Non-Preemptive Flow with Rejections

X

Carnegie Mellon University

Χ

ICALP 2018

Job Scheduling Problem

- Jobs arrive online
 - Release time r_j , processing time p_j , weight w_j
- Single machine (this talk)
 - Finish time t_j : time job j finished by machine $(t_j \ge r_j + p_j)$
- Goal: minimize total flow time:

$$\sum_{\text{job } j} w_j \cdot (t_j - r_j) = \sum_{\text{job } j} w_j \cdot (\text{time } j \text{ stays in system})$$

- Online: do not know future jobs in advance
- Goal: be competitive with best offline
- Different policies: preemption, rejection

Online Is Hard

- Typical setting:
 - Preemption: (can switch jobs before finishing current job)
 - No rejection: must finish all jobs
- [BBCD 03] $n^{\Omega(1)}$ competitive lower bound (randomized)
- Simple lower bound (no preemption, deterministic)
 - t = 0: job A, $w_A = 1$, $p_A = 1$
 - As soon as algo processes A, release B with $w_B = M$, $p_B = 1/M$ (M is large)
 - ALG cannot preempt A ⇒ ALG ≥ M
 - OPT = O(1)
- To be competitive (with offline), online needs different model

Online Models

- [KP 00] Speed augmentation model:
 - ALG's machine is faster by $(1 + \epsilon)$ \iff for ALG, $p_j \leftarrow p_j/(1 + \epsilon)$
 - Only need to be competitive with offline without speed augmentation
 - [CGKM 09] poly(1/ ϵ)-competitive
 - Greedy algo
 - Proof: potential function
 - Also works for multiple, unrelated machines
 - [AGK 12] Proof via dual fitting
- [CDGK 18] Rejection model
 - No preemption: cannot switch jobs until current job done
 - Rejection: can reject ϵ fraction total weight of jobs
 - Competitive with offline preemption, no rejection
 - ullet Intuition: rejecting "random" ϵ -fraction is like (1 + ϵ)-speed
- Main result: $poly(1/\epsilon)$ -competitive in this model
- Follow dual fitting framework of [AGK 12]

Dual Fitting Framework [AGK 12]

- Dual fitting: systematic way to study online algos
- For job *j*:
 - X := flow time of HDF policy for jobs 1 to (j-1)
 - Y := flow time of HDF policy for jobs 1 to j
 - $\bullet \ \alpha_j := \mathbf{Y} \mathbf{X}$
 - α_j is marginal increase in flow time from job j (for HDF)
 - Motivation: α_j represents a dual variable in LP relaxation
- $\sum_{i} \alpha_{j}$ is total flow time of HDF algo
- Thm (dual fitting): $OPT \ge \sum_{i} \alpha_{j} ALG$
- Goal: $ALG \le (1 \epsilon^3) \cdot \sum_j \alpha_j$ $\implies 1/\epsilon^3$ -competitive
- Intuition:

 - Reject jobs with large α_j (can compute α_j online!) $\Rightarrow \sum_{\text{accepted } i} \alpha_j \leq (1 2\epsilon^3) \cdot \sum_{\text{all } i} \alpha_j$

(1) Make ALG "almost-HDF"

- Problem: online model is no preemption
- Fix: whenever preempt, reject instead
- Goal: maintain almost-HDF, but preempt only ϵ -fraction
- Algorithm outline:
 - For current job j, time t: consider lighter jobs that arrive later than j
 - $r_j \le r_{j'} \le t$ and $w'_i < w_j$
 - HDF should have preempted j for some j'
 - If total weight of such jobs exceeds w_j/ϵ , then preempt j
 - Charge preemption of j to the arrivals of these jobs \implies preempt $\le \epsilon$ -fraction of total weight
- Thm: if always process a current job j such that

$$\sum_{\substack{\text{unfinished}\\ \text{lighter jobs } j'}} \textit{w}_{j'} \leq \textit{w}_{j}/\epsilon,$$

i.e., "almost-HDF", then
$$ALG \leq \sum_{\text{acc } j} \alpha_j + \sum_j w_j p_j / \epsilon$$

(2) Reject Jobs with Large α_j

- Goal: reject jobs such that $\sum_{\text{rej } j} \alpha_j \geq \text{poly}(\epsilon) \cdot \sum_j \alpha_j$ and $\sum_{\text{rej } j} \textit{w}_j \leq \epsilon \cdot \sum_j \textit{w}_j$
- Recall: can compute α_i values online
- Randomized achieves it in expectation
- Deterministic is header: most technically involved part
 - Bucket into geometric increasing classes based on α_j , w_j , p_j
 - Charge to class with largest geometric power

Open Questions

- Total flow time $\sum_{\text{iob } j} w_j \cdot (t_j r_j)$ is " ℓ_1 -norm"
- Can we prove results for ℓ_p norm (constant p)?
- [AGK 12] Speed augmentation setting: same dual fitting technique solves ℓ_p norm
- What about ℓ_{∞} norm? name for it?