# GPU Sparse Matrix Multiplication and Power Profiling

**Abdul Muizz** 



#### Inspiration for this project

- The recent boom in AI training and accelerators has caused an increased demand for power.
- While new-gen chips are more power efficient, they being used in computation-heavy workloads, increasing power draw
- Training GPT-3 took an estimated 1,300 megawatt hours of electricity (as much power as consumed annually by 130 homes).
- A single modern AI GPU consumes up to 3.7 MWh per year.
- The upcoming Blackwell B200 consumes up to 1,200 Watts.
- Can we benchmark GPU performance for a given matrix operation?







#### Inspiration for this project

- First opportunity to use NVidia's CUDA Development Toolkit.
- Specifically, we can use nvidia-smi (System Management Interface) to monitor NVidia devices
- cuSPARSE library for optimized sparse operations
- https://developer.nvidia.com/cuda-toolkit



#### **CUDA Toolkit**

The NVIDIA® CUDA® Toolkit provides a development environment for creating high-performance, GPU-accelerated applications. With it, you can develop, optimize, and deploy your applications on GPU-accelerated embedded systems, desktop workstations, enterprise data centers, cloud-based platforms, and supercomputers. The toolkit includes GPU-accelerated libraries, debugging and optimization tools, a C/C++ compiler, and a runtime library.



#### **Project Overview**

Key features of matrix\_multiplication.cu (CUDA File)

- Generate a random sparse matrix with user-defined density and dimension.
  - Dimension "N" = 1024, 2048, 4096, 8192, 16384
  - Density = 10%, 50%, 90% (Percent of non-zero elements)
- Log power at regular intervals to power\_log.txt (Average these for our average power)
- Record execution time to console



### **Project Hardware**

- This project is being run on my PC
- RTX 3070-Ti (MSI SUPRIM X)
- Idles around 87W
- 310W max power consumption
- 8GB GDDR6X VRAM
- 1860 MHz clockspeed
- This GPU is being paired with an Intel i7-12700k, 850W PSU



#### **Results Outline**

For each density and dimension (N) combination, the following is record

- Execution time (milliseconds)
- Average GPU Power (W)

These values are used to compute

- Power efficiency (GFLOPs/W)
- watt-hours (Wh)
- milliwatt-hours (mWh)

Power Efficiency is found by taking the number of non-zero elements,

$$nnz = density \times N^2$$

And multiplying it by 2N to get FLOPS,

$$FLOPs = 2 \times N \times nnz$$

And then computing power efficiency,

$$Power \, Efficiency \,\, = \,\, \frac{FLOPs}{Execution \, Time \times Average \, Power}$$

### **10% Density Results**

| Density 0.1 | // 10% non-zero elements |                       |                             |            |                 |
|-------------|--------------------------|-----------------------|-----------------------------|------------|-----------------|
| Matrix Size | Execution Time (ms)      | Average GPU Power (W) | Power Efficiency (GFLOPs/W) | Watt-hours | Milliwatt-Hours |
| 1024x1024   | 6.6813                   | 108.59                | 0.295991                    | 0.00020153 | 0.20153         |
| 2048x2048   | 7.7294                   | 110.5                 | 2.011462                    | 0.00023725 | 0.23725         |
| 4096x4096   | 21.2042                  | 107.76                | 6.014927                    | 0.0006347  | 0.6347          |
| 8192x8192   | 142.577                  | 105.745               | 7.292736                    | 0.004188   | 4.188           |
| 16384x16384 | 1867.26                  | 118.6066667           | 3.971695                    | 0.06152    | 61.52           |







### **50% Density Results**

| Density 0.5 | // 50% non-zero elements |                       | 11111                       |            |                 |
|-------------|--------------------------|-----------------------|-----------------------------|------------|-----------------|
| Matrix Size | Execution Time (ms)      | Average GPU Power (W) | Power Efficiency (GFLOPs/W) | Watt-hours | Milliwatt-Hours |
| 1024x1024   | 7.4478                   | 105.91                | 1.361241                    | 0.0002191  | 0.2191          |
| 2048x2048   | 15.2025                  | 108.7                 | 5.198108                    | 0.000459   | 0.459           |
| 4096x4096   | 90.015                   | 111.395               | 6.853292                    | 0.0027853  | 2.7853          |
| 8192x8192   | 697.239                  | 109.744               | 7.184679                    | 0.021255   | 21.255          |
| 16384x16384 | 9427.26                  | 143.8496              | 3.24314                     | 0.3767     | 376.7           |







## 90% Density Results

| Density 0.9 | // 90% non-zero elements |                       |                             |            |                 |
|-------------|--------------------------|-----------------------|-----------------------------|------------|-----------------|
| Matrix Size | Execution Time (ms)      | Average GPU Power (W) | Power Efficiency (GFLOPs/W) | Watt-hours | Milliwatt-Hours |
| 1024x1024   | 7.2508                   | 106.23                | 2.509223                    | 0.00021396 | 0.21396         |
| 2048x2048   | 23.3848                  | 105.2                 | 6.285111                    | 0.0006834  | 0.6834          |
| 4096x4096   | 156.147                  | 105.285               | 7.524059                    | 0.004567   | 4.567           |
| 8192x8192   | 1247.58                  | 112.0942857           | 7.076043                    | 0.03885    | 38.85           |
| 16384x16384 | 18722.1                  | 154.0353659           | 2.745095                    | 0.801      | 801             |







### **Varied Density Results**





#### Power Draw over a single Operation

- Run the
   16,384x16,384
   multiplication with
   90% density
- Look at the output of power\_log.txt to see the captured power level over fixed time intervals.





|   | Power (Watts) |
|---|---------------|
| 1 | 90.27         |
| 2 | 91.03         |
| 3 | 89.53         |
| 4 | 89.7          |
| 5 | 89.43         |
| 6 | 89.54         |
| 7 | 89.5          |
| 8 | 89.66         |
| 9 | 89.82         |
| 0 | 89.65         |
| 1 | 89.63         |
| 2 | 89.63         |
| 3 | 89.75         |
| 4 | 89.68         |
| 5 | 89.61         |
| 6 | 89.75         |
| 7 | 89.69         |
| 8 | 89.54         |
| 9 | 89.44         |
| 0 | 89.53         |
| 1 | 89.49         |
| 2 | 89.35         |
| 3 | 89.75         |
| 4 | 191.01        |
| 5 | 236.96        |
| 6 | 238.54        |
| 7 | 238.35        |
| 8 | 238.49        |
| 9 | 238.66        |
| 0 | 238.88        |
| 1 | 238.67        |
| 2 | 239.13        |
| 3 | 239.27        |
| 4 | 239.26        |
| 5 | 239.41        |
| 6 | 239.24        |
| 7 | 238.86        |
| 8 | 238.53        |
| 9 | 239.58        |
| 0 | 239.72        |
| 1 | 239.92        |

#### **Key Results**



- As matrix size increases, time to complete multiplication increases.
- For a given matrix dimension, as density increases, time to complete increases.
- Thus, milliwatt-hours for an operation increase proportionally to dimension and density.
- Power consumption is generally pretty equal, except for the largest matrix dimension.
- For more longer, more complex operations, you can measure a certain power spike.

#### **Moving Forward**

- Explore other areas of power consumption, namely retrieving data from memory (Major area of power draw in Al Model Training)
- Analyze when a spike triggers, or what triggers it
- Optimal to get a better benchmarking setup, currently the
   GPU is also running background tasks (Running my computer)



# **Any Questions?**

GPU Sparse Matrix Multiplication and Power Profiling

Abdul Muizz



#### **Works Cited**

Kindig, Beth. "Al Power Consumption: Rapidly Becoming Mission-Critical." *Forbes*, 20 June 2024,

www.forbes.com/sites/bethkindig/2024/06/20/ai-power-consumption-rapidly-becom ing-mission-critical/.

Morales, Jowi. "A Single Modern AI GPU Consumes up to 3.7 MWh of Power per Year —

GPUs Sold Last Year Alone Consumed More Power than 1.3 Million Homes."

Tom's Hardware, 14 June 2024,

www.tomshardware.com/desktops/servers/a-single-modern-ai-gpu-consumes-up-t o-37-mwh-of-power-per-year-gpus-sold-last-year-alone-consume-more-power-tha n-13-million-households.

"MSI GeForce RTX 3070 Ti SUPRIM X 8G." *Msi.com*, 2018, www.msi.com/Graphics-Card/GeForce-RTX-3070-Ti-SUPRIM-X-8G/Specification.

Accessed 4 Dec. 2024.

NVIDIA. "CUDA Toolkit." NVIDIA Developer, 2 July 2013, developer.nvidia.com/cuda-toolkit. Vincent, James. "How Much Electricity Does Al Consume?" *The Verge*, 16 Feb. 2024,

www.theverge.com/24066646/ai-electricity-energy-watts-generative-consumption.