第一章:

- 1. 1 (a)、(b)模拟量; (c)、(d)数字量
- 1. 2 107 16.1111 38.8 55.3125 1471.8889 348.2188

1. 3

十进制	二进制	八进制	十六进制
1.234	1.0011	1.1676	1.3BE7
73.4	1001001.0110	111.3146	49.6666
2014.8	11111011110.1100	3736.6314	7DE.CCCC

1. 4 R>4 R>3 R=5

1. 5 (1) 1010010

(2) 11100

(3) 1323

(4) 401

(5)

F5C6

(6) 5144

1. 6 n=10(m-1)/3; 10 位

1. 7

真值	原码	反码	补码
+1111	01111	01111	01111
-1111	11111	10000	10001
+0000	00000	00000	00000
-0000	10000	11111	00000
+1010	01010	01010	01010
-1010	11010	10101	10110

1. 8 (1) -10111 (2) -01000 (3) -01001 (4) +00000

(5) + 11111

(6)

+10000

1. 9 原码: +1.101000=01.101000

反码: 0.1010000 补码: 0.1010001

1. 10

真值	原码	反码	补码
11/64	0.0010110	0.0010110	0.0010110
13/128	0.0001101	0.0001101	0.0001101
15/256			
-11/64	1.0010110	1.1101001	1.1101010
-13/128	1.0001101	1.1110010	1.1110011
-15/256			

1. 11 BCD 码加法: (1)如果任何两个对应位 BCD 数相加的结果向高一位无进位,若得到的 结果小于或等于 9,则该不需修正;若得到的结果大于 9 且小于 16 时,该位进行加 6 修正。(2) 如果任何两个对应位 BCD 数相加的结果向高一位有进位时(即结果大于或等于 16, 注意不是 修正时的进位),该位进行加6修正。(3)低位修正结果使高位大于9时,高位进行加6修正。

BCD 码减法:两个组合 BCD 码进行减法运算时,当低位向高位有借位时,由于"借一作十 六"与"借一作十"的差别,将比正确的结果多6,所以有借位时,可采用"减6修正法"来修正.两个 BCD码进行加减时,先按二进制加减指令进行运算,再对结果用BCD调整指令进行调整,就可得 到正确的十进制运算结果。

1. 12

$$(1010111.01110101)_{BCD} = (57.75)_{10} = (1011010.01110101)_{\stackrel{\circ}{\otimes} 3 \stackrel{\circ}{\bowtie}}$$

$$= (10111101.11011011)_{2421} = (111001.11)_{2} = (1110100.01000111)_{grav}$$

	奇校验	偶校验
10101010	1	0
11111110	0	1

- 1. 14 不正确 $S_3S_5S_1 = 100$,所以正确海明码为 0101101
- 1. 15 成立,详见课本 21 页
- 1. 16 可以
- 1. 17

$$(1) \overline{F} = (\overline{A} + \overline{B}) (A\overline{B} + \overline{C}\overline{D}\overline{E})$$

$$F' = (A + B) (\overline{A}B + CDE)$$

$$(2) \overline{F} = \overline{A} (\overline{B} + C) + A (D + \overline{E})$$

$$F' = A (B + \overline{C}) + \overline{A} (D + \overline{E})$$

$$(3) \overline{F} = \overline{A} e B e 0 = \overline{A} e \overline{B}$$

$$F' = A e \overline{B} e 0 = A e B$$

1. 18

(1)
$$F = \sum m^4(3, 4, 5, 6, 7, 11) = \pi M^4(0, 1, 2, 8, 9, 10, 12, 13, 14, 15)$$

$$(2) F = \sum m^{4}(4, 6, 7, 10, 11, 14, 15) = \pi M^{4}(0, 1, 2, 3, 5, 8, 9, 12, 13)$$

(3)
$$F = \sum m^4(0, 1, 2, 3, 4, 7, 9, 10, 12, 13, 14, 15) = \pi M^4(5, 6, 8, 11)$$

1. 21 提示: 做卡诺图,根据卡诺图中0和1的变量组合确定

1. 22

$$(1) F = \overline{A}B\overline{C} + BC + \overline{B}\overline{C}D = (B + \overline{C})(B + C + D)(\overline{A} + \overline{B} + C)$$

$$(2) F = AB + B\overline{C} = B \left(A + \overline{C} \right)$$

$$(3) F = B\overline{C}\overline{D} + \overline{A}\overline{C}D + BCD + ABC$$

$$= \left(B + \overline{C}\right) \left(B + C + D\right) \left(\overline{A} + C + \overline{D}\right) \left(A + \overline{C} + D\right)$$

$$(4) F = \overline{D} + \overline{BC} + \overline{ABC} = (B + C + \overline{D}) (\overline{B} + \overline{C} + \overline{D}) (\overline{A} + C + \overline{D})$$

1. 23

$$(1) F = \overline{ACBC} \overline{gABBC}$$

$$(2) F = \overline{\overline{AABC}} \overline{gBABC}$$

$$(3) F = \overline{\overline{C} \overline{AB} g B \overline{AB}}$$

$$(4) F = \overline{\overline{ABC}}$$

1. 24

由卡诺图化简得:

$$F = AB\overline{C} + \overline{A}BC = B(A\overline{C} + \overline{A}C) = B(A \oplus C) = AB \oplus BC$$

$$\overline{X}F = WX \oplus YZ$$

$$FFUW = A, X = Y = B, Z = C$$

1. 25

1. 26

1. 27 多射极晶体管技术是 TTL 逻辑门实现的核心技术。工作原理: TTL 中,晶体管除了作为一个电压控制的开关,还可以作为放大器工作。当基极电压变化时,晶体管能把后面的晶体管电压放大,加快后面的晶体管打开和关闭的速度,实现更快的门电路。TTL 电路的主要优点是能够很方便的将不同的电路连接且即连在一起,形成更复杂的逻辑。

1. 28

1. 29

CMOS 由 PMOS 管和 NMOS 管并联组成,并用一对互补的控制信号控制。PMOS 管在传送逻辑"1"电压方面表现很好,在传送逻辑"0"方面表现差;而 NMOS 管则正好相反,它传

送逻辑 "0" 表现很好,传送逻辑 "1"则表现很差。CMOS 用一对互补的控制信号控制。当信号 CONTROL 有效时,则传输门传送逻辑 "1"和逻辑 "0"都很出色。因为信号 CONTROL 为逻辑 1 时,NMOS 导通,此时 $\overline{CONTROL}$ 为逻辑 0 使 PMOS 也导通;而当信号 CONTROL 为逻辑 0 时,此时 $\overline{CONTROL}$ 为逻辑 1,PMOS 管和 NMOS 管都将被切断连接。

1. 30 按照制造工艺集成电路的工艺可以分为 CMOS 电路和 TTL 电路两种类型。按规模可分为小规模集成电路、中规模集成电路、大规模集成电路、超大规模集成电路和巨大规模集成电路五种。其使用特性主要有负载能力、延迟特性、功耗特性和空脚处理 4 种。

第二章

2. 1

由图得:

$$F_1 = \overline{A \oplus B}, F_2 = F_1 \oplus C$$

则波形图如下:

2. 2

$$\begin{array}{rcl} A_1 & = & \overline{B_1} \\ A_2 & = & B_2 \\ A_4 & = & B_2 \ \oplus \ B_4 \\ A_8 & = & \overline{B_2 \ + B_4 \ + B_8} \end{array}$$

结论: B₈B₄B₉B₁是BCD码, A₈A₄A₉A₁是B₈B₄B₉B₁对9的变补

2. 3

Z = D

 $Y = C \oplus D$

$$X = B \oplus (C + Y) = B \oplus (C + C \oplus D) = B \oplus (C + D)$$

 $W = A \oplus (B + C + D)$

结论: 16 变补器。

2. 4

$$(1) F = AB + AC + BC = (A + B)(A + C)(B + C)$$

$$(2) F = \overline{AB} + A\overline{C} + \overline{BCB}F = A\overline{B} + B\overline{C} + \overline{AC}$$

$$(1) F = \sum m^3(0, 3, 5, 6, 9, 12, 15)$$

$$(2) F = \sum m^3(3, 5, 6, 9, 10, 12)$$

$$(3) F = \sum m^3 (1, 2, 4, 8)$$

2. 6

2. 7根据题目要求得逻辑图如下:

2. 8 令 8421 码为 ABCD, 2421 码为 WXYZ, 则

$$W = A + BC + BD$$

$$X = A + BC + B\overline{D}$$

$$Y = A + \overline{BC} + \overline{BCD}$$

$$Z = D$$

2. 9 令典型格雷码为 ABCD, 二进制码为 WXYZ, 则

$$W = A$$

$$X = A \oplus B$$

$$Y = A \oplus B \oplus C$$

$$Z = A \oplus \oplus B \oplus C \oplus D$$

2. 10 全加器在两数相加时需要考虑来自低位的进位数。设全加器的三个输入分别为 $A_i B_i C_{i-1}$,相加产生的和及进位分别为 $S_i \mathcal{A} \!\!\!\!/ \mathcal{C}_i$ 。则可列出全加器逻辑功能的真值表,由真

值表作卡诺图并化简得:
$$S_i = \overline{A_i}\overline{B_i}C_{i-1} + \overline{A_i}\overline{B_i}\overline{C}_{i-1} + A_i\overline{B_i}\overline{C}_{i-1} + A_i\overline{B_i}C_{i-1}$$

$$C_i = A_iB_i + A_iC_{i-1} + B_iC_{i-1}$$

题目要求为与或非门,则可对 S_i 和 C_i 两次求反,得:

$$S_{i} = \overline{\overline{S}_{i}} = \overline{\overline{A_{i}}} \overline{B_{i}} \overline{C_{i-1}} + \overline{A_{i}} \overline{B_{i}} \overline{\overline{C}_{i-1}} + A_{i} \overline{B_{i}} \overline{\overline{C}_{i-1}} + A_{i} B_{i} \overline{C_{i-1}}$$

$$C_{i} = \overline{\overline{C}_{i}} = \overline{\overline{A_{i}}} \overline{B_{i}} + \overline{A_{i}} \overline{C_{i-1}} + \overline{B_{i}} \overline{C_{i-1}}$$

2. 11

(1) BC=11 时,
$$F = A + A$$
,存在静态 1 险象

(2) ACD=000 时,
$$F = BgB$$
,存在静态 0 险象

ABD=011 时,
$$F = C \mathfrak{C}$$
,存在静态 0 险象

ABC=010 时,
$$F = Dg\overline{D}$$
,存在静态 0 险象

2. 12

(1)
$$F = AC + \overline{ABC} + \overline{ABD} + \overline{ACD} + BCD$$

$$(2) F = A\overline{C} + BCD + ABD$$

2. 13

(1)

(3)

(4)

2. 14 用 A、B、C 分别表示被加数、加数和来自地位的进位,F 和 G 表示"和"及"进位",则由题 2.10 可知 $F = \overline{ABC} + \overline{ABC}$

- 2. 15
- 2. 16
- 2.17 略

2. 18
$$(1)$$
 $F = \sum m^3 (3,5) (2)$ $F = \sum m^3 (1,3,4,5,6,7)$ 图略

- 2. 19
- (1) 用 $D_3D_2D_1D_0$ 表示余3码,用 $Y_3Y_2Y_1Y_0$ 表示8421码,

$$\mathcal{M}Y_3Y_2Y_1Y_0 = D_3D_2D_1D_0 - 0011$$

$$= D_3 D_2 D_1 D_0 + (-0011) \not \nearrow /$$

$$= D_3 D_2 D_1 D_0 + 1101$$

(2) *用ABCD表示*2421*码,WXYZ表示余*3*码,则*

$$W = A, Z = D, X = \overline{A}B\overline{C} + \overline{B}\overline{C}D + BCD + \overline{A}C$$

$$Y = \overline{A}B + \overline{A}CD + A\overline{C}D + AC\overline{D}$$

电路图略。

2. 20 已知 8421BCD 中以 0000~1001 表示 0~9 共 10 个一位数,且 BCD 码中不允许出现 1010~1111 这 6 个代码。二位 BCD 码相加时,可能产生仅为,且可能产生 20 种不同的和代码,其中不超过 9 的 10 种代码不需要校正,而超过 9 的 10 种代码均需要进行矫正,同时还产生进位。则可列出一位 8421BCD 码相加之和的校正表

	未校正的 BCD 码和					校正的 BCD 码和						
十进制数		C_4	$\mathcal{S}_3^{}$	$\mathcal{S}_{_{2}}$	$\mathcal{S}_{_{1}}$	S_{0}		C',	S_3 ,	S_2 '	S_{1} '	S_0 ,
0			0	0	0	0			0	0	0	0
1			0	0	0	1			0	0	0	1
2			0	0	1	0			0	0	1	0
3	不		0	0	1	1			0	0	1	1
4	需		0	1	0	0			0	1	0	0
5	要垃圾		0	1	0	1			0	1	0	1
6	校 正		0	1	1	0			0	1	1	0
7	正		0	1	1	1			0	1	1	1
8			1	0	0	0			1	0	0	0
9			1	0	0	1			1	0	0	1
10	需		1	0	1	0		1	0	0	0	0
11	要		1	0	1	1	\Rightarrow	1	0	0	0	1
12			1	1	0	0	C	1	0	0	1	0
13			1	1	0	1		1	0	0	1	1
14			1	1	1	0		1	0	1	0	0
15	校		1	1	1	1		1	0	1	0	1
16	正	1	0	0	0	0		1	0	1	1	0

17	1	0	0	0	1	1	0	1	1	1
18	1						1	0	0	0
19	1	0	0	1	1	1	1	0	0	1

从表中可以看出,对于和大于等于 10(1010)的数都需要进行加 6(0110)校正,而且还 要产生一个进位 \mathcal{C}_4 ,则 \mathcal{C}_4 的表达式为

$$C_4' = S_3\overline{S_2}S_1\overline{S_0} + S_3\overline{S_2}S_1S_0 + S_3S_2\overline{S_1}\overline{S_0} + S_3S_2\overline{S_1}S_0 + S_3S_2\overline{S_1}S_0 + C_4 = S_3S_1 + S_3S_2 + C_4$$
 按上式可得进位 C_4' 的逻辑电路,则电路图如下:

第三章

3.1 激励函数表达式: J = K = AC + BC

JK 触发器次态方程式: $Q^{n+1} = J\overline{Q} + \overline{K}Q$ 波形图如下:

3.2 激励函数表达式: $D = \overline{Q}D_1$

3.3 激励方程:

$$\begin{array}{lll} D_2 &= \left(\mathcal{Q}_1 \, \oplus \, \mathcal{Q}_0 \, \right) \oplus \, \overline{\mathcal{Q}_1 \, + \, \mathcal{Q}_2} \, = \, \mathcal{Q}_1 \overline{\mathcal{Q}_0} \, + \, \mathcal{Q}_2 \overline{\mathcal{Q}_1} \mathcal{Q}_0 \, + \, \overline{\mathcal{Q}_2} \overline{\mathcal{Q}_1} \overline{\mathcal{Q}_0} \\ \\ D_1 &= \, \mathcal{Q}_2 \\ D_0 &= \, \mathcal{Q}_1 \end{array}$$

$Q_2Q_1Q_0$	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
000	1	0	0
001	0	0	0
010	1	0	1
011	0	0	1
100	0	1	0
101	1	1	0
110	1	1	1
111	0	1	1

Q	Q^{n+1}
Α	E
В	А
С	F
D	В

Е	С
F	G
G	Н
Н	D

- 3. 4 (b)
- 3. 5 从电路图可得: 电路的输出仅与现态有关,与输入无关。因此,属于 Moore 型。 (1)列出激励函数及输出函数表达式:

$$\begin{split} J_0 &= x \cdot \overset{\frown}{y} \\ K_0 &= x \cdot \overset{\frown}{y} + y \cdot Q_1 \\ J_1 &= x \cdot Q_0 + y \\ K_1 &= y \cdot \overset{\frown}{Q_0} + x \cdot \overset{\frown}{y} \cdot Q_0 \\ Z &= Q_1 \cdot Q_0 + \overset{\frown}{Q_1} \cdot \overset{\frown}{Q_0} \end{split}$$

(2) 列出状态变量的次态方程:

$$\begin{split} & Q_0^{n+1} \ = \ J_0 \cdot \overline{Q_0} \ + \ \overline{K_0} \cdot Q_0 \\ & = \ x \cdot \overline{y} \cdot \overline{Q_0} \ + \ \overline{x} \cdot \overline{y} \cdot Q_0 \ + \ \overline{x} \cdot \overline{Q_1} \cdot Q_0 \ + \ y \cdot \overline{Q_1} \cdot Q_0 \\ & Q_1^{n+1} \ = \ J_1 \cdot \overline{Q_1} \ + \ \overline{K_1} \cdot Q_1 \\ & = \ x \cdot \overline{Q_1} \cdot Q_0 \ + \ y \cdot \overline{Q_1} \ + \ \overline{x} \cdot \overline{y} \cdot Q_1 \ + \ \overline{y} \cdot Q_1 \cdot \overline{Q_0} \ + \ y \cdot Q_1 \cdot Q_0 \ + \ \overline{x} \cdot Q_1 \cdot Q_0 \end{split}$$

(3) 列二进制状态表

Q_1Q_0	00	01	10	11			
00	00	10	01	10			
01	01	11	10	11			
10	10	00	11	00			
11	11	10	00	10			

(4) 列状态/输出表:设定 00=A,01=B,10=C,11=D

xy S	00	01	10	11	Z
Α	Α	С	В	С	1
В	В	D	С	D	0
С	С	Α	D	Α	0
D	D	С	Α	С	1

(5) 画状态图

3. 6 激励方程和输出函数如下:

$$D_1 = \overline{Q_1}, D_2 = Q_1 \oplus Q_2, F = Q_1 \cdot Q_2$$

状态图:

则可知:该电路是一个模 4 循环计数器,每当完成一次循环计数就输出一次 1。 3.7 激励方程如下:

$$\begin{split} EN_1 &= Y, \, EN_2 = \overline{X}YQ_1 \\ Q_1^{n+1} &= EN_1 \cdot \overline{Q_1} + \overline{EN_1} \cdot Q_1 = Y\overline{Q_1} + \overline{Y}Q_1 \\ Q_2^{n+1} &= EN_2 \cdot \overline{Q_2} + \overline{EN_2} \cdot Q_2 = \overline{X}Y\overline{Q_2}Q_1 + XQ_2 + \overline{Y}Q_2 + Q_2\overline{Q_1} \\ Z &= X\overline{Q_2} \end{split}$$

$Q_2 Q_1$	00	01	10	11
A 00	00/0	01/1	01/0	00/0
B 01	01/1	10/1	00/0	01/0
C 10	11/0	00/0	10/0	11/0
D 11	10/0	11/0	11/0	10/0

当 Y=0 时,系统不变化;当 Y=1 时,若 X=0,是模 4 加 1 计数器;若 X=1,系统在 A-B,C-D 之间循环。

3.8课本有答案

用/LD 端实现从 1100 到 0011 的跳跃,则电路图如下:

3.10 0111~0000 减 1 计数; 1000~1111 加 1 计数则该电路为模 16 计数器

3. 11

3. 12

3. 13

(1) 作原始状态图得

作原始状态表,并化简为最小状态表

Q^n	0	1
Α	A/0	B/0

Q^n	0	1
Α	A/0	B/0
В	C/0	B/0
С	A/0	B/1

В	C/0	B/0
С	A/0	D/1
D	B/0	C/0

所以状态图为

(2) 作原始状态图得

作原始状态表, 并化简为最小状态表

Q^n	0	1
А	A/0	B/0
В	C/0	B/0
С	A/0	D/1
D	B/0	C/0

 A
 A/0
 B/0

 B
 C/0
 B/0

 C
 A/0
 B/1

所以状态图为

3. 14 最大等效类为 (A,D), (B,C), (E), 设 (A,D), (B,C), (E) 分别为 A', B', C', 则 最小化状态表为

<i>X</i> ₂ <i>X</i> ₁	00	01	11
A'	A'/1	B'/0	C'/1
B'	A'/0	C'/0	B'/1
C'	A'/1	B'/0	B'/1

3.15 最大相容类为 (1, 3, 4), (2, 5, 6), 设 (1, 3, 4), (2, 5, 6) 分别为 A, B, 则 最小化状态表为:

<i>X</i> ₂ <i>X</i> ₁	00	01	11	10
Α	A/0	A/0	B/1	A/0
В	B/1	A/0	B/1	B/0

3. 16 根据题目给定的状态表,进行化简,得已知状态表为最小化状态表,则列出二进制 状态表得:

Q_2Q_1	0	1	Z
00	01	10	0
01	11	01	0
11	01	00	0
10	01	11	1

(1) 用 D 触发器,确定激励函数及输出函数表达式:

$oldsymbol{X}_{Q_2} oldsymbol{\mathcal{Q}}_1$	0	1
00	0	1
01	1	0
11	0	0
10	0	1
D2		

$oldsymbol{\mathcal{X}}_{Q_2} oldsymbol{\mathcal{Q}}_1$	0	1
00	0	1
01	1	0
11	0	0
10	0	1

D1

所以 $D_2 = x\overline{Q_1} + \overline{x}\overline{Q_2}Q_1$, $D_1 = x + \overline{Q_2}Q_1 + Q_2\overline{Q_1}$, $Z = Q_2\overline{Q_1}$

(2) 用 JK 触发器,确定激励函数及输出函数表达式:

Q_2Q_1	0	1
00	0	1
01	1	0
11	d	d
10	d	d

$oldsymbol{X}$ $oldsymbol{\mathcal{Q}}_2 oldsymbol{\mathcal{Q}}_1$	0	1
00	d	d
01	d	d
11	1	1
10	1	0

J2 K2

Q_2Q_1	0	1	
00	1	0	
01	d	d	
11	d	d	
10	d	d	

Q_2Q_1	0	1
00	d	d
01	0	0
11	0	1
10	d	d

Κ1

$$\begin{array}{ll} \mbox{\it BTVJ}_2 = \overline{x} Q_1 + x \overline{Q_1}, K_2 = Q_1 + \overline{x} \\ \mbox{\it J}_1 = \overline{x} + Q_2, K_2 = x Q_2 \\ \mbox{\it Z} = Q_2 \overline{Q_1} \end{array}$$

(3)用T触发器,确定激励函数及输出函

$egin{array}{c} X & & & \\ Q_2 Q_1 & & & \\ \end{array}$	0	1					
00	0	1					
01	1	0					
11	1	1					
10	1	0					
	тэ						

Q_2Q_1	0	1			
00	1	0			
01	0	0			
11	0	1			
10	1	1			
T1					

数

所以 $T_2 = x\overline{Q_2}\overline{Q_1} + \overline{x}Q_1 + \overline{x}Q_2 + Q_2Q_1, T_1 = \overline{x}\overline{Q_1} + xQ_2, Z = Q_2\overline{Q_1}$

3. 17 电路图如下:

3. 18 设计步骤如下:

(1)建立原始状态表:设初态 S_0 收到 1 个 "0",并且用 S_i 表示收到第 i 个 "1",则可得到 Melay 型原始状态图及原始状态表,见图(a),(b)

- (2) 状态化简: 作隐含表 (c),从隐含表可得到最大等效类 (S_0),(S_1),(S_2),(S_3 , S_4),设 (S_0),(S_1),(S_2),(S_3 , S_4) 分别为 A、B、C、D,由此可得到最小化状态表 (d)
- (3)状态分配: 根据三个规则计算得总改善效果: $E_{AB}=1$, $E_{AC}=1$, $E_{AD}=2$, $E_{CD}=2$ 。 根据作品能够改善效果大小的状态相邻图(e)和状态分配方案(f)。

(4) 选择 D 触发器得:
$$D_1 = xy_1 + xy_0$$
, $D_0 = xy_1$, $Z = xy_1y_0$

(5) 画出逻辑电路图

(6) 讨论:在激励函数及输出函数卡诺图中没有无关项 d 出现,因此不会出现挂起状态。 3. 19 分别用 000~100 表示 5 进制计数器中的 5 个状态,设当 x=1 时,加 1 计数,当 x=0 时,减 1 计数;则可直接得到二进制状态表。此表无需化简和状态分配,根据状态表可画出各激励函数的卡诺图。

考虑多输出函数的公用与项情况,可得到激励函数的逻辑表达式:

$$\begin{split} J_2 &= \overline{x} \overline{Q_1} \overline{Q_0} + x Q_1 Q_0, K_2 = 1 \\ J_1 &= \overline{x} Q_2 + x, K_1 = \overline{x} Q_1 \overline{Q_0} + x \\ J_0 &= Q_1 \overline{Q_0} + \overline{x} Q_2 + x \overline{Q_2}, K_0 = 1 \end{split}$$

X	0	1
$Q_2Q_1Q_0$		
000	100	001
001	000	010
010	001	011
011	010	100
100	011	000

二进制状态表

XQ_2 Q_2Q_1	00	01	11	10
00	1	d	d	0
01	0	d	d	0
11	0	d	d	1
10	0	d	d	0
	J2			

XQ_2 Q_2Q_1	00	01	11	10
00	d	1	1	d
01	d	d	d	d
11	d	d	d	d
10	d	d	d	d

K2

xQ_2 Q_2Q_1	00	01	11	10		
00	0	1	0	0		
01	0	d	d	1		
11	d	d	d	d		
10	d	d	d	d		
J1						

XQ_2 Q_2Q_1	00	01	11	10
00	d	d	d	d
01	d	d	d	d
11	0	d	d	1
10	1	d	d	0
		K1		

AQ_2 Q_2Q_1	00	01	11	10
00	0	1	0	1
01	d	d	d	d
11	d	d	d	d
10	1	d	d	1
	JO			

AQ_2 Q_2Q_1	00	01	11	10
00	d	d	d	d
01	1	d	d	1
11	1	d	d	1
10	d	d	d	d

K0

根据逻辑表达式化电路图:

3. 20

3. 21 (1)列出输出函数和控制函数表达式:

$$D_1 = \overline{y_1}, D_2 = \overline{y_1}, CLK_1 = xy_1 + xy_2$$

$$CLK_2 = xy_2 + x\overline{y_1}, Z = xy_1y_2$$

(2) 列出状态真值表及次态真值表

现态	输入	组合电路轴	组合电路输出				
y_2y_1	х	CLK_2	CLK_1	D_2	D_{1}	Z	$y_2^{n+1}y_1^{n+1}$

00	1	1	0	1	1	0	10
01	1	0	1	0	0	0	00
10	1	1	1	1	1	0	11
00	1	1	1	0	0	1	00

当 x=0 时, 电路状态不变, 因此。仅列出 x=1 的情况。列次太真值表的原则是:

当 CLK=0 时,则 $Q^{n+1}=Q$,当 CLK=1 时,则 $Q^{n+1}=D$

(3) 画出状态表和状态图

X	
y_2y_1	1
00	10/0
01	00/0
10	11/0
11	00/1

(4) 假设初始状态为 00,则易得出该电路是一个带仅为(进位端为 Z)的模 3 计数器。从状态图可以看出,次电路具有自恢复功能,不会出现挂起现象。

3. 22

要产生的序列数据是 15 个,可选用 16 进制计数器 74LS161 和 16 选 1 数据选择器 74LS150 完成。将 74LS161 用反馈置数法改接成 0000 \longrightarrow 1110 的 15 进制计数器,将计数器的输出 Q[D...A]接至数据选择器的地址 A[3...0]端,将 D[0.....14]依次按序列值设置,其电路图如下:

3. 23 由题得电路图如下:

3. 24 (1) 列出激励函数和输出函数表达式

$$D_1 = \overline{Q_1}, D_2 = \overline{Q_1}, CLK_1 = xQ_2, CLK_2 = x, Z = xQ_1Q_2$$

(2)作状态真值表:由于 D 触发器只有在时钟信号来临时,状态才会改变,因此当输入 x=0时, D 触发器状态不会改变,状态表可省略 x=0的情况。

х	$Q_{2}Q_{1}$	CP_2	D_2	CP_1	D_{1}	Z
1	00	1	1	0	1	0
1	01	1	0	0	0	0
1	10	1	1	1	1	0
1	11	1	0	1	0	1

(3) 作状态表和状态图

х	$Q_{2}Q_{1}$	$Q_2^{n+1}Q_1^{n+1}$	Z
1	00	10	0
1	01	01	0
1	10	11	0
1	11	00	1

由状态图可知,所示电路有三个有效状态,形成有效的状态序列。每当电路接收到三个输入脉冲后,就输出一个脉冲。且状态 10 是孤立状态,一旦电路进入 10,便处于"挂起状态"。为使电路正常工作,建议应对电路做适当修改,使得电路在进入 10 状态后可以恢复至有效状态。

3. 25(1)列出激励函数和输出函数表达式:

$$J_{1} = x_{2}Q_{2}, K_{1} = x_{3}\overline{Q_{2}} + x_{2}Q_{1}$$

$$J_{2} = x_{1}, K_{2} = x_{2}Q_{1} + x_{3}$$

$$Z = \overline{Q_{2}}Q_{1}$$

(2) 列出状态真值表及次态真值表

$Q_{2}Q_{1}$	$X_{3}X_{2}X_{1}$	$J_{\scriptscriptstyle 2}$	K_2	J_1	K_1	$Q_2^{n+1}Q_1^{n+1}$	Z
	001	1	0	0	0	10	
00	010	0	0	0	0	00	0
	100	0	1	0	1	00	
	001	1	0	0	0	11	
01	010	0	1	0	1	00	1
	100	0	1	0	1	00	
	001	1	0	0	0	10	
10	010	0	0	1	0	11	0
	100	0	1	0	0	00	
	001	1	0	0	0	11	
11	010	0	1	1	1	00	0
	100	0	1	0	0	01	

(3) 画出状态表和状态图

由电路状态图可看出,如果从状态 00 出发,顺序输入 $x_1 \to x_2 \to x_3$,则电路状态变化 为 $10 \to 11 \to 01$,输出为 $0 \to 0 \to 1$ 。因此,该电路为一个 $x_1 \to x_2 \to x_3$ 序列 检测器。当输出为 1 后,输入 x_2 , x_3 可使电路恢复至初态。

$Q_{2}Q_{1}$	100	010	001	Z
--------------	-----	-----	-----	---

00	00	00	10	0
01	00	00	11	1
10	00	11	10	0
11	01	00	11	0

3.26 (1) 做原始状态图及原始状态表:

X_2X_1	X_2	X_1
У		
Α	B/0	A/0
В	A/0	C/0
С	B/0	D/1
D	B/0	A/0

(2) 状态化简: AD 为等效类,得最小化状态表

X_2X_1	X_2	X_1
У		
Α	B/0	A/0
В	A/0	C/0
С	B/0	A/1

(3) 状态分配:

y_2 y_1	0	1
0	Α	С
1	В	

得二进制状态表:

X_2X_1	<i>X</i> ₁	X_2
Q_2Q_1		
00	01/0	00/0
01	00/0	10/0
10	01/0	00/1

(4) 确定控制函数及输出函数

X_2X_1 Q_2Q_1	00	01	11	10
00	0	0	d	0
01	0	0	d	1
11	d	d	d	d
10	0	1	d	1
		_		

CLK2

X_2X_1 Q_2Q_1	00	01	11	10
00	0	1	d	0
01	0	1	d	1
11	d	d	d	d
10	0	1	d	0

CLK1

X_2X_1 Q_2Q_1	00	01	11	10
00	d	d	d	d
01	d	d	d	1
11	d	d	d	d
10	d	0	d	0

D2

X_2X_1 Q_2Q_1	00	01	11	10
00	d	1	d	d
01	d	0	d	0
11	d	d	d	d
10	d	1	d	d

D1

A_2X_1 Q_2Q_1	00	01	11	10
00	0	0	d	0
01	0	0	d	0
11	d	d	d	d

10	0	0	d	1
	7			

则:

$$CLK_{2} = \underbrace{x_{2}Q_{1} + x_{2}Q_{2} + x_{1}Q_{2}, D_{2}}_{CLK_{1}} = \underbrace{x_{2}}_{X_{2}}X_{1} + \underbrace{x_{2}Q_{1}, D_{2}}_{Q_{1}} = \underbrace{x_{1}Q_{1}}_{Q_{1}}$$

$$Z = \underbrace{x_{2}Q_{2}}$$

(5)讨论: 在设计中未出现 Q_2Q_1 =11 的情况,现在需讨论如果发生某种干扰,使电路处于 Q_2Q_1 =11 的情况。(a)当 Q_2Q_1 =11 时,若 X_1 =1,则 CLK2=1,D2=0,CLK1=1,D1=0,Z=0,次态为 00(b)当 Q_2Q_1 =11 时,若 X_2 =1,则 CLK2=1,D2=1,CLK1=1,D1=0,Z=1,次态为 10。做出状态图:

则易知:此电路无挂起状况,但在 Q_2Q_1 =11, x_2 =1 时,电路有一个错误输出 1,因此需要修改输出函数 Z 的表达式为 $Z=x_2Q_2\overline{Q_1}$

(6) 画出电路图: 略

3. 27 此题解题步骤同 3.26,只需在第四步确定控制函数和输出函数时将 D 触发器换为 JK 触发器和 T 触发器即可

$$f = \frac{1.44}{\left(R_1 + 2R_2\right)C_1} = \frac{1.44}{\left(2 + 2 \times 4.3\right) \times 0.02} = 6.79 \text{kHz}$$

$$3. 28$$

$$Duty = \left(\frac{R_1 + R_2}{R_1 + 2R_2}\right) 100\% = \left(\frac{2 + 4.3}{2 + 2 \times 4.3}\right) \times 100\% = 59.4\%$$

3.29

简单可编程逻辑器件(SPLD)包括可编程只读存储器(PROM)、可编程逻辑阵列器件(PLA)、可编程阵列逻辑器件(PAL),以及通用阵列逻辑器件(GAL)。

它们的共同点是以与阵列和或阵列作为核心逻辑资源,能够以"积之和"的形式实现布尔逻辑函数。

PROM 的特点是:与阵列固定,或阵列可编程。

PLA 的特点是: 与阵列和或阵列都可编程。

PAL 的特点是:与阵列固定,或阵列可编程。

GAL 的特点是: 它是在 PAL 的基础上,吸收了先进的浮栅技术,输出端都集成着一个可编程的输出逻辑宏单元 (OLMC),通用性更强。

8421 码 余三码

 $B^{3} B_{2}$ $G^{3} G_{2}$

4.2

(1) 8421 码至余三码

真值表如下:

В	B 0		G1	G_0		
	0	0		0	0	1
0	0		1			
	0	0		0	1	0
0	1		0			
	0	0		0	1	0
1	0		1			
	0	0		0	1	1
1	1		0			
	0	1		0	1	1
0	0		1			
	0	1		1	0	0
0	1		0			
	0	1		1	0	0
1	0		1			
	0	1		1	0	1
1	1		0			
	1	0		1	0	1
0	0		1			
	1	0		1	1	0
0	1		0			

最小项表达式为:

$$G^3 = \sum (5,6,7,8,9)$$
 $G_2 = \sum (1,2,3,4,9)$ $G_1 = \sum (0,3,4,7,8)$ $G_0 = \sum (0,2,4,6,8)$ 阵列图为:

(2) 二进制码转至 2421

真值表如下: B 为二进制码, G 为 2421 码

B3	B2	B 1	B0	G10	G3	S2	S1	S0
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1
0	0	1	0	0	0	0	1	0
0	0	1	1	0	0	0	1	1
0	1	0	0	0	0	1	0	0
0	1	0	1	0	1	0	1	1
0	1	1	0	0	1	1	0	0
0	1	1	1	0	1	1	0	1
1	0	0	0	0	1	1	1	0
1	0	0	1	0	1	1	1	1
1	0	1	0	1	0	0	0	0
1	0	1	1	1	0	0	0	1
1	1	0	0	1	0	0	1	0
1	1	0	1	1	0	0	1	1
1	1	1	0	1	0	1	0	0
1	1	1	1	1	1	0	0	0

最小项表达式为:

$$G_{10} = \sum (10,11,12,13,14,15) \qquad G_{3} = \sum (5,6,7,8,9,15) \qquad G_{2} = \sum (4,6,7,8,9,14)$$

$$G_{1} = \sum (2,3,5,8,9,12,13,15) G_{0} = \sum (1,3,5,7,9,11,13,15)$$

阵列图为:略

(3)典型 Gray 码至 8421

真值表如下: B 为典型 Grey 码, G 为 8421 码

B3	B2	B 1	$\mathbf{B0}$	G10	G3	S2	S1	S0
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1
0	0	1	1	0	0	0	1	0
0	0	1	0	0	0	0	1	1
0	1	1	0	0	0	1	0	0
0	1	1	1	0	0	1	0	1
0	1	0	1	0	0	1	1	0
0	1	0	0	0	0	1	1	1
1	1	0	0	0	1	0	0	0
1	1	0	1	0	1	0	0	1
1	1	1	1	1	0	0	0	0
1	1	1	0	1	0	0	0	1
1	0	1	0	1	0	0	1	0
1	0	1	1	1	0	0	1	1
1	0	0	1	1	0	1	0	0
1	0	0	0	1	1	0	0	0

最小项表达式为:

$$G_{10} = \sum (8,9,10,11,14,15) \qquad \qquad G_{3} = \sum (12,13) \qquad \qquad G_{2} = \sum (4,5,6,7,8,9)$$

$$G_{1} = \sum (2,3,4,5,10,11) \ G_{0} = \sum (1,2,4,7,8,11,13,14)$$
 阵列图为:略

4.3 二位加法器

设A,B为两个二位二进制数,S为相加结果,真值表如下:

A2	A1	B2	B 1	S3	S2	S1
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0

1	0	1	1	1	0	1	
1	1	0	0	0	1	1	
1	1	0	1	1	0	0	
1	1	1	0	1	0	1	
1	1	1	1	1	1	0	

 $S_{3} = \sum (1,3,4,6,9,11,12,14) \ S_{2} = \sum (2,3,5,6,8,9,12,15) \ S_{1} = \sum (7,10,11,13,14,15, \)$

4.4

 $L = \overline{ABCD} + AB\overline{CD} + \overline{BCD} + \overline{ABCD} + A\overline{B}\overline{CD}$

4.5

可以利用 PLA 阵列图表示所要求实现的逻辑函数,如图:

组合 PAL 器件输出不带寄存器,每组与阵列的输出被固定连接到或阵列的输入端。输出引脚分为 O 输出和 IO 输出。

而时序 PAL 器件输出部分具有输出寄存器,输出引脚分为 IO 输出和寄存器输出,都具有三态输出的功能,且都为低有效。

R 系列不带异或门,触发器的值来自与或阵列,触发器的输出通过三态缓冲器连到输出引脚,而且寄存器输出引脚不能当成输入引脚使用。

X 系列带有异或门,寄存器中每个触发器的输入信号来自一个异或门的输出,而每个异或门的两个输入分别来自两个较小的与或阵列的输出,与 R 系列的寄存器输出类似,但产生次态逻辑的电路结构不同。X 系列的输出结构特别适用于完成算术运算的场合。

4.7

4.8

GAL 器件在 PAL 器件的基础上做了一些改进。在工艺方面,GAL 器件采用高速电可擦除除 CMOS 的 E^2 CMOS 工艺制作,使其具有了可测试性、低功耗、高集成性、高速率和可重复 编程性。在结构方面,GAL 器件的结构是通用的,为设计者提供了最大的灵活性。器件内增加了可被编程的保密位,以防对逻辑的复制。

4.11

在结构方面,CPLD(Complex Programmable Logic Device),即复杂可编程逻辑器件,是在 SPLD 的基础上发展起来的,是利用可编程的互连总线连接起来的多路 SPLD。CPLD 为逻辑板块编程,即以逻辑宏单元为基础,加上内部的与或阵列和外围的输入输出模块,不但实现了除简单逻辑控制之外的时序控制,又扩大了整个系统的应用范围。

FPGA(Field—Programmable Gate Array),即现场可编程门阵列,它的结构比早期的 CPLD 更复杂,它采用类似掩模可编程门阵列结构,结合了可编程逻辑器件的特性,继承了门阵列逻辑器件密度高和通用性强的优点。

在编程方式上,FPGA 比 CPLD 具有更大的灵活性。CPLD 通过修改具有固定内连电路的逻辑功能来编程,FPGA 主要通过改变内部连线的布线来编程;FPGA 可在逻辑门下编程,而 CPLD 是在逻辑块下编程。CPLD 主要是基于 E²PROM 或 FLASH 存储器编程,编程次数可达 1 万次,优点是系统断电时编程信息也不丢失。CPLD 又可分为在编程器上编程和在系统编程两类。FPGA 大部分是基于 SRAM 编程,编程信息在系统断电时丢失,每次上电时,需从器件外部将编程数据重新写入 SRAM 中。其优点是可以编程任意次,可在工作中快速编程,从而实现板级和系统级的动态配置。

4.12 4 变量 LUT 编程

4.13

MAX7000S 是在系统可编程的 CPLD 器件,内部结构是基于乘积项,也就是与或阵列结构。 采用 E^2 PROM 工艺,采用多电压的 I/O 接口,其 I/O 既能够和 5V 的器件兼容,又能和 3.3V 的器件兼容。MAX7000 是高成本 CPLD,规模比较大。

EPM7128S 包括逻辑阵列 LAB、宏单元、I/O 控制块以及可编程连接阵列 PIA。

逻辑阵列块包含 16 个宏单元,每个宏单元能单独配置为组合逻辑或者时序逻辑。多个逻辑阵列块通过可编程互连阵列 PIA 连接。PIA 接受来自专用输入引脚、I/O 引脚和宏单元的信号。I/O 控制块允许各 I/O 引脚配置为输入、输出或双向 I/O。

4.15

XC400 主要由可编程逻辑块 CLB、可配置存储器 SRAM 阵列、可编程输出输出块以及可编程内部连线 PI 组成。

CLB 给予查找表结构,还包括 2 个触发器,用来实现时序逻辑。

可配置存储器是一种静态存储器,由两个 CMOS 反相器和一个用来控制读写的 MOS 传输开关构成。

可编程输入输出块 IOB 可以灵活编程,以实现不同逻辑功能,满足不同逻辑的需求。

可编程内部连线 PI 是 XC4000 系列中特殊的内部连线,连线资源由水平和垂直的布线通道构成。

4.16

XC4000 的一个 CLB 包括三个查找表,其中两个为 4 输入查找表,第三个查找表的输入由前两个查找表的输出提供,从而实现 9 输入的逻辑功能。

4.17

源代码:

LIBRARY IEEE; USE IEEE.STD LOGIC 1164.ALL;

ENTITY sop IS

PORT (a, b, c, d, e, f: IN STD_LOGIC; x: OUT STD LOGIC);

END sop;

ARCHITECTURE sop arc OF sop IS

BEGIN

 $x \le =$ (a AND b) OR (c AND d) OR (e AND f);

END sop_arc;

4.18

源代码:

LIBRARY IEEE;

USE IEEE.STD LOGIC 1164.ALL;

ENTITY boolean IS

PORT (a, b, c: IN STD_LOGIC; f: OUT STD_LOGIC);

```
END boolean;
       ARCHITECTURE boolean arc OF boolean IS
           f \le = (a OR (NOT b) OR c) AND (a OR b OR (NOT c)) AND ((NOT a) OR (NOT c))
b) OR (NOT c));
       END boolean_arc;
4.19
源代码:
       LIBRARY IEEE;
       USE IEEE.STD_LOGIC_1164.ALL;
ENTITY decoder_3_to_8 IS
         PORT (a, b, c, g1, g2a, g2b: IN STD LOGIC;
                  y: OUT STD_LOGIC _VECTOR (7 downto 0));
      END decoder 3 to 8;
ARCHITECTURE rt1 OF decoder 3 to 8 IS
          SIGNAL indata: STD LOGIC VECTOR (2 downto 0);
      BEGIN
         indata \leq c \& b \& a;
         PROCESS (indata, g1, g2a, g2b)
            BEGIN
                IF (g1='1' \text{ AND } g2a='0' \text{ AND } g2b='0') THEN
CASE indata IS
                         WHEN "000"=>y<="11111110";
                         WHEN "001"=>y<="11111101";
                         WHEN "010"=>y<="11111011";
                         WHEN "011"=>y<="11110111";
                         WHEN "100"=>y<="11101111";
                         WHEN "101"=>y<="110111111";
                         WHEN "110"=>y<="10111111";
                         WHEN others = >y < = "011111111";
                     END CASE;
                   ELSE
                     y<="11111111";
                END IF:
           END PROCESS:
       END rt1;
4.20
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
```

```
ENTITY gray_count IS
  PORT (clk, y: IN STD_LOGIC;
          qout: OUT STD LOGIC VECTOR (2 downto 0));
END gray count;
ARCHITECTURE arch_gray OF gray_count IS
SIGNAL iq: STD_LOGIC_VECTOR (2 downto 0);
BEGIN
    PROCESS (clk)
        BEGIN
IF (clk'event AND clk='1') THEN
IF (y='1') THEN
CASE iq IS
                      WHEN "000"=>iq<="001";
                      WHEN "001"=>iq<="011";
                      WHEN "011"=>iq<="010";
                      WHEN "010"=>iq<="110";
                      WHEN "110"=>iq<="111";
                      WHEN "111"=>iq<="101";
                      WHEN "101"=>iq<="100";
                      WHEN others => iq <= "000";
                   END CASE;
              END IF:
IF (y='0') THEN
CASE iq IS
                      WHEN "000"=>iq<="100";
                      WHEN "100"=>iq<="101";
                      WHEN "101"=>iq<="111";
                      WHEN "111"=>iq<="110";
                      WHEN "110"=>iq<="010";
                      WHEN "010"=>iq<="011";
                      WHEN "011"=>iq<="001";
                      WHEN others => iq<="000";
                   END CASE;
               END IF;
           END IF;
     END PROCESS;
qout<=iq;
END arch gray;
```