$12a_{0204} (K12a_{0204})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{86} + u^{85} + \dots + 3u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 86 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{86} + u^{85} + \dots + 3u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{8} + u^{6} + u^{4} + 1 \\ u^{10} + 2u^{8} + 3u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{21} + 4u^{19} + 9u^{17} + 12u^{15} + 12u^{13} + 10u^{11} + 9u^{9} + 6u^{7} + 3u^{5} + u \\ u^{23} + 5u^{21} + \dots + 2u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{11} - 2u^{9} - 2u^{7} + u^{3} \\ u^{11} + 3u^{9} + 4u^{7} + 3u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{32} + 7u^{30} + \dots + 2u^{12} + 1 \\ -u^{32} - 8u^{30} + \dots - 12u^{8} - 4u^{6} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{53} - 12u^{51} + \dots - 3u^{5} - u \\ u^{53} + 13u^{51} + \dots + u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{74} + 17u^{72} + \dots + u^{2} + 1 \\ -u^{74} - 18u^{72} + \dots - 2u^{4} - u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{85} + 4u^{84} + \cdots + 24u + 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{86} + 41u^{85} + \dots + 3u + 1$
c_{2}, c_{6}	$u^{86} - u^{85} + \dots - 3u + 1$
<i>c</i> ₃	$u^{86} + u^{85} + \dots + 471u + 65$
C_4	$u^{86} - u^{85} + \dots - 149u + 137$
c_5,c_{10}	$u^{86} - u^{85} + \dots + u + 1$
C ₇	$u^{86} - 5u^{85} + \dots - 623u + 111$
c_8, c_9, c_{11}	$u^{86} - 21u^{85} + \dots - 3u + 1$
c_{12}	$u^{86} + 9u^{85} + \dots + 6433u + 797$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{86} + 9y^{85} + \dots + 19y + 1$
c_2, c_6	$y^{86} + 41y^{85} + \dots + 3y + 1$
c_3	$y^{86} - 23y^{85} + \dots + 399819y + 4225$
c_4	$y^{86} + 9y^{85} + \dots + 312079y + 18769$
c_5,c_{10}	$y^{86} + 21y^{85} + \dots + 3y + 1$
	$y^{86} + 13y^{85} + \dots + 865727y + 12321$
c_8, c_9, c_{11}	$y^{86} + 89y^{85} + \dots + 11y + 1$
c_{12}	$y^{86} + 29y^{85} + \dots + 40057159y + 635209$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.552073 + 0.903867I	-4.89234 - 1.96034I	0
u = -0.552073 - 0.903867I	-4.89234 + 1.96034I	0
u = -0.022062 + 0.940386I	-5.66854 - 3.02612I	-3.62148 + 2.70851I
u = -0.022062 - 0.940386I	-5.66854 + 3.02612I	-3.62148 - 2.70851I
u = 0.561963 + 0.912758I	-4.52045 - 4.21833I	0
u = 0.561963 - 0.912758I	-4.52045 + 4.21833I	0
u = 0.642242 + 0.650491I	-3.74752 + 8.94433I	2.00000 - 7.87615I
u = 0.642242 - 0.650491I	-3.74752 - 8.94433I	2.00000 + 7.87615I
u = -0.257669 + 1.056490I	-0.670480 - 0.639201I	0
u = -0.257669 - 1.056490I	-0.670480 + 0.639201I	0
u = -0.633408 + 0.654906I	-4.15827 - 2.71284I	1.31273 + 3.00115I
u = -0.633408 - 0.654906I	-4.15827 + 2.71284I	1.31273 - 3.00115I
u = 0.550086 + 0.961327I	2.46470 - 0.37994I	0
u = 0.550086 - 0.961327I	2.46470 + 0.37994I	0
u = -0.517375 + 0.987111I	0.07166 - 2.62578I	0
u = -0.517375 - 0.987111I	0.07166 + 2.62578I	0
u = 0.633756 + 0.606008I	3.50780 + 5.03732I	7.81344 - 8.08967I
u = 0.633756 - 0.606008I	3.50780 - 5.03732I	7.81344 + 8.08967I
u = -0.238562 + 1.113670I	-2.23970 + 4.39842I	0
u = -0.238562 - 1.113670I	-2.23970 - 4.39842I	0
u = 0.264448 + 1.111100I	-4.27295 - 0.76354I	0
u = 0.264448 - 1.111100I	-4.27295 + 0.76354I	0
u = 0.554348 + 1.004930I	3.01740 + 4.89814I	0
u = 0.554348 - 1.004930I	3.01740 - 4.89814I	0
u = 0.311549 + 1.107070I	-4.74848 + 0.89916I	0
u = 0.311549 - 1.107070I	-4.74848 - 0.89916I	0
u = -0.347956 + 1.100820I	-3.34095 - 4.64653I	0
u = -0.347956 - 1.100820I	-3.34095 + 4.64653I	0
u = 0.635644 + 0.546117I	4.36758 - 0.22453I	10.66536 + 0.55787I
u = 0.635644 - 0.546117I	4.36758 + 0.22453I	10.66536 - 0.55787I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.770174 + 0.323215I	-5.37084 + 11.03650I	0.76608 - 7.01041I
u = -0.770174 - 0.323215I	-5.37084 - 11.03650I	0.76608 + 7.01041I
u = -0.588398 + 0.591566I	1.23725 - 1.78468I	1.82852 + 3.46758I
u = -0.588398 - 0.591566I	1.23725 + 1.78468I	1.82852 - 3.46758I
u = -0.239868 + 1.142870I	-9.93808 + 8.18745I	0
u = -0.239868 - 1.142870I	-9.93808 - 8.18745I	0
u = 0.245139 + 1.142850I	-10.34130 - 1.86383I	0
u = 0.245139 - 1.142850I	-10.34130 + 1.86383I	0
u = 0.767277 + 0.318425I	-5.80930 - 4.73542I	-0.13133 + 2.18376I
u = 0.767277 - 0.318425I	-5.80930 + 4.73542I	-0.13133 - 2.18376I
u = 0.676444 + 0.477199I	-1.06723 - 3.95000I	4.49030 + 3.18305I
u = 0.676444 - 0.477199I	-1.06723 + 3.95000I	4.49030 - 3.18305I
u = -0.748230 + 0.339955I	2.22223 + 7.05409I	5.75869 - 7.62186I
u = -0.748230 - 0.339955I	2.22223 - 7.05409I	5.75869 + 7.62186I
u = -0.680511 + 0.452157I	-1.17586 - 1.85794I	4.15708 + 2.29378I
u = -0.680511 - 0.452157I	-1.17586 + 1.85794I	4.15708 - 2.29378I
u = 0.567898 + 1.043900I	-2.72701 + 8.77066I	0
u = 0.567898 - 1.043900I	-2.72701 - 8.77066I	0
u = 0.339044 + 1.142000I	-11.40330 + 1.33625I	0
u = 0.339044 - 1.142000I	-11.40330 - 1.33625I	0
u = -0.344970 + 1.141800I	-11.12770 - 7.68084I	0
u = -0.344970 - 1.141800I	-11.12770 + 7.68084I	0
u = -0.562524 + 1.055970I	-2.94385 - 2.95008I	0
u = -0.562524 - 1.055970I	-2.94385 + 2.95008I	0
u = -0.713316 + 0.364912I	3.53763 + 1.70720I	9.34373 - 0.47522I
u = -0.713316 - 0.364912I	3.53763 - 1.70720I	9.34373 + 0.47522I
u = 0.727927 + 0.324780I	0.00076 - 3.48701I	-0.10685 + 2.81460I
u = 0.727927 - 0.324780I	0.00076 + 3.48701I	-0.10685 - 2.81460I
u = -0.509299 + 1.093680I	-2.26558 - 2.69665I	0
u = -0.509299 - 1.093680I	-2.26558 + 2.69665I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.532946 + 1.112480I	-3.24505 + 6.62506I	0
u = 0.532946 - 1.112480I	-3.24505 - 6.62506I	0
u = -0.560287 + 1.103940I	1.37872 - 6.58460I	0
u = -0.560287 - 1.103940I	1.37872 + 6.58460I	0
u = -0.504237 + 1.132970I	-10.05170 - 0.22011I	0
u = -0.504237 - 1.132970I	-10.05170 + 0.22011I	0
u = 0.509014 + 1.133500I	-10.25420 + 6.56885I	0
u = 0.509014 - 1.133500I	-10.25420 - 6.56885I	0
u = 0.556014 + 1.119300I	-2.31255 + 8.37360I	0
u = 0.556014 - 1.119300I	-2.31255 - 8.37360I	0
u = -0.565704 + 1.120250I	-0.06439 - 12.03000I	0
u = -0.565704 - 1.120250I	-0.06439 + 12.03000I	0
u = 0.565065 + 1.132160I	-8.19937 + 9.74957I	0
u = 0.565065 - 1.132160I	-8.19937 - 9.74957I	0
u = -0.567396 + 1.131720I	-7.7482 - 16.0682I	0
u = -0.567396 - 1.131720I	-7.7482 + 16.0682I	0
u = 0.665867 + 0.284233I	-0.89403 - 1.98382I	-1.24074 + 3.64496I
u = 0.665867 - 0.284233I	-0.89403 + 1.98382I	-1.24074 - 3.64496I
u = 0.696778 + 0.188590I	-7.58004 - 2.02263I	-2.18699 + 2.22834I
u = 0.696778 - 0.188590I	-7.58004 + 2.02263I	-2.18699 - 2.22834I
u = -0.692184 + 0.175922I	-7.35283 - 4.28364I	-1.74327 + 2.87228I
u = -0.692184 - 0.175922I	-7.35283 + 4.28364I	-1.74327 - 2.87228I
u = -0.325865 + 0.553283I	0.082965 - 1.264650I	0.85289 + 5.85230I
u = -0.325865 - 0.553283I	0.082965 + 1.264650I	0.85289 - 5.85230I
u = -0.561379 + 0.192622I	0.06888 - 1.56934I	2.04853 + 4.27715I
u = -0.561379 - 0.192622I	0.06888 + 1.56934I	2.04853 - 4.27715I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{86} + 41u^{85} + \dots + 3u + 1$
c_2, c_6	$u^{86} - u^{85} + \dots - 3u + 1$
<i>c</i> ₃	$u^{86} + u^{85} + \dots + 471u + 65$
c_4	$u^{86} - u^{85} + \dots - 149u + 137$
c_5, c_{10}	$u^{86} - u^{85} + \dots + u + 1$
C ₇	$u^{86} - 5u^{85} + \dots - 623u + 111$
c_8, c_9, c_{11}	$u^{86} - 21u^{85} + \dots - 3u + 1$
c_{12}	$u^{86} + 9u^{85} + \dots + 6433u + 797$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{86} + 9y^{85} + \dots + 19y + 1$
c_{2}, c_{6}	$y^{86} + 41y^{85} + \dots + 3y + 1$
<i>c</i> ₃	$y^{86} - 23y^{85} + \dots + 399819y + 4225$
c_4	$y^{86} + 9y^{85} + \dots + 312079y + 18769$
c_5, c_{10}	$y^{86} + 21y^{85} + \dots + 3y + 1$
C ₇	$y^{86} + 13y^{85} + \dots + 865727y + 12321$
c_8, c_9, c_{11}	$y^{86} + 89y^{85} + \dots + 11y + 1$
c_{12}	$y^{86} + 29y^{85} + \dots + 40057159y + 635209$