3.10 Derivatives of Inverse Trig Functions (Solutions)

Warm up:

Explain what each of the following means:

(a) $\sin^{-1}(x)$

Solution: This denotes the inverse function to sin(x), sometimes denoted by arcsin(x).

(b) $(\sin(x))^{-1}$

Solution: This means $\sin(x)$ raised to the -1 power, i.e. $\frac{1}{\sin(x)}$.

(c) $\sin\left(x^{-1}\right)$

Solution: This means $\sin\left(\frac{1}{x}\right)$.

(d) $f^{-1}(x)$

Solution: This denotes the inverse function of f(x).

(e) $f(x^{-1})$

Solution: This means $f\left(\frac{1}{x}\right)$.

(f) $(f(x))^{-1}$

Solution: This means f(x) raised to the -1 power, i.e. $\frac{1}{f(x)}$.

Group work:

Problem 1 Find the derivatives of the following functions:

(a)
$$f(x) = \sec^{-1}(\sqrt{x})$$
.

Solution:
$$f'(x) = \frac{1}{\sqrt{x}\sqrt{x-1}} \cdot \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2x\sqrt{x-1}}$$

(b)
$$g(x) = \ln(\sin^{-1}(x))$$
.

Solution:
$$g'(x) = \frac{1}{\sin^{-1}(x)} \cdot \frac{1}{\sqrt{1-x^2}}$$
.

(c)
$$h(x) = \frac{1}{\tan^{-1}(x^2 + 4)}$$
.

Solution:
$$h'(x) = -\left(\tan^{-1}(x^2+4)\right)^{-2} \cdot \frac{1}{1+(x^2+4)^2} \cdot (2x).$$

Problem 2 Find the slope of the tangent line to the curve $y = f^{-1}(x)$ at (4,7) if the slope of the tangent line to the curve y = f(x) at (7,4) is $\frac{2}{3}$.

Solution: Note that the statement "the slope of the tangent line to the curve y = f(x) at (7,4) is $\frac{2}{3}$ " specifically means that $f'(7) = \frac{2}{3}$. The slope of the tangent line to the curve $y = f^{-1}(x)$ at (4,7) is $(f^{-1})'(4)$, and so we use the formula for the derivative of the inverse function to compute:

$$(f^{-1})'(4) = \frac{1}{f'(7)} = \frac{1}{\frac{2}{3}} = \frac{3}{2}.$$

Problem 3 Suppose that f(x) is a differentiable function which is one-to-one. Given the table of values below, find the value of $(f^{-1})'(7)$.

X	1	7	11
f(x)	7	11	1
f'(x)	61	-17	71

Solution:
$$(f^{-1})'(7) = \frac{1}{f'(f^{-1}(7))}$$
. Since $f(1) = 7$, $f^{-1}(7) = 1$. Thus

$$(f^{-1})'(7) = \frac{1}{f'(1)} = \frac{1}{61}.$$

2

3.10 Derivatives of Inverse Trig Functions (Solutions)

Problem 4 Find the derivative of f^{-1} at the following points without solving for f^{-1} .

(a) $f(x) = x^2 + 1$ (for $x \ge 0$) at the point (5, 2).

Solution: $(f^{-1})'(5) = \frac{1}{f'(2)}$. Since f'(x) = 2x, f'(2) = 4. Thus, $(f^{-1})'(5) = \frac{1}{4}$.

(b) $f(x) = x^2 - 2x - 3$ (for $x \le 1$) at the point (12, -3).

Solution: $(f^{-1})'(12) = \frac{1}{f'(-3)}$. Since f'(x) = 2x - 2, f'(-3) = -6 - 2 = -8. Thus, $(f^{-1})'(12) = -\frac{1}{8}$.