

Data Vis Final Project

January 15, 2020

Quy, Justin, Rafael, Sunny

The Team

Project objective:

Utilize machine learning library to create a tool to predict outcome of UFC fights

SciKit-Learn, Pandas, & Matplotlib

Approach

Step 1

Clean dataset from Kaggle to convert all strings

Eliminate unnecessary variables & organize df

Step 2

Identify relevant features to be used for ML training

Build via various models: Logistic Regression at first, then we explored Decision Tree & Random Forest Step 3

Ensure fit & accuracy of model by comparing predictions vs. actual results (test)

Step 4

Rinse & Repeat Step 2 & Step 3 until accuracy is at an acceptable rate

Our Model's Features

Match Data

Head Strikes

Ground & Pounds

Body Strikes

Clinches

Leg Strikes

Submissions

Knockdowns

Takedowns

Fighter Data

Height

Reach

Age

Calculating Accuracy

```
In [18]: predictions = classifier.predict(X test)
         print(f"First 10 Predictions: {predictions[:10]}")
         print(f"First 10 Actual labels: {y test[:10].values.tolist()}")
         First 10 Predictions: ['1' '0' '0' '0' '0' '0' '1' '1' '1' '0']
         First 10 Actual labels: [['1'], ['1'], ['1'], ['0'], ['1'], ['0'], ['1'], ['0'], ['0']]
In [19]: accuracy = classifier.score(X test, v test)
         print('The accuracy is: ' + str(accuracy *100) + '%')
         The accuracy is: 80.95854922279793%
In [20]: pd.DataFrame({"Prediction": predictions, "Actual": y test['new column']}).reset index(drop=True)
Out[20]:
               Prediction Actual
          1539 0
          1540 0
          1541 0
          1542 0
          1543 1
         1544 rows x 2 columns
```

*We converted results to represent:

1 = Red Side Win, 0 = Blue Side Win

- 750

- 600

80% accuracy using Logistic Regression...

Can we do better?

Our New Model's Features

Match Data

Head Strikes DIFFERENCE

Ground & Pounds DIFFERENCE

Body Strikes DIFFERENCE

Clinches DIFFERENCE

DIFFERENCE

Takedowns DIFFERENCE

Submissions DIFFERENCE

Knockdowns DIFFERENCE

Final Accuracy

```
In [81]: diff df = pd.DataFrame(columns = [diff df cols])
         for x in range (len(diff df cols)):
            diff df[diff df cols[x]] = R[R COL[x]] - B[B COL[x]]
         #diff df
         diff train, diff test, diff y train, diff y test = train test split(diff df, y2, test size=0.3)
In [82]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.datasets import make_classification
In [83]: random forest = RandomForestClassifier(n estimators=100,max depth=6,random state=1)
         random forest.fit(diff train, diff y train)
        C:\Users\Public\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: DataConversionWarning: A column-vector y was pas
        sed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().
Out[83]: RandomForestClassifier(bootstrap=True, class weight=None, criterion='gini',
                                max depth=6, max features='auto', max leaf nodes=None,
                                min impurity decrease=0.0, min impurity split=None,
                                min samples leaf=1, min samples split=2,
                               min weight fraction leaf=0.0, n estimators=100,
                                n jobs=None, oob score=False, random state=1, verbose=0,
In [84]: diff test results = random forest.predict(diff test)
         print(f"Training Data Score: {random forest.score(diff train, diff y train)}")
         print(f"Testing Data Score: {random forest.score(diff test, diff y test)}")
         Training Data Score: 0.83515731874145
        Testing Data Score: 0.8014354066985646
```

83%

Training Data

81%

Test Data

accuracy using "difference" features & Random Forest

"Future" Predictions

Due to our Kaggle dataset ending on June of 2019, we decided to leverage our model to predict 2H 2019 matches...

Korean Zombie v. Frankie Edgar UFC Fight Night 165

Our Model Prediction	Vegas Odds	Actual Result

Korean Zombie Zombie -170 Korean Zombie Edgar +140 (R1 KO/KTO)

Kamaru Usman v. Colby Covington UFC 245

Our Model Prediction	Vegas Odds	Actual Result
Usman	Usman -175	Usman (R5 KO/TKO)

Thank You!