Traditional Methods 207 Final Project

Dylan Chou, Tim Yao
2024-05-30

Two Time Series Plots of Electricity and Weather

```
par(mfrow=c(2,2))
etth1 = read.csv("./data/ETTh1.csv")
etth2 = read.csv("./data/ETTh2.csv")
ettm1 = read.csv("./data/ETTm1.csv")
weather = read.csv("./data/WTH.csv")
# univariate time series
# https://stackoverflow.com/questions/33782218/how-to-create-a-time-series-of-hourly-data
first_hour_etth1 = 24*(as.Date("2016-07-01 00:00:00")-as.Date("2016-1-1 00:00:00"))
etth1.ts = ts(data=etth1$0T, start=c(2016, first_hour_etth1), freq=24)
etth1.ts = (etth1.ts-mean(etth1.ts))/sd(etth1.ts)
etth2.ts = ts(data=etth2$0T, start=c(2016, first_hour_etth1), freq=24*365)
etth2.ts = (etth2.ts-mean(etth2.ts))/sd(etth2.ts)
ettm1.ts = ts(data=ettm1$0T, start=c(2016, first_hour_etth1), freq=24*365)
ettm1.ts = (ettm1.ts-mean(ettm1.ts))/sd(ettm1.ts)
weather.ts = ts(data=weather$WetBulbCelsius, start=c(2010, 0), freq=24*365)
weather.ts = (weather.ts-mean(weather.ts))/sd(weather.ts)
plot(etth1.ts, main="ETTH1 Electricity Oil Temperature")
plot(etth2.ts, main="ETTH2 Electricity Oil Temperature")
plot(ettm1.ts, main="ETTM1 Electricity Oil Temperature")
plot(weather.ts, main="Weather Wet Bulb Temperature (Celsius)")
```

ETTH1 Electricity Oil Temperature

ETTH2 Electricity Oil Temperature

ETTM1 Electricity Oil Temperature

Weather Wet Bulb Temperature (Celsiu

Autocorrelation of current time series

first diagnose the autocorrelation of the existing time series length(etth1.ts)

[1] 17420

pacf(etth1.ts, lag.max=200)

Series etth1.ts

acf(etth1.ts, lag.max=200)

Series etth1.ts

pacf(weather.ts)

Series weather.ts

acf(weather.ts)

Series weather.ts

Differencing

```
par(mfrow=c(2,2))
# Electricity - trend elimination

diff_etth1.ts = diff(etth1.ts)
diff2_etth1.ts = diff(diff(etth1.ts))
acf(diff_etth1.ts, lag.max=200)
acf(diff2_etth1.ts,lag.max=200)

diff_etth2.ts = diff(etth2.ts)
diff2_etth2.ts = diff(diff(etth2.ts))
diff3_etth2.ts = diff(diff(diff(etth2.ts)))
acf(diff_etth2.ts, lag.max=200)
acf(diff2_etth2.ts, lag.max=200)
```

Series diff_etth1.ts

Series diff2_etth1.ts

Series diff_etth2.ts

Series diff2_etth2.ts


```
acf(diff3_etth2.ts,lag.max=200)

# Weather

diff_weather.ts = diff(weather.ts)
diff2_weather.ts = diff(diff(weather.ts))
acf(diff_weather.ts,lag.max=200)
acf(diff2_weather.ts,lag.max=200)
```

Series diff3_etth2.ts

Series diff_weather.ts

Series diff2_weather.ts

Lag

Decomposition of additive time series


```
\# Augmented Dickey-Fuller Test
# reject null that ts is non-stationary
adf.test(weather.ts)
## Warning in adf.test(weather.ts): p-value smaller than printed p-value
##
   Augmented Dickey-Fuller Test
##
##
## data: weather.ts
## Dickey-Fuller = -8.1762, Lag order = 32, p-value = 0.01
## alternative hypothesis: stationary
adf.test(diff_weather.ts)
## Warning in adf.test(diff_weather.ts): p-value smaller than printed p-value
##
##
   Augmented Dickey-Fuller Test
##
## data: diff_weather.ts
## Dickey-Fuller = -34.887, Lag order = 32, p-value = 0.01
## alternative hypothesis: stationary
```

Run some spectral analysis for seasonality detection

```
pgram = abs(etth1.ts)^2/length(etth1.ts)
which.max(pgram)

## [1] 688

plot(pgram, type = "h")
```


x.spec = spectrum(etth1.ts)

Series: x Raw Periodogram

spx <- x.spec\$freq
spy <- 2*x.spec\$spec</pre>

Trying different models based on preliminary plots

```
# KFAS

test_start = (length(etth1.ts)*0.80)+1

train_etth1.ts = ts(etth1.ts[1:(length(etth1.ts)*0.80)], start=c(2016, first_hour_etth1), frequency=24)

test_etth1.ts = etth1.ts[test_start:length(etth1.ts)]

ssmodel1 = SSModel(train_etth1.ts ~ SSMtrend(1, Q = NA) + SSMseasonal(24, sea.type = "dummy", Q = NA), fitssmodel1 = fitSSM(ssmodel1, inits = c(0, 0, 0))

n_ahead = 24

forecast = predict(fitssmodel1$model, n.ahead = n_ahead, interval = "prediction")

plot(test_etth1.ts[1:24], type="l", ylim=c(-3,0))

points(forecast[1:24], type="l", col="blue")
```



```
# ETTH1
# Ideal to difference twice to remove trend. Estimates using CSS-ML
etth1_model1 = arima(etth1.ts, order = c(1,2,0))
plot(etth1.ts)
fit1 = etth1.ts - residuals(etth1_model1)
points(fit1, type = "l", col = "lightblue", lty = 2, lwd=0.2)
```


acf(residuals(etth1_model1), lag.max=200)

Series residuals(etth1_model1)


```
# seasonal component every 24 time steps (every 24 hours).
etth1_model2 = arima(etth1.ts, order = c(1,2,0), seasonal=list(order=c(1,0,0), period=24))
plot(etth1.ts)
fit2 = etth1.ts - residuals(etth1_model2)
points(fit2, type = "1", col = "firebrick", lty = 2, lwd=0.2)
```


Series residuals(etth1_model2)


```
# significant lag 1 and 2 components. Trying MA component
etth1_model3 = arima(etth1.ts, order = c(2,2,0), seasonal=list(order=c(0,2,0), period=24))
plot(etth1.ts)
fit3 = etth1.ts - residuals(etth1_model3)
points(fit3, type = "l", col = "lightgreen", lty = 2, lwd=0.2)
```


acf(residuals(etth1_model3), lag.max=8000)

Series residuals(etth1_model3)

Series residuals(etth1_model3)

we reject the null hypothesis that lag-1 and original time series are independent. sarima(etth1.ts,p=2,d=2,q=0,P=0,D=2,Q=0,S=24)

```
## initial value -1.034497
        2 value -1.190028
## iter
## iter
         3 value -1.263929
         4 value -1.265926
## iter
## iter
         5 value -1.266788
## iter
         6 value -1.266788
## iter
         6 value -1.266788
## final value -1.266788
## converged
## initial value -1.266766
## iter
         2 value -1.266774
         3 value -1.266778
## iter
         4 value -1.266781
## iter
## iter
         5 value -1.266793
## iter
         6 value -1.266796
## iter
         6 value -1.266770
## final value -1.266796
## converged
## <><><><>
##
## Coefficients:
      Estimate
                   SE
                        t.value p.value
## ar1 -0.7193 0.0033 -216.1748
```



```
# ETTh2 - 3rd order differencing. Trying an AR term due to acf plot.
etth2_model1 = arima(etth2.ts, order=c(1,3,0))
plot(etth2.ts)
etth2_fit1 = etth2.ts - residuals(etth2_model1)
points(etth2_fit1, type = "l", col = "lightblue", lty = 2, lwd=0.2)
```


acf(residuals(etth2_model1), lag.max=200)

Series residuals(etth2_model1)


```
# Appears to have a seasonal component
etth2_model1 = arima(etth2.ts, order=c(1,3,0))
plot(etth2.ts)
etth2_fit1 = etth2.ts - residuals(etth2_model1)
points(etth2_fit1, type = "l", col = "lightblue", lty = 2, lwd=0.2)
```


acf(residuals(etth2_model1), lag.max=200)

Series residuals(etth2_model1)


```
# Evaluation

# Train/Validation/Test Split
get_evaluation_on_ts = function(input_ts=etth1.ts) {
    train_size = 0.8
```

```
test_size = 0.2
  train = input_ts[1:(train_size*length(input_ts))]
  test_start = (train_size*length(input_ts))+1
  test = input_ts[test_start:length(input_ts)]
  # may add as a parameter
  evaluated_model1 = arima(train, order = c(2,2,0), seasonal=list(order=c(0,2,0), period=24))
 res_lst = list()
  for (pred_len in c(24, 48, 168, 336, 720)) {
    curr_pred = predict(evaluated_model1, n.ahead=pred_len)$pred
    # curr_pred = curr_pred[(length(curr_pred)-(pred_len-1)):length(curr_pred)]
   plot(1:pred_len, test[1:pred_len],type="l")
   points(1:pred_len, curr_pred,type="l",col="lightblue")
   mse = mean( (test[1:pred_len]-curr_pred)^2)
   mae = mean( abs(test[1:pred_len]-curr_pred))
   res_lst[paste("mse_",pred_len,sep="")] = mse
   res_lst[paste("mae_",pred_len,sep="")] = mae
 }
 return(res_lst)
get_evaluation_on_ts(etth1.ts)
```



```
## $mae_24
## [1] 0.0483245
##
## $mae_24
## [1] 0.173118
##
## $mse_48
## [1] 0.9483854
##
## $mae_48
## [1] 0.685045
```

```
##
## $mse_168
## [1] <sup>-</sup>1132.077
##
## $mae_168
## [1] 22.81619
## $mse_336
## [1] 58026.52
##
## $mae_336
## [1] 161.9546
##
## $mse_720
## [1] 4901204
##
## $mae_720
```

[1] 1477.134