תורת הקבוצות – תרגיל בית מס' 8 – פתרון חלקי

- $(2^4)^{\aleph}=2^{4\cdot\aleph}=2^{\aleph}$ -ו $(2^2)^{2^{\aleph}}=2^{2\cdot 2^{\aleph}}=2^{2^{\aleph}}$: .1
 - . $(2^{(2^{\aleph_0})})^{\aleph_0}=2^{2^{\aleph_0}\cdot\aleph_0}=2^{\aleph\cdot\aleph_0}=2^{\aleph}:$ ב) הקרדינלים שווים: $2^{(2^{\aleph_0})}=2^{\aleph}$ בל הנימוקים הדרושים מקרים פרטיים של שאלה 3.
- כל "גדול, ש"יבלע" כל . (לקחנו מ α גדול, $\alpha=2^{\aleph},\beta=\aleph,\gamma=\aleph_0$:אין כל .2 מעריכים, השווה עם פתרון של שאלה 3 ג'.)
 - . $eta=leph, lpha=\gamma=leph_0$:ב) כן. לדוגמא
 - ג) כן, קיימים...

.3

$$-\ \aleph_0+\aleph_0=\aleph_0$$
 -ו $\aleph_0\cdot\aleph_0=\aleph_0$: $\alpha_0=\aleph_0$ - $i\!\!=\!\!0$ עבור (א משפטים ידועים.

: i+1 נניח שהטענות נכונות עבור i ונוכיח אותן עבור

(הערה: לכל קרדינל α מתקיים $2\cdot\alpha=\alpha+\alpha$ מתקיים α לכל קרדינל (הערה: לכל $2\cdot\alpha=|\{0,1\}\times A|=|(\{0\}\times A)\cup(\{1\}\times A)|=|\{0\}\times A|+|\{1\}\times A|=\alpha+\alpha$

. $\alpha_i < \alpha_i$ ממשפט קנטור נובע

$$\begin{aligned} \alpha_i \cdot \alpha_j &= \alpha_j \iff \alpha_j = 1 \cdot \alpha_j \le \alpha_i \cdot \alpha_j \le \alpha_j \cdot \alpha_j = \alpha_j \end{aligned}$$
 .

$$\alpha_i + \alpha_j &= \alpha_j \iff \alpha_j = 0 + \alpha_j \le \alpha_i + \alpha_j \le \alpha_j + \alpha_j = \alpha_j \end{aligned}$$

. $i \le j-1$ ומכאן i < j כאשר $\gamma = \alpha_i$, $\beta = \alpha_i$ ג) מהנתון נובע:

.
$$\beta^{\gamma} = \alpha_i^{\alpha_i} = (2^{\alpha_{j-1}})^{\alpha_i} = 2^{\alpha_{j-1} \cdot \alpha_i} = 2^{\alpha_{j-1}} = \alpha_i = \beta$$
 לכן

 $\beta\cdot\gamma=\gamma$, לכן: $\beta\cdot\gamma=\gamma$, לכן: $\gamma=\gamma$, לפי סעיף א' $\gamma=\gamma$

$$|R^{[0,1]}| = |R|^{[0,1]} = \aleph^{\aleph} = 2^{\aleph} (\aleph .4)$$

.X -ב) נסמן את הקבוצה ב-

ניזכר בעובדה מחשבון דיפרנציאלי שפונקציה רציפה נקבעת לגמרי ע"י הערכים שלה בנקודות הרציונליות. נגדיר

$$\varphi : X \to \mathsf{R}^{[0,1] \cap \mathsf{Q}}$$
$$f \mapsto f \mid_{[0,1] \cap \mathsf{Q}}$$

מוכיחים ש- ϕ חח"ע (כלומר, את העובדה המנוסחת לעיל: אם שתי פונקציות רציפות מתלכדות בנקודות הרציונליות של תחום ההגדרה, אז הן מתלכדות בכל בנקודות של תחום ההגדרה. יש להיעזר בהגדרת Heine של רציפות (הגדרת הרציפות "לפי הסדרות")). מכאן

$$|X| \le |\mathsf{R}^{[0,1] \cap \mathsf{Q}}| = |\mathsf{R}|^{|[0,1] \cap \mathsf{Q}|} = \aleph^{\aleph_0} = \aleph$$

- ג) תשובה: א. רעיון לפתרון: לכל $\alpha \in [0, 1]$ קבוצת הפונקציות הלא רעיפות רק ב- α בעלת העצמה α בדומה לסעיף הקודם. קיימים רציפות רק ב- α (מועמדים ל- α), לכן בסה"כ יש א α אונקציות כאלה.
 - לי א העצמה של X, קבוצת כל היחסים ב- א שווה ל- א כי גי א העצמה של X. א העצמה א העצמה א העצמה של א ל- א כי גי א העצמה של העצמה של א העצמה של א העצמה של העצמה
 - ב) העצמה של Y , קבוצת כל יחסי השקילות ב- \mathbb{N} , שווה ל- \mathbb{N} . | $Y | \leq \mathbb{N}$ ולכן $Y \subseteq X$ אחד אחד

:מצד שני, לכל $A{\in}P(\mathbb{N})$ נגדיר יחס שקילות $A{\in}P(\mathbb{N})$

$$(x,y) \in R_A \Leftrightarrow \begin{bmatrix} x = y \\ \exists n \in A : x = 2n - 1, y = 2n \end{bmatrix}$$

. $|P(\mathbb{N})| \leq Y$ ולכן היא חח"ע ולכן $A \mapsto R_A$ ההתאמה

$$|A| = |\mathbf{Q}|^{|\mathbf{N}|} = \aleph_0^{\aleph_0} = \aleph$$

: C של f_X כי לכל $X\in P(\mathbb{N})$ ניתן להגדיר איבר $|C|=\aleph$. $C\subseteq B\subseteq A$ כי $|B|=\aleph$. $f_X(n)=\begin{cases} 1/n &,n\in X\\ 0 &,n\not\in X \end{cases}$

: D של f_X כי לכל $X \in P(\mathbb{N})$ ניתן להגדיר איבר איבר $X \in P(\mathbb{N})$ של $|D| = \mathbb{N}$. $f_X(n) = \begin{cases} 1 & , n \in X \\ 0 & , n \notin X \end{cases}$

. יש להוכיח שכל סדרה כזאת – קבועה ממקום מסויים: $|F| = \aleph_0$

 \dots גם ל- E ו- G עצמה