Лекция 1. Введение

Численные методы

Литература

- 1. Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. Численные методы.
- 2. А.А. Самарский, А.В. Гулин. Численные методы.
- 3. А.А. Амосов, Ю.А. Дубинский, Н.В. Копченова. Вычислительные методы для инженеров.
- 4. Н.С. Бахвалов, А.В. Лапин, Е.В. Чижонков. Численные методы в задачах и упражнениях.
- 5. Н.В. Копченова, И.А. Марон. Вычислительная математика в примерах и задачах.

§ 1. Предмет вычислительной математики

 1. Математическое моделирование и вычислительный эксперимент

Методом математического моделирования и вычислительного эксперимента решаются различные научно-технические проблемы:

- расчет траекторий летательных аппаратов;
- моделирование климата и долгосрочный прогноз погоды;
- получение кристаллов и создание материалов с заданными свойствами и другие.

Вычислительный эксперимент представляет собой метод исследования естественно-научных проблем, допускающих математическое описание средствами вычислительной математики.

Основные этапы вычислительного эксперимента

Основные этапы вычислительного эксперимента

- На 1-м этапе осуществляется конкретизация постановки задачи и формулируется цель исследования.
- На 2-м этапе выбирают физическую модель процесса, пренебрегая теми факторами, влияние которых в данном случае предполагают несущественным.

Физической модели ставится в соответствие математическая модель, то есть математическое описание физического процесса с помощью алгебраических, дифференциальных, интегральных уравнений. Эти уравнения обычно выражают законы сохранения основных физических величин (энергии, количества движения).

Основные этапы вычислительного эксперимента

На 3-м этапе осуществляется выбор вычислительного алгоритма.

Под вычислительным алгоритмом понимают последовательность арифметических и логических операций, при помощи которых находится приближенное численное решение математической задачи.

- На 4-м этапе осуществляется написание программы и ее отладка.
- На 5-м этапе проводятся вычисления. Полученные результаты изучаются с точки зрения их соответствия исследуемому явлению и при необходимости уточняется математическая модель.

вные этапы вычислительного еримента

 а этапе осуществляется конкретизация постановки задачи мулируется цель исследования.

 этапе выбирают физическую модель процесса;
брегая теми факторами, влияние которых в данном предполагают несущественным.

неской модели ставится в соответствие математическая то есть математическое списание физического а с помощью амебраических, дифференциальных, ыных уравнений. Эти уравнения объямо выражают законы имя основных физических величин (эмергии, количества объемость в принамента в принамента объемость принамента в принамента в принамента объемость принамента в принамента в принамента объемость принамента в принамента

2. Классификация вычислительных задач

Все величины, входящие в математическую модель, разделяют на три группы:

- ИСХОДНЫЕ ДОННЫЕ $x = (x_1, x_2, ..., x_m)$;
- параметры модели $a = (a_1, a_2, ..., a_k)$;
- искомое решение $y = (y_1, y_2, ..., y_n)$.

Прямая задача: по данному значению x при фиксированных значениях a найти y.

Обратная задача: по данному значению y при фиксированных значениях a найти x.

Задача идентификации состоит в выборе из заданного параметрического семейства моделей конкретной математической модели (с помощью выбора ее параметров), с тем чтобы оптимальным в смысле некоторого критерия образом согласовать значения у с результатами наблюдений.

З. Типы погрешностей численного решения вычислительных задач

Неустранимая погрешность является следствием неточности задания числовых данных, входящих в математическое описание задачи и следствием несоответствия математического описания задачи реальности.

Погрешность метода.

Вычислительная погрешность обусловлена тем, что при выполнении арифметических операций на компьютере и при выводе результатов на печать осуществляется округление.

Полная погрешность — это разность между реально полученным и точным решением задачи.

Лекция 2. Основные понятия теории погрешностей

Численные методы

4. Приближенные числа. Абсолютная и относительная погрешности

Погрешностью приближенного числа a^* называют разность между точным и приближенным значением:

$$a-a^*$$
.

Абсолютной погрешностью приближенного числа a^* называют величину

$$\Delta(a^*) = |a - a^*|.$$

Относительной погрешностью приближенного числа

 a^* называют величину

$$\delta(a^*) = \frac{|a - a^*|}{|a|}.$$

Замечание.

Так как значение a неизвестно, то непосредственное вычисление величин $\Delta(a^*)$ и $\delta(a^*)$ по записанным выше формулам невозможно. Поэтому на практике находят **оценку погрешности**:

$$|a-a^*| \leq \overline{\Delta}(a^*)$$
 и $\frac{|a-a^*|}{|a|} \leq \overline{\delta}(a^*)$,

где $\bar{\Delta}(a^*)$ и $\bar{\delta}(a^*)$ – известные величины, называемые **границами** абсолютной и относительной погрешностей.

Вместо неизвестного значения a используют его приближенное значение a^* :

$$\bar{\delta}(a^*) \approx \frac{\bar{\Delta}(a^*)}{|a^*|}.$$

5. Значащие цифры числа

Пусть приближенное число a^* задано в виде конечной десятичной дроби: $a^* = \alpha_n \alpha_{n-1} \dots \alpha_0$, $\beta_1 \beta_2 \dots \beta_m$. Десятичная точка

Значащими цифрами числа a^* называют все цифры в его записи, начиная с первой ненулевой слева.

Значащую цифру числа a^* называют верной, если абсолютная погрешность числа не превосходит единицы разряда, соответствующего этой цифре.

Пример. Указать верные значащие цифры приближенного числа $a^*=0.03045000$, если $\Delta(a^*)=0.0000007$. Ответ: $a^*=0.03045000$.

$a^* =$	0,0	30450	00	Правило: количество верных значащих
$\Delta(a^*) =$	0,0	00000	7	цифр отсчитывают от первой значащей цифры числа до первой значащей цифры его абсолютной погрешности.

6. Погрешность округления

Погрешностью округления называется погрешность, возникающая при замене числа a другим числом a^* с меньшим количеством значащих цифр.

Способ округления	Погрешность округления
Усечение до заданного количества значащих цифр	Абсолютная погрешность не превышает единицы разряда, соответствующего последней оставленной цифре.
Дополнение : если первая слева из отбрасываемых цифр β_k такая, что 1) $\beta_k < 5$, то β_{k-1} оставляем без изменения; 2) $\beta_k \geq 5$, то β_{k-1} увеличиваем на единицу.	Абсолютная погрешность не превышает половины единицы разряда, соответствующего последней оставленной цифре.

Пример. a = 1,237.

- 1. Усечение до 3-х значащих цифр: $a^*=1,23; |a-a^*|=0,007 \le 0,01.$
- 2. Дополнение: $a^* = 1,24$; $|a a^*| = 0,003 \le \frac{0,01}{2}$.

7. Погрешности арифметических операций над приближенными числами

1. Абсолютная погрешность алгебраической суммы:

$$\Delta(a^* \pm b^*) \le \Delta(a^*) + \Delta(b^*).$$

Следствие: $\bar{\Delta}(a^* \pm b^*) = \bar{\Delta}(a^*) + \bar{\Delta}(b^*)$.

2. Относительная погрешность суммы и разности:

$$\delta(a^* + b^*) \leq \max\{\delta(a^*), \delta(b^*)\}, \in \Delta(a^*) \geq 0;$$

$$\delta(a^* - b^*) \le \frac{|a+b|}{|a-b|} \max\{\delta(a^*), \delta(b^*)\}, \quad \text{если } ab > 0.$$

Следствие: $\bar{\delta}(a^*+b^*)=\max\{\bar{\delta}(a^*),\bar{\delta}(b^*)\},$

$$\bar{\delta}(a^* - b^*) = \frac{|a+b|}{|a-b|} \max\{\bar{\delta}(a^*), \bar{\delta}(b^*)\}.$$

Замечание. При вычитании близких чисел одного знака возможна потеря точности в несколько раз, так как $|a+b|\gg |a-b|$.

3. Относительная погрешность произведения:

$$\delta(a^*b^*) \le \delta(a^*) + \delta(b^*) + \delta(a^*)\delta(b^*).$$

Следствие: если $\bar{\delta}(a^*) \ll 1$ и $\delta(b^*) \ll 1$, то $\bar{\delta}(a^*b^*) \approx \bar{\delta}(a^*) + \bar{\delta}(b^*)$.

4. Относительная погрешность частного:

$$\delta\left(\frac{a^*}{b^*}\right) \leq \frac{\delta(a^*) + \delta(b^*)}{1 - \delta(b^*)}$$
 при $\delta(b^*) < 1$.

Следствие: если $\bar{\delta}(a^*) \ll 1$ и $\delta(b^*) \ll 1$, то $\bar{\delta}\left(\frac{a^*}{b^*}\right) \approx \bar{\delta}(a^*) + \bar{\delta}(b^*)$.

Замечание. Границы абсолютной и относительной погрешностей всегда округляют в сторону увеличения.

Пример. Оцените точность приближения числа $a^*=1,41$ к числу Пифагора $a=\sqrt{2}=1,414213...$

Решение.

- 1. Вычислим погрешность: $a a^* = 0.004213 \dots$
- 2. Запишем значение границы абсолютной погрешности (значение округлено в сторону увеличения):

$$\bar{\Delta}(a^*) = 0.004214.$$

3. Вычислим приближенно значение границы относительной погрешности:

$$\bar{\delta}(a^*) \approx \frac{\bar{\Delta}(a^*)}{|a^*|} = \frac{0,004214}{1,41} \approx 0,003 (0,3\%).$$

Ответ: 0,3%.

8. Погрешность вычисления функций многих переменных

Пусть $f(x_1,...,x_n)$ — непрерывно дифференцируемая функция своих аргументов в области $D\colon \left|x_j-x_j^*\right| \leq \bar{\Delta}(x_j^*), \ j=\overline{1,n}.$

Тогда для **абсолютной погрешности** значения $y^* = f(x_1^*,...,x_n^*)$ справедлива оценка: $|f(x_1,...,x_n) - y^*| \le A(y^*)$, где $A(y^*) = \sum_{i=1}^n \left\{ \max_D \left| \frac{\partial f}{\partial x_j} \right| \right\} \cdot \bar{\Delta}(x_j^*).$

На практике используют **линейную оценку погрешности**: $|f(x_1,...,x_n)-y^*| \leq A^0(y^*)$, где

$$A^{0}(y^{*}) = \sum_{j=1}^{n} \left| f'_{x_{j}}(x_{1}^{*}, \dots, x_{n}^{*}) \right| \cdot \overline{\Delta}(x_{j}^{*}).$$

- **Пример 1.** $y = f(x) = x^{10}, x^* = 1, \overline{\Delta}(x^*) = 0,001.$
- 1. Оценка абсолютной погрешности:

$$|x^{10} - 1| \le {\max_{|x-1| \le 0,001} |10 \cdot x^9|} \cdot 0,001 = 10 \cdot 1,001^9 \cdot 0,001 = 0,01009 \dots$$

2. Линейная оценка погрешности:

$$|x^{10} - 1| \le |10 \cdot 1^9| \cdot 0,001 = 0,01.$$

Пример 2. Линейная оценка погрешности:

1)
$$y = f(x) = \ln x \implies |\ln x - y^*| \le \frac{1}{|x^*|} \cdot \bar{\Delta}(x^*) = \bar{\delta}(x^*).$$

2)
$$y = f(x) = \sin x \Rightarrow |\sin x - y^*| \le |\cos x^*| \cdot \overline{\Delta}(x^*) \le \overline{\Delta}(x^*)$$
.

3)
$$y = f(x) = \operatorname{tg} x \implies |\operatorname{tg} x - y^*| \le \frac{1}{\cos^2 x^*} \cdot \bar{\Delta}(x^*) = (1 + \operatorname{tg}^2 x^*) \ge \bar{\Delta}(x^*).$$

9. Представление вещественных чисел в вычислительной машине

Для вещественных чисел принята форма представления с плавающей точкой

$$x = Mr^p$$
,

где $r^{-1} \leq |M| < 1$ — это условие обеспечивает единственность представления;

r — основание системы счисления; p (целое) — порядок числа x;

M — мантисса числа x.

$$M = \pm (\gamma_1 r^{-1} + \gamma_2 r^{-2} + \dots + \gamma_t r^{-t}),$$

 γ_i — Целые числа, $0 \le \gamma_i \le r-1$, $i=\overline{1,t}$; причем $\gamma_1 \ne 0$,

так как в памяти вычислительной машины хранятся только значащие цифры;

t — разрядность мантиссы (количество цифр, которое отводится для ее памяти).

Пример. x = +0.0013507 (r = 10).

$$M = +(1 \cdot 10^{-1} + 3 \cdot 10^{-2} + 5 \cdot 10^{-3} + 7 \cdot 10^{-5}), x = M \cdot 10^{-2}.$$

 Вычислительная машина оперирует с числами, имеющими конечное число значащих цифр и принадлежащих не всей числовой оси, а некоторому интервалу:

Если в процессе вычислений <u>нарушается условие</u> $|x| < X_{\infty}$, то происходит аварийный останов вычислительной машины вследствие переполнения разрядной сетки.

Если в результате вычислений получается число x такое, что $|x| < X_0$, то происходит исчезновение порядка.

 Выполнение арифметических операций над числами, мантиссы которых содержат t разрядов, как правило, приводят к результатам, содержащим более t разрядов.

Округление результата до t разрядов приводит к возникновению погрешности:

$$\overline{\Delta}(a^* \circledast b^*) \approx |a^* * b^*| \cdot \varepsilon_M,$$

где * — точное выполнение операций (сложение, вычитание, умножение, деление), а \circledast — машинное выполнение тех же операций; ε_M — относительная точность вычислительной машины или машинное эпсилон (определяется разрядностью мантиссы и способом округления).

Машинное эпсилон — это минимальное из представляемых в вычислительной машине чисел, для которого еще выполняется неравенство: $1 \oplus \varepsilon > 1$.

10. Корректность вычислительной задачи

Пусть

X – МНОЖЕСТВО ДОПУСТИМЫХ ВХОДНЫХ ДОННЫХ,

Y-множество возможных решений.

Цель вычислительной задачи: нахождение решения $y \in Y$ по заданному значению $x \in X$.

Решение y вычислительной задачи называют **устойчивым по входным данным** x, если оно зависит от входных данных непрерывным образом:

$$\forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \colon (\forall x^* \colon \Delta(x^*) < \delta) \quad \Rightarrow (\exists y^* \colon \Delta(y^*) < \varepsilon).$$

Вычислительная задача называется корректной по Адамару, если

- 1) решение $y \in Y$ этой задачи существует при любых исходных данных $x \in X$;
- 2) это решение единственно;
- 3) решение устойчиво по отношению к малым возмущениям исходных данных.

Вамечание.

Многие прикладные задачи являются некорректными. Для решения такого класса задач используются методы регуляризации, разработанные школой академика А.Н. Тихонова.

Задачу называют **хорошо обусловленной**, если малым погрешностям исходных данных отвечают малые погрешности решения, и **плохо обусловленной**, если возможны значительные изменения решения.