ED5340 - Data Science: Theory and Practise

L14 - Optimization

Ramanathan Muthuganapathy (https://ed.iitm.ac.in/~raman)

Course web page: https://ed.iitm.ac.in/~raman/datascience.html

Moodle page: Available at https://courses.iitm.ac.in/

Why optimization

- Fundamental to machine and deep learning
- Cost function solving needs optimization (or solve using direct methods)
- Basic differential calculus / linear algebra

Optimization

- Unconstrained (e.g. min J(w), e.g. $J(w) = w^2$, $J(w) = w^3$, $J(w) = w^2 + 54/w$)
- constrained optimization (e.g. min J(w), w > 0)

Unconstrained optimization

- Single variable (e.g. min J(w), e.g. $J(w) = w^2$, $J(w) = w^3$, $J(w) = w^2 + 54/w$)
- multivariable (e.g. $min J(w_0, w_1) = (w_0 2)^2 + (w_1 2)^2$)

- Single variable (e.g. $J(w) = w^2$, $J(w) = w^3$, $J(w) = w^4$)
- $\min J(w)$
 - The value of w for which the function J(w) has the least (minimum) value
 - Unimodal function
 - Local minimum (in this case, this is also global minimum)

Demo of various power functions

$$J(w) = w^2$$

•
$$J(w) = w^2$$

•
$$J'(w) = dJ(w)/dw$$

$$J''(w) = \frac{d^2J(w)}{dw^2} = \frac{d}{dw} \left(\frac{dJ}{dw}\right)$$

$$J'(w) = dJ(w)/dw$$

- J'(w) = dJ(w)/dw
 - slope / tangent at a point on the curve.
 - Continuous curve

$$J'(w) = dJ(w)/dw$$

- J'(w) = dJ(w)/dw
 - slope / tangent at a point on the curve.
- At minimum function value, J(w) = 0
- The corresponding $w = \overline{w}$

$$J''(w) = \frac{d^2J(w)}{dw^2} = \frac{d}{dw} \left(\frac{dJ}{dw}\right)$$

$$J''(w) = \frac{d^2 J(w)}{dw^2} = \frac{d}{dw} \left(\frac{dJ}{dw}\right) = \frac{20}{J(w)} = \frac{15}{5}$$

 rate of change of slope / tangent at a point on the curve.

$$J''(w) = \frac{d^2J(w)}{dw^2} = \frac{d}{dw} \left(\frac{dJ}{dw}\right)$$

$$J''(w) = \frac{d^2 J(w)}{dw^2} = \frac{d}{dw} \left(\frac{dJ}{dw}\right) = \frac{20}{J(w)} = \frac{15}{5}$$

• > 0 in the nbghd of minimum point.

Critical Points

- Minimum
- Maximum
- Inflection

Optimality criteria - Maximum

$$J(w) = -w^2$$

- $J(w) = -w^2$
- J'(w) = 0, at $w = \overline{w}$,
- At $\overline{w}, J^{''}(\overline{w}) < 0$

Optimality criteria - Inflection

$$J(w) = w^3$$

- $J(w) = w^3$
- J'(w) = 0, $at w = \overline{w}$,
- At $\overline{w},J^{''}(\overline{w})$ is ?
- At $\overline{w}, J^{''}(\overline{w})$ is ?

Optimality criteria?

$$J(w) = w^4$$

•
$$J(w) = w^4$$

•
$$J'(w) = 0$$
, $at w = \overline{w}$,

• At $\overline{w},J^{''}(\overline{w})$ is ?

W

Optimality criteria?

$$J(w) = w^4$$

•
$$J(w) = w^4$$

•
$$J'(w) = 0$$
, at $w = \overline{w}$,

- At $\overline{w},J^{''}(\overline{w})$ is ?
- At $\overline{w}, J^{'''}(\overline{w})$ is ?
- At $\overline{w}, J^{'''}(\overline{w})$ is ?

W

Optimality criteria - GeneralizationFrom Kalyanmoy Deb

- Suppose at point \overline{w} the first derivative is zero and the first nonzero higher order derivative is denoted by n; then
 - If n is odd, \overline{w} an inflection point
 - If n is even, \overline{w} is a local optimum.
 - (i) If the derivative is positive, \overline{w} is a local minimum.
 - (ii) If the derivative is negative, \overline{w} is a local maximum.

Optimality criteria - How to use

- Given a point on the curve, whether it belongs to any of the optimal ones
- The more pressing one Given a function J(w), how to find the optimal points (in our case, mostly 'min')

Methods to find local minimum

- Given a point on the curve, whether it belongs to any of the optimal ones
- The more pressing one Given a function J(w), how to find the optimal points (in our case, mostly 'min')

Methods to find local minimum

- First, a crude approach to find bounds
- Use a more sophisticated method to find the min
- In general, any method takes the following pattern:
 - Identify initial guess and and their function values
 - Make appropriate changes in the next values for w's
 - Continue the procedure till the termination is reached.

Methods (iterative) to find local minimum Unimodal functions

- Bracketing methods
 - Exhaustive search
 - Bounding phase
- Region elimination approaches
 - Interval halving
 - Fibonacci search
 - Golden section search
- Gradient-based ones
 - Newton-Raphson
 - Bisection
 - Secant

Bracketing - Exhaustive search method

- Let *n* be the number of intermediate points.
- Step 1:
 - $\Delta w = (b a)/n$
 - $w_1 = a, w_2 = w_1 + \Delta w, w_3 = w_2 + \Delta w$

Bracketing - Exhaustive search method

- Step 2:
 - If $J(w_1) \ge J(w_2) \le J(w_3)$
 - then min lies between (w_1, w_3)
 - Else
 - $w_1 = w_2, w_2 = w_3, w_3 = w_2 + \Delta w$
 - Go to Step 3

Bracketing - Exhaustive search method

•
$$w_1 = w_2, w_2 = w_3, w_3 = w_2 + \Delta w$$

- Step 3:
 - Is $w_3 \le b$, the go to Step 2
 - Otherwise, no min exists between (a, b).
 - Min could be one of the bdry points.

Region elimination method

Overall idea

•
$$w_1 \le w_2$$
, if $J(w_1) \ge J(w_2)$

• Region (a, w_1) can be eliminated

J(w)

$$W_3$$

- Step 1
 - Choose $a, b, \epsilon, w_m = (a + b)/2, L = (b a)$
 - Compute $J(w_m)$

- Step 2
 - Set $w_1 = a + L/4, w_2 = b L/4$
 - Compute $J(w_1), J(w_2)$

- Step 3
 - If $J(w_1) < J(w_m)$
 - set $b=w_m, w_m=w_1, \text{ go}$ to Step 5
 - Else
 - go to Step 4

- Step 4
 - If $J(w_2) < J(w_m)$
 - set $a = w_m, w_m = w_2; \text{ go}$ to Step 5
 - Else
 - $a = w_1, b = w_2$; go to Step 5

- Step 5
 - Calculate L = b a
 - If $|L|<\epsilon$
 - Terminate
 - Else
 - go to Step 2

Gradient-based approaches

$$J'(w) = dJ(w)/dw$$

- uses J'(w) = dJ(w)/dwand other higher order derivatives.
- Exact / Numerical approach for derivative
- Mim —-> point where $J(w) \approx 0$

Newton-Raphson

$$J'(w) = dJ(w)/dw$$

- uses $w^{(k)}$ to compute $w^{(k+1)}$
- Using Taylor's appox,

$$w^{(k+1)} = w^{(k)} - \frac{J'(w)}{J''(w)}$$

- k = 1 to N (num of iterations)
- Initial guess $w^{(1)}$ is needed.

Newton-Raphson Steps

- Step 1: Choose $w^{(1)}$, ϵ , set k=1. Compute $J'(w^{(1)})$
- Step 2: Compute $J^{''}(w^{(k)})$
- . Step 3: Calculate $w^{(k+1)} = w^{(k)} \frac{J'(w)}{J''(w)}$. Compute $J'(w^{(k+1)})$
- Step 4: If $|J'(w^{(k+1)})| < \epsilon$, Terminate. Else set k=k+1 go to Step 2