

UNIVERSITÉ DE NANTES

Source

- ▶ book: "Human Computer Interaction" by Alan Dix Janet Finlay Gregory Abowd Russell Beale
- ► course by P.Martin (University of Nantes)

Evaluation Techniques

Evaluation

- ► tests usability and functionality of system
- ▶ occurs in laboratory, field and/or in collaboration with users
- ▶ evaluates both design and implementation
- ▶ should be considered at all stages in the design life cycle

Goals of Evaluation

- ► assess extent of system functionality
- ▶ assess effect of interface on user
- ▶ identify specific problems

Evaluating Designs

- 1. Cognitive Walkthrough
- 2. Heuristic Evaluation
- 3. Review-based evaluation

Cognitive Walkthrough

Proposed by Polson et al.

- ▶ evaluates design on how well it supports user in learning task
- ▶ usually performed by expert in cognitive psychology
- expert walks though design to identify potential problems using psychological principles
- ► forms used to guide analysis

Cognitive Walkthrough (ctd)

- ► For each task walkthrough considers
 - what impact will interaction have on user?
 - what cognitive processes are required?
 - what learning problems may occur?
- ► Analysis focuses on goals and knowledge: does the design lead the user to generate the correct goals?

Heuristic Evaluation

- ► Proposed by Nielsen and Molich.
- ▶ usability criteria (heuristics) are identified
- ▶ design examined by experts to see if these criteria are violated
- ► Example heuristics
 - system behaviour is predictable
 - system behaviour is consistent
 - feedback is provided
- ▶ Heuristic evaluation *debugs* design.

Review-based Evaluation

- Results from the literature used to support or refute parts of design.
- ► Care needed to ensure results are transferable to new design.
- ► Model-based evaluation
- ► Cognitive models used to filter design options
 - e.g. GOMS prediction of user performance.
- Design rationale can also provide useful evaluation information

Evaluating through user Participation

Laboratory Studies

- ► Advantages:
 - specialist equipment available
 - uninterrupted environment
- ► Disadvantages:
 - lack of context
 - difficult to observe several users cooperating
- ► Appropriate
 - if system location is dangerous or impractical for constrained single user systems to allow controlled manipulation of use

Field Studies

- ► Advantages:
 - natural environment
 - context retained (though observation may alter it)
 - longitudinal studies possible
- ► Disadvantages:
 - distractions
 - noise
- ► Appropriate
 - where context is crucial for longitudinal studies

Evaluating Implementations

- ► Requires an artefact:
 - simulation,
 - prototype,
 - full implementation

Experimental Evaluation

- controlled evaluation of specific aspects of interactive behavior
- evaluator chooses hypothesis to be tested
- ► a number of experimental conditions are considered which differ only in the value of some controlled variable.
- changes in behavioral measure are attributed to different conditions

Experimental factors

- ▶ Subjects
 - which kind of subject
 - representative,
 - sufficient sample
- Variables
 - things to modify and measure
- ► Hypothesis
 - what you'd like to show
- ► Experimental design
 - how you are going to do it

Variables

- ► independent variable (iv)
 - characteristic changed to produce different conditions
 - e.g. interface style, number of menu items
- ► dependent variable (*dv*)
 - characteristics measured in the experiment
 - e.g. time taken, number of errors.

Hypothesis

- ▶ prediction of outcome
 - framed in terms of iv and dv
 - e.g. : error rate will increase as font size decreases
- ▶ null hypothesis:
 - states no difference between conditions
 - aim is to disprove this
 - e.g.: null hyp. = no change with font size

Experimental design

- ▶ within groups design
 - each subject performs experiment under each condition.
 - transfer of learning possible
 - less costly and less likely to suffer from user variation.
- ▶ between groups design
 - each subject performs under only one condition
 - no transfer of learning
 - more users required
 - variation can bias results.

Analysis of Data

- ▶ Before you start to do any statistics:
 - look at data
 - save original data
- ► Choice of statistical technique depends on :
 - type of data
 - information required
- ► Type of data :
 - discrete finite number of values
 - continuous any value

Analysis - Types of Test

- ► parametric
 - assume normal distribution
 - robust
 - powerful
- ► non-parametric
 - do not assume normal distribution
 - less powerful
 - more reliable
- ► contingency table
 - classify data by discrete attributes
 - count number of data items in each group

Analysis of Data (cntd.)

- ▶ What information is required?
 - is there a difference?
 - how big is the difference?
 - how accurate is the estimate?
- Parametric and non-parametric tests mainly address first of these

Experimental Studies on Groups

- ► More difficult than single-user experiments
- ▶ Problems with:
 - subject groups
 - choice of task
 - data gathering
 - analysis

Subject Groups

- ► larger number of subjects ⇒ more expensive
- ▶ longer time to *settle down* and ... even more variation!
- ▶ difficult to timetable.
- ▶ so often ... experiment with only three or four groups

The task

- ► must encourage cooperation
- ▶ perhaps involve multiple channels
- ► options:
 - creative task e.g. : write a short report on . . .
 - decision games e.g. : desert survival task
 - control task e.g. : ARKola bottling plant

Data Gathering

- ► several video cameras + direct logging of application
- ▶ problems:
 - synchronisation
 - sheer volume!
- ▶ one solution:
 - record from each perspective

Analysis

- ▶ produces variation between groups
- solutions:
 - within groups experiments
 - micro-analysis (e.g., gaps in speech)
 - anecdotal and qualitative analysis
- ▶ look at interactions between group and media
- ► controlled experiments may waste resources!

Field Studies

- ► Experiments dominated by group formation
- ► Field studies more realistic:
 - distributed cognition ⇒ work studied in context
 - real action is situated action
 - physical and social environment both crucial
- ► Contrast:
 - psychology
 - controlled experiment
 - sociology and anthropology
 - open study and rich data

Observational Methods

Observational Methods

- 1. Think Aloud
- 2. Cooperative evaluation
- 3. Protocol analysis
- 4. Automated analysis
- 5. Post-task walkthroughs

Think Aloud

- ▶ user observed performing task
- ▶ user asked to describe :
 - what he/she is doing;
 - why, what he/she thinks is happening etc.
- ► Advantages
 - simplicity requires little expertise
 - can provide useful insight
 - can show how system is actually used
- ► Disadvantages
 - subjective
 - selective
 - act of describing may alter task performance

Cooperative Evaluation

- variation on think aloud
- user collaborates in evaluation
- ► both user and evaluator can ask each other questions throughout the test
- ► Additional advantages
 - less constrained and easier to use
 - user is encouraged to criticize system
 - clarification possible

Which Protocol?

- ► paper and pencil
 - cheap, limited to writing speed
- ▶ audio
 - good for think aloud, difficult to match with other protocols
- ▶ video
 - accurate and realistic, needs special equipment, obtrusive
- ▶ computer logging
 - automatic and unobtrusive.
 - large amounts of data difficult to analyze
- user notebooks
 - coarse and subjective, useful insights, good for longitudinal studies
- ▶ mixed use in practice.
- ▶ audio/video transcription are difficult and require skill.
- ▶ some automatic support tools available

Automated Analysis

- ▶ workplace project
- ► Post-task walkthrough
 - user reacts on action after the event
 - used to fill in intention
- ▶ advantages
 - analyst has time to focus on relevant incidents
 - avoid excessive interruption of task
- ▶ disadvantages
 - lack of freshness
 - may be post-hoc interpretation of events

Post-task Walkthroughs

- ► transcript played back to participant for comment
 - immediately ⇒ fresh in mind
 - ▶ delayed ⇒ evaluator has time to identify questions
- useful to identify reasons for actions and alternatives considered
- necessary in cases where think aloud is not possible

Query Techniques

- 1. Interviews
- 2. Questionnaires

Interviews

- analyst questions user on one-to-one basis usually based on prepared questions
- ▶ informal, subjective and relatively cheap
- ▶ advantages
 - can be modified to suit context
 - issues can be explored more fully
 - can clarify user views and identify unanticipated problems
- ▶ disadvantages
 - very subjective
 - time consuming

Questionnaires

- ▶ set of fixed questions given to users
- ▶ advantages
 - quick and reaches large user group
 - can be analyzed more rigorously
- ▶ disadvantages
 - less flexible
 - less probing

Questionnaires (cntd)

- ► need careful design
 - what information is required?
 - how are answers to be analyzed?
- ► styles of question
 - general
 - open-ended
 - scalar
 - multi-choice
 - ranked

Physiological Methods

- 1. Eye tracking
- 2. Physiological measurement

Eye Tracking

- head or desk mounted equipment tracks the position of the eye
- eye movement reflects the amount of cognitive processing a display requires
- measurements include :
 - fixations: eye maintains stable position. Number and duration indicate level of difficulty with display
 - saccades: rapid eye movement from one point of interest to another
 - scan paths: moving straight to a target with a short fixation at the target is optimal

Physiological Measurements

- ► emotional response linked to physical changes
- ▶ these may help determine a user's reaction to an interface
- measurements include:
 - heart activity, including blood pressure, volume and pulse.
 - activity of sweat glands: Galvanic Skin Response (GSR)
 - electrical activity in muscle: electromyogram (EMG)
 - electrical activity in brain: electroencephalogram (EEG)
- ▶ some difficulty in interpreting these physiological responses
 - more research needed

Choosing an Evaluation Method

- ▶ when in process: design vs. implementation
- ▶ style of evaluation: laboratory vs. field
- ► how objective: subjective vs. objective
- ▶ type of measures: qualitative vs. quantitative
- ▶ level of information: high level vs. low level
- ▶ level of interference: obtrusive vs. unobtrusive
- ► resources available: time, subjects, equipment, expertise