6.2 기저함수 모형과 과최적화

비선형 모형

기본적인 선형회귀모형은 입력변수의 선형조합으로 이루어진다.

$$y_i = \sum_{i=1}^D w_i x_i = w^T x$$

하지만 데이터가 다음 그림처럼 비선형이면 위와 같은 선형회귀모형은 적합하지 않다.

In [1]:

```
def make_nonlinear(seed=0):
    np.random.seed(seed)
    n_samples = 30
    X = np.sort(np.random.rand(n_samples))
    y = np.sin(2 * np.pi * X) + np.random.randn(n_samples) * 0.1
    X = X[:, np.newaxis]
    return (X, y)

X, y = make_nonlinear()
plt.scatter(X, y)
plt.xlabel("x")
plt.ylabel("y")
plt.title("비선형 데이터의 예")
plt.show()
```


이 때는 독립변수 벡터 x를 입력으로 가지는 여러개의 비선형 함수 $\phi_j(x)$ 들을 생각해 내어 원래의 입력 변수 x대신 $\phi_j(x)$ 들을 입력변수로 사용한 다음과 같은 모형을 쓰면 더 좋은 예측 성능을 가질 수도 있다.

$$y_i = \sum_{j=1}^{M} w_j \phi_j(x) = w^T \phi(x)$$

이 새로운 모형의 모수의 갯수는 원래의 독립변수의 갯수가 아니라 우리가 생각해 낸 비선형 함수의 갯수에 의존한다.

기저함수

하지만 이러한 비선형 모형을 만들기 위해서는 데이터에 적합한 비선형 함수를 충분히 많이 생각해 낼 수 있어야한다. 이러한 고충을 덜기 위해 만들어진 것이 기저함수(basis function) 모형이다. 기저함수는 특정한 규칙에 따라 만들어지는 함수의 열(sequence)로서 충분히 많은 수의 함수가 있으면 어떤 모양의 함수라도 비슷하게 흉내낼 수 있는 것을 말한다.

기저함수 중 가장 간단한 것이 다항 기저함수(polynomial basis function)이다.

$$\phi_0(x) = 1, \phi_1(x) = x, \phi_2(x) = x^2, \phi_3(x) = x^3, \dots$$

다항회귀(polynomial regression)는 다항 기저함수를 사용하는 기저함수 모형이다. 따라서 종속 변수와 독립 변수의 관계는 다음과 같이 표현할 수 있다.

$$y = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$

기저함수는 사람이 하나씩 생각해내는 것이 아니라 미리 만들어진 규칙에 의해 자동으로 생성되므로 비선형 함수를 만들기 위해 고민할 필요가 없다.

In [2]:

```
phi_0 = np.polynomial.Polynomial.basis(1)
phi_1 = np.polynomial.Polynomial.basis(1)
phi_2 = np.polynomial.Polynomial.basis(2)
phi_3 = np.polynomial.Polynomial.basis(3)

x = np.linspace(-1, 1, 100)

plt.plot(x, phi_0(x), label="d=0")
plt.plot(x, phi_1(x), label="d=1")
plt.plot(x, phi_2(x), label="d=2")
plt.plot(x, phi_3(x), label="d=3")
plt.legend()
plt.title("기본 다항 기저함수")
plt.show()
```


기저함수중에서도 서로 다른 두 기저함수의 곱의 정적분 값이 0이 되면 직교기저함수(orthogonal basis function) 라고 한다. 체비세프 다항식은 직교기저함수의 한 예다.

In [3]:

```
phi_0 = np.polynomial.chebyshev.Chebyshev.basis(0)
phi_1 = np.polynomial.chebyshev.Chebyshev.basis(1)
phi_2 = np.polynomial.chebyshev.Chebyshev.basis(2)
phi_3 = np.polynomial.chebyshev.Chebyshev.basis(3)

x = np.linspace(-1, 1, 100)

plt.plot(x, phi_0(x), label="d=0")
plt.plot(x, phi_1(x), label="d=1")
plt.plot(x, phi_2(x), label="d=2")
plt.plot(x, phi_3(x), label="d=3")
plt.legend()
plt.title("체비세프 다항 기저함수")
plt.show()
```


이외에도 다음과 같은 기저함수들도 존재한다.

• 방사 기저함수

- 삼각 기저함수
- 시그모이드 기저함수

StatsModels를 이용한 다항회귀

StatsModels에서는 OLS 클래스의 from_formula 메서드를 사용하여 다항회귀를 할 수 있다.

In [4]:

```
dfX = pd.DataFrame(X, columns=["x"])
dfX = sm.add_constant(dfX)
dfy = pd.DataFrame(y, columns=["y"])
df = pd.concat([dfX, dfy], axis=1)
print(sm.OLS.from_formula("y ~ x", data=df).fit().summary())
```

OLS Regression Results

		=========				=======	========
Dep. Variable Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance Ty	ions: :	OL Least Square Sun, 23 Jun 201 17:40:2	es 9 22 30 28	Adj. F-sta Prob	lared: R-squared: tistic: (F-statistic) ikelihood:	:	0.565 0.549 36.36 1.69e-06 -15.360 34.72 37.52
=========			===				
	coe f	std err 		t 	P> t 	[0.025	0.975]
Intercept x	0.7140 -1.6422			1.064 6.030	0.000	0.354	1.074 -1.084
Omnibus: Prob(Omnibus Skew: Kurtosis:):	3.72 0.15 0.25 1.92	55 57		•		0.259 1.766 0.414 4.85

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

In [5]:

OLS Regression Results

Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance T	Si ions: ::	C Least Squar un, 23 Jun 20 17:40: nonrobu	019 22 30 27 2	F-sta Prob	ared: R-squared: tistic: (F-statistic) ikelihood:	:	0.577 0.545 18.38 9.14e-06 -14.953 35.91 40.11
========	coef	std err	====	t	P> t	[0.025	0.975]
Intercept x I(x ** 2)	0.8638 -2.4942 0.8295	0.248 1.025 0.962	-2	. 487 . 432 . 862	0.002 0.022 0.396	0.356 -4.598 -1.145	1.372 -0.390 2.804
Omnibus: Prob(Omnibus Skew: Kurtosis:	s):	3.2 0.1 0.2 1.9	98 235		•		0.280 1.622 0.445 23.0

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

```
 print(sm.OLS.from\_formula("y \sim x + I(x**2) + I(x**3)", data=df).fit().summary())
```

OLS Regression Results

Dep. Variab Model: Method: Date: Time: No. Observa Df Residual Df Model: Covariance	tions: s:	Least Squ Sun, 23 Jun 17:4 nonro	2019 0:22 30 26 3	Adj. F-sta Prob	uared: R-squared: atistic: (F-statistic ikelihood:	c):	0.956 0.951 186.7 1.06e-17 18.883 -29.77 -24.16
	COE	f std err	=====	t	P> t	[0.025	0.975]
Intercept x I(x ** 2) I(x ** 3)	-0.2039 12.2209 -35.406 23.5598	9 1.044 1 2.452	1 -1	1.876 1.709 4.439 4.903	0.072 0.000 0.000 0.000	-0.427 10.075 -40.446 20.310	0.020 14.366 -30.366 26.809
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):	0	0.801 0.670 0.212 2.313		· · · · · ·	:	1.769 0.816 0.665 160.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe

회귀분석 결과를 그림으로 그리면 다음과 같다.

In [7]:

```
def polyreg(degree, seed=0, ax=None):
   X, y = make_nonlinear(seed)
   dfX = pd.DataFrame(X, columns=["x"])
   dfX = sm.add\_constant(dfX)
   dfy = pd.DataFrame(y, columns=["y"])
   df = pd.concat([dfX, dfy], axis=1)
   model_str = "y ~ "
    for i in range(degree):
       if i == 0:
           prefix = ""
       else:
           prefix = " + "
       model\_str += prefix + "l(x**{})".format(i + 1)
   model = sm.OLS.from_formula(model_str, data=df)
    result = model.fit()
    if ax:
       ax.scatter(X, y)
       xx = np.linspace(0, 1, 1000)
       dfX_new = pd.DataFrame(xx[:, np.newaxis], columns=["x"])
       ax.plot(xx, result.predict(dfX_new))
       ax.set_ylim(-2, 2)
       ax.set_title("차수={}, 시드값={}".format(degree, seed))
       xlabel = "\n".join(str(result.params).split("\n")[:-1])
       font = {'family': 'NanumGothicCoding', 'color': 'black', 'size': 10}
       ax.set_xlabel(xlabel, fontdict=font)
    return result
```

In [8]:

```
ax1 = plt.subplot(131)
polyreg(1, ax=ax1)
ax2 = plt.subplot(132)
polyreg(2, ax=ax2)
ax3 = plt.subplot(133)
polyreg(3, ax=ax3)
plt.tight_layout()
plt.show()
```


과최적화

모형을 특정 샘플 데이터에 대해 과도하게 최적화하는 것을 과최적화(overfitting)이라고 한다.

과최적화는

- 독립 변수 데이터 갯수에 비해 모형 모수의 수가 과도하게 크거나
- 독립 변수 데이터가 서로 독립이 아닌 경우에 발생한다.

이러한 상황에서는 같은 조건에 대해 답이 복수개 존재할 수 있기 때문이다.

과최적화가 문제가 되는 이유는 다음과 같다.

- 트레이닝에 사용되지 않은 새로운 독립 변수 값을 입력하면 오차가 커진다. (cross-validation 오차)
- 샘플이 조금만 변화해도 가중치 계수의 값이 크게 달라진다. (추정의 부정확함)

다음 그림에서 과최적화가 발생하면 주어진 데이터가 아닌 다른 새로운 x 데이터가 들어올 때 오차가 커지는 것을 볼 수 있다.

In [9]:

```
plt.figure(figsize=(8, 8))
ax1 = plt.subplot(131)
polyreg(10, ax=ax1)
ax2 = plt.subplot(132)
polyreg(20, ax=ax2)
ax3 = plt.subplot(133)
polyreg(30, ax=ax3)
plt.tight_layout()
plt.show()
```


또한 데이터가 조금만 달라져도 가중치 값이 크게 달라지는 것도 확인할 수 있다.

In [10]:

```
plt.figure(figsize=(8, 8))
ax1 = plt.subplot(131)
polyreg(20, seed=2, ax=ax1)
ax2 = plt.subplot(132)
polyreg(20, seed=4, ax=ax2)
ax3 = plt.subplot(133)
polyreg(20, seed=6, ax=ax3)
plt.tight_layout()
plt.show()
```

