Some counterexamples in two-weight norm inequalities for Calderón-Zygmund operators

Michel Alexis

Joint work with José Luis Luna-Garcia, Eric Sawyer and Ignacio Uriarte-Tuero

Bonn

Friday, November 3

$$Hf(x) \stackrel{\text{def}}{=} \int \frac{f(t)}{x-t} dt.$$

$$Hf(x) \stackrel{\mathrm{def}}{=} \lim_{\epsilon \to 0} \int\limits_{\{|x-t| > \epsilon\}} \frac{f(t)}{x-t} dt.$$

$$Hf(x)\stackrel{\mathrm{def}}{=} \lim_{\epsilon o 0} \int\limits_{\{|x-t|>\epsilon\}} rac{f(t)}{x-t}\,dt.$$
 Because the

kernel $\frac{1}{x-t}$ is not integrable, cancellation as $\epsilon \to 0$ is essential to make sense of this!

$$Hf(x)\stackrel{\mathrm{def}}{=} \lim_{\epsilon \to 0} \int\limits_{\{|x-t|>\epsilon\}} rac{f(t)}{x-t} \, dt.$$
 Because the

kernel $\frac{1}{x-t}$ is not integrable, cancellation as $\epsilon \to 0$ is essential to make sense of this!

How does H act on functions? Cancellation transforms points with discontinuities into singularities.

$$Hf(x)\stackrel{\mathrm{def}}{=} \lim_{\epsilon o 0} \int\limits_{\{|x-t|>\epsilon\}} rac{f(t)}{x-t}\,dt.$$
 Because the

kernel $\frac{1}{x-t}$ is not integrable, cancellation as $\epsilon \to 0$ is essential to make sense of this!

How does H act on functions? Cancellation transforms points with discontinuities into singularities.

But turns out $H: L^2(dx) \to L^2(dx)$, i.e.,

$$\|Hf\|_{L^2(dx)}\lesssim \|f\|_{L^2(dx)}\ \ \text{for all}\ f\ .$$

$$Hf(x)\stackrel{\mathrm{def}}{=} \lim_{\epsilon o 0} \int\limits_{\{|x-t|>\epsilon\}} rac{f(t)}{x-t}\,dt.$$
 Because the

kernel $\frac{1}{x-t}$ is not integrable, cancellation as $\epsilon \to 0$ is essential to make sense of this!

How does H act on functions? Cancellation transforms points with discontinuities into singularities.

But turns out $H: L^2(dx) \to L^2(dx)$, i.e.,

$$\|Hf\|_{L^2(dx)} \lesssim \|f\|_{L^2(dx)}$$
 for all f .

The Hilbert transform is an example of a **Calderón-Zgymund Operator** (CZO).

Definition (CZOs)

Assume $T: L^2(dx) \to L^2(dx)$.

Definition (CZOs)

Assume $T: L^2(dx) \to L^2(dx)$. Then T is a (smooth, non-degenerate) Calderón-Zygmund operator on \mathbb{R}^n if

Definition (CZOs)

Assume $T: L^2(dx) \to L^2(dx)$. Then T is a (smooth, non-degenerate) Calderón-Zygmund operator on \mathbb{R}^n if

$$Tf(x) \equiv \int K(x,y)f(y) dy$$
,

Definition (CZOs)

Assume $T: L^2(dx) \to L^2(dx)$. Then T is a (smooth, non-degenerate) Calderón-Zygmund operator on \mathbb{R}^n if

$$Tf(x) \equiv \int K(x,y)f(y) dy$$
,

where K is smooth and satisfies the decay conditions

$$|\nabla_x^j K(x,y)|, |\nabla_y^j K(x,y)| \lesssim \frac{1}{|x-y|^{n+j}} \text{ for all } j \geqslant 0,$$

Definition (CZOs)

Assume $T: L^2(dx) \to L^2(dx)$. Then T is a (smooth, non-degenerate) Calderón-Zygmund operator on \mathbb{R}^n if

$$Tf(x) \equiv \int K(x,y)f(y) dy$$
,

where K is smooth and satisfies the decay conditions

$$|\nabla_x^j K(x,y)|, |\nabla_y^j K(x,y)| \lesssim \frac{1}{|x-y|^{n+j}} \text{ for all } j \geqslant 0,$$

and there exists a unit vector \mathbf{v} s.t. $|K(x,y)| \approx \frac{1}{|x-y|^n}$ when $x-y \parallel \mathbf{v}$.

2/21

Definition (CZOs)

Assume $T:L^2(dx)\to L^2(dx)$. Then T is a (smooth, non-degenerate) Calderón-Zygmund operator on \mathbb{R}^n if

$$Tf(x) \equiv \int K(x, y)f(y) dy$$
,

where K is smooth and satisfies the decay conditions

$$|\nabla_x^j K(x,y)|, |\nabla_y^j K(x,y)| \lesssim \frac{1}{|x-y|^{n+j}} \text{ for all } j \geqslant 0,$$

and there exists a unit vector \mathbf{v} s.t. $|K(x,y)| \approx \frac{1}{|x-y|^n}$ when $x-y \parallel \mathbf{v}$.

Examples include

Definition (CZOs)

Assume $T:L^2(dx)\to L^2(dx)$. Then T is a (smooth, non-degenerate) Calderón-Zygmund operator on \mathbb{R}^n if

$$Tf(x) \equiv \int K(x, y)f(y) dy$$
,

where K is smooth and satisfies the decay conditions

$$|\nabla_x^j K(x,y)|, |\nabla_y^j K(x,y)| \lesssim \frac{1}{|x-y|^{n+j}} \text{ for all } j \geqslant 0,$$

and there exists a unit vector \mathbf{v} s.t. $|K(x,y)| \approx \frac{1}{|x-y|^n}$ when $x-y \parallel \mathbf{v}$.

Examples include

• Hilbert transform H on \mathbb{R} , with $K(x,y) = \frac{1}{x-y}$.

Definition (CZOs)

Assume $T:L^2(dx)\to L^2(dx)$. Then T is a (smooth, non-degenerate) Calderón-Zygmund operator on \mathbb{R}^n if

$$Tf(x) \equiv \int K(x,y)f(y) dy$$
,

where K is smooth and satisfies the decay conditions

$$|\nabla_x^j K(x,y)|, |\nabla_y^j K(x,y)| \lesssim \frac{1}{|x-y|^{n+j}} \text{ for all } j \geqslant 0,$$

and there exists a unit vector \mathbf{v} s.t. $|K(x,y)| \approx \frac{1}{|x-y|^n}$ when $x-y \parallel \mathbf{v}$.

Examples include

- Hilbert transform H on \mathbb{R} , with $K(x,y) = \frac{1}{x-y}$.
- Riesz transform R_j on \mathbb{R}^n , with $K(x,y) = \frac{x_j y_j}{|x-y|^{n+1}}$

Note that because a CZO

$$T: L^2(dx) \to L^2(dx)$$
,

Note that because a CZO

$$T: L^2(dx) \to L^2(dx)$$
,

then by CZ theory

$$T: L^p(dx) \to L^p(dx)$$
 for all $1 .$

Note that because a CZO

$$T: L^2(dx) \to L^2(dx)$$
,

then by CZ theory

$$T: L^p(dx) \to L^p(dx)$$
 for all $1 .$

Q: Why should one care about CZOs?

Note that because a CZO

$$T: L^2(dx) \to L^2(dx)$$
,

then by CZ theory

$$T: L^p(dx) \to L^p(dx)$$
 for all $1 .$

Q: Why should one care about CZOs?

• For Hardy functions $f \in H^p(\mathbb{C}^+)$, which are analytic on the upper half-plane, f has boundary values u + iHu on $\mathbb{R} + 0i \subset \mathbb{C}$.

3/21

Note that because a CZO

$$T: L^2(dx) \to L^2(dx)$$
,

then by CZ theory

$$T: L^p(dx) \to L^p(dx)$$
 for all $1 .$

Q: Why should one care about CZOs?

- For Hardy functions $f \in H^p(\mathbb{C}^+)$, which are analytic on the upper half-plane, f has boundary values u + iHu on $\mathbb{R} + 0i \subset \mathbb{C}$.
- The Riesz transforms pop-up in all sorts of PDEs and even some GMT problems.

Theorem (Hunt-Muckenhoupt-Wheeden, 1973)

Suppose $\mu = w(x)dx$. Then $H: L^2(\mu) \to L^2(\mu)$ iff w satisfies the A_2 condition

$$A_2(w,w^{-1})^2 \stackrel{\text{def}}{=} \sup_{Q \subset \mathbb{R}} \left(\frac{1}{|Q|} \int_Q w \, dx \right) \left(\frac{1}{|Q|} \int_Q w^{-1} dx \right) < \infty.$$

Theorem (Hunt-Muckenhoupt-Wheeden, 1973)

Suppose $\mu = w(x)dx$. Then $H: L^2(\mu) \to L^2(\mu)$ iff w satisfies the A_2 condition

$$A_2(w, w^{-1})^2 \stackrel{\text{def}}{=} \sup_{Q \subset \mathbb{R}} \left(\frac{1}{|Q|} \int_Q w \, dx \right) \left(\frac{1}{|Q|} \int_Q w^{-1} dx \right) < \infty.$$

Same is true for any CZO.

Theorem (Hunt-Muckenhoupt-Wheeden, 1973)

Suppose $\mu = w(x)dx$. Then $H: L^2(\mu) \to L^2(\mu)$ iff w satisfies the A_2 condition

$$A_2(w, w^{-1})^2 \stackrel{\text{def}}{=} \sup_{Q \subset \mathbb{R}} \left(\frac{1}{|Q|} \int_Q w \, dx \right) \left(\frac{1}{|Q|} \int_Q w^{-1} dx \right) < \infty.$$

Same is true for any CZO.

This is a great theorem! Boundedness of any CZO boils down to an easy-to-verify condition about the weight w!! No need to delicately estimate any nasty cancellation!

Theorem (Hunt-Muckenhoupt-Wheeden, 1973)

Suppose $\mu = w(x)dx$. Then $H: L^2(\mu) \to L^2(\mu)$ iff w satisfies the A_2 condition

$$A_2(w, w^{-1})^2 \stackrel{\text{def}}{=} \sup_{Q \subset \mathbb{R}} \left(\frac{1}{|Q|} \int_Q w \, dx \right) \left(\frac{1}{|Q|} \int_Q w^{-1} dx \right) < \infty.$$

Same is true for any CZO.

This is a great theorem! Boundedness of any CZO boils down to an easy-to-verify condition about the weight w!! No need to delicately estimate any nasty cancellation!

Example: if $w = |x|^{\alpha}$ on \mathbb{R} , then $A_2(w, w^{-1}) < \infty$ iff $-1 < \alpha < 1$.

Theorem (Hunt-Muckenhoupt-Wheeden, 1973)

Suppose $\mu = w(x)dx$. Then $H: L^2(\mu) \to L^2(\mu)$ iff w satisfies the A_2 condition

$$A_2(w, w^{-1})^2 \stackrel{\text{def}}{=} \sup_{Q \subset \mathbb{R}} \left(\frac{1}{|Q|} \int_Q w \, dx \right) \left(\frac{1}{|Q|} \int_Q w^{-1} dx \right) < \infty.$$

Same is true for any CZO.

This is a great theorem! Boundedness of any CZO boils down to an easy-to-verify condition about the weight w!! No need to delicately estimate any nasty cancellation!

Example: if $w = |x|^{\alpha}$ on \mathbb{R} , then $A_2(w, w^{-1}) < \infty$ iff $-1 < \alpha < 1$.

Can extend this characterisation to L^p by replacing the A_2 condition by an appropriate A_p condition.

4□▶ 4₫▶ 4½▶ 4½▶ ½ 99(

$$\int |H(f^-)(x)|^2 d\omega(x) \leqslant C \int |f(x)^-|^2 d\nu(x).$$

$$\int |H\left(f^{-}\right)(x)|^{2}d\omega(x) \leqslant C \int |f(x)^{-}|^{2}d\nu(x).$$

$$\int |H(f_-)(x)|^2 d\omega(x) \leqslant C \int |f(x)_-|^2 d\nu(x).$$

The above is ill-posed: how should it be posed correctly?

• the integral $Hf(x) = \int \frac{f(y)}{x-y} dy$ should be taken with respect to the same measure that f is measurable with respect to, not w.r.t. dy

$$\int |H(f^-)(x)|^2 d\omega(x) \leqslant C \int |f(x)^-|^2 \nu dx.$$

- the integral $Hf(x) = \int \frac{f(y)}{x-y} dy$ should be taken with respect to the same measure that f is measurable with respect to, not w.r.t. dy
- Let's assume $\nu = \nu(x) dx$ is absolutely continuous,

$$\int |H(f\sigma)(x)|^2 d\omega(x) \leqslant C \int |f(x)\sigma|^2 \nu dx.$$

- the integral $Hf(x) = \int \frac{f(y)}{x-y} dy$ should be taken with respect to the same measure that f is measurable with respect to, not w.r.t. dy
- Let's assume $\nu = \nu(x) dx$ is absolutely continuous,
- and replace f by $f\sigma$, where $\sigma \stackrel{\text{def}}{=} \nu^{-1}$.

$$\int |H(f\sigma)(x)|^2 d\omega(x) \leqslant C \int |f(x)|^2 \sigma^2 \nu dx.$$

- the integral $Hf(x) = \int \frac{f(y)}{x-y} dy$ should be taken with respect to the same measure that f is measurable with respect to, not w.r.t. dy
- Let's assume $\nu = \nu(x) dx$ is absolutely continuous,
- and replace f by $f\sigma$, where $\sigma \stackrel{\text{def}}{=} \nu^{-1}$.

$$\int |H(f\sigma)(x)|^2 d\omega(x) \leqslant C \int |f(x)|^2 \frac{d\sigma(x)}{}.$$

- the integral $Hf(x) = \int \frac{f(y)}{x-y} dy$ should be taken with respect to the same measure that f is measurable with respect to, not w.r.t. dy
- Let's assume $\nu = \nu(x) dx$ is absolutely continuous,
- and replace f by $f\sigma$, where $\sigma \stackrel{\text{def}}{=} \nu^{-1}$.

$$\int |H_{\sigma}(f_{-})(x)|^{2}d\omega(x) \leqslant C \int |f(x)_{-}|^{2}d\sigma(x).$$

- the integral $Hf(x) = \int \frac{f(y)}{x-y} dy$ should be taken with respect to the same measure that f is measurable with respect to, not w.r.t. dy
- Let's assume $\nu = \nu(x) dx$ is absolutely continuous,
- and replace f by $f\sigma$, where $\sigma \stackrel{\text{def}}{=} \nu^{-1}$.
- The (now correct) problem is about showing $H_{\sigma}: L^2(\sigma) \to L^2(\omega)$, where $H_{\sigma}f(x) \stackrel{\text{def}}{=} \int \frac{f(y) \, d\sigma(y)}{x-y}$

$$\int |H_{\sigma}(f_{-})(x)|^{2}d\omega(x) \leqslant C \int |f(x)_{-}|^{2}d\sigma(x).$$

- the integral $Hf(x) = \int \frac{f(y)}{x-y} dy$ should be taken with respect to the same measure that f is measurable with respect to, not w.r.t. dy
- Let's assume $\nu = \nu(x) dx$ is absolutely continuous,
- and replace f by $f\sigma$, where $\sigma \stackrel{\text{def}}{=} \nu^{-1}$.
- The (now correct) problem is about showing $H_{\sigma}: L^2(\sigma) \to L^2(\omega)$, where $H_{\sigma}f(x) \stackrel{\text{def}}{=} \int \frac{f(y) \, d\sigma(y)}{x-y}$
- One does same rescaling for other CZOs

$$\int |H_{\sigma}(f_{-})(x)|^{2}d\omega(x) \leqslant C \int |f(x)_{-}|^{2}d\sigma(x).$$

- the integral $Hf(x) = \int \frac{f(y)}{x-y} dy$ should be taken with respect to the same measure that f is measurable with respect to, not w.r.t. dy
- Let's assume $\nu = \nu(x) dx$ is absolutely continuous,
- and replace f by $f\sigma$, where $\sigma \stackrel{\text{def}}{=} \nu^{-1}$.
- The (now correct) problem is about showing $H_{\sigma}: L^{2}(\sigma) \to L^{2}(\omega)$, where $H_{\sigma}f(x) \stackrel{\text{def}}{=} \int \frac{f(y) \, d\sigma(y)}{x-y}$
- One does same rescaling for other CZOs

However
$$A_2(\sigma,\omega)^2 \stackrel{\mathrm{def}}{=} \sup_{Q \subset \mathbb{R}} \left(\frac{1}{|Q|} \int_Q d\sigma(y) \right) \left(\frac{1}{|Q|} \int_Q d\omega(y) \right) < \infty$$
 isn't a sufficient condition for boundedness!

$$\int |H_{\sigma}(f_{-})(x)|^{2}d\omega(x) \leqslant C \int |f(x)_{-}|^{2}d\sigma(x).$$

The above is ill-posed: how should it be posed correctly?

- the integral $Hf(x) = \int \frac{f(y)}{x-y} dy$ should be taken with respect to the same measure that f is measurable with respect to, not w.r.t. dy
- Let's assume $\nu = \nu(x) dx$ is absolutely continuous,
- and replace f by $f\sigma$, where $\sigma \stackrel{\text{def}}{=} \nu^{-1}$.
- The (now correct) problem is about showing $H_{\sigma}: L^2(\sigma) \to L^2(\omega)$, where $H_{\sigma}f(x) \stackrel{\text{def}}{=} \int \frac{f(y) \, d\sigma(y)}{x-y}$
- One does same rescaling for other CZOs

However $A_2(\sigma,\omega)^2 \stackrel{\mathrm{def}}{=} \sup_{Q \subset \mathbb{R}} \left(\frac{1}{|Q|} \int_Q d\sigma(y) \right) \left(\frac{1}{|Q|} \int_Q d\omega(y) \right) < \infty$ isn't a sufficient condition for boundedness! No easy characterization in terms of weights alone!

Sawyer Testing Conditions for Hilbert transform

Sawyer Testing Conditions for Hilbert transform

Theorem (Lacey-Sawyer-Shen-Uriarte-Tuero; Lacey, 2012)

Assume ω and σ don't have common point masses and a stronger A_2 condition holds where the averages are replaced by Poisson averages. Then

$$\|H_{\sigma}f(x)\|_{L^{2}(\omega)} \lesssim \|f\|_{L^{2}(\sigma)}$$
 for all f

if and only if the testing conditions hold, i.e.,

$$\begin{cases} \|\mathbf{1}_{Q}H_{\sigma}\mathbf{1}_{Q}(x)\|_{L^{2}(\omega)} \lesssim \|\mathbf{1}_{Q}\|_{L^{2}(\sigma)} \\ \|\mathbf{1}_{Q}H_{\omega}\mathbf{1}_{Q}(x)\|_{L^{2}(\sigma)} \lesssim \|\mathbf{1}_{Q}\|_{L^{2}(\omega)} \end{cases}$$
 for all cubes Q .

Sawyer Testing Conditions for Hilbert transform

Theorem (Lacey-Sawyer-Shen-Uriarte-Tuero; Lacey, 2012)

Assume ω and σ don't have common point masses and a stronger A_2 condition holds where the averages are replaced by Poisson averages. Then

$$\|H_{\sigma}f(x)\|_{L^{2}(\omega)} \lesssim \|f\|_{L^{2}(\sigma)}$$
 for all f

if and only if the testing conditions hold, i.e.,

$$\begin{cases} \|\mathbf{1}_{Q}H_{\sigma}\mathbf{1}_{Q}(x)\|_{L^{2}(\omega)} \lesssim \|\mathbf{1}_{Q}\|_{L^{2}(\sigma)} \\ \|\mathbf{1}_{Q}H_{\omega}\mathbf{1}_{Q}(x)\|_{L^{2}(\sigma)} \lesssim \|\mathbf{1}_{Q}\|_{L^{2}(\omega)} \end{cases}$$
 for all cubes Q .

Morally, to check the norm inequality, it suffices to *test* the norm inequality over indicators of cubes.

For CZOs, have a similar result if the measures are "regular enough."

For CZOs, have a similar result if the measures are "regular enough."

Definition (Doubling)

A measure μ is doubling if there exists a constant C such that $\mu(2B)\leqslant C\mu(B)$.

For CZOs, have a similar result if the measures are "regular enough."

Definition (Doubling)

A measure μ is doubling if there exists a constant C such that $\mu(2B)\leqslant C\mu(B).$

Doubling measures can't locally change too much (e.g. no delta masses).

For CZOs, have a similar result if the measures are "regular enough."

Definition (Doubling)

A measure μ is doubling if there exists a constant C such that $\mu(2B) \leqslant C\mu(B)$.

Doubling measures can't locally change too much (e.g. no delta masses).

Theorem (A. -Sawyer-Uriarte-Tuero, 2021)

Assume the measures σ, ω are doubling. If T is a CZO, then

 $T_{\sigma}: L^{2}(\sigma) \to L^{2}(\omega) \Leftrightarrow A_{2}(\sigma, \omega) < \infty$ and the testing conditions hold.

For CZOs, have a similar result if the measures are "regular enough."

Definition (Doubling)

A measure μ is doubling if there exists a constant C such that $\mu(2B)\leqslant C\mu(B).$

Doubling measures can't locally change too much (e.g. no delta masses).

Theorem (A. -Sawyer-Uriarte-Tuero, 2021)

Assume the measures σ, ω are doubling. If T is a CZO, then

 $T_{\sigma}: L^2(\sigma) \to L^2(\omega) \Leftrightarrow A_2(\sigma, \omega) < \infty$ and the testing conditions hold.

Theorem (Sawyer-Wick, 2022)

If the measures σ, ω are doubling, then a more technical (but similar in spirit) L^p testing theorem holds.

• In the one-weight case, A_2 holds iff your operator is bounded.

- In the one-weight case, A_2 holds iff your operator is bounded.
- In the two-weight case, A_2 cannot *characterize* boundedness of your operator, only testing can.

- In the one-weight case, A_2 holds iff your operator is bounded.
- In the two-weight case, A_2 cannot *characterize* boundedness of your operator, only testing can.
- However, testing can be hard to check:

- In the one-weight case, A_2 holds iff your operator is bounded.
- In the two-weight case, A_2 cannot *characterize* boundedness of your operator, only testing can.
- However, testing can be hard to check: need to delicately estimate cancellation while operator acts on exotic measures.

- In the one-weight case, A_2 holds iff your operator is bounded.
- In the two-weight case, A_2 cannot *characterize* boundedness of your operator, only testing can.
- However, testing can be hard to check: need to delicately estimate cancellation while operator acts on exotic measures.
- Whereas A_2 is easy to check, since everything's positive and the averaging integrals are simple.

- In the one-weight case, A_2 holds iff your operator is bounded.
- In the two-weight case, A_2 cannot *characterize* boundedness of your operator, only testing can.
- However, testing can be hard to check: need to delicately estimate cancellation while operator acts on exotic measures.
- Whereas A₂ is easy to check, since everything's positive and the averaging integrals are simple. Furthermore, A₂ robust under dilations, translations, and biLipschitz change of variable.

- In the one-weight case, A_2 holds iff your operator is bounded.
- In the two-weight case, A_2 cannot *characterize* boundedness of your operator, only testing can.
- However, testing can be hard to check: need to delicately estimate cancellation while operator acts on exotic measures.
- Whereas A₂ is easy to check, since everything's positive and the averaging integrals are simple. Furthermore, A₂ robust under dilations, translations, and biLipschitz change of variable.
- A_2 is stable under biLipschitz change of variable.

- In the one-weight case, A_2 holds iff your operator is bounded.
- In the two-weight case, A_2 cannot *characterize* boundedness of your operator, only testing can.
- However, testing can be hard to check: need to delicately estimate cancellation while operator acts on exotic measures.
- Whereas A_2 is easy to check, since everything's positive and the averaging integrals are simple. Furthermore, A_2 robust under dilations, translations, and biLipschitz change of variable.
- A₂ is *stable* under biLipschitz change of variable. So one-weight norm inequalities are too.

- In the one-weight case, A_2 holds iff your operator is bounded.
- In the two-weight case, A_2 cannot *characterize* boundedness of your operator, only testing can.
- However, testing can be hard to check: need to delicately estimate cancellation while operator acts on exotic measures.
- Whereas A_2 is easy to check, since everything's positive and the averaging integrals are simple. Furthermore, A_2 robust under dilations, translations, and biLipschitz change of variable.
- A₂ is *stable* under biLipschitz change of variable. So one-weight norm inequalities are too. Not the case for two-weight norm inequalities.

- In the one-weight case, A_2 holds iff your operator is bounded.
- In the two-weight case, A_2 cannot *characterize* boundedness of your operator, only testing can.
- However, testing can be hard to check: need to delicately estimate cancellation while operator acts on exotic measures.
- Whereas A₂ is easy to check, since everything's positive and the averaging integrals are simple. Furthermore, A₂ robust under dilations, translations, and biLipschitz change of variable.
- A_2 is *stable* under biLipschitz change of variable. So one-weight norm inequalities are too. Not the case for two-weight norm inequalities.

Theorem (Lacey-Sawyer-Uriarte-Tuero, 2012)

There exist measures σ, ω and a biLipchitz map φ such that the norm inequality for H holds w.r.t. (σ, ω) , but does not w.r.t. the pushforwards $(\varphi_*\sigma, \varphi_*\omega)$.

Recall the middle-third Cantor set E and Cantor measure σ .

 $\boldsymbol{\sigma}$ assigns equal weight to these intervals

Recall the middle-third Cantor set E and Cantor measure σ . Let's graph $H(\sigma)(x) = \int \frac{d\sigma(y)}{x-y}$.

Recall the middle-third Cantor set E and Cantor measure σ . Let's graph $H(\sigma)(x)=\int \frac{d\sigma(y)}{x-y}$.

Recall the middle-third Cantor set E and Cantor measure σ . Let's graph $H(\sigma)(x)=\int \frac{d\sigma(y)}{x-y}$.

Recall the middle-third Cantor set E and Cantor measure σ . Let's graph $H(\sigma)(x) = \int \frac{d\sigma(y)}{x-y}$.

Recall the middle-third Cantor set E and Cantor measure σ . Let's graph $H(\sigma)(x) = \int \frac{d\sigma(y)}{x-y}$.

 $\omega = \text{sum of delta masses at these zeros of } H\sigma(x).$

Recall the middle-third Cantor set E and Cantor measure σ . Let's graph $H(\sigma)(x) = \int \frac{d\sigma(y)}{x-y}$.

 $\omega = \text{sum of delta masses at these zeros of } H\sigma(x).$

Recall the middle-third Cantor set E and Cantor measure σ . Let's graph $H(\sigma)(x) = \int \frac{d\sigma(y)}{x-y}$.

 $\omega = \text{sum of delta}$ masses at these zeros of $H\sigma(x)$.

$$\int \left| H\left(\mathbf{1}_{[0,1]}\sigma\right)(x) \right|^2 d\omega(x) = 0. \text{ Then one can show } H_{\sigma}: L^2(\sigma) \to L^2(\omega)$$

Recall the middle-third Cantor set E and Cantor measure σ . Let's graph $H(\sigma)(x) = \int \frac{d\sigma(y)}{x-y}$.

Now, shift the point masses to blow-up points of $H\sigma(x)$ via a biLipschitz map.

 $\omega = \text{sum of delta}$ masses at these zeros of $H\sigma(x)$.

$$\int \left| H\left(\mathbf{1}_{[0,1]}\sigma\right)(x) \right|^2 d\omega(x) = 0. \text{ Then one can show } H_\sigma: L^2(\sigma) \to L^2(\omega)$$

Recall the middle-third Cantor set E and Cantor measure σ . Let's graph $H(\sigma)(x) = \int \frac{d\sigma(y)}{x-y}$.

Now, shift the point masses to blow-up points of $H\sigma(x)$ via a biLipschitz map.

 $\omega = \text{sum of delta masses at these blow-up points of } H\sigma(x).$

$$\int \left| H\left(\mathbf{1}_{[0,1]}\sigma \right)(x) \right|^2 d\omega(x) = 0$$
. Then one can show $H_{\sigma}: L^2(\sigma) \to L^2(\omega)$

Recall the middle-third Cantor set E and Cantor measure σ . Let's graph $H(\sigma)(x) = \int \frac{d\sigma(y)}{x-y}$.

Now, shift the point masses to blow-up points of $H\sigma(x)$ via a biLipschitz map.

 $\omega = \text{sum of delta}$ masses at these blow-up points of $H\sigma(x)$.

$$\int \left| H\left(\mathbf{1}_{[0,1]}\sigma\right)(x) \right|^2 d\omega(x) = \infty. \text{ Then one can show } H_\sigma: L^2(\sigma) \xrightarrow{} L^2(\omega)$$

Recall the middle-third Cantor set E and Cantor measure σ . Let's graph $H(\sigma)(x)=\int \frac{d\sigma(y)}{x-y}$.

Now, shift the point masses to blow-up points of $H\sigma(x)$ via a biLipschitz map.

 $\omega = \text{sum of delta masses at these blow-up points of } H\sigma(x).$

$$\int \left| H\left(\mathbf{1}_{[0,1]}\sigma\right)(x) \right|^2 d\omega(x) = \infty$$
. Then one can show $H_\sigma: L^2(\sigma) \to L^2(\omega)$ Morally, this is why you need testing: one can only characterize the norm inequality with some biLipschitz unstable condition.

Theorem (A.-Luna-Garcia-Sawyer-Uriarte-Tuero, 2022)

Consider the Riesz transform R_2 on \mathbb{R}^2 . For every angle $\theta > 0$, there exist doubling measures σ, ω such that the norm inequality for R_2 holds w.r.t. (σ, ω) , but does not w.r.t. the rotated measures $(\sigma_{\theta}, \omega_{\theta})$.

Theorem (A.-Luna-Garcia-Sawyer-Uriarte-Tuero, 2022)

Consider the Riesz transform R_2 on \mathbb{R}^2 . For every angle $\theta > 0$, there exist doubling measures σ, ω such that the norm inequality for R_2 holds w.r.t. (σ, ω) , but does not w.r.t. the rotated measures $(\sigma_{\theta}, \omega_{\theta})$.

We construct measures that look like sheet metal!

Theorem (A.-Luna-Garcia-Sawyer-Uriarte-Tuero, 2022)

Consider the Riesz transform R_2 on \mathbb{R}^2 . For every angle $\theta>0$, there exist doubling measures σ,ω such that the norm inequality for R_2 holds w.r.t. (σ,ω) , but does not w.r.t. the rotated measures $(\sigma_\theta,\omega_\theta)$.

We construct measures that look like sheet metal!

Start with R_2 : it points vertically along the level curves of the sheet metal.

Theorem (A.-Luna-Garcia-Sawyer-Uriarte-Tuero, 2022)

Consider the Riesz transform R_2 on \mathbb{R}^2 . For every angle $\theta>0$, there exist doubling measures σ,ω such that the norm inequality for R_2 holds w.r.t. (σ,ω) , but does not w.r.t. the rotated measures $(\sigma_\theta,\omega_\theta)$.

We construct measures that look like sheet metal!

Start with R_2 : it points vertically along the level curves of the sheet metal. Rotate R_2 slightly: it sees all the ripples all of a sudden.

We really just need to find doubling measures (σ, ω) for which norm inequality holds with respect to R_2 , but fails with respect to R_1 .

We really just need to find doubling measures (σ, ω) for which norm inequality holds with respect to R_2 , but fails with respect to R_1 .

Find doubling measures (σ, ω) on $[0,1] \subset \mathbb{R}$ which satisfy $A_2(\sigma, \omega) < \infty$, but the norm inequality fails for H.

We really just need to find doubling measures (σ, ω) for which norm inequality holds with respect to R_2 , but fails with respect to R_1 .

Find doubling measures (σ, ω) on $[0,1] \subset \mathbb{R}$ which satisfy $A_2(\sigma, \omega) < \infty$, but the norm inequality fails for H.

$$Sf(x) \equiv \sqrt{\sum_{I \in \mathcal{D}} (E_{J_-} f - E_{J_+} f)^2 |J| \mathbf{1}_J(x)}$$
.

We really just need to find doubling measures (σ, ω) for which norm inequality holds with respect to R_2 , but fails with respect to R_1 .

Find doubling measures (σ, ω) on $[0,1] \subset \mathbb{R}$ which satisfy $A_2(\sigma, \omega) < \infty$, but the norm inequality fails for H.

$$Sf(x) \equiv \sqrt{\sum_{J \in \mathcal{D}} (E_{J_-} f - E_{J_+} f)^2 |J| \mathbf{1}_J(x)}$$
. Actually done by Nazarov!

We really just need to find doubling measures (σ, ω) for which norm inequality holds with respect to R_2 , but fails with respect to R_1 .

 \uparrow

Find doubling measures (σ, ω) on $[0,1] \subset \mathbb{R}$ which satisfy $A_2(\sigma, \omega) < \infty$, but the norm inequality fails for H.

$$Sf(x) \equiv \sqrt{\sum_{J \in \mathcal{D}} (E_{J_-} f - E_{J_+} f)^2 |J| \mathbf{1}_J(x)}$$
. Actually done by Nazarov!

We really just need to find doubling measures (σ, ω) for which norm inequality holds with respect to R_2 , but fails with respect to R_1 .

Find doubling measures (σ, ω) on $[0,1] \subset \mathbb{R}$ which satisfy $A_2(\sigma, \omega) < \infty$, but the norm inequality fails for H.

$$Sf(x) \equiv \sqrt{\sum_{J \in \mathcal{D}} (E_{J_-} f - E_{J_+} f)^2 |J| \mathbf{1}_J(x)}$$
. Actually done by Nazarov!

• the dyadic grid is given by the intervals $[j2^{-k}, (j+1)2^{-k}), j, k \in \mathbb{Z}$.

- the dyadic grid is given by the intervals $[j2^{-k}, (j+1)2^{-k}), j, k \in \mathbb{Z}$.
- μ is dyadically doubling if $\mu(\pi I) \leqslant C\mu(I)$ for all $I \in \mathcal{D}$.

- the dyadic grid is given by the intervals $[j2^{-k}, (j+1)2^{-k}), j, k \in \mathbb{Z}$.
- μ is dyadically doubling if $\mu(\pi I) \leqslant C\mu(I)$ for all $I \in \mathcal{D}$.
- $A_2^{\mathcal{D}}(\sigma,\omega)^2 \equiv \sup_{I \in \mathcal{D}} (E_I \sigma) (E_I \omega).$

- the dyadic grid is given by the intervals $[j2^{-k}, (j+1)2^{-k}), j, k \in \mathbb{Z}.$
- μ is dyadically doubling if $\mu(\pi I) \leqslant C\mu(I)$ for all $I \in \mathcal{D}$.
- $A_2^{\mathcal{D}}(\sigma,\omega)^2 \equiv \sup_{I \in \mathcal{D}} (E_I \sigma) (E_I \omega).$
- The dyadic square function $Sf(x) \equiv \sqrt{\sum_{J \in \mathcal{D}} (E_{J_{-}}f E_{J_{+}}f)^{2} |J| \mathbf{1}_{J}(x)}$

measures the oscilation/discontinuities of f.

- the dyadic grid is given by the intervals $[j2^{-k}, (j+1)2^{-k}), j, k \in \mathbb{Z}$.
- μ is dyadically doubling if $\mu(\pi I) \leqslant C\mu(I)$ for all $I \in \mathcal{D}$.
- $A_2^{\mathcal{D}}(\sigma,\omega)^2 \equiv \sup_{I \in \mathcal{D}} (E_I \sigma) (E_I \omega).$
- The dyadic square function $Sf(x) \equiv \sqrt{\sum_{J \in \mathcal{D}} (E_{J_{-}}f E_{J_{+}}f)^2 |J| \mathbf{1}_{J}(x)}$

measures the oscilation/discontinuities of f.

Nazarov found dyadically doubling measures (σ,ω) on [0,1] which satisfy $A_2^{\mathcal{D}}(\sigma,\omega)$, but fail the testing condition for the dyadic square function.

- the dyadic grid is given by the intervals $[j2^{-k}, (j+1)2^{-k}), j, k \in \mathbb{Z}$.
- μ is dyadically doubling if $\mu(\pi I) \leqslant C\mu(I)$ for all $I \in \mathcal{D}$.
- $A_2^{\mathcal{D}}(\sigma,\omega)^2 \equiv \sup_{I \in \mathcal{D}} (E_I \sigma) (E_I \omega).$
- The dyadic square function $Sf(x) \equiv \sqrt{\sum_{J \in \mathcal{D}} (E_{J_{-}}f E_{J_{+}}f)^2 |J| \mathbf{1}_{J}(x)}$

measures the oscilation/discontinuities of f.

Nazarov found dyadically doubling measures (σ,ω) on [0,1] which satisfy $A_2^{\mathcal{D}}(\sigma,\omega)$, but fail the testing condition for the dyadic square function.

How?

- the dyadic grid is given by the intervals $[j2^{-k}, (j+1)2^{-k}), j, k \in \mathbb{Z}$.
- μ is dyadically doubling if $\mu(\pi I) \leqslant C\mu(I)$ for all $I \in \mathcal{D}$.
- $A_2^{\mathcal{D}}(\sigma,\omega)^2 \equiv \sup_{I \in \mathcal{D}} (E_I \sigma) (E_I \omega).$
- The dyadic square function $Sf(x) \equiv \sqrt{\sum_{J \in \mathcal{D}} (E_{J_{-}}f E_{J_{+}}f)^{2} |J| \mathbf{1}_{J}(x)}$ measures the oscilation/discontinuities

Nazarov found dyadically doubling measures (σ, ω) on [0,1] which satisfy $A_2^{\mathcal{D}}(\sigma, \omega)$, but fail the testing condition for the dyadic square function. **How?** Nazarov showed existence via a non-constructive Bellman proof.

of f.

- the dyadic grid is given by the intervals $[j2^{-k}, (j+1)2^{-k}), j, k \in \mathbb{Z}$.
- μ is dyadically doubling if $\mu(\pi I) \leqslant C\mu(I)$ for all $I \in \mathcal{D}$.
- $A_2^{\mathcal{D}}(\sigma,\omega)^2 \equiv \sup_{I \in \mathcal{D}} (E_I \sigma) (E_I \omega).$
- The dyadic square function $Sf(x) \equiv \sqrt{\sum\limits_{J \in \mathcal{D}} \left(E_{J_-}f E_{J_+}f\right)^2 |J| \mathbf{1}_J(x)}$ measures the oscilation/discontinuities

Nazarov found dyadically doubling measures (σ, ω) on [0,1] which satisfy $A_2^{\mathcal{D}}(\sigma, \omega)$, but fail the testing condition for the dyadic square function. **How?** Nazarov showed existence via a non-constructive Bellman proof. Kakaroumpas-Treil got explicit weights for an essentially equivalent pb.

of f.

We really just need to find doubling measures (σ, ω) which are well-behaved with respect to R_2 , but badly behaved with respect to R_1 .

Find doubling measures (σ, ω) on $[0,1] \subset \mathbb{R}$ which satisfy $A_2(\sigma, \omega) < \infty$, but fail the testing condition for H.

$$Sf(x) \equiv \sqrt{\sum_{J \in \mathcal{D}} (E_{J_-} f - E_{J_+} f)^2 |J| \mathbf{1}_J(x)}$$
.

We really just need to find doubling measures (σ, ω) which are well-behaved with respect to R_2 , but badly behaved with respect to R_1 .

Find doubling measures (σ, ω) on $[0,1] \subset \mathbb{R}$ which satisfy $A_2(\sigma, \omega) < \infty$, but fail the testing condition for H.

↑ (done by Nazarov)

$$Sf(x) \equiv \sqrt{\sum_{J \in \mathcal{D}} (E_{J-}f - E_{J+}f)^2 |J| \mathbf{1}_J(x)}.$$

 $\mathcal{D}_0([0,1))$ $\mathcal{D}_1([0,1))$ $\mathcal{D}_2([0,1))$

 σ, ω are dyadic step functions s.t. testing fails for S.

$$\mathcal{D}_0([0,1))$$
 $\mathcal{D}_1([0,1))$ $\mathcal{D}_2([0,1))$ $\mathcal{D}_2([0,1))$

 σ, ω are dyadic step functions s.t. testing fails for S.

$$\sigma = E_{[0,1]}\sigma + \sum_{I \in \mathcal{D}} c_I h_I$$
, where h_I is a Haar function

 σ, ω are dyadic step functions s.t. testing fails for S.

$$\sigma = E_{[0,1]}\sigma + \sum_{I \in \mathcal{D}} c_I h_I$$
, where h_I is a Haar function

 σ, ω are dyadic step functions s.t. \Rightarrow testing fails for S.

Spacing out Haar frequencies of σ and ω makes testing fail for H

$$\sigma = E_{[0,1]}\sigma + \sum_{I \in \mathcal{D}} c_I h_I$$
, where h_I is a Haar function

 σ, ω are dyadic step functions s.t. = testing fails for S.

$$\sigma = E_{[0,1]}\sigma + \sum_{I \in \mathcal{D}} c_I h_I$$
, where $h_I \implies$ is a Haar function

Spacing out Haar frequencies of σ and ω makes testing fail for ${\it H}$

$$\sigma = E_{[0,1]}\sigma + \sum_{I \in \mathcal{S}} c_I s_{k_I}^I$$
, where \mathcal{S} is a sparser set of cubes

Simple example: $\sigma = A\mathbf{1}_{[0,1]} + c_{\sigma} s_k^{[0,1]}$ and $\omega = B\mathbf{1}_{[0,1]} + c_{\omega} s_k^{[0,1]}$.

Simple example: $\sigma = A\mathbf{1}_{[0,1]} + c_{\sigma}s_k^{[0,1]}$ and $\omega = B\mathbf{1}_{[0,1]} + c_{\omega}s_k^{[0,1]}$. Then $\int_{[0,1]} \left|H\mathbf{1}_{[0,1]}\sigma(x)\right|^2 d\omega(x)$ equals

Simple example: $\sigma = A\mathbf{1}_{[0,1]} + c_{\sigma}s_{k}^{[0,1]}$ and $\omega = B\mathbf{1}_{[0,1]} + c_{\omega}s_{k}^{[0,1]}$. Then $\int |H\mathbf{1}_{[0,1]}\sigma(x)|^2 d\omega(x)$ equals $\int_{\mathbb{R}^{3}} (H\mathbf{1}_{[0,1]}A)^{2} B dx + c_{\omega} \int_{\mathbb{R}^{3}} (H\mathbf{1}_{[0,1]}A)^{2} s_{k}^{[0,1]} dx$ $+2c_{\sigma}\int \left(H\mathbf{1}_{[0,1]}A\right)\left(Hs_{k}^{[0,1]}\right)Bdx+2c_{\sigma}c_{\omega}\int \left(H\mathbf{1}_{[0,1]}A\right)\left(Hs_{k}^{[0,1]}\right)s_{k}^{[0,1]}dx$ [0,1] $+c_{\sigma}^{2}\int \left(Hs_{k}^{[0,1]}\right)^{2}Bdx+c_{\sigma}^{2}\int \left(Hs_{k}^{[0,1]}\right)^{2}s_{k}^{[0,1]}dx$

Simple example: $\sigma = A\mathbf{1}_{[0,1]} + c_{\sigma}s_k^{[0,1]}$ and $\omega = B\mathbf{1}_{[0,1]} + c_{\omega}s_k^{[0,1]}$. Then $\int \left|H\mathbf{1}_{[0,1]}\sigma(x)\right|^2d\omega(x)$ equals

$$\int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} Bdx + c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} s_{k}^{[0,1]} dx$$

$$+2c_{\sigma} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) (Hs_{k}^{[0,1]}) Bdx + 2c_{\sigma}c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) (Hs_{k}^{[0,1]}) s_{k}^{[0,1]} dx$$

$$+c_{\sigma}^{2}\int_{[0,1]} \left(Hs_{k}^{[0,1]}\right)^{2}Bdx + c_{\sigma}^{2}\int_{[0,1]} \left(Hs_{k}^{[0,1]}\right)^{2}s_{k}^{[0,1]}dx$$

Since $s_k \equiv s_k^{[0,1]} \to 0$ weakly,

[0,1]

Simple example: $\sigma = A\mathbf{1}_{[0,1]} + c_{\sigma}s_k^{[0,1]}$ and $\omega = B\mathbf{1}_{[0,1]} + c_{\omega}s_k^{[0,1]}$. Then $\int \left|H\mathbf{1}_{[0,1]}\sigma(x)\right|^2d\omega(x)$ equals

$$\int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} Bdx + c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} s_{k}^{[0,1]} dx$$

$$+2c_{\sigma} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) \left(Hs_{k}^{[0,1]}\right) Bdx + 2c_{\sigma} c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) \left(Hs_{k}^{[0,1]}\right) s_{k}^{[0,1]} dx$$

$$+c_{\sigma}^{2} \int_{[0,1]} (Hs_{k}^{[0,1]})^{2} Bdx + c_{\sigma}^{2} \int_{[0,1]} (Hs_{k}^{[0,1]})^{2} s_{k}^{[0,1]} dx$$

Since $s_k \equiv s_k^{[0,1]} \to 0$ weakly,

Simple example: $\sigma = A\mathbf{1}_{[0,1]} + c_{\sigma}s_k^{[0,1]}$ and $\omega = B\mathbf{1}_{[0,1]} + c_{\omega}s_k^{[0,1]}$. Then $\int \left|H\mathbf{1}_{[0,1]}\sigma(x)\right|^2d\omega(x)$ equals

$$\int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} Bdx + c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} s_{k}^{[0,1]} dx$$

$$+2c_{\sigma} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) \left(Hs_{k}^{[0,1]}\right) Bdx + 2c_{\sigma} c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) \left(Hs_{k}^{[0,1]}\right) s_{k}^{[0,1]} dx$$

$$+c_{\sigma}^{2} \int_{[0,1]} (Hs_{k}^{[0,1]})^{2} Bdx + c_{\sigma}^{2} \int_{[0,1]} (Hs_{k}^{[0,1]})^{2} s_{k}^{[0,1]} dx$$

Since $s_k \equiv s_k^{[0,1]} \to 0$ weakly, then $s_k + iHs_k \to 0$ weakly.

Simple example: $\sigma = A\mathbf{1}_{[0,1]} + c_{\sigma}s_k^{[0,1]}$ and $\omega = B\mathbf{1}_{[0,1]} + c_{\omega}s_k^{[0,1]}$. Then $\int \left|H\mathbf{1}_{[0,1]}\sigma(x)\right|^2 d\omega(x)$ equals

$$\int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} Bdx + c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} s_{k}^{[0,1]} dx$$

$$+2c_{\sigma} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) \left(Hs_{k}^{[0,1]}\right) Bdx + 2c_{\sigma} c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) \left(Hs_{k}^{[0,1]}\right) s_{k}^{[0,1]} dx$$

$$+c_{\sigma}^{2} \int_{[0,1]} (Hs_{k}^{[0,1]})^{2} Bdx + c_{\sigma}^{2} \int_{[0,1]} (Hs_{k}^{[0,1]})^{2} s_{k}^{[0,1]} dx$$

Since $s_k \equiv s_k^{[0,1]} \to 0$ weakly, then $s_k + iHs_k \to 0$ weakly.

Simple example: $\sigma = A\mathbf{1}_{[0,1]} + c_{\sigma}s_{k}^{[0,1]}$ and $\omega = B\mathbf{1}_{[0,1]} + c_{\omega}s_{k}^{[0,1]}$. Then $\int |H\mathbf{1}_{[0,1]}\sigma(x)|^{2}d\omega(x)$ equals

Then
$$\int_{[0,1]} \left| H \mathbf{1}_{[0,1]} \sigma(x) \right|^2 d\omega(x)$$
 equals

$$\int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} Bdx + c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} s_{k}^{[0,1]} dx$$

$$+2c_{\sigma} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) \left(Hs_{k}^{[0,1]}\right) Bdx + 2c_{\sigma} c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) \left(Hs_{k}^{[0,1]}\right) s_{k}^{[0,1]} dx$$

$$+c_{\sigma}^{2} \int_{[0,1]} \left(Hs_{k}^{[0,1]}\right)^{2} Bdx + c_{\sigma}^{2} \int_{[0,1]} \left(Hs_{k}^{[0,1]}\right)^{2} s_{k}^{[0,1]} dx$$

Since $s_k \equiv s_k^{[0,1]} \to 0$ weakly, then $s_k + iHs_k \to 0$ weakly. By complex function theory, $(s_k + iHs_k)^2 \to 0$ weakly.

Simple example: $\sigma = A\mathbf{1}_{[0,1]} + c_{\sigma}s_k^{[0,1]}$ and $\omega = B\mathbf{1}_{[0,1]} + c_{\omega}s_k^{[0,1]}$. Then $\int \left|H\mathbf{1}_{[0,1]}\sigma(x)\right|^2d\omega(x)$ equals

$$\int_{[0,1]} \left(H\mathbf{1}_{[0,1]}A\right)^{2} B dx + c_{\omega} \int_{[0,1]} \left(H\mathbf{1}_{[0,1]}A\right)^{2} s_{k}^{[0,1]} dx$$

$$+2c_{\sigma} \int_{[0,1]} \left(H\mathbf{1}_{[0,1]}A\right) \left(Hs_{k}^{[0,1]}\right) B dx + 2c_{\sigma} c_{\omega} \int_{[0,1]} \left(H\mathbf{1}_{[0,1]}A\right) \left(Hs_{k}^{[0,1]}\right) s_{k}^{[0,1]} dx$$

$$+c_{\sigma}^{2} \int_{[0,1]} \left(Hs_{k}^{[0,1]}\right)^{2} B dx + c_{\sigma}^{2} \int_{[0,1]} \left(Hs_{k}^{[0,1]}\right)^{2} s_{k}^{[0,1]} dx$$

Since $s_k \equiv s_k^{[0,1]} \to 0$ weakly, then $s_k + iHs_k \to 0$ weakly. By complex function theory, $(s_k + iHs_k)^2 \to 0$ weakly. Imaginary part gives $(Hs_k) s_k \to 0$ weakly.

Simple example: $\sigma = A\mathbf{1}_{[0,1]} + c_{\sigma}s_{k}^{[0,1]}$ and $\omega = B\mathbf{1}_{[0,1]} + c_{\omega}s_{k}^{[0,1]}$.

Then $\int_{[0,1]} \left| H \mathbf{1}_{[0,1]} \sigma(x) \right|^2 d\omega(x)$ equals

$$\int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} Bdx + c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} s_{k}^{[0,1]} dx$$

$$+2c_{\sigma} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) \left(Hs_{k}^{[0,1]}\right) Bdx + 2c_{\sigma} c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) \left(Hs_{k}^{[0,1]}\right) s_{k}^{[0,1]} dx$$

$$+c_{\sigma}^{2} \int_{[0,1]} \left(Hs_{k}^{[0,1]}\right)^{2} Bdx + c_{\sigma}^{2} \int_{[0,1]} \left(Hs_{k}^{[0,1]}\right)^{2} s_{k}^{[0,1]} dx$$

Since $s_k \equiv s_k^{[0,1]} \to 0$ weakly, then $s_k + iHs_k \to 0$ weakly. By complex function theory, $(s_k + iHs_k)^2 \to 0$ weakly. Imaginary part gives $(Hs_k) s_k \to 0$ weakly.

Simple example: $\sigma = A\mathbf{1}_{[0,1]} + c_{\sigma}s_k^{[0,1]}$ and $\omega = B\mathbf{1}_{[0,1]} + c_{\omega}s_k^{[0,1]}$. Then $\int_{[0,1]} \left|H\mathbf{1}_{[0,1]}\sigma(x)\right|^2 d\omega(x)$ equals

$$\int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} Bdx + c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} s_{k}^{[0,1]} dx$$

$$+2c_{\sigma} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) \left(Hs_{k}^{[0,1]}\right) Bdx + 2c_{\sigma} c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) \left(Hs_{k}^{[0,1]}\right) s_{k}^{[0,1]} dx$$

$$+c_{\sigma}^{2} \int_{[0,1]} \left(Hs_{k}^{[0,1]}\right)^{2} Bdx + c_{\sigma}^{2} \int_{[0,1]} \left(Hs_{k}^{[0,1]}\right)^{2} s_{k}^{[0,1]} dx$$

Since $s_k \equiv s_k^{[0,1]} \to 0$ weakly, then $s_k + iHs_k \to 0$ weakly. By complex function theory, $(s_k + iHs_k)^2 \to 0$ weakly. Imaginary part gives $(Hs_k) s_k \to 0$ weakly. Real part gives $(Hs_k)^2 \to (s_k)^2 = \mathbf{1}_{[0,1]}^2$ weakly.

Simple example: $\sigma = A\mathbf{1}_{[0,1]} + c_{\sigma}s_k^{[0,1]}$ and $\omega = B\mathbf{1}_{[0,1]} + c_{\omega}s_k^{[0,1]}$. Then $\int_{[0,1]} \left|H\mathbf{1}_{[0,1]}\sigma(x)\right|^2 d\omega(x)$ equals

$$\int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} Bdx + c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} s_{k}^{[0,1]} dx$$

$$+2c_{\sigma} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) \left(Hs_{k}^{[0,1]}\right) Bdx + 2c_{\sigma} c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) \left(Hs_{k}^{[0,1]}\right) s_{k}^{[0,1]} dx$$

$$+c_{\sigma}^{2} \int_{[0,1]} (Hs_{k}^{[0,1]})^{2} Bdx + c_{\sigma}^{2} \int_{[0,1]} (Hs_{k}^{[0,1]})^{2} s_{k}^{[0,1]} dx$$

Since $s_k \equiv s_k^{[0,1]} \to 0$ weakly, then $s_k + iHs_k \to 0$ weakly. By complex function theory, $(s_k + iHs_k)^2 \to 0$ weakly. Imaginary part gives $(Hs_k) s_k \to 0$ weakly. Real part gives $(Hs_k)^2 \to (s_k)^2 = \mathbf{1}_{[0,1]}^2$ weakly.

Simple example: $\sigma = A\mathbf{1}_{[0,1]} + c_{\sigma}s_k^{[0,1]}$ and $\omega = B\mathbf{1}_{[0,1]} + c_{\omega}s_k^{[0,1]}$. Then $\int \left|H\mathbf{1}_{[0,1]}\sigma(x)\right|^2d\omega(x)$ equals

$$\int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} Bdx + c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} s_{k}^{[0,1]} dx$$

$$+2c_{\sigma} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) \left(Hs_{k}^{[0,1]}\right) Bdx + 2c_{\sigma} c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) \left(Hs_{k}^{[0,1]}\right) s_{k}^{[0,1]} dx$$

$$+c_{\sigma}^{2} \int_{[0,1]} \mathbf{1}_{[0,1]} \left(Hs_{k}^{[0,1]}\right)^{2} Bdx + c_{\sigma}^{2} \int_{[0,1]} \left(Hs_{k}^{[0,1]}\right)^{2} s_{k}^{[0,1]} dx$$

Since $s_k \equiv s_k^{[0,1]} \to 0$ weakly, then $s_k + iHs_k \to 0$ weakly. By complex function theory, $(s_k + iHs_k)^2 \to 0$ weakly. Imaginary part gives $(Hs_k)s_k \to 0$ weakly. Real part gives $(Hs_k)^2 \to (s_k)^2 = \mathbf{1}_{[0,1]}^2$ weakly. Looking at $(s_k + iHs_k)^3 \to 0$ weakly yields last term $\to 0$.

Michel Alexis (Bonn)

Simple example: $\sigma = A\mathbf{1}_{[0,1]} + c_{\sigma}s_k^{[0,1]}$ and $\omega = B\mathbf{1}_{[0,1]} + c_{\omega}s_k^{[0,1]}$. Then $\int \left|H\mathbf{1}_{[0,1]}\sigma(x)\right|^2d\omega(x)$ equals

$$\int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} Bdx + c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} s_{k}^{[0,1]} dx$$

$$+2c_{\sigma} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) \left(Hs_{k}^{[0,1]}\right) Bdx + 2c_{\sigma} c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) \left(Hs_{k}^{[0,1]}\right) s_{k}^{[0,1]} dx$$

$$+c_{\sigma}^{2} \int_{[0,1]} \mathbf{1}_{[0,1]} \left(Hs_{k}^{[0,1]}\right)^{2} Bdx + c_{\sigma}^{2} \int_{[0,1]} (Hs_{k}^{[0,1]})^{2} s_{k}^{[0,1]} dx$$

$$-[0,1]$$

Since $s_k \equiv s_k^{[0,1]} \to 0$ weakly, then $s_k + iHs_k \to 0$ weakly. By complex function theory, $(s_k + iHs_k)^2 \to 0$ weakly. Imaginary part gives $(Hs_k)s_k \to 0$ weakly. Real part gives $(Hs_k)^2 \to (s_k)^2 = \mathbf{1}_{[0,1]}^2$ weakly. Looking at $(s_k + iHs_k)^3 \to 0$ weakly yields last term 0.

Michel Alexis (Bonn)

Simple example:
$$\sigma = A\mathbf{1}_{[0,1]} + c_{\sigma}s_{k}^{[0,1]}$$
 and $\omega = B\mathbf{1}_{[0,1]} + c_{\omega}s_{k}^{[0,1]}$. Then $\int_{[0,1]} |H\mathbf{1}_{[0,1]}\sigma(x)|^{2} d\omega(x) \to \int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} Bdx + c_{\sigma}^{2}B$.
$$\int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} Bdx + c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A)^{2} s_{k}^{[0,1]} dx$$

$$+2c_{\sigma} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) (Hs_{k}^{[0,1]}) Bdx + 2c_{\sigma}c_{\omega} \int_{[0,1]} (H\mathbf{1}_{[0,1]}A) (Hs_{k}^{[0,1]}) s_{k}^{[0,1]} dx$$

$$+c_{\sigma}^{2} \int_{[0,1]} (Hs_{k}^{[0,1]})^{2} Bdx + c_{\sigma}^{2} \int_{[0,1]} (Hs_{k}^{[0,1]})^{2} s_{k}^{[0,1]} dx$$

Since $s_k \equiv s_k^{[0,1]} \to 0$ weakly, then $s_k + iHs_k \to 0$ weakly. By complex function theory, $(s_k + iHs_k)^2 \to 0$ weakly. Imaginary part gives $(Hs_k)s_k \to 0$ weakly. Real part gives $(Hs_k)^2 \to (s_k)^2 = \mathbf{1}_{[0,1]}^2$ weakly. Looking at $(s_k + iHs_k)^3 \to 0$ weakly yields last term 0.

Michel Alexis (Bonn)

Rotational instability on doubling measures: the key ideas

We really just need to find doubling measures (σ, ω) which are well-behaved with respect to R_2 , but badly behaved with respect to R_1 .

Find doubling measures (σ, ω) on $[0,1] \subset \mathbb{R}$ which satisfy $A_2(\sigma, \omega) < \infty$, but fail the testing condition for H.

Find dyadically doubling measures (σ,ω) on $[0,1]\subset\mathbb{R}$ which satisfy the dyadic $A_2^{\mathcal{D}}(\sigma,\omega)<\infty$, but fail the testing condition for the dyadic square function

$$Sf(x) \equiv \sqrt{\sum_{J \in \mathcal{D}} (E_{J-}f - E_{J+}f)^2 |J| \mathbf{1}_J(x)}.$$

Rotational instability on doubling measures: the key ideas

We really just need to find doubling measures (σ, ω) which are well-behaved with respect to R_2 , but badly behaved with respect to R_1 .

Find doubling measures (σ, ω) on $[0,1] \subset \mathbb{R}$ which satisfy $A_2(\sigma, \omega) < \infty$, but fail the testing condition for H.

↑ (done by Nazarov)

Find dyadically doubling measures (σ,ω) on $[0,1]\subset\mathbb{R}$ which satisfy the dyadic $A_2^{\mathcal{D}}(\sigma,\omega)<\infty$, but fail the testing condition for the dyadic square function

$$Sf(x) \equiv \sqrt{\sum_{J \in \mathcal{D}} (E_{J-}f - E_{J+}f)^2 |J| \mathbf{1}_J(x)}.$$

Tensor the 1D weights of Nazarov with $\mathbf{1}_{[0,1]}(x_2)$ to get "sheet metal" weights σ, ω .

Tensor the 1D weights of Nazarov with $\mathbf{1}_{[0,1]}(x_2)$ to get "sheet metal" weights σ, ω .

Decompose $\int\limits_{[0,1]} \left| R_1 \left(\mathbf{1}_{[0,1]} \sigma \right) (x) \right|^2 d\omega(x)$ into base frequency elements.

Tensor the 1D weights of Nazarov with $\mathbf{1}_{[0,1]}(x_2)$ to get "sheet metal" weights σ, ω .

Decompose $\int\limits_{[0,1]} \left| R_1 \left(\mathbf{1}_{[0,1]} \sigma \right) (x) \right|^2 d\omega(x)$ into base frequency elements.

Must now consider R_1 acting on the horizontal oscillating functions

$$s_k^{Q,\text{horizontal}} \equiv \left(s_k^{Q_1} \otimes \mathbf{1}_{Q_2}\right)(x) = s_k^{Q_1}(x_1)\mathbf{1}_{Q_2}(x_2)\,, \text{ where cube } Q \equiv Q_1 \times Q_2\,.$$

Tensor the 1D weights of Nazarov with $\mathbf{1}_{[0,1]}(x_2)$ to get "sheet metal" weights σ, ω .

Decompose $\int\limits_{[0,1]} \left| R_1 \left(\mathbf{1}_{[0,1]} \sigma \right) (x) \right|^2 d\omega(x)$ into base frequency elements.

Must now consider R_1 acting on the horizontal oscillating functions

$$s_k^{Q,\text{horizontal}} \equiv \left(s_k^{Q_1} \otimes \mathbf{1}_{Q_2}\right)(x) = s_k^{Q_1}(x_1)\mathbf{1}_{Q_2}(x_2)\,, \text{ where cube } Q \equiv Q_1 \times Q_2\,.$$

Proposition (A.-Luna-Garcia-Sawyer-Uriarte-Tuero, 2022)

Tensor the 1D weights of Nazarov with $\mathbf{1}_{[0,1]}(x_2)$ to get "sheet metal" weights σ, ω .

Decompose $\int\limits_{[0,1]} \left| R_1 \left(\mathbf{1}_{[0,1]} \sigma \right) (x) \right|^2 d\omega(x)$ into base frequency elements.

Must now consider R_1 acting on the horizontal oscillating functions

$$s_k^{Q,\text{horizontal}} \equiv \left(s_k^{Q_1} \otimes \mathbf{1}_{Q_2}\right)(x) = s_k^{Q_1}(x_1)\mathbf{1}_{Q_2}(x_2)\,, \text{ where cube } Q \equiv Q_1 \times Q_2\,.$$

Proposition (A.-Luna-Garcia-Sawyer-Uriarte-Tuero, 2022)

Proofs of both statements use the alternating series test.

Tensor the 1D weights of Nazarov with $\mathbf{1}_{[0,1]}(x_2)$ to get "sheet metal" weights σ, ω .

Decompose $\int\limits_{[0,1]} \left| R_1 \left(\mathbf{1}_{[0,1]} \sigma \right) (x) \right|^2 d\omega(x)$ into base frequency elements.

Must now consider R_1 acting on the horizontal oscillating functions

$$s_k^{Q,\text{horizontal}} \equiv \left(s_k^{Q_1} \otimes \mathbf{1}_{Q_2}\right)(x) = s_k^{Q_1}(x_1)\mathbf{1}_{Q_2}(x_2)\,, \text{ where cube } Q \equiv Q_1 \times Q_2\,.$$

Proposition (A.-Luna-Garcia-Sawyer-Uriarte-Tuero, 2022)

Proofs of both statements use the alternating series test.

By (1), the testing condition for R_1 fails, like for the Hilbert transform.

Tensor the 1D weights of Nazarov with $\mathbf{1}_{[0,1]}(x_2)$ to get "sheet metal" weights σ, ω .

Decompose $\int |R_1(\mathbf{1}_{[0,1]}\sigma)(x)|^2 d\omega(x)$ into base frequency elements.

Must now consider R_1 acting on the horizontal oscillating functions

$$s_k^{Q,\text{horizontal}} \equiv \left(s_k^{Q_1} \otimes \mathbf{1}_{Q_2}\right)(x) = s_k^{Q_1}(x_1)\mathbf{1}_{Q_2}(x_2)\,, \text{ where cube } Q \equiv Q_1 \times Q_2\,.$$

Proposition (A.-Luna-Garcia-Sawyer-Uriarte-Tuero, 2022)

Proofs of both statements use the alternating series test.

By (1), the testing condition for R_1 fails, like for the Hilbert transform.

By (2), R_2 doesn't interact with the horizontal oscillation, so testing for

Some counterexamples in two-weight norm in

Rotational instability on doubling measures: the key ideas

We really just need to find doubling measures (σ, ω) which are well-behaved with respect to R_2 , but badly behaved with respect to R_1 .

Find doubling measures (σ, ω) on $[0,1] \subset \mathbb{R}$ which satisfy $A_2(\sigma, \omega) < \infty$, but fail the testing condition for H.

↑ (done by Nazarov)

Find dyadically doubling measures (σ,ω) on $[0,1]\subset\mathbb{R}$ which satisfy the dyadic $A_2^{\mathcal{D}}(\sigma,\omega)<\infty$, but fail the testing condition for the dyadic square function

$$Sf(x) \equiv \sqrt{\sum_{J \in \mathcal{D}} (E_{J-}f - E_{J+}f)^2 |J| \mathbf{1}_J(x)}.$$

Rotational instability on doubling measures: the key ideas

We really just need to find doubling measures (σ, ω) which are well-behaved with respect to R_2 , but badly behaved with respect to R_1 .

Find doubling measures (σ, ω) on $[0,1] \subset \mathbb{R}$ which satisfy $A_2(\sigma, \omega) < \infty$, but fail the testing condition for H.

Find dyadically doubling measures (σ,ω) on $[0,1]\subset\mathbb{R}$ which satisfy the dyadic $A_2^{\mathcal{D}}(\sigma,\omega)<\infty$, but fail the testing condition for the dyadic square function

$$Sf(x) \equiv \sqrt{\sum_{J \in \mathcal{D}} (E_{J-}f - E_{J+}f)^2 |J| \mathbf{1}_J(x)}.$$

Conjecture (A simple conjecture)

 $T_{\sigma}: L^p(\sigma) \to L^p(\omega) \Leftrightarrow A_p(\sigma, \omega) < \infty$ and the L^p -testing conditions hold.

Conjecture (A simple conjecture)

 $T_{\sigma}: L^p(\sigma) \to L^p(\omega) \Leftrightarrow A_p(\sigma, \omega) < \infty$ and the L^p -testing conditions hold.

Here the scalar A_p constant is $A_p(\sigma,\omega) \equiv \sup_{Q} (E_Q \sigma)^{\frac{1}{p}} (E_Q \omega)^{\frac{1}{p'}}$.

Conjecture (A simple conjecture)

 $T_{\sigma}: L^p(\sigma) \to L^p(\omega) \Leftrightarrow A_p(\sigma,\omega) < \infty$ and the L^p -testing conditions hold.

Here the scalar A_p constant is $A_p(\sigma,\omega) \equiv \sup_{Q} (E_Q \sigma)^{\frac{1}{p}} (E_Q \omega)^{\frac{1}{p'}}$.

Theorem (Sawyer-Wick 2022 + A.-Luna-Sawyer-Uriarte-Tueoro 2023)

Let σ, ω be doubling. If T is a CZO, then

 $T_{\sigma}: L^{p}(\sigma) \to L^{p}(\omega) \Leftrightarrow A_{p}^{\ell^{2}}(\sigma, \omega)$ and the L^{p} -testing conditions hold.

Conjecture (A simple conjecture)

 $T_{\sigma}: L^p(\sigma) \to L^p(\omega) \Leftrightarrow A_p(\sigma,\omega) < \infty$ and the L^p -testing conditions hold.

Here the scalar A_p constant is $A_p(\sigma,\omega) \equiv \sup_{Q} (E_Q \sigma)^{\frac{1}{p}} (E_Q \omega)^{\frac{1}{p'}}$.

${\sf Theorem~(Sawyer\text{-}Wick~2022~+~A.-Luna\text{-}Sawyer\text{-}Uriarte\text{-}Tueoro~2023)}^{\char`}$

Let σ, ω be doubling. If T is a CZO, then

$$T_{\sigma}: L^{p}(\sigma) \to L^{p}(\omega) \Leftrightarrow A_{p}^{\ell^{2}}(\sigma, \omega)$$
 and the L^{p} -testing conditions hold.

Here the quadratic, or vector-valued $A_{\mathbf{p}}^{\ell^2}(\sigma,\omega)$ condition is

$$\left\| \left\{ \sum_{Q} a_{Q}^{2} \left(E_{Q} \sigma \right)^{2} \mathbf{1}_{Q} \right\}^{\frac{1}{2}} \right\|_{L^{p}(\omega)} \lesssim \left\| \left\{ \sum_{Q} a_{Q}^{2} \mathbf{1}_{Q} \right\}^{\frac{1}{2}} \right\|_{L^{p}(\sigma)},$$

which must hold over all sequences of cubes $\{Q\}$, sequences of reals $\{a_Q\}_{Q \in \mathcal{Q}}$

No!

Theorem (A.-Luna-Sawyer-Uriarte-Tuero 2023)

Let $p \neq 2$. There exist doubling measures σ, ω on \mathbb{R}^2 for which the scalar A_p and testing conditions for R_2 hold, and yet $(R_2)_{\sigma}: L^p(\sigma) \to L^p(\omega)$.

Theorem (A.-Luna-Sawyer-Uriarte-Tuero 2023)

Let $p \neq 2$. There exist doubling measures σ, ω on \mathbb{R}^2 for which the scalar A_p and testing conditions for R_2 hold, and yet $(R_2)_{\sigma}: L^p(\sigma) \to L^p(\omega)$.

Theorem (A.-Luna-Sawyer-Uriarte-Tuero 2023)

Let $p \neq 2$. There exist doubling measures σ, ω on \mathbb{R}^2 for which the scalar A_p and testing conditions for R_2 hold, and yet $(R_2)_{\sigma}: L^p(\sigma) \to L^p(\omega)$.

Choose σ, ω dyadically doubling on $\mathbb R$ which fail the $A_p^{\ell^2}(\sigma, \omega)$ condition.

Theorem (A.-Luna-Sawyer-Uriarte-Tuero 2023)

Let $p \neq 2$. There exist doubling measures σ, ω on \mathbb{R}^2 for which the scalar A_p and testing conditions for R_2 hold, and yet $(R_2)_{\sigma}: L^p(\sigma) \to L^p(\omega)$.

Choose σ, ω dyadically doubling on \mathbb{R} which fail the $A_p^{\ell^2}(\sigma, \omega)$ condition. Apply Nazarov's remodeling, then tensor with 1 in the \mathbf{e}_2 direction to get σ, ω doubling on \mathbb{R}^2 .

Theorem (A.-Luna-Sawyer-Uriarte-Tuero 2023)

Let $p \neq 2$. There exist doubling measures σ, ω on \mathbb{R}^2 for which the scalar A_p and testing conditions for R_2 hold, and yet $(R_2)_{\sigma}: L^p(\sigma) \to L^p(\omega)$.

Choose σ, ω dyadically doubling on \mathbb{R} which fail the $A_p^{\ell^2}(\sigma, \omega)$ condition. Apply Nazarov's remodeling, then tensor with 1 in the \mathbf{e}_2 direction to get σ, ω doubling on \mathbb{R}^2 .

Theorem (A.-Luna-Sawyer-Uriarte-Tuero 2023)

Let $p \neq 2$. There exist doubling measures σ, ω on \mathbb{R}^2 for which the scalar A_p and testing conditions for R_2 hold, and yet $(R_2)_{\sigma}: L^p(\sigma) \to L^p(\omega)$.

Choose σ, ω dyadically doubling on $\mathbb R$ which fail the $A_p^{\ell^2}(\sigma, \omega)$ condition. Apply Nazarov's remodeling, then tensor with 1 in the $\mathbf e_2$ direction to get σ, ω doubling on $\mathbb R^2$.

Thank you for Listening!