Подготовка к ЕГЭ по математике

Теория для решения задач по планиметрии

Необходимо знать все фигуры планиметрии. А также следующие понятия, формулы и теоремы:

- формулы площадей фигур (квадрат, прямоугольник, треугольник, трапеция, параллелограмм, четырёхугольник, круг, сектор круга)
- теорему Пифагора
- теорему косинусов
- > теорему о сумме углов треугольника
- > теорему о внешнем угле треугольника
- понятие синуса, косинуса, тангенса и котангенса в прямоугольном треугольнике
- > процесс решения квадратного уравнения (формулы дискриминанта и корней)
- > формулы связи радиусов вписанной и описанной окружности с его площадью
- > формулу для нахождения длины отрезка на координатной плоскости
- формулу для нахождения координат середины отрезка
- > понятие вектора, координаты вектора
- понятие модуля вектора, формулу длины вектора
- > скалярное произведение векторов
- > уравнение прямой, угловой коэффициент
- > формулу уравнения прямой походящей через две данные точки
- формулу Пика (знать необязательно, но желательно)
- виды треугольников
- > понятие биссектрисы, медианы, высоты
- > основное тригонометрическое тождество
- > теорему косинусов
- > тригонометрические функции и их значения
- формулы приведения
- признаки подобия треугольников
- > свойства вписанных в окружность углов
- > свойства четырехугольников вписанных в окружность и описанных около неё
- > параллельные прямые

Формулы площадей фигур (квадрат, прямоугольник, треугольник, трапеция, параллелограмм, четырёхугольник, круг, сектор круга)

площадь

$$S = a^2$$
 $P = 4a$ $d = a\sqrt{2}$ $P -$ сумма сторон фигуры $d -$ длина диагонали

$$S = a \cdot b$$
 $d = \sqrt{a^2 + b^2}$ $P = 2a + 2b$ $P -$ сумма сторон прямоугольника $d -$ длина диагонали

$$S = a \cdot h$$

 $S = a \cdot b \cdot \sin \varphi$ $h -$ высота
 $P = 2a + 2b$ $P -$ сумма сторон

$$S = \frac{1}{2} \cdot d_1 \cdot d_2$$

 $S = a^2 \cdot \sin \varphi$

$$S = a \cdot h$$
 $P = 4a$ $P -$ периметр $S = a^2 \cdot \sin \varphi$ $h -$ высота

 $S = \frac{1}{2} \cdot d_1 \cdot d_2$ d_1 и d_2 — диагонали

$$S=rac{1}{2}\cdot a\cdot h$$
 $S=rac{1}{2}\cdot a\cdot b\cdot \sin arphi$ $S=p\cdot r$ $S=\sqrt{p(p-a)(p-b)(p-c)}$ $p=rac{a+b+c}{2}$ — полупериметр r — радиус вписаной окружности

треугольник

$$\sin \alpha = \frac{a}{c}$$

$$S = \frac{1}{2} \cdot a \cdot b$$

$$\cos \alpha = \frac{b}{c}$$

$$S = \frac{1}{2} \cdot c \cdot h$$

$$\tan \alpha = \frac{a}{c}$$

$$\tan \alpha = \frac{a}{c}$$

$$\tan \alpha = \frac{a}{c}$$

$$\tan \alpha = \frac{a}{c}$$

$$\cot \alpha = \frac{a}{b}$$

$$\cot \alpha = \frac{b}{a}$$

$$S = \frac{a+b}{2} \cdot h$$
 a и b — основания h — высота $m = \frac{a+b}{2}$ — средняя линия

$$S=\pi R^2$$
 $L=2\pi R=\pi D$ $D-$ диаметр $L-$ длина окружности $S_{\mathrm{cektopa}}=rac{\pi R^2}{360^\circ}\cdot n$ где $n-$ центральный угол

Теорема Пифагора

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

$$AB^2 = AC^2 + BC^2$$

Зная любые две стороны, мы можем найти третью сторону треугольника.

Теорема косинусов

<u>Теорема:</u> квадрат любой стороны треугольника равен сумме квадратов двух других сторон, без удвоенного произведения этих сторон на косинус угла между ними.

 $a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos \alpha$

Сумма углов треугольника

Теорема: сумма углов треугольника равна 180 градусам.

$$\alpha + \beta + \gamma = 180^{\circ}$$

Вывод: если нам будут известны любые два угла в треугольнике, то мы всегда сможем найти третий угол.

Теорема о внешнем угле треугольника

Теорема: внешний угол треугольника равен сумме двух внутренних углов не смежных с ним.

Рассмотрим произвольный треугольник с углами α (альфа), β (бетта), γ (гамма). Обозначим внешний угол как ϕ (фи):

Значит по теореме: $\phi = \alpha + \beta$

Доказательство:

Напомним что такое развёрнутый угол, чему он равен и что такое смежные углы:

Углы ϕ и γ — это смежные углы, их сумма равна 180° , то есть $\gamma+\phi=180^\circ$ (1) По теореме о сумме углов треугольника: $\alpha+\beta+\gamma=180^\circ$. Из неё следует, что $180^\circ-\gamma=\alpha+\beta$. Из (1) следует, что $180^\circ-\gamma=\phi$ Получили $\phi=\alpha+\beta$. Теорема доказана.

*Конечно же, данная теорема скорее следствие из теоремы о сумме углов треугольника, чем «самостоятельная» теорема.

Понятие синуса, косинуса, тангенса и котангенса в прямоугольном треугольнике

Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла. **Катеты** — стороны, лежащие напротив острых углов.

Катет a, лежащий напротив угла α , называется **противолежащим** (по отношению к углу α). Другой катет b, который лежит на одной из сторон угла α , называется **прилежащим**.

Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:

$$\sin \alpha = \frac{a}{c}$$

Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:

$$\cos \alpha = \frac{b}{c}$$

Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:

$$tg \alpha = \frac{a}{b}$$

Другое (равносильное) определение – тангенсом острого угла называется отношение синуса угла к его косинусу:

$$tg \alpha = \frac{\sin \alpha}{\cos \alpha}$$

Котангенс острого угла в прямоугольном треугольнике — это отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

$$\cot \alpha = \frac{b}{a}$$

$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

Основные соотношения для синуса, косинуса, тангенса и котангенса приведены ниже, они пригодятся при решении задач:

$$\sin \alpha = \frac{a}{c}$$

$$\cos \alpha = \frac{b}{c}$$

$$\tan \alpha = \frac{a}{c}$$

$$\tan^2 \alpha + \cos^2 \alpha = 1$$

$$\tan^2 \alpha + 1 = \frac{1}{\cos^2 \alpha}$$

$$1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha}$$

$$\tan^2 \alpha + 1 = \frac{1}{\cos^2 \alpha}$$

$$1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha}$$

$$\alpha + \beta = 90^\circ$$

$$\cot^2 \alpha = \frac{b}{a}$$

$$\cot^2 \alpha = \frac{b}{a}$$

$$\cos^2 \alpha = \sin^2 \beta$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\cos^2 \alpha = 1$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\cos^2 \alpha = 1$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\cos^2 \alpha$$

$$\cos^2 \alpha = \sin^2 \alpha$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\cos^2 \alpha$$

$$\cos^2 \alpha = \sin^2 \alpha$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\cos^2 \alpha = \sin^2 \alpha$$

$$\cos^2 \alpha = \sin^2 \alpha$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\cos^2 \alpha = \sin^2 \alpha$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\cos^2 \alpha = \sin^2 \alpha$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\cos^2 \alpha = \sin^2 \alpha$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\cos^2 \alpha = \sin^2 \alpha$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\cos^2 \alpha = \sin^2 \alpha$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\cos^2 \alpha + \cos^2 \alpha = 1$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\cos^2 \alpha + \cos^2 \alpha = 1$$

$$\sin^2 \alpha + \cos$$

Таким образом, зная два-три элемента в прямоугольном треугольнике мы всегда сможем найти все остальные его элементы (углы и стороны).

Решение квадратного уравнения

(формулы дискриминанта и корней)

Квадратное уравнение (общий вид): $ax^2 + bx + c = 0$

Находим дискриминант: $D = b^2 - 4ac$.

Находим корни уравнения по формулам:

$$x_1 = \frac{-b + \sqrt{D}}{2a} \qquad x_2 = \frac{-b - \sqrt{D}}{2a}$$

Формулы площади треугольника

$$S=r\cdot rac{a+b+c}{2}$$
 где $r-$ радиус вписанной окружности $S=rac{a\cdot b\cdot c}{4R}$ где $R-$ радиус описанной окружности $a,b,c-$ стороны треугольника

Формула длины отрезка на координатной плоскости

Формула для определения длины отрезка, если известны координаты его концов:

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$
 где $A(x_A; y_A) \ B(x_B; y_B)$

Формула координат середины отрезка

Пусть точка C является серединой отрезка AB.

Формула для нахождения координат середины отрезка:

$$C\left(rac{x_A+x_B}{2};rac{y_A+y_B}{2}
ight)$$
 $x_C=rac{x_A+x_B}{2}; \quad y_c=rac{y_A+y_B}{2}$ где $A(x_A;y_A)$ $B(x_B;y_B)$

Понятие вектора, координаты вектора.

Вектор это направленный отрезок.

Все векторы, имеющие одинаковое направление и равные по длине являются равными.

Координаты вектора.

Чтобы найти координаты вектора, нужно из координат конца вычесть соответствующие координаты начала:

$$\overrightarrow{AB}(x_B - x_A; y_B - y_A)$$
, где $A(x_A; y_A)$ и $B(x_B; y_B)$

Понятие модуля вектора, длина вектора, скалярное произведение векторов

Модулем вектора называется его длина, определяется по формуле:

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2}$$
 где $\vec{a}(a_1; a_2)$

Формула для определения длины вектора, если известны координаты его начала и конца:

$$|\overrightarrow{AB}| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Формулы скалярного произведения векторов:

$$\vec{a} \cdot \vec{b} = a_1 \cdot b_1 + a_2 \cdot b_2$$

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \widehat{\vec{a}\vec{b}}$$

То есть скалярное произведение векторов равно произведению его длин на косинус угла между ними.

Если известны координаты векторов, можем найти угол между векторами:

$$\cos\widehat{\vec{a}\vec{b}} = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|\cdot|\vec{b}|}$$

$$\cos \widehat{\vec{ab}} = \frac{a_1 b_1 + a_2 b_2}{\sqrt{a_1^2 + a_2^2} \cdot \sqrt{b_1^2 + b_2^2}}$$

Уравнение прямой, угловой коэффициент.

Уравнение прямой на координатной плоскости имеет вид:

y=kx+b, где k это и есть угловой коэффициент прямой k=tg α , где α это угол между прямой и осью ox он лежит в пределах от 0 до 180 градусов

Покажем этот угол:

Уравнения прямой походящей через две данные точки Формула уравнения прямой походящей через две данные точки имеет вид:

$$\frac{x - x_A}{x_B - x_A} = \frac{y - y_A}{y_B - y_A}$$
 где $(x_A; y_A)$ и $(x_B; y_B)$ — координаты точек

ФОРМУЛА ПИКА (ПРИМЕР)

Площадь искомой фигуры (в данном случае рассмотрим треугольник) можно найти по формуле:

$$S = \frac{M}{2} + N - 1$$

где M — количество узлов на границе треугольника

(на сторонах и вершинах)

N — количество узлов внутри треугольника

M = 12(красный цвет)

N = 13(синий цвет)

1 клетка = 1 см

$$S = \frac{12}{2} + 13 - 1 = 18 \text{ cm}^2$$

виды треугольников

Если один из углов треугольника прямой (равен 90°), то треугольник называется **прямоугольным.** Две стороны, образующие прямой угол, называются катетами, а сторона, противолежащая прямому углу, называется гипотенузой (рисунок 1).

Если все углы треугольника острые, то треугольник называется **остроугольным** (рисунок 2).

Если один из углов треугольника тупой (больше 90°), то треугольник называется **тупоугольным** (рисунок 3).

Равносторонним называется треугольник, у которого все три стороны равны. В равностороннем треугольнике все углы равны 60° , а центры вписанной и описанной окружностей совпадают (рисунок 4).

Равнобедренным называется треугольник, у которого две стороны равны. Эти стороны называются боковыми, третья сторона называется основанием. В равнобедренном треугольнике углы при основании равны (рисунок 5).

Разносторонним называется треугольник, у которого длины трёх сторон попарно различны (рисунок 6).

Биссектриса, медиана, высота.

Медианой треугольника, проведённой из данной вершины, называется отрезок, соединяющий эту вершину с серединой противолежащей стороны (основанием медианы). Все три медианы треугольника пересекаются в одной точке. Эта точка пересечения делит каждую медиану в отношении 1:2 считая от основания медианы (этот факт следует помнить).

Высотой треугольника, проведённой из данной вершины, называется перпендикуляр, опущенный из этой вершины на противоположную сторону или её продолжение.

BD - высота опущенная на сторону АС

Биссектрисой треугольника, проведённой из данной вершины, называют отрезок, соединяющий эту вершину с точкой на противоположной стороне и делящий угол при данной вершине пополам. Биссектрисы треугольника пересекаются в одной точке, и эта точка совпадает с центром вписанной окружности.

$$AK,CE,BD-$$
 биссектрисы $\angle BAK = \angle KAC \ \ \angle ADB = \angle CBD \ \ \ \angle ACE = \angle BCE$ $O-$ цетр вписанной окружности

В равнобедренном треугольнике биссектриса, медиана и высота, проведённые к основанию, совпадают. Верно и обратное: если биссектриса, медиана и высота, проведённые из одной вершины, совпадают, то треугольник равнобедренный.

Основное тригонометрическое тождество $\sin^2\alpha + \cos^2\alpha = 1$

Теорема косинусов

<u>Теорема:</u> квадрат любой стороны треугольника равен сумме квадратов двух других сторон, без удвоенного произведения этих сторон на косинус угла между ними.

 $a = b + c - 2 \cdot b \cdot c \cdot \cos a$

Значения тригонометрических функций

Аргумент —	Функция						
7 ipi y Meiii	sin α	$\cos \alpha$	tg α	ctg α			
0° (0)	0	1	0	не определен			
$30^{\circ} \left(\frac{\pi}{6}\right)$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$			
45° $\left(\frac{\pi}{4}\right)$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1			
60° $\left(\frac{\pi}{3}\right)$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$			
$90^{\circ} \left(\frac{\pi}{2}\right)$	1	0	не определен	0			

Знание этих значений необходимо, это «азбука», без которой невозможно будет справиться с множеством заданий. Отлично, если память хорошая, вы легко выучили и запомнили эти значения. Что делать, если этого сделать не получается, в голове путаница, да просто вы именно при сдаче экзамена сбились. Обидно будет потерять бал из-за того, что вы запишите при расчётах неверное значение.

Посмотрите алгоритм, благодаря которому вы легко, в течение минуты восстановите в памяти все вышеуказанные значения:

1. Записываем в строчку углы от 0 до 90 градусов.

2. Записываем слева в столбик синус и косинус аргумента:

 $\sin \alpha$

 $\cos \alpha$

3. Напротив синуса пишем числа от нуля до четырёх (под значениями углов). Напротив косинуса от 4 до 0.

$$0^{\circ}$$
 30° 45° 60° 90° $\sin \alpha$ 0 1 2 3 4 $\cos \alpha$ 4 3 2 1 0

4. Далее извлекаем корень:

$$0^{\circ} \quad 30^{\circ} \quad 45^{\circ} \quad 60^{\circ} \quad 90^{\circ}$$

$$\sin \alpha \quad \sqrt{0} \quad \sqrt{1} \quad \sqrt{2} \quad \sqrt{3} \quad \sqrt{4}$$

$$\cos \alpha \quad \sqrt{4} \quad \sqrt{3} \quad \sqrt{2} \quad \sqrt{1} \quad \sqrt{0}$$

5. Делим на 2

6. Вычисляем:

Мы получили значения синуса и косинуса углов от 0 до 90 градусов.

Тренируйтесь, проработайте данный алгоритм раз семь, процесс займёт немного времени. В будущем это вам пригодится!

Далее, зная формулы тангенса и котангенса:

$$tg \alpha = \frac{\sin \alpha}{\cos \alpha}$$
 $ctg \alpha = \frac{\cos \alpha}{\sin \alpha}$

вы сможете найти значения всех вышеуказанных углов.

Например:

$$tg \, 30^{\circ} = \frac{\sin 30^{\circ}}{\cos 30^{\circ}} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}$$

Формулы приведения

Выражение «Формулы приведения» означает приводить к простейшему виду. Ниже представлены все формулы и правила приведения. Но в задачах по планиметрии вам понадобятся только те формулы, в которых фигурируют углы 90 и 180 градусов. Тем неменее, важен сам принцип, потому здесь представлена полная информация по формулам приведения.

Табличная форма выражающая формулы приведения:

Функция / угол в рад.	$\pi/2-\alpha$	$\pi/2 + \alpha$	$\pi - \alpha$	π+α	$3\pi/2 - \alpha$	$3\pi/2 + \alpha$	2π – α	2π + α
sin	cos a	cos a	sin α	– sin α	-cos α	– cos α	– sin α	sin α
cos	sin α	–sin α	-cos α	-cosα	– sin α	sin α	cos a	cos a
tg	ctg a	– ctg α	–tg α	tg a	ctg α	– ctg α	–tg α	tg α
ctg	tg α	–tg α	– ctg α	ctg a	tg α	–tg α	– ctg α	ctg a
Функция / угол в °	90° – α	90° + α	180° – α	180° + α	270° – α	270° + α	360° – α	360° + a

Вам не нужно учить таблицу и запоминать эти формулы.

Необходимо уяснить «закон», который здесь работает:

1. Необходимо определить знак функции в соответствующей четверти.

Напомним знаки тригонометрических функций:

При 90° и 270° функция изменяется на кофункцию (синус на косинус, косинус на синус, тангенс на котангенс, котангенс на тангенс)
 При 180° и 360° функция на кофункцию не изменяется.

Теперь запишем формальный вид (все формулы приведения):

$$\sin(90^{\circ} - \alpha) = \cos \alpha \qquad \cos(90^{\circ} - \alpha) = \sin \alpha$$

$$\sin(90^{\circ} + \alpha) = \cos \alpha \qquad \cos(90^{\circ} + \alpha) = -\sin \alpha$$

$$\sin(180^{\circ} - \alpha) = \sin \alpha \qquad \cos(180^{\circ} - \alpha) = -\cos \alpha$$

$$\sin(180^{\circ} + \alpha) = -\sin \alpha \qquad \cos(180^{\circ} + \alpha) = -\cos \alpha$$

$$\sin(270^{\circ} - \alpha) = -\cos \alpha \qquad \cos(270^{\circ} - \alpha) = -\sin \alpha$$

$$\sin(270^{\circ} + \alpha) = -\cos \alpha \qquad \cos(270^{\circ} + \alpha) = \sin \alpha$$

$$\sin(360^{\circ} - \alpha) = -\sin \alpha \qquad \cos(360^{\circ} - \alpha) = \cos \alpha$$

$$\sin(360^{\circ} + \alpha) = \sin \alpha \qquad \cos(360^{\circ} - \alpha) = \cos \alpha$$

$$\tan(360^{\circ} + \alpha) = \sin \alpha \qquad \cos(360^{\circ} + \alpha) = \cos \alpha$$

$$\tan(360^{\circ} + \alpha) = -\cot \alpha \qquad \cot(90^{\circ} + \alpha) = -\cot \alpha$$

$$\tan(180^{\circ} + \alpha) = -\cot \alpha \qquad \cot(180^{\circ} + \alpha) = \cot \alpha$$

$$\tan(180^{\circ} + \alpha) = -\cot \alpha \qquad \cot(180^{\circ} + \alpha) = \cot \alpha$$

$$\tan(180^{\circ} + \alpha) = -\cot \alpha \qquad \cot(180^{\circ} + \alpha) = \cot \alpha$$

$$\tan(180^{\circ} + \alpha) = -\cot \alpha \qquad \cot(180^{\circ} + \alpha) = -\cot \alpha$$

$$\tan(180^{\circ} + \alpha) = -\cot \alpha \qquad \cot(180^{\circ} + \alpha) = -\cot \alpha$$

$$\tan(180^{\circ} + \alpha) = -\cot \alpha \qquad \cot(180^{\circ} + \alpha) = \cot \alpha$$

$$\tan(180^{\circ} + \alpha) = -\cot \alpha \qquad \cot(180^{\circ} + \alpha) = \cot \alpha$$

$$\tan(180^{\circ} + \alpha) = -\cot \alpha \qquad \cot(180^{\circ} + \alpha) = -\cot \alpha$$

$$\tan(180^{\circ} + \alpha) = \cot \alpha \qquad \cot(180^{\circ} + \alpha) = -\cot \alpha$$

$$\tan(180^{\circ} + \alpha) = \cot \alpha \qquad \cot(180^{\circ} + \alpha) = -\cot \alpha$$

$$\tan(180^{\circ} + \alpha) = \cot \alpha \qquad \cot(180^{\circ} + \alpha) = -\cot \alpha$$

$$\tan(180^{\circ} + \alpha) = \cot \alpha \qquad \cot(180^{\circ} + \alpha) = -\cot \alpha$$

$$\tan(180^{\circ} + \alpha) = \cot \alpha \qquad \cot(180^{\circ} + \alpha) = -\cot \alpha$$

$$\tan(180^{\circ} + \alpha) = \cot \alpha \qquad \cot(180^{\circ} + \alpha) = -\cot \alpha$$

$$\tan(180^{\circ} + \alpha) = \cot \alpha \qquad \cot(180^{\circ} + \alpha) = -\cot \alpha$$

$$\tan(180^{\circ} + \alpha) = \cot \alpha \qquad \cot(180^{\circ} + \alpha) = -\cot \alpha$$

$$\tan(180^{\circ} + \alpha) = \cot \alpha \qquad \cot(180^{\circ} + \alpha) = -\cot \alpha$$

$$\tan(180^{\circ} + \alpha) = \cot \alpha \qquad \cot(180^{\circ} + \alpha) = -\cot \alpha$$

$$\tan(180^{\circ} + \alpha) = -\cot \alpha \qquad \cot(180^{\circ} + \alpha) = -\cot \alpha$$

$$\tan(180^{\circ} + \alpha) = -\cot \alpha \qquad \cot(180^{\circ} + \alpha) = -\cot \alpha$$

$$\tan(180^{\circ} + \alpha) = -\cot \alpha$$

$$\cot(180^{\circ} + \alpha) = -\cot \alpha$$

$$\cot(180^{\circ}$$

^{*}В рамку заключены те формулы, которые используются в задачах.

Приведём таблицу соответствия радиан градусам (от 0 до 180 градусов):

0°	30°	45°	60°	90°	120°	135°	150°	180°
0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{4\pi}{6}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π

Признаки равенства треугольников.

Равными называют треугольники, у которых соответствующие стороны равны.

Первый признак равенства треугольников:

Если две стороны и угол, заключенный между ними, одного треугольника соответственно равны двум сторонам и углу, заключенному между ними, другого треугольника, то такие треугольники равны.

Второй признак равенства треугольников:

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Третий признак равенства треугольников:

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Признаки равенства и подобия треугольников.

Подобными называются треугольники, у которых углы равны, а сходственные стороны пропорциональны:

$$\alpha = \beta = \gamma$$

$$\frac{A}{a} = \frac{B}{b} = \frac{C}{c} = k$$

где k — коэффициент подобия

To есть A = ka B = kb C = kc

І признак подобия треугольников:

Если два угла одного треугольника соответственно равны двум углам другого, то эти треугольники подобны.

II признак подобия треугольников:

Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Ш признак подобия треугольников:

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

Следствие: площади подобных треугольников относятся как квадрат коэффициента подобия:

$$\frac{S_2}{S_1} = k^2$$

Свойства вписанных в окружность углов

Вспомним, что такое центральный и вписанный угол; хорда, дуга, на которые опираются эти углы.

Центральным углом в окружности называется плоский угол с вершиной в ее центре. Часть окружности, расположенная внутри плоского угла, называется дугой окружности. Градусной мерой дуги окружности называется градусная мера соответствующего центрального угла.

Угол, называется вписанным в окружность, если вершина угла лежит на окружности, а стороны угла пересекают эту окружность.

Углы α и ϕ - центральные, только угол ϕ опирается на дугу, которая больше 180 градусов. Угол β является вписанным углом.

Отрезок соединяющий две точки окружности называется хордой. Самая большая хорда проходит через центр окружности и называется диаметр.

Для решения задач на вписанные в окружность углы, вам необходимо знать следующие свойства:

1. Вписанный угол равен половине центрального, опирающегося на ту же дугу:

- 2. Все вписанные углы, опирающиеся на одну и ту же дугу, равны.
- 3. Все вписанные углы, опирающиеся на одну и ту же хорду, вершины которых лежат по одну сторону от этой хорды, равны.

4. Любая пара углов, опирающихся на одну и ту же хорду, вершины которых лежат по разные стороны хорды, составляют в сумме 180°:

$$\alpha + \beta = 180^{\circ}$$

Следствие: противолежащие углы четырёхугольника вписанного в окружность в сумме составляют 180 градусов, ($\angle A + \angle B = 180^{\circ}$)

5. Все вписанные углы, опирающиеся на диаметр, прямые.

Вообще, это свойство является следствием из свойства (1), это его частный случай. Посмотрите: центральный угол равен 180 градусам (он построен на хорде, являющейся диаметром), значит по первому свойству вписанный угол равен его половине. Знание данного свойства помогает в решении многих задач и помогает избежать лишних расчётов. Запомните его (как и все остальные).

Следствие 1: если в окружность вписан треугольник и одна его сторона совпадает с диаметром этой окружности, то треугольник является прямоугольным (вершина прямого угла лежит на окружности).

Следствие 2: центр описанной около прямоугольного треугольника окружности совпадает с серединой его гипотенузы.

Свойства четырехугольников вписанных в окружность и описанных около неё

Вписанный четырехугольник — это четырехугольник, все вершины которого лежат на одной окружности.

*Очевидно, эта окружность будет называться **описанной** вокруг четырехугольника. **Описанный** четырехугольник — такой, что все его стороны касаются одной окружности. *В этом случае окружность **вписана** в четырехугольник.

1. Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны 180 градусам.

$$\angle B + \angle D = 180^{\circ}$$

То есть если мы имеем вписанный в окружность четырёхугольник, то сумма его противоположных углов равна 180 градусам.

2. Четырёхугольник можно описать около окружности тогда и только тогда, когда суммы длин его противоположных сторон равны.

То есть, если мы имеем описанный около окружности четырёхугольник, то суммы его противоположных сторон равны.

Ещё одно свойство четырёхугольника:

Параллельные прямые

Во многих задачах планиметрии необходимо знание элементарных фактов. Необходимо, например, помнить информацию о свойсвах углов, образованных параллельными прямыми и секущей. Это пригодится при решении задач с параллелограммами, трапециями и других.

- 1. Соответственные и накрест лежащие углы при параллельных прямых равны.
- 2. Сумма односторонних углов при параллельных прямых равна 180°.

Дорогие друзья! Далеко не все при решении прямоугольных треугольников могут быстро с ориентироваться и сразу же найти верный путь к решению. Поэтому для вас некоторые рекомендации:

- 1. Если в условии даны две стороны прямоугольного треугольника, сразу ищете третью по теореме Пифагора. Зная три стороны, вы всегда сможете найти тригонометрические функции как внутренних, так и внешних углов.
- 2. Если дано значение одой из тригонометрических функций и сторона треугольника, то используя основное тригонометрическое тождество, понятие синуса, косинуса, тангенса или котангенса ищите значение остальных тригонометрических функций. Далее вы без труда сможете найти все стороны треугольника.

Список сайтов по другим предметам:

Подготовка к экзамену по русскому языку

Подготовка к экзамену по литературе

Подготовка к экзамену по химии

Подготовка к экзамену по истории и обществознанию

Подготовка к экзамену по биологии

Бесплатные материалы для подготовки по математике:

Сайт Яковлева Игоря Вячеславовича здесь.

Материалы ЕГЭ-Судии на этой странице.

Сайт Александра Ларина.

Платные курсы

Посмотреть подробнее

Подготовка к ЕГЭ и ОГЭ (ГИА) КУРС Видеорепетитор.

Полезные ресурсы:

Материалы для учителей и учеников Портал Инфоурок.

Подготовка к ЕГЭ по математике – блог Инны Фельдман.

Портал Дмитрия Тарасова Видеоуроки в Интернет.

Обучение онлайн ЕГЭ, ОГЭ, олимпиады Библиотека курсов Фоксворд