COMPUTER ORGANIZATION AND ARCHITECTURE (COA)

EET 2211
4TH SEMESTER – CSE & CSIT
CHAPTER 4, LECTURE 16

CHAPTER 4 – CACHE MEMORY

TOPICS TO BE COVERED

- Computer Memory System Overview
- Cache Memory Principles
- ➤ Elements of Cache Design
- Cache Organization

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

- * Present an overview of the main characteristics of computer memory systems and the use of a memory hierarchy.
- Describe the basic concepts and intent of cache memory.
- Discuss the key elements of cache design.
- * Distinguish among direct mapping, associative mapping and set-associative mapping.
- * Explain the reasons for using multiple levels of cache.
- Understand the performance implications of multiple levels of memory.

4.2 CACHE MEMORY PRINCIPLES

- Cache memory is designed to combine the memory access time of expensive, high speed memory combined with large memory size of less expensive, lower speed memory.
 - Small amount of fast memory
- Expensive
 Sits between normal main memory and CPU
 May be located on CPU chip or module

Cache and Main Memory

(a) Single cache

(b) Three-level cache organization

Cache/Main Memory Structure

Memory address Block () (K words) Block M-1 $2^{n} - 1$ Word Length

(b) Main memory

The length of line(line size) not include tag and control bits.

CACHE MEMORY

MAIN MEMORY

LINE NO.	TAG	BLOCK	TAG NO	0
0	3	384	0	0
1	1	129	1	1
2	0	2	2	2
•••			3	3
•••				
126			126	126
127	31	4096	127	127

TAG NO	0	1	2	3	•••	31
0	0	128	256	384	•••	3098
1	1	129	257	385	•••	3099
2	2	130	258	386	•••	3100
3	3	131	259	387	•••	
••••	•••	•••	••••		•••	
126	126	254	382	• • •	•••	4094
127	127	255	383			4095

4096/128 = 32 TAGS IN TOTAL $128 = 2^7 = \text{FRAMES} = \text{K WORDS}$ 32 NO. OF BLOCKS

VE Cache Read Operation - Flowchart

Cache Operation – Overview

- CPU requests contents of memory location
- Check cache for this data
- If present, get from cache (fast)
- If not present, read required block from main memory to cache(Cache Organization)
- Then deliver from cache to CPU
- Cache includes tags to identify which block of main memory is in each cache slot

Typical Cache Organization

Cache Organization – Overview

- The cache connects to the processor via data, control and address lines
- The data and address lines attach to data and address buffers through system bus to reach main memory
- Hit occurs-communication only between processor and cache(disable data and address buffer)
- Miss occurs-the data are return through the data buffer to both cache and the processor(desired address is loaded onto the system bus)

THANK YOU