MEMS Inertial Sensors

Accelerometers

Part Number	Range (g)	Output Type	Sensing Axes	BW Typ (kHz)	Sensitivity	Noise (mg/√Hz)	Voltage Supply (V)	Supply Current (mA)	Temperature Range (°C)	Package	Additional Features
ADXL103	±1.7, ±18	Analog	1	2.5	100 mV/g to 1000 mV/g	0.11	3.0 to 6.0	0.7	-40 to +125	5~mm imes 5~mm imes 2~mm LCC	Low noise, low tempco
ADXL78	± 35 , ± 50 , ± 70	Analog	1	0.4	27 mV/g to 55 mV/g	1.1	4.75 to 5.25	2.2	-40 to +105	$5~\text{mm} \times 5~\text{mm} \times 2~\text{mm}$ LCC	
ADXL001	± 70 , ± 250 , ± 500	Analog	1	22	2.2 mV/g to 16 mV/g	3.3	3.135 to 6	2.5	-40 to +125	$5~\text{mm} \times 5~\text{mm} \times 2~\text{mm}$ LCC	Ultrawide bandwidth
ADXL203	$\pm 1.7, \pm 5, \pm 18$	Analog	2	2.5	100 mV/g to 1000 mV/g	0.11	3.0 to 6.0	0.7	-40 to +125	$5~\text{mm} \times 5~\text{mm} \times 2~\text{mm}$ LCC	Low noise, low tempco
ADXL206	± 5	Analog	2	2.5	312 mV/g	0.11	4.75 to 5.25	0.7	-40 to +175	13 mm $ imes$ 8 mm $ imes$ 2 mm SBDIP	Ultrahigh temperature
ADXL278	± 35 , ± 50 , ± 70	Analog	2	0.4	27 mV/g to 55 mV/g	1.1	4.75 to 5.25	2.2	-40 to +105	$5~\text{mm} \times 5~\text{mm} \times 2~\text{mm}$ LCC	
ADXL335	± 3	Analog	3	1.6	300 mV/g	0.15	1.8 to 3.6	0.35	-40 to +85	4 mm $ imes$ 4 mm $ imes$ 1.45 mm LFCSP	
ADXL326	±16	Analog	3	1.6	57 mV/g	0.3	1.8 to 3.6	0.35	-40 to +85	4 mm $ imes$ 4 mm $ imes$ 1.45 mm LFCSP	
ADXL337	± 3	Analog	3	1.6	300 mV/g	0.175	1.8 to 3.6	0.3	-40 to +85	3 mm $ imes$ 3 mm $ imes$ 1.45 mm LFCSP	
ADXL325	±5	Analog	3	1.6	174 mV/g	0.25	1.8 to 3.6	0.35	-40 to +85	4 mm $ imes$ 4 mm $ imes$ 1.45 mm LFCSP	
ADXL327	± 2	Analog	3	1.6	440 mV/g	0.25	1.8 to 3.6	0.35	-40 to +85	4 mm $ imes$ 4 mm $ imes$ 1.45 mm LFCSP	
ADXL377 New	±200	Analog	3	1.6	6.5 mV/g	2.4	1.8 to 3.6	0.3	-40 to +85	3 mm $ imes$ 3 mm $ imes$ 1.45 mm LFCSP	3-axis, high-g
ADXL350 <i>New</i>	± 1 , ± 2 , ± 4 , ± 8	Digital	3	1.6	2 mg/LSB	0.25	2.0 to 3.6	0.45 to 0.166	-40 to +85	3 mm $ imes$ 4 mm $ imes$ 1.2 mm LGA	Min/max tempco, low power, FIFO
ADXL312	± 1.5 , ± 3 , ± 6 , ± 12	Digital	3	1.6	2.9 mg/LSB	0.34	2.0 to 3.6	0.17	-40 to +105	$5~\mathrm{mm} \times 5~\mathrm{mm} \times 1.45~\mathrm{mm}$ LFCSP	
ADXL345	± 2 , ± 4 , ± 8 , ± 16	Digital	3	1.6	3.9 mg/LSB	0.52	2.0 to 3.6	0.03 to 0.14	-40 to +85	$3 \text{ mm} \times 5 \text{ mm} \times 1 \text{ mm LGA}$	Low power, FIFO
ADXL362 <i>New</i>	$\pm 2, \pm 4, \pm 8$	Digital	3	0.2	1 mg/LSB	0.18	1.6 to 3.5	0.002	-40 to +85	3 mm $ imes$ 3.25 mm $ imes$ 1.06 mm LGA	Ultralow power, deep FIFO, built in multiple sample activity/inactivity detection, external sync
ADXL346	± 2 , ± 4 , ± 8 , ± 16	Digital	3	1.6	3.9 mg/LSB	0.34	1.7 to 2.75	0.03 to 0.14	-40 to +85	$3~\text{mm} \times 3~\text{mm} \times 1~\text{mm LGA}$	Low power, FIFO
ADXL213	±1.2	PWM	2	2.5	30%/ <i>g</i>	0.16	3.0 to 6.0	0.7	-40 to +85	$5~\text{mm} \times 5~\text{mm} \times 2~\text{mm}$ LCC	Low noise, low offset tempco, PWM output
ADXL212	± 2	PWM	2	0.5	12.5 %/g	0.5	3.0 to 5.25	0.7	-40 to +85	$5~\text{mm} \times 5~\text{mm} \times 2~\text{mm}$ LCC	Low noise, low offset tempco, PWM output
Digital Accelerome	ters										
ADIS16003	1.7	SPI	2	5.5	_	0.11	5	1.5	-40 to +125	7 mm \times 7 mm LGA	Internal temperature sensor
ADIS16006	5	SPI	2	2.2	_	0.2	5	1.5	-40 to +125	7 mm \times 7 mm LGA	Internal temperature sensor
Inclinometers											
ADIS16203	$\pm 1.7; \pm 180^{\circ}$	Digital	1	2.25	0.025°/LSB	_	3.3	11 (normal); 0.5 (sleep)	-40 to +125	$9 \text{ mm} \times 9 \text{ mm LGA}$	Vertical mount, tilt and acceleration outputs, programmable alarms, digital filtering
ADIS16209	±1.7; ±180°	Digital	2	0.05	0.025°/LSB	0.19	3.3	11 (normal); 0.14 (sleep)	-40 to +125	$9 \text{ mm} \times 9 \text{ mm LGA}$	Dual-mode, high accuracy (0.1°) tilt and acceleration outputs, programmable alarms, digital filtering
ADIS16201	±1.7; ±90°	Digital	2	2.25	0.1°/LSB	_	3.3	11 (normal); 0.5 (sleep)	-40 to +125	$9 \text{ mm} \times 9 \text{ mm LGA}$	Tilt and acceleration outputs, programmable alarms, digital filtering
ADIS16210	±1.7; ±180°	Digital	3	0.05	_	_	3.3	18 (normal); 0.23 (sleep)	-40 to +125	15 mm $ imes$ 24 mm $ imes$ 15 mm module	Tri-axis, single command frame alignment, programmable alarms, serial number and device ID
Impact Sensors											
ADIS16204	±70	Digital	2	0.4	8.407 mg/LSB	1.8	3.3	12 (normal); 0.15 (sleep)	-40 to +105	$9 \text{ mm} \times 9 \text{ mm LGA}$	Programmable event recorder, peak sample/hold
ADIS16240	±19	Digital	3	1.6	51.4 mg/LSB	0.48	3	1 (normal); 0.1 (sleep)	-40 to +85	12 mm $ imes$ 12 mm BGA	Programmable event recorder, peak sample/hold
Vibration Sensors											
ADIS16228 <i>New</i>	±18	Digital	3	5	0.3052 mg/LSB	0.248	3.3	40 (normal); 0.23 (sleep)	-40 to +125	15 mm \times 24 mm \times 15 mm module	Embedded FFT analysis, low noise, multiple capture modes, programmable windowing/filtering, serial number and device ID
ADIS16223	±70	Digital	3	22	4.768 mg/LSB	3.3	3.3	43 (normal); 0.23 (sleep)	-40 to +125	15 mm $ imes$ 15 mm $ imes$ 15 mm module	
ADIS16227	±70	Digital	3	22	1.192 mg/LSB	3.3	3.3	43 (normal); 0.23 (sleep)	-40 to +125	15 mm × 15 mm × 15 mm module	Embedded FFT analysis

Gyroscopes (continues on next page)

Part Nu	ımber	Range (°/sec)	Output Type		In-Run Bias Stability (°/Hr)	Angle Random Walk (°/√Hr)	Linear Acceleration Effect(°/sec/g)	Sensitivity	Bias Tempco (°/sec/°C)	Sensitivity Tempco (ppm/°C)	Non- Linearity (% FS)	Voltage Supply (V)	Supply Current (mA)	Start-Up Time (ms)	Temperature Range (°C)	Package	Additional Features
ADXRS6	644	300	Analog	1000	9	0.6	0.015	9 mV/°/sec	_	_	0.1	6	3.5	50	-40 to +105	7 mm \times 7 mm \times 3 mm BGA	Vibration immune, min/max specs across temperature range, ultralow noise
ADXRS6	646	300	Analog	1000	12	0.6	0.015	9 mV/°/sec	_	_	0.1	6	3.5	50	-40 to +105	7 mm \times 7 mm \times 3 mm BGA	Ultrahigh stability, vibration immune, min/max specs across temperature range, ultralow noise
ADXRS6	642	250	Analog	2000	20	1.2	0.03	7 mV/°/sec	0.02	308	0.01	4.75 to 5.25	3.5	50	-40 to +105	7 mm $ imes$ 7 mm $ imes$ 3 mm BGA	High vibration immunity, industrial grade typ specs
ADXRS6	624	50	Analog	1000	60	2	0.1	25 mV/°/sec	0.07	462	0.1	4.75 to 5.25	3.5	50	-40 to +105	7 mm $ imes$ 7 mm $ imes$ 3 mm BGA	Min/max specs across temperature range
ADXRS6	623	150	Analog	3000	60	2	0.1	12.5 mV/°/sec	0.14	462	0.1	4.75 to 5.25	3.5	50	-40 to +105	7 mm $ imes$ 7 mm $ imes$ 3 mm BGA	Min/max specs across temperature range
₹ ADXRS6	622	250	Analog	2500	60	2	0.1	7 mV/°/sec	0.10	308	0.1	4.75 to 5.25	3.5	50	-40 to +105	7 mm $ imes$ 7 mm $ imes$ 3 mm BGA	Min/max specs across temperature range
& ADXRS6	652	250	Analog	2500	60	2	0.1	7 mV/°/sec	0.10	308	0.1	4.75 to 5.25	3.5	50	-40 to +105	7 mm $ imes$ 7 mm $ imes$ 3 mm BGA	Industrial grade typ specs
& ADXRS6	620	300	Analog	2500	60	2	0.1	6 mV/°/sec	0.11	308	0.1	4.75 to 5.25	3.5	50	-40 to +105	7 mm $ imes$ 7 mm $ imes$ 3 mm BGA	Min/max specs across temperature range
ADXRS6	649	20,000+	Analog	2000	200	15	0.03	0.01 mV/°/sec	_	_	0.1	5	3.5	3	-40 to +105	7 mm \times 7 mm \times 3 mm BGA	High rotation rate up to 50,000°/sec, industrial grade typ specs
ADXRS4	453	300	Digital	77.5	16	0.9	0.01	0.0125°/LSB	0.0034	207	0.05	3.15 to 5.25	6	100	-40 to +105	9 mm \times 9 mm \times 4 mm LCC VMP, 10 mm \times 10 mm \times 3.5 mm SOIC	Calibrated over temperature, vibration immune, in-plane and out-of-plane sensing
ADXRS4	450	300	Digital	80	25	0.9	0.03	0.0125°/LSB	0.02	462	0.05	3.15 to 5.25	6	100	-40 to +105	9 mm \times 9 mm \times 4 mm LCC VMP, 10 mm \times 10 mm \times 3.5 mm SOIC	High vibration immunity, industrial grade typ specs, in-plane and out-of-plane sensing

Gyroscopes (continued)

	Part Number	Range (°/sec)	Output Type	BW Typ (Hz)	In-Run Bias Stability (°/Hr)	Angle Random Walk (°/√Hr)	Linear Acceleration Effect (°/sec/g)	Sensitivity	Tempco	Sensitivity Tempco (ppm/°C)	Linearity	Voltage Supply (V)	Supply Current (mA)	Start-Up Time (ms)	Temperature Range (°C)	Package	Additional Features
ope 4xis)	ADIS16060	80	Digital	1000	_	_	0.1	0.0122°/LSB	0.11	_	0.1	5	4.3	10	-40 to +105	8 mm \times 8 mm \times 5 mm LGA	
rosc ngle ,	ADIS16080	80	Digital	40	_	-	0.2	0.0976°/LSB	_	_	0.15	5	7	35	-40 to +85	8 mm \times 8 mm \times 5 mm LGA	
is ayr All Sin	ADIS16136† <i>New</i>	480	Digital	380	3.5	0.167	0.017	0.00007°/LSB	0.00125	35	0.05	5	120	180	-40 to +85	36 mm \times 44 mm \times 14 mm module	External clock option
MEN ms (ADIS16133†	1200	Digital	335	6	0.75	0.03	0.05°/LSB	_	16	0.008	5	88	181	-40 to +85	36 mm \times 44 mm \times 14 mm module	Wide dynamic range
nsor	ADIS16135†	350	Digital	335	6	0.75	0.03	0.0125°/LSB	_	16	0.008	5	88	181	-40 to +105	36 mm \times 44 mm \times 14 mm module	
Subs	ADIS16265†	320	Digital	330	25	2	0.2	0.0183°/LSB	0.005	25	0.1	5	41	165	-40 to +105	11 mm $ imes$ 11 mm $ imes$ 5 mm LGA	Range scaling

[†]Includes part specific factory calibration, programmable filtering, and digital self-test. For multiaxis solutions, see the MEMS Inertial Measurement Unit (IMU) selection table.

*i*Sensor MEMS Inertial Measurement Units (IMUs)

				Range		Gyroscope														
Part Number	Output Type	Gyro (°/sec)	Acceler- ation (g)	Magnetometer (gauss)	Barometer (mbar)	In-Run Bias Stability (°/hr)	Angle Random Walk (°/√Hr)	Bias Tempco (°/sec/°C)	Linear Acceleration Effect (°/sec/g)	Sensitivity (°/sec/LSB)	Sensitivity Tempco (ppm/°C)	Non- Linearity (% FS)	Alignment (°)	BW Typ (Hz)	In-Run Bias Stability (mg)	Start-Up Time (ms)	Voltage Supply (V)	Temperature Range (°C)	Package	Additional Features
4 Degrees of Free	edom																			
ADIS16305	Digital	300	3	N/A	N/A	22	1.85	0.006	0.02	0.0125	20	0.1	0.1	330	0.037	180	5	-40 to +85	$\begin{array}{c} 23\text{mm}\times31\text{mm}\times\\ 8\text{mm module} \end{array}$	Low profile
6 Degrees of Free	edom																			
ADIS16445 <i>New</i>	Digital	250	5	N/A	N/A	12	0.6	0.005	0.015	0.0025	40	0.1	0.05	330	0.075	_	3.3	-40 to +85		Programmable operation and control, wide dynamic range, external clock option, single command self-test
ADIS16385	Digital	300	5	N/A	N/A	6 (z); 21 (x, y)	0.75 (z); 1.9 (x, y)	0.001 (z); 0.004 (x, y)	0.03 (z); 0.05 (x, y)	0.0031	40	0.1	0.05	330	0.05	210	5	-40 to +105	$36\mathrm{mm} \times 47\mathrm{mm} \times 39\mathrm{mm}$ module	High precision on yaw axis
ADIS16375	Digital	300	18	N/A	N/A	12	1	0.005	0.013	0.013	40	0.025	0.05	330	0.13	500	3.3	-40 to +85	$^{44\text{mm}\times47\text{mm}\times}_{14\text{mm}\text{module}}$	Continuous bias estimator, single command self-test, delta angle/ velocity, continuous bias estimator, programmable FIR filtering
ADIS16362	Digital	300	1.7	N/A	N/A	25	2	0.01	0.05	0.0125	50	0.1	0.05	330	0.041	180	5	-40 to +105	$^{23\text{mm}\times23\text{mm}\times}_{23\text{mm}\text{module}}$	High sensitivity accelerometer, external clocking option, burst mode reads
ADIS16364	Digital	300	5	N/A	N/A	25	2	0.01	0.05	0.0125	50	0.1	0.05	330	0.1	180	5	-40 to +105	$^{23\text{mm}\times23\text{mm}\times}_{23\text{mm}\text{module}}$	Narrowed temperature calibration range, external clocking option, burst mode reads
ADIS16365	Digital	300	18	N/A	N/A	25	2	0.01	0.05	0.0125	50	0.1	0.05	330	0.2	180	5	-40 to +105	$^{23\text{mm}\times23\text{mm}\times}_{23\text{mm}\text{module}}$	Wide temperature calibration range, external clocking option, burst mode reads
ADIS16334	Digital	300	5	N/A	N/A	25	2	0.005	0.05	0.0125	40	0.1	0.05	330	0.1	180	5	-40 to +105	$^{22\text{mm}\times33\text{mm}\times}_{11\text{mm module}}$	Small footprint/height, single command self-test
ADIS16485 <i>New</i>	Digital	450	18	N/A	N/A	6	0.3	0.0025	0.009	3.052 × 10 ⁻⁷	35	0.01	0.05	330	0.032	500	3.3	-40 to +85	$^{\rm 44mm\times47mm\times}_{\rm 14mmmodule}$	Programmable FIR filtering, 2.46 kHz sample rate, single command self-test, delta angle/velocity, continuous bias estimator, linear-g compensation
ADIS16367	Digital	1200	18	N/A	N/A	47	2	0.01	0.075	0.05	40	0.1	0.05	330	0.2	180	5	-40 to +105	$\begin{array}{c} 23\text{mm}\times23\text{mm}\times\\ 23\text{mm}\text{module} \end{array}$	Wide dynamic range, external clocking option, burst mode reads
9 Degrees of Free	edom																			
ADIS16405	Digital	300	18	2.5	N/A	25	2	0.01	0.05	0.0125	40	0.1	0.05	330	0.2	220	5	-40 to +105	$^{23\text{mm}\times23\text{mm}\times}_{23\text{mm}\text{module}}$	Magnetometer
10 Degrees of Fre	eedom																			
ADIS16407	Digital	300	18	2.5	10 to 1200	25	1.9	0.01	0.05	0.0125	40	0.1	0.05	330	0.2	220	5	-40 to +105	$23\mathrm{mm} \times 23\mathrm{mm} $	Barometer
ADIS16488 <i>New</i>	Digital	450	18	2.5	10 to 1200	6	0.3	0.0025	0.009	3.052 × 10 ⁻⁷	35	0.01	0.05	330	0.1	500	3.3	-40 to +85	$47\mathrm{mm} \times 44\mathrm{mm} \times \\ 14\mathrm{mm}\mathrm{module}$	Programmable FIR filtering, 2.46 kHz sample rate, programmable soft-iron correction matrix, programmable hard-iron correction, single command self-test, delta angle/velocity, continuous bias estimator, linear-g compensation
ADIS16480 <i>New</i>	Digital	450	18	2.5	10 to 1200	6	0.3	0.0025	0.009	3.052 × 10 ⁻⁷	35	0.01	0.05	330	0.1	500	3.3	-40 to +85	$47\mathrm{mm} \times 44\mathrm{mm} \times \\ 14\mathrm{mm}\mathrm{module}$	Extended Kalman filter, $\pm 0.1^{\circ}$ static angle accuracy, $\pm 0.3^{\circ}$ dynamic angle accuracy, programmable FIR filtering, 2.46 kHz sample rate, programmable soft-iron correction matrix, programmable hard-iron correction, single command self-test, delta angle/velocity, continuous bias estimator, linear- g compensation
ADIS16448 <i>New</i>	Digital	1000	18	1.9	10 to 1200	14	0.6	0.005	0.015	0.01	40	0.1	0.05	330	0.12	205	3.3	-40 to +85	$\begin{array}{c} 24\mathrm{mm}\times37\mathrm{mm}\times\\ 10\mathrm{mm}\mathrm{module} \end{array}$	Programmable operation and control, wide dynamic range, external clock option, single command self-test

All ADI MEMS IMUs include part-specific factory calibration and programmable filtering, unless noted.

