ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 19 luglio 2018

Esercizio A

 Q_1 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_D=k(V_{GS}-V_T)^2$ con k=0.5 mA/V² e $V_T=1$ V. Q_2 è un transistore BJT BC109B resistivo con $h_{re}=h_{oe}=0$. Con riferimento al circuito in figura:

- Calcolare il valore della resistenza R₂ in modo che, in condizioni di riposo, la tensione sul collettore di Q₂ sia 10 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q₁. (R: R₂ = 1929.35 Ω)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 , e C_4 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -21.46$)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{A+D}\right)\left(\overline{B} + \overline{C} + E\right) + \overline{A}\left(\overline{B}D + DE\right) + \overline{C}\left(A\overline{D} + B\overline{E}\right)$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori. (R: N = 18)

Esercizio C

$R_1 = 400 \ \Omega$	$R_6 = 500 \Omega$
$R_2 = 200 \Omega$	$R_7 = 1 \text{ k}\Omega$
$R_3 = 3 \text{ k}\Omega$	C = 820 nF
$R_4 = 1 \text{ K}\Omega$	$\mathbf{V}_{\mathrm{CC}} = 6 \ \mathbf{V}$
$R_5 = 250 \Omega$	

Il circuito IC_1 è un NE555 alimentato a $\mathbf{V}_{CC} = \mathbf{6V}$, Q_1 ha una $R_{on} = 0$ e $V_T = 1V$, l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 1769.84 Hz)