Fundamentals of Solid State Physics

Superconductivity

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Resistivity ρ vs. Temperature

Metals and semiconductors have different temperature

dependences of ρ

 $\sigma = ne\mu$

Intrinsic Semiconductors

Resistivity ρ of Metals

- The Classical Model
 - Resistivity is always > 0 for metals, because of phonon scattering

$$\sigma = ne^2 \frac{\tau}{m}$$

$$\rho = \frac{1}{\sigma}$$

when T decreases \longrightarrow τ increases

 ρ decreases

- Resistivity drops to 0 at transition temperature T_c
- Phonon scattering suddenly disappears

- Onnes's main focus is to get liquid helium (T = 4 K).
- Discovery of superconductivity is an accident

H. Onnes (昂尼斯) 1913 Nobel Prize in Physics for Low Temperature Physics

Nobel Prizes in Superconductivity

- 1913 Low temperature physics
- 1972 BCS theory of superconductivity
- 1973 Tunneling effects in superconductors
- 1987 High temperature superconductors
- 2003 Theory of superconductors

BCS Theory

 Pairs of electrons (Cooper's Pairs) move in the lattice coherently without phonon scattering

BCS Theory

 Pairs of electrons (Cooper's Pairs) move in the lattice coherently without phonon scattering

A Cooper Pair of electrons moving in the lattice

Bardeen, Cooper and Schreiffer 1972 Nobel Prize in Physics

BCS Theory

 Pairs of electrons (Cooper's Pairs) move in the lattice coherently without phonon scattering

A Cooper Pair of electrons moving in the lattice

Bardeen, Cooper and Schreiffer 1972 Nobel Prize in Physics

Chasing High T_c

■ The BCS theory cannot explain superconductors with $T_c > 40$ K

• Theory for high T_c superconductors is still not

complete

- Meissner effect 迈斯纳效应
 - Superconductors repel all the magnetic field inside
 - □ perfectly diamagnetic $(\chi = -1)$
 - □ Inside, B = $\mu_0 \mu_r H = \mu_0 (1 + \chi) H = 0$

- Meissner effect 迈斯纳效应
 - Superconductors repel all the magnetic field inside
 - □ perfectly diamagnetic $(\chi = -1)$
 - □ Inside, B = $\mu_0 \mu_r H = \mu_0 (1 + \chi) H = 0$

B field

https://wonderfulengineering.com/these-15-magnet-gifs-will-show-you-the-power-of-magnetism/

- Meissner effect 迈斯纳效应
 - Superconductors repel all the magnetic field inside
 - □ perfectly diamagnetic $(\chi = -1)$
 - □ Inside, B = $\mu_0\mu_r$ H = μ_0 (1+ χ)H = 0

B field

MagLev (磁悬浮列车)

Thank you for your attention