Memory size in the Prisoner's Dilemma

Nikoleta E. Glynatsi

Dr. Vincent Knight Dr. Jonathan Gillard

William H. Press and Freeman J. Dyson. Iterated Prisoner's Dilemma contains strategies that dominate any evolutionary

opponent. 2012.

$$p_3$$
 C p_4 p_5 p_6 p_6 p_7 p_8 p_8 p_8 p_9 $p_$

$$p = (p_1, p_2, p_3, p_4) \in \mathbb{R}^4_{[0,1]}$$

$$\begin{bmatrix} p_1q_1 & p_1\left(-q_1+1\right) & q_1\left(-p_1+1\right) & \left(-p_1+1\right)\left(-q_1+1\right) \\ p_2q_3 & p_2\left(-q_3+1\right) & q_3\left(-p_2+1\right) & \left(-p_2+1\right)\left(-q_3+1\right) \\ p_3q_2 & p_3\left(-q_2+1\right) & q_2\left(-p_3+1\right) & \left(-p_3+1\right)\left(-q_2+1\right) \\ p_4q_4 & p_4\left(-q_4+1\right) & q_4\left(-p_4+1\right) & \left(-p_4+1\right)\left(-q_4+1\right) \end{bmatrix}$$

WHICH IS THE BEST MEMORY ONE STRATEGY?

ARE THEY LIMITATIONS TO MEMORY ONE STRATEGIES?

$\max_{p} u_q(p)$ such that $p \in \mathbb{R}^4_{[0,1]}$

Lemma

 $ightharpoonup Q, \bar{Q} \in \mathbb{R}^{4 \times 4}$ $ightharpoonup c, ar{c} \in \mathbb{R}^{4 \times 1}$ $ightharpoonup a, \bar{a} \in \mathbb{R}$

 $u_q(p) = \frac{\frac{1}{2}pQp^T + c^Tp + a}{\frac{1}{2}p\bar{Q}p^T + \bar{c}^Tp + \bar{a}}$

PURELY RANDOM

$$p = (p, p, p, p)$$

REACTIVE

$$p = (p_1, p_2, p_1, p_2)$$

@NikoletaGlyn https://github.com/Nikoleta-v3