OS 간단 정리

스케줄링

목차

- 1. 이전 발표 훝어보기
- 2. 스케줄링

1. 이전 발표 훝어보기

<u>CS 간단 정리 - 콘텍스트 스위칭과 프로세스 동기화</u>

2. 스케줄링 - CPU 스케줄러

• 콘텍스트: 프로세스/스레드 정보

• 콘텍스트 스위칭: 처리중인 프로세스/스레드 정보를 바꾸는 것 — 누가??

2. 스케줄링 - 스케줄러의 역할

- 스케줄러의 역할
 - CPU에서 실행될 프로세스를 선택하는 역할
 - 일정을 어떻게 짰는지에 따라 CPU 자원 사용 효율성 결정

2. 스케줄링 - 스케줄러의 역할

- 스케줄러의 역할
 - CPU에서 실행될 프로세스를 선택하는 역할
 - 일정을 어떻게 짰는지에 따라 CPU 자원 사용 효율성 결정

스케줄러가 어떻게 스케줄링을 할까?

2. 스케줄링 - 스케줄링 종류

비선점형 스케줄링

실행중인 프로세스가 자발적으로 CPU를 반환하지 않으면 스케줄러가 중단 불가

FCFS 스케줄링

SJF 스케줄링

선점형 스케줄링

스케줄러가 실행 중인 프로세스 중단시키고 다른 프로세스 실행 가능

RR 스케줄링

SRTF 스케줄링

멀티 레벨 스케줄링

2. 스케줄링 - 비선점형 스케줄링

• 비선점형 스케줄링 : 실행중인 프로세스가 자발적으로 CPU를 반환하지 않으면 스케줄러가 중단 불가

2. 스케줄링 - 비선점형 스케줄링

• 비선점형 스케줄링 : 실행중인 프로세스가 자발적으로 CPU를 반환하지 않으면 스케줄러가 중단 불가

2. 스케줄링 - 선점형 스케줄링

• 선점형 스케줄링 : 스케줄러가 실행 중인 프로세스 중단시키고 다른 프로세스 실행 가능

2. 스케줄링 - 선점형 스케줄링

• 선점형 스케줄링 : 스케줄러가 실행 중인 프로세스 중단시키고 다른 프로세스 실행 가능

2. 스케줄링 - 선점형 스케줄링

• 선점형 스케줄링: 스케줄러가 실행 중인 프로세스 중단시키고 다른 프로세스 실행 가능

3. 스케줄링 - 스케줄링 알고리즘

• 스케줄링 알고리즘 : 준비 큐에서 기다리고 있는 프로세스를 어떤 순서로 처리할 지 결정하는 방법

FCFS(First Come First Served)

프로세스	실행시간	준비큐 도착 시간
P1	150	0
P2	60	20
P3	300	40
P4	270	60
P5	120	80

FCFS(First Come First Served)

: 준비 큐에 먼저 들어온 프로세스가 우선순위를 갖는 알고리즘

프로세스	실행시간	준비큐 도착 시간
PΊ	150	0
P2	60	20
Р3	300	40
P4	270	60
P5	120	80

FCFS(First Come First Served)

: 준비 큐에 먼저 들어온 프로세스가 우선순위를 갖는 알고리즘

프로세스	실행시간	준비큐 도착 시간
PΊ	150	0
P2	60	20
P3	300	40
P4	270	60
P5	120	80

P1 P2

FCFS(First Come First Served)

프로세스	실행시간	준비큐 도착 시간
PΊ	150	0
P2	60	20
P3	300	40
P4	270	60
P5	120	80

P1	P2	P3
----	----	----

FCFS(First Come First Served)

프로세스	실행시간	준비큐 도착 시간
PΊ	150	0
P2	60	20
Р3	300	40
P4	270	60
P5	120	80

FCFS(First Come First Served)

프로세스	실행시간	준비큐 도착 시간
P1	150	0
P2	60	20
Р3	300	40
P4	270	60
P5	120	80

P1 P2 P3 P4 P5

FCFS(First Come First Served)

프로세스	실행시간	준비큐 도착 시간
ΡΊ	150	0
P2	60	20
P3	300	40
P4	270	60
P5	120	80

P1 P2	P3	P4	P5
-------	----	----	----

FCFS(First Come First Served)

: 준비 큐에 먼저 들어온 프로세스가 우선순위를 갖는 알고리즘

♠ Convoy Effects

P1 P2 P3 P4 P5

SJF(Shortest Job First)

: 실행 시간이 짧은 프로세스가 우선순위를 갖는 알고리즘

프로세스	실행시간	준비큐 도착 시간
P1	150	0
P2	60	20
P3	300	40
P4	270	60
P5	120	80

SJF(Shortest Job First)

: 실행 시간이 짧은 프로세스가 우선순위를 갖는 알고리즘

프로세스	실행시간	준비큐 도착 시간
PΊ	150	0
P2	60	20
P3	300	40
P4	270	60
P5	120	80

SJF(Shortest Job First)

: 실행 시간이 짧은 프로세스가 우선순위를 갖는 알고리즘

프로세스	실행시간	준비큐 도착 시간
P1	150	0
P2	60	20
Р3	300	40
P4	270	60
P5	120	80

SJF(Shortest Job First)

: 실행 시간이 짧은 프로세스가 우선순위를 갖는 알고리즘

프로세스	실행시간	준비큐 도착 시간
PΊ	150	0
P2	60	20
Р3	300	40
P4	270	60
P5	120	80

SJF(Shortest Job First)

: 실행 시간이 짧은 프로세스가 우선순위를 갖는 알고리즘

프로세스	실행시간	준비큐 도착 시간
PΊ	150	0
P2	60	20
Р3	300	40
P4	270	60
P5	120	80

P1 P2

SJF(Shortest Job First)

: 실행 시간이 짧은 프로세스가 우선순위를 갖는 알고리즘

프로세스	실행시간	준비큐 도착 시간
P1	150	0
P2	60	20
Р3	300	40
P4	270	60
P5	120	80

P1 P2 P5

SJF(Shortest Job First)

: 실행 시간이 짧은 프로세스가 우선순위를 갖는 알고리즘

프로세스	실행시간	준비큐 도착 시간
ΡΊ	150	0
P2	60	20
P3	300	40
P4	270	60
P5	120	80

P1	P2	P5	P4

SJF(Shortest Job First)

: 실행 시간이 짧은 프로세스가 우선순위를 갖는 알고리즘

프로세스	실행시간	준비큐 도착 시간
P1	150	0
P2	60	20
P3	300	40
P4	270	60
P5	120	80

P1	P2	P5	P4	P3
----	----	----	----	----

SJF(Shortest Job First)

: 실행 시간이 짧은 프로세스가 우선순위를 갖는 알고리즘

프로세스	실행시간	준비큐 도착 시간
ΡΊ	150	0
P2	60	20
P3	300	40
P4	270	60
P5	120	80

SJF(Shortest Job First)

: 실행 시간이 짧은 프로세스가 우선순위를 갖는 알고리즘

P2 P5 P4 P3 ... P1

• RR(Round Robin)

: 모든 프로세스 일정 시간 동안 실행하며, 일정 시간을 초과하면 다른 프로세스 실행하는 알고리즘

프로세스	실행시간	준비큐 도착 시간
P1	150	0
P2	60	20
P3	300	40
P4	270	60
P5	120	80

• RR(Round Robin)

: 모든 프로세스 일정 시간 동안 실행하며, 일정 시간을 초과하면 다른 프로세스 실행하는 알고리즘

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간
ΡΊ	150	0
P2	60	20
P3	300	40
P4	270	60
P5	120	80

• RR(Round Robin)

: 모든 프로세스 일정 시간 동안 실행하며, 일정 시간을 초과하면 다른 프로세스 실행하는 알고리즘

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간
P1	150	0
P2	60	20
Р3	300	40
P4	270	60
P5	120	80

• RR(Round Robin)

: 모든 프로세스 일정 시간 동안 실행하며, 일정 시간을 초과하면 다른 프로세스 실행하는 알고리즘

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간
ΡΊ	90	0
P2	60	20
P3	300	40
P4	270	60
P5	120	80

• RR(Round Robin)

: 모든 프로세스 일정 시간 동안 실행하며, 일정 시간을 초과하면 다른 프로세스 실행하는 알고리즘

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간
ΡΊ	90	0
P2	60	20
P3	300	40
P4	270	60
P5	120	80

• RR(Round Robin)

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간		
ΡΊ	90	0		
P2	0	20		
P3	300	40		
P4	270	60		
P5	120	80		

RR(Round Robin)

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간
PΊ	90	O
P2	0	20
P3	300	40
P4	270	60
P5	120	80

RR(Round Robin)

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간
ΡΊ	90	0
P2	0	20
P3	240	40
P4	270	60
P5	120	80

RR(Round Robin)

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간		
P1	90	О		
P2	0	20		
Р3	240	40		
P4	270	60		
P5	120	80		

RR(Round Robin)

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간		
ΡΊ	90	0		
P2	0	20		
P3	240	40		
P4	210	60		
P5	120	80		

RR(Round Robin)

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간
ΡΊ	90	0
P2	0	20
P3	240	40
P4	210	60
P5	120	80

RR(Round Robin)

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간		
P1	90	0		
P2	0	20		
P3	240	40		
P4	210	60		
P5	60	80		

RR(Round Robin)

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간		
P1	30	0		
P2	0	20		
P3	240	40		
P4	210	60		
P5	60	80		

RR(Round Robin)

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간		
P1	30	0		
P2	0	20		
Р3	180	40		
P4	210	60		
P5	60	80		

RR(Round Robin)

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간
ΡΊ	30	0
P2	0	20
P3	180	40
P4	150	60
P5	60	80

• RR(Round Robin)

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간		
PΊ	30	0		
P2	0	20		
P3	180	40		
P4	150	60		
P5	0	80		

P1	P2	P3	P4	P5	P1	P3	P4	P5

RR(Round Robin)

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간
P1	0	0
P2	0	20
Р3	180	40
P4	150	60
P5	0	80

• RR(Round Robin)

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간
P1	0	0
P2	0	20
Р3	120	40
P4	150	60
P5	0	80

P1	P2	P3	P4	P5	P1	P3	P4	P5	머	Р3

• RR(Round Robin)

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간
ΡΊ	0	0
P2	0	20
P3	120	40
P4	90	60
P5	0	80

P1 P2 P3 P4 P5 P1 P3 P4	P5 P P3 P4	
-------------------------	------------	--

• RR(Round Robin)

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간
P1	0	0
P2	0	20
Р3	60	40
P4	90	60
P5	0	80

P1	P2	P3	P4	P5	P1	P3	P4	P5	P 1	P3	P4	P3

• RR(Round Robin)

: 모든 프로세스 일정 시간 동안 실행하며, 일정 시간을 초과하면 다른 프로세스 실행하는 알고리즘

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간
ΡΊ	0	0
P2	0	20
P3	60	40
P4	30	60
P5	0	80

P1 P2	P3	P4	P5	P1	Р3	P4	P5	P 1	Р3	P4	Р3	P4
-------	----	----	----	----	----	----	----	--------	----	----	----	----

• RR(Round Robin)

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간
ΡΊ	0	0
P2	0	20
P3	0	40
P4	30	60
P5	0	80

P1	P2	P3	P4	P5	P1	P3	P4	P5	P 1	P3	P4	P3	P4	P3
									_					

• RR(Round Robin)

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간
ΡΊ	0	0
P2	0	20
P3	0	40
P4	0	60
P5	0	80

P1	P2	Р3	P4	P5	P1	РЗ	P4	P5	P 1	РЗ	P4	РЗ	P4	РЗ	P 4
----	----	----	----	----	----	----	----	----	--------	----	----	----	----	----	--------

RR(Round Robin)

: 모든 프로세스 일정 시간 동안 실행하며, 일정 시간을 초과하면 다른 프로세스 실행하는 알고리즘

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간
PΊ	0	0
P2	0	20
P3	0	40
P4	0	60
P5	0	80

RR(Round Robin)

: 모든 프로세스 일정 시간 동안 실행하며, 일정 시간을 초과하면 다른 프로세스 실행하는 알고리즘

타임 슬라이스 60

프로세스	실행시간	준비큐 도착 시간
PΊ	0	О
P2	0	20
P3	0	40
P4	0	60
P5	0	80

- SRTF(Shortest Remaining Time First)
 - : 준비 큐에서 실행 시간이 가장 짧게 남은 프로세스를 우선 수행하는 알고리즘

프로세스	실행시간	준비큐 도착 시간
P1	150	0
P2	60	20
P3	300	40
P4	270	60
P5	120	80

SRTF(Shortest Remaining Time First)

: 준비 큐에서 실행 시간이 가장 짧게 남은 프로세스를 우선 수행하는 알고리즘

프로세스	실행시간	준비큐 도착 시간
P1	150	О
P2	60	20
Р3	300	40
P4	270	60
P5	120	80

SRTF(Shortest Remaining Time First)

: 준비 큐에서 실행 시간이 가장 짧게 남은 프로세스를 우선 수행하는 알고리즘

프로세스	실행시간	준비큐 도착 시간
PΊ	130	0
P2	60	20
Р3	300	40
P4	270	60
P5	120	80

- SRTF(Shortest Remaining Time First)
 - : 준비 큐에서 실행 시간이 가장 짧게 남은 프로세스를 우선 수행하는 알고리즘

프로세스	실행시간	준비큐 도착 시간
P1	130	0
P2	60	20
Р3	300	40
P4	270	60
P5	120	80

- SRTF(Shortest Remaining Time First)
 - : 준비 큐에서 실행 시간이 가장 짧게 남은 프로세스를 우선 수행하는 알고리즘

프로세스	실행시간	준비큐 도착 시간
Pl	130	О
P2	40	20
Р3	300	40
P4	270	60
P5	120	80

- SRTF(Shortest Remaining Time First)
 - : 준비 큐에서 실행 시간이 가장 짧게 남은 프로세스를 우선 수행하는 알고리즘

프로세스	실행시간	준비큐 도착 시간
PΊ	130	0
P2	20	20
P3	300	40
P4	270	60
P5	120	80

- SRTF(Shortest Remaining Time First)
 - : 준비 큐에서 실행 시간이 가장 짧게 남은 프로세스를 우선 수행하는 알고리즘

프로세스	실행시간	준비큐 도착 시간
PΊ	130	0
P2	0	20
Р3	300	40
P4	270	60
P5	120	80

- SRTF(Shortest Remaining Time First)
 - : 준비 큐에서 실행 시간이 가장 짧게 남은 프로세스를 우선 수행하는 알고리즘

프로세스	실행시간	준비큐 도착 시간
P1	130	0
P2	0	20
Р3	300	40
P4	270	60
P5	120	80

- SRTF(Shortest Remaining Time First)
 - : 준비 큐에서 실행 시간이 가장 짧게 남은 프로세스를 우선 수행하는 알고리즘

프로세스	실행시간	준비큐 도착 시간
Pl	130	0
P2	0	20
Р3	300	40
P4	270	60
P5	0	80

- SRTF(Shortest Remaining Time First)
 - : 준비 큐에서 실행 시간이 가장 짧게 남은 프로세스를 우선 수행하는 알고리즘

프로세스	실행시간	준비큐 도착 시간		
PΊ	0	0		
P2	0	20		
Р3	300	40		
P4	270	60		
P5	0	80		

- SRTF(Shortest Remaining Time First)
 - : 준비 큐에서 실행 시간이 가장 짧게 남은 프로세스를 우선 수행하는 알고리즘

프로세스	실행시간	준비큐 도착 시간		
Pl	0	0		
P2	0	20		
Р3	300	40		
P4	0	60		
P5	0	80		

P 1	P2	P5	P1	P4

- SRTF(Shortest Remaining Time First)
 - : 준비 큐에서 실행 시간이 가장 짧게 남은 프로세스를 우선 수행하는 알고리즘

프로세스	실행시간	준비큐 도착 시간		
P1	0	0		
P2 0		20		
Р3	0	40		
P4	0	60		
P5	0	80		

P 1	P2	P5	P1	P4	P3
--------	----	----	----	----	----

3. 스케줄링 - 선점형 스케줄링 알고리즘 (멀티 레벨 스케줄링)

• 멀티 레벨 스케줄리

: 준비 큐를 목적에 따라 여러 개로 분리해 사용하는 알고리즘

시스템 작업 큐			
대화형 작업 큐			
대화형 편집 작업 큐			
일괄처리형 작업 큐			

Q&A (10m)

피드백 (5m)

The End