

36 V Precision, 2.8 nV/√Hz Rail-to-Rail Output Op Amp

Data Sheet AD8675

FEATURES

Very low voltage noise: 2.8 nV/√Hz Rail-to-rail output swing

Low input bias current: 2 nA maximum Very low offset voltage: 75 μV maximum Low input offset drift: 0.6 μV/°C maximum

Very high gain: 120 dB

Wide bandwidth: 10 MHz typical

±5 V to ±18 V operation

APPLICATIONS

Precision instrumentation PLL filters Laser diode control loops Strain gage amplifiers Medical instrumentation Thermocouple amplifiers

GENERAL DESCRIPTION

The AD8675 precision operational amplifier has ultralow offset, drift, and voltage noise combined with very low input bias currents over the full operating temperature range. The AD8675 is a precision, wide bandwidth op amp featuring rail-to-rail output swings and very low noise. Operation is fully specified from ± 5 V to ± 15 V.

The AD8675 features a rail-to-rail output like that of the OP184, but with wide bandwidth and even lower voltage noise, combined with the precision and low power consumption like that of the industry-standard OP07 amplifier. Unlike other low noise, rail-to-rail op amps, the AD8675 has very low input bias current and low input current noise.

With typical offset voltage of only 10 μV , offset drift of 0.2 $\mu V/^{\circ} C$, and noise of only 0.10 μV p-p (0.1 Hz to 10 Hz), the AD8675 is perfectly suited for applications where large error sources cannot be tolerated. For applications with even lower offset tolerances, the proprietary nulling capability allows a combination of both device and system offset errors up to 3.5 mV (referred to the input) to be compensated externally. Unlike previous circuits, the AD8675 accommodates this adjustment without adversely affecting the offset drift, CMRR, and PSRR of the amplifier. Precision instrumentation, PLL, and other precision filter circuits, position and pressure sensors, medical instrumentation, and strain gage amplifiers benefit greatly from the very low noise, low input bias current, and wide bandwidth. Many systems can

PIN CONFIGURATIONS

Figure 1. 8-Lead SOIC_N (R-8)

Figure 2. 8-Lead MSOP (RM-8)

take advantage of the low noise, dc precision, and rail-to-rail output swing provided by the AD8675 to maximize SNR and dynamic range.

The smaller packages and low power consumption afforded by the AD8675 allow maximum channel density or minimum board size for space-critical equipment.

The AD8675 is specified for the extended industrial temperature range (-40°C to +125°C). The AD8675 amplifier is available in the tiny 8-lead MSOP, and the popular 8-lead, narrow SOIC, RoHS compliant packages. MSOP packaged devices are only available in tape and reel format.

For the dual version of this ultraprecision, rail-to-rail op amp, see the AD8676 data sheet.

The AD8675 and AD8676 are members of a growing series of low noise op amps offered by Analog Devices, Inc.

Table 1. Voltage Noise

Package	0.9 nV	1.1 nV	1.8 nV	2.8 nV	3.8 nV
Single	AD797	AD8597	ADA4004-1	AD8675	AD8671
Dual		AD8599	ADA4004-2	AD8676	AD8672
Quad			ADA4004-4		AD8674

TABLE OF CONTENTS

10/05—Revision 0: Initial Version

Features
Applications1
Pin Configurations
General Description
Revision History2
Specifications
Electrical Specifications
Absolute Maximum Ratings5
REVISION HISTORY
7/12—Rev. D to Rev. E
Added Power Sequencing Section 5
Added Figure 28 and Figure 29; Renumbered Sequentially 10
8/11—Rev. C to Rev. D
Added Input Capacitance, Common Mode Parameter and Input
Capacitance, Differential Mode Parameter, Table 3 4
5/10—Rev. B to Rev. C
Changes to Figure 10
5/10—Rev. A to Rev. B
Changes to General Description Section
Added Table 1; Renumbered Sequentially
Changes to Table 2
Changes to Table 34
Changes to Table 4 and Table 5
Changes to Figure 4 and Figure 6 to Figure 86
Changes to Figure 15
Changes to Figure 21 and Figure 249
Added Figure 27; Renumbered Sequentially
Updated Outline Dimensions
Changes to Ordering Guide
1/07 Per 04e Per 4
4/07—Rev. 0 to Rev. A
Added Figure 7 and Figure 8; Renumbered Sequentially 6

I nermai Resistance	
Power Sequencing	
ESD Caution	
Typical Performance Characteristics	
Test Circuit	
Outline Dimensions	
Ordering Guide	. 12

SPECIFICATIONS

ELECTRICAL SPECIFICATIONS

 $\rm V_S = \pm 5.0$ V, $\rm V_{CM} = 0$ V, $\rm V_O = 0$ V, $\rm T_A = +25^{\circ}C,$ unless otherwise specified.

Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	V _{os}			10	75	μV
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		12	240	μV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		0.2	0.6	μV/°C
Input Bias Current	I _B		-2	+0.5	+2	nA
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	-5.5	-2	+5.5	nA
Input Offset Current	I _{os}		-1	+0.1	+1	nA
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	-2.8	+0.1	+2.8	nA
Input Voltage Range	IVR		-3.0		+3.0	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -3.0 \text{ V to } +3.0 \text{ V}$	105	130		dB
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	105			dB
Open-Loop Gain	A _{vo}	$R_L = 2 k\Omega$ to ground,	120	126		dB
		$V_0 = -3.5 \text{ V to } +3.5 \text{ V}$				
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	117			dB
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 10 \text{ k}\Omega \text{ to ground}$	4.90	4.95		V
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	4.85			V
		$R_L = 2 k\Omega$ to ground	4.80	4.90		V
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	4.75			V
Output Voltage Low	V _{OL}	$R_L = 10 \text{ k}\Omega \text{ to ground}$		-4.98	-4.90	V
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			-4.85	V
		$R_L = 2 k\Omega$ to ground		-4.91	-4.86	V
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			-4.82	V
Short-Circuit Limit	I _{sc}			±35		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5.0 \text{ V to } \pm 15.0 \text{ V}$	120	140		dB
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	120			dB
Supply Current/Amplifier	I _{SY}	$V_O = 0 V$		2.3	2.7	mA
		-40 °C \leq T _A \leq $+125$ °C			3.4	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		2.5		V/µs
Gain Bandwidth Product	GBP			10		MHz
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	0.1 Hz to 10 Hz		0.1		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		2.8		nV/√Hz
Current Noise Density	i _n	f = 10 Hz		0.3		pA/√Hz

 $\rm V_{S}=\pm15$ V, $\rm V_{CM}=0$ V, $\rm V_{O}=0$ V, $\rm T_{A}=+25^{o}C$, unless otherwise specified.

Table 3.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	V _{os}			10	75	μV
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$		12	240	μV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		0.2	0.6	μV/°C
Input Bias Current	I _B		-2	+0.5	+2	nA
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	-4.5	+1	+4.5	nA
Input Offset Current	I _{os}		-1	+0.1	+1	nA
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	-2.8	+0.1	+2.8	nA
Input Voltage Range	IVR		-12.5		+12.5	٧
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -12.5 \text{ V to } +12.5 \text{ V}$	114	130		dB
·		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	114			dB
Open-Loop Gain	A _{vo}	$R_L = 2 k\Omega$ to ground,	123	132		dB
•		$V_0 = -13.5 \text{ V to } +13.5 \text{ V}$				
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	117			dB
Input Capacitance, Common Mode	C _{INCM}	^		3.8		рF
Input Capacitance, Differential Mode	C _{INDM}			9.6		pF
OUTPUT CHARACTERISTICS	INDIN					
Output Voltage High	V _{OH}	$R_1 = 10 \text{ k}\Omega$ to ground	14.85	14.92		٧
. 3 3	OH	$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	14.80			V
		$R_1 = 2 k\Omega$ to ground	14.60	14.80		٧
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	14.40			٧
Output Voltage Low	V _{OL}	$R_L = 10 \text{ k}\Omega$ to ground		-14.96	-14.94	٧
. 3	OL .	$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			-14.90	٧
		$R_1 = 2 k\Omega$ to ground		-14.85	-14.75	٧
		-40°C ≤ T _A ≤ +125°C			-14.69	٧
Short-Circuit Limit	I _{sc}	A		±35		mA
POWER SUPPLY	30					
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5.0 \text{ V to } \pm 15.0 \text{ V}$	120	140		dB
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	120			dB
Supply Current/Amplifier	I _{SY}	$V_0 = 0 \text{ V}$		2.5	2.9	mA
	31	$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			3.8	mA
DYNAMIC PERFORMANCE		7			· · · · · · · · · · · · · · · · · · ·	
Slew Rate	SR	$R_i = 10 \text{ k}\Omega$		2.5		V/µs
Gain Bandwidth Product	GBP			10		MHz
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	0.1 Hz to 10 Hz		0.1		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		2.8		nV/√Hz
Current Noise Density	i _n	f = 10 Hz		0.3		pA/√Hz

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Supply Voltage	±18 V
Input Voltage	±V supply
Input Current	±5 mA
Differential Input Voltage	±0.7 V
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	
RM-8, R-8 Packages	−65°C to +150°C
Operating Temperature Range	−40°C to +125°C
Junction Temperature Range	
RM-8, R-8 Packages	−65°C to +150°C
Lead Temperature Range (Soldering, 10 sec)	300°C
NULL Pins (Pin 1, Pin 8), Input Current Maximum	$<50 \mu A, V_s < V+$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages and measured using a standard 4-layer board, unless otherwise specified.

Table 5. Thermal Resistance

Package Type	θ_{JA}	θ _{JC}	Unit
8-Lead MSOP (RM-8)	142	45	°C/W
8-Lead SOIC_N (R-8)	120	45	°C/W

POWER SEQUENCING

Establish the op amp supplies simultaneously with, or before, any input signals are applied. If this is not possible, the input current must be limited to 10 mA.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

 ± 15 V and ± 5 V, $T_A = 25$ °C, unless otherwise specified.

Figure 3. Voltage Noise Density vs. Frequency

Figure 4. Input Offset Voltage Distribution

Figure 5. T_cV_{OS}

Figure 6. Offset Voltage vs. Temperature

Figure 7. Input Bias Current, $V_s = \pm 15 \text{ V}$

Figure 8. Input Bias Current, $V_S = \pm 5 V$

Figure 9. Input Bias Current vs. Temperature

Figure 10. Supply Current vs. Total Supply Voltage

Figure 11. Supply Current vs. Temperature

Figure 12. Gain and Phase vs. Frequency

Figure 13. Closed-Loop Gain vs. Frequency

Figure 14. Z_{OUT} vs. Frequency

Figure 15. Large-Signal Transient Response, $V_{SY} = \pm 15 V$

Figure 16. Large-Signal Transient Response, $V_{SY} = \pm 5 V$

Figure 17. Small-Signal Overshoot vs. Load Capacitance

Figure 18. Positive Overvoltage Recovery

Figure 19. Negative Overvoltage Recovery

Figure 20. CMRR vs. Frequency

Figure 21. Power Supply Rejection Ratio vs. Frequency

Figure 22. Power Supply Rejection Ratio vs. Temperature

Figure 23. Voltage Noise (0.1 Hz to 10 Hz)

Figure 24. Output Saturation Voltage vs. Output Current

Figure 25. Swing vs. Temperature, V_{OH}

Figure 26. Swing vs. Temperature, V_{OL}

Figure 27. Distortion vs. Frequency

Figure 28. No Phase Reversal

Figure 29. Output Step vs. Settling Time to 0.01%

TEST CIRCUIT

Figure 30. Optional Offset Nulling Circuit

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 31. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches)

Figure 32. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

ORDERING GUIDE

**** = ····· * * * * * * =						
Model ¹	Temperature Range	Package Description	Package Option	Branding		
AD8675ARMZ	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	A08		
AD8675ARMZ-REEL	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	A08		
AD8675ARZ	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8			
AD8675ARZ-REEL	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8			
AD8675ARZ-REEL7	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8			

¹ Z = RoHS Compliant Part.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

AD8675ARMZ AD8675ARZ AD8675ARMZ-REEL AD8675ARZ-REEL7