marmy

Hin: Draw a picture of the density of X and

$$= \frac{1}{\sqrt{2}} = \frac$$

Another way to think aloot this

$$\Rightarrow f_y \omega = \frac{dx}{dy} f_x \omega$$

$$\times = \frac{1}{2} \Rightarrow \frac{dx}{dy} = \frac{1}{2}$$

Announcement: Weekneed (eec 21) is a special lecture on moment generathry functions (not in textbook),

Today Sec 4.4 (Stip 4.3)

1) Change of Variable formula for densition,

if X has density $f_{X}(x)$ lets find the density of Y=g(X)

mutually exclusive

Lega itt Kegx' a Kegxs a Kegx?

You may see it wither es;

$$\frac{dx}{dy} = \frac{1}{dy} = \frac{1}{1}$$

$$\frac{dx}{dy} = \frac{1}{1}$$

Thm (P307) Change of Valore Formla to. Densities
Let X be a outlinears RV with 1 +2 density for). Let Y=9(x) have a devivative that is zero at only finitely many pts. $f_{\gamma}(y) = \left\{ \frac{dx}{dy} \right| f_{\chi}(x)$ {v=100=4} (x) = x let X= N(0,1), fxul = 1= E Find the density of Y = 0×+ m i) Range of y (-0,00) 3) Fluid det = = 4) +120 t (2) = gh . +x(x) this is to spensial at N(m,02).

+; ~ yor & com/mar 10-2023

- 1. Let $X \sim Unif(0,1)$. The density of Y = X^2 is:
 - $\mathbf{a} f(y) = \frac{1}{\sqrt{y}}$ for $y \in [0, 1]$, zero else.
 - **b** $f(y) = \frac{1}{2\sqrt{y}}$ for $y \in [0, 1]$, zero else.
 - $\mathbf{c} f(y) = 1 \text{ for } y \in [0, 1], \text{ zero else.}$

d none of the above

$$\frac{dr}{ds} = \frac{1}{205}$$

$$f_{\gamma(s)} = \frac{1}{205}$$

$$f_{\gamma(s)} = \frac{1}{205}$$

$$f_{\gamma(s)} = \frac{1}{205}$$

(3 pts) Suppose the random variable X, which measures the magnitude of an earthquake (on the Richter scale) in the Bay Area, follows the Exponential (λ) distribution. Since the Richter scale is logarithmic, we want to study the distribution of the total energy of earthquakes. Find the distribution of $Y = e^X$.

Suppose that a narrow-beam flashlight is spun around its center, which is located a unit distance from the x-axis. (See Figure 1) Consider the point X at which the beam intersects the x-axis when the flashlight has stopped spinning. (If the beam is not pointing toward the x-axis, repeat the experiment). As indicated in Figure 1, the point X is determined by the angle θ between the flashlight and the y-axis, which, from the physical situation, appears to be uniformly distributed between $-\pi/2$ and $\pi/2$. Show that the density of X is given by $f_X(x) = \frac{1}{\pi(1+x^2)}$, $x \in \mathbb{R}$.

Hint: Try and write X as a function of θ .

Y=
$$tan(0)$$

 $tange of X is (-\infty, \infty)$
 $tange of X is (-\infty, \infty)$

Extra

(5pts) Suppose a random variable U follows Uniform(0,1) distribution. Define $W = \log \left(\frac{U}{1-U}\right)$. Here \log is \log base e.

- i. (2pt) Find the range of W.
- ii. (3pts) Find the density of W.

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

$$f(w) = \frac{e^{u}}{(e^{u})^{2}} \cdot \frac{1}{Ue(o,1)}$$

$$= \frac{e^{u}}{(e^{u})^{2}} \cdot \frac{1}{Ue(o,1)}$$