Rank-35 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_0^2 X_1 = 0$$

General information

Number of lines	5
Number of points	21
Number of singular points	5
Number of Eckardt points	0
Number of double points	0
Number of single points	20
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{5}
Type of lines on points	$5, 1^{20}$

Singular Points

The surface has 5 singular points:

$$\begin{array}{ll} 0: \ P_1 = \mathbf{P}(0,1,0,0) = \mathbf{P}(0,1,0,0) \\ 1: \ P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1) \\ 2: \ P_{26} = \mathbf{P}(0,1,0,1) = \mathbf{P}(0,1,0,1) \end{array} \qquad \begin{array}{ll} 3: \ P_{30} = \mathbf{P}(0,\omega,0,1) = \mathbf{P}(0,2,0,1) \\ 4: \ P_{34} = \mathbf{P}(0,\omega^2,0,1) = \mathbf{P}(0,3,0,1) \end{array}$$

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \mathbf{Pl}(0, 0, 0, 0, 1, 0)_{25}$$

$$\ell_{1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \mathbf{Pl}(0,0,0,1,0,0)_{9}$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{125} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{125} = \mathbf{Pl}(0,1,0,1,1,0)_{57}$$

$$\ell_{3} = \begin{bmatrix} 1 & 1 & \omega^{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{293} = \begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{293} = \mathbf{Pl}(0,3,0,1,1,0)_{59}$$

$$\ell_{4} = \begin{bmatrix} 1 & 1 & \omega & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{209} = \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{209} = \mathbf{Pl}(0,2,0,1,1,0)_{58}$$

Rank of lines: (20, 340, 125, 293, 209)

Rank of points on Klein quadric: (25, 9, 57, 59, 58)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 0 Double points: The double points on the surface are:

Single Points

The surface has 20 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_0 = (1,0,0,0) \ \text{lies on line} \ \ell_0 \\ 1: \ P_1 = (0,1,0,0) \ \text{lies on line} \ \ell_1 \\ 2: \ P_4 = (1,1,1,1) \ \text{lies on line} \ \ell_2 \\ 3: \ P_{12} = (1,1,1,0) \ \text{lies on line} \ \ell_2 \\ 4: \ P_{17} = (2,2,1,0) \ \text{lies on line} \ \ell_3 \\ 5: \ P_{22} = (3,3,1,0) \ \text{lies on line} \ \ell_4 \\ 6: \ P_{23} = (1,0,0,1) \ \text{lies on line} \ \ell_0 \\ 7: \ P_{24} = (2,0,0,1) \ \text{lies on line} \ \ell_0 \\ 8: \ P_{25} = (3,0,0,1) \ \text{lies on line} \ \ell_0 \\ 9: \ P_{26} = (0,1,0,1) \ \text{lies on line} \ \ell_1 \\ 10: \ P_{30} = (0,2,0,1) \ \text{lies on line} \ \ell_1 \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are: $\begin{array}{l} 11: \ P_{34} = (0,3,0,1) \ \text{lies on line} \ \ell_1 \\ 12: \ P_{47} = (2,2,1,1) \ \text{lies on line} \ \ell_3 \\ 13: \ P_{52} = (3,3,1,1) \ \text{lies on line} \ \ell_4 \\ 14: \ P_{58} = (1,1,2,1) \ \text{lies on line} \ \ell_4 \\ 15: \ P_{63} = (2,2,2,1) \ \text{lies on line} \ \ell_2 \\ 16: \ P_{68} = (3,3,2,1) \ \text{lies on line} \ \ell_3 \\ 17: \ P_{74} = (1,1,3,1) \ \text{lies on line} \ \ell_3 \\ 18: \ P_{79} = (2,2,3,1) \ \text{lies on line} \ \ell_4 \\ 19: \ P_{84} = (3,3,3,1) \ \text{lies on line} \ \ell_2 \end{array}$

Line Intersection Graph

$0 \\ 1 \\ 2 \\ 3 \\ 4$	0	1	2	3	4
0	0	1	1	1	1
1	1	0	1	1	1
2	1	1	0	1	1
3	1	1	1	0	1
4	1	1	1	1	0

Neighbor sets in the line intersection graph:

Line 0 intersects

Г	Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4
	in point	P_3	P_3	P_3	P_3

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4
in point	P_3	P_3	P_3	P_3

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4
in point	P_3	P_3	P_3	P_3

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_4
in point	P_3	P_3	P_3	P_3

Line 4 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3
in point	P_3	P_3	P_3	P_3

The surface has 21 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$8: P_{24} = (2,0,0,1)$	16: $P_{63} = (2, 2, 2, 1)$
$1: P_1 = (0, 1, 0, 0)$	$9: P_{25} = (3,0,0,1)$	17: $P_{68} = (3, 3, 2, 1)$
$2: P_3 = (0,0,0,1)$	$10: P_{26} = (0, 1, 0, 1)$	$18: P_{74} = (1, 1, 3, 1)$
$3: P_4 = (1, 1, 1, 1)$	11: $P_{30} = (0, 2, 0, 1)$	$19: P_{79} = (2, 2, 3, 1)$
$4: P_{12} = (1, 1, 1, 0)$	$12: P_{34} = (0, 3, 0, 1)$	$20: P_{84} = (3, 3, 3, 1)$
$5: P_{17} = (2, 2, 1, 0)$	13: $P_{47} = (2, 2, 1, 1)$	
$6: P_{22} = (3, 3, 1, 0)$	$14: P_{52} = (3, 3, 1, 1)$	
$7: P_{23} = (1, 0, 0, 1)$	$15: P_{58} = (1, 1, 2, 1)$	