

Organic Reactions

Most organic compounds are hydrocarbons that come from petroleum...then how do we see such a wide variety of organic molecules? Chemical Reactions!

Types of Organic Reactions

- 1. Substitution
- 2. Elimination
 - 3. Addition
- 4. Condensation

1. Substitution Reactions

A reaction in which one atom or a group of atoms in a molecule is replaced by another atom or groups of atoms.

Halogenation-a hydrogen atom is replaced by Chlorine, Fluorine or Bromine on an alkane (lodine is less reactive and therefore doesn't substitute well)

In general,
$$R-CH_3 + X_2 --> R-CH_2X + HX$$

Once an alkane has been halogenated, the compound can undergo further substitutions

In general,
$$R-CH_2X + OH^- --> R-OH + X^-$$

**This can also be accomplished by add water to the reaction; in this case an alcohol and a binary acid with form

2. Elimination Reactions

A reaction in which a combination of atoms is removed from two adjacent C atoms forming an additional bond between the C atoms.

 eliminated atoms form stable compounds such as H₂O, HCl or H₂

Dehydrogenation-a reaction that eliminates two hydrogen atoms

In general, CH₃CH₃ --> CH₂CH₂ + H₂

More specifically,
$$H_2C-CH_3$$
 H_2C-CH_3 H_2C-CH_2 + H2

Alykyl halides can under elimination reactions to produce an alkene and a binary acid

In general,
$$R-CH_2-CH_2-X$$
 --> $R-CH=CH_2+HX$

Alcohols can undergo elimination reactions by losing a H+ and an OH- to form water (dehydration reaction)

In general, $R-CH_2-CH_2-OH$ --> $R-CH=CH_2 + H_2O$

3. Addition Reaction

A reaction in which a other atoms bond to each of two atoms bonded by a double or triple bond

• reverse of an elimination reaction

Alkynes can also be hydrogenated to produce alkenes or alkanes

1st H₂ molecule

$$R-C \equiv C-H + H_2 --> R-C=CH_2$$

1nd H₂ molecule

$$R-C=CH_2 + H_2 --> R-CH_2-CH_3$$

4. Condensation

A reaction in which two smaller organic molecules combine to form a more complex molecule accompanied by the loss of a small molecule such as water

Esterfication is a type of condensation reaction:

Condensation reactions are essential for living organisms:

Predicting Products of Organic Reactions

You can use the generic equations you have been provided to predict the products of specific organic reactions:

Steps:

- 1. Draw the structure of the reactant(s)
- 2. Use the generic equation as a model to see how the reactant(s) would react
- 3. Draw the structure of the likely product(s)

Example 1: Predict the product of the elimination of 1-butanol

Example 2: Predict the product of the reaction between cyclopentene and hydrogen bromide

Example 3: Label each reaction as a substitution, elimination, addition or condensation reaction

$$CH_3CH_2CI$$
 $CH_3CH_2OH + CH_3CO_2H$
 $CH_2=CH_2$
 $CH_3(=O)OCH_2CH_3$

3.4 Organic Reactions

3.4 Assignment

- Classify each of the following reactions as either substitution, elimination, addition, or condensation.
 - a. $CH_3CH=CHCH_2CH_3 + H_2 \rightarrow CH_3CH_2-CH_2CH_3$

b.
$$CH_3CH_2CH_2CHCH_3 \rightarrow CH_3CH_2CH = CHCH_3 + H_2O$$
OH

- Identify the type of organic reaction that would best accomplish each of the following conversions.
 - a. alkyl halide → alkene
 - alkene → alcohol
 - alcohol + carboxylic acid → ester
- Complete each of the following equations by writing the condensed structural formula for the product that is most likely to form.
 - a. $CH_3CH = CHCH_2CH_3 + H_2 \rightarrow$
 - b. CH₃CH₂CHCH₂CH₃ + OH[−] →
 - c. $CH_3CH_2C = CCH_3 + 2H_2 \rightarrow$
 - cH₃CH₂CHCH₂CH₃ $\xrightarrow{\text{Dehydration}}$ OH
- 4. Identify the type of organic reaction seen below then predict the product(s).
- a) ethene + HBr -->
- b) 1-bromopropane + OH- -->
- c) ethanol + propanoic acid -->
- d)2,3-dimethyl-1-butene + H₂ -->

3.4 Organic Reactions

3.4 Assignment KEY Cont...

5. Explain why the hydration reaction involving 1-butene may yield two distinct products whereas the hydration of 2-butene yields only 1 product.

6. Explain the difference between an elimination reaction and a condensation reaction. Which type of reaction best is best represented by the following equation?

Compound 1-liquid that has a pungent odour. It is miscible with water and the solution is a weak electrolyte.

Compound 2-is a liquid that has a strong aroma resembling apricots.

Using your observations, classify the functional group in each compound.