

STIC Search Report

EIC 1700

STIC Database Tracking Number: 101203

TO: Angela Martin
Location: CP3 8A05
Art Unit : 1745
August 19, 2003

Case Serial Number: 09/995457

From: John Calve
Location: EIC 1700
CP3/4-3D62
Phone: 308-4139

John.Calve@uspto.gov

Search Notes

SEARCH REQUEST FORM

Scientific and Technical Information Center

Requester's Full Name: Angela J Martin Examiner #: 76027 Date: 8/13/03
 Art Unit: 1745 Phone Number 305-0586 Serial Number: 09/995/457
 Mail Box and Bldg/Room Location: CP3-8A05 Results Format Preferred (circle): PAPER DISK E-MAIL

If more than one search is submitted, please prioritize searches in order of need.

Please provide a detailed statement of the search topic, and describe as specifically as possible the subject matter to be searched. Include the elected species or structures, keywords, synonyms, acronyms, and registry numbers, and combine with the concept or utility of the invention. Define any terms that may have a special meaning. Give examples or relevant citations, authors, etc, if known. Please attach a copy of the cover sheet, pertinent claims, and abstract.

Title of Invention: Metal Hydride Battery Material w/ High Storage Capacity
 Inventors (please provide full names): AKFile Page Attached

Earliest Priority Filing Date: 10/27/01; Foreign 11/27/00

For Sequence Searches Only Please include all pertinent information (parent, child, divisional, or issued patent numbers) along with the appropriate serial number.

* claims 1, 7, 10 only

2002-0120981

Spoke with examiner

STAFF USE ONLY

Searcher: J
 Searcher Phone #: _____
 Searcher Location: _____
 Date Searcher Picked Up: 8/17/03
 Date Completed: 8/19/03
 Searcher Prep & Review Time: 120
 Clerical Prep Time: _____
 Online Time: 60

Type of Search	Vendors and cost where applicable
NA Sequence (#)	STN _____
AA Sequence (#)	Dialog _____
Structure (#)	Questel/Orbit _____
Bibliographic	Dr. Link _____
Litigation	Lexis/Nexis _____
Fulltext	Sequence Systems _____
Patent Family	WWW/Internet _____
Other	Other (specify) _____

STIC Search Results Feedback Form

EIC17000

Questions about the scope or the results of the search? Contact **the EIC searcher or contact:**

Kathleen Fuller, EIC 1700 Team Leader
308-4290, CP3/4-3D62

Voluntary Results Feedback Form

- *I am an examiner in Workgroup:* Example: 1713
➤ *Relevant prior art found, search results used as follows:*

- 102 rejection.
- 103 rejection.
- Cited as being of interest.
- Helped examiner better understand the invention.
- Helped examiner better understand the state of the art in their technology.

Types of relevant prior art found:

- Foreign Patent(s)
- Non-Patent Literature
(journal articles, conference proceedings, new product announcements etc.)

➤ *Relevant prior art not found:*

- Results verified the lack of relevant prior art (helped determine patentability).
- Results were not useful in determining patentability or understanding the invention.

Comments:

Drop off or send completed forms to STIC/EIC1700 CP3/4 3D62

Angela Martin

09/995, 457

08/19/2003

=> file hca
FILE 'HCA' ENTERED AT 09:22:06 ON 19 AUG 2003
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2003 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 14 Aug 2003 VOL 139 ISS 8
FILE LAST UPDATED: 14 Aug 2003 (20030814/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d his

(FILE 'HOME' ENTERED AT 08:43:37 ON 19 AUG 2003)

FILE 'HCA' ENTERED AT 08:43:43 ON 19 AUG 2003
E US20020122981/PN

L1 1 S E3
SEL L1 RN

FILE 'REGISTRY' ENTERED AT 08:44:03 ON 19 AUG 2003

L2 15 S E1-E15
L3 7 S L2 AND AYS/CI
L4 8 S L2 NOT L3

FILE 'HCA' ENTERED AT 08:45:44 ON 19 AUG 2003
S L4 AND TIS/CI

FILE 'REGISTRY' ENTERED AT 08:47:46 ON 19 AUG 2003
L5 405880 S TIS/CI

FILE 'HCA' ENTERED AT 08:47:47 ON 19 AUG 2003

FILE 'REGISTRY' ENTERED AT 08:47:57 ON 19 AUG 2003
L6 1 S L4 AND TIS/CI
L7 1 S L4 AND HYDROGEN?/CNS
L8 7 S L4 NOT L6
L9 6 S L8 NOT L7

FILE 'LREGISTRY' ENTERED AT 08:48:49 ON 19 AUG 2003

FILE 'HCA' ENTERED AT 08:50:20 ON 19 AUG 2003
L10 24 S L3
L11 3 S L6
L12 747988 S L4
L13 505505 S L9
L14 8 S L10 AND L12 AND L13

L15 7069 S (HYDROGEN# OR H2) (2N) (STOR?)
 L16 1 S L10 AND L15
 L17 733 S L13 AND L15
 L18 231579 S 52/SX, SC
 L19 560 S L17 AND L18
 L20 1 S L19 AND L10
 L21 207 S L19 AND HYDRIDE?

FILE 'REGISTRY' ENTERED AT 08:55:24 ON 19 AUG 2003

L22 1588 S 5-90/MG
 L23 123001 S 0-100/MG }
 L24 11620 S 0-100/SC }
 L25 54201 S 0-100/Y }
 L26 61455 S 0-100/LA }
 L27 7436 S L23 AND (L24 OR L25 OR L26)
 L28 174 S L27 AND 1-99/H

Search for Compounds - Mg+ (Sc/Y/La + H₂) = in one record.

FILE 'HCA' ENTERED AT 08:58:21 ON 19 AUG 2003

L29 914 S L28
 L30 6 S L29 AND L15

FILE 'REGISTRY' ENTERED AT 08:59:41 ON 19 AUG 2003

L31 26 S L23 AND L24 AND 1-99/H
 L32 9 S L31 AND 3-4/NC

FILE 'HCA' ENTERED AT 09:00:51 ON 19 AUG 2003

L33 7 S L32

FILE 'REGISTRY' ENTERED AT 09:01:21 ON 19 AUG 2003

L34 765779 S AYS/CI
 L35 405880 S TIS/CI
 L36 67 S L28 AND L35
 L37 87 S L28 AND (L35 OR L34)
 L38 5 S L32 AND (L35 OR L34)

FILE 'HCA' ENTERED AT 09:02:45 ON 19 AUG 2003

L39 622 S L37
 L40 4 S L38
 L41 6 S L39 AND L15
 L42 2 S L40 AND L15
 L43 6 S L41 OR L42
 L44 2 S L43 AND L9
 L45 6 S L43 AND L4
 L46 6 S L44 OR L45
 L47 6 S L46 AND 1907-2000/PY, PRY

FILE 'LREGISTRY' ENTERED AT 09:05:14 ON 19 AUG 2003

FILE 'REGISTRY' ENTERED AT 09:08:23 ON 19 AUG 2003

L48 36041 S 1-99 MG/MAC
 L49 58160 S 0-100 MG/MAC
 L50 10573 S 0-100 Y/MAC }
 L51 10043 S 0-100 LA/MAC }
 L52 2283 S 0-100 SC/MAC }
 L53 3060 S L49 AND (L50 OR L51 OR L52)
 L54 1627 S L53 AND 3-5/NC

Search for alloys without the hydrogen
 Hydrogen is indexed as separate element.

FILE 'HCA' ENTERED AT 09:10:18 ON 19 AUG 2003

L55 1699 S L53
 L56 1011 S L54

L57 1130741 S STOR? OR ACCUMULAT? OR COLLECT? OR SAVE## OR SAVING## OR SAVE
 L58 8201 S L57(2N) (HYDROGEN# OR H2)
 L59 79 S L55 AND L58
 L60 68 S L56 AND L58
 L61 68 S L56 AND L15
 L62 79 S L55 AND L15
 L63 QUE (L7 OR HYDROGEN## OR H2)
 L64 103197 S HYDRID?
 L65 68 S L61 AND L63
 L66 42 S L65 AND L64
 L67 498044 S PD OR PALLADIUM# OR PT OR PLATINUM# OR RHODIUM# OR RH

FILE 'REGISTRY' ENTERED AT 09:14:43 ON 19 AUG 2003
 L68 3 S L9 AND (PLATINUM# OR PALLADIUM# OR RHODIUM##)/CNS

FILE 'HCA' ENTERED AT 09:15:30 ON 19 AUG 2003
 L69 177217 S L68
 L70 502254 S L67 OR L69
 L71 3 S L66 AND L70
 L72 5 S L65 AND L70
 L73 6 S L59 AND L70
 L74 6 S L71 OR L72 OR L73
 L75 1321647 S CATALY? OR ACTIVATOR? OR ACCELERANT? OR ENHANCER? OR ACCELERA
 L76 3 S L74 AND L75
 L77 6 S L74 OR L76
 L78 790562 S ANOD? OR CATHOD? OR ELECTROD?
 L79 2 S L77 AND L78
 L80 6 S L77 OR L79
 L81 41 S L66 AND L18
 L82 33 S L81 AND 1907-2000/PRY, PY
 L83 1446830 S MAGNESIUM# OR MG
 L84 32 S L82 AND L83
 L85 33 S L82 OR L84
 L86 31 S L85 NOT L47

FILE 'HCA' ENTERED AT 09:22:06 ON 19 AUG 2003

=> d L47 1-7 cbib abs hitind hitstr

L47 ANSWER 1 OF 6 HCA COPYRIGHT 2003 ACS on STN (AUTHOR'S RECORD)
 136:388551 Metal hydride battery material with high storage capacity.
 Ouwerkerk, Martin; Janner, Anna-Maria; Notten, Petrus H. L. (Koninklijke Philips Electronics N.V., Neth.). PCT Int. Appl. WO 2002043170 A2
 20020530, 7 pp. DESIGNATED STATES: W: CN, JP; RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR. (English).
 CODEN: PIXXD2. APPLICATION: WO 2001-EP13409 20011119. PRIORITY: EP
 2000-204211 20001127.

AB Disclosed is a **hydrogen storage** material comprising a magnesium-contg. intermetallic compd. which can form a hydride with hydrogen. The intermetallic compd. comprises an alloy of magnesium and a trivalent metal selected from the group of Sc, Y, La and the rare earth elements. Preferably, the intermetallic compd. comprises a scandium-magnesium alloy. In an advantageous embodiment, the **hydrogen storage** material also comprises a catalytically active material. Furthermore, an electrochem. active material, as well as an electrochem. cell comprising the above **hydrogen storage** material are disclosed.

IC ICM H01M004-38
 ICS C22C023-00

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 56

IT 7439-88-5, Iridium, uses 7440-02-0, Nickel, uses
7440-05-3, Palladium, uses 7440-06-4, Platinum, uses
7440-16-6, Rhodium, uses 7440-48-4, Cobalt, uses
RL: CAT (Catalyst use); USES (Uses)
(metal hydride battery material with high storage capacity)

IT 404965-31-7, Magnesium scandium hydride
RL: FMU (Formation, unclassified); TEM (Technical or engineered material
use); FORM (Formation, nonpreparative); USES (Uses)
(metal hydride battery material with high storage capacity)

IT 1333-74-0, Hydrogen, uses
RL: PEP (Physical, engineering or chemical process); TEM (Technical or
engineered material use); PROC (Process); USES (Uses)
(metal hydride battery material with high storage capacity)

IT 7439-88-5, Iridium, uses 7440-02-0, Nickel, uses
7440-05-3, Palladium, uses 7440-06-4, Platinum, uses
7440-16-6, Rhodium, uses 7440-48-4, Cobalt, uses
RL: CAT (Catalyst use); USES (Uses)
(metal hydride battery material with high storage capacity)

RN 7439-88-5 HCA

CN Iridium (8CI, 9CI) (CA INDEX NAME)

Ir

RN 7440-02-0 HCA
CN Nickel (8CI, 9CI) (CA INDEX NAME)

Ni

RN 7440-05-3 HCA
CN Palladium (8CI, 9CI) (CA INDEX NAME)

Pd

RN 7440-06-4 HCA
CN Platinum (8CI, 9CI) (CA INDEX NAME)

Pt

RN 7440-16-6 HCA
CN Rhodium (8CI, 9CI) (CA INDEX NAME)

Rh

RN 7440-48-4 HCA
CN Cobalt (8CI, 9CI) (CA INDEX NAME)

Co

IT 404965-31-7, Magnesium scandium hydride
RL: FMU (Formation, unclassified); TEM (Technical or engineered material
use); FORM (Formation, nonpreparative); USES (Uses)
(metal hydride battery material with high storage capacity)

RN 404965-31-7 HCA

CN Magnesium scandium hydride (9CI) (CA INDEX NAME)

Component	Ratio	Component Registry Number
H	x	12385-13-6
Sc	x	7440-20-2
Mg	x	7439-95-4

IT 1333-74-0, Hydrogen, uses

RL: PEP (Physical, engineering or chemical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
 (metal hydride battery material with high storage capacity)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H-H

L47 ANSWER 2 OF 6 HCA COPYRIGHT 2003 ACS on STN

136:270283 Light-switching device. Johnson, Mark Thomas; Van der Sluis, Paul; Janner, Anna-Maria; Cornelissen, Hugo Johan (Koninklijke Philips Electronics N.V., Neth.). U.S. Pat. Appl. Publ. US 20020036816 A1 20020328, 6 pp. (English). CODEN: USXXCO. APPLICATION: US 2001-965415 20010927. PRIORITY: EP 2000-203378 20000928.

AB Devices which are reversibly switchable between at least a first state of reflecting light and a second state of absorbing light are described which comprise a stack of layers including a switchable layer of an optically switchable material which brings about a switch from the first state to the second state of the device by changing a d. of hydrogen, the stack further including a layer for **storing hydrogen** which comprises a material comprising essentially the same compds. as the switchable layer. Display devices in which pixels are formed from the switchable elements are also described. The optically switchable material may comprise **LMgHx** (L= Ni, Sc, Y, or a lanthanide).

IC ICM G02F001-03

ICS G02F001-07; G02F001-153

NCL 359245000

CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)
 Section cross-reference(s): 72, 74

IT 1333-74-0, Hydrogen, processes

RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)
 (electrochromic mirrors using hydrogen switching and displays using them)

IT 67016-28-8, Magnesium nickel hydride 72870-44-1, Magnesium yttrium hydride 231619-60-6, Gadolinium magnesium hydride 404965-31-7, Magnesium scandium hydride

RL: DEV (Device component use); USES (Uses)
 (electrochromic mirrors using hydrogen switching and displays using them)

IT 1333-74-0, Hydrogen, processes

RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)
 (electrochromic mirrors using hydrogen switching and displays using them)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H-H

IT 72870-44-1, Magnesium yttrium hydride 404965-31-7,
 Magnesium scandium hydride
 RL: DEV (Device component use); USES (Uses)
 (electrochromic mirrors using hydrogen switching and displays using
 them)
 RN 72870-44-1 HCA
 CN Magnesium yttrium hydride (9CI) (CA INDEX NAME)

Component	Ratio	Component Registry Number
H	x	12385-13-6
Y	x	7440-65-5
Mg	x	7439-95-4

RN 404965-31-7 HCA
 CN Magnesium scandium hydride (9CI) (CA INDEX NAME)

Component	Ratio	Component Registry Number
H	x	12385-13-6
Sc	x	7440-20-2
Mg	x	7439-95-4

L47 ANSWER 3 OF 6 HCA COPYRIGHT 2003 ACS on STN
 132:350203 **Hydrogen storage** alloys with PuNi3-type
 structure as metal hydride electrodes. Chen, J.; Kuriyama, N.; Takeshita,
 H. T.; Tanaka, H.; Sakai, T.; Haruta, M. (Osaka National Research
 Institute, Osaka, 563-8577, Japan). Electrochemical and Solid-State
 Letters, 3(6), 249-252 (English) 2000. CODEN: ESLEF6. ISSN:
 1099-0062. Publisher: Electrochemical Society.

AB A powder sintering method was used to synthesize the intermetallic compds.
 LaCaMgNi9, CaTiMgNi9, LaCaMgNi6Al3, and LaCaMgNi6Mn3 (PuNi3-type). The
 microstructure and primary phases were obsd. by SEM and X-ray diffraction.
 The pressure-compn. isotherms showed that all alloys could reversibly
 absorb and desorb up to 1.8 wt% hydrogen at 20.degree. and a hydrogen
 pressure of 3.3 MPa. The sintered samples were employed as the active
 materials of metal hydride electrodes. The hydride stability and
 electrochem. performance, combined with low cost raw materials, make these
 compds. attractive for metal hydride electrodes.

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 56

ST battery anode **hydrogen storage** alloy; intermetallic
 compd **hydrogen storage** battery anode

IT Intermetallic compounds
 Intermetallic compounds

RL: FMU (Formation, unclassified); FORM (Formation, nonpreparative)
 (hydrides; **hydrogen storage** alloys with PuNi3-type
 structure as metal hydride electrodes)

IT Entropy
 (hydriding; **hydrogen storage** alloys with PuNi3-type
 structure as metal hydride electrodes)

IT Absorption enthalpy
 Absorption kinetics

Battery anodes
 Desorption
 Desorption kinetics
 Hydriding
 Microstructure
 Phase
 (hydrogen storage alloys with PuNi3-type structure
 as metal hydride electrodes)

IT Intermetallic compounds
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (hydrogen storage alloys with PuNi3-type structure
 as metal hydride electrodes)

IT Hydrides
 Hydrides
 RL: FMU (Formation, unclassified); FORM (Formation, nonpreparative)
 (intermetallic; hydrogen storage alloys with
 PuNi3-type structure as metal hydride electrodes)

IT Sintering
 (powder; hydrogen storage alloys with PuNi3-type
 structure as metal hydride electrodes)

IT 12196-72-4 268728-50-3 268728-51-4 268728-52-5 268728-53-6
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (hydrogen storage alloys with PuNi3-type structure
 as metal hydride electrodes)

IT 54847-21-1, Lanthanum nickel hydride LaNi₅H₆ 268728-54-7
 268728-55-8 268728-56-9 268728-57-0
 RL: FMU (Formation, unclassified); FORM (Formation, nonpreparative)
 (hydrogen storage alloys with PuNi3-type structure
 as metal hydride electrodes)

IT 7429-90-5, Aluminum, processes 7439-96-5, Manganese, processes
 7440-02-0, Nickel, processes 7440-32-6, Titanium, processes
 12057-58-8 12213-73-9 12306-14-8 12409-69-7
 RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (hydrogen storage alloys with PuNi3-type structure
 as metal hydride electrodes)

IT 1333-74-0, Hydrogen, uses
 RL: PEP (Physical, engineering or chemical process); TEM (Technical or
 engineered material use); PROC (Process); USES (Uses)
 (hydrogen storage alloys with PuNi3-type structure
 as metal hydride electrodes)

IT 268728-54-7 268728-56-9 268728-57-0
 RL: FMU (Formation, unclassified); FORM (Formation, nonpreparative)
 (hydrogen storage alloys with PuNi3-type structure
 as metal hydride electrodes)

RN 268728-54-7 HCA
 CN Calcium lanthanum magnesium nickel hydride (CaLaMgNi₉H_{13.2}) (9CI) (CA
 INDEX NAME)

Component	Ratio	Component Registry Number
H ✓	13.2	12385-13-6
Ca	1	7440-70-2
Ni	9	7440-02-0
Mg ✓	1	7439-95-4
La ✓	1	7439-91-0

RN 268728-56-9 HCA

John Calve, EIC - 1700

Page 7

Angela,
 Since the language
 for claim 1 is
 "comprising" & since
 I was getting so
 few hits, I didn't
 limit the number
 of components

703-308-4139

CN Aluminum calcium lanthanum magnesium nickel hydride (Al₃CaLaMgNi₆H_{11.9})
 (9CI) (CA INDEX NAME)

Component	Ratio	Component Registry Number
H	11.9	12385-13-6
Ca	1	7440-70-2
Ni	6	7440-02-0
Mg	1	7439-95-4
La	1	7439-91-0
Al	3	7429-90-5

RN 268728-57-0 HCA

CN Calcium lanthanum magnesium manganese nickel hydride (CaLaMgMn₃Ni₆H₁₃)
 (9CI) (CA INDEX NAME)

Component	Ratio	Component Registry Number
H	13	12385-13-6
Ca	1	7440-70-2
Ni	6	7440-02-0
Mn	3	7439-96-5
Mg	1	7439-95-4
La	1	7439-91-0

IT 7440-02-0, Nickel, processes

RL: PEP (Physical, engineering or chemical process); PROC (Process)
(hydrogen storage alloys with PuNi₃-type structure
 as metal hydride electrodes)

RN 7440-02-0 HCA

CN Nickel (8CI, 9CI) (CA INDEX NAME)

Ni

IT 1333-74-0, Hydrogen, uses

RL: PEP (Physical, engineering or chemical process); TEM (Technical or
 engineered material use); PROC (Process); USES (Uses)
(hydrogen storage alloys with PuNi₃-type structure
 as metal hydride electrodes)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

L47 ANSWER 4 OF 6 HCA COPYRIGHT 2003 ACS on STN

132:310824 Nickel-based **hydrogen storage** alloy for battery
 anode. Kita, Koichi; Sugawara, Katsuo; Wada, Masahiro; Murai, Takuya;
 Isobe, Takeshi (Mitsubishi Materials Corp., Japan). Jpn. Kokai Tokkyo
 Koho JP 2000129379 A2 20000509, 7 pp. (Japanese). CODEN:
 JKXXAF. APPLICATION: JP 1998-303779 19981026.

AB The Ni-based alloy contains La- and/or Ce-based rare earth alloy 32-38, Co
 0.1-17, Al 0.1-3.5, Mn 0.5-10, H 0.005-0.2, and Ti, Zr, Hf, V, Mg, Ca, Si,
 Ba, and/or Y 0.1-1 wt.% and has a CaCu₅-type base crystal structure phase
 dispersing 1-40% Ce₂Ni₇ phase and 1-40% hydrides of rare earth elements
 and active elements in an area ratio. The alloy gives battery anodes with

high-rate performance.

IC ICM C22C019-00
ICS H01M004-38

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 56

ST **hydrogen storage** nickel alloy battery anode

IT Battery anodes
(nickel-based **hydrogen storage** alloy for battery anode)

IT **1333-74-0**, Hydrogen, uses 266322-09-2 266322-10-5
266322-11-6 266322-12-7 266322-13-8 266322-14-9 266322-15-0
266322-16-1 266322-17-2 **266322-18-3** 266322-19-4
266322-20-7 266322-21-8 266322-22-9 266322-23-0 266322-24-1
266322-25-2 266322-26-3 266322-27-4 266322-28-5 266322-29-6
266322-30-9 **266322-31-0** 266322-32-1 266322-33-2
266322-34-3 266322-35-4 266322-36-5 266322-37-6 266322-38-7
266322-39-8 **266322-40-1**

RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
(nickel-based **hydrogen storage** alloy for battery anode)

IT **1333-74-0**, Hydrogen, uses **266322-18-3**
266322-30-9 **266322-31-0** **266322-40-1**

RN 1333-74-0 HCA
CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

RN 266322-18-3 HCA
CN Nickel alloy, base, Ni 49,La 29,Co 11,Mn 3.9,Nd 2.4,Al 1.4,Pr 1.4,Mg 1,Ce 0.9,H 0.1 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Ni	49	7440-02-0
La	29	7439-91-0
Co	11	7440-48-4
Mn	3.9	7439-96-5
Nd	2.4	7440-00-8
Al	1.4	7429-90-5
Pr	1.4	7440-10-0
Mg	1	7439-95-4
Ce	0.9	7440-45-1
H	0.1	12385-13-6

RN 266322-30-9 HCA
CN Nickel alloy, base, Ni 44,La 22,Ce 9.2,Mn 7.5,Co 6.4,Nd 4.6,Pr 2.6,Al 2,Mg 0.9,H 0.2,V 0.1 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Ni	44	7440-02-0
La	22	7439-91-0

Ce	9.2	7440-45-1
Mn	7.5	7439-96-5
Co	6.4	7440-48-4
Nd	4.6	7440-00-8
Pr	2.6	7440-10-0
Al	2	7429-90-5
Mg	0.9	7439-95-4
H	0.2	12385-13-6
V	0.1	7440-62-2

RN 266322-31-0 HCA

CN Nickel alloy, base, Ni 43,La 30,Co 12,Mn 5.1,Nd 2.9,Ce 2.6,Pr 2.3,Al 1.8,H 0.2,Ca 0.1,Mg 0.1 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
-----------	-------------------	---------------------------

Ni	43	7440-02-0
La	30	7439-91-0
Co	12	7440-48-4
Mn	5.1	7439-96-5
Nd	2.9	7440-00-8
Ce	2.6	7440-45-1
Pr	2.3	7440-10-0
Al	1.8	7429-90-5
H	0.2	12385-13-6
Ca	0.1	7440-70-2
Mg	0.1	7439-95-4

RN 266322-40-1 HCA

CN Nickel alloy, base, Ni 46,La 14,Ce 13,Co 9.5,Mn 7.6,Nd 5.2,Pr 1.9,Al 1.5,V 0.2,Ba 0.1,Ca 0.1,H 0.1,Hf 0.1,Mg 0.1,Si 0.1,Ti 0.1,Y 0.1,Zr 0.1 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
-----------	-------------------	---------------------------

Ni	46	7440-02-0
La	14	7439-91-0
Ce	13	7440-45-1
Co	9.5	7440-48-4
Mn	7.6	7439-96-5
Nd	5.2	7440-00-8
Pr	1.9	7440-10-0
Al	1.5	7429-90-5
V	0.2	7440-62-2
Ba	0.1	7440-39-3
Ca	0.1	7440-70-2
H	0.1	12385-13-6
Hf	0.1	7440-58-6
Mg	0.1	7439-95-4
Si	0.1	7440-21-3
Ti	0.1	7440-32-6
Y	0.1	7440-65-5
Zr	0.1	7440-67-7

L47 ANSWER 5 OF 6 HCA COPYRIGHT 2003 ACS on STN

132:310790 Structural investigation and **hydrogen storage**capacity of LaMg₂Ni₉ and (La_{0.65}Ca_{0.35})(Mg_{1.32}Ca_{0.68})Ni₉ of the AB₂C₉ type

structure. Kadir, K.; Sakai, T.; Uehara, I. (Osaka National Research Institute, Department of Energy and Environment, Ikeda-shi, Osaka, Japan). Journal of Alloys and Compounds, 302(1-2), 112-117 (English) 2000 . CODEN: JALCEU. ISSN: 0925-8388. Publisher: Elsevier Science S.A..

AB A new quaternary magnesium based alloy $(La_0.65Ca_0.35)(Mg_1.32Ca_0.68)Ni_9$ and its hydride have been synthesized and their crystal structures were detd. by Guinier-Hagg X-ray powder diffraction. The compd. has a hexagonal structure and is isostructural with $LaMg_2Ni_9$ (AB₂C₉ type), in which Ca partially occupies both A and B sites. The hydrogen absorption/desorption properties were detd. by pressure-comprn. isotherms and compared with $LaMg_2Ni_9$. $(La_0.65Ca_0.35)(Mg_1.32Ca_0.68)Ni_9$ absorbs apprx. 1.87 wt.% H₂ at apprx. 3.3 MPa H₂ and 283 K.

CC 52-3 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 56

ST **hydrogen storage** lanthanum calcium magnesium nickel alloy

IT Enthalpy
(desorption; structural investigation and **hydrogen storage** capacity of $LaMg_2Ni_9$ and $(La_0.65Ca_0.35)(Mg_1.32Ca_0.68)Ni_9$ of the AB₂C₉ type structure)

IT Absorption enthalpy
Crystal structure
Entropy
Hydrating
(structural investigation and **hydrogen storage** capacity of $LaMg_2Ni_9$ and $(La_0.65Ca_0.35)(Mg_1.32Ca_0.68)Ni_9$ of the AB₂C₉ type structure)

IT **1333-74-0**, Hydrogen, uses
RL: PEP (Physical, engineering or chemical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
(structural investigation and **hydrogen storage** capacity of $LaMg_2Ni_9$ and $(La_0.65Ca_0.35)(Mg_1.32Ca_0.68)Ni_9$ of the AB₂C₉ type structure)

IT **266309-29-9**
RL: PRP (Properties)
(structural investigation and **hydrogen storage** capacity of $LaMg_2Ni_9$ and $(La_0.65Ca_0.35)(Mg_1.32Ca_0.68)Ni_9$ of the AB₂C₉ type structure)

IT 266309-28-8
RL: PRP (Properties); TEM (Technical or engineered material use); USES (Uses)
(structural investigation and **hydrogen storage** capacity of $LaMg_2Ni_9$ and $(La_0.65Ca_0.35)(Mg_1.32Ca_0.68)Ni_9$ of the AB₂C₉ type structure)

IT **1333-74-0**, Hydrogen, uses
RL: PEP (Physical, engineering or chemical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
(structural investigation and **hydrogen storage** capacity of $LaMg_2Ni_9$ and $(La_0.65Ca_0.35)(Mg_1.32Ca_0.68)Ni_9$ of the AB₂C₉ type structure)

RN 1333-74-0 HCA
CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

IT **266309-29-9**
RL: PRP (Properties)
(structural investigation and **hydrogen storage** capacity of $LaMg_2Ni_9$ and $(La_0.65Ca_0.35)(Mg_1.32Ca_0.68)Ni_9$ of the AB₂C₉

type structure)
RN 266309-29-9 HCA
CN Calcium lanthanum magnesium nickel hydride (9CI) (CA INDEX NAME)

Component	Ratio	Component Registry Number
H	x	12385-13-6
Ca	x	7440-70-2
Ni	x	7440-02-0
Mg	x	7439-95-4
La	x	7439-91-0

- L47 ANSWER 6 OF 6 HCA COPYRIGHT 2003 ACS on STN
132:267510 Nickel-metal hydride (Ni-MH) battery using Mg₂Ni-type
hydrogen storage alloy. Cui, N.; Luo, J. L.; Chuang, K.
T. (Department of Chemical and Materials Engineering, University of
Alberta, Edmonton, AB, Can.). Journal of Alloys and Compounds, 302(1-2),
218-226 (English) 2000. CODEN: JALCEU. ISSN: 0925-8388.
Publisher: Elsevier Science S.A..
- AB The performance of a sealed prismatic prototype Ni-MH battery having a Mg-Ni-Y-Al alloy anode was investigated. The materials were characterized using X-ray diffraction. The lab. tests run on this prototype battery as well as the single electrode was compared. The electrochem. behavior was detd. using electrochem. impedance spectroscopy. The battery has a good dischargeability, but a high self-discharge rate during storage at open-circuit state.
- CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 56
- ST battery anode **hydrogen storage** alloy; magnesium nickel
hydrogen storage alloy battery anode
- IT Battery anodes
Secondary batteries
(nickel-metal hydride battery using Mg₂Ni-type **hydrogen**
storage alloy)
- IT 263404-87-1
RL: FMU (Formation, unclassified); FORM (Formation, nonpreparative)
(nickel-metal hydride battery using Mg₂Ni-type **hydrogen**
storage alloy)
- IT 1333-74-0, Hydrogen, uses 228853-81-4
RL: PEP (Physical, engineering or chemical process); TEM (Technical or
engineered material use); PROC (Process); USES (Uses)
(nickel-metal hydride battery using Mg₂Ni-type **hydrogen**
storage alloy)
- IT 263404-87-1
RL: FMU (Formation, unclassified); FORM (Formation, nonpreparative)
(nickel-metal hydride battery using Mg₂Ni-type **hydrogen**
storage alloy)
- RN 263404-87-1 HCA
CN Aluminum magnesium nickel yttrium hydride (Al_{0.08}Mg_{1.95}Ni_{0.92}Y_{0.05}H₄)
(9CI) (CA INDEX NAME)

Component	Ratio	Component Registry Number
H	4	12385-13-6
Y	0.05	7440-65-5
Ni	0.92	7440-02-0
Mg	1.95	7439-95-4

Al | 0.08 | 7429-90-5

IT **1333-74-0**, Hydrogen, uses
RL: PEP (Physical, engineering or chemical process); TEM (Technical or
engineered material use); PROC (Process); USES (Uses)
(nickel-metal hydride battery using Mg2Ni-type **hydrogen**
storage alloy)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

=> d L86 1-31 cbib abs hitind hitstr

L86 ANSWER 1 OF 31 HCA COPYRIGHT 2003 ACS on STN
136:234810 **Hydrogen** infrastructure based on combined bulk
hydrogen storage/single-stage metal hydride
hydrogen compressor using alloys. Ovshinsky, Stanford R.; Young,
Rosa T.; Huang, Baoquan; Bavarian, Frarshad; Nemanich, Gene (USA). U.S.
Pat. Appl. Publ. US 2002029820 A1 20020314, 29 pp., Cont.-in-part of U.S.
Ser. No. 448,810. (English). CODEN: USXXCO. APPLICATION: US 2001-902320
20010710. PRIORITY: US 1999-435497 19991106; US 1999-448810 19991124.

AB A **hydrogen** transportation/distribution infrastructure system
includes: a H purifn./compression subsystem which purifies and compresses
H; and a H distribution subsystem which distributes H to end users. One
or both of the subsystems includes a combined bulk H storage/single stage
metal **hydride** H compressor comprising: (a) a pressure
containment vessel having .gtoreq.1 H inlet/outlet port for transferring H
into and out of the vessel, (b) a H storage alloy dispersed with the
containment vessel, the alloy being in sufficient quantity to provide for
bulk storage of H and the alloy having a plateau pressure of .ltoreq.500
psi at a temp. of .ltoreq.25.degree. and a plateau pressure .gtoreq.1500
psi at a temp. .ltoreq.200.degree., and (c) a thermal management system
for alternately heating and cooling the H storage alloy.

IC ICM B67D005-06
ICS C22C023-00

NCL 141110000

CC 52-3 (Electrochemical, Radiational, and Thermal Energy
Technology)

Section cross-reference(s): 56

ST **hydrogen** infrastructure metal **hydride** compressor; fuel
cell vehicle **hydrogen** infrastructure; engine internal combustion
refueling **hydrogen** infrastructure

IT Absorption
Compressors
Fuel cells
Internal combustion engines
Pressure vessels

(**hydrogen** infrastructure based on combined bulk
hydrogen storage/single-stage metal hydride
hydrogen compressor using alloys)

IT **Hydrides**
RL: TEM (Technical or engineered material use); USES (Uses)
(**hydrogen** infrastructure based on combined bulk
hydrogen storage/single-stage metal hydride
hydrogen compressor using alloys)

IT **Magnesium** alloy, base

RL: MOA (Modifier or additive use); USES (Uses)
 (hydrogen infrastructure based on combined bulk
 hydrogen storage/single-stage metal **hydride**
 hydrogen compressor using alloys)

IT 325686-05-3 325686-06-4 **340711-50-4**
 RL: MOA (Modifier or additive use); USES (Uses)
 (hydrogen infrastructure based on combined bulk
 hydrogen storage/single-stage metal **hydride**
 hydrogen compressor using alloys)

IT 1333-74-0, Hydrogen, uses 403498-98-6 403498-99-7
 403499-00-3 403499-01-4
 RL: PEP (Physical, engineering or chemical process); PYP (Physical
 process); TEM (Technical or engineered material use); PROC (Process); USES
 (Uses)
 (hydrogen infrastructure based on combined bulk
 hydrogen storage/single-stage metal **hydride**
 hydrogen compressor using alloys)

IT **340711-50-4**
 RL: MOA (Modifier or additive use); USES (Uses)
 (hydrogen infrastructure based on combined bulk
 hydrogen storage/single-stage metal **hydride**
 hydrogen compressor using alloys)

RN 340711-50-4 HCA

CN Magnesium alloy, base, Mg 91, Al 5.6, misch metal 2, Ni 0.9, Y 0.5 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Mg	91	7439-95-4
Al	5.6	7429-90-5
Misch metal	2	8049-20-5
Ni	0.9	7440-02-0
Y	0.5	7440-65-5

IT 1333-74-0, Hydrogen, uses
 RL: PEP (Physical, engineering or chemical process); PYP (Physical
 process); TEM (Technical or engineered material use); PROC (Process); USES
 (Uses)
 (hydrogen infrastructure based on combined bulk
 hydrogen storage/single-stage metal **hydride**
 hydrogen compressor using alloys)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

L86 ANSWER 2 OF 31 HCA COPYRIGHT 2003 ACS on STN
 136:186729 Safe, economical transport of **hydrogen** within a
hydrided magnesium alloy in pelletized form. Ovshinsky,
 Stanford R.; Young, Rosa T.; Stetson, Ned T.; Myasnikov, Vitaliy (Energy
 Conversion Devices, Inc., USA). PCT Int. Appl. WO 2002012118 A1 20020214,
 42 pp. DESIGNATED STATES: W: AU, BR, CA, CN, IN, JP, KR, MX, NO, RU, SG,
 UA; RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
 PT, SE, TR. (English). CODEN: PIXD2. APPLICATION: WO 2001-US24533
 20010803. PRIORITY: US 2000-634678 20000808.

AB **Hydrogen** is safely and economically transported within a
magnesium-based hydrogen storage alloy that

has been **hydrided** and compacted into highly dense pellets (d. > 0.8 g/cc) for shipment. The alloy compn. includes at least one misch metal element. The alloy particles have a size of 20-37 .mu.m.

IC ICM C01B006-04
ICS C01B006-00; C22C023-00

CC 52-3 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 56

ST hydrogen storage transport magnesium alloy
hydrided pellet; fuel hydrogen storage
transport alloy; safety hydrogen storage alloy
magnesium misch metal; compaction metallurgy magnesium
alloy hydrogen storage

IT Powder metallurgy
(compaction; safe, economical transport of hydrogen within a hydrided magnesium alloy in pelletized form)

IT Fuel gases
(hydrogen; safe, economical transport of hydrogen within a hydrided magnesium alloy in pelletized form)

IT Pellets
(magnesium alloy; safe, economical transport of hydrogen within a hydrided magnesium alloy in pelletized form)

IT Transportation
(of hydrogen; safe, economical transport of hydrogen within a hydrided magnesium alloy in pelletized form)

IT Energy storage systems
Safety
(safe, economical transport of hydrogen within a hydrided magnesium alloy in pelletized form)

IT Rare earth alloys
RL: NUU (Other use, unclassified); USES (Uses)
(storage alloy contg.; safe, economical transport of hydrogen within a hydrided magnesium alloy in pelletized form)

IT 37353-81-4
RL: NUU (Other use, unclassified); RCT (Reactant); RACT (Reactant or reagent); USES (Uses)
(hydrided; safe, economical transport of hydrogen within a hydrided magnesium alloy in pelletized form)

IT 325686-05-3 325686-06-4 340711-50-4
RL: NUU (Other use, unclassified); RCT (Reactant); RACT (Reactant or reagent); USES (Uses)
(storage alloy; safe, economical transport of hydrogen within a hydrided magnesium alloy in pelletized form)

IT 1333-74-0, Hydrogen, uses
RL: NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PYP (Physical process); RCT (Reactant); PROC (Process); RACT (Reactant or reagent); USES (Uses)
(storage of; safe, economical transport of hydrogen within a hydrided magnesium alloy in pelletized form)

IT 340711-50-4
RL: NUU (Other use, unclassified); RCT (Reactant); RACT (Reactant or reagent); USES (Uses)
(storage alloy; safe, economical transport of hydrogen within a hydrided magnesium alloy in pelletized form)

RN 340711-50-4 HCA
 CN Magnesium alloy, base, Mg 91, Al 5.6, misch metal 2, Ni 0.9, Y 0.5 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Mg	91	7439-95-4
Al	5.6	7429-90-5
Misch metal	2	8049-20-5
Ni	0.9	7440-02-0
Y	0.5	7440-65-5

IT 1333-74-0, **Hydrogen**, uses
 RL: NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PYP (Physical process); RCT (Reactant); PROC (Process); RACT (Reactant or reagent); USES (Uses)
 (storage of; safe, economical transport of **hydrogen** within a **hydrided magnesium** alloy in pelletized form)

RN 1333-74-0 HCA
 CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

L86 ANSWER 3 OF 31 HCA COPYRIGHT 2003 ACS on STN

136:72367 **Magnesium-based hydrogen storage**

alloys having high capacity, fast kinetics, and long cycle life for automotive applications. Ovshinsky, Stanford R.; Young, Rosa T. (Energy Conversion Devices, Inc., USA). PCT Int. Appl. WO 2002002835 A1 20020110, 39 pp. DESIGNATED STATES: W: AU, BR, CA, CN, IN, JP, KR, MX, NO, RU, SG, UA; RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR. (English). CODEN: PIXXD2. APPLICATION: WO 2001-US20229 20010625. PRIORITY: US 2000-609487 200000705.

AB **Hydrogen** propelled vehicles and fundamentally new **magnesium-based hydrogen storage** alloy materials which for the first time make it feasible and practical to use solid state storage and delivery of **hydrogen** to power internal combustion engine or fuel cell vehicles are disclosed. These exceptional alloys have remarkable **hydrogen storage** capacity of well over 6 wt.% coupled with extraordinary absorption kinetics such that the alloy powder absorbs 80% of its total capacity within 10 min at 300.degree. and a cycle life of at least 500 cycles without loss of capacity or kinetics.

IC ICM C22C023-00

ICS C22C023-02; C01B006-24

CC 52-3 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 56

ST **magnesium** based **hydrogen storage** alloy automotive application; fuel cell automobile **magnesium** based **hydrogen storage** alloy

IT Absorption

Automobiles

Desorption

Fuel cells

Hydriding

Internal combustion engines

(magnesium-based hydrogen storage alloys
having high capacity, fast kinetics, and long cycle life for automotive
applications)

IT Waste heat
(utilization; magnesium-based hydrogen
storage alloys having high capacity, fast kinetics, and long
cycle life for automotive applications)

IT 1333-74-0, Hydrogen, uses
RL: CPS (Chemical process); PEP (Physical, engineering or chemical
process); PYP (Physical process); TEM (Technical or engineered material
use); PROC (Process); USES (Uses)
(magnesium-based hydrogen storage alloys
having high capacity, fast kinetics, and long cycle life for automotive
applications)

IT 325686-05-3 325686-06-4 340711-50-4
RL: TEM (Technical or engineered material use); USES (Uses)
(magnesium-based hydrogen storage alloys
having high capacity, fast kinetics, and long cycle life for automotive
applications)

IT 1333-74-0, Hydrogen, uses
RL: CPS (Chemical process); PEP (Physical, engineering or chemical
process); PYP (Physical process); TEM (Technical or engineered material
use); PROC (Process); USES (Uses)
(magnesium-based hydrogen storage alloys
having high capacity, fast kinetics, and long cycle life for automotive
applications)

RN 1333-74-0 HCA
CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

IT 340711-50-4
RL: TEM (Technical or engineered material use); USES (Uses)
(magnesium-based hydrogen storage alloys
having high capacity, fast kinetics, and long cycle life for automotive
applications)

RN 340711-50-4 HCA
CN Magnesium alloy, base, Mg 91, Al 5.6, misch metal 2, Ni 0.9, Y 0.5 (9CI) (CA
INDEX NAME)

Component	Component Percent	Component Registry Number
Mg	91	7439-95-4
Al	5.6	7429-90-5
Misch metal	2	8049-20-5
Ni	0.9	7440-02-0
Y	0.5	7440-65-5

L86 ANSWER 4 OF 31 HCA COPYRIGHT 2003 ACS on STN
 135:197966 Preparation and protium absorbing properties of Mg-based
 ternary alloys. Takamura, H.; Amemiya, T.; Kamegawa, A.; Okada, M.
 (Department of Materials Science, Graduate School of Engineering, Tohoku
 University, Sendai, 980-8579, Japan). Materials Science Forum,
 350-351(Magnesium Alloys 2000), 315-320 (English) 2000. CODEN:
 MSFOEP. ISSN: 0255-5476. Publisher: Trans Tech Publications Ltd..
 AB The protium absorbing properties of Mg-Y-Ni, Mg-Y-Cu,
 and Mg-Al-Cu ternary alloys have been investigated in

conjunction with phases present and microstructures. The alloys with a **Mg**-rich compn. (.apprxeq.80 at%**Mg**) were prep'd. by a flux-melting technique. It was found that the **Mg**-10Y-10Ni alloy with **Mg**, Mg24Y5, Mg2Ni, and MgNi2 (C15-type Laves structure) phases formed **hydrides** of Mg2Ni and **Mg** at 373 and 473 K, resp. The decrease in the reaction temp. can be attributed to a morphol. improvement, where **Mg** and Mg24 Y5 main phases with a needle-like shape surrounded by the Mg2Ni and MgNi2 phases, and/or the effect of Y incorporated into these phases. The **Mg**-10Y-10Ni alloy absorbed 4.0 and 4.5 mass% of protium at 473 and 573 K, resp. For the **Mg**-10Y-10Cu alloy, a two-step plateau regime was obsd. due to the disproportionation of the Mg2Cu phase. The **Mg**-6Y-24Cu alloys exhibited a protium storage capacity of 3.4 mass%, and its plateau pressure for the desorption process was about 0.08 MPa at 523 K. The **Mg**-10Al-10Cu alloy absorbed 4.5 mass% of protium. However, a temp. as high as 573 K was needed for observing the protium absorption - desorption process.

CC 52-3 (Electrochemical, Radiational, and Thermal Energy Technology)

ST Section cross-reference(s): 56

ST **hydrogen storage magnesium** ternary cast alloy; protonium absorption **magnesium** ternary cast alloy

IT Melting

(alloy; protium absorbing properties of **magnesium** ternary cast alloys prep'd. by melting for **hydrogen storage**)

IT **Hydrides**

RL: FMU (Formation, unclassified); FORM (Formation, nonpreparative) (formation of; protium absorbing properties of **magnesium** ternary cast alloys prep'd. by melting for **hydrogen storage**)

IT Cast alloys

RL: PEP (Physical, engineering or chemical process); PRP (Properties); TEM (Technical or engineered material use); PROC (Process); USES (Uses) (**magnesium** alloys; protium absorbing properties of **magnesium** ternary cast alloys prep'd. by melting for **hydrogen storage**)

IT Absorption

Desorption

Microstructure

Phase composition

(protium absorbing properties of **magnesium** ternary cast alloys prep'd. by melting for **hydrogen storage**)

IT Laves phases

RL: FMU (Formation, unclassified); FORM (Formation, nonpreparative) (protium absorbing properties of **magnesium** ternary cast alloys prep'd. by melting for **hydrogen storage**)

IT 127817-55-4, Copper 10, **magnesium** 80, yttrium 10

(atomic) 313952-21-5, Aluminum 10, copper 10, **magnesium** 80

(atomic) 313952-22-6, Aluminum 15, copper 15, **magnesium** 70

(atomic) 313952-23-7, Aluminum 20, copper 20, **magnesium** 60

(atomic) 356527-62-3 356527-63-4 356527-64-5

RL: PEP (Physical, engineering or chemical process); PRP (Properties); TEM (Technical or engineered material use); PROC (Process); USES (Uses) (protium absorbing properties of **magnesium** ternary cast alloys prep'd. by melting for **hydrogen storage**)

IT 1333-74-0, Protium, uses

RL: PEP (Physical, engineering or chemical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(protium absorbing properties of **magnesium** ternary cast alloys prep'd. by melting for **hydrogen storage**)

Angela Martin

09/995,457

08/19/2003

IT 127817-55-4, Copper 10, **magnesium** 80, yttrium 10
(atomic) 356527-62-3 356527-63-4 356527-64-5
RL: PEP (Physical, engineering or chemical process); TEM
(Technical or engineered material use); PROC (Process); USES (Uses)
(protium absorbing properties of **magnesium** ternary cast
alloys prep'd. by melting for **hydrogen storage**)

RN 127817-55-4 HCA

CN Magnesium alloy, base, Mg 56,Y 26,Cu 18 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Mg	56	7439-95-4
Y	26	7440-65-5
Cu	18	7440-50-8

RN 356527-62-3 HCA

CN Magnesium alloy, base, Mg 57,Y 26,Ni 17 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Mg	57	7439-95-4
Y	26	7440-65-5
Ni	17	7440-02-0

RN 356527-63-4 HCA

CN Magnesium alloy, base, Mg 59,Ni 23,Y 18 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Mg	59	7439-95-4
Ni	23	7440-02-0
Y	18	7440-65-5

RN 356527-64-5 HCA

CN Magnesium alloy, base, Mg 45,Cu 41,Y 14 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Mg	45	7439-95-4
Cu	41	7440-50-8
Y	14	7440-65-5

IT 1333-74-0, Protium, uses

RL: PEP (Physical, engineering or chemical process); TEM (Technical or
engineered material use); PROC (Process); USES (Uses)
(protium absorbing properties of **magnesium** ternary cast
alloys prep'd. by melting for **hydrogen storage**)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

L86 ANSWER 5 OF 31 HCA COPYRIGHT 2003 ACS on STN
135:63894 Method for synthesis of **hydrogen storage** alloy

alloy powder from component material. Ovshinsky, Stanford R. (Energy Conversion Devices, Inc., USA). PCT Int. Appl. WO 2001048837 A2 20010705, 43 pp. DESIGNATED STATES: W: AU, BR, CA, CN, IN, JP, KR, MX, NO, RU, SG, UA; RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR. (English). CODEN: PIXXD2. APPLICATION: WO 2000-US32871 20001204. PRIORITY: US 1999-460530 19991213.

AB A method for making a **hydrided hydrogen storage** alloy powder from component material is disclosed. In the present method a material is worked at the same time it is **hydrided**. Working preferably involves comminution of the material.

IC ICM H01M

CC 52-3 (Electrochemical, Radiational, and Thermal Energy Technology)

ST Section cross-reference(s): 56

ST **hydrogen storage** alloy synthesis

IT **Hydriding**
(method for synthesis of **hydrogen storage** alloy powder from component material)

IT 1333-74-0, **Hydrogen**, uses
RL: PEP (Physical, engineering or chemical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
(method for synthesis of **hydrogen storage** alloy powder from component material)

IT 325686-06-4 340711-50-4
RL: TEM (Technical or engineered material use); USES (Uses)
(method for synthesis of **hydrogen storage** alloy powder from component material)

IT 1333-74-0, **Hydrogen**, uses
RL: PEP (Physical, engineering or chemical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
(method for synthesis of **hydrogen storage** alloy powder from component material)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H--H

IT 340711-50-4
RL: TEM (Technical or engineered material use); USES (Uses)
(method for synthesis of **hydrogen storage** alloy powder from component material)

RN 340711-50-4 HCA

CN Magnesium alloy, base, Mg 91,Al 5.6,misch metal 2,Ni 0.9,Y 0.5 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Mg	91	7439-95-4
Al	5.6	7429-90-5
Misch metal	2	8049-20-5
Ni	0.9	7440-02-0
Y	0.5	7440-65-5

L86 ANSWER 6 OF 31 HCA COPYRIGHT 2003 ACS on STN
134:369491 **Hydrogen-based ecosystem using hydrogen storage** alloys. Ovshinsky, Stanford R.; Young, Rosa T. (Energy

Conversion Devices, Inc., USA). PCT Int. Appl. WO 2001039289 A2 20010531, 68 pp. DESIGNATED STATES: W: AU, BR, CA, CN, IN, JP, KR, MX, NO, RU, SG, UA; RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR. (English). CODEN: PIXXD2. APPLICATION: WO 2000-US31271 20000114. PRIORITY: US 1999-444810 19991122.

- AB A complete infrastructure system for the generation, storage, transportation, and delivery of **hydrogen** makes a **hydrogen** ecosystem possible. The infrastructure system utilizes high capacity, low cost, light wt. thermal **hydrogen** **storage** alloy materials having fast kinetics. Also, a novel **hydrogen storage** bed design which includes a support/heat-transfer component which is made from a highly porous, high thermal cond., solid material such as a high thermal cond. graphitic foam. Finally a material including at least one particle having atomically engineered local chem. and electronic environments, characterized in that the local environments providing bulk nucleation.
- IC ICM H01M
- CC 52-3 (Electrochemical, Radiational, and Thermal Energy Technology)
- ST Section cross-reference(s): 56
- ST **hydrogen** based ecosystem; alloy **hydrogen** **storage** **hydrogen** based ecosystem
- IT Filters
(Pd; **hydrogen**-based ecosystem using **hydrogen** **storage** alloys)
- IT Nucleation
(bulk; **hydrogen**-based ecosystem using **hydrogen** **storage** alloys)
- IT Combustion apparatus
(catalytic; **hydrogen**-based ecosystem using **hydrogen** **storage** alloys)
- IT Wave
(energy; **hydrogen**-based ecosystem using **hydrogen** **storage** alloys)
- IT Fuels
(fossil; **hydrogen**-based ecosystem using **hydrogen** **storage** alloys)
- IT Foams
(graphitic; **hydrogen**-based ecosystem using **hydrogen** **storage** alloys)
- IT Reforming
(hydrocarbons; **hydrogen**-based ecosystem using **hydrogen** **storage** alloys)
- IT Power
(hydroelec.; **hydrogen**-based ecosystem using **hydrogen** **storage** alloys)
- IT Absorption kinetics
- Compressors
- Ecosystem
- Electric heaters
- Electrolytic cells
- Geothermal energy
- Heat transfer
- Hydriding**
- Nuclear energy
- Solar cells
- Solar energy
- Wind energy
(**hydrogen**-based ecosystem using **hydrogen** **storage** alloys)

- IT Coal, uses
 Hydrides
 Natural gas, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (**hydrogen**-based ecosystem using **hydrogen storage** alloys)
- IT Pumps
 (mech.; **hydrogen**-based ecosystem using **hydrogen storage** alloys)
- IT Energy
 (ocean thermal; **hydrogen**-based ecosystem using **hydrogen storage** alloys)
- IT Hydrocarbons, reactions
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (reforming; **hydrogen**-based ecosystem using **hydrogen storage** alloys)
- IT Fuels
 (refueling; **hydrogen**-based ecosystem using **hydrogen storage** alloys)
- IT Waste heat
 (utilization; **hydrogen**-based ecosystem using **hydrogen storage** alloys)
- IT **Magnesium** alloy
 RL: TEM (Technical or engineered material use); USES (Uses)
 (**hydrogen**-based ecosystem using **hydrogen storage** alloys)
- IT 7732-18-5, Water, reactions
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (electrolysis; **hydrogen**-based ecosystem using **hydrogen storage** alloys)
- IT 7440-05-3, Palladium, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (filters; **hydrogen**-based ecosystem using **hydrogen storage** alloys)
- IT 7782-42-5, Graphite, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (foams; **hydrogen**-based ecosystem using **hydrogen storage** alloys)
- IT 7440-21-3, Silicon, uses
 RL: DEV (Device component use); USES (Uses)
 (**hydrogen**-based ecosystem using **hydrogen storage** alloys)
- IT 1333-74-0P, **Hydrogen**, uses
 RL: IMF (Industrial manufacture); PEP (Physical, engineering or chemical process); TEM (Technical or engineered material use); PREP (Preparation); PROC (Process); USES (Uses)
 (**hydrogen**-based ecosystem using **hydrogen storage** alloys)
- IT 7782-44-7, Oxygen, processes
 RL: REM (Removal or disposal); PROC (Process)
 (**hydrogen**-based ecosystem using **hydrogen storage** alloys)
- IT 325686-05-3 325686-06-4 **340711-50-4**
 RL: TEM (Technical or engineered material use); USES (Uses)
 (**hydrogen**-based ecosystem using **hydrogen storage** alloys)
- IT 7429-90-5, Aluminum, uses 7439-89-6, Iron, uses 7440-02-0, Nickel,
uses 7440-50-8, Copper, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (support; **hydrogen**-based ecosystem using **hydrogen**)

storage alloys)

IT 1333-74-0P, **Hydrogen**, uses
 RL: IMF (Industrial manufacture); PEP (Physical, engineering or chemical process); TEM (Technical or engineered material use); PREP (Preparation); PROC (Process); USES (Uses)
 (hydrogen-based ecosystem using **hydrogen storage** alloys)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H-H

IT 340711-50-4
 RL: TEM (Technical or engineered material use); USES (Uses)
 (hydrogen-based ecosystem using **hydrogen storage** alloys)

RN 340711-50-4 HCA

CN Magnesium alloy, base, Mg 91, Al 5.6, misch metal 2, Ni 0.9, Y 0.5 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Mg	91	7439-95-4
Al	5.6	7429-90-5
Misch metal	2	8049-20-5
Ni	0.9	7440-02-0
Y	0.5	7440-65-5

L86 ANSWER 7 OF 31 HCA COPYRIGHT 2003 ACS on STN

134:6902 **Hydrogen storage** properties of new ternary system
 alloys: La₂MgNi₉, La₅Mg₂Ni₂₃, La₃MgNi₁₄. Kohno, T.; Yoshida, H.;
 Kawashima, F.; Inaba, T.; Sakai, I.; Yamamoto, M.; Kanada, M. (Power
 Supply Materials and Devices Research Laboratories, Corporate Research and
 Development Center, Toshiba Corporation, Shinagawa-ku, Tokyo, 140-0004,
 Japan). Journal of Alloys and Compounds, 311(2), L5-L7 (English)
 2000. CODEN: JALCEU. ISSN: 0925-8388. Publisher: Elsevier
 Science S.A..

AB The **hydrogen storage** properties of the new ternary
 system alloys, La₂MgNi₉, La₅Mg₂Ni₂₃, La₃MgNi₁₄, were investigated. As a
 result, the neg. electrode of the La₅Mg₂Ni₂₃, alloy (La_{0.7}Mg_{0.3}Ni_{2.8}Co_{0.5})
 showed a large discharge capacity (410 mAh/g), 1.3 times larger than that
 of AB₃ type alloys. These ternary system alloys were found to be mainly
 composed of stacked AB₅ and AB₂ structure subunits in a superstructure
 arrangement.

CC 52-2 (Electrochemical, Radiational, and Thermal Energy
 Technology)

ST Section cross-reference(s): 56, 72
 battery metal **hydride** anode alloy; lanthanum **magnesium**
 nickel alloy **hydrogen storage**; AB₅ AB₂ structure alloy
 anode

IT Battery anodes
 Crystal structure
 Secondary batteries
 (hydrogen storage properties of new ternary system
 alloys: La₂MgNi₉, La₅Mg₂Ni₂₃, La₃MgNi₁₄)

IT 308812-20-6 308812-21-7 308812-22-8
 RL: DEV (Device component use); USES (Uses)

(hydrogen storage properties of new ternary system
alloys: La₂MgNi₉, La₅Mg₂Ni₂₃, La₃MgNi₁₄)
IT 308812-20-6 308812-21-7 308812-22-8
RL: DEV (Device component use); USES (Uses)
(hydrogen storage properties of new ternary system
alloys: La₂MgNi₉, La₅Mg₂Ni₂₃, La₃MgNi₁₄)
RN 308812-20-6 HCA
CN Nickel alloy, base, Ni 53,La 34,Co 11,Mg 2.9 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Ni	53	7440-02-0
La	34	7439-91-0
Co	11	7440-48-4
Mg	2.9	7439-95-4

RN 308812-21-7 HCA
CN Nickel alloy, base, Ni 55,La 33,Co 9.9,Mg 2.4 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Ni	55	7440-02-0
La	33	7439-91-0
Co	9.9	7440-48-4
Mg	2.4	7439-95-4

RN 308812-22-8 HCA
CN Nickel alloy, base, Ni 56,La 33,Co 9.3,Mg 1.9 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Ni	56	7440-02-0
La	33	7439-91-0
Co	9.3	7440-48-4
Mg	1.9	7439-95-4

L86 ANSWER 8 OF 31 HCA COPYRIGHT 2003 ACS on STN
133:298706 An AC impedance study of self-discharge mechanism of nickel-metal
hydride (Ni-MH) battery using Mg₂Ni-type hydrogen
storage alloy anode. Cui, N.; Luo, J. L. (Department of Chemical
and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2G6,
Can.). Electrochimica Acta, 45(24), 3973-3981 (English) 2000.
CODEN: ELCAAV. ISSN: 0013-4686. Publisher: Elsevier Science Ltd..

AB The self-discharge mechanism during storage in open-circuit states of a
Ni-MH battery using a Mg₂Ni-type hydrogen storage
alloy anode was investigated by electrochem. impedance spectroscopy (EIS)
and X-ray diffraction (XRD). The loss of discharge capacity for this
battery can be ascribed to two causes: (i) desorption of hydrogen
from the Mg_{1.95}Y_{0.05}Ni_{0.92}Al_{0.08} hydride anode; and (ii) anode
surface degrdn. resulting from oxidn. of the magnesium alloy in
the electrolyte. At the higher open-circuit voltages (OCV), the former
was mainly responsible for a high self-discharge rate, while the latter
might dominate the loss of capacity at the lower OCV. XRD results
confirmed that Mg(OH)₂ formed on the magnesium alloy
anode after storage in an open-circuit condition for 20 days.

CC 52-2 (Electrochemical, Radiational, and Thermal Energy

Technology)
 Section cross-reference(s): 56, 72, 76

ST nickel metal **hydride** battery self discharge **magnesium**
 alloy electrode

IT Electric charge
 (charge-discharge of nickel-metal **hydride** (Ni-MH) battery
 under different cycling conditions)

IT Equivalent electric circuits
 (for nickel-metal **hydride** (Ni-MH) battery)

IT Open circuit potential
 (of capacity retention of nickel-metal **hydride** (Ni-MH)
 battery)

IT Electric capacitance
 (of nickel-metal **hydride** (Ni-MH) battery)

IT Electric impedance
 (of self-discharge mechanism of nickel-metal **hydride** (Ni-MH)
 battery using Mg₂Ni-type **hydrogen storage** alloy
 anode)

IT Electric discharge
 Secondary batteries
 (self-discharge mechanism of nickel-metal **hydride** (Ni-MH)
 battery using Mg₂Ni-type **hydrogen storage** alloy
 anode)

IT **Hydrides**
 RL: NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PRP (Properties); PROC (Process); USES (Uses)
 (self-discharge mechanism of nickel-metal **hydride** (Ni-MH)
 battery using Mg₂Ni-type **hydrogen storage** alloy
 anode)

IT 12057-65-7 **228853-81-4**
 RL: NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (of self-discharge mechanism of nickel-metal **hydride** (Ni-MH)
 battery using Mg₂Ni-type **hydrogen storage** alloy
 anode)

IT 7440-02-0, Nickel, uses
 RL: NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (self-discharge mechanism of nickel-metal **hydride** (Ni-MH)
 battery using Mg₂Ni-type **hydrogen storage** alloy
 anode)

IT **228853-81-4**
 RL: NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (of self-discharge mechanism of nickel-metal **hydride** (Ni-MH)
 battery using Mg₂Ni-type **hydrogen storage** alloy
 anode)

RN 228853-81-4 HCA
 CN Nickel alloy, base, Ni 50,Mg 44,Y 4.1,Al 2 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Ni	50	7440-02-0
Mg	44	7439-95-4
Y	4.1	7440-65-5
Al	2	7429-90-5

132:95738 Synthesis and **hydriding/dehydriding** properties of amorphous Mg₂Ni_{1.9}M_{0.1} alloys mechanically alloyed from Mg₂Ni_{0.9}M_{0.1} (M=none, Ni, Ca, La, Y, Al, Si, Cu and Mn) and Ni powder. Terashita, N.; Takahashi, M.; Kobayashi, K.; Sasai, T.; Akiba, E. (Tsukuba Research Laboratory, Japan Metals and Chemicals Corporation, Tsukuba, 300-2635, Japan). Journal of Alloys and Compounds, 293-295, 541-545 (English) 1999. CODEN: JALCEU. ISSN: 0925-8388. Publisher: Elsevier Science S.A..

AB Amorphous Mg₂Ni_{1.9}M_{0.1} (M=none, Ni, Ca, La, Y, Al, Si, Cu and Mn) alloys were prep'd. by mech. alloying of pseudo-binary Mg₂Ni_{0.9}M_{0.1} intermetallic compds. and Ni powder. The crystal structures, thermal stabilities and **hydriding/dehydriding** properties of those alloys were characterized by powder X-ray diffraction, thermal anal. and conventional measurement of pressure compn. isotherms. In spite of the difference in M element, all specimens formed amorphous structures by mech. alloying. Owing to the substitution of Ca the amt. of desorbed **hydrogen** increased from 1.8 wt.% for M=none to 2.1 wt.% for M=Ca by measurement of thermogravimetry. The dehydriding reactions occurred at temps. below about 400 K in both alloys.

CC 52-3 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 56

ST magnesium nickel alloy amorphous **hydrogen storage**

IT Absorption

Crystal structure

Desorption

Mechanical alloying

(synthesis and **hydriding/dehydriding** properties of amorphous Mg₂Ni_{1.9}M_{0.1} alloys mech. alloyed)

IT 77325-33-8 250579-80-7 254748-25-9 **254748-26-0**

254748-27-1 254748-28-2 254748-29-3 254748-30-6

RL: NUU (Other use, unclassified); USES (Uses)

(synthesis and **hydriding/dehydriding** properties of amorphous Mg₂Ni_{1.9}M_{0.1} alloys mech. alloyed)

IT 1333-74-0, **Hydrogen, processes**

RL: PEP (Physical, engineering or chemical process); PROC (Process) (synthesis and **hydriding/dehydriding** properties of amorphous Mg₂Ni_{1.9}M_{0.1} alloys mech. alloyed)

IT **254748-26-0 254748-27-1**

RL: NUU (Other use, unclassified); USES (Uses)

(synthesis and **hydriding/dehydriding** properties of amorphous Mg₂Ni_{1.9}M_{0.1} alloys mech. alloyed)

RN 254748-26-0 HCA

CN Nickel alloy, base, Ni 46,Mg 42,La 12 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Ni	46	7440-02-0
Mg	42	7439-95-4
La	12	7439-91-0

RN 254748-27-1 HCA

CN Nickel alloy, base, Ni 48,Mg 44,Y 8.1 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Ni	48	7440-02-0

Mg	44	7439-95-4
Y	8.1	7440-65-5

- IT **1333-74-0, Hydrogen, processes**
 RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (synthesis and **hydriding/dehydriding** properties of amorphous
 $Mg_2Ni_{1.9}Mn_{0.1}$ alloys mech. alloyed)
- RN 1333-74-0 HCA
 CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H-H

- L86 ANSWER 10 OF 31 HCA COPYRIGHT 2003 ACS on STN
 132:38042 A new $Mg_0.9Y_0.1Ni$ **hydride** forming composition obtained by mechanical grinding. Lenain, C.; Aymard, L.; Dupont, L.; Tarascon, J-M. (Laboratoire de Reactivite et de Chimie des Solides, UPRES-A 6007, Universite de Picardie Jules Verne, Amiens, 80039, Fr.). Journal of Alloys and Compounds, 292(1-2), 84-89 (English) 1999. CODEN: JALCEU. ISSN: 0925-8388. Publisher: Elsevier Science S.A..
- AB We report on the synthesis of an electrochem. active $Mg_0.9Y_0.1Ni$ polynanocryst. phase by mech. alloying. This alloy presents an initial capacity of 323 mAh/g that decreases upon cycling to reach a stable value of 220 mAh/g after 30 complete charge/discharge cycles (e.g. 62% capacity retention). Such an increase in capacity retention with respect to pure MgNi alloy (62% instead of 24%) is due to the addn. of yttrium that enhances the resistance of the alloy against corrosion in concd. alk. media.
- CC **52-2** (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 56, 72
- ST **magnesium** yttrium nickel mech alloying; **hydrogen** storage **magnesium** yttrium nickel alloy; battery anode **magnesium** nickel alloy
- IT Battery anodes
 Mechanical alloying
 Secondary batteries
 ($Mg_0.9Y_0.1Ni$ **hydride** forming compn. obtained by mech. grinding for battery anode)
- IT **252570-82-4**
 RL: DEV (Device component use); USES (Uses)
 ($Mg_0.9Y_0.1Ni$ **hydride** forming compn. obtained by mech. grinding for battery anode)
- IT **1333-74-0, Hydrogen, processes**
 RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (battery anode alloy storing; $Mg_0.9Y_0.1Ni$ **hydride** forming compn. obtained by mech. grinding for battery anode)
- IT **252570-82-4**
 RL: DEV (Device component use); USES (Uses)
 ($Mg_0.9Y_0.1Ni$ **hydride** forming compn. obtained by mech. grinding for battery anode)
- RN 252570-82-4 HCA
 CN Nickel alloy, base, Ni 66,Mg 24,Y 9.9 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Ni	66	7440-02-0
Mg	24	7439-95-4

Y 9.9 7440-65-5

IT 1333-74-0, **Hydrogen**, processes
 RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (battery anode alloy storing; Mg0.9Y0.1Ni **hydride** forming
 compn. obtained by mech. grinding for battery anode)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

L86 ANSWER 11 OF 31 HCA COPYRIGHT 2003 ACS on STN
 131:172656 **Hydrogen** behavior in the LaMgCu system. Kadir, K.;
 Tanaka, H.; Sakai, T.; Uehara, I. (Osaka National Research Institute,
 Osaka, 563-8577, Japan). Journal of Alloys and Compounds, 289(1-2), 66-70
 (English) 1999. CODEN: JALCEU. ISSN: 0925-8388. Publisher:
 Elsevier Science S.A.

AB A new hexagonal intermetallic phase has been detected in a LaMg₂Cu₂
 prepn., which absorbs large quantities of **hydrogen** (.apprx.2.4
 wt.%). The dissocn. pressure of the **hydride** reaches nearly
 .apprx.0.4 atm at 170.degree.C. The **hydrogen**
 absorption/desorption properties have been detd. by thermal anal. and
 pressure-compn. isotherms.

CC 52-3 (Electrochemical, Radiational, and Thermal Energy
 Technology)

ST copper lanthanum **magnesium** alloy **hydrogen**
storage

IT Absorption
 Crystal structure
Energy storage
 (**hydrogen** behavior in the LaMgCu system)

IT 238092-25-6
 RL: NUU (Other use, unclassified); USES (Uses)
 (**hydrogen** behavior in the LaMgCu system)

IT 1333-74-0, **Hydrogen**, processes
 RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (**storage** of; **hydrogen** behavior in the LaMgCu
 system)

IT 238092-25-6
 RL: NUU (Other use, unclassified); USES (Uses)
 (**hydrogen** behavior in the LaMgCu system)

RN 238092-25-6 HCA
 CN Lanthanum alloy, base, La 44,Cu 40,Mg 15 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
La	44	7439-91-0
Cu	40	7440-50-8
Mg	15	7439-95-4

IT 1333-74-0, **Hydrogen**, processes
 RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (**storage** of; **hydrogen** behavior in the LaMgCu
 system)

RN 1333-74-0 HCA
 CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H-H

L86 ANSWER 12 OF 31 HCA COPYRIGHT 2003 ACS on STN

131:118437 Nanocrystalline **magnesium** for **hydrogen**

storage. Zaluska, A.; Zaluski, L.; Strom-Olsen, J. O. (Centre for the Physics of Materials and Department of Physics, McGill University, Montreal, QC, Can.). Journal of Alloys and Compounds, 288(1-2), 217-225 (English) 1999. CODEN: JALCEU. ISSN: 0925-8388. Publisher: Elsevier Science S.A..

AB The **hydrogen storage** properties of MgH₂ are significantly enhanced by a proper engineering of the microstructure and surface. **Magnesium** powders are produced in a nanocryst. form, which gives remarkable improvement of absorption/desorption kinetics. Ball milling, which is used for fabrication of nanocryst. **magnesium**, improves both the morphol. of the powders and the surface activity for hydrogenation. The **hydriding** properties are further enhanced by catalysis through nano-particles of Pd located on **magnesium** surface. Nanocryst. **magnesium** with such a catalyst exhibits an outstanding hydrogenation performance: very fast kinetics, operation at lower temps. than conventional **magnesium** and no need for activation.

CC 52-3 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 56, 67

ST **magnesium** nanocryst **hydrogen storage**; absorption desorption kinetic **hydrogen magnesium**; hydrogenation catalyst **magnesium alloy hydride**

IT Absorption kinetics

Hydrogenation catalysts
(nanocryst. **magnesium** for **hydrogen storage**)

IT 7439-95-4, **Magnesium**, uses 107138-81-8 117245-10-0
232946-22-4 232946-23-5 **232946-24-6**

RL: NUU (Other use, unclassified); USES (Uses)
(nanocryst. **magnesium** for **hydrogen storage**)

IT **1333-74-0, Hydrogen**, processes

RL: PEP (Physical, engineering or chemical process); PROC (Process)
(nanocryst. **magnesium** for **hydrogen storage**)

IT **232946-24-6**

RL: NUU (Other use, unclassified); USES (Uses)
(nanocryst. **magnesium** for **hydrogen storage**)

RN 232946-24-6 HCA

CN Magnesium alloy, base, Mg 56, Y 25, Zn 19 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Mg	56	7439-95-4
Y	25	7440-65-5
Zn	19	7440-66-6

IT **1333-74-0, Hydrogen**, processes

RL: PEP (Physical, engineering or chemical process); PROC (Process)
(nanocryst. **magnesium** for **hydrogen storage**)

)
RN 1333-74-0 HCA
CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H-H

- L86 ANSWER 13 OF 31 HCA COPYRIGHT 2003 ACS on STN
131:33824 Nanocrystalline **Mg-Ni-based hydrogen storage** alloys produced by nanocrystallization. Spassov, T.; Koster, U. (Dep. Chem. Eng., Univ. Dortmund, Dortmund, D-44221, Germany). Materials Science Forum, 307(Advances in Nanocrystallization), 197-202 (English) 1999. CODEN: MSFOEP. ISSN: 0255-5476. Publisher: Trans Tech Publications Ltd..
- AB Nanocryst. **Mg-Ni-Y** alloys were produced by crystn. of amorphous precursors and by direct quenching of the melt, using a melt spinning technique. The crystn. behavior of Mg₂Ni-based and **Mg**-based amorphous as well as of nanocryst. alloys contg. a large amt. of amorphous phases, was investigated by TEM, DSC, x-ray diffraction, and electron diffraction. During heating, the as-quenched Mg₂(Ni,Y) alloys crystallize by 3-D growth of quenched-in nanocrystals (.apprx.2-3 nm), embedded into the amorphous matrix, with an activation energy (AE) of 140 kJ/mol, which value coincides with the AE of **Mg** self-diffusion. The crystn. of the melt-spun **Mg**-based alloy (Mg₈₇Ni₁₂Y₁) was a two-stage process, which leads to a nanocryst. microstructure with grain size of .apprx.100 nm. The influence of H on the thermal stability and crystn. of the melt-spun alloys was also investigated. The **hydrogen**-satn. of the as-quenched amorphous and nanocryst. alloys led to a change in the crystn. mechanism during subsequent annealing, as the microstructure remained nanocryst. even after heating to 350.degree.. The **hydriding** properties of the as-quenched alloys were then studied. The max. H absorption capacity and the **hydrogen**-satn. kinetics of the melt-spun Mg₂(Ni,Y) alloys were better than those of conventional polycryst. **Mg** alloys and were comparable to the H-absorption characteristics of nanocryst. ball-milled Mg₂Ni.
- CC 52-3 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 56
- ST nanocryst **magnesium** nickel alloy **hydrogen storage** crystn; **hydrogen** absorption kinetics nanocryst **magnesium** nickel alloy
- IT Annealing
Crystallization
(crystn. mechanism in annealing of nanocryst. **Mg-Ni-based hydrogen storage** alloys)
- IT Nanocrystalline metals
RL: PEP (Physical, engineering or chemical process); PRP (Properties); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
(crystn. mechanism in annealing of nanocryst. **Mg-Ni-based hydrogen storage** alloys)
- IT Absorption kinetics
(**hydrogen** absorption kinetics of nanocryst. **Mg**-Ni-based **hydrogen storage** alloys produced by nanocrystn.)
- IT Absorption
(**hydrogen**; **hydrogen** absorption capacity of nanocryst. **Mg-Ni-based hydrogen storage** alloys produced by nanocrystn.)
- IT Crystallization enthalpy

(in annealing of nanocryst. **Mg-Ni-based hydrogen storage** alloys)

IT Metallic glasses
 RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (**magnesium** alloy; crystn. mechanism in annealing of
 nanocryst. **Mg-Ni-based hydrogen storage**
 alloys prep'd. from amorphous precursors)

IT Activation energy
 (of crystn. in annealing of nanocryst. **Mg-Ni-based hydrogen storage** alloys)

IT 1333-74-0, Hydrogen, processes
 RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (absorption; in nanocryst. **Mg-Ni-based hydrogen storage**
 alloys produced by nanocrystn.)

IT 215177-22-3, Magnesium 63, nickel 30, yttrium 7 (atomic)
 226938-00-7, Magnesium 87, nickel 12, yttrium 1 (atomic)
 RL: PEP (Physical, engineering or chemical process); PRP (Properties); TEM
 (Technical or engineered material use); PROC (Process); USES (Uses)
 (crystn. mechanism in annealing of nanocryst. **Mg-Ni-based hydrogen storage** alloys)

IT 226938-01-8
 RL: FMU (Formation, unclassified); FORM (Formation, nonpreparative)
 (hexagonal phase; formation in nanocryst. **Mg-Ni-based hydrogen storage** alloys produced by nanocrystn.)

IT 1333-74-0, Hydrogen, processes
 RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (absorption; in nanocryst. **Mg-Ni-based hydrogen storage**
 alloys produced by nanocrystn.)

RN 1333-74-0 HCA
 CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H-- H

IT 215177-22-3, Magnesium 63, nickel 30, yttrium 7 (atomic)
 226938-00-7, Magnesium 87, nickel 12, yttrium 1 (atomic)
 RL: PEP (Physical, engineering or chemical process); PRP (Properties); TEM
 (Technical or engineered material use); PROC (Process); USES (Uses)
 (crystn. mechanism in annealing of nanocryst. **Mg-Ni-based hydrogen storage** alloys)

RN 215177-22-3 HCA
 CN Nickel alloy, base, Ni 45,Mg 39,Y 16 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Ni	45	7440-02-0
Mg	39	7439-95-4
Y	16	7440-65-5

RN 226938-00-7 HCA
 CN Magnesium alloy, base, Mg 73,Ni 24,Y 3.1 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Mg	73	7439-95-4
Ni	24	7440-02-0
Y	3.1	7440-65-5

- L86 ANSWER 14 OF 31 HCA COPYRIGHT 2003 ACS on STN
130:8284 Effects of oxide addns. on electrochemical **hydriding** and dehydriding behavior of Mg₂ Ni-type **hydrogen storage** alloy electrode in 6 M KOH solution. Cui, N.; Luo, J. L. (Dep. Chem. & Materials Engineering, Univ. Alberta, Edmonton, AB, T6G 2G6, Can.). *Electrochimica Acta*, 44(5), 711-720 (English) 1998. CODEN: ELCAAV. ISSN: 0013-4686. Publisher: Elsevier Science Ltd..
- AB Effects of metal oxide addns. on the electrochem. **hydriding** and dehydriding behavior of Mg₂Ni-type **hydrogen storage** alloy in 6 M KOH aq. soln. were investigated. The electrode characteristics of mech. alloyed composites of Mg_{1.9}Y_{0.1}Ni_{0.9}Al_{0.1-5} wt% MO (MO = Ag₂O, Fe₂O₃, MoO₃, RuO₂ and V₂O₅) were examd. such as discharge capacity, high-rate dischargeability and cycle life. The discharge capacity and high-rate dischargeability were greatly increased by the modification with the oxide addns., but the cycle life decreased. The electrochem. performances were characterized using both dc polarization and ac impedance anal. techniques. The **hydrogen** diffusivity in the alloys was estd. by an electrochem. method.
- CC 72-2 (Electrochemistry)
Section cross-reference(s): 52, 56
- ST **hydrogen storage** magnesium alloy oxide addn;
hydriding dehydriding **hydrogen** diffusion electrode behavior; nickel metal **hydride** battery electrode behavior
- IT Oxides (inorganic), properties
RL: PRP (Properties)
(effects of addn. on electrochem. **hydriding** and dehydriding behavior of Mg₂ Ni-type **hydrogen storage** alloy electrode in 6 M KOH soln.)
- IT **Hydriding**
(effects of metal oxide addn. on electrochem. **hydriding** and dehydriding of Mg₂ Ni-type **hydrogen storage** alloy electrode in 6 M KOH soln.)
- IT **Hydrides**
RL: PRP (Properties)
(nickel-metal **hydride** battery; effects of oxide addns. on electrochem. **hydriding** and dehydriding behavior of Mg₂ Ni-type **hydrogen storage** alloy electrode in 6 M KOH soln.)
- IT Diffusion
(of **hydrogen** in Mg_{1.9}Y_{0.1}Ni_{0.9}Al_{0.1} alloys)
- IT 1309-37-1, Iron oxide Fe₂O₃, uses 1313-27-5, Molybdenum oxide, uses 1314-62-1, Vanadium oxide V₂O₅, uses 12036-10-1, Ruthenium oxide RuO₂ 20667-12-3, Silver oxide
RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
(effects of 5% wt. addn. on electrochem. **hydriding** and dehydriding behavior of Mg₂ Ni-type **hydrogen storage** alloy electrode in 6 M KOH soln.)
- IT 1310-58-3, Potassium hydroxide, uses
RL: NUU (Other use, unclassified); PRP (Properties); USES (Uses)
(effects of 5% wt. addn. on electrochem. **hydriding** and dehydriding behavior of Mg₂ Ni-type **hydrogen storage** alloy electrode in soln. of)
- IT 173931-53-8
RL: DEV (Device component use); PRP (Properties); USES (Uses)
(electrochem. **hydriding** and dehydriding behavior in 6 M KOH soln.)
- IT 7440-02-0, Nickel, uses
RL: DEV (Device component use); PRP (Properties); USES (Uses)
(fabrication of Mg₂ Ni-type **hydrogen storage** alloy)

electrode with 5% metal oxide addn. by mech. grinding with)

IT 173931-53-8
 RL: DEV (Device component use); PRP (Properties); USES (Uses)
 (electrochem. **hydriding** and dehydriding behavior in 6 M KOH
 soln.)
 RN 173931-53-8 HCA
 CN Nickel alloy, base, Ni 48,Mg 42,Y 8,Al 2.4 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Ni	48	7440-02-0
Mg	42	7439-95-4
Y	8	7440-65-5
Al	2.4	7429-90-5

L86 ANSWER 15 OF 31 HCA COPYRIGHT 2003 ACS on STN
 129:333282 Thermal stability and **hydriding** properties of
 nanocrystalline melt-spun Mg₆₃Ni₃₀Y₇ alloy. Spassov, Tony; Koster, Uwe
 (Dept. Chem. Eng., University of Dortmund, Dortmund, D-44221, Germany).
 Journal of Alloys and Compounds, 279(2), 279-286 (English) 1998.
 CODEN: JALCEU. ISSN: 0925-8388. Publisher: Elsevier Science S.A..

AB Nanocryst. Mg₂(Ni,Y) **hydrogen storage** alloy (with
 exact compn. Mg₆₃Ni₃₀Y₇) was prep'd. by rapid solidification, using a
 melt-spinning technique. Thermal stability and phase transition in the
 as-quenched alloy were studied by TEM, DSC, X-ray and electron
 diffraction. It was found that the as-cast material consists of mainly
 hexagonal Mg₂(Ni,Y) nanocrystals with an av. size of 2-3 nm and a
 significant amt. of amorphous phase with similar compn. located between
 them. During heating the alloy crystallizes completely by three
 dimensional nanocrystal growth, with an activation energy of 140.+- .7 kJ
 mol-1. The **hydriding** properties of the as-quenched nanocryst.
 alloy were studied as well. The max. **hydrogen** absorption
 capacity (about 3.0 wt.%) and hydrogenation kinetics of the melt-spun
 Mg₂(Ni,Y) were found to exceed those of the conventionally prep'd.
 polycryst. Mg₂Ni alloys and to be comparable to the **hydrogen**
 absorption characteristics of nanocryst. ball-milled Mg₂Ni. Hydrogenation
 of the as-cast alloy causes a change in the crystn. mechanism during
 annealing, as the microstructure remains nanocryst. (15-20 nm) even after
 complete crystn. of the alloy.

CC 52-3 (Electrochemical, Radiational, and Thermal Energy
 Technology)
 Section cross-reference(s): 56

ST **hydrogen storage magnesium nickel yttrium**
 alloy

IT Absorption kinetics
 Rapid solidification
 (thermal stability and **hydriding** properties of nanocryst.
 melt-spun Mg₆₃Ni₃₀Y₇ alloy)

IT 1333-74-0, **Hydrogen**, uses
 RL: PEP (Physical, engineering or chemical process); TEM (Technical or
 engineered material use); PROC (Process); USES (Uses)
 (thermal stability and **hydriding** properties of nanocryst.
 melt-spun Mg₆₃Ni₃₀Y₇ alloy)

IT 215177-22-3
 RL: TEM (Technical or engineered material use); USES (Uses)
 (thermal stability and **hydriding** properties of nanocryst.
 melt-spun Mg₆₃Ni₃₀Y₇ alloy)

IT 1333-74-0, **Hydrogen**, uses

RL: PEP (Physical, engineering or chemical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
 (thermal stability and **hydriding** properties of nanocryst.
 melt-spun Mg63Ni30Y7 alloy)

RN 1333-74-0 HCA
 CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H-H

IT 215177-22-3

RL: TEM (Technical or engineered material use); USES (Uses)
 (thermal stability and **hydriding** properties of nanocryst.
 melt-spun Mg63Ni30Y7 alloy)

RN 215177-22-3 HCA
 CN Nickel alloy, base, Ni 45,Mg 39,Y 16 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Ni	45	7440-02-0
Mg	39	7439-95-4
Y	16	7440-65-5

L86 ANSWER 16 OF 31 HCA COPYRIGHT 2003 ACS on STN

128:156537 Effects of microencapsulation on the electrode behavior of Mg2Ni-based **hydrogen storage** alloy in alkaline solution. Luo, J. L.; Cui, N. (Edmonton, Department of Chemical and Materials Engineering, University of Alberta, Alberta, T6G 2G6, Can.). Journal of Alloys and Compounds, 264(1-2), 299-305 (English) 1998 . CODEN: JALCEU. ISSN: 0925-8388. Publisher: Elsevier Science S.A..

AB In order to improve the electrochem. performance of Mg2Ni-based **hydride** electrode in alk. soln., the multicomponent Mg2Ni-based alloy (Mg1.9Y0.1Ni0.9Al0.1) powder was microencapsulated with Ni-P, Ni-Pd-P and Ni-B coatings, resp., using a low-temp. electroless plating method. The electrode characteristics were examd. such as electrochem. capacity, high-rate dischargeability and cycle life, in comparison with those of the electrode fabricated from a bare (uncoated) alloy powder. It was found that the surface modifications with Ni alloy coatings effectively improved the electrode performance of Mg2Ni-based alloy. The Ni-Pd-P coated alloy electrode showed the highest discharge capacity and high-rate dischargeability, while the Ni-P coated alloy electrode displayed the slowest capacity decay. The electrochem. performance of the modified Mg2Ni-based alloy was characterized using d.c. polarization and a.c. impedance technique, and its phase compn. and microstructure were detected by X-ray diffraction and scanning electron microscope. It was found that the surface microencapsulation of alloy powder was effective in improving the electrode discharge performance, but seems to be ineffective in prohibiting disintegration of the Mg2Ni-based alloy powder.

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST battery anode **hydrogen** absorption alloy; microencapsulation effect **magnesium** nickel alloy electrode

IT Battery anodes
 (effects of microencapsulation on the electrode behavior of Mg2Ni-based **hydrogen storage** alloy in alk. soln.)

IT Encapsulation
 (microencapsulation; effects of microencapsulation on the electrode behavior of Mg2Ni-based **hydrogen storage** alloy in

alk. soln.)

IT 173931-53-8
 RL: DEV (Device component use); USES (Uses)
 (effects of microencapsulation on the electrode behavior of Mg2Ni-based
hydrogen storage alloy in alk. soln.)

IT 1333-74-0, **Hydrogen**, uses 11104-08-8, Nickel phosphide
 12619-90-8, Nickel boride 59088-48-1, Nickel palladium phosphide
 RL: TEM (Technical or engineered material use); USES (Uses)
 (effects of microencapsulation on the electrode behavior of Mg2Ni-based
hydrogen storage alloy in alk. soln.)

IT 173931-53-8
 RL: DEV (Device component use); USES (Uses)
 (effects of microencapsulation on the electrode behavior of Mg2Ni-based
hydrogen storage alloy in alk. soln.)

RN 173931-53-8 HCA

CN Nickel alloy, base, Ni 48,Mg 42,Y 8,Al 2.4 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Ni	48	7440-02-0
Mg	42	7439-95-4
Y	8	7440-65-5
Al	2.4	7429-90-5

IT 1333-74-0, **Hydrogen**, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (effects of microencapsulation on the electrode behavior of Mg2Ni-based
hydrogen storage alloy in alk. soln.)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H-H

L86 ANSWER 17 OF 31 HCA COPYRIGHT 2003 ACS on STN
 122:138000 Reaction of titanium-**magnesium** pseudoalloys with
hydrogen. Antonova, M. A.; Barabash, V. A.; Rokhlin, L. L.;
 Sapozhnikova, A. B. (Russia). Magnievye Splavy Sovrem. Tekh., [Mater.
 Vses. Soveshch. Issled., Razrab. Primen. Magnievykh Splavov Nar. Khoz.],
 2nd, 168-72. Editor(s): Lyakishev, N. P. Nauka: Moscow, Russia.
 (Russian) 1992. CODEN: 60TLA2.

AB A review with 2 refs. discussing the reaction of Ti-**Mg** alloys
 having composite two-phase microstructure with H.

CC 52-0 (Electrochemical, Radiational, and Thermal Energy
 Technology)

ST Section cross-reference(s): 56

ST review titanium **magnesium** alloy **hydrogen**
storage

IT 1333-74-0, **Hydrogen**, uses
 RL: PEP (Physical, engineering or chemical process); TEM (Technical or
 engineered material use); PROC (Process); USES (Uses)
 (reaction of **magnesium**-titanium alloys having composite
 two-phase microstructure with **hydrogen** for **storage**
 by **hydride** formation)

IT 110803-46-8 110803-47-9 110803-49-1 **161184-85-6**
161184-86-7 161184-87-8 161184-88-9
 RL: PEP (Physical, engineering or chemical process); TEM (Technical or
 engineered material use); PROC (Process); USES (Uses)

(two-phase alloy; reaction of **magnesium-titanium** alloys with **hydrogen** for **storage** by **hydride** formation)

IT 1333-74-0, **Hydrogen**, uses
 RL: PEP (Physical, engineering or chemical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
 (reaction of **magnesium-titanium** alloys having composite two-phase microstructure with **hydrogen** for **storage** by **hydride** formation)
 RN 1333-74-0 HCA
 CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H-H

IT 161184-85-6 161184-86-7
 RL: PEP (Physical, engineering or chemical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
 (two-phase alloy; reaction of **magnesium-titanium** alloys with **hydrogen** for **storage** by **hydride** formation)
 RN 161184-85-6 HCA
 CN Titanium alloy, base, Ti 83,Mg 9.4,Y 7.6 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Ti	83	7440-32-6
Mg	9.4	7439-95-4
Y	7.6	7440-65-5

RN 161184-86-7 HCA
 CN Titanium alloy, base, Ti 82,Mg 11,La 7.4 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Ti	82	7440-32-6
Mg	11	7439-95-4
La	7.4	7439-91-0

L86 ANSWER 18 OF 31 HCA COPYRIGHT 2003 ACS on STN
 122:60132 The **hydrogen storage** properties and the mechanism of the **hydriding** process of some multi-component **magnesium-base hydrogen storage** alloys. Au, Ming; Wu, Jing; Wang, Qidong (Dep. Materials Sci. Eng., Zhejiang Univ., Hangzhou, 310027, Peop. Rep. China). International Journal of Hydrogen Energy, 20(2), 141-50 (English) 1995. CODEN: IJHEDX. ISSN: 0360-3199. Publisher: Elsevier.

AB The H storage properties of multicomponent **Mg**-based alloys were studied. Of the alloys studied Mg0.833Ni0.066Cu0.095Mm0.006 (Mm = La-rich misch metal) had the best **hydriding/dehydriding** properties. Based on the investigation of the relation between **hydriding/dehydriding** behavior and microg. morphol., it was found that the morphol. of some phase constituents in the alloy has an important influence on the **hydriding/dehydriding** processes. The effect of surface segregation of Ni, Cu, and rare earth metals on kinetics of **hydriding/dehydriding** processes was examd. by means of AES and metallog. observations. On the basis of all these exptl. observations, a model for the **hydriding/dehydriding** processes of the multicomponent **Mg**-based alloys, the model of surface segregation

and interface microcrack passages, was proposed.

CC 52-3 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 56

ST hydrogen storage property magnesium alloy;
 nickel magnesium alloy hydrogen storage
 property

IT Absorption
 (properties and mechanism of hydriding process of multicomponent magnesium-based alloys for storage of hydrogen)

IT 1333-74-0, Hydrogen, uses
 RL: NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (properties and mechanism of hydriding process of multicomponent magnesium-based alloys for storage of hydrogen)

IT 94506-26-0 94506-27-1 94528-70-8 160097-26-7
 RL: PEP (Physical, engineering or chemical process); PRP (Properties);
 PROC (Process)
 (properties and mechanism of hydriding process of multicomponent magnesium-based alloys for storage of hydrogen)

IT 1333-74-0, Hydrogen, uses
 RL: NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (properties and mechanism of hydriding process of multicomponent magnesium-based alloys for storage of hydrogen)

RN 1333-74-0 HCA
 CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

IT 160097-26-7
 RL: PEP (Physical, engineering or chemical process); PRP (Properties);
 PROC (Process)
 (properties and mechanism of hydriding process of multicomponent magnesium-based alloys for storage of hydrogen)

RN 160097-26-7 HCA
 CN Magnesium alloy, base, Mg 82, Ni 10, Cu 4.3, Y 2.8, Si 0.4 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Mg	82	7439-95-4
Ni	10	7440-02-0
Cu	4.3	7440-50-8
Y	2.8	7440-65-5
Si	0.4	7440-21-3

L86 ANSWER 19 OF 31 HCA COPYRIGHT 2003 ACS on STN
 120:249266 The activation mechanism of Mg-based hydrogen
 storage alloys. Chen, Changpin; Liu, Binghong; Li, Zhoupeng; Wu,
 Jing; Wang, Qidong (Dep. Mater. Sci. Eng., Zhejiang Univ., Hangzhou,
 310027, Peop. Rep. China). Zeitschrift fuer Physikalische Chemie

(Muenchen, Germany), 181(1-2), 259-67 (English) 1993. CODEN:
ZPCFAX. ISSN: 0044-3336.

- AB The mechanism of activation and the effects of Cu or Ni chem. plating and mech. milling on the activation of Mg, Mg₂Ni, and La₂Mg₁₆Ni were studied. Oxide films on the surface of Mg hinder H penetration until the film starts to crack at .apprx.400.degree.. Mg₂Ni can be activated only at high temps. because of the difficulty of H penetration through surface oxide films on alloy particles. Moderately high temps. are required to activate La₂Mg₁₆Ni which undergoes disproportionation and afterwards the alloy absorbs H even at room temp.
- CC 52-3 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 56, 78
- ST magnesium nickel hydrogen storage alloy; hydriding activation magnesium intermetallic
- IT Absorption
(of hydrogen by magnesium intermetallic alloys, activation mechanism for)
- IT 1333-74-0, Hydrogen, properties
RL: PRP (Properties)
(absorption of, by magnesium intermetallic alloys, activation mechanism for)
- IT 7439-95-4, Magnesium, properties 12057-65-7, Mg₂Ni
88896-49-5, La₂Mg₁₆Ni
RL: PRP (Properties)
(hydrogen absorption by, activation mechanism for, surface oxide role in)
- IT 1333-74-0, Hydrogen, properties
RL: PRP (Properties)
(absorption of, by magnesium intermetallic alloys, activation mechanism for)
- RN 1333-74-0 HCA
CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

- IT 88896-49-5, La₂Mg₁₆Ni
RL: PRP (Properties)
(hydrogen absorption by, activation mechanism for, surface oxide role in)
- RN 88896-49-5 HCA
CN Magnesium alloy, base, Mg 54,La 38,Ni 8.1 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Mg	54	7439-95-4
La	38	7439-91-0
Ni	8.1	7440-02-0

L86 ANSWER 20 OF 31 HCA COPYRIGHT 2003 ACS on STN
109:193753 Effect of some partial substitutions in lanthanum-magnesium alloys on their hydriding kinetics. Khrussanova, M.; Peshev, P. (Inst. Gen. Inorg. Chem., Sofia, 1040, Bulg.). Journal of Materials Science, 23(6), 2247-50 (English) 1988. CODEN: JMTSAS. ISSN: 0022-2461.

- AB The effect of the partial substitution of Ca for La, and Ni for Mg, in the binary alloys La₂Mg₁₇ and LaMg₁₂ on the hydriding

kinetics of the alloys was studied. The activation energies of H chemisorption on the alloy surfaces and the diffusion of H through the **hydride** layer formed were detd.

CC 52-3 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 56, 67

ST **hydrogen storage** lanthanum **magnesium** alloy; kinetics **hydriding** lanthanum **magnesium** calcium; nickel lanthanum **magnesium** **hydriding** kinetics

IT Kinetics, reaction
 (of **hydriding**, of lanthanum **magnesium** alloys, calcium and nickel substitution effect on)

IT 70643-81-1, Lanthanum 10.53, **magnesium** 89.5 **88896-49-5**, Lanthanum 10.53, **Magnesium** 84.2, Nickel 5.26
111522-34-0 117245-11-1, Lanthanum 7.69, **magnesium** 92.3
 RL: USES (Uses)
 (**hydrogen storage** by, **hydriding** kinetics in)

IT 1333-74-0, **Hydrogen**, uses and miscellaneous
 RL: USES (Uses)
 (storage of, lanthanum **magnesium** alloys for, calcium and nickel substitution effect on)

IT **88896-49-5**, Lanthanum 10.53, **Magnesium** 84.2, Nickel 5.26
111522-34-0
 RL: USES (Uses)
 (**hydrogen storage** by, **hydriding** kinetics in)

RN 88896-49-5 HCA
 CN Magnesium alloy, base, Mg 54,La 38,Ni 8.1 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Mg	54	7439-95-4
La	38	7439-91-0
Ni	8.1	7440-02-0

RN 111522-34-0 HCA
 CN Magnesium alloy, base, Mg 69,La 30,Ca 1 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Mg	69	7439-95-4
La	30	7439-91-0
Ca	1	7440-70-2

IT 1333-74-0, **Hydrogen**, uses and miscellaneous
 RL: USES (Uses)
 (storage of, lanthanum **magnesium** alloys for, calcium and nickel substitution effect on)

RN 1333-74-0 HCA
 CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

107:220534 **Hydrogen storage** by pure and calcium-substituted lanthanum **magnesium** alloys. Pezat, M.; Manaud, J. P.; Darriet, B.; Khrusanova, M.; Terzieva, M.; Peshev, P. (Lab. Chim. Solide, CNRS, Toulouse, 33405, Fr.). Izvestiya po Khimiya, 20(2), 228-35 (English) 1987. CODEN: IZKHDX. ISSN: 0324-0401.

AB A partial substitution of Ca for La in LaMg₁₂ decreased the H absorption capacity of the alloy and the rate of H desorption. The single-phase structures of LaMg₁₂ and La_{1-x}CaxMg₁₂ were similar for $x \leq 0.2$. The **hydriding** of La_{1-x}CaxMg₁₂ leads to the formation of MgH₂, La_{1-x}CaxH_n, and LaH₂. The H absorption capacity of LaMg₁₂, La_{0.9}Ca_{0.1}Mg₁₂, and La_{0.8}Ca_{0.2}Mg₁₂ was studied at various H pressures (5-30 bars).

CC 52-3 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 56, 67

ST **hydrogen storage** calcium lanthanum **magnesium**

IT Kinetics, reaction
(of **hydriding**, of lanthanum-**magnesium** and calcium-lanthanum-**magnesium** alloys, **hydrogen storage** in relation to)

IT 111522-33-9 111522-34-0
RL: TEM (Technical or engineered material use); USES (Uses)
(for **hydrogen storage**, properties of)

IT 74978-56-6
RL: USES (Uses)
(**hydrogen storage** by, calcium substitution effect on)

IT 1333-74-0, **Hydrogen**, uses and miscellaneous
RL: USES (Uses)
(storage of, lanthanum-**magnesium** alloy for, calcium substitution effect on)

IT 111522-33-9 111522-34-0
RL: TEM (Technical or engineered material use); USES (Uses)
(for **hydrogen storage**, properties of)

RN 111522-33-9 HCA

CN Magnesium alloy, base, Mg 71,La 27,Ca 2 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent		Registry Number
Mg	71	7439-95-4
La	27	7439-91-0
Ca	2	7440-70-2

RN 111522-34-0 HCA
CN Magnesium alloy, base, Mg 69,La 30,Ca 1 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent		Registry Number
Mg	69	7439-95-4
La	30	7439-91-0
Ca	1	7440-70-2

IT 1333-74-0, **Hydrogen**, uses and miscellaneous
RL: USES (Uses)
(storage of, lanthanum-**magnesium** alloy for, calcium substitution effect on)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

L86 ANSWER 22 OF 31 HCA COPYRIGHT 2003 ACS on STN
 107:180155 **Hydriding** properties of composites based on titanium and magnesium. Antonova, M. M.; Sapozhnikova, A. B.; Skorokhod, V. V.; Karpinos, D. M.; Rokhlin, L. L.; Verbetskii, V. N.; Vishnyakov, L. R.; Nikitina, N. I.; Klyamkin, S. N.; Shalya, I. M. (USSR). Poroshkovaya Metallurgiya (Kiev) (5), 61-6 (Russian) 1987. CODEN: PMANAI.
 ISSN: 0032-4795.

AB Ti-**Mg**-Li, Ti-**Mg**-Ni, Ti-**Mg**-Cu, Ti-**Mg**-Y, and Ti-**Mg**-La alloys absorb H almost completely at 0.1 MPa on activation for 0.5 h at 783-1083 K.

CC 52-3 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 56

ST titanium magnesium alloy **hydrogen storage**; lithium magnesium titanium **hydrogen storage**; nickel magnesium titanium **hydrogen storage**; copper magnesium titanium **hydrogen storage**; yttrium magnesium titanium **hydrogen storage**; lanthanum magnesium titanium **hydrogen storage**

IT 110803-46-8 110803-47-9 110803-48-0 110803-49-1 110803-50-4
110803-51-5

RL: PRP (Properties)
 (hydrogen absorption by)

IT 1333-74-0, **Hydrogen**, uses and miscellaneous

RL: USES (Uses)
 (storage of, titanium-magnesium alloys for, properties of)

IT 110803-50-4 110803-51-5

RL: PRP (Properties)
 (hydrogen absorption by)

RN 110803-50-4 HCA

CN Titanium alloy, base, Ti 83,Mg 9.5,Y 7.9 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Ti	83	7440-32-6
Mg	9.5	7439-95-4
Y	7.9	7440-65-5

RN 110803-51-5 HCA

CN Titanium alloy, base, Ti 82,Mg 11,La 7.3 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Ti	82	7440-32-6
Mg	11	7439-95-4
La	7.3	7439-91-0

IT 1333-74-0, **Hydrogen**, uses and miscellaneous

RL: USES (Uses)
 (storage of, titanium-magnesium alloys for, properties of)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H-H

L86 ANSWER 23 OF 31 HCA COPYRIGHT 2003 ACS on STN
 106:199207 Calcium- and nickel-substituted lanthanum-**magnesium**
 alloys for **hydrogen storage**. Khrusanova, M.; Peshev,
 P. (Inst. Gen. Inorg. Chem., Sofia, 1040, Bulg.). Journal of the
 Less-Common Metals, 131, 379-83 (English) 1987. CODEN: JCOMAH.
 ISSN: 0022-5088.

AB The partial substitution of Ni for Mg in La_{2-x}CaxMg alloys does
 not significantly affect their H storage capacity, but accelerates the
 desorption of H because of the formation of Mg₂NiH₄. The compn. and
 properties of La_{2-x}CaxMg₁₆Ni alloys were detd.

CC 52-3 (Electrochemical, Radiational, and Thermal Energy
 Technology)

Section cross-reference(s): 56, 67

ST **hydrogen storage** lanthanum nickel alloy; calcium
magnesium lanthanum nickel **hydriding**

IT Kinetics, reaction
 (of **hydriding**, of calcium-lanthanum-**magnesium**
 -nickel alloys)

IT 108364-34-7, La_{1.8}Ca_{0.2}Mg₁₆Ni 108364-35-8,
 La_{1.6}Ca_{0.4}Mg₁₆Ni
 RL: USES (Uses)
 (**hydrogen storage** by, compn. and structure in
 relation to)

IT 1333-74-0, **Hydrogen**, uses and miscellaneous
 RL: USES (Uses)
 (storage of, calcium-lanthanum-**magnesium**-nickel alloy for,
 characteristics of)

IT 108364-34-7, La_{1.8}Ca_{0.2}Mg₁₆Ni 108364-35-8,
 La_{1.6}Ca_{0.4}Mg₁₆Ni
 RL: USES (Uses)
 (**hydrogen storage** by, compn. and structure in
 relation to)

RN 108364-34-7 HCA

CN Magnesium alloy, base, Mg 55,La 35,Ni 8.3,Ca 1.1 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	

Mg	55	7439-95-4
La	35	7439-91-0
Ni	8.3	7440-02-0
Ca	1.1	7440-70-2

RN 108364-35-8 HCA

CN Magnesium alloy, base, Mg 57,La 32,Ni 8.6,Ca 2.3 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	

Mg	57	7439-95-4
La	32	7439-91-0
Ni	8.6	7440-02-0
Ca	2.3	7440-70-2

IT 1333-74-0, **Hydrogen**, uses and miscellaneous

RL: USES (Uses)

(storage of, calcium-lanthanum-**magnesium**-nickel alloy for,
characteristics of)
RN 1333-74-0 HCA
CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H-H

L86 ANSWER 24 OF 31 HCA COPYRIGHT 2003 ACS on STN
106:105405 Multiphase lanthanum calcium **magnesium** (La_{2-x}Ca_xMg₁₇)
alloys for **hydrogen storage**. Khrussanova, M.;
Terzieva, M.; Peshev, P. (Inst. Gen. Inorg. Chem., Sofia, 1040, Bulg.),
Journal of the Less-Common Metals, 125, 117-25 (English) 1986.
CODEN: JCOMAH. ISSN: 0022-5088.

AB H storage by alloys with compn. La_{2-x}Ca_xMg₁₇ (1.4.ltoreq.x.ltoreq.1.8)
representing a mixt. of the phases La₂Mg₁₇ [12031-39-9] and CaMg₂
[12133-32-3], and Mg in various ratios was investigated. These
alloys have good absorption-desorption characteristics and exhibit the
highest H capacity at the lowest **hydriding** pressure (5 bar).
Prolonged cycling with La0.4Ca1.6Mg₁₇ [106922-48-9] showed an
initial decrease in its absorption capacity up to the 80-100th cycle,
after which it remained const. and fairly high until the 250th
hydriding-dehydriding cycle. The desorption characteristics of
the alloys under investigation are close to those of single-phase alloys
with the same general formula and a high La content (x < 0.4) and
considerably better than the characteristics of La₂Mg₁₇. On the basis of
electron microscopy studies and data from the literature, an explanation
of the peculiarities in the behavior of the alloys is proposed.

CC 52-3 (Electrochemical, Radiational, and Thermal Energy
Technology)
Section cross-reference(s): 56, 67

ST **hydrogen storage** lanthanum calcium **magnesium**

IT Kinetics, reaction
(of **hydriding**, of lanthanum-calcium-**magnesium**
alloys)

IT 106922-46-7, La0.6Ca1.4Mg₁₇ 106922-47-8, La0.2Ca1.8Mg₁₇
106922-48-9, La0.4Ca1.6Mg₁₇
RL: USES (Uses)
(**hydriding** of, kinetics of, for **hydrogen**
storage)

IT 7439-95-4, **Magnesium**, uses and miscellaneous 12031-39-9
12133-32-3
RL: USES (Uses)
(in lanthanum-calcium-**magnesium** alloys, **hydrogen**
storage in relation to)

IT 1333-74-0, **Hydrogen**, uses and miscellaneous
RL: USES (Uses)
(storage of, lanthanum-calcium-**magnesium** alloys for)

IT 106922-46-7, La0.6Ca1.4Mg₁₇ 106922-47-8, La0.2Ca1.8Mg₁₇
106922-48-9, La0.4Ca1.6Mg₁₇
RL: USES (Uses)
(**hydriding** of, kinetics of, for **hydrogen**
storage)

RN 106922-46-7 HCA
CN Magnesium alloy, base, Mg 75, La 15, Ca 10 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	

Mg	75	7439-95-4
La	15	7439-91-0
Ca	10	7440-70-2

RN 106922-47-8 HCA
 CN Magnesium alloy, base, Mg 81,Ca 14,La 5.4 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Mg	81	7439-95-4
Ca	14	7440-70-2
La	5.4	7439-91-0

RN 106922-48-9 HCA
 CN Magnesium alloy, base, Mg 78,Ca 12,La 10 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Mg	78	7439-95-4
Ca	12	7440-70-2
La	10	7439-91-0

IT 1333-74-0, Hydrogen, uses and miscellaneous
 RL: USES (Uses)
 (storage of, lanthanum-calcium-magnesium alloys for)
 RN 1333-74-0 HCA
 CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H-H

L86 ANSWER 25 OF 31 HCA COPYRIGHT 2003 ACS on STN
 104:21908 Calcium-substituted lanthanum-magnesium alloys for
 hydrogen storage. Khrusanova, M.; Terzieva, M.; Peshev,
 P.; Petrov, K.; Pezat, M.; Manaud, J. P.; Darriet, B. (Inst. Gen. Inorg.
 Chem., Sofia, 1040, Bulg.). International Journal of Hydrogen Energy,
 10(9), 591-4 (English) 1985. CODEN: IJHEDX. ISSN: 0360-3199.

AB In the manuf. of La_{2-x}Ca_xMg₁₇ (0.1 < x < 1.0), for x = 0.1, single-phase products are synthesized whose x-ray spectrum is identical with that of La₂Mg₁₇ [12031-39-9], whereas at x > 0.8, the substance obtained is a mixt. of La₂Mg₁₇, CaMg₂, and Mg. At x values of 0.2-0.6, the x-ray spectra of the alloys show, in addn. to the main-phase La₂Mg₁₇, weak peaks of an unstable phase of the type Ce₅Mg₄₁. The absorption and desorption characteristics towards H of the La_{1.8}Ca_{0.2}Mg₁₇ and La_{1.6}Ca_{0.4}Mg₁₇ alloys were detd. Under the same hydriding conditions, these alloys absorb smaller H amts. than does the pure La₂Mg₁₇ alloy, but H desorption from them proceeds with a considerably higher rate than from La₂Mg₁₇. The probable causes of these effects are discussed.

CC 52-3 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 56
 ST calcium lanthanum magnesium hydrogen storage

IT Absorbents
 (calcium-lanthanum-magnesium, for hydrogen)

IT Absorption
 (of hydrogen, by calcium-lanthanum-magnesium alloys)

IT Desorption
 (of **hydrogen**, by calcium-lanthanum-**magnesium hydrides**)
 IT Kinetics, reaction
 (of **hydrogen**, with calcium-lanthanum-**magnesium alloys**)
 IT 12031-39-9 **99640-52-5**
 RL: PRP (Properties)
 (**hydrogen** absorption by)
 IT **1333-74-0**, uses and miscellaneous
 RL: USES (Uses)
 (storage of, calcium-lanthanum-**magnesium** alloys for)
 IT **99640-52-5**
 RL: PRP (Properties)
 (**hydrogen** absorption by)
 RN 99640-52-5 HCA
 CN Magnesium alloy, base, Mg 62-63, La 34-37, Ca 1.2-2.5 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Mg	62 - 63	7439-95-4
La	34 - 37	7439-91-0
Ca	1.2 - 2.5	7440-70-2

IT **1333-74-0**, uses and miscellaneous
 RL: USES (Uses)
 (storage of, calcium-lanthanum-**magnesium** alloys for)
 RN 1333-74-0 HCA
 CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H-H

L86 ANSWER 26 OF 31 HCA COPYRIGHT 2003 ACS on STN
 100:88733 **Hydrogen storage** by lanthanum-**magnesium**
 (La2Mg17) and lanthanum-**magnesium**-nickel (La2Mg16Ni). Shen,
 Panwen; Wang, Genshi; Zhang, Jizhi; Yang, Xizeng (Nankai Univ., Tianjin,
 Peop. Rep. China). Jinshu Xuebao, 19(4), A360-A368 (Chinese) 1983
 . CODEN: CHSPA4. ISSN: 0412-1961.

AB Two plateaus related to the reactions Mg₂Ni + 2H₂ .dblarw. Mg₂NiH₄ and
Mg + **H₂** .dblarw. MgH₂ are exhibited in the
 pressure-compn. isotherm of La₂Mg₁₆Ni alloy [88896-49-5].
 Partial substitution of **Mg** by Ni in La₂Mg₁₇ [12031-39-9] gives
 a 2-phase mixt.: the major La₂Mg₁₇ and the minor Mg₂Ni phase.
Hydriding of the La₂Mg₁₆Ni alloy leads to the formation of MgH₂,
La hydride, and Mg₂NiH₄. The H absorption by the alloys under
 either normal temp. and lower pressure or normal pressure and elevated
 temp. was also evaluated. Both La₂Mg₁₇ and La₂Mg₁₆Ni are promising H
 storage materials.

CC 52-3 (Electrochemical, Radiational, and Thermal Energy
 Technology)

ST Section cross-reference(s): 56
hydrogen storage magnesium alloy; lanthanum
 nickel **magnesium** alloy **hydrogen**

IT Absorbents
 (**magnesium** alloys, for **hydrogen**, properties of)

IT 12031-39-9 **88896-49-5**
 RL: PRP (Properties); TEM (Technical or engineered material use); USES

(Uses)
 (absorbent for **hydrogen**, properties of)
 IT **1333-74-0**, uses and miscellaneous
 RL: USES (Uses)
 (storage of, absorbent for, properties of)
 IT **88896-49-5**
 RL: PRP (Properties); TEM (Technical or engineered material use); USES
 (Uses)
 (absorbent for **hydrogen**, properties of)
 RN 88896-49-5 HCA
 CN Magnesium alloy, base, Mg 54, La 38, Ni 8.1 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent		Registry Number
Mg	54	7439-95-4
La	38	7439-91-0
Ni	8.1	7440-02-0

IT **1333-74-0**, uses and miscellaneous
 RL: USES (Uses)
 (storage of, absorbent for, properties of)
 RN 1333-74-0 HCA
 CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

L86 ANSWER 27 OF 31 HCA COPYRIGHT 2003 ACS on STN
 99:143115 Effects of calcium additions on some **magnesium**-alloy
hydrides. Lupu, D.; Biris, A.; Indrea, E.; Bucur, R. V. (Inst.
 Isot. Mol. Technol., Cluj-Napoca, R-3400, Rom.). International Journal of
 Hydrogen Energy, 8(9), 701-3 (English) 1983. CODEN: IJHEDX.
 ISSN: 0360-3199.

AB **Hydriding** of CaMg1.8Ni0.5 [87368-99-8] contg. CaMg₂ and MgNi₂
 shows fast activation kinetics. The Mg₂Ni phase is obsd. in the
 dehydrated samples. The 3 plateaus on the H desorption isotherms
 correspond to the most stable **Mg hydrides** obsd. up to
 now in **Mg** alloys; the enthalpy change = 20-24 kcal/mol H.
 Effects of Ca addns. on the H storage capacity and desorption rates of
 some **Mg**-rich alloys are reported.

CC **52-3** (Electrochemical, Radiational, and Thermal Energy
 Technology)

Section cross-reference(s): 56, 69

ST calcium **magnesium** nickel alloy **hydrogen**;
storage hydrogen magnesium alloy

IT Absorbents
 (**magnesium** alloys, for **hydrogen**, effect of calcium
 addn. on properties of)

IT Entropy
 (of absorption, of **hydrogen**, by calcium-**magnesium**
 -nickel alloys)

IT Heat of absorption
 (of **hydrogen**, by calcium-**magnesium**-nickel alloys)

IT Absorption
 (of **hydrogen**, by **magnesium** alloys)

IT 87368-95-4 87368-96-5 87368-97-6 **87368-98-7** 87368-99-8
 RL: PRP (Properties); TEM (Technical or engineered material use); USES
 (Uses)

(absorbent for **hydrogen**, properties of)
IT **1333-74-0**, uses and miscellaneous
RL: USES (Uses)
(storage of, **magnesium** alloys for, effect of calcium addn. on properties of)
IT **87368-98-7**
RL: PRP (Properties); TEM (Technical or engineered material use); USES (Uses)
(absorbent for **hydrogen**, properties of)
RN 87368-98-7 HCA
CN Magnesium alloy, base, Mg 43-47,Ca 27-33,La 20-31 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent		Registry Number
Mg	43 - 47	7439-95-4
Ca	27 - 33	7440-70-2
La	20 - 31	7439-91-0

IT **1333-74-0**, uses and miscellaneous
RL: USES (Uses)
(storage of, **magnesium** alloys for, effect of calcium addn. on properties of)
RN 1333-74-0 HCA
CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H-H

L86 ANSWER 28 OF 31 HCA COPYRIGHT 2003 ACS on STN
97:41545 **Magnesium-alloy hydrides**. Nachman, J. F.; Rohy, D. A. (Solar Turbines Int., San Diego, CA, 92138, USA). Met.-Hydrogen Syst., Proc. Miami Int. Symp., Meeting Date 1981, 557-600. Editor(s): Veziroglu, T. Nejat. Pergamon: Oxford, UK. (English) 1982.
CODEN: 47RUAA.

AB Progress in the development and characterization of **Mg** and **Mg**-alloy **hydrides** is summarized with emphasis on lightwt. **hydrides** suitable for automotive H fuel-storage applications. The topics covered include: effects of alloy compn. on H capacity, compn.-pressure-temp. relations, **hydriding-dehydriding** kinetics, comminution, and the useful life of **hydrides** when subjected to **hydriding-dehydriding** cycling.
CC 52-3 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 56
ST **magnesium** alloy **hydrogen storage**
IT Absorbents
(magnesium alloys, for **hydrogen**, properties of)
IT **79771-88-3 79771-89-4 82435-17-4**
RL: PRP (Properties); TEM (Technical or engineered material use); USES (Uses)
(absorbent for **hydrogen**, properties of)
IT **1333-74-0**, uses and miscellaneous
RL: USES (Uses)
(storage of, **magnesium** alloys for, properties of)
IT **79771-88-3 79771-89-4 82435-17-4**
RL: PRP (Properties); TEM (Technical or engineered material use); USES (Uses)
(absorbent for **hydrogen**, properties of)

Angela Martin

09/995,457

08/19/2003

RN 79771-88-3 HCA
 CN Magnesium alloy, base, Mg 44,Al 29,Y 27 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Mg	44	7439-95-4
Al	29	7429-90-5
Y	27	7440-65-5

RN 79771-89-4 HCA
 CN Magnesium alloy, base, Mg 68,Cu 21,Ni 9.7,Y 1.5 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Mg	68	7439-95-4
Cu	21	7440-50-8
Ni	9.7	7440-02-0
Y	1.5	7440-65-5

RN 82435-17-4 HCA
 CN Magnesium alloy, base, Mg 54,La 38,Al 7.5 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Mg	54	7439-95-4
La	38	7439-91-0
Al	7.5	7429-90-5

IT 1333-74-0, uses and miscellaneous
 RL: USES (Uses)
 (storage of, magnesium alloys for, properties of)
 RN 1333-74-0 HCA
 CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

L86 ANSWER 29 OF 31 HCA COPYRIGHT 2003 ACS on STN
 95:206782 Lightweight hydrides for automotive storage of
 hydrogen. Rohy, D. A.; Nachman, J. F.; Argabright, T. A. (Solar
 Turbines Int., San Diego, CA, USA). Proceedings of the Intersociety
 Energy Conversion Engineering Conference, 16th(Vol. 2), 1444-8 (English)
 1981. CODEN: PIECDE. ISSN: 0146-955X.

AB The development of Mg alloys for H storage is described and
 related to the requirements of the automotive spark ignition. The
 operating constraints of the engine include dissocn. temp., wt., dissocn.
 rate, cost, and storage d. of the hydride. Long-term cyclic
 tests simulating the refueling cycle were performed to assess the max.
 allowable impurities in H. The cycling effects on
 $Mg_0.845Ni_0.05Cu_0.1Y_0.005$ [79771-89-4] are reported. The amt.
 of absorbed H was greatly reduced after apprx. 2000 cycles owing to
 impurities such as O, N, CO, and H₂O (32 ppm) in H.

CC 52-3 (Electrochemical, Radiational, and Thermal Energy
 Technology)

Section cross-reference(s): 56

ST magnesium alloy traction hydrogen storage

IT Absorbents
 (magnesium-base alloys, for hydrogen, for traction,
 properties of lightwt.)

IT 79771-88-3 79771-89-4 79771-90-7
 RL: TEM (Technical or engineered material use); USES (Uses)
 (absorbent for hydrogen, for traction, properties of
 lightwt., effect of gaseous impurities on)

IT 1333-74-0, uses and miscellaneous
 RL: USES (Uses)
 (storage of, magnesium-base alloys for, for traction,
 properties of lightwt., effects of gaseous impurities on)

IT 79771-88-3 79771-89-4 79771-90-7
 RL: TEM (Technical or engineered material use); USES (Uses)
 (absorbent for hydrogen, for traction, properties of
 lightwt., effect of gaseous impurities on)

RN 79771-88-3 HCA

CN Magnesium alloy, base, Mg 44, Al 29, Y 27 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Mg	44.	7439-95-4
Al	29	7429-90-5
Y	27	7440-65-5

RN 79771-89-4 HCA

CN Magnesium alloy, base, Mg 68, Cu 21, Ni 9.7, Y 1.5 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Mg	68	7439-95-4
Cu	21	7440-50-8
Ni	9.7	7440-02-0
Y	1.5	7440-65-5

RN 79771-90-7 HCA

CN Magnesium alloy, base, Mg 54, La 39, Al 7.5 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Mg	54	7439-95-4
La	39	7439-91-0
Al	7.5	7429-90-5

IT 1333-74-0, uses and miscellaneous

RL: USES (Uses)
 (storage of, magnesium-base alloys for, for traction,
 properties of lightwt., effects of gaseous impurities on)

RN 1333-74-0 HCA

CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

L86 ANSWER 30 OF 31 HCA COPYRIGHT 2003 ACS on STN
 93:153188 Storage and use of hydrogen, especially in motors. Pezat,
 Michel; Darriet, Bernard; Hbika, Abdelmalek; Hagenmuller, Paul (Agence

Nationale de Valorisation de la Recherche, Fr.). Eur. Pat. Appl. EP 7840
19800206, 25 pp. (French). CODEN: EPXXDW. APPLICATION: EP
 1979-400470 19790706.

- AB **Hydrides** of Mg alloys decomp. at low temp. and can be used in the self-starting internal-combustion engines for supplying H. Thus, 90% H was released by the thermal decomprn. of 1:12 CeH₃-MgH₂ mixt. by heat of exhaust gases of the H-fueled engine. The **hydride** mixt. was obtained by heating CeMg₁₂ [12014-67-4] at 325.degree. and 30 atm H.
- IC C22C023-06; F17C011-00
- CC **52-3** (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 56
- ST **hydrogen storage magnesium cerium compd**
- IT Absorbents
 (magnesium alloys, for hydrogen, for internal-combustion engines)
- IT 12014-67-4 74978-56-6 75030-27-2 **75044-04-1**
 RL: TEM (Technical or engineered material use); USES (Uses)
 (absorbents for hydrogen, for internal-combustion engines)
- IT **1333-74-0**, uses and miscellaneous
 RL: USES (Uses)
 (storage of, magnesium alloys for, for internal-combustion engines)
- IT **75044-04-1**
 RL: TEM (Technical or engineered material use); USES (Uses)
 (absorbents for hydrogen, for internal-combustion engines)
- RN 75044-04-1 HCA
- CN Magnesium alloy, base, Mg 61,La 37,Sr 2.6 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Mg	61	7439-95-4
La	37	7439-91-0
Sr	2.6	7440-24-6

- IT **1333-74-0**, uses and miscellaneous
 RL: USES (Uses)
 (storage of, magnesium alloys for, for internal-combustion engines)
- RN 1333-74-0 HCA
- CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

L86 ANSWER 31 OF 31 HCA COPYRIGHT 2003 ACS on STN

90:207180 The storage and release of **hydrogen** from **magnesium** alloy **hydrides** for vehicular applications.. Douglass, David L.
 (Mater. Dep., Univ. California, Los Angeles, CA, USA). Hydrides Energy Storage, Proc. Int. Symp., Meeting Date 1977, 151-84. Editor(s): Andresen, A. F.; Maeland, A. J. Pergamon: Oxford, Engl. (English)
1978. CODEN: 40AOAU.

- AB Dil. solid solns. of Mg with 1 at.% Ag, Al, Cd, In, Pb, Y, or Zn (-25 +42 mesh chips) were **hydrided** at 400.degree. to 800.degree. psi H. Two-phase binary and ternary alloys were also investigated. The solid-soln. alloys contg. Ag, Al, In, and Y exhibited the most rapid **hydriding** kinetics, .apprx.5-6 wt.% in 24 h (theor. for 100% MgH₂)

is 7.6 wt.%). Dehydriding at 300 and 330.degree. was most rapid for **Mg-1Y** [70295-77-1], followed in order by **Mg-1Al** [70295-78-2], **Mg-1Ag** [70295-79-3] and **Mg-1** at.% In [70295-80-6]. Only the **Mg-1** at.% Y appeared promising at 300.degree... **Mg-5** at.%Y [70295-81-7] was subjected to numerous **hydriding** and dehydriding cycles in a closed system. It released .apprx.3% H in 6 h at 270.degree.. The best alloy studied was **Mg**-5 Ni-5 at.% Y [70295-82-8] which released >3% H in 4 h at 250.degree.. This alloy came the closest to fulfilling the program objectives and is a viable storage medium for vehicular applications.

CC **52-3** (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 56, 67

ST **hydrogen storage magnesium alloy; yttrium magnesium hydrogen storage; nickel yttrium magnesium hydrogen storage**

IT Absorbents

(**magnesium** alloys, for **hydrogen**, properties of, for traction)

IT 62699-60-9 70295-64-6 70295-65-7 70295-66-8 70295-67-9
70295-68-0 70295-69-1 70295-70-4 70295-71-5 70295-72-6
70295-73-7

RL: PRP (Properties); TEM (Technical or engineered material use); USES (Uses)

(absorbent for **hydrogen**, properties of, for traction)

IT **70295-74-8 70295-75-9** 70295-76-0 70295-77-1
70295-78-2 70295-79-3 70295-80-6 70295-81-7 **70295-82-8**

RL: PRP (Properties); TEM (Technical or engineered material use); USES (Uses)

(absorbents for **hydrogen**, properties of, for traction)

IT **1333-74-0**, uses and miscellaneous

RL: USES (Uses)

(storage of, **magnesium** alloys for, properties of, for traction)

IT **70295-74-8 70295-75-9 70295-82-8**

RL: PRP (Properties); TEM (Technical or engineered material use); USES (Uses)

(absorbents for **hydrogen**, properties of, for traction)

RN 70295-74-8 HCA

CN Magnesium alloy, base, Mg 79,Y 16,Al 4.9 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Mg	79	7439-95-4
Y	16	7440-65-5
Al	4.9	7429-90-5

RN 70295-75-9 HCA

CN Magnesium alloy, base, Mg 92,Ag 4.2,Y 3.4 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Mg	92	7439-95-4
Ag	4.2	7440-22-4
Y	3.4	7440-65-5

RN 70295-82-8 HCA

CN Magnesium alloy, base, Mg 75,Y 15,Ni 10 (9CI) (CA INDEX NAME)

Component	Component Percent	Component Registry Number
Mg	75	7439-95-4
Y	15	7440-65-5
Ni	10	7440-02-0

IT **1333-74-0**, uses and miscellaneous
 RL: USES (Uses)
 (storage of, **magnesium** alloys for, properties of, for
 traction)
 RN 1333-74-0 HCA
 CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

=> d L87 1-2 cbib abs hitind hitstr

L87 ANSWER 1 OF 2 HCA COPYRIGHT 2003 ACS on STN
 137:356534 Magnesium alloys for **hydrogen storage**. Osawa,
 Masato; Tomioka, Hidenori; Terashita, Naokatsu; Hayami, Noboru; Tsunokake,
 Shigeru (Nippon Jukagaku Kogyo Co., Ltd., Japan). Jpn. Kokai Tokkyo Koho
 JP 2002327230 A2 20021115, 7 pp. (Japanese). CODEN: JKXXAF.

APPLICATIION: JP 2001-128555 20010426.
 AB The alloys comprise metal Mg and a Mg-contg. intermetallic compd. Mg_xMy
 (e.g., M = Al, Si, Ca, Co, Ni, Cu, Sr, Y, **Pd**, Sn, Ba, and/or Ln)
 and contain .gtoreq.60% of total Mg. In solidification of the alloys, the
 intermetallic compd. is crystd. first. The alloys can absorb and release
 large amt. of H under low-temp. and low-pressure conditions.
 IC ICM C22C023-00
 CC 56-3 (Nonferrous Metals and Alloys)
 ST magnesium **hydrogen storage** alloy intermetallic compd;
 initial activation magnesium **hydrogen** absorbing alloy
 IT Crystal structure
 (contg. initially crystd. Mg-contg. intermetallic compd.; magnesium
 alloys for **hydrogen storage**)
 IT Intermetallic alloys
 RL: MSC (Miscellaneous)
 (magnesium alloys for **hydrogen storage**)
 IT **1333-74-0**, **Hydrogen**, miscellaneous
 RL: MSC (Miscellaneous)
 (magnesium alloys for **hydrogen storage**)
 IT 60501-13-5 94702-97-3 116742-98-4 119469-84-0 125168-68-5
 166898-13-1 407629-94-1 474758-43-5 **474758-44-6**
 474758-45-7 **474758-46-8** 474758-47-9 **474758-48-0**
 RL: TEM (Technical or engineered material use); USES (Uses)
 (magnesium alloys for **hydrogen storage**)
 IT **1333-74-0**, **Hydrogen**, miscellaneous
 RL: MSC (Miscellaneous)
 (magnesium alloys for **hydrogen storage**)
 RN 1333-74-0 HCA
 CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

IT 474758-44-6 474758-46-8 474758-48-0

RL: TEM (Technical or engineered material use); USES (Uses)
(magnesium alloys for **hydrogen storage**)

RN 474758-44-6 HCA

CN Magnesium alloy, base, Mg 70,Y 30 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Mg	70	7439-95-4
Y	30	7440-65-5

RN 474758-46-8 HCA

CN Magnesium alloy, base, Mg 70,La 30 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Mg	70	7439-95-4
La	30	7439-91-0

RN 474758-48-0 HCA

CN Magnesium alloy, base, Mg 70,Ca 10,La 10,Ni 10 (9CI) (CA INDEX NAME)

Component	Component	Component
Percent	Registry Number	
Mg	70	7439-95-4
Ca	10	7440-70-2
La	10	7439-91-0
Ni	10	7440-02-0

L87 ANSWER 2 OF 2 HCA COPYRIGHT 2003 ACS on STN

137:281787 Thermal stabilities and discharge capacities of melt-spun Mg-Ni-based amorphous alloys. Yamaura, Shin-Ichi; Kim, Hyang-Yeon; Kimura, Hisamichi; Inoue, Akihisa; Arata, Yoshiaki (Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan). Journal of Alloys and Compounds, 339(1-2), 230-235 (English) 2002. CODEN: JALCEU. ISSN: 0925-8388. Publisher: Elsevier Science B.V..

AB Mg-Ni-M (M=Ca, La or **Pd**) ternary alloys were synthesized by the melt-spinning technique. All as-solidified alloys possessed an amorphous single phase by the addnl. effect of the third element, though it was difficult to obtain an amorphous Mg67Ni33 binary alloy by melt-spinning. We examd. the thermal stability and electrochem. cyclic life property of the ternary amorphous alloys. The crystn. temp. of the amorphous alloys increases with increasing M content. All the alloys except Mg67Ni28Pd5 examd. in the present study maintain the amorphous structure even after **hydrogen** absorption at 373 K for Mg-Ni-Ca and Mg-Ni-**Pd** and at 423 K for Mg-Ni-La. The crystn. temp. increases by absorbing **hydrogen**, indicating that the alloys are thermally stabilized by **hydrogen** absorption. In the electrochem. cyclic life measurements up to five cycles, the Mg-Ni-**Pd** amorphous alloys exhibit high discharge capacities ranging from 100 to 400 mA h/g as well as small cyclic life degrdn. tendency, though the Mg-Ni-Ca and Mg-Ni-La amorphous alloys possess small discharge capacities of 10-100 mA h/g with significant cyclic life degrdn. The good cyclic life property of the amorphous **hydrogen storage** alloys can be obtained by application of the melt-spinning technique to Mg-based alloys with appropriate alloy compns.

CC 52-3 (Electrochemical, Radiational, and Thermal Energy Technology)
 ST **hydrogen storage** magnesium nickel based amorphous
 alloys
 IT **Storage**
 (of **hydrogen**; thermal stabilities and discharge capacities of
 melt-spun Mg-Ni-based amorphous alloys)
 IT **1333-74-0, Hydrogen, processes**
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical
 process); PROC (Process)
 (**storage**; thermal stabilities and discharge capacities of
 melt-spun Mg-Ni-based amorphous alloys)
 IT 193979-12-3 321989-40-6 358977-24-9 466696-95-7 **466696-96-8**
466696-97-9 466696-98-0 466696-99-1 466697-00-7
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical
 process); PROC (Process)
 (thermal stabilities and discharge capacities of melt-spun Mg-Ni-based
 amorphous alloys)
 IT **1333-74-0, Hydrogen, processes**
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical
 process); PROC (Process)
 (**storage**; thermal stabilities and discharge capacities of
 melt-spun Mg-Ni-based amorphous alloys)
 RN 1333-74-0 HCA
 CN Hydrogen (8CI, 9CI) (CA INDEX NAME)

H—H

IT **466696-96-8 466696-97-9 466696-98-0**
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical
 process); PROC (Process)
 (thermal stabilities and discharge capacities of melt-spun Mg-Ni-based
 amorphous alloys)
 RN 466696-96-8 HCA
 CN Nickel alloy, base, Ni 47,Mg 36,La 17 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Ni	47	7440-02-0
Mg	36	7439-95-4
La	17	7439-91-0

RN 466696-97-9 HCA
 CN Nickel alloy, base, Ni 41,La 29,Mg 29 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Ni	41	7440-02-0
La	29	7439-91-0
Mg	29	7439-95-4

RN 466696-98-0 HCA
 CN Lanthanum alloy, base, La 39,Ni 37,Mg 24 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
La	39	7439-91-0

Angela Martin

09/995, 457

08/19/2003

Ni	37	7440-02-0
Mg	24	7439-95-4