Corrigé du devoir maison 8.

Exercice 1

Partie 1 : Exemple des matrices diagonales

1°) Soit $n \in \mathbb{N}$. Pour tout $k \in \mathbb{N}$, $I^k = I$ donc:

$$\sum_{k=0}^{n} \frac{1}{k!} I^k = \sum_{k=0}^{n} \frac{1}{k!} I = \left(\sum_{k=0}^{n} \frac{1}{k!}\right) I = \begin{pmatrix} u_n & 0 & 0\\ 0 & u_n & 0\\ 0 & 0 & u_n \end{pmatrix} \text{ en notant } u_n = \sum_{k=0}^{n} \frac{1}{k!}.$$

Or
$$u_n \underset{n \to +\infty}{\longrightarrow} e^1 = e$$
, donc $E(I)$ existe et $E(I) = \begin{pmatrix} e & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & e \end{pmatrix}$.

 $\mathbf{2}^{\circ}$) Soit $n \in \mathbb{N}^*$. Pour tout $k \in \mathbb{N}^*$, $O^k = O$ et $O^0 = I$, donc : $\sum_{k=0}^n \frac{1}{k!} O^k = \frac{1}{0!} I = I$.

Donc
$$E(O)$$
 existe et $E(O) = I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

3°) Soit D une matrice diagonale de $\mathcal{M}_3(\mathbb{R})$, on l'écrit $D = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \gamma \end{pmatrix}$ avec $(\lambda, \mu, \gamma) \in \mathbb{R}^3$.

Pour tout $k \in \mathbb{N}$, $D^k = \begin{pmatrix} \lambda^k & 0 & 0 \\ 0 & \mu^k & 0 \\ 0 & 0 & \gamma^k \end{pmatrix}$, donc pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} \frac{1}{k!} D^{k} = \begin{pmatrix} \sum_{k=0}^{n} \frac{\lambda^{k}}{k!} & 0 & 0\\ 0 & \sum_{k=0}^{n} \frac{\mu^{k}}{k!} & 0\\ 0 & 0 & \sum_{k=0}^{n} \frac{\gamma^{k}}{k!} \end{pmatrix}$$

D'après l'énoncé, $\sum_{k=0}^{n} \frac{\lambda^{k}}{k!} \xrightarrow[n \to +\infty]{} e^{\lambda}$, $\sum_{k=0}^{n} \frac{\mu^{k}}{k!} \xrightarrow[n \to +\infty]{} e^{\mu}$ et $\sum_{k=0}^{n} \frac{\gamma^{k}}{k!} \xrightarrow[n \to +\infty]{} e^{\gamma}$, donc

$$E(D)$$
 existe et $E(D) = \begin{pmatrix} e^{\lambda} & 0 & 0 \\ 0 & e^{\mu} & 0 \\ 0 & 0 & e^{\gamma} \end{pmatrix}$.

Partie 2: Un autre exemple

- **4**°) Posons, pour tout $n \in \mathbb{N}$, $P_n : A^n = nA (n-1)I$.
 - $A^0 = I$ et 0A (0 1)I = I, donc P_0 est vraie.
 - Soit $n \in \mathbb{N}$ fixé. Supposons P_n vraie.

$$A^{n+1} = A^n A$$
= $(nA - (n-1)I) A$ par P_n
= $nA^2 - (n-1)A$
= $n(2A - I) - nA + A$
= $(2n - n + 1)A - nI$
= $(n+1)A - ((n+1) - 1) I$

Donc P_{n+1} est vraie.

- Conclusion: pour tout $n \in \mathbb{N}$, $A^n = nA (n-1)I$.
- 5°) Soit $n \in \mathbb{N}$.

$$\sum_{k=0}^{n} \frac{1}{k!} A^k = \sum_{k=0}^{n} \frac{1}{k!} \left(kA - (k-1)I \right) = \left(\sum_{k=0}^{n} \frac{k}{k!} \right) A + \left(\sum_{k=0}^{n} \frac{1-k}{k!} \right) I$$

Ainsi, on a la forme voulue en posant $u_n = \sum_{k=0}^n \frac{k}{k!}$ et $v_n = \sum_{k=0}^n \frac{1-k}{k!}$

6°) Pour tout
$$n \in \mathbb{N}^*$$
, $u_n = \sum_{k=0}^n \frac{k}{k!} = \sum_{k=1}^n \frac{k}{k!} = \sum_{k=1}^n \frac{1}{(k-1)!} = \sum_{j=0}^{n-1} \frac{1}{j!}$, donc $u_n \xrightarrow[n \to +\infty]{} e^1 = e$.

Pour tout
$$n \in \mathbb{N}$$
, $v_n = \sum_{k=0}^n \frac{1}{k!} - u_n$, donc $v_n \underset{n \to +\infty}{\longrightarrow} e - e = 0$.

D'après l'énoncé, on a donc
$$\sum_{k=0}^{n} \frac{1}{k!} A^k = u_n A + v_n I \xrightarrow[n \to +\infty]{} eA + 0.I = eA.$$

Ainsi E(A) existe et vaut eA.

Partie 3: Une matrice nilpotente

7°)
$$N^0 = I$$
, $N^1 = N$, $N^2 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ -1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ -1 & 0 & -1 \end{pmatrix}$ donc $N^2 = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$.

$$N^{3} = NN^{2} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ -1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{donc } \boxed{N^{3} = 0}.$$

Or, pour tout entier $k \geq 3$, $N^k = N^3 N^{k-3}$ donc $N^k = 0$.

8°) On a, pour tout $k \in \mathbb{N}$, $(tN)^k = t^k N^k$, donc pour tout $n \in \mathbb{N}$, $\sum_{k=0}^n \frac{1}{k!} (tN)^k = \sum_{k=0}^n \frac{t^k}{k!} N^k$.

Avec la question précédente, on obtient, pour $n \geq 2$,

$$\sum_{k=0}^{n} \frac{1}{k!} (tN)^k = \frac{t^0}{0!} I + \frac{t^1}{1!} N + \frac{t^2}{2!} N^2 = I + tN + \frac{t^2}{2} N^2.$$

Donc E(tN) existe, et vaut $I + tN + \frac{t^2}{2}N^2$.

 9°) Soit t et s des réels

$$F(t)F(s) = E(tN)E(sN)$$

$$= \left(I + tN + \frac{t^2}{2}N^2\right) \left(I + sN + \frac{s^2}{2}N^2\right)$$

$$= I + sN + \frac{s^2}{2}N^2 + tN + tsN^2 + \frac{ts^2}{2}N^3 + \frac{t^2}{2}N^2 + \frac{st^2}{2}N^3 + \frac{s^2t^2}{4}N^4$$

$$= I + (t+s)N + \left(\frac{s^2}{2} + \frac{t^2}{2} + st\right)N^2 \text{ car } N^3 = N^4 = O$$

$$= I + (t+s)N + \frac{s^2 + t^2 + 2st}{2}N^2$$

$$= I + (t+s)N + \frac{(t+s)^2}{2}N^2$$

$$F(t)F(s) = F(t+s)$$

- 10°) Soit $t \in \mathbb{R}$. On a donc F(t)F(-t) = F(t-t) = F(0) = E(0) = I d'après la question 2. De même, F(-t)F(t) = F(0) = I. Donc, F(t) est inversible et que $(F(t))^{-1} = F(-t)$.
- 11°) Soit $t \in \mathbb{R}$.

Posons, pour tout $n \in \mathbb{N}$, $P_n : (F(t))^n = F(nt)$.

- $(F(t))^0 = I$, et F(0.t) = F(0) = E(O) = I, donc P_0 est vraie.
- Soit $n \in \mathbb{N}$ fixé. Supposons P_n vraie.

$$F((n+1)t) = F(nt+t)$$

$$= F(nt)F(t) \text{ d'après la question 9}$$

$$= (F(t))^n F(t) \text{ par } P_n$$

$$= (F(t))^{n+1}$$

Donc P_{n+1} est vraie.

• Conclusion: pour tout $n \in \mathbb{N}$, P_n est vraie.

Soit $t \in \mathbb{R}, n \in \mathbb{N}^*$.

$$F(t)^{-n} = (F(t)^{-1})^n$$

= $(F(-t))^n$ par la question précédente
= $F(-nt)$ puisque $n \in \mathbb{N}$

Finalement, pour tout $t \in \mathbb{R}$ et pour tout $n \in \mathbb{Z}$, $(F(t))^n = F(nt)$.

12°) Soit t et s des réels, supposons que F(t)=F(s).

On a donc $I+tN+\frac{t^2}{2}N^2=I+sN+\frac{s^2}{2}N^2,$ donc $tN+\frac{t^2}{2}N^2=sN+\frac{s^2}{2}N^2,$ ce qui s'écrit :

$$\begin{pmatrix} t & 0 & t \\ -\frac{t^2}{2} & 0 & t - \frac{t^2}{2} \\ -t & 0 & -t \end{pmatrix} = \begin{pmatrix} s & 0 & s \\ -\frac{s^2}{2} & 0 & s - \frac{s^2}{2} \\ -s & 0 & -s \end{pmatrix}$$

D'où s = t (en considérant par exemple le coefficient (1,1)).

Ainsi, \overline{F} est bien injective.

Partie 4: Un résultat général sur les matrices nilpotentes

13°) p+q-1 est un entier ≥ 1 . Calculons maintenant $(A+B)^{p+q-1}$ par la formule du binôme puisque A et B commutent.

$$(A+B)^{p+q-1} = \sum_{k=0}^{p+q-1} {p+q-1 \choose k} A^k B^{p+q-1-k}$$

$$= \sum_{k=0}^{p-1} {p+q-1 \choose k} A^k B^{p+q-1-k} + \sum_{k=p}^{p+q-1} {p+q-1 \choose k} A^k B^{p+q-1-k}$$

Si $k \geq p$ alors $A^k = 0$ puisque A est nilpotente d'indice p. D'où, $A^k B^{p+q-1-k} = 0$.

Si $0 \le k \le p-1$ alors $0 \le p-1-k$ d'où $q \le p+q-1-k$.

Or B est nilpotente d'indice q donc $B^{p+q-1-k}=0$. D'où $A^kB^{p+q-1-k}=0$.

Finalement, chaque terme de la somme est nul donc $(A+B)^{p+q-1}=0$.

Ainsi A + B est nilpotente et son indice est inférieur ou égal à p + q - 1.

14°) On a $p+q-2 \ge 0$. Calculons :

$$\sum_{k=0}^{p+q-2} \frac{1}{k!} (A+B)^k$$

$$= \sum_{k=0}^{p+q-2} \left(\frac{1}{k!} \sum_{i=0}^k \binom{k}{i} A^i B^{k-i}\right) \quad \text{par la formule du binôme, puisque } A \text{ et } B \text{ commutent}$$

$$= \sum_{k=0}^{p+q-2} \left(\sum_{i=0}^k \frac{1}{k!} \frac{k!}{i!(k-i)!} A^i B^{k-i}\right) = \sum_{k=0}^{p+q-2} \left(\sum_{i=0}^k \frac{1}{i!(k-i)!} A^i B^{k-i}\right)$$

$$= \sum_{i=0}^{p+q-2} \left(\sum_{k=i}^{p+q-2} \frac{1}{i!(k-i)!} A^i B^{k-i}\right) \quad \text{en échangeant les 2 sommes}$$

$$= \sum_{i=0}^{p+q-2} \left(\frac{1}{i!} A^i \left(\sum_{k=i}^{p+q-2} \frac{1}{(k-i)!} B^{k-i}\right)\right) \quad \text{car } \frac{1}{i!} A^i \text{ est une constante vis-à-vis de } j$$

$$= \sum_{i=0}^{p-1} \left(\frac{1}{i!} A^i \left(\sum_{j=0}^{p+q-2-i} \frac{1}{j!} B^j\right)\right)$$

 $\operatorname{car}\, p+q-2\geq p-1 \text{ et } A^i=0 \text{ pour } i\geq p$

et en faisant le changement d'indices j = k - i dans la somme interne

$$= \sum_{i=0}^{p-1} \left(\frac{1}{i!} A^i \left(\sum_{j=0}^{q-1} \frac{1}{j!} B^j \right) \right) \operatorname{car} 0 \le i \le p-1 \Rightarrow p+q-2-i \ge q-1 \text{ et car } B^j = 0 \text{ si } j \ge q$$

$$= \left(\sum_{i=0}^{p-1} \frac{1}{i!} A^i \right) \left(\sum_{j=0}^{q-1} \frac{1}{j!} B^j \right) \operatorname{car} \left(\sum_{j=0}^{q-1} \frac{1}{j!} B^j \right) \text{ est une constante vis-à-vis de } i$$

$$= E(A) \times E(B)$$

Or on sait que A+B est nilpotente, et que son indice de nilpotence r vérifie $r \leq p+q-1$.

Donc
$$E(A+B) = \sum_{k=0}^{r-1} \frac{1}{k!} (A+B)^k = \sum_{k=0}^{p+q-2} \frac{1}{k!} (A+B)^k$$
, car si $r \le p+q-2$, les termes $(A+B)^k$

pour k entre r et p+q-2 sont nuls.

On en déduit que : $E(A+B) = E(A) \times E(B)$.