Intro to Quantum Physics F3241

Dr Lily Asquith (Lily)

Week 6

The continuous EM spectrum

Sunlight appears white-ish to us. We can spread it out using dispersion or diffraction.

Early spectroscopy

What are the dark bands?

The Solar Spectrum

Different gases: different colors

Emission spectra

Look at the light emitted from different hot gases through a diffraction grating.

The single colour we see with our naked eyes (e.g. purple for argon) is made of a bunch of different exact wavelengths

Neon

Argon

Emission spectra

This is cool because it means every atom has an associated barcode.

Hydrogen: the Balmer Series (1885)

Rydberg's formula (1890)

Summary

Key formulae:

Balmer's empirical formula: $\lambda_n = 364.6 \frac{n^2}{n^2-4}$ nm

Rydberg-Ritz formula: $\frac{1}{\lambda_{mn}} = R\left(\frac{1}{m^2} - \frac{1}{n^2}\right)$ for n > m

