

Document Title

Application Note AN_A7121

Revision History

Rev. No. History		Issue Date	Remark	
1.0	Initial issue	Mar 1, 2005	Preliminary	
1.1	Modify section 1, 2 & 5	Mar 30, 2005	Preliminary	

Mar 30, 2005

			•		
	o h	NΙΔ	Λt	CON	tents
1	au	"	· UI	CUII	ums

1. System Clock setting (IF CLK and Data Rate CLK)	1
2. Channel setting (Crystal, BB CLK, IF CLK, Data CLK)	2
3. Access Code Format	5
4. TX power control setting	7
5. CD_TXEN (Pin 22) & MS1 (Pin 16) description	8
6. Reference voltage of data slicer and bypass capacitor	10
7. VCO Band Calibration	11
8. RSSI	13
9. Data transmission mode	19
10. VGA	 25
9. Data transmission mode	

1. System Clock setting (IF CLK and Data Rate CLK)

In the A7121, the **IF CLK** is used in **CAL** state, the **Data Rate CLK** is used in **CAL** state, **TEMP** state, **TX** sub-state, **RX** sub-state and **RSSI** sub-state. Before chip enters these states, the internal **IF CLK** and **Data Rate CLK** must be set to correct value. For 1M (3M) mode, the internal IF CLK should be set to 2MHz (4.5MHz) and Data Rate CLK should be set to 1M (3M). Hence the parameters on **System Clock Register** should be set as follows:

```
    XDR = (Crystal frequency / Data rate) - 1
    = (Crystal frequency / 1M) - 1 @ data rate = 1Mbps
    = (Crystal frequency / 3M) - 1 @ data rate = 3Mbps
    XIR = (Crystal frequency / IF CLK) - 1
    = (Crystal frequency / 2M) - 1 @ data rate = 1Mbps
    = (Crystal frequency / 4.5M) - 1 @ data rate = 3Mbps
```

Where the XDR and XIR must be integral. The (XDR+1) is Crystal frequency to data rate ratio (binary format) and (XIR+1) is Crystal frequency to IF frequency ratio (binary format).

The above equation explains why the crystal frequency must choose a multiple of 2MHz (9MHz) for 1M(3M) mode, the tolerance within +/-20ppm of crystal frequency is recommended.

Please note that the TX data must be synchronized with chip's system clock (crystal frequency) when chip is operating in DIRECT mode.

2. Channel setting (Crystal, BB CLK, IF CLK, Data CLK)

The system is operating in 2.4GHz ISM band. The frequency range is from 2400 to 2483.5 MHz. A7121 includes two transmission symbol rate modes, 1M and 3M modes, the accepted data rate could be +/- 10% of 1(3) Mbps. The channels of both modes are set using the following characters:

Crystal: The external X'TAL frequency.

IF CLK: The IF carrier frequency.

Data Rate CLK: The data rate frequency.

PFD frequency: PLL phase frequency detector comparison frequency.

2-1. 1M mode channel setting

The parameters of 1M mode

Item	Symbol	Formula	Value
Data rate (MHz)			1
Channel spacing (MHz)	D_{CH}		2
DED for success (MILE)	E	D _{CH} * (2/3)/n	1.33333 @n=1
PFD frequency (MHz)	F_{PD}	n=2,3,	0.66667 @n=2
IF frequency (MHz)	F _{IF}		2

The channel setting of 1M mode

CHANNEL	TX VCO FREQ (MHZ)	RX VCO FREQ (MHZ)	CHANNEL	TX VCO FREQ (MHZ)	RX VCO FREQ (MHZ)
CH1	2402	2400	CH21	2442	2440
CH2	2404	2402	CH22	2444	2442
СН3	2406	2404	CH23	2446	2444
CH4	2408	2406	CH24	2448	2446
CH5	2410	2408	CH25	2450	2448
СН6	2412	2410	CH26	2452	2450
СН7	2414	2412	CH27	2454	2452
CH8	2416	2414	CH28	2456	2454
СН9	2418	2416	CH29	2458	2456
CH10	2420	2418	CH30	2460	2458
CH11	2422	2420	CH31	2462	2460
CH12	2424	2422	CH32	2464	2462

CHANNEL	TX VCO FREQ (MHZ)	RX VCO FREQ (MHZ)	CHANNEL	TX VCO FREQ (MHZ)	RX VCO FREQ (MHZ)
CH13	2426	2424	CH33	2466	2464
CH14	2428	2426	CH34	2468	2466
CH15	2430	2428	CH35	2470	2468
CH16	2432	2430	CH36	2472	2470
CH17	2434	2432	CH37	2474	2472
CH18	2436	2434	CH38	2476	2474
CH19	2438	2426	CH39	2478	2476
CH20	2440	2438	CH40	2480	2478

For example:

Crystal freq. = 12MHz

BBCLK = crystal freq. /(XBR + 1) = 12MHz/(11+1) = 1MHz, @XBR = 11

Data Rate CLK = crystal freq. / (XDR + 1) = 12MHz/(11+1) = 1MHz, @XDR = 11

IF CLK = crystal freq. /(XIR + 1) = 12MHz/(5+1) = 2MHz, @XIR = 5

F(MHz) = (3/2) * (crystal freq. / R) * (32 * MB + MA)

PFD freq. = crystal freq. / R

If F = 2399MHz, then R counter = 18, MB counter = 74, MA counter = 31

Where the XBR, XDR and XIR are in the **System clock register**. The variable "MB and MA" are in the **Synthesizer register** (I). The variable "R" is in the **Synthesizer register** (II).

2-2. 3M mode channel setting

The parameters of 3M mode

Item	Symbol	Formula	Value
Data rate (MHz)			3
Channel spacing (MHz)	D_{CH}		4.5
		D * (2/2) / n	1.5@n=2
PFD frequency (MHz)	F_{PD}	$D_{CH} * (2/3) / n$	1.0@n=3
		n=2,3,4	0.75@n=4
IF frequency (MHz)	$F_{ m IF}$		4.5

The channel setting of 3M mode

CHANNEL	TX VCO FREQ (MHZ)	RX VCO FREQ (MHZ)	CHANNEL	TX VCO FREQ (MHZ)	RX VCO FREQ (MHZ)
CH1	2403	2398.5	CH10	2443.5	2439
CH2	2407.5	2403	CH11	2448	2443.5
СН3	2412	2407.5	CH12	2452.5	2448
СН4	2416.5	2412	CH13	2457	2452.5
CH5	2421	2416.5	CH14	2461.5	2457
СН6	2425.5	2421	CH15	2466	2461.5
СН7	2430	2425.5	CH16	2470.5	2466
СН8	2434.5	2430	CH17	2475	2470.5
СН9	2439	2434.5	CH18	2479.5	2475

For example:

Crystal freq. = 9MHz

BBCLK = crystal freq. /(XBR + 1) = 9MHz/(2+1) = 3MHz, @XBR = 2

Data Rate CLK = crystal freq. /(XDR + 1) = 9MHz/(2+1) = 3MHz, @XDR = 2

IF CLK = crystal freq. /(XIR + 1) = 9MHz/(1+1) = 4.5MHz, @XIR = 1

F (MHz) = (3/2) * (crystal freq. / R) * (32 * MB + MA)

PFD freq. = crystal freq. / R

If F = 2398.5, PFD freq. = 0.75MHz, then R counter = 12, MB counter = 66, MA counter = 20

Where the XBR, XDR and XIR are in the **System clock register**. The variable "MB and MA" are in the **Synthesizer register** (I). The variable "R" is in the **Synthesizer register** (II).

3. Access Code Format

The A7121's transmission data consists of access code and payload. Each packet starts with an access code which consists of a preamble, a sync word, and a trailer, please see Figure 1. The access code is used for synchronization, and DC offset compensation, and chip identification. For such purposes, the access code should be randomized and the BluetoothTM like access code is recommended.

LSB 4	64	4 _{MSB}
preamble	sync word	trailer

Fig. 1 Access code format

Preamble

The preamble is a fixed zero-one pattern of 4 symbols used to facilitate DC compensation. The sequence is either 1010 or 0101, depending on whether the LSB of the following sync word is 1 or 0. The preamble is shown in Figure 2.

Fig. 2 Preamble

Sync Word

The sync word is a 64-bit code word. A good sync word should own the following properties: small DC component to reduce data digitalizing error, random to avoid false sync and large Hamming distance (HD) to resist interference. User can adjust the threshold of sync error bit (ETH [2:0] in **RX control register I**) to resist interference when different HD code is selected. The HD of selected code must ensure the following formula:

$$HD \ge 2 * ETH + 1.$$

The allowed maximum duration (T_A) of "continue 0" or "continue 1" depends on time constant of the R_{INT} and C_{BP_DS} , where the R_{INT} is internal resistor 10K ohm and C_{BP_DS} is external capacitor connected Pin 31 (BP_DS) to GND. The T_A can be determined by following formula.

$$T_A \leq 0.63 * R_{INT} * C_{BP_DS}$$
 ------Equation (A)

Trailer

The trailer is appended to the sync word as soon as the packet header follows the access code. The trailer is a fixed zero-one pattern of four symbols. The trailer may be used for extended DC compensation. The trailer sequence is either 1010 or 0101 depending on whether the MSB of the sync word is 0 or 1, respectively. The trailer is shown in Figure 3.

4. TX power control setting

TX power control can be set by TX control register (I) and (II). For general application, the TX output power range is 6dB (i.e. TX output power is 0, -3 and -6 dBm). The power range can be extended to 10dB by setting the IQC [1:0] register. The following is recommended setting value of TX power.

IA [4:0]: I amplitude fine tuning. Recommend value= 11111.

QA [4:0]: Q amplitude fine tuning. Recommend value= 11111.

IO [3:0]: I offset tuning. Recommend value= 1000.

QO [3:0]: Q offset tuning. Recommend value= 1000.

PC [5:0]: TX power control.

IQC [1:0]: IQ amplitude course tuning.

4-1. TX output power = 0dBm

PC [5:0]: setting value = 111111.

IQC [1:0]: setting value = 11.

4-2. TX output power = -3dBm

PC [5:0]: setting value = 000111.

IQC [1:0]: setting value = 11.

4-3. TX output power = -6dBm

PC [5:0]: setting value = 000000.

IQC [1:0]: setting value = 11.

4-4. TX output power = -10dBm

PC [5:0]: setting value = 000000.

IQC [1:0]: setting value = 10.

5. CD_TXEN (Pin 22) & MS1 (Pin 16) description

In the RX mode, the **CD_TXEN** is RF carrier detector, please see RSSI section for detail description. In the TX mode, the TX modulator will be enabled when **CD_TXEN** is active (high level).

5-1. In the DIRECT mode, the timing chart is shown as below.

Where the bypass capacitor C_{BP DS} is connected between Pin 31 (BP_DS) and ground.

Please note that the $|t_1-t_2|$ must be less than 0.25 bit to make sure the modulator is correctly operating, and the Tp is the T_{TXSET} or T_{RXSET} in <u>state description</u> section of data sheet, the minimum value is 30uS.

5-2. In the FIFO mode

When **CD_TXEN** is active, the TX FIFO data will be sent to modulator. When **CD_TXEN** is inactive (low), the modulator will be disables and the TX FIFO read pointer will be reset to address 0. Hence the CD_TXEN must be toggled one time for each packet. The MS1 can be inactive between two bursts transmission to reduce power consumption.

Please note that the $|t_1-t_2|$ must be less than 0.25 bit to make sure the modulator is correctly operating, and the Tp is the T_{TXSET} or T_{RXSET} in <u>state description</u> section of data sheet, the minimum value is 30uS.

6. Reference voltage of data slicer and bypass capacitor

The data slicer provides binary logic signal, which is a comparator with Schmitt trigger. One of input is connected to the received signal output of LPF and the other is an internal reference voltage at Pin 31 (BP_DS), which is control by DS[2:1] in **RX control register (I).** The reference voltage BP_DS has three operating mode, please refer to following table. The Pin 31 (BP_DS) connects a bypass capacitor (C_{BP_DS}) to ground.

DS [2:1]	In RX mode before Sync	In RX mode after Sync	In Stand-by mode or TX mode
01	Average	Off	Off
10	Average	Average	Off
11	Fix reference voltage	Fix reference voltage	Off

DS [2:1]	Recommend application
01	Burst transmission, the sync word should be met formula (A) in Access Code
	<u>Format</u>
10	Burst or continuous transmission, the data format should be met formula (A) in
	Access Code Format
11	Test mode

Please note that the DS0 in the RX control register (I) should be set to "0" for normal operation.

7. VCO Band Calibration

The A7121 has 8 VCO bands (from band 0 to band 7) that are set in Synthesizer register I. The relationship between VCO band and frequency is shown below. To make sure VCO is operating in suitable band, VCO calibration must be done in chip initialization and its algorithm is shown below.

The recommended VCO calibration algorithm

8. RSSI

A7121 has a built-in digital RSSI (Received Signal Strength Indicator) which measures the strength of the incoming RF signal. The digital RSSI can be read from **RSSI register** and its range is from 0 to 255 (8 bits). Typical RSSI characteristic is shown in Figure 4.

Fig.4 Typical RSSI characteristic

8-1. RSSI slope calibration

A simplified block diagram of RSSI circuit is shown in Fig.5. A7121 has two built-in signal sources RH_{REF} and RL_{REF} , which are reference level for RSSI slope calibration. The RH_{REF} is 6dB greater then the RL_{REF} . When chip do RSSI slope calibration, the VGA gain must be set to 0dB and the input of VGA will be switched automatically to internal source RH_{REF} or RL_{REF} . The RSSI slope calibration can be enabled by set RHC=1 (RLC=1) in **calibration control register (I)**. The RSSI slope calibration should be done in chip initialization, if the function of CD (carrier detector) is used.

Fig.5 Basic RSSI circuit block diagram

The RSSI slope can be calculated by using the following equation:

$$R_{SLOPE} = 6dB / (RH_{CAL} RL_{CAL})$$
 @ VGA gain = 0dB

Where the RH_{CAL} (RL_{CAL}) is measured by using reference level RH_{REF} (RL_{REF}) and digital output from RH [15:8] (RL [15:8]) in **RH** (**RL**) **register**. Please note that the value of RH_{CAL} (RL_{CAL}) will automatically write into RH [7:0] (RL [7:0]) of **RH** (**RL**) **register** after executing RH_{CAL} (RL_{CAL}) calibration.

8-2. RSSI measurement

The RSSI measurement can be referred to the receiver input power by using the following equation:

$$P_{RX} = P_{NF} + (RSSI_{RX} - RSSI_{NF}) * R_{SLOPE}$$

Where P_{NF} is input noise floor, and $RSSI_{RX}$ ($RSSI_{NF}$) is digital RSSI at input signal (noise floor). There are three ways to execute RSSI measurement as follows:

1. RSS [1:0] = 00: start RSSI measurement when RX FIFO receives one packet data.

- 2. RSS [1:0] = 01: start RSSI measurement when RX sync is active.
- 3. RSS [1:0] = 1X: start RSSI measurement when ERSS is set to 1 (enable) on the **Calibration** control register (II) bit 2.

Where the RSS are Start signal selector of RSSI measurement on **Calibration control register** (I) bit 2 and 1.

Note that if ERSS command's assertion is not in the RX sub-state, the A7121 will do RSSI measurement when next RX sub-state takes place unless is reset first.

8-3. RH_{TH} and RL_{TH} setting for CD (Carrier Detector)

The RSSI and CD may be used to determine RF link quality and is very useful in heavy traffic channel. If a channel is noisy, transmission by this channel is not recommended.

CD (CD_TXEN pin in receiver mode) is active based on measured RSSI value and threshold RH_{TH}/RL_{TH}. The RH_{TH}/RL_{TH} can be set by RH[7:0]/RL[7:0] (write only) **in RH/RL register**. When RF input power is more than threshold RH_{TH} value, CD_TXEN output will be in logic high level. If RF input power is less than threshold RL_{TH} value, CD_TXEN output will be in logic low level. The relationship between CD_TXEN and RH_{TH}/RL_{TH} is shown below.

The following procedure describes how to get threshold RH_{TH} and RL_{TH}.

8-3-1. First the input noise floor must be measured and the receiver's sensitivity (P_{SEN}) can be estimated using following formula.

$$C/N = 13 - G - 20 * log [(DEV/250K) * (1M / DR)]$$

 $P_{SEN} = No + C/N$, (No is measured at no RF signal input)

Where

P_{SEN}: Estimated sensitivity power, in dBm

No: Noise floor, in dBm

G: Filter factor, G=3 without Gaussian filter, G=0 with Gaussian filter.

DEV: Modulator deviation, in Hz

DR: Data rate, in bps

8-3-2. For threshold RH_{TH} and RL_{TH} setting, the 6dB hysteresis between RH_{TH} and RL_{TH} is recommended. Note that the RH_{TH} and RL_{TH} should be located between estimated sensitivity (P_{SEN}) and noise floor (No)

The recommended RSSI slope calibration algorithm

The recommended RSSI measurement algorithm

9. Data transmission mode

A7121 has two data transmission mode, DIRECT mode and FIFO mode. In DIRECT mode, the transceiver can communicate at a high data rate of 1 or 3 Mbps for maximum data throughput performance. For all low data rate applications, FIFO mode enables the on-chip FIFO to clock in data at a low data rate from a low speed micro-controller and transmit at high data rate of 1 or 3 Mbps.

9-1. DIRECT mode

In DIRECT mode, there is no buffer between data and modulation (demodulation) circuit. **The TX** data must be synchronized with chip's system clock (crystal frequency). All transmission access code (preamble, sync word and data) must be implemented in base-band or firmware.

In this mode, the TX & RX FIFO is disabled, please see table below. Where the EFW and EFR are in the **FIFO control register**, and DPC [1:0] is in the **RX control register** (I).

Mode	EFW	EFR	DPC [1:0]	Remark
			00	Disable frame sync and FIFO. No data process at RX data output.
				Enable frame sync and disable
DIRECT	0	0	01	FIFO. RX data output is inactive
DIRECT	0			(high) before sync.
			10	Enable frame sync and disable
				FIFO. No data process at RX data
			output.	
	•			Enable frame sync and FIFO. The
FIFO	X	X X	11	setting of EFW & EFR, please refer
				to section 9-2

For the setting of data input and output, please see table below, the TRD bit is in **Mode control** register.

TRD	TX input port	RX output port	Remark	
1	Pin 21 (TRXD)	Pin 21 (TRXD)	Pin 21 is bi-directional, and	
			Pin 20 is disabled.	
0	Pin 20 (TXD)	Pin 21 (TRXD)	Pin 21 is output port only.	

In receiver side, frame synchronization is available and enabled by DPC [1:0]. If this function is used, the RX access code should be written into **Access code register** before the chip enters RX sub-state. Once the frame is synchronized, the sync signal (Pin 23) is active with RX data sampling clock (Pin 24) accompanied.

Please note that the RX data sampling clock is not a true recovered clock. Hence, if the chip needs to communicate continuously, an external clock recovery circuit must be implemented. For burst transmission, if RX data sampling clock is used, the maximum payload length (B_{MAX}) is recommend by following formula.

$$\begin{split} B_{MAX} &= 1 \ / \ [10 \ ^* \ (F_{TOLTX} \ \text{--} \ F_{TOLRX})], \ bit \\ &= 2500 \ bit \ @ \ F_{TOLTX} = F_{TOLRX} = +/-20 ppm \end{split}$$

Where the F_{TOLTX} (F_{TOLRX}) is tolerance of TX (RX) crystal frequency.

9-2. FIFO mode

The A7121 has two 64 bytes FIFO, i.e. TX FIFO and RX FIFO. The FIFO can be enabled by the DPC [1:0]. User can use FIFO byte counter (FBC) in **FIFO control register** to set one packet size. The TX data is written into TX FIFO by F_CLK (Pin 19) in "EFW = 1". The data in TX FIFO is transmitted via RF when the CD_TXEN (Pin 22) is active in TX mode. Please note that the CD_TXEN must be toggled one time for each packet.

The received data is written into RX FIFO by RX_CLK (Pin 24) after RX_SYN (Pin 23) is active. The RX data can be read from RX FIFO by F_CLK in "EFR =1". It is recommend the EFW (EFR) should be set to "0" when no data is written into TX FIFO (read from RX FIFO). EFW & EFR are not allowed set to 1 simultaneously when both TX and RX data are via bi-directional Pin 21 (TRXD). A simplified FIFO block diagram is shown as follows.

FIFO mode block diagram

FP_RDY (Pin 14) is a multi function pin of FIFO packet indicator and ready signal. If packet indicator is selected (FPRS=0 in **Calibration control register**), it is active when one packet data is sent from (received by) TX (RX) FIFO via RF channel.

There are two modes for base-band data written into (read from) FIFO, i.e., the "One Packet" mode and "Continuous" mode (set by FWC & FRC in **FIFO control register**). If FIFO is operating in "Continuous" mode, the data rate D_{BB} must be lower than the data rate D_{RF} . If FIFO is operating in "One Packet" mode, the data rate D_{BB} can be faster or lower than the data rate D_{RF} , but the following formula should be met.

For transmitter side

$$T_{DELAY_TX} \ge [(1/D_{RF}) - (1/D_{BB})] * L_{FIFO} + (2/D_{RF}), @ D_{BB} \le D_{RF}$$

 $T_{DELAY_TX} \ge (2/D_{RF}), @ D_{BB} \ge D_{RF}$

For receiver side

$$T_{DELAY_RX} \ge [(1/D_{RF}) - (1/D_{BB})] * L_{FIFO} + (2/D_{RF}), @ D_{BB} \ge D_{RF}$$
 $T_{DELAY_RX} \ge (2/D_{RF}), @ D_{BB} \le D_{RF}$

Where the T_{DELAY_TX} is delay time of CD_TXEN active from FIFO writing, the T_{DELAY_RX} is delay time of FIFO reading from sync active, the L_{FIFO} is the one packet size, the D_{BB} is data rate transmitted between FIFO and MCU (or base-band), the D_{RF} is data rate transmitted on RF.

For the setting of data input and output, please see table below, the FDS is in **FIFO control** register.

FDS	TRD	TX input port	RX output port	Remark	
0	1	Pin 21, please see following table		Pin 20 is disabled.	
		for detail descrip	tion		
0	0	Pin 20 (TXD)	Pin 21 (TRXD)	Pin 21 is output port	
				only	
1	0	Pin 26	Pin 21 (TRXD)	"X" indicate the TRD	
		(SPI_RXD)		bit don't care	
1	1			Inhibition	

In case of FDS=0 and TRD=1, the direction of Pin 21 is according to following table.

Mode	EFW	EFR	Pin 21 direction	Remark			
	0	0		Invalid			
TX	0	1	Innut	Inhibition			
IA	1	0	Input				
	1	1		Inhibition			
	0	0		Invalid			
RX	0	1	Outout				
KA	1	0	Output	Inhibition			
	1	1		Inhibition			
	0	0	Input	Invalid			
Stand-by	0	1	Output				
Stalld-by	1	0	Input				
	1	1	Input	Inhibition			
1 1 Input Inhibition							

The recommended algorithm for FIFO mode transmitter

The recommended algorithm for FIFO mode receiver

Note:

1. Using F_CLK and TRXD pin refer to FIFO timing of A7121 data sheet for detailed information on timing chart.

10. VGA

The A7121 has a variable gain amplifier (VGA) built in the receiver section to ensure the Rx chain operating suitable input range. The VGA consists of four setting (i.e. 0,5,15 and 20dB). For normal operation, the 0 and 20dB setting are enough to cover entire input range. A high gain (20dB) setting allows received input level from -85dBm to -45dBm. The low gain (0dB) setting allows received input level from -70dBm to -30dBm.

The VGA gain is programmed by the VGA [2:0] in Rx control register (II). In actual application, the 10dB hysteresis between VGA gain switching level is required. Hence we recommend the high threshold level (VGA_VH) is set to -50dBm and low threshold (VGA_VL) is set to -60dBm. If the input power is above -50dBm, then set VGA gain to 0dB (i.e. VGA [2:0] =0XX), on the other hand if the input power is below -60dBm, then set VGA gain to 20dB (i.e. VGA [2:0] =111).

The VGA gain setting is based on burst by burst transmission. Due to the RSSI is measured during the burst, in order to reduce fading influence on the RSSI accuracy, the algorithm that determines the VGA gain setting using an average RSSI over the last 4 to 8 frame is recommended. For RSSI detail description, please see RSSI section. The relationship between RSSI, VGA_VH, VGA_VL is shown below:

The recommended AGC algorithm

