# When Machine Learning meets Educational Science...

An abstract of my Master's Thesis

Ramaravind Kommiya Mothilal Master of Artificial Intelligence

# When Machine Learning meets Educational Science...

An abstract of my Master's Thesis



# When Machine Learning meets Educational Science...

**An abstract of my Master's Thesis** 

Statistical modeling of students' performance in an open-admission bachelor program in Flanders

The need to discriminate between explanatory and predictive modeling



### **An Overview:**

### Statistical modeling of students' performance

#### Independent variables

- Math, Phy, Chem grades
- Math Level
- Effort Level
- Affective Strategies
- Goal Strategies
- Preference for Time Pressure



Dependent variable

Weighted Average of first-semester course scores

Insights about what is expected from students to perform well in first-semester exams

Early indicator of completing the study program

### **An Overview:**

### Statistical modeling of students' performance



### **Explanatory Modeling - A Deeper Look**



### **Predictive Modeling - A Deeper Look**



Not interested in explaining causal relation

### **Explanatory and Predictive Modeling - A Deeper Look**



Retrospective Causal explanations

Different goals through the entire modeling process

Prospective Predictions

But, confusion in related literature...

Statistical goals, choice of methods, Evaluation criteria (R<sup>2</sup> for predictive power)





**Explanatory Modeling** with Predictive Validity

Predictive Modeling and Comprehensible Approximation

### **Outcomes:**

**Model:** Multiple Linear Regression

Prior academic knowledge (math, phy, chem and hrs)

positively affects
36%

First-semester performance (wavg)

Affective and Goal strategies (affe and goal)

positively affects

First-semester performance (wavg)

Preference for Time pressure (press)

does not influence

First-semester performance (wavg)

**Average-case statistical patterns** 



# Explanatory Modeling with Predictive Validity

Predictive Modeling and Comprehensible Approximation

### Why Optimize both explanatory and predictive goals?

- Explanations are retrospective
  - Need to Generalize statistical inferences to "unseen" incoming students

### Explanatory Path:

Similar statistical inferences

**Model:** Ordinal Logistic Regression

### **Predictive Validity:**



Low predictive power

Cannot generalize statistical inferences to "unseen" incoming students

- Predicts only 60% students in the "at-risk" zones
- Wrongly predicts too many students (around 60%) as "no-risk"



# **Explanatory Modeling** with Predictive Validity

Predictive Modeling and Comprehensible Approximation





# Explanatory Modeling with Predictive Validity

## Predictive Modeling and Comprehensible Approximation

### Why Predictive Modeling and Comprehensible Approximation?

Generalize statistical inferences to "unseen" incoming students predictive performance



# **Explanatory Modeling** with Predictive Validity

## Predictive Modeling and Comprehensible Approximation

### **Model Design:**



| y 1    | <i>y</i> <sub>2</sub> | <u>Interpretation</u> |
|--------|-----------------------|-----------------------|
| <= 8.5 | <= 11.5               | at-risk               |
| > 8.5  | <= 11.5               | moderate-risk         |
| > 8.5  | > 11.5                | no-risk               |

### Why two-binary-classifiers model?

- difficult to identify students in the "moderate-risk" zone
- easy to train and optimize

# Explanatory Modeling with Predictive Validity

## Predictive Modeling and Comprehensible Approximation



### **Overall Good Predictive Performance**

Low misclassification of "at-risk" students

| XGBoost 1 | Precision | Recall |
|-----------|-----------|--------|
| <= 8.5    | 0.64      | 0.80   |
| > 8.5     | 0.88      | 0.77   |
| w. avg    | 0.80      | 0.78   |

**Accurately predicts** 

"at-risk" and "moderate-risk" students

Significant misclassification of "moderate-risk" students

| XGBoost 2 | Precision | Recall |
|-----------|-----------|--------|
| <= 11.5   | 0.87      | 0.85   |
| > 11.5    | 0.68      | 0.70   |
| w. avg    | 0.81      | 0.81   |

# Explanatory Modeling with Predictive Validity

### Predictive Modeling and Comprehensible Approximation

Trusting correct identification of "at-risk" students - LIME Explanations

#### Example 1



A Low background in math, phy, chem contributes 19 + 17 + 15 = 51% of P(<= 8.5)

#### Observation:

"Low" value for most of the IVs contributes heavily to class "<= 8.5" (at-risk students)

<u>Practical Implication:</u> Individual counselling

### Example 2



# Explanatory Modeling with Predictive Validity

## Predictive Modeling and Comprehensible Approximation

#### Trusting correct identification of "at-risk" students - LIME Explanations

#### Example 3





#### **Observation:**

Moving towards the higher levels of an IV increases the chances of being not classified as "at-risk" (i.e, ">8.5")

<u>Practical Implication:</u> Individual counselling

# Explanatory Modeling with Predictive Validity

## Predictive Modeling and Comprehensible Approximation

### Further exploitation of LIME Explanations...



Identify complex patterns that are hard to hypothesize

### Type I

The frequencies of different values taken by an input variable

### Type II

The frequencies of an input variable displayed at different positions in the lists of contribution

#### Subtle

average-case patterns

# Explanatory Modeling with Predictive Validity

## Predictive Modeling and Comprehensible Approximation

### **Type I plot using LIME Explanations**

High levels of "preference for time pressure" are associated with students in the "at-risk" and "moderate-risk" zones

#### at-risk students ("<= 8.5")



#### at-risk + moderate-risk students ("<= 11.5")



# Explanatory Modeling with Predictive Validity

### Predictive Modeling and Comprehensible Approximation

#### Type II plot using LIME Explanations

Different effects of "Hours spent for Math per week" for different classification

"<= 8.5" vs "> 8.5"
at-risk vs (moderate-risk + no-risk)







### **TAKEAWAYS**

- Indiscrimination between different statistical modeling approaches in related literature
- Three important approaches :

**Explanatory** 

Explanatory + Predictive Predictive
+
Some method
to make predictions
interpretable

- For the current problem, all three approach gave many similar results showing that our understanding of the phenomenon is almost correct
- However, some subtle effects were uncovered only in predictive modeling
- Finally, we should not get settled at explanatory modeling,
   But at the same time, we should not get fascinated by predictions

