2022 级《线性代数 II》期末考试卷(A)参考答案

题	号	1	1_1	Ξ	总分
得	分				

本题得分

一、填空题(1~10小题,每小题5分,共50分).

- 1. 若行列式 $D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 2$,则行列式 $\begin{vmatrix} 3b_1 & 2a_1 + b_1 & c_1 \\ 3b_2 & 2a_2 + b_2 & c_2 \\ 3b_3 & 2a_3 + b_3 & c_3 \end{vmatrix} = \underline{-12}$.
- 3. 设 A 为三阶方阵, $|A| = \frac{1}{3}$,则 $|(3A)^{-1} 2A^*| = \frac{1}{9}$.
- 4. 设n阶方阵A满足 $A^2 A 2E = O$,则 $(A + 2E)^{-1} = -\frac{1}{4}(A 3E)$.
- 5. 矩阵方程 $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $X \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 1 & -4 \\ 2 & 0 \\ 1 & -2 \end{pmatrix}$ 的解 $X = \begin{pmatrix} -10 & 4 \\ -17 & 6 \\ -11 & 4 \end{pmatrix}$
- 6. 设 A 为二 阶方阵, α_1 , α_2 为线性无关的2维列向量, $A\alpha_1 = 0$, $A\alpha_2 = 2\alpha_1 + \alpha_2$,则 |A+2E| = 6____.

- 7. 己知 $\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 5 \\ a \\ 5 \end{pmatrix}$ 线性相关,则 $a = \underline{}$.
- 8. 设四元非齐次线性方程组 Ax = b的系数矩阵A的秩为2, $\alpha_1, \alpha_2, \alpha_3$ 为它的三个线性无关的解,则该方程组的通解为 $x = k_1(\alpha_1 \alpha_2) + k_2(\alpha_1 \alpha_3) + \alpha_1$.
- 9. 设 $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ 与 $B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & x \end{pmatrix}$ 相似,则 $x = \underline{\qquad 2 \qquad }$
- 10. 已知实二次型 $f(x_1, x_2, x_3) = x_1^2 + t x_2^2 + x_3^2 + 2t x_1 x_3$ 是正定的,则t 的取值范围是 0 < t < 1 .

本题 二、解答题(11~13小题,每小题12分,共36分)

11. 讨论当参数 a,b 为何值时,方程组 $\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_2 + 2x_3 + 2x_4 = 1 \\ -x_2 + (a-3)x_3 - 2x_4 = b \end{cases}$ 无解? 有唯一解? $3x_1 + 2x_2 + x_3 + ax_4 = -1$

有无穷多个解?并在有无穷多个解时求出方程组的通解.

$$\widehat{\mathsf{H}}: B = (A \vdots b) = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & -1 & a - 3 & -2 & b \\ 3 & 2 & 1 & a & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & 0 & a - 1 & 0 & b + 1 \\ 0 & 0 & 0 & a - 1 & 0 \end{pmatrix} \cdots (4')$$

- (1) $a \neq 1$ 时,R(A) = R(B),方程组有唯一解;……(6)
- (2) a=1, $b \neq -1$ 时, R(A)=2, R(B)=3, 方程组有无解; $\cdots \cdot \cdot (8)$

通解为:
$$x = c_1 \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
, 其中 c_1 , c_2 为任意常数(12')

12. 已知向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ -1 \\ 5 \\ -1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 3 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 3 \\ -1 \\ 8 \\ 1 \end{pmatrix}, \alpha_4 = \begin{pmatrix} 1 \\ 3 \\ -7 \\ 7 \end{pmatrix}$$
,求该向量组的秩及一个

最大无关组,并将其余向量用该最大无关组线性表示.

$$\mathbf{\text{解}:} (\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}) = \begin{pmatrix} 1 & 1 & 3 & 1 \\ -1 & 1 & -1 & 3 \\ 5 & -1 & 8 & -7 \\ -1 & 3 & 1 & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cdots (6')$$

 $R(\alpha_1, \alpha_2, \alpha_3, \alpha_4)=3, \dots (8')$ $\alpha_1, \alpha_2, \alpha_3$ 为所求的一个极大无关组,……(10') $\alpha_4=-\alpha_1+2\alpha_2, \dots (12')$

13. 设
$$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
, 求正交阵 P 和对角阵 Λ ,使得 $P^{-1}AP = \Lambda$.

解:
$$|A - \lambda E| = -(\lambda - 1)(\lambda - 2)(\lambda - 4)$$

 $\therefore \lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 4, \dots (4')$

当 $\lambda_1 = 1$ 时,解(A - E)x = O, 得基础解系 $\xi_1 = \begin{pmatrix} -1 & 1 & 1 \end{pmatrix}^T$, 单位化得 $p_1 = \begin{pmatrix} -1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \end{pmatrix}^T \cdots (6')$

当
$$\lambda_2 = 2$$
时,解 $(A - 2E)x = O$, 得基础解系 $\xi_2 = \begin{pmatrix} 0 & -1 & 1 \end{pmatrix}^T$, 单位化得 $p_2 = \begin{pmatrix} 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}^T \cdots (8')$

当
$$\lambda_3 = 4$$
时,解 $(A - 4E)x = O$, 得基础解系 $\xi_3 = \begin{pmatrix} 2 & 1 & 1 \end{pmatrix}^T$, 单位化得 $p_3 = \begin{pmatrix} 2/\sqrt{6} & 1/\sqrt{6} & 1/\sqrt{6} \end{pmatrix}^T \cdots (10')$

$$\Rightarrow P = (p_1, p_2, p_3) = \begin{pmatrix} -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{pmatrix}, \quad \Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

则P为正交阵,且 $P^{-1}AP = \Lambda \cdot \cdot \cdot \cdot \cdot (12')$

三、证明题(第14题6分,第15题8分)

14. 设 α_1 , α_2 , α_3 线性无关,令 $b_1 = \alpha_1 + 2\alpha_2$, $b_2 = \alpha_2 + 2\alpha_3$, $b_3 = \alpha_3 + 2\alpha_1$,证明: b_1 , b_2 , b_3 线性无关.

证明: $\alpha_1, \alpha_2, \alpha_3$ 线性无关, $R(\alpha_1, \alpha_2, \alpha_3) = 3 \cdots (1')$

又
$$(b_1, b_2, b_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}, \dots (3')$$

由 $\begin{vmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{vmatrix} = 9 \neq 0$ 可知 $\begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$ 可逆……(4')

故 $R(b_1, b_2, b_3) = R(\alpha_1, \alpha_2, \alpha_3) = 3 \cdots (5')$

因此 b_1, b_2, b_3 线性无关.....(6')

- 15. 设A为n阶方阵 $(n \ge 3)$, A^* 为A的伴随矩阵, 证明:
- (1) 若 R(A) = n,则 $R(A^*) = n$.
- (2) 若 R(A) = n-1,则 $R(A^*)=1$.
- (3) 若 R(A) < n-1, 则 $R(A^*) = 0$.

证明: (1) 若 R(A) = n,则 $|A| \neq 0$, $A^* = |A| A^{-1}$,故 $R(A^*) = n$(2')

- (2) 若 R(A) = n 1,则|A| = 0,故 $A A^* = O$,有 $R(A) + R(A^*) \le n$,因此 $R(A^*) \le 1$;又 A中至少有一个(n-1)阶子式不为零,所以 $A^* \ne O$,因此 $R(A^*) \ge 1$,故 $R(A^*) = 1$(6')
- (3) 若 R(A) = n 1,则 A中所有 (n 1)阶子式均为零,所以 $A^* = O$,因此 $R(A^*) = 0$(8')