

3 4

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Characteristics	Seagate Enterprise	Seagate Barracuda XT	Seagate Cheetah NS	Seagate Laptop HDD	
Application	att app		Network attached storage, application servers	Laptop	
Capacity	6 TB	3 TB	600 GB	2 TB	
Average seek time	4.16 ms	N/A	3.9 ms read 4.2 ms write	13 ms	
Spindle speed	7200 rpm	7200 rpm	10, 075 rpm	5400 rpm	
Average latency	4.16 ms	4.16 ms	2.98	5.6 ms	
Maximum sustained transfer rate	216 MB/s	149 MB/s	97 MB/s	300 MB/s	
Bytes per sector	512/4096	512	512	4096	
Tracks per cylinder (number of platter surfaces)	8	10	8	4	
Cache	128 MB	64 MB	16 MB	8 MB	

Level	Advantages	Disadvantages	Applications	
0	I/O performance is greatly improved by spreading the I/O load across many channels and drives No parity calculation overhead is involved Very simple design Easy to implement	The failure of just one drive will result in all data in an array being lost	Video production and Editing Image editing Pre-press applications Any application requiring high bandwidth	Table 6.4
1	100% redundancy of data means no rebuild is necessary in case of a disk failure, just a copy to the replacement disk Under certain circumstances, RAID 1 can sustain multiple simultaneous drive failures Simplest RAID storage subsystem design	Highest disk overhead of all RAID types (100%) - inefficient	Accounting Payroll Financial Any application requiring very high availability	RAID Comparison (page 1 of 2
2	Extremely high data transfer rates possible The higher the data transfer rate required, the better the ratio of data disks to ECC disks Relatively simple controller design compared to RAID levels 3,4 & 5	Very high ratio of ECC disks to data disks with smaller word sizes - inefficient Entry level cost very high - requires very high transfer rate requirement to justify	No commercial implementations exist / not commercially viable	

	3	Very high read data transfer rate Very high write data transfer rate Disk failure has an insignificant impact on throughput Low ratio of ECC (parity) disks to data disks means high efficiency	Transaction rate equal to that of a single disk drive at best (if spindles are synchronized) Controller design is fairly complex	Video production and live streaming Image editing Video editing Prepress applications Any application requiring high throughput	Table 6.4
	4	Very high Read data transaction rate Low ratio of ECC (parity) disks to data disks means high efficiency	Quite complex controller design Worst write transaction rate and Write aggregate transfer rate Difficult and inefficient data rebuild in the event of disk failure	No commercial implementations exist / not commercially viable	RAID Comparison (page 2 of 2)
	5	Highest Read data transaction rate Low ratio of ECC (parity) disks to data disks means high efficiency Good aggregate transfer rate	Most complex controller design Difficult to rebuild in the event of a disk failure (as compared to RAID level 1)	File and application servers Database servers Web, e-mail, and news servers Intranet servers Most versatile RAID level	
	6	Provides for an extremely high data fault tolerance and can sustain multiple simultaneous drive failures	More complex controller design Controller overhead to compute parity addresses is extremely high	Perfect solution for mission critical applications	
_	© 201	5 Pearson Education, Inc., Hoboken, NJ. All	rights reserved.		

Table 6.7								
LTO (Linear Tape Open) Tape Drives								
	LTO-1	LTO-2	LTO-3	LTO-4	LTO-5	LTO-6	LTO-7	LTO-8
Release date	2000	2003	2005	2007	2010	TBA	TBA	TBA
Compressed capacity	200 GB	400 GB	800 GB	1600 GB	3.2 TB	8 TB	16 TB	32 TB
Compressed transfer rate (MB/s)	40 MB/s	80 MB/s	160 MB/s	240 MB/s	280 MB/s	525 MB/s	788 MB/s	1.18 GB/
Linear density (bits/mm)	4880	7398	9638	13250	15142			
Tape tracks	384	512	704	896	1280			
Tape length	609 m	609 m	680 m	820 m	846 m			
Tape width (cm)	1.27	1.27	1.27	1.27	1.27			
Write elements	8	8	16	16	16			
WORM?	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Encryption Capable?	No	No	No	Yes	Yes	Yes	Yes	Yes
Partitioning?	No	No	No	No	Yes	Yes	Yes	Yes

