Instrucciones: La duración del ejercicio es de 50 minutos. Entrega tu solución en moodle, en un único archivo en formato pdf. Al elaborar tu solución, ten en cuenta lo siguiente:

- Durante el ejercicio puedes preguntar dudas en Teams, tanto a los profesores como al resto de tus compañeros.
 Lo que escribas tienes que hacerlo individualmente.
- Presta atención, si puedes, a los aspectos formales de lo que escribes y no solo a su contenido. Vamos a leer el ejercicio en detalle y a darte *feedback* sobre lo que escribes, pero también sobre cómo lo escribes.
- Aunque debes entregar el ejercicio antes de que termine el tiempo asignado, si después decides pensar un poco más y se te ocurren ideas nuevas puedes enviar una nueva versión después.

Objetivo del ejercicio: Entender que una ecuación lineal homogénea de segundo orden tiene muchos pares diferentes de soluciones y sin embargo, cualquiera de ellos permite reconstruir la ecuación de manera unívoca.

Enunciado:

(a) Encontrar dos pares de soluciones de la ecuación

$$y'' + y = 0$$

tales que las cuatro soluciones sean linealmente independientes dos a dos.

(b) Sean y_1 e y_2 soluciones cualesquiera (linealmente independientes) de la ecuación

$$y'' + p(x)y' + q(x)y'' = 0.$$

Encontrar funciones F y G tales que

$$p(x) = F(y_1, y_2) y q(x) = G(y_1, y_2).$$

- (c) Demostrar, sin usar su expresión explícita, que la función F del apartado anterior cumple lo siguiente para soluciones linealmente independientes y_1 e y_2 :
 - Simetría: $F(y_1, y_2) = F(y_2, y_1)$.
 - Homogeneidad: $F(\lambda y_1, y_2) = F(y_1, y_2) = F(y_1, \lambda y_2)$ para todo $\lambda \in \mathbb{R}$.
 - Estabilidad por combinaciones lineales: $F(y_1, y_2) = \overline{F}(y_1, \alpha y_1 + \beta y_2)$ para todos $\alpha, \beta \in \mathbb{R}$.