Geometry Problem booklet

Assoc. Prof. Cornel Pintea

E-mail: cpintea math.ubbcluj.ro

Contents

W	eek 1	13
1	Tran	nsformations
	1.1	Transformations of the plane
		1.1.1 Reflections
		1.1.2 Shears
	1.2	Homogeneous coordinates
		Problems

Module leader: Assoc. Prof. Cornel Pintea

Department of Mathematics, "Babeş-Bolyai" University 400084 M. Kogălniceanu 1, Cluj-Napoca, Romania

Week 13

1 Transformations

This section briefly presents the theoretical aspects covered in the tutorial. For more details please check the lecture notes.

1.1 Transformations of the plane

1.1.1 Reflections

Definition 1.1. *The* reflections about the *x*-axis and the *y*-axis respectively are the affine transformation

$$r_x, r_y : \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \ r_x(x,y) = (x, -y), \ r_y = (-x, y).$$

Thus

$$[r_x^c] \left(\left[\begin{array}{c} x \\ y \end{array} \right] \right) = \left[\begin{array}{c} x \\ -y \end{array} \right] = \left[\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right],$$

i.e.

$$[r_x] = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right].$$

Similarly

$$[r_y] = \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right].$$

Note that $r_x = S(-1,1)$ and $r_y = S(1,-1)$. Thus the two reflections are non-singular (invertible) and $r_x^{-1} = r_x$, $r_y^{-1} = r_y$.

Definition 1.2. The reflection $r_l : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ about the line l maps a given point M to the point M' defined by the property that l is the perpendicular bisector of the segment MM'. One can show that the action of the reflection about the line l: ax + by + c = 0 is

$$r_{l}(x,y) = \begin{pmatrix} \frac{b^{2} - a^{2}}{a^{2} + b^{2}} x - \frac{2ab}{a^{2} + b^{2}} y - \frac{2ac}{a^{2} + b^{2}}, -\frac{2ab}{a^{2} + b^{2}} x + \frac{a^{2} - b^{2}}{a^{2} + b^{2}} y - \frac{2bc}{a^{2} + b^{2}} \end{pmatrix}.$$

$$Thus \left[r_{l}^{c} \right] \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} \frac{b^{2} - a^{2}}{a^{2} + b^{2}} x - \frac{2ab}{a^{2} + b^{2}} y - \frac{2ac}{a^{2} + b^{2}} \\ -\frac{2ab}{a^{2} + b^{2}} x + \frac{a^{2} - b^{2}}{a^{2} + b^{2}} y - \frac{2bc}{a^{2} + b^{2}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{b^{2} - a^{2}}{a^{2} + b^{2}} & -\frac{2ab}{a^{2} + b^{2}} \\ -\frac{2ab}{a^{2} + b^{2}} & \frac{a^{2} - b^{2}}{a^{2} + b^{2}} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} \frac{2ac}{a^{2} + b^{2}} \\ \frac{2bc}{a^{2} + b^{2}} \end{bmatrix},$$

i.e. $[r_l] = \frac{1}{a^2+b^2} \begin{bmatrix} b^2-a^2 & -2ab \\ -2ab & a^2-b^2 \end{bmatrix}$. Note that the reflection r_l is non-singular (invertible) and $r_l^{-1} = r_l$.

1.1.2 Shears

Definition 1.3. Given a fixed direction in the plane specified by a unit vector $v = (v_1, v_2)$, consider the lines d with direction v and the oriented distance d from the origin. The shear about the origin of factor r in the direction v is defined to be the transformation which maps a point M(x,y) on d to the point M' = M + rdv. The equation of the line through M of direction v is $v_2X - v_1Y + (v_1y - v_2x) = 0$. The oriented distance from the origine to this line is $v_1y - v_2x$. Thus the action of the shear $Sh(v,r): \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ about the origin of factor r in the direction v is

$$\begin{array}{ll} Sh(v,r)(x,y) &= (x,y) + rd(v_1,v_2) \\ &= (x,y) + (r(v_1y - v_2x)v_1, r(v_1y - v_2x)v_2) \\ &= (x,y) + \left(-rv_1v_2x + rv_1^2y, -rv_2^2x + rv_1v_2y\right) \\ &= \left((1 - rv_1v_2)x + rv_1^2y, -rv_2^2x + (1 + rv_1v_2)y\right) \end{array}$$

Thus

1.2

$$[Sh(v,r)^{c}] \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} (1-rv_{1}v_{2})x + rv_{1}^{2}y \\ -rv_{2}^{2}x + (1+rv_{1}v_{2})y \end{bmatrix}$$

$$= \begin{bmatrix} 1-rv_{1}v_{2} & rv_{1}^{2} \\ -rv_{2}^{2} & 1+rv_{1}v_{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix},$$
i.e. $[Sh(v,r)] = \begin{bmatrix} 1-rv_{1}v_{2} & rv_{1}^{2} \\ -rv_{2}^{2} & 1+rv_{1}v_{2} \end{bmatrix}.$

Homogeneous coordinates

The affine transformation

$$L: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $L(x,y) = (ax + by + c, dx + ey + f)$

can be written by using the matrix language and by equations:

1. (a) indentifying the vectors $(x,y) \in \mathbb{R}^2$ with the line matrices $[x \ y] \in \mathbb{R}^{1 \times 2}$ and implicitely \mathbb{R}^2 with $\mathbb{R}^{1 \times 2}$:

$$L[x y] = [x y] \begin{bmatrix} a & d \\ b & e \end{bmatrix} + [c f].$$

(b) indentifying the vectors $(x,y) \in \mathbb{R}^2$ with the column matrices $\begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^{2\times 1}$ and implicitely \mathbb{R}^2 cu $\mathbb{R}^{2\times 1}$:

$$L\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} a & b \\ d & e \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] + \left[\begin{array}{c} c \\ f \end{array}\right].$$

2.
$$\begin{cases} x' = ax + by + c \\ y' = dx + ey + f. \end{cases} \Leftrightarrow \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ d & e \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} c \\ f \end{bmatrix}$$

Observe that the representation

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ d & e \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} c \\ f \end{bmatrix}$$

is equivalent to

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}.$$

In this lesson we identify the points $(x,y) \in \mathbb{R}^2$ with the points $(x,y,1) \in \mathbb{R}^3$ and even with the punctured lines of \mathbb{R}^3 , (rx,ry,r), $r \in \mathbb{R}^*$. Due to technical reasons we shall actually identify the points $(x,y) \in \mathbb{R}^2$ with the punctured lines of \mathbb{R}^3 represented in the form

$$\left[\begin{array}{c} rx \\ ry \\ r \end{array}\right], r \in \mathbb{R}^*,$$

and the latter ones we shall call *homogeneous coordinates* of the point $(x,y) \in \mathbb{R}^2$. The set of homogeneous coordinates (x,y,w) will be denoted by \mathbb{RP}^2 and call it the real *projective plane*. The homogeneous coordinates $(x,y,w) \in \mathbb{RP}^2$, $w \neq 0$ şi $(\frac{x}{w}, \frac{y}{w}, 1)$ represent the same element of \mathbb{RP}^2 .

Observation 1.4. The projective plane \mathbb{RP}^2 is actually the quotient set $(\mathbb{R}^3 \setminus \{0\}) / \sim$, where $' \sim'$ is the following equivalence relation on $\mathbb{R}^3 \setminus \{0\}$:

$$(x,y,w) \sim (\alpha,\beta,\gamma) \Leftrightarrow \exists r \in \mathbb{R}^* \ a.i. \ (x,y,w) = r(\alpha,\beta,\gamma).$$

Observe that the equivalence classes of the equivalence relation \sim' are the punctured lines of \mathbb{R}^3 through the origin without the origin itself, i.e. the elements of the real projective plane \mathbb{RP}^2 .

Definition 1.5. A projective transformation of the projective plane \mathbb{RP}^2 is a transformation

$$L: \mathbb{RP}^2 \longrightarrow \mathbb{RP}^2, L \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & k \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} ax + by + cw \\ dx + ey + fw \\ gx + hy + kw \end{bmatrix}, \tag{1.1}$$

where $a, b, c, d, e, f, g, h, k \in \mathbb{R}$. Note that

$$\left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & k \end{array}\right]$$

is called the homogeneous transformation matrix of L.

Observe that a projective transformation (1.1) is well defined since

$$L\begin{bmatrix} rx \\ ry \\ rw \end{bmatrix} = \begin{bmatrix} arx + bry + crw \\ drx + ery + frw \\ grx + hry + krw \end{bmatrix} = \begin{bmatrix} r(ax + by + cw) \\ r(dx + ey + fw) \\ r(gx + hy + kw) \end{bmatrix}.$$

If g = h = 0 and $k \neq 0$, then the projective transformation (1.1) is said to be *affine*. The restriction of the affine transformation (1.1), which corresponds to the situation g = h = 0 and k = 1, to the subspace w = 1, has the form

$$L\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + cw \\ dx + ey + fw \\ 1 \end{bmatrix}, \tag{1.2}$$

i.e.

$$\begin{cases} x' = ax + by + c \\ y' = dx + ey + f. \end{cases}$$
 (1.3)

Observation 1.6. If $L_1, L_2 : \mathbb{RP}^2 \longrightarrow \mathbb{RP}^2$ are two projective applications, then their product (concatenation) transformation $L_1 \circ L_2$ is also a projective transformation and its homogeneous transformation matrix is the product of the homogeneous transformation matrices of L_1 and L_2 .

Indeed, if

$$L_1 \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} a_1 & b_1 & c_1 \\ d_1 & e_1 & f_1 \\ g_1 & h_1 & k_1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

and

$$L_{2} \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} a_{2} & b_{2} & c_{2} \\ d_{2} & e_{2} & f_{2} \\ g_{2} & h_{2} & k_{2} \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

then

$$(L_1 \circ L_2) \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \left(\begin{bmatrix} a_1 & b_1 & c_1 \\ d_1 & e_1 & f_1 \\ g_1 & h_1 & k_1 \end{bmatrix} \begin{bmatrix} a_2 & b_2 & c_2 \\ d_2 & e_2 & f_2 \\ g_2 & h_2 & k_2 \end{bmatrix} \right) \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Observation 1.7. If $L_1, L_2 : \mathbb{RP}^2 \longrightarrow \mathbb{RP}^2$ are two affine applications, then their product $L_1 \circ L_2$ is also an affine transformation.

1.3 Problems

- 1. Consider a quadrilateral with vertices A(1,1), B(3,1), C(2,2), and D(1.5,3). Find the image quadrilaterals through the translation T(1,2), the scaling S(2,2.5), the reflections about the x and y-axes, the clockwise and anticlockwise rotations through the angle $\pi/2$ and the shear $Sh\left(\left(2/\sqrt{5},1/\sqrt{5}\right),1.5\right)$.
- 2. Find the concatenation (product) of an anticlockwise rotation about the origin through an angle of $\frac{3\pi}{2}$ followed by a scaling by a factor of 3 units in the *x*-direction and 2 units in the *y*-direction. (Hint: $S(3,2)R_{3\pi/2}$)
- 3. Find the homogeneous matrix of the product (concatenation) $S(3,2) \circ R_{\frac{3\pi}{2}}$.
- 4. Find the equations of the rotation $R_{\theta}(x_0, y_0)$ about the point $M_0(x_0, y_0)$ through an angle θ .

Solution The homogeneous transformation matrix of the rotation $R_{\theta}(x_0, y_0)$ about the point $M_0(x_0, y_0)$ through an angle θ is

$$R_{\theta}(x_{0}, y_{0}) = T(x_{0}, y_{0})R_{\theta}T(-x_{0}, -y_{0})$$

$$= \begin{bmatrix} 1 & 0 & x_{0} \\ 0 & 1 & y_{0} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -x_{0} \\ 0 & 1 & -y_{0} \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta & -x_{0} \cos \theta + y_{0} \sin \theta + x_{0} \\ \sin \theta & \cos \theta & -x_{0} \sin \theta - y_{0} \cos \theta + y_{0} \\ 0 & 0 & 1 \end{bmatrix}.$$

Thus, the equations of the required rotation are:

$$\begin{cases} x' = x \cos \theta - y \sin \theta - x_0 \cos \theta + y_0 \sin \theta + x_0 \\ y' = x \sin \theta + y \cos \theta - x_0 \sin \theta - y_0 \cos \theta + y_0. \end{cases}$$

5. Show that the concatenation (product) of two rotations, the first through an angle θ about a point $P(x_0, y_0)$ and the second about a point $Q(x_1, y_1)$ (distinct from P) through an angle $-\theta$ is a translation.