Ohio State University ICPC Team Notebook

Contents

1	Esse	sentials											1
	1.1	C++ header											1
	1.2	C++ flags											1
	1.3	C++ input/output											1
2		ta structures											1
	2.1	Unordered Set/Map											1
	2.2	Ordered Set/Map											2
	2.3	Suffix array											2
	2.4	Union-find set											3
	2.5	KD-tree											3
	2.6	Splay tree											4
	2.7	Segment tree											5
	2.8	Lazy segment tree											5
	2.9									·			5
	2.10					-	-		-				6
3	Com	mbinatorial optimization											6
	3.1	Sparse max-flow											6
	3.2	Min-cost max-flow											7
	3.3	Push-relabel max-flow											8
	3.4	Min-cost matching											8
	3.5	Max bipartite matching											9
	3.6	Global min-cut											9
	3.7	Graph cut inference											10
4	Geor	ometry											11
•	4.1	Convex hull											11
	4.2	Miscellaneous geometry		•		•	•		•	٠	•	•	11
	4.3	3D geometry				:	•				:	•	13
	4.4	Slow Delaunay triangulation				-	-		-		-	:	13
5													
5		S	e) .										14 14
5	5.1	Number theory (modular, Chinese remainder, linear Diophantine											14
5	$5.1 \\ 5.2$	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant	٠.										14 15
5	5.1 5.2 5.3	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant Reduced row echelon form, matrix rank		:			:		:			:	14 15 15
5	5.1 5.2 5.3 5.4	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant Reduced row echelon form, matrix rank			 								14 15 15 16
5	5.1 5.2 5.3 5.4 5.5	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant			 		:	 					14 15 15 16 16
5	5.1 5.2 5.3 5.4	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant Reduced row echelon form, matrix rank					:						14 15 15 16
	5.1 5.2 5.3 5.4 5.5 5.6 5.7	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant					:	 					14 15 15 16 16 17
56	5.1 5.2 5.3 5.4 5.5 5.6 5.7	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant		•			:	 					14 15 15 16 16 17 17
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant		•			:	 					14 15 15 16 16 17 17
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant		•			:	 					14 15 15 16 16 17 17 17
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant						 					14 15 15 16 16 17 17
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant								:			14 15 15 16 16 17 17 17
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant								:			14 15 15 16 16 17 17 17
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant											14 15 15 16 16 17 17 17 17 18 18 18
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant											14 15 15 16 16 17 17 17 18 18 18
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 Strin	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant											14 15 16 16 16 17 17 17 18 18 18 19 19
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 Strin 7.1	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant Reduced row echelon form, matrix rank											14 15 16 16 17 17 17 18 18 18 19 19
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 Strin 7.1	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant											144 155 166 166 177 177 177 188 188 199 199 199 20
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 Strin 7.1 7.2 7.3	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant											14 15 15 16 16 17 17 17 18 18 18 19 19 20 20
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 Strin 7.1	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant											144 155 166 166 177 177 177 188 188 199 199 199 20
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 Strin 7.1 7.2 7.3 7.4 7.5	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant Reduced row echelon form, matrix rank											14 15 15 16 16 17 17 17 18 18 18 19 19 20 20 21
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 Strin 7.1 7.2 7.3 7.4 7.5	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant Reduced row echelon form, matrix rank											14 15 15 16 16 17 17 17 18 18 18 19 19 20 20 20 21
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 Strin 7.1 7.2 7.3 7.4 7.5 Misc 8.1	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant											14 15 15 16 16 17 17 17 18 18 18 19 19 20 20 20 21 21
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 Strin 7.1 7.2 7.3 7.4 7.5 Misc 8.1 8.2	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant											14 15 15 16 16 16 17 17 17 17 18 18 18 19 19 20 20 20 21 21 21 21
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 Strin 7.1 7.2 7.3 7.4 7.5 Misc 8.1 8.2 8.3	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant											144 155 166 167 177 177 188 188 199 19 200 202 202 21 21 21 21 21 21
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 Strin 7.1 7.2 7.3 7.4 7.5 Misc 8.1 8.2	Number theory (modular, Chinese remainder, linear Diophantine Systems of linear equations, matrix inverse, determinant											14 15 15 16 16 16 17 17 17 17 18 18 18 19 19 20 20 20 21 21 21 21

1 Essentials

1.1 C++ header

```
# include <bits/stdc++.h>
using namespace std;
# define rep(i, a, b) for(int i = a; i < (b); ++i)
# define trav(a, x) for(auto& a : x)
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
```

1.2 C++ flags

```
# Add this to the CMakeLists in CLion to crash with bad memory accesses and give better warnings.
# Don't include this comment, comments don't work in CMakeLists.
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wextra -Wno-sign-compare -D _GLIBCXX_DEBUG -D _GLIBCXX_DEBUG_PEDANTIC ")
```

1.3 C++ input/output

```
#include <iostream>
#include <iomanip>
#include <bitset>
using namespace std;
    // Output a specific number of digits past the decimal point,
    // in this case 5
    cout.setf(ios::fixed);
    cout << setprecision(5);
cout << 100.0 / 7.0 << " " << 10.0 << endl; // 14.28571 10.00000</pre>
    cout.unsetf(ios::fixed);
    // Output a '+' before positive values
    cout.setf(ios::showpos);
cout << 100 << " " << -100 << end1; // +100 -100
    cout.unsetf(ios::showpos);
    // Output numerical values in hexadecimal. Also works for oct
    cout << hex << 500 << dec << endl; // 1f4 (1*256 + 15*16 + 4*1)
    // Output numerical values in binary
    std::bitset<10> bs(500);
    cout << bs << endl; // 0111110100
    // Read until end of file.
    string line;
    getline(cin, line);
    while (!line.empty()) { // Input in CP problems always ends with an empty line.
        int intV; string stringV;
        stringstream line stream(line):
        line_stream >> stringV >> intV; // Just read like usual from the stream
        getline(cin, line);
```

2 Data structures

2.1 Unordered Set/Map

```
// An example of policy hashtable with a custom object in cpp. It is
// it is better than the built in unordered_map in that
// it is "5 times faster. (https://codeforces.com/blog/entry/60737)
// No real downsides (normal map is just as annoying with custom objects),
// but be careful with the hash function, the number of buckets is a power of 2.
#include <bits/stdc++.h>
using namespace std;

struct Coordinate {
   int x;
   int y;
   bool operator==(const Coordinate &other) const {
```

```
return x == other.x && y == other.y;
};
ostream &operator<<(ostream &stream, const Coordinate &1) {
   return stream << "{" << 1.x << " " << 1.y << "}";</pre>
#include <ext/pb_ds/assoc_container.hpp>
struct chash {
    static auto const c = uint64_t(7e18) + 13; // Big prime
    uint64_t operator()(const Coordinate &1) const {
        return __builtin_bswap64((1.x + 1.y) * c);
1:
template<class k, class v>
using hash_map = __gnu_pbds::gp_hash_table<k, v, chash>;
template<class k>
using hash_set = __gnu_pbds::gp_hash_table<k, __gnu_pbds::null_type, chash>;
template<typename k, typename v>
bool contains(hash_map<k, v> map, k val) {
    return map.find(val) != map.end();
int main() {
    // After importing, writing the template code, overloading ==
    // and << (print) operator like above, you can use the map
    hash_map<Coordinate, int> my_map;
    my_map[{1, 2}] = 17;
    cout << my_map[{1, 2}] << endl; // Prints 17
    assert(contains(my_map, {1, 2}));
assert(!contains(my_map, {3, 4}));
    cout << my_map[{3, 4}] << endl; // Prints 0
    assert(my_map.size() == 2); // We just set {3, 4} to 0 by accessing it.
    for (auto pair : my_map) {
    cout << pair.first << "=" << pair.second << " "; // {3 4}=0 {1 2}=17</pre>
    hash_set<Coordinate> my_set;
    assert(my set.empty());
    my set.insert({1, 2});
    assert (contains (my_set, {1, 2}));
    my_set.insert({4, 5});
    // hash_set does the correct thing, and when you iterate over it you get keys,
     // not key-value pairs with a null value.
    for (auto it = my_set.begin(); it != my_set.end(); it++) {
   cout << *it << " "; // print {4, 5} {1, 2}.</pre>
    // Standard C Library Equivalent Declarations:
     // unordered_map<Coordinate, int, chash> my_map;
     // unordered_set<Coordinate, chash> my_set;
```

2.2 Ordered Set/Map

```
// An example of using an ordered map with a custom object.
// Also include code for the gnu policy tree, which gives
// a easy (~2x slower) segment tree by implementing
// find_by_order and order_of_key
#include <bits/stdc++.h>
using namespace std;
struct Coordinate {
    int x:
    int y;
    // Overloaded for ordered map. If !(c1<c2), !(c2<c1), then
       c1 will be considered equal to c2.
    bool operator < (const Coordinate &o) const
        return x == o.x ? y < o.y : x < o.x;
1:
ostream &operator<<(ostream &stream, const Coordinate &1) {
   return stream << "{" << 1.x << " " << 1.y << "}";</pre>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template < class k, class v>
using ordered map = tree<k, v, less<k>,
        rb_tree_tag, // Red black tree. Can use splay_tree_tag for a splay tree,
         // but split operation for splay is linear time so it may be terrible.
        tree_order_statistics_node_update // To get find_by_order and order_of_key methods
```

```
template < class k > // Same as ordered map almost
using ordered_set = tree<k, null_type, less<k>,
         rb_tree_tag, tree_order_statistics_node_update>;
    map<Coordinate, int> c_map; // Standard C Library Ordered Map
    set<Coordinate> c_set; // Standard C Library Ordered Set
    ordered_map<Coordinate, int> gnu_map; // Gnu map declaration
    ordered_set<Coordinate> gnu_set;// Gnu set declaration
    for (int i = 0; i < 10; i++) {
        gnu_set.insert({0, i * 10});
    cout << *gnu_set.find({0, 30}) << endl; // {0, 30}
    cout << *gnu_set.lower_bound({0, 53}) << endl; // {0, 60} cout << *gnu_set.upper_bound({0, 53}) << endl; // {0, 60}
    cout << *gnu_set.lower_bound({0, 50}) << endl; // {0, 50}
    cout << *gnu_set.upper_bound({0, 50}) << endl; // {0, 60}
    // Example of the operations only supported by gnu_set
    cout << *gnu_set.find_by_order(2) << endl; // {0 20}
    cout << *gnu_set.find_by_order(4) << endl; // {0 40}</pre>
    assert(end(gnu_set) == gnu_set.find_by_order(10));
cout << gnu_set.order_of_key({0, -99}) << endl; // 0</pre>
    cout << gnu_set.order_of_key({0, 0}) << endl; // 0</pre>
    cout << gnu_set.order_of_key({0, 11}) << endl; // 2
    cout << gnu_set.order_of_key({0, 999}) << endl; // 10</pre>
```

2.3 Suffix array

```
// Suffix array construction in O(L log^2 L) time. Routine for
// computing the length of the longest common prefix of any two
// suffixes in O(log L) time.
// INPUT: string s
// OUTPUT: array suffix[] such that suffix[i] = index (from 0 to L-1)
                of substring s[i...L-1] in the list of sorted suffixes.
                That is, if we take the inverse of the permutation suffix[].
                we get the actual suffix array.
#include <vector>
#include <iostream>
#include <string>
using namespace std;
struct SuffixArray {
     const int L;
     string s;
     vector<vector<int> > P:
     vector<pair<pair<int, int>, int> > M;
     Suffix \texttt{Array} (\textbf{const} \ \texttt{string} \ \texttt{\&s}) : L(\texttt{s.length}()), \ \texttt{s}(\texttt{s}), \ \texttt{P}(1, \ \texttt{vector} < \texttt{int} > (L, \ 0)), \ \texttt{M}(L) \ \{ \ \textbf{for} \ (\texttt{int} \ \texttt{i} = 0; \ \texttt{i} < L; \ \texttt{i+}), \ \texttt{P}[0][\texttt{i}] = \texttt{int}(\texttt{s}(\texttt{i})); \ \\ \textbf{for} \ (\texttt{int} \ \texttt{skip} = 1, \ \texttt{level} = 1; \ \texttt{skip} < L; \ \texttt{skip} *= 2, \ \texttt{level} ++) \ \{ \ \ \texttt{months} \ (\texttt{months}) \ \}
                P.push_back(vector<int>(L, 0));
                for (int i = 0; i < L; i++)
                     M[i] = make_pair(make_pair(P[level - 1][i], i + skip < L ? P[level - 1][i + skip] :</pre>
                             -1000), i);
                sort(M.begin(), M.end());
                for (int i = 0; i < L; i++)
                      P[level][M[i].second] = (i > 0 \&\& M[i].first == M[i-1].first) ? P[level][M[i-1]. 
     vector<int> GetSuffixArray() { return P.back(); }
      // returns the length of the longest common prefix of s[i...L-1] and s[j...L-1]
     int LongestCommonPrefix(int i, int j) {
          int len = 0;
           if (i == j) return L - i;
           for (int k = P.size() - 1; k >= 0 && i < L && j < L; k--) {
                if (P[k][i] == P[k][j]) {
                     i += 1 << k;
                     j += 1 << k;
                     len += 1 << k;
          return len:
1:
// BEGIN CUT
   The following code solves UVA problem 11512: GATTACA.
#define TESTING
```

```
#ifdef TESTING
int main() {
    int T;
    cin >> T:
    for (int caseno = 0; caseno < T; caseno++) {</pre>
        string s;
         cin >> s;
        SuffixArray array(s);
        vector<int> v = array.GetSuffixArray();
        int bestlen = -1, bestpos = -1, bestcount = 0;
        for (int i = 0; i < s.length(); i++) {
  int len = 0, count = 0;</pre>
            for (int j = i + 1, j < s.length(); j++) {
                int 1 = array.LongestCommonPrefix(i, j);
if (1 >= len) {
                     if (1 > len) count = 2; else count++;
                     len = 1;
             if (len > bestlen || len == bestlen && s.substr(bestpos, bestlen) > s.substr(i, len)) {
                 bestlen = len;
                 bestcount = count;
                 bestpos = i;
        if (bestlen == 0) {
            cout << "No repetitions found!" << endl;</pre>
        } else {
            cout << s.substr(bestpos, bestlen) << " " << bestcount << endl;</pre>
#else
// END CUT
int main() {
  // bobocel is the O'th suffix
  // obocel is the 5'th suffix
      bocel is the 1'st suffix
        ocel is the 6'th suffix
         cel is the 2'nd suffix
         el is the 3'rd suffix
           1 is the 4'th suffix
  SuffixArray suffix("bobocel");
  vector<int> v = suffix.GetSuffixArray();
  // Expected output: 0 5 1 6 2 3 4
  for (int i = 0; i < v.size(); i++) cout << v[i] << " ";</pre>
  cout << endl;
  cout << suffix.LongestCommonPrefix(0, 2) << endl;</pre>
// BEGIN CUT
#endif
// END CUT
```

2.4 Union-find set

2.5 KD-tree

// -----

```
// A straightforward, but probably sub-optimal KD-tree implmentation
// that's probably good enough for most things (current it's a
// 2D-tree)
// - constructs from n points in O(n 1g^2 n) time
// - handles nearest-neighbor query in O(lg n) if points are well
// - worst case for nearest-neighbor may be linear in pathological
     case
// Sonny Chan, Stanford University, April 2009
#include <iostream>
#include <vector>
#include <limits>
#include <cstdlib>
using namespace std;
// number type for coordinates, and its maximum value
typedef long long ntype;
const ntype sentry = numeric_limits<ntype>::max();
// point structure for 2D-tree, can be extended to 3D
struct point {
    ntype x, y;
    point(ntype xx = 0, ntype yy = 0) : x(xx), y(yy) {}
};
bool operator==(const point &a, const point &b) {
    return a.x == b.x && a.y == b.y;
 // sorts points on x-coordinate
bool on_x(const point &a, const point &b) {
    return a.x < b.x;
// sorts points on y-coordinate
bool on_y(const point &a, const point &b) {
    return a.y < b.y;</pre>
// squared distance between points
ntype pdist2(const point &a, const point &b) {
    ntype dx = a.x - b.x, dy = a.y - b.y;
    return dx * dx + dy * dy;
// bounding box for a set of points
struct bbox {
    ntype x0, x1, y0, y1;
    bbox(): x0(sentry), x1(-sentry), y0(sentry), y1(-sentry) {}
    // computes bounding box from a bunch of points
    void compute(const vector<point> &v) {
        for (int i = 0; i < v.size(); ++i) {</pre>
            x0 = min(x0, v[i].x);
            x1 = max(x1, v[i].x);
            y0 = min(y0, v[i].y);
            y1 = max(y1, v[i].y);
    // squared distance between a point and this bbox, 0 if inside
    ntype distance(const point &p) {
        if (p.x < x0) {
            if (p.y < y0) return pdist2(point(x0, y0), p);</pre>
            else if (p.y > y1) return pdist2(point(x0, y1), p);
            else return pdist2(point(x0, p.y), p);
        } else if (p.x > x1) {
            if (p.y < y0) return pdist2(point(x1, y0), p);
else if (p.y > y1) return pdist2(point(x1, y1), p);
            else return pdist2(point(x1, p.y), p);
        } else {
            if (p.y < y0) return pdist2(point(p.x, y0), p);</pre>
            else if (p.y > y1) return pdist2(point(p.x, y1), p);
            else return 0;
};
// stores a single node of the kd-tree, either internal or leaf
struct kdnode {
    bool leaf;
                    // true if this is a leaf node (has one point)
    point pt;
                    // the single point of this is a leaf
                    // bounding box for set of points in children
    bbox bound:
    kdnode *first, *second: // two children of this kd-node
    kdnode() : leaf(false), first(0), second(0) {}
    ~kdnode() {
        if (first) delete first;
        if (second) delete second;
    // intersect a point with this node (returns squared distance)
```

```
ntype intersect(const point &p) {
        return bound.distance(p);
     .
// recursively builds a kd-tree from a given cloud of points
    void construct (vector<point> &vp) {
        // compute bounding box for points at this node
        bound.compute(vp);
        // if we're down to one point, then we're a leaf node
        if (vp.size() == 1) {
            leaf = true;
            pt = vp[0];
        } else {
            // split on x if the bbox is wider than high (not best heuristic...)
            if (bound.x1 - bound.x0 >= bound.y1 - bound.y0)
                sort(vp.begin(), vp.end(), on_x);
                // otherwise split on y-coordinate
            else
                sort(vp.begin(), vp.end(), on_y);
            // divide by taking half the array for each child
            // (not best performance if many duplicates in the middle)
            int half = vp.size() / 2;
            vector<point> vl(vp.begin(), vp.begin() + half);
            vector<point> vr(vp.begin() + half, vp.end());
            first = new kdnode();
            first->construct(v1);
            second = new kdnode();
            second->construct(vr);
};
// simple kd-tree class to hold the tree and handle queries
struct kdtree {
    kdnode *root;
    // constructs a kd-tree from a points (copied here, as it sorts them)
    kdtree(const vector<point> &vp) {
        vector<point> v(vp.begin(), vp.end());
        root = new kdnode();
        root->construct(v);
    "kdtree() { delete root; }
    // recursive search method returns squared distance to nearest point
    ntype search(kdnode *node, const point &p) {
        if (node->leaf) {
            // commented special case tells a point not to find itself
              if (p == node->pt) return sentry;
            return pdist2(p, node->pt);
        ntype bfirst = node->first->intersect(p);
        ntype bsecond = node->second->intersect(p);
        // choose the side with the closest bounding box to search first
        // (note that the other side is also searched if needed)
        if (bfirst < bsecond) {</pre>
            ntype best = search(node->first, p);
            if (bsecond < best)</pre>
                best = min(best, search(node->second, p));
            return best;
        } else {
            ntype best = search(node->second, p);
            if (bfirst < best)</pre>
                best = min(best, search(node->first, p));
            return best;
    // squared distance to the nearest
    ntype nearest (const point &p) {
        return search (root, p);
};
// some basic test code here
int main() {
    // generate some random points for a kd-tree
    vector<point> vp;
   for (int i = 0; i < 100000; ++i) {
    vp.push_back(point(rand() % 100000, rand() % 100000));</pre>
    kdtree tree(vp);
    // query some points
    for (int i = 0; i < 10; ++i) {
        point g(rand() % 100000, rand() % 100000);
        cout << "Closest squared distance to (" << q.x << ", " << q.y << ")"
             << " is " << tree.nearest(q) << endl;
```

```
return 0;
}
/// -----
```

2.6 Splay tree

```
#include <cstdio>
#include <algorithm>
using namespace std:
const int N_MAX = 130010;
const int oo = 0x3f3f3f3f3f;
struct Node {
    Node *ch[2], *pre;
    int val, size;
    bool isTurned;
} nodePool[N_MAX], *null, *root;
Node *allocNode(int val)
    static int freePos = 0;
    Node *x = &nodePool[freePos++];
    x->val = val, x->isTurned = false;
    x->ch[0] = x->ch[1] = x->pre = null;
    x->size = 1;
    return x;
inline void update(Node *x) {
    x->size = x->ch[0]->size + x->ch[1]->size + 1;
inline void makeTurned(Node *x) {
    if (x == null)
       return:
    swap(x->ch[0], x->ch[1]);
x->isTurned ^= 1;
inline void pushDown(Node *x) {
    if (x->isTurned) {
        makeTurned(x->ch[0]);
        makeTurned(x->ch[1]);
        x->isTurned ^= 1;
inline void rotate(Node *x, int c) {
    Node *y = x->pre;
    x->pre = y->pre;
    if (y->pre != null)
        y->pre->ch[y == y->pre->ch[1]] = x;
    y \rightarrow ch[!c] = x \rightarrow ch[c];
    if (x->ch[c] != null)
        x->ch[c]->pre = y;
    x->ch[c] = y, y->pre = x;
    update(y);
    if (y == root)
        root = x;
void splay(Node *x, Node *p) {
    while (x->pre != p) {
        if (x->pre->pre == p)
            rotate(x, x == x->pre->ch[0]);
        else {
            Node *y = x->pre, *z = y->pre;
if (y == z->ch[0]) {
                if (x == y -> ch[0])
                    rotate(y, 1), rotate(x, 1);
                    rotate(x, 0), rotate(x, 1);
                 if (x == y -> ch[1])
                     rotate(y, 0), rotate(x, 0);
                 else
                     rotate(x, 1), rotate(x, 0);
        }
    update(x);
void select(int k, Node *fa) {
    Node *now = root;
    while (1) {
```

```
pushDown (now);
        int tmp = now->ch[0]->size + 1;
        if (tmp == k)
            break;
        else if (tmp < k)</pre>
            now = now -> ch[1], k -= tmp;
            now = now -> ch[0];
    splay(now, fa);
Node *makeTree(Node *p, int 1, int r) {
    if (1 > r)
       return null:
    int mid = (1 + r) / 2;
    Node *x = allocNode(mid);
    x->pre = p;
    x->ch[0] = makeTree(x, 1, mid - 1);
    x->ch[1] = makeTree(x, mid + 1, r);
    update(x);
    return x;
int main() {
    int n, m;
    null = allocNode(0):
    null->size = 0:
    root = allocNode(0);
    root->ch[1] = allocNode(oo);
    root->ch[1]->pre = root;
    update (root);
    scanf("%d%d", &n, &m);
    root->ch[1]->ch[0] = makeTree(root->ch[1], 1, n);
    splay(root->ch[1]->ch[0], null);
    while (m--) {
        int a, b;
        scanf("%d%d", &a, &b);
        a++, b++;
        select(a - 1, null);
        select(b + 1, root);
        makeTurned(root->ch[1]->ch[0]);
    for (int i = 1; i <= n; i++) {</pre>
        select(i + 1, null);
printf("%d ", root->val);
```

2.7 Segment tree

```
# include <bits/stdc++.h>
using namespace std;
typedef vector<int> vi;
struct Tree {
    typedef int T:
    static constexpr T unit = INT MIN:
    T f (T a, T b) { return max (a, b); } // (any associative fn)
    vector<T> s; int n;
    Tree(int n = 0, T def = unit) : s(2*n, def), n(n) {}
    void update(int pos, T val) {
   for (s[pos += n] = val; pos /= 2;)
             s[pos] = f(s[pos * 2], s[pos * 2 + 1]);
    T query (int b, int e) { // query [b, e)
         T ra = unit, rb = unit;
         for (b += n, e += n; b < e; b /= 2, e /= 2) {
             if (b % 2) ra = f(ra, s[b++]);
if (e % 2) rb = f(s[--e], rb);
        return f(ra, rb);
};
```

2.8 Lazy segment tree

```
# include <bits/stdc++.h>
using namespace std;
typedef vector<int> vi;
const int inf = 1e9;
```

```
// A lazy segment tree supporting range add, range set, and range get max
    Node *1 = 0, *r = 0;
    int lo, hi, mset = inf, madd = 0, val = -inf;
    Node(int lo,int hi):lo(lo),hi(hi){} // Large interval of -inf
    // Initialize based on the values in the vector v.
    // main will call this with Node(v, 0, v.size())
    Node(vi& v, int lo, int hi) : lo(lo), hi(hi) {
        if (lo + 1 < hi) {
           int mid = lo + (hi - lo)/2;
            1 = new Node(v, lo, mid); r = new Node(v, mid, hi);
            val = max(1->val, r->val);
        else val = v[lo];
      query [L, R)
    int query(int L, int R) {
        if (R <= lo || hi <= L) return -inf;
        if (L <= lo && hi <= R) return val;
        return max(1->query(L, R), r->query(L, R));
    // set all elements in [L, R) to x
    void set(int L, int R, int x) {
        if (R <= lo || hi <= L) return;</pre>
        if (L <= lo && hi <= R) {
            // Update the range [lo, hi) to x
            mset = val = x, madd = 0;
        else {
            push(), 1->set(L, R, x), r->set(L, R, x);
            val = max(1->val, r->val);
    // add x to all elements in [L, R)
    void add(int L, int R, int x) {
        if (R <= lo || hi <= L) return;</pre>
        if (L <= lo && hi <= R) {
            // Add x to all elements in the range [lo, hi)
           if (mset != inf) mset += x;
           else madd += x;
           val += x:
        else {
           push(), 1->add(L, R, x), r->add(L, R, x);
            val = max(1->val, r->val);
    // Push the lazily stored values.
    void push() {
        if (!1)
           int mid = lo + (hi - lo)/2;
            1 = new Node(lo, mid); r = new Node(mid, hi);
        if (mset != inf)
           l->set(lo,hi,mset), r->set(lo,hi,mset), mset = inf;
        else if (madd)
            1->add(lo,hi,madd), r->add(lo,hi,madd), madd = 0;
};
```

2.9 Lowest common ancestor

```
const int max_nodes, log_max_nodes;
int num_nodes, log_num_nodes, root;
vector<int> children[max_nodes];  // children[i] contains the children of node i
// A[i][j] is the 2^j-th ancestor of node i, or -1 if that ancestor does not exist
int A[max_nodes][log_max_nodes + 1];
int L[max_nodes];
                                 // L[i] is the distance between node i and the root
 // floor of the binary logarithm of n
int lb(unsigned int n) {
    if (n == 0)
        return -1;
    if (n >= 1 << 16) {
         n >>= 16;
         p += 16;
    if (n >= 1 << 8) {
         n >>= 8;
         p += 8;
    if (n >= 1 << 4) {
         n >>= 4;
         p += 4;
     if (n >= 1 << 2) {
```

```
n >>= 2;
        p += 2;
    if (n >= 1 << 1) { p += 1; }
    return p;
void DFS(int i, int 1) {
    for (int j = 0; j < children[i].size(); j++)</pre>
        DFS(children[i][j], l + 1);
int LCA(int p, int q) {
    // ensure node p is at least as deep as node q if (L[p] < L[q])
        swap(p, q);
     // "binary search" for the ancestor of node p situated on the same level as q
    for (int i = log_num_nodes; i >= 0; i--)
         if (L[p] - (1 << i) >= L[q])
             p = A[p][i];
    if (p == q)
        return p;
     // "binary search" for the LCA
    for (int i = log_num_nodes; i >= 0; i--)
   if (A[p][i] != -1 && A[p][i] != A[q][i]) {
             p = A[p][i];
             q = A[q][i];
    return A[p][0];
int main(int arge, char *argv[]) {
     // read num_nodes, the total number of nodes
    log_num_nodes = lb(num_nodes);
    for (int i = 0; i < num_nodes; i++) {</pre>
        // read p, the parent of node i or -1 if node i is the root
        A[i][0] = p;
if (p != -1)
             children[p].push_back(i);
         else
             root = i;
     // precompute A using dynamic programming
    for (int j = 1; j <= log_num_nodes; j++)
    for (int i = 0; i < num_nodes; i++)</pre>
             if (A[i][j - 1] != -1)
                 A[i][j] = A[A[i][j-1]][j-1];
             else
                 A[i][j] = -1;
     // precompute L
    DFS (root, 0);
    return 0;
```

2.10 Li Chao Tree

```
// Li-Chao Tree. Store a family of functions with domain a subset of R
// where no two functions intersect
// more than once. Support querying for the max of all functions in the tree
// in O(log(n)) with O(log(n)) insertion
struct LiChao (
   typedef int ftype;
    typedef pair<int, int> params;
    int maxn;
    vector<params> best_params;
    LiChao(int maxN) {
        best_params = vector<params>(maxn * 4);
    // The function you add to the tree. It is a family of functions
    // parameterized by a
    // Any two functions f(a, -), f(b, -) must intersect at most once,
    // else the tree will not work.
    ftype f(params a, ftype x) {
        return a.first * x + a.second;
```

```
// Add the function parameterized by nw to the tree
    void add_fn(params nw, int v, int 1, int r) {
        int m = (1 + r) / 2;
        bool lef = f(nw, 1) < f(best_params[v], 1);
        bool mid = f(nw, m) < f(best_params[v], m);</pre>
        if (mid) {
            swap(best_params[v], nw);
        if (r - 1 == 1) {
            return;
        } else if (lef != mid) {
            add_fn(nw, 2 * v, 1, m);
        | else {
            add fn (nw, 2 * v + 1, m, r);
    void add_fn(params nw) {
        return add_fn(nw, 1, 0, maxn);
    // Compute the maximum valued function over all x
    int get(int x, int v, int 1, int r) {
        int m = (1 + r) / 2;
if (r - 1 == 1) {
           return f(best_params[v], x);
        \} else if (x < m) {
           return min(f(best_params[v], x), get(x, 2 * v, 1, m));
        else
            return min(f(best_params[v], x), get(x, 2 * v + 1, m, r));
    int get(int x) {
        return get(x, 1, 0, maxn);
};
```

3 Combinatorial optimization

3.1 Sparse max-flow

```
// Adjacency list implementation of Dinic's blocking flow algorithm.
// This is very fast in practice, and only loses to push-relabel flow.
// Running time:
      O(|V|^2 |E|)
// INPUT:
       - graph, constructed using AddEdge()
       - source and sink
// OUTPUT:
       - maximum flow value
       - To obtain actual flow values, look at edges with capacity > 0
         (zero capacity edges are residual edges).
#include<cstdio>
#include < vector >
#include<queue>
using namespace std;
typedef long long LL;
struct Edge
    int u. v:
    LL cap, flow;
    Edge() {}
    Edge(int u, int v, LL cap) : u(u), v(v), cap(cap), flow(0) {}
};
struct Dinic {
    int N;
    vector<Edge> E;
    vector<vector<int>> g;
    vector<int> d, pt;
    Dinic(int N) : N(N), E(0), g(N), d(N), pt(N) {}
    void AddEdge(int u, int v, LL cap) {
        if (u != v) {
            E.emplace_back(u, v, cap);
            g[u].emplace_back(E.size() - 1);
E.emplace_back(v, u, 0);
            g[v].emplace_back(E.size() - 1);
    bool BFS(int S, int T) {
```

```
queue<int> q({S});
         fill(d.begin(), d.end(), N + 1);
         d[S] = 0;
         while (!q.empty())
             int u = q.front();
             q.pop();
             if (u == T) break;
             for (int k: g[u]) {
                 Edge &e = E[k];
                 if (e.flow < e.cap && d[e.v] > d[e.u] + 1) {
    d[e.v] = d[e.u] + 1;
    q.emplace(e.v);
        return d[T] != N + 1;
    LL DFS(int u, int T, LL flow = -1) {
         if (u == T \mid \mid flow == 0) return flow;
         for (int &i = pt[u]; i < g[u].size(); ++i) {</pre>
             Edge &e = E[g[u][i]];
Edge &oe = E[g[u][i] ^ 1];
             if (d[e.v] == d[e.u] + 1) {
                 LL amt = e.cap - e.flow;
if (flow != -1 && amt > flow) amt = flow;
                 if (LL pushed = DFS(e.v, T, amt)) {
                     e.flow += pushed;
                     oe.flow -= pushed:
                     return pushed;
         return 0;
    LL MaxFlow(int S, int T) {
         LL total = 0;
         while (BFS(S, T)) {
             fill(pt.begin(), pt.end(), 0);
             while (LL flow = DFS(S, T))
                 total += flow;
        return total:
};
// The following code solves SPOJ problem #4110: Fast Maximum Flow (FASTFLOW)
int main() {
    int N, E;
    scanf("%d%d", &N, &E);
    Dinic dinic(N);
    for (int i = 0; i < E; i++) {
        int u, v;
        LL cap:
        scanf("%d%d%lld", &u, &v, &cap);
        dinic.AddEdge(u - 1, v - 1, cap);
        dinic.AddEdge(v - 1, u - 1, cap);
    printf("%lld\n", dinic.MaxFlow(0, N - 1));
    return 0;
// END CUT
```

3.2 Min-cost max-flow

```
// Implementation of min cost max flow algorithm using adjacency
// matrix (Edmonds and Karp 1972). This implementation keeps track of
// forward and reverse edges separately (so you can set cap[i][i]! =
// cap[i][i]). For a regular max flow, set all edge costs to 0.
//
// Running time, O(|V|^2) cost per augmentation
// max flow: O(|V|^3) augmentations
// min cost max flow: O(|V|^4 + MAX_EDGE_COST) augmentations
//
// INPUT:
// - graph, constructed using AddEdge()
// - source
// - sink
//
// OUTPUT:
// - (maximum flow value, minimum cost value)
// - To obtain the actual flow, look at positive values only.

#include <cmath>
#include <costream>
#include <costream>
```

```
using namespace std;
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef long long L;
typedef vector<L> VL;
typedef vector<VL> VVL;
typedef pair<int, int> PII;
typedef vector<PII> VPII;
const L INF = numeric_limits<L>::max() / 4;
struct MinCostMaxFlow {
    int N;
    VVL cap, flow, cost;
VI found;
    VL dist, pi, width;
    VPII dad;
    MinCostMaxFlow(int N) :
             N(N), cap(N, VL(N)), flow(N, VL(N)), cost(N, VL(N)),
             found(N), dist(N), pi(N), width(N), dad(N) {}
    void AddEdge(int from, int to, L cap, L cost) {
         this->cap[from][to] = cap;
         this->cost[from][to] = cost;
    \textbf{void} \ \texttt{Relax}(\textbf{int} \ \texttt{s}, \ \textbf{int} \ \texttt{k}, \ \texttt{L} \ \texttt{cap}, \ \texttt{L} \ \texttt{cost}, \ \textbf{int} \ \texttt{dir}) \ \ \{
        L val = dist[s] + pi[s] - pi[k] + cost;

if (cap && val < dist[k]) {
             dist[k] = val;
             dad[k] = make_pair(s, dir);
             width[k] = min(cap, width[s]);
    L Dijkstra(int s, int t) {
         fill(found.begin(), found.end(), false);
         fill(dist.begin(), dist.end(), INF);
         fill(width.begin(), width.end(), 0);
         dist[s] = 0;
         width[s] = INF;
         while (s != -1) {
             int best = -1;
             found[s] = true;
             for (int k = 0; k < N; k++) {
                  if (found[k]) continue;
                  Relax(s, k, cap[s][k] - flow[s][k], cost[s][k], 1);
Relax(s, k, flow[k][s], -cost[k][s], -1);
                  if (best == -1 || dist[k] < dist[best]) best = k;</pre>
             s = best:
         for (int k = 0; k < N; k++)
            pi[k] = min(pi[k] + dist[k], INF);
         return width[t]:
    pair<L, L> GetMaxFlow(int s, int t) {
         L totflow = 0, totcost = 0;
         while (L amt = Dijkstra(s, t)) {
             totflow += amt;
             for (int x = t; x != s; x = dad[x].first) {
                  if (dad[x].second == 1) {
                      flow[dad[x].first][x] += amt;
                      totcost += amt * cost[dad[x].first][x];
                      flow[x][dad[x].first] -= amt;
                      totcost -= amt * cost[x][dad[x].first];
         return make_pair(totflow, totcost);
};
// The following code solves UVA problem #10594: Data Flow
int main() {
    int N, M;
    while (scanf("%d%d", &N, &M) == 2) {
         VVL v(M, VL(3));
for (int i = 0: i < M: i++)</pre>
             scanf("%Ld%Ld%Ld, &v[i][0], &v[i][1], &v[i][2]);
         L D, K;
         scanf("%Ld%Ld", &D, &K);
         MinCostMaxFlow mcmf(N + 1);
         for (int i = 0; i < M; i++) {
             mcmf.AddEdge(int(v[i][0]), int(v[i][1]), K, v[i][2]);
             mcmf.AddEdge(int(v[i][1]), int(v[i][0]), K, v[i][2]);
```

```
mcmf.AddEdge(0, 1, D, 0);
pair<L, L> res = mcmf.GetMaxFlow(0, N);
if (res.first == D) {
    printf("%Ld\n", res.second);
} else {
    printf("Impossible.\n");
}
return 0;
}
// END CUT
```

3.3 Push-relabel max-flow

```
// Adjacency list implementation of FIFO push relabel maximum flow
// with the gap relabeling heuristic. This implementation is
\label{lem:continuous} \ensuremath{\text{//}} significantly faster than straight Ford-Fulkerson. \ensuremath{\text{It}} solves
// random problems with 10000 vertices and 1000000 edges in a few
// seconds, though it is possible to construct test cases that
// achieve the worst-case.
// Running time:
      0(|V|^3)
// INPUT:
       - graph, constructed using AddEdge()
      - source
       - sink
        - maximum flow value
       - To obtain the actual flow values, look at all edges with
         capacity > 0 (zero capacity edges are residual edges).
#include <cmath>
#include <vector>
#include <iostream>
#include <queue>
using namespace std;
typedef long long LL;
  int from, to, cap, flow, index;
  Edge(int from, int to, int cap, int flow, int index) :
    from(from), to(to), cap(cap), flow(flow), index(index) {}
struct PushRelabel {
  int N;
  vector<vector<Edge> > G;
  vector<LL> excess;
  vector<int> dist, active, count;
  queue<int> Q;
  PushRelabel(\textbf{int}\ N)\ :\ N(N)\ ,\ G(N)\ ,\ excess(N)\ ,\ dist(N)\ ,\ active(N)\ ,\ count(2\star N)\ \{\}
  void AddEdge(int from, int to, int cap) {
    G[from].push_back(Edge(from, to, cap, 0, G[to].size()));
    if (from == to) G[from].back().index++;
    G[to].push\_back(Edge(to, from, 0, 0, G[from].size() - 1));
  void Engueue (int v) {
    if (!active[v] && excess[v] > 0) { active[v] = true; Q.push(v); }
  void Push (Edge &e) {
    int amt = int(min(excess[e.from], LL(e.cap - e.flow)));
    if (dist[e.from] <= dist[e.to] || amt == 0) return;</pre>
    G[e.to][e.index].flow -= amt;
    excess[e.to] += amt;
    excess[e.from] -= amt;
    Enqueue(e.to);
  void Gap(int k) {
  for (int v = 0; v < N; v++) {</pre>
      if (dist[v] < k) continue;</pre>
      count[dist[v]]--;
      dist[v] = max(dist[v], N+1);
      count[dist[v]]++;
```

```
Enqueue (v);
  void Relabel(int v) {
    count[dist[v]]--;
     dist[v] = 2*N;
     for (int i = 0; i < G[v].size(); i++)
      if (G[v][i].cap - G[v][i].flow > 0)
         dist[v] = min(dist[v], dist[G[v][i].to] + 1);
     count[dist[v]]++;
    Enqueue (v);
  void Discharge(int v) {
   for (int i = 0; excess[v] > 0 && i < G[v].size(); i++) Push(G[v][i]);</pre>
     if (excess[v] > 0) {
      if (count[dist[v]] == 1)
         Gap(dist[v]);
       else
         Relabel(v);
  LL GetMaxFlow(int s, int t) {
    count[0] = N-1;
    count[v] = n-/,
count[N] = 1;
dist[s] = N;
active[s] = active[t] = true;
for (int i = 0; i < G[s].size(); i++) {</pre>
      excess[s] += G[s][i].cap;
      Push (G[s][i]);
     while (!Q.empty()) {
      int v = Q.front();
       Q.pop();
       active[v] = false;
      Discharge(v);
    LL totflow = 0;
    for (int i = 0; i < G[s].size(); i++) totflow += G[s][i].flow;</pre>
    return totflow;
};
// The following code solves SPOJ problem #4110: Fast Maximum Flow (FASTFLOW)
int main() {
 int n, m;
scanf("%d%d", &n, &m);
  PushRelabel pr(n);
for (int i = 0; i < m; i++) {</pre>
   int a, b, c;
    scanf("%d%d%d", &a, &b, &c);
    if (a == b) continue;
    pr.AddEdge(a-1, b-1, c);
    pr.AddEdge(b-1, a-1, c);
  printf("%Ld\n", pr.GetMaxFlow(0, n-1));
  return 0;
// END CUT
```

3.4 Min-cost matching

#include <algorithm>

```
#include <cstdio>
#include <cmath>
#include <vector>
using namespace std;
typedef vector<double> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
double MinCostMatching(const VVD &cost, VI &Lmate, VI &Rmate) {
    int n = int(cost.size());
    // construct dual feasible solution
    VD u(n);
    VD v(n);
    for (int i = 0; i < n; i++) {
        u[i] = cost[i][0];
         for (int j = 1; j < n; j++) u[i] = min(u[i], cost[i][j]);</pre>
    for (int j = 0; j < n; j++) {
    v[j] = cost[0][j] - u[0];</pre>
         for (int i = 1; i < n; i++) v[j] = min(v[j], cost[i][j] - u[i]);</pre>
    // construct primal solution satisfying complementary slackness
    Lmate = VI(n, -1);
    Rmate = VI(n, -1);
    int mated = 0;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
   if (Rmate[j] != -1) continue;
   if (fabs(cost[i][j] - u[i] - v[j]) < 1e-10) {</pre>
                 Rmate[j] = i;
                 mated++;
                 break;
    VD dist(n);
    VI dad(n):
    VI seen(n);
     // repeat until primal solution is feasible
    while (mated < n) {</pre>
          // find an unmatched left node
        while (Lmate[s] != -1) s++;
         // initialize Diikstra
        fill(dad.begin(), dad.end(), -1);
        fill(seen.begin(), seen.end(), 0);
        for (int k = 0; k < n; k++)
             dist[k] = cost[s][k] - u[s] - v[k];
        int j = 0;
         while (true) {
             // find closest
             for (int k = 0; k < n; k++) {
                 if (seen[k]) continue;
                 if (j == -1 || dist[k] < dist[j]) j = k;</pre>
             seen[j] = 1;
             // termination condition
             if (Rmate[j] == -1) break;
             // relax neighbors
             const int i = Rmate[i];
             for (int k = 0; k < n; k++) {
                 if (seen[k]) continue;
                 const double new_dist = dist[j] + cost[i][k] - u[i] - v[k];
                 if (dist[k] > new_dist) {
                     dist[k] = new_dist;
                      dad[k] = j;
         // update dual variables
         for (int k = 0; k < n; k++) {
            if (k == j || !seen[k]) continue;
const int i = Rmate[k];
             v[k] += dist[k] - dist[j];
             u[i] -= dist[k] - dist[j];
        u[s] += dist[j];
```

```
// augment along path
while (dad[j] >= 0) {
    const int d = dad[j];
    Rmate[j] = Rmate[d];
    Lmate[Rmate[j]] = j;
    j = d;
}
Rmate[j] = s;
Lmate[s] = j;

mated++;
}
double value = 0;
for (int i = 0; i < n; i++)
    value += cost[i][Lmate[i]];
return value;</pre>
```

3.5 Max bipartite matching

```
// This code performs maximum bipartite matching.
// Running time: O(|E| |V|) -- often much faster in practice
     INPUT: w[i][j] = edge between row node i and column node j
     OUTPUT: mr[i] = assignment for row node i, -1 if unassigned
             mc[j] = assignment for column node j, -1 if unassigned
             function returns number of matches made
#include <vector>
using namespace std;
typedef vector<int> VI;
typedef vector<VI> VVI;
for (int j = 0; j < w[i].size(); j++) {</pre>
        if (w[i][j] && !seen[j]) {
            seen[j] = true;
            if (mc[j] < 0 || FindMatch(mc[j], w, mr, mc, seen)) {
    mr[i] = j;</pre>
                return true;
    return false;
int BipartiteMatching(const VVI &w, VI &mr, VI &mc) {
    mr = VI(w.size(), -1);
    mc = VI(w[0].size(), -1);
    int ct = 0;
    for (int i = 0; i < w.size(); i++) {</pre>
         VI seen(w[0].size());
        if (FindMatch(i, w, mr, mc, seen)) ct++;
    return ct:
```

3.6 Global min-cut

```
// Adjacency matrix implementation of Stoer-Wagner min cut algorithm.
//
Running time:
// O(|V|^3)
//
// INPUT:
// - graph, constructed using AddEdge()
//
// OUTPUT:
// - (min cut value, nodes in half of min cut)
#include <cmath>
#include <vector>
#include <iostream>
using namespace std;
typedef vector<Int> VI;
typedef vector<VI> VVI;
```

```
const int INF = 1000000000;
pair<int, VI> GetMinCut(VVI &weights) {
    int N = weights.size();
    VI used(N), cut, best_cut;
    int best_weight = -1;
    for (int phase = N - 1; phase >= 0; phase--) {
         VI w = weights[0];
        VI added = used;
        int prev, last = 0;
        for (int i = 0; i < phase; i++) {</pre>
             prev = last;
last = -1;
             for (int j = 1; j < N; j++)
    if (!added[j] && (last == -1 || w[j] > w[last])) last = j;
if (i == phase - 1) {
                 for (int j = 0; j < N; j++) weights[prev][j] += weights[last][j];</pre>
                  for (int j = 0; j < N; j++) weights[j][prev] = weights[prev][j];</pre>
                 used[last] = true;
                  cut.push_back(last);
                 if (best_weight == -1 || w[last] < best_weight) {</pre>
                      best_cut = cut;
                      best_weight = w[last];
             l else (
                 for (int j = 0; j < N; j++)
                      w[j] += weights[last][j];
                 added[last] = true;
    return make_pair(best_weight, best_cut);
// BEGIN CUT
// The following code solves UVA problem #10989: Bomb, Divide and Conquer
int main() {
    int N;
    cin >> N:
    for (int i = 0; i < N; i++) {
        int n, m;
        cin >> n >> m;
         VVI weights(n, VI(n));
        for (int j = 0; j < m; j++) {
             int a, b, c;
             cin >> a >> b >> c;
             weights[a - 1][b - 1] = weights[b - 1][a - 1] = c;
        pair<int, VI> res = GetMinCut(weights);
cout << "Case #" << i + 1 << ": " << res.first << endl;</pre>
// END CUT
```

3.7 Graph cut inference

```
// Special-purpose {0,1} combinatorial optimization solver for
// problems of the following by a reduction to graph cuts:
                           sum_i psi_i(x[i])
   x[1]...x[n] in \{0,1\} + sum_{\{i < j\}} phi_{\{ij\}}(x[i], x[j])
       psi_i : {0, 1} --> R
    phi_{ij} : {0, 1} x {0, 1} --> R
// \quad phi_{\{ij\}}(0,0) \ + \ phi_{\{ij\}}(1,1) \ <= \ phi_{\{ij\}}(0,1) \ + \ phi_{\{ij\}}(1,0) \quad (\star)
// This can also be used to solve maximization problems where the
// direction of the inequality in (*) is reversed.
// INPUT: phi -- a matrix such that <math>phi[i][j][u][v] = phi_{ij}(u, v)
          psi -- a matrix such that psi[i][u] = psi_i(u)
          x -- a vector where the optimal solution will be stored
// OUTPUT: value of the optimal solution
// To use this code, create a GraphCutInference object, and call the
// DoInference() method. To perform maximization instead of minimization,
// ensure that #define MAXIMIZATION is enabled.
#include <vector>
#include <iostream>
using namespace std;
typedef vector<int> VI;
```

```
typedef vector<VI> VVI;
typedef vector<VVI> VVVI;
typedef vector<VVVI> VVVVI;
const int INF = 1000000000;
// comment out following line for minimization
#define MAXIMIZATION
struct GraphCutInference {
    int N;
    VVI cap, flow;
    VI reached;
    int Augment(int s, int t, int a) {
        reached[s] = 1;
if (s == t) return a;
        for (int k = 0; k < N; k++) {
             if (reached[k]) continue;
             if (int aa = min(a, cap[s][k] - flow[s][k])) {
                 if (int b = Augment(k, t, aa)) {
                     flow[s][k] += b;
                     flow[k][s] -= b;
                     return b;
        return 0:
    int GetMaxFlow(int s, int t) {
        N = cap.size():
        flow = VVI(N, VI(N));
        reached = VI(N);
        while (int amt = Augment(s, t, INF)) {
             totflow += amt;
             fill(reached.begin(), reached.end(), 0);
        return totflow;
    int DoInference(const VVVVI &phi, const VVI &psi, VI &x) {
        int M = phi.size();
        cap = VVI(M + 2, VI(M + 2));
        VI b(M);
        int c = 0;
        for (int i = 0; i < M; i++) {</pre>
            b[i] += psi[i][1] - psi[i][0];
                 = psi[i][0];
             for (int j = 0; j < i; j++)
            b[i] += phi[i][j][1][1] - phi[i][j][0][1];
for (int j = i + 1; j < M; j++) {
    cap[i][j] = phi[i][j][0][1] + phi[i][j][1][0] - phi[i][j][0][0] - phi[i][j][1][1];</pre>
                 b[i] += phi[i][j][1][0] - phi[i][j][0][0];
                 c += phi[i][j][0][0];
#ifdef MAXIMIZATION
        for (int i = 0; i < M; i++) {
            for (int j = i + 1; j < M; j++)
                 cap[i][j] *= -1;
        c *= -1;
#endif
        for (int i = 0; i < M; i++) {
            if (b[i] >= 0) {
                 cap[M][i] = b[i];
             | else {
                 cap[i][M + 1] = -b[i];
                 c += b[i];
        int score = GetMaxFlow(M, M + 1);
        fill(reached.begin(), reached.end(), 0);
        Augment (M, M + 1, INF);
        for (int i = 0; i < M; i++) x[i] = reached[i] ? 0 : 1;</pre>
#ifdef MAXIMIZATION
        score \star = -1:
#endif
        return score;
};
```

// solver for "Cat vs. Dog" from NWERC 2008

```
int numcases;
cin >> numcases;
for (int caseno = 0; caseno < numcases; caseno++) {</pre>
    int c, d, v;
    cin >> c >> d >> v;
    VVVVI phi(c + d, VVVI(c + d, VVI(2, VI(2))));
    VVI psi(c + d, VI(2));
    for (int i = 0; i < v; i++) {
        char p, q;
        int u, v;
        cin >> p >> u >> q >> v;
        11--:
        if (p == 'C') {
            phi[u][c + v][0][0]++;
            phi[c + v][u][0][0]++;
            phi[v][c + u][1][1]++;
            phi[c + u][v][1][1]++;
    GraphCutInference graph;
    cout << graph.DoInference(phi, psi, x) << endl;</pre>
return 0:
```

4 Geometry

4.1 Convex hull

```
// Compute the 2D convex hull of a set of points using the monotone chain
// \ algorithm. \ Eliminate \ redundant \ points \ from \ the \ hull \ if \ REMOVE\_REDUNDANT \ is
// #defined.
// Running time: O(n log n)
    INPUT: a vector of input points, unordered.
    OUTPUT: a vector of points in the convex hull, counterclockwise, starting
              with bottommost/leftmost point
#include <cstdio>
#include <cassert>
#include <vector>
#include <algorithm>
#include <cmath>
// BEGIN CUT
#include <map>
// END CUT
using namespace std;
#define REMOVE_REDUNDANT
typedef double T;
const T EPS = 1e-7;
struct PT {
    T x, y;
    PT() {}
    PT(T x, T y) : x(x), y(y) {}
    bool operator<(const PT &rhs) const { return make_pair(y, x) < make_pair(rhs.y, rhs.x); }</pre>
    bool operator==(const PT &rhs) const { return make_pair(y, x) == make_pair(rhs.y, rhs.x); }
T cross(PT p, PT q) { return p.x * q.y - p.y * q.x; }
T area2(PT a, PT b, PT c) { return cross(a, b) + cross(b, c) + cross(c, a); }
bool between (const PT &a, const PT &b, const PT &c) {
    return (fabs(area2(a, b, c)) < EPS && (a.x - b.x) * (c.x - b.x) <= 0 && (a.y - b.y) * (c.y - b.y)
          <= 0);
#endif
void ConvexHull(vector<PT> &pts) {
    sort(pts.begin(), pts.end());
   pts.erase(unique(pts.begin(), pts.end()), pts.end());
    vector<PT> up, dn;
    for (int i = 0; i < pts.size(); i++) {</pre>
        while (up.size() > 1 && area2(up[up.size() - 2], up.back(), pts[i]) >= 0) up.pop_back();
        while (dn.size() > 1 && area2(dn[dn.size() - 2], dn.back(), pts[i]) <= 0) dn.pop_back();
```

```
up.push_back(pts[i]);
        dn.push_back(pts[i]);
    for (int i = (int) up.size() - 2; i >= 1; i--) pts.push_back(up[i]);
#ifdef REMOVE_REDUNDANT
    if (pts.size() <= 2) return;</pre>
    dn.clear();
    dn.push_back(pts[0]);
    dn.push_back(pts[1]);
    for (int i = 2; i < pts.size(); i++) {</pre>
        if (between(dn[dn.size() - 2], dn[dn.size() - 1], pts[i])) dn.pop_back();
        dn.push_back(pts[i]);
    if (dn.size() >= 3 && between(dn.back(), dn[0], dn[1])) {
        dn[0] = dn.back();
        dn.pop_back();
    pts = dn;
#endif
// BEGIN CUT
// The following code solves SPOJ problem #26: Build the Fence (BSHEEP)
int main() {
    int t:
    scanf("%d", &t);
    for (int caseno = 0; caseno < t; caseno++) {</pre>
        int n;
        scanf("%d", &n);
         vector<PT> v(n);
        for (int i = 0; i < n; i++) scanf("%lf%lf", &v[i].x, &v[i].y);</pre>
        vector<PT> h(v);
        map<PT, int> index;
        for (int i = n - 1; i >= 0; i--) index[v[i]] = i + 1;
        ConvexHull(h);
        double len = 0;
        for (int i = 0; i < h.size(); i++) {
            double dx = h[i].x - h[(i + 1) % h.size()].x;
double dy = h[i].y - h[(i + 1) % h.size()].y;
             len += sqrt(dx * dx + dy * dy);
        if (caseno > 0) printf("\n");
        printf("%.2f\n", len);
        for (int i = 0; i < h.size(); i++) {
            if (i > 0) printf(" ");
            printf("%d", index[h[i]]);
        printf("\n");
// END CUT
```

4.2 Miscellaneous geometry

```
// C++ routines for computational geometry.
#include <iostream>
#include <vector>
#include <cmath>
#include <cassert>
using namespace std:
double INF = 1e100;
double EPS = 1e-12;
   double x, y;
    PT() {}
   PT(double x, double y) : x(x), y(y) {}
   PT(const PT &p) : x(p.x), y(p.y) {}
   PT operator+(const PT &p) const { return PT(x + p.x, y + p.y); }
   PT operator-(const PT &p) const { return PT(x - p.x, y - p.y); }
   PT operator*(double c) const { return PT(x * c, y * c); }
   PT operator/(double c) const { return PT(x / c, y / c); }
1:
ostream &operator << (ostream &os, const PT &p) {
```

```
return os << "(" << p.x << "," << p.y << ")";
// rotate a point CCW or CW around the origin
PT RotateCCW90 (PT p) { return PT(-p.y, p.x); }
PT RotateCW90 (PT p) { return PT(p.y, -p.x); }
PT RotateCCW(PT p, double t) {
    return PT(p.x * cos(t) - p.y * sin(t), p.x * sin(t) + p.y * cos(t));
// project point c onto line through a and b
// assuming a != b
PT ProjectPointLine(PT a, PT b, PT c) {
    return a + (b - a) * dot(c - a, b - a) / dot(b - a, b - a);
// project point c onto line segment through a and b
PT ProjectPointSegment (PT a, PT b, PT c) {
    double r = dot(b - a, b - a);

    if (fabs(r) < EPS) return a;</pre>
     r = dot(c - a, b - a) / r;
    if (r < 0) return a;</pre>
    if (r > 1) return b;
    return a + (b - a) * r;
 // compute distance from c to segment between a and b
double DistancePointSegment (PT a, PT b, PT c) {
    return sqrt(dist2(c, ProjectPointSegment(a, b, c)));
// compute distance between point (x,y,z) and plane ax+by+cz=d double DistancePointPlane(double x, double y, double z,
    double a, double b, double c, double d) {

return fabs(a * x + b * y + c * z - d) / sqrt(a * a + b * b + c * c);
 // determine if lines from a to b and c to d are parallel or collinear
bool LinesParallel (PT a, PT b, PT c, PT d) {
    return fabs(cross(b - a, c - d)) < EPS;
bool LinesCollinear (PT a, PT b, PT c, PT d) {
    return LinesParallel(a, b, c, d)
            && fabs(cross(a - b, a - c)) < EPS
            && fabs(cross(c - d, c - a)) < EPS;
// determine if line segment from a to b intersects with
// line segment from c to d
bool SegmentsIntersect(PT a, PT b, PT c, PT d) {
    if (LinesCollinear(a, b, c, d)) {
   if (dist2(a, c) < EPS || dist2(a, d) < EPS ||</pre>
             dist2(b, c) < EPS || dist2(b, d) < EPS)
             return true;
         if (dot(c - a, c - b) > 0 & & dot(d - a, d - b) > 0 & & dot(c - b, d - b) > 0)
             return false:
         return true:
    if (cross(d - a, b - a) * cross(c - a, b - a) > 0) return false;
    if (cross(a - c, d - c) * cross(b - c, d - c) > 0) return false;
    return true:
^{\prime\prime} // compute intersection of line passing through a and b
// with line passing through c and d, assuming that unique
// intersection exists; for segment intersection, check if
 // segments intersect first
PT ComputeLineIntersection(PT a, PT b, PT c, PT d) {
    b = b - a;
    d = c - d;
     assert (dot (b, b) > EPS && dot (d, d) > EPS);
    return a + b * cross(c, d) / cross(b, d);
// compute center of circle given three points
PT ComputeCircleCenter(PT a, PT b, PT c) {
    b = (a + b) / 2;
    c = (a + c) / 2;
    return ComputeLineIntersection(b, b + RotateCW90(a - b), c, c + RotateCW90(a - c));
// determine if point is in a possibly non-convex polygon (by William
// Randolph Franklin); returns 1 for strictly interior points, 0 for
 // strictly exterior points, and 0 or 1 for the remaining points.
// Note that it is possible to convert this into an *exact* test using
// integer arithmetic by taking care of the division appropriately
// (making sure to deal with signs properly) and then by writing exact
 // tests for checking point on polygon boundary
bool PointInPolygon (const vector <PT> &p, PT q) {
    bool c = 0;
    for (int i = 0; i < p.size(); i++) {
   int j = (i + 1) % p.size();</pre>
        if ((p[i].y <= q.y && q.y < p[j].y ||
    p[j].y <= q.y && q.y < p[i].y) &&
    q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y))</pre>
             c = !c;
    return c:
 .
// determine if point is on the boundary of a polygon
bool PointOnPolygon(const vector<PT> &p, PT q) {
```

```
for (int i = 0; i < p.size(); i++)</pre>
         if (dist2(ProjectPointSegment(p[i], p[(i + 1) % p.size()], q), q) < EPS)
             return true:
// compute intersection of line through points a and b with
// circle centered at c with radius r >
vector<PT> CircleLineIntersection(PT a, PT b, PT c, double r) {
    vector<PT> ret;
    b = b - a;
    a = a - c;
    double A = dot(b, b);
double B = dot(a, b);
    double C = dot(a, a) - r * r;
double D = B * B - A * C;
    if (D < -EPS) return ret;
    ret.push_back(c + a + b \star (-B + sqrt(D + EPS)) / A);
    if (D > EPS)
        ret.push_back(c + a + b \star (-B - sqrt(D)) / A);
    return ret;
// compute intersection of circle centered at a with radius \boldsymbol{r}
// with circle centered at b with radius R
vector<PT> CircleCircleIntersection(PT a, PT b, double r, double R) {
    vector<PT> ret;
    double d = sqrt(dist2(a, b));
    if (d > r + R \mid \mid d + min(r, R) < max(r, R)) return ret;
    double x = (d * d - R * R + r * r) / (2 * d);
    double y = sqrt(r * r - x * x);
    PT v = (b - a) / d;
    ret.push_back(a + v * x + RotateCCW90(v) * y);
        ret.push_back(a + v * x - RotateCCW90(v) * y);
// This code computes the area or centroid of a (possibly nonconvex)
// polygon, assuming that the coordinates are listed in a clockwise or
// counterclockwise fashion. Note that the centroid is often known as // the "center of gravity" or "center of mass".
double ComputeSignedArea(const vector<PT> &p) {
    double area = 0;
    for (int i = 0; i < p.size(); i++) {
  int j = (i + 1) % p.size();</pre>
        area += p[i].x * p[j].y - p[j].x * p[i].y;
    return area / 2.0;
double ComputeArea(const vector<PT> &p) {
    return fabs (ComputeSignedArea(p));
PT ComputeCentroid(const vector<PT> &p)
    PT c(0, 0);
    double scale = 6.0 * ComputeSignedArea(p);
    for (int i = 0; i < p.size(); i++) {
  int j = (i + 1) % p.size();</pre>
        c = c + (p[i] + p[j]) * (p[i].x * p[j].y - p[j].x * p[i].y);
    return c / scale:
// tests whether or not a given polygon (in CW or CCW order) is simple
bool IsSimple(const vector<PT> &p)
    for (int i = 0; i < p.size(); i++) {
        for (int k = i + 1; k < p.size(); k++) {</pre>
             int j = (i + 1) % p.size();
             int 1 = (k + 1) % p.size();
             if (i == 1 || j == k) continue;
             if (SegmentsIntersect(p[i], p[j], p[k], p[l]))
                 return false:
    return true:
int main() {
    // expected: (-5,2)
    cerr << RotateCCW90(PT(2, 5)) << endl;</pre>
    // expected: (5,-2)
    cerr << RotateCW90(PT(2, 5)) << endl;</pre>
    // expected: (-5,2)
    cerr << RotateCCW(PT(2, 5), M_PI / 2) << endl;</pre>
    // expected: (5,2)
    cerr << ProjectPointLine(PT(-5, -2), PT(10, 4), PT(3, 7)) << endl;</pre>
    // expected: (5,2) (7.5,3) (2.5,1)
    cerr << ProjectPointSegment(PT(-5, -2), PT(10, 4), PT(3, 7)) << " "
          << ProjectPointSegment(PT(7.5, 3), PT(10, 4), PT(3, 7)) << " "
          << ProjectPointSegment(PT(-5, -2), PT(2.5, 1), PT(3, 7)) << endl;
    // expected: 6.78903
```

```
cerr << DistancePointPlane(4, -4, 3, 2, -2, 5, -8) << endl;
cerr << LinesParallel(PT(1, 1), PT(3, 5), PT(2, 1), PT(4, 5)) << " "
     << LinesParallel(PT(1, 1), PT(3, 5), PT(2, 0), PT(4, 5)) << " "
     << LinesParallel(PT(1, 1), PT(3, 5), PT(5, 9), PT(7, 13)) << endl;
cerr << LinesCollinear(PT(1, 1), PT(3, 5), PT(2, 1), PT(4, 5)) << " "</pre>
    << LinesCollinear(PT(1, 1), PT(3, 5), PT(2, 0), PT(4, 5)) << " "
     << LinesCollinear(PT(1, 1), PT(3, 5), PT(5, 9), PT(7, 13)) << endl;
<< SegmentsIntersect(PT(0, 0), PT(2, 4), PT(5, 5), PT(1, 7)) << endl;
cerr << ComputeLineIntersection(PT(0, 0), PT(2, 4), PT(3, 1), PT(-1, 3)) << endl;
cerr << ComputeCircleCenter(PT(-3, 4), PT(6, 1), PT(4, 5)) << endl;</pre>
vector<PT> v:
v.push_back(PT(0, 0));
v.push back(PT(5, 0));
v.push back(PT(5, 5));
v.push back(PT(0, 5));
// expected: 1 1 1 0 0
cerr << PointInPolygon(v, PT(2, 2)) << " "</pre>
     << PointInPolygon(v, PT(2, 0)) << " "
     << PointInPolygon(v, PT(0, 2)) << " "
    << PointInPolygon(v, PT(5, 2)) << " "
     << PointInPolygon(v, PT(2, 5)) << endl;
// expected: 0 1 1 1 1
cerr << PointOnPolygon(v, PT(2, 2)) << " "</pre>
    << PointOnPolygon(v, PT(2, 0)) << " "
    << PointOnPolygon(v, PT(0, 2)) << " "
    << PointOnPolygon(v, PT(5, 2)) << " "
    << PointOnPolygon(v, PT(2, 5)) << endl;
// expected: (1,6)
             (5,4) (4,5)
            blank line
             (4,5) (5,4)
             (4,5) (5,4)
cerr << endl:
u = CircleLineIntersection(PT(0, 9), PT(9, 0), PT(1, 1), 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " ";</pre>
cerr << endl:
u = CircleCircleIntersection(PT(1, 1), PT(10, 10), 5, 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " ";</pre>
cerr << endl;</pre>
u = CircleCircleIntersection(PT(1, 1), PT(8, 8), 5, 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " ";</pre>
u = CircleCircleIntersection(PT(1, 1), PT(4.5, 4.5), 10, sqrt(2.0) / 2.0);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " ";</pre>
cerr << endl;
// area should be 5.0
// centroid should be (1.1666666, 1.166666)
PT pa[] = {PT(0, 0), PT(5, 0), PT(1, 1), PT(0, 5)};
vector<PT> p(pa, pa + 4);
PT c = ComputeCentroid(p);
cerr << "Area: " << ComputeArea(p) << endl;
cerr << "Centroid: " << c << endl;</pre>
```

4.3 3D geometry

```
public class Geom3D {
    // distance from point (x, y, z) to plane aX + bY + cZ + d = 0
    public static double ptPlaneDist (double x, double y, double z,
        double a, double b, double c, double d) {
        return Math.abs(a*x + b*y + c*z + d) / Math.sqrt(a*a + b*b + c*c);
    }
}
```

```
// distance between parallel planes aX + bY + cZ + d1 = 0 and
public static double planePlaneDist(double a, double b, double c,
    double d1, double d2) {
  return Math.abs(d1 - d2) / Math.sqrt(a*a + b*b + c*c);
// distance from point (px, py, pz) to line (x1, y1, z1)-(x2, y2, z2)
// (or ray, or segment; in the case of the ray, the endpoint is the
// first point)
public static final int LINE = 0;
public static final int SEGMENT = 1;
public static final int RAY = 2;
public static double ptLineDistSq(double x1, double y1, double z1,
    double x2, double y2, double z2, double px, double py, double pz,
    int type) {
  double pd2 = (x1-x2) * (x1-x2) + (y1-y2) * (y1-y2) + (z1-z2) * (z1-z2);
  double x, y, z;
  if (pd2 == 0) {
   x = x1;
    y = y1;

z = z1;
  l else (
    double u = ((px-x1)*(x2-x1) + (py-y1)*(y2-y1) + (pz-z1)*(z2-z1)) / pd2;
    x = x1 + u * (x2 - x1);
    y = y1 + u * (y2 - y1);

z = z1 + u * (z2 - z1);
    if (type != LINE && u < 0) {
     x = x1:
      y = y1
    if (type == SEGMENT && u > 1.0) {
      x = x2;
      v = v2;
      z = z2;
  return (x-px)*(x-px) + (y-py)*(y-py) + (z-pz)*(z-pz);
public static double ptLineDist(double x1, double y1, double z1,
    double x2, double y2, double z2, double px, double py, double pz,
    int type) {
  return Math.sqrt(ptLineDistSq(x1, y1, z1, x2, y2, z2, px, py, pz, type));
```

4.4 Slow Delaunay triangulation

```
// Slow but simple Delaunay triangulation. Does not handle
// degenerate cases (from O'Rourke, Computational Geometry in C)
// Running time: O(n^4)
              x[] = x-coordinates
              y[] = y-coordinates
// OUTPUT:
             triples = a vector containing m triples of indices
                         corresponding to triangle vertices
#include<vector>
using namespace std;
typedef double T;
struct triple {
    int i, j, k;
    triple() {}
    triple(int i, int j, int k) : i(i), j(j), k(k) {}
vector<triple> delaunayTriangulation(vector<T> &x, vector<T> &y) {
    vector<T> z(n):
    vector<triple> ret;
    for (int i = 0; i < n; i++)
   z[i] = x[i] * x[i] + y[i] * y[i];</pre>
    for (int i = 0; i < n - 2; i++) {
        for (int j = i + 1; j < n; j++) {
    for (int k = i + 1; k < n; k++) {
```

```
if (j == k) continue;
             double zn = (x[j] - x[i]) * (y[k] - y[i]) - (x[k] - x[i]) * (y[j] - y[i]);
              for (int m = 0; flag && m < n; m++)</pre>
                 flag = flag && ((x[m] - x[i]) * xn +
                                (y[m] - y[i]) * yn +
                                (z[m] - z[i]) * zn <= 0);
             if (flag) ret.push_back(triple(i, j, k));
   return ret:
int main() {
   T \times S[] = \{0, 0, 1, 0.9\};
   T ys[] = \{0, 1, 0, 0.9\};
   vector<T> x(&xs[0], &xs[4]), y(&ys[0], &ys[4]);
   vector<triple> tri = delaunayTriangulation(x, y);
            0 3 2
   for (i = 0; i < tri.size(); i++)</pre>
      printf("%d %d %d\n", tri[i].i, tri[i].j, tri[i].k);
   return 0:
```

5 Numerical algorithms

5.1 Number theory (modular, Chinese remainder, linear Diophantine)

```
// This is a collection of useful code for solving problems that
// involve modular linear equations. Note that all of the
// algorithms described here work on nonnegative integers.
#include <iostream
#include <vector>
#include <algorithm>
using namespace std;
typedef vector<int> VI;
typedef pair<int, int> PII;
// return a % b (positive value)
int mod(int a, int b) {
    return ((a % b) + b) % b;
// computes qcd(a,b)
int gcd(int a, int b) {
    while (b) {
       int t = a % b;
        a = b;
        b = t;
    return a;
// computes lcm(a,b)
int lcm(int a, int b)
    return a / gcd(a, b) * b;
// (a^b) mod m via successive squaring
int powermod(int a, int b, int m) {
    int ret = 1;
    while (b) {
       if (b & 1) ret = mod(ret * a, m);
        a = mod(a * a, m);
        b >>= 1;
// Finds two integers x and y, such that ax+by=\gcd(a,b). If
// If a and b are coprime, then x is the inverse of a \pmod{b}.
// Returns gcd(a, b)
11 extended_euclid(11 a, 11 b, 11 &x, 11 &y) {
    if (!b) return x = 1, y = 0, a;
    11 d = euclid(b, a % b, y, x);
    return y = a/b * x, d;
// finds all solutions to ax = b (mod n)
```

```
VI modular_linear_equation_solver(int a, int b, int n) {
     int x, y;
     VI ret,
     int g = extended_euclid(a, n, x, y);
     if (!(b % g)) {
         x = mod(x * (b / g), n);
         for (int i = 0; i < g; i++)
              ret.push_back(mod(x + i * (n / g), n));
     return ret;
^{\prime} // computes b such that ab = 1 (mod n), returns -1 on failure
int mod_inverse(int a, int n) {
     int x, y;
    int g = extended_euclid(a, n, x, y);
if (g > 1) return -1;
     return mod(x, n);
// compute mod inverse of all numbers up to n
vector<11> precompute_inv_mod(int n, 11 mod) {
     vector<ll> inv(n + 1);
     inv[1] = 1;
     for (int i = 2; i <= n; ++i) {</pre>
         inv[i] = mod - (mod / i) * inv[mod % i] % mod;
     return inv:
// Chinese remainder theorem (special case): find z such that
// z % m1 = r1, z % m2 = r2. Here, z is unique modulo M = lcm(m1, m2).
// Return (z, M). On failure, M = -1.
PII chinese_remainder_theorem(int m1, int r1, int m2, int r2) {
     int g = extended_euclid(m1, m2, s, t);
     if (r1 % g != r2 % g) return make_pair(0, -1);
     return make_pair(mod(s * r2 * m1 + t * r1 * m2, m1 * m2) / g, m1 * m2 / g);
// Chinese remainder theorem: find z such that
// z % m[i] = r[i] for all i. Note that the solution is
// unique modulo M = lcm_i (m[i]). Return (z, M). On
// failure, M = -1. Note that we do not require the a[i]'s
// to be relatively prime.
PII chinese_remainder_theorem(const VI &m, const VI &r) {
    PII ret = make_pair(r[0], m[0]);
    for (int i = 1; i < m.size(); i++) {
    ret = chinese remainder theorem(ret.second, ret.first, m[i], r[i]);</pre>
         if (ret.second == -1) break;
// computes x and y such that ax + by = c
 // returns whether the solution exists
bool linear_diophantine(int a, int b, int c, int &x, int &y) {
     if (!a && !b) {
         if (c) return false:
         x = 0; v = 0;
         return true:
         if (c % b) return false;
         x = 0; v = c / b;
         return true;
     if (!b) {
         if (c % a) return false;
         return true;
     int g = gcd(a, b);
     if (c % g) return false;
    x = c / g * mod_inverse(a / g, b / g);

y = (c - a * x) / b;
     return true;
int main() {
     int x, y;
    int g = extended_euclid(14, 30, x, y);
cout << g << " " << x << " " << y << endl; //2 -2 1</pre>
     VI sols = modular_linear_equation_solver(14, 30, 100);
     for (int i = 0; i < sols.size(); i++) cout << sols[i] << " "; // 95 451</pre>
     cout << endl;
     cout << mod_inverse(8, 9) << endl; // 8
    PII ret = chinese_remainder_theorem(VI({3, 5, 7}), VI({2, 3, 2}));
cout << ret.first << " " << ret.second << endl; // 23 105
    ret = chinese_remainder_theorem(VI({4, 6}), VI({3, 5}));
cout << ret.first << " " << ret.second << endl; // 11 12</pre>
    if (!linear_diophantine(7, 2, 5, x, y)) cout << "ERROR" << endl;
cout << x << " " << y << endl; // 5 -15</pre>
     return 0:
```

5.2 Systems of linear equations, matrix inverse, determinant

```
// Gauss-Jordan elimination with full pivoting.
    (1) solving systems of linear equations (AX=B)
     (2) inverting matrices (AX=I)
     (3) computing determinants of square matrices
// Running time: O(n^3)
// INPUT:
             a[][] = an nxn matrix
             b[][] = an nxm matrix
                    = an nxm matrix (stored in b[][])
              A^{-1} = an nxn matrix (stored in a[][])
              returns determinant of a[][]
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
const double EPS = 1e-10;
typedef vector<int> VI;
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
T GaussJordan (VVT &a, VVT &b) {
    const int n = a.size();
    const int m = b[0].size();
    VI irow(n), icol(n), ipiv(n);
    T \det = 1:
    for (int i = 0; i < n; i++) {</pre>
        int pj = -1, pk = -1;
for (int j = 0; j < n; j++)
    if (!ipiv[j])</pre>
                 for (int k = 0; k < n; k++)
                     if (!ipiv[k])
                          if (pj == -1 || fabs(a[j][k]) > fabs(a[pj][pk])) {
         if (fabs(a[pj][pk]) < EPS) {</pre>
             cerr << "Matrix is singular." << endl;</pre>
             exit(0);
         ipiv[pk]++;
        swap(a[pj], a[pk]);
         swap(b[pj], b[pk]);
        if (pj != pk) det *= -1;
irow[i] = pj;
        icol[i] = pk;
        T c = 1.0 / a[pk][pk];
         det *= a[pk][pk];
         a[pk][pk] = 1.0;
         for (int p = 0; p < n; p++) a[pk][p] *= c;
         for (int p = 0; p < m; p++) b[pk][p] *= c;
         for (int p = 0; p < n; p++)
             if (p != pk) {
                 c = a[p][pk];
                 for (int q = 0; q < n; q++) a[p][q] -= a[pk][q] * c;
for (int q = 0; q < m; q++) b[p][q] -= b[pk][q] * c;
    for (int p = n - 1; p >= 0; p--)
        if (irow[p] != icol[p]) {
             for (int k = 0; k < n; k++) swap(a[k][irow[p]], a[k][icol[p]]);</pre>
    return det;
int main() {
    const int n = 4:
    const int m = 2;
    double A[n][n] = \{\{1, 2, 3, 4\},
                        {1, 0, 1, 0},
                        \{5, 3, 2, 4\},\
                        {6, 1, 4, 6}};
    double B[n][m] = \{\{1, 2\},
                        {4, 3},
```

```
{5, 6},
                     {8, 7}};
VVT a(n), b(n);
for (int i = 0; i < n; i++)
     a[i] = VT(A[i], A[i] + n);
    b[i] = VT(B[i], B[i] + m);
double det = GaussJordan(a, b);
// expected: 60
cout << "Determinant: " << det << endl;</pre>
// expected: -0.233333 0.166667 0.133333 0.0666667
              0.166667 0.166667 0.333333 -0.333333
               0.05 -0.75 -0.1 0.2
cout << "Inverse: " << endl;</pre>
for (int i = 0; i < n; i++) {</pre>
    for (int j = 0; j < n; j++)
    cout << a[i][j] << ' ';</pre>
    cout << endl;</pre>
// expected: 1.63333 1.3
              -0.166667 0.5
               2.36667 1.7
              -1.85 -1.35
cout << "Solution: " << endl;</pre>
for (int i = 0; i < n; i++) {
    for (int j = 0; j < m; j++)
        cout << b[i][j] << ' ';</pre>
    cout << endl;
```

5.3 Reduced row echelon form, matrix rank

```
// Reduced row echelon form via Gauss-Jordan elimination
// with partial pivoting. This can be used for computing
// the rank of a matrix.
// Running time: O(n^3)
// INPUT:
             a[][] = an nxm matrix
// OUTPUT: rref[][] = an nxm matrix (stored in a[][])
              returns rank of a[][]
#include <iostream>
#include <vector>
#include <cmath>
using namespace std:
const double EPSILON = 1e-10;
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
    int n = a.size();
    int m = a[0].size();
    int r = 0;
    for (int c = 0; c < m && r < n; c++) {</pre>
        int i = r:
        for (int i = r + 1; i < n; i++)
        if (fabs(a[i][c]) > fabs(a[j][c])) j = i;
if (fabs(a[j][c]) < EPSILON) continue;</pre>
        swap(a[j], a[r]);
         T s = 1.0 / a[r][c];
        for (int j = 0; j < m; j++) a[r][j] *= s;
for (int i = 0; i < n; i++)</pre>
             if (i != r) {
                 for (int j = 0; j < m; j++) a[i][j] -= t * a[r][j];
        <u>r</u>++;
    return r:
int main() {
    const int n = 5, m = 4;
    double A[n][m] = {
```

```
{16, 2, 3, 13}, {5, 11, 10, 8},
          {9, 7, 6, 12}, {4, 14, 15, 1},
          {13, 21, 21, 13}};
VVT a(n);
for (int i = 0; i < n; i++)</pre>
    a[i] = VT(A[i], A[i] + m);
int rank = rref(a);
cout << "Rank: " << rank << endl; // 3
// expected: 1 0 0 1
               0 1 0 3
                0 0 0 3.10862e-15
                0 0 0 2.22045e-15
cout << "rref: " << endl;
for (int i = 0; i < 5; i++) {
    for (int j = 0; j < 4; j++)
    cout << a[i][j] << ' ';</pre>
    cout << endl:
```

5.4 Fast Fourier transform

```
#include <cstdio>
#include <cmath>
struct cpx {
    cpx (double aa) : a(aa), b(0) {}
     cpx(double aa, double bb) : a(aa), b(bb) {}
    double a, b;
    double modsq(void) const {
         return a * a + b * b;
    cpx bar(void) const {
        return cpx(a, -b);
1:
cpx operator+(cpx a, cpx b) {
    return cpx(a.a + b.a, a.b + b.b);
cpx operator*(cpx a, cpx b) {
    return cpx(a.a * b.a - a.b * b.b, a.a * b.b + a.b * b.a);
cpx operator/(cpx a, cpx b)
    cpx r = a * b.bar();
    return cpx(r.a / b.modsq(), r.b / b.modsq());
cpx EXP(double theta) {
    return cpx(cos(theta), sin(theta));
const double two_pi = 4 * acos(0);
           input array
// in:
// out:
           output array
// step: {SET TO 1} (used internally)
// size: length of the input/output {MUST BE A POWER OF 2}
           either plus or minus one (direction of the FFT, 1 is first)
// RESULT: out[k] = \sum_{j=0}^{\infty} \{size - 1\} in[j] * exp(dir * 2pi * i * j * k / size)
void FFT(cpx *in, cpx *out, int step, int size, int dir) {
    if (size < 1) return;</pre>
    if (size == 1) {
         out[0] = in[0];
         return:
    FFT(in, out, step * 2, size / 2, dir);
FFT(in + step, out + size / 2, step * 2, size / 2, dir);
    for (int i = 0; i < size / 2; i++) {
         cpx even = out[i];
         cpx odd = out[i + size / 2];
         out[i] = even + EXP(dir * two_pi * i / size) * odd;
         out[i + size / 2] = even + EXP(dir * two_pi * (i + size / 2) / size) * odd;
// Usage:
// f[0...N-1] and g[0..N-1] are numbers
/// Want to compute the convolution h, defined by // h[n] = sum of f[k]g[n-k] (k=0,\ldots,N-1). (Here, the index is cyclic; f[-1]=f[N-1], f[-2]=f[N-2], etc.
// Let F[0...N-1] be FFT(f), and similarly, define G and H. 
// The convolution theorem says H[n] = F[n]G[n] (element-wise product).
// To compute h[] in O(N log N) time, do the following:
```

```
1. Compute F and G (pass dir = 1 as the argument).
    2. Get H by element-wise multiplying F and G.
     3. Get h by taking the inverse FFT (use dir = -1 as the argument)
        and *dividing by N*. DO NOT FORGET THIS SCALING FACTOR.
int main(void) {
    printf("If rows come in identical pairs, then everything works.\n");
    cpx \ a[8] = \{0, 1, cpx(1, 3), cpx(0, 5), 1, 0, 2, 0\};
    cpx b[8] = \{1, cpx(0, -2), cpx(0, 1), 3, -1, -3, 1, -2\};
    cpx B[8];
    FFT(a, A, 1, 8, 1);
    FFT(b, B, 1, 8, 1);
    for (int i = 0; i < 8; i++) {
        printf("%7.21f%7.21f", A[i].a, A[i].b);
    printf("\n");
    for (int i = 0; i < 8; i++) {
        cpx Ai(0, 0);
        for (int j = 0; j < 8; j++) {
            Ai = Ai + a[j] * EXP(j * i * two_pi / 8);
        printf("%7.21f%7.21f", Ai.a, Ai.b);
    printf("\n");
    cpx AB[81:
    for (int i = 0; i < 8; i++)
        AB[i] = A[i] * B[i];
    cpx aconvb[8];
    FFT (AB, aconvb, 1, 8, -1);
    for (int i = 0; i < 8; i++)
        aconvb[i] = aconvb[i] / 8;
    for (int i = 0; i < 8; i++) {
        printf("%7.21f%7.21f", aconvb[i].a, aconvb[i].b);
    printf("\n");
    for (int i = 0; i < 8; i++) {
        cpx aconvbi(0, 0);
        cpx aconvbi (v, v),
for (int j = 0; j < 8; j++) {
    aconvbi = aconvbi + a[j] * b[(8 + i - j) % 8];</pre>
        printf("%7.21f%7.21f", aconvbi.a, aconvbi.b);
    printf("\n");
    return 0;
```

5.5 Simplex algorithm

```
// Two-phase simplex algorithm for solving linear programs of the form
       maximize
       subject to Ax <= b
                    x >= 0
// INPUT: A -- an m x n matrix
          b -- an m-dimensional vector
          c -- an n-dimensional vector
          x -- a vector where the optimal solution will be stored
// OUTPUT: value of the optimal solution (infinity if unbounded
// above, nan if infeasible)
// To use this code, create an LPSolver object with A, b, and c as
// arguments. Then, call Solve(x).
#include <iostream>
#include <iomanip>
#include <vector>
#include <cmath>
#include <limits>
using namespace std;
typedef long double DOUBLE;
typedef vector<DOUBLE> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
const DOUBLE EPS = 1e-9;
struct LPSolver {
 int m, n;
```

```
VVD D
  LPSolver(const VVD &A, const VD &b, const VD &c) :
    m(b.size()), n(c.size()), N(n + 1), B(m), D(m + 2, VD(n + 2)) {
    for (int i=0; i < m; i++) for (int j=0; j < n; j++) D[i][j] = A[i][j]; for (int i=0; i < m; i++) { B[i] = n+1; D[i][n] = -1; D[i][n+1] = b[i]; } for (int j=0; j < n; j++) { N[j] = j; D[m][j] = -c[j]; }
    N[n] = -1; D[m + 1][n] = 1;
  void Pivot(int r, int s) {
    double inv = 1.0 / D[r][s];
for (int i = 0; i < m + 2; i++) if (i != r)
    for (int j = 0; j < n + 2; j++) if (j != s)
    D[i][j] -= D[r][j] * D[i][s] * inv;</pre>
    for (int j = 0; j < n + 2; j++) if (j != s) D[r][j] *= inv;
for (int i = 0; i < m + 2; i++) if (i != r) D[i][s] *= -inv;</pre>
    D[r][s] = inv;
    swap(B[r], N[s]);
  bool Simplex(int phase) {
    int x = phase == 1 ? m + 1 : m;
    while (true) {
      int s = -1;
       int s = -1;
for (int j = 0; j <= n; j++) {
  if (phase == 2 && N[j] == -1) continue;
  if (s == -1 || D[x][j] < D[x][s] || D[x][j] == D[x][s] && N[j] < N[s]) s = j;</pre>
       if (D[x][s] > -EPS) return true;
       int r = -1;
for (int i = 0; i < m; i++) {</pre>
         if (D[i][s] < EPS) continue;</pre>
         if (r == -1 || D[i][n + 1] / D[i][s] < D[r][n + 1] / D[r][s] ||
            (D[i][n+1] / D[i][s]) == (D[r][n+1] / D[r][s]) && B[i] < B[r]) r = i;
       if (r == -1) return false;
      Pivot(r, s);
  DOUBLE Solve(VD &x) {
    int r = 0;
    for (int i = 1; i < m; i++) if (D[i][n + 1] < D[r][n + 1]) r = i;
    if (D[r][n + 1] < -EPS) {
      Pivot(r, n);
       if (!Simplex(1) || D[m + 1][n + 1] < -EPS) return -numeric_limits<DOUBLE>::infinity();
       for (int i = 0; i < m; i++) if (B[i] == -1) {
         int s = -1;
         for (int j = 0; j \le n; j++)

if (s = -1 \mid | D[i][j] \le D[i][s] \mid | D[i][j] == D[i][s] && N[j] < N[s]) s = j;
    if (!Simplex(2)) return numeric limits<DOUBLE>::infinity();
    for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] = D[i][n + 1];</pre>
    return D[m][n + 1];
int main() {
  const int m = 4;
  const int n = 3;
  DOUBLE _A[m][n] =
    { 6, -1, 0 },
    \{-1, -5, 0\},
    { 1, 5, 1 },
    { -1, -5, -1 }
  DOUBLE _b[m] = { 10, -4, 5, -5 };
  DOUBLE _c[n] = { 1, -1, 0 };
  VD b(_b, _b + m);
  for (int i = 0; i < m; i++) A[i] = VD(_A[i], _A[i] + n);</pre>
  LPSolver solver (A, b, c);
  DOUBLE value = solver.Solve(x):
  cerr << "VALUE: " << value << endl; // VALUE: 1.29032
  cerr << "SOLUTION:"; // SOLUTION: 1.74194 0.451613 1
  for (size_t i = 0; i < x.size(); i++) cerr << " " << x[i];
  cerr << endl;
  return 0:
```

VI B, N;

5.6 Euler's Toitent Function

```
* Author: Hakan Terelius
 * Date: 2009-09-25
 * License: CC0
 * Description: Precompute the number of positive integers coprime to N up to a given limit.
 * - The sum phi(d) for all divisors d of n is equal to n.
 \star - The sum of all positive numbers less than n that are coprime to n is n phi(n) / 2 (n > 1)
 \star - For any a, n coprime, a^(phi(n)) = 1 mod n
 \star - Specifically, for any prime p, any number a, a^{p-1} = 1 \mod p
 * Status: Tested
#pragma once
const int LIM = 5000000;
int phi[LIM];
void calculatePhi() {
    rep(i,0,LIM) phi[i] = i&1 ? i : i/2;
    for (int i = 3; i < LIM; i += 2) if(phi[i] == i)</pre>
            for (int j = i; j < LIM; j += i) phi[j] -= phi[j] / i;</pre>
```

5.7 Partitions

```
# include <bits/stdc++.h>
using namespace std;
typedef vector<int> vi;
// Ways to write n as a sum of positive numbers.
// parition(4)=5 because 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1
int partition(int n) {
    if(n==0) return 1;
    assert(n > 0):
    vi dp = vi(n + 1);
    dp[0] = 1;
     for (int i = 1; i <= n; i++) {
         for (int j = 1, r = 1; i - (3 * j * j - j) / 2 >= 0; j++, r *= -1) {
             dp[i] += dp[i - (3 * j * j - j) / 2] * r;
if (i - (3 * j * j + j) / 2 >= 0) {
                  dp[i] += dp[i - (3 * j * j + j) / 2] * r;
    return dp[n];
    // 0 1, 1 1, 2 2, 3 3, 4 5, 5 7, 6 11, 7 15, 8 22, 9 30, 10 42 // 11 56, 12 77, 13 101, 14 135, 15 176, 16 231, 17 297
    for (int i = 0; i \le 17; ++i) {
        cout << i << " " << partition(i) << ", ";
    return 0;
```

6 Graph algorithms

6.1 Bellman-Ford shortest paths with negative edge weights (C++)

```
// This function runs the Bellman-Ford algorithm for single source
// shortest paths with negative edge weights. The function returns
// false if a negative weight cycle is detected. Otherwise, the
// function returns true and dist[i] is the length of the shortest
// path from start to i.
//
// Running time: O(|V|^3)
// INPUT: start, w[i][j] = cost of edge from i to j
// OUTPUT: dist[i] = min weight path from start to i
// prev[i] = previous node on the best path from the
start node

#include <iostream>
#include <cmath>
#include <cmath>
#include <cwath>
```

```
using namespace std;
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
typedef vector<int> VI;
typedef vector<VI> VVI;
bool BellmanFord(const VVT &w, VT &dist, VI &prev, int start) {
    int n = w.size();
    prev = VI(n, -1);
    dist = VT(n, 1000000000);
    dist[start] = 0;
    for (int k = 0; k < n; k++) {
   for (int i = 0; i < n; i++) {</pre>
              for (int j = 0; j < n; j++) {
    if (dist[j] > dist[i] + w[i][j]) {
                       if (k == n - 1) return false;
                       dist[j] = dist[i] + w[i][j];
                       prev[j] = i;
    return true:
```

6.2 Topological sort (C++)

```
// This function uses performs a non-recursive topological sort.
// Running time: O(|V|^2). If you use adjacency lists (vector<map<int> >),
                  the running time is reduced to O(|E|).
     INPUT: w[i][j] = 1 if i should come before j, 0 otherwise
     OUTPUT: a permutation of 0,...,n-1 (stored in a vector)
               which represents an ordering of the nodes which
               is consistent with w
// If no ordering is possible, false is returned.
#include <iostream>
#include <queue>
#include <vector>
using namespace std;
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
typedef vector<int> VI;
typedef vector<VI> VVI;
bool TopologicalSort(const VVI &w, VI &order) {
    int n = w.size();
    VI parents(n);
    queue<int> q;
    order.clear();
    for (int i = 0; i < n; i++) {
   for (int j = 0; j < n; j++)
        if (w[j][i]) parents[i]++;</pre>
        if (parents[i] == 0) q.push(i);
    while (q.size() > 0) {
        int i = q.front();
        q.pop();
        order.push_back(i);
        for (int j = 0; j < n; j++)
if (w[i][j]) {
                 parents[i]--:
                 if (parents[j] == 0) q.push(j);
    return (order.size() == n);
```

6.3 Fast Dijkstra's algorithm

```
// Implementation of Dijkstra's algorithm using adjacency lists
// and priority queue for efficiency.
// Running time: O(|E| log |V|)
#include <queue>
#include <cstdio>
using namespace std;
const int INF = 20000000000;
typedef pair<int, int> PII;
int main() {
    int N, s, t;
    scanf("%d%d%d", &N, &s, &t);
vector<vector<PII>> edges(N);
    for (int i = 0; i < N; i++) {
         scanf("%d", &M);
         for (int j = 0; j < M; j++) {
             int vertex, dist;
              scanf("%d%d", &vertex, &dist);
              edges[i].push_back(make_pair(dist, vertex)); // note order of arguments here
    // use priority queue in which top element has the "smallest" priority priority queue<br/>PII, vector<FII>, qreater<PII> > 0; vector<fint> dist(N, INF), dad(N, -1);
    Q.push(make_pair(0, s));
     dist[s] = 0;
     while (!Q.empty()) {
        PII p = Q.top();
         Q.pop();
         int here = p.second;
         if (here == t) break;
         if (dist[here] != p.first) continue;
         for (vector<PII>::iterator it = edges[here].begin(); it != edges[here].end(); it++) {
             if (dist[here] + it->first < dist[it->second]) {
   dist[it->second] = dist[here] + it->first;
                  dad[it->second] = here;
                  Q.push (make_pair(dist[it->second], it->second));
    printf("%d\n", dist[t]);
    if (dist[t] < INF)</pre>
         for (int i = t; i != -1; i = dad[i])
              printf("%d%c", i, (i == s ? '\n' : ' '));
    return 0:
Sample input:
5 0 4
2 1 2 3 1
2 2 4 4 5
3 1 4 3 3 4 1
2 1 5 2 1
Expected:
4 2 3 0
```

6.4 Strongly connected components

```
vi val, comp, z, cont;
int Time, ncomps;
// A function that will be called with the indicies of all elements
// in each component as the parameter once per component after running scc.
void f(vi node_inds) {};
int dfs(int j, vector<vi>& g) {
    int low = val[j] = ++Time, x; z.push_back(j);
    for (auto e : g[j]) if (comp[e] < 0)</pre>
            low = min(low, val[e] ?: dfs(e,g));
    if (low == val[j]) {
        do {
            x = z.back(); z.pop_back();
            comp[x] = ncomps;
cont.push_back(x);
        } while (x != j);
        f(cont); cont.clear();
        ncomps++;
```

```
return val[j] = low;
}
void scc(vector<vi>& g) {
    int n = g.size();
    val.assign(n, 0); comp.assign(n, -1);
    Time = ncomps = 0;
    rep(i,0,n) if (comp[i] < 0) dfs(i, g);
}</pre>
```

6.5 Eulerian path

```
typedef list<Edge>::iterator iter;
struct Edge {
    int next vertex;
    iter reverse_edge;
    Edge (int next vertex)
           : next vertex(next vertex) {}
const int max_vertices =;
int num_vertices;
list <Edge> adj[max_vertices];
                                      // adjacency list
vector<int> path;
void find_path(int v) {
    while (adj[v].size() > 0) {
        int vn = adj[v].front().next_vertex;
        adj[vn].erase(adj[v].front().reverse_edge);
        adj[v].pop_front();
        find_path(vn);
    path.push_back(v);
void add_edge(int a, int b) {
    adj[a].push_front(Edge(b));
    iter ita = adj[a].begin();
    adj[b].push_front(Edge(a));
    iter itb = adj[b].begin();
    ita->reverse_edge = itb;
    itb->reverse_edge = ita;
```

6.6 Minimum spanning trees

```
// This function runs \operatorname{Prim}'s algorithm for constructing minimum
// weight spanning trees.
// Running time: O(|V|^2)
     INPUT: w[i][j] = cost \ of \ edge \ from \ i \ to \ j
               NOTE: Make sure that w[i][j] is nonnegative and
               symmetric. Missing edges should be given -1
               weight.
     OUTPUT: edges = list of pair<int,int> in minimum spanning tree
               return total weight of tree
#include <iostream>
#include <queue>
#include <cmath>
#include <vector>
using namespace std:
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef pair<int, int> PII;
typedef vector<PII> VPII;
T Prim(const VVT &w, VPII &edges) {
    int n = w.size();
VI found(n);
    VI prev(n, -1);
VT dist(n, 1000000000);
    int here = 0;
    dist[here] = 0;
```

```
while (here != -1) {
         found[here] = true;
         int best = -1;
         for (int k = 0; k < n; k++)
             if (!found[k]) {
                  if (w[here][k] != -1 && dist[k] > w[here][k]) {
    dist[k] = w[here][k];
                       prev[k] = here;
                  if (best == -1 || dist[k] < dist[best]) best = k;</pre>
         here = best:
     T tot_weight = 0;
    for (int i = 0; i < n; i++)
         if (prev[i] != -1) {
              edges.push_back(make_pair(prev[i], i));
              tot_weight += w[prev[i]][i];
     return tot_weight;
int main() {
    int ww[5][5] = {
             {600, 7, 0, 5, 0}
     VVT w(5, VT(5));
    for (int i = 0; i < 5; i++)
    for (int j = 0; j < 5; j++)
        w[i][j] = ww[i][j];</pre>
    VPII edges;
    cout << Prim(w, edges) << endl; // 305
    for (int i = 0; i < edges.size(); i++)
    cout << edges[i].first << " " << edges[i].second << endl;</pre>
```

7 Strings

7.1 Longest increasing subsequence

```
// Given a list of numbers of length n, this routine extracts a
// longest increasing subsequence.
// Running time: O(n log n)
     INPUT: a vector of integers
    OUTPUT: a vector containing the longest increasing subsequence
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std:
typedef vector<int> VI;
typedef pair<int, int> PII;
typedef vector<PII> VPII;
#define STRICTLY_INCREASING
VI LongestIncreasingSubsequence(VI v) {
    VPII best;
    VI dad(v.size(), -1);
    for (int i = 0; i < v.size(); i++) {</pre>
#ifdef STRICTLY_INCREASIG
        PII item = make_pair(v[i], 0);
        VPII::iterator it = lower_bound(best.begin(), best.end(), item);
        item.second = i;
#else
        PII item = make pair(v[i], i);
        VPII::iterator it = upper_bound(best.begin(), best.end(), item);
#endif
```

```
if (it == best.end()) {
    dad[i] = (best.size() == 0 ? -1 : best.back().second);
    best.push_back(item);
} else {
    dad[i] = it == best.begin() ? -1 : prev(it) -> second;
    *it = item;
}

VI ret;
for (int i = best.back().second; i >= 0; i = dad[i])
    ret.push_back(v[i]);
reverse(ret.begin(), ret.end());
return ret;
```

7.2 Longest common subsequence

```
Calculates the length of the longest common subsequence of two vectors.
Backtracks to find a single subsequence or all subsequences. Runs in
O(m*n) time except for finding all longest common subsequences, which
may be slow depending on how many there are.
#include <iostream>
#include <vector>
#include <set>
#include <algorithm>
using namespace std;
typedef int T;
typedef vector<T> VT;
typedef vector<VT> VVT;
typedef vector<int> VI;
typedef vector<VI> VVI;
void backtrack(VVI &dp, VT &res, VT &A, VT &B, int i, int j) {
    if (!i || !j) return;
    if (A[i - 1] == B[j - 1]) {
        res.push_back(A[i - 1]);
        backtrack(dp, res, A, B, i - 1, j - 1);
        if (dp[i][j-1] >= dp[i-1][j]) backtrack(dp, res, A, B, i, j-1);
        else backtrack(dp, res, A, B, i - 1, j);
void backtrackall(VVI &dp, set<VT> &res, VT &A, VT &B, int i, int j) {
    if (!i || !j) {
        res.insert(VI());
        return;
    if (A[i - 1] == B[j - 1]) {
        set<VT> tempres;
        backtrackall(dp, tempres, A, B, i - 1, j - 1);
for (set<VT>::iterator it = tempres.begin(); it != tempres.end(); it++) {
            VT temp = *it;
            temp_push_back(A[i - 1]);
            res.insert(temp);
    } else {
        if (dp[i][j - 1] >= dp[i - 1][j]) backtrackall(dp, res, A, B, i, j - 1);
        if (dp[i][j - 1] <= dp[i - 1][j]) backtrackall(dp, res, A, B, i - 1, j);</pre>
VT LCS(VT &A, VT &B) {
    VVI dp.
    int n = A.size(), m = B.size();
    dp.resize(n + 1);
    for (int i = 0; i \le n; i++) dp[i].resize(m + 1, 0);
    for (int i = 1; i \le n; i++)
        for (int j = 1; j <= m; j++) {
    if (A[i - 1] == B[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
            else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
    backtrack(dp, res, A, B, n, m);
    reverse(res.begin(), res.end());
    return res:
set < VT > LCSall (VT &A, VT &B) {
    VVI dp;
    int n = A.size(), m = B.size();
    dp.resize(n + 1);
```

```
for (int i = 0; i <= n; i++) dp[i].resize(m + 1, 0);
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= m; j++) {
        if (A[i - 1] == B[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
        else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
    }
set<VT> res;
backtrackall(dp, res, A, B, n, m);
return res;
}
int main() {
    int a[] = {0, 5, 5, 2, 1, 4, 2, 3}, b[] = {5, 2, 4, 3, 2, 1, 2, 1, 3};
    VI A = VI(a, a + 8), B = VI(b, b + 9);
    VI C = LCS(A, B);
    for (int i = 0; i < C.size(); i++) cout << C[i] << " ";
    cout << endl << endl;
    set<VT> D = LCSall(A, B);
    for (set<VT>::iterator it = D.begin(); it != D.end(); it++) {
        for (int i = 0; i < (*it).size(); i++) cout << (*it)[i] << " ";
        cout << endl;
    }
}
</pre>
```

7.3 Knuth-Morris-Pratt

```
Finds all occurrences of the pattern string p within the
text string t. Running time is O(n + m), where n and m
are the lengths of p and t, respecitvely.
#include <iostream>
#include <string>
#include <vector>
using namespace std;
typedef vector<int> VI;
void buildPi(string &p, VI &pi) {
    pi = VI(p.length());
    int k = -2;
    for (int i = 0; i < p.length(); i++) {</pre>
        while (k \ge -1 & & p[k + 1] != p[i])

k = (k == -1) ? -2 : pi[k];
         pi[i] = ++k;
int KMP (string &t, string &p) {
    buildPi(p, pi);
    int k = -1;
    for (int i = 0; i < t.length(); i++) {
    while (k >= -1 && p[k + 1] != t[i])
    k = (k == -1) ? -2 : pi[k];
         if (k == p.length() - 1) {
             // p matches t[i-m+1, ..., i]
             cout << "matched at index " << i - k << ": ";
             cout << t.substr(i - k, p.length()) << endl;</pre>
             k = (k == -1) ? -2 : pi[k];
    return 0:
    string a = "AABAACAADAABAABA", b = "AABA";
    KMP(a, b); // expected matches at: 0, 9, 12
    return 0:
```

7.4 Longest Common Prefix

7.5 Palindromes

```
/**

* Author: User adamant on CodeForces

* Source: http://codeforces.com/blog/entry/12143

* Description: For each position in a string, computes p[0][i] = half length of

* longest even palindrome around pos i, p[1][i] = longest odd (half rounded down).

* Time: O(N)

* Status: Stress-tested

*/

array<vi, 2> manacher(const string& s) {

int n = sz(s);

array<vi, 2> p = {vi(n+1), vi(n)};

rep(z, 0, 2) for (int i=0, 1=0, r=0; i < n; i++) {

int t = r-i+lz;

if (i<r) p[z][i] = min(t, p[z][1+t]);

int L = i-p[z][i], R = i+p[z][i]-!z;

while (L>=1 && R+!<n && s[L-1] == s[R+1])

p[z][i]++, L--, R++;

if (R>r) l=L, r=R;

}

return p;
```

8 Miscellaneous

8.1 Prime numbers

```
# include <bits/stdc++.h>
using namespace std:
#define EPS 1e-7
typedef long long LL;
bool IsPrime(LL x) {
    if (x <= 1) return false;</pre>
    if (x <= 3) return true;</pre>
    if (!(x % 2) || !(x % 3)) return false;
    LL s = (LL) (sqrt((double) (x)) + EPS);
    for (LL i = 5; i <= s; i += 6)
        if (!(x % i) || !(x % (i + 2))) return false;
    return true;
// Factor every number up until n in O(n) time.
// minFact[i] = the minimum factor of i higher than 1. minFact[0] = minFact[1] = 0
// primes[i] = the ith prime.
vector<int> factorAll(int n) {
    vector<int> primes(0);
    vector<int> minFact(n + 1);
    for (int i = 2; i <= n; i++)</pre>
        if (minFact[i] == 0) {
            primes.push_back(i);
            minFact[i] = i;
        for (int j = 0; j < primes.size() && primes[j] <= minFact[i] && i * primes[j] <= n; ++j) {</pre>
            minFact[i * primes[j]] = primes[j];
    return primes;
// Primes close to 1e9: 999'999'937, 1'000'000'007, 1'000'000'009
```

8.2 Binary Search

```
// This code is guaranteed to work in the min number of ops
// for any MAX that fits in an ll.
ll MAX = llL << 63;
// Binary search integers in the range [0, MAX)
// for the last element satisfying condition.
for (int j = llL << (int) (log2(MAX)); j != 0; j >>= 1) {
    if (condition(lo + j)) {
        lo += j;
    }
// Binary search integers in the range (1, MAX]
// for the first element satisfying condition.
ll hi = llL << (int) (log2(MAX) + 1);
for (int j = llL << (int) (log2(MAX)); j != 0; j >>= 1) {
    if (condition(hi - j)) {
        hi -= j;
    }
}
```

8.3 Latitude/longitude

```
Converts from rectangular coordinates to latitude/longitude and vice
versa. Uses degrees (not radians).
#include <iostream>
#include <cmath>
using namespace std;
struct 11 {
     double r, lat, lon;
struct rect {
     double x, y, z;
11 convert (rect &P) {
     11 Q;
     Q.r = sqrt(P.x * P.x + P.y * P.y + P.z * P.z);
     0.lat = 180 / M_PI * asin(P.z / Q.r);
Q.lon = 180 / M_PI * acos(P.x / sqrt(P.x * P.x + P.y * P.y));
     return Q;
rect convert(11 &Q) {
     rect P;
     P.x = Q.r * cos(Q.lon * M_PI / 180) * cos(Q.lat * M_PI / 180);

P.y = Q.r * sin(Q.lon * M_PI / 180) * cos(Q.lat * M_PI / 180);

P.z = Q.r * sin(Q.lat * M_PI / 180);
     return P:
int main() {
     rect A;
     11 B;
     \mathbf{A.x} = -1.0;
     A.y = 2.0;
     A.z = -3.0:
     B = convert(A);
cout << B.r << " " << B.lat << " " << B.lon << endl;</pre>
     A = convert(B);
cout << A.x << " " << A.y << " " << A.z << endl;
```

8.4 Constraint satisfaction problems

```
// Constraint satisfaction problems
#include <cstdlib>
#include <iostream>
#include <vector>
#include <set>
using namespace std;
```

```
#define FAILED -2
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef vector<VVI> VVVI;
typedef set<int> SI;
  Lists of assigned/unassigned variables.
VI assigned_vars;
SI unassigned vars;
// For each variable, a list of reductions (each of which a list of eliminated
// variables)
VVVI reductions:
// For each variable, a list of the variables whose domains it reduced in
// forward-checking.
VVI forward_mods;
 // need to implement
int Value(int var);
void SetValue(int var, int value);
void ClearValue(int var);
int DomainSize(int var);
void ResetDomain(int var);
void AddValue(int var, int value);
void RemoveValue(int var, int value);
int NextVar() {
    if (unassigned_vars.empty()) return DONE;
    // could also do most constrained...
    int var = *unassigned_vars.begin();
    return var;
int Initialize() {
    // setup here
    return NextVar();
            ----- end -- need to implement
void UpdateCurrentDomain(int var) {
    ResetDomain(var);
    for (int i = 0; i < reductions[var].size(); i++) {</pre>
        vector<int> &red = reductions[var][i];
        for (int j = 0; j < red.size(); j++) {
   RemoveValue(var, red[j]);</pre>
void UndoReductions(int var) {
    for (int i = 0; i < forward_mods[var].size(); i++) {</pre>
        int other_var = forward_mods[var][i];
        VI &red = reductions[other_var].back();
        for (int j = 0; j < red.size(); j++) {</pre>
            AddValue(other_var, red[j]);
        reductions[other_var].pop_back();
    forward_mods[var].clear();
bool ForwardCheck(int var, int other_var) {
    vector<int> red;
    in current_domain(other_var) {
        SetValue(other_var, value);
        if (!Consistent(var, other_var)) {
            red.push back(value);
            RemoveValue(other_var, value);
        ClearValue(other var);
    if (!red.empty()) {
        reductions[other_var].push_back(red);
        forward_mods[var].push_back(other_var);
    return DomainSize(other_var) != 0;
pair<int, bool> Unlabel(int var)
    assigned_vars.pop_back();
    unassigned_vars.insert(var);
    UndoReductions(var);
    UpdateCurrentDomain(var):
    if (assigned_vars.empty()) return make_pair(FAILED, true);
```

#define DONE -1

```
int prev_var = assigned_vars.back();
    RemoveValue(prev_var, Value(prev_var));
    ClearValue(prev_var);
    if (DomainSize(prev_var) == 0) {
        return make_pair(prev_var, false);
        return make_pair(prev_var, true);
pair<int, bool> Label(int var) {
    unassigned_vars.erase(var);
    assigned vars.push back(var);
    bool consistent:
    foreach
    in current_domain(var) {
        SetValue(var, value);
        consistent = true;
        for (int j = 0; j < unassigned_vars.size(); j++) {</pre>
            int other_var = unassigned_vars[j];
            if (!ForwardCheck(var, other_var)) {
                RemoveValue(var, value);
                consistent = false:
                UndoReductions(var);
                ClearValue(var):
                break:
        if (consistent) return (NextVar(), true);
    return make_pair(var, false);
void BacktrackSearch(int num_var) {
    // (next variable to mess with, whether current state is consistent)
    pair<int, bool> var_consistent = make_pair(Initialize(), true);
    while (true) {
        if (var_consistent.second) var_consistent = Label(var_consistent.first);
        else var_consistent = Unlabel(var_consistent.first);
        if (var consistent.first == DONE) return; // solution found
        if (var_consistent.first == FAILED) return; // no solution
```

8.5 Hilbert curve for Mo's Algorithm

```
struct Query {
     int 1, r, idx;
     inline void calcOrder() {
         ord = hilbertOrder(1, r, 21, 0);
};
inline bool operator<(const Query &a, const Query &b) {</pre>
     return a.ord < b.ord:
// contant time optimization to Mo's algorithm (~3x faster lol)
// https://codeforces.com/blog/entry/61203
inline int64_t hilbertOrder(int x, int y, int pow, int rotate) {
     if (pow == 0) {
          return 0;
     int hpow = 1 << (pow - 1);</pre>
     int seg = (x < hpow) ? (
               (y < hpow) ? 0 : 3
                            (y < hpow) ? 1 : 2
                );
     seg = (seg + rotate) & 3;
    const int rotateDelta[4] = {3, 0, 0, 1};
int nx = x & (x ^ hpow), ny = y & (y ^ hpow);
int nrot = (rotate + rotateDelta[seg]) & 3;
     int64_t subSquareSize = int64_t(1) << (2 * pow - 2);
    int64_t ans = seg +subSquareSize;
int64_t add = hilbertOrder(nx, ny, pow - 1, nrot);
ans += (seg == 1 || seg == 2) ? add : (subSquareSize - add - 1);
     return ans;
```