14 Lectures on Visual SLAM: From Theory to Practice

Xiang Gao, Tao Zhang, Qinrui Yan and Yi Liu

April 29, 2019

ii CONTENTS

Contents

1 Prefa	ce 3	Bibliograp	hy 7
---------	------	------------	------

1.1 What is this book about? 3

Preface for English Version

A lot of friends at github asked me about this English version. I'm really sorry it takes so long to do the translation, and I'm glad to make it public available to help the readers. I encountered some issues on math equation in the web pages. Since the book is originally written in LaTeX, I'm going to release the LaTeX source along with the compiled pdf. You can directly access the pdf version for English book, and probably the publishing house is going to help me do the paper version.

As I'm not a native English speaker, the translation work is basically based on Google translation and some afterwards modification. If you think the quality of translation can be improved and you are willing to do this, please contact me or send an issue on github. Any help will be welcome!

Xiang

Chapter 1

Preface

1.1 What is this book about?

This is a book introducing visual SLAM, and it is probably the first Chinese book solely focused on this specific topic.

So, what is SLAM?

SLAM stands for **S**imultaneous **L**ocalization **a**nd **M**apping. It usually refers to a robot or a moving rigid body, equipped with a specific **sensor**, estimates its own **motion** and builds a **model** (certain kinds of description) of the surrounding environment, without a *priori* information[1]. If the sensor referred here is mainly a camera, it is called "**Visual SLAM**".

Visual SLAM is the subject of this book. We deliberately put a long definition into one single sentence, so that the readers can have a clear concept. First of all, SLAM aims at solving the "positioning" and "map building" issues at the same time. In other words, it is a problem of how to estimate the location of a sensor itself, while estimating the model of the environment. So how to achieve it? This requires a good understanding of sensor information. A sensor can observe the external world in a certain form, but the specific approaches for utilizing such observations are usually different. And, why is this problem worth spending an entire book to discuss? Simply because it is difficult, especially if we want to do SLAM in real time and without any a priory knowledge. When we talk about visual SLAM, we need to estimate the trajectory and map based on a set of continuous images (which form a video).

This seems to be quite intuitive. When we human beings enter an unfamiliar environment, aren't we doing exactly the same thing? So, the question is whether we can write programs and make computers do so.

At the birth of computer vision, people imagined that one day computers could act like human, watching and observing the world, and understanding the surrounding environment. The ability of exploring unknown areas is a wonderful and romantic dream, attracting numerous researchers striving on this problem day and night [? . We thought that this would not be that difficult, but the progress turned out to be not as smooth as expected. Flowers, trees, insects, birds and animals, are recorded so differently in computers: they are simply matrices consisted of numbers. To make computers understand the contents of images, is as difficult as making us human understand those blocks of numbers. We didn't even know how we understand images, nor do we know how to make computers do so. However, after decades of struggling, we finally started to see signs of success - through Artificial Intelligence (AI) and Machine Learning (ML) technologies, which gradually enable computers to identify objects, faces, voices, texts, although in a way (probabilistic modeling) that is still so different from us. On the other hand, after nearly three decades of development in SLAM, our cameras begin to capture their movements and know their positions, although there is still a huge gap between the capability of computers and human. Researchers have successfully built a variety of real-time SLAM systems. Some of them can efficiently track their own locations, and others can even do three-dimensional reconstruction in real-time.

This is really difficult, but we have made remarkable progress. What's more exciting is that, in recent years, we have seen emergence of a large number of SLAM-related applications. The sensor location could be very useful in many areas: indoor sweeping machines and mobile robots, automatic driving cars, Unmanned Aerial Vehicles (UAVs) in the air, Virtual Reality (VR) and Augmented Reality (AR). SLAM is so important. Without it, the sweeping machine cannot maneuver in a room autonomously, but wandering blindly instead; domestic robots can not follow instructions to reach a certain room accurately; Virtual Reality will always be limited within a prepared space. If none of these innovations could be seen in real life, what a pity it would be.

Today's researchers and developers are increasingly aware of the importance of the SLAM technology. SLAM has over 30 years of research history, and it has been a hot topic in both robotics and computer vision communities. Since the 21st century, visual SLAM technology has undergone a significant change and breakthrough in both theory and practice, and is gradually moving from laboratories into real-world. At the same time, we regretfully find that, at least in the Chinese language, SLAM-related papers and books are still very scarce, making many beginners of this area unable to get started smoothly. Although the theoretical framework of SLAM has basically become mature, to implement a complete SLAM system is still very challenging and requires high level of technical expertise. Researchers new to the area have to spend a long time learning a significant amount of scattered knowledge, and often have to go through a number of detours to get close to the real core.

This book systematically explains the visual SLAM technology. We hope that it will (at least in part) fill the current gap. We will detail SLAM's theoretical background, system architecture, and the various mainstream modules. At the same time, we place great emphasis on practice: all the important algorithms introduced in this book will be provided with runnable code that can be tested by yourself, so that readers can reach a deeper understanding. Visual SLAM, after all, is a technology for application. Although the mathematical theory can be beautiful, if you are not able to convert it into lines of code, it will be like a castle in the air, which brings little practical impact. We believe that practice verifies true knowledge, and practice tests true passion. Only after getting your hands dirty with the algorithms, you can truly understand SLAM, and claim that you have fallen in love with SLAM research.

Since its inception in 1986 [2], SLAM has been a hot research topic in robotics. It is very difficult to give a complete introduction to all the algorithms and their variants in the SLAM history, and we consider it as unnecessary as well. This book will be firstly introducing the background knowledge, such as projective geometry, computer vision, state estimation theory, Lie Group and Lie algebra, etc. On top of that, we will be showing the trunk of the SLAM tree, and omitting those complicated and oddly-shaped leaves. We think this is effective. If the reader can master the essence of the trunk, they have already gained the ability to explore the details of the research frontier. So our aim is to help SLAM beginners quickly grow into qualified researchers and developers. On the other hand, even if you are already an experienced SLAM researcher, this book may still reveal areas that you are unfamiliar with, and may provide you with new insights.

There have already been a few SLAM-related books around, such as "Probabilistic Robotics" [3], "Multiple View Geometry in Computer Vision" [4], "State Estimation for Robotics: A Matrix-Lie-Group Approach" [?], etc. They provide rich contents, comprehensive discussions and rigorous derivations, and therefore are the most popular textbooks among SLAM researchers. However, there are two important issues: Firstly, the purpose of these books is often to introduce the fundamental mathematical theory, with SLAM being only one of its applications. Therefore, they cannot be considered as specifically visual SLAM focused. Secondly, they place great emphasis on mathematical theory, but are relatively weak in programming. This makes readers still fumbling when trying to apply the knowledge they learn from the books. Our belief is: only after coding, debugging and tweaking algorithms and parameters with his own hands, one can claim real understanding of a problem.

In this book, we will be introducing the history, theory, algorithms and research status in SLAM, and explaining a complete SLAM system by decomposing it into several modules: visual odometry, back-end optimization, map building, and loop closure detection. We will be accompanying the readers step by step to implement the core algorithms of each module, explore why they are effective, under what situations they are ill-conditioned, and guide them through running the code on their own machines. You will be exposed to the critical mathematical theory and programming knowledge, and will use various libraries including Eigen, OpenCV, PCL, g2o, and Ceres, and master their use in the Linux operating system.

Well, enough talking, wish you a pleasant journey!

1.2 How to use this book?

This book is entitled "14 Lectures on Visual SLAM". As the name suggests, we will organize the contents into "lectures" like we are learning in a classroom. Each lecture focuses on one specific topic, organized in a logical order. Each chapter will include both a theoretical part and a practical part, with the theoretical usually coming first. We will introduce the mathematics essential to understand the algorithms, and most of the time in a narrative way, rather than in a "definition, theorem, inference" approach adopted by most mathematical textbooks. We think this will be much easier to understand, but of course with a price of being less rigorous sometimes. In practical parts, we will provide code and discuss the meaning of the various parts, and demonstrate some experimental results. So, when you see chapters with the word "practice" in the title, you should turn on your computer and start to program with us, joyfully.

The book can be divided into two parts: The first part will be mainly focused on the fundamental math knowledge, which contains:

1. Lecture 1: preface (the one you are reading now), introducing the contents and structure of the book. 2. Lecture 2: an overview of a SLAM system. It describes each module of a SLAM system and explains what they do and how they do it. The practice section introduces basic C++ programming in Linux environment and the use of an IDE. 3. Lecture 3: rigid body motion in 3D space. You will learn knowledge about rotation matrices, quaternions, Euler angles, and practice them with the Eigen library. 4. Lecture 4: Lie group and Lie algebra. It doesn't matter if you have never heard of them. You will learn the basics of Lie group, and manipulate them with Sophus. 5. Lecture 5: pinhole camera model and image expression in computer. You will use OpenCV to retrieve camera's intrinsic and extrinsic parameters, and then generate a point cloud using the depth information through PCL (Point Cloud Library). 6. Lecture 6: nonlinear optimization, including state estimation, least squares and gradient descent methods, e.g. Gauss-Newton and Levenburg-Marquardt. You will solve a curve fitting problem using the Ceres and g2o library. From lecture 7, we will be discussing SLAM algorithms, starting with Visual Odometry (VO) and followed by the map building problems: 7. Lecture 7: feature based visual odometry, which is currently the mainstream in VO. Contents include feature extraction and matching, epipolar geometry calculation, Perspective-n-Point (PnP) algorithm, Iterative Closest Point (ICP) algorithm, and Bundle Adjustment (BA), etc. You will run these algorithms either by calling OpenCV functions or by constructing you own optimization problem in Ceres and g2o. 8. Lecture 8: direct (or intensity-based) method for VO. You will learn the principle of optical flow and direct method, and then use g2o to achieve a simple RGB-D direct method based VO (the optimization in most direct VO algorithms will be more complicated). 9. Lecture 9: a practice chapter for VO. You will build a visual odometer framework by

yourself by integrating the previously learned knowledge, and solve problems such as frame and map point management, key frame selection and optimization control. 10. Lecture 10: back-end optimization. We will discuss Bundle Adjustment in detail, and show the relationship between its sparse structure and the corresponding graph model. You will use Ceres and g2o separately to solve a same BA problem. 11. Lecture 11: pose graph in the back-end optimization. Pose graph is a more compact representation for BA which marginalizes all map points into constraints between keyframes. You will use g2o and gtsam to optimize a pose graph. 12. Lecture 12: loop closure detection, mainly Bag-of-Word (BoW) based method. You will use dbow3 to train a dictionary from images and detect loops in videos. 13. Lecture 13: map building. We will discuss how to estimate the depth of feature points in monocular SLAM (and show why they are unreliable). Compared with monocular depth estimation, building a dense map with RGB-D cameras is much easier. You will write programs for epipolar line search and patch matching to estimate depth from monocular images, and then build a point cloud map and octagonal tree map from RGB-D data. 14. Lecture 14: current open source SLAM projects and future development direction. We believe that after reading the previous chapters, you will be able to understand other people's approaches easily, and be capable to achieve new ideas of your own. Finally, if you don't understand what we are talking about at all, congratulations! This book is right for you! Come on and fight!

Bibliography

- [1] A. Davison, I. Reid, N. Molton, and O. Stasse, "Monoslam: Real-time single camera SLAM," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 29, no. 6, pp. 1052–1067, 2007.
- [2] R. C. Smith and P. Cheeseman, "On the representation and estimation of spatial uncertainty," *International Journal of Robotics Research*, vol. 5, no. 4, pp. 56–68, 1986.
- [3] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT Press, 2005.
- [4] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge university press, 2003.