YCPC-2

Метод наименьших квадратов. Линейный случай. Выравнивание экспериментальных данных к прямой линии.

Описание УСРС – 2

- 1. Изучить теоретический блок и примеры решения задач.
- 2. Выполнить контрольное индивидуальное задание (работу) в соответствии с вариантом.
- 3. Работа должна включать не только расчетную часть, но и содержательные выводы.
- 4. Работа должна быть защищена не позже срока, указанного преподавателем.

Теоретический блок и примеры решения задач

Метод наименьших квадратов. Линейный случай. Элементы корреляционного и регрессионного анализа

Методы теории корреляции позволяют определить зависимость между различными факторами или случайными величинами. Термин корреляция произошел от латинского «correlatio» – соотношение, взаимосвязь.

В естественных науках часто речь идет о *функциональной зависимости*, когда каждому значению одной величины соответствует вполне определенное значение другой. Случайные величины обычно не связаны функциональной зависимостью. В экономике в большинстве случаев между переменными величинами существуют зависимости, когда каждому значению одной переменной соответствует не какое-то определенное, а множество возможных значений другой переменной. Иначе говоря, каждому значению одной переменной соответствует определение условное распределение другой переменной. Например, значению $\xi = x_1$ соответствует распределение величины η

$$\begin{array}{c|ccccc}
\eta/\xi = x_1 & y_1' & \cdots & y_k' \\
\hline
n & n_1' & \cdots & n_k'
\end{array},$$

значению $\xi = x_2$ соответствует распределение

$$\begin{array}{c|ccccc}
\eta/\xi = x_2 & " & \dots & " \\
\hline
n & " & \dots & n_k"
\end{array}$$

и т.д. Такая зависимость получила название *статистической* (или *стохастической*, *вероятностной*). Примером статистической связи является зависимость урожайности от количества внесенных удобрений, производительности труда на предприятии от его энерговооруженности и т.п.

В силу неоднозначности статистической зависимости между ξ и η для исследователя представляет интерес усредненная схема зависимости — зависимость условного математического ожидания $M_x(\eta) = M(\eta/\xi = x)$ или его статистического аналога \overline{y}_x от значений x случайной величины ξ , то есть $M_x(\eta) = f(x)$ или $\overline{y}_x = f(x)$. Здесь \overline{y}_x — условная средняя, которая определяется как среднее арифметическое значений η то есть y_i , соответствующих значению $\xi = x$. Для рассмотренных выше условных распределений $\overline{y}_{x_1} = \frac{1}{n} \sum_{i=1}^k y_i' n_i'$, $\overline{y}_{x_2} = \frac{1}{n} \sum_{i=1}^k y_i' n_i'$

. Такая зависимость получила название корреляционной. *Корреляционной зависимостью* между двумя величинами называется функциональная зависимость между значениями одной из них и условным математическим ожиданием другой. Уравнение $M_x(\eta) = f(x)$ называют уравнением регрессии η на ξ , уравнение $\bar{y}_x = f(x)$ называют выборочным уравнением регрессии η на ξ . Функцию f(x) называют функцией регрессии, а ее график – линией регрессии.

Статистические связи между переменными можно изучать методами корреляционного и регрессионного анализа. Основной задачей корреляционного анализа является выявление связи между случайными величинами и оценка ее тесноты. Основной задачей регрессионного анализа – установление и изучение формы зависимости между переменными.

Данные о статистической зависимости удобно представлять в виде корреляционной таблицы.

	η	$y_1^* - y_2^*$	$y_2^* - y_3^*$	$y_3^* - y_4^*$	 $y_m^* - y_{m+1}^*$	
ξ	Серед. интерв	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	 y_m	n_{x_i}
$x_1^* - x_2^*$	x_1	n_{11}	<i>n</i> ₁₂	n ₁₃	 -	n_{x_1}
$x_2^* - x_3^*$	x_2	-	n_{22}	n ₂₃	 -	n_{χ_2}
$x_3^* - x_4^*$	<i>x</i> ₃	-	_	n ₃₃	 -	$n_{\chi_{i3}}$
$x_s^* - x_{s+1}^*$	x_s	ı	-	-	 n_{sm}	n_{χ_s}
	n_{y_j}	n_{y_1}	n_{y_2}	n_{y_3}	 n_{y_m}	$n = \Sigma$

Здесь n_{ii} – частоты появления пар (x_i, y_i) , прочерк говорит о том, что соответствующая пара

$$(x_i, y_j)$$
 не встречалась, $n_{y_j} = \sum\limits_{i=1}^s n_{ij}$, $n_{x_i} = \sum\limits_{i=1}^m n_{ij}$, $n = \sum\limits_{i=1}^s n_{x_i} = \sum\limits_{i=1}^m n_{y_j}$.

Наличие корреляции приближенно может быть определено с помощью **корреляционного поля**. Его получим, если нанесем на график в определенном масштабе точки, соответствующие наблюдаемым одновременным значениям двух величин (x_i, y_j) .

Пример 1. В таблице приведены данные, отражающие зависимость урожайности зерновой культуры η (ц) от расстояния до реки ξ (км). Построить поле корреляции, сделать вывод.

ξ	100	120	140	160	180	n_{x_i}
5		-	_	3	2	5
10	_	-	-	4	1	5
15	-	1	8	3	-	11
20	_	-	10	-	1	11
25	ı	ı	5	1	1	5
30	6	4	-	-	-	10
35	1	2	-	-	-	3
n_{y_j}	7	6	23	10	4	50

<u>Решение</u>. Полученное корреляционное поле представлено на рис. 1. Так как точки поля корреляции концентрируются вдоль убывающей прямой, то можно сделать предположение об обратной линейной зависимости между урожайностью и расстоянием до реки. То есть чем больше расстояние до реки, тем меньше урожайность исследуемой зерновой культуры.

Перейдем к оценке тесноты корреляционной зависимости. Рассмотрим наиболее важный для практики случай линейной зависимости. В теории вероятностей показателем тесноты линейной зависимости являлся коэффициент корреляции, в математической статистике таким показателем является выборочный коэффициент корреляции.

Выборочным коэффициентом корреляции называется величина, рассчитываемая по формуле

$$r_B = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\sigma_{By} \cdot \sigma_{By}},$$

где $\overline{xy} = \frac{1}{n} \sum_{i=1}^{s} \sum_{j=1}^{m} x_i y_j n_{ij}$, \overline{x} , \overline{y} — выборочные средние, σ_{Bx} , σ_{By} — выборочные средние квадратические отклонения, полученные по наблюдаемым значениям ξ и η соответственно (возможно использование обозначений $\sigma_{B}(x)$, $\sigma_{B}(y)$).

Отметим основные <u>свойства</u> выборочного коэффициента корреляции, аналогичные свойствам коэффициента корреляции для случайных величин.

- 1. Коэффициент корреляции принимает значения на отрезке [-1,1], то есть $-1 \le r_B \le 1$.
- 2. Чем ближе значение $|r_B|$ к единице, тем более тесная *линейная* зависимость между изучаемыми величинами. В зависимости от того, насколько $|r_B|$ приближается к единице, различают слабую, умеренную, заметную, достаточно тесную и весьма тесную линейную связь.
- 3. Если $r_B > 0$, то говорят о прямой зависимости, то есть с увеличением значений одной из величин значения другой также увеличиваются, при $r_B < 0$ обратную зависимость.
- 4. Если все значения переменных увеличить (уменьшить) на одно и то же число или в одно и то же число раз, то величина коэффициента корреляции не изменится. Коэффициент корреляции есть безразмерная характеристика тесноты линейной связи.
- 5. При $r_B = \pm 1$ корреляционная связь представляет линейную функциональную зависимость, при этом все точки поля корреляции лежат на одной прямой.
- 6. При $r_B = 0$ или $|r_B|$ близком к нулю *линейная* корреляционная связь отсутствует. Но это не означает отсутствие другой зависимости, например, нелинейная связь может быть очень тесной.

Для ответа на вопрос о значимости коэффициента корреляции проверяют нулевую гипотезу $H_0: r_c = 0$ о равенстве нулю генерального коэффициента корреляции. Если гипотеза принимается, то это означает, что между ξ и η нет линейной корреляционной зависимости, в противном случае линейная зависимость признается значимой.

Для того чтобы при уровне значимости α проверить нулевую гипотезу при конкурирующей $H_1: r_z \neq 0$, надо вычислить наблюдаемое значение критерия

$$t_{{\scriptscriptstyle HA}\bar{\rm O}{\scriptscriptstyle \Lambda}} = \frac{r_B \sqrt{n-2}}{\sqrt{1-r_B^2}} \; .$$

и по таблице критических точек распределения Стьюдента (приложение 7), по заданному уровню значимости α и числу степеней свободы k=n-2 найти критическую точку $t_{\kappa p}(\alpha;k)$ двухсторонней критической области. Если $|t_{na\delta n}| < t_{\kappa p}$ — нет оснований отвергнуть нулевую гипотезу. Если $|t_{na\delta n}| > t_{\kappa p}$ — нулевую гипотезу отвергаем.

Пример 2. По данным примера 1 рассчитать выборочный коэффициент корреляции. При уровне значимости 0,05 проверить нулевую гипотезу о равенстве генерального коэффициента корреляции нулю при конкурирующей гипотезе $H_1: r_2 \neq 0$. Сделать вывод.

Решение. Для удобства вычислений построим вспомогательную таблицу.

η	100	120	140	160	180	n_{x_i}	$x_i n_{x_i}$	$x_i^2 n_{x_i}$
5	-	_	-	3	2	5	25	125
10	-	-	1	4	1	5	50	500
15	-	-	8	3	1	11	165	2475
20	_	_	10	_	1	11	220	4400
25	_	_	5	_	_	5	125	3125
30	6	4	_	_	_	10	300	9000
35	1	2	-	-	-	3	105	3675
n_{y_j}	7	6	23	10	4	n = 50	990	23300
$y_i n_{y_j}$	700	720	3220	1600	720	6960	Σ	
$y_i^2 n_{y_j}$	70000	86400	450800	256000	129600	992800		

Находим средние значения:

$$\overline{x} = \frac{990}{50} = 19.8, \ \overline{y} = \frac{6960}{50} = 159.2, \ \overline{x^2} = \frac{23300}{50} = 466, \ \overline{y^2} = \frac{992800}{50} 19856,$$

$$\sigma_{Bx} = \sqrt{466 - 19.8^2} = 8.6, \ \sigma_{By} = \sqrt{19856 - 139.2^2} = 21.89,$$

$$\overline{xy} = \frac{1}{50} (100 \cdot 30 \cdot 6 + 100 \cdot 1 \cdot 35 + 120 \cdot 30 \cdot 4 + 120 \cdot 2 \cdot 35 + 140 \cdot 8 \cdot 15 + 140 \cdot 10 \cdot 20 + 140 \cdot 5 \cdot 25 + 160 \cdot 3 \cdot 5 + 160 \cdot 4 \cdot 10 + 160 \cdot 3 \cdot 15 + 180 \cdot 2 \cdot 5 + 180 \cdot 1 \cdot 10 + 180 \cdot 1 \cdot 20) = 2596.$$

Находим коэффициент корреляции:

$$r_B = \frac{2596 - 19.8 \cdot 159.2}{8.6 \cdot 21.89} = -0.851$$
.

Проверим гипотезу о равенстве генерального коэффициента корреляции нулю. Рассчитаем наблюдаемое значение критерия

$$t_{\text{\tiny Haloh}} = \frac{r_B \sqrt{n-2}}{\sqrt{1-r_B^2}} = \frac{-0.851\sqrt{50-2}}{\sqrt{1-(-0.851)^2}} = -\frac{5.896}{0.525} = -11.23.$$

По таблице критических точек распределения Стьюдента определим $t_{\kappa p}$ (0,05; 48) = 2,01. Так как $|t_{\kappa a\delta n}| > t_{\kappa p}$, отвергаем нулевую гипотезу о равенстве генерального коэффициента корреляции нулю.

Таким образом, анализируя полученное значение выборочного коэффициента корреляции, делаем вывод о достаточно тесной обратной линейной зависимости между ξ и η, что не противоречит выводам примера 1.

Рассмотрим *уравнение парной линейной регрессии* $y_x = a + bx$. Найдем формулы расчета неизвестных параметров a и b по имеющимся статистическим данным (x_i, y_i) , $i = \overline{1, n}$.

Согласно *методу наименьших квадратов* неизвестные параметры выбираются таким образом, чтобы сумма квадратов отклонений выборочных значений y_i от значений $y_{x_i} = a + bx_i$, полученных по уравнению регрессии, была минимальна:

$$S = \sum_{i=1}^{n} (y_i - a - bx_i)^2 \rightarrow \min.$$

На основании необходимого условия экстремума приравниваем нулю частные производные, получим

$$\begin{cases} 2\sum_{i=1}^{n} (y_i - a - bx_i) = 0, \\ 2\sum_{i=1}^{n} (y_i - a - bx_i)x_i = 0; \end{cases}$$

$$\begin{cases} na + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i, \\ a \sum_{i=1}^{n} x_i - b \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i y_i. \end{cases}$$

После преобразований получим систему нормальных уравнений для определения параметров линейной регрессии:

$$\begin{cases} a + b\overline{x} = \overline{y}, \\ -a\overline{x} + b\overline{x}^2 = x\overline{y}. \end{cases}$$

Из последней системы следуют формулы для определения параметров уравнения парной линейной регрессии η на ξ :

$$b = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^2} - \overline{x}^2}$$
 или $b = r_B \frac{\sigma_{By}}{\sigma_{Bx}}$,
$$a = \overline{y} - b\overline{x}.$$

Уравнение регрессии $\bar{y}_x = a + bx$ можно с учетом формулы вычисления параметра a записать в виде

$$\overline{y}_x - \overline{y} = b(x - \overline{x})$$
.

Коэффициент b показывает, на сколько единиц в среднем изменится переменная η при увеличении переменной ξ на одну единицу.

Уравнение регрессии может быть использовано для прогнозирования значений η при значениях ξ не указанных в корреляционной таблице.

Замечание. Если значения переменных ξ и η (то есть x_i и y_j) достаточно велики, то при расчете параметров a и b удобно перейти к условным вариантам $u_i = \frac{x_i - c}{k}$ и $v_j = \frac{y_j - c'}{k'}$, где k и k' – величины интервалов, а c и c' – варианты (середины интервалов), имеющих наибольшую частоту. Тогда x = ku + c, y = k'v + c', $\sigma_{Bx}^2 = k^2 \sigma_{Bu}^2$, $\sigma_{By}^2 = k'^2 \sigma_{By}^2$, $r_B(u,v) = r_B(x,y)$.

Пример 3. По данным примера 1 определить параметры уравнения парной линейной регрессии, построить линию регрессии на корреляционном поле. Спрогнозировать значение урожайности η при $\xi = 40$ км.

Решение.

Определим параметры уравнения регрессии

$$b = r_B \frac{\sigma_{By}}{\sigma_{Bx}} = -0.851 \frac{21.89}{8.6} = -2.17$$
,

$$a = \overline{y} - b\overline{x} = 139,2 + 2,17 \cdot 19,8 = 182,17$$
.

Запишем полученное уравнение регрессии $\overline{y}_x = 182,17 - 2,17x$ и нанесем полученную прямую на корреляционное поле.

Найдем прогнозное значение урожайности η при $\xi = 40$ км:

$$\bar{y}_{40} = 182,17 - 2,17 \cdot 40 = 95,37$$
.

Пример 4. Найти коэффициент линейной корреляции между признаками ξ и η , записать уравнение прямой регрессии η на ξ , если распределение признаков приводится в таблице, где x_i - наблюдаемые значения ξ , y_j - наблюдаемые значения η .

№	x_i	y_i
1	2	23
2	4,1	31
3	3,8	35
4	3,9	36
5	2,1	23
6	4	34
7	4,1	38
8	1,8	17
9	1,7	13
10	3	37

№	x_i	y_i
11	2,3	19
12	2,1	18
13	2,9	29
14	3	38
15	1,8	18
16	1,5	20
17	2,1	29
18	3,2	36
19	2,2	25
20	3	33

Решение. Составим следующую расчетную таблицу

№	x_i	\mathcal{Y}_i	x_i^2	y_i^2	$x_i y_i$
1	2	23	4	529	46
2	4,1	31	16,81	961	127,1
3	3,8	35	14,44	1225	133
4	3,9	36	15,21	1296	140,4
5	2,1	23	4,41	529	48,3
6	4	34	16	1156	136
7	4,1	38	16,81	1444	155,8
8	1,8	17	3,24	289	30,6
9	1,7	13	2,89	169	22,1
10	3	37	9	1369	111
11	2,3	19	5,29	361	43,7
12	2,1	18	4,41	324	37,8
13	2,9	29	8,41	841	84,1
14	3	38	9	1444	114
15	1,8	18	3,24	324	32,4
16	1,5	20	2,25	400	30
17	2,1	29	4,41	841	60,9
18	3,2	36	10,24	1296	115,2
19	2,2	25	4,84	625	55
20		33	9	1089	99
Сумма	54,6	552	163,9	16512	1622,4
Среднее	2,73	27,6	8,195	825,6	81,12

Тогда
$$\overline{x}=2,73$$
, $\overline{y}=27,6$, $\overline{x^2}=8,195$, $\overline{y^2}=825,6$, $\overline{xy}=81,12$,
$$\sigma_{Bx}=\sqrt{8,195-2,73^2}=0,86$$
, $\sigma_{By}=\sqrt{825,6-27,6^2}=7,99$.

Выборочный коэффициент корреляции

$$r_B = \frac{81,12 - 2,73 \cdot 27,6}{0,86 \cdot 7,99} = 0,84$$
,

параметры уравнения $b = 0.84 \frac{7.99}{0.86} = 7.8$, $a = 27.6 - 7.8 \cdot 2.73 = 6.31$.

Уравнение регрессии $\bar{y}_x = 6,31+7,8x$.

Индивидуальные практические задания

Задание. Для исследования зависимости случайных величин η и ξ получены статистические данные, представленные в корреляционной таблице (x_i — наблюдаемые значения ξ , y_j — значения η). Требуется:

- а) построить корреляционное поле,
- б) определить выборочный коэффициент корреляции,
- в) при уровне значимости 0,05 проверить нулевую гипотезу о равенстве генерального коэффициента корреляции нулю при конкурирующей гипотезе $H_1: r_2 \neq 0$,
 - Γ) найти уравнение прямой регрессии η на ξ ,
 - д) построить линию регрессии на корреляционном поле.

1.

x y	12	16	20	24	28	32	$n_{_X}$
20	3	4	_	_	_	_	7
30	_	2	6	_	_	_	8
40	-	-	8	31	10	-	49
50	_	_	2	14	6	_	22
60	_	_	ı	5	7	2	14
$n_{_{\mathrm{y}}}$	3	6	16	50	23	2	100

2.

x y	11	17	23	29	35	41	$n_{_X}$
15	5	1	-	-	-	-	6
25	_	6	2	_	_	_	8
35	1	-	5	26	5	-	36
45	_	_	7	12	10	_	29
55	_	_	_	6	7	8	21
n_y	5	7	14	44	22	8	100

3.

x y	15	25	35	45	55	65	$n_{_X}$
14	2	4	_	-	-	-	6
22	-	3	7	-	-	-	10
30	_	3	30	15	4	_	52
38	_	-	11	7	5	_	23
46	1	-	ı	1	2	2	5
54	ı	ı	I	_	2	2	4
n_{y}	2	10	48	23	13	4	100

x y	14	22	30	38	46	54	$n_{_X}$
16	3	7	2	-	_	-	12
24	_	2	12	6	_	-	20
32	-	7	27	11	-	_	45
40	_	_	10	6	_	_	16
48	_	_	_	2	1	1	4
56	ı	ı	ı	ı	2	1	3
n_{y}	3	16	51	25	3	2	100

x y	13	19	25	31	37	n_x
17	3	_	_	_	_	3
23	7	2	6	_	_	15
29	2	11	32	_	_	45
35	_	10	12	2	_	24
41	_	_	_	6	3	9
47	_	_	_	_	4	4
n_y	12	23	50	8	7	100

6.

xy	50	60	70	80	90	$n_{_X}$
0,5	_	_	12	2	3	17
1	_	2	6	6	4	18
1,5	2	11	32	_	_	45
2	7	10	-	-	-	17
2,5	3	_	_	_	_	3
n_y	12	23	50	8	7	100

7.

x y	300	350	400	450	500	550	n_x
0,1	-	-	-	-	3	2	5
0,2	_	_	4	5	5	2	16
0,3	_	8	14	5	_	_	27
0,4	3	4	10	-	-	_	17
0,5	2	3	-	-	-	-	5
$n_{_{y}}$	5	15	28	10	8	4	70

8.

x y	1	3	5	7	9	$n_{_X}$
1000	2	2	_	_	_	4
1500	3	4	_	_	_	7
2000	-	13	6	4	-	23
2500	_	9	21	13	2	45
3000	ı	1	19	26	10	55
3500		_	_	9	17	26
n_{y}	5	28	46	52	29	160

9.

x y	10000	11000	12000	13000	14000	n_x
5	1	2	_	_	_	3
15	2	3	-	-	-	5
20	_	4	8	2	_	14
25	_	8	8	7	2	25
30	_	_	13	8	2	23
n_y	3	17	29	17	4	70

x y	-1	-2	-3	-4	-5	n_x
10	1	2	_	_	_	3
11	1	2	4	_	-	7
12	ı	4	4	8	Ī	16
13	_	2	4	7	_	13
14	_	_	1	7	1	9
15	-	-	_	1	1	2
n_y	2	10	13	23	2	50

xy	18	20	22	24	26	28	$n_{_X}$
-5	-	-	_	-	7	1	8
-10	1	-	-	1	5	1	7
-15	_	_	2	7	1	_	10
-20	_	3	5	7	_	_	15
-25	2	3	3	-	_	-	8
-30	1	1	-	-	-	-	2
n_y	3	7	10	15	13	2	50

12.

xy	1 – 2	2–3	3–4	4–5	5–6	n_x
2 – 4	1	2	-	-	-	3
4 – 6	2	3	_	_	_	5
6 – 8	_	4	8	2	_	14
8 – 10	-	8	8	7	2	25
10 – 12	_	_	13	8	2	23
n_y	3	17	29	17	4	70

13.

x y	10–14	14–18	18–22	22–26	26–30	$n_{_X}$
2 – 4	3	4	-	-	-	7
4 – 6	_	10	9	3	_	22
6 – 8	_	6	40	5	_	51
8 – 10	-	_	4	8	3	15
10 – 12	-	-	-	2	3	5
n_{y}	3	20	53	18	6	100

14.

xy	12-14	14-16	16-18	18-20	20-22	22-24	24-26	$n_{_X}$
10-20	_	_	_	_	7	5	3	15
20-30	-	-	_	5	4	2	_	11
30-40	-	-	6	4	2	-	-	12
40-50	_	2	6	4	_	_	_	12
50-60	3	5	3	-	-	-	-	11
60-70	4	2	-	-	-	-	-	6
n_y	7	9	15	13	13	7	3	67

xy	0.1	0.2	0.3	0.4	0.5	0.6	0.7	$n_{_X}$
225	3	6	2	_	-	_	-	11
375	1	4	5	1	3	_	_	14
525	1	3	8	10	2	2	7	33
675	_	6	2	9	8	4	-	29
825	-	1	2	5	1	2	-	10
975	_	_	_	_	2	1	_	3
n_y	5	19	19	25	16	9	7	100

y	0,2 –	0,6-	1,0 -	1,4 –	1,8 –	2,2 –	12
x	0,6	1,0	1,4	1,8	2,2	2,6	$n_{_X}$
72-75	3	1	1	_	-	-	5
75-78	1	2	4	3	2		12
78-81	_	1	3	2	3	2	11
81-84	-	_	1	4	4	3	12
84-87	Ī	Ī	ı	1	2	5	8
n_y	4	4	9	10	11	10	48

17.

x y	15-20	20-25	25-30	30-35	35-40	40-45	$n_{_X}$
2,1-2,2	-	-	1	1	-	-	2
2,2-2,3	-	1	4	3	2	-	10
2,3-2,4	2	7	8	9	7	3	36
2,4-2,5	-	3	4	3	3	-	13
2,5-2,6	_	_	3	2	2	-	7
2,6-2,7		_	2	2	_	_	4
n_y	2	11	22	20	14	3	72

18.

xy	0,5	1,0	1,5	2,0	2,5	n_x
20	-	-	-	2	3	5
50	-	-	9	3	3	15
80	_	6	40	5	_	51
110	ı	10	4	8	ı	22
140	3	4	_	_	_	7
n_{y}	3	20	53	18	6	100

19.

x y	56	68	80	92	104	116	128	140	$n_{_X}$
0,9	2	3	5	_	_	_	_	_	10
1,3	-	6	3	5	_	_	_	_	14
1,7	-	_	5	8	15	_	_	_	28
2,1	-	_	-	6	9	10		_	25
2,5	-	_	-	_	1	6	8	_	15
2,9	-	-	-	-	-	3	4	1	8
n_y	2	9	13	19	25	19	12	1	100

x y	0,2	0,4	0,6	0,8	1,0	1,2	1,4	1,6	n_x
250	3	4	5	_	-	-	-	_	12
450	_	6	2	8	-	_	-	-	16
650	_	_	_	5	14	9	-	-	28
850	_	_	_	6	8	6		-	20
1050	_	_	_	-	5	7	4	-	16
1250	_	_	_	_	_	_	5	3	8
n_{y}	3	10	7	19	27	22	9	3	100

x y	-7	-6	-5	-4	-3	-2	-1	0	$n_{_X}$
10	_	_	_	_	_	3	2	4	9
20	_	_	_		4	5	7	-	16
30	_	_	_	7	8	6		_	21
40	_	_	_	9	14	6	_	_	29
50	_	_	7	5	2	_	_	_	14
60	4	2	5	_	-	_	_	-	11
n_y	4	2	12	21	28	20	9	4	100

22.

x	14	16	18	20	22	24	26	28	$n_{_X}$
19	3	2	3	_	-	-	-	-	8
29	_	1	4	5	ı	-	-	-	10
39	_	_	7	13	8	_	_	_	28
49	_	_	_	_	9	6	6	_	21
59	_	_	_	_	_	7	8	3	18
69	_	ı	-	-	ı	4	6	5	15
n_y	3	3	14	18	17	17	20	8	100

23.

x y	18,5	19,7	20,9	22,1	23,3	24,5	25,7	26,9	$n_{_X}$
100	3	3	4	6	-	-	-	_	16
200	_	5	8	9	-	-	-	-	22
300	_	_	-	13	8	9		_	30
400	-	_	_	_	9	2	4	_	15
500	_	_	_	_	_	1	3	5	9
600	-	-	_	-	-	_	5	3	8
n_y	3	8	12	28	17	12	12	8	100

24.

x y	36	56	76	96	116	136	156	176	n_x
5,4	_	_	_	_	-	2	1	2	5
7,0	-	-	-	-	_	4	3	1	8
8,6	-	_	_	_	-	8	3	2	13
10,2	-	_	-	_	17	5	4	_	26
11,8	-	_	6	14	5	_	_	_	25
13,4	2	4	3	10	4	_	_	_	23
n_{y}	2	4	9	24	26	19	11	5	100

x y	4,5	6,0	7,5	9,0	10,5	12,0	13,5	15,0	n_x
60	_	_	_	_	_	_	4	4	8
90	-	_	_	_	-	6	3	2	11
120	_	_	_	_	1	6	5	_	12
150	_	_	_	_	17	9	6	_	32
180	-	4	8	9	4	_	_	_	25
210	5	3	2	2	_	_	_	_	12
n_y	5	7	10	11	22	21	18	6	100

x y	10	15	20	25	30	n_{χ}
2	2	3	-	-	-	5
12	_	4	5	_	_	9
22	_	_	16	2	4	22
32	_	_	3	6	2	11
42	_	_	_	1	2	3
n_y	2	7	24	9	8	50

27.

x	10–14	14–18	18–22	22–26	26–30	$n_{_X}$
2 – 4	2	1	-	_	_	3
4 – 6	3	6	4	_	_	13
6 – 8	_	3	11	7	_	21
8 – 10	ı	1	2	6	2	11
10 – 12	_	_	_	1	1	2
n_y	5	11	17	14	3	50

28.

x y	0–14	14–18	18–22	22–26	26–30	$n_{_X}$
1 – 2	4	1	-	-	-	5
2 – 3	4	2	_	_	_	6
3 – 4	2	8	1	_	_	11
4 – 5	ı	1	20	4	_	25
5 – 6	_	_	3	3	3	9
6 – 7	-	_	_	1	3	4
n_y	10	12	24	8	6	60

29.

xy	0–2	2–4	4–6	6–8	8–10	10–12	12–14	$n_{_X}$
1 – 2	3	6	2	_	_	_	_	11
2 - 3	1	4	5	1	3	_	-	14
3 – 4	1	3	8	10	2	2	7	33
4 – 5	_	6	2	9	8	4	-	29
5 – 6	-	_	2	5	1	2	ı	10
6 – 7	_	_	_	_	2	1	_	3
n_y	5	19	19	25	16	9	7	100

30.

x y	0,02	0,06	0,10	0,14	0,18	0,22	$n_{_X}$
72	5	1	1	-	-	_	7
75	1	2	4	3	2		12
78	_	1	3	7	3	2	16
81	-	-	1	4	9	3	17
84	_	_	_	1	2	5	8
n_{y}	6	4	9	15	16	10	60

Литература

1. Теория вероятностей и математическая статистика: пособие / М.А. Маталыцкий, Т.В. Русилко. – 2-е изд., перераб. и доп. – Гродно: ГрГУ, 2009. – 219 с.