1

GATE ECE 2023

Karyampudi Meghana Sai EE23BTECH11031

Consider a discrete-time signal with period N=5. Let the discrete-time Fourier series (DTFS) representation be $x[n]=\sum\limits_{k=0}^4 a_k e^{\frac{jk2\pi n}{5}}$, where $a_0=1$, $a_1=3j$, $a_2=2j$, $a_3=-2j$, $a_4=-3j$. The value of the sum $\sum\limits_{n=0}^4 x[n]\sin\left(\frac{4\pi n}{5}\right)$ is

Solution:

1) Solving the question for N=5:

Parameter	Value	Description
N	5	Time period
X(k)	$\sum_{n=0}^{N-1} x(n)e^{\frac{-j2\pi kn}{N}}$	DFT formula
X(0)	5	
X(1)	15 <i>j</i>	DFT
X(2)	10 <i>j</i>	values
X(3)	-10 <i>j</i>	values
X(4)	-15j	

TABLE I Input Parameters

$$\sum_{n=0}^{4} x(n) \sin\left(\frac{4\pi n}{5}\right) = \sum_{n=0}^{4} x(n) \left[\frac{e^{\frac{j4\pi n}{5}} - e^{\frac{-j4\pi n}{5}}}{2j} \right]$$
 (1)

$$=\frac{1}{2j}\left[\sum_{n=0}^{4}x(n)e^{\frac{j2\pi(2)n}{5}}-\sum_{n=0}^{4}x(n)e^{\frac{-j2\pi(2)n}{5}}\right]$$
(2)

Refering to the table I.

$$X(k) = \sum_{n=0}^{4} x(n)e^{\frac{-j2\pi kn}{5}}$$
 (3)

Referencing from equation (3), equation (2) can be written as:

$$\sum_{n=0}^{4} x(n) \sin\left(\frac{4\pi n}{5}\right) = \frac{1}{2j} \left[X(-2) - X(2)\right] \tag{4}$$

From the property of discrete Fourier series.

$$X(k) = X(k+N) \tag{5}$$

So, equation (4) becomes,

$$\sum_{n=0}^{4} x(n) \sin\left(\frac{4\pi n}{5}\right) = \frac{1}{2j} \left[X(3) - X(2)\right] \tag{6}$$

$$\sum_{n=0}^{4} x(n) \sin\left(\frac{4\pi n}{5}\right) = -10\tag{7}$$

Fig. 1. Amplitude of equation (3)

2) Solving the question for N=8:

$$\sum_{n=0}^{7} x(n) \sin\left(\frac{4\pi n}{8}\right) = \sum_{n=0}^{7} x(n) \left[\frac{e^{\frac{j4\pi n}{8}} - e^{\frac{-j4\pi n}{8}}}{2j} \right]$$
 (8)

$$=\frac{1}{2j}\left[\sum_{n=0}^{7}x(n)e^{\frac{j2\pi(2)n}{8}}-\sum_{n=0}^{7}x(n)e^{\frac{-j2\pi(2)n}{8}}\right]$$
(9)

Refering to the table II.

$$X(k) = \sum_{n=0}^{7} x(n)e^{\frac{-j2\pi kn}{8}}$$
 (10)

Fig. 2. Phase of equation (3)

Parameter	Value	Description
N	8	Time period
X(k)	$\sum_{n=0}^{N-1} x(n)e^{\frac{-j2\pi kn}{N}}$	DFT formula
X(0)	8	
X(1)	24 <i>j</i>	DFT
X(2)	16 <i>j</i>	values
X(3)	-16 <i>j</i>	values
X(4)	-24j	
X(5)	0	
<i>X</i> (6)	0	
X(7)	0	

TABLE II Input Parameters

Referencing from equation(10), equation(9) can be written as:

$$\sum_{n=0}^{7} x(n) \sin\left(\frac{4\pi n}{8}\right) = \frac{1}{2j} \left[X(-2) - X(2)\right]$$
 (11)

From the property of discrete Fourier series.

$$X(k) = X(k+N) \tag{12}$$

So, equation(11) becomes,

$$\sum_{n=0}^{7} x(n) \sin\left(\frac{4\pi n}{8}\right) = \frac{1}{2j} \left[X(6) - X(2)\right]$$

$$\sum_{n=0}^{7} x(n) \sin\left(\frac{4\pi n}{8}\right) = -8$$
(13)

$$\sum_{n=0}^{7} x(n) \sin\left(\frac{4\pi n}{8}\right) = -8 \tag{14}$$

Fig. 3. Amplitude of equation (10)

Fig. 4. Phase of equation (10)