Musa	b Mehadi mmehadi@jacobs -university.de	•
	m=5	
0	3 h(k,i) = (h,(k) + ix h)(k) mod m	6
7	10	6
2	2 h,(r)= k mod 5, ho(r) = 7k mod 8	- 6
3	4	6
4	K = 23,10,2,4>	
	h(3,0) = (3 mod 5 + 0 ((7*3) mod 8)) mod 5 = 0	6
,	h (10,0) = (10 mod 5) mod 5 = 0	0 6
	Since position @ is already occupied we will try to find	•
ONO	ner location for 10.	•
	h(10,1) = (10mols + 1((7×10) mods)) mods	•
	$= (0+6) \mod 5 = \frac{1}{4}$	•
		•
	h(2,0) = (2 mod 5) mod 5 = 0 (dread occupied)	
	h (2,1) = (2 mod 5 + 1 ((2*7) mod 8)) mod 5	0
	= (0+6) mod 5 = 1 (already occupted)	e
	h(2,2) = (2mod5 + 2 ((2x7)mod8)) mod5	0 6
	= (0+12) mod 5	•
	= 3	6
	7	6
	h(4,0) = (4 mod 5) mod 5 = 0 (occupied)	(
	h (4,1) = (4mod 5 + 1 ((4x7) mod 8)) mod 5	(
	= (0+4) mod 5 = 0 (still occupied)	
	h(4,2) = (4mod5 + 2((4x7) mod8)) mod 5	
	= (0+3) mod 5	
	= 3 (4 goes to possition 3)	9

				Ġ	
70.9	A) The best way to proof that choosing activity with shortest duration may fall is by contradiction	He C	6		6
	shortest duration may fall is by contradiction		6	C C	
	10 15 20 25 30		6		
a	B		6		
3	3		6	-	
5			6	-	
	X-axis represents the time span (in his) Y-axis represents the index of the events	•	•	3	0
	Duration of A = 8hrs, B= 5hrs, C= 9hrs D	D= 10 hrs	•	3	
Æ	According to our theory, if we start with the shortest	direction	(B) (3	
	we can only fit event D along with it S = &B,Dy, because it will overlap with vest	of re	•	3	
	everts.				
+	However if we start with the event with the earliest finish time (A), we can see that $S=VA,C,DY$,t			
	3 events can be done.			0	
	Below is a table of Storting and ending time of if the above drawing is not clear.	even!	>		
				6	
	Event Storting-time finishing time			6	
A	5:00 7:00 5:00 Jo:00			6	
C	9:00			6	9
3	20:00 30:00		0)_	67	9
& Not	e that time after 24:00 is assumed to be in the next	day.			3
					9