

FCC RF Test Report

APPLICANT : CT Asia

EQUIPMENT: Mobile phone

BRAND NAME : BLU

MODEL NAME : Neo 3.5

FCC ID : YHLBLUNEO35

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Mar. 17, 2014 and testing was completed on Mar. 28, 2014. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown to be compliant with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.

No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C.

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35 Page Number : 1 of 46

Report Issued Date : May 09, 2014 Report Version : Rev. 01

Testing Laboratory

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3	
SU	MMAI	RY OF TEST RESULT	4	
1	GEN	IERAL DESCRIPTION	5	
	1.1	Applicant	5	
	1.2	Manufacturer	5	
	1.3	Feature of Equipment Under Test	5	
	1.4	Product Specification of Equipment Under Test	5	
	1.5	Modification of EUT	6	
	1.6	Testing Site	6	
	1.7	Applied Standards	6	
2	TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	7	
	2.1	Descriptions of Test Mode	7	
	2.2	Test Mode	8	
	2.3	Connection Diagram of Test System	9	
	2.4	Support Unit used in test configuration and system	10	
	2.5	EUT Operation Test Setup	10	
	2.6	Measurement Results Explanation Example	10	
3	TEST RESULT			
	3.1	6dB and 99% Bandwidth Measurement	11	
	3.2	Peak Output Power Measurement	14	
	3.3	Power Spectral Density Measurement	16	
	3.4	Conducted Band Edges and Spurious Emission Measurement	22	
	3.5	Radiated Band Edges and Spurious Emission Measurement		
	3.6	AC Conducted Emission Measurement	40	
	3.7	Antenna Requirements	44	
4	LIST	OF MEASURING EQUIPMENT	45	
5	UNC	ERTAINTY OF EVALUATION	46	
ΑP	PEND	DIX A. SETUP PHOTOGRAPHS		

TEL: 86-755-3320-2398 FCC ID: YHLBLUNEO35 Page Number : 2 of 46

Report Issued Date: May 09, 2014

Report No.: FR431703B

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR431703B	Rev. 01	Initial issue of report	May 09, 2014

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35

Page Number : 3 of 46
Report Issued Date : May 09, 2014

Report No.: FR431703B

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Rule Description		Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.2	15.247(b)(1)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 11.68 dB at 2483.500 MHz
3.6 15.207		AC Conducted Emission	15.207(a)	Pass	Under limit 15.07 dB at 0.440 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35 Page Number : 4 of 46
Report Issued Date : May 09, 2014

Report No. : FR431703B

1 **General Description**

Applicant 1.1

CT Asia

Unit 01, 15/F, Seaview Centre, 139-141 Hoi bun road, Kwun Tong, Kowloon, Hongkong

1.2 Manufacturer

Tinno Mobile Technology Corp.

4/F, H-3 Building, OCT Eastern industrial Park, No.1 XiangShan East Road, Nan Shan District, Shenzhen, P. R. China

Report No.: FR431703B

Feature of Equipment Under Test 1.3

Product Feature				
Equipment	Mobile phone			
Brand Name	BLU			
Model Name	Neo 3.5			
FCC ID	YHLBLUNEO35			
EUT supports Radios application	GSM/GPRS/EGPRS/WCDMA/HSPA/HSPA+(Downlink Only) WLAN 2.4GHz 802.11b/g/n HT20/HT40/ Bluetooth v3.0 + EDR/Bluetooth v4.0 LE			
HW Version	v1.0			
SW Version	BLU_S300a_V04_TIGO_CAM			
EUT Stage	Production Unit			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

Product Specification of Equipment Under Test 1.4

Product Spec	Product Specification subjective to this standard			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	40			
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)			
Maximum Output Power to Antenna	-0.72 dBm (0.0008 W)			
Antenna Type	PIFA Antenna with gain 0 dBi			
Type of Modulation	Bluetooth v4.0 LE : GFSK			

SPORTON INTERNATIONAL (SHENZHEN) INC. : 5 of 46 Page Number TEL: 86-755-3320-2398 Report Issued Date: May 09, 2014 FCC ID: YHLBLUNEO35

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Site

Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.			
	No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan			
Test Site Location	warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C.			
	TEL: +86-755- 3320-2398			
Test Site No.		Sporton Site No) <u>.</u>	FCC Registration No.
rest Site No.	TH01-SZ	03CH01-SZ	CO01-SZ	831040

Report No.: FR431703B

: 6 of 46

Page Number

Note: The test site complies with ANSI C63.4 2003 requirement.

1.7 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01
- ANSI C63.4-2003

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

The RF output power was recorded in the following table:

		Bluetooth v4.0 LE RF Output Power
Channal	Frequency	Data Rate / Modulation
Channel		GFSK
		1Mbps
Ch00	2402MHz	-0.75 dBm
Ch19	2440MHz	<mark>-0.72</mark> dBm
Ch39	2480MHz	-1.09 dBm

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Y plane as worst plane) from all possible combinations.
- b. AC power line Conducted Emission was tested under maximum output power.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35 Page Number : 7 of 46
Report Issued Date : May 09, 2014

Report No.: FR431703B

2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases				
Test Item	Data Rate / Modulation				
rest item	Bluetooth v4.0 LE / GFSK				
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
AC	Made 1: CSM950 Idle Divistosth Link WI AN Link LISD Cable (Charging from				
Conducted	Mode 1: GSM850 Idle + Bluetooth Link + WLAN Link + USB Cable (Charging from				
Emission	Adapter) + Earphone				
Remark: For	radiated TCs, the tests were performed with adapter, earphone and USB cable.				

SPORTON INTERNATIONAL (SHENZHEN) INC.
TEL: 86-755- 3320-2398

FCC ID: YHLBLUNEO35

Page Number : 8 of 46
Report Issued Date : May 09, 2014
Report Version : Rev. 01

2.3 Connection Diagram of Test System

<Bluetooth v4.0 LE Tx Mode>

<AC Conducted Emission Mode>

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35

Page Number : 9 of 46
Report Issued Date : May 09, 2014

Report No.: FR431703B

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMW 500	N/A	N/A	Unshielded, 1.8 m
2.	DC Power Supply	TOPWORD	3303DR	N/A	N/A	Unshielded, 1.8 m
3.	WLAN AP	D-Link	DIR-815	KA2IR815A1	N/A	Unshielded, 1.8 m
4.	Notebook	Lenovo	G480	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	Bluetooth Earphone	Nokia	BH-108	PYAHS-107W	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth v4.0 LE function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 7.5 dB and 10dB attenuator.

Offset
$$(dB) = RF$$
 cable $loss(dB) + attenuator$ factor (dB) .
= 7.5 + 10 = 17.5 (dB)

3 **Test Result**

3.1 6dB Bandwidth Measurement

3.1.1 Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

- The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. 4. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

Report Version : Rev. 01

: 11 of 46

3.1.5 Test Result of 6dB Bandwidth

Test Mode :	Bluetooth v4.0 LE	Temperature :	24~26 ℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	6dB Bandwidth Min. Limit (MHz)	Pass/Fail
00	2402	0.692	0.5	Pass
19	2440	0.694	0.5	Pass
39	2480	0.696	0.5	Pass

6 dB Bandwidth Plot on Channel 00

Date: 27.MAR.2014 19:25:56

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35 Page Number : 12 of 46
Report Issued Date : May 09, 2014

Report No.: FR431703B

Report No.: FR431703B

6 dB Bandwidth Plot on Channel 19

Date: 27.MAR.2014 19:30:30

6 dB Bandwidth Plot on Channel 39

Date: 27.MAR.2014 19:35:19

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35 Page Number : 13 of 46
Report Issued Date : May 09, 2014

3.2 **Peak Output Power Measurement**

3.2.1 **Limit of Peak Output Power**

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

Report No.: FR431703B

3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- 1. The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r01.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Measure the conducted output power and record the results in the test report. 4.

3.2.4 Test Setup

Page Number

: 14 of 46

: Rev. 01

TEL: 86-755-3320-2398 Report Issued Date: May 09, 2014 FCC ID: YHLBLUNEO35 Report Version

FCC RF Test Report

3.2.5 Test Result of Peak Output Power

Test Mode :	Bluetooth v4.0 LE	Temperature :	24~26 ℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

		RF Power (dBm)					
Channel	Frequency	GFSK	Max. Limits	Door/Foil			
	(MHz)	1 Mbps	(dBm)	Pass/Fail			
00	2402	-0.75	30.00	Pass			
19	2440	-0.72	30.00	Pass			
39	2480	-1.09	30.00	Pass			

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-3320-2398 FCC ID: YHLBLUNEO35

: 15 of 46 Page Number Report Issued Date: May 09, 2014

Report No. : FR431703B

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

Report No.: FR431703B

3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 16 of 46TEL: 86-755- 3320-2398Report Issued Date: May 09, 2014FCC ID: YHLBLUNEO35Report Version: Rev. 01

FCC RF Test Report

3.3.5 Test Result of Power Spectral Density

Test Mode :	Test Mode : Bluetooth v4.0 LE		24~26 ℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Report No.: FR431703B

Channal	Frequency	Power	Max. Limits	Dage/Fail		
Channel	(MHz)	PSD/100kHz (dBm) PSD/3kHz (dBm)		(dBm/3kHz)	Pass/Fail	
00	2402	-3.48	-18.07	8	Pass	
19	2440	-3.49	-18.08	8	Pass	
39	2480	-4.12	-18.69	8	Pass	

Note:

- 1. Measured power density (dBm) has offset with cable loss.
- 2. The Measured power density (dBm)/ 100kHz is reference level and used as 20dBc down for Conducted Band Edges and Conducted Spurious Emission limit line.

SPORTON INTERNATIONAL (SHENZHEN) INC.

Page Number : 17 of 46

TEL: 86-755- 3320-2398

Report Issued Date : May 09, 2014

FCC ID : YHLBLUNEO35 Report Version : Rev. 01

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

PSD 100kHz Plot on Channel 00

Date: 27.MAR.2014 19:26:25

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35

Page Number : 18 of 46
Report Issued Date : May 09, 2014

Report No.: FR431703B

Report No.: FR431703B

PSD 100kHz Plot on Channel 19

Date: 27.MAR.2014 19:30:59

PSD 100kHz Plot on Channel 39

Date: 27.MAR.2014 19:35:48

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35 Page Number : 19 of 46
Report Issued Date : May 09, 2014

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

PSD 3kHz Plot on Channel 00

Date: 27.MAR.2014 19:26:16

TEL: 86-755-3320-2398 FCC ID: YHLBLUNEO35 Page Number : 20 of 46
Report Issued Date : May 09, 2014
Report Version : Rev. 01

Report No.: FR431703B

PSD 3kHz Plot on Channel 19

Date: 27.MAR.2014 19:30:50

PSD 3kHz Plot on Channel 39

Date: 27.MAR.2014 19:35:39

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35 Page Number : 21 of 46
Report Issued Date : May 09, 2014

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

Report No.: FR431703B

3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.4.3 Test Procedure

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 22 of 46TEL: 86-755- 3320-2398Report Issued Date: May 09, 2014FCC ID: YHLBLUNEO35Report Version: Rev. 01

3.4.5 Test Result of Conducted Band Edges

Test Mode :	Bluetooth v4.0 LE	Temperature :	24~26 ℃
Test Channel :	00 and 39	Relative Humidity :	50~53%
		Test Engineer :	Blithe Li

Low Band Edge Plot on Channel 00

Date: 27.MAR.2014 19:26:39

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35 Page Number : 23 of 46
Report Issued Date : May 09, 2014

Report No.: FR431703B

High Band Edge Plot on Channel 39

Date: 27.MAR.2014 19:36:02

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35

Page Number : 24 of 46
Report Issued Date : May 09, 2014

Report No.: FR431703B

3.4.6 Test Result of Conducted Spurious Emission

Test Mode :	Bluetooth v4.0 LE	Temperature :	24~26 ℃
Test Channel :	00	Relative Humidity :	50~53%
		Test Engineer :	Blithe Li

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Date: 27.MAR.2014 19:27:54

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35

Page Number : 25 of 46
Report Issued Date : May 09, 2014

Report No.: FR431703B

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Date: 27.MAR.2014 19:28:13

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35

Page Number : 26 of 46
Report Issued Date : May 09, 2014

Report No.: FR431703B

FCC RF Test Report

Test Mode :	Bluetooth v4.0 LE	Temperature :	24~26 ℃
Test Channel :	19	Relative Humidity :	50~53%
		Test Engineer :	Blithe Li

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 27.MAR.2014 19:31:19

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35

Page Number : 27 of 46
Report Issued Date : May 09, 2014

Report No.: FR431703B

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Report No.: FR431703B

Date: 27.MAR.2014 19:31:38

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35

Page Number : 28 of 46
Report Issued Date : May 09, 2014

FCC RF Test Report

Test Mode :	Bluetooth v4.0 LE	Temperature :	24~26 ℃
Test Channel :	39	Relative Humidity :	50~53%
		Test Engineer :	Blithe Li

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 27.MAR.2014 19:36:21

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35 Page Number : 29 of 46
Report Issued Date : May 09, 2014

Report No.: FR431703B

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 27.MAR.2014 19:36:40

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35

Page Number : 30 of 46
Report Issued Date : May 09, 2014

Report No.: FR431703B

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 – 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.5.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35

Page Number : 31 of 46
Report Issued Date : May 09, 2014

Report No.: FR431703B

FCC RF Test Report

3.5.3 **Test Procedures**

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting	
Bluetooth v4.0 LE	60.00	0.378	2.646	3kHz	

SPORTON INTERNATIONAL (SHENZHEN) INC. Page Number TEL: 86-755-3320-2398 FCC ID: YHLBLUNEO35

: 32 of 46 Report Issued Date: May 09, 2014 Report Version : Rev. 01

3.5.4 Test Setup

For radiated emissions below 30MHz

 ${\it SPORTON\ INTERNATIONAL\ (SHENZHEN)\ INC.}$

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35

Page Number : 33 of 46
Report Issued Date : May 09, 2014

Report No.: FR431703B

Report No.: FR431703B

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

SPORTON INTERNATIONAL (SHENZHEN) INC. Page Number : 34 of 46 TEL: 86-755-3320-2398 Report Issued Date: May 09, 2014

FCC ID: YHLBLUNEO35 Report Version : Rev. 01

3.5.6 Test Result of Radiated Spurious at Band Edges

Test Mode :	Mode 1	Temperature :	23~25°C
Test Channel :	00	Relative Humidity :	48~52%
		Test Engineer :	Gavin Zhang

Report No. : FR431703B

	ANTENNA POLARITY : HORIZONTAL									
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV /m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2350.95	51.75	-22.25	74	42.23	31.72	5.56	27.76	152	67	Peak
2389.02	41.25	-12.75	54	31.42	31.98	5.59	27.74	152	67	Average

	ANTENNA POLARITY : VERTICAL									
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV /m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2378.04	51.4	-22.6	74	41.65	31.9	5.59	27.74	100	45	Peak
2389.02	41.22	-12.78	54	31.39	31.98	5.59	27.74	100	45	Average

Test Mode :	Mode 3	Temperature :	23~25°C
Test Channel :	39	Relative Humidity :	48~52%
		Test Engineer :	Gavin Zhang

	ANTENNA POLARITY : HORIZONTAL									
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2494.81	52.48	-21.52	74	41.89	32.5	5.74	27.65	116	360	Peak
2483.5	42.32	-11.68	54	31.87	32.41	5.71	27.67	116	360	Average

	ANTENNA POLARITY: VERTICAL									
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV /m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2493.61	52.2	-21.8	74	41.61	32.5	5.74	27.65	128	21	Peak
2488.75	42.06	-11.94	54	31.52	32.5	5.71	27.67	128	21	Average

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 35 of 46TEL: 86-755- 3320-2398Report Issued Date: May 09, 2014FCC ID: YHLBLUNEO35Report Version: Rev. 01

3.5.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Note: Pre-scanned all test modes and only choose the worst case mode recorded in the test report for radiated spurious emission below 1GHz.

Test Mode :	Mode 1		Temperature :	23~25°C		
Test Channel :	00		Relative Humidity :	48~52%		
Test Engineer :	Gavi	n Zhang	Polarization :	Horizontal		
	1.	2402 MHz is fundamer	ntal signal which can b	e ignored.		
Remark :	2. Average measurement was not performed if peak level went lower th					
		average limit.				

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2402	95.67	-	-	85.79	31.98	5.62	27.72	152	67	Peak
2402	95.03	-	-	85.15	31.98	5.62	27.72	152	67	Average
4804	36.3	-37.7	74	51.48	33.78	8.33	57.29	148	300	Peak

Note: Other harmonics are lower than background noise.

Test Mode :	Mode 1	Temperature :	23~25°C				
Test Channel :	00	Relative Humidity :	48~52%				
Test Engineer :	Gavin Zhang	Polarization :	Vertical				
	1. 2402 MHz is fundament	al signal which can be	ignored.				
Remark :	Remark: 2. Average measurement was not performed if peak level went lower that						
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2402	88.94	-	-	79.06	31.98	5.62	27.72	100	45	Peak
2402	88.25	-	-	78.37	31.98	5.62	27.72	100	45	Average
4804	36.78	-37.22	74	51.96	33.78	8.33	57.29	148	300	Peak

Note: Other harmonics are lower than background noise.

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35

Page Number : 36 of 46
Report Issued Date : May 09, 2014
Report Version : Rev. 01

Test Mode :	Mode 2	Temperature :	23~25°C			
Test Channel :	19	Relative Humidity :	48~52%			
Test Engineer :	Gavin Zhang	Polarization :	Horizontal			
	1. 2440 MHz is fundament	al signal which can be	ignored.			
Remark: 2. Average measurement was not performed if peak level went lower						
	average limit.					

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2440	97.17	-	-	86.99	32.24	5.65	27.71	100	336	Peak
2440	96.24	-	-	86.06	32.24	5.65	27.71	100	336	Average
4880	36.64	-37.36	74	51.47	33.93	8.41	57.17	112	207	Peak
7320	37.88	-36.12	74	51.12	33.9	10	57.14	184	225	Peak

Note: Other harmonics are lower than background noise.

Test Mode :	Mode 2	Temperature :	23~25°C				
Test Channel :	19	Relative Humidity :	48~52%				
Test Engineer :	Gavin Zhang	Polarization :	Vertical				
	1. 2440 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than t						
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant		Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
2440	91.75	-	-	81.57	32.24	5.65	27.71	129	21	Peak
2440	91.04	-	-	80.86	32.24	5.65	27.71	129	21	Average
4880	36.25	-37.75	74	51.08	33.93	8.41	57.17	112	207	Peak
7320	37.27	-36.73	74	50.51	33.9	10	57.14	184	225	Peak

Note: Other harmonics are lower than background noise.

TEL: 86-755-3320-2398 FCC ID: YHLBLUNEO35 Page Number : 37 of 46
Report Issued Date : May 09, 2014

Report No.: FR431703B

Test Mode :	Mode 3	Temperature :	23~25°C			
Test Channel :	39	Relative Humidity :	48~52%			
Test Engineer :	Gavin Zhang	Polarization :	Horizontal			
	1. 2480 MHz is fundament	tal signal which can be	ignored.			
Remark :	2. Average measurement was not performed if peak level went lower than the					
	average limit					

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
108.57	15.33	-28.17	43.5	32.04	11.92	1.31	29.94	-	-	Peak
338.46	28.37	-17.63	46	41.98	14.2	2.12	29.93	200	0	Peak
426.73	23.56	-22.44	46	35.37	15.76	2.35	29.92	-	-	Peak
643.04	23.24	-22.76	46	31.73	18.6	2.84	29.93	-	-	Peak
750.71	24.49	-21.51	46	30.83	20.53	3.06	29.93	-	-	Peak
917.55	24.71	-21.29	46	30.1	21.17	3.38	29.94	-	-	Peak
2480	98.05	-	-	87.6	32.41	5.71	27.67	116	360	Peak
2480	97.38	-	-	86.93	32.41	5.71	27.67	116	360	Average
4960	37.73	-36.27	74	52.14	34.12	8.49	57.02	146	121	Peak
7440	37.09	-36.91	74	50.07	33.97	10.04	56.99	175	260	Peak

Note: Other harmonics are lower than background noise.

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35 Page Number : 38 of 46
Report Issued Date : May 09, 2014
Report Version : Rev. 01

Test Mode :	Mode 3	Temperature :	23~25°C		
Test Channel :	39	Relative Humidity :	48~52%		
Test Engineer :	Gavin Zhang	Polarization :	Vertical		
	2480 MHz is fundamental signal which can be ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than t				
	average limit.				

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos	Pos	
35.82	25.5	-14.5	40	39.12	15.5	0.81	29.93	(cm) 100	(deg)	Peak
								100	U	
87.23	18.47	-21.53	40	38.89	8.34	1.18	29.94	-	-	Peak
373.38	25.03	-20.97	46	37.33	15.4	2.23	29.93	-	-	Peak
439.34	27.23	-18.77	46	38.97	15.79	2.39	29.92	-	-	Peak
626.55	22.46	-23.54	46	30.98	18.6	2.81	29.93	-	-	Peak
752.65	24.41	-21.59	46	30.89	20.38	3.07	29.93	-	-	Peak
2480	92.69	-	-	82.24	32.41	5.71	27.67	128	21	Peak
2480	92.04	-	-	81.59	32.41	5.71	27.67	128	21	Average
4960	36.66	-37.34	74	51.07	34.12	8.49	57.02	146	121	Peak
7440	37.28	-36.72	74	50.26	33.97	10.04	56.99	175	260	Peak

Note: Other harmonics are lower than background noise.

TEL: 86-755-3320-2398 FCC ID: YHLBLUNEO35 Page Number : 39 of 46
Report Issued Date : May 09, 2014
Report Version : Rev. 01

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MUz)	Conducted limit (dBμV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

FCC ID: YHLBLUNEO35

3.6.4 Test Setup

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35

Page Number : 41 of 46
Report Issued Date : May 09, 2014

Report No.: FR431703B

3.6.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1				Temperature: 2			22 ℃	
Гest Engineer :	Jack Tia	n		Rel	Relative Humidity :			42~43%	
Гest Voltage :	120Vac	120Vac / 60Hz				Phase: Lin			
Function Type :	GSM850 + Earpho		Bluetoot	h Link +	WLAN I	_ink + U	SB Cab	le (Chargin	g from Adap
100 L	evel (dBuV)					Da	te: 2014-0	3-28 Time: 10:1	13:48
90-									
80									
70	_								
60	-							FCC 15C_	_QP
50								FCC 15C_A	AVG
50	War Alberton	-							Λ.
40	2 6 6 7	WARRIED AND THE	and the same of the	and the state of t		THE WILLIAM WILL			12
30	13 1		10	a state a state a		,anlunia Majo	Handallander	WHAT I was marked to be proportionally provided and the same of th	
			 						11
20									
20									
20- 10-									\perp
10-									
10-	15 .2	.5	1		2 ency (MHz)	5	10	20	30
10-			1		2 ency (MHz)	_	10	20	30
10 0 Site	: CO01-S	SZ.		Frequ	ency (MHz)	_	10	20	30
10 0 Site	: CO01-S	SZ.	SN_L_201	Frequ	ency (MHz) NE			20	30
10 0 Site	: CO01-S	SZ SC_QP LI	SN_L_201	Frequ 40304 LI Limit	ency (MHz) NE Read	LISN	Cable		30
10 0 Site	: CO01-S	SZ.	SN_L_201	Frequ	ency (MHz) NE	LISN	Cable	20 Remark	30
10- 0- Site	: CO01-S	SZ SC_QP LI	SN_L_201	Frequ 40304 LI Limit	ency (MHz) NE Read	LISN	Cable		30
10 0 Site	: CO01-S on: FCC 15 Freq	Level	SN_L_201	Frequ 40304 LI Limit Line	Read Level	LISN Factor	Cable Loss dB		30
Site Condition	: C001-S :: FCC 15 Freq MHz 0.17 0.17	Level dBuV 25.06 37.76	Over Limit ———————————————————————————————————	Frequence 40304 LI Limit Line dBuV 55.21	Read Level dBuV	LISN Factor dB 0.22 0.22	Cable Loss dB 10.34 10.34	Remark Average QP	30
Site Condition	: C001-S on: FCC 15 Freq MHz 0.17 0.17 0.18	Level dBuV 25.06 37.76 27.74	Over Limit ———————————————————————————————————	Limit Line dBuV 55.21 65.21 54.55	Read Level dBuV 14.50 27.20 17.20	LISN Factor dB 0.22 0.22 0.22	Cable Loss dB 10.34 10.34 10.32	Remark Average QP Average	30
Site Condition	: C001-S on: FCC 15 Freq MHz 0.17 0.17 0.18 0.18	Level dBuV 25.06 37.76 27.74 40.64	Over Limit ———————————————————————————————————	Limit Line dBuV 55.21 65.21 54.55 64.55	Read Level dBuV 14.50 27.20 17.20 30.10	LISN Factor dB 0.22 0.22 0.22 0.22 0.22	Cable Loss dB 10.34 10.34 10.32	Remark Average QP Average QP	30
Site Condition	: C001-S on: FCC 1S Freq MHz 0.17 0.17 0.18 0.18 0.22	Level dBuV 25.06 37.76 27.74 40.64 24.70	Over Limit ———————————————————————————————————	Limit Line dBuV 55.21 65.21 54.55 64.55 52.96	Read Level dBuV 14.50 27.20 17.20 30.10 14.19	LISN Factor dB 0.22 0.22 0.22 0.22 0.23	Cable Loss dB 10.34 10.34 10.32 10.32	Remark Average QP Average QP Average	30
Site Condition	: C001-S on: FCC 1S Freq MHz 0.17 0.17 0.18 0.18 0.22 0.22	Level dBuV 25.06 37.76 27.74 40.64 24.70 36.30	Over Limit ———————————————————————————————————	Limit Line dBuV 55.21 65.21 54.55 64.55 52.96 62.96	Read Level dBuV 14.50 27.20 17.20 30.10 14.19 25.79	LISN Factor dB 0.22 0.22 0.22 0.22 0.23 0.23	Cable Loss dB 10.34 10.32 10.32 10.28 10.28	Remark Average QP Average QP Average QP	30
10- 0. Site Condition	: C001-S on: FCC 1S Freq MHz 0.17 0.18 0.18 0.22 0.22 0.44	Level dBuV 25.06 37.76 27.74 40.64 24.70 36.30 31.95	Over Limit ———————————————————————————————————	Limit Line dBuV 55.21 65.21 54.55 64.55 52.96 62.96 47.02	Read Level dBuV 14.50 27.20 17.20 30.10 14.19 25.79 21.50	LISN Factor dB 0.22 0.22 0.22 0.22 0.23 0.23 0.23 0.2	Cable Loss dB 10.34 10.34 10.32 10.32 10.28 10.28 10.16	Remark Average QP Average QP Average QP Average QP Average	30
10- 0- Site Condition	: C001-S on: FCC 1S Freq MHz 0.17 0.17 0.18 0.18 0.22 0.22 0.44 0.44	Level dBuV 25.06 37.76 27.74 40.64 24.70 36.30 31.95 37.25	Over Limit -30.15 -27.45 -26.81 -23.91 -28.26 -26.66 -15.07 -19.77	Limit Line dBuV 55.21 65.21 54.55 64.55 52.96 62.96 47.02 57.02	Read Level dBuV 14.50 27.20 17.20 30.10 14.19 25.79 21.50 26.80	LISN Factor dB 0.22 0.22 0.22 0.22 0.23 0.23 0.23 0.2	Cable Loss dB 10.34 10.34 10.32 10.28 10.28 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP	30
10- 0- Site Condition	: C001-S on: FCC 1S Freq MHz 0.17 0.18 0.18 0.22 0.22 0.44 0.44 0.61	Level dBuV 25.06 37.76 27.74 40.64 24.70 36.30 31.95 37.25 20.38	Over Limit -30.15 -27.45 -26.81 -28.26 -26.66 -15.07 -19.77 -25.62	Limit Line dBuV 55.21 65.21 54.55 64.55 52.96 62.96 47.02 57.02 46.00	Read Level dBuV 14.50 27.20 17.20 30.10 14.19 25.79 21.50 26.80 10.00	LISN Factor dB 0.22 0.22 0.22 0.22 0.23 0.23 0.29 0.29 0.29 0.23	Cable Loss dB 10.34 10.32 10.32 10.28 10.16 10.16 10.15	Remark Average QP Average QP Average QP Average QP Average QP Average	30
10- 0- Site Condition	: C001-S on: FCC 1S Freq MHz 0.17 0.17 0.18 0.18 0.22 0.22 0.44 0.61 0.61	Level dBuV 25.06 37.76 27.74 40.64 24.70 36.30 31.95 37.25 20.38 27.38	Over Limit -30.15 -27.45 -26.81 -23.91 -28.26 -26.66 -15.07 -19.77	Frequence 40304 LI Limit Line dBuV 55.21 65.21 54.55 64.55 52.96 62.96 47.02 57.02 46.00 56.00	Read Level dBuV 14.50 27.20 17.20 30.10 14.19 25.79 21.50 26.80 10.00	LISN Factor dB 0.22 0.22 0.22 0.23 0.23 0.29 0.29 0.23 0.23 0.29	Cable Loss dB 10.34 10.32 10.32 10.28 10.16 10.16 10.15 10.15	Remark Average QP Average QP Average QP Average QP Average QP Average	30

TEL: 86-755-3320-2398 FCC ID: YHLBLUNEO35 Page Number : 42 of 46
Report Issued Date : May 09, 2014

Report No. : FR431703B

 Test Mode :
 Mode 1
 Temperature :
 21~22°C

 Test Engineer :
 Jack Tian
 Relative Humidity :
 42~43%

 Test Voltage :
 120Vac / 60Hz
 Phase :
 Neutral

 Function Type :
 GSM850 Idle + Bluetooth Link + WLAN Link + USB Cable (Charging from Adapter) + Earphone

Site : CO01-SZ

Condition: FCC 15C_QP LISN_N_20140304 NEUTRAL

				Over	Limit	Read	LISN	Cable	
	F	req	Level	Limit	Line	Level	Factor	Loss	Remark
	1	MHz	dBu∇	dB	dBuV	dBu∇	dB	dB	
1	0	.44	29.26	-17.76	47.02	18.70	0.40	10.16	Average
2	* 0	.44	39.66	-17.36	57.02	29.10	0.40	10.16	QP
3	1	.20	26.00	-20.00	46.00	15.50	0.34	10.16	Average
4	1	.20	35.90	-20.10	56.00	25.40	0.34	10.16	QP
5	1	.56	25.53	-20.47	46.00	15.00	0.36	10.17	Average
6	1	.56	34.93	-21.07	56.00	24.40	0.36	10.17	QP
7	2	.03	27.06	-18.94	46.00	16.50	0.37	10.19	Average
8	2	.03	37.56	-18.44	56.00	27.00	0.37	10.19	QP
9	2	.84	27.82	-18.18	46.00	17.19	0.42	10.21	Average
10	2	.84	38.22	-17.78	56.00	27.59	0.42	10.21	QP
11	3	.44	26.36	-19.64	46.00	15.70	0.44	10.22	Average
12	3	.44	36.66	-19.34	56.00	26.00	0.44	10.22	QP

TEL: 86-755-3320-2398 FCC ID: YHLBLUNEO35 Page Number : 43 of 46
Report Issued Date : May 09, 2014

Report No.: FR431703B

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 86-755- 3320-2398 FCC ID: YHLBLUNEO35 Page Number : 44 of 46
Report Issued Date : May 09, 2014

Report No.: FR431703B

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP30	101400	9kHz~30GHz	Mar. 03, 2014	Mar. 27, 2014	Mar. 02, 2015	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	13dBm~-20dBm	Mar. 03, 2014	Mar. 27, 2014	Mar. 02, 2015	Conducted (TH01-SZ)
Power Sensor	Anritsu	MA2411B	1207253	0.3GHz~40GHz	Mar. 03, 2014	Mar. 27, 2014	Mar. 02, 2015	Conducted (TH01-SZ)
ESCIO TEST Receiver	R&S	ESCI	100724	9kHz~3GHz	Feb. 21, 2014	Mar. 23, 2014	Feb. 20, 2015	Radiation (03CH01-SZ)
Signal Analyzer	R&S	FSV40	101078	10Hz~40GHz	Jun. 17, 2013	Mar. 23, 2014	Jun. 16, 2014	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	May 29, 2013	Mar. 23, 2014	May 28, 2014	Radiation (03CH01-SZ)
Bilog Antenna	TESEQ	CBL 6112D	23188	30MHz~2GHz	Oct. 26, 2013	Mar. 23, 2014	Oct. 25, 2014	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS Lindgren	3117	00119436	1GHz~18GHz	Oct. 26, 2013	Mar. 23, 2014	Oct. 25, 2014	Radiation (03CH01-SZ)
Double Ridged Horn Antenna	COM-POWER	AH-840	101073	18GHz~40GHz	Jan. 27, 2014	Mar. 23, 2014	Jan. 26, 2015	Radiation (03CH01-SZ)
Amplifier	ADVANTEST	BB525C	E9007003	9kHz~3000MHz	Feb. 21, 2014	Mar. 23, 2014	Feb. 20, 2015	Radiation (03CH01-SZ)
Amplifier	Agilent	83017A	MY395013 02	3Hz~26.5GHz	Mar. 03, 2014	Mar. 23, 2014	Mar. 02, 2015	Radiation (03CH01-SZ)
AC Source(AVR)	Chroma	61601	616010001 985	100Vac~250Vac	Mar. 26, 2013	Mar. 23, 2014	Mar. 25, 2014	Radiation (03CH01-SZ)
Turn Table	EM Electronics	EM 1000	N/A	0~360 degree	NCR	Mar. 23, 2014	NCR	Radiation (03CH01-SZ)
Antenna Mast	EM Electronics	EM 1000	N/A	1 m~4 m	NCR	Mar. 23, 2014	NCR	Radiation (03CH01-SZ)
ESCIO TEST Receiver	R&S	ESCI	100724	9kHz~3GHz	Feb. 21, 2014	Mar. 28, 2014	Feb. 20, 2015	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2SH	00103912	9kHz~30MHz	Mar. 04, 2014	Mar. 28, 2014	Mar. 03, 2015	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Mar. 04, 2014	Mar. 28, 2014	Mar. 03, 2015	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Dec. 17, 2013	Mar. 28, 2014	Dec. 16, 2014	Conduction (CO01-SZ)

TEL: 86-755-3320-2398 FCC ID: YHLBLUNEO35 Page Number : 45 of 46
Report Issued Date : May 09, 2014

Report No.: FR431703B

FCC RF Test Report

5 Uncertainty of Evaluation

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

Measuring Uncertainty for a Level of	2.24
Confidence of 95% (U = 2Uc(y))	2.51

Report No.: FR431703B

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

	·
Measuring Uncertainty for a Level of	3.90
Confidence of 95% (U = 2Uc(y))	3.90

SPORTON INTERNATIONAL (SHENZHEN) INC.

Page Number : 46 of 46

TEL: 86-755- 3320-2398

Report Issued Date : May 09, 2014

FCC ID : YHLBLUNEO35 Report Version : Rev. 01