1 数值误差的避免

计算结果如下,其中 exp 是 c++cmath 库的函数, 认为是标准答案

直接展开法在计算完前七项后选择罢工,猜测也许是直接计算 x^n 和n!数值太大了。并且其计算出来的七项与实际的结果可以说是南辕北辙

递归法通过项之间的递推关系,有效的减少了计算量,并改善了数值太大的问题。但因为截断前 n 项计算,会发生严重的抵消,得到的结果也和准确没什么关系

先递归地计算 e^x , 再求倒数的办法, 先避免了数值太大的问题, 又有效地避免了抵消, 计算是稳定的, 是一种有效可行的算法。

是稳定的,是一种有效可行的算法。	
Ехр	1
	4.53999e-05
	2.06115e-09
	9.35762e-14
	4.24835e-18
	1.92875e-22
	8.75651e-27
	3.97545e-31
	1.80485e-35
	8.19401e-40
	3.72008e-44
直接展开	1
	4.53999e-05
	-1.8323e-09
	-0.000389238
	-8.58218
	-210219
	-1.19475e+09
递归	1
	4.53999e-05
	5.62188e-09
	-3.06681e-05
	-3.16573
	11072.9
	-3.35168e+08
	-3.29796e+13
	9.18057e+16
	-5.05163e+21
	-2.91376e+25
递归求倒数	1
	4.53999e-05
	2.06115e-09
	9.35762e-14

4.24835e-18
1.92875e-22
8.75651e-27
3.97545e-31
1.80485e-35
8.19401e-40
3.72008e-44

2 矩阵的模与条件数

а

上三角矩阵的行列式为对角元的积,即1,奇异矩阵行列式为0,A不是奇异矩阵。

b

用伴随矩阵法求 A^{-1} ,对于特定行,需要加上其下每一行乘上两行的行差,即为

С

矢量的无穷模是其所有分量绝对值的最大值,矩阵的无穷模是其行向量绝对值的和的最大值证明如下:

$$||A||_{\infty} = \max(\max|a_{i}^{T}x|) \le \max(\max\sum|a_{i,p}^{T}||x_{p}|) \le \max(\max\sum|a_{i,p}^{T}||x||_{\infty})$$

$$= \max\sum|a_{i,p}| = ||a_{i}||_{1}$$

然后证明 $||A||_{\omega} \geq ||a_i||_1$

$$||A||_{\infty} = max||Ax|| \ge |a_k^T y| = ||a_k||_1 = ||a_i||_1$$

其中 k 为矩阵行向量最大的一次模的行数,y 为使 $a_k^T y = \|a_k\|_1$ 的向量以上,即证明矩阵的无穷模是其行向量绝对值的和的最大值

d

$$||U||_2 = max \frac{||Ux||}{||x||} = 1$$

只要证||Ux|| = ||x||(欧氏模)

即<Ux,Ux>=<x,x>

因为幺正矩阵 $U^TU=I$,所以< $Ux,Ux>=(Ux)^TUx=x^TU^TUx=x^Tx=< x,x>$ 所以 $\|U\|_2=1$, $\|U^H\|_2$ 同理

利用幺正变换的保模性质,对于条件数 $K_2(A) = K_2(UA)$ 的证明如下:

$$K_2(A) = ||A||_2 ||A^{-1}||_2 = ||UA||_2 ||(UA)^{-1}||_2 = K_2(UA)$$

е

对于具体的矩阵 $\|A\|_{\omega} = n$, $\|A^{-1}\|_{\omega} = 2^{n-1}$, $K_{\omega}(A) = n2^{n-1}$

3.Hilbert 矩阵

а

$$(H_n)_{ij} = \int_0^1 x^{i+j-2} dx$$
$$b_i = \int_0^1 x^{i-1} f(x) dx$$

b

使用二次型来证明:

$$g(x) = x^{T}Hx$$

$$f(x) = g(x)x = \frac{1}{2n-1}x^{2n-1} + \frac{2}{2n-2}x^{2n-2} + \frac{3}{2n-3}x^{2n-3} + \dots + \frac{2}{2}x^{2} + x$$

$$f(x)' = x^{2n-1} + 2x^{2n-3} + \dots + nx^{n-1} + (n-1)x^{n-2} + \dots + 1$$

$$= (x^{n-1} + x^{n-2} + x^{n-3} + \dots + 1)^{2} \ge 0$$

又f(0) = 0,故 $f(x) \ge 0$

$$g(x) = \frac{f(x)}{x} \ge 0, x \ne 0$$

且g(0) = 0

所以H是正定矩阵

正定矩阵的所有主子行列式恒为正,所以是非奇异的。

C

编程计算了 C_n 的值, 然后计算出 det(H_n) 如下表:

1	2	3	4	5	6	7	8	9	10
1.00E+00	8.33E-01	4.63E-04	1.65E-07	3.75E-12	5.37E-18	4.84E-25	2.74E-33	9.72E-43	2.16E-53

代码详见说明文档.

d

下面给出分别用 gem, cholesky 和 numpy.solve 解出的解 (n 从 1 到 10)

n=1

GEM	1
Cholesky	1
Solve	1

n=2

GEM	-2	6
Cholesky	-2	6
Solve	-2	6

n=

GEM	3	-24	30
Cholesky	3	-24	30
Solve	3	-24	30

n=4

GEM	-4	60	-180	140
Cholesky	-4	60	-180	140
Solve	-4	60	-180	140

n=5

GEM	5	-120	630	-1120	630
Cholesky	5	-120	630	-1120	630
Solve	5	-120	630	-1120	630

n=

GEM	-6	210	-1680	5040	-6300	2772
Cholesky	-6	210	-1680	5040	-6300	2772

Solve -6 210 -1680 5040 -6300

n=7

GEM	7	-336	3780	-16800	34650	-33264	12012
Cholesky	7	-336	3780	-16800	34650	-33264	12012
Solve	7	-336	3780	-16800	34650	-33264	12012

n=8

GEM	-8	-504	-7560	-46200	-138600	-216216	-168168	51480
Cholesky	-8	-504	-7560	-46200	-138600	-216216	-168168	51480
Solve	-8	-504	-7560	-46200	-138600	-216216	-168168	51480

n=9

GEM	8.99995
	-719.997
	13859.9
	-110880
	450448
	-1.009e+06
	1.26126e+06
	-823678
	218789
Cholesky	8.99993
	-719.995
	13859.9
	-110879
	450448
	-1.009e+06
	1.26126e+06
	-823677
	218789
Solve	8.99996078e+00
	-7.19997262e+02
	1.38599532e+04
	-1.10879663e+05
	4.50448758e+05
	-1.00900545e+06
	1.26125706e+06
	-8.23678217e+05
	2.18789558e+05

GEM	-9.99779
	989.809
	-23755.9
	240203
	-1.26108e+06
	3.78329e+06
	-6.72592e+06
	7.0005e+06
	-3.93781e+06
	923690
Cholesky	-9.99812
	989.839
	-23756.6
	240209
	-1.26111e+06
	3.78338e+06
	-6.72607e+06
	7.00065e+06
	-3.93789e+06
	923708
Solve	-9.99982337e+00
	9.89984621e+02
	-2.37596706e+04
	2.40236992e+05
	-1.26124560e+06
	3.78374027e+06
	-6.72665461e+06
	7.00121663e+06
	-3.93818664e+06
	9.23772647e+05

可以看出,在 n 较小时,三种方法的解并没有差距,但是从 9, 10 开始,三种方法出现了差距。如果我们认为 numpy.solve 是准确的解,那么 cholesky 比 gem 更接近正确的结果。因为希尔伯特矩阵有高度的病态性,条件数非常大,使用 gem 时由于误差的累积,准确性会受到很大影响;而 cholesky 分解比 gem 更稳定,解更准确。但当 n 变大时,无论哪一种方法的误差都会变大。

4 矩阵与二次型

а

$$B = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$
, 为求特征值, 解方程 $|B - \lambda I| = 0$.

解得: $\begin{cases} \lambda_1 = 0 \\ \lambda_2 = 1, \end{cases}$ 再将特征值代入解线性方程组,求得其对应的特征向量为 $\lambda_3 = 3$

$$\begin{cases} a_1 = (1,1,1) \\ a_2 = (1,0,-1) \\ a_3 = (1,-2,1) \end{cases}$$

b

 $B=Q\Sigma QT$,其中 Σ 是 B 的特征值组成的对角矩阵,Q 是 B 的与特征值对应的特征向量组成的矩阵,

对二次型作图:

特征向量方向作图:

5 正定矩阵

а

 $u^TA^TAu=<Au,Au>$ 即向量的内积,>0 显然成立 又因为 A 的各列向量线性无关,所以对于非零向量 u,Au 一定不是零向量,即其内积不为 0,所以只能取大于号

b

对于 $b^2 < 8$, s正定; 对于 $b^2 = 8$, s半正定; 主元是 2, $4 - \frac{b^2}{2}$;