.

.

Matematika I

Povzetek skripte za MAT I ustni izpit

Povzel : Luka Orlić

Originalna avtorja skripte : dr. Mrčun, Janez in dr. Kališnik, Jure

Kazalo

1	Mnozice		
	1.1	Naravna števila	2
	1.2	Realna števila	2
2	Zve	znost	3
3	Ena	akomerna zveznost	3
4	Tay	lorjeva formula	3
	4.1	Linearni približek funkcije v okolici točke a	3
	4.2	Taylorjev polinom	3
	4.3	Taylorjeva vrsta	4
5	Potenčna vrsta		5
	5.1	Konvergenčni radij	5
	5.2	Množenje dveh vrst - Cauchyjev produkt	5
	5.3	Odvajanje potenčne vrste	5
6	Zaporedje funkcij		6
	6.1	Konvergenca po točkah	6

1 Množice

1.1 Naravna števila

1.1.1 Peanovi aksiomi

- (P1) 1 je naravno šteivlo
- (P2) $\forall n \in \mathbb{N} \exists ! \ n+1$, ki ga označimo z n^+
- (P3) $\forall n, m \in \mathbb{N}; n \neq m \implies n^+ \neq m^+$
- (P4) 1 ni naslednik nobenega naravnega števila
- (P5) če $A \subset \mathbb{N} \land 1 \in A \land \forall n \in A \exists n^+ \in A \implies A = \mathbb{N}$

1.1.2 Lastnosti naravnih števil

Narvan števila so števno neskonča. Naravan števila so navzgor neomejena, navzdol so omejena z 1.

1.2 Realna števila

1.2.1 Definicija

- (A1) Asociativnost seštevanja : $\forall x, y, z \in \mathbb{R}$ velja x + (y + z) = (x + y) + z
- (A2) Komutativnost seštevanja : $\forall x, y \in \mathbb{R}$ velja x + y = y + x
- (A3) Nevtralni element seštevanja : $\exists 0 \in \mathbb{R} \mid \forall x \in \mathbb{R}$ velja 0+x=x
- (A4) Nadsprotna vrednost seštevanja : $\forall x \in \mathbb{R} \implies \exists -x \in \mathbb{R} | x + (-x) = (-x) + x = 0$
- (A5) Asociativnost množenja : $\forall x, y, z \in \mathbb{R}$ velja $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- (A6) Komutativnost množenja : $\forall x,y \in \mathbb{R}$ velja $x \cdot y = y \cdot x$
- (A7) Nevtralni elemn
t množenja : $\exists 1 \in \mathbb{R} \mid \forall x \in \mathbb{R}$ velja $1 \cdot x = x \cdot 1 = x$
- (A8) Nadsprotna vrednost množenja : $\forall x \in \mathbb{R} \setminus \{0\} \implies \exists x^{-1} \in \mathbb{R} | x \cdot x^{-1} = x^{-1} \cdot x = 1$
- (A9) Velja $0 \neq 1$
- (A10) Distributivnost množenja : $\forall x \in \mathbb{R} | x \cdot (y+z) = (x \cdot y) + (x \cdot z)$
- (A11) Velja $0 \notin \mathbb{R}^+ \land \forall x \in \mathbb{R} \setminus \{0\} \mid x \in \mathbb{R} \lor -x \in \mathbb{R}$ ampak ne oboje hkrati
- (A12) $\forall x, y \in \mathbb{R}^+ \mid x + y \in \mathbb{R}^+ \land x \cdot y \in \mathbb{R}^+$
- (A13) Vsaka neprazna navzgor omejena podmnožica realnih števil ima najmanjšo zgornjo mejo.

1.2.2 Lastnosti realnih števil

Realna števila so neomejena in neskončno neštevna, velja tudi, da predstavljajo kontinuum.

2 Zveznost

Funkcija $f: U^{odprta} \subset \mathbb{R}^n \to R \land a \in U$ je zvezna v točki a, če $\forall \epsilon > 0 \; \exists \delta > 0 \; \forall v \in K(a, \delta) \subset U \; \big| \; f(v) \in K(f(a), \epsilon)$ oziroma $\forall v \in U \; \big| \; |v - a| < \delta \implies |f(v) - f(a)| < \epsilon$

Vektorska funkcija $g:U\subset\mathbb{R}^n\to\mathbb{R}^m$ $g(g_1,\ g_2,\ g_3,\ ...,\ g_m)$ je zvezna v točki a, če je vsaka funkcija $(g_i)_{i\in[1,\,m]\cap\mathbb{N}}$ zvezna v točki a

Funkcija je zvezna, če je zvezna v vsaki točki definicijskega območja.

Seštevanje, odštevanje, množenje s skalarjem, množenje dveh realnih funkcija in kompozicija zveznih funkcij je zvezna.

3 Enakomerna zveznost

4 Taylorjeva formula

4.1 Linearni približek funkcije v okolici točke a

Naj bo $f:(c,d)\to\mathbb{R}$ odvedljiva funkcija in naj bo $a\in(c,d)$, takrat velja:

$$f(x) \approx f(a) + f'(a) \cdot (x - a) \tag{1}$$

4.2 Taylorjev polinom

Naj bo $n \in \mathbb{N} \cap 0 \wedge U^{odprta} \subset \mathbb{R} \wedge f : U \to \mathbb{R}$ n-krat odvedljiva funkcija in $a \in U$. Tedaj obstaja natanko en polinom stopnje največ n, za katerega je:

$$T_n f(x; a) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x - a)^k$$
 (2)

Temu polinomu pravimo Taylorjev polinom reda n funkcije f razvit okoli točke a ali pa tudi Taylorjev razvoj reda n funkcije f okoli točke a

4.2.1 Ostanek Taylorjevega polinoma

Ostanek taylorjevega polinoma označimo z R_n in ga znamo zapisati v dveh oblikah:

• Lagrangeva oblika

$$R_n(x) = \frac{f^{(n+1)}(a + \Theta(x - a))}{(n+1)!} (x - a)^{n+1}; \ \Theta \in (0, 1)$$
 (3)

• Chauchyjeva oblika

$$R_n(x) = \frac{(1-\Theta)^n f^{(n+1)}(a+\Theta(x-a))}{n!} (x-a)^{n+1}; \ \Theta \in (0, 1) \ (4)$$

4.3 Taylorjeva vrsta

Naj bo $f:U\to\mathbb{R}$ gladka funkcija, definirana na $U^{odprta}\subset\mathbb{R}\land a\in U$ za vsak $n\in\mathbb{N}\bigcup 0$, je Taylorjev polinom reda n aproskimacija funkcije f z ostankom R_n torej:

$$f(x) = T_n f(x; a) + R_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x - a)^k + R_n(x) \mid \forall x \in U$$
 (5)

Če funkcija f ni polinom, ponavadi ostanek $R_n \neq 0$, lahko pa se zgodi, da pri dani točki $x \in U$ vrednosti $R_n(x)$ konvergirajo proti nič, ko gre n proti neskončno. Če je $\lim_{n\to\infty} (R_n(x)) = 0$ potem velja:

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k$$
 (6)

4.3.1 Pogorste Taylorjeve vrste

• Eksponentna vrtsa:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{k}}{k!} \mid \lim_{n \to \infty} (R_n) = 0 \text{ za vse } x$$
 (7)

• Sinusna vrtsa:

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \mid \lim_{n \to \infty} (R_n) = 0 \text{ za vse } x$$
 (8)

• Eksponentna vrtsa:

$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \mid \lim_{n \to \infty} (R_n) = 0 \text{ za vse } x$$
 (9)

• Logaritemska vrtsa:

$$\ln(x+1) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n} \mid \lim_{n \to \infty} (R_n) = 0 \text{ za } x \in (-1, 1]$$
 (10)

• Binomska vrtsa:

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^n \mid \lim_{n \to \infty} (R_n) = 0 \text{ za } |x| < 1$$
 (11)

5 Potenčna vrsta

Potenčna vrsta je poljubna vrsta oblike:

$$\sum a_n(z-a)^n = \sum (a_n(z-a)^n)_{n=0}^{\infty} = a_0 + a_1(z-a) + a_2(z-a)^2 + \dots + a_n(z-a)^n + \dots$$
(12)

, kjer so a_1, a_2, a_3, \dots konstante, ter je razvita v okolici točke a.

5.1 Konvergenčni radij

Če potenčna vrsta $\sum a_n z^n$ konvergira v neki točki $z_0 \in \mathbb{C}$, potem absolutno konvergira v vsaki točki $z \in \mathbb{C} ||z| < |z_0|$.

Konvergenčni radij potenčne vrste $\sum a_n z^n$ je tisti element $R \in [0, \infty]$, za katerega velja:

- V vsaki točki $z \in \mathbb{C}$, za katero je |z| < R, vrsta absolutno konvergira,
- V vsaki točki $z \in \mathbb{C}$, za katero je |z| > R, vrsta divergira.

5.2 Množenje dveh vrst - Cauchyjev produkt

Če sta številski vrsti $\sum (u_n)_{n=0}^{\infty}$ in $\sum (v_n)_{n=0}^{\infty}$ konvergentni, in če vsak ema tudi <u>absolutno konvergira</u>, je tudi njun produkt <u>konvergentna številska vrsta</u>, z radijem, ki je najmanšji od radijev originalnih številskih vrst.

$$\sum_{n=0}^{\infty} (u_n) \cdot \sum_{n=0}^{\infty} (v_n) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} u_k v_{n-k} \right)$$
 (13)

5.3 Odvajanje potenčne vrste

 $\sum a_n x^n$ je realna potenčna vrsta s konvergenčnim radijem R in središčem a=0. Naj bo $s:(-R,R)\to\mathbb{R}$ vsota te vrste na intervalu (-R,R), torej:

$$s(x) = \sum_{n=0}^{\infty} a_n x^n \mid \forall x \in (-R, R) \implies$$

- $\bullet\,$ Potenčna vrsta $\sum (na_nx^{n-1})$ ima konvergenčni radijR
- \bullet s je odvedljiva
- $s'(x) = \sum_{n=1}^{\infty} (na_n x^{n-1}) \mid \forall x \in (-R, R)$

Torej lahko odvajamo potenčno vrsto.

6 Zaporedje funkcij

6.1 Konvergenca po točkah

Če za $\forall a \in A \ \exists lim((f_n(a))_{n \in \mathbb{N}})$ rečemo, da funkcijsko zaporedje <u>kovergira po točkah</u> in da je f(a) *limitna funkcija*:

$$f(a) = \lim_{n \to \infty} [f_n(a)] \tag{14}$$