Chapter 4 ~> Energy · Kintic Evergy

T = 1 mv² = 1 mv³ = 2m · Work is a transfer of energy to the system $dW = \overrightarrow{F} \cdot d\overrightarrow{r} \Rightarrow W = \int_{-\infty}^{\infty} \overrightarrow{F} \cdot d\overrightarrow{r}$ $|\overrightarrow{F}| \cdot |d\overrightarrow{r}| \cdot \cos \theta$ path integral means work depends on the path between points, unless it doesn't work dont (total) is the same as the Kinetic energy o Amount of

St-DT & Work-Kinetic energy theorem o If the work done does not depend on the path taken, (it depends on the end points (positions)), that foru is a consurvative foru Is work done by a conservative for => potential energy DU = - Wonsonvahn non consumative force construtue forces · friction · gravititational form · dectric force · craa · spring form = "applied form"

potential energy is defined by a reference point (7 when U=0)

o consurvation of energy

$$M = \nabla K$$

mechanical energy

Uz=mgh

$$\vec{F} = -\vec{\nabla}U = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z}$$

Togradient Cartesian

 $F = -\frac{\partial U}{\partial x} = \frac{\partial U}{\partial x} + \frac{\partial U}{\partial z} = \frac{\partial U}{\partial z}$

6 What make a F conserventire

· F depunds only on position (not v, t, a)

· Work is parth-independent

Corl

$$F_{g} = kx$$

$$F_{g} = mgs$$

$$F_{g} = Gmm_{2}$$

$$r^{2}$$

$$F_{o} = bv$$

$$= cv^{2}$$

e everything about can be done in spherical coords, or cylindrical coords -> often this will be easier

Central forces $\vec{F}(\vec{r}) = f(\vec{r}) \hat{r}$ Tradal force $\vec{F}_{G}(\vec{r}) = -(\underline{A}M, Mz \hat{r}) \quad \text{in spherical coords.}$ $\vec{r} = \chi \hat{\chi} + y \hat{y} \qquad \hat{r} = \frac{\vec{r}}{|\vec{r}|}$ $\vec{r} = \sqrt{\chi^{2} + y^{2}}$

 $\vec{r} = \chi \hat{\chi} + y \hat{y} \qquad \hat{r} = \frac{\vec{r}}{|\vec{r}|}$ $\vec{r} = \chi \hat{\chi} + y \hat{y} \qquad \hat{r} = \frac{\vec{r}}{|\vec{r}|}$ $\vec{r} = \chi \hat{\chi} + y \hat{y} \qquad \hat{\chi} = \frac{\vec{r}}{|\vec{r}|}$ $= -\left(\frac{G_1 m_1 m_2}{\chi^2 + y^2}\right) \cdot \frac{\chi \hat{\chi} + y \hat{y}}{\chi^2 + y^2}$ $= -\frac{G_1 m_1 m_2}{(\chi^2 + y^2)^{3/2}} \cdot (\chi \hat{\chi} + y \hat{y})$

TXFG= What is curl in spherical? · All of this applies multiple perticle

T = T, + Tz + Tz +

T = 1 M Vcm + 1 T Wcm

Tot. inertia

$$=\frac{1}{2}m\left(\frac{J(\vec{v})\cdot\vec{v}}{Jt}+\vec{v}\cdot\frac{J(\vec{v})}{Jt}\right)$$

$$=\frac{1}{2}m(2\vec{\nabla}\cdot\vec{V})$$

as a small amount of work

ST=W

The does not make Suren. La the (in thermo)

$$\Delta T = T_2 - T_1 = \int_{1}^{2} F \cdot dr$$

live integral

Ex:
$$\vec{F} = 1\hat{x} + 2\hat{y}$$

$$\vec{\tau}_{1} = 0$$

$$\vec{\tau}_{2} = 1\hat{x} + 1\hat{y}$$

Path (1)
$$\int_{1}^{2} \vec{F} \cdot d\vec{r} = \int_{(0,0)}^{(1,0)} \vec{F} \cdot d\vec{r}_{2}$$

$$\int_{(0,0)}^{2} \vec{F} \cdot d\vec{r}_{1} + \int_{(1,0)}^{(1,0)} \vec{F} \cdot d\vec{r}_{2}$$

$$\vec{F} \cdot d\vec{x} = (1\hat{x} + 2\hat{y}) \cdot (dx \hat{x} + 0\hat{y})$$

$$\int_{1}^{2} \vec{F} \cdot d\vec{r} = \int_{1}^{2} dx + \int_{2}^{4} dx + \int_{2}^{4} dx$$

$$= \chi |_{0}^{1} + 2y |_{0}^{1}$$
Work along path (1)
$$= 1 + 2 = 3$$

Path (Z)
$$\int_{\overline{F}} d\vec{r} = \int_{\overline{X}} d\vec{r} = \int_{\overline{X}} d\vec{r} = \int_{\overline{X}} d\vec{r} + \int_{\overline{X}} d\vec{r} = \int_{\overline{X}} d\vec$$

$$\int_{0}^{\infty} (\sin\theta d\theta) + 2\cos\theta d\theta$$

$$\int_{0}^{\infty} \sin\theta d\theta + \int_{0}^{\infty} 2\cos\theta d\theta = 3$$

 $\vec{\tau}' = -\cos\theta \, \hat{x}' + \sin\theta \, \hat{y}'$ I change coordinate systems $\vec{\tau} = (1 - \cos\theta)\hat{x} + \sin\theta \, \hat{y}$ $\vec{\tau}' = \sin\theta \, d\theta \, \hat{x} + \cos\theta \, d\theta \, \hat{y}$

Homework: Serve 3 paths $\vec{F} = y\hat{x} + 2x\hat{y}$

$$W_{3} = \int_{0}^{\pi} \gamma \sin \theta d\theta + \int_{0}^{\pi} 2x \cos \theta d\theta$$

$$= \int_{0}^{\pi} \sin^{2}\theta d\theta + 2\int_{0}^{\pi} (1-\cos\theta) \cos\theta d\theta$$

$$= \int_{0}^{\pi} \sin^{2}\theta d\theta + 2\int_{0}^{\pi} \cos\theta d\theta - 2\int_{0}^{\pi} \cos^{2}\theta d\theta$$

For conservative form $\mathcal{U}(\vec{r}) = - \mathcal{W}(\vec{r}, \Rightarrow \vec{r}) = - \int_{0}^{\infty} \vec{F}(\vec{r}') \cdot \vec{dr}'$ Potential energy of in reference to 7. conditions for conservation form

(1) F only depends on \vec{r} (not \vec{v} , not t) 2) Work done blt any two points is independent of path taken

(¬× = 0)

What about
$$W(\vec{r}_{0} \rightarrow \vec{r}_{2}) = W(\vec{r}_{0} \rightarrow \vec{r}_{1}) + W(\vec{r}_{1} \rightarrow \vec{r}_{2})$$

$$W(\vec{r}_{0} \rightarrow \vec{r}_{2}) = W(\vec{r}_{0} \rightarrow \vec{r}_{1}) + W(\vec{r}_{1} \rightarrow \vec{r}_{2})$$

$$\omega(\vec{r}, \rightarrow \vec{r}_{2}) = \omega(\vec{r}_{0} \rightarrow \vec{r}_{2}) - \omega(\vec{r}_{0} \rightarrow \vec{r}_{1})$$

$$-\omega(\vec{r}_{2}) - \omega(\vec{r}_{1})$$

$$= -\left(\omega(\vec{r}_{2}) - \omega(\vec{r}_{1})\right)$$

$$\Delta\omega$$

$$\Delta\omega = -\omega(\vec{r}_{1} \rightarrow \vec{r}_{2})$$

Now go back to work-kindic energy theorem $W(\vec{r}_i \rightarrow \vec{r}_2) = NK$ if only conservative forces are acting - DU = DK DK + DU = 0 E=K+U 3 Mechanical Energy Also true for multiple conservative forus. Comultiple potential energy U=Ug+Us(+Ue)

But, what if also non-conservative forces act? DK+DK+D Fration DK + DU = Whe $W_{t} = \int_{t}^{\infty} F_{t} \cdot dx$ Ki+ Ui + Wnc = Kf + Uf Newton's Laws D'frictionless plane 2) $\mu \leftarrow constant$ Concervation (3) friction-full partches Neuton's Evergy

