House Price Prediction

CS 6301: Practical Aspects of Data Science

Summer 2020: Assignment 1

Team Member: -Rajarshi Chattopadhyay (RXC170010)

Introduction

We predict real-valued or continuous output variable using Regression. Here, we have used California Housing Dataset to perform regression analysis to predict house prices.

Data

The data is about the houses found in a given California district with stats about them based on the 1990 census data. https://www.kaggle.com/camnugent/california-housing-prices

Number of records: 20640

```
Number of Columns: 10
"longitude" "latitude" "housing_median_age"
"total_rooms" "total_bedrooms" "population"
"households" "median_income" "median_house_value"
"ocean_proximity"
```

Summary of Data

```
longitude
                       housing median age total rooms
              latitude
Min. :-124.3 Min. :32.54 Min. :1.00
                                       Min. : 2
1st Qu.:-121.8 1st Qu.:33.93 1st Qu.:18.00
                                         1st Ou.: 1448
Median :-118.5 Median :34.26 Median :29.00
                                            Median : 2127
Mean :-119.6 Mean :35.63 Mean :28.64
                                          Mean : 2636
3rd Ou.:-118.0 3rd Ou.:37.71 3rd Ou.:37.00
                                          3rd Ou.: 3148
Max. :-114.3 Max. :41.95 Max. :52.00
                                         Max. :39320
               population
total bedrooms
                            households
                                        median income
Min.: 1.0 Min.: 3 Min.: 1.0 Min.: 0.4999
1st Qu.: 296.0 1st Qu.: 787 1st Qu.: 280.0 1st Qu.: 2.5634
Median: 435.0 Median: 1166 Median: 409.0 Median: 3.5348
Mean: 537.9 Mean: 1425 Mean: 499.5 Mean: 3.8707
3rd Qu.: 647.0 3rd Qu.: 1725 3rd Qu.: 605.0 3rd Qu.: 4.7432
Max. :6445.0 Max. :35682 Max. :6082.0 Max. :15.0001
NA's :207
median house value ocean proximity
Min. : 14999
               <1H OCEAN :9136
1st Ou.:119600
               INLAND:6551
Median :179700
               ISLAND: 5
                NEAR BAY: 2290
Mean :206856
3rd Ou.:264725
                NEAR OCEAN:2658
Max. :500001
```

'data.frame': 20640 obs. of 10 variables:

\$ longitude : num -122 -122 -122 -122 -122 ... \$ latitude : num 37.9 37.9 37.9 37.9 37.9 ...

\$ housing_median_age: num 41 21 52 52 52 52 52 52 52 42 52 ...

\$ total_rooms : num 880 7099 1467 1274 1627 ... \$ total_bedrooms : num 129 1106 190 235 280 ... \$ population : num 322 2401 496 558 565 ... \$ households : num 126 1138 177 219 259 ... \$ median income : num 8.33 8.3 7.26 5.64 3.85 ...

\$ median house value: num 452600 358500 352100 341300 342200 ...

\$ ocean proximity : Factor w/ 5 levels "<1H OCEAN", "INLAND",..: 4 4 4 4 4 4 4 4 4 4 ...

Explore attribute values

Handling attributes

- Replace total_bedrooms and total_rooms with avg_bedrooms and avg_rooms
- Split the ocean proximity into separate boolean category columns

Updated columns

\$ ISLAND

```
"longitude"
               "latitude"
                              "housing median age" "population"
                                                                    "households"
"median income"
                   "median house value" "avg bedrooms"
                                      "INLAND"
"NEAR BAY"
                  "<1H OCEAN"
                                                        "NEAR OCEAN"
"ISLAND"
'data.frame':
             20640 obs. of 14 variables:
$ longitude
               : num -122 -122 -122 -122 ...
$ latitude
              : num 37.9 37.9 37.9 37.9 37.9 ...
$ housing median age: num 41 21 52 52 52 52 52 52 52 42 52 ...
$ population
                : num 322 2401 496 558 565 ...
$ households
                : num 126 1138 177 219 259 ...
$ median income
                   : num 8.33 8.3 7.26 5.64 3.85 ...
$ median house value: num 452600 358500 352100 341300 342200 ...
$ avg bedrooms
                  : num 1.024 0.972 1.073 1.073 1.081 ...
$ avg rooms
                 : num 6.98 6.24 8.29 5.82 6.28 ...
$ NEAR BAY
                   : num 1 1 1 1 1 1 1 1 1 1 ...
$ <1H OCEAN
                   : num 0000000000...
$ INLAND
                 : num 0000000000...
                     : num 0000000000...
$ NEAR OCEAN
```

: num 00000000000...

Check relationship of the attributes with median_house_value

The feature median income is the only one with a linear relationship with median house value.

Check for outliers in the attribute values

There are a lot of outliers.

Check correlation of the attributes

We use the attribute as the predictor which has >60 % correlation with the median_house_value. Here, it is median_income. Further, it also has linear relationship with median_house_value.

Create model to predict median_house_value using median_income

Residuals:

Min 1Q Median 3Q Max -540697 -55950 -16979 36978 434023

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 45085.6 1322.9 34.08 <2e-16 *** median_income 41793.8 306.8 136.22 <2e-16 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

Residual standard error: 83740 on 20638 degrees of freedom Multiple R-squared: 0.4734, Adjusted R-squared: 0.4734 F-statistic: 1.856e+04 on 1 and 20638 DF, p-value: < 2.2e-16

2.5 % 97.5 % (Intercept) 42492.64 47678.51 median income 41192.49 42395.21

Upgrading model

- Randomize and Split data to training (75%) and test (25%) sets
- Train model with training data
- Predict using test data

Residuals:

Min 1Q Median 3Q Max -541892 -56147 -16972 36727 434575

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 44473.2 1532.0 29.03 <2e-16 ***
median_income 41914.3 355.3 117.98 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 83930 on 15478 degrees of freedom Multiple R-squared: 0.4735, Adjusted R-squared: 0.4734 F-statistic: 1.392e+04 on 1 and 15478 DF, p-value: < 2.2e-16

2.5 % 97.5 % (Intercept) 41470.32 47476.15 median_income 41217.92 42610.69

Comparing the test data with predictions

RMSE = 142073.1

Histogram of testData\$median_house_value

Histogram of testData\$median_house_value

Conclusion

In both the models p-value is less than 0.05, which implies there is some relationship between the dependent variable median_house_value and the independent variable median_income that have been used in our model.

References

- Exploring Data: https://cran.r-
 project.org/web/packages/driftR/vignettes/ExploringData.html
- Outlier finding: http://r-statistics.co/Outlier-Treatment-With-R.html