

تمرین چهارم درس طراحی کامپایلر

دكتر دلدار

ترم4022

Production	Semantic Rules
1)L → E n	L.val=E.val
$2)E \rightarrow E_1 + T$	E.val=E ₁ .val+T.val
3)E → T	E.val=T.val
$4)T \rightarrow T_1 *F$	$T.val = T_1.val*F.val$
5)T → F	T.val=F.val
6)F→(E)	F.val=E.val
7)F→digit	F.val=digit.lexval

2. برای گرامر زیر، یک L-attributed SDD برای محاسبه S.val (مقدار دهدهی رشته ورودی) طراحی کنید.

 $S \rightarrow L.L|L$

 $L\rightarrow LB|B$

 $B \rightarrow 1|0$

رسم کنید. DAG رسم کنید.
$$F = ((A + B * C) * (A * B * C)) + C$$

بنویسید. Quadruple بنویسید. Priple بنویسید. a[i] = b[i] - c * d + f(x,z+2) بنویسید. 4

5. با در نظر گرفتن SDD نوشتهشده در مثال بخش کنترل جریان مطرحشده در کلاس:

الف) كد مياني متناظر با قطعه كد زير را بهدست آوريد.

```
while (x > 0 \&\& x < 100) {
 x = x + 1;
 if (x > 20) x = x + 2;
 else x = x + 3;
}
```

ب) قوانین معنایی را تعریف کنید تا ساختار کنترل جریان do while، به شکل زیر را در نظر بگیرد.

 $S \rightarrow do S1 while (B)$

6. بهینهسازیهای محلی و سراسری ممکن را بر روی گراف کنترل جریان قسمت (الف) و قطعه کد قسمت (ب) انجام دهید.

dp=0

i=0

L:t1=i*8

T2=A[t1]

t3=i*8

t4 = B[t3]

t5=t2*t4

dp=dp+t5

i=i+1

if i<n goto L

ب)