TOPOLOGÍA I. Examen del Tema 1

- Grado en Matemáticas -Curso 2012/13

Nombre:

Razonar todas las respuestas

- 1. Probar que $\beta = \{[a,b); a \in \mathbb{Q}, b \in \mathbb{R} \mathbb{Q}, a < b\}$ es base de una topología en \mathbb{R} . Hallar el interior y la adherencia de \mathbb{Q} y [0,1].
- 2. Hallar el interior y la adherencia de los siguientes conjuntos:
 - (a) $A = \{(x, y); -1 \le x \le 1\}$ en \mathbb{R}^2 .
 - (b) $B = \{(x, y); y < x^2\}$ en \mathbb{R}^2 .
 - (c) $C = \{\frac{1}{n}; n \in \mathbb{N}\}$ en \mathbb{R} .
- 3. Se considera en \mathbb{N} la topología $\tau = \{O_n; n \in \mathbb{N}\} \cup \{\emptyset, \mathbb{N}\}$, con $O_n = \{1, \dots, n\}$. Probar que $\beta_n = \{O_n\}$ es una base de entornos de n. Si $A = \{2, 3, 4\}$, hallar el interior y adherencia del conjunto $\{2, 4\}$ en $(A, \tau_{|A})$.

1. Por la densidad de \mathbb{Q} y $\mathbb{R} - \mathbb{Q}$, dado $x \in \mathbb{R}$, existen $a \in \mathbb{Q}$, $b \in \mathbb{R} - \mathbb{Q}$ con a < x < b. Esto prueba que $x \in [a,b) \in \beta$, es decir, $\mathbb{R} = \bigcup_{B \in \beta} B$. Por otro lado, la intersección de dos elementos de β es otro elemento de β , pues $[a,b) \cap [c,d) = [\max\{a,c\}, \min\{b,d\})$ y de nuevo $\max\{a,c\} \in \mathbb{Q}$ y $\min\{b,d\} \in \mathbb{R} - \mathbb{Q}$.

Como no hay ningún elemento de la base incluido en \mathbb{Q} , $int(\mathbb{Q}) = \emptyset$. Por la densidad de los racionales, todo intervalo de la forma $[a,b) \in \beta$ interseca a \mathbb{Q} , luego $\overline{\mathbb{Q}} = \mathbb{R}$.

El conjunto [0,1) es abierto pues si $x_n \to 1$, $x_n < 1$ y $x_n \notin \mathbb{Q}$, entonces $[0,x_n) \subset [0,1)$. Por tanto, $int([0,1]) \supset [0,1)$. Sólo queda probar si x=1 es o no interior. No lo es, pues dado cualquier $[a,b) \in \beta$ con $1 \in [a,b)$, el conjunto [1,b) no está incluido en [0,1]. Esto prueba que int([0,1] = [0,1).

Sea x < 0. Tomamos $r \notin \mathbb{Q}$ tal que x < r < 0 y $q \in \mathbb{Q}$ con q < x. Entonces $[q,r) \cap [0,1] = \emptyset$. De la misma forma, si x > 0, sea $r \notin \mathbb{Q}$ tal que x < r y sea $q \in \mathbb{Q}$ con 1 < q < x. Entonces $[q,r) \cap [0,1]$. Esto prueba que [0,1] = [0,1].

2. (a) Usamos como base de la topología usual $\{(a,b)\times(c,d);a< b,c< d\}$.

Sea 0 < x < 1. Entonces $(0,1) \times (y-1,y+1) \subset A$. Esto prueba que $int(A) \supset (0,1) \times \mathbb{R}$. Si x=0, ningún elemento de la forma $(-r,r) \times (y-s,y+s)$ está en A (p.ej. (-r/2,y)). Esto prueba que (0,y) no es interior y de la misma forma, tampoco lo es (1,y). Como conclusión $int(A) = (0,1) \times \mathbb{R}$.

Sea x < 0. entonces $((x - 1, 0) \times (y - 1, y + 1)) \cap A = \emptyset$. Esto prueba que (x, y) no es adherente y de la misma forma, tampoco lo es un punto (x, y) con x > 1. Esto prueba que $\overline{A} = A$.

(b) El interior de B es B: sea $(x, y) \in B$, con $y < x^2$ y sea $\{(x_n, y_n)\} \to (x, y)$. Entonces $x_n^2 - y_n \to x^2 - y$. Pero como $x^2 - y > 0$, a partir de un cierto lugar de la sucesión $x_n^2 - y_n > 0$, probando que $(x_n, y_n) \in B$.

Sea $(x,y) \in \overline{B}$. Entonces existe $\{(x_n,y_n)\}\subset B$ convergiendo a (x,y). En particular, $x_n^2 - y_n \to x^2 - y$. Como $x_n^2 - y_n > 0$, tomando límites, $x^2 - y \geq 0$. Por tanto, $\overline{B} \subset \{(x,y) : y \leq x^2\}$. Si (x,y) satisface $y = x^2$, entonces es adherente, pues la sucesión de B dada por (x,y-1/n) converge a (x,y).

- (c) No hay ningún intervalo abierto dentro de C, luego $int(C) = \emptyset$. Los puntos adherentes son los límites de las sucesiones convergentes del conjunto. Aparte de los propios elementos del conjunto (usando aplicaciones constantes), está 0. Esto prueba que $\overline{C} = C \cup \{0\}$.
- 3. Como O_n es abierto y contiene a n, es un entorno suyo. Sea ahora $U \in \mathcal{U}_n$. Entonces existe $m \in \mathbb{N}$ tal que $n \in O_m \subset U$. De $n \in O_m$, se tiene $n \leq m$, y por tanto, $O_n \subset O_m$. Esto prueba que $O_n \subset U$.

Por la definición de topología relativa, se tiene:

$$\tau_{|A} = \{\emptyset, A, A \cap O_1, A \cap O_2, A \cap O_3\} = \{\emptyset, A, \{2\}, \{2, 3\}\}.$$

Y de aquí,

$$\mathcal{F}_{|A} = \{\emptyset, A, \{3,4\}, \{4\}\}.$$

El interior es el abierto más grande dentro de $\{2,4\}$, que es $\{2\}$. La adherencia el es cerrado más pequeño que contiene a $\{2,4\}$, que es A.