Learning Discriminative Representations to Interpret Image Recognition Models Thèse de Doctorat

Felipe Torres Figueroa

École Centrale de Marseille

Laboratoire d'Informatique et de Systèmes (LIS)

Marseille, September 2024

Table of Contents

- Introduction
- Background
- Opti-CAM: Optimizing saliency maps for interpretability
- 3 CA-Stream: Attention-based pooling for interpretable image recognition
- A learning paradigm for interpretable gradients
- References

Table of Contents

- Introduction
- Background
- Opti-CAM: Optimizing saliency maps for interpretability
- 3 CA-Stream: Attention-based pooling for interpretable image recognition
- 4 A learning paradigm for interpretable gradients
- References

My go to exercise is running, but...

Introduction

My go to exercise is running, but...

I think my running shoes are getting worn

My go to exercise is running, but...

I think my running shoes are getting worn

I want a replacement, but I know about machines, not shoes!

My go to exercise is running, but...

I think my running shoes are getting worn

I want a replacement, but I know about machines, not shoes!

My phone can identify my current shoes

My go to exercise is running, but...

I think my running shoes are getting worn

I want a replacement, but I know about machines, not shoes!

My phone can identify my current shoes

Nike Free RN Distance 2

My go to exercise is running, but...

I think my running shoes are getting worn

I want a replacement, but I know about machines, not shoes!

My phone can identify my current shoes

Nike Free RN Distance 2

How could my phone identify that model?

Motivation Straight to the point

• How do we know how a system works?

Motivation Straight to the point

- How do we know how a system works?
- How do we know how safe a system is?

Motivation Straight to the point

- How do we know how a system works?
- How do we know how safe a system is?
- If a system fails, who is accountable?

We must **understand** the behaviour of these models.

Step by step

Computation,
Computer
Vision and AI

Explainable Al

Thesis objectives

Computation, Computer Vision and Al Computation

Alan Turing forefather of current computer science.

Better known as *Computer Science*.

Computation, Computer Vision and Al Computation

Alan Turing forefather of current computer science.

Better known as *Computer Science*.

Study of:

- Algorithms.
- Data structures.
- Design of hardware and software.

Computation, Computer Vision and Al Computer Vision

Replication of human vision capabilities.

Computation, Computer Vision and Al Computer Vision

Replication of human vision capabilities.

Three fundamental tasks[1]:

- Recognition.
- Reconstruction.
- Reorganization.

Computation, Computer Vision and Al Artificial Intelligence

Systems capable of performing tasks requiring human intelligence [2].

Computation, Computer Vision and Al Artificial Intelligence

Systems capable of performing tasks requiring human intelligence [2].

Subfields:

- Machine Learning (ML) & Deep Learning (DL).
- Computer Vision(CV).
- Natural Language Processing (NLP).
- Robotics.

Explainable Al

We are interested in understanding models, behaving like a black box model:

Explainable Al

We are interested in understanding models, behaving like a black box model:

We want to *know why* $f(x) \rightarrow y$

Fitting it all together

Fitting it all together

Fitting it all together

Thesis Objectives

Improvement of recognition and interpratable properties of model predictions.

Thesis Objectives

Improvement of recognition and interpratable properties of model predictions.

In particular:

- Development of low cost/complexity explainability approaches.
- Establishment of a fixed evaluation protocol.
- Differenciation of human based and machine explanations.

Table of Contents

- Introduction
- Background
- Opti-CAM: Optimizing saliency maps for interpretability
- 3 CA-Stream: Attention-based pooling for interpretable image recognition
- 4 A learning paradigm for interpretable gradients
- References

Background

To familiarize with this work, we split it into three points:

Background

To familiarize with this work, we split it into three points:

Preliminaries

- Approaching Vision.
- David Marr's approach.
- CV currently.
- Desiredata of Interpretability Study.

Image Recognition Models

- Traditional Models.
- Convolutional Neural Networks (CNN).
- The Current Landscape.

Interpretability

- Transparency.
- Post-Hoc Interpretability.
 - Class Activation Methods.
- Evaluating Interpretability.

Preliminaries Approaching Vision

Preliminaries David Marr's approach

Addressing vision on three levels:

- Algorithmic.
- Implementation.
- Computational.
 - Three fundamental tasks. [1]

Preliminaries David Marr's approach

Addressing vision on three levels:

- Algorithmic.
- Implementation.
- Computational.
 - Three fundamental tasks. [1]

Computer Vision focuses on the last level.

Preliminaries CV Currently

Preliminaries Desiredata of Interpretability Study

Image Recognition Models Classic Models

Image Recognition Models

Convolutional Neural Networks

Based on the **convolution operation**. A representation $f \star g$ is computed for a feature map f and a kernel g. First approach with *Neocognitron* [3]

Image Recognition Models Convolutional Neural Networks

Based on the **convolution operation**. A representation $f \star g$ is computed for a feature map f and a kernel g.

First approach with *Neocognitron* [3]

Image Recognition Models Self Attention Architectures

Updates a representation, using the relevance of each element relative to others in an embedding.

An input is projected to three spaces (*QKV*), the weights control the relevance of each element.

Image Recognition Models

The Current Landscape

Transformers had a strong impact on image recognition.

Background

Opti-CAM

CA-Stream

Gradient o References oo

Interpretability Transparency

Background

Opti-CAM

CA-Stream oo Gradient o

Reference

Interpretability Post-Hoc Interpretability

Background

Opti-CAM o

CA-Stream oo Gradient o

Reference

Interpretability Class Activation Methods

Interpretability Evaluating Interpretability

- Introduction
- Background
- Opti-CAM: Optimizing saliency maps for interpretability
- 3 CA-Stream: Attention-based pooling for interpretable image recognition
- 4 A learning paradigm for interpretable gradients
- References

- Introduction
- Background
- Opti-CAM: Optimizing saliency maps for interpretability
- 3 CA-Stream: Attention-based pooling for interpretable image recognition
- 4 A learning paradigm for interpretable gradients
- References

- Introduction
- Background
- Opti-CAM: Optimizing saliency maps for interpretability
- 3 CA-Stream: Attention-based pooling for interpretable image recognition
- A learning paradigm for interpretable gradients
- References

- Introduction
- Background
- Opti-CAM: Optimizing saliency maps for interpretability
- 3 CA-Stream: Attention-based pooling for interpretable image recognition
- 4 A learning paradigm for interpretable gradients
- References

References I

- J. McCarthy et al., "What is artificial intelligence," 2007.
- K. Fukushima, "Cognitron: A self-organizing multilayered neural network," *Biological cybernetics*, vol. 20, no. 3-4, pp. 121–136, 1975.