

Alexander Panchenko

FROM UNSUPERVISED INDUCTION OF LINGUISTIC STRUCTURES FROM TEXT TOWARDS APPLICATIONS IN DEEP LEARNING

Text: sparse symbolic representation

AUDIO

Audio Spectrogram

DENSE

IMAGES

Image pixels

DENSE

TEXT

0 0 0 0.2 0 0.7 0 0 0

Word, context, or document vectors SPARSE

Text: sparse symbolic representation

Audio Spectrogram

DENSE

IMAGES

Image pixels

DENSE

TEXT

0 0 0 0.2 0 0.7 0 0 0

Word, context, or document vectors

SPARSE

Image source:

https://www.tensorflow.org/tutorials/word2vec

Graph: sparse symbolic representation

Audio Spectrogram

DENSE

IMAGES

Image pixels

DENSE

GRAPH

Nodes, edges, weights

SPARSE

Embedding graph into a vector space

From a survey on graph embeddings [Hamilton et al., 2017]:

Learning with an "autoencoder"

From a survey on graph embeddings [Hamilton et al., 2017]:

Some established approaches

From a survey on graph embeddings [Hamilton et al., 2017]:

Туре	Method	Decoder	Similarity measure	Loss function (ℓ)
Matrix factorization	Laplacian Eigenmaps [4] Graph Factorization [1] GraRep [9] HOPE [45]	$\begin{aligned} \ \mathbf{z}_i - \mathbf{z}_j\ _2^2 \\ \mathbf{z}_i^\top \mathbf{z}_j \\ \mathbf{z}_i^\top \mathbf{z}_j \\ \mathbf{z}_i^\top \mathbf{z}_j \end{aligned}$	$\mathbf{A}_{i,j}$ $\mathbf{A}_{i,j}, \mathbf{A}_{i,j}^2,, \mathbf{A}_{i,j}^k$ general	$\begin{aligned} & \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) \cdot s_{\mathcal{G}}(v_i, v_j) \\ & \ \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) - s_{\mathcal{G}}(v_i, v_j) \ _2^2 \\ & \ \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) - s_{\mathcal{G}}(v_i, v_j) \ _2^2 \\ & \ \text{DEC}(\mathbf{z}_i, \mathbf{z}_j) - s_{\mathcal{G}}(v_i, v_j) \ _2^2 \end{aligned}$
Random walk	DeepWalk [47]	$\frac{e^{\mathbf{z}_i^{\top} \mathbf{z}_j}}{\sum_{k \in \mathcal{V}} e^{\mathbf{z}_i^{\top} \mathbf{z}_k}}$	$p_{\mathcal{G}}(v_j v_i)$	$-s_{\mathcal{G}}(v_i,v_j)\log(ext{DEC}(\mathbf{z}_i,\mathbf{z}_j))$
		$\frac{e^{\mathbf{z}_{i}^{\top}\mathbf{z}_{j}}}{\sum_{k\in\mathcal{V}}e^{\mathbf{z}_{i}^{\top}\mathbf{z}_{k}}}$	()) (1) (1)	$-s_{\mathcal{G}}(v_i,v_j)\log(ext{DEC}(\mathbf{z}_i,\mathbf{z}_j))$

Hamilton, W. L., Ying, R., & Leskovec, J. (2017).

Representation learning on graphs: Methods and applications.

arXiv preprint arXiv:1709.05584.