Quelques démonstrations géométriques

I/ Autour des triangles

Proposition: La somme des angles d'un triangle vaut 180°.

Prérequis: angles plat, adjacents, correspondants et alternes-internes.

Le professeur fera les rappels nécessaires si besoin.

Démonstration

On considère la figure tel que (DE) // (BC).

- 1/ **Donner** la mesure de l'angle \widehat{DAE} .
- 2/ Comparer les mesures des angles \widehat{BCA} et \widehat{EAC} . Justifier.
- 3/ Même question pour les angles \widehat{DAB} et \widehat{ABC} . Justifier.
- 4/ En déduire alors que la somme des mesures des angles du triangle ABC vaut 180°.

Remarque : cette propriété est utile pour calculer la mesure d'un troisième angle dans un triangle.

II/ Autour des triangles semblables

Proposition: Si deux triangles ont des angles égaux deux à deux alors ils sont semblables.

Prérequis : angles correspondants, théorème de Thalès.

Le professeur fera les rappels nécessaires si besoin.

Démonstration

On considère la figure suivante, le codage montre bien que les triangles ABC et ADE ont des angles égaux deux à deux.

On sait que A,B,D et respectivement A,C et E sont alignés.

1/ En utilisant les angles \widehat{ABC} et \widehat{ADE} , **démontrer** que (BC) // (DE).

2/ En appliquant le théorème de Thalès, **démontrer** que les triangles ABC et ADE sont semblables.

III/ Autour du théorème de Pythagore

<u>Proposition</u>: Si un triangle ABC est rectangle en A alors $BC^2 = AB^2 + AC^2$.

<u>Prérequis</u>: parallélogrammes particuliers, aires.

Matériel: feuilles de brouillon, paire de ciseaux.

Démonstration

1/ **Reproduire** et **découper** les figures suivantes (les 3 carrés et les 4 triangles rectangles identiques), <u>a, b</u> <u>et c'étant des nombres à choisir librement</u> (qui **respectent** les conditions !)

- 2/ Dessiner un carré de longueur de côté b + c.
- 3/ Placer <u>astucieusement</u> dans un premier temps les 4 triangles et les deux petits carrés. **Justifier** le fait que la figure du 2/ est bien un carré de longueur de côté b + c

Placer <u>astucieusement</u> les 4 triangles rectangles et le grand carré. **Justifier** le fait que la figure du 2/ est toujours bien un carré de longueur b + c.

4/ En déduire alors que $a^2 = b^2 + c^2$.

Une autre démonstration (*)

<u>Prérequis</u>: triangles semblables, droites remarquables d'un triangle, factorisation par facteur commun.

On considère la figure suivante comprenant 3 triangles rectangles AHB, AHC et ABC. Les lettres en minuscules correspondent aux longueurs des côtés.

- 1/ Que représente la droite (AH) dans le triangle ABC ?
- 2/ **Démontrer** que les triangles ABC, AHB et AHC sont semblables.
- 3/ Montrer alors que c^2 = ax et que b^2 = ay.
- 4/ En déduire que $a^2 = b^2 + c^2$.