IE613: Online Machine Learning

Jan-Apr 2018

Lecture 20: Stochastic Multi-Armed Bandits

Lecturer: Stochastic Multi-Armed Bandits0 Scribes: Sudhindra Katre

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

20.1 Stochastic Multi-armed Bandits

The stochastic bandit problem:

Known parameters: number of arms 'K'

Unknown parameters: K probability distributions $\nu_1, \nu_2, ..., \nu_k$ on [0,1].

For each round t=1,2,...,T:

1) The learner/forecaster chooses $I_t \epsilon 1, 2, ..., K$

2) Given I_t , the environment draws reward $X_{I_t}(t) \sim \nu_{I_t}$

The learner/forecaster wants the highest expected reward.

Let μ_i be the expectation of the i^th arm.

$$\mu_i = \mathbb{E}[\nu_i] \qquad \qquad i = 1, 2, \dots, K \tag{1}$$

The total reward till round T is $= \sum_{t=1}^{T} X_{I_t}(t)$ If the learner had always pulled the best arm, i^* ,

$$i^* = \underset{\scriptscriptstyle 1}{\operatorname{argmax}} \mu_i$$

Reward in that case would be $= \max_{i} \sum_{t=1}^{T} X_i(t)$ Using these, the expected regret can be defined as

$$R_T = \mathbb{E}[\max_{t=1}^{T} X_i(t)] - \mathbb{E}[\sum_{t=1}^{T} X_{I_t}(t)]$$

Pseudo regret is defined as

$$\tilde{R}_T = \max_{t} \mathbb{E}\left[\sum_{t=1}^T X_i(t)\right] - \mathbb{E}\left[\sum_{t=1}^T X_{I_t}(t)\right]$$

In both definitions, the expectation is taken with respect to the random draw of both rewards and forecaster's actions. Substituting (1),

$$\tilde{R}_T = T\mu^* - \sum_{t=1}^T \mu_{I_t}$$

Introducing the term $N_i(T)$ in the equation above, where $N_i(T)$ is the number of pulls of arm i till round T.

$$\tilde{R}_T = \mathbb{E}\left[\sum_{i=1}^K N_i(T)\right] \mu^* - \mathbb{E}\left[\sum_{i=1}^K N_i(T)\mu_i\right]$$

$$\Longrightarrow \tilde{R}_T = \sum_{i=1}^K \mathbb{E}[N_i(T)](\mu^* - \mu_i)$$

$$\Longrightarrow \tilde{R}_T = \sum_{i=1}^K \mathbb{E}[N_i(T)]\Delta_i$$
where $\Delta_i = \mu^* - \mu_i$ are the 'gaps' between the mean of best arm and mean of other arms. (2)

Note that the expectation here is over realisation of I_t .

20.2 Algorithms for Stochastic MAB

Defining $P_i(t+1)$ as the probability for drawing arm i in $(t+1)^{th}$ round. This is updated in t^{th} round. Defining mean estimate of i^{th} arm till round t as

$$\hat{\mu}_i(t) = \frac{\sum_{s=1}^t X_{I_s}(s) \mathbb{1}_{\{I_s=i\}}}{\sum_{s=1}^t \mathbb{1}_{\{I_s=i\}}}$$

ϵ -greedy algorithm

Update rule:

$$P_i(t+1) = \begin{cases} 1 - \epsilon + \frac{\epsilon}{K} & if \ i = \operatorname{argmax} \ \hat{\mu}(t) \\ \frac{\epsilon}{K} & otherwise \end{cases}$$

Remarks:

If $\epsilon = constant$ for all rounds, it will give linear regret (not sub-linear) for all values of ϵ . If ϵ is varied with rounds, we can achieve sub-linear regret.

Softmax algorithm

$$P_i(t+1) = \frac{e^{\frac{\hat{\mu}_i(t)}{\tau}}}{\sum_{j=1}^K e^{\frac{\hat{\mu}_j(t)}{\tau}}}$$

Here τ is the Boltzman temperature parameter.

Remarks

As $T \to \infty$, we get a uniform distribution.

As $T \to 0$, the term with highest mean will dominate and will go towards greedy algorithm.

Bayesian exploration

Start with a prior and pull posterior distribution (Thompson sampling).

Optimistic exploration algorithms

Optimism in the face of uncertainty (OFU) based on upper confidence bounds (UCB).

UCB 20.3

Change in notation

$$\hat{\mu}_{i,s} = \frac{\sum_{n=1}^{s} X_{i,n}}{s}$$

 $X_{i,n}$ is n^{th} sample of $i^{th}arm$.

Algorithm 1 UCB

Parameters : $\alpha > \frac{3}{2}, K = number of arms$

Let P_1 be the uniform distribution over $\{1, 2, ..., K\}$

Initialize: Pull each arm once.

For each round t = K+1, K+2,...,T:

Draw arm I_t , given by

$$I_t = \underset{1}{\operatorname{argmax}} [\hat{\mu}_{i,N_i(t-1)} + \sqrt{\frac{\alpha \log t}{N_i(t-1)}}]$$

Remarks:

The first term in the expression for I_t is the exploitation term, while the second term is exploration term. Note that exploration is done even for high $N_i(t-1)$, due to the log t term in the numerator of the second term.

Theorem 20.1. UCB Theorem

For the UCB algorithm as given above, following relations hold: 1. $\mathbb{E}[N_i(T)] \leq \frac{4\alpha \log T}{\Delta_i^2} + (\frac{\pi^2}{3} + 1)$ 2. $\tilde{R}_T \leq \sum_{i \neq i^*} \frac{4\alpha \log T}{\Delta_i} + (\frac{\pi^2}{3} + 1)K$

1.
$$\mathbb{E}[N_i(T)] \le \frac{4\alpha \log T}{\Delta_i^2} + (\frac{\pi^2}{3} + 1)$$

2.
$$\tilde{R}_T \le \sum_{i \ne i^*} \frac{4\alpha \log T}{\Delta_i} + (\frac{\pi^2}{3} + 1)K$$

$$\therefore \tilde{R}_T \le \frac{4\alpha \log T}{\Delta} + (\frac{\pi^2}{3} + 1)K \qquad where \ \Delta = \min_{i \ne i^*} \Delta_i$$

Remarks:

- 1. Δ is called the sub-optimality gap. If Δ is small, regret is high.
- 2. Since the regret bound depends on Δ , this is a problem dependent bound.
- 3. From the theorem, we have $\mathbb{E}[N_i(T)] \leq \frac{4\alpha \log T}{\Delta_i^2} + (\frac{\pi^2}{3} + 1)$ From (2), we have $\tilde{R}_T = \sum_{i=1}^K \mathbb{E}[N_i(T)]\Delta_i$

Using this and the expression for $\mathbb{E}[N_i(T)]$ from the inequality in the theorem,

$$\begin{split} \tilde{R}_T &= \sum_{i=1}^K \mathbb{E}[N_i(T)] \Delta_i \\ \tilde{R}_T &= \sum_{i \neq i^*} \mathbb{E}[N_i(T)] \Delta_i \\ \tilde{R}_T &\leq \sum_{i \neq i^*} \left[\frac{4\alpha \log T}{\Delta_i^2} + \left(\frac{\pi^2}{3} + 1\right)\right] \Delta_i \\ \tilde{R}_T &\leq \sum_{i \neq i^*} \left[\frac{4\alpha \log T}{\Delta_i} + \left(\frac{\pi^2}{3} + 1\right) \Delta_i\right] \\ \tilde{R}_T &\leq \sum_{i \neq i^*} \left[\frac{4\alpha \log T}{\Delta} + \left(\frac{\pi^2}{3} + 1\right) K\right] \end{split}$$

(Using the inequality $\sum_{i\neq i^*} \Delta_i \leq K$ (since $\Delta_i \leq 1 \ \forall i$) and Δ is as defined before). Thus, it is enough to prove the first statement of the proof, as the other statements follow from it.

Getting rid of Δ_i

$$\tilde{R}_T = \sum_{i=1}^K \mathbb{E}[N_i(T)]\Delta_i$$

$$\begin{split} \tilde{R}_T &= \sum_{i=1}^K \mathbb{E}[N_i(T)] \Delta_i \\ \text{Rewriting for using Cauchy Schwartz inequality,} \\ \tilde{R}_T &= \sum_{i=1}^K \sqrt{\mathbb{E}[N_i(T)]} \sqrt{\mathbb{E}[N_i(T)] \Delta_i^2} \\ \tilde{R}_T &\leq \sqrt{\sum_{i=1}^K \mathbb{E}[N_i(T)]} \sum_{i=1}^K \mathbb{E}[N_i(T)] \Delta_i^2 \end{split}$$

Substituting
$$\sum_{i=1}^{K} \mathbb{E}[N_i(T)] = T$$
 and the expression for $\mathbb{E}[N_i(T)]$ from the first statement of the theorem, $\tilde{R}_T \leq \sqrt{T \sum_{i=1}^{K} \left[\frac{4\alpha \log T}{\Delta_i^2} + \left(\frac{\pi^2}{3} + 1\right)\right] \Delta_i^2}$

$$\therefore \quad \tilde{R}_T \leq \sqrt{T \sum_{i=1}^{K} \left[4\alpha \log T + \left(\frac{\pi^2}{3} + 1\right) \Delta_i^2\right]}$$

$$\therefore \quad \tilde{R}_T \leq \sqrt{T \left[4K\alpha \log T + K\left(\frac{\pi^2}{3} + 1\right)\right]}$$

$$\therefore \quad \tilde{R}_T \leq \sqrt{TK \left[4\alpha \log T + \left(\frac{\pi^2}{3} + 1\right)\right]} \qquad \text{(since } \sum_{i=1}^{K} \Delta_i^2 \leq K\text{)}$$
Thus we now have a problem independent bound. Proof of UCB theorem will be done in the next lecture.