Лабораторная работа №8

Модель конкуренции двух фирм

Аникин Константин Сергеевич

1 апреля 2023

Российский университет дружбы народов, Москва, Россия

Докладчик

- Аникин Константин Сергеевич
- студент
- просто студент
- Российский университет дружбы народов
- · 1032201736@rudn.ru
- https://rituliot.github.io/ru/

Вводная часть

Построить модель конкуренции двух фирм в Julia и OpenModelica.

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем.

Julia

Код первого случая

Код первого случая на Julia представлен на рис. 1.

```
3.il C:\...\8 X ■ Julia Plots (23/23)
       using Plots
      using DifferentialEquations
      M10 = 2.3
      M20 = 1.6
      pcr = 18.0
      N = 21.0
      q = 1.0
      t1 = 14.0
      t2 = 17.0
      ps1 = 11.0
      ps2 = 9.0
      a1 = pcr/(t1^2*ps1^2*N*q)
      a2 = pcr/(t2^2*ps2^2*N*q)
      b = pcr/(t1^2*ps1^2*t2^2*ps2^2*N*q)
      c1 = (pcr-ps1)/(t1*ps1)
       c2 = (pcr-ps2)/(t2*ps2)
       tspan = (0.0, 30.0)
 18
       function f(du, u,w,t)
          M1, M2 = u
          du[1] = M1-b*M1*M2/c1-a1*M1^2/c1
          du[2] = c2*M2/c1-b*M1*M2/c1-a2*M2^2/c1
       end
```

Код второго случая на Julia представлен на рис. 2.

```
using Plots
 using DifferentialEquations
 M10 = 2.3
M20 = 1.6
 pcr = 18.0
N = 21.0
 a = 1.0
t1 = 14.0
t2 = 17.0
 ps1 = 11.0
 ps2 = 9.0
 a1 = pcr/(t1^2*ps1^2*N*q)
 a2 = pcr/(t2^2*ps2^2*N*q)
 b = pcr/(t1^2*ps1^2*t2^2*ps2^2*N*q)
 c1 = (pcr-ps1)/(t1*ps1)
 c2 = (pcr-ps2)/(t2*ps2)
 tspan = (0.0, 50.0)
 function f(du,u,w,t)
     M1, M2 = u
     du[1] = M1-(0.0015+b/c1)*M1*M2-a1*M1^2/c1
     du[2] = c2*M2/c1-b*M1*M2/c1-a2*M2^2/c1
 end
```

График первого случая

График первого случая на Julia представлен на рис. 3.

График второго случая

График второго случая на Julia представлен на рис. 4.

OpenModelica

Код первого случая

Код первого случая на OpenModelica представлен на рис. 5.

```
₩ 🚜 🧧 🕦 Writable | Model | Text View | 081 | C:/Users/kosty/OpenModelica/081.mo
      model o81
        Real M1:
       Real M2;
        Integer pcr = 18;
       Integer N = 21;
        Integer q = 1:
        Integer t1 = 14;
        Integer t2 = 17;
        Integer p1 = 11;
       Integer p2 = 9;
        Real a1 = pcr/(t1*t1*p1*p1*N*q);
        Real a2 = pcr/(t2*t2*p2*p2*N*q);
        Real b = pcr/(t1*t1*p1*p1*t2*t2*p2*p2*N*q);
  14
       Real c1 = (pcr-p1)/(t1*p1);
        Real c2 = (pcr-p2)/(t2*p2);
      initial equation
      M1 = 2.3:
        M2 = 1.6;
      equation
        der(M1) = M1-b/c1*M1*M2-a1*M1*M1/c1;
        der(M2) = c2*M2/c1-b*M1*M2/c1-a2*M2*M2/c1;
```

Код второго случая

Код второго случая на OpenModelica представлен на рис. 6.

```
₩ 🚜 🧮 🕦 Writable Model Text View 082 C:/Users/kosty/OpenModelica/082.mo
     model o82
       Real M1;
       Real M2;
       Integer pcr = 18;
       Integer N = 21;
  6
       Integer q = 1;
       Integer t1 = 14;
       Integer t2 = 17;
  9
       Integer p1 = 11:
       Integer p2 = 9;
       Real a1 = pcr/(t1*t1*p1*p1*N*q);
       Real a2 = pcr/(t2*t2*p2*p2*N*g);
       Real b = pcr/(t1*t1*p1*p1*t2*t2*p2*p2*N*q);
 14
       Real c1 = (pcr-p1)/(t1*p1);
       Real c2 = (pcr-p2)/(t2*p2);
     initial equation
       M1 = 2.3:
       M2 = 1.6;
     equation
       der(M1) = M1 - (0.0015 + b/c1) * M1 * M2 - a1 * M1 * M1/c1;
```

График первого случая

График первого случая на OpenModelica представлен на рис. 7.

Рис. 7: График первого случая на OpenModelica

График второго случая

График второго случая на OpenModelica представлен на рис. 8.

Puc 8: Fnamuk Bronoro covuag Ha OnenModelica

12/13

Вывод

В ходе работы была решена задача об эпидемии и построены необходимые графики.