Solutions to Past Preliminary Algebra Exams

Joseph McGuire

August 20, 2020

Spring 2018

1. Let G be a group and $a \in G$ be an element. Let $n \in \mathbb{N}$ be the smallest positive numbers such that $a^n = e$ is the identity element. Show that the set $\{e, a, a^2, ..., a^{n-1}\}$ contains no repetitions.

Proof. Assume G is a group and $a \in G$ and that $n \in \mathbb{N}$ is the smallest positive integer such that $a^n = e$, with e the identity element of G. Then for sake of contradiction, suppose that $\{e, a, a^2, ..., a^{n-1}\}$ contains at least one repeated element. That is there exists $m, k \in \{1, ..., n\}$ with $m \neq k$ such that $a^m = a^k$. Without loss of generality, assume that m > k. Then $(a^k)^{-1}a^m = e \implies a^{-k}a^m = e \implies a^{m-k} = e$. Note that $m, k \in \{1, ..., n\}$ and m - k > 0, so that $m - k \in \{1, ..., n\}$, but that m - k < n. So there's an integer less than n such that $a^{m-k} = e$, a contradiction of out hypothesis. Thus the set $\{e, a, ..., a^{n-1}\}$ contains no repeats.

2. Let G be a finite group and $H, K \subseteq G$ be normal subgroups of relatively prime order. Prove that G is isomorphic to a subgroup of $G/H \times G/K$.

Proof. Let G be a finite group with normal subgroups H,K such that $\gcd(|H|,|K|)=1$. Then consider the mapping from $G\to G/H\times G/K$, given by $\phi(g):g\mapsto (gH,gK)$. This is a homomorphism since $\phi(g\cdot m)=((g\cdot m)H,(g\cdot m)K)=(gH,gK)\cdot (mH,mK)=\phi(g)\phi(k)$. Then note that $\ker(\phi)=H\cap K$, however if $x\in H\cap K$, then |x| divides |H| and |x| divides |K|. However we know $\gcd(|H|,|K|)=1$, so that $|x|=1\implies x=e$, the identity of G. So that by the properties of homomorphism that ϕ is a 1-1 function onto it's range: $\{(gH,gK)\in G/H\times G/K:g\in G\}$. Both the kernel and the range are guarenteed to be subgroups of G and $G/H\times G/K$, respectively, because ϕ is a homomorphism. Thus $\{(gH,gK)\in G/H\times G/K:g\in G\}$

3. Prove that if $\phi: R \to S$ is a surjective ring homomorphism between commutative rings with unity, then $\phi(1_R) = 1_S$.

Proof. Let $\phi: R \to S$ be a surjective ring homomorphism between commutative rings with unity, R and S. Then for any $y \in S$, there's a $x \in R$ such that $\phi(x) = y$. So that $\phi(1_R \cdot x) = \phi(x)$ and $\phi(1_R \cdot x) = \phi(1_R) \cdot \phi(x)$. Hence, for any $y \in S$, $\phi(x) = \phi(1_R) \cdot \phi(x) \implies y = \phi(1_R)y \implies \phi(1_R) = 1_S$. \square

4. Let $V \subset \mathbb{R}^5$ be the subspace defined by the equation

$$x_1 - 2x_2 + 3x_3 - 4x_4 + 5x_5 = 0$$

4.1. Find with justification a basis of V.

Solution. First, note that we can write the defining equation of this subspace as: $x_1 = 2x_2 - 3x_3 + 4x_4 - 5x_5$. So then any vector in this subspace is given by:

$$(2x_2 - 3x_3 + 4x_4 - 5x_5, x_2, x_3, x_4, x_5) = x_2(2, 1, 0, 0, 0) + x_3(-3, 0, 1, 0, 0) + x_4(4, 0, 0, 1, 0) + x_5(-5, 0, 0, 0, 1)$$
$$= span((2, 1, 0, 0, 0), (-3, 0, 1, 0, 0), (4, 0, 0, 1, 0), (-5, 0, 0, 0, 1)).$$

We'll show that this is a spanning and linearly independent list of vectors: (2,1,0,0,0), (-3,0,1,0,0), (4,0,0,1,0), (-5,0,0). If v is in this subspace then x_1 must satisfy the defining equation. Hence any element in this subspace must be in the span of our list. For linearly independence we set a(2,1,0,0,0)+b(-3,0,1,0,0)+c(4,0,0,1,0)+d(-5,0,0,0,1)=(0,0,0,0,0). This implies a=b=c=d=0. Hence this list is linearly independent and spanning of the subspace and so is a basis of it.

4.2. Find with justification a basis for V^{\perp} , the subspace of \mathbb{R}^5 orthogonal to V under the usual dot product.

Solution. Note that $span(...)^{\perp} = ...^{\perp}$ for any list So that we'll find the orthogonal complement of our list: $(2,1,0,0,0) \cdot (a,b,c,d,e) = 0 \implies 2a+b=0, \ (-3,0,1,0,0) \cdot (a,b,c,d,e) = 0 \implies -3a+c=0, \ (4,0,0,1,0) \cdot (a,b,c,d,e) = 0 \implies 4a+d=-, \ (-5,0,0,0,1) \cdot (a,b,c,d,e) = 0 \implies -5a+e=0.$ This gives us the vector $(1,-2,3,-4,5) \implies V^{\perp} = span(1,-2,3,-4,5)$

5. Suppose that V is a finite-dimensional real vector space and $T:V\to V$ is a linear transformation. Prove that T has at most $\dim(\operatorname{range}(T))$ distinct nonzero eigenvalues.

Proof. Let V be a finite-dimensional real vector space, with dimension n, and $T:V\to V$ is a linear transformation. Suppose, for sake of contradiction, that there are at least n+1 distinct non-zero eigenvalues of T. Then there must be at least n+1 associated non-zero eigenvectors of T. Additionally, these are linearly independent vectors. However, by the Rank-Nullity theorem we have $n=\dim(\operatorname{null}(T))+\dim(\operatorname{range}(T))$. Furthermore, eigenvalues are by definition in the range of T. So we have $\dim(\operatorname{range}(T))\geq n+1$, a contradiction of the Rank-Nullity theorem. Thus there must be at most $\dim(\operatorname{range}(T))$ many distinct non-zero eigenvalues.

Spring 2017

- **6.** Let $V = \{a_0 + a_1\sqrt[3]{2} + a_2\sqrt[3]{4} : a_0, a_1, a_2 \in \mathbb{Q}\} \subseteq \mathbb{R}$. This set is a vector space over \mathbb{Q}
- **6.1.** Verify V is closed under product (using the usual product operation in \mathbb{R}).

Solution. Let $x = a_0 + a_1\sqrt[3]{2} + a_2\sqrt[3]{4}$ and $y = b_0 + b_1\sqrt[3]{2} + b_2\sqrt[3]{4}$, for $a_0, a_1, a_2, b_0, b_1, b_2 \in \mathbb{Q}$. And note that $\sqrt[3]{4} = (\sqrt[3]{2})^2$ Then $xy = (a_0 + a_1\sqrt[3]{2} + a_2\sqrt[3]{4})(b_0 + b_1\sqrt[3]{2} + b_2\sqrt[3]{2}) = a_0b_0 + a_0b_12^{1/3} + a_0b_24^{1/3} + a_1b_02^{1/3} + a_1b_14^{1/3} + a_1b_2 + a_2b_04^{1/3} + a_2b_12 + a_2b_22(2^{1/3})$. This obtained after a substantial amount of algebra. This has the form of elements of V, hence V is closed under the product operation.

6.2. Let $T: V \to V$ be the linear transformation defined by $T(v) = (\sqrt[3]{2} + \sqrt[3]{4})v$. Find the matrix representing T with respect to the basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ for V.

Solution. $T(1) = (\sqrt[3]{2} + \sqrt[3]{4}) = 0 + \sqrt[3]{2} + \sqrt[3]{4}$. $T(\sqrt[3]{2}) = 4 + 0 \cdot \sqrt[3]{2} + \sqrt[3]{4}$. $T(\sqrt[3]{4}) = 2 + 2(2^{1/3}) + 0 \cdot (4^{1/3})$. This will correspond to the matrix:

$$\begin{bmatrix} 0 & 2 & 2 \\ 1 & 0 & 2 \\ 1 & 1 & 0 \end{bmatrix}$$

6.3. Determine the characteristic polynomial for T.

Solution. Taking the determinant of the matrix $T - \lambda I_3$:

$$\det(T - \lambda I_3) = -\lambda(\lambda^2 - 2) - 1(-2\lambda - 2) + 1(4 + 2\lambda)$$
$$= -\lambda^3 + 2\lambda + 2\lambda + 2 + 4 + 2\lambda$$
$$= -\lambda^3 + 6\lambda + 6.$$

This is the characteristic polynomial of the matrix representation of T with the basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$.

7. Suppose F is a field and A is a $n \times n$ matrix over F. Suppose further that A posses distinct eigenvalues λ_1, λ_2 with $\dim(\text{Null}(A - \lambda_1 I_n)) = n - 1$. Prove A is diagonalizable.

Proof. Let F be a field and A an $n \times n$ over F. Suppose A has exactly two distinct eigenvalues λ_1, λ_2 with $\dim(\operatorname{Null}(A - \lambda_1 I_n)) = n - 1$. Note that this is the eigenspace of the eigenvalue λ_1 . So there are n-1 eigenvectors with the eigenvalue λ_1 that are a basis of $\operatorname{Null}(A - \lambda_1 I_n)$. Additionally λ_2 must have at least one eigenvector that is linearly independent from any of the eigenvectors in $\operatorname{Null}(A - \lambda_1 I_n)$. So we have a set of n linearly independent eigenvectors of A, hence this set is a basis of A. We can find a representation of A in terms of this basis, call it, $\{v_2, v_{1,1}, ..., v_{1,n-1}\}$, such that $Av_{1,i} = \lambda_1 v_{1,i}$ for all $i \in \{1, ..., n-1\}$ and $Av_2 = \lambda_2 v_2$. This will give us the matrix representation:

$$\begin{bmatrix} \lambda_2 & 0 & \dots & 0 \\ 0 & \lambda_1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_1 \end{bmatrix}$$

8.

8.1. Suppose N is a normal subgroup of a group G and $\pi_N : G \to G/N$ is the usual projection homomorphism, defined by $\pi_N(g) = gN$. Prove that if $\phi : G \to H$ is any homomorphism with $N \leq \ker(\phi)$, then there exists a unique homomorphism $\phi : G/N \to H$ such that $\phi = \psi \circ \pi_N$. (You must explicitly define ϕ , show it's well defined, show $\phi = \psi \circ \pi_N$, and show that ψ is uniquely determined.)

Proof. Let $\pi_N: G \to G/N$ be given by $\pi_N(g) = gN$ and take $\psi: G \to H$ to be any group homomorphism. Then let $\phi: G/N \to H$ be given by $\phi(gN) = \psi(g)$. So that $\phi(\pi_N(g)) = \phi(gN) = \psi(g)$ for any $g \in G$, so that $\phi \circ \pi_N = \psi$. We'll show that this is a well defined function and is uniquely determined. Let $(gN, y) \in \phi$ and $(gN, z) \in \phi$, then $\phi(gN) = \psi(g) = y$ and $\phi(gN) = \psi(g) = z$, and since ψ is well-defined, we have y = z, and thus ϕ is well-defined. Let $\psi = \phi_1 \circ \pi_N$ and $\psi = \phi_2 \circ \pi_N$. Then $\phi_2(\phi_N(g)) = \phi_2(gN) = \psi(g) = \psi_1(gN)$ for all $g \in G$ and hence $\psi_1 = \psi_2$ and ψ is uniquely determined.

8.2. Prove: Third Isomorphism Theorem: If $M, N \subseteq G$ with $N \subseteq M$, then $(G/N)/(M/N) \cong G/M$.

Proof. Let M,N be normal subgroups of G and N a subgroup of M. Then consider the homomorphism $\phi:gN\mapsto gM$, for $g\in G$, this is in fact a homomorphism between G/N and G/M, since $phi(gN\cdot hN)=\phi((gh)N)=(gh)M=gM\cdot hM=\phi(gN)\cdot \phi(hN)$. And well-defined: $(gN,gM),(gN,hM)\in \phi\Longrightarrow \phi(gN)=gM$ and $\phi(gN)=hM\Longrightarrow gM=hM$. Additionally, this homomorphism has a kernel of M/N and range of G/M. To show this $xN\in \ker(\phi)$, then $\phi(xN)=M$ and hence $x\in M$ and so $xN\in M/N$. Conversely, if $mN\in M/N$, then $\phi(mN)=mM=M$, and thus $\ker(\phi)=M/N$. For the range, take $gM\in G/M$, then this will correspond to $\phi(gN)=gM$, so that $G/M\subseteq \operatorname{range}(\phi)$. Clearly, $\operatorname{range}(\phi)\subseteq G/M$. So that $G/M=\operatorname{range}(\phi)$.

Finally, by the first isomorphism theorem we have that $(G/N)/(M/N) \cong G/M$.

9. Explicitly list all group homomorphisms $f: \mathbb{Z}_6 \to \mathbb{Z}_{12}$.

Solution. First, note the following: in $(\mathbb{Z}_6,+)$: |0|=1, |1|=6, |2|=3, |3|=2, |4|=3, |5|=6 and in $(\mathbb{Z}_{12},+)$: |0|=1, |1|=12, |2|=6, |3|=4, |4|=3, |5|=12, |6|=2, |7|=12, |8|=3, |9|=4, |10|=6, |11|=12. Additionally any homomorphism must satisfy $|x|=n, \Longrightarrow |\phi(x)||n$ and that $\ker(\phi)$ must be a subgroup of \mathbb{Z}_6 . The subgroups of \mathbb{Z}_6 are exactly: $\{0\}, \mathbb{Z}_6, 0, 2, 4, \{0, 3\}.$ So that for \mathbb{Z}_6 this is the null map: $\phi_0: x \to 0$ for all $x \in \mathbb{Z}_6$. For $\{0\}$, the possibilities are $\phi_1(0)=0, \phi_1(1)=2, 10, \phi_1(2)=2\phi_1(1), \phi_1(3)=3\phi_1(1), \phi_1(4)=4\phi_1(1), \phi_1(5)=5\phi_1(1),$ we can rule out $\phi_1(1)=10$, since we would have $\phi_1(5)=0$, so that $\phi_1(1)=2$. For $\{0,2,4\}$, we would have $\phi_2(0)=0, \phi_2(2)=0, \phi_2(4)=0$ with $\phi_2(1)=2or10, \phi_2(3)=\phi_2(2)+\phi_2(1)=\phi_2(1), \phi_2(5)=\phi_2(4)+\phi_2(1)=\phi_2(1),$ so that there are two homomorphisms here, one where $\phi_2(1)=2$ and the other $\phi_2(1)=10$. For $\{0,3\}$ we have $\phi_3(0)=0, \phi_3(3)=0$ and $\phi_3(1)=2or10, \phi_3(2)=2\phi_3(1), \phi_3(4)=4\phi_3(1), \phi_3(5)=\phi_3(3)+\phi_3(2)=2\phi_3(1).$ So that again we have two homomorphisms with $\phi_3(1)=2$ and $\phi_3(1)=10$.

So in total we have 6 homomorphisms between $(\mathbb{Z}_6,+) \to (\mathbb{Z}_{12},+)$.

10. Let $\epsilon : \mathbb{R}[x] \to \mathbb{C}$ be the ring homomorphism that is evaluation at i, so $\epsilon(f) = f(i)$. (Here i denotes the complex number sometimes denoted $\sqrt{-1}$.)

10.1. Prove that $\ker(\epsilon) = (x^2 + 1) \subseteq \mathbb{R}[x]$.

Proof. Consider $f(x) \in \ker(\epsilon)$, then f(i) = 0, so that i is a root of f, by the complex conjugate root theorem, -i is also a root of f. So that f can be factored as follows f(x) = (x - i)(x + i)q(x), for $q(x) \in \mathbb{R}[x]$, but this isn't in $\mathbb{R}[x]$. So that $f(x) = (x^2 + 1)q(x) \in (x^2 + 1)$. Hence $\ker(\epsilon) \subseteq (x^2 + 1)$. Conversely $f(x) \in (x^2 + 1)$, then $f(x) = (x^2 + 1)q(x)$ for $q(x) \in \mathbb{R}[x]$. Clearly $f(i) = 0q(x) = 0 \in \ker(\epsilon)$. So that $\ker(\epsilon) = (x^2 + 1) \subseteq \mathbb{R}[x]$.

10.2. Prove that $(x^2 + 1)$ is a maximal ideal in $\mathbb{R}[x]$.

Proof. Let J be an ideal in $\mathbb{R}[x]$ such that $(x^2 + 1) \subseteq J \subseteq \mathbb{R}[x]$. Note any ideal in $\mathbb{R}[x]$ is principal, so that there exists a minimal polynomial such that (p(x)) = J. So $(x^2 + 1) \subseteq (p(x)) \subseteq \mathbb{R}[x]$.

So there exists a $q(x) \in \mathbb{R}[x]$ such that $x^2 + 1 = q(x)p(x)$ with $\deg(p(x)) + \deg(q(x)) = 2 \implies \deg(p(x)) \le 2$. If $\deg(p(x)) = 0$, then $(p(x)) = \mathbb{R}[x]$. If $\deg(p(x)) = 1$, then p(x) = Ax + B for some $A, B \in \mathbb{R}$. So that $(Ax + B)(Cx + D) = x^2 + 1$ and $x^2 + 1$ has at least one real root $x = -\frac{B}{A}$, $A \ne 0$ since $\deg(p(x)) = 1$. This isn't possible since we know the only two roots of $x^2 + 1$ are -i, i. Finally, if $\deg(p(x)) = 2$, then $\deg(r(x)) = 0$ and r(x) = C for $C \in \mathbb{R}$. So that $C(Ax^2 + Bx + D) = (x^2 + 1)$. So

then we must have CD = 1, AC = 1 and CB = 0, since \mathbb{R} is an integral domain this means B = 0 and so we have $p(x) = x^2 + 1$.

Thus any ideal between $(x^2 + 1)$ and $\mathbb{R}[x]$ is either $\mathbb{R}[x]$ or $(x^2 + 1)$, hence $(x^2 + 1)$ is a maximal ideal in $\mathbb{R}[x]$.

Spring 2016

11. Without using Cauchy's Theorem or the Sylow Theorem, prove that every group of order 21 contains an element of order 3.

Proof. . First, we'll note that in any group of order n, with $a \in G$ and $k \in \mathbb{N}$, we have that $|< a^k>|=|< a^{\gcd(n,k)}>|$ giving us $|a^k|=|a^{\gcd(n,k)}|$ and that $|a^k|=\frac{n}{\gcd(n,k)}$ for any finite group. So that for n=21, we have $|a^7|=\frac{21}{\gcd(21,7)}=3$. So that for any $a \in G \setminus \{e\}$, $|a^7|=3$.

12. Suppose G is a group that contains normal subgroups $H, K \subseteq G$ with $H \cap K = \{e\}$ and HK = G. Prove that $G \cong H \times K$.

Proof. Let G be a group with normal subgroups H, K, such that $H \cap K = \{e\}$ and HK = G. We will show $H \times K \cong G$ by defining an function, showing it's well-defined on $H \times K$ to G, that it's a homomorphism and that it's bijective, and hence an isomorphism.

Define $\phi: H \times K \to G$ with the map $(h,k) \mapsto hk$. To show this is well-defined we'll show that this is defined on its domain and its range is contained in its codomain, and that if $((x,y),xy),((a,b),xy) \in \phi$, then (a,b)=(x,y). Any element in $H \times K$ is an ordered pair of the form (h,k) with $h \in H$ and $k \in K$, and since H,K are subgroups of G we have $hk \in G$. Then take $((x,y),xy),((a,b),xy) \in \phi$ so that $\phi(x,y)=xy=\phi(a,b)$. By the definition of ϕ and that $H \cap K=\{e\}$ we have that the representation xy is unique for $x \in H$ and $y \in Y$, so that a=x,y=b. Hence ((x,y),xy)=((a,b),xy). Thus ϕ is a well-defined map.

To show ϕ is a homomorphism, let $a, b \in G$ so that there exist $h_1, h_2 \in H$ and $k_1, k_2 \in K$ such that $a = h_1k_1$ and $b = h_2k_2$, and also remember that H and K are normal, so that for any $g \in G$ if $k \in K$ $(h \in H)$, then $gkg^{-1} \in K$ $(ghg^{-1} \in H)$, then consider the following:

$$\phi(ab) = \phi((h_1k_1)(h_2k_2))$$

= $\phi((h_1k_1h_2k_1^{-1})k_1k_2)$
= $\phi(h_1h_2(h_2^{-1}k_1h_2k_2))$

So we'll get:

$$(h_1k_1h_2k_1^{-1}, k_1k_2) = (h_1h_2, h_2^{-1}k_1h_2k_2)$$

$$\Longrightarrow$$

$$h_1k_1h_2k_1^{-1} = h_1h_2$$

$$k_1k_2 = h_2^{-1}k_1h_2k_2$$

$$\Longrightarrow$$

$$h_2k_1 = k_1h_2$$

So the middle terms commute and we get that:

$$\phi(ab) = \phi(h_1k_1h_2k_2)$$

$$= \phi(h_1h_2k_1k_2)$$

$$= (h_1h_2, k_1k_2)$$

$$= (h_1, k_1) \cdot (h_2, k_2)$$

$$= \phi(h_1k_1) \cdot \phi(h_2k_2)$$

$$= \phi(a) \cdot \phi(b)$$

Thus ϕ is a homomorphism.

Now we'll show it's a bijection. Let $\phi(x,y) = \phi(a,b)$, then xy = ab, for $x, a \in H$ and $y, b \in K$. If $x \neq a$ and $y \neq b$, then $a^{-1}x = by^{-1}$ but $H \cap K = \{e\}$ so that a = x and y = b, thus $\phi(a,b) = \phi(x,y) \Longrightarrow$

(a,b)=(x,y) and ϕ is injective into G. Let $g\in G$, so since G=HK there exists a $h\in H$ and $k\in K$ such that g=hk. Since $H\cap K=\{e\}$, this is a unique representation of g, so that $(h,k)\in H\times K$ and $\phi(h,k)=hk=g$ and $g\in \mathrm{range}(\phi)$ and $G=\mathrm{range}(\phi)$.

Thus ϕ is an isomorphism between $H \times K$ and G, so that $H \times K \cong G$.

13. Let R be a commutative ring.

13.1. Prove that the set N of all nilpotent elements of R is an ideal.

Proof. Let R be a commutative ring and N be the set of all nilpotent elements in R. We'll use the two-step ideal test to show N is an ideal in R.

Clearly $0^1 = 0$, so $N \neq \{\}$. Let $a, b \in N$, then there exists non-negative integers n, m such that $a^n = 0$ and $b^m = 0$, where 0 is the additive identity in R. Without loss of generality assume $m \geq n$, and note that for any $k \geq n$ $a^k = 0$ and any $k \geq m$, $b^k = 0$. Then since R is a commutative ring, we may use the binomial theorem for $(a+b)^{m+n+1}$:

$$\begin{split} (a+b)^{m+n+1} &= \sum_{k=0}^{m+n+1} a^k b^{m+n+1-k} \\ &= b^{m+n+1} + ab^{m+n} + \ldots + a^n b^{m-1} + a^{n+1} b^m + \ldots + a^{m+n-1} b + a^{m+n}. \end{split}$$

Each term has a power of $k \ge n$ or $k \ge m$ so that $a^k b^{m+n+1-k} = 0$ for all $k \in \{0, ..., m+n+1\}$. So that $(a+b)^{m+n+1} = 0$ and $a+b \in N$.

Now we'll show $-b \in N$. We have $b^m = 0$. Note then $b^m = ((-b)(-b))...((-b)(-b)) = 0$, with this occurring m-times, so that $(-b)^{2m} = 0$. Thus $-b \in N$.

So by the two-step subring test N is a subring of R.

13.2. Prove that R/N is a ring with no nonzero nilpotent elements.

Proof. Let R be a ring and N the subgroup of nilpotent elements in R.

First to show that R/N is a ring we'll show that N is an ideal in R.

Let $r \in R$ and $n \in N$ such that for some $m \in \mathbb{N}$ $n^m = 0$. Then $(rn)^m = (rn)...(rn)$, m-times, and since R is commutative, $(rn)^m = r^m n^m = r^m 0 = 0$. So $rn \in N$ for all $r \in R$. Thus R/N is a ring.

Now let $(r+N)^m=0+N$ for some $m\in\mathbb{N}$. Then $r^m+N=0+N$, hence $r^m\in N$ and r^m is nilpotent. If r^m is potent, that is there exists a $n\in\mathbb{N}$ such that $(r^m)^n=0=(r)^{mn}$ hence $r\in N$. Thus r+N=N and the only nilpotent element in R/N is N.

13.3. Show that N is contained in every prime ideal of R.

Proof. Let R be a ring with N the ideal of nilpotent elements in R, and P be any prime ideal of R. That is if $ab \in P$, then $a \in P$ or $b \in P$.

Let $n \in N$. Then there exists some $m \in \mathbb{N}$ such that $n^m = 0$. Since P is a subring of R, we have that $0 \in P$, hence $n^m \in P$. So P is prime, so that either $n^{m-1} \in P$ or $n \in P$. If it's $n \in P$, we're done. If it's $n^{m-1} \in P$, then either $n^{m-2} \in P$ or $n \in P$. If it's $n \in P$, we're done. If it's $n^{m-2} \in P$, then we repeat this process until we get to $n \in P$.

Hence $N \subseteq P$, for any prime ideal P in R.

14. Let $z \in \mathbb{C}$ be a complex number and let $\epsilon_z : \mathbb{R}[x] \to \mathbb{C}$ be the evaluation homomorphism given by $\epsilon_z(p(x)) = p(z)$ for each $p(x) \in \mathbb{R}[x]$.

14.1. Show that $\ker(\epsilon_z)$ is a prime ideal.

Proof. Let $z \in \mathbb{C}$ and $\epsilon_z : p(x) \mapsto p(z)$ for all $p(x) \in \mathbb{R}[x]$. Then since this is a homomorphism, $\ker(\epsilon_z)$ is in fact an ideal.

Furthermore, let $q(x)p(x) \in \ker(\epsilon_z)$, then $\epsilon_z(q(x)p(x)) = 0 \implies p(z)q(z) = 0$. Since \mathbb{C} is an integral domain, either p(z) = 0 or q(z) = 0, hence either $p(x) \in \ker(\epsilon_z)$ or $q(x) \in \ker(\epsilon_z)$. Thus $\ker(\epsilon_z)$ is a prime ideal in $\mathbb{R}[x]$.

14.2. Compute $\ker(\epsilon_{1+i}), \operatorname{im}(\epsilon_{1+i})$ and then state the conclusion of the First Isomorphism Theorem applied to the homomorphism ϵ_{1+i} .

Solution. $\epsilon_{1+i}(p(x)) = p(1+i)$. If $p(x) \in \ker(\epsilon_{1+i})$, then p(1+i) = 0. Note that since \mathbb{R} is a field, $\mathbb{R}[x]$ is a principal ideal domain, that is every ideal in $\mathbb{R}[x]$ is principle. So then $\ker(\epsilon_{1+i})$ is an ideal by (a), hence is generated by a minimal polynomial in $\mathbb{R}[x]$. Everything in $\ker(\epsilon_{1+i})$ has roots at x = 1+i and x = 1-i by the conjugate root theorem. So that the minimal polynomial of $\ker(\epsilon_{1+i})$ is $x^2 - 2x + 2$ and thus $x = 2x + 2 = \ker(\epsilon_{1+i})$.

For $\operatorname{im}(\epsilon_{1+i})$ we have that this is characterized by $\epsilon_{i+1}(p(x)) = p(1+i)$. I'll show that $\operatorname{im}(\epsilon_{1+i}) = \mathbb{C}$. We already have $\operatorname{im}(\epsilon_{1+i}) \subseteq \mathbb{C}$, so we'll show that $\mathbb{C} \subseteq \operatorname{im}(\epsilon_{1+i})$. Take $z \in \mathbb{C}$, so that z = a + bi for some $a, b \in \mathbb{R}$. Then consider the polynomial in $\mathbb{R}[x]$, p(x) = bx + (a - b), so that $\epsilon_{1+i}(p(x)) = b(1+i) + a - b = a + bi$. Hence $\mathbb{C} \subseteq \operatorname{im}(\epsilon_{1+i})$. Thus $\mathbb{C} = \operatorname{im}(\epsilon_{1+i})$.

By the first isomorphism theorem for rings, this gives us that $\mathbb{R}[x]/\langle x^2-2x+x\rangle\cong\mathbb{C}$, with $\phi:\mathbb{R}[x]/\langle x^2-2x+x\rangle\to\mathbb{C}$ given by $\phi(p(x)+\langle x^2-2x+x\rangle)=\epsilon_{1+i}(p(x))=p(1+i)$ being an isomorphism between $\mathbb{R}[x]/\langle x^2-2x+x\rangle$ and \mathbb{C} .

- **15.** Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation that expands radially by a factor of 3 around the parameterized by $L(t) = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$ t, leaving the line itself fixed (viewed as a subspace).
- **15.1.** Find an eigenbasis for T and provide the matrix representation of T with respect to that basis.

Proof. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation that expands radially by a factor of 3 around the parameterized line given by $L(t) = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} t$, leaving the line itself fixed (viewed as a subspace).

So to find the eigenvalues of this operator, note that $T(2,2,-1)^T=(2,2,-1)$ hence $\lambda_1=1$ with $(2,2,-1)^T$ is an eigenpair for T. To find the other values, note that on it's perpendicular to this line T will scale the vector perpendicular to the line by 3, so that we'll find the orthogonal complement of the line L(t) described above.

Note $L(t)^{\perp} = \text{span}\{(2,2,-1)^T\}^{\perp} = \{(2,2,-1)^T\}^{\perp}$ giving us the equation:

$$<(x, y, z)^T, (2, 2, -1)^T> = 0$$

 $2x + 2y - z = 0$

for $x, y, z \in \mathbb{R}$. So that a basis of the orthogonal complement is given by: span $\{(1,0,2)^T, (0,1,2)^T\}$. Hence we have $T(1,0,2)^T = 3(1,0,2)^T$ and $T(0,1,2)^T = 3(0,1,2)^T$ our final eigenpairs. We know that $(2,2,-1)^T$ is linearly independent to both $(1,0,2)^T$ and $(0,1,2)^T$ since they have distinct eigenvalues, so we'll just have to check that the two for $\lambda = 3$ are linearly independent to each other.

$$a(1,0,2)^T + b(0,1,2)^T = (0,0,0)^T$$

 $a = 0$
 $b = 0$

so they are linearly independent in \mathbb{R}^3 so that the set $\{(2,2,-1)^T,(1,0,2)^T,(0,1,2)^T\}$ are an eigenbasis

of T, with matrix representation: $T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

15.2. Provide the matrix representation of T with respect to the standard basis.

Solution.
$$T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 so that $T(1,0,0)^T = (1,0,0)^T = a(1,0,2)^T + b(0,1,2)^T + c(2,2,-1)^T$.

$$a+2c=1$$

$$b+2c=0$$

$$2a+2b-c=0$$

this gives us a = -3, b = -4, c = 2. Repeating this process above for $(0, 1, 0)^T, (0, 0, 1)^T$ we get the following representation of T with respect to the standard ordered basis: $T = \begin{bmatrix} -3 & -4 & 2 \\ -4 & 5 & 2 \\ 2 & 2 & -1 \end{bmatrix}$.

Spring 2015

16. Let G and H be groups of order 10 and 15, respectively. Prove that if there exists a nontrivial homomorphism $\phi: G \to H$, then G is abelian.

Proof. Let G and H be groups with orders |G|=10 and |H|=15. Suppose there's a nontrivial homomorphism $\phi:G\to H$.

Then note that $|\phi(G)|$ divides both |G| and |H|, so that $|\phi(G)| = 5$, since ϕ is non-trivial. Additionally by the first isomorphism theorem we have $G/\ker(\phi) \cong \phi(G)$ so that $|G|/|\ker(\phi)| = 5$, hence $|\ker(\phi)| = 2$. So there exists a $g' \in G \setminus \{e\}$ such that $g' \in \ker(\phi)$ and that $(g')^2 = e$. So that for any $g \in G$ we have $g = eg = (g')^2g \implies g'g = gg'$, hence the center of G, $Z(G) \neq \{e\}$. Moreover $|\phi(Z(G))|$ divides both $|\phi(G)|$ so $|\phi(Z(G))| = 1$ or 5. If $|\phi(Z(G))| = 1$, then |Z(G)| = 2 and we have that $Z(G) = \ker(\phi)$. So then |G/Z(G)| = 5, and G/Z(G) is cyclic. Thus G is abelian, since if G/Z(G) is cyclic, then G is abelian for finite groups. But $Z(G) \neq G$, a contradiction.

Alternatively, if $|\phi(Z(G))| = 5$, then |g'| = 2 and $|\phi(Z(G))| = 5$ divide |Z(G)| hence |Z(G)| = 10 and Z(G) = G, and G is abelian.

- 17. Let G be an abelian group and G_T be the set of elements of finite order in G
- **17.1.** Prove that G_T is a subgroup of G.

Proof. Let G be an abelian group and G_T be the set of elements of finite order.

Let $a, b \in G_T$. Then there exists $m, n \in \mathbb{N}$ such that $a^m = e = b^n$. Without loss of generality assume m > n. So that $(ab)^{mn} = (ab)...(ab)$, mn-times, since G is abelian we may rearrange these so that we have: $a^{mn}b^{mn} = (a^m)^n(b^n)^m = e^ne^m = e$. Hence $ab \in G_T$.

Let $a \in G_T$, so that there's a $n \in \mathbb{N}$ such that $a^n = e$. $a^{-1} \in G$ so that a...a = e (n - times) implies $a...aa^{-1} = a^{-1} \implies a^{n-1} = a^{-1} \implies e = a^{-n} = (a^{-1})^n = e$. Hence $a^{-1} \in G_T$, whenever $a \in G_T$. Thus G_T is a subgroup of G.

17.2. Prove that every non-identity element of G/G_T has infinite order.

Proof. Let G be an abelian group and G_T be the subgroup of finite order in G.

Let $gG_T \in G/G_T$ be any non-identity element; that is $g \notin G_T$. For sake of contradiction, suppose that gG_T has a finite order, say $|gG_T| = n$. So that $(gG_T)^n = G_T \implies g^nG_T = G_T$. But we assumed that $g^n \notin G_T$, but we have that $g^n \in G_T$, so that for some $m \in \mathbb{N}$, $(g^n)^m = e$, a contradiction of $g \notin G_T$. Thus every non-identity element in G/G_T has infinite order.

17.3. Characterize the elements of G_T when $G = \mathbb{R}/\mathbb{Z}$ where \mathbb{R} is the additive group of real numbers.

Solution. Note that $r\mathbb{Z} \in \mathbb{R}/\mathbb{Z}$ whenever $r \in \mathbb{R}$. For g to be in G_T when $G = \mathbb{R}/\mathbb{Z}$ we need to have some $m \in \mathbb{N}$ such that $(r\mathbb{Z})^m = \mathbb{Z}$. That is: $r^m\mathbb{Z} = \mathbb{Z}$. So this is the set of real numbers $r \in \mathbb{R}$ such that for some $m \in \mathbb{N}$ we have $r^m \in \mathbb{Z}$, in set builder notation: $G_T = \{r \in \mathbb{R} : \text{for some } n \in \mathbb{N}, r^nz, \text{ where } z \in \mathbb{Z}\}$. In plain language this is the set of all real elements that are the n^{th} roots of the positive integers. With the negative integers this extends into \mathbb{C} . This will include all non-negative real numbers, but that's another proof.

18.

18.1. Suppose I and J are ideals in a commutative ring with unity R such that R = I + J. Prove that the map $f: R \mapsto R/I \times R/J$ given by f(x) = (x + I, x + J) induces the isomorphism

$$R/IJ \cong R/I \times R/J$$

Proof. Let I and J be ideals within a commutative ring with unity R such that R = I + J. Define the map $f: R \mapsto R/I \times R/J$ given by f(x) = (x + I, x + J) for all $x \in R$.

We'll show that this is ring homomorphism, that is it preserves order of additive and multiplicative operations of R, $\ker(f) = IJ$ and that $f(R) = R/I \times R/J$.

For ring homomorphism consider the following, let $x, y \in R$:

$$f(x+y) = ((x+y) + I, (x+y) + J)$$

$$= (x+I+y+I, x+J+y+J)$$

$$= (x+I, x+J) + (y+I, y+J)$$

$$f(xy) = ((xy) + I, (xy) + J)$$

$$= (x+I, x+J) \cdot (y+I, y+J).$$

thus f is a ring homomorphism between R and $R/I \times R/J$. We'll show $\ker(f) = IJ$. Let $x \in \ker(f)$, then (x+I,x+J) = (I,J), so that $x \in I \cap J$. We may write x = xe where $x \in I$ and $e \in J$, so that $x \in IJ$. Conversely, let $x \in IJ$. That is for some $i \in I$ and $j \in J$ we have x = ij. Note both I and J are ideals so that $ij \in I$ and $ij \in J$ hence f(x) = f(ij) = (ij + I, ij + J) = (I,J). Thus $x \in \ker(f)$. So that $\ker(f) = IJ$.

We'll show that $f(R) = R/I \times R/J$. Clearly $f(R) \subseteq R/I \times R/J$, so we'll show the converse. Let $(a+I,b+J) \in R/I \times R/J$ for some $a,b \in R$. Note since R=I+J, we have some $i_1,i_2 \in I$ and $j_1,j_2 \in J$ such that $a=i_1+j_1,b=i_2+j_2$. This gives us: $a+I=i_1+j_1+I=j_1+I=i_2+j_1+I$ and $b+J=i_2+j_2+J=i_2+J=i_2+j_1+J$. Thus $f(i_2+j_1)=(a+I,b+J)$ so that $(a+I,b+J) \in f(R)$. Hence $f(R)=R/I \times R/J$ and by the first isomorphism theorem of rings we have that $R/IJ \cong R/I \times R/J$. \square

18.2. Prove that
$$\mathbb{Z}_3[x]/(x^3-x^2-1) \cong \mathbb{Z}_3[x]/(x^3+x+1)$$
. (Hint: Use part (a).)

Proof. Stating some theorem's that'll be used later on: for an irreducible polynomial over a field F, that is $f(x) \in F[x]$ being irreducible, and $a \in E \supseteq F$ such that f(a) = 0, where E is some extension of F, we have that $F(a) \cong F[x]/(f(x))$. We'll need to show first that $\mathbb{Z}_3[x] = \langle (x^3 - x^2 - 1) \rangle + \langle (x^3 + x + 1) \rangle$, so here we can use the fact that since \mathbb{Z}_3 is a field, we have that $\mathbb{Z}_3[x]$ is a principle ideal domain. Hence $\mathbb{Z}_3[x]$ is an ideal of itself, so that $\mathbb{Z}_3[x]$ is generated by a single element and