NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3271

THERMODYNAMIC PROPERTIES OF GASEOUS NITROGEN

By Harold W. Woolley

National Bureau of Standards

Washington March 1956

		n
	 	e e e e e e e e e e e e e e e e e e e
		r
		•

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3271

THERMODYNAMIC PROPERTIES OF GASEOUS NITROGEN

By Harold W. Woolley

SUMMARY

The tables of thermal properties of molecular nitrogen that have been prepared in an NBS-NACA series have been grouped together herein for convenient use. They include the thermodynamic functions for the gas, both real and ideal, the transport properties for the gas, and the vapor pressure of the liquid and the solid. A table of the ideal-gas properties is presented, including the specific heat at constant pressure, enthalpy, entropy, and the free-energy function; and a table giving these same properties for atomic nitrogen is also included. The tables of the real-gas thermodynamic properties include density, compressibility factor, entropy, enthalpy, specific heat at constant pressure, ratio of specific heats, and velocity of sound at very low frequency.

For the tables of real-gas thermodynamic properties the entries are for pressures of 0.01, 0.1, 0.4, 0.7, 1, 4, 7, 10, 40, 70, and 100 atmospheres. The temperatures cover the range from 100° K, or slightly above, up to 3,000° K. The method of correlation of the pressure-volume-temperature data permits the calculation of tables far beyond the range of the experimental points. This is accomplished, with some sacrifice of fit in certain regions, by the assumption of a reasonable representation of the forces within clusters of molecules.

Tables are also included for the viscosity, thermal conductivity, and Prandtl number. The viscosity is tabulated as a function of pressure, the low-pressure values having been computed on the basis of the force constants $\epsilon/k = 91.46^{\circ}$ K and $r_{o} = 3.681$ A for the Lennard-Jones 6-12 model (where ϵ is the maximum energy of binding between molecules, k is Boltzmann's constant, and r_{o} is the classical distance of closest intermolecular approach). The thermal conductivity was fitted to a purely empirical equation, and the Prandtl number was computed in a straightforward manner from these and the specific-heat values.

The vapor pressure for nitrogen is given in a table with values at every 2° from 52° to 126° K for ready reference and with the values of \log_{10} P tabulated against uniformly spaced values of 1/T to allow accurate interpolation (where P is pressure and T is absolute temperature). The latent heat of vaporization is also given for the temperature range 62° to 78° K.

INTRODUCTION

Advances in methods of propulsion and the high speeds attained thereby have focused attention on the need for accurate thermodynamic data on a wide class of substances over wide ranges of pressure and temperature. The substances include air and its constituent gases, actual and potential fuel systems and their oxidizers, and the products of combustion. This is one of a series of reports on the thermodynamic and transport properties of technically important gases compiled and calculated at the National Bureau of Standards at the suggestion and with the financial assistance of the National Advisory Committee for Aeronautics. The work conducted by members of the Thermodynamics Section, Heat and Power Division, under the supervision of Mr. Joseph Hilsenrath, has been described in part previously (refs. 1 to 5). This report is concerned with the properties of gaseous nitrogen. Tables are included for the thermodynamic functions for the gas, both ideal (tables 1 and 2) and real (tables 3 to 9), the transport properties for the gas (tables 10 to 12), and the vapor pressure of the liquid and the solid (table 13).

The computation of a set of mutually consistent tables of thermodynamic properties of nitrogen has been accomplished through the representation of the data of state by a virial equation whose coefficients were then used to calculate the derived thermodynamic properties. Since the experimental PVT data are abundant, cover a wide range of temperatures and pressures, and are usually very precise, the equation of state is an effective and efficient starting point for the calculation of the other thermodynamic quantities.

In the representation of the PVT data for the NBS-NACA tables, the objective was to cover adequately the range of pressure from zero to a maximum of 100 atmospheres and of temperature from a minimum of 100° K upward through the atmospheric and experimental range with a suitable extrapolation to high temperatures but omitting the effect of dissociation. The maximum temperatures were thus limited to approximately 3,000° K. As the resulting tables were to be tabulated in terms of pressure for convenient use, the correlation was made directly in terms of pressure. For most of the range of pressure and temperature desired, the simple equation

$$Z = PV/RT = 1 + B_1P + C_1P^2 + D_1P^3$$
 (1)

appeared to be adequate. The coefficients B_1 , C_1 , and D_1 are functions of temperature and are related to the virial coefficients in the analogous equation in powers of reciprocal specific volume. The coefficients B_1 ,

C₁, and D₁ are given in table 1¹4 for the generation of compressibility values at the higher pressures where interpolation in the table proves inadequate. The derivative functions of these coefficients are given in table 15.

The pressure corrections to various thermodynamic properties were determined theoretically from the correlation of the data of state and were combined with the values of the properties for the ideal gas to obtain the complete real-gas properties apart from dissociation. In this way tables 6, 7, and 9 were obtained. The methods used are based on the thermodynamic relationships between the properties and the data of state and are discussed by Woolley (ref. 2). Many details concerning the actual computations will be found in succeeding sections of this report and in the discussions of the tables.

Graphical representation of the estimated dissociation effects for entropy and enthalpy are included. A higher dissociation energy of approximately 9.764 electron volts as recommended by Gaydon (refs. 6 and 7) has been used. A number of lines of experimental evidence (refs. 7, 8, 9, and 10) are now in agreement in pointing toward this value in preference to Herzberg's earlier estimate of 7.373 electron volts (ref. 11). A more extended discussion of the effects of dissociation for diatomic elements is given in an earlier report (ref. 12). If nitrogen is present as one of several components in a gas mixture, the compressibility depends on interactions between the distinct constituents and is not calculated from the properties of pure constituents alone. The dissociation effects in such a case may be obtained by methods given by Huff, Gordon, and Morrell (ref. 13) and by Damköhler (ref. 14).

The fundamental physical constants employed in the correlation are those contained in the National Bureau of Standards tabulation of selected values of chemical thermodynamic properties (ref. 15).

The tables are given in dimensionless form and conversion factors to some frequently used units are given. The pressure intervals were chosen to facilitate Lagrangian interpolation of the tables. When linear interpolation in pressure is strictly valid, values for intermediate pressures have in some cases been omitted. Deviation plots or tables indicating the agreement or discordance of the experimental data have been included. These plots also show graphically the range and the abundance or paucity of the experimental data for nitrogen.

The tables of thermal properties were originally prepared in looseleaf form to permit their prompt distribution to research workers. They were arranged in close proximity to conversion factors, text material, and deviation plots. This desirable feature could not readily be retained in this report. The discussion of the tables, including their reliability, has been assembled in a separate section. The reader is urged to consult this section prior to the use of the tables. Values of the gas constant R are listed in table 16. Conversion factors are listed separately in tables 17 and 18. A temperature interconversion table is also presented (table 19).

The tables in this collection were computed over an extended period with the assistance of a number of persons. Valuable assistance has been rendered by Mrs. Lilla Fano who supervised the computations, some of which were performed by Mr. F. Donald Queen and Miss Mary M. Dunlap. Part of the calculations were performed by the Computation Laboratory of the Applied Mathematics Division under the supervision of Miss Irene Stegun. Thanks are also due to Prof. Y. S. Touloukian, Dr. R. L. Nuttall, and Mr. J. Hilsenrath for the tables of transport properties and to Dr. H. J. Hoge and Mr. G. J. King for the vapor-pressure tables.

SYMBOLS

a sound velocity at low frequency, m sec-1 or ft sec-1

a₀ sound velocity at standard conditions, 336.96 m sec⁻¹ or 1,105.5 ft sec⁻¹

B second virial coefficient in 1/V series, a function of temperature, cm³ mole⁻¹

 $B^{(0)}(\tau)$ second virial coefficient function, B/b_0

B₁ coefficient of P in pressure series for PV/RT, atm-1

-
$$B_1' = T dB_1/dT$$
, atm⁻¹

$$B_1'' = T^2 d^2 B_1 / dT^2$$
, atm⁻¹

b_o characteristic parameter of Lennard-Jones interaction potential, cm³ mole⁻¹

b_o for pairs alone as distinct from pairs in larger clusters, 63 cm³ mole-1

b_o for pairs within a cluster of three, 61.7 cm³ mole⁻¹

third virial coefficient in 1/V series, a function of temperature, $\left(\text{cm}^{3} \text{ mole}^{-1}\right)^{2}$

 $C^{(0)}(\tau)$ third virial coefficient function, C/b_0^2 in simple theory

C₁ coefficient of P² in pressure series for PV/RT, atm⁻²

$$C_1' = T dC_1/dT$$
, atm⁻²

$$C_1'' = T^2 d^2C_1/dT^2$$
, atm⁻²

 $C_{\mathbf{p}}$ heat capacity at constant pressure, various units

Cp heat capacity at constant pressure for ideal gas, various units

 $C_{\mathbf{v}}$ heat capacity at constant volume, various units

D fourth virial coefficient in 1/V series, a function of temperature, $(cm^3 mole^{-1})^3$

D₁ coefficient of P³ in pressure series for PV/RT, atm⁻³

$$D_1' = T dD_1/dT$$
, atm⁻³

$$D_1'' = T^2 dD_1 / dT^2$$
, atm⁻³

internal energy for 1 mole of gas in ideal-gas state at 0° K; equal to H_0° , enthalpy for same conditions, various units

free energy per mole in standard state (ideal gas at latmosphere for gaseous substances), various units

H enthalpy per mole, various units

H^O enthalpy per mole in standard state (ideal gas at 1 atmosphere for gaseous substances), various units

 ${\rm H_O}^{\rm O}$ enthalpy per mole in standard state at 0° K, same as ${\rm E_O}^{\rm O}$

```
equilibrium constant for a chemical reaction, atmn
Kз
            thermal conductivity, cal cm^{-1} sec^{-1} {}^{\circ}C^{-1}; also Boltzmann
k
              constant for proportionality of energy to temperature,
              1.38048 \times 10^{-16} \text{ erg } ^{\circ}\text{K}^{-1}
            thermal conductivity at 273.16° K and 1-atmosphere pressure,
k_0
              5.77 \times 10^{-5} \text{ cal cm}^{-1} \text{ sec}^{-1} {}^{\circ}\text{C}^{-1}
            molecular weight (chemical scale), 28.016 g mole-1
Μ
            moles of vapor expelled from container during vaporization
m
            Prandtl number, \eta C_p/k
N_{Pr}
            pressure, atm or dynes cm<sup>-2</sup>
Ρ
            atmospheric pressure, 1 atm or 1,013,250 dynes cm-2
P_0
            energy used for vaporization of an amount of liquid
Q.
            gas constant per mole, 82.0567 cm<sup>3</sup> atm (°K)<sup>-1</sup> mole<sup>-1</sup>,
R
              1.98719 \text{ cal deg}^{-1} \text{ mole}^{-1}, or 8.31439 \text{ abs. j deg}^{-1} \text{ mole}^{-1}
              (for values of R in other dimensions, see table 16)
            distance between two molecules
r
            classical distance of closest intermolecular approach at
r_{o}
              zero energy according to Lennard-Jones potential, 3.68 A
            entropy for 1 mole, various units
S
s^{o}
            entropy for 1 mole in standard state (ideal gas at 1 atmos-
              phere for gaseous substances), various units
            absolute temperature, OK or OR
\mathbf{T}
            temperature at standard conditions, 273.16° K
T_0
U
            potential energy of interaction of two molecules
            volume per mole, cm<sup>3</sup> mole<sup>-1</sup>
V
            function in theory of viscosity
VP
```

W function in theory of viscosity

- Z compressibility factor
- Z_O compressibility factor at standard temperature and pressure, 0.99955
- isentropic expansion coefficient, $\frac{-V}{P} \left(\frac{dP}{dV} \right)_S = \frac{-V}{P} \left(\frac{dP}{dV} \right)_T \gamma$
- γ ratio of specific heats, C_p/C_v
- e maximum energy of binding between molecules with a Lennard-Jones potential, ergs
- ϵ/k characteristic parameter of Lennard-Jones interaction potential, ${}^{\text{O}}K$
- ϵ_2/k ϵ/k for pairs alone, 95.42° K
- ϵ_3/k ϵ/k for pairs within a cluster of three, 97.7° K
- η viscosity, poise or g sec⁻¹ cm⁻¹
- η_0 viscosity at 273.16° K and 1 atmosphere, 1,662.5 x 10⁻⁷ poise
- μ Joule-Thomson coefficient, $\left(\frac{dT}{dP}\right)_H$, deg atm⁻¹
- ρ density, mole cm⁻³, Amagat units, and so forth
- density at 273.16° K and 1 atmosphere, 4.46338×10^{-5} mole cm⁻³ or 1.25046×10^{-3} g cm⁻³
- au a reduced temperature, kT/ ϵ

EXPERIMENTAL DATA OF STATE FOR NITROGEN

The experimental PVT data for nitrogen extending to elevated pressure are indicated in figure 1. Here the direct experimental values of Z are represented by V(Z-1) plotted as a function of density, with values for temperatures in ${}^{O}K$ adjoining the plotted points. The deviations of the correlation adopted for the present tables are indicated by the comparison between the solid curves and the plotted experimental points.

The procedure used in the present correlation in representing the second and third virial coefficients B and C, related to B_1 and C_1 in equation (1), has been outlined previously (ref. 2). The method is so arranged that it is possible to make use of experimental data on the pressure dependence of internal energy, enthalpy, specific heat, and sound velocity for the second virial coefficient and to use Joule-Thomson data and PVT data for both second and third coefficients. In determining the parameters for B and C the PVT data of Michels and coworkers (refs. 16 and 17) have been weighted heavily using values consistent with the recent summary of Michels, Lunbeck, and Wolkers (ref. 18). Their data are in the range 0° to 150° C.

The isotherm data of Holborn and Otto (ref. 19) have been corrected for the effect of stretching of the container at elevated pressure and for individual pressures and temperatures occurring in their evaluation of the amount of substance present for individual measurements. The need for correction of their results has been discussed by Cragoe (ref. 20). As a result of the corrections applied, the points as plotted are not identical with the figures given in their original publications. Also, the data of Michels have been adjusted slightly for the highest temperatures for the vapor pressure of the mercury confining the gas.

It was not possible to obtain an exact fit of the second virial coefficient to all the good data using an unmodified 6-12 Lennard-Jones function. Nevertheless, such a function was used even though it departed considerably from the data (refs. 21 to 23) at the lower temperatures, because the tables herein are intended primarily for moderate and elevated temperatures. The parameters to obtain C and the function for D were so chosen as to compensate partially for the failure to fit B for the actual PVT data at moderately low temperatures.

In terms of the virial coefficients for 6-12 Lennard-Jones potentials as tabulated in the dimensionless form $B^{(0)}(\tau)$ and $C^{(0)}(\tau)$ by Hirschfelder (refs. 24 and 25), the coefficients B_1 and C_1 are represented by

$$B_1 = b_2 B^{(0)}(\tau_2) / RT$$

and

$$C_1 = b_3^2 \left\{ C^{(0)}(\tau_3) - 4 \left[B^{(0)}(\tau_3) \right]^2 \right\} / (RT)^2 + 5B_1^2$$

where

$$\tau_2 = kT/\epsilon_2$$

and

$$\tau_3 = kT/\epsilon_3$$

with

$$\epsilon_2/k = 95.42^{\circ} K$$

$$b_2 = 63 \text{ cm}^3 \text{ mole}^{-1}$$

and

$$\epsilon_3/k = 97.7^{\circ} K$$

$$b_3 = 61.7 \text{ cm}^3 \text{ mole}^{-1}$$

The coefficient D_1 is represented empirically as

$$D_1 = 0.091442T^{-3} - 297.40T^{-4} + 111,984T^{-5} -$$

 $6.9819 \times 10^6T^{-6} - 2.4526 \times 10^{-5}T^{-3}e^{1,600/T}$

After the calculation of the derived tables based on the present PVT correlation was completed, values of virial coefficients representing new PVT data of Friedman, White, and Johnston were received (private communication). At the lower temperatures their values indicate a need for a different extrapolation; at intermediate and elevated temperatures they favor the trend of Holborn and Otto (ref. 19). A complete correlation of PVT data including the region near the critical point cannot be performed properly when one represents the compressibility factor as a power series in the pressure, because the critical point is a point of singularity for such a representation. The extension of the correlation to this region of temperature and pressure is possible, however, if one uses a series in density or 1/V for which no such singularity occurs. Examination of figure 1 shows that the isotherms in this representation deviate only slightly from linearity or complete representation in terms of B and C alone. Representations of the data

in the low-temperature region with a density series using only B and C have been given with considerable success by Claitor and Crawford (ref. 26) and by Hall and Ibele (ref. 27).

COMPARISON OF DERIVED QUANTITIES WITH EXPERIMENTAL DATA

Experimental data on heat capacity, entropy, enthalpy, sound velocity, and so forth are too sparse to provide directly a tabulation of these properties over an appreciable temperature and pressure range. Fortunately, it is possible to calculate these quantities when sufficient data of state are available. Thermodynamic properties thus calculated from good PVT data are usually in very satisfactory agreement with the experimental data. This section is devoted to a comparison of the derived thermodynamic quantities with the existing experimental data.

The specific heat at constant pressure was measured by Henry (ref. 28) for pressures near 1 atmosphere. His method involved the determination of a temperature difference due to lack of symmetry of the temperature distribution along a uniformly heated flow tube, together with a comparison of the effect with the similar effect for helium. He reduced his values to specific heat at constant volume. For the present comparison, his results have been reduced back to the observed specific heats at constant pressure, using his graphically presented experimental points. His tabulated final results are presented as a dashed curve near the experimental points in figure 2, showing percent departures from table 5. His claimed accuracy was only about 1 percent, and his values at his higher temperature of 350° C deviate from the computed values by about this amount. At room temperature, for which he suggested 1/2 percent as the accuracy, the agreement is correspondingly better.

Measurements have been made by Brinkworth (ref. 29) on the cooling of a gas during an isentropic expansion, according to the method of Lummer and Pringsheim. Brinkworth's results were based on measurements near atmospheric pressure only, so that no clear indication of equation-of-state effects can be inferred directly from his results. His computed values for γ for the ideal-gas state, which he obtained by applying corrections based on Berthelot or Callender equations of state to his measured values, are shifted oppositely to the adjustments that would properly be made on the basis of the present PVT correlation. However, the actual shift required to give agreement with $\gamma^{\rm O}$, as computed from ${\rm C_p}^{\rm O}/{\rm R}$ based on spectroscopic values for zero pressure, is several times as great as that given in the present PVT correlation, although it agrees in sign.

It is to be noted that, while the adiabatic expansion for an ideal gas follows a rule that PV^{γ} is a constant or $PT^{\gamma/(1-\gamma)}$ is a constant, the behavior of a real gas, during an adiabatic expansion, is given in first approximation over a limited range assuming that PV^{α} is a constant, where

$$\alpha = -\frac{V}{P} \left(\frac{dP}{dV} \right)_{S} = -\frac{V}{P} \left(\frac{dP}{dV} \right)_{T} \quad \gamma = \gamma Z / \left[Z - P \left(\frac{dZ}{dP} \right)_{T} \right]$$

To express the temperature change with change of pressure, other relations are required; so that, if $\Pr\left[\gamma_a/\left(1-\gamma_a\right)\right]$ = Constant is to be used, then

$$\frac{\gamma_{\mathbf{a}} - 1}{\gamma_{\mathbf{a}}} = \frac{P}{T} \left(\frac{dT}{dP} \right)_{\mathbf{S}} = P \left(\frac{dV}{dT} \right)_{\mathbf{p}} / C_{\mathbf{p}} = \left[Z + T \left(\frac{\partial Z}{\partial T} \right)_{\mathbf{p}} \right] R / C_{\mathbf{p}}$$

As can be seen, γ_a is naturally different from both γ and $\alpha.$

The final values of γ_a reported by Brinkworth for the real gas were obtained as an extrapolation to infinite volume of an experimental container, as he found a marked dependence on volume. Values of γ_a computed from theory are within the range of his extrapolations.

The results of Brinkworth have been converted to provide values of C_p for about 1.03 atmospheres, using the present PVT correlation to give $Z + T\left(\frac{\partial Z}{\partial T}\right)_p$ in

$$C_{\mathbf{p}} = R \left[Z + T \left(\frac{\partial Z}{\partial T} \right)_{\mathbf{p}} \right] \left(\frac{d \log_{\mathbf{e}} P}{d \log_{\mathbf{e}} T} \right)_{\mathbf{S}}$$

The results are shown in figure 2 as percent departure from table 5.

Values for the specific heat of gaseous nitrogen were reported by Eucken and Von Lüde (ref. 30) based on a similar use of the method of Lummer and Pringsheim involving the cooling during an isentropic expansion. They used the PVT data of Holborn and Otto in the evaluation. Their results are also shown in figure 2.

Values of the specific heat at constant pressure for nitrogen are at times quoted from the measurements of the velocity of sound by Shilling and Partington (ref. 31). Their results deviate markedly from the computed values at elevated temperatures. Similar results were obtained by Dixon, Campbell, and Parker (ref. 32), who also measured the velocity of sound. These measurements are considered further in the discussion of sound velocity.

The specific heat at constant pressure was measured over an extended range of pressures by Workman (ref. 33) for temperatures of 26° C and 60° C. His data, shown in figure 3, have here been expressed as the ratio of C_p to C_p° , the value at zero pressure, instead of his reported ratio to the value at 1 atmosphere in order to make distinct the contribution of the departure from ideality. The independent variable is here shown in atmospheres instead of the original pressure units. The curves in the figure are the predictions from theory using the present PVT correlation. The agreement is considered fairly satisfactory for the pressure range of chief interest in this correlation, that is, below 100 atmospheres.

The data of Clark and Katz (ref. 34) for the ratio of specific heats of nitrogen have been recomputed using an improved theory for the effective mass of the gas to be added to the mass of the moving piston in their resonating system. The correction involves the recognition that the participation of the mass in each end of the cylinder is not linear with distance as if it were approximately proportional to the velocity but varies according to the kinetic energy or as the square of the velocity. The integration for quadratic dependence on distance, which is approximately valid, supplies a factor of 1/3 rather than 1/2 as used by Clark and Katz. A detailed derivation of the corrections for the effective mass of the gas in a resonating-piston experiment is to be found in a note by Woolley (ref. 3).

In figure 4 the open circles show the values reported by Clark and Katz, while the recomputed values are shown as filled circles. The curves show the theoretically computed values based on the present PVT correlation with $C_p^{\ O}/R$ taken from table 1. The different curves are for distinct computations carried to the powers of pressure corresponding to the virial coefficients B_1 , C_1 , and D_1 as indicated. A more direct comparison of the experimentally observed quantities may be made by computing values

of α ; but such a comparison is not shown here, as the quality of agreement remains essentially the same as is shown for γ .

A graphical indication of values of γ for nitrogen from 0 to 100 atmospheres at 27° C was given by Hubbard and Hodge (ref. 35) based on measurements of the velocity of sound. Values read from their graph are shown in figure 5 as a dashed curve.

Other measurements of the velocity of sound in nitrogen as a function of pressure up to 1 atmosphere have been made by Keesom and Van Lammeren (ref. 36), by Van Itterbeek and Mariëns (ref. 37), and by Van Itterbeek and Van Doninck (ref. 38). These are all at temperatures below the region covered in the present tables, which are primarily fitted to the PVT data immediately above and below ordinary atmospheric temperatures. The comparison with these data is accordingly omitted. A limited portion of the data of Keesom and Van Lammeren gives the temperature dependence of the velocity of sound near atmospheric pressure between 145° K and about 165° K. The results are shown in figure 6 with a curve interpolated from table 9 shown also for comparison.

Values for the velocity of sound in nitrogen were reported by Shilling and Partington (ref. 31) based on measurements with a Kundt's tube. Their results for sound velocity are shown in figure 6 as measured. Although the values reported deviate so far from the theoretical as to give heat-capacity values that are not satisfactory, the ratio of sound velocity in nitrogen to that in air is seen to be considerably more accurate.

Measurements on the velocity of sound in nitrogen in tubes by Dixon, Campbell, and Parker (ref. 32) gave values surprisingly near those of Shilling and Partington. The former authors also made a number of similar determinations on the velocity of sound in air. As in the case with the results of Shilling and Partington, values of sound velocity in nitrogen obtained indirectly by accepting their ratios of sound velocity for nitrogen versus air, together with the velocity in air, depart relatively little from table 9.

A determination of the third-law entropy of nitrogen was presented in 1933 by Giauque and Clayton (ref. 39) at the boiling point with good agreement with the statistically calculated value for the entropy. As the computation involved the use of their measured specific heats for the solid and the liquid together with latent heats of transition in the solid, fusion, and vaporization, the agreement can be taken as indicating a satisfactory condition for the data for this entire low-temperature region insofar as consistency is concerned.

In table 20 revisions in the boiling point and in the latent heat of vaporization are examined. The value used by Giauque and Clayton for the boiling point, 77.32° K, may be compared with that given by Friedman and White, 77.34° K (ref. 40), and with that given by Hoge and King for table 13, 77.395° K. Similarly, the value for the latent heat of vaporization, 1,332.9 cal/mole, was revised to 1,320 cal/mole by Friedman and White. An interpolation of newer data of Furukawa and McCoskey (ref. 41) indicates 1,336.6 cal/mole. At the boiling temperature credited to Hoge and King in table 20, an entropy of vaporization has been obtained from the data of Friedman and White on the basis of the observation that in this region the pressures given by Hoge and King are about 0.3 percent higher than those of Friedman and White.

Furukawa and McCoskey (ref. 41) have recently reported values for the heat of vaporization of liquid nitrogen and for the heat of sublimation of solid nitrogen. These values are of some interest in regard to PVT data, because it is possible in principle to obtain values of PV/RT for the vapor from such data if in addition sufficiently accurate vapor-pressure data are known. Their results for vaporization of the liquid are 5,899.0 j mole⁻¹ at 68° K, 5,735.2 j mole⁻¹ at 73.10° K, and 5,571.8 j mole⁻¹ at 78° K. For the sublimation of solid nitrogen their result is 6,775.0 j mole⁻¹ at 62° K. The comparison of their results with previous work is shown in figure 7.

The reduction of the heat-of-vaporization data involves a correction for the finite volume of the liquid. The same correction enters with reversed sign in using the Clapeyron equation to obtain the compressibility of the vapor, which is

$$PV/RT = \frac{QP}{m}/RT^2 \frac{dP}{dT}$$

These relationships provide a check of the consistency among the latent heats, vapor pressures, and data of state. It is possible by means of a slight change in the vapor-pressure values to bring them into close agreement with newer latent heats and data of state at low temperatures.

Measurements of the Joule-Thomson effect have been made by Roebuck and Osterberg (ref. 42) over the range 93° K to 573° K and up to 200 atmospheres. When the constant correction factor for pressure in their measurements is applied, the agreement with the present PVT correlation is quite good from the ice point upward, which is the region of most of the PVT data. The two sets of values differ considerably at lower temperatures, the reported experimental value being 50 percent greater than the theoretically calculated PVT value at the lowest temperature in the measurements.

The Joule-Thomson coefficient of cooling in an isenthalpic expansion has not been tabulated here. It can be readily obtained, however, from the relationship

$$\begin{split} \mu &= \left(\frac{dT}{dP}\right)_{H} \\ &= \frac{RT^{2}}{C_{p}P} \times \left(\frac{dZ}{dT}\right)_{p} \\ &= \frac{RT}{C_{p}} \left(T \frac{dB_{1}}{dT} + TP \frac{dC_{1}}{dT} + TP^{2} \frac{dD_{1}}{dT}\right) \end{split}$$

where c_p is the specific heat given in table 5 and the derivatives in the parentheses are given in table 15. Cooling in an isentropic expansion can be similarly computed from the tabulated values through the relationship

$$\frac{P}{T} \left(\frac{dT}{dP} \right)_{S} = \frac{R}{C_{p}} \left[Z + T \left(\frac{\partial Z}{\partial T} \right)_{p} \right]$$

CALCULATION OF TABLES

The thermodynamic quantities tabulated in this report were computed numerically from the coefficients of the equation of state. The following formulas were used:

$$\frac{S}{R} = \frac{S^{O}}{R} - \log_{e} P - (B_{1} + B_{1}')P - \frac{(C_{1} + C_{1}')P^{2}}{2} - \frac{(D_{1} + D_{1}')P^{3}}{3}$$

$$\frac{H - E_O^{\circ}}{RT_O} = \frac{H^{\circ} - E_O^{\circ}}{RT_O} - \frac{T}{T_O} B_1'P - \frac{T}{T_O} \frac{C_1'P^2}{2} - \frac{T}{T_O} \frac{D_1'P^3}{3}$$

$$\frac{C_{p}}{R} = \frac{C_{p}^{o}}{R} - (2B_{1}' + B_{1}'')P - \frac{(2C_{1}' + C_{1}'')P^{2}}{2} - \frac{(2D_{1}' + D_{1}'')P^{3}}{3}$$

$$\frac{C_{p} - C_{v}}{R} = \frac{\left[Z + T\left(\frac{\partial Z}{\partial T}\right)_{p}\right]^{2}}{Z - P\left(\frac{\partial Z}{\partial P}\right)_{T}}$$

$$= \frac{\left[1 + (B_{1} + B_{1}')P + (C_{1} + C_{1}')P^{2} + (D_{1} + D_{1}')P^{3}\right]^{2}}{1 - C_{1}P^{2} - 2D_{1}P^{3}}$$

The velocity of sound is given by

$$a = \sqrt{RT\alpha Z/M} = Z\sqrt{\frac{RT\gamma}{M\left[Z - P(\partial Z/\partial P)_{T}\right]}}$$

DISCUSSION AND RELIABILITY OF TABLES

The uncertainty of the tabulated density and compressibility and also of the various derived properties is discussed below. In general, the uncertainty is smallest in the region from about 0° C to 150° C where the most accurate experimental determinations were made. Since a semitheoretical representation was closely fitted to the data in this region, the uncertainty here does not exceed 0.1 percent in PV/RT or about 10 percent of the difference between the real and ideal values of the compressibility. The uncertainty increases both at higher and lower temperatures. This is due in part to the limitations of the theory and of the fitting process and also to limitations in the ranges and reliability of the various experiments. The derived pressure corrections to thermodynamic properties are, in general, less accurate, because errors are increased in differentiation. The corresponding experimental determinations, such as Joule-Thomson coefficients, are frequently inaccurate, particularly at the lower temperatures. The knowledge of the properties of nitrogen can undoubtedly be improved by refinement of experimental techniques, extension of the experimental range, and by improvement of theory and the methods of correlation.

It is sometimes convenient to indicate the uncertainty of the ideal-gas values separately from that of the pressure corrections. Thus, under properties of the real gas the reader may find the statement to the effect that the uncertainty in the difference between the real and the ideal entropy for nitrogen may be as great as 10 percent at the highest pressures. An examination of the entries for the entropy of nitrogen at 1,000°, for example, shows the value for the ideal gas to be 27.4261 dimensionless units at 1 atmosphere (table 1), giving 27.4261 - log_e (100 atm/1 atm) = 27.4261 - 4.6052 = 22.8209 dimensionless units for the ideal gas at 100 atmospheres. The corresponding real-gas value at 100 atmospheres as tabulated is 22.8094 (table 7). The indicated uncertainty of 10 percent of the difference is thus 0.0012 (about 0.005 percent of the total entry).

Table 1.- The thermodynamic properties of undissociated molecular nitrogen in the ideal-gas state are given in dimensionless form in table 1. The values from 60° to 2,800° K are based largely on the calculations of Goff and Gratch (ref. 43) but are for the normal isotopic mixture. These values have been extended to the greater temperature range of the present table at the National Bureau of Standards, using the same fundamental spectroscopic data.

The uncertainty of the N_2 table up to 2,800° K has been indicated by Goff and Gratch (ref. 43). On the basis of that analysis, the functions $C_p{}^o/R$ and S^o/R appear accurate to the next to the last place tabulated in the present table up to about 2,000° K, while at considerably higher temperatures their uncertainties may amount to several units in the next to the last digit included. It would be indicated similarly that the uncertainty in $(H^O - E_O^O)/RT_O$ may be as great as 0.0001 at 500^O K, 0.001 at $1,000^O$ K, and several times as great at the higher temperatures.

The free-energy values are considered to be very reliable, being uncertain by less than 1 unit in the third decimal place up to the highest temperatures.

Table 2.- The ideal-gas thermal functions for atomic nitrogen have been converted from those given in reference 44 and subtabulated in table 2. A slight upward shift of about 0.0001 in SO/R has occurred in the lower temperature part of the table in the process of fitting closely the values at higher temperatures within the constant-specificheat range.

The values in this table are considered to be very reliable, namely, to within 0.0001, as tabulated, except for the free energy which is reliable to 2 or 3 units in the last place.

Table 3.- The tabulated values of the compressibility factor Z = PV/RT (table 3) are those which would exist if there were no

dissociation within the range covered. The values were computed from the virial equation

$$Z = 1 + B_1P + C_1P^2 + D_1P^3$$

The coefficients B_l and C_l were calculated from the Lennard-Jones potential using intermolecular force constants as parameters.

The parameter values for the second virial coefficients B_1 were obtained by a graphical method which permits the simultaneous fit of data on the Joule-Thomson coefficient and on the pressure dependence of PV/RT (refs. 16 through 19, 27, and 45 through 52), internal energy, specific heat, and velocity of sound. The experimental third virials C_1 were fitted using the second-virial-coefficient parameters only for a cluster of two and graphically determined values of the parameters for the cluster of three, since the equilibrium constant for the formation of a cluster of three is $K_3 = \left(2B_1^2 - C_1/2\right)/(RT)^2$. The modification of the usual Lennard-Jones treatment (ref. 2) was undertaken to provide a more applicable model for nitrogen than is afforded by the unmodified theory.

The tabulated values are reliable to approximately 1 unit in the next to the last tabulated place at temperatures below 300° K and within 2 or 3 units in the last place at higher temperatures. These tables are in essential agreement with a recent correlation of Hall and Ibele (ref. 27) and Michels, Lunbeck, and Wolkers (ref. 18).

The compressibility factor is dimensionless. Values of the gas constant R are listed in table 16 for frequently used units in order to facilitate the use of this table in calculating, by means of the equation Z = PV/RT, the pressure P, the specific volume V (or the density 1/V), or the temperature T when any two of these are known. The values given are based on a molecular weight of 28.016.

Table 4.- The tabulated densities for molecular nitrogen (table 4) were computed from the equation

$$\rho/\rho_{O} = \frac{T_{O}Z_{O}P}{P_{O}TZ}$$

from the compressibility factors given in table 3, and $T_0Z_0/P_0=273.037^{\circ}$ K atm⁻¹. The values are derived from the values of compressibility in table 3 and have identical errors. On the basis of the estimated errors of table 3, this table has entries that may be in error by 5 in the next to the last place, but many entries are more precise. At low pressures and high temperatures the values are less reliable because of neglect of dissociation effects.

Table 5.- The specific-heat values (table 5) were obtained by combining the ideal-gas specific-heat values from table 1 with differences between real and ideal based on thermodynamic formulas and the virial coefficients in table 3. The effect of dissociation is not included in this table, but its magnitude may be estimated with the formulas discussed in reference 29.

The accuracy of the tabulated values varies with temperature and pressure. The error in $\rm C_p$ - $\rm C_p^{O}$ may approach 5 percent in the range of moderate pressure but may approach 10 percent for the high-pressure entries. Comparisons with the experimental data are shown in figures 2 and 3.

Tables 6 and 7.- The enthalpy and entropy of nitrogen tabulated in tables 6 and 7 do not include the effect of dissociation. Its magnitude may be estimated and found to be small at moderate temperatures and pressures using formulas discussed and evaluated in reference 12. The exact magnitude in the case of nitrogen has been unknown because of the large uncertainty in the dissociation energy. The graphs shown in figures 8 and 9 show the effect of the dissociation on the basis of the now-accepted dissociation energy of about 9.764 electron volts. If other constituents containing nitrogen are present, the effects are more complicated, as is indicated in reference 12.

The accuracy of the tabulated values varies with temperature and pressure. If the small neglected effect of dissociation at the most elevated temperatures is disregarded, the uncertainty in the difference between real and ideal properties is thought to be somewhat less than 5 percent in the range of moderate pressure but may be as great as 10 percent at the highest pressure.

Table 8.- On the basis of the reliabilities estimated for specific heats and compressibilities, tables 5 and 3, the values of γ (table 8) are considered to be reliable to within 5 percent of their departures from values for the ideal gas at pressures below 40 atmospheres and possibly only to within 10 percent of this difference at the highest pressure of 100 atmospheres. Comparisons with direct and indirect experimental determinations of γ are shown in figures 4 and 5.

Table 9.- The sound velocities tabulated for nitrogen (table 9) are for equilibrium conditions as far as internal molecular energies, intermolecular energies, and kinetic energies are concerned and thus do not apply at very high frequencies. The effect of dissociation has not been included, so that the values are not strictly for zero frequency as would correspond to full equilibrium conditions at the highest temperatures.

The accuracy of the values tabulated varies with temperature and pressure. Numerically, the reliability is roughly that indicated for the

values of γ in terms of departures from ideal-gas values. At 200° K the values are believed reliable within about 0.002 at 10 atmospheres, 0.01 at 40 atmospheres, 0.03 at 70 atmospheres, and 0.07 at 100 atmospheres. At 400° K these limits might be reduced by factors between 5 and 10. At higher temperatures, the values for 100 atmospheres are probably within 0.005.

The effect of dissociation is probably quite small except for the low pressures at the highest temperatures covered. Below the very high temperatures at which dissociation is appreciable, the table is more precise with increasing temperatures, because the gas becomes more ideal. Figure 6 shows the departures of experimental values for the velocity of sound from the indications of this table.

Table 10.- The viscosity at low pressure (table 10) was calculated using the Lennard-Jones potential, as applied by Hirschfelder, Bird, and Spotz (ref. 53). In this case the potential energy of interaction between the two molecules at a separation r is given by

$$U(r) = 4\epsilon \left[\left(\frac{r_0}{r} \right)^{12} - \left(\frac{r_0}{r} \right)^6 \right]$$

where ϵ is the maximum energy of attraction and r_0 is the distance at which the attractive and repulsive energies are equal. The coefficient of viscosity for a single gas is given by

$$\eta \times 10^7 = \frac{266.93V_{f}}{r_0^2 W(2)(2)} \sqrt{MT}$$

where M is the molecular weight, T is the Kelvin temperature, and V_f and $W^{(2)}(2)$ are functions of kT/ϵ tabulated by Hirschfelder, Bird, and Spotz (ref. 53) from solutions of the collision integrals. The tables were calculated by Hilsenrath and Touloukian (ref. 4) using the parameters $\epsilon/k = 91.46^{\circ}$ K and $r_0 = 3.681$ A, chosen to fit the more accurate viscosity data in the lower temperature region. They also computed the viscosity at elevated pressure on the basis of the Enskog equation

$$\eta/\eta' = 1 + 0.175b\rho + 0.8651b^2\rho^2$$

where η' is the low-pressure viscosity at T^O K in poises; ρ is the density in grams per cubic centimeter; and b, the viscosity covolume in cubic centimeters per gram, is

$$b = 1.783(10^{-7})M^{-1/4}(\sqrt{T}/\eta^{1})^{3/2}$$

The viscosity of nitrogen at very low pressures has recently been measured by Johnston, Mattox, and Powers (ref. 54). Their report lists viscosities of nitrogen at 306° and 273° K at pressures from 500 to 0.00017 millimeter of mercury and at 194° K and 79° K at pressures down to 0.353 millimeter of mercury. Their values extrapolated to atmospheric pressure show a mean deviation of 0.17 percent from data obtained earlier by Johnston and McCloskey (ref. 55).

The values of viscosity are reliable within 5 percent. A graphical comparison of the tabulated values with the experimental results is shown in figures 10 and 11. The decided trend (see fig. 10) of the low-pressure experimental data at high temperature would suggest that a modification of the force constants ϵ/k and r_0 is in order. If the constants are chosen as 3.8 A and 80° K, respectively, the deviations for the low-pressure data can be reduced to within 2 percent. While this choice improves the fit at the higher temperatures, it introduces larger departures in the lower region where the experimental data are probably more precise. Numerical adjustments may be made to the tables on the basis of the deviations shown in figure 10 which would bring the values within a few tenths percent of the experimental data (refs. 56 to 67).

The departures of the high-pressure viscosity data of Boyd (ref. 68), Michels and Gibson (ref. 69), and Sibbitt, Hawkins, and Solberg (ref. 70) from the tabulated values are shown in figure 11. The recent data of Kestin and Pilarczyk (ref. 71) at room temperature are in agreement with the correlation within 0.2 percent up to 40 atmospheres. Above this pressure the departures increase gradually to 1 percent at 70 atmospheres.

Table 11.- The tabulated values (table 11) of thermal conductivity up to 3000 K were obtained through the equation given by Keyes (ref. 72),

$$k = \frac{0.604\sqrt{T}}{1 + \frac{224}{T} \times 10^{-12/T}} \times 10^{-5} \text{ cal cm-l sec-l }_{K-1}$$

where T is the Kelvin temperature.

Above 300° K the values were obtained by the relation given by Stops (ref. 73),

$$k = k_0(1 + 3.13 \times 10^{-3}t - 1.33 \times 10^{-6}t^2 + 2.63 \times 10^{-10}t^3)$$

where t is the Celsius temperature. The two equations, both empirical relations, yield values of the thermal conductivity which are in very close agreement between 300° and 700° K. Stops' data cover the range from 0° C to 1,000° C, while Keyes' data extend from -200° C to 400° C. The overlap region is represented satisfactorily by both equations. The value $\rm k_0$, the thermal conductivity at 0° C, was taken as 5.77 \times 10-5 cal cm⁻¹ sec⁻¹ $^{\rm O}{\rm K}^{\rm -1}$ according to Stops' representation. While the Keyes relation yields 5.73 \times 10-5 cal cm⁻¹ sec⁻¹ $^{\rm O}{\rm K}^{\rm -1}$ for $\rm k_0$, this discrepancy is not serious since the estimated accuracy of the tabulated $\rm k/k_0$ is of the order of 5 percent.

Table 12.- The Prandtl number $N_{\rm Pr} = \eta C_{\rm p}/k$ and some of its fractional powers are listed for molecular nitrogen at 1 atmosphere in table 12. The table was computed from values of specific heat $C_{\rm p}/R$, viscosity η , and thermal conductivity k/k_0 given, respectively, in tables 5, 10, and 11.

The uncertainty in this table results from the uncertainties of the values of thermal conductivity and viscosity. Above 600° K the values of viscosity in table 10 may be somewhat too high (see fig. 10), which may account for the sharp rise of the Prandtl number at high temperatures. Below this temperature the tabulated Prandtl numbers should be reliable to about 5 percent. The uncertainties in the fractional powers are correspondingly lower. Other fractional powers may be computed with the aid of figure 12.

Table 13.- The vapor pressures (table 13) were computed by Dr. H. J. Hoge and Mr. G. J. King. The tables are based on an analysis of the data in references 74 to 76, 39, and 77 to 85, which are listed here roughly in the order of the weight given to the data taken from them. The accepted vapor-pressure - temperature relation for solid nitrogen is given by the equation for which constants are given in table 13(c), while that for liquid nitrogen is given by table 13(a). Deviations of the experimental data from the accepted relations are shown in figure 13. A substantial improvement in consistency was effected by adjusting the temperatures of some of the reported data. A recent study (ref. 85) showed differences in reported vapor pressures of oxygen that were attributed to differences in temperature scales. Many laboratories have published data on both oxygen and nitrogen, and for references 39, 74, 76, 81,

and 82 the nitrogen temperatures were adjusted by amounts that, if similarly applied to the oxygen data, would have brought the oxygen data into agreement with those reported in reference 85, which are on the NBS provisional temperature scale below 90° K and on the International Temperature Scale above that point. In other cases there was inadequate information to warrant an adjustment. Where an adjustment was made, figure 13 shows the adjusted rather than the unadjusted values.

Table 13(b) gives P at temperature intervals of 2° K (3.6° R) from 52° to 126° K. This table is for ready reference when values at these particular temperatures are adequate. When accurate values at other temperatures are required, they should be found from the equation, if for the solid, and from table 13(a), if for the liquid. Table 13(a) gives \log_{10} P at uniform intervals of 1/T, the argument being 40/T at first, then changing to 100/T at higher pressures to give a closer spacing of entries. Values of T are also given, but these are only for convenience in locating the part of the table to be used. Interpolations must be made in terms of 40/T or 100/T (72/T or 180/T on the Rankine scale) rather than in terms of T for greatest convenience and accuracy. When this is done, linear interpolation will introduce no significant error except possibly in the 5° immediately below the critical point.

The accuracy of the equation and the tables may be estimated from figure 13. The spread of the data is somewhat less than $\pm 0.10^{\circ}$ below 90° K and approximately $\pm 0.15^{\circ}$ at higher temperatures. These temperature spreads correspond to pressure spreads of ± 0.2 millimeter of mercury at 53° K, ± 1 millimeter of mercury at 60° K, ± 7 millimeters of mercury at 75° K, ± 60 millimeters of mercury at 100° K, and ± 175 millimeters of mercury near the critical point. The probable error of the accepted values is perhaps half of the spreads just quoted. The equation for the solid may be used for order-of-magnitude calculations below the range of the experimental data but not below the transition at 35.6° K.

Tables 14 and 15.- Tables 14 and 15 give the virial coefficients and their first derivatives on which the thermodynamic properties are based. The conversion factors given in tables 17 and 18(a) to 18(j) were taken from NBS Circular 461 (ref. 86). The conversion factors for viscosity (table 18(k)) were taken from reference 87.

National Bureau of Standards, Washington, D. C., January 3, 1955.

REFERENCES

- 1. Hoge, Harold J.: Compilation of Thermal Properties of Wind-Tunnel and Jet-Engine Gases at the National Bureau of Standards. Trans. A.S.M.E., vol. 72, no. 6, Aug. 1950, pp. 779-782; discussion, pp. 782-783.
- 2. Woolley, Harold W.: The Representation of Gas Properties in Terms of Molecular Clusters. Jour. Chem. Phys., vol. 21, no. 2, Feb. 1953, pp. 236-241.
- 3. Woolley, H. W.: Note on the Resonance Method of Measuring the Ratio of Specific Heats of a Gas, C_p/C_v . Can. Jour. Phys., vol. 31, no. 4, May 1953, pp. 604-612.
- 4. Hilsenrath, Joseph, and Touloukian, Y. S.: The Viscosity, Thermal Conductivity, and Prandtl Number for Air, O₂, N₂, NO, H₂, CO, CO₂, H₂O, He, and A. Trans. A.S.M.E., vol. 76, no. 6, Aug. 1954, pp. 967-983; discussion, pp. 983-985.
- 5. Masi, Joseph F.: Survey of Experimental Determinations of Heat Capacity of Ten Technically Important Gases. Trans. A.S.M.E., vol. 76, no. 7, Oct. 1954, pp. 1067-1074.
- 6. Gaydon, A. G.: Dissociation Energies and Spectra of Diatomic Molecules. First ed., Chapman & Hall, Ltd. (London), 1947.
- 7. Thomas, N., Gaydon, A. G., and Brewer, L.: Cyanogen Flames and the Dissociation Energy of Nitrogen. Jour. Chem. Phys., vol. 20, no. 3, Mar. 1952, pp. 369-374.
- 8. Kistiakowsky, G. B., Knight, H. T., and Malin, M. E.: Gaseous Detonations. III Dissociation Energies of Nitrogen and Carbon Monoxide. Jour. Chem. Phys., vol. 20, no. 5, May 1952, pp. 876-883.
- 9. Douglas, A. E.: The Near Ultraviolet Bands of N_2^+ and the Dissociation Energies of the N_2^+ and N_2 Molecules. Can. Jour. Phys., vol. 30, no. 4, July 1952, pp. 302-313.
- 10. Hendrie, J. M.: Dissociation Energy of N_2 . Jour. Chem. Phys., vol. 22, no. 9, Sept. 1954, pp. 1503-1507.
- LL. Herzberg, G.: Molecular Spectra and Molecular Structure. I Spectra of Diatomic Molecules. D. Van Nostrand Co., Inc., 1950.

12. Woolley, Harold W.: Effect of Dissociation on Thermodynamic Properties of Pure Diatomic Gases. NACA TN 3270, 1955.

- 13. Huff, Vearl N., Gordon, Sanford, and Morrell, Virginia E.: General Method and Thermodynamic Tables for Computation of Equilibrium Composition and Temperature of Chemical Reactions. NACA Rep. 1037, 1951. (Supersedes NACA TN 2113 and TN 2161.)
- 14. Damköhler, G.: Isentropische Zustandsänderungen in dissoziierenden Gasen und die Methode der Schalldispersion zur Untersuchung sehr schneller homogener Gasreaktionen. Zs. Elektrochemie, vol. 48, no. 2, Feb. 1942, pp. 62-82. (Available in English translation as NACA TM 1268.)
- 15. Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S., and Jaffe, I.: Selected Values of Chemical Thermodynamic Properties. Circular No. 500, Nat. Bur. Standards, U. S. Govt. Printing Office, Feb. 1, 1952.
- 16. Michels, A., Wouters, H., and De Boer, J.: Isotherms of Nitrogen Between 0° and 150° and at Pressures From 20 to 80 Atmospheres. Physica, vol. 1, no. 7, May 1934, pp. 587-594.
- 17. Otto, J., Michels, A., and Wouters, H.: Über Isothermen des Stickstoff zwischen 0° and 150° bei Drucken bis zu 400 Atmosphären. Phys. Zs., Bd. 35, Heft 3, Feb. 1, 1934, pp. 97-100.
- 18. Michels, A., Lunbeck, R. J., and Wolkers, G. J.: Thermodynamical Properties of Nitrogen as Functions of Density and Temperature Between -125° and 150° C and Densities up to 760 Amagat. 115th Publication of the Van der Waals Fund, Physica, vol. 17, no. 9, Sept. 1951, pp. 801-816.
- 19. Holborn, L., and Otto, J.: Uber die Isothermen einiger Gase zwischen 400° und -183°. Zs. Phys., Bd. 33, Heft 1, May 1925, pp. 1-11.
- 20. Cragoe, Carl S.: Slopes of pv Isotherms of He, Ne, A, H₂, N₂, and O₂ at O⁰ C. Res. Paper RP1393, Jour. Res., Nat. Bur. Standards, vol. 26, no. 6, June 1941, pp. 495-521.
- 21. Bartels, R., and Eucken, A.: Die Zustandsgleichung des Stickstoffs bei geringen Drucken und tiefen Temperaturen. Zs. phys. Chemie, Abt. A, Bd. 98, Heft 1, May 1921, pp. 70-79.
- 22. Bestelmeyer, A., and Valentiner, S.: Über die Dichte des Stickstoffs und deren Abhängigkeit von Druck bei der Temperatur der flussigen Luft. Ann. Phys., Folge 4, Bd. 15, Heft 11, Sept. 1904, pp. 61-73.

23. Sackur, O.: Die Zustandsgleichung der Gase und die Quantentheorie. Zs. Elektrochemie, vol. 20, no. 20/21, Nov. 1914, pp. 563-570.

- 24. Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B.: Molecular Theory of Gases and Liquids. John Wiley & Sons, Inc., 1954, Tables I-B and I-C.
- 25. Bird, R. B., Spotz, E. L., and Hirschfelder, J. O.: The Third Virial Coefficient for Non-Polar Gases. Jour. Chem. Phys., vol. 18, no. 10, Oct. 1950, pp. 1395-1402.
- 26. Claitor, L. C., and Crawford, D. B.: Thermodynamic Properties of Oxygen, Nitrogen, and Air at Low Temperatures. Trans. A.S.M.E., vol. 71, no. 8, Nov. 1949, pp. 885-895.
- 27. Hall, N. A., and Tbele, W. E.: Thermodynamic Properties of Air, Nitrogen, and Oxygen as Imperfect Gases. Tech. Paper No. 85, Inst. Tech., Eng. Exp. Station, Univ. of Minn., Dec. 1951.
- 28. Henry, P. S. H.: The Specific Heats of Air, Oxygen, and Nitrogen, From 20°C to 370°C. Proc. Roy. Soc. (London), ser. A, vol. 133, no. 822, Oct. 1, 1931, pp. 492-506.
- 29. Brinkworth, J. H.: The Ratios of the Specific Heats of Nitrogen at Atmospheric Pressure and at Temperatures Between 10° C and -183° C. Proc. Roy. Soc. (London), ser. A, vol. 111, no. 757, May 1, 1926, pp. 124-133.
- 30. Eucken, A., and Von Lüde, K.: Die spezifische Wärme der Gase bei Mittleren und hohen Temperaturen. I Die spezifische Wärme der Gase: Luft, Stickstoff, Sauerstoff, Kohlenoxyd, Kohlensäure, Stickoxydul und Methan zwischen 0° und 220° C. Zs. phys. Chemie, Abt. B, Bd. 5, Heft 6, Oct. 1929, pp. 413-441.
- 31. Shilling, W. G., and Partington, J. R.: Measurements of the Velocity of Sound in Air, Nitrogen, and Oxygen, With Special Reference to the Temperature Coefficients of the Molecular Heats. Phil. Mag., ser. 7, vol. 6, no. 38, Nov. 1928, pp. 920-929.
- 32. Dixon, H. B., Campbell, C., and Parker, A.: On the Velocity of Sound in Gases at High Temperatures, and the Ratio of Specific Heats. Proc. Roy. Soc. (London), ser. A, vol. 100, no. 702, Oct. 4, 1921, pp. 1-26.
- 33. Workman, E. J.: The Variation of the Specific Heats C_p of O_2 , N_2 , and H_2 With Pressure. Phys. Rev., ser. 2, vol. 37, no. 10, May 15, 1931, pp. 1345-1355.

34. Clark, A. L., and Katz, L.: The Resonance Method for Measuring the Ratio of the Specific Heats of a Gas, Cp/Cv, Part II. Can. Jour. Res., sec. A, vol. 18, no. 3, Mar. 1940, pp. 39-53; Part IV. Can. Jour. Res., sec. A, vol. 21, no. 1, Jan. 1943, pp. 1-17.

- 35. Hubbard, J. C., and Hodge, A. H.: Ratio of Specific Heats of Air, N2, and CO2 as a Function of Pressure by the Ultrasonic Method. Jour. Chem. Phys., vol. 5, no. 12, Dec. 1937, pp. 978-979.
- 36. Keesom, W. H., and V. Lammeren, J. A.: Measurements About the Velocity of Sound in Nitrogen Gas. Verhand. Kon. Akad. Wetensch. (Amsterdam), vol. XXXV, no. 6, 1932, pp. 727-742.
- 37. Van Itterbeek, A., and Mariëns, P.: Measurements With Ultra-sonics on the Velocity and Absorption of Sound at Ordinary and at Low Temperatures. Physica, vol. 4, no. 3, Mar. 1937, pp. 207-215.
- 38. Van Itterbeek, A., and Van Doninck, W.: Measurements on the Velocity of Sound in Mixtures of Hydrogen, Helium, Oxygen, Nitrogen and Carbon Monoxide at Low Temperatures. Proc. Phys. Soc. (London), sec. B, vol. 62, no. 349, Jan. 1, 1949, pp. 62-69.
- 39. Giauque, W. F., and Clayton, J. O.: The Heat Capacity and Entropy of Nitrogen. Heat of Vaporization. Vapor Pressures of Solid and Liquid. The Reaction 1/2 N₂ + 1/2 O₂ = NO From Spectroscopic Data. Jour. Am. Chem. Soc., vol. 55, no. 12, Dec. 1933, pp. 4875-4889.
- 40. Friedman, A. S., and White, D.: The Vapor Pressure of Liquid Nitrogen. Jour. Am. Chem. Soc., vol. 72, no. 9, Sept. 1950, pp. 3931-3932.
- 41. Furukawa, George T., and McCoskey, Robert E.: The Condensation Line of Air and the Heats of Vaporization of Oxygen and Nitrogen. NACA TN 2969, 1953.
- 42. Roebuck, J. R., and Osterberg, H.: The Joule-Thomson Effect in Nitrogen. Phys. Rev., ser. 2, vol. 48, no. 5, Sept. 1, 1935, pp. 450-457.
- 43. Goff, J. A., and Gratch, Serge: Zero-Pressure Thermodynamic Properties of Carbon Monoxide and Nitrogen. Trans. A.S.M.E., vol. 72, no. 6, Aug. 1950, pp. 741-748; discussion, pp. 748-749.
- 44. National Bureau of Standards: Selected Values of Chemical Thermodynamic Properties. Ser. III, Table 18, Mar. 31, 1949.

45. Bartlett, E. P.: The Compressibility Isotherms of Hydrogen, Nitrogen, and Mixtures of These Gases at 0° and Pressures to 1000 Atmospheres. Jour. Am. Chem. Soc., vol. 49, no. 3, Mar. 1927, pp. 687-701; correction, vol. 49, no. 8, Aug. 1927, pp. 1955-1957.

- 46. Bartlett, E. P., Cupples, H. L., and Tremearne, T. H.: The Compressibility Isotherms of Hydrogen, Nitrogen, and a 3:1 Mixture of These Gases at Temperatures Between 0 and 400° and at Pressures to 1000 Atmospheres. Jour. Am. Chem. Soc., vol. 50, no. 5, May 1928, pp. 1275-1288.
- 47. Bartlett, E. P., Hetherington, H. C., Kvalnes, H. M., and Tremearne, T. H.: The Compressibility Isotherms of Hydrogen, Nitrogen, and a 3:1 Mixture of These Gases at Temperatures of -70, -50, -25, and 20 and at Pressures to 1000 Atmospheres. Jour. Am. Chem. Soc., vol. 52, no. 4, Apr. 1930, pp. 1363-1373.
- 48. Benedict, M.: Pressure, Volume, Temperature Properties of Nitrogen at High Density. I Results Obtained With a Weight Piezometer. Jour. Am. Chem. Soc., vol. 59, no. 11, Nov. 1937, pp. 2224-2233.
- 49. Verschoyle, T. T. H.: Isotherms of Hydrogen, of Nitrogen and Hydrogen-Nitrogen Mixtures at 0° and 20° C up to a Pressure of 200 Atmospheres. Proc. Roy. Soc. (London), ser. A, vol. 111, no. 759, July 2, 1926, pp. 552-576.
- 50. Onnes, H. K., and Van Urk, A. Th.: On the Isotherms of Nitrogen at Low Temperatures. Com. Phys. Lab., Univ. of Leiden, no. 169d, 1924, pp. 33-44.
- 51. Baxter, G. P., and Starkweather, H. W.: The Density, Compressibility, and Atomic Weight of N2. Proc. Nat. Acad. Sci., vol. 12, no. 12, Dec. 1926, pp. 703-707.
- 52. Smith, L. B., and Taylor, R. S.: The Equation of State for Pure Nitrogen, Gas Phase. Jour. Am. Chem. Soc., vol. 45, no. 9, Sept. 1923, pp. 2107-2124; correction, vol. 48, no. 12, Dec. 1926, pp. 3122-3123.
- 53. Hirschfelder, J. O., Bird, R. B., and Spotz, Ellen L.: Viscosity and Other Physical Properties of Gases and Gas Mixtures. Trans. A.S.M.E., vol. 71, no. 8, Nov. 1949, pp. 921-937.
- 54. Johnston, Herrick L., Mattox, Robert W., and Powers, Robert W.: Viscosities of Air and Nitrogen at Low Pressures. NACA TN 2546, 1951.

55. Johnston, Herrick L., and McCloskey, Kenneth E.: Viscosities of Several Common Gases Between 90° K and Room Temperature. Jour. Phys. Chem., vol. 44, no. 9, Dec. 1940, pp. 1038-1058.

- 56. Bonilla, Charles F., Brooks, Robert D., and Walker, Philip L., Jr.:
 The Viscosity of Steam and of Nitrogen at Atmospheric Pressure
 and High Temperatures. Paper presented at Heat Transfer Discussions
 (Sept. 1951, London), Inst. Mech. Engs. and A.S.M.E., 1951,
 pp. 79-85.
- 57. Markowski, H.: Die innere Reibung von Sauerstoff, Wasserstoff, chemischen und atmosphärischen Stickstoff und ihre Anderung mit der Temperatur. Ann. Phys., Folge 4, Bd. 14, Heft 9, Aug. 2, 1904, pp. 742-759.
- 58. Rigden, P. J.: The Viscosity of Air, Oxygen, and Nitrogen. Phil. Mag., ser. 7, vol. 25, no. 171, June 1938, pp. 961-981.
- 59. Trautz, M., and Baumann, P. B.: Die Reibung, Wärmeleitung, und Diffusion in Gasmischungen. II Die Reibung von H₂-N₂- und H₂-CO- Gemischen. Ann. Phys., Folge 5, Bd. 2, Heft 6, Aug. 26, 1929, pp. 733-736.
- 60. Trautz, M., and Heberling, R.: Die Reibung, Wärmeleitung, und Diffusion in Gasmischungen. XVII Die Reibung von NH₃ und seinen Gemischen mit H₂, N₂, O₂, C₂H₄. Ann. Phys., Folge 5, Bd. 10, Heft 2, July 3, 1931, pp. 155-177.
- 61. Trautz, M., and Melster, A.: Die Reibung von H_2 , N_2 , CO, C_2H_4 , O_2 , und ihren binaren Gemischen. Ann. Phys., Folge 5, Bd. 7, Heft 4, Dec. 3, 1930, pp. 409-426.
- 62. Trautz, M., and Zink, R.: Gasreibung bei höheren Temperaturen. Ann Phys., Folge 5, Bd. 7, Heft 4, Dec. 3, 1930, pp. 427-452.
- 63. Vasilesco, Virgile: Recherches expérimentales sur la viscosité des gaz aux temperatures élevées. Ann. phys., ser. ll, vol. 20, May-June 1945, pp. 137-176, 292-334.
- 64. Yen, K.: Determination of the Coefficient of Viscosity of Hydrogen, Nitrogen, and Oxygen. Phil. Mag., ser. 6, vol. 38, no. 227, Nov. 1919, pp. 582-596.
- 65. Vogel, H.: Uber die Viskosität einiger Gase und ihre Temperatur-Abhängigkeit bei tiefen Temperaturen. Ann. Phys., Folge 4, Bd. 43, Heft 8, Apr. 16, 1914, pp. 1235-1272.

- 66. Völker, E.: Über den Koeffizienten der inneren Reibung von Sauerstoff und Wasserstoff bei niederen Temperaturen. Diss., Halle, 1950.
- 67. Wobser, R., and Müller, F.: Die innere Reibung von Gasen und Dämpfen und ihre Messung im Höppler-Viskosimeter. Kolloid-Beihefte, Bd. LII, Heft 6-7, Feb. 4, 1941, pp. 165-276. (See reference to Kleint, Diss., Halle, 1904, on p. 231.)
- 68. Boyd, James H., Jr.: The Viscosity of Compressed Gases. Phys. Rev., vol. 35, no. 10, May 15, 1930, pp. 1284-1297.
- 69. Michels, A., and Gibson, R. O.: The Measurement of the Viscosity of Gases at High Pressures. The Viscosity of Nitrogen to 1000 atm. Proc. Roy. Soc. (London), ser. A, vol. 134, no. 823, Nov. 3, 1931, pp. 288-307.
- 70. Sibbitt, W. L., Hawkins, G. A., and Solberg, H. L.: The Dynamic Viscosity of Nitrogen. Trans. A.S.M.E., vol. 65, no. 5, July 1943, pp. 401-406.
- 71. Kestin, J., and Pilarczyk, K.: Measurements of the Viscosity of Five Gases at Elevated Pressures by the Oscillating-Disk Method. Trans. A.S.M.E., vol. 76, no. 6, Aug. 1954, pp. 987-997; discussion, pp. 998-999.
- 72. Keyes, Frederick G.: The Heat Conductivity, Viscosity, Specific Heat, and Prandtl Number for Thirteen Gases. Tech. Rep. 37, Project Squid, Contract N5-ori-07855, Office of Naval Res.; Res. and Dev. Command, Dept. Air Force; and M.I.T.; Apr. 1, 1952. (ASTIA catalog number ATI 167173.)
- 73. Stops, D. W.: The Effect of Temperature on the Thermal Conductivity of Gases. Nature, vol. 164, no. 4179, Dec. 3, 1949, pp. 966-967.
- 74. Dodge, Barnett F., and Davis, Harvey N.: Vapor Pressure of Liquid Oxygen and Nitrogen. Jour. Am. Chem. Soc., vol. 49, no. 3, Mar. 1927, pp. 610-620.
- 75. Keesom, W. H., and Bijl, A.: Determination of the Vapor Pressures of Liquid Nitrogen Below One Atmosphere, and of Solid Nitrogen β. The Boiling Point and Triple Point of Nitrogen. Com. Kamerlingh Onnes Lab., Univ. of Leiden, no. 245d, 1937, pp. 1-6.
- 76. Henning, F., and Otto, J.: Vapor Pressure Curves and Triple Points in the Temperature Region From 14° to 90° Abs. Phys. Zs., Bd. 37, Heft 18, Sept. 15, 1936, pp. 633-638.

77. Henning, F.: Vapor Pressure and Resistance Thermometers in the Temperature Region of Liquefied Nitrogen and Hydrogen. Zs. Phys., Bd. 40, Heft 10, Jan. 8, 1927, pp. 775-785.

- 78. Onnes, H. Kamerlingh, Dorsman, C., and Holst, G.: Vapor Pressures of Oxygen and Critical Point of Oxygen and Nitrogen. Com. Phys. Lab., Univ. of Leiden, no. 145b, 1914, pp. 11-15.
- 79. Porter, Frank, and Perry, J. H.: High Vapor Pressures of Nitrogen. Jour. Am. Chem. Soc., vol. 48, no. 8, Aug. 1926, pp. 2059-2060.
- 80. Crommelin, C. A.: Vapor Pressures of Nitrogen Between the Critical Point and the Boiling Point. Com. Phys. Lab., Univ. of Leiden, no. 145d, 1914, pp. 29-32.
- 81. Cath, P. G.: Vapor Pressures of Oxygen and Nitrogen for Obtaining Fixed Points on the Temperature Scale Below 0°C. Com. Phys. Lab., Univ. of Leiden, no. 152d, 1918, pp. 45-53.
- 82. Von Siemens, H.: On Vapor Pressure Measurements and Thermometry at Low Temperatures. Ann. Phys., Folge 4, Bd. 42, Heft 14, Nov. 4, 1913, pp. 871-888.
- 83. Henning, F., and Heuse, W.: A New Determination of the Normal Boiling Points of Oxygen, Nitrogen, and Hydrogen. Zs. Phys., Bd. 23, Heft 1-2, Feb. 23, 1924, pp. 105-116.
- 84. Heuse, W., and Otto, J.: Gas Thermometer Determination of Some Fixed Points Below 0° With Vapor Pressure and Resistance Thermometers. II. Ann. Phys., Folge 5, Bd. 14, Heft 2, July 12, 1932, pp. 185-192.
- 85. Hoge, Harold J.: Vapor Pressure and Fixed Points of Oxygen and Heat Capacity in the Critical Region. Res. Paper RP2081, Jour. Res., Nat. Bur. Standards, vol. 44, no. 3, Mar. 1950, pp. 321-345.
- 86. Rossini, Frederick D., Pitzer, Kenneth S., et al.: Selected Values of Properties of Hydrocarbons. Circular No. 461, Nat. Bur. Standards, U. S. Govt. Printing Office, Nov. 1947.
- 87. Hawkins, G. A., Solberg, H. L., and Sibbitt, W. L.: Units and Conversion Factors for Absolute Viscosity. Power Plant Eng., vol. 45, no. 11, Nov. 1941, pp. 62-65.
- 88. Benedict, M.: Pressure, Volume, Temperature Properties of Nitrogen at High Density. II Results Obtained by a Piston Displacement Method. Jour. Am. Chem. Soc., vol. 59, no. 11, Nov. 1937, pp. 2233-2242.

89. Shearer, J. S.: The Heat of Vaporization of Oxygen, Nitrogen, and Air. Phys. Rev., ser. 1, vol. 17, no. 6, Dec. 1903, pp. 469-475.

- 90. Dewar, J.: Studies With the Liquid Hydrogen and Air Calorimeters. Proc. Roy. Soc. (London), ser. A, vol. 76, no. 509, June 28, 1905, pp. 325-340.
- 91. Alt, H.: Über die Verdampfungswärme des flüssigen Sauerstoffs und flüssigen Stickstoffs und deren Änderung mit der Temperatur. Ann. Phys., Folge 4, Bd. 19, Heft 4, Mar. 27, 1906, pp. 739-782.
- 92. Witt, G.: Über die Verdampfungswärme flüssiger Luft. Arkiv Mat. Astron. och Fysik, Bd. 7, Häftet 3-4, No. 32, May 29, 1912, pp. 1-13.
- 93. Eucken, A.: Über das thermische Verhalten einiger komprimierter und kondersierter Gase bei tiefen Temperaturen. Verh. deut. phys. Gesell., Jahrg. 18, Nr. 1, Jan. 15, 1916, pp. 4-17.
- 94. Dana, L. I.: The Latent Heat of Vaporization of Liquid Oxygen-Nitrogen Mixtures. Proc. Am. Acad. Arts and Sci., vol. 60, no. 4, Oct. 1925, pp. 239-267.

TABLE 1.- SPECIFIC HEAT, ENTHALPY, ENTROPY, AND FREE ENERGY OF MOLECULAR NITROGEN IN IDEAL-GAS STATE

°ĸ	Cp° R		H° - E _O °		S ⁰ R	S ^O R		<u>-(f° - E_Q°)</u> RT	
10 20 30 40	3.5019 3.5006 3.5004 3.5003	- 13 - 2 - 1	.1246 .2527 .3809 .5090	1281 1282 1281 1282	11.1440 13.5707 14.9903 15.9970	24267 14196 10067 7811	7.740 10.119 11.522 12.521	2379 1403 999 776	18 36 54 72
50	3.5003	1	.6372	1281	16.7781	6382	13.297	635	90
60	3.5003		.7653	1281	17.4163	5396	13.932	538	108
70	3.5003		.8934	1282	17.9559	4674	14.470	465	126
80	3.5004		1.0216	1281	18.4233	4122	14.935	411	144
90	3.5004		1.1497	1282	18.8355	3688	15.346	368	162
100	3.5004	1	1.2779	1281	19.2043	3337	15.714	333	180
110	3.5005		1.4060	1282	19.5380	3046	16.047	303	198
120	3.5005		1.5342	1281	19.8426	2801	16.350	280	216
130	3.5005		1.6623	1282	20.1227	2595	16.630	259	234
140	3.5006		1.7905	1281	20.3822	2415	16.889	241	252
150	3.5006	1	1.9186	1282	20.6237	2259	17.130	225	270
160	3.5007		2.0468	1281	20.8496	2123	17.355	212	288
170	3.5007		2.1749	1282	21.0619	2000	17.567	200	306
180	3.5007		2.3031	1281	21.2619	1893	17.767	189	324
190	3.5008		2.4312	1282	21.4512	17%	17.956	179	342
200 210 220 230 240	3.5008 3.5009 3.5010 3.5010 3.5012	1 1 2 1	2.5594 2.6876 2.8157 2.9439 3.0721	1282 1281 1282 1282 1281	21.6308 21.8016 21.9645 22.1201 22.2691	1708 1629 1556 1490 1429	18.135 18.306 18.468 18.624 18.773	171 162 156 149 142	360 378 396 414 432
250	3.5013	2	3.2002	1282	22.4120	1373	18.915	137	450
260	3.5015	2	3.3284	1282	22.5493	1322	19.052	132	468
270	3.5017	4	3.4566	1282	22.6815	1273	19.184	128	486
280	3.5021	4	3.5848	1282	22.8088	1229	19.312	122	504
290	3.5025	5	3.7130	1282	22.9317	1188	19.434	119	522
300 310 320 330 340	3.5030 3.5036 3.5044 3.5054 3.5065	6 8 10 11	3.8412 3.9695 4.0978 4.2261 4.3544	1283 1283 1283 1283 1284	23.0505 23.1654 23.2766 23.3845 23.4891	1149 1112 1079 1046 1017	19.553 19.668 19.779 19.886 19.991	115 111 107 105 101	540 558 576 594 612
350	3.5078	16	4.4828	1285	23.5908	988	20.092	99	630
360	3.5094	17	4.6113	1285	23.6896	962	20.191	96	648
370	3.5111	20	4.7398	1285	23.7858	937	20.287	93	666
380	3.5131	23	4.8683	1287	23.8795	912	20.380	91	684
390	3.5154	25	4.9970	1287	23.9707	891	20.471	89	702
400	3.5179	27	5.1257	1289	24.0598	869	20.560	-86	720
410	3.5206	31	5.2546	1289	24.1467	849	20.646	84	738
420	3.5237	33	5.3835	1291	24.2316	829	20.730	83	756
430	3.5270	36	5.5126	1291	24.3145	811	20.813	80	774
440	3.5306	38	5.6417	1294	24.3956	794	20.893	79	792
450	3.5344	42	5.7711	1294	24,4750	777	20.972	77	810
460	3.5386	44	5.9005	1296	24,5527	762	21.049	75	828
470	3.5430	46	6.0301	1298	24,6289	746	21.124	74	846
480	3.5476	50	6.1599	1300	24,7035	732	21.198	72	864
490	3.5526	52	6.2899	1301	24,7767	719	21.270	71	882
500	3.5578	54	6.4200	1304	24.8486	705	21.341	70	900
510	3.5632	56	6.5504	1305	24.9191	692	21.411	68	918
520	3.5688	59	6.6809	1308	24.9883	680	21.479	67	936
530	3.5747	61	6.8117	1310	25.0563	669	21.546	65	954
540	3.5808	63	6.9427	1312	25.1232	658	21.611	65	972
550	3.5871	65	7.0739	1314	25.1890	647	21.676	63	990
560	3.5936	67	7.2053	1317	25.2537	636	21.739	62	1008
570	3.6003	69	7.3370	1319	25.3173	627	21.801	61	1026
580	3.6072	70	7.4689	1322	25.3800	617	21.862	61	1044
590	3.6142	72	7.6011	1324	25.4417	608	21.923	59	1062
600	3.6214		7.7335		25.5025		21.982		1080

TABLE 1.- SPECIFIC HEAT, ENTHALPY, ENTROPY, AND FREE ENERGY
OF MOLECULAR NITROGEN IN IDEAL-GAS STATE - Continued

o _K	Cp° R		H° - 1	E _O °	S ^o R		-(F° - Eo°	2	o _R
<u></u>									
600	3.6214	73	7.7335	1327	25.5025	600	21.982	58	1080
610	3.6287	75	7.8662	1330	25.5625	590	22.040	57	1098
620	3.6362	75	7.9992	1333	25.6215	583	22.097	57	1116
630	3.6437	77	8.1325	1335	25.6798	574	22.154	55	1134
640	3.6514	77	8.2660	1338	25.7372	567	22.209	55	1152
650	3.6591	79	8.3998	1341	25.7939	559	22.264	54	1170
660	3.6670	79	8.5339	1344	25.8498	552	22.318	53	1188
670	3.6749	80	8.6683	1347	25.9050	545	22.371	52	1206
680	3.6829	80	8.8030	1349	25.9595	538	22.423	52	1224
690	3.6909	81	8.9379	1353	26.0133	532	22.475	51	1242
700	3.6990	81	9.0732	1356	26.0665	525	22.526	50	1260
710	3.7071	81	9.2088	1358	26.1190	519	22.576	50	1278
720	3.7152	82	9.3446	1362	26.1709	513	22.626	49	1296
730	3.7234	82	9.4808	1364	26.2222	507	22.675	48	1314
740	3.7316	82	9.6172	1368	26.2729	502	22.723	48	1332
750	3.7398	82	9.7540	1370	26.3231	496	22.771	47	1350
760	3.7480	82	9.8910	1374	26.3727	490	22.818	46	1368
770	3.7562	81	10.0284	1376	26.4217	485	22.864	46	1386
780	3.7643	82	10.1660	1380	26.4702	481	22.910	46	1404
790	3.7725	81	10.3040	1383	26.5183	475	22.956	44	1422
800	3.7806	401	10.4423	6957	26.5658	2304	23.000	217	1440
850	3.8207	389	11.1380	7029	26.7962	2194	23.217	205	1530
900	3.8596	374	11.8409	7099	27.0156	2097	23.422	195	1620
950	3.8970	356	12.5508	7166	27.2253	2008	23.617	185	1710
1000	3.9326	338	13.2674	7230	27.4261	1927	23.802	177	1800
1050	3.9664	318	13.9904	7289	27.6188	1852	23.979	170	1890
1100	3.9982	299	14.7193	7346	27.8040	1784	24.149	163	1980
1150	4.0281	281	15.4539	7400	27.9824	1720	24.312	156	2070
1200	4.0562	263	16.1939	7449	28.1544	1662	24.468	151	2160
1250	4.0825	247	16.9388	7495	28.3206	1606	24.619	146	2250
1300	4.1072	231	17.6883	7539	28.4812	1554	24.765	140	2340
1350	4.1303	215	18.4422	7580	28.6366	1506	24.905	136	2430
1400	4.1518	202	19.2002	7619	28.7872	1461	25.041	132	2520
1450	4.1720	189	19.9621	7654	28.9333	1418	25.173	128	2610
1500	4.1909	177	20.7275	7688	29.0751	1377	25.301	124	2700
1550	4.2086	166	21.4963	7719	29.2128	1339	25.425	120	2790
1600	4.2252	156	22.2682	7748	29.3467	1302	25.545	117	2880
1650	4.2408	146	23.0430	7776	29.4769	1268	25.662	114	2970
1700	4.2554	138	23.8206	7802	29.6037	1236	25.776	111	3060
1750	4.2692	129	24.6008	7826	29.7273	1204	25.887	109	3150
1800	4.2821	122	25.3834	7850	29.8477	1175	25.996	105	3240
1850	4.2943	114	26.1684	7870	29.9652	1147	26.101	104	3330
1900	4.3057	109	26.9554	7892	30.0799	1120	26.205	100	3420
1950	4.3166	102	27.7446	7910	30.1919	1094	26.305	99	3510
2000	4.3268	97	28.5356	7929	30.3013	1070	26.404	96	3600
2050	4.3365	92	29.3285	7947	30.4083	1046	26.500	95	3690
2100	4.3457	87	30.1232	7962	30.5129	1023	26.595	92	3780
2150	4.3544	83	30.9194	7978	30.6152	1002	26.687	90	3870
2200	4.3627	78	31.7172	7993	30.7154	981	26.777	89	3960
2250	4.3705	75	32.5165	8007	30.8135	962	26.866	87	4050
2300	4.3780	72	33.3172	8020	30,9097	942	26.953	85	4140
2350	4.3852	68	34.1192	8033	31,0039	924	27.038	84	4230
2400	4.3920	65	34.9225	8045	31,0963	906	27.122	82	4320
2450	4.3985	62	35.7270	8057	31,1869	890	27.204	80	4410
2500	4.4047	59	36.5327	8068	31,2759	872	27.284	79	4500
2550	4,4106	57	37.3395	8078	31.3631	857	27.363	78	4590
2600	4,4163	55	38.1473	8089	31.4488	842	27.441	76	4680
2650	4,4218	52	38.9562	8099	31.5330	827	27.517	76	4770
2700	4,4270	50	39.7661	8108	31.6157	813	27.593	74	4860
2750	4,4320	49	40.5769	8117	31.6970	799	27.667	72	4950
2800	4.4369		41.3886		31,7769		27.739		5040

TABLE 1.- SPECIFIC HEAT, ENTHALPY, ENTROPY, AND FREE ENERGY OF MOLECULAR NITROGEN IN IDEAL-GAS STATE - Concluded

°K	Cp°		H ^O -	E _Q °	SO R		-(F° - E _O	<u>•)</u>	o _R
2800	4.4369	46	41.3886	8125	31.7769	785	27.739	72	5040
2850	4.4415	45	42.2011	8134	31.8554	773	27.811	70	5130
2900	4.4460	43	43.0145	8142	31.9327	761	27.881	69	5220
2950	4.4503	42	43.8287	8150	32.0088	748	27.950	69	5310
3000	4.4545	40	44.6437	8158	32.0836	737	28.019	67	5400
3050	4.4585	39	45.4595	8164	32.1573	725	28.086	66	5490
3100	4.4624	39	46.2759	8172	32.2298	715	28.152	66	5580
3150	4.4663	36	47.0931	8178	32.3013	703	28.218	64	5670
3200	4.4699	36	47.9109	8186	32.3716	6 9 3	28.282	63	5760
3250	4.4735	35	48.7295	8191	32.4409	684	28.345	63	5850
3300 3350 3400 3450 3500	4.4770 4.4804 4.4836 4.4868 4.4900	34 32 32 32 32 30	49.5486 50.3684 51.1888 52.0098 52.8314	8198 8204 8210 8216 8221	32.5093 32.5766 32.6430 32.7085 32.7731	673 664 655 646 637	28.408 28.470 28.530 28.591 28.650	62 60 61 59 58	5940 6030 6120 6210 6300
3550 3600 3650 3700 3750	4.4930 4.4960 4.4988 4.5016 4.5044	30 28 28 28 28 27	53.6535 54.4762 55.2994 56.1232 56.9474	8227 8232 8238 8242 8248	32.8368 32.8996 32.9617 33.0229 33.0834	628 621 612 605 597	28.708 28.766 28.823 28.880 28.935	58 57 57 55 55	6390 6480 6570 6660 6750
3800	4.5071	26	57,7722	8252	33.1431	589	28.990	55	6840
3850	4.5097	26	58,5974	8257	33.2020	582	29.045	53	6930
3900	4.5123	25	59,4231	8262	33.2602	575	29.098	53	7020
3950	4.5148	25	60,2493	8266	33.3177	568	29.151	53	7110
4000	4.5173	24	61,0759	8271	33.3745	561	29.204	52	7200
4050	4.5197	24	61.9030	8276	33.4306	555	29.256	51	7290
4100	4.5221	24	62.7306	8279	33.4861	548	29.307	50	7380
4150	4.5245	23	63.5585	8283	33.5409	542	29.357	51	7470
4200	4.5268	22	64.3868	8288	33.5951	536	29.408	49	7560
4250	4.5290	22	65.2156	8292	33.6487	530	29.457	49	7650
4300	4,5312	22	66.0448	8297	33.7017	524	29.506	49	7740
4350	4,5334	22	66.8745	8300	33.7541	518	29.555	48	7830
4400	4,5356	21	67.7045	8304	33.8059	513	29.603	47	7920
4450	4,5377	21	68.5349	8308	33.8572	507	29.650	47	8010
4500	4,5398	21	69.3657	8311	33.9079	502	29.697	47	8100
4550	4.5419	21	70.1968	8316	33.9581	496	29.744	46	8190
4600	4.5440	20	71.0284	8319	34.0077	492	29.790	46	8280
4650	4.5460	20	71.8603	8324	34.0569	486	29.836	45	8370
4700	4.5480	20	72.6927	8326	34.1055	481	29.881	44	8460
4750	4.5500	20	73.5253	8330	34.1536	477	29.925	45	8550
4800 4850 4900 4950 5000	4.5520 4.5540 4.5559 4.5579 4.5598	20 19 20 19	74.3583 75.1917 76.0255 76.8597 77.6941	8334 8338 8342 8344	34.2013 34.2484 34.2952 34.3415 34.3873	471 468 463 458	29.970 30.014 30.057 30.100 30.143	44 43 43 43	8640 8730 8820 8910 9000

TABLE 2.- SPECIFIC HEAT, ENTHALPY, ENTROPY, AND FREE ENERGY OF ATOMIC NITROGEN IN IDEAL-GAS STATE

°к	C _p ° R	H° -		S ^o R		-(F° - E _C	<u>°)</u>	o _R
10	2,5000	.0915	915	9.9377	17328	7.4377	17328	18
20		.1830	916	11.6705	10137	9.1705	10137	36
30		.2746	915	12.6842	7192	10.1842	7192	54
40		.3661	915	13.4034	5579	10.9034	5579	72
50 60 70 80 90		.4576 .5491 .6407 .7322 .8237	915 915	13.9613 14.4171 14.8024 15.1363 15.4307	4558 3853 3339 2944 2634	11.4613 11.9171 12.3024 12.6363 12.9307	4558 3853 3339 2944 2634	90 108 126 144 162
100		.9152	915	15.6941	2383	13.1941	2383	180
110		1.0067	916	15.9324	2175	13.4324	2175	198
120		1.0983	915	16.1499	2001	13.6499	2001	216
130		1.1898	915	16.3500	1853	13.8500	1853	234
140		1.2813	915	16.5353	1725	14.0353	1725	252
150		1.3728	915	16.7078	1613	14.2078	1613	270
160		1.4643	916	16.8691	1516	14.3691	1516	288
170		1.5559	915	17.0207	1429	14.5207	1429	306
180		1.6474	915	17.1636	1352	14.6636	1352	324
190		1.7389	915	17.2988	1282	14.7988	1282	342
200		1.8304	916	17.4270	1220	14.9270	1220	360
210		1.9220	915	17.5490	1163	15.0490	1163	378
220		2.0135	915	17.6653	1111	15.1653	1111	396
230		2.1050	915	17.7764	1064	15.2764	1064	414
240		2.1965	915	17.8828	1020	15.3828	1020	432
250		2.2880	916	17.9848	981	15.4848	981	450
260		2.3796	915	18.0829	944	15.5829	944	468
270		2.4711	915	18.1773	909	15.6773	909	486
280		2.5626	915	18.2682	877	15.7682	877	504
290		2.6541	915	18.3559	848	15.8559	848	522
300		2.7456	916	18.4407	819	15.9407	819	540
310		2.8372	915	18.5226	794	16.0226	794	558
320		2.9287	915	18.6020	769	16.1020	769	576
330		3.0202	915	18.6789	747	16.1789	747	594
340		3.1117	916	18.7536	724	16.2536	724	612
350		3,2033	915	18.8260	705	16.3260	705	630
360		3,2948	915	18.8965	685	16.3965	685	648
370		3,3863	915	18.9650	666	16.4650	666	666
380		3,4778	915	19.0316	650	16.5316	650	684
390		3,5693	916	19.0966	633	16.5966	633	702
400		3.6609	915	19.1599	617	16.6599	617	720
410		3.7524	915	19.2216	602	16.7216	602	738
420		3.8439	915	19.2818	589	16.7818	589	756
430		3.9354	915	19.3407	574	16.8407	574	774
440		4.0269	916	19.3981	562	16.8981	562	792
450		4.1185	915	19.4543	550	16.9543	550	810
460		4.2100	915	19.5093	537	17.0093	537	828
470		4.3015	915	19.5630	527	17.0630	527	846
480		4.3930	916	19.6157	515	17.1157	515	864
490		4.4846	915	19.6672	505	17.1672	505	882
500		4,5761	915	19.7177	495	17.2177	495	900
510		4,6676	915	19.7672	486	17.2672	486	918
520		4,7591	915	19.8158	476	17.3158	476	936
530		4,8506	916	19.8634	467	17.3634	467	954
540		4,9422	915	19.9101	459	17.4101	459	972
550		5.0337	915	19.9560	450	17.4560	450	990
560		5.1252	915	20.0010	443	17.5010	443	1008
570		5.2167	915	20.0453	435	17.5453	435	1026
580		5.3082	916	20.0888	427	17.5888	427	1044
590		5.3998	915	20.1315	420	17.6315	420	1062
600		5.4913		20.1735		17.6735		1080

TABLE 2.- SPECIFIC HEAT, ENTHALPY, ENTROPY, AND FREE ENERGY OF ATOMIC NITROGEN IN IDEAL-GAS STATE - Continued

°K	Cp ^C R	-		- E _O °	<u>s</u> ⁰ R		-(F° - E ₍	<u>)°)</u>	o _R
600 610 620 630 640	2.5000		5.4913 5.5828 5.6743 5.7659 5.8574	915 915 916 915 915	20.1735 20.2148 20.2555 20.2955 20.3349	413 407 400 394 387	17.6735 17.7148 17.7555 17.7955 17.8349	413 407 400 394 387	1080 1098 1116 1134 1152
650 660 670 680 690			5.9489 6.0404 6.1319 6.2235 6.3150	915 915 916 915 915	20.3736 20.4118 20.4494 20.4864 20.5229	382 376 370 365 360	17.8736 17.9118 17.9494 17.9864 18.0229	382 376 370 365 360	1170 1188 1206 1224 1242
700 710 720 730 740			6.4065 6.4980 6.5895 6.6811 6.7726	915 915 916 915 915	20.5589 20.5944 20.6293 20.6638 20.6978	355 349 345 340 336	18.0589 18.0944 18.1293 18.1638 18.1978	355 349 345 340 336	1260 1278 1296 1314 1332
750 760 770 780 790			6.8641 6.9556 7.0472 7.1387 7.2302	915 916 915 915 915	20.7314 20.7645 20.7972 20.8294 20.8613	331 327 322 - 319 314	18.2314 18.2645 18.2972 18.3294 18.3613	331 327 322 319 314	1350 1368 1386 1404 1422
800 850 900 950 1000			7.3217 7.7793 8.2369 8.6945 9.1521	4576 4576 4576 4576 4577	20.8927 21.0443 21.1872 21.3224 21.4506	1516 1429 1352 12 82 1220	18.3927 18.5443 18.6872 18.8224 18.9506	1516 1429 1352 1282 1220	1440 1530 1620 1710 1800
1050 1100 1150 1200 1250			9.6098 10.0674 10.5250 10.9826 11.4402	4576 4576 4576 4576 4576	21.5726 21.6889 21.8000 21.9064 22.0084	1163 1111 1064 1020 981	19.0726 19.1889 19.3000 19.4064 19.5084	1163 1111 1064 1020 981	1890 1980 2070 2160 2250
1300 1350 1400 1450 1500			11.8978 12.3554 12.8130 13.2706 13.7281	4576 4576 4576 4575 4577	22.1065 22.2008 22.2918 22.3795 22.4642	943 910 877 847 820	19.6065 19.7008 19.7918 19.8795 19.9642	943 910 877 847 820	2340 2430 2520 2610 2700
1550 1600 1650 1700 1750	2.5000 2.5000 2.5000 2.5001 2.5001	1	14.1858 14.6435 15.1011 15.5587 16.0163	4577 4576 4576 4576 4576	22.5462 22.6257 22.7026 22.7772 22.8497	795 769 746 725 705	20.0462 20.1257 20.2026 20.2772 20.3497	795 7 69 746 725 704	2790 2880 2970 3060 3150
1800 1850 1900 1950 2000	2.5002 2.5002 2.5003 2.5004 2.5005	1 1 1 2	16.4739 16.9315 17.3892 17.8469 18.3047	4576 4577 4577 4578 4577	22.9202 22.9887 23.0553 23.1203 23.1836	685 666 650 633 618	20.4201 20.4886 20.5553 20.6202 20.6835	685 667 649 633 617	3240 3330 3420 3510 3600
2050 2100 2150 2200 2250	2.5007 2.5009 2.5011 2.5014 2.5018	2 2 3 4	18.7624 19.2200 19.6777 20.1356 20.5936	4576 4577 4579 4580 4581	23.2454 23.3056 23.3644 23.4219 23.4782	602 588 575 563 550	20.7452 20.8055 20.8643 20.9218 20.9780	603 588 575 562 550	3690 3780 3870 3960 4050
2300 2350 2400 2450 2500	2.5022 2.5027 2.5033 2.5040 2.5049	5 6 7 9	21.0517 21.5097 21.9678 22.4261 22.8847	4580 4581 4583 4586 4586	23.5332 23.5870 23.6397 23.6913 23.7419	538 527 516 506 496	21.0330 21.0867 21.1393 21.1909 21.2416	537 526 516 507 495	4140 4230 4320 4410 4500
2550 2600 2650 2700 2750	2.5058 2.5069 2.5082 2.5095 2.5111	11 13 13 16 17	23.3433 23.8021 24.2611 24.7203 25.1798	4588 4590 4592 4595 4597	23.7915 23.8402 23.8879 23.9348 23.9809	487 477 469 461 453	21.2911 21.3397 21.3873 21.4340 21.4799	486 476 467 459 450	4590 4680 4770 4860 4950
2800	2.5128		25.6395		24.0262		21.5249		5040

TABLE 2.- SPECIFIC HEAT, ENTHALPY, ENTROPY, AND FREE ENERGY
OF ATOMIC NITROGEN IN IDEAL-GAS STATE - Concluded

°K	C _p ° R		H° -	E ₀ °	S ^o R		-(F° - E _O °))	o _R
2800 2850	2.5128 2.5147	19	25,6395 26,0996	4601	24.0262 24.0707	445	21.5249	443	5040
2900	2.5147	21 23	26.5600	4604 4608	24.0707	43 7 43 0	21.5692 21.6127	435 428	5130 5220
2950	2.5191	25	27.0208	4612	24.1574	424	21.6555	420	5310
3000	2.5216	27	27.4820	4618	24,1998	417	21.6975	413	5400
3050	2,5243	29	27.9438	4623	24.2415	411	21.7388	407	5490
3100 3150	2.5272 2.5304	32	28.4061 28.8690	4629	24,2826	404	21.7795	400	5580
3 20 0	2.5339	35 37	29.3325	4635 4642	24.3230 24.3629	399 393	21.8195 21.8590	395 388	5670 5760
3250	2.5376	39	29.7967	4649	24.4022	388	21.8978	383	5850
3300	2.5415	41	30.2616	4656	24,4410	382	21.9361	378	5940
3350	2.5456	45	30.7272	4663	24.4792	378	21.9739	372	6030
3400 3450	2.5501 2.5548	47 49	31.1935 31.6607	4672 4681	24.5170 24.5542	372	22.0111 22.0478	367	6120 6210
3500	2.5597	52	32,1288	4689	24.5910	368 363	22.0478	362 356	6300
3550	2.5649	55	32,5977	4700	24,6273	359	22.1196	350	6390
3600	2.5704	57	33.0677	4709	24.6632	35 5	22.1546	346	6480
3650	2.5761	60	33.5386	4720	24.6987	351	22.1892	340	6570
3700 3750	2.5821 2.5884	63 66	34.0106 34.4837	4731 4744	24.7338 24.7685	347 343	22.2232 22.2568	336 332	6660 6750
3800	2,5950	68	34.9581	4757	24.8028	340	22.2900		6840
3850	2.6018	96 71	35.4338	4770	24.8368	336	22.3228	328 324	6930
3900	2.6089	74	35.9108	4784	24.8704	333	22.3552	320	7020
3950	2.6163	77	36.3892	4797	24.9037	330	22,3872	317	7110
4000	2.6240	79	36.8689	4811	24.9367	326	22.4189	313	7200
4050	2.6319	81	37.3500	4824	24.9693	324	22,4502	309	7290
4100	2.6400	B4	37.8324	4840	25.0017	320	22.4811	305	7380
4150 4200	2.6484 2.6570	86 89	38.3164 38.8019	4855 4871	25.0337 25.0655	318 315	22.5116 22.5418	302 299	7470 7560
4250	2.6659	91	39,2890	4888	25.0970	312	22.5717	296	7650
4300	2,6750	94	39,7778	4904	25.1282	310	22,6013	292	7740
4350	2.6844	96	40.2682	4922	25.1592	307	22.6305	289	7830
4400	2.6940	97	40.7604	4940	25.1899	305	22.6594	287	7920
4450 4500	2.7037 2.7137	100 102	41.2544 41.7502	4958 4977	25,2204 25,2507	303 300	22.6881 22.7164	283 280	8010 8100
4550	2.7239	104	42.2479	4996	25,2807	299	22.7444	278	8190
4600	2.7343	106	42.7475	5015	25.3106	296	22.7722	274	8280
4650	2.7449	107	43.2490	5034	25.3402	294	22.7996	272	8370
4700	2.7556	110	43.7524	5055	25.3696	292	22.8268	269	8460
4750	2.7666	111	44.2579	5075	25.3988	290	22.8537	267	8550
4800	2.7777	112	44.7654	5094	25.4278	289	22.8804	264	8640
4850 4900	2.7889 2.8003	114 116	45.2748 45.7864	5116	25.4567 25.4854	287 285	22.9068 22.9329	261 260	8730 8820
4950	2.8119	116	46.3000	5136 5156	25.5139	285 283	22.9589	260 257	B910
5000	2.8235	***	46,8156	3130	25.5422		22,9846	-5,	9000

TABLE 3.- COMPRESSIBILITY FACTOR Z = PV/RT FOR MOLECULAR NITROGEN

°ĸ	0.01 a	ten	0.1 a	ıtım	0.4	atm	0.7 at	n	o _R
100 110 120 130 140	.99982 .99986 .99989 .99991 .99993	4 3 2 2	.99820 .99862 .99892 .99914 .99931	42 30 22 17	.9927 .9944 .9957 .9966 .9972	17 13 9 6 6	.987 .990 .992 .994 .995	3 2 2 1	180 198 216 234 252
150 160 170 180 190	.99994 .99995 .99996 .99997 .99997	1 1 1	.99944 .99954 .99962 .99969 .99974	10 8 7 5	.99776 .99817 .99850 .99876 .99897	41 33 26 21 18	.9961 .9968 .9974 .9978 .9982	7 6 4 4 3	270 288 306 324 342
200 210 220 230 240	.99998 .99998 .99999 .99999	1	.99979 .99982 .99985 .99988 .99990	3 3 3 2 2	.99915 .99930 .99942 .99952 .99961	15 12 10 9 7	.99851 .99877 .99898 .99916 .99932	26 21 18 16 13	360 378 396 414 432
250 260 270 280 290	.99999 .99999 1.00000 1.00000	1	.99992 .99994 .99995 .99996 .99997	2 1 1 1 1	.99968 .99975 .99980 .99985 .99989	7 5 5 4 4	.99945 .99956 .99966 .99974 .99981	11 10 8 7 6	450 468 486 504 522
300 310 320 330 340	1.00000 1.00000 1.00000 1.00000 1.00000		.99998 .99999 1.00000 1.00000 1.00001	1 1	.99993 .99996 .99999 1.00001 1.00003	3 3 2 2 2	.99987 .99993 .99997 1.00002 1.00005	6 4 5 3 3	540 558 576 594 612
350 360 370 380 390	1.00000 1.00000 1.00000 1.00000 1.00000		1.00001 1.00002 1.00002 1.00002 1.00003	1	1.00005 1.00006 1.00008 1.00009 1.00010	1 2 1 1	1.00008 1.00011 1.00014 1.00016 1.00018	3 3 2 2 2	630 648 666 684 702
400 410 420 430 440	1.00000 1.00000 1.00000 1.00000 1.00000		1.00003 1.00003 1.00003 1.00003	1	1.00011 1.00012 1.00013 1.00013 1.00014	1 1 1	1.00020 1.00021 1.00022 1.00024 1.00025	1 1 2 1	720 738 756 774 792
450 460 470 480 490	1.00000 1.00000 1.00000 1.00000		1.00004 1.00004 1.00004 1.00004 1.00004		1.00015 1.00015 1.00015 1.00016 1.00016	1	1.00025 1.00026 1.00027 1.00028 1.00028	1 1 1	810 828 846 864 882
500 510 520 530 540	1.00000 1.00000 1.00000 1.00000 1.00000		1.00004 1.00004 1.00004 1.00004 1.00004		1.00016 1.00017 1.00017 1.00017 1.00017	1	1.00029 1.00029 1.00029 1.00030 1.00030	1	900 918 936 954 972
550 560 570 580 590	1.00000 1.00000 1.00000 1.00000	-	1.00004 1.00004 1.00004 1.00004 1.00004		1.00017 1.00017 1.00017 1.00017 1.00017		1.00030 1.00030 1.00030 1.00030 1.00030		990 1008 1026 1044 1062
600 610 620 630 640	1.00000 1.00000 1.00000 1.00000 1.00000		1.00004 1.00004 1.00004 1.00004		1.00017 1.00017 1.00017 1.00017 1.00017		1.00030 1.00031 1.00031 1.00030 1.00030	1 - 1	1080 1098 1116 1134 1152
650 660 670 680 690	1.00000 1.00000 1.00000 1.00000 1.00000		1.00004 1.00004 1.00004 1.00004 1.00004		1.00017 1.00017 1.00017 1.00017 1.00017		1.00030 1.00030 1.00030 1.00030 1.00030		1170 1188 1206 1224 1242

TABLE 3.- COMPRESSIBILITY FACTOR $\, \mathbf{Z} = \mathbf{FV/RT} \,$ FOR MOLECULAR NITROGEN - Continued

	°K	0.01 atm	0.1 atm	0.4 atm	0.7 atm	o _R
	700 710 720 730 740	1.00000 1.00000 1.00000 1.00000 1.00000	1.00004 1.00004 1.00004 1.00004 1.00004	1.00017 1.00017 1.00017 1.00017 1.00017	1.00030 1.00030 1.00030 1.00030 - 1 1.00029	1260 1278 1296 1314 1332
	750 760 770 780 790	1.00000 1.00000 1.00000 1.00000 1.00000	1.00004 1.00004 1.00004 1.00004 1.00004	1,00017 1,00017 1,00017 - 1 1,00016 1,00016	1.00029 1.00029 1.00029 1.00029 1.00029	1350 1368 1386 1404 1422
6	300 350 900 950	1.00000 1.00000 1.00000 1.00000 1.00000	1.00004 1.00004 1.00004 1.00004 - 1	1.00016 1.00016 - 1 1.00015 1.00015 - 1	1.00029 - 1 1.00028 - 1 1.00027 - 1 1.00026 - 1 1.00025 - 1	1440 1530 1620 1710 1800
1: 1: 1:	050 100 150 200 250	1.00000 1.00000 1.00000 1.00000 1.00000	1.00003 1.00003 1.00003 1.00003 1.00003	1,00014 - 1 1,00013 1,00013 1,00013 - 1 1,00012	1.00024 1.00024 - 1 1.00023 - 1 1.00022 - 1 1.00021	1890 1980 2070 2160 2250
12 14 14	300 350 100 150 500	1.00000 1.00000 1.00000 1.00000 1.00000	1.00003 1.00003 1.00003 1.00003 1.00003	1.00012 1.00012 - 1 1.00011 1.00011 - 1	1.00021 - 1 1.00020 1.00020 - 1 1.00019 - 1 1.00018	2340 2430 2520 2610 2700
16 16 17	550 500 550 700 750	1.00000 1.00000 1.00000 1.00000 1.00000	1.00003 - 1 1.00002 1.00002 1.00002 1.00002	1.00010 1.00010 1.00010 - 1 1.00009 1.00009	1.00018 - 1 1.00017 1.00017 - 1 1.00016 1.00016	2790 2880 2970 3060 3150
18 19 19	300 350 900 950 900	1.00000 1.00000 1.00000 1.00000 1.00000	1.00002 1.00002 1.00002 1.00002 1.00002	1.00009 1.00009 - 1 1.00008 1.00008 1.00008	1.00016 - 1 1.00015 1.00015 - 1 1.00014 1.00014	3240 3330 3420 3510 3600
21 21 22	050 100 150 200 250	1.00000 1.00000 1.00000 1.00000 1.00000	1.00002 1.00002 1.00002 1.00002 1.00002	1.00008 1.00008 1.00008 - 1 1.00007	1.00014 1.00014 - 1 1.00013 1.00013 - 1	3690 3780 3870 3960 4050
2 2 2 4 2 4	800 850 100 150 500	1.00000 1.00000 1.00000 1.00000 1.00000	1.00002 1.00002 1.00002 1.00002 1.00002	1.00007 1.00007 1.00007 1.00007 - 1	1.00012 1.00012 1.00012 1.00012 - 1 1.00011	4140 4230 4320 4410 4500
26 26 27	550 550 750 750	1.00000 1.00000 1.00000 1.00000 1.00000	1.00002 1.00002 1.00002 1.00002 - 1 1.00001	1.00006 1.00006 1.00006 1.00006 1.00006	1.00011 1.00011 1.00011 1.00011 - 1 1.00010	4590 4680 4770 4860 4950
28 29 29	300 350 900 950 900	1,00000 1,00000 1,00000 1,00000 1,00000	1.00001 1.00001 1.00001 1.00001 1.00001	1.00006 1.00006 1.00006 - 1 1.00005 1.00005	1.00010 1.00010 1.00010 1.00010 - 1 1.00009	5040 5130 5220 5310 5400

TABLE 3.- COMPRESSIBILITY FACTOR Z = PV/RT FOR MOLECULAR NITROGEN - Continued

o _K	la	tm	4 а	tm	7 8	ıtm	10 at	an .	o _R
100 110 120 130 140	.981 .986 .989 .991	5 3 2 2 1	.909 .939 .954 .964 .972	30 15 10 8 5	.783 .881 .916 .936	98 35 20 14 10	.805 .873 .906 .927	68 33 21 15	180 198 216 234 252
150 160 170 180 190	.9944 .9954 .9962 .9969 .9974	10 8 7 5	.9773 .9815 .9848 .9875 .9897	42 33 27 22 18	.9597 .9673 .9733 .9781 .9820	76 60 48 39 31	.9416 .9529 .9617 .9685 .9742	113 88 68 57 46	270 288 306 324 342
200 210 220 230 240	.99788 .99824 .99855 .99881 .99902	36 31 26 21 19	.99150 .99298 .99422 .99525 .99613	148 124 103 68 75	.98514 .98775 .98992 .99174 .99328	261 217 182 154 131	.9788 .9825 .9857 .9883 .9905	37 32 26 22 19	360 378 396 414 432
250 260 270 280 290	.99921 .99937 .99951 .99963 .99973	16 14 12 10 9	.99688 .99751 .99807 .99854 .99895	63 56 47 41 35	.99459 .99570 .99666 .99749 .99820	111 96 83 71 62	.99235 .99394 .99531 .99648 .99750	159 137 117 102 88	450 468 486 504 522
300 310 320 330 340	.99982 .99990 .99996 1.00002 1.00007	8 6 6 5	.99930 .99961 .99988 1.00012 1.00032	31 27 24 20 18	.99882 .99936 .99983 1.00024 1.00060	54 47 41 36 32	.99838 .99915 .99981 1.00040 1.00091	77 66 59 51 45	540 558 576 594 612
350 360 370 380 390	1.00012 1.00016 1.00020 1.00023 1.00026	4 4 3 3 2	1.00050 1.00066 1.00081 1.00093 1.00104	16 15 12 11 9	1.00092 1.00119 1.00144 1.00165 1.00184	27 25 21 19 17	1.00136 1.00175 1.00210 1.00240 1.00267	39 35 30 27 23	630 648 666 684 702
400 410 420 430 440	1.00028 1.00030 1.00032 1.00034 1.00035	2 2 2 1 1	1.00113 1.00122 1.00130 1.00136 1.00142	9 8 6 6 5	1.00201 1.00216 1.00229 1.00240 1.00251	15 13 11 11 8	1.00290 1.00312 1.00330 1.00345 1.00360	22 18 15 15 12	720 738 756 774 792
450 460 470 480 490	1.00036 1.00038 1.00039 1.00039 1.00040	2 1 1 1	1.00147 1.00151 1.00155 1.00159 1.00161	4 4 4 2 3	1.00259 1.00266 1.00273 1.00279 1.00284	7 7 6 5 5	1.00372 1.00383 1.00392 1.00401 1.00408	11 9 9 7 6	810 828 846 864 882
500 510 520 530 540	1.00041 1.00041 1.00042 1.00042 1.00043	1	1.00164 1.00167 1.00168 1.00170 1.00171	3 1 2 1	1.00289 1.00293 1.00295 1.00298 1.00301	4 2 3 3 2	1.00414 1.00420 1.00424 1.00427 1.00431	6 4 3 4 3	900 918 936 954 972
550 560 570 580 590	1.00043 1.00043 1.00043 1.00043 1.00044	1	1.00172 1.00173 1.00174 1.00174 1.00174	1	1.00303 1.00304 1.00305 1.00306 1.00306	1 1 1	1.00434 1.00435 1.00437 1.00438 1.00439	1 2 1	990 1008 1026 1044 1062
600 610 620 630 640	1.00044 1.00044 1.00044 1.00044 1.00044	- 1	1.00174 1.00174 1.00174 1.00174 1.00174		1.00306 1.00306 1.00307 1.00307 1.00306	1 - 1 - 1	1.00439 1.00439 1.00439 1.00438 1.00438	- 1 - 1	1080 1098 1116 1134 1152
650 660 670 680 690	1.00043 1.00043 1.00043 1.00043 1.00043		1.00174 1.00173 1.00173 1.00172 1.00172	- 1 - 1 - 1	1.00305 1.00304 1.00304 1.00303 1.00301	- 1 - 1 - 2	1.00437 1.00436 1.00435 1.00433 1.00431	- 1 - 1 - 2 - 2 - 1	1170 1188 1206 1224 1242

TABLE 3.- COMPRESSIBILITY FACTOR Z = PV/RT FOR MOLECULAR NITROGEN - Continued

o _K	1 atm	4 atm	7 atm	10 atm	o _R
700 710 720 730 740	1.00043 1.00043 - 1 1.00042 1.00042 1.00042	1.00171 - 1 1.00170 1.00170 - 1 1.00169 - 1	1.00301 - 2 1.00299 - 1 1.00298 - 1 1.00297 - 1 1.00296 - 2	1.00430 - 2 1.00428 - 2 1.00426 - 1 1.00425 - 2 1.00423 - 2	1260 1278 1296 1314 1332
750 760 770 780 790	1.00042 1.00042 - 1 1.00041 1.00041	1.00168 - 1 1.00167 - 1 1.00166 - 1 1.00165 - 1 1.00164 - 1	1.00294 - 1 1.00293 - 2 1.00291 - 2 1.00289 - 1 1.00288 - 2	1.00421 - 2 1.00419 - 3 1.00416 - 2 1.00414 - 3 1.00411 - 2	1350 1368 1386 1404 1422
800 850 900 950 1000	1.00041 - 1 1.00040 - 2 1.00038 - 1 1.00037 - 1 1.00036 - 1	1.00163 - 5 1.00158 - 4 1.00154 - 5 1.00149 - 5 1.00144 - 5	1.00286 - 9 1.00277 - 8 1.00269 - 9 1.00260 - 8 1.00252 - 8	1.00409 - 13 1.00396 - 12 1.00384 - 12 1.00372 - 12 1.00360 - 12	1440 1530 1620 1710 1800
1050 1100 1150 1200 1250	1.00035 - 1 1.00034 - 1 1.00033 - 1 1.00032 - 1 1.00031 - 1	1.00139 - 4 1.00135 - 5 1.00130 - 4 1.00126 - 4 1.00122 - 3	1.00244 - 8 1.00236 - 8 1.00228 - 7 1.00221 - 7 1.00214 - 6	1.00348 - 11 1.00337 - 11 1.00326 - 10 1.00316 - 10 1.00306 - 9	1890 1980 2070 2160 2250
1300 1350 1400 1450 1500	1.00030 - 1 1.00029 - 1 1.00028 - 1 1.00027 - 1	1.00119 - 4 1.00115 - 3 1.00112 - 4 1.00108 - 3 1.00105 - 3	1.00208 - 6 1.00202 - 7 1.00195 - 5 1.00190 - 6 1.00184 - 5	1.00297 - 9 1.00288 - 9 1.00279 - 8 1.00271 - 8 1.00263 - 7	2340 2430 2520 2610 2700
1600 1650 1700 1750	1.00026 - 1 1.00025 - 1 1.00024 1.00024 - 1 1.00023 - 1	1.00102 - 2 1.00100 - 3 1.00097 - 3 1.00094 - 2 1.00092 - 3	1.00179 - 5 1.00174 - 5 1.00169 - 4 1.00165 - 5 1.00160 - 4	1.00256 - 7 1.00249 - 7 1.00242 - 7 1.00235 - 6 1.00229 - 6	2790 2880 2970 3060 3150
1850 1900 1950 2000	1.00022 - 1 1.00021 1.00021 - 1 1.00020	1.00087 - 2 1.00085 - 2 1.00083 - 2 1.00081 - 2	1.00156 - 3 1.00153 - 5 1.00148 - 3 1.00145 - 4 1.00141 - 3	1.00223 - 5 1.00218 - 6 1.00212 - 5 1.00207 - 5 1.00202 - 5	3240 3330 3420 3510 3600
2100 2150 2200 2250	1.00020 - 1 1.00019 - 1 1.00019 - 1 1.00018	1.00079 - 2 1.00077 - 2 1.00075 - 1 1.00074 - 2 1.00072 - 2	1.00138 - 3 1.00135 - 3 1.00132 - 3 1.00129 - 3 1.00126 - 3	1.00197 - 4 1.00193 - 5 1.00188 - 4 1.00184 - 4 1.00180 - 4	3690 3780 3870 3960 4050
2300 2350 2400 2450 2500	1.00018 - 1 1.00017 1.00017 1.00017 - 1	1.00070 - 1 1.00069 - 1 1.00068 - 2 1.00066 - 1 1.00065 - 1	1.00123 - 2 1.00121 - 3 1.00118 - 2 1.00116 - 3 1.00113 - 2	1.00176 - 3 1.00173 - 4 1.00169 - 3 1.00166 - 4 1.00162 - 3	4140 4230 4320 4410 4500
2550 2600 2650 2700 2750	1.00016 - 1 1.00015 - 1 1.00015 1.00015	1.00064 - 2 1.00062 - 1 1.00061 - 1 1.00059 - 1	1.00111 - 2 1.00109 - 2 1.00107 - 2 1.00105 - 2 1.00103 - 1	1.00159 - 3 1.00156 - 3 1.00153 - 3 1.00150 - 3 1.00147 - 2	4590 4680 4770 4860 4950
2800 2850 2900 2950 3000	1.00015 - 1 1.00014 1.00014 1.00014 1.00014	1.00058 - 1 1.00057 - 1 1.00056 - 1 1.00055 - 1 1.00054	1.00102 - 3 1.00099 - 2 1.00097 - 1 1.00096 - 1 1.00095	1.00145 - 3 1.00142 - 3 1.00139 - 2 1.00137 - 2 1.00135	5040 5130 5220 5310 5400

TABLE 3.- COMPRESSIBILITY FACTOR Z = PV/RT FOR MOLECULAR NITROGEN - Continued

o _K	10 atm		40 atm		70 atm		100 atm		o _R
	10 80	TITI	40 a	····	. 10 8	1 Cm	100 8	.tm	, R
110 120 130 140	.805 .873 .906 .927	68 33 21 15							198 216 234 252
150 160 170 180 190	.9416 .9529 .9617 .9685 .9742	113 88 68 57 46	.736 .799 .843 .873 .899	63 44 30 26 20	.787 .837	50 34			270 288 306 324 342
200 210 220 230 240	.9788 .9825 .9857 .9883 .9905	37 32 26 22 19	.9185 .9341 .9467 .9571 .9658	156 126 104 87 73	.8705 .8969 .9180 .9352 .9494	264 211 172 142 119	.844 .878 .905 .9268 .9445	34 27 22 177 148	360 378 396 414 432
250 260 270 280 290	.99235 .99394 .99531 .99648 .99750	159 137 117 102 88	.97311 .97925 .98453 .98900 .99284	614 528 447 384 336	.9613 .9712 .9797 .9868 .9929	99 85 71 61 55	.9593 .9716 .9822 .9911 .9986	123 106 89 75 68	450 468 486 504 522
300 310 320 330 340	.99838 .99915 .99981 1.00040 1.00091	77 66 59 51 45	.99620 .99908 1.00157 1.00373 1.00563	288 249 216 190 165	.9984 1.0029 1.0070 1.0104 1.0134	45 41 34 30 26	1.0054 1.0111 1.0161 1.0204 1.0242	57 50 43 38 32	540 558 576 594 612
350 360 370 380 390	1.00136 1.00175 1.00210 1.00240 1.00267	39 35 30 27 23	1.00728 1.00872 1.01000 1.01111 1.01209	144 128 111 98 83	1.0160 1.0182 1.0202 1.0220 1.0235	22 20 18 15 13	1.0274 1.0302 1.0327 1.0349 1.0368	28 25 22 19 15	630 648 666 684 702
400 410 420 430 440	1.00290 1.00312 1.00330 1.00345 1.00360	22 18 15 15 12	1.01292 1.01369 1.01435 1.01489 1.01540	77 66 54 51 44	1.0248 1.0260 1.0270 1.0278 1.0286	12 10 8 8	1.0383 1.0398 1.0411 1.0421 1.0430	15 13 10 9 8	720 738 756 774 792
450 460 470 480 490	1.00372 1.00383 1.00392 1.00401 1.00408	11 9 9 7 6	1.01584 1.01620 1.01652 1.01682 1.01704	36 32 30 22 22	1.0292 1.0298 1.0302 1.0307 1.0310	6 4 5 3 3	1.0438 1.0444 1.0449 1.0454 1.0458	6 5 5 4 3	810 828 846 864 882
500 510 520 530 540	1.00414 1.00420 1.00424 1.00427 1.00431	6 4 3 4 3	1.01726 1.01744 1.01756 1.01767 1.01778	18 12 11 11	1.0313 1.0316 1.0317 1.0318 1.0320	3 1 1 2 1	1.0461 1.0464 1.0466 1.0467 1.0468	3 2 1 1	900 918 936 954 972
550 560 570 580 590	1.00434 1.00435 1.00437 1.00438 1.00439	1 2 1 1	1.01787 1.01791 1.01795 1.01796 1.01797	4 4 1 1 - 2	1.0321 1.0321 1.0321 1.0321 1.0321	- 1	1.0469 1.0469 1.0468 1.0468 1.0467	- 1 - 1 - 2	990 1008 1026 1044 1062
600 610 620 630 640	1.00439 1.00439 1.00439 1.00438 1.00438	- 1 - 1	1.01795 1.01795 1.01792 1.01787 1.01784	- 3 - 5 - 3 - 6	1.0320 1.0320 1.0319 1.0318 1.0317	- 1 - 1 - 1 - 1	1.0465 1.0464 1.0463 1.0461 1.0459	- 1 - 1 - 2 - 2 - 2	1080 1098 1116 1134 1152
650 660 670 680 690	1.00437 1.00436 1.00435 1.00433 1.00431	- 1 - 1 - 2 - 2 - 1	1.01778 1.01772 1.01766 1.01760 1.01750	- 6 - 6 - 6 - 10 - 6	1.0316 1.0315 1.0313 1.0312 1.0310	- 1 - 2 - 1 - 2 - 1	1.0457 1.0456 1.0453 1.0451 1.0448	- 1 - 3 - 2 - 3 - 2	1170 1188 1206 1224 1242

TABLE 3.- COMPRESSIBILITY FACTOR Z = PV/RT FOR MOLECULAR NITROGEN - Concluded

°K	10 atm		,40 a	tm	70 (e.tam	100	atm	o _R
700 710 720 730	1,00430 1,00428 1,00426 1,00425	- 2 - 2 - 1 - 2	1.01744 1.01735 1.01726 1.01720	- 9 - 9 - 6	1.0309 1.0307 1.0306	- 2 - 1 - 2	1.0446 1.0444 1.0441	- 2 - 3 - 2	1260 1278 1296
740 750 760 770 780 790	1.00423 1.00421 1.00419 1.00416 1.00414 1.00411	- 2 - 2 - 3 - 2 - 3	1.01720 1.01711 1.01702 1.01693 1.01680 1.01670 1.01662	- 9 - 9 - 9 - 13 - 10 - 8 - 1	1.0304 1.0303 1.0301 1.0299 1.0297 1.0295 1.0293	- 1 - 2 - 2 - 2 - 2 - 2 - 2 - 1	1.0439 1.0436 1.0433 1.0431 1.0427 1.0424	- 3 - 3 - 2 - 4 - 3 - 1 - 3	1314 1332 1350 1368 1386 1404 1422
800 850 900 950 , 1000	1.0041 1.0040 1.0038 1.0037 1.0036	- 1 - 2 - 1 - 1	1.0165 1.0160 1.0155 1.0150 1.0145	- 5 - 5 - 5 - 5 - 5	1.0292 1.0282 1.0273 1.0264 1.0255	- 10 9 9 9 8	1.0420 1.0405 1.0391 1.0378 1.0365	- 15 - 14 - 13 - 13 - 13	1440 1530 1620 1710 1800
1050 1100 1150 1200 1250	1.0035 1.0034 1.0033 1.0032 1.0031	- 1 - 1 - 1 - 1	1.0140 1.0135 1.0131 1.0127 1.0123	- 5 - 4 - 4 - 4	1.0247 1.0238 1.0230 1.0223 1.0216	- 9 - 8 - 7 - 7 - 7	1.0352 1.0341 1.0330 1.0319 1.0309	- 11 - 11 - 11 - 10 - 10	1890 1980 2070 2160 2250
1300 1350 1400 1450 1500	1.0030 1.0029 1.0028 1.0027 1.0026	- 1 - 1 - 1 - 1	1.0119 1.0116 1.0112 1.0109 1.0105	- 3 - 4 - 3 - 4 - 3	1.0209 1.0203 1.0196 1.0190 1.0185	- 6 - 7 - 6 - 5 - 5	1.0299 1.0290 1.0280 1.0271 1.0264	- 9 - 10 - 9 - 7 - 7	2340 2430 2520 2610 2700
1550 1600 1650 1700 1750	1.0026 1.0025 1.0024 1.0024 1.0023	- 1 - 1 - 1 - 1	1.0102 1.0100 1.0097 1.0094 1.0092	- 2 - 3 - 3 - 2 - 3	1.0180 1.0175 1.0170 1.0165 1.0160	- 5 - 5 - 5 - 5 - 4	1.0257 1.0250 1.0243 1.0236 1.0229	- 7 - 7 - 7 - 7 - 6	2790 2880 2970 3060 3150
1800 1850 1900 1950 2000	1.0022 1.0022 1.0021 1.0021 1.0020	- 1 - 1	1.0089 1.0087 1.0085 1.0083 1.0081	- 2 - 2 - 2 - 2 - 2	1.0156 1.0153 1.0148 1.0145 1.0141	- 3 - 5 - 3 - 4 - 3	1.0223 1.0218 1.0212 1.0207 1.0202	- 5 - 6 - 5 - 5	3240 3330 3420 3510 3600
2050 2100 2150 2200 2250	1.0020 1.0019 1.0019 1.0018 1.0018	- I - 1	1.0079 1.0077 1.0075 1.0074 1.0072	- 2 - 2 - 1 - 2 - 2	1.0138 1.0135 1.0132 1.0129 1.0126	- 3 - 3 - 3 - 3	1.0197 1.0193 1.0188 1.0184 1.0180	- 4 5 4 4	3690 3780 3870 3960 4050
2300 2350 2400 2450 2500	1.0018 1.0017 1.0017 1.0017 1.0016	- 1	1.0070 1.0069 1.0068 1.0066 1.0065	- 1 - 1 - 2 - 1 - 1	1.0123 1.0121 1.0118 1.0116 1.0113	- 2 - 3 - 2 - 3 - 2	1.0176 1.0173 1.0169 1.0166 1.0162	- 3 - 4 - 3 - 4 - 3	4140 4230 4320 4410 4500
2550 2600 2650 2700 2750	1.0016 1.0016 1.0015 1.0015	- 1	1.0064 1.0062 1.0061 1.0060 1.0059	- 2 - 1 - 1 - 1 - 1	1.0111 1.0109 1.0107 1.0105 1.0103	- 2 - 2 - 2 - 2 - 1	1.0159 1.0156 1.0153 1.0150 1.0147	- 3 - 3 - 3 - 3 - 2	4590 4680 4770 4860 4950
2800 2850 2900 2950 3000	1.0015 1.0014 1.0014 1.0014 1.0014	<u> </u>	1.0058 1.0057 1.0056 1.0055 1.0054	- 1 - 1 - 1 - 1	1.0102 1.0099 1.0097 1.0096 1.0095	- 3 - 2 - 1 - 1	1.0145 1.0142 1.0139 1.0137 1.0135	- 3 - 3 - 2 - 2	5040 5130 5220 5310 5400

Table 4.- density ρ/ρ_0 of molecular nitrogen

o _K	0.01	. stm	0.1	atm	0.4	atm	0.7	atm	o _R
			1						1
100	.02731	-249	.27353	-2497	1.1000	-1015	1.936	-181	180
110	.02482	-206	.24856	-2078	.9985	- 844	1.755	-149	198
120	.02276	-176	.22778	-1757	.9141	- 711	1.606	-127	216
130	.02100	-150	.21021	-1505	.8430	- 607	1.479	-107	234
140	.01950	-130	.19516	- 1303	.7823	- 526	1.372	- 93	252
150	.01820	-113	.18213	-1140	.72973	- 4589	1.2792	- 808	270
160	.01707	-101	.17073	-1006	.68384	- 4043	1.1984	- 712	288
170	.01606	- 89	.16067	- 894	.64341	- 3591	1.1272	- 630	306
180	.01517	- 80	.15173	- 799	.60750	- 3209	1.0642	- 565	324
190	.01437	- 72	.14374	- 719	.57541	- 2887	1.0077	- 506	342
200	.01365	- 65	.13655	- 651	.54654	- 2611	.95706	- 4582	360
210	.01300	- 59	.13004	- 591	.52043	- 2371	.91124	- 4160	378
220	.01241	- 54	.12413	- 540	.49672	- 2165	.86964	- 3796	396
230	.01187	- 49	.11873	- 495	.47507	- 1983	.83168	- 3478	414
240	.01138	- 46	.11378	- 456	.45524	- 1824	.79690	- 3198	432
250 260 270 280 290	.01092 .01050 .01011 .00975 .00941	- 42 - 39 - 36 - 34 - 31	.10922 .10502 .10113 .09752	- 420 - 389 - 361 - 337 - 314	.43700 .42016 .40458 .39011 .37664	- 1684 1558 1447 1347 1257	.76492 .73542 .70811 .68277 .65918	- 2950 - 2731 - 2534 - 2359 - 2201	450 468 486 504 522
300	.00910	- 29	.09101	- 293	.36407	- 1175	.63717	- 2059	540
310	.00881	- 28	.08808	- 276	.35232	- 1102	.61658	- 1929	558
320	.00853	- 26	.08532	- 258	.34130	- 1035	.59729	- 1813	576
330	.00827	- 24	.08274	- 244	.33095	- 974	.57916	- 1705	594
340	.00803	- 23	.08030	- 229	.32121	- 918	.56211	- 1608	612
350 360 370 380 390	.00780 .00758 .00738 .00718	- 22 - 20 - 20 - 18 - 17	.07801 .07584 .07379 .07185 .07001	- 217 - 205 - 194 - 184 - 175	.31203 .30336 .29515 .28738 .28001	867 821 777 737 700	.54603 .53085 .51648 .50288 .48998	- 1518 - 1437 - 1360 - 1290 - 1226	630 648 666 684 702
400	.00683	- 17	.06826	- 167	.27301	- 666	.47772	- 1166	720
410	.00666	- 16	.06659	- 158	.26635	- 635	.46606	- 1110	738
420	.00650	- 15	.06501	- 151	.26000	- 605	.45496	- 1059	756
430	.00635	- 14	.06350	- 145	.25395	- 577	.44437	- 1010	774
440	.00621	- 14	.06205	- 138	.24818	- 552	.43427	- 965	792
450	.00607	- 13	.06067	- 132	.24266	- 527	.42462	- 924	810
460	.00594	- 13	.05935	- 126	.23739	- 505	.41538	- 884	828
470	.00581	- 12	.05809	- 121	.23234	- 485	.40654	- 847	846
480	.00569	- 12	.05688	- 116	.22749	- 464	.39807	- 813	864
490	.00557	- 11	.05572	- 111	.22285	- 446	.38994	- 780	882
500	.00546	- 11	.05461	- 108	.21839	- 428	.38214	- 749	900
510	.00535	- 10	.05353	103	.21411	- 412	.37465	- 721	918
520	.00525	- 10	.05250	99	.20999	- 396	.36744	- 693	936
530	.00515	- 9	.05151	95	.20603	- 381	.36051	- 668	954
540	.00506	- 10	.05056	92	.20222	- 368	.35383	- 643	972
550 560 570 580 590	.00496 .00488 .00479 .00471 .00463	- 8 - 9 - 8 - 8	.04964 .04875 .04790 .04707 .04628	89 85 83 79 78	.19854 .19499 .19157 .18827 .18508	- 355 - 342 - 330 - 319 - 309	.34740 .34119 .33521 .32943 .32384	- 621 - 598 - 578 - 559 - 539	990 1008 1026 1044 1062
600	.00455	- 7	.04550	- 74	.18199	- 298	.31845	- 523	1080
610	.00448	- 8	.04476	- 72	.17901	- 289	.31322	- 505	1098
620	.00440	- 7	.04404	- 70	.17612	- 279	.30817	- 489	1116
630	.00433	- 6	.04334	- 68	.17333	- 271	.30328	- 474	1134
640	.00427	- 7	.04266	- 66	.17062	- 263	.29854	- 459	1152
650 660 670 680 690	.00420 .00414 .00408 .00402 .00396	- 6 - 6 - 6 - 6	.04200 .04137 .04075 .04015 .03957	- 63 - 62 - 60 - 58 - 57	.16799 .16545 .16298 .16058 .15826	- 254 - 247 - 240 - 232 - 227	.29395 .28950 .28518 .28098 .27691	- 445 - 432 - 420 - 407 - 395	1170 1188 1206 1224 1242

TABLE 4.- DENSITY ρ/ρ_{0} OF MOLECULAR NITROGEN - Continued

								
°K	0.01 atm	0.	l atm	0.4 at	tım.	0.7	atm	o _R
700 710 720 730 740 750 760	.00390 - .00385 - .00379 - .00374 - .00369 -	5 .03900 6 .03845 5 .03792 5 .03740 5 .03690 5 .03640 4 .03592	- 55 - 53 - 52 - 50 50 48 46	.15599 .15380 .15166 .14958 .14756	- 219 - 214 - 208 - 202 - 197 - 191 - 187	.27296 .26911 .26537 .26174 .25820	- 385 - 374 - 363 - 354 - 344 - 335 - 327	1260 1278 1296 1314 1332 1350 1368
770 780 790	.00355 - .00350 - .00346 -	5 .03546 4 .03500 5 .03456	- 46 - 44 - 43	.14181 .14000 .13822	- 181 - 178 - 172	.24814 .24496 .24186	- 318 - 310 - 302	1386 1404 1422
800 850 900 950 1000	.00321 - .00303 - .00287 - .00273 -	20 .03413 18 .03212 16 .03034 14 .02874 13 .02730	- 201 - 178 - 160 - 144 - 130	.13650 .12847 .12133 .11495 .10920	- 803 - 714 - 638 - 575 - 520	.23884 .22479 .21230 .20113 .19108	- 1405 - 1249 - 1117 - 1005 - 910	1440 1530 1620 1710 1800
1050 1100 1150 1200 1250	.00248 - .00237 - .00228 - .00218 -	12 .02600 11 .02482 9 .02374 10 .02275 8 .02184	- 118 - 108 - 99 - 91 - 84	.10400 .09927 .09496 .09100 .08736	- 473 - 431 - 396 - 364 - 336	.18198 .17371 .16616 .15924 .15287	- 827 - 755 - 692 - 637 - 588	1890 1980 2070 2160 2250
1300 1350 1400 1450 1500	.00210 - .00202 - .00195 - .00188 - .00182 -	8 .02100 7 .02022 7 .01950 6 .01883 6 .01820	- 78 - 72 - 67 - 63 - 59	.07531	- 311 - 289 - 269 - 251 - 235	.14699 .14155 .13649 .13179 .12739	- 544 - 506 - 470 - 440 - 411	2340 2430 2520 2610 2700
1550 1600 1650 1700 1750	.00176 - .00171 - .00165 - .00161 - .00156 -	5 .01761 6 .01706 4 .01655 5 .01606 4 .01560	- 55 - 51 - 49 - 46 - 43	.06825 .06618 .06424	220 207 194 184 173	.12328 .11943 .11581 .11241 .10920	- 385 - 362 - 340 - 321 - 304	2790 2880 2970 3060 3150
1800 1850 1900 1950 2000	.00152 - .00148 - .00144 - .00140 - .00137 -	4 .01517 4 .01476 4 .01437 3 .01400 4 .01365	- 41 - 39 - 37 - 35 - 33	.05903 .05748 .05600 .05460	- 164 - 155 - 148 - 140 - 133	.10616 .10330 .10058 .09800 .09555	- 286 - 272 - 258 - 245 - 233	3240 3330 3420 3510 3600
2050 2100 2150 2200 2250	.00130 - .00127 - .00124 - .00121 -	3 .01332 3 .01300 3 .01270 3 .01241 2 .01213	- 32 - 30 - 29 - 28 - 26	.05327 .05200 .05079 .04964 .04854	- 110	.09322 .09100 .08888 .08686 .08493	- 222 - 212 - 202 - 193 - 184	3690 3780 3870 3960 4050
2300 2350 2400 2450 2500	.00116 - .00114 - .00111 - .00109 -	3 .01187 2 .01162 3 .01138 2 .01114 2 .01092	- 25 - 24 - 24 - 22 - 21	.04748 - .04647 - .04550 - .04457 - .04368 -	- 101 - 97 - 93 - 89 - 85	.08309 .08132 .07963 .07800 .07644	- 177 - 1 <i>69</i> - 163 - 156 - 150	4140 4230 4320 4410 4500
2550 2600 2650 2700 2750	.00105 - .00103 - .00101 - .00099 -	2 .01071 2 .01050 2 .01030 2 .01011 1 .00993	- 21 - 20 - 19 - 18 - 18	.04283 - .04200 - .04121 - .04045 - .03971 -	- 76	.07494 .07350 .07211 .07078 .06949	- 144 - 139 - 133 - 129 - 124	4590 4680 4770 4860 4950
2800 2850 2900 2950 3000	.00096 - .00094 -	2 .00975 2 .00958 1 .00941 2 .00926 .00910	- 17 - 17 - 15 - 16	.0390C - .03832 - .03766 - .03702 - .03640	- 68 - 66 - 64 - 62	.06825 .06706 .06590 .06478 .06370	- 119 - 116 - 112 - 108	5040 5130 5220 5310 5400

TABLE 4.- DENSITY ρ/ρ_0 OF MOLECULAR NTTROGEN - Continued

°ĸ	l atm	4 atm	7 atm	10 atm	o _R
100 110 120 130 140	2.783 -266 2.517 -216 2.301 -182 2.119 -155 1.964 -133	12.010 -1440 10.570 -1090 9.540 - 825 8.715 - 689 8.026 - 576	24,40 -468 19,72 -234 17,38 -168 15,70 -133 14,37 -109	30.83 -477 26.06 -288 23.18 -215 21.03 -170	180 198 216 234 252
150	1.8305 -1161	7.4501 - 4955	13.276 - 927	19.331 -1423	270
160	1.7144 -1022	6.9546 - 4310	12.349 - 798	17.908 -1208	288
170	1.6122 - 906	6.5236 - 3793	11.551 - 696	16.700 -1038	306
180	1.5216 - 808	6.1443 - 3363	10.855 - 612	15.662 - 912	324
190	1.4408 - 727	5.8080 - 3004	10.243 - 543	14.750 - 803	342
200	1.36809 - 6562	5.50755 - 27008	9.7004 - 4863	13,947 - 714	360
210	1.30247 - 5959	5.23747 - 24430	9.2141 - 4381	13,233 - 643	378
220	1.24288 - 5435	4.99317 - 22204	8.7760 - 3970	12,590 - 579	396
230	1.18853 - 4976	4.77113 - 20283	8.3790 - 3616	12,011 - 526	414
240	1.13877 - 4576	4.56830 - 18604	8.0174 - 3308	11,485 - 480	432
250	1.09301 - 4221	4.38226 - 17121	7.6866 - 3039	11.005 - 440	450
260	1.05080 - 3906	4.21105 - 15824	7.3827 - 2803	10.565 - 405	468
270	1.01174 - 3625	4.05281 - 14658	7.1024 - 2593	10.160 - 375	486
280	.97549 - 3373	3.90623 - 13624	6.8431 - 2407	9.785 - 347	504
290	.94176 - 3147	3.76999 - 12695	6.6024 - 2241	9.438 - 322	522
300	.91029 - 2944	3.64304 - 11861	6,3783 - 2090	9.1160 - 3009	540
310	.88085 - 2758	3.52443 - 11106	6,1693 - 1956	8.8151 - 2811	558
320	.85327 - 2590	3.41337 - 10423	5,9737 - 1894	8.5340 - 2635	576
330	.82737 - 2438	3.30914 - 9797	5,7903 - 1724	8.2705 - 2473	594
340	.80299 - 2298	3.21117 - 9231	5,6179 - 1622	8.0232 - 2328	612
350	.78001 - 2170	3.11886 — 8712	5,45572 - 15298	7,7904 - 2193	630
360	.75831 - 2052	3.03174 — 8238	5,30274 - 14460	7,5711 - 2072	648
370	.73779 - 1944	2.94936 — 7796	5,15814 - 13680	7,3639 - 1960	666
380	.71835 - 1844	2.87140 — 7393	5,02134 - 12968	7,1679 - 1856	684
390	.69991 - 1751	2.79747 — 7018	4,89166 - 12310	6,9823 - 1762	702
400	.68240 - 1666	2,72729 - 6676	4.76856 - 11700	6.8061 - 1674	720
410	.66574 - 1586	2,66053 - 6355	4.65156 - 11134	6.6387 - 1592	738
420	.64988 - 1513	2,59698 - 6055	4.54022 - 10607	6.4795 - 1517	756
430	.63475 - 1443	2,53643 - 5780	4.43415 - 10126	6.3278 - 1447	774
440	.62032 - 1379	2,47863 - 5520	4.33289 - 9662	6.1831 - 1381	792
450	.60653 - 1320	2.42343 - 5277	4.23627 - 9238	6.0450 - 1321	810
460	.59333 - 1263	2.37066 - 5054	4.14389 - 8845	5.9129 - 1263	828
470	.58070 - 1209	2.32012 - 4842	4.05544 - 8473	5.7866 - 1211	846
480	.56861 - 1161	2.27170 - 4641	3.97071 - 8123	5.6655 - 1160	864
490	.55700 - 1115	2.22529 - 4457	3.88948 - 7798	5.5495 - 1113	882
500	.54585 - 1070	2.18072 - 4282	3.81150 - 7488	5.4382 - 1070	900
510	.53515 - 1030	2.13790 - 4114	3.73662 - 7193	5.3312 - 1027	918
520	.52485 - 990	2.09676 - 3960	3.66469 - 6926	5.2285 - 988	936
530	.51495 - 954	2.05716 - 3812	3.59543 - 6668	5.1297 - 952	954
540	.50541 - 919	2.01904 - 3673	3.52875 - 6423	5.0345 - 917	972
550	.49622 - 886	1.98231 - 3541	3.46452 - 6190	4.9428 - 883	990
560	.48736 - 855	1.94690 - 3418	3.40262 - 5973	4.8545 - 853	1008
570	.47881 - 826	1.91272 - 3298	3.34289 - 5767	4.7692 - 822	1026
580	.47055 - 798	1.87974 - 3186	3.28522 - 5568	4.6870 - 795	1044
590	.46257 - 771	1.84788 - 3080	3.22954 - 5383	4.6075 - 768	1062
600	.45486 - 746	1.81708 - 2978	3.17571 - 5206	4.5307 - 743	1080
610	.44740 - 721	1.78730 - 2883	3.12365 - 5041	4.4564 - 719	1098
620	.44019 - 699	1.75847 - 2791	3.07324 - 4878	4.3845 - 695	1116
630	.43320 - 677	1.73056 - 2704	3.02446 - 4723	4.3150 - 674	1134
640	.42643 - 655	1.70352 - 2621	2.97723 - 4577	4.2476 - 654	1152
650	.41988 - 637	1.67731 - 2540	2.93146 - 4439	4.1822 - 633	1170
660	.41351 - 617	1.65191 - 2465	2.88707 - 4309	4.1189 - 614	1188
670	.40734 - 599	1.62726 - 2392	2.84398 - 4180	4.0575 - 596	1206
680	.40135 - 581	1.60334 - 2323	2.80218 - 4055	3.9979 - 579	1224
690	.39554 - 565	1.58011 - 2256	2.76163 - 3945	3.9400 - 562	1242

TABLE 4.- DENSITY ρ/ρ_0 OF MOLECULAR NITROGEN - Continued

°ĸ	1 atm	4 etm	7 atm	10 atm	O _R
L					
700	.38989 - 550	1.55755 - 2192	2.72218 - 3829	3.8838 - 546	1260
710	.38439 - 533	1.53563 - 2133	2.68389 - 3725	3.8292 - 532	1278
720	.37906 - 519	1.51430 - 2073	2.64664 - 3623	3.7760 - 516	1296
730	.37387 - 506	1.49357 - 2017	2.61041 - 3525	3.7244 - 503	1314
740	.36881 - 491	1.47340 - 1965	2.57516 - 3428	3.6741 - 489	1332
750	.36390 - 479	1.45375 - 1911	2,54088 - 3341	3.6252 - 476	1350
760	.35911 - 466	1.43464 - 1862	2,50747 - 3252	3.5776 - 464	1368
770	.35445 - 455	1.41602 - 1814	2,47495 - 3168	3.5312 - 452	1386
780	.34990 - 443	1.39788 - 1768	2,44327 - 3090	3.4860 - 440	1404
790	.34547 - 431	1.38020 - 1724	2,41237 - 3011	3.4420 - 430	1422
800	.34116 - 2007	1.36296 - 8611	2.38226 - 13993	3.3990 - 1996	1440
850	.32109 - 1783	1.28285 - 7122	2.24233 - 12441	3.1994 - 1771	1530
900	.30326 - 1596	1.21163 - 6371	2.11792 - 11129	3.0223 - 1588	1620
950	.28730 - 1436	1.14792 - 5734	2.00663 - 10018	2.8635 - 1429	1710
1000	.27294 - 1300	1.09058 - 5188	1.90645 - 9063	2.7206 - 1293	1800
1050	.25994 - 1181	1.03870 - 4718	1.81582 - 8240	2.5913 - 1176	1890
1100	.24813 - 1078	.99152 - 4306	1.73342 - 7524	2.4737 - 1073	1980
1150	.23735 - 989	.94846 - 3948	1.65818 - 6898	2.3664 - 983	2070
1200	.22746 - 910	.90898 - 3633	1.58920 - 6346	2.2681 - 906	2160
1250	.21836 - 839	.87265 - 3353	1.52574 - 5859	2.1775 - 835	2250
1300	.20997 - 778	.83912 - 3105	1.46715 - 5426	2.0940 - 774	2340
1350	.20219 - 722	.80807 - 2884	1.41289 - 5036	2.0166 - 718	2430
1400	.19497 - 672	.77923 - 2684	1.36253 - 4692	1.9448 - 669	2520
1450	.18825 - 627	.75239 - 2506	1.31561 - 4378	1.8779 - 624	2610
1500	.18198 - 587	.72733 - 2344	1.27183 - 4096	1.8155 - 585	2700
1550	.17611 - 550	.70389 - 2198	1,23087 - 3841	1.7570 - 548	2790
1600	.17061 - 517	.68191 - 2064	1,19246 - 3608	1.7022 - 514	2880
1650	.16544 - 487	.66127 - 1943	1,15638 - 3396	1.6508 - 485	2970
1700	.16057 - 458	.64184 - 1833	1,12242 - 3202	1.6023 - 457	3060
1750	.15599 - 434	.62351 - 1730	1,09040 - 3024	1.5566 - 431	3150
1800	.15165 - 410	.60621 - 1637	1.06016 - 2863	1.5135 - 409	3240
1850	.14755 - 388	.58984 - 1551	1.03153 - 2709	1.4726 - 386	3330
1900	.14367 - 368	.57433 - 1472	1.00444 - 2573	1.4340 - 367	3420
1950	.13999 - 350	.55961 - 1398	.97871 - 2443	1.3973 - 348	3510
2000	.13649 - 333	.54563 - 1330	.95428 - 2324	1.3625 - 333	3600
2050	.13316 - 317	.53233 - 1266	.93104 - 2214	1.3292 - 315	3690
2100	.12999 - 302	.51967 - 1207	.90890 - 2111	1.2977 - 302	3780
2150	.12697 - 288	.50760 - 1154	.88779 - 2016	1.2675 - 287	3870
2200	.12409 - 276	.49606 - 1101	.86763 - 1925	1.2388 - 275	3960
2250	.12133 - 264	.48505 - 1054	.84838 - 1642	1.2113 - 263	4050
2300	.11869 - 252	.47451 - 1009	.82996 - 1764	1.1850 - 251	4140
2350	.11617 - 242	.46442 - 967	.81232 - 1690	1.1599 - 242	4230
2400	.11375 - 233	.45475 - 927	.79542 - 1622	1.1357 - 232	4320
2450	.11142 - 222	.44548 - 890	.77920 - 1556	1.1125 - 221	4410
2500	.10920 - 214	.43658 - 856	.76364 - 1496	1.0904 - 214	4500
2550	.10706 - 206	.42802 - 822	.74868 - 1438	1.0690 - 205	4590
2600	.10500 - 198	.41980 - 792	.73430 - 1564	1.0485 - 197	4680
2650	.10302 - 191	.41188 - 762	.72046 - 1333	1.0288 - 191	4770
2700	.10111 - 184	.40426 - 735	.70713 - 1284	1.0097 - 183	4860
2750	.09927 - 177	.39691 - 708	.69429 - 1239	.9914 - 177	4950
2800	.09750 - 171	.38983 - 684	.68190 - 1195	.9737 - 170	5040
2850	.09579 - 165	.38299 - 660	.66995 - 1153	.9567 - 165	5130
2900	.09414 - 160	.37639 - 637	.65842 - 1116	.9402 - 159	5220
2950	.09254 - 154	.37002 - 617	.64726 - 1078	.9243 - 154	5310
3000	.09100	.36385	.63648	.9089	5400

TABLE 4.- DENSITY ρ/ρ_0 OF MOLECULAR NITROGEN - Continued

οK	1	O atm	4	-Oatan	70	atm		LOO atm	o _R
110 120 130 140	30.83 26.06 23.18 21.03	-477 -288 -215 -170							198 216 234 252
150 160 170 180 190	19.331 17.908 16.700 15.662 14.750	- 1423 - 1208 - 1038 - 912 - 803	98.9 85.4 76.2 69.5 63.9	-135 - 92 - 67 - 56 - 44	134.9 120,1	-148 -103			270 288 306 324 342
200	13.947	- 714	59.45	- 378	109.77	- 830	161.7	-137	360
210	13.233	- 643	55.67	- 324	101.47	- 683	148.0	-109	378
220	12.590	- 579	52.43	- 282	94.635	5779	137.1	- 90	396
230	12.011	- 526	49.61	- 250	88.856	- 4976	128.08	- 763	414
240	11.485	- 480	47.11	- 222	83.880	- 4352	120.45	- 661	432
250	11.005	440	44.893	- 1998	79.528	- 3839	113.84	- 576	450
260	10.565	405	42.895	- 1810	75.689	- 3435	108.08	- 513	468
270	10.160	375	41.085	- 1646	72.254	- 3082	102.95	- 457	486
280	9.785	347	39.439	- 1508	69.172	- 2796	98.38	- 410	504
290	9.438	322	37.931	- 1388	66.376	- 2566	94.28	- 376	522
300	9.1160	- 3009	36.543	- 1280	63.810	- 2335	90.523	- 3414	540
310	8.8151	- 2811	35.263	- 1187	61.475	- 2164	87.109	- 3137	558
320	8.5340	- 2635	34.076	- 1104	59.311	- 1991	83.972	- 2888	576
330	8.2705	- 2473	32.972	- 1030	57.320	- 1850	81.084	- 2677	594
340	8.0232	- 2328	31.942	- 964	55.470	- 1723	78.407	- 2477	612
350	7.7904	- 2193	30.978	- 903	53.747	- 1606	75.930	- 2310	630
360	7.5711	- 2072	30.075	- 850	52.141	- 1509	73.620	- 2163	648
370	7.3639	- 1960	29.225	- 801	50.632	- 1419	71.457	- 2029	666
380	7.1679	- 1856	28.424	- 755	49.213	- 1332	69.428	- 1904	684
390	6.9823	- 1762	27.669	- 714	47.881	- 1256	67.524	- 1783	702
400	6.8061	- 1674	26.955	- 677	46.625	- 1191	65.741	- 1696	720
410	6.6387	- 1592	26.278	- 643	45.434	- 1125	64.045	- 1603	738
420	6.4795	- 1517	25.635	- 609	44.309	- 1064	62.442	- 1511	756
430	6.3278	- 1447	25.026	- 581	43.245	- 1016	60.931	- 1436	774
440	6.1831	- 1381	24.445	- 554	42.229	- 962	59.495	- 1367	792
450	6.0450	- 1321	23.891	- 528	41.267	- 921	58.128	- 1296	810
460	5.9129	- 1263	23.363	- 504	40.346	- 873	56.832	- 1236	828
470	5.7866	- 1211	22.859	- 483	39.473	- 842	55.596	- 1184	846
480	5.6655	- 1160	22.376	- 461	38.631	- 799	54.412	- 1131	864
490	5.5495	- 1113	21.915	- 443	37.832	- 767	53.281	- 1081	882
500	5.4382	- 1070	21.472	- 425	37.065	- 738	52.200	- 1038	900
510	5.3312	- 1027	21.047	- 407	36.327	- 702	51.162	- 993	918
520	5.2285	- 988	20.640	- 392	35.625	- 675	50.169	- 952	936
530	5.1297	- 952	20.248	- 377	34.950	- 654	49.217	- 916	954
540	5.0345	- 917	19.871	- 363	34.296	- 627	48.301	- 862	972
550	4.9428	- 883	19.508	- 349	33.669	- 601	47,419	- 847	990
560	4.8545	- 853	19.159	- 337	33.068	- 580	46,572	- 813	1008
570	4.7692	- 822	18.822	- 325	32.488	- 561	45,759	- 789	1026
580	4.6870	- 795	18.497	- 313	31.927	- 541	44,970	- 758	1044
590	4.6075	- 768	18.184	- 303	31.386	- 520	44,212	- 728	1062
600	4.5307	- 743	17.881	- 293	30.866	- 506	43.484	709	1080
610	4.4564	- 719	17.588	- 283	30.360	- 487	42.775	686	1098
620	4.3845	- 695	17.305	- 274	29.873	- 471	42.089	660	1116
630	4.3150	- 674	17.031	- 266	29.402	- 457	41.429	640	1134
640	4.2476	- 654	16.765	- 257	28.945	- 442	40.789	620	1152
650	4.1822	- 633	16.508	- 249	28.503	- 429	40.169	- 604	1170
660	4.1189	- 614	16.259	- 242	28.074	- 414	39.565	- 580	1188
670	4.0575	- 596	16.017	- 234	27.660	- 404	38.985	- 566	1206
680	3.9979	- 579	15.783	- 227	27.256	- 390	38.419	- 546	1224
690	3.9400	- 562	15.556	- 222	26.866	- 381	37.873	- 534	1242

Table 4.- Density ρ/ρ_0 of molecular nitrogen - Concluded

°K	10 atm	40 atm	70 atm	100 atm	°R
700	3.8838 - 546	15.334 - 214	26.485 - 368	37.339 - 518	1260
710	3.8292 - 532	15.120 - 209	26.117 - 360	36.821 - 501	1278
720	3.7760 - 516	14.911 - 204	25.757 - 348	36.320 - 491	1296
730	3.7244 - 503	14.707 - 197	25.409 - 341	35.829 - 474	1314
740	3.6741 - 489	14.510 - 192	25.068 - 330	35,355 - 461	1332
750	3,6252 - 476	14,318 - 187	24,738 - 320	34,894 - 453	1350
760	3,5776 - 464	14,131 - 182	24,418 - 313	34,441 - 434	1368
770	3,5312 - 452	13,949 - 178	24,105 - 304	34,007 - 427	1386
780	3,4860 - 440	13,771 - 173	23,801 - 297	33,580 - 421	1404
790	3,4420 - 430	13,598 - 169	23,504 - 292	33,159 - 405	1422
800	3.3990 - 1996	13.429 - 783	23.212 - 1346	32.754 - 1883	1440
850	3.1994 - 1771	12.646 - 697	21.866 - 1193	30.871 - 1676	1530
900	3.0223 - 1588	11.949 - 623	20.673 - 1070	29.195 - 1502	1620
950	2.8635 - 1429	11.326 - 561	19.603 - 972	27.693 - 1351	1710
1000	2.7206 - 1293	10.765 - 508	18.631 - 868	26.342 - 1223	1800
1050	2.5913 - 1176	10,257 - 461	17.763 - 792	25.119 - 1116	1890
1100	2.4737 - 1073	9,796 - 422	16.971 - 725	24.003 - 1020	1980
1150	2.3664 - 983	9,374 - 387	16.246 - 667	22.983 - 934	2070
1200	2.2681 - 906	8,987 - 356	15.579 - 613	22.049 - 861	2160
1250	2.1775 - 835	8,631 - 329	14.966 - 565	21.188 - 795	2250
1300	2.0940 774	8.302 - 305	14.401 - 526	20,393 - 738	2340
1350	2.0166 718	7.997 - 283	13.875 - 486	19,655 - 684	2430
1400	1.9448 669	7.714 - 264	13.389 - 454	18,971 - 638	2520
1450	1.8779 624	7.450 - 245	12.935 - 425	18,333 - 599	2610
1500	1.8155 585	7.205 - 230	12.510 - 398	17,734 - 561	2700
1550	1.7570 - 548	6.975 - 217	12.112 - 373	17.173 - 525	2790
1600	1.7022 - 514	6.758 - 203	11.739 - 350	16.648 - 493	2880
1650	1.6508 - 485	6.555 - 191	11.389 - 329	16.155 - 465	2970
1700	1.6023 - 457	6.364 - 180	11.060 - 311	15.690 - 438	3060
1750	1.5566 - 431	6.184 - 170	10.749 - 294	15.252 - 415	3150
1800	1.5135 - 409	6.014 - 162	10.455 - 280	14.837 - 394	3240
1850	1.4726 - 386	5.852 - 153	10.175 - 263	14.443 - 371	3330
1900	1.4340 - 367	5.699 - 145	9.912 - 251	14.072 - 355	3420
1950	1.3973 - 348	5.554 - 138	9.661 - 238	13.717 - 336	3510
2000	1.3625 - 333	5.416 - 131	9.423 - 227	13.381 - 320	3600
2050	1.3292 - 315	5.285 - 124	9.196 - 216	13.061 - 306	3690
2100	1.2977 - 302	5.161 - 120	8.980 - 207	12.755 - 290	3780
2150	1.2675 - 287	5.041 - 114	8.773 - 197	12.465 - 279	3870
2200	1.2388 - 275	4.927 - 108	8.576 - 188	12.186 - 266	3960
2250	1.2113 - 263	4.819 - 104	8.388 - 180	11.920 - 255	4050
2300	1.1850 - 251	4.715 - 100		11.665 - 244	4140
2350	1.1599 - 242	4.615 - 96		11.421 - 234	4230
2400	1.1357 - 232	4.519 - 91		11.187 - 225	4320
2450	1.1125 - 221	4.428 - 88		10.962 - 215	4410
2500	1.0904 - 214	4.340 - 85		10.747 - 208	4500
2550	1.0690 - 205	4,255 - 81	7.271 - 136	10.539 - 199	4590
2600	1.0485 - 197	4,174 - 78		10.340 - 192	4680
2650	1.0288 - 191	4,096 - 76		10.148 - 185	4770
2700	1.0097 - 183	4,020 - 72		9.963 - 179	4860
2750	.9914 - 177	3,948 - 70		9.784 - 173	4950
2800	.9737 - 170	3.878 - 68	6.757 - 117	9.611 - 165	5040
2850	.9567 - 165	3.810 - 65	6.640 - 113	9.446 - 160	5130
2900	.9402 - 159	3.745 - 64	6.527 - 110	9.286 - 156	5220
2950	.9243 - 154	3.681 - 61	6.417 - 107	9.130 - 150	5310
3000	.9089	3.620	6.310	8.980	5400

Table 5.- specific heat $\mathbf{c}_{\mathbf{p}}/\mathbf{r}$ of molecular nitrogen

					P/				
°к	0.0	latm	0.1	. atm	0.4	atm	0.7	atm	o _R
100 110 120 130 140	3,5012 3,5011 3,5010 3,5009 3,5009	- 1 - 1 - 1	3.5086 3.5067 3.5054 3.5045 3.5039	- 19 - 13 - 9 - 6 - 5	3.5353 3.5262 3.5205 3.5167 3.5139	- 91 - 57 - 38 - 28 - 21	3.5687 3.5469 3.5362 3.5293 3.5241	-218 -107 - 69 - 52 - 39	180 198 216 234 252
150	3,5009	1	3.5034	- 3	3.5118	- 16	3.5202	- 28	270
160	3,5009		3.5031	- 4	3.5102	- 14	3.5174	- 24	288
170	3,5009		3.5027	- 2	3.5088	- 11	3.5150	- 19	306
180	3,5009		3.5025	- 2	3.5077	- 7	3.5131	- 14	324
190	3,5010		3.5023	- 1	3.5070	- 7	3.5117	- 13	342
200 210 220 230 240	3.5010 3.5010 3.5011 3.5011 3.5013	1 2 1	3.5022 3.5021 3.5021 3.5020 3.5021	- 1 - 1 1	3.5063 3.5058 3.5054 3.5049 3.5047	- 5 - 4 - 5 - 2 - 2	3.5104 3.5094 3.5086 3.5079 3.5074	- 10 - 8 - 7 - 5 - 5	360 378 396 414 432
250 260 270 280 290	3.5014 3.5016 3.5018 3.5022 3.5026	2 2 4 4 5	3.5021 3.5022 3.5024 3.5027 3.5031	1 2 3 4 4	3.5045 3.5044 3.5044 3.5046 3.5048	- 1 2 2 3	3.5069 3.5067 3.5064 3.5064 3.5065	- 2 - 3	450 468 486 504 522
300	3.5031	5	3.5035	6	3.5051	5	3.5067	3	540
310	3.5036	8	3.5041	8	3.5056	6	3.5070	6	558
320	3.5044	10	3.5049	9	3.5062	9	3.5076	8	576
330	3.5054	11	3.5058	11	3.5071	10	3.5084	9	594
340	3.5065	13	3.5069	13	3.5081	12	3.5093	11	612
350	3.5078	16	3.5082	15	3.5093	15	3,5104	14	630
360	3.5094	17	3.5097	17	3.5108	16	3,5118	16	648
370	3.5111	20	3.5114	20	3.5124	19	3,5134	19	666
380	3.5131	23	3.5134	23	3.5143	23	3,5153	21	684
390	3.5154	25	3.5157	25	3.5166	24	3,5174	24	702
400	3.5179	27	3.5182	27	3.5190	26	3.5198	26	720
410	3.5206	31	3.5209	30	3.5216	31	3.5224	30	738
420	3.5237	33	3.5239	33	3.5247	32	3.5254	32	756
430	3.5270	36	3.5272	36	3.5279	36	3.5286	36	774
440	3.5306	38	3.5308	38	3.5315	37	3.5322	37	792
450	3.5344	42	3.5346	42	3.5352	42	3,5359	41	810
460	3.5386	44	3.5388	44	3.5394	44	3,5400	43	828
470	3.5430	46	3.5432	46	3.5438	45	3,5443	46	846
480	3.5476	50	3.5478	50	3.5483	50	3,5489	49	864
490	3.5526	52	3.5528	52	3.5533	52	3,5538	52	882
500	3.5578	54	3.5580	54	3.5585	53	3.5590	53	900
510	3.5632	56	3.5634	56	3.5638	56	3.5643	56	918
520	3.5688	59	3.5690	58	3.5694	59	3.5699	58	936
530	3.5747	61	3.5748	61	3.5753	61	3.5757	61	954
540	3.5808	63	3.5809	63	3.5814	62	3.5818	62	972
550	3.5871	65	3.5872	65	3.5876	65	3.5880	65	990
560	3.5936	67	3.5937	67	3.5941	67	3.5945	67	1008
570	3.6003	69	3.6004	69	3.6008	69	3.6012	68	1026
580	3.6072	70	3.6073	70	3.6077	70	3.6080	70	1044
590	3.6142	72	3.6143	72	3.6147	71	3.6150	72	1062
600	3.6214	73	3.6215	73	3.6218	73	3.6222	72	1080
610	3.6287	75	3.6288	75	3.6291	75	3.6294	75	1098
620	3.6362	75	3.6363	75	3.6366	75	3.6369	75	1116
630	3.6437	77	3.6438	77	3.6441	77	3.6444	77	1134
640	3.6514	77	3.6515	77	3.6518	77	3.6521	76	1152
650	3.6591	79	3.6592	79	3.6595	79	3.6597	79	1170
660	3.6670	79	3.6671	79	3.6674	79	3.6676	79	1188
670	3.6749	80	3.6750	80	3.6753	79	3.6755	80	1206
680	3.6829	80	3.6830	80	3.6832	80	3.6835	80	1224
690	3.6909	81	3.6910	81	3.6912	81	3.6915	80	1242

TABLE 5.- SPECIFIC HEAT $C_{p/R}$ OF MOLECULAR NITROGEN - Continued

°ĸ	0.01	atm	0.1	atm	0.4 a	tm	0.7 в	tan	° _R
700	3 (000		3,6991	Α1	3.6993	DT.	3,6995	81	1260
700 710	3.6990 3.7071	91 81	3.6991 3.7072	81 81	3.7074	81 81	3.7076	81 81	1278
720	3.7152	82	3.7153	82	3.7155	82	3.7157	82	1296
730	3.7234	82	3,7235	82	3.7237	B 2	3,7239	82	1314
740	3,7316	82	3.7317	82	3.7319	8 2	3.7321	82	1332
750	3.7398	82	3.7399	82	3.7401	82	3.7403	82	1350
760	3.7480	82	3.7481	82	3.7483	82	3.7485	ខាំ	1368 1386
770	3.7562	81	3.7563	81	3.7565 3.7645	80	3.7566 3.7647	81	1404
780	3.7643	82	3.7644 3.7726	82	3.7727	82 81	3.7729	82 81	1422
790	3.7725	81	3,1120	81	3.1121	91	3.1127	91	1422
800	3,7806	790	3.7807	789	3.7808	790	3.7810	789	1440
900	3,8596	730	3.8596	730	3.8598	729	3.8599	729	1620
1000	3.9326	656	3.9326	656	3.9327	656	3.9328	656	1800
1100	3,9982	580	3 . 9982	580	3.9983	580	3.9984	580	1980
1200	4.0562	510	4,0562	510	4.0563	510	4.0564	-509	2160
1300	4.1072	446	4.1072	446	4,1073	446	4.1073	446	2340
1400	4.1518	391	4.1518	391	4.1519	391	4.1519	391	2520
1500	4,1909	343	4.1909	343	4,1910	342	4.1910	343	2700
1600	4,2252	302	4.2252	302	4.2252	302	4.2253	302	2880
[700	4,2554	267	4.2554	267	4.2554	267	4.2555	267	3060
1800	4.2821	236	4.2821	236	4,2821	236	4,2822	235	3240
1900	4.3057	211	4,3057	211	4.3057	211	4.3057	211	3420
2000	4.3268	189	4.3268	189	4.3268	189	4.3268	189	3600
2100	4,3457	170	4.3457	170	4.3457	170	4.3457	170	3780
2200	4.3627	153	4.3627	153	4.3627	153	4.3627	153	3960
2300	4,3780	140	4.3780	140	4.3780	140	4.3780	140	4140
2400	4.3920	127	4.3920	127	4.3920	127	4.3920	127	4320
2500	4.4047	116	4.4047	116	4.4047	116	4.4047	116	4500
2600	4.4163	107	4.4163	107	4.4163	107	4.4163	107	4680
2700	4.4270	99	4.4270	99	4,4270	99	4.4270	99	4860
2800	4.4369	91	4,4369	91	4.4369	91	4.4369	91	5040
2900	4.4460	85	4.4460	85	4.4460	85	4.4460	85	5220
3000	4.4545	,	4.4545		4.4545		4.4545		5400

Table 5.- specific heat $C_{\mathbf{p}}/\mathbf{r}$ of molecular nitrogen - Continued

° _K	1	atm	4	atm	7	atm	10	atm	o _R
100 110 120 130 140	3.613 3.5697 3.5525 3.5421 3.5344	- 43 - 172 104 77 56	3.775 3.695 3.6477	- 80 - 47 - 274	3.917 3.786	-131 - &	3.958	-114	180 198 216 234 252
150	3.5288	- 43	3.6203	-195	3.7245	- 402	3.844	- 68	270
160	3.5245	- 33	3.6008	-150	3.6843	- 293	3.7764	- 469	288
170	3.5212	- 27	3.5858	-118	3.6550	- 223	3.7295	- 342	306
180	3.5185	- 21	3.5740	- 94	3.6327	- 175	3.6953	- 273	324
190	3.5164	- 18	3.5646	- 77	3.6152	- 143	3.6680	- 214	342
200	3.5146	- 14	3.5569	- 63	3.6009	- 116	3.6466	- 173	360
210	3.5132	- 12	3.5506	- 53	3.5893	- 96	3.6293	- 143	378
220	3.5120	- 12	3.5453	- 45	3.5797	- 83	3.6150	- 122	396
230	3.5108	- 7	3.5408	- 36	3.5714	- 67	3.6028	- 101	414
240	3.5101	- 7	3.5372	- 32	3.5647	- 59	3.5927	- 86	432
250 260 270 280 290	3.5094 3.5089 3.5084 3.5083 3.5082	- 5 - 5 - 1 - 1	3.5340 3.5313 3.5289 3.5271 3.5255	- 27 - 24 - 18 - 16 - 12	3.5588 3.5539 3.5496 3.5460 3.5430	- 49 - 43 - 36 - 30 - 26	3.5841 3.5767 3.5704 3.5651 3.5605	- 74 - 63 - 53 - 46 - 40	450 468 486 504 522
300 310 320 330 340	3.5083 3.5085 3.5090 3.5097 3.5105	2 5 7 8 10	3.5243 3.5234 3.5227 3.5224 3.5224	- 9 - 7 - 3	3.5404 3.5382 3.5365 3.5353 3.5345	- 22 - 17 - 12 - 8 - 6	3.5565 3.5531 3.5504 3.5482 3.5464	- 34 - 27 - 22 - 18 - 12	540 558 576 594 612
350 360 370 380 390	3.5115 3.5129 3.5144 3.5162 3.5183	14 15 18 21 24	3.5227 3.5234 3.5243 3.5255 3.5271	7 9 12 16 18	3.5339 3.5339 3.5341 3.5348 3.5358	2 7 10 14	3.5452 3.5444 3.5440 3.5440 3.5445	- 8 - 4 5 9	630 648 666 684 702
400	3.5207	25	3.5289	21	3.5372	16	3.5454	12	720
410	3.5232	30	3.5310	26	3.5388	21	3.5466	17	738
420	3.5262	31	3.5336	28	3.5409	24	3.5483	21	756
430	3.5293	35	3.5364	31	3.5433	28	3.5504	24	774
440	3.5328	37	3.5395	34	3.5461	30	3.5528	27	792
450	3.5365	41	3.5429	38	3.5491	35	3.5555	32	810
460	3.5406	43	3.5467	40	3.5526	37	3.5587	34	828
470	3.5449	45	3.5507	42	3.5563	40	3.5621	37	846
480	3.5494	49	3.5549	47	3.5603	44	3.5658	42	864
490	3.5543	52	3.5596	49	3.5647	47	3.5700	44	882
500	3.5595	53	3.5645	51	3.5694	49	3.5744	47	900
510	3.5648	55	3.5696	53	3.5743	51	3.5791	49	918
520	3.5703	59	3.5749	57	3.5794	55	3.5840	53	936
530	3.5762	60	3.5806	58	3.5849	56	3.5893	55	954
540	3.5822	62	3.5864	61	3.5905	59	3.5948	57	972
550	3.5884	65	3.5925	63	3.5964	62	3.6005	60	990
560	3.5949	66	3.5988	65	3.6026	63	3.6065	62	1008
570	3.6015	69	3.6053	67	3.6089	66	3.6127	64	1026
580	3.6084	70	3.6120	68	3.6155	68	3.6191	65	1044
590	3.6154	71	3.6188	70	3.6223	69	3.6256	68	1062
600	3.6225	73	3.6258	72	3.6292	70	3.6324	69	1080
610	3.6298	74	3.6330	73	3.6362	72	3.6393	71	1098
620	3.6372	75	3.6403	74	3.6434	73	3.6464	72	1116
630	3.6447	77	3.6477	75	3.6507	74	3.6536	73	1134
640	3.6524	76	3.6552	76	3.6581	75	3.6609	74	1152
650	3.6600	79	3.6628	78	3.6656	77	3.6683	76	1170
660	3.6679	79	3.6706	78	3.6733	77	3.6759	76	1188
670	3.6758	79	3.6784	78	3.6810	78	3.6835	77	1206
680	3.6837	80	3.6862	79	3.6888	78	3.6912	77	1224
690	3.6917	81	3.6941	8 0	3.6966	79	3.6989	78	1242

TABLE 5.- SPECIFIC HEAT $C_{\mathbf{p}}/\mathbf{R}$ OF MOLECULAR NITROGEN - Continued

oĸ	l atm		4 ε	atm	7 at	an .	10 s	tan	o _R
700	3.6998	81	3.7021	80	3.7045	79	3.7067	79	1260
710	3.7079	80	3.7101	80	3.7124	79	3.7146	79	1278
720	3.7159	62	3.7181	81	3.7203	81	3.7225	79	1296
730	3.7241	82	3.7262	82	3.7284	80	3.7304	80	1314
740	3.7323	82	3.7344	81	3.7364	81	3.7384	80	1332
750	3.7405	82	3.7425	81	3.7445	81	3.7464	80	1350
760	3.7487	81	3.7506	81	3.7526	80	3.7544	80	1368
770	3.7568	81	3.7587	81	3.7606	80	3.7624	79	1386
780	3.7649	82	3.7668	81	3.7686	81	3.7703	81	1404
790	3.7731	81	3.7749	80	3.7767	79	3.7784	79	1422
800	3.7812	788	3.7829	785	3.7846	781	3.7863	777	1440
900	3.8600	729	3.8614	726	3.8627	723	3.8640	721	1620
1000	3.9329	656	3.9340	653	3.9350	651	3.9361	649	1800
1100	3.9985	579	3.9993	578	4.0001	577	4.0010	574	1980
1200	4.0564	510	4.0571	508	4.0578	507	4.0584	507	2160
1300	4.1074	446	4.1079	445	4.1085	444	4.1091	442	2340
1400	4.1520	390	4.1524	390	4.1529	389	4.1533	389	2520
1500	4.1910	343	4.1914	342	4.1918	342	4.1922	341	2700
1600	4.2253	302	4.2256	302	4.2260	301	4.2263	300	2880
1700	4.2555	267	4.2558	266	4.2561	266	4.2563	266	3060
1800	4.2822	236	4.2824	236	4.2827	235	4.2829	235	3240
1900	4.3058	211	4.3060	210	4.3062	210	4.3064	210	3420
2000	4.3269	189	4.3270	189	4.3272	189	4.3274	188	3600
2100	4.3458	169	4.3459	170	4.3461	169	4.3462	170	3780
2200	4.3627	153	4.3629	153	4.3630	153	4.3632	152	3960
2300	4.3780	140	4.3782	139	4.3783	139	4.3784	140	4140
2400	4.3920	127	4.3921	127	4.3922	127	4.3924	126	4320
2500	4.4047	116	4.4048	116	4.4049	116	4.4050	116	4500
2600	4.4163	107	4.4164	107	4.4165	107	4.4166	106	4680
2700	4.4270	99	4.4271	99	4.4272	98	4.4272	99	4860
2800 2900 3000	4.4369 4.4460 4.4545	91 8 5	4.4370 4.4461 4.4546	91 85	4.4370 4.4461 4.4546	91 8 5	4.4371 4.4462 4.4547	91 85	5040 5220 5400

TABLE 5.- SPECIFIC HEAT $C_{\mathbf{p}}/R$ OF MOLECULAR NITROGEN - Continued

°K	10 atm	[‡] O atm	70 atm	100 atm	o _R
<u> </u>	L,,.			-	<u> </u>
140	3.958 -114				252
150 160 170 180 190	3.844 - 68 3.7764 - 469 3.7295 - 342 3.6953 - 273 3.6680 - 214	4.522 -198 4.3244 -1379	5.219 –359		270 288 306 324 342
200	3.6466 - 173	4.1865 -1021	4.860 -243 4.617 -175 4.442 -132 4.310 -103 4.207 - 83	5.64 - 45	360
210	3.6293 - 143	4.0844 - 786		5.19 - 30	378
220	3.6150 - 122	4.0058 - 627		4.89 - 22	396
230	3.6028 - 101	3.9431 - 505		4.67 - 16	414
240	3.5927 - 86	3.8926 - 421		4.51 - 13	432
250	3.5841 - 74	3.8505 - 350 3.8155 - 299 3.7856 - 253 3.7603 - 219 3.7384 - 189	4.124 - 68	4.38 - 10	450
260	3.5767 - 63		4.056 - 56	4.28 - 8	468
270	3.5704 - 53		4.000 - 47	4.20 - 7	486
280	3.5651 - 46		3.953 - 40	4.128 - 58	504
290	3.5605 - 40		3.913 - 35	4.070 - 49	522
300	3.5565 - 34	3,7195 - 164	3,878 - 30	4,021 - 42	540
310	3.5531 - 27	3,7031 - 142	3,848 - 26	3,979 - 36	558
320	3.5504 - 22	3,6889 - 125	3,822 - 23	3,943 - 32	576
330	3.5482 - 18	3,6764 - 108	3,779 - 20	3,911 - 28	594
340	3.5464 - 12	3,6656 - 95	3,779 - 17	3,883 - 25	612
350	3.5452 - 8	3.6561 - 81	3.7619 - 153 3.7466 - 135 3.7331 - 116 3.7215 - 102 3.7113 - 90	3.858 - 21	630
360	3.5444 - 4	3.6480 - 70		3.837 - 20	648
370	3.5440	3.6410 - 59		3.817 - 16	666
380	3.5440 5	3.6351 - 50		3.801 - 15	684
390	3.5445 9	3.6301 - 41		3.786 - 13	702
400	3,5454 12	3.6260 - 33	3.7023 - 75 3.6948 - 66 3.6882 - 53 3.6829 - 45 3.6784 - 38	3.773 - 12	720
410	3,5466 17	3.6227 - 24		3.761 - 10	738
420	3,5483 21	3.6203 - 19		3.7511 - 88	756
430	3,5504 24	3.6184 - 11		3.7423 - 74	774
440	3,5528 27	3.6173 - 5		3.7349 - 65	792
450	3.5555 32	3.6168	3.6746 - 26	3.7284 - 53	810
460	3.5587 34	3.6168 7	3.6720 - 22	3.7231 - 45	828
470	3.5621 37	3.6175 10	3.6698 - 13	3.7186 - 36	846
480	3.5658 42	3.6185 20	3.6685 - 6	3.7150 - 25	864
490	3.5700 44	3.6205 20	3.6679 1	3.7125 - 21	882
500	3.5744 47	3.6225 25	3.6680 5 3.6685 10 3.6695 17 3.6712 21 3.6733 26	3.7104 - 13	900
510	3.5791 49	3.6250 29		3.7091 - 6	918
520	3.5840 53	3.6279 34		3.7085 1	936
530	3.5893 55	3.6313 38		3.7086 6	954
540	3.5948 57	3.6351 42		3.7092 11	972
550	3,6005 60	3.6393 43	3.6759 29	3.7103 17	990
560	3,6065 62	3.6436 48	3.6788 35	3.7120 20	1008
570	3,6127 64	3.6484 50	3.6823 36	3.7140 25	1026
580	3,6191 65	3.6534 53	3.6859 41	3.7165 30	1044
590	3,6256 68	3.6587 55	3.6900 44	3.7195 34	1062
600	3.6324 69	3.6642 58	3.6944 45	3.7229 35	1080
610	3.6393 71	3.6700 59	3.6989 51	3.7264 41	1098
620	3.6464 72	3.6759 62	3.7040 50	3.7305 41	1116
630	3.6536 73	3.6821 63	3.7090 55	3.7346 46	1134
640	3.6609 74	3.6884 64	3.7145 55	3.7392 47	1152
650	3.6683 76	3.6948 67	3,7200 59	3.7439 . 50	1170
660	3.6759 76	3.7015 68	3,7259 60	3.7489 53	1188
670	3.6835 77	3.7083 69	3,7319 61	3.7542 55	1206
680	3.6912 77	3.7152 69	3,7380 61	3.7597 54	1224
690	3.6989 78	3.7221 72	3,7441 65	3.7651 58	1242

TABLE 5.- SPECIFIC HEAT C_p/R OF MOLECULAR NITROGEN - Concluded

				bl -					
°к	10	atm	40 е	ıtm	70 at	tm	100 6	atm	o _R
700	3.7067	79	3.7293	71	3.7506	65	3.7709	59	1260
710	3.7146	79	3.7364	71	3.7571	65	3.7768	58	1278
720	3.7225	79	3.7435	74	3.7636	67	3.7826	62	1296
730	3.7304	80	3.7509	73	3.7703	69	3.7888	63	1314
740	3.7384	8 0	3.7582	74	3.7772	68	3.7951	63	1332
750 760 770 780 790	3.7464 3.7544 3.7624 3.7703 3.7784	80 79 81 79	3.7656 3.7731 3.7805 3.7879 3.7955	75 74 74 76 74	3.7840 3.7909 3.7979 3.8048 3.8119	69 70 69 71 69	3.8014 3.8078 3.8143 3.8207 3.8273	64 65 64 66 65	1350 1368 1386 1404 1422
800	3.7863	777	3.8029	737	3.8188	700	3.8338	666	1440
900	3.8640	721	3.8766	694	3.8888	668	3.9004	643	1620
1000	3.9361	649	3.9460	629	3.9556	610	3.9647	592	1800
1100	4.0010	574	4.0089	560	4.0166	546	4.0239	533	1980
1200	4.0584	507	4.0649	495	4.0712	485	4.0772	475	2160
1300	4.1091	442	4.1144	434	4.1197	424	4.1247	416	2340
1400	4.1533	389	4.1578	382	4.1621	374	4.1663	368	2520
1500	4.1922	341	4.1960	335	4.1995	331	4.2031	325	2700
1600	4.2263	300	4.2295	296	4.2326	292	4.2356	288	2880
1700	4.2563	266	4.2591	261	4.2618	257	4.2644	252	3060
1800	4.2829	235	4.2852	232	4.2875	228	4.2896	226	3240
1900	4.3064	210	4.3084	208	4.3103	206	4.3122	203	3420
2000	4.3274	188	4.3292	186	4.3309	183	4.3325	182	3600
2100	4.3462	170	4.3478	167	4.3492	166	4.3507	164	3780
2200	4.3632	152	4.3645	151	4.3658	149	4.3671	147	3960
2300	4.3784	140	4.3796	138	4.3807	137	4.3818	135	4140
2400	4.3924	126	4.3934	125	4.3944	124	4.3953	123	4320
2500	4.4050	116	4.4059	115	4.4068	114	4.4076	113	4500
2600	4.4166	106	4.4174	106	4.4182	105	4.4189	104	4680
2700	4.4272	99	4.4280	97	4.4287	97	4.4293	96	4860
2800 2900 3000	4.4371 4.4462 4.4547	91 85	4.4377 4.4467 4.4551	90 84	4.4384 4.4473 4.4556	89 83	4.4389 4.4478 4.4561	89 83	5040 5220 5400

Table 6.- enthalpy (H - E_0°)/RT $_0$ of molecular nitrogen

°K	0.0	l atm	0.1	atm	0.4	a.tm	0.7	atm	o _R
100	1.2777	1281	1.2761	1283	1.2706	1292	1.2650	1300	180
110	1.4058	1283	1.4044	1284	1.3998	1290	1.3950	1297	198
120	1.5341	1281	1.5328	1283	1.5288	1288	1.5247	1292	216
130	1.6622	1282	1.6611	1283	1.6576	1287	1.6539	1292	234
140	1.7904	1281	1.7894	1283	1.7863	1285	1.7831	1292	252
150	1.9185	1282	1.9177	1283	1.9148	1286	1.9120	1289	270
160	2.0467	1281	2.0460	1281	2.0434	1284	2.0409	1286	288
170	2.1748	1282	2.1741	1283	2.1718	1285	2.1695	1287	306
180	2.3030	1281	2.3024	1282	2.3003	1283	2.2982	1285	324
190	2.4311	1282	2.4306	1282	2.4286	1285	2.4267	1286	342
200	2.5593	1282	2.5588	1283	2.5571	1283	2.5553	1285	360
210	2.6875	1281	2.6871	1281	2.6854	1283	2.6838	1284	378
220	2.8156	1283	2.8152	1282	2.8137	1284	2.8122	1285	396
230	2.9439	1282	2.9434	1283	2.9421	1283	2.9407	1284	414
240	3.0721	1281	3.0717	1281	3.0704	1282	3.0691	1283	432
250	3.2002	1282	3.1998	1282	3.1986	1283	3.1974	1284	450
260	3.3284	1282	3.3280	1283	3.3269	1283	3.3258	1284	468
270	3.4566	1282	3.4563	1282	3.4552	1283	3.4542	1284	486
280	3.5848	1282	3.5845	1282	3.5835	1283	3.5826	1283	504
290	3.7130	1282	3.7127	1282	3.7118	1283	3.7109	1284	522
300	3.8412	1283	3.8409	1283	3.8401	1284	3.8393	1284	540
310	3.9695	1283	3.9692	1284	3.9685	1283	3.9677	1284	558
320	4.0978	1283	4.0976	1283	4.0968	1284	4.0961	1284	576
330	4.2261	1283	4.2259	1283	4.2252	1284	4.2245	1285	594
340	4.3544	1284	4.3542	1284	4.3536	1284	4.3530	1285	612
350 360 370 380 390	4.4828 4.6113 4.7398 4.8683 4.9970	1285 1285 1285 1287 1287	4.4826 4.6111 4.7396 4.8681 4.9969	1285 1285 1285 1285 1288 1287	4.4820 4.6106 4.7391 4.8677 4.9964	1286 1285 1286 1287 1288	4.4815 4.6100 4.7386 4.8672 4.9960	1285 1286 1286 1288 1288	630 648 666 684 702
400	5.1257	1289	5.1256	1289	5.1252	1289	5.1248	1289	720
410	5.2546	1289	5.2545	1289	5.2541	1289	5.2537	1290	738
420	5.3835	1291	5.3834	1291	5.3830	1292	5.3827	1292	756
430	5.5126	1291	5.5125	1291	5.5122	1291	5.5119	1291	774
440	5.6417	1294	5.6416	1294	5.6413	1294	5.6410	1295	792
. 450	5.7711	1294	5.7710	1294	5.7707	1295	5.7705	1294	810
460	5.9005	1296	5.9004	1296	5.9002	1296	5.8999	1297	828
470	6.0301	1298	6.0300	1298	6.0298	1298	6.0296	1298	846
480	6.1599	1300	6.1598	1300	6.1596	1301	6.1594	1301	864
490	6.2899	1301	6.2898	1301	6.2897	1301	6.2895	1301	882
500	6.4200	1304	6.4199	1304	6.4198	1304	6.4196	1305	900
510	6.5504	1305	6.5503	1306	6.5502	1305	6.5501	1305	918
520	6.6809	1308	6.6809	1308	6.6807	1308	6.6806	1308	936
530	6.8117	1310	6.8117	1310	6.8115	1311	6.8114	1311	954
540	6.9427	1312	6.9427	1312	6.9426	1312	6.9425	1312	972
550	7.0739	1314	7.0739	1314	7.0738	1314	7.0737	1314	990
560	7.2053	1317	7.2053	1317	7.2052	1317	7.2051	1318	100B
570	7.3370	1319	7.3370	1319	7.3369	1319	7.3369	1319	1026
580	7.4689	1322	7.4689	1322	7.4688	1323	7.4688	1322	1044
590	7.6011	1324	7.6011	1324	7.6011	1324	7.6010	1325	1062
600	7.7335	1327	7.7335	1327	7.7335	1327	7.7335	1327	1080
610	7.8662	1330	7.8662	1330	7.8662	1330	7.8662	1330	1098
620	7.9992	1333	7.9992	1333	7.9992	1333	7.9992	1333	1116
630	8.1325	1335	8.1325	1335	8.1325	1335	8.1325	1336	1134
640	8.2660	1338	8.2660	1338	8.2660	1339	8.2661	1338	1152
650	8.3998	1341	8.3998	1341	8.3999	1341	8.3999	1341	1170
660	8.5339	1344	8.5339	1344	8.5340	1344	8.5340	1344	1188
670	8.6683	1347	8.6683	1347	8.6684	1347	8.6684	1348	1206
680	8.8030	1349	8.8030	1349	8.8031	1349	8.8032	1349	1224
690	8.9379	1353	8.9379	1353	8.9380	1353	8.9381	1353	1242

TABLE 6.- ENTHALPY (H - E_0°)/RTO OF MOLECULAR NITROGEN - Continued

	, ,										
°к	0.0	Ol atm	0.	l atm	0.4	e.tm	0.7	atm	° _R		
700	9.0732	1356	9.0732	1356	9.0733	1356	9.0734	1356	1260		
710	9.2088	1358	9.2088	1358	9.2089	1358	9.2090	1358	1278		
720	9.3446	1362	9.3446	1362	9.3447	1362	9.3448	1363	1296		
730	9.4808	1364	9.4808	1364	9.4809	1366	9.4811	1364	1314		
740	9.6172	1368	9.6172	1368	9.6174	1368	9.6175	1368	1332		
750	9.7540	1370	9.7540	1370	9.7542	1370	9.7543	1370	1350		
760	9.8910	1374	9.8910	1374	9.8912	1374	9.8913	1374	1368		
770	10.0284	1376	10.0284	1376	10.0286	1376	10.0287	1376	1386		
780	10.1660	1380	10.1660	1380	10.1662	1380	10.1663	1381	1404		
790	10.3040	1383	10.3040	1383	10.3042	1383	10.3044	1383	1422		
800	10.4423	13986	10.4423	13986	10.4425	13987	10.4427	13987	1440		
900	11.8409	14265	11.8409	14265	11.8412	14265	11.8414	14266	1620		
1000	13.2674	14519	13.2674	14519	13.2677	14520	13.2680	14520	1800		
1100	14.7193	14746	14.7193	14746	14.7197	14746	14.7200	14746	1980		
1200	16.1939	14944	16.1939	14944	16.1943	14945	16.1946	14945	2160		
1300	17.6883	15119	17.6883	15119	17.6888	15119	17.6891	15119	2340		
1400	19.2002	15273	19.2002	15273	19.2007	15273	19.2010	15274	2520		
1500	20.7275	15407	20.7275	15407	20.7280	15407	20.7284	15407	2700		
1600	22.2682	15524	22.2682	15524	22.2687	15524	22.2691	15524	2880		
1700	23.8206	15628	23.8206	15628	23.8211	15628	23.8215	15629	3060		
1800	25.3834	15720	25.3834	15720	25.3839	15721	25.3844	15720	3240		
1900	26.9554	15802	26.9554	15802	26.9560	15802	26.9564	15802	3420		
2000	28.5356	15876	28.5356	15976	28.5362	15876	28.5366	15876	3600		
2100	30.1232	15940	30.1232	15940	30.1238	15940	30.1242	15940	3780		
2200	31.7172	16000	31.7172	16000	31.7178	16000	31.7182	16000	3960		
2300	33.3172	16053	33.3172	16053	33.3178	16053	33.3182	16053	4140		
2400	34.9225	16102	34.9225	16102	34.9231	16102	34.9235	16102	4320		
2500	36.5327	16146	36.5327	16146	36.5333	16146	36.5337	16147	4500		
2600	38.1473	16188	38.1473	16188	38.1479	16188	38.1484	16188	4680		
2700	39.7661	16225	39.7661	16225	39.7667	16225	39.7672	16225	4860		
2800 2900 3000	41.3886 43.0145 44.6437	16259 16292	41.3886 43.0145 44.6437	16259 16292	41.3892 43.0151 44.6443	16259 16292	41.3897 43.0156 44.6448	16259 16292	5040 5220 5400		

Table 6.- enthalpy (H - E_0°)/RTO of Molecular NITROGEN - Continued

°K	1	atm	1				T _		
L		er Attt	4 8	. um	7 a1	Cm	10 4	stm	o _R
100 110 120 130 140	1.2589 1.3902 1.5205 1.6503 1.7799	1313 1303 1298 1296 1292	1.3343 1.4765 1.6128 1.7471	1422 1363 1343 1330	1.5721 1.7126	1405 1372	1.6761	1426	180 198 216 234 252
150	1.9091	1292	1.8801	1322	1.8498	1358	1.8187	1394	270
160	2.0383	1289	2.0123	1314	1.9856	1342	1.9581	1372	288
170	2.1672	1289	2.1437	1311	2.1198	1334	2.0953	1360	306
180	2.2961	1287	2.2748	1306	2.2532	1326	2.2313	1347	324
190	2.4248	1287	2.4054	1304	2.3858	1321	2.3660	1339	342
200	2.5535	1287	2.5358	1301	2.5179	1317	2.4999	1332	360
210	2.6822	1285	2.6659	1298	2.6496	1311	2.6331	1325	378
220	2.8107	1286	2.7957	1298	2.7807	1310	2.7656	1321	396
230	2.9393	1286	2.9255	1296	2.9117	1306	2.8977	1317	414
240	3.0679	1284	3.0551	1293	3.0423	1303	3.0294	1313	432
250	3.1963	1284	3.1844	1294	3.1726	1302	3.1607	1311	450
260	3.3247	1285	3.3138	1292	3.3028	1300	3.2918	1309	468
270	3.4532	1284	3.4430	1292	3.4328	1300	3.4227	1306	486
280	3.5816	1285	3.5722	1290	3.5628	1297	3.5533	1304	504
290	3,7101	1284	3.7012	1290	3.6925	1296	3.6837	1303	522
300	3.8385	1284	3.8302	1291	3.8221	1296	3.8140	1302	540
310	3.9669	1285	3.9593	1290	3.9517	1295	3.9442	1300	558
320	4.0954	1285	4.0883	1289	4.0812	1295	4.0742	1299	576
330	4.2239	1284	4.2172	1289	4.2107	1293	4.2041	1298	594
340	4.3523	1286	4.3461	1290	4.3400	1294	4.3339	1298	612
350	4.4809	1286	4.4751	1290	4.4694	1294	4.4637	1298	630
360	4.6095	1286	4.6041	1290	4.5988	1294	4.5935	1298	648
370	4.7381	1286	4.7331	1290	4.7282	1293	4.7233	1297	666
380	4.8667	1289	4.8621	1291	4.8575	1295	4.8530	1298	684
390	4.9956	1288	4.9912	1291	4.9870	1294	4.9828	1297	702
400	5.1244	1290	5.1203	1293	5.1164	1296	5.1125	1299	720
410	5.2534	1290	5.2496	1293	5.2460	1296	5.2424	1298	738
420	5.3824	1291	5.3789	1295	5.3756	1297	5.3722	1300	756
430	5.5115	1292	5.5084	1294	5.5053	1297	5.5022	1299	774
440	5.6407	1295	5.6378	1297	5.6350	1299	5.6321	1302	792
450	5.7702	1295	5.7675	1297	5.7649	1299	5.7623	1302	810
460	5.8997	1296	5.8972	1299	5.8948	1301	5.8925	1303	828
470	6.0293	1299	6.0271	1301	6.0249	1303	6.0228	1305	846
480	6.1592	1301	6.1572	1302	6.1552	1305	6.1533	1306	864
490	6.2893	1301	6.2874	1304	6.2857	1305	6.2839	1308	882
500	6.4194	1305	6.4178	1306	6.4162	1308	6.4147	1310	900
510	6.5499	1306	6.5484	1308	6.5470	1309	6.5457	1310	918
520	6.6805	1308	6.6792	1310	6.6779	1312	6.6767	1314	936
530	6.8113	1311	6.8102	1312	6.8091	1314	6.8081	1314	954
540	6.9424	1312	6.9414	1314	6.9405	1316	6.9395	1317	972
550	7.0736	1315	7.0728	1316	7.0721	1317	7.0712	1319	990
560	7.2051	1317	7.2044	1319	7.2038	1320	7.2031	1322	1008
570	7.3368	1320	7.3363	1320	7.3358	1322	7.3353	1323	1026
580	7.4688	1322	7.4683	1324	7.4680	1326	7.4676	1326	1044
590	7.6010	1324	7.6007	1326	7.6006	1326	7.6002	1329	1062
600	7.7334	1328	7.7333	1328	7.7332	1330	7.7331	1331	1080
610	7.8662	1330	7.8661	1332	7.8662	1333	7.8662	1333	1098
620	7.9992	1333	7.9993	1334	7.9995	1335	7.9995	1337	1116
630	8.1325	1336	8.1327	1337	8.1330	1338	8.1332	1339	1134
640	8.2661	1338	8.2664	1339	8.2668	1340	8.2671	1341	1152
650	8.3999	1341	8.4003	1343	8.4008	1344	8.4012	1345	1170
660	8.5340	1345	8.5346	1345	8.5352	1346	8.5357	1347	1188
670	8.6685	1347	8.6691	1348	8.6698	1348	8.6704	1349	1206
680	8.8032	1349	8.8039	1350	8.8046	1351	8.8053	1353	1224
690	8.9381	1354	8.9389	1355	8.9397	1355	8.9406	1356	1242

TABLE 6.- ENTHALPY $\left(H - E_0^{\circ} \right) / RT_0^{\circ}$ OF MOLECULAR NITROGEN - Continued

	T								
°K	1	atm	4	atm	7 a	ıtm	10	atm	o _R
700 710 720 730 740	9.0735 9.2091 9.3449 9.4812 9.6176	1356 1358 1363 1364 1368	9.0744 9.2101 9.3460 9.4823 9.6188	1357 1359 1363 1365 1369	9.0752 9.2110 9.3470 9.4834 9.6200	1358 1360 1364 1366 1369	9.0762 9.2121 9.3481 9.4846 9.6213	1359 1360 1365 1367	1260 1278 1296 1314
750 760 770 780 790	9.7544 9.8914 10.0289 10.1665 10.3045	1370 1375 1376 1380 1383	9.7557 9.8928 10.0303 10.1680 10.3061	1371 1375 1377 1381 1383	9.7569 9.8941 10.0317 10.1694 10.3075	1372 1376 1377 1381	9.7583 9.8955 10.0332 10.1710	1370 1372 1377 1378 1382	1332 1350 1368 1386 1404
800 900	10.4428 11.8416	139 88 14267	10.4444 11.8438	13994 14270	10.4460 11.8459	1385 13999 14275	10.3092 10.4477 11.8482	1385 14005 14278	1422 1440 1620
1000 1100 1200	13.2683 14.7203 16.1950	14520 14747 14944 15120	13.2708 14.7232 16.1982 17.6929	14524 14750 14947	13,2734 14,7261 16,2014	14527 14753 14949	13.2760 14.7290 16.2046	14530 14756 14951	1800 1980 2160
1400 1500 1600 1700	19.2014 20.7288 22.2695 23.8219	15274 15407	17.6929 19.2050 20.7325 22.2734 23.8259	15121 15275 15409 15525 15630	17.6963 19.2086 20.7363 22.2773 23.8299	15123 15277 15410 15526 15631	17.6997 19.2122 20.7400 22.2812 23.8340	15125 15278 15412 15528 15631	2340 2520 2700 2880 3060
1800 1900 2000 2100 2200	25.3848 26.9568 28.5370 30.1246 31.7187	15876 15941	25.3889 26.9610 28.5413 30.1290 31.7230	15721 15803 15877 15940 16001	25.3930 26.9652 28.5455 30.1333 31.7274	15722 15803 15878 15941 16001	25.3971 26.9693 28.5498 30.1376 31.7318	15722 15805 15878 15942 16001	3240 3420 3600 3780 3960
2300 2400 2500 2600 2700	33.3187 34.9240 36.5342 38.1488 39.7676	16102 16146 16188	33.3231 34.9284 36.5387 38.1533 39.7722	16053 16103 16146 16189 16225	33.3275 34.9329 36.5432 38.1579 39.7767	16054 16103 16147 16188 16226	33.3319 34.9374 36.5477 38.1624 39.7813	16055 16103 16147 16189 16226	4140 4320 4500 4680 4860
2800 2900 3000	41.3901 43.0160 44.6452	16292	41.3947 43.0206 44.6499	16259 16293	41.3993 43.0252 44.6545	16259 16293	41.4039 43.0298 44.6591	16259 16293	5040 5220 5400

TABLE 6.- ENTHALPY (H - E_0°)/RTO OF MOLECULAR NITROGEN - Continued

	l						-T		
ок	10	atm	40 (atm	70 a	tm	100	e.tm	o _R
140	1.6761	1426							252
150 160 170 180 190	1.8187 1.9581 2.0953 2.2313 2.3660	1394 1372 1360 1347 1339	1.9967 2.1582	1615 1558	1.941	184			270 288 306 324 342
200	2.4999	1332	2.3140	1513	2.125	173	1.94	20	360
210	2.6331	1325	2.4653	1479	2.298	166	2.14	18	378
220	2.7656	1321	2.6132	1455	2.464	160	2.32	18	396
230	2.8977	1317	2.7587	1435	2.624	156	2.50	17	414
240	3.0294	1313	2.9022	1417	2.780	152	2.67	16	432
250	3.1607	1311	3.0439	1398	2.932	149	2.83	15	450
260	3.2918	1309	3.1837	1395	3.081	148	2.98	16	468
270	3.4227	1306	3.3232	1382	3.229	146	3.14	16	486
280	3.5533	1304	3.4614	1372	3.375	144	3.298	150	504
290	3.6837	1303	3.5986	1365	3.519	143	3.448	148	522
300	3.8140	1302	3.7351	1359	3.662	141	3.596	147	540
310	3.9442	1300	3.8710	1353	3.803	140	3.743	145	558
320	4.0742	1299	4.0063	1347	3.943	140	3.888	144	576
330	4.2041	1298	4.1410	1345	4.083	139	4.032	142	594
340	4.3339	1298	4.2755	1340	4.222	138	4.174	142	612
350	4.4637	1298	4.4095	1337	4.3600	1374	4.316	141	630
360	4.5935	1298	4.5432	1335	4.4974	1369	4.457	140	648
370	4.7233	1297	4.6767	1329	4.6343	1364	4.597	139	666
380	4.8530	1298	4.8096	1331	4.7707	1361	4.736	139	684
390	4.9828	1297	4.9427	1329	4.9068	1358	4.875	138	702
400	5.1125	1299	5.0756	1327	5.0426	1354	5.013	138	720
410	5.2424	1298	5.2083	1325	5.1780	1351	5.151	138	738
420	5.3722	1300	5.3408	1326	5.3131	1351	5.2892	1374	756
430	5.5022	1299	5.4734	1323	5.4482	1345	5.4266	1365	77 4
440	5.6321	1302	5.6057	1325	5.5827	1348	5.5631	1368	7 92
450	5.7623	1302	5.7382	1323	5.7175	1343	5.6999	1362	810
460	5.8925	1303	5.8705	1325	5.8518	1344	5.8361	1362	828
470	6.0228	1305	6.0030	1325	5.9862	1342	5.9723	1361	846
480	6.1533	1306	6.1355	1325	6.1204	1344	6.1084	1360	864
490	6.2839	1308	6.2680	1325	6.2548	1343	6.2444	1358	882
500	6.4147	1310	6.4005	1327	6.3891	1343	6.3802	1359	900
510	6.5457	1310	6.5332	1327	6.5234	1342	6.5161	1357	918
520	6.6767	1314	6.6659	1329	6.6576	1344	6.6518	1359	936
530	6.8081	1314	6.7988	1330	6.7920	1345	6.7877	1356	954
540	6.9395	1317	6.9318	1332	6.9265	1345	6.9233	1359	972
550	7.0712	1319	7.0650	1332	7.0610	1346	7.0592	1358	990
560	7.2031	1322	7.1982	1335	7.1956	1348	7.1950	1360	1008
570	7.3353	1323	7.3317	1336	7.3304	1348	7.3310	1359	1026
580	7.4676	1326	7.4653	1339	7.4652	1351	7.4669	1363	1044
590	7.6002	1329	7.5992	1340	7.6003	1351	7.6032	1361	1062
600	7.7331	1331	7.7332	1342	7.7354	1353	7.7393	1363	1080
610	7.8662	1333	7.8674	1346	7.8707	1355	7.8756	1365	1098
620	7.9995	1337	8.0020	1347	8.0062	1358	8.0121	1368	1116
630	8.1332	1339	8.1367	1349	8.1420	1357	8.1489	1368	1134
640	8.2671	1341	8.2716	1351	8.2777	1361	8.2857	1369	1152
650	8.4012	1345	8.4067	1354	8.4138	1364	8.4226	1371	1170
660	8.5357	1347	8.5421	1356	8.5502	1365	8.5597	1374	1188
670	8.6704	1349	8.6777	1359	8.6867	1368	8.6971	1375	1206
680	8.8053	1353	8.8136	1361	8.8235	1368	8.8346	1378	1224
690	8.9406	1356	8.9497	1364	8.9603	1374	8.9724	1379	1242

Table 6.- enthalpy $\left(\text{H - E}_{\text{O}}^{\text{O}} \right) \! \! / \! \text{RT}_{\text{O}}$ of molecular nitrogen - Concluded

			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
°K	10	nda (40	atm	70	atm	100	atm	o _R
•									
700	9.0762	1359	9.0861	1366	9.0977	1373	9.1103	1381	1260
710	9.2121	1360	9.2227	1369	9.2350	1377	9.2484	1384	1278
720	9.3481	1365	9.3596	1373	9.3727	1379	9.3868	1386	1296
730	9.4846	1367	9.4969	1373	9.5106	1381	9.5254	1388	1314
740	9.6213	1370	9.6342	1378	9.6487	1384	9.6642	1391	1332
750 760 770 780 790	9.7583 9.8955 10.0332 10.1710 10.3092	1372 1377 1378 1382 1385	9.7720 9.9100 10.0482 10.1867 10.3256	1380 1382 1385 1389	9.7871 9.9257 10.0647 10.2038 10.3432	1386 1390 1391 1394 1397	9.8033 9.9425 10.0820 10.2218 10.3618	1392 1395 1398 1400 1402	1350 1368 1386 1404 1422
800	10.4477	14005	10.4647	14058	10.4829	14108	10.5020	14157	1440
900	11.8482	14278	11.8705	14320	11.8937	14359	11.9177	14396	1620
1000	13.2760	14530	13.3025	14563	13.3296	14595	13.3573	14624	1800
1100	14.7290	14756	14.7588	14781	14.7891	14806	14.8197	14832	1980
1200	16.2046	14951	16.2369	14974	16.2697	14994	16.3029	15014	2160
1300	17.6997	15125	17.7343	15143	17.7691	15160	17.8043	15178	2340
1400	19.2122	15278	19.2486	15293	19.2851	15308	19.3221	15321	2520
1500	20.7400	15412	20.7779	15424	20.8159	15438	20.8542	15450	2700
1600	22.2812	15528	22.3203	15539	22.3597	15549	22.3992	15558	2880
1700	23.8340	15631	23.8742	15640	23.9146	15649	23.9550	15659	3060
1800	25.3971		25.4382	15731	25.4795	15738	25.5209	15745	3240
1900	26.9693		27.0113	15811	27.0533	15819	27.0954	15825	3420
2000	28.5498		28.5924	15884	28.6352	15889	28.6779	15895	3600
2100	30.1376		30.1808	15947	30.2241	15952	30.2674	15958	3780
2200	31.7318		31.7755	16006	31.8193	16010	31.8632	16015	3960
2300	33.3319	16189	33.3761	16058	33.4203	16063	33.4647	16065	4140
2400	34.9374		34.9819	16107	35.0266	16111	35.0712	16115	4320
2500	36.5477		36.5926	16150	36.6377	16153	36.6827	16156	4500
2600	38.1624		38.2076	16192	38.2530	16193	38.2983	16196	4680
2700	39.7813		39.8268	16228	39.8723	16231	39.9179	16234	4860
2800 2900 3000	41.4039 43.0298 44.6591	16293	41.4496 43.0758 44.7053	16262 16295	41.4954 43.1218 44.7514	16296	41.5413 43.1678 44.7976	16265 16298	5040 5220 5400

TABLE 7.- ENTROPY S/R OF MOLECULAR NITROGEN

r			· ·				γ		
°ĸ	0.0	l atm	0.	.1 atm	0.1	atm	0.7	atm	° _R
-									
100	23.8092	3338	21.5037	3344	20.1079	3364	19.5381	3390	180
110 120	24.1430 24.4476	3046 2801	21.8381 22.1432	3051 2805	20.4443 20.7509	3066 2816	19.8771 20.1853	3082 2826	198 216
130	24.7277	2596	22,4237	25 9 7	21.0325	2605	20.4679	2613	234
140	24.9873	2415	22.6834	2417	21.2930	2424	20.7292	2431	252
150	25,2288	2259	22,9251	2261	21.5354	2265	20.9723	2270	270
160	25.4547	2123	23.1512	2124	21.7619	2197	21.1993	2133	288
170 180	25.6670 25.8670	2000 1 8 93	23.3636 23.5637	2001 1 894	21.9816 22.1752	1936 1897	21.4126 21.6133	2007 1900	306 324
190	26.0563	1796	23,7531	1797	22.3649	1798	21.8033	1801	342
200	26,2359	1708	23,9328	1709	22.5447	1711	21,9834	1712	360
210	26,4067	1630	24.1037	1629	22.7158	1631	22.1546	1633	378
220 230	26.5697 26.7253	1556	24.2666 24.4223	1557	22.8789 23.0347	1558	22.3179 22.4738	1559	396 414
240	26.8743	1490 1429	24.5713	1490 1429	23.1839	1492 1430	22.6231	1493 1431	432
250	27.0172	1373	24.7142	1374	23.3269	1374	22,7662	1375	450
260	27.1545	1322	24.8516	1322	23.4643	1323	22,9037	1324	468
270	27.2867	1273	24.9838	1273	23.5966	1274	23.0361	1275	486
280 290	27.4140 27.5369	122 9 1 188	25.1111 25.2340	1229 11 8 9	23.7240 23.8470	1230 1189	23.1636 23.2867	1231 11 8 9	504 522
300 310	27.6557 27.7706	1149 1112	25.3529 25.4678	1149 1112	23.9659 24.0808	1149 1113	23.4056 23.5206	1150 1113	540 558
320	27.8818	1079	25.5790	1079	24.1921	1080	23.6319	1080	576
330	27.9897	1046	25.6869	1046	24.3001	1046	23.7399	1047	594
340	28.0943	1017	25.7915	1017	24.4047	1018	23.8446	1018	612
350	28.1960	988	25,8932	988	24.5065	988	23.9464	988	630
360 370	28,2948 28,3910	962 937	25.9920 26.0883	963 937	24.6053 24.7015	962 938	24.0452 24.1415	963 938	648 666
380	28.4847	912	26.1820	912	24.7953	912	24.2353	912	684
390	28.5759	891	26.2732	891	24.8865	891	24.3265	892	702
400	28.6650	869	26.3623	869	24,9756	869	24.4157	8 69	720
410	28.7519	849	26.4492	849	25.0625	850	24.5026	850	738
420 430	28.8368 28.9197	829 811	26.5341 26.6170	829 812	25.1475 25.2304	829 811	24.5876 24.6705	829 811	756 774
440	29.0008	794	26.6982	793	25.3115	794	24.7516	795	792
450	29.0802	m	26,7775	777	25,3909	778	24,8311	777	810
460	29.1579	762	26.8552	762	25.4687	762	24.9088	762	828
470 480	29,2341 29,3087	746 732	26.9314 27.0060	746 732	25.5449 25.6195	746 732	24.9850 25.0597	747 732	846 864
490	29.3819	719	27.0792	719	25.6927	719	25.1329	719	882
500	29,4538	705	27,1511	705	25.7646	705	25,2048	705	900
510	29.5243	69 2	27.2216	692	25.8351	692	25.2753	692	918
520 530	29.5935	680	27.2908	680	25,9043	681	25.3445	681	936
540	29.6615 29.7284	669 658	27.3588 27.4257	669 658	25 . 9724 26 . 0393	669 658	25.4126 25.4795	669 658	954 972
550	29.7942	/47	27,4915	(47	26,1051	1.67	25.5453		990
560	29.8589	647 636	27.5562	647 636	26.1698	647 636	25.6100	647 636	1008
570	29.9225	627	27.6198	628	26.2334	627	25.6736	628	1026
580 590	29,9852 30,0469	617 608	27.6826 27.7443	617 608	26.2961 26.3578	617 608	25.7364 25.7981	617 608	1044 1062
600 610	30.1077 30.1677	600 590	27.8051 27.8651	600 590	26.4186 26.4786	600 590	25.8589 25.9189	600 590	1080 1098
620	30.2267	590 583	27.9241	583	26,5376	590 583	25.9779	583	1116
630	30.2850	574	27.9824	574	26.5959	574	26.0362	574	1134
640	30.3424	567	28.0398	567	26.6533	567	26,0936	567	1152
650	30.3991	559	28.0965	559	26.7100	560	26.1503	559	1170
660 670	30.4550 30.5102	552 545	28.1524 28.2076	552 545	26.7660 26.8212	552 545	26.2062 26.2615	553 545	1188 1206
680	30.5647	538	28,2621	538	26.8757	538	26.3160	538	1224
690	30.6185	532	28,3159	532	26,9295	532	26.3698	532	1242

TABLE 7.- ENTROPY S/R OF MOLECULAR NITROGEN - Continued

ο _K	0.01	. atm	0.:	l atm	0.4	atm	0.7	atm	o _R
700 710 720 730 740	30,6717 30,7242 30,7761 30,8274 30,8781	525 519 513 507 502	28.3691 28.4216 28.4735 28.5248 28.5755	525 519 513 507 502	26.9827 27.0352 27.0871 27.1384 27.1891	525 519 513 507 502	26.4230 26.4755 26.5274 26.5787 26.6294	525 519 513 5 07 502	1260 1278 1296 1314 1332
750 760 770 780 790	30.9283 30.9779 31.0269 31.0754 31.1235	481	28.6257 28.6753 28.7243 28.7728 28.8209	496 490 485 481 475	27.2393 27.2889 27.3379 27.3864 27.4345	496 490 485 481 475	26.6796 26.7292 26.7782 26.8267 26.8748	496 490 485 481 475	1350 1368 1386 1404 1422
800 900 1000 1100 1200	31.1710 31.6208 32.0313 32.4092 32.7596	4105	28.8684 29.3182 29.7287 30.1066 30.4570	4498 4105 3779 3504 3268	27.4820 27.9318 28.3424 28.7203 29.0707	4498 4106 3779 3504 3268	26.9223 27.3722 27.7827 28.1606 28.5110	4499 4105 3779 3504 3269	1440 1620 1800 1980 2160
1300 1400 1500 1600 1700	33.0864 33.3924 33.6803 33.9519 34.2089	3060 2879 2716 2570 2440	30.7838 31.0898 31.3777 31.6493 31.9063	3060 2879 2716 2570 2440	29.3975 29.7035 29.9914 30.2630 30.5200	3060 2879 2716 2570 2440	28.8379 29.1439 29.4318 29.7034 29.9604	3060 2879 2716 2570 2440	2340 2520 2700 2880 3060
1800 1900 2000 2100 2200	34.4529 34.6851 34.9065 35.1181 35.3206	2214 2116 2025	32.1503 32.3825 32.6039 32.8155 33.0180	2322 2214 2116 2025 1943	30.7640 30.9962 31.2176 31.4292 31.6317	2322 2214 2116 2025 1943	30.2044 30.4366 30.6580 30.8696 31.0721	2322 2214 2116 2025 1943	3240 3420 3600 3780 3960
2300 2400 2500 2600 2700	35,5149 35,7015 35,8811 36,0540 36,2209	1796 1729 1669	33.2123 33.3989 33.5785 33.7514 33.9183	1866 1796 1729 1669 1612	31.8260 32.0126 32.1922 32.3651 32.5320	1866 1796 1729 1669 1612	31.2664 31.4530 31.6326 31.8055 31.9724	1866 1796 1729 1669 1612	4140 4320 4500 4680 4860
2800 2900 3000	36.3821 36.5379 36.6888	1558 1509	34,0795 34,2353 34,3862	1558 1509	32.6932 32.8490 32.9999	1558 1509	32.1336 32.2894 32.4403	1558 1509	5040 5220 5400

TABLE 7.- ENTROPY S/R OF MOLECULAR NITROGEN - Continued

			- ENTROPI S	- UF MU	LECULAR NITRO		T		
°ĸ	1	atm	4	atm	7 a	tm	10 ε	ıtm.	° _R
100	19.1705	3420	17.607	424	16.55	77	15.19	153	180
110	19.5125	3099	18.031	338	17.321 17.727	406	16.72° 17.266	5 5 36 0	198 216
120 130	19.8224 20.1061	2837 2623	18.3689 18.6672	2 983 2 71 9	18.0491	322 2844	17.626	301	234
140	20.3684	2436	18.9391	2506	18.3335	2590	17.9274	2688	252
150	20.6120	2276	19.1897	2330	18.5925	2389	18.1962	2458	270 288
160	20.8396 21,0533	2137	19.4227 19.6406	2179 20 4 5	18.8314 19.0539	2225 2082	18.4420 18.6693	2273 2122	306
170 180	21,0555	2011 1902	19.8451	1931	19.2621	1959	18.8815	1991	324
190	21.4446	1803	20,0382	1826	19.4580	1851	1 9. 0806	1876	342
200	21.6249	1714	20,2208	1734	19.6431	1753	19.2682	1775	360 378
210	21.7963	1635	20.3942	1650	19.8184 19.9853	1669 1589	19.4457 19.6143	1686 1602	396
220 230	21.9598 22.1158	1560 1494	20.5592 20.7167	1575 1507	20.1442	1519	19.7745	1531	414
240	22,2652	1433	20.8674	1443	20.2961	1453	19,9276	1465	432
250	22,4085	1376	21.0117	1385	20.4414	1394	20.0741	1404	450
260	22.5461	1325	21.1502	1332	20:5808	1342	20.2145 20.3495	1350 1296	468 486
270 280	22,6786 22,8061	1275 1231	21.2834 21.4117	1283 1237	20.7150 20.8439	12 89 12 44	20.4791	1250	504
290	22.9292	1190	21.5354	1195	20.9683	1201	20.6041	1207	522
300	23,0482	1151	21,6549	1156	21.0884	1161	20.7248	1166	540
310	23.1633	1113	21.7705	1118	21.2045	1122	20.8414 20.9542	112 8 1092	558 576
320 330	23.2746 23.3826	10 8 0 10 48	21.8823 21.9908	1085 1051	21.3167 21.4256	10 89 10 54	21.0634	1058	594
340	23.4874	1018	22.0959	1021	21.5310	1025	21.1692	1029	612
350	23.5892	989	22.1980	992	21.6335	995	21.2721	998	630
360	23.6881	963	22.2972	966	21.7330	969	21.3719 21.4690	971 946	648 666
370 380	23.7844 23.8782	938	22.3938 22.4878	940 915	21.8299 21.9242	943 917	21.5636	919	684
390	23.9694	912 892	22.5793	894	22.0159	896	21.6555	899	702
400	24.0586	870	22.6687	872	22.1055	874	21.7454	875	720
410	24.1456	849	22.7559	851	22.1929 22.2782	853	21.8329 21.9184	855 835	738 756
420 430	24.2305 24.3135	830 811	22.8410 22.9242	832 813	22.3615	833 815	22.0019	816	774
440	24.3946	795	23.0055	796	22.4430	797	22,0835	799	792
450	24.4741	777	23,0851	778	22,5227	781	22.1634	782	810
460	24.5518	763	23.1629	764	22.6008	765	22.2416 22.3182	766 750	828 846
470 480	24.6281 24.7027	746 733	23.2393 23.3141	748 733	22.6773 22.7521	748 735	22.3932	736	864
490	24.7760	719	23.3874	721	22.8256	721	22.4668	722	882
500	24.8479	705	23.4595	706	22.8977	706	22.5390	708	900 918
510	24.9184	69 3	23.5301	6 9 3	22,9685 23,0379	694 682	22.6098 22.6793	695 683	936
520 530	24.9877 25.0557	680 669	23,5994 23,6675	681 670	23,1061	671	22.7476	672	954
540	25.1226	658	23.7345	659	23.1732	659	22.8148	659	972
550	25,1884	648	23.8004	648	23.2391	649	22.8807	650	990 1008
560	25,2532	636	23,8652	637	23.3040 23.3678	638 628	22.9457 23.0095	638 629	1026
570 580	25.3168 25.3795	627 617	23.9289 23.9917	628 618	23.4306	618	23.0724	619	1044
590	25.4412	608	24.0535	609	23.4924	610	23,1343	610	1062
600	25.5020	601	24.1144	600	23.5534	601	23.1953 23.2555	602 592	1080 1098
610	25,5621	590	24.1744 24.2335	591 584	23.6135 23.6726	591 584	23,2555	592 584	1116
620 630	25.6211 25.6794	583 574	24,2335	584 57 4	23.7310	575	23.3731	576	1134
640	25.7368	567	24.3493	568	23.7885	568	23.4307	568	1152
650	25.7935	559	24.4061	559	23,8453	560	23,4875	560	1170
660	25.8494	552	24.4620	553	23.9013	553	23.5435 23.5989	554 546	1188 1206
670	25.9046	546 E2D	24.5173 24.5718	545 539	23.9566 24.0112	546 539	23.6535	546 539	1224
680 690	25,9592 26,0130	538 532	24.5718	539 533	24.0651	533	23.7074	533	1242
370	20.0170	324							

TABLE 7.- ENTROPY S/R OF MOLECULAR NITROGEN - Continued

° _K	1:	atm	4	atm	7 :	atm	10 8	ıtm	o _R
700 710 720 730 740	26.0662 26.1187 26.1706 26.2219 26.2726	519 513 507	24.6790 24.7315 24.7834 24.8348 24.8855	525 519 514 507 502	24.1184 24.1710 24.2229 24.2743 24.3251	526 519 514 508 502	23.7607 23.8133 23.8654 23.9168 23.9675	526 521 514 507 503	1260 1278 1296 1314 1332
750 760 770 780 790	26.3228 26.3724 26.4215 26.4700 26.5181	491 485 481	24.9357 24.9854 25.0344 25.0829 25.1311	497 490 485 482 475	24.3753 24.4250 24.4741 24.5226 24.5708	497 491 485 482 475	24.0178 24.0675 24.1167 24.1652 24.2134	497 492 485 482 475	1350 1368 1386 1404 1422
800 900 1000 1100 1200	26.5656 27.0154 27.4260 27.8039 28.1543	4106 3779 3504	25.1786 25.6286 26.0393 26.4173 26.7678	4500 4107 3780 3505 3269	24.6183 25.0685 25.4793 25.8574 26.2080	4502 4108 3781 3506 3269	24.2609 24.7113 25.1223 25.5004 25.8511	4504 4110 3781 3507 3269	1440 1620 1800 1980 2160
1300 1400 1500 1600 1700	28.4811 28.7872 29.0751 29.3467 29.6037	2570	27.0947 27.4007 27.6887 27.9603 28.2173	3060 2880 2716 2570 2440	26.5349 26.8410 27.1290 27.4006 27.6577	3061 2880 2716 2571 2440	26.1780 26.4842 26.7721 27.0438 27.3009	3062 2879 2717 2571 2440	2340 2520 2700 2880 3060
1800 1900 2000 2100 2200	29.8477 30.0799 30.3013 30.5129 30.7154	2214	28.4613 28.6936 28.9150 29.1266 29.3291	2323 2214 2116 2025 1943	27.9017 28.1339 28.3553 28.5670 28.7695	2322 2214 2117 2025 1943	27.5449 27.7772 27.9986 28.2102 28.4128	2323 2214 2116 2026 1943	3240 3420 3600 3780 3960
2300 2400 2500 2600 2700	30.9097 31.0963 31.2759 31.4488 31.6157	1866 1796 1729 1669 1612	29.5234 29.7100 29.8896 30.0625 30.2294	1866 1796 1729 1669 1612	28.9638 29.1504 29.3300 29.5029 29.6698	1866 1796 1729 1669 1612	28.6071 28.7937 28.9733 29.1462 29.3131	1866 1796 1729 1669 1612	4140 4320 4500 4680 4860
2800 2900 3000	31.7769 31.9327 32.0836	1558 1509	30,3906 30,5464 30,6973	1558 1509	29.8310 29.9868 30.1377	1558 1509	29.4743 29.6301 29.7810	1558 1509	5040 5220 5400

TABLE 7.- ENTROPY S/R OF MOLECULAR NITROGEN - Continued

°к	10	atm	40	atm	70 8	atm	100	e.tm	o _R
L	<u></u>				<u> </u>	··			
100 110 120 130 140	15.19 16.72 17.266 17.626 17.9274	153 55 360 301 2688	12.0 14.76 15.74	28 98 54	13.5	в	10.0	31	180 198 216 234 252
150	18.1962	2458	16.279	380	14.84	71	13.09	137	270
160	18.4420	2273	16.659	308	15.551	469	14.46	75	288
170	18.6693	2122	16.9669	2665	16.020	358	15.205	496	306
180	18.8815	1991	17.2334	2389	16.378	296	15.701	375	324
190	19.0806	1876	17.4723	2182	16.674	258	16.076	306	342
200	19.2682	1775	17.6905	2016	16.932	231	16.382	263	360
210	19.4457	1686	17.8921	1882	17.163	211	16.645	234	378
220	19.6143	1602	18.0803	1766	17.374	194	16.879	212	396
230	19.7745	1531	18.2569	1668	17.568	181	17.091	195	414
240	19.9276	1465	18.4237	1579	17.749	170	17.286	182	432
250	20.0741	1404	18.5816	1504	17.919	161	17.468	1 <i>6</i> 9	450
260	20.2145	1350	18.7320	1434	18.0795	1519	17.637	1 <i>6</i> 0	468
270	20.3495	1296	18.8754	1371	18.2314	1447	17.797	1 5 2	486
280	20.4791	1250	19.0125	1315	18.3761	1381	17.949	144	504
290	20.6041	1207	19.1440	1266	18.5142	1319	18.093	137	522
300	20.7248	1166	19.2706	1216	18.6461	1267	18.230	131	540
310	20.8414	1128	19.3922	1173	18.7728	1217	18.3607	1257	558
320	20.9542	1092	19.5095	1134	18.8945	1174	18.4864	1209	576
330	21.0634	1058	19.6229	1096	19.0119	1130	18.6073	1163	594
340	21.1692	1029	19.7325	1060	19.1249	1093	18.7236	1122	612
350	21.2721	998	19.8385	1030	19.2342	1059	18.8358	1084	630
360	21.3719	971	19.9415	998	19.3401	1025	18.9442	1049	648
370	21.4690	946	20.0413	970	19.4426	993	19.0491	1016	666
380	21.5636	919	20.1383	944	19.5419	965	19.1507	984	684
390	21.6555	899	20.2327	919	19.6384	938	19.2491	957	702
400	21.7454	875	20.3246	895	19.7322	914	19.3448	931	720
410	21.8329	855	20.4141	872	19.8236	890	19.4379	904	738
420	21.9184	835	20.5013	851	19.9126	866	19.5283	882	756
430	22.0019	816	20.5864	832	19.9992	847	19.6165	860	774
440	22.0835	799	20.6696	813	20.0839	826	19.7025	838	792
450	22.1634	782	20.7509	795	20.1665	807	19.7863	819	810
460	22.2416	766	20.8304	779	20.2472	790	19.8682	798	828
470	22.3182	750	20.9083	760	20.3262	771	19.9480	783	846
480	22.3932	736	20.9843	747	20.4033	756	20.0263	767	864
490	22.4668	722	21.0590	732	20.4789	743	20.1030	751	882
500	22.5390	708	21.1322	718	20.5532	726	20.1781	734	900
510	22.6098	695	21.2040	704	20.6258	712	20.2515	720	918
520	22.6793	683	21.2744	690	20.6970	699	20.3235	706	936
530	22.7476	672	21.3434	680	20.7669	688	20.3941	694	954
540	22.8148	659	21.4114	668	20.8357	674	20.4635	681	972
550	22.8807	650	21.4782	656	20.9031	663	20.5316	669	990
560	22.9457	638	21.5438	645	20.9694	651	20.5985	657	1008
570	23.0095	629	21.6083	635	21.0345	641	20.6642	646	1026
580	23.0724	619	21.6718	624	21.0986	630	20.7288	635	1044
590	23.1343	610	21.7342	616	21.1616	620	20.7923	625	1062
600	23.1953	602	21.7958	607	21.2236	612	20.8548	617	1080
610	23.2555	592	21.8565	597	21.2848	600	20.9165	605	1098
620	23.3147	584	21.9162	588	21.3448	595	20.9770	598	1116
630	23.3731	576	21.9750	581	21.4043	584	21.0368	588	1134
640	23.4307	568	22.0331	572	21.4627	576	21.0956	580	1152
650	23.4875	560	22.0903	565	21.5203	568	21.1536	572	1170
660	23.5435	554	22.1468	557	21.5771	561	21.2108	564	1188
670	23.5989	546	22.2025	549	21.6332	554	21.2672	557	1206
680	23.6535	539	22.2574	543	21.6886	545	21.3229	548	1224
690	23.7074	533	22.3117	537	21.7431	539	21.3777	542	1242

TABLE 7.- ENTROPY S/R OF MOLECULAR NTTROGEN - Concluded

°ĸ	10	a.tan	40	atm	70 s	atm	100 8	atm	o _R
	-		<u>-</u>					-	
700	23.7607	526	22.3654 22.4183	529 523	21.7970 21.8502	532 527	21.4319 21.4855	536 529	1260 1278
710 720	23.8133 23.8654	521 514	22.4706	517	21.9029	519	21.5384	523	1296
730	23.9168	507	22.5223	511	21.9548	513	21.5907	515	1314
740	23.9675	503	22.5734	505	22.0061	508	21.6422	510	1332
===	04 0170	***	22.6239	499	22.0569	502	21.6932	504	1350
750 760	24.0178 24.0675	497 492	22.6738	494	22.1071	495	21.7436	498	1368
770	24.1167	485	22.7232	488	22.1566	491	21.7934	493	1386
780	24.1652	482	22,7720	484	22.2057	486	21.8427	487	1404
790	24.2134	475	22.8204	478	22.2543	479	21.8914	482	1422
800	24.2609	4504	22.8682	4521	22.3022	4539	21.9396	4553	1440
900	24.7113	4110	23,3203	4120	22.7561	4132	22.3949	4145	1620
1000	25.1223	3781	23.7323	3791	23.1693	3798	22.8094	3805	1800 1980
1100	25.5004	3507	24.1114	3513	23.5491	3519	23.1899 23.5424	3525	2160
1200	25.8511	32 69	24.4627	3274	23.9010	3279	23,3424	3283	2100
1300	26,1780	3062	24.7901	3064	24,2289	3068	23.8707	3072	2340
1400	26.1780	2879	25.0965	2883	24.5357	2885	24.1779	2887	2520
1500	26.7721	2717	25.3848	2719	24.8242	2722	24.4666	2724	2700
1600	27.0438	2571	25,6567	2573	25.0964	2573	24.7390	2575	2880
1700	27.3009	2440	25.9140	2442	25.3537	2444	24.9965	2445	3060
	07.5440		26,1582	2323	25.5981	2325	25,2410	2326	3240
1800	27.5449 27.7772	2323	26.3905	2215	25.8306	2216	25,4736	2217	3420
1900 2000	27.7772	2214 2116	26.6120	2118	26.0522	2118	25,6953	2119	3600
2100	28,2102	2026	26.8238	2026	26.2640	2027	25.9072	2028	3780
2200	28.4128	1943	27,0264	1943	26.4667	1944	26.1100	1943	3960
	00 (07)		27 2207	1047	26.6611	1867	26,3043	1868	4140
2300	28.6071	1866	27.2207 27.4074	1867 1796	26.8478	1797	26.4911	1797	4320
2400 2500	28.7937 28.9733	1796 1729	27.5870	1730	27.0275	1729	26,6708	1730	4500
2600	29.1462	1669	27.7600	1669	27.2004	1670	26,8438	1670	4680
2700	29.3131	1612	27.9269	1613	27.3674	1613	27.0108	1613	4860
			20.0007	1550	27.5287	1559	27,1721	1559	5040
2800	29.4743	1558	28.0882 28.2440	1558 1509	27.6846	1509	27.3280	1510	5220
2900 3000	29.6301 29.7810	1509	28.3949	1507	27,8355		27.4790		5400

TABLE 8.- SPECIFIC-HEAT RATIO $\gamma = c_p/c_v$ OF MOLECULAR NITROGEN

			1		, - op/ov - s.				o _R
°K	0.01	. atm	0.1	atm	0.4	atzn	0.7	s.tzn.	R
100 110 120 130 - 140	1.400 1.400 1.400 1.400 1.400		1.402 1.402 1.401 1.401 1.401	- 1	1.409 1.407 1.406 1.405 1.404	- 2 - 1 - 1 - 1	1.416 1.413 1.410 1.408 1.407	- 3 - 3 - 2 - 1 - 1	180 198 216 234 252
150 160 170 180 190	1.400 1.400 1.400 1.400 1.400		1.401 1.401 1.401 1.400 1.400	- 1	1.403 1.403 1.402 1.402 1.402	- 1	1.406 1.405 1.405 1.404 1.403	- 1 - 1 - 1	270 288 306 324 342
200 210 220 230 240	1.400 1.400 1.400 1.400 1.400		1.400 1.400 1.400 1.400 1.400		1.402 1.401 1.401 1.401 1.401	- 1	1.403 1.403 1.402 1.402 1.402	- 1	360 378 396 414 432
250 260 270 280 290	1.400 1.400 1.400 1.400 1.400		1.400 1.400 1.400 1.400 1.400		1.401 1.401 1.401 1.400 1.400	- 1	1.402 1.401 1.401 1.401 1.401	- 1 .	450 468 486 504 522
300 320 340 360 380	1.400 1.399 1.399 1.399 1.398	- 1 - 1 - 1	1.400 1.399 1.399 1.399 1.398	- 1 - 1 - 1	1.400 1.399 1.399 1.399 1.398	- 1 - 1 - 1	1.401 1.401 1.400 1.400 1.399	- 1 - 1 - 1	540 576 612 648 684
400 420 440 460 480	1.397 1.396 1.395 1.394 1.393	- 1 - 1 - 1 - 1 - 2	1.397 1.396 1.395 1.394 1.393	- 1 - 1 - 1 - 1 - 2	1.397 1.396 1.395 1.394 1.393	- 1 - 1 - 1 - 1 - 2	1.398 1.397 1.396 1.395 1.393	- 1 - 1 - 1 - 2 - 2	720 756 792 828 864
500 520 540 560 580	1.391 1.389 1.387 1.386 1.384	- 2 - 2 - 1 - 2 - 3	1.391 1.389 1.388 1.386 1.384	2 1 2 2 2	1.391 1.389 1.388 1.386 1.384	- 2 - 1 - 2 - 2 - 2	1.391 1.390 1.388 1.386 1.384	- 1 - 2 - 2 - 2 - 2	900 936 972 1008 1044
600 620 640 660 680	1.381 1.379 1.377 1.375 1.373	- 2 - 2 - 2 - 2 - 2	1.382 1.379 1.377 1.375 1.373	- 3 - 2 - 2 - 2 - 2	1.382 1.379 1.377 1.375 1.373	- 3 - 2 - 2 - 2 - 2	1.382 1.380 1.377 1.374 1.372	- 2 - 3 - 3 - 2 - 2	1080 1116 1152 1188 1224
700 720 740 760 780	1.371 1.368 1.366 1.364 1.362	- 3 2 2 2 2	1.371 1.368 1.366 1.364 1.362	- 3 - 2 - 2 - 2 - 2	1.371 1.368 1.366 1.364 1.362	- 3 - 2 - 2 - 2 - 2	1.370 1.368 1.366 1.364 1.362	- 2 - 2 - 2 - 2 - 2	1260 1296 1332 1368 1404
800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200	1.360 1.350 1.341 1.334 1.327 1.312 1.313 1.310 1.307 1.305 1.303 1.301 1.299	-10 - 9 - 7 - 7 - 5 - 5 - 4 - 3 - 2 - 2 - 2 - 2 - 2 - 1	2300 2400 2506 2600 2700 2800 2900 3000	1.296 1.295 1.295 1.293 1.293 1.293	- 1 - 1 - 1 - 1 - 1				

 $^{^{\}rm a}\!\text{At}$ higher temperatures in the 0.01-atm pressure range $~\gamma~$ is a function only of temperature as given here.

TABLE 8.- SPECIFIC-HEAT RATIO $_{7} = C_{p}/C_{v}$ OF MOLECULAR NITROGEN - Continued

°K	1	atm	4 at	5m	7 :	e.tm	10	atm	o _R
100 110 120 130 140	1.424 1.419 1.415 1.412 1.410	- 5 - 4 - 3 - 2 - 1	1.467 1.452 1.444	-15 - 8 - 7	1.500 1.482	-18 -14	1.526	-24	180 198 216 234 252
150 160 170 180 190	1.409 1.407 1.406 1.406 1.405	- 2 - 1 - 1 - 1	1.437 1.431 1.427 1.423 1.420	- 6 - 4 - 4 - 3 - 2	1.468 1.457 1.451 1.442 1.436	-11 - 6 - 9 - 6 - 4	1.502 1.485 1.472 1.462 1.453	-17 -13 -10 - 9 - 6	270 288 306 324 342
200 210 220 230 240	1.404 1.404 1.403 1.403	- 1 - 1	1.418 1.416 1.414 1.413 1.412	- 2 - 2 - 1 - 1 - 2	1.432 1.429 1.425 1.423 1.421	- 3 - 4 - 2 - 2 - 2	1.447 1.441 1.437 1.433 1.430	- 6 - 4 - 4 - 3 - 3	360 378 396 414 432
250 260 270 280 290	1.402 1.402 1.402 1.402 1.401	- 1	1.410 1.409 1.409 1.408 1.407	- 1 - 1 - 1	1.419 1.417 1.415 1.414 1.413	- 2 - 2 - 1 - 1 - 1	1.427 1.424 1.422 1.420 1.419	- 3 - 2 - 2 - 1 - 2	450 468 486 504 522
300 320 340 360 380	1.401 1.401 1.400 1.400 1.399	- 1 - 1 - 1	1.407 1.405 1.404 1.403 1.402	- 2 - 1 - 1 - 1	1.412 1.410 1.408 1.406 1.405	- 2 - 2 - 2 - 1 - 2	1.417 1.414 1.412 1.410 1.408	- 3 - 2 - 2 - 2 - 2	540 576 612 648 684
400 420 440 460 480	1.398 1.397 1.396 1.395 1.393	- 1 - 1 - 1 - 2 - 2	1.401 1.399 1.398 1.396 1.395	- 2 - 1 - 2 - 1 - 2	1.403 1.402 1.400 1.398 1.397	- 1 - 2 - 2 - 1 - 2	1.406 1.404 1.402 1.400 1.398	- 2 - 2 - 2 - 2 - 2	720 756 792 828 864
500 520 540 560 580	1.391 1.390 1.388 1.386 1.384	- 1 - 2 - 2 - 2 - 2	1.393 1.391 1.389 1.387 1.385	- 2 - 2 - 2 - 2 - 2	1.395 1.393 1.390 1.388 1.386	- 2 - 3 - 2 - 2 - 2	1.396 1.394 1.392 1.389 1.387	- 2 - 2 - 3 - 2 - 2	900 936 972 1008 1044
600 620 640 660 680	1.382 1.380 1.377 1.374 1.372	- 2 - 3 - 3 - 2 - 2	1.383 1.381 1.378 1.376 1.374	- 2 - 3 - 2 - 2 - 3	1.384 1.381 1.379 1.377 1.374	- 3 - 2 - 2 - 3 - 2	1.385 1.382 1.380 1.377 1.375	- 3 - 2 - 3 - 2 - 2	1080 1116 1152 1188 1224
700 720 740 760 780	1.370 1.368 1.366 1.364 1.362	- 2 - 2 - 2 - 2 - 2	1.371 1.369 1.367 1.365 1.362	- 2 - 2 - 2 - 3 - 2	1.372 1.370 1.367 1.365 1.363	- 2 - 3 - 2 - 2 - 2	1.373 1.370 1.368 1.366 1.363	- 3 - 2 - 2 - 3 - 2	1260 1296 1332 1368 1407
^b 800 900 1000 1100 1200	1.360 1.350 1.341 1.334 1.327	10 9 7 7 5	° _K	1 atm	(Cont.)] .			
1300 1400 1500 1600 1700	1.322 1.317 1.313 1.310 1.307	- 5 - 4 - 3 - 3 - 2	2400 2500 2600 2700 2800	1.295 1.294 1.293 1.292	- 1 - 1 - 1 - 1				
1800 1900 2000 2100 2200	1.305 1.303 1.301 1.299 1.297	- 2 - 2 - 2 - 2 - 1	2900 3000	1.290 1.289	- i				

 $^{b}\!At$ higher temperatures in the 1-atm pressure range $\,\gamma\,$ is a function only of temperature as given here.

TABLE 8.- SPECIFIC-HEAT RATIO $\gamma = C_{\rm p}/C_{\rm v}$ OF MOLECULAR NITROGEN - Concluded

oK	1	0 atm	40	atm	70) atm	100	o atm	°R
180 190	1.462 1.453	- 9 - 6	1.723 1.658	-65 -36	1.960	-116	_ I. 		324 342
200	1.447	- 6	1.622	-32	1.844	- 78	2.11	-16	360
210	1.441	- 4	1.590	-25	1.766	- 58	1.95	-10	378
220	1.437	- 4	1.565	-20	1.708	- 43	1.85	- 7	396
230	1.433	- 3	1.545	-17	1.665	- 34	1.78	- 5	414
240	1.430	- 3	1.528	-14	1.631	- 28	1.73	- 5	432
250	1.427	- 3	1.514	-11	1.603	- 22	1.68	- 3	450
260	1.424	- 2	1.503	-10	1.581	- 18	1.65	- 3	468
270	1.422	- 2	1.493	- 9	1.563	- 16	1.62	- 2	486
280	1.420	- 1	1.484	- 7	1.547	- 14	1.602	- 20	504
290	1.419	- 2	1.477	- 6	1.533	- 11	1.582	- 16	522
300	1.417	- 3	1.471	-11	1.522	- 19	1.566	- 26	540
320	1.414	- 2	1.460	- 9	1.503	- 16	1.540	- 20	576
340	1.412	- 2	1.451	- 8	1.487	- 12	1.520	- 17	612
360	1.410	- 2	1.443	- 6	1.475	- 10	1.503	- 14	648
380	1.408	- 2	1.437	- 5	1.465	- 9	1.489	- 9	684
400	1.406	- 2	1.432	- 5	1.456	- 8	1.480	- 13	720
420	1.404	- 2	1.427	- 5	1.448	- 7	1.467	- 8	756
440	1.402	- 2	1.422	- 4	1.441	- 6	1.459	- 8	792
460	1.400	- 2	1.418	- 3	1.435	- 5	1.451	- 7	828
480	1.398	- 2	1.415	- 4	1.430	- 6	1.444	- 7	864
500	1.396	- 2	1.411	- 4	1.424	- 4	1.437	- 6	900
520	1.394	- 2	1.407	- 3	1.420	- 5	1.431	- 6	936
540	1.392	- 3	1.404	- 4	1.415	- 5	1.425	- 5	972
560	1.389	- 2	1.400	- 3	1.410	- 4	1.420	- 5	1008
580	1.387	- 2	1.397	- 3	1.406	- 4	1.415	- 5	1044
600 620 640 660 680	1.385 1.382 1.380 1.377 1.375	- 3 - 2 - 3 - 2 - 2	1.394 1.391 1.388 1.385 1.382	- 3 - 3 - 3 - 3	1.402 1.398 1.395 1.391 1.388	- 4 - 3 - 4 - 3 - 4	1.410 1.406 1.401 1.397 1.393	- 4 - 5 - 4 - 4 - 3	1080 1116 1152 1188 1224
700	1.373	- 3	1.379	- 3	1.384	- 3	1.390	- 4	1260
720	1.370	- 2	1.376	- 3	1.381	- 3	1.386	- 4	1296
740	1.368	- 2	1.373	- 3	1.378	- 3	1.382	- 3	1332
760	1.366	- 3	1.370	- 2	1.375	- 3	1.379	- 4	1368
780	1.363	- 2	1.368	- 3	1.372	- 3	1.375	- 3	1404
800	1.361	-10	1.365	-11	1.369	- 13	1.372	- 13	1440
900	1.351	- 9	1.354	-10	1.356	- 10	1.359	- 12	1620
1000	1.342	- 8	1.344	- 8	1.346	- 9	1.347	- 9	1800
1100	1.334	- 6	1.336	- 7	1.337	- 7	1.338	- 7	1980
1200	1.328	- 6	1.329	- 6	1.330	- 6	1.331	- 7	2160
1300	1.322	- 5	1.323	- 5	1.324	- 5	1.324	- 5	2340
1400	1.317	- 3	1.318	- 4	1.319	- 5	1.319	- 4	2520
1500	1.314	- 4	1.314	- 4	1.314	- 3	1.315	- 4	2700
1600	1.310	- 3	1.310	- 3	1.311	- 3	1.311	- 3	2880
1700	1.307	- 2	1.307	- 2	1.308	- 3	1.308	- 3	3060
1800	1.305	- 2	1.305	- 2	1.305	- 2	1.305	- 2	3240
1900	1.303	- 2	1.303	- 2	1.303	- 2	1.303	- 2	3420
2000	1.301	- 2	1.301	- 2	1.301	- 2	1.301	- 2	3600
2100	1.299	- 2	1.299	- 2	1.299	- 2	1.299	- 2	3780
2200	1.297	- 1	1.297	- 1	1.297	- 1	1.297	- 1	3960
2300 2400 2500 2600 2700	1.296 1.295 1.294 1.293 1.292	- 1 - 1 - 1 - 1 - 1	1.296 1.295 1.294 1.293 1.292	-1 -1 -1 -1	1.296 1.295 1.293 1.292 1.292	- 1 - 2 - 1 - 1	1.296 1.295 1.293 1.292 1.291	- 1 - 2 - 1 - 1	4140 4320 4500 4680 4860
2800 2900 3000	1.291 1.290 1.289	- 1 - 1	1.291 1.290 1.289	- 1 - 1	1.291 1.290 1.289	- 1 - 1	1.290 1.290 1.289	- 1	5040 5220 5400

Table 9.- sound velocity $a/a_{\rm O}$ in molecular nitrogen

o ^K	0.0	l atm	0.3	l atm	1	atm	o _R
100 110 120 130 140	.605 .634 .663 .690	29 29 27 26 25	.604 .634 .662 .689	30 28 27 26 26	.598 .630 .659 .686 .713	32 29 27 27 26	180 198 216 234 252
150	.741	24	.741	24	.739	24	270
160	.765	24	.765	24	.763	24	288
170	.789	23	.789	22	.787	24	306
180	.812	22	.811	23	.811	22	324
190	.834	21	.834	21	.833	22	342
200	.855	22	.855	21	.855	21	360
210	.877	20	.876	21	.876	21	378
220	.897	20	.897	20	.897	20	396
230	.917	20	.917	20	.917	20	414
240	.937	20	.937	19	.937	19	432
250 260 270 280 290	.956 .975 .994 1.012 1.030	19 19 18 18	.956 .975 .994 1.012 1.030	19 19 18 18	.956 .975 .994 1.013 1.030	19 19 19 17 18	450 468 486 504 522
300	1.048	34	1.048	34	1.048	34	540
320	1.082	33	1.082	33	1.082	33	576
340	1.115	32	1.115	32	1.115	33	612
360	1.147	31	1.147	32	1.148	31	648
380	1.178	30	1.179	30	1.179	30	684
400	1.208	30	1.209	29	1.209	30	720
420	1.238	29	1.238	29	1.239	28	756
440	1.267	28	1.267	28	1.267	29	792
460	1.295	27	1.295	27	1.296	26	828
480	1.322	26	1.322	26	1.322	27	864
500 520 540 560 580	1.348 1.374 1.399 1.424 1.448	26 25 25 24 24	1.348 1.374 1.400 1.424 1.448	26 26 24 24 24	1.349 1.375 1.400 1.425 1.449	26 25 25 25 24 24	900 936 972 1008 1044
600 620 640 660 680	1.472 1.495 1.518 1.540 1.562	23 23 22 22 22	1.472 1.495 1.518 1.540 1.562	23 23 22 22 22	1.473 1.496 1.518 1.540 1.562	23 22 22 22 22 22	1080 1116 1152 1188 1224
700	1.584	20	1.584	20	1.584	21	1260
720	1.604	21	1.604	21	1.605	21	1296
740	1.625	21	1.625	21	1.626	21	1332
760	1.646	20	1.646	20	1.647	20	1368
780	1.666	20	1.666	20	1.667	20	1404
800	1.686	96	1.686	96	1.687	96	1440
900	1.782	90	1.782	90	1.783	90	1620
1000	1.872	86	1.872	86	1.873	86	1800
1100	1.958	82	1.958	82	1.959	82	1980
1200	2.040	79	2.040	79	2.041	79	2160
1300	2.119	76	2.119	76	2.120	76	2340
1400	2.195	74	2.195	74	2.196	73	2520
1500	2.269	72	2.269	72	2.269	72	2700
1600	2.341	69	2.341	69	2.341	69	2880
1700	2.410	68	2.410	68	2.410	68	3060
1800 1900 2000 2100 2200	2.478 2.544 2.608 2.670 2.731	66 64 62 61 60	2.478 2.544 2.608 2.670 2.731	66 64 62 61 60	2.478 2.543 2.608 2.671 2.731	65 63 60 61	3240 3420 3600 3780 3960
2300	2.791	59	2.791	59	2.792	59	4140
2400	2.850	58	2.850	58	2.851	57	4320
2500	2.908	56	2.908	56	2.908	57	4500
2600	2.964	55	2.964	55	2.965	55	4680
2700	3.019	55	3.019	55	3.020	54	4860
2800 2900 3000	3.074 3.127 3.179	53 52	3.074 3.127 3.179	53 52	3.074 3.127 3.180	53 53	5040 5220 5400

TABLE 9.- SOUND VELOCITY a/a_0 IN MOLECULAR NITROGEN - Continued

	TABLE 9 SOUND VELDELLI A/A0 IN MOLECULAR MILROLLA - CONSTRUE								
°К	1	atm	4	atm	7 =	ıtm.	10 8	itan .	o _R
100 110 120 130 140	.598 .630 .659 .686 .713	32 29 27 27 26	.646 .677 .706	31 29 27	.667 .699	32 26			180 198 216 234 252
150	.739	24	.733	26	.725	30	.722	28	270
160	.763	24	.759	25	.755	26	.750	27	288
170	.787	24	.784	24	.781	25	.777	26	306
180	.811	22	.808	23	.806	23	.803	24	324
190	.833	22	.831	23	.829	23	.827	24	342
200 210 220 230 240	.855 .876 .897 .917 .937	21 21 20 20 19	.854 .875 .896 .917 .937	21 21 21 20 20	.852 .875 .896 .917 .938	23 21 21 21 21 20	.851 .874 .896 .917 .938	23 22 21 21 20	360 378 396 414 432
250	.956	19	.957	19	.958	19	.958	20	450
260	.975	19	.976	19	.977	19	.978	19	468
270	.994	19	.995	19	.996	19	.997	19	486
280	1.013	17	1.014	18	1.015	18	1.016	19	504
290	1.030	18	1.032	18	1.033	18	1.035	17	522
300	1.048	34	1.050	34	1.051	35	1.052	35	540
320	1.082	33	1.084	33	1.086	33	1.087	34	576
340	1.115	33	1.117	33	1.119	33	1.121	33	612
360	1.148	31	1.150	31	1.152	31	1.154	31	648
380	1.179	30	1.181	31	1.183	31	1.185	31	684
400	1.209	30	1.212	29	1.214	29	1.216	30	720
420	1.239	28	1.241	29	1.243	29	1.246	28	756
440	1.267	29	1.270	27	1.272	28	1.274	28	792
460	1.296	26	1.297	28	1.300	28	1.302	28	828
480	1.322	27	1.325	26	1.328	26	1.330	26	864
500	1.349	26	1.351	26	1.354	26	1.356	26	900
520	1.375	25	1.377	26	1.380	25	1.382	26	936
540	1.400	25	1.403	24	1.405	25	1.408	24	972
560	1.425	24	1.427	24	1.430	24	1.432	24	1008
580	1.449	24	1.451	24	1.454	24	1.456	24	1044
600 620 640 660 680	1.473 1.496 1.518 1.540 1.562	23 22 22 22 22	1.475 1.499 1.521 1.543 1.565	24 22 22 22 22 21	1.478 1.501 1.523 1.546 1.567	23 22 23 21 22	1.480 1.503 1.526 1.548 1.570	23 23 22 22 22 22	1080 1116 1152 1188 1224
700	1.584	21	1.586	22	1.589	21	1.592	20	1260
720	1.605	21	1.608	21	1.610	21	1.612	21	1296
740	1.626	21	1.629	20	1.631	20	1.633	21	1332
760	1.647	20	1.649	20	1.651	21	1.654	20	1368
780	1.667	20	1.669	20	1.672	20	1.674	20	1404
800	1.687	96	1.689	96	1.692	95	1.694	95	1440
900	1.783	90	1.785	90	1.787	90	1.789	91	1620
1000	1.873	86	1.875	86	1.877	86	1.880	85	1800
1100	1.959	82	1.961	82	1.963	83	1.965	82	1980
1200	2.041	79	2.043	79	2.046	78	2.047	79	2160
1300	2.120	76	2.122	76	2.124	75	2.126	75	2340
1400	2.196	73	2.198	73	2.199	75	2.201	75	2520
1500	2.269	72	2.271	72	2.274	71	2.276	70	2700
1600	2.341	69	2.343	69	2.345	69	2.346	69	2880
1700	2.410	68	2.412	68	2.414	68	2.415	68	3060
1800 1900 2000 2100 2200	2.478 2.543 2.608 2.671 2.731	65 63 60 61	2.480 2.546 2.610 2.672 2.733	66 64 62 61 60	2.482 2.547 2.611 2.674 2,734	65 64 63 60 61	2.483 2.549 2.613 2.675 2.736	66 64 62 61 60	3240 3420 3600 3780 3960
2300	2.792	59	2.793	59	2.795	58	2.796	59	4140
2400	2.851	57	2.852	58	2.853	58	2.855	57	4320
2500	2.908	57	2.910	56	2.911	56	2.912	57	4500
2600	2.965	55	2.966	55	2.967	56	2.969	55	4680
2700	3.020	54	3.021	54	3.023	54	3.024	54	4860
2800 2900 3000	3.074 3.127 3.180	53 53	3.075 3.129 3.182	54 53	3.077 3.130 3.182	53 52	3.078 3.131 3.183	53 52	5040 5220 5400

TABLE 9.- SOUND VELOCITY a/a_0 IN MOLECULAR NITROGEN - Concluded

° _K	10 atm		40 atm		T	70 atm		100 atm	
	L10	o atom	40	atm	70	atm	100	atm	o _R
150 160 170 180 190	.722 .750 .777 .803 .827	28 27 26 24 24	.787 .818	31 31	.843	29			270 288 306 324 342
200	.851	23	.849	27	.872	27	.94	2	360
210	.874	22	.876	25	.899	25	.96	2	378
220	.896	21	.901	24	.924	25	.98	2	396
230	.917	21	.925	23	.949	23	1.00	2	414
240	.938	20	.948	22	.972	23	1.02	1	432
250	.958	20	.970	22	.995	21	1.03	2	450
260	.978	19	.992	21	1.016	22	1.05	2	468
270	.997	19	1.013	20	1.038	20	1.07	2	486
280	1.016	19	1.033	20	1.058	20	1.092	18	504
290	1.035	17	1.053	19	1.078	19	1.110	19	522
300	1.052	35	1.072	36	1.097	38	1.129	37	540
320	1.087	34	1.108	35	1.135	35	1.166	34	576
340	1.121	33	1.143	34	1.170	34	1.200	34	612
360	1.154	31	1.177	32	1.204	32	1.234	32	648
380	1.185	31	1.209	31	1.236	31	1.266	32	684
400	1.216	30	1.240	30	1,267	31	1.298	29	720
420	1.246	28	1.270	29	1,298	29	1.327	29	756
440	1.274	28	1.299	29	1,327	28	1.356	28	792
460	1.302	28	1.328	27	1,355	27	1.384	27	828
480	1.330	26	1.355	27	1,382	27	1.411	26	864
500	1.356	26	1.382	26	1.409	26	1.437	25	900
520	1.382	26	1.408	25	1.435	25	1.462	25	936
540	1.408	24	1.433	25	1.460	24	1.487	25	972
560	1.432	24	1.458	24	1.484	24	1.512	23	1008
580	1.456	24	1.482	23	1.508	23	1.535	23	1044
600	1.480	23	1.505	24	1.531	23	1.558	23	1080
620	1.503	23	1.529	22	1.554	23	1.581	22	1116
640	1.526	22	1.551	22	1.577	22	1.603	22	1152
660	1.548	22	1.573	22	1.599	21	1.625	21	1188
680	1.570	22	1.595	21	1.620	21	1.646	21	1224
700 720 740 760 780	1.592 1.612 1.633 1.654 1.674	20 21 21 20 20	1.616 1.637 1.658 1.678 1.698	21 21 20 20 19	1.641 1.662 1.683 1.703 1.722	21 21 20 19	1.667 1.687 1.707 1.727 1.746	20 20 20 19 19	1260 1296 1332 1368 1404
800	1.694	95	1.717	95	1.741	94	1.765	93	1440
900	1.789	91	1.812	89	1.835	89	1.858	87	1620
1000	1.880	85	1.901	85	1.924	83	1.945	84	1800
1100	1.965	82	1.986	82	2.007	81	2.029	80	1980
1200	2.047	79	2.068	77	2.088	77	2.109	76	2160
1300	2.126	75	2.145	76	2.165	75	2.185	73	2340
1400	2.201	75	2.221	72	2.240	72	2.258	73	2520
1500	2.276	70	2.293	71	2.312	70	2.331	69	2700
1600	2.346	69	2.364	68	2.382	69	2.400	68	2880
1700	2.415	68	2.432	68	2.451	65	2.468	65	3060
1800	2.483	66	2.500	65	2.516	65	2.533	65	3240
1900	2.549	64	2.565	64	2.581	64	2.598	62	3420
2000	2.613	62	2.629	62	2.645	61	2.660	62	3600
2100	2.675	61	2.691	60	2.706	60	2.722	59	3780
2200	2.736	60	2.751	60	2.766	59	2.781	59	3960
2300	2.796	59	2.811	58	2.825	59	2.840	58	4140
2400	2.855	57	2.869	58	2.884	55	2.898	56	4320
2500	2.912	57	2.927	56	2.939	56	2.954	55	4500
2600	2.969	55	2.983	55	2.995	56	3.009	55	4680
2700	3.024	54	3.038	53	3.051	54	3.064	53	4860
2800 2900 3000	3.078 3.131 3.183	53 5 2	3.091 3.144 3.196	5 3 52	3.105 3.157 3.209	52 52	3.117 3.170 3.222	53 52	5040 5220 5400

Table 10.- coefficient of viscosity $~\eta/\eta_{0}~$ of molecular nitrogen

o _K	l e	ıtm	10 a	tan	20 at	tm.	30 a	tan	o _R
100 150 200	.413 .607 .779	194 172 155							180 270 360
250 300 350 400 450	.934 1.074 1.203 1.323 1.437	140 129 120 114 109	1.079 1.208 1.329 1.443	129 121 114 109	1.086 1.214 1.334 1.448	128 120 114 109	1.093 1.221 1.340 1.453	128 119 113 108	450 540 630 720 810
500	1.546	105	1.552	105	1.557	105	1.561	104	900
550	1.651	101	1.657	100	1.662	100	1.665	100	990
600	1.752	92	1.757	92	1.762	91	1.765	91	1080
650	1.844	88	1.849	87	1.853	87	1.856	87	1170
700	1.932	85	1.936	85	1.940	84	1.943	84	1260
750	2.017	82	2.021	81	2.024	81	2.027	81	1350
800	2.099	80	2.102	80	2.105	80	2.108	80	1440
850	2.179	78	2.182	78	2.185	78	2.188	78	1530
900	2.257	76	2.260	75	2.263	75	2.266	75	1620
950	2.333	73	2.335	73	2.338	73	2.341	73	1710
1000	2.406	71	2.408	72	2.411	72	2.414	71	1800
1050	2.477	69	2.480	69	2.483	69	2.485	69	1890
1100	2.546	68	2.549	67	2.552	67	2.554	67	1980
1150	2.614	65	2.616	66	2.619	65	2.621	65	2070
1200	2.679	63	2.682	63	2.684	63	2.686	63	2160
1250	2.742	63	2.745	62	2.747	62	2.749	62	2250
1300	2.805	61	2.807	61	2.809	60	2.811	60	2340
1350	2.866	59	2.868	59	2.869	60	2.871	60	2430
1400	2.925	58	2.927	58	2.929	58	2.931	58	2520
1450	2.983	57	2.985	57	2.987	57	2.989	57	2610
1500	3.040		3,042		3.044		3.046		2700

οĸ	40	e.tm	60 a	ıtın	80 a	tm.	100	atm	°R
300	1.104	125	1.127	121	1.154	115	1.187	107	540
350	1.229	118	1.248	114	1.269	111	1.294	105	630
400	1.347	112	1.362	110	1.380	107	1.399	104	720
450	1.459	107	1.472	106	1.487	104	1.503	102	810
550	1.670	99	1.680	98	1.692	97	1.704	96	990
600	1.769	91	1.778	90	1.789	90	1.800	89	1080
650	1.860	87	1.868	87	1.879	86	1.889	85	1170
700	1.947	84	1.955	84	1.965	83	1.974	82	1260
750	2.031	81	2.039	80	2.048	79	2.056	79	1350
800	2.112	79	2.119	78	2.127	78	2.135	78	1440
850	2.191	78	2.197	77	2.205	76	2.213	76	1530
900	2.269	75	2.274	75	2.281	7 4	2.289	74	1620
950	2.344	73	2.349	73	2.355	74	2.363	73	1710
1000	2.417	71	2.422	72	2.429	71	2.436	71	1800
1050	2.488	69	2.494	69	2.500	69	2.507	68	1890
1100	2.557	66	2.563	66	2.569	66	2.575	6 <u>5</u>	1980
1150	2.623	65	2.629	64	2.635	64	2.640	64	2070
1200	2.688	63	2.693	63	2.699	63	2.704	62	2160
1250	2.751	62	2.756	62	2.762	60	2.766	63	2250
1300	2.813	60	2.818	60	2.822	60	2.829	60	2340
1350	2.873	60	2.878	60	2.882	59	2.889	58	2430
1400	2.933	58	2.938	58	2.941	58	2.947	57	2520
1450	2.991	57	2.996	56	2.999	57	3.004	57	2610
1500	3.048		3.052		3.056		3.061		

Table 11.- Thermal conductivity $\mathbf{k}/\!k_{\tilde{\mathbf{0}}}$ of molecular nitrogen

							
°K	k/1	k _O	o _R	^о к	k/	k _O	o _R
100 110 120 130 140	.390 .427 .465 .502	37 38 37 36 38	180 198 216 234 252	500 510 520 530 540	1.645 1.671 1.697 1.722 1.747	26 26 25 25 24	900 918 936 954 972
150 160 170 180 190	.576 .612 .648 .684 .719	36 36 36 35 34	270 288 306 324 342	550 560 570 580 590	1.771 1.795 1.819 1.843 1.867	24 24 24 24 23	990 1008 1026 1044 1062
200 210 220 230 240	.753 .789 .823 .857 .892	36 34 34 35 32	360 378 396 414 432	600 610 620 630 640	1.890 1.913 1.936 1.959 1.982	23 23 23 23 23 23	1080 1098 1116 1134 1152
250 260 270 280 290	.924 .957 .990 1.021 1.051	33 33 31 30 30	450 468 486 504 522	650 660 670 680 690	2.005 2.027 2.048 2.070 2.092	22 21 22 22 22	1170 1188 1206 1224 1242
300 310 320 330 340	1.081 1.111 1.141 1.172 1.202	30 30 31 30 30	540 558 576 594 612	700 710 720 730 740	2.114 2.136 2.157 2.178 2.199	22 21 21 21 21	1260 1278 1296 1314 1332
350 360 370 380 390	1.232 1.262 1.292 1.321 1.349	30 30 29 28 28	630 648 666 684 702	750 760 770 780 790	2.220 2.240 2.259 2.279 2.299	20 19 20 20 19	1350 1368 1386 1404 1422
400 410 420 430 440	1.377 1.405 1.433 1.460 1.487	28 28 27 27 26	720 738 756 774 792	800 900 1000 1100 1200	2.318 2.504 2.673 2.828 2.968	186 169 155 140	1440 1620 1800 1980 2160
450 460 470 480 490	1.513 1.540 1.566 1.592 1.619	27 26 26 27 26	810 828 846 864 882				•

Table 12.- prandtl number $N_{\rm Pr} = \eta C_{\rm p}/k$ of molecular nitrogen at atmospheric pressure

									
^о к	N	Pr	(N _{Pr})) ^{2/3}	(N _{Pr})1/3	(N _{Pr}	1/2	o _R
100 120 140 160 180	.786 .778 .770 .762	- 8 - 8 - 8 - 8 - 7	.851 .846 .840 .834 .828	- 5 - 6 - 6 - 6 - 5	.922 .920 .917 .913	- 2 - 3 - 4 - 3 - 3	.887 .882 .878 .873 .868	- 5 - 4 - 5 - 5 - 3	180 216 252 288 324
200 220 240 260 280	.747 .740 .733 .725 .719	- 7 - 7 - 8 - 6 - 6	.823 .818 .813 .807 .803	- 5 - 5 - 6 - 4 - 5	.907 .905 .902 .898 .896	- 2 - 3 - 4 - 2 - 3	.865 .860 .856 .851 .848	- 5 . - 4 . - 5 . - 3 .	360 396 432 468 504
300 320 340 360 380	.713 .707 .703 .699	6 4 4 4	.798 .794 .791 .787 .784	- 4 - 3 - 4 - 3 - 2	.893 .891 .889 .887 .886	- 2 - 2 - 2 - 1 - 2	.844 .841 .838 .836 .834	- 3 - 3 - 2 - 2 - 3	540 576 612 648 684
400 420 440 460 480	.691 .689 .688 .687 .685	- 2 - 1 - 1 - 2 - 1	.782 .780 .780 .779 .777	- 2 - 1 - 2 - 1	.884 .883 .883 .883 .882	- 1 - 1 - 1	.831 .830 .830 .829 .828	- 1 - 1 - 1 - 1	720 756 792 828 864
500 520 540 560 580	.684 .683 .683 .684	- 1 1 1 1	.776 .775 .775 .776 .777	- 1 1 1	.881 .881 .881 .881	1	.827 .826 .826 .827 .828	- 1 1 1	900 936 972 1008 1044
600 650 700 750 800	.686 .688 .691 .695 .700	2 3 4 5	.778 .779 .782 .785 .788	1 3 3 3 9	.882 .883 .884 .886	1 1 2 2 2 4	.828 .829 .831 .834 .837	1 2 3 3 6	1080 1170 1260 1350 1440
900 1000 1100 1200	.711 .724 .736 .748	13 12 12	.797 .806 .815 .824	9 9 9	.892 .898 .903 .908	6 5 5	.843 .851 .858 .865	8 7 7	1620 1800 1980 2160

TABLE 13.- VAPOR PRESSURE OF NITROGEN

[Values in parentheses are extrapolated values to facilitate interpolation]

(a) For interpolation

			log ₁₀ P				
40/т, °к-1	т, ^о к		(a)		-	T, OR	72/T, O _R -1
-K		mm Hg	atm	psia.	Δ		1,
0.64 .63 .62 .61	62.50 63.49 64.52 65.57	(1.9206) 1.9996 2.0784 2.1570	(9.0398) 9.1188 9.1976 9.2762	(0.2070) .2860 .3648 .4434	790 788 786 784	112.50 114.29 116.13 118.03	0.64 .63 .62 .61
.60 .59 .58 .57	66.67 67.80 68.97 70.18 71.43	2.2354 2.3137 2.3919 2.4700 2.5480	9.3546 9.4329 9.5111 9.5892 9.6672	.5218 .6001 .6783 .7564 .8344	783 782 781 780 778	120.00 122.03 124.14 126.32 128.57	.60 .59 .58 .57 .56
.55 .54 .53 .52 .51	72.73 74.07 75.47 76.92 78.43	2.6258 2.7033 2.7803 2.8567 2.9327	9.7450 9.8225 9.8995 9.9759 .0519	.9122 .9897 1.0667 1.1431 1.2191	775 770 764 760 756	130.91 133.33 135.85 138.46 141.18	.55 .54 .53 .52 .51
.50 .49 .48 .47 .46	80.00 81.63 83.33 85.11 86.96	3.0083 3.0836 3.1586 3.2343 3.3110	.1275 .2028 .2778 .3535 .4302	1.2947 1.3700 1.4450 1.5207 1.5974	753 750 757 767 772	144.00 146.94 150.00 153.19 156.52	.50 .49 .48 .47 .46
.45 .44 .43 .42 ,41	88.89 90.91 93.02 95.24 97.56	3.3882 3.4648 3.5405 3.6160 3.6916	.5074 .5840 .6597 .7352 .8108	1.6746 1.7512 1.8269 1.9024 1.9780	766 757 755 756 756	160.00 163.64 167.44 171.43 175.61	.45 .44 .43 .42 .41
.40 .39 .38 .37 .36	100.00 102.56 105.26 108.11 111.11	3.7672 3.8429 3.9186 3.9944 4.0703	.8864 .9621 1.0378 1.1136 1.1895	2.0536 2.1293 2.2050 2.2808 2.3567	757 757 758 759	180.00 184.62 189.47 194.59 200.00	.40 .39 .38 .37 .36
100/T			_				180/T
0.90 .89 .88 .87	111.11 112.36 113.64 114.94 116.28	4.0703 4.1007 4.1312 4.1618 4.1925	1.1895 1.2199 1.2504 1.2810 1.3117	2.3567 2.3871 2.4176 2.4482 2.4789	304 305 306 307 309	200.00 202.25 204.55 206.90 209.30	0.90 .89 .88 .87 .86
.85 .84 .83 .82	117.65 119.05 120.48 121.95 123.46	4.2234 4.2545 4.2859 4.3175 4.3495	1.3426 1.3737 1.4051 1.4367 1.4687	2.5098 2.5409 2.5723 2.6039 2.6359	311 314 316 320 325	211.76 214.29 216.87 219.51 222.22	.85 .84 .83 .82 .81
.80 .79 .78	125.00 126.58 128.21	4.3820 (4.4151) (4.4495)	1.5012 (1.5343) (1.5687)	2.6684 (2.7015) (2.7359)	331 344	225.00 227.85 2 3 0.77	.80 .79 .78

avalues have been increased by 10 wherever necessary to avoid negative mantissas.

TABLE 13.- VAPOR PRESSURE OF NITROGEN - Concluded

(b) Not for interpolation

P	т, ^о к		P		T, OR
Remarks	т, -к	mm Hg	atm	psia	T, R
Triple point	63.156	94.0	0.1237	1.818	113.681
	77.395	760.0	1	14.696	139.311
	126.1 ₃₅	254 ₅₂	33.49	492.2	227.0
Solid nitrogen	52	5.7	0.0075	0.110	93.6
	54	10.2	.013 ⁴	.197	97.2
	56	17.6	.0232	.341	100.8
	58	29.4	.0386	.568	104.4
	60	47.2	.0621	.913	108.0
	62	73.6	.0969	1.424	111.6
Liquid nitrogen	64	109.4	.1439	2.115	115.2
	66	154.1	.2028	2.980	118.8
	68	212.6	.2797	4.110	122.4
	70	287.6	.3785	5.56	126.0
	72	382.5	.503	7.40	129.6
	74	500	.658	9.67	133.2
	76	643	.847	12.44	136.8
	78	815	1.073	15.76	140.4
,	80	1019	1.341	19.71	144.0
	82	1259	1.657	24.35	147.6
	84	1539	2.026	29.77	151.2
	86	1869	2.460	36.15	154.8
	88	2255	2.967	43.60	158.4
	90	2697	3.548	52.1	162.0
	92	3194	4.203	61.8	165.6
	94	3752	4.937	72.5	169.2
	96	4377	5.76	84.6	172.8
	98	5076	6.68	98.1	176.4
	100	5851	7.70	113.1	180.0
	102	6708	8.83	129.7	183.6
	104	7650	10.07	147.9	187.2
	106	8682	11.42	167.9	190.8
	108	9808	12.91	189.7	194.4
	110	11033	14.52	213.3	198.0
	112	12360	16.26	239.0	201.6
	114	13797	18.15	266.8	205.2
	116	15351	20.20	296.8	208.8
	118	17033	22.41	329.4	212.4
	120	18854	24.81	364.6	216.0
	122	20823	27.40	402.7	219.6
	124	22960	30.21	444.0	223.2
	126	25287	33.27	489.0	226.8

(c) Constants for log_{10} P (solid) = A - B/T

Units of P	A	Units of T	В
mm Hg	7.65894	ок	359.093
atm	4.77813	°R	646.367
psia	5 . 945 3 2		

TABLE 14.- COEFFICIENTS FOR EQUATION $Z = 1 + B_1P + C_1P^2 + D_1P^3$

T, OK	B ₁ , atm ⁻¹ (a)	C ₁ , atm ⁻²	D ₁ , atm ⁻³ (a)	T, OR
100	-0.(1)17951	-0.(3)3487	-0.(3)21663	180
110	(1)13778	(3)1964	(4)37186	198
120	(1)10780	(3)1145	(5)79827	216
130	(2)8562	(4)6822	(5)19016	234
140	(2)6883	(4)4125	(6)40744	252
150	(2)5586	(4)2490	(7)10394	270
160	(2)4567	(4)1479	.(7)88448	288
170	(2)3755	(5)8412	.(6)10092	306
180	(2)3100	(5)4355	.(7)8925	324
190	(2)2565	(5)1748	.(7)7274	342
200	(2)2125	(7)801	.(7)5727	360
210	(2)1759	.(6)984	.(7)4434	378
220	(2)1453	.(5)164	.(7)3402	396
230	(2)1195	.(5)204	.(7)2594	414
240	(3)977	.(5)225	.(7)1968	432
250	(3)790	.(5)235	.(7)1484	450
260	(3)631	.(5)236	.(7)1111	468
270	(3)493	.(5)233	.(8)823	486
280	(3)375	.(5)226	.(8)602	504
290	(3)272	.(5)215	.(8)430	522
300	(3)183	.(5)208	.(8)298	540
310	(3)105	.(5)197	.(8)197	558
320	(4)374	.(5)187	.(8)118	576
330	.(4)220	.(5)176	.(9)58	594
340	.(4)742	.(5)166	.(9)12	612
350	.(3)120	.(5)156	(9)21	630
360	.(3)160	.(5)147	(9)47	648
370	.(3)196	.(5)138	(9)67	666
380	.(3)227	.(5)130	(9)81	684
390	.(3)255	.(5)122	(9)91	702
400	.(3)279	.(5)114	(9)97	720
410	.(3)301	.(5)107	(8)101	738
420	.(3)320	.(5)101	(8)104	756
430	.(3)336	.(6)948	(8)104	774
440	.(3)351	.(6)891	(8)104	792

⁸Number in parentheses indicates number of zeros immediately to right of decimal point.

TABLE 14.- COEFFICIENTS FOR EQUATION $Z = 1 + B_1P + C_1P^2 + D_1P^3$ - Continued

T, OK	B ₁ , atm ⁻¹	C ₁ , atm ⁻²	D ₁ , atm ⁻³ (a)	T, OR
450	0.(3)364	0.(6)838	-0.(8)103	810
460	.(3)375	.(6)789	(8)101	828
470	.(3)385	.(6)743	(9)98	846
480	.(3)394	.(6)700	(9)95	864
490	.(3)401	.(6)661	(9)92	882
500	.(3)408	.(6)623	(9)89	900
510	.(3)414	.(6)589	(9)86	918
520	.(3)418	.(6)556	(9)82	936
530	.(3)422	.(6)525	(9)79	954
5 ¹ 40	.(3)426	.(6)497	(9)76	972
550	.(3)429	.(6)471	(9)73	990
560	.(3)431	.(6)445	(9)69	1,008
570	.(3)433	.(6)422	(9)66	1,026
580	.(3)434	.(6)400	(9)63	1,044
590	.(3)435	.(6)379	(9)61	1,062
600	.(3)435	.(6)360	(9)58	1,080
610	.(3)436	.(6)342	(9)55	1,098
620	.(3)436	.(6)324	(9)53	1,116
630	.(3)435	.(6)308	(9)50	1,134
640	.(3)435	.(6)293	(9)48	1,152
650	.(3)434	.(6)279	(9)46	1,170
660	.(3)433	.(6)265	(9)44	1,188
670	.(3)432	.(6)253	(9)42	1,206
680	.(3)431	.(6)241	(9)40	1,224
690	.(3)429	.(6)229	(9)38	1,242
700	.(3)428	.(6)219	(9)36	1,260
710	.(3)426	.(6)208	(9)34	1,278
720	.(3)424	.(6)199	(9)33	1,296
730	.(3)423	.(6)190	(9)31	1,314
740	.(3)421	.(6)181	(9)30	1,332
750	.(3)419	.(6)174	(9)29	1,350
760	.(3)417	.(6)166	(9)27	1,368
770	.(3)414	.(6)158	(9)26	1,386
780	.(3)412	.(6)151	(9)25	1,404
790	.(3)410	.(6)145	(9)24	1,422

 $^{^{\}rm 8}{\rm Number}$ in parentheses indicates number of zeros immediately to right of decimal point.

TABLE 14.- COEFFICIENTS FOR EQUATION $Z = 1 + B_1P + C_1P^2 + D_1P^3$ - Concluded

т, ^о к	B ₁ , atm ⁻¹	C ₁ , atm ⁻²	D ₁ , atm ⁻³	T, OR
800 850 900 950 1,000	(a) 0.(3)408 .(3)396 .(3)384 .(3)372 .(3)360	(a) 0.(6)139 .(6)112 .(7)91 .(7)74 .(7)61	(a) -0.(9)23(9)18(9)15(9)12(9)10	1,440 1,530 1,620 1,710 1,800
1,050 1,100 1,150 1,200 1,250	.(3)348 .(3)337 .(3)326 .(3)316 .(3)306	.(7)51 .(7)42 .(7)35 .(7)27 .(7)25		1,890 1,980 2,070 2,160 2,250
1,300 1,350 1,400 1,450 1,500	.(3)297 .(3)288 .(3)279 .(3)271 .(3)263	.(7)20 .(7)17 .(7)14 .(7)12 .(7)10		2,340 2,430 2,520 2,610 2,700
1,550 1,600 1,650 1,700 1,750	.(3)256 .(3)249 .(3)242 .(3)235 .(3)229	.(8)8 .(8)9 .(8)5 .(8)5 .(8)4		2,790 2,880 2,970 3,060 3,150
1,800 1,850 1,900 1,950 2,000	.(3)223 .(3)218 .(3)212 .(3)207 .(3)202			3,240 3,330 3,420 3,510 3,600
2,050 2,100 2,150 2,200 2,250	.(3)197 .(3)193 .(3)188 .(3)184 .(3)180			3,690 3,780 3,870 3,960 4,050
2,500 2,750 3,000	.(3)162 .(3)147 .(3)135			4,500 4,950 5,400

⁸Number in parentheses indicates number of zeros immediately to right of decimal point.

TABLE 15.- DERIVATIVE FUNCTIONS OF COEFFICIENTS B_1 , C_1 , AND D_1

T, ⁰ K	$T \frac{dB_1}{dT}$, atm ⁻¹	$T \frac{dC_1}{dT}, atm^{-2}$ (a)	T dD ₁ , atm-3	T, OR
100	0.(1)49505	0.(2)2099	0.(2)4138	180
110	.(1)38528	.(2)1202	.(3)6676	198
120	.(1)30694	.(3)7230	.(3)1402	216
130	.(1)24914	.(3)4509	.(4)3547	234
140	.(1)20541	.(3)2898	.(4)1000	252
150	.(1)17158	.(3)1902	.(5)2834	270
160	.(1)14490	.(3)1270	.(6)6199	288
170	.(1)12353	.(4)856	(7)8163	306
180	.(1)10617	.(4)581	(6)2829	324
190	.(2)9190	.(4)394	(6)3132	342
200	.(2)8004	.(4)265	(6)2855	360
210	.(2)7009	.(4)175	(6)2429	378
220	.(2)6167	.(4)112	(6)2008	396
230	.(2)5450	.(5)67	(6)1633	414
240	.(2)4835	.(5)35	(6)1318	432
250	.(2)4303	.(5)13	(6)1059	450
260	.(2)3841	(5)03	(7)8493	468
270	.(2)3438	(5)14	(7)6801	486
280	.(2)3084	(5)22	(7)5441	504
290	.(2)2772	(5)27	(7)4348	522
300	.(2)2496	(5)31	(7)3468	540
310	.(2)2250	(5)33	(7)2760	558
320	.(2)2032	(5)34	(7)2189	576
330	.(2)1837	(5)34	(7)1728	594
340	.(2)1661	(5)34	(7)1355	612
350	.(2)1504	(5)34	(7)1052	630
360	.(2)1362	(5)33	(8)808	648
370	.(2)1234	(5)32	(8)609	666
380	.(2)1117	(5)31	(8)448	684
390	.(2)1011	(5)30	(8)318	702
400	.(3)915	(5)29	(8)212	720
410	.(3)827	(5)27	(8)127	738
420	.(3)747	(5)26	(9)58	756
430	.(3)674	(5)25	(9)03	774
440	.(3)606	(5)24	.(9)41	792

^aNumber in parentheses indicates number of zeros immediately to right of decimal point.

TABLE 15.- DERIVATIVE FUNCTIONS OF COEFFICIENTS B_1 , C_1 , AND D_1 - Continued

т, ^о к	$T \frac{dB_1}{dT}$, atm ⁻¹	$T \frac{dC_1}{dT}$, atm ⁻²	$T \frac{dD_1}{dT}$, atm ⁻³	T, ^O R
450	0.(3)544	-0.(5)23	0.(9)76	810
460	.(3)488	(5)22	.(8)104	828
470	.(3)436	(5)21	.(8)125	846
480	.(3)388	(5)20	.(8)142	864
490	.(3)343	(5)19	.(8)154	882
500	.(3)302	(5)18	.(8)163	900
510	.(3)264	(5)17	.(8)169	918
520	.(3)229	(5)16	.(8)173	936
530	.(3)196	(5)16	.(8)176	954
540	.(3)166	(5)15	.(8)176	972
550	.(3)138	(5)14	.(8)176	990
560	.(3)112	(5)14	.(8)174	1,008
570	.(4)88	(5)13	.(8)172	1,026
580	.(4)65	(5)12	.(8)169	1,044
590	.(4)44	(5)12	.(8)165	1,062
600	.(4)25	(5)11	.(8)162	1,080
610	.(4)06	(5)11	.(8)158	1,098
620	(4)11	(5)10	.(8)153	1,116
630	(4)27	(5)10	.(8)149	1,134
640	(4)41	(6)9	.(8)145	1,152
650	(4)55	(6)9	.(8)140	1,170
660	(4)68	(6)9	.(8)136	1,188
670	(4)80	(6)8	.(8)131	1,206
680	(4)92	(6)8	.(8)127	1,224
690	(3)103	(6)8	.(8)123	1,242
700 710 720 730 740	(3)112 (3)122 (3)130 (3)138 (3)146	(6)7 (6)7 (6)6 (6)6	.(8)118 .(8)114 .(8)110 .(8)106 .(8)102	1,260 1,278 1,296 1,314 1,332
750	(3)153	(6)6	.(9)99	1,350
760	(3)160	(6)6	.(9)95	1,368
770	(3)166	(6)5	.(9)92	1,386
780	(3)172	(6)5	.(9)88	1,404
790	(3)177	(6)5	.(9)85	1,422

a_{Number} in parentheses indicates number of zeros immediately to right of decimal point.

TABLE 15.- DERIVATIVE FUNCTIONS OF COEFFICIENTS B_1 , C_1 ,

AND D₁ - Concluded

т, ^о к	$T \frac{dB_1}{dT}$, atm^{-1}	T $\frac{dC_1}{dT}$, atm ⁻²	$T \frac{dD_1}{dT}$, atm ⁻³	T, ^O R
800 900 1,000 1,100 1,200	-0.(3)182 (3)218 (3)235 (3)242 (3)243	-0.(6)5 (6)3 (6)2 (6)2 (6)1	0.(9)82 .(9)57 .(9)40 .(9)28 .(9)20	1,440 1,620 1,800 1,980 2,160
1,300 1,400 1,500 1,600 1,700	(3)240 (3)235 (3)228 (3)222 (3)215	(6)1 (6)1 (6)1 0	.(9)15 .(9)11 .(10)8 .(10)6 .(10)5	2,340 2,520 2,700 2,880 3,060
1,800 1,900 2,000 2,100 2,200	(3)207 (3)200 (3)194 (3)187 (3)181		.(10)4 .(10)3 .(10)2 .(10)2 .(10)1	3,240 3,420 3,600 3,780 3,960
2,300 2,400 2,500 2,600 2,700	(3)175 (3)169 (3)164 (3)158 (3)153		.(10)1 .(10)1 .(10)1 .(10)1	4,140 4,320 4,500 4,680 4,860
2,800 2,900 3,000	(3)149 (3)144 (3)140			5,040 5,220 5,400

 $^{\rm a}{\rm Number}$ in parentheses indicates number of zeros immediately to right of decimal point.

TABLE 16.- VALUES OF R FOR NITROGEN

Value of R					
For	For pressure in -				
density in -	atm	kg/cm ²	mm Hg	lb/sq in.	
	For te	emperatures i	n ^O K		
g/cm ³	2.92892	3.02624	2,225.98	43.0436	
mole/cm ³	82.0567	84.7832	62,363.1	1,205.91	
mole/liter	.0820544	.0847809	62.3613	1.20587	
lb/cu ft	.0469168	.0484755	35.6567	.089488	
lb mole/cu ft	1.31442	1.35809	998.959	19.3167	
	For te	emperatures i	n ^O R		
g/cm ³	1.62718	1.68124	1,236.65	23.9130	
mole/cm ³	45.5870	47.1017	34,646.1	669.947	
mole/liter	.0455857	.0471004	34.6451	.669928	
lb/cu ft	.0260648	.0269309	19.8092	.383049	
lb mole/cu ft	.730231	• 754495	554.976	10.7315	

TABLE 17.- CONVERSION FACTORS FOR TABLES 1, 2, 4 TO 7, AND $9^{\mathbf{a}}$ TO 11

[Molecular weight of nitrogen, 28.016 g mole-1]

(a) For tables 1 and 6

To convert tabulated value of	То	Having the dimensions indicated below	Multiply by
$\left(H^{O} - E_{O}^{O} \right) / RT_{O}$	H° - E _O °	cal mole-1	542.821
$\left(\text{H - E}_{\text{O}}^{\text{O}}\right)/\text{RT}_{\text{O}}$	$H - E_O^O$	cal g ⁻¹	19.3754
		j g⁻l	81.0669
		Btu (1b mole) ⁻¹	976.437
		Btu 1b ⁻¹	34.8528

(b) For tables 1, 5, and 7

To convert tabulated value of	То	Having the dimensions indicated below	Multiply by
c_p°/R , s°/R	c _p °, s°	cal mole-1 oK-1 (or oC-1)	1.98719
c_p/R , s/R	c _p , s	cal g ⁻¹ °K ⁻¹ (or °C ⁻¹)	.0709305
$-(F^{O} - E_{O}^{O})/RT$	$-(F^{O} - E_{O}^{O})/T$	j g-1 o _K -1 (or o _C -1)	.296774
		Btu (lb mole)-l OR-l (or OF-l)	1.98588
		Btu lb-l OR-l (or OF-l)	.0708838

^aFor table 9 $a_0 = 336.96 \text{ m/sec} = 1,105.5 \text{ ft/sec}.$

TABLE 17.- CONVERSION FACTORS FOR TABLES 1, 2, 4 TO 7, AND 9 TO 11 - Continued

(c) For table 4

To convert tabulated value of	То	Having the dimensions indicated below	Multiply by
P/P0	ρ	g cm ⁻³	1.25046 × 10 ⁻³
		mole cm ⁻³	4.46338 × 10 ⁻⁵
		g liter-l	1.25050
		1b in3	4.51760 × 10 ⁻⁵
		lb ft ⁻³	7.80641 × 10 ⁻²

(d) For table 10

To convert tabulated value of	To	Having the dimensions indicated below	Multiply by
η /η _O	η	poise or g sec-1 cm-1	1.6625 × 10 ⁻⁴
		kg hr ⁻¹ m ⁻¹	5.985 × 10 ⁻²
		slug hr ⁻¹ ft ⁻¹	1.2500 × 10 ⁻³
		lb sec-l ft-l	1.1172 × 10 ⁻⁵
		lb hr ^{-l} ft ^{-l}	4.0218 × 10 ⁻²

(e) For table 11

То	Having the dimensions indicated below	Multiply by
k	cal cm ^{-l} sec ^{-l} OK ^{-l} Btu ft ^{-l} hr ^{-l} OR ^{-l}	5.77 × 10 ⁻⁵ 1.40 × 10 ⁻² 2.41 × 10 ⁻⁴
		indicated below k cal cm-l sec-l oK-l

TABLE 17.- CONVERSION FACTORS FOR TABLES 1, 2, 4 TO 7,

AND 9 TO 11 - Concluded

(f) For table 2

To convert tabulated value of	То	Having the dimensions indicated below	Multiply by
$\left(H^{\circ} - E_{\circ}^{\circ}\right) / RT_{\circ}$	H° - E _O °	cal mole-1	542.821
		cal g ⁻¹	38.7508
		j g ⁻¹	162.134
		Btu (lb mole) ⁻¹	976.437
		Btu lb ⁻¹	69.7057
C_p°/R , S°/R	С _р °, s°	cal mole-1 oK-1 (or oC-1)	1.98719
,		cal g-l oK-l (or oC-l)	.141861
$-(F^{O} - E_{O}^{O})/RT$	$-(F^{O} - E_{O}^{O})/T$	j g-1 o _K -1 (or o _C -1)	•5935488
,	, , , , , , , , , , , , , , , , , , ,	Btu (1b mole)-1 OR-1 (or OF-1)	1.98588
		Btu lb ^{-l} o_R -l $(or o_F$ -l $)$.141768

TABLE 18.- CONVERSION FACTORS TO FREQUENTLY USED UNITS

[The factors in parts (a) to (j) are reproduced from ref. 86; those in part (k) are based on ref. $8\vec{J}$

	A	108	107	10	10	П	yđ	0.010936111	1.0956111	0.027777778	0.33333333	Т
	rt _u	107	106	103	1	10-1	£¢	0.032808353	5.2808333	0.083535355	Н	3
đ	킈	[†] 01	103	H	10-3	10-4	fn.	0.3937	59.57	Н	टा	3%
(a) For units of length	шш	10	-1	10-3	9-01	10-7	ឳ	0.01	·	0.025400051	0.30480061	0.91440185
(a) Fo	ED U	H	10-1	10-4	10-7	10-8	Ð		100	2.5400051	30.480061	91.440183
	Multiply by appropriate entry	1. CII	1 mm	1	1 mu	1 A	Multiply by appropriate entry to obtain	1 cm	пГ	1 in.	1 ft	1 yd

TABLE 18.- CONVERSION FACTORS TO FREQUENTLY USED UNITS - Continued

(b) For units of area

Multiply by appropriate entry to obtain>	2 E	2 #	sq in.	sq ft	pď bg
1 cm ²	٦	10-4	0.15499969	0.15499969 1.0763867 × 10 ⁻³ 1.1959853 × 10 ⁻⁴	1.1959853 × 10 ⁻⁴
1 m ²	104	1	1,549.9969	10.763867	1.1959853
l sq in.	6.4516258	6.4516258 6.4516258 × 10 ⁻⁴	τ	6.9444444 × 10 ⁻³	6.94444444 × 10 ⁻³ 7.7160494 × 10 ⁻⁴
l sq ft	929.03412	0.092903412	1 /4/I	ı	0.1111111
1 sq yd	8,361.3070	0.83613070	1,296	6	т

.

TABLE 18.- CONVERSION FACTORS TO FREQUENTLY USED UNITS - Continued

(c) For units of volume

rate ent	TIII	liter	gal
1 cm ³	0.9999720	0.9999720 × 10 ⁻³	2.6417047 × 10 ⁻⁴
l cu in.	16.38670	1.638670 × 10 ⁻²	4.3290043 × 10-3
1 cu ft	28,316.22	28.31622	7.4805195
1 m 1	1	0.001	2.641779 × 10 ⁻⁴
l liter	1,000	1	0.2641779
l gal	5,785.329	5.785329	1
Multiply by appropriate entry	5m2	cu in.	cu ft
1 cm ²	τ	0.061023378	3.5314455 × 10 ⁻⁵
1 cu in.	16.387162	ı	5.7870370 × 10 ⁻⁴
1 cu ft	28,317.017	1,728	J
1 = 1	1.000028	0.06102509	3.531544 × 10 ⁻⁵
1 liter	1,000.028	61.02509	0.03531544
1 gal	3,785.4345	231	0.13368056

TABLE 18.- CONVERSION FACTORS TO FREQUENTLY USED UNITS - Continued

(d) For units of mass

kg lb metric ton 10-3 2.2046223 × 10-3 10-6 1 2.2046223 10-3 0.45359243 1 4.5359243 × 10-4 103 2,204.6223 1 907.18486 2,000 0.90718486					
10-3 2.2046223 × 10-3 10-6 1 2.2046223 10-3 0.45359243 1 4.5359243 × 10-4 103 2,204.6223 1 907.18486 2,000 0.90718486	яū	kg	1b	metric ton	ton
1 2.2046223 10^{-3} 0.45359243 1 4.5359243×10^{-4} 10^{3} $2.204.6223$ 1 907.18486 2.000 0.90718486	н	 10-3	2.2046223 × 10 ⁻³	10-6	1.1023112 × 10 ⁻⁶
0.45359243 1 4.5359243 × 10 ⁻⁴ 10 ³ 2,204.6223 1 907.18486 2,000 0.90718486 '	501	1	2.2046223	10-3	1.1025112 × 10 ⁻⁵
103 2,204.6223 1 907.18486 2,000 0.90718486 '	453.59243	.45359243	1	4.5359243 × 10 ⁻⁴	0.0005
907.18486 2,000	106	103	2,204.6223	J	1.1025112
	907,184.86	07.18486	2,000	0.90718486	1

(e) For units of density

Multiply by appropriate entry ↓ to obtain ———	$ m g/cm^3$	g/ml	lb/cu in.	lb/cu ft	1b/gal
1 g/cm ³	1	1.000028	0.036127504	62.428327	8.3454555
1 8/m1	0.9999720	٦	0.03612649	62.42658	8.345220
1 1b/cu in.	27.679742	27.68052	ı	1,728	231
1 lb/cu ft	0.016018569	0.01601882	5.7870370 × 10 ⁻⁴	٦	0.13368056
1 1b/gal	0.11982572	0.1198291	4.3290043 × 10 ⁻³	7.4805195	п

TABLE 18.- CONVERSION FACTORS TO FREQUENTLY USED UNITS - Continued

(f) For units of pressure

Multiply by appropriate ↓ entry to obtain→	dyne/cm ²	ber	s.tm	${ m kg(wt.)}/{ m cm}^2$	nam Hg	ln. Hg	1b(wt.)/sq in.
	τ	10-6	0.9869233 × 10 ⁻⁶	0.9869233 × 10 ⁻⁶ 1.0197162 × 10 ⁻⁶ 7.500617 × 10 ⁻⁴ 2.952993 × 10 ⁻⁵ 1.4503830 × 10 ⁻⁵	7.500617 × 10 ⁻⁴	2.95 <i>2</i> 993 × 10 ⁻⁵	1.4503830 × 10-5
	106	τ	0.9869233	1.0197162	750.0617	29.52993	14.503830
	1,013,250	1.013250	T	1.0332275	760	29.921.20	14.696006
	980,665	6,98065	0.9678411	Т	735.5592	28.95897	14.225598
	1,335.2257	1.3332237 × 10 ⁻³	1,333.2237 1.3332237 × 10 ⁻³ 1.3157895 × 10 ⁻³ 1.3595098 × 10 ⁻³	1.3595098 × 10 ⁻³	Н	0.03937	0.019336850
	33,863.95	0.03386395	0.05542112	0.03453162	25.40005	н	0.4911570
1 lb(wt.)/sq in.	68,947.31	0.06894751	0.06804570	0.07030669	51.71473	2.036009	1

-

TABLE 18. CONVERSION FACTORS TO FREQUENTLY USED UNITS - Continued

(g) For units of energy

F									- AI		$\overline{}$
liter-stm	8.86890 × 10 ¹¹	9.86896 × 10 ⁻³	9.87058 × 10 ⁻³	4.1 <i>2</i> 917 × 10* ²	4.13187 × 10 ⁻²	10.41215	35,534.1	26,493.5	6.94444 × 10" ³ 1.538054 × 10 ⁻²	1.926797	1
cu ft - lb(vt.)/sq in.	^{LL} 01 × 09699. β ^{LL} 01 × 16999. β ^{LL} 01 × 41699.	5.12195 × 10 ⁻³ 9.86896 × 10 ⁻³	5.12279 × 10 ⁻³ 9.87058 × 10 ⁻³	2.14302 × 10 ⁻² 4.12917 × 10 ⁻²	2.14445 × 10 ⁻² 4.15187 × 10 ⁻²	5.40386	18,442.06	13,750	6.94444 × 10"3	τ	5.18996
ft-1b(vt.)	6.62814 × 10 ¹⁵	0.737561	0.737682	3.08595	3.08797	778.156	2,655,656	1,980,000	ส	स्पर	74.7354
т-ф	5.474 × 10 ⁷	5.72505 × 10 ⁻⁷	3.72567 × 10 ⁻⁷	1.558562 × 10 ⁻⁶	1.559582 × 10 ⁻⁶	3.93008 × 10 ⁻⁴	1.341241	τ	5.05051 × 10"?	7.27273 × 10 ⁻⁵	3.77452 × 10 ⁻⁵
int. kv-in	2.49586 × 10 ⁷	2.77732 × 10 ⁻⁷	2.777778 × 10 ⁻⁷	1.162030 × 10 ⁻⁶	1.162791 × 10 ⁻⁶	2.93018 × 10 ⁻⁴	τ	0.745578	3.76595 × 10 ⁻⁷	5.42239 × 10 ⁻⁵ 7.27273 × 10 ⁻⁵	2.81420 × 10 ⁻⁵
Ptu		$0.947831 \times 10^{-5} 2.77732 \times 10^{-7}$ 5.72505×10^{-7}	$0.947988 \times 10^{-3} 2.777778 \times 10^{-7} 3.72567 \times 10^{-7}$	3.96573 × 10 ⁻³ 1.162030 × 10 ⁻⁶ 1.559562 × 10 ⁻⁶	3.96832 × 10 ⁻³ 1.162791 × 10 ⁻⁶ 1.599582 × 10 ⁻⁶	1	3,412.76	2,544.48	1.285089 \times 10 ⁻³ 5.76555 \times 10 ⁻⁷ 5.05051 \times 10 ⁻⁷	0.1850529	0.0960417
I. T.ª oal	8,98656 × 27,727 × 10 ¹⁵ 8,98508 × 10 ¹⁵ 2,14784 × 10 ¹⁵ 8,51775 × 10 ¹⁶	0.238849	0.258889	0.999346	н	251.996	860,000	641,197	0.323837	146.6325	24.2021
cal	2.14784 × 10 ¹³	0.239006	0.239045	1	1.000654	252.161	860,563	641,617	0.324049	16.6630	24.21.79
int. J	8.98508 × 10 ¹³	0.999835	τ.	4.1833	4.18605	1,054.866	3,600,000	2,684,082	1.355597	195.2060	דוול.וסו
sbe. J	8.98656 × 10 ¹³	н	1.000165	4.1840	4,18674	1,055.040	3,600,594	2,684,525	1.355821	195.2382	101.3278
g mass (energy equiv.)	-	1.112772 × 10 ⁻¹⁴	1.112956 × 10 ⁻¹⁴	4.65584 × 10 ⁻¹⁴	4.65888 × 10-14	1.174019 × 10 ⁻¹¹	4.0064 × 10 ⁻⁸	2.98727 × 10 ⁻⁸	1.508720 × 10-14	2.172% × 10°12	1.127548 × 10 ⁻¹²
Multiply by appropriate entry	l g mass (energy equiv.)	1 abs. 3	1 int. 3	1 cal	l I. T.ª cal	1 Pfu	1 int. kw-hr	1 kp-br	1 ft-1b(vf.)	1 cu ft - 1b(vt.)/sq 1b.	1 liter-atm

AT of Intermetional Steam Mables

TABLE 18.- CONVERSION FACTORS TO FREQUENILY USED UNITS - Continued

(h) For units of molecular energy

Multiply by appropriate entry to obtain	erg/molecule	abs. 1/mole	int. J/mole	cal/mole	abs. electron-v/molecule int. electron-v/molecule	int. electron-v/molecule	wave number (cm-1)
l erg/molecule	1	6.02283 × 10 ¹⁶	6.02283 × 10 ¹⁶ 6.02184 × 10 ¹⁶ 1.439491 × 10 ¹⁶	1.439491 × 10 ¹⁶	6.24222 × 10 ¹¹	6.24017 × 10 ¹¹	5.03581 × 10 ¹⁵
l abs. j/mole	1.660349 × 10 ⁻¹⁷	ч	0.999835	0.239006	1.036427 × 10 ⁻⁵	1.036086 × 10 ⁻⁵	8.36121 × 10 ⁻²
l int. j/mole	1.660623 × 10 ⁻¹⁷	1.000165	Т	0.239046	1.036599 × 10-5	1.036257 × 10 ⁻⁵	8.36259 × 10 ⁻²
l cal/mole	6.94690 × 10-17	001181.4	4.1833	ı	4.33641 × 10 ⁻⁵	4.33498 × 10 ⁻⁵	0.349833
l abs. electron_v/molecule	1.601992 × 10 ⁻¹²	96,485.3	4,694,96	23,060.5	٠.	0.999670	8,067.34
l int. electron-v/molecule	1.602521 × 10 ⁻¹²	96,517.1	96,501.2	23,068.1	1.000330	1	8,070.00
1 wave number $\left(\operatorname{cm}^{-1}\right)$	1.985776 × 10 ⁻¹⁶	11.95999	11.95802	2.85851	1.239567 × 10 ⁻⁴	1.239158 × 10 ⁻⁴	r

· =

TABLE 18.- CONVERSION FACTORS TO FREQUENTLY USED UNITS - Continued

(1) For units of specific energy

Btu/lb	0.429929	0.430000	1.798823	1.8	г
I. T.ª cal/g	0.238849	0.238889	0.999546	ı	0.555556
cal/g	0.239006	0.239045	ਜ	1,000654	0.555919
int. 1/g	0.999835	7	4.1833	4.18605	2.32558
abs. j/g	П	1.000165	4.1840	4.18674	2.32597
Multiply by appropriate entry to obtain	l abs. 3/g	1 int. 3/g	1 cal/g	1 Г. Т. ^а са1/g	1 Btu/lb

^aI. T., International Steam Tables.

(j) For units of specific energy per degree

\vdash					
abs. $\mathrm{J/g}^{\mathrm{O}}$ C	ည	int. j/g °C	cal/g oc	I. T.ª cal/g oc	Btu/1b OF
1		0.999835	0.239006	0.238849	0.238849
1.000165	10	Т	0.239045	0.238889	0.238889
4.1840		4.1855	1	0.999546	945666.0
4.18674	†	4.18605	1.000654	٠ ٦	1
4.18674	7	4.18605	1.000654	П	1
				1	

a. T., International Steam Tables.

TABLE 18. - CONVERSION PACTORS TO FREQUENTLY USED UNITS - Concluded

viscosity	-2 lbp hr ft.2 gm sec-1 cm-1 lbm sec-1 in1 lbm hr-1 ft1 slug sec-1 in1 slug hr-1 ft1	5.8916 × 10-9 1 × 10 ⁻² 5.5998 × 10 ⁻⁵ 2.4191 1.7405 × 10 ⁻⁶ 7.5188 × 10 ⁻²	7-9 5.8016 × 10 ⁻⁷ 1 5.5998 × 10 ⁻³ 2.4191 × 10 ² 1.7405 × 10 ⁻⁴ 7.5188	3-6 5.6895 × 10 ⁻⁴ 9.8067 × 10 ² 5.4916 2.3725 × 10 ⁵ 1.7068 × 10 ⁻¹ 7.3733 × 10 ³	1-4 μ.0000 x 10-2 6.8947 x 10 ⁴ 3.8609 x 10 ² 1.6679 x 10 ⁷ 1.2000 x 10 5.1840 x 10 ⁵	3-6 2.7778 × 10 ⁻⁴ 4.7880 × 10 ² 2.6812 1.1583 × 10 ⁵ 8.3335 × 10 ⁻² 3.6000 × 10 ³	1.4400×10^{2} 2.4821×10^{8} 1.3899×10^{6} 6.0044×10^{10} 4.3199×10^{4} 1.8662×10^{9}	$^{5-5}$ 1 1.7257,×10 ⁶ 9.6524×10 ³ 4.1698×10 ⁸ 3.0000×10 ² 1.2960×10 ⁷	0 ⁻⁹ 5.8016 × 10 ⁻⁷ 1 5.5998 × 10 ⁻³ 2.4191 × 10 ² 1.7405 × 10 ⁻⁴ 7.5188	$^{-7}$ 1.0360 × 10 ⁻⁴ 1.7858 × 10 ² 1 4 .3200 × 10 ⁴ 3.1081 × 10 ⁻² 1.3427 × 10 ³	0-8 8.6339 × 10 ⁻⁶ 1.4882 × 10 8.3333 × 10 ⁻² 3.6000 × 10 ³ 2.5902 × 10 ⁻³ 1.1189 × 10 ²	10 ⁻¹⁰ 2.8779 × 10 ⁻⁸ 4.9605 × 10 ⁻² 2.7778 × 10 ⁻⁴ 1.2000 × 10 ¹ 8.6337 × 10 ⁻⁶ 3.7297 × 10 ⁻¹	11-0 12-3983 x 10-9 4.1336 x 10-5 2.3148 x 10-5 1 7.1946 x 10-7 3.1081 x 10-2
(k) For units of viscosity	1bg sec ft-2 1bg hr in2	1.4504 × 10-7 2.0886 × 10 ⁻⁵¹ 4.0289 × 10 ⁻¹¹	× 10-3 4.0289 × 10-5 2.0886 × 10-3 4.0289 × 10-9	2.0482 3.9510 × 10-6	1,4400 × 10 ² 2,7778 × 10*4	1 1.9290 × 10 ⁻⁶	5.1841 × 10 ⁵ 1	3.6001 × 10 ³ 6.9446 × 10 ⁻³	2.0886 × 10 ⁻³ 4.0289 × 10 ⁻⁹	5.7298 × 10"1 7.1948 × 10"7	3.1083 × 10 ⁻² 5.9958 × 10 ⁻⁸	1.0361 × 10 ⁻⁴ 1.9985 × 10°.	× 10-6 5.9957 × 10-8 8.6339 × 10-6 1.6655 × 10-11 2.3983 × 10-9
	gg sec cm ⁻² lbg sec in. ² l	1.0197 × 10 ⁻⁷ 1.4504 × 10 ⁻⁷ 2	1.0197 × 10 ⁻³ 1.4504 × 10 ⁻⁵ 2	1 1,4224 x 10 ⁻²	7.0305 × 10 ⁴	4.8823 × 10 ⁻¹ 6.9445 × 10 ⁻³	2,5310 × 10 ⁵ 3.6000 × 10 ⁵	1.7577 × 10 ³ 2.5001 × 10 ¹	1.0197 × 10 ⁻³ 1,4504 × 10 ⁻⁵	1.8210 × 10 ⁻¹ 2.5901 × 10 ⁻³	1.5175 × 10 ⁻² 2.1585 × 10 ⁻⁴	× 10 ⁻⁵ 7.1947 × 10 ⁻⁷	
	Poise &	1 × 10-2	٦.	9.8067 × 10 ²	6.8947 × 10 th 7.	4.7880 × 10 ²	2.4821 × 10 ⁸	1.7237 × 10 ⁶	<u>ਜ</u> ਜ	1.7858 × 10 ²	1.4882 × 10 ¹	4.9605 × 10 ⁻² 5.0582	2312.41 5-01 × 8××1.41 4-01 × 8××1.41
	Centipoise	ਜ	1 × 10 ²	9.8067 × 10 ⁴	6.8947 × 1.0 ⁶	4.7880 × 10 ⁴	2,4821 × 10 ¹⁰	1.7257 × 10 ⁸	1 × 10 ²	1.7858 × 10 ⁴	1.4882 × 10 ³	4.9605	1. 1.828 v 10-1
	Multiply by appropriate entry	Centipoise	Poise	ولا عود دس ₋ ح	lby sec in2	lb _F sec ft ⁻²	10p hr in2	10p dr ft-2	8 _M sec ⁻¹ cm ⁻¹	1b _M sec ⁻¹ in1	1b, sec-1 ft-1	15 _M hr ⁻¹ in1	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

•

TABLE 19.- TEMPERATURE INTERCONVERSION TABLE

					УК ОВ	Ę	·			. 4		4 7.2	0.6 5	6 10.8	7 12.6	8 14.4	9 16.2		0 18.0			 4			0.56	1.11		4 2. 22	5 2.78	6 3.33	7 3.89	9 4.44	9 5.00	5, 56	11 6.11	12 6.97	4 7 99	7.72	5 8.33	- { - {	6 6 88 C	ŗ	8 10,00				
a,	720	725.69	129.69	730	738.00	740	743.69	749.69	220	756.00	759.69	. 092	161.69	769.69	200	774.00	2 G G	700	200						810	815.69	819.69	950	829.00	830	833.69	839.68	846.00	849.69	850	851.69	859.659	964 00	869.69	870	879.69	880	882.00	20.10B	98	899.69	06
<u>u</u>	1																																														
၁၀	ı																																														
8	400	403.16	405.38	405, 56	410	410.94	413.16	416.41	416.67	27	422.05	422, 22	423, 16	427.60	427.78	430	433.16	433.33	438.74	440	443 16	444. 27	44. 44	449.83	450	453, 16	455.38	455.56	460 04	461.11	463.16	466. 49	456.67	472.05	472.22	473, 16	477.60	477.18	483 15	483, 33	488, 72	488.89	84	493.16	484. 44	499.83	500
o.R	540	545.69	549.69	5 <u>7</u>	558.00	928. 08.	563.69	969.69	570	576.00	579.69	580	581.69	589.69	200	594.00	599. 69	3000	80.00 0.00 0.00	812 00	617 69	619.69	620	629.69	630	635. 59	639.69	640	648.00	650.03	653, 69	659, 69	000	69 69	670	671.69	679.69	680	589.00	690	699, 69	8	702.00	707. 69	710.0%	719.69	720
it o	80.33	86.00	96	90.31	98.31	200	104.00	110	110.31	116,31	120	120.31	122.00	130	130, 31	134. 31	140	140.31	100	150.31	158.00	160	160.31	170	170.31	176.00	130	180.31	188.31	190:31	194, 00	200	200.31	200.31	210.31	212.00	270	220.31	730.31	230.31	240	240.31	242.31	248.00 00.00	250 31	260.	260.31
ပွ	26 84	30	32, 22	32.40	36.84	37.78	40.33	43.33	43.51	46.84	48.89	49.06	50	54. 44	54. 62	56.84	9	60. 17	65.06	9 9 9	, o	1,5	71. 28	78,67	76.84	80	82. 22	82.40	86.84	87. 18	8	93, 33	93.51	60.00	99.06	100	104.44	104. 62	100.84	116.17	115.56	115.73	116.84	12°	121. 1:	126.67	126.84
0 14	300	303, 16	305. 38	305. 56	310	310.94	311.11	316.41	316.67	320	322. 05	322, 22	323, 16	327.60	327. 78	330	333. 16	333. 33	338. 72	330.09	340	344 27	344 44	349.83	350	353, 16	355. 38	355, 56	300	360.94	363.16	366. 49	366. 67	3.72 373 05	372, 22	373.16	377, 60	377.78	330 34 34	383.10	388. 72	368.89	380	393, 16	394, 27	300	400
a°	960	365.69	369, 69	370	378.00	379.69	383 60	389.00	300	396.00	399.69	8	401.69	409.69	410	414.00	419.69	620	429.69	500	432.00	439.69	. 044	449.69	450	455.69	459.69	460	468.00	469.69	473.69	419.69	\$ 60 50 50 50 50 50 50 50 50 50 50 50 50 50	489 69	490	491.69	499.68	200	504.00	30.0	519.69	20	522.00	527.69	529.08	539.69	ξ. 2
f	69 66-	-94.00	8	-83.33	-81.69	99	-78.08	2.02	-69.69	-63.69	9	-59.69	-58.00	-20	-49.69	-45.69	9	-39.69	-30	-27 60	60.66	3 6	-19 59	-10	-9.69	-4.00	0	31	0.31	2 5	14.00	50	20.31		30.31	32.00	04	40.31	4. 5. 5. 3.	50.31	09	60, 31	62. 31	98. 90. 90.	2.5	; : &	80.31
ိုင	-73.16	2	-67.78	-67, 60	-63. 16	-62.23	9 Q	-56.67	-56.49	-53.16	-51 11	-50.94	-50	-45, 56	-45, 38	-43.16	9	-39.83	34.44	20.00	23.10	-28.89	-28.72	-23.33	-23.16	50	-17.78	-17.60	-13.16	-12.62	107	-6.67	-6, 49	9 -		0	4.44	4.62	.	10.17	15.56	15.73	16.84	: 2	21. 28	26.67	26.84
*	200	203, 16	205.38	205.56	210	210.94	213 16	216.41	216.67	220	222, 05	222, 22	223.16	227.60	227.78	230	233, 16	233.33	238.72	240.99	243 16	244. 27	244. 44	249.83	250	253. 16	255, 38	255.56	260	26. 11	263.16	266. 49	266.67	272.05	272, 22	273.16	277.60	277.78	200	283, 33	288. 72	288.89	290	293, 16	294. 44	299.83	300
°R	180	185.69	189.69	8,	198.00	199.69	203 69	209.69	210	216.00	219.69	550	221.67	229.69	230	234.00	239. 69	240	249.09	253	257.80	259.69	560	269.69	270	275.69	279.69	280	288.00	290.68	293, 69	299, 69	200	309.60	310	311.69	319.69	3 25	329.00	330.09	339. 69	340	342.00	347.69	250.08	359.69	360
o _F																																								-129,69							
၁့	-173.16	-170	167.78	-167.60	-163.16	162.60	160	-156.67	-156.49	-153.16	-151.11	-150.94	-150	-145, 56	-145.38	-143.16	-140	-139.83	-134.44	-134 16	130	-128.89	-128.62	-123.33	-123, 16	-120	-117.78	-117.60	-113.16	-112.05	-110	-106.67	-106.49	-101.11	-100.94	700	-95.56	90.38	2 6	-89.83	-84.44	-84. 27	-83. 16	3 2 3 4	-78.00	73.33	-73.16
o ^K	700	103.16	105.38	105.56	10	110.96	113.16	116.49	116.67	120	122, 05	127. 22	123, 16	127.60	127.78	130	133.16	133.33	130.72	140	143 16	144. 27	144.44	149.83	150	153.16	155.38	155.56	160	161.11	163, 16	166. 49	190.67	172.05	172.22	173.16	177.60	200	183 16	183.33	188.72	188.89	190	193. 16	194.44	199, 83	500
o _R	0																																														180
¥ ₀																																								-309.69							
သို																																								-189.83							
ř	0	3.16	5.38	5.55	2 5	5	13.16	16.49	16.67	50	22.02	22. 22	23.16	27.60	27.78	200	33.16	15.00	38 80	40	43.16	44.27	44.44	49.83	ድ	53.16	55.38	8 5	60 94	61.11	63.16	66.49	9 6	72.05	72. 22	73.16	77.60	· 6	93.16	83.33	88.72	88.88	8	93.16	94.44	99.83	201

Concluded	
1	
TABLE	
NOT SHIP	
N.T.E.Y.C.	
- TEMPERATURE	
≟i`	
TABLE 19.	

			Ą		ř			4		, . ,	9 6		13.6	¥.	16.2	18.0			×	ç	,	0. 56	1.11	1. 67	2 33	1 25	200	•		5.09		\$: • •	. 6		n ;	, 4		8.89		10.00					
			à	4	ò		- •	-	•			•	•	•	œ.	10		,	۴	å	٠	-	*	-	•	, 4		٠	- 10	•		2 :	: :	1	2 :	<u> </u>	;	92	-	1.8			-		_
Ŗ	1620	1020.08	1636.00	1639. 69	7640	1643. 89	1640	1654.00	1650.60	1660	1661. 69	1849.69	2	1679.00	1680	1689. 69	0691	1692.00	1697.69	1000.00	1700		1715.69	1719.89	1720	1722.00	1729.69	1730	1739 69	1740	1146.00	1749. 65	1750	1759.69	1760	1764, 30	1769.69	1770	1780	1782.00	1787.69	1789 68	1790	1300	
4	1160.31	11,73	1170.31	1180	1180.31	1184.00	3 5	1196.31	128	1200.31	1202.00	1210	1210.31	0001	1220 31	1230	1230. 31	1232. 31	1238.00	24	1240 31	2 9	1256 00	1260	1260. 31	1262, 31	1270	1270.31	1280	1280.31	1286, 31	252	1280.31	1300	1300.31	1304. 31	1310	1310. 31	1320.31	1322 31	1328.00	1330	1330. 31	1340	2
۶	636. 84	632, 22	632.40	637.78	637.95	040	25.33	1	643.89	649.06	8	17. 44	654. 62	600.03 (10	860	665.56	665.73	866. B4	678 878	671.11	671.28	676.60	. 68 . 68 . 68	682 22	682.40	686.84	687.78	687.95	893.43	693, 51	696.84	688.88	88 88 88 88 88	30,	704. 52	706.84	710	710.17	715 74	715 84	750	721. 11	721. 28	736.67	
×	903.16	902.38	906. 50.56	910.04	911, 11	913. 16	916.41	9 0	922 05	922, 23	923, 16	927. 60	927. 78	256	27.70 0 2.7 0	938.72	938.89	3	943, 16	944. 27	244. 44	949.83	950	200	955.56	8	980.94	198	965. 49	966.67	26	872.05	272.	977 60	877.78	980	983. 16	983.33	90 GB CB	8	993.14	984.27	994. 44	998.83	334
ge	1440	1449.68	1450	1459.69	1460	1463. 69	1469.69	1474	1478.69	1480	1481.69	1489.68	1490	1434.00	20.00	1500 60	1520	1512.00	1517.69	1519. 63	150	1520.68	1530	1535.00	1560	1548.00	1549.69	1550	1553.59	260	1566.00	1569.69	1570	1570 69	1.380	1584.00	1589.59	1590	1589.68	2007	1607.63	1809.69	1610	1619.69	TDKO
ďo	980.31	8	990.31	1000	1000.31	1004.00	0101	1010.31	1040	1020.31	1022.00	1030	1039.31	1034. 31	1040	1050.31	1050.31	1052.31	1058.00	1060	1060.31	1013	1076.33	10/5	1080	1062. 31	3601	1050.33	1004.00	1 69 1 1 69	1106.31	0711	1110.31	DO .2:11	1120.31	1124. 51	9211	1130.31	9	1140.3	1148 00	12	1150, 31	9911	1100.31
ာ့	526.84	532.22	532.40	537.78	537.95	9	543.33			248	Š.	554. 44	554. 62	556. 84	8	2 990	565.73	566.84	570	571. 11	571.28	576, 66	176.84	200	582.40	586.84	587.78	587.95	32	20.00	596.64	596.89	589, 06	200	504.62	608.8	970	614, 17	615.50	615.73	620	621.11	621.28	626. 67	020.64
o _K	800	805.38	805.56	9 9	11.11	813.16	816.41	816.67	S S	822 22	823.16	827.60	827.78	830	833, 16	833.33	838 BD	940	843.16	844. 27	844. 44	848.83	820	853.16	2 2 2	860	860.94	861.11	863.16	966 67	200	872.05	872.22	873.16	17. TR	880	883.16	883.33	888.72	888. 89	200	694, 27	894.44	899.83	8
a,	1260	1269. 69	1270	1279.60	1280	1283.69	1289.69	2 2 2	1299 69	138	1301. 69	1309.69	1310	1314. 90	200	1320 69	1330	1332, 00	1337.69	1339, 69	1340	1349.69	350	1359.00	1360	1368.00	1369.68	1370	1373, 68	1380	1386.00	1389.69	13.90 13.00	1399 69	1400	1404.00	1409.69	1410	1419.69	200	1427.69	1429.09	1430	1439.69	3
4	800.31 806.00	9,00	810°31	820	820.31	834. DO	200	900	9	840.31	842.00	<u>\$</u>	850.31	10 m	200	930	870.31	872.31	878.00	88°0	880.31	96	280.31	8	900.31	908.31	910	910.31	8 8 8	920.31	926.31	930	930.31	8 32.00 64.00	940.31	944. 31	88	950.31	2 S	1000	968 00	8	970.31	8	10.704
ပ္	426.84 430	432. 22	437.45	177.78	437.95	\$	# P P P P P P P P P P P P P P P P P P P	143.01	448 89	46.06	8	154. 1	454. 62	456.84	200	765.56	465.73	466.84	674	471, 11	471.28	476.66	476. 84 20 0	000	482.40	486.84	487.78	487.95	493	493.5	49e. B4	498.89	489.06	۲ ورع	504. 62	506.84	520	510.17	515.56	010	6 6	521.11	521. 28	526.67	340.01
»	700 703.16	705.36	705.56	710.94	711.11	713.16	716.41	9	722 05	722.23	723.16	727. 60	727. 78	230	733.16	1 25 22	38	240	743, 16	74.27	1 1	749.83	Š.	75.70	755.56	; ; %	760.94	761, 11	763, 16	786.67	2,20	772, 95	772.22	773.15	777.78	96	783.16	783.33	188.7	20 G	2 2	784.87	794.44	799.83	3
a o	1080	1089.68	0607	60.00	8	1103.66	1109.69	9	30.01	1120	1121.69	1129.69	1130	8	1139.08	1140 60	1.50	1152.00	1157.68	1159.69	1160	1169.69	21	1170.00	1180	1188.00	1189.69	28	1193.69	1200	1206.00	1209.69	0121	1211.69	1220	1224.00	1229.69	1230	1239. 69	1240	1.47.69	1249, 69	S S S	1259. 67	202
,	620. 31 636. 00	630	630.31	9	640.31	644.00	Q.	650.32	6,60	660.31	662,00	678	670, 31	674. 31	8	76 O	690.31	692.31	698.00	8	700.31	8	110.31	716. 200	730	728.3	30	730.31	8 9	240	746.31	750	750, 31	182.09 24.09	760.31	764. 31	8	770.31	380	780.31	788 00	. 062	790. 31	90c	800. 31
ပ	336. 84 330	333, 22	332.40	337.78	337.95	340	343.33	14.01	248.89	348	3.50	354. 44	354. 62	356. 84	360	360.17	365. 73	366, 64	370	371.11	371.28	376.66	376. 84	200	304.42	386. 84	387.78	387.85	380	909 51	396.94	398.89	389, 06	8 5	404 62	406.84	410	410.17	415, 56	415.73	4 10.	421.11	421.28	426.67	430.84
, K	600 803. 16	\$09 X	605. 56 2.50	910.019	611.11	613.16	616.41	616.67	433 06	622 22	623.16	627.60	627.78	630	633.16	633.33	638.89	049	643.16	844. 27	614. 12	649.83	9,	653. 16	45.50	999	660.94	561, 11	563.16	5.55 A7	670	672.05	672, 32	673.16	777 78	680	683.16	683.33	688.72	688.89	3	694. 27	694.44	699.83	Ą
ĸ.	900																																												- 1
a o	446.00	•			•		-					-																																	
ွ	236.84																																												1
»×	88	505.38	\$05.56	100	511.11	513.16	516.41	516.67	2 5	3 2	523. 16	527.60	527.78	Š	533.16	533.33	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9	543	544.27	S4. 1	549, 83	550	553. 28	30.00	8 6 9	560.94	561, 11	563.16	200	9 6	572 05	527. 22	573.16	577.90	9	563.16	583, 33	568, 72	588.80	2 3	594, 27	194	509.83	8

TABLE 20.- CALORIMETRIC ENTROPY OF NITROGEN VAPOR AT BOILING POINT

Calculation u	sing	77. 3 20	ĸ	8.8	boiling	point
---------------	------	-----------------	---	-----	---------	-------

	Boiling point,	S or S ^O , entropy units	Source
S for liquid	77.32	19.074	(1)
$S_{\text{vapor}} = \frac{1,332.9 \text{ cal/mole}}{77.32^{\circ} \text{ K}}$		17.239	(1)
S for vapor	77.32	36.313 ± 0.1	(1)
b So for gas	77.32	36.416	(1)
S ^o - S		0.103	
b So for gas	77.32	36.373	(2)
s ^o - s		0.060	
Calculation usin	ng 77.34° K as boiling	point	
S for liquid	77.32	19.074	(1)
$S(77.34^{\circ} K) - S(77.32^{\circ} K)$ for liquid		0.004	(1)
S for liquid	77.34	19.078	(3)
$S_{\text{vapor}} = \frac{1,320 \text{ cal/mole}}{77.34^{\circ} \text{ K}}$		17.067	(3)
S for vapor	77.34	36.145	
b So for gas	77.34	36.3 75	(5)
g ^o - S		0.230	
Calculation using	77.395° K as boiling	point	
S for liquid	77.32	19.074	(1)
$S(77.395^{\circ} K) - S(77.32^{\circ} K)$ for liquid		0.013	(1)
S for liquid	77.395	19.087	(4)
S _{vapor}		<u>17.079</u>	(5)
S for vapor	77 -39 5	36.166	
b SO for gas	77-395	36.380	(2)
S ^o - S		0.214	
SO - S estimated from Berthelot equation		0.22	(1)
SO - S estimated from present correlation		0.125P + 0.008P ²	+ 0.77P ⁵
Calculation using 77.3950 heat of vaporiza	K as boiling point wit tion of Furukawa and Me	h S based on Coskey	
S for liquid	77.395	19.087	(1), (3)
$S_{\text{vapor}} = \frac{1,336.6 \text{ cal/mole}}{77.395^{\circ} \text{ K}}$		<u>17.270</u>	(6)
S for vapor	77-395	36.3 57	
b So for gas	77 .3 95	36.380	(2)
s ^o - s		0.023	

a(1) Giauque and Clayton (ref. 39).
(2) Table 1.
(3) Friedman and White (ref. 40).
(4) Hoge and King.
(5) Adjusted from value based on reference 40 observing constant factor in pressure.
(6) Furukawa and McCoskey (ref. 41).

^bComputed from spectra.

Figure 1.- PVT data for gaseous nitrogen. Values for temperatures in ${}^{\rm O}{\rm K}$. (Hyperbola at bottom of figure shows vertical displacement due to a 1-percent error in PV/RT.)

Figure 2.- Departure of experimental specific heat from table 5.

Figure 3.- Dependence of specific heat upon pressure. Data of Workman (ref. 33).

Figure 4.- Ratio of specific heats by resonance method. Temperature, 23° C.

Figure 5.- Ratio of specific heats from velocity of sound. Temperature, 27° C.

107

Figure 6.- Departures of experimental velocity of sound from table 9.

-

Figure 7.- Heat of vaporization of nitrogen.

NACA TN 3271 109

Figure 8.- Effect of dissociation on enthalpy of nitrogen.

Ξ

Figure 9.- Effect of dissociation on entropy of nitrogen.

JOHNSTON & MC CLOSKEY, 1940 (REF. 55)

• 0

8 MELSTER, 1930 (REF. 61) 8 HEBERLING, 1931 (REF. 60)

● TRAUTZ TRAUTZ TRAUTZ TRAUTZ

0

VASILESCO, 1945 (REF. 63)

RIGDEN, 1938 (REF. 58) YEN, 1918 (REF. 64)

0

BAUMANN, 1929' (REF. 59)

ZINK, 1930(REF. 62)

Œ

Figure 10. - Departures of experimental viscosities at 1 atmosphere from η - η calc × 100.

Percent departure,

table 10.

ncalc

Figure 11.- Departure of high-pressure measurements from table 10. Percent departure, $\frac{\eta - \eta_{calc}}{\eta_{calc}} \times 100$.

NACA TN 3271 113

 N_{Pr}

Figure 12.- Nomogram for fractional powers of Prandtl number.

, je

Figure 13.- Deviations (observed minus calculated) of vapor-pressure data for nitrogen.