EEN1047 CONTROL SYSTEMS ANALYSIS

Dr. Brendan Hayes & Dr. Mingming Liu

School of Electronic Engineering Dublin City University

Semester 1 2024-2025

Section 4 Sensitivity

4.1 Linear Feedback Control Systems

- A Control System is a set of interconnected systems designed to provide a desired system response.
- Open Loop System

- Has no feedback.
- The output is generated directly by the input.
- Closed Loop System

- Has a feedback loop; is error based.
- Compares the output with the desired response.
- Often H(s) = 1, called a unity feedback system.
- Feedback reduces the sensitivity of the control system to model inaccuracies and disturbances.

4.2 A Benefit of Feedback

- Feedback facilitates the reduction of System Sensitivity.
 - A process, represented by a transfer function G(s), undergoes changes over time due to aging and/or variations in its environment.
 - The original transfer function will give an inaccurate result in an open-loop configuration.
 - A **closed–loop** system will measurement changes in the output due to the changes in G(s) and will attempt to correct the output.
 - The degree to which changes in system parameters affect the transfer function is called sensitivity.
 - If changes in system parameters have no effect on the transfer function, the system is said to have zero sensitivity (ideal).
 - The greater the system sensitivity, the larger the effect that system parameter changes will have on the transfer function.

4.3 Disturbance Signals

• The general system model for looking at **system sensitivity** is:

4.3 Disturbance Signals

The general system model for looking at system sensitivity is:

- Note that we have assumed that there is no pre-conditioning filter P(s) in the system.
- There are two signals indicated in the model.
 - ullet D(s) is a disturbance that affects the input of the process.
 - $lackbox{N}(s)$ is a disturbance that affects the output of the process, it is usually a measurement noise introduced by the output sensor.

4.4 Open Loop Variations

- In order to examine the effects of parameter variations on the transfer function, we will assume that D(s) = N(s) = 0.
- As the system is linear, for simplicity, assume that C(s) = 1.
- Taking the open–loop case and letting Δ denote 'a change in':

Open-loop

$$G_{alt}(s) = G(s) + \Delta G(s)$$

 $\Rightarrow Y_{new}(s) = Y(s) + \Delta Y(s) = [G(s) + \Delta G(s)].R(s)$
 $\Delta Y(s) = \Delta G(s).R(s)$

Y(s) = G(s).R(s)

• The change in output is directly related to the change in the process; if there is a big change in the process, there will be a big change in the output (may be undesirable!).

4.5 Closed Loop Variations

• If there is a change in a model G(s) that is in a closed-loop configuration:

Closed-loop
$$Y(s) = \frac{G(s)}{1 + GH(s)} \cdot R(s)$$

$$G_{alt}(s) = G(s) + \Delta G(s)$$

$$Y_{new} = Y(s) + \Delta Y(s) = \frac{G(s) + \Delta G(s)}{1 + GH(s) + \Delta G(s)H(s)} \cdot R(s)$$

$$\Delta Y(s) = \left[\frac{G(s) + \Delta G(s)}{1 + GH(s) + \Delta GH(s)} - \frac{G(s)}{1 + GH(s)}\right] \cdot R(s)$$

$$\Delta Y(s) = \frac{\Delta G(s)}{(1 + GH(s))(1 + GH(s) + \Delta GH(s))} \cdot R(s)$$

$$\Delta Y(s) \approx \frac{\Delta G(s)}{[1 + GH(s)]^2} R(s) \quad \text{If } GH(s) >> \Delta GH(s)$$

4.5 Closed Loop Variations

• The change in output depends on the change in the model and on G(s) and H(s).

Closed-loop
$$Y(s) = \frac{G(s)}{1 + GH(s)} \cdot R(s)$$

$$G_{alt}(s) = G(s) + \Delta G(s)$$

$$Y_{new} = Y(s) + \Delta Y(s) = \frac{G(s) + \Delta G(s)}{1 + GH(s) + \Delta G(s)H(s)} \cdot R(s)$$

$$\Delta Y(s) = \left[\frac{G(s) + \Delta G(s)}{1 + GH(s) + \Delta GH(s)} - \frac{G(s)}{1 + GH(s)}\right] \cdot R(s)$$

$$\Delta Y(s) = \frac{\Delta G(s)}{(1 + GH(s))(1 + GH(s) + \Delta GH(s))} \cdot R(s)$$

$$\Delta Y(s) \approx \frac{\Delta G(s)}{[1 + GH(s)]^2} R(s) \quad \text{If } GH(s) >> \Delta GH(s)$$

4.6 Closed-Loop Variations - Equation

Closed-loop

$$\Delta Y(s) pprox rac{\Delta G(s)}{\left[1 + GH(s)
ight]^2}.R(s)$$

- Comparing the open-loop and closed-loop expressions for the change in output, it can be seen that the closed-loop expression features elements of the original system dynamics.
- If the expression [1 + GH] > 1, then the effect of the change in G(s) is reduced.
- If [1+GH]>1, then $[1+GH]^2\gg 1$ and the reduction effect is greater.
- This factor *is* usually much greater than unity in most practical cases.
- Thus, the feedback loop (even with H(s) = 1) reduces the effect of changes in system dynamics on the output.

4.7 Parameter Variations - Example Changes

• Take an example of a first oder motor model with gain $K_{,}=20$ and time constant $\tau_{m}=0.6$ (s).

$$G_m(s) = \frac{K_m}{\tau_m s + 1} = \frac{20}{0.6s + 1}$$

- Assume that C(s) = 1 and H(s) = 0.45 in the closed-loop configuration:
 - Calculate the open-loop steady-state gain of the system:

$$G_m(0) = 20$$

4.7 Parameter Variations - Example Changes

• Take an example of a first oder motor model with gain $K_{,}=20$ and time constant $\tau_{m}=0.6$ (s).

$$G_m(s) = \frac{K_m}{\tau_m s + 1} = \frac{20}{0.6s + 1}$$

- Assume that C(s) = 1 and H(s) = 0.45 in the closed-loop configuration:
 - Calculate the open-loop steady-state gain of the system:

$$G_m(0) = 20$$

Calculate the CLTF of the system:

$$T(s) = G_{CL}(s) = \frac{G(s)}{1 + GH(s)} = \frac{20}{0.6s + 10}$$

■ Calculate the closed-loop steady-state gain of the system:

$$T(0) = G_{CL}(0) = \frac{20}{10} = 2$$

4.8 Parameter Variations - Example Changes

- It is now assumed that some change has occurred in the motor model; the effect of this change is that the motor gain value changes to $K_m^* = 15$, i.e. a 25% reduction.
 - Calculate the open-loop steady-state gain of the new system:

$$G_m^*(0) = 15$$
 versus $G_m(0) = 20$

4.8 Parameter Variations - Example Changes

- It is now assumed that some change has occurred in the motor model; the effect of this change is that the motor gain value changes to $K_m^* = 15$, i.e. a 25% reduction.
 - Calculate the open-loop steady-state gain of the new system:

$$G_m^*(0) = 15$$
 versus $G_m(0) = 20$

Calculate the CLTF of the changed system:

$$T^*(s) = G_{CL}^*(s) = \frac{G^*(s)}{1 + G^*H(s)} = \frac{15}{0.6s + 7.75}$$

4.8 Parameter Variations - Example Changes

- It is now assumed that some change has occurred in the motor model; the effect of this change is that the motor gain value changes to $K_m^* = 15$, i.e. a 25% reduction.
 - Calculate the open-loop steady-state gain of the new system:

$$G_m^*(0) = 15$$
 versus $G_m(0) = 20$

• Calculate the CLTF of the changed system:

$$T^*(s) = G_{CL}^*(s) = \frac{G^*(s)}{1 + G^*H(s)} = \frac{15}{0.6s + 7.75}$$

• Calculate the closed-loop steady-state gain of the system:

$$T^*(0) = G_{CL}*(0) = \frac{15}{7.75} = 1.9355$$
 versus $T(0) = 2$

 The closed-loop system does not experience a change of 25% this is due to feedback.

4.9 Sensitivity - Definition

• Sensitivity is defined as the ratio of the percentage change in the function to the percentage change in the parameter as the percentage change in the parameter approaches zero.

4.9 Sensitivity - Definition

- Sensitivity is defined as the ratio of the percentage change in the function to the percentage change in the parameter as the percentage change in the parameter approaches zero.
- The sensitivity function of a function F to a change in parameter p is:

Definition

$$S_{p}^{F} = \lim_{\Delta p \to 0} \frac{\% \text{ change in } F}{\% \text{ change in } p}$$
$$= \lim_{\Delta p \to 0} \frac{\Delta F/F}{\Delta p/p} = \lim_{\Delta p \to 0} \frac{p\Delta F}{F\Delta p}$$

$$S_p^F = \frac{p}{F} \frac{\delta F}{\delta p}$$

4.10 System Sensitivity - Definition

• System sensitivity is defined as the ratio of the percentage change in the closed-loop transfer function (CLTF) to the percentage change in the open-loop process as the percentage change approaches zero.

4.10 System Sensitivity - Definition

- System sensitivity is defined as the ratio of the percentage change in the closed-loop transfer function (CLTF) to the percentage change in the open-loop process as the percentage change approaches zero.
- The system sensitivity of a CLTF T to a change in process G is:

Definition

$$S_G^T = \lim_{\Delta G \to 0} \frac{\Delta T / T}{\Delta G / G}$$
$$= \lim_{\Delta G \to 0} \frac{G \Delta T}{T \Delta G}$$

$$S_G^T = \frac{G}{T} \frac{\delta T}{\delta G}$$

4.11 System Sensitivity - Expression

• Taking the general closed-loop system with P(s) = C(s) = 1 and N(s), D(s) = 0:

4.11 System Sensitivity - Expression

• Taking the general closed-loop system with P(s) = C(s) = 1 and N(s), D(s) = 0:

General Expression

$$T(s) = \frac{G(s)}{1 + GH(s)}$$

$$S_G^T = \frac{G}{T} \frac{\delta T}{\delta G} = \frac{G}{\frac{G}{1 + GH}} \cdot \frac{\delta G (1 + GH)^{-1}}{\delta G}$$

$$= \frac{G (1 + GH)}{G} \cdot \frac{(1 + GH) \cdot 1 - GH}{(1 + GH)^2}$$

$$= \frac{G (1 + GH)}{G} \cdot \frac{1}{(1 + GH)^2}$$

$$= \frac{1}{1 + GH}$$

4.12 Sensitivity - CLTF to H

• For the same closed–loop configuration, the sensitivity of T(s) to changes in H(s) can be calculated:

General Expression

$$T(s) = \frac{G(s)}{1 + GH(s)}$$

$$S_H^T = \frac{H}{T} \frac{\delta T}{\delta H} = \frac{H}{\frac{G}{1 + GH}} \cdot \frac{\delta G (1 + GH)^{-1}}{\delta H}$$

$$= \frac{H (1 + GH)}{G} \cdot \left(-G (1 + GH)^{-2} \cdot G \right)$$

$$= \frac{H (1 + GH)}{G} \cdot \frac{-G^2}{(1 + GH)^2}$$

$$= \frac{-GH}{1 + GH}$$

4.13 Sensitivity - CLTF to p

 The sensitivity of the closed-loop system to a particular parameter of the open-loop system can be defined using the chain rule:

Sensitivity to parameter α

$$S_{\alpha}^{T} = \frac{\alpha}{T} \frac{\delta T}{\delta \alpha}$$

$$= \frac{G}{T} \frac{\alpha}{G} \cdot \frac{\delta T}{\delta G} \frac{\delta G}{\delta \alpha}$$

$$= \frac{G}{T} \frac{\delta T}{\delta G} \cdot \frac{\alpha}{G} \frac{\delta G}{\delta \alpha}$$

$$= S_{G}^{T} S_{\alpha}^{G}$$

 Even if the chain rule is not used, the same result should be found using the general definition

4.14 Sensitivity Definition Example

• Recall the first order motor model Section 4.7 with gain K_m and time constant τ_m . Assume that C(s) = 1 and $H(s) = K_h$ in the closed-loop configuration.

$$G_m(s) = \frac{K_m}{\tau_m s + 1}$$

4.14 Sensitivity Definition Example

• Recall the first order motor model Section 4.7 with gain K_m and time constant τ_m . Assume that C(s) = 1 and $H(s) = K_h$ in the closed-loop configuration.

$$G_m(s) = \frac{K_m}{\tau_m s + 1}$$

Example
$$T(s) = G_{CL} = \frac{K_m}{\tau_m s + 1 + K_m K_h}$$

$$S_{K_m}^T = \frac{K_m}{T} \frac{\delta T}{\delta K_m}$$

$$= \frac{K_m}{\frac{K_m}{\tau_m s + 1 + K_m K_h}} \cdot \left[\frac{(\tau_m s + 1 + K_m K_h) \cdot 1 - K_m \cdot K_h}{(\tau_m s + 1 + K_m K_h)^2} \right]$$

$$= \frac{\tau_m s + 1}{\tau_m s + 1 + K_m K_h}$$

4.15 Sensitivity Example - Chain Rule

• The sensitivity function can also be calculated using the chain rule representation.

4.15 Sensitivity Example - Chain Rule

 The sensitivity function can also be calculated using the chain rule representation.

Example

$$\begin{split} S_{K_{m}}^{T} &= S_{G}^{T}.S_{K_{m}}^{G} \\ &= \frac{1}{1 + GH}.\frac{K_{m}}{G}.\frac{\delta G}{\delta K_{m}} \\ &= \frac{\tau_{m}s + 1}{\tau_{m}s + 1 + K_{m}K_{h}}.\frac{K_{m}}{\tau_{m}s + 1}.\frac{1}{\tau_{m}s + 1} \\ &= \frac{\tau_{m}s + 1}{\tau_{m}s + 1 + K_{m}K_{h}}.\left(\tau_{m}s + 1\right).\frac{1}{\tau_{m}s + 1} \\ &= \frac{\tau_{m}s + 1}{\tau_{m}s + 1 + K_{m}K_{h}} \end{split}$$

4.16 Sensitivity Example with Values

• Checking what this means with numerical values, $\Delta K_m = 25\%, \tau = 0.6 \text{ s}, K_h = 0.45$:

4.16 Sensitivity Example with Values

• Checking what this means with numerical values, $\Delta K_m = 25\%$, $\tau = 0.6$ s, $K_h = 0.45$:

Example

$$\begin{split} S_{K_m}^T &= \frac{\tau_m s + 1}{\tau_m s + 1 + K_m K_h} \\ &= \frac{0.6s + 1}{0.6s + 1 + 0.45(15)} \\ &= \frac{1}{7.75}|_{s=0} = 0.129 \\ S_{K_m}^T &= \lim_{\Delta K_m \to 0} \frac{\% \ change \ in \ T}{\% \ change \ in \ K_m} \\ &= \frac{\frac{2 - 1.9355}{2} * 100}{25} \quad \text{(from earlier)} \\ &= \frac{3.225}{25} = 0.129 \end{split}$$