Entropy of Two Ordinal Variables, Discretized Codings

2024

Prof Wendy Olsen

Step 1

Decide whether the representation needed is distinct or cumulative.

If it is cumulative, we argue that a case experiences all of the conditions, up to the highest ranked condition.

If it is distinct, there is no such cumulation, so each condition is distinctive.

Step 2

Encode the single vector into multiple vectors, which are each binary.

For p input variables, there will now be q variables in the dataframe overall, q>p.

For example, one Likert scale of 5 levels including an NA option will become 5 binaries.

Education with 7 levels would become 7 levels, of which the last one is encoded all 1's.

This means all the info is contained in 6 binaries for education [it is also the case that the information in a Likert scale is complete once 4 binaries are specified]. In an unsupervised discretization, we would not drop the constant binary after discretization. That would be a step to take later, perhaps at the statistical stage.

Figure 1: LIKERT SCALE, DISTINCT DISCRETIZATION

Option	Option	Option	Option	Option
1	2	3	4	5
1	0	0	0	0
0	0	1	0	0
1	0	0	0	0
0	1	0	0	0
0	0	0	1	0
0	0	0	0	1
Etc. n				
rows				

It is a sparse matrix.

Figure 2: A CUMULATIVE DISCRETIZATION

The Input

Data:

3

1

2

4

5

Etc.

ĺ	Option	Option	Option	Option	Option
	1	2	3	4	5
	1	0	0	0	0
	1	1	1	0	0
ĺ	1	0	0	0	0
ſ	1	1	0	0	0
	1	1	1	1	0
ſ	1	1	1	1	1
ſ	Etc.				
	n				
Į	rows				

Notice that column 1 now has 1 in every row, so it is not informative.

Step 3 Calculate and normalise entropy. The number of possible combinations of the elements in the series of events (options 1-5) is 5. The maximum entropy of both

Step 4: In the ensuing analysis, a lot of correlations and associations have been transformed. We have q columns, but the information is organised differently in each encoding.

