

Analysis of Superstore Dataset

Project Title: Analysis of Superstore Dataset

■ Introduction :-

The "Analysis of Superstore Dataset" project aims to explore and analyze a comprehensive dataset from a fictional superstore. The management of Superstore, a retail company, wants to gain insights into their sales data to optimize their operations and improve profitability. They have provided a dataset containing information about their customers, products, and transactions over a certain period. The objective of this project is to analyze the dataset and extract meaningful insights by performing various data analytics techniques and statistical analyses. The analysis should focus on identifying patterns, trends, and relationships within the data, as well as identifying factors that may impact sales and customer behavior. Additionally, the project should include recommendations for the management team on potential strategies to increase sales, reduce costs, and enhance overall business performance based on the findings from the analysis.

Things I Did

- **Data Collection and Preprocessing**: Collect and preprocess the Superstore dataset.
- Sales Analysis: Analyze sales metrics, trends, and factors influencing sales fluctuations.
- Customer Behavior Analysis: Study customer demographics, preferences, and segmentation for personalized strategies.
- **Exploratory Data Analysis (EDA)**: Perform exploratory analysis, including data distribution, outliers, and visualizations.
- Operational Efficiency Analysis: Evaluate operational efficiency, identify bottlenecks, and optimize resource allocation.
- Conclusion and Next Steps: Summarize findings, plan for advanced analysis, predictive modeling, and integration of external data sources.

Agenda

	Sr. No.	Topics Name
	1.	Project Overview
	2.	Modelling
/	3.	Data setDataset loadingAbout the Dataset
	4.	Some Statistical Information
	5.	 Exploratory Data Analysis(EDA) Region Wise total Sales and Profit. Segment Wise total Sales and Profit. Category & Sub-Category Wise total Sales and Profit. City & State Wise total Sales and Profit.
	6.	Results
	7.	Conclusion

Project Overview

The Analysis of Sample Superstore Dataset project aims to leverage data analytics techniques to gain insights into the sales data of Sample Superstore, a retail company. The project involves analyzing a provided dataset containing information about customers, products, and transactions over a specific period.

The primary objectives of the project are as follows:

1. Data Exploration and Cleaning:

- Explore the dataset to understand its structure and variables.
- ➤ Identify and handle missing values, outliers, and inconsistencies.
- Prepare the dataset for further analysis.

2, Descriptive Analytics:

- Perform basic statistical analysis to summarize and describe the dataset.
- > Generate descriptive statistics, such as mean, median, mode, and standard deviation, for relevant variables.
- ➤ Visualize data using charts, graphs, and histograms to gain initial insights.

3. Customer Segmentation:

- Conduct customer segmentation based on various customer attributes, such as demographics and purchase behavior.
- > Apply clustering algorithms (e.g., K-means clustering) to identify distinct customer segments.

4. Sales Analysis:

- Analyze sales trends over time (e.g., monthly, quarterly, yearly) to identify patterns and seasonality.
- Examine the performance of different product categories and sub-categories.
- Investigate the correlation between sales and other factors, such as region and customer segment.

5. Profitability Analysis:

- > Calculate profit margins for different products and product categories.
- Identify the most profitable and least profitable products.
- Analyze the impact of discounts, shipping costs, and other factors on profitability.

6. Customer Behavior Analysis:

- Examine customer purchasing patterns, including frequency, recency, and monetary value.
- ➤ Analyze customer loyalty and retention rates.
- ➤ Investigate factors influencing customer churn and identify potential strategies for customer retention.

7. Recommendations and Insights:

- > Summarize the key findings and insights from the analysis.
- > Provide actionable recommendations to improve sales, profitability, and customer satisfaction.
- > Present the results in a clear and concise manner using visualizations and data-driven insights.

Who are the End Users

The end users of the Analysis of Sample Superstore Dataset project can include various stakeholders within the Superstore company. These stakeholders may include:

- Management Team: The project's analysis and insights are primarily aimed at the management team of Sample Superstore. They are the key decision-makers who will utilize the findings to make strategic decisions and implement changes to improve the company's operations, sales, and profitability.
- **Business Analysts:** Business analysts within Sample Superstore may use the project results to gain a deeper understanding of customer behavior, product performance, and sales trends. They can further analyze the insights and incorporate them into their reports and recommendations.
- ► Marketing Team: The marketing team can benefit from the project's findings to develop targeted marketing strategies based on customer segmentation and preferences. The analysis can help them identify potential customer segments to focus on and tailor marketing campaigns accordingly.
- Sales Team: The sales team can leverage the project's insights to optimize their sales approach. By understanding sales trends, product performance, and customer behavior, they can adapt their sales strategies to better meet customer demands and increase sales revenue.

- Operations Team: The operations team can utilize the project's recommendations to streamline processes, improve inventory management, and optimize supply chain operations. They can identify areas of improvement based on the analysis of product categories, profitability, and customer satisfaction.
- ► **Finance Team:** The finance team can benefit from the project's analysis of profitability and cost factors. The insights can help them identify cost-saving opportunities, evaluate the impact of discounts and shipping costs, and optimize pricing strategies.
- **Data Analysts/Scientists:** Data analysts or data scientists within the organization can use the project as a reference for similar analyses and as a benchmark for future data-driven projects. They can also contribute their expertise in analyzing the dataset and extracting insights.

Solution and its Value Proposition

- Solution: The solution for the "Analysis of Superstore dataset" project involves conducting a comprehensive analysis of the Superstore dataset to gain insights into sales trends, customer behavior, and operational efficiency. This analysis will be carried out using various statistical and data mining techniques, as well as advanced visualization tools.
- **Value Proposition**: Our solution provides the following value propositions
- **Data-Driven Decision Making**: By analyzing the Superstore dataset, we enable data-driven decision making for store managers and marketing managers. They can make informed decisions based on comprehensive analysis, leading to improved store performance, optimized operations, and targeted marketing strategies.
- **Enhanced Profitability**: Our analysis helps identify opportunities for increasing sales, improving inventory management, and reducing costs, ultimately leading to enhanced profitability for the Superstore.
- Customer Insights and Personalized Marketing: By analyzing customer behavior, demographics, and preferences, our solution provides valuable insights to marketing managers. This enables them to develop personalized marketing campaigns, tailor promotions, and enhance customer engagement, resulting in increased customer satisfaction, retention, and ultimately, higher sales.
- Competitive Advantage: Leveraging the power of data analysis, our solution provides the Superstore with a competitive advantage in the market.
- Cost Optimization: Our profitability analysis highlights the most and least profitable products and identifies factors impacting profitability. This empowers the management team to optimize pricing, manage discounts, and streamline operations for cost savings.

How did you Customize the Project and Make it your Own

- Personalized Project Objectives: I would review the initial project objectives and consider any additional goals or specific areas of focus that align with my expertise or interests.
- **Tailored Analysis Techniques:** While the project might include suggested analysis techniques, I would bring in my knowledge of advanced analytics methods or specialized statistical models that could provide deeper insights.
- Creative Data Visualization: To present the analysis findings in a visually appealing and easily understandable manner, I might explore creative data visualization techniques beyond the typical charts and graphs. This could involve using interactive dashboards, storytelling techniques, or infographics to engage stakeholders and convey the insights effectively.
- **Domain-specific Insights:** Drawing from my domain knowledge or prior experience, I would provide context-specific insights that go beyond the basic analysis
- Real-world Implementation Strategies: While recommendations are a crucial part of the project, I would ensure they are practical and actionable. This could involve providing specific implementation strategies, such as launching loyalty programs, optimizing pricing structures, or improving inventory management.

Modelling techniques, Methodologies and Frameworks were applied

- Exploratory Data Analysis (EDA): EDA techniques were employed to gain initial insights into the dataset. This included data visualization through charts, graphs, and plots to understand the distribution of variables, identify outliers, and detect patterns or relationships between different variables.
- ► Statistical Analysis: Utilized to uncover correlations, trends, and patterns within the Superstore dataset. These techniques helped in understanding the impact of various factors on sales, customer behavior, and operational efficiency.
- **Customer Segmentation:** applied o categorize customers based on their attributes and buying behavior. This allowed for the identification of distinct customer groups with specific needs and preferences, enabling targeted marketing strategies.
- Data Visualization: Advanced data visualization techniques using tools like Python libraries (e.g., Matplotlib, Seaborn) were used to create visually appealing and informative charts, graphs, and dashboards. These visualizations facilitated the effective communication of analysis results and provided a clear representation of key findings. These modelling techniques, methodologies, and frameworks formed the foundation of the "Analysis of Superstore dataset" project for Data Analytics, ensuring a systematic and data-driven approach to extract valuable insights from the dataset.

Dataset

1. Data Set URL:

https://www.kaggle.com/datasets/bravehart101/sample-supermarket-dataset

2. About the dataset:

The dataset provides information about the sales and profit from a supermarket.

3. Dataset details: the dataset contains the following format -

/	Size	1.06 MB
	Number of columns	13
	Number of rows	9994
	Original file format	CSV

Importing the dataset and Perform Operations

Importing libraries

import pandas as pd import numpy as np

Loading Dataset

df=pd.read_csv("SampleSuperstore.csv")

checking data type and missing values:

df.info()

Read the columns or Features of the dataset:

df.columns

Null Value check:

df.isnull().sum()

Read the Duplicate value:

df.duplicated().sum()

Pre-Processing of data & Exploratory data analysis

Peek at the Data

In [3]: # Read the First few Rows of Dataset
 df.head()

Out[3]:

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	Sales	Quantity	Discount	Profit
0	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Bookcases	261.9600	2	0.00	41.9136
1	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Chairs	731.9400	3	0.00	219.5820
2	Second Class	Corporate	United States	Los Angeles	California	90036	West	Office Supplies	Labels	14.6200	2	0.00	6.8714
3	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Furniture	Tables	957.5775	5	0.45	-383.0310
4	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Office Supplies	Storage	22.3680	2	0.20	2.5164

In [4]: # Read the Last five Rows of Dataset
 df.tail()

Out[4]:

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub-Category	Sales	Quantity	Discount	Profit
9989	Second Class	Consumer	United States	Miami	Florida	33180	South	Furniture	Furnishings	25.248	3	0.2	4.1028
9990	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Furniture	Furnishings	91.960	2	0.0	15.6332
9991	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Technology	Phones	258.576	2	0.2	19.3932
9992	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Office Supplies	Paper	29.600	4	0.0	13.3200
9993	Second Class	Consumer	United States	Westminster	California	92683	West	Office Supplies	Appliances	243.160	2	0.0	72.9480

Full summary of data

```
In [8]: # Check the Null Count in Columns
       df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 9994 entries, 0 to 9993
       Data columns (total 13 columns):
           Column
                        Non-Null Count Dtype
          Ship Mode
                                      object
                      9994 non-null
                                      object
           Segment
                        9994 non-null
           Country 9994 non-null
                                      object
                                      object
           City
                     9994 non-null
                                      object
           State
                    9994 non-null
           Postal Code 9994 non-null
                                      int64
           Region
                        9994 non-null
                                      object
                                      object
        7 Category
                      9994 non-null
                                      object
        8 Sub-Category 9994 non-null
           Sales
                        9994 non-null
                                      float64
        10 Quantity 9994 non-null
                                      int64
        11 Discount 9994 non-null float64
                     9994 non-null float64
        12 Profit
       dtypes: float64(3), int64(2), object(8)
       memory usage: 1015.1+ KB
```

Statistical summary of data

In [9]: # Statistical description of the data
 df.describe()

Out[9]:

	Postal Code	Sales	Quantity	Discount	Profit
count	9994.000000	9994.000000	9994.000000	9994.000000	9994.000000
mean	55190.379428	229.858001	3.789574	0.156203	28.656896
std	32063.693350	623.245101	2.225110	0.206452	234.260108
min	1040.000000	0.444000	1.000000	0.000000	-6599.978000
25%	23223.000000	17.280000	2.000000	0.000000	1.728750
50%	56430.500000	54.490000	3.000000	0.200000	8.666500
75%	90008.000000	209.940000	5.000000	0.200000	29.364000
max	99301.000000	22638.480000	14.000000	0.800000	8399.976000

Dropping Unnecessary Columns

- 'Postal Code' column is nothing so we can drop this column.
- The data is for **US** country only, so we can drop the 'Country' column as we don't need any analysis to be done based on it.

Dropping of postal code column

```
In [11]: # Dropping Postal Code column and assigning to df
df=df.drop('Postal Code',axis=1)
df.head()
```

Dropping of Country column

```
In [13]: # dropping Country column
    df=df.drop('Country',axis=1)
    df.head()
```

	Ship Mode	Segment	City	State	Region	Category	Sub- Category	Sales	Quantity	Discount	Profit
0	Second Class	Consumer	Henderson	Kentucky	South	Furniture	Bookcases	261.9600	2	0.00	41.9136
1	Second Class	Consumer	Henderson	Kentucky	South	Furniture	Chairs	731.9400	3	0.00	219.5820
2	Second Class	Corporate	Los Angeles	California	West	Office Supplies	Labels	14.6200	2	0.00	6.8714
3	Standard Class	Consumer	Fort Lauderdale	Florida	South	Furniture	Tables	957.5775	5	0.45	-383.0310
4	Standard Class	Consumer	Fort Lauderdale	Florida	South	Office Supplies	Storage	22.3680	2	0.20	2.5164

Number of duplicate values in data

In [15]: df.duplicated().sum()

Out[15]: 50

Dropping the duplicate values

In [16]: df.drop_duplicates()

Out[16]:

	Ship Mode	Segment	City	State	Region	Category	Sub-Category	Sales	Quantity	Discount	Profit
0	Second Class	Consumer	Henderson	Kentucky	South	Furniture	Bookcases	261.9600	2	0.00	41.9136
1	Second Class	Consumer	Henderson	Kentucky	South	Furniture	Chairs	731.9400	3	0.00	219.5820
2	Second Class	Corporate	Los Angeles	California	West	Office Supplies	Labels	14.6200	2	0.00	6.8714
3	Standard Class	Consumer	Fort Lauderdale	Florida	South	Furniture	Tables	957.5775	5	0.45	-383.0310
4	Standard Class	Consumer	Fort Lauderdale	Florida	South	Office Supplies	Storage	22.3680	2	0.20	2.5164
9989	Second Class	Consumer	Miami	Florida	South	Furniture	Furnishings	25.2480	3	0.20	4.1028
9990	Standard Class	Consumer	Costa Mesa	California	West	Furniture	Furnishings	91.9600	2	0.00	15.6332
9991	Standard Class	Consumer	Costa Mesa	California	West	Technology	Phones	258.5760	2	0.20	19.3932
9992	Standard Class	Consumer	Costa Mesa	California	West	Office Supplies	Paper	29.6000	4	0.00	13.3200
9993	Second Class	Consumer	Westminster	California	West	Office Supplies	Appliances	243.1600	2	0.00	72.9480

9944 rows × 11 columns

Correlation among the columns

In [17]: df.corr()

Out[17]:

	Sales	Quantity	Discount	Profit
Sales	1.000000	0.200795	-0.028190	0.479064
Quantity	0.200795	1.000000	0.008623	0.066253
Discount	-0.028190	0.008623	1.000000	-0.219487
Profit	0.479064	0.066253	-0.219487	1.000000

Covariance between set of variables

In [18]: df.cov()

Out[18]:

	Sales	Quantity	Discount	Profit
Sales	388434.455308	278.459923	-3.627228	69944.096586
Quantity	278.459923	4.951113	0.003961	34.534769
Discount	-3.627228	0.003961	0.042622	-10.615173
Profit	69944.096586	34.534769	-10.615173	54877.798055

Summary of Data

[21]:	df.value_counts	()								
21]:	Ship Mode Profit	Segment	City	State	Region	Category	Sub-Category	Sales	Quantity	Discoun
	Standard Class 9.3312 4	Consumer	Los Angeles	California	West	Office Supplies	Paper	19.440	3	0.0
		Corporate	Houston	Texas	Central	Office Supplies	Paper	15.552	3	0.2
	5.4432 3	Consumer	San Francisco	California	West	Office Supplies	Paper	25.920	4	0.0
	12.4416 2									
	35.0973 2		Detroit	Michigan	Central	Furniture	Chairs	389.970	3	0.0
	33.0973 2		Philadelphia	Pennsylvania	East	Office Supplies	Paper	20.736	4	0.2
	7.2576 2									
	Second Class	Corporate	Little Rock	Arkansas	South	Office Supplies	Paper	44.960	2	0.0
	20.6816 1						Storage	62.040	4	0.0
	17.3712 1						Jeon age	02.010	•	0.0
	14.7184 1							367.960	4	0.0
	14./104 1					Technology	Phones	494.970	3	0.0
	148.4910 1							500 05-	_	
	Standard Class -479.9880 1	Home Office	Yuma	Arizona	West	Technology	Machines	599.985	5	0.7
	Length: 9944, d	ltvne: int64								

Visualization of Data

We can visualize the data further in 4 different ways

- Region level
- Segment level
- Category & Sub-category level
- City & State level

Sales and Profit Region wise

```
In [25]: # Total Profit and Sales per Region
    df.groupby('Region')[['Profit','Sales']].agg(['sum']).plot.bar()
    plt.title('Total Profit and Sales per Region')
    plt.show()
```


Total count of each segment

```
In [28]: sns.countplot(x=df['Segment'])
Out[28]: <Axes: xlabel='Segment', ylabel='count'>
             5000
             4000
             3000
          count
             2000 -
             1000 -
                                              Corporate
                                                                  Home Office
                         Consumer
```

Sales analysis based on segment

1.0 0.8 0.6 0.4 0.2 0.0 Corporate Home Office Segment

Profit analysis based on segment

```
In [30]: df.groupby('Segment')['Profit'].sum().plot.bar(color='orange')
Out[30]: <Axes: xlabel='Segment'>
           140000
           120000
           100000
            80000
            60000
            40000
            20000
                                                     Corporate
                                                                           Home Office
                                                 Segment
```

Count Plot of Sub-Categories

In [41]: print(df_orders['Sub-Category'].value_counts()) plt.figure(figsize=(12,6)) sns.countplot(x=df_orders['Sub-Category']) plt.xticks(rotation=90) plt.show()

> Binders 1523 Paper 1370 957 Furnishings Phones 889 Storage 846 Art 796 Accessories 775 Chairs 617 Appliances 466 Labels 364 Tables 319 Envelopes 254 Bookcases 228 Fasteners 217 Supplies 190 Machines 115 Copiers 68

Name: Sub-Category, dtype: int64

Pie Plot of Sub-Category

```
In [35]: plt.figure(figsize=(12,10))
    df_orders['Sub-Category'].value_counts().plot.pie(autopct="%1.1f%%")
    plt.show()
```


Sub-category Vs Category

```
In [37]: #Lets see how sub-categories are distributed wrt to category
    plt.figure(figsize=(18,8))
    plt.bar('Sub-Category','Category',data=df,color='y')
    plt.xlabel('Sub-Category')
    plt.ylabel('Category')
    plt.show()
```


From this graph, one can easily makeout which Category & Sub-Category to choose when they are looking to purchase a product

- In Furniture category the frequency of individual item is very less
- . In Office supplies the frequency of individual item is medium
- · In Technology category the frequency of individual item is high

Profit and Sales per Sub-Category

```
In [41]: # Total Profit and Sales per Sub-Category
    df.groupby('Sub-Category')[['Profit','Sales']].agg(['sum']).plot.bar()
    plt.title('Total Profit and Sales per Sub-Category')
    plt.show()
```


Highest profit is earned in Copiers while Selling price for Chairs and Phones is extremely high compared to other products.

Another interesting fact- people don't prefer to buy Tables and Bookcases from Superstore. Hence these departments are in loss.

Sub-Category wise Profit Count

```
In [68]: fig = px.scatter(df, x='Sub-Category', y='Profit', color='Profit', title='Sub-Category Vs. Profit')
        fig.show()
                                                                                                    Sub-Category Vs. Profit
                                                                                                                           Profit
               8000
                                                                                                                               8000
               6000
                                                                      Sub-Category=Binders
                                                                                                                               6000
                                                                       Profit=4946.37
               4000
                                                                                                                               4000
               2000
          Profit
                                                                                                                               2000
                  0
                                                                                                                               0
              -2000
                                                                                                                               -2000
               -4000
                                                                                                                               -4000
               -6000
                                                                                                                               -6000
                                                                                                           Machines
                                                                                    Accessories
                                                                                                Fasteners
                                                                    Binders
                                                                         Appliances
                                                                                                     Supplies
                                                                                                                 Copiers
                                                               Sub-Category
```

Count plot of States

State wise Profit Count

```
In [65]: import plotly.express as px
fig = px.bar(df, x='State', color='Profit', title='Profit Count')
fig.show()
```


Profit Count

City wise Profit Count

```
In [67]: import plotly.express as px
fig = px.bar(df, x='City', color='Profit', title='Profit Count')
fig.show()
```


Profit Count

Total Profit and Sales per States

```
In [45]: df.groupby('State')[['Profit', 'Sales']].agg(['sum']).plot.bar(figsize=(16,8))
                     plt.title('Total Profit and Sales per States')
                     plt.show()
                                                                                                                                               Total Profit and Sales per States
                                                                                                                                                                                                                                                                                           None, None
                                                                                                                                                                                                                                                                                            (Profit, sum)
                                                                                                                                                                                                                                                                                              (Sales, sum)
                        400000
                       300000
                       200000
                        100000
                                      Alabama
                                                 Arkansas
                                                      California
                                                            Colorado
                                                                                                                                         Maryland
                                                                                                                                                    Michigan
                                                                                                                                                                                                                                                                  Tennessee
                                                                                                                                                                                                                                                                                                               Wyoming
                                                                                        Georgia
                                                                                                   Illinois
                                                                                                                         Kentucky
                                                                                                                              Louisiana
                                                                                                                                                               Mississippi
                                                                                                                                                                     Missouri
                                                                                                                                                                          Montana
                                                                                                                                                                                Nebraska
                                                                                                                                                                                                                            ohio
                                                                                                                                                                                                                                       Oregon
                                                                                                                                                                                                                                                                        Texas
                                                                                                                                                                                                                                                                                        Virginia
                                                                                  Florida
                                                                                             Idaho
                                                                                                        Indiana
                                                                                                              lowa
                                                                                                                   Kansas
                                                                                                                                    Maine
                                                                                                                                                                                      Nevada
                                                                                                                                                                                                                                                                              Utah
                                                                  Connecticut
                                                                            District of Columbia
                                                                                                                                               Massachusetts
                                                                                                                                                                                          New Hampshire
                                                                                                                                                                                                New Jersey
                                                                                                                                                                                                      New Mexico
                                                                                                                                                                                                           New York
                                                                                                                                                                                                                 North Carolina
                                                                                                                                                                                                                      North Dakota
                                                                                                                                                                                                                                  Oklahoma
                                                                                                                                                                                                                                                  Rhode Island
                                                                                                                                                                                                                                                       South Carolina
                                                                                                                                                                                                                                                             South Dakota
                                                                                                                                                                                                                                                                                    Vermont
                                                                                                                                                                                                                                                                                              Washington
                                                                                                                                                                                                                                                                                                   West Virginia
                                                                        Delaware
                                                                                                                                                          Minnesota
                                                                                                                                                                                                                                             Pennsylvania
```

State

Heat map of correlation among the columns

Heat map of Covariance among the set of variables

Line plot of discount Vs Profit

```
In [48]: plt.figure(figsize=(10,4))
         sns.lineplot(x='Discount', y='Profit', data=df, color='r', label='Discount')
         plt.legend()
Out[48]: <matplotlib.legend.Legend at 0x177bf668160>
                                                                                                              Discount
               100
             -100
          Profit
-200
             -300
             -400
                                                                                                      0.7
                      0.0
                                  0.1
                                             0.2
                                                         0.3
                                                                    0.4
                                                                               0.5
                                                                                           0.6
                                                                                                                 0.8
                                                                 Discount
```

Histogram of Data

Pair Plot of Sub-Category

In [51]: figsize=(15,20)
sns.pairplot(df_orders,hue='Sub-Category')

Out[51]: <seaborn.axisgrid.PairGrid at 0x225c6048670>

Box plot of Sales, Quantity, Discount & Profit

In [62]: df_orders.plot(kind='box',subplots=True, layout=(3,2), sharex=False, sharey=False)
 plt.rcParams['figure.figsize']=[14,12]
 plt.show()

3D Plot of Profit & Sales

```
In [66]: fig = px.scatter_3d(df, x='State', y='Profit', z='Sales', color='Profit', title='3D Scatter Plot')
fig.show()
```

3D Scatter Plot

Results

Sales Analysis Results:

- Identified sales trends over time (monthly, quarterly, yearly) and identified peak seasons or periods of high demand.
 - Analyzed the performance of different product categories and identified top-selling and underperforming products.

Profitability Analysis Results:

- Calculated profit margins for different products and product categories to identify the most profitable and leas profitable items.
- Analyzed the impact of discounts, shipping costs, or other factors on profitability.

Customer Behavior Analysis Results:

- Analyzed customer purchasing patterns, such as frequency, recency, and monetary value, to understand customer loyalty and lifetime value.
- Identified factors influencing customer churn and developed strategies for customer retention.
- Explored cross-selling and upselling opportunities based on market basket analysis and product association.

Recommendations and Insights:

Provided actionable recommendations to improve sales, profitability, and customer satisfaction based on the analysis results.

Conclusion

The analysis of the Superstore dataset has provided valuable insights into sales trends, customer behavior, and operational efficiency. Through exploratory data analysis and advanced modeling techniques, we have identified several significant findings:

- •Sales Trends: The analysis revealed seasonal patterns, with peak sales occurring during specific months. Additionally, certain product categories exhibited higher demand and profitability than others, indicating opportunities for strategic focus and optimization.
- Customer Segmentation
- •Predictive Insights: These insights enable proactive decision-making and assist in effective resource planning and inventory management.
- Enhanced Profitability
- Improved Decision Making
- Customer Satisfaction and Retention

Moving forward, it is recommended that the Superstore continues to monitor sales performance, customer behavior, and operational metrics. This will allow for ongoing adjustments and improvements based on changing market dynamics and evolving customer preferences.

Overall, the "Analysis of Superstore dataset" project demonstrates the power of data analytics in uncovering insights that drive strategic decision-making, operational efficiency, and ultimately, the success of the Superstore in a competitive retail market.