# Part II. 플레이 검증

## 목표

- No Hack! No Abusing!
- 전제
  - 메모리 보호는 불가능하다 • 증명?
  - 그래서, 항상 패킷 수정이 가능하다
- 게임의 룰 파괴
  - 이속, 사거리, 쿨타임 무시
  - 무적
  - 아이템 복사
  - 플레이 속도 증가 (스피드 핵) 사례는 매우 많음

# 가이드

• 아크로드2의 보안 컨설팅 자료

| 人킨 카       | · 데스와 관련된 어뷰장 요소가 있는지 점검하는 항목           |     |
|------------|-----------------------------------------|-----|
| GCS        |                                         | 미취약 |
| GCS        |                                         | 취약  |
| GCS        |                                         | 취약  |
| 채팅 컨       | 텐츠와 관련된 어뷰징 요소가 있는지 점검하는 항목             |     |
| 게임 컨텐츠 GCC |                                         | 취약  |
| GCC00      |                                         | 취약  |
| 대/소구       | 모 전장 컨텐츠와 관련된 어뷰장 요소가 있는지 점검하는 항목       |     |
| GCW        | 001 전장 승리조건을 조작 가능한 어뷰징이 가능합니까?         | 취약  |
| 부활 컨       | 텐츠와 관련된 어뷰징 요소가 있는지 점검하는 항목             |     |
| GCR        | 001 부활 아이템 없이 부활 가능한 어뷰징이 가능합니까?        | 취약  |
| 채집 및       | 제작 컨텐츠와 관련된 어뷰징 요소가 있는지 점검하는 항목         |     |
| GCM        | 001   채집 및 제작과 관련된 어뷰장이 가능합니까?          | 취약  |
| 진영(어       | 임하이, 데몰리션) 컨텐츠와 관련된 어뷰징 요소가 있는지 점검하는 항목 |     |
| GCE        | 001 채집 및 제작과 관련된 어뷰장이 가능합니까?            | 미취약 |
| 보안(2       | 차 비밀번호) 컨텐츠와 관련된 어뷰징 요소가 있는지 점검하는 항목    |     |
| GCB        | 001 2차 비밀번호 설정 관련된 어뷰징이 가능합니까?          | 미취약 |
| GCB        | 002 2차 비밀번호의 우회가 가능합니까?                 | 취약  |
| 포인트        | (스탯 업) 컨텐츠와 관련된 어뷰징 요소가 있는지 점검하는 항목     |     |
| GCP        | 001 포인트 습득 및 사용과 관련된 어뷰징이 가능합니까?        | 미취약 |
| 사냥 컨       | [텐츠와 관련된 어뷰징 요소가 있는지 점검하는 항목            |     |
| GCH        | 001 사거리에 상관없이 공격 가능한 어뷰징이 가능합니까?        | 취약  |
| GCH        | 002  탈것을 탄 상태에서 공격 가능한 어뷰징이 가능합니까?      | 취약  |
| GCH        | 003 공격 불가능한 방향에서 공격 가능한 어뷰징이 가능합니까?     | 취약  |
| GCH        | 004 여러 대상을 동시에 공격 가능한 어뷰징이 가능합니까?       | 취약  |
| GCH        | 005 공격 불가능한 높이에서 공격 가능한 어뷰장이 가능합니까?     | 취약  |

# 스킬 조작

- 사거리 / 시전 위치 조작
  - 가능한가?
  - 왜 불가능한가?
- 뮤2의 경우 Projectile 처리 이슈
  - 어떻게 할 것인가?

### 스피드 핵



### 스피드 핵

- 클라이언트 동작 전체가 의존
- 서버에서 목표 지점으로 MoveTo 이동
  - 이것만으로도 많은 문제들이 완화됨
- 시간 동기화
  - NTP 알고리즘의 변형
    - https://en.wikipedia.org/wiki/Network Time Protocol
  - 서버 시간만 사용하여 지연을 측정
    - 이를 MoveTo에 반영 (속도를 올림)
  - 클라이언트 시간을 기록하여 전송
    - 클라 시간, 서버 시간의 차이를 보면 스핵을 어느 정도 판정 가능
    - 로그로 남김

## 아이템 트래킹

- 아이템의 생성, 획득, 사용, 소멸, 이동 (거래), 변경 (강화) 추적
- 고유한 생성 아이디 부여
  - Server / Date / Sequence (Rotating)
    - 64비트 단일 필드
  - DB 필드로 갖고 있음
  - 로그에 항상 포함
  - 서버에서만 갖고 있음

#### 퀘스트

- 완료 조건의 강제 달성
  - 가능할까?
  - 단위 행위의 검증
- 클라이언트 메시지의 형태
  - 발생 가능한 클라이언트 상태
  - 발생 가능한 서버 상태
  - 양 측 사이의 검증

## 검증

- 검증이란 무엇인가?
- 검증이 어떻게 가능한가?
- 동시 시뮬레이션
  - 양쪽에서 일어나는 일의 검증
- 단일 시뮬레이션
  - 클라이언트는 더미
- 과거의 재현
  - Replay

## 검증 - 함수 호출

- void increaseHealth(float value)
  - this.health += value;
- void castSkill(int skillId)
  - ...
- 검증?
  - 어떤 모델이 필요

#### 검증 - 상태 모델





여기는 어떤 상태?

스킬 시전 중

스킬 시전 중 이전 상태의 조건

- k 스킬의 쿨 타임
- 시전자의 상태
  - 상태 이상, MP
- 위의 조건을 통과한 F(e)가 서버 이벤트

## 검증 - 상태 모델

- F(e)를 개념으로 만들고 공식화 하는 건 어떨까?
  - Precondition들 -> Pre(condition)
  - 상태 전환을 위한 동작 (결과) -> Eff(ect)
- 구현
  - <Pre, Eff>의 Sequence
    - 현재 함수 단위 체크와 실행 방식
  - <Pre, Pre, ... >, <Eff, Eff, ... >
    - 모든 검증을 마친 후 진행 방식
  - 유연하게 사용
- Precondition은 Constraint로 볼 수 있다.
  - 클라이언트가 생성 가능한 메세지의 제약으로 볼 수 있다.

#### 검증 - 바람직한 이벤트 처리 특성

- 항상 Precondition 체크가 가능하도록 한다
  - 이게 최상의 목표지만 항상 가능하지는 않다.
  - 서버 시뮬레이션의 비용이 큰 경우
    - Projectile
      - 실시간 충돌 처리에 기반
- 이벤트가 직접 서버 상태를 변경하지 않는다
  - 값 지정
    - HP를 바로 복원 -> 물약 사용
      - 검증 : 물약 보유? 물약 사용 쿨타임?
  - 서버 시뮬레이션에 대한 입력 이벤트로 보는 게 최상
    - 위치 지정 -> 속도와 방향 전환

### 검증 - 다중 이벤트

- 하나의 작업을 완료하기 위해 여러 외부 이벤트가 연관된 경우
  - 예) 거래
  - 예) 아이템 분해
- 이벤트 누락 / 중복 / 순서 역전에 대해 고려
  - 예) 거래 수락 후 강제 종료 (빠르게 진행할 경우 어떻게 되는가?)
  - 예) 동일 아이템 분해 요청이 짧은 시간에 여러 번 올 경우
- 중간에 다른 이벤트 관여하는 것 검증
  - 예) 거래 대상 아이템을 판매하는 것

## 코드 리뷰

- Pre 체크가 불가능한 이벤트들
- Pre 체크가 없는 이벤트들
- Pre, Eff 순서가 잘못된 경우들
- 이벤트가 서버 상태 값을 직접 바꾸는 경우
- 서버 시뮬레이션이 없는 경우
- 코드 커버리지
  - 다양한 제어 경로의 검증
  - 타잎과 함수
    - 구조화된 클래스보다 작은 개념적인 타잎과 함수로 생각해 볼 수 있다

## 검증 - 프로젝타일

- 발사체
  - 클라에서 Arrive (Hit) 전송
  - 서버에서 발사체 아이디 검증 후 대상에 대한 피격 처리
- Arrive의 조작
  - 타겟의 변경
  - 안 맞거나 맞게 할 수 있음
- 어디까지 검증 가능한가?

# 참고 자료

- http://www.markrtuttle.com/data/papers/lt89-cwi.pdf
  - IO Automata (1988)