if class loaded beamer

Naive Bayes

Nipun Batra

IIT Gandhinagar

July 29, 2025

$$P(x_1, x_2, x_3, \dots, x_N | y) = P(x_1 | y) P(x_2 | y) \dots P(x_N | y)$$

$$P(x_1, x_2, x_3, \dots, x_N | y) = P(x_1 | y) P(x_2 | y) \dots P(x_N | y)$$

Why is Naive Bayes model called Naive?

$$P(x_1, x_2, x_3, ..., x_N | y) = P(x_1 | y) P(x_2 | y) ... P(x_N | y)$$

Why is Naive Bayes model called Naive? Naive assumption x_i and x_{i+1} are independent given y

i.e.
$$p(x_2 | x_1, y) = p(x_2 | y)$$

$$P(y = 1|w_1 = 0, w_2 = 0, w_3 = 1)$$

$$= \frac{P(w_1 = 0|y = 1)P(w_2 = 0|y = 1)P(w_3 = 1|y = 1)P(y = 1)}{P(w_1 = 0, w_2 = 0, w_3 = 1)}$$

$$= \frac{0.6 \times 0.8 \times 0.6 \times 0.5}{Z}$$

$$P(y = 1|w_1 = 0, w_2 = 0, w_3 = 1)$$

$$= \frac{P(w_1 = 0|y = 1)P(w_2 = 0|y = 1)P(w_3 = 1|y = 1)P(y = 1)}{P(w_1 = 0, w_2 = 0, w_3 = 1)}$$

$$= \frac{0.6 \times 0.8 \times 0.6 \times 0.5}{7}$$

Similarly, we can calculate $P(y = 0 | w_1 = 0, w_2 = 0, w_3 = 1) = \frac{0.6*0.4*0.6*0.5}{Z}$

$$P(y = 1|w_1 = 0, w_2 = 0, w_3 = 1)$$

$$= \frac{P(w_1 = 0|y = 1)P(w_2 = 0|y = 1)P(w_3 = 1|y = 1)P(y = 1)}{P(w_1 = 0, w_2 = 0, w_3 = 1)}$$

$$= \frac{0.6 \times 0.8 \times 0.6 \times 0.5}{7}$$

Similarly, we can calculate $P(y=0|w_1=0,w_2=0,w_3=1)=\frac{0.6*0.4*0.6*0.5}{Z}$ $\frac{P(y=1|w_1=0,w_2=0,w_3=1)}{P(y=0|w_1=0,w_2=0,w_3=1)}=2>1$. Thus, classified as a spam example.

Note: no cross covariance! Remember all features are independent.

Wikipedia Example

Height	Weight	Footsize	Gender
6	180	12	М
5.92	190	11	М
5.58	170	12	М
5.92	165	10	М
5	100	6	F
5.5	100	6	F
5.42	130	7	F
5.75	150	7	F

Example

	Male	Female
Mean (height)	5.855	5.41
Variance (height)	3.5×10^{-2}	9.7×10^{-2}
Mean (weight)	176.25	132.5
Variance (weight)	1.22×10^2	5.5×10^{2}
Mean (Foot)	11.25	7.5
Variance (Foot)	9.7×10^{-1}	1.67

Classify the Person

- ▶ Given height = 6ft, weight = 130 lbs, feet = 8 units, classify if it's male or female.
- $P(F|6ft, 130lbs, 8units) = \frac{P(6ft|F)P(130lbs|F)P(8units|F)P(F)}{P(130lbs, 8units, 6ft)}$

Classify the Person

- ▶ Given height = 6ft, weight = 130 lbs, feet = 8 units, classify if it's male or female.
- $P(F|6ft, 130lbs, 8units) = \frac{P(6ft|F)P(130lbs|F)P(8units|F)P(F)}{P(130lbs, 8units, 6ft)}$
- $P(130/bs|F) = \frac{1}{\sqrt{2\pi \times 550}} \times \exp{\frac{-(132.5 130)^2}{2 \times 550}} = .0167$
- ► Finally, we get probability of female given data is greater than the probability of class being male given data.