Métodos Numéricos Avaliação Parcial 3

Prof. João Paulo do Vale Madeiro jpaulo.vale@dc.ufc.br

8 de fevereiro de 2022

1

A distância percorrida em metros para que um carro pare foi obtida através de experimentos e está apresentada na tabela abaixo:

Vel (Km/h)	15	20	25	30	40	50
Distância (m)	16	20	34	40	60	90

Ou seja, se o carro está correndo a 25Km/h e o freio for acionado, ele parará após percorrer 34m. Qual a distância percorrida até parar se o carro estiver a 45Km/h? Estime utilizando uma *spline* cúbica completa[2.5 pontos].

2

Um carro de corrida demora 79 segundos a percorrer uma pista. A velocidade do carro (em m/seg) é determinada através de um radar e é apresentada desde o início da volta na seguinte tabela:

Tempo	0	0.5	1	1.5	48	48.5	49	59	69	79
Valocidade	62	74	73.5	60.5	49.5	42.5	39	44.5	58	61.5

Qual o cumprimento da pista? [2.5 pontos].

3

Sendo
$$f(x) = \frac{1}{(x+y)^2}$$
, estime $I = \int_3^4 \int_1^2 f(x) \, dy \, dx$, com $h_x = 0.2$ e $h_y = 0.25$ [2.5 pontos].

4

Calcule a integral $I = \int_1^\infty x^{-3/2} sen(\frac{1}{x}) dx$. Utilize o método que considerar mais adequado [2.5 pontos].