

Ayudantía 9 Análisis Funcional

Profesor: Michael Karkulik

Ayudante: Sebastián Fuentes

27 de octubre de 2022

Problema 1. Sean X, Y, Z espacios de Banach, $T \in \mathcal{L}(X, Y), S \in \mathcal{L}(Y, Z)$. Muestre que

- 1. $(S \circ T)' = T' \circ S'$.
- 2. Si T es biyectivo entonces T' es biyectivo y $(T')^{-1} = (T^{-1})'$

Problema 2. Considere $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ e.v.n.

1. Considere $J: X \to X''$ la invección canónica del espacio X. Demuestre que

$$J: (X, \sigma(X, X')) \to (X'', \sigma(X'', X'))$$

es continua, es decir, que mantiene su continuidad si consideramos la topología débil en X y la topología débil- $\star \sigma(X'', X')$ en X''.

2. Si $L: X \to Y$ es un operador lineal acotado, demuestre que $L: (X, \sigma(X, X')) \to (Y, \sigma(Y, Y'))$ es continuo.

Problema 3. Supongamos que $(X, \|\cdot\|_X)$ y $(Y, \|\cdot\|_Y)$ son dos e.v.n. y denotemos por $J_X: X \to X''$ y $J_Y: Y \to X''$ Y'' las inyecciones canónicas de X y Y, respectivamente. En esta pregunta estudiaremos algunas propiedades de operadores débilmente compacto.

Definición 1. Diremos que un operador $T \in \mathcal{L}(X,Y)$ es débilmente compacto si $\overline{T(\overline{B_X})}$ es compacto débil en $\sigma(Y, Y')$

- 1. Supongamos que X o bien Y es reflexivo. Pruebe usando el Teorema de Kakutani que todo operador $T \in$ $\mathcal{L}(X,Y)$ es un operador débilmente compacto.
- 2. Sean $T \in \mathcal{L}(X,Y)$ y $S \in \mathcal{L}(Y,Z)$, con $(Z,\|\cdot\|_Z)$ otro e.v.n.. Pruebe que si S o bien T es un operador débilmente compacto, entonces $S \circ T$ es un también operador débilmente compacto.
- 3. Pruebe que si $T \in \mathcal{L}(X,Y)$ es un operador débilmente compacto entonces im $(T^{**}) \subseteq J_Y(Y)$.
 - a) Demuestre que $T^{**} \circ J_X = J_Y \circ T$ y con esto concluya que

$$\overline{T^{**}\left(J_X\left(\overline{B_X}\right)\right)}^{\sigma\left(Y'',Y'\right)} \subseteq J_Y\left(\overline{T\left(\overline{B_X}\right)}\right).$$

- b) Pruebe que $T^{**}: (X'', \sigma(X'', X')) \to (Y'', \sigma(Y'', Y'))$ es continuo y obtenga el resultado usando el Lema de Goldstein.
- 4. Pruebe que $T^*: (Y'', \sigma(Y'', Y)) \to (X', \sigma(X', X''))$ es continuo, y luego, usando el Teorema de Banach-Alaoglu, pruebe que si $T \in \mathcal{L}(X,Y)$ es un operador débilmente compacto entonces T^* también es un operador débilmente compacto.