3. Fossil record biases

Emma Dunne

FAU Erlangen-Nürnberg

Thursday 25/08/2022

A. Understanding fossil record biases

Early paleodiversity studies

- Early palaeodiversity studies took the fossil record at face value
- Even Darwin back in 1959 noted that sampling was uneven and incomplete
- It wasn't until the last half century that we started to appreciate the impacts of fossil record biases

How much of the fossil record do we even know?

- The known fossil record is barely a fraction of what actually exists
- Even the potential fossil record contains only a tiny fraction of life that has ever lived!

Raup's "7 Sources of Error"

- 1. Range charts
- The 'Pull of the Recent'
- 3. Durations of geological units
- Monographic effects
- 5. Lagerstätten
- 6. Area-diversity relationships
- Sediment volume

Taphonomic biases

- Susan Kidwell (Chicago)
- Relationship between fossil diversity and sedimentation rates
- More sedimentary rock means more opportunities to find fossils
- Also, experimental taphonomy how do fossils fossilise?

Taphonomic biases

- Anna 'Kay' Behrensmeyer (Smithsonian NMNH)
- Composition of fossil faunas vary with sedimentary environment (channel, floodplain, lake margin)
- Importance of accounting for taphonomic biases in paleoecological studies

Temporal resolution in the fossil record

Geological time intervals are not equal in length

Example: Late Triassic epochs:

- Rhaetian ~8 Ma
- Norian ~20 Ma
- Carnian ~10 Ma

Temporal resolution in the fossil record

 Many studies focus on stagelevel or equal-interval ages

10 Ma bins

occurrences
collections

occurrences
collections

Tr J K Pg Ng
500 400 300 200 100 0

Kocsis *et al.* (2019) divDyn R package

Temporal resolution in the fossil record

- Many studies focus on stagelevel or equal-interval ages
- Not suitable for regional studies
- More recently, statistical methods have been developed to bin data (e.g. using regional stratigraphy)

Dean et al. (2020) Palaeontology

Spatial resolution in the fossil record

- Species-area effect
- Larger areas tend to contain larger numbers of species
- Opening of new areas to search for fossils inevitably leads to new species being described

Renewed interest in biases (2000-10s)

- Resulted in an even greater exploration of the factors that influence analyses of the fossil record
- Sampling standardisation methods begin to be developed
- Also, large compilations of data (e.g. PBDB) and data sharing/open data have been making even more analyses possible

Smith (2007) Geol Soc

Research interest over time

- Some groups are well understood and well sampled e.g. British fossil fishes
- Other groups have only become popular relatively recently (e.g. dinosaurs), or some have stalled in the number of new taxa named each year

Lloyd & Friedman (2013) *Palaeo3*

Insights into collecting biases

- Online occurrence databases rely on data from published literature
- Museum collection could hold up to 23 times more data (at least for marine invertebrates on the west coast of America)

Marshall et al. (2018) Biol. Lett

Insights into socio-economic biases

- Palaeontological research is dominated by researchers based in high- or upper middle-income countries
- 97% of fossil occurrence data in the PBDB were generated by researchers in Northern America and Europe

Raja & Dunne et al. (2022) Nat. Ecol Evol.

Insights into socio-economic biases

- Greater research output in palaeo (counted as co-authored publications) is linked to:
 - Higher GDP
 - Higher HDI
 - Greater security (GPI)
 - A history of, or profiting from, colonialism

Raja & Dunne et al. (2022) Nat. Ecol Evol.

Insights into socio-economic biases

- English is the dominant language in palaeodiversity studies
- Knowledge in other languages is overlooked – this has been shown to bias outcomes of meta- analyses (see Konno et al. 2020 Ecol. Evol.)
- Impedes the communication of science

Raja & Dunne et al. (2022) Nat. Ecol Evol.

B. Detecting and quantifying fossil record biases

Data visualisations

An important step in any research project!

- What do your data look like?
- What patterns jump out at you?
- What happens when you use a different method/scale/colour scheme?

Collector's / species accumulation curves

- Allow comparison of diversity
 across assemblages or to evaluate
 the benefits of additional sampling
- **Example**: Species named each year in different regions
- As research interest grows (and new areas open up) - expect pattern to increase and eventually level off

Henderson et al. (2021) EarthArXiv

Rank order abundance

- Visualise species richness and species evenness
- Most abundant species = rank 1
- Least abundant species will be recorded less often

Simple correlations

 Use regression plots and simple statistics to quantify the strength of the correlation between proxies for sampling effort and fossil diversity

- But what to use as a proxy for sampling?

Proxies for sampling & the 'sampling hypothesis'

 Raup documented that species diversity correlates with sedimentary rock volume and area

 This is the 'sampling hypothesis' or 'bias hypothesis'

Proxies for sampling - 1. Outcrop area

- **Definition**: The amount of rock available for sampling
- Good proxy for rock volume and area
- Rock must be exposed for fossils to be sampled

Proxies for sampling - 1. Outcrop area

Macrostrat

- Geologic map database
- Focus on North American and other specific regions e.g. the Caribbean
- Download geological maps from various providers

Proxies for sampling - 2. Formations

- Definition: lithostratigraphic units that contain fossils (fossiliferous)
- Mostly well-studied, geologically constrained areas
- Good proxy for rock area and volume as well as human effort
- Vary in their geographic size

Proxies for sampling - 3. Fossil sites / collections

- Definition: distinct localities that contain fossils ('collections' in the PDBD)
- Definitions vary between research groups, taxa, etc.
- Great proxy for human effort

Proxies for sampling - 4. Occupied grid cells

- Definition: Equal-area grid cells on a map that contain fossils
- Standardised geographical areas
- Check out the R package dggridR

Other sampling hypotheses

Redundancy hypothesis

- Definition: Sampling and diversity are entirely or partially redundant with each other
- Proxies for sampling can rely on the presence of fossils (rarely their absence)
- Formations are sometimes defined by fossils

Common-cause hypothesis

- Definition: Both sampling and diversity are driven by some common factor(s)
- Examples: fluctuations in sea level, environmental perturbations or (a) Macrostrat columns tectonic activity

Peters & Heim (2011) Geol. Soc.