

FCC PART 15.247 TEST REPORT

For

Keysight Technologies, Inc.

2221 South Clark Street Suite 11023 Arlington, Virginia 22202

FCC ID: 2AK5OR1605-80001

Report Type: Equipment Name: PLUM Original Report Tom Tong Tom Tang **Test Engineer:** Report Number: RSC170125002C **Report Date: 2017-02-09 Henry Ding** Reviewed By: EMC Leader Bay Area Compliance Laboratories Corp. (Chengdu) Prepared By: No.5040, Huilongwan Plaza, No. 1, Shawan Road, Jinniu District, Chengdu, Sichuan, China Tel: +86-28-65525123 Fax: +86-28-65525125

Note: This test report was prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Chengdu) Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. This report was valid only with a valid digital signature.

www.baclcorp.com.cn

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWAREEQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	6
External I/O Cable	6
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	8
FCC §15.247 (I), §2.1091 & §1.1307(B)(1) - MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
APPLICABLE STANDARDFCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
APPLICABLE STANDARDANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
Test Procedure	12
CORRECTED AMPLITUDE & MARGIN CALCULATION	12
TEST EQUIPMENT LIST AND DETAILS	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARDMEASUREMENT UNCERTAINTY	16
EUT SETUP	
EMI Test Receiver & Spectrum Analyzer Setup	18
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
Test Data	
FCC §15.247(A) (1) - CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
Test Procedure	
Test Data	
FCC §15.247(a) (1) – 20 dB BANDWIDTH TESTING	
APPLICABLE STANDARD	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	

Bay Area Compliance Laboratories Corp. (Chengdu)

FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST	36
APPLICABLE STANDARD	36
TEST PROCEDURE	36
TEST EQUIPMENT LIST AND DETAILS	36
TEST DATA	
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	40
APPLICABLE STANDARD	40
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	40
TEST DATA	40
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	56
APPLICABLE STANDARD	56
Test Procedure	56
TEST EQUIPMENT LIST AND DETAILS	56
TEST DATA	
FCC §15.247(d) - BAND EDGES TESTING	62
APPLICABLE STANDARD	
Test Procedure	62
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	63

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Keysight Technologies, Inc.*'s product, model number: R1605-80001 (FCC ID: 2AK5OR1605-80001) or the "EUT" as referred to in this report was the PLUM, which has a plasitic enclosure.

Mechanical Description of EUT

The EUT was measured approximately 100 mm (L) x 60 mm (W) x 43 mm (H).

Rated input voltage: AC 85-265V/50~60Hz.

*All measurement and test data in this report was gathered from final production sample, serial number: 170125002/01 (assigned by the BACL, Chengdu). It may have deviation from any other sample. The EUT supplied by the applicant was received on 2017-01-18, and EUT complied to test requirement.

Objective

This report is prepared on behalf of *Keysight Technologies, Inc.* in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communications Commission's rules.

The tests were performed in order to determine the Bluetooth BDR and EDR mode of EUT compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DTS submissions with FCC ID: 2AK5OR1605-80001.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The uncertainty of any RF tests which use conducted method measurement is ±3.17 dB, the uncertainty of any radiation on emissions measurement is:

30M~200MHz: ±4.7 dB; 200M~1GHz: ±6.0 dB; 1G~6GHz: ±5.13dB; 6G~25GHz: ±5.47dB;

And the uncertainty will not be taken into consideration for all test data recorded in the report.

Report No.: RSC170125002C Page 4 of 66

Bay Area Compliance Laboratories Corp. (Chengdu)

Test Facility

The test site used by BACL to collect test data is located in the No.5040, Huilongwan Plaza, No. 1, Shawan Road, Jinniu District, Chengdu, Sichuan, China.

Test site at BACL has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules, The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014. The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 560332.

BACL's test facility has been fully described in reports on file and registered with the Innovation, Science and Economic Development Canada under Registration Numbers: 3062C-1.

Report No.: RSC170125002C Page 5 of 66

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in engineering mode.

EUT Exercise Software

Putty-V0.63.0.0.43510830

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Philips	Terminal Load (Lamp)	L2G230-1000	NA
HP	Signal Generator (GPIB Load)	8648C	3623A04150
Dell	Laptop	E6410	37417629385

External I/O Cable

Cable Description	Length (m)	From	То
Unshielded Power Cable	0.2	EUT	Terminal Load (Lamp)
Shielded GPIB Cable	2.0	EUT	Signal Generator (GPIB Load)
Unshielded RJ45 Cable	8.0	EUT	Laptop

Report No.: RSC170125002C Page 6 of 66

Block Diagram of Test Setup

AC power line conducted emission test

Report No.: RSC170125002C Page 7 of 66

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247(i), §2.1091 & §1.1307(b)(1)	Maximum Permissible exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(1)	20 dB Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band Edges	Compliance

Report No.: RSC170125002C Page 8 of 66

FCC §15.247 (I), §2.1091 & §1.1307(B)(1) - MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i)and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz) Electric Field Strength Strength (V/m) Magnetic Field Strength (A/m) Power Density (mW/cm²)				Averaging Time (minutes)		
0.3–1.34	614	1.63	*(100)	30		
1.34–30	824/f	2.19/f	*(180/f²)	30		
30–300	27.5	0.073	0.2	30		
300–1500	-	-	f/1500	30		
1500–100,000	-	-	1.0	30		

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2$

Where:

S = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Frequency	Antenna Gain		Tune-up Peak Conducted Power		Evaluation Distance	Power Density	Limit
MHz	dBi	numeric	dBm	mW	cm	mW/cm ²	mW/cm ²
2402-2480	2.5	1.78	8.5	7.08	20	0.0025	1.0

Note: The device meet FCC MPE at 20 cm distance.

Report No.: RSC170125002C Page 9 of 66

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one internal antenna with IPEX connector and the antenna gain is 2.5 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

Report No.: RSC170125002C Page 10 of 66

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to U_{cispr} of Table 1, then:

- -compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit; -non - compliance is deemed to occur if any measured disturbance level exceeds the disturbance
- If U_{lab} is greater than U_{cispr} of Table 1, then:

 —compliance is deemed to occur if no measured disturbance level, increased by ($U_{\text{lab}} U_{\text{cispr}}$), exceeds the disturbance limit:
- -non compliance is deemed to occur if any measured disturbance level, increased by (U_{lab} - U_{cispr}), exceeds the disturbance limit.

Based on CISPR 16-4-2:2011, measurement uncertainty of conducted disturbance at mains port using AMN at Bay Area Compliance Laboratories Corp. (Chengdu) is ±3.17 dB (150 kHz to 30 MHz).

Table 1 – Values of U_{cispr}

Measurement	U_{cispr}
Conducted disturbance at mains port using AMN (150 kHz to 30 MHz)	3.4 dB

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

Report No.: RSC170125002C Page 11 of 66 Bay Area Compliance Laboratories Corp. (Chengdu)

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The EUT was connected to a 120 V/60 Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the EUT was connected to the outlet of the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$

Herein,

V_C: corrected voltage amplitude V_R: reading voltage amplitude A_c: attenuation caused by cable loss

VDF: voltage division factor of AMN or ISN

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description Model		Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS 30	836858/0016	2016-12-02	2017-12-01
Rohde & Schwarz	L.I.S.N.	ENV216	100018	2016-12-02	2017-12-01
Rohde & Schwarz	PULSE LIMITER	ESH3Z2	DE14781	2016-10-31	2017-10-30
N/A	Conducted Cable	NO.5	N/A	2016-11-10	2017-11-09
R&S	Test Software	EMC32	Version8.53.0	N/A	N/A

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	20 °C
Relative Humidity:	52 %
ATM Pressure:	95.4 kPa

The testing was performed by Tom Tang on 2017-02-06.

Report No.: RSC170125002C Page 13 of 66

Test Mode: Transmitting
AC120 V, 60 Hz, Line:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.560037	44.8	9.000	L1	19.6	11.2	56.0
0.662266	49.4	9.000	L1	19.6	6.6	56.0
1.733235	41.0	9.000	L1	19.7	15.0	56.0
25.144620	44.0	9.000	L1	20.0	16.0	60.0
26.064446	42.5	9.000	L1	20.0	17.5	60.0
27.672869	39.2	9.000	L1	20.1	20.8	60.0

Frequency (MHz)	Average (dΒμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.659628	37.4	9.000	L1	19.6	8.6	46.0
20.759977	36.1	9.000	L1	20.0	13.9	50.0
24.451702	37.2	9.000	L1	20.0	12.8	50.0
25.144620	37.7	9.000	L1	20.0	12.3	50.0
26.064446	35.4	9.000	L1	20.0	14.6	50.0
27.672869	29.9	9.000	L1	20.1	20.1	50.0

Report No.: RSC170125002C Page 14 of 66

AC120 V, 60 Hz, Neutral:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.560037	45.2	9.000	N	19.7	10.8	56.0
0.654382	49.5	9.000	N	19.7	6.5	56.0
0.749511	40.5	9.000	N	19.7	15.5	56.0
24.354285	46.0	9.000	N	20.2	14.0	60.0
25.044443	47.0	9.000	N	20.2	13.0	60.0
26.910279	41.3	9.000	N	20.2	18.7	60.0

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.664915	37.6	9.000	N	19.7	8.4	46.0
18.788151	37.2	9.000	N	20.0	12.8	50.0
19.710090	41.2	9.000	N	20.0	8.8	50.0
19.947558	38.9	9.000	N	20.0	11.1	50.0
24.354285	40.3	9.000	N	20.2	9.7	50.0
25.044443	43.1	9.000	N	20.2	6.9	50.0

Report No.: RSC170125002C Page 15 of 66

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to U_{cispr} of Table 1, then:

-compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
 -non - compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

If U_{lab} is greater than U_{cispr} of Table 1, then:

–compliance is deemed to occur if no measured disturbance level, increased by $(U_{lab} - U_{cispr})$, exceeds the disturbance limit;

-non - compliance is deemed to occur if any measured disturbance level, increased by (U_{lab} - U_{cispr}), exceeds the disturbance limit.

Based on CISPR 16-4-2-2011, measurement uncertainty of radiated emission at a distance of 3m at Bay Area Compliance Laboratories Corp. (Chengdu) is:

30M~200MHz: ±4.7 dB; 200M~1GHz: ±6.0 dB; 1G~6GHz: ±5.13 dB; 6G~25GHz: ±5.47 dB;

Table 1 – Values of U_{cispr}

Measurement	U cispr
Radiated disturbance (electric field strength at an OATS or in a SAC) (30 MHz to 1000 MHz)	6.3 dB
Radiated disturbance (electric field strength in a FAR) (1 GHz to 6 GHz)	5.2 dB
Radiated disturbance (electric field strength in a FAR) (6 GHz to 18 GHz)	5.5 dB

Report No.: RSC170125002C Page 16 of 66

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The EUT was connected to a 120 V/60 Hz AC power source.

Report No.: RSC170125002C Page 17 of 66

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	1	PK
Above 1 GHZ	1MHz	10 Hz	1	AV

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz - 1 GHz, peak and average detection modes for frequencies above 1 GHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Amplifier	8447D	2944A10442	2016-12-02	2017-12-01
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2016-12-02	2017-12-01
Sunol Sciences	Broadband Antenna	JB3	A121808	2016-04-10	2019-04-09
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2016-12-02	2017-12-01
ETS	Horn Antenna	3115	003-6076	2016-12-02	2017-12-01
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726- 0113024	2014-06-16	2017-06-15
Mini-circuits	Amplifier	ZVA-183-S+	771001215	2016-05-20	2017-05-19
HP	Amplifier	8449B	3008A00277	2016-12-02	2017-12-01
INMET	Attenuator	N-6dB	1	2016-11-10	2017-11-09
EMCT	Semi-Anechoic Chamber	966	N/A	2015-04-24	2018-04-23
N/A	RF Cable (below 1GHz)	NO.1	N/A	2016-11-10	2017-11-09
N/A	RF Cable (below 1GHz)	NO.4	N/A	2016-11-10	2017-11-09
N/A	RF Cable (above 1GHz)	NO.2	N/A	2016-11-10	2017-11-09

^{*} Statement of Traceability: BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: RSC170125002C Page 18 of 66

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Data

Environmental Conditions

Temperature:	20 °C
Relative Humidity:	60 %
ATM Pressure:	94.9 kPa

^{*} The testing was performed by Tom Tang on 2017-02-07.

Test Mode: Transmitting

Report No.: RSC170125002C Page 19 of 66

1) 30 MHz to 1 GHz:

Frequency (MHz)	Quasi Peak (dBµV/m)	Polarization	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
49.885000	33.9	V	-12.6	6.1	40.0
85.775000	30.1	V	-12.8	9.9	40.0
86.138750	30.7	V	-12.8	9.3	40.0
250.068750	37.9	Н	-7.5	8.1	46.0
300.023750	38.5	Н	-5.5	7.5	46.0
337.490000	38.4	Н	-4.9	7.6	46.0

Report No.: RSC170125002C Page 20 of 66

1GHz-25GHz:

BDR Mode (GFSK):

Eroguenov	Red	ceiver	Rx Ar	ntenna	Cable	Amplifier	Corrected	Limit	Morgin		
Frequency	Reading	Detector	Polar	Factor	loss	Gain	Amplitude	Limit	Margin		
MHz	dΒμV	PK/QP/AV	H/V	dB(1/m)	dB	dB	dBμV/m	dBµV/m	dB		
2402 MHz											
2402	66.51	PK	Н	23.53	3.00	0.00	93.04	N/A	N/A		
2402	49.87	AV	Н	23.53	3.00	0.00	76.40	N/A	N/A		
2402	68.15	PK	V	23.53	3.00	0.00	94.68	N/A	N/A		
2402	51.51	AV	V	23.53	3.00	0.00	78.04	N/A	N/A		
2390	29.78	PK	V	23.57	3.00	0.00	56.35	74.00	17.65		
2390	17.16	AV	V	23.57	3.00	0.00	43.73	54.00	10.27		
4804	42.72	PK	V	30.77	5.12	26.87	51.74	74.00	22.26		
4804	31.54	AV	V	30.77	5.12	26.87	40.56	54.00	13.44		
7206	32.85	PK	V	34.71	6.16	26.35	47.37	74.00	26.63		
7206	17.31	AV	V	34.71	6.16	26.35	31.83	54.00	22.17		
				2441 M	lHz	T					
2441	64.50	PK	Н	23.40	3.00	0.00	90.90	N/A	N/A		
2441	48.12	AV	Н	23.40	3.00	0.00	74.52	N/A	N/A		
2441	66.51	PK	V	23.40	3.00	0.00	92.91	N/A	N/A		
2441	49.31	AV	V	23.40	3.00	0.00	75.71	N/A	N/A		
4882	42.63	PK	V	31.02	5.09	26.87	51.87	74.00	22.13		
4882	31.59	AV	V	31.02	5.09	26.87	40.83	54.00	13.17		
7323	32.58	PK	V	34.95	6.22	26.40	47.35	74.00	26.65		
7323	17.43	AV	V	34.95	6.22	26.40	32.20	54.00	21.80		
		<u> </u>		2480 M		i		i	1		
2480	62.63	PK	Н	23.27	2.99	0.00	88.89	N/A	N/A		
2480	45.94	AV	Н	23.27	2.99	0.00	72.20	N/A	N/A		
2480	64.41	PK	V	23.27	2.99	0.00	90.67	N/A	N/A		
2480	47.32	AV	V	23.27	2.99	0.00	73.58	N/A	N/A		
2483.5	30.64	PK	V	23.26	2.99	0.00	56.89	74.00	17.11		
2483.5	16.41	AV	V	23.26	2.99	0.00	42.66	54.00	11.34		
4960	42.13	PK	V	31.27	5.05	26.88	51.57	74.00	22.43		
4960	31.89	AV	V	31.27	5.05	26.88	41.33	54.00	12.67		
7440	32.43	PK	V	35.18	6.27	26.45	47.43	74.00	26.57		
7440	17.34	AV	V	35.18	6.27	26.45	32.34	54.00	21.66		

Report No.: RSC170125002C Page 21 of 66

EDR Mode ($\pi/4$ -DQPSK):

Evanuanav	Red	eiver	Rx Ar	ntenna	Cable	Amplifier	Corrected	Limais	Morgin		
Frequency	Reading	Detector	Polar	Factor	loss	Gain	Amplitude	Limit	Margin		
MHz	dΒμV	PK/QP/AV	H/V	dB(1/m)	dB	dB	dBμV/m	dBμV/m	dB		
2402 MHz											
2402	65.80	PK	Н	23.53	3.00	0.00	92.33	N/A	N/A		
2402	46.59	AV	Н	23.53	3.00	0.00	73.12	N/A	N/A		
2402	66.37	PK	V	23.53	3.00	0.00	92.90	N/A	N/A		
2402	46.78	AV	V	23.53	3.00	0.00	73.31	N/A	N/A		
2390	30.95	PK	V	23.57	3.00	0.00	57.52	74.00	16.48		
2390	17.22	AV	V	23.57	3.00	0.00	43.79	54.00	10.21		
4804	42.00	PK	V	30.77	5.12	26.87	51.02	74.00	22.98		
4804	31.80	AV	V	30.77	5.12	26.87	40.82	54.00	13.18		
7206	32.53	PK	V	34.71	6.16	26.35	47.05	74.00	26.95		
7206	17.38	AV	V	34.71	6.16	26.35	31.90	54.00	22.10		
				2441 M	Hz						
2441	63.45	PK	Н	23.40	3.00	0.00	89.85	N/A	N/A		
2441	45.13	AV	Н	23.40	3.00	0.00	71.53	N/A	N/A		
2441	64.82	PK	V	23.40	3.00	0.00	91.22	N/A	N/A		
2441	46.13	AV	V	23.40	3.00	0.00	72.53	N/A	N/A		
4882	40.28	PK	V	31.02	5.09	26.87	49.52	74.00	24.48		
4882	27.56	AV	V	31.02	5.09	26.87	36.80	54.00	17.20		
7323	32.20	PK	V	34.95	6.22	26.40	46.97	74.00	27.03		
7323	17.42	AV	V	34.95	6.22	26.40	32.19	54.00	21.81		
	T			2480 M	Hz	T		T			
2480	61.25	PK	Н	23.27	2.99	0.00	87.51	N/A	N/A		
2480	43.91	AV	Н	23.27	2.99	0.00	70.17	N/A	N/A		
2480	62.69	PK	V	23.27	2.99	0.00	88.95	N/A	N/A		
2480	45.30	AV	V	23.27	2.99	0.00	71.56	N/A	N/A		
2483.5	31.74	PK	V	23.26	2.99	0.00	57.99	74.00	16.01		
2483.5	15.41	AV	V	23.26	2.99	0.00	41.66	54.00	12.34		
4960	38.55	PK	V	31.27	5.05	26.88	47.99	74.00	26.01		
4960	23.89	AV	V	31.27	5.05	26.88	33.33	54.00	20.67		
7440	32.21	PK	V	35.18	6.27	26.45	47.21	74.00	26.79		
7440	17.35	AV	V	35.18	6.27	26.45	32.35	54.00	21.65		

Report No.: RSC170125002C Page 22 of 66

EDR Mode (8-DPSK):

Evanuanav	Red	eiver	Rx Ar	ntenna	Cable	Amplifier	Corrected	Limais	Morain		
Frequency	Reading	Detector	Polar	Factor	loss	Gain	Amplitude	Limit	Margin		
MHz	dΒμV	PK/QP/AV	H/V	dB(1/m)	dB	dB	dBμV/m	dBµV/m	dB		
2402 MHz											
2402	64.91	PK	Н	23.53	3.00	0.00	91.44	N/A	N/A		
2402	46.64	AV	Н	23.53	3.00	0.00	73.17	N/A	N/A		
2402	66.60	PK	>	23.53	3.00	0.00	93.13	N/A	N/A		
2402	48.16	AV	V	23.53	3.00	0.00	74.69	N/A	N/A		
2390	30.50	PK	V	23.57	3.00	0.00	57.07	74.00	16.93		
2390	17.26	AV	V	23.57	3	0.00	43.83	54.00	10.17		
4804	42.49	PK	V	30.77	5.12	26.87	51.51	74.00	22.49		
4804	31.54	AV	V	30.77	5.12	26.87	40.56	54.00	13.44		
7206	32.01	PK	V	34.71	6.16	26.35	46.53	74.00	27.47		
7206	17.36	AV	V	34.71	6.16	26.35	31.88	54.00	22.12		
				2441 M	Hz						
2441	63.86	PK	Н	23.40	3.00	0.00	90.26	N/A	N/A		
2441	45.52	AV	Н	23.40	3.00	0.00	71.92	N/A	N/A		
2441	65.13	PK	V	23.40	3.00	0.00	91.53	N/A	N/A		
2441	46.31	AV	V	23.40	3.00	0.00	72.71	N/A	N/A		
4882	39.21	PK	V	31.02	5.09	26.87	48.45	74.00	25.55		
4882	25.41	AV	V	31.02	5.09	26.87	34.65	54.00	19.35		
7323	32.53	PK	V	34.95	6.22	26.40	47.30	74.00	26.70		
7323	17.53	AV	>	34.95	6.22	26.40	32.30	54.00	21.70		
	T			2480 M	Hz	T	T	T			
2480	62.17	PK	Н	23.27	2.99	0.00	88.43	N/A	N/A		
2480	43.91	AV	Н	23.27	2.99	0.00	70.17	N/A	N/A		
2480	62.76	PK	V	23.27	2.99	0.00	89.02	N/A	N/A		
2480	45.41	AV	V	23.27	2.99	0.00	71.67	N/A	N/A		
2483.5	32.54	PK	V	23.26	2.99	0.00	58.79	74.00	15.21		
2483.5	17.41	AV	V	23.26	2.99	0.00	43.66	54.00	10.34		
4960	35.01	PK	V	31.27	5.05	26.88	44.45	74.00	29.55		
4960	19.50	AV	V	31.27	5.05	26.88	28.94	54.00	25.06		
7440	32.88	PK	V	35.18	6.27	26.45	47.88	74.00	26.12		
7440	17.47	AV	V	35.18	6.27	26.45	32.47	54.00	21.53		

Report No.: RSC170125002C Page 23 of 66

FCC §15.247(A) (1) - CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.50 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2016-12-02	2017-12-01
WEINSCHEL ENGINEERING	Attenuator	1A10dB	AA4135	2016-11-10	2017-11-09
N/A	RF Cable	N/A	N/A	Each Time	1

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

- 1. Set the EUT in transmitting mode, spectrum Bandwidth was set at 30 kHz, maxhold the channel.
- 2. Set the adjacent channel of the EUT maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	21 °C
Relative Humidity:	48 %
ATM Pressure:	96.2 kPa

^{*} The testing was performed by Tom Tang on 2017-01-22.

Test Result: Compliance.

Please refer to following tables and plots.

Report No.: RSC170125002C Page 24 of 66

Test Mode: Transmitting

Mode	Channel	Frequency Channel Separation		Limit	
		MHz	MHz	MHz	
	Low	2402	1.004	0.70	
BDR (GFSK)	Middle	2441	1.004	0.69	
(GFSK)	High	2480	1.000	0.70	
EDD	Low	2402	1.000	0.83	
EDR (π/4-DQPSK)	Middle	2441	1.000	0.81	
(11/4-DQF3K)	High	2480	1.000	0.82	
EDR (8DPSK)	Low	2402	1.000	0.79	
	Middle	2441	1.000	0.79	
	High	2480	1.000	0.79	

Note: Limit= (2/3) × 20dB bandwidth

BDR Mode (GFSK):

Low Channel

Date: 22.JAN.2017 15:06:05

Report No.: RSC170125002C Page 25 of 66

Middle Channel

Date: 22.JAN.2017 15:04:53

High Channel

Date: 22.JAN.2017 15:03:26

EDR Mode ($\pi/4$ -DQPSK):

Low Channel

Date: 22.JAN.2017 15:19:34

Middle Channel

Date: 22.JAN.2017 15:20:26

High Channel

Date: 22.JAN.2017 15:21:08

EDR Mode (8-DPSK):

Low Channel

Date: 22.JAN.2017 15:18:39

Report No.: RSC170125002C Page 28 of 66

Middle Channel

Date: 22.JAN.2017 15:18:01

High Channel

Date: 22.JAN.2017 15:17:09

FCC §15.247(a) (1) – 20 dB BANDWIDTH TESTING

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2016-12-02	2017-12-01
WEINSCHEL ENGINEERING	Attenuator	1A10dB	AA4135	2016-11-10	2017-11-09
N/A	RF Cable	N/A	N/A	Each Time	1

^{*} Statement of Traceability: BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	21 °C
Relative Humidity:	48 %
ATM Pressure:	96.2 kPa

^{*} The testing was performed by Tom Tang on 2017-01-22.

Test Result: Compliance.

Please refer to following tables and plots

Report No.: RSC170125002C Page 30 of 66

Test Mode: Transmitting

Mode	Channel	Frequency (MHz)	20 dB Bandwidth (MHz)	
BDR Mode (GFSK)	Low	2402	1.05	
	Middle	2441	1.04	
	High	2480	1.05	
EDR Mode (π/4-DQPSK)	Low	2402	1.24	
	Middle	2441	1.22	
	High	2480	1.23	
EDR Mode (8-DPSK)	Low	2402	1.19	
	Middle	2441	1.19	
	High	2480	1.19	

BDR Mode (GFSK):

Low Channel

Date: 22.JAN.2017 14:39:22

Report No.: RSC170125002C Page 31 of 66

Middle Channel

Date: 22.JAN.2017 14:58:57

High Channel

Date: 22.JAN.2017 15:00:23

EDR Mode ($\pi/4$ -DQPSK):

Low Channel

Date: 22.JAN.2017 15:07:56

Middle Channel

Date: 22.JAN.2017 15:10:33

High Channel *RBW 30 kHz

Date: 22.JAN.2017 15:11:45

EDR Mode (8-DPSK):

Low Channel

Date: 22.JAN.2017 15:13:14

Report No.: RSC170125002C Page 34 of 66

Middle Channel

Date: 22.JAN.2017 15:14:39

High Channel

Date: 22.JAN.2017 15:15:30

FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2016-12-02	2017-12-01
WEINSCHEL ENGINEERING	Attenuator	1A10dB	AA4135	2016-11-10	2017-11-09
N/A	RF Cable	N/A	N/A	Each Time	1

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	21 °C
Relative Humidity:	48 %
ATM Pressure:	96.2 kPa

^{*} The testing was performed by Tom Tang on 2017-01-22.

Test Result: Compliance.

Please refer to following tables and plots.

Report No.: RSC170125002C Page 36 of 66

Bay Area Compliance Laboratories Corp. (Chengdu)

Test Mode: Transmitting

BDR Mode (GFSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Number of Hopping Channels

Date: 22.JAN.2017 13:40:31

EDR Mode ($\pi/4$ -DQPSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Number of Hopping Channels

Date: 22.JAN.2017 13:44:33

Report No.: RSC170125002C Page 38 of 66

EDR Mode (8-DPSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Number of Hopping Channels

Date: 22.JAN.2017 15:29:28

Report No.: RSC170125002C Page 39 of 66

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

The EUT was worked in hopping mode, Spectrum Analyzer SPAN was set as 0, the time of single pulse was tested.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2016-12-02	2017-12-01
WEINSCHEL ENGINEERING	Attenuator	1A10dB	AA4135	2016-11-10	2017-11-09
N/A	RF Cable	N/A	N/A	Each Time	1

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	21 °C
Relative Humidity:	48 %
ATM Pressure:	96.2 kPa

^{*} The testing was performed by Tom Tang on 2017-01-22.

Test Result: Compliance.

Please refer to following tables and plots

Report No.: RSC170125002C Page 40 of 66

Test Mode: Transmitting

BDR Mode (GFSK):

Mode	Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result				
	Low	0.432	0.138	0.4	Compliance				
DH1	Middle	0.432	0.138	0.4	Compliance				
DIII	High	0.432	0.138	0.4	Compliance				
	Note: Dwell time	e=Pulse time ((ms) × (1600	0/2/79) ×3	31.6 s				
	Low	1.702	0.272	0.4	Compliance				
DH3	Middle	1.702	0.272	0.4	Compliance				
Diis	High	1.702	0.272	0.4	Compliance				
	Note: Dwell time	e=Pulse time	(ms) × (160	0/4/79) ×3	31.6 s				
	Low	2.950	0.315	0.4	Compliance				
DH5	Middle	2.950	0.315	0.4	Compliance				
Diis	High	2.950	0.315	0.4	Compliance				
	Note: Dwell time	e=Pulse time	(ms) × (160	0/6/7 9) ×3	Note: Dwell time=Pulse time (ms) × (1600/6/79) ×31.6 s				

DH1: Low Channel

Date: 22.JAN.2017 15:30:53

DH1: Middle Channel

Date: 22.JAN.2017 15:34:06

DH1: High Channel

Date: 22.JAN.2017 15:35:23

Page 42 of 66

DH3: Low Channel

Date: 22.JAN.2017 15:38:06

DH3: Middle Channel

Date: 22.JAN.2017 15:40:10

DH3: High Channel

Date: 22.JAN.2017 15:41:53

DH5: Low Channel

Date: 22.JAN.2017 15:44:44

DH5: Middle Channel

Date: 22.JAN.2017 15:45:55

DH5: High Channel

Date: 22.JAN.2017 15:47:09

EDR Mode ($\pi/4$ -DQPSK):

Mode	Mode Channel		Dwell Time (s)	Limit (s)	Result	
	Low	0.436	0.140	0.4	Compliance	
2DH1	Middle	0.436	0.140	0.4	Compliance	
20111	High	0.436	0.140	0.4	Compliance	
	Note: Dwell time	e=Pulse time	(ms) × (160	0/2/79)×	31.6 s	
	Low	1.706	0.273	0.4	Compliance	
2DH3	Middle	1.706	0.273	0.4	Compliance	
20113	High	1.706	0.273	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) × (1600/4/79) ×31.6 s					
2DH5	Low	2.960	0.316	0.4	Compliance	
	Middle	2.960	0.316	0.4	Compliance	
	High	2.960	0.316	0.4	Compliance	
	Note: Dwell time	Note: Dwell time=Pulse time (ms) × (1600/6/79) ×31.6 s				

2DH1: Low Channel

Date: 22.JAN.2017 15:49:29

Report No.: RSC170125002C Page 46 of 66

2DH1: Middle Channel

Date: 22.JAN.2017 15:50:30

2DH1: High Channel

Date: 22.JAN.2017 15:51:17

2DH3: Low Channel

Date: 22.JAN.2017 15:53:08

2DH3: Middle Channel

Date: 22.JAN.2017 15:54:01

2DH3: High Channel

Date: 22.JAN.2017 15:55:14

2DH5: Low Channel

Date: 22.JAN.2017 15:57:42

2DH5: Middle Channel

Date: 22.JAN.2017 15:58:35

2DH5: High Channel

Date: 22.JAN.2017 15:59:22

EDR Mode (8-DPSK):

Mode	Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result	
	Low	0.436	0.140	0.4	Compliance	
3DH1	Middle	0.436	0.140	0.4	Compliance	
30Π1	High	0.436	0.140	0.4	Compliance	
	Note: Dwell time	e=Pulse time (ms) × (1600	/2/79) ×3	1.6 s	
	Low	1.704	0.273	0.4	Compliance	
3DH3	Middle	1.704	0.273	0.4	Compliance	
3 <i>บ</i> ท3	High	1.704	0.273	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) × (1600/4/79) ×31.6 s					
	Low	2.960	0.316	0.4	Compliance	
3DH5	Middle	2.960	0.316	0.4	Compliance	
<i>งบ</i> ทจ	High	2.960	0.316	0.4	Compliance	
	Note: Dwell time	e=Pulse time ((ms) × (1600)/6/79) ×3	1.6 s	

3DH1: Low Channel

Date: 22.JAN.2017 16:01:26

Report No.: RSC170125002C Page 51 of 66

3DH1: Middle Channel

Date: 22.JAN.2017 16:02:13

3DH1: High Channel

Date: 22.JAN.2017 16:03:11

3DH3: Low Channel

Date: 22.JAN.2017 16:05:10

3DH3: Middle Channel

Date: 22.JAN.2017 16:06:14

3DH3: High Channel

Date: 22.JAN.2017 16:07:49

3DH5: Low Channel

Date: 22.JAN.2017 16:10:22

3DH5: Middle Channel

Date: 22.JAN.2017 16:11:11

3DH5: High Channel

Date: 22.JAN.2017 16:12:26

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2016-12-02	2017-12-01
WEINSCHEL ENGINEERING	Attenuator	1A10dB	AA4135	2016-11-10	2017-11-09
N/A	RF Cable	N/A	N/A	Each Time	1

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	21 °C
Relative Humidity:	48 %
ATM Pressure:	96.2 kPa

^{*} The testing was performed by Tom Tang on 2017-01-22.

Test Result: Compliance.

Please refer to following tables and plots

Report No.: RSC170125002C Page 56 of 66

Test Mode: Transmitting

Mode	Channel	Frequency (MHz)	Peak Output power (dBm)	Limit (dBm)
	Low	2402	8.21	30
BDR Mode (GFSK)	Middle	2441	7.69	30
	High	2480	6.65	30
	Low	2402	7.32	30
EDR Mode (π/4-DQPSK)	Middle	2441	6.74	30
(11/4-DQF3R)	High	2480	5.40	30
500 M	Low	2402	7.35	30
EDR Mode (8-DPSK)	Middle	2441	6.77	30
	High	2480	5.40	30

Note: The data above was tested in conducted mode.

BDR Mode (GFSK):

Low Channel

Date: 22.JAN.2017 14:39:46

Report No.: RSC170125002C Page 57 of 66

Middle Channel

Date: 22.JAN.2017 14:59:21

High Channel

Date: 22.JAN.2017 15:00:47

EDR Mode ($\pi/4$ -DQPSK):

Low Channel

Date: 22.JAN.2017 15:08:20

Middle Channel

Date: 22.JAN.2017 15:10:56

High Channel

Date: 22.JAN.2017 15:12:06

EDR Mode (8-DPSK):

Low Channel

Date: 22.JAN.2017 15:13:36

Report No.: RSC170125002C Page 60 of 66

Middle Channel

Date: 22.JAN.2017 15:15:01

High Channel

Date: 22.JAN.2017 15:15:53

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW=100 kHz; VBW=300 kHz.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2016-12-02	2017-12-01
WEINSCHEL ENGINEERING	Attenuator	1A10dB	AA4135	2016-11-10	2017-11-09
N/A	RF Cable	N/A	N/A	Each Time	1

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: RSC170125002C Page 62 of 66

Test Data

Environmental Conditions

Temperature:	21 °C
Relative Humidity:	48 %
ATM Pressure:	96.2 kPa

^{*} The testing was performed by Tom Tang on 2017-01-22.

Test Result: Compliance

BDR Mode (GFSK):

Band Edge, Left Side

Date: 22.JAN.2017 14:40:27

Report No.: RSC170125002C Page 63 of 66

Band Edge, Right Side

Date: 22.JAN.2017 15:01:09

EDR Mode ($\pi/4$ -DQPSK):

Band Edge, Left Side

Date: 22.JAN.2017 15:08:35

Report No.: RSC170125002C Page 64 of 66

Band Edge, Right Side

Date: 22.JAN.2017 15:12:28

EDR Mode (8-DPSK):

Band Edge, Left Side

Date: 22.JAN.2017 15:14:05

Report No.: RSC170125002C Page 65 of 66

Band Edge, Right Side

Date: 22.JAN.2017 15:16:17

***** END OF REPORT *****

Report No.: RSC170125002C Page 66 of 66