МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ»

КАФЕДРА КОНСТРУЮВАННЯ ЕОА

3BIT

з лабораторної роботи №4 по курсу «Аналогова схемотехніка» на тему «Дослідження підсилювача на біполярному транзисторі з загальним емітером»

Виконав:

студент гр. ДК-52

Гуменюк Д.В.

Перевірив:

доц.Короткий Е.В.

1. Склали схему підсилювача із спільним емітером, зображену на рис.1.

Рис.1. Схема підсилюача із спілним емітером

Номінали резисторів вказані у таблиці 1.

Таблиця 1

Ī	R_1	50.9 кОм
Ī	R_2	9.84 кОм
I	R_{κ}	1.5 кОм
Ī	$R_{\scriptscriptstyle H}$	9.94 кОм

Із рис.2 видно, що схема підсилювала сигнал без спотворень.

Рис. 2. Жовта крива – сигнал на виході підсилювача, синя – на вході

2. Характеристики робочої точки транзистора наведені в таблиці 2.

Таблиця 2

$U_{\it 6e}$	626 мВ
$U_{\kappa e}$	3.4 B
$I_{\tilde{o}}$	23 мкА
I_{κ}	1.07 мА

- 3. Значення вхідного опору склало 979.5 кОм.
- 4. Значення вихідного опору склало 1.48 кОм. Вимірювання викнували при напрузі холостого ходу U_{xx} =800 мВ .
- 5. Експериментально отримана амплітудна характеристика підсилювача зображена на рис.3.

Рис. 3 Амплітудна характеристика підсилювача $U_{\text{вих}}(U_{\text{вх}})$

Експериментальні дані наведені у таблиці 3.

Uex, мВ	$U_{вих}$, м B
5	227
7	272
10	398
12	464
14	527
16	597
18	659

 K_u із графіка визначили як тангенс кута нахилу прямої, що описує залежність $U_{\text{вих}}(U_{\text{вх}})$. Він є рівним 464/12=38.6. Отже, K_u =-38.6.

6. Знайшли залежність вихідного струму від вхідного. Експериментальні дані наведені у таблиці 4. Графік залежності $I_{\text{вих}}(I_{\text{вх}})$ наведено на рис.4.

Таблиця 4

I_{ex} , мк A	$I_{\it eux}$, мк A
5.1	22.8
7.1	27.4
10.2	40.0
12.3	46.7
14.3	53.0
16.3	60.1
18.4	66.3

Рис. 3 Амплітудна характеристика підсилювача $I_{\text{вих}}(I_{\text{вх}})$

 K_I із графіка визначили як тангенс кута нахилу прямої, що описує залежність $I_{\text{вих}}(I_{\text{вх}})$. Він є рівним 46.7/12.3=3.8 Отже, K_I =-3.8.

6. Теоретичні розрахунки.

$$I_{\rm K} = \frac{U_{
m mub} - U_{
m Ke}}{R_{
m K}} = 5 - 3.4 / 1.5 = 1.06 \ ({\it MA})$$
 $g_m = \frac{I_{
m K}}{\varphi_{
m T}} = 1.06 / 25 = 0.0424$
 $R_{
m K} || R_{
m H} = 1.3 \ ({
m KOM})$
 $K_u = -g_m * R_{
m K} || R_{
m H} = -0.0424 * 1.3 = 55.1$
 $\beta = \frac{I_{
m K0}}{I_{60}} = 1.03 / 23 * 1000 = 44.7$
 $r_i = \beta / g_m = 44.7 / 0.0424 = 1.05 \ {
m KOM}$
 $R_{
m BX} = R_1 || R_2 || r_i = 931 \ {
m OM}$
 $K_I = K_u * \frac{R_{
m BX}}{R_{
m H}} = 55.1 * 0.093 = 5.12$
 $R_{
m BHX} = R_{
m K} = 1.5 \ {
m KOM}$