Regression Models

Stan supports regression models from simple linear regressions to multilevel generalized linear models.

Linear Regression

The simplest linear regression model is the following, with a single predictor and a slope and intercept coefficient, and normally distributed noise. This model can be written using standard regression notation as

$$y_n = \alpha + \beta x_n + \epsilon_n$$
 where $\epsilon_n \sim \text{normal}(0, \sigma)$.

This is equivalent to the following sampling involving the residual,

$$y_n - (\alpha + \beta X_n) \sim \text{normal}(0, \sigma),$$

and reducing still further, to

$$y_n \sim \text{normal}(\alpha + \beta X_n, \sigma).$$

This latter form of the model is coded in Stan as follows. Links to source:

```
Option 1 R, Python, Stan
```

Option 2 regression_1.R, regression_1.py, regression_1.stan

```
Option 3 Folder
```

```
data {
   int<lower=0> N;
   vector[N] x;
   vector[N] y;
}
parameters {
   real alpha;
   real beta;
   real<lower=0> sigma;
}
model {
   y ~ normal(alpha + beta*x, sigma);
}
```

new way above with insert from dist, old way below with source typed into doc.

```
data {
   int<lower=0> N;
   vector[N] x;
   vector[N] y;
}

parameters {
   real alpha;
   real beta;
   real<lower=0> sigma;
}

model {
   y ~ normal(alpha + beta * x, sigma);
}
```

There are N observations, each with predictor x[n] and outcome y[n]. The intercept and slope parameters are alpha and beta. The model assumes a normally distributed noise term with scale sigma. This model has improper priors for the two regression coefficients.

Matrix Notation and Vectorization

The sampling statement in the previous model is vectorized, with

```
y ~ normal(alpha + beta*x, sigma);
above, new way excerpts from source code on disk. Rmarkdown code that generates the snippet is:
lines = strsplit(stan_file,"\n")[[1]]
cat(paste(lines[12:12],collapse="\n"))
```

y ~ normal(alpha + beta*x, sigma);

END