DIALOG(R)File 351: Derwent WPI

(c) 2007 The Thomson Corporation. All rights reserved.

0009362929

WPI Acc no: 1999-296469/ XRAM Acc no: C1999-087228

New coating agent used in cosmetic material - comprises vinyl-silicon block

copolymer

Patent Assignee: KAO CORP (KAOS) Inventor: KONDO A; NANBU H Patent Family: 1 patents, 1 countries

Patent Number	Kind	Date	Application Number <th>Kind</th> <th>Date</th> <th>Update Type</th>	Kind	Date	Update Type
JP 11100307	A	19990413	JP 1997263720	Α	19970929	199925 B

Priority Applications (no., kind, date): JP 1997263720 A 19970929

***************************************	Patent Details				
-	Patent Number Kind Lan Pgs Draw Filing Notes				
***************************************	JP 11100307 A	JA 11 0			

Alerting Abstract JP A

New coating agent for skin or nail cosmetics comprises vinyl-silicon block copolymer consisting of silicon polymer of formula (I) and vinyl monomer containing no fluorine in which total number of silicon monomers which constitute polymer (I) ranges from 5 to 1000000 and that of vinyl monomer ranges from 10 to 1000000. The sum of the above total number of two monomers ranges from 100 to 1000000, and the ratio of the total number of silicon monomer and the total number of vinyl monomer ranges from 1/99 to 99/1. R1-R4 = H, lower alkyl or nitryl; R5-R8 = H, alkyl optionally substituted with halogen or aryl; Y = 1-10C hydrocarbon optionally substituted by halo; A = -CONH- or -COOH-; B = -NHCO- or -OCO-; m = 0-200; p = 0-6; a = 2-300.

USE - The agent is used in cosmetic materials, especially for skin protecting cosmetic or makeup material (claimed).

ADVANTAGE - The coating agent prevents degeneration of makeup caused by physical friction. The cosmetic material for skin and nails is proof against sweat and sebum, is applied homogeneously because it is easily dissolved or dispersed in oil base, and has prolonged cosmetic preservation. It softly follows according to relatively big movements of corners of eyes or mouths, and does not cause any unpleasant feeling when applied.

Basic Derwent Week: 199925

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-100307

(43)公開日 平成11年(1999)4月13日

(21)出願番号		特願平9-263720	番 耸朗 米	(71)と			918		取料貝に脱く
C 0 8 G	77/442		審査請求			77/442 頃の数 8	Ωī	(全 11 頁)	最終頁に続く
	7/48					7/48			
	7/42					7/42			
	7/043					7/043			
A 6 1 K	7/00			A 6 1	K	7/00		J	
(51) Int.Cl. ⁶		識別記号		FΙ					

究所内

(72)発明者 南部 博美

(72)発明者 近藤 昭裕 和歌山県和歌山市湊1334 花王株式会社研

和歌山県和歌山市湊1334 花王株式会社研

究所内

(74)代理人 弁理士 有賀 三幸 (外3名)

(54) 【発明の名称】 被膜形成剤及び化粧料

(57)【要約】

【課題】 物理的な摩擦による化粧移りを防止することができる皮膚または爪化粧料用被膜形成剤;並びに耐汗性、耐皮脂性、耐物理的摩擦性等を有する皮膚または爪用化粧料の提供。

【解決手段】 次の一般式(1)

【化1】

$$\left(\begin{array}{c}
R^{1} \\
C \\
C \\
R^{4}
\end{array}\right) \xrightarrow{R^{5}} \left(\begin{array}{c}
R^{5} \\
Si0 \\
R^{3}
\end{array}\right) \xrightarrow{m} \left(\begin{array}{c}
Si \\
C \\
R^{7}
\end{array}\right) \xrightarrow{R^{2}} \left(\begin{array}{c}
R^{2} \\
R^{3}
\end{array}\right)_{a}$$
(1)

(式中、R¹ ~ R⁸ は水素原子等、Yは炭素数 1~10 の炭化水素基を示し、Aは-CONH-基等、Bは-NHCO-基等を示し、mは0~200の数を示し、pは0~6の数を示し、aは2~300の数を示す。)で表されるシリコーンポリマーとフッ素原子を有しないビニルモノマーとを構成単位とするビニル・シリコーンブロックコポリマーからなる皮膚または爪化粧料用被膜形成

剤;並びにかかるビニル・シリコーンブロックコポリマーを含有する皮膚または爪用化粧料。

【特許請求の範囲】

【請求項1】 次の一般式(1)

(化1)

(式中、 R^1 、 R^2 、 R^3 及び R^4 は同一または異なって、水素原子、低級アルキル基またはニトリル基を示し、 R^5 、 R^6 、 R^7 及び R^8 は同一または異なって、水素原子、ハロゲン原子が置換していてもよいアルキル基またはアリール基を示し、Yはハロゲン原子が置換していてもよい炭素数 $1\sim 1$ 0の直鎖または分岐鎖の飽和または不飽和炭化水素基を示し、Aは一CONHー基または-COOー基を示し、Bは-NHCOー基または-

OCO-基を示す。ここでAが-CONH-基のときBは-NHCO-基であり、Aが-COO-基のときBは-OCO-基である。mは0~200の数を示し、pは0~6の数を示し、aは2~300の数を示す。)で表されるシリコーンポリマーとフッ素原子を有しないビニルモノマーとを構成単位とするビニル・シリコーンプロックコポリマーであって、一般式(1)のシリコーンポリマーを構成するシリコーンモノマーの総数は5~106であり、該ビニルモノマーの総数と該ビニルモノマーの総数との和は102~106であり、かつ該シリコーンモノマーの総数とでニルモノマーの総数との和は102~106であり、かつ該シリコーンモノマーの総数/該ビニルモノマーの総数が1/99~99/1であるプロックコポリマーからなる皮膚または爪化粧料用被膜形成剤。

【請求項2】 ビニル・シリコーンブロックコポリマーが、次の一般式(2)

【化2】

(式中、 $R^1 \sim R^8$ 、Y、A、B、m、p及Ua は前記 と同一のものを示す。) で表されるアゾ基含有ポリシロキサンポリマー及Uフッ素原子を有しないビニルモノマーをラジカル共重合して得られるものである請求項1記載の被膜形成剤。

【請求項3】 フッ素原子を有しないビニルモノマー が、アクリレート及び/またはメタクリレートである請 求項1または2記載の被膜形成剤。

【請求項4】 次の一般式(1)

(式中、 $R^1 \sim R^8$ 、Y、A、B、m、p及びaは前記と同一のものを示す。)で表されるシリコーンポリマーとフッ素原子を有しないビニルモノマーとを構成単位とするビニル・シリコーンプロックコポリマーであって、一般式(1)で表されるシリコーンポリマーを構成するシリコーンモノマーの総数は $10\sim10^6$ であり、該ビニルモノマーの総数とはビニルモノマーの総数との和は $10\sim10^6$ であり、かつ該シリコーンモノマーの総数/該ビニルモノマーの総数/1/99~99/1であるプロックコポリマーを含有する皮膚または爪用化粧料。

【請求項5】 ビニル・シリコーンブロックコポリマーが、次の一般式(2)

【化4】

$$\left(\begin{array}{c}
R^{1} \\
C \\
C \\
R^{4}
\end{array}\right) \xrightarrow{R^{5}} \left(\begin{array}{c}
R^{5} \\
Si0 \\
R^{3}
\end{array}\right) \xrightarrow{R^{5}} \left(\begin{array}{c}
R^{6} \\
C \\
R^{3}
\end{array}\right) \xrightarrow{R^{2}} \left(\begin{array}{c}
R^{2} \\
C \\
R^{3}
\end{array}\right) \xrightarrow{R^{5}} \left(\begin{array}{c}
R^{2} \\
C \\
R^{3}
\end{array}\right) \xrightarrow{R^{5}} \left(\begin{array}{c}
R^{2} \\
R^{3}
\end{array}\right) \xrightarrow{R^{5}} \left(\begin{array}{c}
R^{3} \\
R^{3}
\end{array}\right) \xrightarrow{R^{3}} \left(\begin{array}{c}
R^{3$$

(式中、R¹ ~ R⁸ 、Y、A、B、m、p及びaは前記と同一のものを示す。)で表されるアゾ基含有ポリシロキサンポリマー及びフッ素原子を有しないビニルモノマーをラジカル共重合して得られるものである請求項4記載の化粧料。

【 請求項6 】 フッ素原子を有しないビニルモノマーが、アクリレート及び/またはメタクリレートである請求項4または5記載の化粧料。

【請求項7】 ビニル・シリコーンブロックコポリマーを0.01~90重量%含有する請求項4~6のいずれ

か1項記載の化粧料。

【請求項8】 皮膚化粧料が皮膚保護化粧料またはメイクアップ化粧料である請求項4~7のいずれか1項記載の化粧料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、物理的摩擦による 化粧移りを防止することが可能な被膜形成剤、並びに耐 汗性、耐皮脂性及び非粘着性の柔軟な被膜を形成し、化 粧持続性が高く、かつ使用感の良好な皮膚または爪用化 粧料に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】従来、スキンクリーム、スキンローション等の皮膚保護化粧料には、水や汗から皮膚を保護する目的で、またファンデーション等のメイクアップ化粧料には水や汗による化粧崩れを防止する目的で、さらに爪用化粧料にはの目的で種々のシリコーン油やシリコーン樹脂が配合されている。しかしながら、これらのシリコーン油やシリコーン樹脂は撥水性については充分な効果を有するものの、撥油性については充分な効果を有するものではないため、これらの成分を配合した化粧料は化粧崩れを生じるという問題があった。

【0003】このため、撥水性と共に撥油性をも有する 化粧料として、パーフルオロポリエーテルを含有する化 粧料 (特開昭61-234928号公報、特開昭63-247214号)、 フッ素変性シリコーンを含有する化粧料 (特公平2-2959 12号公報)が提案されている。

【0004】しかしながら、これらの化粧料に用いられているパーフルオロポリエーテルやフッ素変性シリコーンは、撥水/撥油性基材に求められる要件である耐汗性及び耐皮脂性は有するものの、衣服、皮膚、コップ等による物理的な摩擦による化粧移りに関しては必ずしも充分満足できるものではなく、よって得られる化粧料も、充分な化粧持続性を有するものではなかった。

【0005】かかる物理的摩擦による化粧移りに対する 対応策として最近、被膜形成能を有する合成樹脂エマル ジョンや油性樹脂等が用いられているが、合成樹脂エマ ルジョンや油性樹脂の被膜は水に触れると破れや剝がれ 等が起こりやすく、耐水性の点で充分満足できるもので はなかった。

【0006】したがって本発明は、物理的な摩擦による 化粧移りを防止することができる皮膚または爪化粧料用 被膜形成剤、並びに耐汗性、耐皮脂性、耐物理的摩擦性 を有し、容易に均一に塗布でき、さらに目尻やロ元のよ うな皮膚の大きい動きに対しても柔軟に追従し、塗布部 位に不快な違和感を生じさせない皮膚または爪用化粧料 を提供することを目的とする。

【0007】本発明者らは上記目的を達成すべく鋭意研究した結果、特定構造のシリコーンポリマーと、フッ素

原子を有しないビニルモノマーとを構成単位とするビニル・シリコーンブロックコポリマーが、物理的な摩擦による化粧移りを防止することができることを見出した。またかかるビニル・シリコーンブロックコポリマーを含有する皮膚または爪用化粧料が、耐汗性、耐皮脂性、耐物理的摩擦性を有し、容易に均一に塗布でき、さらに目尻や口元のような皮膚の大きい動きに対しても柔軟に追従し、塗布部位に不快な違和感を生じさせないことを見出し、本発明を完成させた。

【0008】すなわち本発明は、次の一般式(1) 【化5】

【0009】 (式中、R¹、R²、R³及びR⁴は同一 または異なって、水素原子、低級アルキル基またはニト リル基を示し、R⁵、R⁶、R⁷及びR⁸は同一または 異なって、水素原子、ハロゲン原子が置換していてもよ いアルキル基またはアリール基を示し、Yはハロゲン原 子が置換していてもよい炭素数1~10の直鎖または分 岐鎖の飽和または不飽和炭化水素基を示し、Aは-CO NH-基または-COO-基を示し、Bは-NHCO-基または一〇〇〇一基を示す。ここでAが一〇〇NHー 基のときBは-NHCO-基であり、Aが-COO-基 のときBは-OCO-基である。mは0~200の数を 示し、pは0~6の数を示し、aは2~300の数を示 す。) で表されるシリコーンポリマーとフッ素原子を有 しないビニルモノマーとを構成単位とするビニル・シリ コーンブロックコポリマーであって、一般式 (1) で表 されるシリコーンポリマーを構成する該シリコーンモノ マーの総数は5~106であり、該ピニルモノマーの総 数は $10\sim10^6$ であり、該シリコーンモノマーの総数 と該ビニルモノマーの総数との和は $10^2 \sim 10^6$ であ り、かつ該シリコーンモノマーの総数/該ビニルモノマ 一の総数が1/99~99/1であるブロックコポリマ ーからなる皮膚または爪化粧料用被膜形成剤;並びに上 記ピニル・シリコーンブロックコポリマーを含有する皮 **商または爪用化粧料を提供するものである。**

[0010]

【発明の実施の形態】一般式(1)において、 $R^1 \sim R^4$ は水素原子、炭素数 $1 \sim 10$ の低級アルキル基または アリール基を示し、 $R^1 \sim R^4$ は同一でも異なっていて もよい。このうちメチル基及びニトリル基が特に好ましい。 $R^5 \sim R^8$ は水素原子、ハロゲン原子が置換していてもよいアルキル基またはアリール基を示し、 $R^5 \sim R^8$ は同一でも異なっていてもよい。このうちメチル基が 特に好ましい。 Yはハロゲン原子が置換していてもよい

炭素数1~10、好ましくは1~6の直鎖または分岐鎖 の飽和または不飽和炭化水素基を示す。具体的には例え tf-CH_2 -, - (CH₂)₂ -, - (CH₂)₃ -, -CH (CH_3) CH_2 - $-CH_2$ CH (CH_3) C H_2 -, - (CH_2) 4 -, - (CH_2) 5 -, - (C H_2) 6 - 等が挙げられ、このうちー(CH_2) 2 - が 特に好ましい。Aは-CONH-基または-COO-基 を示し、Bは-NHCO-基または-OCO-基を示 す。ここでAが-CONH-基のときBは-NHCO-基であり、Aが一COO一基のときBは一OCO一基で ある。mは0~200、好ましくは5~100の数であ る。mが200以上ではビニル・シリコーンプロックコ ポリマーの収率が低下し、またコポリマーのガラス転移 温度が低くなりすぎて十分な強度の被膜を形成すること ができなくなる。pは0~6、好ましくは1~5の数を 示す。さらにaは2~300、好ましくは5~100の 数を示す。 a が 1 ではビニルモノマーとの共重合性が著 しく低下するため、シリコーン骨格を含まないビニルモ ノマーのホモポリマーや一般式(1)の分解物が再結晶 しただけで、ビニルモノマーを含まないポリマー等が副 生成物として混在する場合がある。また、重合度が30 0より大きいと、一般式(1)のシリコーンポリマーが 非常に高粘度のゴム状になり、仕込みが困難になった り、重合溶媒や共重合に用いるビニルモノマーへの溶解 性が著しく低下するなど、重合における操作性が低下す

る。

【0011】また一般式(1)で表されるシリコーンポリマーを構成するシリコーンモノマーの総数は $5\sim10^6$ 、好ましくは $5\sim10^4$ であり、ビニルモノマーの総数は $10\sim10^6$ 、好ましくは $10\sim10^4$ であり、シリコーンモノマーの総数とビニルモノマーの総数との和は $10^2\sim10^6$ 、好ましくは $10^2\sim10^4$ であり、かつシリコーンモノマーの総数/ビニルモノマーの総数が $1/99\sim99/1$ 、好ましくは $1/99\sim70/3$ 0である。上記のようにすることにより、耐汗性、耐皮脂性を有し、さらに十分な強度の被膜を形成することができる。

【0012】本発明においてピニルモノマーはフッ素原・子が1個も結合していないものであり、例えばスチレン、メタクリル酸またはそのエステル、アクリル酸またはそのエステル、イタコン酸またはそのエステル、塩化ピニル、アクリロニトリル、酢酸ピニル、エチレン、プロピレン、ブタジエン、塩化ビニリデン、テトラフルオロエチレン、クロロトリフルオロエチレン等が挙げられる。このうちメタクリル酸またはそのエステル及びアクリル酸またはそのエステルが好ましい。

【0013】本発明においてビニル・シリコーンプロック共重合体は、例えば一般式(2)

【0014】 【化6】

$$\left(\begin{array}{c}
R^{1} \\
C \\
C \\
R^{4}
\end{array}\right) \xrightarrow{R^{5}} \left(\begin{array}{c}
R^{5} \\
Si0 \\
R^{3}
\end{array}\right) \xrightarrow{R^{5}} \left(\begin{array}{c}
R^{6} \\
Si0 \\
R^{7}
\end{array}\right) \xrightarrow{R^{2}} \left(\begin{array}{c}
R^{2} \\
C \\
R^{3}
\end{array}\right) \xrightarrow{R^{2}} \left(\begin{array}{c}
R^{2} \\
R^{3}
\end{array}\right) \xrightarrow{R^{3}} \left(\begin{array}{c}
R^{3} \\
R^{3}
\end{array}\right) \xrightarrow{R^{3}} \left(\begin{array}{c}
R^{3}$$

【0015】(式中、 $R^1 \sim R^8$ 、Y、A、B、m、p 及びa は前記と同一のものを示す)で表されるアゾ基含 有ポリシロキサンアミドポリマー及びフッ案原子を有しないビニルモノマーをラジカル共重合させることにより 製造することができる。

【0016】一般式(2)で表されるアゾ基含有ポリシロキサンポリマー(マクロアゾ重合開始剤)は、加熱または光照射によって容易にN₂を発生して分解し、ラジカル種(一般式(1)のシリコーンポリマー)を生じ、その際に各種のビニルモノマーが存在すれば速やかに重合を起し、一般式(1)のシリコーンポリマーを含むプロック共重合体を生成するという特異的な性質を有する。

【0017】したがって、一般式(2)のアゾ基含有ポリシロキサンアミドポリマーとピニルモノマーとの共存下で加熱または光照射することにより、一般式(2)のアゾ基含有ポリシロキサンポリマーが重合開始剤として作用すると同時に一般式(1)のシリコーンポリマーを有するラジカル切片が生成ポリマー中に導入され、一般

式(1)のシリコーンポリマー(A)とフッ素原子を含有しないビニルポリマー(B)からなる(AB)_n型またはABA型のビニル・シリコーンプロック共重合体を効率良く製造することができる。重合開始剤は特に必要としないが、必要に応じて、アゾビスイソプチロニトリル、アゾビスイソバレロニトリルやベンゾイルバーオキシド等の通常のラジカル重合開始剤を併用してもよい。なお一般式(2)で表されるアゾ基含有ポリシロキサンアミドは、例えば特開昭61-252230号公報に記載の方法で製造することができる。

【0018】ラジカル共重合反応は、溶媒または分散剤の存在下 または不存在下に行われる。溶媒または分散剤としては、例えばテトラヒドロフラン、ジエチルエーテル、ジメトキシエタン、ジオキサン等のエーテル類、塩化メチレン、クロロホルム、四塩化炭素、トリクレン等のハロゲン化炭化水素類、石油エーテル、nーヘキサン、オクタン、石油ベンジン、ベンゼン、トルエン、キシレン等の炭化水素類、メタノール、エタノール、イソプロパノール、tーブタノール等のアルコール類、アセ

トン、メチルエチルケトン、メチルイソプチルケトン、シクロへキサノン等のケトン類、アセトニトリル、水、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド、ジメチルスルホキシド、オクタメチルシクロテトラシロキサン、ドデカメチルシクロへキサシロキサン等の環状シリコーンやジメチルポリシロキサン、メチルフェニルポリシロキサン等の鎖状シリコーン等を挙げることができ、これらの1種または2種以上を使用し得る。反応系には更に必要に応じて、nードデシルメルカプタン等の重合度調節剤を適宜添加することができる。

【0019】上記製造が加熱によって行われる場合の反応温度は、通常30~130℃程度、好ましくは50~100℃とするのが適当であり、重合の進行に伴って変化させてもよい。反応時間は、通常1~48時間程度、好ましくは1~24時間である。また、上記製造が光照射によって行われる場合の反応温度は、通常0~60℃程度、好ましくは20~50℃とするのが適当である。反応時間は、通常1分~12時間程度、好ましくは30分~5時間である。光照射に用いられる光源としては、例えば高圧水銀灯が使用可能である。照射光は、アゾ基合有ポリシロキサンポリマーを速やかに光分解させるビニルモノマーを重合させるため、UV光であるのが好ましい。

【0020】かかるビニル・シリコーンブロックコポリマーを1種または2種以上組合せることにより、本発明の被覆形成剤を得ることができる。

【0021】本発明の皮膚または爪用化粧料は、上記ピニル・シリコーンプロックコポリマーを、1種または2種以上組合せて配合したものである。本発明の化粧料へのビニル・シリコーンブックコポリマーの配合量は、0.01~90重量%であることが好ましく、特に0.1~70重量%、さらに0.5~30重量%配合すると、化粧持続性及び使用感により優れると共に、安定性も良好であり好ましい。

【0022】本発明の皮膚または爪用化粧料には、さらに通常の化粧料に用いられる油剤を配合することができる。かかる油剤としては、例えばオクタメチルシクロテトラシロキサン、ドデカメチルシクロへキサシロキサン等の環状シリコーン;ジメチルポリシロキサン、メチルフェニルポリシロキサン等の鎖状シリコーン;スクワラン、パーム油等の植物性油脂;その他炭化水素、高級脂肪酸エステル、流動パラフィン、フッ素変性シリコーン、パーフルオロポリエーテルなどが挙げられる。

【0023】さらに、本発明の皮膚または爪用化粧料に

は、必要に応じて通常の化粧料に配合される他の成分、例えばワセリン、ラノリン、セレシン、マイクロクリスタリンワックス、カルナバロウ、キャンデリラロウ、高級脂肪酸、高級アルコール等の固形・半固形油分;水溶性及び油溶性ポリマー;無機及び有機顔料;有機染料等の色材;アニオン活性剤、ノニオン活性剤、カチオン活性剤、ポリオキシアルキレン共重合体、ポリエーテル変性シリコーン等の界面活性剤;その他、水、防腐剤、酸化防止剤、色素、増粘剤、p出調整剤、香料、紫外線吸収剤、保湿剤、血行促進剤、冷感剤、制汗剤、殺菌剤、皮膚賦活剤などを、本発明の効果を損なわない範囲で適宜配合することができる。

【0024】本発明の皮膚または爪用化粧料は通常の方法に従って製造することができ、その剤型、種類等は特に限定されず、例えば油性化粧料、油中水型乳化化粧料、水中油型乳化化粧料、水性化粧料、固形化粧料、油性固形化粧料等とすることができる。

【0025】また、本発明で用いるビニル・シリコーンプロックコポリマーは、汗や皮脂に対して高い撥水・撥油性を有し、室温にて揮発性シリコーンに溶解または分散することにより、配合性に優れ、安定性が高く、低粘度でべとつかず、皮膚親和性が高く、しかも皮膚刺激性が極めて低いなどの優れた特徴を有するため、特にファンデーション、口紅、類紅、アイシャドー等のメイクアップ化粧料;スキンケアクリーム、スキンローション、サンスクリーン剤等の皮膚保護化粧料;ネイルエナメル等の爪用化粧料として好適である。

[0026]

【発明の効果】本発明の被覆形成剤は、物理的摩擦による化粧移りを防止することができる。また本発明の皮膚または爪用化粧料は、耐汗・耐皮脂性に優れ、さらに、油剤中に溶解もしくは分散し易いために均一に塗布でき、物理的な摩擦にも耐え得るため高い化粧持続性を示し、かつ目尻や口元のような皮膚の大きい動きに対しても柔軟に追従し、塗布された被膜に不快な違和感を感じさせないような良好な使用感を有する。

[0027]

【実施例】以下に実施例を挙げ、本発明をさらに詳細に 説明するが、本発明は以下の実施例に限定されるもので はない。なお合成例1~6で用いるジメチルポリシロキ サン含有マクロアン重合開始剤(和光純薬社製、VPS-05 01、VPS1001)は、次の式で表されるものである。

[0028]

【化7】

$$\begin{array}{c|c} & \begin{array}{c|c} CH_3 & CH_3 & CH_3 \\ \hline COC_2H_4 - C-N = N - C-C_2H_4CONHC_3H_6 + Sio \xrightarrow{} Sio \xrightarrow{} Si-C_3H_6NH \\ \hline CN & CH_3 & CH_3 \end{array}$$

(式中nはくり返し単位を示す。)

【0029】合成例1

共重合体 (A) の合成

メチルメタクリレート40g、nープチルメクタリレート40g、ジメチルポリシロキサンを含有するマクロアソ重合開始剤(和光純薬社製、VPS-0501、平均分子量3万~4万)20g、及びトルエン100gを4つロフラスコに仕込み、溶解混合後、室温で0.5時間、窒素気流下で撹拌した後、80℃で窒素気流下にて6時間、さらに85℃で2時間重合を行い、白濁粘ちょう溶液を得た。重合度適量のトルエンにて希釈したものをメタノール中に投入することにより共重合体を沈殿させ、濾別、次いで減圧乾燥することにより目的とする白色固体状の共重合体(A)87.3gを得た。共重合体中のモノマー組成は仕込み組成とほぼ一致していた(プロトンNMRにより確認)。

【0030】合成例2

共重合体(B)の合成

メチルメタクリレート30g、2-エチルへキシルメタクリレート40g、ジメチルポリシロキサンを含有するマクロアゾ重合開始剤(和光純薬社製、VPS-0501、平均分子量3万~4万)30g、及びトルエン100gを4つロフラスコに仕込み、溶解混合後、室温で0.5時間、窒素気流下で攪拌した後、80℃で窒素気流下にて8時間、さらに85℃で2時間重合を行い、白濁粘ちよう溶液を得た。重合度適量のトルエンにて希釈したものをメタノール中に投入することにより共重合体を沈殿させ、濾別、次いで減圧乾燥することにより目的とする白色固体状の共重合体(B)85.5gを得た。共重合体中のモノマー組成は仕込み組成とほぼ一致していた(プロトンNMRにより確認)。

【0031】合成例3

共重合体(C)の合成

メチルメタクリレート60g、酢酸ビニル20g、ジメチルポリシロキサンを含有するマクロアゾ重合開始剤(和光純薬社製、VPS-1001、平均分子量7万~9万)20g、及びヘプタン100gを4つロフラスコに仕込み、溶解混合後、室温で0.5時間、窒素気流下で攪拌した後、80℃で窒素気流下にて8時間、さらに85℃で2時間重合を行い、白濁粘ちょう溶液を得た。重合度適量のヘキサンにて希釈したものをメタノール中に投入することにより共重合体を沈殿させ、濾別、次いで減圧乾燥することにより目的とする白色固体状の共重合体

(C) 72.9g を得た。共重合体中のモノマー組成は 仕込み組成とほぼ一致していた(プロトンNMRにより 確認)。

【0032】合成例4

共重合体 (D) の合成

ステアリルメタクリレート40g、ベヘニルメタクリレート40g、ジメチルポリシロキサンを含有するマクロ

アソ重合開始剤(和光純薬社製、VPS-0501、平均分子量3万~4万)20g、及びトルエン100gを4つロフラスコに仕込み、溶解混合後、室温で0.5時間、窒素気流下で攪拌した後、80℃で窒素気流下にて8時間、さらに85℃で2時間重合を行い、白濁粘ちょう溶液を得た。重合後適量のトルエンにて希釈したものをメタノール中に投入することにより共重合体を沈殿させ、適別、次いで減圧乾燥することにより目的とする白色固体状の共重合体(D)78.5gを得た。共重合体中のモノマー組成は仕込み組成とほぼ一致していた(プロトンNMRにより確認)。

【0033】合成例5

共重合体(E)の合成,

スチレン20g、nープチルメタクリレート50g、ジメチルポリシロキサンを含有するマクロアゾ重合開始剤(和光純薬社製、VPS-0501、平均分子量3万~4万)30g、及びトルエン100gを4つロフラスコに仕込み、溶解混合後、室温で0.5時間、窒素気流下で投拌した後、80℃で窒素気流下にて6時間、さらに85℃で2時間重合を行い、白濁粘ちょう溶液を得た。重合後適量のトルエンにて希釈したものをメタノール中に投入することにより共重合体を沈殿させ、濾別、次いで減圧乾燥することにより目的とする白色固体状の共重合体(E)75.0gを得た。共重合体中のモノマー組成は仕込み組成とほぼ一致していた(プロトンNMRにより

【0034】合成例6

確認)。

共重合体 (F) の合成

メチルメタクリレート10g、エチルアクリレート55g、アクリル酸15g、ジメチルポリシロキサンを含有するマクロアゾ重合開始剤(和光純薬社製、VPS-0501、平均分子量3万~4万)20g、及びメチルエチルケトン100gを4つロフラスコに仕込み、溶解混合後、室温で0.5時間、窒素気流下で攪拌した後、80℃で窒素気流下にて8時間、さらに85℃で2時間重合を行い、白濁粘ちょう溶液を得た。重合後適量のメチルエチルケトンにて希釈したものをメタノール中に投入することにより共重合体を沈殿させ、濾別、次いで減圧乾燥することにより目的とする白色固体状の共重合体(F)88.3gを得た。共重合体中のモノマー組成は仕込み組成とほぼ一致していた(プロトンNMRにより確認)。

【0035】合成例7

共重合体(K)の合成

ステアリルメタクリレート30g、ベヘニルメタクリレート50g、次の式で表されるジメチルポリシロキサンを含有するマクロアゾ重合開始剤

[0036]

【化8】

(式中nはくり返し単位を示す。)

【0037】(特開平1-254775の参考例記載の方法で合成)20g、及びトルエン100gを4つロフラスコに仕込み、溶解混合後、室温で0.5時間、窒素気流下で攪拌した後、80℃で窒素気流下にて8時間、さらに85℃で2時間重合を行い、白濁粘ちょう溶液を得た。重合後適量のトルエンにて希釈したものをメタノール中に投入することにより共重合体を沈殿させ、濾別、次いで減圧乾燥することにより目的とする白色固体状の共重合体(K)81.7gを得た。共重合体中のモノマー組成は仕込み組成とほぼ一致していた(プロトンNMRにより確認)。

【0038】参考例1

共重合体(G)の合成

メチルメタクリレート40g、nープチルメタクリレート60g、アゾビスイソバレロニトリル(和光純薬社製、V-65)0.6g、及びトルエン100gを4つロフラスコに仕込み、溶解混合後、室温で0.5時間、窒素気流下で攪拌した後、65℃で窒素気流下にて5時間、さらに75℃で1時間重合を行い、白濁粘ちょう溶液を得た。重合後適量のトルエンにて希釈したものをメタノール中に投入することにより共重合体を沈殿させ、濾別、次いで減圧乾燥することにより目的とする白色固体状の共重合体(G)95.9gを得た。共重合体中のモノマー組成は仕込み組成とほぼ一致していた(プロトンNMRにより確認)。

【0039】参考例2

共重合体(H)として、トーレダウコーニング(株)社製、アルキル変性シリコーン(SH203、粘度:1200mm²/s、比重0.91、屈折率1.464)を用いた。

【0040】試験例1

接触角の測定

合成した各共重合体のトルエン溶液を、PETフィルム表面に塗布し、デシケーター内にて常温常圧で一日以上放置することにより乾燥したものを試料とし、協和界面化学社製CA-D型接触角計を用いて、水に対する接触角を測定した。結果を表1に示す。表1より、共重合体(A)~(F)は共重合体(G)及び(H)より接触角が大きく、物理的摩擦による破れ等が起こり難いことが確認された。

[0041]

【表1】

	共重合体名	接触角(度)
合成例1	共重合体(A)	118
合成例 2	共重合体(B)	115
合成例3	共重合体(C)	113
合成例4	共重合体(D)	120
合成例 5	共重合体(E)	118
合成例 6	共重合体(F)	105
合成例7	共重合体(K)	117
参考例1	共重合体(G)	98
参考例2	共重合体(H)	95

【0042】以下の実施例及び比較例の化粧料について、化粧持続性、油浮き、耐摩擦色移り性、使用感を以下の評価方法により評価した。

【0043】◎評価方法

化粧持続性、油浮き:10人の専門パネラーが調製した 化粧品を使用し、次の基準で3段階で官能評価を行っ た。

3:8~10人が良いと判断 2:4~7人が良いと判断

1:0~3人が良いと判断

耐摩擦色移り性:調製した化粧品を一定量だけ人工皮革上に薄く均一に塗布し、木綿布で塗布した部分を100 g/cm²の圧力の下、表面性試験器を用いて5往復摩擦させた。その時の移行したファンデーションによる木綿布の着色度合いをもって、耐摩擦色移り性を評価した。評価基準は次の通りである。

〇:ほとんど着色していない

△: やや着色している

×:かなり着色している

使用感:10人の専門パネラーにより、主に塗布感と塗 布後の化粧感についての官能評価を行い、次の基準で評 価した。

○:8~10人が良いと判断

△:4~7人が良いと判断

×:0~3人が良いと判断

【0044】実施例1及び比較例2

表2に示す組成の二層型W/O乳化型ファンデーション (実施例1及び比較例1)を製造し、化粧持続性評価及 び官能評価を行った。結果を表2に示す。

【0045】製法:成分(5)~(10)を90℃に加

熱し、混合溶解させる。さらに、成分 $(1) \sim (4)$ を ディスパーで分散させながら加える。これを 20 0 0 0 に降温した後、成分 $(10) \sim (14)$ の混合物を 提拌しながら添加し、二層型W/O乳化型ファンデーシ

ョンを得た。 【0046】 【表2】

配合成分(重量%)	実施例1	比較例1
(1) セリサイト	7. 0	7. 0
(2) カオリン	4.0	4. 0
(3) 二酸化チタン	8. 0	8. 0
(4)着色顔料	1. 0	1. 0
(5) ジメチルポリシロキサン (6cs)	9. 0	9.0
(6) オクタメチルシクロテトラシロキサン	28.0	28.0
(7) ジメチルポリシロキサンポリオキシア	1. 0	1. 0
ルキレン共重合体(トーレダウコーニ	,	
ング社製SH3775E)		
(8) 共重合体 (A)	5.0	_
(9) 共重合体 (H)	_	5.0
(10) 精製水	20.0	20.0
(11) エタノール	14.0	14.0
(12) 1, 3ープタンジオール	3. 0	3.0
(13) 酸化防止剤	適量	適 量
(14) 香料	適 虽	適量
化粧持続性	3	2
油浮き	3	1
耐摩擦色移り性	0	Δ
使用感	0	0
		and a second

【0047】表2より、実施例1のファンデーションは、比較例1のものと比較して優れていることが確認された。

【0048】実施例2及び比較例2 表3に示す組成のパウダーファンデーション(実施例2 及び比較例2)を製造し、化粧持続性評価及び官能評価 を行った。結果を表3に示す。

【0049】製法

配合成分(重量%) (1) タルク (2) マイカ (3) カオリン (4) 二酸化チタン (5) 雲母チタン

(8) 着色顔料(9) ジメチルポリシロキサン (6 cs)(10) 酢酸ラノリン(11) ミリスチン酸オクチルドデシル

(12) 共重合体 (B) (13) 共重合体 (G)

(6) ステアリン酸亜鉛(7) ナイロンパウダー

(14) 酸化防止剤 (15) 香料

化粧持続性

成分 (1) ~ (8) を混合し、粉砕器に通して粉砕する。これを、高速プレンダーに移し、成分 (9) ~ (15) を加熱混合し、均一にしたものを、さらに混合して均一にする。これを粉砕器で処理し、フルイを通し、粒度をそろえた後、数日間放置してから金皿などの容器中に圧縮成型してパウダーファンデーションを得た。

[0050]

【表3】

実施例2	比較例2
25.0	25.0
30.0	30.0
5.0	5. 0
8. 0	8. 0
5. 0	5. 0
1. 0	1. 0
10.0	10.0
4.0	4.0
5. 0	5. 0
2. 0	2. 0
2. 0	2. 0
3. 0	_
_	3. 0
適量	適量
適 量	適 虽
3	2

油浮き	
耐摩擦色移り性	
使用感	

【0051】表3より、実施例2のパウダーファンデーションは、比較例2のものと比較してすべての項目で優れていることが確認された。

【0052】実施例3及び比較例3

表4に示す組成のO/W乳化型ファンデーション(実施 例3及び比較例3)を製造し、化粧持続性評価及び官能 評価を行った。結果を表4に示す。

【0053】製法

成分(4)~(8)を70℃に加熱し、ディスパーで混

1
Δ
×

合溶解させる。さらに、成分(1)~(3)をディスパーで分散させながら加える。これに70~80℃に加熱溶解させた成分(9)~(15)の混合物をディスパーで攪拌しながら添加し、さらに攪拌しながら冷却し、45℃で(16)、(17)を加え、室温まで冷却する。最後に脱気して容器に充填しO/W乳化型ファンデーションを得た。

[0054]

【表4】

配合成分(重量%)	実施例3	比較例3
(1) タルク .	4.0	4. 0
(2) 二酸化チタン	4.0	4. 0
(3)着色顔料	2. 0	2. 0
(4) ベントナイト	0.5	0.5
(5) モノステアリン酸ポリオキシエチレン	0.9	0.9
ソルピタン		
(6) トリエタノールアミン	1. 0	1. 0
(7) プロピレングリコール	13.0	13.0
(8)精製水	53.4	53.4
(9) ステアリン酸	2. 2	2. 2
(10) イソヘキサデシルアルコール	3. 0	3. 0
(11) モノステアリン酸グリセリン	2. 0	2. 0
(12) 液状ラノリン	2. 0	2. 0
(13) ジメチルポリシロキサン (6cs)	8. 0	8. 0
(14) 共重合体 (C)	4. 0	_
(15) 共重合体 (H)	_	4. 0
(16) 酸化防止剤	適	適 量
(17) 香料	適量	適 虽
化粧持続性	3	2
油浮き	3	1
耐摩擦色移り性	0	×
使用感	Δ	Δ

【0055】表4より、実施例3のファンデーションは、比較例3のものと比較して優れていることが確認された。

【0056】実施例4及び比較例4

表5に示す組成の油性固形ファンデーション(実施例4 及び比較例4)を製造し、化粧持続性評価及び官能評価 を行った。結果を表5に示す。

【0057】製法

配合成分(重量%)
(1) タルク
(2) カオリン
(3) 二酸化チタン
(4) 着色顔料
(5)固形パラフィン
(6) マイクロクリスタリンワックス

成分 $(5) \sim (13)$ を 90 に加熱し、混合溶解させる。 さらに、成分 $(1) \sim (4)$ を加え、 90 に維持したまま均一になるまで充分攪拌混合する。 この混合物に成分 (14)、 (15) を加えて混合した後、金皿に充填し、冷却することにより油性固形ファンデーションを得た。

[0058]

【表5】

[X O]				
	実施例	14	比較例	j 4
	20.	0	20.	0
	15.	0	15.	0
	13.	0	13.	0
	4.	0	4.	0
	3.	0	3.	0
	5	^	5	Λ

3. 0	3. 0
6. 0	6.0
1. 0	1. 0
18.0	18.0
7. 0	7. 0
5. 0	_
_	5. 0
適量	適 量
適 量	適量
3	2
3	2
Δ	×
0	0
	6. 0 1. 0 18. 0 7. 0 5. 0 一 適 量 3

【0059】表5より、実施例4のファンデーションは、比較例4のものと比較して優れていることが確認された。

【0060】実施例5及び比較例5 表6に示す組成の口紅(実施例5及び比較例5)を製造 し、化粧持続性評価及び官能評価を行った。結果を表6 に示す。

【0061】製法

配合成	分(重量%)
(1)	二酸化チタン
(2)	赤色201号
(3)	赤色202号
(4)	赤色223号
(5)	キャンデリラロウ
(6)	固形パラフィン
(7)	ミツロウ
(8)	カルナバロウ
(9)	ラノリン
(10)	ひまし油
(11)	2-エチルヘキサン酸セチル
(12)	ミリスチン酸イソプロピル
(13)	共重合体(E)
(14)	共重合体(G)
(15)	酸化防止剤
(16)	香料
	化粧持続性
	油浮き
	耐摩擦色移り性
	使用感

【0063】表6より、実施例5のパウダーファンデーションは、比較例5のものと比較して、すべての項目で優れていることが確認された。

【0064】実施例6、7及び比較例6 表7に示す組成の二層型サンスクリーン乳液(実施例6 及び比較例6)を製造し、化粧持続性評価及び官能評価 を行った。結果を表7に示す。

【0065】製法

成分 $(5) \sim (14)$ を 90 ℃ に加熱し、混合溶解させる。 さらに成分 $(1) \sim (4)$ を加え、 90 ℃ に維持したまま均一になるまで充分に混合攪拌する。 この混合物に成分 (15) 、 (16) を加えて混合した後、型に流し込み冷却し、口紅を得た。

【0062】 【表6】

実施例5	比較例5	
5. 0	5. 0	
0.6	0.6	
1. 0	1. 0	
0.2	0.2	
7. 0	7. 0	
9. 0	9. 0	
5.0	5. 0	
3. 0	3. 0	
13.0	13.0	
24.2	24.2	
18.0	18.0	
10.0	10.0	
3. 0		
-	3. 0	
適 量	適量	
適 量	適 量	
3	2	
3	1	
0	Δ	
Δ	×	
1) - (5)	+. 0 0 901 + tn#!	

成分 (1) ~ (5) を 90 \mathbb{C} に加熱し、混合溶解させた後、これを 20 \mathbb{C} ~ 30 \mathbb{C} に降温し、成分 (6) を溶解した。そこに、成分 (10) ~ (13) をディスパーで分散させ、さらに、成分 (7) ~ (9) をディスパーで分散させながら添加し、二層型サンスクリーン乳液を得た。

【0066】 【表7】

配合成分(重量%)	実施例 6	比較例6	実施例7
(1) オクタメチルシロキシテ	25.0	25.0	25.0
トラオキサン			
(2) 共重合体 (F)	1. 0	_	_
(3) 共重合体 (H)	_	1. 0	-
(4) 共重合体 (K)	-	_	1. 0
(5) ジメチルポリシロキサン	1. 0	1. 0	1. 0
ポリオキシアルキレン共			
重合体(トーレダウコー			
ニグ社製SH3775E)			
(6)メトキシ桂皮酸オクチル	2. 0	2. 0	2. 0
(7) エタノール	18.0	18.0	18.0
(8) グリセリン	2. 0	2. 0	2. 0
(9)精製水	38.0	38.0	38.0
(10) 微粒子酸化亜鉛	5. 0	5. 0	5. 0
(平均粒径 2 0 μ m)			
(11) 微粒子酸化チタン	1. 5	1. 5	1. 5
(平均粒径 5 0 μ m)			
(12) タルク	6. 5	6. 5	6. 5
(13) 香料	適量	適量	適量
化粧持続性	3	3	3
油浮き	3	2	2
耐摩擦色移り性	0	Δ	0
使用感	0	×	0

【0067】表7より、実施例6及び7のサンスクリー ン乳液は、比較例6のものと比較して、すべての項目で 優れていることが確認された。

フロントページの続き

(51) Int. Cl. ⁶
C O 8 L 83/10

識別記号

FΙ

C 0 8 L 83/10 C 0 8 G 77/445

77/452