1.1

1.2 Linear regression using normal equations

1.3 2nd order polynomial regression using normal equations

2.1

$$J(\beta) = (y - X\beta)^{T} (y - X\beta) + \lambda \beta^{T} \beta$$

$$\nabla_{\beta} J(\beta) = -2X^{T} y + 2X^{T} X\beta + 2\lambda I\beta$$

$$\text{Let } \nabla_{\beta} J(\beta)|_{\beta = \beta^{*}} = 0$$

$$\beta^{*} = (X^{T} X + \lambda I)^{-1} X^{T} y$$

2.2

$$det(X^T X) = 35 \times 140 - 70 \times 70 = 0 \tag{2}$$

This means that X^TX is not invertable. Therefore, you can not compute β^* through $\beta^*=(X^TX+\lambda I)^{-1}X^Ty$.

2.3

Lasso

2.4

With $\lambda = 0$, $\beta_{LR} = [2.97139801, -11.00332214, 6.96229098]^T$

With $\lambda = 1$, $\beta_{RR} = [3.17523191, 0.53352905, 1.1864448]^T$

2.5

If the true coefficient is β = (3, 1, 1)T , then the ridge regression estimate at [3.17523191, 0.53352905, 1.1864448]^T performs better. Since the x_1 vs x_2 looks like the following,

we can see that the relationship between x_1 and x_2 appears linear. Thus it is likely that X is not full rank, and therefore X^TX is not invertable, making linear regression perform worse.