第 16 章 光的干涉

一 基本模型

1. 基本思路

- · 光干涉题目最基本的任务是求出模型参数、光波长与明纹与暗纹分布间的关系
- ① 根据题目中的模型,导出模型参数与光程差的关系 $\delta = f(x, D, d, n, \cdots)$ (小心半波损失)
- ② 根据波干涉的知识,得到相位差与光程差和波长的关系
- ③ 根据波干涉的知识,进一步得到 k 极明纹/暗纹位置与相位差的关系

2. 基本概念

① 光程

· 光在介质中传播的路程与介质折射率的乘积 nr

② 半波损失

· 当光从**折射率较小的介质**入射到**折射率较大的介质**的界面,并被反射回来时,光程会减少 λ/2

③ 波的干涉

- · 相位差与光程差的关系 $\Delta \varphi = (\varphi_2 \varphi_1) + \frac{2\pi}{\lambda} \delta$
- ・干渉加强/相消与相位差的关系 $\Delta \varphi = \begin{cases} 2k\pi & \text{加强} \to k$ 级明纹 $(2k-1)\pi & \text{相消} \to k$ 级暗纹

3. 常见模型

双缝干涉	劈尖膜干涉	牛顿环
	$\begin{bmatrix} E & P \\ A & A & A \\ A & A & A \\ A & A & A \\ A & A &$	R
d:相干光源的距离D:光源到屏幕的距离x:所求点至中心o的距离	n: 中间介质折射率 e: 该位置薄膜厚度	R: 曲率半径 r: 半径 e: 半径r处对应厚度
$r_2 - r_1 = d\sin\theta \approx d\frac{x}{D}$	$\delta = 2ne + \frac{\lambda}{2}$	$e \approx \frac{r^2}{2R}$
基本条件下 x=0 处为中央明纹		
题目经常塞薄膜改变光程差	注意两束光都可能有半波损失!	

二 常见题型

1. 光程改变与半波损失陷阱

- 例 1 (例 16.2)设双缝实验中缝间距 d=0.50mm,双缝至屏的距离 D=3.0m。若在缝 S_1 后贴一块折射率 n=1.50,厚度 e=0.010mm的透明薄膜,如图所示,用波长 500nm 的平行单色光垂直照射双缝,求中央明纹中心的位置(P 点离坐标原点的距离) x_b 。
- $① 计算光程差: \delta = r_2 r_1' = r_2 [(r_1 e) + ne] = r_2 r_1 (n-1)e$
 - ② 用模型参数代入路程差: $\delta = r_2 r_1 (n-1)e = d\frac{x}{D} (n-1)e$
 - ③ 代入相位差公式: $\Delta \varphi = \frac{2\pi}{\lambda} [d\frac{x}{D} (n-1)e] = \pm 2k\pi$ 求的是中央明纹,因此令 k=0: $x_p = \frac{(n-1)eD}{d} = 3.0 \times 10^{-2} \, \mathrm{m}$
- 例 2 如图所示,一油滴(n=1.20)放在平玻璃片($n_1=1.52$)上,以波长 $\lambda=600$ nm的黄光垂直照射,从反射光看到有多个亮环和暗环。则油滴边 缘处是_______(填"亮"或"暗")环,从油滴边缘向中心数,第 5 个亮环处油滴的厚度为______m。

- 解 ① 算光程差:由于1 < n,从空气—油滴界面反射的光发生了半波损失由于 $n < n_1$,从油滴—玻璃界面反射的光也发生了半波损失因此厚度e处,光程差 $\delta = 2ne$
 - ② 第一空:油滴边缘处 $e=0 \rightarrow \delta=0$,对应 0λ 的情况,因此该处为亮环第二空:代入k=5于明纹方程: $2ne=5\lambda$,解得 $e=10^{-6}$ m

2. 范围光问题

- 例 3 白色平行光(波长范围 $400\text{nm}\sim760\text{nm}$),垂直入射到间距 a=0.25mm 的双缝上,距 D=50cm 处放置屏幕,求第一级和第五级明纹彩色带的宽度(两个极端波长的同级明纹中心之间的距离)。
- 解 核心思路: 求出波长范围两端的边界波长的明纹位置
 - ① 由双缝干涉模型: $\frac{xa}{D} = k\lambda \rightarrow x = \frac{k\lambda D}{a}$, 因此色带宽度 $\Delta x = \frac{k(\lambda_{\max} \lambda_{\min})D}{a}$
 - ② $k = 1 \text{ H}^{\dagger}$, $\Delta x = \frac{50 \text{cm} \times 360 \text{nm}}{0.25 \text{mm}} = 0.72 \text{mm}$ $k = 5 \text{ H}^{\dagger}$, $\Delta x = \frac{5 \times 50 \text{cm} \times 360 \text{nm}}{0.25 \text{mm}} = 3.6 \text{mm}$

3. 多条纹问题

- 求条纹数量
- 例 4 由两块玻璃片(n_1 = 1.75)所形成的空气劈尖,其一段厚度为 0,另一端厚度为 0.002cm。用波长 700nm 的单色平行光垂直入射在空气劈尖的上表面,则形成的干涉明条纹数为 。
- 解 核心思路: 找出范围边界的两个条纹是几号纹, 变成数数问题

由劈尖膜模型: $\delta = 2ne + \frac{\lambda}{2} = k\lambda$

当e=0时, $k=\frac{1}{2}$;当e=0.002cm时,k=57.6,因此明纹 $k=1\sim57$ 在范围内,共 57条

② 条纹间距

相邻明条纹/暗条纹间距只需分别列出 k 和 k + 1 的方程, 相减即可得到

- 解 由题意,根据模型,有明纹 $\delta = 2ne + \frac{\lambda}{2} = k\lambda \rightarrow e = \frac{1}{2n}(k \frac{1}{2}) \lambda$
 - $e \ge 0$: 第一条明纹中心为k=1,对应厚度 $e = \frac{\lambda}{4n}$
 - \therefore 棱边 e=0 处 $\delta=\frac{\lambda}{2}$, 为暗条纹
 - : 第一条明纹中心到棱边的距离为相邻明条纹间距的一半 3mm

③ 条纹移动

- 例 5 用波长为λ的单色光垂直照射如图所示的牛顿环装置,观察从空气膜上下表面反射的光形成的牛顿环。若使平凸透镜慢慢地垂直向上移动,从透镜顶点与平面玻璃接触到两者距离为 d 的移动过程中,移过视场中某固定观察点的条纹数目为 | | |
- 解 设半径r处在移动前后的条纹为k级和k'级,则k'-k就是移过的条纹数目 移动前 $e=\frac{r^2}{2R}$,移动后 $e'=\frac{r^2}{2R}+d$,因此e'-e=d,空气膜 $\rightarrow n=1$ $\delta=2ne+\frac{\lambda}{2}=k\lambda\ ,\ \delta'=2ne'+\frac{\lambda}{2}=k'\lambda\ \rightarrow\ \delta'-\delta=2n(e'-e)=2d=(k'-k)\lambda\ \rightarrow\ k'-k=\frac{2d}{\lambda}$