

Schletter, Inc.		25° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, P_g =
(ASCE 7-10, Eq. 7.4-1)	18.56 psf	Sloped Roof Snow Load, $P_s =$
	1.00	I _s =
	0.82	$C_s =$
	0.90	$C_e =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Heiaht <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 26.53 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.100	- -
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.500	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	approx and morning contact.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_{S} = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	ρ = 1.3	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	<u>Rear</u>	
Tensile Load =	<u>564.73</u>	6087.38	k
Compressive Load =	<u>3951.75</u>	<u>4888.68</u>	k
Lateral Load =	370.22	3243.22	k
Moment (Weak Axis) =	0.74	0.34	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 164007.6 in-lbs Resisting Force Required = 2293.81 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3823.02 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding 748.19 lbs Force = Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 1870.47 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 748.19 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

 $\frac{\text{Ballast Width}}{35 \text{ in}} = \frac{36 \text{ in}}{37 \text{ in}} = \frac{38 \text{ in}}{38 \text{ in}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) = \frac{7560 \text{ lbs}}{7776 \text{ lbs}} = \frac{7992 \text{ lbs}}{7992 \text{ lbs}} = \frac{8208 \text{ lbs}}{38 \text{ lbs}}$

ASD LC		1.0D ·	+ 1.0S			1.0D+	- 0.6W		1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W				
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1379 lbs	1941 lbs	1941 lbs	1941 lbs	1941 lbs	-251 lbs	-251 lbs	-251 lbs	-251 lbs							
F _B	1432 lbs	1432 lbs	1432 lbs	1432 lbs	1978 lbs	1978 lbs	1978 lbs	1978 lbs	2427 lbs	2427 lbs	2427 lbs	2427 lbs	-2800 lbs	-2800 lbs	-2800 lbs	-2800 lbs
F _V	173 lbs	173 lbs	173 lbs	173 lbs	1347 lbs	1347 lbs	1347 lbs	1347 lbs	1126 lbs	1126 lbs	1126 lbs	1126 lbs	-1496 lbs	-1496 lbs	-1496 lbs	-1496 lbs
P _{total}	10371 lbs	10587 lbs	10803 lbs	11019 lbs	10916 lbs	11132 lbs	11348 lbs	11564 lbs	11928 lbs	12144 lbs	12360 lbs	12576 lbs	1485 lbs	1614 lbs	1744 lbs	1873 lbs
M	3359 lbs-ft	3359 lbs-ft	3359 lbs-ft	3359 lbs-ft	3512 lbs-ft	3512 lbs-ft	3512 lbs-ft	3512 lbs-ft	4841 lbs-ft	4841 lbs-ft	4841 lbs-ft	4841 lbs-ft	4665 lbs-ft	4665 lbs-ft	4665 lbs-ft	4665 lbs-ft
е	0.32 ft	0.32 ft	0.31 ft	0.30 ft	0.32 ft	0.32 ft	0.31 ft	0.30 ft	0.41 ft	0.40 ft	0.39 ft	0.38 ft	3.14 ft	2.89 ft	2.68 ft	2.49 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft								
f _{min}	249.7 psf	248.8 psf	248.0 psf	247.2 psf	263.2 psf	261.9 psf	260.7 psf	259.6 psf	273.0 psf	271.5 psf	270.0 psf	268.7 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	347.1 psf	343.5 psf	340.1 psf	336.8 psf	364.9 psf	360.9 psf	357.0 psf	353.3 psf	413.3 psf	407.9 psf	402.7 psf	397.8 psf	120.5 psf	116.9 psf	114.8 psf	113.7 psf

Maximum Bearing Pressure = 413 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 2750.9 \text{ ft-lbs}$

Resisting Force Required = 1886.35 lbs S.F. = 1.67

Weight Required = 3143.91 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		35 in			35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	304 lbs	640 lbs	207 lbs	869 lbs	2331 lbs	794 lbs	123 lbs	187 lbs	27 lbs		
F _V	218 lbs	212 lbs	222 lbs	160 lbs	155 lbs	173 lbs	218 lbs	213 lbs	220 lbs		
P _{total}	9663 lbs	9999 lbs	9566 lbs	9778 lbs	11240 lbs	9703 lbs	2860 lbs	2924 lbs	2763 lbs		
М	869 lbs-ft	855 lbs-ft	883 lbs-ft	648 lbs-ft	648 lbs-ft	695 lbs-ft	868 lbs-ft	853 lbs-ft	873 lbs-ft		
е	0.09 ft	0.09 ft	0.09 ft	0.07 ft	0.06 ft	0.07 ft	0.30 ft	0.29 ft	0.32 ft		
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft		
f _{min}	226.6 psf	237.1 psf	223.0 psf	243.0 psf	285.0 psf	238.0 psf	30.9 psf	33.6 psf	27.8 psf		
f _{max}	329.5 psf	338.3 psf	327.5 psf	319.7 psf	361.7 psf	320.3 psf	133.7 psf	134.6 psf	131.2 psf		

Maximum Bearing Pressure = 362 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 30in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	3.040 k	Maximum Axial Load =	4.140 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>41%</u>	Utilization =	<u>56%</u>
Diagonal Strut			
Maximum Axial Load =	2.311 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for	double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>31%</u>		
		Struts under compression are si	

vn to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 56.48 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.130 in Max Drift, $\Delta_{MAX} =$ 0.762 in 0.762 ≤ 1.13, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 105 \text{ in}$$

$$J = 0.432$$

$$290.479$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 105 \\ \mathsf{J} &= & 0.432 \\ & 184.727 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_l} &= & 28.9 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.8 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\varphi F_L = \varphi b[Bbr-mDbr^*h/t]$$

$$\varphi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

y = 41.015 mm

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 446476 \text{ mm}^4$$

$$V = 45.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.599 in³

1.152 k-ft

Sx=

 $M_{max}St =$

 $\varphi F_L St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 104.56 \text{ in}$$
 $J = 1.08$
 179.85

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$
$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$φF_L$$
= $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$
 $φF_I$ = 29.0 ksi

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

 $\varphi F_L = 31.6 \text{ ksi}$

Weak Axis:

$$L_b = 104.56$$
 $J = 1.08$
 190.335

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 28.9$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

 $\phi F_L = 33.3 \text{ ksi}$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

$$\frac{\text{Used}}{\text{18.1}} = \frac{\text{3.4.16.1}}{\text{N/A for Weak Direction}}$$

$$\frac{\left(Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy\right)^2}{1.6Dt}$$

$$= 1.1$$

$$2 = C_t$$

$$= 141.0$$

$$= \phi b [\text{Bt-Dt*}\sqrt{(\text{Rb/t})}]$$

$$= 31.1 \text{ ksi}$$

Compression

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*}\sqrt{((\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

$\phi F_L = 31.4 \text{ ksi}$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 24.8 \\ \mathsf{J} &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi \mathsf{b}[\mathsf{Bc-1.6Dc^*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} &= & 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

27.5 mm

0.621 in³

3.4.18 h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\phi F_L Wk = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

 $Sy = 0.621 \text{ in}^3$

 $M_{max}Wk = 1.460 \text{ k-ft}$

y = Sx =

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{aligned} \phi F_L St &=& 28.2 \text{ ksi} \\ k &=& 279836 \text{ mm}^4 \\ && 0.672 \text{ in}^4 \\ y &=& 27.5 \text{ mm} \end{aligned}$$

$$Sx = 0.621 \text{ in}^3$$

 $M_{max}St = 1.460 \text{ k-ft}$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_{1}Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_{L} = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_{L} = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

S4.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 $L_b =$ 69.80 in $L_b =$ 69.8 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ $\phi F_L = 30.0 \text{ ksi}$ 30.0

3.4.16

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$mDbr$$
 $S2 = 77.3$
 $\phi F_L = 1.3\phi y F c y$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L = 28.2 \text{ ksi}$
 $\phi F_L = 279836 \text{ mm}^4$
 $\phi F_L = 27.5 \text{ mm}$
 $\phi F_L = 28.2 \text{ ksi}$
 ϕ

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.61471 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.80606 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 10.8205 \text{ ksi} \end{array}$$

3.4.9

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$$

 $\varphi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$
 $\varphi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_{y}}{\theta_{b}} Fcy}{Dt} \right)^{2} \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \phi \text{F}_{\text{L}} &= & \phi \text{Fcy} \\ \phi \text{F}_{\text{L}} &= & 33.25 \text{ ksi} \\ \phi \text{F}_{\text{L}} &= & 10.82 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^{2} \\ & & 1.03 \text{ in}^{2} \\ \text{P}_{\text{max}} &= & 11.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-55.176	-55.176	0	0
2	M14	Υ	-55.176	-55.176	0	0
3	M15	Υ	-55.176	-55.176	0	0
4	M16	Υ	-55 176	-55 176	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-95.761	-95.761	0	0
2	M14	٧	-95.761	-95.761	0	0
3	M15	V	-147.995	-147.995	0	0
4	M16	V	-147.995	-147.995	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	217.64	217.64	0	0
2	M14	V	165.406	165.406	0	0
3	M15	V	87.056	87.056	0	0
4	M16	y	87.056	87.056	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	7.874	7.874	0	0
2	M14	Ζ	7.874	7.874	0	0
3	M15	Ζ	7.874	7.874	0	0
4	M16	Ζ	7.874	7.874	0	0
5	M13	Ζ	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												ĺ
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																i
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	651.422	2	1197.722	2	.76	1	.004	1	0	1	0	1
2		min	-812.692	3	-1468.723	3	-48.092	5	256	4	0	1	0	1
3	N7	max	.034	9	1134.062	1	753	12	001	12	0	1	0	1
4		min	211	2	-110.597	3	-284.785	4	571	4	0	1	0	1
5	N15	max	0	13	3039.804	1	0	12	0	12	0	1	0	1
6		min	-2.249	2	-434.408	3	-269.146	4	548	4	0	1	0	1
7	N16	max	2305.378	2	3760.52	2	0	3	0	1	0	1	0	1
8		min	-2494.782	3	-4682.603	3	-48.008	5	259	4	0	1	0	1
9	N23	max	.045	14	1134.062	1	13.06	1	.026	1	0	1	0	1
10		min	211	2	-110.597	3	-275.393	5	556	4	0	1	0	1
11	N24	max	651.422	2	1197.722	2	058	12	0	12	0	1	0	1
12		min	-812.692	3	-1468.723	3	-48.844	5	258	4	0	1	0	1
13	Totals:	max	3605.551	2	11162.57	1	0	12						
14		min	-4120.64	3	-8275.653	3	-967.852	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	78.636	4	451.115	1	-8.48	12	0	15	.219	1	0	4
2			min	4.892	12	-697.285	3	-178.676	1	015	2	.014	12	0	3
3		2	max	78.392	1	314.779	1	-6.764	12	0	15	.121	4	.578	3
4			min	4.892	12	-491.208	3	-136.809	1	015	2	.005	10	372	1
5		3	max	78.392	1	178.442	1	-5.049	12	0	15	.07	5	.955	3
6			min	4.892	12	-285.132	3	-94.941	1	015	2	047	1	612	1
7		4	max	78.392	1	42.106	1	-3.334	12	0	15	.039	5	1.132	3
8			min	4.892	12	-79.055	3	-53.073	1	015	2	119	1	719	1
9		5	max	78.392	1	127.021	3	499	10	0	15	.01	5	1.109	3
10			min	4.892	12	-94.23	1	-31.573	4	015	2	15	1	694	1
11		6	max	78.392	1	333.098	3	30.663	1	0	15	007	12	.885	3
12			min	2.262	15	-230.567	1	-25.772	5	015	2	14	1	536	1
13		7	max	78.392	1	539.174	3	72.531	1	0	15	006	12	.461	3
14			min	-7.905	5	-366.903	1	-23.161	5	015	2	09	1	246	1
15		8	max	78.392	1	745.251	3	114.398	1	0	15	.003	2	.177	1
16			min	-19.378	5	-503.239	1	-20.55	5	015	2	063	4	163	3
17		9	max	78.392	1	951.327	3	156.266	1	0	15	.132	1	.733	1
18			min	-30.851	5	-639.575	1	-17.939	5	015	2	08	5	988	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	78.392	1	1157.404	3	198.134	1	.004	14	.305	1	1.421	1
20			min	4.892	12	-775.912	1	-120.703	14	015	2	.007	12	-2.013	3
21		11	max	78.392	1	639.575	1	-5.243	12	.015	2	.132	1	.733	1
22			min	4.892	12	-951.327	3	-156.266	1	0	15	.001	3	988	3
23		12	max	78.392	1	503.239	1	-3.528	12	.015	2	.062	4	.177	1
24			min	4.892	12	-745.251	3	-114.398		0	15	005	3	163	3
25		13	max	78.392	1_	366.903	1	-1.812	12	.015	2	.029	5	.461	3
26			min	4.892	12	-539.174	3	-72.531	1	0	15	09	1	246	1
27		14	max	78.392	1	230.567	1	.04	3	.015	2	0	15	.885	3
28			min	4.056	15	-333.098		-36.628	4	0	15	14	1	536	1
29		15	max	78.392	1	94.23	1	11.205	1	.015	2	006	12	1.109	3
30		40	min	<u>-5.325</u>	5	-127.021	3	-26.899	5	0	15	1 <u>5</u>	1	694	1
31		16	max	78.392	1	79.055	3	53.073	1	.015	2	003	12	1.132	3
32		4-7	min	<u>-16.797</u>	5	-42.106	1	-24.288	5	0	15	119	1	719	1
33		17	max	78.392	1	285.132	3	94.941	1	.015	2	.001	3	.955	3
34		40	min	-28.27	5	-178.442	1	-21.677	5	0	15	087	4	612	1
35		18	max	78.392	1	491.208	3	136.809	1	.015	2	.066	1	.578	3
36		10	min	-39.743 78.392	5	-314.779		-19.066	5	0	1 <u>5</u>	096	5	372	1
37		19	max	-51.216	1	697.285	3	178.676	1	.015	15	.219	1 5	0	3
38	M14	1	min max	52.327	5 4	-451.115 504.936	<u>1</u> 1	-16.456 -8.78	5 12	.012	3	113 .272	5 4	0	1
40	IVI I 4		min	2.547	12	-556.281	3	-185.771	1	015	2	.016	12	0	3
41		2	max	46.225	1	368.6	1	-7.065	12	.012	3	.183	4	.465	3
42			min	2.547	12	-400.988	3	-143.903	1	015	2	.008	12	425	1
43		3	max	46.225	1	232.264	1	-5.349	12	.012	3	.108	5	.78	3
44		<u> </u>	min	2.547	12	-245.694	3	-102.036	1	015	2	019	1	717	1
45		4	max	46.225	1	95.927	1	-3.634	12	.012	3	.06	5	.943	3
46		Ė	min	2.547	12	-90.401	3	-61.938	4	015	2	098	1	876	1
47		5	max	46.225	1	64.893	3	-1.259	10	.012	3	.015	5	.955	3
48			min	-3.619	5	-40.409	1	-50.224	4	015	2	136	1	903	1
49		6	max	46.225	1	220.186	3	23.568	1	.012	3	006	12	.817	3
50			min	-15.092	5	-176.745	1	-42.484	5	015	2	134	1	798	1
51		7	max	46.225	1	375.479	3	65.436	1	.012	3	005	12	.527	3
52			min	-26.565	5	-313.081	1	-39.873	5	015	2	09	1	56	1
53		8	max	46.225	1	530.773	3	107.303	1	.012	3	.001	10	.087	3
54			min	-38.037	5	-449.418	1	-37.262	5	015	2	11	4	202	2
55		9	max	46.225	1	686.066	3	149.171	1	.012	3	.118	1	.314	1
56			min	-49.51	5	-585.754	1	-34.651	5	015	2	14	5	505	3
57		10	max	76.468	4	841.36	3	191.039	1	.012	3	.284	1	.95	1
58			min	2.547	12	-722.09	1	-125.512		015	2	.006	12	-1.247	3
59		11	max		4	585.754		-4.943	12	.015	2	.183	4	.314	1
60			min	2.547	12			-149.171		012	3	0	3	505	3
61		12	max		4	449.418	1	-3.227	12	.015	2	.105	4	.087	3
62			min	2.547	12	-530.773	3	-107.303		012	3	006	1	202	2
63		13		46.225	1	313.081	1	-1.512	12	.015	2	.056	5_	.527	3
64		4.4	min	2.547	12	-375.479	3	-65.436	1	012	3	09	1	56	1
65		14	max		1	176.745	1	.492	3	.015	2	.011	5	.817	3
66		4.5	min	2.547	12	-220.186	3	-51.298	4	012	3	134	1	798	1
67		15	max		1	40.409	1	18.3	1	.015	2	005	12	.955	3
68		10	min	2.547	12	-64.893	3	-42.725	5	012	3	136	1	903	1
69		16	max	46.225	1	90.401	3	60.168	1	.015	2	002	12	.943	3
70		47	min	<u>-2.649</u>	5	-95.927	1	-40.114	5	012	3	098	1	876	1
71		17	max		1	245.694	3	102.036	1	.015	2	.003	3	.78	3
72		10	min	-14.122 46.225	5	-232.264	1	-37.503	5	012	3	116	4	717	1
73 74		18		46.225 -25.595	5	400.988 -368.6	3	143.903 -34.892	5	.015 012	3	<u>.1</u> 145	5	.465 425	3
75		10	min max		1	556.281	3	185.771	1	.012	2	<u>145</u> .261	1	4 <u>25</u> 0	1
13		l 19	шах	40.220		JJU.Z01	J	100.77		CTU		.201		U	1 1

Model Name

Schletter, Inc.HCV

. : Standard PVMax Racking System

Nov 4, 2015

Checked By:____

77 Mt5		Member	Sec		Axial[lb]	LC		LC	z Shear[lb]		Torque[k-ft]	LC		LC	z-z Mome	
The color of the	76			min	-37.067	5	-504.936	1	-32.281	5	012	3	178	5	0	3
Page	77	M15	1	max	89.418	5	653.992	2	-8.68	12	.015	2	.34	4	0	2
Page	78			min	-49.141	1	-299.867	3	-185.727	1	01	3	.015	12	0	3
B1	79		2	max	77.945	5		2	-6.965	12	.015	2	.236	4	.253	3
B1						1		3		1		3		12		
B2			3			5				_						
B3														_		
B4			1							-				_		
B5																
B6			5			-						_				
B7			5													
B88																_
89			ь													
90			-											_		
91										-						
92																
9			8	max		5				1_	.015		.001	10	<u>.156</u>	3
94				min						5				4		_
95	93		9	max	-1.492	15	333.092	3	149.215	1	.015	2	.118	1	.519	2
95	94			min	-49.141	1	-787.533	2	-49.7	5	01	3	19	5	129	3
96	95		10	max	-3.132	12		3	191.083	1	.015	2	.338	4	1.373	2
98						1				14				12		
98			11			15		2						4		
99																
100			12													
101			12											-		
102			13											_		
103			13							-				_		
104	-		1.1											_		
105			14													
106			4.5													
107			15													
108			1.0													_
109			16								-					
110				min						5						
111 18 max -3.132 12 220.747 3 143.86 1 .01 3 .1 1 .253 3 112 min -96.366 4 -473.802 2 -49.944 5 015 2 198 5 548 2 113 19 max -3.132 12 299.867 3 185.727 1 .01 3 .26 1 0 2 114 min -107.838 4 -653.992 2 -47.333 5 015 2 -245 5 0 5 115 M16 1 max 84.344 5 600.782 2 -8.17 12 .011 1 .245 4 0 2 116 min -87.776 1 -258.474 3 -179.196 1 013 3 .013 12 0 3 117 2 max 72.872 5 <td></td> <td></td> <td>17</td> <td>max</td> <td></td> <td>12</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>			17	max		12				-				_		
112				min						5				4		
113 19 max -3.132 12 299.867 3 185.727 1 .01 3 .26 1 0 2 114 min -107.838 4 -653.992 2 -47.333 5 015 2 245 5 0 5 115 M16 1 max 84.344 5 600.782 2 -8.17 12 .011 1 .245 4 0 2 116 min -87.776 1 -258.474 3 -179.196 1 013 3 .013 12 0 3 117 2 max 72.872 5 420.591 2 -6.455 12 .011 1 .163 4 .213 3 118 min -87.776 1 -179.354 3 -137.328 1 013 3 .005 12 -496 2 119 3 max	111		18	max	-3.132	12	220.747	3	143.86	1	.01	3	.1	1	.253	3
114 min -107.838 4 -653.992 2 -47.333 5 015 2 245 5 0 5 115 M16 1 max 84.344 5 600.782 2 -8.17 12 .011 1 .245 4 0 2 116 min -87.776 1 -258.474 3 -179.196 1 013 3 .013 12 0 3 117 2 max 72.872 5 420.591 2 -6.455 12 .011 1 .163 4 .213 3 118 min -87.776 1 -179.354 3 -137.328 1 013 3 .005 12 -496 2 119 3 max 61.399 5 240.4 2 -47.39 12 .011 1 .1 5 .349 3 120 4 max	112			min	-96.366	4	-473.802	2	-49.944	5	015	2	198	5	548	2
115 M16 1 max 84.344 5 600.782 2 -8.17 12 .011 1 .245 4 0 2 116 min -87.776 1 -258.474 3 -179.196 1 013 3 .013 12 0 3 117 2 max 72.872 5 420.591 2 -6.455 12 .011 1 .163 4 .213 3 118 min -87.776 1 -179.354 3 -137.328 1 013 3 .005 12 496 2 119 3 max 61.399 5 240.4 2 -4.739 12 .011 1 .1 .5 .349 3 120 min -87.776 1 -100.234 3 -95.46 1 013 3 045 1 818 2 121 4 max	113		19	max	-3.132	12	299.867	3	185.727	1	.01	3	.26	1	0	2
115 M16 1 max 84.344 5 600.782 2 -8.17 12 .011 1 .245 4 0 2 116 min -87.776 1 -258.474 3 -179.196 1 013 3 .013 12 0 3 117 2 max 72.872 5 420.591 2 -6.455 12 .011 1 .163 4 .213 3 118 min -87.776 1 -179.354 3 -137.328 1 013 3 .005 12 496 2 119 3 max 61.399 5 240.4 2 -4.739 12 .011 1 .1 .5 .349 3 120 min -87.776 1 -100.234 3 -95.46 1 013 3 045 1 818 2 121 4 max	114			min	-107.838	4	-653.992	2	-47.333	5	015	2	245	5	0	5
116 min -87.776 1 -258.474 3 -179.196 1 013 3 .013 12 0 3 117 2 max 72.872 5 420.591 2 -6.455 12 .011 1 .163 4 .213 3 118 min -87.776 1 -179.354 3 -137.328 1 013 3 .005 12 496 2 119 3 max 61.399 5 240.4 2 -4.739 12 .011 1 .1 5 .349 3 120 min -87.776 1 -100.234 3 -95.46 1 013 3 045 1 818 2 121 4 max 49.926 5 60.21 2 -3.024 12 .011 1 .057 5 .408 3 122 min -87.776 1 </td <td>115</td> <td>M16</td> <td>1</td> <td>max</td> <td>84.344</td> <td>5</td> <td>600.782</td> <td>2</td> <td>-8.17</td> <td>12</td> <td>.011</td> <td>1</td> <td>.245</td> <td>4</td> <td>0</td> <td>2</td>	115	M16	1	max	84.344	5	600.782	2	-8.17	12	.011	1	.245	4	0	2
117 2 max 72.872 5 420.591 2 -6.455 12 .011 1 .163 4 .213 3 118 min -87.776 1 -179.354 3 -137.328 1 013 3 .005 12 496 2 119 3 max 61.399 5 240.4 2 -4.739 12 .011 1 .1 5 .349 3 120 min -87.776 1 -100.234 3 -95.46 1 013 3 045 1 818 2 121 4 max 49.926 5 60.21 2 -3.024 12 .011 1 .057 5 .408 3 122 min -87.776 1 -21.114 3 -55.041 4 013 3 117 1 964 2 123 5 max 38.454<												3			0	3
118 min -87.776 1 -179.354 3 -137.328 1 013 3 .005 12 496 2 119 3 max 61.399 5 240.4 2 -4.739 12 .011 1 .1 5 .349 3 120 min -87.776 1 -100.234 3 -95.46 1 013 3 045 1 818 2 121 4 max 49.926 5 60.21 2 -3.024 12 .011 1 .057 5 .408 3 122 min -87.776 1 -21.114 3 -55.041 4 013 3 117 1 964 2 123 5 max 38.454 5 58.006 3 716 10 .011 1 .017 5 .39 3 124 min -87.776 1 <td></td> <td></td> <td>2</td> <td></td>			2													
119 3 max 61.399 5 240.4 2 -4.739 12 .011 1 .1 5 .349 3 120 min -87.776 1 -100.234 3 -95.46 1 013 3 045 1 818 2 121 4 max 49.926 5 60.21 2 -3.024 12 .011 1 .057 5 .408 3 122 min -87.776 1 -21.114 3 -55.041 4 013 3 117 1 964 2 123 5 max 38.454 5 58.006 3 716 10 .011 1 .017 5 .39 3 124 min -87.776 1 -119.981 2 -43.327 4 013 3 149 1 935 2 125 6 max 26.981																
120 min -87.776 1 -100.234 3 -95.46 1 013 3 045 1 818 2 121 4 max 49.926 5 60.21 2 -3.024 12 .011 1 .057 5 .408 3 122 min -87.776 1 -21.114 3 -55.041 4 013 3 117 1 964 2 123 5 max 38.454 5 58.006 3 716 10 .011 1 .017 5 .39 3 124 min -87.776 1 -119.981 2 -43.327 4 013 3 149 1 935 2 125 6 max 26.981 5 137.125 3 30.143 1 .011 1 006 12 .295 3 126 min -87.776			3													
121 4 max 49.926 5 60.21 2 -3.024 12 .011 1 .057 5 .408 3 122 min -87.776 1 -21.114 3 -55.041 4 013 3 117 1 964 2 123 5 max 38.454 5 58.006 3 716 10 .011 1 .017 5 .39 3 124 min -87.776 1 -119.981 2 -43.327 4 013 3 149 1 935 2 125 6 max 26.981 5 137.125 3 30.143 1 .011 1 006 12 .295 3 126 min -87.776 1 -300.172 2 -37.342 5 013 3 14 1 731 2 127 7 max 15.508																
122 min -87.776 1 -21.114 3 -55.041 4 013 3 117 1 964 2 123 5 max 38.454 5 58.006 3 716 10 .011 1 .017 5 .39 3 124 min -87.776 1 -119.981 2 -43.327 4 013 3 149 1 935 2 125 6 max 26.981 5 137.125 3 30.143 1 .011 1 006 12 .295 3 126 min -87.776 1 -300.172 2 -37.342 5 013 3 14 1 731 2 127 7 max 15.508 5 216.245 3 72.011 1 .011 1 005 12 .123 3 128 min -87.776 <			1											_		
123 5 max 38.454 5 58.006 3 716 10 .011 1 .017 5 .39 3 124 min -87.776 1 -119.981 2 -43.327 4 013 3 149 1 935 2 125 6 max 26.981 5 137.125 3 30.143 1 .011 1 006 12 .295 3 126 min -87.776 1 -300.172 2 -37.342 5 013 3 14 1 731 2 127 7 max 15.508 5 216.245 3 72.011 1 .011 1 005 12 .123 3 128 min -87.776 1 -480.362 2 -34.731 5 013 3 091 1 351 2 129 8 max 4.035 5 295.365 3 113.879 1 .011 1 .002 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			-							-						
124 min -87.776 1 -119.981 2 -43.327 4 013 3 149 1 935 2 125 6 max 26.981 5 137.125 3 30.143 1 .011 1 006 12 .295 3 126 min -87.776 1 -300.172 2 -37.342 5 013 3 14 1 731 2 127 7 max 15.508 5 216.245 3 72.011 1 .011 1 005 12 .123 3 128 min -87.776 1 -480.362 2 -34.731 5 013 3 091 1 351 2 129 8 max 4.035 5 295.365 3 113.879 1 .011 1 .002 2 .203 2 130 min -87.776			F													
125 6 max 26.981 5 137.125 3 30.143 1 .011 1 006 12 .295 3 126 min -87.776 1 -300.172 2 -37.342 5 013 3 14 1 731 2 127 7 max 15.508 5 216.245 3 72.011 1 .011 1 005 12 .123 3 128 min -87.776 1 -480.362 2 -34.731 5 013 3 091 1 351 2 129 8 max 4.035 5 295.365 3 113.879 1 .011 1 .002 2 .203 2 130 min -87.776 1 -660.553 2 -32.12 5 013 3 09 4 126 3 131 9 max -4.939 15 374.485 3 155.747 1 .011 1 .131 1 .933 2			5													
126 min -87.776 1 -300.172 2 -37.342 5 013 3 14 1 731 2 127 7 max 15.508 5 216.245 3 72.011 1 .011 1 005 12 .123 3 128 min -87.776 1 -480.362 2 -34.731 5 013 3 091 1 351 2 129 8 max 4.035 5 295.365 3 113.879 1 .011 1 .002 2 .203 2 130 min -87.776 1 -660.553 2 -32.12 5 013 3 09 4 126 3 131 9 max -4.939 15 374.485 3 155.747 1 .011 1 .131 1 .933 2			_											_		
127 7 max 15.508 5 216.245 3 72.011 1 .011 1 005 12 .123 3 128 min -87.776 1 -480.362 2 -34.731 5 013 3 091 1 351 2 129 8 max 4.035 5 295.365 3 113.879 1 .011 1 .002 2 .203 2 130 min -87.776 1 -660.553 2 -32.12 5 013 3 09 4 126 3 131 9 max -4.939 15 374.485 3 155.747 1 .011 1 .131 1 .933 2			Ь									_				
128 min -87.776 1 -480.362 2 -34.731 5 013 3 091 1 351 2 129 8 max 4.035 5 295.365 3 113.879 1 .011 1 .002 2 .203 2 130 min -87.776 1 -660.553 2 -32.12 5 013 3 09 4 126 3 131 9 max -4.939 15 374.485 3 155.747 1 .011 1 .131 1 .933 2			-													
129 8 max 4.035 5 295.365 3 113.879 1 .011 1 .002 2 .203 2 130 min -87.776 1 -660.553 2 -32.12 5 013 3 09 4 126 3 131 9 max -4.939 15 374.485 3 155.747 1 .011 1 .131 1 .933 2			7								_					
130 min -87.776 1 -660.553 2 -32.12 5 013 3 09 4 126 3 131 9 max -4.939 15 374.485 3 155.747 1 .011 1 .131 1 .933 2																
131 9 max -4.939 15 374.485 3 155.747 1 .011 1 .131 1 .933 2			8	max		5								2		
				min		•				5		3		_		
132 min -87.776 1 -840.744 2 -29.509 5 013 3 118 5 451 3			9	max	-4.939	15	374.485	3	155.747	1	.011	1	.131	1	.933	
	132			min	-87.776	1	-840.744	2	-29.509	5	013	3	118	5	451	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

133 10 max -5.002 12 453.605 3 197.614 1 .013 3 134 min -87.776 1 -1020.935 2 -126.448 14 005 9 135 11 max -2.155 15 840.744 2 -5.553 12 .013 3 136 min -87.776 1 -374.485 3 -155.747 1 011 1	.303 .009 .164 .002 .089	1 12 4	1.838 854	3
135	.164 .002			3
136 min -87.776 1 -374.485 3 -155.747 1011 1	.002	4		
			.933	2
100	വള	12	451	3
137 12 max -5.002 12 660.553 2 -3.838 12 .013 3	.000	4	.203	2
138 min -87.776 1 -295.365 3 -113.879 1011 1	004	3	126	3
139 13 max -5.002 12 480.362 2 -2.122 12 .013 3	.044	5	.123	3
140 min -87.776 1 -216.245 3 -72.011 1011 1	091	1	351	2
141	.003	5	.295	3
142 min -87.776 1 -137.125 3 -48.193 4 011 1	14	1	731	2
143 15 max -5.002 12 119.981 2 11.725 1 .013 3	006	12	.39	3
144 min -87.776 1 -58.006 3 -38.441 5011 1	149	1	935	2
145 16 max -5.002 12 21.114 3 53.592 1 .013 3	004	12	.408	3
146 min -87.776 1 -60.21 2 -35.83 5011 1	117	1	964	2
147	0	3	.349	3
148 min -92.53 4 -240.4 2 -33.22 5011 1	117	4	818	2
149 18 max -5.002 12 179.354 3 137.328 1 .013 3	.068	1	.213	3
150 min -104.003 4 -420.591 2 -30.609 5011 1	137	5	496	2
151	.222	1	0	2
152 min -115.475 4 -600.782 2 -27.998 5011 1	165	5	0	5
153 M2 1 max 1065.523 1 2.068 4 .626 1 0 3	0	3	0	1
154 min -1298.617 3 .505 15 -41.577 4 0 4	0	1	0	1
155 2 max 1065.997 1 2.031 4 .626 1 0 3	0	1	0	15
156 min -1298.262 3 .496 15 -41.988 4 0 4	013	4	0	4
157 3 max 1066.47 1 1.994 4 .626 1 0 3	013	1	0	15
158 min -1297.906 3 .488 15 -42.4 4 0 4	027	4	001	4
159 4 max 1066.944 1 1.957 4 .626 1 0 3	<u>027</u> 0	1	0	15
160 min -1297.551 3 .479 15 -42.811 4 0 4	04	4	002	4
	04 0	1	002 0	15
161 5 max 1067.418 1 1.92 4 .626 1 0 3 162 min -1297.196 3 .47 15 -43.222 4 0 4	054	4	003	4
163 6 max 1067.892 1 1.883 4 .626 1 0 3	0 <u>54</u> 0	1	003 0	15
	068	4	003	4
	.001	1	0	15
166 min -1296.485 3 .453 15 -44.045 4 0 4	082	4	004	4
167 8 max 1068.839 1 1.808 4 .626 1 0 3	.001	1	001	15
168 min -1296.13 3 .444 15 -44.456 4 0 4	096	4	004	4
169 9 max 1069.313 1 1.771 4 .626 1 0 3	.002	1	001	15
170 min -1295.775 3 .435 15 -44.868 4 0 4	<u>111</u>	4	005	4
171 10 max 1069.787 1 1.734 4 .626 1 0 3	.002	1	001	15
172 min -1295.419 3 .427 15 -45.279 4 0 4	125	4	005	4
173	.002	1	001	15
174 min -1295.064 3 .418 15 -45.69 4 0 4	14	4	006	4
175	.002	1	002	15
176 min -1294.709 3 .409 15 -46.102 4 0 4	<u>154</u>	4	007	4
177	.002	1	002	15
178 min -1294.353 3 .401 15 -46.513 4 0 4	169	4	007	4
179	.003	1	002	15
180 min -1293.998 3 .392 15 -46.924 4 0 4	184	4	008	4
181	.003	1	002	15
182 min -1293.643 3 .383 15 -47.336 4 0 4	199	4	008	4
183 16 max 1072.629 1 1.512 4 .626 1 0 3	.003	1_	002	15
184 min -1293.287 3 .375 15 -47.747 4 0 4	214	4	009	4
185 17 max 1073.103 1 1.475 4 .626 1 0 3	.003	1	002	15
186 min -1292.932 3 .366 15 -48.158 4 0 4	23	4	009	4
187	.003	1	002	15
188 min -1292.577 3 .356 12 -48.57 4 0 4	245	4	01	4
189 19 max 1074.05 1 1.401 4 .626 1 0 3	.004	1	002	15

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC			z Shear[lb]		Torque[k-ft]				z-z Mome	LC
190			min	-1292.222	3	.342	12	-48.981	4	0	4	261	4	01	4
191	<u>M3</u>	1		606.648	2	9.023	4	.278	1_	0	12	00	1	.01	4
192			min	-755.784	3	2.134	15	636	5	0	4	016	4	.002	15
193		2	max	606.477	2	8.151	4	.278	1	0	12	0	1	.006	4
194			min	-755.911	3_	1.929	15	029	5	0	4	016	4	.001	12
195		3	max	606.307	2	7.279	4	.704	4	0	12	0	1	.003	2
196			min	-756.039	3	1.724	15	.016	12	0	4	016	4	0	3
197		4	max	606.137	2	6.407	4	1.311	4	0	12	0	1	0	2
198			min	-756.167	3	1.519	15	.016	12	0	4	016	4	002	3
199		5	max	605.966	2	5.535	4	1.918	4	0	12	0	1	0	15
200				-756.295	3	1.314	15	.016	12	0	4	015	4	004	6
201		6	max		2	4.663	4	2.525	4	0	12	0	1	001	15
202				-756.422	3_	1.109	15	.016	12	0	4	014	5	006	6
203		7	max	605.626	2	3.791	4	3.132	4	0	12	.001	1	002	15
204			min	-756.55	3_	.904	15	.016	12	0	4	013	5	008	6
205		8	max	605.455	2	2.919	4	3.739	4	0	12	.001	1	002	15
206			min	-756.678	3_	.699	15	.016	12	0	4	<u>011</u>	5	01	6
207		9	max	605.285	2	2.047	4	4.346	4	0	12	.001	1	003	15
208				-756.806	3	.494	15	.016	12	0	4	009	5	011	6
209		10	max	605.115	2	1.175	4	4.954	4	0	12	.001	1	003	15
210				-756.934	3	.289	15	.016	12	0	4	007	5	012	6
211		11	max		2	.366	2	5.561	4	0	12	.002	1	003	15
212			min	-757.061	3	051	3	.016	12	0	4	005	5	012	6
213		12	max	604.774	2_	121	15	6.168	4	0	12	.002	1	003	15
214			min	-757.189	3	57	6	.016	12	0	4	002	5	012	6
215		13	max	604.604	2	326	15	6.775	4	0	12	.002	1	003	15
216			min	-757.317	3	-1.442	6	.016	12	0	4	0	12	011	6
217		14	max	604.433	2	531	15	7.382	4	0	12	.005	4	002	15
218			min	-757.445	3	-2.314	6	.016	12	0	4	0	12	011	6
219		15	max	604.263	2	736	15	7.989	4	0	12	.008	4	002	15
220				-757.572	3	-3.186	6	.016	12	0	4	0	12	009	6
221		16	max	604.093	2	941	15	8.596	4	0	12	.012	4	002	15
222			min	-757.7	3_	-4.058	6	.016	12	0	4	0	12	008	6
223		17	max	603.922	2	-1.146	15	9.203	4	0	12	.016	4	001	15
224			min	-757.828	3	-4.93	6	.016	12	0	4	0	12	005	6
225		18	max	603.752	2	-1.351	15	9.81	4	0	12	.021	4	0	15
226			min	-757.956	3_	-5.802	6	.016	12	0	4	0	12	003	6
227		19	max		2	-1.556	15	10.418	4	0	12	.026	4	0	1
228				-758.083	3	-6.674	6	.016	12	0	4	0	12	0	1
229	<u>M4</u>	1		1130.995	_1_	0	1	752	12	0	1	.018	4	0	1
230				-112.897		0		-283.382		0	1	0	12	0	1
231		2		1131.166	1_	0	1	752	12	0	1	0	1	0	1
232				-112.769	3_	0	1	-283.53	4	0	1	015	4	0	1
233		3		1131.336		0	1	752	12	0	1	0	12	0	1
234				-112.641	3_	0	1	-283.677	4	0	1	047	4	0	1
235		4		1131.506	1_	0	1	752	12	0	1	0	12	0	1
236		_		-112.514	3	0	1	-283.825	4	0	1	08	4	0	1
237		5		1131.677	1_	0	1	752	12	0	1	0	12	0	1
238				-112.386	3	0	1	-283.973	4	0	1	112	4	0	1
239		6		1131.847	1_	0	1	752	12	0	1	0	12	0	1
240				-112.258	3	0	1	-284.12	4	0	1	<u>145</u>	4	0	1
241		7		1132.018	1_	0	1	752	12	0	1	0	12	0	1
242				-112.13	3_	0	1	-284.268		0	1	<u>178</u>	4	0	1
243		8		1132.188	1_	0	1	752	12	0	1	0	12	0	1
244				-112.003	3_	0	1	-284.415	4	0	1	21	4	0	1
245		9		1132.358	1_	0	1	752	12	0	1	0	12	0	1
246			min	-111.875	3	0	1	-284.563	4	0	1	243	4	0	1

Model Name

Schletter, Inc. HCV

.
: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec	T	Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
247		10		1132.529	_1_	0	1	752	12	0	1	0	12	0	1
248			min	-111.747	3	0	1	-284.711	4	0	1	276	4	0	1
249		11	max	1132.699	<u>1</u>	0	1	752	12	0	1	0	12	0	1_
250			min		3	0	1	-284.858		0	1	308	4	0	1
251		12	max	1132.869	_1_	0	1	752	12	0	1	0	12	0	1
252			min	-111.492	3	0	1	-285.006	4	0	1	341	4	0	1
253		13	max	1133.04	1	0	1	752	12	0	1	0	12	0	1
254			min	-111.364	3	0	1	-285.154	4	0	1	374	4	0	1
255		14	max	1133.21	1	0	1	752	12	0	1	001	12	0	1
256			min	-111.236	3	0	1	-285.301	4	0	1	407	4	0	1
257		15	max		1	0	1	752	12	0	1	001	12	0	1
258			min	-111.108	3	0	1	-285.449	4	0	1	439	4	0	1
259		16	+	1133.551	1	0	1	752	12	0	1	001	12	0	1
260		1.0	min		3	0	1	-285.597	4	0	1	472	4	0	1
261		17	+	1133.721	1	0	1	752	12	0	1	001	12	0	1
262		 ''	min		3	0	1	-285.744	4	0	1	505	4	0	1
263		18		1133.891	1	0	1	752	12	0	1	001	12	0	1
264		10	min	-110.725	3	0	1	-285.892	4	0	1	538	4	0	1
265		19		1134.062	_ <u></u>	0	1	752	12	0	1	001	12	0	1
		19		-110.597		0	1				1				1
266	MC	1	min		3_	_	_	-286.039	1	0	1	571	4	0	
267	<u>M6</u>			3318.131	1	2.356	2	-42.045	_	0		0	4	0	1
268			min	-4139.929	3	.209	12		4	0	4	0	1_	0	1
269		2		3318.605	1	2.327	2	0	1	0	1	0	1	0	12
270			min	-4139.573	3	.194	3	-42.456	4	0	4	014	4	0	2
271		3		3319.078	1_	2.298	2	0	1	0	1	0	1	0	3
272			min	-4139.218	3	.173	3	-42.867	4	0	4	027	4	001	2
273		4		3319.552	1_	2.269	2	0	1	0	1	0	1	0	3
274		-	min	-4138.863	3_	.151	3	-43.279	4	0	4	041	4	002	2
275		5		3320.026	1_	2.24	2	0	1	0	1	0	1	0	3
276			min	-4138.508	3	.129	3	-43.69	4	0	4	055	4	003	2
277		6	max		1_	2.211	2	0	1	0	1	0	1	0	3
278		-	min	-4138.152	3	.108	3	-44.101	4	0	4	069	4	004	2
279		7		3320.973	1_	2.183	2	0	1	0	1	0	1	0	3
280			min	-4137.797	3	.086	3	-44.513	4	0	4	083	4	004	2
281		8		3321.447	1_	2.154	2	0	1	0	1	0	1	0	3
282			min	-4137.442	3	.064	3	-44.924	4	0	4	097	4	005	2
283		9		3321.921	1_	2.125	2	0	1	0	1	0	1	0	3
284		1.0	min	-4137.086	3	.043	3	-45.335	4	0	4	112	4	006	2
285		10		3322.395	_1_	2.096	2	0	1	0	1	0	1	0	3
286			min	-4136.731	3	.021	3	-45.747	4	0	4	126	4	006	2
287		11		3322.868	_1_	2.067	2	0	1	0	1	0	1	0	3
288			min		3	0	3	-46.158	4	0	4	141	4	007	2
289		12		3323.342	_1_	2.038	2	0	1	0	1	0	1	0	3
290				-4136.02	3	022	3	-46.569	4	0	4	156	4	008	2
291		13		3323.816	_1_	2.009	2	0	1	0	1	0	1	0	3
292			min		3	044	3	-46.981	4	0	4	171	4	008	2
293		14		3324.29	_1_	1.98	2	0	1	0	1	0	1_	0	3
294			min		3_	065	3	-47.392	4	0	4	186	4	009	2
295		15	max	3324.763	_1_	1.952	2	0	1	0	1	0	1	0	3
296			min		3	087	3	-47.803	4	0	4	201	4	01	2
297		16		3325.237	<u>1</u>	1.923	2	0	1	0	1	0	1_	0	3
298			min		3	109	3	-48.215	4	0	4	217	4	01	2
299		17		3325.711	1_	1.894	2	0	1	0	1	0	1	0	3
300			1	-4134.244	3	13	3	-48.626	4	0	4	232	4	011	2
301		18		3326.185	_1_	1.865	2	0	1	0	1	0	1_	0	3
302			min		3	152	3	-49.037	4	0	4	248	4	011	2
303		19	max	3326.658	1_	1.836	2	0	1	0	1	0	1	0	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC		LC		LC	Torque[k-ft]	LC		LC	z-z Mome	
304			min	-4133.533	3	174	3	-49.449	4	0	4	263	4	012	2
305	M7	1	max	2175.639	2	9.027	6	0	1	0	1	0	1	.012	2
306			min	-2308.862	3	2.119	15	923	5	0	4	017	4	0	3
307		2	max	2175.468	2	8.155	6	0	1	0	1	0	1	.009	2
308			min	-2308.99	3	1.914	15	316	5	0	4	017	4	002	3
309		3		2175.298	2	7.283	6	.349	4	0	1	0	1	.006	2
310			min	-2309.117	3	1.709	15	0	1	0	4	017	4	004	3
311		4		2175.128	2	6.411	6	.957	4	0	1	0	1	.003	2
312			min	-2309.245	3	1.504	15	.557	1	0	4	016	4	005	3
313		5		2174.957	2	5.539	6	1.564	4		1	0	1	0	2
		5							1	0					
314			min	-2309.373	3	1.299	15	0 474		0	4	016	4	007	3
315		6		2174.787	2	4.667	6	2.171	4	0	_1_	0	1	001	15
316			min	-2309.501	3	1.094	15	0	1	0	4	015	4	008	3
317		7		2174.617	2	3.795	6	2.778	4	0	_1_	0	1_	002	15
318			min	-2309.628	3	.889	15	0	1	0	4	014	4	009	3
319		8	max	2174.446	2	2.923	6	3.385	4	0	_1_	0	1	002	15
320			min	-2309.756	3	.684	15	0	1	0	4	012	4	01	4
321		9	max	2174.276	2	2.1	2	3.992	4	0	1	0	1	003	15
322			min	-2309.884	3	.393	12	0	1	0	4	011	4	011	4
323		10	max	2174.105	2	1.42	2	4.599	4	0	1	0	1	003	15
324			min	-2310.012	3	.014	3	0	1	0	4	009	4	012	4
325		11		2173.935	2	.741	2	5.206	4	0	1	0	1	003	15
326			min		3	495	3	0.200	1	0	4	006	4	012	4
327		12		2173.765	2	.061	2	5.813	4	0	1	0	1	003	15
		12		-2310.267			3		1						
328		40	min		3	-1.005		0		0	4_	004	4	012	4
329		13		2173.594	2	341	15	6.421	4	0	1	0	1	003	15
330			min		3	-1.515	3	0	1_	0	4_	0	5	011	4
331		14		2173.424	2	546	15	7.028	4	0	_1_	.002	4	002	15
332			min	-2310.523	3	-2.31	4	0	1	0	4	0	1	011	4
333		15	max	2173.254	2	751	15	7.635	4	0	_1_	.006	4	002	15
334			min	-2310.651	3	-3.182	4	0	1	0	4	0	1	009	4
335		16	max	2173.083	2	956	15	8.242	4	0	1	.01	4	002	15
336			min	-2310.778	3	-4.054	4	0	1	0	4	0	1	008	4
337		17	max	2172.913	2	-1.161	15	8.849	4	0	1	.014	4	001	15
338			min	-2310.906	3	-4.926	4	0	1	0	4	0	1	005	4
339		18		2172.743	2	-1.366	15	9.456	4	0	1	.018	4	0	15
340		10	min		3	-5.798	4	0	1	0	4	0	1	003	4
341		19		2172.572	2	-1.571	15	10.063	4	0	1	.023	4	0	1
342		15	min	-2311.162	3	-6.67	4	0	1	0	4	0	1	0	1
343	M8	1		3036.737	1		1	0	1		1	.016	4		1
	IVIO					0			_	0	1		1	0	1
344				-436.708				-271.532				0			$\overline{}$
345		2		3036.908		0	1	0	1	0	1	0	1	0	1
346			min		3	0	1	-271.68	4	0	1_	015	4	0	1
347		3		3037.078	1	0	1	0	1	0	_1_	0	1	0	1
348			min		3	0	1	-271.828		0	1_	047	4	0	1
349		4		3037.248	1_	0	1	0	1	0	_1_	0	1_	0	1
350				-436.325	3	0	1	-271.975	4	0	1_	078	4	0	1
351		5	max	3037.419	1	0	1	0	1	0	1	0	1	0	1
352			min		3	0	1	-272.123	4	0	1	109	4	0	1
353		6	max	3037.589	1	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1	-272.27	4	0	1	14	4	0	1
355		7		3037.76	1	0	1	0	1	0	1	0	1	0	1
356				-435.942	3	0	1	-272.418		0	1	172	4	0	1
357		8	max		1	0	1	0	1	0	1	0	1	0	1
		0				0	1			0	1			_	1
358		0	min	-435.814	3		_	-272.566			_	203	4	0	_
359		9	max		1	0	1	0	1	0	1	0	1	0	1
360			min	-435.686	3	0	1	-272.713	4	0	1	234	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

004	Member	Sec		Axial[lb]						Torque[k-ft]			LC		1 1
361		10		3038.271	1_	0	1	0	11	0	1	0	1	0	1
362		4.4	min	-435.558	3	0	1	-272.861	4	0	1_	266	4	0	1
363		11		3038.441	1	0	1	0 -273.009	11	0	<u>1</u> 1	0	1	0	1
364		40	min		3	0	1		4	0		297	4	0	1
365		12		3038.611 -435.303	1	0	1	0	4	0	<u>1</u> 1	0	4	0	1
366		12			3	0	1	-273.156	1	_	1	328	1	0	1
367		13		3038.782	1	0	1	0 -273.304	4	0	1	36	4	0	1
368		11	min	-435.175	<u>3</u> 1	0	1		1	0	1		1	0	1
369		14		3038.952	3		1	0	4	-	1	0		0	1
370 371		15	min	-435.047 3039.122	<u>ာ</u> 1	0	1	-273.452 0	1	0	1	391 0	1	0	1
372		10	min	-434.919	3	0	1	-273.599	4	0	1	422	4	0	1
373		16		3039.293	<u> </u>	0	1	0	1	0	+	0	1	0	1
374		10		-434.792	3	0	1	-273.747	4	0	1	454	4	0	1
375		17		3039.463	<u> </u>	0	1	0	1	0	1	454	1	0	1
376		17		-434.664	3	0	1	-273.894	4	0	1	485	4	0	1
377		18		3039.633		0	1	0	1	0	1	0	1	0	1
378		10	min	-434.536	3	0	1	-274.042	4	0	1	517	4	0	1
379		19		3039.804	_ <u></u>	0	1	0	1	0	1	0	1	0	1
380		13	min	-434.408	3	0	1	-274.19	4	0	1	548	4	0	1
381	M10	1		1065.523	<u> </u>	1.981	6	037	12	0	1	0	4	0	1
382	IVITO		min	-1298.617	3	.447	15	-41.931	4	0	5	0	3	0	1
383		2		1065.997	1	1.944	6	037	12	0	1	0	10	0	15
384				-1298.262	3	.438	15	-42.342	4	0	5	013	4	0	6
385		3	max			1.906	6	037	12	0	1	0	12	0	15
386			min	-1297.906	3	.429	15	-42.754	4	0	5	027	4	001	6
387		4		1066.944	1	1.869	6	037	12	0	1	0	12	0	15
388			min	-1297.551	3	.42	15	-43.165	4	0	5	041	4	002	6
389		5		1067.418	1	1.832	6	037	12	0	1	0	12	0	15
390			min	-1297.196	3	.412	15	-43.576	4	0	5	055	4	002	6
391		6		1067.892	1	1.795	6	037	12	0	1	0	12	0	15
392			min	-1296.841	3	.403	15	-43.988	4	0	5	069	4	003	6
393		7		1068.365	1	1.758	6	037	12	0	1	0	12	0	15
394			min	-1296.485	3	.394	15	-44.399	4	0	5	083	4	004	6
395		8		1068.839	1	1.721	6	037	12	0	1	0	12	0	15
396				-1296.13	3	.386	15	-44.81	4	0	5	097	4	004	6
397		9		1069.313	1	1.684	6	037	12	0	1	0	12	001	15
398			min		3	.377	15	-45.222	4	0	5	112	4	005	6
399		10		1069.787	1	1.647	6	037	12	0	1	0	12	001	15
400				-1295.419	3	.368	15	-45.633	4	0	5	126	4	005	6
401		11		1070.26	1	1.61	6	037	12	0	1	0	12	001	15
402			min		3	.36	15	-46.044	4	0	5	141	4	006	6
403		12		1070.734	1	1.573	6	037	12	0	1	0	12	001	15
404				-1294.709	3	.351	15	-46.456	4	0	5	156	4	006	6
405		13	max	1071.208	1	1.536	6	037	12	0	1	0	12	002	15
406				-1294.353	3	.342	15	-46.867	4	0	5	17	4	007	6
407		14	max	1071.682	1	1.499	6	037	12	0	1	0	12	002	15
408			min	-1293.998	3	.333	15	-47.278	4	0	5	186	4	007	6
409		15		1072.155	1	1.462	6	037	12	0	1	0	12	002	15
410			min	-1293.643	3	.325	15	-47.69	4	0	5	201	4	008	6
411		16	max	1072.629	1	1.425	6	037	12	0	1	0	12	002	15
412			min	-1293.287	3	.316	15	-48.101	4	0	5	216	4	008	6
413		17		1073.103	1	1.388	6	037	12	0	1	0	12	002	15
414				-1292.932	3	.307	15	-48.512	4	0	5	231	4	009	6
415		18		1073.576	1	1.351	6	037	12	0	1	0	12	002	15
416				-1292.577	3	.299	15	-48.924	4	0	5	247	4	009	6
417		19	max	1074.05	1_	1.314	6	037	12	0	1_	0	12	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
418			min	-1292.222	3	.29	15	-49.335	4	0	5	263	4	009	6
419	M11	1	max	606.648	2	8.964	6	016	12	0	1	0	12	.009	6
420			min	-755.784	3	2.094	15	671	5	0	4	016	4	.002	15
421		2	max	606.477	2	8.092	6	016	12	0	1	0	12	.006	2
422			min	-755.911	3	1.889	15	278	1	0	4	017	4	.001	15
423		3	max	606.307	2	7.22	6	.547	4	0	1	0	12	.003	2
424			min	-756.039	3	1.684	15	278	1	0	4	017	4	0	3
425		4	max	606.137	2	6.348	6	1.154	4	0	1	0	12	0	2
426			min	-756.167	3	1.479	15	278	1	0	4	016	4	002	3
427		5	max	605.966	2	5.476	6	1.761	4	0	1	0	12	001	15
428			min	-756.295	3	1.274	15	278	1	0	4	015	4	004	4
429		6	max		2	4.604	6	2.368	4	0	1	0	12	002	15
430			min	-756.422	3	1.069	15	278	1	0	4	014	4	007	4
431		7	max	605.626	2	3.732	6	2.976	4	0	1	0	12	002	15
432			min	-756.55	3	.864	15	278	1	0	4	013	4	009	4
433		8	max		2	2.86	6	3.583	4	0	1	0	12	002	15
434			min	-756.678	3	.659	15	278	1	0	4	012	4	01	4
435		9	max		2	1.988	6	4.19	4	0	1	0	12	003	15
436			min	-756.806	3	.454	15	278	1	0	4	01	4	011	4
437		10	max	605.115	2	1.116	6	4.797	4	0	1	0	12	003	15
438			min	-756.934	3	.249	15	278	1	0	4	008	4	012	4
439		11	max		2	.366	2	5.404	4	0	1	0	12	003	15
440			min	-757.061	3	051	3	278	1	0	4	005	4	012	4
441		12	max	604.774	2	16	15	6.011	4	0	1	0	12	003	15
442		'-	min	-757.189	3	629	4	278	1	0	4	003	4	012	4
443		13	max		2	365	15	6.618	4	0	1	0	5	003	15
444		13	min	-757.317	3	-1.501	4	278	1	0	4	002	1	012	4
445		14	max		2	57	15	7.225	4	0	1	.002	5	003	15
446		17	min	-757.445	3	-2.373	4	278	1	0	4	002	1	011	4
447		15	max		2	775	15	7.832	4	0	1	.002	5	002	15
448		13	min	-757.572	3	-3.245	4	278	1	0	4	002	1	002	4
449		16	max		2	98	15	8.44	4	0	1	.011	5	003	15
450		10	min	-757.7	3	-4.117	4	278	1	0	4	002	1	002	4
451		17	max		2	-1.185	15	9.047	4	0	1	.016	5	001	15
452		11/	min	-757.828	3	-4.989	4	278	1	0	4	002	1	006	4
453		18	max		2	-1.39	15	9.654	4	0	1	.02	5	0	15
454		10	min	-757.956	3	-5.861	4	278	1	0	4	002	1	003	4
455		19			2	-1.595	15	10.261	4	0	1	.025	5	0	1
456		19	max	-758.083	3	-6.733	4	278	1	0	4	003	1	0	1
457	M12	1			<u> </u>	0	1	13.496	1	0	1	.017	5	0	1
458	IVIIZ	-		-112.897	3	0	1	-275.707		0	1	002	1	0	1
459		2		1131.166	<u> </u>	0	1	13.496	1	0	1	0	10	0	1
460				-112.769		0	1	-275.855		0	1	015	4	0	1
461		3		1131.336		0	1	13.496	1	0	1	.001	1	0	1
462		3		-112.641			1				1			_	1
		1		1131.506		0		<u>-276.002</u> 13.496		0	1	046 .003	1	0	-
463		4		-112.514	1	0	1	-276.15	1	0			_	0	1
464		-		1131.677		0	1		4	0	1	078	4	0	1
465		5			1_	0	1	13.496	1	0	1	.004	1	0	1
466				-112.386		0	1	-276.298		0	1	11	4	0	1
467		6		1131.847	1	0	1	13.496	1	0	1	.006	1	0	1
468		-		-112.258	3	0	1	-276.445		0	1	142	4	0	1
469		7		1132.018	1_	0	1	13.496	1	0	1	.008	1	0	1
470				-112.13	3	0	1	-276.593		0	1	173	4	0	1
471		8		1132.188	_1_	0	1	13.496	1	0	1	.009	1	0	1
472				-112.003		0	1	-276.74	4	0	1	205	4	0	1
473		9		1132.358		0	1	13.496	1	0	1	.011	1	0	1
474			min	-111.875	3	0	1	-276.888	4	0	1	237	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]				_	
475		10		1132.529	_1_	0	1	13.496	1	0	1	.012	1	0	1
476		4.4	min	-111.747	3	0	1	-277.036	4	0	1_	269	4	0	1
477		11		1132.699	1_	0	1_	13.496	1	0	1	.014	1	0	1
478		40		-111.619	3	0	1	-277.183	4	0	1	301	4	0	1
479		12		1132.869	1_	0	1	13.496	1	0	1	.015	1	0	1
480		10		-111.492	3	0	1_	-277.331	4	0	1	332	4	0	1
481		13	max	1133.04	_1_	0	1	13.496	1	0	1	.017	1	0	1
482				-111.364	3	0	1	-277.479	4	0	1	364	4	0	1
483		14		1133.21	_1_	0	1	13.496	1	0	1	.018	1	0	1
484			min	-111.236	3	0	1	-277.626	4	0	1	396	4	0	1
485		15	max	1133.38	_1_	0	1_	13.496	1_	0	<u>1</u>	.02	1	0	1
486			min	-111.108	3_	0	1_	-277.774	4	0	1_	428	4	0	1
487		16		1133.551	_1_	0	1_	13.496	1	0	1	.021	1	0	1
488				-110.981	3	0	1_	-277.921	4	0	1	46	4	0	1
489		17		1133.721	1_	0	1	13.496	1	0	1	.023	1	0	1
490				-110.853	3	0	1_	-278.069	4	0	1_	492	4	0	1
491		18		1133.891	_1_	0	_1_	13.496	1_	0	_1_	.025	1_	0	1
492				-110.725	3	0	1_	-278.217	4	0	1_	524	4	0	1
493		19		1134.062	_1_	0	_1_	13.496	1_	0	_1_	.026	1_	0	1
494			min	-110.597	3	0	1	-278.364	4	0	1_	556	4	0	1
495	M1	1	max	178.683	_1_	697.234	3	51.165	5	0	_1_	.219	1	0	15
496			min	-16.456	5	-448.857	1_	-78.259	1	0	3	113	5	015	2
497		2	max	179.395	_1_	696.088	3	52.625	5	0	1_	.171	1	.265	1
498			min	-16.123	5	-450.384	1	-78.259	1	0	3	081	5	435	3
499		3	max	490.769	3	534.673	1	13.667	5	0	3	.122	1	.534	1
500			min	-306.051	2	-517.234	3	-77.87	1	0	1	048	5	853	3
501		4	max	491.303	3	533.146	1	15.127	5	0	3	.074	1	.203	1
502			min	-305.339	2	-518.379	3	-77.87	1	0	1	039	5	532	3
503		5	max	491.837	3	531.619	1	16.587	5	0	3	.026	1	005	15
504			min	-304.627	2	-519.524	3	-77.87	1	0	1	029	5	21	3
505		6	max	492.371	3	530.092	1	18.048	5	0	3	001	12	.113	3
506			min	-303.915	2	-520.669	3	-77.87	1	0	1	023	4	478	2
507		7	max	492.905	3	528.565	1	19.508	5	0	3	004	12	.436	3
508			min	-303.203	2	-521.814	3	-77.87	1	0	1	071	1	804	2
509		8	max	493.439	3	527.038	1	20.968	5	0	3	.006	5	.76	3
510			min	-302.491	2	-522.96	3	-77.87	1	0	1	119	1	-1.129	2
511		9	max	507.33	3	43.382	2	59.321	5	0	9	.076	1	.889	3
512			min	-227.801	2	.458	15	-124.15	1	0	3	145	5	-1.29	2
513		10	max		3	41.855	2	60.781	5	0	9	0	10	.867	3
514				-227.089	2	006	5	-124.15	1	0	3	108	4	-1.317	2
515		11		508.398	3	40.328	2	62.241	5	0	9	005	12	.846	3
516				-226.377	2	-1.905	4	-124.15	1	0	3	086	4	-1.342	2
517		12		522.124	3	337.741	3	159.544	5	0	2	.117	1	.739	3
518				-151.638	2	-613.159	2	-75.051	1	0	3	251	5	-1.189	2
519		13		522.658	3	336.595	3	161.004	5	0	2	.07	1	.53	3
520				-150.926	2	-614.686	2	-75.051	1	Ö	3	152	5	808	2
521		14		523.192	3	335.45	3	162.465	5	0	2	.024	1	.321	3
522				-150.214	2	-616.213	2	-75.051	1	0	3	051	5	431	1
523		15		523.726	3	334.305	3	163.925	5	0	2	.05	5	.113	3
524		10		-149.502	2	-617.74	2	-75.051	1	0	3	023	1	072	1
525		16	max		3	333.16	3	165.385	5	0	2	.152	5	.34	2
526		10	min	-148.79	2	-619.267	2	-75.051	1	0	3	069	1	094	3
527		17		524.794	3	332.015	3	166.845	5	0	2	.255	5	.725	2
528		17		-148.078	2	-620.794	2	-75.051	1	0	3	116	1	3	3
529		18		27.665	5	603.151	2	-75.031	12	0		.225	5	.364	2
530		10	max	-179.902	<u> </u>	-257.435	3	-5.003 -116.991	4	0	<u>5</u> 2	.225 167	1	147	3
		10													
531		19	max	27.997	5	601.624	2	-5.003	12	0	5	.165	5	.013	3

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

500	Member	Sec		Axial[lb]						Torque[k-ft]					
532	N 4 C	4	min	-179.19	1_	-258.58	3	-115.531	4_	0	2	222	1	011	1
533	<u>M5</u>	1	max	396.255	1_	2314.732	3	94.433	5_	0	1	0	1	.03	2
534			min	13.918	12	-1541.392	1	0	_1_	0	4	235	4	0	15
535		2	max	396.967	_1_	2313.586	3	95.893	5_	0	_1_	0	1	.985	1
536			min	14.274	12	-1542.919	1	0	_1_	0	4_	177	4	-1.431	3
537		3	max	1537.612	3_	1505.639	1_	60.629	_4_	0	4_	0	1	1.91	1
538		_	min	-1016.712	2	-1573.845	3	0	_1_	0	1_	117	4	-2.824	3
539		4		1538.146	3_	1504.112	_1_	62.089	_4_	0	_4_	0	1_	.976	1
540			min	-1016	2	-1574.99	3	0	1_	0	1	079	4	-1.847	3
541		5	max	1538.68	3_	1502.585	_1_	63.55	4_	0	_4_	0	1_	.043	1
542			min	-1015.288	2	-1576.135	3	0	_1_	0	1_	04	4	869	3
543		6	max	1539.214	3	1501.058	_1_	65.01	_4_	0	_4_	0	1_	.11	3
544			min	-1014.576	2	-1577.28	3	0	1	0	1	0	5	935	2
545		7	max	1539.748	3	1499.532	1	66.47	4	0	4	.04	4	1.089	3
546			min	-1013.864	2	-1578.426	3	0	1	0	1	0	1	-1.853	2
547		8	max	1540.282	3	1498.005	1	67.93	4	0	4	.082	4	2.069	3
548			min	-1013.152	2	-1579.571	3	0	1	0	1	0	1	-2.771	2
549		9	max	1560.417	3	145.81	2	197.228	4	0	1	0	1	2.388	3
550				-855.655	2	.463	15	0	1	0	1	217	4	-3.163	2
551		10		1560.951	3	144.283	2	198.689	4	0	1	0	1	2.304	3
552		10		-854.943	2	.002	15	0	1	0	1	094	4	-3.253	2
553		11		1561.485	3	142.756	2	200.149	4	0	1	.03	4	2.222	3
554			min	-854.231	2	-1.657	6	0	1	0	1	0	1	-3.342	2
555		12		1581.949	3	994.065	3	221.75	4	0	1	0	1	1.946	3
556		12	min	-696.83	2	-1770.095	2	0	1	0	4	359	4	-2.985	2
557		13				992.92	3	223.21	4	0	1	0	1	1.329	3
		13	max		3	-1771.622									
558		4.4	min	-696.118	2		2	0	1_	0	4	221	4	-1.886	2
559		14		1583.017	3_	991.775	3	224.67	4_	0	1	0	1	.713	3
560				-695.406	2	-1773.149	2	0	_1_	0	4	082	4	812	1
561		15		1583.551	3_	990.63	3_	226.13	_4_	0	_1_	.058	4	.314	2
562			min	-694.694	2	-1774.676	2	0	_1_	0	4_	0	1	0	15
563		16		1584.085	3	989.485	3	227.59	4	0	1	.199	4	1.416	2
564			min	-693.982	2	-1776.203	2	0	<u>1</u>	0	4_	0	1	516	3
565		17	max	1584.619	3	988.339	3	229.051	4	0	1_	.341	4	2.519	2
566			min	-693.27	2	-1777.73	2	0	1	0	4	0	1	-1.13	3
567		18	max	-14.892	12	2047.063	2	0	1_	0	4	.35	4	1.29	2
568			min	-395.952	1_	-906.528	3	-28.468	5	0	1	0	1	589	3
569		19	max	-14.536	12	2045.537	2	0	1	0	4	.334	4	.023	1
570			min	-395.24	1	-907.674	3	-27.008	5	0	1	0	1	026	3
571	M9	1	max	178.683	1	697.234	3	78.873	4	0	3	014	12	0	15
572			min	0 4 = 0	12	-448.857	1	4.892	12	0	4	219	1	015	2
573		2	max		1	696.088	3	80.333	4	0	3	011	12	.265	1
574		_	min		12	-450.384	1	4.892	12	0	4	171	1	435	3
575		3		490.769	3	534.673	1	77.87	1	0	1	008	12	.534	1
576			min		2	-517.234	3	4.852	12	0	3	122	1	853	3
577		4	max		3	533.146	1	77.87	1	0	1	005	12	.203	1
578				-305.339	2	-518.379	3	4.852	12	0	3	074	1	532	3
579		5		491.837		531.619	1	77.87	1	0	1	002	12	005	
580		J		-304.627	<u>3</u> 2	-519.524	3	4.852	12	0	3	002	4	005 21	1 <u>5</u>
		_													
581		6		492.371	3	530.092	1	77.87	1	0	1	.023	1	.113	3
582		-		-303.915	2	-520.669	3	4.852	12	0	3	015	5	478	2
583		7		492.905	3_	528.565	1	77.87	1_	0	1_	.071	1	.436	3
584				-303.203	2	-521.814	3	4.852	12	0	3	.001	15	804	2
585		8		493.439	3_	527.038	1	77.87	_1_	0	1_	.119	1	.76	3
586		_	min	-302.491	2	-522.96	3	4.852	12	0	3	.007	12	-1.129	2
587		9	max		3	43.382	2	124.15	1_	0	3	004	12	.889	3
588			min	-227.801	2	.473	15	7.394	12	0	9	172	4	-1.29	2

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	507.864	3	41.855	2	124.15	1	0	3	.001	1	.867	3
590			min	-227.089	2	.012	15	7.394	12	0	9	108	4	-1.317	2
591		11	max	508.398	3	40.328	2	124.15	1	0	3	.078	1	.846	3
592			min	-226.377	2	-1.788	6	7.394	12	0	9	059	5	-1.342	2
593		12	max	522.124	3	337.741	3	188.174	4	0	3	007	12	.739	3
594			min	-151.638	2	-613.159	2	4.267	12	0	2	295	4	-1.189	2
595		13	max	522.658	3	336.595	3	189.634	4	0	3	004	12	.53	3
596			min	-150.926	2	-614.686	2	4.267	12	0	2	178	4	808	2
597		14	max	523.192	3	335.45	3	191.094	4	0	3	001	12	.321	3
598			min	-150.214	2	-616.213	2	4.267	12	0	2	06	4	431	1
599		15	max	523.726	3	334.305	3	192.554	4	0	3	.059	4	.113	3
600			min	-149.502	2	-617.74	2	4.267	12	0	2	.001	12	072	1
601		16	max	524.26	3	333.16	3	194.014	4	0	3	.179	4	.34	2
602			min	-148.79	2	-619.267	2	4.267	12	0	2	.004	12	094	3
603		17	max	524.794	3	332.015	3	195.475	4	0	3	.3	4	.725	2
604			min	-148.078	2	-620.794	2	4.267	12	0	2	.006	12	3	3
605		18	max	-8.526	12	603.151	2	87.901	1	0	2	.286	4	.364	2
606			min	-179.902	1	-257.435	3	-86.037	5	0	3	.009	12	147	3
607	·	19	max	-8.17	12	601.624	2	87.901	1	0	2	.245	4	.013	3
608			min	-179.19	1	-258.58	3	-84.577	5	0	3	.013	12	011	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	Ō	1	.196	2	.01	3	1.342e-2	2	NC	1	NC	1
2			min	792	4	041	3	005	2	-2.715e-3	3	NC	1	NC	1
3		2	max	0	1	.184	3	.03	1	1.472e-2	2	NC	5	NC	2
4			min	792	4	.003	15	018	5	-2.485e-3	3	933.074	3	7054.933	1
5		3	max	0	1	.367	3	.07	1	1.602e-2	2	NC	5	NC	3
6			min	792	4	022	1	023	5	-2.254e-3	3	514.651	3	3000.179	1
7		4	max	0	1	.479	3	.104	1	1.732e-2	2	NC	5	NC	3
8			min	792	4	069	1	018	5	-2.024e-3	3	403.353	3	2024.888	1
9		5	max	0	1	.508	3	.12	1	1.862e-2	2	NC	5	NC	3
10			min	793	4	063	1	006	5	-1.794e-3	3	382.124	3	1749.079	1
11		6	max	0	1	.455	3	.115	1	1.992e-2	2	NC	5	NC	3
12			min	793	4	014	9	.004	10	-1.564e-3	3	422.904	3	1836.502	1
13		7	max	0	1	.337	3	.088	1	2.123e-2	2	NC	4	NC	3
14			min	793	4	.003	15	0	10	-1.334e-3	3	554.924	3	2386.664	1
15		8	max	0	1	.232	2	.049	1	2.253e-2	2	NC	1	NC	2
16			min	793	4	.006	15	005	10	-1.104e-3	3	925.284	3	4325.722	1
17		9	max	0	1	.328	2	.03	3	2.383e-2	2	NC	4	NC	1
18			min	793	4	.009	15	012	2	-8.736e-4	3	1589.873	2	9233.429	4
19		10	max	0	1	.371	2	.029	3	2.513e-2	2	NC	5	NC	1
20			min	793	4	015	3	02	2	-6.434e-4	3	1201.064	2	NC	1
21		11	max	0	12	.328	2	.03	3	2.383e-2	2	NC	4	NC	1
22			min	793	4	.008	15	014	5	-8.736e-4	3	1589.873	2	NC	1
23		12	max	0	12	.232	2	.049	1	2.253e-2	2	NC	1	NC	2
24			min	793	4	.006	15	014	5	-1.104e-3	3	925.284	3	4325.722	1
25		13	max	0	12	.337	3	.088	1	2.123e-2	2	NC	4	NC	3
26			min	793	4	.003	15	005	5	-1.334e-3	3	554.924	3	2386.664	1
27		14	max	0	12	.455	3	.115	1	1.992e-2	2	NC	5	NC	3
28			min	793	4	014	9	.004	10	-1.564e-3	3	422.904	3	1836.502	1
29		15	max	0	12	.508	3	.12	1	1.862e-2	2	NC	5	NC	3
30			min	793	4	063	1	.006	10	-1.794e-3	3	382.124	3	1749.079	1
31		16	max	0	12	.479	3	.104	1	1.732e-2	2	NC	5	NC	3
32			min	793	4	069	1	.006	10	-2.024e-3	3	403.353	3	2024.888	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

35	22	Member	Sec 17	m 0 1	x [in]	LC	y [in]	LC 3	z [in]	LC 1			(n) L/y Ratio			
18			17													
37			1Ω													
19 max			10		_											
38			10													
M14			13													
40		M14	1			-								_		•
41		IVIIT				_										
Age			2													
43																
May May			3			_								•		
45			—			_										
A6			4											•		
48																
48			5							·		_				
49			 			-										-
50			6													
51			-			_										
Second Part			7													
53 8 max 0 1 1.046 3 .052 4 1.643e-2 2 9626.039 15 NC 2 55 9 max 0 1 .97 3 .035 4 1.786e-2 2 NC 15 NC 1 56 min 589 4 -1.429 2 011 2 1.388e-2 3 251658 2 5794.531 4 57 10 max 0 1 .933 3 .026 3 1.893e-2 2 NC 15 NC 1 58 min 589 4 -1.404 2 -0.018 2 -1.402e-2 3 259.461 2 NC 15 NC 1 59 11 max 0 12 1.046 3 .026 3 1.768e-2 2 NC 15 NC 1 60 min 5			-													
Section Sect			8													
55			—			_										
56			a													
57			Ť													
Second Color			10									_				
11 max			10			-										
60			11			_										•
61										_						
62			12													
63 13 max 0 12 1.117 3 .08 1 1.518e-2 2 9149.35 15 NC 3 64 min 589 4 -1.507 2 022 5 -1.181e-2 3 230.056 2 2638.326 1 65 14 max 0 12 1.149 3 .102 1 1.393e-2 2 9118.078 15 NC 3 66 min 589 4 -1.4499 2 002 5 -1.078e-2 3 231.53 1 2072.049 1 67 15 max 0 12 1.121 3 .104 1 1.268e-2 2 9734.714 15 NC 3 68 min 589 4 -1.303 2 .005 10 -9.74e-3 3 292.891 1 2453.681 1 71 max 0 12 </td <td></td> <td></td> <td>12</td> <td></td> <td>1</td>			12													1
64 min 589 4 -1.507 2 022 5 -1.181e-2 3 230.056 2 2638.326 1 65 14 max 0 12 1.149 3 .102 1 1.393e-2 2 9118.078 15 NC 3 66 min 589 4 -1.499 2 -002 5 -1.078e-2 3 231.53 1 2072.049 1 67 15 max 0 12 1.121 3 .104 1 1.268e-2 2 9734.714 15 NC 3 68 min 589 4 -1.433 2 .005 10 -9.744e-3 3 248.385 1 2029.491 1 69 16 max 0 12 1.022 3 .086 1 1.142e-2 2 NC 15 NC 2 70 min 589 4 <td></td> <td></td> <td>13</td> <td></td> <td>3</td>			13													3
65 14 max 0 12 1.149 3 .102 1 1.393e-2 2 9118.078 15 NC 3 66 min 589 4 -1.499 2 002 5 -1.078e-2 3 231.53 1 2072.049 1 67 15 max 0 12 1.121 3 .104 1 1.268e-2 2 9734.714 15 NC 3 68 min 589 4 -1.433 2 .005 10 9.744e-3 3 248.385 1 2029.491 1 69 16 max 0 12 1.022 3 .086 1 1.142e-2 2 NC 15 NC 3 70 min -5.89 4 -1.303 2 .004 10 -8.709e-3 3 292.891 1 2453.681 1 71 min -5.894 -4.6			10													
66			14													
67 15 max 0 12 1.121 3 .104 1 1.268e-2 2 9734.714 15 NC 3 68 min 589 4 -1.433 2 .005 10 -9.744e-3 3 248.385 1 2029.491 1 69 16 max 0 12 1.022 3 .086 1 1.142e-2 2 NC 15 NC 3 70 min 589 4 -1.303 2 .004 10 -8.709e-3 3 292.891 1 2453.681 1 71 min 589 4 -1.111 2 .002 10 -7.674e-3 3 401.054 1 3748.325 4 73 18 max 0 12 .626 3 .037 4 8.923e-3 2 NC 5 NC 1 74 min 589 4											-1 078e-2					
68 min 589 4 -1.433 2 .005 10 -9.744e-3 3 248.385 1 2029.491 1 69 16 max 0 12 1.022 3 .086 1 1.142e-2 2 NC 15 NC 3 70 min 589 4 -1.303 2 .004 10 -8.799e-3 3 292.891 1 2453.681 1 71 17 max 0 12 .853 3 .055 4 1.017e-2 2 NC 5 NC 2 72 min 589 4 -1.111 2 .002 10 -7.674e-3 3 401.054 1 3748.325 4 73 18 max 0 12 .626 3 .037 4 8.923e-3 2 NC 5 NC 1 74 min 589 4			15									_		•		
69 16 max 0 12 1.022 3 .086 1 1.142e-2 2 NC 15 NC 3 70 min 589 4 -1.303 2 .004 10 8.709e-3 3 292.891 1 2453.681 1 71 17 max 0 12 .853 3 .055 4 1.017e-2 2 NC 5 NC 2 72 min 589 4 -1.111 2 .002 10 -7.674e-3 3 401.054 1 3748.3255 4 73 min 589 4 867 2 001 10 -6.639e-3 3 757.244 1 5610.27 4 75 19 max 0 12 .366 3 .009 3 7.672e-3 2 NC 1 NC 1 76 min 589 4 -			1.0													
70 min 589 4 -1.303 2 .004 10 -8.709e-3 3 292.891 1 2453.681 1 71 17 max 0 12 .853 3 .055 4 1.017e-2 2 NC 5 NC 2 72 min 589 4 -1.111 2 .002 10 -7.674e-3 3 401.054 1 3748.325 4 73 18 max 0 12 .626 3 .037 4 8.923e-3 2 NC 5 NC 1 74 min 589 4 867 2 001 10 -6.639e-3 3 757.244 1 5610.27 4 75 19 max 0 12 .366 3 .009 3 7.672e-3 2 NC 1 NC 1 77 M15 1 max 0 <td></td> <td></td> <td>16</td> <td></td> <td>15</td> <td></td> <td>3</td>			16											15		3
71 max 0 12 .853 3 .055 4 1.017e-2 2 NC 5 NC 2 72 min 589 4 -1.111 2 .002 10 -7.674e-3 3 401.054 1 3748.325 4 73 18 max 0 12 .626 3 .037 4 8.923e-3 2 NC 5 NC 1 74 min 589 4 867 2 001 10 -6.639e-3 3 757.244 1 5610.27 4 75 19 max 0 12 .366 3 .009 3 7.674e-3 2 NC 1 NC 1 76 min 589 4 595 2 -0005 2 -5.604e-3 3 NC 1 NC 1 77 M15 1 max 0 12 <t< td=""><td></td><td></td><td> '</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			'													
72 min 589 4 -1.111 2 .002 10 -7.674e-3 3 401.054 1 3748.325 4 73 18 max 0 12 .626 3 .037 4 8.923e-3 2 NC 5 NC 1 74 min 589 4 867 2 001 10 -6.639e-3 3 757.244 1 5610.27 4 75 19 max 0 12 .366 3 .009 3 7.672e-3 2 NC 1 NC 1 76 min 589 4 595 2 005 2 -5.604e-3 3 NC 1 NC 1 77 M15 1 max 0 12 .375 3 .008 3 4.687e-3 3 NC 1 NC 1 79 2 max 0 <td< td=""><td></td><td></td><td>17</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td></td<>			17													2
73 18 max 0 12 .626 3 .037 4 8.923e-3 2 NC 5 NC 1 74 min 589 4 867 2 001 10 -6.639e-3 3 757.244 1 5610.27 4 75 19 max 0 12 .366 3 .009 3 7.672e-3 2 NC 1 NC 1 76 min 589 4 595 2 005 2 -5.604e-3 3 NC 1 NC 1 77 M15 1 max 0 12 .375 3 .008 3 4.687e-3 3 NC 1 NC 1 78 10 10 -475 4 593 2 004 2 -7.947e-3 2 NC 1 NC 1 79 2 max 0										10				1		
74 min 589 4 867 2 001 10 -6.639e-3 3 757.244 1 5610.27 4 75 19 max 0 12 .366 3 .009 3 7.672e-3 2 NC 1 NC 1 76 min 589 4 595 2 005 2 -5.604e-3 3 NC 1 NC 1 77 M15 1 max 0 12 .375 3 .008 3 4.687e-3 3 NC 1 NC 1 78 min 475 4 593 2 004 2 -7.947e-3 2 NC 1 NC 1 79 2 max 0 12 .556 3 .02 1 5.547e-3 3 NC 5 NC 1 80 min 475 4 921 <td></td> <td></td> <td>18</td> <td>max</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td>1</td>			18	max	0									5		1
75 19 max 0 12 .366 3 .009 3 7.672e-3 2 NC 1 NC 1 76 min 589 4 595 2 005 2 -5.604e-3 3 NC 1 NC 1 77 M15 1 max 0 12 .375 3 .008 3 4.687e-3 3 NC 1 NC 1 78 min 475 4 593 2 004 2 -7.947e-3 2 NC 1 NC 1 79 2 max 0 12 .556 3 .02 1 5.547e-3 3 NC 5 NC 1 80 min 475 4 921 2 039 5 -9.249e-3 2 641.836 2 5595.224 5 81 3 max 0 12																4
76 min 589 4 595 2 005 2 -5.604e-3 3 NC 1 NC 1 77 M15 1 max 0 12 .375 3 .008 3 4.687e-3 3 NC 1 NC 1 78 min 475 4 593 2 004 2 -7.947e-3 2 NC 1 NC 1 79 2 max 0 12 .556 3 .02 1 5.547e-3 3 NC 5 NC 1 80 min 475 4 921 2 039 5 -9.249e-3 2 641.836 2 5595.224 5 81 3 max 0 12 .719 3 .054 1 6.407e-3 3 NC 5 NC 2 82 min 475 4 -1.208 <td></td> <td></td> <td>19</td> <td></td> <td>1</td> <td></td> <td></td>			19											1		
77 M15 1 max 0 12 .375 3 .008 3 4.687e-3 3 NC 1 NC 1 78 min 475 4 593 2 004 2 -7.947e-3 2 NC 1 NC 1 79 2 max 0 12 .556 3 .02 1 5.547e-3 3 NC 5 NC 1 80 min 475 4 921 2 039 5 -9.249e-3 2 641.836 2 5595.224 5 81 3 max 0 12 .719 3 .054 1 6.407e-3 3 NC 5 NC 2 82 min 475 4 -1.208 2 049 5 -1.055e-2 2 341.826 2 3907.615 1 83 4 max 0 12					589									1		1
78 min 475 4 593 2 004 2 -7.947e-3 2 NC 1 NC 1 79 2 max 0 12 .556 3 .02 1 5.547e-3 3 NC 5 NC 1 80 min 475 4 921 2 039 5 -9.249e-3 2 641.836 2 5595.224 5 81 3 max 0 12 .719 3 .054 1 6.407e-3 3 NC 5 NC 2 82 min 475 4 -1.208 2 049 5 -1.055e-2 2 341.826 2 3907.615 1 83 4 max 0 12 .85 3 .087 1 7.267e-3 3 NC 15 NC 3 84 min 475 4 -1.427		M15	1							3		3		1		1
79 2 max 0 12 .556 3 .02 1 5.547e-3 3 NC 5 NC 1 80 min 475 4 921 2 039 5 -9.249e-3 2 641.836 2 5595.224 5 81 3 max 0 12 .719 3 .054 1 6.407e-3 3 NC 5 NC 2 82 min 475 4 -1.208 2 049 5 -1.055e-2 2 341.826 2 3907.615 1 83 4 max 0 12 .85 3 .087 1 7.267e-3 3 NC 15 NC 3 84 min 475 4 -1.427 2 036 5 -1.185e-2 2 251.95 2 2442.193 1 85 5 max 0 12					475					2				1		1
80 min 475 4 921 2 039 5 -9.249e-3 2 641.836 2 5595.224 5 81 3 max 0 12 .719 3 .054 1 6.407e-3 3 NC 5 NC 2 82 min 475 4 -1.208 2 049 5 -1.055e-2 2 341.826 2 3907.615 1 83 4 max 0 12 .85 3 .087 1 7.267e-3 3 NC 15 NC 3 84 min 475 4 -1.427 2 036 5 -1.185e-2 2 251.95 2 2442.193 1 85 5 max 0 12 .941 3 .105 1 8.127e-3 3 9754.375 15 NC 3 86 min 475 4			2			12		3		1		3		5		1
81 3 max 0 12 .719 3 .054 1 6.407e-3 3 NC 5 NC 2 82 min 475 4 -1.208 2 049 5 -1.055e-2 2 341.826 2 3907.615 1 83 4 max 0 12 .85 3 .087 1 7.267e-3 3 NC 15 NC 3 84 min 475 4 -1.427 2 036 5 -1.185e-2 2 251.95 2 2442.193 1 85 5 max 0 12 .941 3 .105 1 8.127e-3 3 9754.375 15 NC 3 86 min 475 4 -1.563 2 011 5 -1.316e-2 2 216.539 2 2020.426 1 87 6 max 0 12 .992 3 .103 1 8.988e-3 3 9138.682 15 NC				min	475	4			039	5		2	641.836	2	5595.224	5
82 min 475 4 -1.208 2 049 5 -1.055e-2 2 341.826 2 3907.615 1 83 4 max 0 12 .85 3 .087 1 7.267e-3 3 NC 15 NC 3 84 min 475 4 -1.427 2 036 5 -1.185e-2 2 251.95 2 2442.193 1 85 5 max 0 12 .941 3 .105 1 8.127e-3 3 9754.375 15 NC 3 86 min 475 4 -1.563 2 011 5 -1.316e-2 2 216.539 2 2020.426 1 87 6 max 0 12 .992 3 .103 1 8.988e-3 3 9138.682 15 NC 3 88 min 475 4			3			12										
83 4 max 0 12 .85 3 .087 1 7.267e-3 3 NC 15 NC 3 84 min 475 4 -1.427 2 036 5 -1.185e-2 2 251.95 2 2442.193 1 85 5 max 0 12 .941 3 .105 1 8.127e-3 3 9754.375 15 NC 3 86 min 475 4 -1.563 2 011 5 -1.316e-2 2 216.539 2 2020.426 1 87 6 max 0 12 .992 3 .103 1 8.988e-3 3 9138.682 15 NC 3 88 min 475 4 -1.615 2 .004 10 -1.446e-2 2 205.568 2 2061.87 1				min	475	4				5		2	341.826	2		1
84 min 475 4 -1.427 2 036 5 -1.185e-2 2 251.95 2 2442.193 1 85 5 max 0 12 .941 3 .105 1 8.127e-3 3 9754.375 15 NC 3 86 min 475 4 -1.563 2 011 5 -1.316e-2 2 216.539 2 2020.426 1 87 6 max 0 12 .992 3 .103 1 8.988e-3 3 9138.682 15 NC 3 88 min 475 4 -1.615 2 .004 10 -1.446e-2 2 205.568 2 2061.87 1			4													
85 5 max 0 12 .941 3 .105 1 8.127e-3 3 9754.375 15 NC 3 86 min 475 4 -1.563 2 011 5 -1.316e-2 2 216.539 2 2020.426 1 87 6 max 0 12 .992 3 .103 1 8.988e-3 3 9138.682 15 NC 3 88 min 475 4 -1.615 2 .004 10 -1.446e-2 2 205.568 2 2061.87 1																
86 min 475 4 -1.563 2 011 5 -1.316e-2 2 216.539 2 2020.426 1 87 6 max 0 12 .992 3 .103 1 8.988e-3 3 9138.682 15 NC 3 88 min 475 4 -1.615 2 .004 10 -1.446e-2 2 205.568 2 2061.87 1			5													
87 6 max 0 12 .992 3 .103 1 8.988e-3 3 9138.682 15 NC 3 88 min475 4 -1.615 2 .004 10 -1.446e-2 2 205.568 2 2061.87 1																
88 min475 4 -1.615 2 .004 10 -1.446e-2 2 205.568 2 2061.87 1			6							1						
	89		7	max		12	1.006	3	.081	1	9.848e-3	3	9172.895		NC	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	<u>z [in]</u>	LC x Rotate [r					
90			min	475	4	<u>-1.594</u>	2	0	10 -1.576e-2	2	209.957	2	2621.294	
91		8	max	0	12	.994	3	.063	4 1.071e-2	3	9654.355	<u>15</u>	NC 0000 040	2
92			min	475	4	<u>-1.524</u>	2	004	10 -1.706e-2	2	225.73	2	3268.618	
93		9	max	0	12	.97	3	.045	4 1.157e-2	3	NC 047.400	15	NC 400F coc	1
94		40	min	475	4	-1.443	2	<u>01</u>	2 -1.837e-2	2	247.169	2	4605.696	
95		10	max	0	1	.956	3	.024	3 1.243e-2	3	NC 250,500	<u>15</u>	NC NC	1
96		4.4	min	475	4	-1.402	2	017	2 -1.967e-2	2	259.589	2	NC NC	1
97		11	max	0	1	.97	3	.024	3 1.157e-2	3	NC 047.400	<u>15</u>	NC 5004 000	1
98		40	min	475	4	-1.443	2	037	5 -1.837e-2	2	247.169	2	5894.902	
99		12	max	0	1	.994	3	.046	1 1.071e-2	3	9654.28	<u>15</u>	NC	2
100		40	min	475	4	-1.524	2	044	5 -1.706e-2	2	225.73	2	4640.159	
101		13	max	0	1	1.006	3	.081	1 9.848e-3	3	9172.768	<u>15</u>	NC	3
102		4.4	min	475	4	<u>-1.594</u>	2	029	5 -1.576e-2	2	209.957	2	2621.294	
103		14	max	0	1	.992	3	.103	1 8.988e-3	3_	9138.497	15	NC	3
104		4.5	min	475	4	<u>-1.615</u>	2	003	5 -1.446e-2	2	205.568	2	2061.87	1
105		15	max	0	1	.941	3	.105	1 8.127e-3	3	9754.115	<u>15</u>	NC	3
106		40	min	475	4	<u>-1.563</u>	2	.006	10 -1.316e-2	2	216.539	2	2020.426	
107		16	max	0	1	.85	3	.087	1 7.267e-3	3	NC	<u>15</u>	NC	3
108			min	475	4	<u>-1.427</u>	2	.005	10 -1.185e-2	2	251.95	2	2442.193	
109		17	max	0	1	.719	3	.07	4 6.407e-3	3	NC	5_	NC 2074 504	2
110		4.0	min	475	4	-1.208	2	.002	10 -1.055e-2	2	341.826	2	2974.581	4
111		18	max	0	1	.556	3	.048	4 5.547e-3	3	NC	5	NC Too	1
112		10	min	475	4	921	2	001	10 -9.249e-3	2	641.836	2	4310.736	
113		19	max	0	1	.375	3	.008	3 4.687e-3	3	NC	1_	NC NC	1
114			min	475	4	593	2	004	2 -7.947e-3	2	NC	1_	NC	1
115	M16	1	max	0	12	.181	1	.007	3 8.797e-3	3	NC	1_	NC	1
116			min	14	4	<u>131</u>	3	004	2 -1.174e-2	_1_	NC	<u>1</u>	NC	1
117		2	max	0	12	.032	1	.03	1 9.895e-3	3	NC	5	NC	2
118			min	14	4	072	3	028	5 -1.271e-2	1_	1231.32	2	7135.816	
119		3	max	0	12	.002	13	.07	1 1.099e-2	3	NC	_5_	NC	3
120			min	14	4	128	2	036	5 -1.368e-2	1_	688.634	2	3015.252	
121		4	max	0	12	0	15	.104	1 1.209e-2	3	NC	5	NC	3
122		_	min	14	4	203	2	028	5 -1.466e-2	1_	553.932	2	2027.109	
123		5	max	0	12	0	15	.121	1 1.319e-2	3	NC	5	NC	3
124			min	14	4	205	2	012	5 -1.563e-2	_1_	549.657	2	1744.788	
125		6	max	0	12	.003	13	.116	1 1.429e-2	3	NC	5	NC	3
126			min	14	4	139	2	.004	15 -1.66e-2	1_	664.606	2	1823.73	1
127		7	max	0	12	.034	9	.09	1 1.538e-2	3	NC	3_	NC	3
128			min	14	4	125	3	.003	10 -1.757e-2	1_	1070.4	2	2351.211	1
129		8	max	0	12	.161	1	.051	1 1.648e-2	3	NC	_1_	NC	2
130			min		4	196	3	003	10 -1.854e-2		3206.619			
131		9	max	0	12	.278	1	.029	4 1.758e-2	3	NC	_4_	NC	1
132			min	14	4	258	3	008	2 -1.951e-2	_1_	1656.219	3	7139.911	4
133		10	max	0	1	.33	1	.021	3 1.868e-2	3_	NC	5_	NC	1
134			min	14	4	285	3	016	2 -2.049e-2	1_	1365.595	3	NC	1
135		11	max	0	1	.278	1	.021	3 1.758e-2	3	NC	4_	NC	1
136			min	14	4	258	3	021	5 -1.951e-2	<u>1</u>	1656.219	3	NC	1
137		12	max	0	1	.161	1	.051	1 1.648e-2	3_	NC	_1_	NC	2
138			min	14	4	196	3	022	5 -1.854e-2	1	3206.619	3	4171.317	
139		13	max	0	1	.034	9	.09	1 1.538e-2	3	NC	3	NC	3
140			min	14	4	125	3	01	5 -1.757e-2	1_	1070.4	2	2351.211	1
141		14	max	0	1	.003	13	.116	1 1.429e-2	3	NC	5	NC	3
142			min	14	4	139	2	.006	15 -1.66e-2	1	664.606	2	1823.73	1
143		15	max	0	1	0	15	.121	1 1.319e-2	3	NC	5	NC	3
144			min	14	4	205	2	.008	10 -1.563e-2	1	549.657	2	1744.788	
145		16	max	0	1	001	15	.104	1 1.209e-2	3	NC	5	NC	3
146			min	14	4	203	2	.007	10 -1.466e-2	1	553.932	2	2027.109	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
147		17	max	0	1	.001	13	.07	1	1.099e-2	3_	NC	5_	NC	3
148			min	14	4	128	2	.004	10	-1.368e-2	1	688.634	2	3015.252	1
149		18	max	0	1	.032	1	.04	4	9.895e-3	3	NC	5	NC	2
150			min	14	4	072	3	0	10	-1.271e-2	1	1231.32	2	5198.237	4
151		19	max	0	1	.181	1	.007	3	8.797e-3	3	NC	1_	NC	1
152			min	14	4	131	3	004	2	-1.174e-2	1	NC	1	NC	1
153	M2	1	max	.007	1	.008	2	.01	1	2.456e-3	5	NC	1	NC	2
154			min	009	3	014	3	743	4	-2.319e-4	1	8161.083	2	93.065	4
155		2	max	.007	1	.007	2	.009	1	2.486e-3	5	NC	1	NC	2
156			min	008	3	013	3	682	4	-2.189e-4	1	9539.056	2	101.366	4
157		3	max	.006	1	.006	2	.009	1	2.516e-3	5	NC	1	NC	2
158			min	008	3	013	3	621	4	-2.058e-4	1	NC	1	111.229	4
159		4	max	.006	1	.005	2	.008	1	2.546e-3	5	NC	1	NC	2
160			min	007	3	012	3	562	4	-1.928e-4	1	NC	1	123.064	4
161		5	max	.006	1	.004	2	.007	1	2.576e-3	5	NC	1	NC	1
162			min	007	3	012	3	503	4	-1.798e-4	1	NC	1	137.429	4
163		6	max	.005	1	.003	2	.006	1	2.606e-3	5	NC	1	NC	1
164			min	006	3	011	3	446	4	-1.668e-4	1	NC	1	155.094	4
165		7	max	.005	1	.002	2	.005	1	2.636e-3	5	NC	1	NC	1
166			min	006	3	011	3	39	4	-1.537e-4	1	NC	1	177.158	4
167		8	max	.004	1	0	2	.005	1	2.668e-3	4	NC	1	NC	1
168			min	005	3	01	3	337	4	-1.407e-4	1	NC	1	205.223	4
169		9	max	.004	1	0	2	.004	1	2.702e-3	4	NC	1	NC	1
170			min	005	3	01	3	286	4	-1.277e-4	1	NC	1	241.707	4
171		10	max	.004	1	0	15	.003	1	2.736e-3	4	NC	1	NC	1
172			min	004	3	009	3	238	4	-1.147e-4	1	NC	1	290.395	4
173		11	max	.003	1	0	15	.003	1	2.77e-3	4	NC	1	NC	1
174			min	004	3	008	3	193	4	-1.016e-4	1	NC	1	357.496	4
175		12	max	.003	1	0	15	.002	1	2.804e-3	4	NC	1	NC	1
176			min	003	3	008	3	152	4	-8.86e-5	1	NC	1	453.788	4
177		13	max	.002	1	0	15	.002	1	2.838e-3	4	NC	1	NC	1
178			min	003	3	007	3	115	4	-7.557e-5	1	NC	1	599.351	4
179		14	max	.002	1	0	15	.001	1	2.872e-3	4	NC	1	NC NC	1
180			min	002	3	006	3	083	4	-6.255e-5	1	NC	1	835.264	4
181		15	max	.002	1	0	15	0	1	2.906e-3	4	NC	1	NC	1
182		1.0	min	002	3	005	3	055	4	-4.952e-5	1	NC	1	1256.922	4
183		16	max	.001	1	0	15	0	1	2.939e-3	4	NC	1	NC	1
184		10	min	001	3	004	3	032	4	-3.649e-5	1	NC	1	2130.932	4
185		17	max	0	1	0	15	0	1	2.973e-3	4	NC	1	NC	1
186			min	0	3	003	3	015	4	-2.347e-5	1	NC	1	4463.681	4
187		18	max	0	1	0	15	0	1	3.007e-3	4	NC	1	NC	1
188		10	min	0	3	001	6	005	4	-1.044e-5		NC	1	NC	1
189		19	max	0	1	0	1	0	1	3.041e-3	4	NC	1	NC	1
190		10	min	0	1	0	1	0	1	-2.766e-7	3	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-5.581e-8		NC	1	NC	1
192	IVIO	+	min	0	1	0	1	0	1	-6.313e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.016	4	7.934e-5	4	NC	1	NC	1
194			min	0	2	003	6	0	3	1.467e-6	12	NC	1	NC	1
195		3	max	0	3	001	15	.032	4	7.9e-4	4	NC	1	NC	1
196			min	0	2	005	6	0	3	2.989e-6	12	NC	1	NC	1
197		4	max	.001	3	003	15	.047	4	1.501e-3	4	NC	1	NC	1
198		1	min	0	2	002 008	6	<u>.047</u>	12	4.512e-6	12	NC	1	8889.584	5
199		5		.002	3	008 002	15	.06	4	2.211e-3	4	NC	1	NC	1
200		J	max	002 001	2	002 011	6	<u>.06</u>	12	6.034e-6	12	8976.75	6	7563.226	5
		6	min							2.922e-3		NC			1
201		6	max	.002 002	3	003 014	15 6	<u>.073</u>	12		<u>4</u> 12	7232.85	6	NC 6964.658	_
		7	min							7.557e-6					
203		7	max	.002	3	004	15	.085	4	3.633e-3	4	NC	5	NC	_1_

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
204			min	002	2	017	6	0	12	9.079e-6		6184.735	6	6796.538	5
205		8	max	.003	3	004	15	.097	4	4.343e-3	4_	NC	5_	NC	1
206			min	002	2	018	6	0	12	1.06e-5	12	5537.84	6	6964.457	5
207		9	max	.003	3	004	15	.107	4	5.054e-3	4	NC	5	NC	1
208			min	003	2	02	6	0	12	1.212e-5		5153.677	6	7473.167	5
209		10	max	.004	3	005	15	.118	4	5.764e-3	4	NC	5	NC	1
210			min	003	2	021	6	0	12	1.365e-5	12	4964.867	6	8414.399	5
211		11	max	.004	3	005	15	.127	4	6.475e-3	4	NC	5_	NC	1
212			min	003	2	021	6	0	12	1.517e-5	12	4943.433	6	NC	1
213		12	max	.005	3	004	15	.137	4	7.186e-3	4	NC	5_	NC	1
214			min	004	2	02	6	0	12	1.669e-5	12	5090.053	6	NC	1
215		13	max	.005	3	004	15	.146	4	7.896e-3	4_	NC	5_	NC	1
216			min	004	2	019	6	0	12	1.821e-5	12	5435.677	6	NC	1
217		14	max	.005	3	004	15	.156	4	8.607e-3	4	NC	5	NC	1
218			min	004	2	017	6	0	12	1.974e-5	12	6057.735	6	NC	1
219		15	max	.006	3	003	15	.166	4	9.318e-3	4	NC	3	NC	1
220			min	005	2	014	6	0	12	2.126e-5	12	7128.493	6	NC	1
221		16	max	.006	3	002	15	.176	4	1.003e-2	4	NC	_1_	NC	1
222			min	005	2	011	6	0	12	2.278e-5	12	9065.655	6	NC	1
223		17	max	.007	3	001	15	.187	4	1.074e-2	4	NC	1	NC	1
224			min	005	2	008	1	0	12	2.43e-5	12	NC	1	NC	1
225		18	max	.007	3	0	15	.199	4	1.145e-2	4	NC	1	NC	1
226			min	006	2	005	1	0	12	2.583e-5	12	NC	1	NC	1
227		19	max	.007	3	0	5	.212	4	1.216e-2	4	NC	1_	NC	1
228			min	006	2	002	1	0	12	2.735e-5	12	NC	1	NC	1
229	M4	1	max	.003	1	.006	2	0	12	1.274e-4	1	NC	1	NC	3
230			min	0	3	008	3	212	4	-6.078e-4	5	NC	1	116.93	4
231		2	max	.003	1	.005	2	0	12	1.274e-4	1	NC	1	NC	3
232			min	0	3	007	3	195	4	-6.078e-4	5	NC	1	127.237	4
233		3	max	.002	1	.005	2	0	12	1.274e-4	1	NC	1	NC	3
234			min	0	3	007	3	178	4	-6.078e-4	5	NC	1	139.499	4
235		4	max	.002	1	.005	2	0	12	1.274e-4	1	NC	1	NC	3
236			min	0	3	006	3	161	4	-6.078e-4	5	NC	1	154.223	4
237		5	max	.002	1	.004	2	0	12	1.274e-4	1	NC	1	NC	3
238			min	0	3	006	3	144	4	-6.078e-4	5	NC	1	172.101	4
239		6	max	.002	1	.004	2	0	12	1.274e-4	1	NC	1	NC	2
240			min	0	3	005	3	128	4	-6.078e-4	5	NC	1	194.091	4
241		7	max	.002	1	.004	2	0	12	1.274e-4	1	NC	1	NC	2
242			min	0	3	005	3	112	4	-6.078e-4	5	NC	1	221.554	4
243		8	max	.002	1	.003	2	0	12	1.274e-4	1	NC	1	NC	2
244			min	0	3	005	3	097		-6.078e-4	5	NC	1	256.474	4
245		9	max	.002	1	.003	2	0	12		1	NC	1	NC	2
246			min	0	3	004	3	082	4	-6.078e-4	5	NC	1	301.837	4
247		10	max	.001	1	.003	2	0	12	1.274e-4	1	NC	1	NC	2
248			min	0	3	004	3	068	4	-6.078e-4	5	NC	1	362.313	4
249		11	max	.001	1	.002	2	0	12	1.274e-4	1	NC	1	NC	2
250			min	0	3	003	3	056	4	-6.078e-4	5	NC	1	445.542	4
251		12	max	.001	1	.002	2	0	12	1.274e-4	1	NC	1	NC	1
252		12	min	0	3	003	3	044	4	-6.078e-4	5	NC	1	564.739	4
253		13	max	0	1	.002	2	0	12	1.274e-4	1	NC	1	NC	1
254		10	min	0	3	003	3	033	4	-6.078e-4	5	NC	1	744.436	4
255		14	max	0	1	.002	2	<u>.000</u>	12	1.274e-4	1	NC	1	NC	1
256		17	min	0	3	002	3	024	4	-6.078e-4	5	NC	1	1034.544	_
257		15	max	0	1	.002	2	024	12	1.274e-4	<u> </u>	NC	1	NC	1
258		13	min	0	3	002	3	016	4	-6.078e-4	5	NC	1	1550.125	
259		16		0	1	<u>002</u> 0	2	<u>016</u> 0	12	1.274e-4	<u> </u>	NC NC	1	NC	1
260		10	max		3	001	3				5	NC NC	1	2609.288	_
200			min	0	J	001	J	01	4	-6.078e-4	ິ ວ	INC		2009.208	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
261		17	max	00	1	0	2	00	12	1.274e-4	_1_	NC	_1_	NC	1
262			min	0	3	0	3	005	4	-6.078e-4	5	NC	1_	5391.667	4
263		18	max	0	1	0	2	0	12	1.274e-4	_1_	NC	_1_	NC	1
264			min	0	3	0	3	001	4	-6.078e-4	5	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	1.274e-4	_1_	NC	_1_	NC	1
266			min	0	1	0	1	0	1	-6.078e-4	5	NC	1_	NC	1
267	<u>M6</u>	1	max	.022	1	.03	2	0	1	2.577e-3	4	NC	3	NC	1
268			min	028	3	042	3	75	4	0	1_	2275.603	2	92.098	4
269		2	max	.021	1	.028	2	0	1	2.605e-3	4	NC	3	NC	1
270		_	min	026	3	04	3	689	4	0	_1_	2496.673	2	100.312	4
271		3	max	.02	1	.025	2	0	1	2.632e-3	4	NC	3	NC	1
272			min	024	3	038	3	628	4	0	1	2763.155	2	110.074	4
273		4	max	.018	1	.022	2	0	1	2.659e-3	4_	NC	3	NC	1
274			min	023	3	035	3	<u>567</u>	4	0	1_	3087.944	2	121.788	4
275		5	max	.017	1	.02	2	0	1	2.686e-3	4	NC	3_	NC	1
276			min	021	3	033	3	508	4	0	1_	3489.01	2	136.004	4
277		6	max	.016	1	.017	2	0	1	2.714e-3	4	NC	3_	NC 450,400	1
278		-	min	02	3	031	3	<u>45</u>	4	0	1_	3992.009	2	153.488	4
279		7	max	.015	1	.015	2	0	1	2.741e-3	4_	NC	3_	NC 475.005	1
280			min	018	3	028	3	394	4	0 700- 0	1_	4634.607	2	175.325	4
281		8	max	.014	1	.013	2	0	1	2.768e-3	4	NC 5470,000	1_	NC 000 400	1
282		_	min	017	3	026	3	34	4	0 700- 0	1_1	5473.969	2	203.103	4
283		9	max	.012	1	.01	2	0	1	2.796e-3	4	NC CCOO 247	1_	NC 000 040	1
284		40	min	015	3	024	3	289	4	0	1_1	6600.347	2	239.213	4
285		10	max	.011	1	.008	2	0	1	2.823e-3	4	NC 0462.264	1	NC 207 402	1
286		4.4	min	014	3	021	3	24	4	0	1_1	8163.264	2	287.402	4
287		11	max	.01	1	.007	2	0	1	2.85e-3	4	NC NC	1_	NC 252.040	1
288		40	min	012	3	019	3	1 <u>95</u>	4	0	1_1	NC NC	1_	353.818	4
289		12	max	.009	1	.005	2	0	1	2.878e-3	<u>4</u> 1	NC NC	<u>1</u> 1	NC	1
290 291		13	min	011 .007	3	017 .004	2	<u>154</u> 0	1	2.905e-3	4	NC NC	1	449.126 NC	1
292		13	max	007	3	014	3	116	4	2.905e-3	1	NC NC	1	593.205	4
293		14	min	.006	1	.002	2	<u>116</u> 0	1	2.932e-3	4	NC NC	1	NC	1
294		14	max	008	3	012	3	084	4	0	1	NC NC	1	826.716	4
295		15		.005	1	.001	2	064 0	1	2.96e-3	4	NC	1	NC	1
296		15	max min	006	3	01	3	056	4	2.906-3	1	NC NC	1	1244.088	4
297		16	max	.004	1	0	2	<u>030</u> 0	1	2.987e-3	4	NC	1	NC	1
298		10	min	005	3	007	3	033	4	0	1	NC	1	2109.24	4
299		17	max	.002	1	<u>007</u> 0	2	033	1	3.014e-3	4	NC	1	NC	1
300		17	min	003	3	005	3	016	4	0	1	NC	1	4418.445	4
301		18	max	.001	1	<u>005</u> 0	2	0	1	3.042e-3		NC	1	NC	1
302		10	min	002	3	002	3	005	4	0.04200	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	3.069e-3	4	NC	1	NC	1
304		10	min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306			min	0	1	0	1	0	1	-6.369e-4	4	NC	1	NC	1
307		2	max	.001	3	0	15	.017	4	5.202e-5	4	NC	1	NC	1
308			min	001	2	004	3	0	1	0	1	NC	1	NC	1
309		3	max	.003	3	001	15	.032	4	7.41e-4	4	NC	1	NC	1
310		Ĭ	min	002	2	007	3	0	1	0	1	NC	1	NC	1
311		4	max	.004	3	002	15	.047	4	1.43e-3	4	NC	1	NC	1
312			min	004	2	01	3	0	1	0	1	NC	1	7859.191	4
313		5	max	.005	3	003	15	.061	4	2.119e-3	4	NC	1	NC	1
314			min	005	2	013	3	0	1	0	1	8475.34	3	6616.63	4
315		6	max	.006	3	003	15	.074	4	2.808e-3	4	NC	1	NC	1
316			min	006	2	016	3	0	1	0	1	7129.233	3	6017.203	_
317		7	max	.008	3	004	15	.086	4	3.497e-3	4	NC	1	NC	1
						_						_		_	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio			
318			min	007	2	018	3	0	1	0	<u>1</u>	6201.443	4	5783.714	
319		8	max	.009	3	004	15	.097	4	4.186e-3	4	NC	2	NC	1
320			min	008	2	<u>019</u>	3	0	1	0	1_	5551.685	4_	5816.863	
321		9	max	.01	3	005	15	.107	4	4.875e-3	4	NC	5	NC	1
322		40	min	009	2	02	4	0	1	0	_1_	5165.704	4_	6095.832	4
323		10	max	.011	3	005	15	.117	4	5.564e-3	4	NC	5_	NC	1
324		44	min	011	2	021	4	0	1	0	1_	4975.763	4_	6654.717	4
325		11	max	.013	3	005	15	.127	4	6.252e-3	4	NC	5_	NC 7500 450	1
326		40	min	012	2	021	4	0	1	0	1_	4953.706	4_	7592.159	
327		12	max	.014	3	005	15	.136	4	6.941e-3	4	NC F400 404	5	NC 0447.04	1
328		40	min	013	2	021	4	0	1	0	1_	5100.131	4_	9117.81	4
329		13	max	.015	3	005	15	.145	4	7.63e-3	4	NC F44F 000	5	NC NC	1
330		4.4	min	014	2	02	4	0	1	0	1_	5445.993	4_	NC NC	1
331		14	max	.016	3	004	15	.154	4	8.319e-3	4	NC	2	NC NC	1
332		4.5	min	015	2	018	4	0	1	0	1_1	6068.819	4_	NC NC	1
333		15	max	.018	3	004	15	.163	4	9.008e-3	4	NC	1_	NC NC	1
334		40	min	017	2	016	3	0	1	0	1_1	7141.141	4_	NC NC	1
335		16	max	.019	3	003	15	.172	4	9.697e-3	4	NC	1_	NC NC	1
336		47	min	018	2	013	3	0	1	0	1_1	9081.345	4_	NC NC	1
337		17	max	.02	3	002	15	.182	4	1.039e-2	4	NC NC	1	NC NC	1
338		40	min	019	2	011	3	0	1	0	1_1	NC NC	_	NC NC	•
339		18	max	.021	3	001	15	.192	4	1.108e-2	4	NC NC	1_1	NC NC	1
340		40	min	02	2	008	3	0	1	0	1_1	NC NC	1_	NC NC	1
341		19	max	.023	3	0	15	.204	4	1.176e-2	4	NC	1_	NC NC	1
342	MO	1	min	021	2	005	2	0	1	0	<u>1</u> 1	NC NC	1_1	NC NC	1
343	<u>M8</u>	1	max	.007	1	.02		0		7 0000 4	<u> </u>	NC NC	1_	NC	
344		2	min	001	3	023	3	204 0	1	-7.603e-4	4	NC NC	1_	121.526 NC	4
345			max	.007	3	.019	2		4	7 6020 4	1_1		1		1
346		3	min	0	1	022	3	188	1	-7.603e-4	<u>4</u> 1	NC NC	1	132.254 NC	1
347		3	max	.006 0	3	.018 021	3	<u>0</u> 171	4	-7.603e-4	4	NC NC	1	145.014	4
349		4	min	.006	1	.017	2	<u>171</u> 0	1	0	1	NC NC	1	NC	1
350		4	max	.006	3	017	3	155	4	-7.603e-4	4	NC NC	1	160.337	4
351		5		.006	1	.016	2	135 0	1	0	_ 4 _	NC NC	1	NC	1
352		5	max min	.000	3	018	3	139	4	-7.603e-4	4	NC	1	178.94	4
353		6	max	.005	1	.015	2	<u>139</u> 0	1	0	1	NC	1	NC	1
354		0	min	0	3	017	3	123	4	-7.603e-4	4	NC	1	201.823	4
355		7	max	.005	1	.014	2	0	1	0	1	NC	1	NC	1
356			min	0	3	015	3	108	4	-7.603e-4	4	NC	1	230.399	4
357		8	max	.004	1	.012	2	0	1	0	1	NC	1	NC	1
358			min		3	014	3	093		-7.603e-4		NC	1	266.734	
359		9	max	.004	1	.011	2	0	1	0	1	NC	1	NC	1
360			min	0	3	013	3	079	4	-7.603e-4	4	NC	1	313.936	4
361		10	max	.004	1	.01	2	0	1	0	1	NC	1	NC	1
362			min	0	3	012	3	066	4	-7.603e-4	4	NC	1	376.865	4
363		11	max	.003	1	.009	2	0	1	0	1	NC	<u> </u>	NC	1
364			min	0	3	01	3	054	4	-7.603e-4	4	NC	1	463.469	4
365		12	max	.003	1	.008	2	0	1	0	1	NC	1	NC	1
366			min	0	3	009	3	042	4	-7.603e-4	4	NC	1	587.504	4
367		13	max	.002	1	.007	2	0	1	0	1	NC	1	NC	1
368			min	0	3	008	3	032	4	-7.603e-4	4	NC	1	774.497	4
369		14	max	.002	1	.006	2	0	1	0	1	NC	1	NC	1
370			min	0	3	006	3	023	4	-7.603e-4	4	NC	1	1076.391	4
371		15	max	.002	1	.005	2	0	1	0	1	NC	1	NC	1
372			min	0	3	005	3	015	4	-7.603e-4	4	NC	1	1612.935	
373		16	max	.001	1	.003	2	0	1	0	1	NC	1	NC	1
374			min	0	3	004	3	009	4	-7.603e-4	4	NC	1	2715.208	
													_		

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

075	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
375		17	max	0	1	.002	2	0	1	7 000 - 4	1_	NC NC	1	NC 5040,007	1
376		10	min	0	3	003	3	004	4	-7.603e-4	4_	NC	1_	5610.997	4
377		18	max	0	1	.001	2	0	1	0	1_	NC	1	NC	1
378		1.0	min	0	3	001	3	001	4	-7.603e-4	4	NC	1_	NC	1
379		19	max	0	1	0	1	0	1	0	_1_	NC	1	NC	1
380		-	min	0	1	0	1	0	1	-7.603e-4	4_	NC	1_	NC	1
381	<u>M10</u>	1	max	.007	1	.008	2	0	12	2.562e-3	_4_	NC	1_	NC	2
382			min	009	3	014	3	748	4	1.541e-5		8161.083	2	92.344	4
383		2	max	.007	1	.007	2	0	12	2.588e-3	4	NC	1_	NC	2
384		_	min	008	3	013	3	687	4	1.456e-5	12	9539.056	2	100.581	4
385		3	max	.006	1	.006	2	0	12	2.615e-3	_4_	NC	_1_	NC	2
386			min	008	3	013	3	626	4	1.371e-5	12	NC	1	110.369	4
387		4	max	.006	1	.005	2	0	12	2.641e-3	4_	NC	_1_	NC	2
388			min	007	3	012	3	566	4	1.287e-5	12	NC	1_	122.114	4
389		5	max	.006	1	.004	2	0	12	2.668e-3	4	NC	1_	NC	1
390			min	007	3	012	3	507	4	1.202e-5	12	NC	1	136.369	4
391		6	max	.005	1	.003	2	0	12	2.694e-3	4	NC	1	NC	1
392			min	006	3	011	3	449	4	1.117e-5	12	NC	1_	153.901	4
393		7	max	.005	1	.002	2	0	12	2.721e-3	4	NC	1	NC	1
394			min	006	3	011	3	393	4	1.032e-5	12	NC	1	175.798	4
395		8	max	.004	1	0	2	0	12	2.747e-3	4	NC	1	NC	1
396			min	005	3	01	3	339	4	9.477e-6	12	NC	1	203.651	4
397		9	max	.004	1	0	2	0	12	2.774e-3	4	NC	1	NC	1
398			min	005	3	01	3	288	4	8.63e-6	12	NC	1	239.861	4
399		10	max	.004	1	0	2	0	12	2.801e-3	4	NC	1	NC	1
400			min	004	3	009	3	24	4	7.782e-6	12	NC	1	288.184	4
401		11	max	.003	1	001	2	0	12	2.827e-3	4	NC	1	NC	1
402			min	004	3	008	3	195	4	6.935e-6	12	NC	1	354.786	4
403		12	max	.003	1	002	2	0	12	2.854e-3	4	NC	1	NC	1
404		1 -	min	003	3	008	3	153	4	6.088e-6	12	NC	1	450.364	4
405		13	max	.002	1	002	15	0	12	2.88e-3	4	NC	1	NC	1
406		1.0	min	003	3	007	3	116	4	5.24e-6	12	NC	1	594.857	4
407		14	max	.002	1	002	15	0	12	2.907e-3	4	NC	1	NC	1
408		17	min	002	3	006	3	083	4	4.393e-6	12	NC	1	829.05	4
409		15	max	.002	1	001	15	<u>.000</u>	12	2.933e-3	4	NC	1	NC	1
410		15	min	002	3	005	4	055	4	3.546e-6	12	NC	1	1247.675	4
411		16	max	.002	1	00 <u>3</u> 001	15	<u>033 </u>	12	2.96e-3	4	NC	1	NC	1
412		10	min	001	3	004	4	033	4	2.699e-6	12	NC	1	2115.527	4
413		17		<u>001</u> 0	1	004 0	15	<u>033</u> 0	12	2.986e-3	4	NC	1	NC	1
414		17	max	0	3	003	4	016	4	1.851e-6	12	NC NC	1	4432.429	4
		10				003 0		<u>016</u> 0	_		4		1		4
415		18		0	3		15		12			NC NC	1	NC NC	1
416		10	min	<u> </u>	1	002	4	005	4	8.738e-7	<u>10</u>	NC NC	1	NC NC	1
417		19	max		1	0	1	0	1	3.039e-3	4_		1		1
418	N 4 4 4	4	min	0		0		0	1	-2.584e-6	1_1	NC NC		NC NC	
419	M11	1	max	0	1	<u>0</u> 	1	<u>0</u> 	1	2.14e-6	1_1	NC NC	<u>1</u> 1	NC NC	1
420		_	min	0						-6.3e-4	4_	NC NC		NC NC	-
421		2	max	0	3	0	15	.016	4	6.786e-5	5_4	NC NC	1	NC NC	1
422			min	0	2	003	4	0	1	-2.571e-5	1_	NC NC	1_	NC NC	1
423		3	max	0	3	001	15	.032	4	7.596e-4	4_	NC	1_	NC NC	1
424			min	0	2	006	4	0	1	-5.356e-5	1_	NC NC	1_	NC NC	1
425		4	max	.001	3	002	15	.047	4	1.454e-3	4_	NC	1	NC 0.407.570	1
426		-	min	0	2	009	4	0	1	-8.14e-5	1	NC	1_	8437.578	
427		5	max	.002	3	003	15	.06	4	2.149e-3	4_	NC	1	NC 7450.00	1
428			min	001	2	012	4	0	1	-1.093e-4	_1_	8617.02	4_	7153.39	4
429		6	max	.002	3	004	15	.073	4	2.844e-3	4_	NC	2	NC	1
430			min	002	2	01 <u>5</u>	4	0	1	-1.371e-4	_1_	6969.257	4_	6558.98	4
431		7	max	.002	3	004	15	.085	4	3.539e-3	4	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
432			min	002	2	018	4	0	1	-1.649e-4	1_	5977.503	4	6366.656	
433		8	max	.003	3	005	15	.096	4	4.233e-3	4	NC	5	NC	1
434			min	002	2	02	4	0	1	-1.928e-4	1_	5365.647	<u>4</u>	6480.249	
435		9	max	.003	3	005	15	.107	4	4.928e-3	4_	NC	5_	NC	1
436		40	min	003	2	021	4	001	1	-2.206e-4	1_	5003.769	4_	6893.352	4
437		10	max	.004	3	005	15	.117	4	5.623e-3	4	NC	<u>5</u>	NC 7674 679	4
438 439		11	min	003 .004	3	022 005	15	002 .126	4	-2.485e-4	<u>1</u> 4	4828.799 NC	_4 5	7671.678 NC	1
440		+	max	003	2	005 022	4	002	1	6.318e-3 -2.763e-4	1	4814.95	4	8980.985	
441		12	max	.005	3	022 005	15	.135	4	7.013e-3	4	NC	5	NC	1
442		12	min	004	2	005 021	4	003	1	-3.042e-4	1	4963.832	4	NC NC	1
443		13	max	.005	3	005	15	.145	4	7.707e-3	4	NC	5	NC	1
444		13	min	004	2	003	4	003	1	-3.32e-4	1	5306.33	4	NC	1
445		14	max	.005	3	005	15	.154	4	8.402e-3	4	NC	5	NC	1
446		17	min	004	2	018	4	004	1	-3.599e-4	1	5918.632	4	NC	1
447		15	max	.006	3	004	15	.163	4	9.097e-3	4	NC	3	NC	1
448			min	005	2	016	4	005	1	-3.877e-4	1	6969.645	4	NC	1
449		16	max	.006	3	003	15	.173	4	9.792e-3	4	NC	1	NC	1
450			min	005	2	013	4	006	1	-4.156e-4	1	8868.484	4	NC	1
451		17	max	.007	3	002	15	.183	4	1.049e-2	4	NC	1	NC	1
452			min	005	2	009	4	007	1	-4.434e-4	1	NC	1	NC	1
453		18	max	.007	3	002	15	.194	4	1.118e-2	4	NC	1	NC	1
454			min	006	2	005	4	008	1	-4.713e-4	1	NC	1	NC	1
455		19	max	.007	3	0	10	.207	4	1.188e-2	4	NC	1	NC	1
456			min	006	2	002	1	01	1	-4.991e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.006	2	.01	1	-7.524e-6	12	NC	1_	NC	3
458			min	0	3	008	3	207	4	-6.61e-4	4	NC	1_	120.002	4
459		2	max	.003	1	.005	2	.009	1	-7.524e-6	12	NC	1_	NC	3
460			min	0	3	007	3	19	4	-6.61e-4	4	NC	1_	130.585	4
461		3	max	.002	1	.005	2	.008	1	-7.524e-6	<u>12</u>	NC	_1_	NC_	3
462			min	0	3	007	3	173	4	-6.61e-4	4	NC	1_	143.175	4
463		4	max	.002	1	.005	2	.007	1	-7.524e-6	12	NC	1_	NC	3
464		-	min	0	3	006	3	1 <u>57</u>	4	-6.61e-4	4	NC	1_	158.293	4
465		5	max	.002	1	.004	2	.007	1	-7.524e-6	12	NC	1_	NC 470.040	3
466			min	0	3	006	3	14	4	-6.61e-4	4	NC NC	1_	176.649	4
467		6	max	.002	1	.004	2	.006	1	-7.524e-6	12	NC NC	1_	NC 400,000	2
468		7	min	0	3	005	2	124	4	-6.61e-4	4	NC NC	1	199.226	2
469			max	.002	3	.004	3	.005	1	-7.524e-6	12		1	NC 227,422	
470 471		8	min	.002	1	005 .003	2	109 .004	1	-6.61e-4 -7.524e-6	<u>4</u> 12	NC NC	1	NC	2
471		0	max min		3	005	3	094	4			NC NC	1	263.274	
473		9	max	.002	1	.003	2	.004	1	-7.524e-6		NC	1	NC	2
474		-	min	0	3	004	3	08	4	-6.61e-4	4	NC	1	309.848	4
475		10	max	.001	1	.003	2	.003	1	-7.524e-6	_	NC	1	NC	2
476		10	min	0	3	004	3	067	4	-6.61e-4	4	NC	1	371.939	4
477		11	max	.001	1	.002	2	.003	1	-7.524e-6	12	NC	1	NC	2
478			min	0	3	003	3	054	4	-6.61e-4	4	NC	1	457.39	4
479		12	max	.001	1	.002	2	.002	1	-7.524e-6		NC	1	NC	1
480			min	0	3	003	3	043	4	-6.61e-4	4	NC	1	579.771	4
481		13	max	0	1	.002	2	.002	1	-7.524e-6	12	NC	1	NC	1
482			min	0	3	003	3	032	4	-6.61e-4	4	NC	1	764.269	4
483		14	max	0	1	.002	2	.001	1	-7.524e-6	12	NC	1	NC	1
484			min	0	3	002	3	023	4	-6.61e-4	4	NC	1	1062.13	4
485		15	max	0	1	.001	2	0	1	-7.524e-6	12	NC	1	NC	1
486			min	0	3	002	3	016	4	-6.61e-4	4	NC	1	1591.496	4
487		16	max	0	1	0	2	0	1	-7.524e-6	12	NC	1	NC	1
488			min	0	3	001	3	009	4	-6.61e-4	4	NC	1	2678.991	4

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
489		17	max	0	1	0	2	0	1	-7.524e-6	12	NC	1_	NC	1
490			min	0	3	0	3	004	4	-6.61e-4	4	NC	1	5535.855	4
491		18	max	0	1	0	2	0	1	-7.524e-6	12	NC	1	NC	1
492			min	0	3	0	3	001	4	-6.61e-4	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1		12	NC	1	NC	1
494			min	0	1	0	1	0	1	-6.61e-4	4	NC	1	NC	1
495	M1	1	max	.01	3	.196	2	.793	4	1.066e-2	1	NC	1	NC	1
496			min	005	2	041	3	0	12	-2.001e-2	3	NC	1	NC	1
497		2	max	.003	3	.096	2	.768	4	8.877e-3	4	NC	5	NC	1
498			min	005	2	02	3	007	1	-9.932e-3	3	1348.411	2	NC	1
499		3		.01	3	.014	3	.742	4		4	NC	5	NC	1
		- 3	max							1.559e-2					_
500		-	min	005	2	012	2	01	1	-2.106e-4	1_	651.516	2	5595.762	5
501		4	max	.009	3	.069	3	.715	4	1.351e-2	4_	NC	<u>15</u>	NC	1
502		_	min	005	2	131	2	01	1	-4.322e-3	3	413.204	2	4033.131	5
503		5	max	.009	3	.139	3	.688	4	1.142e-2	_4_	NC	<u>15</u>	NC	1_
504			min	005	2	256	2	007	1	-8.54e-3	3	299.247	2	3240.782	5
505		6	max	.009	3	.214	3	.66	4	1.34e-2	_1_	7965.14	<u>15</u>	NC	1
506			min	005	2	376	2	003	1	-1.276e-2	3	236.287	2	2756.658	5
507		7	max	.009	3	.287	3	.631	4	1.793e-2	1	6722.516	15	NC	1
508			min	005	2	484	2	0	3	-1.698e-2	3	199.048	2	2411.456	4
509		8	max	.009	3	.347	3	.601	4	2.247e-2	1	5986.863	15	NC	1
510			min	005	2	569	2	0	12	-2.119e-2	3	176.993	2	2150.147	4
511		9	max	.008	3	.387	3	.57	4	2.478e-2	2	5601.865	15	NC	1
512		Ť	min	005	2	622	2	0	1	-2.156e-2	3	165.489	2	1974.655	4
513		10	max	.008	3	.401	3	.536	4	2.63e-2	2	5484.172	15	NC	1
514		10	min	005	2	64	2	0	12	-1.935e-2	3	162.104	2	1918.511	4
		11			3		3	_						NC	4
515		11	max	.008		.392		.499	4	2.781e-2	2	5601.613	<u>15</u>		1
516		40	min	004	2	622	2	0	12	-1.715e-2	3	166.013	2	1952.836	
517		12	max	.008	3	.359	3	.458	4	2.66e-2	2	5986.264	15	NC	1
518		10	min	004	2	<u>567</u>	2	001	1	-1.465e-2	3	178.548	2	2082.508	
519		13	max	.008	3	.306	3	.412	4	2.134e-2	2	6721.346	<u>15</u>	NC	1
520			min	004	2	478	2	0	1	-1.172e-2	3	202.748	2	2467.19	4
521		14	max	.007	3	.238	3	.361	4	1.608e-2	2	7962.99	15	NC	1
522			min	004	2	367	2	0	12	-8.792e-3	3	244.075	2	3334.483	4
523		15	max	.007	3	.162	3	.31	4	1.083e-2	2	NC	15	NC	1
524			min	004	2	245	2	0	12	-5.863e-3	3	315.051	2	5428.006	4
525		16	max	.007	3	.082	3	.259	4	9.729e-3	4	NC	15	NC	1
526			min	004	2	121	2	0	12	-2.934e-3	3	446.004	2	NC	1
527		17	max	.007	3	.005	3	.213	4	1.096e-2	4	NC	5	NC	1
528			min	004	2	006	2	0	12	-4.67e-6	3	719.453	1	NC	1
529		18	max	.007	3	.093	1	.173	4	7.661e-3	2	NC	5	NC	1
530		10	min	004	2	065	3	0	12		3	1511.796	1	NC	1
531		19	max	.007	3	.181	1	.14	4	1.524e-2	2	NC	1	NC	1
532		19	min	004	2	131	3	0	1	-5.345e-3	3	NC	1	NC	1
	N/E	4					2	•							
533	<u>M5</u>	1	max	.029	3	.371		.793	4	0 774 - 0	1_1	NC NC	1	NC NC	1
534			min	02	2	015	3	0	1	-9.771e-6	4	NC NC	1_	NC NC	1
535		2	max	.029	3	.181	2	.774	4	7.985e-3	4_	NC	5	NC Tools	1
536			min	02	2	006	3	0	1	0	_1_	717.195	2	7664.036	
537		3	max	.029	3	.043	3	.75	4	1.579e-2	4	NC	15	NC	1
538			min	02	2	035	2	0	1	0	1_	335.158	2	4507.31	4
539		4	max	.028	3	.163	3	.722	4	1.286e-2	4	7699.522	15	NC	1
540			min	02	2	297	2	0	1	0	1	203.59	2	3487.685	4
541		5	max	.028	3	.334	3	.692	4	9.94e-3	4	5358.678	15	NC	1
542			min	02	2	584	2	0	1	0	1	142.319	2	2993.771	4
543		6	max	.027	3	.529	3	.661	4	7.016e-3	4	4108.755	15	NC	1
544			min	019	2	87	2	0	1	0	1	109.435	2	2685.115	
545		7	max	.027	3	.721	3	.63	4	4.092e-3	4	3389.864	15	NC	1
UTU			mux	.021		4.1		.50		1.00200	т_	JUUJUUT	. 0	.,,	<u> </u>

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio LC		
546			min	019	2	-1.131	2	0	1	0	1_	90.445 2	2434.602	4
547		8	max	.026	3	.883	3	.6	4	1.169e-3	4_	2973.283 15		1
548			min	018	2	-1.34	2	0	1	0	1_	79.409 2	2183.258	4
549		9	max	.025	3	.987	3	.571	4	0	_1_	2759.929 15	NC	1
550			min	018	2	-1.473	2	0	1	-5.584e-6	5	73.748 2	1968.359	4
551		10	max	.025	3	1.026	3	.536	4	0	<u>1</u>	2695.634 15	NC	1
552			min	018	2	-1.518	2	0	1	-5.351e-6	5	72.09 2	1935.275	4
553		11	max	.024	3	1.001	3	.498	4	0	_1_	2760.057 15		1
554			min	017	2	-1.473	2	0	1	-5.119e-6	5	74.005 2	1981.814	4
555		12	max	.024	3	.914	3	.46	4	7.741e-4	4	2973.588 15		1
556			min	017	2	-1.336	2	0	1	0	1	80.251 2	2041.882	4
557		13	max	.023	3	.773	3	.413	4	2.712e-3	4	3390.482 15	NC	1
558			min	017	2	-1.116	2	0	1	0	1	92.636 2	2403.591	4
559		14	max	.022	3	.596	3	.361	4	4.65e-3	4	4109.957 15	NC	1
560			min	017	2	843	2	0	1	0	1	114.413 2	3407.794	4
561		15	max	.022	3	.399	3	.306	4	6.588e-3	4	5361.049 15	NC	1
562			min	016	2	55	2	0	1	0	1	153.169 1	6547.373	4
563		16	max	.021	3	.199	3	.252	4	8.526e-3	4	7704.491 15	NC	1
564			min	016	2	264	2	0	1	0	1	225.681 1	NC	1
565		17	max	.021	3	.014	3	.205	4	1.046e-2	4	NC 15	NC	1
566			min	016	2	018	2	0	1	0	1	386.055 1	NC	1
567		18	max	.021	3	.174	1	.167	4	5.293e-3	4	NC 5	NC	1
568			min	016	2	144	3	0	1	0	1	851.482 1	NC	1
569		19	max	.021	3	.33	1	.14	4	0	1	NC 1	NC	1
570			min	016	2	285	3	0	1	-5.315e-6	4	NC 1	NC	1
571	M9	1	max	.01	3	.196	2	.792	4	2.001e-2	3	NC 1	NC	1
572			min	005	2	041	3	0	1	-1.066e-2	1	NC 1	NC	1
573		2	max	.01	3	.096	2	.772	4	9.932e-3	3	NC 5	NC	1
574			min	005	2	02	3	0	12	-5.136e-3	1	1348.411 2	8332.382	4
575		3	max	.01	3	.014	3	.748	4	1.573e-2	4	NC 5	NC	1
576			min	005	2	012	2	0	12	-1.265e-5	10	651.516 2	4795.693	4
577		4	max	.009	3	.069	3	.721	4	1.236e-2	5	NC 15		1
578			min	005	2	131	2	0	12	-4.395e-3	2	413.204 2	3623.475	4
579		5	max	.009	3	.139	3	.692	4	9.331e-3	5	NC 15		1
580			min	005	2	256	2	0	12	-8.86e-3	1	299.247 2	3040.983	4
581		6	max	.009	3	.214	3	.661	4	1.276e-2	3	7930.781 15		1
582			min	005	2	376	2	0	12	-1.34e-2	1	236.287 2	2679.59	4
583		7	max	.009	3	.287	3	.631	4	1.698e-2	3	6694.383 15		1
584			min	005	2	484	2	0	1	-1.793e-2	1	199.048 2	2407.933	4
585		8	max	.009	3	.347	3	.601	4	2.119e-2	3	5962.331 15		1
586			min	005	2	569	2	0	1	-2.247e-2				4
587		9	max	.008	3	.387	3	.571	4	2.156e-2	3	5579.17 15		1
588			min	005	2	622	2	0	12	-2.478e-2	2	165.489 2	1968.482	4
589		10	max	.008	3	.401	3	.536	4	1.935e-2	3	5462.009 15		1
590			min	005	2	64	2	0	1	-2.63e-2	2	162.104 2	1919.486	
591		11	max	.008	3	.392	3	.498	4	1.715e-2	3	5578.899 15		1
592			min	004	2	622	2	0	1	-2.781e-2	2	166.013 2	1960.365	4
593		12	max	.008	3	.359	3	.459	4	1.465e-2	3	5961.817 15		1
594		1	min	004	2	567	2	0	12	-2.66e-2	2	178.548 2	2067.258	_
595		13	max	.004	3	.306	3	.412	4	1.172e-2	3	6693.601 15		1
596		'	min	004	2	478	2	0	10	-2.134e-2	2	202.748 2	2465.968	4
597		14	max	.007	3	.238	3	.36	4	8.792e-3	3	7929.622 15		1
598		17	min	004	2	367	2	002	1	-1.608e-2	2	244.075 2	3427.095	
599		15	max	.007	3	.162	3	.306	4	6.298e-3	5	NC 15		1
600		13	min	004	2	245	2	006	1	-1.083e-2	2	315.051 2	5951.53	5
601		16		.007	3	.082	3	.254	4	8.434e-3	5	NC 15		1
602		10	max		2		2		1			446.004 2	NC NC	1
002			min	004		121		009		-5.566e-3		440.004 2	INC	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
603		17	max	.007	3	.005	3	.207	4	1.062e-2	4	NC	5	NC	1
604			min	004	2	006	2	01	1	-6.342e-4	1	719.453	1	NC	1
605		18	max	.007	3	.093	1	.17	4	5.131e-3	5	NC	5	NC	1
606			min	004	2	065	3	007	1	-7.661e-3	2	1511.796	1	NC	1
607		19	max	.007	3	.181	1	.14	4	5.345e-3	3	NC	1	NC	1
608			min	004	2	131	3	0	12	-1.524e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/c$	$(d_a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}$				
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	
4.00	0.50	1.00	2500	7.87	

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	ωχ ψ (2)(11νε) 11νεο) 1 εα, ν 1 ε, ν 1 η, ν ν μ (333. Β. π. η, Β.3.2. η (3) α Ε η. Β Σ 1)						
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:			_		

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	1/5		
Project:	Standard PVMax - Worst Case, 21-31 Inch Width				
Address:					
Phone:					
E-mail:					

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Anchors subjected to sustained tension: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016					
Engineer:	HCV	Page:	2/5					
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-31 Inch Width						
Address:								
Phone:								
E-mail:								

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21-	-31 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2495.5	1558.5	0.0	1558.5
2	2495.5	1558.5	0.0	1558.5
Sum	4991.0	3117.0	0.0	3117.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4991

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

<i>k</i> _c	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_c)$	Nc / A Nco) $\Psi_{ec,N}$ Ψ_{ec}	$_{I,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b}$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324.00	1.000	0.972	1.00	1.000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f short-term	K _{sat}	τ _{k,cr} (psi)
1.00	1.00	1035
nef (Eq. D-16f)		
d _a (in)	h _{ef} (in)	N _{a0} (lb)
0.50	6.000	9755
	1.00 nef (Eq. D-16f) de (in)	1.00 1.00 nef (Eq. D-16f) d _a (in) h _{ef} (in)

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \varPsi_{ed,Na} \varPsi_{g,Na} \varPsi_{ec,Na} \varPsi_{\rho,Na} N_{a0} \left(\text{Sec. D.4.1 \& Eq. D-16b} \right)$

A_{Na} (in ²)	A_{Na0} (in ²)	$arPsi_{\sf ed,Na}$	$arPsi_{g,Na}$	$arPsi_{ec,Na}$	$arPsi_{p,Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)	
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093	

Company:	Schletter, Inc.	Date:	8/1/2016				
Engineer:	HCV	Page:	4/5				
Project:	Standard PVMax - Worst Case, 21-31 Inch Width						
Address:							
Phone:							
E-mail:							

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc / Avco) Yec, v Ye	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	$Av \infty$ (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
378.00	648.00	1.000	0.836	1.000	1.000	15593	0.70	5323

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (Ib)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cpg} = \phi \min |k_{cp} N_{ag} \; ; \; k_{cp} N_{cbg}| = \phi \min |k_{cp} (A_{Na} / A_{Nao}) \; \Psi_{ed,Na} \; \Psi_{g,Na} \; \Psi_{ec,Na} \; \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc} / A_{Nco}) \; \Psi_{ed,N} \; \Psi_{e,N} \; \Psi_{c,N} \;$

,			(,	-, 3,,	μ, ,μ (,	,,,	(-1)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A_{Nc} (in ²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2496	6071	0.41	Pass
Concrete breakout	4991	9208	0.54	Pass
Adhesive	4991	8093	0.62	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1559	3156	0.49	Pass
T Concrete breakout x+	3117	5323	0.59	Pass (Governs)

Company:	Schletter, Inc.	Date:	8/1/2016	
Engineer:	HCV	Page:	5/5	
Project:	Standard PVMax - Worst Case, 21-31 Inch Width			
Address:				
Phone:				
E-mail:				

Concrete break	out y- 1559	12241	0.	13	Pass (Governs)	
Pryout	3117	19833	0.	16	Pass	
Interaction check	Nua/φNn	Vua/ ϕ Vn	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.62	0.59	120.2 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.