Assignment -4

Applied Data Science

Assignment Date	8 October 2022
Student Name	Akhilesh Ravikumar
Student Roll Number	2116190701011
Maximum Marks	2 Marks


```
plt.figure(figsize=(10,5))
sns.distplot(data['Age'])
plt.show()
```

C:\anaconda\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

sns.countplot(data['Age'])

C:\anaconda\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only vexplicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Age', ylabel='count'>

sns.countplot(data['Gender'])

C:\anaconda\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Gender', ylabel='count'>


```
| Carray([24., 22., 28., 38., 30., 36., 8., 6., 4., 4.]), | Carray([15., 27.2, 39.4, 51.6, 69.8, 76., 88.2, 100.4, 112.6, 124.8, 137.]), | Carcontainer object of 10 artists>)

| Bivariate Analysis | Sivariate Analysis |
```


Descriptive Statistics

C:\Users\michael\AppData\Local\Temp\ipykernel_7288\4148990336.py:3: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'nume only valid columns before calling the reduction.

data.mean()

CustomerID 100.50 Annual Income (k\$)
Spending Score (1-100)
dtype: float64

Missing values and deal with them

data.isna()

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	False	False	False	False	False
1	False	False	False	False	False
2	False	False	False	False	False
3	False	False	False	False	False
4	False	False	False	False	False
195	False	False	False	False	False
196	False	False	False	False	False
197	False	False	False	False	False
198	False	False	False	False	False
199	False	False	False	False	False

200 rows × 5 columns

data.isna().any()

CustomerID False
Gender False
Age False
Annual Income (k\$) False
Spending Score (1-100) False

dtype: bool

data.kurt()

C:\Users\michael\AppData\Local\Temp\ipykernel_7288\2907027414.py:1: FutureWarning: Dropping of nuisance columns in DataFronly valid columns before calling the reduction.

data.kurt()

CustomerID -1.200000
Age -0.671573
Annual Income (k\$) -0.098487
Spending Score (1-100) -0.826629

dtype: float64

data.var()

C:\Users\michael\AppData\Local\Temp\ipykernel_7288\445316826.py:1: FutureWarning: Dropping of nuisance columns in DataFra only valid columns before calling the reduction.

data.var()

CustomerID 3350.000000
Age 195.133166
Annual Income (k\$) 689.835578
Spending Score (1-100) 666.854271

dtype: float64

data.std()

C:\Users\michael\AppData\Local\Temp\ipykernel_7288\2723740006.py:1: FutureWarning: Dropping of nuisance columns in DataFronly valid columns before calling the reduction.

data.std()

CustomerID 57.879185
Age 13.969007
Annual Income (k\$) 26.264721
Spending Score (1-100) 25.823522

dtype: float64

Find the outliers and replace them outliers

sns.boxplot(data['Annual Income (k\$)'])

C:\anaconda\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Annual Income (k\$)'>

qnt=data.quantile(q=(0.30,0.45))

qnt

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
0.30	60.70	30.0	46.00	40.00
0.45	90.55	35.0	58.55	47.55

```
| Ign = qnt.loc[0.45]-qnt.loc[0.30] #iqn calculation | iqn |
```

```
Encoding Categorical Values
      numeric_data = data.select_dtypes(include=[np.number])
      categorical_data = data.select_dtypes(exclude=[np.number])
print("Number of numerical variables: ", numeric_data.shape[1])
print("Number of categorical variables: ", categorical_data.shape[1])
  Number of numerical variables: 4
 Number of categorical variables: 1
     print("Number of categorical variables: ", categorical_data.shape[1])
Categorical_variables = list(categorical_data.columns)
     Categorical_variables
  Number of categorical variables: 1
 ['Gender']
 Female 112
 Male
             88
 Name: Gender, dtype: int64
 Name: Gender, dtype: int64
Scaling the data
   X = data.drop("Age",axis=1)
Y = data['Age']
   from sklearn.preprocessing import StandardScaler
object= StandardScaler()
   scale = object.fit_transform(X)
print(scale)
Output exceeds the size limit. Open the full output data in a text editor
[[-4.02405716 1.12815215 -1.73899919 -0.43480148]
 [-3.8813601 1.12815215 -1.73899919 1.19570407]
 [-3.73866304 -0.88640526 -1.70082976 -1.71591298]
 [-3.59596597 -0.88640526 -1.70082976 1.04041783]
 [-3.45326891 -0.88640526 -1.66266033 -0.39597992]
 [-3.31057185 -0.88640526 -1.66266033 1.00159627]
 [-3.16787479 -0.88640526 -1.62449091 -1.71591298]
 [-3.02517772 -0.88640526 -1.62449091 1.70038436]
 [-2.88248066 1.12815215 -1.58632148 -1.83237767]
 [-2.7397836 -0.88640526 -1.58632148 0.84631002]
 [-2.59708654 1.12815215 -1.58632148 -1.4053405 ]
 [-2.45438947 -0.88640526 -1.58632148 1.89449216]
 [-2.31169241 -0.88640526 -1.54815205 -1.36651894]
 [-2.16899535 -0.88640526 -1.54815205 1.04041783]
 [-2.02629829 1.12815215 -1.54815205 -1.44416206]
[-1.88360122 1.12815215 -1.54815205 1.11806095]
```

Clustering Algorithm

```
x = data.iloc[:, [3, 4]].values

from sklearn.cluster import KMeans
wcss_list= []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, init='k-means++', random_state= 42)
    kmeans.fit(x)
    wcss_list.append(kmeans.inertia_)
plt.plot(range(1, 11), wcss_list)
plt.title('The Elobw Method Graph')
plt.xlabel('Number of clusters(k)')
plt.ylabel('wcss_list')
plt.show()

C:\anaconda\lib\site-packages\sklearn\cluster\_kmeans.py:1036: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when tvariable OMP_NUM_THREADS=1.
    warnings.warn(
The Elobw Method Graph
```

```
plt.scatter(x[y_predict == 0, 0], x[y_predict == 0, 1], s = 100, c = 'blue', label = 'Cluster 1') #for first cluster
plt.scatter(x[y_predict == 1, 0], x[y_predict == 1, 1], s = 100, c = 'green', label = 'Cluster 2') #for second cluster
plt.scatter(x[y_predict == 2, 0], x[y_predict == 2, 1], s = 100, c = 'red', label = 'Cluster 3') #for third cluster
plt.scatter(x[y_predict == 3, 0], x[y_predict == 3, 1], s = 100, c = 'rea', label = 'Cluster 4') #for fourth cluster
plt.scatter(x[y_predict == 4, 0], x[y_predict == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5') #for fifth cluster
plt.scatter(x[weans.cluster_centers[:, 0], kmeans.cluster_centers[:, 1], s = 300, c = 'yellow', label = 'Centroid')
plt.title('Clusters of customers')
plt.xlabel('Annual Income (k5)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
```


Split the data into dependent and independent variables.

```
#target variable

y=data['Age']
y.head()

6 19
1 21
2 20
3 23
4 31
```

data=pd.get_dummles(data,columns=['Age'])																					
	data.head()																				
	CustomerID	Gender	Annual Income (k\$)	Spending Score (1-100)	Age_18	Age_19	Age_20	Age_21	Age_22	Age_23		Age_59	Age_60	Age_63	Age_64	Age_65	Age_66	Age_67	Age_68	Age_69	Age_70
0																					0
1																					0
2																					0
3																					0
4				40																	0
5 ro	vs × 55 columr																				
<pre>#encoding data = pd.get_dummies(data, drop_first=True) data.head()</pre>																					
	CustomerID	Gender	Annual Income (k\$)	Spending Score (1-100)	Age_18	Age_19	Age_20	Age_21	Age_22	Age_23		Age_59	Age_60	Age_63	Age_64	Age_65	Age_66	Age_67	Age_68	Age_69	Age_70
0																					0
1																					0
2																					0
3			16																		0
ı ·	4 5 0 17 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																				

Measure the performance using Evaluation Metrics

```
from sklearn.ensemble import RandomForestRegressor
   from sklearn.linear_model import LinearRegression
   from sklearn.model_selection import cross_val_predict
   models = [ SVR(),
                 GradientBoostingRegressor(),
                 KNeighborsRegressor(n_neighbors = 4)]
   results = []
names = ['SVM','Random Forest','Gradient Boost','K-Nearest Neighbors']
for model,name in zip(models,names):
       cv_results = model_selection.cross_val_score(model, X_train, y_train, cv=kfold)
       rmse = np.sqrt(mean_squared_error(y, cross_val_predict(model, X , y, cv=3)))
       results.append(rmse)
       names.append(name)
       print(msg)
SVM: 0.542347
Random Forest: 0.511006
Gradient Boost: 0.542861
K-Nearest Neighbors: 0.523808
```