CSCM77 Revision

Porf. Xianghua Xie

x.xie@swansea.ac.uk

http://csvision.swan.ac.uk

Kinect

- Depth estimation using structured light
 - Depth from focus
 - Depth from stereo
- Body part estimation
 - Emphasis is on the understanding of supervised learning
- Classification
 - Unsupervised learning: clustering
 - Supervised learning: classification
 - Overfitting vs. underfitting
- Random Forests
 - Ensemble of bagged decision tree learners with randomised feature selection: concept of weak classifier ensemblement
 - Randomisation techniques: data & feature selection
 - Performance & efficiency compared to conventional decision tree

Camera Model and Calibration

- Camera models
 - Perspective model (most important)
 - Diagram
 - Weak and orthographic
- Parameters
 - Extrinsic parameters
 - Intrinsic paramters
- Camera calibration
 - Understanding the concept
 - No need to recite the equations

Stereo

- Stereo camera problems:
 - Correspondence
 - Reconstruction
- Epipolar geometry
 - Diagram
 - Concept & why it is useful
- Parameters
 - Intrinsic parameters
 - Extrinsic parameters
- Essential matrix & fundamental matrix
 - Understand its concept and purposes
 - No need to recite the equations

Stereo

- Correspondence search
 - Challenges
 - Methods
 - Correlation based
 - Feature based
 - Epipolar constraint based
- 3D reconstruction
 - Understand the concept
 - Diagram
 - No need to recite the equations

Motion & Tracking

- Motion and stereo
 - Difference and similarity
- Motion estimation vs. motion tracking
- Apparent and true motion
- Motion tracking
 - Feature
 - Motion model
 - Estimate trajectory
- Mean shift
 - Concept & how it is used to estimate modes
 - Parameter
 - Challenges: perturbation and sensitivity to kernel parameter

Filtering

- Convolution
 - Concept & how it operates: able to expand the convolution equation for a given convolution kernel
 - Understand the difference to correlation
- Edge detection
 - Concept: 1st order and 2nd order & their differences
 - Methods
 - Performance towards noise & accuracy in localising edges
- Median filtering
 - Concept
 - Difference to Gaussian filtering

Haar

- Wavelet
 - Concept
 - Haar wavelets
- Boosting
 - Concept of classifier boosting
 - Assumption of AdaBoost

- Cascading
 - Concept and how this applied in face detection

HoG

- HoG human detection assumptions
- General procedure

- SVM
 - Concept & what is a support vector
 - The principle of selecting a better decision making in SVM
- KNN
 - Concept and how it determines class label in classification
 - Difference to SVM

NN & CNN

- Perceptron
 - Concept
 - How it is approximated in NN
- Multi-layer NN
- CNN intro
 - Concept & how it is different to NN
 - Convolution layer and its purpose
 - Pooling techniques

CNN

- Convolution
 - 1D, 2D, multichannel
 - Nonlinear transformation and its role
 - Convolution with multiple filters
 - Activation functions (types and their characteristics)
 - Softmax for multiclass classification
 - Cost function for classification and regression
 - Typical CNN architectures
 - Overfitting problems with CNN

RCNN

- Image classification and object localization
 - Concepts
 - Relationship between the two
- Region proposal
 - Concept
 - Its role in RCNN
- RCNN
 - Fundamental concept of RCNN
 - Architecture
 - Training process
- Fast-RCNN & Faster-RCNN
 - What are the differences to RCNN and improvements
- Mean average precision

RNN & LSTM

The role of memory in deep neural network

RNN

- How memory is modelled
- Graphical representations
- Parameters associated with memory unit
- Key RNN types to handle different applications, e.g. many to many
- Back propagation concept in RNN
- Challenges with conventional RNN
 - Vanishing/exploding gradients
 - Long term memory issue
 - State update and memory selection problems

RNN & LSTM

LSTM

- Fundamental concept of LSTM
- The key functions of the memory cell in LSTM
- Types of LSTM nonlinear function
- LSTM graphical representation
- LSTM gates
- Unrolling LSTM
- Understand examples of LSTM application, e.g. text captioning.