CdL in Scienze Statistiche ed Economiche - Università degli Studi di Milano-Bicocca

Lezione: Varianza totale e generalizzata

Docente: Aldo Solari

Nel caso p=1, la variabilità (o dispersione) presente nelle misurazioni della variabile considerata è descritta da un singolo numero, la varianza $s^2=\frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})^2$. Nel caso p>1, la variabilità presente nelle misurazioni delle p variabili considerate è descritta da p varianze $s_{jj}, j=1,\ldots,p$ e $\frac{1}{2}p(p-1)$ covarianze $s_{jk}, j\neq k=1,\ldots,p$, ovvero

$$p + \frac{1}{2}p(p-1)$$

numeri, contenuti nella matrice di varianze/covarianze S Possiamo riassumere la variabilità descritta da S in un singolo numero (senza perdere troppa informazione)?

1 Varianza totale

Varianza totale =
$$\operatorname{tr}(S) = \sum_{j=1}^{p} s_{jj}$$

1.1 tr(S) nello spazio delle osservazioni

Nello spazio delle osservazioni, la varianza totale può essere interpretata come la somma delle lunghezze al quadrato dei p vettori scarto dalla media \tilde{x}_j , $j=1,\ldots,p$, divisa per n.

$$\operatorname{tr}(\underset{p \times p}{S}) = \frac{1}{n} \sum_{j=1}^{p} n s_{jj} = \frac{1}{n} \sum_{j=1}^{p} \|\tilde{x}_{j}\|^{2}$$

Sintetizzando la matrice di varianze/covarianze con un singolo numero dato dalla varianza totale, perdiamo tutta l'informazione sulla struttura di correlazione (di covarianza) tra le p variabili.

$$\tilde{X}_{3\times 2} = \begin{bmatrix} 2 & -2 \\ -3 & 0 \\ 1 & 2 \end{bmatrix} \quad \text{tr}(\frac{S}{2\times 2}) = \frac{14}{3} + \frac{8}{3} \quad r_{12} = -0.19$$

$$\tilde{X}_{3\times 2} = \begin{bmatrix} 1 & 0 \\ -3 & -2 \\ 2 & 2 \end{bmatrix} \quad \text{tr}(\frac{S}{2\times 2}) = \frac{14}{3} + \frac{8}{3} \quad r_{12} = 0.95$$

1.2 tr(S) nello spazio delle variabili

La distanza Euclidea

• tra due unità statistiche u_i' e u_i' : $1 \times p$ $1 \times p$

$$d(u_i, u_l) = \sqrt{\frac{(u_i - u_l)'(u_i - u_l)}{\sum_{j=1}^{p} (x_{ij} - x_{lj})^2}}$$

• tra l'i-sima unità statistica u_i' e il baricentro \bar{x}' : $_{1 \times p}$

$$d(u_i, \bar{x}) = \sqrt{\frac{(u_i - \bar{x})'(u_i - \bar{x})}{\sum_{p \ge 1}^{p} (x_{ij} - \bar{x}_j)^2}}$$

Nello spazio delle variabili, la varianza totale può essere interpretata come la media aritmetica delle distanze Euclidee al quadrato delle n unità statistiche u_i' , $i=1,\ldots,n$, dal baricentro \bar{x}' $\underset{1\times p}{\bar{x}'}$

$$\operatorname{tr}(\underset{p \times p}{S}) = \sum_{j=1}^{p} \frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2 = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{p} (x_{ij} - \bar{x}_j)^2 = \frac{1}{n} \sum_{i=1}^{n} d^2(u_i, \bar{x})$$

2 Varianza generalizzata

Varianza generalizzata = $\det(S_{p \times p})$

2.1 det(S) nello spazio delle osservazioni

Consideriamo geometricamente l'area generata da p=2 vettori scarto dalla media \tilde{x}_1 e \tilde{x}_2 nello $\sum_{n \neq 1}^n x_n = \sum_{n \neq 1}^n$

spazio n-dimensionale

Area parallelogramma = base paral. \cdot altezza paral.

$$= \|\tilde{x}_1\| \cdot \|\tilde{x}_2\| \sqrt{1 - \cos^2(\theta)}$$
$$= n\sqrt{s_{11}s_{22}(1 - r_{12}^2)}$$

$$\det(S_{2\times 2}) = \det\left(\begin{bmatrix} s_{11} & \sqrt{s_{11}}\sqrt{s_{22}}r_{12} \\ \sqrt{s_{11}}\sqrt{s_{22}}r_{12} & s_{22} \end{bmatrix}\right)$$

$$= s_{11}s_{22} - s_{11}s_{22}r_{12}^{2}$$

$$= s_{11}s_{22}(1 - r_{12}^{2})$$

Quindi

$$\det(S_{2\times 2}) = \frac{(\text{Area parallelogramma})^2}{n^2}$$

In generale, per p vettori n-dimensionali \tilde{x}_j , $j=1,\ldots,p$:

$$\det(\underset{p\times p}{S}) = \frac{(\text{Volume parallelepipedo } p - \text{dimensionale})^2}{n^p}$$

2.2 $\det(S)$ nello spazio delle variabili

Alla matrice di varianze/covarianze $\underset{p\times p}{S}$ possiamo associare p coppie di autovalori e autovettori

$$(\lambda_1, v_1), (\lambda_2, v_2), \dots, (\lambda_p, v_p)$$
 $\underset{p \times 1}{\underset{p \times 1}{\bigvee}}$

dove gli autovalori (eigenvalues) sono ordinati in maniera decrescente, ovvero

$$\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_p \ge 0$$

5

e dove gli autovettori ($eigenvectors) \underset{p \times 1}{v_1}, \dots, \underset{p \times 1}{v_p}$ sono tali che

- $\bullet \,$ hanno lunghezza unitaria $\|\,v_1\,\| = \ldots = \|\,v_p\,\| = 1$
- $\bullet \;$ sono mutualmente perpendicolari: $\langle v_k,v_j\rangle=v_j'\;v_k=0\;\mathrm{per}\;j\neq k$

Figure 2.6 Points a constant distance c from the origin $(p = 2, 1 \le \lambda_1 < \lambda_2)$.

L'equazione

$$(x - \bar{x})' S^{-1}(x - \bar{x}) = c^2$$

definisce l'iper-elissoide

- centrato sul baricentro $\bar{x}'_{1 \times p}$
- \bullet con il j -simo asse orientato secondo il j -simo autovettore $\underset{p\times 1}{v_j}$ di $\underset{p\times p}{S}$
- di lunghezza $c\sqrt{\lambda_j}$, proporzionale al j-simo autovalore λ_j di $\underset{p \times p}{S}$,

dove stiamo assumendo che $S_{p \times p}$ è una matrice definita positiva in modo da garantire l'esistenza di $S_{p \times p}^{-1}$ Il volume dell'iper-ellissoide è funzione della varianza generalizzata:

Volume di
$$\left\{ x'_{1 \times p} : (x - \bar{x})' S^{-1}_{p \times p} (x - \bar{x}) \le c^2 \right\} = k_p c^p \sqrt{\det(S)}$$

dove
$$k_p = \frac{2\pi^{p/2}}{p\Gamma(p/2)}$$
 e $\Gamma(\cdot)$ è la funzione Gamma. Quindi

$$(Volume iperellissoide)^2 = (costante)(varianza generalizzata)$$

Varianza generalizzata: cosa perdiamo: Sintetizzando la matrice di varianze/covarianze con un singolo numero dato dalla varianza generalizzata, perdiamo l'informazione riguardante l'orientamento della nuvola di punti p-dimensionale formata dalle n unità statistiche

2.3 Quando la varianza generalizzata è zero?

Proposition 2.1. La varianza generalizzata è 0 se e solo se le colonne di $\tilde{X}_{n \times p}$ sono linearmente dipendenti.

Dimostrazione. Si ricordi che le colonne di $\tilde{X}_{n \times p}$, ovvero i vettori \tilde{x}_j , $j=1,\ldots,p$, sono linearmente dipendenti se esiste un vettore non nullo $c \neq 0$ tale che necessaria di periodi con servici di periodi con la colonne di \tilde{X}_j , $j=1,\ldots,p$, sono linearmente dipendenti se esiste un vettore non nullo $c \neq 0$ tale che necessaria di periodi con la colonne di \tilde{X}_j , $j=1,\ldots,p$, sono linearmente dipendenti se esiste un vettore non nullo $c \neq 0$ tale che necessaria di periodi che necessaria di

$$\underset{n \times pp \times 1}{\tilde{X}} c = c_1 \, \tilde{x}_1 + \ldots + c_p \, \tilde{x}_p = \underset{n \times 1}{0}$$

 \Leftarrow

Se le colonne di \tilde{X} sono linearmente dipendenti, esiste $c \neq 0$ tale che che

$$\underset{n \times 1}{0} = \underset{n \times pp \times 1}{\tilde{X}} c$$

quindi

$$n\underset{p\times pp\times 1}{S} c = \underset{p\times nn\times pp\times 1}{\tilde{X}'} \underset{p\times nn\times 1}{\tilde{X}} c = \underset{p\times nn\times 1}{\tilde{X}'} \underset{p\times 1}{0} = \underset{p\times 1}{0}.$$

Segue che esiste $c \neq 0 \atop p \times 1$ tale che $c \neq 0 \atop p \times pp \times 1$ tale che $c \neq 0 \atop p \times pp \times 1$, ovvero che $c \neq 0 \atop p \times p$ è una matrice singolare, e quindi $\det(c \mid S) = 0$

 \Rightarrow

Se $\det(S_{p \times p}) = 0$, allora $S_{p \times p}$ è singolare ed esiste $C_{p \times 1} \neq 0$ tale che $C_{p \times pp \times 1} = 0$, ovvero

$$0 = n \underset{p \times pp \times 1}{S} c = \tilde{X}' \tilde{X} c$$

$$c' \quad 0 = c' \tilde{X}' \tilde{X} c$$

$$1 \times pp \times 1 = 1 \times pp \times nn \times pp \times 1$$

$$0 = \|\tilde{X} c\|^{2}$$

$$1 \times pp \times 1 = 1 \times pp \times nn \times pp \times 1$$

e quindi per avere lunghezza 0 dobbiamo avere $\tilde{X} c = 0 \atop n \times pp \times 1$, ovvero le colonne di \tilde{X} sono linearmente dipendenti.

Example 2.2.
$$X = \begin{bmatrix} 1 & 2 & 5 \\ 4 & 1 & 6 \\ 4 & 0 & 4 \end{bmatrix}$$
, $\tilde{X} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix}$, quindi poichè
$$\tilde{x}_3 = \tilde{x}_1 + 2\tilde{x}_2$$
$$\frac{\tilde{x}_3}{3 \times 1} = \tilde{x}_1 + 2\tilde{x}_2$$

le colonne $\tilde{X}_{3\times3}$ sono linearmente dipendenti, ovvero $\tilde{X}_{3\times33\times1}$ = $\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 3\times1 \end{bmatrix}$. Geometricamente questo significa che uno dei vettori scarto dalla media, ad esempio \tilde{X}_3 , giace

nel piano generato da \tilde{x}_1 e \tilde{x}_2 . Di conseguenza, il volume del parallelepipedo tridimensionale è 0

Proposition 2.3. Se $n \leq p$, allora det(S) = 0

Dimostrazione. Sia $\tilde{u}'_i = \begin{bmatrix} \tilde{x}_{i1} & \cdots & \tilde{x}_{ip} \end{bmatrix}$ l'*i*-sima riga di $\tilde{X}_{n \times p}$. Abbiamo

$$\tilde{X}'_{p\times nn\times 1} = 1 \cdot \tilde{u}_1 + \ldots + 1 \cdot \tilde{u}_n = \begin{bmatrix} \sum_{i=i}^n \tilde{x}_{i1} \\ \vdots \\ \sum_{i=i}^n \tilde{x}_{ip} \end{bmatrix} = 0$$

quindi le righe di $\tilde{X}_{n \times p}$ sono linearmente dipendenti. Allora $\mathrm{rango}(\tilde{X}_{n \times p}) < n \leq p$. Segue che

$$\operatorname{rango}(\tilde{X}_{n \times p}) = \operatorname{rango}(\tilde{X}'\tilde{X}) = \operatorname{rango}(nS_{p \times p}) = \operatorname{rango}(S) < p$$

e quindi $\underset{p\times p}{S}$ è singolare, e risulta $\det(\underset{p\times p}{S})=0$

2.4 Varianza generalizzata per dati standardizzati

Varianza generalizzata per dati standardizzati
$$Z$$
 = $\det(S^Z)$ = $\det(R)$

$$\det(S) = \det(D_{p \times p}^{1/2} R D_{p \times p}^{1/2})$$

$$= \det(D_{p \times p}^{1/2}) \det(R) \det(D_{p \times p}^{1/2})$$

$$= (s_{11}s_{22} \cdots s_{pp}) \det(R)$$

$$= \left(\prod_{i=1}^{p} s_{jj}\right) \det(R)$$

$$= \left(\prod_{p \times p} s_{jj}\right) \det(R)$$

dove
$$D_{p \times p}^{1/2} = \operatorname{diag}(\sqrt{s_{11}}, \dots, \sqrt{s_{pp}})$$

Example 2.4. Se cambiamo l'unità di misura per la prima variabile x_1 , ad esempio da Kg a gr, e quindi moltiplicando x_1 per 1000, abbiamo che la varianza s_{11} aumenta di un fattore moltiplicativo pari a 1000^2 . Questo cambio di unità di misura da Kg a gr influenza la varianza generalizzata:

$$\det(S_{p \times p}^{gr}) = ((1000^2 s_{11}) s_{22} \cdots s_{pp}) \det(R_{p \times p}) = 1000^2 \det(S_{p \times p}^{Kg})$$

Per questo motivo, spesso è conveniente calcolare la varianza generalizzata considerando i dati standardizzati Z $_{n \times p}$

2.5 Indice relativo di variabilità

$$0 \leq \frac{\text{Indice relativo}}{\text{di variabilita'}} = \det(\underset{p \times p}{R}) = \frac{\det(\underset{p \times p}{S})}{\prod_{j=1}^{p} s_{jj}} \leq 1$$