ANALISI MATEMATICA III A.A. 2006-2007

tracce lezioni del 26 e 31 gennaio 2007

January 31, 2007

1 Esempi di trasf. di Fourier

▲ Impulso Rettangolare - Sia

$$f(t) = \begin{cases} M \text{ se } |t| \le L \\ 0 \text{ altrimenti} \end{cases};$$

la sua trasformata di Fourier è la funzione

$$F(\omega) = 2ML \operatorname{sink}(\omega L) = \begin{cases} 2M\omega^{-1} \sin(\omega L) & \text{se } \omega \neq 0 \\ \\ 2ML & \text{se } \omega = 0 \end{cases}.$$

▲ Impulso Triangolare - Sia

$$f(t) = \begin{cases} M(t+1) & \text{se } -1 \le t < 0\\ M(1-t) & \text{se } 0 \le t \le 1\\ 0 & \text{altrimenti} \end{cases};$$

la sua trasformata di Fourier è la funzione

$$F(\omega) = \frac{2M(1 - \cos \omega)}{\omega^2} \text{per } \omega \neq 0, F(0) = M.$$

ossia

$$F(\omega) = M\left(\operatorname{sink}\left(\frac{\omega}{2}\right)\right)^2$$

▲ Impulso esponenziale - Sia

$$f(t) = \exp(-|t|);$$

la sua trasformata di Fourier è la funzione

$$F(\omega) = \frac{2}{1 + \omega^2}.$$

▲ Impulso gaussiano - Sia

$$f(t) = \exp(-t^2/2);$$

la sua trasformata di Fourier è la funzione

$$F(\omega) = \sqrt{2\pi} \exp((-\omega^2/2).$$

2 Proprietà della trasformata F

Sia $f \in L^1(\mathbb{R})$ e sia F la sua trasformata di Fourier. Allora:

- 1. Se f è pari, allora F è pari.
- 2. Se f è dispari; allora F è dispari.
- 3. Se f è reale, allora $F(-\omega) = \overline{F(\omega)}$.
- 4. Se f è reale e pari, allora F è reale e pari.

Se inoltre f è sviluppabile in serie di Fourier in ogni intervallo chiuso [-L,L], allora valgono anche le relazioni inverse:

- 1. Se F è pari, allora f è pari.
- 2. Se F è dispari; allora f è dispari.
- 3. Se F è reale, allora $f(-t) = \overline{f(t)}$.
- 4. Se F è reale e pari, allora f è reale e pari.

3 Ancora sulla derivazione della trasformata

La trasformata di Fourier F di funzioni $f \in L^1(\mathbb{R})$ puo' non essere derivabile. Se, all'ipotesi $f \in L^1(\mathbb{R})$ aggiungiamo anche $tf(t) \in L^1(\mathbb{R})$, allora la risposta è affermativa, come segue subito dal seguente risultato.

Teorema Sia $f \in L^1(\mathbb{R})$ e $tf(t) \in L^1(\mathbb{R})$; allora la trasformata di Fourier F di f è derivabile e si ha:

$$\mathfrak{F}\left\{tf(t)\right\} = j\frac{d}{d\omega}F(\omega).$$

In particolare dal teorema precedente seguono i seguenti:

Corollario 1 Sia $t^n f(t) \in L^1(\mathbb{R})$ per n = 0, 1, ..., N. Allora la trasformata di Fourier F di f è una funzione di classe $C^N(\mathbb{R})$.

Corollario 2 Sia f a supporto compatto, i.e. esiste un intervallo compatto [a,b] tale che f(t)=0 se $t\notin [a,b]$. Sia f assolutamente integrabile in [a,b]. Allora f è trasformabile secondo Fourier e la sua trasformata F è una funzione di classe C^{∞} (\mathbb{R}).

4 Trasformata di Fourier in L²

4.1 Generalità

Sia f una funzione (reale o complessa) di variabile **reale** $f : \mathbb{R} \to \mathbb{C}$. Tale funzione si dice a quadrato sommabile, e si scrive $f \in L^2(\mathbb{R})$, se $|f|^2$ è integrabile (in senso improprio) in \mathbb{R} , ossia se

$$\int_{-\infty}^{\infty} |f(t)|^2 dt < \infty.$$

Esistono funzioni appartenenti a $L^2(\mathbb{R})$, ma non a $L^1(\mathbb{R})$ e viceversa. Ad esempio per la funzione

$$f(t) = \begin{cases} t^{-1} & \text{se } t > 1\\ 0 & \text{altrimenti} \end{cases}$$

si ha $f \in L^2(\mathbb{R})$ e $f \notin L^1(\mathbb{R})$. Invece per la funzione

$$g(t) = \begin{cases} 1/\sqrt{t} & \text{se } t \in (0,1) \\ 0 & \text{altrimenti} \end{cases}$$

si ha $g \in L^1(\mathbb{R})$ e $g \notin L^2(\mathbb{R})$. Chiaramente poi esistono funzioni appartenenti sia a $L^1(\mathbb{R})$ che a $L^2(\mathbb{R})$; ad esempio la funzione

$$h(t) = \begin{cases} 1 & \text{se } t \in (0,1) \\ 0 & \text{altrimenti} \end{cases}$$

appartiene sia a $L^1(\mathbb{R})$ che a $L^2(\mathbb{R})$, ossia $h \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$.

4.2 Il Teorema di Plancherel e la trasformata in L²

Vale il seguente:

Teorema di Plancherel - Sia $f \in L^2(\mathbb{R})$. Allora:

1) L'integrale (nel senso del valore principale)

$$v.p. \int_{-\infty}^{+\infty} f(t)e^{-j\omega t}dt$$

esiste per ogni $\omega \in \mathbb{R}$, eccetto, al più, un insieme di misura nulla.

Posto allora

$$F(\omega) = v.p. \int_{-\infty}^{+\infty} f(t)e^{-j\omega t}dt$$

si ha inoltre:

- 2) $F \in L^2(\mathbb{R})$
- 3) Vale la formula

$$f(t) = \frac{1}{2\pi} v.p. \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega.$$

4) Vale l'identità:

$$2\pi \int_{-\infty}^{\infty} |f(t)|^2 dt = \int_{-\infty}^{\infty} |F(\omega)|^2 d\omega.$$

COMMENTI : la proprietà 4) è detta anche principio di conservazione della norma (o dell'energia).

La proprietà 1) suggerisce poi la seguente definizione.

DEFINIZIONE - Sia $f \in L^2(\mathbb{R})$;si chiama Trasformata di Fourier in L^2 , la funzione F definita da

$$F(\omega) = v.p. \int_{-\infty}^{+\infty} f(t)e^{-j\omega t}dt.$$
 (1)

OSSERVAZIONE : se inoltre $f \in L^1(\mathbb{R})$, allora l'integrale in (1) coincide con l'integrale improprio, ossia la trasformata di Fourier in L^2 coincide con la trasformata di Fourier in L^1 , vista in precedenza. La definizione precedente è pertanto un'estensione del concetto di trasformata di Fourier e, ovviamente, assume rilevanza per quelle funzioni appartenenti a $L^2(\mathbb{R})$ e non a $L^1(\mathbb{R})$, ossia per quelle funzioni per le quali la trasformata considerata nella precedente lezione non è definita.

Ciò posto, la proprietà 3) del teorema di Plancherel diviene la formula dell'antitrasformata, formula che, a differenza di quanto accade in L^1 , vale sotto le stesse ipotesi che assicurano l'esistenza della trasformata.

4.3 Proprietà di simmetria

Dal teorema di Plancherel segue l'importante proprietà della trasformata in L^2 :

Teorema (Proprietà di simmetria) Sia $f \in L^2(\mathbb{R})$ e sia $\mathfrak{F}\{f\} = F(\omega)$ la sua trasformata. Allora $F \in L^2(\mathbb{R})$ e

$$\mathfrak{F}\left\{\mathfrak{F}\left\{f\right\}\right\}=2\pi f(-\omega).$$

In particolare, se f è inoltre pari, allora la trasformata della trasformata di Fourier di f coincide con f, a meno di un fattore 2π .

Conseguenze:

• Poiché la trasformata dell'impulso rettangolare

$$f(t) = \begin{cases} M \text{ se } |t| \le L \\ 0 \text{ altrimenti} \end{cases};$$

è la funzione

$$F(\omega) = 2ML \operatorname{sink}(\omega L),$$

per la proprietà di simmetria, la trasformata di

$$g(t) = 2ML \operatorname{sink}(Lt)$$

è

$$\mathfrak{F}\left\{g(t)\right\} = G(\omega) = \begin{cases} 2\pi M \text{ se } |\omega| \leq L \\ 0 \text{ altrimenti} \end{cases}.$$

♦ Poiché la trasformata dell'impulso esponenziale

$$f(t) = \exp(-|t|);$$

è la funzione

$$F(\omega) = \frac{2}{1 + \omega^2},$$

per la proprietà di simmetria, la trasformata di

$$g(t) = \frac{2}{1+t^2}$$

è

$$\mathfrak{F}\left\{g(t)\right\} = G(\omega) = 2\pi \exp(-|\omega|).$$

5 Altre proprietà della trasformata di Fourier

1. Linearità - Siano $f_1, f_2 \in L^1(\mathbb{R}) \cup L^2(\mathbb{R})$; allora:

$$\mathfrak{F}\{c_1f_1+c_2f_2\}=c_1\mathfrak{F}\{f_1\}+c_2\mathfrak{F}\{f_2\}, \qquad c_i\in\mathbb{C}.$$

2. Traslazione in frequenza - $Sia\ f \in L^1(\mathbb{R}) \cup \mathbb{L}^{\nvDash}(\mathbb{R})$; allora:

$$\mathfrak{F}\left\{f(t)e^{j\gamma t}\right\} = F(\omega - \gamma), \qquad \gamma \in \mathbb{R}.$$

3. Traslazione temporale - Sia $f \in L^1(\mathbb{R}) \cup \mathbb{L}^{\nvDash}(\mathbb{R})$; allora:

$$\mathfrak{F}\left\{f(t-A)\right\} = e^{-jA\omega}F(\omega), \qquad A \in \mathbb{R}.$$

4. Omotetia - Sia $f \in L^1(\mathbb{R}) \cup \mathbb{L}^{\nvDash}(\mathbb{R})$; allora:

$$\mathfrak{F}\left\{f(At)\right\} = \frac{1}{|A|} F\left(\frac{\omega}{A}\right), \qquad A \in \mathbb{R}, A \neq 0.$$

5. Le proprietà della funzione trasformata F, viste nel paragrafo 2, continuano a valere anche se $f \in L^2(\mathbb{R})$. In tal caso pero' non serve l'ipotesi aggiuntiva che "f sia sviluppabile in serie di Fourier in ogni intervallo chiuso [-L,L]".