Advance Calculus Exercise

Exercise 1 (Chapter 1)

1. A complex number z is said to be algebraic if there are integers a_0, \dots, a_n , not all zero, such that

$$a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n = 0.$$

Prove that the set of all algebraic numbers is countable.

Solution. Let A be the set of all algebraic numbers. We denoted some notation

- (a) $\mathbb{Z}[x]^X :$ the set of all non-zero polynomials having coefficients in \mathbb{Z}
- (b) $Z_{p(x)}$: the set of all roots of p(x), where $p(x) \in \mathbb{Z}[n]^X$ Note that
 - (a) $A \subseteq U_{p(x) \in \mathbb{Z}[x]^X} Z_{p(x)}$ and $Z_{p(x)}$ is finite since a polynomial of degree n has at most n roots
 - (b) $\mathbb{Z}[x]^X = \bigcup_{\infty}^{n=1} F_n$, where $F_n \subseteq \mathbb{Z}[x]^X$ the set of polynomials in $\mathbb{Z}[x]^X$ of degree n

Claim $\mathbb{Z}[x]^X$ is countable. If we are done, then $\bigcup_{p(x)\in\mathbb{Z}[x]}Z_{p(x)}$ is countable union of finite set, it follows that A is countable.

To prove this claim, it satisfies to show that F_n is countable $\forall n \geq 0 (F_n = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n)$ Consider the map $G: F_n \to \mathbb{Z}^{n+1}$

$$G(a_0x^n + a_1x^{n+1} + \dots + a_{n-1}x + a_n) = (a_0, a_1, \dots, a_n)$$

Clearly, G is injective. This implies F_n is countable $\forall n \geq 0$

2. Prove that there exists real numbers which are not algebraic.

Solution. If not, $\forall r \in \mathbb{R}$, r is algebraic. This implies the set of all algebraic numbers is uncountable $(\rightarrow \leftarrow)$ to exercise 1.

3. Is the set of all irrational real numbers countable?

Solution. No! If it were, $\mathbb{R} = \mathbb{Q} \cup (\mathbb{R} - \mathbb{Q})$ is countable $(\rightarrow \leftarrow)$

4. Construct a bounded set of real numbers with exactly three limit points.

Solution. The idea come from the set $\{\frac{1}{n} \mid n \in \mathbb{N}\}$ In fact, $\forall x \in \mathbb{R}$, the set

$$E = \{x + \frac{1}{n} \mid n \in \mathbb{N}\}$$

has exactly one limit point, namely, x. Clearly, x is a limit point of E. We prove that E does not have any other limit point. Given $y \in \mathbb{R}$. If y < x or $y \ge x + 1$, then it is clear that y cannot be limit point.

If x < y < x + 1, then we have two cases

5. Let X be a metric space and $E \subset X$. Prove that E' is closed. Prove that E and E have the same limit points. Do E and E' always have the same limit points?

Solution.

- \star) E' is closed i.e. $(E')' \subseteq E'$ "Fact A is closed iff $\overline{A'} \subseteq A$ ", given $p \in (E')'$ and r > 0 $B(p,r) \cap$ $E'-\{p\} \neq \emptyset$. Choose $q \in B(p,r) \cap E'-\{p\}$. Since $q \in B(p,r) \exists \delta > 0$ $0 \ni B(q, \delta) \subseteq B(p, r)$. Also $B(q, \delta) \cap E - \{q\} \subseteq B(p, r) \cap E - \{q\}$. Since $q \in E'$, we get $B(q, \delta) \cap E - \{q\} \neq \emptyset$ and it is an infinite set. This implies $B(p,r) \cap E - \{p\} \neq \emptyset \implies p \in E'$. Hence, E' is closed.
- \star) $(E)' = (\overline{E})'$. Clearly $(E)' \subseteq (\overline{E})'$ $(: E \subseteq \overline{E})$ (\supseteq) If not, $\exists x \in \overline{E}$ $(\overline{E})', x \notin E'$, i.e. $\exists r > 0, B(x,r) \cap E - \{x\} = \emptyset$. Since $x \in (\overline{E})'$, $B(x,r) \cap \overline{E} - \{x\} \neq \emptyset$. Choose $y \in B(x,r) \cap \overline{E} - \{x\}$. Since $y \in B(x,r) \exists \delta > 0 \ni B(y,\delta) \subseteq B(x,r)$ $B(y,\delta)\cap E\subseteq B(x,r)\cap E\subseteq \{x\}\implies B(y,\delta)\cap E-\{y\}$ is a finite set $\implies y \notin E'$ From above, we get $y \notin E'$ and $y \in \overline{E}(\rightarrow \leftarrow)$ to $B(x,r) \cap E - \{x\} = \emptyset$. Hence $E' = (\overline{E})'$
- \star) E and E' may not have the same limit points, e.g. Consider E= $\{\frac{1}{n} \mid n \in \mathbb{N}\}$ in \mathbb{R} . $E' = \{0\}$ but $(E')' = \emptyset$
- 6. Let A_1, A_2, \cdots be subset of a metric space.
- (a) Prove that $\bigcup_{i=1}^{n} \overline{A_i} = \overline{\bigcup_{i=1}^{n} A_i} \ \forall n \in \mathbb{N}$ (b) Prove that $\bigcup_{i=1}^{\infty} \subseteq \overline{\bigcup_{i=1}^{\infty}}$. Show by an example that this inclusion can be proper.

Solution.

(a) Since $A_i \subseteq \overline{A_i} \forall i = 1, \dots, n \bigcup_{i=1}^n A_i \subseteq \bigcup_{i=1}^n \overline{A_i} \implies \overline{\bigcup_{i=1}^n A_i} \subseteq$ $\overline{\bigcup_{i=1}^{n} \overline{A_i}} = \bigcup_{i=1}^{n} \overline{A_i}$

Conversely, given $p \in \bigcup_{i=1}^{n} \overline{A_i}$, i.e. $p \in A_i$ for some $i = 1, \dots, n \, \forall r > 0, B(p,r) \cap A_i \neq \emptyset$ $B(p,r) \cap (\bigcup_{i=1}^{n} A_i) \neq \emptyset \implies \bigcup_{i=1}^{n} (B(p,r) \cap A_i) \neq \emptyset \implies p \in \bigcup_{i=1}^{n} A_i$

- (b) Given $p \in \bigcup_{n=1}^{\infty} \overline{A_n}$, i.e. $p \in \overline{A_n}$ for some $n \in \mathbb{N} \ \forall r > 0, B(p,r) \cap A_n \neq \emptyset \Longrightarrow B(p,r) \cap (\bigcup_{n=1}^{\infty} A_n) = \bigcup_{n=1}^{\infty} (B(p,r) \cap A_n) \neq \emptyset \Longrightarrow p \in \overline{\bigcup_{n=1}^{\infty}} A_n$ To prove that the inclusion might be strict e.g. $\bigcup_{q \in \mathbb{Q}} \{\overline{q}\} = \mathbb{Q} \subsetneq \mathbb{R} = \overline{\mathbb{Q}} = \overline{\bigcup_{q \in \mathbb{Q}} \{q\}}$
- 7. Let $A, B \subseteq \mathbb{R}$ such that $\sup A = \sup B$ and $\inf A = \inf B$. Does A = B?

Solution.

- 8. Fix b > 1.
- (a) If m, n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that

$$(b^m)^{1/n} = (b^p)^{1/q}.$$

Hence, it makes sense to define $b^r = (b^m)^{1/n}$

- (b) Prove that $b^{r+s} = b^r b^s$ if r and s are rational.
- (c) If x is real, define B(x) to be the set of all numbers b^t , where t is rational and $t \leq x$. Prove that

$$b^r = \sup B(r)$$

when r is rational. Hence, it make sense to define

$$b^x = \sup B(x)$$

for every real x.

(d) Prove that $b^{x+y} = b^x b^y$ for all real x and y.

Solution. Recall. Thm (Existence of n^{th} root): $\forall x \in \mathbb{R}, x > 0$ and $n \ in \mathbb{N}\exists 1y > 0 \ni y^n = x(y = x^{\frac{1}{n}}) \ , \ x^{\frac{m}{n}} = (x^{\frac{1}{n}})^m = (x^m)^{\frac{1}{n}}$

(a) If m = 0 or p = 1 then the result trivial. Suppose $m \neq 0$ and $p \neq 0$. Since $\frac{m}{n} = \frac{p}{q}$, mq = np. By the existence of n^{th} root, it satisfies to show that $((b^p)^{\frac{1}{q}})^n = b^m$

$$((b^p)^{\frac{1}{q}})^n = ((b^{\frac{1}{q}})^p)^n = (b^{\frac{1}{q}})^{pn} = (b^{\frac{1}{q}})^{mq} = ((b^{\frac{1}{q}})^q)^m = b^m$$

(b) Given $r, s \in \mathbb{Q}$. We can write $r = \frac{m}{n}$ and $s = \frac{p}{q}$, where $n, m, p, q \in$ \mathbb{Z} with n,q>0. Then $b^{r+s}=b^{\frac{n}{np+mq}}$. This means b^{r+s} is the unique real number $\ni (b^{r+s})^{nq} = b^{np+mq}$.

Claim: $(b^r b^s)^n q = b^{np+mq}$

 $(b^r b^s)^{nq} = b^{rnq} b^{snq} = b^{mq} b^{np} = b^{np+mq}$. Thus, $b^{r+s} = b^r b^s$

- (c) First, we prove that if r < s, then $b^r < b^s \forall r, s \in \mathbb{Q}$
 - \star_1 If r=0, then $b^r=1$ write $s=\frac{m}{n}>r=0$, where $m,n\in\mathbb{N}$ with $n\neq 0$. Since b^s is the unique real number such that $(b^{s})^{n} = b^{m}$ and b > 1 we get $b^{r} = 1 < b^{m} = (b^{s})^{n} \Rightarrow b^{r} < b^{s}$
 - \star_2 If s=0, then consider the same result of \star_1
 - \star_3 If r < 0 < s, then $b^r < 1$ and $b^s > 1$. Hence $b^r < b^s$
 - \star_4 If 0 < r < s. Write $r = \frac{p}{q}$ and $s = \frac{m}{n}$, where $n, m, p, q \in \mathbb{N}$. Then $r = \frac{np}{nq} < \frac{mq}{nq} = s$ By (a), we have $b^r = b^{\frac{p}{q}} = b^{\frac{np}{nq}} =$ $(b^{\frac{1}{nq}})^{np} < (b^{\frac{1}{n1}})^{mq} = b^s$
 - \star_5 If r < s < 0, then consider 0 < -s < -r. By \star_4 , we are done.

Hence, in any case, we have b^r is the upper bound of B(r) where $r \in \mathbb{Q}$ Finally, to prove that b^r is the smallest on. We need some facts.

- (i) $\forall n \in \mathbb{N}, b^n 1 > n(b-1)$
- (ii) If t > 1 and $n > \frac{(b-1)}{(t-1)}$, then $b^{\frac{1}{n}} < t$. By replacing $b = b^{\frac{1}{n}}$ in (i), we get $\forall n \in \mathbb{N}, b-1 \geq n(b^{\frac{1}{n}}-1)$ Thus, $n > \frac{b-1}{t-1} \geq$ $\frac{n(b^{\frac{1}{n}}-1)}{t-1} \Longrightarrow b^{\frac{1}{n}}-1 < t-1 \Longrightarrow b^{\frac{1}{n}} \le t.$ If $\alpha < b^r$, we must find $q \in \mathbb{Q}$ and $q leq r \ni b^q > \alpha$.

If $\alpha < 0$, then trivial

If $0 < \alpha < b^r$ Changing $t = \frac{b^r}{\alpha} > 1$ in (ii) and choose $n \in \mathbb{N} \ni n > \frac{(b-1)}{(t-1)}$. We get $b^{\frac{1}{n}} < \frac{b^r}{\alpha} \implies \alpha < b^{r-\frac{1}{n}}$ Choose $q = r - \frac{1}{n}$ and we are done.

- (d) Prove that $b^{x+y} = b^x b^y \forall x, y \in \mathbb{R}$. From (c), $b^x = \sup\{b^r \mid r \in \mathbb{Q}, r \leq X\}, b^y = \sup\{b^s \mid s \in \mathbb{Q}, s \leq T\}$ y}. Thus, $b^x b^y = \sup\{b^{r+s} \mid r, \sin\mathbb{Q}, r+s \le x+y\} = b^{x+y}$
- 9. Prove that no order can be defined in the complex field that truns it into an ordered field.

Solution.

10. Suppose z = a + ib, w = c + di. Define z < w if a < c, and also if a = c but b < d. Prove that this turns the set of all complex numbers into an ordered set. (This type of order relation is called a dictionary order, or lexicographic order, for obvious reasons) Does this ordered set have the least-upper-bound property?

Solution.

11. Suppose z = a + bi, w = u + iv and

$$a = \left(\frac{|w| + u}{2}\right)^{1/2}, \ b = \left(\frac{|w| - u}{2}\right)^{1/2}$$

Prove that $z^2 = w$ if $v \ge 0$ and that $(\overline{z})^2 = w$ if $v \le 0$. Conclude that every complex number (with one exception!) has two complex square roots.

Solution.

12. Under what conditions does equality hold in the Cauchy-Schwartz inequality.

Solution.

- 13.
- 14.
- 15.
- 16.
- 17.