

ПИиКТ Программная инженерия

Лабораторная работа \mathbb{N}^2 7. Работа с системой компьютерной вёрстки $T_{\mathbf{E}}X$

Студент: Харламов Александр Сергеевич Преподаватель: Малышева Татьяна Алексеевна

Группа: Р3113

Санкт-Петербург 2020

3. Функция Эйлера. Число красных дробей

Пусть у нас имеется натуральное число n. Рассмотрим все натуральные числа, не превосходящие n, и выберем из них те, которые взаимно просты с числом n. Количество этих чисел обозначим через $\phi(n)$.

Например, для n=8 такими числами будут 1, 3, 5,7, и тем самым $\phi(8)=4$.

Итак, каждому натуральному числу n сопоставлено число $\phi(n)$. Это соответствие ϕ называется ϕ ункцией Эйлера.

Перечислим некоторые свойства функции Эйлера:

- 1) $\phi(n) < n$.
- 2) Если n = p простое число, то $\phi(p) = p 1$.
- 3) Для n > 2 число $\phi(n)$ четно.
- 4) Если $n=p^d$ степень простого числа p, то

$$\phi(p^{\alpha}) = p^{\alpha} - p^{\alpha - 1} = p^{\alpha} \left(1 - \frac{1}{p} \right)$$

- 5^*) Если m и n взаимно просты, то $\phi(mn) = \phi(m) * \phi(n)$
- 6) Общая формула для $\phi(n)$ такова:

$$\phi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_r}\right);$$

здесь p_1, p_2, \ldots, p_r - все простые числа, на которые делится n. (Эта формула доказана в статье "Малая теорема Ферма "Квант 1972, № 10.)

Доказать все эти свойства мы предлагаем читателю. Объясним только свойство 3). Все числа, меньше, чем n и взаимно простые с n, можно разбить на все пары: каждая пара состоит из таких чисел q, s, что q + s = n. Таким образом, число $\phi(n)$ - четно.

Число красных дробей в n-й строчке F_n , очевидно, равно $\phi(n)$, так как несократимых дробей $m/n \quad (0 \le m/n \le 1)$ со знаменателем n столько же, сколько натуральных чисел m, меньших, чем n, и взаимно простых с n.

Вопрос о том, сколько всего членов содержит n-й ряд Фарея F_n , обсуждает в своем письме читатель "Кванта" А. Китаев из Ленинграда.

n	1	2	3	4	5	6	7	7	9	
$\phi(n)$	1	1	2	2	4	2	6	4	6	
$\Phi(n)$	2	3	5	7	11	13	19	23	29	

Таблица 2. Функция Эйлера и число дробей F_n

Ясно, что это число - обозначим его $\Phi(n)$ - равно $\Phi(n)=1+\phi(1)+\phi(2)+\phi(3)+\ldots+\phi(n),$ поскольку $\Phi(1)=2$ и $\Phi(n)=\Phi(n-1)+\phi(n)$ (см. таблицу 2). Простой формулы для $\Phi(n)$, видимо, не существует. Но интересно, что, несмотря на крайне нерегулярное поведение функции Эйлера $\phi(n)$ (отношение $\frac{\phi(n)}{n}$ бывает сколь угодно близко и к 0, и к 1), для $\Phi(n)$ можно доказать такое предельное отношение:

$$\lim_{n\to\infty} \frac{\Phi(n)}{n^2} = \frac{3}{\pi^2} \approx 0.305\dots,$$

т.е. $\Phi(x)$ при больших x возрастает "прибоизительно по параболе": $\Phi(x) \approx \frac{3}{\pi^2} x^2$

Это - одна и красивых теорем, полученных австрийским математиком Ф. Мертенсом (1874 г.).

4. Соседние знаменатели

Вернемся теперь к вопросу, поставленному в конце пункта 3, и объясним, почему, действуя по правилу ${\bf B}$, мы получим $\phi(n)$ несократимых дробей со знаменателем n. Сделаем еще одно наблюдение.

Рис. 1

Обратим внимание на знаменатели дробей в таблице 1. Составим для удобства из них новую таблицу 3. Правило *В* позволяет продолжать "таблицу знаменателей" (не заботясь о числителях) следующим образом.

