

Сибирский государственный университет науки и технологий имени академика М.Ф. Решетнева

Тема ВКР: «Разработка универсального комплекта ІоТ для автоматизированного управления водоснабжением в многоквартирных домах»

Автор: Костюк Станислав Владимирович студент группы БПЦ21-01

Руководитель ВКР: Юферова Н. Ю. доцент ИЭС

Актуальность

- Многоквартирные дома основа городского жилья
- Растущая потребность в модернизации
- Цифровизация глобальный тренд
- Особенно востребованы решения для Автоматизации управления ресурсами, повышения прозрачности и эффективности ЖКХ.

Разработка ІоТ-систем для МКД соответствует:

- Запросам жителей на комфорт и экономию.
- Трендам цифровизации городской инфраструктуры.
- Стратегическим задачам энергосбережения.

Стейкхолдеры:

- Жильцы МКД
- Управляющие компании
- Ресурсоснабжающие организации
- Муниципальные власти
- Производители ІоТ-оборудования
- Государственные институты

(3)

Проблемы

- Устаревшая инфраструктура
- Неэффективный контроль
- Отсутствие автоматизации
- Финансовые и технические проблемы
- Безопасность и модернизация

Требуется IoT-решение для автоматизации мониторинга и управления

Цели и задачи

Целью данной выпускной квалификационной работы является разработка универсального комплекта lotустройств, направленных на автоматизацию и мониторинг водоснабжения.

Задачи:

- Аналитический этап.
- Разработка архитектуры.
- Техническая реализация.
- Адаптация под инфраструктуру.
- Тестирование и внедрение.
- Экономическое обоснование.

Сравнительный анализ решений, представленных на рынке

Критерий	Готовые решения (Kamstrup, Itron)	Open-source платформы (FIWARE)	Наше решение
Точность мониторинга	±0,5% (сертифицированные)	±1,5-2% (универсальные)	±0,3- 0,7% (оптимизированные)
Частота обновления	1 раз/час	1 раз/15 мин	От 1 раза/мин (адаптивная)
Автономность	8-10 лет	3-5 лет	5-15 лет (гибридное питание)
Сложность внедрения	Под ключ (жесткие требования)	Требует доработок	Гибкая поэтапная реализация
Стоимость (ТСО 5 лет)	120-150 руб/м²/год	60-80 руб/м²/год	90-110 руб/м²/год
Интеграция	Ограниченный АРІ	Открытые протоколы	Любые интерфейсы
Масштабируемость	В рамках экосистемы	С ростом сложности	Оптимально под объект

Ключевые преимущества:

- Технологичность
- Экономическая выгода
- Юридическое соответствие
- Функциональное превосходство

(6)

Требования к системе

- Безопасность.
- Энергоэффективность.
- Экономическая оправданность.
- Масштабируемость
- Удобство использования
- Совместимость
- Надежность
- Функциональность
- Соответствие нормативам

Архитектура системы управления водоснабжением

Описание системы водоснабжения в многоквартирных домах в нотации IDEF0

Архитектура системы управления водоснабжением

Декомпозиция описания системы водоснабжения в многоквартирных домах в нотации IDEF0

Выбор аппаратного обеспечения

Хаб Яндекса для устройств

Беспроводной датчик Ujin Aqua-sense

Контроллер протечки Ujin Aqua

Мультисенсор Ujin Pulse

Шаровый кран с электроприводом Ujin Aquadrive

Подобранное оборудование обеспечивает высокую надежность, энергоэффективность и совместимость с существующей инфраструктурой МКД.

Ключевые преимущества:

- Оптимальная стоимость
- Масштабируемость
- Соответствие российским стандартам
- Минимальные затраты на обслуживание

Выбор программного обеспечения

Категория	Выбранное решение	Преимущества	Альтернативы
СУБД	PostgreSQL	Поддержка временных рядов, масштабируемость, расширения (TimescaleDB)	MySQL, MongoDB
ОС сервера	Linux (CentOS/Debian)	Бесплатность, стабильность, работа 24/7	Windows Server
Бухгалтерия/учет	1С:Предприятие	Глубокая интеграция с ЖКХ- учетом, гибкость доработок	СБИС, ГИС ЖКХ
Аналитика и отчеты	Excel / LibreOffice Calc	Доступность, простота интеграции с 1С	Power BI, QlikView
Уведомления	Telegram / WhatsApp API	Бесплатность, удобный API, высокая доступность	SMS-рассылки
Криптозащита	КриптоПРО	Совместимость с ГОСТ, сертификация для госструктур	СБИС, Диадок

Ключевые критерии выбора:

- Надежность
- Интеграция
- Экономичность
- Соответствие стандартам

Вывод:

Подбор ПО обеспечивает оптимальный баланс между функциональностью, стоимостью и совместимостью с инфраструктурой ЖКХ.

Настройка программной части системы

Инструкция по настройке серверной платформы для сбора, обработки, хранения данных и передачи данных между lot-устройствами

Интеграция ІоТ-решения с внешними сервисами

• Устройства Ujin (Zigbee):

Aqua-sense, Aqua-drive, Pulse — фиксируют протечки, температуру, перекрытие воды.

Шлюз Zigbee → MQTT:

Zigbee2MQTT передаёт данные в Mosquitto-брокер.

Linux-сервер (Debian/CentOS):

Обработчик (скрипт) подписан на MQTT, события пишутся в PostgreSQL.

PostgreSQL (БД):

Хранение логов, статусов устройств, аналитики.

1С:Предприятие:

Через ODBC/API получает данные, формирует отчёты, акты.

Excel / LibreOffice Calc:

Просмотр и экспорт логов/таблиц.

Telegram / WhatsApp API:

Автоуведомления диспетчерам/жителям при протечках и авариях.

• КриптоПРО:

Подпись отчётов, актов, защита данных.

Система водоснабжения многоквартирных домов после внедрения IOT-устройств

Система водоснабжения многоквартирных домов после внедрения IOTустройств в нотации IDEF0

Управление системой водоснабжения многоквартирных домов после внедрения IOT-устройств

Декомпозиция управления системой водоснабжения многоквартирных домов после внедрения IOT-устройств в нотации IDEF0

Экономическая эффективность ІоТ-решения

- 1. Финансовые показатели
- Капитальные затраты (САРЕХ): 710 тыс. руб. на 100-квартирный дом
- Эксплуатационные расходы (ОРЕХ): 80 тыс. руб./год
- **2. Годовая экономия**: 450 тыс. руб.
- 3. Окупаемость и доходность 1 год 11 месяцев
- **4. Операционная эффективность** Скорость обнаружения утечек: с 48 часов → до 15 минут
- **5. Эффект масштабирования (на 100 домов)** Экономия воды: 75 000 м³/год

Вывод:

Решение окупается менее чем за 2 года и обеспечивает:

- **Снижение затрат** УК на воду и обслуживание
- Повышение прозрачности для жителей
- Масштабируемость под задачи «умного города»

(16)

Анализ эксплуатационных рисков и надёжности

1. Ключевые риски и решения:

- Кибербезопасность.
- Физические угрозы.
- Отказоустойчивость.
- 2. Тестирование и показатели:
- Испытания.
- Надежность.
- 3. Организационные меры.
- 4. Инструменты контроля:
- Мониторинг.
- Тестирование.
- Документация.

Вывод:

Система соответствует ГОСТ и Ф3-152 и обеспечивает: защиту от кибератак, работу в экстремальных условиях, минимальные простои

Результаты работы

Достигнутая цель — Разработка универсального комплекта ІоТ-устройств для автоматизированного управления водоснабжением в многоквартирных домах.

Выполненные задачи:

- 1. Аналитический этап
- 2. Разработка архитектуры
- 3. Техническая реализация
- 4. Адаптация под инфраструктуру
- 5. Тестирование и внедрение
- 6. Экономическое обоснование

Перспективы масштабирования и повторного применения на других объектах

- **Применение:** МКД, общественные и промышленные здания, коттеджные посёлки
- **Интеграция:** инженерные системы, экосистемы «умного дома», ГИС ЖКХ
- **Технологии:** цифровые двойники, AIаналитика, блокчейн
- Масштаб: поддержка 10 000+ устройств, адаптация к климату, тиражирование
- **Эффект:** экономия до 75 000 м³ воды/год, 70% аварийных затрат, 90% процессов в автомате

Вывод:

Решение служит универсальной платформой для:

- Цифровизации ЖКХ
- Создания инфраструктуры «умного города»
- Перехода на ресурсосберегающие технологии

СПАСИБО ЗА ВНИМАНИЕ

