## API EUROSTAT

Wprowadzenie

#### API Eurostatu - Podstawowe informacje

- Eurostat oferuje dostęp do całego zasobu danych ze swoich baz danych przez usług i sieciowe (API) w trzech formatach (SDMX, Json i Unicode).
- Interfejsy API koncentrują się na ogólnym dostarczaniu danych statystycznych i powiązanych metadanych, począwszy od kodu danych online produktu, który można znaleźć w przeglądarce danych, w publikacjach lub na stronie internetowej Eurostatu.

#### Interfejsy API dostępne w Eurostacie

Różne interfejsy pozwalają użytkownikom na wygodne i elastyczne pobieranie danych statystycznych i metadanych z Eurostatu, dostosowane do różnych potrzeb i standardów technicznych. Przykładowe interfejsy:

- STATISTICS główny interfejs API do pobierania danych statystycznych z Eurostatu, zapewniający ciągłość z wcześniejszym systemem opartym na formacie JSON;
- SDMX 3.0 używany do metadanych i zapytań o dane zgodnie ze specyfikacją SDMX 3.0; pozwala na pobieranie danych i szczegółowych informacji o ich strukturze w sposób ustandaryzowany;
- **SDMX 2.1**, używany do metadanych i zapytań o dane zgodnie ze specyfikacją SDMX 2.1; poprzednia wersja specyfikacji SDMX, która nadal jest wspierana. Umożliwia pobieranie danych i metadanych zgodnie ze standardem SDMX 2.1, co zapewnia kompatybilność z aplikacjami, które jeszcze nie przeszły na wersję 3.0.
- ► CATALOGUE interfejs służący do wyszukiwania zbiorów danych przed pobraniem ich za pomocą innych interfejsów (np. SDMX lub STATISTICS).

#### Wymiar przestrzenny w API Eurostatu

- ▶ GISCO jest otwartym geoprzestrzennym repozytorium danych obejmującym kilka zbiorów danych, takich jak kraje, linie brzegowe, etykiety lub podział NUTS. Dzięki temu narzędziu użytkownicy mogą wykonywać zaawansowane analizy przestrzenne danych statystycznych, a dane Eurostatu mogą być przedstawione w sposób graficzny na mapach, co wspiera lepsze zrozumienie i podejmowanie decyzji na poziomie polityki regionalnej.
- Zestawy danych są zwykle dostarczane na kilku poziomach rozdzielczości (60M/20M/10M/03M/01M) oraz w 3 różnych projekcjach (4326/3035/3857).

# Przykładowe zastosowanie wymiaru przestrzennego

- Pobieranie danych można zapisać zapytanie do API, aby pobrać dane dotyczące bezrobocia dla różnych regionów, np. bezrobocia z podziałem na jednostki NUTS2.
- Wizualizacja Dane pobrane z API mogą być łatwo zaimportowane do narzędzi takich jak Python, R czy QGIS, które umożliwiają geograficzną wizualizację wskaźników, tworząc mapy porównawcze.
- Analiza przestrzenna Dzięki wizualizacji można zidentyfikować obszary o wyższym lub niższym bezrobociu, co pomaga decydentom w dostosowaniu polityk gospodarczych do konkretnych potrzeb regionów.
- Przykładowo, w API Eurostatu można pobierać dane dotyczące bezrobocia, PKB, zatrudnienia itp. z podziałem na regiony NUTS2, co daje możliwość lepszej analizy porównawczej pomiędzy różnymi obszarami geograficznymi, np. porównania regionów Polski z regionami Czech czy Niemiec.

#### API Eurostatu w R

library(eurostat)
# Lista dostępnych tabel
toc <- get\_eurostat\_toc()</pre>

| •  | title                                                    | code <sup>‡</sup> | type <sup>‡</sup> | last.update.of.data | last.table.structure.change | data.start <sup>‡</sup> | data.end <sup>‡</sup> | values <sup>‡</sup> | hierarchy <sup>‡</sup> |
|----|----------------------------------------------------------|-------------------|-------------------|---------------------|-----------------------------|-------------------------|-----------------------|---------------------|------------------------|
| 1  | Database by themes                                       | data              | folder            |                     |                             |                         |                       | NA                  | 0                      |
| 2  | General and regional statistics                          | general           | folder            |                     |                             |                         |                       | NA                  | 1                      |
| 3  | European and national indicators for short-term analysis | euroind           | folder            |                     |                             |                         |                       | NA                  | 2                      |
| 4  | Balance of payments                                      | ei_bp             | folder            |                     |                             |                         |                       | NA                  | 3                      |
| 5  | Current account - quarterly data                         | ei_bpm6ca_q       | table             | 27.10.2024          | 27.10.2024                  | 1991-Q1                 | 2024-Q2               | 281865              | 4                      |
| 6  | Financial account - quarterly data                       | ei_bpm6fa_q       | table             | 27.10.2024          | 27.10.2024                  | 1991-Q1                 | 2024-Q2               | 50557               | 4                      |
| 7  | Current account - monthly data                           | ei_bpm6ca_m       | table             | 21.10.2024          | 21.10.2024                  | 1991-01                 | 2024-08               | 232014              | 4                      |
| 8  | Financial account - monthly data                         | ei_bpm6fa_m       | table             | 21.10.2024          | 21.10.2024                  | 1991-01                 | 2024-08               | 76393               | 4                      |
| 9  | International investment position - quarterly data       | ei_bpm6iip_q      | table             | 27.10.2024          | 27.10.2024                  | 1992-Q4                 | 2024-Q2               | 62093               | 4                      |
| 10 | Business and consumer surveys                            | ei_bcs            | folder            |                     |                             |                         |                       | NA                  | 3                      |
| 11 | Consumer surveys                                         | ei_bcs_cs         | folder            |                     |                             |                         |                       | NA                  | 4                      |
| 12 | Consumers - monthly data                                 | ei_bsco_m         | dataset           | 30.10.2024          | 30.10.2024                  | 1980-01                 | 2024-10               | 285606              | 5                      |

```
data <- get_eurostat("tran_sf_roadve")</pre>
data_filtered <- data %>%
  filter(geo %in% c("DE", "FR", "PL", "ES"),
         vehicle == "TOTAL")
library("ggplot2")
ggplot(data_filtered, aes(x = TIME_PERIOD,
                           y = values,
                          color = geo,
               group = geo, shape = geo)) +
  geom\_point(size = 2) +
  geom_line() + theme_bw() +
  labs(title="Road accidents",
       x = "Year", y = "Victims")
```



Średnia liczba "żywych" urodzeń na kobietę z podziałem na kraje Europy, 2015

```
data <- get_eurostat("tps00199")
geodata <- get_eurostat_geospatial(nuts_level = 0) %>%
  left_join(data, by = "geo")
```

Total fertility rate, 2015 Avg. number of life births per woman



```
library(giscoR)
library(sf)
library(dplyr)
```

```
# Different resolutions

DNK_res60 <- gisco_get_countries(resolution = "60",
country = "DNK") %>% mutate(res = "60M")

DNK_res20 <- gisco_get_countries(resolution = "20",
country = "DNK") %>% mutate(res = "20M")

DNK_res10 <- gisco_get_countries(resolution = "10",
country = "DNK") %>% mutate(res = "10M")

DNK_res03 <- gisco_get_countries(resolution = "03",
country = "DNK") %>% mutate(res = "03M")
```

DNK\_all <- bind\_rows(DNK\_res60, DNK\_res20, DNK\_res10, DNK\_res03)</pre>

library(ggplot2)
ggplot(DNK\_all) + geom\_sf(fill = "tomato") +
facet\_wrap(vars(res)) + theme\_minimal()





Source: Eurostat, © EuroGeographics for the administrative boundaries Based on Milos Popovic; https://milospopovic.net/how-to-make-choropleth-map-in-r/

Gęstość zaludnienia Europy z podziałem na NUTS-3

```
# Use eurostat
library(eurostat)
popdens <- get_eurostat("demo_r_d3dens") %>%
 filter(TIME_PERIOD == "2021-01-01")
# Get shapes
nuts3 <- gisco_get_nuts(</pre>
 year = "2021",
 epsg = "3035",
 resolution = "10",
 nuts_level = "3"
# Group by NUTS by country and convert to lines
country_lines <- nuts3 %>%
 group_by(
  CNTR_CODE
 ) %>%
 summarise(n = n()) %>%
 st_cast("MULTILINESTRING")
```

### Źródła

- ► API Getting started Eurostat Online Help for Data Browser EC Public Wiki
- Instrukcja do API Eurostatu
- giscoR | Pakiet R do pobierania geodanych z GISCO Eurostat giscoR