目录

1	问题	9.描述	2								
	1.1	类自然语言描述	2								
	1.2	一种形式化描述	2								
2	研究	研究现状与对比算法 3									
	2.1	非随机近似算法	3								
		2.1.1 最近邻点算法	3								
		2.1.2 克里斯托菲德斯算法	4								
		2.1.3 2-OPT 改进算法	7								
	2.2	随机型近似算法	9								
		2.2.1 王磊算法	9								
		2.2.2 模拟退火	10								
3	遗传	· 長算法及改进策略	L1								
	3.1	传统的遗传算法	11								
	3.2	改进的遗传算法	12								
4	实验设置与测试结果 14										
	4.1	数据集与超参数设置	14								
	4.9	党が	1 /								

求解旅行商问题的拟物拟人算法研究

杜睿

摘要

旅行商问题是一个典型的 NP 难度问题,虽易于描述但无法在多项式时间内求得最优解。近年来,国内外研究者设计各种近似算法(尤其是进化算法)期望求解该问题。

对于组合优化问题,有两条主线。第一条是如何表达可行解与解空间,语义(表现型)和存储(基因型)可以有所不同。第二条是如何平衡局部搜索与跳坑策略,平衡开采与探索:如果开采不足,收敛性不好;如果探索不够,容易早熟,陷入局部最优解。

本文提出了改进的遗传算法用于求解旅行商问题:在种群的初始化阶段发扬"继承"策略,减少迭代次数并保留种群多样性;在变异部分,在 K-OPT 的基础上,设计了一种基于"贪婪插入"的算子;同时,在选择操作中弃用轮盘赌方法,改用排位等级法。

大量实验表明,提出的算法在求解质量和求解速度上具有一定的优势。

1 问题描述

1.1 类自然语言描述

给定 n 个城市,对这 n 个城市中的每两个城市来说,从一个城市到另一个城市所走的路程是已知的正实数(符合三角形三边关系定则),其中 n 是已知的正整数, $n \geq 3$ 。这 n 个城市的全排列共有 n! 个。每一个这 n 个城市的全排列都恰好对应着一种走法: 从全排列中的第一个城市走到第二个城市, . . . ,从全排列中的第 n-1 个城市走到第 n 个城市,从全排列中的第 n 个城市回到第一个城市。要求给出一个这 n 个城市的全排列 σ ,使得在 n! 个全排列中,全排列 σ 对应的走法所走的路程是最短的(严格来讲,由于起点任意、顺逆时针等价,问题复杂度为 $\frac{(n-1)!}{2}$)。

1.2 一种形式化描述

给定一个有向完全图 G = (V, A), 其中集合 $V = \{v_1, \ldots, v_n\}$ 是顶点集合,每个顶点代表一个城市,n 是顶点数 $(n \geq 3)$,集合 $E = \{(v_i, v_j) | v_i, v_j \in V, v_i \neq v_j\}$ 是有向边集合。

 c_{ij} 是有向边 (v_i,v_j) 的长度(权值), c_{ij} 是已知的正实数,其中 $(v_i,v_j) \in E$ 。集合 Σ 是顶点全排列的集合,共有 n! 元素。 σ 是所有顶点的一个全排列: $\sigma = (\sigma(1),\ldots,\sigma(n))$, $\sigma \in \Sigma$, $\sigma(i) \in V(1 \le i \le n)$ 。 σ 对应着一条历经所有顶点的回路:从顶点 $\sigma(1)$ 走到顶点 $\sigma(2)$, \ldots ,从顶点 $\sigma(n-1)$ 走到顶点 $\sigma(n)$,从顶点 $\sigma(n)$ 回到顶点 $\sigma(1)$ 。

全排列 σ 所对应的回路的长度记为 $L(\sigma)$, $L(\sigma) = \sum_{i=2}^{n} c_{\sigma(i-1)\sigma(i)} + c_{\sigma(n)\sigma(1)}$ 。

目标是给出所有顶点的一个全排列 σ^* , 使得 $L(\sigma^*) = \min_{\alpha \in \Gamma} L(\sigma)$ 。

每一对顶点 v_i 和 v_j 来说,都有 $c_{v_iv_j}$ 成立,那么称问题是对称的;否则称问题是非对称的。后文统一讨论对称的旅行商问题,不对两者进行额外区分。

2 研究现状与对比算法

求解旅行商问题的算法大体可分为两类:确切算法和近似算法。

- 1. 确切算法保证给出最优解,但由于"组合爆炸",其仅可用于计算较小规模实例。
- 2. 近似算法,或许有可能在短时间内,给出相当接近最优解的近似解。其中,非随机性近似算法包括构建式启发/贪婪算法,克里斯托菲德斯算法等;随机性近似算法包括随机局域搜索、模拟退火、遗传算法、粒子群算法等。

本节接下来介绍对比算法,包括非随机近似算法(最近邻点算法、克里斯托菲德斯算法以及 2-OPT 改进算法)和随机近似算法(王磊算法、模拟退火算法)。

2.1 非随机近似算法

2.1.1 最近邻点算法

顾名思义,在选定一个启始城市 s 后,每次贪婪地选择距离当前城市最近的未访问城市 v 作为下一站;依次类推,直至将所有城市访问一遍,最后回到出发城市 s。伪码如下:

Algorithm 1: GreedyNearestNeighbor Algorithm

 $\sigma^* \leftarrow tour, L \leftarrow L(\sigma^*);$

2.1.2 克里斯托菲德斯算法

即使最差情况下,克里斯托菲德斯算法所得回路长度不会超过最优回路长度的 1.5 倍。求最小值问题,评价近似算法的一个指标是近似比: 设 Opt 是最优值,x 表示某近似算法给出的一个值, $Opt \le x \le \alpha \times Opt$, α 记为该算法的近似比,可用于评价算法优劣。元启发算法虽然有可能得出比较好的近似解,但往往不涉及在最差情况下的效率证明。

首先,引入近似比为2的算法(2-Approximation):

- (a) 定义: S 代表一系列边(允许重边),c(S) 代表各边权重(长度)之和。
- (b) 定义: H_G^* 为无向多重图 G 上,长度最短的哈密尔顿回路(Hamiltonian Cycle),途中经过所有点且只经过一次。
- (c) 构造最小生成树 T,根据最小权生成树定义, $c(H_G^*) \geq c(H_G^* e) \geq c(T)$ 。
- (d) 按深度优先搜索次序记录回路 C,下探一次,回溯一次,因此 $c(C) = 2 \times c(T)$ 。
- (e) 搭桥 (short-cut/bypass) 略过重复访问的点得到符合问题描述的新回路 C' (最后回到起点),例如,1,2,3,4,5,6...,1。

图 1: 近似比为 2 的算法(步骤)

证明如下:

- 由 e、三角形三条边关系定则, $c(C') \le c(C)$;
- $\pm c$, $c(H_G^*) \ge c(H_G^* e) \ge c(T)$;
- $\pm d$, $c(C) = 2 \times c(T)$;
- 因此,该近似算法所得解,最多也不会超过最优解的 2 倍。

然后仍基于最小生成树,设法减小"每边下探一次,回溯一次"带来的额外开销,导出理论近似比为 1.5 的算法。期待一笔画、不重边地遍历所有顶点,可以将问题转换成"欧拉回路"问题。无向图存在欧拉回路的充要条件为:该图为连通图,且所有顶点度数均为偶数。倘若'奇度数'顶点为偶数个(证明见下),那么可以通过将其两两匹配,为每一个顶点都"附赠"一个度,这样便可以满足"顶点度数均为偶数"条件。

- (a) 定义: S 代表一系列边(允许重边), c(S) 代表各边权重(长度)之和。
- (b) 定义: H_G^* 为无向多重图 G 上,长度最短的哈密尔顿回路(Hamiltonian Cycle),即途中经过所有点且只经过一次。
- (c) 定义: 假设 S 为无向多重图 G 上的导出子图,在 S 上长度最短的哈密尔顿回路记为 H_S^* 。根据三角形三边关系定则易证, $c(H_S^*) \leq c(H_G^*)$ 。
- (d) 构造最小生成树 T,根据最小权生成树定义, $c(H_G^*) \ge c(H_G^* e) \ge c(T)$ 。
- (e) 分离在 T 上度数为奇数的点,生成导出子图 S (根据握手定理,给定无向图 G = (V, E), 一条边贡献 2 度,故有 $\Sigma degG(v) = 2|E|$;除开度数为偶数的顶点所贡献的度数,推论可知,度数为奇数顶点数有偶数个);
- (f) 构造 S 的最小权完美匹配 M,构造多重图 $G' = T \cup M$ (此时每个顶点均为偶数度,故存在欧拉回路);
- (g) 生成 G' 的欧拉回路 C, c(C) = c(T) + c(M);
- (h) 搭桥(short-cut/bypass)略过重复访问的点(起点终点不删)得到符合问题描述的新回路 C'(最后回到起点)。

证明:

- 由 e、三角形三边关系定则, $c(C') \leq c(C)$;
- $\pm d$, $c(H_G^*) \ge c(H_G^* e) \ge c(T)$;
- $\pm g$, c(C) = c(T) + c(M);
- $\pm f$, c, $c(M) + c(M) \le c(M1) + c(M2) = c(H_S^*) \le c(H_G^*)$;
- $\text{th } c(C') \leq c(T) + c(M) \leq c(H_G^*) + \frac{1}{2}c(H_G^*);$
- 即得证。

图 2: 克里斯托菲德斯算法(步骤)

图 3: 最小权完美匹配(举例)

图 4: 克里斯托菲德斯算法(实例)

2.1.3 2-OPT 改进算法

"如果题目数据使用欧几里得距离,那么最优路线必定不会自交"。基于这一观察,有学者倡导使用"改进"算法,即对于一条可行回路查漏补缺对其进行细微调整。

"知错能改,善莫大焉"。"怎么改"对应着一种"邻域操作"(函数、变换、系统、算子)。

解空间中的一个巡回旅行路线直接或间接对应一个全排列 σ ,若将其视作 n 维空间中的一个点,其邻域 σ' 操作有很多种,如插入、块插入、块反转、点对换、块交换、边重组等等。边重组中,最著名的是 2-交换(2-OPT)、3-交换(3-OPT)。2-交换的步骤就是删除路线中的两条边,用另外两条更短的边重新连接,使路径再次连为一体。反复使用 2-交换算子改进路线,可以在很大程度上改进"虎头蛇尾"、"目光短浅"的回路路线。

图 5: 2-OPT (图例)

2-OPT 改进算法伪代码如下:

Algorithm 2: 2-OPT Algorithm

```
input: V = \{v_1, \dots, v_n\}, dist(\cdot, \cdot), L(\cdot), \sigma
     output: \sigma^*
 1 length \leftarrow L(\sigma);
 2 repeat
          improved \leftarrow False;
 3
          for i \leftarrow 0 to n-3 do
 4
                for j \leftarrow i + 2 to n do
 5
                      \sigma' \leftarrow \sigma;
  6
                      \sigma'[i+1\ldots j] \leftarrow \text{reverse}(tour'[i+1\ldots j]);
                      length' \leftarrow L(\sigma');
                      \mathbf{if} \ length' < length \ \mathbf{then}
  9
                            \sigma \leftarrow \sigma';
10
                            length \leftarrow length';
11
                            improved \leftarrow \text{True};
12
13 until \neg improved;
14 \sigma^* \leftarrow \sigma;
```

3-OPT 改进算法与之类似,但是可能的情况更多:

图 6: 3-OPT (图例)

2.2 随机型近似算法

2.2.1 王磊算法

王磊老师在课上跟学生说过一个随机型近似算法 (王磊算法),基本算法 A_1 描述如下:

输入: 指导序列 γ , γ 是所有顶点的一个全排列;

开局: 用 γ 前 3 个点绘制外接凸多边形 (三角形), 构成初始回路 $\sigma = (\gamma(1), \gamma(2), \gamma(3))$;

迭代:每次从当前格局向新格局演化时,取出下一个点,按照使得新的部分回路长度 尽量短的贪心策略,将其插入至 σ 合适的位置;

停机: 直至产生 n 个点的回路 σ , 算法结束, 输出 σ 。

Algorithm 3: Generate Tour from a Conductor

input: $V = \{v_1, \dots, v_n\}, dist(\cdot, \cdot), \gamma \text{ a permutation of } V$ output: σ the tour

1 $\sigma \leftarrow (\gamma(1), \gamma(2), \gamma(3));$ 2 for $i \leftarrow 4$ to n do

3 $best_idx \leftarrow \underset{j \in \{1, \dots, |\sigma|\}}{\arg\min} L(\sigma_{1:j}) + dist(\gamma(i), \sigma(j)) + L(\sigma_{j:|\sigma|}) - L(\sigma);$ $\sigma \leftarrow (\sigma_{1:best_idx}, \gamma(i), \sigma_{best_idx+1:|\sigma|});$

对所有指导序列 $\gamma \in \Gamma$,目标是 $\gamma^* = \underset{\gamma \in \Gamma}{\operatorname{arg \, min}} L(A_1(\gamma))$ 。据此,王磊又提出算法 A_2 :

初始格局: 初始化 γ ,通过 A_1 算法指导获得回路 $\sigma = A_1(\gamma)$,以及长度 $l = L(\sigma)$;

邻域搜索: 邻域变换得到 γ' 、 σ' 及 l',若 l' < l,依照最陡下降法,更新格局 $\gamma \leftarrow \gamma'$

跳坑策略: 当 γ 位于局部最优,即几乎尝试所有邻域都无法改善目标函数时,重新随机初始化 γ 或者采用大步长算子(如块移动、块对换、块插入)对 γ 进行变换。

Algorithm 4: WangLei Algorithm

```
input : V, dist(\cdot, \cdot), L(\cdot), epoch, early\_stop
permutation(\cdot), transform(\cdot), shuffle(\cdot)
output: \sigma, l

1 \gamma \leftarrow permutation(V); \sigma \leftarrow A_1(\gamma); l \leftarrow L(\sigma);
2 for e \leftarrow 1 to epoch do

3 \gamma' \leftarrow transform(\gamma); \sigma' \leftarrow A_1(\gamma'); l' \leftarrow L(\sigma');
4 if l' < l then

5 \gamma \leftarrow \gamma'; \sigma \leftarrow \sigma'; l \leftarrow l';
6 if \gamma \leftarrow \gamma'; \sigma \leftarrow \sigma'; l \leftarrow l';
6 if \gamma \leftarrow permutation(V) or \gamma \leftarrow shuffle(\gamma);
```

王磊算法的创新和启发意义主要有以下三点:

1. 传统启发算法求解旅行商问题,几乎全部都是直接在回路 σ 上进行邻域扰动,获得新解。而王磊算法则提出了 $\gamma \to \sigma$ 的映射算法 A_1 ,这相当于对原有解空间进行了"扭曲",将求"回路"的原问题转化为了求"指导顺序"的新问题。

最优化理论中,原始问题很难求解时,往往通过引入对偶问题的方式,简化对原始问题的求解。在机器学习中,也有代替函数、核函数作为例子。但是,我们不禁要问,对于所有的"指导序列" $\gamma \in \Gamma$,它们所生成的所有回路集合 Σ^* ,是否包含了最优回路 σ^* ? 即,通过指导序列将问题转换,问题转换前后是否仍然具有"一致性"?

2. 邻域搜索和跳坑策略思想并不高深。局部极小值的定义来自于函数求极值,跳坑则更有烟火气:如果你已经期末总评满分了,就要跳坑,到更有希望的学府继续深造。

无论是回路 σ 还是指导序列 γ 都是高维空间的一个点,若其邻域中的"点"所对应的 回路长度都不比中心点短,则该中心点是局部极小值点;当邻域搜索陷入局部极小值点时,就应该采用"跳坑策略",进行随机扰动,跳出陷阱,继续邻域搜索。

这其中的问题有二:一是"随机扰动"算子和所谓"邻域算子"在本质上究竟有何不同?设计的"邻域算子"真的在逻辑上只是轻微的扰动吗?二是随着邻域算子设计的不同,邻域中的"点"随着维度的增大,个数可能比想象中要多得多,因此有时候又不得不采用固定次数的方式来执行邻域搜索,导致邻域开采不足。邻域搜索对应"变异"、"开采",而跳坑策略则对应"探索",可以说所有的最优化算法都要考虑这两者的平衡。

3. 生成回路算法本身也具有烟火气。想象一下,借一个扎头发的橡皮筋,套住几个点; 然后采用贪心策略,将其余点加入回路。

传统的最近邻点贪心策略是,最后一步方能连成回路,这就导致目光浅显、虎猴蛇尾;而如果是在一个成形的"回路"中添加,每次添加评价的都直接是回路的全长,则能一定程度上缓解"短视"问题。这启发我们同样是贪心策略,但是如何运用,运用的好不好是可以评价的,是有优劣的。

2.2.2 模拟退火

事实上,人们从物理世界状态演化、自然界各种现象、千百年来生存斗争经验获得启发,以仿生拟人拟物途径设计了各种算法。模拟退火是一种,具有自然背景且实现简单。

模拟退火并没有显式地将跳坑策略(探索)和邻域搜索(开采)分成两阶段看待;它的基本思想是,以概率接受劣解,且接受劣解的概率随迭代次数递减直至无限趋近于零。如果只接受优解,则容易早熟,多样性不足,易于陷入局部最优,因此需要接受劣解;如果一味接受劣解,则无法保证收敛性,因此需要控制接受劣解的概率;模拟退火算法中,随着迭代次数递增,温度越低,对劣解的容忍程度越低,可以保证算法不至于震荡,可以收敛。

Algorithm 5: Simulated Annealing Algorithm

```
input : V, dist(\cdot, \cdot), L(\cdot), transform(\cdot)
                     T, \epsilon, \alpha, time \ out, early \ stop
     output: \sigma^*, L^*
 1 start_time \leftarrow current time;
 2 while current time – start time < time out do
           \sigma \leftarrow \operatorname{permutation}(V);
           L \leftarrow L(\sigma);
           while T > \epsilon do
                 for step \leftarrow 1 to early stop do
  6
                       \sigma' \leftarrow \operatorname{transform}(\sigma); L' \leftarrow L(\sigma'); \Delta L \leftarrow L' - L;
  7
                      if \Delta L < 0 or random(0,1) \le e^{\frac{-\Delta L}{T}} then
                        \  \  \, \bigsqcup \  \, \sigma \leftarrow \sigma'; \ L \leftarrow L';
                 T \leftarrow T \times \alpha;
10
11 \sigma^* \leftarrow \sigma, L^* \leftarrow L;
```

3 遗传算法及改进策略

3.1 传统的遗传算法

```
Algorithm 6: Genetic Algorithm for TSP
   input: V, epoch, early stop, population size, pc, pm
   output: \sigma^*, L^*
 1 初始化种群;
 2 for e \leftarrow 1 to epoch do
      初始化当前最佳长度为无穷大;
      for step \leftarrow 1 to early\_stop do
  4
        选择操作:根据适应度选择当前种群中的一些个体;
  5
        交叉操作:根据交叉概率 pc 结合选中的个体产生后代;
  6
        变异操作: 根据变异概率 pm 改变某些个体的特征;
        如果找到更优的解,则更新当前最佳长度;
      重新初始化种群;
 10 \sigma^* ← 找到的最佳解; L^* ← 最佳解的长度;
```

无论是基于邻域搜索和拟人策略跳坑的王磊算法,还是从淬火物理结晶过程获得启发的模拟退火算法,都是基于"个体"的启发算法。而遗传算法,从生物学获得启发,将"个体"扩展至"种群";除邻域操作(也成"变异"算子)外,新增了"交叉"操作,将"个体理性"和"群体理性"进行结合。传统的遗传算法求解旅行商问题的具体细节为:

- 编码 将执行变异操作的个体直接编码为城市序号的全排列 σ ;
- 适应 采用 $\frac{1}{L(\sigma)}$ 表示解的优劣,适应度越大,被选择保留的概率越高;
- **选择** 采用轮盘赌, 计算每条染色体的被选择概率和累计概率, 再根据一个随机数确定要保留的染色体; 选择操作是遗传算法的核心, 一方面, 要保证收敛质量好, 即回路长度短, 另一方面, 要保证种群有足够的多样性, 避免陷入局部最优的困境;
- 交叉 交叉操作的目的是,集合不同回路的优良回路特征,常用有顺序交叉和部分映射交叉。
- 变异 通过邻域变换对种群中的个体(回路)进行扰动;遗传算法中,变异概率通常非常小。

3.2 改进的遗传算法

在编码部分,仍采用整数回路直接编码;在交叉部分,沿用顺序交叉和部分映射交叉。 然后,对传统遗传算法的初始化、选择、变异操作做出如下改进,后文称为 **GIGA**:

- 初始 发扬"继承"策略,在初始化阶段,将"2-OPT"和"最近邻点"算法的结果回路作为初始 化种群的一部分;这样可以极大的减少迭代次数,在交叉过程中吸取各个算法最优解 的优良局部特征,而且保证了解的收敛性,使得其回路长度最大不会超过最优回路的 1.5 倍,最差仍有理论保证兜底。其实,这变相地把"遗传算法"视作一种"群智融合"和 "回路改进"方法,通过融合、修补、改进已有的解来使目标值更理想。
- **选择** 在选择过程中,弃用轮盘赌法。轮盘赌法的缺陷是,当适应度相似时,选择概率值相近,不一定保证选择当前种群中回路长度最小的个体,这使得算法收敛困难;改用排位等级法,以回路长度从小到达排序,以排序等级确定选择概率,缓解了适应度相近时选择困难的问题。
- **变异** 在变异过程中,除了使用传统的算子外(点插入、块插入、块反转、点对换、块对换、 2-OPT、3-OPT),我从王磊 A_1 算法中获得启发,设计了一个全新的变异算子: 贪婪插入。采用"最陡下降法",我们对于一个已知回路 σ ,随机剔除 N 个城市,然后依序采取贪心策略将被剔除的点添加到回路中。N 取自一个概率分布,这样能够保证剔除城市个数可以动态变化;而剔除策略,可以分为单点剔除和随机剔除。

下面给出种群初始化的伪代码:

```
Algorithm 7: Population Initialization for Genetic Algorithm
     input: V, size, init population
     output: Initialized population P
   1 P \leftarrow init population;
   2 while |P| < size do
         P.append(permutation(V));
   下面给出选择操作的伪代码:
Algorithm 8: Selection Operation in Genetic Algorithm
   1 Function Select (P, L, size, C, operator):
         lengths \leftarrow [L(individual) \text{ for each } individual \in P];
   2
         order \leftarrow sort indices of lengths in ascending order;
   3
         selected \leftarrow [best seen tour];
   4
         while |selected| < size do
             idx \leftarrow 0, target \leftarrow 1;
   6
             while random(0,1) < target \times (1-C) do
   7
   8
                 target \leftarrow target \times C;
             selected.append(P[order[idx]]);
  10
         return selected;
   下面给出变异算子的伪代码:
Algorithm 9: Greedy Insert Operator for Genetic Algorithm
     input : \sigma, dist(\cdot, \cdot), times, dimension
     output: Modified \sigma
   1 if random(0, 1) < 0.5 then
         conductor \leftarrow \text{remove } times \text{ random elements from } \sigma;
   3 else
         pivot \leftarrow \text{random integer}(1, dimension - times - 1);
         conductor \leftarrow \text{remove } times \text{ elements starting at } pivot \text{ from } \sigma;
   6 foreach vertex \in conductor do
         best\_idx \leftarrow arg min \ L(\sigma_{1:i}) + dist(vertex, \sigma(j)) + L(\sigma_{i:|\sigma|}) - L(\sigma);
   7
```

 $\sigma \leftarrow (\sigma_{1:best\ idx}, vertex, \sigma_{best\ idx+1:|\sigma|});$

4 实验设置与测试结果

4.1 数据集与超参数设置

TSPLIB (http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/) 中公布了旅行商问题的 benchmark 测试数据集。以 EUC-2D 类型的测试数据集中的实例 a280 为例, a280.txt 文件开头有一段说明文字,然后是 280 (表示点的个数),接下来有 280 行数据,每行数据含有 3 个数,分别是: 当前点的序号、当前点的 x 坐标、当前点的 y 坐标。

对应算法	超参数	缺省值
${\it GreedyNearestNeighbor}$	boost, 是否随机选择一个起始城市	True
${\bf Simulated Annealing}$	初始温度 t , 终止温度 ϵ , 衰减系数 α	$1000, 10^{-14}, 0.98$
Simulated Annealing	重启停机参数 time_out, early_stop	1,250
${\it Wang Lei Algorithm}$	重启停机参数 epoch, early_stop	16,250
Proposed GIGA	种群大小 $size$, 交叉概率 p_c , 变异概率 p_m	50, 1, 0.4
Proposed GIGA	选择系数 C	0.5
Proposed GIGA	重启停机参数 epoch, early_stop	6,7500

表 1: 随机近似算法实验超参数设置

4.2 实验结果

王磊老师在 VC6.0 开发环境中将算法用 C 语言编程,在 CPU 主频为 3.4GHz 的微机上进行的测试;我在是在 macOS 13.5.2 (22G91) 系统下以 Python 3.9.12 进行编程。

由于编程语言、环境的巨大差异,运算结果无法相互比较。因此,我弃用了《专业方向综合实践验收的问题》的报道结果,自行复现了王磊算法作为对比算法进行测试、对比。

代码开源在: https://github.com/DURUII/Homework-Algorithm-TSPLIB95。

选取城市数小于等于 1000 中全部 48 个 benchmark 测试用例进行测试,两点间距离四舍五入取整,每个实例计算 10 次。下面是改进的遗传算法、王磊算法、模拟退火算法计算 10 次,所得回路长度的最小值 L_{\min} 、平均值 L_{avg} 和平均计算时间 t_{avg} 。

本文提出的改进的遗传算法,在 18 个测试用例中超过王磊算法或已求得最优解;在剩余 30 个测试用例中,平均回路长度不超过王磊算法的 2.0%,最短回路长度不超过王磊算法的 2.1%。所有测试用例中,算法所给出的最小回路长度,与最优回路相比,平均最小相对误差为 0.95%,小于 1%。以 a280 这个 benchmark 为例,最优解的回路长度是 2579,算法所求最小长度为 2584,算法所给出的最小回路长度相对误差为 0.19%。

^{*}提出改进的遗传算法的初始种群仅来自 2-OPT、GreedyNearestNeighbor。

Benchmark		Proposed GIGA			WangLei			SimulatedAnnealing		
Name	L_{OPT}	L_{\min}	L_{avg}	$t_{ m avg}$	L_{\min}	L_{avg}	$t_{ m avg}$	L_{\min}	L_{avg}	$t_{ m avg}$
a280	2579	2584^{\dagger}	2593.30	312.50	2615	2653.30	380.50	2792	2890.40	43.76
berlin52	7542	7542^{\star}	7542.00	36.73	7542^{\star}	7542.00	4.79	7542^{\star}	7759.30	8.06
bier127	118282	120843	121648.60	97.18	118326^{\dagger}	119221.50	51.17	121173	124320.50	19.63
ch130	6110	6189	6198.00	93.35	6115^{\dagger}	6131.90	43.74	6355	6548.00	19.89
ch150	6528	6588	6588.00	112.96	6554^{\dagger}	6582.50	65.98	6938	7069.70	22.98
d198	15780	15831	15888.30	194.36	15818^{\dagger}	15860.00	141.29	16211	16464.80	30.36
d493	35002	35544^\dagger	35560.27	1239.37	35670	35838.82	3028.20	39580	40399.09	110.69
d657	48912	49852^{\dagger}	49900.80	2429.40	50101	50247.40	7525.27	61152	62870.10	157.57
eil51	426	435	435.40	254.25	426^{\star}	427.00	31.93	429	435.60	48.15
eil76	538	546	546.00	374.14	542^{\dagger}	545.10	89.43	556	560.20	75.42
eil101	629	639	641.20	473.52	633^{\dagger}	636.30	162.24	656	665.70	92.91
fl417	11861	11962	11977.00	947.40	11899^\dagger	11933.20	1360.14	13088	13604.10	90.50
gil262	2378	2394	2402.50	459.81	2391^{\dagger}	2411.30	519.80	2541	2628.20	71.41
kroA100	21282	21282	21381.60	570.70	21282^{\star}	21286.00	215.12	21786	22395.20	115.93
kroB100	22141	22364	22364.00	650.05	22141*	22241.60	190.30	22448	23028.50	131.33
kroC100	20749	20983	20983.00	552.12	20749^{\star}	20771.90	178.92	21174	21736.00	113.07
kroD100	21294	21294^{\star}	21297.60	84.51	21294^{\star}	21340.60	28.94	21631	22396.00	19.30
kroE100	22068	22068*	22068.00	91.71	22068*	22109.70	30.76	22470	22966.10	19.35
kroA150	26524	26698	27069.70	822.14	26550^{\dagger}	26651.00	439.09	27204	28376.50	145.96
kroB150	26130	26364	26535.25	844.40	26132^{\dagger}	26182.125	471.37	26505	27582.125	147.41
kroA200	29368	29850	30072.30	223.91	29568^{\dagger}	29627.20	201.04	30986	31823.70	39.44
kroB200	29437	29674	29729.80	245.18	29487^{\dagger}	29630.10	195.64	30824	31982.20	38.19
lin 105	14379	14379^{\star}	14508.70	147.10	14379^{\star}	14388.80	45.33	14464	15114.30	28.43
lin318	42029	43375	43434.90	492.30	42659^{\dagger}	42880.30	732.94	45462	47112.50	68.38
p654	34643	34647^\dagger	34839.70	2067.31	34806	34959.60	5173.19	42302	44315.60	162.21
pcb442	50778	51338	51338.70	949.10	52128	52553.30	2043.72	57294	59100.20	99.86
pr76	108159	109043	109043.00	253.17	108159^{\star}	108257.90	60.67	109696	111023.00	52.94
pr107	44303	44303^{\star}	44497.70	364.35	44303^{\star}	44330.50	112.80	45179	46623.40	74.77
pr124	59030	59030*	59030.00	452.88	59030*	59034.60	160.70	60073	61349.70	87.81
pr136	96772	96772^{\star}	96781.10	520.55	96795	96985.20	288.84	100677	102998.60	95.56
pr144	58537	58763	59162.80	603.83	58537^{\star}	58642.40	263.35	59127	60989.10	102.01
pr152	73682	73880	73880.00	597.60	73682*	73737.80	286.54	75208	76857.00	110.15
pr226	80369	80729	81078.10	281.22	80377^{\dagger}	80561.70	183.45	82585	86997.50	43.10
pr264	49135	50185	50202.60	351.94	49443^{\dagger}	49714.00	424.72	53857	55573.40	52.46
pr299	48191	48650	48711.80	455.21	48408^\dagger	48648.50	614.10	52232	54308.10	61.20
pr439	107217	107887^{\dagger}	108262.45	976.13	108725	109085.00	2195.63	121988	125297.00	103.74
rat99	1211	1215	1223.10	270.03	1211*	1216.60	95.57	1265	1287.00	57.15
rat195	2323	2352^{\dagger}	2361.10	684.14	2363	2379.70	528.59	2495	2568.60	109.63
rat575	6773	6926^{\dagger}	6945.20	1725.50	6967	7000.80	4194.93	8132	8230.10	128.59
rat783	8806	8978^{\dagger}	9011.60	3628.79	9103	9160.60	11299.23	11945	12147.10	201.81
rd100	7910	7965	8093.10	120.95	7911^{\dagger}	7933.80	39.94	8064	8436.20	26.78
rd400	15281	15545	15590.20	925.55	15496^\dagger	15632.90	1656.68	17256	17433.40	88.41
st70	675	681	682.60	61.54	675^{\star}	676.20	10.12	684	705.10	13.56
ts225	126643	126962^{\dagger}	127811.20	270.38	127115	128870.50	250.09	130628	135827.00	43.98
tsp225	3919	3957	3964.30	267.73	3955^{\dagger}	3964.40	304.48	4051	4228.50	48.96
u159	42080	42324	42686.60	174.29	42080*	42235.80	110.90	43668	45721.40	35.24
	36905	37526^\dagger	37585.00	1932.86	37588	37918.80	4763.40	44258	45796.00	138.02
u574	30903	01020	01000.00	1002.00	31300	01010.00	4100.40	44200	45730.00	130.02

[†]代表在当前评价指标上优于其他算法; * 代表在该测试用例上找到最优解。