Fuzzification_v2

Gabriel Teixeira Júlio

Este projeto teve como objetivo implementar um sistema fuzzy de Takagi-Sugeno de ordem zero e primeira ordem para aproximar a seguinte função não linear:

```
f(x)=e^{-\frac{x}{5}} \cdot (3x) + 0.5 \cdot (3x) + 0.
```

A aproximação foi realizada no intervalo \$x \in [0,10]\$.

Descrição da Implementação

Para a implementação do modelo Takagi-Sugeno, utilizou-se como base o código disponibilizado em Fuzzification. Foram usdados os arquivos functions.py e domain.py, além da criação do arquivo tsk_gradient_descent.py, desenvolvido especificamente para este projeto. Neste arquivo, encontram-se as implementações do modelo Takagi-Sugeno e da otimização de seus parâmetros por Gradiente Descendente. Adicionalmente, utilizou-se também o método minimize usando BFGS da biblioteca *Scipy*.

Takagi-Sugeno

O sistema fuzzy foi testado com dois modelos:

- Takagi-Sugeno de ordem zero
- Takagi-Sugeno de primeira ordem

Foi utilizada apenas uma variável linguística chamada X, que cobre o intervalo \$x\$ com funções de pertinência do tipo: triangular, trapezoidal, gaussiana, sino, Cauchy e Laplace. Para avaliar o desempenho do sistema, utilizou-se a métrica RMSE (Root Mean Square Error), que compara os resultados aproximados com os valores reais. Em seguida, aplicou-se o Gradiente Descendente para otimizar os parâmetros das regras do Takagi-Sugeno.

A função Gerar_TSK foi implementada para calcular a aproximação do modelo. Ela recebe os seguintes parâmetros:

- x: intervalo de valores de \$[0,10]\$ para os quais será realizada a aproximação.
- entrada: instância da classe Domain representando o domínio da variável de entrada.
- paramas: parâmetros das regras do Takagi-Sugeno.
- tipo: define se as regras são de ordem zero ou primeira ordem.

O cálculo é realizado iterativamente para cada valor de \$x\$, pegando os pesos das funções de pertinência, ponderando os valores das regras, e computando o resultado final da aproximação.

```
# Gera o resultado do método de Takagi-Sugeno de 0 ordem ou 1 ordem
def Gerar_TSK(x, entrada, params, tipo):
    # Guarda o resultado da aproximação
    y = []
    # Para cada valor de x
```

```
for v in x:
   # Calcula os pesos da variável de entrada X
   ws = entrada.calcular_pesos(v)
   # Cada função de pertinência vai ter sua própia regra
   # Se o tipo é de 0 ordem
    if tipo == 0:
        # Para cada regra calcula: ai0
        zs = [(params[i][0]) for i in range(len(params))]
    # Se o tipo é 1 ordem
    elif tipo == 1:
       # Para cada regra calcula: ai0*x + ai1
       zs = [(params[i][0] * v + params[i][1]) for i in range(len(params))]
    # Se não for um tipo implementado
    else:
        return "Tipo de Takagi-Sugeno não existe!"
   # Calcula o numerador: Somatorio dos pesos * as regras
    numerador = sum([ws[i] * zs[i] for i in range(len(params))])
   # Calcula o denominador: Somatorio dos pesos
    denominador = sum(ws)
    # Calcula o TSK: numerador / denominador
   y.append(numerador / denominador)
return y
```

RMSE e Gradiente Descendente

A otimização dos parâmetros foi realizada utilizando o Gradiente Descendente, que minimiza iterativamente o erro entre a função real e a aproximada. Foram implementadas as seguintes variações:

- **Gradiente Descendete com Momento**: Acelera a convergência e reduz oscilações ao incorporar o histórico das atualizações anteriores.
- **Gradiente Descendete com Adam**: Combina momento e adaptação da taxa de aprendizado para cada parâmetro, ajustando-se dinamicamente às características do gradiente.
- **Gradiente Descendete com RMSprop**: Adapta a taxa de aprendizado com base na média dos quadrados dos gradientes, proporcionando atualizações mais estáveis.
- Minimize BFGS: Método quasi-Newton que minimiza uma função em várias variáveis. Utilizado diretamente da biblioteca Scipy.

A métrica de erro utilizada em todas as abordagens foi o RMSE, com um limite de tolerância de \$10^{-5}\$ ou, no máximo, \$5000\$ iterações para convergência.

Descrição dos Testes

Os testes realizados tiveram como objetivo avaliar a eficiência de diferentes funções de pertinência e métodos de otimização aplicados ao modelo de Takagi-Sugeno de primeira ordem. Foram analisados gráficos que exibem as funções de entrada, os valores aproximados em comparação à saída real e a evolução do erro (RMSE) ao longo das iterações. O modelo de Takagi-Sugeno de ordem zero foi descartado, pois não apresentou resultados satisfatórios em nenhum dos testes realizados.

Um ponto a ser destacado é que o método **BFGS** não calcula o RMSE no mesmo intervalo de tempo que os outros métodos. Por esse motivo, ele requer menos iterações para convergir, mas, ainda assim, é o mais

demorado em geral. Isso ocorre porque o algoritmo minimize calcula o erro várias vezes por iteração, salvando o valor do erro sempre que ele é recalculado. Esse comportamento levou a casos em que o número de iterações registradas extrapolou o limite definido, mesmo que a otimização tenha seguido os critérios estabelecidos.

Entrada com Funções de Pertinência Triangular

4 Funções de Pertinência

6 Funções de Pertinência

7 Funções de Pertinência

Os gráficos apresentados podem ser interpretados conforme descrito a seguir:

• Funções de Pertinência da Entrada (à esquerda): Exibem as funções de pertinência utilizadas na modelagem, variando conforme o número de funções do domínio.

- Comparação entre Aproximações e Saída Real (ao centro): Apresentam o desempenho do modelo em relação à função alvo, evidenciando o impacto dos métodos de otimização.
- **Evolução do RMSE (à direita)**: Mostra a evolução do erro ao longo das iterações para cada método de otimização aplicado.

Evolução do RMSE:

- Com o aumento no número de funções de pertinência, os valores de RMSE tendem a melhorar. No entanto, a partir de 5 funções não há mais melhorias e os erros finais não varia muito, embora alguns métodos de otimização ainda apresentem pequenos avanços pontuais.
- O método de otimização **BFGS** obtém os melhores valores de erro final e, em geral, é o mais lento para convergir. Os outros métodos apresentam erros finais semelhantes, mas há uma diferença significativa no tempo de convergência, sendo o **GD Adam** o mais demorado entre eles.

Resposta Real X Aproximação:

- Para 4 funções, as aproximações são razoáveis, com a melhor delas sendo a BFGS. As aproximações GD
 Momentum e GD Adam ficaram bastante próximas, enquanto a GD RMSprop foi a pior.
- Para 5 funções, as aproximações também são razoáveis, com a BFGS novamente se destacando. Todas as aproximações ficaram bastante próximas entre si.
- Para 6 funções, as aproximações são boas, sendo as melhores para as triangulares. A BFGS foi a melhor, mas a aproximação GD RMSprop teve um desempenho insatisfatório.
- Para 7 funções, as aproximações pioraram em comparação com o caso de 6 funções, com a BFGS sendo a melhor. As aproximações GD Momentum e GD Adam ficaram semelhantes entre si, enquanto a GD RMSprop foi novamente a pior.
- Para 8 funções, as aproximações melhoraram em relação às de 7 funções, mas não atingiram o nível de qualidade das aproximações com 6 funções. A BFGS foi a melhor, enquanto as aproximações GD Momentum e GD Adam ficaram semelhantes, mas apresentaram um desempenho inferior ao da GD RMSprop, que conseguiu uma aproximação razoável.

Entrada com Funções de Pertinência Trapezoidal

5 Funções de Pertinência

8 Funções de Pertinência

Os gráficos apresentados podem ser interpretados conforme descrito a seguir:

- Funções de Pertinência da Entrada (à esquerda): Exibem as funções de pertinência utilizadas na modelagem, variando conforme o número de funções do domínio.
- Comparação entre Aproximações e Saída Real (ao centro): Apresentam o desempenho do modelo em relação à função alvo, evidenciando o impacto dos métodos de otimização.
- Evolução do RMSE (à direita): Mostra a evolução do erro ao longo das iterações para cada método de otimização aplicado.

Evolução do RMSE:

- Com o aumento no número de funções de pertinência, os valores de RMSE tendem a melhorar. No entanto, a partir de 5 funções não há mais melhorias e os erros finais não varia muito, embora alguns métodos de otimização ainda apresentem pequenos avanços pontuais.
- O método de otimização BFGS obtém os melhores valores de erro final e, em geral, é o mais lento para convergir. Os outros métodos apresentam erros finais semelhantes, mas há uma diferença significativa no tempo de convergência, sendo o GD Adam o mais demorado entre eles.

Resposta Real X Aproximação:

 Para 4 funções, as aproximações são razoáveis, com a melhor delas sendo a BFGS. Todas as aproximações ficaram bastante próximas entre si.

- Para 5 funções, as aproximações são razoáveis, com a melhor delas sendo bem boa que é a BFGS. As aproximações GD Adam e GD RMSprop ficaram bastante próximas, enquanto a GD Momentum foi a pior.
- Para 6 funções, as aproximações são razoáveis, com a melhor delas sendo muito boa sendo a BFGS.
 Todas as aproximações ficaram bastante próximas entre si.
- Para 7 funções, as aproximações são razoáveis, com a melhor delas sendo a BFGS porém ela piorou comparada a anterior. Todas as aproximações ficaram bastante próximas entre si.
- Para 8 funções, as aproximações são razoáveis, sendo as melhores aproximações para as trapezoidais. A melhor aproximação foi a BFGS que ficou muito boa porém com umas grandes discrepâncias. Todas as aproximações ficaram bastante próximas entre si.

Entrada com Funções de Pertinência Gaussiana

4 Funções de Pertinência

6 Funções de Pertinência

7 Funções de Pertinência

Os gráficos apresentados podem ser interpretados conforme descrito a seguir:

- Funções de Pertinência da Entrada (à esquerda): Exibem as funções de pertinência utilizadas na modelagem, variando conforme o número de funções do domínio.
- Comparação entre Aproximações e Saída Real (ao centro): Apresentam o desempenho do modelo em relação à função alvo, evidenciando o impacto dos métodos de otimização.
- **Evolução do RMSE (à direita)**: Mostra a evolução do erro ao longo das iterações para cada método de otimização aplicado.

Evolução do RMSE:

- Com o aumento do número de funções de pertinência, os valores de RMSE não tende a melhorar muito.
- O método de otimização BFGS apresenta os melhores valores de erro final, embora seja, em geral, o
 mais lento para convergir. Os outros métodos têm erros finais semelhantes, mas variam
 consideravelmente no tempo de convergência, sendo o GD Adam o mais demorado deles.

Resposta Real X Aproximação:

- Para 4, 5, 6 e 7 funções, as aproximações ficaram razoáveis, sendo a melhor delas em geral a BFGS.
 Todas as aproximações ficaram bastante próximas entre si, mas as aproximações com 7 funções ligeiramente melhor.
- Para 8 funções, as aproximações são razoáveis, sendo as melhores aproximações para as gaussianas. A
 melhor aproximação foi a BFGS que ficou bem proxima da real mas tem umas pequenas diferenças.
 Todas as aproximações ficaram bastante próximas entre si.

Entrada com Funções de Pertinência Sino

5 Funções de Pertinência

6 Funções de Pertinência

8 Funções de Pertinência

Os gráficos apresentados podem ser interpretados conforme descrito a seguir:

- Funções de Pertinência da Entrada (à esquerda): Exibem as funções de pertinência utilizadas na modelagem, variando conforme o número de funções do domínio.
- Comparação entre Aproximações e Saída Real (ao centro): Apresentam o desempenho do modelo em relação à função alvo, evidenciando o impacto dos métodos de otimização.
- **Evolução do RMSE (à direita)**: Mostra a evolução do erro ao longo das iterações para cada método de otimização aplicado.

Evolução do RMSE:

- Com o aumento do número de funções de pertinência, os valores de RMSE não tende a melhorar muito.
- O método de otimização BFGS apresenta os melhores valores de erro final, embora seja, em geral, o
 mais lento para convergir. Os outros métodos têm erros finais semelhantes, mas variam
 consideravelmente no tempo de convergência, sendo o GD Adam o mais demorado deles.

Resposta Real X Aproximação:

 Para 4 funções, as aproximações são razoáveis, com a melhor delas sendo a BFGS. Todas as aproximações ficaram bastante diferentes entre si.

- Para 5 funções, as aproximações melhoram um pouco comparada com a anterior mas ainda são rasoáveis. A melhor delas sendo a BFGS, todas as aproximações ficaram mais proximas entre si.
- Para 6 funções, as aproximações melhoram um pouco comparada com a anterior e ficaram boas. A melhor delas sendo a BFGS e a GD Adam é proxima dela, todas as aproximações ficaram bem proximas entre si.
- Para 7 funções, as aproximações melhoram um pouco comparada com a anterior mas aindas são boas.
 A melhor delas sendo a BFGS e a GD Adam é proxima dela, todas as aproximações ficaram bem proximas entre si.
- Para 8 funções, as aproximações melhoram um pouco comparada com a anterior e ficaram bem boas sendo as melhores para as sinos. A melhor delas sendo a BFGS ficou praticamente igual a real tendo apenas um trecho que não ficou bom. Já as GD Momentum e GD Adam ficaram proximas dela, enquanto a GD RMSprop piorou comparada com a anterior.

Entrada com Funções de Pertinência Cauchy

4 Funções de Pertinência

6 Funções de Pertinência

7 Funções de Pertinência

Os gráficos apresentados podem ser interpretados conforme descrito a seguir:

- Funções de Pertinência da Entrada (à esquerda): Exibem as funções de pertinência utilizadas na modelagem, variando conforme o número de funções do domínio.
- Comparação entre Aproximações e Saída Real (ao centro): Apresentam o desempenho do modelo em relação à função alvo, evidenciando o impacto dos métodos de otimização.
- **Evolução do RMSE (à direita)**: Mostra a evolução do erro ao longo das iterações para cada método de otimização aplicado.

Evolução do RMSE:

- Com o aumento do número de funções de pertinência, os valores de RMSE não tende a melhorar muito.
- O método de otimização BFGS apresenta os melhores valores de erro final, embora seja, em geral, o
 mais lento para convergir. Os outros métodos têm erros finais semelhantes, mas variam
 consideravelmente no tempo de convergência, sendo o GD Adam o mais demorado deles.

Resposta Real X Aproximação:

- Para 4 funções, as aproximações são razoáveis, com a melhor delas sendo a BFGS. Todas as aproximações ficaram bem proximas entre si.
- Para 5 funções, as aproximações melhoram um pouco comparada com a anterior mas ainda são rasoáveis. A melhor delas sendo a BFGS, todas as aproximações ficaram bem proximas entre si.
- Para 6 funções, as aproximações ficaram muito boas sendo as melhores para as Cauchys, mas não é a
 que tem a melhor aproximação. A melhor delas sendo a BFGS ficou praticamente igual a real tendo
 apenas um trecho que não ficou bom. Já as GD Momentum e GD Adam ficaram proximas dela,
 enquanto a GD RMSprop ficou proxima mais não quanto as outras.
- Para 7 e 8 funções, as aproximações ficaram muito boas, sendo a melhor delas a BFGS que visualmente não tem nenhuma diferença da real. A GD Adam ficou proxima da BFGS, enquanto as outras ficaram entre si mas não ficaram tão boas.

Entrada com Funções de Pertinência Laplace

5 Funções de Pertinência

6 Funções de Pertinência

8 Funções de Pertinência

Os gráficos apresentados podem ser interpretados conforme descrito a seguir:

- Funções de Pertinência da Entrada (à esquerda): Exibem as funções de pertinência utilizadas na modelagem, variando conforme o número de funções do domínio.
- Comparação entre Aproximações e Saída Real (ao centro): Apresentam o desempenho do modelo em relação à função alvo, evidenciando o impacto dos métodos de otimização.
- Evolução do RMSE (à direita): Mostra a evolução do erro ao longo das iterações para cada método de otimização aplicado.

Evolução do RMSE:

- Com o aumento do número de funções de pertinência, os valores de RMSE não tende a melhorar muito.
- O método de otimização BFGS apresenta os melhores valores de erro final, embora seja, em geral, o
 mais lento para convergir. Os outros métodos têm erros finais semelhantes, mas variam
 consideravelmente no tempo de convergência, sendo o GD Adam o mais demorado deles.

Resposta Real X Aproximação:

• Para 4 funções, as aproximações são razoáveis, com a melhor delas sendo a BFGS. Todas as aproximações ficaram bastante diferentes entre si.

- Para 5 funções, as aproximações são razoáveis, com a melhor delas sendo a BFGS. Todas as aproximações ficaram bem proximas entre si.
- Para 6 e 8 funções, as aproximações ficaram bem boas. Sendo a melhor delas a BFGS que ficaram muito parecidas a real mas com umas pequans diferenças, já as outras ficaram entre ficaram proximas delas não ficaram tão boas.
- Para 7 funções, as aproximações ficaram quase perfeitas para todas, sendo a melhor a BFGS mas não por muito. Todas as aproximações ficaram com praticamente o mesmo defieto por isso não são perfeitas. Mas ainda assim, estas aproximações foram as melhores para as Lapplaces e para todos os tipos de funções, sendo as únicas aproximações em que todas ficaram muito boas e muito proximas.

Resultados Finais

As tabelas a seguir apresentam os valores do RMSE (Root Mean Square Error) para cada método de otimização, avaliados com diferentes tipos e quantidades de funções de pertinência. Os valores menores indicam melhor desempenho.

4 Funções de Pertinência

Método de Otimização	Triangular	Trapezoidal	Gaussiana	Sino	Cauchy	Laplace	Total
GD Momentum	0.26487	0.31290	0.32895	0.33094	0.32063	0.31769	1.87598
GD Adam	0.26148	0.27123	0.25829	0.26846	0.26677	0.26821	1.59444
GD RMSprop	0.37095	0.25551	0.25185	0.35008	0.25787	0.35039	1.83665
Minmize BFGS	0.23390	0.24358	0.24259	0.25264	0.24481	0.25132	1.46884

5 Funções de Pertinência

Método d Otimizaçã	T	riangular	Trapezoidal	Gaussiana	Sino	Cauchy	Laplace	Total
GD Moment	um	0.26679	0.30588	0.29777	0.27796	0.26489	0.25473	1.66802
GD Adam		0.23720	0.27885	0.26568	0.22236	0.25868	0.25181	1.51458
GD RMSpro	р	0.25247	0.28034	0.27910	0.29026	0.28451	0.26279	1.64947
Minmize BF	GS	0.20746	0.19900	0.25396	0.17571	0.22474	0.20976	1.27063

Método de Otimização	Triangular	Trapezoidal	Gaussiana	Sino	Cauchy	Laplace	Total
GD Momentum	0.19095	0.26745	0.25478	0.26177	0.15557	0.22193	1.35245

Método de Otimização	Triangular	Trapezoidal	Gaussiana	Sino	Cauchy	Laplace	Total
GD Adam	0.20388	0.25029	0.25548	0.15904	0.15119	0.19049	1.21037
GD RMSprop	0.26778	0.28144	0.26098	0.28113	0.22919	0.25237	1.57289
Minmize BFGS	0.13174	0.15084	0.24762	0.09157	0.03074	0.03412	0.68663

7 Funções de Pertinência

Método de Otimização	Triangular	Trapezoidal	Gaussiana	Sino	Cauchy	Laplace	Total
GD Momentum	0.25756	0.24793	0.25294	0.25650	0.25624	0.08517	1.35634
GD Adam	0.25620	0.26037	0.25013	0.12559	0.12447	0.07826	1.09502
GD RMSprop	0.28012	0.27192	0.25297	0.22694	0.27047	0.04496	1.34738
Minmize BFGS	0.14911	0.17113	0.22562	0.03115	0.00650	0.03768	0.62119

8 Funções de Pertinência

Método de Otimização	Triangular	Trapezoidal	Gaussiana	Sino	Cauchy	Laplace	Total
GD Momentum	0.26136	0.26593	0.25063	0.11956	0.25751	0.23307	1.38806
GD Adam	0.25099	0.25233	0.25470	0.11616	0.12572	0.09940	1.0993
GD RMSprop	0.19335	0.27209	0.26343	0.25774	0.25052	0.25177	1.4889
Minmize BFGS	0.07042	0.11885	0.07988	0.01470	0.00493	0.01767	0.30645

- O menor erro total obtido foi 0.30645, alcançado pelo método Minimize BFGS com 8 funções de pertinência.
- A função Laplace com 7 funções de pertinência apresentou erros inferiores a 0.1 para todos os métodos.

Ranking Final (Erro Total Médio)

Posição	Método	Erro Total Médio
1º	Minimize BFGS	0.87075
2°	GD Adam	1.30274
3°	GD Momentum	1.52817
4°	GD RMSprop	1.57906