# Computational Methods for Geological Engineers

Eldad Haber 16th January 2025

University of British Columbia

### **Learning Outcomes**

At the end of the course, participants will be able to:

- · Code mathematical and physical models in pytorch
- · Solve some ODE's
- Find parameters within the simulation

# Approximate schedule

| Week       | Technical Programming              | Analytical Skills             |
|------------|------------------------------------|-------------------------------|
| Week 1     | intro to python                    | Motivation, why               |
| Week 2     | intro to python                    | Separable ODEs                |
| Week 3     | Finite difference                  | Finite difference             |
| Week 4     | Finite difference                  | Integrating factors           |
| Week 5     | Solving IVP's particle propagation | Second order equations/Syster |
| Week 6     | Nonlinear equations                | Systems                       |
| Week 7     | Implicit methods                   | Boundary Value Problems       |
| Week 8     | Matrix methods for BVP             | Boundary Value Problems       |
| Week 9-10  | Optimization                       | Optimization                  |
| Week 11-12 | Parameter estimation               | Optimization                  |
| Week 13    | Catch-up                           | Catch up                      |

- Programming Quiz: Jan 23
- · Midterm I Feb 27
- · Midterm II March 27

# Motivation

#### Outline

- · Goals of this course
- Integrating math/physics/code
- Python
- Your commitment

# Scientific Computing

aka: Computational Science, Scientific Computation

- Simulations
- · Data fitting and analysis
- Optimization
- Visualization
- ...

Goal: Gain understanding through analysis of mathematical models implemented on computers.

### Steps in Computational Science

- · A story observation
- · Mathematical model
- · Discretization of the model
- Solving the model
- · Parameters fitting
- · Visualizing the result

#### Example I: Newton's apple



- · Observation Apple is falling
- · Math model

$$\frac{d^2x}{dt^2} = -g$$

(but what is g?)

· Discretization

$$\frac{x(t_{i+1}) - 2x(t_i) + x(t_{i-1})}{\Delta t^2} = -g.$$

Solve

$$x(t_{i+1}) = -g\Delta t^2 + 2x(t_i) - x(t_{i-1})$$

- Measure and find an approximation to g
- Visualize

6

#### Example I: Newton's apple

#### Data assimilation

What is g?

Observations (noisy)

$$t = [0, 1, 2, 3]$$
  $x = [0, 4.4, 21.0, 54.2]$ 

- · Can the mathematical model (reasonably) explain the data?
- What is the (best) value of g?

#### Example II: Ground water flow



- · Observation Water flow in the ground
- · Math model

$$\nabla \cdot \sigma \nabla p = q$$
  $\rho_t + \nabla \cdot (\sigma \nabla p) \rho = 0$ 

- · Discretization ... (you will know all about this)
- · Solve ... (you will know all about this)
- Visualize

Simplest example - Character recognition. We have digits ([0,...,9]) in an image and we want to get them explicitly.



Mathematical model - ???

Machine learning, try the following model known as Convolution Neural Network

$$y = w^{T} tanh(K \star x + b)$$

No physical basis so we hope it can do the trick ...

$$y = w^{T} tanh(K \star x + b)$$

- y vector of 10, with probabilities of the digits Example: [0, 0.65, 0, 0, 0, 0, 0, 0.35, 0, 0] imply 65% the number 1 and 35% the number 7
- · x the image
- · K, b and w parameters

Pattern recognition can be applied for many problems when the math is too complex or unknown

- · Climate prediction
- Weather
- Flow in complex systems
- · Much more ...

#### Goal of this course

- · Describe useful physical models
- · Learn how to simulate them on the computer
- · Learn how to integrate field data into physical models

# Integration of Physics/Math/Computing

This course has a new paradigm. We

- Describe the physics
- · Develop a mathematical model
- · Write code to simulate this model

We will cover most of the math you need but we will use

- · Vector calculus
- Differential equations
- · Linear algebra
- Python programming with pytorch

### Computing

- The course will involve lots of programming and computing
- · Bring your laptop
- · Code will be handled through GitHub
- · Working in groups, encouraged!

#### Python

- We will be coding with Python and use VS code (primarily) and Jupyter Notebooks
- · Main packages we use: NumPy and Torch.
- Tutorials on Python and using NumPy and PyTorch can be found at

```
http://cs231n.github.io/python-numpy-tutorial/
https://pytorch.org/tutorials/
```

#### Python

#### We will be using two types of Python environments

- · A Python Integrated development environment (IDE)
  - · VS code
  - · Spyder
  - PyCharm
  - · Choose your own (your own support)
- Jupyter notebook https://jupyter.org/

# Grading

- Homework and programming assignments 30%
- · Midterms 30%
- Final Exam 40%