

A	В
Abundance, estimation, 17	Basic capture-recapture method, 532
Acoustic sampling, 7, 275	Bayesian analyses, 33, 50, 436, 511, 534–535
BUGS implementation, 278	Akaike Information Criterion (AIC), 228
other types, 279	Bayes' rule, 50
secr implementation, 278	BUGS language for, 60
signal strength model, 276	checking, 80
Activity center	confidence intervals, 68
binomial point process model, 130	indicator variable, 231
in BUGS, 146	inference principles, 52
concept, 16	in JAGS, 204
conditional intensity and, 135	MCMC methods, 63
defined, 41, 128	posterior inference, 54
direct linkage to density, 17	prior distributions, 53
in distance sampling, 133	selection, 80
individual location, 429	small sample inference, 55
initial values of, 143	Bayesian inference, 436
location of, 161, 163, 169	sampling variance, 149
in MCMC, 164	Behavioral response
in probability mass function, 135	in animal studies, 102
in SCR model, 134	BUGS code for, 212
in space usage, 135	contamination of, 139
in state space, 131, 140, 160	covariate effect, 207
multi-color spatial plot, 163	encounter probability, 209–210
non-uniformity of, 160	local or global, 212, 220
two-dimensional spatial coordinate, 127	probability changes in, 102
uniform distribution, 165	to trapping, 102, 211
unobserved random variable., 128–129	Bernoulli distributions, 29, 452
in WinBUGS , 159, 161	encounter probability, 249
of wolverine map, 166	M_0 model, 105
Adaptive rejection sampling, 450	observation model, 254
ArcGIS, 465–466	Poisson model, 252
Akaike Information Criterion (AIC), 55, 184	prior distribution, 83
Bayesian model, 228	probability distributions, 29
likelihood methods, 223	Probability mass function (PMF), 29
model selection in, 202, 218, 224	SCR0, 169
secr package, 206, 220, 226	Binomial distributions, 452
sex specific density, 227	M_0 model, 103
Alternative movement model, 396	notation, 27
American shad	Poisson integrated likelihood, 196
Cormack-Jolly-Seber (CJS) models, 419, 423	probability mass function (PMF), 23, 28–29, 37
SCR issues, 426	R code. 25
stream flow, 430	Binomial GLMs
Animal movement, 287	parameter estimation, 77
see also Trap spacing	Binomial integrated likelihood, 196
1 A protocol, 392	Binomial observation model, 127
Area search, 385, 390, 392	data augmentation, 145
Avian mist-netting example, 264	Binomial point process model, 130

Binomial probability mass function, 23 Binomial regression	in density, 311 in encounter probability models, 207, 250
waterfowl banding data, 79	landscape structure, 353
Bivariate normal distribution, 33, 136	in standard GLM or GLMM, 207
Black bears	see also Individual covariate model
SCR + RSF model, study on, 360	
space usage, 362	
convex hell, 9	D
standard approach, 12	-
BUGS implementation	Data augmentation, (DA)
Stratified populations, 373	in all zero rows, 94
Buffering, 9	in closed population models, 92–93
	formal development, 97
	heuristic motivation, 94
C	joint likelihood using, 110
	model-based analysis, 110
Camera trapping, 5	M_h model, 105
historical overview, 5	in M_0 model, 95
drumbear study, 8	occupancy parameter, 94
encounter probability, 8	posterior mass of, 120
non-spatial, inadequacy, 11	remarks on, 97
population studies in, 4	sampling model, 118
for sampling methods, 13	under a Uniform(0, M), 121
Canada goose resightings, 511	unknown N, 144
Capture-recapture methods, 529	in WinBugs , 146
Categorical distributions, 30	zero-inflated model, 95, 110
Closed population models, 14	Data format
data augmentation (DA), 92–93	for number of traps, 155
Closed capture-recapture model M_h , 451	three-dimensional, 155
Collared individuals, 521	two-dimensional, 141
C++, computational speed using, 470	Data structure
Conditional distribution, 37, 455, 457	formatting, 141
constructing rules, 59	manipulating, 141
M_0 model, 91	sampling design and, 126
Markov chain Monte Carlo (MCMC), 59	Demographic composition, 500
Metropolis-Hastings algorithm, 59	survival, 413
Conditional likelihood, 183	Density estimation
in closed population model, 91	Argentina jagur study, 326
full likelihood, 183	canopy height, 324–325, 327
SCR model, 300	covariate, using, 303, 311
Convex hull	data simulation, 318
buffering, 9	intensity parameter, 327
density estimation, 9	of invariance, 116, 122
trapping array, 13	in M_0 model, 102
Cormack-Jolly-Seber (CJS) models, 418	parameter estimation, 321
Cost-weighted paths	posterior mean, 329
calculation, 338	probability function, 316
computation, 337–338	R code, 328
defined, 335, 340	SCR definition of, 312
R code, 338	sex specificity, 329
in SCR model, 336	value expectation, 316
Counton detector in accordance 250	Danaity, mana
Counter detector, in <i>secr</i> package, 258 Covariate effects	Density maps effective sample area, 181

individual prediction, 169	Bayesian analysis, 204
Wolverine analysis, 166	Bernoulli process, 249
DENSITY Program, 173, 189	binary observation, 252
Detection function	cautionary note, 254
behavioral response, 254	covariate model, 207, 250
conditional probability, 251	date, impact on, 208
in covariate influence, 109	Gaussian model, 202, 253, 260
data collection, 279	individual covariate, 213
in distance sampling, 117-118	multinomial model, 271
in indicator variable, 235	signal strength model, 276
individual, 110	space usage, 252
models, 191	time, impact on, 208
non-, 276	trapping interval, 271
probability, 276	trap-specific covariate, 210
proximity in, 275	Envelope function, 450
signal strength, 277	Euclidean distance
time trend, 269	in activity centers, 333
Detector dogs, 400	cost-weight distance, 338
DIC model selection, 229	encounter probability and, 334
wolverian data, 229	estimate parameter, 347
Discrete habitat mask, 160	in MLE model, 343
coarseness, evaluation, 161	least-cost path model, 336, 342
Dispersal dynamics	mis-specified model, 343, 345, 349
individual location, 428	in SCR model, 340
in population ecology, 430	shortcomings, 334
Distance sampling, 30, 41, 44, 383, 386, 392	Explicit movement models, 536
desert tortoise example, 120	
in hierarchical model, 119-120	
latent variability, 129	F
in SCR model, 117, 119, 122	Fitness model
DNA sampling, 6	components, 237
Distribution of individuals, 531	in encounter probability, 219
	individual trap frequencies, 241–242
	occupancy dynamics, 245
E	Fixed search path
	alternative movement models, 396
Ecological distance	design 1, 384
Bayesian analysis, 343	encounter probability, 385
density covariate, 349	intensity model, 395
likelihood analysis, 342	, ,
SCR simulation, 339	
stochastic, 22	G
Effective sample area, 199	G : 1 1510
density mapping, 181	Gaussian kernel, 519
Effective sample size, 460	G bins, defined, 30
Efford's formulation, 15	Gelman-Rubin diagnostics, 463
Efford's possum trapping data, 272	Generalized linear (mixed) models (GL(M)Ms)
Encounter data file, 153 Encounter device types, 191	binomial, 84
* 1	in applied statistics, 48
Encounter modeling	in Bayesian framework, 63 Generalized linear models (GLMs)
fisher study, 394 mountain lions, 393	binomial, 49, 77, 79
Encounter probability	components 48

(

in exponential family, 48	detection function, 235
in SCR, 48	wolverine data, 233
Poisson, 69, 71, 75	Individual covariate model
random effects, 49	capture location, 110
Geographical analysis, 336, 345	data augmentation, 92
Gibbs sampling, 57, 59, 438	distance sampling, 87
in MCMC methods, 57	extension, 114
MH sampling vs., 445	Fort drum bear study, 111
R -code, 440	heterogeneity model, 103
Goodness-of fit, 55, 80, 82	home range center, 115
evaluation, 236	in SCR, 109, 117
in SCR, 184	Individual heterogeneity
wolverine data, 243	defined, 201
Google Scholar citations, 532	detection probability, 216
Google Scholar search, 529	for home range size, 202
Gregarious species, 535	incorporation methods, 220
Group structure	see also M_h model
in data augmentation, 376	Inhomogeneous point-process, 52.
mean model, 374	density model, 326
multi-catch model, 369–370	discrete space, 324
no encountered individuals, 373	estimation parameters, 318
single parameter, 374	fitting model, 322
single parameter, 374	in SCR model, 314
	intensity parameters, 315
ц	
1	Poisson model, 312
Habitat mask, 187, 199–200	spatial variation, 311, 319
Habitat selection	Integrated likelihood
space usage, 354	construction, 177
landscape simulation, 364, 367	marginal distribution, 174
non-uniform distribution, 311	MLE estimators, 173–174
spatial variation, 316	Poisson method, 195–197
Hard plot boundaries, 390	in SCR models, 179–180
Heterogeneity model, 103, 106	simulated data, 175
Hierarchical modeling	under data augmentation, 183
defined, 40	Irregular patches, 345
examples of, 41	
random variables, 21	_
statistical analysis, 37	J
statistical inference and, 40	JAGS , 467, 510
Home range center	Bayesian analysis in, 60
definition, 128	ecological introduction to, 60
exhibit behavior, 16	simulation analysis, 388
	•
implied model, 149	summary command for, 68
space usage model, 135	Joint distribution, 37
see also Activity center	Jolly-Seber model, 406, 413
Homogeneous point process, 523	data augmentation, 409
spatial randomness, 312	spatial, 413
	L
	-
mperfect identification, 534	Landscape connectivity
ndicators variable	geographical analysis, 345

in SCR models, 333-334, 339	Marked individuals
Landscape structure	homogeneous point process, 523
'A' protocol, 354–355	imperfect identification of, 514
covariate model, 353	information, 516
defined, 354	inhomogeneous point processes, 525
discrete model, 366	known number of, 501
home range on, 361	known number of, 506
resource selection, 364	locations of home ranges of, 504
simulated example, 356, 364	spatial distribution of, 505
space configuration, 354, 367	unknown number of, 501–502
Langevin algorithm, 444	Markov random fields, 533
Least-cost path	MARK program, 503
in BUGS , 343	Mark-resight models, 499
computation, 347	M_b model
covariate matrix, 340	global trap response, 220
defined, 333, 335	in non-spatia; capture-recapture, 201
encounter probability, 334	Mean maximum distance moved (MMDM
home range, 335	home range radius, 101
in MLE model, 342	Metropolis-Hastings algorithm
R code, 338	conditional distributions and, 59, 520
SCR example, 342	Metropolis-Hastings (MH) sampling, 443
Lincoln-Petersen estimator, 502–503	vs. Gibbs sampling, 445
of abundance, 534–535	R code to run, 445
Live-trapping study, 500	time series plots, 445
	Metropolis-within-Gibbs, 446
	M_h model
M	analysis, 105
	Fort drum data, 106
Marginal distribution, 37	as non-spatial capture-recapture, 201
Marginal likelihood	random effect, 216
binomial form, 195	SCR, relevance to, 216
calculation, 187	Misidentification, 534
conditional elements, 178	MLE with known N, 173
grid information on, 176	MLE with unknown N, 179
individual encounter and, 174	M_0 model
point process density, 196	binomial observation, 103
Markov chain Monte Carlo (MCMC)	in black bear study, 98
algorithm, 60, 72, 82, 508	in Bernoulli, 105
in Bayesian analysis, 60, 63	in BUGS , 95
binomial encounter process, 457	capture-recapture assumptions, 90
building own algorithm, 435	closed population model, 88
closed capture-recapture model M_h , 451	conditional distribution, 91
in conditional distribution, 59	occupancy type, 98
convergence analysis, 65	Modeling territoriality, 533
ecology application, 47	Model selection
manipulating state-space, 463	in AIC, 218, 220
parallel computing, 467	in Bayesian, 83
parameter estimation, 68	issues, 80
posterior distributions, 56, 436	in prior distribution, 83
R code, 65	in SCR model, 84
in SCR models, 57, 454	statistical ecology, 55
using C++, 470	variable indicators, 65
in WinBUGS , 64, 67	Modeling movement

(

population dynamics, 428	M_{x} model
Model output	density invariance, 116
commands, 463	
Gibbs sampling, 438	
Metropolis-Hastings sampling, 443	N
Metropolis-within-Gibbs, 446	Non-spatial capture-recapture, 87, 534–535
posterior density plots, 459	Non-spatial mark-resight models, 503, 507 514–515
rejection and slice sampling, 450	NOREMARK program, 503
serial autocorrelation and effective	Normal distribution, 436
sample size, 460	Notation
summary results, 462	binomial distribution, 27
time series plots, 459	BUGS language, 23
Movement model	in hierarchical modeling, 21, 40
alternatives, 396	issues, 22
auto-regression, 397	of R code, 21, 43
data simulation, 395	uniform point process, 32
encounter frequency, 383	Numerical integration
open population, 399	fitting parameters, 195
outcomes, 388	integration grid spacing, 186
Moving activity centers, 526	R code, 182
Multi-catch device, 249, 258–259, 280	
Multi-catch independent multinomial	
model, 535–536	0
Multi-session models	Observation model
BUGS language, 382	alternative methods, 249
data augmentation, 369–370	in Bernoulli, 254
landscape variation, 382	in Poisson, 250
multi-catch observation, 377	JAGS, using, 249
other approaches, 376	multinomial distribution, 249, 271
R code, 369–370	single catch trap, 270
secr analysis, 377	Observed point processes, 318
sex effects on, 220, 369–370	OpenBUGS, 435
Multi-state model	Open populations
apparent survival, 420 issues, 423	apparent survival, 405
	dispersal, 399
random parameters, 421 spatial states, 403, 423	issues, 409
technical transition, 421	model, 511
Multinomial abundance models	movements, 399
stratified populations, 371	recruitment, 408
Multinomial distributions, 30	Optima design
Multinomial model	calculation, 302
density estimators, 271	detector configuration, 293
encounter devices, 258	issues, 294
in Gaussian methods, 260	in SCR model, 287, 297
JAGS using, 249	swapping algorithm, 300-301
in single-catch trap, 271	trap spacing, 289, 303, 307
resource selection, 260	Ordinary capture-recapture models
in WinBugs, 260	Efford's formulation, 11, 15
Multiple	encounter probability
distinct sample group, 369	N, estimation, 109, 292, 364
space sample, 381	non-spatial, 12

point process, 15	density plots, 459
technical problems, 17–18	discrepancy measures, 82
Ovenbird data	inference of, 54, 55
reanalysis, 378	mass of, 75
Ovenbird mist-netting study, 410, 414	MCMC simulation, 56, 65, 68, 436 MH algorithm, 60
	parameter estimation, 54, 83
P	plots of, 441
r	Prior distribution
Parallel computing, 467	Bayes' rule for, 52-53, 64, 83
Parameter estimation	choices, 63
in maximum likelihood estimates (MLEs), 36	conjugates, 58
statistical inference, 34	in Bernoulli, 83
Partial information designs, 399	MCMC algorithm, 67
Photographic survey, 533–534	parameter estimation, 54
Point process aggregation, 15	WinBUGS parameter, 73
Point process model	Probability density function (PDF), 22
binomial, 130	resource selection, 25
state-space, 131	see also Probability mass function (PMF
for homogeneous point process, 523	Probability distributions
for inhomogeneous point processes, 525	Bernoulli, 29
bin counts, 240	binomial, 27
Poisson distribution, 31, 69	commonly used, 27
Poisson GLMs, 69	different notations for, 22
bird survey, example, 69	hierarchical model, 40
PoisGLMM(), 449	properties, 24 –25
in WinBugs , 71	random variable, 21, 22
random effects, 75	Probability mass function (PMF)
Poisson integrated likelihood	Bernoulli distribution and, 29
binomial form of, 196	binomial return, 23, 28-29, 37
development, 195	defined, 23
Poisson model	issues, 22
in Bernoulli, 252	parameters, 22, 37
in BUGS, 254	properties, 24
data simulation, 255	random variable values, 23
encounter probability, 249, 507, 515	Proposal distribution, 443
GLMM, 449	random walk, 443
multinomial relationship, 263	Proximity detector
regression, 452	density estimators, 249
in SCR, 250	in signal strength, 275
in <i>secr</i> , 266	
space usage, 251	
trap specific, 263	R
wolverine camera, 257	ĸ
zero-inflated, 255	Raccoons, 521
Population dynamics	R code
animal movement, 405	beta distribution, 33
overview, 404	binomial distribution, 25
Posterior distribution, 438–439, 441	binomial pmf returns, 23
Bayesian inference, 52	data analysis, using, 21
conditionality, 57	data simulation, 261
defined, 52	dbinom function., 28

(

declaration dcat, 31	in conditional probability, 297
dnorm function, 33	in SCR model, 292
joint distribution, 37	spatial problems, 281
marginal distribution, 38-39	trap clusters, 302–303
non-negligible probabilities, 23	Sampling design, 126
normal distribution, 24	focal population vs. state-space, 28
Poisson outcomes, 35	model based, 282
resource selection, 25	population closure, 304
in SCR model, 43	space vs individual, 283
uniform distribution, 32	Sampling methods
uniform search model, 397	latent heterogeneity, 12
Radio-tagged individuals, 502–503	non-invasive, 13
Random effect	Sampling techniques, 529
in Bayesian analysis, 84	Scenario analysis, 281–282
in GLM, 49	SCR framework
in GLMMs, 47, 49	assumptions of, 535
in hierarchical models, 83	misidentification in, 535
in MCMC, 47	SCR0
in Poisson GLM, 75	Bayesian analysis of, 131
in WinBUGS model, 61, 84	Bernoulli model, 169
Random sample assumption, 504	BUGS analysis, 125
Random variable	fitting model, 156–157, 142
defined, 21, 25	home range area, 149
Random walk proposal distribution, 443	multiple detections, 126
eadShapeSpatial(), 466	R function, 161
Recall Bayes' theorem, 436	statistical assumptions, 151
Recruitment	in WinBugs , 146
data augmentation, 409	SCR models
degenerate, 410	activity center, character, 298
JS model, 406, 413, 416	applications, 376
in open population, 408	Bayesian analysis, 149
sampling perspectives, 404	binomial encounter process, 457
time dependent, 412	characterization, 41
Regular capture-recapture models, 501–502	conditional likelihood, 300
Rejection sampling, 319, 450	construct full conditionals, 455
Resighting techniques, 501	continued development of, 532
Resource selection	core assumption, 151
encounter probability, 354, 359	data simulation, 262–263
in Poisson model, 358	distance sampling, 133
in SCR model, 353	effective sample area, 169
mis-specification, 364	encounter probability, 296
population estimate, 354	fixed array trap, 44
second-order scale, 361	identify, 454–455
telemetry data, 364, 366	independence assumption, 365
Resource selection function (RSF)	integration, 359
independence assumption, 365	model M_h , 133
	optimal criteria for, 297
	Poisson observation model, 299
S	population closure, 305
Sample size	sex-specific encounter, 290
encounter probability, 290	spacing aspect, 291
estimation parameters, 289, 307	study design, 285
generation techniques, 285	Search-encounter designs
- * '	

fixed path, 384–385	gregarious species, 535
methods, 7	misidentification, 534
total hazard, 386	model fit and selection, 536
uniform intensity, 385	modeling territoriality, 533
secr package, 189	single-catch traps, 535
additional capabilities, 197	Spatial design
analysis, 192	construction, 307
covariate models, 199	formal analysis, 281
density mapping, 199	issues, 282, 294, 300
encounter device, 191	model-based, 293
in likelihood analysis, 195, 218	optimization criteria, 300
multi-session model, 196	temporal aspects, 303
ovenbird data, 266	Spatial distribution, 500
population closure test, 199	Spatial mark-resight (SMR) model, 500
sex specificity, 266	for Canada geese in North Carolina, 514
state-space buffer, 198	hybrids of, 500
Serial autocorrelation, 460	homogeneous point process, 523
Sex specificity	imperfect identification of marked
effects, 220	individuals, 514
uncaptured individuals, 183	implementing, 507
multi-session models, 369–370	individual capture histories, 503
secr package, 266	inhomogeneous point processes, 525
Single-catch trap, 535	information, marked and unmarked
inference system, 271	individuals, 516
multiple sample session, 265	known number of marked individuals
observation model, 270	posterior distributions from, 522
Slice sampling, 450	raccoons on outer banks of North Carolina, 521
Small sample inference	random sample assumption, 504
Bayesian analysis, 55	resighting techniques, 501
SMR model. See Spatial mark-resight model	short history, 502
Space usage model, 354	telemetry data, incorporating, 518
empirical analysis, 137	Spatial randomness, 311–312
home range center, 135	homogeneous point process and, 312
Poisson distribution, 358	observation model, 241
understanding, 139	uniform distribution, 238
Spatial capture-recapture (SCR) methods	Spatial sampling
in animal population, 5	in SCR model, 283
in bears, 5	issues, 281, 303
characterization, 9	trap location, 283
construction of, 14	State-space concept, 16
defined, 4	camera trapping, 302
density estimation, 5	manipulating, 463
ecological theories and, 18	size sensitivity, 240
historical context, 12	State-space model
inference formalization, 15	invariance, 132
in lions, 5	point process, 131
non-spatial aspects, 8, 11	prescribing, 132
technical problems, resolving, 3–4	Stationary distribution, 441 Statistical inference
in tigers, 5 traditional, 18	
Spatial Capture-Recapture Odyssey, 533	fundamentals of, 21 hierarchical models and, 40
combining data from surveys, 533	parameter estimation and, 34
explicit movement models, 536	role in probability laws, 22
explicit movement models, 330	1010 iii probability laws, 22

Stratified populations	Trap arrangement, 293
BUGS implementation, 373	Trap spacing
data simulation, 375	array size, 287
hierarchical model, 371	home range factors, 285–286
multinomial abundance models, 371	movement estimates, 286, 289
prototype, 370	sensitivity analysis, 281
in SCR model, 369	study design, 285, 291
Strauss model, 532	Trap-specific covariate
Survival	encounter probability models, 210, 515
affecting factors, 403	
American shad, 419, 426	
Cormack-Jolly-Seber (CJS) models, 418, 421	U
defined, 405	Uniform distribution, 32
demographic parameters, 413	Uniform intensity
vs emigration, 405	design 2, 395
in spatial model, 404	search-encounter designs, 385
JS model, 406	Unmarked individuals
non-spatial version, 426	estimated number of, 507
in open population, 408	information, 516
parameters, 408	Unstructured spatial surveys, 392
posterior mean, 416	UTM polygon, 467
spatial multi-session model (S-MS), 410	O TWI polygon, 407
week probability, 420	
	W
-	WinBUGS, 435–436, 462–463, 467
Т	fitting model, 156
Telemetry data	in linear regression, 61
activity centers, 355	in markov chain Monte Carlo (MCMC)., 64, 67
on black bear study, 360	in prior distribution, 73
estimation parameters, 362, 364	in random effect, 61, 84
raccoons on outer banks of North Carolina, 521	Wolverine analysis
resource selection model, 353	camera trapping, 162, 184
RSF model, 366	density map, 166
SCR model, 354, 365	space usage, 159
space sampling, 356, 359	summary, 158
Temporal dependence	summary, 138
multi-session formulation, 379	
Temporary emigration, 13, 382	Z
SCR models and, 13	_
Time series plots, 459	Zero-inflated, Poisson model, 255
Total hazard	Zero-truncated distribution, 511

encounter model, 386-387, 392