CS544

# LESSON 7 TRANSACTIONS

|   | Monday                                                       | Tuesday                                   | Wednesday               | Thursday                           | Friday                              | Saturday                             | Sunday   |
|---|--------------------------------------------------------------|-------------------------------------------|-------------------------|------------------------------------|-------------------------------------|--------------------------------------|----------|
| I | March 28                                                     | March 29                                  | March 30                | March 31                           | April 1                             | April 2                              | April 3  |
| i | Lesson 1 Enterprise Architecture ntroduction and Spring Boot | Lesson 2 Dependency injection AOP         | Lesson 3<br>JDBC<br>JPA | Lesson 4 JPA mapping 1             | Lesson 5 JPA mapping 2              | <b>Lesson 6</b> JPA queries          |          |
| ı | April 4  Lesson 7  Transactions                              | April 5  Lesson 8  MongoDB                | April 6  Midterm Review | April 7  Midterm exam              | April 8  Lesson 9  REST webservices | April 9  Lesson 10  SOAP webservices | April 10 |
| , | April 11                                                     | April 12                                  | April 13                | April 14                           | April 15                            | April 16                             | April 17 |
|   | Lesson 11<br>Messaging                                       | Lesson 12 Scheduling Events Configuration | Lesson 13<br>Monitoring | Lesson 14 Testing your application | Final review                        | Final exam                           |          |
| , | April 18                                                     | April 19                                  | April 20                | April 21                           |                                     |                                      |          |
| ı | Project                                                      | Project                                   | Project                 | Presentations                      |                                     |                                      |          |

#### **BASICS OF TRANSACTIONS**

#### What is a transaction?

- A unit of actions with the following ACID characteristics:
  - **ATOMICITY:** All changes occur together or no change occurs
    - All-or-nothing
  - CONSISTENCY: The transaction transforms the system from one consistent state to another consistent state
    - Transaction must be correct according the application rules
  - ISOLATION: Data used in one transaction cannot be used in other transactions until the transaction is committed.
  - <u>DURABILITY</u>: Once a transaction is committed, its effects are guaranteed to be persistent

#### How do transactions work?



© 2022 MIU

#### Local or global transaction

Transaction propagation Isolation level

#### **GLOBAL OR LOCAL TRANSACTION**

© 2022 MIU

6

# Local or global transactions

#### Local transactions

1 transactional resource (database, message bus)



#### Global transactions

More than 1 transactional resource (database, message bus) used within 1 transaction
 Start transaction
 Transactional Resource
 Transactional Resource

#### Local transaction



- The transaction is managed by the database
- Simple
- Fast

#### Global transaction



- The transaction is managed by the transaction manager in the Java EE application server
- Also called XA transactions
- Only needed when 2 transactional resources are used within one transaction
- 2 Phase commit

# 2 phase commit

Phase 1



Phase 2



# 2 phase commit

Phase 1



Phase 2



#### Characteristics of XA transactions

- 2 phase commit does not guarantee that nothing can go wrong anymore
- 2 phase commit is slow
  - Often runs over remote connections
- Transactional resources become dependent on each other
  - You have to keep the locks until ALL resources are finished

## Main point

 Always try to use local transactions. Only use global transactions when there is no other choice.

Science of Consciousness: In higher states of consciousness one always chooses the path of least resistance.

© 2022 MIU 13

Local or global transaction

Transaction propagation

Isolation level

#### TRANSACTION PROPAGATION

# Transaction propagation

REQUIRED

Default, mostly used

- REQUIRES\_NEW
- MANDATORY
- SUPPORTS
- NEVER
- NOT\_SUPPORTED

#### Transaction propagation: REQUIRED

If the calling method m1() runs in a transaction T1,
 then method m2() joins the same transaction T1



 If the calling method m1() does not run in a transaction, then method m2() runs in a newly created transaction T1



#### Example of transaction propagation



# Transaction propagation: REQUIRES\_NEW

 If the calling method m1() runs in a transaction T1, then method m2() runs in a new created transaction T2



 If the calling method m1() does not run in a transaction, then method m2() runs in a newly created transaction
 T1



#### Transaction propagation: MANDATORY

If the calling method m1() runs in a transaction T1,
 then method m2() joins the same transaction T1



 If the calling method m1() does not run in a transaction, an exception is thrown



#### Transaction propagation: SUPPORTS

If the calling method m1() runs in a transaction T1,
 then method m2() joins the same transaction T1



 If the calling method m1() does not run in a transaction, then method m2() also does not run within a transaction



# Transaction propagation: NOT\_SUPPORTED

If the calling method m1() runs in a transaction T1,
 then method m2() does not run within a transaction



 If the calling method m1() does not run in a transaction, then method m2() also does not run within a transaction



### Transaction propagation: NEVER

 If the calling method m1() runs in a transaction T1, an exception is thrown



 If the calling method m1() does not run in a transaction, then method m2() also does not run within a transaction



Local or global transaction
Transaction propagation
Isolation level

#### **ISOLATION LEVEL**

#### Isolation level

- 4 levels of isolation
  - TransactionReadUncommitted
  - TransactionReadCommitted
  - TransactionRepeatableRead
  - TransactionSerializable



- 3 transaction problems
  - Dirty read
  - Non repeatable read
  - Phantom read

# **Dirty Read**



- Transactions A read X = 10
- Transaction A first increments X by 5 setting X = 15
- Transaction B read X = 15
- Transaction A does a rollback, so X = 10
- Transaction B uses the wrong value of X

### Non Repeatable Read



- Transactions A and B read X = 10
- Transaction A first increments X by 5 setting X = 15
- Transaction B read X=15

Data changes when referenced multiple times

#### **Phantom Read**



#### Isolation levels

| Isolation                  | Dirty read | Non<br>repeatable<br>read | Phantom<br>read |
|----------------------------|------------|---------------------------|-----------------|
| TransactionReadUncommitted | ✓          | ✓                         | ✓               |
| TransactionReadCommitted   |            | ✓                         | ✓               |
| TransactionRepeatableRead  |            |                           | ✓               |
| TransactionSerializable    |            |                           |                 |

- TransactionReadUncommited
  - Violates the ACID properties
  - Not supported by many database vendors (Oracle)
  - Do not use this level of isolation in a multithreaded system
- TransactionReadcommited
  - Default for most databases
- TransactionRepeatableRead
- TransactionSerializable
  - Highest level of isolation, lowest level of performance

#### JDBC transaction

```
public void update(Employee employee) {
              Connection conn = null;
              PreparedStatement prepareUpdateEmployee = null;
              try {
                                                      Start transaction
                  conn = getConnection();
                  conn.setAutoCommit(false);
                  prepareUpdateEmployee = conn.prepareStatement("UPDATE Employee SET
                              firstname= ?, lastname= ? WHERE employeenumber=?");
                  prepareUpdateEmployee.setString(1, employee.getFirstName());
                  prepareUpdateEmployee.setString(2, employee.getLastName());
Commit
                  prepareUpdateEmployee.setLong(3, employee.getEmployeeNumber());
transaction
                  int updateresult = prepareUpdateEmployee.executeUpdate();
                  conn.commit();
              } catch (SQLException e) {
                                                   Rollback transaction
                  conn.rollback();
                  System.out.println("SQLException in EmployeeDAO update() : " + e);
              } finally {
                  try {
                      prepareUpdateEmployee.close();
                      closeConnection(conn);
                                                        Presen Service Bus.
                                                                             Data
                  } catch (SQLException e1) {
                                                        tation
                                                                      logic
                                                                             access
                      // no action needed
                                                                                       Transaction
                                                                                      demarcation in
                                                                              DAO
                                                                                        the DAO
                                                                                         classes
                                                                              DAO
```

## Spring-JPA transaction

```
public interface CustomerRepository extends JpaRepository<Customer, Long> {
}

@Override
public void run(String... args) throws Exception {
   customerrepository.save(new Customer("Jack", "Bauer", "jack@acme.com"));
   customerrepository.save(new Customer("Chloe", "O'Brian", "chloe@acme.com"));
}
```



# Typical transaction demarcation

- Transaction demarcation is typical at the level of the service classes
  - Multiple DAOs can be involved in one transaction
- Spring allows us to perform transaction demarcation for service level methods



# Spring transaction support

- Spring is not a transaction manager
  - We still need a transaction manager
    - JDBC transaction manager
    - Hibernate transaction manager
    - XA transaction manager (JTS)
- Spring provides an abstraction for transaction management
  - Spring talks to the underlying transaction manager

# CONFIGURING TRANSACTIONS IN SPRING

# Transactions in Spring

```
public class ...{

@Transactional
   public void transactionalMethod();
}

All methods annotated with

@Transactional are transactional

public void transactionalMethod();
```



```
@Service
public class BankingService {
  @Autowired
  private CustomerRepository customerRepository;
  @Autowired
  private AccountRepository;
                                        Service method executes within a transaction
  @Transactional
  public void createCustomerAccount(int customerid, String customerName, int
   accountnumber, double balance, boolean throwException) throws Exception {
   Customer customer = new Customer(customerid, customerName);
    customerRepository.save(customer);
    if(throwException) {
      throw new RuntimeException();
   Account account = new Account(accountnumber, balance);
    accountRepository.save(account);
```

```
public interface AccountRepository extends JpaRepository<Account, Integer> {
}
```

```
@Entity
public class Account {
    @Id
    private int accountnumber;
    private double balance;
    ...
}
```

```
@SpringBootApplication
@EnableJpaRepositories("repositories")
@EntityScan("domain")
@ComponentScan("service")
public class Application implements CommandLineRunner{
 @Autowired
 BankService bankService;
  public static void main(String[] args) {
    SpringApplication.run(Application.class, args);
 @Override
 public void run(String... args) throws Exception {
    bankService.createCustomerAndAccount(12, "Jack Bauer", "1223",false);
    bankService.createCustomerAndAccount(14, "Frank Brown", "1248", true);
```

# application.properties

```
spring.datasource.url=jdbc:hsqldb:hsql://localhost/trainingdb
spring.datasource.username=SA
spring.datasource.password=
spring.datasource.driver-class-name=org.hsqldb.jdbcDriver

spring.jpa.hibernate.ddl-auto=create
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.HSQLDialect
```

```
With transaction
@Transactional
public void createCustomerAccount(int customerid, String customerName, int
 accountnumber, double balance, boolean throwException) throws Exception {
 Customer customer = new Customer(customerid, customerName);
  customerRepository.save(customer);
  if(throwException) {
    throw new RuntimeException();
                                                                      NAME
                                                                TD.
                                                                   120 Frank Brown
 Account account = new Account(accountnumber, balance);
                                                                 ACCOUNTNUMBER.
                                                                                 BALANCE
  accountRepository.save(account);
                                                                             312
```

#### Without transaction

```
public void createCustomerAccount(int customerid, String customerName, int
accountnumber, double balance, boolean throwException) throws Exception {
   Customer customer = new Customer(customerid, customerName);
   customerRepository.save(customer);
   if(throwException) {
      throw new RuntimeException();
   }
   Account account = new Account(accountnumber, balance);
   accountRepository.save(account);
}
ACCOUNTNUMBER

BALANCE

312
0
```

## Rollback with checked exceptions

- The transaction manager by default only does a rollback for runtime exceptions.
- If you want to rollback for checked exceptions, you have to explicitly specify this.

# Checked exception rollback

```
public class BankingService implements IBankingService{
  private CustomerDAO customerDao;
                                                                 Rollback for a runtime
  private AccountDAO accountDao;
                                                                 exception and a DAOException
   @Transactional(rollbackFor = {DAOException.class})
  public void createCustomerAccount(String customerName, int accountnumber) throws Exception{
      Customer customer= new Customer(customerName);
      customerDao.save(customer);
      Account account = new Account(accountnumber);
      accountDao.save(account);
  public void setCustomerDao(CustomerDAO customerDao) {
      this.customerDao = customerDao;
  public void setAccountDao(AccountDAO accountDao) {
      this.accountDao = accountDao;
```

# Set Propagation and Isolation with Spring

```
Set propagation to
                                                        REQUIRES_NEW
                                                                            Set isolation to
public class BankingService implements IBankingService{
                                                                          REPEATABLE_READ
  private CustomerDAO customerDao;
  private AccountDAO accountDao;
   @Transactional(propagation=Propagation.REQUIRES NEW, isolation=Isolation.REPEATABLE READ)
  public void createCustomerAccount(String customerName, int accountnumber)throws Exception{
      Customer customer= new Customer(customerName);
      customerDao.save(customer);
     Account account = new Account(accountnumber);
     accountDao.save(account);
  public void setCustomerDao(CustomerDAO customerDao) {
      this.customerDao = customerDao;
   }
  public void setAccountDao(AccountDAO accountDao) {
      this.accountDao = accountDao;
```

## Main point

 The Spring framework makes it very easy to specify transactions on methods of Spring beans.

Science of Consciousness: Do Less and Accomplish More, the transactions are automatically applied in an additional AOP layer.

© 2022 MIU 4

# Connecting the parts of knowledge with the wholeness of knowledge

- 1. When defining transactions boundaries in your application it is important to define the correct transaction propagation
- 2. The TransactionReadCommitted isolation level is the default level of most databases.
- **3. Transcendental consciousness** is the foundation of all thoughts.
- 4. Wholeness moving within itself: In Unity Consciousness, we experience how both the silence at the basis of thought, and the most expressed thoughts and actions are nothing but the Self.

© 2022 MIU 45