Lab 3.5 - Student Notebook

E0123047

Overview

This lab is a continuation of the guided labs in Module 3.

In this lab, you will deploy a trained model and perform a prediction against the model. You will then delete the endpoint and perform a batch transform on the test dataset.

Introduction to the business scenario

You work for a healthcare provider, and want to improve the detection of abnormalities in orthopedic patients.

You are tasked with solving this problem by using machine learning (ML). You have access to a dataset that contains six biomechanical features and a target of *normal* or *abnormal*. You can use this dataset to train an ML model to predict if a patient will have an abnormality.

About this dataset

This biomedical dataset was built by Dr. Henrique da Mota during a medical residence period in the Group of Applied Research in Orthopaedics (GARO) of the Centre Médico-Chirurgical de Réadaptation des Massues, Lyon, France. The data has been organized in two different, but related, classification tasks.

The first task consists in classifying patients as belonging to one of three categories:

- Normal (100 patients)
- Disk Hernia (60 patients)
- Spondylolisthesis (150 patients)

For the second task, the categories *Disk Hernia* and *Spondylolisthesis* were merged into a single category that is labeled as *abnormal*. Thus, the second task consists in classifying patients as belonging to one of two categories: *Normal* (100 patients) or *Abnormal* (210 patients).

Attribute information

Each patient is represented in the dataset by six biomechanical attributes that are derived from the shape and orientation of the pelvis and lumbar spine (in this order):

- Pelvic incidence
- Pelvic tilt
- Lumbar lordosis angle
- Sacral slope
- Pelvic radius
- Grade of spondylolisthesis

The following convention is used for the class labels:

- DH (Disk Hernia)
- Spondylolisthesis (SL)
- Normal (NO)
- Abnormal (AB)

For more information about this dataset, see the Vertebral Column dataset webpage.

Dataset attributions

This dataset was obtained from: Dua, D. and Graff, C. (2019). UCI Machine Learning Repository (http://archive.ics.uci.edu/ml). Irvine, CA: University of California, School of Information and Computer Science.

Lab setup

Because this solution is split across several labs in the module, you run the following cells so that you can load the data and train the model to be deployed.

Note: The setup can take up to 5 minutes to complete.

Importing the data

By running the following cells, the data will be imported and ready for use.

Note: The following cells represent the key steps in the previous labs.

```
In [19]: bucket='c169682a4380821111235853t1w891945754784-labbucket-afch5jxh2fjy'

In [20]: import warnings, requests, zipfile, io
    warnings.simplefilter('ignore')
    import pandas as pd
    from scipy.io import arff

    import os
    import boto3
    import sagemaker
    from sagemaker.image_uris import retrieve
    from sklearn.model_selection import train_test_split
```

```
In [21]: f_zip = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00212/vertebra
         r = requests.get(f_zip, stream=True)
         Vertebral_zip = zipfile.ZipFile(io.BytesIO(r.content))
         Vertebral_zip.extractall()
         data = arff.loadarff('column_2C_weka.arff')
         df = pd.DataFrame(data[0])
         class_mapper = {b'Abnormal':1,b'Normal':0}
         df['class']=df['class'].replace(class_mapper)
         cols = df.columns.tolist()
         cols = cols[-1:] + cols[:-1]
         df = df[cols]
         train, test_and_validate = train_test_split(df, test_size=0.2, random_state=42,
         test, validate = train_test_split(test_and_validate, test_size=0.5, random_state
         prefix='lab3'
         train_file='vertebral_train.csv'
         test_file='vertebral_test.csv'
         validate_file='vertebral_validate.csv'
         s3 resource = boto3.Session().resource('s3')
         def upload_s3_csv(filename, folder, dataframe):
             csv_buffer = io.StringIO()
             dataframe.to_csv(csv_buffer, header=False, index=False )
             s3_resource.Bucket(bucket).Object(os.path.join(prefix, folder, filename)).pu
         upload_s3_csv(train_file, 'train', train)
         upload_s3_csv(test_file, 'test', test)
         upload_s3_csv(validate_file, 'validate', validate)
         container = retrieve('xgboost',boto3.Session().region_name,'1.0-1')
         hyperparams={"num round":"42",
                      "eval_metric": "auc",
                      "objective": "binary:logistic"}
         s3_output_location="s3://{}/output/".format(bucket,prefix)
         xgb_model=sagemaker.estimator.Estimator(container,
                                                 sagemaker.get execution role(),
                                                 instance count=1,
                                                 instance_type='ml.m4.xlarge',
                                                 output_path=s3_output_location,
                                                  hyperparameters=hyperparams,
                                                  sagemaker_session=sagemaker.Session())
         train channel = sagemaker.inputs.TrainingInput(
             "s3://{}/train/".format(bucket,prefix,train_file),
             content_type='text/csv')
         validate_channel = sagemaker.inputs.TrainingInput(
             "s3://{}/{}/validate/".format(bucket,prefix,validate_file),
             content type='text/csv')
         data_channels = {'train': train_channel, 'validation': validate_channel}
```

```
xgb_model.fit(inputs=data_channels, logs=False)
print('ready for hosting!')
INFO:botocore.credentials:Found credentials from IAM Role: BaseNotebookInstance
Ec2InstanceRole
INFO:sagemaker.image_uris:Defaulting to only available Python version: py3
INFO:sagemaker.image_uris:Defaulting to only supported image scope: cpu.
INFO:sagemaker.telemetry_logging:SageMaker Python SDK will collect te
lemetry to help us better understand our user's needs, diagnose issues, and del
iver additional features.
To opt out of telemetry, please disable via TelemetryOptOut parameter in SDK de
faults config. For more information, refer to https://sagemaker.readthedocs.io/
en/stable/overview.html#configuring-and-using-defaults-with-the-sagemaker-pytho
INFO:sagemaker:Creating training-job with name: sagemaker-xgboost-2025-08-16-14
-48-44-195
2025-08-16 14:48:45 Starting - Starting the training job.
2025-08-16 14:48:59 Starting - Preparing the instances for training...
2025-08-16 14:49:19 Downloading - Downloading input data.....
2025-08-16 14:49:50 Downloading - Downloading the training image......
2025-08-16 14:50:46 Training - Training image download completed. Training in p
rogress...
2025-08-16 14:51:01 Uploading - Uploading generated training model.
2025-08-16 14:51:14 Completed - Training job completed
ready for hosting!
```

Step 1: Hosting the model

Now that you have a trained model, you can host it by using Amazon SageMaker hosting services.

The first step is to deploy the model. Because you have a model object, *xgb_model*, you can use the **deploy** method. For this lab, you will use a single ml.m4.xlarge instance.

Step 2: Performing predictions

Now that you have a deployed model, you will run some predictions.

First, review the test data and re-familiarize yourself with it.

Out[23]: (31, 7)

You have 31 instances, with seven attributes. The first five instances are:

4]:	test.head(5)									
		class	pelvic_incidence	pelvic_tilt	lumbar_lordosis_angle	sacral_slope	pelvic_radius	degre		
	136	1	88.024499	39.844669	81.774473	48.179830	116.601538			
	230	0	65.611802	23.137919	62.582179	42.473883	124.128001			
	134	1	52.204693	17.212673	78.094969	34.992020	136.972517			
	130	1	50.066786	9.120340	32.168463	40.946446	99.712453			
	47	1	41.352504	16.577364	30.706191	24.775141	113.266675			

You don't need to include the target value (class). This predictor can take data in the comma-separated values (CSV) format. You can thus get the first row without the class column by using the following code:

test.iloc[:1,1:]

The **iloc** function takes parameters of [rows,cols]

To only get the first row, use 0:1. If you want to get row 2, you could use 1:2.

To get all columns *except* the first column (*col 0*), use 1:

```
In [25]: row = test.iloc[0:1,1:]
row.head()
```

 Out[25]:
 pelvic_incidence
 pelvic_tilt
 lumbar_lordosis_angle
 sacral_slope
 pelvic_radius
 degree_spoi

 136
 88.024499
 39.844669
 81.774473
 48.17983
 116.601538

You can convert this to a comma-separated values (CSV) file, and store it in a string buffer.

```
In [26]: batch_X_csv_buffer = io.StringIO()
    row.to_csv(batch_X_csv_buffer, header=False, index=False)
    test_row = batch_X_csv_buffer.getvalue()
    print(test_row)
```

88.0244989, 39.84466878, 81.77447308, 48.17983012, 116.6015376, 56.76608323

Now, you can use the data to perform a prediction.

```
In [27]: xgb_predictor.predict(test_row)
```

Out[27]: b'0.9966071844100952'

The result you get isn't a 0 or a 1. Instead, you get a *probability score*. You can apply some conditional logic to the probability score to determine if the answer should be presented as a 0 or a 1. You will work with this process when you do batch predictions.

For now, compare the result with the test data.

In [28]:	test.head(5)								
Out[28]:		class	pelvic_incidence	pelvic_tilt	lumbar_lordosis_angle	sacral_slope	pelvic_radius	degre	
	136	1	88.024499	39.844669	81.774473	48.179830	116.601538		
	230	0	65.611802	23.137919	62.582179	42.473883	124.128001		
	134	1	52.204693	17.212673	78.094969	34.992020	136.972517		
	130	1	50.066786	9.120340	32.168463	40.946446	99.712453		
	47	1	41.352504	16.577364	30.706191	24.775141	113.266675		

Question: Is the prediction accurate?

Challenge task: Update the previous code to send the second row of the dataset. Are those predictions correct? Try this task with a few other rows.

It can be tedious to send these rows one at a time. You could write a function to submit these values in a batch, but SageMaker already has a batch capability. You will examine that feature next. However, before you do, you will terminate the model.

Step 3: Terminating the deployed model

To delete the endpoint, use the **delete_endpoint** function on the predictor.

```
In [29]: xgb_predictor.delete_endpoint(delete_endpoint_config=True)

INFO:sagemaker:Deleting endpoint configuration with name: sagemaker-xgboost-202
5-08-16-14-51-16-048

INFO:sagemaker:Deleting endpoint with name: sagemaker-xgboost-2025-08-16-14-51-
16-048
```

Step 4: Performing a batch transform

When you are in the training-testing-feature engineering cycle, you want to test your holdout or test sets against the model. You can then use those results to calculate metrics. You could deploy an endpoint as you did earlier, but then you must remember to delete the endpoint. However, there is a more efficient way.

You can use the transformer method of the model to get a transformer object. You can then use the transform method of this object to perform a prediction on the entire test dataset. SageMaker will:

- Spin up an instance with the model
- Perform a prediction on all the input values
- Write those values to Amazon Simple Storage Service (Amazon S3)
- Finally, terminate the instance

You will start by turning your data into a CSV file that the transformer object can take as input. This time, you will use **iloc** to get all the rows, and all columns *except* the first column.

```
In [30]:
          batch_X = test.iloc[:,1:];
          batch_X.head()
Out[30]:
                pelvic_incidence pelvic_tilt lumbar_lordosis_angle sacral_slope pelvic_radius degree_spoi
           136
                     88.024499 39.844669
                                                      81.774473
                                                                  48.179830
                                                                               116.601538
                     65.611802 23.137919
                                                      62.582179
                                                                  42.473883
                                                                               124.128001
           230
                                                                  34.992020
                      52.204693 17.212673
                                                                              136.972517
           134
                                                      78.094969
                      50.066786 9.120340
                                                      32.168463
                                                                  40.946446
                                                                               99.712453
           130
            47
                     41.352504 16.577364
                                                      30.706191
                                                                  24.775141
                                                                               113.266675
```

Next, write your data to a CSV file.

```
In [31]: batch_X_file='batch-in.csv'
upload_s3_csv(batch_X_file, 'batch-in', batch_X)
```

Last, before you perform a transform, configure your transformer with the input file, output location, and instance type.

```
In [32]:
         batch_output = "s3://{}/{}/batch-out/".format(bucket,prefix)
         batch_input = "s3://{}/{}/batch-in/{}".format(bucket,prefix,batch_X_file)
         xgb_transformer = xgb_model.transformer(instance_count=1,
                                                 instance_type='ml.m4.xlarge',
                                                 strategy='MultiRecord',
                                                 assemble_with='Line',
                                                 output_path=batch_output)
         xgb_transformer.transform(data=batch_input,
                                   data type='S3Prefix',
                                   content_type='text/csv',
                                   split_type='Line')
         xgb_transformer.wait()
         INFO:sagemaker:Creating model with name: sagemaker-xgboost-2025-08-16-14-54-48-
         INFO:sagemaker:Creating transform job with name: sagemaker-xgboost-2025-08-16-1
         4-54-49-035
```

After the transform completes, you can download the results from Amazon S3 and compare them with the input.

First, download the output from Amazon S3 and load it into a pandas DataFrame.

You can use a function to convert the probabilty into either a 0 or a 1.

The first table output will be the *predicted values*, and the second table output is the *original test data*.

```
In [34]: def binary_convert(x):
    threshold = 0.65
    if x > threshold:
        return 1
    else:
        return 0

target_predicted['binary'] = target_predicted['class'].apply(binary_convert)

print(target_predicted.head(10))
test.head(10)
```

```
class binary
0 0.996607 1
1 0.777283
             1
2 0.994641
             1
3 0.993690
              1
4 0.939139
              1
5 0.997396
6 0.991977
              1
7 0.987518
              1
8 0.993334
              1
9 0.682776
```

Out[34]:		class	pelvic_incidence	pelvic_tilt	lumbar_lordosis_angle	sacral_slope	pelvic_radius	degre
	136	1	88.024499	39.844669	81.774473	48.179830	116.601538	
	230	0	65.611802	23.137919	62.582179	42.473883	124.128001	
	134	1	52.204693	17.212673	78.094969	34.992020	136.972517	
	130	1	50.066786	9.120340	32.168463	40.946446	99.712453	
	47	1	41.352504	16.577364	30.706191	24.775141	113.266675	
	135	1	77.121344	30.349874	77.481083	46.771470	110.611148	
	100	1	84.585607	30.361685	65.479486	54.223922	108.010218	
	89	1	71.186811	23.896201	43.696665	47.290610	119.864938	
	297	0	45.575482	18.759135	33.774143	26.816347	116.797007	
	4	1	49.712859	9.652075	28.317406	40.060784	108.168725	

Note: The *threshold* in the **binary_convert** function is set to .65.

Challenge task: Experiment with changing the value of the threshold. Does it impact the results?

Note: The initial model might not be good. You will generate some metrics in the next lab, before you tune the model in the final lab.

Congratulations!

You have completed this lab, and you can now end the lab by following the lab guide instructions.

```
def binary_convert(x):
    threshold = 0.89
    if x > threshold:
        return 1
    else:
        return 0
    target_predicted['binary'] = target_predicted['class'].apply(binary_convert)
    print(target_predicted.head(10))
    test.head(10)
```

```
class binary
0 0.996607 1
1 0.777283 0
2 0.994641 1
3 0.993690 1
4 0.939139 1
5 0.997396 1
6 0.991977 1
7 0.987518 1
8 0.993334 1
9 0.682776 0
```

```
Out[35]:
                class pelvic_incidence pelvic_tilt lumbar_lordosis_angle sacral_slope pelvic_radius degre
           136
                             88.024499 39.844669
                    1
                                                              81.774473
                                                                           48.179830
                                                                                        116.601538
           230
                    0
                             65.611802 23.137919
                                                              62.582179
                                                                           42.473883
                                                                                        124.128001
           134
                             52.204693 17.212673
                                                              78.094969
                                                                           34.992020
                                                                                        136.972517
           130
                             50.066786
                                        9.120340
                                                              32.168463
                                                                           40.946446
                                                                                         99.712453
            47
                             41.352504 16.577364
                                                              30.706191
                                                                           24.775141
                                                                                        113.266675
                    1
                             77.121344 30.349874
           135
                                                              77.481083
                                                                           46.771470
                                                                                        110.611148
           100
                    1
                             84.585607 30.361685
                                                              65.479486
                                                                           54.223922
                                                                                        108.010218
                             71.186811 23.896201
                                                                           47.290610
                                                                                        119.864938
            89
                                                              43.696665
           297
                    0
                             45.575482 18.759135
                                                              33.774143
                                                                           26.816347
                                                                                        116.797007
             4
                    1
                             49.712859 9.652075
                                                              28.317406
                                                                           40.060784
                                                                                        108.168725
```

```
In [36]: def binary_convert(x):
    threshold = 0.99
    if x > threshold:
        return 1
    else:
        return 0
    target_predicted['binary'] = target_predicted['class'].apply(binary_convert)
    print(target_predicted.head(10))
    test.head(10)
```

	-	
	class	binary
0	0.996607	1
1	0.777283	0
2	0.994641	1
3	0.993690	1
4	0.939139	0
5	0.997396	1
6	0.991977	1
7	0.987518	0
8	0.993334	1
9	0.682776	0

\cap		+	Γ	2	6	٦	
U	и	L	L	\mathcal{L}	U	J	4

	class	pelvic_incidence	pelvic_tilt	lumbar_lordosis_angle	sacral_slope	pelvic_radius	degre
136	1	88.024499	39.844669	81.774473	48.179830	116.601538	
230	0	65.611802	23.137919	62.582179	42.473883	124.128001	
134	1	52.204693	17.212673	78.094969	34.992020	136.972517	
130	1	50.066786	9.120340	32.168463	40.946446	99.712453	
47	1	41.352504	16.577364	30.706191	24.775141	113.266675	
135	1	77.121344	30.349874	77.481083	46.771470	110.611148	
100	1	84.585607	30.361685	65.479486	54.223922	108.010218	
89	1	71.186811	23.896201	43.696665	47.290610	119.864938	
297	0	45.575482	18.759135	33.774143	26.816347	116.797007	
4	1	49.712859	9.652075	28.317406	40.060784	108.168725	

In []:

4