Licenciatura en ciencia de la computación



# Algoritmo p-1 de Pollard Matemática Computacional

**Profesor:** 

Nicolas Thériault

Autor:

Sergio Salinas Danilo Abellá

## Contents

| 1 | Introducción                       | 3 |
|---|------------------------------------|---|
| 2 | Formulación experimentos           | 4 |
| 3 | Información de Hardware y Software | 5 |
|   | 3.1 Notebook - Danilo Abellá       | 5 |
|   | 3.1.1 Software                     | 5 |
|   | 3.1.2 Hardware                     | 5 |
|   | 3.2 Notebook - Sergio Salinas      | 5 |
|   | 3.2.1 Software                     | 5 |
|   | 3.2.2 Hardware                     | 5 |
| 4 | Curvas de desempeño de resultados  | 6 |
|   | 4.1 Número vs Tiempo               | 6 |
|   | 4.2 B vs Tiempo                    | 7 |
| 5 | Conclusiones                       | 8 |

## 1 Introducción

El informe trata sobre el analisis del los tiempos de ejecución del algoritmo p-1 de Pollard, para implementarlo se uso el lenguage C junto con la librería GMP en su versión 6.

### 2 Formulación experimentos

Se probo el resultado con los tres números pedidos, pero para que el tiempo sea más exacto se ejecuto el algoritmo por durante un minuto y se calculo el primedio, los resultados son los siguientes.

| n                                | В    | Tiempo   |
|----------------------------------|------|----------|
| 28742705413                      | 9973 | 0.003851 |
| 45524252104894451218081          | 107  | 0.000052 |
| 17650684120269601571820630421347 | 655  | 0.009753 |

Los datos dan indicios que el tiempo de ejecución depende más del valor que alcance B que del tamaño del número, para estar más seguros de esto se ejecuto el programa mil veces con valores al azar que van desde el 2 al 1000000000000 y se hicieron dos gráficos, uno que compara el tiempo vs B y otro que compara tiempo vs Número.

Para que el tiempo sea más preciso se repetitio cada ejecución por durante el lapso de un 1 segundo y se calculo un promedio entre todos los tiempos.

Se uso una función del gmp que calculaba la probabilidad de que un número sea primo, a la hora generar números al azar para crear la gráfica, se usaba esta función para saber si el número resultante era posiblemente primo, si lo era se descartaba y se probaba otro. Esta función no fue agregada al tiempo de ejecución del algoritmo.

La tabla resultante de puede ver en en informe/DATOS.txt, la primera columna es el número probado, la segunda el valor de B alcanzado y la tercera el tiempo de ejecución.

### 3 Información de Hardware y Software

Lic. en ciencia de la computación

#### Notebook - Danilo Abellá

#### 3.1.1 Software

- SO: Xubuntu 16.04.1 LTS
- GMP Library
- Mousepad 0.4.0

#### 3.1.2 Hardware

- AMD Turion(tm) X2 Dual-Core Mobile RM-72 2.10GHz
- Memoria (RAM): 4,00 GB(3,75 GB utilizable)
- Adaptador de pantalla: ATI Raedon HD 3200 Graphics

#### 3.2 Notebook - Sergio Salinas

#### 3.2.1 Software

- SO: ubuntu Gnome 16.04 LTS
- Compilador: gcc version 5.4.0 20160609
- Editor de text: Atom

#### 3.2.2 Hardware

- Procesador: Intel Core i7-6500U CPU 2.50GHz x 4
- Video: Intel HD Graphics 520 (Skylake GT2)

## 4 Curvas de desempeño de resultados

## 4.1 Número vs Tiempo

## Número vs Tlempo



## 4.2 B vs Tiempo



## **5** Conclusiones

Con los primeros valores probados y en las gráficas queda claro que el tiempo se ejecución se mantiene constante independiente del tamaño del número, pero a medida que B va creciendo también lo va haciendo el tiempo, el caso más estremo fue el visto con el número 761126431349 que se demoro 0.087253s y alcanzo un valor B de 213623, mientras que el resto de los números que tenían valores B menores a 5 su tiempo de ejecución era de 0.000001s.