allow fluid to flow one way from the gear-down side of the main gear cylinders back into the hydraulic system return manifold through the selector valve.

To lower the gear, the selector is put in the gear-down position. Pressurized hydraulic fluid flows from the hydraulic manifold to the nose gear uplock, which unlocks the nose gear. Fluid flows to the gear-down side of the nose gear actuator and extends it. Fluid also flows to the open side of the main gear door actuators. As the doors open, sequence valves A and B block fluid from unlocking the main gear uplocks and prevent fluid from reaching the down side of the main gear actuators. When the doors are fully open, the door actuator engages the plungers of both sequence valves to open the valves. The main gear uplocks, then receives fluid pressure and unlock. The main gear cylinder actuators receive fluid on the down side through the open sequence valves to extend the gear. Fluid from each main gear cylinder up-side flows to the hydraulic system return manifold through restrictors in the orifice check valves. The restrictors slow the extension of the gear to prevent impact damage.

There are numerous hydraulic landing gear retraction system designs. Priority valves are sometimes used instead of mechanically operated sequence valves. This controls some gear component activation timing via hydraulic pressure. Particulars of any gear system are found in the aircraft maintenance manual. The aircraft technician must be thoroughly familiar with the operation and maintenance requirements of this crucial system.

Emergency Extension Systems

The emergency extension system lowers the landing gear if the main power system fails. There are numerous ways in which this is done depending on the size and complexity of the aircraft. Some aircraft have an emergency release handle in the flight deck that is connected through a mechanical linkage to the gear uplocks. When the handle is operated, it releases the uplocks and allows the gear to free-fall to the extended position under the force created by gravity acting upon the gear. Other aircraft use a non-mechanical back-up, such as pneumatic power, to unlatch the gear.

The popular small aircraft retraction system shown in *Figures 13-35* and *13-36* uses a free-fall valve for emergency gear extension. Activated from the flight deck, when the free-fall valve is opened, hydraulic fluid is allowed to flow from the gear-up side of the actuators to the gear-down side of the actuators, independent of the power pack. Pressure holding the gear up is relieved, and the gear extends due to its weight. Air moving past the gear aids in the extension and helps push the gear into the down-and-locked position.

Large and high-performance aircraft are equipped with redundant hydraulic systems. This makes emergency extension less common since a different source of hydraulic power can be selected if the gear does not function normally. If the gear still fails to extend, some sort of unlatching device is used to release the uplocks and allow the gear to free fall. [Figure 13-38]

In some small aircraft, the design configuration makes emergency extension of the gear by gravity and air loads alone impossible or impractical. Force of some kind must therefore be applied. Manual extension systems, wherein the pilot mechanically cranks the gear into position, are common. Consult the aircraft maintenance manual for all emergency landing gear extension system descriptions of operation, performance standards, and emergency extension tests as required.

Landing Gear Safety Devices

There are numerous landing gear safety devices. The most common are those that prevent the gear from retracting or collapsing while on the ground. Gear indicators are another safety device. They are used to communicate to the pilot the position status of each individual landing gear at any time. A further safety device is the nose wheel centering device mentioned previously in this chapter.

Figure 13-38. These emergency gear extension handles in a Boeing 737 are located under a floor panel on the flight deck. Each handle releases the gear uplock via a cable system so the gear can freefall into the extended position.