

Multiples Testen -Graphische Prozeduren-

Dr. Martin Scharpenberg

MSc Medical Biometry/Biostatistics

WiSe 2019/2020

Idee: α -Recycling

Notation

- Nullhypothesen H_0^1, \ldots, H_0^h
- p_1, \ldots, p_h : elementare p-Werte
- $\alpha = (\alpha_1, \dots, \alpha_h)$: anfängliche Zuordnung des Niveaus $\alpha = \sum_{i=1}^h \alpha_i$

" α -Recycling"

- 1. Wenn eine Hypothese H_0^i verworfen wird, verteile ihr Niveau α_i auf andere noch nicht verworfene Hypothesen (einer bestimmten Regel folgend)
- 2. Teste mit den so erhaltenen Niveaus
- 3. Gehe zu Schritt 1 bis keine Hypothesen mehr verworfen werden können

Hierarchischer Test

Bonferroni-Holm-Test (k=2, α =0.025)

Einfaches paralleles Gatekeeping

Verbessertes paralleles Gatekeeping

Mehr Gewicht auf die primären Endpunkte

Definition der Prozedur

Allgemeine Defintion

- $\alpha = (\alpha_1, \dots, \alpha_h), \sum_{i=1}^h, \alpha_i = \alpha$, and an arrival since Niveaus
- $\mathbf{G} = (g_{ij}) : h \times h$ Transitions-Matrix g_{ij} mit $0 \le g_{ij} \le 1$, $g_{ii} = 0$ und $\sum_{j=1}^{h} g_{ij} = 1$ für alle $i = 1, \dots, h$.
- g_{ii} , Anteil des Niveaus für H_0^i das nach H_0^j geschoben wird
- G bestimmt den Graphen vollständig
- ullet G und lpha bestimmen den multiplen Test

Hierarchischer Test

$$m{lpha} = (lpha, 0, 0), \quad m{G} = \left(egin{array}{ccc} 0 & 1 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{array}
ight)$$

Fallback Procedure (Wiens, 2003)

$$m{lpha} = (lpha_1, lpha_2, lpha_3), \quad \mathbf{G} = \left(egin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}
ight)$$

Improved Fallback Procedure (Wiens & Dmitrienko, 2005)

$$\alpha = (\alpha_1, \alpha_2, \alpha_3), \quad \mathbf{G} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

Testprozedur

Definiere $J = \{1, \ldots, h\}$

- 1. Setze $j = \operatorname{argmin}_{i \in J} p_i / \alpha_i$
- 2. Wenn $p_j \leq \alpha_j$ verwerfe H_0^j und gehe zu 3. Ansonsten stoppe und akzeptiere alle H_0^i , $i \in J$.
- 3. Aktualisiere den Graphen:

Konvention: Wenn kein Pfeil von H_0^j nach H_0^l , dann $g_{il} = 0$.

4. Gehe zu Schritt 1.

Kontrolle der FWER

Satz.

Die Anfangsniveaus α , die Transitions-Matrix **G** und der Algorithmus definieren eindeutig eine multiple Testprozedur, die die FWER stark auf dem Niveau α kontrolliert.

Beweiskizze:

- Der Graph und der Algorithmus definieren einen lokal konsonanten verallgemeinerten Bonferroni- Abschluss-Test
- Der Algorithmus ist die Abkürzung des entsprechenden Abschlusstests

Paralleles Gatekeeping nach Dmitrienko et al. (2003)

$$oldsymbol{lpha} = \left(rac{lpha}{2}, rac{lpha}{2}, 0, 0
ight), \quad {f G} = \left(egin{array}{cccc} 0 & 0 & 0.5 & 0.5 \ 0 & 0 & 0.5 & 0.5 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{array}
ight)$$

$$m{lpha} = \left(rac{lpha}{2}, rac{lpha}{2}, 0, 0
ight), \quad m{G} = \left(egin{array}{cccc} 0 & 0 & 0.5 & 0.5 \ 0 & 0 & 0.5 & 0.5 \ \epsilon & 0 & 0 & 1 - \epsilon \ 0 & \epsilon & 1 - \epsilon & 0 \end{array}
ight)$$

$$m{lpha} = \left(rac{lpha}{2}, rac{lpha}{2}, 0, 0
ight), \quad m{G} = \left(egin{array}{cccc} 0 & 0 & 0.5 & 0.5 \ 0 & 0 & 0.5 & 0.5 \ \epsilon & 0 & 0 & 1 - \epsilon \ 0 & \epsilon & 1 - \epsilon & 0 \end{array}
ight)$$

$$m{lpha} = \left(rac{lpha}{2}, rac{lpha}{2}, 0, 0
ight), \quad m{G} = \left(egin{array}{cccc} 0 & 0 & 0.5 & 0.5 \ 0 & 0 & 0.5 & 0.5 \ \epsilon & 0 & 0 & 1 - \epsilon \ 0 & \epsilon & 1 - \epsilon & 0 \end{array}
ight)$$

$$m{lpha} = \left(rac{lpha}{2}, rac{lpha}{2}, 0, 0
ight), \quad {f G} = \left(egin{array}{cccc} 0 & 0 & 0.5 & 0.5 \ 0 & 0 & 0.5 & 0.5 \ \epsilon & 0 & 0 & 1 - \epsilon \ 0 & \epsilon & 1 - \epsilon & 0 \end{array}
ight)$$

$$m{lpha} = \left(rac{lpha}{2}, rac{lpha}{2}, 0, 0
ight), \quad m{G} = \left(egin{array}{cccc} 0 & 0 & 0.5 & 0.5 \ 0 & 0 & 0.5 & 0.5 \ \epsilon & 0 & 0 & 1 - \epsilon \ 0 & \epsilon & 1 - \epsilon & 0 \end{array}
ight)$$

Verbessertes paralleles Gatekeeping (Hommel, Bretz & Maurer, 2007)

$$m{lpha} = \left(rac{lpha}{2}, rac{lpha}{2}, 0, 0
ight), \quad m{G} = \left(egin{array}{cccc} 0 & 0 & 0.5 & 0.5 \ 0 & 0 & 0.5 & 0.5 \ \epsilon & 0 & 0 & 1 - \epsilon \ 0 & \epsilon & 1 - \epsilon & 0 \end{array}
ight)$$

Verbessertes paralleles Gatekeeping (Hommel, Bretz & Maurer, 2007)

$$m{lpha} = \left(rac{lpha}{2}, rac{lpha}{2}, 0, 0
ight), \quad m{G} = \left(egin{array}{cccc} 0 & 0 & 0.5 & 0.5 \ 0 & 0 & 0.5 & 0.5 \ \epsilon & 0 & 0 & 1 - \epsilon \ 0 & \epsilon & 1 - \epsilon & 0 \end{array}
ight)$$

Verbessertes paralleles Gatekeeping (Hommel, Bretz & Maurer, 2007)

$$m{lpha} = \left(rac{lpha}{2}, rac{lpha}{2}, 0, 0
ight), \quad m{G} = \left(egin{array}{cccc} 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0.5 & 0.5 \\ \epsilon & 0 & 0 & 1 - \epsilon \\ 0 & \epsilon & 1 - \epsilon & 0 \end{array}
ight)$$

Wann ist der Graph vollständig und kann nicht verbessert werden?

Ein hinreichende Bedingung für Vollständigkeit ist:

- die Gewichte aller ausgehenden Pfeile einer Hypothese summieren sich auf 1 und
- jede Hypotheses ist von jeder aus erreichbar.

Wenn $\alpha_i > 0$ für alle i = 1, ..., h, dann ist das auch eine notwendige Bedingung.

Teststrategie

- H_0^1, H_0^2 werden mit Bonferroni-Holm gestest
- H_0^3 wird nur dann (zum Niveau α) getestet, wenn H_0^1 und H_0^2 verworfen werden

$$oldsymbol{lpha} = \left(rac{lpha}{2}, rac{lpha}{2}, 0
ight), \quad \mathbf{G} = \left(egin{array}{ccc} 0 & 1-\epsilon & \epsilon \ 1-\epsilon & 0 & \epsilon \ 0 & 0 & 0 \end{array}
ight)$$

Wir lassen $\epsilon \to 0$.

Wir lassen $\epsilon \to 0$.

Wir lassen $\epsilon \to 0$.

Erinnerung: Verbesserte Fallback Procedure (Wiens, 2003)

$$m{lpha} = (lpha_1, lpha_2, lpha_3), \quad m{\mathsf{G}} = \left(egin{array}{ccc} 0 & 1 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{array}
ight)$$

Erinnerung: Verbesserte Fallback Procedure (Wiens & Dmitrienko, 2005)

$$m{lpha} = (lpha_1, lpha_2, lpha_3), \quad \mathbf{G} = \left(egin{array}{ccc} 0 & 1 & 0 \ 0 & 0 & 1 \ rac{1}{2} & rac{1}{2} & 0 \end{array}
ight)$$

Eine andere Verbesserung der Fallback Procedure

$$oldsymbol{lpha}=(lpha_1,lpha_2,lpha_3),\quad \mathbf{G}=\left(egin{array}{ccc}0&1&0\1-\epsilon&0&\epsilon\1&0&0\end{array}
ight)$$

Wenn $\epsilon \to 0$. dann . . .

Eine andere Verbesserung der Fallback Procedure

Übung: Überlegen Sie sich, dass diese und die vorige Prozedur identisch sind.

Literatur zu graphischen Prozeduren

F. Bretz, W. Maurer, W. Brannath, and M. Posch.

A graphical approach to sequentially rejective multiple test procedures.

Statistics in Medicine, 28:586-604, 2008.

F. Bretz, W. Maurer, and G. Hommel.

Test and power considerations for multiple endpoint analyses using sequentially rejective graphical procedures.

Statistics in Medicine, 30:1489-1501, 2011.

W. Maurer, E. Glimm, and F. Bretz.

Multiple and repeated testing of primary, coprimary, and secondary hypotheses.

Statistics in Biopharmceutical Research, 3(2): 336-352, 2011.

F. Bretz, M. Posch, E. Glimm, F. Klinglmueller, W. Maurer, and K. Rohmeyer.

Graphical approaches for multiple endpoint problems using weighted Bonferroni, Simes or parametric tests.

Biometrical Journal, 6:894-913, 2011

