Artificial Intelligence Course (CS 550) - Timetable

Location: ISU, STEM building; Room: T302; Time: 16³⁰ - 17⁴⁵

3, 11 11							
Date	Day	Туре	Part	Details			
20.01.2020	Monday	Lecture №1	Applied Math	Introduction: Class syllabus overview; Discussion of grading policy; Topics overview; Software platforms; Linear Algebra: Scalar fields; Vector spaces; Linear dependence; Linear combinations; Bases; Dimension; Morphism; Isomorphism; Classification of morphisms; Linear functional and dual space; Dual bases; Brackets and Reflexivity;			
22.01.2020	Wednesday	Seminar №1		Practical application using Python in Jupyter Notebook. Examples and exercises.			
27.01.2020	Monday	Lecture №2		Linear Algebra: Linear transformations; Transformations as vectors; Products; Polynomials; Inverses; Matrices; Matrices transformations; Change of basis; Range and null-space; Rank and nullity; Eigenvectors and eigenvalues; Determinant; Singular Value Decomposition (SVD); Principal Component Analysis (PCA); Machin Learning.			
29.01.2020	Wednesday	Seminar №2		Practical application using Python in Jupyter Notebook. Dimension reduction using PCA. Homework №1.			
03.02.2020	Monday	Lecture №3		Probability: Probability versus statistics; Sigma-algebra; Mesure space; Probability; Independent events; Conditional probability; Bayes' theorem; Random variable; Expected value, Variance; Covariance; Covergence of random variables; Law of large numbers; Central limit theorem. Information Theory: Measure of information content; Entropy; Cross-entropy; Kullback-Leibler (KL) divergence.			
05.02.2020	Wednesday	Seminar №3		Practical application using Python in Jupyter Notebook. Examples and exercises. Naïve Bayes Classifier.			
10.02.2020	Monday	Lecture №4		Numerical Computation: Metric space; Metrics in Euclidean space; Sequences and limits; Functions; Limits of functions; Continuous functions; Derivatives; Partial derivatives; Total derivative; Directional derivative; Gradient of the function; Local extremums; Gradient descent method; Hessian matrix of continuous functions; Schwartz's theorem; Newton's method; Reverse mode differentiation;			
12.02.2020	Wednesday	Seminar №4		Practical application using Python in Jupyter Notebook. Examples and exercises. Feedback on Homework №1; Homework №2.			
	Midterm Even I (2 hours)						

Midterm Exam I (2 hours)

17.02.2020	Monday	Lecture №5	Machine Learning	Overview of Machine Learning Basics: Learning algorithms; Supervised and Unsupervised learning; Reinforcement learning; Hyperparameter and model selection; Training set, validation set and test set.			
19.02.2020	Wednesday	Seminar №5		Practical application using Python in Jupyter Notebook. Examples and exercises.			
24.02.2020	Monday	Lecture №6		Linear Regression: The normal equation; Gradient descent; Features, feature engineering and feature importance; Overfitting and underfitting; Estimators, bias and variance; Bias/variance trade-off; Bias-variance decomposition; Regularization.			
26.02.2020	Wednesday	Seminar №6		Practical application using Python in Jupyter Notebook. Examples and exercises.			
02.03.2020	Monday	Lecture №7		Probabilistic modeling: Logistic regression; Training and cost function; Naive Bayes algorithm.			
04.03.2020	Wednesday	Seminar №7		Practical application using Python in Jupyter Notebook. Examples and exercises. Feedback on Homework №2; Homework №3.			
09.03.2020	Monday	Lecture №8		Kernel methods: Decision boundaries; Maximum margin classifiers; Support vector machine (SVM).			
11.03.2020	Wednesday	Seminar №8		Practical application using Python in Jupyter Notebook. Examples and exercises.			
16.03.2020	Monday	Lecture №9		Unsupervised Learning: Clustering algorithms,K Means Clustering, Fuzzy C Means Clustering			
18.03.2020	Wednesday	Seminar №9		Practical application using Python in Jupyter Notebook. Examples and exercises.			
23.03.2020	Monday	Lecture №10		Ensemble methods: Decision trees; Bagging and pasting; Random forests; Gradient boosting machines.			
25.03.2020	Wednesday	Seminar №10		Practical application using Python in Jupyter Notebook. Examples and exercises. Feedback on Homework №3; Homework №4.			
	Midterm Exam II (2 hours)						

30.03.2020	Monday	Lecture №11		The Kalman filter, Nonlinear filtering, and Markov Chain Monte Carlo
01.04.2020	Wednesday	Seminar №11		Practical application using Python in Jupyter Notebook. Examples and exercises.
06.04.2020	Monday	Lecture №12		Neural Networks - Basic Mathematics used for Neural Networks Algorithms, Perceptron
08.04.2020	Wednesday	Seminar №12		Practical application using Python in Jupyter Notebook. Examples and exercises.
13.04.2020	Monday	Lecture №13	Deep Learning	Neural Networks, multi layer neural networks, feed forward and back progpagation learning algorithm
15.04.2020	Wednesday	Seminar №13		Practical application using Python in Jupyter Notebook. Examples and exercises. Feedback on Homework №3; Homework №5.
20.04.2020	Monday	Holiday		Orthodox Monday
			Ψ	
22.04.2020	Wednesday	Lecture №14	Dec	Basics of Reinforcement Learning: Introduction, Examples, Elements of Reinforcement Learning, Limitations and Scope, Tic-Tac-Toe (Reinforcement Learning: An Introduction second edition, Richard S. Sutton and Andrew G.Barto pp 1-13)
22.04.2020	Wednesday Monday	Lecture №14 Lecture №15	Dee	Scope, Tic-Tac-Toe (Reinforcement Learning: An Introduction second edition, Richard S. Sutton and Andrew
27.04.2020			Dee	Scope, Tic-Tac-Toe (Reinforcement Learning: An Introduction second edition, Richard S. Sutton and Andrew G.Barto pp 1-13)
27.04.2020	Monday	Lecture №15	Dec	Scope, Tic-Tac-Toe (Reinforcement Learning: An Introduction second edition, Richard S. Sutton and Andrew G.Barto pp 1-13) Deep Learning for Computer Vision pp 119-178 (Francois-Chollet-Deep-Learning-with-Python 2017)
27.04.2020 29.04.2020 04.05.2020	Monday Wednesday	Lecture №15 Seminar №14	Dec	Scope, Tic-Tac-Toe (Reinforcement Learning: An Introduction second edition, Richard S. Sutton and Andrew G.Barto pp 1-13) Deep Learning for Computer Vision pp 119-178 (Francois-Chollet-Deep-Learning-with-Python 2017) Practical application using Python in Jupyter Notebook. Examples and exercises.

There will be excercises at the end of each Lecture - solutions of these excersises will be discussed on Seminar, which will follow the lecture
At the end of each topic there will be a homework - each homework will be evaluated maximum by 6 points - there will be 5 homeworks - maximum 30 points
Midterm Exam I - Applied Math - maximum 20 points
Midterm Exam II - Machine Learning - maximum 20 points
Final Exam - Deep Learning - 30 Points
Total - 100 Points

