Задача А. Расстояние в дереве

Имя входного файла: lenpath.in Имя выходного файла: lenpath.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Вам дано неориентированное дерево (связный граф без циклов) на N вершинах. Требуется отвечать на запросы вида «найти длину кратчайшего пути между данной парой вершин».

Формат входных данных

В первой строке находится одно целое число N ($1 \le N \le 10^5$) — количество вершин в дереве.

В каждой из следующих N-1 строк задано по два числа, разделенных пробелом, u_i, v_i — вершины, соединенные i-ым ребром дерева $(1 \le u_i, v_i \le N)$.

В следующей строке задано число M — количество запросов ($0 \le M \le 10^5$).

В каждой из следующих M строк задано по два числа — номера вершин, соответствущих очередному запросу.

Формат выходных данных

Выведите M строк, в каждой из которых содержится одно целое число — ответ на очередной запрос. Ответы необходимо вывести в порядке, соответствующем порядку запросов на входе программы.

lenpath.in	lenpath.out
3	0
2 1	1
3 2	
2	
2 2	
2 1	

Задача В. Dynamic LCA

Имя входного файла: dynamic.in Имя выходного файла: dynamic.out Ограничение по времени: 5 секунд Ограничение по памяти: 256 мегабайт

Постановка задачи о наименьшем общем предке такова: дано дерево T с выделенным корнем и две вершины u и v, lca(u,v) — вершина с максимальной глубиной, которая является предком и u, и v. Например, на картинке внизу lca(8,7) — вершина 3.

С помощью операции $\operatorname{chroot}(u)$ мы можем менять корень дерева, достаточно отметить u, как новый корень, и направить ребра вдоль пути от корня. Наименьшие общие предки вершин поменяются соответствующе. Например, если мы сделаем $\operatorname{chroot}(6)$ на картинке сверху, $\operatorname{lca}(8,7)$ станет вершина 6. Получившееся дерево изображено внизу.

Вам дано дерево T. Изначально корень этого дерева — вершина 1. Напишите программу, которая поддерживает эти две операции: lca(u, v) и chroot(u).

Формат входных данных

Входной файл состоит из нескольких тестов.

Первая строка каждого теста содержит натуральное число n — количество вершин в дереве $(1\leqslant n\leqslant 100\,000)$. Следующие n-1 строк содержат по 2 натуральных числа и описывают ребра дерева. Далее идет строка с единственным натуральным числом m — число операций. Следующие m строк содержат операции. Строка ? u v означает операцию lca(u,v), а строка ! u — chroot(u). Последняя строка содержит число 0.

Сумма n для всех тестов не превосходит 100 000. Сумма m для всех тестов не превосходит 200 000.

Формат выходных данных

Для каждой операции ? u v выведите значение lca(u,v). Числа разделяйте переводами строк.

ЛКШ.2015.Август.А.День 03 Берендеевы поляны, Судиславль, Россия, -1 августа 2015 г.

dynamic.in	dynamic.out
9	2
1 2	1
1 3	3
2 4	6
2 5	2
3 6	3
3 7	6
6 8	2
6 9	
10	
? 4 5	
? 5 6	
? 8 7	
! 6	
? 8 7	
? 4 5	
? 4 7	
? 5 9	
! 2	
? 4 3	
0	

ЛКШ.2015.Август.А.День 03 Берендеевы поляны, Судиславль, Россия, -1 августа 2015 г.

Задача С. Почтовая реформа

Имя входного файла: mail.in
Имя выходного файла: mail.out
Ограничение по времени: 3 секунды
Ограничение по памяти: 256 мегабайт

В Флатландии идет пора реформ. Недавно была проведена реформа дорог, так что теперь по дорогам страны из любого города можно добраться в любой другой, причем только одним способом. Также была проведена реформа волшебников, так что в каждом городе остался ровно один волшебник. Теперь же началась реформа почтовой системы.

Недавно образованное почтовое агентство «Экс-Федя» предлагает уникальную услугу — коллективную посылку. Эта услуга позволяет отправлять посылки жителям всех городов на каком-либо пути по цене обычной посылки. Удивительно, но пользоваться такой услугой стали только волшебники Флатландии, которые стали в большом количестве отправлять друг другу магические кактусы. Агентство столкнулось с непредвиденной проблемой: как известно, все волшебники живут в башнях и мало того, что не строят в них лестницы, так еще время от времени меняют их высоту. Поэтому, чтобы доставить посылку волшебнику, который живет в башне высотой h, курьеру агентства требуется иметь с собой не менее h метров веревки.

Вам поручено руководить отделом логистики — по имеющимся данным о высотах башен и об их изменениях вам нужно определять минимальную длину веревки, которую нужно выдать курьеру, который доставляет посылки между городами i и j.

Формат входных данных

Первая строка входного файла содержит число n — количество городов в Флатландии ($1 \le n \le 50\,000$). Во второй строке находится n положительных чисел, не превосходящих 10^5 — высоты башен в городах. В следующих n-1 строках содержится по два числа u_i и v_i — описание i-й дороги, $1 \le u_i, v_i \le n, u_i \ne v_i$. В следующий строке содержится число k — количество запросов ($1 \le k \le 100\,000$). В следующих k строках содержатся описания запросов в следующем формате:

- Уведомление от волшебника из города i о том, что высота его башни стала равна h, имеет вид ! i h, $1 \le i \le n$, $1 \le h \le 10^5$.
- Запрос от курьера о выдаче веревки для доставки посылок во все города на пути от i до j включительно имеет вид ? i j, $1 \le i, j \le n$.

Формат выходных данных

Для каждого запроса доставки посылок выведите минимальную длину веревки, которую необходимо выдать курьеру.

ЛКШ.2015.Август.А.День 03 Берендеевы поляны, Судиславль, Россия, -1 августа 2015 г.

mail.in	mail.out
3	3
1 2 3	3
1 3	5
2 3	
5	
? 1 2	
! 1 5	
? 2 3	
! 3 2	
? 1 2	
1	1
100	1000
5	
! 1 1	
? 1 1	
! 1 1000	
? 1 1	
! 1 1	

Задача D. Соединение и разъединение

Имя входного файла: connect.in Имя выходного файла: connect.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Вы когда-нибудь слышали про обход в глубину? Например, используя этот алгоритм, вы можете проверить является ли граф связным за время O(E). Вы можете даже посчитать количество компонент связности за то же время.

А вы когда нибудь слышали про систему непересекающихся множеств? Используя эту структуру, вы можете быстро обрабатывать запросы "Добавить ребро в граф" и "Посчитать количество компонент связности в графе".

А вы когда-нибудь слышали о *динамической* задаче связности? В этой задаче вам необходимо обрабатывать три типа запросов:

- 1. Добавить ребро в граф.
- 2. Удалить ребро из графа.
- 3. Посчитать количество компонент связности в графе.

Можно считать, что граф является неориентированным. Изначально граф является пустым.

Формат входных данных

В первой строке находятся два целых числа N и K — количество вершин и количество запросов, сответствено ($1 \le N \le 300\,000,\, 0 \le K \le 300\,000$). Следующие K строк содержат запросы, по одному в строке. Каждый запрос имеет один из трех типов:

- 1. + uv: Добавить ребро между вершинами uv. Гарантируется, что такого ребра нет.
- 2. u v: Удалить ребро между u и v. Гарантируется, что такое ребро есть.
- 3. ?: Посчитать количество компонент связности в графе.

Вершины пронумерованы целыми числами от 1 до N. Во всех запросах $u \neq v$.

Формат выходных данных

Для каждого запроса типа '?', Выведите количество компонент связности в момент запроса.

connect.in	connect.out
5 11	5
?	1
+ 1 2	1
+ 2 3	2
+ 3 4	
+ 4 5	
+ 5 1	
?	
- 2 3	
?	
- 4 5	
?	