Deep Learning Tutorial

Deep learning attracts lots of attention.

Google Trends

Deep learning attracts lots of attention.

Google Trends

Deep learning obtains many exciting results.

Outline

Part I: Introduction of Deep Learning

Part II: Why Deep?

Part III: Tips for Training Deep Neural Network

Part I: Introduction of Deep Learning

What people already knew in 1980s

Input

Input

Input

Input

Input

Input

Input

Input

No ink \rightarrow 0

Output

y₁

y₂

y₁₀

Input

Ink \rightarrow 1 No ink \rightarrow 0

Output

y₁

y₂

:

y₁₀

Input

No ink \rightarrow 0

Output

Input

No ink \rightarrow 0

Output

Input

Ink \rightarrow 1 No ink \rightarrow 0

Output

Input

No ink \rightarrow 0

Output

Handwriting Digit Recognition

In deep learning, the function f is represented by neural network

Neuron $f: \mathbb{R}^K \to \mathbb{R}$

 a_1

 a_2

 $a_{\rm K}$

 \mathcal{A}

Neuron
$$f: \mathbb{R}^K \to \mathbb{R}$$

Neuron
$$f: \mathbb{R}^K \to \mathbb{R}$$

Neuron
$$f: \mathbb{R}^K \to \mathbb{R}$$

Neural Network

Neural Network

Neural Network

Neural Network

Neural Network neuron Layer L Layer 1 Layer 2 Input x_1 $x_{\rm N}$

Neural Network neuron Layer L Layer 2 Input Layer 1 Output **→** y₁ x_1 **► y**₂

• **y**_M

 $x_{\rm N}$

Neural Network neuron Input Layer 1 Layer 2 Layer L Output → y₁ x_1 **► y**₂ $x_{\rm N}$ **y**_M Input

Layer

Neural Network neuron Layer 1 Layer 2 Layer L Input Output → y₁ x_1 **► y**₂ $x_{\rm N}$ • **y**_M Input **Output**

Layer

Layer

Neural Network neuron Layer 1 Layer 2 Layer L Input Output ▶ y₁ x_1 ► **y**₂ $x_{\rm N}$ **y**_M Input **Output Hidden Layers** Layer Layer

Deep means many hidden layers

 $f: \mathbb{R}^2 \to \mathbb{R}^2$

$$f: \mathbb{R}^2 \to \mathbb{R}^2 \qquad f\left(\begin{bmatrix} 1\\ -1 \end{bmatrix}\right) = \begin{bmatrix} 0.62\\ 0.83 \end{bmatrix}$$

$$f: \mathbb{R}^2 \to \mathbb{R}^2 \qquad f\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}\right) = \begin{bmatrix} 0.62 \\ 0.83 \end{bmatrix} \quad f\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 0.51 \\ 0.85 \end{bmatrix}$$

$$f: \mathbb{R}^2 \to \mathbb{R}^2 \qquad f\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}\right) = \begin{bmatrix} 0.62 \\ 0.83 \end{bmatrix} \quad f\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 0.51 \\ 0.85 \end{bmatrix}$$

Different parameters define different function

$$\sigma(W^1 x + b^1)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$\sigma(W_1 x + b_1)$$

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

$$= \sigma(W^{\perp} \dots \sigma(W^{2} \sigma(W^{1} x + b^{1}) + b^{2}) \dots + b^{\perp})$$

Softmax layer as the output layer

Ordinary Layer

$$z_1 \longrightarrow \sigma \longrightarrow y_1 = \sigma \left(z_1 \right)$$

$$z_2 \longrightarrow \sigma \longrightarrow y_2 = \sigma(z_2)$$

$$z_3 \longrightarrow \sigma \longrightarrow y_3 = \sigma(z_3)$$

Softmax layer as the output layer

Ordinary Layer

$$z_1 \longrightarrow \sigma \longrightarrow y_1 = \sigma \left(z_1 \right)$$

$$z_2 \longrightarrow \sigma \longrightarrow y_2 = \sigma(z_2)$$

$$z_3 \longrightarrow \sigma \longrightarrow y_3 = \sigma(z_3)$$

In general, the output of network can be any value.

Softmax layer as the output layer

Ordinary Layer

$$z_1 \longrightarrow \sigma \longrightarrow y_1 = \sigma \left(z_1 \right)$$

$$z_2 \longrightarrow \sigma \longrightarrow y_2 = \sigma(z_2)$$

$$z_3 \longrightarrow \sigma \longrightarrow y_3 = \sigma(z_3)$$

In general, the output of network can be any value.

May not be easy to interpret

Softmax layer as the output layer

Softmax Layer

Probability:

Softmax layer as the output layer

Softmax Layer

Probability:

$$\Sigma_i y_i = 1$$

Softmax layer as the output layer

Softmax Layer

Probability:

- $\frac{1 > y_i > 0}{\sum_i y_i = 1}$

Softmax layer as the output layer

Softmax Layer

Probability:

 $\begin{array}{c|c}
\hline
1 > y_i > 0 \\
\Sigma_i y_i = 1
\end{array}$

Probability:

 $1 > y_i > 0$

 $\mathbf{\Sigma}_i y_i = 1$

Softmax layer as the output layer

<u>Softmax Layer</u>

Probability:

Softmax layer as the output layer

<u>Softmax Layer</u>

Probability:

Softmax layer as the output layer

Softmax Layer

 $\frac{Probability}{\blacksquare 1 > y_i > 0}$

 $\sum_i y_i = 1$

Softmax layer as the output layer

Softmax Layer

How to set network parameters

 $lnk \rightarrow 1$

No ink \rightarrow 0

How to set network parameters

 $lnk \rightarrow 1$

No ink \rightarrow 0

Set the network parameters θ such that

How to set network parameters

 $lnk \rightarrow 1$

No ink \rightarrow 0

Set the network parameters θ such that

 $lnk \rightarrow 1$

No ink \rightarrow 0

Set the network parameters heta such that

Input: /

Ink \rightarrow 1

No ink \rightarrow 0

Set the network parameters θ such that

Input: y_1 has the maximum value

Ink \rightarrow 1

No ink \rightarrow 0

Set the network parameters θ such that

Input: y_1 has the maximum value

Input:

 $lnk \rightarrow 1$

No ink \rightarrow 0

Set the network parameters θ such that

Input: y_1 has the maximum value

Input: y_2 has the maximum value

Ink \rightarrow 1 No ink \rightarrow 0 Set the network parameters θ such that

Input How to let the neural n value network achieve this

Input: y_2 nas the maximum value

Training Data

• Preparing training data: images and their labels

Training Data

Preparing training data: images and their labels

Training Data

Preparing training data: images and their labels

Using the training data to find the network parameters.

Given a set of network parameters θ , each example has a cost value.

Cost can be Euclidean distance or cross entropy of the network output and target

Given a set of network parameters θ , each example has a cost value.

Cost can be Euclidean distance or cross entropy of the network output and target

For all training data ...

For all training data ...

Total Cost:

$$C(\theta) = \sum_{r=1}^{R} L^{r}(\theta)$$

For all training data ...

Total Cost:

$$C(\theta) = \sum_{r=1}^{K} L^{r}(\theta)$$

How bad the network parameters θ is on this task

For all training data ...

Total Cost:

$$C(\theta) = \sum_{r=1}^{K} L^{r}(\theta)$$

How bad the network parameters θ is on this task

Find the network parameters θ^* that minimize this value

Assume there are only two parameters w_1 and w_2 in a network.

Assume there are only two parameters w_1 and w_2 in a network.

$$\theta = \{w_1, w_2\}$$

Assume there are only two parameters w_1 and w_2 in a network.

$$\theta = \{w_1, w_2\}$$

Assume there are only two parameters w_1 and w_2 in a network.

$$\theta = \{w_1, w_2\}$$

Assume there are only two parameters w_1 and w_2 in a network.

$$\theta = \{w_1, w_2\}$$

Randomly pick a starting point θ^0

Assume there are only two parameters w_1 and w_2 in a network.

$$\theta = \{w_1, w_2\}$$

Randomly pick a starting point θ^0

Assume there are only two parameters w_1 and w_2 in a network.

$$\theta = \{w_1, w_2\}$$

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

Assume there are only two parameters w_1 and w_2 in a network.

$$\theta = \{w_1, w_2\}$$

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

Assume there are only two parameters w_1 and w_2 in a network.

$$\theta = \{w_1, w_2\}$$

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

Assume there are only two parameters w_1 and w_2 in a network.

$$\theta = \{w_1, w_2\}$$

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

Assume there are only two parameters w_1 and w_2 in a network.

$$\theta = \{w_1, w_2\}$$

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

$$-\eta \nabla C(\theta^0)$$

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

$$-\eta \nabla C(\theta^0)$$

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

$$-\eta \nabla C(\theta^0)$$

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

$$-\eta \nabla C(\theta^0)$$

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

$$-\eta \nabla C(\theta^0)$$

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

$$-\eta \nabla C(\theta^0)$$

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

$$-\eta \nabla C(\theta^0)$$

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

$$-\eta \nabla C(\theta^0)$$

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

$$-\eta \nabla C(\theta^0)$$

Local Minima

Gradient descent never guarantee global minima

Local Minima

Gradient descent never guarantee global minima

Local Minima

Gradient descent never guarantee global minima

Part II: Why Deep?

Deeper is Better?

Layer X Size	Word Error Rate (%)
1 X 2k	24.2
2 X 2k	20.4
3 X 2k	18.4
4 X 2k	17.8
5 X 2k	17.2
7 X 2k	17.1

Deeper is Better?

Layer X Size	Word Error Rate (%)
1 X 2k	24.2
2 X 2k	20.4
3 X 2k	18.4
4 X 2k	17.8
5 X 2k	17.2
7 X 2k	17.1

Not surprised, more parameters, better performance

Any continuous function f

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

Reference for the reason:
http://
neuralnetworksanddeeplearning.com/chap4.html

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)

Reference for the reason:
http://
neuralnetworksanddeeplearning.com/chap4.html

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)

Reference for the reason:
http://
neuralnetworksanddeeplearning.com/chap4.html

Why "Deep" neural network not "Fat" neural network?

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4		
3 X 2k	18.4		
4 X 2k	17.8		
5 X 2k	17.2	1 X 3772	22.5
7 X 2k	17.1	1 X 4634	22.6
		1 X 16k	22.1

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4		
3 X 2k	18.4		
4 X 2k	17.8		
5 X 2k	17.2	1 X 3772	22.5
7 X 2k	17.1	1 X 4634	22.6
		1 X 16k	22.1

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4		
3 X 2k	18.4		
4 X 2k	17.8		
5 X 2k	17.2	1 X 3772	22.5
7 X 2k	17.1	1 X 4634	22.6
		1 X 16k	22.1

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4		
3 X 2k	18.4		
4 X 2k	17.8		
5 X 2k	17.2	1 X 3772	22.5
7 X 2k	17.1	1 X 4634	22.6
		1 X 16k	22.1

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4		
3 X 2k	18.4		
4 X 2k	17.8		
5 X 2k	17.2	1 X 3772	22.5
7 X 2k	17.1	1 X 4634	22.6
		1 X 16k	22.1

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4		
3 X 2k	18.4		
4 X 2k	17.8		
5 X 2k	17.2	1 X 3772	22.5
7 X 2k	17.1	1 X 4634	22.6
		1 X 16k	22.1

• Deep → Modularization

Image

Girls with long hair

Boys with long hair

Girls with short hair

Boys with short hair

Deep → Modularization

Image

Deep → Modularization

Classifiers for the attributes

Each basic classifier can have sufficient training examples.

Deep → Modularization

Girls with long hair

Boys with long hair

Girls with short hair

Boys with short hair

Why Deep? can be trained by little data Deep → Modularization Girls with Classifier 1 long hair Boy or Girl? Boys with Classifier 2 long hair Basic **Image** Classifier Girls with Classifier 3 short hair Long or short? Boys with Classifier 4 Sharing by the short hair following classifiers as module

Why Deep? can be trained by little data Deep → Modularization Girls with Classifier 1 long hair Boy or Girl? Boys with Classifier 2 Little data Basic **Image** Classifier Girls with Classifier 3 short hair Long or short? Boys with Classifier 4 Sharing by the short hair following classifiers as module

Why Deep? can be trained by little data Deep → Modularization Girls with Classifier 1 long hair Boy or Girl? Boys with Classifier 2 -Little data fine Basic **Image** Classifier Girls with Classifier 3 short hair Long or short? Boys with Classifier 4 Sharing by the short hair following classifiers as module

• Deep → Modularization

• Deep → Modularization

The most basic classifiers

Deep → Modularization

The most basic classifiers

Use 1st layer as module to build classifiers

Deep → Modularization

The most basic classifiers

Use 1st layer as module to build classifiers

Deep → Modularization

The most basic classifiers

Use 1st layer as module to build classifiers

Deep → Modularization → Less training data?

The most basic classifiers

Use 1st layer as module to build classifiers

Deep Learning also works on small data set like TIMIT.

Deep → Modularization → Less training data?

The most basic classifiers

Use 1st layer as module to build classifiers

Source of image: http://www.gipsa-lab.grenoble-inp.fr/
transfert/seminaire/455_Kadri2013Gipsa-lab.pdf

Deep Learning

Deep Learning

Source of image: http://www.gipsa-lab.grenoble-inp.fr/transfert/seminaire/455_Kadri2013Gipsa-lab.pdf

Source of image: http://www.gipsa-lab.grenoble-inp.fr/
transfert/seminaire/455_Kadri2013Gipsa-lab.pdf

Deep Learning

Deep Learning

Source of image: http://www.gipsa-lab.grenoble-inp.fr/transfert/seminaire/455_Kadri2013Gipsa-lab.pdf

Deep Learning

Source of image: http://www.gipsa-lab.grenoble-inp.fr/transfert/seminaire/455_Kadri2013Gipsa-lab.pdf

Hard to get the power of Deep ...

Hard to get the power of Deep ...

Part III: Tips for Training DNN

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-explained-in-a-single-powerpoint-slide/

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-explained-in-a-single-powerpoint-slide/

- Modify the Network
- New activation functions, for example, ReLU or Maxout
 - Better optimization Strategy
- Adaptive learning rates
 - Prevent Overfitting
- Dropout

- Modify the Network
- New activation functions, for example, ReLU or Maxout
 - Better optimization Strategy
- Adaptive learning rates
 - Prevent Overfitting
- Dropout

Only use this approach when you already obtained good results on the training data.

Part III: Tips for Training DNN

New Activation Function

Rectified Linear Unit (ReLU)

Reason:

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Rectified Linear Unit (ReLU)

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

1. Fast to compute

Rectified Linear Unit (ReLU)

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

- 1. Fast to compute
- 2. Biological reason

Rectified Linear Unit (ReLU)

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Infinite sigmoid with different biases

Rectified Linear Unit (ReLU)

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Infinite sigmoid with different biases
- 4. Vanishing gradient problem

ReLU

Rectified Linear Unit (ReLU)

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Infinite sigmoid with different biases
- 4. Vanishing gradient problem

Learn very slow

Smaller gradients

Learn very slow

Larger gradients

Learn very fast

Smaller gradients

Learn very slow

Almost random

Larger gradients

Learn very fast

Smaller gradients

Learn very slow

Almost random

Larger gradients

Learn very fast

Already converge

Smaller gradients

Learn very slow

Almost random

Larger gradients

Learn very fast

Already converge

based on random!?

Smaller gradients

Smaller gradients

$$\frac{\partial C}{\partial w} = ?$$

Smaller gradients

$$\frac{\partial C}{\partial w} = 3$$

Smaller gradients

$$\frac{\partial C}{\partial w} = ? \frac{\Delta C}{\Delta w}$$

Smaller gradients

$$\frac{\partial C}{\partial w} = ? \frac{\Delta C}{\Delta w}$$

Smaller gradients

$$\frac{\partial C}{\partial w} = ? \frac{\Delta C}{\Delta w}$$

Smaller gradients

$$\frac{\partial C}{\partial w} = ? \frac{\Delta C}{\Delta w}$$

Smaller gradients

$$\frac{\partial C}{\partial w} = ? \frac{\Delta C}{\Delta w}$$

Smaller gradients

$$\frac{\partial C}{\partial w} = ? \frac{\Delta C}{\Delta w}$$

Smaller gradients

$$\frac{\partial C}{\partial w} = ? \frac{\Delta C}{\Delta w}$$

Smaller gradients

$$\frac{\partial C}{\partial w} = ? \frac{\Delta C}{\Delta w}$$

Smaller gradients

$$\frac{\partial C}{\partial w} = ? \frac{\Delta C}{\Delta w}$$

ReLU

A Thinner linear network

a = zReLU a = 0A Thinner linear network \mathcal{Y}_1 \mathcal{Y}_2 x_2 Do not have smaller gradients

ReLU is a special cases of Maxout

ReLU is a special cases of Maxout

• Learnable activation function [lan J. Goodfellow, ICML'13]

Input

 \mathcal{X}_2

ReLU is a special cases of Maxout

ReLU is a special cases of Maxout

ReLU is a special cases of Maxout

ReLU is a special cases of Maxout

ReLU is a special cases of Maxout

ReLU is a special cases of Maxout

ReLU is a special cases of Maxout

ReLU is a special cases of Maxout

ReLU is a special cases of Maxout

ReLU is a special cases of Maxout

ReLU is a special cases of Maxout

ReLU is a special cases of Maxout

ReLU is a special cases of Maxout

ReLU is a special cases of Maxout

• Learnable activation function [lan J. Goodfellow, ICML'13]

You can have more than 2 elements in a group.

ReLU is a special cases of Maxout

ReLU is a special cases of Maxout

- Learnable activation function [lan J. Goodfellow, ICML'13]
 - Activation function in maxout network can be any piecewise linear convex function

ReLU is a special cases of Maxout

- Learnable activation function [lan J. Goodfellow, ICML'13]
 - Activation function in maxout network can be any piecewise linear convex function
 - How many pieces depending on how many elements in a group

ReLU is a special cases of Maxout

- Learnable activation function [lan J. Goodfellow, ICML'13]
 - Activation function in maxout network can be any piecewise linear convex function
 - How many pieces depending on how many elements in a group

ReLU is a special cases of Maxout

- Learnable activation function [lan J. Goodfellow, ICML'13]
 - Activation function in maxout network can be any piecewise linear convex function
 - How many pieces depending on how many elements in a group

ReLU is a special cases of Maxout

- Learnable activation function [lan J. Goodfellow, ICML'13]
 - Activation function in maxout network can be any piecewise linear convex function
 - How many pieces depending on how many elements in a group

ReLU is a special cases of Maxout

- Learnable activation function [lan J. Goodfellow, ICML'13]
 - Activation function in maxout network can be any piecewise linear convex function
 - How many pieces depending on how many elements in a group

2 elements in a group

ReLU is a special cases of Maxout

- Learnable activation function [lan J. Goodfellow, ICML'13]
 - Activation function in maxout network can be any piecewise linear convex function
 - How many pieces depending on how many elements in a group

2 elements in a group

ReLU is a special cases of Maxout

- Learnable activation function [lan J. Goodfellow, ICML'13]
 - Activation function in maxout network can be any piecewise linear convex function
 - How many pieces depending on how many elements in a group

2 elements in a group

Part III: Tips for Training DNN

Adaptive Learning Rate

Can we give different parameters different learning rates?

Original Gradient Descent

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Original Gradient Descent

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

$$w^{t+1} \leftarrow w^t - \eta_w g^t$$

Original Gradient Descent

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

$$w^{t+1} \leftarrow w^t - \eta_w g^t$$

Original Gradient Descent

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

$$w^{t+1} \leftarrow w^t - \eta_w \underline{g}^t$$
 $\underline{g}^t = \frac{\partial C(\theta^t)}{\partial w}$

Original Gradient Descent

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Each parameter w are considered separately

$$w^{t+1} \leftarrow w^t - \eta_w g^t$$
 $\underline{g}^t = \frac{\partial C(\theta^t)}{\partial w}$

Parameter dependent learning rate

Original Gradient Descent

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Each parameter w are considered separately

$$w^{t+1} \leftarrow w^t - \eta_w \underline{g}^t \qquad \underline{g}^t = \frac{\partial C(\theta^t)}{\partial w}$$

Parameter dependent learning rate

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

Original Gradient Descent

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Original Gradient Descent

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Each parameter w are considered separately

Parameter dependent learning rate

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

constant

Summation of the square of the previous derivatives

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

$$w_1 = \frac{g^0}{0.1}$$

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

$$\frac{\eta}{\sqrt{0.1^2}}$$

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

$$w_1 = \frac{g^0}{0.1}$$

$$\frac{\eta}{\sqrt{0.1^2}} \qquad = \frac{\eta}{0.1}$$

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

W ₄	g ⁰	g¹	•••••
W 1	0.1	0.2	*****

$$\frac{\eta}{\sqrt{0.1^2}} = \frac{\eta}{0.1}$$

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

Wa	g ⁰	g¹	•••••
W 1	0.1	0.2	•••••

$$\frac{\frac{\eta}{\sqrt{0.1^2}}}{\frac{\eta}{\sqrt{0.1^2 + 0.2^2}}} = \frac{\eta}{0.1}$$

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

Wa	g ⁰	g¹	•••••
W 1	0.1	0.2	••••

$$\frac{\eta}{\sqrt{0.1^2}} = \frac{\eta}{0.1}$$

$$\frac{\eta}{\sqrt{0.1^2 + 0.2^2}} = \frac{\eta}{0.22}$$

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

$$w_1$$
 0.1 0.2

$$w_2 = \frac{g^0}{20.0}$$

$$\frac{\eta}{\sqrt{0.1^2}} = \frac{\eta}{0.1}$$

$$\frac{\eta}{\sqrt{0.1^2 + 0.2^2}} = \frac{\eta}{0.22}$$

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

$$w_1$$
 0.1 0.2

 $w_2 = \frac{g^0}{20.0}$

Learning rate:

$$\frac{\eta}{\sqrt{0.1^2}} = \frac{\eta}{0.1}$$

$$\frac{\eta}{\sqrt{0.1^2 + 0.2^2}} = \frac{\eta}{0.22}$$

$$\frac{\eta}{\sqrt{20^2}}$$

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

$$w_1$$
 0.1 0.2

Learning rate:

$$\frac{\eta}{\sqrt{0.1^2}} = \frac{\eta}{0.1}$$

$$\frac{\eta}{\sqrt{0.1^2 + 0.2^2}} = \frac{\eta}{0.22}$$

$$w_2 = \frac{g^0}{20.0}$$

$$\frac{\eta}{\sqrt{20^2}} = \frac{\eta}{20}$$

Wa	g ⁰	g¹	•••••
w ₁	0.1	0.2	••••

$$w_2$$
 g^0 g^1 20.0 10.0

$$\frac{\eta}{\sqrt{0.1^2}} = \frac{\eta}{0.1}$$

$$\frac{\eta}{\sqrt{0.1^2 + 0.2^2}} = \frac{\eta}{0.22}$$

$$\frac{\eta}{\sqrt{20^2}} = \frac{\eta}{20}$$

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

W ₄	g ⁰	g¹	•••••
W 1	0.1	0.2	*****

$$w_2$$
 g^0 g^1 20.0 10.0

Learning rate:

$$\frac{\eta}{\sqrt{0.1^2}} = \frac{\eta}{0.1}$$

$$\frac{\eta}{\sqrt{0.1^2 + 0.2^2}} = \frac{\eta}{0.22}$$

$$\frac{\frac{\eta}{\sqrt{20^2}}}{\frac{\eta}{\sqrt{20^2 + 10^2}}} = \frac{\eta}{20}$$

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

W.	g ⁰	g¹	•••••
w ₁	0.1	0.2	*****

$$w_2$$
 g^0 g^1 20.0 10.0

Learning rate:

$$\frac{\eta}{\sqrt{0.1^2}} = \frac{\eta}{0.1}$$

$$\frac{\eta}{\sqrt{0.1^2 + 0.2^2}} = \frac{\eta}{0.22}$$

$$\frac{\eta}{\sqrt{20^2}} = \frac{\eta}{20}$$

$$\frac{\eta}{\sqrt{20^2 + 10^2}} = \frac{\eta}{22}$$

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

W ₄	g ⁰	g¹	•••••
W 1	0.1	0.2	•••••

$$w_2$$
 g^0 g^1 20.0 10.0

Learning rate:

$$\frac{\eta}{\sqrt{0.12}} = \frac{\eta}{0.1}$$

$$\frac{\eta}{\sqrt{0.1^2 + 0.2^2}} = \frac{\eta}{0.22}$$

Learning rate:

$$\frac{\eta}{\sqrt{20^2}} = \frac{\eta}{20}$$

$$\frac{\eta}{\sqrt{20^2 + 10^2}} = \frac{\eta}{22}$$

Observation:

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

W.	g ⁰	g¹	•••••
W 1	0.1	0.2	••••

$$w_2$$
 g^0 g^1 20.0 10.0

Learning rate:

$$\frac{\eta}{\sqrt{0.1^2}} = \frac{\eta}{0.1}$$

$$\frac{\eta}{\sqrt{0.1^2 + 0.2^2}} = \frac{\eta}{0.22}$$

Learning rate:

$$\frac{\frac{\eta}{\sqrt{20^2}}}{\frac{\eta}{\sqrt{20^2 + 10^2}}} = \frac{\eta}{22}$$

Observation: 1. Learning rate is smaller and smaller for all parameters

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

W.	g ⁰	g¹	•••••
w ₁	0.1	0.2	••••

147-	g ⁰	g¹	•••••
w ₂	20.0	10.0	••••

$$\frac{\eta}{\sqrt{0.1^2}} = \frac{\eta}{0.1} \qquad \frac{\eta}{\sqrt{20^2}} = \frac{\eta}{20}$$

$$\frac{\eta}{\sqrt{0.1^2 + 0.2^2}} = \frac{\eta}{0.22} \qquad \frac{\eta}{\sqrt{20^2 + 10^2}} = \frac{\eta}{22}$$

- **Observation:** 1. Learning rate is smaller and smaller for all parameters
 - 2. Smaller derivatives, larger learning rate, and vice versa

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

Wa	g ⁰	g¹	•••••
w ₁	0.1	0.2	••••

147.	g ⁰	g¹	•••••
w ₂	20.0	10.0	••••

Learning rate:

$$\frac{\eta}{\sqrt{0.1^2}} = \frac{\eta}{0.1}$$

$$\frac{\eta}{\sqrt{20^2}} = \frac{\eta}{20}$$

$$\frac{\eta}{\sqrt{100^2}} = \frac{\eta}{20}$$

- **Observation:** 1. Learning rate is smaller and smaller for all parameters
 - 2. Smaller derivatives, larger le rate, and vice versa

Not the whole story

- Adagrad [John Duchi, JMLR'11]
- RMSprop
 - https://www.youtube.com/watch?v=O3sxAc4hxZU
- Adadelta [Matthew D. Zeiler, arXiv'12]
- Adam [Diederik P. Kingma, ICLR'15]
- AdaSecant [Caglar Gulcehre, arXiv'14]
- "No more pesky learning rates" [Tom Schaul, arXiv'12]

Part III: Tips for Training DNN Dropout

Dropout

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Dropout

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Dropout

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Training:

> Each time before computing the gradients

Dropout

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

- **Each time before computing the gradients**
 - Each neuron has p% to dropout

Dropout

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

- **Each time before computing the gradients**
 - Each neuron has p% to dropout

Dropout

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

- > Each time before computing the gradients
 - Each neuron has p% to dropout

Dropout

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

- > Each time before computing the gradients
 - Each neuron has p% to dropout

Dropout

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

- > Each time before computing the gradients
 - Each neuron has p% to dropout
 - The structure of the network is changed.
 - Using the new network for training

Dropout

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Training:

- ➤ Each time before computing the gradients
 - Each neuron has p% to dropout
 - The structure of the network is changed.
 - Using the new network for training

For each mini-batch, we resample the dropout neurons

Dropout

Dropout

Testing:

Dropout

Testing:

Dropout

Testing:

➣ No dropout

• If the dropout rate at training is p%, all the weights times (1-p)%

Dropout

Testing:

- If the dropout rate at training is p%, all the weights times (1-p)%
 - Assume that the dropout rate is 50%.
 If a weight w = 1 by training, set w = 0.5 for testing.

> When teams up, if everyone expect the partner will do the work, nothing will be done finally.

- > When teams up, if everyone expect the partner will do the work, nothing will be done finally.
- > However, if you know your partner will dropout, you will do better.

- ➤ When teams up, if everyone expect the partner will do the work, nothing will be done finally.
- ➤ However, if you know your partner will dropout, you will do better.
- > When testing, no one dropout actually, so obtaining good results eventually.

• Why the weights should multiply (1-p)% (dropout rate) when testing?

• Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

• Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

• Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

• Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

• Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

• Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

• Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

• Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

• Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

Concluding Remarks

Concluding Remarks

- Introduction of deep learning
- Discussing some reasons using deep learning
- New techniques for deep learning
 - ReLU, Maxout
 - Giving all the parameters different learning rates
 - Dropout

Reading Materials

- "Neural Networks and Deep Learning"
 - written by Michael Nielsen
 - http://neuralnetworksanddeeplearning.com/
- "Deep Learning" (not finished yet)
 - Written by Yoshua Bengio, Ian J. Goodfellow and Aaron Courville
 - http://www.iro.umontreal.ca/~bengioy/dlbook/

Thank you for your attention!

Appendix

 A two levels of basic logic gates can represent any Boolean function.

- A two levels of basic logic gates can represent any Boolean function.
- However, no one uses two levels of logic gates to build computers

- A two levels of basic logic gates can represent any Boolean function.
- However, no one uses two levels of logic gates to build computers
- Using multiple layers of logic gates to build some functions are much simpler (less gates needed).

- A two levels of basic logic gates can represent any Boolean function.
- However, no one uses two levels of logic gates to build computers
- Using multiple layers of logic gates to build some functions are much simpler (less gates needed).

Boosting

Boosting

Weak classifier

