Outline

- Vector space models
- Advantages
- Applications

Why learn vector space models?

What is your age?

How old are you?

Same Meaning

Vector space models applications

You eat <u>cereal</u> from a <u>bowl</u>

You buy something and someone else sells it

Vector space models applications

- You eat <u>cereal</u> from a <u>bowl</u>
- You buy something and someone else sells it

Information Extraction

Machine Translation

Chatbots

Fundamental concept

"You shall know a word by the company it keeps" Firth, 1957

(Firth, J. R. 1957:11)

Summary

- Represent words and documents as vectors
- Representation that captures relative meaning

Outline

- Co-occurrence → Vector representation マペクラス
- Relationships between words/documents

Word by Word Design

Number of times they occur together within a certain distance k

k=2

代二年のものの前後2章の中に 単語が、多料の数を行かん

Word by Word Design

Number of times they occur together within a certain distance k

I like simple data
I prefer simple rawdata

Word by Document Design

Number of times a word occurs within a certain category

	Entertainment	Economy	Machine Learning	
	Entertainment	Economy	Machine Learning	
data	500	6620	9320	
film	7000	4000	1000	

Vector Space 平詞門科 2年7/202 从中の出现 MALIE Sea Fane 1202(16)

Ente	ertainm	ent Economy	ML	
data	500	6620	9320	
film	7000	4000	1000	

Vector Space

Summary

- W/W and W/D, counts of occurrence
- Vector Spaces Similarity between words/documents

Outline

- Euclidean distance
- N-dimension vector representations comparison

Euclidean distance

Corpus B: (9320,1000)

$$d(B, A) = \sqrt{(B_1 - A_1)^2 + (B_2 - A_2)^2}$$

Euclidean distance

Corpus A: (500,7000)

Corpus B: (9320,1000)

$$d(B, A) = \sqrt{(B_1 - A_1)^2 + (B_2 - A_2)^2}$$
$$c^2 = a^2 + b^2$$

$$d(B, A) = \sqrt{(-8820)^2 + (6000)^2}$$

Euclidean distance for n-dimensional vectors

			$ec{w}$	$ec{v}$	
		data	boba	ice-cream	
19	Λ Ι	data	0	1	
	Al	0	U	T	$= \sqrt{(1-0)^2 + (6-4)^2 + (8-6)^2}$
	drinks	0	4	6	$=\sqrt{1+4+4}=\sqrt{9}=3$
	food	0	6	8	$= \mathbf{V}1 + 4 + 4 = \mathbf{V}9 = 3$
		-			

$$d\left(\vec{v}, \vec{w}\right) = \sqrt{\sum_{i=1}^{n} \left(v_i - w_i\right)^2}$$
 Norm of $\left(\vec{v} - \vec{w}\right)$

到我你生色子子的物一つ

Euclidean distance in Python

```
# Create numpy vectors v and w
v = np.array([1, 6, 8])
w = np.array([0, 4, 6])

# Calculate the Euclidean distance d
d = np.linalg.norm(v-w)
# Print the result
print("The Euclidean distance between v and w is: ", d)
```

The Euclidean distance between v and w is: 3

Summary

- Straight line between points
- Norm of the difference between vectors

Outline

Euclidean distance vs Cosine similarity

Euclidean distance vs Cosine similarity

Euclidean distance: d₂ < d₁

Euclidean distance vs Cosine similarity

Euclidean distance: d₂ < d₁

The cosine of the angle between the vectors

COSO 0/2:00 1-9/16 2335C

Summary

• Cosine similarity when corpora are different sizes

Outline

- How to get the cosine of the angle between two vectors
- Relation of this metric to similarity

Previous definitions

Vector norm

$$\|\vec{v}\| = \sqrt{\sum_{i=1}^n v_i^2}$$

Dot product

$$\vec{v}.\vec{w} = \sum_{i=1}^n v_i.w_i$$

$$\hat{v} \cdot \hat{w} = \|\hat{v}\| \|\hat{w}\| \cos(\beta)$$

$$\mathbf{c}ullet \mathbf{s}\left(eta
ight) = rac{\hat{v}\cdot\hat{w}}{\|\hat{v}\|\|\hat{w}\|}$$

Summary

- Cosine Similarity gives values between 0 and 1

Outline

• How to use vector representations

Manipulating word vectors

Mikolov et al. 2013. Distributed Representations of Words and Phrases and their Compositionality

Manipulating word vectors

(Mikolov et al. 2013. Distributed Representations of Words and Phrases and their Compositionality)

Summary

• Use known relationships to make predictions

Outline

- Some motivation for visualization
- Principal Component Analysis

	Vector Space							
oil	0.20	•••	0.10					
gas	2.10	•••	3.40					
city	9.30		52.1					
town	6.20		34.3					

How can you visualize if your representation captures these relationships?

oil & gas

town & city

d > 2						d=2		
oil	0.20		0.10		oil	2.30	21.2	
gas	2.10	446	3.40	PCA	gas	1.56	19.3	
city	9.30	•••	52.1	: 台至压线	city	13.4	34.1	
town	6.20	•••	34.3	_	town	15.6	29.8	

Principal Component Analysis

Summary

PCA

- Original Space —> Uncorrelated features —> Dimension reduction
- Visualization to see words relationships in the vector space

Outline

- How to get uncorrelated features
- How to reduce dimensions while retaining as much information as

possible

Principal Component Analysis

Uncorrelated

PCA algorithm

Eigenvector: Uncorrelated features for your data

Eigenvalue: the amount of information retained by each feature

PCA algorithm

PCA algorithm

Summary

normalized

- Eigenvectors give the direction of uncorrelated features
- Eigenvalues are the variance of the new features
- Dot product gives the projection on uncorrelated features