BitTorrent: requesting, sending file chunks

Requesting chunks:

- at any given time, different peers have different subsets of file chunks
- periodically, Alice asks each peer for list of chunks that they have
- Alice requests missing chunks from peers, rarest first

Sending chunks: tit-for-tat

- Alice sends chunks to those four peers currently sending her chunks at highest rate
 - other peers are choked by Alice (do not receive chunks from her)
 - re-evaluate top 4 every10 secs
- every 30 secs: randomly select another peer, starts sending chunks
 - "optimistically unchoke" this peer
 - newly chosen peer may join top 4

BitTorrent: tit-for-tat

- (1) Alice "optimistically unchokes" Bob
- (2) Alice becomes one of Bob's top-four providers; Bob reciprocates
- (3) Bob becomes one of Alice's top-four providers

Application layer: overview

- Principles of network applications
- Web and HTTP
- E-mail, SMTP, IMAP
- The Domain Name System DNS

- P2P applications
- video streaming and content distribution networks
- socket programming with UDP and TCP

Video Streaming and CDNs: context

- stream video traffic: major consumer of Internet bandwidth
 - Netflix, YouTube, Amazon Prime: 80% of residential ISP traffic (2020)
- challenge: scale how to reach ~1B users?
 - single mega-video server won't work (why?)
- challenge: heterogeneity
 - different users have different capabilities (e.g., wired versus mobile; bandwidth rich versus bandwidth poor)
- solution: distributed, application-level infrastructure

Multimedia: video

- video: sequence of images displayed at constant rate
 - e.g., 24 images/sec
- digital image: array of pixels
 - each pixel represented by bits
- coding: use redundancy within and between images to decrease # bits used to encode image
 - spatial (within image)
 - temporal (from one image to next)

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

frame i

temporal coding example: instead of sending complete frame at i+1, send only differences from frame i

frame i+1

Multimedia: video

- CBR: (constant bit rate): video encoding rate fixed
- VBR: (variable bit rate): video encoding rate changes as amount of spatial, temporal coding changes
- examples:
 - MPEG 1 (CD-ROM) 1.5 Mbps
 - MPEG2 (DVD) 3-6 Mbps
 - MPEG4 (often used in Internet, 64Kbps – 12 Mbps)

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

frame i

temporal coding example: instead of sending complete frame at i+1, send only differences from frame i

frame i+1

Streaming stored video

simple scenario:

Main challenges:

- server-to-client bandwidth will vary over time, with changing network congestion levels (in house, in access network, in network core, at video server)
- packet loss and delay due to congestion will delay playout, or result in poor video quality

Streaming stored video

Streaming stored video: challenges

- continuous playout constraint: once client playout begins, playback must match original timing
 - ... but network delays are variable (jitter), so will need client-side buffer to match playout requirements

- client interactivity: pause, fast-forward, rewind, jump through video
- video packets may be lost, retransmitted

Streaming stored video: playout buffering

• client-side buffering and playout delay: compensate for network-added delay, delay jitter

Streaming multimedia: DASH

DASH: Dynamic, Adaptive Streaming over HTTP

• server:

- divides video file into multiple chunks
- each chunk stored, encoded at different rates
- manifest file: provides URLs for different chunks

client:

- periodically measures server-to-client bandwidth
- consulting manifest, requests one chunk at a time
 - chooses maximum coding rate sustainable given current bandwidth
 - can choose different coding rates at different points in time (depending on available bandwidth at time)

Streaming multimedia: DASH

- "intelligence" at client: client determines
 - when to request chunk (so that buffer starvation, or overflow does not occur)
 - what encoding rate to request (higher quality when more bandwidth available)

 where to request chunk (can request from URL server that is "close" to client or has high available bandwidth)

Streaming video = encoding + DASH + playout buffering

- challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?
- option 1: single, large "mega-server"
 - single point of failure
 - point of network congestion
 - long path to distant clients
 - multiple copies of video sent over outgoing link

....quite simply: this solution doesn't scale

- challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?
- option 2: store/serve multiple copies of videos at multiple geographically distributed sites (CDN)
 - enter deep: push CDN servers deep into many access networks
 - close to users
 - Akamai: 240,000 servers deployed in more than 120 countries (2015)
 - *bring home:* smaller number (10's) of larger clusters in POPs near (but not within) access networks
 - used by Limelight

- CDN: stores copies of content at CDN nodes
 - e.g. Netflix stores copies of MadMen
 - subscriber requests content from CDN
 - directed to nearby copy, retrieves content
 - may choose different copy if network path congested

Internet host-host communication as a service

OTT challenges: coping with a congested Internet

- from which CDN node to retrieve content?
- viewer behavior in presence of congestion?
- what content to place in which CDN node?

CDN content access: a closer look

Bob (client) requests video http://netcinema.com/6Y7B23V

video stored in CDN at http://KingCDN.com/NetC6y&B23V

Case study: Netflix

Application Layer: Overview

- Principles of network applications
- Web and HTTP
- E-mail, SMTP, IMAP
- The Domain Name System DNS

- P2P applications
- video streaming and content distribution networks
- socket programming with UDP and TCP

Socket programming

goal: learn how to build client/server applications that communicate using sockets

socket: door between application process and end-end-transport protocol

Socket programming

Two socket types for two transport services:

- UDP: unreliable datagram
- TCP: reliable, byte stream-oriented

Application Example:

- client reads a line of characters (data) from its keyboard and sends data to server
- 2. server receives the data and converts characters to uppercase
- 3. server sends modified data to client
- 4. client receives modified data and displays line on its screen

Socket programming with UDP

UDP: no "connection" between client & server

- no handshaking before sending data
- sender explicitly attaches IP destination address and port # to each packet
- receiver extracts sender IP address and port# from received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:

UDP provides unreliable transfer of groups of bytes ("datagrams")
 between client and server

Client/server socket interaction: UDP

Example app: UDP client

```
include Python's socket library — from socket import *
serverName = 'hostname'
serverPort = 12000

create UDP socket for server — clientSocket = socket(AF_INET,
SOCK_DGRAM)
get user keyboard input — message = raw_input('Input lowercase sentence:')
attach server name, port to message; send into socket — clientSocket.sendto(message.encode(),
(serverName, serverPort))
read reply characters from socket into string — modifiedMessage, serverAddress =
clientSocket.recvfrom(2048)
print out received string and close socket — print modifiedMessage.decode()
```

clientSocket.close()

Example app: UDP server

Python UDPServer

Socket programming with TCP

Client must contact server

- server process must first be running
- server must have created socket (door) that welcomes client's contact

Client contacts server by:

- Creating TCP socket, specifying IP address, port number of server process
- when client creates socket: client TCP establishes connection to server TCP

- when contacted by client, server
 TCP creates new socket for server
 process to communicate with that
 particular client
 - allows server to talk with multiple clients
 - source port numbers used to distinguish clients (more in Chap 3)

Application viewpoint

TCP provides reliable, in-order byte-stream transfer ("pipe") between client and server

Client/server socket interaction: TCP

Example app: TCP client

from socket import * serverName = 'servername' serverPort = 12000 clientSocket = socket(AF_INET, SOCK_STREAM) clientSocket.connect((serverName,serverPort)) sentence = raw_input('Input lowercase sentence:')

Python TCPClient

No need to attach server name, port

remote port 12000

create TCP socket for server, -

modifiedSentence = clientSocket.recv(1024) print ('From Server:', modifiedSentence.decode()) clientSocket.close()

clientSocket.send(sentence.encode())

Example app: TCP server

Python TCPServer

```
from socket import *
                                       serverPort = 12000
       create TCP welcoming socket --- serverSocket = socket(AF_INET,SOCK_STREAM)
                                       serverSocket.bind((",serverPort))
          server begins listening for
                                 serverSocket.listen(1)
          incoming TCP requests
                                       print 'The server is ready to receive'
                      loop forever — while True:
                                          connectionSocket, addr = serverSocket.accept()
server waits on accept() for incoming
requests, new socket created on return
                                          sentence = connectionSocket.recv(1024).decode()
         read bytes from socket (but
                                          capitalizedSentence = sentence.upper()
         not address as in UDP)
                                          connectionSocket.send(capitalizedSentence.
                                                                             encode())
 close connection to this client (but not
                                          connectionSocket.close()
 welcoming socket)
```

Chapter 2: Summary

our study of network application layer is now complete!

- application architectures
 - client-server
 - P2P
- application service requirements:
 - reliability, bandwidth, delay
- Internet transport service model
 - connection-oriented, reliable: TCP
 - unreliable, datagrams: UDP

- specific protocols:
 - HTTP
 - SMTP, IMAP
 - DNS
 - P2P: BitTorrent
- video streaming, CDNs
- socket programming:TCP, UDP sockets

Chapter 2: Summary

Most importantly: learned about protocols!

- typical request/reply message exchange:
 - client requests info or service
 - server responds with data, status code
- message formats:
 - headers: fields giving info about data
 - data: info(payload) being communicated

important themes:

- centralized vs. decentralized
- stateless vs. stateful
- scalability
- reliable vs. unreliable message transfer
- "complexity at network edge"

Additional Chapter 2 slides

Chapter 3 Transport Layer

A note on the use of these PowerPoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2020 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top-Down Approach

8th edition Jim Kurose, Keith Ross Pearson, 2020

Transport layer: overview

Our goal:

- understand principles behind transport layer services:
 - multiplexing, demultiplexing
 - reliable data transfer
 - flow control
 - congestion control

- learn about Internet transport layer protocols:
 - UDP: connectionless transport
 - TCP: connection-oriented reliable transport
 - TCP congestion control

Transport layer: roadmap

- Transport-layer services
- Multiplexing and demultiplexing
- Connectionless transport: UDP
- Principles of reliable data transfer
- Connection-oriented transport: TCP
- Principles of congestion control
- TCP congestion control
- Evolution of transport-layer functionality

Transport services and protocols

- provide logical communication between application processes running on different hosts
- transport protocols actions in end systems:
 - sender: breaks application messages into segments, passes to network layer
 - receiver: reassembles segments into messages, passes to application layer
- two transport protocols available to Internet applications
 - TCP, UDP

Transport vs. network layer services and protocols

household analogy:

12 kids in Ann's house sending letters to 12 kids in Bill's house:

- hosts = houses
- processes = kids
- app messages = letters in envelopes

Transport vs. network layer services and protocols

- network layer: logical communication between hosts
- transport layer: logical communication between processes
 - relies on, enhances, network layer services

household analogy: -

- 12 kids in Ann's house sending letters to 12 kids in Bill's house:
- hosts = houses
- processes = kids
- app messages = letters in envelopes

Transport Layer Actions

Sender:

- is passed an applicationlayer message
- determines segment header fields values
- creates segment
- passes segment to IP

Transport Layer Actions

Receiver:

- receives segment from IP
- checks header values
- extracts application-layer message
- demultiplexes message up to application via socket

Two principal Internet transport protocols

- TCP: Transmission Control Protocol
 - reliable, in-order delivery
 - congestion control
 - flow control
 - connection setup
- UDP: User Datagram Protocol
 - unreliable, unordered delivery
 - no-frills extension of "best-effort" IP
- services not available:
 - delay guarantees
 - bandwidth guarantees

