1 Vector Spaces

1.1 Sols of simultaneous linear equations

Theorem 1.1.4 Solution sets of inhomogeneous systems If the solution set of a linear system of equations is non-empty, then we obtain all solutions by adding component-wise an arbitrary solution of the associated homogenised system to a fixed solution of the system.

1.2 Fields & vector spaces

Definition 1.2.1.1 Fields

A field F is a set with functions

addition =
$$+: F \times F \to F$$
; $(\lambda, \mu) \mapsto \lambda + \mu$
multiplication = $:: F \times F \to F$; $(\lambda, \mu) \mapsto \lambda \mu$

such that (F, +) and $(F \setminus \{0\}, .)$ are abelian groups, with

$$\lambda(\mu + \nu) = \lambda\mu + \lambda\nu \in F, \quad \forall \lambda\nu \in F$$

The neutral elements are called $0_F, 1_F$. In particular

$$\lambda + \mu = \mu + \lambda$$
, $\lambda \cdot \mu = \mu \cdot \lambda$, $\lambda + 0_F = \lambda$, $\lambda \cdot 1_F = \lambda \in F$, $\forall \lambda, \mu \in F$

For every $\lambda \in F$ there exists $-\lambda \in F$ such that

$$\lambda + (-) = 0_F \in F$$

For every $\lambda \neq 0 \in F$ there exists $\lambda^{-1} \neq 0 \in F$ such that

$$\lambda(\lambda^{-1}) = 1_F \in F$$

Definition 1.2.1.2 Vector space

A vector space V over a field F is a pair consisting of an abelian group V=(V,+) and a mapping

$$F \times V \to V : (\lambda, \vec{v}) \mapsto \lambda \vec{v}$$

such that for all $\lambda,\mu\in F$ and $\vec{v},\vec{w}\in V$ the following identities hold:

$$\lambda(\vec{v} + \vec{w}) = (\lambda \vec{v}) + (\lambda \vec{w})$$
 (distributivity)

$$(\lambda + \mu)\vec{v} = (\lambda \vec{v}) + (\mu \vec{v})$$
 (distributivity)

$$\lambda(\mu \vec{v}) = (\lambda \mu)\vec{v}$$
 (associativity)

$$1_F \vec{v} = \vec{v}$$

A vector space V over a field F is called an F-vector space.

Lemma 1.2.2 Product with the scalar zero If V is a vector space and $\vec{v} \in V$, then $0\vec{v} = \vec{0}$

Lemma 1.2.3 Product with the scalar (-1) If V is a vector space and $\vec{v} \in V$, then $(-1)\vec{v} = -\vec{v}$.

Lemma 1.2.4 Product with the zero vector If V is a vector space over a field F, then $\lambda \vec{0} = \vec{0}$ for all $\lambda \in F$. Furthermore, if $\lambda \vec{v} = \vec{0}$, then either $\lambda = 0$ or $\vec{v} = \vec{0}$.

1.3 Products of sets and of vector spaces

1.4 Vector subspaces

Definition 1.4.1 *Vector subspaces*

A subset U of a vector space V is called a *vector subspace* or subspace if U contains $\vec{0}$ and

$$\vec{u}, \vec{v} \in U$$
 and $\lambda \in F \implies \vec{u} + \vec{v} \in U$ and $\lambda \vec{u} \in U$

 $\begin{tabular}{ll} \textbf{Proposition 1.4.5} Generating a vector subspace from a subset \\ \end{tabular}$

Let T be a subset of a vector space V over a field F. Then amongst all vector subspace of V that include T, there is a smallest vector subspace

$$\langle T \rangle = \langle T \rangle_F \subseteq V$$

It can be described as the set of all vectors $\alpha_1 \vec{v}_1 + \cdots + \alpha_r \vec{v}_r$ with $\alpha_1, \ldots, \alpha_r \in F$ and $\vec{v}_1, \ldots, \vec{v}_r \in T$, together with $\vec{0}$ in the case $T = \emptyset$.

Definition 1.4.7 Generating set

A subset of a vector space is called a *generating set* of our vector space if its span is all of the vector space. A vector space that has a finite generating set is said to be *finitely generated*.

Definition 1.4.9 Power Set & System of Subsets

The set of all subsets $\mathcal{P}(X) = \{U : U \subseteq X\}$ of X is the power set of X.

A subset of $\mathcal{P}(X)$ is a system of subsets of X.

Given such a system $\mathcal{U} \subseteq \mathcal{P}(X)$ we can create two new subsets of X, the *union* and the *intersection* of the sets of our system \mathcal{U} :

$$\bigcup_{U \in \mathcal{U}} U = \{x \in X : \exists U \in \mathcal{U}. x \in U\}$$
$$\bigcap_{U \in \mathcal{U}} U = \{x \in X : x \in U \ \forall \ U \in \mathcal{U}\}$$

In particular the intersection of the empty system of subsets of X is X, and the union of the empty system of subsets X is the empty set.

1.5 Linear independence and bases

Definition 1.5.1 Linear independence

A subset L of a vector space V is linearly independent if for all pairwise different vectors $\vec{v}_1, \ldots, \vec{v}_r \in L$ and arbitrary vectors $\alpha_1, \ldots, \vec{v}_r \in F$,

$$\alpha_1 \vec{v}_1 + \dots + \alpha_r \vec{v}_r = \vec{0} \implies \alpha_1 = \dots = \alpha_r = 0$$

Definition 1.5.2 Linear dependence

A subset L of a vector space V is called *linearly dependent* if it is not linearly independent.

Definition 1.5.8 Basis

A basis of a vector space V is a linearly independent generating set in V.

Theorem 1.5.11 Linear combinations of basis elements Let F be a field, V be a vector space over F, and $\vec{v}_1, \ldots, \vec{v}_r \in V$ vectors. The family $(\vec{v}_i)_{1 \leq i \leq r}$ is a basis of V if and only if the following "evaluation" mapping

$$\Phi: F^r \to V$$
$$(\alpha_1, \dots, \alpha_r) \mapsto \alpha \vec{v}_1 + \dots + \alpha_r \vec{v}_r$$

is a bijection.

Theorem 1.5.12 Characterisation of bases

The following are equivalent for a subset E of a vector space V:

- 1. E is a basis, i.e. a linearly independent generating set;
- 2. E is minimal among all generating sets, meaning that $E \setminus \{\vec{v}\}\$ does not generate $V, \forall \vec{v} \in E;$
- 3. E is maximal among all linearly independent subsets, meaning that $E \cup \{\vec{v}\}$ is not linearly independent $\forall \vec{v} \in V$.

Corollary 1.5.13 The existence of a basis

Let V be a finitely generated vector space over a field F. The V has a basis.

Theorem 1.5.14 (Useful variant on the Characterisation of bases)

Let V be a vector space.

- 1. If $L \subset V$ is a linearly independent subset and E is minimal amongst all generating sets of our vector space with the property that $L \subseteq E$, then E is a basis.
- 2. If $E \subseteq V$ is a generating set and if L is maximal amongst all linearly independent subsets of our vector space with the property $L \subseteq E$, then L is basis.

Definition 1.5.15 Free vector space

Let X be a set and F a field. The set $\mathrm{Maps}(X,F)$ of all mappings $f:X\to F$ becomes an F-vector space with the operations of point-wise addition and multiplication by a scalar. The subset of all mappings which send almost all elements of X to zero is a vector subspace

$$F\langle X \rangle \subseteq \operatorname{Maps}(X, F)$$

This vector subspace is called the $free\ vector\ space\ on\ the\ set\ X.$

Theorem 1.5.16 (Useful variant on Linear combinations of basis elements)

Let F be a field, V an F-vector space, and $(\vec{v}_i)_{i \in I}$ a family of vectors from the vector space V. The following are equivalent:

- 1. The family $(\vec{v}_i)_{i \in I}$ is a basis for V;
- 2. For each vector $\vec{v} \in V$ there is precisely one family $(a_i)_{i \in I}$ of elements of our field F, almost all of which are zero and such that

$$\vec{v} = \sum_{i \in I} a_i \vec{v}_i$$

1.6 Dimension of a vector space

Theorem 1.6.1 Fundamental estimate of linear algebra No linearly independent subset of a given vector space has more elements than a generating set. Thus if V is a vector space, $L \subset V$ a linearly independent subset, and $E \subseteq V$ a generating set, then:

$$|L| \le |E|$$

Theorem 1.6.2 Steinitz exchange theorem

Let V be a vector space, $L \subset V$ and finite linearly independent subset, and $E \subseteq V$ and generating set. Then there is an injection $\Phi: L \to E$ such that $(E \setminus \Phi(L)) \cup L$ is also a generating set for V.

We can swap out some elements of a generating set by the elements of our linearly independent set, and still keep a generating set.

Lemma 1.6.3 Exchange lemma

Let V be a vector space, $M \subseteq V$ a linearly independent subset, and $E \subseteq V$ a generating subset, such that $M \subseteq E$. If $\vec{w} \in V \setminus M$ is a vector set not belonging to M such that $M \cup \{\vec{w}\}$ is linearly independent, then there exists $\vec{e} \in E \setminus M$ such that $\{E \setminus \{\vec{e}\}\} \cup \{\vec{w}\}$ is a generating set for V.

Corollary 1.6.4 Cardinality of bases

Let V be a finitely generated vector space.

- 1. V has a finite basis;
- 2. V cannot have an infinite basis;
- 3. Any two bases of V have the same number of elements.

Definition 1.6.5 Dimension

The cardinality of one (and each) basis of a finitely generated vector space V is called the dimension of V and is denoted $\dim V$. If the vector space is not finitely generated, then $\dim V = \infty$ and V is $infinite\ dimensional$.

Corollary 1.6.8 Cardinality criterion for bases Let V be a finitely generated vector space.

- 1. Each linearly independent subset $L \subset V$ has at most $\dim V$ elements, and if $|L| = \dim V$, then L is actually a basis;
- 2. Each generating set $E \subseteq V$ has at least dim V elements, and if $|E| = \dim V$ then E is actually a basis.

Corollary 1.6.9 Dimension estimate for vector subspaces A proper vector subspace of a finite dimensional vector space has itself a strictly smaller dimension.

Remark 1.6.10 If $U \subseteq V$ is a vector subspace of an arbitrary vector space, then we have $\dim U \leq \dim V$ and if we have $\dim U = \dim V < \infty$ then it follows that U = V.

Notation If V is a vector space, and U, W are subspaces of V, then we define U + W to be the subspace $\langle U \cup W \rangle$ of V generated by U and W together.

Theorem 1.6.11 The dimension theorem

Let V be a vector space containing vector subspaces $U,W\subseteq V.$ Then

$$\dim(U+W) + \dim(U\cap W) = \dim U + \dim W$$

1.7 Linear mappings

Definition 1.7.1 Linear mapping

Let V,W be vector spaces over a field F. A mapping $f:V\to W$ is called *linear* if for all $\vec{v}_1,\vec{v}_2\in V$ and $\lambda\in F$ we have

$$f(\vec{v}_1 + \vec{v}_2) = f(\vec{v}_1) + f(\vec{v}_2)$$

 $f(\lambda \vec{v}_1) = \lambda f(\vec{v}_1)$

A bijective linear mapping is called an *isomorphism* of vector spaces. If there is an isomorphism of vector spaces, we call them *isomorphic*. A homomorphism from one vector space to

itself is called an *endomorphism*. An isomorphism of a vector space to itself is called an *automorphism*.

Definition 1.7.5 Fixed point

A point that is sent to itself by a mapping is called a *fixed* point of the mapping. Given a mapping $f: X \to X$, we denote the set of fixed points by

$$X^f = \{x \in X : f(x) = x\}$$

Definition 1.7.6 Complementary

Two vector subspace V_1, V_2 of a vector space V are complementary if addition defines a bijection $V_1 \times V_2 \to V$

Theorem 1.7.7 Classification of vector spaces by their dimension

Let $n \in \mathbb{N}$. Then a vector space over a field F is isomorphic to F^n if and only if it has dimension n.

Lemma 1.7.8 Linear mappings and bases

Let V, W be vector spaces over F and let $B \subset V$ be a basis. Then restriction of a mapping gives a bijection

$$\operatorname{Hom}_F(V, W) = \operatorname{Hom}(V, W) \subseteq \operatorname{Maps}(V, W)$$

 $f \mapsto f|_B$

In other words, each linear mapping determines and is completely determined by the values it takes on a basis.

Proposition 1.7.9

- 1. Every injective linear mapping $f:V\to W$ has a left inverse, in other words a linear mapping $g:W\to V$ such that $g\circ f=\mathrm{id}_V$
- 2. Every surjective linear mapping $f:V\to W$ has a right inverse, in other words a linear mapping $g:W\to V$ such that $f\circ g=\mathrm{id}_W$

1.8 Rank-Nullity theorem

Definition 1.8.1 Image, Kernel

The *image* of a linear mapping $f:V\to W$ is the subset $\operatorname{im}(f)=f(V)\subseteq W$. It is a vector subspace of W. The preimage of the zero vector of a linear mapping $f:V\to W$ is denoted by

$$\ker(f) \equiv f^{-1}(0) = \{ v \in V : f(v) = 0 \}$$

and is called the kernel of the linear mapping f. The kernel is a vector subspace of V.

Lemma 1.8.2 A linear mapping $f: V \to W$ is injective if and only if $\ker_f = 0$.

Theorem 1.8.4 Rank-Nullity theorem

Let $f: V \to W$ be a linear mapping between vector spaces. Then

$$dimV = dim(ker f) + dim(im f)$$

= nullity + rank

Corollary 1.8.5 (Dimension theorem, again)

Let V be a vector space, and $U, W \subseteq V$ vector subspaces. Then

$$\dim(U+W) + \dim(U \cap W) = \dim U + \dim W$$

Definition *Idempotent*

An element f of a set with composition or product is called idempotent if $f^2 = f$.

Linear Mappings and Matrices

Linear mappings $F^m \to F^n$ and matrices

Theorem 2.1.1 Linear mappings $F^m \to F^n$ and matrices Let F be a field and let $m, n \in \mathbb{N}$. There is a bijection between the space of linear mappings $F^m \to F^n$ and the set of matrices with n rows and m columns and entries in F

$$M: \operatorname{Hom}_F(F^m, F^n) \to \operatorname{Mat}(n \times m; F)$$

$$f \mapsto [f]$$

This attaches to each linear mapping f its representing ma $trix M(f) \equiv [f]$. The columns of this matrix are the images under f of the standard basis elements of F^m

$$[f] \equiv (f(\mathbf{e}_1)|f(\mathbf{e}_2)|\cdots|f(\mathbf{e}_m))$$

Definition 2.1.6 Product

Let $n, m, l \in \mathbb{N}$, F and field, and let $A \in \operatorname{Mat}(n \times m; F)$ and $B \in \operatorname{Mat}(m \times l; F)$ be matrices. The product $A \circ B = AB \in$ $Mat(n \times l; F)$ is the matrix defined by

$$(AB)_{ik} = \sum_{j=1}^{m} A_{ij} B_{jk}$$

Matrix multiplication produces a mapping

$$\operatorname{Mat}(n \times m; F) \times \operatorname{Mat}(m \times l; F) \to \operatorname{Mat}(m \times l; F)$$

 $(A, B) \mapsto AB$

Theorem 2.1.8 Composition of linear mappings and prod- Definition 2.2.8 Full rank ucts of matrices

Let $g: F^l \to F^m$ and $f: F^m \to F^n$ be linear mappings. The representing matrix of their composition is the product of their representing matrices

$$[f \circ g] = [f] \circ [g]$$

Proposition 2.1.9 Calculating with matrices

Let $k, l, m, n \in \mathbb{N}, A, A' \in \operatorname{Mat}(n \times m; F), B, B' \in \operatorname{Mat}(m \times m; F)$ $l; F), C \in \operatorname{Mat}(l \times k; F)$ and $I = I_m$. Then the following hold for matrix multiplication

$$(A + A')B = AB + A'B$$

$$A(B + B') = AB + AB'$$

$$IB = B$$

$$AI = A$$

$$(AB)C = A(BC)$$

Definition 2.2.1 *Invertible*

A matrix A is called *invertible* if there exist matrices B and C such that BA = I and AC = I.

Definition 2.2.2 Elementary matrix

An elementary matrix is any square matrix that differs from the identity matrix in at most one entry.

Theorem 2.2.3 Every square matrix can be written as a product of elementary matrices.

Definition 2.2.4 Smith Normal Form

Any matrix whose only non-zero entries lie on the diagonal, and which has first 1s on along the diagonal followed by 0s is in Smith Normal Form.

Theorem 2.2.5 Transformation of a matrix into Smith-Normal form

For each matrix $A \in \operatorname{Mat}(n \times m; F)$ there exist invertible matrices P and Q such that PAQ is a matrix in Smith Normal Form.

Definition 2.2.6 Rank

The column rank of a matrix $A \in \operatorname{Mat}(n \times m; F)$ is the dimension of the subspace of F^n generated by the columns of A. Similarly, the row rank of A is the dimension of the subspace of F^m generated by the rows of A.

Theorem 2.2.7 The column rank and the row rank of any matrix are equal.

Whenever the rank of a matrix is equal to the number of rows (or columns — whichever is smaller), it has *full rank*.

Abstract linear mappings and matrices 2.2

Theorem 2.3.1 Abstract linear mappings and matrices Let F be a field, V and W vector spaces over F with ordered bases $\mathcal{A} = (\vec{v}_1, \dots, \vec{v}_m)$ and $\mathcal{B} = (\vec{w}_1, \dots, \vec{w}_n)$. Then to each linear mapping $f: V \to W$ we associated a representing matrix $_{\mathcal{B}}[f]_{A}$ whose entries a_{ij} are defined by the identity

$$f(\vec{v}_j) = a_{1j}\vec{w}_1 + \dots + a_{nj}\vec{w}_n \in W$$

This produces a bijection, which is even an isomorphism of vector spaces

$$\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}: \operatorname{Hom}_{F}(V, W) \tilde{\rightarrow} \operatorname{Mat}(n \times m; F)$$

$$f \mapsto_{\mathcal{B}} [f]_{\mathcal{A}}$$

Theorem 2.3.2 The representing matrix of a composition of linear mappings

Let F be a field and U, V, W finite-dimensional vector spaces over F with ordered bases $\mathcal{A}, \mathcal{B}, \mathcal{C}$. If $f: U \to V$ and $g:V\to W$ are linear mappings, then the representing matrix of the composition $g \circ f: U \to W$ is the matrix product of the representing matrices of f and g

$$_{\mathcal{C}}[g \circ f]_{\mathcal{A}} =_{\mathcal{C}} [g]_{\mathcal{B}} \circ_{\mathcal{B}} [f]_{\mathcal{A}}$$

Definition 2.3.3 Representation of a vector with respect to a basis

Let V be a finite-dimensional vector spaces with an ordered basis $\mathcal{A} = (\vec{v}_1, \dots, \vec{v}_m)$ We denote the inverse to the bijection $\Phi_A: F^m \to V, (\alpha_1, \dots, \alpha_m)^T \mapsto \alpha_1 \vec{v}_1 + \dots + \alpha_m \vec{v}_m$ by

$$\vec{v} \mapsto_{\mathcal{A}} [\vec{v}]$$

The column vector $A[\vec{v}]$ is called the representation of the vector \vec{v} with respect to the basis A.

Theorem 2.3.4 Representation of the image of a vector Let V, W be finite-dimensional vector-spaces over F with ordered bases \mathcal{A}, \mathcal{B} and let $f: V \to W$ be a linear mapping. The following holds for $\vec{v} \in V$:

$$_{\mathcal{B}}[f(\vec{v})] =_{\mathcal{B}} [f]_{\Lambda} \circ_{\mathcal{A}} [\vec{v}]$$

Change of a matrix by change of basis

Definition 2.4.1 Change of basis matrix

Let $\mathcal{A} = (\vec{v}_1, \dots, \vec{v}_n)$ and $\mathcal{B} = (\vec{w}_1, \dots, \vec{w}_n)$ be ordered bases of the same F-vector space V. Then the matrix representing the identity mapping with respect to these bases $\beta[id_V]_A$ is called a *change of basis matrix*. By definition, its entries are given by the equalities $\vec{v}_j = \sum_{i=1}^n a_{ij} \vec{w}_i$.

Theorem 2.4.3 Change of basis

Let V and W be finite-dimensional vector-spaces over F and let $f: V \to W$ be a linear mapping. Suppose that $\mathcal{A}, \mathcal{A}'$ are ordered bases of V and $\mathcal{B}, \mathcal{B}'$ are ordered bases of W. Then

$$_{\mathcal{B}'}[f]_{\mathcal{A}'} =_{\mathcal{B}'} [\mathrm{id}_W]_{\mathcal{B}} \circ_{\mathcal{B}} [\mathrm{f}]_{\mathcal{A}} \circ_{\mathcal{A}} [\mathrm{id}_V]_{\mathcal{A}'}$$

Corollary 2.4.4 Let V be a finite-dimensional vector-space and let $f: V \to V$ be an endomorphism of V. Suppose that $\mathcal{A}, \mathcal{A}'$ are ordered bases of V. Then

$$_{\mathcal{A}'}[f]_{\mathcal{A}'} =_{\mathcal{A}'} [\mathrm{id}_V]_{\mathcal{A}'}^{-1} \circ_{\mathcal{A}} [\mathrm{f}]_{\mathcal{A}} \circ_{\mathcal{A}} [\mathrm{id}_V]_{\mathcal{A}'}$$

Theorem 2.4.5 Smith Normal Form

Let $f: V \to W$ be a linear mapping between finitedimensional F-vector spaces. There exist an ordered basis \mathcal{A} of V and an ordered basis \mathcal{B} of W such that the representing matrix $_{\mathcal{B}}[f]_{\mathcal{A}}$ has zero entries everywhere except possibly on the diagonal, and along the diagonal there are 1s first, followed by 0s.

Definition 2.4.6 Trace

The trace of a square matrix is defined to be the sum of its diagonal entries. We denote this by tr(A)

Definition Nilpotent

An endomorphism $f: V \to V$ of an F-vector space is called nilpotent if and only if there exists $d \in \mathbb{N}$ such that $f^d = 0$.

Rings and Modules

Rings 3.1

Definition 3.3.1 Ring

A ring is a set with two operations (R, +, ...) that satisfy

- 1. (R, +) is an abelian group;
- 2. (R, \cdot) is a monoid; this means that the second operation $: R \cdot R \to R$ is associative and that there is an *identity* element $1 = 1_R \in R$.
- 3. The distributive laws hold.

A ring in which multiplication is commutative is a commutative ring.

Proposition 3.1.7 Divisibility by sum

A natural number is divisible by 3 (respectively 9) precisely when the sum of its digits is divisible by 3 (respectively 9).

Definition 3.1.8 Field

A field F is a non-zero commutative ring in which every nonzero element $a \in F$ has an inverse $a^{-1} \in F$.

Proposition 3.1.11

Let $m \in \mathbb{Z}^+$. The commutative ring $\mathbb{Z}/m\mathbb{Z}$ is a field if and only if m is prime.

3.2 Properties of rings

Lemma 3.2.1 Additive inverses Let R be a ring and let $a, b \in R$. Then

1. 0a = 0 = a0

2.
$$(-a)b = -(ab) = a(-b)$$

3.
$$(-a)(-b) = ab$$

Definition 3.2.3 Multiple of an element

Let $m \in \mathbb{Z}$. The m-th multiple ma of an element a in abelian group R is

$$ma = \underbrace{a + a + \dots + a}_{m \text{ terms}}$$
 if $m > 0$

0a = 0, and negative multiples are defined by (-m)a =-(ma).

Lemma 3.2.4 Rules for multiples

Let R be a ring, let $a, b \in R$ and let $m, n \in \mathbb{Z}$. Then

1.
$$m(a+b) = ma + mb$$
;

2.
$$(m+n)a = ma + na;$$

3.
$$m(na) = (mn)a;$$

4.
$$m(ab) = (ma)b = a(mb);$$

5.
$$(ma)(nb) = (mn)(ab);$$

Definition 3.2.6 Unit

Let R be a ring. An element $a \in R$ is called a *unit* if it is invertible in R or (in other words) has a multiplicative inverse in R.

The two operations are called addition and multiplication in **Proposition 3.2.10** The set R^{\times} of units in a ring R forms a group under multiplication.

Definition 3.2.13 Integral domains

An *integral domain* is a non-zero commutative ring that has no zero-divisors.

Proposition 3.2.16 Cancellation law for integral domains Let R be an integral domain and let $a, b, c \in R$.

$$ab = ac$$
 and $a \neq 0 \implies b = c$

Proposition 3.2.17 Let $m \in \mathbb{N}$. Then $\mathbb{Z}/m\mathbb{Z}$ is an integral domain if and only if m is prime.

Theorem 3.2.18 Every *finite* integral domain is a field.

3.3Polynomials

Definition 3.3.1 Polynomials over rings

Let R be a ring. A polynomial over R is an expression of the form

$$P = a_0 + a_1 X + a_2 X^2 + \dots + a_m X^m$$

for some $m \in \mathbb{N}$ and elements $a_i \in R$ for $i \in [0, m]$.

The set of all polynomials over R is denoted by R[X].

In case a_m is non-zero, the polynomial P has degree m, written deg(P), and a_m is its leading coefficient.

When the leading coefficient is 1, the polynomial is a monic polynomial.

A polynomial of degree one is called *linear*, a polynomial of degree two is called *quadratic*, and a polynomial of degree three is called *cubic*.

Definition 3.3.2 Ring of polynomials

The set R[X] is a ring called the ring of polynomials over R. The zero and the identity of R[X] are the zero and identity of R, respectively.

Lemma 3.3.3

- 1. If R is ring with no zero-divisors, then R[X] has no zerodivisors and deg(PQ) = deg(P) + deg(Q) for non-zero $P,Q \in R[X].$
- 2. If R is an integral domain, then so is R[X]

Theorem 3.3.4 Division and remainder

Let R be an integral domain, and let $P,Q \in R[X]$ with Q monic. Then there exists unique $A, B \in R[X]$ such that P = AQ + B and deg(B) < deg(Q) or B = 0.

Definition 3.3.6 Evaluated ℰ Root

Let R be a commutative ring and $P \in R[X]$ a polynomial.

Then the polynomial P can be evaluated at $\lambda \in R$ to produce $P(\lambda)$ by replacing the powers of X in the polynomial P by the corresponding powers of λ . This gives a mapping

$$R[X] \to \operatorname{Maps}(R,R)$$

An element $\lambda \in R$ is a root of P if $P(\lambda) = 0$.

Proposition 3.3.9 Let R be a commutative ring, let $\lambda \in R$ and $P(X) \in R[X]$. Then λ is a root of P(X) if and only if $(X - \lambda)$ divides P(X).

Theorem 3.3.10 Let R a ring, or more generally, an integral domain. Then an non-zero polynomial $P \in R[X] \setminus \{0\}$ has at most deg(P) roots in R.

Definition 3.3.11 Algebraically closed

A field F is algebraically closed if each non-constant polynomial $P \in F[X] \setminus F$ with coefficients F has a root in F.

Theorem 3.3.13 Fundamental theorem of algebra If F is an algebraically closed field, then every non-zero polynomial $P \in F[X] \setminus \{0\}$ decomposes into linear factors

$$P = c(X - \lambda_1) \cdots (X - \lambda_n)$$

with $n > 0, c \in F^{\times}$ and $\lambda_1, \ldots, \lambda_n \in F$. This decomposition is unique up to reordering of the factors.

Theorem 3.3.14 If F is an algebraically closed field, then every non-zero polynomial $P \in F[X] \setminus \{0\}$ decomposes into linear factors

$$P = c(X - \lambda_1) \cdots (X - \lambda_n)$$

with $n \geq 0, c \in F^{\times}$ and $\lambda_1, \ldots, \lambda_n \in F$. This decomposition in unique up to reordering the factors.

3.4 Homomorphisms, Ideals, and Subrings

Definition 3.4.1 Ring homomorphism

Let R and S be rings. A mapping $f: R \to S$ is a ring homomorphism if the following hold $\forall x, y \in R$

$$f(x + y) = f(x) + f(y)$$
$$f(xy) = f(x)f(y)$$

Prelude to ideals

Let $f: R \to S$ be a ring homomorphism with ker $f = \{r \in S\}$ $R: f(r) = 0_S$. Then ker f is:

• a subgroup of R under addition

- $0_R \in \ker f$
- closed under multiplication
- closed under left and right multiplication by arbitrary elements of R

i.e.
$$x \in \ker f \implies rx, xr \in \ker f \ \forall r \in R$$

Lemma 3.4.5 Let R and S be rings and $f: R \to S$ a ring homomorphism. Then $\forall x, y \in R$ and $m \in \mathbb{Z}$

- 1. $f(0_R) = 0_S$
- 2. f(-x) = -f(x)
- 3. f(x-y) = f(x) f(y)
- 4. $f(m \cdot x) = m \cdot f(x)$

Where mx denotes the m-th multiple of x.

Definition 3.4.7 Ideal

A subset I of a ring R is an ideal, written $I \leq R$, if the following hold:

- 1. $I \neq \emptyset$
- 2. I is closed under subtraction (it's a subgroup)
- 3. $\forall i \in I \text{ and } \forall r \in R \text{ we have } ri, ir \in I \text{ (I is closed under } I)$ multiplication by elements of R)

Ideals satisfy the properties of rings, except possibly the existence of a multiplicative identity.

elements from the ring — not just elements from within the ring homomorphism. ideal!

Definition 3.4.11 Generated ideal

Let R be a commutative ring and let $T \subset R$. Then the ideal of R generated by T is the set

$$_{R}\langle T \rangle = \{r_{1}t_{1} + \dots + r_{m}t_{m} : t_{1}, \dots, t_{m} \in T, r_{1}, \dots, r_{m} \in R\}$$

together with the zero element in the case $T = \emptyset$.

Proposition 3.4.14 Let R be a commutative ring and let $T \subseteq R$. Then $R\langle T \rangle$ is the smallest ideal of R that contains T.

Definition 3.4.15 Principal ideal

Let R be a commutative ring. An ideal $I \triangleleft R$ is called a principal ideal if $I = \langle t \rangle$ for some $t \in R$.

Definition 3.4.17 Kernel

Let R and S be rings, and let $f: R \to S$ be a ring homomorphism. Since F is in particular a group homomorphism from (R,+) to (S,+), the kernel of f already has a meaning:

$$\ker f = \{ r \in R : f(r) = 0_S \}$$

Proposition 3.4.18 Let R and S be rings and $f: R \to S$ a ring homomorphism. Then ker f is an ideal of R.

Lemma 3.4.20 f is injective if and only if ker $f = \{0\}$

Lemma 3.4.21 The intersection of any collection of ideals of a ring R is an ideal of R.

Lemma 3.4.22 Let I and J be ideals of a ring R. Then

$$I + J = \{a + b : a \in I, b \in J\}$$

is an ideal of R.

Definition 3.4.23 Subring

Let R be a ring. A subset $R' \subseteq R$ is a subring of R if R' is itself a ring under the operations of addition and multiplication defined in R.

Proposition 3.4.26 Test for a subring

Let R be a ring, and $R' \subseteq R$. Then R' is a subring if and only if

- 1. R' has a multiplicative identity, and
- 2. R' is closed under subtraction, and
- 3. R' is closed under multiplication.

Ideals are subrings which are closed under multiplication with **Proposition 3.4.29** Let R and S be rings and $f: R \to S$ a

- 1. If R' is a subring of R then f(R') is a subring of S. In particular, f is a subring of S.
- 2. Assume that $f(1_R) = 1_S$. Then if x is a unit in R, f(x)is a unit is in S and $(f(x))^{-1} = f(x^{-1})$. In this case f restricts to a group homomorphism $f|_{R^{\times}}: R^{\times} \to S^{\times}$.

3.5 Equivalence Relations

Definition 3.5.1 Equivalence relation

A relation R on a set X is a subset $R \subseteq X \times X$. R is an equivalence relation on X when $\forall x, y, z \in X$ the following hold:

- 1. Reflexivity: xRx
- 2. Symmetry: $xRy \iff yRx$
- 3. Transitivity: xRy and $yRz \implies xRz$

Definition 3.5.3

Suppose that \sim is an equivalence relation on a set X. For $x \in X$ the set $E(x) \equiv \{z \in X : z \sim x\}$ is called the *equivalence class* of x.

A subset $E \subseteq X$ is called an *equivalence class* for \sim if $\exists x \in X \ni E = E(x)$.

An element of an equivalence class is called a *representative* of the class.

A subset $Z \subseteq X$ containing precisely one element from each equivalence class is called a *system of representatives* for the equivalence relation.

Definition 3.5.5 Set of equivalence classes

Given an equivalence relation \sim on the set X, the set of equivalence classes, which is a subset of $\mathcal{P}(X)$, is

$$(X/\sim) \equiv \{E(x) : x \in X\}$$

There is a canonical mapping can : $X \to (X/\sim), \ x \mapsto E(x)$. It is obviously a surjection.

(I think it is also a homomorphism, which would then force \overline{f} to also be a homomorphism, and thus facilitate the proof of the First Isomorphism Theorem.)

Remark

Suppose that \sim is an equivalence relation on X. If $f: X \to Z$ is a mapping with the property that $x \sim y \Longrightarrow f(x) = f(y)$, then there is a unique mapping $\overline{f}: (X \setminus \sim) \to Z$ with $f = \overline{f} \circ \mathrm{can}$. Its definition is easy: f(E(x)) = f(x). This property is called the universal property of the set of equivalence classes.

Definition 3.5.7 Well-defined

A mapping $g:(X/\sim)\to Z$ is well-defined if there is a mapping $f:X\to Z$ such that f has the property $x\sim y\implies f(x)=f(y)$ and $g=\overline{f}$.

3.6 Factor Rings

Prelude

Let $f: R \to S$ be a ring homomorphism, such that

 $x \sim y \iff f(x) = f(y) \iff f(x-y) = 0 \iff x-y \in \ker f$

Then:

$$E(x) = x + \ker f \equiv \{x + k : k \in \ker f\}$$

So we have that:

- the rule $x \sim y \iff x y \in \ker f$ is an equivalence relation;
- the equivalence classes are the sets $x + \ker f$ for $x \in R$;
- the set of equivalence classes (R / \sim) is a ring, isomorphic to a subring of S.

Definition 3.6.1 Cosets

Let $I \subseteq R$ be an ideal in a ring R. The set

$$x + I \equiv \{x + i : i \in I\} \subseteq R$$

is a coset of I in R, or the coset of x with respect to I in R.

Definition 3.6.3 Factor ring

Let R be a ring, $I \subseteq R$ be an ideal, and \sim the equivalence relation defined by $x \sim y \iff x - y \in I$. Then R/I, the factor ring of R by I or the quotient of R by I, is the set (R/\sim) of cosets of I in R.

$$R/I = \{r+I : r \in R\}$$

Theorem 3.6.4

Let R be a ring, and $I \leq R$ an ideal. Then R/I is a ring, where the operation of addition is defined by

$$(x+I)\dot{+}(y+I) = (x+y)+I \quad \forall x,y \in R$$

and multiplication is defined by

$$(x+I) \cdot (y+I) = xy + I \quad \forall x, y \in R$$

Theorem 3.6.7 Universal Property of Factor Rings Let R be a ring, and $I \subseteq R$.

- 1. The mapping can : $R \to R/I$ with can(r) = r + I is a surjective ring homomorphism with kernel I.
- 2. If $f: R \to S$ is a ring homomorphism with $f(I) = \{0_S\}$, so that $I \subseteq \ker f$, then there is a unique ring homomorphism $\overline{f}: R/I \to S$ such that $f = \overline{f} \circ \operatorname{can}$.

Theorem 3.6.9 First Isomorphic Theorem for Rings Let R and S be rings. Then every ring homomorphism $f:R\to S$ induces a ring isomorphism

$$\overline{f}: R/\ker f \tilde{\to} \mathrm{im} f$$

3.7 Modules

Definition 3.7.1 A (left) module M over a ring R is a pair consisting of an abelian group $M = (M, \dot{+})$ and a mapping

$$R \times M \to M$$

 $(r, a) \mapsto ra$

such that $\forall r, s \in R$ and $a, b \in M$ the following identities hold:

$$r(a \dot{+} b) = (ra) \dot{+} (rb)$$
 (distributivity)
 $(r+s)a = (ra) \dot{+} (sa)$ (distributivity)
 $r(sa) = (rs)a$ (associativity)
 $1_R a = a$

i.e. a vector space, but with a ring instead of a field.

Lemma 3.7.8 Let R be a ring, and M an R-module.

- 1. $0_R a = 0_M \ \forall a \in M$
- $2. \ r0_M = 0_M \ \forall r \in R$
- 3. (-r)a = r(-a) = -(ra), $\forall r \in R, a \in M$. (Here, the first negative is in R, and the last two negatives are in M.)

Definition 3.7.11 *R-homomorphism*

Let R be a ring, and let M, N be R-modules. A mapping $f: M \to N$ is an R-homomorphism if the following hold $\forall a, b \in M$ and $r \in R$:

$$f(a+b) = f(a) + f(b)$$
$$f(ra) = rf(a)$$

The kernel of f is $\ker f = \{a \in M : f(a) = 0_N\} \subseteq M$ and the image of f is $\operatorname{im} f = \{f(a) : a \in M\} \subseteq N$. If f is a bijection then it is an isomorphism.

Definition 3.7.15 Submodule

A non-empty subset M' of an R-module M is a submodule if M' is an R-module with respect to the operations of the R-module M restricted to M'.

Proposition 3.7.20 Test for a submodule

Let R be a ring and let M be an R-module. A subset $M' \subseteq M$ is a submodule if and only if

- 1. $0_M \in M'$
- $2. \ a,b \in M' \implies a-b \in M'$
- 3. $r \in R, a \in M' \implies ra \in M'$

Lemma 3.7.21

Let $f: M \to N$ be an R-homomorphism. Then $\ker f$ is a submodule of M and $\operatorname{im} f$ is a submodule of N.

Lemma 3.7.22

Let R be a ring, let M and N be R-modules and let $f: M \to N$ be an R-homomorphism. Then f is injective if and only if $\ker f = \{0_M\}$.

Definition 3.7.23 Generated submodule

Let R be a ring, M an R-module, and let $T \subseteq M$. Then the submodule of M generated by T is the set

$$_{R}\langle T \rangle = \{r_{1}t_{1} + \dots + r_{m}t_{m} : t_{1}, \dots, t_{m} \in T, r_{1}, \dots, r_{m} \in R\},\$$

together with the zero element in case $T = \emptyset$.

The module M is *finitely generated* if it is generated by a finite set: $M =_r \langle \{t_1, \dots, t_n\} \rangle$.

It is *cyclic* f it is generated by a singleton: $M =_R \langle t \rangle$.

Lemma 3.7.28 Let $T \subseteq M$. Then $_r\langle T \rangle$ is the smallest submodule of M that contains T.

Lemma 3.7.29 The intersection of any collection of submodules of M is a submodule of M.

Lemma 3.7.30 Let M_1 and M_2 be submodules of M. Then

$$M_1 + M_2 = \{a + b : a \in M_1, b \in M_2\}$$

is a submodule of M.

Definition 3.7.31.1 Coset

Let R be a ring, M an R-module, and N a submodule of M. For each $a \in M$, the coset of a with respect to N in M is

$$a+N=\{a+b:b\in N\}.$$

It is a coset of N in the abelian group M and is is an equivalence class for the equivalence relation $a \sim b \iff a - b \in N$.

Definition 3.7.31.2 Factor

M/N, the factor of M by N or the quotient of M by N, is the set (M / \sim) of all cosets of N in M.

$$M/N=\{a+N:a\in M\}$$

This becomes an R-module by introducing the operations of addition and multiplication as follows:

$$(a+N)\dot{+}(b+N) = (a+b) + N$$
$$r(a+N) = ra + N$$

for all $a, b \in M, r \in R$.

Theorem 3.7.31.3 Factor module

- The zero of M/N is the coset $0_{M/N} = 0_M + N$.
- The negative of $a + N \in M/N$ is the coset -(a + N) = (-a) + N.
- The R-module M/N is the factor module of M by the submodule N.

Theorem 3.7.32 The Universal Property of Factor Modules Let R be a ring, and let L and M be R-modules, and N a sub-module of M.

- 1. The mapping can : $M \to M/N$ sending a to a+N, $\forall a \in M$ is a surjective R-homomorphism with kernel N.
- 2. If $f: M \to L$ is an R-homomorphism with $f(N) = \{0_L\}$, so that $N \subseteq \ker f$, then there is a unique homomorphism $\overline{f}: M/N \to L$ such that $f = \overline{f} \circ \operatorname{can}$.

Theorem 3.7.33 First Isomorphism Theorem for Modules Let R be a ring and let M and N be R-modules. Then every R-homomorphism $f:M\to N$ induces a R-isomorphism

$$\overline{f}: M/\ker f \to \mathrm{im} f$$

4 Determinants & Eigenvalues

4.1 The sign of a permutation

Definition 4.1.1 Transposition

The group of all permutations of the set $\{1, 2, ..., n\}$, also known as bijections from $\{1, 2, ..., n\}$ to itself, is denoted by \mathfrak{S}_n and called the *n-th symmetric group*. It is a group under composition and has n! elements.

A transposition is a permutation that swaps two elements of the set and leaves all the others unchanged.

Definition 4.1.2 Inversion & Sign

An inversion of a permutation $\sigma \in \mathfrak{S}_n$ is a pair (i,j) such that $1 \leq i < j \leq n$ and $\sigma(i) > \sigma(j)$. The number of inversions of the permutation σ is called the *length of* σ and written $\ell(\sigma)$. In formulas:

$$\ell(\sigma) = |\{(i,j) : i < j \text{ but } \sigma(i) > \sigma(j)\}|$$

The sign of σ is defined to be the parity of the number of inversions of σ . In formulas:

$$\operatorname{sgn}(\sigma) = (-1)^{\ell(\sigma)}$$

A permutation whose sign is +1, in other words which has even length, is called an *even permutation*, while a permutation whose sign is -1, in other words which has odd length, is called an *odd permutation*.

Lemma 4.1.5 (Multiplicativity of the sign)

For each $n \in \mathbb{N}$ the sign of a permutation produces a group homomorphism sgn : $\mathfrak{S}_n \to \{+1, -1\}$ from the symmetric group to the two-element group of signs. In formulas:

$$\operatorname{sgn}(\sigma\tau) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau) \quad \forall \sigma, \tau \in \mathfrak{S}_n$$

Definition 4.1.7 Alternating group

For $n \in \mathbb{N}$, the set of even permutations in \mathfrak{S}_n forms a subgroup of \mathfrak{S}_n because it is the kernel of the group homomorphism sgn : $\mathfrak{S}_n \to \{+1, -1\}$. This group is the *alternating group* and is denoted A_n .

4.2 Determinants & what they mean

Definition 4.2.1 Let R be a commutative ring and $n \in \mathbb{N}$. The *determinant* is a mapping det : $\operatorname{Mat}(n;R) \to R$ from square matrices with coefficients in R to the ring R that is given by the following formula:

$$A \mapsto \det(A) = \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \dots a_{n\sigma(n)}$$

This formula is called the *Leibniz formula*.

The degenerate case n=0 assigns the value 1 as the determinant of the "empty matrix".

The connection between determinants and volumes

The determinant of a matrix is equal to the scaling factor it performs.

The connection between determinants and orientation The sign of the determinant determines the orientation: $\det = +1$ preserves the orientation; $\det = -1$ reverses the orientation.

4.3 Characterising the determiniant

Definition 4.3.1 Bi-linear forms

Let U, V, W be F-vector spaces.

A bi-linear form on $U \times V$ with values in W is a mapping $H: U \times V \to W$ which is a linear mapping in both of its entries.

This means that it must satisfy the following properties for all $u_1, u_2 \in U$; $v_1, v_2 \in V$; $\lambda \in F$:

$$H(u_1 + u_2, v_1) = H(u_1, v_1) + H(u_2, v_1)$$

$$H(u_1, v_1 + v_2) = H(u_1, v_1) + H(u_1, v_2)$$

$$H(u_1, \lambda v_1) = \lambda H(u_1, v_1)$$

$$H(\lambda u_1, v_1) = \lambda H(u_1, v_1)$$

The first two conditions state that for any fixed $v \in V$ the **Theorem 4.4.2** Determinantal criterion for invertibility mapping $H(-,v):U\to W$ is linear. H is a bi-linear form. A bi-linear form H is symmetric if U = V and

$$H(u, v) = H(v, u) \quad \forall u, v \in U$$

while it is alternating or antisymmetric if U = V and

$$H(u,u) = 0 \quad \forall u \in U$$

Definition 4.3.3 Multi-linear forms

Let V_1, \ldots, V_n, W be F-vector spaces. A mapping H: $V_1 \times V_2 \times \cdots \times V_n \rightarrow W$ is a multi-linear form or multilinear if for each j, the mapping $V_j \to W$ defined by $v_i \mapsto$ $H(v_1,\ldots,v_i,\ldots,v_n)$, with $v_i\in V_i$ arbitrary fixed vectors of V_i for $i \neq j$, is linear. In the case n=2, this is exactly the definition of a bi-linear mapping.

Definition 4.3.4 Alternating

Let V and W be F-vector spaces. A multi-linear form $H: V \times \cdots \times V \to W$ is alternating if it vanishes on every n-tuple of elements of V that has at least two entries equal, in other words if:

$$(\exists i \neq j \text{ with } v_i = v_j) \implies H(v_1, \dots, v_i, \dots, v_j, \dots, v_n) = 0$$

In the case n=2, this is exactly the definition of an alternating or anti-symmetric bi-linear mapping.

Theorem 4.3.6 Characterisation of the determinant Let F be a field. The mapping

$$\det: \operatorname{Mat}(n; F) \to F$$

is the unique, alternating, multi-linear form on n-tuples of column vectors with values in F that takes the value 1_F on the identity matrix.

- 1. Is it a multi-linear form?
- 2. Does it go from $F^n \times \cdots \times F^n \to F$?
- 3. Is it alternating?
- 4. Does it take the value 1 on the identity?

If (and only if) answered yes to all, then we have a determinant.

Rules for calculating with determinants

Theorem 4.4.1 Multiplicativity of the determinant Let R be a commutative ring and let $A, B \in Mat(n; R)$. Then

$$\det(AB) = \det(A)\det(B)$$

The determinant of a square matrix with entries in a field Fis non-zero if and only if the matrix is invertible.

Lemma 4.4.4 The determinant of a square matrix and the transpose of the square matrix are equal, that is, for all $A \in \operatorname{Mat}(n; R)$ with R a commutative ring

$$\det(A^T) = \det(A)$$

Definition 4.4.6 Cofactor

Let $A \in \operatorname{Mat}(n; R)$ for some commutative ring R and $n \in \mathbb{N}$. Let $i, j \in (1, n) \subset \mathbb{N}$. Then the (i, j) cofactor of A is $C_{ij} = (-1)^{i+j} \det(A\langle i,j\rangle)$ where $A\langle i,j\rangle$ is the matrix obtained by deleting the i-th row and the j-th column.

Theorem 4.4.7 Laplace's expansion of the determinant Let $A = (a_{ij})$ be an $(n \times n)$ matrix with entries from a commutative ring R.

For a fixed i, the i-th row expansion of the determinant is

$$\det(A) = \sum_{j=1}^{n} a_{ij} C_{ij}$$

and for a fixed j, the j-th column expansion of the determinant is

$$\det(A) = \sum_{i=1}^{n} a_{ij} C_{ij}$$

Definition 4.4.8 Adjugate matrix

Let A be an $(n \times n)$ matrix whose entries are $adj(A)_{ij} = C_{ji}$ Remark 4.5.9 where C_{ii} is the (j, i) cofactor.

Theorem 4.4.9 Cramer's rule

Let A be an $(n \times n)$ matrix with entries in a commutative ring R. Then

$$A \cdot \operatorname{adj}(A) = (\det A)I_n$$

Corollary 4.4.11 Invertibility of matrices

A square matrix with entries in a commutative ring R is invertible if and only if its determinant is a unit in R. That is, $A \in \operatorname{Mat}(n; R)$ is invertible if and only if $\det(A) \in R^{\times}$.

Eigenvalues & Eigenvectors

Definition 4.5.1 Eigenvalue

Let $f: V \to V$ be an endomorphism of an F-vector space V. A scalar $\lambda \in F$ is an eigenvalue of f if and only if there exists a non-zero vector $\vec{v} \in V$ such that $f(\vec{v}) = \lambda \vec{v}$.

Each such vector is called an eigenvector of f with eigenvalue

For any $\lambda \in F$, the eigenspace of f with eigenvalue λ is

$$E(\lambda, f) = \{ \vec{v} \in V : f(\vec{v}) = \lambda \vec{v} \}$$

When $\lambda = 1$, this is equivalent to having a fixed-point mappinq.

When $\lambda = 0$, this is equivalent to the kernel of the mapping.

The corresponding eigenvectors are the null-space of $(A-\lambda I_n)$

Theorem 4.5.4 Existence of Eigenvalues

Each endomorphism of a non-zero finite-dimensional vector space over an algebraically closed field has an eigenvalue.

Definition 4.5.6 Characteristic polynomial

Let R be a commutative ring and let $A \in Mat(n; R)$ be a square matrix with entries in R. The polynomial $\det(A$ $xI_n \in R[x]$ is called the characteristic polynomial of the matrix A. It is denoted by

$$\chi_A(x) \equiv \det(A - xI_n)$$

where γ stands for γ aracteristic.

Theorem 4.5.8 Eigenvalues and characteristic polynomials Let F be a field and $A \in Mat(n; F)$ a square matrix with entries in F. The eigenvalues of the linear mapping $A: F^n \to$ F^n are exactly the roots of the characteristic polynomial χ_A .

1. Recall from Example 3.5.2 that square matrices $A, B \in$ Mat(n; R) of the same size are *conjugate* if

$$B = P^{-1}AP \in Mat(n; R)$$

for an invertible $P \in GL(n;R)$. Conjugacy is an equivalence relation on Mat(n; R).

2. The motivation for conjugacy comes from the various matrix representations of an endomorphism $f: V \to V$ of an n-dimensional vector space V over a field F. Let $A = (a_{ij}) =_{\mathcal{A}} [f]_{\mathcal{A}}, B = (b_{ij}) =_{\mathcal{B}} [f]_{\mathcal{B}} \in Mat(n; F)$ be the matrices of f with respect to bases $\mathcal{A} = (\vec{v}_1, \dots, \vec{v}_n)$, $\mathcal{B} = (\vec{w}_1, \dots, \vec{w}_n)$ for V

$$f(\vec{v}_j) = \sum_{i=1}^n a_{ij}\vec{v}_i, \ f(\vec{w}_j) = \sum_{i=1}^n b_{ij}\vec{w}_i \in V.$$

The change of basis matrix $P = (p_{ij}) =_{\mathcal{A}} [id_V]_{\mathcal{B}} \in$ Mat(n; F) is invertible, with

$$\vec{w}_j = \sum_{i=1}^n p_{ij} \vec{v}_i \in V.$$

We have the identity

$$B = P^{-1}AP \in \operatorname{Mat}(n; F)$$

so A, B are conjugate.

3. Key observation: the characteristic polynomials of conjugate $A, B \in Mat(n; R)$ are the same

$$\chi_B(x) = \det(B - xI_n) = \det(P^{-1}AP - xI_n)$$

$$= \det(P^{-1}(A - xI_n)P)$$

$$= \det(P)^{-1}\det(A - xI_n)\det(P)$$

$$= \det(A - xI_n) = \chi_A(x) \in R[x]$$

4. In view of (2) and (3) we can define the characteristic polynomial of an endomorphism $f:V\to V$ of an n-dimensional vector space over a field F to be

$$\chi_f(x) = \chi_A(x) \in F[x]$$

with $A =_{\mathcal{A}} [f]_{\mathcal{A}} \in \operatorname{Mat}(n; R)$ the matrix of f with respect to any basis A of V. Thanks to Theorem 4.5.8 the eigenvalues of f are exactly the roots of χ_f , the characteristic polynomial of f.

Triangularisable & Diagonalisable

Proposition 4.6.1 Triangularisability

Let $f: V \to V$ be an endomorphism of a finite-dimensional F-vector space V. The following two statements are equivalent:

1. The vector space V has an ordered basis $\mathcal{B} =$ $(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n)$ such that

$$f(\vec{v}_1) = a_{11}\vec{v}_1$$

$$f(\vec{v}_2) = a_{12}\vec{v}_1 + a_{22}\vec{v}_2$$

$$\vdots$$

$$f(\vec{v}_n) = a_{1n}\vec{v}_1 + a_{2n}\vec{v}_2 + \dots + a_{nn}\vec{v}_n \in V$$

(so that the first basis vector \vec{v}_1 is an eigenvector, with eigenvalue a_{11}) or equivalently such that the $n \times n$ maupper triangular.

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{1n} \\ 0 & 0 & a_{33} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

When this happens, f is triangularisable.

2. The characteristic polynomial $\chi_{f(x)}$ of f decomposes into linear factors in F[x].

Remark 4.6.2

- 1. An endomorphism $A: F^n \to F^n$ is triangularisable if and only if $A = (a_{ij})$ is conjugate to an upper triangular matrix $B = (b_{ij})$ $(b_{ij} = 0 \text{ for } i > j)$, with $P^{-1}AP = B$ for an invertible matrix P.
- 2. Any endomorphism of a finite dimensional C-vector space (or any algebraically closed vector space) is triangularisable.
- 3. An endomorphism $f: V \to V$ of a n-dimensional Fvector space is triangularisable if and only if there is a sequence of subspaces

$$V_0 = \{0\} \subset V_1 \subset V_2 \subset \cdots \subset V_n = V$$

such that V_i is *i*-dimensional and $f(V_i) \subseteq V_i$.

Remark 4.6.4

A matrix $A \in \operatorname{Mat}(n; F)$ is nilpotent if and only if $\chi_A(x) =$ $(-x)^n$.

Definition 4.6.5 Diagonalisable

An endomorphism $f: V \to V$ of an F-vector space V is diagonalisable if and only if there exists a basis of V consisting of eigenvectors of f.

If V is finite-dimensional, then this is the same as saying that there exists an ordered basis $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_n\}$ such that the corresponding matrix representing f is diagonal, that is $_{\mathcal{B}}[f]_{\mathcal{B}} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. In this case, of course, $f(\vec{v}_i) = \lambda_i v_i$.

A square matrix $A \in Mat(n; F)$ is diagonalisable if and only if the corresponding linear mapping $F^n \to F^n$ given by the left multiplication of A is diagonalisable. This just means that Ais conjugate to a diagonal matrix: there exists an invertible matrix $P \in GL(n; F)$ such that $P^{-1}AP = diag(\lambda_1, \dots, \lambda_n)$. In this case, the columns of P are the vectors of a basis of F^n trix $_{\mathcal{B}}[f]_{\mathcal{B}} = (a_{ij})$ representing f with respect to \mathcal{B} is consisting of eigenvectors of A with eigenvalues $\lambda_1, \ldots, \lambda_n$.

Lemma 4.6.8 Linear independence of Eigenvectors

Let $f: V \to V$ be an endomorphism of a vector space V and let $\vec{v}_1, \dots, \vec{v}_n$ be eigenvectors of f with pairwise different eigenvalues $\lambda_1, \ldots, \lambda_n$.

Then the vectors $\vec{v}_1, \ldots, \vec{v}_n$ are linearly independent.

Theorem 4.6.9 Cayley-Hamilton Theorem

Let $A \in Mat(n; R)$ be a square matrix with entries in a commutative ring R. Then evaluating its characteristic polynomial $\chi_A(x) \in R[x]$ at the matrix A gives zero.

Google's PageRank Algorithm

Definition 4.7.5 *Markov matrix*

A matrix M whose entries are non-negative and such that the sum of the entries of each column equals 1 is a Markov matrix or a stochastic matrix.

Lemma 4.7.6

Suppose that $M \in \text{Mat}(n; R)$ is a Markov matrix. Then $\lambda = 1$ is an eigenvalue of M.

Theorem 4.7.10 Perron-Frobenius Theorem

If $M \in \mathrm{Mat}(n;\mathbb{R})$ is a Markov matrix all of whose entries are positive, then the eigenspace E(1, M) is one dimensional. There there exists a unique basis vector $\vec{v} \in E(1, M)$ all of whose entries are positive real numbers, $v_i > 0 \, \forall i$, and such that the sum of its entries is 1, $\sum_{i=1}^{n} v_i = 1$.

Inner Product Spaces

5.1 Inner Product Spaces: Definitions

Definition 5.1.1 Real inner product space

Let V be a vector space over R. An inner product on V is a mapping

$$(-,-): V \times V \to \mathbb{R}$$

that satisfies the following for all $\vec{x}, \vec{y}, \vec{z} \in V$ and $\lambda, \mu \in \mathbb{R}$:

- 1. $(\lambda \vec{x} + \mu \vec{y}, \vec{z}) = \lambda(\vec{x}, \vec{z}) + \mu(\vec{y}, \vec{z})$ (bi-linear)
- 2. $(\vec{x}, \vec{y}) = (\vec{y}, \vec{x})$ (symmetric)
- 3. $(\vec{x}, \vec{x}) > 0$, with equality if and only if $\vec{x} = \vec{0}$. definite)

A real inner product space is a real vector space endowed with an inner product.

Definition 5.1.3 Complex inner product space

Let V be a vector space over \mathbb{C} . An inner product on V is a

mapping

$$(-,-):V\times V\to\mathbb{C}$$

that satisfies the following for all $\vec{x}, \vec{y}, \vec{z} \in V$ and $\lambda, \mu \in \mathbb{C}$:

- 1. $(\lambda \vec{x} + \mu \vec{y}, \vec{z}) = \lambda(\vec{x}, \vec{z}) + \mu(\vec{y}, \vec{z})$ (bi-linear)
- 2. $(\vec{x}, \vec{y}) = \overline{(\vec{y}, \vec{x})}$ (symmetric)
- 3. $(\vec{x}, \vec{x}) > 0$, with equality if and only if $\vec{x} = \vec{0}$. (positive definite)

Here \overline{z} denotes the complex conjugate of z. A complex inner product space is a complex vector space endowed with an inner product.

Definition Skew-linear

A mapping $f: V \to W$ between complex vector spaces is skew-linear if $f(\vec{v}_1 + \vec{v}_2) = f(\vec{v}_1) + f(\vec{v}_2)$ and $f(\lambda \vec{v}_1) = \overline{\lambda} f(\vec{v}_1)$ for all $\vec{v}_1, \vec{v}_2 \in V$ and all $\lambda \in \mathbb{C}$.

Definition Sesquilinear

A complex form that is *skew-linear* in its second variable. When such a form is commutative, it is *hermitian*.

Terminology

- A finite-dimensional real inner product space is a Euclidean vector space.
- A complex inner product space is a unitary space or pre-Hilbert space.
- A finite-dimensional inner product space is a *finite*dimensional Hilbert space.

Definition 5.1.5 Length or Inner Product Norm

In a real or complex inner product space the length or inner product norm or norm $\|\vec{v}\| \in \mathbb{R}$ of a vector **v** is defined as the non-negative square root

$$\|\vec{v}\| = \sqrt{(\vec{v}, \vec{v})}$$

Vectors whose length is 1 are called *units*. Two vectors \vec{v}, \vec{w} are *orthogonal* and we write

$$\vec{v} \perp \vec{w}$$

if and only if $(\vec{v}, \vec{w}) = 0$.

Definition 5.1.7 Orthonormal family

A family $(\vec{v}_i)_{i \in I}$ for vectors from an inner product space is an orthogonal family if all the vectors v_i have length 1 and if they are pairwise orthogonal to each other, which, using the Kronecker delta, means

$$(\vec{v}_i, \vec{v}_j) = \delta_{ij}$$

An orthonormal family that is a basis is an *orthonormal basis*. with equality if and only if \vec{v} and \vec{w} are linearly dependent.

Theorem 5.1.10

mal basis.

Orthogonal Complements & Projections

Definition 5.2.1 Orthogonal

let V be an inner product space and let $T \subseteq V$ be an arbitrary subset. Define

$$T^{\perp} = \{ \vec{v} \in V : \vec{v} \perp \vec{t}, \ \forall \vec{t} \in T \},\$$

calling this set the *orthogonal* to T.

Proposition 5.2.2

Let V be an inner product space and let U be a finite dimensional subspace of V. Then U and U^{\perp} are complementary (Definition 1.7.6). In other words

$$V = U \oplus U^{\perp}$$

Definition 5.2.3 Orthogonal complement

Let U be a finite dimensional subspace of an inner product space V. The space U^{\perp} is the orthogonal complement to U. The orthogonal projection from V onto U is the mapping

$$\pi_U:V\to V$$

that sends $\vec{v} = \vec{p} + \vec{r}$ to \vec{p} . (With $\vec{v} \in U \oplus U^{\perp}$, $p \in U$, $r \in U^{\perp}$.)

Proposition 5.2.4 Let U be a finite-dimensional subspace of an inner product space V and let π_U be the orthogonal 5.3 projection from V to U.

- 1. π_U is a linear mapping with $\operatorname{im}(\pi_U) = U$ and $\ker(\pi_U) = U$ U^{\perp} .
- 2. If $\{\vec{v}_1,\ldots,\vec{v}_n\}$ is an orthonormal basis of U, then π_U is given by the following formula for all $\vec{v} \in V$

$$\pi_U(\vec{v}) = \sum_{i=1}^n (\vec{v}, \vec{v}_i) \vec{v}_i$$

3. $\pi_U^2 = \pi_U$, that is π_U is an idempotent.

Theorem 5.2.5 Cauchy-Schwarz Inequality Let \vec{v}, \vec{w} be vectors in an inner product space. Then

$$|(\vec{v}, \vec{w})| \le ||\vec{v}|| ||\vec{w}||$$

Corollary 5.2.6

Every finite dimensional inner product space has an orthonor—The norm $\|\cdot\|$ on an inner product space V satisfies, for any $\vec{v}, \vec{w} \in V$ and scalar λ :

- 1. $\|\vec{v}\| > 0$ with equality if and only if $\vec{v} = \vec{0}$
- $2. \|\lambda \vec{v}\| = |\lambda| \|\vec{v}\|$
- 3. $\|\vec{v} + \vec{w}\| < \|\vec{v}\| + \|\vec{w}\|$, the triangle inequality.

Theorem 5.2.7

Let $\vec{v}_1, \ldots, \vec{v}_k$ be linearly independent vectors in an inner product space V. Then there exists an orthonormal family $\vec{w}_1, \dots, \vec{w}_k$ with the property that for all 1 < i < k

$$\vec{w}_i \in \mathbb{R}_{<0} \ \vec{v}_i + \langle \vec{v}_{i-1}, \dots, \vec{v}_1 \rangle$$

Gram-Schmidt process

$$\vec{u}_1 = \vec{v}_1, \qquad \vec{e}_1 = \frac{\vec{u}_1}{\|\vec{u}_1\|}$$

$$\vec{u}_2 = \vec{v}_2 - \pi_{\vec{u}_1}(\vec{v}_2), \qquad \vec{e}_2 = \frac{\vec{u}_2}{\|\vec{u}_2\|}$$

$$\vec{u}_3 = \vec{v}_3 - \pi_{\vec{u}_1}(\vec{v}_3) - \pi_{\vec{u}_2}(\vec{v}_3), \qquad \vec{e}_3 = \frac{\vec{u}_3}{\|\vec{u}_3\|}$$

$$\vdots \qquad \vdots$$

$$\vec{u}_k = \vec{v}_k - \sum_{j=1}^{k-1} \pi_{\vec{u}_j}(\vec{v}_k), \qquad \vec{e}_k = \frac{\vec{u}_k}{\|\vec{u}_k\|}$$

Adjoints & Self-Adjoints

Definition 5.3.1 Adjoint

Let V be an inner product space. Then two endomorphisms $T, S: V \to V$ are called *adjoint* to one another if the following holds for all $\vec{v}, \vec{w} \in V$:

$$(T\vec{v}, \vec{w}) = (\vec{v}, S\vec{w})$$

In this case, $S = T^*$, and S is the adjoint of T.

Theorem 5.3.4 Existence of the adjoint

Let V be a finite dimensional inner product space. Let $T:V\to V$ be an endomorphism. Then T^* exists. That is, there exists a unique linear mapping $T^*: V \to V$ such that for all $\vec{v}, \vec{w} \in V$

$$(T\vec{v}, \vec{w}) = (\vec{v}, T^*\vec{w})$$

Definition 5.3.5 Self-adjoint

An endomorphism of an inner product space $T: V \to V$ is self-adjoint if it is equal to its own adjoint, that is if $T^* = T$. 6.1

Theorem 5.3.7 Let $T: V \to V$ be a self-adjoint linear mapping of an inner product space V.

- 1. Every eigenvalue of T is real.
- 2. If λ and μ are distinct Eigenvalues of T with corresponding eigenvectors \vec{v} and \vec{w} , then \vec{v} , $\vec{w} = 0$.
- 3. T has an eigenvalue.

Theorem 5.3.9 The Spectral Theorem for Self-Adjoint Endomorphisms

Let V be a finite dimensional inner product space and let $T:V\to V$ be a self-adjoint linear mapping. Then V has an orthogonal basis consisting of eigenvectors of T.

Definition 5.3.11 Orthogonal matrix

An orthogonal matrix is an $n \times n$ matrix P with real entries such that $P^TP = I_n$. In other words, and orthogonal matrix is a square matrix P with real entries such that $P^{-1} = P^T$.

Corollary 5.3.12 The Spectral Theorem for Real Symmetric Matrices

Let A be a real $(n \times n)$ -symmetric matrix. Then there is an $(n \times n)$ -orthogonal matrix P such that

$$P^T A P = P^{-1} A P = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

where $\lambda_1, \ldots, \lambda_n$ are the (necessarily real) eigenvalues of A, repeated according to their multiplicity as roots of the characteristic polynomial of A.

Definition 5.3.14 *Unitary matrix*

A unitary matrix is an $(n \times n)$ -matrix P with complex entries such that $\overline{P}^T P = I_n$. In other words, a unitary matrix is a such that DN = ND. square matrix P with complex entries such that $P^{-1} = \overline{P}^T$.

Corollary 5.3.15 The Spectral Theorem for Hermitian Matrices

Let A be an $(n \times n)$ -hermitian matrix. Then there is an $(n \times n)$ -unitary matrix P such that

$$\overline{P}^T AP = P^{-1}AP = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

where $\lambda_1, \ldots, \lambda_n$ are the (necessarily real) eigenvalues of A, repeated according to their multiplicity as roots of the characteristic polynomial of A.

Jordan Normal Form

Motivation

Statement of JNF & Strategy of Proof

Definition 6.2.1 Nilpotent Jordan block

Given an integer $r \geq 1$ define a $(r \times r)$ -matrix J(r), called the nilpotent Jordan block of size r, by the rule $J(r)_{ij} = 1$ for j = i + 1 and $J(r)_{ij} = 0$ otherwise.

$$J(r) = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}.$$

In particular J(1) is (1×1) -matrix whose only entry is zero.

Given an integer $r \geq 1$ and a scalar $\lambda \in F$ define an $(r \times r)$ matrix $J(r, \lambda)$, called the Jordan block of size r and eigenvalue λ , by the rule

$$J(r,\lambda) = \lambda I_r + J(r) = D + N$$

with $\lambda I_r = \operatorname{diag}(\lambda, \lambda, \dots, \lambda) = D$ diagonal and J(r) = Nnilpotent

$$J(r,\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & \cdots & 0 & 0 \\ 0 & 0 & \lambda & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda \end{pmatrix}$$

Theorem 6.2.2 Jordan Normal Form

Let F be an algebraically closed field. Let V be a finitedimensional vector space, and let $\phi: V \to V$ be an endomorphism of V with characteristic polynomial

$$\chi_{\phi}(x) = (\lambda_1 - x)^{a_1} (\lambda_2 - x)^{a_2} \cdots (\lambda_s - x)^{a_s}$$
$$\in F[x](a_i \ge 1, \sum_{i=1}^s a_i = n)$$

for distinct $\lambda_1, \lambda_2, \dots, \lambda_s \in F$. Then there exists an ordered basis \mathcal{B} of V such that the matrix of ϕ with respect to the

basis \mathcal{B} is block diagonal with Jordan blocks on the diagonal

$$\mathcal{B}[\phi]_{\mathcal{B}} = \operatorname{diag}(J(r_{1,1}, \lambda_1), \dots, J(r_{1,m_1}, \lambda_1), J(r_{2,1}, \lambda_2), \dots, J(r_{s,m_s}, \lambda_s))$$

with $r_{2,1}, \ldots, r_{1,m_1}, r_{2,1}, \ldots, r_{s,m_s} \ge 1$ such that

$$a_i = r_{i,1} + r_{i,2} + \dots + r_{i,m_i} (1 \le i \le s)$$

The proof of Jordan Normal Form

Lemma 6.3.1 There exist polynomials $Q_i(x) \in F[x]$ such

$$\sum_{j=1}^{s} P_j(x)Q_j(x) = 1$$

Definition 6.3.2 Generalised eigenspace

The generalised eigenspace of A with eigenvalue λ , $E^{\text{gen}}(\lambda, A)$, is the following subspace of V

$$E^{\text{gen}}(\lambda, A) = \{ \vec{v} \in V : (A - \lambda \text{id}_V)^r \vec{v} = \vec{0} \}$$

Remark 6.3.3 The actual eigenspace is defined by

$$E(\lambda, A) = \{ \vec{v} \in V : (A - \lambda i d_V) \vec{v} = \vec{0} \}.$$

- $\dim(E(\lambda, A))$ is the geometric multiplicity of λ .
- $\dim(E^{gen}(\lambda, A))$ is the algebraic multiplicity of λ .

Definition 6.3.4 Stable

Let $f: X \to X$ be a mapping from a set X to itself. A subset $Y \subseteq X$ is stable under f precisely when $f(Y) \subseteq Y$, that is if $y \in Y \implies f(y) \in Y$.

Proposition 6.3.5 The direct sum decomposition.

For each $1 \le i \le s$, let

$$\mathcal{B}_i = \{ \vec{v}_{ij} \in V : 1 \le j \le a_i \}$$

is a basis of $E^{\text{gen}}(\lambda_i, \phi)$, where a_i is the algebraic multiplicity of ϕ with eigenvalue λ_i , such that $\sum_{i=1}^s a_i = n$ is the dimension of V.

- 1. Each $E^{\text{gen}}(\lambda_i, \phi)$ is stable under ϕ .
- 2. For each $\vec{v} \in V$ there exist unique $\vec{v}_i \in E^{\text{gen}}(\lambda_i, \phi)$ such that $\vec{v} = \sum_{i=1}^{s} \vec{v}_i$. In other words, there is a direct sum decomposition

$$V = \bigoplus_{i=1}^{s} E^{\text{gen}}(\lambda_i, \phi)$$

with ϕ restricting to endomorphism of the summands

$$\phi_i = \phi|: E^{\text{gen}}(\lambda_i, \phi) \to E^{\text{gen}}(\lambda_i, \phi)$$

3. Then

$$\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \cdots \cup \mathcal{B}_s = \{\vec{v}_i : 1 \le i \le s, 1 \le j \le a_i\}$$

is a basis of V. The matrix of the endomorphism ϕ with respect to this basis is given by the block diagonal matrix

$$_{\mathcal{B}}[\phi]_{\mathcal{B}} = \begin{pmatrix} B_1 & 0 & 0 & 0 \\ 0 & B_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & B_s \end{pmatrix} \in \operatorname{Mat}(n; F)$$

with $B_i =_{\mathcal{B}_i} [\phi_i]_{\mathcal{B}_i} \in \operatorname{Mat}(a_i; F)$.

Lemma 6.3.6 For each i, define a linear mapping

$$\psi_i: \frac{W}{W_{i-1}} \to \frac{W_{i-1}}{W_{i-2}}$$

by $\psi(\vec{w} + W_{i-1}) = \psi(\vec{w}) + W_{i-2}$ for $\vec{w} \in W_i$. Then ψ_i is well-defined and injective.

Lemma 6.3.7 Let $f: X \to Y$ be an injective linear mapping between the F-vector spaces X and Y. If $\{\vec{x}_1, \ldots, \vec{x}_t\}$ is a linearly independent set in X, then $\{f(\vec{x}_1), \ldots, f(\vec{x}_t)\}$ is a linearly independent set in Y.

Lemma 6.3.8 The set of elements $\{\vec{v}_{j,k}: 1 \leq j \leq m, 1 \leq k \leq d_j\}$ constructed in the algorithm above is a basis for W.

Proposition 6.3.9 Let \mathcal{B} be the ordered basis of W constructed above $(\{\vec{v}_{i,k}: 1 \leq j \leq m, 1 \leq k \leq d_i\})$. Then

$$\mathcal{B}[\psi]_{\mathcal{B}} = \operatorname{diag}\underbrace{J(m), \dots, J(m)}_{d_m \text{ times}}$$

$$\underbrace{J(m-1), \dots, J(m-1), \dots, \underbrace{J(1), \dots, J(1)}_{d_1-d_2 \text{ times}}}$$

where J(r) denotes the nilpotent Jordan block of size R.

6.4 Example of a Jordan Normal Form

6.5 PageRank and Jordan Normal Form

Lemma 6.5.1

If $M \in \operatorname{Mat}(n; \mathbb{R})$ is a Markov matrix all of whose entries are positive. Consider M as a complex matrix, all of whose entries happen to be real. If $\lambda \in \mathbb{C}$ is an eigenvalue of M, then either $\lambda = 1$ or $|\lambda| < 1$.

7 Reference

7.1 Terminology of Algebraic Structures Single-operation structures

	Closure	Associativity	Identity	Inverses
Group	\checkmark	\checkmark	\checkmark	\checkmark
Monoid	\checkmark	\checkmark	\checkmark	_
Semi-group	\checkmark	\checkmark	_	_
Magma	\checkmark	-	-	-

Double-operation structures

Structure	Addition	Multiplication
Field	Abelian Group	Abelian Group
Ring	Abelian Group	Monoid
Division Ring	Abelian Group	Non-Abelian Monoid

7.2 Morphisms

Linear Mapping

Where V, W are vector spaces:

A linear mapping is a mapping $f: V \to W$ where the following hold:

$$f(\lambda \vec{v}_1 + \vec{w}_1) = \lambda f(\vec{v}_1) + f(\vec{w}_1)$$

(It is a homomorphism over vector spaces.) Bi-linear forms Where U, V, W are vector spaces:

A bi-linear form is a mapping $f:U\times V\to W$ where the following hold:

$$f(u_1 + u_2, v_1) = f(u_1, v_1) + f(u_2, v_1)$$

$$f(\lambda u_1, v_1) = \lambda f(u_1, v_1)$$

and again for the second parameter. Homomorphism Where A,B are algebraic structures, a homomorphism $f:G\to H$ preserves the structure of the algebraic properties.

• Vector space homomorphism (Linear Mapping)

$$f(x+y) = f(x) + f(y)$$
 Addition-preservation
 $f(x \cdot y) = f(x) \cdot f(y)$ Multiplication-preservation

• Group homomorphism

$$f(x + y) = f(x) + f(y)$$
 Addition-preservation

Unity and inverse preservation follow from additionpreservation.

• Ring homomorphism

$$f(x + y) = f(x) + f(y)$$
 Addition-preservation
 $f(x \cdot y) = f(x) \cdot f(y)$ Multiplication-preservation
 $f(e_G) = e_H$ Unity-preservation

Additive unity and inverse preservation follow.

Isomorphism A bijective homomorphism.

Endomorphism A homomorphism from a set to itself.

Automorphism A isomorphism from a set to itself.