Maxcut

Quadratic relaxation

$$\max \sum_{\{i,j\} \in \mathbf{E}} \mathbf{w_{ij}} \frac{-\mathbf{v_i} \cdot \mathbf{v_j} + 1}{2} : \\ \mathbf{v_i} \cdot \mathbf{v_i} = 1$$

Linear program

Variables: real numbers Objective: linear Constraints: linear equalities

Xi

$$\sum c_i x_i$$

$$\sum_{\mathbf{j}} \mathbf{a_{kj}} \mathbf{x_j} = \mathbf{b_k}$$

Vector program

Variables: vectors
Objective: linear in dot products
Constraints: linear equalities
in dot products of the vectors

 ${f V_i}$

$$\sum c_{ij}v_i \cdot v_j$$

$$\sum_{ij}^{(k)} a_{ij}^{(k)} v_i \cdot v_j = b_k$$

What's the big deal about vector programs?

Variables: vectors
Objective: linear in dot products
Constraints: linear equalities
in dot products of the vectors

$$egin{aligned} \mathbf{V_i} \ & \sum \mathbf{c_{ij} v_i \cdot v_j} \ & \sum_{\mathbf{ij}}^{(\mathbf{k})} \mathbf{a_{ij}^{(\mathbf{k})} v_i \cdot v_j} = \mathbf{b_k} \end{aligned}$$

Let
$$y_{ij} = v_i \cdot v_j$$

Objective: min or max
$$\sum c_{ij}y_{ij}$$
 s.t. $\forall k: \sum_{ij}^{(k)} a_{ij}^{(k)}y_{ij} = b_k$

and there exist vectors
$$\mathbf{v}_i$$
 s.t. $\mathbf{y}_{ij} = \mathbf{v}_i \cdot \mathbf{v}_j$

Positive semi-definite matrices

Consider a matrix $Y = (y_{ij})_{1 < i,j < n}$ Assume it is symmetric: $y_{ii} = y_{ji}$

then the following are equivalent:

- there exist vectors $\,\mathbf{v}_i\,$ s.t. $\,\mathbf{y}_{i,j} = \mathbf{v}_i \cdot \mathbf{v}_{,i}$
- Y is positive semi-definite for all vectors a, $\sum_{ij} a_i y_{ij} a_j \geq 0$

Semi-definite programming

Consider a matrix
$$Y = (y_{ij})_{1 \leq i,j \leq n}$$

$$\begin{array}{ll} \text{Objective:} \\ \text{min/max} & \sum c_{ij}y_{ij} \\ \text{s.t.} & \forall k : \sum_{ij}^{(k)} a_{ij}^{(k)}y_{ij} = b_k \\ & y_{ij} = y_{ji} \\ & Y \text{ positive semi-definite} & \forall a : \sum_{ij} a_iy_{ij}a_j \geq 0 \\ & \text{Convex} \end{array}$$

Theorem

Objective: min/max $\sum c_{ij}y_{ij}$ s.t. $\forall k: \sum_{ij}^{(k)} a_{ij}^{(k)}y_{ij} = b_k$ $y_{ij} = y_{ji}$ Y positive semi-definite

Can be "solved" in polynomial time by ellipsoid algorithm

Quadratic relaxation for Maxcut

$$\max \sum_{\{i,j\} \in \mathbf{E}} \mathbf{w_{ij}} \frac{-\mathbf{v_i} \cdot \mathbf{v_j} + 1}{2} :$$

$$\mathbf{v_i} \cdot \mathbf{v_i} = 1$$

Can be "solved" in polynomial time by ellipsoid algorithm

Maxcut

