

MSML610: Advanced Machine Learning

Information Theory

Instructor: Dr. GP Saggese - gsaggese@umd.edu

References:

Information theory

- Information theory
 - Entropy

Entropy

- Information theory
 - Entropy

Entropy and Uncertainty

• Entropy H(X) of a discrete random variable X is defined as:

$$H(X) \triangleq -\sum_{x} p(x) \log p(x)$$

- Intuition
 - Entropy quantifies the average level of information / surprise / uncertainty inherent in the variable's possible outcomes
 - High entropy = more unpredictability
 - Low entropy = more certainty
 - Usually the log is base 2 log₂ so unit of entropy is bits

Examples

- Fair coin
 - ullet A fair coin toss has two equally likely outcomes, heads or tails, leading to maximum uncertainty H=1
- Biased coin
 - If a coin lands on heads 90% of the time, it creates less uncertainty and thus less entropy H < 1

Why Entropy is Defined in That Way

- Entropy as expected information content
 - Information of outcome x_i is $-\log p_i$
 - Rare events $(p_i \to 0)$ yield more information $(-\log p_i \to \infty)$
 - Common events $(p_i \to 1)$ yield little information $(-\log p_i \to 0)$
 - Entropy is the expected information content:

$$H(X) = \mathbb{E}[-\log p_i] = -\sum_i p_i \log p_i$$

- Axiomatic derivation of entropy
 - Shannon's criteria for $H(p_1,...,p_n)$:
 - 1. Continuity: H() is continuous in p_i
 - 2. Maximality: H() is maximal when outcomes are equally likely
 - 3. Additivity: For composite outcomes, H(X,Y) = H(X) + H(Y|X)
 - The only solution is:

$$H(X) = -K \sum_{i} p_{i} \log p_{i}$$

Entropy and PDF

- Entropy is related to variance but is not the same
 - If a distribution has more spread, typically its entropy is larger
 - It is possible that variance increases, but entropy doesn't
- Entropy is related to information and uncertainty
 - The flatter the prior distribution, the less informative it is

Joint Entropy

• **Joint entropy** H(X, Y) of two variables X and Y is defined as:

$$H(X, Y) \triangleq -\sum_{x,y} p(x, y) \log p(x, y)$$

- Describes the information needed for the joint distribution of X and Y
- Properties
 - Non-negative and zero if X and Y are perfectly determined
 - For two independent binary variables X and Y, the joint entropy is the sum of the entropy
- Applications
 - Identifies dependencies or correlations in datasets
 - Aids in feature selection by finding informative variable combinations
 - E.g., in sensor network data, joint entropy can highlight overlapping sensor information

Conditional Entropy

• Conditional entropy H(Y|X) is defined as

$$H(Y|X) = -\sum_{x,y} p(x,y) \log p(y|x)$$

- Intuition
 - Represents the average uncertainty in Y after observing X
 - Measures the effectiveness of X in determining Y
- Properties
 - Low H(Y|X) implies stronger predictive power of X on Y
 - There is less uncertainty about Y after knowing X
 - I.e., Y has predictive power on X
 - If Y = X, then H(Y|X) = 0

donandant variables

- No uncertainty about Y once X is known
- X completely determines Y
- If X and Y are independent, then H(Y|X) = H(Y)
 - Knowledge of X provides no new information about Y
- Applications
 - In feature selection assess the predictive power of independent variables on

Mutual Information

• The mutual information I(X; Y) between X and Y is defined as:

$$I(X;Y) \triangleq H(X) - H(X|Y)$$

- Intuition
 - Measures how much knowing X reduces uncertainty about Y
 - Gauges the shared information between two variables
- Properties
 - Non-negative: $I(X; Y) \ge 0$
 - Symmetric: I(X; Y) = I(Y; X)
 - If X and Y are independent, then I(X; Y) = 0
 - \bullet Higher mutual information indicates greater relation between X and Y
 - Related to the joint entropy but symmetric:

$$I(X; Y) = H(X) + H(Y) - H(X, Y)$$

- Applications
 - Selects features sharing high information with the target variable
 - Used to reduce dimensionality

Kullback-Leibler (KL) Divergence

• The **KL** divergence $D_{KL}(P||Q)$ between distributions P and Q is defined as:

$$D_{\mathsf{KL}}(P||Q) \triangleq \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

- Intuition
 - Quantify how much one distribution deviates from another distribution
- Properties
 - Not symmetric: $D_{\mathsf{KL}}(P\|Q) \neq D_{\mathsf{KL}}(Q\|P)$
 - $D_{KL}(P||Q) = 0$ iff P = Q, i.e., Q(x) = P(x) for all x
 - It is a distance, but not a metric (not symmetric, no triangle inequality)
- Applications
 - In optimization of machine learning models by minimizing divergence
 - E.g., variational autoencoders use KL divergence to ensure that the learned distribution is close to the true distribution

Cross-Entropy

 The cross-entropy H(P, Q) between two distributions P and Q is defined as:

$$H(P,Q) \triangleq -\sum_{x} P(x) \log Q(x)$$

where:

- P(x) is the true probability of the event x
- Q(x) is the probability assigned by the model

Intuition

- Measures the average number of bits needed to encode data from P using a code optimized for Q
- Indicates inefficiency when the code for Q is used to represent P
- Properties
 - Cross-entropy is related to entropy and KL divergence:

$$H(P,Q) = H(P) + D_{\mathsf{KL}}(P||Q)$$

- Applications
 - Used to compare the similarity of the predicted outcomes probability distribution to the true distribution
 - E.g., as loss function in logistic regression
 - A perfect model has a cross-entropy of 0

Data Processing Inequality

Data processing inequality states that:

Processing data cannot increase information, it can only lose information over

- Formally: if $X \to Y \to Z$, then $I(X; Z) \le I(X; Y)$
 - After passing through an additional stage (from Y to Z), the mutual information with the initial stage (X) cannot increase

Examples

- If X is a raw image, Y is a compressed version
 - No additional processing Z will uncover more information about X than what Y already represents
- If Y is a dataset derived from X (e.g., summary statistics)
 - Any analysis applied to Y alone cannot provide more insights into X than Y itself

Applications

- Compression can only lead to information loss
- Identify "information bottlenecks" in a modeled process, ensuring model designs consider the constraints imposed by information processing

Chain Rule for Entropy and Mutual Information

• The entropy chain rule

$$H(X,Y) = H(X) + H(Y|X)$$

- In words, the joint entropy of two random variables can be decomposed into the entropy of one and the conditional entropy of the other
- Examples:
 - X represents the weather (sunny, rainy)
 - Y represents outdoor activity (park, cinema)
 - H(Y|X) would provide information about outdoor activities given specific weather conditions
- The mutual information chain rule:

$$I(X, Y; Z) = I(X; Z) + I(Y; Z|X)$$

- Applications
 - By using chain rules, one can decompose and understand the complexity of joint distributions with multiple interacting variables
 - Useful in sequential models (e.g., speech recognition) and time-series analysis (e.g., stock market prediction)

Source Coding Theorem

- Aka "Shannon's first theorem"
- Statement
 - Compression cannot achieve an average code length less than the entropy of the source
- Implications
 - It asserts a limit on lossless compression:
 - E.g., if a source has entropy H(X) = 3 bits, you cannot on average encode it with fewer than 3 bits per symbol
- Examples
 - Lossless compression methods approach the entropy limit
 - E.g., Huffman coding encode data by creating variable-length codes

Noisy-Channel Coding Theorem

Aka "Shannon's second theorem"

Statement

• For any discrete memoryless channel with capacity C, and for any desired level of reliability $\varepsilon>0$, it is possible to transmit information at any rate R< C with an arbitrarily small probability of error, using a sufficiently long encoding scheme

Implications

- Accurate communication can be achieved even with noise
- Error correction techniques can be applied to achieve this
- It does not construct the code, it only proves existence
- Channel capacity defines the upper limit of information that can be transmitted reliably (e.g., 10 Mbps)
- Applications:
 - Fundamental principle for designing digital communication systems
 - E.g., mobile networks, satellite communications, and the internet

Redundancy and Compression

- Redundancy is the difference between actual and optimal code length
 - Measures excess information in the data
 - Redundancy implies room for compression, i.e., reduce data size without losing information
- Compression techniques remove redundancy while preserving information
 - Aim to make data smaller without losing meaning or important details
 - Useful for reducing storage or speeding up data transmission
- Examples
 - Run-length encoding
 - Compress by replacing consecutive identical elements with a single value and count
 - E.g., AAAABBBCCDAA becomes 4A3B2C1D2A
 - Huffman coding
 - Uses variable-length codes for encoding
 - Frequently used symbols get shorter codes, reducing length

Typical Set

- Set of sequences with probability close to $2^{-nH(X)}$
 - E.g., if H(X) = 2, then for large n, sequences have a probability close to 2^{-2n}
- Central to proving coding theorems
 - The typical set is essential in demonstrating the efficiency of compression algorithms
- Almost all sequences in large samples lie in the typical set
 - E.g., for a sequence length *n*, the probability of falling outside the typical set decreases exponentially as *n* increases
- Enables asymptotic analysis of information theory
 - Used in deriving limits related to data compression and reliable communication

Rate-Distortion Theory

- Trade-off between compression rate R vs distortion D
 - Compression rate R: amount of data remaining after compression
 - Distortion D: difference between the original and compressed data
 - Balancing R and D is crucial for effective lossy compression
- Goal: reduce data size (lossy compression) while maintaining an acceptable level of quality
- Rate-distortion function R(D) defines the minimal rate for a given distortion
 - Describes the lower bound of the data rate necessary to achieve a specified level of distortion
 - E.g., in image compression, R(D) helps in determining the lowest bitrate for a desired image quality

Applications

- Widely used in image/audio/video compression, e.g., MP3, JPEG and MPEG formats
- Important for streaming services and storage optimization

Fano's Inequality

When X is guessed from Y, it holds:

$$H(X|Y) \le h(P_e) + P_e \log(|X| - 1)$$

where

- X is a discrete random variable
- Y is the estimate variable of X based on some observations
- H(X|Y) is the conditional entropy of X given Y
- $h(P_e)$ is the binary entropy function quantifying uncertainty of a binary random variable, where $h(p) = -p \log p (1-p) \log(1-p)$
- Intuition
- It relates the uncertainty remaining about X after observing Y to the probability of making an error in guessing X
- "You cannot simultaneously have low error and low entropy (uncertainty). If the entropy is high, your probability of error must also be high."

Differential Entropy

Definition

 The differential entropy h(x) for continuous random variable X with density p(x) is defined as:

$$h(X) \triangleq -\int p(x) \log p(x) dx$$

- Concept
 - Extends Shannon entropy to continuous distributions
 - Measures "spread" or uncertainty of X
- Key Properties
 - Not invariant under variable change
 - E.g., scaling affects h(X)
 - Can be negative, unlike non-negative discrete entropy
 - Units depend on logarithm base
- Example
 - For Gaussian $X \sim \mathcal{N}(\mu, \sigma^2)$:

$$h(X) = \frac{1}{2}\log(2\pi e\sigma^2)$$

- Limitations
 - Cannot compare directly across variables with different units or scales

Maximum entropy principle

Definition

- Use the prior with the largest entropy (i.e., the least informative) given the constraints of the problem
- Can be solved as an optimization problem

• Examples

- The distribution with largest entropy given a constraint is:
 - Without constraints: uniform
 - A positive mean: exponential
 - A given variance: normal distribution

Minimum Description Length (MDL)

- Definition
 - The total description length of a dataset MDL(H) is given by:

$$MDL(H) = L(H) + L(D \mid H)$$

where:

- L(H) is the length (in bits) of the model or hypothesis
- $L(D \mid H)$ is the length of the data encoded using the model
- Principle
 - MDL selects the hypothesis *H* that minimizes the total description length

$$MDL(H) = L(H) + L(D \mid H)$$

- Intuition
 - Prefers the model that gives the shortest total description of data
 - Based on Occam's Razor: simpler models are preferred
 - Balances model complexity and data fit
- Example
 - Given two decision trees for classifying email as spam:
 - Tree A is small and classifies 95% correctly
 - Tree B is large and classifies 96% correctly
 - MDL may prefer Tree A if the increased accuracy doesn't justify the extra complexity
- Applications

Kolmogorov Complexity

• The Kolmogorov complexity K(x) of a string x is the length of the shortest binary program that outputs x on a universal Turing machine

Examples

- A string of 1000 random bits: high Kolmogorov complexity, no compressible pattern
- A string of 1000 repeated 0s: low Kolmogorov complexity, described by a short loop

Intuition

- Measures "algorithmic randomness" or compressibility of a string
- A string is complex if it has no shorter description than itself

Formal Properties

- Incomputable: no algorithm computes K(x) for all x
- $K(x) \le |x| + c$ for some constant c, showing the trivial upper bound (print x)

Relation to MDL

MDL approximates Kolmogorov complexity by minimizing a practical description length

Information Bottleneck

- Framework for extracting relevant information
- Trade-off: compression of X vs retention of info about Y
- Optimization: minimize I(X; T) while preserving I(T; Y)
- Used in deep learning theory and representation learning

Multi-Information and Total Correlation

- Generalization of mutual information to multiple variables
- Total correlation: $C(X_1, \ldots, X_n) = \sum_i H(X_i) H(X_1, \ldots, X_n)$
- Measures total dependency in a set of variables
- Used in ICA, variational inference, and dependency modeling