Exam Notes

Shambhavi Singh

November 2015

1 Formulas

$$1. F_g = \frac{mMG}{r^2}$$

$$2. \ \omega = \frac{2\pi}{T}$$

3.
$$v = \omega \times radius$$

4.
$$a = \frac{v^2}{r}$$

5.
$$E = \frac{V}{d}$$

6.
$$PE = Vq$$

7.
$$T^2MG = 4\pi^2 r^3$$
 (Kepler's Law)

8.
$$PE = \frac{-mMG}{r}$$

9.
$$PE = -2KE$$

10.
$$E = KE + PE$$

11.
$$F_e = \frac{k_e q_1 q_2}{r^2}$$

12.
$$\frac{1}{4\pi E_0}$$

13.
$$EA = \frac{Q_e nc.}{E_0}$$

14.
$$\lambda = \frac{Q}{L}$$

15.
$$F_e = qE$$

16.
$$PE = QV$$

17.
$$\Delta x = \frac{1}{2}at^2$$

18.
$$P = IV$$

19.
$$V = IR$$

20.
$$I = \frac{Q}{\Delta t}$$

21.
$$B = \frac{\mu I}{2\pi r}$$

22.
$$P = \frac{V^2}{R}$$

23.
$$F_B = qvBsin\theta$$
 (Particles)

24.
$$F_B = ILBsin\theta$$
 (Wires)

25.
$$T = rFsin\theta$$
 (Torque)

26.
$$\omega = \frac{v}{r}$$

27.
$$KE = \frac{I\omega^2}{2}$$

28.
$$I = \Sigma mr^2$$

29.
$$Q = \frac{3}{2}K_bT$$
 (Monotomic Particles)

30.
$$Q = \frac{5}{2}K_bT$$
 (Diatomic Particles)

31.
$$Q = mC\Delta T$$

32.
$$Q = mL$$

33.
$$\Delta U = Q - W$$

34.
$$U = \frac{3}{2}PV$$