ESTUDIOS DE EMISIONES

MÉTODOS EPA

Método 7. Determinación de Óxidos de Nitrógeno (NO_2)

Henry Torres Posada

Método 7 EPA-USA. Determinación de Óxidos de Nitrógeno (NO₂)

El propósito de este método es determinar las emisiones gaseosas de óxidos de nitrógeno como NO_2 en fuentes fijas estacionarias

Datos de campo - ejercicio 1

La emisión total de oxidos de nitrógeno expresados como NO_2 emitidos por chimenea, se calcula de acuerdo al siguiente procedimiento.

	Frasco y	y Presion Inicial			Temperatura	
ID	valvula	in.Hg			inicial	
	$V_f(\mathbf{ml})$	Lado A_i	Lado B_i	P_{ia}	$t_i(^0F)$	$T_i(^0R)$
1NOX	2269	10.8	9.4	2.07	65	525
2NOX	2278	10.7	9.4	2.17	65	525
3NOX	2282	10.8	9.4	2.07	65.4	525.4
4NOX	2270	10.8	9.4	2.07	65.4	525.4
5NOX	2251	10.8	9.4	2.07	65.4	525.4
6NOX	2282	10.8	9.4	2.07	65.4	525.4

$$P_i = Pbar - (A_i + B_i)$$

$$Ti = t_i + 460^0 F$$

La presion absoluta debe ser < 3 in.Hg

Recuperación de la muestra - ejercicio 1

	Pre	Presion Final		Temperatura		Ajuste	Nivel	Muestra
ID	in.Hg		final		de	de	Almacen.	
	Lado A_f	Lado B_f	P_{fa}	$t_f(^0F)$	$T_f(^0R)$	pH (9-12)	Liq(OK)	5^0C
1NOX	0.1	0.2	21.97	73.4	533.4	OK	OK	OK
2NOX	0.1	0.2	21.97	72.4	532.4	OK	OK	OK
3NOX	0.1	0.1	22.07	73.4	533.4	OK	OK	OK
4NOX	0.2	0.3	21.77	73.6	533.6	OK	OK	OK
5NOX	0.1	0.1	22.07	73.0	533.0	OK	OK	OK
6NOX	0.1	0.1	22.07	73.4	533.4	OK	OK	OK

La presión absoluta debe ser ligeramente inferior a la presión barométrica.

El método de referencia requiere un periodo mínimo de 16 horas para la absorción de la muestra.

Para mejorar la conversión de NO a NO₂ inyectar oxigeno. Termine el muestreo con 2 in. Hg remanente y ventile el frasco a la atmósfera, hasta que la presión en el frasco sea casi igual a la presión atmosférica.

Análisis para soluciones estándar y muestra control - ejercicio 1

Muestra	Muestra	Solucion	Muestra	Absorbancia	Absorbancia	Comparacion
No.	$\mu \mathbf{g}$	de	control	Medida	calculada	absorbancia
		trabajo			a. OD	b. Error(%)
A1	100	X		0.089		
A2	200	X		0.186		
A3	300	X		0.298		
A4	400	X		0.372		
S1	100		X	0.089	0.095	-6.3
S2	200		X	0.194	0.189	2.6
S3	300		X	0.297	0.285	4.2
					c.Promedio	4.4

- a. Absorbancia calculada $OD = \mu g/Kc$, S1 = 100/Kc
- b. Error de la comparacion

$$\% = 100 \left[\frac{\text{(Absorbancia medida)-(Absorbancia calculada)}}{\text{(Absorbancia calculada)}} \right]$$

c. Promedio de valores absolutos

$$Kc = 100 \left[\frac{A1 + 2A2 + 3A3 + 4A4}{A1^2 + A2^2 + A3^2 + A4^2} \right] = 1054$$

Datos de laboratorio - ejercicio 1

Factor de calibracion (Kc): 1054

Muestra	Absorbancia	Factor	Masa NOX
No.	Muestra	dilucion	μ g NO_2
1NOX	0.018	1	37.94
2NOX	0.031	1	65.34
3NOX	0.022	1	46.37
4NOX	0.018	1	37.94
5NOX	0.004	1	8.43
6NOX	0.000	1	ND
		Promedio	39.20

$$m = 2Kc AF$$

Si se emplea una alícuota de análisis diferente a 25 ml, se debe cambiar 2 por el factor multiplicador correspondiente.

Calculo de la concentración de NO como NO₂ - ejercicio 1

Volumen de muestra

$$V_{sc} = 17.95 \ (V_f - 25) \ \left(\frac{P_f}{T_f} - \frac{P_i}{T_i}\right)$$

Masa total de muestra en μ g de NO_2 ,

$$m = 2Kc AF$$

Concentración de la muestra

$$C_{std} = K \left[\frac{m}{V_{sc}} \right]$$

donde; K = 6.243×10^{-5} (lb/scf)/(μ g/ml) en unidades inglesas, K = $1000 \text{ (mg/}m^3)$ /(μ g/ml) en unidades metricas