Cálculo de Predicados

Realidad ->Interpretación-> Conceptualización

Objetos -> Universo de discurso (U)

Verificaciones -> Base relacional (BR)

Comportamiento -> Base funcional (BF)

Así, es posible construir la siguiente terna ordenada que representa una conceptualización (C):

Convertir a lenguaje simbólico:

"Todos los mexicanos tienen cuando menos un pariente en USA"

Conceptualización

C:<Personas; {mex(X), viveUSA(X), pariente(X,Y); Φ>

mex(X): X es mexicano

viveUSA(X): X vive en Estados Unidos

pariente(X,Y): X es pariente de Y

De esta forma, la siguiente expresión sería congruente a la afirmación original:

$$\forall X \ \exists Y (\ vive USA(Y) \ \land \ pariente(Y,X) \rightarrow mex(X))$$

Relación n-aria.

Una relación n-aria sobre un conjunto X es un subconjunto de X^n . Las relaciones unarias se denominan atributos, ej. pobre(X), pobre es un atributo de X.

Definición.

Sean X y Y dos conjuntos cualesquiera. Una relación binaria de X a Y se llama "Función Total" si para cada $x \in X$ existe una $y \in Y$ única tal que $(x,y) \in F$.

Definición.

Una función F de X a Y es una relación binária en XxY (Producto cartesiano), tal que $(x,y) \in F$ y $(x,z) \in F$ implican que y=z.

La función F
 es constante y
 determinada.

Funciones: Se le dan como argumentos objetos y entregan objetos como resultados, los objetos están incluidos en el universo de discurso.

Relaciones: Se utilizan para verificar valores de verdad (V/F)

Lógica de predicados de 1^{er} orden: Lenguaje especial de lógica en el cual se cuantifican variables.

Sintaxis de la lógica de predicados de 1er orden.

I. Caracteres

Letras: A, B, ... , Z, a, b, ... , z

Dígitos: 0, 1, ...,9

Signos de puntuación: . , () [] { }

Operadores aritméticos: +, -, *, /, ^

Operadores lógicos: $\neg, \land, \lor, \rightarrow, \leftarrow, \leftrightarrow$

Cuantificadores: \forall , \exists

Operadores relacionales: =, <, >, <=, >=, ≠

Operadores de conjuntos: \in, \cup, \cap, \notin

II. Símbolos

a) Constantes

Constantes objeto. Nombran un elemento específico del universo de discurso.

Constantes función. Designan una función sobre los elementos del universo de discurso.

Constantes Predicado. Designa una relación sobre los elementos del universo de discurso.

b) Variables

Designan, sin nombrarlos, a objetos del universo de discurso U que satisfacen algunas propiedades y se utilizan como argumentos de funciones.

III. Términos

Referencia a un objeto en el universo de discurso

- Constante objeto
- Variable

Expresión funcional

Definición:

- 1. Las variables individuales y las constantes objeto son términos.
- 2. Si F es una constante función de aridad n y además t1, t2, ..., tn son términos, entonces F(t1, t2, ..., tn) es un término.
- 3. Una expresión es un término sólo si puede mostrarse que es un término con base en 1 ó 2.

IV. Fórmulas atómicas o átomos (constante predicado con argumentos que son términos)

Se forman aplicando las constantes predicado a los términos.

Definición:

Si P en una constante predicado de aridad n y además t1, t2, ..., tn son términos, entonces P(t1, t2, ..., tn) es una fórmula atómica.

V. Fórmula bien formada (fb) (FB) (wff)

- 1. Toda fórmula atómica es un fb.
- 2. Si a y b son fb's, también lo son: $\neg a, a \land b, a \lor b, a \leftrightarrow b, a \leftrightarrow b, \forall Xa, \exists Xa$
- 3. Una expresión es una fórmula bien formada si y solo si se puede demostrar que es un fb con base en 1 y 2

Presentación BNF de la gramática:

```
\langle \exp \log \rangle ::= (\sim \langle \exp \log \rangle )' (\langle \exp \log \rangle )' | \langle \exp \log \rangle \langle \exp \log \rangle |
    <exp log> | <cuantificación> <exp log> | <átomo>)
o <opr_log_bin> ::= ( & | '|' | -> | <- | <-> )
o <cuantificación> ::= <cuantificador> <var>
   <cuantificador> ::= ( @ | # )
0
   <var> ::= <letra_may> [ <lista_car_válido> ]
0
   <atomo> ::= ( <const_pred> '(`<lista_términos>')' | <comparación> )
   <const pred> ::= <letra min> [ sta car válido> ]
0
   <comparación> ::= <término> <opr_comp> <término>
0
    <opr_comp> ::= ( = | != | `<' | `>' | <= | >= )
    términos> ::= ( <término> | <término> , términos> )
0
    <término> ::= ( <función> | <var> | <const_objeto> )
0
    <const_objeto> ::= <letra_min> [ <lista_car_válido> ]
0
   <función> ::= <const función> '(' sta términos> ')'
    <const función> ::= <letra min> [ <lista car válido> ]
0
    <letra_may> ::= ( A | B | C | D | E | F | G | H | I | ... | Y | Z )
0
    <letra_min> ::= ( a | b | c | d | f | g | h | i | ... | y | z )
    car_válido> ::= ( <car_válido> | <car_válido> car_válido> )
0
    <car_válido> ::= ( <letra_may> | <letra_min> | <dígito> | _ )
    <digito> ::= ( 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 )
```

Interpretación.

Una interpretación ${\bf I}$ es un mapeo entre los elementos del lenguaje y los de la conceptualización.

Asignación de Variables.

Una asignación de variables **A** es una función de las variables de un lenguaje a los objetos en el universo de discurso.

Asignación de términos.

Dada una interpretación \mathbf{I} y una asignación de variables \mathbf{A} , la asignación de términos $\mathbf{T}_{\mathbf{I}\mathbf{A}}$ corresponde a \mathbf{I} y \mathbf{A} en un mapeo de términos a objetos definida como:

- 1. Si k es una constante objeto, entonces $T_{IA}(k)=I(k)=k^{I}$
- 2. Si v es una variable, entonces $T_{IA}(v)=I(v)=v^A=A(v)$
- 3. Si **t** es un término de la forma **t**(t1, t2, ..., tn) e $I(\mathbf{t})$ =F y T_{IA} = \mathbf{t}_i = X_i entonces $T_{IA}(\mathbf{t})$ = $F(X_1, X_2, ..., X_n)$ (término compuesto o función)

Noción de verdad (satisfacción).

Una fb Φ se satisface con una interpretación I y una asignación de variables A

$\Pi_{I}\Phi[A]$

I: Una fórmula se satisface bajo la interpretación I

Inferencia.

Una regla de inferencia consiste de:

- 1. Un patrón de enunciados llamados condiciones.
- 2. Un patrón de enunciados llamados conclusiones.

Implicación lógica.

Un conjunto de enunciados E implica lógicamente un enunciado Φ , si y sólo si, cada interpretación y cada asignación de variables que satisfacen los enunciados en E también lo hacen para Φ .

$E \gg \Phi$, $E \gg \Phi$ SSI $\prod_{I} E[A]$ implica $\prod_{I} \Phi[A]$ para cualquier I y cualquier A

- Un procedimiento de inferencia es consistente si y sólo si cualquier enunciado que pueda ser derivado de la base de conocimiento (BC) utilizando ese procedimiento es lógicamente implicado por esa BC (hereda de inferencias anteriores).
- Un procedimiento de inferencia es completo si y sólo si cualquier enunciado lógicamente implicado por una BC puede ser utilizado en ese mismo procedimiento.

Definición.

Dado un conjunto de reglas de inferencia se dice que una conclusión Φ es derivable de un conjunto de premisas Δ si:

- 1. **Φ** es un miembro
- 2. $\mbox{\ensuremath{\Phi}}$ es el resultado de aplicar una o varias reglas de inferencia a enunciados derivables de Δ

Definición.

Una derivación Φ a partir de Δ es una secuencia de enunciados en la cual cada enunciado es, o un miembro de Δ , o el resultado de aplicar una regla de inferencia a elementos anteriores a la secuencia.

Definición.

Una demostración de un elemento de un enunciado Φ a partir de una base de datos Δ es una secuencia finita de enunciados en la cual:

- 1. Ψ es un elemento de la secuencia (el último).
- 2. cada elemento de la secuencia es:
 - -Un miembro de Δ
 - -Un axioma lógico
 - -El resultado de aplicar una regla de inferencia a enunciados anteriores.

Resolución.

Conversión a forma clausal.

Pasos:

- 1. Eliminar implicaciones.
- 2. Aplicar negaciones.
- 3. Renombrar variables.
- 4. Skolemnización.
- 5. Cuantificadores universales a la izquierda.
- 6. Distribución de ∨sobre ∧.
- 7. Separar disyuntos.8. Renombrar variables.
- 9. Eliminar universales.