

PESQUISA OPERACIONAL - PROGRAMAÇÃO LINEAR MÉTODO SIMPLEX

Prof. Angelo Augusto Frozza, M.Sc.

o A ideia geral é

- Em vez de enumerar todas as soluções básicas (pontos extremos) do problema de PL, o Método Simplex investiga somente algumas dessas soluções selecionadas.
- Dessa forma, o desenvolvimento dos cálculos do Método torna-se *iterativo*.

Figura 3.3 Processo iterativo do método simplex

- Normalmente o Método Simplex começa a análise pela *origem* (ponto A), onde $x_1 = x_2 = 0$.
 - Nesse ponto, o valor da função objetivo (z) é zero.

• Pergunta a ser feita:

- Se um aumento em x₁ ou x₂ não básicas, acima de seus valores zero atuais pode melhorar (aumentar) o valor de z?
 - RESPOSTA: investigue a função objetivo, por exemplo $Maximizar z = 2x_1 + 3x_2$
 - o A função mostra que um aumento em x_1 ou x_2 (ou ambas) acima de seus valores zero atuais **melhorará** o valor de z.
 - o Porém, o Método exige o aumento de uma variável por vez.
 - A variável selecionada será aquela que tiver a maior taxa de melhoria em z.

- No exemplo, o valor de z aumentará
 - em 2 para cada unidade de aumento em x_1 e
 - em 3 para cada unidade de aumento em x_2 .
- Isso significa que a *taxa de melhoria* no valor de z é 2 para x_1 e 3 para x_2 .

 Figura 3.3
- Assim, a opção é aumentar x₂.
- O valor de x₂ deve ser aumentado até alcançar o ponto extremo de B.
 - Parar antes de *B* não é ótimo;
 - Parar depois de B não é viável.

- A partir de B, o Método aumentará o valor de x1 para alcançar o ponto C, que é a solução ótima.
- Assim, o caminho do Método Simplex foi definido como
 A -> B -> C.
- Cada ponto extremo é associado a uma *iteração*.
 - Lembrando que o Método percorre as bordas da região de soluções.

Tabela 3.2 Variáveis básicas e não básicas

Ponto extremo	Variáveis básicas	Variáveis (zero) não básicas
A	S_{1}, S_{2}	x_{1}, x_{2}
B	S_1, X_2	x_{1}, s_{2}
C	x_{1}, x_{2}	S_1, S_2

Figura 3.3 Processo iterativo do método simplex

Exercícios

 Na figura do exemplo, suponha que a função objetivo é alterada para

$$Maximizar z = 8x_1 + 4x_2$$

 Identifique o caminho do Método Simplex e as variáveis básicas e não básicas que definem esse caminho.

Figura 3.3
Processo iterativo do método simplex

Exercícios

2. Considere a solução gráfica do modelo da Tintas e Tintas. Identifique o caminho do Método Simplex e as variáveis básicas e não básicas que definem esse caminho.

Figura 2.2 Solução ótima do modelo da Reddy Mikks

 Considere o problema da Tintas e Tintas S.A. para entender o Método Simplex

$$Maximizar z = 5x_1 + 4x_2$$

Sujeito a

$$6x_1 + 4x_2 \le 24$$
 (matéria prima M1)
 $x_1 + 2x_2 \le 6$ (matéria prima M2)
 $-x_1 + x_2 \le 1$ (limite de mercado)
 $x_2 \le 2$ (limite da damanda)
 $x_1, x_2 \ge 0$ (não negatividade)

Expressando o problema na forma de equações:

Maximizar
$$z = 5x_1 + 4x_2 + 0s_1 + 0s_2 + 0s_3 + 0s_4$$

Sujeito a

$$6x_{1} + 4x_{2} + s_{1} = 24$$

$$x_{1} + 2x_{2} + s_{2} = 6$$

$$-x_{1} + x_{2} + s_{3} = 1$$

$$x_{2} + s_{4} = 2$$

$$x_{1}, x_{2}, s_{1}, s_{2}, s_{3}, s_{4} \ge 0$$

Função objetivo:
$$z - 5x_1 - 4x_2 = 0$$

Agora criamos a tabela Simplex inicial

Base	z	x_1	x_2	s_1	s_2	$oldsymbol{s}_3$	s_4	Solução	
z	1	-5	-4	0	0	0	0	0	linha z
s_I	0	6	4	1	0	0	0	24	linha $s_{\it l}$
s_2	0	1	2	0	1	0	0	6	linha s_2
s_{β}	0	-1	1	0	0	1	0	1	linha $s_{\it 3}$
s_4	0	0	1	0	0	0	1	2	linha s_4

• Essa tabela especifica o conjunto de variáveis básicas (s_1 , s_2 , s_3 , s_4) e não básicas (x_1 , x_2), bem como apresenta a solução associada com a iteração inicial.

Agora criamos a tabela Simplex inicial

Base	z	x_1	x_2	s_1	s_2	$oldsymbol{s}_3$	s_4	Solução	
z	1	-5	-4	0	0	0	0	0	linha z
s_I	0	6	4	1	0	0	0	24	linha s_I
s_2	0	1	2	0	1	0	0	6	linha s_2
s_3	0	1	1	0	0	1	0	1	linha $s_{\it 3}$
s_4	0	0	1	0	0	0	1	2	linha $s_{\it 4}$

- As iterações começam na origem $(x_1, x_2) = (0, 0)$
 - Variáveis (zero) não básicas: (x₁, x₂)
 - Variáveis básicas: (s₁, s₂, s₃, s₄)

Agora criamos a tabela Simplex inicial

Base	z	x_1	x_2	s_1	s_2	$oldsymbol{s}_3$	s_4	Solução	
z	1	-5	-4	0	0	0	0	0	linha z
s_I	0	6	4	1	0	0	0	24	linha s_I
s_2	0	1	2	0	1	0	0	6	linha s_2
s_3	0	-1	1	0	0	1	0	1	linha s_3
s_4	0	0	1	0	0	0	1	2	linha s_4

• Substituindo as variáveis não básicas $(x_1, x_2) = (0, 0)$ e observando o arranjo especial 0-1 dos coeficientes de z, bem como as variáveis básicas (s_1, s_2, s_3, s_4) , a seguinte solução está disponível (sem nenhum cálculo):

Ponto A: $(x_1, x_2) = (0, 0)$

$$z = 0$$

$$s_1 = 24$$

$$s_2 = 6$$

$$s_3 = 1$$

$$s_4 = 2$$

A solução inicial é ótima?

$$(x_1, x_2) = (0, 0)$$

 $z = 0$
 $s_1 = 24$
 $s_2 = 6$
 $s_3 = 1$
 $s_4 = 2$

- A função objetivo $z = 5x_1 + 4x_2$ mostra que a solução pode ser melhorada aumentando x_1 ou x_2 .
 - Para tanto, escolhe-se aumentar a variável que tem o coeficiente mais positivo;
 - Ou seja, essa será a variável a entrar na base.
 - Se fosse considerada a equação $z 5x_1 4x_2 = 0$, seria escolhida a variável com coeficiente mais negativo.
 - Regra denominada condição de otimalidade.

- Para determinar a variável que sai da base, deve-se fazer o cálculo das razões não negativas entre o lado direito das equações (coluna Solução) e o coeficiente de restrição correspondente à variável que entra (x₁)
 - A razão mínima não negativa identifica automaticamente a variável s₁
 como a variável que sai da base e designa para a variável que entra na base (x₁) o valor de 4.

Base	Entrando x_1	Solução	Razão (ou intercepto)
s_1	6	24	$x_1 = 24/6 = 4 \iff \text{mínimo}$
s_2	1	6	$x_1 = 6/1 = 6$
s_3	-1	1	$x_1 = 1 / -1 = -1 \Leftarrow (ignorar)$
s_4	0	2	$x_1 = 2 / 0 = \infty \Leftarrow \text{(ignorar)}$

- As razões calculadas são as intersecções das restrições com o eixo (x_1) da variável que entra na base.
 - Um aumento que ultrapasse B é inviável
 - Um aumento menor do que B desconsidera outras soluções viáveis (e a solução ótima)

Figura 3.5 Interpretação gráfica das razões do método simplex no modelo da Reddy Mikks

- o O novo **ponto de solução B** é determinado pela "troca" entre a variável que entra na base (x_1) e a variável que sai da base s_1 na tabela Simplex, para produzir os seguintes conjuntos de variáveis:
 - Variáveis básicas em B: (x₁, s₂, s₃, s₄)
 - Variáveis não básicas (zero) em B: (s₁, x₂)
- O processo de troca é baseado nas operações de Gauss-Jordan, que identifica:
 - a coluna da variável que entra na base como coluna do pivô
 - a linha da variável que sai como a linha do pivô
 - a intersecção da coluna do pivô com a linha do pivô como elemento pivô.

			E ntra ↓							
	Base	Z	x_1	x_2	s_1	s_2	s_3	s_4	Solução	
	z	1	-5	-4	0	0	0	0	0	linha z
Sai ←	s_1	0	6	4	1	0	0	0	24	linha do pivô
	s_2	0	1	2	0	1	0	0	6	linha ${ m s}_2$
	s_3	0	-1	1	0	0	1	0	1	${ m linha}~{ m s}_3$
	s_4	0	0		0	0	0	1	2	linha ${ m s}_4$
			Coluna do pivô							

 Os cálculos por Gauss-Jordan necessários para produzir a nova solução básica são de dois tipos:

Linha do pivô

- a) Substituir a variável que sai da base na coluna *Base* pela variável que entra na base.
- Nova linha do pivô = Linha do pivô atual ÷ Elemento pivô
- Exemplo:

```
Nova linha x_1 = Linha s_1 atual ÷ 6
= 1/6 (0 6 4 1 0 0 0 24)
= (0 1 2/3 1/6 0 0 0 4)
```


 Os cálculos por Gauss-Jordan necessários para produzir a nova solução básica são de dois tipos:

Linha do pivô

- a) Substituir a variável que sai da base na coluna *Base* pela variável que entra na base.
- b) Nova linha do pivô = Linha do pivô atual ÷ Elemento pivô

			1						
	Base	Z	x_1	x_2	s_1	s_2	s_3	s_4	Solução
	z	1	-5	-4	0	0	0	0	0
	x_1	0	1	2/3	1/6	0	0	0	4
	s_2	0	1	2	0	1	0	0	6
	s_3	0	-1	1	0	0	1	0	1
	s_4	0	0	1	0	0	0	1	2

Todas as outras linhas, incluindo z

Nova linha = (Linha atual) – (Seu coeficiente da coluna pivô) * (Nova linha do pivô)

• Exemplo:

Nova linha
$$z = \text{Linha } z \text{ atual } - (-5) * \text{Nova linha } x_1$$

= $(1 -5 -4 \ 0 \ 0 \ 0 \ 0) - (-5) * (0 \ 1 \ 2/3 \ 1/6 \ 0 \ 0 \ 4)$
= $(1 -5 -4 \ 0 \ 0 \ 0 \ 0) - (0 -5 -10/3 -5/6 \ 0 \ 0 \ 0 -20)$
= $(1 \ 0 -2/3 \ 5/6 \ 0 \ 0 \ 0 \ 20)$

Lembrete:

$$-4 - 10/3 \Rightarrow (-12 - 10)/3 \Rightarrow -2/3$$

- a) Achar o MDC
- b) Dividir o MDC pelo denominador
- c) Multiplicar o resultado pelo numerador


```
Nova linha s_2 = Linha s_2 atual – (1) * Nova linha x_1
= (0 1 2 0 1 0 0 6) – (1) * (0 1 2/3 1/6 0 0 0 4)
= (0 1 2 0 1 0 0 6) – (0 1 2/3 1/6 0 0 0 4)
= (0 0 4/3 -1/6 1 0 0 2)
```

Nova linha
$$s_3$$
 = Linha s_3 atual – (-1) * Nova linha x_1
= (0 -1 1 0 0 1 0 1) – (-1) * (0 1 2/3 1/6 0 0 0 4)
= (0 -1 1 0 0 1 0 1) – (0 -1 -2/3 -1/6 0 0 0 -4)
= (0 0 5/3 1/6 0 1 0 5)

```
Nova linha s_4 = Linha s_4 atual -(0) * Nova linha x_1
= (0\ 0\ 1\ 0\ 0\ 0\ 1\ 2) - (0) * (0\ 1\ 2/3\ 1/6\ 0\ 0\ 0\ 4)
= (0\ 0\ 1\ 0\ 0\ 0\ 1\ 2) - (0\ 0\ 0\ 0\ 0\ 0\ 0)
= (0\ 0\ 1\ 0\ 0\ 0\ 1\ 2)
```


• A nova solução básica é (x_1, s_2, s_3, s_4) e a nova tabela se torna:

			1						
	Base	z	x1	x_2	s_1	s_2	s_3	s_4	Solução
	z	1	0	-2/3	5/6	0	0	0	20
←	x_1	0	1	2/3	1/6	0	0	0	4
	s_2	0	0	4/3	-1/6	1	0	0	2
	s_3	0	0	5/3	1/6	0	1	0	5
	s_4	0	0	1	0	0	0	1	2

• A nova solução básica é (x_1, s_2, s_3, s_4) e a nova tabela se torna:

Base	z	<i>x1</i>	x_2	s_1	s_2	s_3	s_4	Solução
z	1	0	-2/3	5/6	0	0	0	20
x_1	0	1	2/3	1/6	0	0	0	4
s_2	0	0	4/3	-1/6	1	0	0	2
s_3	0	0	5/3	1/6	0	1	0	5
s_4	0	0	1	0	0	0	1	2

 Agora verifica-se qual a próxima variável vai entrar na base...

o Identifica-se a próxima variável a entrar na base:

Base	Entrando x_2	Solução	Razão (ou intercepto)
x_1	2/3	4	$x_2 = 4 \div 2/3 = 12/2 = 6$
$oldsymbol{s}_2$	4/3	2	$x_2 = 2 \div 4/3 = 6/4 = 3/2 = 1,5 \Leftarrow mínimo$
s_3	5/3	5	$x_2 = 5 \div 5/3 = 15/5 = 3$
s_4	1	2	$x_2 = 2 / 1 = 2$

• Assim, s_2 sai da solução básica e o novo valor de x_2 é 1,5

Alteração na tabela da 2ª iteração

				Į					
	Base	z	<i>x1</i>	x_2	s_1	s_2	s_3	s_4	Solução
	z	1	0	-2/3	5/6	0	0	0	20
	x_1	0	1	2/3	1/6	0	0	0	4
~	s_2	0	0	4/3	-1/6	1	0	0	2
	s_3	0	0	5/3	1/6	0	1	0	5
	s_4	0	0	1	0	0	0	1	2

- Alteração na tabela da 2ª iteração:
 - Nova linha do pivô x_2 = Linha s_2 atual ÷ 4/3
 - Nova linha z = Linha z atual -(-2/3) * Nova linha x_2
 - Nova linha x_1 = Linha x_1 atual (2/3) * Nova linha x_2
 - Nova linha s_3 = Linha s_3 atual (5/3) * Nova linha x_2
 - Nova linha s_4 = Linha s_4 atual (1) * Nova linha x_2

• A nova solução básica é (x_1, x_2, s_3, s_4) e a nova tabela se torna (3ª iteração):

Base	z	<i>x1</i>	x_2	s_1	s_2	s_3	s_4	Solução
z	1	0	0	3/4	1/2	0	0	21
x_1	0	1	0	1/4	-1/2	0	0	3
\mathbf{x}_2	0	0	1	-1/8	3/4	0	0	3/2
s_3	0	0	0	3/8	-5/4	1	0	5/2
s_4	0	0	0	1/8	-3/4	0	1	1/2

 Com base na condição de otimalidade, nenhum dos coeficientes da linha z associados com as variáveis não básicas, s₁ e s₂, é negativo

- Assim, essa tabela Simplex é ótima.
- A solução ótima pode ser lida na tabela Simplex como:
 - Os valores ótimos das variáveis na coluna Base são dados na coluna Solução do lado direito da tabela
 - A interpretação é demonstrada na tabela a seguir:

Variável de decisão	Valor ótimo	Recomendação
x_1	3	Produzir 3 t diárias de tintas para exteriores
x_2	3/2	Produzir 1,5 t diárias de tintas para interiores
z	21	Lucro diário é R\$ 21.000,00

- A solução também dá o status dos recursos:
 - *Escasso* se as atividades (variáveis) do modelo o usarem totalmente
 - Abundante
- Essa informação é obtida da tabela ótima pela verificação do valor da variável de folga associado à restrição que representa o recurso:
 - Variável de folga = ZERO, o recurso é totalmente utilizado / ESCASSO
 - Variável de folga > ZERO, o recurso é ABUNDANTE

Recurso	Valor da folga	Status
Matéria prima <i>M1</i>	$s_1 = 0$	Escasso
Matéria prima <i>M2</i>	$s_2 = 0$	Escasso
Limite de mercado	$s_3 = 5/2$	Abundante
Limite de demanda	$s_4 = 1/2$	Abundante

Finalizando...

- A tabela Simplex oferece diversas informações adicionais:
 - Análise de sensibilidade trata da determinação das condições que manterão a solução atual inalterada;
 - Análise pós-otimização trata de achar uma nova solução ótima quando os dados do modelo original são alterados.

Finalizando...

- Em problemas de MINIMIZAÇÃO, as condições de otimalidade exigem a seleção da variável que entra na base como a variável não básica que tenha o coeficiente mais positivo na função objetivo.
 - o Isso é o oposto da regra de Maximização.
 - o Max z = Min (-z)
- Quanto à condição de viabilidade para selecionar a variável que sai, a regra permanece sem alteração.

Condição de otimalidade

- A variável que entra na base em um problema de maximização é a variável não básica que tiver o coeficiente mais negativo na linha z.
 - A linha z deve estar no formato de equação.
- Em problemas de minimização, é a variável não básica com o coeficiente mais positivo na linha z.
- A solução ótima é obtida na iteração em que todos os coeficientes da linha z das variáveis não básicas forem não negativos (na maximização) ou não positivos (na minimização).

Condição de viabilidade

 Tanto em problemas de maximização quanto para os de minimização, a variável que sai da base é a variável básica associada com a menor razão não negativa (que tenha um denominador estritamente positivo).

Exercícios

- Resolva o problema da Casa das Rações pelo Método Simplex;
- Desenvolva todos os cálculos necessários, passo a passo;
- Encaminhe a solução para o e-mail do professor.

REFERÊNCIAS BIBLIOGRÁFICAS

• TAHA, H. A. **Pesquisa Operacional**. 8. ed. São Paulo: Pearson, 2008.

