PT2: Serie 4

Abgabetermin	05.06.2018, 21:00 Uhr
Übungstermin	31.05.2018

Aufgabe 1

Gegeben sind zwei Programme zur Matrizenmultiplikation, <u>multiply.c</u> und <u>multiply.java</u>. Bestimmen Sie die Komplexität der Multiplikation empirisch und theoretisch.

Empirische Analyse

- 1. Ändern Sie die Programme so, dass Matrizen der Größen 10, 20, 30, 40, 50, 100, 500, 1000 Eingabe sind.
- 2. Verwenden Sie einerseits das Programm /usr/bin/time zur Ermittlung der Gesamtlaufzeit, und andererseits die C-Funktion clock(3) und die Javamethode java.lang.System.nanoTime() zur Ermittlung der Laufzeit von mult.
- 3. Protokollieren Sie Ihre Experimente. Geben Sie im Protokoll alle für die Messung relevanten Einflussparameter an.
- 4. Stellen Sie die Gesamtergebnisse tabellarisch oder graphisch dar.

Theoretische Analyse

Zur theoretischen Analyse bestimmen Sie die Komplexitätsklasse der verwendeten Algorithmen, und erläutern Sie Ihre Analyse. Vergleichen Sie die theoretischen und die experimentellen Ergebnisse.

Aufgabe 2

Bestimmen Sie, ob die folgenden Aussagen wahr sind. Beweisen Sie die wahren Aussagen.

- $O(n^2) \subseteq O(n^3)$
- $10 \cdot n + 20 \in O(n)$
- $n^{2/3} \in O(n \cdot log n)$

Abgabe

Reichen Sie Ihre Lösung in Form eines einzelen gzip-komprimierten Tarfiles ein. Dieses soll im Wurzelverzeichnis Ihre Protokolle und Analysen als gesetzte PDF-Dateien enthalten.

Fügen Sie Anhänge zu den Protokollen, wie etwa modifizierten Quelltextdateien, in einen Unterordner anhaenge ein. Es sollen keine Binärdateien, Validationsskripte, Editorbackups, lokale Repositories, o.Ä. enthalten sein.

```
/
|--al-empirisch.pdf
|--al-theoretisch.pdf
|--a2.pdf
|--anhaenge
|--[multiply*.c]
|--[multiply*.java]
|--[...]
```

Zusatzaufgabe

Messen Sie für das C-Programm mithilfe von Hardware Performance Countern die Zahl der Takte (*cycles*), die zur Berechnung von mult benötigt werden. Auf einem nativ laufenden Linux können Sie dafür den Systemaufruf perf event open(2) (als root) verwenden.