Supply Network in Korean High-Tech and Low-and-Medium Tech: Social Network Approach

Chungil Chae Jae-Gwang Ahn Sa-Hong Kim Jin-Han Kim

01 June 2016

- INTRODUCTION
- 2 RELATED LITERATURE
- METHOD
- 4 FINDINGS
- NETWORK CHARACTERISTICS
- **1** TYPOLOGY
- STRUCTURAL EQUIVALENCE
- ADDITIONAL ANALYSIS

INTRODUCTION

Motivation

Traditional Perspective

Traditionally supply chain studies have focused on dyadic and linear perspectives

Recent Interest

Recent researches have shown interest in the network structure of supply network as a complex system

Supply chain as a complex system

Supply chain as a complex system that interactions, relationships, and flows between the individual firms and how the structural characteristics influence the outcome.

Purpose of Study

This study aims to reveal distinctive structural characteristics between industries by comparing Korean high-tech and low-and-medium-tech industry's supply networks.

Research Questions

Research Question 1

What are the structural characteristics in the Korean electronics industry's supply network as a high-tech and steel industry's supply network as a low-and-medium tech supply network?

Research Question 2

What are the similarities and differences in the both industries' supply networks?

Research Question 3

How is the structural equivalence established in both supply network?

RELATED LITERATURE

High and Low Technology Industry

- Traditional technologies and LMT sectors are vital for general economic growth.
 - The interaction between the old and the emerging technological paradigms leads to dynamic innovation processes.
 - The viability of highly innovative sectors depends heavily on the health of established and mature industries that comprise the rest of the economy

Robertson, P.L., Pol, E., Carroll, P., 2003.

Reasoning for comparison

It is important to identify the unique network characteristics and structural configuration of the high- and low- tech industries that lead national development in Korea in order to expend knowledge how the structural position among the companies influence their outcomes.

Social Network in Supply Chain

Network Embededness

In the network perspective an individual firm's behavior and strategic decision are dependent on the firm's network position and other actors' behavior and structural location that is represented in network embeddeness (Borgatti & Li, 2009; Vasudeva et al., 2013).

Social network perspective in supply chain context

Since the time in which the social network analysis was introduced into the supply chain study, a need for interpreting social network indicators corresponding to supply chain context has continuously been identified (Bellamy & Basole, 2013; Borgatti & Li, 2009; Kim et al., 2011).

Definition of Supply Network

Kim, Choi, Yan and Dooley (2011) maintained that supply network "consist of inter-connected firms that engage in procurement, use, and transformation of raw materials to provide goods and services" (p.195).

SNA study classification in supply chain literature

Bellamy and Basole (2012) derived three research themes from the supply chain research that used social network perspectives such as SCS structure, SCS dynamics and SCS strategy.

Material flow and contractual relationship

Kim et al. (2011) suggested a framework that differentiates the supply network as material flow and contractual relationship. This taxonomy provides an analytic framework for interpreting social network indicators in supply chain context.

Interpretation SNA indicator in supply network

Borgatti and Li (2009) introduced key theoretical perspectives of social network analysis corresponding to supply chain management perspective, and provide network concepts and interpretation of social network indicator that reveal complex behaviors and interactions in supply networks.

METHOD

Sample

- Data Collection (total 7,687 firms from 6 industry)
 - Cretop Corporation Credit Report
 - Relational Information from major customer and major procurement
- High- and low tech classification
 - OECD: Technology Intensity Definition
 - ISIC: Eurostat, High-tech industry and knowledge-intensive service
 - The Korean Standard Industrial Classification
 - C241: Manufacture of Basic Iron and Steel
 - C242: Manufacture of Basic Precious and Non-ferrous Metals
 - C243: Cast of Metals
 - C261: Manufacture of Semiconductor
 - C262: Manufacture of Electronic Components
 - C264: Manufacture of Telecommunication and Broadcasting Apparatuses

Procedure

- Data Collection
- Data Cleaning
- Building Network Structure
- Extracting Networks by Configuration
 - All industry
 - Seperated industry (E and S)
 - Directed
 - Undirected
 - All Graph
 - Component

Electronics Industry Network (Including other industry's nodes)

Nodes: 4676Edges: 6382

Giant Component Nodes: 4374Giant Component Edges: 6117

• Steel Industry Network (Including other industry's nodes)

Nodes: 3095Edges: 4360

• Giant Component Nodes: 2982

Giant Component Edges: 4264

Electronics Industry Network (excluding other industry's nodes)

Nodes: 734Edges: 1456

Steel Industry Network (excluding other industry's nodes)

Nodes: 486Edges: 864

FINDINGS

Network Visualization

Figure 2: Electronic and Steel Industry

Figure 3: Electronic and Steel Industry

Figure 4: Electronic and Steel Industry

Network Analysis - Graph Level

Table 1: Graph Charateristics 1

	Node	Edge	Density
Electronics	734	1456	0.0027
Steel	486	864	0.0036

	Diameter	Average Path Length	Clustering Coefficient
Electronics	19	6.12	0.016
Steel	14	4.78	0.023

Table 2: Graph Charateristics 2

Reciprocit		Mutuality	Transitivity
Electronics	0.105	77	0.024
Steel	0.134	58	0.022

	Centralization Degree	Centralization Betweenness	Centralization Closeness
Electronics	0.1482	0.1237	0.0002
Steel	0.1636	0.1177	0.0033

Network Analysis - Node Level

Table 3: Centrality - Electronics

Rank	Degree	Betweenness	Closeness	
	Node Id Value	Node Id Value	Node Id Value	
1	E0876 221	E0876 67221	E0217 2.81E-6	
2	E0892 134	E0171 31586	E0055 2.80E-6	
3	E0193 56	E0844 30531	E0112 2.79E-6	
4	E0592 50	E0892 28752	E0011 2.78E-6	
5	E0115 48	E0560 25352	E0097 2.76E-6	

Table 4: Centrality - Steel

Rank	Degree	Betweenness	Closeness	
	Node Id Value	Node Id Value	Node Id Value	
1	S0454 162	S0454 27888	S0389 1.31E-05	
2	S0020 66	S0143 13925	S0387 1.31E-05	
3	S0075 37	S0395 12150	S0630 1.24E-05	
4	S0005 32	S0020 8037	S0050 1.24E-05	
5	S0002 28	S0002 7547	S0650 1.24E-05	

Electronics Industry

Steel Industry

Rev. by Degree and Constrain

NETWORK CHARACTERISTICS

Census

##

```
Dyad Census - Electronics
## $mut
## [1] 77
##
## $asym
## [1] 1302
##
## $null
## [1] 267632
## $mut
## [1] 58
##
## $asym
## [1] 748
```

NETWORK CHARACTERISTICS

##	Electronics	Steel
## 003 A,B,C	64667379	18641197
## 012 A->B, C	882163	329270
## 102 A<->B, C	51236	26252
## 021D A<-B->C	1263	9445
## 021U A->B<-C	26792	901
## 021C A->B->C	4724	4995
## 111D A<->B<-C	4331	420
## 111U A<->B->C	413	1266
## 030T A->B<-C, A->C	167	112
## 030C A<-B<-C, A->C	6	3
## 201 A<->B<->C	166	54
## 120D A<-B->C, A<->C	17	14
## 120U A->B<-C, A<->C	6	7
## 120C A->B->C, A<->C	13	3
## 210 A->B<->C, A<->C	8	1
## 300 A<->B<->C, A<->C	0	0

Figure 6: Configulation of Triad

Distribution

Power Law

Power Law test

```
## Electronics Steel
## alpha 3.036 3.142
## KS.stat 0.038 0.061
## KS.p 0.870 0.677
```

TYPOLOGY

Typology: Hub and Authority

Figure 5. Typology of firms based on hub and authority scores.

• Hub Score (suppliers have many alternative customers)

$$u_i = \lambda \sum_j x_{ij} v_j$$

Authority Score (buyers have many alternative suppliers)

$$v_i = \lambda \sum_i x_{ij} u_j$$

- Agile: firms that are both high hubs and authorities
 - These are firms that must be highly agile to survive.
- Sales-oriented: Firms that are hubs but not authorities
 - firms that face serious competition in selling their goods, but have a good situation with respect to their suppliers.
- Procurement-oriented: Firms that are authorities and less hubs
 - face relatively simple sales environments.
- Comportable: firms that are neither hubs nor authorities
 - Relatively calm waters on both fronts an enviable position but also at risk of stagnation.

Typology: Hub and Authority Electronics Industry

Median: Hub(0.0317), Authority(0.00000837)

Typology: Hub and Authority Steel Industry

Median: Hub(0.0000000565), Authority(0.00685)

STRUCTURAL EQUIVALENCE

Block modeling for electronics

as.dist(equiv.dist) hclust (*, "complete")

##			1	2	3	4	5	8	11	
##	${\tt meanCAGR}$	9.5	526	-2.615	-5.0	0.333	-2.279	34	-12.8	6
##	${\tt meanProfit}$	3.1	186	3.115	2.6	2.833	2.791	2	-6.4	1
##	${\tt meanNofEmp}$	89.0	000	93.500	83.0	168.000	119.500	152	271.0	45
##	meanAge	16.8	320	20.462	20.2	12.500	21.093	10	22.0	13
##	NofNodes	534.0	000	26.000	5.0	6.000	43.000	1	5.0	Ę
##		51		NA						
##	${\tt meanCAGR}$	1.5	4	1.880						
##	${\tt meanProfit}$	3.5	1	1.280						
##	${\tt meanNofEmp}$	84.0	105	5.500						
##	meanAge	16.0	18	3.333						
##	NofNodes	4.0		NA						

Block modeling for steel

as.dist(equiv.dist) hclust (*, "complete")

##		1	. 5	6	8	12	14	16
##	${\tt meanCAGR}$	2.285	-3.717	-8.8	4.571	-1.125	-4.059	0.143
##	${\tt meanProfit}$	2.227	3.087	3.8	-3.857	4.750	1.647	3.143
##	${\tt meanNofEmp}$	54.000	68.500	156.0	67.000	66.000	57.000	60.000
##	meanAge	21.354	19.130	23.2	28.286	19.625	27.235	21.143
##	NofNodes	277.000	46.000	5.0	7.000	8.000	17.000	7.000
##		24	46	60	NA			
##	${\tt meanCAGR}$	9.909	0.812	-0.75	-0.232			
##	${\tt meanProfit}$	2.000	0.000	0.75	1.986			
##	${\tt meanNofEmp}$	91.000	66.500	138.00	51.000			
##	meanAge	27.545	16.750	36.50	23.072			
##	NofNodes	11.000	16.000	4.00	NA			

ADDITIONAL ANALYSIS

Small World Test

Electronics

```
# Simulated Clustering Coefficient
summary(C_E_cl.rg)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.001553 0.004180 0.005259 0.005355 0.006309 0.010220

# Observed Clustering Coefficient
C_E_inet_cluster_coefficient
## [1] 0.01697966
```

```
# Simulated Average Path Length
summary(C_E_apl.rg)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.809 4.879 4.899 4.898 4.917 4.986

# Observed Average Path Length
C_E_inet_average_path_length

## [1] 3.871656
```

Steel

```
# Simulated Clustering Coefficient
summary(C_S_cl.rg)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000000 0.005018 0.006964 0.007295 0.009009 0.016080

# Observed Clustering Coefficient
C_S_inet_cluster_coefficient

## [1] 0.02399863
```

```
# Simulated Average Path Length
summary(C_S_apl.rg)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.776 4.900 4.935 4.933 4.964 5.104

# Observed Average Path Length
C_S_inet_average_path_length

## [1] 4.233117
```

DISCUSSION

Importance of study

Comparing electronics industry and steel industry is meaningful. Although there is gap between level of technology, both industries are regarded as Korea's foundational industry that sustain economical wealth. Moreover, each industries relational structure provides comparision criteria for each other.

Embededness

Firms are inter-connected and embeded in their economical and contractual relationship.

Implication

In a case that need to select firms for nurturing. In general, selection criteria for nurturing small and medium firms are limited in financial perspective.

Limitation

- Cross-sectional data
- Binary network
- Limited relation

Futher Research

- Social selection
- Social influence effect
- Peer effect
- Dynamics and evolution of network

CONCLUSION

This study purposes to reveal distinctive structural characteristics between the electronics industry as a high-tech one and metallurgical industry as a low-and-medium-tech one, and to investigate the influence of the supply networks on company's innovation efforts and outcomes.

Each industry have showed distingitive struture that individual firm's behavior and performance is enhanced or constrained by individual firm's position in the supply network structure.

Resource

- Ahuja, Gautam. (2000). Collaboration networks, structural holes, and innovation: A longitudinal study. Administrative science quarterly, 45(3), 425-455.
- Bellamy, Marcus A, & Basole, Rahul C. (2013). Network analysis of supply chain systems: A systematic review and future research. Systems Engineering, 16(2), 235-249.
- Borgatti, Stephen P, & Li, Xun. (2009). On social network analysis in a supply chain context*. Journal of Supply Chain Management, 45(2), 5-22.
- Burt, Ronald S. (2004). Structural holes and good ideas1. American journal of sociology, 110(2), 349-399.

- Kim, Yusoon, Choi, Thomas Y, Yan, Tingting, & Dooley, Kevin.
 (2011). Structural investigation of supply networks: A social network analysis approach. Journal of Operations Management, 29(3), 194-211.
- Maier, Mark W. (2006). System and software architecture reconciliation. Systems Engineering, 9(2), 146-159.
- Scott, John. (2012). Social network analysis: Sage. Vasudeva, Gurneeta, Zaheer, Akbar, & Hernandez, Exequiel. (2013). The embeddedness of networks: Institutions, structural holes, and innovativeness in the fuel cell industry. Organization science, 24(3), 645-663.
- Wasserman, Stanley, & Faust, Katherine. (1994). Social network analysis: Methods and applications (Vol. 8): Cambridge university press.

Contact Information

- Chungil Chae
 - The Pennsylvania State University
 - chadchae@gmail.com / http://chadchae.github.io
- Jae-Gwang Ahn
 - Ph.D. Candidate, Kumoh National Institute of Technology, Korea
 - jkan17@naver.com
- Sa-Hong Kim
 - Director, Daegu-Gyeonbuk Regional, Business Growth Support Center, Korea
 - sahongk@gmail.com
- Jin-Han Kim
 - Associate Professor, Ph.D., Kumoh National Institute of Technology, Korea (Corr.).
 - jinhankim@kumoh.ac.kr

QUESTION and ANSWER

Figure 8: Question and Answer