Advanced planning

Jana Tumova

Recap: Classical planning

• PDDL

```
Init(Mobile(Robot) \land At(Robot, Left))
Goal(Clean(Left) \land Clean(Right))
Action(L(r),
   PRECOND: Mobile(r)
   EFFECT: At(r, Left)
Action(R(r),
   PRECOND: Mobile(r)
   EFFECT: At(r, Right)
Action(S(r,p),
   PRECOND: Mobile(r) \land At(r,p)
   EFFECT: Clean(p)
```


Recap: Classical planning

Database semantics

Mobile(Robot), At(Robot, Left)

VS.

```
Mobile(Robot),

At(Robot, Left), \neg At(Robot, Right)

\neg Clean(Left), \neg Clean(Right),

\neg Clean(Robot), \neg At(Robot, Robot)

\neg Mobile(Left), \neg Mobile(Right),

\neg At(Left, Left), \neg At(Left, Right),

\neg At(Right, Left), \neg At(Right, Right),

\neg At(Left, Robot), \neg (Right, Robot)
```

Classical planning via forward search

Mobile(Robot), At(Robot, Left) Mobile(Robot), At(Robot, Right) ಹ್ಮಿಜ್ಜಿ Mobile(Robot), At(Robot, Left), Mobile(Robot), At(Robot, Right), Clean(Left)Clean(Right) *ೲ*ೄಁಁಁಁಁಁ Mobile(Robot), At(Robot, Left),Mobile(Robot), At(Robot, Right), Clean(Left), Clean(Right) Clean(Left), Clean(Right)

Sensorless agent

- What if the agent does cannot observe the truth values of all ground fluents?
- Uncertainty
- A set of possible states = belief state

Example: What if the agent cannot observe where it is and whether a spot is dirty or clean?

Sensorless agent

• PDDL, but no database semantics any more

```
Init(Mobile(Robot))
Goal(Clean(Left) \land Clean(Right))
Action(L(r),
   PRECOND: Mobile(r)
   EFFECT: At(r, Left)
Action(R(r),
   PRECOND: Mobile(r)
   EFFECT: At(r, Right)
Action(S(r, p),
   PRECOND: Mobile(r) \land At(r, p)
   EFFECT: Clean(p)
```


Q: What are space requirements for remembering a belief state?

Mobile(Robot)

O(n) vs. $O(2^n)$

O(n) vs. $O(2^n)$

Local sensing

Uncertainty in action execution

Q: Is the classical search through the belief state space good enough?

Recap: Classical planning

PDDL

```
Init(Object(Table) \land Object(Chair) \land Can(C1) \land Can(C2) \land \\ Color(Table, Green) \land Color(Chair, Green) \land Color(C1, Blue) \land Color(C2, Red))
Goal(Color(Chair, Blue) \land Color(Table, Blue))
Action(RemoveLid(can), \\ PRECOND: Can(can) \\ EFFECT: Open(can))
Action(Paint(x, can, c), \\ PRECOND: Object(x) \land Can(can) \land Color(can, c) \land Open(can) \\ EFFECT: Color(x, c)
```

```
Object(Table), Object(Chair),
Can(C1), Can(C2),
Color(Table, Green), Color(Chair, Green),
Color(C1, Blue), Color(C2, Red)
```

Recap: Classical planning

PDDL

```
Init(Object(Table) \land Object(Chair) \land Can(C1) \land Can(C2) \land \\ Color(Table, Green) \land Color(Chair, Green) \land Color(C1, Blue) \land Color(C2, Red)) \\ Goal(Color(Chair, Blue) \land Color(Table, Blue)) \\ Action(RemoveLid(can), \\ PRECOND: Can(can) \\ EFFECT: Open(can)) \\ Action(Paint(x, can, c), \\ PRECOND: Object(x) \land Can(can) \land Color(can, c) \land Open(can) \\ EFFECT: Color(x, c) \\ \end{cases}
```

Color(Table, Green), Color(Chair, Green), Color(C1, Blue), Color(C2, Red)

Recap: Forward search

Color(Table, Green), Color(Chair, Green), RemoveLid(C1)
Color(C1, Blue). Color(C2, B, T)

RemoveLid(C2)

Open(C1) Color(Table, Green), Color(Chair, Green), Color(C1, Blue), Color(C2, Red)

RemoveLid(C2)

RemoveLid(C1)

 $P_{aint(Table,C1,Blue)}$

Sensorless agent

 What if the agent cannot observe a color of the object and whether a can is open or not?

Sensorless agent

No more database semantics in PDDL

 $Object(Table), Object(Chair), \neg Object(C1), \neg Object(C2)$ $Can(C1), Can(C2), \neg Can(Table), \neg Can(Chair)$

No more database semantics in PDDL

 $Object(Table), Object(Chair), \neg Object(C1), \neg Object(C2)$ $Can(C1), Can(C2), \neg Can(Table), \neg Can(Chair)$

O(n)

No more database semantics in PDDL

O(n)

Planning with limited observation

• What if we have limited sensing? What if we only see the table and what if we do not know what are the colors of the paints in the cans?

```
Init(Object(Table) \land Object(Chair) \land Can(C1) \land Can(C2) \land InView(Table))
Goal(Color(Chair, c) \land Color(Table, c))
Action(RemoveLid(can),
    PRECOND: Can(can)
    EFFECT: Open(can)
Action(Paint(x, can),
    PRECOND: Object(x) \land Can(can) \land Color(can, c) \land Open(can)
    EFFECT: Color(x, c)
Percept(Color(x, c),
    PRECOND: Object(x) \land InView(x)
Percept(Color(can, c),
    PRECOND: Can(can) \land InView(can) \land Open(can)
Action(LookAt(x),
    PRECOND: InView(y) \land x \neq y
    EFFECT: InView(x) \land \neg InView(y)
```

Planning in partially observable environments

- More topics:
 - Contingent planning
 - With conditional branching based on percepts
 - Online replanning
 - To reduce the complexity of contingent planning
 - If the agent's model of the workd us ubcirrect

Scheduling and planning with limited resources

```
Jobs(\{AddEngine1 \prec AddWheels1 \prec Inspect1\},\
     \{AddEngine2 \prec AddWheels2 \prec Inspect2\}
Resources(EngineHoists(1), WheelStations(1), Inspectors(2), LugNuts(500))
Action (AddEngine1, DURATION:30,
     Use:EngineHoists(1))
Action(AddEngine2, DURATION:60,
     Use:EngineHoists(1))
Action(AddWheels1, DURATION:30,
     Consume: LugNuts(20), Use: WheelStations(1))
Action(AddWheels2, DURATION:15,
     Consume: LugNuts(20), Use: WheelStations(1))
Action(Inspect_i, DURATION:10,
     Use:Inspectors(1))
```

Hierarchical planning

```
Refinement(Go(Home, SFO),
STEPS: [Drive(Home, SFOLongTermParking),
Shuttle(SFOLongTermParking, SFO)])
Refinement(Go(Home, SFO),
STEPS: [Taxi(Home, SFO)])
```

Planning gets even more interesting when more aspects are involved

- Limited resources: time, cost, capacity,...
- Uncertainty
- Multiple agents
- Different criteria: optimality,...
- Robotics: dynamical constraints

• Integration into context, integration with other AI methods

Tons of PDDL tools and extensions

- PDDL, PDDL 2.1, PDDL 3, PDDL +
- Classical: LAMA, HSP, FF, MetricFF, SATplan, FastDownward...
- Temporal heuristic estimates, linear constraints: LPG, RFD, SAPA, POPF, COLIN
- LTL: OPTIC (POPF), Hplan-P
- Non-linear constraints: MIP, UPMurphi, DiNo, SMTplan
- Integration into ROS: ROSPlan

Source: AAAI ROSPlan tutorial by Cashmore, Magazzeni, 2017.

Some examples of the state of the art

STRIPS in Games: Goal-Oriented Action Planning

- F.E.A.R and others
- http://alumni.media.mit.edu/~jorkin/goap.html

Motion planning

Sampling-based motion planning

https://www.youtube.com/watch?v=6Pngam882hM

Robot motion planning: RRT vs. RRT*

https://www.youtube.com/watch?v=ag-txw4KUgo

Motion planning with PDDL

https://www.youtube.com/watch?v=kb79tR5bmlE

Integrated task and motion planning

http://lis.csail.mit.edu/

Temporal Logic Planning

System model

$$\dot{p}(t) = u(t)$$
 $p(t) \in P \subseteq \mathbb{R}^2$ $u(t) \in U \subseteq \mathbb{R}^2$ $p(0) = P_1$

Behavior specification

Periodically visit P_1, P_4, P_8 and never enter P_{10}

Linear Temporal Logic (LTL) formula

$$\mathcal{GF} P_1 \wedge \mathcal{GF} P_4 \wedge \mathcal{GF} P_8 \wedge \mathcal{G} \neg P_{10}$$

Maximally satisfying temporal logic planning

 $\mathsf{GF}((R_4 \wedge grab \vee R_5 \wedge grab) \wedge \mathsf{F}(R_2 \wedge drop)) \wedge \mathsf{GF} \, lighten.$

Assignment 3:

A3. PP Pen&paper variant	A3.PR Project variant
Individual	In teams
E-B level	A level

Further sources of Inspiration

- For state-of-the art challenges in planning
 - http://icaps16.icaps-conference.org
- For your "case studies"
 - https://helios.hud.ac.uk/scommv/IPC-14/domains sequential.html

Further reading on principles

Further interesting links

- On state-of-the art approaches in planning
 - http://icaps-conference.org/index.php/Main/Competitions
- On applications of AI planning
 - http://icaps16.icaps-conference.org/proceedings/spark16.pdf
- NASA planning and scheduling research
 - https://ti.arc.nasa.gov/tech/asr/planning-and-scheduling/
 - https://github.com/nasa/europa/wiki
- On planning in robotics
 - Go to a program of any major conference (ICRA, IROS), look for task and motion planning tracks,

http://drops.dagstuhl.de/opus/volltexte/2017/7245/pdf/dagrep_v007_i001_p032_s17031.pdf