

COMET: Domain Specific COMpiler for Extreme Targets in Multi-Level IR

October 25, 2022

Gokcen Kestor, **Rizwan Ashraf**, Zhen Peng, Ruiqin Tian, Luanzheng Guo, Ryan Friese Pacific Northwest National Laboratory

PNNL is operated by Battelle for the U.S. Department of Energy

Agenda

Time (CDT)	Topic	Presenter	Duration
9.00-9.10	Logistic	G. Kestor	10 minutes
9.10-9.50	Dense and Sparse Tensor Algebra	G. Kestor	40 minutes
9.50-10.30	Hands-on Session	G. Kestor	40 minutes
10.30-11.00	Break		
11.00-11.10	Kernel Fusion	G. Kestor	10 minutes
11.10-11.20	Semiring Support	R. Ashraf	10 minutes
11.20-11.35	FPGA Codegen	R. Ashraf	15 minutes
11.35-12.15	Hands-on Session	R. Ashraf	40 minutes
12.15-12.30	Conclusions and Q&A	All	15 minutes

COMET Kernel Fusion

Redundancy-Aware Kernel Fusion¹

- Compound sparse tensor expressions are commonly used in many domains, including graph analytics, machine learning, and other scientific domain.
- Efficient kernel fusion is needed to eliminate redundant computation
- An expression can be broken into basic operator and each operator can be represented as an index tree

Redundancy-Aware Fusion

- Two step approach
 - 1. Propagate sparse iteration spaces
 - ✓ eliminate dead-value redundancy
 - 2. Trie-like fusion
 - ✓ eliminate reduction and loop invariant redundancy

- Memory optimizations
 - Reduce the size of the intermediate tensors wherever possible

Propagate sparse iteration spaces

Propagate sparsity from consumer to producer

$$A_{ij} = B_{ij} \cdot * (C_{ik} * D_{kj})$$

Trie-like fusion

Fusion is like inserting a key into a trie (prefix tree)

Memory optimization

- Reduce the size of the intermediate tensors wherever possible
- For example SDDMM, we can reduce T_{ij} to an 1-D array

Low-Level codegen

- General loop structure can be generated by traversing the tree
- Generate dense/sparse loop ranges depending on if the loop is dense or

sparse

Final index tree


```
auto T = new double[D2 dimension]();
int jT = 0;
for (int32 t i = 0; i < C1 dimension; i++) {
 for (int32_t k = 0; k < D1_dimension; k++) {
    int32_t kC = i * C2_dimension + k;
    iT = 0;
    for (int32_t jB = B2_pos[i]; jB < B2_pos[(i + 1)]; jB++) {
      int32 t j = B2 crd[jB];
      int32 t jD = k * D2 dimension + j;
      T[jT] += C vals[kC] * D vals[k * D2 dimension + j];
      jT++;
  iT = 0;
  for (int32 t jB = B2 pos[i]; jB < B2 pos[(i + 1)]; jB++) {
   int32_t j = B2_crd[jB];
    A vals[jB] += B vals[jB] * T[jT];
    T[jT] = 0;
    jT++;
```


SDDMM and GNN results (16 cores)

 TACO code generation produces maximal fused code, which introduces redundant computation

COMET Semiring Support

Semiring

- A semiring is an algebraic structure that allows us to perform special operations beyond addition and multiplication to elements in a generic matrix multiplication
- Some constructs found in graph algorithms cannot be represented by standard linear algebra operations but can by semirings
 - Better programming expressiveness
 - Better performance
- Semirings are included in representative libraries like GraphBLAS and Intel MKL

Represent in **semirings** by GraphBLAS:

```
LAGr_mxv (mngp, NULL, GrB_MIN_UINT32, GxB_MIN_SECOND_UINT32, S, gp, NULL);
```

Connected Components: Hooking & shortcutting
Represent in normal linear algebra operations by TACO:

```
// for all edges do hooking and linking
for (int i=0; i < coors.size(); i++) {
    int v_{idx} = coors[i].x, u_{idx} = coors[i].y;
   // update u, v:
                                 Cannot
   v(v_{idx}) = 1; u(u_{idx}) = 1;
   // calculate f_u, f_v, ff_u represent in
   f_u(n) = F(n, m) * u(m);
   f_v(p) = F(p, q) * v(q);
   ff_u(x) = F(x, y) * f_u(y);
    if (equall(f_u, ff_u) && larger(f_u,\negf_v)){
        // hooking - assign f_v to ff_u
                                          Cannot
        int fu_idx = getF(F, u_idx);
                                          represent
        assignColumn(F, v_idx, fu_idx);
// shortcutting
for (int j = 0; j < F.getDimension(1); ++j) {
    int j_f = getF(F, j);
                                     Cannot
    int j_ff = getF(F, j_f);
    if (j_f != j_ff) {
                                    represent in
        assignColumn(F, j_f, j);
```

Challenges to represent semirings in LA

• MIN_SECOND Semirings cannot be represented in normal Linear Algebra

Cannot be represented in normal LA, and must be represented in special LA

Some semiring examples in DSL

```
def main() {
   #IndexLabel Declarations
   IndexLabel [a] = [?];
   IndexLabel [b] = [?];
   IndexLabel [c] = [?];
   #Tensor Declarations
   Tensor<double> A([a, b], {CSR});
   Tensor<double> B([b, c], {CSR});
   Tensor<double> C([a, c], {CSR});
   #Tensor Data Initialization
   A[a, b] = read_from_file(0);
   B[b, c] = read from file(1);
   #PlusTimes semiring
   C[a, c] = A[a, b] @(+,*) B[b, c];
```

```
def main() {
   #IndexLabel Declarations
   IndexLabel [a] = [?];
   IndexLabel [b] = [?];
   #Tensor Declarations
   Tensor<double> A([a, b], {CSR});
   Tensor<double> B([a, b], {CSR});
   #Tensor Data Initialization
   A[a, b] = read from file(0);
   B[a, b] = read from file(1);
   #Min monoid
   C[a, b] = A[a, b] @(min) B[a, b];
```


Semiring Operations* in COMET

Semirings	Operation	Explanation	
Lor-land	s(, &)	'lor' means logical OR; 'land' means logical AND.	
Min-first	s(min, first)	'min' means the minimal value; 'first' means first(x , y) = x : output the value of the first in the pair.	
Plus-times	s(+,x)	'+' means addition; 'x' means multiplication.	
Any-pair	s(any, pair)	'any' means "if there is any; if yes return true". 'pair' means pair(x , y) = 1: x and y both have defined value at this intersection.	
Min-plus	s(min, +)	'min' means the minimal value; '+' means addition.	
Plus-pair	s(+, pair)	'+' means addition; 'pair' means pair(x, y) = 1: x and y both have defined value at this intersection.	
Min-second	s(min, second)	'min' means the minimal value; 'second' means second(x , y) = x : output the value of the second in the pair.	
Plus-second	s(+, second)	'+' means addition; 'second' means second(x , y) = x : output the value of the second in the pair.	
Plus-first	s(+, first)	'+' means addition; 'first' means first(x , y) = x : output the value of the first in the pair.	

^{*} COMET supports arbitrary combinations of operators for semiring

Semiring Operations per application

	Semirings	Operation	Description
BFS	Lor-land	s(, &)	Compute traversal level for each vertex
	Min-first	s(min, first)	Compute parent for each vertex
	Plus-mul	s(+,x)	Number of paths
	Any-pair	s(any, pair)	Reachability
	Min-plus	s(min, +)	Shortest path
SSSP	Min-plus	s(min, +)	Shortest path without mask (Bellman-Ford Algorithm)
TC	Plus-pair	s(+, pair)	Number of triangles
CC	Min-second	s(min, second)	Hooking and shortcutting
PR	Plus-second	s(+, second)	Outbound pagerank score
ВС	Plus-first	s(+, first)	Accumulate path count

Semiring Performance (unjumbled)

- A method returns a matrix in an unjumbled state, with indices sorted
 - if the matrix will be immediately exported in unjumbled form, or
 - if the matrix is provided as input to a method that requires it to not be jumbled

Performance comparison wrt LAGraph¹

[1] Tim Mattson; Timothy A. Davis; Manoj Kumar; Aydin Buluc; Scott McMillan; Jose Moreira; Carl Yang. "LAGraph: A Community Effort to Collect Graph Algorithms Built on Top of the GraphBLAS", IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2019.

Semiring Performance (jumbled)

- A method returns a matrix in a jumbled state, with indices out of order
 - If some methods can tolerate jumbled matrices on input, the sorting of the indices is left pending

COMET HeterogenousTarget

What does an FPGA Accelerator look like?

- Field Programmable Gate Arrays (FPGAs) are reconfigurable hardware devices that can be programmed to provide desired functionality.
 - Challenge: The accelerator design needs to be synthesized (blank slate).
 - Gain: Energy efficient compared to a GPU.
 - Potential: High degree of parallelism.

An FPGA Block Diagram

FPGA Programming Model

- The FPGA programming model is centered on register-transfer level description instead of C/C++ (or other high-level languages).
 - Time required to develop RTL or design for FPGA is high compared to CPU/GPU.
 - The design philosophy is like regular IC than a CPU/GPU.
 - Advances in HLS compiler provides the ability to port C/C++ code to FPGAs.

Xilinx Doc: UG998 (v1.1)

FPGA Parallelism

- FPGA is an inherently parallel processing fabric capable of implementing any logical and arithmetic function that can run on a CPU.
 - Scheduling: group operations in same clock cycle.
 - Pipelining: stages run in parallel.
 - Dataflow: parallel execution of functions in a single program.

FPGA implementation of y = (a * x) + b + c

Xilinx Doc: UG998 (v1.1)

Agile Development of FPGA Accelerators for HPC

• The methodology is based on automated generation of novel hardware concepts starting from a high-level description of the algorithm.

Heterogeneous Devices

 SPIR-V generated by COMET can be used to program FPGAs, GPUs, and CPUs.

Heterogeneous Devices: Minos Computing Lib.

- MCL¹ is an asynchronous task-based programming model and runtime.
 - Orchestrates compute and data among available devices (checks for resources, runtime compilation of kernel code, data locality, power constraints)

^[1] Roberto Gioiosa, Burcu O. Mutlu, Seyong Lee, Jeffrey S. Vetter, Giulio Picierro, and Marco Cesati. 2020. The Minos Computing Library: efficient parallel programming for extremely heterogeneous systems. In Proceedings of the 13th Annual Workshop on General Purpose Processing using Graphics Processing Unit (GPGPU '20)

Minos Computing Library (MCL)

- MCL is based on the OpenCL programming paradigm.
 - Compute-intensive kernels are off-loaded onto accelerators driven from the host.
 - Available as open-source: https://github.com/pnnl/mcl

Real Hardware

Emulated/Simulated Hardware

Workflow for Programming FPGAs Using COMET

COMET DSL, NumPy, Rust **COMET SRC Tensor Algebra Host LLVM IR MCL Exec** FPGA bitstream JIT compilation **Index Tree** (includes MCL) xclbin **SCF** Xilinx HLS (uses LLVM 7) Parallel Loops Linked HLS bc **GPU HLS** bitcode **LLVM** bitcode **SPIRV LLVM IR Ser SPIRV SPIRV** LLVM Language

Xilinx Tools

MLIR

COMET Hands-on Session

Case_spgemm: SpGEMM

```
def main() {
   #IndexLabel Declarations
   IndexLabel [a] = [?];
   IndexLabel [b] = [?];
   IndexLabel [c] = [?];
   #Tensor Declarations
   Tensor<double> A([a, b], {CSR});
   Tensor<double> B([b, c], {CSR});
   Tensor<double> C([a, c], {CSR});
   #Tensor Data Initialization
   A[a, b] = read_from_file(0);
   B[b, c] = read from file(1);
   #Tensor Contraction
   C[a, c] = A[a, b] * B[b, c];
```

- Sparse matrix-sparse matrix multiplication, the output matrix is sparse
- Apply workspace transformations

```
$COMET_OPT  \
    --convert-ta-to-it \
    --opt-comp-workspace \
    --convert-to-loops \
    ../benchs/$fname &> ../IRs/$fname-loop.mlir
```

Execution time: 1.083105

Demo: Case_spgemm

Case_spgemm_dense: SpGEMM

```
def main() {
   #IndexLabel Declarations
   IndexLabel [a] = [?];
   IndexLabel [b] = [?];
   IndexLabel [c] = [?];
   #Tensor Declarations
   Tensor<double> A([a, b], {CSR});
   Tensor<double> B([b, c], {CSR});
   Tensor<double> C([a, c], {Dense});
   #Tensor Data Initialization
   A[a, b] = read_from_file(0);
   B[b, c] = read from file(1);
   C[a, c] = 0.0;
   #Tensor Contraction
   C[a, c] = A[a, b] * B[b, c];
```

- Sparse matrix-sparse matrix multiplication, the output matrix is dense
- No need to apply workspace transformations

```
$COMET_OPT \
   --convert-ta-to-it \
   --convert-to-loops \
   ../benchs/$fname &> ../IRs/$fname-loop.mlir
```

Execution time: 0.506258

Demo: Case_spgemm_dense

Case_f1: GNN without fusion

```
def main() {
   #IndexLabel Declarations
   IndexLabel [i] = [?];
   IndexLabel [k] = [?];
   IndexLabel [j] = [16];
   IndexLabel [h] = [16];
   Tensor<double> B([i, k], {CSR});
   Tensor<double> C([k, h], {Dense});
   Tensor<double> D([h, j], {Dense});
   Tensor<double> A([i, j], {Dense});
   Tensor<double> T([i, h], {Dense});
   #Tensor Data Initialization
   B[i, k] = read_from_file(0);
   C[k, h] = 1.2;
   D[h, j] = 3.4;
   A[i, j] = 0.0;
   T[i, h] = 0.0;
   #GNN
   T[i, h] = B[i, k] * C[k, h];
   A[i, j] = T[i, h] * D[h, j];
```

GNN code generation without fusion

```
$COMET_OPT \
   --convert-ta-to-it \
   --convert-to-loops \
   ../benchs/$fname &> ../IRs/$fname-loop.mlir
```

Execution time: 0.056588

Demo: Case_f1

Case_f2: GNN with fusion

```
def main() {
   #IndexLabel Declarations
   IndexLabel [i] = [?];
   IndexLabel [k] = [?];
   IndexLabel [j] = [16];
   IndexLabel [h] = [16];
   Tensor<double> B([i, k], {CSR});
   Tensor<double> C([k, h], {Dense});
   Tensor<double> D([h, j], {Dense});
   Tensor<double> A([i, j], {Dense});
   Tensor<double> T([i, h], {Dense});
   #Tensor Data Initialization
   B[i, k] = read_from_file(0);
   C[k, h] = 1.2;
   D[h, j] = 3.4;
   A[i, j] = 0.0;
   T[i, h] = 0.0;
   #GNN
   T[i, h] = B[i, k] * C[k, h];
   A[i, j] = T[i, h] * D[h, j];
```

GNN code generation with fusion

Execution time: 0.040478

1.39x Speedup

Demo: Case_f2

Case_plustimes: Semiring

```
def main() {
   #IndexLabel Declarations
   IndexLabel [a] = [?];
   IndexLabel [b] = [?];
   IndexLabel [c] = [?];
   #Tensor Declarations
   Tensor<double> A([a, b], {CSR});
   Tensor<double> B([b, c], {CSR});
   Tensor<double> C([a, c], {CSR});
   #Tensor Data Initialization
   A[a, b] = read_from_file(0);
   B[b, c] = read from file(1);
   #PlusTimes semiring
   C[a, c] = A[a, b] @(+,*) B[b, c];
```

- Plus-times semiring
- Since the output is sparse, need to apply workspace transformations

```
$COMET_OPT \
   --convert-ta-to-it \
   --opt-comp-workspace \
   --convert-to-loops \
   ../benchs/$fname &> ../IRs/$fname-loop.mlir
```


Case_minfirst: Semiring

```
def main() {
   #IndexLabel Declarations
   IndexLabel [a] = [?];
   IndexLabel [b] = [?];
   IndexLabel [c] = [?];
   #Tensor Declarations
   Tensor<double> A([a, b], {CSR});
   Tensor<double> B([b, c], {CSR});
   Tensor<double> C([a, c], {CSR});
   #Tensor Data Initialization
   A[a, b] = read_from_file(0);
   B[b, c] = read from file(1);
   #MinFirst semiring
   C[a, c] = A[a, b] @(min, first) B[b, c];
```

- Min-first semiring, used in BFS algorithm
- Since the output is sparse, need to apply workspace transformations

```
$COMET_OPT \
   --convert-ta-to-it \
   --opt-comp-workspace \
   --convert-to-loops \
   ../benchs/$fname &> ../IRs/$fname-loop.mlir
```


Thank you

