In the Claims:

 (currently amended) A method of fabricating a semiconductor device, having a reducedoxygen copper-zinc (Cu-Zn) alloy filled dual-inlaid interconnect structure formed on a copper (Cu) surface formed by electroplating the Cu surface in a chemical solution, comprising the steps of:

providing a semiconductor substrate having a Cu surface formed in a via; providing a chemical solution;

electroplating the Cu surface in the chemical solution thereby forming said a Cu-Zn alloy fill in the via and on the Cu surface,
wherein said electroplating comprises using an electroplating apparatus,

wherein said electroplating apparatus comprises:

- (a) a cathode-wafer;
- (b) an anode;
- (c) electroplating vessel; and
- (d) a voltage source, and

wherein the cathode-wafer comprises the Cu surface,

rinsing the Cu-Zn alloy fill in a solvent;

drying the Cu-Zn alloy fill under a gaseous flow;

annealing the Cu-Zn alloy fill formed in the via and <u>directly deposited</u> on the Cu surface, thereby forming a reduced-oxygen Cu-Zn alloy fill having <u>an alloy surface and an alloy thickness and having</u> a uniform zinc distribution <u>across said alloy surface and said alloy thickness</u>;

planarizing the reduced-oxygen Cu-Zn alloy fill and the Cu surface, thereby completing formation of a reduced-oxygen Cu-Zn alloy filled dual-inlaid interconnect structure; and

completing formation of the semiconductor device.

2

10

5

15

5

5

2. (original) A method, as recited in Claim 1, wherein the chemical solution is nontoxic and aqueous, and wherein the chemical solution comprises:

at least one zinc (Zn) ion source for providing a plurality of Zn ions; at least one copper (Cu) ion source for providing a plurality of Cu ions; at least one complexing agent for complexing the plurality of Cu ions; at least one pH adjuster;

at least one wetting agent for stabilizing the chemical solution, all being dissolved in a volume of deionized (DI) water.

- 3. (original) A method, as recited in Claim 2,
 - wherein the at least one zinc (Zn) ion source comprises at least one zinc salt selected from a group consisting essentially of zinc acetate ((CH₃CO₂)₂Zn), zinc bromide (ZnBr₂), zinc carbonate hydroxide (ZnCO₃·2Zn(OH)₂), zinc dichloride (ZnCl₂), zinc citrate ((O₂CCH₂C(OH)(CO₂)CH₂CO₂)₂Zn₃), zinc iodide (ZnI₂), zinc L-lactate ((CH₃CH(OH)CO₂)₂Zn), zinc nitrate (Zn(NO₃)₂), zinc stearate ((CH₃(CH₂)₁₆CO₂)₂Zn), zinc sulfate (ZnSO₄), zinc sulfide (ZnS), zinc sulfite (ZnSO₃), and their hydrates.
- 4. (original) A method, as recited in Claim 2,

wherein the at least one copper (Cu) ion source comprises at least one copper salt selected from a group consisting essentially of copper(I) acetate (CH₃CO₂Cu), copper(II) acetate ((CH₃CO₂)₂Cu), copper(I) bromide (CuBr), copper(II) bromide (CuBr₂), copper(II) hydroxide (Cu(OH)₂), copper(II) hydroxide phosphate (Cu₂(OH)PO₄), copper(I) iodide (CuI), copper(II) nitrate ((CuNO₃)₂), copper(II) sulfate (CuSO₄), copper(I) sulfide (Cu₂S), copper(II) sulfide (CuS), copper(II) tartrate ((CH(OH)CO₂)₂Cu), and their hydrates.

5. (previously canceled)

5

5

- 6. (previously amended) A method, as recited in Claim 1, wherein the anode comprises at least one material selected from a group consisting essentially of copper (Cu), a copper-platinum alloy (Cu-Pt), titanium (Ti), platinum (Pt), a titanium-platinum alloy (Ti-Pt), an anodized copper-zinc alloy (Cu-Zn, i.e., brass), a platinized titanium (Pt/Ti), and a platinized copper-zinc (Pt/Cu-Zn, i.e., platinized brass).
- 7. (original) A method, as recited in Claim 1, wherein said semiconductor substrate further comprises a barrier layer formed in the via under said Cu surface, and wherein the barrier layer comprises at least one material selected from a group consisting
 - wherein the barrier layer comprises at least one material selected from a group consisting essentially of titanium silicon nitride ($Ti_xSi_yN_z$), tantalum nitride (TaN), and tungsten nitride (TaN).
- (original) A method, as recited in Claim 7,
 wherein said semiconductor substrate further comprises an underlayer formed on the barrier layer,
 - wherein said underlayer comprises at least one material selected from a group consisting essentially of tin (Sn) and palladium (Pd), and
 - wherein said Cu surface is formed over said barrier layer and on said underlayer.
- 9. (original) A method, as recited in Claim 8,
 - wherein said underlayer comprises a thickness range of approximately 15 Å to approximately 50 Å,
 - wherein said barrier layer comprises a thickness range of approximately 30 Å to approximately 50 Å,
 - wherein said Cu surface comprises a thickness range of approximately 50 Å to approximately 70 Å, and
 - wherein said Cu-Zn alloy fill comprises a thickness range of approximately 300 Å to approximately 700 Å.

	10.	(original) A method, as recited in Claim 1,
		wherein the annealing steps are performed in a temperature range of approximately
		150°C to approximately 450°C, and
		wherein the annealing steps are performed for a duration range of approximately 0.5
5		minutes to approximately 60 minutes.
	11.	(currently amended) A semiconductor device, having a reduced-oxygen copper-zinc (Cu-
		Zn) alloy filled dual-inlaid interconnect structure formed on a copper (Cu) surface formed
		by electroplating the Cu surface in a chemical solution, fabricated by a method
		comprising the steps of:
5		providing a semiconductor substrate having a Cu surface formed in a via;
		providing a chemical solution;
		electroplating the Cu surface in the chemical solution, thereby forming a Cu-Zn
		alloy fill in the via and on the Cu surface;
		wherein said electroplating comprises using an electroplating apparatus,
10		wherein said electroplating apparatus comprises:
		(a) a cathode-wafer;
		(b) an anode;
		(c) electroplating vessel; and
		(d) a voltage source, and
15		wherein said cathode-wafer comprises the Cu surface,
		rinsing the Cu-Zn alloy fill in a solvent;
		drying the Cu-Zn alloy fill under a gaseous flow;
		annealing the Cu-Zn alloy fill formed in the via and directly deposited on the Cu surface,
		thereby forming a reduced-oxygen Cu-Zn alloy fill having an alloy surface and
20		an alloy thickness and having a uniform zinc distribution across said alloy surface
		and said alloy thickness;
		planarizing the reduced-oxygen Cu-Zn alloy fill and the Cu surface, thereby completing
		formation of a reduced-oxygen Cu-Zn alloy filled dual-inlaid interconnect
		structure; and

completing formation of the semiconductor device.

5

5

12. (original) A device, as recited in Claim 11, wherein the chemical solution is nontoxic and aqueous, and wherein the chemical solution comprises:

at least one zinc (Zn) ion source for providing a plurality of Zn ions; at least one copper (Cu) ion source for providing a plurality of Cu ions; at least one complexing agent for complexing the plurality of Cu ions; at least one pH adjuster;

at least one wetting agent for stabilizing the chemical solution, all being dissolved in a volume of deionized (DI) water.

13. (original) A device, as recited in Claim 12,

wherein the at least one zinc (Zn) ion source comprises at least one zinc salt selected from a group consisting essentially of zinc acetate ((CH₃CO₂)₂Zn), zinc bromide (ZnBr₂), zinc carbonate hydroxide (ZnCO₃·2Zn(OH)₂), zinc dichloride (ZnCl₂), zinc citrate (O₂CCH₂C(OH)(CO₂)CH₂CO₂)₂Zn₃), zinc iodide (ZnI₂), zinc L-lactate ((CH₃CH(OH)CO₂)₂Zn), zinc nitrate (Zn(NO₃)₂), zinc stearate ((CH₃(CH₂)₁₆CO₂)₂Zn), zinc sulfate (ZnSO₄), zinc sulfide (ZnS), zinc sulfite (ZnSO₃), and their hydrates.

14. (original) A device, as recited in Claim 12,

wherein the at least one copper (Cu) ion source comprises at least one copper salt selected from a group consisting essentially of copper(I) acetate (CH₃CO₂Cu), copper(II) acetate ((CH₃CO₂)₂Cu), copper(I) bromide (CuBr), copper(II) bromide (CuBr₂), copper(II) hydroxide (Cu(OH)₂), copper(II) hydroxide phosphate (Cu₂(OH)PO₄), copper(I) iodide (CuI), copper(II) nitrate hydrate ((CuNO₃)₂), copper(II) sulfate (CuSO₄), copper(I) sulfide (Cu₂S), copper(II) sulfide (CuS), copper(II) tartrate ((CH(OH)CO₂)₂Cu), and their hydrates.

15. (previously canceled)

5

5

16.	(previously amended) A device, as recited in Claim 11,	
	wherein the anode comprises at least one material selected from a group consisting	
	essentially of copper (Cu), a copper-platinum alloy (Cu-Pt), titanium (Ti),	
	platinum (Pt), a titanium-platinum alloy (Ti-Pt), an anodized copper-zinc alloy	
	(Cu-Zn, i.e., brass), a platinized titanium (Pt/Ti), and a platinized copper-zinc	
	(Pt/Cn-Zn i.e. platinized hrass)	

- 17. (original) A device, as recited in Claim 11,
 - wherein said semiconductor substrate further comprises a barrier layer formed in the via under said Cu surface, and
 - wherein the barrier layer comprises at least one material selected from a group consisting essentially of titanium silicon nitride $(Ti_xSi_yN_z)$, tantalum nitride (TaN), and tungsten nitride (W_xN_y) .
- 18. (original) A device, as recited in Claim 17,
 - wherein said semiconductor substrate further comprises an underlayer formed on the barrier layer,
 - wherein said underlayer comprises at least one material selected from a group consisting essentially of tin (Sn) and palladium (Pd), and
 - wherein said Cu surface is formed over said barrier layer and on said underlayer.
- 19. (original) A device, as recited in Claim 18,
 - wherein said underlayer comprises a thickness range of approximately 15 Å to approximately 50 Å,
 - wherein said barrier layer comprises a thickness range of approximately 30 Å to approximately 50 Å,
 - wherein said Cu surface comprises a thickness range of approximately 50 Å to approximately 70 Å, and
 - wherein said Cu-Zn alloy fill comprises a thickness range of approximately 300 Å to approximately 700 Å.

- 20. (original) A semiconductor device, having a first interim reduced-oxygen copper-zinc (Cu-Zn) alloy fill formed on a copper (Cu) surface and a second interim reduced-oxygen Cu-Zn alloy fill formed on a Cu-fill, both films being formed by electroplating the Cu surface and the Cu-fill, respectively, in a chemical solution, comprising:
 - a semiconductor substrate having a via; and
 - an encapsulated dual-inlaid interconnect structure formed and disposed in said via, said interconnect structure comprising:
 - at least one Cu surface formed in said via;
 - a first interim reduced-oxygen Cu-Zn alloy fill formed and disposed on the at least one Cu surface;
 - a Cu-fill formed and disposed on said interim reduced-oxygen Cu-Zn alloy fill;
 - a second interim reduced-oxygen Cu-Zn alloy fill formed and disposed on the Cu-fill.