S6B0759

81 COM / 128 SEG DRIVER & CONTROLLER FOR STN LCD

JAN. 2000.

Ver. 1.2

S6B0759 Specification Revision History									
Version	Version Content								
0.0	Original	July.1999							
0.1	Remove HPMB,CS2 Pin and Change Vol, Voh value	July.1999							
0.2	Modify Pad Dimensions and Chip Configuration	Aug. 1999							
0.3	Modify serial/parallel timing requirements ;added icon enable/disable function	Dec. 1999							
1.0		Jan. 2000							
1.1	Modify 6800 parallel interface timing	Feb 2000							
1.2	Add the programming guidelines comment for n-line inversion	Mar 2000							

CONTENTS

INTRODUCTION	
BLOCK DIAGRAM	2
PAD CONFIGURATION	3
PIN DESCRIPTION	7
POWER SUPPLY	7
LCD DRIVER SUPPLY	7
SYSTEM CONTROL	8
MICROPROCESSOR INTERFACE	9
LCD DRIVER OUTPUTS	11
FUNCTIONAL DESCRIPTION	12
MICROPROCESSOR INTERFACE	12
DISPLAY DATA RAM (DDRAM)	16
LCD DISPLAY CIRCUITS	20
LCD DRIVER CIRCUIT	22
POWER SUPPLY CIRCUITS	25
REFERECE CIRCUIT EXAMPLES	30
RESET CIRCUIT	
INSTRUCTION DESCRIPTION	33
SPECIFICATIONS	55
ABSOLUTE MAXIMUM RATINGS	55
DC CHARACTERISTICS	56
AC CHARACTERISTICS	58
REFERENCE APPLICATIONS	
MICROPROCESSOR INTERFACE	62
CONNECTIONS DETINEEN SCROTES AND LCD DANIEL	6.4

INTRODUCTION

The S6B0759 is a driver & controller LSI for graphic dot-matrix liquid crystal display systems. It contains 81 common and 128 segment driver circuits. This chip is connected directly to a microprocessor, accepts serial or 8-bit parallel display data and stores in an on-chip display data RAM of 81 x 128 bits. It provides a highly flexible display section due to 1-to-1 correspondence between on-chip display data RAM bits and LCD panel pixels. And it performs display data RAM read/write operation with no externally operating clock to minimize power consumption. In addition, because it contains power supply circuits necessary to drive liquid crystal, it is possible to make a display system with the fewest components.

FEATURES

Driver Output Circuits

81 common outputs / 128 segment outputs

Applicable Duty Ratios

Programmable duty ratio	Applicable LCD bias	Maximum display area		
1/17 to 1/81	1/4 to 1/11	81 × 128		

- Various partial display
- Partial window moving & data scrolling

On-chip Display Data RAM

- Capacity: $81 \times 128 = 10,368$ bits
- Bit data "1": a dot of display is illuminated.
- Bit data "0": a dot of display is not illuminated.

Microprocessor Interface

- 8-bit parallel bi-directional interface with 6800-series or 8080-series.
- SPI (Serial Peripheral Interface) available. (only write operation)

On-chip Low Power Analog Circuit

- On-chip oscillator circuit
- Voltage converter (x3, x4, x5 or x6)
- Voltage regulator (temperature coefficient: -0.05%/°C or external input)
- On-chip electronic contrast control function (64 steps)
- Voltage follower (LCD bias: 1/4 to 1/11)

Operating Voltage Range

- Supply voltage (VDD): 1.8 to 3.3 V
- LCD driving voltage (VLCD = V0 Vss): 4.0 to 15.0 V

Low power Consumption

- TBD μA Typ. (Internal power supply on and display OFF) **Package Type**

Gold bumped chip or TCP

1

BLOCK DIAGRAM

Figure 1. Block Diagram

PAD CONFIGURATION

¿Àti; ªÀÀ B p CátéÀ Ï Ù

Figure 2. S6B0759 Chip Configuration

Table 1. S6B0759 Pad Dimension

.		B. I.N.	S	l lm:4	
Item		Pad No.	Х	Υ	Unit
Chip size		-	9980	2380	
	Input	1 to 123	-	70	
		125 to 152			
	Output	157 to 310] '	60	
Pad pitch		315 to 342			
		124,343	-	70	
	NC*	154,155,312,313	80		
		153,156,311,314	70 / 80		
	1 to 123		50	100	
		124	110	60	um
		125 to 152	110	40	
		153 to 154	110	60	
Duranad and size (May)		155 to 156	60	110	
Bumped pad size (Max.)		157 to 310	40	40 110	
		311 to 312	60	110	
		313 to 314	110	60	
		315 to 342	110	40	
	343		110	60	
Bumped pad height		All pad	14	(Тур.)	

^{*} Dummy to Dummy pad pitch is 80 um . Dummy to normal pad pitch is 70 um.

COG Align Key Coordinate

ILB Align Key Coordinate

PAD CENTER COORDINATES

Table 1. Pad Center Coordinates

[Unit: μm]

NO.	Name	Х	Υ	NO.	Name	Х	Υ	NO.	Name	Х	Υ	NO.	Name	Х	Υ
1	TEST1	-4270	-1075	5 1	V S S 2	-770	-1075	101	V 4	2730	-1075	151	C O M 1 3	4843	650
2	TEST2	-4200	-1075	5 2	V S S 2	-700	-1075	102	V 4	2800	-1075	152	C O M 1 2	4843	710
3	TEST3	-4130	-1075	5 3	V S S 2	-630	-1075	103	V 4	2870	-1075	153	DUMMY	4843	780
4	TEST4	-4060	-1075	5 4	VOUT	-560	-1075	104	V 3	2940	-1075	154	риммү	4843	860
5	VSS	-3990	-1075	5.5	VOUT	-490	-1075	105	V 3	3010	-1075	155	DUMMY	4740	1043
6	V D D	-3920	-1075	5 6	VOUT	- 420	-1075	106	V 3	3080	-1075	156	DUMMY	4660	1043
7	V D D	-3850	-1075	5 7	VOUT	-350	-1075	107	V 3	3150	-1075	157	C O M 1 1	4590	1043
	PS0	-3780	-1075		VOUT	-280	-1075		V 2		-1075		C O M 1 0		
8				5.8				108		3220		158		4530	1043
9	VSS	-3710	-1075	5 9	VOUT	-210	-1075	109	V 2	3290	-1075	159	COM9	4470	1043
1 0	VDD	-3640	-1075	6 0	VOUT	- 1 4 0	-1075	110	V 2	3360	-1075	160	COM8	4410	1043
1 1	PS1	-3570	-1075	6 1	VOUT	- 7 0	-1075	111	V 2	3 4 3 0	-1075	161	COM7	4 3 5 0	1043
1 2	VSS	-3500	-1075	6.2	C 5 +	0	-1075	112	V 1	3500	-1075	162	COM6	4290	1043
1 3	C S 1 B	- 3 4 3 0	-1075	6 3	C 5 +	7 0	-1075	113	V 1	3570	-1075	163	COM5	4230	1043
1 4	VDD	-3360	-1075	6 4	C 5 +	1 4 0	-1075	114	V 1	3640	-1075	164	COM4	4170	1043
1 5	V D D	-3290	-1075	6 5	C 5 +	210	-1075	115	V 1	3710	-1075	165	C O M 3	4110	1043
1 6	RESETB	-3220	-1075	6 6	C 3 +	280	-1075	116	V 0	3780	-1075	166	COM2	4050	1043
1 7	R S	-3150	-1075	6 7	C 3 +	350	-1075	117	V 0	3850	-1075	167	C O M 1	3990	1043
1 8	VSS	-3080	-1075	6 8	C 3 +	420	-1075	118	V 0	3920	-1075	168	COM0	3930	1043
1 9	RW_WR	-3010	-1075	6 9	C 3 +	490	-1075	119	V 0	3990	-1075	169	сомѕ	3870	1043
2 0	E_RD	-2940	-1075	7 0	C 1 -	560	-1075	120	V R	4060	-1075	170	SEG0	3810	1043
2 1	VDD	-2870	-1075	7 1	C 1 -	630	-1075	121	V R	4130	-1075	171	SEG1	3750	1043
2 2	DB0	-2800	-1075	7 2	C 1 -	700	-1075	122	VSS	4200	-1075	172	SEG2	3690	1043
2 3	D B 1	-2730	-1075	7 3	C 1 -	770	-1075	123	VSS	4270	-1075	173	SEG3	3630	1043
2 4	D B 2	-2660	-1075	7 4	C 1 -	8 4 0	-1075	124	DUMMY	4843	-980	174	SEG4	3570	1043
2 5	DB3	-2590	-1075	7 5	C 1 -	910	-1075	125	C O M 3 9	4843	-910	175	SEG5	3510	1043
2 6	D B 4	-2520	-1075	7 6	C 1 +	980	-1075	126	C O M 3 8	4843	-850	176	SEG6	3450	1043
2 7	D B 5	-2450	-1075	77	C 1 +	1050	-1075	127	C O M 3 7	4843	-790	177	SEG7	3390	1043
2 8	DB6	-2380	-1075	7 8	C 1 +	1120	-1075	128	C O M 3 6	4843	-730	178	SEG8	3330	1043
2 9	D B 7	-2310	-1075	79	C 1 +	1190	-1075	129	C O M 3 5	4843	-670	179	SEG9	3270	1043
3 0	V D D	-2240	-1075	8.0	C 2 +	1260	-1075	130	C O M 3 4	4843	-610	180	SEG10	3210	1043
3 1	V D D	-2170	-1075	8 1	C 2 +	1330	-1075	131	C O M 3 3	4843	-550	181	SEG11	3150	1043
	V D D	-2170	-1075			1400	-1075		C O M 3 2		-490		SEG12		1043
3 2				8 2	C 2 +			132		4843		182		3090	
3 3	V D D	-2030	-1075	8.3	C 2 +	1470	-1075	133	C O M 3 1	4843	- 4 3 0	183	S E G 1 3	3030	1043
3 4	V D D	-1960	-1075	8 4	C 2 -	1540	-1075	134	C O M 3 0	4843	-370	184	S E G 1 4	2970	1043
3 5	V D D	-1890	-1075	8 5	C 2 -	1610	-1075	135	C O M 2 9	4843	-310	185	S E G 1 5	2910	1043
3 6	VCI	-1820	-1075	8 6	C 2 -	1680	-1075	136	C O M 2 8	4843	- 2 5 0	186	SEG16	2850	1043
3 7	VCI	-1750	-1075	8 7	C 2 -	1750	-1075	137	C O M 2 7	4843	-190	187	S E G 1 7	2790	1043
3 8	VCI	-1680	-1075	8 8	C 2 -	1820	-1075	138	C O M 2 6	4843	-130	188	S E G 1 8	2730	1043
3 9	V C I	-1610	-1075	8 9	C 2 -	1890	-1075	139	C O M 2 5	4843	- 7 0	189	S E G 1 9	2670	1043
4 0	VCI	-1540	-1075	9 0	C 4 +	1960	-1075	1 4 0	C O M 2 4	4843	- 1 0	190	S E G 2 0	2610	1043
4 1	VCI	-1470	-1075	9 1	C 4 +	2030	-1075	1 4 1	C O M 2 3	4843	5 0	191	S E G 2 1	2550	1043
4 2	V C I	-1400	-1075	9 2	C 4 +	2100	-1075	1 4 2	C O M 2 2	4843	110	192	S E G 2 2	2490	1043
4 3	VCI	-1330	-1075	9 3	C 4 +	2170	-1075	1 4 3	C O M 2 1	4843	170	193	S E G 2 3	2430	1043
4 4	V S S 1	-1260	-1075	9 4	VSS	2240	-1075	1 4 4	C O M 2 0	4843	230	194	S E G 2 4	2370	1043
4 5	V S S 1	-1190	-1075	9 5	REF	2310	-1075	1 4 5	C O M 1 9	4843	290	195	S E G 2 5	2310	1043
4 6	V S S 1	-1120	-1075	96	VEXT	2380	-1075	1 4 6	C O M 1 8	4843	350	196	S E G 2 6	2250	1043
4 7	V S S 1	-1050	-1075	97	V D D	2 4 5 0	-1075	1 4 7	C O M 1 7	4843	4 1 0	197	S E G 2 7	2190	1043
4 8	V S S 1	-980	-1075	98	INTRS	2520	-1075	1 4 8	C O M 1 6	4843	470	198	S E G 2 8	2130	1043
4 9	V S S 2	-910	-1075	99	VSS	2590	-1075	1 4 9	C O M 1 5	4843	530	199	S E G 2 9	2070	1043
5 0	V S S 2	-840	-1075	100	V 4	2660	-1075	150	C O M 1 4	4843	590	200	SEG30	2010	1043
- 0		570	. 3 / 3	. 5 0		2000	. 575		. J U W 1 4	.040	000	200	02000	2010	

PIN DESCRIPTION

POWER SUPPLY

Table 2. Power Supply Pins

Name	1/0	Description						
VDD	Supply	Power supply						
VSS1 VSS2	Supply	Ground VSS1 and VSS2 must be shorted to External wire.						
V0 V1 V2 V3 V4	I/O	The voltage determined for application. Voltages should V0 ≥ V1 When the intern	Voltages should have the following relationship; $V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge Vss$ When the internal power circuit is active, these voltages are generated as following table according to the state of LCD bias.					
		1/N bias	(N-1) / N x V0	(N-2) / N x V0	(2/N) x V0	(1/N) x V0		
	NOTE: N = 4 to 11							

LCD DRIVER SUPPLY

Table 3. LCD Driver Supply Pins

Name	I/O	Description
C1-	0	Capacitor 1 negative connection pin for voltage converter
C1+	0	Capacitor 1 positive connection pin for voltage converter
C2-	0	Capacitor 2 negative connection pin for voltage converter
C2+	0	Capacitor 2 positive connection pin for voltage converter
C3+	0	Capacitor 3 positive connection pin for voltage converter
C4+	0	Capacitor 4 positive connection pin for voltage converter
C5+	0	Capacitor 5 positive connection pin for voltage converter
VOUT	I/O	Voltage converter input / output pin
VCI	I	Voltage converter input voltage pin Voltages should have the following relationship: $VDD \le VCI \le V0$
VR	I	V0 voltage adjustment pin It is valid only when on-chip resistors are not used (INTRS = "L")
REF	I	Selects the external VREF voltage via VEXT pin REF = "L": using the external VREF REF = "H": using the internal VREF
VEXT	I	Externally input reference voltage (VREF) for the internal voltage regulator It is valid only when REF is "L".

SYSTEM CONTROL

Table 4. System Control Pins

Name	I/O	Description
INTRS	I	Internal resistors select pin This pin selects the resistors for adjusting V0 voltage level. - INTRS = "H": use the internal resistors - INTRS = "L": use the external resistors VR pin and external resistive divider control V0 voltage.
TEST1 to TEST4	I	Test pins Don't use these pins.

MICROPROCESSOR INTERFACE

Table 5. Microprocessor Interface Pins

Name	I/O		Description							
RESETB	ı	Reset t	Reset the input pin							
KESEIB	ļ	When F	When RESETB is "L", initialization is executed.							
		Paralle	I/Serial data inp	out select input						
		PS0	Interface Mode	Data/ Instruction	Data	Read / Write	Serial Clock			
PS0	I	Н	Parallel	RS	DB0 to DB7	E_RD RW_WR	-			
		L	Serial	RS or None	SID(DB7)	Write only	SCLK(DB6)			
			: When PS is "I be fixed to eithe	•	are high impedar	nce and E_RD and	RW_WR			
PS1	1	- PS0 :	Microprocessor interface select input pin - PS0 = "H", PS1 = "H": 6800-series parallel MPU interface - PS0 = "H", PS1 = "L": 8080-series parallel MPU interface - PS0 = "L", PS1 = "H": 4 Pin-SPI serial MPU interface							
					erial MPU interfac					
CS1B	I	Data/in	elect input pins struction I/O is of may be high in	•	nen CS1B is "L" . V	When chip select is	non-active, DB0			
RS	I	- RS =	er select input p "H": DB0 to DE "L": DB0 to DB	37 are display o						
		Read /	Write execution	n control pin						
		PS1	MPU Type	RW_WR		Description				
RW_WR	I	Н	6800-series	RW	Read/Write cont - RW = "H": rea - RW = "L": write	d				
		L	8080-series	/WR	Write enable clo The data on DB0 edge of the /WR	to DB7 are latch	ed at the rising			
RW_WR	I	Н	6800-series	RW	- RW = "H": rea - RW = "L": write Write enable clo The data on DB0	rol input pin d e ck input pin O to DB7 are latch	ed at			

Table 6 (Continued)

Name	I/O		Description						
		Read / Write execution control pin							
		PS1	MPU Type	E_RD	Description				
E_RD	I	Н	6800-series	E	Read/Write control input pin - RW = "H": When E is "H", DB0 to DB7 are in an output status. - RW = "L": The data on DB0 to DB7 are latched at the falling edge of the E signal.				
		L	8080-series	/RD	Read enable clock input pin When /RD is "L", DB0 to DB7 are in an output status.				
DB0 to DB7	I/O	bus. W - DB0 - DB6: - DB7:	8-bit bi-directional data bus that is connected to the standard 8-bit microprocessor data bus. When the serial interface selected (PS0 = "L"); – DB0 to DB5: high impedance – DB6: serial input clock (SCLK) – DB7: serial input data (SID) When chip select is not active, DB0 to DB7 may be high impedance.						
TEST1 to TEST4	I/O	These	These test pins should be opened.						

LCD DRIVER OUTPUTS

Table 6. LCD Driver Outputs Pins

Name	I/O	Description							
		LCD segment driver outputs The display data and the M signal control the output voltage of segment driver.							
		Diaplay data	M (Internal)	Segment driver output voltage					
		Display data	M (Internal)	Normal display	Reverse display				
SEG0	_	Н	Н	V0	V2				
to SEG127	0	Н	L	Vss	V3				
020127		L	Н	V2	V0				
		L	L	V3	Vss				
		Power sa	ave mode	Vss	Vss				
		LCD common driver The internal scannin		control the output volta	ge of common driver.				
		Scan data	M (Internal)	Common driv	er output voltage				
00140		Н	Н		Vss				
COM0 to	0	Н	L,		V0				
COM79		L	Н		V1				
		L	L		V4				
		Power sa	ave mode	Vss					
COMS (COMS1)	0	Common output for the icons The output signals of two pins are same. When not used, these pins should be left open.							

NOTE: DUMMY - These pins should be opened (floated).

FUNCTIONAL DESCRIPTION

MICROPROCESSOR INTERFACE

Chip Select Input

There are CS1B for chip selection. The S6B0759 can interface with an MPU only when CS1B is "L" . When these pins are set to any other combination, RS, E_RD, and RW_WR inputs are disabled and DB0 to DB7 are to be high impedance. And, in case of serial interface, the internal shift register and the counter are reset.

Parallel / Serial Interface

S6B0759 has four types of interface with an MPU, which are two serial and two parallel interface. This parallel or serial interface is determined by PS 0pin as shown in Table 7.

Table 7. Parallel / Serial Interface Mode

PS0	Туре	CS1B	PS1	Interface mode
Н	Parallel	CS1B	Н	6800-series MPU mode
11	Parallel	CSTB	L	8080-series MPU mode
	. Serial CS1B	CS1P	Н	4 Pin-SPI MPU mode
_		L	3 Pin-SPI MPU mode	

Parallel Interface (PS0 = "H")

The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by PS1 as shown in Table 8. The type of data transfer is determined by signals at RS, E_RD and RW_WR as shown in Table 9.

Table 8. Microprocessor Selection for Parallel Interface

PS1	CS1B	RS	E_RD	RW_WR	DB0 to DB7	MPU bus
Н	CS1B	RS	Е	RW	DB0 to DB7	6800-series
L	CS1B	RS	/RD	/WR	DB0 to DB7	8080-series

Table 9. Parallel Data Transfer

Common	6800-series		8080-series		Description
RS	E_RD (E)	RW_WR (RW)	E_RD (/RD)	RW_WR (/WR)	
Н	Н	Н	L	Н	Display data read out
Н	Н	L	Н	L	Display data write
L	Н	Н	L	Н	Register status read
L	Н	L	Н	L	Writes to internal register (instruction)

Serial Interface (PS0 = "L")

When the S6B0759 is active(CS1B="L"), serial data (DB7) and serial clock (DB6) inputs are enabled. And not active, the internal 8-bit shift register and the 3-bit counter are reset. The display data/command indication may be controlled either via software or the Register Select(RS) Pin, based on the setting of PS1. When the RS pin is used (PS1 = "H"), data is display data when RS is high, and command data when RS is low. When RS is not used (PS1 = "L"), the LCD Driver will receive command from MPU by default. If messages on the data pin are data rather than command, MPU should send Data Direction command(11101000) to control the data direction and then one more command to define the number of data bytes will be write. After these two continuous commands are send, the following messages will be data rather than command. Serial data can be read on the rising edge of serial clock going into DB6 and processed as 8-bit parallel data on the eighth serial clock. And the DDRAM column address pointer will be increased by one automatically. The next bytes after the display data string is handled as command data.

Serial Mode	PS0	PS1	CS1B	RS
Serial-mode with RS pin	L	Н	CS1B	Used
Serial-mode with software command	L	L	CS1B	Not used

4 Pin-SPI Interface (PS0 = "L", PS1 = "H")

Figure 3. 4 Pin SPI Timing (RS is used)

3 Pin-SPI Interface (PS0 = "L", PS1 = "L")

To write data to the DDRAM, send Data Direction Command in 3-Pin SPI mode. Data is latched at the rising edge of SCLK. And the DDRAM column address pointer will be increased by one automatically.

Figure 4. 3 Pin SPI Timing (RS is not used)

This command is used in 3-Pin SPI mode only. It will be two continuous commands, the first byte controls the data direction and informs the LCD driver the second byte will be number of data bytes will be write. After these two commands sending out, the following messages will be data. If data is stopped in transmitting, it is not valid data. New data will be transferred serially with most significant bit first.

Notes:

- In spite of transmission of data, if CS1B will be disable, state terminates abnormally. Next state is initialized.
- DDL Register value "0" \rightarrow "1", "127" \rightarrow "128". (decimal value)

Busy Flag

The Busy Flag indicates whether the S6B0759 is operating or not. When DB7 is "H" in read status operation, this device is in busy status and will accept only read status instruction. If the cycle time is correct, the microprocessor needs not to check this flag before each instruction, which improves the MPU performance.

Data Transfer

The S6B0759 uses bus holder and internal data bus for Data Transfer with the MPU. When writing data from the MPU to on-chip RAM, data is automatically transferred from the bus holder to the RAM as shown in Figure 5. And when reading data from on-chip RAM to the MPU, the data for the initial read cycle is stored in the bus holder (dummy read) and the MPU reads this stored data from bus holder for the next data read cycle as shown in Figure 6. This means that a dummy read cycle must be inserted between each pair of address sets when a sequence of address sets is executed. Therefore, the data of the specified address cannot be output with the read display data instruction right after the address sets, but can be output at the second read of data.

Figure 5. Write Timing

Figure 6. Read Timing

DISPLAY DATA RAM (DDRAM)

The Display Data RAM stores pixel data for the LCD. It is 81-row by 128-column addressable array. Each pixel can be selected when the page and column addresses are specified. The 81 rows are divided into 10 pages of 8 lines and the 11th page with a single line (DB0 only). Data is read from or written to the 8 lines of each page directly through DB0 to DB7. The display data of DB0 to DB7 from the microprocessor correspond to the LCD common lines as shown in Figure 7. The microprocessor can read from and write to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written into RAM at the same time as data is being displayed without causing the LCD flicker.

Figure 7. RAM-to-LCD Data Transfer

Page Address Circuit

This circuit is for providing a Page Address to Display Data RAM shown in Figure 9. It incorporates 4-bit Page Address register changed by only the "Set Page" instruction. Page Address 10 (DB3 and DB1 are "H", DB2 and DB0 is "L") is a special RAM area for the icons and display data DB0 is only valid.

Line Address Circuit

This circuit assigns DDRAM a Line Address corresponding to the first line (COM0) of the display. Therefore, by setting line address repeatedly, it is possible to realize the screen scrolling and page switching without changing the contents of on-chip RAM as shown in Figure 9 & Figure 10. It incorporates 7-bit Line Address register changed by only the initial display line instruction and 7-bit counter circuit. At the beginning of each LCD frame, the contents of register are copied to the line counter which is increased by CL signal and generates the Line Address for transferring the 128-bit RAM data to the display data latch circuit. However, display data of icons are not scrolled because the MPU can not access Line Address of icons.

Column Address Circuit

Column address circuit has a 7-bit preset counter that provides column address to the Display Data RAM as shown in Figure 9. When set Column Address MSB / LSB instruction is issued, 7-bit [Y6:Y0] is updated. And, since this address is increased by 1 each a read or write data instruction, microprocessor can access the display data continuously. And the Column Address counter is independent of page address register.

ADC Select instruction makes it possible to invert the relationship between the column address and the segment outputs. It is necessary to rewrite the display data on built-in RAM after issuing ADC Select instruction. Refer to the following Figure 8.

SEG output	SEG 0	SEG 1	SEG 2	SEG 3	 SEG 124	SEG 125	SEG 126	SEG 127
Column address [Y6:Y0]	00H	01H	02H	03H	 7CH	7DH	7EH	7FH
Display data	1	0	1	0	1	1	0	0
LCD panel display								
(ADC = 0)								
	t							
	↓							\
LCD panel display (ADC = 1)								

Figure 8. The Relationship between the Column Address and the Segment Outputs

Segment Control Circuit

This circuit controls the display data by the Display ON / OFF, reverse display ON / OFF and entire display ON / OFF instructions without changing the data in the display data RAM.

Figure 9. Display Data RAM Map (Initial Line Address = 00H)

Figure 10. Display Data RAM Map (Initial Line Address = 08H)

LCD DISPLAY CIRCUITS

Oscillator

This is completely on-chip Oscillator and its frequency is nearly independent of VDD. This Oscillator signal is used in the voltage converter and display timing generation circuit.

Display Timing Generator Circuit

This circuit generates some signals to be used for displaying LCD. The display clock, CL(internal), generated by oscillation clock, generates the clock for the line counter and the signal for the display data latch. The line address of on-chip RAM is generated in synchronization with the display clock and the display data latch circuit latches the 128-bit display data in synchronization with the display clock. The display data, which is read to the LCD driver, is completely independent of the access to the display data RAM from the microprocessor. The display clock generates an LCD AC signal (M) which enables the LCD driver to make a AC drive waveform, and also generates an internal common timing signal and start signal to the common driver. The frame signal or the line signal changes the M by setting internal instruction. Driving waveform and internal timing signal are shown in Figure 11.

Figure 11. 2-frame AC Driving Waveform (Duty Ratio = 1/81)

Figure 12. N-line Inversion Driving Waveform (N = 5, Duty Ratio = 1/81)

LCD DRIVER CIRCUIT

81-channel common driver and 128-channel segment driver configure this driver circuit. This LCD panel driver voltage depends on the combination of display data and M(internal) signal.

Figure 13. Segment and Common Timing

Partial Display on LCD

The S6B0759 realizes the Partial Display function on LCD with low-duty driving for saving power consumption and showing the various display duty. To show the various display duty on LCD, LCD driving duty and bias are programmable via the instruction. And, built-in power supply circuits are controlled by the instruction for adjusting the LCD driving voltages

Figure 14. Reference Example for Partial Display (Display Duty = 25)

Figure 15. Partial Display (Partial Display Duty = 17, Initial COM0 = 0)

Figure 16. Moving Display (Partial Display Duty = 17, Initial COM0 = 8)

POWER SUPPLY CIRCUITS

The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low-power consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage follower circuits. They are valid only in master operation and controlled by power control instruction. For details, refers to "Instruction Description". Table 10 shows the referenced combinations in using Power Supply circuits.

Table 10. Recommended Power Supply Combinations

User setup	Power control (VC VR VF)	V/C circuits	V/R circuits	V/F circuits	VOUT	VO	V1 to V4
Only the internal power supply circuits are used	111	ON	ON	ON	Open	Open	Open
Only the voltage regulator circuits and voltage follower circuits are used	011	OFF	ON	ON	External input	Open	Open
Only the voltage follower circuits are used	0 0 1	OFF	OFF	ON	Open	External input	Open
Only the external power supply circuits are used	000	OFF	OFF	OFF	Open	External input	External input

Voltage Converter Circuits

These circuits boost up the electric potential between VCI and Vss to 3, 4, 5 or 6 times toward positive side and boosted voltage is outputted from VOUT pin. It is possible to select the lower boosting level in any boosting circuit by "Set DC-DC Step-up" instruction. When the higher level is selected by instruction, VOUT voltage is not valid.

[C1 = 1.0 to 4.7 mF]

Figure 17. Three Times Boosting Circuit

Figure 18. Four Times Boosting Circuit

Figure 19. Five Times Boosting Circuit

Figure 20. Six Times Boosting Circuit

Voltage Regulator Circuits

The function of the internal Voltage Regulator circuits is to determine liquid crystal operating voltage, V0, by adjusting resistors, Ra and Rb, within the range of |V0| < |VOUT|. Because VOUT is the operating voltage of operational-amplifier circuits shown in Figure 21, it is necessary to be applied internally or externally.

For the Eq. 1, we determine V0 by Ra, Rb and VEV. The Ra and Rb are connected internally or externally by INTRS pin. And VEV called the voltage of electronic volume is determined by Eq. 2, where the parameter α is the value selected by instruction, "Set Reference Voltage Register", within the range 0 to 63. VREF voltage at Ta= 25°C is shown in Table 11.

$$VeV = (1 - \frac{(63 - \alpha)}{210}) \times VeeF [V] ----- (Eq. 2)$$

Table 11. . VREF Voltage at Ta = 25°C

REF	Temp. coefficient	VREF [V]		
1	-0.05% / °C	2.1		
0	External input	VEXT		

Figure 21. Internal Voltage Regulator Circuit

In Case of Using Internal Resistors, Ra and Rb (INTRS = "H")

When INTRS pin is "H", resistor Ra is connected internally between VR pin and Vss, and Rb is connected between V0 and VR. We determine V0 by two instructions, "Regulator Resistor Select" and "Set Reference Voltage".

Table 12. Internal Rb / Ra Ratio depending on 3-bit Data (R2 R1 R0)

	3-bit data settings (R2 R1 R0)								
	0 0 0	0 0 1	010	011	100	101	110	111	
1 + (Rb / Ra)	2.3	3.0	3.7	4.4	5.1	5.8	6.5	7.2	

Figure 22 Shows V0 voltage measured by adjusting internal regulator register ratio (Rb / Ra) and 6-bit electronic volume registers for each temperature coefficient at Ta = 25 °C.

Figure 22. Electronic Volume Level (Temp. Coefficient = -0.05% / °C)

In Case of Using External Resistors, Ra and Rb (INTRS = "L")

When INTRS pin is "L", it is necessary to connect external regulator resistor Ra between VR and VSS, and Rb between V0 and VR.

Example: For the following requirements

- 1. LCD driver voltage, V0 = 10V
- 2. 6-bit reference voltage register = (1, 0, 0, 0, 0, 0)
- 3. Maximum current flowing Ra, Rb = 1 uA

From Eq. 1

Rb

$$10 = (1 + \frac{Rb}{Ra}) \times VEV \quad [V] ----- (Eq. 3)$$

From Eq. 2
$$(63 - 32)$$

VEV = $(1 - \frac{210}{210})$ x 2.1 = 1.79 [V] ----- (Eq. 4)

From equations Eq. 3, 4 and 5 Ra = 1.79 [M Ω] Rb = 8.21 [M Ω]

Table 13 Shows the Range of V0 depending on the above Requirements.

Table 13. The Range of V0

	Electronic volume level						
	0		32		63		
V0	8.21		10.00		11.73		

Voltage Follower Circuits

VLCD voltage (V0) is resistively divided into four voltage levels (V1, V2, V3 and V4), and those output impedance are converted by the Voltage Follower for increasing drive capability. Table 14 shows the relationship between V1 to V4 level and each duty ratio.

Table 14

LCD bias	V1	V2	V3	V4	Remarks
1/N	(N-1)/N x V0	(N-2)/N x V0	2/N x V0	1/N x V0	N = 4 to 11

REFERECE CIRCUIT EXAMPLES

[C1 = 1.0 to 4.7 [μ F], C2 = 0.47 to 2.0 [μ F]]

Figure 23. When Using all LCD Power Circuits (6-Time V/C: ON, V/R: ON, V/F: ON)

Figure 24. When Using some LCD Power Circuits (V/C: OFF, V/R: ON, V/F: ON)

Figure 25. When Using only Voltage Follower Circuit (V/C: OFF, V/R: OFF, V/F: ON)

Figure 26. When Not Using all LCD Power Circuits (V/C: OFF, V/R: OFF, V/F: OFF)

RESET CIRCUIT

Setting RESETB to "L" or Reset instruction can initialize internal function. When RESETB becomes "L", following procedure is occurred.

Page address: 0
Column address: 0
Modify-read: OFF
Display ON / OFF: OFF
Initial display line: 0 (first)
Initial COM0 register: 0 (COM0)
Partial display duty ratio: 1/80
Icon enable/Disable: 0(disable)

Reverse display ON / OFF: OFF (normal) n-line inversion register: 0 (disable)
Entire display ON / OFF: OFF (normal)
Power control register (VC, VR, VF) = (0, 0, 0)
DC-DC step up: 3 times converter circuit = (0, 0)

Regulator resistor select register: (R2, R1, R0) = (0, 0, 0)

Reference voltage control register: (EV5, EV4, EV3, EV2, EV1, EV0) = (1, 0, 0, 0, 0, 0)

LCD bias ratio: 1/10 SHL select: OFF (normal) ADC select: OFF (normal) Oscillator status: OFF Power save mode: release

When RESET instruction is issued, following procedure is occurred.

Page address: 0
Column address: 0
Modify-read: OFF

Initial display line: 0 (First)

Regulator resistor select register: (R2, R1, R0) = (0, 0, 0)

Reference voltage control register (EV5, EV4, EV3, EV2, EV1, EV0) = (1, 0, 0, 0, 0, 0, 0)

Other instruction registers: Not Changed

While RESETB is "L" or reset instruction is executed, no instruction except read status can be accepted. Reset status appears at DB4. After DB4 becomes "L", any instruction can be accepted. RESETB must be connected to the reset pin of the MPU, and initialize the MPU and this LSI at the same time. The initialization by RESETB is essential before used.

INSTRUCTION DESCRIPTION

Table 15. Instruction Table

x: Don't care

Instruction	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description Description
Read display data	1	1				Read	data			,	Read data from DDRAM
Write display data	1	0				Write	data				Write data into DDRAM
Read status	0	1	BUSY	ON	RES	0	0	0	0	1	Read the internal status
Set page address	0	0	1	0	1	1	P3	P2	P1	P0	Set page address
Set column address MSB	0	0	0	0	0	1	0	Y6	Y5	Y4	Set column address MSB
Set column address LSB	0	0	0	0	0	0	Y3	Y2	Y1	Y0	Set column address LSB
Set modify-read	0	0	1	1	1	0	0	0	0	0	Set modify-read mode
Reset modify-read	0	0	1	1	1	0	1	1	1	0	Release modify-read mode
Display ON / OFF	0	0	1	0	1	0	1	1	1	D	D = 0: display OFF D = 1: display ON
Set initial display line	0	0	0	1	0	0	0	0	×	×	2-byte instruction to specify the
register	0	0	×	S6	S5	S4	S3	S2	S1	S0	initial display line to realize vertical scrolling
0.41.11.100140	0	0	0	1	0	0	0	1	×	×	2-byte instruction to specify the
Set initial COM0 register	0	0	×	C6	C5	C4	С3	C2	C1	C0	initial COM0 to realize window scrolling
Set partial display	0	0	0	1	0	0	1	0	×	×	2-byte instruction to set partial
duty ratio	0	0	×	D6	D5	D4	D3	D2	D1	D0	display duty ratio
Set n-line inversion	0	0	0	1	0	0	1	1	×	×	2-byte instruction to set n-line
Set II-iiile iiiveisioii	0	0	×	×	×	N4	N3	N2	N 1	N0	inversion register
Release n-line inversion	0	0	1	1	1	0	0	1	0	0	Release n-line inversion mode
Reverse display ON / OFF	0	0	1	0	1	0	0	1	1	REV	REV = 0: normal display REV = 1: reverse display
Entire display ON / OFF	0	0	1	0	1	0	0	1	0	EON	EON = 0: normal display EON = 1: entire display ON
Icon enable/disable	0	0	1	0	1	0	0	0	1	Icon	Icon = 0 :Icon disable Icon = 1 :Icon enable

Table 16. Instruction Table (Continued)

Instruction	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
Power control	0	0	0	0	1	0	1	VC	VR	VF	Control power circuit operation
Select DC-DC step-up	0	0	0	1	1	0	0	1	DC1	DC0	Select the step-up of the internal voltage converter
Select regulator resistor	0	0	0	0	1	0	0	R2	R1	R0	Select internal resistance ratio of the regulator resistor
Set electronic volume	0	0	1	0	0	0	0	0	0	1	2-byte instruction to specify the
register	0	0	×	×	EV5	EV4	EV3	EV2	EV1	EV0	electronic volume register
Select LCD bias	0	0	0	1	0	1	0	B2	B1	В0	Select LCD bias
SHL select	0	0	1	1	0	0	SHL	×	×	×	COM bi-directional selection SHL = 0: normal direction SHL = 1: reverse direction
ADC select	0	0	1	0	1	0	0	0	0	ADC	SEG bi-directional selection ADC = 0: normal direction ADC = 1: reverse direction
Oat Data Divertion 0	×	×	1	1	1	0	1	0	0	0	2-byte Instruction to specify the
Set Data Direction & Display Data Length(DDL)	×	×	D7	D6	D5	D4	D3	D2	D1	D0	number of data bytes(SPI Mode).
Oscillator ON start	0	0	1	0	1	0	1	0	1	1	Start the built-in oscillator
Set power save mode	0	0	1	0	1	0	1	0	0	Р	P = 0: standby mode P = 1: sleep mode
Release power save mode	0	0	1	1	1	0	0	0	0	1	Release power save mode
Reset	0	0	1	1	1	0	0	0	1	0	Initialize the internal functions
NOP	0	0	1	1	1	0	0	0	1	1	No operation
Test instruction	0	0	1	1	1	1	×	×	×	×	Don't use this instruction.

Read Display Data

8-bit data from Display Data RAM specified by the column address and page address can be read by this instruction. As the column address is incremented by 1 automatically after each this instruction, the microprocessor can continuously read data from the addressed page. A dummy read is required after loading an address into the column address register. Display Data cannot be read through the serial interface.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1				Read	data			

Write Display Data

8-bit data of display data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is incremented by 1 automatically so that the microprocessor can continuously write data to the addressed page.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0				Write	data			

Figure 27. Sequence for Writing Display Data Figure 28. Sequence for Reading Display Data

Read Status

Indicates the internal status of the S6B0759

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	BUSY	ON	RES	0	0	0	0	1

Flag	Description						
	The device is busy when internal operation or reset.						
BUSY	Any instruction is rejected until BUSY goes Low.						
	0: chip is active, 1: chip is being busy.						
ON	Indicates display ON / OFF status.						
ON	0: display ON, 1: display OFF						
RES	Indicates the initialization is in progress by RESETB signal.						
KES	0: chip is active, 1: chip is being reset.						

Set Page Address

Sets the Page Address of display data RAM from the microprocessor into the Page Address register. Any RAM data bit can be accessed when its Page Address and column address are specified. Along with the column address, the Page Address defines the address of the display RAM to write or read display data. Changing the Page Address doesn't effect to the display status.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	1	P3	P2	P1	P0

P3	P2	P1	P0	Selected page	Description
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	2	Accessible pages for displaying dot-matrix display data
:	:	:	:	:	dot mattix diopiay data
1	0	0	1	9	
1	0	1	0	10	Accessible page for displaying icons
1	0	1	1	11	
1	1	0	0	12	Not accesible page
1	1	0	1	13	Not accessible page. Do not use these pages.
1	1	1	0	14	Do not use these pages.
1	1	1	1	15	

Set Column Address

Sets the Column Address of display RAM from the microprocessor into the column address register. Along with the Page Address, the column address defines the address of the display RAM to write or read display data. When the microprocessor reads or writes display data to or from display RAM, Column Addresses are automatically incremented.

Set Column Address MSB

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	0	Y6	Y5	Y4

Set Column Address LSB

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	Y3	Y2	Y1	Y0

Y6	Y5	Y4	Y3	Y2	Y1	Y0	Selected column address
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
0	0	0	0	0	1	0	2
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
1	1	1	1	1	0	1	125
1	1	1	1	1	1	0	126
1	1	1	1	1	1	1	127

Set Modify-Read

This instruction stops the automatic increment of the column address by the read display data instruction, but the column address is still increased by the Write display data instruction. And it reduces the load of microprocessor when the data of a specific area is repeatedly changed during cursor blinking or others. This mode is canceled by the reset Modify-read instruction.

Ī	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Ī	0	0	1	1	1	0	0	0	0	0

Reset Modify-Read

This instruction cancels the Modify-read mode, and makes the column address return to its initial value just before the set Modify-read instruction is started.

	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
ſ	0	0	1	1	1	0	1	1	1	0

Figure 29. Sequence for Cursor Display

Display ON / OFF

Turns the display ON or OFF

	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Ī	0	0	1	0	1	0	1	1	1	D

D = 1: display ON D = 0: display OFF

Set Initial Display Line Register

Sets the line address of display RAM to determine the initial display line using 2-byte instruction. The RAM display data is displayed at the top row (COM0) of LCD panel.

The 1st Instruction

	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Ī	0	0	0	1	0	0	0	0	×	×

The 2nd Instruction

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	×	S6	S5	S4	S3	S2	S1	S0

S6	S5	S4	S 3	S2	S1	S0	Selected line address
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
:	:	:	:	:	:	:	:
1	0	0	1	1	1	0	78
1	0	0	1	1	1	1	79
1	0	1	0	0	0	0	
:	:	:	:	:	:	:	No operation
1	1	1	1	1	1	1	

Figure 30. The Sequence for Setting the Initial Display Line

Set Initial COM0 Register

Sets the initial row (COM0) of the LCD panel using the 2-byte instruction. By using this instruction, it is possible to realize the window moving without the change of display data.

The 1st Instruction

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	0	0	0	1	×	×

The 2nd Instruction

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	×	C6	C5	C4	C3	C2	C1	C0

C6	C5	C4	C3	C2	C1	C0	Initial COM0
0	0	0	0	0	0	0	COM0
0	0	0	0	0	0	1	COM1
0	0	0	0	0	1	0	COM2
0	0	0	0	0	1	1	COM3
:	:	:	:	:	:	:	:
1	0	0	1	1	0	0	COM76
1	0	0	1	1	0	1	COM77
1	0	0	1	1	1	0	COM78
1	0	0	1	1	1	1	COM79
1	0	1	0	0	0	0	
:	:	:	:	:	:	:	No operation
1	1	1	1	1	1	1	

Figure 31. Sequence for Setting the Initial COM0

Set Partial Display Duty Ratio

Sets the duty ratio within range of 17 to 81 to realize partial display by using the 2-byte instruction.

The 1st Instruction

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	0	0	1	0	×	×

The 2nd Instruction

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	×	D6	D5	D4	D3	D2	D1	D0

Icon enable/disable Bit = 0

D6	D5	D4	D3	D2	D1	D0	Selected partial duty ratio
0	0	0	0	0	0	0	
:	:	:	:	:	:	:	No operation
0	0	0	1	1	1	1	
0	0	1	0	0	0	0	1/16
0	0	1	0	0	0	1	1/17
0	0	1	0	0	1	0	1/18
0	0	1	0	0	1	1	1/19
:	:	:	:	:	:	:	:
1	0	0	1	1	0	1	1/77
1	0	0	1	1	1	0	1/78
1	0	0	1	1	1	1	1/79
1	0	1	0	0	0	0	1/80
1	0	1	0	0	0	1	
:	:	:	:	:	:	:	No operation
1	1	1	1	1	1	1	

Icon enable/disable Bit = 1

D6	D5	D4	D3	D2	D1	D0	Selected partial duty ratio
0	0	0	0	0	0	0	
:	:	:	:	:	:	:	No operation
0	0	1	0	0	0	0	
0	0	1	0	0	0	1	1/17
0	0	1	0	0	1	0	1/18
0	0	1	0	0	1	1	1/19
0	0	1	0	1	0	0	1/20
:	:	:	:	:	:	:	:
1	0	0	1	1	1	0	1/78
1	0	0	1	1	1	1	1/79
1	0	1	0	0	0	0	1/80
1	0	1	0	0	0	1	1/81
1	0	1	0	0	1	0	
:	:	:	:	:	:	:	No operation
1	1	1	1	1	1	1	

Figure 32. Sequence for Setting Partial Display

Set N-line Inversion Register

Sets the inverted line number within range of 3 to 33 to improve the display quality by controlling the phase of the internal LCD AC signal (Internal M) by using the 2-byte instruction.

The DC bias problem could be occurred if K is even number. So, we recommend customers to set K to be odd number. K:D/N D: The number of display duty ratio(D is selectable by customers)

N:N for N-line inversion(N is selectable by customers).

The 1st Instruction

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	0	0	1	1	×	×

The 2nd Instruction

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	×	×	×	N4	N3	N2	N1	N0

N4	N3	N2	N1	N0	Selected n-line inversion
0	0	0	0	0	0-line inversion (frame inversion)
0	0	0	0	1	3-line inversion
0	0	0	1	0	4-line inversion
:	:	:	:	:	:
1	1	1	0	1	31-line inversion
1	1	1	1	0	32-line inversion
1	1	1	1	1	33-line inversion

Figure 33. Sequence for Setting Partial Display

Release N-line Inversion

Returns to the frame inversion condition from the n-line inversion condition.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	0	1	0	0

Reverse Display ON / OFF

Reverses the display status on LCD panel without rewriting the contents of the display data RAM.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	1	1	REV

REV	RAM bit data = "1"	RAM bit data = "0"
0 (normal)	LCD pixel is illuminated	LCD pixel is not illuminated
1 (reverse)	LCD pixel is not illuminated	LCD pixel is illuminated

Entire Display ON / OFF

Forces the whole LCD points to be turned on regardless of the contents of the display data RAM. At this time, the contents of the display data RAM are held. This instruction has priority over the reverse display ON / OFF instruction.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	1	0	EON

EON	RAM bit data = "1"	RAM bit data = "0"
0 (normal)	LCD pixel is illuminated	LCD pixel is not illuminated
1 (entire)	LCD pixel is illuminated	LCD pixel is illuminated

Icon enable/disable

Allows the icon driver circuit to be enabled or disabled, thus changing the duty ratio setting.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	0	1	Icon
l <u>Duty I</u>					Duty Rat	io Range			
0 (dis	sable)	1/16 to 1/80							
1 (en	able)				1/17 t	o 1/81			

Power Control

Selects one of eight power circuit functions by using 3-bit register. An external power supply and part of internal power supply functions can be used simultaneously.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	0	1	VC	VR	VF

VC	VR	VF	Status of internal power supply circuits
0 1			Internal voltage converter circuit is OFF Internal voltage converter circuit is ON
	0 1		Internal voltage regulator circuit is OFF Internal voltage regulator circuit is ON
		0 1	Internal voltage follower circuit is OFF Internal voltage follower circuit is ON

Select DC-DC Step-up

Selects one of 4 DC-DC step-up to reduce the power consumption by this instruction. It is very useful to realize the partial display function.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	1	0	0	1	DC1	DC0

DC1	DC0	Selected DC-DC converter circuit				
0	0	3 times boosting circuit				
0	1	4 times boosting circuit				
1	0	5 times boosting circuit				
1	1	6 times boosting circuit				

Regulator Resistor Select

Selects resistance ratio of the internal resistor used in the internal voltage regulator. See voltage regulator section in power supply circuit. Refer to Table 13.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	0	0	R2	R1	R0

R2	R1	R0	[Rb / Ra] ratio
0	0	0	Small
0	0	1	:
:	:	:	:
1	1	0	:
1	1	1	Large

Set Electronic Volume Register

Consists of 2-byte instruction

The 1st instruction sets electronic volume mode, the 2nd one updates the contents of electronic volume register. After second instruction, electronic volume mode is released.

The 1st Instruction

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	0	0	0	0	0	1

The 2nd Instruction

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	×	×	EV5	EV4	EV3	EV2	EV1	EV0

EV5	EV4	EV3	EV2	EV1	EV0	Reference voltage (a)
0	0	0 0		0	0	0
0	0	0	0	0	1	1
:	:	:	:	:	:	:
:	:	:	:	:	:	:
1	1	1	1	1	0	62
1	1	1	1	1	1	63

Figure 34. Sequence for Setting the Electronic Volume

Select LCD Bias

Selects LCD Bias ratio of the voltage required for driving the LCD.

	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
ĺ	0	0	0	1	0	1	0	B2	B1	B0

B2	B1	В0	Selected LCD bias
0	0	0	1/4
0	0	1	1/5
0	1	0	1/6
0	1	1	1/7
1	0	0	1/8
1	0	1	1/9
1	1	0	1/10
1	1	1	1/11

SHL Select

COM output scanning direction is selected by this instruction which determines the LCD driver output status.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	0	0	SHL	×	×	×

SHL = 0: normal direction (COM0 → COM79)

SHL = 1: reverse direction (COM79 → COM0)

ADC Select

Changes the relationship between RAM column address and segment driver. The direction of segment driver output pins could be reversed by software. This makes IC layout flexible in LCD module assembly.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	0	1	0	0	0	0	ADC

ADC = 0: normal direction (SEG0 \rightarrow SEG127)

ADC = 1: reverse direction (SEG127 \rightarrow SEG0)

Set Data Direction & Display Data Length (3-Pin SPI Mode)

Consists of two bytes instruction.

This command is used in 3-Pin SPI mode only(PS0 = "L" and PS1 = "L"). It will be two continuous commands, the first byte control the data direction(write mode only) and inform the LCD driver the second byte will be number of data bytes will be write. When RS is not used, the Display Data Length instruction is used to indicate that a specified number of display data bytes are to be transmitted. The next byte after the display data string is handled as command data.

The 1st Instruction: Set Data Direction (Only Write Mode)

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Х	Х	1	1	1	0	1	0	0	0

The 2nd Instruction: Set Display Data Length (DDL) Register

-					<u> </u>	- 3				
	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	Х	Х	D7	D6	D5	D4	D3	D2	D1	D0

D7	D6	D5	D4	D3	D2	D1	D0	Display Data Length
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1	2
0	0	0	0	0	0	1	0	3
:	:	:	:	:	:	:	:	
1	1	1	1	1	1	0	1	254
1	1	1	1	1	1	1	0	255
1	1	1	1	1	1	1	1	256

Oscillator ON Start

This instruction enables the built-in oscillator circuit.

Ī	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	0	1	0	1	0	1	0	1	1

Reset

This instruction resets initial display line, column address, page address, and common output status select to their initial status, but dose not affect the contents of display data RAM. This instruction cannot initialize the LCD power supply, which is initialized by the RESETB pin.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	0	0	1	0

Power Save

The S6B0759 enters the Power Save status to reduce the power consumption to the static power consumption value and returns to the normal operation status by the following instructions.

Set Power Save Mode

	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Ī	0	0	1	0	1	0	1	0	0	Р

P = 0: standby mode P = 1: sleep mode

Release Power Save Mode

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	0	0	0	1

Figure 35. Power Save Routine

NOP

Non Operation Instruction

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	0	0	0	1	1

Test Instruction

This instruction is for testing IC. Please do not use it.

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	1	1	1	×	×	×	×

Referential Instruction Setup Flow: Initializing with the Built-in Power Supply Circuits

Figure 36. Initializing with the Built-in Power Supply Circuits

Referential Instruction Setup Flow: Initializing without the Built-in Power Supply Circuits

Figure 37. Initializing without the Built-in Power Supply Circuits

Referential Instruction Setup Flow: Data Displaying

Figure 38. Data Displaying

Referential Instruction Setup Flow: Power OFF

Figure 39. Power OFF

Referential Instruction Setup Flow: Partial Duty Changing

Figure 40. Partial Duty Changing

NOTE:1. Partial COM0 register setting for COM H/W half: [80 - (user duty)] / 2

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Table 16. Absolute Maximum Ratings

(Vss = 0V)

Parameter	Symbol	Rating	Unit
	V _{DD}	- 0.3 ~ + 7.0	V
Supply voltage range	V ₀ , Vouт	- 0.3 ~ + 17.0	V
	V1, V2, V3, V4	- 0.3 ~ V ₀ + 0.3	V
External reference voltage	V _{EXT}	+ 0.3 ~ V _{DD}	
Input voltage range	Vin	- 0.3 ~ V _{DD} + 0.3	V
Operating temperature range	Topr	- 40 ~ + 85	°C
Storage temperature range	Tstr	- 55 ~ + 125	°C

NOTES:

- 1. VDD, V0, VOUT, V1 to V4, VEXT and VCI are based on VSS = 0V.
- 2. Voltage VOUT \geq V0 \geq V1 \geq V2 \geq V3 \geq V4 \geq VSS must always be satisfied.
- 3. If supply voltage exceeds its absolute maximum range, this LSI may be damaged permanently. It is desirable to use this LSI under electrical characteristic conditions during general operation. Otherwise, this LSI may malfunction or reduced LSI reliability may result.

DC CHARACTERISTICS

Table 17. DC Characteristics

 $(V_{SS} = 0V, V_{DD} = 1.8 \sim 3.3V, Ta = -40 \sim 85^{\circ}C)$

r		1			(000 - 00	, 100 - 1.0	0.01,	1a=-40~03 C)
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Operating vol	tage (1)	V_{DD}		1.8	-	3.3	V	VDD *1
Operating voltage (2)		V ₀		4.0	-	15.0	V	V0, *2
Input voltage	High	VIH		0.8V _{DD}	ı	V_{DD}	V	*3
input voitage	Low	VıL		Vss	ı	0.2V _{DD}	V	3
Output High		Vон	Iон = -0.5mA	0.8V _{DD}	ı	V_{DD}	V	*4
voltage	Low	Vol	IoL = 0.5mA	Vss	ı	0.2V _{DD}	V	4
Input leakage	current	Iı∟	VIN = VDD or Vss	- 1.0	-	+ 1.0	μΑ	*3
Output leakage	e current	loz	VIN = VDD or Vss	- 3.0	-	+ 3.0	μΑ	*5
LCD driver ON resistance		Ron	Ta = 25°C, V ₀ = 8V	-	2.0	3.0	kΩ	SEGn COMn *6
Frame frequ	uency	f FR	Ta = 25°C	70	85	100	Hz	*7

Table 18. DC Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Voltage converter circuit output voltage	Vоит	×3 / ×4 / ×5 / ×6 voltage conversion (no-load)	95	99	-	%	VOUT
Voltage regulator circuit operating voltage	Vоит		5.4	-	15.0	V	VOUT
Voltage follower circuit operating voltage	Vo		4.0	-	15.0	V	V0 *8
Reference voltage	V _{REF}	Ta = 25°C	2.04	2.10	2.16	V	*9

Dynamic Current Consumption (1) when An External Power Supply is used. Table 19. Dynamic Current 1 (External Power)

 $(V_{DD} = 2.4V, Ta = 25^{\circ}C)$

Item	Symbol	Condition	Min	Тур	Max	Unit	Pin used
Dynamic current consumption (1)	I _{DD1}	V0-Vss = 12.0V, duty = 1/81 (Display Off)		7.5	10	μΑ	*10
		V0-Vss = 12.0V, duty = 1/81 (Display On , Checker Pattern)	-	10	15	μА	*10

Dynamic Current Consumption (2) when The Internal Power Supply is ON

Table 20. . Dynamic Current 2 (Internal Power)

 $(V_{DD} = 2.4V, Ta = 25^{\circ}C)$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Dynamic current consumption (2)	lane	V0 - Vss = 12.0V, x5 boosting, duty = 1/81, normal mode (Display Off)	-	100	150	μΑ	*10
	IDD2	V0 - Vss = 12.0V, x5 boosting, duty = 1/81, normal mode (Display On , Checker Pattern)	-	210	300	μΑ	*10

Current Consumption during Power Save Mode

Table 21. Power Save Mode Current

 $(V_{DD} = 2.4V, Ta = 25^{\circ}C)$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Sleep mode current	I _{DDS1}	During sleep	-	-	2	μΑ	*10

Table 22. The Relationship between Oscillation Frequency and Frame Frequency

Duty ratio	Item	FcL	Fosc
1/N	On-chip oscillator circuit is used	Ffr x N	ffr x 4 x N

(fosc: oscillation frequency, fcl: display clock frequency, fFR: frame frequency, N = 17 to 81)

The current consumption, when the built-in power supply circuit is ON or OFF.

The current flowing through voltage regulation resistors(Rb and Ra) is not included.

It does not include the current of the LCD panel capacity, wiring capacity, etc.

^{[*} Remark Solves]

^{*1.} Though the wide range of operating voltages is guaranteed, a spike voltage change may affect the voltage assurance during access from the MPU.

^{*2.} In case of external power supply is applied.

^{*3.} CS1B, RS, DB0 to DB7, E_RD, RW_WR, RESETB, PS1, PS0, INTRS, and REF

^{*4.} DB0 to DB7

^{*5.} Applies when the DB0 to DB7 pins are in high impedance.

^{*6.} Resistance value when -0.1[mA] is applied during the ON status of the output pin SEGn or COMn. RON $[k\Omega] = \Delta V[V] / 0.1[mA]$ (ΔV : voltage change when -0.1[mA] is applied in the ON status.)

^{*7.} See Table 22 for the relationship between oscillation frequency and frame frequency.

^{*8.} The voltage regulator circuit adjusts V0 within the voltage follower operating voltage range.

^{*9.} On-chip reference voltage source of the voltage regulator circuit to adjust V0.

^{*10.} Applies to the case where the on-chip oscillation circuit is used and no access is made from the MPU.

AC CHARACTERISTICS

Read / Write Characteristics (8080-series MP)

Figure 41. Read / Write Characteristics (8080-series MPU)

Table 23

 $(V_{DD} = 1.8 \sim 3.3V, Ta = -40 \sim +85^{\circ}C)$

Item	Signal	Symbol	Condition	Min.	Max.	Unit
Address setup time Address hold time	RS	t _{AS80} t _{AH80}		0 0	-	ns
System cycle time		t _{CY80}		1000	-	ns
Pulse width low for write Pulse width high for write	RW_WR (/WR)	t _{PWLW} t _{PWHW}		120 120	-	ns
Pulse width low for read Pulse width high for read	E_RD (/RD)	t _{PWLR} t _{PWHR}		240 120	-	ns
Data setup time Data hold time	DB0 to	t _{DS80} t _{DH80}		80 30	-	ns
Read access time Output disable time	DB7	t _{ACC80} t _{OD80}	CL = 100 pF	- 10	280 200	ns

NOTE: *1. The input signal rise time and fall time (tr, tf) is specified at 15 ns or less.

(tr + tf) < (tcy80 - tpwLw - tpwHw) for write, (tr + tf) < (tcy80 - tpwLR - tpwHR) for read

Read / Write Characteristics (6800-series Microprocessor)

Figure 42. Read / Write Characteristics (6800-series Microprocessor)

Table 24

 $(V_{DD} = 1.8 \sim 3.3V, Ta = -40 \sim +85^{\circ}C)$

Item	Signal	Symbol	Condition	Min.	Max.	Unit
Address setup time Address hold time	RS RW	tas68 tah68		0 0	-	ns
System cycle time		tCY68		500	-	ns
Enable width high for write Enable width low for write	E_RD (E)	tewhw tewlw		60 60	-	ns
Enable width high for read Enable width low for read	E_RD (E)	tewhr tewlr		120 60	-	ns
Data setup time Data hold time	DB0	tDS68 tDH68		30 5	-	ns
Read access time Output disable time	to DB7	tACC68 tOD68	C _L = 100 pF	- 10	60 50	ns

NOTE: *1. The input signal rise time and fall time (tr, tf) is specified at 15 ns or less.

(tr + tf) < (tCY68 - tEWHW - tEWLW) for write, (tr + tf) < (tCY68 - tEWHR - tEWLR) for read

Serial Interface Characteristics

Figure 43

Table 25

 $(V_{DD} = 1.8 \sim 2.6V, Ta = -40 \sim +85^{\circ}C)$

Item	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock cycle SCLK high pulse width SCLK low pulse width	DB6 (SCLK)	tscy tshw tslw		111 60 60	- - -	ns
Address setup time Address hold time	RS	tass tahs		60 60	-	ns
Data setup time Data hold time	DB7 (SID)	Toss tons		60 60	-	ns
CS1B setup time CS1B hold time	CS1B	Tcss tcнs		60 60	-	ns

 $(V_{DD} = 2.6V \sim 3.3V, Ta = -40 \sim +85^{\circ}C)$

Item	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock cycle SCLK high pulse width SCLK low pulse width	DB6 (SCLK)	tscy tshw tslw		58.8 30 30		ns
Address setup time Address hold time	RS	tass tahs		30 30	-	ns
Data setup time Data hold time	DB7 (SID)	Toss tons		30 30	-	ns
CS1B setup time CS1B hold time	CS1B	Tcss tcнs		30 30	-	ns

NOTE: *1. The input signal rise time and fall time (tr, tf) is specified at 15 ns or less.

Reset Input Timing

Figure 44

Table 26

 $(V_{DD} = 1.8 \sim 3.3V, Ta = -40 \sim +85^{\circ}C)$

Item	Signal	Symbol	Condition	Min.	Max.	Unit
Reset low pulse width	RESETB	trw		1000	-	ns
Reset time	-	tr		-	1000	ns

REFERENCE APPLICATIONS

MICROPROCESSOR INTERFACE

In Case of Interfacing with 6800-series (PS0 = "H", PS1 = "H")

Figure 45. Interfacing with 6800-series

In Case of Interfacing with 8080-series (PS0 = "H", PS1 = "L")

Figure 46. Interfacing with 8080-series

In Case of Serial Peripheral Interface with RS Pin (PS0 = "L", PS1 = "H")

Figure 47. Serial Interface

In Case of Serial Peripheral Interface with software command (PS0 = "L" , PS1 = "L")

Figure 48. Serial Interface

CONNECTIONS BETWEEN S6B0759 AND LCD PANEL

Single Chip Configurations (1/81 Duty)

Figure 49. SHL = 0, ADC = 1

Figure 50. SHL = 0, ADC = 0

Figure 51. SHL = 1, ADC = 0

Figure 52. SHL = 1, ADC = 1

