Examenul de bacalaureat național 2019 Proba E. c)

Matematică M_mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{3}{x+1} \in \mathbb{N} \Rightarrow x+1=1 \text{ sau } x+1=3$	3p
	Elementele mulțimii M sunt 0 și 2	2p
2.	$x_1^2 - 1 = mx_1$, $x_2^2 - 1 = mx_2$, pentru orice număr real m	2p
	$\frac{mx_1}{x_1} + \frac{mx_2}{x_2} = 2$, deci $m = 1$	3p
3.	$\sqrt{2-x} = x \Rightarrow 2-x = x^2 \Rightarrow x^2+x-2=0$	3 p
	x = -2, care nu convine sau $x = 1$, care convine	2p
4.	În mulțimea A sunt 20 de numere, deci sunt 20 de cazuri posibile	1p
	Pentru $n \le 20$, obținem $\log_2 n \in \mathbb{N} \iff n \in \{1, 2, 4, 8, 16\}$, deci sunt 5 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{5}{20} = \frac{1}{4}$	2p
5.	$m_{MP} = -1$, deci panta mediatoarei segmentului MP este $m = 1$	2p
	$Q\left(\frac{1}{2},\frac{3}{2}\right)$ este mijlocul lui MP , deci ecuația mediatoarei este $y-\frac{3}{2}=x-\frac{1}{2} \Leftrightarrow y=x+1$	3 p
6.	$\frac{AB}{\sin C} = \frac{BC}{\sin A} \Leftrightarrow \frac{5\sqrt{2}}{\frac{1}{2}} = \frac{BC}{\frac{\sqrt{2}}{2}}$	3p
	BC = 10	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$M(0) = \begin{pmatrix} 1 & 2 & 4 \\ -1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} \Rightarrow \det(M(0)) = \begin{vmatrix} 1 & 2 & 4 \\ -1 & 0 & -1 \\ 0 & 1 & 3 \end{vmatrix} =$	2p
	= 0 + (-4) + 0 - 0 - (-6) - (-1) = 3	3 p
b)	$\det(M(m)) = \begin{vmatrix} 1 & 2 & 4 \\ -1 & m & -1 \\ m & 1 & 3 \end{vmatrix} = -4m^2 + m + 3, \text{ pentru orice număr real } m$	2p
	$\det(M(m)) = 0 \Leftrightarrow m = -\frac{3}{4} \text{ sau } m = 1, \text{ deci sistemul are soluție unică pentru } m \in \mathbb{R} \setminus \left\{-\frac{3}{4}, 1\right\}$	3 p
c)	Pentru $m=1$, sistemul este compatibil nedeterminat și soluțiile sistemului sunt	
	$(3-2\alpha,1-\alpha,\alpha)$, unde $\alpha\in\mathbb{C}$	3p
	$4(1-\alpha)^2 = (3-\alpha)^2 \Leftrightarrow \alpha = -1 \text{ sau } \alpha = \frac{5}{3}, \text{ deci soluțiile sunt } (5,2,-1) \text{ sau } \left(-\frac{1}{3}, -\frac{2}{3}, \frac{5}{3}\right)$	2 p

2.a)	$x * y = \frac{1}{3}xy - \frac{1}{2}x - \frac{1}{2}y + \frac{3}{4} + \frac{6}{4} =$	2p
	$= \frac{1}{3}x\left(y - \frac{3}{2}\right) - \frac{1}{2}\left(y - \frac{3}{2}\right) + \frac{3}{2} = \frac{1}{3}\left(x - \frac{3}{2}\right)\left(y - \frac{3}{2}\right) + \frac{3}{2}, \text{ pentru orice numere reale } x \text{ $\frac{1}{2}$} y$	3p
b)	$x * x = \frac{1}{3} \left(x - \frac{3}{2} \right)^2 + \frac{3}{2}, \ x * x * x = \frac{1}{9} \left(x - \frac{3}{2} \right)^3 + \frac{3}{2}$	2p
	$\frac{1}{9}\left(x-\frac{3}{2}\right)^3 + \frac{3}{2} = x \Leftrightarrow x = -\frac{3}{2} \text{ sau } x = \frac{3}{2} \text{ sau } x = \frac{9}{2}$	3 p
c)	$x*\frac{9}{2}=\frac{9}{2}*x=x$, pentru orice număr real x, deci $e=\frac{9}{2}$ este elementul neutru al legii "*"	2p
	$n*n'=n'*n=\frac{9}{2} \Leftrightarrow 4nn'-6n-6n'=27$, unde n' este simetricul lui n și, cum pentru	3p
	$n, n' \in \mathbb{N}$, numărul $4nn' - 6n - 6n'$ este par, obținem că nu există niciun număr natural n al	ЭÞ
	cărui simetric în raport cu legea de compoziție "*" să fie număr natural	

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 1 - \frac{2x+1}{x^2 + x + 1} =$	3 p
	$= \frac{x^2 - x}{x^2 + x + 1} = \frac{x(x - 1)}{x^2 + x + 1}, \ x \in \mathbb{R}$	2 p
b)	Tangenta la graficul funcției f în punctul $(a, f(a))$ este paralelă cu dreapta de ecuație $y = -\frac{1}{7}x + 2 \Leftrightarrow f'(a) = -\frac{1}{7}$	2p
	$\frac{a(a-1)}{a^2+a+1} = -\frac{1}{7} \Leftrightarrow 8a^2 - 6a + 1 = 0 \Leftrightarrow a = \frac{1}{4} \text{ sau } a = \frac{1}{2}$	3 p
c)	f continuă pe \mathbb{R} , $\lim_{x\to-\infty} f(x) = -\infty$, $f(0) = 0$, $f(1) = 1 - \ln 3 \in (-1,0)$	3 p
	f este strict descrescătoare pe $(0,1)$ și f este strict crescătoare pe $(1,+\infty)$, deci, pentru fiecare $n \in \mathbb{N}^*$, ecuația $f(x) + n = 0$ nu are nicio soluție în $[0,+\infty)$	1p
	f este strict crescătoare pe $(-\infty,0)$ \Rightarrow pentru fiecare $n \in \mathbb{N}^*$, ecuația $f(x)+n=0$ are soluție unică în $(-\infty,0)$, deci pentru fiecare $n \in \mathbb{N}^*$, ecuația $f(x)+n=0$ are soluție unică	1p
2.a)	$\int_{0}^{2} e^{x} f(x) dx = \int_{0}^{2} e^{x} \cdot \frac{x}{e^{x}} dx = \int_{0}^{2} x dx = \frac{x^{2}}{2} \Big _{0}^{2} =$	3p
	=2-0=2	2p
b)	$ \begin{vmatrix} =2-0=2 \\ \mathcal{A} = \int_{-1}^{1} f(x) dx = \int_{-1}^{0} -xe^{-x} dx + \int_{0}^{1} xe^{-x} dx = (x+1)e^{-x} \begin{vmatrix} 0 \\ -1 \end{vmatrix} - (x+1)e^{-x} \begin{vmatrix} 1 \\ 0 \end{vmatrix} = 2 - (x+1)e^{-x} \end{vmatrix} = 2 - (x+1)e^{-x} \begin{vmatrix} 1 \\ 0 \end{vmatrix} = 2 - (x+1)e^{-x} $	3p
	$=1-\frac{2}{e}+1=2-\frac{2}{e}$	2p
c)	$(n+2)I_n = (n+2)\int_0^1 x^n f(x) dx = (n+2)\int_0^1 x^{n+1} e^{-x} dx = \int_0^1 (x^{n+2})' e^{-x} dx = \frac{1}{e} + \int_0^1 x^{n+2} e^{-x} dx$	2p
	$0 \le x \le 1 \Rightarrow \frac{1}{e} \le e^{-x} \le 1 \Rightarrow \frac{1}{e} \cdot x^{n+2} \le x^{n+2} e^{-x} \le x^{n+2} \Rightarrow \frac{1}{e} \int_{0}^{1} x^{n+2} dx \le \int_{0}^{1} x^{n+2} e^{-x} dx \le \int_{0}^{1} x^{n+2} dx$	1p
	$\operatorname{Cum} \lim_{n \to +\infty} \int_{0}^{1} x^{n+2} dx = \lim_{n \to +\infty} \frac{1}{n+3} = 0, \text{ obtinem } \lim_{n \to +\infty} \int_{0}^{1} x^{n+2} e^{-x} dx = 0 \Rightarrow \lim_{n \to +\infty} (n+2) I_{n} = \frac{1}{e}$	2p