

EQUATIONS

Why

We want to relate objects which may involve many symbols to name. We name a statement which involves an identity.¹

Definition

An equation is any statement (see Statements) relating two terms by the relation of identity (see Identities). Some authors also call an equation an equality. The symbol "=" is called the (or an) equals sign or equals symbol.

Variables

It is regularly the case that we are interested in equations relating all objects of one set to another. For example: Let X and Y be sets and let $f: X \to Y$ and $g: X \to Y$. We may write the logical assertion $(\forall x)(f(x) = g(x))$. In this case it is understood that f and g are f ree names and x is a bound name (see Quantified Statements).

We will regularly, however, refer to the equation f(x) = g(x) without the quantifier $\forall x$. In this case, x appears free, but is not. In other words, in the statement f(x) = g(x), depending on context, x is an implicitly bound name. This usage is in slight offense to normal English usage. The name is bound (see Quantified Statements) because the use of the

 $^{^1\}mathrm{Future}$ editions will improve upon this description.

particular symbol x is irrelevant. We may have just as well used the symbol y. In this sense, the name is bound to the quantifier $\forall x$. In another sense, though, the choice of name is "free", and the name is meant as a placeholder (see Names).

For these reasons, we introduce terminology for this common case. The symbol x we call a variable. It is a placeholder name, which is bound in the quantified statement. But the particular choice of name is irrelevant.

