Redes de Petri

Jaime A. Pavlich Mariscal

Ejemplo de proceso

- Actividad de una clase
 - El profesor publica una actividad
 - El estudiante resuelve la actividad
 - El profesor califica la actividad
 - El profesor retroalimenta la actividad

Máquina de estados

¿Qué pasa si...

- Hay dos o más profesores calificando?
 - 2 o más procesos en paralelo
 - Un proceso depende de los resultados de 2 o más procesos anteriores
- Hay más de un estudiante que envía su respuesta a la actividad? (obvio)

Redes de Petri

- Describe sistemas distribuidos
- Base formal para:
 - Diagramas de actividad (UML)
 - Business Process Modeling Notation (BPMN)

Notación

Tipos de conexiones

Transiciones

Ejemplo (imperfecto)

Ejecución de una Red de Petri

Pesos (o capacidad) de los arcos

Pesos de salida

Pesos (o capacidad) de los arcos

Pesos de entrada

Capacidad máxima de lugares

Marcado

Asignación de tokens en un momento determinado

$$M(1) = 1$$
$$M(2) = 3$$

$$M = (1,3)$$

Definición Formal

Una Red de Petri es una tupla:

$$N = (P, T, F, M_0, W, K)$$

P: Conjunto de Lugares

T: Conjunto de **Transiciones**

 $F \subseteq (P \times T) \cup (T \times P)$: Flujos (arcos)

 $M_0: P \to \mathbb{N}$: Marcas iniciales (tokens)

 $W: F \to \mathbb{N}:$ **Pesos** de los arcos

 $K: P \to \mathbb{N}$: Capacidad máxima de cada Lugar

Fuentes (source) y sumideros (sink)

Patrones

Concurrencia

Sincronización

Conflicto

Exclusión mutua

Ejemplo (imperfecto)

Ejercicio - Pizzería

- Una pizza se prepara, comenzando con:
 - 1 masa
 - 2 rodajas de queso
 - 4 rodajas de piña
 - 4 rodajas de jamón
- Las pizzas se colocan al horno, el cual tiene capacidad para 2 pizzas
 - Siempre se colocan 2 pizzas en el horno
 - Las 2 pizzas se hornean durante el mismo tiempo
- Después de horneadas, se les agrega 2 unidades de lechuga a cada pizza

Análisis de alcance (reachability)

- "Máquina de estados" equivalente
- Estado
 - Marcas en los lugares
- Transiciones
 - Cambios producidos en las marcas producto del disparo de una transición de la red

Arcos inhibitorios

Arcos inhibitorios con pesos

Ejercicio – COVID19

- Algunas salas de clase tienen un aforo máximo de 10 estudiantes
 - Se asume que el sistema comienza con la sala vacía
 - Antes de iniciar la clase, los estudiantes están en el lobby afuera de la sala
 - Entran uno por uno a la sala hasta completar el aforo máximo
 - Luego de completar el aforo, no pueden ingresar más estudiantes

Más ejercicios – dibuje una red de Petri que

- Simule las cuatro estaciones del año
- El traslado de trabajadores desde la ciudad hacia una mina
 - Hay un solo bus con capacidad para 10 personas
 - El bus viaja a la mina solo cuando está lleno
 - El bus regresa a la ciudad vacío a buscar más personas
- Simule dos colas de personas, una cola VIP y una normal
 - VIP tiene mayor prioridad que la cola normal

Más ejercicios – dibuje una red de Petri que

- Simule las luces del semáforo para:
 - Un semáforo de peatones (2 luces)
 - Un semáforo de vehículos (3 luces)
 - Un semáforo de vehículos sincronizado con un semáforo de peatones