

Protocoale de Securitate

Rezumate de mesaje, semnaturi digitale si protocoale de securitate

Cuprins

- Rezumatul mesajelor
- Semnaturi digitale
- Certificate de securitate
- PKI
- Securitatea comunicatiei IPsec
- Protocoale de autentificare
- Securitatea e-mail PGP
- Securitatea Web
- Securitatea DNS

Rezumatele mesajelor

Este mai usor sa semnezi digital rezumatul decat mesajul intreg!

Folosite in semnaturi digitale datorita proprietatilor utile

- 1. Rezumatul lui P MD(P) este usor de calculat
- 2. Este imposibil sa se afle P din MD(P)
- Rezumatul nu poate fi trucat: nimeni nu poate gasi P' avand un rezumat identic cu P, adica MD(P') = MD(P)
- 4. O schimbare de 1 bit a intrarii schimba multi biti din iesire

Functii hash

- MD5 (Message Digest)
- SHA-1 (Secure Hash Algorithm)

Functii Hash: MD5 - Message Digest 5

MD5 calculeaza un rezumat de 128 biti dintr-un mesaj de lungime multipla de 512 biti

Mesajul este completat cu biti pentru a respecta regula Ultimii 64 biti precizeaza lungimea originala a mesajului

In fiecare faza algoritmul calculeaza un nou rezumat din rezumatul anterior si rezumatul unui bloc de 512 biti.

Primul rezumat este o constanta de 128 biti

O faza transforma un bloc de mesaj de 512 biti. Are 4 runde.

Fiecare runda foloseste o functie diferita:

$$F(x,y,z) = (x \text{ AND } y) \text{ OR } ((\text{NOT } x) \text{ AND } z)$$

 $G(x,y,z) = (x \text{ AND } z) \text{ OR } (y \text{ AND } (\text{NOT } z))$
 $H(x,y,z) = x \text{ XOR } y \text{ XOR } z$
 $I(x,y,z) = y \text{ XOR } (x \text{ OR } (\text{NOT } z))$

O runda are 16 iteratii.

$$b_0,...,b_{15}$$
 – **sub-blocuri** 32-biti (total 512 biti) p, q, r, s – variabile *digest* $C_1,...,C_{16}$ – constante (in total 64) <<< denota rotatie stanga

Iterations 1-8	Iterations 9-16
$p \leftarrow (p + F(q,r,s) + b_0 + C_1) \ll 7$	$p \leftarrow (p + F(q,r,s) + b_8 + C_9) \ll 7$
$s \leftarrow (s + F(p,q,r) + b_1 + C_2) \ll 12$	$s \leftarrow (s + F(p,q,r) + b_9 + C_{10}) \ll 12$
$r \leftarrow (r + F(s, p, q) + b_2 + C_3) \ll 17$	$r \leftarrow (r + F(s, p, q) + b_{10} + C_{11}) \ll 17$
$q \leftarrow (q + F(r,s,p) + b_3 + C_4) \ll 22$	$q \leftarrow (q + F(r,s,p) + b_{11} + C_{12}) \ll 22$
$p \leftarrow (p + F(q,r,s) + b_4 + C_5) \ll 7$	$p \leftarrow (p + F(q, r, s) + b_{12} + C_{13}) \ll 7$
$s \leftarrow (s + F(p,q,r) + b_5 + C_6) \ll 12$	$s \leftarrow (s + F(p,q,r) + b_{13} + C_{14}) \ll 12$
$r \leftarrow (r + F(s, p, q) + b_6 + C_7) \ll 17$	$r \leftarrow (r + F(s, p, q) + b_{14} + C_{15}) \ll 17$
$q \leftarrow (q + F(r,s,p) + b_7 + C_8) \ll 22$	$q \leftarrow (q + F(r,s,p) + b_{15} + C_{16}) \ll 22$

Comentarii

- Rezistenta la coliziuni
 - o functie H este rezistenta la coliziuni daca este foarte greu sa se gaseasca a si b, a#b astfel ca H(a) = H(b)
- In 2004 s-a aratat ca MD5 nu este rezistent la coliziuni
- S-au dezvoltat si recomandat alte functii de hash
 - SHA1, SHA2

- Obs.
 - criptare # rezumare!

Semnaturi Digitale

- Bazate pe
 - -Chei simetrice
 - –Chei publice
- Rezumate de mesaje

Semnaturi cu chei simetrice

Semnaturi digitale cu Big Brother.

- R_A numar aleator (control replici)
- t timestamp (mesaj recent)
- K_A cheie secreta a lui A (cunoscuta de BB)
- K_B cheie secreta a lui B (cunoscuta de BB)
- K_{BB} cheie secreta Big Brother (doar el o cunoaste)

Comentarii

t si R_A folosite ptr. detectie atacuri prin replicare mesaje mai vechi K_{BB} (A, t, P) folosit pentru non-repudiere

Semnaturi cu chei publice

Utilizarea SHA-1 si RSA pentru semnarea mesajelor nesecrete.

Caracteristici

Rezumatul SHA-1 este semnat cu cheia secreta a transmitatorului D_A Mesajul M este transmis in clar

Verificare semnatura digitala

Orice modificare a textului clar M este detectata prin H <>H'Un intrus nu poate modifica si M si rezumatul criptat $D_A(H)$

Probleme cu difuzarea cheilor publice

Problema: difuzarea cheii publice prin pagina de referinta a proprietarului

Trudy raspunde in locul lui Bob cu cheia sa publica
Trudy poate modifica mesajele trimise de Alice lui Bob
Man-in-the-middle attack

Certificate de securitate

- Certificate
 - -Asociaza identitatea cu cheia publica
- X.509
 - Standard de certificate

Certificate

Rol: leaga cheia publica de un proprietar (principal) sau de un atribut

I hereby certify that the public key

19836A8B03030CF83737E3837837FC3s87092827262643FFA82710382828282A

belongs to

Robert John Smith

12345 University Avenue

Berkeley, CA 94702

Birthday: July 4, 1958

Email: bob@superdupernet.com

SHA-1 hash of the above certificate signed with the CA's private key

Un certificat nu este secret

este semnat de o autoritate de certificare - CA (Certificate Authority)

CA cripteaza cu cheia sa privata rezumatul certificatului

Verificarea certificatului de catre Alice

A aplica cheia publica a CA asupra semnaturii

A calculeaza rezumatul SHA-1 al certificatului (fara semnatura)

A compara cele doua rezultate

Campurile de baza dintr-un certificat X.509

Câmp	Semnificatie
Versiune	Ce versiune de X.509 este utilizată
Număr Serial	Acest număr împreună numele CA-ului identifică în mod unic certificatul
Algoritm de semnare	Algoritmul folosit la semnarea certificatului (ex. MD5 cu RSA)
Emitent	Numele X.500 al CA-ului
Perioada de validitate	Momentele de început si sfârşit ale perioadei de validitate
Numele subiectului	Entitatea care este certificată
Cheia publică	Cheia publică a subiectului și ID-ul algoritmului folosit (ex. RSA)
ID emitent	Un ID opţional identificând în mod unic emitentul certificatului (nume X.500 sau DNS)
ID subiect	Un ID opţional identificând în mod unic subiectul certificatului
Extensii	ptr identificarea cheii publice a emitentului, a certificatului care contine o anumita cheie publica, scopul utilizarii cheii (criptare, semnare,) si altele
Semnătura	Semnătura certificatului (semnat cu cheia privată a CA-ului)

PKI - Public Key Infrastructure

- PKI- Set de componente (hard & soft) care asigura utilizarea corecta a tehnologiei de chei publice
 - programele,
 - echipamentele,
 - tehnologiile de criptare si
 - serviciile de gestiune a infrastructurii criptografice si a cheilor publice ale utilizatorilor.

CA - Certificate Authority

- autoritate de incredere care elibereaza certificate
 - atestă că cheia publica inclusa apartine persoanei cu numele atasat
- CA poate fi:
 - organizatie sau companie pentru angajati
 - universitate pentru studenti
 - CA publice (VeriSign) pentru clienti

Tata

PKI – verificarea cheilor

(a) PKI ierarhic.

A cunoaste si are incredere in Root

- gaseste certificatul lui B semnat de CA 5
- certificatul lui CA 5 semnat de RA 2
- certificatul lui RA 2 semnat de Root

(b) Un lant de incredere (certification path).

Simplificare

A primeste de la B tot lantul de certificate

Revocarea Certificatelor

- Un certificat trebuie revocat cand:
 - cheia primara este compromisa;
 - cheia primara este pierduta;
 - o persoana pleaca din companie
 - altele.
- Revocarea trebuie anuntata tuturor utilizatorilor dificil!
- Alternativa se folosesc liste de revocare
 - CRL Certificate Revocation List;

Metoda

- se verifica listele de revocare inainte de utilizarea certificatelor
- CRL sunt publicate de CA care a emis certificatele
- Listele pot fi consultate sau duplicate (cache)
 - difuzarea listelor de revocare prin HTTP, LDAP sau alte protocoale

Verificarea revocarii Certificatelor

Verificare certificate

- 1 verifica certificat
- 2 verifica CRL

repeat

- 3 verifica certificatul pentru CA
- 4 verifica CRL al CA

until radacina

Securitatea Comunicatiei

- IPsec
- Ziduri de protectie (Firewalls)
- Virtual Private Networks

IP Security Protocol - IPSec

- Implementat la nivel IP
- Construieste o legatura securizata unidirectionala intre transmitator si receptor
 - numita Security Association SA
 - asigura
 - autentificarea mesajelor sau
 - autentificarea si criptarea
- Securizarea ambelor sensuri → 2 x SA

Parametri de securitate

- SA nu este legata de un singur algoritm de criptare sau de o singura cheie – se pot specifica:
 - algoritmul si modul de criptare (ex. DES in mod blockchaining)
 - cheia de criptare
 - parmetrii de criptare (ex. Initialization Vector)
 - protocolul de autentificare si cheia
 - durata de viata a unei asociatii (permite sesiuni lungi cu schimbarea cheii daca este necesar)
 - adresa capatului opus al asociatiei
 - nivelul de senzitivitate al datelor protejate.

SA Database

Un sistem pastreaza o baza de date cu asociatiile de securitate

- Pentru fiecare SA pastreaza parametrii de securitate (slide precedent) si
- contor numere de secventa: pentru antete de securitate
- Indicator overflow pentru contor numere de secventa: ce-i de facut la depasire limita contor
- fereastra anti-replay: determina daca un pachet este o copie
- Path MTU: path Maximum Transmission Unit (pentru evitare fragmentare)

SA Database (2)

Fiecare intrare unic identificata de:

- Security Parameters Index (SPI): identificare SA la receptor
- IP Destination Address
- Security Protocol Identifier

Doua protocoale de securitate:

- AH (Authentication Header) protocol de autentificare
- ESP (Encapsulating Security Payload) protocol combinat criptare/autentificare

Si doua moduri de lucru

- transport
- tunel

Authentication Header – inserat in datagrama IP

- Next header preluat din IP header unde este inlocuit cu 51
- Payload len lungime AH (nr cuvinte 32 biti) minus 2
- Security Parameters Index indica inregistrarea din BD a receptorului
- Sequence number evitare atacuri prin replica
- HMAC Hashed Message Authentication Code
 - · Utilizeaza cheia simetrica
 - Calculeaza rezumat peste intreaga datagrama (campurile variabile neincluse) + cheia simetrica

ESP in modurile transport si tunel

ESP - Encapsulating Security Payload

- (a) ESP in mod transport.
 - antetul ESP este plasat intre antetele IP si TCP
 - campul "protocol" din antetul IP este modificat si arata ca urmeaza un antet IPsec
- (b) ESP in mod tunel.
 - la pachetul IP se adauga antetul IPsec si un nou antet IP
 - tunelul se poate termina inainte de destinatie (de ex. la un firewall)

ESP in modurile transport si tunel

ESP – Encapsulating Security Payload

- (a) ESP in mod transport. (b) ESP in mod tunel.
- criptarea protejeaza incarcatura;
- autentificarea protejeaza antet ESP + criptograma

ESP header include

Security Parameters Index

Numar de Secventa

Vector de initalizare (pentru criptare date)

La sfarsit: HMAC – Hashed Message Authentication Code

- ISAKMP Internet Security Association Key Management Protocol
- Genereaza o cheie distincta pentru fiecare asociatie
- Implementat cu IKE (ISAKMP Key Exchange)
 - Foloseste Diffie Hellman
- Pentru Alice:
 - x este cheia privata
 - g^x mod n este cheia publica
 - $-K_{AB} = g^{xy} \mod n$ este cheia secreta partajata cu Bob

Caracteristici Protocol IPSEC

- IPSec este orientat pe conexiune (desi apartine nivelului retea)
- Permite selectia intre mai multi algoritmi
 - criptare: DES in mod CBC, 3DES, IDEA, ...
 - autentificare: MD5, SHA (trunchiat la 96 biti)
 - "deschis" la adaugare algoritmi noi
- Permite stabilirea cheilor de criptare
- Permite alegerea intre mai multe servicii
 - confidentialitate
 - integritate
 - protectie la atacuri prin replica
- Permite alegerea granularitatii
 - conexiune TCP
 - toate legaturile intre doua calculatoare (tunel)
 - toate legaturile intre doua rutere, ...

Protocoale de Autentificare

Determina daca o entitate (utilizator, proces) este cu adevarat cine / ce pretinde ca este

- diferita de autorizare
- se bazeaza pe un schimb de mesaje prin Internet (prezentate, de regula, ca schimb intre Alice si Bob)
- mesajele pot fi interceptate si folosite de alte entitati (de regula Trudy)
- protocolul genereaza si o cheie de sesiune

Folosesc criptografia cu

- Chei secrete partajate
- Chei publice

Autentificare cu cheie secreta partajata

Autentificare reciproca cu un protocol challenge-response

Alice si Bob partajeaza cheia KAB

R_A, R_B - numere aleatoare foarte mari, folosite contra atac prin replica

Autentificare cu cheie secreta partajata (2)

Reducere numar de pasi

Atacul prin reflexie

Trudy nu poate cripta R_B din mesajul 2

Dar retransmite un mesaj produs de Bob (4) si

reuseste sa stabileasca o sesiune autentificata cu Bob

Atacul prin reflexie pe protocolul initial

Rejucand mesajele 5 si 9, Trudy reuseste sa stabileasca doua sesiuni autentificate cu Alice

Autentificarea cu HMACs

Alice si Bob partajează cheia KAB

Fiecare parte poate calcula rezumatul HMAC - Hashed Message Authentication Code – (deoarece contine doar valori cunoscute)

- Hash-based Message Authentication Code (de ex. folosind SHA-1)

Trudy nu poate forța pe Alice sau Bob să cripteze sau să rezume o valoare impusă de ea

Stabilire cheie partajata: Diffie-Hellman key exchange

n, g – numere mari n prim (n-1)/2 prim x nu poate fi calculat din g^x mod n
g^{xy} mod n nu poate fi calculat din g^x mod n
si g^y mod n cand n este mare

g < n (generator) are proprietatea: orice p poate fi scris ca g^k mod n adica: pentru fiecare p intre 1 si n-1 inclusiv, exista o putere k a lui g astfel ca $p = g^k$ mod n.

Atacul man-in-the-middle

Vulnerabilitate – g si n sunt publici

permite stabilirea a doua chei: intre Alice si Trudy - g^{xz} mod n si intre Trudy si Bob - g^{zy} mod n

Rezolvare: Alice si Bob semneaza mesajele schimbate intre ei Trudy nu poate modifica mesajele

Autentificarea folosind Key Distribution Center

Alice si Bob folosesc un Centru de distributie a cheilor

- in care au incredere
- cu care impart cheile secrete K_A respectiv K_B

Prima incercare, vulnerabila la replay attack

Trudy **retransmite** mesajul 2 si

mesajul asociat cu el, criptat deja cu K_S (de ex. extragerea din contul lui Alice a unei sume de bani)

Autentificarea cu protocolul Needham-Schroedek

- foloseste tichete ex. K_{B,KDC}(A, K_{AB}))
 - Alice nu poate intelege sau modifica tichetul, Bob poate
 - Bob capata incredere in cheia KAB (care vine de la KDC)
- numere aleatoare (nonce) ex. R_{A1}, folosite contra atac prin replica
 - ex. Alice afla ca mesajul 2 este un raspuns la 1, nu un mesaj rejucat de Trudy

Slabiciune Needham-Schroeder

Chuck afla cheia K_{AB} si rejoaca mesajul 3, pretinzând ca e Alice

Autentificarea folosind Protocolul Otway-Rees

Protocolul Otway-Rees (simplificat).

KDC trimite cheia de sesiune K_S dupa ce verifica daca identificatorul comun R apare in ambele parti criptate ale mesajului 2

R_A, R_B – numere aleatoare folosite de KDC in mesajele 3 si 4 pentru a face legatura cu mesajele 1 si 2

Problema: Alice ar putea folosi cheia secreta inainte ca Bob sa afle de ea

Securitatea E-Mail - PGP – Pretty Good Privacy

Autor: Phil Zimmermann

Ofera gama completa de servicii de securitate

- intimitate (privacy)
- autentificare
- semnatura digitala (integritate)
- compresie

Intregul pachet PGP (inclusiv codul sursa) este distribuit gratuit pe Internet

Cripteaza date folosind IDEA (International Data Encryption Algorithm) – similar cu DES si AES

Semneaza mesajele folosind RSA

Folosirea PGP pentru a trimite un mesaj

K_M cheie de sesiune 128-biti produsa din textul introdus de Alice

PGP – Formatul mesajului

File name – nume implicit al fisierului de utilizat la receptie

Types – identifica algoritmul de criptare

- ID of E_A A poate avea mai multe perechi de chei publica/privata E_A/D_A ; fiecare pereche are un identificator ID (ultimii 64 biti ai cheii publice)
- ID of E_B fiecare B poate avea mai multe chei publice; fiecare cheie are un identificator, ID (64 biti) si un indicator de trust (cata incredere are A in aceasta cheie

Management chei

Foloseste doua fisiere in care se păstrează

- Private key ring contine propriile perechi de chei (publica, privata) impreuna cu identificatorii lor
- Public key ring contine perechi (key, trust indicator) ptr cheile publice ale partenerilor

Cheile private se țin criptate cu o parola speciala

Versiunile actuale PGP folosesc certificate X.509

Securitatea Web

- Atacuri
 - inlocuire Home page
 - Denial-of-service
 - Citire mail-uri
 - Furt numere credit card
- Solutii
 - Secure Naming
 - SSL The Secure Sockets Layer

Necesitate Secure Naming

Situatie Normala.

- 1. Da-mi adresa IP Bob
- 2. 36.1.2.3 (adr IP Bob)
- 3. GET index.html
- 4. Pagina home Bob

Un atac bazat pe modificarea inregistrarii lui Bob in DNS.

- 1. Da-mi adresa IP Bob
- 2. 42.9.9.9 (adr IP Trudy)
- 3. GET index.html
- 4. Pagina Bob falsificata de Trudy

Trudy pacaleste ISP-ul lui Alice

Probleme: ISP verifică adresa IP de la care vin răspunsurile DNS

 Trudy poate folosi adresa IP a unui server DNS de nivel inalt (care este publica) pentru a construi un raspuns fals

DNS se bazeaza pe UDP -> DNS foloseste

sequence numbers pentru a mapa cererile si raspunsurile

- Trudy inregistreaza un domeniu trudy-the-intruder.com (IP 42.9.9.9) si
- Creaza un server DNS dns.trudy-the-intruder.com (aceeasi IP 42.9.9.9)

Trudy pacaleste ISP-ul lui Alice (2)

- Cere adresa foobar.trudy-the-intruder.com ISP-ul lui Alice afla de la serverul com despre noul dns.trudy-the-intruder.com si il pune in cache
- 2. Cere ISP-ului adresa pentru www.trudy-the-intruder.com
- 3. ISP intreaba DNS-ul lui Trudy; intrebarea are un numar de secventa, n asteptat de Trudy

Trudy pacaleste ISP-ul lui Alice (3)

- Repede, cere adresa bob.com (fortand ISP sa intrebe serverul com in pasul 5)
- 5. ISP transmite cererea cu nr secv n+1 catre serverul com
- **6.** Trudy transmite repede un **raspuns fals** cu nr secv = **n+1**, adresa IP a serverului **com** drept sursa raspunsului si adresa sa 42.9.9.9 drept adresa lui Bob; raspunsul este considerat bun si este pus in cache-ul ISP
- 7. Cand soseste raspunsul adevarat, ISP il rejecteaza

Cand Alice cauta bob.com primeste adresa falsa din cache ISP

Secure DNS

Inregistrarile din DNS au forma

Domain name	Time to live	Class	Туре	Value
bob.com.	86400	IN	Α	36.1.2.3

Pentru securitate

fiecarei zone DNS i se aloca o pereche de chei publica/privata

Se adauga doua noi tipuri de inregistrari

KEY record – cheia publica a unei zone, utilizator, host, etc.

SIG record - hash semnat al inregistrarilor A si KEY pentru verificarea autenticitatii.

Domain name	Time to live	Class	Type	Value
bob.com.	86400	IN	Α	36.1.2.3
bob.com.	86400	IN	KEY	3682793A7B73F731029CE2737D
bob.com.	86400	IN	SIG	86947503A8B848F5272E53930C

Secure DNS (2)

Domain name	Time to live	Class	Туре	Value
bob.com.	86400	IN	Α	36.1.2.3
bob.com.	86400	IN	KEY	3682793A7B73F731029CE2737D
bob.com.	86400	IN	SIG	86947503A8B848F5272E53930C

Gruparea obtinuta se numeste RRSet (Resource Record Set)

Clientii primesc de la DNS un RRS cu semnatura SIG aplica cheia publica a zonei pentru a decripta SIG calculeaza hash-ul pentru A si KEY compara cele doua valori (calculata si decriptata)

Studiu individual

- A. S. Tanenbaum Reţele de calculatoare, ed 4-a, BYBLOS 2003
- 8.4 SEMNĂTURI DIGITALE
- 8.5 GESTIONAREA CHEILOR PUBLICE
- 8.6 SECURITATEA COMUNICAȚIEI
- 8.7 PROTOCOALE DE AUTENTIFICARE
- 8.8 CONFIDENŢIALITATEA POŞTEI ELECTRONICE
- 8.9 SECURITATEA WEB-ULUI
- A. S. Tanenbaum Computer networks, 5-th ed. PEARSON 2011
- 8.4 DIGITAL SIGNATURES
- 8.5 MANAGEMENT OF PUBLIC KEYS
- 8.6 COMMUNICATION SECURITY
- 8.7 AUTHENTICATION PROTOCOLS
- 8.8 EMAIL SECURITY
- 8.9 WEB SECURITY