7 – Análise de Sensibilidade

- Seja um PPL na forma padrão: min { z(x) = cx | Ax = b, x ≥ 0 }. Em problemas reais, os coeficientes de A, b e c são estimados a partir de considerações práticas e podem vir a ser alterados depois que uma solução viável ótima tenha sido obtida para o problema. A análise de sensibilidade (ou análise de pós-otimalidade) trata com o problema de obter uma solução viável ótima do problema modificado, a partir da solução viável ótima do problema original.
- A análise de sensibilidade pode ser usada em várias situações práticas, tais como:
 - analisar alterações nas variáveis do problema (avaliar novos produtos);
 - analisar alterações na matriz A de coeficientes tecnológicos (avaliar o impacto de novas tecnologias ou processos de fabricação);
 - analisar alterações no vetor b (avaliar o impacto de novos recursos);
 - analisar alterações no vetor de coeficientes de custo c (determinar o preço de equilíbrio de um produto).
- Dessa maneira, um modelo de PL, além de determinar a solução ótima de um problema, torna-se uma ferramenta de planejamento.

Para ilustrar essas situações, vamos considerar o seguinte problema:

X_1	X_2	X_3	X_4	X ₅	X ₆	b
1	2	0	1	0	-6	11
0	1	1	3	-2	-1	6
1	2	1	3	0 -2 -1	-5	13
3	2	-3	-6	10	-5	0

Resolvendo este problema pelo método revisado, obtemos a seguinte tabela inversa final:

VB
 T
 b'

$$x_1$$
 -1
 -2
 2
 3

 x_2
 1
 1
 -1
 4
 $x' = (3, 4, 2, 0, 0, 0)^T$ é uma solução viável ótima e $z^* = 11$.

 -z
 -2
 4
 -1
 -11
 Seja B' a base ótima.

 Vamos considerar diversas modificações neste problema, de modo a contemplar as situações práticas listadas anteriormente.

Inclusão de uma nova variável

- Vamos supor que a variável x_{n+1} foi incluída no modelo. Seja $X^T = (x^T, x_{n+1})$. A base ótima B' continua viável para o novo problema, pois $X^{T} = (x^{T}, 0)$ é solução viável para o problema aumentado.
- Pelo critério de otimalidade, X'^T continua sendo uma solução viável ótima se o custo relativo da nova variável x_{n+1} em relação à base B' for não-negativo, ou seia:

$$C'_{n+1} = C_{n+1} + (-\pi)A_{n+1} \ge 0.$$

Caso contrário, ou seja, se $c'_{n+1} < 0$, pode-se usar a tabela inversa correspondente à base B' e resolver o problema pelo método simplex revisado (notar que, neste caso, a nova variável deve entrar na base).

Exemplo:

Considere a inclusão da variável x_7 com $A_{.7} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$ e $c_7 = -7$. O custo relativo de x_7 com relação a B' será:

$$c'_7 = c_7 + (-\pi)A_{.7} = -7 + (-2 \quad 4 \quad -1)\begin{pmatrix} 1\\2\\-3 \end{pmatrix} = 2$$

Portanto, a solução ótima anterior continua ótima e a solução viável ótima para o novo problema é X' = $(3, 4, 2, 0, 0, 0, 0)^T$, com z* = 11.

Outro exemplo:

Seja a inclusão da variável x_7 com $A_{.7} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$ e $c_7 = 4$. Neste caso, temos:

$$c'_7 = 4 + (-2 \quad 4 \quad -1)\begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = -7$$

logo, a nova variável deve entrar na base. Os novos coeficientes relativos à coluna de x₇ serão:

$$A' \cdot 7 = B'^{-1} A \cdot 7 = \begin{pmatrix} -1 & -2 & 2 \\ 1 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$

Para determinar a variável que deve sair da base, devemos calcular a razão mínima:

VB		Т		b'	Α'	θ		
$\overline{x_1}$	-1	-2	2	3	1	3/1 = 3		Logo, a variável x_1 deve sair da base.
\mathbf{x}_2	1	1	-1	4	1	4/1 = 4		deve san da base.
X ₃	-1	0	1	2	-2		_	
-Z	-2	4	-1	-11	-7		_	

Efetuando as operações de pivotamento, teremos:

Para verificar se a base atual é ótima devemos calcular os custos relativos das variáveis não-básicas em relação à base atual:

$$c'_{1} = 3 + (-9 - 10 \quad 13) \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 7$$

$$c'_{4} = -6 + (-9 - 10 \quad 13) \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix} = -6$$

$$c'_{5} = 10 + (-9 - 10 \quad 13) \begin{pmatrix} 0 \\ -2 \\ -1 \end{pmatrix} = 17$$

$$c'_{6} = -5 + (-9 - 10 \quad 13) \begin{pmatrix} -6 \\ -1 \\ -5 \end{pmatrix} = -6$$

Logo, como existem variáveis com custo relativo negativo, a base atual não é ótima e a execução do algoritmo deve continuar.

Exercício: Completar a execução do algoritmo.

Inclusão de uma nova restrição de desigualdade

Seja a nova restrição: A_{m+1}, x ≤ b_{m+1}
Seja K o conjunto de soluções viáveis do problema original. A inclusão dessa nova restrição fará com que alguns pontos de K sejam inviáveis para o novo problema.

 A_{m+1} , $x = b_{m+1}$ O novo conjunto de soluções viáveis (K') será menor do que K, ou seja, K' \subset K.

Seja x' uma solução ótima do problema original. Se $x' \in K'$ (ou seja, se x' satisfaz a nova restrição), x' é uma solução ótima para o novo problema.

Caso contrário (x' \notin K'), podemos definir uma nova variável x_{n+1} (variável de folga da nova restrição) como:

$$x_{n+1} = -A_{m+1}$$
, $x + b_{m+1}$

Neste caso, $x'_{n+1} = -A_{m+1}$, $x' + b_{m+1} < 0$, pois x' não satisfaz a nova restrição. Com esta nova variável, considere então o seguinte problema aumentado:

min
$$z(X) = \sum_{j=1}^{n} c_j x_j + 0x_{n+1}$$

s.a $\begin{pmatrix} A & 0 \\ A_{m+1}, & 1 \end{pmatrix} \begin{pmatrix} x \\ x_{n+1} \end{pmatrix} = \begin{pmatrix} b \\ b_{m+1} \end{pmatrix}$

- Seja B₁ uma base ótima do problema original e B₂ a base obtida de B₁ incluindo-se x_{n+1} no vetor de variáveis básicas. B_2 é uma base primal inviável para o problema aumentado, pois x' não satisfaz a nova restrição.
- Por outro lado, tem-se que $c_{n+1} = 0$ e, portanto, os custos relativos das demais variáveis com relação à base B₂ são os mesmos custos existentes com relação à base B₁ (pois não será necessária uma operação de "pricing out" para c_{n+1} , que já é nulo). Como B_1 é base ótima, esses custos relativos são todos não-negativos. Logo, os custos relativos referentes à base B₂ são todos não-negativos e, portanto, B₂ é uma base dual viável.
- Logo, partindo-se da base B₂ e utilizando o método dual simplex podemos resolver o problema aumentado. A base B₂ pode ser obtida facilmente a partir da tabela inversa final do problema original, fazendo:

$$B_2^{-1} = \begin{pmatrix} B_1^{-1} & 0 \\ -A_{m+1} & B_1^{-1} & 1 \end{pmatrix}$$
 coeficientes da linha m+1 referentes às variáveis básicas

Exemplo:

Seja $x_1 - x_2 + 3x_3 \le -7$ a nova restrição.

A solução ótima $x' = (3, 4, 2, 0, 0, 0)^T$ não satisfaz essa nova restrição.

Seja x_7 a variável de folga, ou seja, $x_7 = -x_1 + x_2 - 3x_3 - 7$.

Então, teremos:

$$B_{1}^{-1} = \begin{pmatrix} -1 & -2 & 2 \\ 1 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}$$

$$-A_{m+1}, B_{1}^{-1} = \begin{pmatrix} -1 & 1 & -3 \\ 1 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 3 & -6 \end{pmatrix}$$

$$x_{7} = -3 + 4 - 3(2) - 7 = -12$$

Logo, a tabela inversa para o problema aumentado será:

VB		b'			
x_1	-1	-2	2	0	3
\mathbf{X}_{2}	1	1	-1	0	4
X_3	-1	0	1	0	2
X ₇	5	3	-6	1	-12
-Z	-2	4	-1	0	-11

 Exercício: Aplicar o método dual simplex revisado para resolver o problema aumentado.

Pode-se mostrar que o problema de "incluir uma nova restrição de desigualdade" é o **dual** do problema de "incluir uma nova variável restrita em sinal"

Inclusão de uma nova restrição de igualdade

Seja a nova restrição: A_{m+1} , $x = b_{m+1}$ Neste caso, se a solução ótima x' do problema original satisfaz a nova restrição, ou seja, se A_{m+1} , $x' = b_{m+1}$ então x' é solução ótima do novo problema.

Caso contrário (ou seja, se A_{m+1} , $x' \neq b_{m+1}$), dois casos podem ocorrer.

• A_{m+1} , $x' > b_{m+1}$ Neste caso, podemos acrescentar ao problema original a seguinte restrição:

$$A_{m+1}$$
, $x - x_{n+1} = b_{m+1}$; $x_{n+1} \ge 0$

Seja, então, o seguinte problema aumentado, onde x_{n+1} é uma nova variável artificial:

$$\min \quad Z(X) = cx + Mx_{n+1}$$

s.a
$$\begin{pmatrix} A & 0 \\ A_{m+1}, & -1 \end{pmatrix} \begin{pmatrix} x \\ x_{n+1} \end{pmatrix} = \begin{pmatrix} b \\ b_{m+1} \end{pmatrix}$$
 positivo arbitrariamente grande e $X = (x x_{n+1})^T \ge 0$.

onde M é um número positivo arbitrariamente

Então, dada a solução ótima x' do problema original, $X = (x', x'_{n+1})^T$ com $x'_{n+1} = A_{m+1}$, $x' - b_{m+1}$ é SBV para o problema aumentado, que poderá ser resolvido pelo método do big-M.

Seja X' a solução ótima final do problema aumentado. Se nesta solução, $x'_{n+1} > 0$, então o novo problema (isto é, o problema original mais a nova restrição) será inviável. Do contrário ($x'_{n+1} = 0$), então x' é solução ótima do novo problema.

• A_{m+1} , $x' < b_{m+1}$ Neste caso, tem-se uma situação análoga ao caso anterior, bastando trocar o coeficiente de x_{n+1} de -1 para +1.

Exemplo:

Seja $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 12$ a nova restrição.

A solução ótima $x' = (3, 4, 2, 0, 0, 0)^T$ não satisfaz essa nova restrição.

A_{m+1},.x'=
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 = 9 < b_{m+1} = 12

Logo, a variável de folga será: $x_7 = b_{m+1} - A_{m+1}$, x' = 12 - 9 = 3 e, portanto, $X = (3, 4, 2, 0, 0, 0, 3)^T$ é SVB para o problema aumentado. Sabendo que (x_1, x_2, x_3) é um vetor básico ótimo para o problema original, podemos ter a seguinte tabela para o problema aumentado:

VB	x_1	X_2	X_3	X_4	X ₅	X_6	X ₇	b
X_1	1	2	0	1	0	-6	0	11
X_2	0	1	1	3	-2	-1	0	6
X ₃	1	2	1	3	-1	-5	0	13
X ₇	1	1	1	1	0 -2 -1 1	1	1	12
α	3	2	-3	-6	10	-5	0	0
β	0	0	0	0	0	0	1	0

Lembrar que, no método do big-M, os coeficientes de custo relativo são da forma α + β M.

• Efetuando as operações de pivotamento necessárias para que (x_1, x_2, x_3, x_7) seja um vetor básico, teremos:

VB	X_1	X_2	X_3	X_4	X_5	X ₆	X ₇	b
X_1	1	0	0	-1	2	-2	0	3
X_2	0	1	0	1	-1	-2	0	4
X ₃	0	0	1	2	-1	1	0	2
X ₇	0	0	0	-1	1	-2 -2 1 4	1	3
α	0	0	0	1	3	8	0	-11
β	0	0	0	1	-1	-4	0	-3

Portanto, a base não é ótima, pois x₅ e x₆ têm custos reduzidos negativos. Vamos escolher x₆ para entrar na base. Logo, pelo teste da razão, x₇ deve sair da base.

Teremos, então:

VB	X_1	X_2	X ₃	X ₄	X ₅	X ₆	X ₇	b	
x_1	1	0	0	-3/2	5/2	0	1/2	9/2	
X_2	0	1	0	1/2	-1/2	0	1/2	11/2	
X_3	0	0	1	9/4	-5/4	0	-1/4	5/4	
x ₆	0	0	0	-1/4	1/4	1	1/4	3/4	
α	0	0	0	3	1	0	-2	-17	
β	0	0	0	0	0	0	1	0 ($t^* = 0$

Logo, como não existe custo reduzido negativo, a base é ótima para o problema aumentado. Como t* = 0, tem-se uma solução ótima para o problema novo (problema original mais a nova restrição), ou seja:

$$x^* = (9/2, 11/2, 5/4, 0, 0, 3/4)^T$$
 com $z^* = 17$

Mudança de coeficiente de custo não-básico ("cost ranging")

Seja x_r uma variável não-básica (não está no vetor básico ótimo), com coeficiente de custo c_r. O problema do "cost ranging" é: assumindo que todos os outros coeficientes de custo continuem inalterados, qual é o intervalo de valores de c_r dentro do qual B' continua sendo uma base ótima?

B' continuará sendo uma base ótima se:

$$c'_r = c_r - \pi' A_{r} \ge 0$$
 ou seja, se $c_r \ge \pi' A_{r}$

Se $c_r < \pi'$ A., então x_r é a única variável não-básica com custo relativo negativo com relação à base B' (todas as demais variáveis têm custo não negativo, pois B' é base ótima). Logo, a variável x_r deve entrar na base e a execução do algoritmo simplex deverá continuar até obter uma nova base terminal.

Exemplo:

Atualmente $c_5 = 10$. Qual é o intervalo de valores para c_5 que mantém B' como base ótima? Este intervalo pode ser determinado por:

$$c_5 + (-\pi)A._5 = c_5 + (-2 \quad 4 \quad -1)\begin{pmatrix} 0 \\ -2 \\ -1 \end{pmatrix} \ge 0$$

ou seja: $c_5 \ge 7$.

Mudança de coeficiente de custo básico

Vamos considerar o intervalo de valores de c_1 (x_1 é variável básica). Seja $c_1 = \delta_1$, onde δ_1 é um parâmetro e $\pi(\delta_1)$ a solução dual em função de δ_1 , $c'_j(\delta_1)$ (j = 1, ..., n) os coeficientes de custo relativo em função de δ_1 , correspondentes à base B'.

Então:
$$\pi(\delta_1) = (\delta_1, c_2, ..., c_m)B'^{-1}$$

 $c'_i(\delta_1) = c_i - \pi(\delta_1)A_{i}$ $(j = 1, ..., n)$

O intervalo de valores de δ_1 para que B' continue como base ótima é o intervalo dentro do qual $c'_i(\delta_1) \ge 0$ (j = 1, ..., n).

Se for necessário mudar o valor de c_1 para um valor δ fora deste intervalo, deve-se calcular todos os $c'_j(\delta)$, escolher uma das variáveis com $c'_j(\delta) < 0$ para entrar na base e continuar a execução do algoritmo simplex.

Mudança em coeficiente do lado direito

- Vamos considerar o intervalo de valores de b_1 para o qual B' continue a ser uma base ótima. Seja β_1 um parâmetro para representar o valor de b_1 (por hipótese, todos os demais valores de b_i continuam inalterados).
- Sabemos que B' é uma base ótima quando $\beta_1 = b_1$.
- Sabemos também que B' é uma base dual viável (pois é ótima) e que, alterando-se o valor de β_1 , continuará dual viável (pois a viabilidade dual independe do valor do coeficiente do lado direito).
- Portanto, alterando-se o valor de β_1 , B' será ótima para todos os valores de β_1 para os quais B' é primal viável, ou seja:

$$x_{B}(\beta_{1}) = B^{\prime - 1} \; (\beta_{1}, \; b_{2}, \; ..., \; b_{m})^{T} \geq 0$$

Estas inequações (todas lineares em $β_1$) determinam o intervalo de valores de $β_1$ que mantém B' como base ótima.

Exemplo:

$$\mathbf{x}_{\mathbf{B}}(\beta_{1}) = \begin{pmatrix} -1 & -2 & 2 \\ 1 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \beta_{1} \\ 6 \\ 13 \end{pmatrix} = \begin{pmatrix} -\beta_{1} + 14 \\ \beta_{1} - 7 \\ -\beta_{1} + 13 \end{pmatrix}$$

Logo, para que B' continue como base ótima devemos ter:

Se for necessário mudar o valor de b_1 para um valor β fora desse intervalo, B' continuará sendo dual viável, mas primal inviável. Assim, partindo de B' pode-se aplicar o método dual simplex.

Mudança em coeficiente de coluna não-básica da matriz A

Seja x_j uma variável que não está no vetor básico ótimo x_B relativo à base ótima B'. Vamos determinar o intervalo de valores para um a_{ij} (mantendo-se inalterados todos os demais coeficientes, inclusive os demais coeficientes da coluna j) para o qual B' continue como base ótima.

Seja α_{ij} um parâmetro que representa o valor de a_{ij} . Como x_j é variável nãobásica, uma alteração em α_{ij} não altera a viabilidade primal de B', mas pode alterar o custo relativo de x_i (e, portanto, a viabilidade dual):

$$c'_{j}(\alpha_{ij}) = c_{j} - \pi' A_{\cdot j}(\alpha_{ij})$$
 onde $A_{\cdot j}(\alpha_{ij}) = (a_{1j}, ..., a_{i-1,j}, \alpha_{ij}, a_{i+1,j}, ..., a_{mj})^{T}$ B' continuará sendo ótima se $c'_{i}(\alpha_{ij}) \geq 0$.

Exemplo:

 $a_{25} = -2$ (x₅ é variável não-básica)

$$c'_{5}(\alpha_{25}) = 10 + (-2 \quad 4 \quad -1)\begin{pmatrix} 0 \\ \alpha_{25} \\ -1 \end{pmatrix} = 11 + 4\alpha_{25}$$

Logo, B' continuará ótima se 11 + $4\alpha_{25} \ge 0$, ou seja, $\alpha_{25} \ge -11/4$.

Se for necessário mudar o valor de a_{25} para um valor α fora deste intervalo, c'_5 será negativo e x_5 deverá entrar na base e a execução do método simplex deverá continuar.

Mudança em coeficiente de coluna básica da matriz A

Vamos supor que o coeficiente a_{11} será alterado (x_1 é variável básica). Seja $A'_{11} = (a'_{11}, a_{21}, ..., a_{m1})^T$ a nova coluna, que vamos associar a uma nova variável x'_{11} .

A coluna anterior A_1 não faz mais parte do problema e pode ser eliminada (fisicamente, a variável x_1 substitui a variável x_1). Podemos construir um novo problema:

Para esse novo problema, B' continua sendo viável (note que x'_1 é variável não-básica neste problema) e x_1 pode ser vista como uma variável artificial. Pode-se, portanto, partindo de B', aplicar o método do big-M.

Note, no entanto, que se for usado o método simplex revisado, a tabela inversa terá que ser refeita, pois o custo de x₁ foi modificado para M e o vetor dual terá que ser recalculado:

$$\pi' = (M, c_2, ..., c_m)B'^{-1}$$

Os Fundadores

Leonid Kantorovich Russia, 19/01/1912 - 07/04/1986 Primeiros problemas de Programação Linear

George DantzigEUA, 08/11/1914 - 13/05/2005
Algoritmo Simplex

John von Neumann Hungria-EUA, 28/12/1903 - 08/02/1957 Teoria da Dualidade.

