

Router and Routing Basics

Malin Bornhager
Halmstad University

Routing Protocols and Concepts – CCNA2

- Routing and packet forwarding
- Static routing
- Dynamic routing protocols
- Distance vector routing protocols
- RIP version 1
- VLSM and CIDR
- RIP version 2
- The routing table
- EIGRP
- Link-state routing protocols
- OSPF

Objectives

- Identify a router as a computer with an operating system (OS) and hardware designed for the routing process
- Describe how a router determines a path and switches packets
- Static routing
- Routing protocols (dynamic routing)

Routers

- Special type of computer
- Connect and allow communication between two networks
- Determine the best path through the network
- Configuration files to control the traffic
- Generally have two connection types:
 - WAN connection (connection to ISP)
 - LAN connection

Routers

- Data is sent in form of packets between two end devices
- Routers are used to direct packets to its destination
- Routers examine a packets destination IP address and determine the best path by using a routing table

Cisco IOS Software

Operating system in all of the Cisco routers or switches, which provides the following network services:

- Basic routing and switching functions
- Reliable and secure access to networked resources
- Network scalability

Router components

CPU

Executes operation systems instructions

RAM

Stores instructions and data needed for CPU

ROM

Boot instructions, scaled-down vers. of IOS

Flash

Stores IOS, copied into RAM during bootup proc.

NVRAM

Startup configuration file

Router Boot-up process

- Major phases to the router boot-up process
 - Test router hardware
 - Power-On Self Test (POST)
 - Execute bootstrap loader
 - Locate & load Cisco IOS software
 - -Locate IOS
 - -Load IOS
 - Locate & load startup configuration file or enter setup mode
 - Bootstrap program looks for configuration file

IOS File System Overview

Router interfaces

- Interface: a physical connector on the router, main purpose to receive and forward packets
- Interfaces connects to various types of networks, and different types of media and connectors are required
- Each interface connects to a separate network

Router interfaces

- LAN interfaces
 - Ethernet, fastEthernet
 - Connects the router to a LAN
- WAN interfaces
 - Serial, ISDN, Frame Relay
 - Connects the router to external networks, interconnect LANs

Routing

- Process to forward packets to destination networks
- Layer 3 device
- Examines destination IP address (Layer 3)
- Routing table is used to find best path to destination

Routing

- Forwarding decisions based on Layer 3
- Operates at Layer 1, 2 and 3

Routing Table

- Data file in RAM
- Stores information about directly connected and remote networks
- Contains network/next hop associations
- Directly connected networks
- Remote networks
 - Static routes (manually configured)
 - Dynamic routing protocols (learned from other routers)

- Configured manually
- Specifies network address and subnet mask of remote network, and IP address of next hop router or exit interface
- Use static routes when:
 - Network only consists of few routers
 - Network is connected to Internet only through one ISP

Advantages:

- Minimal CPU processing
- Easy to configure
- Easier for administrator to understand

Disadvantages:

- Configuration and maintenance is timeconsuming
- Does not scale well with growing networks
- Requires complete knowledge of the whole network for proper implementation

Connected and Static Routes


```
Rl#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is not set

C 192.168.1.0/24 is directly connected, FastEthernet0/0
C 192.168.2.0/24 is directly connected, Serial0/0
S 192.168.3.0/24 [1/0] via 192.168.2.2
```

Dynamic routing

- Added to routing table by using a dynamic routing protocol
- Used by routers to share information about the reachability and status of remote networks
- Perform several activities:
 - Network discovery
 - Updating and maintaining routing tables

Dynamic routing

Advantages:

- Less administrative overhead when adding or deleting a network
- Protocols automatically react to the topology changes
- More scalable

Dynamic Routing

Disadvantages:

- Router resources are used (CPU cycles, memory and link bandwidth)
- More administrator knowledge is required for configuration, verification and troubleshooting

Dynamic Routing

Connected, Static and Dynamic Routes


```
Rl#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is not set
C 192.168.1.0/24 is directly connected, FastEthernet0/0
C 192.168.2.0/24 is directly connected, Serial0/0/0
S 192.168.3.0/24 [1/0] via 192.168.2.2
R 192.168.4.0/24 [120/1] via 192.168.2.2, 00:00:20, Serial0/0/0
```

Best Path and Metric

- Multiple path to same destination
- Best path is selected by the routing protocol, based on a specific value (metric)
- Each protocol uses its own rules and metrics to build and update routing tables
- Metric is used to measure the distance to the destination network
- Lowest metric = best path, placed in routing table

Metrics

- Hop cont: counts the number of routers a packet must traverse
- Bandwidth: preferring the path with highest bandwidth
- Load: traffic utilization on a link
- Delay: time for a packet to traverse a path
- Reliability: probability of a link failure
- Cost: determined by IOS or administrator to indicate preference for a route

Path Determination

- The process of how the router determines which path to use when forwarding a packet
- Directly connected
 - Forwarded directly to the destination
- Remote network
 - Forwarded to another router
- No route determined
 - Packet discarded, ICMP unreachable sent

Switching Function

- Process used by a router to accept a packet on one interface and forward it out another interface
- Decapsulate the Layer 3 packet by removing Layer 2 frame header and trailer
- Examines destination IP address of the packet to find best path in routing table
- Encapsulate Layer 3 packet into a new Layer 2 frame and forwards on correct interface

Example

PC 1 will send a packet to PC 2

A Day in the Life of a Packet: Step 1

Example cont.

A day in a life of a packet: Step 2

Example cont.

Example cont.

IP Routing protocol

- RIP (Routing Information Protocol)
- IGRP (Interior Gateway Routing Protocol)
- EIGRP (Enhanced IGRP)
- OSPF (Open Shortest Path First)
- IS-IS (Intermediate System-to-Intermediate System)
- BGP (Border Gateway Protocol)

Autonomous System (AS)

- Collection of networks/routers
- Share a common routing strategy
- Viewed as a single entity from the outside world

Routing Protocols

- Routing protocols can be classified into different groups according to their characteristics
 - Interior GatewayProtocols (IGP)
 - Exterior Gateway Protocols (EGP)

IGP Routing Protocols

Two classes of routing protocols:

- Distance vector
 - Determines the direction and distance to any link in the internetwork
- Link-state
 - Recreates the exact topology of the entire internetwork

Distance Vector Routing Protocol

- Periodic updates
- Slow convergence
- Routing table from directly connected neighbor routers
- Add distances before passing it to other neighbors
- Distance is defined in terms of a metric, such as hop count

Link-state Routing Protocol

- Complex database of topology information
- Knowledge of the entire network
- Uses SPF to calculate the best path
- Updates when changes in the topology occurs
- Fast Convergence
- More memory and processor overhead

Classful Routing Protocols

- Do not send subnet mask information in routing updates
- Do not support variable length subnet masks (VLSM) and discontiguous networks

Classless Routing Protocols

- Include the subnet mask in routing updates
- Supports both VLSM and discontiguous networks
- Required in most networks today

Classful vs. Classless Routing

Classful vs. Classless Routing

Classful: Subnet mask is the same throughout the topology

Classless: Subnet mask can vary in the topology

Convergence

- When all routers routing tables are at a state of consistency
- All routers have complete and accurate information about the network
- Convergence time is the time it takes routers to share information, calculate best paths, and update their routing tables
- A network is not completely operable until the network has converged. Short convergence times are required

Load Balancing

 The ability for a router to distribute packets among multiple same cost paths


```
R2#show ip route

<output omitted>

R 192.168.6.0/24 [120/1] via 192.168.2.1, 00:00:24, Serial0/0/0

[120/1] via 192.168.4.1, 00:00:26, Serial0/0/1
```

Administrative Distance

- Administrative distance is used to determine the best path to a particular destination, when the same path is learned from two or more different routing sources
- Measures the trustworthiness of a routing source
- Lowest AD is inserted in the routing table

Protocols	Default Administrative Distances
Connected	0
Static	1
EIGRP summary route	5
eBGP	20
EIGRP (Internal)	90
IGRP	100
OSPF	110
IS-IS	115
RIP	120
EIGRP (External)	170
iBGP (external)	200

Default Routes

- Used when the router is unable to match a destination network
- Do not have to maintain a routing table entry for every Internet network
- Statically entered by an administrator
 - ip route 0.0.0.0 0.0.0.0
- Dynamically learned using a routing protocol
 - ip default-network