水蛭素与缺血性脑卒中

2024-04-22

LiChuang Huang

@ 立效研究院

${\bf Contents}$

1	摘要		1
	1.1	需求	1
	1.2	结果	1
2	前言		1
3	材料	和方法	1
•	3.1		1
			1
4	分析	结果	2
5	结论		2
6	附:	分析流程	2
	6.1	养阴通脑颗粒	2
		6.1.1 成分	2
		6.1.2 成分靶点	3
		6.1.2.1 GeneCards 获取化合物靶点	3
		6.1.2.2 所有靶点	4
		6.1.3 脑缺血再灌注 cerebral ischemia reperfusion (CIR) 靶点	5
		6.1.4 网络药理-疾病	6
		6.1.5 PPI 网络	8
		6.1.6 富集分析 (Top30)	9
	6.2	水蛭素 Hirudin	1
		6.2.1 水蛭素-靶点-富集通路	1
		6.2.2 分子对接	.3
Re	eferei	nce 1	.3
\mathbf{L}^{i}	ist (of Figures	
	1	Overall targets number of datasets	5
	2	Network pharmacology with disease	7
	3	Targets intersect with targets of diseases	7
	4	HERBS raw PPI network	8
	5	HERBS Top30 MCC score	9
	6	HERBS KEGG enrichment	9
	7	Hirudin targets of disease	1
	8	HIRU KEGG enrichment	12
	9	HIRU GO enrichment	12

List of Tables

1	Herbs information	2
2	Components of Herbs	2
3	Hirudin targets from GeneCards	4
4	Tables of Herbs compounds and targets	4
5	CIR GeneCards used data	6
6	HERBS KEGG enrichment data	10
7	Compounds contributes to Top30	10

1 摘要

1.1 需求

• 复方: 地黄 15g、黄芪 15g、葛根 18g、石斛 15g、水蛭 3g、川芎 9g

• 有效成分: 水蛭中水蛭素 Hirudin (重点关注)

• 疾病: 缺血性脑卒中

• 机制: 血管生成

• 目标: 找到水蛭素通过 XX 靶点及 XX 靶点涉及的通路 YY 影响缺血性脑卒中的血管生成

请注意, 网药有效成分筛选时确认包括水蛭素, 如不包括, 请及时联系

1.2 结果

这是以上一份文档(名为: 养阴通脑颗粒中关键成分对脑缺血再灌注的影响)为基础修改的 PDF 文档。

2 前言

3 材料和方法

3.1 材料

3.2 方法

Mainly used method:

- The biomart was used for mapping genes between organism (e.g., mgi_symbol to hgnc_symbol)¹.
- R package ClusterProfiler used for gene enrichment analysis².
- The Human Gene Database GeneCards used for disease related genes prediction³.
- Databses of DisGeNet, GeneCards, PharmGKB used for collating disease related targets³⁻⁵.
- Website HERB http://herb.ac.cn/ used for TCM data source⁶.
- R package STEINGdb used for PPI network construction^{7,8}.
- The MCC score was calculated referring to algorithm of CytoHubba⁸.
- R package UniProt.ws used for querying Gene or Protein information.
- R version 4.3.3 (2024-02-29); Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.

4 分析结果

5 结论

6 附:分析流程

6.1 养阴通脑颗粒

6.1.1 成分

Table 1 (下方表格) 为表格 Herbs information 概览。

(对应文件为 Figure+Table/Herbs-information.xlsx)

注:表格共有 6 行 18 列,以下预览的表格可能省略部分数据;含有 6 个唯一 'Herb_; 含有 6 个唯一 'Herb_pinyin_name'。

Table 1: Herbs information

Herb_	Herb_p	Herb_c	Herb_e	Herb_l	Proper	Meridians	UsePart	Function	Indica
HERB00	CHUAN	川芎	Chuanx	Radix	Warm;	Liver;	rhizome	1. To	Cerebr
${\rm HERB00}$	DI HUANG	地黄	Radix	NA	NA	NA	NA	NA	NA
${\rm HERB00}$	GE GEN	葛根	root o	Radix	Cool;	Spleen	tuberoid	To rel	Angina
${\rm HERB00}$	HUANG QI	黄芪	root o	Radix	Warm;	Lung;	root	To rei	Common
${\rm HERB00}$	SHI HU	石斛	Dendro	Herba	Minor	Stomac	Dendro	${\bf Treatm}$	1. Den
HERB00	SHUI ZHI	水蛭	Bigflo	Garden	Mild;	Liver	fruit	To cle	Heat t

Table 2 (下方表格) 为表格 Components of Herbs 概览。

(对应文件为 Figure+Table/Components-of-Herbs.xlsx)

注:表格共有 725 行 4 列,以下预览的表格可能省略部分数据;含有 6 个唯一 'herb_id;含有 696 个唯一 'Ingredient.name'。

Table 2: Components of Herbs

herb_id	Ingredient.id	Ingredient.name	Ingredient.alias
HERB002560	HBIN001244	13-hydroxy-9,11-o	NA
${\rm HERB}002560$	HBIN002016	1,7-Dihydroxy-3,9	1,7-dihydroxy-3,9
${\rm HERB}002560$	${\rm HBIN}003405$	$20\hbox{-Hexadecanoylin}$	20-hexadecanoylin
${\rm HERB}002560$	HBIN003436	20(r)-21,24-cyclo	20(r)-21,24-cyclo
${\rm HERB}002560$	HBIN004319	2',4'	2', 4'
${\rm HERB}002560$	HBIN005731	2'-hydroxy-3	NA

herb_id	Ingredient.id	Ingredient.name	Ingredient.alias
HERB002560	HBIN005735	2'-hydroxy-3	NA
HERB002560	HBIN005744	2-hydroxy-3-metho	NA
HERB002560	HBIN006143	2-Nonyl acetate	ANW-21203; SCHEMB
HERB002560	HBIN006743	(2S)-4-methoxy-7	(2S)-4-methoxy-7
HERB002560	HBIN007657	3,5-dimethoxystil	78916-49-1; TR-03
HERB002560	HBIN007848	3,9-di-O-methylni	NA
HERB002560	HBIN008647	3-Hydroxy-2-picoline	BTB 09012; 3-Hydr
HERB002560	HBIN008667	3'-hydroxy-4	NA
HERB002560	HBIN008668	3'-Hydroxy-4	3-(3-hydroxy-4-me

6.1.2 成分靶点

6.1.2.1 GeneCards 获取化合物靶点

HERBs 数据库包含的 Hirudin 靶点较少:

bindingdb, drugbank, 以及预测工具 Super-Pred 等都难以获取更多关于 hirudin 靶点信息。因此,这里使用 GeneCards 搜索。

Table 3 (下方表格) 为表格 Hirudin targets from GeneCards 概览。

(对应文件为 Figure+Table/Hirudin-targets-from-GeneCards.xlsx)

注:表格共有 45 行 7 列,以下预览的表格可能省略部分数据;含有 45 个唯一'Symbol'。

The GeneCards data was obtained by querying:	
hirudin	
Restrict (with quotes):	
FALSE	
Filtering by Score: :	
Score > 0	
Advance search: :	
[compounds] (hirudin)	

Table 3: Hirudin targets from GeneCards

Symbol	Description	Category	UniProt_ID	GIFtS	GC_id	Score
F2	Coagulatio	Protein Co	P00734	59	GC11P047736	2.58
F2R	Coagulatio	Protein Co	P25116	55	GC05P076716	2.23
F10	Coagulatio	Protein Co	P00742	59	GC13P113122	1.76
FGA	Fibrinogen	Protein Co	P02671	58	GC04M154583	1.76
PLAT	Plasminoge	Protein Co	P00750	58	GC08M042174	1.76
F3	Coagulatio	Protein Co	P13726	54	GC01M094873	1.76
PLG	Plasminogen	Protein Co	P00747	58	GC06P160702	1.59
CPA1	Carboxypep	Protein Co	P15085	51	GC07P130380	1.12
PLAU	Plasminoge	Protein Co	P00749	60	GC10P073909	0.64
CD40LG	CD40 Ligand	Protein Co	P29965	59	GC0XP136649	0.64
SERPINC1	Serpin Fam	Protein Co	P01008	59	GC01M174949	0.64
SERPINE1	Serpin Fam	Protein Co	P05121	59	GC07P101127	0.64
TBXA2R	Thromboxan	Protein Co	P21731	59	GC19M003594	0.64
CCL2	C-C Motif	Protein Co	P13500	58	GC17P034255	0.64
CD55	CD55 Molec	Protein Co	P08174	58	GC01P207321	0.64
<u></u>						

6.1.2.2 所有靶点

Table 4 (下方表格) 为表格 tables of Herbs compounds and targets 概览。

(对应文件为 Figure+Table/tables-of-Herbs-compounds-and-targets.xlsx)

注: 表格共有 13446 行 9 列,以下预览的表格可能省略部分数据;含有 696 个唯一'Ingredient.id;含有 6 个唯一'Herb_pinyin_name;含有 696 个唯一'Ingredient.name;含有 2879 个唯一'Target.name'。

Table 4: Tables of Herbs compounds and targets

Ingred1	Herb_p	Ingred3	Ingred4	Target.id	Target	Databa	Paper.id	
HBIN00	SHI HU	10,12	NA	HBTAR0	ATIC	NA	NA	
HBIN00	SHI HU	10,12	NA	HBTAR0	FPGS	NA	NA	
HBIN00	SHI HU	10,12	NA	HBTAR0	GART	NA	NA	
HBIN00	SHI HU	10,12	NA	HBTAR0	MTHFD1	NA	NA	
HBIN00	SHI HU	10,12	NA	HBTAR0	MTHFD2	NA	NA	
HBIN00	SHI HU	10,12	NA	HBTAR0	ALDH1L1	NA	NA	
HBIN00	SHI HU	10,12	NA	HBTAR0	MTHFD1L	NA	NA	
HBIN00	SHI HU	10,12	NA	HBTAR0	MTFMT	NA	NA	
HBIN00	SHI HU	10,12	NA	HBTAR0	ALDH1L2	NA	NA	
HBIN00	SHI HU	10,12	NA	HBTAR0	MTHFD2L	NA	NA	

Ingred1	Herb_p	Ingred3	Ingred4	Target.id	Target	Databa	Paper.id	
HBIN00	SHI HU	10 ,13	NA	NA	NA	NA	NA	
HBIN00	CHUAN	10-(be	10-(NA	NA	NA	NA	
HBIN00	CHUAN	1,1-Di	3658-9	NA	NA	NA	NA	
HBIN00	CHUAN	1,2,3,	NA	NA	NA	NA	NA	
HBIN00	CHUAN	1,3,8	1,3,8	HBTAR0	ACHE	NA	NA	

6.1.3 脑缺血再灌注 cerebral ischemia reperfusion (CIR) 靶点

取下方数据集的合集:

Figure 1 (下方图) 为图 Overall targets number of datasets 概览。

(对应文件为 Figure+Table/Overall-targets-number-of-datasets.pdf)

Figure 1: Overall targets number of datasets

Table 5 (下方表格) 为表格 CIR GeneCards used data 概览。

(对应文件为 Figure+Table/CIR-GeneCards-used-data.xlsx)

注:表格共有 144 行 7 列,以下预览的表格可能省略部分数据;含有 144 个唯一'Symbol'。

The GeneCards data was obtained by querying:

cerebral ischemia reperfusion

Restrict (with quotes):

TRUE

Filtering by Score: :

Score > 1

Table 5: CIR GeneCards used data

Symbol	Description	Category	$UniProt_ID$	GIFtS	GC_id	Score
BDNF-AS	BDNF Antis	RNA Gene (29	GC11P027466	11.93
CERNA3	Competing	RNA Gene (19	GC08P056323	6.6
MEG3	Maternally	RNA Gene (34	GC14P116735	6.12
SNHG12	Small Nucl	RNA Gene (Q9BXW3	30	GC01M031297	6.05
MIR211	MicroRNA 211	RNA Gene (29	GC15M031065	5.79
SNHG14	Small Nucl	RNA Gene (24	GC15P156537	5.68
SOD2-OT1	SOD2 Overl	RNA Gene (18	GC06M159772	5.4
H19	H19 Imprin	RNA Gene (34	GC11M001995	4.64
GAS5	Growth Arr	RNA Gene (31	GC01M173947	4.55
MIR496	MicroRNA 496	RNA Gene (16	GC14P116773	4.06
BCL2	BCL2 Apopt	Protein Co	P10415	59	GC18M063123	3.69
TUG1	Taurine Up	Protein Co	A0A6I8PU40	32	GC22P030969	3.69
SCARNA5	Small Caja	RNA Gene (23	GC02P233275	3.69
NFE2L2	NFE2 Like	Protein Co	Q16236	60	GC02M177227	3.64
SOD1	Superoxide	Protein Co	P00441	61	GC21P031659	3.59

6.1.4 网络药理-疾病

Figure 2 (下方图) 为图 Network pharmacology with disease 概览。

(对应文件为 Figure+Table/Network-pharmacology-with-disease.pdf)

Figure 2: Network pharmacology with disease

Figure 3 (下方图) 为图 Targets intersect with targets of diseases 概览。

(对应文件为 Figure+Table/Targets-intersect-with-targets-of-diseases.pdf)

Figure 3: Targets intersect with targets of diseases

Intersection:

IL10, HMOX1, MMP9, PTGS2, SOD2, MPO, NOS2, IL6, CAT, CXCL2, TLR4, ALOX5, RELA, CCL2, CASP3, SELE, XDH, FOS, EDN1, TLR2, PLAT, PTEN, MAPK8, PPARA, CDKN1A, KDR, ADORA2A, CXCL1, PLAU, BCL2, SOD1, PPARG, NOS3, TNF, IL1B, MAPK9, ICAM1, THBS1, TERT, JUN, ADORA2B, EFNB2, HGF, CD36, IRAK3, SLPI, IL12A, C...

(上述信息框内容已保存至 Figure+Table/Targets-intersect-with-targets-of-diseases-content)

6.1.5 PPI 网络

Figure 4 (下方图) 为图 HERBS raw PPI network 概览。

(对应文件为 Figure+Table/HERBS-raw-PPI-network.pdf)

Figure 4: HERBS raw PPI network

Figure 5 (下方图) 为图 HERBS Top30 MCC score 概览。

(对应文件为 Figure+Table/HERBS-Top30-MCC-score.pdf)

Figure 5: HERBS Top30 MCC score

6.1.6 富集分析 (Top30)

Figure 6 (下方图) 为图 HERBS KEGG enrichment 概览。

(对应文件为 Figure+Table/HERBS-KEGG-enrichment.pdf)

Table 6 (下方表格) 为表格 HERBS KEGG enrichment data 概览。

(对应文件为 Figure+Table/HERBS-KEGG-enrichment-data.xlsx)

注:表格共有 195 行 9 列,以下预览的表格可能省略部分数据;含有 195 个唯一'ID'。

1. pvalue: 显著性 P。

Table 6: HERBS KEGG enrichment data

ID	Descri	GeneRatio	BgRatio	pvalue	p.adjust	qvalue	geneID	Count
hsa05161	Hepati	21/29	162/8764	4.0169	7.8329	1.1416	207/13	21
hsa05417	Lipid	22/29	215/8764	1.7025	1.6599	2.4194	207/59	22
hsa05167	Kaposi	21/29	194/8764	2.1692	1.4099	2.0550	207/83	21
hsa04933	AGE-RA	16/29	100/8764	1.4213	6.9289	1.0098	207/59	16
hsa05162	Measles	17/29	138/8764	3.6237	1.4132	2.0598	207/59	17
hsa05169	Epstei	18/29	202/8764	4.3574	1.4161	2.0640	207/59	18
hsa04668	TNF si	15/29	114/8764	1.3331	3.7136	5.4126	207/13	15
hsa04917	Prolac	13/29	70/8764	1.0206	2.4877	3.6258	207/59	13
hsa01522	Endocr	14/29	98/8764	1.2349	2.6756	3.8997	207/59	14
hsa05163	Human	17/29	225/8764	1.9745	3.8503	5.6118	207/13	17
hsa05210	Colore	13/29	86/8764	1.8209	3.2280	4.7048	207/59	13
hsa04210	Apoptosis	14/29	135/8764	1.3592	2.2088	3.2193	207/59	14
hsa05142	Chagas	13/29	102/8764	1.9039	2.8558	4.1623	207/84	13
hsa05418	Fluid	14/29	139/8764	2.0751	2.8903	4.2126	207/59	14
hsa04625	C-type	13/29	104/8764	2.4816	3.2261	4.7020	207/84	13

Table 7 (下方表格) 为表格 Compounds contributes to Top30 概览。

(对应文件为 Figure+Table/Compounds-contributes-to-Top30.xlsx)

注:表格共有 291 行 3 列,以下预览的表格可能省略部分数据;含有 6 个唯一'Herb_pinyin_name;含有 106 个唯一'Ingredient.name;含有 30 个唯一'Target.name'。

Table 7: Compounds contributes to Top30 $\,$

Herb_pinyin_name	Ingredient.name	Target.name
HUANG QI	13-hydroxy-9,11-octadecadie	PPARG
HUANG QI	$1,7\hbox{-Dihydroxy-}3,9\hbox{-dimethoxy}$	PPARG
HUANG QI	1,7-Dihydroxy-3,9-dimethoxy	MAPK14

Herb_pinyin_name	Ingredient.name	Target.name
CHUAN XIONG	1-Acetyl-beta-carboline	MAPK14
CHUAN XIONG	1-beta-ethylacrylate-7-alde	MAPK14
HUANG QI	3,9-di-O-methylnissolin	PPARG
HUANG QI	3,9-di-O-methylnissolin	MAPK14
CHUAN XIONG	3-Butylidene-7-hydroxyphtha	PPARG
CHUAN XIONG	3-butylidene-phalide	CCND1
CHUAN XIONG	3-butylidene-phalide	CDKN1A
CHUAN XIONG	3-butylidene-phalide	TP53
GE GEN	3'-Methoxydaidzein	PPARG
GE GEN	3'-Methoxydaidzein	MAPK14
CHUAN XIONG	4,7-Dihydroxy-3-butylphthalide	PPARG
CHUAN XIONG	4-hydroxy-3-butylphthalide	PPARG

6.2 水蛭素 Hirudin

6.2.1 水蛭素-靶点-富集通路

Figure 7 (下方图) 为图 Hirudin targets of disease 概览。

(对应文件为 Figure+Table/Hirudin-targets-of-disease.pdf)

Figure 7: Hirudin targets of disease

Figure @ref(fig:HIRU KEGG enrichment) (下方图) 为图 HIRU KEGG enrichment 概览。

(对应文件为 Figure+Table/HIRU KEGG enrichment.pdf)

Figure 8: HIRU KEGG enrichment

Figure @ref(fig:HIRU GO enrichment) (下方图) 为图 HIRU GO enrichment 概览。

(对应文件为 Figure+Table/HIRU GO enrichment.pdf)

Figure 9: HIRU GO enrichment

6.2.2 分子对接

Reference

- 1. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the r/bioconductor package biomaRt. *Nature protocols* 4, 1184–1191 (2009).
- 2. Wu, T. et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2, (2021).
- 3. Stelzer, G. *et al.* The genecards suite: From gene data mining to disease genome sequence analyses. *Current protocols in bioinformatics* **54**, 1.30.1–1.30.33 (2016).
- 4. Piñero, J. et al. The disgenet knowledge platform for disease genomics: 2019 update. Nucleic Acids Research (2019) doi:10.1093/nar/gkz1021.
- 5. Barbarino, J. M., Whirl-Carrillo, M., Altman, R. B. & Klein, T. E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley interdisciplinary reviews. Systems biology and medicine 10, (2018).
- 6. Fang, S. et al. HERB: A high-throughput experiment- and reference-guided database of traditional chinese medicine. Nucleic Acids Research 49, D1197–D1206 (2021).
- 7. Szklarczyk, D. *et al.* The string database in 2021: Customizable proteinprotein networks, and functional characterization of user-uploaded gene/measurement sets. *Nucleic Acids Research* **49**, D605–D612 (2021).
- 8. Chin, C.-H. *et al.* CytoHubba: Identifying hub objects and sub-networks from complex interactome. *BMC Systems Biology* **8**, S11 (2014).