Задача 10. (Bcepocc., 2010, P9, 11) Над одним молем метана (CH_4) совершается процесс, график которого изображён на рисунке. Перенесите график процесса в тетрадь и выделите на нём участки, на которых к газу подводится теплота. Какое количество теплоты было подведено к газу в этом процессе? Величины p_0 и V_0 считать известными.

Задача 5. Термодинамический «лабиринт»

Теплота подводится к газу на тех изохорах и изобарах, на которых температура возрастает. Обозначим эти участки жирными линиями (рис. 25). Вычислим суммарную работу, совершённую на этих участках, как сумму площадей под выделенными горизонтальными прямыми:

$$\frac{A}{p_0V_0} = \frac{9 \cdot 9 + 8 \cdot 7 + 7 \cdot 5 + 6 \cdot 3 + 5 \cdot 1}{100},$$

Рис. 25 откуда $A = 1,95 \, p_0 V_0$.

Так как метан — многоатомный газ, то его молярная теплоёмкость при постоянном объёме равна $C_V = 3R$. Вычислим изменение внутренней энергии на тех участках, где тепло подводится к газу:

$$\frac{\Delta U}{3p_0V_0} = \frac{1}{100} \Big((10 \cdot 9 - 1 \cdot 9) + (9 \cdot 8 - 2 \cdot 1) + (8 \cdot 7 - 3 \cdot 2) + (7 \cdot 6 - 4 \cdot 3) + (6 \cdot 5 - 5 \cdot 4) \Big) = 2,41,$$

откуда $\Delta U = 7.23 \, p_0 V_0$. Тогда подведённое тепло:

$$Q = \Delta U + A = 9{,}18 \, p_0 V_0.$$

Задача 13. (Bcepocc., 2002, O9, 10) Вещества X, Y и Z могут участвовать в следующей химической реакции:

$$3X + 2Y \rightarrow Z$$
.

Температуры плавления и кипения этих веществ таковы, что $T_x^{\text{пл}} < T_y^{\text{пл}} < T_z^{\text{пл}} = 10\,^{\circ}\text{C}$, $T_x^{\text{кип}} > T_y^{\text{кип}} > T_z^{\text{кип}} = 190\,^{\circ}\text{C}$. В первом опыте вещества X и Y, взятые при температуре $T_z^{\text{пл}}$, поместили в герметичный теплоизолированный сосуд. Через некоторое время в сосуде осталось только вещество Z, причем половина его была в твёрдом состоянии, а половина — в жидком. Во втором опыте вещества X и Y снова поместили в герметичный теплоизолированный сосуд, но на этот раз при температуре $T_z^{\text{кип}}$. Через некоторое время в сосуде осталось только вещество Z, причём одна половина его была в жидком состоянии, а другая — в газообразном. Найдите молярную теплоёмкость вещества Z в жидком состоянии. Молярные теплоёмкости веществ X и Y в жидком состоянии $C_x = 55$ кДж/(кмоль · K), $C_y = 80$ кДж/(кмоль · K); для вещества Z молярная теплота плавления $\lambda_z = 5$ МДж/кмоль, теплота парообразования $r_z = 40$ МДж/кмоль.

Примечание. Считать, что теплоёмкости веществ не зависят от температуры. Давление в сосуде в обоих опытах поддерживалось постоянным и одинаковым.

$$C_z = 3C_x + 2C_y - \frac{2(T_x^2 - T_y^2)}{\lambda_x + r_z} = 200$$
 кДж/кмоль

Задача 4. Химическая реакция

Пусть вещества X и Y в количестве 3ν и 2ν соответственно находятся при температуре $T_z^{\text{пл}}$. И пусть мы хотим получить из них вещество Z при температуре $T_z^{\text{кип}}$, причем так, чтобы половина его была в жидком состоянии, а половина — в газообразном. В соотвествии с данными в условии результатами двух опытов это можно сделать, например, следующими двумя способами. Можно сначала провести химическую реакцию, а затем, нагревая полученное вещество Z, довести его до конечного состояния. А можно первоначально нагреть вещества X и Y до температуры $T_z^{\text{кип}}$, а потом провести химическую реакцию. Оба процесса имеют одинаковые начальные и конечные состояния и идут при постоянном давлении, поэтому подводимое тепло в них одинаково:

$$\frac{\nu}{2}\lambda_z + \nu C_z (T_z^{\text{\tiny KUII}} - T_z^{\text{\tiny II,I}}) + \frac{\nu}{2} r_z = (3\nu C_x + 2\nu C_y) (T_z^{\text{\tiny KUII}} - T_z^{\text{\tiny II,I}}),$$

откуда

$$C_z = 3C_x + 2C_y - rac{\lambda_z + r_z}{2(T_z^{ ext{ iny KMII}} - T_z^{ ext{ iny IIJ}})} = 200 \; ext{кДж/(кмоль $\cdot \; ext{K})}.$$$

 $\Pi pumevanue$. Температура вещества Z после реакций, указанных в условии, окажется $T_z^{\text{пл}}$ и $T_z^{\text{кип}}$, так как в сосуде будут находиться в равновесии два агрегатных состояния вещества Z. Заметим, что из неравенств для температур плавления и кипения следует, что вещества X и Y не претерпевают фазовых переходов, а находятся все время в жидком состоянии. При парообразовании объем увеличивается, а значит, совершается работа против сил врешнего давления, но эта работа учтена в значении r_z .

Задача 9. (Bcepocc., 2016, P9, 11) Циклический процесс, совершаемый над идеальным газом, на (p,V)-плоскости представляет собой ромб (см. качественный рисунок). Вершины (1) и (3) лежат на одной изобаре, а вершины (2) и (4) — на одной изохоре. За цикл газ совершил работу A.

Насколько отличается количество теплоты Q_{12} , подведённое к газу на участке 1–2, от количества теплоты $|Q_{34}|$, отведённой от газа на участке 3–4?

 A_{8} A/2

Возможное решение.

Слободянин В.

Количество теплоты, подведённое к газу на участке 1-2 равно $Q_{1,2} = U_{1,2} + A_{1,2}$.

Количество теплоты, отведённое от газа на участке 3-4 равно $\left|Q_{3,4}\right| = U_{4,3} + A_{4,3}$.

Сравним изменения величин внутренних энергий.

Пусть давление в точках 1 и 3 равно p_0 , а объем в точках 2 и 4 равен V_0 . Пусть далее, при переходе из состояния 1 в 2 давление изменяется на Δp , а объем на ΔV . Тогда изменение температуры найдём из следующих соображений:

$$u R T_2 = p_0 V_0 + V_0 \Delta p;$$

$$u R T_1 = p_0 V_0 - p_0 \Delta V;$$

$$u R (T_2 - T_1) = V_0 \Delta p + p_0 \Delta V.$$

При переходе из состояния 3 в состояние 4 изменение температуры найдём из следующих соображений:

$$\begin{split} \nu R T_3 &= p_0 V_0 + p_0 \Delta V; \\ \nu R T_4 &= p_0 V_0 - V_0 \Delta p; \\ \nu R \left(T_3 - T_4 \right) &= p_0 \Delta V + V_0 \Delta p. \end{split}$$

Поскольку T_3-T_4 равно T_2-T_1 , то равны между собой и изменения величин внугренней энергии: $U_{1,2}=U_{4,3}$.

Работа $A_{1,2}$ больше работы $A_{4,3}$ на величину A/2.

Следовательно, и количество теплоты, подведённой к газу на участке 1-2, больше количества теплоты, отведённой от газа на участке 3-4, на A/2.