Maths

Alexander

August 28, 2024

Algebra

Lines

Slope of the line through $P_1=(x_1,y_1)$ and $P_2=(x_2,y_2)$:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Slope-intercept equation of line with slope m and y-intercept b:

$$y = mx + b$$

Point-slope equation of line through $P_1=(x_1,y_1)$ with slope m:

$$y - y_1 = m(x - x_1)$$

Circles

Equation of the circle with center (a, b) and radius r:

$$(x-a)^2 + (y-b)^2 = r^2$$

Distance and Midpoint Formulas

Distance between $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Midpoint of P_1P_2 :

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

Laws of Exponents

$$x^m x^n = x^{m+n}$$

$$\frac{x^m}{x^n} = x^{m-n}$$

$$(x^m)^n = x^{mn}$$

$$x^{-n} = \frac{1}{x^n}$$

$$(xy)^n = x^n y^n$$

$$(\frac{x}{y})^n = \frac{x^n}{y^n}$$

$$x^{\frac{1}{n}} = \sqrt[n]{x}$$

$$\sqrt[n]{xy} = \sqrt[n]{x} \sqrt[n]{y}$$

$$\sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}$$

$$x^{\frac{m}{n}} = \sqrt[n]{x^m} = (\sqrt[n]{x})^m$$

Special Factorizations

$$x^{2} - y^{2} = (x + y)(x - y)$$
$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$
$$x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$$

Binomial Theorem

$$(x+y)^2 = x^2 + 2xy + y^2$$

$$(x-y)^2 = x^2 - 2xy + y^2$$

$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$

$$(x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$$

$$(x+y)^n = x^n + nx^{n-1}y + \frac{n(n-1)}{2}x^{n-2}y^2 + \ldots + \binom{n}{k}x^{n-k}y^k + \ldots + nxy^{n-1} + y^n$$
 where $\binom{n}{k} = \frac{n(n-1)\ldots(n-k+1)}{1\cdot 2\cdot 3\ldots k}$

Quadratic Formula

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Inequalities and Absolute Value

If
$$a < b$$
 and $b < c$, then $a < c$.
If $a < b$, then $a + c < b + c$.
if $a < b$ and $c > 0$, then $ca < cb$.
if $a < b$ and $c < 0$, then $ca > cb$.

$$|x| = x \text{ if } x >= 0$$

$$|x| = -x \text{ if } x <= 0$$

Geometry

Formulas for area A, circumference C, and volume V Triangle

$$A = \frac{1}{2}bh$$
$$A = \frac{1}{2}ab\sin(\theta)$$

Circle

$$A=\pi r^2$$

$$C=2\pi r$$

Sector of Circle

$$A = \frac{1}{2}r^2\theta$$

$$s=r\theta$$

Sphere

$$V=\tfrac{4}{3}\pi r^3$$

$$A=4\pi r^2$$

Cylinder

$$V=\pi r^2 h$$

Cone

$$V = \frac{1}{3}\pi r^2 h$$

$$A = \pi r \sqrt{r^2 + h^2}$$

Cone with arbitrary base

$$V = \frac{1}{3}Ah$$

Trigonometry

Pythagorean Theorem: For a right trianlge with hypotenuse of length c and legs of lengths a and b, $c^2=a^2+b^2$.

Angle Measurement

$$\pi$$
 radians = 180°

$$1^{\circ} = \frac{\pi}{180} rad$$

$$1 \text{ rad} = \frac{180}{\pi}$$

$$s = r\theta \ (\theta \text{ in radians})$$

Right Triangle Definitions

$$\sin\theta = \frac{opp}{hyp}$$

$$\cos \theta = \frac{adj}{hyp}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{opp}{adj}$$

$$\sec \theta = \frac{1}{\cos \theta} \csc \theta = \frac{1}{\sin \theta}$$

Trigonometric Functions

$$\sin \theta = \frac{y}{r}$$

$$\cos \theta = \frac{x}{r}$$

$$\tan \theta = \frac{y}{x}$$

$$\sec \theta = \frac{r}{x}$$

$$\csc \theta = \frac{r}{y}$$

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = 0$$

Fundamental Identities

$$sin^2\theta + cos^2\theta = 1$$

$$1 + tan^2\theta = sec^2\theta$$

$$1 + \cot^2\theta = \csc^2\theta$$

$$\sin(\frac{\pi}{2} - \theta) = \cos(\theta)$$

$$\cos(\frac{\pi}{2} - \theta) = \sin(\theta)$$

$$\tan(\frac{\pi}{2} - \theta) = \cot(\theta)$$

$$\sin(-\theta) = -\sin\theta$$

$$\cos(-\theta) = \cos\theta$$

$$\tan(-\theta) = -\tan\theta$$

$$\sin(\theta + 2\pi) = \sin\theta$$

$$\cos(\theta + 2\pi) = \cos\theta$$

$$\tan(\theta+\pi)=tan\theta$$

The Law of Sines

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

The Law of Cosines

$$a^2 = b^2 + c^2 - 2bccosA$$

Addition and Subtraction Formulas

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x-y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\cos(x-y) = \cos x \cos y + \sin x \sin y$$

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

Double-Angle Formulas

$$sin2x = 2sinxcosx$$

$$cos2x = cos^2x - sin^2x = 2cos^2x - 1 = 1 - 2sin^2x$$

$$tan2x = \frac{2tanx}{1 - tan^2x}$$

$$sin^2x = \frac{1 - cos2x}{2}$$

$$cos^2x = \frac{1 + cos2x}{2}$$

Precalculus Review

- 78. Prove the triangle inequality by adding the two inequalities
 - 1.) Known Inequalities

$$-|a| \le a \le |a|$$
$$-|b| \le b \le |b|$$

2.) Add and Simplify

$$(-|a|) + (-|b|) \le a + b \le |a| + |b|$$

 $-(|a| + |b|) \le a + b \le |a| + |b|$

3.) By the definition of absolute value, we know:

$$-|x| \le x \le |x|$$
$$-|a+b| \le a+b \le |a+b|$$

4.) To explain, the value a + b is squeezed between -(|a| + |b|) and |a| + |b|. By taking the absolute value on both sides, we conclude that:

$$-(|a| + |b|) \le a + b \le |a| + |b|$$

 $|a + b| \le |a| + |b|$

79. Show that if $r = \frac{a}{b}$ is a fraction in lowest terms, then r has a finite decimal expansion if and only if $b = (2^n)(5^m)$ for some n, $m \ge 0$. Hint: Observe that r has a finite decimal expansion when $(10^N)(r)$ is an integer for some $N \ge 0$ (and hence b dividies 10^N).

Finite Decimal Expansion implies $b = 2^n \cdot 5^m$

- 1. Finite Decimal Expansion: A fraction $\frac{a}{b}$ has a finite decimal expansion if and only if $\frac{a}{b}$ can be written as $k \cdot 10^- N$ for some integer k and non-negative integer N. This is equivalent to the condition that b divides 10^N for some N > 0
- 2. Denominator as a Product of Powers of 2 and 5: Observe that $10^N = 2^N \cdot 5^N$. Therefore, if b divides 10^N , then b must be of the form $b = \frac{10^N}{k}$, where k is an integer that ensures b divides 10^N . This implies that b must only have the prime factors 2 and 5 because 10^N itself only contains the prime factors 2 and 5. Thus, if b divides 10^N , then b must be of the form $b = 2^n \cdot 5^m$ for some non-negative integers n and m

$b=2^n\cdot 5^m$ Implies Finite Decimal Expansion

- 1. Form of b: Suppose $b = 2^n \cdot 5^m$. We want to show that $\frac{a}{b}$ has a finite decimal expansion. Since b can be written as $2^n \cdot 5^m$, it follows that b is a dividor of 10^N where N = max(n, m).
 - 2. Verification: To be specific, let us express $\frac{a}{b}$ in terms of 10^N :

$$\frac{a}{b} = \frac{a}{2^n \cdot 5^m}$$

We can multiply both the numerator and the denominator by 10^N , where N = max(n, m). This multiplication yields:

$$\frac{a \cdot 10^N}{b \cdot 10^N} = \frac{a \cdot 10^N}{2^n \cdot 5^m \cdot 10^N} = \frac{a \cdot 10^N}{10^{N+n} \cdot 10^m} = \frac{a \cdot 10^N}{10^N}$$

Since $b \cdot 10^N = 10^{N+n} \cdot 10^m$, which simplifies to 10^N , we get that $b \cdot 10^N$ is an integer. Hence, $\frac{a \cdot 10^N}{b \cdot 10^N}$ is an integer, implying that $\frac{a}{b}$ indeed has a finite decimal expansion.

Conclusion

We have shown that if b divides 10^N for some $N \ge 0$, then b must be of the form $2^n \cdot 5^m$. Conversely, if $b = 2^n \cdot 5^m$, then $\frac{a}{b}$ has a finite decimal expansion. Therefor, the fraction $\frac{a}{b}$ in lowest terms has a finite decimal expansion if and only if the denominator b is of the form $2^n \cdot 5^m$.

80. Let $p=p_1\dots p_s$ be an integer with digits p_1,\dots,p_s . Show that $\frac{p}{10^s-1}=0.\overline{p_1\dots p_s}$ Use this to find the decimal expansion of $r=\frac{2}{11}$. Note that $r=\frac{2}{11}=\frac{18}{10^2-1}$

A quadratic function is a function defined by a quadratic polynomial

$$f(x) = ax^2 + bx + c$$
 (a,b,c, constants with $a \neq 0$)

The technique of completing the square consists of writing a quadratic polynomial as a multiple of a squareplus a constant:

$$ax^{2} + bx + c = a(x + \frac{b}{2a})^{2} + \frac{4ac - b^{2}}{4a}$$

The discriminant of f(x) is the quantity $D = b^2 - 4ac$ The roots of f(x) are given by the quadratic formula:

$$\frac{-b \pm \sqrt[2]{b^2 - 4ac}}{2a}$$

The general linear equation is ax+by=c where a and b are not both zero. For b=0, this gives the verical line ax=c. When $b\neq 0$, we can rewrite in slope-intercept form. For example, -6x+2y=3 can be rewritten as $y=3x+\frac{3}{2}$

Polynomials: For any real number m, the function $f(x)=x^m$ is called the power function with exponent m. A polynomial is a sum of multiples of power functions with whole number exponents: $f(x)=x^5-5x^3+4x$, $g(t)=7t^6+t^3-3t-1$

Thus, the function $f(x) = x + x^{-1}$ is not a polynomial because it includes a power function x^{-1} with a negative exponent. The general polynomial in the variable x may be written

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 + a_0$$

The numbers a_0, a_1, \ldots, a_n are called coefficients.

The degree of P(x) is n (assuming that $a_n \neq 0$).

The coefficient a_n is called the leading coefficient.

The domain of P(x) is \mathbb{R} .

Rational functions: A rational function is a quotient of two polynomials:

$$f(x) = \frac{P(x)}{Q(x)}$$

Every polynomialis also a rational functions with Q(x) = 1. The domain of a rational function $\frac{P(x)}{Q(x)}$ is the set of numbers x such that $Q(x) \neq 0$.

Algebraic functions: An algebraic function is produced by taking sums, products, and quotients of roots of polynomials and rational functions