

2008-08-27

Оглавление

<u>Рекомендации</u>	1
Команды и ответы.	2
Инициализация связи	
Запрос	
Ответ	4
Способ расчета CRC	
Подпрограмма для расчета CRC	
Пример расчета CRC в программе на	_
Си:	
Команды и ответы подробно	6
1-Чтение архива (ЕЕПРОМ)	6
2-Чтение текущих показаний	
3 - Установить час:мин:сек	7
4-Установить день-месяц-год	7
5-Вывести состояние флеш на дисплей	7
6-Изменить скорость последовательного)
порта	
Расположение и форматы данных	
Расположение данных в архиве	.10
Адреса архивов	
Расположение уставок и накопленных	
данных	.10
Ежемесячный архив	

Адреса записей ежемесячного архива	1 B
ЕЕПРОМ	.11
Запись ежемесячного архива	.11
Суточный архив.	
Адреса записей суточного архива	
Запись суточного архива	
Часовой архив	
Адреса записей часового архива на	
начало суток, 0 часов.	.14
Время записи и суммирование за	
период	.15
Запись часового архива	
Текущие данные	
Команды для получения текущих	
данных	.17
Расчет накопленных данных	
Расположение текущих данных	.18
Форматы данных	
Формат чисел float24 и float32	.19
Примеры записи чисел в IEEE 754	_
<u>32-bit и 24-bit</u>	
Формат файла *.bin.	.20

Рекомендации

Для импорта данных 7КТ рекомендуется использовать программы АБАКАН-2. Они были разработаны с учетом удобного импорта и передачи данных, как в текстовом виде, так и в бинарном.

Причины:

- 1. На выходе программ файл текстового формата, удобный для импорта
- 2. Сложность протокола считывания, тесно связанного с аппаратурой
- 3. Сложность расшифровки полученных данных

По крайней мере рекомендуется считывать данные в файл *.bin и обрабатывать его программой bin7kt.exe, а получаемый текстовой файл *.7kt уже импортировать.

Команды и ответы

Инициализация связи

До установления связи прибор ожидает прихода сигнала на вход RX. После приема сигнала прибор переходит на прием на скорости 2400,N,8 **1 и ожидает команды с правильным CRC в течение 10 сек. Если правильной команды не поступило, то в течение 0,5сек ожидается отсутствие сигнала RX, после чего можно повторять запрос.

Порядок установления связи:

- 1. установить скорость порта 2400, 8, N **
- 2. Выдать команду установки скорости (например, «установить 19200бод»)
- 3. Переключить свой порт на новую скорость (19200)
- 4. Повторить команду установки скорости уже на новой скорости передачи (19200)
- 5. Принять байт =7. Если байт принят, выход
- 6. Если байт не принят, ждать 1секунду, повторить с п.1

**1 если установлен режим связи с сотовым модемом, то скорость 9600; при нажатой кнопке «L» - скорость 2400 (для возможности считывания через 7КТС32). Режим устанавливается при настройке 7КТ, см. 7КТ Установка параметров.pdf

Запрос

Длина команды запроса фиксированная.

Команды запроса:

	команды запроса.						
	1-читать ЕЕПРОМ	2-чтение текущих данных	3- уст.часы:минуты	4-установить день:мес:год	5-на дисплей сост. флеш	6-изменить скорость	16-читать ЕЕПРОМ, ответ с адресом вначале
No	знач.			,			знач.
	0xFF,	-//-	-//-	-//-	-//-	-//-	-//-
	(заполнитель)						
	0хА5, старт	-//-	-//-	-//-	-//-	-//-	-//-
0	DevAdr, адрес прибора в сети	-//-	-//-	-//-	-//-	-//-	-//-
1	Cmd = 1 команда	2	3	4	5	6	16
2	AdrL адрес начала чтения, мл. байт		часы	день	занято блоков флеш	код скорости приема 7КТ	AdrL адрес начала чтения, мл. байт
3	AdrH		минуты	месяц	свободно блоков флеш	код скорости передачи 7КТ	AdrH
4	L		секунды	год	0	0	L
5 6	CRCl	-//-	-//-	-//-	-//-	-//-	-//-
6	CRCh	-//-	-//-	-//-	-//-	-//-	-//-

-//- то же значение

CRC подсчитывается от №0 до№4 включительно, т.е. от DevAdr до L включительно.

Ответ

Длина зависит от команды.

1. Byte0
2. Byte1
3
4. ByteN
5. CRCl
6. CRCh

$$OK - байт = 0x06$$

 $ERR - байт = 0x07$

Ответ команды 16 = 0x10 «Читать ЕЕПРОМ, ответ с адресом вначале»

1. AdrL	мл. адрес ЕЕПРОМ
2. AdrH	ст.адрес ЕЕПРОМ
3. Byte0	
4. Byte1	
5	
6. Byte	
N	
7. CRCl	CRC от AdrL до ByteN включительно
8. CRCh	

Способ расчета CRC

Циклический проверочный код (CRC) нужен для проверки достоверности данных.

Подпрограмма для расчета CRC на Си:

```
void AddCRC(unsigned char Byte)
{
   int i, Carry;
   for (i=0;i<8;i++)
   {
      Carry = 0;
      if ( CRC & 0x8000 ) Carry =1;
      CRC <<= 1;
      if ( 0x80 & Byte ) CRC |= 0x01; //задвинем бит
      Byte <<= 1;
      if ( Carry ) CRC ^= 0x1021;
   }
}
```


Пример расчета CRC в программе на Си:

```
CRC = 1; // ниже обычно цикл for(i=0;i<конца;i++) AddCRC(byte1); // вызов подпрограммы AddCRC(byte2); .... AddCRC(byteN); // обычно конец цикла AddCRC(0); AddCRC(0); //добавить 16 нулевых бит, т.е. 2 байта равных 0 //CRC готово
```


Команды и ответы подробно

Здесь дается описание только того, как получить данные. Расшифровка данных см. «Расположение данных».

1-Чтение архива (ЕЕПРОМ)

Запрос

№	знач.	вариант
	0хА5, старт	
0	DevAdr, адрес прибора в сети,	
	0-любой	
1	Cmd = 1 команда	Cmd = 16
2	AdrL адрес начала чтения, мл.	
	байт	
3	AdrH	
4	L – длина чтения, 0-256 байт	
5	CRCl	
6	CRCh	

Ответ

	Cmd=1	Cmd=16
		AdrL
		AdrH
0	b0 байты	b0 байты
	байты	
	b1	b1
L-1	bl	bl
	CRCl	CRCl (вкл. AdrL AdrH)
	CRCh	CRCh

2-Чтение текущих показаний

Запрос

	0хА5, старт
0	DevAdr, 0-любой
1	Cmd=2
2	0
3	0
4	0
5	CRCl
6	CRCh

Ответ – 64 байта данных + CRC:

_		or ounter guillible. Offe
	0	b0 байты
		b1
	63	b63
		CRCl
		CRCh

3 -Установить час:мин:сек

Запрос

	0хА5, старт
0	DevAdr, адрес прибора в сети
	0-любой
1	Cmd=3
2	часы
3	минуты
4	секунды
5	CRCl
6	CRCh

Ответ: 1 байт: 0х6 (ОК)

4-Установить день-месяц-год

Запрос

	0хА5, старт
0	DevAdr, адрес прибора в сети
	0-любой
1	Cmd=4
2	день
3	месяц
4	год
5	CRCl
6	CRCh

Ответ: 1 байт: 0х6 (ОК)

5-Вывести состояние флеш на дисплей

Служебная команда для вывода на дисплей 7КТ состояния считывателя 7КТС-32 в виде: FL 01 31, где 01 – число занятых ячеек; 31 – число свободных ячеек

Запрос

	0хА5, старт
0	DevAdr, адрес прибора в сети
	0-любой
1	Cmd=5
2	занято ячеек
3	свободно ячеек
4	0; 1- вывести на дисплей «ос»
5	CRCl
6	CRCh

Ответ: 1 байт: 0x6 (ОК)

6-Изменить скорость последовательного порта

После инициализации скорость порта 7КТ на прием и передачу 2400бод, N,8 Скорость приема и передачи может изменяться отдельно.

Примечание: при считывании из компьютера следует применять одинаковые скорости из-за замедленной реакции порта.

Запрос

	0хА5, старт
0	DevAdr, адрес прибора в сети, 0-любой
1	Cmd=6
2	код скорости приема 7КТ
3	код скорости передачи 7КТ
4	0
5	CRCl
6	CRCh

Ответ: байт 0х6 на прежней скорости передачи

Коды скорости:

обозн	значение	скорость, Бод
S2400	4	2400
S4800	5	4800
S9600	6	9600
S19200	7	19200
S28800	8	28800
S38400	9	38400
S57600	10	57600
S115200	11	115200

Расположение и форматы данных

Данные организованы таким образом, что для получения всех архивов достаточно считать блок данных из ЕЕПРОМ (т.е. архива) одной повторяющейся командой «читать архив» с изменяющимся адресом начала; других команд и данных не требуется. В этом архиве присутствуют в том числе данные о серийном номере и версии прибора. Читая от начала до определенного адреса, можно получить накопленные, ежемесячные, суточные и почасовые данные; при это объем чтения соответственно возрастает.

Предполагается, что через модем есть смысл по умолчанию качать только суточные данные (2744байта), а почасовые по специальному запросу.

Для того, чтобы получить все архивные данные нужно при помощи команд чтения архива считать необходимое количество данных:

Данные	Адрес	Адрес	Байт
	начала	конца	
Накопленные	0	144	144
Ежемесячные	144	444	300
Суточные	512	2744	2232
Часовые	2816	31546	28730

Рекомендуемая последовательность чтения и обработки архива:

- 1. считать архив от начала до конца командами с длиной чтения минимум 64 байта
- 2. взять данные от начальной даты-времени до даты-времени, находящейся в накопленных (начало архива), исключив данные на несуществующие для этого периода даты, например 31 число для апреля или с 29 по 31 число для февраля. **1

**1 по адресам для этих дат будут находиться данные за предыдущий месяц, в котором эти даты были. Вычислитель просто записывает данные на соответствующие места для даты и времени и не удаляет старые; в том числе возможны 0xFF из не стертого ЕЕПРОМ.

Чтобы считать только данные за период, необходимо рассчитать адреса архивных данных, соответствующие нужному периоду и выдать команды на чтение только данного периода.

Предостережение: между командами чтения данные могут измениться.

Поэтому рекомендуется считывать накопленные данные одной командой, адреса от 64 до 128. Также рекомендуется не использовать данные, записанные на час и дату, большие, чем записанные в накопленных данных, так как есть вероятность, что будут считаны «разорванные» данные и числа.

Если нужно получить данные на самый последний час, то можно после чтения архива еще раз считывать накопленные (начало архива) и при несовпадении часа дочитывать нужные данные, или целиком архив.

Расположение данных в архиве

Адреса архивов

Адрес	
начала	Расположено
0	Уставки
64	Накопленные значения
144	Ежемесячный архив
	Суточный архив
2816	Часовой архив

Расположение уставок и накопленных данных

Adr	байт	Обозначение	Наименование	Формат данных
0	1	L8kb	Длина архива/8кБ (=4)	unsigned char
1	1	Va	Версия архива	unsigned char
2	2	Sn	Сер.номер прибора	unsigned int
4	1	Vers	Версия прибора	unsigned char
5	43		резерв	
48	15		калибровочные данные	
63	1	NetAdr	Сетевой адрес	unsigned char
64	1	Nformula	№ расчетной формулы	unsigned char
65	3	Tc	уставка хол. воды, град	float 24
68	3	L1	Уставка, м3/имп	float 24
71	3	L2		float 24
74	3	L3		float 24
77	3	L4		float 24
80	1	YearL	Мл. значение года	unsigned char
81	1	Month	Месяц	unsigned char
82	1	Day	День	unsigned char
83	1	Hour	Час	unsigned char
84	4	WorkHour	часов наработки	long
88	4	W1	Объемы, м3	float 32
92	4	W2		float 32
96	4	W3		float 32
100	4	W4		float 32
104	4	E1	Энергия, Гкал	float 32
108	4	E2		float 32
112	4	M1	Массы, тонн	float 32
116	4	M2		float 32
120	4	M3		float 32
124	4	M4		float 32
ИТОГО:	64	байт	Данных, меняющихся за ч	час

Ежемесячный архив

Адреса записей ежемесячного архива в ЕЕПРОМ

Длина записи	25	
адрес	Месяц	
144	1	январь
169	2	февраль
194	3	март
219	4	апрель
244	5	май
269	6	июнь
294	7	июль
319	8	август
344	9	сентябрь
369	10	октябрь
394	11	ноябрь
419	12	декабрь

Запись ежемесячного архива

N	байт	Обозначение	Наименование	Формат данных
				мл. полубайт - месяц;
0	1		Месяц:Год	ст. полубайт - год (мл. значение)
1	4	W1	Объем	float32
5	4	W2	Объем	float32
9	4	W3	Объем	float32
13	4	W4	Объем	float32
17	4	E1	Энергия, канал 1	float32
21	4	E2	Энергия, канал 2	float32
ИТОГО:	25	байт		

Например, объем W2 за март находится по адресам: от 194+5 (мл. байт) до 194+5+3 включительно.

Суточный архив

Адреса записей суточного архива

	Плина записи	36
	Длина записи	
		lpec
	нечетный месяц	четный месяц
День	(янв,март)	(февр.,апр)
1	512	1628
2	548	1664
3	584	1700
4	620	1736
5	656	1772
6	692	1808
7	728	1844
8	764	1880
9	800	1916
10	836	1952
11	872	1988
12	908	2024
13	944	2060
14	980	2096
15	1016	2132
16	1052	2168
17	1088	2204
18	1124	2240
19	1160	2276
20	1196	2312
21	1232	2348
22	1268	2384
23	1304	2420
24	1340	2456
25	1376	2492
26		2528
27	1448	2564
28	1484	2600
29	1520	2636
30	1556	2672
31	1592	2708

Запись суточного архива

N	байт	Обозначение	Наименование	Формат данных
0	1	Day	Календарный день	целое
				мл. полубайт - месяц;
1	1		Месяц:Год	ст. полубайт - год (мл. значение)
2	2	T1	Температура	целое/100, градусов
4	2	T2	среднесуточная	
6	2	T3		
8	2	T4		
10	1	P1	Давление	байт/10
11	1	P2	среднесуточное	
12	4	W1	Объем, накопленный	float
16	4	W2		
20	4	W3		
24	4	W4		
28	4	E1	Энергия, накопленная	float
32	4	E2		
ИТОГО:	36	байт		

Часовой архив

Адреса записей часового архива на начало суток, 0 часов.

Адреса	записеи	час	ового	архива
			я месяц	
Адрес	1 4 7 10	2.5	8 11	3 6 9 12
2816			17	
3440			18	
4064	3		19	
4688			20	
5312	5		21	
5936	6		22	
6560	7		23	
7184			24	
7808			25	
8432	10		26	
9056	11		27	
9680	12		28	
10304	13		29	
10928	14		30	
11552	15		31	
12176	16			1
12800	17			2
13424	18			3
14048				4
14672				5
15296				
15920				6
16544				8
17168				9
17792				10
18416				11
19040				12
19664				13
20288				14
20912				15
21536				16
22160		1		17
22784		2		18
23408		3		19
24032		4		20
24656		5		21
25280		6		22
25904		7		23
26528		8		24
27152		9		25
27776		10		26
28400		11		27
29024		12		28
29648		13		29
30272		14		30
30896		15		31
31520		16		31
31320		10		

Длина записи	26
Длина записи за сутки	624

Всего записей за 31+16=47 суток. Чтобы найти адрес начала записи:

- 1. по номеру месяца определить один из 3х вариантов расположения по датам
- 2. Найти адрес начала суток

Пример псевдо-кода на Си:

Время записи и суммирование за период

Почасовые архивы записываются в начале часа, данные за прошедший час, то есть запись в 00 часов соответствует данным от 23 до 00 часов прошлых суток.

Суточные архивы записываются в начале суток, час=0, данные за прошедшие сутки. Ежемесячные архивы записываются в начале месяца, день=1, час=1, данные на момент записи.

```
Например, суточная запись на 1.01.05 соответствует 24 почасовым записям: от 31.12.04, часы = 1, 2, 3, 4, ...23 до 01.01.05, час = 0 включительно.
```

Например, если суммировать почасовые объемы (энергии) за эти часы, то они должны равняться разности объемов (энергий) за 01.01.05 минус 31.12.04 (так как в суточных записываются накопленные значения, а в почасовых — приращения.

Примечание: сумма накопленных значений почасовых за сутки может неточно равняться разности суточных значений за предыдущие и текущие сутки из-за разности представления чисел. Точными являются Суточные данные; приращения почасовых нужно выровнять для точного соответствия суммы почасовых за сутки = (Сутки прошлые)-(сутки текущие). Несоответствие заметно бывает заметно на распечатке, если в конце суток нулевые расходы. Тогда может появиться минус в объемах или энергии, например -0,01. В модуле bin7kt.exe эти нюансы учтены, рекомендуется для расшифровки данных использовать этот модуль.

Запись часового архива

N	байт	Обозначение	Наименование	Формат данных
0	1	Day	Календарный день	целое *1
1	1		Месяц:Год	мл. полубайт - месяц; ст. полубайт - год (мл. значение)
2	2	T1		
4	2	T2	Температура	T=Int/100, grad
6	2	T3	среднечасовая	1–1111/100, grad
8	2	T4		
10	1	P1	Давление	P=Byte/16
11	1	P2	среднечасовое	P-Byte/10
12	2	w1		
14		w2	Объем за час	число импульсов расходомера
16	2	w3	Объем за час	W=w*L
18	2	w4		
20	3	E1	Quentua 22 U20	vegueriji jă fleat
23	3	E2	Энергия за час	усеченный float
ИТОГО:	26	байт		

^{*1} старший бит используется для проверки питания расходомеров: Байт Day (Adr=0): если старший бит =1 значит был сбой питания в этом часу. Сбой регистрируется, если питание пропало на 1/32 секунды.

```
То есть в программе при использовании Day надо добавить маску: ....//получили Day if(Day&0x80) // был сбой питания в часу {обработка сбоя питания в этом часу} ....
Day &= 0x1F; // оставили только Day 1...31
```


Текущие данные

Текущие данные – это то, что мы можем видеть на табло 7КТ в данный момент, то есть температуры, давления, объемы и т.п. в данную минуту. Поскольку архивы записываются 1 раз в час, то это единственный способ получения текущей информации.

Предполагается, что эти данные нужны только для оперативного диспетчерского наблюдения; в обычной практике архивных данных достаточно; запаздывание на 1 час не имеет значения

Текущие данные изменяются за один цикл расчета.

Накопленные данные W E M (объемы, энергии, массы) состоят из 2х частей:

- 1. Накопленные на конец часа, плюс
- 2. Приращение в течение часа

Поэтому для получения накопленных данных W E M в данный момент нужно к накопленным (находящимся в архиве) добавить приращение.

Для объема приращение считается в виде числа поступивших импульсов, поэтому их надо умножать на вес импульса L (м3/имп)

Команды для получения текущих данных

- 1. Инициализировать связь (см. выше)
- 2. Дать команду чтения архива, адреса от 64 по 128 включительно **1
- 3. Дать команду чтения текущих данных
- 4. Рассчитать текущие величины

Расчет накопленных данных

Наименование	Формула	Где
Объем	Wi=WNi+Whi*L	WN – накопленные (см. накопленные данные)
	i	Wh – приращение в течение часа
Тепловая энергия	Ei=ENi+Ehi	EN – накопленные
		EN – приращение в течение часа
Macca	Mi=MNi+Mhi	

^{**1} если накопляемые данные W E M не нужны, то можно пропустить

Расположение текущих данных

N	байт	Обозначение	Наименование	Формат данных
0	3	T1	Температура	float 24
3	3	T2	градусов	float 24
6	3	T3		float 24
9	3	T4		float 24
12	3	V1	Расход	float 24
15	3	V2	м3/час	float 24
18	3	V3		float 24
21	3	V4		float 24
24	3	P1	Давление	float 24
27	3	P2	Атм	float 24
30	3	F1	Тепловая мощность	float 24
33	3	F2	Гкал/час	float 24
36	2	Wh1	Приращение объема,	unsigned int
38	2	Wh2	число импульсов	unsigned int
40	2	Wh3		unsigned int
42	2	Wh4		unsigned int
44	3	Eh1	Приращение тепловой	float 24
47	3	Eh2	энергии, Гкал	float 24
50	3	Mh1	Приращение	float 32
53	3	Mh2	массы, тонн	float 32
56	3	Mh3		float 32
59	3	Mh4		float 32
62	1	Min	Минуты	Byte
63	1	Sec	Секунды	Byte
ИТОГО:	64	байт	-	

Форматы данных

	байт		как получить значение
float 32	4	Обычный float, записан младший-	по байтам перенести в
		старший байт	обычный float
float 24	3	float с обрезанной мантиссой	по байтам перенести в
		(убран младший байт), байты от	обычный float; мл. байт
		младшего к старшему	обнулить
Температура	2	значение, умноженное на 100	T=t/100
Давление	1	значение, умноженное на 16;	P=p/16
Месяц: Год	1	по полубайтам: мл. 4бита – месяц;	M=MΓ&0xF
		ст. – единицы года (016)	$\Gamma = (M\Gamma \& 0xF0)/16$
Объем за час	2	Число импульсов расходомера	W = w * L/1000, M3, L-Bec
			импульса, л

Формат чисел float24 и float32

Все числа записываются от младшего байта к старшему.

float24 формат числа (Modified IEEE 754 24-bit)

	Старший байт						Средний					Младший байт											
7	6	5	4	3	3 2 1 0 7 6				6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
S	b	iase	ed e	xpo	nen	t (8	бит	<u>')</u>	mantiss					a (1	5би	т) ;	k						

^{*} при этом точность представления 24-битного float = $1/2^{15} = 0.003051\%$

S – знак, 1 – минус;

biased exponent E (смещенная экспонента) это 8-битная экспонетна (то есть число, умноженное на 2 в степени экпоненты E) которая записывается как остаток 127 (то есть экспонента 0 записывается как 127,

экспонента Е=1 соответствует числу 128,

экспонента Е= -1 соответствует числу 126.

mantissa (мантисса) это число справа от запятой. Подразумевается, что бит справа от запятой всегда равен 1 за исключением числа 0, когда этот бит подразумевается равным 0. Число 0 записывается с экспонентой равной нулю.

Величина числа равна: (-1)S x 2^(exponent -127) x **1.**mantissa

Примеры записи чисел в IEEE 754 32-bit и 24-bit

Format	Number	biased exponent	1.mantissa	decimal
IEEE 754 32-	7DA6B69	11111011b	1.010011010110110100	2.77000e+37
bit	Bh	(251)	11011b	2.77000e+37
			(1.302447676659) **	
Modified IEEE 754 24-	42123Ah	10000100b (132)	1.001001000111010b (1.142395019531) **	36.557
bit				

^{** &}quot;1." показана условно, при записи числа в данном формате эта единица не записывается. Знаковый бит равен нулю; смещенная экспонента 251, следовательно экспонента 251–127 = 124.

Take the binary number to the right of the decimal point in the mantissa.

Берем бинарное число справа от десятичной точки. Преобразуем это число в десятичное и делим на 2 в 23 степени где 23 это число бит взятых для мантиссы, получаем 0.302447676659. Добавляем 1, получаем мантиссу 1.302447676659.

Число с плавающей запятой равно:

```
(-1)_0 \times 2^{(124)} \times 1.302447676659 = 1 \times 2.126764793256e + 37 \times 1.302447676659 = 2.77000e + 37
```

<u>Примечание</u>: отличие от стандартного формата IEEE 754 32-bit только в том, что из мантиссы исключен младший байт, для преобразования надо лишь убрать из стандартного *float* младший байт. Для этого можно применить такой код на языке C:

```
union char_float {
    unsigned char C[4];
    float F;
};
union char_float Fl;

//для IEEE 754 24-bit берем старшие 3 байта 32-битного float, игнорируя младший F.C[0]:
Lo = Fl.C[1]; Mid = Fl.C[2]; Hi = Fl.C[3]; //3 байта float IEEE 754
24-bit
```

Формат файла *.bin

Первые 0x40 (64байта) – текущие данные дальше – в соотв. с адресами ЕЕПРОМ 7КТ, начиная с адреса 0.

Имя файла: NNNNNN.bin, где NNNNN – номер вычислителя.

Файл используется на входе в программе bin7kt.exe; на выходе — файл *.7kt в текстовом формате.

Рекомендуется для импорта использовать файл *.7kt