ÜBUNGEN ZUR "EICHFELDTHEORIE" ABGABE: 27.04.2015

Aufgabe 7. (4 Punkte) Sei M = G/H ein homogener Raum. Ein homogenes Vektorbündel über M ist ein Vektorbündel $E \to M$ zusammen mit einer Wirkung von G auf dem Totalraum E, so dass gilt:

(1) Das Diagramm

$$G \times E \longrightarrow E$$

$$\downarrow \qquad \qquad \downarrow$$

$$G \times M \longrightarrow M$$

kommutiert.

(2) Für jedes $m \in M$ und $g \in G$ ist die Abbildung $E_m \to E_{g \cdot m}, v \mapsto g \cdot v$, linear.

Man zeige, dass jedes homogene Vektorbündel isomorph zu einem zum H-Prinzipalbündel $H \to G \to G/H$ assoziierten Vektorbündel ist. Man folgere, dass $T(G/H) \cong G \times_H \mathfrak{g}/\mathfrak{h}$, wobei H auf $\mathfrak{g}/\mathfrak{h}$ durch Konjugation wirkt.

Hinweis: Da H trivial auf $eH \in M$ wirkt, liefert die G-Wirkung auf E eine lineare H-Wirkung auf E_{eH} . Dann ist $E \cong G \times_H E_{eH}$.

Aufgabe 8. (4 Punkte) Sei $1 \le k \le n$ und sei $\pi: V_{k,n}(\mathbb{C}) \to Gr_{k,n}(\mathbb{C})$ das in der Vorlesung konstruierte U(k)-Prinzipalbündel über der Graßmannschen.

- (1) Sei $\gamma_{k,n}$ das assoziierte Vektorbündel $V_{k,n}(\mathbb{C}) \times_{U(k)} \mathbb{C}^k \to Gr_{k,n}(\mathbb{C})$, wobei U(k) durch die Standarddarstellung auf \mathbb{C}^k wirkt. Man zeige, dass die Abbildung $(f,v) \mapsto (\pi(f),f(v)), (f,v) \in V_{k,n}(\mathbb{C}) \times \mathbb{C}^k$, eine Einbettung von $\gamma_{k,n}$ in das triviale Vektorbündel $Gr_{k,n}(\mathbb{C}) \times \mathbb{C}^n \to Gr_{k,n}(\mathbb{C})$ induziert und schließe, dass der Totalraum von $\gamma_{k,n}$ durch $\{(x,v) \in Gr_{k,n}(\mathbb{C}) \times \mathbb{C}^n \mid v \in x\}$ gegeben ist.
- (2) Sei nun k = 1 und für $l \in \mathbb{Z}$ bezeichne $\mathbb{C}(l)$ die durch $(\lambda, z) \mapsto \lambda^l z, (\lambda, z) \in U(1) \times \mathbb{C}$, gegebene 1-dimensionale U(1)-Darstellung. Sei μ_l das assoziierte Vektorbündel $V_{1,n}(\mathbb{C}) \times_{U(1)} \mathbb{C}(l) \to Gr_{1,n}(\mathbb{C})$. Man zeige, dass $\mu_l \cong \gamma_{1,n}^{\otimes l}$ für $l \geq 0$ und $\mu_l \cong (\bar{\gamma}_{1,n})^{\otimes (-l)}$ für $l \leq 0$.

Aufgabe 9. (4 Punkte) Sei $\gamma_{1,n+1}^{\perp}$ das orthogonale Komplementbündel zu $\gamma_{1,n+1}$, das heißt der Totalraum ist gegeben durch $\{(x,v)\in Gr_{1,n+1}(\mathbb{C})\times\mathbb{C}^{n+1}\mid x\perp v\}$. Man konstruiere einen Isomorphismus von komplexen Vektorbündeln

$$T\mathbb{C}P^n \cong \operatorname{Hom}(\gamma_{1,n+1}, \gamma_{1,n+1}^{\perp}).$$

Hinweis: Man schreibe $\gamma_{1,n+1}$ als assoziiertes Bündel

$$U(1+n) \times_{U(1) \times U(n)} \mathbb{C} \to \mathbb{C}P^n$$
,

wobei $U(1) \times U(n)$ auf \mathbb{C} durch $(\lambda, A, z) \mapsto \lambda z$ wirkt. Ähnlich kann mit $\gamma_{1,n+1}^{\perp}$ verfahren werden. Dann wende man Aufgabe 7 auf den homogenen Raum $\mathbb{C}P^n \cong U(1+n)/U(1) \times U(n)$ an und zeige, dass der Isomorphismus komplex linear ist.