Landmark-Based Approaches for Goal Recognition as Planning

Ramon Fraga Pereira¹, Nir Oren², and Felipe Meneguzzi³

¹Sapienza University of Rome, Rome, Italy

²University of Aberdeen, Scotland

³Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil

⊠ pereira@diag.uniroma1.it ⊠ n.oren@abdn.ac.uk ⊠ felipe.meneguzzi@pucrs.br

The Problem

Goal Recognition is the problem of discerning the intentions of autonomous agents or humans by observing their interactions in an environment.

- Goal and Plan Recognition as Planning;
- -Domain Theory (STRIPS, PDDL, .), no Plan-Libraries (e.g., a set of pre-computed plans);
- We develop <u>fast</u> and <u>accurate</u> heuristic recognition approaches;
- -We use no planners (or search);
- -Our heuristic approaches rely on the concept of Landmarks;

Definition 1 (Goal Recognition Problem). A goal recognition problem as planning is $T_{GR} = \langle \Xi, \mathcal{I}, \mathcal{G}, O \rangle$:

• $\Xi = \langle \mathcal{F}, \mathcal{A} \rangle$ is a planning model (STRIPS, PDDL); \mathcal{I} is the initial state; \mathcal{G} is the set of possible goals, including the intended goal $G^* \in \mathcal{G}$; O is an observation sequence, i.e., a sequence of observed actions.

Contributions

We develop <u>fast</u> and <u>accurate</u> heuristic recognition approaches for Goal Recognition as Planning;

- We use no planners (i.e., search procedure);
- Our heuristic approaches rely on the concept of Landmarks;

Landmark-Based Goal Recognition

Definition 2 (Landmarks). In Automated Planning, Landmarks are facts (or actions) that cannot be avoided to achieve a goal from an initial state.

• Our approaches rely on **the concept of landmarks**. Essentially, our recognition heuristics estimate the correct goal by computing the **ratio between achieved landmarks** and **the total number of landmarks**.

$$h_{\widetilde{GR}}(G) = \left(\frac{\mathcal{AL}_{AchievedLandmarks}}{\mathcal{L}_{TotalNumberLandmarks}} \right)$$

• Ranking goals according to their percentage of achieved landmarks.

Experimental Results

• $Precision = \left(\frac{Accuracy}{|ReturnedGoals|}\right)$ and $Recognition\ Time\ (in\ seconds);$

Precision comparison for missing and full observability.

Comparison of Recognition Time for missing and full observability.

Conclusions

We introduce **novel goal recognition approaches** based on planning techniques that rely on **Landmarks**. We show that they can be used to efficiently build simple heuristics to recognize goals from incomplete and noisy observations.

- •For more details, please have a look at our paper: https://doi.org/10.1016/j.artint.2019.103217
- •Our code is available on GitHub: https://github.com/ramonpereira/Landmark-Based-GoalRecognition