

复习

考试 信息

- 考题类型:
- 1、选择题(30分)
- 2、计算题(40分) ERP/CRM
- 3、论述题(30分)
- 涉及业务模式、网络营销、电子商务安全、供应链、电商网站

考试信息

■ 资料:打印的课件

■ 12月5日(周四) 09:55-11:55;

■可以带计算器

■ 考试地点:A104

■开卷考试

■考试时间:

各章主要计算汇总

父物料 工序 资材 作业提 配料提 供应商提 名称 名称 方式 库存 库存 前期 前期 前期 0.00 眼镜 0.00 0 生产 0 0 眼镜 镜框 0.00 0 20 鏡片 采购 眼镜 10 50 10 0.10 眼镜 螺钉 采购 20 采购 0.00 0 镜框 镜架 10 20 10 镜框 镜腿 采购 0.00 0.00 18 镜框 鼻托 采购

~~****

(父物料需求数*子物料构成数) + (1-损耗率) - 工序库存量 - 资材库存量

子物料的日程完成日期 = 父物料的日程下达日期

采购

子物料的日程下达日期 =

螺钉

子物料的日程完成日期 - 子物料作业提前期 - 子物料配料提前期 - 子物料供应商提前期

螺钉在两个阶段均需要,但不要并单处理。分别求螺钉在不同阶段的需求量和需求期

决策树

- 简化的打包课件获取方式:
- 登录"学习通"下载

如何确定电子邮件营销活动的有效性?

例如:该营销活动要发送10万封电子邮件 (每封25美分)。预期的 点击率为15%,顾客的转化率为10%,皮诚客户的保留率为25%。商 品的平均售价为60美元,利润率为50% (商品成本是30美元)。这 次营销活动会盈利吗?顾客的皮诚度如何?

营销成本:

0.25*100000 = 25000 美元

点击进入网站的顾客数:

100000*15% = 15000 **人**

实际购买商品的访问者:

15000*10% = 1500 **人**

销售商品的利润:

60*50% *1500 = 45000美元

营销活动的盈利:

45000-25000 = 20000美元

忠诚客户数:

1500 * 25% = 375 **人**

•Apriori算法:使用候选项集找频繁项集

•由频繁项集产生关联规则

营销

最近邻方法—— 距离和相似性的衡量

CRM

客户	x, y 坐标 (km)	年無求量 (kg)
A	(5, 12)	2000
В	(7, 8)	10000
C	(12, 10)	4000
D	(3, 9)	15000
E	(15, 4)	6000
F	(7, 15)	8000

配送中心X的坐标X':

- x' = (5*2000+7*10000+12*4000+3*15000+15*6000+7*8000) / (2000+10000+4000+15000+6000+8000)
- =319000/45000 = 7.09km

配送中心X的坐标V';

- $y' = (12*2000+8*10000+10*4000+9*15000+4*6000+15*8000) \ / \ (2000+10000+4000+15000+6000+8000)$
- =423000/45000 = 9.40km

最佳配送中心的位置在坐标轴 (7.09km, 9.40km) 处。

供应链

层	服务器数目	访问数目	平均服务时间
网络服务器	5	1.8	110毫秒
应用服务器	3	2.5	230毫秒
数据库服务器	2	2.3	180毫秒

Dweb = $(Vweb/Nweb) \times Sweb = (1.8/5) \times 0.110 = 0.0396$

16

Dapp1 = (Vapp1/Napp1) × Sapp1= (2.5/3) × 0.230 =0.192秒

 $D_{DB} = (V_{DB}/N_{DB}) \times S_{DB} = (2.3/2) \times 0.180 = 0.207$

某公司从他的一个供应链伙伴处采购了一个重要零部件。 两家公司想确定最佳的订单批量以及何时订货,以确保年库 存成本最小。下面是一些历史数据:

- ●年需求 (R) =7200个
- •订货成本 (S) =100美元/订单
- •持有成本率 (K) =20%
- •单位采购成本 (C) =20美元/个
- •提前期 (LT) =6天
- •每年天数 = 360天

 $EOQ = \sqrt{2RS / KC}$

 $=\sqrt{(2*7200*100) / (0.20*20)} = 600$

供应链

基于效用博弈的多代理交互算法

LE TOP

谢谢

如何选择年总成本最低?

Price	num
5 美元	980
4.5美元	1032 采购商最后决定
4.4美元	5000

TAIC = (R*C)+(Q/2*K*C)+(R/Q*S)

订货成本S是40美元,年预测需求R是15000个橄榄球,年持有成本率K为25%。

TAIC5美元

= 15000*5+980/2 *0.25*5+15000/980 *40 =76225美元

TAIC_{45美元}

= 15000*4.5+1032/2 *0.25*4.5+15000/1032 *40 =68662美元

$TAIC_{4.4 \stackrel{.}{+} \pi}$

= 15000*4.4+5000/2 *0.25*4.4+15000/5000 *40 =68870美元

供应籍

•服务需求参数

例 网络服务器和一个主机系统有接口。这个站点每天处理2万个订单。90%的歌曲下载订单平均有6行的项目,而10%的MTV下载订单有28行的项目。每行项目需要花费主机0.5秒的处理时间。把主机看成一个"黑盒子",主机处理的每个订单的服务需求是多少?

Smainframe

- $= 0.10 \times (28 \times 0.5) + 0.90 \times (6 \times 0.5)$
- = 4.1秒

15