PICO r statistics

Aditya Rotti

Case	Moments	Parame
cMILC00	$I_{ m CMB}$	1
cMILC01	$I_{ m CMB} \; ; \; I_{ m sync}$	2
cMILC02	$I_{ m CMB} \; ; \; I_{ m dust}$	2
cMILC03	$I_{ m CMB} \; ; I_{ m sync} \; ; I_{ m dust}$	3
cMILC04	$I_{ m CMB} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m dust}}{deta}$	3
cMILC05	$I_{ m CMB} \; ; \; I_{ m sync} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m dust}}{deta}$	4
cMILC06	$I_{ m CMB} \; ; \; I_{ m sync} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m sync}}{deta} \; ; \; rac{dI_{ m dust}}{deta} \; ({ m H})$	5
cMILC07	$I_{ m CMB} \; ; \; I_{ m sync} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m sync}}{deta} \; ; \; rac{dI_{ m dust}}{deta} \; ; \; rac{dI_{ m dust}}{dT}$	6
cMILC08	$I_{ m CMB} \; ; \; I_{ m sync} \; ; \; I_{ m dust} \; ; \; rac{dI_{ m sync}}{deta} \; ; \; rac{dI_{ m dust}}{deta} \; ; \; rac{dI_{ m dust}}{dT} \; ; \; rac{d^2I_{ m dust}}{d^2T}$	7
cMILC09	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$ (H)	7
cMILC10	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$	8
cMILC11	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$ (H)	8
cMILC12	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\mathrm{sync}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{d\beta}$; $\frac{dI_{\mathrm{dust}}}{dT}$; $\frac{d^2I_{\mathrm{sync}}}{d^2\beta}$; $\frac{d^2I_{\mathrm{dust}}}{d^2T}$; $\frac{d^2I_{\mathrm{dust}}}{d\beta dT}$	9
cMILC13	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\text{sync}}}{d\beta}$; $\frac{dI_{\text{dust}}}{d\beta}$; $\frac{dI_{\text{dust}}}{dT}$; $\frac{d^2I_{\text{sync}}}{d^2\beta}$; $\frac{d^2I_{\text{dust}}}{d^2T}$; $\frac{d^2I_{\text{dust}}}{d\beta dT}$ (H)	9
cMILC14	I_{CMB} ; I_{sync} ; I_{dust} ; $\frac{dI_{\text{sync}}}{d\beta}$; $\frac{dI_{\text{dust}}}{d\beta}$; $\frac{dI_{\text{dust}}}{dT}$; $\frac{d^2I_{\text{sync}}}{d^2\beta}$; $\frac{d^2I_{\text{dust}}}{d^2T}$; $\frac{d^2I_{\text{dust}}}{d\beta dT}$; $\frac{d^2I_{\text{dust}}}{d^2\beta}$	10

		$r_{ m bias}$	σ_r	r_{95}	SNR		
Case	Alens						
cMILC00	0.0	0.00022	0.00023	0.00073	0.97606		
	0.3	0.00053	0.00072	0.00214	0.72890		
	0.6	0.00058	0.00133	0.00358	0.43983		
	0.9	0.00060	0.00196	0.00501	0.30559		
cMILC01	0.0	0.00022	0.00024	0.00075	0.94003		
	0.3	0.00051	0.00072	0.00212	0.70217		
	0.6	0.00056	0.00133	0.00356	0.42175		
	0.9	0.00057	0.00195	0.00499	0.29301		
cMILC02	0.0	0.00022	0.00022	0.00071	1.02211		
	0.3	0.00040	0.00071	0.00199	0.56604		
	0.6	0.00043	0.00132	0.00341	0.32448		
	0.9	0.00043	0.00195	0.00484	0.22284		
cMILC03	0.0	0.00023	0.00023	0.00074	1.00991		
	0.3	0.00041	0.00071	0.00201	0.58326		
	0.6	0.00044	0.00132	0.00343	0.33520		
	0.9	0.00045	0.00195	0.00486	0.23144		
cMILC04	0.0	0.00021	0.00024	0.00076	0.87935		
	0.3	0.00053	0.00073	0.00215	0.72735		
	0.6	0.00059	0.00133	0.00359	0.44453		
	0.9	0.00061	0.00196	0.00503	0.31209		
cMILC05	0.0	0.00021	0.00024	0.00074	0.88741		
	0.3	0.00039	0.00071	0.00199	0.55327		
	0.6	0.00042	0.00132	0.00341	0.32145		
	0.9	0.00043	0.00195	0.00483	0.22195		
cMILC06	0.0	0.00022	0.00033	0.00093	0.66415		
	0.3	0.00033	0.00075	0.00199	0.44103		
	0.6	0.00035	0.00134	0.00336	0.26365		
	0.9	0.00036	0.00195	0.00477	0.18257		
cMILC07	0.0	0.00040	0.00045	0.00138	0.88630		
	0.3	0.00057	0.00080	0.00234	0.71414		
	0.6	0.00063	0.00137	0.00371	0.46198		
	0.9	0.00065	0.00198	0.00511	0.32907		
cMILC08	0.0	0.00004	0.00081	0.00222	0.04619		
	0.3	0.00003	0.00109	0.00270	0.03077		
	0.6	0.00003	0.00158	0.00372	0.01826		
Continued on next page							

		$r_{ m bias}$	σ_r	r_{95}	SNR
Case	Alens				
	0.9	0.00003	0.00214	0.00494	0.01251
cMILC09	0.0	0.00010	0.00045	0.00107	0.21714
	0.3	0.00004	0.00097	0.00229	0.04559
	0.6	0.00004	0.00153	0.00355	0.02449
	0.9	0.00003	0.00211	0.00485	0.01633
cMILC10	0.0	0.00007	0.00288	0.00744	0.02515
	0.3	0.00007	0.00297	0.00760	0.02408
	0.6	0.00007	0.00322	0.00806	0.02150
	0.9	0.00007	0.00357	0.00874	0.01857
cMILC11	0.0	0.00052	0.00218	0.00537	0.23795
	0.3	0.00009	0.00287	0.00715	0.03140
	0.6	0.00008	0.00316	0.00781	0.02372
	0.9	0.00007	0.00354	0.00859	0.01974
cMILC12	0.0	0.00019	NaN	NaN	NaN
	0.3	0.00019	NaN	NaN	NaN
	0.6	0.00019	NaN	NaN	NaN
	0.9	0.00019	NaN	NaN	NaN
cMILC13	0.0	0.00176	0.00353	0.00908	0.49756
	0.3	0.00181	NaN	NaN	NaN
	0.6	0.00129	NaN	NaN	NaN
	0.9	0.00095	NaN	NaN	NaN
cMILC14	0.0	0.00001	NaN	NaN	NaN
	0.3	0.00001	NaN	NaN	NaN
	0.6	0.00001	NaN	NaN	NaN
	0.9	0.00001	NaN	NaN	NaN

- 1 Mask
- 2 Posterior plots

3 r constraints