					
c_e	Lithium concentration in electrolyte phase [mol/m ³]					
ϕ_s^{\pm}	Solid electric potential [V]					
	Electrolyte electric potential [V]					
i_e^{\pm}	Ionic current [A/m ²]					
ϕ_e i_e^{\pm} j_n^{\pm} i_0^{\pm} η^{\pm} c_{ss}^{\pm}	Molar ion flux [mol/m ² -s]					
i_0^{\pm}	Exchange current density [A/m ²]					
η^\pm	Overpotential [V]					
c_{ss}^{\pm}	Lithium concentration at solid particle surface [mol/m ³]					
$ heta^\pm$	Normalized surface concentration $c_{ss}^{\pm}/c_{s,\text{max}}^{\pm}$ [-]					
I	Applied current [A/m ²]					
V	Terminal voltage [V]					
Electrochemical model parameters						
D_s^{\pm}, D_e	Diffusivity of solid, electrolyte phase [m ² /s]					
t_c^0	Transference number [-]					
$\varepsilon_s^{\pm}, \varepsilon_e$	Volume fraction of solid, electrolyte phase [-]					
F	Faraday's constant [C/mol]					
σ^{\pm}	Conductivity of solid $[1/\Omega-m]$					
κ	Conductivity of electrolyte $[1/\Omega-m]$					
R	Universal gas constant [J/mol-K]					
T	Temperature [K]					
$f_{c/a}$	Mean molar activity coefficient in electrolyte [-]					
a^{\pm}	Specific interfacial surface area [m ² /m ³]					
α_a, α_c	Anodic, cathodic charge transfer coefficient [-]					
k^{\pm}	Kinetic reaction rate $[(A/m^2)(mol^3/mol)^{(1+\alpha)}]$					
$c_{s,\max}^{\pm}$	Maximum concentration of solid material [mol/m ³]					
U^{\pm}	Open circuit potential of solid material [V]					
R_f^{\pm}	Solid-electrolyte interphase film resistance $[\Omega-m^2]$					
R_c	Resistance of connectors, current collectors $[\Omega-m^2]$					
R_s^{\pm}	Particle radius in solid phase [m]					
L^{j}	Length of region $j \in \{-, \text{sep}, +\}$					
E_{ψ}	Activation energy of parameter ψ , [J/mol]					