

102.312751

Bilangan Asli $\mathbb{N} = \{1, 2, 3, \ldots\}$

Bilangan Bulat $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$

Bilangan Asli $\mathbb{N} = \{1, 2, 3, \ldots\}$

Bilangan Bulat
$$\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$$

Bilangan Asli $\mathbb{N} = \{1, 2, 3, \ldots\}$

Bilangan Bulat
$$\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$$

Bilangan Asli
$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

$$\sqrt{2}$$

Bilangan Bulat
$$\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$$

Bilangan Asli
$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

$$\sqrt{2}$$

 π

Bilangan Bulat
$$\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$$

Bilangan Asli
$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

$$\sqrt{2}$$
 $\sqrt{7}$

Bilangan Bulat
$$\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$$

Bilangan Asli
$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

$$\sqrt{2}$$
 $\sqrt{7}$

Bilangan Bulat
$$\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$$

Bilangan Asli
$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

$$\sqrt{2}$$
 π
 $\sqrt{7}$
0.102003000400005...

Bilangan Bulat
$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

Bilangan Asli
$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

Bilangan Real

cos(11°)

0.102003000400005...

$$\frac{1}{3} = 0.333... = 0.\overline{3}$$

$$\frac{1}{3} = 0.333... = 0.\overline{3}$$

$$\frac{5}{4} = 1.25000... = 1.25\overline{0} = 1.25$$

Contoh:

$$\frac{1}{3} = 0.333... = 0.\overline{3}$$

$$\frac{5}{4} = 1.25000... = 1.25\overline{0} = 1.25$$

Bilangan dalam bentuk desimal berulang dapat ditulis dalam bentuk pecahan.

Contoh:

$$\frac{1}{3} = 0.333... = 0.\overline{3}$$

$$\frac{5}{4} = 1.25000... = 1.25\overline{0} = 1.25$$

Bilangan dalam bentuk desimal berulang dapat ditulis dalam bentuk pecahan.

$$1.666... = 1.\overline{6} = \frac{5}{3}$$

Contoh:

$$\frac{1}{3} = 0.333... = 0.\overline{3}$$

$$\frac{5}{4} = 1.25000... = 1.25\overline{0} = 1.25$$

Bilangan dalam bentuk desimal berulang dapat ditulis dalam bentuk pecahan.

$$1.666... = 1.\overline{6} = \frac{5}{3}$$
$$0,714285714285... = 0,\overline{714285} = \frac{5}{7}$$

Bilangan Irasional:

bilangan yang tidak mempunyai bentuk desimal berulang

contoh:

0,010020003000040000050000006...

$$\sqrt{2} = 1.4142135623731 \\ {\rm 13~angka~desimal}$$

$$\pi = 3.14259265358979 \hspace{1.5cm} \text{14 angka desimal}$$

$$\cos(11^\circ) = 0.9816271834$$
 10 angka desimal

Soal Latihan

1. Tuliskan bilangan-bilangan berikut dalam bentuk desimal:

(a)
$$\frac{19}{27}$$

(b)
$$\frac{127}{27}$$

(c)
$$\sqrt{2}$$
 (gunakan kalkulator)

2. Tuliskan bilangan-bilangan berikut dalam bentuk pecahan:

Setiap *bilangan real* dapat disajikan sebagai *satu titik* pada garis yang disebut *garis real*.

Setiap *bilangan real* dapat disajikan sebagai *satu titik* pada garis yang disebut *garis real*.

simbol $\ \mathbb{R}$ dapat digunakan sebagai lambang sistem bilangan real dan juga garis real.

Setiap *bilangan real* dapat disajikan sebagai *satu titik* pada garis yang disebut *garis real*.

simbol \mathbb{R} dapat digunakan sebagai lambang sistem bilangan real dan juga garis real.

 $a \in \mathbb{R}$ dapat dibaca (diartikan): a suatu bilangan real a suatu titik pada garis real

Sifat aljabar:

bilangan real dapat *ditambahkan*, *dikurangkan*, *dikalikan*, dan *dibagi* (kecuali dengan *nol*) dengan aturan aritmetika biasa.

Sifat aljabar:

bilangan real dapat *ditambahkan*, *dikurangkan*, *dikalikan*, dan *dibagi* (kecuali dengan *nol*) dengan aturan aritmetika biasa.

Sifat urutan:

Jika a, b, dan c bilangan real, maka:

1.
$$a < b \Longrightarrow a + c < b + c$$

$$2. \ a < b \Longrightarrow a - c < b - c$$

3.
$$a < b \operatorname{dan} c > 0 \Longrightarrow ac < bc$$

4.
$$a < b \operatorname{dan} c < 0 \Longrightarrow bc < ac$$

$$5. \ a > 0 \Longrightarrow \frac{1}{a} > 0$$

6. jika
$$a$$
 dan b bertanda sama, maka $a < b \Longrightarrow \frac{1}{b} < \frac{1}{a}$

Sifat aljabar:

bilangan real dapat *ditambahkan*, *dikurangkan*, *dikalikan*, dan *dibagi* (kecuali dengan *nol*) dengan aturan aritmetika biasa.

Sifat urutan:

Jika a, b, dan c bilangan real, maka:

1.
$$a < b \Longrightarrow a + c < b + c$$

$$2. \ a < b \Longrightarrow a - c < b - c$$

3.
$$a < b \operatorname{dan} c > 0 \Longrightarrow ac < bc$$

4.
$$a < b \operatorname{dan} c < 0 \Longrightarrow bc < ac$$

$$5. \ a > 0 \Longrightarrow \frac{1}{a} > 0$$

6. jika
$$a$$
 dan b bertanda sama, maka $a < b \Longrightarrow \frac{1}{b} < \frac{1}{a}$

Sifat Lengkap: jika a dan b bilangan real dengan a < b, maka ada bilangan real c sehingga a < c < b.

Notasi	Himpunan		Graf	ik	
(a,b)	$\{x \mid a < x < b\}$	•	о	b	

Notasi	Himpunan		Grafik	
(<i>a</i> , <i>b</i>)	$\{x \mid a < x < b\}$	← a	o <i>b</i>	→
[a,b]	$\{x \mid a \le x \le b\}$	\bullet a	b	→

Notasi	Himpunan	Gra	fik
(a,b)	$\{x \mid a < x < b\}$	←	<i>b</i>
[a,b]	$\{x \mid a \le x \le b\}$	\bullet a	<i>b</i>
(a,b]	$\{x \mid a < x \le b\}$	←	<i>b</i>

Notasi	Himpunan		Grafi	ik	
(<i>a</i> , <i>b</i>)	$\{x \mid a < x < b\}$	•	a	b b	>
[a,b]	$\{x \mid a \le x \le b\}$	•	a	b	>
(a,b]	$\{x \mid a < x \le b\}$	•	a	b	>
[a,b)	$\{x \mid a \le x < b\}$	•	a	b	>

Notasi	Himpunan	Grafik
(a,b)	$\{x \mid a < x < b\}$	$a \qquad b$
[a,b]	$\{x \mid a \le x \le b\}$	$a \qquad b$
(a,b]	$\{x \mid a < x \le b\}$	$a \qquad b$
[a,b)	$\{x \mid a \le x < b\}$	$a \qquad b$
(a, ∞)	$\{x \mid a < x < \infty\}$	$a \longrightarrow a$

Notasi	Himpunan	Grafik
(a,b)	$\{x \mid a < x < b\}$	$a \qquad b$
[a,b]	$\{x \mid a \le x \le b\}$	$a \qquad b$
(a,b]	$\{x \mid a < x \le b\}$	$a \qquad b$
[a,b)	$\{x \mid a \le x < b\}$	$a \qquad b$
(a, ∞)	$\{x \mid a < x < \infty\}$	\leftarrow a ∞
$[a,\infty)$	$\{x \mid a \le x < \infty\}$	$a \longrightarrow \infty$

Notasi	Himpunan	Grafik
(a,b)	$\{x \mid a < x < b\}$	$a \qquad b$
[a,b]	$\{x \mid a \le x \le b\}$	$a \qquad b$
(a,b]	$\{x \mid a < x \le b\}$	$a \qquad b$
[a,b)	$\{x \mid a \le x < b\}$	$a \qquad b$
(a,∞)	$\{x \mid a < x < \infty\}$	$\leftarrow \qquad \qquad$
$[a,\infty)$	$\{x \mid a \le x < \infty\}$	$a \longrightarrow \infty$
$(-\infty,b)$	$\{x \mid -\infty < x < b\}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Interval

Notasi	Himpunan	Grafi	k
(<i>a</i> , <i>b</i>)	$\{x \mid a < x < b\}$	←	b
[a,b]	$\{x \mid a \le x \le b\}$	\bullet a	$b \longrightarrow$
(a,b]	$\{x \mid a < x \le b\}$	←	$b \longrightarrow$
[a,b)	$\{x \mid a \le x < b\}$	\bullet a	$b \longrightarrow$
(a, ∞)	$\{x \mid a < x < \infty\}$	←	○
$[a,\infty)$	$\{x \mid a \le x < \infty\}$	\leftarrow a	○ ∞
$(-\infty,b)$	$\{x \mid -\infty < x < b\}$	←	b
$(-\infty,b]$	$\{x \mid -\infty < x \le b\}$	←	b

Interval

Notasi	Himpunan	Grafik
(a,b)	$\{x \mid a < x < b\}$	$a \qquad b$
[a,b]	$\{x \mid a \le x \le b\}$	$a \qquad b$
(a,b]	$\{x \mid a < x \le b\}$	$a \qquad b$
[a,b)	$\{x \mid a \le x < b\}$	$a \qquad b$
(a, ∞)	$\{x \mid a < x < \infty\}$	$a \qquad 0 \qquad $
$[a,\infty)$	$\{x \mid a \le x < \infty\}$	$a \longrightarrow \infty$
$(-\infty,b)$	$\{x \mid -\infty < x < b\}$	$\leftarrow \qquad \qquad$
$(-\infty,b]$	$\{x \mid -\infty < x \le b\}$	$-\infty$ b
$(-\infty,\infty)$	R himpunan semua bilangan real	$-\infty$ ∞

himpunan atau interval yang memuat bilangan-bilangan yang memenuhi pertidaksamaan yang diberikan.

Contoh:

Dapatkan penyelesaian dari pertidaksamaan berikut ini, dan nyatakan hasilnya dalam bentuk himpunan dan interval.

(a)
$$2x - 1 < x + 3$$

(b)
$$-\frac{x}{3} < 2x + 1$$

(c)
$$\frac{6}{x-1} \ge 5$$

himpunan atau interval yang memuat bilangan-bilangan yang memenuhi pertidaksamaan yang diberikan.

Contoh:

Dapatkan penyelesaian dari pertidaksamaan berikut ini, dan nyatakan hasilnya dalam bentuk himpunan dan interval.

(a)
$$2x - 1 < x + 3$$

(b)
$$-\frac{x}{3} < 2x + 1$$

(c)
$$\frac{6}{x-1} \ge 5$$

Penyelesaian:

himpunan atau interval yang memuat bilangan-bilangan yang memenuhi pertidaksamaan yang diberikan.

Contoh:

Dapatkan penyelesaian dari pertidaksamaan berikut ini, dan nyatakan hasilnya dalam bentuk himpunan dan interval.

(a)
$$2x - 1 < x + 3$$

(b)
$$-\frac{x}{3} < 2x + 1$$

(c)
$$\frac{6}{x-1} \ge 5$$

Penyelesaian:

(a)
$$2x - 1 < x + 3$$

himpunan atau interval yang memuat bilangan-bilangan yang memenuhi pertidaksamaan yang diberikan.

Contoh:

Dapatkan penyelesaian dari pertidaksamaan berikut ini, dan nyatakan hasilnya dalam bentuk himpunan dan interval.

(a)
$$2x - 1 < x + 3$$

(b)
$$-\frac{x}{3} < 2x + 1$$

(c)
$$\frac{6}{x-1} \ge 5$$

Penyelesaian:

(a)
$$2x - 1 < x + 3$$

$$2x < x + 4$$

himpunan atau interval yang memuat bilangan-bilangan yang memenuhi pertidaksamaan yang diberikan.

Contoh:

Dapatkan penyelesaian dari pertidaksamaan berikut ini, dan nyatakan hasilnya dalam bentuk himpunan dan interval.

(a)
$$2x - 1 < x + 3$$

(b)
$$-\frac{x}{3} < 2x + 1$$

(c)
$$\frac{6}{x-1} \ge 5$$

Penyelesaian:

(a)
$$2x - 1 < x + 3$$

$$2x < x + 4$$

2x < x + 4 kedua sisi ditambah 1

himpunan atau interval yang memuat bilangan-bilangan yang memenuhi pertidaksamaan yang diberikan.

Contoh:

Dapatkan penyelesaian dari pertidaksamaan berikut ini, dan nyatakan hasilnya dalam bentuk himpunan dan interval.

(a)
$$2x - 1 < x + 3$$

(b)
$$-\frac{x}{3} < 2x + 1$$

(c)
$$\frac{6}{x-1} \ge 5$$

Penyelesaian:

(a)
$$2x - 1 < x + 3$$

$$2x < x + 4$$

2x < x + 4 kedua sisi ditambah 1

himpunan atau interval yang memuat bilangan-bilangan yang memenuhi pertidaksamaan yang diberikan.

Contoh:

Dapatkan penyelesaian dari pertidaksamaan berikut ini, dan nyatakan hasilnya dalam bentuk himpunan dan interval.

(a)
$$2x - 1 < x + 3$$

(b)
$$-\frac{x}{3} < 2x + 1$$

(c)
$$\frac{6}{x-1} \ge 5$$

Penyelesaian:

(a)
$$2x - 1 < x + 3$$

$$2x < x + 4$$

2x < x + 4 kedua sisi ditambah 1

kedua sisi dikurangi x

himpunan atau interval yang memuat bilangan-bilangan yang memenuhi pertidaksamaan yang diberikan.

Contoh:

Dapatkan penyelesaian dari pertidaksamaan berikut ini, dan nyatakan hasilnya dalam bentuk himpunan dan interval.

(a)
$$2x - 1 < x + 3$$

(b)
$$-\frac{x}{3} < 2x + 1$$

(c)
$$\frac{6}{x-1} \ge 5$$

Penyelesaian:

(a)
$$2x - 1 < x + 3$$

$$2x < x + 4$$

2x < x + 4 kedua sisi ditambah 1

kedua sisi dikurangi *x*

Jadi, penyelesaiannya adalah $\{x \mid x < 4\}$

atau
$$(-\infty,4)$$
.

himpunan atau interval yang memuat bilangan-bilangan yang memenuhi pertidaksamaan yang diberikan.

Contoh:

Dapatkan penyelesaian dari pertidaksamaan berikut ini, dan nyatakan hasilnya dalam bentuk himpunan dan interval.

(a)
$$2x - 1 < x + 3$$

(b)
$$-\frac{x}{3} < 2x + 1$$

(c)
$$\frac{6}{x-1} \ge 5$$

Penyelesaian:

(a)
$$2x - 1 < x + 3$$

$$2x < x + 4$$

2x < x + 4 kedua sisi ditambah 1

kedua sisi dikurangi *x*

Jadi, penyelesaiannya adalah $\{x \mid x < 4\}$

atau
$$(-\infty,4)$$
.

(b) lengkapi

himpunan atau interval yang memuat bilangan-bilangan yang memenuhi pertidaksamaan yang diberikan.

Contoh:

Dapatkan penyelesaian dari pertidaksamaan berikut ini, dan nyatakan hasilnya dalam bentuk himpunan dan interval.

(a)
$$2x - 1 < x + 3$$

(b)
$$-\frac{x}{3} < 2x + 1$$

(c)
$$\frac{6}{x-1} \ge 5$$

Penyelesaian:

(a)
$$2x - 1 < x + 3$$

$$2x < x + 4$$

2x < x + 4 kedua sisi ditambah 1

kedua sisi dikurangi *x*

Jadi, penyelesaiannya adalah $\{x \mid x < 4\}$ atau $(-\infty,4)$.

- (b) lengkapi
- (c) lengkapi

Nilai mutlak dari bilangan x, ditulis dengan |x|, didefinisikan dengan rumus

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Nilai mutlak dari bilangan x, ditulis dengan |x|, didefinisikan dengan rumus

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

$$|7| = 7$$
, $|0| = 0$, $|-4| = -(-4) = 4$, $|-|a|| = |a|$

Nilai mutlak dari bilangan x, ditulis dengan |x|, didefinisikan dengan rumus

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Contoh:

$$|7| = 7$$
, $|0| = 0$, $|-4| = -(-4) = 4$, $|-|a|| = |a|$

Catatan:

Nilai mutlak dari bilangan x, ditulis dengan |x|, didefinisikan dengan rumus

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Contoh:

$$|7| = 7$$
, $|0| = 0$, $|-4| = -(-4) = 4$, $|-|a|| = |a|$

Catatan:

 $|x| \geq 0$ untuk setiap bilangan real x, dan |x| = 0 jika dan hanya jika x = 0

Nilai mutlak dari bilangan x, ditulis dengan |x|, didefinisikan dengan rumus

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Contoh:

$$|7| = 7$$
, $|0| = 0$, $|-4| = -(-4) = 4$, $|-|a|| = |a|$

Catatan:

 $|x| \ge 0$ untuk setiap bilangan real x, dan |x| = 0 jika dan hanya jika x = 0

|x| menyatakan jarak dari x ke titik asal 0 pada garis real.

Nilai mutlak dari bilangan x, ditulis dengan |x|, didefinisikan dengan rumus

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Contoh:

$$|7| = 7$$
, $|0| = 0$, $|-4| = -(-4) = 4$, $|-|a|| = |a|$

Catatan:

 $|x| \ge 0$ untuk setiap bilangan real x, dan |x| = 0 jika dan hanya jika x = 0

|x| menyatakan jarak dari x ke titik asal 0 pada garis real.

|x-y| menyatakan jarak antara x dan y.

Nilai mutlak dari bilangan x, ditulis dengan |x|, didefinisikan dengan rumus

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Contoh:

$$|7| = 7$$
, $|0| = 0$, $|-4| = -(-4) = 4$, $|-|a|| = |a|$

Catatan:

 $|x| \ge 0$ untuk setiap bilangan real x, dan |x| = 0 jika dan hanya jika x = 0

|x| menyatakan jarak dari x ke titik asal 0 pada garis real.

|x-y| menyatakan jarak antara x dan y.

$$\sqrt{x^2} =$$

Nilai mutlak dari bilangan x, ditulis dengan |x|, didefinisikan dengan rumus

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Contoh:

$$|7| = 7$$
, $|0| = 0$, $|-4| = -(-4) = 4$, $|-|a|| = |a|$

Catatan:

 $|x| \geq 0$ untuk setiap bilangan real x, dan |x| = 0 jika dan hanya jika x = 0

|x| menyatakan jarak dari x ke titik asal 0 pada garis real.

|x-y| menyatakan jarak antara x dan y.

$$\sqrt{x^2} = |x|$$

Sifat-sifat nilai mutlak

$$|-a| = |a|$$

suatu bilangan dan negatifnya mempunyai nilai mutlak sama

$$|ab| = |a||b|$$

nilai mutlak dari perkalian sama dengan perkalian nilai mutlak

$$\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$$

nilai mutlak dari pembagian sama dengan pembagian nilai mutlak, dengan syarat pembaginya tidak nol

$$|a+b| \le |a| + |b|$$

Ketaksamaan Segitiga.

Jika a dan b berbeda tanda, maka |a+b|<|a|+|b|.

Jika a dan b berbeda tanda, maka |a+b|<|a|+|b|.

Jika a dan b bertanda sama, maka |a+b|=|a|+|b|.

Jika a dan b berbeda tanda, maka |a+b|<|a|+|b|.

Jika a dan b bertanda sama, maka |a+b|=|a|+|b|.

$$|-3+5| = |2| = 2 < |-3| + |5| = 8$$

Jika a dan b berbeda tanda, maka |a+b|<|a|+|b|. Jika a dan b bertanda sama, maka |a+b|=|a|+|b|.

$$|-3+5| = |2| = 2 < |-3| + |5| = 8$$

 $|3+5| = 8 = |3| + |5|$

Jika a dan b berbeda tanda, maka |a+b|<|a|+|b|. Jika a dan b bertanda sama, maka |a+b|=|a|+|b|.

$$|-3+5| = |2| = 2 < |-3| + |5| = 8$$

 $|3+5| = 8 = |3| + |5|$
 $|-3-5| = |-8| = 8 = |-3| + |-5|$

Jika a dan b berbeda tanda, maka |a+b| < |a| + |b|.

Jika a dan b bertanda sama, maka |a+b|=|a|+|b|.

Contoh:

$$|-3+5| = |2| = 2 < |-3| + |5| = 8$$

 $|3+5| = 8 = |3| + |5|$
 $|-3-5| = |-8| = 8 = |-3| + |-5|$

Contoh: Dapatkan penyelesaian dari persamaan |2x - 3| = 7.

Jika a dan b berbeda tanda, maka |a+b| < |a| + |b|.

Jika a dan b bertanda sama, maka |a+b|=|a|+|b|.

Contoh:

$$|-3+5| = |2| = 2 < |-3| + |5| = 8$$

 $|3+5| = 8 = |3| + |5|$
 $|-3-5| = |-8| = 8 = |-3| + |-5|$

Contoh: Dapatkan penyelesaian dari persamaan |2x - 3| = 7.

Penyelesaian: Persamaan di atas mempunyai dua kemungkinan, yaitu: 2x - 3 = 7 dan -(2x - 3) = 7.

Jika a dan b berbeda tanda, maka |a+b| < |a| + |b|.

Jika a dan b bertanda sama, maka |a+b|=|a|+|b|.

Contoh:

$$|-3+5| = |2| = 2 < |-3| + |5| = 8$$

 $|3+5| = 8 = |3| + |5|$
 $|-3-5| = |-8| = 8 = |-3| + |-5|$

Contoh: Dapatkan penyelesaian dari persamaan |2x - 3| = 7.

Penyelesaian: Persamaan di atas mempunyai dua kemungkinan, yaitu: 2x-3=7 dan -(2x-3)=7.

Jadi, penyelesaiannya adalah x=5 atau x=-2.

Jika δ suatu bilangan positif, maka

$$|a| < \delta \iff -\delta < a < \delta$$

$$|a| < \delta \Longleftrightarrow -\delta < a < \delta$$
$$|a| \le \delta \Longleftrightarrow -\delta \le a \le \delta$$

Jika δ suatu bilangan positif, maka

$$|a| < \delta \Longleftrightarrow -\delta < a < \delta$$

$$|a| \le \delta \Longleftrightarrow -\delta \le a \le \delta$$

Contoh: Selesaikan ketaksamaan |x-5|<9 dan gambarkan grafik penyelesaiannya pada garis real.

Jika δ suatu bilangan positif, maka

$$|a| < \delta \Longleftrightarrow -\delta < a < \delta$$

$$|a| \le \delta \Longleftrightarrow -\delta \le a \le \delta$$

Contoh: Selesaikan ketaksamaan |x-5| < 9 dan gambarkan grafik penyelesaiannya pada garis real.

Penyelesaian: |x-5| < 9

Jika δ suatu bilangan positif, maka

$$|a| < \delta \iff -\delta < a < \delta$$

$$|a| \le \delta \Longleftrightarrow -\delta \le a \le \delta$$

Contoh: Selesaikan ketaksamaan |x-5|<9 dan gambarkan grafik penyelesaiannya pada garis real.

Penyelesaian:
$$|x-5| < 9$$

$$-9 < x - 5 < 9$$
 (dibuka tanda nilai mutlaknya)

Jika δ suatu bilangan positif, maka

$$|a| < \delta \iff -\delta < a < \delta$$

$$|a| \le \delta \Longleftrightarrow -\delta \le a \le \delta$$

Contoh: Selesaikan ketaksamaan |x-5|<9 dan gambarkan grafik penyelesaiannya pada garis real.

Penyelesaian: |x-5| < 9

$$-9 < x - 5 < 9$$

(dibuka tanda nilai mutlaknya)

$$-9+5 < x < 9+5$$

(semua sisi ditambah 5)

Jika δ suatu bilangan positif, maka

$$|a| < \delta \iff -\delta < a < \delta$$

$$|a| \le \delta \Longleftrightarrow -\delta \le a \le \delta$$

Contoh: Selesaikan ketaksamaan |x-5|<9 dan gambarkan grafik penyelesaiannya pada garis real.

Penyelesaian:
$$|x-5| < 9$$

$$-9 < x - 5 < 9$$

(dibuka tanda nilai mutlaknya)

$$-9+5 < x < 9+5$$

(semua sisi ditambah 5)

$$-4 < x < 14$$

Interval dan Nilai Mutlak

Jika δ suatu bilangan positif, maka

$$|a| < \delta \iff -\delta < a < \delta$$

$$|a| \le \delta \Longleftrightarrow -\delta \le a \le \delta$$

Contoh: Selesaikan ketaksamaan |x-5|<9 dan gambarkan grafik penyelesaiannya pada garis real.

Penyelesaian: |x-5| < 9

-9 < x - 5 < 9 (dibuka tanda nilai mutlaknya)

-9 + 5 < x < 9 + 5 (semua sisi ditambah 5)

-4 < x < 14

Jadi, penyelesaiannya adalah $\{x | -4 < x < 14\}$

Interval dan Nilai Mutlak

Jika δ suatu bilangan positif, maka

$$|a| < \delta \iff -\delta < a < \delta$$

$$|a| \le \delta \Longleftrightarrow -\delta \le a \le \delta$$

Contoh: Selesaikan ketaksamaan |x-5|<9 dan gambarkan grafik penyelesaiannya pada garis real.

Penyelesaian: |x-5| < 9

-9 < x - 5 < 9 (dibuka tanda nilai mutlaknya)

-9 + 5 < x < 9 + 5 (semua sisi ditambah 5)

-4 < x < 14

Jadi, penyelesaiannya adalah $\{x|-4 < x < 14\}$ atau dalam grafik intervalnya adalah

Interval dan Nilai Mutlak

Jika δ suatu bilangan positif, maka

$$|a| < \delta \iff -\delta < a < \delta$$

$$|a| \le \delta \Longleftrightarrow -\delta \le a \le \delta$$

Contoh: Selesaikan ketaksamaan |x-5|<9 dan gambarkan grafik penyelesaiannya pada garis real.

Penyelesaian: |x-5| < 9

$$-9 < x - 5 < 9$$
 (dibuka tanda nilai mutlaknya)

$$-9 + 5 < x < 9 + 5$$
 (semua sisi ditambah 5)

$$-4 < x < 14$$

Jadi, penyelesaiannya adalah $\{x|-4 < x < 14\}$ atau dalam grafik intervalnya adalah

(a)
$$|2x - 3| \le 1$$

(b)
$$|2x-3|>1$$

(a)
$$|2x-3| \le 1$$
 (b) $|2x-3| > 1$

(a)
$$|2x-3| \le 1$$
 (b) $|2x-3| > 1$

(a)
$$|2x - 3| \le 1$$

(a)
$$|2x-3| \le 1$$
 (b) $|2x-3| > 1$

(a)
$$|2x-3| \le 1$$

$$-1 \le 2x-3 \le 1$$
 (dibuka tanda nilai mutlaknya)

(a)
$$|2x-3| \le 1$$
 (b) $|2x-3| > 1$

(a)
$$|2x-3| \le 1$$

$$-1 \le 2x-3 \le 1$$
 (dibuka tanda nilai mutlaknya)
$$2 \le 2x \le 4$$
 (ditambah 3)

(a)
$$|2x-3| \le 1$$
 (b) $|2x-3| > 1$

(a)
$$|2x-3| \le 1$$
 (b) $|2x-3| > 1$

Penyelesaian:

Jadi, penyelesaiannya berupa interval tertutup [1,2]

(a)
$$|2x-3| \le 1$$
 (b) $|2x-3| > 1$

Penyelesaian:

Jadi, penyelesaiannya berupa interval tertutup [1,2]

1 2

(a)
$$|2x-3| \le 1$$
 (b) $|2x-3| > 1$

Penyelesaian:

Jadi, penyelesaiannya berupa interval tertutup [1,2]

(b) Penyelesaian untuk $|2x-3| \ge 1 \dots ?.? \dots$

(a)
$$|2x-3| \le 1$$
 (b) $|2x-3| > 1$

Penyelesaian:

Jadi, penyelesaiannya berupa interval tertutup [1,2]

(b) Penyelesaian untuk $|2x-3| \ge 1 \dots ?.? \dots$

Latihan Soal-soal Sistem Bilangan