Feuille d'exercices nº 1 - Espaces vectoriels et applications linéaires

Dans tout ce qui suit, k désignera un corps commutatif, comme par exemple \mathbb{Q} , \mathbb{R} ou \mathbb{C} . Sauf mention explicite du contraire, l'expression « espace vectoriel » signifiera « k-espace vectoriel ».

Espaces vectoriels, sous-espaces vectoriels

- 1 -Soit E un espace vectoriel.
- 1) Soit $(F_i)_{i\in I}$ une famille de sous-espaces vectoriels de E. Montrer que :

$$\bigcap_{i \in I} F_i = \{ x \in E \mid \forall i \in I, \ x \in F_i \}$$

est un sous-espace vectoriel de E.

2) Soient $n \in \mathbb{N}^*$, et F_1, \ldots, F_n des sous-espaces vectoriels de E. Montrer que :

$$F_1 + \dots + F_n = \{x_1 + \dots + x_n \mid x_1 \in F_1, \dots, x_n \in F_n\}$$

est un sous-espace vectoriel de ${\cal E}.$

- 3) Soient F et G deux sous-espaces vectoriels de E.
 - a. Montrer que les assertions suivantes sont équivalentes :
 - (i) $F \cup G$ est un sous-espace vectoriel de E.
 - (ii) $F \subset G$ ou $G \subset F$.
 - b. Expliciter des espaces E, F et G tels que $F \cup G$ ne soit pas un sous-espace vectoriel de E.
- **2** On suppose $\mathbb{k} = \mathbb{R}$ et on se place dans l'espace vectoriel $E = \mathbb{R}^{\mathbb{N}}$ des suites numériques à valeurs réelles. Dans chacun des cas suivants, l'ensemble F proposé est-il un sous-espace vectoriel de E?
- 1) F est l'ensemble des suites $(u_n)_{n\in\mathbb{N}}\in E$ telles que $u_0\in\mathbb{Z}$.
- 2) F est l'ensemble des suites constantes de E.
- 3) F est l'ensemble des suites monotones de E, c'est-à-dire croissantes ou décroissantes.
- 4) F est l'ensemble des suites bornées de E.
- 5) F est l'ensemble des suites convergentes de E.
- 6) F est l'ensemble des suites divergentes de E.
- 7) F est l'ensemble des suites presque nulles $(u_n)_{n\in\mathbb{N}}\in E$, c'est-à-dire pour lesquelles il existe $N\in\mathbb{N}$ tel que $u_n=0$ dès que $n\geqslant N$.
- 8) F est l'ensemble des suites de $(u_n)_{n\in\mathbb{N}}\in E$ vérifiant $u_{n+2}=au_{n+1}+bu_n$ pour tout $n\in\mathbb{N}$, avec $a,b\in\mathbb{R}$.
- 3 On suppose $\mathbb{k} = \mathbb{R}$. Dans chacun des cas suivants, montrer que l'ensemble E proposé est un espace vectoriel.
- 1) E est l'ensemble des fonctions constantes de $\mathbb R$ dans $\mathbb R$.
- 2) Pour $\tau > 0$, E est l'ensemble des fonctions $f : \mathbb{R} \to \mathbb{R}$ τ -périodiques, c'est-à-dire telles que $f(t + \tau) = f(t)$ pour tout $t \in \mathbb{R}$.
- 3) $E = \mathcal{C}^0(\mathbb{R}, \mathbb{R})$ est l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} continues sur \mathbb{R} .
- 4) E est l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} dérivables sur \mathbb{R} .
- 5) Pour $n \in \mathbb{N}^*$, $E = \mathcal{D}^n(\mathbb{R}, \mathbb{R})$ est l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} n fois dérivables sur \mathbb{R} .
- 6) Pour $n \in \mathbb{N}^*$, $E = \mathcal{C}^n(\mathbb{R}, \mathbb{R})$ est l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} n fois dérivables sur \mathbb{R} et de dérivée n-ième continue sur \mathbb{R} .
- 7) $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ est l'ensemble des fonctions $f : \mathbb{R} \to \mathbb{R}$ telles que $f \in \mathcal{C}^n(\mathbb{R}, \mathbb{R})$ pour tout $n \in \mathbb{N}$.
- 8) E est l'ensemble des fonctions paires de \mathbb{R} dans \mathbb{R} .
- 9) E est l'ensemble des fonctions impaires de $\mathbb R$ dans $\mathbb R$.

- $\mathbf{4}$ Dans chacun des cas suivants, montrer que l'ensemble E proposé est un espace vectoriel.
- 1) Pour $n \in \mathbb{N}$, $E = \mathbb{k}_n[X]$ est l'ensemble des polynômes à coefficients dans \mathbb{k} de degré au plus n.
- 2) E est l'ensemble des polynômes pairs à coefficients dans k.
- 3) E est l'ensemble des polynômes impairs à coefficients dans k.
- $\mathbf{5}$ On suppose $\mathbb{k} = \mathbb{R}$. Dans chacun des cas suivants, l'ensemble E proposé est-il un espace vectoriel?
- 1) E est l'ensemble des triplets $(x, y, z) \in \mathbb{R}^3$ vérifiant $x^2 + y^2 + z^2 \leq 1$.
- 2) E est l'ensemble des quadruplets $(x, y, z, t) \in \mathbb{R}^4$ vérifiant t = 3x 2y + 4z.
- 3) E est l'ensemble des triplets $(x,y,z)\in\mathbb{R}^3$ solutions du système :

$$\left\{ \begin{array}{ccccccc} x & + & 5y & - & 3z & = & 0 \\ -x & + & y & - & 4z & = & 0 \end{array} \right..$$

Familles libres, familles génératrices, bases

- **6** Soit *E* un espace vectoriel de dimension finie.
- 1) Tous les sous-espaces vectoriels de E sont-ils de dimension finie? Si oui, que peut-on dire de leur dimension?
- 2) Soit F un sous-espace vectoriel de E tel que dim F = dim E. Démontrer que F = E.
- 3) Soient F et G deux sous-espaces vectoriels de E.
 - a. Établir la formule de Grassmann: $\dim(F+G) = \dim F + \dim G \dim(F\cap G)$.
 - b. On suppose E de dimension 5, et F et G de dimension 3. Montrer que $F \cap G \neq \{0_E\}$.
- 7 On suppose $\mathbb{k} = \mathbb{R}$. Dans chacun des cas suivants, les vecteurs proposés forment-ils une famille libre de \mathbb{R}^3 ? une famille génératrice de \mathbb{R}^3 ? une base de \mathbb{R}^3 ? S'ils forment d'une base de \mathbb{R}^3 , déterminer les coordonnées du vecteur u = (1, 1, 1) dans cette base.
- 1) $v_1 = (-1, 4, 1), v_2 = (2, 2, -3).$
- 2) $v_1 = (1,0,4), v_2 = (-1,3,0), v_3 = (0,0,0).$
- 3) $v_1 = (1, 1, 0), v_2 = (1, 0, 1), v_3 = (0, 1, 1).$
- 4) $v_1 = (1, 2, 3), v_2 = (4, 5, 6), v_3 = (7, 8, 9).$
- 5) $v_1 = (1, 0, -2), v_2 = (-1, 1, 0), v_3 = (-2, 1, 3).$
- 6) $v_1 = (1,0,2), v_2 = (0,-3,1), v_3 = (-1,-5,0), v_4 = (1,2,1).$
- ${\bf 8}$ Dans chacun des cas suivant, déterminer une base de l'ensemble E proposé.
- 1) $\mathbb{k} = \mathbb{Q}$, et E est l'ensemble des quadruplets $(x_1, x_2, x_3, x_4) \in \mathbb{Q}^4$ vérifiant $x_1 + x_2 + x_3 + x_4 = 0$.
- 2) $\mathbb{k} = \mathbb{C}$, et E est l'ensemble des quadruplets $(z_1, z_2, z_3, z_4) \in \mathbb{C}^4$ solutions du système :

- 9 Le corps $\mathbb C$ des nombres complexes est à la fois un $\mathbb R$ -espace vectoriel et un $\mathbb C$ -espace vectoriel.
- 1) a. Rappeler la dimension de $\mathbb C$ en tant que $\mathbb R$ -espace vectoriel, et en donner une base.
 - b. Rappeler la dimension de $\mathbb C$ en tant que $\mathbb C$ -espace vectoriel, et en donner une base.
 - c. Soient $z_1 = 1 + i \in \mathbb{C}$ et $z_2 = 1 i \in \mathbb{C}$. La famille (z_1, z_2) est-elle libre sur \mathbb{R} ? et sur \mathbb{C} ?
- 2) a. Déterminer la dimension de \mathbb{C}^2 en tant que \mathbb{R} -espace vectoriel, et en donner une base.
 - b. Déterminer la dimension de \mathbb{C}^2 en tant que \mathbb{C} -espace vectoriel, et en donner une base.
 - c. Une famille de \mathbb{C}^2 libre sur \mathbb{C} est-elle libre sur \mathbb{R} ? et réciproquement?
- 10 Soient E un espace vectoriel et $u, v, w \in E$ tels que la famille (u, v, w) soit libre.
- 1) On suppose, dans cette question seulement, E de dimension finie. Que peut-on dire de dim E?
- 2) La famille (u + v, v + w, w + u) est-elle libre?
- 3) La famille (u v, v w, w u) est-elle libre?

Applications linéaires

- 11 Soient E_1 et E_2 deux espaces vectoriels, et $f:E_1\to E_2$ une application linéaire.
- 1) Soit F_1 un sous-espace vectoriel de E_1 .
 - a. Démontrer que $f(F_1) = \{f(x) \mid x \in F_1\}$ est un sous-espace vectoriel de E_2 .
 - b. En déduire que im f est un sous-espace vectoriel de E_2 .
- 2) Soit F_2 un sous-espace vectoriel de E_2 .
 - a. Démontrer que $f^{-1}(F_2) = \{x \in E_1 \mid f(x) \in F_2\}$ est un sous-espace vectoriel de E_1 .
 - b. En déduire que ker f est un sous-espace vectoriel de E_1 .
- 12 On suppose $k = \mathbb{R}$. Dans chacun des cas suivants, l'application f proposée est-elle linéaire? Si oui, est-ce un endomorphisme? une forme linéaire?
- 1) $f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto xy$.
- 2) $f: \mathbb{R} \to \mathbb{R}, \ x \mapsto \sin x$.
- 3) $f: \mathbb{R}^3 \to \mathbb{R}^3$, $(x_1, x_2, x_3) \mapsto (x_2 x_1, x_3 x_2, x_3)$.
- 4) $f: \mathbb{R} \to \mathbb{R}^3, x \mapsto (2x, -x, x\sqrt{2}).$
- 5) $f: \mathbb{R}^4 \to \mathbb{R}, (x_1, x_2, x_3, x_4) \mapsto 3x_2 2x_4.$
- 6) $f: \mathbb{R}[X] \to \mathbb{R}, P \mapsto P(0).$

- 7) $f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}, (u_n)_{n \in \mathbb{N}} \mapsto (u_{n+1})_{n \in \mathbb{N}}.$
- 8) $f: \mathcal{B} \to \mathbb{R}$, $(u_n)_{n \in \mathbb{R}} \mapsto \sup\{u_n \mid n \in \mathbb{N}\}$, où \mathcal{B} est l'ensemble des suites bornées de $\mathbb{R}^{\mathbb{N}}$.
- 9) $f: \mathcal{C} \to \mathbb{R}$, $(u_n)_{n \in \mathbb{R}} \mapsto \lim u_n$, où \mathcal{C} est l'ensemble des suites convergentes de $\mathbb{R}^{\mathbb{N}}$.
- 10) $f: \mathcal{D} \to \mathcal{D}, \ u \mapsto u'$, où \mathcal{D} est l'ensemble des fonctions dérivables de \mathbb{R} dans \mathbb{R} .
- 13-1) On munit $\mathbb C$ de sa structure de $\mathbb R$ -espace vectoriel. Étudier la linéarité des applications suivantes :

Re:
$$\mathbb{C} \to \mathbb{R}$$
, $x + iy \mapsto x$, Im: $\mathbb{C} \to \mathbb{R}$, $x + iy \mapsto y$, $|\cdot|$: $\mathbb{C} \to \mathbb{R}$, $x + iy \mapsto \sqrt{x^2 + y^2}$.

- 2) Pour $z = x + iy \in \mathbb{C}$, on rappelle que $\overline{z} = x iy$ est le conjugué de z. Soit alors $f: \mathbb{C} \to \mathbb{C}, z \mapsto \overline{z}$.
 - a. On suppose $\mathbb C$ muni de sa structure de $\mathbb R$ -espace vectoriel. L'application f est-elle linéaire?
 - b. On suppose $\mathbb C$ muni de sa structure de $\mathbb C$ -espace vectoriel. L'application f est-elle linéaire ?
- ${f 14}$ On rappelle que l'espace vectoriel ${\Bbb k}[X]$ n'est pas de dimension finie. On considère les opérateurs D de dérivation et L de multiplication par X définis par :

$$D: \mathbb{k}[X] \to \mathbb{k}[X], \ P(X) = \sum_{k \in \mathbb{N}} a_k X^k \mapsto P'(X) = \sum_{k \in \mathbb{N}} (k+1) a_{k+1} X^k \quad \text{et} \quad L: \mathbb{k}[X] \to \mathbb{k}[X], \ \sum_{k \in \mathbb{N}} a_k X^k \mapsto \sum_{k \in \mathbb{N}} a_k X^{k+1}.$$

- 1) Montrer que D et L sont des endomorphismes de $\mathbb{k}[X]$.
- 2) Déterminer les images et noyaux de D et L. Qu'en déduisez-vous?
- **15** Soit $f: \mathbb{R}^5 \to \mathbb{R}^2$, $(x_1, x_2, x_3, x_4, x_5) \mapsto (x_1 + x_2 + x_3, x_1 x_4 x_5)$.
- 1) Montrer que f est linéaire.
- 2) Déterminer des bases de ker f et im f. L'application f est-elle injective? surjective? bijective?
- **16** On suppose $\mathbb{k} = \mathbb{R}$, et on considère $E = \mathbb{R}_3[X]$ l'espace vectoriel des polynômes à coefficients réels et de degré au plus 3. Soit f l'application définie, pour $P \in E$, par f(P) = 2P(X) (X 1)P'(X).
- 1) Montrer que f est un endomorphisme de E.
- 2) Déterminer des bases de $\ker f$ et im f.
- 17 1) Soient E_1 , E_2 , E_3 trois espaces vectoriels et $f: E_1 \to E_2$, $g: E_2 \to E_3$ deux applications linéaires. Montrer que $g \circ f$ est nulle si et seulement si im $f \subset \ker g$.
- 2) On suppose $\mathbb{k} = \mathbb{R}$, et on considère $\phi : \mathbb{R}^3 \to \mathbb{R}^3$, $(x, y, z) \mapsto (2y + z, z, 0)$.
 - a. Montrer que $\phi \in \text{End}(\mathbb{R}^3)$, et que $\ker \phi = \text{im } \phi^2$.
 - b. En déduire que ϕ est nilpotent, c'est-à-dire qu'il existe $n \in \mathbb{N}$ tel que $\phi^n = 0$.
- 18 Soit E un espace vectoriel.
- 1) Soit $\phi \in \text{End}(E)$. Montrer que les conditions suivantes sont équivalentes :
 - (i) Pour tout $v \in E$, la famille $(v, \phi(v))$ est liée.
 - (ii) Pour tout $v \in E$, il existe $\lambda_v \in \mathbb{k}$ tel que $\phi(v) = \lambda_v v$.
 - (iii) ϕ est une homothétie, c'est-à-dire qu'il existe $\lambda \in \mathbb{k}$ tel que $\phi(v) = \lambda v$ pour tout $v \in E$.
- 2) On suppose E de dimension finie n > 0. Déduire de la question précédente que le centre du groupe $\mathrm{GL}(E)$, c'est-à-dire l'ensemble des $\phi \in \mathrm{GL}(E)$ vérifiant $\phi \circ \psi = \psi \circ \phi$ pour tout $\psi \in \mathrm{GL}(E)$, est l'ensemble des homothéties inversibles de E.
- 19 Soient E un espace vectoriel et f une forme linéaire non nulle sur E. Que peut-on dire de f?

Matrices

 $\mathbf{20} \quad \text{On rappelle que, pour } p,q \in \mathbb{N}^* \text{ et } M = (m_{ij})_{(i,j) \in \llbracket 1,p \rrbracket \times \llbracket 1,q \rrbracket} \in \mathcal{M}_{p,q}(\Bbbk), \text{ la } transposée \text{ de la matrice } M \text{ est la matrice } {}^tM = (m'_{ij})_{(i,j) \in \llbracket 1,q \rrbracket \times \llbracket 1,p \rrbracket} \in \mathcal{M}_{q,p}(\Bbbk) \text{ où } m'_{ij} = m_{ji} \text{ pour tout } (i,j) \in \llbracket 1,q \rrbracket \times \llbracket 1,p \rrbracket.$

- 1) Soient $p, q \in \mathbb{N}^*$.
 - a. Vérifier que l'application $M_{p,q}(\mathbb{k}) \to M_{q,p}(\mathbb{k})$, $M \mapsto {}^tM$ est linéaire.
 - b. Montrer que ${}^{t}({}^{t}M) = M$ pour toute matrice $M \in \mathrm{M}_{p,q}(\Bbbk)$.
 - c. En déduire que l'application $M_{p,q}(\mathbb{k}) \to M_{q,p}(\mathbb{k})$, $M \mapsto {}^tM$ est un isomorphisme d'espaces vectoriels.
- 2) Soient $p, q, r, n \in \mathbb{N}^*$.
 - a. Montrer que ${}^{t}(AB) = {}^{t}B {}^{t}A$ pour toutes matrices $A \in \mathrm{M}_{p,q}(\mathbb{k})$ et $B \in \mathrm{M}_{q,r}(\mathbb{k})$.
 - b. En déduire que ${}^tM \in \mathrm{GL}_n(\mathbb{k})$ pour toute matrice $M \in \mathrm{GL}_n(\mathbb{k})$, avec $({}^tM)^{-1} = {}^t(M^{-1})$.
- 3) Soient $p, q \in \mathbb{N}^*$ et $M \in M_{p,q}(\mathbb{k})$. Montrer que M et tM sont de même rang.

21 — Soit $n \in \mathbb{N}^*$. Dans chacun des cas suivants, montrer que l'ensemble F proposé est un sous-espace vectoriel de $M_n(\mathbb{k})$, et préciser sa dimension.

- 1) F est l'ensemble des matrices $M \in M_n(\mathbb{k})$ symétriques, c'est-à-dire telles que ${}^tM = M$.
- 2) On suppose que $2 \neq 0$ dans k, et que F est l'ensemble des matrices $M \in \mathcal{M}_n(k)$ antisymétriques, c'est-à-dire telles que tM = M.
- 3) F est l'ensemble des matrices $M=(m_{ij})_{i,j\in \llbracket 1,n\rrbracket}\in \mathcal{M}_n(\Bbbk)$ diagonales, c'est-à-dire telles que $m_{ij}=0$ dès que $i,j\in \llbracket 1,n\rrbracket$ sont distincts.
- 4) F est l'ensemble des matrices $M=(m_{ij})_{i,j\in [\![1,n]\!]}\in \mathcal{M}_n(\Bbbk)$ triangulaires supérieures, c'est-à-dire telles que $m_{ij}=0$ dès que $i,j\in [\![1,n]\!]$ vérifient i>j.

22 — On suppose $\mathbb{k} = \mathbb{R}$. Dans chacun des cas suivants, les produits matriciels AB et BA sont-ils bien définis? Si oui, les calculer.

1)
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{pmatrix}$.
2) $A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}$.
4) $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{pmatrix}$.
4) $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & -1 \\ 3 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ -1 & -2 & 0 \end{pmatrix}$.

23 — On suppose $\mathbb{k}=\mathbb{R},$ et on se place dans $M_2(\mathbb{R}),$ où l'on considère les matrices :

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.$$

Calculer AB, BA, $(A - B)^2$ et $A^2 - 2AB + B^2$. Que remarque-t-on?

24 — On suppose $\mathbb{k} = \mathbb{R}$, et on considère la matrice de $M_3(\mathbb{R})$ suivante :

$$A = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}.$$

Calculer ${}^{t}AA$. La matrice A est-elle inversible. Si oui, déterminer son inverse.

25 — On suppose $\mathbb{k} = \mathbb{R}$, et on considère les matrices :

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 1 & 3 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 & 1 & 2 \\ -2 & -3 & 0 & -5 \\ 4 & 9 & 6 & 7 \\ 1 & -1 & -5 & 5 \end{pmatrix}.$$

- 1) Déterminer le rang des matrices A, B et C.
- 2) Les matrices A, B et C sont-elles inversibles? Si oui, calculer leur inverse.

26 — On suppose $\mathbb{k} = \mathbb{R}$. Soient $\mathcal{E} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 , et f l'endomorphisme de \mathbb{R}^3 défini, pour $(x, y, z) \in \mathbb{R}^3$, par :

$$f(x, y, z) = (x + y, 2x - y + z, x + z).$$

- 1) Expliciter $M = \text{mat}_{\mathcal{E}}(f)$, la matrice de f dans la base \mathcal{E} .
- 2) Calculer f(1,2,3) de deux manières : en utilisant la définition de f d'une part, et la matrice M d'autre part.
- 3) Montrer que f est un automorphisme de E.
- 4) Montrer que la famille $\mathcal{B} = (b_1, b_2, b_3)$, où $b_1 = (1, 1, 0)$, $b_2 = (1, 2, 1)$ et $b_3 = (1, 3, 1)$, est une base de \mathbb{R}^3 .
- 5) Soit $M' = \operatorname{mat}_{\mathcal{B}}(f)$ la matrice de f dans la base \mathcal{B} .
 - a. Déterminer les coordonnées de $f(b_1)$, $f(b_2)$ et $f(b_3)$ dans la base \mathcal{B} . En déduire les composantes de M'.
 - b. Retrouver le résultat de 5.a en utilisant la formule du changement de base.
- **27** On suppose $\mathbb{k} = \mathbb{Q}$, et on considère la matrice :

$$M = \left(\begin{array}{ccc} 3 & 1 & 0 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{array}\right).$$

- 1) a. Déterminer une matrice $N \in M_3(\mathbb{Q})$ telle que $M = 3I_3 + N$.
 - b. Calculer N^2 , N^3 , puis N^k pour tout entier $k \ge 3$.
 - c. En déduire la valeur de M^k , pour tout entier $k \in \mathbb{Z}$.
- 2) Soient $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$, $(z_n)_{n\in\mathbb{N}}$ les suites à coefficients dans \mathbb{Q} définies par :

$$\left\{ \begin{array}{l} x_0 = 1 \\ y_0 = 2 \\ z_0 = 7 \end{array} \right. \text{ puis, pour tout } n \in \mathbb{N}, \quad \left\{ \begin{array}{l} x_{n+1} = 3x_n + y_n \\ y_{n+1} = 3y_n + 2z_n \\ z_{n+1} = 3z_n \end{array} \right..$$

- a. Pour $n \in \mathbb{N}$, on note $X_n = {}^t(x_n, y_n, z_n)$. Démontrer que $X_n = M^n X_0$ pour tout $n \in \mathbb{N}$.
- b. En déduire les valeurs de x_n , y_n et z_n pour tout $n \in \mathbb{N}$.

28 — On suppose $\mathbb{k} = \mathbb{R}$. On désigne par \mathcal{E} la base canonique de \mathbb{R}^3 , et on note f l'endomorphisme de \mathbb{R}^3 dont la matrice $M = \text{mat}_{\mathcal{E}}(f)$ dans la base \mathcal{E} est :

$$M = \begin{pmatrix} 2 & 0 & 0 \\ 4 & -2 & -4 \\ -2 & 2 & 4 \end{pmatrix}.$$

- 1) Montrer que $f \circ f = 2f$.
- 2) Démontrer, sans étudier im f, que f(v) = 2v pour tout $v \in \text{im } f$.
- 3) a. Déterminer des bases de ker f et im f.
 - b. En déduire que ker f et im f sont supplémentaires dans \mathbb{R}^3 , c'est-à-dire que ker $f \cap \operatorname{im} f = \{(0,0,0)\}$ et $\mathbb{R}^3 = \ker f + \operatorname{im} f$.
- 4) Montrer qu'il existe une base $\mathcal{B}=(b_1,b_2,b_3)$ de \mathbb{R}^3 telle que $\mathrm{mat}_{\mathcal{B}}(f)=D,$ où :

$$D = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right).$$

- 5) Soit P la matrice de $M_3(\mathbb{R})$ dont les colonnes sont les coordonnées des vecteurs b_1, b_2, b_3 dans la base \mathcal{E} .
 - a. Justifier que la matrice P est inversible.
 - b. Exprimer M en fonction de D, P et P^{-1} .
 - c. En déduire l'expression de M^n , pour tout entier $n \in \mathbb{N}$.
- **29** Soit $n \in \mathbb{N}^*$. On rappelle que la *trace* sur $M_n(\mathbb{k})$ est définie par :

tr :
$$M_n(\mathbb{k}) \to \mathbb{k}$$
, $(m_{ij})_{i,j \in [\![1,n]\!]} \mapsto \sum_{k=1}^n m_{kk}$.

- 1) Montrer que tr est une forme linéaire vérifiant, pour tous $A, B \in \mathcal{M}_n(\mathbb{k})$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- 2) Soit ϕ une forme linéaire sur $M_n(\mathbb{k})$. Montrer que les conditions suivantes sont équivalentes :
 - (i) Pour tous $A, B \in M_n(\mathbb{k})$, on a $\phi(AB) = \phi(BA)$.
 - (ii) ϕ est proportionnelle à la trace, c'est-à-dire qu'il existe $\lambda \in \mathbb{k}$ tel que $\phi = \lambda$ tr.