

Lipschitz condition and differentiability result

 ${\bf Canonical\ name} \quad {\bf Lipschitz Condition And Differentiability Result}$

Date of creation 2013-03-22 13:32:42 Last modified on 2013-03-22 13:32:42

Owner paolini (1187) Last modified by paolini (1187)

Numerical id 5

Author paolini (1187)

Entry type Result Classification msc 26A16 About lipschitz continuity of differentiable functions the following holds.

Theorem 1. Let X, Y be Banach spaces and let A be a convex (see convex set), open subset of X. Let $f: \overline{A} \to Y$ be a function which is continuous in \overline{A} and differentiable in A. Then f is lipschitz continuous on \overline{A} if and only if the derivative Df is bounded on A i.e.

$$\sup_{x \in A} \|Df(x)\| < +\infty.$$

Proof. Suppose that f is lipschitz continuous:

$$||f(x) - f(y)|| \le L||x - y||.$$

Then given any $x \in A$ and any $v \in X$, for all small $h \in \mathbb{R}$ we have

$$\left\|\frac{f(x+hv) - f(x)}{h}\right\| \le L.$$

Hence, passing to the limit $h \to 0$ it must hold $||Df(x)|| \le L$.

On the other hand suppose that Df is bounded on A:

$$||Df(x)|| \le L, \quad \forall x \in A.$$

Given any two points $x,y\in\overline{A}$ and given any $\alpha\in Y^*$ consider the function $G:[0,1]\to\mathbb{R}$

$$G(t) = \langle \alpha, f((1-t)x + ty) \rangle.$$

For $t \in (0,1)$ it holds

$$G'(t) = \langle \alpha, Df((1-t)x + ty)[y - x] \rangle$$

and hence

$$|G'(t)| \le L||\alpha|| ||y - x||.$$

Applying Lagrange mean-value theorem to G we know that there exists $\xi \in (0,1)$ such that

$$|\langle \alpha, f(y) - f(x) \rangle| = |G(1) - G(0)| = |G'(\xi)| \le ||\alpha||L||y - x||$$

and since this is true for all $\alpha \in Y^*$ we get

$$||f(y) - f(x)|| \le L||y - x||$$

which is the desired claim.