Aufgabe 1. Zu zeigen ist

$$f(n) = \mathcal{O}(g(n)) \land g(n) = \mathcal{O}(h(n)) \Rightarrow f(n) = \mathcal{O}(h(n)).$$

Angenommen die linke Seite der Implikation,

$$\exists c > 0 \ \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : |f(n)| \le c|g(n)| \tag{1}$$

$$\exists k > 0 \ \exists n_1 \in \mathbb{N} : \forall n \ge n_1 : |g(n)| \le k|h(n)| \tag{2}$$

gilt. Die Ungleichung aus (1) kann zu $\frac{|f(n)|}{c} \le |g(n)|$ umformuliert werden und in (2) eingesetzt werden:

$$\exists k > 0 \ \exists n_1 \in \mathbb{N} : \frac{|f(n)|}{c} \le k|h(n)|$$
$$\exists k > 0 \ \exists n_1 \in \mathbb{N} : |f(n)| \le ck|h(n)|$$

Dann gilt

$$\exists j > 0 \ \exists n_2 \in \mathbb{N} : \forall n > n_2 : |f(n)| < j|h(n)|$$

für j = ck und $n_2 = \max\{n_0, n_1\}$. Somit gilt f(n) = O(h(n)) wenn f(n) = O(g(n)) und g(n) = O(h(n)), die O-Notation ist transitiv.

Aufgabe 2. Es gilt $f(n) = \sqrt{n} = \Theta(\sqrt{n})$.

- a) Es gilt $a=1,\ b=2$ und $c=\log_2(1)=0$. Es greift Fall 4 wegen $f(n)=\Omega(n^{0+\frac{1}{2}})=\Omega(\sqrt{n})$ $(\epsilon=\frac{1}{2})$. Somit gilt $T(n)=\Omega(\sqrt{n})$.
- b) Es gilt a=2, b=2 und $c=\log_2(2)=1$. Es greift Fall 1 wegen $f(n)=\mathrm{O}(n^{1-\frac{1}{2}})=\mathrm{O}(\sqrt{n})$ $(\epsilon=\frac{1}{2})$. Somit gilt $T(n)=\Theta(\sqrt{n})$.
- c) Es gilt a=2, b=4 und $c=\log_4(2)=\frac{1}{2}$. Es greifen Fall 2 und 3 wegen $f(n)=\mathrm{O}(n^{\frac{1}{2}}\log(n)^0)=\mathrm{O}(\sqrt{n})$ und $f(n)=\Omega(n^{\frac{1}{2}}\log(n)^0)=\Omega(\sqrt{n})$ (k=0). Somit gilt $T(n)=\Theta(\sqrt{n}\log(n))$.

Aufgabe 3. Die folgende Tabelle zeigt für jede Zeile die maximale Anzahl der Ausführungen ("Häufigkeit") und die daraus resultierende maximale Anzahl an Operationen. Nachdem etwa Zeile 3 zu einem früheren Abbruch von Schleifeniterationen führen kann sind diese Werte als oberes Limit zu verstehen, nicht zwingend als tatsächlich erreichbares Maximum.

Zeile	Häufigkeit	Operationen	
1	1	0	
2	1	n	
3	n	3n	
4	n	$2n^2$	Größtmögl. $i = n$ also $2n \cdot n = 2n^2$
5	$2n^2$	$12n^{2}$	
6	$2n^2$	$6n^3 + 1$	Größtmögl. $j = 2i = 2n$ also $2n + n = 3n$ und $2n^2 3n = 6n^3$
7	$6n^3$	0	
8	$6n^3$	$18n^{3}$	
9	$6n^3$	0	
10	$6n^3$	$24n^{3}$	
11	1	0	

Die größte vorkommende maximale Anzahl der Operationen ist $24n^3$, somit benötigt der Algorithmus $O(n^3)$ arithmetische Operationen.