The Relevance of *t*-Statistics for Small Sample Sizes

An Introductory Class to Higher Statistics

Xinyu Chen

December 6, 2024

Outline

Answering a lot questions, e.g.,

- How was *t*-statistic developed?
- **②** Normal distribution vs. student *t*-distribution?
- What is *t*-statistic?
- **4** How to calcuate a *t*-test?
- **6** What are the hypotheses and the assumptions?
- **1** How to interpret results?

Development

Revisiting Normal Distribution

Probability density function of the standard normal distribution

Revisiting Normal Distribution

Probability density function of the standard normal distribution

Connecting with Hypothesis Test

Hypothesis test

- \circ Population: mean μ , standard deviation σ
- \circ Sample: mean \bar{x} , sample size n
- Null hypothesis (H_0) : The population mean is μ

$$\circ \quad z\text{-test: } z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}}$$

95% confidence interval

Implementing *z*-Test

Problem Statement

A company claims that the average daily energy consumption of households is 30 kWh with a population standard deviation of 5 kWh. A random sample of 40 households has an average daily energy consumption of 32 kWh. Conduct a two-tailed hypothesis test at a 95% confidence interval to determine if the sample provides sufficient evidence to reject the company's claim.

Implementing z-Test

Problem Statement

A company claims that the average daily energy consumption of households is 30 kWh with a population standard deviation of 5 kWh. A random sample of 40 households has an average daily energy consumption of 32 kWh. Conduct a two-tailed hypothesis test at a 95% confidence interval to determine if the sample provides sufficient evidence to reject the company's claim.

Steps:

- Formulate Hypotheses
 - Null Hypothesis (H_0) : The population mean is $\mu = 30 \, \text{kWh}$.
 - Alternative Hypothesis (H_a): The population mean is not $\mu=30\,\mathrm{kWh}$ ($\mu\neq30$).
- ② Use the *z*-test formula since the population standard deviation is known:

$$z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} = \frac{32 - 30}{5/\sqrt{40}} = \frac{2}{5/6.32} = \frac{2}{0.79} \approx 2.53$$

- \circ $\bar{x} = 32$ (sample mean) \circ $\mu = 30$ (population mean)
- \circ n=40 (sample size) \circ $\sigma=5$ (population standard deviation)

Implementing z-Test

Problem Statement

A company claims that the average daily energy consumption of households is 30 kWh with a population standard deviation of 5 kWh. A random sample of 40 households has an average daily energy consumption of 32 kWh. Conduct a two-tailed hypothesis test at a 95% confidence interval to determine if the sample provides sufficient evidence to reject the company's claim.

Steps:

② Use the z-test formula since the population standard deviation is known:

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = \frac{32 - 30}{5 / \sqrt{40}} = \frac{2}{5 / 6.32} = \frac{2}{0.79} \approx 2.53$$

- \bullet Decision rule at a 95% confidence interval
 - Reject H_0 if |z| > 1.96.
 - \circ Otherwise, fail to reject H_0 .
- Interpretation
 - The test statistic |z| = 2.53 > 1.96 (exceeding the critical value).
 - o Thus, we reject the null hypothesis.
 - The sample provides sufficient evidence to conclude that the average daily energy consumption is not 30 kWh.

Probability density function:

$$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

 $\circ \ x \in \mathbb{R}$: The random variable $\circ \ \nu \in \mathbb{Z}^+$: Degrees of freedom

o $\Gamma(\cdot)$: The Gamma function

MARCH, 1908 BIOMETRIKA.

THE PROBABLE ERROR OF A MEAN.

Any experiment may be regarded as farming an individual of a "population" of experiments which might be performed under the same conditions. A series of experiments is a sample drawn from this population. Now any series of experiments is only of value in so far as it enables us to form

a judgment as to the statistical constants of the population to which the experiof a mean, either directly, or as the mean difference between the two quantities. If the number of experiments he very large, we may have precise information

Gossset'1908 (known as "student")

Student t-distribution of ν degrees of freedom

Student t-distribution of ν degrees of freedom

95% Confidence Interval

For the population mean μ (\checkmark) and standard deviation σ (\checkmark / \cancel{X})

 If population standard deviation σ is known

$$\bar{x} \pm 1.96 imes \frac{\sigma}{\sqrt{n}}$$

Standard normal distribution

95% Confidence Interval

For the population mean μ (\checkmark) and standard deviation σ (\checkmark /x)

 If population standard deviation σ is known

$$\bar{x} \pm 1.96 \times \frac{\sigma}{\sqrt{n}}$$

 If σ is unknown, using sample standard deviation s instead

$$\bar{x} \pm ? \times \frac{s}{\sqrt{n}}$$

• Heavier tail in student t-distribution ($\nu=n-1$ degrees of freedom) is important for small sample size n

Development

• Formula of *t*-statistic:

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

- \circ μ population mean
- \circ \bar{x} sample mean
- $\circ\ s$ sample standard deviation
- o n sample size (usually small value)
- The *t*-statistic quantifies the difference relative to variability in the data.
- (Interpretation) A high absolute value of t (larger than the critical value from the t-table) suggests a statistically significant difference.
- The problem of small sample size!

Implementing *t*-Test

Problem Statement

A company claims that the average daily energy consumption of households is 30 kWh. A random sample of 6 households has an average daily energy consumption of 32 kWh, with a sample standard deviation of 6 kWh. Conduct a two-tailed hypothesis test at a 95% confidence interval to determine if the sample provides sufficient evidence to reject the company's claim.

Implementing *t*-Test

Problem Statement

A company claims that the average daily energy consumption of households is $30\ kWh$. A random sample of $6\ households$ has an average daily energy consumption of $32\ kWh$, with a sample standard deviation of $6\ kWh$. Conduct a two-tailed hypothesis test at a 95% confidence interval to determine if the sample provides sufficient evidence to reject the company's claim.

Steps:

- Formulate Hypotheses
 - Null Hypothesis (H_0) : The population mean is $\mu = 30 \, \text{kWh}$.
 - o Alternative Hypothesis (H_a): The population mean is not $\mu=30\,\mathrm{kWh}$ ($\mu\neq30$).
- Use the t-test formula since the population standard deviation is not known:

$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}} = \frac{32 - 30}{6/\sqrt{6}} = \frac{2}{6/2.449} \approx 0.816$$

- \circ $\bar{x} = 32$ (sample mean) \circ s = 6 (sample standard deviation)
- o n=6 (sample size) o $\sigma=30$ (population mean)

t-Table

Small sample sizes

• Degrees of freedom for a *t*-test:

$$\nu = \underbrace{n}_{\text{sample size}} -1 = 6 - 1 = 5$$

• t-distributions with ν degrees of freedom at a 95% confidence interval (two-tailed)

$\nu = 1$	$\nu = 5$	$\nu = 10$	$\nu \to +\infty$
12.706	2.571	2.228	1.960

• The critical t-value

$$t_{\nu,(1-0.95)/2} = t_{5,0.025} = 2.571$$

Implementing t-Test

Problem Statement

A company claims that the average daily energy consumption of households is $30\ kWh$. A random sample of $6\ households$ has an average daily energy consumption of $32\ kWh$, with a sample standard deviation of $6\ kWh$. Conduct a two-tailed hypothesis test at a 95% confidence interval to determine if the sample provides sufficient evidence to reject the company's claim.

Steps:

2 Use the *t*-test formula:

$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}} = \frac{32 - 30}{6/\sqrt{6}} = \frac{2}{6/2.449} \approx 0.816$$

- **3** Decision rule at a 95% confidence interval
 - Reject H_0 if |t| > 2.571.
 - o Otherwise, fail to reject H_0 .
- 4 Interpretation
 - The test statistic |t| = 0.816 < 2.571.
 - o Thus, we fail to reject the null hypothesis.
 - $\circ~$ There is not enough evidence to conclude that the average daily energy consumption differs from the company's claim of $30~{\rm kWh}.$

Summary

• Student t-distribution of ν degrees of freedom

Student t-distribution

- Population: mean μ (\checkmark), standard deviation σ (X)
- Sample: mean \bar{x} , standard deviation s, and small sample size n
- t-statistic: $t = \frac{\bar{x} \mu}{s/\sqrt{n}} \Rightarrow t$ -test
- 95% confidence interval: $\bar{x} \pm \underbrace{t_{\nu,0.025} \times \frac{s}{\sqrt{n}}}_{\nu=n-1}$

W. S. Gosset in Guinness

Method

use math
use figures
use examples
use data
use codes
use latex to create all examples

Thanks for your attention!

Any Questions?

About me:

★ Homepage: https://xinychen.github.io

■ How to reach me: chenxy346@gmail.com