Time Domain Full Waveform Inversion (FWI)

March 13, 2018

Pierre Jacquet
pierre.jacquet@inria.fr

First year PhD Student Inria - Magique 3D - DIP Pau, FRANCE

Outline

Introduction

The Direct Problem

Discontinuous Galerkin formulation Berstein Polynomials

Inverse Problem

FWI Gradient formulation Strategy for the future implementation in Total environment

Conclusion

PhD statred the 6th of November 2017:

► First main axis : The Direct Problem

Second main axis: The Inverse Problem

PhD statred the 6th of November 2017:

- ► First main axis : The Direct Problem
 - Coupling SEM & DG (Aurélien's thesis)
 - Familiarization with DG formulation and implementation
 - Comparison between Lagrange and Bernstein polynomial elements
- Second main axis: The Inverse Problem

PhD statred the 6th of November 2017:

- ► First main axis : The Direct Problem
 - ► Coupling SEM & DG (Aurélien's thesis)
 - Familiarization with DG formulation and implementation
 - Comparison between Lagrange and Bernstein polynomial elements
- Second main axis: The Inverse Problem
 - Adjoint state equation
 - Gradient formulation
 - Strategy for the implementation in Total environment

Discontinuous Galerkin formulation

First order Acoustic Wave equation discretisation:

Continuous Problem:

$$\begin{cases} \rho_0 \frac{\partial \overrightarrow{u}}{\partial_t} + \overrightarrow{grad}(p) = 0 \\ \frac{\partial p}{\partial_t} + \kappa_0 div(\overrightarrow{u}) = 0 \end{cases}$$

Discrete Problem:

$$\begin{cases} P^{n+\frac{1}{2}} = P^{n-\frac{1}{2}} + A_{\rho}U^{n} + RHS_{\rho} \\ U^{n+1} = U^{n} + A_{u}p^{n+\frac{1}{2}} + RHS_{u} \end{cases}$$

First order Acoustic Wave equation discretisation:

Continuous Problem:

$$\begin{cases} \rho_0 \frac{\partial \overrightarrow{u}}{\partial_t} + \overrightarrow{grad}(p) = 0 \\ \frac{\partial p}{\partial_t} + \kappa_0 \operatorname{div}(\overrightarrow{u}) = 0 \end{cases}$$

Discrete Problem:

$$\begin{cases} P^{n+\frac{1}{2}} = P^{n-\frac{1}{2}} + A_p U^n + RHS_p \\ U^{n+1} = U^n + A_u p^{n+\frac{1}{2}} + RHS_u \end{cases}$$

Figure: P[X⁶] Lagrange basis on [0:1] Fig Figure: First 1D DG Simulation

Bernstein Polynomials Properties

Berstein formulation:

$$B_{ijkl}^N = C_{ijkl}^N \lambda_0^i \lambda_j^j \lambda_2^k \lambda_3^l$$
 with: $C_{ijkl}^N = \frac{N!}{i!j!k!l!}$

Bernstein Polynomials Properties

Berstein formulation:

$$B^N_{ijkl} = C^N_{ijkl} \lambda^i_0 \lambda^j_j \lambda^k_2 \lambda^l_3 \quad \text{with}: \ C^N_{ijkl} = \frac{N!}{i!j!k!l!}$$

 $P[X^6]$ Berstein basis

Bernstein Polynomials Properties

Berstein formulation:

$$B_{ijkl}^N = C_{ijkl}^N \lambda_0^i \lambda_j^j \lambda_2^k \lambda_3^l$$
 with: $C_{ijkl}^N = \frac{N!}{i!j!k!l!}$

Easy Derivative expression:

$$\frac{\partial B_{\alpha}^{N}}{\partial \lambda_{p}} = NB_{\alpha-e_{p}}^{N-1}$$
 with: $\alpha = (i, j, k, l)$

 $P[X^6]$ Berstein basis

Bernstein Polynomials Properties

Berstein formulation:

$$B_{ijkl}^N = C_{ijkl}^N \lambda_0^i \lambda_j^j \lambda_2^k \lambda_3^l$$
 with: $C_{ijkl}^N = \frac{N!}{i!j!k!l!}$

Easy Derivative expression:

$$\frac{\partial B_{\alpha}^{N}}{\partial \lambda_{p}} = NB_{\alpha-\theta_{p}}^{N-1}$$
 with: $\alpha = (i, j, k, l)$

Sparse Degree Elevation operator:

$$B_{\alpha}^{N-1} = \sum_{p=0}^{d} \frac{\alpha_p + 1}{N} B_{\alpha + e_p}^{N}$$

 $P[X^6]$ Berstein basis

Bernstein Polynomials Properties

Berstein formulation:

$$B_{ijkl}^N = C_{ijkl}^N \lambda_0^i \lambda_j^j \lambda_2^k \lambda_3^l$$
 with: $C_{ijkl}^N = \frac{N!}{i!j!k!l!}$

Easy Derivative expression:

$$\frac{\partial B_{\alpha}^{N}}{\partial \lambda_{p}} = NB_{\alpha-e_{p}}^{N-1}$$
 with: $\alpha = (i, j, k, l)$

Sparse Degree Elevation operator:

$$B_{\alpha}^{N-1} = \sum_{p=0}^{d} \frac{\alpha_p + 1}{N} B_{\alpha + e_p}^{N}$$

3D D_0 Profil, from J. Chan & T. Warburton [1]

Discontinuous Galerkin formulation

First order Acoustic Wave equation discretisation : Discrete Problem :

$$\begin{cases} P^{n+\frac{1}{2}} = P^{n-\frac{1}{2}} + A_p U^n + RHS_p \\ U^{n+1} = U^n + A_u p^{n+\frac{1}{2}} + RHS_u \end{cases}$$

 A_D/A_U NZVs as a function of the

 A_p/A_u NZVs Sparse (NZVs/Size)

Inverse Problem

FWI Gradient formulation

$$\begin{aligned} M_{\alpha}\partial_{t}^{2}u - \Delta u - f &= 0 \text{ on } \Omega \\ u|_{t=0} &= 0 \\ \partial_{t}u|_{t=0} &= 0 \\ u|_{\Gamma_{1}} &= 0 \text{ on } \Gamma_{1} \\ \partial_{t}u|_{\Gamma_{2}} + c\nabla u|_{\Gamma_{2}}. \overrightarrow{n} &= 0 \text{ on } \Gamma_{2} \\ f &= \text{boundaries+sources signal} \end{aligned}$$

$$\begin{cases} M_{\alpha}\partial_{t}^{2}\lambda - \Delta\lambda - f' = 0 \text{ on } \Omega \\ \lambda|_{t=T} = 0 \\ \partial_{t}\lambda|_{t=0} = 0 \\ \lambda|_{\Gamma_{1}} = 0 \text{ on } \Gamma_{1} \\ \partial_{t}\lambda|_{\Gamma_{2}} + c\nabla\lambda|_{\Gamma_{2}}.\overrightarrow{n} = 0 \text{ on } \Gamma_{2} \\ f' = -R^{*}R(u(T - t, (\alpha)) - d) \end{cases}$$

Figure: Domain Ω

Inverse Problem **FWI** Gradient formulation

$$\begin{split} M_{\alpha}\partial_{t}^{2}u - \Delta u - f &= 0 \text{ on } \Omega \\ u|_{t=0} &= 0 \\ \partial_{t}u|_{t=0} &= 0 \\ u|_{\Gamma_{1}} &= 0 \text{ on } \Gamma_{1} \\ \partial_{t}u|_{\Gamma_{2}} + c\nabla u|_{\Gamma_{2}}.\overrightarrow{n} &= 0 \text{ on } \Gamma_{2} \\ f &= \text{boundaries+sources signal} \end{split}$$

$$\begin{cases} M_{\alpha}\partial_{t}^{2}u - \Delta u - f = 0 \text{ on } \Omega \\ u|_{t=0} = 0 \\ \partial_{t}u|_{t=0} = 0 \\ u|_{\Gamma_{1}} = 0 \text{ on } \Gamma_{1} \\ \partial_{t}u|_{\Gamma_{2}} + c\nabla u|_{\Gamma_{2}}.\overrightarrow{n} = 0 \text{ on } \Gamma_{2} \\ f = \text{ boundaries+sources signal} \end{cases} \begin{cases} M_{\alpha}\partial_{t}^{2}\lambda - \Delta\lambda - f' = 0 \text{ on } \Omega \\ \lambda|_{t=T} = 0 \\ \partial_{t}\lambda|_{t=T} = 0 \\ \lambda|_{\Gamma_{1}} = 0 \text{ on } \Gamma_{1} \\ \partial_{t}\lambda|_{\Gamma_{2}} + c\nabla\lambda|_{\Gamma_{2}}.\overrightarrow{n} = 0 \text{ on } \Gamma_{2} \\ f' = -R^{*}R(u(T - t, (\alpha)) - d) \end{cases}$$

$$\partial_{\alpha}J(u,\alpha) = \int_{0}^{T} (\langle \partial_{\alpha}(M_{\alpha})\partial_{t}^{2}u(t), \lambda(T-t)\rangle_{\Omega})dt$$

Inverse Problem

Strategy for the future implementation in Total environment

FWI gradient [2]:

$$\partial_{\alpha}J(u,\alpha)=\int_{0}^{T}(<\partial_{\alpha}(M_{\alpha})\partial_{t}^{2}u(t),\lambda(T-t)>_{\Omega})dt$$

RTM Imaging Condition [3]:

$$Im = \int_0^T (\langle u(t), \lambda(T-t) \rangle_{\Omega}) dt$$

Conclusion

- ▶ Direct Problem familiarization
 - ► Discontinuous Galerkin
 - Bernstein polynomials properties and assets

Conclusion

- ▶ Direct Problem familiarization
 - Discontinuous Galerkin
 - Bernstein polynomials properties and assets

- ► Inverse Problem
 - Theoretical approach
 - First implementation via RTM in order to accustom with Total environment
 - Then FWI in collaboration with Total engineers

Bibliography

[1] Jesse Chan and T Warburton.

Gpu-accelerated bernstein bézier discontinuous galerkin methods for wave problems.

SIAM Journal on Scientific Computing, 39(2):A628–A654, 2017.

[2] R-E Plessix.

A review of the adjoint-state method for computing the gradient of a functional with geophysical applications.

Geophysical Journal International, 167(2):495–503, 2006.

[3] Jon F. Claerbout. TOWARD A UNIFIED THEORY OF REFLECTOR MAPPING. Geophysics, Feb 1971.