Abelian Automata and their Groups

Chris Grossack

July 20, 2018

Introduction

2 Abelian Automata

- Module Theoretic Background
- 4 Using the theory

Finite State Automata

- Combinatorial Objects
- Encode functions as graphs
 - states
 - transitions

- $\forall w \in \mathbf{2}^*$. I(w) = w
- $\forall w \in \mathbf{2}^{\omega}$. I(w) = w
- $\forall w \in \mathbf{2}^*$. $\alpha(w) = w + 1$

Groups

- Where we have functions, we have groups
- Interesting to automata theorists
 - Study automata groups for their own structure
- Interesting to group theorists
 - Rich source of counterexamples
 - Compact way of encoding extremely complex groups

Definition

If A is an automaton with states $\{s_i\}$, then $\mathcal{G}(A)$ is $\langle s_i \rangle$

- \bullet This automaton generates the Lamplighter Group $\mathbb{Z}_2 \wr \mathbb{Z}$
- Finitely generated, not finitely presented

• This automaton generates the **Grigorchuk Group**, the first constructive example of a group of intermediate growth

6/24

Definition

For $f \in \mathcal{A}$, f_0 is the state after following a 0 transition. Similarly f_1 is the state after following a 1 transition. This extends naturally to functions $f \in \mathcal{G}(\mathcal{A})$.

Definition

A function $f \in \mathcal{G}(A)$ is called **odd** if it toggles the first bit it reads, and **even** otherwise.

Definition

An automaton ${\cal A}$ is called **Abelian** if the group it generates is

Theorem (Sutner)

 ${\mathcal A}$ is abelian iff $\exists \gamma$ such that $orall f \in {\mathcal G}({\mathcal A})$

$$f_0^{-1}f_1 = egin{cases} I & f ext{ is even} \\ \gamma & f ext{ is odd} \end{cases}$$

Theorem (Nekrashevich and Sidki (paraphrased))

Every abelian automaton group is isomorphic to either an integer lattice or a boolean group. Further, when isomorphic to an integer lattice, residuation lifts to a matrix operation.

- This means we can consider $\mathcal{G}(\mathcal{A}) \cong \mathbb{Z}^m$, equipped with a matrix A which encodes residuation in the following way:
- $\partial_0: f \mapsto f_0$ lifts to an affine function:

$$v_0 = \begin{cases} A(v) & v \text{ is even} \\ A(v-r) & v \text{ is odd} \end{cases}$$

• $\partial_1: f \mapsto f_1$ is similar:

$$v_1 = \begin{cases} A(v) & v \text{ is even} \\ A(v+r) & v \text{ is odd} \end{cases}$$

- Somewhat annoyingly, r can be any odd vector...
 - ▶ Infinitely many linear algebraic interpretations of one machine

Theorem (N+S (paraphrased))

 χ_{A} is Q-irreducible exactly when your automata use prime many digits

Lemma

2 is prime

Corollary

For the matrices of interest to us, χ_A is Q-irreducible.

Module Theory

- \mathbb{Z}^m looks kind of like \mathbb{Q}^m
- \mathbb{Z}^m comes equipped with a matrix A of irreducible character...
- ullet This may remind you of viewing \mathbb{Q}^m as a cyclic $\mathbb{Q}[x]$ module

Definition

A module M over a ring R is a really bad vector space. Just like you can scale vectors by coefficients coming from some field, we can scale module elements by coefficients coming from some ring.

If $r_1, r_2 \in R$ and $x, y \in M$, then we require things be nice:

- $r_1 \cdot (x+y) = r_1 \cdot x + r_1 \cdot y$
- $(r_1 + r_2) \cdot x = r_1 \cdot x + r_2 \cdot x$
- $(r_1r_2) \cdot x = r_1 \cdot (r_2 \cdot x)$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 9

Theorem

If A is an abelian automaton, then $G(A) \cong \mathbb{Z}^m$ is a $\mathbb{Z}[x]$ module, where $p \cdot v = p(A^{-1})v$

Theorem

 $\mathcal{G}(\mathcal{A})$ is actually a **cyclic** $\mathbb{Z}[x]$ module, namely:

$$\forall v \in \mathbb{Z}^m, \exists p \in \mathbb{Z}[x] \text{ such that } v = p \cdot e_1$$

- Now we can characterize the different residuation vectors!
- Recall for any odd vector r:
 - ▶ $\partial_0: f \mapsto f_0$ lifts to an affine function:

$$v_0 = \begin{cases} A(v) & v \text{ is even} \\ A(v-r) & v \text{ is odd} \end{cases}$$

- But our group is a cyclic module, so instead of A(v-r), consider $A(v-p \cdot e_1)$
- Then if $v = p \cdot u$, $A(p \cdot u p \cdot e_1) = p \cdot A(u e_1)$
- So really, different residuation vectors correspond to various extensions of some initial group, \mathfrak{A} generated when $r = e_1$.

extensions?

Definition

Denote by $p \cdot \mathfrak{A}$ the automaton group \mathbb{Z}^m whose residuation is given by

$$v_0 = \begin{cases} A(v) & v \text{ is even} \\ A(v-r) & v \text{ is odd} \end{cases}$$

Note that since r must be an odd vector, p must have odd constant term.

Theorem

If p|q then $p \cdot \mathfrak{A} \leq q \cdot \mathfrak{A}$. In particular, $\forall p : \mathfrak{A} \leq p \cdot \mathfrak{A}$

Hand-Wavy ProofTM.

Let $f \in p \cdot \mathfrak{A}$. It suffices to find $g \in q \cdot \mathfrak{A}$ such that f and g have the same parity and have equal residuals.

Let q = mp by assumption. Then $g = m \cdot f$ works.

Since q and p have odd constant term, so must m "odd times even is even, odd times odd is odd" Clearly, then, g and f have the same parity.

If
$$f$$
 is even, then $f_0 = Af$ and $g_0 = (m \cdot f)_0 = A(m \cdot f) = m \cdot (Af) = m \cdot f_0$

If
$$f$$
 is odd, then $f_0 = A(f - p \cdot e_1)$ and $g_0 = (m \cdot f)_0 = A(m \cdot f - q \cdot e_1) = m \cdot A(f - p \cdot e_1) = m \cdot f_0$

So, by induction we are done.

What about other vectors?

- $p \cdot v \in p \cdot \mathfrak{A}$ is the same function as $v \in \mathfrak{A}$
- What about vectors which can NOT be written as $p \cdot v$?
- They are **Fractional**. They correspond to vectors $v \in \mathbb{Q}^m$ such that $p \cdot v \in \mathbb{Z}^m$.
- This justifies the idea of an extension of $\mathfrak A$. Every time we scale by a polynomial, we introduce new group elements, which are fractions of the original group elements.

- What we've seen so far is a cool characterization of these groups
- Can we solve problems with it, though?

Definition (Orbit Problem)

Given a function f from some abelian automaton group, and words $x, y \in \mathbf{2}^*$ (or polite words in $\mathbf{2}^{\omega}$), does there exist a $t \in \mathbb{Z}$ such that $f^t(x) = y$?

- We start with the finite case.
- Identify f with a vector in $p \cdot \mathfrak{A}$ for some principal group \mathfrak{A} .

Definition

For
$$u \in \mathbf{2}^*$$
 let $\langle u \rangle = v \in p \cdot \mathfrak{A}$ such that $v(0^{|u|}) = u$

Theorem

 $\langle u \rangle$ always exists, and is unique mod $\mathbf{Stab}(0^{|u|})$

Lemma

Denote $p \cdot e_1 \in p \cdot \mathfrak{A}$ by δ , and let u0v be a word in $\mathbf{2}^*$ (or $\mathbf{2}^{\omega}$) with |u| = n.

$$(x^n \cdot \delta)(u0v) = u1v$$

Proof.

When n=0, notice $\delta(0v)=1v$ since δ is odd and $\delta_0=A(\delta-p\cdot e_1)=0$.

Otherwise, $x^{n+1} \cdot \delta = x \cdot x^n \cdot \delta$.

One can check $(x^{n+1} \cdot \delta)$ is even and further $(x^{n+1} \cdot \delta)_0 = (x^n \cdot \delta)$

Then $(x \cdot x^n \cdot \delta)(u_0u_0v) = u_0(x^n \cdot \delta)(u_0v) = u_0(u_1v)$

Proof.

For
$$u \in \mathbf{2}^*$$
, $\langle u \rangle = (\sum_{i=0}^{|u|-1} u_i x^i) \cdot \delta$ works

(Recall we want
$$\langle u \rangle (0^{|u|}) = u$$
)

By the lemma, each $x^i \cdot \delta$ flips the *ith*0 to a 1, and leaves everything else unchanged. Since each u_i is a 1 iff it needs to be flipped, the polynomial works.

Uniqueness mod **Stab** $(0^{|u|})$ follows from basic group theory.

Theorem (Finite Orbit Problem)

The orbits of f corresopnd precisely to lines in \mathbb{Z}^m .

Proof.

Let
$$u \in \mathbf{2}^*$$
. Then $\langle (tf)u \rangle = tf + \langle u \rangle$

Thus, the orbit of u under f is precisely $(\mathbb{Z}f + \langle u \rangle)(0^{|u|})$

What about when $u \in \mathbf{2}^{\omega}$?

- ullet The above proof breaks becase $\langle u \rangle$ is not well defined on $\mathbf{2}^\omega$
- However we can approximate $u \in \mathbf{2}^{\omega}$ as a sequence of strings of increasing length.
- If we can create a sequence of functions which sends each 0 string to the appropriate *u* approximation, then our sum will converge in the cantor topology, and we can run the same orbit argument.

Theorem

 $\langle u \rangle = (\sum_i u_i x^i) \cdot \delta$ works.

- For cardinality reasons, however, this clearly can't always converge in our group.
- 2^{ω} is uncountable, $p \cdot \mathfrak{A}$ is clearly countable for all p.

Definition

 $u \in \mathbf{2}^{\omega}$ is called ultimately periodic iff $u = tv^*$ for some $|t|, |v| < \infty$

- Does every ultimately periodic word u have a well defined $\langle u \rangle$?
- Is every word u with well defined $\langle u \rangle$ ultimately periodic?

Theorem

Yes.

Proof.

let $u = tv^*$, then the polynomial we would associate to $\langle u \rangle$ is

$$\langle u \rangle = \left(\sum_{i} u_{i} x^{i} \right) \cdot \delta$$

$$= \left(\sum_{i < |t|} t_{i} x^{i} + x^{|t|} \frac{\sum_{i < |v|} v_{i} x^{i}}{1 - x^{|v|}} \right) \cdot \delta$$

$$= \left(\langle t \rangle + x^{|t|} \frac{\langle v \rangle}{1 - x^{|v|}} \right) \cdot \delta$$

$$= \frac{p_{1}}{p_{2}} \cdot \delta$$

$$= p_{1} \cdot \delta \in p_{2} \cdot \mathfrak{A}$$

It is easy to see that any function applied to 0^{ω} gives a ultimately periodic string, completing the proof.