EDA 实验 1 基于 FPGA 的简易计算器

一、实验目的

- 1、实践基于 FPGA 设计和实现组合逻辑电路的流程和方法;
- 2、学习一种硬件描述语言;
- 3、熟悉利用 FPGA 平台进行设计验证的方法。

二、实验内容

1、基本内容

基于实验套件中的 FPGA 开发板,实现如图 1 所示的简易计算器:

图 1 简易计算器原理图

其中 A 和 B 的取值范围为 $0\sim15$; 用实验板上的 8 个拨码开关和 2 个按键开关模拟输入 A, B 和 K; 通过 4 只数码管显示运算数和运算结果,运算结果的符号用发光二极管来表示。板上 6 只数码管的字段是并接的,通过 6 个选通端控制在哪只数码管上显示;请用 2 个按键开关控制 4 只数码管分别进行显示。

图 2 为 FPGA 开发板的示意图。板上的 FPGA 型号为 EP3C16Q240C8。FPGA 引脚与实验箱上的外设的对应关系如图 3 所示。

图 2 FPGA 开发板

KEY1	KEY2	KEY3	KEY4	
PIN_131	PIN_128	PIN_127	PIN_126	
扫	1			

SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8	
PIN_160	PIN_161	PIN_166	PIN_164	PIN_174	PIN_175	PIN_177	PIN_176	
开关在上端输出 0,开关在下端输出 1								

LED1	LED2	LED3	LED4	LED5	LED6	LED7	LED8	
PIN_143	PIN_144	PIN_145	PIN_146	PIN_167	PIN_168	PIN_169	PIN_171	
输入为1时,相应的发光二极管被点亮								

SEG1	SEG2	SEG3	SEG4	SEG5	SEG6		
PIN_69	PIN_64	PIN_57	PIN_51	PIN_50	PIN_49		
输入为0时,相应的数码管选通,可以显示							

A	В	С	D	E	F	G
PIN_56	PIN_68	PIN_65	PIN_55	PIN_70	PIN_52	PIN_63
输入为0时,相应的字段可以被点亮						

图 3 实验板外设引脚

2、进一步研究内容

1)修改设计,要求数码管只显示运算数 A 和运算结果 R, A 用十六进制显示,R 用十进制显示;

- 2) 使数码管同时显示运算数 A 及运算结果 R (数码管扫描电路),实验板上有 40MHz 的时钟信号,对应 FPGA 引脚号为 PIN_152,数码管循环扫描显示的时钟可由该 40MHz 分频得到;
- 3)发挥你的想像,进一步完善简易计算器功能。

三、实验注意事项

- 1、实验前认真预习,熟悉 Quartus Ⅱ 环境和硬件描述语言,并根据实验内容完成模块的设计和实现;
- 2、建议预习时完成顶层和部分底层模块的代码编写或原理图录入,并利用实验套件进行验证(实验套件使用方法参见附录一);
- 3、除文档中列出的 FPGA 引脚外,请勿随意绑定其它 FPGA 引脚,否则可能引起芯片 烧坏!!!
- 4、实验室的 Quartus II 软件版本为 13.0, 若使用更高版本的软件, 请携带自己的笔记本前来:
- 5、请用 U 盘保存工程文件。

四、实验报告

请按时在网络学堂提交实验报告。报告内容包括以下内容:

- 1、设计思路及各模块的实现方法(整体电路结构图(自己设置或 RTL 图)或顶层原理图);
- 2、代码及必要的注释;
- 3、实验中遇到的主要问题和解决方法。