State University of Campinas - UNICAMP

CRESCIMENTO ECONÔMICO E O USO DE ENERGIA RENOVÁVEL: UMA AVALIAÇÃO COM DADOS EM PAINEL

Trabalho Final HO-235

Supervisor: Alexandre Gori Maia

João Paulo F. Fenelon (211467) e Henri Makika (211042)

Julho 10, 2019

1 INTRODUÇÃO

Este trabalho analisa o impacto do crescimento sobre o uso de energia de fontes renováveis mediante o uso de técnicas de regressão. Supõe-se que é medida que a renda das economias aumenta ocorre um processo de substituição das fontes de energias fóseis pelas mais limpas (renováveis). Utiliza-se na primeira parte um modelo clássico baseado no método de mínimos quadrados ordinários (OLS), de modo a estimar os resutados para o ano de 2010; em seguida, usa-se o modelo de dados em painel para avaliar um período mais longo, de 1960 a 2018. Os dados foram extraidos do world development indicators do Banco Mundial. Finalmente, as conclusões são descritas na última seção.

2 ESTIMAÇÃO E DISCUSSÃO DOS RESULTADOS

São utilizados os dados do World Development Indicadors (WDI) do Banco Mundial. Para análise de corte transversal utilizou-se o ano de 2010 como referência. Das 217 observações, 80 foram eliminadas devido é presença de missingness. As seguintes variáveis são consideradas ao longo do trabalho:

renovavel = produção de energia de fontes renováveis em kWh, excluindo hidroelétricas;

pib = produto interno bruto em US\$ a preços de 2010;

população = total da população;

eletricidade = consumo de energia elétrica em kWh per capita;

energia = uso de energia em kg per capita.

```
pib
##
      renovavel
                                                 populacao
            :0.000e+00
##
    Min.
                         Min.
                                 :3.182e+07
                                               Min.
                                                      :1.000e+04
                                               1st Qu.:6.897e+05
    1st Qu.:0.000e+00
                         1st Qu.:4.895e+09
##
    Median :1.040e+08
                         Median :2.027e+10
                                               Median:5.824e+06
##
            :5.445e+09
                                                      :3.180e+07
    Mean
                         Mean
                                 :3.194e+11
                                               Mean
##
    3rd Qu.:1.927e+09
                         3rd Qu.:1.466e+11
                                               3rd Qu.:2.053e+07
##
    Max.
            :1.784e+11
                         Max.
                                 :1.499e+13
                                               Max.
                                                      :1.338e+09
##
    NA's
            :77
                         NA's
                                 :12
##
     eletricidade
                            energia
##
                24.52
                                : 135.4
    Min.
            :
                        Min.
    1st Qu.:
              775.95
                        1st Qu.: 687.3
##
    Median: 2491.63
                        Median: 1474.7
##
##
    Mean
            : 4259.60
                        Mean
                                : 2641.6
    3rd Qu.: 5700.86
                        3rd Qu.: 3347.6
            :51439.91
                                :17023.2
##
    Max.
                        Max.
##
    NA's
            :76
                        NA's
                                :76
```


Supõe-se que a produção de energia renovável (renovavel) depende positivamente das variáveis produto interno bruto (pib) e negativamente da população (população). Argumenta-se que países com maior PIB tendem, ao longo do tempo, substituir as fontes de energia fóseis por fontes mais limpas; países que apresentam maior população tendem a consumir maior quantidade energia fósel. O que foi dito pode ser estimado por meio de um modelo de regressão linear baseado no método de mínimos quadrados ordinários (OLS) na forma:

$$renovavel_i = \hat{\alpha} + \hat{\beta}_1 pib_i + \hat{\beta}_2 população_i + \hat{e}_i$$

Como forma de encontrar o melhor ajuste na forma funcional do modelo, deve-se testar algumas especificações. Os resultados do modelo na forma linear, linear-log, log-linear e log-log são descritos a seguir:

##				
ππ			======================================	
##		Dependent variab	le:	
##				
##	ren	ovavel	log(reno	vavel + 1)
##	Linear	Lin-Log	Log-Lin	Log-Log
##	(1)	(2)	(3)	(4)
##				
## pib	0.0115***		0.0000***	
##	(0.0004)		(0.0000)	
##				
## populacao	4.7875		0.0000	
##	(4.0306)		(0.0000)	
##				

##	log(pib)		5,188,506,697.0000***		3.0299***
##			(1,001,320,220.0000)		(0.5329)
##					
##	log(populacao)		919,936,393.0000		-0.7444
##			(1,171,945,667.0000)		(0.6237)
##					
##	Constant	-135,113,932.0000	-139,634,102,491.0000***	12.7654***	-50.1408***
##		(605,477,858.0000)	(19,017,008,819.0000)	(0.8557)	(10.1206)
##					
##					
##	Observations	137	137	137	137
##	R2	0.8801	0.3044	0.0860	0.2479
##	Adjusted R2	0.8783	0.2940	0.0724	0.2367
##	F Statistic (df = 2; 134)	491.9049***	29.3220***	6.3050***	22.0888***
##	=======================================			========	
##	Note:		*p<0	.1; **p<0.0	5; ***p<0.01

Escolhe-se o modelo log-log, uma vez que foi aquele que apresentou melhor ajuste de acordo com os critérios de informação Akaique (AIC) e Schwarz (BIC)¹. Ademais, o teste de White não verificou suspeitas de heterocedasticidadee em nenhum dos modelos; a hipótese de normalidade dos resíduos foi rejeitada em todos os modelos, conforme os teste Jarque-Bera e Shapiro-Wilk; e o teste geral de especificação Ramsey-Reset rejeitou a hipótese de correta especificação para todos os modelos, exceto o modelo log-log.

As variáveis relacionadas à hipótese teórica mostram que no modelo linear apenas o PIB é estatisticamente significante a 5%. O sinal positivo do coeficiente associado ao PIB está de acordo com a hipótese levantada. O aumento de um por cento no PIB gera um aumento de 3% no uso de energia renovável, ceteris paribus. A variável população, neste caso, não é estatisticamente significante na determinação do maior uso da energia renovável. Quanto ao modelo, pode-se concluir pelo teste F que o mesmo é estatisticamente significante a qualquer nível de significância.

Pode-se testar a hipótese de maior uso de energia renovável no Grupo das sete economias mais avançadas (G7) em relação ao resto do mundo. Para isto, inclui-se uma variável binária em que 1 representa o uso de energia renovável dos países do G7 e 0 para o caso contrário.

# # ——·	Depender	nt variable:	
# #	log(renovavel + 1)		
# # #	Log-Log (1)	Log-Log-Binária (2)	
# # log(pib) # #	3.0299*** (0.5329)	2.9841*** (0.5855)	
# log(populacao) # #	-0.7444 (0.6237)	-0.7381 (0.6268)	
# binaria_G7 # #		0.7299 (3.7988)	
# Constant # #	-50.1408*** (10.1206)	-49.1305*** (11.4374)	

¹981.4439 (AIC) e 993.1238 (BIC)

Os países do G7 usam, em média, 107.5% de energia renovável a mais que os demais países. No entanto, a hipótese não é validada, pois a nula não é rejeitada; isto é, a variável binária é estatisticamente insignificante. Logo, mantém-se com a especificação padrão do modelo log-log.

Feito isso, verifica-se a possibilidade de endogeneidade na variável PIB. O problema de endogeneidade pode ocorrer devido a três fatores: (1) omissão de variáveis relevantes correlacionadas ao PIB; (2) erros de medição com o PIB (e.g. uma proxy mal especificada); (3) simultaneidade entre y (renovavel) e uma ou mais variáveis explicativas (pib e população). Para este trabalho, testa-se o caso (1). Considera-se existir uma variável de controle associada ao PIB e que não deve ser omitida do modelo, uma vez que se teria um modelo com viés de especificação. Supõe-se dois modelos: o primeiro possui, supostamente, viés ao omitir variáveis; o segundo considera variáveis (proxies) de controle associadas à demanda por energia, as quais ajudam a explicar o uso de energia renovável e estão associadas ao PIB. Estas variáveis são o uso de energia per capita e o consumo de eletricidade per capita.

	Dependent variable: 		
	Linear (1)	Linear com Controles (2)	
log(pib)	3.0299***	5.4435***	
	(0.5329)	(1.2355)	
log(populacao)	-0.7444	-3.2398**	
	(0.6237)	(1.3280)	
log(energia)		-4.5628***	
		(1.7394)	
log(eletricidade)		0.5725	
		(1.2735)	
Constant	-50.1408***	-40.8971***	
	(10.1206)	(10.4703)	
Observations	137	137	
R2	0.2479	0.2918	
Adjusted R2	0.2367	0.2703	
Residual Std. Error	8.5407 (df = 134)		
F Statistic	22.0888*** (df = 2; 134)		

A inclusão das variáveis explicativas de controle melhorou o ajuste do modelo. Neste caso, o impacto positivo do crescimento econômico sobre o uso de energia renovável fica mais nétido: os sinais dos coeficientes do

PIB e da população estão de acordo com o que se supões. Apenas a variável de consumo de energia elétrica per capita não se mostrou estatisticamente significante a 5%. De fato, pelo teste de restrição de Wald, a contribuição da variável eletricidade é nula para modelo. Diante disso, opta-se pelo uso do modelo com controles mas sem a variável eletricidade.

Uma desvantagem da análise com dados em corte transversal são os limitados graus de liberdade. Isso significa que é possível incluir apenas um conjunto restrito de variáveis no modelo de regressão; caso contrário, reduz-se sua eficiência: a variância tende a se tornar muito elevada e os testes de hipótese inválidos. Por outro lado, omitir variáveis pode gerar estimativas tendenciosas. A principal forma de enfrentar este trade-off entre eficiência e viés é aumentar o número de observações (n). Para um mesmo número de individuos (países) a solução passa por incluir mais períodos. Para o caso analisado, é possível estender o período da amostra para um intervalo maior que 2010. A base do WDI do Banco Mundial permite analisar os períodos de 1960 a 2018. Para lidar com esses dados alguns modelos são considerados.

Uma alternativa é usar o método OLS com dados empilhados. Os resultados são descritos a seguir comparandoos ao modelo com dados em corte transversal.

## ##	===========				
## ##		Dependent variable:			
##		log(renovavel + 1)			
## ## ##		Tranversal (1)	Empilhado(i) (2)		
	log(pib)	5.7105*** (1.0800)	4.3798*** (0.1637)		
## ## ##	log(populacao)	-3.5304*** (1.1568)	-2.4689*** (0.1735)		
## ## ##	log(energia)	-4.1433*** (1.4635)			
## ## ##	log(energia + 1)		-2.0356*** (0.2246)		
## ## ## ##	Constant	-41.6222*** (10.3143)	-43.7718*** (1.6471)		
## ## ## ##			5,340 0.2453 0.2449 578.2465*** (df = 3; 5336)		
	Note:		*p<0.1; **p<0.05; ***p<0.01		

Pode-se ter três especificações para modelos com dados empilhados: (i) intercepto e coeficientes angulares constantes; (ii) intercepto diferente e coeficientes angulares constantes; e (iii) intercepto e e coeficientes angulares diferentes. No caso descrito na tabela anterior, observa-se que o modelo com dados empilhados (i) gera resultados mais robustos. Neste caso, todas as variáveis são estatisticamente significantes a 1%. A seguir são apresentados os resultados usando as especificações (ii) e (iii).

## ##		Dependent variable:	
## ## ##	Empilhado(i) (1)	log(renovavel + 1) Empilhado(ii) (2)	Empilhado(iii) (3)
## ## log(pib)	4.3798***	4.6664***	4.5013***
##	(0.1637)	(0.1619)	(0.1637)
<pre>## ## log(populacao)</pre>	-2.4689***	-2.7400***	-2.8266***
##	(0.1735)	(0.1714)	(0.1714)
## ## log(energia + 1)	-2.0356***	-2.3264***	-2.4206***
##	(0.2246)	(0.2214)	(0.2213)
##			
## periodo ##		6.4026*** (0.4490)	6.0595***
##		(0.4490)	(0.4512)
## int_pibperiodo			0.0000***
##			(0.000)
##	40. 7740	50.0005	44.0040
## Constant ##	-43.7718*** (1.6471)	-50.3335*** (1.6810)	-44.0816*** (1.9780)
##	(1.04/1)	(1.0010)	(1.9/60)
##			
## Observations	5,340	5,340	5,340
## R2	0.2453	0.2730	0.2778
## Adjusted R2	0.2449	0.2725	0.2772
	or 8.6666 (df = 5336)		
## F Statistic	578.2465*** (df = 3; 5336)) 410.4312*** (df = 5; 5334)
## ===================================			*p<0.1; **p<0.05; ***p<0.01

Mais uma vez os resultados indicam que o modelo com dados empilhados é estatisticamente mais eficiente que o modelo com dados em corte transversal.

Alternativamente, pode-se estar interessado em controlar os efeitos de variáveis omitidas no modelo e que se supõe relevantes. A análise de dados em painel permite usar estimadores que controlam os efeitos dessas variáveis omitidas sobre a variável dependente. Uma possibilidade de fazer isso é usar o estimador de efeitos fixos. O controle pode ser feito por meio da criação de dummies (c_i) para cada país da amostra menos um. Dessa forma, o componente c_i mantém constante o efeito das variáveis omitidas que impactam o uso de energia renovável. O problema disso é que se gastam muitos graus de liberdade e, consequentemente, reduz-se a eficiência do modelo. Outro método é tratar os efeitos das variáveis omitidas como valores aleatórios. Neste caso, usa-se o estimador de efeitos aleatários. Incorpora-se o efeito das variáveis omitidas (as quais são tratadas com uso de binárias no estimador de efeitos fixos) dentro do erro de previsão. É uma alternativa válida quando não se deseja reduzir a eficiência do modelo. No entanto, o uso do estimador de efeitos aleatórios requer que a correlação entre as variáveis explicativas e o erro de previsão seja igual ou próxima a zero.

Os resultados estimados para o modelo com dados empilhados (i) e os modelos com estimadores fixos e aleatórios são descritos a seguir.

##	
##	
##	Dependent variable:
##	
##	log(renovavel + 1)

## ##	OLS	<u>-</u>	anel inear
##	<pre>Empilhado(i)</pre>	Fixos-Oneway	Fixos-Twoway
##	(1)	(2)	(3)
##			
## log(pib)	4.3798***	8.9181***	3.7101***
##	(0.1637)	(0.2701)	(0.3559)
##			
## log(populacao)	-2.4689***	-3.8842***	-6.6756***
##	(0.1735)	(0.4576)	(0.5170)
##			
## log(energia + 1	1) -2.0356***	0.6711**	0.5578*
##	(0.2246)	(0.3056)	(0.3028)
##			
## Constant	-43.7718***		
##	(1.6471)		
##			
##			
## Observations	5,340	5,340	5,340
## R2	0.2453	0.3533	0.0512
## Adjusted R2	0.2449	0.3359	0.0153
	578.2465*** (df = 3; 5336)	946.9478*** (df = 3; 5199	9) 92.5988*** (df = 3; 5144)
## ========= ## Note:		=======================================	*p<0.1; **p<0.05; ***p<0.01
			r, r, p

O modelo com estimador de efeitos fixos por país (one-way) indica que, na média, o uso de energia de fontes renováveis aumenta por país 8.9% quando o PIB aumenta em um por cento, ceteris paribus. O aumento em um por cento na população leva a uma queda, em média por país, de 3.9%, ceteris paribus. No modelo two-way controla-se, além dos efeitos entre os países, o efeito entre os períodos (anos). Assim, o aumento em um por cento do PIB gera um aumento médio anual para cada país de 3.7% no uso de energia renovável, ceteris paribus. O aumento de um por cento da população reduz anualmente por país em média o uso de energia renovável em 6.7%, ceteris paribus. O consumo de energia elétrica é estatisticamente significante a 10% em ambos os modelos, embora o sinal esteja invertido quando comparado ao modelo empilhado(i) e haja perda de eficiência devido às restrições que se colocam no estimador de efeitos fixos.

##				
##				
##		Dependent variable:		
##				
##			log(renovavel +	1)
##		OLS	pa	nel
##			lin	ear
##		Empilhado(i)	Aleatórios-Oneway	Aleatórios-Twoway
##		(1)	(2)	(3)
##				
##	log(pib)	4.3798***	7.9164***	5.5149***
##		(0.1637)	(0.2538)	(0.0559)
##				
##	log(populacao)	-2.4689***	-3.1193***	-3.3513***
##		(0.1735)	(0.3533)	(0.0707)
##				
##	log(energia + 1)	-2.0356***	0.2911	0.0206
##		(0.2246)	(0.2938)	(0.0573)
##				
##	Constant	-43.7718***	-136.9199***	-73.6536***

##		(1.6471)	(3.9357)	(1.0963)
##				
##				
##	Observations	5,340	5,340	5,340
##	R2	0.2453	0.3206	0.2213
##	Adjusted R2	0.2449	0.3202	0.2209
##	F Statistic (df = 3; 5336)	578.2465***	839.2010***	185.8546***
##		=========		===========
##	Note:		*p<0.1; *	*p<0.05; ***p<0.01

O modelo com estimador de efeitos aletórios apresenta interpretação similar ao caso anterior quando se analisa o valor dos coeficientes. No entanto, por ser mais parcimonioso, consome-se menos graus de liberdade quando comparado ao estimador de efeitos fixos. A implicação disso são testes de hipótese mais robustos (ganho de eficiência). Contudo, as estimativas são confiáveis apenas se sustenta a condição $cor(X, c_i) = 0$. Caso contrário, deve-se utilizar o estimador de efeitos fixos.

Uma forma de avaliar qual estimador é o mais adequado é feita pelo teste de Hausman. Os parâmetros dos estimadores com efeitos fixos e aleatórios são comparados. Se ambos são estatisticamente iguais, opta-se pelo estimador de efeitos aleatórios, uma vez que este é mais parcimonioso (mais eficiente).

No caso do modelo one-way (i.e., em que se controla os efeitos de variáveis omitidas entre os países), o modelo mais adequado, segundo o teste de Hausman é o estimador de efeitos fixos, uma vez que se rejeitou a hipótese nula de coeficientes estatisticamente iguais. Da mesma forma, no modelo two-way (i.e., em que se controla o efeitos das variáveis omitadas entre países e períodos) o estimador de efeitos fixos é apontado como o mais adequado.

3 CONCLUSÃO

A análise de dados em painel permite gerar estimativas que ajudam a tratar o problema da endogeneidade na econometria. De um lado, a inclusão de um número maior de observações aumenta a variabilidade da amostra e a eficiência do modelo estimado; por outro, é possível controlar variáveis importantes omitidas, de modo a gerar estimativas não tendenciosas.

Dito isso, os resultados para o caso analisado entre crescimento econômico (PIB e população) e uso de energia renovável sustentam da hipótese inicial. Os sinais em todos os modelos analisado indicam que o crescimento econômico, ceteris paribus, eleva o uso de energia renovável.

REFERÊNCIAS

ANGRIST, J.; PISCHKE, J. Mostly harmless econometrics: An empiricist's Companion. *Princeton University Press*, 2009.

Baltagi, B. Econometric analysis of panel data. Third Edition. John Wiley & Sons. 2005, Chapters 1-4.

BALTAGI, B. H. Econometric analysis of Panel Data. 2nd edition, John Wiley & Sons. 2002.

MAIA, A. G. Econometria: conceitos e aplicações. Editora Saint Paul, 2017.

WOOLDRIDGE, J. M. Econometric analysis of Cross Section and Panel Data. 2nd edition. Massachusetts. *The MIT Press.* 2007.

Wooldridge, J. M. 2001. Econometric analysis of cross section and panel data. Cap. 10.