Spherical Harmonic Lighting

70001 – Advanced Computer Graphics: Photographic Image Synthesis
Abhijeet Ghosh
Lecture 11, Feb. 13th 2024

1

Image Based Lighting

- Ray-tracing
- · Requires sampling of lights in Environment maps
 - Monte Carlo
 - Deterministic
- Spherical Harmonics basis function
 - efficient encoding
 - efficient evaluation (no ray-tracing!)
 - ideal for real time rendering with GPUs

Spherical Harmonics

- Frequency decomposition of a 3D function
- 3D analog of Fourier basis functions
 - Representing increasing frequencies of a function with higher order polynomials
- Ideal for representing functions defined over a sphere of directions
 - EMs
 - BRDFs

3

Spherical Harmonics

 $(x, y, z) = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$

$$Y_l^m(\theta, \varphi) = K_l^m e^{im\varphi} P_l^{|m|}(\cos\theta), \ l \in \mathbb{N}, \ -l \le m \le l$$

$$K_{l}^{m} = \sqrt{\frac{(2l+1)}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}}$$

$$y_{l}^{m} = \begin{cases} \sqrt{2} \operatorname{Re}(Y_{l}^{m}), & m > 0 \\ \sqrt{2} \operatorname{Im}(Y_{l}^{m}), & m < 0 = \\ Y_{l}^{0}, & m = 0 \end{cases} \begin{cases} \sqrt{2} K_{l}^{m} \cos(m\varphi) P_{l}^{m}(\cos\theta), & m > 0 \\ \sqrt{2} K_{l}^{m} \sin(-m\varphi) P_{l}^{-m}(\cos\theta), & m < 0 \\ K_{l}^{0} P_{l}^{0}(\cos\theta), & m = 0 \end{cases}$$

 P_I^m – Legendre polynomial of order I and degree m

5

SH Representation of EM

$$L_{lm} = \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} L(\theta, \phi) Y_{lm}(\theta, \phi) \sin \theta \, d\theta d\phi$$

- L_{lm} SH coefficient (order l and degree m) of Lighting (EM)
- Y_{lm} SH basis function of order *l* and degree *m*

SH Reconstruction of EM

$$L(\theta,\phi) = \sum_{l,m} L_{lm} Y_{lm}(\theta,\phi)$$

- L_{lm} SH coefficient (order l and degree m) of Lighting (EM)
- Y_{lm} SH basis function of order l and degree m

7

SH Reconstruction of EM

$$L(\theta, \phi) = \sum_{l,m} L_{lm} Y_{lm}(\theta, \phi)$$

2nd order reconstruction I = 2

SH Reconstruction of EM

$$L(\theta, \phi) = \sum_{l,m} L_{lm} Y_{lm}(\theta, \phi)$$

4th order reconstruction

I = 4

Note the much stronger ringing artifacts!

9

The general case ...

$$c_l^m = \int_S f(s) y_l^m(s) ds$$
 SH projection

$$\widetilde{f}(s) = \sum_{l=0}^{n-1} \sum_{m=-l}^{l} c_l^m y_l^m(s) = \sum_{i=0}^{n^2} c_i y_i(s) \qquad \text{SH reconstruction}$$

Irradiance

[Ramamoorthi & Hanrahan 2001]

$$E(\mathbf{n}) = \int_{\Omega(\mathbf{n})} L(\omega)(\mathbf{n} \cdot \omega) d\omega$$

$$E(heta,\phi) = \sum_{l,m} E_{lm} Y_{lm}(heta,\phi)$$
 SH reconstruction

11

Irradiance

[Ramamoorthi & Hanrahan 2001]

$$E(\theta,\phi) = \sum_{l,m} E_{lm} Y_{lm}(\theta,\phi)$$
 SH reconstruction

$$A=(\mathbf{n}\cdot\omega)=\max\left[\cos heta,0
ight]=\sum_{l}A_{l}Y_{l0}(heta)$$

$$A_{l}\text{ is a 1D function, no dependence on m}$$

$$E_{lm} = \sqrt{\frac{4\pi}{2l+1}} A_l L_{lm}$$

Irradiance

[Ramamoorthi & Hanrahan 2001]

$$E_{lm} = \sqrt{\frac{4\pi}{2l+1}} A_l L_{lm} \qquad \text{Let } \hat{A}_l = \sqrt{\frac{4\pi}{2l+1}} A_l$$

SH coefficient of irradiance

$$E(\theta, \phi) = \sum_{l,m} E_{lm} Y_{lm}(\theta, \phi)$$
$$= \sum_{l,m} \hat{A}_l L_{lm} Y_{lm}(\theta, \phi)$$

13

Irradiance

[Ramamoorthi & Hanrahan 2001]

$$\hat{A}_0 = 3.141593$$
 $\hat{A}_1 = 2.094395$ $\hat{A}_2 = 0.785398$ $\hat{A}_3 = 0$ $\hat{A}_4 = -0.130900$ $\hat{A}_5 = 0$ $\hat{A}_6 = 0.049087$

• Irradiance is well approximated by only the first 9 SH coefficients ($l \le 2$)!

Irradiance

- 9 SH coefficients
- 9 Basis functions
 - Stored as textures in GPU

9 term SH approximation of diffuse reflectance

17

Glossy BRDFs

- Spherical Harmonics Reflection Maps
- Glossy BRDFs require higher order SH
- SH coefficients of order $l \ge 4$

[Ramamoorthi & Hanrahan 2002]

Reflected Radiance

$$B(\vec{N}; \vec{\omega}_o) = \int_{\Omega} L(\vec{N}; \vec{\omega}_i) \rho(\vec{\omega}_i, \vec{\omega}_o) (\vec{\omega}_i \cdot \vec{z}) d\omega_i$$

$$B(\alpha,\beta;\theta_{o},\phi_{o}) = \int_{\Omega} L\left(R_{\alpha,\beta}\left(\theta_{i},\phi_{i}\right)\right) \, \hat{\rho}(\theta_{i},\theta_{o},\mid\phi_{o}-\phi_{i}\mid) \, d\omega_{i}$$
 Isotropic BRDF

Reflected Radiance in SH basis

$$B(\alpha,\beta,\theta_o,\phi_o) = \sum_a \sum_b c_{ab} d_b(\alpha,\beta) h_a(\theta_o,\phi_o)$$

$$c_{ab} \text{ is the product of 1D}$$
 BRDF and 2D lighting

coefficient

$$g_a(\alpha,\beta) = \sum_b c_{ab} d_b(\alpha,\beta) \qquad \text{Precompute SH coefficient maps!}$$

$$B(\alpha, \beta, \theta_o, \phi_o) = \sum_a g_a(\alpha, \beta) h_a(\theta_o, \phi_o)$$

Run-time lookups into SH coefficient and basis maps!

21

Reflected Radiance in SH basis

$$B(\alpha,\beta,\theta_o,\phi_o) = \sum_{p=0}^{P_B} \sum_{q=-p}^p B_{pq}(\alpha,\beta) Y_{pq}(\theta_o,\phi_o) \\ \underset{\text{coefficient map basis map}}{\uparrow}$$

SH Reflection Map Renderings $B(\alpha,\beta,\theta_o,\phi_o) = \sum_{p=0}^{P_B} \sum_{q=-p}^p B_{pq}(\alpha,\beta) Y_{pq}(\theta_o,\phi_o) \\ \text{coefficient map basis map}$ Order 4 – 8 SH typically used for rendering glossy BRDFs

23

Precomputed Radiance Transfer unshadowed irradiance Precomputed radiance transfer [Sloan et al. 2002]

Precomputed Radiance Transfer

- Precomputation A global illumination simulator computes how a model shadows and scatters light onto itself.
 - Diffuse materials result recorded as transfer vector of SH coefficients per vertex (BDRF * ambient occlusion!)
 - Glossy materials result recorded as a transfer matrix of SH coefficients per vertex
- Run time Incident EM illumination is projected into SH basis
 - Diffuse materials model's transfer vector is dotted with lighting coefficients
 - Glossy materials transfer matrix is applied to lighting coefficients followed by BRDF convolution

25

Precomputed Diffuse Radiance Transfer

