Álgebra lineal II, Grado en Matemáticas

Reserva

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora. Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Desigualdad Triangular o de Minkowski
- (b) Complemento ortogonal
- (c) Multiplicidad geométrica de un autovalor.
- (d) Forma bilineal

Ejercicio 1: (2 puntos)

Sea $f: V \to V$ una aplicación lineal, demuestre que el subespacio máximo $M(\lambda)$ asociado a un autovalor λ de f es un subespacio invariante por f. ($U \subset V$ invariante por f si y sólo si para todo $v \in U$, $f(v) \in U$).

Ejercicio 2: (3 puntos)

Encuentre las matrices (en la base canónica) de todas las isometrías vectoriales de \mathbb{R}^3 que dejan invariante el plano de ecuaciones $x_1 - x_2 = 0$, actuando en él como un giro de ángulo $\alpha = \Pi$.

Ejercicio: (3 puntos)

Obtenga la diagonalización por congruencia de la forma cuadrática Φ de \mathbb{R}^3 cuya matriz en la base canónica es

$$\begin{bmatrix} 2 & 1 & -1 \\ 1 & 3 & -1 \\ -1 & -1 & 1 \end{bmatrix}$$

Clasifique la forma cuadrática y calcule unas ecuaciones del subespacio conjugado de la recta $r \equiv (x_1 + x_2 = 0, 2x_1 - x_3 = 0)$.