Inferenza Statistica

Esame del 13 gennaio 2014

Tempo a disposizione 2 ore.

Tra parentesi quadre i punteggi massimi attribuibili per ciascun quesito

- 1. In una centrale elettrica si verificano delle interruzioni e si può assumere che il numero di queste in una giornata segua una legge di Poisson con media pari a 1/2. Si supponga che siano le ore 12 e si indichi con X il tempo che occorre affinché si verifichi la prossima interruzione.
 - a. [3.] Qual è la probabilità che la prossima interruzione si verifichi solo dopo la mezzanotte?
 - **b.** [3] A che ora sarà pari a 0.9 la probabilità che la prima interruzione non si sia ancora verificata?
 - c. [4] Qual è la probabilità che occorra più di un giorno perchè si verifichi la seconda interruzione?
- 2. Un campione casuale di 9 unità è stato estratto da una gaussiana di varianza unitaria.
 - a. [4] Nella verifica di ipotesi per la media μ , $H_0: \mu \geq 10$ contro $H_1: \mu < 10$, ponendo $\alpha=0.01$, e adottando il test uniformemente più potente, quanto vale la potenza per $\mu=8$?
 - **b.** [4] Se μ fosse in realtà pari a 10.5, qual è la probabilità di accettare H_0 se questa è vera?
- 3. Si dispone di un campione di n realizzazioni i.i.d. della variabile aleatoria X distribuita come una Poisson di parametro λ . Sia noto che n_1 valori sono maggiori o pari a 2, che n_2 sono pari a 1 e che le restanti sono pari a 0.
 - a. [4] Determinare lo stimatore di massima verosimiglianza per la media della Poisson.
 - **b.** [2] Fornire lo stimatore di massima verosimiglianza per la probabilità che X=1.
 - c. [4] Si abbia ora l'informazione aggiuntiva che la media dei valori valori superiori o pari a 2 è uguale a M. Determinare uno stimatore del parametro con il metodo dei momenti e verificare se lo stimatore ottenuto è non distorto.
- 4. Un giocatore dispone di due dadi con 4 facce contrassegnate con i valori da una a 4 e sostiene però che tali dati siano speciali e che la probabilità che lanciando ciascun dado esso poggi su una data faccia è proporzionale al numero su di essa contrassegnato. Lancia quindi la coppia di dadi 200 volte su un piano e ottiene i seguenti risultati relativi alla somma dei valori delle due facce che poggiano sul piano.

somma valori	meno di 5	5	6	7	8
frequenza	5	20	35	60	80

- a. [5] A partire dai dati ottenuti è possibile verificare se le caratteristiche dei due dadi sono quelle dichiarate (si ponga $\alpha = .05$)?
- b. [2] Cosa si può dire circa il livello di probabilità osservato per il test costruito sopra?