Attention gets you the right size and fit in fashion

Karl Hajjar, Alex Zhao Zalando SE

Outline

- The size recommendation problem
- Recent approaches
- A transformer architecture for size recommendation
- Thorough evaluation
 - Cross-category recommendation
 - Multi-user accounts
 - Online scenario

The size recommendation problem

Size Reco as a ML problem

Why is size reco difficult?

Sparsity in the article-size pairs encountered.

- Noise:
 - The "right size" is subjective.
 - Multiple users behind a single account.
 - Size systems/standards vary from brand to brand.

- Emotionally engaging topic : what if the recommended size differs from the customer's expectation ?
 - → see *Vecchi et. al (2015)*

Approaches to size recommendation

Size recommendation has gained attention only in the last 6 years.

- Different methods:
 - Size tables and aggregated article measurements (old-fashioned).
 - Using customer metadata: images / scans, questionnaires (personal info).
 - Using the history of past purchases of a customer.

 Lot of works published on the last type of approach since 2017 as it does not require any personal data.

What would an ideal size recommender do?

- 1. Perform well on metrics of interest (e.g. accuracy)
- 2. Naturally handle the various existing size systems
- 3. Adapt to new customers / information without retraining or fine-tuning (online scenario)
- 4. Leverage cross-category information
- 5. Handle multi-user accounts
- 6. Be transparent when making a size prediction \rightarrow *interpretability*

Recent approaches

What would an ideal recommender do?

		Per-category ¹	SFNet ²	MetalSF ³
1.	Perform well on metrics of interest	\checkmark	V	V
2.	Naturally handle the various existing size systems	×	V	\checkmark
3.	Adapt to new customers / information without retraining or fine-tuning	×	×	V
4.	Leverage cross-category information	×	V	V
5.	Handle multi-user accounts	<u>:</u>	<u></u>	<u>:</u>
6.	Be transparent when making a size prediction → <i>interpretability</i>	×	X	<u></u>

^{1.} Sembium et. al (2017, 2018), Abdulla et. al (2017), Guigourès et. al (2018), Dogani et. al (2019)

^{2.} Sheik et. al (2019)

^{3.} Lasserre et. al (2020)

Our approach using Transformers

A Transformer architecture using attention

- Standard Transformer architecture: flexible inputs
- "Translating" from an article to a size
- Source sentence = previous purchases of customer
- Target sentence = new article whose size has to be decoded

Attention weights interpretability

Weights computed by dot-product attention *Vaswani et. al (2017)*

Previous purchases linearly combined using those weights

These weights

- are positive and sum to 1
- are easy to interpret
- can be combined when multi-head attention is used

What would an ideal recommender do?

		Per-category	SFNet	MetalSF	Attention
1.	Perform well on metrics of interest	V	\checkmark	\checkmark	V
2.	Naturally handle the various existing size systems	×	\checkmark	\checkmark	V
3.	Adapt to new customers / information without retraining or fine-tuning	×	×	V	V
4.	Leverage cross-category information	×	\checkmark	V	\checkmark
5.	Handle multi-user accounts	<u></u>	•	<u></u>	<u></u>
6.	Be transparent when making a size prediction → <i>interpretability</i>	×	X	<u></u>	V

Model evaluation

Model evaluation

1. On past purchases in an offline scenario

2. On cross-category samples

3. On multi-user accounts

4. On past purchases in an online scenario

Performance - Offline

- Test samples with customers belonging to the training set
- Purchases of customer in the training set are considered as "previous" purchases when testing

	log lik.	top-1	top-2	top-3	mAUC
Bayesian (Guigourès et. al)	-1.46	0.47	0.72	0.84	0.79
PSE (Dogani et. al)	-1.47	0.53	0.77	0.87	0.82
SFnet (Sheikh et. al)	-1.20	0.55	0.79	0.89	0.85
MetalSF (Lasserre et. al)	-1.04	0.60	0.83	0.92	0.89
attention-based (ours)	-1.11	0.61	0.84	0.93	0.88

Performance - Cross-category

Test purchases in a specific category C from training customers that have not shopped in C before

(a) Upper ga	rments ((b) Lower garı	(b) Lower garments (15 k test samples).							
log lik. top-1 top-2 top-3 mAUC					log lik.	top-1	top-2	top-3	mAUC		
popularity	-1.82	0.31	0.60	0.75	0.64	popularity	-2.54	0.24	0.45	0.60	0.71
SFnet (Sheikh et. al)	-1.43	0.37	0.62	0.77	0.67	SFnet (Sheikh et. al)	-1.79	0.35	0.57	0.71	0.75
MetalSF (Lasserre et. al)	-1.30	0.41	0.69	0.86	0.73	MetalSF (Lasserre et. al)	-1.60	0.38	0.61	0.76	0.80
attention-based (ours)	-1.60	0.45	0.73	0.89	0.75	attention-based (ours)	-1.30	0.40	0.64	0.78	0.81

Performance - Multi-user accounts

Test purchases in a specific target gender G from training customers

These customers are grouped by type of history

- cold-start: no prior purchases of G articles
- consistent: only prior purchases of G articles
- mixed: various target genders in prior purchases

	Bayesian [12]		PSE [15]		SFnet [16]		MetalSF [17]		attention-based	
target gender	men	women	men	women	men	women	men	women	men	women
cold-start (no related history)	0.28	0.28	0.28	0.28	0.32	0.30	0.34	0.30	0.37	0.34
consistent (always same gender)	0.44	0.46	0.50	0.51	0.52	0.54	0.55	0.58	0.59	0.60
mixed (various genders in history)	0.44	0.47	0.49	0.54	0.48	0.55	0.55	0.61	0.54	0.61

Performance - New customers: the online scenario

Test purchases from test customers added one by one: online scenario

The first article's size is predicted using popularity

The second article's size is predicted based on the first purchased size. The nth article's size is predicted based on the first (n-1) purchased sizes.

	log lik.	top-1	top-2	top-3	mAUC
MetalSF (Lasserre et. al)	-1.23	0.59	0.79	0.88	0.87
attention-based (ours)	-1.34	0.60	0.81	0.90	0.87

2. Attention model Advantages

- Great flexibility
 - → can adapt to new customers and articles

Trained once on all categories and leverages cross-category information

Goes towards interpretability

Future work

Future work

- Look at the embeddings
 - Customers that purchase similarly
 - Articles that size similarly
 - Sizes that are similar (conversion from brand to brand)

Integrate more article meta-data such as fit, shape and material

Translate weights into meaningful explanations for the customer

Thank you for your attention!

Backup slides

Sparsity in the articles purchased

+ ~10 sizes per article = even sparser

Sparsity in purchases per customer

> 60% of customers have 20 purchases or less

Very recent Meta-learning approach: MetalSF

- Each customer is a new task
- Article embeddings + size embeddings + Embedded Linear Regression
- At test time, ELR trained on previous purchases
- Size is decoded from the output of ELR

Attention adapts to the purchase history

Changing the purchase history

attention adapts its focus to get the right amount of information for prediction

Learning the "true" size of articles & customers

Articles and Customers have "true" but unknown latent sizes.

Use history of orders and fitness feedback ('too big', 'fit', 'too small').

- Learn latent sizes by matching the customer size to the article size corrected by the fitness feedback.
 - → using a latent factor model **Sembium et. al (2017)**
 - → using a hierarchical Bayesian model *Guigourès et. al (2018)*

Matching customer & article embeddings

- Learn article embeddings
 - Pre-training Abdulla et. al (2017)
 - As part of the model Dogani et. al (2019), Sheik et. al (2019)
- Learn customer embeddings
 - Averaging article embeddings Abdulla et. al (2017), Dogani et. al (2019)
 - Learning them separately Sheik et. al (2019)
- Predict a size by combining the learned customer and article embeddings
 - XGBoost Abdulla et. al (2017)
 - Neural network Sheik et. al (2019)
 - Inner products *Dogani et. al (2019)*

Recent approaches (2017-2019)

- Series of recent work "matching" customer information to article information:
 Sembium et. al (2017,2018), Abdulla et. al (2017), Guigourès et. al (2018),
 Dogani et. al (2019), Sheik et. al (2019)
- Sembium et. al (2017-2018), Guigourès et. al (2018) apply to numerical size systems
- Only SFNet Sheik et. al (2019) trains a single model for all fashion categories
- In all those works, customer information is summarized in a single vector:
 direct access to past purchases is lost at prediction time