University of Rajshahi

Department of Computer Science and Engineering B. Sc. (Engg.) Part-2 (Odd Semester) Examination-2020 Course: MATH2111 (Matrices and Differential Equations)

Full Marks: 52.5

Time: 3 Hours

[Answer six questions taking any three from each section]

	Section A	
1. a)	Define the inverse of a matrix. Find the inverse of $ \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \\ 1 & 2 & 4 \end{bmatrix} $	3.00
√° p)	Define an involutory matrix. If a matrix A is involutory, then what is the inverse of A?	2.00
,c)	Define the transpose of a matrix. Prove that $(AB)^t = B^t A^t$. When a matrix is called symmetric?	3.75
2. a)	What is the adjoint of a matrix? Find the adjoint of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$	3.00
/b) c)	If A is non-singular, then show that adj $(adj A) = A ^{n-2}$. A Prove that the adjoint of a symmetric matrix is itself symmetric.	3.00 2.75
3. (a)	Define the rank of a matrix. Find the rank of the matrix: $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \end{bmatrix}$	3.00
∕ b)	Reduce the matrix: $A = \begin{bmatrix} 1 & 2 & -2 & 3 & 1 \\ 1 & 3 & -2 & 3 & 0 \\ 2 & 4 & -3 & 6 & 4 \\ 1 & 1 & -1 & 4 & 6 \end{bmatrix}$ to its canonical form, find its rank and then reduce to its normal form.	3.00
/c)	Solve the following equations by Crammer's rule $x + y + z = 6$ $x - y + z = 2$ $2x + y - z = 1$	2.75
4. a)	Define eigenvalues and eigenvectors of an n -square matrix. What is meant by characteristic polynomial of an n -square matrix? Find the characteristic roots and characteristic vectors of the following matrix:	4.75

$$\begin{bmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{bmatrix}$$

Define null space and nullity of a matrix. State Cayley-Hamilton theorem. Use 4.00 the mentioned theorem to find the inverse of the matrix given below:

$$\begin{bmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{bmatrix}$$

5. a)	Define ordinary differential equations. Solve the homogeneous differential equation $\frac{dy}{dx} = \frac{3y^2 - x^2}{2xy}$.	2.75
_ b)	Define Bernoulli differential equations. Identify the differential equation	3.00
c)	$\frac{dy}{dx} + \frac{3y}{x} = 6x^2$ and solve it. The population x of a certain city satisfies the logistic law $\frac{dx}{dt} - \frac{1}{100}x = -\frac{1}{10^8}x^2$, where time t is measured in years. Find the population of the city at any time.	3.00
6. a)	Define initial value problems. A circuit has in series a constant electromotive force of 40 V, a resistor of 10Ω , and an inductor of 0.2 H. Find the current at time $t > 0$ if the initial current is zero.	2.75
/ b)	Define Clairaut's equation. Find a one-parameter family of solutions of the equation $y = px + p^2$, where $p \equiv \frac{dy}{dx}$. Find singular solution, if exists, of the given equation which is not a member of the one-parameter family of	3.00
p,c)	solutions. Use the method of undetermined coefficients to solve the differential equation $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y = 2e^x - 10\sin x.$	3.00
7 a)	Define Reccati's equation. State under what conditions, Reccati's equation reduces to a linear and Bernoulli's equation? Solve: $\frac{dy}{dx} + y = xy^3$	3.00
/s)	Solve $(D^2 + 4)y = x^2e^{2x}$ by operator method. Define regular singular point and examine the regular singular point of $x^2y'' - xy' + 8(x^2 - 1)y = 0$	2.75 3.00
(8. a)	y(0) = 1, $y'(0) = 0$ into an integral equation. Finally, identify your obtained	2.75
b)	differential equation $\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y = \frac{df}{dt} + f(t)$. Find the response of the	2.00
c)	separation of variables $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \ 0 < x < 1, t \ge 0$ subject to the initial profile i) $u(x, 0) = 1, \ 0 < x < 1$ and the Dirichlet boundary conditions ii) $u(0, t) = 0, \ t \ge 0$ and	4.00
	iii) $u(1,t) = 0, t \ge 0.$	