M 328K

Katherine Ho

Contents

1		5
	1.1 Open Problems	5
	1.2 Notation	5
	1.3 Divisibility	5
	1.4 The Division Algorithm	 6
2	Lecture 2	7
	2.1 Proof by Contradiction	 7
	2.2 Proof by Induction	 7
	2.3 Well Ordering Principle (WOP)	 8
3	Lecture 3	11
J	3.1 Problem - Diophantine Equations	 11
	3.2 Bezout's Theorem	11
	3.3 Euclidean Algorithm	12
4	Lecture 4	15
	4.1 Bezout, Euclid's Lemma	15 15
	4.2 Prime Numbers	 19
5	Lecture 5	17
	5.1 Modular Congruences	17
	5.2 Congruences with Unknowns	 19
6	Lecture 6	21
	6.1 From Last Time	 21
	6.2 Solving stuff	 21
7	Lecture 7	25
7	7.1 Last Time	25 25
	7.2 Multiplicative Inverse	$\frac{25}{25}$
	7.3 Stuff	26
	7.3.1 Fermat's Little Theorem	27
	7.3.2 Example	27
	7.3.3 Primality Test	27
8	Lecture 8	29
O	8.1 Last Time	29
	8.1.1 Fermat's Little Theorem	29
	8.2 Generalization to composite modulus	29
	8.2.1 Euler Totient Function (Euler's Phi Function)	29
	8.2.2 Euler's Theorem	
	8.2.3 More on ϕ	

4 CONTENTS

	8.2.4 Chinese Remainder Theorem	31
9	Lecture 9	33
	9.1 Last Time	33
10	Lecture 10	35
	10.1 Some more properties of primes	
	10.2 Wilson's Theorem	
	10.3 Review	37
11	Lecture 11	39
	11.1	39
12	Lecture 12	41
	12.1 Miscellaneous	41
	12.1.1 Least Common Multiple	
	12.1.2 More about ϕ (and number-theoretic functions)	
	12.1.3 Lagrange's Theorem	
	12.2 Order	
	12.2.1	43
13	Lecture 13	45
	13.1	45
14	Lecture 14	47
	14.1 Recap	47
	14.2 All primes have a primitive root	47
	14.3 Index	48

August 27, 2024

1.1 Open Problems

- Twin Primes Conjecture: Do there exist infinitely many pairs of primes that are 2 apart?
- Collatz Conjecture, 3n+1 Problem Does this process eventually stop for all n?
- Fermat's Last Theorem: The equation $x^n + y^n = z^n$ has no (non-trivial) integer solution when $n \ge 3$. Note: When n = 2, there are infinite solutions (Pythagorean triples)

1.2 Notation

- Natural numbers: $\mathbb{N} = \{1, 2, 3, 4, \dots\}$
- Integers: $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$
- Rational Numbers: $\mathbb{Q} = \{\frac{a}{b} | a, b \in \mathbb{Z}, b \neq 0\}$

1.3 Divisibility

Definition 1.3.1. Let $n, m \in \mathbb{Z}$. We say that n divides m and write n|m if there exists an integer k such that m = nk.

Ex:
$$2|4,5|-5,3|0,0|0$$

If n does not divide m: $n \nmid m$

Ex:
$$2 \nmid 3, 0 \nmid 5$$

Theorem 1.3.1. For $a, b, c \in \mathbb{Z}$, the following hold:

- 1. a|0, 1|a, a|a
- 2. a|1 iff $a = \pm b$
- 3. If a|b and c|d then ac|bd
- 4. If a|b and b|c then a|c
- 5. a|b and b|a iff $a = \pm b$
- 6. If a|b and $b \neq 0$, then $|a| \leq |b|$
- 7. If a|b and a|c, then a|(bx+cy) for $x,y \in \mathbb{Z}$ Ex. If b, c are even, then (any multiple of b) + (any multiple of c) is even.

Proof (2). First, assume a|1. By definition, there exists an integer k such that 1=ak. Note: $k \neq 0$ and $a \neq 0$, so

$$|ak| = |a||k| \ge |a|$$
 since $|k| \ge 1$

Thus, $1 = |ak| \ge |a|$.

Also, $|a| \ge 1$ since $a \ne 0$ and $a \in \mathbb{Z}$. Thus, |a| = 1 which is equivalent to $a = \pm 1$.

Next, assume $a = \pm 1$.

- If a = 1: a | 1 since $1 = a \cdot 1$
- If a = -1: $1 = a \cdot -1$

In both cases, a|1 as desired.

Proof (4). Assume a|b and b|c.

By definition, there exist integers i and j such that $b=a\cdot i$ and $c=b\cdot j$.

Then, $c = (a \cdot i) \cdot j = a(ij)$.

So, a|c by definition.

1.4 The Division Algorithm

Theorem 1.4.1. Given integers a and b with $b \neq 0$, there exist unique integers q and r such that

$$a = bq + r, \ 0 \le r \le |b|$$

August 29,2024

2.1 Proof by Contradiction

To prove a statement p, assume p is false and derive a contradiction.

Theorem 2.1.1. $\sqrt{2}$ is irrational.

Proof. Assume $\sqrt{2}$ is rational. So there exist integers a,b s.t.

$$\sqrt{2} = \frac{a}{b}$$
, where a and b have no common factors.

Thus $2b^2 = a^2$. ie. $2|a^2$. Hence also 2|a. By definition, we can write a = 2k for some $k \in \mathbb{Z}$. Then,

$$2b^2 = (2k)^2 = 4k^2$$
$$b^2 = 2k^2$$

So $2|b^2$, hence 2|b. Thus, 2 is a common factor of a and b, a contradiction. Therefore, $\sqrt{2}$ is irrational.

2.2 Proof by Induction

Use to prove an infinite number of statements. Ex: Prove that the sum of the first n odd integers is n^2 . Strategy:

- Prove base case(s) n=0,1
- Prove that if the statement is true for n, then it is true for n+1

Proof by Induction. Base case: For n=1, the sum of the first n positive odd integers is 1, which is n^2 . Induction step: Assume that the sum of the first n odd integers is n^2 . Consider the sum of the first n+1 odd integers.

$$\sum_{k=1}^{n+1} 2k - 1 = 1 + 3 + 5 + \dots + 2n - 1 + 2(n+1) - 1$$

By the induction hypothesis, we have

$$\sum_{k=1}^{n+1} 2k - 1 = n^2 + 2(n+1) - 1$$

$$= n^2 + 2n + 2 - 1$$

$$= n^2 + 2n + 1$$

$$= (n+1)^2, \text{ as desired}$$

Theorem 2.2.1. For $n \ge 1$, $\frac{d}{dx}x^n = nx^{n-1}$.

Proof by Induction. Base case: n=1. $\frac{d}{dx}x^1 = 1 = 1 \cdot x^0$. Induction step: Assume $\frac{d}{dx}x^n = nx^{n-1}$ is true for some n > 1. Using the power rule, we have

$$\frac{d}{dx}x^{n+1} = x(nx^{n-1}) + x^n$$
= $n \cdot x^{1+(n-1)} + x^n$
= $x^n(n+1)$
= $(n+1)x^n$, as desired.

2.3 Well Ordering Principle (WOP)

Every nonempty subset of \mathbb{N} has a smallest element.

Theorem 2.3.1 (Division Algorithm). For any $a, b \in \mathbb{Z}$ with $b \neq 0$, there exist unique integers q, s s.t. $a = bq + r, 0 \leq r < |b|$.

Proof. Consider the set

$$S = \{a - bx | x \in \mathbb{Z}, a - bx \ge 0\}$$

For simplicity, assume b > 0. Note that S is nonempty since for x = -|a|, we have

$$a - bx = a - b - (-|a|) = a + b|a|$$

 $\ge a + |a|$
 > 0

So, $a - bx \in S$.

By WOP, S has a smallest element r. Call the corresponding value of x by q. So $r = a - bq \Leftrightarrow a = bq + r$.

Now, we want to show that $0 \le r \le |b|$ (= b) since b > 0. By way of contradiction, assume $r \ge b$. Consider

$$\begin{aligned} a - b(q+1) &= a - bq - b \\ &= r - b \\ &> 0 \end{aligned}$$

Thus, a - b(q + 1) is an element of S that is smaller than r, a contradiction.

Suppose there exist $q_1, r_1, q_2, r_2 \in \mathbb{Z}$ such that

$$a = bq_1 + r_1 = bq_2 + r_2$$

where $0 \le r_1, r_2 < b$ (still assuming b > 0). We want to show $q_1 = q_2, r_1 = r_2$. We have

$$bq_1 - bq_2 = r_1 - r_2$$

 $b(q_1 - q_2) = r_1 - r_2$
 $b|q_1 - q_2| = |r_1 - r_2| < b$

But $b|q_1 - q_2| < b$ implies (since b > 0) that

$$0 \le |q_1 - q_2| < 1$$

So, $q_1 - q_2$ since $q_1, q_2 \in \mathbb{Z}$ Thus also $r_1 = r_2$.

Note: The division algorithm lets us make statements like "Every integer can be expressed uniquely in the form 4k, 4k + 1, 4k + 2, or4k + 3"

Theorem 2.3.2. The square of every odd integer is of the form 8k + 1.

Proof. By the division algorithm, any odd integer n is of the form n = 4k + 1 or 4k + 3. In the 1st case,

$$n^{2} = (4k + 1)^{2}$$
$$= 16k^{2} + 8k + 1$$
$$= 8(2k^{2} + 3k + 1)$$

In the 2nd case,

$$n^{2} = (4k + 3)^{2}$$
$$= 16k^{2} + 24k + 9$$
$$= 8(2k^{2} + 3k + 1) + 1$$

Definition 2.3.1. For $a, b, c \in \mathbb{Z}$, if c|a and c|b, we say that c is a common divisor and has the property that for any other common c of a and b that $d \ge c$, we call d the greatest common divisor of a and b, and write $d = \gcd(a, b)$.

September 3, 2024

3.1 Problem - Diophantine Equations

If a rooster is worth 5 coins, a hen 3 coins, and 3 chicks together 1 coin, how many roosters, hens, and chicks, totaling 100, can be bought for 100 coins?

$$x = \#roosters$$

 $y = \#hens$
 $z = \#chicks$

$$x + y + z = 100$$
$$5x + 3y + \frac{1}{3}z = 100$$

Diophantine Equations

$$x^n + y^n = z^n$$
$$x^2 + y^2 + z^2 + w^2 = n$$

3.2 Bezout's Theorem

Let $a, b \in \mathbb{Z}$ (not both zero). The gcd of a and b is the smallest positive integer d that can be written as $ax + by = d, x, y \in \mathbb{Z}$.

Proof. Let $S = \{ax + by > 0 | x, y \in \mathbb{Z}\}$. Note that S is nonempty since for x = a, y = b we have $ax + by = a^2 + b^2 > 0$. By WOP, S has a smallest element, call it d. WTS:

- 1. d|a, d|b
- 2. if c|a, c|b, then $c \leq d$

To show d|a, apply the division algo to obtain $a = d \cdot q + r, 0 \le r < d$. Writing $d = ax_0 + by_0$ for $x_0, y_0 \in \mathbb{Z}$, we have

$$r = a - d \cdot y$$

$$r = a(ax_0 + by_0) \cdot q$$

$$r = a(1 - x_0q) + b(-y_0q)$$

Hence, if r > 0 then $r \in S$ which is smaller than d, contradicting d being the smallest element. Then, r = 0 and d|a. (Same argument for d|b).

Now suppose that $c \in \mathbb{Z}$ such that c|a and c|b. Recall that if x and y are integers, then c|(cx+by). Hence, $c|(ax_0+by_0) <=> c|d$. Then $c \leq |d| = d$. Therefore, $d = \gcd(a,b)$.

Corollary 3.2.1. Every common divisor of a and b divides gcd(a, b).

Corollary 3.2.2. The linear Diophantine equation ax + by = c has a solution iff d|c.

Proof. First assume that ax + by = c has a solution: $c = ax_0 + by_0$. Since d|a, and d|b, we have $d|(ax_0 + by_0)$. One the other hand, suppose d|c. By definition, c = d|k for some k. By Bezout's theorem, we can write

$$d = ax + by$$
 for some $x, y \in \mathbb{Z}$

Then,

$$d \cdot k = a(x \cdot k) + b(y \cdot k)$$
$$c = a(x \cdot k) + b(y \cdot k)$$

So c is an integer linear combo a < b as desired.

Definition 3.2.1. We say that integers a and b (not both zero) are relatively prime or coprime if

$$gcd(a,b) = 1$$

Corollary 3.2.3. Integers a and b are relatively prime iff there exist $x, y \in \mathbb{Z}$ such that ax + by = 1.

Corollary 3.2.4. If a, b are coprime, then ax + by = c has a solution for any $c \in \mathbb{Z}$.

3.3 Euclidean Algorithm

- 1. Start with (a,b) (assume $|a| \ge |b|$)
- 2. Apply DA: $a = bq + r, 0 \le r < |b|$
- 3. If r = 0, then b|a and gcd(a, b) = |b|.
- 4. Otherwise, replace (a, b) with (b, r).
- 5. Repeat.
- 6. The final nonzero r is gcd.

Example 3.3.0.1. gcd(12378, 3054)

$$12378 = 3054 \cdot 4 + 162$$

$$3054 = 162 \cdot 18 + 138$$

$$162 = 138 \cdot 1 + 24$$

$$138 = 24 \cdot 5 + 18$$

$$24 = 18 \cdot 1 + 6$$

$$18 = 6 \cdot 3 + 0$$

$$\gcd = 6$$

Note: if you allow for negative remainders, that can be more efficient.

$$3054 = 162 \cdot 19 - 24$$
$$162 = (-24)(-7) - 6$$
$$-24 = (-6)(4) + 0$$

Example 3.3.0.2. Solve 1237x + 3054y = 6 via "Extended Euclidean Algorithm".

$$6 = 24 - 18 \cdot 1$$

$$= 24 - (138 - 24 * 5)$$

$$= 24 \cdot 6 - 138$$

$$= (162 - 138) \cdot 6 - 138$$

$$= 162 \cdot 6 - 138 \cdot 7$$

$$= 162 \cdot 6 - (3054 - 162 \cdot 18) \cdot 7$$

$$= (12378 - 3054 \cdot 4) \cdot 6 - (3054 - (12378 - 3054)) \cdot 7$$

Example 3.3.0.3. Solve

$$x + y + z = 100$$
$$5x + 3y + \frac{1}{3}z = 100$$

Using z = 100 - x - y, we have 7x + 4y = 100. Note: 7(-1) + 4(2) = 1. So 7(-100) + 4(200) = 100

$$7 = 4 \cdot 1 + 3$$

$$4 = 3 \cdot 1 + 1$$

$$1 = 4 - 3$$

$$1 = 4 - (7 - 4)$$

$$1 = -7 + 4(2)$$

Theorem 3.3.1. If ax + by = c has a solution $x_0, y_0 \in \mathbb{Z}$. Then any other solution $x, y \in \mathbb{Z}$ is given by

$$x = x_0 + \frac{b}{d}k, y = y_0 - \frac{a}{d}k$$

where $k \in \mathbb{Z}$ and $d = \gcd(a, b)$. If x, y, z > 0, then k must satisfy

$$\frac{200}{7} > k > 25$$

So

k = 26, 27, 28, so the only solutions are

$$x = 4, y = 18, z = 78$$

 $x = 8, y = 11, z = 81$
 $x = 12, y = -1, z = 89$

September 5, 2024

4.1 Bezout, Euclid's Lemma

- 1. If a|c and b|c, must ab|c? False: a = b = c = 2, 2|2, 2|2 but $4 \nmid 2$
- 2. If a|bc and $a \nmid b$, must a|c? False: a = 4, b = c = 2

But...Proposition: Let $a, b, c \in \mathbb{Z}$

1. If a|c, b|c and gcd(a, b) = 1, then ab|c.

Proof. By Bezout, there exist integers x, y s.t. ax + by = 1. Then, acx + bcy = c. By definition, there exist $r, s \in \mathbb{Z}$ s.t. c = ar = bs. Thus,

$$a(bs)x + b(ar)y = c$$
$$ab(sx + ry) = c$$

So, ab|c.

2. If a|bc, and gcd(a,b) = 1, then a|c. (Euclid's Lemma)

Proof. Again, there exist $x, y \in \mathbb{Z}$ s.t. ax + by = 1. Then acx + bcy = c. Since a|bc, we have bc = ar for some $r \in \mathbb{Z}$. Hence

$$acx + ary = c$$
$$a(cx + ry) = c$$

So, a|c as desired.

4.2 Prime Numbers

Definition 4.2.1. A prime p is an integer greater than 1 that is only divisible by 1 and p.

Theorem 4.2.1 (Euclid's Lemma). If p is prime and p|ab $(a, b \in \mathbb{Z})$, then p|a or p|b (or both).

Proof. Suppose $p \nmid a$. Since p is prime, this implies that gcd(p, a) = 1. Then by Euclid's Lemma, we have p|b.

Corollary 4.2.1. If p is prime and $p|(a_1a_2...a_n)$ then $p|a_k$ for some $k, 1 \le k \le n$.

Proof by Induction. Base case (n = 1). Tautology *(If A then A)

Inductive step: Assume that for some $n \ge 1$, if p divides the product of any collection of n integers $a_1 \dots a_n$, then $p|c_k$ for some k.

Suppose $p|a_1a_2...a_na_{n+1}$. By Euclid's Lemma, $p|a_1a_2...a_n$ OR $p|a_n+1$.

In the latter case, we are done.

Hence assume now that $p|a_1a_2...a_n$. By IH, $p|a_k$ for some $k, 1 \le k \le n$ as desired.

Corollary 4.2.2. If p, q_1, q_2, q_n are primes, and $p|q_1q_2 \dots q_n$, then $p = q_k$ for some k.

Proof. By the previous result, $p|q_k$ for some k. Since q_k is prime and p>1, we have $p=q_k$.

Theorem 4.2.2 (Fundamental Theorem of Arithmetic, FTA). Every integer n > 1 can be expressed as a product of primes. Moreover, this expression is unique up to reordering the factors.

Proof by Induction on n. Base case (n = 2).

Induction step: Assume that any integer (>1) less than or equal to n satisfies FTA.

Now consider n+1.

If n + 1 is prime, we are done. Otherwise, assume n + 1 = ab for some 1 < a, b < n + 1. By IH, a and b can be expressed as a product of primes, hence so can n + 1. This proves the existence statement.

For uniqueness, take the same IH. Suppose that we can express n+1 as

$$n+1=p_1p_2\dots p_r=q_1q_2\dots q_s$$

where p_r, q_s are prime. Without loss of generality, assume

$$p_1 \leq p_2 \leq \cdots \leq p_r$$
, and $q_1 \leq q_2 \leq \cdots \leq q_s$

Note $p_1|q_1q_2\ldots q_s$, so $p_1=q_i$ for some i. By the same argument, $q_1=p_j$ for some j. Since $p_1\leq p_j$ and $q_1\leq q_2$, this implies $p_1=q_1$. By cancelling, we have $p_2\ldots p_r=q_2\ldots q_s$. Since $p_2\ldots p_r=q_1\ldots q_s\leq n$, we can apply IH to conclude that r=s and $p_i=q_i$ for all i.

Theorem 4.2.3. There exist infinitely many primes.

Proof (Euclid). Assume that $p_1 \dots p_n$ is a list of n primes. Consider the integer $N = p_1 \dots p_n + 1$. Note that no p_i can divide N, otherwise

$$p_i|(N-p_1\dots p_n)$$
$$p_i|1$$

But N is divisible by some prime p with $p \neq p_1, \ldots, p_n$. Thus, there are infinitely many primes.

September 10, 2024

5.1 Modular Congruences

Recall: We often use arguments like "n is of the form 4k, 4k+1, 4k+2, or 4k+3..."

Definition 5.1.1 (Precise). Let $a, b, n \in \mathbb{Z}$ and n > 0. We say that a is congruent to b mod n if n | (a - b). We write

$$a \equiv b \pmod{n}$$

Definition 5.1.2 (Informal). $a \equiv b \mod n$ if a and b give the same remainder after division by n. Examples:

- $7 \equiv 2 \pmod{5}$
- $-31 \equiv 11 \pmod{7}$
- $10^{2024} + 1 \equiv 1 \pmod{1}0$
- $a \equiv b \pmod{2}$ iff a and b are both even or both odd
- a can be written in the form

$$a = nk + r$$

 $\mathit{iff}\ a \equiv r \pmod n$

Proposition 5.1.1. Every integer is congruent modulo n to exactly one of $0, 1, 2, \ldots, n-1$

Proof. Let $a \in \mathbb{Z}$. By the division algorithm, we can write

$$a = nq + r, \ 0 \le r < n$$

Then a - r = nq, so n|a - r, ie.

$$a \equiv r \pmod{n}$$

Uniqueness follows from uniqueness of division algorithm remainder.

Theorem 5.1.1. Let $a, b, c \in \mathbb{Z}, n > 0$. Then

- 1. $a \equiv a \pmod{n}$
- 2. if $a \equiv b \pmod{n}$ then $b \equiv a \pmod{n}$
- 3. if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$

Proof (3). By definition, n|a-b and n|b-c. Recall that if n|r,n|s, then n|(rx+sy) for any $x,y\in\mathbb{Z}$. In particular,

$$n|((a-b)+(b-c)) \Leftrightarrow n|(a-c)$$

So $a \equiv c \pmod{n}$.

Theorem 5.1.2. Let $a, b, c, d \in \mathbb{Z}$ and assume $a \equiv b \pmod{n}$.

- 1. if $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$.
- 2. if $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$.
- 3. $a^k \equiv b^k \pmod{n} \ \forall k \in \mathbb{Z}$.

Proof (1). Suppose $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. By definition, n|a-b and n|c-d. But, (a+c)-(b+d)=(a-b)+(c-d) which is divisible by n, so $a+c \equiv b+d \pmod{n}$.

Proof (3) by Induction. Base case: k=1. Tautology Inductive step: Assume for some k>1 that $a^k\equiv b^k\pmod n$ (WTS: $a^{k+1}\equiv b^{k+1}$) Note by (2) we have

$$a^{k} \equiv b^{k} \pmod{n}$$

$$a^{k} \cdot a \equiv b^{k} \cdot b \pmod{n}$$

$$a^{k+1} \equiv b^{k+1} \pmod{n}$$
[2]

WARNING: In general, if $ac \equiv bc \pmod n$, it is not true that $a \equiv b \pmod n$. Ex: $2 \cdot 3 \equiv 2 \cdot 0 \pmod 6$

Example 5.1.2.1. Show $41|(2^{20}-1) \Leftrightarrow Show \ 2^{20} \equiv 1 \pmod{41}$. *First*,

$$2^{5} \equiv 32 \pmod{41}$$

$$(2^{5})^{2} \equiv (-9)^{2}$$

$$2^{10} \equiv 81 \pmod{41}$$

$$2^{10} \equiv -1 \pmod{41}$$

$$2^{20} \equiv (-1) \equiv 1 \pmod{41}$$

Proposition 5.1.2. A decimal integer is divisible by 3 iff the sum of its digits is divisible by 3.

Proof. Let n be an integer whose decimal representation is

$$(a_n a_{n-1} \dots a_1 a_0)_{10}$$

Then

$$a = a_0 + a_1 \cdot 10 + a_2 \cdot 100 + \dots + a_n \cdot 10^n$$

Then

$$a = a_0 + a_1 \cdot 10 + \dots + a_n \cdot 10^n \pmod{n}$$

Since $10 \mod 3 \equiv 1$, we have

$$a \equiv a_0 + a_1 + \dots + a_n \pmod{3}$$

5.2 Congruences with Unknowns

Example 5.2.0.1. *Solve*

$$x + 12 \equiv 5 \pmod{8}$$
$$x \equiv -7 \pmod{8}$$

We also have

- $x \equiv 1 \pmod{8}$ is also a solution
- $x \equiv 9$
- $x \equiv 17$

But we consider these to be the "same" since they are congruent.

Example 5.2.0.2. *Solve*

$$4x \equiv 3 \pmod{19}$$
$$20x \equiv 15 \pmod{19}$$
$$x \equiv 15 \pmod{19}$$
$$Since \ 20 \equiv 1 \pmod{19}$$

Example 5.2.0.3. *Solve*

$$6x \equiv 15 \pmod{514}$$

This has no solutions.

Why?! 6x - 15 is always odd.

In particular, $514 \nmid (6x - 15)$.

In general, we want to understand when $ax \equiv b$ has solutions and how to find them.

Example 5.2.0.4. $18x \equiv 8 \pmod{22}$ has incongruent solutions $x \equiv 20 \pmod{22}$ and $x \equiv a \pmod{22}$

September 12, 2024

6.1 From Last Time

Solve $ax \equiv b \pmod{n}$.

It's possible for there to be no solutions OR a single solution OR multiple incongruent solutions.

Theorem 6.1.1. 1. $a \equiv a \pmod{n}$

- 2. if $a \equiv b \pmod{n}$ then $b \equiv a \pmod{n}$
- 3. if $a \equiv b \pmod{n}$, $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$

Example 6.1.1.1. $20 \equiv 1 \pmod{19}$

 $20 \equiv 1 \pmod{19}$ $20x \equiv x \pmod{19}$ $20x \equiv 15 \pmod{19}$ $x \equiv 20x \pmod{19}$ $x \equiv 15 \pmod{19}$ By (2) By (3)

6.2 Solving stuff

WARNING: If $ac \equiv bc \pmod{n}$, we can't conclude $a \equiv b \pmod{n}$.

Theorem 6.2.1. If gcd(c, n) = 1, then $ac \equiv bc \pmod{n}$ implies $a \equiv b \pmod{n}$.

Proof. By definition, we have

$$n \mid (a-b)c$$

By Euclid's Lemma, since gcd(n,c)=1, we have $n\mid (a-b)$, hence $a\equiv b\pmod n$.

Proposition 6.2.1. Let $d = \gcd(a, b)$ for some $a, b \in \mathbb{Z}$. Then $\gcd(\frac{a}{d}, \frac{b}{d}) = 1$.

Proof. By Bezout, there exist integers x and y such that ax + by = d. Then,

$$(\frac{a}{d}x + \frac{b}{d}y) = 1$$

So $\frac{a}{d}$, $\frac{b}{d}$ are relatively prime.

Theorem 6.2.2. Consider $ac \equiv bc \pmod{n}$ and let $d = \gcd(c, n)$. Then $a \equiv b \pmod{\frac{n}{d}}$. Note: If d = 1, this is the same statement as before.

Proof. $n \mid (a-b)c$ as before. So there exists $k \in \mathbb{Z}$ such that (a-b)c = nk. Then,

$$(a-b)\frac{c}{d} = \frac{n}{d}k$$

So,

$$\frac{n}{d} \mid (a-b)\frac{c}{d}$$

By Proposition 2.1, $\gcd(\frac{n}{d}, \frac{c}{d}) = 1$, so Euclid's Lemma says

$$\frac{n}{d} \mid (a-b)$$
, ie. $a \equiv b \pmod{\frac{n}{d}}$

Example 6.2.2.1.

$$2 \cdot 3 \equiv 2 \cdot 0 \pmod{6}$$
 $\gcd(2,6) = 2$ $3 \equiv 0 \pmod{3}$

Theorem 6.2.3 (Build-a-theorem). Let $a, b, n \in \mathbb{Z}$ with n > 1, let $d = \gcd(a, n)$. Then the linear congruence $ax \equiv b \pmod{n}$.

- has no solution if $d \nmid b$
- has exactly d incongruent solutions \pmod{n} if $d \mid b$

In particular, if x_0 is a solution, then

$$x_0, x_0 + \frac{n}{d}, x_0 + 2\frac{n}{d}, \dots, x_0 + (d-1)\frac{n}{d}$$

is a complete set of solutions \pmod{n} , ie. if x is a solution, then x is congruent modulo n to exactly one of

$$x_0 + t(\frac{n}{d})$$
 for $0 \le t \le d - 1$

Study $ax \equiv b \pmod{n}$. If this has a solution x, then $n \mid (ax - b)$. Then there exists $y \in \mathbb{Z}$ such that

$$ax - b = ny$$

So,

$$ax - ny = b$$

This linear diophantine equation has a solution exactly when $gcd(a, n) = d \mid b$.

<u>Recall</u>: $6x \equiv 15 \pmod{512}$. $\gcd(6,512) = (1,2,3, or 6)$. Note $3 \nmid 512$ since 3 + (5+1+2). But $2 \nmid 15$, so there are no solutions.

Example 6.2.3.1. Solve

$$9x \equiv 21 \pmod{30}$$

 $d = \gcd(9,30) = 3 \mid 21$ Either write down

$$9x - 30y = 21$$

dividing,

$$3x - 10y = 7$$

OR apply Theorem 2.2 to yield

$$3x \equiv 7 \pmod{10}$$

leading to

$$3x - 10y = 7$$

6.2. SOLVING STUFF 23

Extended Euclidean algorithm

$$10 = 3 \cdot 3 + 1$$

$$10 - 3 \cdot 3 = 1$$

$$10 \cdot 7 - 3 \cdot 21 = 7$$

$$-10(-7) + 3(-21) = 7$$

$$\boxed{x = -21, y = -7}$$

But $x \equiv (-21) + 30 \pmod{30}$. $x \equiv 9 \pmod{30}$. So we have found one solution (up to congruence). Note: x = 9 is a solution to $3x \equiv 7 \pmod{10}$. So, x = 19 and x = 29 are also solutions to $3x \equiv 7 \pmod{10}$ that are distrinct $\pmod{30}$.

Example 6.2.3.2. *Solve*

$$18x \equiv 8 \pmod{22}$$

 $d = \gcd(18, 22) = 2$. First find a solution to

$$9x \equiv 4 \pmod{11}$$

Solve

$$9x - 11y = 4$$

this has a solution x = -2, y = -22. Choose x = -2 + 11 = 9 is one solution. The other distinct solution (mod 22) is

$$x = 9 + 11 = 20$$

x = 9,20 is a complete set of solutions up to congruence (mod 22).

September 17, 2024

7.1 Last Time

- 1. $ax \equiv b \pmod{n}$ If $d = \gcd(a, n)$, then
 - (a) If $d \nmid b$, then no solutions
 - (b) If $d \mid b$, then there are exactly d incongruent solutions mod n
 - (c) If gcd(a, n) = 1, there is a unique solution mod n.
- 2. $9x \equiv 21 \pmod{30}$

$$d = \gcd(9, 30) = 3$$

First divide by d to solve congruence

$$3x \equiv 7 \pmod{10}$$

This applies to point 1(c) and has a unique solution mod 10.

Euclidean Algorithm: x = -21 is a solution. There are infinitely many solutions adding multiples of 10 to the solution.

$$-21 + 10k$$
 is also a solution

They are all congruent to each other mod 10. Infinitely many integer solutions to $3x \equiv 7 \pmod{10}$ are

$$\ldots, -21, -11, -1, 9, 19, 29, 39, \ldots$$

This list also includes all solutions to original congruence, but not all the same mod 30.

7.2 Multiplicative Inverse

Consider $ax \equiv 1 \pmod{n}$. This has a (unique) solution iff gcd(a, n) = 1.

A solution is called a multiplicative inverse of a modulo n. We will write it as $x \equiv a^{-1} \pmod{n}$ so $aa^{-1} \equiv 1 \pmod{n}$. Note that $a^{-1} \neq \frac{1}{a}$.

Recall. $4x \equiv 3 \pmod{19}$.

Note.

$$4^{-1} \equiv 3 \pmod{19}$$
 Since $4 \cdot 5 \equiv 20 \equiv 1 \pmod{19}$

Multiply $4x \equiv 3 \pmod{19}$ by $4^{-1} \pmod{19}$ to get

$$5 \cdot 4x \equiv 5 \cdot 3 \pmod{19}$$
$$x \equiv 15 \pmod{19}$$

Example 7.2.0.1. Find $7^{-1} \pmod{17}$. Solve $7x \equiv 1 \pmod{17} \Leftrightarrow 7x - 17y = 1$. *EA*:

$$17 = 7 \cdot 2 + 3$$

$$7 = 3 \cdot 2 + 1$$

$$1 = 7 - 3 \cdot 2$$

$$1 = 7 - (17 - 7 \cdot 2)2$$

$$= 17(-2) + 7 \cdot 5$$

$$\boxed{x = 5}$$

7.3 Stuff

 $a^k \pmod{5}$

 $a^k \pmod{7}$

7.3. STUFF 27

7.3.1 Fermat's Little Theorem

Theorem 7.3.1. Let p be prime and $a \in \mathbb{Z}$ such that $p \nmid a$. Then

$$a^{p-1} \equiv 1 \pmod{p}$$

ie.

$$p \mid (a^{p-1} - 1)$$

Proof (Idea). p = 5

$$0, 1, 2, 3, 4, 5 \pmod{5}$$

$$0, 2, 4, 1, 3 \pmod{5}$$

$$0, 3, 1, 4, 2$$

<u>Claim</u>: The integers $0, a, 2a, \ldots, (p-1)a \pmod{p}$ are the same as the integers $0, 1, 2, \ldots, (p-1)$ but maybe in a different order.

Proof of Claim. If claim is false, then $ia \equiv ja \pmod{p}$ for some i, j. Then $p \mid a(i-j)$.

Now Consider

$$a(2a)(3a)\dots((p-1)(a))$$

= $a^{p-1}(1)(2)(3)\dots(p-1)$
= $a^{p-1}(p-1)!$

On the other hand, by the claim,

$$a(2a)(3a)\dots((p-1)a) \equiv (1)(2)(3)\dots(p-1) \pmod{p}$$

 $a^{p-1}(p-1)! \equiv (p-1)! \pmod{p}$

By HW,

$$\gcd((p-1)!, p) = 1$$

So we can cancel:

$$a^{p-1} \equiv 1 \pmod{p}$$

7.3.2 Example

$$p=23.\ 6^{22}=1\ (\mathrm{mod}\ 23).$$
ie.

$$23|(6^{22}-1)$$

7.3.3 Primality Test

$$n = 10^{100} + 37$$
Compute

$$2^{n-1} = 2^{10^{100} + 36} \not\equiv 1 \pmod{n}$$

 $\equiv 367 \dots 396 \pmod{n}$

So n is not prime.

Note: This will never show n is prime. It can be true that $a^{n-1} \equiv 1 \pmod{n}$ even if n is composite. Test 117 with a = 2.

$$2^{116} = 2^{64} \cdot 2^{32} \cdot 2^{16} \cdot 2^4$$

$$\equiv 16 \cdot 22 \cdot 16 \cdot 16$$

$$\equiv 22$$

$$\not\equiv 1 \pmod{117}$$

So 117 is composite.

September 19, 2024

8.1 Last Time

8.1.1 Fermat's Little Theorem

Let p be prime, $a \in \mathbb{Z}$, $p \nmid a$, then

$$a^{p-1} \equiv 1 \pmod{p}$$

$$ax \equiv 1 \pmod{n} \text{ has a solution whenever } \gcd(a,n) = 1$$

$$4x \equiv 3 \pmod{19}$$

$$4x \equiv 3 \pmod{19}$$

$$4^{17}(4x) \equiv 4^{17} \cdot 3 \pmod{19}$$

$$4^{18}x \equiv 5 \cdot 3 \pmod{19}$$

$$x \equiv 15 \pmod{19}$$

Note: Definitely need p to be prime.

Example 8.1.0.1.

$$3^9 \equiv 3 \pmod{10}$$

8.2 Generalization to composite modulus

8.2.1 Euler Totient Function (Euler's Phi Function)

Definition 8.2.1. The Euler totient function ϕ is the function $\phi \mathbb{N} \to \mathbb{N}$ defined by

$$\phi(n) = \#\{a \mid 1 \le a \le n - 1, \gcd(a, n) = 1\}$$

Example 8.2.0.1.

$$\phi(1) = 1$$

$$\phi(2) = 1$$

$$\phi(3) = 2$$

$$\phi(4) = 2$$

$$\phi(20) = 8$$

Proposition 8.2.1. *If p is prime*, *then*

$$\phi(p) = p - 1$$

Proposition 8.2.2. If p is prime and k > 1, then

$$\phi(p^k) = p^k - p^{k-1}$$

Exclude all multiples of p between 1 and p^k :

$$p, 2p, 3p, \dots, (p^{k-1})p, p^{k-1}p$$

<u>Note</u>: $\phi(n) = n - 1$ iff n is prime. Intuition: ϕ is how close n is to being prime.

8.2.2 Euler's Theorem

Theorem 8.2.1 (Euler's Theorem). Let gcd(a, n) = 1. Then

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

Note: If n = p is prime, then $\phi(n) = p - 1$, so we get

$$a^{p-1} \equiv 1 \pmod{p}$$

Proof of Euler's Theorem. Let $0 < b_1 < b_2 < \dots < b_{\phi(n)}$ be the integers between 1 and n that are coprime to n. The claim: The integers $ab_1, ab_2, \dots, ab_{\phi(n)}$ are the same as $b_1, b_2, \dots, b_{\phi(n)}$ (mod n) but maybe in a different order.

Example 8.2.1.1. n = 10; a - 3

 $\begin{array}{c} Proof \ is \ same \ from \ HW. \\ So \end{array}$

$$(ab_1)(ab_2) \equiv b_1 b_2 \dots b_{\phi(n)} \pmod{n}$$
$$a^{\phi(n)}(b_1 b_2 \dots b_{\phi(n)}) \equiv b_1 b_2 \dots b_{\phi(n)}$$

Since each b_i is coprime to n, we can cancel to get

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

8.2.3 More on ϕ

$$\phi(p) = p - 1$$
 for p prime $\phi(p^k) = p^k - p^{k-1}$

Theorem 8.2.2. Let a, b be coprime positive integers. Then,

$$\phi(a,b) = \phi(a) \cdot \phi(b)$$

" ϕ is multiplicative."

WARNING: We need gcd(a, b) = 1. Ex. $\phi(4) = 2$, $\phi(2)\phi(2) = 1$

Corollary 8.2.1. If $n = p_1^{r_1} \dots p_k^{r_k}$, then

$$\phi(n) = \phi(p_1^{r_1}) \dots \phi(p_k^{r_k}) = (p^{r_1} - p^{r_{k-1}}) \dots (p^{r_k} - p^{r_{k-1}})$$

To prove this, we first need to understand how to solve this problem from 4th century China:

$$x \equiv 2 \pmod{3}$$

 $x \equiv 3 \pmod{5}$
 $x \equiv 2 \pmod{7}$

We will solve this using the Chinese Remainder Theorem.

8.2.4 Chinese Remainder Theorem

Theorem 8.2.3 (Chinese Remainder Theorem). Suppose $gcd(n_1, n_2) = 1$ for pos integers n_1 and n_2 . Then for any $a_1, a_2 \in \mathbb{Z}$, the system

$$x \equiv a_1 \pmod{n_1}$$

 $x \equiv a_2 \pmod{n_2}$

has a unique solution $0 \le x < n_1 n_2$.

Proof (Existence). By Bezout, there exist $m_1, m_2 \in \mathbb{Z}$ such that

$$n_1 m_1 + n_2 m_2 = 1$$

Now let $x = a_2 n_1 m_1 + a_1 n_2 m_2$. Then reducing (mod n_1), we have

$$x = a_2 n_1 m_1 + a_1 n_2 m_2 \equiv a_1 n_2 m_2 \pmod{n_1}$$

 $\equiv a_1 (1 - n_1 m_1) \pmod{n - 1}$
 $\equiv a_1 - a_1 n_1 m_1 \pmod{n - 1}$
 $\equiv a_1 \pmod{n_1}$

By the same argument,

$$x \equiv a_2 \pmod{n_2}$$

Take $x \pmod{n_1 n_2}$ to be a solution between 0 and $n_1 n_2$.

Example 8.2.3.1. Going back to this problem,

$$x \equiv 2 \pmod{3}$$

 $x \equiv 3 \pmod{5}$
 $x \equiv 2 \pmod{7}$

First use Bezout:

$$3 \cdot 2 + 5(-1) = 1$$
$$x = 3(6) + 2(-5) \pmod{15} = 8$$

$$x \equiv 8 \pmod{15}$$

$$x \equiv 2 \pmod{7}$$

$$15 \cdot 1 + 7(-2) = 1$$

$$x = 2(15) + 8(-14) \pmod{105}$$

$$-82 \pmod{105} = 23$$

Relationship with ϕ : To show

$$\phi(ab) = \phi(a)\phi(b)$$

when gcd(a, b) = 1, we need to count two things:

$$\{x \mid 0 \le x < ab, \gcd(x, ab) = 1\}$$

Size: $\phi(ab)$

$$\{(y_1, y_2) \mid 0 \le y_1 < a, \gcd(y_1, a) = 1, 0 \le y_2 < b, \gcd(y_2, b) = 1\}$$
 Size: $\phi(a)\phi(b)$

September 24, 2024

9.1 Last Time

Chinese Remainder Theorem

$$x \equiv a_1 \pmod{n_1}$$
$$x \equiv a_2 \pmod{n_2}$$

has a unique solution mod n_1n_2 .

 $x \equiv \text{ a unique integer in } 0, 1, 2, \dots, n_1 n_2 - 1$

September 26, 2024

10.1 Some more properties of primes

Freshmen's Dream

$$(x+y)^n = x^n + y^n$$
 False!

$$(x+y)^n = \sum_{k=0}^n x^k y^{n-k}$$

where
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

If n = p is prime, then

$$(x+y)^p = \sum_{k=0}^p \binom{p}{k} x^k y^{n-k}$$

From HW: for $0 \ll k \ll p$, we have $p \mid \binom{p}{k}$.

So, $(x+y)^p = x^p + y^p + p$ some poly w/ $\mathbb Z$ coeffs.

Reducing \pmod{p} , we have

$$(x+y)^p \equiv x^p + y^p \pmod{p}$$

On the topic of polynomials...

Solving $F(x) \equiv 0 \pmod{n}$ can be weird.

Example 10.1.0.1. Find all solutions (up to congruence) to

$$x^2 \equiv 0 \pmod{9}$$

 $x = 0, x = 3, x = 6 \leftarrow 3$ roots to a polynomial $F(x) = x^2$ of degree 2. This happens because 9 is not prime.

Theorem 10.1.1. Let F(x) be a polynomial of degree r. Then F(x) has at most r roots mod any prime p (as long as $p \nmid (leading coeff)$).

Example 10.1.1.1. From HW you showed that the only square roots of 1 (mod p) were 1 and -1.

10.2 Wilson's Theorem

Theorem 10.2.1 (Wilson's Theorem). Let p be a prime. Then

$$(p-1)! \equiv -1 \pmod{p}$$

Example 10.2.1.1. p = 11:

$$(1)(2)\dots(9)(10)$$

- 1 and 10 pair to themselves.
- 2 pairs with 6. $(2 \cdot 6) 1$
- 3 pairs with 4.
- 5 pairs with 9.
- 7 pairs with 8.

$$10! = (1)(2 \cdot 6)(3 \cdot 4)(5 \cdot 9)(7 \cdot 8) \cdot 10$$

$$\equiv (1)(1)(1)(1)(1)(-1) - 1 \pmod{11}$$

Proof. Let p be prime and consider the integers $2, 3, \ldots, p-2$. Each one of these integers has some inverse \pmod{p} . ie. If $a \in \{2, 3, \ldots, p-2\}$, then $ax \equiv 1 \pmod{p}$ has a solution.

Claim: For each $a \in \{2, 3, \dots, p-2\}$,

$$a \not\equiv a^{-1} \pmod{p}$$

Why? If $a \equiv a^{-1} \pmod{p}$, then

$$a^2 \equiv 1 \pmod{p}$$

From HW, the solutions are exactly

$$a \equiv 1$$
 or $a \equiv -1$

Then we can pair each $a \in \{2, 3, ..., p-2\}$ with its inverse (mod p) to get

$$(p-1)! = 1((2)(3)\dots(p-2))(p-1) \equiv -1 \pmod{p}$$

Note:
$$(2)(3) \dots (p-2) \equiv 1 \pmod{p}, (p-1) \equiv -1 \pmod{p}$$
.

Note: We really need p to be prime.

Example 10.2.1.2. *Look at* $x^2 \equiv 1 \pmod{8}$ *.*

$$x \equiv 1, x \equiv -1 (\equiv 7), x \equiv 3, x \equiv 5, x \equiv 7$$

Remark: $F(x) = x^2 - 1$ has 4 roots (mod 8).

10.3. REVIEW 37

10.3 Review

Example 10.3.0.1. Compute $3^{104} \pmod{101}$

$$3^{100} \equiv 1 \pmod{101}$$

 $3^4 \cdot 3^{100} \equiv 3^4 \pmod{101}$
 $3^{104} \equiv 81 \pmod{101}$

Example 10.3.0.2. For n > 3, $\phi(n)$ is even. ϕ is multiplicative. \rightarrow compute ϕ from prime factorization. Write $n = p_1^{k_1} \dots p_r^{k_r}$ then

$$\phi(n) = \phi(p_1^{k_1} \dots \phi(p_r^{k_r})) = (p_1^{k_1} - p_1^{k_1 - 1}) \dots (p_r^{k_r} - p_r^{k_r - 1})$$

October 3, 2024

11.1

October 8, 2024

12.1 Miscellaneous

12.1.1 Least Common Multiple

Definition 12.1.1. Let a, b be positive integers. The least common multiple of a and b denoted by lcm(a, b) is the smallest positive integer divisible by a and b. Examples

- lcm(2,3) = 6
- lcm(4,6) = 12
- lcm(1, n) = n
- lcm(n,n) = n

$$4 \cdot 6 = 24, \gcd(4, 6) = 2, lcm(4, 6) = 12$$

$$3 \cdot 9 = 27, \gcd(3, 9) = 3, lcm(3, 9) = 9$$

Theorem 12.1.1. For positive integers a, b we have

$$ab = \gcd(a, b) \cdot lcm(a, b)$$

12.1.2 More about ϕ (and number-theoretic functions)

Definition 12.1.2. A number theoretic function (or arithmetic function) is a function

$$f: \mathbb{N} \leftrightarrow \mathbb{N} \quad (or \ \mathbb{Z} \leftrightarrow \mathbb{Z})$$

that has "number theory properties" Ex:

- *\phi*
- $\tau(n) = \#$ of divisors of n

$$10: \quad 1, 2, 5, 10$$
$$\tau(10) = 4$$

$$\tau(12) = 6$$

• $\sigma(n) = sum \ of \ divisors \ of \ n$

$$\sigma(10) = 1 + 2 + 5 + 10 = 18$$

$$\sigma(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28$$

Facts: ϕ, τ, σ are all multiplicative.

$$\phi(ab) = \phi(a)\phi(b)$$

$$\sigma(ab) = \sigma(a)\sigma(b) \quad \text{if } \gcd(a,b) = 1$$

$$\tau(ab) = \tau(a)\tau(b)$$

Notice: $\sigma(n) = \sum_{d|n} d$, $\tau(n) = \sum_{d|n} 1$ (d | n is sum over positive divisors of n)

Example 12.1.1.1. Define $F(n) = \sum_{d|n} \phi(d)$

$$F(12) = \sum_{d|12} \phi(d)$$

$$= \phi(1) + \phi(2) + \phi(3) + \phi(4) + \phi(6)\phi(12)$$

$$= 1 + 1 + 2 + 2 + 2 + 4$$

$$F(12) = 12$$

$$F(15) = \phi(1) + \phi(3) + \phi(5)\phi(15)$$

$$= 1 + 2 + 4 + 8$$

$$F(15) = 15$$

Theorem 12.1.2. For all pos integers n,

$$n = \sum_{d|n} \phi(d)$$

Proof. (Step 1) Lemma: If $f: \mathbb{N} \leftrightarrow \mathbb{N}$ is multiplicative, then the function

$$F(n) = \sum_{d|n} f(d)$$

is multiplicative. (Proof: HW)

(Step 2) We know that $F(n) = \sum_{d|n} \phi(d)$ is multiplicative, since ϕ is multiplicative. Lets show F(n) = n for primes and prime powers. If p is prime, then $F(p) = \sum_{d|p} \phi(d) = \phi(1) + \phi(p) = 1 + (p-1) = p$ Now calculate for $k \ge 1$

$$\begin{split} F(p^k) &= \sum_{d|p^k} \phi(d) \\ &= \phi(1) + \phi(p) + \phi(p^2) + \dots + \phi(p^k) \\ &= 1 + (p-1) + (p^2 - p) + \dots + (p^j - p^{j-1}) + (p^k - p^{k-1}) \\ F(p^k) &= p^k \end{split}$$

Now let $n = p_1^{k_1} \dots p_r^{k_r}$

$$F(n) = F(p_1^{k_1}) \dots F(p_r^{k_r})$$

= $p_1^{k_1} \dots p_r^{k_r}$
= $p_1^{k_1} \dots p_r^{k_r}$

12.2. ORDER 43

12.1.3 Lagrange's Theorem

Recall $x^2 \equiv 1 \pmod{8}$ has $x \equiv 1, 3, 5, 7 \pmod{4}$ solutions). But...

Theorem 12.1.3 (Lagrange's Theorem). Let f(x) be a polynomial of degree d with integer coefficient and p be prime. Suppose $p \nmid (leading coefficient)$.

Then $f(x) \equiv 0 \pmod{p}$ has at most d incongruent solutions.

Proof. By induction on the degree d.

Base case: d = 1, $f(x) = a_1x + a_0$ and $p \nmid a_1$. Then

$$f(x) \equiv 0 \pmod{p}$$

$$a_1 x + a_0 \equiv 0 \pmod{p}$$

$$a_1 x \equiv a_0 \pmod{p}$$

has a unique solution since $gcd(a_1, p) = 1 \le d$.

Induction step: Let's assume the statement is true for all polynomials of degree $\leq k$.

Now let $f(x) \equiv a_{k+1}x^{k+1} + \cdots + a_1x + a_0$ where $p \nmid a_{k+1}$. If $f(x) \equiv 0 \pmod{p}$ has no solutions, then we are done since 0 < k+1. Hence suppose x = a is a solution.

By the division algorithm applied to f(x) and x - a, we have

$$f(x) = (x - a) \cdot q(x) + r, \quad r \in \mathbb{Z}$$

$$f(a) \equiv 0 \pmod{p}$$

$$r \equiv 0 \pmod{p}$$

Thus, $f(x) \equiv (x-a) \cdot q(x) \pmod{p}$. By IH, $q(x) \equiv 0 \pmod{p}$ has at most k solutions. Thus $f(x) \equiv 0 \pmod{p}$ has at most k+1 solutions.

12.2 Order

12.2.1

Definition 12.2.1. Let gcd(a, n) = 1. Then the smallest positive integer k such that $a^k \equiv 1 \pmod{n}$ is called the order of a modulo n and is denoted by $ord_n(a)$ or just ord(a) is it's unambiguous.

Example 12.2.0.1. $a^k \pmod{7}$

Theorem 12.2.1. Suppose gcd(a, n) = 1 and $a^k \equiv 1 \pmod{n}$. Then $ord(a) \mid k$.

Proof. By division algorithm, write

$$k = \operatorname{ord}(a) \cdot q + r, \quad 0 \le r < \operatorname{ord}(a)$$

Then

$$a^k \equiv 1 \pmod{n}$$

$$a^{\operatorname{ord}(a) \cdot q} \cdot a^r \equiv 1 \pmod{n}$$

$$a^{\operatorname{ord}(a)^q} \cdot a^r \equiv 1 \pmod{n}$$

$$a^r \equiv 1 \pmod{n}$$

Then r = 0, otherwise r is a smaller exponent for $a^r \equiv 1 \pmod{n}$ contradicting $\operatorname{ord}(a)$ being the smallest. Thus $k = \operatorname{ord}(a) \cdot q$ so $\operatorname{ord}(a) \mid k$.

October 10, 2024

13.1

October 15, 2024

14.1 Recap

If gcd(a,n) = 1, the order of a is the smallest positive exponent k such that $a^k \equiv 1 \pmod{n}$

- If $a^m \equiv 1 \pmod{n}$, then ord $a \mid m$
- $a, a^n, \ldots, a^{\operatorname{ord} n}$ are all incongruent (mod n)
- If ord $a = \phi(n)$, then a is called a <u>primitive root</u> and $a, \ldots, a^{\phi(n)} \pmod{n}$ are congruent to all the integers between 1 and n, coprime to n

14.2 All primes have a primitive root

Theorem 14.2.1. Let p be prime and $d \mid p-1$. Then there are exactly $\phi(d)$ integers (that are mutually incongruent \pmod{p}) that have order $d \pmod{p}$. In particular there are $\phi(p-1)$ primitive roots.

Lemma 1. If $d \mid p-1$, then $x^d \equiv 1 \pmod{p}$ has exactly d incongruent solutions pmod p.

Proof.
$$x^{p-1} - 1 \equiv x^{dk} - 1 = (x^d - 1)(x^{d(k-1)} + \dots + x^d + x)$$

Proof of Thm. Define $\psi(d) = \#$ of integers $1 \le x \le p-1$ having order $d \pmod{p}$.

WTS: $\psi(d) = \phi(d)$ for $d \mid p-1$

Instead, let's prove $\psi(d) \leq \phi(d)$ when $d \mid p-1$. If there are no integers with order d, then

$$\psi(d) = 0 \le \phi(d)$$

Hence assume there exists at least one integer a with $\operatorname{ord}_p a = d$.

<u>Claim</u>: If b has order d, then $b \equiv a^h \pmod{p}$ for some h. Why? If b has order d, then b satisfies:

$$x^d \equiv 1 \pmod{p} *$$

which has exactly d incongruent solutions. On the other hand, the integers a, a^2, a^3, \dots, a^d are all incongruent (mod p) and they all satisfy *, since

$$(a^i)^d \equiv (a^d)^i \equiv 1^i \equiv 1 \pmod{p}$$

Since * has exactly d solutions (mod p), we must have $b \equiv a^h \pmod{p}$ for some $h, 1 \le h \le d$.

Now, we need to determine which a^k has ord $a^k = d$. But ord $a^k = \frac{d}{\gcd(h,d) = d}$ precisely when $\gcd(h,d) = 1$. Hence there are exactly $\phi(d)$ exponents h such that a^h has order d. Thus, we find $\psi(d) = \phi(d)$. We have shown for $d \mid p-1$, $\psi(d)$ is either 0 or $\phi(d)$. But we know $\psi(d) \leq \phi(d)$.

Consider the sum

$$\sum_{d|p-1} \psi(d).$$

Note every integer a between $1 \le a \le p-1$ has some ord a that divides p-1. Since each integer between 1 and p-1 is counted exactly once, we have

$$\sum_{d|p-1} \psi(d) = p-1$$

Example 14.2.1.1.
$$p = 7$$

ord
$$1 = 2$$

ord $2 = 3$
ord $3 = 6$
ord $4 = 3$
ord $5 = 6$
ord $6 = 2$

$$\sum_{d|p-1} \psi(d) = \sum_{d|6} \psi(d)$$

$$= \psi(1) + \psi(2) + \psi(3) + \psi(6)$$

$$= 1 + 1 + 2 + 2$$

$$= 6$$

$$= p - 1$$

Recall

$$\sum_{d|p-1} \phi(d) = p-1$$

Hence

$$\sum_{d|p-1} \psi(d) = \sum_{d|p-1} \phi(d), \quad \psi(d) \le \phi(d)$$

Thus $\psi(d) = \phi(d) \quad \forall \quad d \mid p-1$.

Note: Once you have a primitive root g, then all the other primitive roots are congruent to g^h where gcd(h, p-1) = 1.

14.3 Index

Definition 14.3.1. Let g be a primitive root of p (or n if n has a primitive root). If $1 \le a \le p-1$, the smallest positive exponent k with $a \equiv g^k \pmod{p}$ is called the index of $a \pmod{p}$ relative to g, denoted ind(a).

Theorem 14.3.1. The following hold:

a)
$$\operatorname{ind}(ab) \equiv \operatorname{ind}(a) + \operatorname{ind}(b) \pmod{p}$$

14.3. INDEX 49

- b) $\operatorname{ind}(a^k) \equiv k \operatorname{ind}(a) \pmod{p-1}$ for $k \geq 1$.
- c) $\operatorname{ind}(1) \equiv 0 \pmod{p-1}$

Proof(a). Let g be a primitive root. By definition of index,

$$g^{\operatorname{ind}(a)} \equiv a \pmod{p}$$

 $g^{\operatorname{ind}(b)} \equiv b \pmod{p}$

Then,

$$g^{\operatorname{ind}(a)}g^{\operatorname{ind}(b)} \equiv ab \pmod{p}$$

$$g^{\operatorname{ind}(a)+\operatorname{ind}(b)} \equiv ab \pmod{p}$$

$$g^{\operatorname{ind}(a)+\operatorname{ind}(b)} \equiv g^{\operatorname{ind}(ab)} \pmod{p}$$

Recall: If $a^i \equiv a^j \pmod{n}$, then $i \equiv j \pmod{n}$. Hence $\operatorname{ind}(a) + \operatorname{ind}(b) \equiv \operatorname{ind}(ab) \pmod{p-1}$.

The most important property: "taking indices of both sides" If $a \equiv b \pmod{p}$, then

$$g^{\operatorname{ind}(a)} \equiv g^{\operatorname{ind}(b)} \pmod{p}$$

 $\operatorname{ind}(a) \equiv \operatorname{ind}(b) \pmod{p-1}$

Example 14.3.1.1. *Solve* $4x^9 \equiv 7 \pmod{13}$.

Take indices of both sides (relative to prim root g)

$$\operatorname{ind}(4x^9) \equiv \operatorname{ind}(7) \pmod{12}$$
$$\operatorname{ind}(4) + 9\operatorname{ind}(x) \equiv 7 \pmod{12}$$
$$2 + 9\operatorname{ind}(x) \equiv 11$$
$$9\operatorname{ind}(x) \equiv 9 \pmod{12}$$

linear in the unknown $\operatorname{ind}(x) \to 3$ solutions $\operatorname{Solutions} \operatorname{ind}(x) \equiv 1, 5, 9$

So
$$x \equiv 2^1, 2^5, 2^9 \equiv 1, 6, 5 \pmod{13}$$
.