### **Datasets**

```
load(here("Machine Learning for Factor Investing", "data_ml.RData"))
```

### **Example Factor, Size**

```
data_ml %>%
   group_by(date) %>% # group by date
   mutate(large = Mkt_Cap_12M_Usd > median(Mkt_Cap_12M_Usd)) %>% # Creates the cap sort
   ungroup() %>% # ungroup
   mutate(year = lubridate::year(date)) %>% # Creates a gear variable
   group_by(year, large) %>% # Analyze by year & cap
   summarize(avg return = mean(R1M Usd)) %>% # avg return by year & cap
   ggplot(aes(x = year, y = avg_return, fill = large)) + # plot!
   geom_col(position = "dodge") + # bars side-to-side
   theme(legend.position = c(0.8, 0.2)) + # legend location
   coord_fixed(124) + # x/y aspect ration
   theme(legend.title = element_blank()) +
   scale_fill_manual(values = c("#F87E1F", "#0570EA"), name = "", # colors
                    labels = c("Small", "Large")) +
   ylab("Average Returns") +
   theme(legend.text = element_text(size=9))
```

<sup>`</sup>summarise()` regrouping output by 'year' (override with `.groups` argument)



# **Factors**

## Size

**SMB** = small firms minus large firms

# Value

**HM** = high minus low: undervalued minus 'growth' firms

## **Momentum**

WML winners minus losers

## **Profitability**

**RMW** = robust minus weak profits
profitability is measured as (revenues - (cost and expenses)) / equity

#### Investment

**CMA** conservative minus aggressive

Investment is measured via the growth of total assets (divided by total assets).

#### Low 'risk'

**BAB** betting against beta (simple vol, market beta, idiosyncratic vol, etc) Kenneth French Factor Library

#### **Example Factor Model**

```
min_date <- "1963-07-31"; max_date <- "2020-06-30"
temp <- tempfile()</pre>
KF_website <- "http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/"</pre>
KF_file <- "ftp/F-F_Research_Data_5_Factors_2x3_CSV.zip"</pre>
link <- pasteO(KF_website, KF_file)</pre>
download.file(link, temp, quiet = T)
FF_factors <- read_csv(unz(temp, "F-F_Research_Data_5_Factors_2x3.CSV"),</pre>
                    skip = 3) %>% # Check the number of lines to skip!
   rename(date = X1, MKT_RF = `Mkt-RF`) %>% # Change the name of first columns
   mutate_at(vars(-date), as.numeric) %>%
                                         # Convert values to number
   mutate(date = ymd(parse_date_time(date, "%Y%m"))) %>% # Date in right format
   Warning: Missing column names filled in: 'X1' [1]
-- Column specification ------
cols(
 X1 = col_character(),
```

`Mkt-RF` = col\_character(),

```
SMB = col character(),
  HML = col_character(),
 RMW = col character(),
  CMA = col_character(),
  RF = col_character()
)
Warning: 1 parsing failure.
row col expected
                     actual
                                    file
693 -- 7 columns 1 columns <connection>
Warning: Problem with `mutate()` input `MKT RF`.
i NAs introduced by coercion
i Input `MKT_RF` is `.Primitive("as.double")(MKT_RF)`.
Warning in mask$eval_all_mutate(dots[[i]]): NAs introduced by coercion
Warning: Problem with `mutate()` input `SMB`.
i NAs introduced by coercion
i Input `SMB` is `.Primitive("as.double")(SMB)`.
Warning in mask$eval_all_mutate(dots[[i]]): NAs introduced by coercion
Warning: Problem with `mutate()` input `HML`.
i NAs introduced by coercion
i Input `HML` is `.Primitive("as.double")(HML)`.
Warning in mask$eval_all_mutate(dots[[i]]): NAs introduced by coercion
Warning: Problem with `mutate()` input `RMW`.
i NAs introduced by coercion
i Input `RMW` is `.Primitive("as.double")(RMW)`.
Warning in mask$eval_all_mutate(dots[[i]]): NAs introduced by coercion
Warning: Problem with `mutate()` input `CMA`.
i NAs introduced by coercion
i Input `CMA` is `.Primitive("as.double")(CMA)`.
Warning in mask$eval_all_mutate(dots[[i]]): NAs introduced by coercion
Warning: Problem with `mutate()` input `RF`.
i NAs introduced by coercion
i Input `RF` is `.Primitive("as.double")(RF)`.
Warning in mask$eval_all_mutate(dots[[i]]): NAs introduced by coercion
Warning: Problem with `mutate()` input `date`.
i 58 failed to parse.
i Input `date` is `ymd(parse_date_time(date, "%Y%m"))`.
Warning: 58 failed to parse.
```

Table 1: Sample of Monthly Factor Returns.

| date       | MKT_RF  | SMB     | HML     | RMW     | CMA     | RF     |
|------------|---------|---------|---------|---------|---------|--------|
| 1963-07-31 | -0.0039 | -0.0045 | -0.0094 | 0.0066  | -0.0115 | 0.0027 |
| 1963-08-31 | 0.0507  | -0.0082 | 0.0182  | 0.0040  | -0.0040 | 0.0025 |
| 1963-09-30 | -0.0157 | -0.0048 | 0.0017  | -0.0076 | 0.0024  | 0.0027 |
| 1963-10-31 | 0.0253  | -0.0130 | -0.0004 | 0.0275  | -0.0224 | 0.0029 |
| 1963-11-30 | -0.0085 | -0.0085 | 0.0170  | -0.0045 | 0.0222  | 0.0027 |
| 1963-12-31 | 0.0183  | -0.0190 | -0.0006 | 0.0007  | -0.0030 | 0.0029 |

```
FF factors <- FF factors %>% mutate(MKT RF = MKT RF / 100,
                                    SMB = SMB / 100,
                                    HML = HML / 100,
                                    RMW = RMW / 100,
                                    CMA = CMA / 100,
                                    RF = RF / 100) \%
   filter(date >= min_date, date <= max_date)</pre>
knitr::kable(head(FF factors), booktabs = T,
             caption = "Sample of Monthly Factor Returns.")
FF_Avg_Returns <- FF_factors %>%
   mutate(date = year(date)) %>%
   gather(key = factor, value = value, - date) %>%
   group_by(date, factor) %>%
   summarise(value = mean(value))
`summarise()` regrouping output by 'date' (override with `.groups` argument)
FF Avg Returns %>%
   ggplot(aes(x = date, y = value, color = factor)) +
   geom_line() + coord_fixed(500)
FF_factors %>%
   gather(key = factor, value = return, - date) %>%
   filter(factor != 'RF') %>%
   ggplot(aes(return, group = factor)) +
      geom_density(aes(fill = factor, alpha = .25))
FF Avg Returns %>%
   filter(factor != 'RF') %>%
   ggplot(aes(value, group = factor)) +
      geom_density(aes(fill = factor, alpha = .25))
```



Figure 1: Factor Returns



Figure 2: Return Densitites



Figure 3: Yearly Avg Return Densities

8

```
FF_Cum_Returns <- FF_factors %>%
  gather(key = factor, value = value, -date) %>%
  group_by(factor) %>%
  mutate(lag_ret = lag(value)) %>%
  mutate(return = cumprod(1 + ifelse(is.na(lag_ret), 0, lag_ret)))

FF_Cum_Returns %>%
  ggplot(aes(date, return, group = factor)) +
  geom_line(aes(col = factor))
```



Figure 4: Growth of \$1 by factor

## **Fama-Macbeth Regressions**

```
separation_date <- as_date("2014-01-15")</pre>
traning sample <- filter(data ml, date < separation date)</pre>
testing sample <- filter(data ml, date > separation date)
stock_ids <- levels(as.factor(data_ml$stock_id)) # list of all stock ids
stock_days <- data_ml %>%
   group_by(stock id) %>%
   summarise(nb = n())
`summarise()` ungrouping output (override with `.groups` argument)
stock ids short <- stock ids[which(stock days$nb == max(stock days$nb))] # keep only stocks wi
# single stock example
stock_identifer <- 3</pre>
data ml %>%
   filter(date == as_date("2006-06-30") & stock_id == 3)
# A tibble: 1 x 99
  stock_id date
                      Advt_12M_Usd Advt_3M_Usd Advt_6M_Usd Asset_Turnover Bb_Yld
     <int> <date>
                             <dbl>
                                          <dbl>
                                                      <dbl>
                                                                     <dbl>
                                                                            <dbl>
                              0.08
                                          0.08
                                                                             0.78
1
         3 2006-06-30
                                                       0.09
                                                                      0.04
# ... with 92 more variables: Bv <dbl>, Capex_Ps_Cf <dbl>, Capex_Sales <dbl>,
   Cash_Div_Cf <dbl>, Cash_Per_Share <dbl>, Cf_Sales <dbl>, Debtequity <dbl>,
   Div_Yld <dbl>, Dps <dbl>, Ebit_Bv <dbl>, Ebit_Noa <dbl>, Ebit_Oa <dbl>,
#
   Ebit Ta <dbl>, Ebitda Margin <dbl>, Eps <dbl>, Eps Basic <dbl>,
#
   Eps_Basic_Gr <dbl>, Eps_Contin_Oper <dbl>, Eps_Dil <dbl>, Ev <dbl>,
#
   Ev_Ebitda <dbl>, Fa_Ci <dbl>, Fcf <dbl>, Fcf_Bv <dbl>, Fcf_Ce <dbl>,
#
   Fcf Margin <dbl>, Fcf Noa <dbl>, Fcf Oa <dbl>, Fcf Ta <dbl>, Fcf Tbv <dbl>,
#
   Fcf_Toa <dbl>, Fcf_Yld <dbl>, Free_Ps_Cf <dbl>, Int_Rev <dbl>,
#
    Interest_Expense <dbl>, Mkt_Cap_12M_Usd <dbl>, Mkt_Cap_3M_Usd <dbl>,
#
   Mkt_Cap_6M_Usd <dbl>, Mom_11M_Usd <dbl>, Mom_5M_Usd <dbl>,
#
   Mom Sharp 11M Usd <dbl>, Mom Sharp 5M Usd <dbl>, Nd Ebitda <dbl>,
   Net_Debt <dbl>, Net_Debt_Cf <dbl>, Net_Margin <dbl>, Netdebtyield <dbl>,
#
#
   Ni <dbl>, Ni_Avail_Margin <dbl>, Ni_Oa <dbl>, Ni_Toa <dbl>, Noa <dbl>,
#
    Oa <dbl>, Ocf <dbl>, Ocf_Bv <dbl>, Ocf_Ce <dbl>, Ocf_Margin <dbl>,
#
   Ocf Noa <dbl>, Ocf Oa <dbl>, Ocf Ta <dbl>, Ocf Tbv <dbl>, Ocf Toa <dbl>,
   Op_Margin <dbl>, Op_Prt_Margin <dbl>, Oper_Ps_Net_Cf <dbl>, Pb <dbl>,
#
#
   Pe <dbl>, Ptx_Mgn <dbl>, Recurring_Earning_Total_Assets <dbl>,
   Return_On_Capital <dbl>, Rev <dbl>, Roa <dbl>, Roc <dbl>, Roce <dbl>,
```

```
Roe <dbl>, Sales_Ps <dbl>, Share_Turn_12M <dbl>, Share_Turn_3M <dbl>,
#
    Share_Turn_6M <dbl>, Ta <dbl>, Tev_Less_Mktcap <dbl>, Tot_Debt_Rev <dbl>,
    Total Capital <dbl>, Total Debt <dbl>, Total Debt Capital <dbl>,
#
    Total_Liabilities_Total_Assets <dbl>, Vol1Y_Usd <dbl>, Vol3Y_Usd <dbl>,
    R1M_Usd <dbl>, R3M_Usd <dbl>, R6M_Usd <dbl>, R12M_Usd <dbl>
stock returns <- data ml %>%
                  filter(stock_id == stock_identifer) %>%
                  select(date, stock_id, Return = R1M_Usd) %>%
                  group_by(stock_id) %>%
                  mutate(Return = lag(Return)) %>%
                  ungroup()
stock_returns %>%
   filter(date == as_date("2006-06-30") & stock id == 3)
# A tibble: 1 x 3
  date
            stock_id Return
  <date>
               <int> <dbl>
1 2006-06-30
                    3
                          NA
factor_data <- left_join(stock_returns, FF_factors, by = "date") %>%
               select(date, stock_id, MKT_RF, SMB, HML, RMW, CMA, RF, Return)
factor loading <-
   coef(summary(lm(formula = "Return ~ MKT_RF + SMB + HML + RMW + CMA", data = factor_data))) '
   as.data.frame() %>%
   select(Value = Estimate) %>%
   rownames_to_column("Factor") %>%
   mutate(stock id = stock identifer) %>%
   spread(key = "Factor", value = "Value") %>%
   select(MKT_RF, SMB, HML, RMW, CMA)
factor data <- cbind(factor loading, stock returns) %>%
   filter(!is.na(Return))
nb_factors <- 5
                                                                    # Number of factors
data_FM <- left_join(data_ml %>%
                                                                     # Join the 2 datasets
                         dplyr::select(date, stock_id, R1M_Usd) %>% # (with returns...
                         filter(stock id %in% stock ids short),
                                                                   # ... over some stocks)
                     FF factors,
                     by = "date") %>%
    group_by(stock_id) %>%
                                                                     # Grouping
    mutate(R1M_Usd = lag(R1M_Usd)) %>%
                                                                     # Lag returns
    ungroup() %>%
```

Table 2: Coefficents

|    | Constant   | MKT_RF    | SMB        | HML        | RMW        | CMA        |
|----|------------|-----------|------------|------------|------------|------------|
| 3  | -0.0017438 | 0.8092717 | 0.8280240  | 0.8479085  | 0.1198440  | -0.2522913 |
| 4  | 0.0037247  | 0.3073030 | 0.2619254  | -0.1392922 | 0.4354316  | 0.4485567  |
| 7  | 0.0050755  | 0.5203728 | 0.5246247  | 0.0376542  | 0.3136473  | 0.3198131  |
| 9  | 0.0044285  | 0.7516452 | 0.6174593  | 1.0164648  | -0.0597775 | -0.0562163 |
| 16 | 0.0010675  | 1.1996284 | -0.1769292 | 1.3980331  | 0.1910664  | -0.6164365 |
| 22 | 0.0019074  | 0.5925792 | 0.5670595  | 0.3446145  | 0.4738824  | 0.1648655  |

```
na.omit() %>%
                                                                     # Remove missing points
    spread(key = stock_id, value = R1M_Usd)
models <- lapply(paste0("`", stock_ids_short,</pre>
                        '` ~ MKT RF + SMB + HML + RMW + CMA'),
                                                                           # Model spec
                                                                          # Call lm(.)
                 function(f){ lm(as.formula(f), data = data FM,
                                 na.action="na.exclude") %>%
                         summary() %>%
                                                                           # Gather the output
                                                                           # Keep only coefs
                         "$"(coef) %>%
                         data.frame() %>%
                                                                           # Convert to datafra
                         dplyr::select(Estimate)}
                                                                           # Keep the estimates
                 )
betas <- matrix(unlist(models), ncol = nb factors + 1, byrow = T) %>%
                                                                         # Extract the betas
    data.frame(row.names = stock_ids_short)
                                                                           # Format: row names
stopifnot(nrow(betas) == length(stock ids short))
colnames(betas) <- c("Constant", "MKT_RF", "SMB", "HML", "RMW", "CMA")</pre>
                                                                           # Format: col names
knitr::kable(head(betas), caption = "Coefficents")
factor loadings <- betas %>%
   dplyr::select(-Constant) %>%
   data.frame()
stock returns <- data FM %>%
   dplyr::select(-MKT_RF, -SMB, -HML, -RMW, -CMA, -RF)
factor_returns <- stock_returns %>%
   dplyr::select(-date) %>%
   data.frame(row.names = stock returns$date) %>%
   t()
```

```
stopifnot(nrow(factor returns) == nrow(factor loadings))
FM data <- cbind(factor loadings, factor returns)</pre>
models <- lapply(paste("`",</pre>
                       stock_returns$date, "`",
                       ' \sim MKT_RF + SMB + HML + RMW + CMA', sep = ""),
                           function(f){ lm(as.formula(f), data = FM_data) %>% # Call lm(.)
                              summary() %>%
                                                                                # Gather the ou
                              "$"(coef) %>%
                                                                                # Keep only the
                              data.frame() %>%
                                                                                # Convert to da
                              dplyr::select(Estimate)}
                                                                                # Keep only est
                 )
gammas <- matrix(unlist(models), ncol = nb_factors + 1, byrow = T) %>%
                                                                           # Switch to datafram
                                                                                 # & set row na
    data.frame(row.names = stock returns$date)
colnames(gammas) <- c("Constant", "MKT_RF", "SMB", "HML", "RMW", "CMA") # Set col names</pre>
gammas %>%
                                                                      # Take gammas:
    # The first row is omitted because the first row of returns is undefined
    dplyr::select(MKT_RF, SMB, HML) %>%
                                                                     # Select 3 factors
    bind_cols(date = data FM$date) %>%
                                                                     # Add date
    gather(key = factor, value = gamma, -date) %>%
                                                                     # Put in tidy shape
    ggplot(aes(x = date, y = gamma, color = factor)) +
                                                                     # Plot
    geom_line() + facet_grid( factor~. ) +
                                                                     # Lines & facets
    scale_color_manual(values=c("#F87E1F", "#0570EA", "#F81F40")) # Colors
```



Figure 5: Gammas

## **Factor Competition**

```
factors <- c("MKT RF", "SMB", "HML", "RMW", "CMA")</pre>
models <- lapply(paste(factors, ' ~ MKT RF + SMB + HML + RMW + CMA-', factors),</pre>
 function(f){ lm(as.formula(f), data = FF_factors) %>%
                                                                        # Call lm(.)
                          summary() %>%
                                                                        # Gather the output
                          "$"(coef) %>%
                                                                        # Keep only the coefs
                          data.frame() %>%
                                                                        # Convert to dataframe
                          filter(rownames(.) == "(Intercept)") %>%
                                                                      # Keep only the Intercept
                          dplyr::select(Estimate, `Pr...t..`)}
                                                                        # Keep the coef & p-value
alphas <- matrix(unlist(models), ncol = 2, byrow = T) %>% # Switch from list to datafram
    data.frame(row.names = factors)
# alphas # To see the alphas (optional)
results <- matrix(NA, nrow = length(factors), ncol = length(factors) + 1) # Coefs
signif <- matrix(NA, nrow = length(factors), ncol = length(factors) + 1)</pre>
                                                                               # p-values
for(j in 1:length(factors)){
    form <- paste(factors[j],</pre>
                   ' ~ MKT RF + SMB + HML + RMW + CMA-', factors[j])
                                                                              # Build model
    fit <- lm(form, data = FF factors) %>% summary()
                                                                               # Estimate model
    coef <- fit$coefficients[,1]</pre>
                                                                               # Keep coefficient.
    p val <- fit$coefficients[,4]</pre>
                                                                               # Keep p-values
    results[j,-(j+1)] \leftarrow coef
                                                                               # Fill matrix
    signif[j,-(j+1)] \leftarrow p_val
}
signif[is.na(signif)] <- 1</pre>
                                                                               # Kick out NAs
results <- results %>% round(3) %>% data.frame()
                                                                               # Basic formatting
results[signif<0.001] <- paste(results[signif<0.001]," (***)")
                                                                               # 3 star signif
results[signif>0.001&signif<0.01] <-
                                                                               # 2 star signif
    paste(results[signif>0.001&signif<0.01]," (**)")</pre>
results[signif>0.01&signif<0.05] <-
                                                                               # 1 star signif
    paste(results[signif>0.01&signif<0.05]," (*)")</pre>
results <- cbind(factors, results)
                                                                # Add dep. variable
colnames(results) <- c("Dep. Variable", "Intercept", factors)</pre>
                                                                                # Add column name
```

Table 3: Factor competition among the Fama and French (2015) five factors.

| Dep. Variable | Intercept   | MKT_RF       | SMB         | HML         | RMW          | CMA          |
|---------------|-------------|--------------|-------------|-------------|--------------|--------------|
| MKT_RF        | 0.008 (***) | NA           | 0.287 (***) | 0.143 (*)   | -0.326 (***) | -0.951 (***) |
| SMB           | 0.003 (*)   | 0.143 (***)  | NA          | 0.104 (*)   | -0.423 (***) | -0.149       |
| HML           | -0.001      | 0.04 (*)     | 0.059 (*)   | NA          | 0.172 (***)  | 1.027 (***)  |
| RMW           | 0.004 (***) | -0.084 (***) | -0.22 (***) | 0.158 (***) | NA           | -0.286 (***) |
| CMA           | 0.003 (***) | -0.115 (***) | -0.036      | 0.441 (***) | -0.133 (***) | NA           |

# Momentum, timing and ESG



# **Exercises**

1.) Compute annual returns of the growth vs value portfolios, that is, the average return of firms with above median price-to-book ratio (*Pb*).

```
data_ml %>%
  group_by(date) %>%
  mutate(category = ifelse(Pb > median(Pb), "growth", "value")) %>%
  ungroup() %>%
  mutate(year = lubridate::year(date)) %>%
  group_by(year, category) %>%
  summarise(return = mean(R1M_Usd)) %>%
  ggplot(aes(year, return, fill = category)) +
    geom_col(position = "dodge")
```

<sup>`</sup>summarise()` regrouping output by 'year' (override with `.groups` argument)



# 2.) Same exercise, but compare the monthly returns and plot the

```
value (through time) of the corresponding portfolios.
monthly_return <- data_ml %>%
  group_by(date) %>%
 mutate(growth = Pb > median(Pb)) %>%
 ungroup() %>%
  group_by(date, growth) %>%
  summarise(return = mean(R1M Usd)) %>%
  spread(key = growth, value = return) %>%
  ungroup()
`summarise()` regrouping output by 'date' (override with `.groups` argument)
colnames(monthly return)[2:3] <- c("value", "growth")</pre>
monthly_return %>%
```

```
mutate(growth = cumprod(1 + growth), value = cumprod(1 + value)) %>%
gather(key = portfolio, value = value, -date) %>%
ggplot(aes(x = date, y = value, color = portfolio)) +
    geom_line()
```



# 3.) Instead of a unique threshold, compute simply sorted portfolios based on quartiles of market capitalization.

Compute their annual returns and plot them.

```
data_ml %>%
  group_by(date) %>%
  mutate(capitalization = ntile(Mkt_Cap_3M_Usd, 4)) %>%
  ungroup() %>%
  mutate(year = lubridate::year(date)) %>%
  group_by(year, capitalization) %>%
  summarise(return = mean(R1M_Usd)) %>%
```

```
mutate(capitalization = factor(capitalization, levels = 1:4, labels = c("small", "medium", "]
ggplot(aes(year, return, fill = capitalization)) +
   geom_col(position = "dodge")
```

`summarise()` regrouping output by 'year' (override with `.groups` argument)

