

Computer Networks

Wenzhong Li

Nanjing University Fall 2014

课程安排

- 教学目标:因特网概念和组成,组网原理,协议 设计和分析
- 教学内容: 课堂+实验
 - 实验课为每双周周五14:00-16:00, 地点: 乙124
- 课程主页: http://cs.nju.edu.cn/lwz/networks/
- 课程论坛: sys.nju.edu.cn
- 课程考核
 - 平时作业: 10%
 - 实验: 30%
 - 期末考试: 60%

参考书籍

■ William Stallings. 数据与计算机通信 (8th). 电子工业出版社

课程大纲

- Chapter 1. Introduction of Networking
- Chapter 2. Direct Link Networks
- Chapter 3. Packet Switching Networks
- Chapter 4. Internetworking
- Chapter 5. End-to-End Protocols
- Chapter 6. Congestion Control and QoS
- Chapter 7. Network Security
- Chapter 8. Internet Applications

Chapter 1. Introduction of Networking (1)

- Brief Introduction of Internet
- Internet History
- Typical Network Applications
- Protocol Layers and Service Model
- Network Programming
- Network Performance
- Network Security

Brief Introduction of Internet

Internet – Component View

- Millions of connected computing devices
 - Hosts = End systems
 - Running network applications
- Communication links
 - Fiber, Copper, Radio, Satellite
 - Building physical networks
- Routers
 - Forward packets (chunks of data) between physical networks

Internet – Service View

- Communication infrastructure
 - Enables distributed applications
 - Web, VoIP, email, online games, e-commerce, file sharing
- Communication services provided
 - Reliable data delivery from source to destination
 - "best effort" (unreliable) data delivery
 - Guaranteed delay and throughput

Internet – Protocols

- Network Protocols
 - Control sending, receiving of messages
 - e.g. HTTP, Skype; TCP, IP; PPP, Ethernet
- Internet standards
 - IETF: Internet Engineering Task Force
 - RFC: Request for comments
- Internet: "network of networks"
 - Public Internet versus private
 Intranet
 - Loosely hierarchical

Access Internet

Network edge

Applications and hosts

Network core

- Interconnected routers
- Network of networks

Access networks

- Physical media
- Wired and wireless communication links

Network Edge

End systems (hosts)

- Run application programs
- e.g. Web, Email

Client/server model

- Client host requests, receives service from always-on server
- e.g. Web browser/server;Email client/server

Peer-to-peer model

- Minimal (or no) use of dedicated servers
- e.g. Skype, BitTorrent

Access Networks

- Connect end systems to edge router
 - Residential (Home) access networks
 - Institutional access networks (school, company)
 - Mobile access networks

Performance

- Bandwidth (bits per second) of access network
- Shared or dedicated

Residential Access

- Dialup via modem
 - Up to 56Kbps direct access to router
- DSL: digital subscriber line
 - Deployment: telephone company
 - Up to 1 Mbps upstream, and 8 Mbps downstream
 - Dedicated physical line to telephone central office
- HFC: hybrid fiber coax
 - Asymmetric: up to 30Mbps downstream, 2 Mbps upstream
 - Homes share access to ISP router
 - Deployment: cable TV companies

Company Access: Local Area Networks

 Company/University local area network (LAN) connects end systems to edge router

Ethernet:

- 10 Mbs, 100Mbps, 1Gbps, 10Gbps Ethernet
- Modern configuration: end systems connect into backbone of Ethernet switches

Wireless Access Networks

- Shared wireless media connects end system to router
 - via base station, or "access point"
- Wireless LANs:
 - 802.11b/g (WiFi): 11 or 54 Mbps
- Wider-area wireless access
 - Provided by telecommunication operator
 - ~1Mbps over cellular system
 - Next up (?): WiMAX (10's Mbps) over wide area

mobile hosts

Example: A Modern Family

- A home network components:
 - DSL or cable modem
 - Router/Firewall/NAT
 - Ethernet switch

The Network Core

- Mesh of interconnected routers
- Fundamental question
 - How is data transferred through the net?
- Circuit switching
 - Dedicated circuit per call, e.g. telephone net
- Packet-switching
 - Data sent through net in discrete chunks

Circuit Switching

End-to-end resources reserved for "call"

- Link bandwidth, switch capacity
- Dedicated resources: no sharing
- Circuit-like (guaranteed) performance
- Call setup/teardown required

Packet Switching

Each end-to-end data stream divided into packets

- Application A, B packets share network resources
- Store and forward: packets move one hop at a time, stored (queued) at switches
- Each packet uses full link bandwidth
- Resource contention: aggregate (burst-up)
 resource demand can exceed amount available
- Congestion: packets queue and wait for link use

Virtual Circuit

Circuit Switching + Packet Switching

> Routes or main cross roads are fixed

- Resources shared, congestion control needed
- Resources can be preserved, leading to different performance
- Connection setup/teardown needed

Comparison

	电路交换	数据报分组交换	虚电路分组交换
传输通路	专用	非专用	非专用
连续性	连续传输	分组传输	分组传输
带宽	固定	动态使用	动态使用
路由	固定	动态	固定
时延	实时(只有呼叫建立时延)	分组传输时延	分组传输时延+呼 叫建立时延
扩展性	差(接入用户有上限)	好(用户数量可动态扩充)	较好(用户数量动态,由拥塞控制来保证服务质量)

Example:

- N users share one link (10Mbps)
- Each user requires 1Mbps
- Each user: active 10%, idle 90%.

How many users are supported?

Circuit Switching:

N=10Mbps/1Mbps=10 users

Statistical Multiplexing:

Assume N=35,

Prob{active user>10}<=0.0004,

So for N=35, with probability 0.9996 a user have bandwidth larger than 1Mbps.

Internet Structure – Network of Networks

Roughly hierarchical

- At center: "tier-1" (National) ISPs
- "Tier-2" ISPs: smaller (often regional) ISPs
- "Tier-3" ISPs and local/edge ISPs, connect access networks

Internet – Network of Networks

A packet may pass through many networks

Internet History

Internet History (1)

1961-1972: Early packet-switching principles

60年代: 诞生-分组交换网络

- 1961: Kleinrock queuing theory shows effectiveness of packet-switching
- 1964: Baran packet-switching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational, Kleinrock

THE ARPA NETWORK

- **1972**:
 - ARPAnet demonstrated publicly
 - NCP (Network Control Protocol) first host-host protocol [RFC001]
 - First email program
 - ARPAnet has 15 nodes

Internet History (2)

1972-1980: Internetworking, new and proprietary nets

70年代:成型

单一、封闭网络 -> 开放互联网络

- 1970: ALOHAnet satellite network in Hawaii, Norman Abramson (无线分组网络)
- 1973: Metcalfe's PhD thesis proposes Ethernet (以太网), at Xerox PARC in 1976 (局域网诞生)
- 1974: Cerf and Kahn –
 architecture for interconnecting
 networks (Internet构架)
- Late 70's:
 - Proprietary architectures: DECnet, SNA, XNA
 - Switching fixed length packets (ATM precursor)

- Cerf and Kahn's internetworking principles:
 - Minimalism, autonomy no internal changes required to interconnect networks
 - Best effort service model
 - Stateless routers
 - Decentralized control
- Define today's Internet architecture

Internet History (3)

1980-1990: new protocols, a proliferation of networks

80年代: 持续发展

• 新协议: NCP-> TCP/IP

· DNS: 实现域名解析

• 应用: Email, Ftp

- 1983: deployment of TCP/IP
- 1982: SMTP email protocol defined
- 1983: DNS defined for nameto-IP-address translation
- 1985: FTP protocol defined
- 1988: TCP congestion control

- New national networks:
 Csnet, BITnet, NSFnet,
 Minitel
- 100,000 hosts connected to confederation of networks

Internet History (4)

1990's, 2000's: commercialization, the Web, new apps

90年代: 因特网爆炸

- 万维网出现: www (http, HTML, Web Server, Browser)
- 商用化,逐渐普及
- 新型应用: Email, Web, IM (instant messaging), MP3文件共享
- Early 1990's: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned in 1995)
- Early 1990's: Web
 - Hypertext [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
- 1994: Mosaic, later Netscape
 Browser

Late 1990's: commercialization of the Web Late 1990's ~ 2000's:

- More killer apps: instant messaging, peer2peer file sharing (e.g. Napster)
- Network security to forefront
- Est. 50 million host, 100 million⁺ users
- Backbone links running at Gbps

Internet History (5)

2000年以后,新型应用涌现

- 多媒体
- · P2P网络
- 社交网络(Facebook, Twitter, 人人, 微博, 微信, ...)

2007

- ~500 million hosts
- Voice, Video over IP
- P2P applications: BitTorrent (file sharing), Skype (VoIP), PPLive (video)
- More applications: YouTube, online gaming
- Wireless and mobility

Typical Network Applications

- Client-Server Applications
 - Electronic Mail
 - FTP
 - Web and HTTP
 - Social Networks
- Peer-to-Peer Applications
 - Skype
 - BitTorrent

Client-Server Architecture

Server

- Always-on host
- Permanent IP address
- Server farms for scaling

Clients

- Communicate with server
- May be intermittently connected
- May have dynamic IP addresses
- Do not communicate directly with each other

Electronic Mail

- SMTP: Simple Mail Transfer Protocol
 - Delivery of simple text mail
- MIME: Multi-purpose Internet Mail Extension
 - Express of other types of data, e.g. voice, images, video clips
- POP: Post Office Protocol
 - Mail retrieval from server, including authorization and download
- IMAP: Internet Mail Access Protocol
 - Manipulation of stored mails on server

Illustration of A Mail System

- Transfer file to/from remote host
- Control connection
 - Login/logout, file transfer command/reply
- Data connection
 - Transferring file contents
 - Client side initiates file transfer

Web and HTTP

- Clients use browser to send URL(URI)s via HTTP to servers requesting a Web page
- Web pages constructed using HTML (or other markup language), inter-connected by URL
- Servers (or caches) respond with requested Web page
- Client's browser displays Web page returned by server

WWW Architecture

Social Network

 A network made up by a set of individuals interconnecting with each other basing on social relationships (such as friendships, partnerships, etc.)

Characteristics

- Virtual: it is not physically exists
- Complex: it consists of a large scale number of nodes
- Grouping: it forms communities due to different interests

Online Social Networks: Facebook, Twitter, etc.

- Population of online social networks grows rapidly
 - Facebook: 1.28 billion (active March 2014, Wikipedia)
 - Twitter: 200 million (active February 2013, Wikipedia)
 - Renren: 160 million (Feb 2011, Wikipedia)

Peer-to-Peer Architecture

 Peer-to-peer (abbreviated to P2P) refers to a computer network in which each computer in the network can act as a client or server for the other computers in the network, allowing shared access to files and peripherals without the need for a central server [Wiki]

- P2P Voice-Over-IP (VoIP) application
 - pc-to-pc, pc-to-phone, phone-to-pc
- Proprietary applicationlayer protocol

Skype: Making a Call

- User starts Skype
- SC registers with SN
- SC logs in (authenticate)
- Call: SC contacts SN with callee ID
- SN contacts other SNs to find address of callee
- SC directly contacts callee, over TCP

BitTorrent

- A new popular approach to sharing large files
 - It accounts for 30-50% of all Internet traffic
- Originally used for distributing legal content
 - Linux distributions, software updates
 - Official movies
 - Games, ...
- Goal:
 - Quickly and reliably replicate one file to a large number of clients
- Call it "P2P content distribution"

Chucking:

- Files split into smaller pieces or chunks
- Chunks can be downloaded in parallel
- Downloading order does not matter

Swarming

- Clients join a crowd of peers uploading and downloading the same content
- Nodes request chucks from neighbors and download content in parallel
- Use the web server to publish content
- Use a central unit to locate resource

Basic Components

- Web server: for content publication
- Tracker: a special central server for running the content distribution system
 - Tracking active peers
 - Mapping from file name to peers
- Peer
 - Seed: a peer with a complete copy of the file
 - Leecher: peer still downloading the file
- ".torrent" file: metadata and description of the file
 - The number of chunks
 - The tracker's IP

Torrent-file

Tracker: 127.0.0.1

Chunks: 42

Chunk 1: 12345678 Chunk 2: 90ABCDEF

Tracker: 127.0.0.1

Chunk 1: 12345678 Chunk 2: 90ABCDEF

Chunks: 42

Seed creates torrent-file and hosts it somewhere

tracker

Tracker

Sharing a file:

- (1) Seed generates a ".torrent" file from the file
- (2) Upload the ".torrent" file to some public web server or sending it to friends by email

Searching a file:

- No dedicate search component
- User can search ".torrent" file from web server

Downloading a file:

- (1) Download the ".torrent" file
- (2) Connect to the tracker to locate the file
- (3) Choose some fast peers to download chunks in parallel

Summary

- Internet基本概念
 - 什么是Internet
 - 组成、服务、协议
 - 网络边缘
 - 网络接入
 - 家庭、公司、无线
 - 网络核心
 - 电路交换、分组交换、虚电路
- Internet 历史
- Internet应用
 - C/S构架
 - P2P构架

Homework

 Read Chapter 1 and Chapter 2 of the textbook