

Design and Analysis of Algorithms I

Master Method

Motivation

Integer Multiplication Revisited

Motivation: potentially useful algorithmic ideas often need mathematical analysis to evaluate

Recall : grade-school multiplication algorithm uses $\theta(n^2)$ operation to multiply two n-digit numbers

A Recursive Algorithm

Recursive approach

Write
$$x = 10^{n/2}a + b$$
 $y = 10^{n/2}c + d$ [where a,b,c,d are n/2 – digit numbers]

<u>So</u>:

$$x \cdot y = 10^n ac + 10^{n/2} (ad + bc) + bd \qquad (*)$$

<u>Algorithm#1</u>: recursively compute ac,ad,bc,bd, then compute (*) in the obvious way.

A Recursive Algorithm

T(n) = maximum number of operations this algorithm needs to multiply two n-digit numbers

Recurrence: express T(n) in terms of running time of recursive calls.

Base Case: T(1) <= a constant.

Work done
here

For all
$$n > 1$$
: $T(n) \le 4T(n/2) + O(n)$

Work done by recursive calls

A Better Recursive Algorithm

Algorithm #2 (Gauss): recursively compute ac, bd, $(a+b)(c+d)^{(3)}$ [recall ad+bc = (3) - (1) - (2)]

New Recurrence:

Base Case : T(1) <= a constant</pre>

Which recurrence best describes the running time of Gauss's algorithm for integer multiplication?

$$\bigcirc T(n) \le 2T(n/2) + O(n^2)$$

$$\bigcirc$$
 3T(n/2) + O(n)

$$\bigcirc 4T(n/2) + O(n)$$

$$\bigcirc 4T(n/2) + O(n^2)$$

A Better Recursive Algorithm

Algorithm #2 (Gauss): recursively compute $ac^{(1)}, bd^{(2)}, (a+b)(c+d)^{(3)}$ [recall ad+bc = (3) – (1) – (2)]

New Recurrence:

Base Case : T(1) <= a constant</pre>

Work done

 $\underline{\text{For all n>1}}: T(n) \leq 3T(n/2) + O(n)$

Work done by recursive calls

Design and Analysis of Algorithms I

Master Method The Precise Statement

The Master Method

<u>Cool Feature</u>: a "black box" for solving recurrences.

<u>Assumption</u>: all subproblems have equal size.

Recurrence Format

- 1. <u>Base Case</u>: T(n) <= a constant for all sufficiently small n
- 2. For all larger n:

$$T(n) \le aT(n/b) + O(n^d)$$

where

a = number of recursive calls (>= 1)

b = input size shrinkage factor (> 1)

d = exponent in running time of "combine step" (>=0)

[a,b,d independent of n]

The Master Method

• $T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \text{ (Case 1)} \\ O(n^d) & \text{if } a < b^d \text{ (Case 2)} \\ O(n^{\log_b a}) & \text{if } a > b^d \text{ (Case 3)} \end{cases}$

Design and Analysis of Algorithms I

Master Method

Examples

The Master Method

If
$$T(n) \le aT\left(\frac{n}{b}\right) + O(n^d)$$

then

$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \text{ (Case 1)} \\ O(n^d) & \text{if } a < b^d \text{ (Case 2)} \\ O(n^{\log_b a}) & \text{if } a > b^d \text{ (Case 3)} \end{cases}$$

Example #1

Merge Sort

$$\begin{array}{c} \mathbf{a=2} \\ \mathbf{b=2} \\ \mathbf{d=1} \end{array} \qquad b^d = \begin{array}{c} \mathbf{a=>} \quad Case \ 1 \\ \end{array}$$

$$T(n) = O(n^d \log n) = O(n \log n)$$

Where are the respective values of a, b, d for a binary search of a sorted array, and which case of the Master Method does this correspond to?

1, 2, 0 [Case 1]
$$a = b^d => T(n) = O(n^d \log n) = O(\log n)$$
1, 2, 1 [Case 2]
2, 2, 0 [Case 3]

 \bigcirc 2, 2, 1 [Case 1]

Example #3

Integer Multiplication Algorithm # 1

$$=> T(n) = O(n^{\log_b a}) = O(n^{\log_2 4})$$

$$= O(n^2)$$

Same as grade-school algorithm

Tim Roughgarden

Where are the respective values of a, b, d for Gauss's recursive integer multiplication algorithm, and which case of the Master Method does this correspond to?

O 2, 2, 1 [Case 1]

 \bigcirc 3, 2, 1 [Case 1]

 \bigcirc 3, 2, 1 [Case 2]

7 3, 2, 1 [Case 3]

the gradeschool algorithm!!!

Better than

$$a = 3, b^d = 2 \ a > b^d \ (Case \ 3)$$

$$=> T(n) = O(n^{\log_2 3}) = O(n^{1.59})$$

Example #5

Strassen's Matrix Multiplication Algorithm

=> beats the naïve iterative algorithm!

Example #6

Fictitious Recurrence

$$T(n) \le 2T(n/2) + O(n^2)$$
 $\Rightarrow a = 2$
 $\Rightarrow b = 2$
 $\Rightarrow d = 2$
 $\Rightarrow d = 2$
 $\Rightarrow D = 4 > a \quad (Case 2)$
 $\Rightarrow D = 2$

Design and Analysis of Algorithms I

Master Method

Proof (Part I)

The Master Method

If
$$T(n) \le aT\left(\frac{n}{b}\right) + O(n^d)$$

then

$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \text{ (Case 1)} \\ O(n^d) & \text{if } a < b^d \text{ (Case 2)} \\ O(n^{\log_b a}) & \text{if } a > b^d \text{ (Case 3)} \end{cases}$$

Preamble

<u>Assume</u>: recurrence is

I.
$$T(1) \leq c$$
 (For some constant c)

And n is a power of b.

(general case is similar, but more tedious)

Idea : generalize MergeSort analysis.
 (i.e., use a recursion tree)

Tei ve

What is the pattern ? Fill in the blanks in the following statement: at each level $j = 0,1,2,...,log_b n$, there are

subproblems, each of size

slank>

- \bigcirc a^j and n/a^j, respectively.
- \bigcirc a^j and n/b^j, respectively.
- \bigcirc b^j and n/a^j, respectively.
- \bigcirc b^j and n/b^j, respectively.

of times you can divide n by b before reaching 1

The Recursion Tree

Level 0

Level 1

•

•

Level log_bn

Tim Roughgarden

Work at a Single Level

Total work at level j [ignoring work in recursive calls]

Total Work

Summing over all levels $j = 0,1,2,..., log_b n$:

$$\begin{array}{ll} \text{Total} & \leq c n^d \cdot \sum_{j=0}^{\log_b n} (\frac{a}{b^d})^j & \quad (*) \end{array}$$
 work

Design and Analysis of Algorithms I

Master Method Intuition for the 3 Cases

How To Think About (*)

Our upper bound on the work at level j:

$$cn^d \times (\frac{a}{b^d})^j$$

<u>Interpretation</u>

a = rate of subproblem proliferation (RSP)

bd = rate of work shrinkage (RWS)

(per subproblem)

Which of the following statements are true? (Check all that apply.)

- If RSP < RWS, then the amount of work is decreasing with the recursion level j.
 - If RSP > RWS, then the amount of work is increasing with the recursion level j.
 - No conclusions can be drawn about how the amount of work varies with the recursion level j unless RSP and RWS are equal.
 - If RSP and RWS are equal, then the amount of work is the same at every recursion level j.

Tei blo

> Or bu

13 24

Intuition for the 3 Cases

Upper bound for level j: $cn^d \times (\frac{a}{b^d})^j$

- RSP = RWS => Same amount of work each level (like Merge Sort) [expect O(n^dlog(n)]
- 2. RSP < RWS => less work each level => most work at the root [might expect O(n^d)]
- 3. RSP > RWS => more work each level => most work at the leaves [might expect O(# leaves)]

Design and Analysis of Algorithms I

Master Method

Proof (Part II)

The Story So Far/Case 1 = 1 for

Total work:
$$\leq cn^d \times \sum_{j=0}^{\log_b n} \binom{a}{b^d}^j$$
 (*)
$$If \quad a = b^d, \ then$$

$$(*) = cn^d (\log_b n + 1)$$

$$= O(n^d \log n)$$

[end Case 1]

Basic Sums Fact

For $r \neq 1$, we have

$$1 + r + r^2 + r^3 + \dots + r^k = \frac{r^{k+1} - 1}{r - 1}$$

Proof: by induction (you check)

Upshot:

Independent of k

- 1. If r<1 is constant, RHS is $<=\frac{1}{1-r}$ = a constant l.e., 1st term of sum dominates
- 2. If r>1 is constant, RHS is $<= r^k \cdot (1 + \frac{1}{r-1})$.

 l.e., last term of sum dominates

Tim Roughgarden

Case 2

Total work:
$$\leq cn^d \times \sum_{j=0}^{\log_b n} \binom{a}{b^d}^j$$

If $a < b^d \ [RSP < RWS]$

$$= O(n^d)$$

><= a constant
 (independent of n)
 [by basic sums fact]</pre>

[total work dominated by top level]

Case 3

Total work:
$$\leq cn^d \times \sum_{j=0}^{\log_b n} {\binom{a}{b^d}}$$

If
$$a > b^d$$
 $[RSP > RWS]$

$$(*) = O(n^d \cdot (\frac{a}{b^d})^{\log_b n})$$

$$Note: b^{-d\log_b n} = (b^{\log_b n})^{-d} = n^{-d}$$

$$So: (*) = O(a^{\log_b n})$$

Tim Roughgarden

 $_{\pi}$:= r > 1

4<= constant *</pre>

largest term

Level 0

Level 1

a children

of leaves = $a^{\log_b n}$

Tei ve

Level log_bn

Which of the following quantities is equal to $a^{\log_b n}$?

- O The number of levels of the recursion tree.
- O The number of nodes of the recursion tree.
- O The number of edges of the recursion tree.
- \bigcirc The number of leaves of the recursion tree.

Case 3 continued

Total work:
$$\leq cn^d \times \sum_{j=0}^{\log_b n} (\frac{a}{b^d})^j$$
 (*)
$$So: (*) = O(a^{\log_b n}) = O(\# \ leaves)$$

$$Note: a^{\log_b n} = n^{\log_b a} \text{More intuitive Simpler to apply}$$

$$[Since (\log_b n)(\log_b a) = (\log_b a)(\log_b n)]$$
[End Case 3]

The Master Method

If
$$T(n) \le aT\left(\frac{n}{b}\right) + O(n^d)$$

then

$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \text{ (Case 1)} \\ O(n^d) & \text{if } a < b^d \text{ (Case 2)} \\ O(n^{\log_b a}) & \text{if } a > b^d \text{ (Case 3)} \end{cases}$$