Introduction to Neural Networks

Chia-Po Wei

Department of Electrical Engineering National Sun Yat-sen University

Outline

- Optimization
 - Gradient Descent
 - Backpropagation
- Neural Networks
 - Input/Hidden/Output Layers
 - Keras for Training Neural Networks

Training Pipeline

- The training pipeline consists of choosing the prediction model, the loss function, and the optimizer.
- Once these choices are made, we can feed the input data and labels to start the training process.

Gradient Descent

keras.optimizers.SGD(lr=0.001)

Consider the following sequence

$$\mathbf{w}_{n+1} = \mathbf{w}_n - \alpha \, \nabla f(\mathbf{w}_n), n \geq 0$$

• Since $-\nabla f(\mathbf{w}_n)$ is the negative gradient at \mathbf{w}_n , we have

$$f(\mathbf{w}_0) \ge f(\mathbf{w}_1) \ge f(\mathbf{w}_2) \ge \cdots$$

- The scalar α is called the **learning rate**.
- How to properly select the learning rate?
- Try the Adam optimizer

keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999)

Gradient Descent (cont.)

[slide credit: Hung-yi Lee]

Backpropagation

$$f(x,y,z) = (x+y)z$$

• Let
$$x = -2$$
, $y = 5$, $z = -4$

• Define
$$q = x + y$$
, $\frac{\partial q}{\partial x} = 1$, $\frac{\partial q}{\partial y} = 1$

• Then
$$f = qz$$
, $\frac{\partial f}{\partial q} = z$, $\frac{\partial f}{\partial z} = q$

Calculate
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Backpropagation (cont.)

$$f(x,y,z) = (x+y)z$$

• Let
$$x = -2$$
, $y = 5$, $z = -4$

• Define
$$q = x + y$$
, $\frac{\partial q}{\partial x} = 1$, $\frac{\partial q}{\partial y} = 1$

• Then
$$f = qz$$
, $\frac{\partial f}{\partial q} = z$, $\frac{\partial f}{\partial z} = q$

Calculate
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Backpropagation (cont.)

[slide credit: Stanford CS231n]

Neural Networks

- Linear Model: $f(\mathbf{x}) = \mathbf{W}\mathbf{x}$
- 2-layer Neural Network:

$$f(\mathbf{x}) = f_2(\text{ReLU}(f_1(\mathbf{x}))) = \mathbf{W}_2 \text{max}(0, \mathbf{W}_1 \mathbf{x})$$

$$f_1(\mathbf{x}) = \mathbf{W}_1 \mathbf{x}, \quad f_2(\mathbf{h}) = \mathbf{W}_2 \mathbf{h}, \quad \text{ReLU}(\mathbf{h}) = \text{max}(0, \mathbf{h})$$

Neural Networks (cont.)

• 2-layer Neural Network:

$$f(\mathbf{x}) = f_2(\text{ReLU}(f_1(\mathbf{x}))) = \mathbf{W}_2 \max(0, \mathbf{W}_1 \mathbf{x})$$
$$f_1(\mathbf{x}) = \mathbf{W}_1 \mathbf{x}, \quad f_2(\mathbf{h}) = \mathbf{W}_2 \mathbf{h}, \quad \text{ReLU}(\mathbf{h}) = \max(0, \mathbf{h})$$

- Take CIFAR10 for example
- $\dim(\mathbf{x})$ is 32x32x3 = 3072
- dim(s) is 10 (number of classes)
- dim(h) is manually defined

Neural Network (cont.)

• 3-layer Neural Network:

$$f(\mathbf{x}) = f_3(\text{ReLU}(f_2(\text{ReLU}(f_1(\mathbf{x}))) = \mathbf{W}_3 \max(0, \mathbf{W}_2 \max(0, \mathbf{W}_1 \mathbf{x}))$$
$$f_1(\mathbf{x}) = \mathbf{W}_1 \mathbf{x}, \quad f_2(\mathbf{h}_1) = \mathbf{W}_2 \mathbf{h}_1, \quad f_3(\mathbf{h}_2) = \mathbf{W}_3 \mathbf{h}_2, \quad \text{ReLU}(\mathbf{h}) = \max(0, \mathbf{h})$$

Keras: Creating Models via Sequential()


```
model = keras.Sequential([
   keras.layers.Flatten(input_shape=(32, 32, 3)),
   keras.layers.Dense(512, activation=tf.nn.relu),
   keras.layers.Dense(128, activation=tf.nn.relu),
   keras.layers.Dense(10, activation=tf.nn.softmax)])
```

Hyperparameters:

- The number of layers
- The number of neurons per
- The activation functions

Activation Functions

Sigmoid:
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Sigmoid leads to the vanishing gradient problem (seldom used).
- ReLU is now widely used in the architecture design of neural networks.

Sigmoid

Sigmoid:
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Problems:

- 1. The saturated neurons cause the vanishing gradient problem.
- 2. Sigmoid outputs are not zero-centered.
- 3. exp() is a bit computationally expensive

Vanishing Gradient Problem

Sigmoid: $\sigma(x) = \frac{1}{1 + e^{-x}}$

[slide credit: Stanford CS231n]

All Positive Inputs

- What happens when the inputs to a layer are all positive?
- What can we say about the gradients with respect to w?
- Suppose the loss is $L(f(\mathbf{x}))$ with $f(\mathbf{x}) = \sum_i w_i x_i + b$

$$\frac{\partial L}{\partial \mathbf{w}} = \frac{\partial L}{\partial f} \frac{\partial f}{\partial \mathbf{w}} \qquad \frac{\partial f}{\partial \mathbf{w}} = \begin{bmatrix} \frac{\partial f}{\partial w_1} & \cdots & \frac{\partial f}{\partial w_n} \end{bmatrix}^T = [x_1 & \cdots & x_n]^T$$

• Since $x_i > 0$, the gradient $\frac{\partial L}{\partial \mathbf{w}}$ always has the same sign as $\frac{\partial L}{\partial f}$ (all positive or all negative).

ReLU

ReLU: max(0, x)

Pros:

- 1. Does not saturate
- 2. Computationally efficient

Cons:

1. Not zero-entered output

Relation to Biological Neurons

Keras: model.summary()

Layer (type)	Output	Shape	Param #
flatten (Flatten)	(None,	3072)	0
dense (Dense)	(None,	512)	1573376
dense_1 (Dense)	(None,	128)	65664
dense_2 (Dense)	(None,	10)	1290
			

Total params: 1,640,330

Trainable params: 1,640,330

Non-trainable params: 0

```
model = keras.Sequential([
    keras.layers.Flatten(input_shape=(32, 32, 3)),
    keras.layers.Dense(512, activation=tf.nn.relu),
    keras.layers.Dense(128, activation=tf.nn.relu),
    keras.layers.Dense(10, activation=tf.nn.softmax)])
model.summary()
```

Keras: Training Pipeline

```
Epoch 1/30 - 7s 140us/sample - loss: 1.8849 - acc: 0.3227
Epoch 2/30 - 7s 133us/sample - loss: 1.6746 - acc: 0.3999
Epoch 3/30 - 7s 131us/sample - loss: 1.5990 - acc: 0.4297
Epoch 4/30 - 7s 133us/sample - loss: 1.5544 - acc: 0.4458
Epoch 5/30 - 7s 131us/sample - loss: 1.5119 - acc: 0.4622
Epoch 6/30 - 7s 132us/sample - loss: 1.4852 - acc: 0.4726
Epoch 7/30 - 7s 132us/sample - loss: 1.4656 - acc: 0.4780

:
Epoch 28/30 - 7s 130us/sample - loss: 1.2196 - acc: 0.5629
Epoch 29/30 - 6s 130us/sample - loss: 1.2128 - acc: 0.5637
Epoch 30/30 - 6s 130us/sample - loss: 1.2103 - acc: 0.5634
```

Keras Callbacks

model.fit(train_images, train_labels, epochs=30, callbacks = [cp_callback, tb_callback])

TensorBoard

Checkpoint

Keras: TensorBoard

Keras: Checkpoint

```
checkpoint_path = "training_cifar10/cp-{epoch:04d}.ckpt"
loss, acc = model.evaluate(test_images, test_labels)
for epoch in [10, 20, 30]:
    latest = checkpoint_path.format(epoch=epoch)
    model.load_weights(latest)
    loss, acc = model.evaluate(test_images, test_labels)
```

名稱	名稱 ^		大小	
a checkp	oint	1 KB		
	0.ckpt.data-00000-of-00001	6,412 KB		
cp-001	0.ckpt.index	1 KB		
€ cp-002	0.ckpt.data-00000-of-00001	6,412 KB		
Cp-002	0.ckpt.index	1 KB		
	0.ckpt.data-00000-of-00001	6,412 KB		
	0.ckpt.index	1 KB		

Random Weights

1s 86us/sample - loss: 2.5282 - acc: 0.0875

Epoch 10 checkpoint

1s 60us/sample - loss: 1.5094 - acc: 0.4586

Epoch 20 checkpoint

1s 60us/sample - loss: 1.4365 - acc: 0.4936

Epoch 30 checkpoint

1s 59us/sample - loss: 1.4265 - acc: 0.5045

