TABLE DES MATIERES

Contents	XV
Avant-propos	xvii
Chapitre 1 — Le langage Ada avec OpenAda	1
1. Petit historique de Ada	
2. Une présentation rapide du langage Ada	
2.1 Le manuel de référence	
2.2 Un survol du langage	
2.3 Exemples d'utilisations de Ada	
3. Utilisation du compilateur OpenAda sur micro-ordinateur	7
Chapitre 2 — Bibliothèque mathématique	
1. Introduction	
2. Le paquetage CRT	
2.1 Spécifications des paquetages COMMON_CRT et CRT	
2.2 Documentation du paquetage CRT	
2.2.1 La procédure CLREOL	
2.2.2 La procédure CLRSCR	
2.2.3 La procédure GOTOXY	
2.2.4 La fonction READKEY	
2.2.5 Les fonctions WHERE_X et WHERE_Y	
2.2.6 La procédure Cursor	
2.2.7 La procédure PUT_CHAR	
2.2.8 La procédure PUT_STRING	
2.2.9 La procédure PUT_LINE_STRING	13
2.2.10 Partie initialisation de CRT	
3. Le paquetage MATH0	
3.1 Spécifications des paquetages COMMON_MATH0 et MATH0	
3.2 Documentation du paquetage MATH0	
3.2.1 La procédure GET_TIME	
3.2.2 La procédure RANDOMIZE	
3.2.3 Les fonctions RANDOM	
3.2.4 La fonction MAJUSCULE	
3.2.5 Les procédures GET_LINE	
3.2.6 La fonction LIRE_REPONSE	16
3.2.7 La procédure PAUSE	16
3.2.8 La procédure BIP	
3.2.9 La procédure CHRONOMETRE	
3.2.10 Les procédures d'entrée des entiers et des réels	
3.2.11 Les fonctions CHAINE_ENTIERE et CHAINE_REELLE	16
3.2.12 La procédure LECTURE_REPERTOIRE	16
3.2.13 La procédure LIRE_FICHIER	17
3.2.14 La procédure FICHIER_EXISTE	17
3.2.15 La procédure CREER_FICHIER	
3.2.16 La procédure MODE_AFFICHAGE	17
3.2.17 La fonction TRUNC	17
3.2.18 La fonction FRAC	17

vi Table des matières

3.2.19 Les procédures de permutation de deux entiers ou deux réels	
3.2.20 Les procédures VAL	17
3.2.21 La fonction LONGUEUR_CHAINE	18
3.2.22 Un exemple de programme utilisant Math0	18
4. Le paquetage MATH1	19
4.1 Spécifications des paquetages COMMON MATH1 et MATH1	20
4.2 Documentation du paquetage MATH1	
4.2.1 Les fonctions Puissances	
4.2.2 Les fonctions ArcTan, ArcSin et ArcCos.	
4.2.3 Les fonctions hyperboliques inverses	
4.2.4 Les fonctions Gamma et LnGamma	
5. Le paquetage Math2	
5.1 Spécifications du paquetage MATH2	22
5.2 Documentation de MATH2	
5.2.1 Les fonctions EVALUE	
5.2.2 La procédure DETRUIT_FONCTION	23
5.2.3 La procédure GET_LINE	
5.2.4 La fonction TEXTE_DE_FONCTION	23
6. Le paquetage GRAPH	
6.1 Spécifications des paquetages COMMON_GRAPH et GRAPH	
6.2 Documentation de GRAPH	
6.2.1 La procédure CLEAR SCREEN.	
6.2.2 La procédure CLOSE GRAPH	
6.2.3 La procédure INIT GRAPH	
6.2.4 La procédure MOVE TO	
6.2.5 La procédure PUT PIXEL	
6.2.6 La procédure LINE	
6.2.7 La procédure LINE_TO	
6.2.8 La procédure RECTANGLE	
7. Le paquetage MATH3	
7.1 Spécifications des paquetages COMMON_MATH3 et MATH3	
7.1 Specifications des paquetages COMMON_MATH3 et MATH3	
7.2.1 La procédure INIT_GRAPHIQUE	
7.2.2 La procédure MODE_TEXTE	
7.2.3 La procédure MESSAGE_ERREUR_GRAPHIQUE	
7.2.4 La procédure TEST_MODE_GRAPHIQUE	26
7.2.5 La procédure TEXT_MOVE_TO	
7.2.6 La procédure PAUSE_GRAPHIQUE	
1	26
7.2.8 La procédure CADRE_GRAPHIQUE	
7.2.9 La procédure FENETRE_GRAPHIQUE	
7.2.10 La procédure CONVERSION	
7.2.11 La procédure DEPLACE	
7.2.12 La procédure TRACE	
7.2.13 La procédure CROIX	
· · · · · · · · · · · · · · · · · · ·	
T · · · · · · · · · · · · · · · · · · ·	
7.2.16 La procédure CERCLE	
7.2.17 La procédure TITRE	
7.2.18 La procédure X_AXE	
7.2.19 La procédure Y_AXE	
7.2.20 La procédure XY_AXES	
7.2.21 La procédure SORTIE_GRAPHIQUE	
7.2.22 Un exemple d'utilisation de MATH2 et de MATH3	
8 Exercices	32

Chapitre 3 — Analyse numérique linéaire	
1. Introduction	
1.1 Position des problèmes	
1.2 Notations	
1.3 Remarques	
1.4 Problèmes numériques liés à la résolution des systèmes linéaires	
1.5 Systèmes dégénérés et numériquement dégénérés	
1.6 Problèmes de stabilité numérique	
1.7 Méthodes de résolution des systèmes linéaires	
1.8 Exemples d'applications	
2. Rappels et compléments sur le calcul matriciel	
2.1 Normes vectorielles et matricielles	
2.1.1 Norme matricielle induite par une norme vectorielle	
2.1.2 Norme utilisée dans ce livre	
2.2 Conditionnement d'une matrice	
2.3 Valeurs propres et rayon spectral d'une matrice	
2.3.1 Définitions	
2.3.2 Propriétés du rayon spectral	
2.4 Quelques propriétés des matrices symétriques réelles	
2.4.1 Transposée d'une matrice	
2.4.2 Spectre des matrices symétriques	
2.5 Matrices à diagonale strictement dominante	
3. Résolution numérique des systèmes linéaires. Inversion des matrices	
3.1 Position des problèmes. Notations	
3.2 Une méthode impraticable : la méthode de Cramer	
3.3 Cas des systèmes triangulaires	
3.3.1 Résolution des systèmes triangulaires	
3.3.2 Inversion des matrices triangulaires	
3.4 Méthode des pivots de Gauss	
3.4.1 Principe de la méthode	
3.4.2 Description de la méthode	
3.4.3 Remarque sur le choix des pivots : méthode de Gauss avec pivots partiels	
3.4.4 Nombre d'opérations élémentaires dans la méthode de Gauss	
3.4.5 Programmation structurée	
3.4.6 Remarques	
3.5 Méthode de Gauss-Jordan	
3.5.1 Méthode d'élimination de Gauss-Jordan	
3.5.2 Inversion et calcul du déterminant d'une matrice	3 /
3.6 Interprétation algébrique de la méthode de Gauss.	5.0
Décomposition L·R ou méthode de Crout	58
3.6.1 Condition nécessaire et suffisante	5.0
pour qu'il n'y ait pas de permutations dans la méthode de Gauss	
3.6.2 Interprétation algébrique de la méthode Gauss	
3.6.3 Détermination pratique de la décomposition L·R	
3.6.4 Résolution d'un système linéaire par la méthode de Crout	
3.6.5 Calcul de l'inverse d'une matrice par la méthode de Crout	
3.7 Cas des matrices tridiagonales	
3.7.1 Notations et hypothèses	
3.7.2 Décomposition L·R d'une matrice tridiagonale	
3.7.3 Méthode de résolution d'un système tridiagonal	
3.7.4 Déterminant d'une matrice tridiagonale	
3.7.5 Exemples d'applications	
3.8 Résolution des systèmes symétriques	63

3.8.1 Décomposition L·D· ^t L	
3.8.2 Calculs pratiques	
3.8.3 Programmation structurée	64
3.8.4 Cas particulier des matrices symétriques définies positives.	
Décomposition B. tB de Cholesky	
3.9 Résolution des systèmes linéaires par des méthodes itératives	
3.9.1 Remarques préliminaires	
3.9.2 Principe des méthodes itératives	
3.9.3 Méthode de Jacobi	
3.9.4 Méthode de Gauss-Seidel	67
3.9.5 Comparaison des méthodes de Jacobi et de Gauss-Seidel	
dans le cas des matrices tridiagonales d'ordre $n \ge 3$	
3.9.6 Méthode de relaxation	
3.9.7 Exemple d'application	
4. Calcul des valeurs propres et des vecteurs propres de certaines matrices réelles	
4.1 Introduction	
4.2 Calcul du rayon spectral d'une matrice. Méthode de la puissance itérée	
4.2.1 Hypothèses et notations	
4.2.2 Méthode de la puissance itérée pour calculer le rayon spectral	
4.3 Calcul des autres valeurs propres par la méthode de déflation	
4.3.1 Hypothèses et notations	
4.3.2 Un lemme	
4.3.3 Programmation structurée	
4.4 Méthode de Rutishauser	
4.4.1 Un lemme	
4.4.2 Hypothèses	
4.4.3 Principe de la méthode de Rutishauser	
4.4.4 Une condition suffisante de convergence de la méthode de Rutishauser	80
4.5 Méthode de Jacobi pour calculer les valeurs et vecteurs propres	
d'une matrice symétrique	
4.6 Méthodes de calcul du polynôme caractéristique	
4.6.1 Méthode de Souriau.	
4.6.2 Méthode de Krylov	
4.6.3 Méthode de Leverrier	
5. Exercices	
6. Programmation Ada	
(6.1) Spécifications des paquetages COMMON_MATRIX et MATRIX	
(6.2) Spécification du paquetage Algeblin	94
(6.3) Spécification du paquetage Donnees_ALGEBLIN	95
(6.4) Démonstration de la méthode des pivots de Gauss	
(6.5) Démonstration de la méthode L·R	
(6.6) Démonstration de la méthode du double balayage de Cholesky	
(6.7) Démonstration de la méthode de Gauss-Jordan	
(6.8) Démonstration de la méthode de Cholesky	
(6.9) Démonstration de la méthode de Jacobi	
(6.10) Démonstration de la méthode de relaxation	
(6.11) Démonstration de la décomposition Q·R	
(6.12) Démonstration du calcul de l'inverse d'une matrice de Van Der Monde	
(6.13) Spécification du paquetage SPECTRE	
(6.14) Démonstration de la méthode de déflation	
(6.15) Démonstration de la méthode de Rutishauser	
(6.16) Démonstration de la méthode de Jacobi	
(6.17) Démonstration de la méthode de Souriau	106

1. Introduction	
1.1 Position des problèmes	
1.2 Remarques	107
2. Cas des équations numériques	108
2.1 Notations	
2.2 La méthode dichotomie ou de bissection	
2.3 La méthode de Newton-Raphson	109
3. Cas des équations algébriques	111
3.1 Introduction	111
3.2 La méthode Newton_Maehly	111
4. Résolution des systèmes non linéaires par la méthode de Newton-Raphson	113
4.1 Introduction	113
4.2 Algorithme de Newton-Raphson	114
4.3 Calcul de la matrice jacobienne	114
4.4 Programmation structurée	114
5. Racines d'un polynôme. Méthode de Bairstow	
5.1 Principe de la méthode	
5.2 Recherche des coefficients p et q	115
5.3 Programmation structurée	118
6. Exercices	
7. Programmation Ada	120
7.1 Spécification du paquetage EQUATIONS GENERIQUE	
7.2 Démonstration du paquetage EQUATIONS GENERIQUE	
7.3 Spécification du paquetage SYSTEME_EQUATIONS_GENERIQUE	122
7.4 Démonstration du paquetage SYSTEME EQUATIONS GENERIQUE	
7.5 Spécifications des paquetages COMMON_POLY et POLY	
7.6 Démonstration du paquetage POLY	
Chapitre 5 — Approximation et interpolation	
1. Introduction	127
2. Problèmes d'approximation. Méthode des moindres carrés	
2.1 Introduction	
2.2 Exemples	
2.2.1 La loi d'Ohm.	
2.2.2 Elongation d'un ressort	
2.2.3 Problème du fil chaud.	
2.2.4 Corrélation statistique	
2.3 Détermination des paramètres	
2.4 Principes des méthodes des moindres carrés	
2.5 Les modèles linéaires	
2.5.1 Généralités	
2.5.2 La régression affine	
2.5.2 La regression armie 2.5.3 Exemple : le problème du fil chaud	
2.5.4 Régression polynomiale	
2.5.5 Cas général	
2.5.6 Régression trigonométrique	
2.6 Les modèles non linéaires	
2.7 Un exemple d'application : détermination du coefficient de traînée	13/
	120
d'une particule sphérique	176
2.8.1 Notations et hypothèses	140
2.8.2 Calcul du cercle des moindres carres 2.8.3 Application à un calcul de rayon de courbure	
3. Approximation uniforme des fonctions continues.	148
5. Approximation uniforme des fonctions continues. Courbes de Rernstein Rézier et R-Snlines	149
COMPENDE DEFINIEM DEZIEFELD-OBLINES	149

Table des matières

3.1 Position du problème	149
3.2 Les bases de Bernstein. Polynômes de Bernstein	150
3.2.1 Les bases de Bernstein.	
3.2.2 Polynômes de Bernstein associés à une fonction continue	152
3.3 Les courbes de Bézier	152
3.3.1 Données du problème	152
3.3.2 Les courbes de Bézier	153
3.3.3 Algorithme de De Casteljeau	154
3.4 Les surfaces de Bézier	
3.4.1 Définition	
3.4.2 Propriétés	
3.4.3 Algorithme de De Casteljeau	
3.5 Les courbes B-Splines	
3.5.1 Introduction	
3.5.2 Fonctions de base B-Splines.	
3.5.3 Courbes B-Splines	
4. Problèmes d'interpolation	
4.1 Introduction. Position des problèmes	
4.2 L'interpolation polynomiale de Lagrange	
4.2.1 L'interpolation linéaire.	
4.2.2 Le théorème d'interpolation de Lagrange	
4.2.3 Algorithme de Neville pour calculer le polynôme de Lagrange	
4.2.4 Forme de Newton du polynôme de Lagrange	
4.2.5 Sur le choix des abscisses d'interpolation. Les polynômes de Tchébychev	
4.3 Interpolation spline cubique	
4.3.1 Introduction	
4.3.2 Position du problème. Notations	
4.3.3 Calcul des coefficients di	
4.3.4 Calcul des bi et des ai	
4.3.5 Calcul des ci	
4.3.6 Calcul des si = x"i	
4.3.7 L'interpolation spline naturelle	
4.3.8 Programmation structurée pour l'interpolation spline naturelle	
4.3.9 Application à un calcul d'intégrale	
4.3.10 Cas des fonctions périodiques	
4.3.11 Interpolation spline pour les courbes fermées	
4.3.12 Majoration de l'erreur d'interpolation	
5. Exercices	
5. Programmation Ada	
6.1 Spécification du paquetage REGRESSIONS	
6.2 Le paquetage DONNEES_POINTS	
6.3 Démonstration de la régression affine	
6.4 Démonstration de la régression polynomiale	
6.5 Démonstration de la régression circulaire	
6.6 Spécification du paquetage BEZIER	
6.7 Démonstration de l'approximation de Bézier	
6.8 Spécification du paquetage B SPLINE.	
6.9 Démonstration de l'approximation B Spline	
6.10 Spécification du paquetage LAGRANGE	
6.11 Démonstration de l'interpolation de Lagrange	
6.12 Spécification du paquetage INTERPOLATION SPLINE	
6.13 Démonstration de l'interpolation spline	
Chapitre 6 — Calcul numérique des intégrales	197
THE THE POSITION AND PROPERTIES.	1 X /

1.1 Remarques préliminaires sur le calcul des primitives	
1.1.1 Calcul direct des intégrales	187
1.1.2 A propos des primitives élémentaires	187
1.2 Elaboration de méthodes numériques	188
2. Méthodes de calcul par interpolation polynomiale. Schémas d'intégration classiques .	189
2.1 Idée des méthodes par interpolation	189
2.2 Résolution du problème (2)	190
2.2.1 Existence et unicité d'une solution	190
2.2.2 Détermination pratique des coefficients ai	190
2.2.3 Majoration de l'erreur	
2.3 Cas particulier où les xi sont équidistants. Méthodes de Newton et Cotes	
2.3.1 Calcul des coefficients ai	
2.3.2 Majoration de l'erreur dans les méthodes de Newton Cotes	
2.4 Méthodes classiques d'intégration	
2.4.1 Cas n = 1. Méthode des trapèzes	
2.4.2 Cas n = 2. Méthode de Simpson	
2.4.3 Méthode de Romberg	
3. Utilisation des polynômes orthogonaux. Quadratures de Gauss	
3.1 Introduction. Idées des méthodes	
3.2 Notations. Position du problème	
3.2.1 Notations	
3.2.2 Position du problème	
3.3 Calcul des abscisses xi et des coefficients de Gauss ai	
3.3.1 Remarque	
3.3.2 Condition nécessaire et suffisante sur P	202
3.3.3 Détermination explicite de Pn	
3.4 Propriétés des polynômes orthogonaux. Calcul des coefficients de Gauss	
3.4.1 Récurrence vérifiée par les polynômes orthogonaux	
3.4.2 Formule de Darboux-Christoffel	
3.4.3 Calcul des coefficients de Gauss ai	
3.5 Majoration de l'erreur de quadrature	
3.6 Exemples classiques de polynômes orthogonaux	205
et formules de quadrature correspondantes	205
3.6.1 Les polynômes de Legendre	
3.6.2 Polynômes de Tchébychev	
3.6.3 Polynômes de Laguerre	
3.6.4 Polynômes d'Hermite	
4. La méthode probabiliste de Monte-Carlo	
4.1 Nombres pseudo-aléatoires	
4.2 La méthode de Monte-Carlo. Première version : tirage par « noir ou blanc »	
4.2.1 Equiprobabilité sur un segment, ou un pavé de R ⁿ	210
4.2.2 Calcul d'une intégrale simple	
4.2.3 Calcul d'une intégrale multiple	
4.2.4 Remarques	
4.3.1 Remarques préliminaires	
4.3.1 Remarques premimates 4.3.2 Méthode de Monte Carlo avec échantillonnage simple	
4.3.3 Utilisation de transformations antithétiques	
4.3.5 Exemple : calcul des coordonnées du centre de gravité d'un corps	
5. Transformation de Fourier rapide	
5.1 Position du problème. Notations	
5.2 Approximation des $\hat{f}(x_k)$	217
5.3 La transformation de Fourier discrète	218

xii Table des matières

	5.3.1 Définition, propriétés	218
	5.3.2 Calcul direct de la transformée de Fourier discrète	
	5.4 L'algorithme F.F.T. de Cooley et Tukey	220
	5.4.1 Introduction	
	5.4.2 Cas particulier n = 2	
	5.4.3 Cas particulier n = 4	
	$5.4.4 \text{ Cas général } n = 2^p$	
	5.4.5 Utilisation de (p) pour calculer la transformation de Fourier discrète	
	5.4.6 Nombre d'opérations élémentaires dans l'algorithme de Cooley et Tukey	
	5.4.7 Programmation structurée	
	5.5 Application au calcul des coefficients de Fourier d'une fonction périodique	
6	Exercices	
	Programmation Ada	
′.	7.1 Spécification du paquetage INTEGRATION GENERIQUE	
	7.2 Démonstration du paquetage INTEGRATION GENERIQUE	
	7.3 Spécifications des paquetages COMMON_FOURIER et FOURIER_GENERIQUE.	
	7.4 Démonstration du paquetage FOURIER GENERIQUE	
_		255
(Chapitre 7 — Résolution numérique des équations différentielles	
1	. Introduction. Origines des problèmes d'équations différentielles	237
2.	Problème de Cauchy	238
	2.1 Position du problème	238
	2.2 Problème de l'existence et l'unicité de solutions	240
	2.3 Approximation de la solution d'un problème de Cauchy par discrètisation	242
3.	Généralités sur les méthodes d'intégration à un pas	
	3.1 Définitions	243
	3.2 Lien entre l'erreur de consistance et l'erreur de discrètisation	243
	3.2.1 Hypothèses	243
	3.2.2 Première évaluation de l'erreur de consistance	
	3.2.3 Hypothèses supplémentaires	
	3.2.4 Deuxième évaluation de l'erreur de consistance	
	3.2.5 Majoration de l'erreur de discrétisation	
	3.3 Les méthodes de Runge-Kutta.	
	3.3.1 Principe des méthodes de Runge-Kutta	
	3.3.2 Exemples classiques	
	3.3.3 Remarque	
	3.3.4 Les schémas RK2	
	3.4 Programmation structurée de la méthode RK4	= .>
	pour les équations différentielles d'ordre 1	249
	3.5 Programmation structurée de la méthode RK4	
	pour les systèmes de p équations différentielles d'ordre 1	250
	3.6 Programmation structurée de la méthode RK4	== +
	pour les équations différentielles d'ordre q	251
	3.7 Programmation structuréede la méthode RK4	201
	pour les systèmes de p équations différentielles d'ordre q	252
4	Contrôle du pas d'intégration	
•	4.1 Position du problème	
	4.2 Choix du pas d'intégration à l'étape i du calcul	
	4.3 Programmation structurée de la méthode de Runge-Kutta d'ordre 4	254
	avec contrôle du pas	255
5	Problèmes avec conditions aux limites. Méthode du tir	
J.	5.1 Introduction : position du problème	
	5.2 La méthode du tir	
	5.2.1 Rappels	
	5.2.2 Programmation structurée de la méthode du tir	
	5.2.2 110514HIHIGHOH SHUCKHOO GC 14 HICHIOGC GU HI	451

6. Un exemple d'application. Mouvement de translation	
d'un corps sphérique pesant dans un fluide au repos	259
6.1 Position du problème et notations	259
6.2 Equations du mouvement de la sphère	260
7. Exercices	266
8. Programmation Ada	268
8.1 Spécification du paquetage EQUADIFF_11_GENERIQUE	268
8.2 Spécification du paquetage EQUADIFF_P1_GENERIQUE	269
8.3 Spécification du paquetage EQUADIFF_1Q_GENERIQUE	
8.4 Spécification du paquetage EQUADIFF PQ GENERIQUE	
8.5 Démonstration du paquetage EQUADIFF 11 GENERIQUE	
8.6 Démonstration du paquetage EQUADIFF P1 GENERIQUE	
8.7 Démonstration du paquetage EQUADIFF_1Q_GENERIQUE	
8.8 Démonstration du paquetage EQUADIFF_PQ_GENERIQUE	
Chapitre 8 — Méthode des différences finies	
1. Problème de Dirichlet linéaire en dimension un	279
1.1 Introduction	
1.2 Théorème d'existence et d'unicité de solutions du problème de Dirichlet linéaire	
1.3 Forme canonique de l'équation de Dirichlet. Le problème de Poisson	
1.4 Résolution approchée du problème de Dirichlet par discrétisation	
2. Approximations des dérivées d'une fonction par différences finies	
2.1 Approximation de f'(x0) par différence finie centrée	
2.2 Approximation de f'(x0) par différence finie centrée	
3. Résolution approchée du problème de Dirichlet par la méthode des différences finies	
3.1 Discrétisation du problème de Dirichlet	
3.2 Discrétisation de l'équation de Poisson	
3.3 Majoration de l'erreur	
·	
3.3.1 Majoration de $h(x) = y(x) - \psi(x)$	
3.3.2 Majoration de $q(x) = y(x) - j(x)$	
3.3.3 Majoration de $g(x) = y(x) - \varphi(x)$	
4. Exemples d'application	
4.1 Dissipation de la chaleur dans un disque	
4.2 Fléchissement d'une poutre	288
5. Résolution approchée d'équations aux dérivées partielles	• • • •
par la méthode des différences finies	
5.1 Intervention des équations aux dérivées partielles en physique	
5.1.1 L'équation des cordes vibrantes ou équation des ondes en dimension un	
5.1.2 L'équation des ondes en dimension deux	291
5.1.3 Equation de la chaleur en dimension un	
5.2 Classification des équations aux dérivées partielles d'ordre 2	
5.2.1 Introduction	
5.2.2 Cas particulier des équations à coefficients constants et sans second membre	
5.2.3 Cas général	
5.2.4 Exemple	
5.2.5 Remarque	
5.3 Principe de la méthode des différences finies	
5.4 Cas d'un problème avec conditions au bord : l'équation de Poisson	
5.5 Equations elliptiques avec conditions aux bords sur un rectangle	
5.5.1 Position du problème et notations	298
5.5.2 Discrétisation du problème (1)	299
5.5.3 Méthode SOR (Simultaneous Over-Relaxation) pour résoudre un système	
tridiagonal par blocs	302
5.5.4 Programmation structurée de la méthode S.O.R	
avec accélération de Tchébycheff	303

xiv Table des matières

5.6 Cas particulier de l'équation de Poisson	304
5.7 Exemple d'application : distribution de la température	
en régime stationnaire dans une cheminée	305
5.8 Premier exemple d'équation parabolique : l'équation de la chaleur à une dimension	
5.8.1 Introduction	
5.8.2 Existence et unicité de solutions de (1)	
5.8.3 Résolution de l'équation de la chaleur à une dimension	
par des méthodes de différences finies	308
5.8.4 Problèmes de stabilité	
5.9 Equations paraboliques linéaires à une variable d'espace avec conditions initiales	
6. Exemple d'application : Phénomène de sustentation par utilisation d'une source	
de pression. Le patin hydrostatique	313
6.1 Présentation du problème	
6.2 Détermination du coefficient Ks	
6.3 Détermination du coefficient Kq	
6.4 Raideur du patin	
6.5 Modélisation du champ de pression	
6.5.1 Introduction	
6.5.2 Les équations de laminage	
6.5.3 Résolution dans le cas où les termes d'accélération sont très petits	
7. Exercices	
8. Programmation Ada	
8.1 Spécification du paquetage DIRICHLET	319
8.2 Démonstration du paquetage DIRICHLET	
8.3 Spécification du paquetage NIVEAUX	
8.4 Spécification du paquetage EDP_ELLIPTIQUES	
8.5 Démonstration du paquetage EDP_ELLIPTIQUES	
8.6 Spécification du paquetage EDP PARABOLIQUES	
8.7 Démonstration du paquetage EDP_PARABOLIQUES	
Bibliographie	329
Index	333

Table des matières xv

Avant-propos

Le but de cet ouvrage est de décrire, sans référence à un quelconque langage de programmation, des méthodes classiques d'analyse numérique, et de mettre à la disposition du programmeur scientifique (mathématicien ou utilisateur des mathématiques) une bibliothèque mathématique écrite en Ada et prête à l'emploi sur compatible PC.

Cet ouvrage pourra être très utile aux auditeurs du cours « programmation scientifique » du cycle B du Cnam ainsi qu'à tout étudiant en licence, maîtrise d'analyse numérique ou école d'ingénieurs. De manière plus générale il intéressera tout utilisateur de l'outil mathématique sur ordinateur.

L'informatique et les mathématiques sont ici des outils. C'est un ouvrage de programmation mathématique dans la lignée des « Numerical Recipes ».

Cet ouvrage n'a pas la prétention d'être un ouvrage d'informatique. Son but est de montrer que le langage Ada peut être très efficace pour résoudre des problèmes numériques (créneau non encore exploité). J'espère inciter le programmeur scientifique en Pascal ou autre à évoluer vers Ada. Il est vrai que la lecture sera plus aisée pour le lecteur connaissant Pascal (c'est théoriquement le cas pour tout étudiant en école d'ingénieur).

Dans le premier chapitre on fait un rapide tour d'horizon du langage Ada en mettant l'accent sur les grandes qualités de ce langage (essentiellement l'apprentissage d'une « bonne hygiène de programmation »). Le lecteur devra consulter la bibliographie pour plus de détails. Ce chapitre se termine par une brève description du compilateur Open Ada sur PC, distribué en France par Cerus Informatique.

Dans le deuxième chapitre on décrit une série de paquetages de base permettant de manipuler des fonctions d'une ou plusieurs variables réelles et d'exploiter les spécificités du PC pour travailler en mode graphique. Cette bibliothèque est inspirée du logiciel Modulog utilisé par les élèves de classes préparatoires. Elle est adaptée à l'utilisation du compilateur Open Ada sur PC. En général, les ouvrages sur le langage Ada ne se préoccupent pas d'une implémentation particulière d'un compilateur et pourtant il faudra bien travailler sur un type particulier de matériel.

A ma connaissance une telle bibliothèque livrée avec les sources Ada n'est pas disponible dans le domaine public et pourra être très utile au programmeur scientifique.

Dans l'ouvrage, seules les spécifications sont présentées. C'est tout ce que l'utilisateur à besoin de connaître. Le corps de ces paquetages est disponible sur la disquette livrée avec l'ouvrage.

Dans les chapitres 3 à 8 on décrit des méthodes numériques de base.

Pour chaque chapitre j'ai adopté la même philosophie de travail :

- Définir le problème à résoudre.
- Analyser le problème en donnant des résultats théoriques sur l'existence et l'unicité de solutions.
 Décrire les méthodes numériques classiques d'intérêt pédagogique et présenter des méthodes

Par exemple, pour le calcul des intégrales on a les méthodes classiques des trapèzes et de Simpson puis celle plus performante de Romberg.

Ces méthodes sont décrites, du point de vue mathématique de façon rigoureuse, mais je n'ai pas jugé utile de réécrire certaines démonstrations que l'on peut trouver dans la littérature. J'utilise des références du type : voir Stoer et Burlisch p. 234.

— Ces méthodes étant destinées à être programmées, l'analyse précédente se termine par une programmation structurée en Français (en italique dans le texte) sans référence à un quelconque langage de programmation.

xvi Table des matières

L'intérêt de cette façon de programmer est de ne pas restreindre le public aux seuls programmeurs

- Une série d'exercice est proposée pour chaque chapitre.
- Enfin le chapitre se termine par la programmation Ada correspondante sous forme de paquetages et d'exemples d'utilisation (en « courier » dans le texte). Seules les spécifications des paquetages et des programmes d'exemples figurent sur le manuscrit, l'intégralité se trouvant sur la disquette.

On donne également des exemples d'applications de ces méthodes à des problèmes issus de la mécanique des fluides. Ces exemples sont dus à Guy Aubry, professeur de mécanique des fluides à l'Ensam.

Les sujets traités sont :

Ada.

Chapitre 3 — Résolution de systèmes d'équations linéaires et recherche de valeurs propres.

Chapitre 4 — Résolution de systèmes d'équations non linéaires.

Chapitre 5 — Mathématiques pour la CAO (Conception Assistée par

Ordinateur) : approximations par des courbes de régression, de Bézier et

B-Splines; interpolations de Lagrange et Splines cubiques.

Chapitre 6 — Calculs d'intégrales et transformée de Fourier rapide (outils de la théorie du signal).

Chapitre 7 — Résolution d'équations et de systèmes différentiels.

Chapitre 8 — Résolution d'équations aux dérivées partielles par la méthode des différences finies.

Avec cet ouvrage je pense convaincre le lecteur que le langage Ada est vraiment bien adapté à la programmation mathématique (sécurité nettement supérieure à ce qu'on peut espérer avec les autres langages de programmation, réutilisabilité des composants logiciels, gestion des tableaux très efficace sans avoir à utiliser de pointeurs, ...).

Remerciements — Je tiens à remercier le Professeur André Warusfel qui a bien voulu étudier mon manuscrit. C'est pour moi un grand honneur de le publier dans la collection qu'il coordonne : « Logique Mathématiques et Informatique ».

Je remercie également Marcel Nicolas, Directeur de l'ENSAM de Châlons sur Marne qui a mis à ma disposition le matériel nécessaire à la réalisation de ce livre.

Enfin un grand merci à mon ami et collègue Jean Luc Bauchat pour avoir lu et critiqué une première version.

Contenu de la disquette fournie avec le livre — Cette disquette est découpée en répertoires comme décrit cidessous.

<i>A:\DIVERS</i> — Chapitre 2			
PREMIERS.ADA	LIST.ADA	POLYGO.ADA	DEM_CART.ADA
DEM_NIV.ADA	DEM_CURV.ADA		
A:\BIBLIO — Chapitres 2 à 8			
LIO.ADS	CO_CRT.ADS	CRT.ADS	CRT.ADB
CO_MATH0.ADS	MATH0.ADS	MATH0.ADB	CO_MATH1.ADS
MATH1.ADS	MATH1.ADB	LIRE_FCT.ADA	MATH2.ADS
MATH2.ADB	CO_MATH3.ADS	MATH3.ADS	MATH3.ADB
CO_GRAPH.ADS	GRAPH.ADS	GRAPH.ADB	CURVE.ADS
CURVE.ADB	CARTESIE.ADS	CARTESIE.ADB	CO_MATRI.ADS
MATRIX.ADS	MATRIX.ADB	NIVEAUX.ADS	NIVEAUX.ADB
ALGEBLIN.ADS	ALGEBLIN.ADB	SPECTRE.ADS	SPECTRE.ADB
DON_ALGL.ADS	DON_ALGL.ADB	CO_POLY.ADS	POLY.ADS
POLY.ADB	COMPLEXE.ADS	COMPLEXE.ADB	EQUATION.ADS
EQUATION.ADB	SYST_EQU.ADS	SYST_EQU.ADB	REGRESS.ADS
REGRESS.ADB	BEZIER.ADS	BEZIER.ADB	B_SPLINE.ADS
B_SPLINE.ADB	LAGRANGE.ADS	LAGRANGE.ADB	SPLINE.ADS
SPLINE.ADB	DON_PTS.ADS	DON_PTS.ADB	INTEGRAT.ADS
INTEGRAT.ADB	CO_FOURI.ADS	FOURIER.ADS	FOURIER.ADB
CO_QDIF.ADS	QDIF_11.ADS	QDIF_11.ADB	QDIF_P1.ADS
QDIF_P1.ADB	QDIF_1Q.ADS	QDIF_1Q.ADB	QDIF_PQ.ADS
QDIF_PQ.ADB	DIRICHLE.ADS	DIRICHLE.ADB	ELLIPTIC.ADS
ELLIPTIC.ADB	PARABOLI.ADS	PARABOLI.ADB	

Table des matières xvii

A:\DONNEES — Données pour les programmes

EDP — Chapitre 8

DEM DIRI.ADA

REGR AFF.DAT : Nuage de points pour la régression affine.

SPL PARA.DAT : Nuages de points pour l'interpolation spline. SPL CART.DAT

DEM ELLI.ADA

BILLE.DAT : Données pour BILLE1.ADA et BILLE.ADA.

B SPLINE.DAT : Nuage de points pour l'interpolation B Spline.

B_SPLINE.DAT : Nuage de points pour l'interpolation B_Spline.					
ALGEBLIN — Chapitre 3					
DEM_PIV.ADA	DEM_LR.ADA	DEM_GJ.ADA			
DEM_CHOL.ADA	DEM_JAC.ADA	DEM_REL.ADA			
DEM_VPJA.ADA	DEM_RUTI.ADA	DEM_SOU.ADA			
DEM_QR.ADA	DEM_ALGL.ADA				
DEM_EQU.ADA	DEM_SYST.ADA				
DEM_POL.ADA	DEM_CIRC.ADA	DEM_APPR.ADA			
DEM_BEZI.ADA	DEM_BSPL.ADA	DEM_LAGR.ADA			
DEM_APP1.ADA	DEM_APP2.ADA				
DEM_FFT.ADA					
EQUADIFF — Chapitre 7					
DEM_RK11.ADA	DEM_RKP1.ADA	DEM_RK1Q.ADA			
DEM_QDIF.ADA					
	DEM_PIV.ADA DEM_CHOL.ADA DEM_VPJA.ADA DEM_QR.ADA DEM_EQU.ADA DEM_POL.ADA DEM_BEZI.ADA DEM_APP1.ADA DEM_FFT.ADA DEM_RK11.ADA	DEM_PIV.ADA DEM_CHOL.ADA DEM_CHOL.ADA DEM_VPJA.ADA DEM_RUTI.ADA DEM_QR.ADA DEM_ALGL.ADA DEM_SYST.ADA DEM_POL.ADA DEM_BEZI.ADA DEM_APP1.ADA DEM_APP2.ADA DEM_RK11.ADA DEM_RKP1.ADA			

Notes — Les programmes proposés dans ce livre le sont à titre pédagogique. Je ne garantis en aucune manière qu'ils soient exempts d'erreurs. Le lecteur peut les utiliser à ses propres risques et périls. Ni l'auteur ni les éditions Masson ne peuvent être tenus pour responsables des dommages que l'utilisation de ces programmes pourrait occasionner.

En aucun cas ces programmes ne peuvent être utilisés à des fins commerciales ou industrielles. Open Ada est une marque déposée de Meridian Software.

DEM CHAL.ADA

DEM EDP.ADA

First Ada est une marque déposée de Alsys.