Chop 3.4

Properties of the Z-transform: (Table 3.2)

Sequence
$$Z-t_{ens}$$
 form Roc $X(z)$ $X(z)$ $X_{x}(z)$ $X_{x}(z)$ $X_{x}(z)$ $X_{x}(z)$ $X_{x}(z)$ $X_{x}(z)$ $X_{x}(z)$ $X_{x}(z)$ $X_{x}(z)$ $X_{x}(z)$

1) Linearly
$$Q_1 \times_1 [n] + Q_2 \times_2 [n] \stackrel{Z}{\longleftarrow} Q_1 \times_1 [z] + Q_2 \times_2 [z]$$

$$ROC contain at least R_{x_1} \cap R_{x_2}$$
2) Time - Shift Q_1

2) Time - shift my

$$\times [n-K] \stackrel{Z}{=} Z^{-K} X(Z), ROC = R_X$$

exapt $Z=0$ or 00

3) *Scaling*

4) differentiation

5) folding

$$X[-n] \stackrel{Z}{\longleftrightarrow} \dot{X}(\frac{1}{Z}) \left(\begin{array}{c} Roc : I \\ Rx \end{array} \right)$$

6) Convolution
$$(Z) = X_1(Z) = X_2(Z)$$

$$X_1(Z) = X_2(Z) = X_1(Z) = X_2(Z)$$

$$(Z) = X_1(Z)$$

$$(Z) = X$$

$$Ex)$$
 $XEnJ = SI, O \leq n \leq M$
 O , otherwise

on the one hand, we know this is a finite duration sequence so we know

$$X(z) = \sum_{n=0}^{M} x_{n}^{-1} z^{-n}$$

$$= 1 + z^{-1} + z^{-2} + \dots + z^{-n}$$

ROC: all of Z except Z=0 Why is Z=0 a pole??

On the other hand, we know
$$X[n] = X_1[n] - X_2[n]$$
, where

$$X[n] = N[n]$$

$$X[z] = \frac{1}{|-z|}$$

$$Roc: |z| > 1$$

$$X_{2}[n] = u[n-(M+1)] = time shifted version$$

$$X_{2}[n] = u[n-(M+1)] = time shifted version$$

$$M+1 M+2 M+3$$

$$M+1 M+2 M+3$$

$$-(M+1)$$

$$X_{3}(Z) = Z^{-(M+1)}$$

$$X_{3}(Z) = Z^{-(M+1)}$$

ROC = ROC of x[n] exapt Z=0=12171

By linearly property of Z - transform

$$X(z) = X_{1}(z) - X_{2}(z)$$

$$= \frac{1}{1-z^{-1}} - z^{-(Mt)} \left(\frac{1}{1-z^{-1}}\right) = \frac{1-z^{-(Mt)}}{1-z^{-1}}$$

intersection

ROC of X(z) is atleast ROC of $X_1(z)$ \cap ROC of $X_2(z)$

ROC of $X_1(z)$, we know is |Z|>1ROC of $X_2(z)$ we know is ROC of $x_1[n]$ (since its a time-shifted version of $x_1[n]$) except Z=0

ROC of x[n] is atteast $(|z| > 1) \cap (|z| > 1) \text{ except } z = 0)$ = |z| > 1

$$X[n] = 2^{n}u[n] + 3\left(\frac{1}{a}\right)^{n}u[n]$$

$$X[n] = 2^{n}u[n] + 3\left(\frac{1}{a}\right)^{n}u[n]$$

$$= \frac{1}{1-2z^{-1}} + \frac{3(1-3z^{-1})}{1-\frac{1}{a}z^{-1}} + \frac{3(1-3z^{-1})}{(1-\frac{1}{a}z^{-1})(1-3z^{-1})}$$

$$= \frac{1}{(1-2z^{-1})(1-\frac{1}{a}z^{-1})} + \frac{3(1-3z^{-1})}{(1-\frac{1}{a}z^{-1})(1-3z^{-1})}$$

$$= \frac{1}{(1-2z^{-1})(1-\frac{1}{a}z^{-1})} + \frac{1}{(1-\frac{1}{a}z^{-1})(1-3z^{-1})}$$
What is the Roc?

Chapter both

ROC of X(z): |z| > 2 (they're both right-sided particus)

ROC of X2(2): 121>5

ROC & X(Z)= { | Z | > 23 () { | Z | 2} }

I(z) have to be convegent for both region = Roc: 12172

	Property	Sequence	Transform	ROC
		x[n]	X(z)	R_{χ}
		$x_1[n]$	$X_1(z)$	R_{x_1}
		$x_2[n]$	$X_2(z)$	R_{x_2}
1.	Linearity	$a_1x_1[n] + a_2x_2[n]$	$a_1 X_1(z) + a_2 X_2(z)$	At least $R_{x_1} \cap R_{x_2}$
2.	Time shifting	x[n-k]	$z^{-k}X(z)$	R_x except $z = 0$ or ∞
3.	Scaling	$a^n x[n]$	$X(a^{-1}z)$	$ a R_{x}$
4.	Differentation	nx[n]	$-z\frac{dX(z)}{dz}$	R_X
5.	Conjugation	$x^*[n]$	$X^*(z^*)$	R_{χ}
6.	Real-part	$Re\{x[n]\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	At least R_x
7.	Imaginary part	$Im\{x[n]\}$	$\frac{1}{2}[X(z) - X^*(z^*)]$	At least R_x
8.	Folding	x[-n]	X(1/z)	$1/R_x$
9.	Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least $R_{x_1} \cap R_{x_2}$
10.	Initial-value theorem	x[n] = 0 for n < 0	$x[0] = \lim_{z \to \infty} X(z)$	