Cálculo Diferencial e Integral II

Ficha de trabalho 10 (modificada)

(Extremos condicionados. Integrais de Campos Escalares em Variedades)

- 1. Determine os extremos da função f no conjunto S:
 - a) f(x,y,z) = x + y + z, $S = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 3\}.$
 - b) f(x,y,z) = z, $S = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 = 4; x + z = 1\}.$
- 2. Determine os extremos absolutos da função $f(x,y,z)=z^2-x-y$ que se encontram na bola $B=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2+z^2\leq 2\}.$
- 3. Determine as dimensões da caixa rectangular com volume igual a $1\ \mathrm{m}^3$ que minimizam a respectiva área.
- 4. Determine os pontos de $\{(\cos t, \sin t, \sin(2t)); t \in \mathbb{R}\}$ mais longe da origem.
- 5. Calcule a área de cada uma das superfícies:
 - a) $A = \{(x, y, z) \in \mathbb{R}^3 : 1 + \sqrt{x^2 + z^2} = y < 2; x > 0\}.$
 - b) $B = \{(x, y, z) \in \mathbb{R}^3 : z = xy; x^2 + y^2 < 1\}.$
- 6. Calcule o momento de inércia da superficíe

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = a^2; z > 0\}, \ a > 0,$$

com densidade de massa constante igual a 1 em relação ao eixo dos zz.