Algorithm Design Strategies II

Joaquim Madeira

Version 0.1 – September 2017

Overview

- Counting basic operations Recap
- Deterministic vs Non-Deterministic Algorithms
- Problem Types and Design Strategies
- Algorithm Efficiency and Complexity Analysis
- Brute-Force
- Divide-and-Conquer
- Decrease-and-Conquer
- Example: computing powers

Running Time vs. Operations Count

- Running time is not (very) useful for comparing algorithms
 - Speed of particular computers
 - Chosen computer language
 - Quality of programming implementation
 - Compiler optimizations
- Evaluate efficiency in an independent way
 - Count the "basic operations" !!
 - Contribute the most to overall running time

Formal Analysis – Pencil and paper

Understand algorithm behavior

- Count arithmetic operations / comparisons
- Find a closed formula !!
- Identify best, worst and average case situations, if that is the case

Iterative algorithms

- Loops : how many iterations ?
- Set a sum for the basic operation counts

Recursive algorithms

- How many recursive calls ?
- Establish and solve appropriate recurrences

Return value? – Number of iterations?

```
int f1(int n) {
  int i,r=0;
  for(i = 1; i \le n; i++)
    r += i:
  return r;
int f3(int n) {
 int i,j,r=0;
 for(i = 1; i <= n; i++)
   for(j = i; j \le n; j++)
      r += 1;
  return r;
```

```
int f2(int n) {
 int i,j,r=0;
 for(i = 1; i <= n; i++)
    for(j = 1; j \le n; j++)
      r += 1;
  return r;
int f4(int n) {
 int i,j,r=0;
 for(i = 1; i <= n; i++)
    for(j = 1; j \le i; j++)
      r += i;
  return r;
```

Closed formulas? – Comput. tests?

$$f1(n) = n(n+1)/2$$

$$n_iters1(n) = n$$

$$f2(n) = n^2$$

$$n_{iters2(n)} = f2(n)$$

$$n_{iters3(n)} = f3(n)$$

$$f4(n) = n(n + 1)(n + 2)/6$$

- $n_{iters4(n)} = n (n + 1) / 2$
- Use WolframAlpha to get / check results!

Return value? – Number of calls?

```
unsigned int
                                   unsigned int
r1(unsigned int n) {
                                   r2(unsigned int n) {
  if(n == 0) return 0;
                                     if(n == 0) return 0;
  return 1 + r1(n - 1);
                                     if(n == 1) return 1;
                                     return n + r2(n - 2);
unsigned int
                                   unsigned int
r3(unsigned int n) {
                                   r4(unsigned int n) {
 if(n == 0) return 0;
                                    if(n == 0) return 0;
  return 1 + 2 * r3(n - 1);
                                     return 1 + r4(n - 1) + r4(n - 1);
```

Closed formulas? – Comput. tests?

$$-r1(n) = n$$
 $n_calls1(n) = r1(n)$

- r2(n) = n(n + 2) / 4, if n is even
- r2(n) = 1 + (n 1) (n + 3) / 4, if n is odd
- n_calls2(n) = floor(n / 2)

Use WolframAlpha to get / check results!

Closed formulas? – Comput. tests?

- $r3(n) = 2^n 1$ $n_calls3(n) = n_calls1(n)$
- $r4(n) = r3(n) = 2^n 1$
- $n_{calls4(n)} = 2 \times (2^n 1) = 2 \times r4(n)$
- r3 and r4 compute the same result
- BUT, r4 will take much more time...
 - How far can you go with your computer?

Algorithms

- Algorithm
 - Sequence of non-ambiguous instructions
 - Finite amount of time
- Input to an algorithm
 - An <u>instance</u> of the problem the algorithm solves
- How to classify / group algorithms?
 - Type of problems solved
 - Design techniques
 - Deterministic vs non-deterministic

Deterministic Algorithms

- A deterministic algorithm
 - Returns the same answer no matter how many times it is called on the same data.
 - Always takes the same steps to complete the task when applied to the same data.
- The most familiar kind of algorithm!
- There is a more formal definition in terms of state machines...

Non-Deterministic Algorithms

- A non-deterministic algorithm
 - Can exhibit different behavior, for the same input data, on different runs.
 - As opposed to a deterministic algorithm!
- Often used to obtain approximate solutions to given problem instances
 - When it is too costly to find exact solutions using a deterministic algorithm

Non-Deterministic Algorithms

- How to behave differently from run to run?
- Factors of non-deterministic behavior
 - External state other than the input data
 - User input / timer values / random values
 - Timing-sensitive operations on multiple processor machines
 - Hardware errors might force state to change in unexpected ways

Problem Types

- Searching
- Sorting
- String Processing
- Graph / Network problems
- Combinatorial problems
- Bioinformatics
- **.**..
- Examples of algorithms ?

Searching

- Which items?
 - Numbers, strings, records (key?), etc.
- Possible representations?
 - Arrays, lists, trees, etc.
- Ordered vs. non-ordered items
- Dynamically changing set?
- Sequential vs. binary search
- Others?

Sorting

- Which items?
 - □ Numbers, strings, records (key?), etc.
- Possible representations?
 - Arrays, lists, trees, etc.
- Use an <u>indexing array</u>?
- Which ordering? Repeated items?
- Stable? In-place?
- How many algorithms do you know?
- Which ones are the "most efficient"? When?

String Processing

- Text strings, bit strings, gene sequences, etc.
- String matching?
- Longest-common substring?
- String-edit distance?
- Other problems / algorithms?

Graph / Network Problems

- Modeling the real-world!
- Dense vs. sparse graphs / networks
- Representations
 - Adjacency matrices vs. lists
 - Forward-star and reverse-star forms
- Depth vs. breadth traversals
- Shortest path? K-shortest paths?
- Minimum spanning tree?
- Traveling salesman!
- Other problems?

Combinatorial Problems

- Find a permutation, combination or subset !!
- What are the constraints?
- Are we optimizing some property?
 - Max value, min cost, etc.
- The most difficult problems in computing !!
- No (known?) polynomial algorithms for some problems !!
- Instance size vs. execution time
 - Exhaustive search?
- Optimal solutions vs. approximations
- Examples
 - N-Queens / Knapsack / Traveling salesman

Bioinformatics

Applications in molecular biology

- Dealing with sequences (DNA or proteins)
 - Storing
 - Mapping and analyzing
 - Aligning

Algorithm Design Techniques

Design techniques / strategies / paradigms

General approaches to problem solving

- Apply to
 - Various problem types
 - Different application areas

Algorithm Design Techniques

- Brute-Force
- Divide-and-Conquer
- Decrease-and-Conquer
- Transform-and-Conquer
- Dynamic Programming
- Greedy Algorithms
- Examples of algorithms ?
- What about problems / instances that cannot be solved within a reasonable amount of time?

Brute-Force

- Direct approaches
 - Selection sort
 - Sequential search
 - **...**
- Exhaustive search
 - Problem instances of small (?!) size
 - Traveling salesman
 - Knapsack
 - **...**

Divide-and-Conquer

- Recursive decomposition into "smaller" prob. instances
- Solve them all!
- Sorting
 - Mergesort
 - Quicksort
- Multiplication
 - Multiplying large integers
 - Strassen matrix multiplication

. . . .

Decrease-and-Conquer

- Successive decomposition into a "smaller" problem instance
- How small is it?
 - Decrease-by-one
 - Decrease by a constant factor
 - Variable-size decrease
- Examples
 - Binary search
 - Interpolation search
 - Fake-coin problem

Transform-and-Conquer

- Solve a different problem and get the desired result
 - Problem reduction
- Sometimes, perform some kind of pre-processing on the data
- Examples
 - Searching on ordered and balanced trees
 - AVL and 2-3 trees
 - Heapsort

Dynamic Programming

- Decomposition into overlapping (smaller!) sub-problems
 - Avoid solving them all !!
 - Proceed bottom-up
 - Store results and use them !!
- Simple examples
 - Computing Fibonacci numbers
 - Computing binomial coefficients
 - **...**
- Other
 - Graphs: Warshall alg.; Floyd alg; etc.
 - Knapsack

Greedy Algorithms

- Construct a solution through a sequence of steps
 - Expand a partially constructed solution
- The choice made at each step is
 - Feasible : satisfies constraints
 - Locally optimal: best choice at each step
 - Irrevocable
- Examples
 - Coin-changing problem
 - Graphs
 - Dijkstra's shortest-path algorithm
 - Prim's minimum-spanning tree algorithm
 - Kruskal's minimum-spanning tree algorithm

Limitations of Algorithmic Power

- How to cope?
- Backtracking
 - N-Queens problem
 - **-** ...
- Branch-and-Bound
 - Assignment problem
 - Knapsack problem
 - TSP
 - **...**
- Approximation algorithms for NP-hard problems
 - Knapsack problem
 - TSP
 - **-** ...

Fundamental Data Structures

- Algorithms operate on data!
- How to organize and store related data items?
 - Data structures (DS)
- Which operations should be provided?
 - Abstract data types (ADT) or classes (in OO languages)
- How to choose?
 - Identify the most common operations on the data
 - Identify the needs of particular algorithms
- Different algorithms for the same problem often require different data structures

Efficiency !!

Fundamental Data Structures

- Arrays
 - □ 1D, 2D, ...
- Linked Lists
 - Single pointer vs. two pointers per node
 - List of lists
 - ...
- Trees
 - Binary tree
 - Quaternary tree
 - **...**

Common Abstract Data Types

- Stack
- Queue
- Priority Queue
- Ordered List
- Binary Search Tree
- ...
- Graph / Network

. . .

Algorithm Efficiency

- Analyze algorithm efficiency
 - Running time ?
 - Memory space ?
- Time
 - How fast does an algorithm run?
- Space
 - Does an algorithm require additional memory?

Efficiency Analysis

- How fast does an algorithm run?
 - Most algorithms run longer on larger inputs!
- How to relate running time to input size?
- How to rank / compare algorithms ?
 - If there is more than one available...
- How to estimate running time for larger problem instances?

Running Time vs. Operations Count

- Running time is not (very) useful for comparing algorithms
 - Speed of particular computers
 - Chosen computer language
 - Quality of programming implementation
 - Compiler optimizations
- Evaluate efficiency in an independent way
 - Count the "basic operations" !!
 - Contribute the most to overall running time

Input Size

- Relate operations count / running time to input size !!
 - Number of array / matrix / list elements
 - **...**
- Relate size metric to the main operations of an algorithm
 - Working with individual chars vs. with words
 - Number of bits in binary rep., when checking if n is prime

. . . .

Formal Analysis – Pencil and paper

Understand algorithm behavior

- Count arithmetic operations / comparisons
- Find a closed formula !!
- Identify best, worst and average case situations, if that is the case

Iterative algorithms

- Loops : how many iterations ?
- Set a sum for the basic operation counts

Recursive algorithms

- How many recursive calls ?
- Establish and solve appropriate recurrences

Worst, Best and Average Cases

- Running time depends on input size
- BUT, for some algorithms, it might also depend on particular data configurations !!
- Sequential search on a n-element array
 - Non-ordered array ?
 - Ordered array ?
 - Increasing vs. decreasing order
 - Probability of a successful search?

Worst, Best and Average Cases

- Worst case : W(n)
 - Input(s) of size n for which an algorithm runs longest
 - Upper bound for operations count
- Best case : B(n)
 - Input(s) of size n for which an algorithm runs fastest
 - Lower bound for operations count
 - Not very useful...
- Average case : A(n)
 - Behavior for "typical" or "random" inputs
 - Establish assumptions about possible inputs of size n
 - For some algorithms, much better than worst case !!

Growth Rate

- Identify algorithm efficiency for large input sizes
- How fast does the running time (i.e., number of operations) of an algorithm grow, when input size becomes (much) larger?
- What happens when the input size
 - doubles ?
 - increases ten-fold?
 - **-** ...
- How to represent such growth rate?

Orders of Growth

Approximate values for some common functions

n	log ₂ n	n	n log ₂ n	n²	n ³	2 ⁿ	n!
10	3.3	10	3.3 x 10 ¹	10 ²	10 ³	10 ³	3.6 x 10 ⁶
10 ²	6.6	10 ²	6.6 x 10 ²	10 ⁴	10 ⁶	1.3 x 10 ³⁰	9.3 x 10 ¹⁵⁷
10 ³	10	10 ³	10 ⁴	10 ⁶	10 ⁹	?	?
10 ⁴	13	10 ⁴	1.3 x 10 ⁵	10 ⁸	10 ¹²	?	?
10 ⁵	17	10 ⁵	1.7 x 10 ⁶	10 ¹⁰	10 ¹⁵	?	?
10 ⁶	20	10 ⁶	2.0 x 10 ⁷	10 ¹²	10 ¹⁸	?	?

Asymptotic Notations

Order of growth of operations count indicates efficiency

- How to compare / rank algorithms for the same problem?
 - Compare their orders of growth !!

■ Useful notations: O(n), $\Omega(n)$, $\Theta(n)$

Big-Oh Notation

Asymptotic upper bound

- O(g(n)): set of all functions with smaller or same order of growth as g(n)
 - □ $t(n) \le c g(n)$, for all $n \ge n_0$, positive constant c
 - t(n), g(n): non-negative functions on the set of natural numbers

Big-Omega Notation

X0 Cg(x)

[Wikipedia]

- Asymptotic lower bound
- $\Omega(g(n))$: set of all functions with larger or same order of growth as g(n)

□ $t(n) \ge c g(n)$, for all $n \ge n_0$, positive constant c

Big-Theta Notation

- C2g(x)
 f(x)
 C1g(x)

 [Wikipedia]
- Asymptotic tight bound
- Θ(g(n)): set of all functions with the same order of growth as g(n)
 - □ $c_1 g(n) \le t(n) \le c_2 g(n)$, for all $n \ge n_0$, positive constants c_1 , c_2
 - \Box t(n) in O(g(n)) and t(n) in Ω (g(n))

Asymptotic Notation

- Hide unimportant details about how fast a function grows
 - Forget constants and lower-order terms
- $T_1(n) = 2 n^2 + 3000 n + 5$
- $T_2(n) = 10 n^2 + 100 n 23$
- For large values of n, T₂(n) grows faster than T₁(n)
- **BUT**, both grow quadratically : $\Theta(n^2)$

Asymptotic Notation – Example

$$T(n) = 10 n^2 + 100 n - 23$$

$$T(n) = O(n^2)$$
 $T(n) = O(n^3)$ $T(n) \neq O(n)$

$$T(n) = \Omega(n^2)$$
 $T(n) \neq \Omega(n^3)$ $T(n) = \Omega(n)$

$$T(n) = \Theta(n^2)$$
 $T(n) \neq \Theta(n^3)$ $T(n) \neq \Theta(n)$

Efficiency Classes

- $\mathbf{O}(1)$: constant
 - Which algorithms?
- O(log n) : logarithmic
 - E.g., decrease-and-conquer
- O(n): linear
 - Processing all elements of an array, list, etc.
- O(n log n) : n-log-n
 - E.g., divide-and-conquer

Efficiency Classes

- O(n^k): polynomial (quadratic, cubic, etc.)
 - k nested loops
- O(2ⁿ): exponential
 - Generating all subsets of an n-element set
- O(n!): factorial
 - Generating all permutations of an n-element set

Empirical Analysis

- Run the algorithm on a sample of test inputs
 - Input data should represent all possible cases
 - Input data should encompass large (set) sizes
 - Pseudo-random data
- Record and analyze Tables
 - operation counts
 - running times (?)
- Identify best, worst and average case behavior
 - If that is the case...
- Identify complexity classes

Example – Table of operations count

n	1	2	4	8	16	32	64	128	256
M(n)	1	3	10	36	136	528	2080	8256	32896

- M(n): the number of operations carried out
- Complexity order ?
- Closed formula for the number of operations?

Another table of operations count

n	1	2	3	4	5	6	7	8	9	10
M(n)	1	3	7	15	31	63	127	255	511	1023

- M(n): the number of operations carried out
- Complexity order ?
- Closed formula for the number of operations?

Empirical Analysis

- Problems
 - Inadequate sample input data
 - Size? Configurations?
 - Dependence of running times
- Advantages
 - Avoid difficult formal analysis
 - Allow predicting the running time for different input data sets
 - Interpolation and extrapolation (?)
- BUT, some problems / instances cannot be solved quickly enough...

Brute-Force

- The (most) straightforward approach to solving a problem
- Directly based on
 - The problem statement
 - The definitions involved
- Strengths
 - Simplicity
 - Applicable to different kinds of problems
- Weaknesses
 - (Very!) Low efficiency in some cases
 - Useful only for instances of (relatively) small size !!

Brute-Force

- Where to apply?
- Numerical problems, searching, sorting, etc.
 - Acceptable efficiency
 - Can be used for large problem instances
- Combinatorial problems
 - Exhaustive search
 - Set of candidate solutions grows very fast
 - Used only for reduced size instances

Brute-Force

How many examples do you know?

- Add n numbers
- Direct matrix multiplication
- Sequential search
- Selection sort
- Bubble sort

...

Brute-Force — Tasks

■ Compute b^n , with $n \ge 0$, using

$$b^n = b \times b \times ... \times b$$
 $b^n = b \times b^{n-1}$

- Base cases for the recursion ?
- Number of multiplications ?
 - Formal + Empirical analysis
- Any gains from the recursive approach?

Divide-And-Conquer

The best known algorithm design technique

- General framework
 - Divide a problem instance into (two or more) similar, smaller instances
 - The smaller instances are solved recursively
 - Solutions for smaller instances are combined to get the solution of the original problem, if needed

Divide-And-Conquer

- In each subdivision step, the smaller instances should have approx. the same size!
 - This might not happen, for some particular instances
- All smaller problem instances have to be solved !!
 - Usually two new smaller instances, at each step
- When do we stop the subdivision process?
 - Base cases ? Just one or more ?
 - Smaller instances might be solved by another algorithm

Divide-And-Conquer

- This recursive strategy can be implemented
 - Using recursive functions / procedures (obvious solution !)
 - Iteratively, using a stack, queue, etc.
 - Choose which sub-problem to solve next !!
- Problems ?
 - Recursion is slow!
 - Identify all possible base cases
 - Solve small instances using other algorithms
 - Not the best approach for simple problems!
 - E.g., adding N numbers
 - Sub-problems might overlap!
 - Reuse previous results / solutions !

Divide-And-Conquer – Tasks

Compute bⁿ, with n ≥ 0, using

$$b^n = b^{n \operatorname{div} 2} \times b^{(n+1) \operatorname{div} 2}$$

- Base cases ?
- Always use two recursive calls !!
- Number of multiplications ?
 - Formal + Empirical analysis

Decrease-And-Conquer

- Exploit the relationship between
 - A solution to a given problem instance
 - A solution to a smaller instance of the same problem
- General framework (Top-Down)
 - Identify ONE similar and smaller problem instance
 - The smaller instance is solved recursively
 - Solutions for smaller instances are processed to get the solution of the original problem, if needed

Compare with Divide-and-Conquer !!

Decrease-And-Conquer – Tasks

Compute bⁿ, with n ≥ 0, using

```
b^n = b^n \frac{div}{2} x b^n \frac{div}{2}, if n is even

b^n = b x b^{(n-1)} \frac{div}{2} x b^{(n-1)} \frac{div}{2}, if n is odd
```

- Base cases ?
- Use just ONE recursive call !!
- Number of multiplications ?
 - Formal + Empirical analysis

Decrease-And-Conquer – Extra-Task

Compute bⁿ, with n ≥ 0, using

$$b^n = b^n \frac{\text{div } 2}{\text{div } 2}$$
, if n is even
 $b^n = b \times b^{(n-1)} \frac{\text{div } 2}{\text{div } 2}$, if n is odd

- Develop an iterative version !!
- It should have the same behavior as the recursive version
 - Same algorithm, but a different implementation

a^b – Brute-Force – Iterative algorithm

■ Compute a^b , with $b \ge 0$, using $a^b = a \times a \times ... \times a$

- Number of multiplications ?
 - Formal + Empirical analysis

a^b – Brute-Force – Iterative algorithm

```
def powerIterV1( a, b ) :
   """ Computing a**b using a loop """
   assert (type( b ) == int) and (b >= 0), "Wrong exponent!"
   assert (a != 0) or (b != 0), "Cannot compute 0**0 !"
   res = 1
   for i in range(1, b + 1):
       res *= a
   return res
```

Number of multiplications ?

a^b – Brute-Force – Iterative algorithm

n	2**n	#Mults
0	1	0
1	2	1
2	4	2
3	8	3
4	16	4
5	32	5
6	64	6
7	128	7
8	256	8
9	512	9
10	1024	10
11	2048	11

ab – Brute-Force – Recursive alg.

- Compute a^b , with $b \ge 0$, using $a^b = a \times a^{b-1}$, with $a^0 = 1$
- Number of multiplications ?
 - Formal + Empirical analysis
- Any gains ?

ab – Brute-Force – Recursive alg.

```
def powerRecV1( a, b ) :
    """ Computing a**b recursively --- Direct algorithm
    assert (type( b ) == int) and (b >= 0), "Wrong exponent!"
    assert (a != 0) or (b != 0), "Cannot compute 0**0 !"
    if b == 0:
        return 1
    return a * powerRecV1(a, b - 1)
```

Number of multiplications ?

a^b – Brute-Force – Recursive alg.

n	2**n	#Mults	
0	1	0	
1	2	1	
2	4	2	
3	8	3	
4	16	4	
5	32	5	
6	64	6	
7	128	7	
8	256	8	
9	512	9	
10	1024	10	
11	2048	11	

a^b – Divide-And-Conquer

Compute a^b, with b ≥ 0, using

$$a^{b} = a^{b \text{ div } 2} \times a^{(b+1) \text{ div } 2}$$

- Base cases ?
- Always use two recursive calls !!
- Number of multiplications ?
 - Formal + Empirical analysis
- Is it better than the direct algorithm?

a^b – Divide-And-Conquer

```
def powerRecV3( a, b ) :
    """ Computing a**b recursively --- Blind Div & Cong strategy"""
    # TWO base cases are needed !!
    # Otherwise, we would not stop when b == 1 !!
    assert (type( b ) == int) and (b >= 0), "Wrong exponent!"
    if b == 0 :
       return 1
    if b == 1 :
        return a
    return powerRecV3(a, b // 2) * powerRecV3(a, (b + 1) // 2)
```

Number of multiplications ?

Formal analysis

$$M(n) = M(n \text{ div } 2) + M((n+1) \text{ div } 2) + 1$$

Easier to solve if n is a power of 2

$$n = 2^k$$
, $k = \log_2 n$

$$M(n) = M(n/2) + M(n/2) + 1$$

= 2 M(n/2) + 1 = ...

Closed formula ? Complexity order ?

a^b – Divide-And-Conquer

n	2**n	#Mults
0	1	0
1	2	0
2	4	1
3	8	2
4	16	3
5	32	4
6	64	5
7	128	6
8	256	7
9	512	8
10	1024	9
11	2048	10

a^b – Decrease-And-Conquer

Compute a^b, with b ≥ 0, using

$$a^b = a^{b \operatorname{div} 2} x a^{b \operatorname{div} 2}$$
, if b is even
 $a^b = a x a^{(b-1) \operatorname{div} 2} x a^{(b-1) \operatorname{div} 2}$, if b is odd

- Base cases ?
- Use just ONE recursive call !!
- Number of multiplications ?
 - Formal + Empirical analysis

a^b – Decrease-And-Conquer

```
def powerRecV6( a, b ) :
    """ Computing a**b recursively --- Smart Dec & Cong strategy"""
    assert (type(b) == int) and (b >= 0), "Wrong exponent!"
    if b == 0 :
        return 1
   p = powerRecV6(a, b // 2)
    if (b % 2) == 0 :
        return p * p
    return a * p * p
```

Number of multiplications ?

Formal analysis

$$M(n) = M(n \text{ div } 2) + 1$$
, if n is even
$$M(n) = M((n-1) \text{ div } 2) + 2$$
, if n is odd

- Check some examples with pencil and paper
 - Do you understand what is happening?
 - Best vs. worst cases ?
- Closed formula ? Complexity order ?
- Is it better than the previous algorithms?

a^b – Decrease-And-Conquer

n	2**n	#Mults
0	1	0
1	2	2
2	4	3
3	8	4
4	16	4
5	32	5
6	64	5
7	128	6
8	256	5
9	512	6
10	1024	6
11	2048	7
12	4096	6
13	8192	7
14	16384	7
15	32768	8
16	65536	6
17	131072	7

Decrease-And-Conquer – Extra-Task

Compute bⁿ, with n ≥ 0, using

$$b^n = b^n \frac{\text{div } 2}{\text{div } 2}$$
, if n is even
 $b^n = b \times b^{(n-1)} \frac{\text{div } 2}{\text{div } 2}$, if n is odd

- Develop an iterative version !!
- It should have the same behavior as the recursive version
 - Same algorithm, but a different implementation

New Task – Counting

- Given an array with non-negative integer values
- Count the number of even-valued elements
- Implement the 3 strategies:
 - Brute-Force / Div & C / Dec & C
- Formal + Empirical analysis : Comparisons

New Task – Sequential Search

- Given an array with non-negative integer values
- Use the iterative Sequential Search algorithm to look for a given value
- Formal + Empirical analysis : Comparisons
- Best / Worst / Average Cases ?

References

- A. Levitin, Introduction to the Design and Analysis of Algorithms, 3rd Ed., Pearson, 2012
 - Chapter 1 + Chapter 2
- D. Vrajitoru and W. Knight, Practical Analysis of Algorithms, Springer, 2014
 - Chapter 1 + Chapter 3 + Chapter 5
- T. H. Cormen et al., Introduction to Algorithms, 3rd
 Ed., MIT Press, 2009
 - Chapter 1 + Chapter 2 + Chapter 3