

Problemi koji NISU linearno separabilni

Kernel trik

Šta ako problem nije linearno separabilan?

Dva tipa neseparabilnih podataka

Neznatno

Outlieri (verovatno greške), ne želimo da idemo u visokodimenzioni prostor da bismo korektno klasifikovali ove tačke

Ozbiljno

Nisu outlieri, problem deluje nelinearno – potrebna nam je nelinearna transformacija

Soft margin

Kerneli

Nelinearna transformacija podataka

ullet Na raspolaganju imamo samo SVM koji za dati D-dimenzioni skup podataka pronalazi (D-1)-dimenzionu razdvajajuću hiperravan

- Ali, šta ako bismo mogli da manipulišemo sa D?
 - Dodaćemo polinomijalna obeležja (kao što smo radili kod perceptrona i logističke regersije)
 - Ovim prelazimo u višedimenzioni prostor

Nelinearna transformacija podataka

Podaci su u novom prostoru linearno separabilni i možemo da primenimo SVM!

Nelinearne transformacije – ciklus

1. Originalni prostor $X \in \mathbb{R}^2$

2. Transformisati podatke u novi prostor $Z \in \mathbb{R}^3$

3. Razdvojiti podatke u prostoru *Z*

Sumarizacija

- Skup podataka T koji nije linearno separabilan u \mathbb{R}^d može biti linearno separabilan u prostoru \mathbb{R}^D gde je D>d
- Ako imamo transformaciju ϕ koja preslikava skup podataka T u višedimenzioni skup podataka T' koji je linearno separabilan:
 - Možemo da treniramo linearni SVM na skupu podataka T' da bismo pronašli granicu odluke $\vec{\theta}$ koja razdvaja klase u prostoru T'
 - Projektovanje granice odluke $\vec{\theta}$ (linearne u prostoru \mathbb{R}^D) nazad u originalni prostor \mathbb{R}^d će rezultovati nelinearnom granicom odluke u \mathbb{R}^d
- Ovo znači da možemo da naučimo nelinearnu granicu odluke koristeći originalnu linearnu formulaciju SVM-a

Nelinearne transformacije – problem

- Opisana šema je privlačna zbog svoje jednostavnosti, ali...
- Uvećavamo dimenzionalnost sa \mathbb{R}^d u \mathbb{R}^D gde je D>d
- Ako D raste veoma brzo u odnosu na d (npr. $D \in O(2^d)$) imaćemo ozbiljnih problema sa nedostatkom računarskih resursa prilikom treniranja SVM-a u novom visokodimenzionom prostoru
 - Često korišćen kernel za SVM je polinomijalni kernel
 - Za polinomijalni kernel 2. stepena (implicitno) se vrši sledeća transformacija:

$$[x_1, x_2] \rightarrow [x_1^2, x_2^2, \sqrt{2 \cdot x_1 \cdot x_2}, \sqrt{2c \cdot x_1}, \sqrt{2c \cdot x_2}, c]$$

- Ova transformacija rezultuje sa 3 dodatne dimenzije $\mathbb{R}^2 o \mathbb{R}^5$
- Uopšteno, polinomijalni kernel mapira prostor \mathbb{R}^N u $\binom{N+d}{d}$ -dimenzioni prostor
- Dakle, za visokodimenzione skupove podataka, naivna primena ove transformacije će veoma brzo postati računarski neizvodljiva
- Da li to znači da ne možemo upotrebiti ovaj pristup?

Sećate se optimizacije?

$$L(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y^{(i)} y^{(j)} \alpha_i \alpha_j x^{(i)T} x^{(j)}$$

 Ako primenjujemo SVM u novom prostoru z (gde su podaci linearno separabilni):

$$L(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y^{(i)} y^{(j)} \alpha_i \alpha_j \mathbf{Z}^{(i)T} \mathbf{Z}^{(j)}$$

- Recimo da transformišemo problem iz 2-dimenzionog prostora u $10^6\,$ dimenzioni prostor. Koliko je optimizacioni problem postao teži?
 - Tražićemo skalarni proizvod vektora dimenzije 10^6 nije strašno, ovo je skalarni proizvod (broj)
 - Broj α parametara koje treba da odredimo (stvarna dimenzionalnost problema koji rešavamo) zavisi samo oda broja primera u skupu podataka nema veze sa dimenzionalnošću prostora
 - Možemo da transformišemo u visokodimenzioni prostor, a da ne platimo cenu za to!

Sećate se optimizacije?

$$L(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y^{(i)} y^{(j)} \alpha_i \alpha_j x^{(i)T} x^{(j)}$$

• Ako primenjujemo SVM u novom prostoru z (gde su podaci linearno separabilni):

$$L(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y^{(i)} y^{(j)} \alpha_i \alpha_j z^{(i)T} z^{(j)}$$

- Označimo transformaciju prostora sa Φ , tj. $\Phi(x^{(i)}) = z^{(i)}$
- Ako imamo funkciju k:

$$k(x^{(i)}, x^{(j)}) = \Phi(x^{(i)}) \cdot \Phi(x^{(j)})$$

ne moramo da znamo šta je transformacija Φ !

Originalno rešenje SVM optimizacionog problema:

$$f_{\theta,b}(x) = \sum_{i=1}^{N} \alpha_i y_i x_i \cdot x + b$$

Zamena skalarnog proizvoda u \mathbb{R}^N sa kernelom k:

$$f_{\theta,b}(x) = \sum_{i=1}^{N} \alpha_i y_i k(x_i, x) + b$$

- Zahvaljujući ovom, SVM ne mora eksplicitno da radi u višedimenzionom prostoru tokom treniranja/testiranja modela
- Reprezentacije podataka u tom prostoru se ne konstruišu eksplicitno
- Postoje kerneli koji odgovaraju skalarnim proizvodima u beskonačnodimenzionalnim prostorima, a izračunavaju se efikasno!

Kernel trik – implikacije

- 1. Koristeći kernel $k(\vec{v}, \vec{w})$ možemo implicitno transformisati skup podataka u višedimenzioni prostor \mathbb{R}^M bez potrebe za dodatnom memorijom i uz minimalan uticaj na vreme izračunavanja
 - Jedini efekat na vreme izračunavanja jeste dodatno vreme za izračunavanje $k(\vec{v}, \vec{w})$. U zavisnosti od k, ovo vreme može biti minimalno
- 2. Zahvaljujući 1. možemo **efikasno** naučiti nelinearne granice odluke pomoću SVM-a, jednostavnom **zamenom sklarnih proizvoda vektora u SVM optimizaciji sa** $k(\vec{v}, \vec{w})$
- Korišćenje kernel funkcija zarad postizanja 1. i 2. se naziva kernel trik

Šta je kernel $k(x^{(i)}, x^{(j)})$?

- Kernel funkcije $k(\vec{v}, \vec{w})$ su funkcije, koje:
 - za data dva vektora vi wu prostoru \mathbb{R}^N
 - mogu implicitno da izračunaju skalarni proizvod vi wu prostoru \mathbb{R}^M
 - bez eksplicitne transformacije vi wu prostor \mathbb{R}^M

Jednostavnije: kernel je skalarni proizvod u nekom drugom prostoru

Primer polinomijalnog kernela

Uzmimo kao primer jednostavan polinomijalni kernel 2. stepena

$$k(v, w) = (1 + v^T w)^2$$

gde $v = [v_1, v_2], w = [w_1, w_2] \in \mathbb{R}^2$

- Ovo ne izgleda kao da odgovara bilo kojoj funkciji mapiranja ϕ , ovo je samo funkcija dva vektora koja vraća realan broj
- Međutim, ako rastavimo izraz:

$$k(v, w) = (1 + v^T w)^2 = (1 + v_1 w_1 + v_2 w_2)^2$$

= 1 + $v_1^2 w_1^2 + v_2^2 w_2^2 + 2v_1 w_1 + 2v_2 w_2 + 2v_1 w_1 v_2 w_2$

Ispada da je ovo upravo skalarni proizvod dva vektora:

$$(1, v_1^2, v_2^2, \sqrt{2}v_1, \sqrt{2}v_2, \sqrt{2}v_1v_2)$$
 i $(1, w_1^2, w_2^2, \sqrt{2}w_1, \sqrt{2}w_2, \sqrt{2}w_1w_2)$

• Dakle, kernel k(v,w) računa skalarni proizvod u 6-dimenzionom prostoru, a da nismo morali eskplicitno posetiti taj prostor

Šta je kernel $k(x^{(i)}, x^{(j)})$?

Postoje mnoge poznate kernel funkcije

- Intuitivno, kernel je funkcija sličnosti
 - Kernel predstavlja skalarni proizvod (u nekom prostoru)
 - A skalarni proizvod je na neki način mera sličnosti

Šta je kernel?

- Euklidska Definisaćemo meru sličnosti kao: udaljenost

similarity(a, b) =
$$\exp\left\{-\frac{\|a-b\|^2}{2\sigma^2}\right\}$$

Kernel (ova konkretna mera je RBF (Gausov) kernel)

Za dato x, izračunati nova obeležja na osnovu blizine *landmarks* :

$$f_1 = \text{similarity}(x, l^{(1)}) = k(x, l^{(1)})$$

 $f_2 = \text{similarity}(x, l^{(2)}) = k(x, l^{(2)})$
 $f_3 = \text{similarity}(x, l^{(3)}) = k(x, l^{(3)})$

Primer kernela: RBF (Gausov) kernel

$$\begin{array}{c} 7 \\ 6.5 \\ \times 2 \\ 4.5 \\ 4 \\ 3.5 \\ 3 \\ \end{array}$$

$$f_1 = k(x, l^{(1)}) = \exp\left(-\frac{\sum_{d=1}^{D} (x_d - l_d^{(1)})^2}{2\sigma^2}\right)$$

- Za $x \approx l^{(1)} \rightarrow f_1 \approx 1$
- Za x udaljeno od $l^{(1)} \rightarrow f_1 \approx 0$
- σ diktira koliko brzo opada vrednost f_1 sa udaljenošću x od $l^{(1)}$

Primer kernela: RBF (Gausov) kernel

- Recimo da su date tačke $l^{(1)}$, $l^{(2)}$ i $l^{(3)}$
- Za dati primer x ćemo odrediti obeležja f_1, f_2 i f_3
- Naša hipoteza predviđa klasu +1 kada važi $h_{\theta}(x) = \theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \ge 0$
- Recimo da smo obučili model i dobili vrednosti:

$$\theta_0 = -0.5$$
, $\theta_1 = 1$, $\theta_2 = 1$, $\theta_3 = 0$

- Za tačku $x^{(1)}$ koja se nalazi u blizini $l^{(1)}$ važi $f_1 \approx 1, f_2, f_3 \approx 0 \rightarrow h_{\theta}(x) \approx 0.5 > 0$
- Za tačku $x^{(2)}$ koja se nalazi u blizini $l^{(3)}$ važi $f_1, f_2, f_3 \approx 0 \ \rightarrow h_{\theta}(x) \approx -0.5 < 0$

Primer kernela: RBF (Gausov) kernel

• Gausov kernel uvodi još jedan dodatan parametar σ^2 koji diktira kako variraju obeležja f_i sa udaljenošću x od $l^{(i)}$

manje
sistematsko
odstupanje,
veća varijansa

• Parametar σ^2 takođe treba da odredimo iz podataka

Kerneli

- Kako odabrati *landmarks* i koliko ih postaviti?
- Kako odabrati funkciju sličnosti (kernel)?

Kako odabrati *landmarks*

 Na mesto svake instance iz trening skupa postavićemo jedan landmark:

- Na ovaj način, svako obeležje meri koliko je novi primer udaljen od primera uočenih u trening skupu
- Broj obeležja je N (jednak je broju primera u trening skupu)

SVM sa kernelom sumarizacija

1. Dat je trening skup $T = \{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$. Odabrati landmarks tako da:

$$l^{(1)} = x^{(1)}, l^{(2)} = x^{(2)}, \dots, l^{(N)} = x^{(N)}$$

2. Svaki primer $x^{(i)}$ iz trening skupa predstaviti putem novih obeležja:

$$f_{1} = k(x^{(i)}, l^{(1)})$$

$$f_{2} = k(x^{(i)}, l^{(2)})$$
...
$$f_{N} = k(x^{(i)}, l^{(N)})$$

$$f^{(i)} = \begin{bmatrix} f_{0} \\ f_{1}^{(i)} \\ ... \\ f_{N}^{(i)} \end{bmatrix}, f_{0} = 1$$

3. Trenirati SVM koristeći trening skup $\{(f^{(1)}, y^{(1)}), \dots, (f^{(N)}, y^{(N)})\}$

Popularni kerneli

- Linearni kernel (bez kernela, standardan linearni klasifikator)
 - Razuman izbor ako imamo veliko D, a malo N
 - Ne želimo kompleksne granice odluke u visokodimenzionom prostoru jer imamo mali broj primera pa se lako može desiti da overfitujemo
- RBF (Radial Basis Function, Gausov) kernel

•
$$f_i = \exp\left(-\frac{\|x - l^{(i)}\|^2}{2\sigma^2}\right)$$
, gde je $l^{(i)} = x^{(i)}$

- Parametri koje moramo podesiti: σ^2
- Razuman izbor ako imamo malo D, a veliko N
- Napomena: skalirajte obeležja ukoliko koristite Gausov kernel
 - Prilikom računanja kernela koristi se Euklidska udaljenost bez skaliranja će neke dimenzije imati veći uticaj od drugih samo zbog opsega u kome se kreću

Popularni kerneli

- Polinomijalni kernel
 - $k(v,w) = (v^T w + c)^d$, parametri: c, d
 - Obično ima lošije performanse od Gausovog kernela
- Sigmoid kernel
 - $\tanh(\langle \vec{x}^{(i)}, \vec{x}^{(j)} \rangle + r)$
- String kernel, chi-square kernel, histogram intersection kernel,...
- U najviše primena se koriste linearni ili RBF kernel
- Izbor "korektnog" kernela je netrivijalan zadatak i može veoma da zavisi od konkretne primene
- Bez obzira na izbor kernela, važno je korektno odrediti vrednosti njegovih parametara – obično postupkom unakrsne validacije

Šta sve može biti kernel?

 Do sada smo kernele radi jednostavnosti prikazali kao funkciju sličnosti

- Međutim, nisu sve funkcije sličnosti validni kerneli
 - Validan kernel predstavlja skalarni proizvod u nekom prostoru z. Kako da pokažemo da prostor z postoji (a da ne znamo šta je)?
 - Postoje određena matematička svojstva koja ova funkcija može da ima
 [2] (Sec. 3.2-3.3)
 - Moraju da zadovolje tehnički uslov koji se zove Mercer's Theorem
 - U suprotnom, optimizacija ne mora da bude korektna i može se desiti da dođe do divergencije
- Ali, jednostavna preporuka je
 - Koristite postojeće
 - Ili improvizujte kernel i vidite da li radi

- Potporni vektori su u novom z prostoru
 - Ne moramo da znamo geometriju ovog prostora kako bismo ih identifikovali znamo koji su primeri u pitanju jer su odgovarajući α_i različi od nule

Šta ako problem nije linearno separabilan?

Dva tipa neseparabilnih podataka

Neznatno

Outlieri (verovatno greške), ne želimo da idemo u visokodimenzioni prostor da bismo korektno klasifikovali ove tačke

Ozbiljno

Nisu outlieri, problem deluje nelinearno – potrebna nam je nelinearna transformacija

Soft margin

Kerneli

Šta ako problem nije linearno separabilan?

 U praktičnoj primeni, skupovi podataka sadrže oba aspekta (outliere i nelinearnost)

Zato se kernel trik i soft margin SVM često koriste zajedno

SVM parametri

- Potrebno je odrediti:
 - Parametar C
 - Izabrati kernel
 - Odrediti parametre kernela
- Standardan postupak: unarksna validacija ili korišćenje posebnog validacionog skupa