Computational Physics Übungsblatt 2

Ausgabe: 28.04.2017 Abgabe: 05.05.2017 bis 10:00 Uhr

Senden Sie Ihre Abgaben (Antworten auf Fragestellungen, Plots, Datensätze und Quellcode) als gepacktes Archiv (z.B. als zip-File) per E-Mail an Ihre Übungsgruppenleiter.

Verständnisfragen

- Wie würden Sie einem Physikstudenten erklären, was ein chaotisches System ist? Wie Ihren Nicht-Physiker-Freunden?
- Welche Arten von numerischen Fehlern sind Ihnen bekannt? Wie würden Sie versuchen diese zu vermeiden?
- Häufig ist vom Integrieren einer Differentialgleichung die Rede. Doch worin unterscheiden sich die numerische Integration einer Funktion und einer Differentialgleichung?
- Welche Möglichkeiten fallen Ihnen ein, mehrdimensionale Integrale zu berechnen?
- Wie würden Sie ein gewöhnliches lineares Differentialgleichungssystem im Programm darstellen? Was ändert sich wenn sie vom eindimensionalen in den mehrdimensionalen Fall übergehen?

Aufgabe 1. Wettervorhersage

(10 P.)

Die Voraussage des Wetters ist eine komplizierte Aufgabe. Ein einfacher Zugang zur modellhaften Untersuchung der Dynamik komplexer Wetterphänomene ist das chaotische Lorenz-Modell, gegeben durch folgende Gleichungen:

Dabei sind σ und b dimensionslose Konstanten, die "Materialeigenschaften" des Systems beschreiben, und r ist ein externer Parameter, welcher von der Temperaturdifferenz im System abhängt.

a) Implementieren Sie ein einfaches Euler-Verfahren, welches die Differentialgleichungen integriert.

Füllen Sie die Tabelle aus, indem Sie für $r=20,\,\sigma=10$ und $b=\frac{8}{3}$ und als Startpunkt $(-10,15,19)^T$ wählen und Ihr Programm mit den Schrittweiten $h=5\cdot 10^{-2}, 5\cdot 10^{-3}, 5\cdot 10^{-4}$ für N=10,100,1000 Schritte laufen lassen.

N	10		100		1000	
h	X	у	X	у	X	У
0.05						
0.005						
0.0005						

Was fällt Ihnen auf, wenn Sie die Werte für gleiche Zeiten, vergleichen? Wie erklären Sie sich Ihre Beobachtung?

Abgabe: Quellcode und ausgefüllte Tabelle

b) Stellen Sie die Projektion auf die X-Y-Ebene der Zeitentwicklung des Systems für r=20 und r=28 grafisch dar. Verwenden Sie dafür erneut $\sigma=10$, $b=\frac{8}{3}$ und den Startpunkt $\left(-10,15,19\right)^T$. Für die Schrittweite soll h=0.01 verwendet und die Entwicklung des System über 10^5 Schritte verfolgt werden.

Abgabe: jeweils ein Datensatz mit zwei Spalten x und y für r=20 und r=28, den zugehörigen Plots und den Quellcode

c) Verschieben Sie den Startpunkt auf $(-10.01, 15, 19)^T$ für r = 20. Vergleichen Sie den Plot mit dem entsprechenden Plot aus Aufgabe b). Wie verhält sich das System?

Abgabe: ein Datensatz mit zwei Spalten x und y, den zugehörigen Plot

d) Als Fixpunkt wird der Punkt bezeichnet, an dem alle Ableitungen verschwinden.

Geben Sie mindestens einen Fixpunkt für das Sytem bei r=20 an. Verwenden Sie dafür Ihre Ergebnisse aus den Aufgaben b) - c).

Vergleichen Sie diesen Punkt mit der analytischen Fixpunkten und geben Sie den relativen Fehler bezüglich der exakten Lösung an.

Aufgabe 2. Integrale

(10 P.)

Lösen Sie die folgenden Aufgaben mit einer der drei Ihnen bereits bekannten und in der letzten Woche implementierten Integrationsroutinen.

a) Berechnen Sie folgendes Hauptwertintegral numerisch:

$$I_1 = \mathcal{P} \int_{-1}^1 \mathrm{d}t \, \frac{\mathrm{e}^t}{t} \,. \tag{1}$$

(Kontrolle: $I_1 \simeq 2.114\,501\,8$)

b) Berechnen Sie folgendes Integral numerisch mit einem relativen Fehler $\epsilon \leq 10^{-5}$:

$$I_2 = \int_0^\infty \mathrm{d}t \, \frac{\mathrm{e}^{-t}}{\sqrt{t}} \,. \tag{2}$$

(Kontrolle: $I_2 \simeq 1.77245385$)

c) Berechnen Sie folgendes Integral numerisch mit einem relativen Fehler $\epsilon \leq 10^{-5}$:

$$I_3 = \int_{-\infty}^{\infty} dt \, \frac{\sin t}{t}.\tag{3}$$

(Kontrolle: $I_3=\pi$) Hilfreich ist die Verwendung der in der Bibliothek math.h definierten Konstanten M_PI . Berechnen Sie zum Vergleich das Integral auch analytisch.