25th Quantile estimation β_0, β_1 effective datasize = 200 simulation = 2000

May 18, 2020

1. Beta estimation by Crq function

Table 1: Crq function : $t_0 = 0$

			β_0	-	β_1			
censor	β_0	SE	SD	Coverage	β_1	SE	SD	Coverage
0	1.606	0.099	0.099	0.864	0.694	0.147	0.144	0.923
10	1.607	0.100	0.102	0.853	0.693	0.150	0.147	0.922
30	1.607	0.103	0.104	0.860	0.694	0.159	0.154	0.915
50	1.607	0.108	0.108	0.855	0.699	0.171	0.164	0.913
70	1.613	0.114	0.117	0.841	0.683	0.189	0.175	0.911

Table 2: Crq function : $t_0 = 1$

censor			β_0				β_1	
	β_0	SE	SD	Coverage	β_1	SE	SD	Coverage
0	1.404	0.123	0.120	0.861	0.796	0.173	0.169	0.917
10	1.407	0.122	0.122	0.868	0.799	0.175	0.166	0.930
30	1.416	0.123	0.128	0.851	0.788	0.183	0.174	0.922
50	1.411	0.131	0.134	0.863	0.798	0.198	0.189	0.925
70	1.416	0.139	0.144	0.856	0.767	0.211	0.205	0.902

Table 3: Crq function : $t_0 = 2$

censor			β_0		eta_1			
Censor	β_0	SE	SD	Coverage	β_1	SE	SD	Coverage
0	1.223	0.140	0.139	0.872	0.883	0.193	0.183	0.923
10	1.214	0.141	0.142	0.874	0.891	0.196	0.190	0.924
30	1.220	0.149	0.147	0.868	0.877	0.211	0.204	0.920
50	1.216	0.156	0.161	0.856	0.890	0.228	0.221	0.920
70	1.225	0.168	0.164	0.847	0.830	0.245	0.221	0.895

Table 4: Crq function : $t_0 = 3$

consor			β_0		β_1					
censor	β_0	SE	SD	Coverage	β_1	SE	SD	Coverage		
0	1.033	0.159	0.162	0.865	0.970	0.216	0.208	0.912		
10	1.033	0.163	0.165	0.880	0.968	0.223	0.212	0.921		
30	1.036	0.169	0.176	0.851	0.969	0.236	0.232	0.904		
50	1.032	0.178	0.181	0.837	0.982	0.263	0.246	0.906		
70	1.040	0.204	0.202	0.821	0.901	0.288	0.255	0.884		

2. Beta estimation by rq with jump weight

Table 5: rq function : $t_0 = 0$

consor			β_0		β_1			
censor	β_0	SE	SD	Coverage	β_1	SE	SD	Coverage
0	1.610	0.105	0.099	0.940	0.686	0.150	0.145	0.946
10	1.608	0.107	0.102	0.941	0.692	0.155	0.149	0.953
30	1.606	0.112	0.108	0.936	0.695	0.172	0.162	0.956
50	1.605	0.123	0.118	0.943	0.698	0.247	0.181	0.982
70	1.600	0.180	0.192	0.931	0.678	0.418	0.419	0.919

Table 6: rq function : $t_0 = 1$

consor			β_0		0.789 0.172 0.170 0.943 0.799 0.179 0.170 0.954			
censor	β_0	SE	SD	Coverage	β_1	SE	SD	Coverage
0	1.409	0.125	0.121	0.937	0.789	0.172	0.170	0.943
10	1.407	0.129	0.125	0.935	0.799	0.179	0.170	0.954
30	1.416	0.136	0.130	0.940	0.784	0.201	0.178	0.964
50	1.409	0.153	0.145	0.942	0.795	0.298	0.217	0.983
70	1.385	0.228	0.252	0.925	0.786	0.509	0.531	0.912

Table 7: rq function: $t_0 = 2$

censor			β_0		β_1			
Censor	β_0	SE	SD	Coverage	β_1	SE	SD	Coverage
0	1.228	0.147	0.140	0.934	0.875	0.196	0.185	0.944
10	1.213	0.152	0.145	0.940	0.891	0.205	0.193	0.951
30	1.221	0.163	0.152	0.944	0.875	0.235	0.212	0.960
50	1.215	0.184	0.176	0.944	0.884	0.351	0.258	0.981
70	1.184	0.281	0.307	0.927	0.844	0.593	0.647	0.900

Table 8: rq function : $t_0 = 3$

concor		eta_0			eta_1						
censor	β_0	SE	SD	Coverage	β_1	SE	SD	Coverage			
0	1.039	0.168	0.162	0.938	0.960	0.221	0.209	0.939			
10	1.034	0.174	0.166	0.942	0.967	0.231	0.213	0.950			
30	1.036	0.187	0.182	0.922	0.966	0.265	0.242	0.948			
50	1.028	0.214	0.207	0.939	0.980	0.405	0.299	0.983			
70	0.983	0.333	0.369	0.924	0.929	0.678	0.747	0.910			

$3. \ \, \text{Beta}$ estimation by Induced smoothing with jump weight-out

Table 9: Suggested method : $t_0 = 0$

censor			β_0		, -			
	β_0	SE	SD	Coverage	β_1	SE	SD	Coverage
0	1.603	0.097	0.096	0.917	0.690	0.138	0.138	0.935
10	1.604	0.098	0.098	0.912	0.689	0.142	0.142	0.934
30	1.603	0.103	0.104	0.906	0.691	0.158	0.153	0.938
50	1.602	0.113	0.113	0.911	0.693	0.231	0.173	0.969
70	1.596	0.165	0.189	0.876	0.655	0.346	0.395	0.856

Table 10: Suggested method : $t_0 = 1$

censor			β_0		eta_1			
	β_0	SE	SD	Coverage	β_1	SE	SD	Coverage
0	1.403	0.117	0.117	0.915	0.792	0.160	0.162	0.920
10	1.403	0.119	0.120	0.899	0.796	0.166	0.162	0.932
30	1.412	0.124	0.125	0.906	0.782	0.185	0.171	0.940
50	1.404	0.140	0.141	0.897	0.793	0.279	0.208	0.964
70	1.380	0.207	0.247	0.861	0.753	0.379	0.496	0.810

Table 11: Suggested method : $t_0 = 2$

censor			β_0				β_1	
Censor	β_0	SE	SD	Coverage	β_1	SE	SD	Coverage
0	1.221	0.136	0.135	0.899	0.879	0.183	0.176	0.927
10	1.210	0.141	0.139	0.903	0.888	0.190	0.185	0.927
30	1.217	0.149	0.146	0.895	0.872	0.219	0.203	0.929
50	1.212	0.169	0.173	0.888	0.880	0.329	0.249	0.962
70	1.179	0.257	0.301	0.842	0.806	0.420	0.604	0.802

Table 12: Suggested method : $t_0 = 3$

	10010 121 2 4880000 mothed 1 00 0										
consor			β_0			eta_1					
censor	β_0	SE	SD	Coverage	β_1	SE	SD	Coverage			
0	1.030	0.157	0.156	0.890	0.966	0.207	0.201	0.910			
10	1.030	0.161	0.162	0.894	0.963	0.216	0.206	0.915			
30	1.033	0.170	0.177	0.879	0.962	0.245	0.232	0.920			
50	1.026	0.196	0.201	0.875	0.973	0.382	0.288	0.959			
70	0.972	0.305	0.361	0.806	0.904	0.482	0.684	0.803			

4. Beta estimation by Induced smoothing with jump weight-in

Table 13: Suggested method : $t_0 = 0$

					0			
censor	eta_0				eta_1			
	β_0	SE	SD	Coverage	β_1	SE	SD	Coverage
0	1.603	0.097	0.096	0.917	0.690	0.138	0.138	0.935
10	1.604	0.098	0.098	0.911	0.689	0.141	0.142	0.928
30	1.604	0.101	0.101	0.901	0.690	0.149	0.149	0.928
50	1.604	0.105	0.105	0.909	0.693	0.161	0.158	0.924
70	1.607	0.113	0.113	0.897	0.683	0.182	0.176	0.901

Table 14: Suggested method : $t_0 = 1$

censor	eta_0				eta_1			
	β_0	SE	SD	Coverage	β_1	SE	SD	Coverage
0	1.403	0.117	0.117	0.915	0.792	0.160	0.162	0.920
10	1.398	0.119	0.120	0.902	0.795	0.166	0.162	0.932
30	1.394	0.123	0.127	0.902	0.784	0.176	0.171	0.937
50	1.375	0.133	0.134	0.892	0.795	0.194	0.186	0.923
70	1.356	0.144	0.145	0.880	0.783	0.218	0.207	0.906

Table 15: Suggested method : $t_0 = 2$

censor	eta_0				β_1			
	β_0	SE	SD	Coverage	β_1	SE	SD	Coverage
0	1.221	0.136	0.135	0.899	0.879	0.183	0.176	0.927
10	1.196	0.141	0.141	0.904	0.889	0.190	0.188	0.923
30	1.173	0.153	0.148	0.905	0.878	0.210	0.202	0.920
50	1.135	0.159	0.168	0.861	0.895	0.229	0.225	0.920
70	1.082	0.184	0.183	0.821	0.895	0.267	0.246	0.904

Table 16: Suggested method : $t_0 = 3$

censor	eta_0				β_1				
	β_0	SE	SD	Coverage	β_1	SE	SD	Coverage	
0	1.030	0.157	0.156	0.890	0.966	0.207	0.201	0.910	
10	1.004	0.163	0.166	0.889	0.968	0.218	0.210	0.911	
30	0.958	0.179	0.184	0.860	0.975	0.242	0.239	0.903	
50	0.894	0.193	0.201	0.811	0.997	0.270	0.264	0.905	
70	0.815	0.245	0.233	0.736	0.985	0.367	0.312	0.888	