P9185 - Project 3: Protocol of a Cluster-randomized trial for Asthma-PASS

Amy Pitts, Yuqi Miao

2022-04-25

Background

Our interest is in persistent asthma in minority children.

- Comprehensive school-based interventions in collaboration with communities to reduce asthma morbidity and promote physical activity in urban areas.
- A pilot cluster RCT was conducted exploring this intervention in Bronx elementary schools
 - **Goal:** whether Children in schools receiving Asthma-PASS intervention may experience a greater improvement in the number of SFD at 6 **or** 12 months follow up than the children in the comparison group.
 - 4 Bronx elementary schools were recruited into the pilot study.
 - A total of 108 children recruited including ages 4-11 years with physician-diagnosed persistent or uncontrolled asthma attending kindergarten to 5th grades

Overview

- Data Overview
- Exploration into Pilot Study data
 - Model Specifications
 - Results
- Opening Proposal
 Opening Proposal
 - Model Specifications
 - Sample Size Suggestions

Data Overview

Variable	Definition
ID	Participant's ID
Time	Follow up time (Baseline, 6 months, 12 months)
Group	Intervention group (control or Intervention)
SFD	Symptom free days in the past two weeks
School	School recruited for the study
	•

Table 1: Data Descriptions

Data Exploration

10 -5 -0 -

Symptom free days in the past two weeks

Data Exploration

```
## Warring, Bereved 20 rove containing non-finite values (sta
```

Warning: Removed 28 rows containing non-finite values (state
Warning: Removed 26 row(s) containing missing values (geom

Warning: Removed 28 rows containing missing values (geom_po

6 / 24

Data Exploration

Current outcome: SFD (Count data)

- Due to the skewed distribution towards higher values a poisson model will not fit our data well
- Outcome does not seem linear over the time observations.

Interested in the change from baseline to observation times.

New outcome: Change in SFD (Continuous Data)

- Transform the SFD by calculated:
 - 6 month observation baseline
 - 12 month observation baseline
- Baseline with become covariate

New Continous Outcome

Exploring variation between school and within school

Data Description

		Group Control		Group Intervention			
Characteristic	Overall , N = 108 ¹	School 1 , N = 28 ¹	School 3 , N = 31 ⁷	School 2 , N = 21 ¹	School 4 , N = 28 ¹	p- value ²	
baseline	11.0 (7.0, 13.0)	12.0 (7.5, 13.0)	9.0 (6.2, 11.8)	11.0 (9.0, 14.0)	11.0 (7.5, 12.5)	0.3	
Unknown	3	1	1	0	1		
Change_6months	2 (0, 5)	2 (0, 3)	3 (0, 8)	1 (0, 2)	0 (0, 4)	0.3	
Unknown	10	3	4	2	1		
Change_12months	1.0 (0.0, 4.0)	1.0 (0.0, 3.5)	2.0 (0.5, 5.5)	0.5 (-0.2, 3.0)	0.0 (0.0, 3.0)	0.2	
Unknown	15	5	4	1	5		

² Kruskal-Wallis rank sum test

Missing Data

Model Specifications

To model change in SFD let i for school, j for subjects, k for measures.

We will used mixed effect model.

$$\begin{split} Y_{ijk} &= \beta_0 + \beta_1 Baseline_{ij} \\ &+ \beta_2 Group_{ij} + \beta_3 Compare_{ijk} \\ &+ \beta_4 Group_{ij} \times Compare_{ijk} \\ &+ \alpha_{0i} + \alpha_{0j} + \epsilon_{ijk} \end{split}$$

where $\alpha_{0i} \sim N(0, \sigma_w^2)$, $\alpha_{0j} \sim N(0, \sigma_b^2)$, and $\epsilon_{ijk} \sim N(0, \sigma^2)$.

Missing Data Assumptions

We will be assuming data is missing at random $(MAR)^{[1]}$.

- MAR assumption: $R \perp \!\!\! \perp Y_{mis} | X, Y_{obs}$
- Separable parameter assumption
- Ignorability condition

$$\begin{split} L_i^{\text{O}}(\theta, \psi) &\propto f_{\theta, \psi} \left(Y_{\text{obs}, i}, R_i, X_i \right) \\ &= f_{\psi} \left(R_i \mid Y_{\text{obs}, i}, X_i \right) f_{\theta} \left(Y_{\text{obs}, i} \mid X_i \right) \end{split}$$

Model Result

Fixed Effects Estimates:

Characteristic	Beta	95% CI ¹	p-value
baseline	-0.82	-1.0, -0.69	<0.001
group			
0	_	_	
1	1.1	-0.46, 2.6	0.2
compare			
m6_m0	_	_	
m12_m0	-0.05	-1.4, 1.3	>0.9
group * compare			
1 * m12_m0	-0.27	-2.2, 1.6	8.0
¹ CI = Confidence I	nterval		

Note: This model is singular

Random Effects Estimates:

group	Std.Dev	Variance
id	2.055	4.221
school	0.000	0.000
Residual	3.250	10.560

Model Interpretations:

- interpretations
- ② interpretations
- interpretations

Model Quality

Model without Baseline

Fixed Effects Estimates:

Characteristic	Beta	95% CI ¹	p-value
group			
0	_	_	
1	1.7	-2.5, 5.8	0.3
compare			
m6_m0	_	_	
m12_m0	-0.08	-1.5, 1.3	>0.9
group * compare	Э		
1 * m12_m0	-0.26	-2.2, 1.7	0.8
¹ CI = Confidence	Interval		

Random Effects Estimates:

group	Std.Dev	Variance
id	4.384	19.215
school	0.597	0.357
Residual	3.275	10.726

Model Interpretations:

- interpretations
- 2 interpretations
- interpretations

Model Quality

Cluster RCT design

- The investigators wish to propose a cluster-randomized clinical trial (RCT) in 30 Bronx schools to evaluate the effectiveness of their intervention program.
- Primary hypothesis: compared to the control group, children in schools randomized to intervention group will experience a greater improvement in the number of SFD at any of the 3, 6, 9, and 12 months assessment.
- The investigators would like to have at 80% probability to declare the trial is successful if the true effect size in improvement of SFD over time is at least 1/3 standard deviation.

Study design proposal:

3 level structure^[2]:

$$y_{ijk} = \beta_0 + \delta_{(3)} X_{ijk} + \mu_i + \mu_j + e_{ijk}$$

- ullet i for school, j for subjects, k for measures
- $\mu_i \sim N(0,\sigma_b^2)$ random intercept between schools
- $\mu_{i} \sim N(0, \sigma_{w}^{2})$ random intercept for subjects within schools
- $e_{ijk} \sim N(0, \sigma^2)$ random error term

Intraclass Correlation Coefficient

$$\rho_1 = \frac{\sigma_b^2 + \sigma_w^2}{\sigma_b^2 + \sigma_w^2 + \sigma^2} \qquad \qquad \rho_2 = \frac{\sigma_b^2}{\sigma_b^2 + \sigma_w^2 + \sigma^2}$$

Hypothesis Set Up

Hypothesis:
$$H_0:\delta_{(3)}=0$$
, $H_1:\delta_{(3)}\neq 0$

- Clinical Interest: $H_1: \delta_{(3)} > 0$?
- ullet Calculate N based on normal distribution
- Interested in when $\beta=0.20$, $\alpha^*=0.05/2$ and $\Delta=1/3$

Three levels of Sampling

- N_1 : Number of Observation looks (4 in our case)
- ullet N_2 : Number of Indiviuals in each School (What we want to estimate)
- N_3 : Number of Schools for one treatment arm (15 in our case)

Sample Size Calculation

Sample Size formula

$$N_2 = \frac{2(1+(\rho_1-\rho_2)N_1-\rho_1)z_{\alpha^*,\beta}^2}{N_1N_3\Delta^2 - 2\rho_2N_1z_{\alpha^*,\beta}^2}$$

Where z is calculated based on the normal distribution.

$$z_{\alpha^*,\beta}^2 = (z_{\alpha^*/2} + z_\beta)^2 = \left[\Phi^{-1}(1 - \alpha^*/2) + \Phi^{-1}(1 - \beta)^{-1}\right]^2$$

Intra Class Correlation in our Models

Model 1 Random Effects:

group	Std.Dev	Variance
id	2.055	4.221
school	0.000	0.000
Residual	3.250	10.560

Model 2 Random Effects:

group Std.Dev Varia					
id	4.384	19.215			
school	0.597	0.357			
Residual	3.275	10.726			

$$\rho_1 = 0.286$$

$$\rho_2 = 0.000$$

$$\rho_1 = 0.646$$

$$\rho_2 = 0.012$$

Sample Size Suggested

label	rho1	rho2	class_size	group_size	total_samp
Est w/ Baseline	0.286	0.000	4.372	65.580	131.160
Average	0.466	0.006	5.918	88.766	177.532
Est w/0 Baseline	0.646	0.012	7.656	114.846	229.692

Resources

- [1] Hogan, J. W., Roy, J., & Korkontzelou, C. (2004). Handling drop-out in longitudinal studies. Statistics in Medicine, 23(9), 1455–1497. https://doi.org/10.1002/sim.1728
- [2] Ahn, C., Heo, M., & Zhang, S. (2014). Sample size calculations for clustered and longitudinal outcomes in clinical research. CRC Press.