2010 年第二届全国大学生数学竞赛初赛

(非数学类) 试卷

一、计算下列各题(本题共5个小题, 每题5分, 共25分, 要求写出重要步骤)

(1) 设
$$x_n = (1+a) \cdot (1+a^2) \cdots (1+a^{2^n})$$
, 其中 $|a| < 1$, 求 $\lim_{n \to \infty} x_n$.

(2)
$$\[\vec{x} \] \lim_{x \to \infty} e^{-x} \left(1 + \frac{1}{x} \right)^{x^2} .$$

(3) 设
$$s>0$$
,求 $I_n=\int_0^{+\infty}e^{-sx}x^n\,\mathrm{d}\,x(n=1,2,\cdots)$.

(4) 设
$$f(t)$$
有二阶连续导数, $r=\sqrt{x^2+y^2}$, $g(x,y)=f\left(\frac{1}{r}\right)$,求 $\frac{\partial^2 g}{\partial x^2}+\frac{\partial^2 g}{\partial y^2}$.

(5) 求直线
$$l_1: \begin{cases} x-y=0 \\ z=0 \end{cases}$$
 与直线 $l_2: \frac{x-2}{4} = \frac{y-1}{-2} = \frac{z-3}{-1}$ 的距离.

第二题: (15 分)设函数 f(x) 在 $(-\infty, +\infty)$ 上具有二阶导数,并且

$$f''(x)>0, \lim_{x o +\infty}f'(x)=lpha>0, \lim_{x o -\infty}f'(x)=eta<0$$
 ,

且存在一点 x_0 ,使得 $f(x_0) < 0$.证明:方程 f(x) = 0 在 $(-\infty, +\infty)$ 恰有两个实根.

第三题: (15 分)设
$$y=f(x)$$
 由参数方程 $\begin{cases} x=2t+t^2 \\ y=\psi(t) \end{cases}$ $(t>-1)$ 所确定. 且 $\frac{d^2y}{dx^2}=\frac{3}{4(1+t)}$, 其中 $\psi(t)$

具有二阶导数,曲线 $y=\psi(t)$ 与 $y=\int_1^{t^2}e^{-u^2}\,\mathrm{d}\,u+rac{3}{2e}$ 在 t=1处相切.求函数 $\psi(t)$.

第四题: (15 分)设
$$a_n>0, \; S_n=\sum_{k=1}^n a_k$$
,证明: (1) 当 $\alpha>1$ 时,级数 $\sum_{n=1}^{+\infty} \frac{a_n}{S_n^{\alpha}}$ 收敛; (2) 当 $\alpha\leq 1$,

且
$$S_n o \infty ig(n o \infty ig)$$
时, $\sum_{n=1}^{+\infty} rac{a_n}{S_n^{lpha}}$ 发散.

第五题: (15 分)设l 是过原点、方向为 (α,β,γ) (其中 $\alpha^2+\beta^2+\gamma^2=1$) 的直线,均匀椭球

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$$
 (其中 $0 < c < b < a$, 密度为 1) 绕 l 旋转.

(1) 求其转动惯量; (2) 求其转动惯量关于方向 (α, β, γ) 的最大值和最小值.

第六题: (15 分)设函数 $\varphi(x)$ 具有连续的导数,在围绕原点的任意光滑的简单闭曲线 C 上,曲线积分 $\oint_C \frac{2xy\,\mathrm{d}\,x+\varphi(x)\,\mathrm{d}\,y}{x^4+y^2}$ 的值为常数.

更多资料关注-微信公众号: 爱吃老冰棍 全年免费分享

- (1) 设 L 为正向闭曲线 $(x-2)^2+y^2=1$. 证明: $\oint_L \frac{2xy\,\mathrm{d}\,x+\varphi(x)\,\mathrm{d}\,y}{x^4+y^2}=0$;
- (2) 求函数 $\varphi(x)$; (3) 设 C 是围绕原点的光滑简单正向闭曲线,求 $\oint_C rac{2xy\,\mathrm{d}\,x + \varphi(x)\,\mathrm{d}\,y}{x^4 + y^2}$.