Statistical Inference I

Prof. Chin-Tsang Chiang

Lecture Notes 9

November 12, 2015

Scribe: Wei-Chang Lee, Chi-Ning Chou

0.1 Expectation

Expectation is simply a functional of the distribution. It maps a distribution to a certain real value to represent the behavior, shape, or other properties. Formally, we define the expectation of a random variable X as follow:

Definition 1 (expectation) Let X be a r.v. and g be a measurable function. Then, the expectation of g(X), which is also a r.v., is denoted as $\mathbb{E}[g(X)]$, i.e.,

$$\mathbb{E}[g(X)] = \int_{x} g(x)dF_X(x)$$

Note that the expectation of $\mathbb{E}[g(X)]$ exists provided that $\mathbb{E}[|g(X)|] < \infty$.

Remark: If the distribution is not a mixture of both discrete and continuous distribution, then we can represent it as

- If X is discrete, $\mathbb{E}[g(X)] = \sum_{x} g(x) f_X(x)$.
- If X is continuous, $\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) dF_X(x)$.

However, not all the distribution has expectation! Cauchy distribution is a beautiful example: **Example:** (Cauchy distribution has no mean)

The pdf of Cauchy distribution is

$$f(x) = \frac{1}{\pi(1+x^2)}dx$$

With simple integration, we can check that $\mathbb{E}(|X|) = 2 \int_0^\infty \frac{x}{\pi(1+x^2)} dx = \infty$. Thus, the expectation of Cauchy distribution does not exist. As a remark, Cauchy is a bell-shaped distribution with median 0. And actually, the cumulative distribution of Cauchy is the arc tangent function!

Property 1 Let X be a r.v. and a,b,c be constants. Moreover, $g_1(X)$, $g_2(X)$ be any r.v. with expectation. Then,

- 1. (Preserve linear combination) $\mathbb{E}[|ag_1(X) + bg_2(X) + c] = a\mathbb{E}[g_1(X)] + b\mathbb{E}[g_2(X)] + c$.
- 2. (Preserve non-negativity) If $f(x) \ge 0$, $\forall x$, then $\mathbb{E}[g(X)]$.
- 3. (Preserve dominance) If $g_1(x) \geq g_2(x)$, $\forall x$, then $\mathbb{E}[g_1(X)] \geq \mathbb{E}[g_2(X)]$.
- 4. (Existence of bounded r.v.) If $a \leq g(x) \leq b$, $\forall x$, then $a \leq \mathbb{E}[g(X)] \leq b$.

Now, we turn to an useful and interesting application of expectation.

Example: (The expectation of indicator function is probability) Consider I_A to be an indicator function of a set $A \subseteq \mathbb{R}$, then

$$\mathbb{E}[I_A(X)] = P(A)$$

Moreover, we can regard the above equation as a **binary response**. That is, the indicator separate the space \mathbb{R} into two parts: $\{x: x \in A\}$ and $\{x: x \notin A\}$ and the expectation is a functional to see the response of such partition.

For example, consider the following indicator function $I(X \leq x)$. We can see that $\mathbb{E}[I(X \leq x)] = F_X(x)$. And this representation gives us a broad way to describe the data. Suppose now we are concerning the probability $Pr[X = x | Z_1, Z_2, ..., Z_p]$, the most simply way is to use a general model to describe it, say

$$Pr[X = x | Z_1, Z_2, ..., Z_p] = G(x, \beta_1 Z_1 + \beta_2 Z_2 + ... + \beta_p Z_p)$$

As we choose to use the expectation representation: $\mathbb{E}[I(X \leq x)|Z_1, Z_2, ..., Z_p]$, the impact of Z_i s can somehow depends on the value of x and become even more general. In other words, the linear parameter β_i s can be depended on x. For example,

$$x_1: \{x: X \le x_1\} \leftrightarrow \beta_{11}Z_1 + \beta_{12}Z_2 + \dots + \beta_{1p}Z_p$$

 $x_2: \{x: X \le x_2\} \leftrightarrow \beta_{21}Z_1 + \beta_{22}Z_2 + \dots + \beta_{2p}Z_p$

With the above concept, we can simply show the inclusion-exclusion theorem with the help of indicator function and its expectation. First consider two facts:

- $\mathbf{1}_{A \cap B} = \mathbf{1}_A \mathbf{1}_B$ and $\mathbf{1}_{A \cup B} = 1 \mathbf{1}_{A^C \cap B^C}$
- $\mathbf{1}_{\cup_i A_i} = 1 \prod_i (1 \mathbf{1}_{A_i})$

Now, we can derive the inclusion-exclusion theorem:

$$P(\cup A_i) = 1 - \mathbb{E}[\prod_i (1 - \mathbf{1}_{A_i})]$$

$$= 1 - \mathbb{E}[1 - \sum_i \mathbf{1}_{A_i} + \sum_{i,j} \mathbf{1}_{A_i} \mathbf{1}_{A_j} - \dots + (-1)^k \sum_{i_1,\dots,i_k} \mathbf{1}_{A_{i_1}} \cdots \mathbf{1}_{A_{i_k}} \pm \dots \pm \mathbf{1}_{\cap A_i}]$$

$$= \sum_i P(A_i) - \sum_{i,j} P(A_i \cap A_j) + \dots + (-1)^{k-1} \sum_{i_1,\dots,i_k} P(A_{i_1} \cap \dots \cap A_{i_k}) \pm \dots \pm P(\cup_i A_i)$$

0.2 Moment

Definition 2 (Moment and Central moment) For each integer n, the n^{th} moment of X is $\mu'_n = E[X^n]$, and the n^{th} central moment of X is $\mu_n = E[(X - \mu)^n]$ where $\mu = \mu'_1$.

Definition 3 (Variance and Standard deviation) The variance of a r.v. denoted by Var(x), is μ_2 . The positive square root of Var(x), denoted by σ_x , is called the standard deviation/error of X.

Moment carries some information of the distribution, some useful moments are as below.

1. mean: $E[X] = \mu$

2. variance: $E[(X - \mu)^2] = \sigma^2$

3. skewness: $E[(\frac{X-\mu}{\sigma})^3] = \frac{E[X^3] - 3\mu\sigma^2 - \mu^3}{\sigma^3} = \gamma_1$

4. kurtosis: $E[(\frac{X-\mu}{\sigma})^4] = \gamma_2$ (Kurt[N(0,1)]=3)

Property 2 Minimum variance

1. (a) $argmin(E[(X-a)^2]) = \mu$ and $minimum\ E[(X-a)^2] = Var(x)$.

2. (b) $Var(X) = 0 \Leftrightarrow P(|X - E[X]| < \epsilon) = 1 \ \forall \epsilon > 0$.

Proof: (\Leftarrow)

$$Var(X) = \int_{x \in \mathcal{R}} (x - E[X])^2 P(X = x) dF_X(x)$$

$$= \int_{x - E[X] < \epsilon} (x - E[X])^2 P(X = x) dF(x) + \int_{x - E[X] \ge \epsilon} (x - E[X])^2 P(X = x) dF_X(x)$$

$$\leq \epsilon^2 + 0 \ (pick \ \epsilon \downarrow 0)$$

$$= 0$$

 $(\Rightarrow) \forall \epsilon > 0$

$$0 = Var(X) = \int_{x \in \mathcal{R}} (x - E[X])^2 P(X = x) dF_X(x)$$

$$\geq \int_{x - E[X] \ge \epsilon} (x - E[X])^2 P(X = x) dF_X(x)$$

$$\geq \epsilon^2 \times P(|x - E[X]| \ge \epsilon)$$

It implies that

$$P(|x-E[X]| \ge \epsilon) = 0 \to P(|x-E[X]| < \epsilon) = 1$$

Property 3 If X has finite variance, $Var(aX \pm b) = a^2Var(x) \ \forall a, b \in \mathcal{R}$.

Proof: Simply expands it and use linearity of expectation to rearrange it.

0.3 Moment generating and characteristic function

Definition 4 (Moment generating function) The moment generating function of X is defined to be $M_X(t) = E[e^{tX}]$ provided that the expectation exists for t in some $\mathcal{B}_r(0)$.

Definition 5 (Characteristic function) The characteristic function of X is defined to be $\phi_X(t) = E[e^{itX}] = E[cos(tx)] + iE[sin(tx)].$

Remark:

- 1. $\int |\cos(tx)| dF_X(x) \le \int dF_X(x) = 1$ and $\int |\sin(tx)| dF_X(x) \le \int dF_X(x) = 1$
- 2. The characteristic function does much more than the moment generating function does. The characteristic function always exists and completely determines the distribution.

Example: Consider the lognormal distribution:

$$f_1(x) = \frac{1}{\sqrt{2\pi}x} e^{\frac{-(\ln x)^2}{2}} \mathbb{1}_{(0,\infty)}(x)$$

$$f_2(x) = f_1(x)(1 + \sin(2\pi \ln x))\mathbb{1}_{(0,\infty)}(x)$$

let $u = \ln x$ and v = u - r, one derives that

$$\begin{split} E[X_1^r] &= \int_0^\infty \frac{x^{r-1}}{\sqrt{2\pi}} e^{\frac{-(\ln x)^2}{2}} dx = \int_{-\infty}^\infty \frac{x^r}{\sqrt{2\pi}} e^{\frac{-(\ln x)^2}{2}} du \\ &= \int_{-\infty}^\infty \frac{e^{ru}}{\sqrt{2\pi}} e^{\frac{-u^2}{2}} du = \int_{-\infty}^\infty \frac{e^{r(v+r)}}{\sqrt{2\pi}} e^{\frac{-(v+r)^2}{2}} dv \\ &= e^{\frac{r^2}{2}} \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi}} e^{\frac{-v^2}{2}} dv = e^{\frac{r^2}{2}} \\ E[X_2^r] &= \int_0^\infty \frac{x^{r-1}}{\sqrt{2\pi}} e^{\frac{-(\ln x)^2}{2}} \left(1 + \sin(2\pi \ln x)\right) dx \\ &= e^{\frac{r^2}{2}} + e^{\frac{r^2}{2}} \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi}} e^{\frac{-v^2}{2}} \sin(2\pi(v+r)) dv \\ &= e^{\frac{r^2}{2}} + e^{\frac{r^2}{2}} \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi}} e^{\frac{-v^2}{2}} (\sin(2\pi v)\cos(2\pi r) + \sin(2\pi r)\cos(2\pi v)) dv \\ &= e^{\frac{r^2}{2}} \left(\sin \text{ is a odd function and taks on zero value when } r \in \mathcal{Z} \right) \end{split}$$

Remark 1 Also noticed that the moment generating function of log normal distribution does not exist since $E[e^{tX}] = \int_0^\infty \frac{e^{tx}}{\sqrt{2\pi}x} e^{\frac{-(\ln x)^2}{2}} dx$ diverges. $e^{tx}e^{\frac{-(\ln x)^2}{2}}$ diverges as $n \to \infty$.

Conclusion

Determine distribution Basically, mgf is a **stronger** of a r.v. The following lists the positive results and negative results of mgf:

Positive:

- 1. If the support is **bounded** and two r.v.s share every moment, then they will have the same distribution.
- 2. As the two mgfs are the same in a neighborhood of 0, then they will have the same distribution.
- 3. Convergence in mgf implies the convergence of distribution.
- 4. Characteristic function always exists and completely determines the distribution.

Negative:

- 1. Even all moments exists does not imply m.g.f exists. e.g., log-normal distribution.
- 2. Two distributions might have same moments but have different distribution. e.g., $\log \operatorname{-normal}$ distribution and $(1 + \sin(2\pi \log x)) \frac{e^{-(\log x)^2/2}}{\sqrt{2\pi}x}$