(NASA-CE 170397 THE YAV-8B SIMULATION AND MODELING. VOLUME 1: AIRCRAFT DESCRIPTION AND PROGRAM SUMTER! Final Report (McDonnell Aircraft Co.) 45 2 &C A10/MF A01 CSCL 01C

N83-22193

Unclas G3/05 09869

YAV-8B Simulation and Modeling Volume I: Aircraft Description and Program Summary

Contract NAS4-2839 March 1983

YAV-8B Simulation and Modeling Volume I: Aircraft Description and Program Summary

McDonnell Douglas Corporation McDonnell Aircraft Company St. Louis, Missouri 63166

Prepared for Ames Research Center Dryden Flight Research Facility under Contract NAS4-2839

1983

Ames Research Center
Dryden Flight Research Facility
Edwards, California 93523

TABLE OF CONTENTS

SECTION		TITLE	PAGE
1.	INTRODU	UCTION AND SUMMARY	1-1
2.	AIRCRAF	FT DESCRIPTION	2-1
	2.1 Ge	eneral Arrangement	2-1
	2.2 Di	imensional Data	2-3
	2.3 We	eight and Balance Data	2-10
			2-13
			2-13
	2.		2-13
			2-19
		• • • • • • • • • • • • • • • • • • •	2-21
			2-24
			2-24
	_		2-26
		· · · · · · · · · · · · · · · · · · ·	2-34
			2-34
			2-37
	_		2-45
	•		_ ,,
3.	YAV-8B	NONLINEAR SIMULATION PROGRAM	3-1
•			3-1
			3-1
			3-1
			3-5
			3-10
		2.4 Engine and Reaction Control System Force and	J-10
	٦.		3-23
	3	•	3-23
			3-29
			3-29
			3-31
			3-31
			3-38
			3-38
			3-46
	-		3-48
		<u> </u>	3-48
		.4.1 Variable Array Structure	
			3-58
		.4.4 RTPDATA Deck	
		.4.5 Data Table Look-Up Format	
		.4.6 Program Defaults and Overrides	
	٤.	.4.7 Subroutine Modification	J-/2
<i>t</i> .	V 17 05	TIME OF MATHEMATICAL MODEL	
4.		LINEAR MATHEMATICAL MODEL	, 1
		inearized Equations of Motion	4-1 4-1
	1 / 17	cim conditions and stability UATIVATIVAS	1-1

TABLE OF CONTENTS (CONT'D)

SECTION	TITLE	PAGE
5.	VALIDATION OF THE MATHEMATICAL MODEL	5-1 5-7 5-7 5-21
6.	PARAMETER ESTIMATION	6-1
7.	CONCLUDING REMARKS	7-1
8.	REFERENCES	8-1
9.	SYMBOLS AND ABBREVIATIONS	9-1
APPENDIX	A CONTRACT STATEMENT OF WORK	A-1

LIST OF FIGURES

FIGURE NUMBER	DESCRIPTION	PAGE
1-1	YAV-8B, Basic Configuration in Hover	1-3
1-2	YAV-8B, Basic Configuration in Cruise	
2.1-1	YAV-8B 3 View	
2.2-1	Spanwise Thickness Distribution Comparison	
2.2-2	Geometric Twist Distribution	
2.2-3	Design Streamwise Camber Distribution	
2.2-4	Leading Edge Radius Distribution	
2.3-1	YAV-8B Flight Test Aircraft, Inertia and C.G.	~ 10
2.3 1	Data	2-11
2.3-2	Flight Test Aircraft Center of Gravity Envelope	
2.4-1	Longitudinal Control System	
2.4-2	Stabilator Angle vs Stick Position	
2.4-3	Longitudinal Q Feel System	
2.4-4		2-13
2.4-4	Effect of Trim Range on Longitudinal Spring	2.16
3 / 5	Force	
2.4-5	Longitudinal RCS Valve Openings	
2.4-6	Lateral Control System	
2.4-7	Lateral Stick Characteristics	
2.4-8	Lateral RCS Valve Openings	
2.4-9	Directional Control System	
2.4-10	Directional Control System Characteristics	
2.4-11	Directional RCS Nozzle Openings	2-22
2.4-12	Flap System/Aileron Droop Logic	2-22
2.4-13	Flap-Nozzle Interconnect Schedule	2-23
2.4-14	Reaction Control System	2-25
2.5-1	Stability Augmentation System Authority	
2.5-2	Longitudinal Stability Augmentation System	
2.5 - 3	Lateral Stability Augmentation System	
2.5-4	Directional Stability Augmentation System	2-30
2.5-5	Longitudinal Stability Augmentation Parameter	
	Values	2-31
2.5-6	Lateral Stability Augmentation Parameter Values	2-32
2.5-7	Directional Stability Augmentation Parameter	
	Values	2-33
2.6-1	YF402-RR-404 Engine	2-34
2.6-2	Pegasus Engine Design Features	2-36
2.6-3	Spec Engine Characteristics	2-36
2.6-4	Pegasus Nozzle Drive System	2-38
2.6-5	Engine Dimensions	2-39
2.6-6	Engine Control Description	2-41
2.6-7	Engine Operating Limits	2-43
2.6-8	General Inlet Arrangement	2-47
2.6-9	Boundary Layer Bleed System	2-47
2.6-10	Inlet Design Parameters	2-48
2.6-11	Inlet Operating Modes	2-48

LIST OF FIGURES (CONT'D)

FIGURE NUMBER	DESCRIPTION	PAGE
3.1-1	YAV8B Program Structure	3-2
3.1-2	Aircraft Math Model Flow Diagram	3-3
3.2-1	Inertial Coordinate Frame	3-6
3.2-2	Relationship of Body to NED Axes	3-7
3.2-3	Equations of Motion System, Translational	J .
	Equations	3-8
3.2-4	Equations of Motion System, Rotational Equations	2-0
3.2-5	Body and Stability Axis	3-9 3-11
3.2-6	Engine Thrust Geometry	3-11
3.2-7	Reaction Control Geometry	3-24
3.3-1	Subroutine WTBAL07 Flow Diagram	3-30
3.3-2	Subroutine PFC07 Flow Diagram	3-30
3.3-3	Subroutine RCS07 Flow Diagram	3-36
3.3-4	Subroutine ENGO8 Flow Diagram	3-39
3.3-5	Subroutine SFC07 Flow Diagram	3-43
3.3-6	Subroutine AEROY8B Flow Diagram	3-47
3.4-1	EXECUTE Deck	3-49
3.4-2	Load and Execute Card Sequence	3-50
3.4-3	Data Card Format	3-52
3.4-4	Namelist Card Sequence in Execute Deck	3-59
3.4-5	SPRINT Namelist Options Summary	3-60
3.4-6	SPRINT Column (IBLOCK = 0) Format	3-61
3.4-7	SPRINT Block (IBLOCK = 2) Format	3-62
3.4-8	Pilot Control Input Definitions	3-64
3.4-9	ISOMS Dynamic Input Logic	3-65
3.4-10	RTPDATA Variable Output Format	3-67
3.4-11	Data Table Structure	3-68
3.4-12	Modify Card Deck for ISOMS	3-74
4.1-1	Linearized Equations of Motion-Stability Axes	4-2
4.1-2	Linearized Mathematical Model Sign Conventions	4-3
4.1-3	Linearized Mathematical Model and Stability	
	Derivatives, Nomenclature	4-4
4.2-1	Trim Conditions For Time Histories of Section 5	4-7
4.2-2	Stability Derivatives For Time Histories of Section 5	4-8
4.2-3	Flight Conditions for Full Flight Envelope	
	Stability Derivatives	4-10
4.2-4	Trim Conditions, Full Flight Envelope	4-11
4.2-5	Stability Derivatives, Full Flight Envelope	4-14
5.1-1	YAV-8B Flight Test Envelope	5-3
5.1-2	YAV-8B Related Wind Tunnel Tests	5-4
5.1-3	Angle of Attack Calibration	5-5
5.1-4	Pitot Static System, Estimated Position Error Corrections	5-6
5.1-5	YAV-8B Inertia and C.G. Data for Predicted Time	2-0
J . L - J	Histories	5-8
5.2-1	Response to Longitudinal Stick Rap in Hover	5-9
5.2-2	Response to Lateral Stick Ran in Hover	5-10

LIST OF FIGURES (CONT'D)

FIGURE NUMBER	DESCRIPTION	PAGE
5.2 - 3	Response to Pedal Input in Hover	5-11
5.2 - 4	Landing Approach Characteristics	5-12
5. 2-5	Landing Approach Characteristics	5-13
5.2-6	Semi-Jet Borne Angle of Attack Stability, STO Flap, Ailerons Drooped 150	
5.2-7	Response to Longitudinal Doublet in Semi-Jet Borne Flight	
5.2-8	V/STOL Steady Heading Sideslip Characteristics	
5. 1.9	Dutch Roll Characteristics, Semi-Jet Borne Flight	
5. 2-10	Response to Rudder Input in Semi-Jet Borne Flight	
5.3 - 1	Wingborne Trim Characteristics	
5.3-2	Short Period Frequency Requirements	
5.3 - 3	Short Period Mode Damping Ratio, Wingborne Flight.	
5.3-4	Pullup in Wingborne Flight	
5.3-5	Wingborne 1 "g" Roll Performance	
5.3-6	Wingborne Steady Heading Sideslip Characteristics	5-25
5.3-7	Dutch Roll Frequency and Damping, Wingborne Flight	5-26
5.3-8	Response to Rudder Input in Wingborne Flight	
5.4-1	Wet VTO	
5.4 - 2	Dry VTO	
5.5-1	Stabilator Actuator Frequency Response	
5.5-2	Forward RCV Series Servo Frequency Response	
5.5-3	Aileron Actuator Frequency Response	
5.5-4	Yaw RCV Servo Frequency Response	
6.1-1	Simplified Linear Equations of Motion	
6.1-2	Reaction Control System Bleed Air Pressure and	0-3
0.1-2	Temperature	6-4
6.1-3	Maximum RCS Front Pitch Valve Thrust	
6.1-4	Maximum RCS Tail Pitch Valve Thrust	
6.1-5	Gross Thrust Application Point	
6.1-6	Pitch RCV Thrust Vector Angles	

ORIGINAL PAGE IS OF POOR QUALITY

MDC A7910 Volume I

LIST OF PAGES

Title Page
ii thru vii
1-1 thru 1-4
2-1 thru 2-50
3-1 thru 3-74
4-1 thru 4-20
5-1 thru 5-36
6-1 thru 6-8
7-1 thru 7-2
8-1 thru 8-2
9-1 thru 9-4

Appendix A, A-1 thru A-2

1. INTRODUCTION AND SUMMARY

As part of its V/STOL research program, NASA intends to conduct flight investigations of the stability, control and handling qualities of highly augmented V/STOL aircraft. Specific plans include the flight tests of a YAV-8B aircraft, Figures 1-1 and 1-2, modified to include an advanced avionics and flight control system for improved flying qualities and performance.

As an initial phase to this program, NASA will conduct flight tests of the YAV-8B vehicle in order to extract aerodynamic and propulsion characteristics, update existing simulation models, validate handling qualities and design criteria, and to improve V/STOL flight test techniques. This program will also include tests using a static test stand located at the Dryden Flight Research Center, where flight tests of the YAV-8B will take place.

In order to perform high quality parameter estimation and analysis of the YAV-8B characteristics, it is necessary to construct mathematical models of varying complexity and linearity from existing wind tunnel and flight test data.

The McDonnell Aircraft Company (MCAIR) recently completed a V/STOL simulation and modeling study under contract to NASA Dryden. This study defined and documented detailed mathematical models of varying complexity representative of the YAV-8B aircraft. These models will be used by NASA in parameter estimation and in linear analysis computer programs while investigating YAV-8B aircraft handling qualities. Both a six degree of freedom nonlinear model and a linearized three degree of freedom longitudinal and lateral directional model were developed.

The nonlinear model is based on the mathematical model used on the MCAIR YAV-8B manned flight simulator. This simulator model has undergone periodic updating based on the results of approximately 360 YAV-8B flights and 8000 hours of wind tunnel testing. Qualified YAV-8B flight test pilots have commented that the handling qualities characteristics of the simulator are quite representative of the real aircraft. These comments are validated herein by comparing data from both static and dynamic flight test maneuvers to the same obtained using the nonlinear program.

The linearized mathematical model uses stability derivatives and is formatted exactly as the models traditionally used in conventional flight dynamic analysis. Aircraft characteristics were predicted using this linearized model and compared to both the flight data and the nonlinear predictions. To document the aircraft characteristics throughout the flight envelope transconditions and stability derivatives are provided for 24 flight conditions.

A FORTRAN batch simulation of the nonlinear model has been produced. Documentation for this simulation consists of a description of the software including top level flow charts, program structure, subroutine interfaces, modeling equations, data format, a user's guide, source listings and plots of the over 17,000 aerodynamic and propulsion data points used in the model.

This report is divided into two volumes. Volume I contains the description of the aircraft, documentation of the nonlinear and linear mathematical models, stability derivatives, the comparisons of predicted and actual flight test data which validate the nonlinear model and a discussion of models appropriate for use in parameter estimation programs. Volume II contains the source listings for the nonlinear program and plots of the aerodynamic and propulsion data used in the nonlinear program.

ORIGINAL PAGE 19 OF POOR QUALITY

MDC A7910 VOLUME I

is in proceed that we have a consideration of the state o

ORIGINAL PAGE IS OF POOR QUALITY

MDC A7910 Volume I

2. AIRCRAFT DESCRIPTION

2.1 GENERAL ARRANGEMENT

The YAV-8B is a single seat transonic light attack V/STOL aircraft powered by a single YF402-RR-404 turbo-fan engine. The YAV-8B aircraft is an advanced version of the AV-8A aircraft with greatly expanded and improved capabilities. It retains the characteristic appearance of the AV-8A while incorporating an improved inlet design, a larger wing with an advanced technology airfoil, zero degree scarf of the forward nozzles, and under-fuselage modifications called Lift Improvement Devices (LIDs). A three-view general arrangement drawing of the YAV-8B is shown in Figure 2.1-1.

Conventional aerodynamic controls are utilized in wingborne flight and engine bleed air reaction controls are used in jetborne flight, with both systems operative during transition modes.

An all-movable tailplane and front and rear pitch reaction control system (RCS) valves, blowing downward, provide longitudinal control. Lateral control is provided by outboard ailerons and RCS valves, blowing down or up and down for large lateral inputs. Directional control is provided by a conventional rudder and a yaw RCS valve in the aft fuselage tail cone, blowing sideways, left or right.

In the high lift mode for VTO and STO, the ailerons are drooped 15 degrees and the flaps are interconnected with the engine nozzle control. This of a maximum longitudinal acceleration and good longitudinal control mar to be obtained during ground runs and transition to wingborne flight. Show the real flap setting. Conventional landings are made with the 25° or the real 61.7° flap setting. Conventional landings are made with the 25° flap position.

A maneuvering flap, which can be positioned at any deflection from zero to 25° , is provided for increased maneuverability throughout the flight envelope.

The LIDs consist of a retractable fuselage fence located at the forward end of the gun pods and two fixed strakes on the gun pods. Larger strakes are provided for attachment to the fuselage when gun pods are not carried.

The YAV-8B has provisions for external store loadings on six wing stations and the fuselage centerline. In addition, guns in two pod can be attached to the fuselage. Recent flight testing of the YAV-8B has been performed using a removable Leading Edge Root Extension (LERX). This device, designed to increase the wingborne maneuverability, has only a small effect on the V/STOL flight characteristics. Since considerably more flight data exists on the aircraft without the LERX this report assumes the aircraft to be configured without the LERX in the Basic configuration of (5) pylons and (2) gun pods.

VAV 88 THREE VIEW FIGURE 2 1 1

									おがいける。一旦					Rent		S. Des	
					_	-										** ext	
																Ţ-	//} = = =
2	090.	3 3	5 .	7500		[]	- 		-	ايم]	12,014	38	<u>* </u>	
2 2 20	32	 z %	31 211	1103 7500	1	\$41.05	378	52 46	:=	1112 ft2	luon	AR 404 Engine		┢		411.0	
	3			1103	erited Acess	1	Wing 379		-	1	Propulsion	1 Pagenus VF402 AR 404 Engine	T-Bright	┢	Tataelf Grauf Weight (Max.) 28,550	utta	, , ,
fuet at 0 0%/gal US gal.	Fued Tenks 156	Cur Lank 35	Rear Sour	1103	A Parise	1	1 1	V Ted Outnoon Pode		Total	Propulsion		Mager	┢	Taknoff Grout Weignt iben !	e co d	1-4:
Fued on 8 0 Margail U S gad.	Fussige Fud Tenkn 156	0.260 Ail Tonk 125	When Rea Sou 31	Total 4	6124	fusions	Wing 82	V Ted Outroper Pade	Venne	048.0		Span Daffer tree Pagasus YF402 AR 404 Engine	19-056-061 10	2270 1 Wespit Empty	Takoof Grout Weiger (Man.)	rea a	1-4:
V Tart Puet at 8 0 M/gal US gal.	47.54 25.03 Fusabage Fued Tenks 156	0.201 0.264 Atl Tank 1.25	63 WARN BOAR SOM 33	133 95 67 39 86 93 Total 4 1103	99.79 46.441 61.24	430 21' 32' Fuelos	Ned 28	10 Outroper Pods	Venite	+12°45,-11°46,°	HSA HSA	Deffer tree	64 to 4 to 55.0da + 10,+260+61 70	2270 1 Wespit Empty	Takest Grau Megit (Mar.)		1-4:

2.2 DIMENSIONAL DATA

Details of YAV-8B physical characteristics are presented in this section.

2.2.0 WEIGHT AND FUEL CAPACITY

Operating Weight, Flight Test Aircraft - Lb Internal Fuel - Lb	13847 7185
2.2.1 WING DIMENSIONAL DATA	
Area (theorectical) - Ft ² Span (projected) - Ft Aspect Ratio Taper Ratio Chords (projected):	230.0 30.33 4.0 0.3
Root (theoretical) - In Tip (theoretical) - In Mean Aerodynamic - In	139.99 42.0 99.79
Thickness Ratio (t/c) (FIGURE 2.2-1) Root - % Tip - %	11.5 7.6

Incidence (with respect to FRL):

Root (exposed theoretical) - Deg.	3.0
Tip - Deg.	-5.0

Sweepback (projected):

Leading Edge - Deg.	36.0
1/4 Chord Line - Deg.	30.62

Dihedral - Deg. -11

Twist (FIGURE 2.2-2) - Deg. -8

Airfoil (FIGURES 2.2-3 and 2.2-4)

Modified
Supercritical

2.2.2 HORIZONTAL TAIL DIMENSIONAL DATA

Area (projected) - Ft ²	47.54
Span (projected) - Ft	13.92
Aspect Ratio	4.079
Taper Ratio	0.201

ORIGINAL PAGE IS OF POOR QUALITY	MDC A7910 Volume I
Sweepback (projected):	
Leading Edge (theoretical) - Deg. 1/4 Chord Line (theoretical) - Deg. Trailing Edge - Deg.	39.81 33.91 10.77
Dihedral - Deg.	-15.84
Chords:	
Root (centerline of airplane) - In. Tip (theoretical) - In. Mean Aerodynamic chord - In.	67.39 13.56 46.44
Pivot Line Location: % MAC	
(F.S. 559.05 and W.L. 22.35)	22.42
Airfoil Section:	HSA Symmetric
Thickness Ratio (t/c):	
Root (centerline of airplane) Tip (theoretical)	.07 .07
Tail Length (from 25% wing MAC to 25% tail MAC) - In. Horizontal Tail Volume Ratio	. 199.01 .412
Deflection (with respect to water line plane) (Includes \pm 1.5° Autostab)	
Maximum Nose down - Deg. Maximum Nose up - Deg.	-11.75 +12.75
2.2.3 VERTICAL TAIL DIMENSIONAL DATA	
Area (theoretical above W.L. 126.50) - Ft ² Span (W.L. 126.50 to W.L. 194.00) - Ft Aspect Ratio Taper Ratio	25.83 5.63 1.23 .268
Chord:	
Root (W.L. 126.50) - In. Tip (theoretical) (W.L. 194.00) - In Mean Aerodynamic Chord (W.L. 153.76) - In	86.93 23.3 61.24
Airfoil Section:	HSA Symmetric
Thickness Ratio (t/c): Root (W.L. 126.50) Tip (theoretical) (W.L. 194.00)	.082 .052

		ORIGINAL PAGE 13 OF POOR QUALITY	MDC A7910 Volume I
Sweepback	:	SOUTH SOUTH	
1/4 Ch	g Edge - Deg. ord - Deg. ng Edge - Deg.		47.36 40.37 8.15
MAC) - I	th (from 25% wing MAC n Tail Volume Ratio	to 25% tail	187.99 .058
2.2.4 FUSELAGE	DIMENSIONAL DATA		
Width (ma Depth (ma Maximum F Maximum F Thrust Ax	aximum) (parallel to w ximum) - Ft ximum) - Ft rontal Area (fuselage rontal Area (including is (zero nozzle deflec to W.L.) - Deg.	alone) - Ft ² inlets) - Ft ²	42.89 8.00 5.60 19.2 31.5
2.2.5 FLAP DATA	<u>A</u>		
Area (per Span (per Deflection STO Mon			15.49 64.54
t e	<pre>> 50° - Deg. < 25° - Deg. Mode - Leg.</pre>		61.7 25 0-25
2.2.6 AILERON	DATA		
Span (per Deflection Un Wi	side) - Ft ² side) - In n (including + 2° Auto drooped - Deg. th 15° droop - Deg. eral stick travel rest		6.19 58.9 +12/-27 +27.2/-10.4
	full deflection above		
2.2.7 RUDDER D			
Area - Ft Span - In Hinge Lin	2 e Location - % W.L. Ch	ord	5.27 60.75
	W.L. 126.50) .L. 187.25)		11.87 33.68
Sweepback	of Hinge Line - Deg		12.73
Deflection	n - Deg		<u>+</u> 15.0

ORIGINAL PAGE OF POOR QUALITY	MDC A7910 Volume I
2.2.8 REACTION CONTROL SYSTEM	
Front Fuselage Pitch Nozzle (thrusting upward)	
Position - In F.S. W.L. B.L. Thrust Incidence (with respect to i.L.) - Deg (with respect to B.L.) - Deg	137.48 70.36 0.00 97.63 0.00
Rear Fuselage Pitch Nozzle (thrusting upward)	
Position - In F.S. W.L. B.L. Thrust Incidence (with respect to V.L.) - Deg (with respect to 3.L.) - Deg	605.51 114.63 0.00 82.00 0.00
Rear Fuselage Yaw Nozzles (thrusting port and starboard)	
Position - In F.S. W.L. B.L. Thrust Incidence (with respect to B.L.) - Deg (with respect to W.L.) - Deg	599.00 120.50 0.00 <u>+</u> 90.00 0.00
Wing (port and starboard) roll nozzles (thrusting upward)	
Position - In F.S. W.L. B.L. Thrust Incidence (with respect to V.L.) - Deg (with respect to B.L.) - Deg	432.45 83.89 177.84 83.00 Outbd 5.00
Wing (port and starboard) roll nozzles (thrusting downward)	
Position - In F.S. W.L. B.L. Thrust Incidence (with respect to W.L.) - Pag (with respect to B.L.) Deg	432.45 83.89 177.84 263.00 Inbd 3.00

Reaction Control System moments versus control surface deflection or stick position

0% of maximum moment for stabilator @ 2° 100% of maximum moment for stabilator @ + 10° and -3°

0% of maximum moments for neutral lateral stick 100% of maximum downblowing moments fo: 55% (2.31 in) of maximum lateral stick deflection

0% of maximum upblowing moments for neutral to 55% (2.31 in) of maximum lateral stick deflection 100% of maximum upblowing moments for 80% (3.365 in) lateral

0% maximum moments for rudder @ 0° 100% of maximum moments for rudder @ +10° and -10°

stick deflection

FIGURE 2.2-1
YAV-8B SPANWISE THICKNESS DISTRIBUTION COMPARISON

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 2.2-2 YAV-8B GEOMETRIC TWST DISTRIBUTION

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 2.2-3
YAV-8B DESIGN STREAMWISE CAMBER DISTRIBUTION

FIGURE 2.2-4
YAV-8B LEADING EDGE RADIUS DISTRIBUTION

2.3 WEIGHT AND BALANCE DATA - Included within this section are the weight, inertia, and center of gravity data for the YAV-8B flight test configuration of clean aircraft with (2) gun pods, (2) inboard pylons, (2) intermediate pylons, and centerline rack. The moment of inertia and C.G. position data for this configuration are shown in Figure 2.3-1. In addition to the effect of pylons and gun pods, the zero fuel weight includes the pilot, oil, trapped fuel, and oxygen. A center of gravity envelope is presented in Figure 2.3-2.

			MOMENT	OF INERTIA,	Slug-FT ²		CENTER C	CENTER OF GRAVITY-IN	-IN
GROSS WEIGHT-LB	FUEL-LB	GEAR	I xx (ROLL)	I yy (PITCH)	(WY) 22 (YAW)	I xz	PUSELAGE STATION	BUTT- LINE	WATER- Line
1. 21527	7185	DOWN	10530	32948	39794	1871	350.7	.042	98.9
1. 21527	7185	an	19210	33098	40262	1860	350.9	.042	6.96
2. 21032	7185	an	10200	32788	39951	1872	349.9	.043	6.66
3. 19133	5286	uP	9624	32149	39204	1605	348.5	.048	7.76
4. 18158	4311	an	6606	31860	38634	1499	347.7	.050	97.2
5. 16280	2433	å	6227	31081	35157	1371	344.2	.056	96.5
6. 14657	810	å	6010	28889	32818	1153	343.4	.062	95.7
7. 14254	403	å	5927	28556	32460	1053	344.4	.063	1.96
8. 13847	0	an	5832	28492	32388	1036	344.6	990.	9.96
8. 13847	0	DOWN	6152	28342	31920	1047	344.3	990.	6.,6
							¥		

1. Takeoff Gross Weight
2. Water Expended
3. Wing Fuel Partially Expended
4. Combat Weight (40% Fuel Expended)
5. Wing Fuel Expended
6. Fusulage Fuel Partially Expended
7. Fuselage Fuel Expended
8. Feed Tank Fuel Expended

FIGURE 2.3-1 YAV-8B FLIGHT TEST AIRCRAFT INERTIA AND C.G. DATA

ORIGINAL ... OF POOR QUALIFIE

- 1. Takeoff gross weight
- 2. Water expended
- 3. Wing fuel partially expended
 4. Combat weight (40% fuel expended)
 5. Wing fuel expended
 6. Fuselage fuel partially expended
 7. Fuselage fuel expended

- 8. Feed tank fuel expended

FIGURE 2.3-2 YAV-8B FLIGHT TEST AIRCRAFT CENTER OF GRAVITY ENVELOPE

2.4 FLIGHT CONTROL SYSTEM

The YAV-8B flight control system consists of conventional ailerons, rudder, and stabilator, with a reaction control system (RCS) acting about all three axes during hover and transition. The stabilator and ailerons are power operated while the rudder is connected directly to the rudder pedals. In view of the ineffectiveness of aerodynamic controls at low speeds, high pressure compressor bleed air is fed to the aircraft extremities and ejected through variable shutter valves connected to the conventional controls to provide reaction control.

A single channel limited authority stability augmentation system (SAS) is provided to facilitate control in hover and transition. It may be selected "on" whenever the aircraft is flying below 250 KIAS with either the gear or flaps extended.

2.4.1 LONGITUDINAL CONTROL SYSTEM - Longitudinal control of the aircraft is maintained by a combination of a stabilator and reaction control system as shown in Figure 2.4-1. Control stick movement is transferred to the stabilator as shown in Figure 2.4-2. Longitudinal feel is provided by a hydraulic q-feel unit, augmented by nonlinear backup springs and a bobweight. The bobweight contributes 1.5 lb/g at the stick, generated by vertical g forces. The stick force gradient and dynamic pressure relationship is shown in Figure 2.4-3. This q-feel unit is operative above 250 KIAS and provides a stick stiffness increasing in proportion to dynamic pressure. Longitudinal trim is obtained by electrically biasing the q-feel unit which ensures full control authority. Trim capability is from -4 to +7.5 degrees of stabilator and operates at 2.2 degrees/sec. The effect of trim range on spring force is shown in Figure 2.4-4.

Low speed pitch control is by reaction control valves at the nose and at the rear fuselage extension, the latter being fed through the same ducting as the yaw valves. The front pitch shutter is linked to the control column, and the rear shutter is linked to the stabilator. The relation of stabilator/stick position to pitch valve opening is shown in Figure 2.4-5. The pitch RCV valves thrust upward.

The pitch autostabilizer has an authority of ± 1.5 degrees of stabilator and works through the forward and aft reaction control valves. The forward RCS SAS can be diseagaged separately.

2.4.2 LATERAL CONTROL SYSTEM - Conventional allerons in combination with reaction controls provide lateral control as shown in Figure 2.4-6. The ailerons are power-operated with artificial feel derived from a nonlinear spring, which can be biased by an electrical trim motor. Trim capability is equivalent to 1/3 of lateral stick deflection and operates at 1 deg/sec of aileron. The aileron deflection and spring force due to stick movement are shown in Figure 2.4-7. Lateral stick travel is restricted to 75% of full deflection above 250 KIAS, but the pilot can override the limiter in an emergency.

MDC A7910 Volume I

FIGURE 2.4-1 YAV-8B LONGITUDINAL CONTROL SYSTEM

FIGURE 2.4-2
YAV-8B STABILATOR ANGLE vs STICK POSITION

FIGURE 2.4-3 YAV-8B LONGITUDINAL Q - FEEL SYSTEM For $V_{\text{Cal}} > 250 \text{ kts}$

ORIGINAL TOTAL OF POOR QUALITY

FIGURE 2.4-4
YAV-8B EFFECT OF TRIM RANGE ON
LONGITUDINAL SPRING FORCE

FIGURE 2.4-5
YAV-8B LONGITUDINAL RCS VALVE OPENINGS

MDC A7910 Volume I

FIGURE 2.4-6 YAV-88 LATERAL CONTROL SYSTEM

FIGURE 2.47
YAV-8B LATERAL STICK CHARACTERISTICS

Roll control valves on the wing tips are linked to the ailerons and thrust either up or down. Lateral stick position versus roll valve opening is shown in Figure 2.4-8.

A roll auto stabilizer, similar to the pitch system, is also provided in the stability augmentation system (SAS) and has an authority of $\pm 2^{\circ}$ of aileron.

2.4.3 <u>DIRECTIONAL CONTROL SYSTEM</u> - Directional control is provided by a combination of a conventional unpowered rudder and directional reaction controls as shown in Figure 2.4-9. Rudder feel is primarily aerodynamic but a centering spring is fitted to produce some feel at low speeds. Rudder deflection and spring force versus pedal deflection are shown in Figure 2.4-10. The rudder trim has a capability of +9.5° of deflection.

FIGURE 2.4-8
YAV-8B LATERAL RCS VALVE OPENINGS

YAV-8B DIRECTIONAL CONTROL SYSTEM

FIGURE 2.4-10
YAV-8B DIRECTIONAL CONTROL SYSTEM CHARACTERISTICS

Reaction control in yaw is by port and starboard valves in the rear fuselage extension, the shutter being opened by rudder movement as shown in Figure 2.4-11.

The yaw autostabilizer is provided in the SAS and has a yaw reaction jet authority of +5 degrees of equivalent rudder.

- 2.4.4 FLAPS AND DROOPED AILERONS The YAV-8B high lift system consists of single slotted flaps and drooped ailerons. Operation of the flap and aileron droop system is controlled by three switches (flap actuation switch, flap mode switch and flap position switch). The flap switches and system logic are presented in Figure 2.4-12 and discussed below.
- 2.4.4.1 Flap Actuation Switch This 3-position, toggle lever-lock, flap switch is located on the left aft console. Switch positions are ON (neutral), OFF (aft) and RESET (forward). Selection of the ON position activates the entire flap system and locks the switch out of the OFF position with the lever-lock. RESET is a momentary position which reactivates the normal modes of flap operation if the system has failed due to a transient electrical problem. Flap asymmetry must be corrected before RESETting the flap system.

FIGURE 24-11
YAV-8B
DIRECTIONAL RCS NOZZLE OPENINGS

FIGURE 2.4-12
YAV-88 FLAP SYSTEM/AILERON DROOP LOGIC

ORIGINAL PARAMETER

2.4.4.2 Flap Mode Switch - This 2-position switch is located on the left forward console. Switch positions are DOWN and UP. The DOWN position is used for both takeoff and landing. The DOWN mode switch position activates the flap-nozzle interconnect schedule (shown in Figure 2.4-13) if the air-speed is less than approximately 165 KIAS (actual airspeed limits are 175 KIAS accelerating and 155 KIAS decelerating). The flaps move down at 45.9 degrees per second and up at 64 degrees per second (no load rates). The flap-nozzle interconnect is overridden at higher than the above-mentioned airspeeds, and the flaps are driven to the 25 degrees position at a 7 degree per second no-load rate. The maximum nozzle rotation rate is about 90 degrees per second.

The DOWN flap mode switch position also activates the aileron droop system, deflecting the ailerons down 15 degrees (at a no-load rate of 8 degrees per second), whenever the pilot commands the nozzles to '6 degrees or greater and the airspeed is less than approximately 165 KIAS (actual airspeed limits are 175 KIAS accelerating and 155 KIAS decelerating). Aileron retraction is at 5.5 degrees per second no-load rate. Aileron droop is available at any nozzle angle while on the ground by a wei on wheels switch with a 3 second time delay. This system allows che_kout on the ground, and assures full droop at the moment of nozzle rotation during short takeoffs. The 3 second time delay prevents premature droop retraction if the aircraft becomes light on the gear during lightweight takeoffs prior to nozzle rotation.

FIGURE 2.4-13
FLAP-NOZZLE INTERCONNECT SCHEDULE
Static Relative Angles
Flap Mode Switch — DOWN

ORIGINAL PAGE 19 OF POOR UNIVERSITY

When <u>UP</u>, the switch energizes the flap position switch on the throttle handle allowing pilot control of flap position. If <u>UP</u> flap mode is selected from the DOWN mode, the flaps will retract to 0° at a 7° per second no-load rate and the ailerons will undroop at a no-load rate of 5.5° per second.

- 2.4.4.3 <u>Flap Position Switch</u> This 3-position switch on the throttle lever is thumb operated, momentar? spring-loaded to the OFF position. Switch positions are <u>UP</u> (forward), <u>DOWN</u> (aft) and <u>OFF</u> (neutral). With the <u>UP</u> flap mode selected, this switch allows the pilot to select any flap position from 0° to 25° at a 7° per second no-load rate. Flap travel continues so long as the pilot displaces the switch in the selected direction or until 0° or 25° flap travel is reached.
- 2.4.4.4 <u>Flap Asymmetry</u> If flap position asymmetry reaches 5°, the flaps stop at the failed position. The flaps can be raised by using the throttle lever switch. No asymmetry comparison is provided in this mode.
- 2.4.5 LIFT IMPROVEMENT DEVICE SYSTEM (LIDS) The LIDS consists of a retractable fence located between and forward of the gun pods and external strakes mounted on the gun pod fairings. These strakes and fence provide lift improvement in ground effect during VTO operation and inhibit engine exhaust reingestion. Below 165 KIAS, the retractable fence extends and retracts with the landing gear. Above 165 KIAS, the fence automatically retracts.
- 2.4.5.1 LIDS Switch A two-position LIDS switch labeled AUTO and RETRACT is on the lower left side of the main instrument panel. Below 165 KIAS with the switch in AUTO, the LIDS fence extends and retracts with the landing gear. Above 165 KIAS or with the switch in RETRACT, the LIDs fence retracts or will not extend when the landing gear is down or selected down. The LIDS switch should be in AUTO except for conventional takeoffs and landings. In emergency operation the LIDS fence extends pneumatically with the landing gear regardless of the LIDS switch position or airspeed.
- 2.4.6 <u>REACTION CONTROL SYSTEM (RCS)</u> Compressor delivery (eighth stage) air is available on demand for the aircraft reaction control system. The quantity demanded is a function of pilot control inputs. The master valve is mounted on the underside of the engine, and is geared to the main nozzle rotation so that maximum airflow is provided at approximately 15 nozzle deflection. The bleed air is ducted to the nose (front pitch valve), tail (rear pitch and yaw valves) and wing tip (roll valves), as shown in Figure 2.4-14. Locations of the reaction control valver are presented in Section 2.2.8.

2-25

2.5 STABILITY AUGMENTATION SYSTEM

The Stability Augmentation System (SAS) of the YAV-8B is a limited-authority three-axis simplex autostabilization system. The SAS is provided to improve controllability in hovering and transitional flight conditions. The SAS is controlled by the AUTO STAB MASTER and AUTO STAB ENGAGE switches located on the left console. A separate switch is provided for the forward reaction control valve (RCV) series servo. Although the axes cannot be selected individually, failure or one channel does not affect operation of the others except that the yaw SAS is inoperative without the roll SAS. Position switches in the flap and landing gear linkage disengage the SAS when the flaps are selected UP, or the landing gear is retracted. When the aircraft weight is on the main gear the yaw SAS is disengaged. If the flaps are selected DOWN, the retraction of the landing gear does not disengage the SAS. Above _______ 250 KIAS a signal from the air data computer disengages the SAS. The authority of the system about each axis is shown in Figure 2.5-1.

		SAS AUTHORITY		
AXIS		Δ CONTROL SURFACE DEG	ACE Δ RCS OPENING Z OF FULL OPEN	
PITCH	FORWARD RCS AFT RCS	-1.5 +1.5	28 19	
ROLL		<u>+</u> 2.0	16	
YAW		<u>+</u> 5.0	50	

FIGURE 2.5-1
STABILITY AUGMENTATION SYSTEM AUTHORITY

Functional block diagrams for the longitudinal and lateral-directional stability augmentation control systems are shown in Figures 2.5-2 - 2.5-4. Feedback gains are summarized in Figure 2.5-5 to 2.5-7.

Figure 2.5-2 shows the longitudinal stability augmentation control system. The pitch rate feedback loop is closed through the stabilizer actuator. The aft pitch reaction control valve is driven mechanically by the stabilizer actuator and exhausts downward only. A series servo actuator on the forward pitch RCV enhances stability augmentation when the forward RCV is demanded open and the RCS is activated such as in the hover mode or during short takeoff and accelerating transition flight.

MDC A7910 Volume I

ORIGINAL PITTER I

A diagram for the roll and yaw stability augmentation system is shown in Figure 2.5-3 and 2.5-4. It consists of a rate feedback loop for roll and cancelled rate damping and turn coordination for yaw. Cancelled rate damping consists of a yaw rate feedback processed through a high-pass filter which cancels the steady state signal. This feedback is combined with a lateral acceleration feedback in a manner to improve turn coordination at the transition speeds. The yaw SAS only operates through the yaw RCV; therefore, the yaw SAS is only effective when the RCS is activated.

Selected gains for stability augmentation are summarized in Figures 2.5-5 to 2.5-7.

MDC A7910 Volume I

AV-88 LONGITUDINAL STABILITY AUGMENTATION SYSTEM

MDC A7910 Volume I

ORIGINAL TO SOME OF POUR QUALITY

MDC A7910 Volume I

PARAMETER	VALUE	UNITS
\FT GEARING	2.75-1.758274 $^{\delta\theta}$ +.09038152 $^{\delta}_{\theta}$ 01149626 $^{\delta}_{\theta}$	DEG/IN
AFT RCV GEARING	1.085 (6 _H -2.0)	IN ² /DEG
FWD GEARING	2.126 (δ_{θ} 5)	DEG/IN
FWD RCS SERIES SERVO	1/(1 + .01758)	•
FWD RCV CONVERSION	1.205	IN ² /DEG
$\kappa_{\mathbf{q}}$.22	DEG/DEG/SEC
PITCH DEADSPACE	<u>+</u> .06	IN
PITCH RATE STRUCTURAL FILTER	(1/(1 + .0222S))* (1/(1 + .0448S))	-
STABILATOR ACTUATOR	1/(1 +.0258)	-

FIGURE 2.5-5
LONGITUDINAL STABILITY AUGMENTATION PARAMETER VALUES

PARAMETER	VALUES	UNITS
AILERON ACTUATOR	1/(1 + .0138)	-
DOWNBLOWING GEARING	.778	IN ² /DEG
K _p	. 346	DEG/DEG/SEC
PORT GEARING	0 + 3.43888δφ 410617δφ ² + .0409055δφ ³	DEG/IN
ROLL RATE COMPENSATION	(1 + .781S)/(1 + 1.29S)	-
ROLL RATE STRUCTURAL FILTER	1/(1 + .0164S)	-
STARBOARD GEARING	$0 - 3.438886\phi$ 410617 $6\phi^2$ 0409055 $6\phi^3$	DEG/IN
UPBLOWING GEARING	.477	IN ² /DEG

FIGURE 2.5-6
LATERAL STABILITY AUGMENTATION PARAMETER VALUES

ORIGINAL TATAL OF POOR QUALITY

PARAMETER	VALUE	UNITS
CROSS GEARING	3.05	DEG/IN
K _{AY}	. 83	DEG/FT/SEC ²
K _R	.669	DEG/DEG/SEC
LATERAL ACCELERATION COMPENSATION	(1 + .258)/(1 + .1258)	-
LATERAL ACCELERATION NOTCH FILTER	$(s^2 + 2.01062s + 404.26)$ $(s^2 + 20.1062s + 404.26)$	
LATERAL ACCELERATION STRUCTURAL FILTER	$164/(s^2 + 4s + 164)$	-
PEDAL GEARING	-7.07	DEG/IN
ROLL TO YAW COMPENSATION	.58/(1 + .04358)	-
YAW RATE STRUCTURAL FILTER	1/(1 + .04358)	-
YAW RATE WASHOUT	s/(1 + 3.11s)	-
YAW RCV GEARING	. 35	IN ² /DEG
YAW RCV SERVO	1/(1 + .01758)	-

FIGURE 2.5-7
DIRECTIONAL STABILITY AUGMENTATION PARAMETER VALUES

OF POOR COLLECT

2.6 PROPULSION SYSTEM

The propulsion system of the YAV-8B aircraft consists of the YF402-RR-404 vectored thrust engine, built by Rolls Royce Limited, Aero Division-Bristol, and an air induction system. The engine is similar to the F402-RR-402 in the AV-8A with a number of design changes to improve performance and satisfy increased aircraft power extraction requirements. These changes include zero degree scarf angle front nozzles and an improved gearbox.

The air induction system retains the AV-8A basic design concept but incorporates refinements to improve inlet performance and reduce distortion. This section describes the physical and operational features of these propulsion system components.

2.6.1 YF402-RR-404 ENGINE - The YF402-RR-404 engine shown in Figure 2.6-1 is based on long and extensive development of the Pegasus engine family which includes Pegasus 6, 10 and 11 engines. The engine provides lift thrust for takeoff and landing, cruise thrust for conventional wingborne flight, deflected thrust for inflight maneuvering and compressor bleed air for the aircraft reaction control system. This versatility has been achieved through the use of a unique thrust-vectoring nozzle system on a conventional turbofan engine designed for V/STOL operation. The nozzle system can direct the engine thrust from eff (0°) through vertical (81°) to a reverse thrust position of 98.5° relative to the engine centerline.

FIGURE 2.6 1 YAV-8BIYF402-RR-404 ENGINE

MDC A7910 Volume I

2.6.1.1 General Description - The YF402-RR-404 engine retains the same basic dimensions and features of the F402-RR-402. The engine consists of fan and compressor assemblies, an annular combustor, two turbine assemblies, and the thrust-vectoring exhaust nozzle system. The significant engine features are:

- o Non-mixed-flow turbofan
- o Two-spool construction High Pressure (HP) and Low Pressure (LP) rotors are contra-rotating to minimize gyroscopic effects. Four main bearings are used to support the two rotors (two bearings per rotor).
- o Three-stage fan The first two stages are overhung from the front fan bearing. Inlet guide vanes are not used, thus reducing Foreign Object Damage (FOD) susceptibility and eliminating the requirement for anti-icing.
- o Eight-stage high-pressure compressor Incorporates variable inlet guide vanes and interstage bleed valves. Aircraft services bleed is extracted from the 6th stage, and compressor discharge air (8th stage) is provided for the aircraft reaction control system (on demand).
- o Annular combustor with J-tube vaporizing fuel injection
- o Combustor water injection
- o Two-stage air cooled HP turbine
- o Two-stage LP turbine

These engine features are illustrated in Figure 2.6-2 and significant design characteristics are tabulated in Figure 2.6-3.

An uprated gearbox driven by the high pressure rotor is wounted on top of the engine. Drive pads are provided for the engine fuel pump, HP tachometer generator, inlet-guide vane control, gas-turbine starter, and (2) hydraulic pumps. A shaft geared to the low-pressure rotor is used to drive the LP tachometer-generator.

The engine fuel control is a hydromechanical unit mounted to the accessory gear box. The fuel control unit incorporates low pressure and high pressure fuel pumps, a low-pressure rotor speed governor, and acceleration and flow control units.

The engine oil system is self-contained and is of the scavenge-return type, incorporating a fuel-cooled oil cooler. The oil tank is mounted on the engine.

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 2.6-2 PEGASUS ENGINE DESIGN FEATURES

Fan stages	3
Fan airflow	430.7 ib/sec
Fan pressure ratio	2.29
Fan speed	6,500 rpm
Compressor stages	8
Compressor airflow	184.2 ib/sec
Compressor speed	11,000 rpm
Compressor pressure ratio	6.0
Overail pressure ratio	13.7
Bypass ratio	1.34
HP turbine stages	2
LP turbine stages	2
	GP21-0902-20

FIGURE 2.6-3
YF402-RR-404 SPEC ENGINE CHARACTERISTICS
100% Corrected Fan Speed

MDC A7910 Volume I

The engine is equipped with four rotatable nozzles, two on each side of the engine. All four nozzles are a fixed area, convergent type. The nozzles are mechanically interconnected and are positioned simultaneously by an air actuated drive mechanism which provides the desired degree of thrust vectoring. The front (cold) nozzles are airframe mounted on each side of the fan delivery duct and are interchangeable between sides. They incorporate a zero degree scarf angle. This configuration was developed in an extensive test program conducted jointly by Rolls-Royce (RR) and MCAIR. It was originally conceived to reduce an adverse exhaust plume/wing/pylons interaction that exists with the AV-8A front nozzles. The zero scarf nozzle successfully demonstrated a reduction in these adverse interactions in full scale tests at NASA Ames Research Center. In developing this configuration to a flight worthy nozzle for the YAV-8B, RR has also improved the nozzle efficiency and flow characteristics. Test stand calibration of the first YAV-8B engine, conducted by Roll -Royce during April 1978, demonstrated a 200 lb. thrust improvement at the Short Lift Wet rating.

The rear (hot) nozzles are mounted on the turbine exhaust duct, are also interchangeable and are unchanged from the AV-8A/F402-RR-402. The combined effective flow areas are 389 sq. in. for both front nozzles and 530 sq. in. for both rear nozzles. Each nozzle incorporates two airfoil section turning vanes spaced equidistant across the nozzle exit.

The nozzle control system consists of a nozzle control lever mechanically connected to duplicate independent air motors which are, in turn, connected to the nozzle drive system. The nozzle system is shown in Figure 2.6-4. The YF402-RR-404 retains the current version of the Dowty hydromechanical fuel control unit, including all approved Reliability and Maintainability modifications.

Other features incorporated in the YF402-RR-404 include:

New bulkhead to match the new wing lower moldlines

Fire extinguisher pipes deleted

Simplified electrical harness

External dimensions and details of the engine are presented in Figure 2.6-5.

2.6.2 ENGINE OPERATION - Engine operation involves three basic modes; engine starting, V/STOL flight, and conventional flight. The engine is controlled through two primary systems. These are the engine fuel control and the nozzle vectoring control. The fuel control regulates engine speed and temperature (and therefore thrust) while the nozzle control system controls the direction of the engine gross thrust vector.

ORIGINAL PAGE (9) OF POOR QUALITY

FIGURE 2.6-4
PEGASUS NOZZLE DRIVE SYSTEM

ORIGINAL PAGE IS OF POOR QUALITY

2.6.2.1 Fuel Control System - The YF402-RR-404 engine is controlled by a hydromechancial fuel control system which governs fan speed and maintains operation within selected design limits. The control system components are: fan speed governor, limiters, pressure drop regulator for the main metering valve, acceleration control unit, air bleed reset unit (which provides additional fuel flow whenever reaction control system (RCS) bleed is demanded), water bypass solenoid, fuel gallery and check valves, igniterjets and main-jets. Engine operating limits are maintained by a set of limiters which operate on engine internal pressure and temperature signals. The control system also has the capability to override the limiters and to select an alternate manual fuel control circuit which serves as a backup control system. Additional engine control is provided by the Inlet Guide Vane (IGV) control unit, which regulates compressor IGV position and Blow-off (bleed) Valve operation. The engine controls are illustrated in Figure 2.6-6.

The governing function of the control operates above 85% fan speed by controlling the fuel metering orifice area as a function of fan speed, thus maintaining a constant relationship between engine speed and power lever angle. Acceleration and deceleration circuits override the governor when an error exists between the actual fan speed and the power lever commanded fan speed. The Acceleration Control Unit (ACU) schedules maximum fuel flow as a function of compressor discharge pressure (P3), and fan delivery pressure (P13) through positioning of the main metering valve. At less than 85% fan speed the throttle position directly selects a metering orifice area independent of fan speed, thus directly controlling fuel flow. In this regime, the fuel flow is independent of altitude and ambient temperature. The engine speed is determined by the fuel flow with no control or feedback into the governing system. Fan speed will vary at a given throttle position as ambient conditions vary.

o <u>Limiters</u> - The limiters sense pressure and temperatures and compare the observed values against reference limit values (termed datums). When a limit is reached or exceeded the fuel control reduces fuel flow as necessary to maintain engine operation within the specified limits. The limits used to control the engine are exhaust gas temperature (EGT), compressor discharge pressure, and HP compressor pressure ratio.

The EGT limiter is an electronic control unit which senses EGT. When the EGT exceeds datum level, the limiter acts through the fan speed governor to reduce fan speed until the corresponding EGT is within the proper limits. The EGT limiter has three temperature datums, Short Lift Wet (SLW), Short Lift Dry (SLD) and Maximum Thrust. The specified datum to which the limiter operates is dependent on the aircraft mode of operation. The EGT datums are interlocked with the nozzle position and landing gear electrical circuits so that the V/STOL datums, SLW and SLD, can only be used when either the landing gear is selected down or the nozzles are rotated to greater than 16°.

OPIGINAL PACE: OF FOOR QUALITY

FIGURE 2.6-6
ENGINE CONTROL DESCRIPTION

The Pressure Ratic Limiter (PRL) maintains stable engine operation at high altitude/low speed conditions by limiting maximum engine speed, and therefore maximum airflow. Corrected fan speed is limited to a maximum of 101% through limitation of the pressure ratio across the HP compressor. This is achieved by the PRL, which senses fan and HP delivery pressure, bleeding fuel from downstream of the main metering valve back to pump inlet. A signal from the air data computer renders the PRL inoperative at altitudes below 10,000 ft where corrected speed limiting is neither needed nor desired.

lime Compressor Pressure Limiter (CPL) senses HP compressor exit pressure and operates at approximately 255 psig to restrict the P3 pressure signal to the ACU, thus controlling the matered fuel supply. The effect is to limit the maximum combustion chamber pressure and also the LP shaft torque to values which permit the design cyclic fatigue life to be achieved on these items.

In case of emergency, the limiters, with the exception of CPL, can be overriden by the pilot. A switch on the throttle quadrant cuts the pressure ratio and exhaust gas temperature limiters out of the control circuit. The switch can be actuated either by hand or by pushing the throttle hard against the forward throttle stop. Once the limiters have been overridden, it is necessary for the pilot to manually control engine speed and temperature through the throttle.

- o <u>Inlet Guide Vane Control</u> The Inlet Guide Vane (IGV) Control regulates the MF compressor variable inlet guide vanes. They are operated on a linear schedule against corrected compressor speed from +40° to -2°. The IGV control uses fuel as its hydraulic medium but is otherwise completely separate from the main fuel system.
- o Blow Off Valve Control The Blow Off Valve (BOV) Control regulates the HP compressor bleed valves on the 5th stage which bleed approximately 10% of the core airflow into the plen chambe. These are closed by a rotary valve mounted on the IGV operating shaft. The BOV closes/opens at 18° IGV angle which corresponds to approximately 70% HP RPM/55% fan RPM. With the BOV open, additional HP compressor surge margin is obtained at low speeds to assist starting and acceleration.
- o <u>Water Injection</u> Water can be injected into the combustion chamber to augment thrust for V/STOL operation. The control system resets to higher speed and temperature limits since the use of water allows increased turbine inlet gas temperatures without increasing metal temperature above the corresponding dry value. The water flow rate is approximately 350 pounds per minute.
- o Manual Fuel Control In the event of a malfunction in the primary fuel control, the pilot can select manual fuel control operation. In this mode all governing, acceleration, deceleration, and limiting functions are bypassed and fuel flow is directly and mechanically controlled by the power lever. All limits must be pilot observed.

ORIGINAL PAGE IS OF POOR QUALITY

- 2.6.2.2 Nozzle Control Lystem The vectored thrust feature of the Pegasus engine enables the pilot to rotate the engine gross thrust vector to the optimum angle for a given flight condition. Thrust vectoring is accomplished through the simultaneous rotation of the four nozzles within the range of 0° to 98.5° relative to the engine centerline. This rotation is initiated by, and is proportional to, the movement of the nozzle control lever. This mo ement is transmitted via pulley and cable to duplicate air motors which are driven by sixth stage compressor bleed air. The air motors drive the nozzles through a system of shafts, gears, and chains. The nozzle control lever is the only additional cockpit con' 1 required for V/STOL operation; the only additional cockpit instrument is the gauge which displays the angular position of the rozzles.
- 2.6.2.3 Operating Limits The YF402-RR-404 engine control and time limits are shown in Figure 2.6-7. The time limitations shown are cumulative and include any time spent at higher power settings. The pilot must manually control the throttle so as not to exceed the fan speed limits at high ambient temperatures while using the Short Lift ratings at zero or low bleed rates. The Normal Lift and Maximum Continuous ratings also require pilot control over engine speed and temperature. Selection of dry limits by the fuel control is dependent upon the operating mode of the aircraft, i.e., V/STOL or conventional flight. This information is supplied by electrical signals taken from the nozzle and main landing gear posicions. Wet limits are actuated by pilot selection of water injection. Below 10,000 ft the pilot must manually control engine speed to stay within corrected speed limits since the PRL is inoperative.

For flight test purposes, the YF402-RR-404 engines have been cleared to operate at Combat EGT levels for wingborne flight and for extended periods within Normal Lift Dry for hover. Combat EGT levels of 650°C or 675°C are available for a maximum of 2.5 minutes in wingborne flight. This is achieved through the use of special EGT Limiter datum temperature selector

Rating	Fan speed limit (% N _F)	Corrected fan speed limit (% N _F / $\sqrt{6}T_2$)	Maximum exhaust gas temperature limit (°C)	Compressor discharge pressure limit (psig)	Cumulative time limit*
Short lift (wet)	107.0	106.5	745	255	15 sec
Short lift	103.5		715		15 sec
Normal lift (wet)	104.5		720		1-1/2 min
Normal lift**	100.0		695]	2-1/2 min
Maximum thru	95.5	101.0 above	610]	15 min
Maximum cont	89.0	10.000 ft	540		None
*Includes time a	t all biobar s	etione		استعبابات عيسا	GP21-0992-2

*Includes time at all higher ratings

**May also be used in flight as a combat power setting

FIGURE 2.6-7 YF402-RR-404 ENGINE OPERATING LIMITS

ORIGINAL PAGE IS

plugs, which substitute either 650°C or 675°C for the normal Max Thrust limit of 600°C. When either of the special plugs is installed, the Mnx Thrust EGT limitation must be manually controlled by the pilot. In addition, when operating in the Combat EGT regime, the fan speed must be limited to 100% at airspeeds between 250 to 450 knots, and to 95.5% at airspeeds above 450 knots. An engine life penalty is also assessed and flight using Combat EGT.

For the purposes of achieving steady state conditions during sustained performance hover activity, the YF402-RR-404 has been cleared to operate for 4 minutes at exhaust gas temperatures below 685°C, in lieu of the normal 2.5 minute limitation within Normal Lift Dry (NLD). Four minutes at 685°C vaults in the same number of Engine Life Recorder counts as does 2.5 minutes the NLD EGT limit of 695°C, therefore no engine life penalty is associated with this extension.

2.6.2.4 Engine Starting - The YAV-8B propulsion system is completely self-sufficient for engine starting. An engine mounted gas turbine starter (GTS) is started using internal battery power. The YAV-8B incorporates an improved Lucas GTS, which is derived from the Lucas Mk I and Mk II GTS units used on the AV-8A. The aircraft boost pumps are actuated by switches on the righthend instrument panel. Opening the LP fuel valve then allows fuel to be delivered to the engine LP fuel pump. Moving the START switch to ON opens a solenoid valve to deliver fuel to the GTS and arms the starting circuits. The momentary movement to the START position initiates the GTS and engine starting cycle.

The GTS is scarted by a 3.0 horsepower electrical motor powered by an aircraft battery. The electric motor automatically disengages when the GTS reaches self-sustaining speed. For engine starting, the GTS power turbine drives the engine through the auxiliary gearbox. Rotation of the HP spool allows fuel to be delivered to fuel-actuated engine accessories such as the IGV control. After the GTS has started, the HP fuel valve must be opened by advancing the engine throttle to the IDLE position. This allows fuel to be delivered through the fuel control units to the engine combustor. By the time the GTS output shaft and the HP rotor of the engine have accelerated to 3200 RPM, the engine is a f-sustaining and starter assist is no longer required. The GTS is then automatically shut down by shutting off its fuel supply. The engine continues to accelerate up to its idle speed of approximately 25% fan speed.

In order to stut down the engine, the throttle is simply retarded to the cutoff position, which closes the HP fuel valve and stops the fuel flow.

2.6.2.5 V'STOL Operation - In the V/STOL flight mode, the EGT limiter is reset from the wingborne flight limit to the lift rating limit. The thrust-vectoring exhaust nezzles are down and compressor bleed air is provided to the aircraft reaction control syst m.

ORIGINAL FACE ID OF POOR QUALITY

Whenever the nozzles are deflected more than 16° below the aft position or the main landing gear is locked down, the exhaust gas temperature limiter is reset to the Short Lift Dry value to allow operation at higher engine speed. Thrust augmentation is available by water injection into the combustor if the fan speed is at least 95%. Selection of water injection by the pilot turns on the water pump and resets the fan speed governor to a higher limit. The EGT limiter is reset to a higher value as soon as the water begins to flow. Automatic reversion to the Short Lift Dry rating will occur if the water supply is exhausted, the fan speed drops below 75%, or the pilot shuts off the water injection system switch.

Automatic engine control within the applicable speed and temperature limits is provided only in the Short Lift ratings; the pilot must manually control the engine to the Normal Lift speed and temperature limits.

Rotation of the nozzles beyond 36° fully opens a butterfly valve in the aircraft reaction control system duct that makes compressor discharge bleed air available for attitude control during takeoff and landing. Maximum airflow is available for nozzle deflections beyond 15. When the lift ratings are used, total thrust (including the thrust from the reaction control system) is maintained approximately constant over a range of bleed rates. (The extent of this range is dependent upon ambient temperature and power setting). This is accomplished by increasing fuel flow and the turbine inlet temperature as the bleed rate is increased. An air-bleed-reset within the fuel control unit provides the additional fuel flow during acceleration whenever bleed air is being extracted. As bleed is increased, the exhaust gas temperature will eventually reach a selected limit. Further increases in bleed then cause a reduction in thrust at the limiting temperature. When the nozzles are rotated aft, reaction control bleed is shut off. Also, when the nozzles are rotated aft to their conventional flight positions and the main landing gear is retracted, the EG1 limiter resets to conventional flight limits and the engine is controlled to the Maximum Thrust rating.

- 2.6.2.6 Conventional Flight Operation Engine operation in the conventional flight mode is similar to that of other engines. The highest power setting in normal operation is a 15 minute Maximum Thrust rating. The YF402-RR-404 engines have been cleared to a 2.5 minute Corpat rating for flight test. Thrust vectoring may be used as an aid to aircraft maneuvering, within the flight envelope restrictions. The nozzle system can be rotated through 98.5 to obtain reverse thrust either in flight or on the ground.
- 2.6.3 AIR INDUCTION SYSTEM The air induction system for the YAV-8B is the direct result of an inlet development program which follows a minimum change philosophy. The basic AV-8A inlet concept has been retained with modifications incorporated to achieve desired performance and distortion improvements. The inlet development program was directed toward an increase in V/STOL total pressure recovery and reduction in high speed distortion at high positive and negative angles of attack. Extensive inlet model testing at static, low speed and high speed conditions, combined with full scale test results at NASA Ames Research Center facilities, has shown that these objectives have been achieved with the YAV-8B inlet.

2.6.3.1 Physical Description - The YAV-8B inlet is a subsonic bifurcated pitot type and incorporates two side inlet ducts each of approximately 190° circular arc at the highlight plane. The ducts merge two inches ahead of the engine face. The main lip incorporates a large contraction ratio (highlight area divided by lip throat area, 1.24) where the lip throat is defined as the junction between a 2:1 quarter-ellipse lip and the internal duct lines. This lip shape is being used on the YAV-8B inlet because of its excellent V/STOL and high speed performance characteristics.

A large auxiliary inlet around the periphery of each cowl provides additional inlet area for takeoff and low speed operation. The double-door auxiliary inlet configuration is shown in Figure 2.6-8. Each auxiliary inlet contains seven passages which converge to form a continuous slot before entering the main inlet duct. The passages are separated by fore-and-aft struts which connect the front and rear sections of the inlet cowl. Each auxiliary inlet passage incorporates two free floating blow-in-doors hinged at their leading edges. The door external surface is flush with the aircraft moldline in the closed position.

The boundary layer bleed system, shown in Figure 2.6-9, is similar to that of the AV-8A. A flush bleed slot is located on the inboard wall of each inlet, immediately aft of the entry plane. The slot is covered by a two piece door (split into upper and lower halves) which is hinged at its leading edge and is spring-loaded closed. Boundary layer air from each slot is ducted upward to an exit at the rear of the canopy, from which it discharges overboard at an angle of approximately 45°.

The inlet plan and side views previously shown in Figure 2.6-8 illustrate the short highly curved nature of the inlet ducts. The duct length is roughly equal to the engine face diameter due to constraints set by the overall airframe layout. Figure 2.6-10 presents the inlet design parameters.

- 2.6.3.2 Operation The YAV-8B inlet has two separate and distinct operating modes, i.e., V/STOL and conventional flight operation. These modes are determined by the positions of the auxiliary inlets and the boundary layer bleed doors. Static pressure differential across these components determines their positions and hence the operating mode. The auxiliary inlet doors are free-floating, their positions determined only by static pressure differential. The spring-loaded boundary layer bleed doors are positioned by a st pressure differential and an opposing spring force.
 - o V/STOL Operation The engine airflow required for vertical or short takeoff is supplied at high total pressure recovery through use of a large inlet contraction ratio and auxiliary inlets. The auxiliary inlets increase available flow area, thus maintaining low velocity past the main inlet lips and minimizing total pressure loss. During V/STOL operation the free-floating auxiliary inlet doors open due to the pressure differential caused by the duct static pressure being less than ambient pressure. The combined effects of spring force and pressure differential hold the boundary layer bleed doors closed. Figure 2.6-11 illustrates inlet operation in the V/STOL regime.

FIGURE 2.8-8
GENERAL INLET ARRANGEMENT

FIGURE 2.6-9 BOUNDARY LAYER BLEED SYSTEM

ORIGINAL PAGE 19 OF POOR QUALITY

		YAV-8B
Minimum duct area	(ft ²)	9.7
Lip sh ape		2:1 ellipse
Highlight area	(ft²)	12.53
Mean lip contraction ratio		1.24
Auxiliary throat area	(ft²)	8.41
Auxiliary entry area	(ft²)	12.38
Auxiliary contraction ratio		1.49
Maximum cowi area	,+t2)	17.78
		@P21-0003

FIGURE 2.6-10 INLET DESIGN PARAMETERS

FIGURE 2.6-11
INLET OPERATING MODES

MDC A7910 Volume I

OF POUR QUALITY

o Conventional Flight Operation - During conventional flight (cruise or high speed) the auxiliary inlet doors are closed as a result of the inlet duct pressure being higher than ambient. The boundary layer bleed doors are positioned as a function of the duct static pressure which is established by flight Mach number and engine power setting, the bleed exit static pressure (usually ambient), and the opposing spring force. At cruise power settings the reduced inlet mass flow ratio results in reduced inlet velocities with resultant increased duct static pressure. As the spring force is overcome by the pressure differential across the door(duct pressure minus bleed exit pressure), the doors open to remove the boundary layer from the inlet flow. The boundary layer bleed doors are free to operate individually in response to static pressure gradients across the doors during operation at angles of attack. The split upper and lower door configuration developed for the AV-8A and retained for the YAV-8B is used to prevent recirculation of boundary layer air from a high pressure region to a low pressure region, which would cause separation and increased inlet pressure distortion. Figure 2.6-11 illustrates conventional flight operation.

ORIGINAL TAGE []

3. YAV-88 NONLINEAR SIMULATION PROGRAM

The nonlinear program that has been developed to simulate the YAV-8B aircraft is named YAV8B. The program computes six degree-of-freedom aircraft motion plus a large number of aircraft performance parameters. The program is written in FORTRAN in a manner to make it easy to use. Program organization, structure and data card input format are described within this section.

3.1 PROGRAM STRUCTURE

The YAV8B program is structured into two primary categories: the executive routines and the aircraft math model routines. For simplicity, all computations are performed at the same iteration time. The program computes aircraft motion as well as performance parameters. A great deal of flexibility is available to the user with respect to which parameters are to be recorded.

Figure 3.1-1 diagrams the structure of the YAV8B program. The executive (exec) routines include I50ØNCE, I50MS, ACO7, CARDS and RTPDATA. The I50ØNCE and I50MS routines are top level exec routines for the program. The ACO7 routine is the aircraft math model exec. The CARDS routine reads the input data from the EXECUTE card deck and the RPTDATA routine is the exec for the output data logic. The program computes in three different modes: INITIAL (first pass initialization), IRESET (400 passes for dynamic stabilization), and OPERATE (real time computation). The run time for each particular case can be designated. The iteration time (DT) is defaulted to 50 milliseconds but can be changed by the user.

Initial condition data, as well as the instructions for Cata printout, are input to the program using the EXECUTE card deck. The EXECUTE card deck loads the appropriate software files and executes the program. Dynamic inputs to the aircraft controls, aircraft motion, etc. can be input to the program with the ISOMS card deck. The ISOMS deck modifies the ISOMS subroutine. Because the ISOMS subroutine is a top-level exec routine, this is a convenient location to math model a forcing function. A more detailed description of user procedures is provided in Section 3.4. A sample case is also provided in Section 3.4.

The aircraft math model flow diagram is shown in Figure 3.1-2. Each subroutine in the aircraft math model is described in Section 3.3 along with top-level flow charts. All of the subroutines for the aircraft math model can be modified and changed by the user if required.

3.2 MATH MODEL EQUATIONS

The YAV8B program computes aircraft velocities, accelerations and position at the aircraft c.g. The airframe is considered to be a rigid body. The atmosphere data base is the U.S. Standard Atmosphere, 1962 - sea level to 100,000 feet. The following paragraphs describe some of the theory and math model equations comprising the aircraft simulation model.

3.2.1 NUMERICAL METHODS - There are three general numeric methods used in the YAV8B rogram that require some discussion. They are integration techniques, digital filter techniques, and data table look-up methods. Each

FIGURE 3.1-1 YAV8B PROGRAM STRUCTURE

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 3.1-2
AIRCRAFT MATH MODEL FLOW DIAGRAM

method will be addressed briefly in order to familiarize the program user with the techniques incorporated into YAV8B.

3.2.1.1 Integration Techniques - There are four types of integration schemes used in the simulation program: Euler (rectangular), Tustin, Reddy Parabolic and Adams third order. These methods fall into two general classes. The first class is the predictor integration scheme. In this class, the most currently available input is valid for the beginning of the integration interval and the output is "predicted" for the end of the interval. The second is the corrector integration scheme. This scheme is used when the input is available at the same time that the output is desired. The Adams third order method is used primarily in computations for the equations of motion. The general form of these numerical integration methods are as follows:

o Euler (Rectangular)

$$X_n = X_{n-1} + \dot{X}_{n-1} * \Delta t$$
, Δt - Sample period Zero Order Predictor

o Tustin

$$X_n = X_{n-1} + (.5 \dot{x}_n + .5 \dot{x}_{n-1}) * \Delta t$$
 Linear Corrector

o Adams Third Order

$$x_n = x_{n-1} + (\frac{23}{12} \dot{x}_{n-1} - \frac{4}{3} \dot{x}_{n-2} + \frac{5}{12} \dot{x}_{n-3}) * \Delta t$$
 Third Order Predictor

o Reddy Parabolic

$$x_{n} = x_{n-1} + (\frac{s}{12} \dot{x}_{n} + \frac{2}{3} \dot{x}_{n-1} - \frac{1}{12} \dot{x}_{n-2}) * \Delta t$$
 Parabolic Corrector

3.2.1.2 <u>Digital Filtering Techniques</u> - Digital filters are needed to obtain an acceptable model of hydraulic actuators in the control system model and for other lead and lag filters used in the simulation model. Two methods are used in the YAV8B program: Tustin's and Reddy's. The Tustin method is quite good for modeling digital filters, as it has a simple relationship between the Laplace transform and the Z transform operators S and Z:

$$\frac{1}{S} = \frac{\Delta t}{2} \frac{(Z+1)}{(Z-1)}$$
 Z - Z Transform operator

The equivalent computer difference equation for C/R = 1/S would be:

$$C_n = C_{n-1} + \frac{\Delta t}{2} [R_n + R_{n-1}]$$
 Where R_n is the present value of the input.

Using the same method, the difference equation for the first order filter, $C/R = 1/\tau S + 1$, can be derived as:

$$C_{n} = \frac{1}{(1 + \frac{2\tau}{\Delta t})} (R_{n} + R_{n-1}) - \frac{(1 - \frac{2\tau}{\Delta t})}{(1 + \frac{2\tau}{\Delta t})} C_{n-1}, \qquad \tau - \text{system time constant}$$

This difference equation would give the output sequence (C_n) of a first order lag from the input sequence (R_n) . Note that the coefficient terms involve only the constants Δt and τ , and so are only computed once at the beginning of a run.

ORIGINAL PAGE IS OF POOR QUALITY

For better accuracy and stability, some filters with short time constants are modeled using Reddy's method. For a first order transfer function and linear input, the output at the end of each step is a constant times the output at the beginning of each step plus other constants times values of the input at the beginning and erd of the step. A first order system response to a linear input can be represented by the following recursion formula:

$$C_n = C_{n-1} (e^{-\Delta t/\tau}) + R_n [1 - (\tau/\Delta t)(1 - e^{-\Delta t/\tau})]$$

+ $R_{n-1} [\tau/\Delta t - (e^{-\Delta t/\tau})(1 + \tau/\Delta t)]$

3.2.1.3 Data Table Look-Up Techniques - The method used in the table look-up program, TBLKP, for even increments is simple and straightforward. It requires the program to compute an index and a ratio. The index represents the position in the table of dependent variables such that the corresponding value of the independent variable is just below (or equal to) the input variable. The input variable is bound by this value and the next value of the independent variable. The ratio is the percentage distance of the input variable between these two values.

For a single dimension table, the lookup function performs as shown:

RI =((Input - low bound)(number of points - 1)/(high bound - low bound))+1

Index = integer part of RI

Ratio = fractional part of RI

Once the index and ratio are found, it is only necessary to look up the corresponding dependent variables and linearly interpolate:

Output = Table (Index) + [Table (Index + 1) - Table (Index)] x Ratio

The lookup method for a table with uneven breakpoints is similar, but each set of breakpoints must be checked to determine which ones bracket the input value.

Since the values of the independent variable will cover the allowable boundaries, the table lookup program does not extrapolate outside the boundaries of the tables. If an independent variable exceeds the boundary, the corresponding dependent variable boundary value is used in the lookup. Finally, to save additional time with either method, the index into the table and the ratio between points is saved, so that if more than one table uses the same breakpoints, the index and ratio need not be recomputed.

3.2.2 EQUATIONS OF MOTION - The parameters that determine the aircraft motion are described by a set of six second-order differential equations, three to describe the translational degrees of freedom and three to describe the rotational degrees of freedom. This system of equations is used to describe the aircraft state relative to a fixed coordinate reference frame.

The earth is modeled as a spherical surface, rotating relative to a fixed inertial frame. Rotation is about the polar axis with no "wobble". The acceleration due to gravity (g) is assumed to be constant and always acting perpendicular to the ground.

Four coordinate reference frames are used in describing the aircraft position, velocity and acceleration:

- Inertial Axes
 North-East-Down (NED), or local vertical
- (3) Body Axes
- (4) Stability Axes

The inertial coordinate frame is an orthogonal triad with its origin at the center of earth (see Figure 3.2-1). The first and second components (or x and y axes) define the equatorial plane and the z axis is positive toward the North Pole. The x axis orientation is initialized at the beginning of the mission to pass through the zero latitude and longitude point. The y axis passes through the point of latitude = 0° , longitude = $+90^{\circ}$. After the mission begins, the rotation of the earth will cause an earth fixed longitude point to increase in inertial longitude (relative to the "fixed in space" inertial axes reference frame). It is in this axis system that accelerations and velocities are integrated to obtain aircraft position.

FIGURE 3.2-1 INERTIAL COORDINATE FRAME

OF . OOR QUALITY

MDC A7910 Volume I

The NED frame is centered at the aircraft c.g. The x axis is directed toward true North, the y axis is directed toward true East, and the z axis is directed down perpendicular to the ground. Figure 3.2-2 illustrates this system. Aircraft translational velocities are transformed from inertial axis into this frame for the addition of wind and computation of ground speed and flight path angles. The aircraft Euler angles (pitch, roll, yaw) are defined from the body axes orientation relative to the NED reference frame.

FIGURE 3.2-2
RELATIONSHIP OF BODY TO NED AXES

The equations of motion and their computational arrangement are illustrated in Figures 3.2-3 and 3.2-4.

The translational equations are a summation of the total aerodynamic, engine thrust, and RCS forces in the body axis coordinate system. Newton's Second Law of Motion is applied to compute the body axis accelerations and these are transformed to the inertial frame through a direction cosine matrix, as shown on Figure 3.2-3. The acceleration due to gravity is added

3-9

and the acceleration components are integrated to produce inertial velocity and position components. These are transformed back to the NED axes for the introduction of wind components and to the body axes for the computation of the body axis velocity components and the velocity vector angles $(\alpha, \beta, \gamma, \sigma)$.

The rotational equations of motion are derived by summing the moments due to aerodynamics, engine thrust, and RCS effects. The body axis rotational accelerations are computed from these moments, the aircraft moments of inertia, and the crose coupling terms. The body rates are determined by integrating the rotational accelerations.

The attitude angles of the simulated aircraft are calculated using the quaternion method. The quaternion method uses four parameters for specifying the orientation of a coordinate system. The quaternion rates are calculated from the body axis angular rates and then integrated to update the quaternions. The earth-to-body axis transformation matrix is computed directly from the quaternions, thereby defining the aircraft orientation with respect to the fixed frame. A correction factor is applied to compensate for integrator drift and to ensure that the coordinate system remains orthogonal. This correction factor is based upon the constraint that for an orthogonal system, the sum of the squares of the quaternions must be unity. The quaternion method offers the advantage of allowing an all-attitude orientation that is free from discontinuities.

- 3.2.3 <u>AERODYNAMIC EQUATIONS</u> The aerodynamic forces and moments acting on the aircraft are fully described by algorithms for three longitudinal and three lateral-directional coefficients. The longitudinal terms are the coefficient of lift (C_L) or normal force (C_N) , drag (C_D) or axial force (C_A) , and pitching moment (C_m) . The lateral-directional terms are the coefficients of side force, (C_V) , rolling moment (C_L) , and yawing moment (C_D) .
- 3.2.3.1 Aerodynamic Reference Systems The aerodynamic data base is divided into two separatr and distinct regions: low speed (M \leq 0.3) and high speed (M \geq 0.5). The data for the low speed region are derived in the body axis system. The aircraft body coordinate system is shown in Figure 3.2-5a. It has its crigin at the aircraft's center of gravity. The x exis is directed toward the nose of the aircraft coincident with the Fuselage Reference Line (FRL). The y axis is directed toward the right wing of the aircraft (orthogonal to the x axis). The z axis is directed downward, perpendicular to the x_B y_B plane.

The data for the high speed region are referenced to the stability axis frame. Figure 3.2-5b illustrates the stability axis system. It has its origin at the point of reference of the aerodynamic data. The x axis is formed at the projection of the body axis on the velocity vector (rotated through the aircraft angle of attack α). The y axis is directed out the right wing of the aircraft and is oriented perpendicular to the aircraft plane of symmetry. The z axis is directed downward, perpendicular to the x-y plane.

FIGURE 3.2-5
BODY AXIS AND STABILITY AXIS

ORIGINAL VALUE OF POOR QUALITY

MDC A7910 Volume I

For ground hover and low speed flight, another reference frame is used. This reference frame is a blend between the body axis and stability axis reference frame. The ground effects are introduced into the simulation for altitudes of approximately 70 feet or less. The longitudinal reference attitude for ground effects is as follows:

where
$$K_1 = (\text{Veq} - .05)/20$$
. and $K_2 = (1 - K_1)$
for $\text{Veq} < 0.05$, $\alpha' = \theta$ and for $\text{Veq} > 0.10$, $\alpha' = \alpha$

The FORTRAN name for α' is THALP.

The parameter Veq is defined as the square root of the ratio of the freestream dynamic pressure to jet dynamic pressure:

The lateral-directional reference angle is defined as below:

$$\beta'' = Tan^{-1} (v'/u')$$

Where $u' = u/\cos \alpha$ and $v' = v * \cos \phi$ The FORTRAN name for β' is BETAP.

- 3.2.3.2 <u>Aerodynamic Algorithms</u> Each component of the respective coefficient is summarized for the low speed and high speed data in the following equations. The FORTRAN name of each component is also included in parenthesis.
 - o Low Speed Aero (M ≤ 0.3) Body Axis System
 - o Normal Force

Where:

 C_{N} - Baseline normal force coefficient as a function of α , (CNBASE).

 $\begin{array}{lll} \Delta C_{N} & \text{- Increment or normal force coefficient due to stabilator} \\ \delta_{H} & \text{deflection as a function of } \alpha_{TAIL}, \ \theta_{J}, \ \text{Veq and altitude,} \\ & \text{(DCNSTAB)}. \end{array}$

 $^{\Delta C}_{N_{\delta}}$ - Increment of normal force coefficient due to left and right flap deflection as a function of α , θ_{J} and Veq, (CNFLAP).

 $^{\Delta C}_{N}$ - Increment of normal force coefficient due to flap-jet impingement as a function of $\delta_{\,F},\;\theta_{\,J},\;\alpha$ and Veq, (CNFJI).

 $^{\Delta C}_{N_{\delta}}$ - Increment of normal force coefficient due to left and right aileron deflection as a function of α , (DCNAIL). $^{A}_{L,R}$

 $c_{\rm N}$ - ${}^3 c_{\rm N}/{}_{\rm \partial \delta\, GEAR}$, where ${}^6_{\rm GEAR}$ is the normalized gear GEAR deflection, (DCNGEAR).

 $c_{N_{\delta_{LID}}}^{}$ - $\delta c_{N/\delta_{LID}}^{}$, where $\delta_{LID}^{}$ is the normalized LIDS deflection, (DCNLID).

 ΔC_N - Increment of normal force due to ground effects as a function of altitude, α , θ_J and engine thrust, (CNGE).

 $C_{N_{q}}$ - $\partial C_{N/\partial q}$, normal force coefficient due to pitch rate, (CNQ).

 $C_{N_{\dot{\alpha}}}$ - $\partial C_{N/\partial \dot{\alpha}}$, normal force coefficient due to angle of attack rate, (CNALPD).

 1 C 1 Therement of normal force coefficient due to power effects POWER as a function of $\alpha,\,\theta_{\,J}$ and Veq, (DCNPOW).

ORIGINAL PAGE IS OF POOR QUALITY

MDC A7910 Volume I

o Axial Force

$$F_{A} = [C_{A_{O}} + \Delta C_{A_{C_{H}}} + (\Delta C_{A_{C_{H}}} + \Delta C_{A_{C_{H}}}) + \Delta C_{A_{C_{H}}}]$$

$$+ (\Delta C_{A_{C_{H}}} + \Delta C_{A_{C_{H}}}) + C_{A_{C_{H}}} * \delta_{GEAR} + C_{A_{C_{H}}} * \delta_{LID}$$

$$+ \Delta C_{A_{POWER}}] * \overline{q} * S + \Delta C_{A_{GE}}$$

Where:

C - Baseline axial force coefficient as a function of α , (CABASE).

 $^{\Delta C}_{\ A}$ - Increment of axial coefficient due to stabilator deflection, (DCASTAB).

 $^{\Delta C}_{A}$ - Increment of axial coefficient due to left and right flap deflection as a function of α and Veq, (CAFLAP).

 ΔC_{AFJI} - Increment of axial force coefficient due to flap-jet impingement as a function of δ_{F} , θ, and α, (CAFJI).

- Increment of axial force coefficient due to left and right afleron deflection as a function of α, 'DCAAIL').

 C_A - $\partial C_A/\partial \delta_{GEAR}$ where δ_{GEAR} is the normalized gear deflection, (DCAGEAR).

 C_{A}° - $\partial C_{A}^{\circ} / \partial \delta_{LID}^{\circ}$ where δ_{LID}° is the normalized LIDS deflection, (DCALID).

 $^{\Delta C}$ - Increment of axial force due to ground effects as a function of α , $\theta_{_{\rm T}}$, altitude and engine thrust, (CAGE).

 ΔC_A - Increment of axial force coefficient due to power effects as a function of θ_{γ} , Veq and α , (DCAPOW).

OF POUR QUALITY

o Pitching Moment

$$\begin{split} & \underbrace{PM} = \{C_{\underline{m}_{0}} + \Delta C_{\underline{m}_{0}} + (\Delta C_{\underline{m}_{0}} + \Delta C_{\underline{m}_{0}}) + \Delta C_{\underline{m}_{FJI}} \\ & + (\Delta C_{\underline{m}_{0}} + \Delta C_{\underline{m}_{0}}) + C_{\underline{m}_{0}} * \delta_{GEAR} + C_{\underline{m}_{0}} * \delta_{LID} \\ & + (C_{\underline{m}_{0}} * q + C_{\underline{m}_{0}} * \Delta) * \underbrace{\overline{c}}_{2V_{\underline{T}}} + \Delta C_{\underline{m}_{POWER}}] * \overline{q} * S * \overline{c} + \Delta C_{\underline{m}_{GE}} + \Delta C_{\underline{m}_{FP}} \end{split}$$

Where:

C - Baseline pitching moment coefficient as a function of α, (CMBASE).

Increment of pitching moment coefficient due to stabilator deflection as a function of α_{TATL} , θ_{T} , Veq and altitude, (DCMS)

 $^{\Delta C}_{m}$ - Increment of pitching moment coefficient due to left and right flap deflection as a function of $^{\alpha}$ and Veq. (CMFLAP).

- Increment of pitching moment coefficient due to flap-jet impingement as a function of $\delta_{\mathbf{F}}$, $\theta_{\mathbf{J}}$, α and Veq, (CMFJI).

ΔC - Incl went clititching moment coefficient due to left and right in a deflection as a function of angle of attack, (DCMAII).

 $_{m}^{\circ}$ GEAR $_{b}^{\circ}$ GEAR where $_{GEAR}^{\circ}$ is the normalized gear deflection, (DCMGEAR).

 $c_{m}^{0} = \frac{-\partial c_{m}^{0}}{\partial \delta_{LIDS}}$ where δ_{LID} is the normalized LIDS deflection, (DCMLID).

 $^{\Delta C}_{\mbox{\footnotesize M}}$ - Increment of pitching moment due to ground effects as a function of $\alpha,\;\theta_{_{\mbox{\footnotesize J}}},\;$ altitude and engine thrust, (CMGE).

 $C_{m} = \frac{\partial C_{m}}{\partial q}$, pitching moment coefficient due to pitch rate, (CMQ).

 $C_{m\alpha}$ - $\partial C_m/\partial \alpha$, pitching moment coefficient due to angle of attack, (CM)

 $^{\Delta C}$ - Increment of pitching moment coefficient due to power effects as a function of $\alpha,$ Veq and $\theta_{J},$ (DCMPOW).

- Increment of pitching moment due to flat plate drag motion for u < 50 KTAS. Simulates aerodynamic damping in hover and low speeds, (TEMPX3).

o Side Force

Where:

- Baseline side force coefficient. For u > 50 KTAS defined as C_{Yβ} * β, side force due to sideslip angle as a function of α, β, and average flap deflection, (CYBASE). For u < 30 KTAS, C_Y is 0.

 ΔC_{Y} - Increment of side force coefficient due to left and right afleron deflection às a function of α , (DCYAIL).

 $C_{\underline{Y}}$ - $\partial C_{\underline{Y}}/\partial \delta_{\underline{R}}$, side force coefficient due to rudder reflection, (CYDR).

- Increment of side force coefficient due to power effects as a function of Veq. α and β for u > 50 KTAS, (CYPOWER).

 $\Delta C_{\underline{I}}$ - Increment of side force due to ground effects as a function of α, altitude, engine thrust, $\theta_{\underline{I}}$ and β', (SFIGE).

^YPHI = Increment of side force due to roll attitude in ground proximity (h < 70 ft.) as a function of altitude, Veq, ϕ , β', u, θ, and engine thrust, (YDSFTP).

 1 OGE - Increment of side force as a function of α, θ, engine thrust, and Veq for u < 30 KTAS, (SFOGE). For u > 50 KTAS, 1 ΛC₁ is 0.

o Rolling Moment

$$RM = \begin{bmatrix} C_{2} + (\Delta C_{2} + \Delta C_{2}) + C_{2} & * \delta_{R} + \Delta C_{2} \\ \delta_{A_{L}} & \delta_{A_{R}} & * \delta_{R} + \Delta C_{2} \\ + \Delta C_{2} + (C_{2} * r + C_{2} * p) * \frac{b}{2V_{T}} \end{bmatrix} * \overline{q} * S * b + \Delta C_{2} \\ + \Delta C_{2} + \Delta C_{2} + \Delta C_{2} + \Delta C_{2} \\ + \Delta C_{2} + \Delta C_{3} + \Delta C_{3} + \Delta C_{4} \\ + \Delta C_{4} + \Delta C_{2} + \Delta C_{4} + \Delta C_{4} \\ + \Delta C_{4} + \Delta C_{5} + \Delta C_{4} \\ + \Delta C_{5} + \Delta C_{5} + \Delta C_{5} + \Delta C_{5} \\ + \Delta C_{5} + \Delta C_{5} + \Delta C_{5} + \Delta C_{5} \\ + \Delta C_{5} \\ + \Delta C_{5} +$$

ORIGINAL PAGE IS OF POOR QUALITY

Where:

- Baseline rolling moment coefficient. For u > 50 KTAS defined as $C_{\hat{k}} * \beta$, rolling moment due to sideslip angle as a function of α , β and average flap deflection, (CLLBASE). For u < 30 KTAS, $C_{\hat{k}}$ is 0.
- ΔC_{ℓ} Increment of rolling moment coefficient due to left and right aileron deflection as a function of α , (DCLLAIL).
- C_{ℓ} $\partial C_{\ell}/\partial \delta_{R}$, rolling moment coefficient due to rudder deflection, (CLLDR).
- ΔC_{pOWER} Increment of rolling moment coefficient due to power effects as a function of Veq, α and β for u > 50 KTAS, (CLLPOWR).
- ΔC_{ℓ} Increment of rolling moment coefficient due to asymmetric flaps, (DCLLF).
- AC Increment of rolling moment coefficient due to flap-jet impingement, (DCLLFJI).
- C_l $\partial C_{l}/\partial r$, rolling moment coefficient due to yaw rate as a function of α , (CLLR).
- C_{ℓ_p} $\frac{\partial C_{\ell}}{\partial p}$, rolling moment coefficient due to roll rate as a function of α , (CLLP).
- ΔC Increment of rolling moment due to ground effects as a function of α , altitude, engine thrust, Veq, θ_J and β ', (RMIGE).
- ΔC Increment of rolling moment due to roll attitude in ground proximity as a function of altitude, Veq, ϕ , β ', u, θ and engine thrust, (DRMPHI).
- Increment of rolling moment due to flat plate drag motion for u < 50 KTAS. Simulates aerodynamic damping in hover and low speeds, (TEMPX5).
- ΔC_{ROGT} Increment of rolling moment as a function of β ', α , Veq, θ and engine thrust, (RMOGE). For u > 50 KTAS, ΔC_{LOGE}

o Yawing Moment

$$YM = [C_{n_0} + (\Delta C_{n_0} + \Delta C_{n_0}) + C_{n_0} * \delta_R + \Delta C_{n_{POWER}} + \Delta C_{n_0} * \Delta_F + \Delta C_{n_{FJI}} + (C_{n_r} * r + C_{n_p} * p) * \frac{b}{2V_T}] * \bar{q} * S * b + \Delta C_{n_{PHI}} + \Delta C_{n_{FP}} + \Delta C_{n_{GE}} + C_{n_{OGE}}$$

Where:

- Baseline yawing moment coefficient. For u > 50 KTAS defined as C_{n} * β , yawing moment due to sideslip angle as a function of α , β and average flap deflection, (CLNBASE). For u < 30 KTAS, C_n is 0.
- Increment of yawing moment coefficient due to left and right aileron deflection as a function of α , (DCLNAIL).
- $\partial C_n/\partial \delta_R$, yawing moment coefficient due to rudder deflection, (CLNDR).
- Increment of yawing moment coefficient due to power effects as a function of Veq, α and β for u > 50 KTAS, (CLNPOWR).
- Increment of yawing moment &oefficient due to asymmetric flaps, (DCLNF).
- Increment of yawing moment coefficient due to flap-jet impingement, (DCLNFJI).
- 3C / 3r, yawing moment coefficient due to yaw rate as a function of a. (CLNR).
- C D $- \partial C_n/\partial p$, yawing moment coefficient due to roll rate as a function of a, (CLNP).
- Increment of yawing moment due to ground effects as a function α , altitude, eagine thrust, Veq, θ_{\uparrow} and β' , (YMIGE).
- Increment of yawing moment due to roll attitude in ground proximity (alititude < 70°) as a function of altitude, Veq, ϕ , β' , u, θ_J and engine thrust, (DYMPHI).
- Increment of yawing moment due to flat plate irag motion for u < 50 KTAS. Simulates aerodynamic damping in hover and low speeds, (TEAPX6).
- ^{AC}noge - Increment of yawing moment as a function of β' , α , Veq, θ , and engine thrust, (YMOGE). For u > 50 KTAS, ∆C_noge

ORIGINAL PAGE IS OF POOR QUALITY

MDC A7910 Volume 1

o High Speed Aero (M ≥ 0.5) - Stability Axis System

o Lift

$$F_{L} = [C_{L_{0}} + (\Delta C_{L_{\delta}} + \Delta C_{L_{\delta}}) + (\Delta C_{L_{\delta}} + \Delta C_{L_{\delta}}) + \Delta C_{L_{POWER}}] * \overline{q} * S$$

$$+ \Delta C_{L_{STAB}}$$

Where:

 C_{L_0} - Baseline lift force coefficient as a function of α and M, (CLBASE).

- Increment of lift force coefficient due to left and right flap deflection as a function of α and M, ^{F}L ,R (DCLFL and DCLFR).

^C_L - Increment of lift force coefficient to power effects as a function of $\theta_{\text{T}},~\alpha$ and Veq, (DCLPOW).

 $^{\Delta C}_{\mbox{LSTAB}}$ - Increment of lift force due to stabilator deflection as a function of α and M, (CLSTAB).

o Drag

$$F_{D} = [C_{D_{O}} + (\Delta C_{D} + \Delta C_{D}) + (\Delta C_{D} + \Delta C_{D}) + \Delta C_{D} +$$

Where:

 C_{D} - Baseline drag coefficient as a function of α , M and $C_{L_{O}}$, (CDBASE).

 ΔC_{D} - Increment of drag force coefficient due to left and right aileron deflection as a function of α and M, (DCDAL and DCDAR).

ORIGINAL PAGE IS OF POOR QUALITY

MDC A7910 Volume I

 ΔC_{D} - Increment of drag force coefficient due to stabilator deflection as a function of α and M, (CDSTAB).

 $c_{\rm D}$ - $\partial c_{\rm L}/\partial \delta_{\rm R}$, drag force coefficient due to rudder deflection as a function of α and M, (CDDR).

- Increment of drag force coefficient due to pylons and gun pods, (HCDSTOW).

 $^{\rm C}_{\rm D}$ - $^{\rm \partial C}_{\rm D}/_{\rm \partial \delta}$, where $^{\rm GEAR}$ is the normalized gear deflection.

 $c_{D_{\delta_{LID}}}$ - $\partial c_{D}/\partial \delta_{LID}$, where δ_{LID} is the normalized LIDS deflection.

o Pitching Moment

$$PM = [C_{m_0} + (\Delta C_{m_0} + \Delta C_{m_0}) + (\Delta C_{m_0} + \Delta C_{m_0})$$

$$+ \Delta C_{m_0} + (C_{m_0} * q + C_{m_0} * \dot{\alpha}) * \frac{\overline{C}}{2V_T} + \Delta C_{m_0} + \Delta C_{m_0}] * \overline{q} * S * \overline{c}$$

$$+ \Delta C_{m_0} + (C_{m_0} * q + C_{m_0} * \dot{\alpha}) * \frac{\overline{C}}{2V_T} + \Delta C_{m_0} + \Delta C_{m_0}$$

Where:

C - Baseline pitching moment coefficient as a function of α and M, (CMBASER).

AC - Increment of pitching moment coefficient due to left and right flap deflection as a function of α and M, (DCMFL and DCMFR).

 ΔC_{m} - Increment of pitching moment coefficient due to left and right aileron deflection as a function of α , (HCMDAL and HCMDAR).

 ΔC - Increment of pitching moment coefficient due to stabilator deflection as a function of α and M, (DCMST).

C - OC / oq, pitching moment coefficient due to pitch rate as a function of M, (CMQH).

C - 3 C / 30, pitching moment coefficient due to angle of attack rate as a function of M, (CMALPDH).

 $^{\Delta C}$ - Increment of pitching moment coefficient due to power effects as a function of $\alpha,$ Veq and θ , (HCMPOW).

ΔC - Increment of pitching coefficient due to sting interference correction to wind tunnel data, (CMSTING).

OF POOR QUALITY

o Sid∈ Force

$$SF = [C_{Y_{\beta}} * \beta + \Delta C_{Y_{\beta}} * \beta + (\Delta C_{Y_{\delta_{A}}} + \Delta C_{Y_{\delta_{A}}}) + C_{Y_{\delta_{R}}} * \delta_{R}/15$$

$$+ C_{Y_{T}} * r * \frac{b}{2V_{T}}] \overline{q} * S$$

Where:

 $C_{Y_{\beta}}$ - $\partial C_{Y}/\partial \beta$, side force coefficient due to sideslip angle as a function of α and M, (HCYB).

 $\Delta C_{Y\beta}$ - Increment of $C_{Y\beta}$ due to flaps as a function of M, α and flap deflection, (HCYBF).

 C_{Y}^{δ} - $\partial C_{Y}^{\delta}/\partial \delta_{R}^{\delta}$, side force coefficient due to rudder deflection as a function of M and α , (HCYDR).

 C_{Y} - $\partial C_{Y}/\partial r$, side force coefficient due to yaw rate as a function of M, (HCYR).

o Rolling Moment

$$RM = \begin{bmatrix} C_{\ell_{\beta}} & * \beta + \Delta C_{\ell_{\beta}} & * \beta + (\Delta C_{\ell_{\beta}} & + \Delta C_{\ell_{\beta}}) + C_{\ell_{\delta}} & * \delta_{R}/15 \\ & & & \delta_{A_{L}} & \delta_{A_{R}} & \delta_{R} \end{bmatrix} + (C_{\ell_{r}} & * r + C_{\ell_{p}} & * p) & * \frac{b}{2V_{T}} + C_{\ell_{power}} & * q * s * b + \Delta C_{\ell_{\delta_{r}}} & * c_{\ell_{power}} &$$

Where:

 $C_{\ell_{\beta}}$ = $-\partial C_{\ell_{\beta}}$, rolling moment coefficient due to sideslip angle as a function of M and α (HCLLB).

 $\Delta C_{\ell_{\beta}}$ - Increment of $C_{\ell_{\beta}}$ due to flaps as a function of M, α and flap deflection, (HCLLBF).

 $^{\Delta C}_{\ell}$ - Increment of rolling moment coefficient due to left and right aileron deflection as a function of α and M, (HCLDAR and HCLDAL).

ORIGINAL PAGE [3] OF POOR QUALITY

MDC A7910 Volume I

 $C_{\hat{k}}$ - $\partial C_{\hat{k}}/\partial \delta_{\hat{R}}$, rolling moment coefficient due to rudder deflection as a function of α and M, (HCLLDR).

 $C_{\hat{k}_{T}}$ - $\partial C_{\hat{k}}/\partial r$, rolling moment coefficient due to yaw rate as a function of M and α , (HCLLR).

 C_{2} - $\partial C_{2}/\partial p$, rolling moment coefficient due to roll rate as a function of M and α , (HCLP).

ΔC - Increment of rolling moment due to asymmetric flaps,
 δ_E (HDCLLF).

- Increment of rolling moment coefficient due to power effects, (HCLLBF * BETA).

o Yawing Moment

$$YM = [C_{n_g} * \beta + (\Delta C_{n_{\delta}} + \Delta C_{n_{\bar{\delta}}}) + \frac{c_{R}/15}{R}$$

$$+ (C_{n_r} * r + C_{n_p} * p) * \frac{b}{2V_T}] * \bar{q} * S * b + \Delta C_{n_{\delta_T}}$$

Where:

 n_{β} - $3C_{n/3\beta}$, yawing moment coefficient due to sideslip angle as a function of M and α , (CNB).

 ΔC_{n} - Increment of yawing moment coefficient due to alleron deflection as a function of M and α , (CNDAR and CNDAL).

 c_{n} = $\partial c_{n}/\partial \delta_{R}$, yawing moment coefficient due to rudder deflection as a function of M and α , (CNDR).

 $c_{n_{T}}$ - $\partial c_{n}/\partial r$, yawing moment coefficient due to yaw rate as a function of M and α , (CNR).

 c_n - $c_n/\partial p$, yawing moment coefficient due to roll rate as a function of α and M, (CNP).

 ΔC_{n} - Increment of yawing moment due to asymmetric flaps, (HCDNF).

- 3.2.3.3 Center of Gravity Effects The affects of center of gravity displacement are included in the moment equations. All of the forces are referenced to a point on the aircraft at Fuselage Station 346.6, waterline Station 96.0 and coinciding with the X-axis of the aircraft. Incremental distances from the reference point to the center of gravity are computed and used in the following equations:
 - o Pitching Moment

$$PM = PM - F_{\tilde{N}} * (346.6 - CG_{PS})/(12) + F_{\tilde{A}} * (CG_{\tilde{WL}} - 96.)/(12)$$

o Rolling Moment

$$RM = RM - SF * (CG_{WL} - 96.)/(12) + F_N * CG_{BL}/^2$$

o Yawing Moment

$$YM = YM + SF * (CG_{FS} - 346.6)/(12) + F_A * CG_{BL}/(12)$$

- 3.2.3.4 Reference Axes Transformations The aerodynamic force and moments are derived in the body axis system for use in the equations of motion. The following equations transform the high speed aero forces and moments from the stability to body axis system.
 - o <u>L-Body Force (Positive down)</u>

 F_{Z_R} = -F_{LIFT} * COSa F_{DRAG} * SINc
 - o X-Boly Force (Positive forward) $F_{X_R} = F_{DRAG} * COS\alpha + F_{LIFT} * SIN\alpha$
 - X-Body Rolling Moment (Positive right wing down)
 RM_X = Ri_{STAB} * COSα YM_{STAB} * SINα
 - c Z-Body Yawing Moment (Positive nose right)

 YMZ_p = YM_{ST/S} * COSa + RM_{STAB} * SINa
- 3.2 4 ENGINE AND REACTION CONTROL SYSTEM FOR: AND MOMENT EQUATIONS All engine and RCS forces and moments are resolved in the body axis system (Figure 3.2-5) for use in the equations of motion. The engine forces and moments include inlet momentum effects and scrub and boundary layer drag increments.
- 3.2.4.1 Engine Thrust Geometry Figure 3.2-6 shows the relative geometry of the effective thrust center with respect to the moment reference center used for the accodynamic data. The following equations define the resulting engine thrust forces and moments about the a recaft c.g. in the body axis system.

FIGURE 3.2-6
ENGINE THEUST GEOMETRY

o Z-Body Force (Positive down)

$$FT_{Z_B} = -T_C * SIN (\theta_J + 1.5^{\circ})$$

o Pitching Moment

$$\begin{split} \text{PM}_{\text{B}} &= \text{T}_{\text{C}} \, * \, ((346.6 - \text{TCFS})/12.) \, * \, \text{SIN} \, (\theta_{\text{J}} + 1.5^{\circ}) \\ &+ \text{T}_{\text{C}} \, * \, ((96. - \text{TCWL})/12.) \, * \, \text{COS} \, (\theta_{\text{J}} + 1.5^{\circ}) \, - \, \text{FT}_{\text{Z}} \, * \\ &+ \text{CCGFS} \, - \, 346.6)/12.) \, + \, \text{FT}_{\text{X}_{\text{B}}} \, * \, ((\text{CGWL} - 96.)/12.) \end{split}$$

o Yawing Moment

$$YM_B = FT_{X_B} * CGBL/12. + FT_{Y_B} * ((CGFS - 346.6)/12.)$$

o Rolling Moment

$$RM_B = -FT_{Z_B} * CBGL/12. - FT_{Y_B} * ((CGWL - 96.)/12.)$$

ORIGINAL FIGE IS OF POOR QUALITY

Where:

 T_{C} is the total thrust vector. TCFS is the thrust center fuselage station ocation. TCWL is the thrust center waterline station location.

- 3.2.4.2 Ram Drag and Inlet Effects Incremental forces and moments at the inlet are derived from ram drag forces as a function of inlet flow angle and from air mass flow as a function of aircraft body rates. The following equations summarize these inlet contributions at the aircraft c.g. The force application point on the inlet is defined as F.S. 220.63, W.L. 90.77 and B.L. 27.
 - o X-Body Force

$$FI_{X_B} = -Ram Drag * COS6 * COS\alpha - \frac{\dot{m}}{g} * q * \Delta Z$$

o Y-Body Force

$$FI_{Y_B} = -Ram Drag * Sin \beta + \frac{\dot{m}}{g} * p * \Delta Z - \frac{\dot{m}}{g} * r * \Delta X$$

o Z-Body Force

$$FI_{Z_B} = -Ram Drag * COS2 * SIN\alpha + \frac{\dot{m}}{g} * q * \Delta X$$

o Pitching Moment

PMI = Ram Drag * COS
$$\beta$$
 * ((SJN α * Δ X) - (COS α * Δ Z))
- $\frac{\dot{m}}{g}$ * q * (Δ X² + Δ Z²)

o Yawing Moment

YMI = Ram Drag * ((COSβ * COSα * CGBL/12.) - (SINβ * ΔX))
+
$$\frac{\dot{m}}{g}$$
 * p * Δ X * Δ Z - $\frac{\dot{m}}{g}$ * r * (Δ X² + Δ Y²)

o Rolling Moment

RMI = Ram Drag * ((SIN
$$\beta$$
 * Δ Z) - (COS β * SIN α * CGBL/12.))
- $\frac{\dot{m}}{g}$ * p * (Δ Z² + Δ Y²) + $\frac{\dot{m}}{g}$ * r * Δ X * Δ Y

Where:

Ram Drag =
$$\frac{\dot{m}}{g}$$
 * v_T 1b_f

$$\Delta X = (CGFS - 220.63)/12.$$
 ft.

$$\Delta Y = (27. - CGBL)/12.$$
 ~ ft.

$$\Delta Z = (CGWL - 90.77)/12.$$
 ft.

3.2.4.3 RCS Thrust Geometry - The relative geometry of the YAV-8B RCS is shown in Figure 3.2-7. To compute the pitch and roll forces due to the RCS requires accounting for the off-axis orientation of the pitch and roll valves. The following equations are used to derive the RCS forces and moments in the body axis system at the aircraft c.g.:

o X-Body Force

NOTE: Subscripts defined in Figure 3.2-7.

o Y-Body Force

$$FT_{\text{RCS}} = FT_{\text{YV}} - SIN (5^{\circ}) * COS (7^{\circ}) * ((FT_{\text{RVWD}} + FT_{\text{RVWU}})_{\text{RT}} - (FT_{\text{RVWD}} + FT_{\text{RVWU}})_{\text{LT}})$$

o Z-Body Force

o Pitching Moment

$$P_{RCS}^{M} = FT_{RPV}^{*} * (COS (8^{\circ}) * (\frac{605.51 - CCFS}{12}) + SIN (8^{\circ}) * (\frac{114.63 - CGML}{12}))$$

$$+ FT_{FPV}^{*} * (COS (7.63^{\circ}) * (\frac{137.48 - CGFS}{12}) + SIN (7.63^{\circ}) * (\frac{CGML - 70.36}{12}))$$

$$- COS (5^{\circ}) * SIN (7^{\circ}) * (\frac{83.89 - CGML}{12}))$$

$$+ (FT_{RVWD}^{*} + FT_{RVWU}^{*}) * ((COS (5^{\circ}) * COS (7^{\circ}) * (\frac{432.45 - CGFS}{12}))$$

$$- COS (5^{\circ}) * SIN (7^{\circ}) * (\frac{83.89 - CGWL}{12}))$$

OF POOR QUALITY

ORIGINAL PACE IS

o Rolling Moment

$$\begin{array}{l} {\rm RM}_{\rm RCS} \ = \ (({\rm FT}_{\rm RVWD} \ + \ {\rm FT}_{\rm RVWU})_{\rm RT} \ - \ ({\rm FT}_{\rm RVWD} \ + \ {\rm FT}_{\rm RVWU})_{\rm LT}) \ * \\ \\ ({\rm SIN} \ (5^\circ) \ * \ {\rm COS} \ (7^\circ) \ * \ (\frac{{\rm CGWL} \ - \ 83.89}{12.}) \ + \ {\rm COS} \ (5^\circ) \ * \ {\rm COS} \ (7^\circ) \\ \\ * \ (\frac{177.84 \ - \ {\rm CGBL}}{12.})) \ - \ ({\rm FT}_{\rm FPV} \ * \ {\rm COS} \ (7.63^\circ) \ + \ {\rm FT}_{\rm RPV} \ * \ {\rm COS} \ (8^\circ)) \ * \\ \\ {\rm CGBL}/12 \ + \ {\rm FT}_{\rm YV} \ * \ (\frac{120.5 \ - \ {\rm CGWL}}{12.}) \end{array}$$

3.2.5 WEIGHT AND BALANCE EQUATIONS - The total weight of the aircraft is computed by summing aircraft dry weight (including the pilot), fuel weight, and water weight. Because the weight distribution in the aircraft is constantly changing due to fuel transfer and water usage, the center of weight moment for each factor is computed in all three body axes. In addition the moments of inertia and the cross product of inertia, I_{XZ}, are computed as a function of these factors.

The body axis coordinates of the center of gravity of each fuel tank and the water tank are stored in the subroutine, WTBALO7, data tables as a function of fuel and water remaining. The weight moment of the dry weight aircraft about the aircraft reference point in each axis is stored as well. With the relative aircraft geometry determined, the body axis coordinates of the center of gravity are computed:

$$M_{X_{\overline{FUEL}}} = Tank (1) * X_{TANK 1} + Tank (2) * X_{TANK 2} + ...$$
 $M_{X_{\overline{H}_2O}} = WATER * X_{\overline{H}_2O}$
 $X_{CG} = (M_{X_{\overline{DRY}}} + M_{X_{\overline{FUEL}}} + M_{X_{\overline{H}_2O}})/WT$, etc.

Similarly the y and z component of the center of gravity can be determined. The x component is referenced back to the wing leading edge and expressed as a percent of mean aerodynamic chord.

$$CGPC = ((X_{CG} - 336.3)/(99.792)) * 100$$

The moments of inertia and product of inertia are computed in a similar manner using the parallel axis theorem:

$$I_{XX_{FUFL}} = Tank (1) * (Y^2_{TANK 1} + X^2_{TANK 1})/g + ...$$
 $I_{XX_{H2O}} = WATER * (Z^2_{H2O})/g$
 $I_{XX} = I_{XX_{DRY}} + I_{XX_{FUEL}} + I_{XX_{H2O}}$

OF POOR QUALITY

$$I_{XZ}_{FUEL} = Tank (1) * X_{TANK 1} * Z_{TANK 1}/5 + ...$$

$$I_{XZ}_{H_{2}O} = WATER * X_{H_{2}O} * Z_{H_{2}O}/g$$

$$I_{XZ} = I_{XZ}_{DRY} + I_{XZ}_{FUEL} + I_{XZ}_{H_{2}O}$$

These inertias are used along with the aircraft mass to determine the aircraft mass matrix which is used in the equations of motion.

3.3 AIRCRAFT SUBROUTINES

The YAV8B Program includes 6 subroutines which comprise the neces ry logic for math modeling the YAV-8B aircraft. The subroutines are the weights and balance routine (WTBAL07), the primary flight controls routine (PFC07), the reaction control system routine (RCS07), the engine routine (ENG08), the secondary flight control routine (SFC07) and the aerodynamics routine (AERØY8B). The sequential order of execution is shown in Figure 3.1-2.

A brief description of the inputs ε d outputs of each subroutine as well as top-level flow diagrams are provided to familiarize the program user with the purpose of each subroutine. A more complete description of necessary program input and output variables is given in the user's guide, Section 3.4. The flow diagrams are simplified in order to aid the program user to interpret the program listings. Although the listings contain many useful comments, the flow diagrams can be useful if it becomes necessary to modify or change existing logic. A more detailed description of the math model equations for the aerodynamic algorithms, the engine and RCS force and moment calculations, and the weights and balance breakdown is given in Section 3.2.

3.3.1 WTBALO7 SUBROUTINE - The WTBALO7 Subroutine (weights and balance) computes current values of the moments of inertia, center of gravity location, weight and mass of the YAV-8B. This subroutine interfaces with the engine subroutine (L'GO8) which determines the remaining internal fuel and water. The WTBALO7 subroutine is not designed to include stores configurations although it could be modified to simulate external stores on the aircraft.

The total weight of the aircraft is computed by summing aircraft dry weight, fuel weight and water weight. The moments of inertia about each body axis and the cross product of inertia, I_{XZ} , are continuously computed as a function of the remaining fuel and water. The center of gravity location is determined by computing the weight moment of each factor (dry weight) of aircraft, fuel weight and water weight) along the respective body axis and dividing by the gross weight. A selective bias in the weight moment for each axis is included if it is necessary to simulate a c.g. offset. This moment bias also will alter the respective moment of inertia.

The inputs to this subject to the su

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 3.3-1
SUBROUTINE WTBALO7 FLOW DIAGRAM

3.3.2 <u>PFC07 SUBROUTINE</u> - The YAV-8B primary flight control system consists of conventional ailerons, ...dder, and stabilator, with a Reaction Control System (RCS) which act about all three axes during hover and transition. Longitudinal control of the YAV-8B is maintained by a combination of stabilator and reaction controls. Likewise, conventional ailerons, in combination with reaction controls, provide lateral control. Both longitudinal and lateral controls operate directly through mechanical linkage to the control stick. The directional control system is a combination of rudder and reaction controls as a function of rudder pedal position. The stabilator and ailerons can be trimmed by electro-mechanically moving the control stick. A limited authority Stability Augmentation System (SAS) provides rate stabilization.

The PFC07 subroutine computes the control surface deflections and the RCS area openings. The control actuators are represented by first order transfer functions. The closed loop technique used for real time digital simulation of these actuators is based or equations derived from a predictive method known as the "Reddy" method, (see Section 3.2.1.2). The math model includes rudder hinge moment limits applied to the total rudder travel.

A simplified f ow diagram of the PFC07 subroutine is shown in Figure 3.3-2. Typical inputs include percent stick and rudder pedal, body rates, dynamic pressure and lateral acceleration. Outputs from the subroutine are surface deflections and RCS valve area openings.

3.3.3 RCS07 SUBROUTINE - The Reaction Control System (RCS) is used during hover and transition between full wingborne flight and fully jet-borne flight. The system is fully activated when the nozzles are rotated below 15 degrees. It uses high pressure compressor bleed air, which is fed to the aircraft extremities and ejected through variable shutter valves connected to the aerodynamic surfaces (stabilator, rudder, etc.).

The RCS07 subroutine computes the RCS pressure dynamics and mass flow characteristics. The RCS model in this subroutine is based on modified Rolls-Royce engine data and MCAIR determined aircraft installation losses. Included in the model is the RCS geometry for computing the resulting forces and moments in the body axis system (see Section 3.2.4).

The inputs to the subroutine are the valve areas (calculated in the PFC07 subroutine), compressor discharge temperature and pressure and nozzle deflection. Other inputs include aircraft c.g. location and ambient pressure and temperature. The outputs are the total mass flow rate, the individual valve thrust values and the resulting forces and moments. The forces and moments are added to the engine produced forces and moments in the FNG08 subroutine. The forces and moments are in the body axis system. Figure 3.3-3 shows the logic flow used in the RCS07 subroutine.

TAPAGGE! 2

FIGURE 3.3-2 SUBROUTINE PFC07 FLOW DIAGRAM

MD A7910 Volume I

FIGURE 3.3-2 (CONTINUED)
SUBROUTINE PFC07 FLOW DIAGRAM

OF POUR CURLIN

FIGURE 3.3-2 (CONTINUED)
SUBROUTINE PFC07 FLOW DIAGRAM

ORIGINAL FACE IN OF POOR QUALITY

FIGURE 3.3-2 (CONTINUED)
SUBROUTINE PFC07 FLOW DIAGRAM

ORIGINAL PAGE IS

FIGURE 3.3-3
SUBROUTINE RCSO7 FLOW DIAGRAM

ORIGIN L PAGE IS OF POOR QUALITY

FIGURE 3.3-3 (CONTINUED)
SUBROUTINE RCS07 FLOW DIAGRAM

C-2

MDC A7910 Volume I

3.3.4 ENGOS SUBROUTINE - The ENGOS subroutine computes YAV-8B engine performance. The program data is based on Rolls-Royce engine data and MCAIR aircraft installation losses for an "average" YF402-RR-404 engine. Engine performance was obtained using a Rolls-Royce steady state engine performance computer program. Installation losses include inlet total pressure recovery, inlet drag, boundary layer bleed drag, compressor bleed (for aircraft services and the reaction control system) and mechanical power extraction. Engine performance is corrected for atmosphere changes from standard day.

To give a representative engine, thrust, fuel flow, EGT, P₃, and fan RPM are assembled in data tables as functions of commanded throttle angle, aircraft Mach number, commanded nozzle angle and altitude. The steady state values are retrieved from the tables are modified for the type of day, water and bleed corrections. The results are used to compute:

- o Engine forces and moments (including the RCS values computed in RCSO7)
- o Reaction control system bleed
- o Fuel depletion
- o Water depletion

Engine transients in RPM and EGT are modeled using first order time constants that vary with flight condition. The engine compressor discharge pressure limiter, EGT limiter and RPM limiter are also modeled. These are functional to limit fan speed and compressor discharge pressure. Selection of the limiters override causes all limiters except the compressor discharge pressure limiter to be bypassed.

There are a relatively large number of inputs to the ENGO8 subroutine. Some of the more important inputs are percent throttle, altitude, atmosphere parameters, airspeed, c.g. location, initial fuel and water quantities, percent nozzle lever position and RCS forces and moments. Outputs include the total engine + RCS forces and moments in the body axis system, various engine performance parameters (RPM, EGT, etc.), nozzle position and remaining fuel and water quantities. A simplified flow diagram of the ENGO8 routine is shown in Figure 3.3-4.

3.3.5 SFC07 SUBROUTINE - The YAV-8B secondary flight control system includes flaps and drooped ailerons. The flaps are operated by an electro-hydraulic system consisting of an electronic flap controller and two dual tandem actuators. Flap positioning is provided by the flap controller in accordance with switch (mode) selection. There are two flap modes: up and down. The up mode provides either a constant 0 degree flap deflection or the capability to manually "beep" the flaps to any position from 0 to 25 degrees. The down mode schedules flap deflection as a function of nozzle position and airsie... In addition the down mode switch also activates the aileron droop system, extending the ailerons to 15 degrees whenever the nozzles are 16 degrees or greater and the airspeed is less than 165 KIAS (with a ±10 KIAS hysteresis).

Other secondary flight control systems modeled in the SFCO7 subroutine include gear and LIDS deployment. Figure 3.3-5 outlines the SFCO7 subroutine.

All extension and retraction rates, time delays surface load effects and essential logic characteristics relating to the YAV-8B secondary flight control systems are simulated. The inputs to the subroutine include nozzle position, flap mode selection, gear selection, LIDS selection switch, Weight-on-Wheels (WOW) switch and airspeed. Outputs are flap position, LIDS and gear positions and aileron droop position.

To a guerna de

FIGURE 3.3-4
SUBROUTINE ENGO8 FLOW DIAGRAM

ORIGINAL FACE IS

FIGURE 3.3-4 (CONTINUED)
SUBROUTINE ENGOS FLOW DIAGRAM

OF PUCK QUALITY

FIGURE 3.3-4 (CONTINUED)
SUBROUTINE ENGOS FLOW DIAGRAM

CALCULATE ENGINE RESPONSE CALCULATE ENGINE RESPONSE OF # of 5 + do f ARPH/An f = f (RPH) ARPH/At = f (M. GROSS THRUST) ARPH/LIM # APPH At MK OD LIMIT (ARPM. - ARPHLIM ARPHLIM)

CALCULATE BROSS THRUST EST AND COMPRESSOR DISCHARGE PRESSURE $F_{6} = (F_{6} (RPM_{C}, H) \pi K (H_{2}0) + K_{RCS}) \pi K (H) \pi K (\theta_{3})$ $EST = EST (RPM_{C}, S_{T_{2}}) \pi K (H, T) \pi K (M) + K_{RCS} - PWESTC - K (\theta_{3})$ $P_{3} = \frac{P_{3}}{\delta T_{2}} (RPM_{C}, H) \pi \delta_{T_{2}} - K_{RCS}$

FIGURE 3.3-4 (CONTINUED)
SUBROUTINE ENGOS FLOW DIAGRAM

EXIT

ORIGINAL IN LIES OF POOR QUALITY

FIGURE 3.3-5
SUBROUTINE SFC07 FLOW DIAGRAM

ORIGINAL PAGE TO OF POOR QUILLIA

FIGURE 3.3-5 (CONTINUED)
SUBROUTINE SFC07 FLOW DIAGRAM

FIGURE 3.3-5 (CONTINUED)
SUBROUTINE SFC07 FLOW DIAGRAM

3.3.6 AERØY8B SUBROUTINE - The AERØY8B Subroutine computes all of the aerodynamic forces and moments acting on the simulated YAV-8B aircraft. These are computed through the use of stability and performance characteristics. The characteristics are stored in data tables and accessed through table look-up routines. When combined with the aerodynamic reference dimensions of the YAV-8B (e.g., wing area, mean aerodynamic chord, and wing span) and the control surface positions, these coefficients are used to calculate total forces and moments in the body axis system. The aerodynamic equations for computing the total coefficients are given in Section 3.2.3. The serodynamic data cover the full range of aircraft performance, from hover to wingborne flight. The aerodynamic forces and moments are primarily functions of aircraft attitude, Mach number, power setting (with nozzles down) and control surface position. The baseline coefficients represent the aircraft with five bare pylons and the gun pods and LIDS onboard. Increments due to gear and LIDS extension, flap deflection and power effects are included. Ground effect; for altitudes from 0 to approximately 70 ft. are also included in the data base. The ground effects data include LIDS contributions.

The AER@Y8B subroutine is divided into two distinct sections. The first section is the low speed ($M \le 0.3$) region which includes ground effects. The aerodynamic data for this section are referenced in the body axis system. The second section is the high speed ($M \ge 0.5$) region. The data here are referenced in the stability axis system. For Mach numbers between 0.3 and 0.5, table lookups are done in both sections and a linear in erpolation is done to compute the respective total coefficient. The total aerodynamic forces and moments are derigid in the body axis system.

The hover (u < 30 KTAS) and low speed regimes for the YAV-8B require special consideration when determining aerodynamic forces and moments (see Section 3.2.3.1). The low speed baseline aerodynamic coefficients are input for aircraft angles of attack between \pm 180 degrees. The angle of attack definition for the low speed table lookups is a clend of body axis pitch attitude and true angle of attack. Likewise, in the lateral-directional axis the technique for determining aerodynamic forces and moments in hover differs from wingborne flight. For the aerodynamic table look-ups in hover (u < 30 KTAS), the sideslip angle definition is a unique variable that is a function of axial velocity, roll attitude and pitch attitude. For u > 50 KTAS, the conventional definition of β is used. For u from 30 to 50 KTAS a blend of the two definitions is used.

Power effects on the aerodynamic forces and moments are input as incremental data. One of the parameters for determining the power effects is the equivalent velocity ratio (Veq). This vari le is defined as $\sqrt{13.0 * \eta}$ Thrust. This represents the square root of the ratio of freestream dynamic pressure to the average anzele exit dynamic pressure.

Some of the more significant inputs to the AERØY8B subroutine are the control surface deflections, angle of attack, sideslip angle, gear and LIDS positions, body attitudes and rates, Mach number, velocity components in the body axis, dynamic pressure, thrust, nozzle position and flap position. Outputs include the total aerodynamic forces and moments in the body axis system and a large number of incremental aerodynamic coefficients. Figure 3.3-6 represents the functional flow diagram for the AERØY8B subroutine.

ORIGINAL FACT (1) OF POOR QUALITY

FIGURE 3.3-6
SUBROUTINE AEROY8B FLOW DIAGRAM

3.4 PROGRAM YAV8B USER'S GUIDE

Execution of program YAV8B is initiated by reading the EXECUTE deck into the computer. For most digital simulation runs, the EXECUTE, I50MS, and RTPD of card decks will contain the input variables required, depending on the contain the input variables required in this section, are the mable look-up subroutine, program defaults and overrides, array contains and subroutine modification capability.

3.4.1 VARIABLE ARRAY STRUCTURE - There are two primary arrays in the YAV8B program for equivalencing program variables. These two arrays are the F array (FARRAY) and the A array. The F array is dimensioned as F (3000) whereas the A array is dimensioned as A (1000). The first 1000 locations of the F array are generally reserved for non-aircraft dependent variables such as program directives. The first location of the A array is equivalenced to F (1001). Thus, A (100) is equivalent to F (1100), etc. This array is generally used for aircraft dependent parameters such as aerodynamic coefficients, engine parameters, etc.

Throughout the following discussion, the user will be referred to variables assigned to the F or A arrays. Program variables are equivalenced to F or A array locations for ease in assigning the variables common storage locations. Each subroutine of the program contains equivalence statements defining the variables required for input or output. A listing of the F and A array equivalenced variables is given in Appendix B of Volume II. The array locations that have no assignment are available as spares.

- 3.4.2 EXECUTE DECK The EXECUTE deck loads files, reads data cards necessary for program initialization, executes program YAV8B, and executes the program SPRINT to output the desired parameters for a simulation run. Figure 3.4-1 outlines the EXECUTE deck card sequence.
- 3.4.2.1 <u>Load and Execute Card Sequence</u> The load and execute card sequence for the EXECUTE deck is shown in Figure 3.4-2. The executive first gets the needed compiled files, described below:

FILE NAME	DESCRIPTION
YAV8B	MAIN PROGRAM; MUST BE LOADED FIRST
150MS	TIMING SUBROUTINE
YAERØ	CONTAINS SUBROUTINES AERODAT AND AERØY8B
YENGN	CONTAINS SUBROUTINES YENGD AND ENGO8
YAVAC	CONTAINS SUBROUTINES ACO7, RCSO7, PFCO7, SFCO7, WTBALO7
EØM	EQUATIONS OF MOTION SUBROUTINES
atmøs	STANDARD ATMOSPHERE TABLE AND ATMOSPHERE SUBROUTINE ATMØS
FMMPLY	MATRIX MULTIPLY AND TRANSPOSE SUBROUTINES
CARDS	SUBROUTINE CARDS TO READ DATA CARDS IN EXECUTE DECK
TBLKP	DATA TABLE LOOK-UP SUBROUTINES (FCALC, FSRCH) AND FUNCTIONS (FlA, FlB, etc.)
RTP	SUBROUTINE RTP TO BUFFER DATA INTO STORAGE LOCATION
RTPDATA	SUBROUTINE RTPDATA TO SPECIFY WHICH DATA IS BUFFERED; MUST BE LOADED BEFORE RTP
MSGABT	CONTAINS DIRECTIVES FOR PRINTING ERROR MESSAGES
SPRINT	PROGRAM TO PRINT DATA TO OUTPUT

FIGURE 3.4-1 EXECUTE DECK

These are loaded into temporary load file, YLDFL, after which the program is executed. During execution, the RTPDATA and RTP subroutines are buffering values of selected variables into temporary storage location TAPE3. Program SPRINT buffers these data out of storage and into a format suitable for the printer, based on a user's NAMELIST inputs (see section 3.4.2.3).

3.4.2.2 <u>Data Card Format</u> - Program YAV8B requires initial values of some variables for execution. These data are entered through cards located behind the first end-of-record in the EXECUTE deck. The data cards are read by subroutine CARDS, which is called from program YAV8B. Card input format is shown in Figure 3.4-3. Column 5 contains one of the following control or data type identification numbers describing the data to be presented:

COLUMN 5 INPUT	INDICATION
1	INTEGER DATA
2	FIGATING POINT DATA
3	OCTAL DATA
4	ALPHANUMERIC DALA
5	CONTROL NUMBER INDICATING END OF A SET OF DATA CARDS
6	CONTROL NUMBER INDICATING END OF ALL SETS OF DATA CARDS
7	OPTIONAL ALPHANUMERIC DESCRIPTION OF TYPE 1 THROUGH 4 DATA;
	START 25 OR LESS CHARACTERS FOR COMMENTS IN COLUMNS 6,
	31, AND 56

Up to three data points may be included on one data card for a given identilication number. Types 1 through 4 cards require array locations of the input variables (in the F array), and each specification must end in columns 10, 35, and 60. Input data itself is 20 or less characters ending in columns 30, 55, and 80.

The inputs shown in Figure 3.4-3 are generally what is required for a simulation run. Only one data point per card has been input here for flexibility in changing of single values. The data displayed is that used for a YAV-8B conventional Dutch Roll case. Variable names corresponding to the array locations of Figure 3.4-3 are defined below:

F ARRAY LOCATION	VARIABLE NAME	DESCRIPTION
150	TSTØPD	LENGTH OF RUN IN SECONDS
1011	H	ALTITUDE
1030	VT	TRUE ALRSPEED IN FT/SEC
1031	GAMMA	FLIGHT PATH ANGLE
1040	RMACH	MACH NUMBER
1103	THETA	PITCH ATTITUDE
1117	ALPHA	ANGLE OF ATTLCK
1118	BETA	SIDESLIP ANGLE
1195	INSTD	NON-STANDARD DAY FLAG
1273	BSMØMX	INPUT FOR FUSELAGE STATION CG BIAS
1274	BSMØMY	INPUT FOR BUTT LINE CG BIAS
1275	BSMØMZ	INPUT FOR WATER LINE CG BIAS

6		in a c Malo lalin : a ila i	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20120 27 28.27
5	<u> </u>			-
1	1959	62		-
1	1982			-
2	1819	495.		-
ż.	17 5 2	4889.		_
	1777	1.04		_
Ş.	1776	40.78		
	1635	1		
	1627	<u> </u>		
	1497	0		_
	1496	0		-
	1495	0		_
	1275	-1711.4		
	1274_	-911.		-
	1273	-57%,785		
	1195	1		• -
	1118	ó.		_
2	1117	5.5		
2	1103	5.5		
2	1040	.697		
5	1031	0.		. —
2	1030	685.		
_5	1011	35200.		
2	150	8.0		
4 4 4		日本市学出版四本本語 2 本 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		

FIGURE 3.4-3
DATA CARD FORMAT

ARRAY LOCATION	VARIABLE NAME	DESCRIPTION
1495	ISASLØN	PITCH SAS SWITCH
1496	ISASLAT	ROLL SAS SWITCH
1497	ISASDIR	YAW SAS SWITCH
1627	IMØDE	FLAP MODE SWITCH
1635	IFLAP	MANUAL FLAP SWITCH
1776	PCTHR	PERCENT THROTTLE
1777	PCNØZ	PERCENT NOZZLE CONTROL
1782	POFUEL	FUEL WEIGHT
1819	PWATER	WATER WEIGHT
1882	IGEAR	GEAR UP/DOWN FLAG
1959	ICASE	OPTIONAL CHECK CASE IDENTIF _ATION NUMBER

3.4.2.3 <u>NAMELIST options</u> - Program SPRINT is used to print data from the local file TAPE3. The printout consists of start of run data, time history data, and end of run data. The user may select various control options over the following categories via NAMELIST input:

NAMELIST CONTROL CATEGORIES

- o Run Selection
- o Output Print Selection
- o Parameter Selection
- o Time to Print Selection
- o Names Override
- O Classification Override
- o Low Core Execution

The data cards for the NAMELIST options are contained in the EXECUTE deck and follow the data cards described in the previous section. NAMELIST input options are available in each of these categories and are the following:

Run Selection

NRUNS Number of consecutive runs to be printed, starting at the current file position. After NRUNS runs have been

the current file position. After NRUNS runs have been printed, the program will terminate with a STØP 1, unless a double end-of-file has been encountered before NRUNS has been satisfied. If this occurs, the program will terminate with a STØP 2. Parameter NRUNS is not used i. IFILES(1) is non-zero.

IFILES(20)

File numbers of runs to be printed, starting at the current file position. File numbers must be in ascending order a no more than 20 separate runs may be specified by the user. A zero in the array terminates the sequence. After all runs have been printed, the program will terminate with a STOP 1, unless a

IFILES(20) (Cont'd) double end-of-file has been encountered before all runs selected have been satisfied. If this occurs, the program will terminame with a STOP 2. Parameter IFILES overrides the parameter NRUNS.

Output Print Selection

IBLØCK

Format selection for printing time history data. Legal values are as follows:

Column Format (IBL9CK=0) prints the complete time history of ten parameters at a time in columns up to 441 parameters out of a maximum of 881 parameters. If the data exceeds 441 parameters it can be read by using NPLIM for the first 441 parameters and then using NPLIM in conjunction with the IXR array for the remaining parameters; see IXI array description.

The Column Termat requires more core since local files are used to sort the time history data for separate pages, and each file requires a separate buffer. If core is a problem the user should consider the Low Core Execution Optimum.

Block Format (IBL@CK=1) prints all time history parameters for one time pass in a block, ten per line. The maximum number of parameters that can be printed is 881.

Block Format with Names (IBLOCK=2) prints all time history parameters for one time pass in a block, five per line with parameter names embedded within the block. The maximum number of parameters that can be printed is 881.

Column Format with Increased Accuracy (IBLOCK=3) prints the complete time history of five parameters at a time in columns up to 221 parameters out of a maximum of 881 parameters. If the data exceeds 221 parameters the data can be read by using NPLIM for the first 221 parameters and then using 1PLIM in conjunction with the IXR array for the remaining paramerer; see IXR array description for more details.

This Column Format prints us the values of the parameters to 8 decimal places. And if used in conjunction with the IXØCT array can print out the octal value of the parameter in 20 octal ligits (where 20 octal digits = a octal word).

Parameter Selection

NPLIM

Limit number of time history parameters to be printed. If NPLIM is non-zero the <u>first NPLIM</u> parameters will be printed. Normally, all the time history pointers and names are printed on a start of run page. However, if parameter NPLIM is used, then only the pointers and names up to NPLIM will be printed. Also, for the Column Format printout, less core will be required, since only the sort file buf: ers needed for NPLIM parameters will be allocated.

IP(176)

Page print selection array. Each array element is a flag that corresponds to ten time history parameters for the Column and Block Format Options. For the Block Option with names each flag corresponds to five parameters up to a maximum of 881. For the Column Option with increased accuracy each flag corresponds to five parameters up to a maximum of 221. If IP flags are set to zero, the corresponding time history parameters will not be printed, but the pointers and names will still appear on the start of run page.

IXR(881)

Parameter re-ordering array. For the Column Format (IBLØCK=0) this array allows printing up to 441 time history parameters in any desired order from a set of up to 881 time history parameters. For the Column Format (IBLØCK=3), this array allows printing up to 221 time history parameters in any desired order from a set of up to 881 time history parameters. For both Block Formats this array allows printing up to 881 time history parameters in any desired order. Each array element corresponds to a parameter position. If any array element is non-zero, the original time history parameter corresponding to that element will be replaced by the parameter number indicated by the value of the array element. Only the parameters to be re-ordered need specification in the LXR array. Also, for the Column Format Option some time history parameters can be duplicated to appear on more than one page, for example, by specifying the parameter number in more than one array position. This option can be used in combination with the namelist parameters NPLIM and IP.

NOTE: If the user wants Column Format (IBLØCK=0) and has a tape with NP '442<NP<881) time history parameters, the first 441 parameters may be printed by using NPLIM=441. The remaining parameters (NP-441) may be printed by using NPLIM=NP-440 and IXR(1)=-442, which will automatically generate the correct IXR array. If the user wants Column Format with Increased Accuracy (IBLØCK=3) and has a tape with NP (222<NP<881) time history para-

ORIGINAL MARKET

MDC A7910 Volume I

IXR(881)
 (Cont'd)

meters, a similar method is used to read the data in. The first 221 parameters may be printed using NPLIM=221. If NP \leq 441, set NPLIM=NP-220 and IXR(1)=-222 and it will automatically generate the correct IXR array for this set of 221 parameters.

If NP < 661. set NPLIM=NP-440 and IXR(1) =-442. Otherwise, on this third pass leave NPLIM=221, set IXR(1)=-422 and it will generate the IXR array for parameters 442 to 661. For printing out the remaining parameters from 662<NP<881, set NPLIM=NP-550 and IXR(1) =-662.

IXØCT(881)

Parameter octal print array. This array allows for printing of time history parameters in octal format. Each array element is a flag that corresponds to a time history parameter to be printed. That is, the second array element is associated with the second time history parameter to be printed, the third array element with the third parameter to be printed, and so on. This matchup is made regardless to whether or not the nth one to be printed is actually the nth time history parameter or one that has been reordered using the IXR array. To have the parameter printed out in octal, its related IXOCT array element should be set high.

For the Column Format with Increased Accuracy (IBLOCK=3), which prints out five parameters per page, the local representation is 20 characters long. For the Block Formats and the Column Format with ten parameters per page (IBLOCK=2,1,0) the octal representation is 10 characters long. The maximum number of parameters printed out for IBLOCK=0,1,2,3 is 441, 881, 881, and 221, respectively. These limits hold for the IXOCT array also.

Time to Print Selection

DP

Print interval. Time history data will be printed once every data pass that TIME exceeds or equals (within a small tolerance) successive integral multiples of DP. Thus if the parameter DP is less than or equal to the smallest time increment, all the data will be printed. If DP=0.0, all passes of data will be printed regardless of the time increment. This could be useful if, because of some error, TIME was equal to or less than a previous pass. If DP=0.0, the namelist parameters TSTART and TSTOP are not operational.

TSTART(10)
TSTØP(10)

Start/Stop times. Sections of time history data to be printed can be specified by use of the TSTART/TSTØP arrays. The array elements, up to a limit of ten, correspond to the sections to be printed. The start time is specified by the TSTART element and the stop time is specified by the TSTØP element. The stop time must be greater than or equal to the start time, and each start time must be greater than or equal to the previous stop time. All array elements beyond those desired must be zero.

LASTPAS

Print last pass of data. This parameter, when non-zero, causes the last pass of time history data to be printed regardless of the print interval or start/stop times.

Names Override

INAMES

Names override. When this parameter is non-zero, the program will read data cards to input parameter names up to a maximum of 881. If names are on the data tape, they can be overridden using this option. If there are no names on the data tape, they can be supplied via data cards for the printout. Data cards must be in an (I10, 7Al0) format immediately following the namelist cards. The first field is for an index indicating the parameter number of the first name appearing in the second field. Up to seven names may be input per card. All the names on a card will be input in sequential order starting with the index for the first name. A blank in the name field will terminate input from that card. If seven names are put on a card, the names on the following card will be input sequentially even without index specification. A blank card terminates the data card input.

If the program is executed more than once in the same job, the names need to be entered only from the first namelist. If INAMES=2, names entered from a previous name list will be de-selected, and new names can be rered by the user.

Classification Override

ICLASS

Classification override. The classification is normally specified in the data tape start of run data, and will print out automatically unless this override option is specified by the user. Legal values and the resulting printout are as follows:

ICLASS=1 - Printout will have no classification, blanks will be printed instead of start of run classification data.

ORIGINAL PALLS TO OF POOR QUALITY

MDC A7910 Volume I

ICLASS (Cont'd)

ICLASS=2 - Printout will have "Confidential" classification.

ICLASS=3 - Printout will have "Secret" classification.

Low Core Execution

LØWCORE

Small buffer option for Column Formats printout. For these printouts (IBLØCK=0,3), each sort file has a buffer which is defaulted to a length of 1002B for maximum efficiency. If the parameter LØWCORE is set non-zero, the buffer length is set to 102B, so there is a core savings of 700B for every ten parameters to be printed. The cost does not differ significantly, so the normal option is recommended because the job runs faster. The low core option can be used, however, when the available core is limited. This option does not apply to Block Formats (i.e. IBLØCK=1 or 2), which always use less core since no file buffers are necessary.

Program SPRINT can be executed more than once in the same job in order to change the NAMELIST parameters for a different run or series of runs. All NAMELIST parameters not changed will retain their previously assigned values. The only exception is the parameter INAMES. This parameter will not stay non-zero on a subsequent execution so names do not have to be re-entered unless desired by the user. However, the names will be retained unless the parameter INAMES is set non-zero and new names are entered via data cards.

Figure 3.4-4 shows the NAMELIST options input for the YAV8B conventional Dutch Roll simulation run. This set of cards is inserted behind the second end-of-record card in the EXECUTE deck. A summary of NAMELIST parameters is printed in the output for each run, and shown for this case in Figure 3.4-5. The column format has been selected, and one page of the time history output for this run is shown in Figure 3.4-6. An example of block format output can be seen in Figure 3.4-7.

- 3.4.3 ISOMS DECK Calls to the YAV8B aircraft subroutines and equations of motion are made in the ISOMS subroutine. Within this subroutine, both dynamic time histories and static check cases can be modeled. In addition, initialization of variables can be performed and miscellaneous parameters can be defined. These features can be incorporated into the simulation with the use of the ISOMS modify card deck. This deck modifies the ISOMS subroutine to include any pilot control input time histories and/or program initializations.
- 3.4.3.1 Dynamic Time Histories Any simulated pilot inputs during a time history run are modeled in ISOMS before the operate loop call to ACO7, a submoutine which calls the aircraft submoutines and equations of motion in the proper sequence. The pilot inputs can include stick and rudder pedal movements as well as throttle and nozzle changes. Any cockpit switches which need to be activated during a run, such as flap mode switch or water switch, can also be modeled.

FIGURE 3.4-4
NAMELIST CARD SEQUENCE IN EXECUTE DECK

BUN SELFCFION CONSCUINT RUNS BUNNER HINNERS OF RUNS DESIGED FINANCES OF RUNS DESIGED	HRUNS EFILES		00	•	•	•	•	•	•	e	•	•		•	c	•	•	•	•	•	
PRINT SELECTION COLUMN BEOCK VIIN NAMES IN THE SCHOOL COLUMN VIII MERES IN THE SCHOOL COLUMN VIII MERES AS AS TO CHOOL ACCURACY THE DOCK - 1)	INLOCK	•	•																		
PARAFETE SELECTION OF PRACTETES PAGE PROSE	2 m	•= :	o- 4	- (- 0	- (- (- 6	~ 0	- (- (- `		6	- (- 0	- (- (- 0	
PARAMETER OCTAL PRINT INDICES	CXOC 10	<u>:</u> :	- •	•					•	•	• •				c	•	.		5 0		
THE ID PRINTERS. START INFESTIGATION START FLAC	6 mm 9 mm		000000000000000000000000000000000000000	950	90	90 90 90	00	00 00 00	oc 00 00	20 20	66 66 66	çe	90 90 90 90	00	90 00 00 00	90	00 00 00	60	00 00 00 00 00		9.50
HAMES OVERRIDE FIRE (110, 7210)	INAMES	•	•																		
CLASSING CANADA CONTRACTOR CONTRA	ICLASS	•	c20)																		
LOVEORE OPTION FLAG	LOVERRE	•	0																		
HE DIAPES ONLY FINDICES A PARTICES A PART OF RUM ORTH	27 A T A C A T A C A T A C A C A C A C A C	• •	00	00																	

SEANDARD PRINT -- NAMELIST OPTIONS

FIGURE 3.4-5 SPRINT NAMELIST OPTIONS SUMMARY

ORIGINAL FALLS OF POOR QUALITY

FIGURE 3.4-6 SPRINT COLUMN (IBLOCK = 0) FORMAT

ORIGINAL CO.... OF POOR QUALITY

54ff 1	147.74. 147.76. 147.76. 147.76. 147.76. 147.76. 147.76. 147.76.	2000
	> 7	> 7 4 4 6 5 5 5 6 6 7 4 6 6 6 6 7 4 6 6 6 6 7 5 7 7 7 8 6 6 7 7 7 8 8
	C + C C C C C C C C C C C C C C C C C C	######################################
		•••••
14.22.48.		4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
82/11/15. 14	40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 -	#
č	••••••	************
-	_	r santa E
•	# 445## F # 155##################################	20-4/6-06/1224 44-4-464 44-4-464 44-4-464 44-4-466 44-4-466 44-4666 44
RUN MUNATO	THE INCHES OF A LANGE	The law of the color of the col
PUN MUNITO	MOSS-CONSTRUCTOR	THE THE MOST CONTROL OF THE CONTROL
BUN MURTE	MOSS-CONSTRUCTOR	THE THE MOST WATER AND THE PROPERTY OF THE PRO
BUN MURIT	NO-POWER PROPERTY OF A CONTROL	T
BIN MINULE	######################################	

FIGURE 3.4..7 SPRINT BLOCK (IBLOCK - 2) FORMAT

The simulation require, that stick inputs be made in percent of full stick deflection in both the longitudinal (100% full aft, 0% full forward) and lateral (-100% full left, 100% full right) axes. Rudder pedal is input in percent of total rudder pedal deflection (-100% full left pedal, 100% full right pedal). Varying throttle and nozzle control inputs are also made in percent for use in subroutine ENGO8. See Figure 3.4-8 for commanded surface positions. RPM and nozzle angle as a function of percent stick, rudder, throttle and nozzle lever respectively.

Pilot control inputs to the program are normally modeled as functions of run time. Figure 3.4-9 shows the location in I50MS where control inputs have been made for a YAV-8B wingborne Dutch Roll case. Data tables have been utilized in storing both the percent stick and rudder pedal movement as a function of time. The format of the table look-up functions used to access these data tables is discussed in Section 3.4.5. It is acceptable to program step inputs of the controls as a function of time using IF statements in lieu of data tables. For example, this is the procedure to use when modeling changes in cockpit switch positions. However, the table look-up functions provide the capability of modeling more realizateally the pilot control inputs due to linear interpolation between data points.

- 3.4.3.2 Static Check Cases When the output of a simulation run is desired simply as a function of input and no control variations, the control input definitions can either be modeled as constants in the I50MS subroutine or defined in the EXECUTE deck data cards. It may at some time be desirable to isolate a particular subroutine in order to examine data or logic. The analysis of a particular subroutine can be simplified by excluding the equations of motion and any aircraft subroutines irrelevant to the topic of interest. This modification can be made by replacing the call to ACO7 with a call to the desired subroutine(s) in the I50MS subroutine. These subroutines must be examined for necessary inputs, however, because some variables used in the logic will no longer be provided values when the irrelevant subroutines are excluded. Additional parameters can be initialized through data card inputs to the EXECUTE deck.
- 3.4.3.3 Parameter Definition and Initialization Capabilities The user may define additional parameters of interest in the I50MS subroutine. Once equivalenced to available array locations, the parameters can be output in the RTPDATA subroutine (see Section 3.4.4). The advantage to defining a variable in I50MS is that the definition can be made after calculations within all subroutines have been completed for a given pass. The user can be assured that the variable is using current and not past values in its definition.

The entry point I500NCE is contained in I50MS, and provides an alternate means of initializing parameters for use in a simulation run. Greater flexibility is generally available in initializations made through the EXECUTE deck data cards. For necessary inputs which the user will not often be varying, however, entries made in I500NCE before the call to ACO7 (conter subroutines) can eliminate having to handle more EXECUTE data cards than are needed.

FIGURE 3.4-8
YA"-8B PILOT CONTROL INPUT DEFINITIONS

ORIGINAL PAGE ED OF POOR QUALITY

```
************
                                                           **
                                                           * SUNCEU SUBBOUTINES
                                                           *******
        CDT # FNT
        PNNEG = PN + PTNN

QNOEG = ON + PTNN

QNOEG = PH PTNN

PNEG = P*RTNN

ONEG = P*RTNN

PNEG = P*RTNN
        STLTPC=52.14

STLAPC=0.0

CALL =SPCH(TIME, RRKTM25,13.ITHM25,1)

RUDPC=F18(TIME.13, BNDTM25,DFLCS25)

IFLAP = 1

IF(DFLAPL.GF.4.0) IFLAP = 0
                                                                       control inputs
        CALL ACOT
        4NZR = -47 / G
        XTOT = AEROX + FTX
YTOT = AEROY + FTY
7TOT = AEROZ + FT7
        COT = FOT
        PETIJPN
                                            ***********
* *
                                            * ONE PASS INITIALIZATION
                                            *********
        ENTRY ISOUNCE
        COT * FOT
        PTALD = 1.
                                                           ONF PASS (TMITTAL = 1) INITIALIZATION CALLS
        CALL ACOT
        COT = FOT
         END
```

FIGURE 3.4-9
ISOMS DYNAMIC INPUT LOGIC

3.4.4 <u>RTPDATA DECK</u> - Program variables in common arrays can be deleted from or added to the output listing by modifying the subroutine RTPDATA with the modify deck RTPDATA. Subroutine RTPDATA specifies which array locations will be buffered out during a simulation run. The user needs to know the array locations of variables desired to be a part of the output. The format for a variable print-out request is:

N=N+1 \$ $IB(N)=IN_{A} + xxx$ \$ IN(N)=10H ccc,

where "xxx" is the array location of the output, and "ccc" represents a ten character name which will identify the data of location "xxx" in the printcut listing. INA in this statement specifies that the data is coming from the A array, which begins at F(1001). If the variable address is defined in the F array and is less than 1000, INF should be used instead of INA.

The capability exists for the user to output start of run data, time history data, and/or end of run data. Start of run and end of run variables are printed only once in the output, while time history variables can be recorded throughout the simulation run. The same statement format shown above is utilized for any of these three cases. Placement of a variable print-out statement within subroutine RTPDATA will determine the order that the variable name and its value are printed. An example of the output variables in RTPDATA specified for a YAV-8B wingborne Dutch Roll case is shown in Figure 3.4-10. In this example, time history and start of run variables will be displayed, but no end of run output will be produced.

- 3.4.5 <u>DATA TABLE LOOK-UP FORMAT</u> Data tables such as those containing aero-dynamic and engine performance data are accessed using subroutines and functions contained in file TBLKP. The appropriate interpolation ratio, index, and data point selections are based on given independent to dable values and inputs provided in the TBLKP functions and subroutine calls.
- 3.4.5.1 Data Table Structure The aerodynamic and engine data tables are defined in subroutines AERØDAT and YENGD respectively. The tables may be one-, two-, or three-dimensional. The order of the data within the tables is important when using a table look-up function. The first dimension of a data table is a function of the first independent variable, the second dimension likewise is a function of the second independent variable, etc. Figure 3.4-11 displays the structure for three-dimensional table CNFLAPT.

* TIME HISTORY DATA
POINTERS AND NAMES

I°(1) = 151 IB(2) = 7C N = 2 INA = 1000

IN(N)=10H CASE IN(N)=10H MALT IN(N)=10H GBAR IN(N)=10H GW IN(N)=10H FUEL IN(N)=10H WATE IN(N)=10H WATE IN(N)=10H WATE N=N+1 N=N+1 N=N+1 N=N+1 \$ 12935467893978 2781555555583111 278222222286111 N=N+1 N=N+1 WATER FSCG WLCG ******* N=N+1N=N+1 N=N+1 WLCGG BLXYYZZAR HA ELDHA N=N+1 N=N+1 N=N+1 N=N+1 N=N+1 N=N+1 N=N+1 \$ IB(N)=INAAA \$ IBB(N)=INAAA \$ IBB(N)=INAA \$ IBB(N)=INAA \$ IBB(N)=INAA \$ IBB(N)=INAA \$ IBB(N)=INA \$ IBB(N)=INA \$ IBB(N)=INAA N=N+1 N=N+1 BETA GAMMAV STKLON DH N=N+1 N=N+1 \$ 18395678C385459250 45455664578C887437 +++++++++++++ N=N+1 \$ N=N+1 STKLAT \$ N=N+1 N=N+1 DAL \$ \$ DFLAPL DFLAPR PEDAL N=N+1\$ \$ $N=N+\bar{1}$ \$ 5 5 N=N+1 DR THETAJ N=N+1 N=N+1 NFC NF N=N+1 S N=N+1 S N=N+1 S IB(N)=INA N=N+1 S FGTÖT N=N+1 S N=N+1 S IB(N)=INA IB(N)=INA IB(N)=INA DRAGIBL N=N+1 S 5 N=N+1 \$ IB(N)=INA + N=N+1 \$ IB(N)=INA + N=N+1 \$ IB(N)=INA + N=N+1 \$ IB(N)=INA + 812 657 104 103 IN(N)=10H IN(N)=10H IN(N)=1CH IN(N)=10H DRAGRAM TOTBLD 5 5 5 5 PHI

A Carrier Language of

FIGURE 3.4-10
RTPDATA VARIABLE OUTPUT FORMAT

ORIGINAL PAGE IS OF POOR QUALITY

MDC A7910 Volume I

	DATI (CNI	FLAPT(I),	[=].64)/	— DIMEN	rsion 1 —			
	.8*0.0	i war i taya.	1-1,04//					
•	. 0 20h.	0.195,	C 183,	0.160,	0.133,	0.125,	0.120,	
3	. 0.360,	0.345,	0.331,	0.305,	J.268,	0.235,	0.218,	
I.S.N.S.	0.455,	0.448,	0.438,	0.430,	0.380,	0.330,	0.280,	
1 1	0.360, 0.203, 0.455, 0.248, 0.50,	0.505,	0.505,	0.505,	0.490,	0.405,	0.308,	
_ /* 1	8*0.(
~	. 0.198, . 0.121	0.185,	0.178,	0.153,	u.130,	0.125,	0.120,	
DIMENSION	. 0.351,	0.133,	0.318,	0.295,	0.263,	0.235,	0.218,	
NEW T	0.±03/ DATA (CNI	FIADT/I)	T=65 120)	,				
10.	. 0.448,				0.378,	0.330,	0.280,	
	. 0.228, . 0.508, . 0.243,	0.508,	0.508,	0.508,	0.435,	0.405,	0.308,	
4	.8*0.0, . 0.168,	C.16.,	0.155,	0.143,	0.130,	0.125,	0.120,	
	. 0.120, . 0.308,	0.298,	0.293,	0.272,	0.255,	0.235,	0.218,	
		0.400,	0.393,	0.370,	0.350,	0.330,	0.280,	
		0.470,	0.470,	0.470,	0.465,	0.405,	0.308,	
	. 0.243/			8 x 5 x	3 TABLE			
				PENDENT V	ARIABLE =	CORRECTE FLAP DEF	D ANGLE OF ATTA	ACK

DIMENSION 3 INDEPENDENT VARIABLE = NOZZLE ANGLE

FIGURE 3.4-11 DATA TABLE STRUCTURE

3.4.5.2 Functions - The format for a one-dimensional table look-up with no previously calculated ratios or indices is:

XOUT = Fla(RIN, NUMPTS, BOUNDS, VALUES)

where RIN is input independent variable

NUMPTS is number of points

BOUNDS is minimum and maximum values of input variable, defined in subroutine DATA statements, and

VALUE is table of output function values corresponding to each breakpoint.

For a two- or three-'imensional table look-up, the arguments have the same meaning, but RIN will need to be specified as a temporary array whose elements are in two (or three) independent variables:

TEMP(1)=RIN1

TEMF(2)=RIN2

XOUT=F2A(TEMP, NUMPTS, BOUNDS, VALUES)

Here also NUMPTS becomes a two-dimensional array defined in subroutine data statements and expressed as: DATA NUMPTS number in dimension 1, number in dimension 2. BOUNDS becomes a four-rather than two-dimensional array, defining the endpoints in both dimensions.

Whenever a table look-up function is used, the interpolation ratios and indices for each dimension of the function are stored in a temporary location. If the next logical function uses the same independent variable, number of points and boundaries as arguments, the previously calculated ratios and indices can be retrieved from storage for use in this interpolation. Seven different functions are available in TBLKP:

DIMENSION	FUNCTION	USE (RATIO MRANS RATIO AND INDEX)
w=f(x)	FlA FlB	Find x ratio; calculate f(x) Calculate f(x) using previous x ratio
w= f(x , y)	F2A F2B	Find x,y ratios; calculate $f(x,y)$ Use previous x ratio; find new y ratio; calculate $f(x,y)$
	F2C	Calculate $f(x,y)$ using previous x,y ratios
w=f(x,y,z)	F3A F3D	<pre>Find x,y,z ratios; calculate f(x,y,z) Calculate f(x,y,z) using previous x,y,z ratios</pre>

The breakpoints of all curves must be evenly spaced whenever an "A" function is used to calculate the ratios and indices. These functions do not extrapolate beyond the boundaries; they interpolate within the boundaries only. Out-of-bounds input arguments will receive the closest boundary value of the function. Previous ratios can be calculated by an "A" or "B" function, or by subroutines FSRCH or FCALC.

3.4.5.3 <u>Subroutine FSRCH</u> - When the breakpoints of a curve are unevenly spaced, a call to FSRCH will initiate a calculation of the interpolation ratio and index to be stored and subsequently used by one of the table look-up functions. Each dimension requires a unique call to FSRCH if more than one dimension has uneven breakpoints. The format for a call to FSRCH is:

CALL FSRCH (RIN, BRKPT, NUMPTS, IPREV, IDIM)

where RIN is input independent variable,

BRKPT is array name of uneven breakpoints defined in DATA statement, NUMPTS is number of breakpoints in BRKPT array,

IPREV is index position where search is to begin, and

IDIM is for which dimension in the data table the search is being done (1,2, or 3).

The interpolation index for a given call to FSRCH is stored in IPREV, so that this index will be a starting point the next time this particular FSRCH call is made. IPREV must therefore be a unique name for all calls which do not have the same independent variable and breakpoint table specified in the call arguments.

ORIGINAL PAGE 13 OF POOR QUALLEY

MDC A7910 Volume I

3.4.5.4 <u>Subroutine FCALC</u> - FCALC assumes that breakpoints for a curve are evenly spaced. The format for a call to FCALC is:

CALL FCALC (RIN, BOUNDS, NUMPTS, IDIM)

where RIN is input independent variable,
BOUNDS is low and high boundary of input variable,
NUMPTS is number of points in direction considered, and
IDIM is for which dimension in the data tables the search is being
done.

An interpolation ratio and index are calculated and stored for use by one of the table look-up functions.

- 3.4.6 PROGRAM DEFAULTS AND OVERRIDES Each subroutine comprising the YAV8B program may have a number of variables assigned with default values. The program user should be familiar with the more important variables with default values. The following paragraphs describe these variables for the YAV8B, ATMOS and aircraft routines. Overrides to the defaults can be incorporated in the data cards of the EXECUTE deck.
- 3.4.6.1 YAV8B All variables defined in the DATA statements can be changed, but the following will be of chief interest to the user:

NPASSD Number of passes in reset; currently defaulted to 400 for dynamic stabilization of the simulation.

FDT Basic program update time increment in seconds: default value is .05.

CDT Current update time increment in seconds; default value is .05.

TSTOPD Run time limit; usually specified in the EXECUTE deck, but defaulted to 10 here in case user inadvertently excludes this input (in seconds).

DTBUF Rate at which subroutine RTP will buffer data to storage; should coincide with value of CDT (in seconds).

- 3.4.6.2 ATMOS The basic ATMOS subroutine defines temperature, speed of sound, pressure, and density as a function of altitude for a standard day. If a non-standard day model is desired, the user must modify the ATMOS subroutine to include the values for these atmospheric variables. In addition, a flag must be set to integer 1 in the EXECUTE data cards to bypass the standard day calculations in favor of the non-standard day inputs. This flag is INSTD, located in A(195) and specified as F(1195) on the data cards.
- 3.4.6.3 <u>AERØY8B</u> No formal options exist in the aerodynamic subroutine to affect the logical sequence of computations. Any inputs necessary which are relative to cockpit controls or aircraft configuration are provided by other subroutines.

3.4.6.4 ENGO8 - The engine routine has a number of switches to consider, which are summarized below:

F-ARRAY LOCATION	VARIABLE NAME	DEFAULT VALUE	DESCRIPTION
1781	IDEFUEL	1	Flag for fuel burn during run; default value inhibits fuel depletion
1835	IWATER	0	Water switch off
1831	IENGFØ	0	Engine normal; no flame-out
1874	ILIMØFF	0	All engine limiters on; when set to 1, EGT and 'PM limiters are bypassed

3.4.6.5 RCS07 - No formal options exist in the reaction control system subroutine to affect the logical sequence of computations. Variable PTBLD is initialized to (1.) in I50ØNCE because it is used in the denominator of an equation here before it is defined by subroutine ENGO8.

3.4.6.6 PFC07 - Stability augmentation system switches are defaulted off with a value of zero. The variables and locations are:

PITCH SAS	ISASLØN	F(1495)
ROLL SAS	ISASLAT	F(1496)
YAW SAS	ISASDIR	F(1497)

Although it is not necessary to include these flags as inputs in the EXECUTE data cards when the switches are off, they are included simply for user information.

3.4.6.7 <u>SFC07</u> - The secondary flight controls subroutine has a number of options available which are summarized below:

F-ARRAY LOCATION	VARIABLE NAME	VALUE	DESCRIPTION
1882	IGEAR	0 1	Default; gear up Gear down
1628	ILID	0	Default; LIDS will extend and retract with gear
		1	Emergency LIDS retract
1627	IMØDE	0	Default; flaps in UP mode; move- ment of flaps must be commanded by IFLAP switch
		1	Down mode; flaps operate automatically as a function of nozzle position and airspeed; aileron droop activated in this mode; IFLAP ignored

F-ARRAY LOCATION	VARIABLE NAME	VALUE	DESCRIPTION
1635	IFLAP	0 -1	Default; no manual flap movement Retract flaps as long as IFLAP has this value
		1	Extend flaps, as long as IFLAP has this value, up to 25°
1900	iwønw	0 1	Default; no weight on wheels Weight on wheels; should be set when aircraft is on the ground

If the flap mode switch is \mathcal{P} and the user wishes to extend the flaps less than 25°, logic must be inserted into I50MS, before the call to ACO7, to limit the duration of time that the IFLAP switch is set to 1.

3.4.6.7 <u>WTBALO7</u> - A user may wish to bias the center of gravity to match a particular test configuration. This can be done by adding increments to the total moments used in the center of gravity calculations. The defaults for all biases are zero.

When a particular C.G. is desired, the total moment needed can be calculated for a given aircraft weight, i.e., for the fuselage station C.G.:

TØTMØMX=CGFS*WEIGHT

where TOTMOMX=DRYMOMX + FUELMX + ... + BSMOMX

Since the moment contributions due to the dry aircraft (DRYMOMX), fuel (FUELMX), etc., and the total aircraft weight are known, the bias (BSMOMX) required for a particular C.G. location may be determined. The same procedure is followed for butt line and waterline C.G. biases, and the results for each are entered on EXECUTE data cards in the following locations:

BSMØMX	F(1273)
BSMØMY	F(1274)
BXMØMZ	F(1275)

These biases are added into the total moment calculations used to calculate the aircraft C.G. location in WTBALO7.

3.4.7 <u>SUBROUTINE MODIFICATION</u> - MØDIFY is a utility available on the Network Operating System (NOS) for Control Data Corporation (CDC) Cyber 170 Series Computer Systems; CDC Cyber 70 Series, Models 71, 72, 73, and 74 Computer Systems; and the CDC 6000 Series Computer Systems. MØDIFY is used to maintain and update subroutines that are on the decks of modify file YAVMØD. These decks and the subroutines defined in them are summarized below:

ORIGINAL POUL ES OF POOR QUALITY

MDC A7910 Volume I

DECK ON YAVMØD	SUBROUTINES IN DECK
YAV8B	(Program) YAV8B
I50MS	I50MS
YAERØ	AERØDAT
	AERØY8B
YENGN	YENGD
	ENGO8
YAVAC	AC07
	RCS07
	PFC07
	SFC07
	WTBAL07
ATMÓS	STNDAY
	ATMOS
RTPDATA	RTPDATA

Figure 3.4-12 is an example of a modify card deck for incorporating changes into subroutine I50MS. Insert and delete cards are placed between the *DECK and *EDIT cards after the first end-of-record. The insert card will be of the format (beginning in column 1):

*INSERT or *I nnn

where nnn is a deck line number. Deck line numbers are those displayed to the right of subroutine statements, as shown in the listings of Volume II, Appendix A. Input cards following a given insert card will be placed by MODIFY in the ISOMS deck immediately after nnn. The delete card will have the format (beginning in column 1):

*DELETE or *D nnn or *D nnn, mmm

where nnn, mmm specifies the first and last deck line numbers of a group of lines to be deleted. Additional statements on cards following a given delete card are permitted, and these will replace the lines removed.

To make modifications to a deck other than I57MS in Figure 3.4-12, the user must replace the name I50MS on the FTN, REPLACE, *DECK, and *EDIT cards with that of the desired deck. Further details of the MØDIFY utility can be found in Reference (7).

ORIGINAL FIRE IN

MDC A7910 Volume I

FIGURE 3.4-12
MODIFY CARD DECK FOR 150MS

4. YAV-8B LINEAR MATHEMATICAL MODEL

This section presents the linear mathematical model of the YAV-8B aircraft. The model is composed of small perturbation stability derivatives in the form traditionally used in the analysis of conventional aircraft.

AV-8 project experience has shown that this form is adequate for control system design and handling qualities analysis in the V/STOL flight regime providing the linear analysis is supplemented by nonlinear six degree of freedom analyses. The nonlinear analyses can be obtained through real time pilot in the loop flight simulation or non-real time digital computer runs.

4.1 LINEARIZED EQUATIONS OF MOTION

The linearized equations of motior in stability axes are presented in Figure 4.1-1. The corresponding sign convention and nomenclature are presented in Figures 4.1-2 and 4.1-3. The variables in the equations are perturbation quantities from the initial condition.

4.2 TRIM CONDITIONS AND STABILITY DERIVATIVES

The stability derivatives presented in this section include the effects of aerodynamics, gross thrust and inlet momentum. These derivatives were obtained by perturbing the nonlinear model about a 3 degree of freedom wings level trim condition. Using a 3 degree of freedom trim ensures that the effectiveness of the RCS, which is a strong function of engine fan speed, is represented accurately in forming the control effectiveness derivatives. Figures 4.2-1 and 4.2-2 present the trim conditions and the corresponding stability derivatives used to generate the linear results that are compared to YAV-8B flight test data in Section 5. The corresponding weight and balance data are presented in Figure 5.1-5. Figures 4.2-3 to 4.2-5 present trim conditions and the corresponding stability derivatives for 24 flight conditions that characterize the YAV-8B throughout its flight envelope. The weight and balance data are presented in Section 2.3.

Z.F

XX

Và + Vr - grain] - gacob] - Yab + Yab + Yrr + Ya A + Yaba B + Yares Arcs + Yares Trees p - Ixt - LBH + LB + Lpp + Lr + Lb & + Lb & R + Ld & RRCS & RRC; + LbyRCS & YRCS E - TZP - NB + NB + NP + NF + NA CA + NA CR + NA CR + NA CR TRCS + NA TRCS SILJE

4 - Hu + Hh + Hq + Hg + Hd + Hd BH + Hg GFRCS + HARCS GARCS

h = V8cost - Vacost + usinf

Altitude

90 24 25

U + BBCOBE - XU + XB + Xq + Xa + Xa + Xa + Xb + X FRCS FRCS + XA ARCS ARCS

LONGITUDINAL

FIGURE 4.1-1 LINEARIZED EQUATIONS OF MOTION-STABILITY AXES

LATERAL - DIRECTIONAL

ORIGINAL PAGE TO OF POOR QUALITY

FIGURE 4.1-2 LINEARIZED MATHEMATICAL MODEL SIGN CONVENTIONS

	ORIGINAL ! AID!	MDC A791J Volume I
VARIABLE	OF POOR QUALITY DEFINITION	UNITS
AND, U, L. R	Aircraft nose down, up, left, right	•
ī	Mean aerodynamic chord	in
FRL	Fuselage Reference Line	-
FS	Fuselage Station	in
g	acceleration due to gravity	32.174 ft/sec ²
Gear	Landing Gear	-
h	Altitude	ft
I _{XX}	Moment of Inertia about X-axis	Slug-ft ²
Iyy	Moment of Inertia about Y-axis	Slug-ft ²
Izz	Moment of Inertia about Z-axis	Slug-ft ²
Ixz	XZ Product of Inertia	Slug-ft ²
L	Rolling Moment (positive is RWD) or Left	ft-1b, -
LID	Lift Improvement Derice	-
М	Pitching Moment (positive is ANU)	ft-lb
N	Yawing Moment (positive is ANR)	ft-lb
N _F	Engine Fan Speed	2
n z	Load Factor	-
P	Rolling Velocity	rad/sec
9	Pitching Velocity	rad, sec
٩	Dynamic Pressure	psf
r	Yawing Velocity	rad/sec
RCS	Reaction Control System	-
RWD	Right wing down	•
TEU, D, L. R	Trailing Edge Up, Down, Left, Right	•
u	Forward speed	'-/sec
v	Total freestresm velocity	ft/sac
UL	Waterline	in
**	Force in X direction (positive is forward)	-
Y	Force in Y direction (positive is out right wi	ng) -
Z	Force in Z direction (positive is down)	-
α	Fuselage (WL) angle of attack	radian
В	Angle of sideslip	radian
ro	Initial flight path angle	radian

FIGURE 4.1-3
LINEARIZED MATHEMATICAL MODEL AND STABILITY DERIVATIVES
NOMENCLATURE

ORIGINAL PAGE IS OF POOR QUALITY

VARIABLE	DEFINITION	UNITS
ô _A	Aileron deflection (positive is left aileron TED)	radian
^δ A D	Drooped sileron deflection (positive is TED)	radian
^Ĉ ARCS	Aft RCS deflection in equivalent horizontal tail deflection for $\delta_{H} \geq 2^{\circ}$ $\delta_{ARCS} = \delta_{H}$ $\delta_{H} < 2^{\circ}$ $\delta_{ARCS} = 0$	radian
F	Trailing edge flap deflection (positive is TED)	deg
⁶ FRCS	Forward RCS deflection in equivalent horizontal tail deflection for $\delta_{H} \stackrel{>}{<} 2^{\circ} \delta_{FRCS} \stackrel{=}{=} 0$ $\delta_{H} \stackrel{<}{<} 2^{\circ} \delta_{FRCS} \stackrel{=}{=} \delta_{H}$	radian
о́н	Horizontal tail deflection (positive is TET)	radian
⁵ R	Rudder deflection (positive is TEL)	radian
⁶ RRCS	Roll RCS deflection in equivalent aileron deflection $\delta_{RRCS} = \delta_{A}$ LEFT	radian
⁶ YRCS	Yaw RCS deflection in equivalent rudder deflection $\delta_{\rm YRCS} = \delta_{\rm R}$	radian
¢	Roll angle (positive right wing down)	radian
е	Pitch angle	radian
Ψ	Yaw angle	radian

FIGURE 4.1-3 LINEARIZED MATHEMATICAL MODEL AND STABILITY DERIVATIVES NOMENCLATURE (CONTINUED)

ORIGINAL I'M ... " MDC A7910 OF POOR QUALITY Volume I $L_g = (\rho SV^2 b/2Ixx)C_{L_g}$ $M_{u} = (\rho SV\bar{c}/Iyy)C_{M_{u}}$ (1/ft·sec) $(1/sec^2)$ $M_h = (\rho SV\bar{c}/2Iyy)C_{M_h}$ $(1/fr \cdot sec^2)$ $L_{\dot{\beta}} = (\rho SVb^2/4Lzz)C_{\dot{\beta}\dot{\beta}}$ (1/sec) $M_{\alpha} = (\rho SV^{2}c/2Iyy)C_{m_{\alpha}} \qquad (1/sec^{2}) \qquad L_{r} = (\rho SVb^{2}/4Ixx)C_{\ell_{r}}$ (1/sec) $(1/sec) L_p = (pSVb^2/4Ixx)C_{i_p}$ $M_{\star} = (\rho SV\bar{c}^{-2}/4Iyy)C_{m_{\star}}$ (1/sec) $M_q = (\rho SV\bar{c}^2/4Iyy)C_{m_q}$ (1/sec) $L_{\delta} = (\rho SV^2 b/2I_{EE})C_{R_{E}}$ $(1/sec^2)$ $M_{\delta} = (\rho SV^2 \bar{c}/2Iyy)C_{m_{\delta}}$ $(1/\sec^2)$ $N_{\beta} = (\rho SV^2b/2Izz)C_{n_{\beta}}$ $(1/sec^2)$ (1/sec) $N_{\beta} = (\rho SVb^2/4Izz)C_{n_{\delta}}$ X_u = (pSV/m) C_{X..} (1/sec) $X_h = (\rho SV/2m) C_{X_h}$ $(1/sec^2)$ $N_r = (\rho SVb^2/4Izz)C_{n_r}$ (1/sec) $X_{\alpha} = (\rho SV^2/2m) C_{X_{\alpha}}$ (ft/sec²) $N_p = (\rho SVb^2/4Izz)C_{n_p}$ (I/sec) $X_{\alpha}^{\bullet} = (\rho SV^{-}/4m) C_{X_{\alpha}^{\bullet}}$ (ft/sec) $N_{\delta} = (\rho SV^{-}b/2Izz)C_{n_{\alpha}}$ $(1/sec^2)$ $X_q = (\rho SV\overline{c}/4m) C_{X_q}$ (ft/sec) $Y_\beta = (\rho SV^2/2m) C_{y_R}$ (ft/sec²) $X_{\delta} = (\rho SV^2/2m) C_{X_{\delta}}$ (ft/sec²) $Y_{\beta} = (\rho SVb/4m) C_{Y_{\beta}}$ (ft/sec) $Z_u = (\rho SV/m) C_{Z_u}$ (1/sec) $Y_r = (\rho SVb/4m) C_{y_r}$ (ft/sec) $Z_h = (\rho SV/2m) C_{Z_h}$ $(1/sec^2)$ $Y_p = (\rho SVb/4m) C_{y_p}$ (ft/sec) $Z_{\alpha} = (\rho S V^2/2m) C_{Z_{\alpha}}$ (ft/sec²) $Y_{\delta} = (\rho S V^2/2m) C_{Y_{\delta}}$ (ft/sec²) $Z_{\alpha} = (\rho S \nabla \bar{c} / 4m) C_{Z_{\alpha}}$ (ft/sec) $Z_{q} = (\rho S V \bar{c} / 4m) C_{Z_{q}}$ (ft/sec) $Z_{\delta} = (\rho SV^2/2m) C_{Z_{\delta}} \qquad (ft/sec^2)$ FIGURE 4.1-3

LINEARIZED MATHEMATICAL MODEL AND STABILITY DERIVATIVES NOMENCLATURE (CONTINUED)

ORIGINAL CALL OF POOR QUALITY

		_				_												-				
	5.3-8	10,10,0	135200 0	0 607			6.001	406.1	3.0	5.50	0.0	0.0	0.0	76.7	-0.69	5.0	0		¥ :	<u>-</u>	An .	
	5.3-4	14810.0	2000.0	0 740	-		6.620	0.874	0.0	0.57	0.0	0.0	0.0	79.8	0.67	5.0		2	TA TA	È	an	
PICTURE NUMBER	5.2-10	0.07071							61.0	1.86	0.0	0.0	0.0	87.9	5.51	25.0		2	¥ .	DCMM	DOWN	
FIGURE	5.2-1	20,000,0	2800.0	0.220	-	8 77	0.10	142.0	45.0	10.77	-5.2	0.0	0.0	71.9	5.43	25.0	-	2	ž		Nyou	
	5.2-3	0 00771		100			100.	2.0	79.0	9.33	0.0	0.0	0.0	63.0	2.61	61.7			¥	100	DOWN	•
	5.2-2	0 03771	110.0	100			IM.	· · ·	79.C	9.32	0.0	0.0	0.0	0 96	2.85	61.7	-). 	¥		DOMB	
	5.2-1	0 03731	110.0		7000		100.	0.7	79.0	9.32	0.0	0		9	***	7 19		0.01	¥	1 00	DOM	
	SLIN	:	1	:		1	PSF	KTA3	deg	deg	des	200	9 6	,	, ;	£ 0	9 0	Sap.	deg	1	ı	
	PARAMETER	10101	THE TATE OF THE PARTY OF THE PA	2001112	E .	2	5	>	91	, e		- «	. •	- 2	÷ .	- 4		9	6SB	Gear	710	

FIGURE 4.2-1
TRIM CONDITIONS FOR TIME HISTORIES OF SECTION 5

ORIGINAL PAGE IS OF POOR QUALITY

	5.3-4 5.3-8	02764 01375 0. 0. 0. 26.23723 2.16491 0. 0. 0. 00773 00276 -10.10234 38332 0. 0. 0.	1152211062 0	00180 00039 0. 0. 0. 0 1. 30163 -1. 30163 42639 -2. 04286 68800 -5. 02915 -14. 58472 0. 05969
PICULF NUMBER	5.2-10	05845 01.2891 05474 07401 45907 63233	11886 -129.4047912 -1.68769 -1.97096 -14.153941 0.	00040 0 66\069 -2 50763 69371 -4.255775 0.
À	5.2-3 5.2-7	02421 000049 00149 001374 00004 0	-, 00419 0, 01212 -, 00904 -, 25120 -, 00027 -, 00027 -11, 46248	
	5.2-1 5.2-2	0231402314 0. 00045 .00045 0013600136 .03132 .03132 0000400004 0. 0.	00785 00785 0 0, 0.2982 02982 00826 00826 24600 00024 0. 0. 00024 00024 0. 0. 009967 10,08967	
├-	FARAMETER UNITS	Xu 1/8ec Xh 1/8ec ² Xd fr/8ec ² Xd fr/8ec Xq fr/8ec ² Xd fr/8ec ² XdFRCS fr/8ec ² XdFRCS fr/8ec ²	Zu 1/80C Zh 1/80C Zu fr/80C Zh fr/80C Zh fr/80C Zh fr/80C Zh fr/80C Zh fr/80C Zh fr/80C	Hy 1/ft-sec Hh 1/ft-sec Ho 1/sec Hd 1/sec Hq 1/sec HG 1/sec HG 1/sec HG 1/sec HG 1/sec HG 1/sec HG 1/sec

FIGURE 4.2-2 LONGITUDINAL STABILITY DERIVATIVES FOR TIME HISTORIES OF SECTION 5

	5,3-8	-3,63633 -,00893 9,69418 06358 -85,34539 0.	25.12207 .39280 .74122 00028 -8.60165 0. -5.28867	. 51576 . 00159 -2.89509 - 01444 4.08138 0 - 06499 - 11488
	5, 3-4	-17.55931 0. 41.92017 0. -365.15026 0. 0.2514 1.53703	135.05611 0. 9.51139 0. -13.47119 0. -5.85094 2.16419	4.62761 0. -10.86722 0. 18.06405 0. 00446 99836
PICURE MUMBER	5.2-10	-4.34840 -661886 5.88645 2.35936 -48.74586 0.00324 -21090	12.74662 8.01053 1.10694 .21745 -5.27269 0.	.80862 .2127 -1.33475 71774 3.94821 0. 00055 27487
PICURE	5.2-7	-2.46447 33010 4.48498 1.18067 -32.83507 0.	7.42524 3.09534 .03331 -4.28536 0.	.46025 0254n -1.17807 41104 2.96871 0. 05918 22350
	5.2-3	-, 00001 -1, 01513 , 00014 4, 73450 -, 03042 0, -, 03567 -, 03567	. 00019 11. 95071 62073 00298 0 01991	0, 00493 -, 00003 -1, 44172 -, 00417 0 0, 00541 -, 06095
	5.2-2	00001 -1.00661 .6×013 4.52141 02856 0. 03307	. 00019 12.69730 . 00001 44451 0290 0. 01983	0. .00255 00003 -3.50765 00443 0. 00564 04480
	5.2-1	00001 -1.0061 .00013 4.52141 02856 0.	. 00019 12. 69730 . 00001 44451 00290 0. 01983	0. .00255 00002 -1.50765 00463 0. 00564
	CHILD	fr/sec? fr/sec? fr/sec? fr/sec? fr/sec? fr/sec?	1/8ec ² 1/8ec ² 1/8ec ² 1/8ec 1/8ec 1/8ec 1/8ec	1/8ec ² 1/8ec ² 1/8ec ² 1/8ec ² 1/8ec ² 1/8ec ² 1/8ec ²
	PAKAMETER	76 A 76 A 76 A 76 A 76 A 76 A 76 A 76 A	15 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	X X X X X X X X X X X X X X X X X X X

FIGURE 4.2-2 LATERAL-DIRECTIONAL STABILITY DERIVATIVES FOR TIME HISTORIES OF SECTION 5

ORIGINAL PAGE IS OF POOR QUALITY

ORIUME CHARLES

					FLIGHT CONDITION NUMBER	ON NOTBER			
PARAMETER	UNITS	1	2	3	7	5	9	,	8
GROSS WEIGHT	F.8	16280	16280	16280	16280	16280	16280	16280	16280
ALTITUDE	E	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
#ACH	ı	0.001	0.05	0.10	0.15	0.20	0.25	0.30	0.30
u z	ı	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
10	PSF	.00	3.7	14.7	33.3	59.0	97.2	132.8	132.8
>	KTAS	.7	33.0	0.99	99.1	132.1	165.1	198.1	198.1
9	deg	81.0	81.0	75.8	0.09	40.0	20.0	20.0	0.0
8	deg	7.30	4.52	4.00	3.83	1.94	4.03	0.72	0.47
٥	deg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	deg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
*	deg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	×	96.0	95.2	90.3	80.8	72.2	63.2	68.4	6.99
д ф	deg	2.39	2.57	2.80	2.09	0.67	1.17	2.02	-0.66
98	deg	61.7	61.7	61.7	61.7	47.0	25.0	25.0	25.0
6An	deg	15.0	15.0	15.0	15.0	15.0	0	0	0
ACB.	-	4	- N		42	7	4	2 2	2
100	,		100	¥ 2	1 9			2 2	5
			NAME OF THE PERSON	DOWN	N I	N I	200	200	DOWN
- -	1		NAMOC	MOG	NMOG	NAOG	N N N N N N N N N N N N N N N N N N N	2	MOC
			-						
			_						
	-		-						
		· · · ·							
	- "								
				/					
						_			

FIGURE 4.2.4
TRIM CONDITIONS

	PADAMETER	24.1761				FLIGHT CONDITION NUMBER	TION NUMBER			
La			6	10	11	12	13	71	15	91
FT 100.0 100.0 100.0 100.0 100.0 100.0 2000.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GROSS WEIGHT	5	18158	18158	18158	18158	18158	18158	18158	18158
The control of the co	ALTITUDE	E	100.0	100.0	0.001	100.0	0.001	100.0	20000.0	20000.0
FSF 180.8 36.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	HACE	1	0.35	0.50	09.0	0.70	0.90	0.85	0.50	09.
New Page 180,8 359,0 531,3 723,2 944,6 1066,3 170,3	a a	,	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Marks 231.2 390.3 462.3 528.4 5561.4 307.0 468 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.	10	PSF	180.8	369.0	531.3	723.2	944.6	1066.3	170.3	245.3
1.0 2.0	>	KTAS	231.2	330.3	396.3	462.3	528.4	561.4	307.0	368.4
deg (4.92 1.97 1.09 0.47 0.12 0.96 5.54 deg (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	9	deg	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
4-66 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	8	deg	4.92	1.97	1.09	0.47	0.12	0.98	2.56	3.45
deg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	<u>۔</u>	deg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
deg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	•	deg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
466 0.01 0.74 0.83 0.95 0.69 0.61 -0.84 deg 0.01 0.74 0.83 0.95 0.49 0.61 -0.84 deg 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0	•	deg	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0
deg 0.01 0.74 0.83 0.95 0.49 0.81 -0.84 deg 5.0 5.0 5.0 5.0 5.0 5.0 5.0 deg NA	×	*	53.6	59.7	72.0	79.0	85.6	90.6	62.2	68.3
deg 5.0 5.0 5.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		deg	0.01	0.74	0.83	0.95	0.49	0.81	-0.84	-0.13
deg NA	9	deg	5.0	5.0	5.0	5.0	5.0	0.0	5.0	5.0
The state of the s	ęvu ,	dee			0		C			
			÷ ;			·		•		· .
	as o	3	¥	¥.	¥	¥ ·	ž	4	¥	4
es e	3	,	2	5	5	ŝ	5	a	5	ā
	613	i	5	ŝ	5	\$	5	å	\$	ā
				-						
		·								
										

FIGURE 4.2-4 (CONTINUED)
TRIM CONDITIONS
FULL FLIGHT ENVELOPE

ORIGINAL LAME) OF POOR QUALITY

######################################	34 E MI				FLICIT CONDITION NUMBER	ON NUMBER			
I AAAI US I BR	ONLES	17	18	19	20	21	22	23	24
GROSS VEICHT	[L8	18158	18158	18155	18158	18158	18158	18158	18158
ALTITUDE	E	20000.0	20000.0	20000.0	20000.0	40000.0	40000.0	40000.0	40000.0
HACH	1	٥.	.80	.85	%	. 70	08.	. A5	06.
22	ı	1.0	3.0	1.0	1.0	1.0	1.0	1.0	1.0
10-	PSF	333.8	436.0	492.2	551.9	134.8	176.1	198.8	222.9
>	KTAS	429.8	491.2	521.9	552.6	401.2	458.5	487.2	515.8
6	de8	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
ε	deg	2.16	1.30	9.6	1.01	6.80	4.47	3.71	3.58
٥	deg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60	deg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
*	deg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ž	ĸ	74.0	80.1	84.4	89.6	79.1	80.8	81.5	8,78
₩¢	deg	0.23	0.03	0.42	0.91	-1.27	-1.65	-0.81	17.0-
90	deg	5.0	5.0	5.0	0.5	5		2.0	0.5
947	dea								
2 4	0 (•	3		> ;	3	•	3;	o :
980	20 E	¥ ¥	Y.	AA	¥ Z	¥x	¥	¥ Z	¥ 2
rear Cear	ı	a _s	e e	àn	an I	5	5	an n	å
C10		å	ŝ	ď	å	ŝ	å	an I	П
			_						
		·							
			T						

FIGURE 4.2-4 (CONTINUED)
TRIM COMMITTIONS
FULL FLING ENVELOPE

ORIGINAL FACE LO OF POOR QUALITY

					PLICHT CONDITION NUMBER	TON NUMBER			
PARAMETER	UNITS	-	2	0	4	5	9	,	8
×	1/sec_	02308	03780	05886	09018	07249	05002	04071	04012
×.	1/8ec,	0.	0.	0.	0.	0.	0.	0.	0.
5.	11/00C	1.000	28684.	2.40185	66248	4.66358	12.73305	13.43606	15, 33057
0 ×	7000	15150	03250	19690 -	10311	- 07456	- 18619	- 06 584	- 01181
, S	(t/88c ²	00003	04884	17285	37214	32179	-1.23069	-, 31847	20517
Xépaca	ft/sec ²		ö	ö	ó	-5.19445	-4.29281	•	o.
KARCS	ft/88c2	.23063	11569.	.18533	68840	ö	ö	-1.61567	o.
ZII	1/eec	00767	02663	1'212	19146	23381	21355	17585	14115
2	1/sec ²	ó	ö	ó		ö	ö		0
202	ft/sec2	03056	-8.63061	-29,12989	-58.01804	-105.96188	-149.23892	-261.62280	-224.01700
22	ft/sec	00835	41967	83992	-1.26014	-1.68298	-2.09972	-2.52572	-2,52583
2	ft/sec	.24534	28708	84722	-1.42207	-1.99257	-2.55355	-3.08706	-3.09149
Z 6H	ft/0ec2	00025	61737	-2.47115	-5.56123	-9.49384	-17.45852	-25, 20064	-25.20181
	ft/sec ²	o	ö	.0	ö	-8.97689	-7.62326	o;	ö
ZGARCS	ft/sec2	-10.48198	-10.17959	-9.97046	-9.25184	ö	o o	-7.67142	ö
ź	1/ft-9ec	.00027	,0000	00134	00218	00298	06230	00157	.00029
£	1/ft-00c	· ·	o	0	.0		0		
	1/sec ²	.00473	.11460	04995	46512	73862	-2.81489	-3.94402	-4.62889
	1/sec	00250	12486	24971	37457	49943	62428	74914	74914
	1/sec_	04729	20523	36374	51974	-,61105	83468	- 99904	99831
	1/8ec2	00007	18591	74363	-1.67316	-2.85160	-5.25389	-7.56560	-7.56560
Meracs	1/sec	ö	ó	ö	ö	3.46904	2.52067	•	•
MARCS	1/8ec2	-6.83575	-6.63359	-5.69843	-4.56679	0	•	-3.20025	o ·
			1						

FIGURE 4.2-5 LONGITUDINAL STABILITY DERIVATIVES FULL FLIGHT ENVELOPE

				F.	FLICHT CONDITION NUMBER	N NUMBER			
PAKAMETER	CHIES	1	2	3	4	5	9	7	80
HOAA HOAACS HOAACS HOACS		00001 -1.01957 .00013 4.76497 02871 0.	. 02697 99430 -31711 4.57789 -3.7247 0. 01039	.13919 85532 1.26846 3.85579 -13.19956 0. 00752	.31317 66143 2.85403 3.16750 -27.72350 0. 00590	. 55675 48815 5.07383 2.35433 -38.39084 0. .00081	-5.76406 36350 7.92786 1.74942 -55.96326 000516	-8.49692 45730 11.41612 2.19860 -74.17628 0. 0458	-8.51139 0. 11.41612 0. -73.39457 0. .00525
1.6 RRCS 1.6 RR 1.6 R 1.6 FCS 1.8 1.9	1/8ec 2 1/8ec 2 1/8ec 2 1/8ec 2 1/8ec 2 1/8ec 2 1/8ec 1/8ec	.00019 13.28091 .00001 22989 00211 0.	.47099 13.20824 .04931 .14287 54264 0.	1.87666 11.37564 .21213 .17921 -2.50117 0. 80771	4.21673 8.79886 .48822 .16309 -5.99689 0.	7.33571 6.47196 1.07670 2.5029 -5.83506 0.	18.96115 4.83427 1.32012 .07967 -5.25336 0. -2.0017;	26.67637 6.01604 2.71077 .30985 -3.71593 0. -2.38204	26.59589 0. 2.76987 0. -3.41757 0. -2.38578
N X X X X X X X X X X X X X X X X X X X	1/8ec ² 1/8ec ² 1/8ec ² 1/8ec 1/8ec 1/8ec 1/8ec	0. .09409 00003 -1.48793 00411 0. 00363 04146	01260 .21156 07415 -1.42379 04373 0.	05279 .20135 79612 -1.19850 .27731 0. 00913	11513 .16062 66594 98438 11.25681 0. 01199 21409	13474 .15839 1.17783 73047 3.01798 0. 00151	1.05851 .08507 -1.85094 54379 4.89897 0. 02106	1.65484 .17254 -2.64227 68168 7.02223 0. .01112 39300	1.66506 0. -2.64770 0. 7.03820 0. .01396 39248

FIGURE 4.2-5 (CONTINUED)
LATERAL-DIRECTIONAL STABILITY DERIVATIVES
FULL FLIGHT ENVELOPE

ORIGINAL PAGE 19 OF POOR QUALITY

					PLICHT CONDITION NUMBER	TON MUMBER			
FAKAMETER	2112	6	10	11	7.7	13	14	15	16
24	1/sec	01841	+.07881	03528	03000	05989	09895	01653	01653
×	ft/sec ²	11.05970	13.40382	22.93957	25. 50322	26.97795	56.29080	7.92842	15.01464
ž,	ft/8ec	17002	0.	0.	0.	0.	0.	0.	G.
K6 _H	ft/86c2	-3.16237	-2.09772	-12.45457	-13.28522	01304	-7.45235	-1.11379	1.60778
X6FRCS X6ARCS	ft/8ec ² ft/8ec ²	6 6	0 0	0 0	o o	6 6	.	00	o c
									;
Z _u	1/sec	16198	11129	10514	19911.4	90038	54034	-,13292	12276
42	1/sec.	ö	Ö		0	ó	ė	Ö	•
202	ft/sec'	-293.23650	-664.16092	-967.70978	-1358.98241	-1920.19149	-2068.19315	-280.81606	-446.04434
8 2	ft/88c	-3.31355	4.93993	-6.13200	-7.60479	-9.42146	-8.00393	-2.44495	-3.04464
ZéH	ft/88c2	-40.34245	-87.17613	-136.65291	-200,50263	-274.67187	-323.67912	-40.2420h	-61,33005
26 FRCS 26ARCS	ft/8ec ⁴ ft/8ec ²	တံ ဝဲ	. ·	: c		o o			
2	1/ft-sec	00120	00210	00183	00200	46400.	02454	00063	00114
	1/ft-sec	٧.	0.	0.	0	0.	0	0.	0.
£ 3	1/8ec	73807	-12.40205	-18.41/5/	-Z6./8181	-33.65649	-34.63583	6.83118	- 61699
2	1/sec	-1.11397	-1.63718	-2.03493	-2.51475	-3.10702	-3.72987	81513	-1.01132
.¥9	1/sec2	-12.69197	-27.35129	-42.89421	-62.93145	-86.19300	-101.56277	-12.67178	-19.23422
Méracs	1/sec ²	•		0,	ò				0
FSARCS	7 8 ¢C		.			· o	· 0		

FIGURE 4.2-5 (CONTINUED) LONGITUDIMAL STABILITY DERIVATIVES FULL FLIGHT ENVELOPE

ORIGINAL FACE TO OF POOR QUALITY

					FLIGHT CONDITION NUMBER	TON NUMBER			
PARAMETER	UNITS	6	10	11	12	13	14	1:	16
Y & A I & A A I & A A A A A A A A A A A A	ft/8cc ² ft/8cc ² ft/8cc ² ft/8cc ² ft/8cc ² ft/8cc ² ft/8cc ²	-8.38/82 0. 13.23065 0. -87.54961 0.	-9.77950 0. 22.97510 0. -190.32207 0. .04910	-13.90222 0.33.08414 0281.5168 0. 0.1.42910	-18.74829 0.44.94291 0389.30816 0.2551 1.68731	-24.35766 0. 58.73985 0. -521.48015 0. 1.94197	-27.95595 0.64.33045 0601.78432 0.05095	-3.88108 0. 10.40216 0. -90.77561 0. .06076	-6.64189 0. 15.27221 0. -130.94543 0.04764 .70553
1.6A 1.6RRCS 1.6R 1.6YRCS 1.8 1.9 1.7 1.7 1.7	1/8ec ² 1/8ec ² 1/8ec ² 1/6ec ² 1/8oc ² 1/6c 1/6c 1/8ec	27.23319 0. 1.42398 6. -5.25868 0. -2.14658	58.25566 0. 3.68985 0. -6.35429 0. -3.72285 1.50598	83.68773 0. 5.98119 0. -7.19123 0. -4.55389	117,32015 0.8,60964 0.9,14053 05,35173	162.62642 0. 11.35212 0. -11.32757 0. -6.21345	155.83428 0. 11.94500 0. -17.06421 0. -6.68548 2.58897	26.72374 090248 06.23711 01.8327L	38.74602 0. 1.91964 0. -7.46459 0. -2.25142 1.04095
N N N N N N N N N N N N N N N N N N N	1/8ec ² 1/8ec ² 1/8ec ² 1/8ec ² 1/8ec 1/8ec	1.46485 0. -3.17451 0. 5.41953 0. 05381 44666	2.42233 0. -6.31819 0. 9.88420 0. -06749	3.94635 0. -9.10400 0. 14.1269 0. 01881 98070	5.55190 0. -13.40000 0. 19.26549 0. .01133 1.49929	6.79014 0. -16.20340 0. 25.09204 0. 03604 -1.35987	6.53071 0. -17.81851 0. 28.07313 0. 01482 -1.51394	.49636 0. -2.92014 0. 4.48709 0. 08519 40788	1.25290 0. -4.19877 0. 6.48874 0. 06454 51084

FIGURE 4.2-5 (CCNTINUED) LATERAL-DIRECTIONAL STABILITY DERIVATIVES FULL FLIGHT ENVELOPE

ORIGINAL PAGE S OF POOR QUALITY

					FLICHT COMPLTION NINGER	TION NUMBER	•		
PARAMETER	SLIKS	17	18	19	ů.	21	22	23	24
,∄ ,	1/800	01732	02571	0513&	18022	01372	01150	02760	07967
# H	1/88C	16.88811	14.51112	27.25614	19,56186	2.78060	2.00150	-2.17767	-12.37480
2	ft/sec	٥.	ö	o.	.0	ó	•	· o	Ö
¥.	ft/sec	00149	00375	00505	00554	.00401	.00177	96000 .	. 00093
Mg M	ft/80c2	-12.98431	27809	-3.34295	-2.84277	13476	1.01493	2.39186	3.53818
K6FRCS	ft/88c ⁴	<i>.</i>	તં લ	ė c	<u>.</u>	o c	o c	o o	.
A O A BCS		·	;	;	·			;	i
200	1/3ec	10558	109.15	\$1110.	.14466	11531	12449	02484	.07280
Zh	1/sec ²	ö	ö	Ö	ö	ö	ö		.0
5 0	ft/sec ²	-632.17232	-886.70394	1069.65392	-1025.26027	-219.45170	-377.55834	-422.08194	-507.13206
26	ft/aec	-2.46031	-3.21941	-3.97747	-4.80104	-1.06447	-1.39290	-1.7208)	-2.07721
b 2	ft/sec_	3.7700	4.67935	-5.63805	-6.66924	-1.62531	-2.01829	-2.43569	~2 88029
Z6H	[t/eec,	-90.84896	-126.79328	-149.45095	-169.99789	-36.88793	-51.21255	-59,35425	-68.14082
soW ₂	(t/8ec*	o ·	· ·	o i	o ·	o o	o.	o ·	Ċ
ź	1/ft-mec	10100	90336	M779	21006	15000	70000	A DOOR	140.00
· £	1/ft-eec	0.	0		· o	0	0	0	0.
ż	1/sec ²	-11.76623	-15.48462	15. 30934	-25.35701	-2.11569	-7.77561	-10.2' 2	-16,63632
₹:	1/860	77608	-1.01553	-1.25465	-1.51443	33578	43938		65523
₹:	1/8ec	-1.24956	-1.54385	-1.85290	-2.18807	54232	56914	-:-:	94766
H 68	1/eec	-28.52161	-39.77884	-46.89415	-53.33928	-11.55765	-16.06025	-18.41588	-21.36701
HOFFICE	1/8ec	o o			o o			o e	.
						-	;	;	;

FIGURE 4.2-5 (COKTINUED) LONGITUDINAL STABILITY DERIVATIVES FULL FLIGHT ENVELOPE

ORIGINAL PARTY

				,	FLICHT CONDITION NUMBER	TON NUMBER			
PARAMETE:	UNITS	17	18	19	20	21	22	2.3	24
Y6A Y5RCS Y6A Y6YRCS Y6 Y7 Y7 Y7	ft/sec ² ft/sec ² ft/sec ² ft/sec ² ft/sec ² ft/sec ²	-8.8'119 0.20.60025 0179.74464 0.03734 .83582	-11.44490 0. 26.70811 0. -240.49603 0. .96287	-12.85130 0.29.70356 0277.74802 0.02457 1.03833	-14,42113 0. 32,64435 0. -318,87950 0. 0.02795 1.10975	-2.57071 0.7.86393 072,35457 0.04447	-4.56300 0. 10.28863 0. -97.18220 0. 0.03516	-5.4042; 0. 11.7834 0. -112.78448 c. 03219 .44358	-6.04786 0. 13.18525 0. -179.28623 0.03355
1.6A 1.68RCS 1.68RCS 1.67R.38 1.8 1.9 1.7	1/8ec ² 1/8ec ² 1/8ec ² 1/8ec ² 1/8ec 1/8ec 1/8ec	54.44657 0. 3.12722 0. -7.61590 0. -2.6545 1.12724	75,46063 0. 4,29626 0. -8,05987 0. -3,08354 1,23201	71.90217 0. 5.5399 6. -7.72829 0. -3.32157 1.28186	65.88496 0. 6.49397 0. -8.75784 0. -3.56269 1.37970	21.6653\$ 0	30,47504 0. .88628 0. -7, 18613 0. .1,31544	29.38761 0. 1.47834 0. -7.66419 0. -1.42180	27 22574 0. 1.99852 0. -8.4445 0. -1.52747
NNNI NNN SS SS	1/8ec ² 1/8ec ² 1/8ec ² 1/8ec ² 1/8ec ² 1/8ec ² 1/8ec ²	2.064/8 0. -5.71624 0. 8.86219 0. 04199	2.78256 0. -7.47044 0. 11.54549 0. 02044 .:.67387	3.02561 08.22731 0.12.96997 0. 20598 75715	3.11177 0. -8.98316 0. 14.3974 0. 00516 83329	. 2 3 0 3 B 02 . 2 5 1 2 9 0. 3 . 0 6 1 0 5 0 0 6 0 9 2 4 0 4 2	.72925 0. -2.97430 0. 4.54186 0. 05058 28614	. 91301 63 27276 0. 5.18239 004495 -,32251	. 99826 03.52595 0. 5.72878 004536 16111

FIGURE 4.2-5 (CONTINUED)
LATERAL-DIRECTIONAL STABILITY DERIVATIVES
FULL FLIGHT ENVELOPE

5. VALIDATION OF THE MATHEMATICAL MODEL

5.1 BACKGROUND

The YAV-8B mathematical model is based on AV-8A and YAV-8B wind tunnel test and flight test results. The model has been periodically refined since the first AV-8A air-to-ground attack simulations at MCAIR in 1972. The development of the V/STOL model commenced in 1974 with the definition of an engineering simulation of a hover, short takeoff and landing and transition mode for the AV-8A. During this period the coordinate system used for hover and the jet induced velocity parameter (Veq) were developed. Subsequent studies added data to simulate ground effects. To help validate the AV-8A simulation, John Farley, Chief Test Pilot for Hawker-Siddley, flew the simulator in hover using the motion base simulator. During 1975, additional improvements were made to the model including new air-to-ground weapon delivery modes and displays, improved ship and land-based landing aids, and continued use of the model for air-to-air combat. All the changes were evaluated by the USMC using the flight simulation facilities. Between early 1972 and late 1975, there were 13 contractual AV-8A simulations. AV-8A modeling was refined throughout each of these programs based upon additional test data and engineering analyses. This simulation capability and experience permitted MCAIR to desig. and conduct a preliminary AV-8B Simulation Evaluation in June, 1975.

This evaluation utilized a previously-developed simulation of the AV-8A aircraft modified with AV-8B lift, drag and pitching moment characteristics. Following this evaluation, the AV-8B simulation was further modified to include wind tunnil-derived AV-8B aerodynamic and flight control characteristics in conjunction with AV-8B weight and balance, and propulsion characteristics. During October and December 1975, a second simulation was conducted to demonstrate flying qualities and performance improvements estimated for the AV-8B. Two experienced USMC AV-8A pilots participated in this simulation and their comments and evaluation contributed to improvements in the refined AV-8B model.

Simulator modeling of the prototype AV-8B (YAV-8B) began in 1977. During 1978, the simulation was used for V/STOL flying quality evaluations and for pilot familiarization of the flight envelope prior to first flight of the YAV-8B.

The YA" is simulation was used very effectively during the entire prototyper ight test program in the following areas of activity:

- o Pilot familiarization prior to the first flights
- o Determination of control time histories and flight profiles for maximum performance VTO's and STO's
- o Determination of handling qualities and pitch transients during landing approaches and transitions to and from wingborne and jetborne flight

- o Simulated control failures
- o Flight trajectories following simulated engine flame-outs
- o Handling qualities in wingborne flight

The YAV-8B simulator proved to be representative of the aircraft and very useful during each of these activities.

Prior to the YAV-8B engine/inlet compatibility testing in 1980, flight trajectories and approach/landing techniques following a simulated engine flame-out (SFO) were developed and practiced on the simulator. Landing profiles, flap angle, and the nozzle/power setting needed to represent engine windmilling were developed. During actual flight SFO practice, pilots reported that the flight SFO's were very close to those experienced in the YAV-8B simulator. Also, the aircraft settings (idle power/40 nozzle) chosen to simulate engine out conditions were representative of the actual engine out characteristics.

The YAV-8B mathematical model is based on extensive flight test and wind tunnel test results. Figure 5.1-1 summarizes the flight test conditions flown. A total of 364 flights were flown prior to the start of a store separation flight test program in 1982. A summary of both aerodynamic and propulsion wind tunnel test programs is presented in Figure 5.1-2. The aerodynamic tests consisted of both powered and unpowered tests on a 15% scale and full scale models over the entire Mach range. They covered the jetborne, semi-jetborne and wingborne modes of flight in and out of ground effect. Over 6600 hours of tests are shown. A similar wind tunnel test program was performed on the YAV-8B inlet to provide a firm data base for the propulsion performance package. Approximately 2000 hours of wind tunnel testing are shown.

The YAV-8B aircraft is equipped with both a noseboom angle of attack (AOA) probe and a production angle of attack indicator. The relationship between the noseboom AOA and the production AOA, in units, is shown in Figure 5.1-3. Note that the data fairing

$$\alpha_{\text{FRL}} = \theta - \Upsilon = .864 \alpha_{\text{PRODUCTION}} + 1$$

was used exclusively in this report to compare flight test and predicted angle of attack. Previously published reports such as Reference 1 used production angle of attack exclusively. A similar situation exists with respect to the pitot static system position error corrections shown in Figure 5.1-4. Reference 1 used the estimated values while this report uses a fairing approximately halfway between the estimated and tower flyby results to compute calibrated airspeed.

FIGURE 5.1-1 YAV-8B FLIGHT TEST ENVELOPE

ORIGINAL FACTOR

DATE	MODEL	TUNNEL	MACH	RUNS	HOURS
Sept-Oct 73	AV-8A/AV-16A	AMES 11'	Transonic	475	276
	AV-8A/AV-16A	ARA 9'x8'	Transonic	185	100
Aug-Oct 74	AV-8A	MSMT	Low Speed	216	583
Mar-Apr 74	YAV -88	M/LSWT	Low Speed	230	645
June-July 75	YAV-88	M/LSWT	Low Speed	455	542
June 75	YAV-88	AMES 14'	Transonic	19	80
Aug-Oct 75	AV-8A	AMES 14'	Transonic	327	360
0cť 75	Inlet	MCAIR NFCF	Static	59	270
Nov 75	Inlet	MCAIR LSWT	Low Speed	116	164
Dec 75	Inlet	AMES 11'	Transonic	256	300
0ec 75-					
Jan 76	YAV-88	AMES 11'	Transonic	569	252
Apr-May 76	AV-8A	MSMT	Low Speed	137	100
Aug-Sept 76	YAV-88	AMES	Low Speed	144	316
0ct 76	Inlet	MCATR MFCF	Static	34	172
Mar-Apr 77	AV-8A/YAV-8B	AMES 14*	Transonic	154	150
May-July 77	AV-8A/YAV-8B/AV-8B	M/LSWT	Low Speed	520	529
July 77	Inlet	AMES 11 -	Transonic	317	272
Sept-Nov 77	AV-EA/YAV-8B	AMES 14'	Transonic	320	536
Feb-Mar 78	YAV-8B/AV-8B	M/LSWT	Low Speed	403	362
June 78	Inlet	MCAIR MFCF	Static	36	153
	YAV-8B	AMES 14'	Transonic	140	160
•	AV-8C		Low Speed	461	227
Jan-Feb 79	YAV-88	AMES 14'	Transonic	305	191
	YAV-8B	MSMT	Low Speed	8	20
	Inlet	AMES 11	Transonic	497	383
Feb-Mar 79	AV-8B	AMES 14'	Transonic	414	233
Mar 79	TAV-88	AMES 14'	Transonic	225	184
Apr-May 79	TAV-88/AV-8B/YAV-88	LSWT	Low Speed	126	9/
May 79	TAV-8B/AV-8B	MSMT	Low Speed	1117	91
May 79	TAV-88/AV-88	LSWT	Low Speed	113	86
May 79	Inlet	AMES 11'	Transonic	213	228
			TOTALS	S 8066	8053

FIGURE 5.1-2 VAV-88 RELATED WIND TUNNEL TESTS

FIGURE 5.1-3
YAV-8B ANGLE OF ATTACK CALIBRATION

Tower Flyby Data YAV-88 No. 1 Flight 42

Note: Δ Corrections = True - Indicated

RP21-0882-47

FIGURE 5.1-4
YAY-88 PILOT STATIC SYSTEM ESTIMATED POSITION ERROR CORRECTIONS

The time history comparisons, presented in this section between flight test results and predictions from the YAV-8B mathematical models, were done using the weight and balance data presented in Section 2.3 adjusted to the actual weight and c.g. location defined by the flight data. These weight and balance data are presented in Figure 5.1-5.

5.2 JET BORNE AND SEMI-JET BORNE VALIDATION

A time history comparison of predicted and flight test results during hover stability tests is presented in **Figures** 5.2-1 to 5.2-3. The predicted include both nonlinear and linear mathematical models defined previously.

The predicted landing approach characteristics of Figure 5.2-4 show good correlation with flight test results. The predicted data were obtained by fixing lozzle angle and angle of attack and iterating on tail deflection, fan speed and airspeed until a 3 degree of freedom wings level trim was obtained.

A comparison of angle of attack stability for flap settings of 25° and 61.7° (STO) is presented in Figures 5.2-5 and 5.2-6. The predicted longitudinal stability and trim tail deflections are representative of the actual aircraft.

Longitudinal dynamics in Semi-Jet Borne flight are compared in Figure 5.2-7 for both the nonlinear and linear mathematical models.

The predicted Semi-Jet Borne SAS on steady heading sideslip characteristics shown in Figure 5.2-8 were obtained by using stability derivatives and a three degree of freedom approximation at the flight test condition.

The predicted Semi-Jet Borne SAS on Dutch Roll characteristics are compared to flight test data and the requirements of MIL-F-83300 in Figure 5.2-9. The Level 1 requirements are satisfied. A time history comparison of Dutch Roll characteristics is presented in Figure 5.2-10.

5.3 WINGBORNE VALIDATION

A comparison of horizontal tail and angle of actack to trim at medium and high altitudes is presented in Figure 5.1-1. The predicted data were computed using the same Mach number, nozzle angle and fan speed as the flight test data.

The predicted and flight test short period response characteristics are compared in Figure 5.3-2 to 5.3-3. The short period frequency of Figure 5.3-2 shows the characteristics are within the Level 1 boundary. The damping

CRIGHTSL TSST FO OF POUR QUALITY

	0000	,				CENTER	CENTER OF GRAVITY, IN	', IN
FIGURE	GROSS		INERTIAS, SLUG-FT	SLUG-FF		ADVIASII4	RIFFT-	WATER
MINDER	WEIGHI LB	Ixx	Iyy	Izz	Ixz	STATION	LINE	LINE
	16650	6610	30007	34.814	1382	36.2%	c	95.08
1-7:0	20101	2400			2))
5.2-2	16450	6610	30997	34814	1382	345.28	0	95.08
5.2-3	14690	6300	28666	32313	1115	343.11	0	94.20
5.2-7	20200	9884	32239	39419	1634	349.9	ပ	7.76
5.2-10	17070	7008	31249	35433	1393	346.67	0	8.96
5.3-3	16810	6291	31308	35436	1368	344.25	0	7.96
5.3-7	19230	9405	32089	39047	1510	349.11	0	7.76

FIGURE 5.1-5 YAV-8B INERTIA AND C.G. DATA FOR PREDICTED TIME HISTORIES

MDC A7910 Volume I

FIGURE 5.2-1 YAV-8B RESPONSE TO LONGITUDINAL STICK RAP IN HOVER Gross Weight = 16,450 lb N_F = 96% $\theta_{\rm J}$ = 79° $\delta_{\rm F}$ = 61.7°

YAV-8B RESPONSE TO LATERAL STICK RAP IN HOVER Gross Weight = 16,450 lb $N_{\rm F}$ = 96% $\theta_{\rm J}$ = 79° $\delta_{\rm F}$ = 61.7°

ORIGINAL PAST IS OF POOR QUALITY,

FIGURE 5.2-3 YAV-8B RESPONSE TO PEDAL INPUT IN HOVER Gross Weight = 14,690 lb N_F = 92% $\theta_{\rm J}$ = 79° $\delta_{\rm F}$ = 61.7°

ORIGINAL FACE ? OF POOR QUALITY

MDC A7910 Volume I

FIGURE 5.1-4
YAV-8B LANDING APPROCH CHARACYERISTICS
STOL Flap, Ailerons Drooped 15°

Flight Data

Sym	θ_{J} (deg)	C.G. (%c̄)	$N_F \sim \overline{\theta}$ (%)	VKCAS	δ_{F} (deg)	, 'titude (ft)	T(°F)
	52	12.2	79	100	25	1,600	64
Δ	63	13.2	86	130	25	3,000	59

FIGURE 5.2-5
YAV-8B SEMI-JET BORNE ANGLE-OF 1. (ACK STABILITY
25° Flap Ailerons Not Drooped

FIGURE 5.2-6
YAV-8B SEMI-JET BORNE ANGLE-OF-ATTACK STABILITY
STO Flap Ailerons Drooped 15°

FIGURE 5.2-7 YAV-8B RESPONSE TO LONGITUDINAL DOUBLET IN SEMI-JET BORNE FLIGHT Gross Weight = 20,200 lb N_F = 73% θ_J = 45° δ_F = 25°

Mach 0.22

Altitude = 2,800 ft

FIGURE 5.2-8
YAV-8B V/STOL STEADY HEADING SIDESLIP CHARACTERISTICS

YAV-8B SAS ON DUTCH ROLL CHARACTERISTICS IN SEMIJETBORNE FLIGHT

ORIGINAL PAGE IS

FIGURE 5.2-10 YAV-8B RESPONSE TO RUDDER IN SEMIJET BORNE FLIGHT Gross Weight = 17,070 lb N_F = 88% $\theta_{\rm J}$ = 61° $\delta_{\rm F}$ = 25° Mach 0.24 Altitude = 4,700 ft

FIGURE 5.3-1
YAV-8B WINGBORNE TRIM CHARACTERISTICS

FIGURE 5.3-2
YAV-8B SHORT PERIOD FREQUENCY REQUIREMENTS
Wingborne Flight

ORIGINAL FAG. 13

ratios of Figure 5.3-3 are essentially Level 1 below 20,000 feet and Level 2 above 20,000 feet. However, MIL-F-8785B states that above 20.000 feet the Level 1 damping requirements may be relaxed to the Level 2 requirements. The longitudinal maneuvering characteristics are compared for the symmetrical pullup showr in Figure 5.3-4. The predicted characteristics correlate well with the flight data.

Figure 5.3-5 summarizes roll rate capability and maximum sideslip angles generated during 1g rolls. The flight data are primarily for low to moderate altitudes. The predicted characteristics were computed for 7500 feet altitude using a nominal gross weight, and nominal command input time history.

The comparison of steady heading sideslip characteristics presented in Figure 5.3-6 indicate the predicted static lateral directional stability and control characteristics are very representative of the actual aircraft.

The predicted Dutch Roll characteristics are compared to flight test data and the requirements of MIL-F-8785B in Figure 5.3-7. The YAV-8B meets the Level 1 requirements below 20,000 feet and Level 2 above 20,000 feet. A time history comparison of Dutch Roll Characteristics is presented in Figure 5.3-8. The predicted characteristics compare well with flight test results.

5.4 PROPULSION SYSTEM VALIDATION

The validity of the propulsion system model is demonstrated by the comparison of flight data and predicted performance in Figures 5.4+1 and 5.4-2. These flight data include wet and dry Vertical Takeoffs (VTO's) with stick neutral (minimum RCS reaction control system bleed), hence these cases are for a singular demand condition. The predicted engine acceleration characteristics show similar slopes as that of the flight data. Absolute values will not necessarily agree due to the following:

- o Engine to Engine Variation: The propulsion system model represents an "average" YF402-RR-404 engine. Actual engines used in the YAV-8B exhibited higher Exhaust Gas Temperatures and higher fuel flow at steady state conditions than an "average" engine.
- o Reaction Control Bleed: Bleed, which affects all engine parameters shown, is a function of control requirements which were not included in these cases.
- o Fuel Control Unit (FCU) Variations: Engine acceleration characteristics are influenced by FCU settings which differ with each engine/FCU combination.

The stepwise characteristics of the measured fuel flow is due to the low sampling rate of the flight data system and does not represent the true schedule actually used by the engine/FCU.

FIGURE 5.3-3
YAV-8B SHORT PERIOD MODE DAMPING RATIO
Wingboine Flight

OF POOR QUALIFY

FIGURE 5.3-4 YAY-8B PULL-UP IN WINGBORNE FLIGHT Gross Weight = 16.810 lb N_F = 80% $\theta_{\rm J}$ = 0° $\delta_{\rm F}$ = 5° Mach 0.74 Altitude = 7,000 ft

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 5.3-5
YAV-8B WINGBORNE 1 g ROLL PERFORMANCE
3.2 in. Lateral Stick Input

OF POUR QUALITY

FIGURE 5.3-6
YAV-8B
WINGBONE STEADY HEADING SIDESLIP CHARACTERISTICS

Mach

Flight Data

FIGURE 5.3-7 YAV-8B DUTCH ROLL FREQUENCY AND DAMPING Wingborne Flight

ORIGINAL FAGE IS OF POOR QUALITY

FIGURE 5.3-8
YAV-8B RESPONSE TO RUDDER INPUT IN WINGBORNE FLIGHT

Grass Weight = 19.250 lb $N_F = 77\%$ $\theta_J = 3^{\circ}$ $\delta_F = 5^{\circ}$ Much 0 697 Altitude = 35,200 ft

5-28

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 5.4-2
YAV-8B DRY VTO
Nozzle Angle = 77*

FIGURE 5.4-2 (Cont.) YAV-8B DRY VTO Nozzie Angle = 77°

The simulator results during the dry VTO, Figure 5.4-2, appear to have a faster response than the actual engine. This discrepancy is due to a calibration error in the throttle position of the flight data. As a result, the initial engine fan speeds are offset.

5.5 CONTPOL SURFACE ACTUATOR/SERIES SERVO VALIDA ON

A comparison of the frequency response characteristics of the control surface actuators and series servos is presented in Figures 5.5-1 to 5.5-4. The test data were obtained for small amplitude inputs while the predicted characteristics used the transfer functions presented in Section 2.5. Good agreement is shown for frequencies less than 1 Hertz, which are most pertinent to handling qualities analysis. Adequate gain margin and phase margins are shown.

FIGURE 5.5-1
YAV-8B STABILA OR ACTUATOR - SAS MODE
Small Amplitude Frequency Response

FIGURE 5.5-2 YAV-8B FORWARD RCV SERIES SERVO Small Amplitude Frequency Response

FIGURE 5.5-3
YAV-8B AILERON ACTUATOR - SAS MODE
Small Amplitude Frequency Response

FIGURE 5.5-4
YAV-8B YAW RCV SERVO
Small Amplitude Frequency Response

6. PARAMETER ENTIMATION

The importance of determining the aircraft stability and control derivatives from flight test data has been recognized for many years. The flight determined derivatives are of much value to the flight test analyst. These results may be compared to other sources, such as wind tunnel test and theoretical calculations, to substantiate the predicted behavior of the aircraft. The extraction of stability and control derivatives from flight test data is a problem in parameter estimation.

Over the past 30 years, considerable work has been done in extracting the stability and control derivatives from flight test data. Various techniques have been investigated, some of which lend themselves to automation. As documented in References 2 and 3, techniques used by NASA include the Maximum Likelihood Parameter Estimation technique. To date, these efforts have concentrated on the conventional flight regime; however, with the acquisition of the YAV-8B, NASA intends to extend this investigation into the V/STOL flight regime.

This section contains suggestions on the forms of mathematical models to use in the estimation of V/STOL aircraft stability and control derivatives. In addition, some significant nonlinear effects, included and documented in the six degree of freedom mathematical model presented in Section 3, are discussed.

6.1 JET BORNE AND SEMI-JET BORNE

As discussed in Section 4, MCAIR uses the linearized representations of the airc aft in control system design and handling qualities analysis in the V/STOL flight regime. The comparisons to flight data of Section 5 show that the linearized model is represe, ative of the actual aircraft. This form of the model was also used by CALSPAN in a study that assessed the feasibility of simulating the AV-8A in the terminal operation area, with the X-22A variable stability aircraft (Reference 4). A follow-on study that included flight test evaluation by 2 qualified AV-8A pilots concluded that the simulation was representative of the actual aircraft.

In hover and at very low speeds (\leq 35 KTAS) the simplifying assumptions detailed in the MIL-F-8330 Background Information and Users Guide (BIUG), Reference 5, may be applied to the linearized equations of motion. These assumptions include:

- o Hover $(V_T = 0)$
- o Vertical motion decoupled from pitching and horizontal translational motion
- o Yawing motion decoupled from rolling and lateral translational motions
- c Constant thrust magnitude and direction

Applying these assumptions to the linearized equations of Section 4, and recognizing that angle-of-attack, =, and sideslip angle, β , are no longer defined in hover, results in the simplified equations shown in Figure 6.1-1. This form of the equations was used to analyze the flight test and flight simulation data available when formulating the hover and low speed dynamic response requirements of Reference 6.

No matter which form of the equations is used, the following first order effects must be included in the formation of YAV-8B stability derivatives taken at fixed operating points in the V/STOL flight regime. Note that if the nonlinear model of Section 3 is used to establish a trim point and to formulate the stability derivatives, the following effects will be taken into account.

- o Thrust level and control effectiveness. At low speeds the aero-dynamic controls are naturally ineffective and the primary source of control is the Reaction Control System (RCS). The effectiveness of this system is proportional to engine RPM as shown in Figure 6 1-2.
- o Simultaneous demand and control effectiveness The effect of multicontrol usage is to reduce the effectiveness of the individual controls. This effect is shown in Figures 6.1-3 and 6.1-4 for the pitch RCS.
- o Thrust vector application point The application point of the thrust vector varies with engine RPM as shown in Figure 6.1-5.

One additional effect may be considered when evaluating the effectiveness of the RCS. AV-8B static tests using the individual Reaction Control Valves (RCV), showed the direction of the RCV thrust vector to be a function of the valve opening. These AV-8B o a have been combined with VAV-8B valve orientation geometry to produce the estimated variations shown in Figure 6.1-6. These variations are not included in the models defined in this report. Both the nonlinear and linear mathematical models ue the "design" RCV thrust vector angles.

6.2 WINGBORNE FLIGHT

The linearized equations of motion presented in Section 4 are applicable to wingborne flight. The effects of Vectoring in Forward Flight (VIFF) should be invest_gated using stability derivatives based on perturbations from a trim point obtained using the nonlinear mathematical model.

ORIGINAL PAGE 12 OF POOR QUALITY

LONGITUDINAL

$$\dot{u} + ge = X_u u + X_{\delta_H}$$
 $\delta_H + X_{\delta_{FRCS}}$ $\delta_{FRCS} + X_{\delta_{ARCS}}$ δ_{ARCS}
 $\dot{q} = M_u u + M_q q + M_{\delta_H}$ $\delta_H + M_{\delta_{FRCS}}$ $\delta_{FRCS} + M_{\delta_{ARCS}}$ δ_{ARCS}

LATERAL DIRECTIONAL

$$\dot{\mathbf{v}} + g_{\phi} = Y_{\mathbf{v}}\mathbf{v} + Y_{\delta_{\mathbf{A}}}^{} \delta_{\mathbf{A}_{\mathbf{L}}}^{} + Y_{\delta_{\mathbf{R}}}^{} \delta_{\mathbf{R}}^{} + Y_{\delta_{\mathbf{RRCS}}}^{} \delta_{\mathbf{RRCS}}^{} + Y_{\delta_{\mathbf{YRCS}}}^{} \delta_{\mathbf{YRCS}}^{} \delta_{\mathbf{YRCS}}^{}$$

$$\dot{\mathbf{p}} = -\mathbf{L}_{\mathbf{v}}\mathbf{v} + \mathbf{L}_{\mathbf{p}}\mathbf{p} + \mathbf{L}_{\delta_{\mathbf{A}}}^{} \delta_{\mathbf{A}_{\mathbf{L}}}^{} + \mathbf{L}_{\delta_{\mathbf{R}}}^{} \delta_{\mathbf{R}}^{} + \mathbf{L}_{\delta_{\mathbf{RRCS}}}^{} \delta_{\mathbf{RRCS}}^{} + \mathbf{L}_{\delta_{\mathbf{YRCS}}}^{} \delta_{\mathbf{YRCS}}^{}$$

EQUATIONS FROM REFERENCE 5

FIGURE 6.1-1 SIMPLIFIED LINEAR EQUATIONS OF MOTION HOVE

ORIGINAL FACTOR POOR QUALITY

FIGURE 6.1-2
REACTION CONTROL SYSTEM BLEED AIR PRESGURE AND TEMPERATURE
YF402-RR-404 installed Engine

GP21-0992-59

FIGURE 6.1-3 MAXIMUM RCS FRONT PITCH VALVE THRUST Normal Lift Dry Full Nose Up Control Demand

500

FIGURE 6.1-4 MAXIMUM RCS TAIL PITCH VALVE THRUST NORMAL LIFT DRY FULL NOSE DOWN CONTROL DEMAND

FIGURE 6.1-5
GROSS THRUST APPLICATION POINT

· - 3

FIGURE 6.1-6
YAV-8B PITCH RCV THRUST VECTOR ANGLES

7. CONCLUDING REMARKS

A six degree of freedom FORTRAN batch simulation of a nonlinear mathematical model of the YAV-8B aircraft has been produced and documented. The documentation includes top level flow charts, a discussion of program structure, subroutine interfaces, modeling equations, data format, a user's guide and plots of the over 17,000 data points used by the program. The model is based on the YAV-8B model used on the MCAIR manned flight simulator. The nonlinear model has been shown to be representative of the actual aircraft by comparison to both static and dynamic YAV-8B flight test data.

Two simplified models have been suggested for use in parameter estimation, one of which is the traditional longitudinal and lateral-directional 3 degree of freedom linearized model used in the analysis of conventional aircraft. A second model, applicable for hover and low speed analysis, is suggested. Aircraft stability derivatives, which characterize the aircraft throughout its flight envelope, are provided at 24 flight conditions. These derivatives were formulated by perturbing the nonlinear model after establishing control settings corresponding to a 3 degree of freedom 1 'g' wings level trim. These stability derivatives include the effects of aerodynamics, inlet momentum and gross thrust.

For reference a description of the major aircraft systems modeled in the FORTRAN program is included.

8. REFERENCES

- 1. MDC A4637, YAV-8B Aerodynamic Stability and Control and Flying Qualities Report, 11 January 1980.
- 2. NASA TP1563, User's Manual for MMLE3, a General FORTRAN Program for Maximum Likelihood Parameter Estimation, November 1980.
- 3. NASA TP1690, Programmer's Manual for MMLE3, a General FORTRAN Program for Maximum Likelihood Parameter Estimation, June 1981.
- 4. CALSPAN Report No. AK-5876-F-1, A Study to Determine the Feasibility of Simulating the AV-8A Harrier with the X-22A Variable Stability Aircraft, July 1976.
- 5. AFFDL-TR-70-88, Background Information and User Guide For MIL-F-83300 Military Specification Flying Qualities of Piloted V/STOL Aircraft, March 1971.
- 6. MIL-F-83300, Military Specification Flying Qualities of Piloted V/STOL Aircraft, 31 December 1970.
- 7. Control Data Corporation Modify Reference Manual, Rev. F CDC Operating System: NOS1, 5 December 1980.

9. SYMBOLS AND ABBREVIATIONS

SYMBOL	DESCRIPTION	UNITS
ACU	Acceleration control unit	_
AND	Aircraft nose down	•
ANL	Aircraft nose left	-
ANR	Aircraft nose right	-
ANU	Aircraft nose up	-
AOA	Angle of Attack	deg
AR	Aspect ratio	_
Autostab	Autostabilization or SAS	•
A_ Yacc	Lateral acceleration at the accelerometer location	ft/sec ²
Ъ	Wing span	ft
B. L.	Butt Line	in
BOV	Blow off valve	•
С	Chord	in
₹	Mean aerodynamic chord	in
$C_{\mathbf{A}}$	Coefficient of axial force (positive forward)	-
$c_{\mathbf{D}}^{\mathbf{D}}$	Coefficient of drag (positive aft)	-
C _T	Coefficient of lift (positive up)	-
C1	Coefficient of rolling moment (positive RWD)	=
C _L C1 Cm CN Cy C.G.	Coefficient of pitching moment (positive ANU)	-
C _N	Coefficient of normal force (positive up)	-
C,	Coefficient of yawing moment (positive ANR)	-
CY	Coefficient of side force (positive out the right wing)	-
c.G.	Center of gravity	% č, in
€ CPL	Centerline	-
CPL	Compressor pressure limiter	-
Ctr	Center	•
CR	Root chord	in
CT	Tip chord	in
DT	Iteration time	sec
e_1 to e_4	Quaternions	-
EĞT	Exhaust gas temperature. Same as JPT	°C, °K
$\mathbf{F_A}$	Force Axial (positive forward)	1b
FCU	Fuel control unit	-
FJI	Flap jet impingement	•
F_{N}	Force normal	1b
FOD	Foreign object damage	-
FP	Flat plate	-
FRL	Fuselage reference line. Same as W.L.	-
F.S.	Fuselage Station	in
Fwd	Forward	- , 2
g	Acceleration due to gravity	32.174 ft/sec^2
GE	Ground effect	-
GTS	Gas turbine starter	•
GW	Gross weight	1b
h .—	Altitude	ft
HP	High pressure	-
HSA	Hawker Siddeley Aviation	-
HT	Horizontal tail	-
IGV	Inlet guide vane	-
Inbd	Inboard	•

ORIGINAL FACE ET

MDC A7910 Volume I

9. SYMBOLS AND ABBREVIATIONS (CONTINUED)

SYMBOL	DESCRIPTION	UNITS
Ixx	Roll moment of inertia	slug - ft ²
I _{XZ}	Product of inertia	slug - ft ²
I yy	Pitch moment of inertia	slug - ft ²
T_	Yaw moment of inertia	slug - ft ²
I _{ZZ} JPT	Jet pipe temperature. Same as EGT	°C, °K
KAY	Lateral acceleration feedback gain	deg/ft/sec ²
KCAS	Knots calibrated airspeed	knots
KIAS	Knots indicated airspeed	knots
K _D	Roll rate feedback gain	deg/deg/sec
Kq.	Pitch rate feedback gain	deg/deg/sec
Kr	Yaw rate feedback gain	deg/deg/sec
KTAS	Knots true airspeed	knots
L	Left, Latitude	-, deg
LEMAC	Leading edge of the mean aerodynamic chord	in
LIDS	Lift improvement device system	•
LP	Low pressure	-
LSWI	Low speed wind tunnel (located at MCAIR)	-
Lt	Left	-
LVDT	Linear variable differential transformer	-
M	Mach number	-
1	Mass flow	lb _m /sec
MAC	Mean aerodynamic chord	in
MCAIR	McDonnell Aircraft Company	-
MFCF	Mass flow calibration facility (located at MCAIR)	-
MSWI	Minispeed wind tunnel (located at MCAIR)	-
Mx	Rolling moment (positive is RWD)	ft - 1b
M.	Pitching moment (positive is ANU)	ft - 1b
Mz	Yawing moment (positive is ANR)	ft - lb
NED	North, East, Down	-
NF	Fan speed	%
NH	High pressure compressor RPM	% %
NLD	Normal lift dry	-
Ny	Lateral load factor	-
nz	Normal load factor	-
0	Origin	•
Outbd	Outboard	-
OWE	Operating weight empty	lb
p	Roll rate	deg/sec
P3	Compressor discharge pressure	lb/in2
P13	Fan delivery pressure	lb/in ²
PLA	Power lever angle	-
PM	Pitching moment (positive ANU)	ft - 1b
PRL	Pressure ratio limiter	•
PRCS	Reaction control pressure	lb/in ²
PSA	Power spindle angle	-
psia	Absolute pressure	lb/in ²
psig	Gauge pressure	lb/in^2
=		

ORIGINA! FACE MDC A7910 OF POOR QUALITY Volume I

9. SYMBOLS AND ABBREVIATIONS (CONTINUED)

SYMBOL	DESCRIPTION	UNITS
q Q, q q ∞ q J	Pitch rate Dynamic pressure Freestream dynamic pressure Jet dynamic pressure	deg/sec lb/in ² lb/in ² lb/in ²
R r	Radius, Right Yaw rate	in, - deg/sec
RCS RCV	Reaction control system Reaction control valve	-
	Radius of the Earth	ft
R EARTH RM		ft-lb
RPM	Rolling moment (positive RWD) Revolutions per minute	
RR	Rolls-Royce Limited	_
RT	Right	-
RWD	Right wing down	-
RWU	Right wing up	-
S	Wing area, Laplace transform	ft ² , -
SAS	Stability augmentation system	-
SF	Side Force (positive out the right wing)	1b
SFO	Simulated flame out	-
SLD	Short lift dry	-
SLW	Short lift wet	-
STO	Short takeoff	-
T,t	Temperature, thickness	°C, in
T_2	Temperature at engine face	°C, °K °C, °K
T ₃ TED	Compressor discharge temperature	C, K
TEL	Trailing edge down Trailing edge left	_
TER	Trailing edge right	_
TEU	Trailing edge up	_
u	Velocity in X direction (positive forward)	ft/sec
v	Velocity in Y direction (positive out the right wing)	ft/sec
Veq	Equivalent velocity ratio $\sqrt{\overline{q}_{\infty}/\overline{q}_{ m JET}}$	-
VIFF	Vectoring in forward flight "JET	-
v_s	Speed of sound	ft/sec
V/STOL	Vertical/Short Takeoff and Landing	-
v_T	Total velocity	ft/sec
VTO	Vertical takeoff	
W	Velocity in 2 direction (positive down)	ft/sec
w_{D}	Wind velocity, down component	ft/sec
WE	Wind velocity, east component	ft/sec
WF	Fuel flow	lb/min
WFT	Fuel flow	1b/min in
W.L.	Waterline Wind malocity north component	ft/sec
W _N W.R.P.	Wind velocity, north component Wing reference plane (parallel to W.L.)	10/560
W.K.F. WOW	Weight on wheels	-
WT	Weight	1b
** A		

ORIGINAL PAGE IS OF POOR QUALITY

MC A7 910 Volume I

rad/sec

9. SYMBOLS AND ABBREVIATIONS (CONTINUED)

SYMBOL	DESCRIPTION	UNITS
Xcg YM Z	Fuselage station of c.g. Yawing moment (positive ANR) Z transform operator	in ft-1b
	GREEK SYMBOLS	
α α α α α α α α α α α α α α α α α α α	Angle of attack Angle of attack rate Sideslip angle Initial flight path angle Flight path angle Incremental quantity Aileron deflection (positive is TED) Flap deflection (positive is TED)	deg deg/sec deg deg deg deg deg deg deg
6H 6 R 6 θ θ θ δ ψ 5 d 5	Horizontal tail (stabilator) deflection (positive is TED) Rudder deflection (positive TEL) Longitudinal stick deflection Lateral stick deflection Rudder pedal deflection Dutch roll damping ratio Short period damping ratio	deg in in in
e e j ALE A	Fraction of semi-span Pitch angle Nozzle deflection Sweep angle of leading edge Longitude Density of air Time constant Roll angle	deg deg deg deg slug/ft ³ sec deg
ო գ ც ტ	Yaw angle Rate of rotation Dutch roll natural frequency	deg deg/sec rad/sec

Short period natural frequency

ωď

 ω sp

ORIGINAL PARTIES

APPENDIX A

CONTRACT STATEMENT OF WORK

1.0 INTRODUCTION

As part of its V/STOL research program, NASA intends to conduct flight investigations of the stability, control and handling qualities of highly augmented V/STOL aircraft. Specific plans include the flight tests of a YAV-8B aircraft modified to include an advanced avionics and flight control system for improved flying qualities and performance.

As an initial phase to this program, NASA will conduct flight tests of the YAV-8B vehicle in order to extract aerodynamic and propulsion characteristics, update existing simulation models, validate handling qualities and design criteria, and to improve V/STOL flight test techniques. This program will also include tests using a static test stand location at the Dryden Flight Research Center, where flight tests of the YAV-8B will take place.

In order to perform high quality parameter estimation and analysis of the YAV-8B characteristics, it is necessary to construct mathematical models of varying complexity and linearity from existing wind tunnel and flight test data. This procurement is intended to produce models and to compile existing data for the Harrier aircraft.

2.0 SCOPE

The contractor will assess existing wind tunnel, analytic, and flight data for V/STOL aircraft especially in VTOL-unique flight regimes in order to compile aerodynamic, propulsion, and system models. Detailed models of varying complexity will be derived for the YAV-8B aircraft for use in parameter estimation as well as linear analysis programs. A simplified batch simulation of the YAV-8B, utilizing the best nonlinear representation of the airplane will be generated. Finally, flight data and wind tunnel predictions will be used to compare YAV-8B characteristics with flying qualities criteria and design quidelines.

3.0 CONTRACTOR TASKS

The contractor shall:

- 3.1 Assemble and compile sufficient available Harrier aerodynamic, propulsion system, and flight control system data, as well as available flight test data to support completion of tasks 3.2 through 3.8.
- 3.2 Formulate the most complete model of the YAV-8B from the results of 3.1, to characterize the vehicle in hover, transition, cruise, and vectoring in forward flight (VIFF) flight conditions.
- 3.3 Produce a simplified FORTRAN batch simulation of the YAV-8B (including engine) using non linear equations of motion, capable of execution on the Dryden Cyber 73-28 computer.

- 3.4 Formulate linear models of the YAV-8B for distinct flight conditions in hover, transition, cruise, and VIFF modes of flight. Select a sufficient number of flight conditions to characterize the aircraft throughout its flight envelope.
- 3.5 Validate the models of 3.2 and 3.4 (with the exception of the VIFF mode), and the simulation program of 3.3 by generating time history responses and comparing them with actual flight data. Make adjustments to the models to correct gross discrepancies.
- 3.6 Recommend simplified (not necessarily linear) models appropriate for use in parameter estimation programs for each of the unique flight modes of 3.4.
- 3.7 Provide MCAIR Report MDC A4637, Revision C, dated 11 January 1980, "YAV-8B Aerodynamic Stability and Control and Flying Qualities Report" at no cost.
- 3.8 Provide MCAIR Report MDC A5032 Addendum No. 1 dated July 1981 "YAV-8B Bulletin No. 158394" at no cost.

4.0 REPORTING

The contractor shall provide the following documentation:

- 4.1 Tables, functional plots, and equations of motion for the non linear model of 3.2.
 - 4.2 Linear coefficients and equations of motion for the models of 3.4.
- 4.3 Listing and tape of the FORTRAN program of 3.3. Also, a complete description of the software, including top-level flow charts, program structure, subroutine interfaces, and data format.
- 4.4 Time histories from non-linear and linear models for each of the flight conditions analyzed.
- 4.5 A Final Report in contractors format which documents all analysis and results of this procurement.
 - 4.6 Montaly letter progress reports.