Determinacy and reflection principles in second-order arithmetic

Leonardo Pacheco and Keita Yokoyama Tohoku University

MULTIPLE INDUCTIONS

MAIN THEOREM

Theorem (ACA₀)

- 1. Π_2^1 -Ref(ACA₀) $\leftrightarrow \forall n.(\Sigma_1^0)_n$ -Det*;
- 2. Π_3^1 -Ref $(\Pi_1^1$ -CA₀ $) \leftrightarrow \forall n.(\Sigma_1^0)_n$ -Det;
- 3. Π_3^1 -Ref $(\Pi_2^1$ -CA₀ $) \leftrightarrow \forall n.(\Sigma_2^0)_n$ -Det; and
- 4. Π_3^1 -Ref(\mathbb{Z}_2) $\leftrightarrow \forall n.(\Sigma_3^0)_n$ -Det.

Item 1 follows from (Nemoto et al., 2007). Item 2 from (Tanaka, 1991). Item 3 appears in (Kołodziejczyk and Michalewski, 2016) with a stronger base system. Item 4 follows from (Montalbán and Shore, 2014).

DETERMINACY AXIOMS

Preliminaries

00000

Gale-Steward games:

- ▶ Two players alternate building a sequence $\alpha \in \mathbb{N}^{\mathbb{N}}$ (or $2^{\mathbb{N}}$).
- ► The payoff is some $A \subseteq \mathbb{N}^{\mathbb{N}}$ (or $2^{\mathbb{N}}$).
- ▶ Player I wins iff $\alpha \in A$.

In second-order arithmetic:

- Γ-Det states all games in Baire space with payoff in Γ are determined.
- Γ-Det* states all games in Cantor space with payoff in Γ are determined.

DIFFERENCE HIERARCHY

PRELIMINARIES

000000

 $\varphi(f)$ is a $(\Sigma^0_k)_x$ formula iff there is a Σ^0_k formula $\psi(y,f)$ (possibly with other parameters) such that:

- $\psi(x,f)$ always holds;
- if z < y < x then $\psi(z, f)$ implies $\psi(y, f)$; and
- $\varphi(f)$ holds iff the least $y \le z$ such that $x = y \lor \psi(y, f)$ holds is even.

Then $\forall n.(\Sigma_{k}^{0})_{n}$ -Det states that all games whose payoff is a finite difference of Σ^0_{ν} sets are determined.

DETERMINACY AND THE DIFFERENCE HIERARCHY

Theorem (ACA₀)

PRELIMINARIES

000000

- $(\Sigma_1^0)_2$ -Det* is equivalent to ACA₀ (Nemoto et al., 2007);
- $(\Sigma_1^0)_2$ -Det is equivalent to Π_1^1 -CA₀ (Tanaka, 1991); and
- $(\Sigma_2^0)_n$ -Det is equivalent to $[\Sigma_1^1]^n$ -ID (MedSalem and Tanaka, 2008).

Theorem (ACA₀)

- ▶ $\forall n.(\Sigma_1^0)_n$ -Det* is equivalent to ACA'₀;
- ▶ $\forall n.(\Sigma_1^0)_n$ -Det is equivalent to Π_1^1 -CA'₀;
- ▶ $\forall n.(\Sigma_2^0)_n$ -Det is equivalent to $\forall n.[\Sigma_1^1]^n$ -ID; and
- ▶ $\forall n.(\Sigma_2^0)_n$ -Det* is equivalent to $\forall n.(\Sigma_2^0)_n$ -Det (Nemoto et al., 2007).

REFLECTION PRINCIPLES

Let

- ► *T* be a finitely axiomatizable theory;
- ightharpoonup Pr_T be a standard provability predicate for T; and
- ► $\operatorname{Tr}_{\Pi_n^1}$ be a truth predicate for Π_n^1 -sentences.

The reflection principle Π_n^1 -Ref(T) is the sentence

$$\forall \varphi \in \Pi_n^1. \Pr_T(\lceil \varphi \rceil) \to \operatorname{Tr}_{\Pi_n^1}(\lceil \varphi \rceil).$$

UNIFORM REFLECTION

PRELIMINARIES

000000

The uniform reflection scheme Π_n^1 -RFN(T) consists of the formulas

$$\forall x. \Pr_T(\lceil \varphi(\dot{x}) \rceil) \to \varphi(x)$$

for all Π_n^1 -formulas.

Proposition

Let T be a finitely axiomatizable theory extending ACA₀. Π_n^1 -Ref(T) and Π_n^1 -RFN(T) are equivalent over ACA₀.

STRONG DEPENDENT CHOICES

Strong Σ_{k}^{1} -DC₀ is ACA₀ plus the following scheme:

$$\exists Z \forall n \forall Y. (\eta(n,(Z)^n,Y) \rightarrow \eta(n,(Z)^n,(Z)_n)),$$

where $\eta(n, X, Y)$ is a Σ_k^1 -formula in which Z does not occur, $(Z)^n = \{(i, m) | (i, m) \in Z \land m < n\}, \text{ and } (Z)_n = \{i | (i, n) \in Z\}.$

Theorem

PRELIMINARIES

000000

For $0 < k < \omega$,

- (Simpson, Lemma VII.6.6) Strong Σ_k^1 -DC₀ implies Π_k^1 -CA₀ and Σ_k^1 -DC₀.
- ► (Simpson, Theorem VII.6.20) Strong Σ_{k+3}^1 -DC₀ is conservative over Π^1_{k+3} -CA₀ over Π^1_4 sentences.

β_k -models and Strong Dependent Choices

 $\mathcal{M} \subseteq \mathbb{N}$ is a coded β_k -model iff, for all Π_k^1 -sentence φ with parameters in \mathcal{M} ,

$$\varphi \iff \mathcal{M} \models \varphi.$$

The elements of \mathcal{M} are $(\mathcal{M})_n = \{i \in \mathbb{N} \mid \langle n, i \rangle \in \mathcal{M}\}.$

Theorem (Simpson, Theorem VII.6.9)

●00000

- $ightharpoonup \Pi_1^1$ -CA₀ \equiv Strong Σ_1^1 -DC $\equiv \forall X \exists \mathcal{M} \ni X.\mathcal{M} \text{ is a coded } \beta\text{-model};$
- \blacksquare Π_2^1 -CA₀ \equiv Strong Σ_2^1 -DC $\equiv \forall X \exists \mathcal{M} \ni X.\mathcal{M} \text{ is a coded } \beta_2\text{-model};$
- ► Strong Σ_k^1 -DC $\equiv \forall X \exists M \ni X.M$ is a coded β_k -model, if $k \geq 3$;
- If V = L, then Π_k^1 -CA₀ \equiv Strong Σ_k^1 -DC.

SEQUENCES OF β_k -MODELS

 $\psi_{i,e}(n)$ (roughly) states that there are finite sequences of β_i -models of any length where the last model is a β_e -submodel of \mathcal{N} :

$$X \in Y_0 \in \cdots \in Y_n$$

$$Y_0 \subseteq_{\beta_i} \cdots \subseteq_{\beta_i} Y_n \subseteq_{\beta_e} \mathcal{N}.$$

Each $\psi_{i,e}(n)$ is a Π^1_{e+2} -formula.

Theorem (ACA₀)

If $e \leq i$, then $\forall n. \psi_{i,e}(n)$ is equivalent to Π^1_{e+2} -Ref(Strong Σ^1_i -DC₀).

Π_{e+2}^1 -Ref($Strong \Sigma_i^1$ -DC₀) PROVES $\forall n.\psi_{i,e}(n)$

- $\begin{array}{l} \qquad \qquad \operatorname{Pr}_{Strong\ \Sigma_{i}^{1}\text{-}\mathsf{DC}_{0}}(\lceil\psi_{e}(i,0)\rceil) \text{ and} \\ \qquad \qquad \operatorname{Pr}_{Strong\ \Sigma_{i}^{1}\text{-}\mathsf{DC}_{0}}(\lceil\forall n.\psi_{e}(i,n)\rightarrow\psi_{e}(i,n+1)\rceil) \text{ hold.} \end{array}$
- ▶ By Σ_1^0 -induction, $\Pr_{Strong \ \Sigma_i^1\text{-DC}_0}(\lceil \psi_e(i,n) \rceil)$ for each $n \in \mathbb{N}$.
- ▶ By reflection, $\psi_e(i, n)$ holds for any $n \in \mathbb{N}$.
- ► Thus $\forall n. \psi_e(i, n)$ holds.

$\forall n. \psi_{i,e}(n) \text{ PROVES } \Pi^1_{e+2}\text{-Ref}(Strong } \Sigma^1_i\text{-DC}_0)$

Suppose that $\theta(X_0) \in \Sigma^1_{e+1}$ holds but $\Pr_{Strong \ \Sigma^1_i \text{-DC}_0}(\lceil \forall X.\theta(X) \rceil)$. Consider a first-order theory T which includes the following axioms:

- M is a discrete ordered semiring;
- ▶ $\mathcal{M}_j \models \mathsf{ACA}_0 \text{ for all } j \in \mathbb{N};$
- ▶ $\mathcal{M}_j \subseteq_{\beta_i} \mathcal{M}_{j+1}$ for all $j \in \mathbb{N}$;
- ► \mathcal{M}_j is " β_e -submodel enough" of the ground model; and
- ► $X_0 \in M_0$.

 $\forall n. \psi_{i,e}(n)$ implies T is consistent, and so has a model \mathcal{M} . \mathcal{M} satisfies both $\theta(X_0)$ and $\neg \theta(X_0)$. This is a contradiction.

Consequences - I

By taking e = i = 1:

Corollary (ACA₀)

 $\forall n. \psi_{1,1}(n)$ is equivalent to Π_3^1 -Ref(Strong Σ_1^1 -DC₀).

Corollary (ACA₀)

 $\Pi^1_3\operatorname{\mathsf{-Ref}}(\Pi^1_1\operatorname{\mathsf{-CA}}_0) \leftrightarrow \forall n.(\Sigma^0_1)_n\operatorname{\mathsf{-Det}}$

CONSEQUENCES - II

We can also modify the proof above to get:

Theorem (ACA₀)

 ACA'_0 is equivalent to Π^1_2 -Ref(ACA_0).

Corollary (ACA₀)

 Π_2^1 -Ref(ACA₀) $\leftrightarrow \forall n.(\Sigma_1^0)_n$ -Det*.

MULTIPLE INDUCTIONS **•00**0000000

Determinacy ← Multiple Inductions Reflection \longleftrightarrow Seq. of β_2 -models

Σ_1^1 Inductive Definition

Let $\Gamma: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ be a Σ^1 operator. Define

$$\Gamma'(X) = \Gamma(X) \cup X.$$

The set inductively defined by Γ is the least fixed point of Γ' .

MULTIPLE INDUCTIVE DEFINITIONS

 $[\Sigma_1^1]^k$ -ID is the states the existence of the sets inductively definable by combinations of k many Σ_1^1 operators.

Theorem (MedSalem and Tanaka, Theorem 3.4)

The following assertions are equivalent over ATR₀:

- $\blacktriangleright \forall n.(\Sigma_2^0)_n$ -Det; and
- $\blacktriangleright \forall n. [\Sigma_1^1]^n$ -ID.

The set defined by $\Gamma_0, \dots, \Gamma_{k-1}$ is the least simultaneous fixed point of all the $\Gamma_0, \ldots, \Gamma_{k-1}$.

BUILDING SEQUENCES OF β_2 -MODELS

We want to build:

$$X \in M_0 \in M_1$$

 $M_0 \subseteq_{\beta_2} M_1 \subseteq_{\beta} \mathcal{N}.$

We define using inductive operators Γ_0 , Γ_1 , Γ_2 :

Models	M_0, M_1
Recipes	M_0^r, M_1^r
Copy	M_0^c

Γ_0 : CLOSURE UNDER Π_1^1 -COMPREHENSION

 $e \in \mathbb{N}$ and $(M_i)_i \neq \emptyset$ implies $\langle comp, e, j \rangle \in M_0^r$

$$M_0$$
 M_1

$$\langle \text{comp}, e, j \rangle \longrightarrow M_0^r$$

$$M_1^r \longleftarrow \langle \text{comp}, e, j \rangle$$

$$|M_0^c|$$

$$\Gamma_1$$
: $M_0 \subseteq_{\beta_2} M_1$

$$M_1 \models \forall Z.\theta((M_1)_e,Z) \text{ and } M_0 \not\models \exists Y \forall Z \theta(Y,Z) \text{ implies } \langle \texttt{subm}, e \rangle \in M_0^r$$

 M_0 M_1

 $\langle \text{subm}, e \rangle \longrightarrow M_0^r$ M_1^r

 M_0^c

$$\Gamma_2$$
: $M_0 \in M_1$

 $\langle elem, e \rangle$ with e being the least such $\exists i \in (M_0)_e$ and $\neg \exists i \in (M_0^c)_e$

Γ_0 AGAIN

 $\langle comp, e, \overline{j} \rangle$, $\langle subm, e \rangle$ and $\langle elem, e \rangle$ are recipes

OVERVIEW

- ▶ Γ_0 : M_0 , M_1 are coded β -models;
- ▶ Γ_1 : $M_0 \subseteq_{\beta_2} M_1$; and
- ▶ Γ_2 : $M_0 \in M_1$.

MULTIPLE INDUCTIONS 000000000

PROVING Π_3^1 -Ref $(\Pi_2^1$ -CA $_0) \leftrightarrow \forall n.(\Sigma_2^0)_n$ -Det

RESULTS FROM MONTALBÁN AND SHORE

Theorem (Montalbán and Shore, Theorem 1.1)

For every $m \ge 1$, Π_{m+2}^1 -CA₀ proves $(\Pi_3^0)_m$ -Det.

Theorem (Montalbán and Shore, Theorem 1.10.5)

Let $m \ge 1$ and $X \subseteq \mathbb{N}$, then $(\Pi_3^0)_m$ -Det proves the existence of a β -model \mathcal{M} of Δ_m^1 - CA_0 with $X \in \mathcal{M}$.

PROVING Π_3^1 -Ref(\mathbb{Z}_2) $\leftrightarrow \forall n.(\Sigma_3^0)_n$ -Det

Formalizing Montalbán and Shore's results we get:

Corollary

 $\mathsf{ACA}_0 \ proves \ \forall m. \mathsf{Pr}_{\Pi^1_{m+2}\text{-}\mathsf{CA}_0}(\lceil (\Pi^0_3)_m\text{-}\mathsf{Det}\rceil).$

Corollary

 $\mathsf{ACA}_0 \ proves \ \forall m. \mathsf{Pr}_{(\Pi_2^0)_m-\mathsf{Det}}(\lceil \beta(\Delta^1_{m+2}-\mathsf{CA}_0) \rceil). \ Here,$ $\beta(\Delta_{m+2}^1\text{-}\mathsf{CA}_0)$ is the sentence which states that for every X there is a β -model \mathcal{M} of Δ_m^1 - CA_0 with $X \in \mathcal{M}$.

Using these corollaries, we can prove:

Theorem

Over ACA_0 , $\forall n.(\Sigma_3^0)_n$ -Det is equivalent to Π_3^1 -Ref(\mathbb{Z}_2).

REFERENCES

Kołodziejczyk, L. A. and H. Michalewski. 2016. *How unprovable is Rabin's decidability theorem*?, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–10.

MedSalem, M. O. and K. Tanaka. 2008. *Weak determinacy and iterations of inductive definitions*, Computational Prospects Of Infinity: Part II: Presented Talks, pp. 333–353.

Montalbán, A. and R. A. Shore. 2014. *The limits of determinacy in second order arithmetic: consistency and complexity strength*, Israel Journal of Mathematics **204**, no. 1, 477–508.

Nemoto, T., M. O. MedSalem, and K. Tanaka. 2007. *Infinite games in the Cantor space and subsystems of second order arithmetic*, Mathematical Logic Quarterly **53**, no. 3, 226–236.

Tanaka, K. 1991. Weak axioms of determinacy and subsystems of analysis II (Σ_2^0 games), Annals of Pure and Applied Logic **52**, no. 1-2, 181–193.