CS 161 Homework 5

1.

$$(P \Rightarrow Q) = (-P \lor Q)$$

 $(-Q \Rightarrow -P) = (Q \lor -P)$

	Р	Q	P => Q	-Q =>-P	(P => Q) = (-Q => -P)
W ₁	0	0	1	1	1
W ₂	0	1	1	1	1
W ₃	1	0	0	0	1
W ₄	1	1	1	1	1

$$W(P \Rightarrow Q) = W(-Q \Rightarrow P) = \{w_1, w_2, w_4\}$$

	Р	Q	P⇔Q	((P ^ -Q) v (-P ^ Q))	(P ⇔ Q) = ((P ^ -Q) v (-P ^ Q))
\mathbf{W}_1	0	0	0	0	1
W ₂	0	1	1	1	1
W ₃	1	0	1	1	1
W ₄	1	1	0	0	1

$$W(P \Leftrightarrow Q) = W((P \land -Q) \lor (-P \land Q)) = \{w_2, w_3\}$$

2.

	S	F	(S => F) => (-S => -F)
W ₁	0	0	1

W_2	0	1	0
W_3	1	0	1
W ₄	1	1	1

$$W((S => F) => (-S => -F)) = \{w_1, w_3, w_4\}$$

This sentence is not valid, since it is not satisfied by all worlds.

	S	F	Н	(S => F) => ((S v H) => F)
\mathbf{W}_1	0	0	0	1
W ₂	0	0	1	0
W ₃	0	1	0	1
W ₄	0	1	1	1
W ₅	1	0	0	1
W ₆	1	0	1	1
W ₇	1	1	0	1
W ₈	1	1	1	1

This sentence is not valid, since it is not satisfied by all 8 worlds (satisfied every world except for w₂)

c)
$$((S^H) => F) \Leftrightarrow ((S => F) \lor (H => F))$$

= $(-S \lor -H \lor F) \Leftrightarrow ((-S \lor F) \lor (-H \lor F))$
= $(-S \lor -H \lor F) \Leftrightarrow (-S \lor -H \lor F)$

	S	F	Н	((S^H) => F) ⇔ ((S => F) v (H => F))
\mathbf{W}_1	0	0	0	1
W ₂	0	0	1	1
W ₃	0	1	0	1

W ₄	0	1	1	1
W ₅	1	0	0	1
W ₆	1	0	1	1
W ₇	1	1	0	1
W ₈	1	1	1	1

This sentence is valid since it is satisfiable by all worlds.

3.

a) Mythical => Immortal

-Mythical => (-Immortal ^ Mammal) (Immortal v Mammal) => Horned

Horned => Magical

b)

Symbol	Represented By
Mythical	Υ
Immortal	I
Mammal	М
Horned	Н
Magical	G

$$CNF = (-Y \lor I) \land (-I \lor Y) \land (M \lor Y) \land (-I \lor H) \land (-M \lor H) \land (-H \lor G)$$

c) -

i) Assume the Unicorn is not mythical.

#	Statement	Source
1	(-Y v I)	Knowledge Base
2	(-I v Y)	Knowledge Base
3	(M v Y)	Knowledge Base
4	(-l v H)	Knowledge Base

5	(-M v H)	Knowledge Base
6	(-H v G)	Knowledge Base
7	-Y	Knowledge Base
8	-l	(2 and 7)
9	MvI	(1 and 3)
10	YvH	(3 and 5)
11	-l v G	(4 and 6)
12	М	(8 and 9)
13	Н	(7 and 10)
14	G	(6 and 13)

Satisfied by -Y ^ -I ^ M ^ H ^ G.

Since not mythical is satisfiable, we cannot prove that the unicorn is mythical with the given knowledge base.

ii) Assume the Unicorn is not magical.

#	Statement	Source
1	(-Y v I)	Knowledge Base
2	(-I v Y)	Knowledge Base
3	(M v Y)	Knowledge Base
4	(-I v H)	Knowledge Base
5	(-M v H)	Knowledge Base
6	(-H v G)	Knowledge Base
7	-G	Knowledge Base
8	-H	(6 and 7)
9	ΥvH	(3 and 5)
10	I v M	(1 and 3)
11	-M v G	(5 and 6)
12	Υ	(8 and 9)

13	I v G	(10 and 11)
14	I	(7 and 13)
15	Н	(4 and 14)
16	null	(8 and 15)

Line 16 presents a contradiction - therefore -G is unsatisfiable. Since -G is unsatisfiable, G must be valid, meaning the unicorn is magical.

iii) Assume the Unicorn is not horned.

#	Statement	Source	
1	(-Y v I)	Knowledge Base	
2	(-I v Y)	Knowledge Base	
3	(M v Y)	Knowledge Base	
4	(-I v H)	Knowledge Base	
5	(-M v H)	Knowledge Base	
6	(-H v G)	Knowledge Base	
7	-H	Knowledge Base	
8	-l	(4 and 7)	
9	-M	(5 and 7)	
10	-Y	(1 and 8)	
11	М	(3 and 10)	
12	null	(9 and 11)	

Line 12 presents a contradiction - therefore -H is unsatisfiable. Since -H is unsatisfiable, H must be valid, meaning the unicorn is horned.

4.

- a) Figure 1 is
 - i) Decompasable, since for each AND gate, the subcircuits do not have overlapping variables.
 - ii) Not deterministic, since the assignment (A, -B, C -D) results in two true inputs to the highest OR gate.
 - iii) Not smooth, since the central OR gates on level 3 do not have the same variables on each side.
- b) Figure 2 is

- i) Decompasable, since for each AND gate, the subcircuits do not have overlapping variables.
- ii) Not deterministic, since the assignment (-A, B) results in the two OR gates on level 3 to have two true inputs.
- iii) Smooth, as for each OR gate, the subcircuits have the same variables.

5.

a)

	А	В	(-A ^ B) v (-B ^ A)
W ₁	0	0	0
W ₂	0	1	1
W ₃	1	0	1
W ₄	1	1	0

$$\omega$$
(-A) ω (B) + ω (A) ω (-B) = 0.9*0.3 + 0.1*0.7 = 0.34

b) (-A * B) + (-B & A)

$$(0.27) + (0.07) = 0.34$$

The count on the root and the WMC for the formula are equivalent.

c) ((-A * B) + (-B * A))*((C*D) + (-C * -D)) + ((-A * -B) + (A *B))*((C*-D) + (-C * D))=(0.9*0.3 + 0.7*0.1)*(0.5*0.7 + 0.5*0.3) + (0.8*0.7 + 0.3*0.1)*(0.5*0.3 + 0.5*0.3)= 0.5