

Computing Theory

COMP 147 (4 units)

Chapter 1: Regular Languages Regular Expressions

Announcements

- Assignment1 due Saturday
- Assignment2
- Quiz2 on Tuesday
 - Closure properties of Regular languages
 - Regular expressions

Regular Expressions

To describe a regular language, L_a , we could give a DFA, D, such that $L(D) = L_a$,

or an NFA, N, such that that $L(N) = L_a$.

This is not always convenient.

Regular expressions give us a more compact, more readable, notation for the same languages.

Variations on regex appear everywhere that strings need to be specified: compilers, search tools, editing tools ...

Regular Expressions

- The value of a regular expression is a language
 - a regex defines a set of strings over some alphabet Σ (for example $\Sigma = \{0,1\}$)
- The operators allowed in a regex are: union U, concatenation ∘ and star *
- Any of these operations on regex produces regex.
- Precedence order: * . U
 - parentheses override precedence
- Example: (0 ∪ 1)₀0* (₀ often omitted and sometimes I instead of ∪)

Formal Definition

Inductive definition

R is a regular expression if R is

- 1. a, where $a \in \Sigma$
- **2. 8**
- 3. Ø
- 4. $R_1 \cup R_2$
- 5. $R_1 \cdot R_2$
- 6. R_1^*

ε is the set containing only the empty string

 \emptyset is an empty set

where R_1 and R_2 are regular expressions

Shorthand Notation

- R_1R_2 represents R_1° R_2
- R⁺ represents RR*
 - $R^+ \cup \varepsilon = R^*$
- R^k represents $\underbrace{RRR...R}_{k \ times}$
- Σ represents all strings of length 1 over Σ
 - Σ represents a, where $a \in \Sigma$

Examples

```
\{w \mid w \text{ contains a single 1}\}
 0^*10^*
                        \{w \mid w \text{ has at least a single 1}\}
 \sum^* 1 \sum^*
                        {w | w contains str as a substring}
\sum^* (str) \sum^*
                         \begin{cases} w | \text{every 0 in } w \text{ is followed} \\ \text{by at least a single 1} \end{cases}
1*(01+)*
 \left(\sum\sum\right)^*
                        \{w \mid w \text{ is of even length}\}
```

Examples

 $0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1$

all strings starting and ending with the same symbol

$$a^*b^+a^*$$

What is the corresponding finite automaton?

$$a(ba)^* \cup a^*$$

What is the corresponding finite automaton?

What is the corresponding regular expression?

What is the corresponding regular expression?

What is the corresponding regular expression?

Equivalence With Finite Automata

Regular expressions and finite automata are equivalent in their descriptive power.

Theorem

A language is regular if and only if it can be described by a regular expression.

Equivalence of FAs and Regex

For alphabet Σ, let
 L(DFA) = {β | β is a DFA over Σ}
 L(NFA) = {β | β is a NFA over Σ}
 L(RE) ={β | β is a regular expression over Σ}

Then

 $L(DFA) \leftrightarrow L(NFA) \leftrightarrow L(RE)$

Regex / FA Equivalence

- Theorem: A language is regular if and only if some regular expression describes it.
 - Lemma: If a language is described by a regular expression, then it is regular
 - Proof by construction: show how to build an NFA from a regex
 - Lemma: If a language is regular, then it is described by a regular expression
 - Proof by construction: show how to convert a DFA to a regex

- Convert regex R into NFA N.
 - There are 6 cases (see formal definition of a regex)
- Case 1:

$$R = a \in \Sigma$$

$$L(R) = \{ a \}$$

$$N = \longrightarrow \bigcirc \longrightarrow \bigcirc$$

• Case 2:

$$R = \varepsilon, L(R) = \{ \varepsilon \}$$

$$N = \longrightarrow$$

• Case 3:

$$R = \varnothing, L(R) = \{ \} = \varnothing$$

$$N = \longrightarrow$$

• Case 4:

$$R = R_1 \cup R_2, L(R) = L(R_1) \cup L(R_2)$$

• Case 5:

$$R = R_1 \circ R_2, L(R) = L(R_1) \circ L(R_2)$$

Case 6:

$$R = R_1^*, L(R) = L(R_1)^*$$

 In these cases, use the NFA construction techniques from the closure proofs for U, and *.

Case 4: $R = R_1 \cup R_2$

Case 6: $R = R_1^*$

Regex to NFA Example

Construct Regex from DFA

- Convert DFA D into regex R.
 - We'll use a new type of FA as an intermediate step
 - GNFA: generalized nondeterministic finite automata
 - GNFA allow regex as transition labels

GNFA Special Form

- A GNFA is similar to an NFA, except:
 - GNFA allow regex as transition labels
- For the current proof, add following conditions:
 - One start state with transitions to all other states
 - One accept state with transitions from all other states

 $q_{\rm start}$

ab ∪ ba

 $q_{\rm accept}$

(aa)*

- Start state and accept state are different
- Transitions from every state to every other state

(excluding start and accept)

 Every state has a self transition (excluding start and accept)

DFA to Regex (step 1: DFA to GNFA)

- Add new start state with ε transition to old start state.
- Add new accept state with ε transitions from all old accept states
- For any pair of states that has multiple transitions, replace with transition labeled with union of previous labels

DFA to Regex

Ripping a state from a GNFA

- Select a state at random (do not select start or accept states)
- Let's call it q_{rip}
- Rip the state out of the GNFA
- Remove q_{rip} and all edges to/from it
- Modify the other transition edges so that the machine accepts the same language

Ripping a state from a GNFA

 To reduce the size of the GNFA, we'll rip out states, one at a time, and repair the transitions

• Example:

 If we formalize this into an algorithm, we'll complete our proof

Examples on Board

Examples on Board

 $(a(aa \cup b)^*ab \cup b)((ba \cup a)(aa \cup b)^*ab \cup bb)^*((ba \cup a)(aa \cup b)^* \cup \varepsilon) \cup a(aa \cup b)^*$