

23 NOV 2004
PCT/JP 03/06389

日本国特許庁
JAPAN PATENT OFFICE

22.05.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年 9月30日

REG'D 11 JUL 2003

WIPO

PCT

出願番号

Application Number:

特願2002-287161

[ST.10/C]:

[JP 2002-287161]

出願人

Applicant(s):

武田薬品工業株式会社

PRIORITY
DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1 (a) OR (b)

2003年 6月27日

特許庁長官
Commissioner,
Japan Patent Office

太田信一郎

出証番号 出証特2003-3050906

【書類名】 特許願
 【整理番号】 B02317
 【提出日】 平成14年 9月30日
 【あて先】 特許庁長官 殿
 【国際特許分類】 C07D231/10
 C07D261/06
 C07D275/02

【発明者】

【住所又は居所】 奈良県生駒郡斑鳩町五百井1丁目2番21号
 【氏名】 前川 豪志

【発明者】

【住所又は居所】 大阪府吹田市津雲台5丁目18番D75棟305号
 【氏名】 原 亮磨

【発明者】

【住所又は居所】 兵庫県神戸市北区桂木2丁目12番地12
 【氏名】 小高 裕之

【発明者】

【住所又は居所】 大阪府堺市大浜中町1丁2番20号808
 【氏名】 木村 宏之

【特許出願人】

【識別番号】 000002934
 【氏名又は名称】 武田薬品工業株式会社

【代理人】

【識別番号】 100114041

【弁理士】

【氏名又は名称】 高橋 秀一

【選任した代理人】

【識別番号】 100106323

【弁理士】

【氏名又は名称】 関口 陽

【先の出願に基づく優先権主張】

【出願番号】 特願2002-151405

【出願日】 平成14年 5月24日

【整理番号】 B02153

【手数料の表示】

【予納台帳番号】 005142

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【包括委任状番号】 9909276

【包括委任状番号】 0203423

【ブルーフの要否】 要

【書類名】明細書

【発明の名称】1,2-アゾール誘導体

【特許請求の範囲】

【請求項1】式

【化1】

[式中、環Aは1ないし3個の置換基を有していてもよい環を；

環Bは1ないし3個の置換基をさらに有していてもよい1,2-アゾール環を；

X_a、X_bおよびX_cは同一または異なって、結合手、-O-、-S-、-SO-、-SO₂-、-CO-、-CS-、-CR¹(OR²)-、-NR³-、-CONR³-または-NR³CO-（R¹は水素原子または置換されていてもよい炭化水素基を、R²は水素原子または水酸基の保護基を、R³は水素原子、置換されていてもよい炭化水素基またはアミノ基の保護基を示す）を；

Y_aは炭素数1ないし20の2価の脂肪族炭化水素残基を；

Y_bおよびY_cは同一または異なって、結合手または炭素数1ないし20の2価の脂肪族炭化水素残基を；

環Cは1ないし3個の置換基をさらに有していてもよい单環式芳香環を；

Rは-OR⁴（R⁴は水素原子または置換されていてもよい炭化水素基を示す）または-NR⁵R⁶（R⁵およびR⁶は、同一または異なって、水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示すか、あるいはR⁵およびR⁶が隣接する窒素原子とともに置換されていてもよい複素環を形成する）を示す。

ただし、

①環Bで示される1,2-アゾール環がピラゾールであるとき、環Cはチアジアゾールまたはオキサジアゾールでなく；

②環Bで示される1,2-アゾール環がイソオキサゾールであるとき、環Cは置換されていてもよいピリドンでなく；

③環Bで示される1,2-アゾール環がピラゾール、かつX_aおよびX_bが結合手

であるとき、環Cはベンゼン環でない】で表される化合物もしくはその塩またはそのプロドラッグ。

【請求項2】環Aで示される環が芳香環である請求項1記載の化合物。

【請求項3】芳香環がベンゼン環またはピリジン環である請求項2記載の化合物

【請求項4】環Bで示される1,2-アゾール環がピラゾールである請求項1記載の化合物。

【請求項5】環Bがさらに有していてもよい置換基が炭化水素基である請求項1記載の化合物。

【請求項6】環Bがさらに有していてもよい置換基がアルコキシ基である請求項1記載の化合物。

【請求項7】YaがC₁-6アルキレンまたはC₂-6アルケニレンである請求項1記載の化合物。

【請求項8】Xbが-O-、-S-、-SO-、-SO₂-、-CO-、-CS-、-CR¹(OR²)-、-NR³-、-CONR³-または-NR³CO- (R¹は水素原子または置換されていてもよい炭化水素基を、R²は水素原子または水酸基の保護基を、R³は水素原子、置換されていてもよい炭化水素基またはアミノ基の保護基を示す) である請求項1記載の化合物。

【請求項9】環Cで示される单環式芳香環がベンゼン環である請求項1記載の化合物。

【請求項10】環Cで示される单環式芳香環がピラゾールである請求項1記載の化合物。

【請求項11】Rが-OR⁴ (R⁴は水素原子または置換されていてもよい炭化水素基を示す) である請求項1記載の化合物。

【請求項12】請求項1記載の化合物もしくはその塩またはそのプロドラッグを含有してなる医薬組成物。

【請求項13】式

【化2】

[式中、環Aは1ないし3個の置換基を有していてもよい環を；
 環Bは1ないし3個の置換基をさらに有していてもよい1,2-アゾール環を；
 Xa、XbおよびXcは同一または異なって、結合手、-O-、-S-、-SO-、-SO₂-、-CO-、-CS-、-CR¹(OR²)-、-NR³-、-CONR³-または-NR³CO-（R¹は水素原子または置換されていてもよい炭化水素基を、R²は水素原子または水酸基の保護基を、R³は水素原子、置換されていてもよい炭化水素基またはアミノ基の保護基を示す）を；
 Yaは炭素数1ないし20の2価の脂肪族炭化水素残基を；
 YbおよびYcは同一または異なって、結合手または炭素数1ないし20の2価の脂肪族炭化水素残基を；
 環Cは1ないし3個の置換基をさらに有していてもよい单環式芳香環を；
 Rは-OR⁴（R⁴は水素原子または置換されていてもよい炭化水素基を示す）または-NR⁵R⁶（R⁵およびR⁶は、同一または異なって、水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示すか、あるいはR⁵およびR⁶が隣接する窒素原子とともに置換されていてもよい複素環を形成する）を示す]で表される化合物もしくはその塩またはそのプロドラッグを含有してなる糖尿病の予防・治療剤。

【請求項14】式

【化3】

[式中、環Aは1ないし3個の置換基を有していてもよい環を；
 環Bは1ないし3個の置換基をさらに有していてもよい1,2-アゾール環を；
 Xa、XbおよびXcは同一または異なって、結合手、-O-、-S-、-SO-、-SO₂-、-CO-、-CS-、-CR¹(OR²)-、-NR³-、-CONR³-または-NR³CO-（R¹は水素原子または置換されていてもよい炭化水素基を、R²は水素原子または水酸基の保護基を、R³は水素原子、置換されていてもよい炭化水素基またはアミノ基の保護基を示す）を；

Y_aは炭素数1ないし20の2価の脂肪族炭化水素残基を；

Y_bおよびY_cは同一または異なって、結合手または炭素数1ないし20の2価の脂肪族炭化水素残基を；

環Cは1ないし3個の置換基をさらに有していてもよい单環式芳香環を；

Rは-O R⁴ (R⁴は水素原子または置換されていてもよい炭化水素基を示す)

または-N R⁵ R⁶ (R⁵およびR⁶は、同一または異なって、水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示すか、あるいはR⁵およびR⁶が隣接する窒素原子とともに置換されていてもよい複素環を形成する)を示す]で表される化合物もしくはその塩またはそのプロドラッグを含有してなる高脂血症の予防・治療剤。

【請求項15】式

【化4】

[式中、環Aは1ないし3個の置換基を有していてもよい環を；

環Bは1ないし3個の置換基をさらに有していてもよい1,2-アゾール環を；

X_a、X_bおよびX_cは同一または異なって、結合手、-O-、-S-、-SO-、-SO₂-、-CO-、-CS-、-CR¹(OR²)-、-NR³-、-CONR³-または-NR³CO- (R¹は水素原子または置換されていてもよい炭化水素基を、R²は水素原子または水酸基の保護基を、R³は水素原子、置換されていてもよい炭化水素基またはアミノ基の保護基を示す)を；

Y_aは炭素数1ないし20の2価の脂肪族炭化水素残基を；

Y_bおよびY_cは同一または異なって、結合手または炭素数1ないし20の2価の脂肪族炭化水素残基を；

環Cは1ないし3個の置換基をさらに有していてもよい单環式芳香環を；

Rは-O R⁴ (R⁴は水素原子または置換されていてもよい炭化水素基を示す)

または-N R⁵ R⁶ (R⁵およびR⁶は、同一または異なって、水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示すか、あるいはR⁵およびR⁶が隣接する窒素原子とともに置換されていてもよい複素環を形

成する)を示す。

ただし、環Bで示される1,2-アゾール環がイソオキサゾールであるとき、環Cは置換されていてもよいピリドンでない]で表される化合物もしくはその塩またはそのプロドラッグを含有してなる動脈硬化症の予防・治療剤。

【請求項16】式

【化5】

[式中、環Aは1ないし3個の置換基を有していてもよい環を；
 環Bは1ないし3個の置換基をさらに有していてもよい1,2-アゾール環を；
 X_a 、 X_b および X_c は同一または異なって、結合手、 $-\text{O}-$ 、 $-\text{S}-$ 、 $-\text{SO}-$ 、 $-\text{SO}_2-$ 、 $-\text{CO}-$ 、 $-\text{CS}-$ 、 $-\text{CR}^1(\text{OR}^2)-$ 、 $-\text{NR}^3-$ 、 $-\text{CONR}^3-$ または $-\text{NR}^3\text{CO}-$ (R^1 は水素原子または置換されていてもよい炭化水素基を、 R^2 は水素原子または水酸基の保護基を、 R^3 は水素原子、置換されていてもよい炭化水素基またはアミノ基の保護基を示す)を；
 Y_a は炭素数1ないし20の2価の脂肪族炭化水素残基を；
 Y_b および Y_c は同一または異なって、結合手または炭素数1ないし20の2価の脂肪族炭化水素残基を；
 環Cは1ないし3個の置換基をさらに有していてもよい单環式芳香環を；
 R は $-\text{OR}^4$ (R^4 は水素原子または置換されていてもよい炭化水素基を示す)または $-\text{NR}^5\text{R}^6$ (R^5 および R^6 は、同一または異なって、水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示すか、あるいは R^5 および R^6 が隣接する窒素原子とともに置換されていてもよい複素環を形成する)を示す]で表される化合物もしくはその塩またはそのプロドラッグを含有してなる耐糖能不全の予防・治療剤。

【請求項17】式

【化6】

[式中、環Aは1ないし3個の置換基を有していてもよい環を；

環Bは1ないし3個の置換基をさらに有していてもよい1,2-アゾール環を；

X_a、X_bおよびX_cは同一または異なって、結合手、-O-、-S-、-SO-、-SO₂-、-CO-、-CS-、-CR¹(OR²)-、-NR³-、-CONR³-または-NR³CO-（R¹は水素原子または置換されていてもよい炭化水素基を、R²は水素原子または水酸基の保護基を、R³は水素原子、置換されていてもよい炭化水素基またはアミノ基の保護基を示す）を；

Y_aは炭素数1ないし20の2価の脂肪族炭化水素残基を；

Y_bおよびY_cは同一または異なって、結合手または炭素数1ないし20の2価の脂肪族炭化水素残基を；

環Cは1ないし3個の置換基をさらに有していてもよい單環式芳香環を；

Rは-OR⁴（R⁴は水素原子または置換されていてもよい炭化水素基を示す）または-NR⁵R⁶（R⁵およびR⁶は、同一または異なって、水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示すか、あるいはR⁵およびR⁶が隣接する窒素原子とともに置換されていてもよい複素環を形成する）を示す]で表される化合物もしくはその塩またはそのプロドラッグを含有してなるレチノイド関連受容体機能調節剤。

【請求項18】ペルオキシソーム増殖剤応答性受容体リガンドである請求項17記載の剤。

【請求項19】レチノイドX受容体リガンドである請求項17記載の剤。

【請求項20】式

【化7】

[式中、環Aは1ないし3個の置換基を有していてもよい環を；

環Bは1ないし3個の置換基をさらに有していてもよい1,2-アゾール環を；

X_a、X_bおよびX_cは同一または異なって、結合手、-O-、-S-、-SO-、-SO₂-、-CO-、-CS-、-CR¹(OR²)-、-NR³-、-CONR³-または-NR³CO-（R¹は水素原子または置換されていてもよい

炭化水素基を、 R^2 は水素原子または水酸基の保護基を、 R^3 は水素原子、置換されていてもよい炭化水素基またはアミノ基の保護基を示す)を;

Y_a は炭素数1ないし20の2価の脂肪族炭化水素残基を;

Y_b および Y_c は同一または異なって、結合手または炭素数1ないし20の2価の脂肪族炭化水素残基を;

環Cは1ないし3個の置換基をさらに有していてもよい单環式芳香環を;

R は $-OR^4$ (R^4 は水素原子または置換されていてもよい炭化水素基を示す)

または $-NR^5R^6$ (R^5 および R^6 は、同一または異なって、水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示すか、あるいは R^5 および R^6 が隣接する窒素原子とともに置換されていてもよい複素環を形成する)を示す]で表される化合物もしくはその塩またはそのプロドラッグを含有してなるインスリン抵抗性改善剤。

【請求項21】式

【化8】

[式中、環Aは1ないし3個の置換基を有していてもよい環を;

環Bは1ないし3個の置換基をさらに有していてもよい1,2-アゾール環を;

X_a 、 X_b および X_c は同一または異なって、結合手、 $-O-$ 、 $-S-$ 、 $-SO-$ 、 $-SO_2-$ 、 $-CO-$ 、 $-CS-$ 、 $-CR^1(OR^2)-$ 、 $-NR^3-$ 、 $-CONR^3-$ または $-NR^3CO-$ (R^1 は水素原子または置換されていてもよい炭化水素基を、 R^2 は水素原子または水酸基の保護基を、 R^3 は水素原子、置換されていてもよい炭化水素基またはアミノ基の保護基を示す)を;

Y_a は炭素数1ないし20の2価の脂肪族炭化水素残基を;

Y_b および Y_c は同一または異なって、結合手または炭素数1ないし20の2価の脂肪族炭化水素残基を;

環Cは1ないし3個の置換基をさらに有していてもよい单環式芳香環を;

R は $-OR^4$ (R^4 は水素原子または置換されていてもよい炭化水素基を示す)

または $-NR^5R^6$ (R^5 および R^6 は、同一または異なって、水素原子、置換さ

れでいてもよい炭化水素基または置換されていてもよい複素環基を示すか、あるいはR⁵およびR⁶が隣接する窒素原子とともに置換されていてもよい複素環を形成する)を示す]で表される化合物もしくはその塩またはそのプロドラッグを哺乳動物に投与することを特徴とする、該哺乳動物における糖尿病の予防または治療方法。

【請求項22】糖尿病の予防・治療剤を製造するための、式

【化9】

[式中、環Aは1ないし3個の置換基を有していてもよい環を；
環Bは1ないし3個の置換基をさらに有していてもよい1,2-アゾール環を；
X_a、X_bおよびX_cは同一または異なって、結合手、-O-、-S-、-SO-、-SO₂-、-CO-、-CS-、-CR¹(OR²)-、-NR³-、-CONR³-または-NR³CO-（R¹は水素原子または置換されていてもよい炭化水素基を、R²は水素原子または水酸基の保護基を、R³は水素原子、置換されていてもよい炭化水素基またはアミノ基の保護基を示す）を；
Y_aは炭素数1ないし20の2価の脂肪族炭化水素残基を；
Y_bおよびY_cは同一または異なって、結合手または炭素数1ないし20の2価の脂肪族炭化水素残基を；
環Cは1ないし3個の置換基をさらに有していてもよい单環式芳香環を；
Rは-OR⁴（R⁴は水素原子または置換されていてもよい炭化水素基を示す）または-NR⁵R⁶（R⁵およびR⁶は、同一または異なって、水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示すか、あるいはR⁵およびR⁶が隣接する窒素原子とともに置換されていてもよい複素環を形成する)を示す]で表される化合物もしくはその塩またはそのプロドラッグの使用。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、優れた血糖低下作用および血中脂質低下作用を有し、糖尿病、高脂血症、動脈硬化症、耐糖能不全などの予防・治療剤として有用な1,2-アゾール誘導体に関する。

【0002】

【従来の技術】

ペルオキシソーム増殖剤応答性受容体ガンマ（PPAR γ ）は、ステロイドホルモン受容体や甲状腺ホルモン受容体に代表される核内ホルモン受容体スーパー・ファミリーの一員で、脂肪細胞分化のごく初期にその発現が誘導され、マスター・レギュレーターとして脂肪細胞の分化に重要な役割を果たしている。PPAR γ は、リガンドと結合することによりレチノイドX受容体（RXR）と二量体を形成し、核内で標的遺伝子の応答性部位と結合して転写効率を直接制御（活性化）している。近年、プロスタグランジンD₂の代謝物である15-デオキシ- Δ^1 -2,14-プロスタグランジンJ₂がPPAR γ の内因性リガンドである可能性が示唆され、さらに、チアゾリジンジオン誘導体に代表される一種のインスリン感受性増強薬がPPAR γ のリガンド活性を有し、その強さと血糖低下作用あるいは脂肪細胞分化促進作用が平行することが判明した（例えば、非特許文献1～3参照）。さらに、最近、1)ヒト脂肪肉腫由来の培養細胞にPPAR γ が発現し、PPAR γ リガンドの添加によってその増殖が停止すること（例えば、非特許文献4参照）、2)インドメタシン、フェノプロフェンに代表されるノンステロイド抗炎症薬がPPAR γ リガンド活性を持つこと（例えば、非特許文献5参照）、3)活性化されたマクロファージでPPAR γ が高発現し、そのリガンド添加によって炎症に関与する遺伝子の転写が阻害されること（例えば、非特許文献6参照）、4)PPAR γ リガンドが、単球による炎症性サイトカイン（TNF α 、IL-1 β 、IL-6）の産生を抑制すること（例えば、非特許文献7参照）、5)PPAR γ ヘテロ欠損マウスでは脂肪細胞の肥大化や脂肪の蓄積、インスリン抵抗性の発現が抑制されること（例えば、非特許文献8参照）、6)PPAR γ リガンドが、PPAR γ アゴニストによる10T1/2細胞の脂肪細胞への分化を阻害すること（例えば、非特許文献9参照）、7)PPAR γ リガンドが、PPAR γ アゴニストによる3T3-L1細胞の脂肪細胞への分化を抑制すること（例

えば、非特許文献10参照)などが判明している。

【0003】

ペルオキシソーム増殖剤応答性受容体デルタ (P P A R δ) は、核内受容体P P A Rファミリーの一員で、他のP P A Rファミリーと同様にリガンド結合することによりレチノイドX受容体 (R X R) と二量体を形成し、核内で標的遺伝子の上流にある応答性部位に結合して転写効率を直接制御している。P P A R δ のリガンドとしては長鎖脂肪酸やカルパプロスタサイクリンが挙げられるが、P P A R δ に特異的な標的遺伝子は同定されていない。P P A R δ は普遍的に発現しているが、特に発現が強いのは腸、腎臓、心臓である。また、P P A R δ については、マウス前駆脂肪細胞の分化促進作用を示すこと（例えば、非特許文献11～13参照）；ラットおよびヒト骨格筋細胞のUCP-2およびUCP-3発現促進作用を示すこと（例えば、非特許文献14、15参照）；乏突起神経膠細胞の分化促進作用を示すこと（例えば、非特許文献16、17参照）；db/dbマウスにおいてHDL-C増加作用を示すこと（例えば、非特許文献18参照）；肥満アカゲザルにおいてHDL-C増加、LDL-C、VLDLおよびTG低下作用を示すこと；ヒト単球THP-1細胞のApoA1を介したコレステロール搬出促進作用を示すこと（例えば、非特許文献19参照）が報告されている。さらに、P P A R δ が、大腸癌（例えば、非特許文献20、21参照）、妊娠時の着床（例えば、非特許文献22参照）、破骨細胞における骨吸収作用（例えば、非特許文献23参照）、炎症におけるapoptosis（例えば、非特許文献24参照）、脳における2型acyl CoA合成酵素の制御（例えば、非特許文献25参照）と関連することが報告されている。

【0004】

P P A Rリガンドとしては、下記の化合物が知られている。

(1) P P A R受容体リガンドとして、式

【化10】

[式中、

【化11】

ArI 、 ArII および ArIII は、

独立して、アリールなどを；Aは-〇-などを；Bは-〇-などを；Dは-〇-などを；Eは結合手またはエチレン基を；a, b, cおよびeは0-4を；dは0-5を；fは0-6を； R_1 , R_3 , R_5 , R_7 , R_9 および R_{11} は独立して水素などを； R_2 , R_4 , R_6 , R_8 , R_{10} および R_{12} は独立して-（C_H)_q-Xを；qは0-3を；Xは水素などを；Zは $R_{21}O_2C-$ などを； R_{21} は水素などを示す]で表される化合物が報告されている（特許文献1参照）。

(2) レチノイド関連受容体機能調節剤として、式

【化12】

[式中、 R^1 は置換されていてもよい炭化水素基または置換されていてもよい複素環基を；Xは結合手、O, S, -CO-, -CS-, -CR⁴(OR⁵)-または-NR⁶- (R^4 および R^6 は水素原子または置換されていてもよい炭化水素基を、 R^5 は水素原子または水酸基の保護基を示す)を；mは0-3を；YはO, S, -SO-, -SO₂-,-NR⁷-,-C(=O)R⁷-または-NR⁷CO- (R^7 は水素原子または置換されていてもよい炭化水素基を示す)を；環Aは1~3の置換基をさらに有していてもよい芳香環を；nは1-8を；環Bはアルキル基でさらに置換されていてもよい含窒素5員複素環を；X¹は結合手、O、S、-SO-、-SO₂-、-O-SO₂-または-NR¹⁶- (R^{16} は水素原子または置換されていてもよい炭化水素基を示す)を；R²は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を；Wは結合手またはC1-20の2価炭化水素残基を；R³は-OR⁸ (R^8 は水素原子または置換されていてもよい炭化水素基を示す)または-NR⁹R¹⁰ (R^9 および R^{10} は、同一又は異なって水素原

子、置換されていてもよい炭化水素基、置換されていてもよい複素環基または置換されていてもよいアシル基を示すか、R⁹およびR¹⁰が互いに結合して環を形成する)を示す」で表される化合物が報告されている(特許文献2参照)。

(3) ヒトPPARδの選択的なアクチベーターとして、式

【化13】

[式中、XはCOOHまたはテトラゾリル基を；X¹はNH,NCH₃, O,S, 結合手等を；X²はOまたはSを；R¹およびR²は独立してH,CH₃, OCH₃またはハロゲンを；nは1または2を；YおよびZの一方はNを他方はSまたはOを；yは0,1,2,3,4または5を；R³はC₃またはハロゲンを示す]で表される化合物が報告されている(特許文献3参照)。

(4) PPARδの活性化剤として、式

【化14】

[式中、AはO,S等を；R¹、R²およびR³は水素原子、C1-8アルキル,C6-10置換基を有していてもよいアリール基等を；X¹およびX²はO,S等を；Y¹は置換基を有していてもよいC1-8アルキレン鎖を；B¹はCW¹ (W¹は水素原子等を示す) またはNを；B²はCW² (W²は水素原子等を示す) またはNを；DはO,S等を；ZはOまたはSを；Y²はC1-4アルキレン鎖または結合手を；R⁴およびR⁵は水素原子等を；Eはカルボキシル基、C2-8アルコキシカルボニル基等を示す]で表される化合物が報告されている(特許文献4参照)。

(5) PPARγアゴニストとして、式

【化15】

[式中、Aはハロゲン原子、C1-6アルキル、C1-3アルコキシ、C1-3フルオロアルコキシ等から選ばれる置換基で置換されていてよいフェニル、O、NおよびSから選ばれる少なくとも1個のヘテロ原子を含む5または6員複素環基等を；BはC1-6アルキレン、-MC1-6アルキレン（MはO、S等を示す）、少なくとも1個の窒素ヘテロ原子とO、NおよびSから選ばれる少なくとも1個のヘテロ原子とを含みC1-3アルキルで置換されていてもよい5または6員複素環基、Het-C1-6アルキレン（Hetは複素環基を示す）等を；ALKはC1-3アルキレンを；R¹は水素原子またはC1-3アルキルを；Zはフェニルがハロゲン原子で置換されていてもよい-(C1-3アルキレン)フェニル等を示す]で表される化合物が報告されている（特許文献5参照）。

一方、1,2-アゾール誘導体としては、下記の化合物が知られている。

(6) カラー写真感光材料に用いられる漂白促進剤放出化合物 (Bleach Accelerator Releasing化合物) として、以下の化合物が報告されている（特許文献 6 参照）。

【化 1 6】

(7) カラー写真感光材料に用いられる漂白促進剤放出化合物 (Bleach Accelerator Releasing化合物) として、以下の化合物が報告されている（特許文献 7 参照）。

【化 1 7】

(8) エンドセリン変換酵素阻害剤として、式

【化18】

[式中、R1はハロゲン、ニトロ、シアノ、-COOH、-COO-C1-3アルキル等から選ばれる置換基で置換されていてもよいC1-8アルキル等を；R2はC1-5アルキル等を；R4はH等を示す] で表される化合物が報告されている（特許文献8参照）。

(9) 血小板凝集阻害剤として、式

【化19】

[式中、R1は水素原子、低級アルキルまたはアルカリ金属イオンを；R1aは低級アルキルを；HET₂は4,5-ジフェニル-2-チアゾリル、4,5-ジフェニル-1H-イミダゾール-2-イル、3,4-ジフェニル-1H-ピラゾール-1-イル、4,5-ジフェニル-1H-ピラゾール-1-イル、1,5-ジフェニル-1H-ピラゾール-3-イル等を示す] で表される化合物が報告されている（特許文献9参照）。

(10) 心血管疾患治療剤として、式

【化20】

[式中、BはC6-10アリールまたは1～9の炭素原子および3個までのヘテロ原子を含む複素環を；rは0または1を；Vは欠如しているか0等を；Qは欠如しているか0等を飽和または不飽和のアルキレン等を；Yは水素原子等を；R³は水素原子、ハロゲン等を；Wはアルキレン等を；Uはアルキレン等を；Aは欠如しているかC6-10アリールまたは1～9の炭素原子および3個までのヘテロ原子を含む芳香族複素環を；R²はCN、テトラゾリル、COOR²⁶またはCONR²⁷R²⁸ (R²⁶、R²⁷およびR²⁸は水

素原子等を示す)を; Xはアルキレン等を; R1はCN、テトラゾリル、COOR³⁵またはCONR³⁶R³⁷(R³⁵、R³⁶およびR³⁷は水素原子等を示す)を示す]で表される化合物が報告されている(特許文献10参照)。

【0005】

【非特許文献1】

セル(Cell)、(1995年)、第83巻、p.803

【非特許文献2】

ザ・ジャーナル・オブ・バイオロジカル・ケミストリー(The Journal of Biological Chemistry)、(1995年)、第270巻、p.12953

【非特許文献3】

ジャーナル・オブ・メディシナル・ケミストリー(Journal of Medicinal Chemistry)、(1996年)、第39巻、p.655

【非特許文献4】

Proceedings of The National Academy of Sciences of The United States of America、(1997年)、第94巻、p.237

【非特許文献5】

The Journal of Biological Chemistry)、(1997年)、第272巻、p.3406

【非特許文献6】

Nature)、(1998年)、第391巻、p.79

【非特許文献7】

Nature)、(1998年)、第391巻、p.82

【非特許文献8】

Molecular Cell)、(1999年)、第4巻、p.597

【非特許文献9】

Proceedings of The National Academy of Sciences of The United States of America、(1997年)、第94巻、p.237

s of The National Academy of Sciences of The United States of America)

、(1999年)、第96巻、p.6102

【非特許文献10】

モレキュラー エンドクリノロジー (Molecular Endocrinology) 、(2000年)、第14巻、p.1425

【非特許文献11】

ザ・ジャーナル・オブ・バイオロジカル・ケミストリー (The Journal of Biological Chemistry) 、(1999年)、第274巻、p.21920-21925

【非特許文献12】

ザ・ジャーナル・オブ・バイオロジカル・ケミストリー (The Journal of Biological Chemistry) 、(2000年)、第275巻、p.38768-38773

【非特許文献13】

ザ・ジャーナル・オブ・バイオロジカル・ケミストリー (The Journal of Biological Chemistry) 、(2001年)、第276巻、p.3175-3182

【非特許文献14】

ザ・ジャーナル・オブ・バイオロジカル・ケミストリー (The Journal of Biological Chemistry) 、(2001年)、第276巻、p.10853-10860

【非特許文献15】

エンドクリノロジー (Endocrinology) 、(2001年)、第142巻、p. 4189-4194

【非特許文献16】

モレキュラー セル バイオロジー (Molecular Cell Biology) 、(2000年)、第20巻、p.5119-5128

【非特許文献17】

グリア (Glia) 、(2001年)、第33巻、p.191-204

【非特許文献18】

フェブス レターズ (FEBS letters) 、(2000年)、第473巻、p.333

-336

【非特許文献19】

プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス・オブ・ザ・ユナイテッド・ステイツ・オブ・アメリカ (Proceedings of The National Academy of Science of The United States of America) 、 (2001年) 、第98巻、p.5306-5311

【非特許文献20】

セル (Cell) 、 (1999年) 、第99巻、p.335-345

【非特許文献21】

プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス・オブ・ザ・ユナイテッド・ステイツ・オブ・アメリカ (Proceedings of The National Academy of Science of The United States of America) 、 (2001年) 、第98巻、p.2598-2603

【非特許文献22】

ジーンズ・アンド・ディベロップメント (Genes and Development)

、 (1999年) 、第13巻、p.1561-1574

【非特許文献23】

ザ・ジャーナル・オブ・バイオロジカル・ケミストリー (The Journal of Biological Chemistry) 、 (2000年) 、第275巻、p.8126-8132

【非特許文献24】

ジーンズ・アンド・ディベロップメント (Genes and Development)

、 (2001年) 、第15巻、p.3263-3277

【非特許文献25】

ザ・ジャーナル・オブ・バイオロジカル・ケミストリー (The Journal of Biological Chemistry) 、 (1999年) 、第274巻、p.35881-35888

【特許文献1】

国際公開第W000／64876号パンフレット

【特許文献2】

国際公開第W001／38325号パンフレット

【特許文献3】

国際公開第W001／00603号パンフレット

【特許文献4】

特開2001-354671号公報

【特許文献5】

国際公開第W097/31907号パンフレット

【特許文献6】

特開平4-194845号公報

【特許文献7】

特開平4-184435号公報

【特許文献8】

国際公開第W000/61579号パンフレット

【特許文献9】

欧州特許出願公開第442448号明細書

【特許文献10】

国際公開第W001/19778号パンフレット

【0006】

【発明が解決しようとする課題】

糖尿病、高脂血症、動脈硬化症、耐糖能不全などの予防・治療剤として有用であり、かつ副作用が少ない等、医薬として優れた性質を有する1,2-アゾール誘導体の開発が望まれている。

【0007】

【課題を解決するための手段】

本発明は、

1) 式

【化21】

〔式中、環Aは1ないし3個の置換基を有していてもよい環を；
環Bは1ないし3個の置換基をさらに有していてもよい1,2-アゾール環を；
Xa、XbおよびXcは、同一または異なって、結合手、-O-、-S-、-S

O^- 、 $-SO_2^-$ 、 $-CO^-$ 、 $-CS^-$ 、 $-CR^1(OR^2)^-$ 、 $-NR^3^-$ 、 $-CONR^3-$ または $-NR^3CO^-$ (R^1 は水素原子または置換されていてもよい炭化水素基を、 R^2 は水素原子または水酸基の保護基を、 R^3 は水素原子、置換されていてもよい炭化水素基またはアミノ基の保護基を示す) を；

Y_a は、炭素数 1 ないし 20 の 2 倍の脂肪族炭化水素残基を；

Y_b および Y_c は、同一または異なる、結合手または炭素数 1 ないし 20 の 2 倍の脂肪族炭化水素残基を；

環 C は 1 ないし 3 個の置換基をさらに有していてもよい单環式芳香環を；

R は $-OR^4$ (R^4 は水素原子または置換されていてもよい炭化水素基を示す) または $-NR^5R^6$ (R^5 および R^6 は、同一または異なる、水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示すか、あるいは R^5 および R^6 が隣接する窒素原子とともに置換されていてもよい複素環を形成する) を示す。

ただし、

① 環 B で示される 1,2-アゾール環がピラゾールであるとき、環 C はチアジアゾールまたはオキサジアゾールでなく；

② 環 B で示される 1,2-アゾール環がイソオキサゾールであるとき、環 C は置換されていてもよいピリドンでなく；

③ 環 B で示される 1,2-アゾール環がピラゾール、かつ X_a および X_b が結合手であるとき、環 C はベンゼン環でない] で表される化合物もしくはその塩またはそのプロドラッグ；

2) 環 A で示される環が芳香環である前記 1) 記載の化合物；

3) 芳香環がベンゼン環またはピリジン環である前記 2) 記載の化合物；

4) 環 B で示される 1,2-アゾール環がピラゾールである前記 1) 記載の化合物；

5) 環 B がさらに有していてもよい置換基が炭化水素基である前記 1) 記載の化合物；

6) 環 B がさらに有していてもよい置換基がアルコキシ基である前記 1) 記載の化合物；

7) YaがC₁₋₆アルキレンまたはC₂₋₆アルケニレンである前記1)記載の化合物;

8) Xbが-O-、-S-、-SO-、-SO₂-、-CO-、-CS-、-CR¹(OR²)-、-NR³-、-CONR³-または-NR³CO- (R¹は水素原子または置換されていてもよい炭化水素基を、R²は水素原子または水酸基の保護基を、R³は水素原子、置換されていてもよい炭化水素基またはアミノ基の保護基を示す)である前記1)記載の化合物;

9) 環Cで示される単環式芳香環がベンゼン環である前記1)記載の化合物;

10) 環Cで示される単環式芳香環がピラゾールである前記1)記載の化合物;

11) Rが-OR⁴ (R⁴は水素原子または置換されていてもよい炭化水素基を示す)である前記1)記載の化合物;

12) 前記1)記載の化合物もしくはその塩またはそのプロドラッグを含有してなる医薬組成物;

13) 式

【化22】

[式中、環Aは1ないし3個の置換基を有していてもよい環を;

環Bは1ないし3個の置換基をさらに有していてもよい1,2-アゾール環を;

Xa、XbおよびXcは、同一または異なって、結合手、-O-、-S-、-SO-、-SO₂-、-CO-、-CS-、-CR¹(OR²)-、-NR³-、-CONR³-または-NR³CO- (R¹は水素原子または置換されていてもよい炭化水素基を、R²は水素原子または水酸基の保護基を、R³は水素原子、置換されていてもよい炭化水素基またはアミノ基の保護基を示す)を;

Yaは、炭素数1ないし20の2価の脂肪族炭化水素残基を;

YbおよびYcは、同一または異なって、結合手または炭素数1ないし20の2価の脂肪族炭化水素残基を;

環Cは1ないし3個の置換基をさらに有していてもよい単環式芳香環を;

Rは-OR⁴ (R⁴は水素原子または置換されていてもよい炭化水素基を示す)

または $-NR^5R^6$ (R^5 および R^6 は、同一または異なって、水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示すか、あるいは R^5 および R^6 が隣接する窒素原子とともに置換されていてもよい複素環を形成する) を示す] で表される化合物もしくはその塩またはそのプロドラッグを有してなる糖尿病の予防・治療剤；

14) 式 (I a) で表される化合物もしくはその塩またはそのプロドラッグを有してなる高脂血症の予防・治療剤；

15) 式

【化23】

[式中、環Aは1ないし3個の置換基を有していてもよい環を；
環Bは1ないし3個の置換基をさらに有していてもよい1,2-アゾール環を；
 X_a 、 X_b および X_c は、同一または異なって、結合手、 $-O-$ 、 $-S-$ 、 $-S-O-$ 、 $-SO_2-$ 、 $-CO-$ 、 $-CS-$ 、 $-CR^1(O R^2)-$ 、 $-N R^3-$ 、 $-CON R^3-$ または $-N R^3 CO-$ (R^1 は水素原子または置換されていてもよい炭化水素基を、 R^2 は水素原子または水酸基の保護基を、 R^3 は水素原子、置換されていてもよい炭化水素基またはアミノ基の保護基を示す) を；
 Y_a は、炭素数1ないし20の2価の脂肪族炭化水素残基を；
 Y_b および Y_c は、同一または異なって、結合手または炭素数1ないし20の2価の脂肪族炭化水素残基を；
環Cは1ないし3個の置換基をさらに有していてもよい单環式芳香環を；
Rは $-OR^4$ (R^4 は水素原子または置換されていてもよい炭化水素基を示す) または $-NR^5R^6$ (R^5 および R^6 は、同一または異なって、水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示すか、あるいは R^5 および R^6 が隣接する窒素原子とともに置換されていてもよい複素環を形成する) を示す。

ただし、環Bで示される1,2-アゾール環がイソオキサゾールであるとき、環Cは置換されていてもよいピリドンでない] で表される化合物もしくはその塩または

はそのプロドラッグを含有してなる動脈硬化症の予防・治療剤；

16) 式(Ia)で表される化合物もしくはその塩またはそのプロドラッグを含有してなる耐糖能不全の予防・治療剤；

17) 式(Ia)で表される化合物もしくはその塩またはそのプロドラッグを含有してなるレチノイド関連受容体機能調節剤；

18) ペルオキシソーム増殖剂応答性受容体リガンドである前記17)記載の剤；

19) レチノイドX受容体リガンドである前記17)記載の剤；

20) 式(Ia)で表される化合物もしくはその塩またはそのプロドラッグを含有してなるインスリン抵抗性改善剤；

21) 式(Ia)で表される化合物もしくはその塩またはそのプロドラッグを哺乳動物に投与することを特徴とする、該哺乳動物における糖尿病の予防または治療方法；

22) 糖尿病の予防・治療剤を製造するための、式(Ia)で表される化合物もしくはその塩またはそのプロドラッグの使用；などに関する。

【0008】

以下に、式(I)、(Ia)および(Ib)中の各記号の定義について詳述する。

環Aで示される環としては、例えば芳香族炭化水素、芳香族複素環などの芳香環；脂環式炭化水素、非芳香族複素環などの非芳香環が挙げられる。

芳香族炭化水素としては、例えば炭素数6～14の芳香族炭化水素が挙げられる。該芳香族炭化水素の好適な例としては、ベンゼン、ナフタレン、アントラセン、フェナントレン、アセナフチレン、インデンなどが挙げられ、なかでもベンゼン、ナフタレンなどが好ましい。

芳香族複素環としては、例えば環構成原子として炭素原子以外に酸素原子、硫黄原子および窒素原子から選ばれるヘテロ原子を1ないし4個含有する5～7員の单環式芳香族複素環または縮合芳香族複素環が挙げられる。該縮合芳香族複素環としては、例えばこれら5～7員の单環式芳香族複素環と、1ないし2個の窒素原子を含む6員環、ベンゼン環または1個の硫黄原子を含む5員環とが縮合し

た環等が挙げられる。

芳香族複素環の好適な例としては、フラン、チオフェン、ピリジン、ピリミジン、ピリダジン、ピラジン、ピロール、イミダゾール、ピラゾール、イソオキサゾール、イソチアゾール、オキサゾール、チアゾール、オキサジアゾール、チアジアゾール、トリアゾール、テトラゾール、キノリン、キナゾリン、キノキサリン、ベンゾフラン、ベンゾチオフェン、ベンゾオキサゾール、ベンゾチアゾール、ベンズイミダゾール、インドール、1H-インダゾール、1H-ピロロ[2,3-b]ピラジン、1H-ピロロピリジン、1H-イミダゾピリジン、1H-イミダゾピラジン、トリアジン、イソキノリン、ベンゾチアジアゾールなどが挙げられる。

芳香族複素環は、好ましくは5または6員芳香族複素環、さらに好ましくはフラン、チオフェン、ピリジン、ピリミジン、ピラゾール、オキサゾール、チアゾールなどである。

【0009】

脂環式炭化水素としては、炭素数3～12の飽和または不飽和の脂環式炭化水素、例えばシクロアルカン、シクロアルケン、シクロアルカジエンなどが挙げられる。

シクロアルカンの好適な例としては、炭素数3～10のシクロアルカン、例えばシクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、ビシクロ[2.2.1]ヘプタン、ビシクロ[2.2.2]オクタン、ビシクロ[3.2.1]オクタン、ビシクロ[3.2.2]ノナン、ビシクロ[3.3.1]ノナン、ビシクロ[4.2.1]ノナン、ビシクロ[4.3.1]デカンなどが挙げられる。

シクロアルケンの好適な例としては、炭素数3～10のシクロアルケン、例えばシクロペンテン、シクロヘキセンなどが挙げられる。

シクロアルカジエンの好適な例としては、炭素数4～10のシクロアルカジエン、例えば2,4-シクロペンタジエン、2,4-シクロヘキサジエン、2,5-シクロヘキサジエンなどが挙げられる。

非芳香族複素環としては、例えば環構成原子として炭素原子以外に酸素原子、

硫黄原子および窒素原子から選ばれるヘテロ原子を1ないし4個含有する5~7員の単環式非芳香族複素環または縮合非芳香族複素環が挙げられる。該非芳香族縮合複素環としては、例えばこれら5~7員の単環式非芳香族複素環と、1ないし2個の窒素原子を含む6員環、ベンゼン環または1個の硫黄原子を含む5員環とが縮合した環等が挙げられる。

非芳香族複素環の好適な例としては、ピロリジン、ピロリン、ピラゾリジン、ピペリジン、ピペラジン、モルホリン、チオモルホリン、ピペラジン、ヘキサメチレンイミン、オキサゾリジン、チアゾリジン、イミダゾリジン、イミダゾリン、テトラヒドロフラン、アゼパン、テトラヒドロピリジンなどが挙げられる。

環Aで示される環は、好ましくは芳香族炭化水素、芳香族複素環などの芳香環であり、さらに好ましくは炭素数6~14の芳香族炭化水素および5または6員芳香族複素環である。なかでもベンゼン、ピリジンなどが好ましい。

【0010】

環Aで示される環は、置換可能な位置に1ないし3個の置換基を有していてよい。該置換基としては、例えば「ハロゲン原子」、「ニトロ基」、「シアノ基」、「置換されていてもよい脂肪族炭化水素基」、「置換されていてもよい脂環式炭化水素基」、「置換されていてもよい芳香族炭化水素基」、「置換されていてもよい芳香脂肪族炭化水素基」、「置換されていてもよい複素環基」、「置換されていてもよいアシル基」、「置換されていてもよいアミノ基」、「置換されていてもよいヒドロキシ基」、「置換されていてもよいチオール基」、「エステル化もしくはアミド化されていてもよいカルボキシル基」などが挙げられる。

「ハロゲン原子」としては、フッ素、塩素、臭素およびヨウ素が挙げられ、なかでもフッ素および塩素が好ましい。

「置換されていてもよい脂肪族炭化水素基」における脂肪族炭化水素基としては、炭素数1~15の直鎖状または分枝状の脂肪族炭化水素基が好ましい。該脂肪族炭化水素基としては、例えばアルキル基、アルケニル基、アルキニル基等が挙げられる。

アルキル基の好適な例としては、炭素数1~10のアルキル基、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec.-ブチル、t.-ブ

チル、ペンチル、イソペンチル、ネオペンチル、1-エチルプロピル、ヘキシリ、イソヘキシリ、1, 1-ジメチルブチル、2, 2-ジメチルブチル、3, 3-ジメチルブチル、2-エチルブチル、ヘプチル、オクチル、ノニル、デシルなどが挙げられる。

アルケニル基の好適な例としては、炭素数2～10のアルケニル基、例えばエチニル、1-プロペニル、2-プロペニル、2-メチル-1-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、3-メチル-2-ブテニル、1-ペントニル、2-ペントニル、3-ペントニル、4-ペントニル、4-メチル-3-ペントニル、1-ヘキセニル、3-ヘキセニル、5-ヘキセニル、1-ヘプテニル、1-オクテニルなどが挙げられる。

アルキニル基の好適な例としては、炭素数2～10のアルキニル基、例えばエチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-ブチニル、1-ペンチニル、2-ペンチニル、3-ペンチニル、4-ペンチニル、1-ヘキシニル、2-ヘキシニル、3-ヘキシニル、4-ヘキシニル、5-ヘキシニル、1-ヘプチニル、1-オクチニルなどが挙げられる。

【0011】

「置換されていてもよい脂肪族炭化水素基」における置換基としては、例えばハロゲン原子（例、フッ素、塩素、臭素、ヨウ素）；スルホ基；シアノ基；アジド基；ニトロ基；ニトロソ基；炭素数3～10のシクロアルキル基；芳香族複素環基（例、チエニル、フリル、ピリジル、オキサゾリル、チアゾリルなど）；非芳香族複素環基（例、テトラヒドロフリル、モルホリノ、チオモルホリノ、ピペリジノ、ピロリジニル、ピペラジニルなど）；炭素数1～4のアルキル基および炭素数2～8のアシル基（例、アルカノイル基など）から選ばれる置換基でモノあるいはジ置換されていてもよいアミノ基；アミジノ基；炭素数2～8のアシル基（例、アルカノイル基など）；炭素数1～4のアルキル基でモノあるいはジ置換されていてもよいカルバモイル基；炭素数1～4のアルキル基でモノあるいはジ置換されていてもよいスルファモイル基；カルボキシリル基；炭素数2～8のアルコキシカルボニル基；ヒドロキシ基；1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルコキシ基

; 炭素数7～13のアラルキルオキシ基；炭素数6～14のアリールオキシ基（例、フェニルオキシ、ナフチルオキシなど）；チオール基；1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキルチオ基；炭素数7～13のアラルキルチオ基；炭素数6～14のアリールチオ基（例、フェニルチオ、ナフチルチオなど）などが挙げられる。置換基の数は、例えば1～3個である。

【0012】

「置換されていてもよい脂環式炭化水素基」における脂環式炭化水素基としては、飽和または不飽和の炭素数3～10の脂環式炭化水素基が好ましい。該脂環式炭化水素基としては、例えばシクロアルキル基、シクロアルケニル基、シクロアルカジエニル基等が挙げられる。

シクロアルキル基の好適な例としては、炭素数3～10のシクロアルキル基、例えばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルなどが挙げられる。

シクロアルケニル基の好適な例としては、炭素数3～10のシクロアルケニル基、例えば1-シクロペンテニル、2-シクロペンテニル、3-シクロペンテニル、1-シクロヘキセニル、2-シクロヘキセニル、3-シクロヘキセニル、1-シクロヘプテニル、2-シクロヘプテニル、3-シクロヘプテニルなどが挙げられる。

シクロアルカジエニル基の好適な例としては、炭素数5～10のシクロアルカジエニル基、例えば2,4-シクロヘプタジエニルなどが挙げられる。

【0013】

「置換されていてもよい芳香族炭化水素基」における芳香族炭化水素基としては、炭素数6～14のアリール基が好ましい。該アリール基としては、例えばフェニル、ナフチル、アントリル、フェナントリル、アセナフチレン基などが挙げられる。なかでもフェニル、1-ナフチル、2-ナフチルなどが好ましい。

「置換されていてもよい芳香脂肪族炭化水素基」における芳香脂肪族炭化水素基としては、炭素数7～13の芳香脂肪族炭化水素基が好ましい。該芳香脂肪族炭化水素基としては、例えばアラルキル基、アリールアルケニル基などが挙げら

れる。

アラルキル基の好適な例としては、炭素数7～13のアラルキル基、例えばベンジル、フェネチル、ナフチルメチル、ベンズヒドリルなどが挙げられる。

アリールアルケニル基の好適な例としては、炭素数8～13のアリールアルケニル基、例えばスチリルなどが挙げられる。

「置換されていてもよい複素環基」における複素環基としては、例えば環構成原子として炭素原子以外に酸素原子、硫黄原子および窒素原子から選ばれるヘテロ原子を1ないし4個含有する5～7員の単環式複素環基または縮合複素環基が挙げられる。該縮合複素環基としては、例えばこれら5～7員の単環式複素環基と、1ないし2個の窒素原子を含む6員環、ベンゼン環または1個の硫黄原子を含む5員環とが縮合した基等が挙げられる。

複素環基の具体例としては、例えばフリル（2-フリル、3-フリル）、チエニル（2-チエニル、3-チエニル）、ピロリル（1-ピロリル、2-ピロリル、3-ピロリル）、イミダゾリル（1-イミダゾリル、2-イミダゾリル、4-イミダゾリル、5-イミダゾリル）、ピラゾリル（1-ピラゾリル、3-ピラゾリル、4-ピラゾリル）、イソオキサゾリル（3-イソオキサゾリル、4-イソオキサゾリル、5-イソオキサゾリル）、イソチアゾリル（3-イソチアゾリル、4-イソチアゾリル、5-イソチアゾリル）、チアゾリル（2-チアゾリル、4-チアゾリル、5-チアゾリル）、オキサゾリル（2-オキサゾリル、4-オキサゾリル、5-オキサゾリル）、オキサジアゾリル（1, 2, 4-オキサジアゾール-3-イル、1, 2, 4-オキサジアゾール-5-イル、1, 3, 4-オキサジアゾール-2-イル）、チアジアゾリル（1, 3, 4-チアジアゾール-2-イル）、トリアゾリル（1, 2, 4-トリアゾール-1-イル、1, 2, 4-トリアゾール-3-イル、1, 2, 3-トリアゾール-1-イル、1, 2, 3-トリアゾール-2-イル）、テトラゾリル（テトラゾール-1-イル、テトラゾール-5-イル）、ピリジル（2-ピリジル、3-ピリジル、4-ピリジル）、ピリミジニル（2-ピリミジニル、4-ピリミジニル、5-ピリミジニル、6-ピリミジニル）、ピリダジニル（3-ピリダジニル、4-ピリダジニル）、ピラジニル（2-ピラジニル）、キノリル

(2-キノリル、3-キノリル、4-キノリル)、キナゾリル(2-キナゾリル、4-キナゾリル)、キノキサリル(2-キノキサリル)、ベンゾオキサゾリル(2-ベンゾオキサゾリル)、ベンゾチアゾリル(2-ベンゾチアゾリル)、ベンズイミダゾリル(ベンズイミダゾール-1-イル、ベンズイミダゾール-2-イル)、インドリル(インドール-1-イル、インドール-3-イル)、インダゾリル(1H-インダゾール-3-イル)、ピロロピラジニル(1H-ピロロ[2,3-b]ピラジン-2-イル)、ピロロピリジニル(1H-ピロロ[2,3-b]ピリジン-6-イル)、イミダゾピリジニル(1H-イミダゾ[4,5-b]ピリジン-2-イル)、イミダゾピラジニル(1H-イミダゾ[4,5-b]ピラジン-2-イル)、ベンズトリアゾリル(ベンズトリアゾール-1-イル)等の芳香族複素環基；およびピロリジニル(1-ピロリジニル、2-ピロリジニル、3-ピロリジニル)、イミダゾリジニル(2-イミダゾリジニル、4-イミダゾリジニル)、ピラゾリジニル(2-ピラゾリジニル、3-ピラゾリジニル、4-ピラゾリジニル)、チアゾリジニル(チアゾリジン-3-イル)、オキサゾリジニル(オキサゾリジン-3-イル)、ピペリジノ、モルホリノ、チオモルホリノ、ピペラジニル(1-ピペラジニル)、ヘキサメチレンイミニル(ヘキサメチレンイミン-1-イル)等の非芳香族複素環基等が挙げられる。

【0014】

前記「置換されていてもよい脂環式炭化水素基」、「置換されていてもよい芳香族炭化水素基」、「置換されていてもよい芳香脂肪族炭化水素基」および「置換されていてもよい複素環基」における置換基としては、例えばハロゲン原子(例、フッ素、塩素、臭素、ヨウ素)；スルホ基；シアノ基；アジド基；ニトロ基；ニトロソ基；1～3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数1～6のアルキル基；1～3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数2～6のアルケニル基；炭素数3～10のシクロアルキル基；炭素数6～14のアリール基(例、フェニル、ナフチルなど)；芳香族複素環基(例、チエニル、フリル、ピリジル、オキサゾリル、チアゾリルなど)；非芳香族複素環基(例、テトラ

ヒドロフリル、モルホリノ、チオモルホリノ、ピペリジノ、ピロリジニル、ピペラジニルなど) ; 炭素数7~13のアラルキル基; 炭素数1~4のアルキル基および炭素数2~8のアシル基(例、アルカノイル基など)から選ばれる置換基でモノあるいはジ置換されていてもよいアミノ基; アミジノ基; 炭素数2~8のアシル基(例、アルカノイル基など); 炭素数1~4のアルキル基でモノあるいはジ置換されていてもよいカルバモイル基; 炭素数1~4のアルキル基でモノあるいはジ置換されていてもよいスルファモイル基; カルボキシリル基; 炭素数2~8のアルコキシカルボニル基; ヒドロキシ基; 1~3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数1~6のアルコキシ基; 炭素数7~13のアラルキルオキシ基; 炭素数6~14のアリールオキシ基(例、フェニルオキシ、ナフチルオキシなど); チオール基; 1~3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数1~6のアルキルチオ基; 炭素数7~13のアラルキルチオ基; 炭素数6~14のアリールチオ基(例、フェニルチオ、ナフチルチオなど)などが挙げられる。置換基の数は、例えば1~3個である。

【0015】

「置換されていてもよいアシル基」におけるアシル基としては、炭素数1~13のアシル基、具体的にはホルミルの他、式: $-C\text{O}R^7$, $-SO_2R^7$, $-SO R^7$ または $-PO_3R^7R^8$ [式中、 R^7 および R^8 は、同一または異なって炭化水素基または複素環基を示す。また、 R^7 および R^8 は、隣接するオキソ置換リン原子および2個の酸素原子とともに複素環を形成していてもよい]で表される基などが挙げられる。

R^7 または R^8 で示される炭化水素基としては、例えば脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、芳香脂肪族炭化水素基などが挙げられる。

これら脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基および芳香脂肪族炭化水素基としては、それぞれ環Aの置換基において例示したものが挙げられる。

炭化水素基は、好ましくは炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数3~10のシクロアルキル基、炭素数3~10のシクロアル

ケニル基、炭素数6～14のアリール基、炭素数7～13のアルキル基などである。

R^7 または R^8 で示される複素環基としては、環Aの置換基において例示したものが挙げられる。該複素環基は、好ましくはチエニル、フリル、ピリジルなどである。

【0016】

R^7 および R^8 が隣接するオキソ置換リン原子および2個の酸素原子とともに形成する複素環としては、例えば環構成原子として炭素原子以外にオキソ置換リン原子および2個の酸素原子を含み、さらに酸素原子、窒素原子および硫黄原子から選ばれるヘテロ原子を1ないし2個含有していてもよい4ないし7員の複素環などが挙げられる。このような複素環の具体例としては、2-オキシドー1,3,2-ジオキサホスフィナン；2-オキシドー1,3,2-ジオキサホスフォランなどが挙げられる。

【0017】

アシル基の好適な例としては、炭素数2～10のアルカノイル基（例、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイル、ヘキサノイル、ヘプタノイル、オクタノイル）、炭素数3～10のアルケノイル基（例、クロトニル）、炭素数4～10のシクロアルカノイル基（例、シクロブタンカルボニル、シクロ pentanカルボニル、シクロヘキサンカルボニル、シクロヘプタンカルボニル）、炭素数4～10のシクロアルケノイル基（例、2-シクロヘキセンカルボニル）、炭素数7～13のアリールカルボニル基（例、ベンゾイル）、芳香族複素環カルボニル基（例、ニコチノイル、イソニコチノイル）、炭素数1～10のアルキルスルフィニル基（例、メチルスルフィニル、エチルスルフィニル）、炭素数1～10のアルキルスルホニル基（例、メチルスルホニル、エチルスルホニル）、環を形成していてもよい（モノーもしくはジーカ素数1～10のアルキル）ホスホスノ基（例、ジメチルホスホノ；ジエチルホスホノ；ジイソプロピルホスホノ；ジブチルホスホノ；2-オキシドー1,3,2-ジオキサホスフィナニル）などが挙げられる。

【0018】

該アシル基は、置換可能な位置に1～3個の置換基を有していてもよく、このような置換基としては、例えば1～3個のハロゲン原子（例、フッ素、塩素、ヨウ素など）で置換されていてもよいC₁₋₆アルキル基（例、メチル、エチルなど）、1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよいC₁₋₆アルコキシ基（例、メトキシ、エトキシなど）、ハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）、ニトロ基、ヒドロキシ基、アミノ基などが挙げられる。

【0019】

「置換されていてもよいアミノ基」としては、例えば炭素数1～10のアルキル基、炭素数2～10のアルケニル基、炭素数3～10のシクロアルキル基、炭素数3～10のシクロアルケニル基、炭素数6～14のアリール基、炭素数7～13のアラルキル基および炭素数1～13のアシル基から選ばれる置換基でモノまたはジ置換されていてもよいアミノ基が挙げられる。

これら炭素数1～10のアルキル基、炭素数2～10のアルケニル基、炭素数3～10のシクロアルキル基、炭素数3～10のシクロアルケニル基、炭素数6～14のアリール基、炭素数7～13のアラルキル基、炭素数1～13のアシル基としては、それぞれ環Aの置換基において例示したものが挙げられる。

【0020】

置換されたアミノ基としては、例えばモノーまたはジ-C₁₋₁₀アルキルアミノ（例、メチルアミノ、ジメチルアミノ、エチルアミノ、ジエチルアミノ、エチルメチルアミノ、プロピルアミノ、ジブチルアミノ）、モノーまたはジ-C₂₋₁₀アルケニルアミノ（例、ジアリルアミノ）、モノーまたはジ-C₃₋₁₀シクロアルキルアミノ（例、シクロヘキシルアミノ）、モノーまたはジ-C₂₋₁₀アルカノイルアミノ（例、アセチルアミノ、プロピオニルアミノ）、炭素数7～13のアリールカルボニルアミノ基（例、ベンゾイルアミノ）、炭素数6～14のアリールアミノ（例、フェニルアミノ）、N-C₁₋₁₀アルキル-N-C₆₋₁₄アリールアミノ（例、N-メチル-N-フェニルアミノ）等が挙げられる。

【0021】

「置換されていてもよいヒドロキシ基」としては、例えばそれぞれ置換されて

いてもよい「炭素数1～10のアルキル基」、「炭素数2～10のアルケニル基」、「炭素数3～10のシクロアルキル基」、「炭素数3～10のシクロアルケニル基」、「炭素数6～14のアリール基」、「炭素数7～13のアラルキル基」または「炭素数1～13のアシル基」で置換されていてもよいヒドロキシ基が挙げられる。

これら「炭素数1～10のアルキル基」、「炭素数2～10のアルケニル基」、「炭素数3～10のシクロアルキル基」、「炭素数3～10のシクロアルケニル基」、「炭素数6～14のアリール基」、「炭素数7～13のアラルキル基」および「炭素数1～13のアシル基」としては、それぞれ環Aの置換基において例示したものが挙げられる。

これら「炭素数1～10のアルキル基」、「炭素数2～10のアルケニル基」、「炭素数3～10のシクロアルキル基」、「炭素数3～10のシクロアルケニル基」、「炭素数6～14のアリール基」、「炭素数7～13のアラルキル」および「炭素数1～13のアシル基」は、置換可能な位置に1～3個の置換基を有していてもよく、このような置換基としては、例えばハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）、1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよいC₁₋₆アルコキシ基（例、メトキシ、エトキシなど）、ヒドロキシ基、ニトロ基、アミノ基などが挙げられる。

【0022】

置換されたヒドロキシ基としては、例えばそれぞれ置換されていてもよいアルコキシ基、アルケニルオキシ基、シクロアルキルオキシ基、シクロアルケニルオキシ基、アリールオキシ基、アラルキルオキシ基、アシルオキシ基等が挙げられる。

アルコキシ基の好適な例としては、炭素数1～10のアルコキシ基、例えばメトキシ、エトキシ、プロボキシ、イソプロポキシ、ブトキシ、イソブトキシ、se c.-ブトキシ、t.-ブトキシ、ペンチルオキシ、イソペンチルオキシ、ネオペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、ノニルオキシなどが挙げられる。

アルケニルオキシ基の好適な例としては、炭素数2～10のアルケニルオキシ

基、例えばアリル(allyl)オキシ、クロチルオキシ、2-ペンテニルオキシ、3-ヘキセニルオキシなどが挙げられる。

シクロアルキルオキシ基の好適な例としては、炭素数3～10のシクロアルキルオキシ基、例えばシクロブトキシ、シクロペンチルオキシ、シクロヘキシルオキシなどが挙げられる。

シクロアルケニルオキシ基の好適な例としては、炭素数3～10のシクロアルケニルオキシ基、例えば2-シクロペンテニルオキシ、2-シクロヘキセニルオキシなどが挙げられる。

アリールオキシ基の好適な例としては、炭素数6～14のアリールオキシ基、例えばフェノキシ、ナフチルオキシ等が挙げられる。

アラルキルオキシ基の好適な例としては、炭素数7～13のアラルキルオキシ基、例えばベンジルオキシ、フェネチルオキシ、ナフチルメチルオキシ等が挙げられる。

アシルオキシ基の好適な例としては、炭素数2～13のアシルオキシ基、例えば炭素数2～4のアルカノイルオキシ（例、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、イソブチリルオキシなど）等が挙げられる。

【0023】

上記したアルコキシ基、アルケニルオキシ基、シクロアルキルオキシ基、シクロアルケニルオキシ基、アリールオキシ基、アラルキルオキシ基およびアシルオキシ基は、置換可能な位置に1ないし3個の置換基を有していてもよく、このような置換基としては、例えばハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）、1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよいC₁₋₆アルコキシ基（例、メトキシ、エトキシなど）、ヒドロキシ基、ニトロ基、アミノ基などが挙げられる。

【0024】

置換されていてもよいチオール基としては、例えばそれぞれ置換されていてもよい「炭素数1～10のアルキル基」、「炭素数2～10のアルケニル基」、「炭素数3～10のシクロアルキル基」、「炭素数3～10のシクロアルケニル基」、「炭素数6～14のアリール基」、「炭素数7～13のアラルキル」または

「炭素数1～13のアシル基」などで置換されていてもよいチオール基が挙げられる。

ここで、「炭素数1～10のアルキル基」、「炭素数2～10のアルケニル基」、「炭素数3～10のシクロアルキル基」、「炭素数3～10のシクロアルケニル基」、「炭素数6～14のアリール基」、「炭素数7～13のアラルキル」および「炭素数1～13のアシル基」としては、それぞれ環Aの置換基において例示したものが挙げられる。

これら「炭素数1～10のアルキル基」、「炭素数2～10のアルケニル基」、「炭素数3～10のシクロアルキル基」、「炭素数3～10のシクロアルケニル基」、「炭素数6～14のアリール基」、「炭素数7～13のアラルキル」および「炭素数1～13のアシル基」は、置換可能な位置に1～3個の置換基を有していてもよく、このような置換基としては、例えばハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）、1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよいC₁₋₆アルコキシ基（例、メトキシ、エトキシなど）、ヒドロキシ基、ニトロ基、アミノ基などが挙げられる。

【0025】

置換されたチオール基としては、例えばそれぞれ置換されていてもよいアルキルチオ基、アルケニルチオ基、シクロアルキルチオ基、シクロアルケニルチオ基、アリールチオ基、アラルキルチオ基、アシルチオ基などが挙げられる。

アルキルチオ基の好適な例としては、炭素数1～10のアルキルチオ基、例えばメチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、ブチルチオ、イソブチルチオ、sec.-ブチルチオ、t.-ブチルチオ、ペンチルチオ、イソペンチルチオ、ネオペンチルチオ、ヘキシルチオ、ヘプチルチオ、ノニルチオ等が挙げられる。

アルケニルチオ基の好適な例としては、炭素数2～10のアルケニルチオ基、例えばアリル(allyl)チオ、クロチルチオ、2-ペンテニルチオ、3-ヘキセニルチオなどが挙げられる。

シクロアルキルチオ基の好適な例としては、炭素数3～10のシクロアルキルチオ基、例えばシクロブチルチオ、シクロペンチルチオ、シクロヘキシルチオ等

が挙げられる。

シクロアルケニルチオ基の好適な例としては、炭素数3～10のシクロアルケニルチオ基、例えば2-シクロpentニルチオ、2-シクロヘキセニルチオなどが挙げられる。

アリールチオ基の好適な例としては、炭素数6～14のアリールチオ基、例えばフェニルチオ、ナフチルチオ等が挙げられる。

アラルキルチオ基の好適な例としては、炭素数7～13のアラルキルチオ基、例えばベンジルチオ、フェネチルチオ、ナフチルメチルチオ等が挙げられる。

アシルチオ基の好適な例としては、炭素数2～13のアシルチオ基、例えば炭素数2～4のアルカノイルチオ基（例、アセチルチオ、プロピオニルチオ、ブチリルチオ、イソブチリルチオなど）等が挙げられる。

【0026】

上記したアルキルチオ基、アルケニルチオ基、シクロアルキルチオ基、シクロアルケニルチオ基、アリールチオ基、アラルキルチオ基およびアシルチオ基は、置換可能な位置に1ないし3個の置換基を有していてもよく、このような置換基としては、例えばハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）、1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよいC₁₋₆アルコキシ基（例、メトキシ、エトキシなど）、ヒドロキシ基、ニトロ基、アミノ基などが挙げられる。

【0027】

エステル化されていてもよいカルボキシル基において、エステル化されたカルボキシル基としては、例えば炭素数2～5のアルコキシカルボニル基（例、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニルなど）、炭素数8～14のアラルキルオキシカルボニル基（例、ベンジルオキシカルボニルなど）、炭素数7～15のアリールオキシカルボニル基（例、フェノキシカルボニルなど）などが挙げられる。

【0028】

アミド化されていてもよいカルボキシル基において、アミド化されたカルボキシル基としては、式： $-CON(R^9)(R^{10})$

[式中、 R^9 および R^{10} は同一または異なって、水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す。 R^9 および R^{10} は、隣接する窒素原子とともに、置換されていてもよい含窒素複素環を形成していてもよい]で示される基が挙げられる。

ここで、 R^9 および R^{10} で示される「置換されていてもよい炭化水素基」における炭化水素基としては、前記 R^7 として例示した炭化水素基が挙げられる。該炭化水素基は、好ましくは、炭素数1～10のアルキル基（好ましくはメチル、エチル、プロピル、イソプロピル、ブチル、tert-ブチル）、炭素数2～10のアルキニル基（好ましくは2-プロピニル）、炭素数3～10のシクロアルキル基（好ましくはシクロプロピル、シクロヘキシル）、炭素数6～14のアリール基（好ましくはフェニル）；炭素数7～13のアラルキル基（好ましくはベンジル、フェネチル、ナフチルメチル）などである。

R^9 および R^{10} で示される「置換されていてもよい炭化水素基」における置換基としては、例えばハロゲン原子（例、フッ素、塩素、臭素、ヨウ素）；スルホ基；シアノ基；アジド基；ニトロ基；ニトロソ基；芳香族複素環基（例、チエニル、フリル、ピリジル、オキサゾリル、チアゾリルなど）；非芳香族複素環基（例、テトラヒドロフリル、モルホリノ、チオモルホリノ、ピペリジノ、ピロリジニル、ピペラジニルなど）；炭素数1～4のアルキル基および炭素数2～8のアシル基（例、アルカノイル基など）から選ばれる置換基でモノあるいはジ置換されていてもよいアミノ基；アミジノ基；炭素数2～8のアシル基（例、アルカノイル基など）；炭素数1～4のアルキル基でモノあるいはジ置換されていてもよいカルバモイル基；炭素数1～4のアルキル基でモノあるいはジ置換されていてもよいスルファモイル基；カルボキシル基；炭素数2～8のアルコキシカルボニル基；ヒドロキシ基；1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルコキシ基；1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数2～5のアルケニルオキシ基；炭素数3～7のシクロアルキルオキシ基；炭素数7～13のアラルキルオキシ基；炭素数6～14のアリールオキシ基（例、フェニルオキシ、ナフチルオキシなど）；チオール基；1～3個のハロゲン原子（

例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数1~6のアルキルチオ基;炭素数7~13のアラルキルチオ基;炭素数6~14のアリールチオ基(例、フェニルチオ、ナフチルチオなど)などが挙げられる。置換基の数は、例えば1~3個である。

【0029】

R^9 および R^{10} で示される「置換されていてもよい複素環基」における複素環基としては、前記 R^7 として例示した複素環基が挙げられる。

該複素環基における置換基としては、例えばハロゲン原子(例、フッ素、塩素、臭素、ヨウ素);スルホ基;シアノ基;アジド基;ニトロ基;ニトロソ基;1~3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数1~6のアルキル基;1~3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数2~6のアルケニル基;炭素数3~10のシクロアルキル基;炭素数6~14のアリール基(例、フェニル、ナフチルなど);芳香族複素環基(例、チエニル、フリル、ピリジル、オキサゾリル、チアゾリルなど);非芳香族複素環基(例、テトラヒドロフリル、モルホリノ、チオモルホリノ、ピペリジノ、ピロリジニル、ピペラジニルなど);炭素数7~13のアラルキル基;炭素数1~4のアルキル基および炭素数2~8のアシル基(例、アルカノイル基など)から選ばれる置換基でモノあるいはジ置換されていてもよいアミノ基;アミジノ基;炭素数2~8のアシル基(例、アルカノイル基など);炭素数1~4のアルキル基でモノあるいはジ置換されていてもよいカルバモイル基;炭素数1~4のアルキル基でモノあるいはジ置換されていてもよいスルファモイル基;カルボキシル基;炭素数2~8のアルコキシカルボニル基;ヒドロキシ基;1~3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数1~6のアルコキシ基;1~3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数2~5のアルケニルオキシ基;炭素数3~7のシクロアルキルオキシ基;炭素数7~13のアラルキルオキシ基;炭素数6~14のアリールオキシ基(例、フェニルオキシ、ナフチルオキシなど);チオール基;1~3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数1~

6のアルキルチオ基；炭素数7～13のアラルキルチオ基；炭素数6～14のアリールチオ基（例、フェニルチオ、ナフチルチオなど）などが挙げられる。置換基の数は、例えば1～3個である。

【0030】

R^9 および R^{10} が隣接する窒素原子とともに形成する含窒素複素環としては、例えば環構成原子として炭素原子以外に少なくとも1個の窒素原子を含み、さらに酸素原子、硫黄原子および窒素原子から選ばれるヘテロ原子を1ないし2個含有していてもよい5～8員の含窒素複素環が挙げられる。該含窒素複素環の好適な例としては、ピロリジン、イミダゾリジン、ピラゾリジン、ピペリジン、ピペラジン、モルホリン、チオモルホリン、アゼパンなどが挙げられる。

該含窒素複素環は、置換可能な位置に1～2個の置換基を有していてもよい。このような置換基としては、1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい C_{1-6} アルキル基（例、メチル、エチルなど）； C_{7-14} アラルキル基（例、ベンジル、ジフェニルメチルなど）；1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい C_{1-6} アルキル基（例、メチル、トリフルオロメチルなど）、ハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）、 C_{1-6} アルコキシ基（例、メトキシ、エトキシなど）または C_{2-10} アルカノイル基（例、アセチルなど）で置換されていてもよい C_{6-14} アリール基（例、フェニルなど）；シアノ基；ヒドロキシ基； C_{2-7} アルコキシカルボニル基（例、メトキシカルボニル、エトキシカルボニルなど）などが挙げられる。

【0031】

環Aにおける置換基は、好ましくはハロゲン原子、置換されていてもよい脂肪族炭化水素基、置換されていてもよい芳香族炭化水素基、置換されていてもよいヒドロキシ基、置換されていてもよいチオール基などであり、さらに好ましくは
 1) ハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）；
 2) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキル基（例、メチル、エチル、プロピル、イソプロピル、トリフルオロメチルなど）；

- 3) 炭素数6～14のアリール基（例、フェニルなど）；
- 4) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルコキシ基（例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、トリフルオロメトキシなど）；
- 5) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキルチオ基（例、メチルチオなど）などである。置換基の数は、好ましくは1または2個である。

【0032】

環Aは、好ましくはハロゲン原子、置換されていてもよい脂肪族炭化水素基、置換されていてもよい芳香族炭化水素基、置換されていてもよいヒドロキシ基、置換されていてもよいチオール基などから選ばれる1ないし3個の置換基を有していてもよい芳香環（好ましくは芳香族炭化水素、芳香族複素環）であり、さらに好ましくは

- 1) ハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）；
- 2) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキル基（例、メチル、エチル、プロピル、イソプロピル、トリフルオロメチルなど）；
- 3) 炭素数6～14のアリール基（例、フェニルなど）；
- 4) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルコキシ基（例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、トリフルオロメトキシなど）；
- 5) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキルチオ基（例、メチルチオなど）などから選ばれる1ないし3個の置換基をそれぞれ有していてもよい炭素数6～14の芳香族炭化水素（好ましくはベンゼン）または5または6員芳香族複素環（好ましくはピリジン）である。

【0033】

環Bで示される1,2-アゾール環としては、例えばピラゾール、イソオキサゾール、イソチアゾールなどが挙げられる。なかでもピラゾールが好ましい。

環Bで示される1,2-アゾール環は、置換可能な位置に1ないし3個の置換基を有していてもよい。該置換基としては、環Aにおける置換基として例示した「ハロゲン原子」、「ニトロ基」、「シアノ基」、「置換されていてもよい脂肪族炭化水素基」、「置換されていてもよい脂環式炭化水素基」、「置換されていてもよい芳香族炭化水素基」、「置換されていてもよい複素環基」、「置換されていてもよいアシル基」、「置換されていてもよいアミノ基」、「置換されていてもよいヒドロキシ基」、「置換されていてもよいチオール基」、「エステル化もしくはアミド化されていてもよいカルボキシル基」などが挙げられる。

環Bにおける置換基は、好ましくは「置換されていてもよい脂肪族炭化水素基」、「置換されていてもよい脂環式炭化水素基」、「置換されていてもよい芳香族炭化水素基」、「置換されていてもよいヒドロキシ基」などであり、さらに好ましくは脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基などの炭化水素基；アルコキシ基；アラルキルオキシ基などである。

該置換基の具体例としては、炭素数1～6のアルキル基（例、メチル、エチル、プロピル、イソプロピル）、炭素数1～6のアルコキシ基（例、メトキシ、エトキシ）、炭素数7～13のアラルキルオキシ基（例、ベンジルオキシ）、ヒドロキシ基、炭素数6～14のアリール基（例、フェニル）などが挙げられる。

【0034】

環Bは、好ましくは置換されていてもよい脂肪族炭化水素基、置換されていてもよい脂環式炭化水素基、置換されていてもよい芳香族炭化水素基、置換されていてもよいヒドロキシ基などから選ばれる1ないし3個の置換基を有していてもよい1,2-アゾール環（好ましくはピラゾール、イソオキサゾール、イソチアゾール）であり、さらに好ましくは炭素数1～6のアルキル基（例、メチル、エチル、プロピル、イソプロピル）、炭素数1～6のアルコキシ基（例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ）、炭素数7～13のアラルキルオキシ基（例、ベンジルオキシ）、ヒドロキシ基、炭素数6～14のアリール基（例、フェニル）などから選ばれる1ないし3個の置換基をそれぞれ有していてもよいピラゾールまたはイソオキサゾール（好ましくはピラゾール）である。

【0035】

X_a、X_bおよびX_cは、同一または異なって、結合手、-O-、-S-、-SO-、-SO₂-、-CO-、-CS-、-CR¹(OR²)-、-NR³-、-CONR³-または-NR³CO-（R¹は水素原子または置換されていてもよい炭化水素基を、R²は水素原子または水酸基の保護基を、R³は水素原子、置換されていてもよい炭化水素基またはアミノ基の保護基を示す）を示す。

R¹またはR³で示される「置換されていてもよい炭化水素基」としては、前記R⁹として例示したものが挙げられる。

該「置換されていてもよい炭化水素基」は、好ましくは、置換されていてもよい炭素数1ないし6のアルキル基（例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec.-ブチル、t.-ブチル）である。該アルキル基は、置換可能な位置に1ないし3個の置換基を有していてもよく、このような置換基としては、例えばハロゲン原子（例、フッ素、塩素、臭素、ヨウ素）、炭素数1ないし4のアルコキシ基（例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec.-ブトキシ、t.-ブトキシなど）、ヒドロキシ基、ニトロ基、アミノ基、炭素数1ないし4のアシル基（例、ホルミル、アセチル、プロピオニルなどの炭素数1ないし4のアルカノイル基）などが挙げられる。

【0036】

R²で示される水酸基の保護基としては、例えば、C₁-6アルキル基（例、メチル、エチル、プロピル、イソプロピル、ブチル、tert-ブチルなど）、フェニル基、トリチル基、C₇-10アラルキル基（例、ベンジルなど）、ホルミル基、C₁-6アルキルカルボニル基（例、アセチル、プロピオニルなど）、ベンゾイル基、C₇-10アラルキルカルボニル基（例、ベンジルカルボニルなど）、2-テトラヒドロピラニル基、2-テトラヒドロフラニル基、シリル基（例、トリメチルシリル、トリエチルシリル、ジメチルフェニルシリル、tert-ブチルジメチルシリル、tert-ブチルジエチルシリルなど）、C₂-6アルケニル基（例、1-アリルなど）などが挙げられる。これらの基は、ハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）、C₁-6アルキル基（例、

メチル、エチル、プロピルなど)、C₁-6アルコキシ基(例、メトキシ、エトキシ、プロポキシなど)、ニトロ基などから選ばれる1ないし3個の置換基で置換されていてもよい。

R³で示されるアミノ基の保護基としては、例えばホルミル基、C₁-6アルキルカルボニル基(例、アセチル、プロピオニルなど)、C₁-6アルコキシカルボニル基(例、メトキシカルボニル、エトキシカルボニル、tert-ブロキシカルボニルなど)、ベンゾイル基、C₇-10アラルキルカルボニル基(例、ベンジルカルボニルなど)、C₇-14アラルキルオキシカルボニル基(例、ベンジルオキシカルボニル、9-フルオレニルメトキシカルボニルなど)、トリチル基、フタロイル基、N,N-ジメチルアミノメチレン基、シリル基(例、トリメチルシリル、トリエチルシリル、ジメチルフェニルシリル、tert-ブチルジメチルシリル、tert-ブチルジエチルシリルなど)、C₂-6アルケニル基(例、1-アリルなど)などが挙げられる。これらの基は、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、C₁-6アルコキシ基(例、メトキシ、エトキシ、プロポキシなど)、ニトロ基などから選ばれる1ないし3個の置換基で置換されていてもよい。

R¹およびR³は、好ましくは水素原子または炭素数1ないし6のアルキル基であり、R²は、好ましくは水素原子である。

【0037】

X_aは、好ましくは結合手、-O-、-NR³-または-CO NR³- (R³は好ましくは水素原子または炭素数1ないし6のアルキル基)であり、さらに好ましくは結合手または-O-、特に好ましくは結合手である。

X_bは、好ましくは-O-、-S-、-SO-、-SO₂-、-CO-、-CS-、-CR¹(OR²)-、-NR³-、-CONR³-または-NR³CO- (R¹およびR³は好ましくは水素原子または炭素数1ないし6のアルキル基；R²は好ましくは水素原子)であり、さらに好ましくは結合手または-O-、特に好ましくは-O-である。

X_cは、好ましくは結合手または-O-である。

【0038】

Y a、Y bおよびY cで示される「炭素数1ないし20の2価の脂肪族炭化水素残基」としては、例えば炭素数1ないし20のアルキレン、炭素数2ないし20のアルケニレン、炭素数2ないし20のアルキニレンなどが挙げられる。

「炭素数1ないし20の2価の脂肪族炭化水素残基」は、好ましくは炭素数1ないし6の2価の脂肪族炭化水素基であり、さらに好ましくは

(1) C₁-6 アルキレン(例えば、-CH₂-、-(CH₂)₂-、-(CH₂)₃-、-(CH₂)₄-、-(CH₂)₅-、-(CH₂)₆-、-CH(CH₃)-、-C(CH₃)₂-、-(CH(CH₃))₂-、-(CH₂)₂C(CH₃)₂-、-(CH₂)₃C(CH₃)₂-など)；

(2) C₂-6 アルケニレン(例えば、-CH=CH-、-CH₂-CH=CH-、-C(CH₃)₂-CH=CH-、-CH₂-CH=CH-CH₂-、-CH₂-CH₂-CH=CH-、-CH=CH-CH=CH-、-CH=CH-CH₂-CH=CH-など)；

(3) C₂-6 アルキニレン(例えば、-C≡C-、-CH₂-C≡C-、-CH₂-C≡C-CH₂-など)などである。

なかでも、C₁-6 アルキレンおよびC₂-6 アルケニレンが好ましい。

Y aは、好ましくはC₁-6 アルキレンまたはC₂-6 アルケニレンである。また、X aおよびX bが結合手であるとき、Y aは、好ましくはC₃-6 アルキレンまたはC₃-6 アルケニレンである。

Y bは、好ましくは結合手、C₁-6 アルキレンまたはC₂-6 アルケニレンであり、さらに好ましくは結合手である。

Y cは、好ましくは結合手、C₁-6 アルキレンまたはC₂-6 アルケニレンであり、さらに好ましくはC₁-6 アルキレンまたはC₂-6 アルケニレンである。

【0039】

環Cで示される単環式芳香環としては、前記環Aとして例示した芳香族炭化水素および芳香族複素環のうち単環式のものが挙げられる。

該単環式芳香環は、好ましくはベンゼンおよび5または6員単環式芳香族複素環であり、さらに好ましくはベンゼン、ピラゾールなどである。

環Cで示される単環式芳香環は、置換可能な位置に1ないし3個の置換基を有していてもよい。該置換基としては、環Aにおける置換基として例示した「ハロゲン原子」、「ニトロ基」、「シアノ基」、「置換されていてもよい脂肪族炭化

水素基」、「置換されていてもよい脂環式炭化水素基」、「置換されていてもよい芳香族炭化水素基」、「置換されていてもよい複素環基」、「置換されていてもよいアシル基」、「置換されていてもよいアミノ基」、「置換されていてもよいヒドロキシ基」、「置換されていてもよいチオール基」、「エステル化もしくはアミド化されていてもよいカルボキシル基」などが挙げられる。

環Cにおける置換基は、好ましくはハロゲン原子、置換されていてもよい脂肪族炭化水素基、置換されていてもよい芳香族炭化水素基、置換されていてもよいヒドロキシ基、置換されていてもよいチオール基などであり、さらに好ましくは

- 1) ハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）；
- 2) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキル基（例、メチル、エチル、プロピル、イソプロピル、トリフルオロメチルなど）；
- 3) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数6～14のアリール基（例、フェニルなど）；
- 4) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルコキシ基（例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、トリフルオロメトキシなど）；
- 5) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキルチオ基（例、メチルチオなど）；
- 6) ヒドロキシ基；
- 7) 炭素数7～13のアラルキルオキシ基（例、ベンジルオキシ）；などである。

環Cは、好ましくはハロゲン原子、置換されていてもよい脂肪族炭化水素基、置換されていてもよい芳香族炭化水素基、置換されていてもよいヒドロキシ基、置換されていてもよいチオール基などから選ばれる1ないし3個の置換基をそれぞれ有していてもよいベンゼンまたは5または6員单環式芳香族複素環（好ましくはピラゾール）であり、さらに好ましくは

- 1) ハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）；
- 2) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換さ

れていてもよい炭素数1～6のアルキル基（例、メチル、エチル、プロピル、イソプロピル、トリフルオロメチルなど）；

3) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数6～14のアリール基（例、フェニルなど）；

4) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルコキシ基（例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、トリフルオロメトキシなど）；

5) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキルチオ基（例、メチルチオなど）；

6) ヒドロキシ基；

7) 炭素数7～13のアラルキルオキシ基（例、ベンジルオキシ）；などから選ばれる1ないし3個の置換基をそれぞれ有していてもよいベンゼンまたは5または6員单環式芳香族複素環（好ましくはピラゾール）である。

【0040】

Rは $-OR^4$ (R^4 は水素原子または置換されていてもよい炭化水素基を示す) または $-NR^5R^6$ (R^5 および R^6 は、同一または異なって、水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示すか、あるいは R^5 および R^6 が隣接する窒素原子とともに置換されていてもよい複素環を形成する) を示す。

R^4 、 R^5 および R^6 で示される「置換されていてもよい炭化水素基」としては、前記 R^9 として例示したものが挙げられる。

該「置換されていてもよい炭化水素基」は、好ましくは、置換されていてもよい炭素数1ないし6のアルキル基（例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec.-ブチル、t.-ブチルなど）である。

R^5 および R^6 で示される「置換されていてもよい複素環基」としては、前記 R^9 として例示したものが挙げられる。

R^5 および R^6 が隣接する窒素原子とともに形成する「置換されていてもよい複素環」としては、前記 R^9 および R^{10} が隣接する窒素原子とともに形成する「置換されていてもよい含窒素複素環」が挙げられる。

Rは、好ましくは $-OR^4$ (R^4 は水素原子または置換されていてもよい炭化水素基を示す) である。ここで、 R^4 は、好ましくは水素原子または炭素数1ないし6のアルキル基(好ましくは、メチル、エチルなど)であり、さらに好ましくは水素原子である。

【0041】

式(I)において、

- ①環Bで示される1,2-アゾール環がピラゾールであるとき、環Cはチアジアゾールまたはオキサジアゾールでなく；
- ②環Bで示される1,2-アゾール環がイソオキサゾールであるとき、環Cは置換されていてもよいピリドンでなく；
- ③環Bで示される1,2-アゾール環がピラゾール、かつX_aおよびX_bが結合手であるとき、環Cはベンゼン環でない。

また、式(Ib)において、

環Bで示される1,2-アゾール環がイソオキサゾールであるとき、環Cは置換されていてもよいピリドンでない。

【0042】

式(I)で表される化合物の好適な例としては、以下の化合物が挙げられる。

[化合物A]

環Aが

- 1) ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)；
- 2) 1～3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数1～6のアルキル基(例、メチル、エチル、プロピル、イソプロピル、トリフルオロメチルなど)；
- 3) 炭素数6～14のアリール基(例、フェニルなど)；
- 4) 1～3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数1～6のアルコキシ基(例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、トリフルオロメトキシなど)；
- 5) 1～3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数1～6のアルキルチオ基(例、メチルチオなど)などから

選ばれる1ないし3個の置換基をそれぞれ有していてもよい炭素数6～14の芳香族炭化水素（好ましくはベンゼン）または5または6員芳香族複素環（好ましくはピリジン）；

環Bが炭素数1～6のアルキル基（例、メチル、エチル、プロピル、イソプロピル）、炭素数1～6のアルコキシ基（例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ）、炭素数7～13のアラルキルオキシ基（例、ベンジルオキシ）などから選ばれる1ないし3個の置換基をそれぞれ有していてもよいピラゾールまたはイソオキサゾール（好ましくはピラゾール）；

Xaが結合手または-O-；

Xbが結合手または-O-；

Xcが結合手または-O-；

YaがC₁-6アルキレンまたはC₂-6アルケニレン；

Ybが結合手；

Ycが結合手、C₁-6アルキレンまたはC₂-6アルケニレン；

環Cが

1) ハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）；

2) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキル基（例、メチル、エチル、プロピル、イソプロピル、トリフルオロメチルなど）；

3) 炭素数6～14のアリール基（例、フェニルなど）；

4) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルコキシ基（例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、トリフルオロメトキシなど）；

5) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキルチオ基（例、メチルチオなど）などから選ばれる1ないし3個の置換基を有していてもよいベンゼン；

Rが-O R⁴（R⁴は好ましくは水素原子または炭素数1ないし6のアルキル基）である化合物。

【0043】

[化合物B]

環Aが

- 1) ハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）；
- 2) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキル基（例、メチル、エチル、プロピル、イソプロピル、トリフルオロメチルなど）；
- 3) 炭素数6～14のアリール基（例、フェニルなど）；
- 4) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルコキシ基（例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、トリフルオロメトキシなど）；
- 5) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキルチオ基（例、メチルチオなど）などから選ばれる1ないし3個の置換基をそれぞれ有していてもよい炭素数6～14の芳香族炭化水素（好ましくはベンゼン）または5または6員芳香族複素環（好ましくはピリジン）；

環Bが炭素数1～6のアルキル基（例、メチル、エチル、プロピル、イソプロピル）、炭素数1～6のアルコキシ基（例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ）、炭素数7～13のアラルキルオキシ基（例、ベンジルオキシ）などから選ばれる1ないし3個の置換基をそれぞれ有していてよいピラゾールまたはイソオキサゾール（好ましくはピラゾール）；

X a が結合手または-O-；

X b が結合手または-O-；

X c が結合手または-O-；

Y a がC₁-6アルキレンまたはC₂-6アルケニレン；

Y b が結合手；

Y c が結合手、C₁-6アルキレンまたはC₂-6アルケニレン；

環Cが

- 1) ハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）；
- 2) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換さ

れていてもよい炭素数1～6のアルキル基（例、メチル、エチル、プロピル、イソプロピル、トリフルオロメチルなど）；

3) 炭素数6～14のアリール基（例、フェニルなど）；

4) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルコキシ基（例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、トリフルオロメトキシなど）；

5) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキルチオ基（例、メチルチオなど）などから選ばれる1ないし3個の置換基を有していてもよい5または6員单環式芳香族複素環（好ましくはピラゾール）；

Rが-OR⁴（R⁴は好ましくは水素原子または炭素数1ないし6のアルキル基）である化合物。

【0044】

[化合物C]

環Aが

1) ハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）；

2) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキル基（例、メチル、エチル、プロピル、イソプロピル、トリフルオロメチルなど）；

3) 炭素数6～14のアリール基（例、フェニルなど）；

4) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルコキシ基（例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、トリフルオロメトキシなど）；

5) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキルチオ基（例、メチルチオなど）などから選ばれる1ないし3個の置換基をそれぞれ有していてよい、

炭素数6～14の芳香族炭化水素（好ましくはベンゼン）、5または6員芳香族複素環（好ましくはピリジン）または炭素数3～12の脂環式炭化水素（好ましくはシクロペンタン）；

環Bが炭素数1～6のアルキル基（例、メチル、エチル、プロピル、イソプロピル）、炭素数1～6のアルコキシ基（例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ）、炭素数7～13のアラルキルオキシ基（例、ベンジルオキシ）、ヒドロキシ基、炭素数6～14のアリール基（例、フェニル）などから選ばれる1ないし3個の置換基をそれぞれ有していてもよいピラゾールまたはイソオキサゾール（好ましくはピラゾール）；

Xaが結合手または-O-；

Xbが結合手または-O-；

Xcが結合手または-O-；

YaがC₁-6アルキレンまたはC₂-6アルケニレン；

Ybが結合手；

Ycが結合手、C₁-6アルキレンまたはC₂-6アルケニレン；

環Cが

1) ハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）；

2) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキル基（例、メチル、エチル、プロピル、イソプロピル、トリフルオロメチルなど）；

3) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数6～14のアリール基（例、フェニルなど）；

4) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルコキシ基（例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、トリフルオロメトキシなど）；

5) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキルチオ基（例、メチルチオなど）；

6) ヒドロキシ基；

7) 炭素数7～13のアラルキルオキシ基（例、ベンジルオキシ）；などから選ばれる1ないし3個の置換基を有していてもよいベンゼン；

Rが-O R⁴ (R⁴は好ましくは水素原子または炭素数1ないし6のアルキル基) である化合物。

【0045】

[化合物D]

環Aが

- 1) ハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）；
- 2) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキル基（例、メチル、エチル、プロピル、イソプロピル、トリフルオロメチルなど）；
- 3) 炭素数6～14のアリール基（例、フェニルなど）；
- 4) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルコキシ基（例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、トリフルオロメトキシなど）；
- 5) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキルチオ基（例、メチルチオなど）などから選ばれる1ないし3個の置換基をそれぞれ有していてもよい、炭素数6～14の芳香族炭化水素（好ましくはベンゼン）、5または6員芳香族複素環（好ましくはピリジン）または炭素数3～12の脂環式炭化水素（好ましくはシクロペンタン）；

環Bが炭素数1～6のアルキル基（例、メチル、エチル、プロピル、イソプロピル）、炭素数1～6のアルコキシ基（例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ）、炭素数7～13のアラルキルオキシ基（例、ベンジルオキシ）、ヒドロキシ基、炭素数6～14のアリール基（例、フェニル）などから選ばれる1ないし3個の置換基をそれぞれ有していてもよいピラゾールまたはイソオキサゾール（好ましくはピラゾール）；

X aが結合手または-〇-；

X bが結合手または-〇-；

X cが結合手または-〇-；

Y aがC₁～6アルキレンまたはC₂～6アルケニレン；

Y bが結合手；

Y cが結合手、C₁～6アルキレンまたはC₂～6アルケニレン；

環Cが

- 1) ハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）；
- 2) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキル基（例、メチル、エチル、プロピル、イソプロピル、トリフルオロメチルなど）；
- 3) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数6～14のアリール基（例、フェニルなど）；
- 4) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルコキシ基（例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、トリフルオロメトキシなど）；
- 5) 1～3個のハロゲン原子（例、フッ素、塩素、臭素、ヨウ素など）で置換されていてもよい炭素数1～6のアルキルチオ基（例、メチルチオなど）；
- 6) ヒドロキシ基；
- 7) 炭素数7～13のアラルキルオキシ基（例、ベンジルオキシ）；などから選ばれる1ないし3個の置換基を有していてもよい5または6員单環式芳香族複素環（好ましくはピラゾール）；

Rが $-OR^4$ (R^4 は好ましくは水素原子または炭素数1ないし6のアルキル基) である化合物。

【0046】

式(I)、(Ia)または(Ib)で表される化合物（以下、これらを単に化合物(I)と略記することがある）の塩としては、薬理学的に許容される塩が好ましく、例えば無機塩基との塩、有機塩基との塩、無機酸との塩、有機酸との塩、塩基性または酸性アミノ酸との塩などが挙げられる。

無機塩基との塩の好適な例としては、例えばナトリウム塩、カリウム塩、リチウム塩などのアルカリ金属塩；カルシウム塩、マグネシウム塩などのアルカリ土類金属塩；アルミニウム塩、アンモニウム塩などが挙げられる。

有機塩基との塩の好適な例としては、例えばトリメチルアミン、トリエチルアミン、ピリジン、ピコリン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、ジシクロヘキシリルアミン、N,N-ジベンジルエチレンジアミン

などとの塩が挙げられる。

無機酸との塩の好適な例としては、例えば塩酸、臭化水素酸、硝酸、硫酸、リン酸などとの塩が挙げられる。

有機酸との塩の好適な例としては、例えばギ酸、酢酸、トリフルオロ酢酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタシスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸などとの塩が挙げられる。

塩基性アミノ酸との塩の好適な例としては、例えばアルギニン、リジン、オルニチンなどとの塩が挙げられる。

酸性アミノ酸との塩の好適な例としては、例えばアスパラギン酸、グルタミン酸などとの塩が挙げられる。

【0047】

化合物(I)のプロドラッグは、生体内における生理条件下で酵素や胃酸等による反応により化合物(I)に変換する化合物、すなわち酵素的に酸化、還元、加水分解等を起こして化合物(I)に変化する化合物、胃酸等により加水分解などを起こして化合物(I)に変化する化合物をいう。化合物(I)のプロドラッグとしては、化合物(I)のアミノ基がアシル化、アルキル化、りん酸化された化合物(例、化合物(I)のアミノ基がエイコサノイル化、アラニル化、ペンチルアミノカルボニル化、(5-メチル-2-オキソ-1,3-ジオキソレン-4-イル)メトキシカルボニル化、テトラヒドロフラニル化、テトラヒドロピラニル化、ピロリジルメチル化、ピバロイルオキシメチル化、tert-ブチル化された化合物など)；化合物(I)の水酸基がアシル化、アルキル化、りん酸化、ほう酸化された化合物(例、化合物(I)の水酸基がアセチル化、パルミトイ化、プロパノイル化、ピバロイル化、サクシニル化、フマリル化、アラニル化、ジメチルアミノメチルカルボニル化、テトラヒドロピラニル化された化合物など)；化合物(I)のカルボキシル基がエステル化、アミド化された化合物(例、化合物(I)のカルボキシル基がエチルエステル化、フェニルエステル化、カルボキシメチルエステル化、ジメチルアミノメチルエステル化、ピバロイルオキシメチルエステル化、エトキシカルボニルオキシエチルエステル化、フタリジルエ

ステル化、(5-メチル-2-オキソ-1,3-ジオキソレン-4-イル)メチルエステル化、シクロヘキシルオキシカルボニルエチルエステル化、メチルアミド化された化合物など) ; 等が挙げられる。これらの化合物は自体公知の方法によって化合物(I)から製造することができる。

また、化合物(I)のプロドラッグは、広川書店1990年刊「医薬品の開発」第7巻分子設計163頁から198頁に記載されているような、生理的条件で化合物(I)に変化するものであってもよい。

また、化合物(I)は、同位元素(例、 ^3H , ^{14}C , ^{35}S , ^{125}I など)などで標識されていてもよい。

さらに、化合物(I)は、無水物であっても、水和物であってもよい。

【0048】

化合物(I)またはその塩(以下、単に本発明化合物と略記することがある)は、毒性が低く、そのまま、または薬理学的に許容し得る担体などと混合して医薬組成物とすることにより、哺乳動物(例、ヒト、マウス、ラット、ウサギ、イヌ、ネコ、ウシ、ウマ、ブタ、サル等)に対して、後述する各種疾患の予防・治療剤として用いることができる。

【0049】

ここにおいて、薬理学的に許容される担体としては、製剤素材として慣用の各種有機あるいは無機担体物質が用いられ、固体製剤における賦形剤、滑沢剤、結合剤、崩壊剤；液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛化剤などとして配合される。また必要に応じて、防腐剤、抗酸化剤、着色剤、甘味剤などの製剤添加物を用いることもできる。

賦形剤の好適な例としては、例えば乳糖、白糖、D-マンニトール、D-ソルビトール、デンプン、 α 化デンプン、デキストリン、結晶セルロース、低置換度ヒドロキシプロビルセルロース、カルボキシメチルセルロースナトリウム、アラビアゴム、デキストリン、プルラン、軽質無水ケイ酸、合成ケイ酸アルミニウム、メタケイ酸アルミン酸マグネシウムなどが挙げられる。

滑沢剤の好適な例としては、例えばステアリン酸マグネシウム、ステアリン酸カルシウム、タルク、コロイドシリカなどが挙げられる。

結合剤の好適な例としては、例えば α 化デンプン、ショ糖、ゼラチン、アラビアゴム、メチルセルロース、カルボキシメチルセルロース、カルボキシメチセルロースナトリウム、結晶セルロース、白糖、D-マンニトール、トレハロース、デキストリン、ブルラン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドンなどが挙げられる。

崩壊剤の好適な例としては、例えば乳糖、白糖、デンプン、カルボキシメチセルロース、カルボキシメチルセルロースカルシウム、クロスカルメロースナトリウム、カルボキシメチルスターーチナトリウム、軽質無水ケイ酸、低置換度ヒドロキシプロピルセルロースなどが挙げられる。

【0050】

溶剤の好適な例としては、例えば注射用水、生理的食塩水、リングル液、アルコール、プロピレングリコール、ポリエチレングリコール、ゴマ油、トウモロコシ油、オリーブ油、綿実油などが挙げられる。

溶解補助剤の好適な例としては、例えばポリエチレングリコール、プロピレングリコール、D-マンニトール、トレハロース、安息香酸ベンジル、エタノール、トリスアミノメタン、コレステロール、トリエタノールアミン、炭酸ナトリウム、クエン酸ナトリウム、サリチル酸ナトリウム、酢酸ナトリウムなどが挙げられる。

懸濁化剤の好適な例としては、例えばステアリルトリエタノールアミン、ラウリル硫酸ナトリウム、ラウリルアミノプロピオン酸、レシチン、塩化ベンザルコニウム、塩化ベンゼトニウム、モノステアリン酸グリセリンなどの界面活性剤；例えばポリビニルアルコール、ポリビニルピロリドン、カルボキシメチルセルロースナトリウム、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどの親水性高分子；ポリソルベート類、ポリオキシエチレン硬化ヒマシ油などが挙げられる。

【0051】

等張化剤の好適な例としては、例えば塩化ナトリウム、グリセリン、D-マンニトール、D-ソルビトール、ブドウ糖などが挙げられる。

緩衝剤の好適な例としては、例えばリン酸塩、酢酸塩、炭酸塩、クエン酸塩な

どの緩衝液などが挙げられる。

無痛化剤の好適な例としては、例えばベンジルアルコールなどが挙げられる。

防腐剤の好適な例としては、例えばパラオキシ安息香酸エステル類、クロロブタノール、ベンジルアルコール、フェネチルアルコール、デヒドロ酢酸、ソルビン酸などが挙げられる。

抗酸化剤の好適な例としては、例えば亜硫酸塩、アスコルビン酸塩などが挙げられる。

着色剤の好適な例としては、例えば水溶性食用タル色素（例、食用赤色2号および3号、食用黄色4号および5号、食用青色1号および2号などの食用色素、水不溶性レーキ色素（例、前記水溶性食用タル色素のアルミニウム塩など）、天然色素（例、 β -カロチン、クロロフィル、ベンガラなど）などが挙げられる。

甘味剤の好適な例としては、例えばサッカリンナトリウム、グリチルリチン酸二カリウム、アスパルテーム、ステビアなどが挙げられる。

【0052】

前記医薬組成物の剤形としては、錠剤（舌下錠、口腔内崩壊錠を含む）、カプセル剤（ソフトカプセル、マイクロカプセルを含む）、散剤、顆粒剤、トローチ剤、シロップ剤等の経口剤；および注射剤（例、皮下注射剤、静脈内注射剤、筋肉内注射剤、腹腔内注射剤、点滴剤等）、外用剤（例、経皮製剤、軟膏剤等）、坐剤（例、直腸坐剤、腔坐剤等）、ペレット、経鼻剤、経肺剤（吸入剤）、点眼剤等の非経口剤が挙げられる。これらの製剤は、速放性製剤または徐放性製剤などの放出制御製剤（例、徐放性マイクロカプセルなど）であってもよい。

医薬組成物は、製剤技術分野において慣用の方法、例えば日本薬局方に記載の方法等により製造することができる。以下に、経口剤および非経口剤の製造法について詳述する。

【0053】

例えば、経口剤は、有効成分に、賦形剤（例、乳糖、白糖、デンプン、D-マニトールなど）、崩壊剤（例、カルボキシメチルセルロースカルシウムなど）、結合剤（例、 α 化デンプン、アラビアゴム、カルボキシメチルセルロース、ヒ

ドロキシプロピルセルロース、ポリビニルピロリドンなど) または滑沢剤(例、タルク、ステアリン酸マグネシウム、ポリエチレングリコール6000など)などを添加して圧縮成形し、次いで必要により、味のマスキング、腸溶性あるいは持続性を目的として、コーティング基剤を用いて自体公知の方法でコーティングすることにより製造される。

該コーティング基剤としては、例えば糖衣基剤、水溶性フィルムコーティング基剤、腸溶性フィルムコーティング基剤、徐放性フィルムコーティング基剤などが挙げられる。

糖衣基剤としては、白糖が用いられ、さらに、タルク、沈降炭酸カルシウム、ゼラチン、アラビアゴム、プルラン、カルナバロウなどから選ばれる1種または2種以上を併用してもよい。

水溶性フィルムコーティング基剤としては、例えばヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、メチルヒドロキシエチルセルロースなどのセルロース系高分子;ポリビニルアセタールジエチルアミノアセテート、アミノアルキルメタアクリレートコポリマーE〔オイドラギットE(商品名)、ロームファルマ社〕、ポリビニルピロリドンなどの合成高分子;プルランなどの多糖類などが挙げられる。

腸溶性フィルムコーティング基剤としては、例えばヒドロキシプロピルメチルセルロースフタレート、ヒドロキシプロピルメチルセルロースアセテートサクシネート、カルボキシメチルエチルセルロース、酢酸フタル酸セルロースなどのセルロース系高分子;メタアクリル酸コポリマーL〔オイドラギットL(商品名)、ロームファルマ社〕、メタアクリル酸コポリマーLD〔オイドラギットL-30D55(商品名)、ロームファルマ社〕、メタアクリル酸コポリマーS〔オイドラギットS(商品名)、ロームファルマ社〕などのアクリル酸系高分子;セラックなどの天然物などが挙げられる。

徐放性フィルムコーティング基剤としては、例えばエチルセルロースなどのセルロース系高分子;アミノアルキルメタアクリレートコポリマーRS〔オイドラギットRS(商品名)、ロームファルマ社〕、アクリル酸エチル・メタアクリル酸メチル共重合体懸濁液〔オイドラギットNE(商品名)、ロームファルマ社〕

などのアクリル酸系高分子などが挙げられる。

上記したコーティング基剤は、その2種以上を適宜の割合で混合して用いてよい。また、コーティングの際に、例えば酸化チタン、三二酸化鉄等のような遮光剤を用いてもよい。

【0054】

注射剤は、有効成分を分散剤（例、ポリソルベート80、ポリオキシエチレン硬化ヒマシ油60、ポリエチレングリコール、カルボキシメチルセルロース、アルギン酸ナトリウムなど）、保存剤（例、メチルパラベン、プロピルパラベン、ベンジルアルコール、クロロブタノール、フェノールなど）、等張化剤（例、塩化ナトリウム、グリセリン、D-マンニトール、D-ソルビトール、ブドウ糖など）などと共に水性溶剤（例、蒸留水、生理的食塩水、リングル液等）あるいは油性溶剤（例、オリーブ油、ゴマ油、綿実油、トウモロコシ油などの植物油、プロピレングリコール等）などに溶解、懸濁あるいは乳化することにより製造される。この際、所望により溶解補助剤（例、サリチル酸ナトリウム、酢酸ナトリウム等）、安定剤（例、ヒト血清アルブミン等）、無痛化剤（例、ベンジルアルコール等）等の添加物を用いてもよい。

【0055】

本発明化合物は、血糖低下作用、血中脂質低下作用、血中インスリン低下作用、インスリン抵抗性改善作用、インスリン感受性増強作用およびレチノイド関連受容体機能調節活性を有する。

ここでいう機能調節活性は、アゴニスト活性およびアンタゴニスト活性の両方を意味する。

また、レチノイド関連受容体とは、核内レセプターに含まれ、脂溶性ビタミンなどのシグナル分子をリガンドとするDNA結合性の転写因子であり、これらは単量体型受容体、ホモ二量体型受容体およびヘテロ二量体型受容体のいずれであってもよい。

ここで、単量体型受容体としては、例えばレチノイド α 受容体（以下、R α Rと略記することがある） α （GenBank Accession No. L14611）、R α R β （GenBank Accession No. L14160）、R α R γ （GenBank Accession No. U16997）；R

e v - e r b α (GenBank Accession No. M24898)、R e v - e r b β (GenBank Accession No. L31785) ; E R R α (GenBank Accession No. X51416)、E R R β (GenBank Accession No. X51417) ; F t z - F I α (GenBank Accession No. S65876)、F t z - F I β (GenBank Accession No. M81385) ; T I x (GenBank Accession No. S77482) ; G C N F (GenBank Accession No. U14666) などが挙げられる。

ホモ二量体型受容体としては、例えばレチノイドX受容体（以下、RXRと略記することがある） α (GenBank Accession No. X52773)、RXR β (GenBank Accession No. M84820)、RXR γ (GenBank Accession No. U38480) ; COUP α (GenBank Accession No. X12795)、COUP β (GenBank Accession No. M64497)、COUP γ (GenBank Accession No. X12794) ; TR2 α (GenBank Accession No. M29960)、TR2 β (GenBank Accession No. L27586) ; またはHNF4 α (GenBank Accession No. X76930)、HNF4 γ (GenBank Accession No. Z49826) などが形成するホモ二量体が挙げられる。

【0056】

ヘテロ二量体型受容体としては、例えば上記したレチノイドX受容体 (RXR α 、RXR β または RXR γ) と、レチノイドA受容体（以下、RARと略記することがある） α (GenBank Accession No. X06614)、RAR β (GenBank Accession No. Y00291)、RAR γ (GenBank Accession No. M24857) ; 甲状腺ホルモン受容体（以下、TRと略記することがある） α (GenBank Accession No. M24748)、TR β (GenBank Accession No. M26747) ; ビタミンD受容体 (VDR) (GenBank Accession No. J03258) ; ペルオキシソーム増殖剤応答性受容体（以下、PPARと略記がある） α (GenBank Accession No. L02932)、PPAR β (PPAR δ) (GenBank Accession No. U10375)、PPAR γ (GenBank Accession No. L40904) ; LXR α (GenBank Accession No. U22662)、LXR β (GenBank Accession No. U14534) ; FXR (GenBank Accession No. U18374) ; MB67 (GenBank Accession No. L29263) ; ONR (GenBank Accession No. X75163) ; およびNUR α (GenBank Accession No. L13740)、NUR β (GenBank Accession No. X75918)、NUR γ (GenBank Accession No. U1

2767) から選ばれる1種の受容体とが形成するヘテロ二量体が挙げられる。

【0057】

本発明化合物は、上記したレチノイド関連受容体の中でも、とりわけレチノイドX受容体 (RXR α 、RXR β 、RXR γ) およびペルオキシソーム増殖剤応答性受容体 (PPAR α 、PPAR β (PPAR δ)、PPAR γ) に対して優れたりガンド活性を有し、これら受容体に対するアゴニスト、部分アゴニスト (パーシャルアゴニスト)、アンタゴニストまたは部分アンタゴニスト (パーシャルアンタゴニスト) として有用である。

さらに、本発明化合物は、レチノイドX受容体とペルオキシソーム増殖剤応答性受容体とが形成するヘテロ二量体型受容体 (例、RXR α とPPAR δ とが形成するヘテロ二量体型受容体、RXR α とPPAR γ とが形成するヘテロ二量体型受容体など) におけるペルオキシソーム増殖剤応答性受容体に対して優れたりガンド活性を有する。

よって、本発明のレチノイド関連受容体リガンドは、ペルオキシソーム増殖剤応答性受容体リガンドまたはレチノイドX受容体リガンドとして好適に用いられる。

【0058】

本発明化合物は、例えば糖尿病 (例、1型糖尿病、2型糖尿病、妊娠糖尿病等) の予防・治療剤；高脂血症 (例、高トリグリセリド血症、高コレステロール血症、低HDL血症、食後高脂血症等) の予防・治療剤；インスリン抵抗性改善剤；インスリン感受性増強剤；耐糖能不全 [IGT (Impaired Glucose Tolerance)] の予防・治療剤；および耐糖能不全から糖尿病への移行抑制剤として用いることができる。

【0059】

糖尿病の判定基準については、1999年に日本糖尿病学会から新たな判定基準が報告されている。

この報告によれば、糖尿病とは、空腹時血糖値 (静脈血漿におけるグルコース濃度) が126mg/dl以上、75g経口ブドウ糖負荷試験 (75gOGTT) 2時間値 (静脈血漿におけるグルコース濃度) が200mg/dl以上、隨時

血糖値（静脈血漿におけるグルコース濃度）が 200 mg/dl 以上のいずれかを示す状態である。また、上記糖尿病に該当せず、かつ、「空腹時血糖値（静脈血漿におけるグルコース濃度）が 110 mg/dl 未満または 75 g 経口ブドウ糖負荷試験（ 75 g OGTT ）2時間値（静脈血漿におけるグルコース濃度）が 140 mg/dl 未満を示す状態」（正常型）でない状態を、「境界型」と呼ぶ。

【0060】

また、糖尿病の判定基準については、1997年にADA（米国糖尿病学会）から、1998年にWHOから、新たな判定基準が報告されている。

これらの報告によれば、糖尿病とは、空腹時血糖値（静脈血漿におけるグルコース濃度）が 126 mg/dl 以上であり、かつ、 75 g 経口ブドウ糖負荷試験2時間値（静脈血漿におけるグルコース濃度）が 200 mg/dl 以上を示す状態である。

また、上記報告によれば、耐糖能不全とは、空腹時血糖値（静脈血漿におけるグルコース濃度）が 126 mg/dl 未満であり、かつ、 75 g 経口ブドウ糖負荷試験2時間値（静脈血漿におけるグルコース濃度）が 140 mg/dl 以上 200 mg/dl 未満を示す状態である。さらに、ADAの報告によれば、空腹時血糖値（静脈血漿におけるグルコース濃度）が 110 mg/dl 以上 126 mg/dl 未満の状態をIFG（Impaired Fasting Glucose）と呼ぶ。一方、WHOの報告によれば、該IFG（Impaired Fasting Glucose）のうち、 75 g 経口ブドウ糖負荷試験2時間値（静脈血漿におけるグルコース濃度）が 140 mg/dl 未満である状態をIFG（Impaired Fasting Glycemia）と呼ぶ。

本発明化合物は、上記した新たな判定基準により決定される糖尿病、境界型、耐糖能異常、IFG（Impaired Fasting Glucose）およびIFG（Impaired Fasting Glycemia）の予防・治療剤としても用いられる。さらに、本発明化合物は、境界型、耐糖能異常、IFG（Impaired Fasting Glucose）またはIFG（Impaired Fasting Glycemia）から糖尿病への進展を防止することもできる。

【0061】

本発明化合物は、総コレステロール低下作用を有し、血漿抗動脈硬化指数〔(HDLコレステロール／総コレステロール) ×100]を上昇させるため、動脈硬化症（例、アテローム性動脈硬化症等）などの予防・治療剤としても用いることができる。とりわけ、本発明化合物は、血糖低下作用と総コレステロール低下作用を併せ持つため、糖尿病患者における動脈硬化症の予防・治療剤として極めて有用である。

本発明化合物は、例えば糖尿病性合併症〔例、神経障害、腎症、網膜症、白内障、大血管障害、骨減少症、糖尿病性高浸透圧昏睡、感染症（例、呼吸器感染症、尿路感染症、消化器感染症、皮膚軟部組織感染症、下肢感染症等）、糖尿病性壞疽、口腔乾燥症、聴覚の低下、脳血管障害、末梢血行障害等〕、肥満、骨粗鬆症、悪液質（例、癌性悪液質、結核性悪液質、糖尿病性悪液質、血液疾患性悪液質、内分泌疾患性悪液質、感染症性悪液質または後天性免疫不全症候群による悪液質）、脂肪肝、高血圧、多囊胞性卵巣症候群、腎臓疾患（例、糖尿病性ネフロパシー、糸球体腎炎、糸球体硬化症、ネフローゼ症候群、高血圧性腎硬化症、末期腎臓疾患等）、筋ジストロフィー、心筋梗塞、狭心症、脳血管障害（例、脳梗塞、脳卒中）、インスリン抵抗性症候群、シンドロームX、高インスリン血症、高インスリン血症における知覚障害、腫瘍（例、白血病、乳癌、前立腺癌、皮膚癌等）、過敏性腸症候群、急性または慢性下痢、炎症性疾患（例、アルツハイマー病、慢性関節リウマチ、変形性脊椎炎、変形性関節炎、腰痛、痛風、手術外傷後の炎症、腫脹の緩解、神経痛、咽喉頭炎、膀胱炎、肝炎（非アルコール性脂肪性肝炎を含む）、肺炎、肺炎、炎症性大腸疾患、潰瘍性大腸炎等）、内臓肥満症候群などの予防・治療剤としても用いることができる。

本発明化合物は、消化性潰瘍、急性または慢性胃炎、胆道ジスキネジア、胆のう炎等に伴う腹痛、恶心、嘔吐、上腹部不快感などの症状の改善などにも用いることができる。

本発明化合物は、食欲を調整（亢進または抑制）するため、例えば瘦身、虚食症の治療剤（瘦身または虚食症の投与対象における体重増加）または肥満の治療剤として用いることもできる。

【0062】

本発明化合物は、TNF- α 抑制効果（生体組織におけるTNF- α 産生量の低下効果およびTNF- α 活性低下効果）を有し、TNF- α が関与する炎症性疾患の予防・治療薬としても用いられる。このような炎症性疾患としては、例えば糖尿病性合併症（例、網膜症、腎症、神経障害、大血管障害など）、慢性関節リウマチ、変形性脊椎症、変形性関節炎、腰痛、痛風、手術・外傷後の炎症、腫脹の緩解、神経痛、咽喉頭炎、膀胱炎、肝炎、肺炎、胃粘膜損傷（アスピリンにより引き起こされた胃粘膜損傷を含む）などが挙げられる。

本発明化合物は、アポトーシス抑制作用を有し、アポトーシスの促進が関わる疾患の予防・治療薬としても用いられる。ここで、アポトーシスの促進が関わる疾患疾患としては、例えばウイルス疾患（例、エイズ、劇症肝炎など）、神経変性疾患（例、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症、色素性網膜炎、小脳変性など）、脊髄異形成疾患（例、再生不良性貧血など）、虚血性疾患（例、心筋梗塞、脳卒中など）、肝疾患（例、アルコール性肝炎、B型肝炎、C型肝炎など）、関節疾患（例、変形性関節症など）、アテローム性動脈硬化症などが挙げられる。

本発明化合物は、内臓脂肪の減少、内臓脂肪蓄積の抑制、糖代謝改善、脂質代謝改善、インスリン抵抗性改善、酸化LDL産生抑制、リポタンパク代謝改善、冠動脈代謝改善、心血管合併症の予防・治療、心不全合併症の予防・治療、血中レムナント低下、無排卵症の予防・治療、多毛症の予防・治療、高アンドロゲン血症の予防・治療などにも用いられる。

本発明化合物は、上記した各種疾患（例、心筋梗塞などの心血管イベント）の2次予防および進展抑制にも用いられる。

【0063】

本発明化合物の投与量は、投与対象、投与ルート、対象疾患、症状などによつても異なるが、例えば成人の糖尿病患者に経口投与する場合、通常1回量として約0.005ないし50mg/kg体重、好ましくは0.01ないし2mg/kg体重であり、さらに好ましくは0.025ないし0.5mg/kg体重であり、この量を1日1回ないし3回投与するのが望ましい。

【0064】

本発明化合物は、糖尿病治療剤、糖尿病性合併症治療剤、高脂血症治療剤、降圧剤、抗肥満剤、利尿剤、化学療法剤、免疫療法剤、抗血栓剤、悪液質改善薬剤などの薬剤（以下、併用薬剤と略記する）と組み合わせて用いることができる。該併用薬剤は、低分子化合物であってもよく、また高分子の蛋白、ポリペプチド、抗体であるか、あるいはワクチン等であってもよい。この際、本発明化合物および併用薬剤の投与時期は限定されず、これらを投与対象に対し、同時に投与してもよいし、時間差をおいて投与してもよい。さらに、本発明化合物と併用薬剤とは、それぞれの活性成分を含む2種類の製剤として投与されてもよいし、両方の活性成分を含む单一の製剤として投与されてもよい。

併用薬剤の投与量は、臨床上用いられている用量を基準として適宜選択することができる。また、本発明化合物と併用薬剤の配合比は、投与対象、投与ルート、対象疾患、症状、組み合わせなどにより適宜選択することができる。例えば投与対象がヒトである場合、本発明化合物1重量部に対し、併用薬剤を0.01ないし100重量部用いればよい。

【0065】

なお、糖尿病治療剤としては、インスリン製剤（例、ウシ、ブタの臍臓から抽出された動物インスリン製剤；大腸菌、イーストを用い遺伝子工学的に合成したヒトインスリン製剤；インスリン亜鉛；プロタミンインスリン亜鉛；インスリンのフラグメントまたは誘導体（例、INS-1等）など）、インスリン抵抗性改善剤（例、塩酸ピオグリタゾン、トログリタゾン、ロシグリタゾンまたはそのマレイン酸塩、GI-262570、JTT-501、MCC-555、YM-440、KRP-297、CS-011、FK-614、WO99/58510に記載の化合物（例えば(E)-4-[4-(5-メチル-2-フェニル-4-オキサゾリルメトキシ)ベンジルオキシイミノ]-4-フェニル酪酸）等）、 α -グルコシダーゼ阻害剤（例、ボグリボース、アカルボース、ミグリトール、エミグリテート等）、ビグアナイド剤（例、フェンホルミン、メトホルミン、ブホルミン等）、インスリン分泌促進剤〔スルホニルウレア剤（例、トルブタミド、グリベンクラミド、グリクラジド、クロルプロパミド、トラザミド、アセトヘキサミド、グリクロピラミド、グリメピリド、グリピザイド、グリブゾール等）、レ

パグリニド、ナテグリニド、ミチグリニドまたはそのカルシウム塩水和物、G L P-1等]、ジペプチジルペプチダーゼⅣ阻害剤(例、NVP-DPP-278、PT-100等)、 β 3アゴニスト(例、CL-316243、SR-58611-A、UL-TG-307、SB-226552、AJ-9677、BMS-196085、AZ-40140等)、アミリンアゴニスト(例、プラムリチド等)、ホスホチロシンホスファターゼ阻害剤(例、バナジン酸等)、糖新生阻害剤(例、グリコーゲンホスホリラーゼ阻害剤、グルコースー6-ホスファターゼ阻害剤、グルカゴン拮抗剤等)、SGLUT(sodium-glucose cotransporter)阻害剤(例、T-1095等)等が挙げられる。

【0066】

糖尿病性合併症治療剤としては、アルドース還元酵素阻害剤(例、トルレstatt、エパルレstatt、ゼナレstatt、ゾポルレstatt、ミナルレstatt、フィダレstatt(SNK-860)、CT-112等)、神経栄養因子(例、NGF、NT-3、BDNF等)、神経栄養因子産生・分泌促進剤[例、WOO1/14372に記載のニューロトロphins産生・分泌促進剤(例えば4-(4-クロロフェニル)-2-(2-メチル-1-イミダゾール)-5-(3-(2-メチルフェノキシ)プロピル)オキサゾールなど)]、PKC阻害剤(例、LY-333531等)、AGE阻害剤(例、ALT946、ピマゲジン、ピラトキサチン、N-フェナシルチアゾリウムプロマイド(ALT766)、EXO-226等)、活性酸素消去薬(例、チオクト酸等)、脳血管拡張剤(例、チアブリド、メキシレチン等)が挙げられる。

高脂血症治療剤としては、例えばHMG-CoA還元酵素阻害薬(例、プラバスタチン、シンバスタチン、ロバスタチン、アトルバスタチン、フルバスタチン、リパンチル、セリバスタチン、イタバスタチン、ZD-4522またはそれらの塩(例、ナトリウム塩等)など)、フィブラート系化合物(例、ベザフィブラート、ベクロフィブラート、ビニフィブラート、シプロフィブラート、クリノフィブラート、クロフィブラート、クロフィブリニ酸、エトフィブラート、フェノフィブラート、ゲムフィブロジル、ニコフィブラート、ピリフィブラート、ロニフィブラート、シムフィブラート、テオフィブラートなど)、スクアレン合成酵素阻

害剤（例、WO 97/10224に記載の化合物、例えばN-[[(3R,5S)-1-(3-アセトキシ-2,2-ジメチルプロピル)-7-クロロ-5-(2,3-ジメトキシフェニル)-2-オキソ-1,2,3,5-テトラヒドロ-4,1-ベンゾオキサゼピン-3-イル]アセチル]ピペリジン-4-酢酸など）、ACAT阻害剤（例、アバシマイブ(Avasimibe)、エフルシマイブ(Eflucimibe)など）、陰イオン交換樹脂（例、コレステラミンなど）、プロブコール、ニコチン酸系薬剤（例、ニコモール(nicomol)、ニセリトロール(niceritol)など）、イコサペント酸エチル、植物ステロール（例、ソイステロール(soysterol)、ガンマオリザノール(γ -oryzanol)など）などが挙げられる。

降圧剤としては、アンジオテンシン変換酵素阻害剤（例、カプトプリル、エナラプリル、デラプリル等）、アンジオテンシンII拮抗剤（例、カンデサルタンシレキセチル、ロサルタン、エプロサルタン、バルサンタン、テルミサルタン、イルベサルタン、タソサルタン等）、カルシウム拮抗剤（例、マニジピン、ニフェジピン、ニカルジピン、アムロジピン、エホニジピン等）、カリウムチャンネル開口薬（例、レブクロマカリム、L-27152、AL 0671、NIP-121など）、クロニジン等が挙げられる。

【0067】

抗肥満剤としては、例えば中枢性抗肥満薬（例、デキスフェンフルラミン、フェンフルラミン、フェンテルミン、シブトラミン、アンフェプラモン、デキサンフェタミン、マジンドール、フェニルプロパノールアミン、クロベンゾレックス等）、膜リバーゼ阻害薬（例、オルリストット等）、 β 3アゴニスト（例、CL-316243、SR-58611-A、UL-TG-307、SB-226552、AJ-9677、BMS-196085、AZ-40140等）、ペプチド性食欲抑制薬（例、レプチニン、CNTF（毛様体神経栄養因子）等）、コレシストキニニアゴニスト（例、リンチトリプト、FPL-15849等）等が挙げられる。

利尿剤としては、例えばキサンチン誘導体（例、サリチル酸ナトリウムテオブロミン、サリチル酸カルシウムテオブロミン等）、チアジド系製剤（例、エチアジド、シクロペンチアジド、トリクロルメチアジド、ヒドロクロロチアジド、ヒ

ドロフルメチアジド、ベンチルヒドロクロロチアジド、ペンフルチジド、ポリチアジド、メチクロチアジド等)、抗アルドステロン製剤(例、スピロノラクトン、トリアムテレン等)、炭酸脱水酵素阻害剤(例、アセタゾラミド等)、クロルベンゼンスルホンアミド系製剤(例、クロルタリドン、メフルシド、インダパミド等)、アゾセミド、イソソルビド、エタクリン酸、ピレタニド、ブメタニド、フロセミド等が挙げられる。

【0068】

化学療法剤としては、例えばアルキル化剤(例、サイクロフォスファミド、イフオスファミド等)、代謝拮抗剤(例、メソトレキセート、5-フルオロウラシルおよびその誘導体等)、抗癌性抗生物質(例、マイトマイシン、アドリアマイシン等)、植物由来抗癌剤(例、ビンクリスチン、ビンデシン、タキソール等)、シスプラチン、カルボプラチン、エトポキシドなどが挙げられる。なかでも5-フルオロウラシル誘導体であるフルツロンあるいはネオフルツロンなどが好ましい。

免疫療法剤としては、例えば微生物または細菌成分(例、ムラミルジペプチド誘導体、ピシバニール等)、免疫増強活性のある多糖類(例、レンチナン、シゾフィラン、クレスチン等)、遺伝子工学的手法で得られるサイトカイン(例、インターフェロン、インターロイキン(IL)等)、コロニー刺激因子(例、顆粒球コロニー刺激因子、エリスロポエチン等)などが挙げられ、なかでもIL-1、IL-2、IL-12などのインターロイキンなどが好ましい。

抗血栓剤としては、例えばヘパリン(例、ヘパリンナトリウム、ヘパリンカルシウム、ダルテパリンナトリウム(dalteparin sodium)など)、ワルファリン(例、ワルファリンカリウムなど)、抗トロンビン薬(例、アルガトロバン(aragatrobam)など)、血栓溶解薬(例、ウロキナーゼ(urokinase)、チソキナーゼ(tisokinase)、アルテプラーゼ(alteplase)、ナテプラーゼ(nateplase)、モンテプラーゼ(monteplase)、パミテプラーゼ(pamiteplase)など)、血小板凝集抑制薬(例、塩酸チクロピジン(ticlopidine hydrochloride)、シロスタゾール(cilostazol)、イコサペント酸エチル、ベラプロストナトリウム(beraprost sodium)、塩酸サルポグレラート(sarpogrelate hydrochloride)など)などが挙げられる。

【0069】

悪液質改善薬剤としては、例えばシクロオキシゲナーゼ阻害剤（例、インドメタシン等）〔キャンサー・リサーチ（Cancer Research）、第49巻、5935～5939頁、1989年〕、プロゲステロン誘導体（例、メgestrolアセテート）〔ジャーナル・オブ・クリニカル・オンコロジー（Journal of Clinical Oncology）、第12巻、213～225頁、1994年〕、糖質ステロイド（例、デキサメサゾン等）、メトクロプラミド系薬剤、テトラヒドロカンナビノール系薬剤（文献はいずれも上記と同様）、脂肪代謝改善剤（例、エイコサペンタエン酸等）〔ブリティッシュ・ジャーナル・オブ・キャンサー（British Journal of Cancer）、第68巻、314～318頁、1993年〕、成長ホルモン、IGF-1、あるいは悪液質を誘導する因子であるTNF- α 、LIF、IL-6、オンコスタチンMに対する抗体などが挙げられる。

【0070】

さらに、併用薬剤としては、神経再生促進薬（例、Y-128、VX-853、prosaptide等）、抗うつ薬（例、デシプラミン、アミトリプチリン、イミプラミン等）、抗てんかん薬（例、ラモトリジン等）、抗不整脈薬（例、メキシレチン等）、アセチルコリン受容体リガンド（例、ABT-594等）、エンドセリン受容体拮抗薬（例、ABT-627等）、モノアミン取り込み阻害薬（例、トラマドル等）、麻薬性鎮痛薬（例、モルヒネ等）、GABA受容体作動薬（例、ギャバベンチン等）、 α 2受容体作動薬（例、クロニジン等）、局所鎮痛薬（例、カプサイシン等）、プロテインキナーゼC阻害薬（例、LY-333531等）、抗不安薬（例、ベンゾジアゼピン等）、ホスホジエステラーゼ阻害薬（例、（クエン酸）シルデナフィル等）、ドーパミン作動薬（例、アポモルフィン等）、骨粗鬆症治療剤（例、アルファカルシドール、カルシトリオール、エルカトニン、サケカルシトニン、エストリオール、イプリフラボン、パミドロン酸二ナトリウム、アレンドロン酸ナトリウム水和物、インカドロン酸二ナトリウム等）、抗痴呆剤（例、タクリン、ドネペジル、リバスチグミン、ガランタミン等）、尿失禁・頻尿治療剤（例、塩酸フラボキサート、塩酸オキシブチニン、塩酸プロピベリン）等）、ミダゾラム、ケトコナゾール等も挙げられる。

【0071】

併用薬剤は、好ましくはインスリン製剤、インスリン抵抗性改善剤、 α -グルコシダーゼ阻害剤、ビグアナイド剤、インスリン分泌促進剤（好ましくはスルホニルウレア剤）などである。

上記併用薬剤は、2種以上を適宜の割合で組み合せて用いてもよい。2種以上の併用薬剤を用いる場合の好ましい組み合わせとしては、例えば以下のものが挙げられる。

- 1) インスリン抵抗性改善剤およびインスリン製剤；
- 2) インスリン抵抗性改善剤およびインスリン分泌促進剤；
- 3) インスリン抵抗性改善剤および α -グルコシダーゼ阻害剤；
- 4) インスリン抵抗性改善剤およびビグアナイド剤；
- 5) インスリン製剤およびビグアナイド剤；
- 6) インスリン製剤およびインスリン分泌促進剤；
- 7) インスリン製剤および α -グルコシダーゼ阻害剤；
- 8) インスリン分泌促進剤および α -グルコシダーゼ阻害剤；
- 9) インスリン分泌促進剤およびビグアナイド剤；
- 10) インスリン抵抗性改善剤、インスリン製剤およびビグアナイド剤；
- 11) インスリン抵抗性改善剤、インスリン製剤およびインスリン分泌促進剤；
- 12) インスリン抵抗性改善剤、インスリン製剤および α -グルコシダーゼ阻害剤；
- 13) インスリン抵抗性改善剤、インスリン分泌促進剤およびビグアナイド剤；
- 14) インスリン抵抗性改善剤、インスリン分泌促進剤および α -グルコシダーゼ阻害剤；および
- 15) インスリン抵抗性改善剤、ビグアナイド剤および α -グルコシダーゼ阻害剤。

【0072】

本発明化合物と併用薬剤とを組み合せて用いることにより、本発明化合物および／または併用薬剤（好ましくはインスリン製剤、インスリン抵抗性改善剤、インスリン分泌促進剤およびビグアナイド剤）の作用の増強、本発明化合物および

／または併用薬剤（好ましくはインスリン抵抗性改善剤、インスリン分泌促進剤およびビグアナイド剤）の投与量の低減、本発明化合物および／または併用薬剤の副作用の低減などの優れた効果を得ることができる。

【0073】

以下、本発明化合物の製造法について説明する。

化合物（I）は、自体公知の方法、例えば以下に示すA法～I法あるいはこれらに準ずる方法により製造することができる。なお、以下の各製造法において、原料化合物は塩として用いてもよく、このような塩としては、前記化合物（I）の塩として例示したものが用いられる。

式（I）中、X_bが－O－、－S－、または－NR³－（R³は前記と同意義を示す）である化合物（I-1）は、例えば以下のA法によって製造される。

【A法】

【化24】

[式中、Eは脱離基を、その他の記号は前記と同意義を示す。]

ここで、Eで示される脱離基としては、例えばヒドロキシ基、ハロゲン原子または－OSO₂R¹¹（R¹¹は炭素数1～4のアルキル基、炭素数1～4のアルキル基で置換されていてもよい炭素数6～10のアリール基を示す）などが挙げられる。

R¹¹で示される「炭素数1～4のアルキル基」および「炭素数1～4のアルキル基で置換されていてもよい炭素数6～10のアリール基」における炭素数1～4のアルキル基としては、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec.-ブチル、t.-ブチルが挙げられ、なかでもメチルが好ましい。

また、R¹¹で示される「炭素数1～4のアルキル基で置換されていてもよい炭素数6～10のアリール基」における炭素数6～10のアリール基としては、例えばフェニル、ナフチルが挙げられ、なかでもフェニルが好ましい。

R^{11} は、特に好ましくはメチル、トリルなどである。

【0074】

本法では、化合物(II)と化合物(III)との反応により化合物(I-1)を製造する。

Eがヒドロキシ基である場合、本反応は、自体公知の方法、例えば、シンセシス(Synthesis)1頁(1981年)に記載の方法、あるいはそれに準じた方法により行われる。すなわち、本反応は、通常、有機リン化合物および親電子剤の存在下、反応に悪影響を及ぼさない溶媒中で行われる。

有機リン化合物としては、例えばトリフェニルホスフィン、トリブチルホスフィンなどが挙げられる。

親電子剤としては、例えばアゾジカルボン酸ジエチル、アゾジカルボン酸ジイソプロピル、アゾジカルボニルジビペラジンなどが挙げられる。

有機リン化合物および親電子剤の使用量は、化合物(III)に対し、好ましくは約1～約5モル当量である。

反応に悪影響を及ぼさない溶媒としては、例えばジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類；クロロホルム、ジクロロメタンなどのハロゲン化炭化水素類；ベンゼン、トルエン、キシレンなどの芳香族炭化水素類；N,N-ジメチルホルムアミドなどのアミド類；ジメチルスルホキシドなどのスルホキシド類などが挙げられる。これらの溶媒は、適宜の割合で混合して用いてよい。

反応温度は、通常、約-50～約150℃、好ましくは約-10～約100℃である。

反応時間は、通常、約0.5～約20時間である。

【0075】

Eがハロゲン原子または $-OSO_2R^{11}$ である場合、本反応は、常法に従い、塩基の存在下、反応に悪影響を及ぼさない溶媒中で行われる。

塩基としては、例えば水酸化カリウム、水酸化ナトリウム、炭酸水素ナトリウム、炭酸カリウムなどのアルカリ金属塩；ピリジン、トリエチルアミン、N,N-ジメチルアニリン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エ

ンなどのアミン類；水素化カリウム、水素化ナトリウムなどの金属水素化物；ナトリウムメトキシド、ナトリウムエトキシド、カリウム *t*-ブトキシドなどのアルカリ金属アルコキシドが挙げられる。

これら塩基の使用量は、化合物（III）に対し、好ましくは約1～約5モル当量である。

反応に悪影響を及ぼさない溶媒としては、例えばベンゼン、トルエン、キシリソなどの芳香族炭化水素類；テトラヒドロフラン、ジオキサン、ジエチルエーテルなどのエーテル類；アセトン、2-ブタノンなどのケトン類；クロロホルム、ジクロロメタンなどのハロゲン化炭化水素類；N, N-ジメチルホルムアミドなどのアミド類；ジメチルスルホキシドなどのスルホキシド類などが挙げられる。これらの溶媒は、適宜の割合で混合して用いてよい。

反応温度は、通常、約-50～約150°C、好ましくは約-10～約100°Cである。

反応時間は、通常、約0.5～約20時間である。

このようにして得られる化合物（I-1）は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィーなどにより単離精製することができる。

上記A法で原料化合物として用いられる化合物（II）および化合物（III）は、例えばWO 01/38325等に記載の方法、あるいはこれに準ずる方法によって製造することができる。

【0076】

式（I）中、X_bが-S(=O)_m-（mは1または2を示す）である化合物（I-3）は、例えば以下のB法によって製造される。

[B法]

【化25】

[式中の記号は前記と同意義を示す。]

本法では、化合物(I-2)を酸化反応に付すことにより化合物(I-3)を製造する。本反応は、通常、酸化剤を用いて、反応に悪影響を及ぼさない溶媒中で行われる。

酸化剤としては、例えば、3-クロロフェニル過安息香酸、過ヨウ素酸ナトリウム、過酸化水素、過酢酸などが挙げられる。

反応に悪影響を及ぼさない溶媒としては、例えばジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類；クロロホルム、ジクロロメタンなどのハロゲン化炭化水素類；ベンゼン、トルエン、キシレンなどの芳香族炭化水素類；N,N-ジメチルホルムアミドなどのアミド類；エタノール、メタノールなどのアルコール類などが挙げられる。これらの溶媒は、適宜の割合で混合して用いてもよい。

反応温度は、通常、約-50～約150℃、好ましくは約-10～約100℃である。

反応時間は、通常、約0.5～約20時間である。

このようにして得られる化合物(I-3)は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィーなどにより単離精製することができる。

なお、上記B法で原料化合物として用いられる化合物(I-2)は、例えば上記A法により製造される。

【0077】

式(I)中、Rが-OHである化合物(I-5)は、例えば以下のC法によつても製造される。

[C法]

【化26】

[式中、R^{1,2}は置換されていてもよい炭化水素基を、その他の記号は前記と同意義を示す。]

本法では、化合物(I-4)を加水分解反応に付すことにより、化合物(I-5)を製造する。

ここで、上記R^{1,2}で示される「置換されていてもよい炭化水素基」としては、前記R⁴として例示したものが挙げられる。R^{1,2}は、好ましくは炭素数1ないし6のアルキル基であり、さらに好ましくはメチル、エチルなどである。

本反応は、常法に従い、酸または塩基の存在下、含水溶媒中で行われる。

酸としては、例えば塩酸、硫酸、臭化水素酸などの無機酸；酢酸などの有機酸などが挙げられる。

塩基としては、例えば炭酸カリウム、炭酸ナトリウムなどのアルカリ金属炭酸塩；ナトリウムメトキシドなどのアルカリ金属アルコキシド；水酸化カリウム、水酸化ナトリウム、水酸化リチウムなどの水酸化アルカリ金属などが挙げられる。

酸または塩基の使用量は、通常、化合物(I-4)に対して過剰量である。好ましくは、酸の使用量は、化合物(I-4)に対し、約2～約50当量、塩基の使用量は、化合物(I-4)に対し、約1.2～約5当量である。

含水溶媒としては、例えばメタノール、エタノールなどのアルコール類；テトラヒドロフラン、ジオキサン、ジエチルエーテルなどのエーテル類；ジメチルスルホキシドおよびアセトンなどから選ばれる1種以上の溶媒と水との混合溶媒などが挙げられる。

反応温度は、通常、約-20～約150℃、好ましくは約-10～約100℃である。

反応時間は、通常、約0.1～約20時間である。

このようにして得られる化合物(I-5)は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィーなどにより単離精製することができる。

上記C法で原料化合物として用いられる化合物(I-4)は、例えば上記A法またはB法により製造される。

【0078】

式(I)中、Rが-NR⁵R⁶ (R⁵およびR⁶は、前記と同意義を示す)である化合物(I-6)は、例えば以下のD法によっても製造される。

[D法]

【化27】

[式中の記号は前記と同意義を示す。]

本法では、化合物(I-5)をアミド化反応に付すことにより、化合物(I-6)を製造する。本反応は、自体公知の方法、例えば、化合物(I-5)と化合物(IV)とを縮合剤を用いて直接縮合させる方法、あるいは、化合物(I-5)の反応性誘導体と化合物(IV)とを適宜反応させる方法等を用いて行われる。ここで、化合物(I-5)の反応性誘導体としては、例えば、酸無水物、酸ハライド(例、酸クロリド、酸プロミド)、イミダゾリド、あるいは混合酸無水物(例えばメチル炭酸、エチル炭酸、イソブチル炭酸との無水物など)などが挙げられる。

【0079】

前記縮合剤としては、例えばジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、1-エチル-3-ジメチルアミノプロピルカルボジイミド及びその塩酸塩などのカルボジイミド系縮合試薬；シアノリン酸ジエチル、アジ化ジフェニルホスホリルなどのりん酸系縮合試薬；カルボニルジイミダゾール、2-クロロ-1,3-ジメチルイミダゾリウムテトラフルオロボレートなど一般に知られている縮合剤が挙げられる。

縮合剤を用いる方法において用いられる溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類；クロロホルム、ジクロロメタンなどのハロゲン化炭化水素類；ベンゼン、トルエンなどの芳香族炭化

水素類；テトラヒドロフラン、ジオキサン、ジエチルエーテルなどのエーテル類；酢酸エチル、水などが挙げられる。これらの溶媒は、適宜の割合で混合して用いてよい。

化合物(IV)の使用量は、化合物(I-5)に対して、0.1～1.0モル当量、好ましくは0.3～3モル当量である。

縮合剤の使用量は、化合物(I-5)に対して、0.1～1.0モル当量、好ましくは0.3～3モル当量である。

縮合剤として、ジシクロヘキシリカルボジイミド、ジイソプロピルカルボジイミド、1-エチル-3-ジメチルアミノプロピルカルボジイミド及びその塩酸塩などのカルボジイミド系縮合試薬を用いる場合、必要に応じて適当な縮合促進剤（例、1-ヒドロキシ-7-アザベンゾトリアゾール、1-ヒドロキシベンゾトリアゾール、N-ヒドロキシコハク酸イミド、N-ヒドロキシフタルイミドなど）を用いることにより反応効率を向上させることができる。また、縮合剤として、シアノリん酸ジエチル、アジ化ジフェニルホスホリルなどのりん酸系縮合試薬を用いる場合、通常トリエチルアミンなどの有機アミン性塩基を添加することにより反応効率を向上させることができる。

上記した縮合促進剤や有機アミン性塩基の使用量は、化合物(I-5)に対して、0.1～1.0モル当量、好ましくは0.3～3モル当量である。

反応温度は、通常、-30℃～100℃である。

反応時間は、通常、0.5～60時間である。

【0080】

化合物(I-5)の反応性誘導体を用いる方法において、例えば化合物(I-5)の反応性誘導体として酸ハライドを用いる場合、反応は、塩基の存在下、反応に悪影響を及ぼさない溶媒中で行われる。

塩基としては、例えばトリエチルアミン、N-メチルモルホリン、N,N-ジメチルアニリンなどのアミン類；炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属塩等が挙げられる。

反応に悪影響を及ぼさない溶媒としては、例えば、クロロホルム、ジクロロメタンなどのハロゲン化炭化水素類；ベンゼン、トルエンなどの芳香族炭化水素類

; テトラヒドロフラン、ジオキサン、ジエチルエーテルなどのエーテル類、酢酸エチル、水などが挙げられる。これらの溶媒は、適宜の割合で混合して用いてよい。

化合物(IV)の使用量は、化合物(I-5)に対し0.1~10モル当量、好ましくは0.3~3モル当量である。

反応温度は、通常、-30°C~100°Cである。

反応時間は、通常、0.5~20時間である。

【0081】

また、化合物(I-5)の反応性誘導体として混合酸無水物を用いる場合、化合物(I-5)とクロロ炭酸エステル（例、クロロ炭酸メチル、クロロ炭酸エチル、クロロ炭酸イソブチルなど）を塩基（例、トリエチルアミン、N-メチルモルホリン、N,N-ジメチルアニリンなどのアミン類；炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属塩等）の存在下に反応させ、さらに化合物(IV)と反応させる。

化合物(IV)の使用量は、化合物(I-5)に対して、通常0.1~10モル当量、好ましくは0.3~3モル当量である。

反応温度は、通常、-30°C~100°Cである。

反応時間は、通常、0.5~20時間である。

このようにして得られる化合物(I-6)は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィーなどにより単離精製することができる。

なお、上記D法で原料化合物として用いられる化合物(I-5)は、例えば上記A法~C法により製造される。また、化合物(IV)としては、公知のものが用いられる。

【0082】

式(I)中、Xbが結合手である化合物(I-7)は、例えば以下のE法によって製造される。

[E法]

【化28】

[式中、Tは $-O-$ 、 $-S-$ または $-NR^3-$ （ R^3 は前記と同意義を示す）を、Vは水素原子または置換基を、その他の記号は前記と同意義を示す。]

Vで示される置換基としては、前記環Cにおける置換基として例示したものが挙げられる。

【工程1】

本法は、前記D法における化合物(I-5)と化合物(IV)との反応と同様にして行われる。

このようにして得られる化合物(VII)は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィーなどにより単離精製することができる。また、化合物(VII)を単離せずに、化合物(VII)を含む反応混合物を工程2の原料として用いてもよい。

なお、上記E法の工程1で原料化合物として用いられる化合物(V)は、例えばWO 01/38325等に記載の方法、あるいはこれに準ずる方法によって製造することができる。また、化合物(VI)は、公知の方法によって製造することができる。

【0083】

【工程2】

本法では、化合物(VII)を閉環反応に付すことにより、化合物(I-7)を製造する。

本反応は、常法に従い、アンモニウム塩の存在下、反応に悪影響を及ぼさない溶媒中で行われる。

アンモニウム塩としては、例えば酢酸アンモニウムなどが挙げられる。

アンモニウム塩の使用量は、化合物(VII)に対して、通常0.1~10モル当量、好ましくは0.3~5モル当量である。

反応に悪影響を及ぼさない溶媒としては、例えばジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類；クロロホルム、ジクロロメタンなどのハロゲン化炭化水素類；ベンゼン、トルエン、キシレンなどの芳香族炭化水素類；N,N-ジメチルホルムアミドなどのアミド類；エタノール、メタノールなどのアルコール類；酢酸などの有機酸などが挙げられる。これらの溶媒は、適宜の割合で混合して用いてもよい。

反応温度は、通常、約-50~約200°C、好ましくは約-10~約150°Cである。

反応時間は、通常、約0.5~約20時間である。

このようにして得られる化合物(I-7)は、公知の分離精製手段、例えば濃縮、減圧濃縮、溶媒抽出、晶出、再結晶、転溶、クロマトグラフィーなどにより単離精製することができる。

【0084】

前記の各反応において、原料化合物が置換基としてアミノ基、カルボキシル基、水酸基、カルボニル基を有する場合、これらの基にペプチド化学などで一般的に用いられるような保護基が導入されていてもよく、反応後に必要に応じて保護基を除去することにより目的化合物を得ることができる。

アミノ基の保護基としては、前記R³として例示したものが挙げられる。

カルボキシル基の保護基としては、例えば、C₁-6アルキル基(例、メチル、エチル、プロピル、イソプロピル、ブチル、tert-ブチルなど)、C₇-11アラルキル基(例、ベンジルなど)、フェニル基、トリチル基、シリル基(例、トリメチルシリル、トリエチルシリル、ジメチルフェニルシリル、tert-ブチルジメチルシリル、tert-ブチルジエチルシリルなど)、C₂-6アルケニル基(例、1-アリルなど)などが挙げられる。これらの基は、ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)、C₁-6アルコキシ基(例、メトキシ、エトキシ、プロポキシなど)、ニトロ基などから選ばれる1ないし3個

の置換基で置換されていてもよい。

水酸基の保護基としては、前記R²として例示したものが挙げられる。

カルボニル基の保護基としては、例えば、環状アセタール（例、1, 3-ジオキサンなど）、非環状アセタール（例、ジ-C₁₋₆アルキルアセタールなど）などが挙げられる。

また、これらの保護基の除去方法は、自体公知の方法、例えば、プロテクティブ グループス イン オーガニック シンセシス (Protective Groups in Organic Synthesis), John Wiley and Sons 刊 (1980) に記載の方法などに準じて行えばよい。例えば、酸、塩基、紫外光、ヒドラジン、フェニルヒドラジン、N-メチルジチオカルバミン酸ナトリウム、テトラブチルアンモニウムフルオリド、酢酸パラジウム、トリアルキルシリルハライド（例、トリメチルシリルヨージド、トリメチルシリルプロミドなど）などを使用する方法、還元法などが用いられる。

【0085】

化合物(I)が、光学異性体、立体異性体、位置異性体、回転異性体を含有する場合には、これらも化合物(I)として含有されるとともに、自体公知の合成手法、分離手法によりそれぞれを単品として得ることができる。例えば、化合物(I)に光学異性体が存在する場合には、該化合物から分割された光学異性体も化合物(I)に包含される。

光学異性体は自体公知の方法により製造することができる。具体的には、光学活性な合成中間体を用いる、または、最終物のラセミ体を常法に従って光学分割することにより光学異性体を得る。

【0086】

光学分割法としては、自体公知の方法、例えば、分別再結晶法、キラルカラム法、ジアステレオマー法等が用いられる。

1) 分別再結晶法

ラセミ体と光学活性な化合物（例えば、(+) -マンデル酸、(-) -マンデル酸、(+) -酒石酸、(-) -酒石酸、(+) -1-フェネチルアミン、(-) -1-フェネチルアミン、シンコニン、(-) -シンコニジン、ブルシンなど

) と塩を形成させ、これを分別再結晶法によって分離し、所望により、中和工程を経てフリーの光学異性体を得る方法。

2) キラルカラム法

ラセミ体またはその塩を光学異性体分離用カラム（キラルカラム）にかけて分離する方法。例えば液体クロマトグラフィの場合、ENANTIO-OVM（トーソー社製）あるいは、ダイセル社製 CHIRALシリーズなどのキラルカラムに光学異性体の混合物を添加し、水、種々の緩衝液（例、リン酸緩衝液）、有機溶媒（例、エタノール、メタノール、イソプロパノール、アセトニトリル、トリフルオロ酢酸、ジエチルアミンなど）を単独あるいは混合した溶液として展開させることにより、光学異性体を分離する。また、例えばガスクロマトグラフィーの場合、CP-Chirasil-Dex CB（ジーエルサイエンス社製）などのキラルカラムを使用して分離する。

【0087】

3) ジアステレオマー法

ラセミ体の混合物を光学活性な試薬と化学反応によってジアステレオマーの混合物とし、これを通常の分離手段（例えば、分別再結晶、クロマトグラフィー法等）などを経て单一物質とした後、加水分解反応などの化学的な処理により光学活性な試薬部位を切り離すことにより光学異性体を得る方法。例えば、化合物（I）が分子内にヒドロキシまたは1, 2級アミノを有する場合、該化合物と光学活性な有機酸（例えば、MTPA [α -メトキシ- α -（トリフルオロメチル）フェニル酢酸]、（-）-メントキシ酢酸等）などを縮合反応に付すことにより、それぞれエステル体またはアミド体のジアステレオマーが得られる。一方、化合物（I）がカルボン酸基を有する場合、該化合物と光学活性アミンまたはアルコール試薬とを縮合反応に付すことにより、それぞれアミド体またはエステル体のジアステレオマーが得られる。分離されたジアステレオマーは、酸加水分解あるいは塩基性加水分解反応に付すことにより、元の化合物の光学異性体に変換される。

【0088】

【発明の実施の形態】

以下に、試験例、参考例、実施例および製剤例を挙げて本発明をさらに詳細に説明するが、本発明はこれらにより限定されるものではない。

以下の参考例および実施例において、%は特記しない限り重量パーセントを示す。また、室温とは、1～30℃の温度を示す。

本明細書において、塩基やアミノ酸などを略号で表示する場合、IUPAC-IUB Commission on Biochemical Nomenclatureによる略号あるいは当該分野における慣用略号に基づくものであり、その例を下記する。またアミノ酸に関し光学異性体があり得る場合は、特に明示しなければL体を示すものとする。

【0089】

本願明細書の配列表の配列番号は、以下の配列を示す。

〔配列番号：1〕

参考例1aで用いられるプライマーPARD-Uの塩基配列を示す。

〔配列番号：2〕

参考例1aで用いられるプライマーPARD-Lの塩基配列を示す。

〔配列番号：3〕

参考例2aで用いられるプライマーXRA-Uの塩基配列を示す。

〔配列番号：4〕

参考例2aで用いられるプライマーXRA-Lの塩基配列を示す。

〔配列番号：5〕

参考例5aで用いられるPPRE-Uの塩基配列を示す。

〔配列番号：6〕

参考例5aで用いられるPPRE-Lの塩基配列を示す。

〔配列番号：7〕

参考例5aで用いられるプライマーTK-Uの塩基配列を示す。

〔配列番号：8〕

参考例5aで用いられるプライマーTK-Lの塩基配列を示す。

〔配列番号：9〕

参考例6aで用いられるプライマーPAG-Uの塩基配列を示す。

〔配列番号：10〕

参考例6aで用いられるプライマーPAG-Lの塩基配列を示す。

【0090】

【実施例】

試験例1

マウスにおける血糖および血中脂質（トリグリセリド）低下作用

被検化合物を粉末飼料（CE-2、日本クレア）に0.005%の割合で混合し、肥満・インスリン非依存型糖尿病（II型糖尿病）モデルであるKKAYマウス（9～12週齢、1群5匹）に自由に4日間与えた。この間、水は自由に与えた。血液を眼窩静脈叢から採取し、血液から分離した血漿中のグルコースおよびトリグリセリドを、それぞれLタイプワコーGlu2（和光純薬）およびLタイプワコーTG・H（和光純薬）を用いて、酵素法により定量した。結果を【表1】に示す。

表中、「血糖低下作用（%）」は、被検化合物非投与群の血中グルコース値を100%とした場合の被検化合物投与群の血中グルコース値の低下率（%）を表す。また、「血中脂質低下作用（%）」は、被検化合物非投与群の血中トリグリセリド値を100%とした場合の被検化合物投与群の血中トリグリセリド値の低下率（%）を表す。

【表1】

被検化合物 (実施例番号)	血糖低下作用 (%)	血中脂質低下作用 (%)
28	42	56
29	46	65
30	35	58
31	50	69
34	49	77
35	30	32
41	25	48
42	32	19

このように本発明化合物は、優れた血糖低下作用および血中脂質低下作用を有し、糖尿病、高脂血症（特に、高トリグリセリド血症）、耐糖能不全などの予防・治療剤として有用であることが分かる。

【0091】

試験例2

マウスにおける血漿抗動脈硬化指数上昇作用

被検化合物を粉末飼料（CE-2、日本クレア）に0.005%の割合で混合し、肥満・インスリン非依存型糖尿病（II型糖尿病）モデルであるKKAYマウス（9-12週齢、1群5匹）に自由に4日間与えた。この間、水は自由に与えた。血液を眼底静脈叢から採取し、血液から分離した血漿を用いて成分測定を行った。総コレステロールは、Lタイプワコーコレステロール（和光純薬）で定量した。また、血漿の一部に、HDLコレステロール沈殿試薬（和光純薬）を加えて、非HDLリポ蛋白を沈殿させ、その上清のコレステロール（HDLコレステロール）を測定した。これらのコレステロール値から血漿抗動脈硬化指数〔（HDLコレステロール／総コレステロール）×100〕を算出した。結果を【表2】に示す。

表中、「血漿抗動脈硬化指数上昇作用（%）」は、被検化合物非投与群の血漿抗動脈硬化指数を100%とした場合の被検化合物投与群の血漿抗動脈硬化指数の上昇率（%）を表す。

[表2]

被検化合物 (実施例番号)	血漿抗動脈硬化指数 上昇作用 (%)
22	12
28	18
29	23
30	19
31	16
34	20

35

14

41

12

このように本発明化合物は、優れた総コレステロール低下作用を有し、高脂血症（特に、高コレステロール血症）などの予防・治療剤として有用であることが分かる。また、本発明化合物は、優れた血漿抗動脈硬化指数上昇作用を有し、高脂血症（特に、低HDL血症）、動脈硬化症などの予防・治療剤として有用であることが分かる。

【0092】

試験例3 (PPAR γ -RXR α ヘテロ二量体リガンド活性)

後述の参考例8aで得られたPPAR γ :RXR α :4ERPP/CHO-K1細胞を10%ウシ胎児血清〔ライフテクノロジー社(Life Technologies, Inc.)製、米国〕を含むハムF12培地〔ライフテクノロジー社(Life Technologies, Inc.)製、米国〕で培養した後、96ウェルホワイトプレート〔コーニングコースター社(Corning Coster Corporation)製、米国〕へ 2×10^4 cells/wellとなるように播種し、37℃の炭酸ガスインキュベーター中で一晩培養した。

ついで、96ウェルホワイトプレートより培地を除去後、80 μ lの0.1%脂肪酸不含ウシ血清アルブミン(BSA)を含むハムF12培地と被検化合物20 μ lとを添加し、37℃の炭酸ガスインキュベーター中で18~24時間培養した。培地を除去後、HBSS(HANKS' BALANCED SALT SOLUTION)〔バイオフィッタカー社(BIO WHITTAKER)製、米国〕で2倍希釈したピッカジーン7.5(和光純薬製)を40 μ l添加し、攪拌後、1420 ARVOマルチラベルカウンター(Multilabel Counter)〔パーキンエルマー社(PerkinElmer)製、米国〕を用いて、ルシフェラーゼ活性を測定した。

被検化合物非投与群のルシフェラーゼ活性を1としたときの、各被検化合物のルシフェラーゼ活性から誘導倍率を算出した。被検化合物濃度と誘導倍率の値をプリズム(PRISM)〔グラフパッドソフトウェア社(GraphPad Software, Inc.)製、米国〕を用いて解析することにより、被検化合物のEC₅₀値(誘導倍率の最大値の50%を示す化合物濃度)を算出した。結果を【表3】に示す

[表3]

被検化合物 (実施例番号)	EC ₅₀ (nM)
24	38
28	35
29	160
30	210
31	35
41	77
42	19
43	53
58	43
77	21

このように、本発明化合物は、優れたPPAR γ -RXR α ヘテロ二量体リガンド活性を有することが分かる。

【0093】

試験例4 (PPAR δ -RXR α ヘテロ二量体リガンド活性)

参考例9aで得られた形質転換体を0.1%脂肪酸不含ウシ血清アルブミン(BSA) (和光純薬製) を含むDMEM培地 [ライフテクノロジー社 (Life Technologies, Inc.) 製、米国] に懸濁後、96ウェルホワイトプレート [コーニング コースター社 (Corning Coster Corporation) 製、米国] の各ウェルへ 1×10^4 cells/wellとなるように $80\mu l$ づつ播種した。続いて、被験化合物を $20\mu l$ 添加し、37°C、5%CO₂条件下で36~48時間培養した。96ウェルホワイトプレートより培地を除去後、HBSS (HANKS' BALANCED SALT SOLUTION) [バイオ フィッタカー社(BIO WHITTAKER)製、米国] で2倍希釈したピッカジーンLT7.5 (和光純薬製) を $40\mu l$ 添加し、攪拌後、1420 ARVOマルチラベルカウンター (Multilabel Counter) [パーキンエルマー社 (Pe

rkinElmer) 製、米国] を用いて、ルシフェラーゼ活性を測定した。

被検化合物非投与群のルシフェラーゼ活性を 1 としたときの、各被検化合物のルシフェラーゼ活性から誘導倍率を算出した。被検化合物濃度と誘導倍率の値をプリズム (PRISM) [グラフパッド ソフトウェア社 (GraphPad Software, Inc.) 製、米国] を用いて解析することにより、被検化合物の EC₅₀ 値（誘導倍率の最大値の 50 % を示す化合物濃度）を算出した。結果を [表4] に示す。

[表4]

被検化合物 (実施例番号)	EC ₅₀ (nM)
22	8. 6
24	9. 3
30	2. 6
31	9. 6
34	8. 1
35	1. 6
42	1. 9
43	3. 7
44	3. 9
46	6. 4
49	1. 7
51	3. 9
56	2. 8
58	1. 9
59	9. 7
62	0. 81
63	9. 5
65	1. 8

75	3.8
76	1.9
85	6.0
86	1.5
91	6.0
92	1.9
94	4.0
96	1.7

このように、本発明化合物は、優れたPPAR δ -RXR α ヘテロ二量体リガンド活性を有することが分かった。

【0094】

参考例1a（ヒトPPAR δ 遺伝子のクローニング）

ヒトPPAR δ 遺伝子のクローニングは、肺臓cDNA（東洋紡製、商品名：QUICK-Clone cDNA）を鑄型とし、Schmidt,A.らが報告（Mol Endocrinol 1992;6:1634-1641）しているPPAR δ 遺伝子の塩基配列を参考に作製したプライマーセットPARD-U；5'-AAC GGT ACC TCA GCC ATG GAG CAG CCT CAG GAG G-3'（配列番号：1）

PARD-L；5'-TAA GTC GAC CCG TTA GTA CAT GTC CTT GTA GAT C-3'（配列番号：2）

を用いたPCR法により行った。

PCR反応はAmpliWax PCR Gem 100（宝酒造製）を用いたホット・スタート(Hot Start)法で行った。下層混液として、10 x LA PCR Buffer 2 μ l、2.5 mM dNTP溶液3 μ l、12.5 μ M プライマー溶液各2.5 μ l、滅菌蒸留水10 μ lを混合した。上層混液としては、鑄型としてヒト心臓cDNA(1 ng/ml)を1 μ l、10 x LA PCR Buffer 3 μ l、2.5 mM dNTP溶液1 μ l、TaKaRa LA Taq DNA polymerase（宝酒造製）0.5 μ l、滅菌蒸留水24.5 μ lを混合した。調製した下層混液にAmpliWax PCR Gem 100（宝酒造製）を1個添加し、70°Cで5分間、氷中で5分間処理後、上層混液を加えPCRの反応液を調製した。反応液の入ったチューブをサーマルサイクラー（パーキンエルマー社、米国）にセットした後、95°Cで2分

間処理した。さらに、95℃で15秒間、68℃で2分間のサイクルを45回繰り返した後、72℃で8分間処理した。得られたPCR産物をアガロースゲル(1%)電気泳動し、PPAR δ 遺伝子を含む1.4 kbのDNA断片をゲルから回収した後、pT7Blue-T vector(宝酒造製)に挿入することによりプラスミドpTBT-hPPAR δ を作製した。

参考例2a (ヒトRXR α 遺伝子のクローニング)

ヒトRXR α 遺伝子のクローニングは、腎臓cDNA(東洋紡製、商品名: QUICK-Clone cDNA)を鑄型とし、マンゲルスドルフ・ディー・ジェイ(Mangelsdorf, D. J.)らが報告〔ネイチャー(Nature)、1990年、345(6272)巻、224-229頁〕しているRXR α 遺伝子の塩基配列を参考に作製したプライマーセット

XRA-U: 5'-TTA GAA TTC GAC ATG GAC ACC AAA CAT TTC CTG-3' (配列番号: 3)

XRA-L: 5'-CCC CTC GAG CTA AGT CAT TTG GTG CGG CGC CTC-3' (配列番号: 4)

を用いたPCR法により行った。

PCR反応は、AmpliTaq PCR Gem 100(宝酒造製)を用いたホット・スタート(Hot Start)法で行った。まず、10×LA PCR Buffer 2 μ l、2.5 mM dNTP溶液3 μ l、12.5 μ Mプライマー溶液各2.5 μ l、滅菌蒸留水10 μ lを混合して下層混液とした。また、鑄型としてヒト腎臓cDNA(1 ng/ml)を1 μ l、10×LA PCR Buffer 3 μ l、2.5 mM dNTP溶液1 μ l、Takara LA Taq DNA polymerase(宝酒造製)0.5 μ l、滅菌蒸留水24.5 μ lを混合して上層混液とした。

上記した下層混液にAmpliTaq PCR Gem 100(宝酒造製)を1個添加し、70℃で5分間、氷中で5分間処理後、上層混液を加えPCRの反応液を調製した。反応液の入ったチューブをサーマルサイクラー(パーキンエルマー社製、米国)にセットした後、95℃で2分間処理した。さらに、95℃で15秒間、68℃で2分間のサイクルを35回繰り返した後、72℃で8分間処理した。

得られたPCR産物をアガロースゲル(1%)電気泳動し、RXR α 遺伝子を含む1.4 kbのDNA断片をゲルから回収した後、pT7Blue-T vector(宝酒造製)に挿入し、プラスミドpTBT-hRXR α を得た。

【0095】

参考例3 a (ヒトPPAR δ 発現用プラスミドの作製)

pCIベクター(プロメガ(Promega)社製、米国)をBamHI(宝酒造製)で消化後、T4 DNAポリメラーゼ(宝酒造製)処理により末端平滑化した。その一方で、pGFP-C1(東洋紡製)をBsu36I(第一化学薬品製)で消化した後、T4 DNAポリメラーゼ(宝酒造製)処理により末端平滑化し、両者をDNA Ligation kit(宝酒造製)で連結し、プラスミドpMCMVneoを得た。プラスミドpMCMVneoの5.6Kb KpnI-SalI断片と参考例1 a記載のプラスミドpTBT-hPPAR δ のhPPAR δ 遺伝子を含む1.3kb KpnI-SalI断片を連結し、プラスミドpMCMVneo-hPPAR δ を作製した。

【0096】

参考例4 a (ヒトRXR α 発現用プラスミドの作製)

参考例3 a記載のプラスミドpMCMVneoの5.6Kb EcoRI-SalI断片と参考例2 a記載のプラスミドpTBT-hRXR α のhRXR α 遺伝子を含む1.4kb EcoRI-XbaI断片を連結し、プラスミドpMCMVneo-hRXR α を作製した。

【0097】

参考例5 a (レポータープラスミドの作製)

アシル CoA オキシダーゼのPPAR応答性エレメント(PPRE)を含むDNA断片は、以下の5'末端リン酸化合成DNAを用いて作製した。

PPRE-U : 5'-pTCGACAGGGGACCAGGACAAAGGTACGTTGGGAG-3' (配列番号: 5)

PPRE-L : 5'-pTCGACTCCCGAACGTGACCTTGTCCTGGTCCCCTG-3' (配列番号: 6)

まず、PPRE-U、PPRE-Lをアニーリングした後、プラスミドpBlue Script SK+のSalI部位に挿入した。挿入断片の塩基配列を決定することにより、PPREが4個タンデムに連結したプラスミドpBSS-PPRE4を選択した。

HSV チミジン・キナーゼ・ミニマム・プロモーター(Thymidine kinase minimum promoter)(TKプロモーター)領域のクローニングは、pRL-TK vector[プロメガ(Promega)社製、米国]を鑄型とし、ルッコウ・ビー(Luckow, B)らが報告[ヌクレオイック・アシックス・リサーチ(Nucleic Acids Res.) 1987

年、15(13)巻、5490頁]しているチミジン・キナーゼ(Thymidine kinase)遺伝子のプロモーター領域の塩基配列を参考に作製したプライマーセット
 TK-U: 5'-CCCAAGATCTCCCCAGCGTCTTGTCAATTG-3' (配列番号: 7)
 TK-L: 5'-TCACCATGGTCAAGCTTTAAGCGGGTC-3' (配列番号: 8)
 を用いたPCR法により行った。

PCR反応は、AmpliWax PCR Gem 100(宝酒造製)を用いたホット・スタート(Hot Start)法で行った。まず、10×LA PCR Buffer 2μl、2.5 mM dNTP溶液3μl、12.5 μMプライマー溶液各2.5 μl、滅菌蒸留水10μlを混合して下層混液とした。また、鑄型としてpRL-TK vector[プロメガ(Promega)社製、米国]を1μl、10×LA PCR Buffer 3μl、2.5 mM dNTP溶液1μl、Takara LA Taq DNA polymerase(宝酒造製)0.5 μl、滅菌蒸留水24.5μlを混合して上層混液とした。

上記した下層混液にAmpliWax PCR Gem 100(宝酒造製)を1個添加し、70℃で5分間、氷中で5分間処理後、上層混液を加えPCRの反応液を調製した。反応液の入ったチューブをサーマルサイクラー(パーキンエルマー社製、米国)にセットした後、95℃で2分間処理した。さらに、95℃で15秒間、68℃で2分間のサイクルを35回繰り返した後、72℃で8分間処理した。

得られたPCR産物をアガロースゲル(1%)電気泳動し、TKプロモーターを含む140bのDNA断片をゲルから回収した後、pT7 Blue-T vector(宝酒造製)に挿入した。このプラスミドから制限酵素BglIIとNcoIで切断することにより得たTKプロモーターを含む断片をプラスミドpGL3-Basic vector[プロメガ(Promega)社製、米国]のBglII-NcoI断片と連結してプラスミドpGL3-TKを作製した。

得られたプラスミドpGL3-TKのNheI-XhoI断片4.9kbとプラスミドpBS-S-P-PRE4のNheI-XhoI断片200bpを連結することにより、プラスミドpGL3-4ERPP-TKを作製した。

このプラスミドpGL3-4ERPP-TKをBamHI(宝酒造製)で切断した後、T4DNAポリメラーゼ(宝酒造製)処理により末端平滑化してDNA断片を得た。

一方、pGFP-C1（東洋紡製）をBsu36I（NEB）で切断した後、T4 DNAポリメラーゼ（宝酒造製）処理により末端平滑化し、1.6 kbのDNA断片を得た。

両DNA断片を連結することにより、レポータープラスミドpGL3-4ER PP-TK neoを構築した。

【0098】

参考例6a（ヒトPPAR γ 遺伝子のクローニング）

ヒトPPAR γ 遺伝子のクローニングは、心臓cDNA（東洋紡製、商品名：QUICK-Clone cDNA）を鑄型とし、グリーン（Greene）らが報告〔ジーン・エクスプレッション（Gene Expr.）、1995年、4（4-5）巻、281-299頁〕しているPPAR γ 遺伝子の塩基配列を参考に作製したプライマーセット
PAG-U：5'-GTG GGT ACC GAA ATG ACC ATG GTT GAC ACA GAG-3'（配列番号：9）
PAG-L：5'-GGG GTC GAC CAG GAC TCT CTG CTA GTA CAA GTC-3'（配列番号：10）

を用いたPCR法により行った。

PCR反応は、AmpliWax PCR Gem 100（宝酒造製）を用いたホット・スタート（Hot Start）法で行った。まず、10×LA PCR Buffer 2 μ l、2.5 mM dNTP溶液3 μ l、12.5 μ Mプライマー溶液各2.5 μ l、滅菌蒸留水10 μ lを混合して下層混液とした。また、鑄型としてヒト心臓cDNA（1ng/ml）を1 μ l、10×LA PCR Buffer 3 μ l、2.5 mM dNTP溶液1 μ l、Takara LA Taq DNA polymerase（宝酒造製）0.5 μ l、滅菌蒸留水24.5 μ lを混合して上層混液とした。

上記した下層混液にAmpliWax PCR Gem 100（宝酒造製）を1個添加し、70℃で5分間、氷中で5分間処理後、上層混液を加えPCRの反応液を調製した。反応液の入ったチューブをサーマルサイクラー（パーキンエルマー社製、米国）にセットした後、95℃で2分間処理した。さらに、95℃で15秒間、68℃で2分間のサイクルを35回繰り返した後、72℃で8分間処理した。

得られたPCR産物をアガロースゲル（1%）電気泳動し、PPAR γ 遺伝子を含む1.4 kbのDNA断片をゲルから回収した後、pT7 Blue-T vector（宝

酒造製)に挿入し、プラスミド pTBT-hPPAR γ を得た。

【0099】

参考例7a(ヒトPPAR γ 、RXR α 発現用プラスミドの作製)

プラスミド pVgRXR [インビトロジエン(Invitrogen)社製、米国]の7.8 kb FspI-NotI 断片と参考例2aで得られたプラスミド pTBT-hRXR α のRXR α 遺伝子を含む0.9 kb FspI-NotI 断片を連結し、プラスミド pVgRXR2を作製した。次に、pVgRXR2をBstXIで切断した後、T4DNAポリメラーゼ(宝酒造製)処理により末端平滑化した。ついで、KpnIで切断することにより、6.5 kbのDNA断片を得た。

一方、参考例6aで得られたプラスミド pTBT-hPPAR γ をSal Iで切断した後、T4DNAポリメラーゼ(宝酒造製)処理により末端平滑化した。ついで、KpnIで切断することにより、1.4 kbのヒトPPAR γ 遺伝子を含むDNA断片を得た。

両DNA断片を連結することにより、プラスミド pVgRXR2-hPPAR γ を構築した。

【0100】

参考例8a(ヒトPPAR γ 、RXR α 発現用プラスミドおよびレポータープラスミドのCHO-K1細胞への導入と発現細胞の取得)

10%ウシ胎児血清[ライフテクノロジー社(Life Technologies, Inc.)製、米国]を含むハムF12培地[ライフテクノロジー社(Life Technologies, Inc.)製、米国]を用いて150cm²セルカルチャーフラスコ750ml[コーニング コースター社(Corning Costar Corporation)製、米国]で生育させたCHO-K1細胞を0.5 g/Lトリプシン-0.2 g/L EDTA(エチレンジアミン四酢酸) [ライフテクノロジー社(Life Technologies, Inc.)製、米国]処理により剥がした後、細胞をPBS(Phosphate-buffered saline) [ライフテクノロジー社(Life Technologies, Inc.)製、米国]で洗浄して遠心分離(1000rpm, 5分)し、PBSで懸濁した。次に、ジーンバルサー[バイオラッド社(Bio-Rad Laboratories)製、米国]を用いて、下記の条件に従って、DNAを細胞に導入した。

すなわち、0.4 cm ギャップのキュベットに、 8×10^6 細胞と参考例7aで得られたプラスミド pVgRXR2-hPPAR γ 10 μg と参考例5aで得られたレポータープラスミド pGL3-4ERPP-TK neo 10 μg を加え、電圧0.25 kV、キャパシタンス960 μF 下でエレクトロポレーションした。その後、細胞を10%ウシ胎児血清を含むハムF12培地に移し、24時間培養し、再び細胞を剥がして遠心分離し、次に、ジェネティシン〔ライフテクノロジー社 (Life Technologies, Inc.) 製、米国〕を500 $\mu\text{g}/\text{ml}$ とゼオシン〔インビトロジエン (Invitrogen) 社製、米国〕を250 $\mu\text{g}/\text{ml}$ になるように加えた10%ウシ胎児血清を含むハムF12培地で懸濁し、 10^4 細胞/ ml となるよう希釈して96ウェルプレート〔コーニング コースター社 (Corning Costar Corporation) 製、米国〕に播種して、37℃の炭酸ガスインキュベーター中で培養することによりジェネティシン、ゼオシン耐性形質転換体を得た。

次に、得られた形質転換株を24ウェルプレート〔コーニング コースター社 (Corning Costar Corporation) 製、米国〕で培養した後、10 μM 塩酸ピオグリタゾンの添加により、ルシフェラーゼが発現誘導される株、PPAR γ :RXR α :4ERPP/CHO-K1細胞を選択した。

【0101】

参考例9a (ヒトPPAR δ 、RXR α 発現用プラスミドおよびレポータープラスミドのCOS-1細胞への導入と形質転換体の取得)

COS-1細胞を 150cm^2 セルカルチャーフラスコ〔コーニング コースター社 (Corning Costar Corporation) 製、米国〕に 5×10^6 cells/50 ml播種し、37℃、5%CO₂条件下で24時間培養した。次に、リポフェクトアミン〔インビトロジエン (Invitrogen) 社製、米国〕を用いて、下記の条件に従って、DNAを細胞に導入した。

まず、リポフェクトアミン 125 μl 、PLUS Reagent (インビトロジエン (Invitrogen) 社製、米国) 100 μl 、参考例3aで得られたプラスミドpMCMVneo-hPPAR δ 2.5 μg 、参考例4aで得られたプラスミドpMCMVneo-hRXR α 2.5 μg および参考例5aで得られたレポータープラスミド pGL3-4ERPP-TK neo 5 μg 、pRL-tk [プロメガ (Promega) 社製、米国]

5 μg を opti-MEM [インビトロジエン (Invitrogen) 社製、米国] 5 ml に混合して、トランスフェクション混合液を作製した。

次に、opti-MEMで洗浄した COS-1 細胞に上記トランスフェクション混合液と opti-MEM 20 ml を添加し、37°C、5% CO₂ 条件下で 3 時間培養した。得られる COS-1 細胞に 0.1% 脂肪酸不含ウシ血清アルブミン (BSA) (和光純薬製) を含む DMEM 培地 [ライフテクノロジー社 (Life Technologies, Inc.) 製、米国] 25 ml を添加し、37°C、5% CO₂ 条件下で 18~24 時間培養して形質転換体を得た。

【0102】

参考例 1

塩化 4-(トリフルオロメチル)-N-ヒドロキシベンゼンイミドイル (1.00 g)、4-ペンチン-1-オール (4.98 g) およびテトラヒドロフラン (150 ml) の混合物に、トリエチルアミン (10 ml) のテトラヒドロフラン溶液 (10 ml) を 0°C で滴下した後、室温で終夜かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 (MgSO₄) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:2, 容積比) 溶出部から 3-[3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル]-1-プロパノール (10.68 g, 収率 80%) を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点 59~60°C。

¹H-NMR(CDCl₃) δ : 1.41 (1H, br t), 1.92-2.14 (2H, m), 2.88-3.05 (2H, m), 3.68-3.86 (2H, m), 6.37 (1H, s), 7.66-7.76 (2H, m), 7.87-7.97 (2H, m)。

参考例 2

3-[3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル]-1-プロパノール (9.68 g)、トリエチルアミン (6.5 ml) および酢酸エチル (150 ml) の混合物に、塩化メタンスルホニル (3.3 ml) の酢酸エチル溶液 (10 ml) を 0°C で滴下した後、室温で終夜かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和重曹水、続いて、飽和食塩水で洗浄、乾燥 (MgSO₄) 後、濃縮した。残留物をシリカゲルカ

ラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：2、容積比）溶出部からメタンスルホン酸3-[3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル]-1-プロピル（11.78g、収率94%）を淡黄色油状物として得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.96-2.10 (2H, m), 2.86-2.96 (2H, m), 3.16 (3H, s), 4.24-4.34 (2H, m), 6.36 (1H, s), 7.65-7.76 (2H, m), 7.86-7.97 (2H, m)。

参考例3

3-ヒドロキシ-1-フェニル-1H-ピラゾール-5-カルボン酸（29.55g）、臭化ベンジル（35ml）、炭酸カリウム（40.99g）およびN,N-ジメチルホルムアミド（300ml）の混合物を90°Cで終夜かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：2、容積比）溶出部から、3-ベンジルオキシ-1-フェニル-1H-ピラゾール-5-カルボン酸ベンジル（51.33g、収率92%）を無色油状物として得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 5.20 (2H, s), 5.27 (2H, s), 6.49 (1H, s), 7.18-7.47 (15H, m)。

【0103】

参考例4

3-ベンジルオキシ-1-フェニル-1H-ピラゾール-5-カルボン酸ベンジル（50.88g）、1規定水酸化ナトリウム水溶液（200ml）、テトラヒドロフラン（200ml）およびエタノール（200ml）の混合物を室温で5時間還流した後、1規定塩酸（200ml）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶をろ取し、3-ベンジルオキシ-1-フェニル-1H-ピラゾール-5-カルボン酸（36.91g、収率95%）を得た。アセトン-イソプロピルエーテルから再結晶した。融点163~164°C。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 5.27 (2H, s), 6.52 (1H, s), 7.30-7.50 (10H, m)。

参考例5

3-ベンジルオキシ-1-フェニル-1H-ピラゾール-5-カルボン酸（3.00 g）、ヨウ化メタン（8.5 ml）、炭酸カリウム（18.88 g）およびN, N-ジメチルホルムアミド（300 ml）の混合物を室温で終夜かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1:4, 容積比）溶出部から3-ベンジルオキシ-1-フェニル-1H-ピラゾール-5-カルボン酸メチル（33.48 g, 収率97%）を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点53～54℃。

¹H-NMR(CDCl₃) δ : 3.77 (3H, s), 5.28 (2H, s), 6.44 (1H, s), 7.32-7.49 (10H, m)。

参考例6

3-ベンジルオキシ-1-フェニル-1H-ピラゾール-5-カルボン酸メチル（15.00 g）、5%パラジウム-炭素（10.92 g）およびテトラヒドロフラン（200 ml）の混合物を水素雰囲気下、室温で、1時間かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1:2, 容積比）溶出部から、3-ヒドロキシ-1-フェニル-1H-ピラゾール-5-カルボン酸メチル（10.30 g, 収率97%）を無色結晶として得た。テトラヒドロフラン-イソプロピルエーテルから再結晶した。融点227～228℃。

¹H-NMR(CDCl₃) δ : 3.77 (3H, s), 6.32 (1H, s), 7.35-7.54 (5H, m), 10.77 (1H, br s)。

【0104】

参考例7

3-ベンジルオキシ-1-フェニル-1H-ピラゾール-5-カルボン酸メチル（14.53 g）およびテトラヒドロフラン（300 ml）の混合物に、水素化アルミニウムリチウム（1.79 g）を0℃でゆっくりと加えた後、室温で1時間かき混ぜた。反応混合物に硫酸ナトリウム・10水和物（15.20 g）を0℃でゆっくりと加えた後、室温で30分間かき混ぜた。不溶物をろ過により除

去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：2、容積比）溶出部から、（3-ベンジルオキシ-1-フェニル-1H-ピラゾール-5-イル）メタノール（11.65g、収率88%）を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点87~88°C。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.79 (1H, t, J=6.0 Hz), 4.61 (2H, d, J=6.0 Hz), 5.28 (2H, s), 5.94 (1H, s), 7.30-7.60 (10H, m)。

参考例8

(3-ベンジルオキシ-1-フェニル-1H-ピラゾール-5-イル)メタノール (11.20g)、活性二酸化マンガン (30.00g) およびテトラヒドロフラン (300ml) の混合物を、室温で終夜かき混ぜた。不溶物をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1：2、容積比) 溶出部から、3-ベンジルオキシ-1-フェニル-1H-ピラゾール-5-カルボアルデヒド (10.10g、収率91%) を淡黄色油状物として得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 5.31 (2H, s), 6.51 (1H, s), 7.32-7.52 (10H, m), 9.78 (1H, s)。

参考例9

3-ベンジルオキシ-1-フェニル-1H-ピラゾール-5-カルボアルデヒド (6.24g)、ジエチルホスホノ酢酸エチル (5.55g) およびN, N-ジメチルホルムアミド (50ml) の混合物に、0°Cで水素化ナトリウム (60%、油性、960mg) を加え、室温で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、希塩酸、続いて、飽和食塩水で洗浄、乾燥 (MgSO_4) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1：4、容積比) 溶出部から、(E)-3-(3-ベンジルオキシ-1-フェニル-1H-ピラゾール-5-イル)プロパン酸エチル (7.33g、収率94%) を淡黄色油状物として得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.30 (3H, t, J=6.8 Hz), 4.23 (2H, q, J=6.8 Hz), 5.29 (2H s), 6.18 (1H, s), 6.33 (1H, d, J=15.8 Hz), 7.28-7.55 (10H, m)。

【0105】

参考例10

(E)-3-(3-ベンジルオキシ-1-フェニル-1H-ピラゾール-5-イル)プロパン酸エチル (7. 33 g)、5%パラジウム-炭素 (7. 11 g) およびテトラヒドロフラン (50 ml) の混合物を水素雰囲気下、室温で、終夜かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 2, 容積比) 溶出部から、3-(3-ヒドロキシ-1-フェニル-1H-ピラゾール-5-イル)プロピオン酸エチル (4. 85 g, 収率89%) を無色結晶として得た。アセトン-ヘキサンから再結晶した。融点150~151°C。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.23 (3H, t, J=7.2 Hz), 2.52-2.60 (2H, m), 2.86-2.94 (2H, m); 4.11 (2H, q, J=7.2 Hz), 5.59 (1H, s), 7.33-7.51 (5H, m)。

参考例11

3-ヒドロキシ-1-メチル-1H-ピラゾール-5-カルボン酸メチル (1. 45 g)、臭化ベンジル (1. 16 ml)、炭酸カリウム (1. 54 g) およびN, N-ジメチルホルムアミド (10 ml) の混合物を室温で2時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 (MgSO_4) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 5, 容積比) 溶出部から、3-ベンジルオキシ-1-メチル-1H-ピラゾール-5-カルボン酸メチル (2. 20 g, 収率96%) を無色油状物として得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 3.86 (3H, s), 4.05 (3H, s), 5.19 (2H, s), 6.21 (1H, s), 7.27-7.50 (5H, m)。

参考例12

3-ベンジルオキシ-1-メチル-1H-ピラゾール-5-カルボン酸メチル (9. 60 g) およびテトラヒドロフラン (100 ml) の混合物に、水素化アルミニウムリチウム (890 mg) を0°Cでゆっくりと加えた後、室温で1時間かき混ぜた。反応混合物に硫酸ナトリウム・10水和物 (8. 43 g) を0°Cでゆっくりと加えた後、室温で1時間かき混ぜた。不溶物をろ過により除去した後

、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：2、容積比）溶出部から、（3-ベンジルオキシ-1-メチル-1H-ピラゾール-5-イル）メタノール（8.52g、定量的）を淡黄色油状物として得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.72 (1H, br s), 3.76 (3H, s), 4.58 (2H, d, $J=6.2$ Hz), 5.16 (2H, s), 5.64 (1H, s), 7.27-7.50 (5H, m)。

【0106】

参考例13

(3-ベンジルオキシ-1-メチル-1H-ピラゾール-5-イル)メタノール(9.40g)、活性二酸化マンガン(29.10g)およびテトラヒドロフラン(200ml)の混合物を、室温で終夜かき混ぜた。不溶物をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:3、容積比)溶出部から、3-ベンジルオキシ-1-メチル-1H-ピラゾール-5-カルボアルデヒド(6.05g、収率65%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点49.5~50.5°C。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 4.05 (3H, s), 5.22 (2H, s), 6.25 (1H, s), 7.26-7.51 (5H, m), 9.73 (1H, s)。

参考例14

3-ベンジルオキシ-1-メチル-1H-ピラゾール-5-カルボアルデヒド(3.05g)、ジエチルホスホノ酢酸エチル(3.25g)およびN,N-ジメチルホルムアミド(50ml)の混合物に、0°Cで水素化ナトリウム(60%、油性、575mg)を加え、室温で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、希塩酸、続いて、飽和食塩水で洗浄、乾燥(MgSO_4)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4、容積比)溶出部から、(E)-3-(3-ベンジルオキシ-1-メチル-1H-ピラゾール-5-イル)プロペン酸エチル(3.34g、収率83%)を無色油状物として得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.33 (3H, t, $J=7.0$ Hz), 3.82 (3H, s), 4.26 (2H, q, $J=7.$

0 Hz), 5.18 (2H s), 5.95 (1H, s), 6.27 (1H, d, J=15.8 Hz), 7.27-7.53 (6H, m)。

参考例15

(E)-3-(3-ベンジルオキシ-1-メチル-1H-ピラゾール-5-イル)プロペン酸エチル (730 mg)、10%パラジウム-炭素 (73 mg) およびメタノール (15 ml) の混合物を水素雰囲気下、室温で、1時間かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。得られた無色結晶をろ取し、3-(3-ヒドロキシ-1-メチル-1H-ピラゾール-5-イル)プロピオン酸エチル (440 mg, 収率87%)を得た。酢酸エチル-ヘキサンから再結晶した。融点132~135°C。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.26 (3H, t, J=6.9 Hz), 2.59-2.66 (2H, m), 2.80-2.87 (2H, m), 3.61 (3H, s), 4.15 (2H, q, J=6.9 Hz), 5.39 (1H, s)。

【0107】

参考例16

3-メチル-1H-ピラゾール-4-カルボン酸エチル (23.10 g)、2-クロロ-5-(トリフルオロメチル)ピリジン (25.09 g)、炭酸カリウム (19.00 g) およびN, N-ジメチルホルムアミド (300 ml) の混合物を100°Cで終夜かき混ぜた後、反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 (MgSO_4) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から、3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-カルボン酸エチル (40.22 g, 収率97%) を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点88~89°C。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.38 (3H, t, J=7.2 Hz), 2.57 (3H, s), 4.34 (2H, q, J=7.2 Hz), 8.05 (1H, dd, J=2.4, 9.3 Hz), 8.10 (1H, d, J=9.3 Hz), 8.64-8.72 (1H, m), 9.00 (1H, s)。

参考例17

3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾ

ールー4-カルボン酸エチル(35.19g)のテトラヒドロフラン(300ml)溶液に水素化ジイソブチルアルミニウムの1.0Mヘキサン溶液(360ml)を0°Cで滴下した後、室温で1時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:1, 容積比)溶出部から、{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}メタノール(29.33g, 収率97%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点157~158°C。

¹H-NMR(CDCl₃) δ : 1.46 (1H, t, J=5.4 Hz), 2.39 (3H, s), 4.64 (2H, d, J=5.4 Hz), 7.98-8.04 (2H, m), 8.49 (1H, s), 8.60-8.66 (1H, m)。

参考例18

塩化4-(トリフルオロメチル)-N-ヒドロキシベンゼンイミドイル(13.11g)、5-ヘキシン-1-オール(5.88g)およびテトラヒドロフラン(300ml)の混合物に、トリエチルアミン(17ml)のテトラヒドロフラン溶液(50ml)を0°Cで滴下した後、室温で終夜かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:2, 容積比)溶出部から4-{3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル}-1-ブタノール(13.92g, 収率83%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点68~69°C。

¹H-NMR(CDCl₃) δ : 1.60-1.98 (4H, m), 2.80-2.95 (2H, m), 3.66-3.78 (2H, m), 6.36 (1H, s), 7.66-7.76 (2H, m), 7.86-7.96 (2H, m)。

【0108】

参考例19

4-{3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル}-1-ブタノール(7.00g)、トリエチルアミン(4ml)および酢酸エチル(180ml)の混合物に、塩化メタンスルホニル(2ml)の酢酸エチル溶液(

20 ml) を0°Cで滴下した後、室温で終夜かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和重曹水、続いて、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:2, 容積比) 溶出部からメタノスルホン酸4-[3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル]-1-ブチル (8.42 g, 収率95%) を淡黄色油状物として得た。

1H -NMR ($CDCl_3$) δ : 1.78-2.04 (4H, m), 2.82-2.94 (2H, m), 3.14 (3H, s), 4.22-4.34 (2H, m), 6.36 (1H, s), 7.65-7.76 (2H, m), 7.86-7.97 (2H, m)。

参考例20

3-イソプロピル-1H-ピラゾール-4-カルボン酸エチル (5.00 g)、2-クロロ-5-(トリフルオロメチル)ピリジン (4.95 g)、炭酸カリウム (3.80 g) およびN, N-ジメチルホルムアミド (50 ml) の混合物を100°Cで終夜かき混ぜた後、反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から、3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-カルボン酸エチル (8.61 g, 収率96%) を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点94~95°C。

1H -NMR ($CDCl_3$) δ : 1.32-1.44 (9H, m), 3.52-3.68 (1H, m), 4.33 (2H, q, $J=7.0$ Hz), 8.03 (1H, dd, $J=2.2, 8.8$ Hz), 8.14 (1H, d, $J=8.8$ Hz), 8.68 (1H, d, $J=2.2$ Hz), 8.98 (1H, s)。

参考例21

3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-カルボン酸エチル (8.50 g) のテトラヒドロフラン (200 ml) 溶液に水素化ジイソブチルアルミニウムの1.0Mヘキサン溶液 (60 ml) を0°Cで滴下した後、室温で1時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢

酸エチル-ヘキサン（1：1，容積比）溶出部から、{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}メタノール（7.20 g，収率97%）を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点119～120℃。

$^1\text{H-NMR}$ (CDCl_3) δ : 1.36 (6H, d, $J=6.8$ Hz), 1.45 (1H, t, $J=5.6$ Hz), 3.05-3.24 (1H, m), 4.67 (2H, d, $J=5.6$ Hz), 7.92-8.10 (2H, m), 8.49 (1H, s), 8.59-8.67 (1H, m)。

【0109】

参考例22

{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}メタノール（5.85 g）、活性二酸化マンガン（15.44 g）およびテトラヒドロフラン（300 ml）の混合物を、室温で終夜かき混ぜた。不溶物をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：4，容積比）溶出部から、3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-カルボアルデヒド（5.22 g，収率90%）を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点89～90℃。

$^1\text{H-NMR}$ (CDCl_3) δ : 1.38 (6H, d, $J=7.0$ Hz), 3.42-3.59 (1H, m), 8.06 (1H, dd, $J=2.2, 8.4$ Hz), 8.15 (1H, d, $J=8.4$ Hz), 8.70 (1H, d, $J=2.2$ Hz), 9.04 (1H, s), 10.06 (1H, s)。

参考例23

3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-カルボアルデヒド（5.00 g）、ジエチルホスホノ酢酸エチル（4.05 g）およびN, N-ジメチルホルムアミド（50 ml）の混合物に、0℃で水素化ナトリウム（60%、油性、730 mg）を加え、室温で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、希塩酸、続いて、飽和食塩水で洗浄、乾燥(MgSO_4)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：4，

容積比) 溶出部から、(E)-3-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロパン酸エチル(5.93g, 収率95%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点112~113℃。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.34 (3H, t, J=7.4 Hz), 1.37 (6H, d, J=7.0 Hz), 3.14-3.32 (1H, m), 4.26 (2H, q, J=7.4 Hz), 6.29 (1H, d, J=16.0 Hz), 7.63 (1H, d, J=16.0 Hz), 7.96-8.15 (2H, m), 8.63-8.69 (1H, m), 8.75 (1H, s)。

参考例24

(E)-3-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロパン酸エチル(5.80g)、5%パラジウム-炭素(1.35g)およびテトラヒドロフラン(50ml)の混合物を水素雰囲気下、室温で、1時間かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:2, 容積比)溶出部から、3-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロピオン酸エチル(5.82g, 定量的)を無色油状物として得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.27 (3H, t, J=7.0 Hz), 1.33 (6H, d, J=7.0 Hz), 2.58-3.16 (6H, m), 4.16 (2H, q, J=7.0 Hz), 7.90-8.06 (2H, m), 8.26-8.33 (1H, m), 8.56-8.64 (1H, m)。

【0110】

参考例25

3-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロピオン酸エチル(5.82g)のテトラヒドロフラン(50ml)溶液に水素化ジイソブチルアルミニウムの1.0Mヘキサン溶液(40ml)を0℃で滴下した後、室温で1時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:1, 容積比)溶出部から、3-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾ-

ル-4-イル}-1-プロパノール(4.50 g, 収率88%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点87~88°C。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.33 (6H, d, J=7.0 Hz), 1.82-2.02 (2H, m), 2.53-2.68 (2H, m), 2.95-3.16 (1H, m), 3.68-3.84 (2H, m), 7.90-8.08 (2H, m), 8.28 (1H, s), 8.57-8.64 (1H, m)。

参考例26

3-{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}-1-メチル-1H-ピラゾール-5-カルボン酸メチル(1.90 g)のテトラヒドロフラン(30 ml)溶液に水素化ジイソブチルアルミニウムの1.0Mヘキサン溶液(15 ml)を0°Cで滴下した後、室温で1時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:1, 容積比)溶出部から、(3-{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}-1-メチル-1H-ピラゾール-5-イル)メタノール(1.70 g, 収率96%)を無色油状物として得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.36 (6H, d, J=7.0 Hz), 3.04-3.27 (1H, m), 3.78 (3H, s), 4.59 (2H, s), 5.13 (2H, s), 5.64 (1H, s), 7.97 (1H, dd, J=2.2, 8.8 Hz), 8.06 (1H, d, J=8.8 Hz), 8.56 (1H, s), 8.60-8.64 (1H, m)。

参考例27

(3-{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}-1-メチル-1H-ピラゾール-5-イル)メタノール(1.70 g)、活性二酸化マンガン(5.11 g)およびテトラヒドロフラン(50 ml)の混合物を、室温で終夜かき混ぜた。不溶物をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から、3-{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}-1-メチル-1H-ピラゾール-5-カルボア

ルデヒド (1.41 g, 収率 83%) を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点 112~113°C。

¹H-NMR(CDCl₃) δ : 1.37 (6H, d, J=6.8 Hz), 3.07-3.25 (1H, m), 4.06 (3H, s), 5.18 (2H, s), 6.25 (1H, s), 7.98 (1H, dd, J=2.2, 8.4 Hz), 8.07 (1H, d, J=8.4 Hz), 8.58 (1H, s), 8.60-8.65 (1H, m), 9.75 (1H, s)。

【0111】

参考例 28

3-(3-エトキシ-1H-ピラゾール-4-イル) プロピオン酸エチル (12.98 g)、2-クロロ-5-(トリフルオロメチル)ピリジン (11.10 g)、炭酸カリウム (12.33 g) および N, N-ジメチルホルムアミド (150 ml) の混合物を 100°C で終夜かき混ぜた後、反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 (MgSO₄) 後、濃縮した。残留物のテトラヒドロフラン (200 ml) 溶液に水素化ジイソブチルアルミニウムの 1.0 M ヘキサン溶液 (140 ml) を 0°C で滴下した後、室温で 1 時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 (MgSO₄) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 1, 容積比) 溶出部から、3-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール (6.10 g, 収率 32%) を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点 85~86°C。

¹H-NMR(CDCl₃) δ : 1.44 (3H, t, J=7.2 Hz), 1.65 (1H, br t), 1.80-1.94 (2H, m), 2.54 (2H, t, J=7.2 Hz), 3.64-3.78 (2H, m), 4.38 (2H, q, J=7.2 Hz), 7.82 (1H, d, J=8.7 Hz), 7.91 (1H, dd, J=2.4, 8.7 Hz), 8.19 (1H, s), 8.53-8.59 (1H, m)。

参考例 29

1-メチル-3-[3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ]-1H-ピラゾール-5-カルボン酸メチル (4.74 g) のテトラヒドロフラン (30 ml) 溶液に水素化ジイソ

ブチルアルミニウムの1.0Mヘキサン溶液(30ml)を0℃で滴下した後、室温で1時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:1, 容積比)溶出部から、(1-メチル-3-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}-1H-ピラゾール-5-イル)メタノール(4.18g, 収率88%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点128~129℃。

¹H-NMR(CDCl₃) δ : 1.58 (1H, t, J=5.7 Hz), 2.40 (3H, s), 3.77 (3H, s), 4.59 (2H, d, J=5.7 Hz), 5.10 (2H, s), 5.63 (1H, s), 7.94-8.06 (2H, m), 8.56 (1H, s), 8.58-8.67 (1H, m)。

参考例30

(1-メチル-3-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}-1H-ピラゾール-5-イル)メタノール(4.00g)、活性二酸化マンガン(12.18g)およびテトラヒドロフラン(100ml)の混合物を、室温で終夜かき混ぜた。不溶物をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から、1-メチル-3-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}-1H-ピラゾール-5-カルボアルデヒド(3.39g, 収率85%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点130~131℃。

¹H-NMR(CDCl₃) δ : 2.41 (3H, s), 4.06 (3H, s), 5.16 (2H, s), 6.25 (1H, s), 7.93-8.08 (2H, m), 8.59 (1H, s), 8.60-8.67 (1H, m)。

【0112】

参考例31

3-プロピル-1H-ピラゾール-4-カルボン酸エチル(25.88g)、2-クロロ-5-(トリフルオロメチル)ピリジン(25.14g)、炭酸カリウム(34.11g)およびN,N-ジメチルホルムアミド(300ml)の混合

物を100°Cで終夜かき混ぜた後、反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥($MgSO_4$)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から、3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-カルボン酸エチル(38.45g, 収率85%)を無色結晶として得た。イソプロピルエーテル-ヘキサンから再結晶した。融点102~103°C。

1H -NMR($CDCl_3$) δ : 1.03 (3H, t, $J=7.2\text{ Hz}$), 1.38 (3H, t, $J=7.0\text{ Hz}$), 1.66-1.88 (2H, m), 2.86-3.00 (2H, m), 4.33 (2H, q, $J=7.0\text{ Hz}$), 7.99-8.16 (2H, m), 8.65-8.72 (1H, m), 8.99 (1H, s)。

参考例3 2

3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-カルボン酸エチル(36.41g)のテトラヒドロフラン(300mL)溶液に水素化ジイソブチルアルミニウムの1.0Mヘキサン溶液(250mL)を0°Cで滴下した後、室温で1時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥($MgSO_4$)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:1, 容積比)溶出部から、{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}メタノール(30.22g, 収率95%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点120~121°C。

1H -NMR($CDCl_3$) δ : 1.03 (3H, t, $J=7.4\text{ Hz}$), 1.45 (1H, t, $J=5.4\text{ Hz}$), 1.65-1.88 (2H, m), 2.65-2.77 (2H, m), 4.64 (2H, d, $J=5.4\text{ Hz}$), 7.93-8.08 (2H, m), 8.49 (1H, s), 8.61-8.66 (1H, m)。

参考例3 3

{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}メタノール(10.00g)、活性二酸化マンガン(29.48g)およびテトラヒドロフラン(300mL)の混合物を、室温で終夜かき混ぜた。不溶物をろ過により除去した後、母液を濃縮した。残留物をシリカゲ

ルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：4、容積比）溶出部から、3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-カルボアルデヒド（8.87 g、収率89%）を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点52～53°C。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.03 (3H, t, J=7.2 Hz), 1.68-1.89 (2H m), 2.88-3.02 (2H m), 8.07 (1H, dd, J=2.2, 8.8 Hz), 8.14 (1H, d, J=8.8 Hz), 8.67-8.74 (1H, m), 9.04 (1H, s), 10.04 (1H, s)。

【0113】

参考例34

3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-カルボアルデヒド（8.70 g）、ジエチルホスホノ酢酸エチル（8.25 g）およびN, N-ジメチルホルムアミド（100 ml）の混合物に、0°Cで水素化ナトリウム（60%、油性、1.45 g）を加え、室温で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、希塩酸、続いて、飽和食塩水で洗浄、乾燥 (MgSO_4) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：4、容積比）溶出部から、(E)-3-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロパン酸エチル（10.14 g、収率93%）を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点104～105°C。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.04 (3H, t, J=7.2 Hz), 1.34 (3H, t, J=7.0 Hz), 1.67-1.89 (2H, m), 2.78 (2H, t, J=7.6 Hz), 4.27 (2H, q, J=7.0 Hz), 6.27 (1H, d, J=16.2 Hz), 7.60 (1H, d, J=16.2 Hz), 7.97-8.11 (2H, m), 8.64-8.68 (1H, m), 8.75 (1H, s)。

参考例35

(E)-3-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロパン酸エチル（10.00 g）、5%パラジウム-炭素（3.03 g）およびテトラヒドロフラン（100 ml）の混合物を水素雰囲気下、室温で、1時間かき混ぜた。パラジウム-炭素をろ過により除

去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：2、容積比）溶出部から、3-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロピオン酸エチル（9.36 g, 93%）を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点73～74℃。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.02 (3H, t, J=7.4 Hz), 1.26 (3H, t, J=7.0 Hz), 1.62-1.86 (2H, m), 2.56-2.68 (4H, m), 2.75-2.86 (2H, m), 4.16 (2H, q, J=7.0 Hz), 7.91-8.04 (2H, m), 8.30 (1H, s), 8.58-8.64 (1H, m)。

参考例36

3-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロピオン酸エチル（9.10 g）のテトラヒドロフラン（100 ml）溶液に水素化ジイソブチルアルミニウムの1.0Mヘキサン溶液（60 ml）を0℃で滴下した後、室温で1時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（ MgSO_4 ）後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：1、容積比）溶出部から、3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール（7.61 g、収率95%）を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点96～97℃。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.02 (3H, t, J=7.2 Hz), 1.32 (1H, br t), 1.64-1.99 (4H, m), 2.50-2.68 (4H, m), 3.68-3.80 (2H, m), 7.91-8.05 (2H, m), 8.29 (1H, s), 8.58-8.63 (1H, m)。

【0114】

参考例37

3-ヒドロキシ-1-メチル-1H-ピラゾール-4-カルボン酸エチル（25.50 g）、臭化ベンジル（17.8 ml）、炭酸カリウム（31.10 g）およびN,N-ジメチルホルムアミド（250 ml）の混合物を50℃で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、希塩酸、続いて、飽和食塩水で洗浄、乾燥（ MgSO_4 ）後、濃縮した。残留物を

シリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：1, 容積比）溶出部から3-ベンジルオキシ-1-メチル-1H-ピラゾール-4-カルボン酸エチル（31.90 g, 収率82%）を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点66～67°C。

参考例3 8

3-ベンジルオキシ-1-メチル-1H-ピラゾール-4-カルボン酸エチル（18.00 g）のテトラヒドロフラン（200 ml）溶液に、0°Cで水素化リチウムアルミニウム（2.62 g）を加えた後、室温で1時間かき混ぜた。反応混合物に硫酸ナトリウム10水和物（22.20 g）を加えた後、室温で1時間かき混ぜた。沈殿物をろ過により除去した後、ろ液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル溶出部から（3-ベンジルオキシ-1-メチル-1H-ピラゾール-4-イル）メタノール（23.90 g, 収率91%）を無色油状物として得た。

$^1\text{H-NMR}$ (CDCl_3) δ : 1.74(1H, t, $J=5.4$ Hz), 3.72(3H, s), 4.47(2H, d, $J=5.4$ Hz), 5.24(2H, s), 7.17(1H, s), 7.28-7.47(5H, m)。

参考例3 9

（3-ベンジルオキシ-1-メチル-1H-ピラゾール-4-イル）メタノール（18.40 g）、活性二酸化マンガン（40.00 g）およびテトラヒドロフラン（200 ml）の混合物を室温で9時間かき混ぜた。二酸化マンガンをろ過により除去した後、ろ液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（2：1, 容積比）溶出部から3-ベンジルオキシ-1-メチル-1H-ピラゾール-4-カルボアルデヒド（14.80 g, 収率81%）を無色油状物として得た。

$^1\text{H-NMR}$ (CDCl_3) δ : 3.78(3H, s), 5.32(2H, s), 7.29-7.50(5H, m), 7.69(1H, s), 9.76(1H, s)。

【0115】

参考例4 0

t-ブトキシカリウム（2.24 g）およびジメトキシエタン（10 ml）の混合物に、p-トルエンスルホニルメチルイソシアニド（2.05 g）のジメト

キシエタン (10ml) 溶液を-78°Cで加え、5分間かき混ぜた後、3-ベンジルオキシー-1-メチル-1H-ピラゾール-4-カルボアルデヒド (2.16g) のジメトキシエタン (10ml) 溶液を加えた。そのままの温度で1時間かき混ぜた後、室温まで昇温しながら1時間かき混ぜた。得られる混合液に、メタノール (380ml) を加え、1時間還流した。冷却後、反応液を飽和塩化アンモニウム水溶液に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:2, 容積比) 溶出部から3-ベンジルオキシー-1-メチル-1H-ピラゾール-4-イルアセトニトリル (1.86g, 収率82%) を無色油状物として得た。

1H -NMR ($CDCl_3$) δ : 3.43(2H, s), 3.74(3H, s), 5.22(2H, s), 7.21(1H, s), 7.29-7.47(5H, m)。

参考例4 1

3-ベンジルオキシー-1-メチル-1H-ピラゾール-4-イルアセトニトリル (12.0g)、4規定水酸化ナトリウム水溶液 (100ml)、テトラヒドロフラン (100ml) およびエタノール (100ml) の混合物を21時間還流した。冷却後、希塩酸により中和し、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物、ヨウ化メチル (4.95ml)、炭酸カリウム (14.7g) およびN, N-ジメチルホルムアミド (10.0ml) の混合物を室温で終夜かき混ぜた。反応液を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:1, 容積比) 溶出部から3-ベンジルオキシー-1-メチル-1H-ピラゾール-4-イル酢酸メチル (12.2g, 収率88%) を黄色油状物として得た。

1H -NMR ($CDCl_3$) δ : 3.41(2H, s), 3.68(3H, s), 3.73(3H, s), 5.22(2H, s), 7.19(1H, s), 7.30-7.46(5H, m)。

参考例4 2

3-ベンジルオキシー-1-メチル-1H-ピラゾール-4-イル酢酸メチル (

12.2 g)、5%パラジウム-炭素(25.0 g)、テトラヒドロフラン(100 ml)およびエタノール(100 ml)の混合物を水素雰囲気下、5時間かき混ぜた。ろ過により、パラジウム-炭素を除去した後、ろ液を濃縮し、3-ヒドロキシ-1-メチル-1H-ピラゾール-4-イル酢酸メチル(6.33 g, 収率79%)を無色結晶として得た。テトラヒドロフラン-ヘキサンから再結晶した。融点118~119°C。

【0116】

参考例4 3

3-ヒドロキシ-1-フェニル-1H-ピラゾール-4-カルボン酸エチル(7.76 g)、臭化ベンジル(3.97 ml)、炭酸カリウム(6.91 g)およびN, N-ジメチルホルムアミド(75 ml)の混合物を50°Cで終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、希塩酸、続いて、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:1, 容積比)溶出部から3-ベンジルオキシ-1-フェニル-1H-ピラゾール-4-カルボン酸エチル(8.29 g, 収率77%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点113~114°C。

参考例4 4

3-ベンジルオキシ-1-フェニル-1H-ピラゾール-4-カルボン酸エチル(8.06 g)のテトラヒドロフラン(100 ml)溶液に、0°Cで水素化リチウムアルミニウム(0.95 g)を加えた後、室温で1時間かき混ぜた。反応混合物に硫酸ナトリウム10水和物(8.06 g)を加えた後、室温で1時間かき混ぜた。沈殿物をろ過により除去した後、ろ液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル溶出部から(3-ベンジルオキシ-1-フェニル-1H-ピラゾール-4-イル)メタノール(5.91 g, 収率84%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点93~94°C。

参考例4 5

(3-ベンジルオキシ-1-フェニル-1H-ピラゾール-4-イル)メタノ

ール (5. 61 g)、活性二酸化マンガン (15. 00 g) およびテトラヒドロフラン (75 ml) の混合物を室温で終夜かき混ぜた。二酸化マンガンをろ過により除去した後、ろ液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (2 : 1, 容積比) 溶出部から 3-ベンジルオキシ-1-フェニル-1H-ピラゾール-4-カルボアルデヒド (5. 03 g, 収率 90%) を無色結晶として得た。テトラヒドロフラン-ヘキサンから再結晶した。融点 153~154°C。

【0117】

参考例4 6

t-ブトキシカリウム (3. 82 g) およびジメトキシエタン (20 ml) の混合物に、p-トルエンスルホニルメチルイソシアニド (3. 51 g) のジメトキシエタン (20 ml) 溶液を -78°C で加え、5 分間かき混ぜた後、3-ベンジルオキシ-1-フェニル-1H-ピラゾール-4-カルボアルデヒド (4. 73 g) のジメトキシエタン (80 ml) 溶液を加えた。そのままの温度で 1 時間かき混ぜた後、室温まで昇温しながら 1 時間かき混ぜた。得られる混合液に、メタノール (100 ml) を加え、1 時間還流した。冷却後、反応液を飽和塩化アンモニウム水溶液に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 3, 容積比) 溶出部から 3-ベンジルオキシ-1-フェニル-1H-ピラゾール-4-イルアセトニトリル (3. 31 g, 収率 67%) を無色結晶として得た。テトラヒドロフラン-ヘキサンから再結晶した。融点 102~103°C。

参考例4 7

3-ベンジルオキシ-1-フェニル-1H-ピラゾール-4-イルアセトニトリル (3. 01 g)、6 規定水酸化ナトリウム水溶液 (25 ml)、テトラヒドロフラン (25 ml) およびエタノール (25 ml) の混合物を 3 日間還流した。冷却後、希塩酸により中和し、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮し、3-ベンジルオキシ-1-フェニル-1H-ピラゾール-4-イル酢酸 (2. 63 g, 収率 82%) を無色結晶

として得た。アセトン-ヘキサンから再結晶した。融点105~106℃。

参考例4 8

3-ベンジルオキシ-1-フェニル-1H-ピラゾール-4-イル酢酸(2.47g)、ヨウ化メチル(0.75ml)、炭酸カリウム(2.21g)およびN,N-ジメチルホルムアミド(25ml)の混合物を室温で1時間かき混ぜた。反応液を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:3, 容積比)溶出部から3-ベンジルオキシ-1-フェニル-1H-ピラゾール-4-イル酢酸メチル(2.55g, 収率99%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点74~75℃。

【0118】

参考例4 9

3-ベンジルオキシ-1-フェニル-1H-ピラゾール-4-イル酢酸メチル(2.35g)、5%パラジウム-炭素(4.00g)、テトラヒドロフラン(25ml)およびメタノール(25ml)の混合物を水素雰囲気下、1時間かき混ぜた。ろ過により、パラジウム-炭素を除去した後、ろ液を濃縮し、3-ヒドロキシ-1-フェニル-1H-ピラゾール-4-イル酢酸メチル(1.58g, 収率93%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点144~145℃。

参考例5 0

臭化[2-(1,3-ジオキソラン-2-イル)エチル]トリフェニルホスホニウム(18.86g)、水素化ナトリウム(60%、油性、1.70g)およびN,N-ジメチルホルムアミド(100ml)の混合物を室温で30分間かき混ぜた後、3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-カルボアルデヒド(9.00g)を加え、70℃で5時間かき混ぜた。反応液を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物、5%パラジウム-炭素(2.04g)およびテトラヒドロフラン(100ml)の混合物を水素雰囲

気下、1時間かき混ぜた。ろ過により、パラジウム-炭素を除去した後、ろ液を濃縮した。得られた残留物をテトラヒドロフラン(150ml)に溶解し、1規定塩酸(200ml)およびメタノール(50ml)を加え、室温で2時間かき混ぜた。反応液を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から4-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}ブタナール(8.08g, 収率78%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点71~72℃。

参考例51

4-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}ブタナール(7.85g)、メタノール(20ml)およびテトラヒドロフラン(20ml)の混合物に、水素化ホウ素ナトリウム(700mg)を0℃でゆっくりと加えた後、室温で30分間かき混ぜた。反応液を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮し、4-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-ブタノール(7.48g, 収率95%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点80~81℃。

【0119】

参考例52

2-(1,3-ジオキソラン-2-イル)エチルテトラフェニルホスホニウムプロマイド(18.95g)とN,N-ジメチルホルムアミド(178mL)の混合物に、0℃で水素化ナトリウム(60%、油性、1.71g)を加え、室温で30分かき混ぜた。次いで、3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-カルボアルデヒド(10.09g)を加え、室温で終夜、70℃で4時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢

酸エチル-ヘキサン（1：15，容積比）溶出部から、無色油状物を得た。得られた油状物、5%パラジウム-炭素（1.28g）およびエタノール（174mL）の混合物を水素雰囲気下、室温で3.5時間かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮し、2-[4-[3-(1,3-ジオキソラン-2-イル)プロピル]-3-イソプロピル-1H-ピラゾール-1-イル]-5-(トリフルオロメチル)-ピリジン（12.84g，収率98%）を無色油状物として得た。

¹H-NMR(CDCl₃) δ : 1.32 (6H, d, J = 7.0 Hz), 1.72 - 1.82 (4H, m), 2.46 - 2.58 (2H, m), 2.92 - 3.10 (1H, m), 3.82 - 4.00 (4H, m), 4.88 - 4.96 (1H, m), 7.88 - 7.98 (1H, m), 8.02 (1H, d, J = 8.4 Hz), 8.27 (1H, s), 8.56 - 8.61 (1H, m)。

参考例53

2-[4-[3-(1,3-ジオキソラン-2-イル)プロピル]-3-イソプロピル-1H-ピラゾール-1-イル]-5-(トリフルオロメチル)-ピリジン（12.84g）、1規定塩酸（100mL）、テトラヒドロフラン（100mL）およびメタノール（100mL）の混合物を50℃で終夜かき混ぜた。反応混合物を減圧下濃縮し、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：2，容積比）溶出部から4-[3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル]ブチルアルデヒド（11.25g，収率99%）を無色油状物として得た。

¹H-NMR(CDCl₃) δ : 1.32 (6H, d, J = 6.9 Hz), 1.90 - 2.06 (2H, m), 2.44 - 2.60 (4H, m), 2.94 - 3.07 (1H, m), 7.90 - 7.98 (1H, m), 8.02 (1H, d, J = 8.7 Hz), 8.27 (1H, s), 8.55 - 8.61 (1H, m), 9.78 - 9.81 (1H, m)。

参考例54

4-[3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル]ブチルアルデヒド（11.25g）のエタノール（170mL）溶液に水素化ホウ素ナトリウム（1.57g）を室温で加

え、1時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から、{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル} - 1-ブタノール (6.11 g, 収率54%) を無色結晶として得た。また、その際に原料である{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル} ブチルアルデヒド (2.46 g) も回収された。得られた無色結晶は酢酸エチル-ヘキサンから再結晶した。融点67~68°C。

【0120】

参考例55

(3-エトキシ-1H-ピラゾール-4-イル) 酢酸エチル (18.95 g)、水素化ナトリウム (60%、油性、4.59 g) およびN, N-ジメチルホルムアミド (478 mL) の混合物を室温で1時間かき混ぜた後に、2-クロロ-5-(トリフルオロメチル)ピリジン (20.82 g) を加え、終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:9, 容積比) 溶出部から、{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル} 酢酸エチル (11.27 g, 収率41%) を無色油状物として得た。

1H -NMR($CDCl_3$) δ : 1.29 (3H, t, J = 7.4 Hz), 1.42 (3H, t, J = 7.0 Hz), 3.46 (2H, s), 4.20 (2H, q, J = 7.4 Hz), 4.36 (2H, q, J = 7.0 Hz), 7.83 (1H, d, J = 8.8 Hz), 7.84 - 7.96 (1H, m), 8.39 (1H, s), 8.54 - 8.60 (1H, m)

参考例56

{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル} 酢酸エチル (11.27 g) のテトラヒドロフラン (400 mL) 溶液に水素化ジイソブチルアルミニウムの1.0Mヘキサン溶液 (1

17 mL) を0°Cで滴下した後、室温で3時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から、2-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル]エタノール(4.38 g, 収率45%)を淡黄色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点75~76°C。

参考例57

3-(3-ヒドロキシ-1H-ピラゾール-4-イル)プロパン酸エチル(7.40 g)のテトラヒドロフラン(100 mL)の溶液に二炭酸ジ-tert-ブチル(9.71 mL)とトリエチルアミン(5.89 mL)を室温で加え、終夜かき混ぜた。反応混合物を濃縮し、残留物を得た。得られた残留物、ベンジルアルコール(5.00 mL)、トリプチルホスフィン(20.1 mL)およびテトラヒドロフラン(80.5 mL)の混合物に1,1'-アゾジカルボン酸ジエチルの40%トルエン溶液(52.9 mL)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:6, 容積比)溶出部から、3-ベンジルオキシ-4-(2-エトキシカルボニルエチル)-1H-ピラゾール-1-カルボン酸tert-ブチル(5.08 g, 収率34%)を無色油状物として得た。

¹H-NMR(CDCl₃) δ: 1.23 (3H, t, J = 6.9 Hz), 1.61 (9H, s), 2.53 - 2.60 (2H, m), 2.66 - 2.73 (2H, m), 5.34 (2H, s), 7.27 - 7.46 (5H, m), 7.65 (1H, s)。

【0121】

参考例58

3-ベンジルオキシ-4-(2-エトキシカルボニルエチル)-1H-ピラゾール-1-カルボン酸tert-ブチル(5.08 g)の酢酸エチル(13.6 mL)溶液に4規定塩酸酢酸エチル溶液(43.6 mL)を加え、終夜かき混ぜた。反応混合物を飽和重層水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮し、3-(3-ベンジルオキシ

-1H-ピラゾール-4-イル)プロパン酸エチル(3.92g, 定量的)を無色油状物として得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.22 (3H, t, J = 7.2 Hz), 2.04 - 2.59 (2H, m), 2.69 - 2.75 (2H, m), 4.10 (2H, q, J = 7.2 Hz), 5.25 (2H, s), 7.19 (1H, s), 7.25 - 7.45 (5H, m)。

参考例59

3-(3-ベンジルオキシ-1H-ピラゾール-4-イル)プロパン酸エチル(2.84g)、水素化ナトリウム(60%、油性、497mg)およびN,N-ジメチルホルムアミド(104mL)の混合物を室温で1時間かき混ぜた後に、2-クロロ-5-(トリフルオロメチル)ピリジン(2.26g)を加え、終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から、3-[3-ベンジルオキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル]プロパン酸エチル(3.14g, 収率72%)を無色油状物として得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.24 (3H, t, J = 7.2 Hz), 2.57 - 2.65 (2H, m), 2.74 - 2.81 (2H, m), 4.12 (2H, q, J = 7.2 Hz), 5.35 (2H, s), 7.39 - 7.43 (3H, m), 7.44 - 7.50 (2H, m), 7.82 (1H, d, J = 8.4 Hz), 7.89 - 7.94 (1H, m), 8.22 (1H, s), 8.53 - 8.57 (1H, m)。

参考例60

3-[3-ベンジルオキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル]プロパン酸エチル(3.14g)のテトラヒドロフラン(75mL)溶液に水素化ジイソブチルアルミニウムの1.0Mヘキサン溶液(16.5mL)を0°Cで滴下した後、室温で3時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から、3-[3-ベンジルオキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-

ピラゾール-4-イル}-1-プロパノール(2.41g, 収率85%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点79~81℃。

【0122】

参考例61

4-{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}-1-ブタノール(1.20g)、トリエチルアミン(613μL)及びテトラヒドロフラン(37mL)の混合物に室温でメタンスルホニルクロライド(341μL)を加え、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から、4-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}ブチルメタンスルホナート(1.25g, 収率84%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点87~89℃。

参考例62

5-ベンジルオキシ-2-メトキシベンズアルデヒド(3.45g)、ジエチルホスホノ酢酸エチル(3.41mL)およびN,N-ジメチルホルムアミド(100mL)の混合物に、0℃で水素化ナトリウム(60%、油性、684mg)を加え、室温で2日間かき混ぜた。反応混合物を0.1規定塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:9, 容積比)溶出部から淡黄色油状物を得た。得られた油状物、5%パラジウム-炭素(1.00g)およびエタノール(150mL)の混合物を水素雰囲気下、室温で2時間かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:6, 容積比)溶出部から、3-(5-ヒドロキシ-2-メトキシフェニル)プロパン酸エチル(2.54g, 収率80%)を褐色油状物として得た。

¹H-NMR(CDCl₃) δ : 1.24 (3H, t, J = 6.8 Hz), 2.52 - 2.64 (2H, m), 2.82 - 2.94 (2H, m), 3.77 (3H, s), 4.12 (2H, q, J = 6.8 Hz), 4.94 (1H, brs), 6.6

1 - 6.74 (3H, m)。

【0123】

参考例63

3-(3-フェニル-1H-ピラゾール-4-イル)プロピオン酸エチル (3.00 g)、2-クロロ-5-(トリフルオロメチル)ピリジン (2.35 g) およびN, N-ジメチルホルムアミド (30 ml) の混合物に、0°Cで水素化ナトリウム (60%、油性、620 mg) を加え、室温で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、希塩酸、続いて、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 4, 容積比) 溶出部から、無色油状物を得た。得られた無色油状物のテトラヒドロフラン (50 ml) 溶液に水素化ジイソブチルアルミニウムの1.0Mヘキサン溶液 (30 ml) を0°Cで滴下した後、室温で1時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 1, 容積比) 溶出部から、3-[3-フェニル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパンール (3.85 g, 収率86%) を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点99~100°C。

参考例64

{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}メタノール (10.05 g)、活性二酸化マンガン (31.48 g) およびテトラヒドロフラン (200 ml) の混合物を、室温で終夜かき混ぜた。不溶物をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 4, 容積比) 溶出部から、3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-カルボアルデヒド (8.94 g, 収率90%) を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点226~227°C。

参考例65

3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-カルボアルデヒド(8.30g)、ジエチルホスホノ酢酸エチル(8.50g)およびN,N-ジメチルホルムアミド(75ml)の混合物に、0°Cで水素化ナトリウム(60%、油性、1.50g)を加え、室温で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、希塩酸、続いて、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4、容積比)溶出部から、(E)-3-(3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロペン酸エチル(9.53g、収率90%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点131~132°C。

【0124】

参考例66

(E)-3-(3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロペン酸エチル(9.00g)、5%パラジウム-炭素(2.42g)およびテトラヒドロフラン(100ml)の混合物を水素雰囲気下、室温で、1時間かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:2、容積比)溶出部から、3-(3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロピオン酸エチル(8.45g、収率93%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点50~51°C。

参考例67

3-(3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロピオン酸エチル(7.00g)のテトラヒドロフラン(100ml)溶液に水素化ジイソブチルアルミニウムの1.0Mヘキサン溶液(50ml)を0°Cで滴下した後、室温で1時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに

付し、酢酸エチル-ヘキサン（1：1, 容積比）溶出部から、3-[3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール（5.63 g, 収率92%）を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点103~104℃。

参考例68

2-ベンジルオキシ-3-メトキシベンズアルデヒド（9.90 g）のテトラヒドロフラン（100 ml）溶液に、0℃で水素化リチウムアルミニウム（1.15 g）を加えた後、室温で1時間かき混ぜた。反応混合物に硫酸ナトリウム10水和物（11.03 g）を加えた後、室温で1時間かき混ぜた。沈殿物をろ過により除去した後、ろ液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル溶出部から、2-ベンジルオキシ-3-メトキシベンジルアルコール（9.94 g, 定量的）を無色油状物として得た。

$^1\text{H-NMR}$ (CDCl_3) δ : 1.97 (1H, t, $J=6.6$ Hz), 3.91 (3H, s), 4.55 (2H, d, $J=6.6$ Hz),
5.09 (2H, s), 6.86-6.96 (2H, m), 7.01-7.12 (1H, m), 7.28-7.49 (5H, m)。

【0125】

参考例69.

2-ベンジルオキシ-3-メトキシベンジルアルコール（9.90 g）、アセトン シアンヒドリン（4.60 g）、トリフェニルホスфин（16.21 g）およびテトラヒドロフラン（200 ml）の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液（26.49 g）を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：4, 容積比）溶出部から、2-ベンジルオキシ-3-メトキシフェニルアセトニトリル（8.62 g, 収率84%）を無色油状物として得た。

$^1\text{H-NMR}$ (CDCl_3) δ : 3.53 (2H, s), 3.92 (3H, s), 5.09 (2H, s), 6.90-7.14 (3H, m), 7.32-7.46 (5H, m)。

参考例70

2-ベンジルオキシ-3-メトキシフェニルアセトニトリル（8.62 g）、

8規定水酸化ナトリウム水溶液(40ml)およびエタノール(200ml)の混合物を、還流下、終夜かき混ぜた。冷却後、反応混合物に濃塩酸(30ml)をゆっくりと加えて酸性にした。濃縮後、残留物を酢酸エチルに溶解した。得られた酢酸エチル溶液は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物、10%塩酸-メタノール溶液(200ml)およびメタノール(200ml)の混合物を、室温で終夜かき混ぜた。濃縮後、残留物を酢酸エチルに溶解した。得られた酢酸エチル溶液は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から、(2-ベンジルオキシ-3-メトキシフェニル)酢酸メチル(7.40g, 収率76%)を無色油状物として得た。
¹H-NMR(CDCl₃) δ: 3.61(5H, s), 3.89(3H, s), 5.03(2H, s), 6.79-7.10(3H, m), 7.25-7.56(5H, m)。

参考例71

(2-ベンジルオキシ-3-メトキシフェニル)酢酸メチル(7.40g)、5%パラジウム-炭素(1.39g)およびテトラヒドロフラン(100ml)の混合物を水素雰囲気下、室温で終夜かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から、(2-ヒドロキシ-3-メトキシフェニル)酢酸メチル(5.01g, 収率99%)を無色油状物として得た。

¹H-NMR(CDCl₃) δ: 3.68(2H, s), 3.70(3H, s), 3.88(3H, s), 5.88(1H, s), 6.76-6.86(3H, m)。

【0126】

参考例72

3, 5-ジヒドロキシ安息香酸メチル(500mg)、臭化ベンジル(17.7ml)、炭酸カリウム(20.62g)およびN, N-ジメチルホルムアミド(250ml)の混合物を室温で終夜かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エ

チルーヘキサン（1：3，容積比）溶出部から、無色結晶を得た。得られた無色結晶、ヨウ化メチル（4.6ml）、炭酸カリウム（7.90g）およびN,N-ジメチルホルムアミド（150ml）の混合物を室温で終夜かき混ぜた。反応混合物を水に注ぎ、ジエチルエーテルで抽出した。ジエチルエーテル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮し、3-ベンジルオキシ-5-メトキシ安息香酸メチル（15.54g，収率38%）を淡黄色油状物として得た。
¹H-NMR(CDCl₃) δ : 3.82(3H, s), 3.91(3H, s), 5.08(2H, s), 6.73(1H, t, J=2.3 Hz), 7.19-7.46(7H, m)。

参考例73

水素化リチウムアルミニウム（5.40g）およびテトラヒドロフラン（100ml）の混合物に、0℃で3-ベンジルオキシ-5-メトキシ安息香酸メチル（15.54g）のテトラヒドロフラン（20ml）溶液をゆっくり加えた後、室温で30分かき混ぜた。アセトン（80ml）をゆっくり加えて過剰の水素化リチウムアルミニウムを分解し、さらに食塩水（15.4ml）を加えた。沈殿物をろ過により除去した後、ろ液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（2：3，容積比）溶出部から、（3-ベンジルオキシ-1-メチル-1H-ピラゾール-4-イル）メタノール（14.00g，定量的）を無色油状物として得た。

¹H-NMR(CDCl₃) δ : 1.69(1H, t, J=6.1Hz), 3.79(3H, s), 4.63(2H, d, J=6.1Hz), 5.05(2H, s), 6.47(1H, t, J=2.3 Hz), 6.53-6.55(1H, m), 6.66-6.68(1H, m), 7.29-7.45(5H, m)。

参考例74

(3-ベンジルオキシ-5-メトキシフェニル)メタノール（6.03g）、活性二酸化マンガン（18.0g）およびテトラヒドロフラン（80ml）の混合物を、室温で終夜かき混ぜた。不溶物をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：3，容積比）溶出部から無色油状物を得た。得られた油状物、ジエチルホスホノ酢酸エチル（4.84g）およびN,N-ジメチルホルムアミド（50ml）の混合物に、0℃で水素化ナトリウム（60%，油性、950mg）を加

え、室温で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 3, 容積比) 溶出部から、(E)-3-(3-ベンジルオキシ-5-メトキシフェニル)プロパン酸エチル (3.96 g, 収率 51%) を淡黄色油状物として得た。

1H -NMR($CDCl_3$) δ : 1.34(3H, t, J=7.1 Hz), 3.80(3H, s), 4.26(2H, q, J=7.1 Hz), 5.06(2H, s), 6.39(1H, d, J=15.9 Hz), 6.57(1H, t, J=2.2 Hz), 6.68(1H, t, J=1.7 Hz), 6.75(1H, t, J=1.7 Hz), 7.30-7.45(5H, m), 7.59(1H, d, J=15.9 Hz)。

【0127】

参考例 75

(E)-3-(3-ベンジルオキシ-5-メトキシフェニル)プロパン酸エチル (3.96 g)、5%パラジウム-炭素 (0.4 g) およびエタノール (25 mL) の混合物を水素雰囲気下、室温で、終夜かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (2 : 3, 容積比) 溶出部から、3-(3-ヒドロキシ-1-フェニル-1H-ピラゾール-5-イル)プロピオン酸エチル (2.78 g, 収率 98%) を淡黄色油状物として得た。

1H -NMR($CDCl_3$) δ : 1.25(3H, t, J=7.1 Hz), 2.60(2H, t, J=7.8 Hz), 2.86(2H, t, J=7.8 Hz), 3.76(3H, s), 4.14(2H, q, J=7.1 Hz), 5.22(1H, s), 6.25-6.35(3H, m)。

参考例 76

(3-ベンジルオキシ-5-メトキシフェニル)メタノール (8.00 g)、アセトンシアヒドリン (4.65 mL)、トリブチルホスフィン (13.3 g) およびテトラヒドロフラン (200 mL) の混合物に 1, 1'-アゾジカルボニルジペリジン (16.53 g) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 2, 容積比) 溶出部から、(3-ベンジルオキシ-5-メトキシフェニル)アセトニトリル (5.77 g, 収率 70%) を黄色油状物とし

て得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 3.68(2H, s), 3.78(2H, s), 5.05(2H, s), 6.46-6.56(3H, m), 7.30-7.45(5H, m)。

参考例 7 7

(3-ベンジルオキシ-5-メトキシフェニル) アセトニトリル (5. 77 g.)、水酸化カリウム (4. 50 g) およびエチレングリコール (50 ml) の混合物を 120°C で終夜かき混ぜた。反応混合物を水に注ぎ、ジエチルエーテルで洗浄した。水層に塩酸を加えて酸性にし、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 (MgSO_4) 後、濃縮し、残留物を得た。得られた残留物、ヨウ化メチル (1. 80 ml)、炭酸カリウム (4. 00 g) および N, N-ジメチルホルムアミド (50 ml) の混合物を室温で 1 時間かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 (MgSO_4) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 4, 容積比) 溶出部から、(3-ベンジルオキシ-5-メトキシフェニル) 酢酸メチル (4. 43 g, 収率 68 %) を無色油状物として得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 3.56(2H, s), 3.69(3H, s), 3.77(2H, s), 5.03(2H, s), 6.44-6.47(2H, m), 6.51-6.54(1H, m), 7.29-7.45(5H, m)。

【0128】

参考例 7 8

(3-ベンジルオキシ-5-メトキシフェニル) 酢酸メチル (4. 43 g)、5% パラジウム-炭素 (0. 44 g) およびエタノール (25 ml) の混合物を水素雰囲気下、室温で、終夜かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (2 : 3, 容積比) 溶出部から、3-ヒドロキシ-5-メトキシフェニル) 酢酸メチル (2. 97 g, 収率 97 %) を無色油状物として得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 3.54(2H, s), 3.70(3H, s), 3.76(2H, s), 5.38(1H, br s), 6.32(1H, t, $J=2.3$ Hz), 6.35-6.42(2H, m)。

参考例 79

p-ヒドロキシフェニルアセトニトリル(15.0g)、臭化ベンジル(13.6ml)、炭酸カリウム(15.6g)およびN,N-ジメチルホルムアミド(100ml)の混合物を室温で終夜かき混ぜた。反応混合物を水に注ぎ、析出した結晶をろ取り、水でよく洗浄後、乾燥し、(4-ベンジルオキシフェニル)アセトニトリル(24.12g, 収率96%)を得た。融点70~71℃。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 3.68(2H, s), 5.07(2H, s), 6.95-6.99(2H, m), 7.21-7.25(2H, m), 7.30-7.45(5H, m)。

参考例 80

(4-ベンジルオキシフェニル)アセトニトリル(600mg)、ヨウ化メチル(20.0ml)およびジメチルスルホキシド(200ml)の混合物に、50%水酸化ナトリウム水溶液を0℃でゆっくり加えた後、室温で3時間かき混ぜた。反応混合物を水に注ぎ、析出した結晶をろ取り、水でよく洗浄後、乾燥し、2-(4-ベンジルオキシフェニル)-2-メチルプロパンニトリル(25.88g, 収率99%)を得た。融点63~64℃。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.70(6H, s), 5.07(2H, s), 6.95-7.00(2H, m), 7.30-7.45(7H, m)。

【0129】

参考例 81

2-(4-ベンジルオキシフェニル)-2-メチルプロパンニトリル(25.88g)、水酸化カリウム(20.34g)およびエチレングリコール(200ml)の混合物を120℃で2日間かき混ぜた。反応混合物を冰水に注ぎ、塩酸を加えて酸性とした後、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO_4)後、濃縮した。得られた無色結晶をろ取り、2-(4-ベンジルオキシフェニル)-2-メチルプロパン酸(27.62g, 収率99%)を得た。融点128~130℃。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.58(6H, s), 5.05(2H, s), 6.92-6.97(2H, m), 7.29-7.45(7H, m)。

参考例 82

2-(4-ベンジルオキシフェニル)-2-メチルプロパン酸(27.62g)、硫酸(6ml)およびエタノール(500ml)の混合物を14時間還流した。反応混合物を冰水に注ぎ、析出した結晶をろ取し、重曹水および水でよく洗浄後、乾燥し、2-(4-ベンジルオキシフェニル)-2-メチルプロパン酸エチル(2820g, 収率92%)を得た。融点54~55°C。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.82(3H, t, J=7.1 Hz), 1.55(6H, s), 4.11(2H, q, J=7.1 Hz), 5.04(2H, s), 6.90-6.95(2H, m), 7.24-7.45(7H, m)。

参考例83

2-(4-ベンジルオキシフェニル)-2-メチルプロパン酸エチル(28.20g)、5%パラジウム-炭素(2.8g)およびエタノール(100ml)の混合物を水素雰囲気下、室温で、終夜かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:3, 容積比)溶出部から、2-(4-ヒドロキシフェニル)-2-メチルプロパン酸エチル(17.20g, 収率87%)を無色油状物として得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.19(3H, t, J=7.1 Hz), 1.55(6H, s), 4.12(2H, q, J=7.2 Hz), 5.26(1H, s), 6.74-6.79(2H, m), 7.18-7.23(2H, m)

【0130】

参考例84

(3-ベンジルオキシフェニル)メタノール(22.09g)およびジクロロエタン(250ml)の混合物に、0°Cで塩化チオニル(14.8ml)を加え、室温で3時間かき混ぜた。反応混合物を濃縮し、残留物を重曹水に注ぎ、ジエチルエーテルで抽出した。ジエチルエーテル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮し、残留物を得た。得られた残留物、シアノ化ナトリウム(5.32g)およびN,N-ジメチルホルムアミド(100ml)の混合物を50°Cで終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:3, 容積比)溶出部から、(3-ベンジルオキシフェニル)アセトニトリル(19.64

g, 収率85%) を淡黄色油状物として得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 3.72(2H, s), 5.07(2H, s), 6.89-6.96(3H, m), 7.24-7.45(6H, m)。

参考例85

(3-ベンジルオキシフェニル)アセトニトリル(19.64g)、ヨウ化メチル(16.5ml)およびジメチルスルホキシド(200ml)の混合物に、50%水酸化ナトリウム水溶液(28.2g)を0°Cでゆっくり加えた後、室温で3時間かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO_4)後、濃縮し、2-(3-ベンジルオキシフェニル)-2-メチルプロパンニトリル(21.63g, 収率98%)を黄色油状物として得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.71(6H, s), 5.08(2H, s), 6.90-6.94(1H, m), 7.05-7.11(2H, m), 7.28-7.47(6H, m)。

参考例86

2-(3-ベンジルオキシフェニル)-2-メチルプロパンニトリル(21.63g)、水酸化カリウム(17.0g)およびエチレングリコール(150ml)の混合物を120°Cで2日間かき混ぜた。反応混合物を氷水に注ぎ、塩酸を加えて酸性とした後、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO_4)後、濃縮し、2-(3-ベンジルオキシフェニル)-2-メチルプロパン酸(20.68g, 収率89%)を黄色結晶として得た。融点114~116°C。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.58(6H, s), 5.05(2H, s), 6.85-6.89(2H, m), 6.98-7.05(2H, m), 7.23-7.46(6H, m)。

【0131】

参考例87

2-(3-ベンジルオキシフェニル)-2-メチルプロパン酸(20.68g)、炭酸カリウム(10.6g)、ヨウ化メチル(7.1ml)およびN,N-ジメチルホルムアミド(160ml)の混合物を室温で2時間かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄

、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:5, 容積比) 溶出部から、2-(3-ベンジルオキシフェニル)-2-メチルプロパン酸メチル (19.62 g, 収率 90%) を淡黄色油状物として得た。

1H -NMR($CDCl_3$) δ : 1.56(6H, s), 3.63(3H, s), 5.05(2H, s), 6.84-6.97(3H, m), 7.22-7.46(6H, m)

参考例 8 8

2-(3-ベンジルオキシフェニル)-2-メチルプロパン酸メチル (19.62 g)、5%パラジウム-炭素 (2.0 g) およびエタノール (100 ml) の混合物を水素雰囲気下、室温で、終夜かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:3, 容積比) 溶出部から、2-(3-ヒドロキシフェニル)-2-メチルプロパン酸エチル (12.32 g, 収率 92%) を淡黄色油状物として得た。

1H -NMR($CDCl_3$) δ : 1.56(6H, s), 3.66(3H, s), 5.35(1H, s), 6.72(1H, ddd, $J=8.1, 2.4, 1.0\text{ Hz}$), 6.83(1H, t, $J=2.1\text{ Hz}$), 6.89(1H, ddd, $J=7.8, 1.7, 1.0\text{ Hz}$), 7.19(1H, t, $J=7.9\text{ Hz}$)

参考例 8 9

3, 4-ジヒドロキシベンズアルデヒド (25.30 g)、炭酸カリウム (15.20 g)、臭化ベンジル (21.7 ml) およびN, N-ジメチルホルムアミド (250 ml) の混合物を室温で終夜かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン-クロロホルム (3:10:12, 容積比) 溶出部から、3-ベンジルオキシ-4-ヒドロキシベンズアルデヒド (24.62 g, 収率 59%)を得た。エタノールから再結晶した。融点 123~124°C。

1H -NMR($CDCl_3$) δ : 5.21(2H, s), 5.79(1H, s), 7.04(1H, d, $J=8.3\text{ Hz}$), 7.38-7.47(7H, m), 9.84(1H, s)。

【0132】

参考例90

3-ベンジルオキシー-4-ヒドロキシベンズアルデヒド(10.60g)、炭酸カリウム(12.84g)、クロロメチルメチルエーテル(5.2ml)およびN,N-ジメチルホルムアミド(150ml)の混合物を室温で終夜かき混ぜた。反応混合物を希塩酸に注ぎ、トルエンで抽出した。トルエン層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:2, 容積比)溶出部から無色油状物を得た。得られた油状物、ジエチルホスホノ酢酸エチル(12.38g)およびN,N-ジメチルホルムアミド(90ml)の混合物に、0°Cで水素化ナトリウム(60%、油性、2.43mg)を加え、室温で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:2, 容積比)溶出部から、(E)-3-[3-ベンジルオキシー-4-(メトキシメトキシ)フェニル]プロパン酸エチル(13.48g, 収率85%)を淡黄色油状物として得た。

¹H-NMR(CDCl₃) δ : 1.33(3H, t, J=7.1 Hz), 3.53(3H, s), 4.25(2H, q, J=7.1 Hz), 5.19(2H, s), 5.25(2H, s), 6.30(1H, d, J=15.9 Hz), 6.90(1H, d, J=8.5 Hz), 7.10(1H, dd, J=8.3, 2.2 Hz), 7.29-7.44(5H, m), 7.59 (1H, d, J=15.9 Hz), 9.84(1H, s)。

参考例91

(E)-3-[3-ベンジルオキシー-4-(メトキシメトキシ)フェニル]プロパン酸エチル(13.48g)、5%パラジウム-炭素(1.35g)およびエタノール(60ml)の混合物を水素雰囲気下、室温で、終夜かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮し、残留物を得た。得られた残留物、炭酸カリウム(10.88g)、臭化ベンジル(5.1ml)およびN,N-ジメチルホルムアミド(50ml)の混合物を室温で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:2, 容積比)溶出部から、3-[3

-ベンジルオキシ-4-(メトキシメトキシ)フェニル]プロパン酸エチル (9.46 g, 収率 70%) を無色油状物として得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.23(3H, t, J=7.2 Hz), 2.58(2H, d, J=7.8 Hz), 2.87(2H, t, J=7.8 Hz), 3.52(3H, s), 4.12(2H, q, J=7.1 Hz), 5.12(2H, s), 5.21(2H, s), 6.76(1H, dd, J=8.3, 2.0 Hz), 6.83(1H, d, J=8.1 Hz), 6.99(1H, d, J=2.2 Hz), 7.27-7.44(5H, m)。

参考例9 2

3-[3-ベンジルオキシ-4-(メトキシメトキシ)フェニル]プロパン酸エチル (9.46 g) およびエタノール (100 ml) の混合物にピペットで塩酸を3滴加え、80°Cで1時間かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:2, 容積比) 溶出部から、3-(3-ベンジルオキシ-4-ヒドロキシフェニル)プロパン酸エチル (8.13 g, 収率 99%) を無色結晶として得た。融点 60~61°C。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.24(3H, t, J=7.1 Hz), 2.57(2H, d, J=7.9 Hz), 2.86(2H, t, J=7.8 Hz), 4.12(2H, q, J=7.2 Hz), 5.08(2H, s), 5.62(1H, s), 6.66(1H, dd, J=8.1, 2.2 Hz), 6.80(1H, d, J=2.2 Hz), 6.83(1H, d, J=8.1 Hz), 7.33-7.43(5H, m)。

【0133】

参考例9 3

(E)-3-(2-ベンジルオキシ-3-メトキシフェニル)プロパン酸エチル (6.65 g)、5%パラジウム-炭素 (2.46 g) およびテトラヒドロフラン (100 ml) の混合物を水素雰囲気下、室温で終夜かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から、3-(2-ヒドロキシ-3-メトキシフェニル)プロピオン酸エチル (5.86 g, 収率 88%) を無色油状物として得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.23 (3H, t, J=7.0 Hz), 2.58-2.69 (2H, m), 2.90-3.01 (2H, m), 3.88 (3H, s), 4.13 (2H, q, J=7.0 Hz), 5.84 (1H, s), 6.72-6.78 (3

H, m)。

参考例94

2-ヒドロキシ-5-メトキシベンズアルデヒド(10.25g)、臭化ベンジル(8.1ml)、炭酸カリウム(13.93g)およびN,N-ジメチルホルムアミド(100ml)の混合物を室温で終夜かき混ぜた後、反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。無色油状物、ジエチルホスホノ酢酸エチル(15.66g)およびN,N-ジメチルホルムアミド(100ml)の混合物に、0°Cで水素化ナトリウム(60%、油性、2.73g)を加え、室温で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、希塩酸、続いて、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から、(E)-3-(2-ベンジルオキシ-5-メトキシフェニル)プロパン酸エチル(16.58g, 収率79%)を無色油状物として得た。

¹H-NMR (CDCl₃) δ : 1.33 (3H, t, J=7.0 Hz), 3.78 (3H, s), 4.26 (2H, q, J=7.0 Hz), 5.11 (2H, s), 6.49 (1H, d, J=16.0 Hz), 6.80-6.94 (2H m), 7.04-7.11 (1H, m), 7.26-7.48 (5H, m), 8.06 (1H, d, J=16.0 Hz)。

参考例95

(E)-3-(2-ベンジルオキシ-5-メトキシフェニル)プロパン酸エチル(6.83g)、5%パラジウム-炭素(1.11g)およびテトラヒドロフラン(100ml)の混合物を水素雰囲気下、室温で終夜かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から、3-(2-ヒドロキシ-5-メトキシフェニル)プロピオン酸エチル(4.54g, 収率92%)を無色油状物として得た。

¹H-NMR (CDCl₃) δ : 1.23 (3H, t, J=7.2 Hz), 2.68-2.74 (2H, m), 2.83-2.89 (2H, m), 3.74 (3H, s), 4.13 (2H, q, J=7.2 Hz), 6.62-6.70 (2H, m), 6.83 (1

H, d, J=8.4 Hz), 6.95-6.98 (1H, br s)。

【0134】

参考例96

2-ヒドロキシ-4-メトキシベンズアルデヒド (25.16 g)、臭化ベンジル (20 ml)、炭酸カリウム (25.03 g) およびN, N-ジメチルホルムアミド (300 ml) の混合物を室温で終夜かき混ぜた後、反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から、2-ベンジルオキシ-4-メトキシベンズアルデヒド (37.18 g, 収率93%) を無色油状物として得た。

1H -NMR ($CDCl_3$) δ : 3.86 (3H, s), 5.17 (2H, s), 6.50-6.62 (2H m), 7.24-7.50 (5H, m), 7.85 (1H, d, J=8.4 Hz), 10.39 (1H, s)。

参考例97

2-ベンジルオキシ-4-メトキシベンズアルデヒド (5.00 g)、ジエチルホスホノ酢酸エチル (4.75 g) およびN, N-ジメチルホルムアミド (50 ml) の混合物に、0°Cで水素化ナトリウム (60%、油性、0.84 g) を加え、室温で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、希塩酸、続いて、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から、(E)-3-(2-ベンジルオキシ-4-メトキシフェニル)プロパン酸エチル (5.48 g, 収率85%) を無色油状物として得た。

1H -NMR ($CDCl_3$) δ : 1.32 (3H, t, J=6.8 Hz), 3.80 (3H, s), 4.23 (2H, q, J=6.8 Hz), 5.15 (2H, s), 6.37-6.56 (3H, m), 7.24-7.53 (6H, m), 8.00 (1H, d, J=16.2 Hz)。

参考例98

(E)-3-(2-ベンジルオキシ-4-メトキシフェニル)プロパン酸エチル (5.45 g)、5%パラジウム-炭素 (1.16 g) およびテトラヒドロフラ

ン（100ml）の混合物を水素雰囲気下、室温で終夜かき混ぜた。パラジウム－炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル－ヘキサン（1：4、容積比）溶出部から、3-(2-ヒドロキシ-4-メトキシフェニル)プロピオン酸エチル（3.80g、収率97%）を無色油状物として得た。

$^1\text{H-NMR}$ (CDCl_3) δ : 1.24 (3H, t, $J=7.0$ Hz), 2.57-2.68 (2H, m), 2.77-2.88 (2H, m), 3.76 (3H, s), 4.15 (2H, q, $J=7.0$ Hz), 6.40-6.52 (2H, m), 6.97 (1H, d, $J=8.0$ Hz), 7.58 (1H, br s)。

【0135】

参考例99

2-ベンジルオキシ-4-メトキシベンズアルデヒド（13.15g）のテトラヒドロフラン（100ml）溶液に、0°Cで水素化リチウムアルミニウム（1.50g）を加えた後、室温で1時間かき混ぜた。反応混合物に硫酸ナトリウム10水和物（15.09g）を加えた後、室温で1時間かき混ぜた。沈殿物をろ過により除去した後、ろ液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル溶出部から、2-ベンジルオキシ-4-メトキシベンジルアルコール（12.84g、収率97%）を無色油状物として得た。

$^1\text{H-NMR}$ (CDCl_3) δ : 2.19 (1H, br t), 3.79 (3H, s), 4.66 (2H, d, $J=5.8$ Hz), 5.09 (2H, s), 6.44-6.56 (2H m), 7.16-7.46 (6H, m)。

参考例100

2-ベンジルオキシ-4-メトキシベンジルアルコール（12.25g）、アセトンシアソヒドリン（5.70g）、トリフェニルホスфин（20.03g）およびテトラヒドロフラン（200ml）の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液（32.75g）を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：4、容積比）溶出部から、2-ベンジルオキシ-4-メトキシフェニルアセトニトリル（10.34g、収率81%）を無色油状物として得た。

$^1\text{H-NMR}$ (CDCl_3) δ : 3.65 (2H, s), 3.79 (3H, s), 5.08 (2H, s), 6.43-6.56 (2

H, m), 7.22-7.48 (6H, m)。

参考例101

2-ベンジルオキシ-4-メトキシフェニルアセトニトリル (10. 34 g) 、8規定水酸化ナトリウム水溶液 (50 ml) およびエタノール (200 ml) の混合物を、還流下、終夜かき混ぜた。冷却後、反応混合物に濃塩酸 (35 ml) をゆっくりと加えて酸性にした。濃縮後、残留物を酢酸エチルに溶解した。得られた酢酸エチル溶液は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物、10%塩酸-メタノール溶液 (200 ml) およびメタノール (200 ml) の混合物を、室温で終夜かき混ぜた。濃縮後、残留物を酢酸エチルに溶解した。得られた酢酸エチル溶液は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から、(2-ベンジルオキシ-4-メトキシフェニル) 酢酸メチル (9. 35 g, 収率80%) を無色油状物として得た。
 1H -NMR ($CDCl_3$) δ : 3.61 (2H, s), 3.63 (3H, s), 3.78 (3H, s), 5.06 (2H, s), 6.43-6.54 (2H, m), 7.11 (1H, d, $J=8.0$ Hz), 7.24-7.46 (5H, m)。

【0136】

参考例102

(2-ベンジルオキシ-4-メトキシフェニル) 酢酸メチル (9. 35 g) 、5%パラジウム-炭素 (1. 44 g) およびテトラヒドロフラン (100 ml) の混合物を水素雰囲気下、室温で終夜かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から、(2-ヒドロキシ-4-メトキシフェニル) 酢酸メチル (6. 11 g, 収率95%) を無色油状物として得た。

1H -NMR ($CDCl_3$) δ : 3.62 (2H, s), 3.75 (3H, s), 3.77 (3H, s), 6.45 (1H, dd, $J=2.4, 8.4$ Hz), 6.53 (1H, d, $J=2.4$ Hz), 6.98 (1H, d, $J=8.4$ Hz), 7.62 (1H, s)。

参考例103

2-ヒドロキシ-3-メトキシベンズアルデヒド (8. 50 g) 、臭化ベンジ

ル (6.7 ml)、炭酸カリウム (11.66 g) および N, N-ジメチルホルムアミド (100 ml) の混合物を室温で終夜かき混ぜた後、反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 4, 容積比) 溶出部から、2-ベンジルオキシ-3-メトキシベンズアルデヒド (13.08 g, 収率 97%) を無色油状物として得た。

1H -NMR ($CDCl_3$) δ : 3.95 (3H, s), 5.18 (2H, s), 7.10-7.21 (2H m), 7.32-7.43 (6H, m), 10.23 (1H, s)。

参考例 104

2-ベンジルオキシ-3-メトキシベンズアルデヒド (5.51 g)、ジエチルホスホノ酢酸エチル (6.12 g) および N, N-ジメチルホルムアミド (50 ml) の混合物に、0°Cで水素化ナトリウム (60%、油性、1.03 g) を加え、室温で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、希塩酸、続いて、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 4, 容積比) 溶出部から、(E)-3-(2-ベンジルオキシ-3-メトキシフェニル)プロパン酸エチル (6.68 g, 収率 94%) を無色油状物として得た。

1H -NMR ($CDCl_3$) δ : 1.33 (3H, t, $J=7.0$ Hz), 3.90 (3H, s), 4.24 (2H, q, $J=7.0$ Hz), 5.02 (2H, s), 6.38 (1H, d, $J=16.4$ Hz), 6.92-7.18 (3H, m), 7.28-7.52 (5H, m), 7.98 (1H, d, $J=16.4$ Hz)。

【0137】

参考例 105

[3-(ベンジルオキシ)-1-メチル-1H-ピラゾール-5-イル]アセトニトリル (5.08 g)、6 規定水酸化ナトリウム水溶液 (30 mL)、テトラヒドロフラン (30 mL) およびメタノール (30 mL) の混合物を 80°C で 2.5 日間かき混ぜた。反応混合物を 1 規定塩酸で中和し、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮し褐色油

状物を得た。得られた油状物、炭酸カリウム（6. 12 g）およびN, N-ジメチルホルムアミド（230 mL）の混合物にヨウ化メチル（2. 76 mL）を室温で加え、終夜かき混ぜた。反応混合物を飽和塩化アンモニウム水溶液に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1 : 6, 容積比）溶出部から、黄色油状物として〔3-（ベンジルオキシ）-1-メチル-1H-ピラゾール-5-イル〕酢酸メチル（1. 60 g, 収率28%）を得た。

¹H-NMR(CDCl₃) δ : 3.60 (2H, s), 3.68 (3H, s), 3.72 (3H, s); 5.15 (2H, s), 5.62 (1H, s), 7.26 - 7.46 (5H, m)。

参考例106

〔3-（ベンジルオキシ）-1-メチル-1H-ピラゾール-5-イル〕酢酸メチル（1. 60 g）、5%パラジウム-炭素（320 mg）およびエタノール（100 mL）の混合物を水素雰囲気下、室温で2. 5時間かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮し、黄色固体として（3-ヒドロキシ-1-メチル-1H-ピラゾール-5-イル）酢酸メチル（1. 02 g, 収率97%）を得た。酢酸エチル-ヘキサンから再結晶し、無色結晶を得た。融点147-148°C。

参考例107

3-（1-ベンジル-3-エトキシ-1H-ピラゾール-4-イル）-1-ブロパノール（6. 75 g）、2-（3-ヒドロキシフェノキシ）-2-メチルブロパン酸エチル（6. 39 g）、トリブチルホスフィン（12. 9 mL）およびテトラヒドロフラン（1. 00 L）の混合物に1, 1'-アゾジカルボニルジビペリジン（13. 1 g）を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1 : 6, 容積比）溶出部から、淡黄色油状物として2-〔3-（1-ベンジル-3-エトキシ-1H-ピラゾール-4-イル）プロポキシ〕フェノキシ-2-メチルブロパン酸エチル（9. 47 g, 収率78%）を得た。

¹H-NMR(CDCl₃) δ : 1.24 (3H, t, J = 7.2 Hz), 1.35 (3H, t, J = 6.9 Hz), 1.5

9 (6H, s), 1.92 - 2.03 (2H, m), 2.45 - 2.55 (2H, m), 3.86 - 3.94 (2H, m), 4.18 - 4.28 (4H, m), 5.07 (2H, s), 6.35 - 6.44 (2H, m), 6.49 - 6.54 (1H, m), 6.96 (1H, s), 7.06 - 7.12 (1H, m), 7.14 - 7.18 (2H, m), 7.26 - 7.36 (3H, m)。

【0138】

参考例108

1-ベンジル-4-[3-(1,3-ジオキソラン-2-イル)プロピル]-1H-ピラゾール-3-オール (21.8 g)、ジエチル硫酸 (17.3 mL)、炭酸カリウム (16.7 g) およびN, N-ジメチルホルムアミド (150 mL) の混合物を室温で終夜かき混ぜた。反応混合物を飽和塩酸アンモニウム水溶液に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から、黄色油状物として1-ベンジル-4-[3-(1,3-ジオキソラン-2-イル)プロピル]-3-エトキシ-1H-ピラゾール (19.5 g, 82%) を得た。

1H -NMR($CDCl_3$) δ : 1.36 (3H, t, $J = 6.9$ Hz), 1.57 - 1.74 (4H, m), 2.32 - 2.39 (2H, m), 3.80 - 3.98 (4H, m), 4.22 (2H, q, $J = 6.9$ Hz), 4.82 - 4.87 (1H, m), 5.07 (2H, s), 6.93 (1H, s), 7.13 - 7.17 (2H, m), 7.23 - 7.35 (3H, m)。

参考例109

4-(1-ベンジル-3-エトキシ-1H-ピラゾール-4-イル)-1-ブタノール (1.50 g)、2-(3-ヒドロキシフェノキシ)-2-メチルプロパン酸エチル (1.35 g)、トリブチルホスフィン (2.73 mL) およびテトラヒドロフラン (110 mL) の混合物に 1, 1'-アゾジカルボニルジピペリジン (2.76 g) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:6, 容積比) 溶出部から、無色油状物として2-[3-[4-(1-ベンジル-3-エトキシ-1H-ピラゾール-4-イル)ブトキシ]フェノキシ]-2-メチルプロパン酸エチル (1.33 g, 収率52%) を得た。

¹H-NMR(CDC1₃) δ : 1.24 (3H, t, J = 7.0 Hz), 1.37 (3H, t, J = 7.0 Hz), 1.48 - 1.87 (4H, m), 1.59 (6H, s), 2.33 - 2.43 (2H, m), 3.86 - 3.95 (2H, m), 4.16 - 4.29 (4H, m), 5.09 (2H, s), 6.34 - 6.44 (2H, m), 6.48 - 6.56 (1H, m), 6.95 (1H, s), 7.04 - 7.20 (3H, m), 7.24 - 7.39 (3H, m)。

参考例110

カリウムtert-ブトキシド(3.79 g)の1, 2-ジメトキシエタン(17 mL)溶液に-78°Cでトルエンスルホニルメチルイソシアニド(3.29 g)の1, 2-ジメトキシエタン(17 mL)の溶液を滴下して加えた。次いで、同じ温度で5-(ベンジルオキシ)-2-メトキシベンズアルデヒド(3.90 g)の1, 2-ジメトキシエタン(50 mL)の溶液を滴下して加えた後、反応混合物を室温まで暖めた。室温で1時間かき混ぜた後、メタノール(85 mL)を加えた。反応混合物は還流するまで暖められ、その温度で2時間かき混ぜた。反応混合物に飽和塩化アンモニア水溶液を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:6, 容積比)溶出部から、淡黄色油状物として[5-(ベンジルオキシ)-2-メトキシフェニル]アセトニトリル(3.63 g, 収率89%)を得た。

¹H-NMR(CDC1₃) δ : 3.66 (2H, s), 3.81 (3H, s), 5.02 (2H, s), 6.79 (1H, d, J = 9.0 Hz), 6.88 (1H, dd, J = 2.7, 9.0 Hz), 7.03 (1H, d, J = 2.7 Hz), 7.28 - 7.44 (m, 5H)。

【0139】

参考例111

[5-(ベンジルオキシ)-2-メトキシフェニル]アセトニトリル(3.63 g)、6規定水酸化ナトリウム水溶液(40 mL)、テトラヒドロフラン(40 mL)およびメタノール(40 mL)の混合物を80°Cで3日間かき混ぜた。反応混合物を1規定塩酸で中和し、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮し淡黄色固体を得た。得られた固体、炭酸カリウム(3.95 g)およびN, N-ジメチルホルムアミド(478 mL)の混合物にヨウ化メチル(1.78 mL)を室温で加え、終夜かき混ぜた

。反応混合物に希塩酸を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 4, 容積比) 溶出部から、褐色固体として [5-(ベンジルオキシ)-2-メトキシフェニル] 酢酸メチル (3.76 g, 収率 92%) を得た。酢酸エチル-ヘキサンから再結晶により無色結晶を得た。融点 74 ~ 75°C。

参考例 112

[5-(ベンジルオキシ)-2-メトキシフェニル] 酢酸メチル (3.61 g)、5%パラジウム-炭素 (800 mg) およびエタノール (150 mL) の混合物を水素雰囲気下、室温で 4.5 時間かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 2, 容積比) 溶出部から、(5-ヒドロキシ-2-メトキシフェニル) 酢酸メチル (2.40 g, 収率 97%) を淡黄色油状物として得た。

1H -NMR($CDCl_3$) δ : 3.58 (2H, s), 3.70 (3H, s), 3.75 (3H, s), 5.21 (1H, s), 6.66 - 6.76 (3H, m)。

参考例 113

2-[3-[3-(1-ベンジル-3-エトキシ-1H-ピラゾール-4-イル) プロポキシ] フェノキシ]-2-メチルプロパン酸エチル (9.47 g)、5%パラジウム-炭素 (10.0 g) およびエタノール (200 mL) の混合物にギ酸 (65 mL) を加え、加熱還流下終夜かき混ぜた。パラジウム-炭素をろ過により除去し、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 1, 容積比) 溶出部から、2-[3-[3-(3-エトキシ-1H-ピラゾール-4-イル) プロポキシ] フェノキシ]-2-メチルプロパン酸エチル (5.10 g, 収率 69%) を黄色油状物として得た。

1H -NMR($CDCl_3$) δ : 1.25 (3H, t, $J = 7.0$ Hz), 1.37 (3H, t, $J = 6.8$ Hz), 1.60 (6H, s), 1.91 - 2.09 (2H, m), 2.48 - 2.60 (2H, m), 3.85 - 3.96 (2H, m), 4.16 - 4.30 (4H, m), 6.34 - 6.45 (2H, m), 6.50 - 6.58 (1H, m), 7.04 - 7

.17 (2H, m)。

【0140】

参考例114

3 - (3 - エトキシ - 1 H - ピラゾール - 4 - イル) プロパン酸エチル (7.65 g)、水素化ナトリウム (60%、油性、1. 16 g) およびN, N - ジメチルホルムアミド (120 mL) の混合物を室温で30分かき混ぜた後に、2 - フルオロピリジン (2. 48 mL) を加え、100°Cで終夜かき混ぜた。反応混合物に希塩酸を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 6, 容積比) 溶出部から、無色油状物として3 - [3 - エトキシ - 1 - (2 - ピリジニル) - 1 H - ピラゾール - 4 - イル] プロパン酸エチル (1. 52 g, 収率22%)を得た。

1H -NMR($CDCl_3$) δ : 1.26 (3H, t, J = 7.2 Hz), 1.43 (3H, t, J = 7.2 Hz), 2.57 - 2.65 (2H, m), 2.70 - 2.78 (2H, m), 4.14 (2H, q, J = 7.2 Hz), 4.34 (2H, q, J = 7.2 Hz), 6.98 - 7.06 (1H, m), 7.66 - 7.74 (2H, m), 8.16 (1H, s), 8.27 - 8.31 (1H, m)。

参考例115

3 - [3 - エトキシ - 1 - (2 - ピリジニル) - 1 H - ピラゾール - 4 - イル] プロパン酸エチル (2. 90 g) のテトラヒドロフラン (100 mL) 溶液に水素化ジイソブチルアルミニウムの0. 93 Mヘキサン溶液 (22. 0 mL) を0°Cで滴下した後、室温で2時間かき混ぜた。反応混合物を0°Cに冷却し、水素化ジイソブチルアルミニウムの0. 93 Mヘキサン溶液 (11. 0 mL) を滴下して加えた。反応混合物を室温に暖めた後に、1時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 1, 容積比) 溶出部から、3 - [3 - エトキシ - 1 - (2 - ピリジニル) - 1 H - ピラゾール - 4 - イル] - 1 - プロパンール (2. 41 g, 収率97%) を無色油状物として得た。

1H -NMR($CDCl_3$) δ : 1.44 (3H, t, J = 7.2 Hz), 1.73 - 1.90 (3H, m), 2.49 - 2

.56 (2H, m), 3.64 - 3.71 (2H, m), 4.37 (2H, q, J = 7.2 Hz), 6.98 - 7.08 (1H, m), 7.67 - 7.75 (2H, m), 8.16 (1H, s), 8.28 - 8.32 (1H, m)。

参考例116

2-(1, 3-ジオキソラン-2-イル)エチルテトラフェニルホスホニウムプロマイド (53.2 g) とN, N-ジメチルホルムアミド (500 mL) の混合物に、0°Cで水素化ナトリウム (60%、油性、4.80 g) を加えた。反応混合物を室温で30分かき混ぜた後、1-ベンジル-3-(ベンジルオキシ)-1H-ピラゾール-4-カルバルデヒド (28.9 g) のN, N-ジメチルホルムアミド (100 mL) 溶液を加え、室温で終夜、70°Cで5時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:6, 容積比) 溶出部から、黄色油状物を得た。得られた油状物、5%パラジウム-炭素 (3.80 g) およびエタノール (500 mL) の混合物を水素雰囲気下、室温で終夜かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:1, 容積比) 溶出部から、白色固体として1-ベンジル-4-[3-(1, 3-ジオキソラン-2-イル)プロピル]-1H-ピラゾール-3-オール (21.8 g, 収率76%)を得た。酢酸エチル-ヘキサンから再結晶し、無色結晶を得た。融点93~94°C。

【0141】

参考例117

1-ベンジル-4-[3-(1, 3-ジオキソラン-2-イル)プロピル]-3-エトキシ-1H-ピラゾール (22.0 g)、1規定塩酸 (150 mL)、エタノール (150 mL) およびテトラヒドロフラン (150 mL) の混合物を、室温で2.5時間、50°Cで3時間かき混ぜた。反応混合物に飽和塩酸アンモニウム水溶液を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から、無色油状

物として4-(1-ベンジル-3-エトキシ-1H-ピラゾール-4-イル)ブタナール(10.1g, 収率53%)を得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.36 (3H, t, J = 6.9 Hz), 1.79 - 1.91 (2H, m), 2.32 - 2.48 (4H, m), 4.22 (2H, q, J = 6.9 Hz), 5.07 (2H, s), 6.93 (1H, s), 7.13 - 7.18 (2H, m), 7.24 - 7.36 (3H, m), 9.73 (1H, s)。

参考例118

4-(1-ベンジル-3-エトキシ-1H-ピラゾール-4-イル)ブタナール(10.1g)のエタノール(185mL)溶液に水素化ホウ素ナトリウム(1.54g)を室温で加え、終夜かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:2, 容積比)溶出部から、無色油状物として4-(1-ベンジル-3-エトキシ-1H-ピラゾール-4-イル)-1-ブタノール(9.44g, 収率93%)を得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.37 (3H, t, J = 7.0 Hz), 1.52 - 1.69 (4H, m), 2.29 - 2.41 (2H, m), 3.60 - 3.71 (2H, brm), 4.23 (2H, q, J = 7.0 Hz), 5.08 (2H, s), 6.94 (1H, s), 7.13 - 7.21 (2H, m), 7.22 - 7.39 (3H, m)。

参考例119

2-[3-[4-(1-ベンジル-3-エトキシ-1H-ピラゾール-4-イル)ブトキシ]フェノキシ]-2-メチルプロパン酸エチル(950mg)、5%パラジウム-炭素(950mg)およびエタノール(10mL)の混合物にギ酸(3.3mL)を加え、加熱還流下3時間かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:1, 容積比)溶出部から、無色油状物として2-[3-[4-(3-エトキシ-1H-ピラゾール-4-イル)ブトキシ]フェノキシ]-2-メチルプロパン酸エチル(740mg, 収率93%)を得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.25 (3H, t, J = 7.2 Hz), 1.39 (3, t, J = 7.2 Hz), 1.59 (6H, s), 1.63 - 1.89 (4H, m), 2.38 - 2.46 (2H, m), 3.89 - 3.95 (2H, m),

4.18 - 4.28 (4H, m), 6.35 - 6.43 (2H, m), 6.49 - 6.55 (1H, m), 7.05 - 7.12 (1H, m), 7.15 (1H, s)。

【0142】

参考例120

4-(1-ベンジル-3-エトキシ-1H-ピラゾール-4-イル)-1-ブタノール (1.50 g)、3-(4-ヒドロキシ-2-エトキシフェニル)プロパン酸メチル (1.35 g)、トリブチルホスフィン (2.73 mL) およびテトラヒドロフラン (110 mL) の混合物に 1, 1'-アゾジカルボニルジペリジン (2.76 g) を室温で加えた後、2.5 日間かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:6, 容積比) 溶出部から黄色油状物を得た。得られた油状物、5%パラジウム-炭素 (1.80 g) およびエタノール (18 mL) の混合物にギ酸 (6.0 mL) を加え、加熱還流下 7 時間かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:1, 容積比) 溶出部から、褐色油状物として 3-[2-エトキシ-4-[4-(3-エトキシ-1H-ピラゾール-4-イル)ブトキシ]フェニル]プロパン酸メチル (0.86 g, 収率 60%)を得た。

¹H-NMR(CDCl₃) δ : 1.35 - 1.45 (6H, m), 1.62 - 1.90 (4H, m), 2.38 - 2.48 (2H, m), 2.53 - 2.64 (2H, m), 2.81 - 2.92 (2H, m), 3.66 (3H, s), 3.90 - 4.06 (4H, m), 4.21 (2H, q, J = 7.0 Hz), 6.28 - 6.43 (2H, m), 6.94 - 7.04 (1H, m), 7.17 (1H, s)。

参考例121

4-(1-ベンジル-3-エトキシ-1H-ピラゾール-4-イル)-1-ブタノール (1.01 g)、3-(3-ヒドロキシ-1-フェニル-1H-ピラゾール-5-イル)プロパン酸エチル (1.05 g)、トリブチルホスフィン (1.83 mL) およびテトラヒドロフラン (75 mL) の混合物に 1, 1'-アゾジカルボニルジペリジン (1.85 g) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、

酢酸エチル-ヘキサン（1：6，容積比）溶出部から無色油状物を得た。得られた油状物、5%パラジウム-炭素（1.73 g）およびエタノール（18 mL）の混合物にギ酸（6 mL）を加え、加熱還流下終夜かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：1，容積比）溶出部から、黄色油状物として3-[3-[4-(3-エトキシ-1H-ピラゾール-4-イル)ブトキシ]-1-フェニル-1H-ピラゾール-5-イル]プロパン酸エチル（900 mg，収率57%）を得た。

¹H-NMR(CDCI₃) δ : 1.24 (3H, t, J = 7.0 Hz), 1.39 (3H, t, J = 7.0 Hz), 1.64 - 1.87 (4H, m), 2.36 - 2.47 (2H, m), 2.52 - 2.63 (2H, m), 2.88 - 2.99 (2H, m), 4.05 - 4.30 (6H, m), 5.65 (1H, s), 7.15 (1H, s), 7.28 - 7.50 (5H, m)。

参考例122

3-(3-エトキシ-1H-ピラゾール-4-イル)プロパン酸エチル（5.00 g）、4-(トリフルオロメチル)フェニルホウ酸（8.95 g）、酢酸銅(II)（6.42 g）、ピリジン（3.42 mL）および塩化メチレン（120 mL）の混合物を室温で終夜かき混ぜた。析出物をろ過で除去し、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：9，容積比）溶出部から、無色結晶として3-[3-エトキシ-1-[4-(トリフルオロメチル)フェニル]-1H-ピラゾール-4-イル]プロパン酸エチル（2.41 g，収率29%）を得た。酢酸エチル-ヘキサンから再結晶した。融点47～48°C。

【0143】

参考例123

3-[3-エトキシ-1-[4-(トリフルオロメチル)フェニル]-1H-ピラゾール-4-イル]プロパン酸エチル（4.31 g）のテトラヒドロフラン（120 mL）溶液に水素化ジイソブチルアルミニウムの0.93 Mヘキサン溶液（39 mL）を0°Cで滴下した後、室温で終夜かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（

$MgSO_4$ ）後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：2、容積比）溶出部から、無色油状物として3-{3-エトキシ-1-[4-(トリフルオロメチル)フェニル]-1H-ピラゾール-4-イル}-1-ブロパノール（3.68 g、収率97%）を得た。

$^1H-NMR(CDCl_3)$ δ : 1.44 (3H, t, $J = 7.0$ Hz), 1.68 - 1.92 (3H, m), 2.48 - 2.59 (2H, m), 3.62 - 3.75 (2H, brm), 4.37 (2H, q, $J = 7.0$ Hz), 7.58 - 7.70 (5H, m)。

参考例124

4-(1-ベンジル-3-エトキシ-1H-ピラゾール-4-イル)-1-ブタノール（2.00 g）、トリエチルアミン（1.22 mL）およびテトラヒドロフラン（7.0 mL）の混合物に室温でメタンスルホニルクロライド（677 μ L）を加え、終夜かき混ぜた。反応混合物にトリエチルアミン（2.03 mL）およびメタンスルホニルクロライド（1.13 mL）を室温で加え、室温で2時間かき混ぜた。反応混合物を飽和重曹水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（ $MgSO_4$ ）後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：2、容積比）溶出部から、黄色油状物としてメタンスルホン酸3-(1-ベンジル-3-エトキシ-1H-ピラゾール-4-イル)プロピル（2.46 g、収率96%）を得た。

$^1H-NMR(CDCl_3)$ δ : 1.36 (3H, t, $J = 6.9$ Hz), 1.54 - 1.68 (2H, m), 1.70 - 1.82 (2H, m), 2.32 - 2.40 (2H, m), 2.98 (3H, s), 4.18 - 4.26 (4H, m), 5.07 (2H, s), 6.92 (1H, s), 7.14 - 7.19 (2H, m), 7.24 - 7.36 (3H, m)。

参考例125

3-(3-エトキシ-1H-ピラゾール-4-イル)プロパン酸エチル（6.62 mg）、水素化ナトリウム（60%、油性、136 mg）、N,N-ジメチルホルムアミド（2.5 mL）の混合物を室温で30分間かき混ぜた後、メタンスルホン酸3-(1-ベンジル-3-エトキシ-1H-ピラゾール-4-イル)プロピル（1.00 g）のN,N-ジメチルホルムアミド（5 mL）溶液を加えた。室温で終夜かき混ぜた後、反応混合物を0.1規定塩酸水溶液に注ぎ、酢酸エチ

ルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルへキサン (1 : 2, 容積比) 溶出部から無色油状物を得た。得られた油状物、5% パラジウム-炭素 (1.00 g) およびエタノール (10 mL) の混合物にギ酸 (3 mL) を加え、加熱還流下4時間かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物を酢酸エチルで希釈し、飽和重曹水、飽和食塩水で洗浄した。乾燥 ($MgSO_4$) 後、濃縮し、無色油状物として 3-(3-エトキシ-1-[4-(3-エトキシ-1H-ピラゾール-4-イル) プチル]-1H-ピラゾール-4-イル} プロパン酸エチル (680 mg, 収率 63%) を得た。

1H -NMR ($CDCl_3$) δ : 1.23 (3H, t, $J = 6.9$ Hz), 1.32 - 1.41 (6H, m), 1.44 - 1.56 (2H, m), 1.72 - 1.84 (2H, m), 2.33 - 2.40 (2H, m), 2.48 - 2.56 (2H, m), 2.61 - 2.68 (2H, m), 3.84 - 3.91 (2H, m), 4.10 (2H, q, $J = 6.9$ Hz), 4.15 - 4.27 (4H, m), 6.96 (1H, s), 7.10 (1H, s)。

【0144】

参考例126

カリウムtert-ブトキシド (5.22 g) の 1, 2-ジメトキシエタン (300 mL) 溶液に -78°C でトルエンスルホニルメチルイソシアニド (4.54 g) の 1, 2-ジメトキシエタン (30 mL) の溶液を滴下して加えた。同じ温度で 10 分間かき混ぜた後、3-(ベンジルオキシ)-1-メチル-1H-ピラゾール-4-カルバルデヒド (4.79 g) の 1, 2-ジメトキシエタン (60 mL) の溶液を滴下して加えた後、反応混合物を室温まで暖めた。次いで、メタノール (120 mL) を加え、加熱還流下 2.5 時間かき混ぜた。反応混合物を飽和塩化アンモニア水溶液に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄後、乾燥 ($MgSO_4$) させた。減圧下溶媒を除去し、褐色油状物として [3-(ベンジルオキシ)-1-メチル-1H-ピラゾール-5-イル] アセトニトリル (5.08 g, 収率定量的) を得た。

1H -NMR ($CDCl_3$) δ : 3.67 (2H, s), 3.73 (3H, s), 5.16 (2H, s), 5.73 (1H, s), 7.27 - 7.48 (5H, m)。

【0145】

実施例1

メタンスルホン酸3-[3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル]-1-プロピル(1.04g)、ヨウ化ナトリウム(450mg)、4-ヒドロキシフェニル酢酸メチル(500mg)、炭酸カリウム(440mg)およびN,N-ジメチルホルムアミド(10ml)の混合物を90°Cで5時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、[4-(3-[3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル]プロポキシ)フェニル]酢酸(300mg, 収率25%)を得た。酢酸エチル-ヘキサンから再結晶した。融点127~128°C。

¹H-NMR(CDCl₃) δ : 2.18-2.32 (2H, m), 2.98-3.10 (2H, m), 3.60 (2H, s), 3.98-4.08 (2H, m), 6.37 (1H, s), 6.82-6.90 (2H, m), 7.15-7.24 (2H, m), 7.66-7.75 (2H, m), 7.86-7.94 (2H, m)。

実施例2

メタンスルホン酸3-[3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル]-1-プロピル(1.04g)、ヨウ化ナトリウム(450mg)、4-ヒドロキシ安息香酸メチル(460mg)、炭酸カリウム(450mg)およびN,N-ジメチルホルムアミド(10ml)の混合物を90°Cで5時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(

5 ml)、テトラヒドロフラン (5 ml) およびメタノール (5 ml) の混合物を室温で5時間かき混ぜた後、1規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、4-(3-{3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル}プロポキシ)安息香酸 (840 mg, 収率72%)を得た。アセトン-ヘキサンから再結晶した。融点221~222°C。

1H -NMR ($CDCl_3$) δ : 2.20-2.38 (2H, m), 3.00-3.14 (2H, m), 4.05-4.18 (2H, m), 6.39 (1H, s), 6.86-6.96 (2H, m), 7.64-7.74 (2H, m), 7.86-8.08 (4H, m)

実施例3

メタンスルホン酸3-{3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル}-1-プロピル (1.04 g)、ヨウ化ナトリウム (450 mg)、3-ヒドロキシフェニル酢酸メチル (500 mg)、炭酸カリウム (450 mg) およびN, N-ジメチルホルムアミド (10 ml) の混合物を90°Cで5時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (5 ml)、テトラヒドロフラン (5 ml) およびメタノール (5 ml) の混合物を室温で5時間かき混ぜた後、1規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、[3-(3-{3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル}プロポキシ)フェニル]酢酸 (630 mg, 収率52%)を得た。酢酸エチル-ヘキサンから再結晶した。融点126~127°C

1H -NMR ($CDCl_3$) δ : 2.16-2.34 (2H, m), 2.98-3.12 (2H, m), 3.63 (2H, s), 4.00-4.10 (2H, m), 6.38 (1H, s), 6.76-6.94 (3H, m), 7.18-7.32 (1H, m), 7.66-7.75 (2H, m), 7.86-7.96 (2H, m)。

【0146】

実施例4

メタンスルホン酸3-[3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル]-1-プロピル(1.04g)、ヨウ化ナトリウム(520mg)、3-ヒドロキシ安息香酸メチル(460mg)、炭酸カリウム(450mg)およびN,N-ジメチルホルムアミド(10ml)の混合物を90℃で5時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-(3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル)プロポキシ安息香酸(860mg, 収率74%)を得た。酢酸エチル-ヘキサンから再結晶した。融点133~134℃。

¹H-NMR(CDCl₃) δ : 2.20-2.37 (2H, m), 3.02-3.14 (2H, m), 4.06-4.17 (2H, m), 6.39 (1H, s), 7.10-7.20 (1H, m), 7.34-7.44 (1H, m), 7.58-7.76 (4H, m), 7.86-7.96 (2H, m)。

実施例5

メタンスルホン酸3-[3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル]-1-プロピル(1.04g)、ヨウ化ナトリウム(520mg)、3-(4-ヒドロキシフェニル)プロピオン酸エチル(600mg)、炭酸カリウム(450mg)およびN,N-ジメチルホルムアミド(10ml)の混合物を90℃で5時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびエタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加

え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、 $3-[4-(3-[3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル]プロポキシ)フェニル]プロピオン酸$ (520 mg, 収率 42%)を得た。酢酸エチルへキサンから再結晶した。融点 $174\sim175^\circ C$ 。

$^1H-NMR(CDCl_3)$ δ : 2.16-2.34 (2H, m), 2.59-2.72 (2H, m), 2.84-3.12 (4H, m), 3.98-4.08 (2H, m), 6.37 (1H, s), 6.78-6.88 (2H, m), 7.07-7.18 (2H, m), 7.66-7.76 (2H, m), 7.86-7.96 (2H, m)。

実施例 6

メタンスルホン酸 $3-[3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル]-1-プロピル$ (1.04 g)、ヨウ化ナトリウム (500 mg)、サリチル酸メチル (460 mg)、炭酸カリウム (500 mg) および N, N-ジメチルホルムアミド (10 ml) の混合物を $90^\circ C$ で 5 時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルへキサン (1:4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (5 ml)、テトラヒドロフラン (5 ml) およびメタノール (5 ml) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、 $2-(3-[3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル]プロポキシ)安息香酸$ (710 mg, 収率 61%)を得た。酢酸エチルへキサンから再結晶した。融点 $132\sim133^\circ C$ 。

$^1H-NMR(CDCl_3)$ δ : 2.34-2.52 (2H, m), 3.03-3.16 (2H, m), 4.18-4.42 (2H, m), 6.43 (1H, s), 7.00-7.24 (2H, m), 7.50-7.64 (1H, m), 7.65-7.76 (2H, m), 7.85-7.96 (2H, m), 8.16-8.24 (1H, m)。

【0147】

実施例 7

メタンスルホン酸 $3-[3-[4-(トリフルオロメチル)フェニル]-5-イソ$

オキサゾリル} - 1 - プロピル (1.04 g)、ヨウ化ナトリウム (500 mg)、3 - ヒドロキシ - 1 - メチル - 1 H - ピラゾール - 5 - カルボン酸メチル (470 mg)、炭酸カリウム (500 mg) および N, N - ジメチルホルムアミド (10 ml) の混合物を 90°C で 5 時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 (Mg SO₄) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (5 ml)、テトラヒドロフラン (5 ml) およびメタノール (5 ml) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 (Mg SO₄) 後、濃縮した。得られた無色結晶をろ取し、1 - メチル - 3 - {3 - [4 - (トリフルオロメチル)フェニル] - 5 - イソオキサゾリル} プロポキシ - 1 H - ピラゾール - 5 - カルボン酸 (870 mg, 収率 74%) を得た。酢酸エチル - ヘキサンから再結晶した。融点 162 ~ 163°C。

¹H-NMR(CDCl₃) δ : 2.16-2.34 (2H, m), 2.96-3.10 (2H, m), 4.04 (3H, s), 4.17-4.28 (2H, m), 6.30 (1H, s), 6.39 (1H, s), 7.67-7.77 (2H, m), 7.87-7.97 (2H, m)。

実施例 8

メタンスルホン酸 3 - {3 - [4 - (トリフルオロメチル)フェニル] - 5 - イソオキサゾリル} - 1 - プロピル (1.04 g)、ヨウ化ナトリウム (500 mg)、3 - ヒドロキシ - 1 - フェニル - 1 H - ピラゾール - 5 - カルボン酸メチル (650 mg)、炭酸カリウム (500 mg) および N, N - ジメチルホルムアミド (10 ml) の混合物を 90°C で 5 時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 (Mg SO₄) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (5 ml)、テトラヒドロフラン (5 ml) およびメタノール (5 ml) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水

で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、1-フエニル-3-[3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル]プロポキシ)-1H-ピラゾール-5-カルボン酸 (1.16 g, 収率85%)を得た。酢酸エチル-ヘキサンから再結晶した。融点145~146°C。
 1H -NMR($CDCl_3$) δ : 2.16-2.36 (2H, m), 2.96-3.10 (2H, m), 4.24-4.36 (2H, m), 6.40 (1H, s), 6.50 (1H, s), 7.36-7.47 (5H, m), 7.65-7.75 (2H, m), 7.84-7.94 (2H, m)。

実施例9

{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}メタノール (500 mg)、3-(4-ヒドロキシフェニル)プロピオン酸メチル (370 mg)、トリフェニルホスфин (530 mg) およびテトラヒドロフラン (10 ml) の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液 (900 mg) を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (3 ml)、テトラヒドロフラン (5 ml) およびメタノール (5 ml) の混合物を室温で5時間かき混ぜた後、1規定塩酸 (3 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、3-(4-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}フェニル)プロピオン酸 (620 mg, 収率79%)を得た。酢酸エチル-ヘキサンから再結晶した。融点195~196°C。

1H -NMR($CDCl_3$) δ : 2.39 (3H, s), 4.64 (2H, s), 4.94 (2H, s), 6.87-6.97 (4H, m), 7.96-8.06 (2H, m), 8.55 (1H, s), 8.61-8.66 (1H, m)。

【0148】

実施例10

{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}メタノール (900 mg)、(4-ヒドロキシフェノキシ)酢酸メチル (650 mg)、トリフェニルホスфин (930 mg) およびテト

ラヒドロフラン (10 ml) の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液 (1. 59 g) を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (5 ml)、テトラヒドロフラン (5 ml) およびエタノール (5 ml) の混合物を室温で5時間かき混ぜた後、1規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、(4-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}フェノキシ)酢酸 (610 mg, 収率43%)を得た。酢酸エチル-ヘキサンから再結晶した。融点138~139°C。

1H -NMR($CDCl_3$) δ : 2.39 (3H, s), 4.64 (2H, s), 4.94 (2H, s), 6.87-6.97 (4H, m), 7.96-8.06 (2H, m), 8.55 (1H, s), 8.61-8.66 (1H, m)。

実施例 1 1

4-{3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル}-1-ブタノール (740 mg)、3-(3-ヒドロキシ-1-フェニル-1H-ピラゾール-5-イル)プロピオン酸エチル (670 mg)、トリフェニルホスフィン (700 mg) およびテトラヒドロフラン (10 ml) の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液 (1. 20 g) を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (5 ml)、テトラヒドロフラン (5 ml) およびエタノール (5 ml) の混合物を室温で5時間かき混ぜた後、1規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、3-[1-フェニル-3-(4-{3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル}ブトキシ)-1H-ピラゾール-5-イル]プロピオン酸 (930 mg, 収率72%)を得た。酢酸エチル-ヘキサンから再結晶した。融点139~140°C。

¹H-NMR(CDCl₃) δ : 1.76-2.06 (4H, m), 2.56-2.70 (2H, m), 2.84-3.02 (4H, m), 4.18-4.32 (2H, m), 5.68 (1H, s), 6.36 (1H, s), 7.28-7.48 (5H, m), 7.66-7.75 (2H, m), 7.85-7.94 (2H, m)。

実施例12

メタンスルホン酸4-{3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル}-1-ブチル(700mg)、ヨウ化ナトリウム(300mg)、4-ヒドロキシ安息香酸メチル(290mg)、炭酸カリウム(460mg)およびN,N-ジメチルホルムアミド(10ml)の混合物を90℃で5時間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(3ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(3ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、4-(4-{3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル}ブトキシ)安息香酸(630mg, 収率81%)を得た。酢酸エチル-ヘキサンから再結晶した。融点170~171℃。

¹H-NMR(CDCl₃) δ : 1.82-2.12 (4H, m), 2.86-2.98 (2H, m), 4.02-4.14 (2H, m), 6.36 (1H, s), 6.88-6.98 (2H, m), 7.66-7.76 (2H, m), 7.85-7.95 (2H, m), 8.00-8.10 (2H, m)。

【0149】

実施例13

4-{3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル}-1-ブタノール(700mg)、4-ヒドロキシフェニル酢酸メチル(400mg)、トリフェニルホスフィン(660mg)およびテトラヒドロフラン(10ml)の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液(1.10g)を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)

) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥($MgSO_4$)後、濃縮した。得られた無色結晶をろ取し、[4-(4-{3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル}ブトキシ)フェニル]酢酸(810mg, 収率80%)を得た。酢酸エチルへキサンから再結晶した。融点125~126℃。
 1H -NMR(CDCl₃) δ : 1.78-2.07 (4H, m), 2.83-2.95 (2H, m), 3.59 (2H, s), 3.94-4.06 (2H, m), 6.36 (1H, s), 6.79-6.91 (2H, m), 7.14-7.26 (2H, m), 7.64-7.76 (2H, m), 7.84-7.96 (2H, m)。

実施例14

4-{3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル}-1-ブタノール(700mg)、3-(4-ヒドロキシフェニル)プロピオン酸メチル(440mg)、トリフェニルホスфин(650mg)およびテトラヒドロフラン(10ml)の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液(1.25g)を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルへキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥($MgSO_4$)後、濃縮した。得られた無色結晶をろ取し、3-[4-(4-{3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル}ブトキシ)フェニル]プロピオン酸(760mg, 収率72%)を得た。酢酸エチルへキサンから再結晶した。融点130~131℃。

1H -NMR(CDCl₃) δ : 1.80-2.04 (4H, m), 2.56-2.70 (2H, m), 2.82-2.98 (4H, m), 3.94-4.06 (2H, m), 6.36 (1H, s), 6.77-6.88 (2H, m), 7.07-7.17 (2H, m), 7.64-7.76 (2H, m), 7.85-7.96 (2H, m)。

実施例15

4-[3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル]-1-ブタノール(700mg)、[2-(4-ヒドロキシフェノキシ)-2-メチル]プロピオン酸メチル(500mg)、トリフェニルホスフィン(650mg)およびテトラヒドロフラン(10ml)の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液(1.10g)を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、2-メチル-2-[4-(4-[3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル]ブトキシ)フェノキシ]プロピオン酸(860mg, 収率78%)を得た。酢酸エチル-ヘキサンから再結晶した。融点103~104°C。

¹H-NMR(CDCl₃) δ : 1.53 (6H, s), 1.80-2.06 (4H, m), 2.86-2.98 (2H, m), 3.94-4.04 (2H, m), 6.36 (1H, s), 6.72-6.95 (4H, m), 7.66-7.75 (2H, m), 7.85-7.94 (2H, m)。

【0150】

実施例16

4-[3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル]-1-ブタノール(700mg)、3-ヒドロキシフェニル酢酸メチル(420mg)、トリフェニルホスフィン(650mg)およびテトラヒドロフラン(10ml)の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液(1.13g)を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮し

た。得られた無色結晶をろ取し、[3-(4-{3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル}ブトキシ)フェニル]酢酸(800mg, 収率78%)を得た。酢酸エチル-ヘキサンから再結晶した。融点134~135°C。
 $^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.80-2.08 (4H, m), 2.84-2.96 (2H, m), 3.62 (2H, s), 3.96-4.06 (2H, m), 6.36 (1H, s), 6.76-6.91 (3H, m), 7.18-7.30 (1H, m), 7.64-7.76 (2H, m), 7.85-7.96 (2H, m)。

実施例17

4-{3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル}-1-ブタノール(700mg)、2-ヒドロキシフェニル酢酸メチル(420mg)、トリフェニルホスフィン(650mg)およびテトラヒドロフラン(10ml)の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液(1.10g)を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、[2-(4-{3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル}ブトキシ)フェニル]酢酸(800mg, 収率78%)を得た。酢酸エチル-ヘキサンから再結晶した。融点122~123°C。
 $^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.78-2.06 (4H, m), 2.78-2.92 (2H, m), 3.65 (2H, s), 3.96-4.07 (2H, m), 6.36 (1H, s), 6.80-6.96 (2H, m), 7.14-7.30 (2H, m), 7.64-7.74 (2H, m), 7.84-7.94 (2H, m)。

実施例18

3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール(330mg)、[2-(4-ヒドロキシフェノキシ)-2-メチル]プロピオン酸メチル(250mg)、トリフェニルホスフィン(310mg)およびテトラヒドロフラン(7ml)の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液(550mg)を室温で滴下

した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：4、容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（5ml）、テトラヒドロフラン（5ml）およびメタノール（5ml）の混合物を室温で5時間かき混ぜた後、1規定塩酸（5ml）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶をろ取し、2-[4-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェノキシ]-2-メチルプロピオン酸（370mg、収率71%）を得た。酢酸エチル-ヘキサンから再結晶した。融点91～92℃。

¹H-NMR(CDCl₃) δ : 1.41 (3H, t, J=7.0 Hz), 1.54 (6H, s), 2.00-2.18 (2H, m), 2.54-2.66 (2H, m), 3.98 (2H, t, J=6.2 Hz), 4.35 (2H, q, J=7.0 Hz), 6.76-6.96 (4H, m), 7.81 (1H, d, J=8.8 Hz), 7.91 (1H, dd, J=2.0, 8.8 Hz), 8.18 (1H, s), 8.55 (1H, d, J=2.0 Hz)。

【0151】

実施例19

{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}メタノール（250mg）、3-(2-エトキシ-4-ヒドロキシフェニル)プロピオン酸エチル（250mg）、トリフェニルホスфин（280mg）およびテトラヒドロフラン（10ml）の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液（480mg）を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：4、容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（5ml）、テトラヒドロフラン（5ml）およびエタノール（5ml）の混合物を室温で5時間かき混ぜた後、1規定塩酸（5ml）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶をろ取し、3-(2-エトキシ-4-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ)フェニル)プロピオン酸

(310mg, 収率71%)を得た。酢酸エチルへキサンから再結晶した。融点151~152°C。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.42 (3H, t, J=7.0 Hz), 2.39 (3H, s), 2.60-2.71 (2H, m), 2.84-2.95 (2H, m), 4.01 (2H, q, J=7.0 Hz), 4.94 (2H, s), 6.45-6.54 (2H, m), 7.06-7.14 (1H, m), 7.94-8.08 (2H, m), 8.56 (1H, s), 8.61-8.68 (1H, m)。

実施例20

4-[3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル]-1-ブタノール (1.10g)、3-(3-ヒドロキシフェニル)プロピオン酸メチル (780mg)、トリフェニルホスフィン (1.10g) およびテトラヒドロフラン (15ml) の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液 (1.75g) を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルへキサン (1:4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (7ml)、テトラヒドロフラン (7ml) およびメタノール (7ml) の混合物を室温で5時間かき混ぜた後、1規定塩酸 (7ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 (MgSO₄) 後、濃縮した。得られた無色結晶をろ取し、3-[3-(4-[3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル]ブロキシ)フェニル]プロピオン酸 (1.26g, 収率75%)を得た。酢酸エチルへキサンから再結晶した。融点131~132°C。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.80-2.08 (4H, m), 2.60-2.74 (2H, m), 2.85-3.00 (4H, m), 3.96-4.06 (2H, m), 6.36 (1H, s), 6.72-6.84 (3H, m), 7.15-7.27 (1H, m), 7.67-7.76 (2H, m), 7.86-7.95 (2H, m)。

実施例21

4-[3-[4-(トリフルオロメチル)フェニル]-5-イソオキサゾリル]-1-ブタノール (570mg)、3-(2-エトキシ-4-ヒドロキシフェニル)プロピオン酸エチル (480mg)、トリフェニルホスフィン (550mg) およびテトラヒドロフラン (10ml) の混合物にアゾジカルボン酸ジエチルの4

0%トルエン溶液(950mg)を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびエタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[2-エトキシ-4-(4-{3-[4-(トリフルオロメチル)フェニル]-5-イソオキサソリル}ブトキシ)フェニル]プロピオン酸(260mg, 収率27%)を得た。酢酸エチル-ヘキサンから再結晶した。融点105~106°C。

¹H-NMR(CDCl₃) δ : 1.41 (3H, t, J=7.0 Hz), 1.78-2.08 (4H, m), 2.54-2.72 (2H, m), 2.82-2.97 (4H, m), 3.92-4.08 (4H, m), 6.32-6.44 (3H, m), 6.98-7.10 (1H, m), 7.66-7.76 (2H, m), 7.85-7.95 (2H, m)。

【0152】

実施例22

3-{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール(410mg)、3-ヒドロキシフェニル酢酸メチル(230mg)、トリフェニルホスфин(370mg)およびテトラヒドロフラン(10ml)の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液(630mg)を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、[3-{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ]フェニル]酢酸(330mg, 収率56%)を得た。酢酸エチル-ヘキサンから再結晶した。融点82~83°C。

¹H-NMR(CDCl₃) δ : 1.47 (6H, d, J=7.0 Hz), 2.02-2.21 (2H, m), 2.69 (2H, t, J=7.4 Hz), 2.94-3.12 (1H, m), 3.64 (2H, s), 4.05 (2H, t, J=6.0 Hz), 6.8 0-6.92 (3H, m), 7.19-7.30 (1H, m), 7.95 (1H, dd, J=1.8, 8.4 Hz), 8.05 (1H, d, J=8.4 Hz), 8.29 (1H, s), 8.57-8.64 (1H, m)。

実施例23

3-[3-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)-1-プロパノール(380mg)、3-(3-ヒドロキシフェニル)プロピオン酸メチル(220mg)、トリブチルホスフィン(260mg)およびテトラヒドロフラン(10ml)の混合物に1,1'-アゾジカルボニルジピペリジン(350mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[3-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロポキシ]フェニル]プロピオン酸(380mg, 収率68%)を得た。酢酸エチル-ヘキサンから再結晶した。融点102~103℃。

¹H-NMR(CDCl₃) δ : 1.32 (6H, d, J=7.0 Hz), 2.00-2.20 (2H, m), 2.62-2.76 (4H, m), 2.87-3.13 (3H, m), 4.05 (2H, t, J=6.2 Hz), 6.73-6.86 (3H, m), 7.1 5-7.26 (1H, m), 7.91-8.08 (2H, m), 8.27 (1H, s), 8.57-8.63 (1H, m)。

実施例24

3-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)-1-プロパノール(520mg)、3-(3-ヒドロキシ-1-フェニル-1H-ピラゾール-5-イル)プロピオン酸エチル(440mg)、トリブチルホスフィン(510mg)およびテトラヒドロフラン(10ml)の混合物に1,1'-アゾジカルボニルジピペリジン(650m

g) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[3-(3-{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロピオキシ)-1-フェニル-1H-ピラゾール-5-イル]プロピオン酸(420mg, 収率48%)を得た。酢酸エチル-ヘキサンから再結晶した。融点139~140°C。

¹H-NMR(CDCl₃) δ : 1.32 (6H, d, J=7.0 Hz), 2.00-2.20 (2H, m), 2.56-2.76 (4H, m), 2.88-3.12 (3H, m), 4.27 (2H, t, J=6.0 Hz), 5.72 (1H, s), 7.30-7.50 (5H, m), 7.95 (1H, dd, J=2.6, 9.0 Hz), 8.04 (1H, d, J=9.0 Hz), 8.27 (1H, s), 8.54-8.61 (1H, m)。

【0153】

実施例25

3-{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール(550mg)、3-(3-ヒドロキシ-1-メチル-1H-ピラゾール-5-イル)プロピオン酸エチル(360mg)、トリブチルホスфин(530mg)およびテトラヒドロフラン(10ml)の混合物に1, 1'-アゾジカルボニルジペリジン(670mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびエタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[3-(3-{3-イソプロピル-1-[5-

(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)-1-メチル-1H-ピラゾール-5-イル]プロピオン酸(630mg, 収率77%)を得た。酢酸エチル-ヘキサンから再結晶した。融点131~132°C。

$^1\text{H-NMR}$ (CDCl_3) δ : 1.31 (6H, d, $J=7.0\text{ Hz}$), 1.98-2.16 (2H, m), 2.58-3.12 (7H, m), 3.66 (3H, s), 4.16 (2H, t, $J=6.2\text{ Hz}$), 5.49 (1H s), 7.94 (1H, dd, $J=1.8, 8.6\text{ Hz}$), 8.04 (1H, d, $J=8.6\text{ Hz}$), 8.26 (1H, s), 8.56-8.62 (1H, m)

実施例26

3-{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}-1-メチル-1H-ピラゾール-5-カルボアルデヒド(1.10g)、ジエチルホスホノ酢酸エチル(690mg)およびN,N-ジメチルホルムアミド(15ml)の混合物に、0°Cで水素化ナトリウム(60%、油性、120mg)を加え、室温で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、希塩酸、続いて、飽和食塩水で洗浄、乾燥(MgSO_4)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から、(E)-3-{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}-1-メチル-1H-ピラゾール-5-イル)プロパン酸エチル(1.03g, 収率79%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点105~106°C。

$^1\text{H-NMR}$ (CDCl_3) δ : 1.33 (3H, t, $J=7.0\text{ Hz}$), 1.36 (6H, d, $J=7.0\text{ Hz}$), 3.07-3.24 (1H, m), 3.83 (3H, s), 4.27 (2H, q, $J=7.0\text{ Hz}$), 5.14 (2H, s), 5.95 (1H s), 6.28 (1H, d, $J=15.6\text{ Hz}$), 7.48 (1H, d, $J=15.6\text{ Hz}$), 7.97 (1H, dd, $J=2.2, 8.4\text{ Hz}$), 8.07 (1H, d, $J=8.4\text{ Hz}$), 8.56 (1H, s), 8.60-8.66 (1H, m)。

実施例27

(E)-3-{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}-1-メチル-1H-ピラゾール-5-イル)プロパン酸エチル(900mg)、5%パラジウム-炭素(

260mg) およびテトラヒドロフラン (20ml) の混合物を水素雰囲気下、室温で、1時間かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。得られた結晶、1規定水酸化ナトリウム水溶液 (5ml)、テトラヒドロフラン (5ml) およびメタノール (5ml) の混合物を室温で3時間かき混ぜた後、1規定塩酸 (5ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、3-(3-{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}-1-メチル-1H-ピラゾール-5-イル)プロピオン酸 (780mg, 収率92%)を得た。酢酸エチル-ヘキサンから再結晶した。融点141~142°C。

1H -NMR($CDCl_3$) δ : 1.36 (6H, d, $J=7.0$ Hz), 2.62-2.94 (4H, m), 3.06-3.24 (1H, m), 3.69 (3H, s), 5.10 (2H s), 5.51 (1H, s), 7.98 (1H, dd, $J=2.2, 9.2$ Hz), 8.07 (1H, d, $J=9.2$ Hz), 8.53 (1H, s), 8.58-8.67 (1H, m)。

【0154】

実施例28

3-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)-1-プロパンオール (1.20g)、[2-(3-ヒドロキシフェノキシ)-2-メチル]プロピオン酸メチル (830mg)、トリブチルホスフィン (1.60g) およびテトラヒドロフラン (20ml) の混合物に1, 1' -アゾジカルボニルジピペリジン (2.01g) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (5ml)、テトラヒドロフラン (5ml) およびメタノール (5ml) の混合物を室温で5時間かき混ぜた後、1規定塩酸 (5ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、2-[3-(3-{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェノキシ]-2-メチルプロピオン酸 (1.32g, 収率70%)を得た。酢酸エチル-ヘ

キサンから再結晶した。融点101～102℃。

¹H-NMR(CDCl₃) δ : 1.32 (6H, d, J=7.0 Hz), 1.63 (6H, s), 2.00-2.18 (2H, m), 2.69 (2H, t, J=7.2 Hz), 2.94-3.12 (1H, m), 4.00 (2H, t, J=6.2 Hz), 6.5 0-6.70 (3H, m), 7.11-7.24 (1H, m), 7.96 (1H, dd, J=2.2, 8.8 Hz), 8.06 (1 H, d, J=8.8 Hz), 8.26 (1H, s), 8.54-8.63 (1H, m)。

実施例29

3-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール (550mg)、[2-(3-ヒドロキシフェノキシ)-2-メチル]プロピオン酸メチル (380mg)、トリブチルホスフィン (730mg) およびテトラヒドロフラン (10ml) の混合物に 1, 1' - アゾジカルボニルジペリジン (910mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (5ml)、テトラヒドロフラン (5ml) およびメタノール (5ml) の混合物を室温で5時間かき混ぜた後、1規定塩酸 (5ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 (MgSO₄) 後、濃縮した。得られた無色結晶をろ取し、2-[3-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロポキシ]フェノキシ]-2-メチルプロピオン酸 (530mg, 収率62%) を得た。酢酸エチル-ヘキサンから再結晶した。融点120～121℃。

¹H-NMR(CDCl₃) δ : 1.41 (3H, t, J=7.0 Hz), 1.62 (6H, s), 1.96-2.18 (2H, m), 2.62 (2H, t, J=7.0 Hz), 3.97 (2H, t, J=6.2 Hz), 4.35 (2H, q, J=7.0 Hz), 6.48-6.68 (3H, m), 7.08-7.23 (1H, m), 7.84 (1H, d, J=8.8 Hz), 7.93 (1H, dd, J=2.6, 8.8 Hz), 8.16 (1H, s), 8.51-8.56 (1H, m)。

実施例30

3-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール (650mg)、3-ヒドロキシフェニル酢酸メチル (380mg)、トリブチルホスフィン (930mg) およ

びテトラヒドロフラン (10 ml) の混合物に 1, 1' - アゾジカルボニルジピペリジン (1. 16 g) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (5 ml)、テトラヒドロフラン (5 ml) およびメタノール (5 ml) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、[3-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]酢酸 (490 mg, 収率 53%) を得た。酢酸エチル - ヘキサンから再結晶した。融点 134 ~ 135°C。

1H -NMR ($CDCl_3$) δ : 1.41 (3H, t, $J=7.2$ Hz), 2.02-2.14 (2H, m), 2.60 (2H, t, $J=7.2$ Hz), 3.62 (2H, s), 4.01 (2H, t, $J=6.3$ Hz), 4.34 (2H, q, $J=7.2$ Hz), 6.78-6.88 (3H, m), 7.18-7.28 (1H, m), 7.80 (1H, d, $J=8.7$ Hz), 7.90 (1H, dd, $J=2.4, 8.7$ Hz), 8.17 (1H, s), 8.52-8.57 (1H, m)。

【0155】

実施例 3 1

3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール (620 mg)、2-ヒドロキシフェニル酢酸メチル (340 mg)、トリブチルホスフィン (800 mg) およびテトラヒドロフラン (10 ml) の混合物に 1, 1' - アゾジカルボニルジピペリジン (1. 00 g) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (5 ml)、テトラヒドロフラン (5 ml) およびメタノール (5 ml) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、[2-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イ

ル} プロポキシ)フェニル]酢酸 (310 mg, 収率 35%) を得た。酢酸エチルへキサンから再結晶した。融点 83~84°C。

¹H-NMR(CDCl₃) δ : 1.40 (3H, t, J=7.0 Hz), 2.00-2.18 (2H, m), 2.61 (2H, t, J=7.0 Hz), 3.68 (2H s), 4.02 (2H, t, J=6.2 Hz), 4.34 (2H, q, J=7.0 Hz), 6.80-6.96 (2H, m), 7.14-7.28 (2H, m), 7.80 (1H, d, J=8.8 Hz), 7.90 (1H, dd, J=2.2, 8.8 Hz), 8.20 (1H, s), 8.49-8.56 (1H, m)。

実施例 3 2

{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}メタノール (500 mg)、[2-(3-ヒドロキシフェノキシ)-2-メチル]プロピオン酸メチル (430 mg)、トリフェニルホスフィン (570 mg) およびテトラヒドロフラン (10 ml) の混合物にアゾジカルボン酸ジエチルの 40%トルエン溶液 (980 mg) を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルへキサン (1:4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (5 ml)、テトラヒドロフラン (5 ml) およびエタノール (5 ml) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 (MgSO₄) 後、濃縮した。得られた無色結晶をろ取りし、2-メチル-2-(3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ)フェノキシ)プロピオン酸 (600 mg, 収率 71%) を得た。酢酸エチルへキサンから再結晶した。融点 152~153°C。

¹H-NMR(CDCl₃) δ : 1.64 (6H, s), 2.38 (3H, s), 4.99 (2H, s), 6.52-6.68 (3H, m), 7.15 (1H, t, J=8.1 Hz), 7.98-8.08 (2H, m), 8.58-8.68 (2H, m)。

実施例 3 3

3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール (550 mg)、3-(3-ヒドロキシフェニル)プロピオン酸メチル (330 mg)、トリブチルホスフィン (700 mg) およびテトラヒドロフラン (10 ml) の混合物に 1, 1'-アゾジ

カルボニルジピペリジン（880mg）を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1:4, 容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（5ml）、テトラヒドロフラン（5ml）およびメタノール（5ml）の混合物を室温で5時間かき混ぜた後、1規定塩酸（5ml）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶をろ取り、3-[3-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロピオン酸（590mg, 収率73%）を得た。イソプロピルエーテル-ヘキサンから再結晶した。融点88～89°C。

¹H-NMR(CDCl₃) δ : 1.41 (3H, t, J=7.0 Hz), 2.00-2.18 (2H, m), 2.54-2.76 (4H, m), 2.88-3.02 (2H, m), 4.00 (2H, t, J=6.2 Hz), 4.35 (2H, q, J=7.0 Hz), 6.71-6.88 (3H, m), 7.14-7.24 (1H, m), 7.77-7.96 (2H, m), 8.17 (1H, s), 8.52-8.60 (1H, m)。

【0156】

実施例34

{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}メタノール（520mg）、[2-(4-ヒドロキシフェノキシ)-2-メチル]プロピオン酸メチル（430mg）、トリフェニルホスфин（580mg）およびテトラヒドロフラン（10ml）の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液（980mg）を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1:4, 容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（5ml）、テトラヒドロフラン（5ml）およびエタノール（5ml）の混合物を室温で5時間かき混ぜた後、1規定塩酸（5ml）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶をろ取り、2-メチル-2-(4-{3-メチル-1-[5-(トリフルオロメチル)-2-

—ピリジル]—1H—ピラゾール—4—イルメトキシ}フェノキシ)プロピオン酸(330mg, 収率38%)を得た。イソプロピルエーテル—ヘキサンから再結晶した。融点106~107°C。

$^1\text{H-NMR}$ (CDCl_3) δ : 1.55 (6H, s), 2.39 (3H, s), 4.94 (2H, s), 6.85–6.99 (4H, m), 7.95–8.07 (2H, m), 8.55 (1H, s), 8.61–8.66 (1H, m)。

実施例35

3-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール(500mg)、3-(2-エトキシ-4-ヒドロキシフェニル)プロピオン酸エチル(460mg)、トリブチルホスフィン(650mg)およびテトラヒドロフラン(10ml)の混合物に1, 1'-アゾジカルボニルジペリジン(820mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル—ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO_4)後、濃縮した。得られた無色結晶をろ取りし、3-[2-エトキシ-4-(3-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]プロポキシ)フェニル]プロピオン酸(540mg, 収率67%)を得た。酢酸エチル—ヘキサンから再結晶した。融点96~97°C。

$^1\text{H-NMR}$ (CDCl_3) δ : 1.37–1.48 (6H, m), 2.02–2.16 (2H, m), 2.56–2.69 (4H, m), 2.83–2.94 (2H, m), 3.93–4.06 (4H, m), 4.34 (2H, q, $J=7.2$ Hz), 6.34–6.47 (2H, m), 7.02 (1H, d, $J=8.4$ Hz), 7.76–7.94 (2H, m), 8.17 (1H, s), 8.50–8.58 (1H, m)。

実施例36

1-メチル-3-[3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ]-1H-ピラゾール-5-カルボアアルデヒド(2.00g)、ジエチルホスホノ酢酸エチル(1.35g)およびN

、N-ジメチルホルムアミド(30ml)の混合物に、0°Cで水素化ナトリウム(60%、油性、240mg)を加え、室温で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、希塩酸、続いて、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4、容積比)溶出部から、(E)-3-(1-メチル-3-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}-1H-ピラゾール-5-イル)プロパン酸エチル(2.14g、収率80%)を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点173~174°C。

¹H-NMR(CDCl₃) δ : 1.33 (3H, t, J=7.2 Hz), 2.40 (3H, s), 3.83 (3H, s), 4.26 (2H, q, J=7.2 Hz), 5.11 (2H, s), 5.94 (1H, s), 6.27 (1H, d, J=15.9 Hz), 7.47 (1H, d, J=15.9 Hz), 7.94-8.04 (2H, m), 8.57 (1H, s), 8.60-8.65 (1H, m)。

【0157】

実施例37

(E)-3-(1-メチル-3-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}-1H-ピラゾール-5-イル)プロパン酸エチル(600mg)、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を60°Cで2時間かき混ぜた後、1規定塩酸(10ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、(E)-3-(1-メチル-3-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}-1H-ピラゾール-5-イル)プロパン酸(520mg、収率93%)を得た。アセトン-ヘキサンから再結晶した。融点208~209°C。

¹H-NMR(CDCl₃) δ : 2.41 (3H, s), 3.85 (3H, s), 5.13 (2H, s), 6.00 (1H, s), 6.28 (1H, d, J=15.8 Hz), 7.57 (1H, d, J=15.8 Hz), 7.93-8.07 (2H, m), 8.58 (1H, s), 8.60-8.66 (1H, m)。

実施例38

(E) -3-(1-メチル-3-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}-1H-ピラゾール-5-イル)プロパン酸エチル (1. 25 g)、5%パラジウム-炭素 (600 mg) およびテトラヒドロフラン (30 ml) の混合物を水素雰囲気下、室温で、1時間かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。得られた結晶、1規定水酸化ナトリウム水溶液 (5 ml)、テトラヒドロフラン (5 ml) およびメタノール (5 ml) の混合物を室温で3時間かき混ぜた後、1規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、3-(1-メチル-3-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}-1H-ピラゾール-5-イル)プロピオン酸 (1. 13 g, 収率96%)を得た。アセトン-ヘキサンから再結晶した。融点154~155°C。

1H -NMR($CDCl_3$) δ : 2.39 (3H, s), 2.64-2.77 (2H, m), 2.81-2.94 (2H, m), 3.68 (3H, s), 5.07 (2H, s), 5.51 (1H, s), 7.94-8.07 (2H, m), 8.54 (1H, s), 8.60-8.65 (1H, m)。

実施例39

{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}メタノール (1. 50 g)、3-ヒドロキシ-1-メチル-1H-ピラゾール-5-カルボン酸メチル (830 mg)、トリフェニルホスフィン (1. 40 g) およびテトラヒドロフラン (30 ml) の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液 (2. 35 g) を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から、3-{3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}-1-メチル-1H-ピラゾール-5-カルボン酸メチル (2. 00 g, 収率90%) を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点114~115°C。

1H -NMR($CDCl_3$) δ : 1.36 (6H, d, $J=6.9$ Hz), 3.10-3.24 (1H, m), 3.87 (3H, s)

, 4.06 (3H, s), 5.15 (2H, s), 6.21 (1H, s), 7.94-8.10 (2H, m), 8.57 (1H, s), 8.61-8.66 (1H, m)。

【0158】

実施例40

{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}メタノール (3. 95 g)、3-ヒドロキシ-1-メチル-1H-ピラゾール-5-カルボン酸メチル (2. 39 g)、トリフェニルホスフィン (4. 50 g) およびテトラヒドロフラン (50 ml) の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液 (7. 60 g) を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 4, 容積比) 溶出部から、1-メチル-3-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イルメトキシ}-1H-ピラゾール-5-カルボン酸メチル (4. 90 g, 収率81%) を無色結晶として得た。酢酸エチル-ヘキサンから再結晶した。融点130~131℃。

¹H-NMR(CDCl₃) δ : 2.40 (3H, s), 3.86 (3H, s), 4.05 (3H, s), 5.12 (2H, s), 6.20 (1H, s), 7.94-8.06 (2H, m), 8.57 (1H, s), 8.59-8.67 (1H, m)。

実施例41

3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール (0. 40 g)、[2-(3-ヒドロキシフェノキシ)-2-メチル]プロピオン酸メチル (280 mg)、トリブチルホスフィン (500 mg) およびテトラヒドロフラン (10 ml) の混合物に1, 1'-アゾジカルボニルジペリジン (630 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (5 ml)、テトラヒドロフラン (5 ml) およびメタノール (5 ml) の混合物を室温で5時間かき混ぜた後、1規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 (MgSO₄) 後、濃縮した。得られた無色結晶

をろ取し、2-メチル-2-[3-(3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェノキシ]プロピオン酸(300mg, 収率48%)を得た。酢酸エチル-ヘキサンから再結晶した。融点99~100℃。

¹H-NMR(CDCl₃) δ : 1.00 (3H, t, J=7.0 Hz), 1.61 (6H, s), 1.60-1.83 (2H m), 1.98-2.10 (2H, m), 2.55-2.76 (4H, m), 3.98 (2H, t, J=6.2 Hz), 6.50-6.70 (3H, m), 7.11-7.24 (1H, m), 7.90-8.08 (2H, m), 8.27 (1H, s), 8.55-8.64 (1H, m)。

実施例4 2

3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール(500mg)、3-(3-ヒドロキシ-1-フェニル-1H-ピラゾール-5-イル)プロピオン酸エチル(440mg)、トリブチルホスфин(650mg)およびテトラヒドロフラン(10ml)の混合物に1, 1'-アゾジカルボニルジピベリジン(810mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびエタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[3-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロポキシ]-1-フェニル-1H-ピラゾール-5-イル]プロピオン酸(460mg, 収率55%)を得た。酢酸エチル-ヘキサンから再結晶した。融点121~122℃。

¹H-NMR(CDCl₃) δ : 1.42 (3H, t, J=7.0 Hz), 1.96-2.18 (2H, m), 2.52-2.71 (4H, m), 2.88-3.00 (2H, m), 4.17-4.28 (2H, m), 4.35 (2H, q, J=7.0 Hz), 5.71 (1H, s), 7.27-7.50 (5H, m), 7.76-7.95 (2H, m), 8.17 (1H, s), 8.50-8.56 (1H, m)。

【0159】

実施例4 3

3-[3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール(540mg)、3-(3-ヒドロキシ-1-フェニル-1H-ピラゾール-5-イル)プロピオン酸エチル(450mg)、トリブチルホスフィン(700mg)およびテトラヒドロフラン(20ml)の混合物に1, 1'-アゾジカルボニルジペリジン(860mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[1-フェニル-3-(3-[3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]プロポキシ)-1H-ピラゾール-5-イル]プロピオン酸(630mg, 収率69%)を得た。酢酸エチル-ヘキサンから再結晶した。融点149~150℃。

¹H-NMR(CDCl₃) δ : 1.00 (3H, t, J=7.2 Hz), 1.62-1.85 (2H, m), 1.98-2.18 (2H, m), 2.55-2.71 (6H, m), 2.88-3.02 (2H, m), 4.18-4.30 (2H, m), 5.71 (1H, s), 7.27-7.51 (5H, m), 7.89-8.06 (2H, m), 8.29 (1H, s), 8.55-8.62 (1H, m)。

実施例4 4

3-[3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール(550mg)、3-(3-ヒドロキシフェニル酢酸メチル(300mg)、トリブチルホスフィン(740mg)およびテトラヒドロフラン(20ml)の混合物に1, 1'-アゾジカルボニルジペリジン(890mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキ

サン（1：4，容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（5ml）、テトラヒドロフラン（5ml）およびメタノール（5ml）の混合物を室温で5時間かき混ぜた後、1規定塩酸（5ml）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶をろ取りし、[3-(3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]酢酸（630mg，収率80%）を得た。酢酸エチル-ヘキサンから再結晶した。融点106~107℃。

¹H-NMR(CDCl₃) δ : 1.00 (3H, t, J=7.0 Hz), 1.62-1.82 (2H m), 2.00-2.18 (2H m), 2.55-2.74 (4H, m), 3.62 (2H, s), 4.03 (2H, t, J=6.2 Hz), 6.70-6.92 (3H, m), 7.17-7.32 (1H, m), 7.90-8.05 (2H, m), 8.30 (1H, s), 8.58-8.64 (1H, m)。

実施例4 5

3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール（500mg）、3-(3-ヒドロキシ-1-メチル-1H-ピラゾール-5-イル)プロピオン酸エチル（320mg）、トリブチルホスフィン（650mg）およびテトラヒドロフラン（20ml）の混合物に1, 1'-アゾジカルボニルジピペリジン（800mg）を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：4，容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（5ml）、テトラヒドロフラン（5ml）およびエタノール（5ml）の混合物を室温で5時間かき混ぜた後、1規定塩酸（5ml）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶をろ取りし、3-[1-メチル-3-(3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)-1H-ピラゾール-5-イル]プロピオン酸（550mg，収率74%）を得た。酢酸エチル-ヘキサンから再結晶した。融点80~81℃。

¹H-NMR(CDCl₃) δ : 1.00 (3H, t, J=7.4 Hz), 1.60-1.84 (2H m), 1.95-2.14 (2H

, m), 2.54-2.93 (8H, m), 3.66 (3H, s), 4.08-4.20 (2H, m), 5.48 (1H, s), 7.90-8.06 (2H, m), 8.28 (1H, s), 8.57-8.64 (1H, m)。

【0160】

実施例4 6

3-[3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール (550 mg)、4-ヒドロキシフェニル酢酸メチル (300 mg)、トリブチルホスフィン (750 mg) およびテトラヒドロフラン (30 ml) の混合物に 1, 1'-アゾジカルボニルジビペリジン (890 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (5 ml)、テトラヒドロフラン (5 ml) およびメタノール (5 ml) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、[4-(3-[3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]プロポキシ)フェニル]酢酸 (590 mg, 収率 75%)を得た。酢酸エチル-ヘキサンから再結晶した。融点 101~102°C。

1H -NMR ($CDCl_3$) δ : 1.00 (3H, t, $J=7.4$ Hz), 1.62-1.84 (2H, m), 2.01-2.19 (2H, m), 2.55-2.73 (4H, m), 3.60 (2H, s), 3.96-4.06 (2H, m), 6.82-6.92 (2H, m), 7.14-7.24 (2H, m), 7.90-8.06 (2H, m), 8.30 (1H, s), 8.57-8.64 (1H, m)。

実施例4 7

3-[3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール (550 mg)、2-ヒドロキシフェニル酢酸メチル (300 mg)、トリブチルホスフィン (750 mg) およびテトラヒドロフラン (30 ml) の混合物に 1, 1'-アゾジカルボニルジビペリジン (900 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキ

サン（1：4，容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（5mL）、テトラヒドロフラン（5mL）およびメタノール（5mL）の混合物を室温で5時間かき混ぜた後、1規定塩酸（5mL）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶をろ取り、[2-(3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]酢酸（620mg，収率79%）を得た。酢酸エチル-ヘキサンから再結晶した。融点100~101℃。

実施例48

3-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)-1-プロパノール（500mg）、3-(3-ヒドロキシ-1-メチル-1H-ピラゾール-5-イル)プロパン酸エチル（346mg）、トリブチルホスフィン（790μL）およびテトラヒドロフラン（53mL）の混合物に1, 1'-アゾジカルボニルジペリジン（800mg）を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：2，容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（25mL）、テトラヒドロフラン（50mL）およびエタノール（25mL）の混合物を室温で3時間かき混ぜた後、1規定塩酸（25mL）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、3-[3-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)プロポキシ]-1-メチル-1H-ピラゾール-5-イル]プロパン酸（370mg，収率50%）を得た。融点137~138℃。

【0161】

実施例49

4-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)-1-ブタノール（500mg）、3-

3-ヒドロキシ-1-フェニル-1H-ピラゾール-5-イル) プロパン酸エチル (437 mg)、トリブチルホスフィン (761 μ L) およびテトラヒドロフラン (50 mL) の混合物に 1, 1'-アゾジカルボニルジピペリジン (771 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 5, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (25 mL)、テトラヒドロフラン (50 mL) およびエタノール (25 mL) の混合物を室温で 2 時間かき混ぜた後、1 規定塩酸 (25 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、3-[3-(4-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル) プトキシ)-1-フェニル-1H-ピラゾール-5-イル] プロパン酸 (594 mg, 収率 72%) を得た。融点 137~138°C。

実施例 50

4-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)-1-ブタノール (500 mg)、3-(3-ヒドロキシ-1-メチル-1H-ピラゾール-5-イル) プロパン酸エチル (333 mg)、トリブチルホスフィン (761 μ L) およびテトラヒドロフラン (50 mL) の混合物に 1, 1'-アゾジカルボニルジピペリジン (771 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 5, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (25 mL)、テトラヒドロフラン (50 mL) およびエタノール (25 mL) の混合物を室温で 2 時間かき混ぜた後、1 規定塩酸 (25 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、3-[3-(4-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル) プトキシ)-1-メチル-1H-ピラ

ゾール-5-イル] プロパン酸 (366mg, 収率50%)を得た。融点113~114℃。

実施例51

4-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)-1-ブタノール (500mg)、3-ヒドロキシフェニル酢酸メチル (279mg)、トリブチルホスフィン (761μL) およびテトラヒドロフラン (50mL) の混合物に 1, 1'-アゾジカルボニルジペリジン (771mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:20, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (25mL)、テトラヒドロフラン (50mL) およびエタノール (25mL) の混合物を室温で6時間かき混ぜた後、1規定塩酸 (25mL) を加えた後、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をジイソプロピルエーテル-ヘキサンから再結晶し、[3-(4-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)ブトキシ)フェニル]酢酸 (165mg, 収率23%)を得た。融点114~115℃。

【0162】

実施例52

4-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)-1-ブタノール (500mg)、2-ヒドロキシフェニル酢酸メチル (279mg)、トリブチルホスフィン (761μL) およびテトラヒドロフラン (80mL) の混合物に 1, 1'-アゾジカルボニルジペリジン (771mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (25mL)、テトラヒドロフラン (50mL) およびエタノール (25mL) の混合物を室温で2時間かき混ぜた後、1規定

塩酸（25 mL）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（Mg SO₄）後、濃縮した。得られた無色結晶を酢酸エチルヘキサンから再結晶し、[2-(4-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)ブトキシ)フェニル]酢酸（376 mg, 収率53%）を得た。融点125～126°C。

実施例53

4-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)-1-ブタノール（500 mg）、4-ヒドロキシフェニル酢酸メチル（279 mg）、トリブチルホスフィン（761 μL）およびテトラヒドロフラン（76 mL）の混合物に1, 1'-アゾジカルボニルジピペリジン（771 mg）を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルヘキサン（1:9, 容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（50 mL）、テトラヒドロフラン（50 mL）およびエタノール（25 mL）の混合物を室温で4時間かき混ぜた後、1規定塩酸（50 mL）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（Mg SO₄）後、濃縮した。得られた無色結晶を酢酸エチルヘキサンから再結晶し、[4-(4-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)ブトキシ)フェニル]酢酸（335 mg, 収率47%）を得た。融点130～131°C。

実施例54

4-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)-1-ブタノール（500 mg）、2-(3-ヒドロキシフェノキシ)-2-メチルプロパン酸メチル（353 mg）、トリブチルホスフィン（761 μL）およびテトラヒドロフラン（76 mL）の混合物に1, 1'-アゾジカルボニルジピペリジン（771 mg）を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルヘキサン（1:9, 容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（50 mL）、

テトラヒドロフラン (50 mL) およびエタノール (25 mL) の混合物を室温で3時間かき混ぜた後、1規定塩酸 (50 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:1, 容積比) 溶出部から無色結晶を得た。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、2-[3-(4-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)ブトキシ)フェノキシ]-2-メチルプロパン酸 (258 mg, 収率33%)を得た。融点81~82°C。

【0163】

実施例55

4-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)-1-ブタノール (500 mg)、3-(4-ヒドロキシフェニル)プロパン酸メチル (303 mg)、トリブチルホスファイン (761 μ L) およびテトラヒドロフラン (76 mL) の混合物に1,1'-アゾジカルボニルジピペリジン (771 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:5, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (50 mL)、テトラヒドロフラン (50 mL) およびエタノール (25 mL) の混合物を室温で3時間かき混ぜた後、1規定塩酸 (50 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、3-[4-(4-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)ブトキシ)フェニル]プロパン酸 (231 mg, 収率32%)を得た。融点144~145°C。

実施例56

2-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)エタノール (300 mg)、3-(3-ヒドロキ

シ-1-フェニル-1H-ピラゾール-5-イル) プロパン酸エチル (285 mg)、トリブチルホスフィン (496 μ L) およびテトラヒドロフラン (50 mL) の混合物に 1, 1' - アゾジカルボニルジピペリジン (503 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (30 mL)、テトラヒドロフラン (30 mL) およびエタノール (15 mL) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (30 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、3-[3-(2-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}エトキシ)-1-フェニル-1H-ピラゾール-5-イル]プロパン酸 (372 mg, 収率 72%) を得た。融点 155~156°C。

実施例 57

2-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル]エタノール (300 mg)、2-ヒドロキシフェニル酢酸メチル (183 mg)、トリブチルホスフィン (496 μ L) およびテトラヒドロフラン (50 mL) の混合物に 1, 1' - アゾジカルボニルジピペリジン (502 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (25 mL)、テトラヒドロフラン (25 mL) およびエタノール (25 mL) の混合物を室温で 3 時間かき混ぜた後、1 規定塩酸 (25 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、[2-(2-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)エトキシ)フェニル]酢酸 (242 mg, 収率 56%) を得た。融点 134~135°C。

【0164】

実施例58

4-[3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル]-1-ブタノール(500mg)、3-(3-ヒドロキシ-1フェニル-1H-ピラゾール-5-イル)プロパン酸エチル(437mg)、トリブチルホスフィン(761μL)およびテトラヒドロフラン(76mL)の混合物に1,1'-アゾジカルボニルジペリジン(771mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(30mL)、テトラヒドロフラン(30mL)およびエタノール(30mL)の混合物を室温で3時間かき混ぜた後、1規定塩酸(30mL)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、3-[1-フェニル-3-(4-[3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル]ブトキシ)-1H-ピラゾール-5-イル]プロパン酸(505mg, 収率61%)を得た。融点123~124℃。

実施例59

4-[3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル]-1-ブタノール(500mg)、3-ヒドロキシフェニル酢酸メチル(508mg)、トリブチルホスフィン(761μL)およびテトラヒドロフラン(76mL)の混合物に1,1'-アゾジカルボニルジペリジン(771mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(30mL)、テトラヒドロフラン(30mL)およびエタノール(30mL)の混合物を室温で3.5時間かき混ぜた後、1規定塩酸(30mL)を加えた後、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶を酢酸エチル

ヘキサンから再結晶し、[3-(4-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}ブトキシ)フェニル]酢酸(330mg, 収率47%)を得た。融点96~97℃。

実施例60

4-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}-1-ブタノール(500mg)、2-ヒドロキシフェニル酢酸メチル(279mg)、トリブチルホスフィン(761μL)およびテトラヒドロフラン(76mL)の混合物に1, 1'-アゾジカルボニルジペリジン(771mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(30mL)、テトラヒドロフラン(30mL)およびエタノール(30mL)の混合物を室温で3時間かき混ぜた後、1規定塩酸(30mL)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、[2-(4-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}ブトキシ)フェニル]酢酸(236mg, 収率33%)を得た。融点95~97℃。

【0165】

実施例61

4-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}-1-ブタノール(500mg)、(3-ヒドロキシ-1-メチル-1H-ピラゾール-4-イル)酢酸メチル(286mg)、トリブチルホスフィン(761μL)およびテトラヒドロフラン(76mL)の混合物に1, 1'-アゾジカルボニルジペリジン(771mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:3, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(30mL)、テトラヒドロフラン(30mL)およびエタノール(30mL)の混合物を

室温で4時間かき混ぜた後、1規定塩酸(30mL)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、[1-メチル-3-(4-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}ブトキシ)-1H-ピラゾール-4-イル]酢酸(340mg, 収率48%)を得た。融点95~97℃。

実施例62

2-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)エタノール(460mg)、3-ヒドロキシフェニル酢酸メチル(507mg)、トリプチルホスフィン(761μL)およびテトラヒドロフラン(76mL)の混合物に1, 1'-アゾジカルボニルジペリジン(771mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:5, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(30mL)、テトラヒドロフラン(30mL)およびエタノール(30mL)の混合物を室温で3時間かき混ぜた後、1規定塩酸(30mL)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:2, 容積比)溶出部から無色結晶を得た。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、[3-(2-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)エトキシ)フェニル]酢酸(206mg, 収率31%)を得た。融点128~130℃。

実施例63

4-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)-1-ブタノール(500mg)、3-ヒドロキシ-4-メトキシフェニル酢酸メチル(899mg)、トリプチルホスフィン(1.14mL)およびテトラヒドロフラン(76mL)の混合物に1, 1'-アゾジカルボニルジペリジン(1.16g)を室温で加えた後、終夜かき混ぜ

た。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：4、容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（30mL）、テトラヒドロフラン（30mL）およびエタノール（30mL）の混合物を室温で3時間かき混ぜた後、1規定塩酸（30mL）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、[4-メトキシ-3-(4-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)ブトキシ)フェニル]酢酸（388mg、収率52%）を得た。融点147～148℃。

【0166】

実施例64

4-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)-1-ブタノール（500mg）、3-(4-ヒドロキシ-2-メチルフェニル)プロパン酸エチル（350mg）、トリブチルホスフィン（761μL）およびテトラヒドロフラン（76mL）の混合物に1, 1'-アゾジカルボニルジペリジン（771mg）を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：5、容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（30mL）、テトラヒドロフラン（30mL）およびエタノール（30mL）の混合物を室温で3時間かき混ぜた後、1規定塩酸（30mL）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、3-[2-メチル-4-(4-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)ブトキシ)フェニル]プロパン酸（323mg、収率43%）を得た。融点105～107℃。

実施例65

3-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]

-1H-ピラゾール-4-イル} -1-プロパノール (480 mg)、3-(4-ヒドロキシ-2-メチルフェニル) プロパン酸エチル (351 mg)、トリブチルホスフィン (763 μ L) およびテトラヒドロフラン (76 mL) の混合物に1, 1' -アゾジカルボニルジピペリジン (773 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 5, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (30 mL)、テトラヒドロフラン (30 mL) およびエタノール (30 mL) の混合物を室温で終夜かき混ぜた後、1規定塩酸 (30 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、3-[2-メチル-4-(3-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル) プロポキシ) フェニル] プロパン酸 (147 mg, 収率20%)を得た。融点124~126°C。

実施例66

4-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル} -1-ブタノール (500 mg)、(3-ヒドロキシ-1-フェニル-1H-ピラゾール-4-イル) 酢酸メチル (390 mg)、トリブチルホスフィン (761 μ L) およびテトラヒドロフラン (76 mL) の混合物に1, 1' -アゾジカルボニルジピペリジン (771 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (30 mL)、テトラヒドロフラン (30 mL) およびエタノール (30 mL) の混合物を室温で終夜かき混ぜた後、1規定塩酸 (30 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、[1-フェニル-3-(4-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル) ブトキシ)-1H-ピラゾール-4-イル] 酢

酸 (600 mg, 収率 74%) を得た。融点 114~115°C。

【0167】

実施例 6 7

3 - {3 - プロピル - 1 - [5 - (トリフルオロメチル) - 2 - ピリジニル] - 1 H - ピラゾール - 4 - イル} - 1 - プロパノール (480 mg)、(3 - ヒドロキシ - 1 - フェニル - 1 H - ピラゾール - 4 - イル) 酢酸メチル (391 mg)、トリブチルホスフィン (763 μL) およびテトラヒドロフラン (77 mL) の混合物に 1, 1' - アゾジカルボニルジピペリジン (773 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (30 mL)、テトラヒドロフラン (30 mL) およびエタノール (30 mL) の混合物を室温で 3 時間かき混ぜた後、1 規定塩酸 (30 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶を酢酸エチル - ヘキサンから再結晶し、[1 - フェニル - 3 - (3 - {3 - プロピル - 1 - [5 - (トリフルオロメチル) - 2 - ピリジニル] - 1 H - ピラゾール - 4 - イル} プロポキシ) - 1 H - ピラゾール - 4 - イル] 酢酸 (601 mg, 収率 76%) を得た。融点 123~124°C。

実施例 6 8

4 - {3 - イソプロピル - 1 - [5 - (トリフルオロメチル) - 2 - ピリジニル] - 1 H - ピラゾール - 4 - イル} - 1 - ブタノール (500 mg)、(3 - ヒドロキシ - 1 - フェニル - 1 H - ピラゾール - 4 - イル) 酢酸メチル (390 mg)、トリブチルホスフィン (761 μL) およびテトラヒドロフラン (76 mL) の混合物に 1, 1' - アゾジカルボニルジピペリジン (771 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (30 mL)、テトラヒドロフラン (30 mL) およびエタノール (30 mL) の混合物を室温で終夜かき混ぜた後、1 規定塩酸 (30 mL) を加え、酢酸エチルで

抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、[3-(4-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)ブトキシ)-1-フェニル-1H-ピラゾール-4-イル]酢酸(4.71mg, 収率58%)を得た。融点119~120℃。

実施例69

4-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)-1-ブタノール(350mg)、3-(4-ヒドロキシ-2-メトキシフェニル)プロパン酸メチル(674mg)、トリブチルホスフィン(799 μL)およびテトラヒドロフラン(53mL)の混合物に1, 1'-(アゾジカルボニルジピペリジン)(809mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(30mL)、テトラヒドロフラン(30mL)およびエタノール(30mL)の混合物を室温で3時間かき混ぜた後、1規定塩酸(30mL)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥($MgSO_4$)後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、3-[4-(4-(3-イソプロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)ブトキシ)-2-メトキシフェニル]プロパン酸(319mg, 収率59%)を得た。融点125~126℃。

【0168】

実施例70

4-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)-1-ブタノール(500mg)、3-(3-ヒドロキシ-1-メチル-1H-ピラゾール-5-イル)プロパン酸エチル(333mg)、トリブチルホスフィン(761 μL)およびテトラヒドロフラン(76mL)の混合物に1, 1'-(アゾジカルボニルジピペリジン)(771mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲ

ルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：2、容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（30mL）、テトラヒドロフラン（30mL）およびエタノール（30mL）の混合物を室温で終夜かき混ぜた後、1規定塩酸（30mL）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、3-[1-メチル-3-[4-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル]ブトキシ]-1H-ピラゾール-5-イル]プロパン酸（345mg、収率47%）を得た。融点122～123℃。

実施例71

3-[3-(ベンジルオキシ)-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル]-1-プロパノール（400mg）、3-(3-ヒドロキシ-1-フェニル-1H-ピラゾール-5-イル)プロパン酸エチル（247mg）、トリブチルホスфин（394μL）およびテトラヒドロフラン（40mL）の混合物に1,1'-アゾジカルボニルジピペリジン（399mg）を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：4、容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（30mL）、テトラヒドロフラン（30mL）およびエタノール（30mL）の混合物を室温で3時間かき混ぜた後、1規定塩酸（30mL）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、3-[3-(3-(3-ベンジルオキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)プロポキシ]-1-フェニル-1H-ピラゾール-5-イル]プロパン酸（378mg、収率81%）を得た。融点159～161℃。

実施例72

2-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]

-1 H-ピラゾール-4-イル} エタノール (400 mg)、(3-ヒドロキシ-1-フェニル-1 H-ピラゾール-4-イル) 酢酸メチル (339 mg)、トリブチルホスフィン (662 μ L) およびテトラヒドロフラン (66 mL) の混合物に 1, 1' -アゾジカルボニルジピペリジン (670 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (30 mL)、テトラヒドロフラン (30 mL) およびエタノール (30 mL) の混合物を室温で終夜かき混ぜた後、1 規定塩酸 (30 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、[3-(2-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1 H-ピラゾール-4-イル)エトキシ)-1-フェニル-1 H-ピラゾール-4-イル] 酢酸 (544 mg, 収率 82%) を得た。融点 135~137°C。

【0169】

実施例 73

2-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1 H-ピラゾール-4-イル) エタノール (400 mg)、4-ヒドロキシフェニル酢酸メチル (243 mg)、トリブチルホスフィン (662 μ L) およびテトラヒドロフラン (66 mL) の混合物に 1, 1' -アゾジカルボニルジピペリジン (670 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 4, 容積比) 溶出部から白色固体を得た。得られた白色固体、1 規定水酸化ナトリウム水溶液 (30 mL)、テトラヒドロフラン (30 mL) およびエタノール (30 mL) の混合物を室温で 3 時間かき混ぜた後、1 規定塩酸 (30 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、[4-(2-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1 H-ピラゾール-4-イル)エトキシ)フェニル] 酢酸 (

123mg, 収率21%)を得た。融点142~143°C。

実施例74

2-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル]エタノール(400mg)、2-(3-ヒドロキシフェノキシ)-2-メチルプロパン酸メチル(335mg)、トリブチルホスフィン(662μL)およびテトラヒドロフラン(66mL)の混合物に1,1'-アゾジカルボニルジペリジン(670mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(30mL)、テトラヒドロフラン(30mL)およびエタノール(30mL)の混合物を室温で終夜かき混ぜた後、1規定塩酸(30mL)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:1, 容積比)溶出部から無色結晶を得た。得られた無色結晶を酢酸エチル-ヘキサンから結晶化し、2-[3-(2-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)エトキシ)フェノキシ]-2-メチルプロパン酸(169mg, 収率26%)を得た。融点89~90°C。

実施例75

2-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル]エタノール(350mg)、3-(4-ヒドロキシ-2-メトキシフェニル)プロパン酸メチル(733mg)、トリブチルホスフィン(868μL)およびテトラヒドロフラン(58mL)の混合物に1,1'-アゾジカルボニルジペリジン(879mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:3, 容積比)溶出部から淡黄色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(30mL)、テトラヒドロフラン(30mL)およびエタノール(30mL)の混合物を室温で3日間かき混ぜた後、1規定塩酸(30mL)を加え、酢酸エチルで抽出した。酢酸エチル

チル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 1, 5, 容積比) 溶出部から無色結晶を得た。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、3-[4-(2-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}エトキシ)-2-メトキシフェニル]プロパン酸 (337 mg, 収率 61%) を得た。融点 147~148°C。

【0170】

実施例 76

2-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)エタノール (400 mg)、3-(4-ヒドロキシ-2-メチルフェニル)プロパン酢酸エチル (332 mg)、トリプチルホスフィン (662 μ L) およびテトラヒドロフラン (66 mL) の混合物に 1, 1'-アゾジカルボニルジピペリジン (670 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 5, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (30 mL)、テトラヒドロフラン (30 mL) およびエタノール (30 mL) の混合物を室温で終夜かき混ぜた後、1 規定塩酸 (30 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、3-[4-(2-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}エトキシ)-2-メチルフェニル]プロパン酸 (210 mg, 収率 34%) を得た。融点 117~119°C。

実施例 77

4-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)ブチルメタンスルホナート (500 mg)、水素化ナトリウム (60%、油性、74.0 mg)、N, N-ジメチルホルムアミド (10 mL) の混合物を室温で 30 分かき混ぜた後、3-[3-(4-フルオ

ロフェニル) - 1 H-ピラゾール-4-イル] プロパン酸エチル (350 mg) の N, N-ジメチルホルムアミド (2 mL) 溶液を加えた。終夜かき混ぜた後、水を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (30 mL)、テトラヒドロフラン (30 mL) およびエタノール (30 mL) の混合物を室温で終夜かき混ぜた後、1 規定塩酸 (30 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、3-[3-(4-フルオロフェニル)-1-(4-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)ブチル)-1H-ピラゾール-4-イル] プロパン酸 (3.95 mg, 収率 59%) を得た。融点 119~121°C。

実施例 7 8

3-(3-エトキシ-1H-ピラゾール-4-イル) プロパン酸エチル (500 mg)、水素化ナトリウム (60%、油性、113 mg)、N, N-ジメチルホルムアミド (22 mL) の混合物を室温で 1 時間かき混ぜた後、4-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)ブチルメタンスルホナート (870 mg) を加えた。得られる混合物を終夜かき混ぜた後、0.1 規定塩酸水溶液 (100 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた残留物、1 規定水酸化ナトリウム水溶液 (30 mL)、テトラヒドロフラン (30 mL) およびエタノール (30 mL) の混合物を室温で 3 時間かき混ぜた後、1 規定塩酸 (30 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 1, 容積比) 溶出部から無色油状物を得た。得られた無色油状物、1 規定水酸化ナトリウム水溶液 (1.39 mL)、テトラヒドロフラン (30 mL) およびエタノール (30 mL) の混合物を室温で 1 時間かき混ぜた後、濃縮した。得られた

無色結晶を酢酸エチル-ヘキサンから再結晶し、3-[3-エトキシ-1-(4-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}プロピル)-1H-ピラゾール-4-イル]プロパン酸ナトリウム(657mg, 収率59%)を得た。融点250~251℃。

【0171】

実施例79

3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール(470mg)、4-ヒドロキシ-3-メトキシフェニル酢酸エチル(320mg)、トリブチルホスフィン(610mg)およびテトラヒドロフラン(30mL)の混合物に1, 1'-アゾジカルボニルジペリジン(760mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5mL)、テトラヒドロフラン(5mL)およびメタノール(5mL)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5mL)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、[3-メトキシ-4-(3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]酢酸(550mg, 収率77%)を得た。酢酸エチル-ヘキサンから再結晶した。融点121~122℃。

実施例80

3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}-1-プロパノール(510mg)、3-ヒドロキシ-4-メトキシフェニル酢酸メチル(799mg)、トリブチルホスフィン(1.01mL)およびテトラヒドロフラン(100mL)の混合物に1, 1'-アゾジカルボニルジペリジン(1.03g)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:5, 容積比)溶出部から無色油状物を得た

。得られた油状物、1規定水酸化ナトリウム水溶液(30mL)、テトラヒドロフラン(30mL)およびエタノール(30mL)の混合物を室温で終夜かき混ぜた後、1規定塩酸(30mL)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶を酢酸エチルヘキサンから再結晶し、[4-メトキシ-3-(3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]酢酸(451mg, 収率58%)を得た。融点124~126℃。

実施例81

3-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)-1-プロパノール(560mg)、3-(5-ヒドロキシ-2-メトキシフェニル)プロパン酸エチル(441mg)、トリブチルホスフィン(892μL)およびテトラヒドロフラン(100mL)の混合物に1,1'-アゾジカルボニルジピペリジン(903mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルヘキサン(1:5, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(30mL)、テトラヒドロフラン(30mL)およびエタノール(30mL)の混合物を室温で5時間かき混ぜた後、1規定塩酸(30mL)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルヘキサン(1:1, 容積比)溶出部から無色結晶を得た。得られた無色結晶を酢酸エチルヘキサンから再結晶し、3-[2-メトキシ-5-(3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロパン酸(407mg, 収率46%)を得た。融点104~106℃。

【0172】

実施例82

3-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H

—ピラゾール-4-イル}-1-プロパノール(500mg)、3-(4-ヒドロキシフェニル)プロピオン酸メチル(300mg)、トリブチルホスフィン(700mg)およびテトラヒドロフラン(30ml)の混合物に1,1'-アゾジカルボニルジペリジン(810mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[4-(3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロピオン酸(650mg, 収率88%)を得た。酢酸エチル-ヘキサンから再結晶した。融点118~119℃。

実施例83

3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール(500mg)、3-(2-ヒドロキシフェニル)プロピオン酸メチル(300mg)、トリブチルホスフィン(700mg)およびテトラヒドロフラン(30ml)の混合物に1,1'-アゾジカルボニルジペリジン(800mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[2-(3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロピオン酸(420mg, 収率57%)を得た。酢酸エチル-ヘキサンから再結晶した。融点87~88℃。

実施例84

3-[3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール(500mg)、3-(3-ヒドロキシフェニル)プロピオン酸メチル(300mg)、トリブチルホスフィン(700mg)およびテトラヒドロフラン(30ml)の混合物に1,1'-アゾジカルボニルジペリジン(800mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[3-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロポキシ]フェニル]プロピオン酸(520mg, 収率71%)を得た。酢酸エチル-ヘキサンから再結晶した。融点97~98℃。

【0173】

実施例85

3-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール(500mg)、3-(4-ヒドロキシ-2-メトキシフェニル)プロピオン酸メチル(340mg)、トリブチルホスフィン(650mg)およびテトラヒドロフラン(30ml)の混合物に1,1'-アゾジカルボニルジペリジン(810mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[4-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピ

リジル] - 1 H - ピラゾール - 4 - イル] プロポキシ) - 2 - メトキシフェニル] プロピオン酸 (530 mg, 収率 67%) を得た。酢酸エチル - ヘキサンから再結晶した。融点 120 ~ 121°C。

実施例 8 6

3 - {3 - プロピル - 1 - [5 - (トリフルオロメチル) - 2 - ピリジル] - 1 H - ピラゾール - 4 - イル} - 1 - プロパノール (510 mg)、3 - (4 - ヒドロキシ - 2 - メトキシフェニル) プロピオン酸メチル (360 mg)、トリブチルホスフィン (650 mg) およびテトラヒドロフラン (30 ml) の混合物に 1, 1' - アゾジカルボニルジペリジン (810 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (5 ml)、テトラヒドロフラン (5 ml) およびメタノール (5 ml) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取りし、3 - [2 - メトキシ - 4 - (3 - {3 - プロピル - 1 - [5 - (トリフルオロメチル) - 2 - ピリジル] - 1 H - ピラゾール - 4 - イル} プロポキシ) フェニル] プロピオン酸 (520 mg, 収率 65%) を得た。酢酸エチル - ヘキサンから再結晶した。融点 114 ~ 115°C。

実施例 8 7

3 - {3 - プロピル - 1 - [5 - (トリフルオロメチル) - 2 - ピリジル] - 1 H - ピラゾール - 4 - イル} - 1 - プロパノール (510 mg)、(3 - ヒドロキシ - 1 - メチル - 1 H - ピラゾール - 4 - イル) 酢酸メチル (290 mg)、トリブチルホスフィン (680 mg) およびテトラヒドロフラン (30 ml) の混合物に 1, 1' - アゾジカルボニルジペリジン (860 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (5 ml)、テトラヒドロフラン (5 ml) およびメタノール (5 ml) の混合物を室温で 5 時

間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、[1-メチル-3-(3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)-1H-ピラゾール-4-イル]酢酸(570mg, 収率77%)を得た。酢酸エチル-ヘキサンから再結晶した。融点119~120℃。

【0174】

実施例88

4-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-ブタノール(500mg)、4-ヒドロキシフェニル酢酸メチル(270mg)、トリブチルホスフィン(620mg)およびテトラヒドロフラン(30ml)の混合物に1, 1'-アゾジカルボニルジペリジン(780mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、[4-(4-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロキシ)フェニル]酢酸(410mg, 収率58%)を得た。酢酸エチル-ヘキサンから再結晶した。融点121~122℃。

実施例89

4-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-ブタノール(510mg)、3-(4-ヒドロキシ-2-メトキシフェニル)プロピオン酸メチル(330mg)、トリブチルホスフィン(630mg)およびテトラヒドロフラン(30ml)の混合物に1, 1'-アゾジカルボニルジペリジン(790mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィ

ーに付し、酢酸エチル-ヘキサン（1：4，容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（5ml）、テトラヒドロフラン（5ml）およびメタノール（5ml）の混合物を室温で5時間かき混ぜた後、1規定塩酸（5ml）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶をろ取り、3-[2-メトキシ-4-(4-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}ブロキシ)フェニル]プロピオン酸（510mg，収率65%）を得た。酢酸エチル-ヘキサンから再結晶した。融点91～92℃。

実施例90

3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール（190mg）、2-フルオロー-5-ヒドロキシフェニル酢酸メチル（110mg）、トリブチルホスフィン（250mg）およびテトラヒドロフラン（20ml）の混合物に1,1'-アゾジカルボニルジペリジン（310mg）を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：4，容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（5ml）、テトラヒドロフラン（5ml）およびメタノール（5ml）の混合物を室温で5時間かき混ぜた後、1規定塩酸（5ml）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶をろ取り、[2-フルオロー-5-(3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}ブロボキシ)フェニル]酢酸（220mg，収率79%）を得た。酢酸エチル-ヘキサンから再結晶した。融点111～112℃。

【0175】

実施例91

3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール（390mg）、4-フルオロー-

3-ヒドロキシフェニル酢酸メチル(230mg)、トリブチルホスフィン(510mg)およびテトラヒドロフラン(30ml)の混合物に1,1'-アゾジカルボニルジピペリジン(640mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取り、[4-フルオロ-3-(3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]酢酸(220mg, 収率79%)を得た。酢酸エチル-ヘキサンから再結晶した。融点88~89℃。

実施例92

3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール(500mg)、3-(3-ヒドロキシ-5-メトキシフェニル)プロピオン酸エチル(380mg)、トリブチルホスフィン(650mg)およびテトラヒドロフラン(30ml)の混合物に1,1'-アゾジカルボニルジピペリジン(650mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(2ml)、テトラヒドロフラン(4ml)およびエタノール(4ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(2ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取り、3-[3-メトキシ-5-(3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロピオン酸(380mg, 収率48%)を得た。イソプロピルエーテル-ヘキサンから再結晶した。融点98~99℃。

実施例93

3-[3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール(500mg)、3-(3-ヒドロキシ-4-メトキシフェニル)プロピオン酸エチル(360mg)、トリブチルホスフィン(650mg)およびテトラヒドロフラン(35ml)の混合物に1, 1'-アゾジカルボニルジペリジン(810mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびエタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取りし、3-[4-メトキシ-3-(3-[3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]プロポキシ)フェニル]プロピオン酸(280mg, 収率70%)を得た。融点147~148℃。

【0176】

実施例94

3-[3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール(650mg)、4-ヒドロキシ-2-メチルフェニル酢酸メチル(390mg)、トリブチルホスフィン(840mg)およびテトラヒドロフラン(30ml)の混合物に1, 1'-アゾジカルボニルジペリジン(1050mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取りし、[2-メチル-4-(3-[3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]プロポキシ)フェニル]酢酸(590mg, 収率

62%)を得た。酢酸エチルへキサンから再結晶した。融点134~135°C

実施例95

3-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)-1-プロパノール(470mg)、4-ヒドロキシ-2-メトキシフェニル酢酸メチル(300mg)、トリブチルホスフィン(610mg)およびテトラヒドロフラン(30ml)の混合物に1,1'-アゾカルボニルジピペリジン(760mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルへキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、[2-メトキシ-4-(3-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロポキシ)フェニル]酢酸(580mg, 収率81%)を得た。酢酸エチルへキサンから再結晶した。融点135~136°C。

実施例96

3-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)-1-プロパノール(470mg)、3-(4-ヒドロキシ-3-メトキシフェニル)プロピオン酸エチル(350mg)、トリブチルホスフィン(610mg)およびテトラヒドロフラン(30ml)の混合物に1,1'-アゾカルボニルジピペリジン(760mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルへキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は

、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、3-[3-メトキシ-4-(3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロピオン酸 (590mg, 収率80%)を得た。酢酸エチル-ヘキサンから再結晶した。融点126~127°C。

【0177】

実施例97

3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}-1-プロパノール (580mg)、(5-ヒドロキシ-2-メトキシフェニル) 酢酸メチル (400mg)、トリブチルホスフィン (924 μL) およびテトラヒドロフラン (90mL) の混合物に1, 1'-アゾジカルボニルジピペリジン (936mg) を室温で加えた後、3日間かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:6, 容積比) 溶出部から淡黄色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (30mL)、テトラヒドロフラン (30mL) およびエタノール (30mL) の混合物を室温で終夜かき混ぜた後、1規定塩酸 (30mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた淡黄色固体を酢酸エチル-ヘキサンから再結晶し、無色結晶として [2-メトキシ-5-(3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}プロポキシ)フェニル] 酢酸 (483mg, 収率55%)を得た。融点135~136°C。

実施例98

3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}-1-プロパノール (500mg)、3-(4-ヒドロキシ-2-エトキシフェニル) プロパン酸メチル (395mg)、トリブチルホスフィン (797 μL) およびテトラヒドロフラン (80mL) の混合物に1, 1'-アゾジカルボニルジピペリジン (807mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマト

グラフィーに付し、酢酸エチル-ヘキサン（1：7、容積比）溶出部から白色固体を得た。得られた固体、1規定水酸化ナトリウム水溶液（30mL）、テトラヒドロフラン（30mL）およびエタノール（30mL）の混合物を室温で終夜かき混ぜた後、1規定塩酸（30mL）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた白色固体を酢酸エチル-ヘキサンから再結晶し、無色結晶として3-[2-エトキシ-4-(3-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)プロポキシ)フェニル]プロパン酸（442mg、収率55%）を得た。融点119～120℃。

実施例99

3-(3-フェニル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)-1-プロパノール（400mg）、3-(4-ヒドロキシ-2-エトキシフェニル)プロパン酸メチル（260mg）、トリブチルホスフィン（480μL）およびテトラヒドロフラン（30mL）の混合物に1, 1'-アゾジカルボニルジペリジン（600mg）を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：7、容積比）溶出部から白色固体を得た。得られた固体、1規定水酸化ナトリウム水溶液（30mL）、テトラヒドロフラン（30mL）およびエタノール（30mL）の混合物を室温で終夜かき混ぜた後、1規定塩酸（30mL）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた白色固体を酢酸エチル-ヘキサンから再結晶し、無色結晶として3-[2-エトキシ-4-(3-(3-フェニル-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)プロポキシ)フェニル]プロパン酸（373mg、収率60%）を得た。融点135～136℃。

【0178】

実施例100

2-(3-[3-(3-エトキシ-1H-ピラゾール-4-イル)プロポキシ]フェノキシ)-2-メチルプロパン酸エチル（300mg）、水素化ナトリウ

ム(60%、油性、63.6mg)、N,N-ジメチルホルムアミド(10mL)の混合物を室温で30分かき混ぜた後、ヨウ化シクロペンタン(184μL)を加えた。終夜かき混ぜた後、飽和塩化アンモニア水を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた残留物、1規定水酸化ナトリウム水溶液(25mL)、テトラヒドロフラン(25mL)およびエタノール(25mL)の混合物を室温で終夜かき混ぜた後、1規定塩酸(25mL)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:1、容積比)溶出部から無色油状物を得た。得られた油状物、規定水酸化ナトリウム水溶液(645μL)、テトラヒドロフラン(25mL)およびエタノール(25mL)の混合物を室温で1時間かき混ぜた後、濃縮した。得られた残留物、水(25mL)の混合物に僅かな水に溶かした塩化カルシウム(69.0mg)加え、室温で終夜かき混ぜた。生じた白色析出物をろ過で集め、アモルファスとして2-[3-[3-(1-シクロペンチル-3-エトキシ-1H-ピラゾール-4-イル)プロポキシ]フェノキシ]-2-メチルプロパン酸カルシウム(256mg、収率74%)を得た。

¹H-NMR(DMSO-d₆) δ: 1.25 (3H, t, J = 6.9 Hz), 1.41 (6H, s), 1.52 - 1.61 (2H, m), 1.67 - 2.00 (8H, m), 2.32 - 2.39 (2H, m), 3.83 - 3.90 (2H, m), 4.09 (2H, q, J = 6.9 Hz), 4.34 - 4.45 (1H, m), 6.34 - 6.44 (3H, m), 6.96 - 7.04 (1H, m), 7.35 (1H, s)。

実施例101

3-[3-エトキシ-1-(2-ピリジニル)-1H-ピラゾール-4-イル]-1-プロパノール(420mg)、2-(3-ヒドロキシフェノキシ)-2-メチルプロパン酸エチル(419mg)、トリブチルホスフィン(847μL)およびテトラヒドロフラン(34mL)の混合物に1,1'-アゾジカルボニルジピペリジン(858mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:6、容積比)溶出部から無色油状物を得た。得られた油状物、

1 規定水酸化ナトリウム水溶液 (25 mL)、テトラヒドロフラン (25 mL) およびエタノール (25 mL) の混合物を室温で終夜かき混ぜた後、1 規定塩酸 (25 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、2-(3-(3-[3-エトキシ-1-(2-ピリジニル)-1H-ピラゾール-4-イル]プロポキシ)フェノキシ)-2-プロパン酸 (29.1 mg, 収率 40%)を得た。融点 99~101°C。

実施例 102

2-(3-[4-(3-エトキシ-1H-ピラゾール-4-イル)ブトキシ]フェノキシ)-2-メチルプロパン酸エチル (74.0 mg)、水素化ナトリウム (60%、油性、90.8 mg)、N,N-ジメチルホルムアミド (20 mL) の混合物を室温で 30 分かき混ぜた後、2-クロロ-5-(トリフルオロメチル)ピリジン (41.2 mg) を加えた。得られる混合物を終夜かき混ぜた後、飽和塩化アンモニア水を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:6, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (25 mL)、テトラヒドロフラン (25 mL) およびエタノール (25 mL) の混合物を室温で 2.5 日間かき混ぜた後、1 規定塩酸 (25 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:1, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (89.3 μ L)、テトラヒドロフラン (25 mL) およびエタノール (25 mL) の混合物を室温で 1 時間かき混ぜた後、濃縮した。得られた残留物、水 (25 mL) の混合物に僅かな水に溶かした塩化カルシウム (90.8 mg) 加え、室温で終夜かき混ぜた。生じた白色析出物をろ過で集め、アモルファスとして 2-[3-(4-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)ブトキシ)フェノキシ]-2-メチルプロパン酸カルシウム (39.4 mg, 収率 39%)を得た。

¹H-NMR (DMSO-d₆) δ : 1.36 (3H, t, J = 7.2 Hz), 1.40 (6H, s), 1.62 - 1.78 (4H, m), 2.36 - 2.46 (2H, m), 3.85 - 3.94 (2H, m), 4.31 (2H, q, J = 7.2 Hz), 6.34 - 6.44 (3H, m), 6.95 - 7.04 (1H, m), 7.79 (1H, d, J = 8.7 Hz), 8.20 - 8.27 (1H, m), 8.32 (1H, s), 8.69 - 8.74 (1H, m)。

【0179】

実施例103

3-[3-エトキシ-1-(2-ピリジニル)-1H-ピラゾール-4-イル]-1-プロパノール (300 mg)、3-(3-ヒドロキシ-1-フェニル-1H-ピラゾール-5-イル) プロパン酸エチル (346 mg)、トリブチルホスフィン (603 μL) およびテトラヒドロフラン (25 mL) の混合物に 1, 1' - アゾジカルボニルジピペリジン (611 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:6, 容積比) 溶出部から黄色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (25 mL)、テトラヒドロフラン (25 mL) およびエタノール (25 mL) の混合物を室温で終夜かき混ぜた後、1規定塩酸 (25 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 (MgSO₄) 後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、3-(3-[3-エトキシ-1-(2-ピリジニル)-1H-ピラゾール-4-イル] プロポキシ)-1-フェニル-1H-ピラゾール-5-イル) プロパン酸 (483 mg, 収率 87%) を得た。融点 156~157°C。

実施例104

3-(3-[4-(3-エトキシ-1H-ピラゾール-4-イル) プトキシ]-1-フェニル-1H-ピラゾール-5-イル) プロパン酸エチル (900 mg)、水素化ナトリウム (60%、油性、101 mg)、N, N-ジメチルホルムアミド (20 mL) の混合物を室温で30分かき混ぜた後、2-クロロ-5-(トリフルオロメチル) ピリジン (459 mg) を加えた。得られた混合物を終夜かき混ぜた後、飽和塩化アンモニア水を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 (MgSO₄) 後、濃縮した。得られた黄色油

状物、1規定水酸化ナトリウム水溶液(25mL)、テトラヒドロフラン(25mL)およびエタノール(25mL)の混合物を室温で終夜かき混ぜた後、1規定塩酸(25mL)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥($MgSO_4$)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:2, 容積比)溶出部から白色固体を得た。得られた固体を酢酸エチル-ヘキサンから再結晶し、無色結晶として3-[3-(4-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}ブトキシ)-1-フェニル-1H-ピラゾール-5-イル]プロパン酸(640mg, 収率56%)を得た。融点138~139°C。

実施例105

3-(3-エトキシ-1-[4-(トリフルオロメチル)フェニル]-1H-ピラゾール-4-イル)-1-プロパノール(512mg)、2-(3-ヒドロキシフェノキシ)-2-メチルプロパン酸エチル(401mg)、トリブチルホスフィン(812 μ L)およびテトラヒドロフラン(35mL)の混合物に1,1'アゾジカルボニルジピペリジン(823mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:6, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(25mL)、テトラヒドロフラン(25mL)およびエタノール(25mL)の混合物を室温で終夜かき混ぜた後、1規定塩酸(25mL)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥($MgSO_4$)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:1, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(995 μ L)、テトラヒドロフラン(25mL)およびエタノール(25mL)の混合物を室温で1時間かき混ぜた後、濃縮した。得られた残留物、水(50mL)の混合物に水(5mL)に溶かした塩化カルシウム(110mg)加え、室温で終夜かき混ぜた。生じた白色析出物をろ過で集め、アモルファスとして2-[3-(3-(3-エトキシ-1-[4-(トリフルオロメチル)フェニル]

-1H-ピラゾール-4-イル} プロポキシ) フェノキシ] -2-メチルプロパン酸カルシウム (440mg, 収率53%)を得た。

¹H-NMR (DMSO-d₆) δ: 1.28 - 1.48 (3H, m), 1.41 (6H, s), 1.87 - 2.08 (2H, m), 2.41 - 2.56 (2H, m), 3.86 - 4.00 (2H, m), 4.20 - 4.39 (2H, m), 6.31 - 6.52 (3H, m), 6.93 - 7.10 (1H, m), 7.69 - 7.96 (4H, m), 8.38 (1H, s)

【0180】

実施例106

3-[3-エトキシ-1-(2-ピリジニル)-1H-ピラゾール-4-イル]-1-プロパノール (300mg)、3-ヒドロキシフェニル酢酸メチル (402mg)、トリブチルホスфин (603μL) およびテトラヒドロフラン (25mL) の混合物に 1, 1'-アゾジカルボニルジピペリジン (611mg) を室温で加えた後、3日間かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:6, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (25mL)、テトラヒドロフラン (25mL) およびエタノール (25mL) の混合物を室温で終夜かき混ぜた後、1規定塩酸 (25mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 (MgSO₄) 後、濃縮した。得られた無色油状物をジイソプロピルエーテル-ヘキサンから結晶化し、無色結晶として (3-[3-エトキシ-1-(2-ピリジニル)-1H-ピラゾール-4-イル] プロポキシ) フェニル) 酢酸 (247mg, 収率53%)を得た。融点66~67℃。

実施例107

3-{2-エトキシ-4-[4-(3-エトキシ-1H-ピラゾール-4-イル) ブトキシ] フェニル} プロパン酸メチル (860mg)、水素化ナトリウム (60%、油性、106mg)、N, N-ジメチルホルムアミド (25mL) の混合物を室温で30分かき混ぜた後、2-クロロ-5-(トリフルオロメチル) ピリジン (479mg) を加えた。終夜かき混ぜた後、飽和塩化アンモニア水を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 (Mg

SO_4) 後、濃縮した。得られた黄色油状物、1規定水酸化ナトリウム水溶液(25mL)、テトラヒドロフラン(25mL)およびエタノール(25mL)の混合物を室温で終夜かき混ぜた後、1規定塩酸(25mL)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(Mg SO_4)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:2, 容積比)溶出部から白色固体を得た。得られた固体を酢酸エチル-ヘキサンから再結晶し、無色結晶として3-[2-エトキシ-4-(4-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)ブトキシ)フェニル]プロパン酸(718mg, 収率63%)を得た。融点101~102°C。

実施例108

3-[3-エトキシ-1-(2-ピリジニル)-1H-ピラゾール-4-イル]-1-プロパノール(300mg)、3-(2-エトキシ-4-ヒドロキシフェニル)プロパン酸メチル(298mg)、トリブチルホスфин(603μL)およびテトラヒドロフラン(25mL)の混合物に1, 1'-アゾジカルボニルジピペリジン(611mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:6, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(25mL)、テトラヒドロフラン(25mL)およびエタノール(25mL)の混合物を室温で終夜かき混ぜた後、1規定塩酸(25mL)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(Mg SO_4)後、濃縮した。得られた無色結晶を酢酸エチル-ヘキサンから再結晶し、3-(2-エトキシ-4-(3-[3-エトキシ-1-(2-ピリジニル)-1H-ピラゾール-4-イル]プロポキシ)フェニル)プロパン酸(323mg, 収率61%)を得た。融点110~111°C。

【0181】

実施例109

3-[3-エトキシ-1-(2-ピリジニル)-1H-ピラゾール-4-イル]-1-プロパノール(300mg)、3-(4-ヒドロキシ-3-メトキシフ

エニル) プロパン酸エチル (298 mg) 、トリブチルホスフィン (603 μ L) およびテトラヒドロフラン (25 mL) の混合物に 1, 1' - アゾジカルボニルジピペリジン (611 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (25 mL) 、テトラヒドロフラン (25 mL) およびエタノール (25 mL) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (25 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶を酢酸エチル - ヘキサンから再結晶し、3 - {3 - {3 - [3 - エトキシ - 1 - (2 - ピリジニル) - 1H - ピラゾール - 4 - イル] プロポキシ} - 3 - メトキシフェニル} プロパン酸 (416 mg, 収率 81%) を得た。融点 92 ~ 93 °C。

実施例 110

3 - {3 - エトキシ - 1 - [4 - (3 - エトキシ - 1H - ピラゾール - 4 - イル) ブチル] - 1H - ピラゾール - 4 - イル} プロパン酸エチル (680 mg) 、水素化ナトリウム (60%、油性、86.4 mg) 、N, N - ジメチルホルムアミド (20 mL) の混合物を室温で 30 分かき混ぜた後、2 - クロロ - 5 - (トリフルオロメチル) ピリジン (391 mg) を加えた。得られた混合物を 7 時間かき混ぜた後、飽和塩化アンモニア水を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた黄色油状物、1 規定水酸化ナトリウム水溶液 (25 mL) 、テトラヒドロフラン (25 mL) およびエタノール (25 mL) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (25 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 1, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (1.25 mL) 、テトラヒドロフラン (25 mL) およびエタノール (25 mL) の混合物を室温で 1 時間かき混ぜた後、濃縮した。得られた残留物、水 (50 mL) の混合物に僅かな水に溶かした塩化カルシウム (134 mg) 加え、室温で終夜か

き混ぜた。生じた白色析出物をろ過で集め、アモルファスとして3-[3-エトキシ-1-(4-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}ブチル)-1H-ピラゾール-4-イル]プロパン酸カルシウム(654mg, 収率71%)を得た。

$^1\text{H-NMR}$ (DMSO-d₆) δ: 1.22 (3H, t, J = 6.9 Hz), 1.36 (3H, t, J = 6.9 Hz), 1.40 - 1.54 (2H, m), 1.66 - 1.78 (2H, m), 2.26 - 2.44 (4H, m), 2.46 - 2.58 (2H, m), 3.69 - 3.78 (2H, m), 4.11 (2H, q, J = 6.9 Hz), 4.27 (2H, q, J = 6.9 Hz), 6.93 (1H, s), 7.71 (1H, d, J = 8.4 Hz), 7.79 - 7.85 (1H, m), 8.05 (1H, s), 8.44 - 8.49 (1H, m)。

実施例111

3-[3-エトキシ-1-[4-(トリフルオロメチル)フェニル]-1H-ピラゾール-4-イル]-1-プロパノール(157mg)、3-(3-ヒドロキシ-1-フェニル-1H-ピラゾール-5-イル)プロパン酸エチル(130mg)、トリブチルホスフィン(249μL)およびテトラヒドロフラン(20mL)の混合物に1, 1'-アゾジカルボニルジピペリジン(252mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:6, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(25mL)、テトラヒドロフラン(25mL)およびエタノール(25mL)の混合物を室温で終夜かき混ぜた後、1規定塩酸(25mL)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色油状物を酢酸エチル-ヘキサンから結晶化し、無色結晶として3-[3-(3-エトキシ-1-[4-(トリフルオロメチル)フェニル]-1H-ピラゾール-4-イル)プロポキシ]-1-フェニル-1H-ピラゾール-5-イル]プロパン酸(99.5mg, 収率38%)を得た。融点126~127℃。

【0182】

実施例112

3-[2-(ベンジルオキシ)-4-(3-エトキシ-1-[5-(ト

リフルオロメチル) - 2 - ピリジニル] - 1 H - ピラゾール - 4 - イル} プロポキシ) フェニル] プロパン酸エチル (250 mg)、1 規定水酸化ナトリウム水溶液 (25 mL)、テトラヒドロフラン (25 mL) およびエタノール (25 mL) の混合物を室温で終夜かき混ぜた後、1 規定塩酸 (25 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた白色固体を酢酸エチル - ヘキサンから再結晶し、無色結晶として $3 - [2 - (\text{ベンジルオキシ}) - 4 - (3 - \{\text{3-エトキシ}-1 - [5 - (\text{トリフルオロメチル}) - 2 - ピリジニル] - 1 H - \text{ピラゾール}-4 - \text{イル}\} \text{プロポキシ}) \text{フェニル}] \text{プロパン酸}$ (237 mg, 収率 99%) を得た。融点 128~130°C。

実施例 113.

$3 - \{\text{3-エトキシ}-1 - [4 - (\text{トリフルオロメチル}) \text{フェニル}] - 1 H - \text{ピラゾール}-4 - \text{イル}\} - 1 - \text{プロパノール}$ (400 mg)、 $3 - \text{ヒドロキシフェニル酢酸メチル}$ (422 mg)、トリブチルホスフィン (633 μL) およびテトラヒドロフラン (25 mL) の混合物に $1, 1' - \text{アゾジカルボニルジピペリジン}$ (641 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 6, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (25 mL)、テトラヒドロフラン (25 mL) およびエタノール (25 mL) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (25 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶を酢酸エチル - ヘキサンから再結晶し、 $[3 - (3 - \{\text{3-エトキシ}-1 - [4 - (\text{トリフルオロメチル}) \text{フェニル}] - 1 H - \text{ピラゾール}-4 - \text{イル}\} \text{プロポキシ}) \text{フェニル}] \text{酢酸}$ (424 mg, 収率 74%) を得た。融点 108~109°C。

実施例 114

$3 - \{\text{3-エトキシ}-1 - [4 - (\text{トリフルオロメチル}) \text{フェニル}] - 1 H - \text{ピラゾール}-4 - \text{イル}\} - 1 - \text{プロパノール}$ (400 mg)、 $3 - (2 - \text{エトキシ}-4 - \text{ヒドロキシフェニル}) \text{プロパン酸メチル}$ (314 mg)、トリブチルホ

スフィン (633 μL) およびテトラヒドロフラン (25 mL) の混合物に 1, 1' - アゾジカルボニルジピペリジン (641 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 6, 容積比) 溶出部から白色固体を得た。得られた固体、1 規定水酸化ナトリウム水溶液 (25 mL)、テトラヒドロフラン (25 mL) およびエタノール (25 mL) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (25 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた白色固体を酢酸エチル - ヘキサンから再結晶し、無色結晶として 3 - [2 - エトキシ - 4 - (3 - {3 - エトキシ - 1 - [4 - (トリフルオロメチル) フェニル] - 1H - ピラゾール - 4 - イル} プロポキシ) フェニル] プロパン酸 (420 mg, 収率 65%) を得た。融点 131 ~ 132°C。

【0183】

実施例 115

3 - {3 - エトキシ - 1 - [4 - (トリフルオロメチル) フェニル] - 1H - ピラゾール - 4 - イル} - 1 - プロパノール (400 mg)、3 - (4 - ヒドロキシ - 3 - メトキシフェニル) プロパン酸エチル (314 mg)、トリブチルホスフィン (633 μL) およびテトラヒドロフラン (25 mL) の混合物に 1, 1' - アゾジカルボニルジピペリジン (641 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 6, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (25 mL)、テトラヒドロフラン (25 mL) およびエタノール (25 mL) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (25 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色油状物を酢酸エチル - ヘキサンから結晶化し、無色結晶として 3 - [4 - (3 - {3 - エトキシ - 1 - [4 - (トリフルオロメチル) フェニル] - 1H - ピラゾール - 4 - イル} プロポキシ) - 3 - メトキシフェニル] プロパン酸 (423 mg, 収率 68%) を得た。融点 125 ~ 126°C。

実施例116

3-[4-(3-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)プロポキシ)-2-ヒドロキシフェニル]プロパン酸エチル(300mg)、イソプロパノール(49.5μL)、トリブチルホスフィン(294μL)およびテトラヒドロフラン(15mL)の混合物に1,1'-アゾジカルボニルジピペリジン(298mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:6, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(25mL)、テトラヒドロフラン(25mL)およびエタノール(25mL)の混合物を室温で終夜かき混ぜた後、1規定塩酸(25mL)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた白色固体を酢酸エチル-ヘキサンから再結晶し、無色結晶として3-[4-(3-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)プロポキシ)-2-イソプロポキシフェニル]プロパン酸(76.0mg, 収率25%)を得た。融点104~105℃。

実施例117

3-[4-(3-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)プロポキシ)-2-ヒドロキシフェニル]プロパン酸エチル(400mg)、プロパノール(119μL)、トリブチルホスフィン(393μL)およびテトラヒドロフラン(10mL)の混合物に1,1'-アゾジカルボニルジピペリジン(399mg)を室温で加えた後、2.5日間かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:7, 容積比)溶出部から白色固体を得た。得られた固体、1規定水酸化ナトリウム水溶液(25mL)、テトラヒドロフラン(25mL)およびエタノール(25mL)の混合物を室温で終夜かき混ぜた後、1規定塩酸(25mL)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた白色固体を酢酸エチル-ヘキサンから再結晶し、無色結晶として3-[4-(

3-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル]プロポキシ-2-プロポキシフェニル]プロパン酸(259mg, 収率63%)を得た。融点126~127℃。

【0184】

実施例118

3-[4-(3-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)プロポキシ)-2-ヒドロキシフェニル]プロパン酸エチル(470mg)、ブタノール(170μL)、トリブチルホスフィン(461μL)およびテトラヒドロフラン(20mL)の混合物に1,1'-アゾジカルボニルジピペリジン(467mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:6, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(25mL)、テトラヒドロフラン(25mL)およびエタノール(25mL)の混合物を室温で終夜かき混ぜた後、1規定塩酸(25mL)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた白色固体を酢酸エチル-ヘキサンから再結晶し、無色結晶として3-[2-ブロキシ-4-(3-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)プロポキシ)フェニル]プロパン酸(235mg, 収率47%)を得た。融点123~124℃。

実施例119

3-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)-1-ブロパノール(463mg)、(3-ヒドロキシ-1-メチル-1H-ピラゾール-5-イル)酢酸メチル(250mg)、トリブチルホスフィン(728μL)およびテトラヒドロフラン(30mL)の混合物に1,1'-アゾジカルボニルジピペリジン(764mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:2, 容積比)溶出部から黄色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(25m

L)、テトラヒドロフラン(25mL)およびエタノール(25mL)の混合物を室温で終夜かき混ぜた後、1規定塩酸(25mL)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた淡黄色固体を酢酸エチル-ヘキサンから再結晶し、無色結晶として[3-(3-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロポキシ)-1-メチル-1H-ピラゾール-5-イル]酢酸(255mg, 収率39%)を得た。融点151~152℃。

実施例120

{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}メタノール(250mg)、3-(4-ヒドロキシ-2-メトキシフェニル)プロピオン酸メチル(180mg)、トリフェニルホスフィン(280mg)およびテトラヒドロフラン(10ml)の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液(460mg)を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[2-メトキシ-4-((3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)メトキシ)フェニル]プロピオン酸(210mg, 収率53%)を得た。酢酸エチル-ヘキサンから再結晶した。融点153~154℃。

【0185】

実施例121

{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}メタノール(410mg)、3-(4-ヒドロキシ-2-メチルフェニル)プロピオン酸エチル(300mg)、トリフェニルホスフィン

(450mg) およびテトラヒドロフラン(10ml) の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液(750mg) を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml) およびメタノール(5ml) の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄) 後、濃縮した。得られた無色結晶をろ取り、3-[2-メチル-4-((3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)メトキシ)フェニル]プロピオン酸(460mg, 収率72%)を得た。酢酸エチル-ヘキサンから再結晶した。融点129~130℃。

実施例122

{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}メタノール(220mg)、3-(4-ヒドロキシ-2-メトキシフェニル)プロピオン酸メチル(180mg)、トリフェニルホスфин(260mg) およびテトラヒドロフラン(10ml) の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液(450mg) を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml) およびメタノール(5ml) の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄) 後、濃縮した。得られた無色結晶をろ取り、3-[2-メトキシ-4-((3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)メトキシ)フェニル]プロピオン酸(220mg, 収率59%)を得た。酢酸エチル-ヘキサンから再結晶した。融点158~159℃。

実施例123

{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}メタノール(380mg)、3-(4-ヒドロキシ-2-メチルフェニル)プロピオン酸エチル(300mg)、トリフェニルホスフィン(450mg)およびテトラヒドロフラン(10ml)の混合物にアゾジカルボン酸ジエチルの40%トルエン溶液(450mg)を室温で滴下した後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[2-メチル-4-(3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)メトキシ]フェニル]プロピオン酸(380mg, 収率63%)を得た。酢酸エチル-ヘキサンから再結晶した。融点144~145℃。

【0186】

実施例124

3-{3-フェニル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-ブロパノール(400mg)、3-ヒドロキシフェニル酢酸メチル(200mg)、トリブチルホスフィン(480mg)およびテトラヒドロフラン(30ml)の混合物に1,1'-アゾジカルボニルジビペリジン(600mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、[3-(3-{3-フェニル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イ

ル} プロポキシ)フェニル]酢酸 (520mg, 収率94%)を得た。酢酸エチルヘキサンから再結晶した。融点132~133℃。

実施例125

3-[3-フェニル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール (420mg)、3-(3-ヒドロキシ-1-フェニル-1H-ピラゾール-5-イル)プロピオン酸エチル (320mg)、トリブチルホスフィン (500mg) およびテトラヒドロフラン (30ml) の混合物に 1, 1' - アゾジカルボニルジピベリジン (630mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルヘキサン (1:4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (5ml)、テトラヒドロフラン (5ml) およびメタノール (5ml) の混合物を室温で5時間かき混ぜた後、1規定塩酸 (5ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取り、3-[1-フェニル-3-(3-{3-フェニル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)-1H-ピラゾール-5-イル]プロピオン酸 (640mg, 収率94%)を得た。酢酸エチルヘキサンから再結晶した。融点175~176℃

実施例126

3-[3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール (420mg)、3-(2-エトキシ-4-ヒドロキシフェニル)プロピオン酸メチル (330mg)、トリブチルホスフィン (600mg) およびテトラヒドロフラン (30ml) の混合物に 1, 1' - アゾジカルボニルジピベリジン (750mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルヘキサン (1:4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (5ml)、テトラヒドロフラン (5ml) およびメタノール (5ml) の混合物を室温で5時間かき混ぜ

た後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取りし、3-[2-エトキシ-4-(3-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロピオン酸(510mg, 収率73%)を得た。酢酸エチル-ヘキサンから再結晶した。融点129~130℃。

【0187】

実施例127

3-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール(400mg)、3-ヒドロキシフェニル酢酸メチル(240mg)、トリブチルホスфин(600mg)およびテトラヒドロフラン(30ml)の混合物に1, 1'-アゾジカルボニルジペリジン(750mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取りし、[3-(3-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]酢酸(550mg, 収率93%)を得た。酢酸エチル-ヘキサンから再結晶した。融点96~97℃。

実施例128

3-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール(420mg)、3-(3-ヒドロキシ-1-フェニル-1H-ピラゾール-5-イル)プロピオン酸エチル(390mg)、トリブチルホスфин(600mg)およびテトラヒドロフラン(30ml)の混合物に1, 1'-アゾジカルボニルジペリジン(750mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲル

カラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：4、容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（5ml）、テトラヒドロフラン（5ml）およびメタノール（5ml）の混合物を室温で5時間かき混ぜた後、1規定塩酸（5ml）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶をろ取し、3-[3-(3-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)-1-フェニル-1H-ピラゾール-5-イル]プロピオン酸（700mg、収率95%）を得た。酢酸エチル-ヘキサンから再結晶した。融点125～126℃。

実施例129

3-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール（420mg）、3-(4-ヒドロキシ-3-メトキシフェニル)プロピオン酸エチル（330mg）、トリブチルホスフィン（600mg）およびテトラヒドロフラン（30ml）の混合物に1,1'-(アゾジカルボニルジピペリジン（750mg）を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：4、容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（5ml）、テトラヒドロフラン（5ml）およびメタノール（5ml）の混合物を室温で5時間かき混ぜた後、1規定塩酸（5ml）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶をろ取し、3-[3-メトキシ-4-(3-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロピオン酸（510mg、収率75%）を得た。酢酸エチル-ヘキサンから再結晶した。融点136～137℃。

【0188】

実施例130

3-{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール（420mg）、[2-(3-ヒドロ

キシフェノキシ) - 2 - メチル] プロピオン酸エチル (340 mg) 、トリブチルホスフィン (600 mg) およびテトラヒドロフラン (30 ml) の混合物に 1, 1' - アゾジカルボニルジピペリジン (750 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (5 ml) 、テトラヒドロフラン (5 ml) およびメタノール (5 ml) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取り、2 - メチル - 2 - [3 - (3 - {3 - メチル - 1 - [5 - (トリフルオロメチル) - 2 - ピリジル] - 1 H - ピラゾール - 4 - イル} プロポキシ) フェノキシ] プロピオン酸 (520 mg, 収率 76%) を得た。酢酸エチル - ヘキサンから再結晶した。融点 107 ~ 108 °C。

実施例 131

3 - {3 - エトキシ - 1 - [5 - (トリフルオロメチル) - 2 - ピリジル] - 1 H - ピラゾール - 4 - イル} - 1 - プロパノール (460 mg) 、3 - ヒドロキシ - 4 - メトキシフェニル酢酸エチル (310 mg) 、トリブチルホスフィン (600 mg) およびテトラヒドロフラン (30 ml) の混合物に 1, 1' - アゾジカルボニルジピペリジン (750 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (5 ml) 、テトラヒドロフラン (5 ml) およびエタノール (5 ml) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取り、[3 - (3 - {3 - エトキシ - 1 - [5 - (トリフルオロメチル) - 2 - ピリジル] - 1 H - ピラゾール - 4 - イル} プロポキシ) - 4 - メトキシフェニル] 酢酸 (560 mg, 収率 80%) を得た。酢酸エチル - ヘキサンから再結晶した。融点 142 ~ 143 °C。

実施例132

3-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール(400mg)、2-ヒドロキシ-5-メトキシフェニル酢酸メチル(250mg)、トリブチルホスフィン(520mg)およびテトラヒドロフラン(30ml)の混合物に1,1'-アゾジカルボニルジピペリジン(650mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、[2-(3-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]プロポキシ)-5-メトキシフェニル]酢酸(560mg, 収率92%)を得た。酢酸エチル-ヘキサンから再結晶した。融点138~139°C。

【0189】

実施例133

3-[3-フェニル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール(400mg)、[2-(3-ヒドロキシフェノキシ)-2-メチル]プロピオン酸エチル(260mg)、トリブチルホスフィン(480mg)およびテトラヒドロフラン(30ml)の混合物に1,1'-アゾジカルボニルジピペリジン(600mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶

をろ取し、2-メチル-2-[3-(3-{3-フェニル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェノキシ]プロピオン酸(540mg, 収率80%)を得た。酢酸エチル-ヘキサンから再結晶した。融点141~142℃。

実施例134

3-{3-フェニル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール(500mg)、2-ヒドロキシフェニル酢酸メチル(240mg)、トリブチルホスフィン(600mg)およびテトラヒドロフラン(30ml)の混合物に1, 1'-アゾジカルボニルジピペリジン(750mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、[2-(3-{3-フェニル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]酢酸(510mg, 収率74%)を得た。酢酸エチル-ヘキサンから再結晶した。融点133~134℃。

実施例135

3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール(400mg)、(3-ヒドロキシ-1-メチル-1H-ピラゾール-4-イル)酢酸メチル(220mg)、トリブチルホスフィン(520mg)およびテトラヒドロフラン(30ml)の混合物に1, 1'-アゾジカルボニルジピペリジン(650mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時

間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、[3-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)-1-メチル-1H-ピラゾール-4-イル]酢酸(440mg, 収率76%)を得た。酢酸エチル-ヘキサンから再結晶した。融点115~116°C。

【0190】

実施例136

3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール(400mg)、(3-ヒドロキシ-1-フェニル-1H-ピラゾール-4-イル)酢酸メチル(300mg)、トリブチルホスフィン(520mg)およびテトラヒドロフラン(30ml)の混合物に1, 1'-アゾジカルボニルジペリジン(650mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、[3-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)-1-フェニル-1H-ピラゾール-4-イル]酢酸(580mg, 収率89%)を得た。酢酸エチル-ヘキサンから再結晶した。融点117~118°C。

実施例137

{2-[4-(3-エトキシ-1H-ピラゾール-4-イル)ブトキシ]フェニル}酢酸メチル(550mg)、2-クロロ-5-トリフルオロメチルピリジン(300mg)およびN, N-ジメチルホルムアミド(5ml)の混合物に、0°Cで水素化ナトリウム(60%、油性、70mg)を加え、室温で終夜かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩

水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から、無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (5ml)、テトラヒドロフラン (5ml) およびメタノール (5ml) の混合物を室温で5時間かき混ぜた後、1規定塩酸 (5ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、[2-(4-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}ブトキシ)フェニル]酢酸 (100mg, 収率13%)を得た。酢酸エチル-ヘキサンから再結晶した。融点109~110°C。

実施例138

{2-[4-(3-エトキシ-1H-ピラゾール-4-イル)ブトキシ]フェニル}酢酸メチル (1.52g)、4-(トリフルオロメチル)フェニルホウ酸 (1.74g)、酢酸銅(II) (1.25g)、ビリジン (0.67ml) およびN, N-ジメチルホルムアミド (20ml) の混合物を室温で3日間かき混ぜた。反応混合物を希塩酸に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から、無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液 (10ml)、テトラヒドロフラン (10ml) およびメタノール (10ml) の混合物を室温で1時間かき混ぜた後、1規定塩酸 (10ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた油状物、1規定水酸化ナトリウム水溶液 (4ml) およびメタノール (5ml) の混合物を室温で30分間かき混ぜた。濃縮後、水 (15ml) を加え、室温でかき混ぜながら塩化カルシウム (350mg) の水 (5ml) 溶液をゆっくりと加えた。得られた無色アモルファスをろ取し、[2-(4-{3-エトキシ-1-[4-(トリフルオロメチル)フェニル]-1H-ピラゾール-4-イル}ブトキシ)フェニル]酢酸カルシウム (830mg, 収率38%)を得た。

【0191】

実施例139

3-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール(400mg)、5-クロロ-2-ヒドロキシフェニル酢酸メチル(260mg)、トリプチルホスフィン(520mg)およびテトラヒドロフラン(30ml)の混合物に1,1'-アゾジカルボニルジペリジン(650mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取り、[5-クロロ-2-(3-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]プロポキシ)フェニル]酢酸(580mg, 収率94%)を得た。酢酸エチル-ヘキサンから再結晶した。融点130~131℃。

実施例140

3-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール(400mg)、3-(2-ヒドロキシ-5-メトキシフェニル)プロピオン酸エチル(290mg)、トリプチルホスフィン(520mg)およびテトラヒドロフラン(30ml)の混合物に1,1'-アゾジカルボニルジペリジン(650mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびエタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取り、3-[2-(3-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピ

リジル] - 1 H - ピラゾール - 4 - イル} プロポキシ) - 5 - メトキシフェニル] プロピオン酸 (470 mg, 収率 75%) を得た。酢酸エチル - ヘキサンから再結晶した。融点 104 ~ 105°C。

実施例 141

3 - {3 - メチル - 1 - [5 - (トリフルオロメチル) - 2 - ピリジル] - 1 H - ピラゾール - 4 - イル} - 1 - プロパノール (400 mg)、2 - ヒドロキシフェニル酢酸メチル (240 mg)、トリブチルホスフィン (580 mg) およびテトラヒドロフラン (30 ml) の混合物に 1, 1' - アゾジカルボニルジペリジン (720 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (5 ml)、テトラヒドロフラン (5 ml) およびメタノール (5 ml) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、[2 - (3 - {3 - メチル - 1 - [5 - (トリフルオロメチル) - 2 - ピリジル] - 1 H - ピラゾール - 4 - イル} プロポキシ)フェニル] 酢酸 (410 mg, 収率 70%) を得た。酢酸エチル - ヘキサンから再結晶した。融点 128 ~ 129°C。

【0192】

実施例 142

3 - {3 - エトキシ - 1 - [5 - (トリフルオロメチル) - 2 - ピリジル] - 1 H - ピラゾール - 4 - イル} - 1 - プロパノール (300 mg)、2 - ヒドロキシ - 4 - メトキシフェニル酢酸メチル (190 mg)、トリブチルホスフィン (400 mg) およびテトラヒドロフラン (30 ml) の混合物に 1, 1' - アゾジカルボニルジペリジン (510 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (5 ml)、テトラヒドロフラン (5 ml) およびメタノール (5 ml) の混合物を室温で 5 時間かき混ぜた後、1 規定

塩酸（5 ml）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（Mg SO₄）後、濃縮した。得られた無色結晶をろ取し、[2-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)-4-メトキシフェニル]酢酸（310 mg, 収率68%）を得た。酢酸エチル-ヘキサンから再結晶した。融点147~148°C。

実施例143

3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール（300 mg）、3-(2-ヒドロキシ-4-メトキシフェニル)プロピオン酸エチル（220 mg）、トリブチルホスフィン（400 mg）およびテトラヒドロフラン（30 ml）の混合物に1, 1'-アゾジカルボニルジピペリジン（510 mg）を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1:4, 容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（5 ml）、テトラヒドロフラン（5 ml）およびエタノール（5 ml）の混合物を室温で5時間かき混ぜた後、1規定塩酸（5 ml）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（Mg SO₄）後、濃縮した。得られた無色結晶をろ取し、3-[2-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)-4-メトキシフェニル]プロピオン酸（340 mg, 収率73%）を得た。酢酸エチル-ヘキサンから再結晶した。融点115~116°C。

実施例144

3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール（300 mg）、3-(2-ヒドロキシフェニル)プロピオン酸メチル（180 mg）、トリブチルホスフィン（400 mg）およびテトラヒドロフラン（30 ml）の混合物に1, 1'-アゾジカルボニルジピペリジン（510 mg）を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢

酸エチル-ヘキサン（1：4，容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（5ml）、テトラヒドロフラン（5ml）およびメタノール（5ml）の混合物を室温で5時間かき混ぜた後、1規定塩酸（5ml）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶をろ取し、3-[2-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロピオン酸（360mg，収率82%）を得た。酢酸エチル-ヘキサンから再結晶した。融点93～94℃。

【0193】

実施例145

3-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール（300mg）、3-(2-ヒドロキシ-3-メトキシフェニル)プロピオン酸エチル（220mg）、トリブチルホスフィン（400mg）およびテトラヒドロフラン（30ml）の混合物に1,1'-アゾジカルボニルジピペリジン（510mg）を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：4，容積比）溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液（5ml）、テトラヒドロフラン（5ml）およびエタノール（5ml）の混合物を室温で5時間かき混ぜた後、1規定塩酸（5ml）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶をろ取し、3-[2-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)-3-メトキシフェニル]プロピオン酸（360mg，収率77%）を得た。酢酸エチル-ヘキサンから再結晶した。融点87～88℃。

実施例146

3-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール（300mg）、2-ヒドロキシ-3-メトキシフェニル酢酸メチル（200mg）、トリブチルホスフィン（4

00 mg) およびテトラヒドロフラン (30 ml) の混合物に 1, 1' - アゾジカルボニルジピペリジン (510 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (5 ml)、テトラヒドロフラン (5 ml) およびメタノール (5 ml) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、[2-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)-3-メトキシフェニル]酢酸 (190 mg, 収率 42%) を得た。酢酸エチル - ヘキサンから再結晶した。融点 122~123°C。

実施例 147

{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}メタノール (300 mg)、3-ヒドロキシフェニル酢酸メチル (190 mg)、トリブチルホスフィン (430 mg) およびテトラヒドロフラン (30 ml) の混合物に 1, 1' - アゾジカルボニルジピペリジン (550 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (5 ml)、テトラヒドロフラン (5 ml) およびメタノール (5 ml) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、[3-(3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)メトキシフェニル]酢酸 (340 mg, 収率 77%) を得た。酢酸エチル - ヘキサンから再結晶した。融点 77~78°C。

【0194】

実施例 148

3-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール(300mg)、3-(2-ヒドロキシ-6-メトキシフェニル)プロピオン酸エチル(220mg)、トリブチルホスフィン(400mg)およびテトラヒドロフラン(30ml)の混合物に1, 1'-アゾジカルボニルジピペリジン(510mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびエタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[2-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロポキシ]-6-メトキシフェニル]プロピオン酸(170mg, 収率36%)を得た。酢酸エチル-ヘキサンから再結晶した。融点110~111℃。

実施例149

{3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}メタノール(300mg)、3-ヒドロキシフェニル酢酸メチル(250mg)、トリブチルホスフィン(480mg)およびテトラヒドロフラン(30ml)の混合物に1, 1'-アゾジカルボニルジピペリジン(600mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(5ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、[3-(3-メチル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)メトキシ]フェニル]酢酸(330mg, 収率72%)を得た。酢酸エチル-ヘキサンから再結晶

した。融点142～143℃。

実施例150

3-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール(400mg)、3-(4-ヒドロキシ-3-メトキシフェニル)プロパン酸エチル(310mg)、トリブチルホスフィン(530mg)およびテトラヒドロフラン(30ml)の混合物に1,1'-アゾジカルボニルジペリジン(650mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(2ml)、テトラヒドロフラン(4ml)およびメタノール(4ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(2ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[4-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロポキシ]-3-メトキシフェニル]プロパン酸(440mg, 収率69%)を得た。イソプロピルエーテル-ヘキサンから再結晶した。融点131～132℃。

【0195】

実施例151

3-[2-エトキシ-4-(3-{3-ヒドロキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロパン酸メチル(500mg)、1規定水酸化ナトリウム水溶液(3ml)、テトラヒドロフラン(5ml)およびメタノール(5ml)の混合物を室温で5時間かき混ぜた後、濃縮した。1規定塩酸(3ml)を加え、得られた無色結晶をろ取し、水およびアセトニトリルで洗浄後、乾燥し、3-[2-エトキシ-4-(3-{3-ヒドロキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロパン酸(470mg, 収率97%)を得た。融点192～194℃。

実施例152

3-[2-エトキシ-4-(3-{3-ヒドロキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロパン酸メチル(600mg)、ヨウ化メチル(0.11ml)およびN,N-ジメチルホルムアミド(6mL)の混合物に、0℃で水素化ナトリウム(60%、油性、58mg)を加え、室温で2時間かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4、容積比)溶出部から無色結晶を得た。得られた結晶、1規定水酸化ナトリウム水溶液(1.5ml)、テトラヒドロフラン(4ml)およびメタノール(4ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(1.5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[2-エトキシ-4-(3-{3-メトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロパン酸(350mg、収率58%)を得た。イソプロピルエーテルから再結晶した。融点145~146℃。

実施例153

3-[2-エトキシ-4-(3-{3-ヒドロキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロパン酸メチル(600mg)、1-ヨードプロパン(0.14ml)およびN,N-ジメチルホルムアミド(6mL)の混合物に、0℃で水素化ナトリウム(60%、油性、58mg)を加え、室温で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:5、容積比)溶出部から無色結晶を得た。得られた結晶、1規定水酸化ナトリウム水溶液(1.5ml)、テトラヒドロフラン(4ml)およびメタノール(4ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(1.5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[

2-エトキシ-4-(3-{3-プロポキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロパン酸(380mg, 収率60%)を得た。イソプロピルエーテルから再結晶した。融点112~113℃。

【0196】

実施例154

3-[2-エトキシ-4-(3-{3-ヒドロキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロパン酸メチル(600mg)、2-プロパノール(0.15ml)、トリフェニルホスフィン(480mg)およびテトラヒドロフラン(1.0ml)の混合物にアゾジカルボン酸ジイソプロピル(370mg)を室温で加えた後、3時間かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:6, 容積比)溶出部から無色結晶を得た。得られた結晶、1規定水酸化ナトリウム水溶液(2ml)、テトラヒドロフラン(4ml)およびメタノール(4ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(2ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[2-エトキシ-4-(3-{3-イソプロポキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロパン酸(520mg, 収率82%)を得た。イソプロピルエーテルから再結晶した。融点128~129℃。

実施例155

3-[2-エトキシ-4-(3-{3-ヒドロキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロパン酸メチル(600mg)、1-ヨードブタン(0.17ml)およびN,N-ジメチルホルムアミド(6mL)の混合物に、0℃で水素化ナトリウム(60%, 油性、58mg)を加え、室温で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸

エチル-ヘキサン（1：5，容積比）溶出部から無色結晶を得た。得られた結晶、1規定水酸化ナトリウム水溶液（1.5ml）、テトラヒドロフラン（4ml）およびメタノール（4ml）の混合物を室温で5時間かき混ぜた後、1規定塩酸（1.5ml）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶をろ取し、3-[4-(3-{3-ブトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)-2-エトキシフェニル]プロパン酸（320mg，収率49%）を得た。イソプロピルエーテルから再結晶した。融点102～103℃。

実施例156

3-[4-(3-{3-ベンジルオキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)-2-エトキシフェニル]プロパン酸メチル（600mg）、1規定水酸化ナトリウム水溶液（1.5ml）、テトラヒドロフラン（4ml）およびメタノール（4ml）の混合物を室温で5時間かき混ぜた後、1規定塩酸（1.5ml）を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥（MgSO₄）後、濃縮した。得られた無色結晶をろ取し、3-[4-(3-{3-ベンジルオキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)-2-エトキシフェニル]プロパン酸（380mg，収率65%）を得た。イソプロピルエーテルから再結晶した。融点106～107℃。

【0197】

実施例157

3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール（500mg）、2-メチル-2-(4-ヒドロキシフェニル)プロパン酸エチル（370mg）、トリブチルホスフィン（650mg）およびテトラヒドロフラン（30ml）の混合物に1,1'-アゾジカルボニルジピペリジン（810mg）を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン（1：4，容積比）溶出部から無色油状物を得

た。得られた油状物、4規定水酸化ナトリウム水溶液(1ml)メタノール(10ml)の混合物を15時間還流した。冷却後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取り、2-メチル-2-[4-(3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロパン酸(250mg, 収率54%)を得た。ヘキサンから再結晶した。融点84~85℃。

実施例158

3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール(500mg)、2-メチル-2-(4-ヒドロキシフェニル)プロパン酸エチル(360mg)、トリプチルホスフィン(650mg)およびテトラヒドロフラン(30ml)の混合物に1,1'-アゾジカルボニルジペリジン(810mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、4規定水酸化ナトリウム水溶液(1ml)メタノール(10ml)の混合物を15時間還流した。冷却後、1規定塩酸(5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮し、2-[4-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]-2-メチルプロパン酸(410mg, 収率84%)を黄色油状物として得た。

¹H-NMR(CDCl₃) δ: 1.40(3H, t, J=7.1 Hz), 1.58(6H, s), 2.08(2H, quintet, J=7.3 Hz), 2.60(2H, t, J=7.4 Hz), 3.99(2H, t, J=6.2 Hz), 4.34(2H, q, J=7.1 Hz), 6.84-6.89(2H, m), 7.28-7.33(2H, m), 7.81(1H, d, J=8.8 Hz), 7.90(1H, dd, J=8.7, 2.3 Hz), 8.19(1H, s), 8.54-8.56(1H, m)。

実施例159

3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール(500mg)、2-メチル-2-(3-ヒドロキシフェニル)プロパン酸メチル(370mg)、トリプチルホ

スフィン (650 mg) およびテトラヒドロフラン (30 ml) の混合物に 1, 1' - アゾジカルボニルジピペリジン (810 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、4 規定水酸化ナトリウム水溶液 (1 ml)、メタノール (10 ml) の混合物を 15 時間還流した。冷却後、反応混合物に 1 規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取り、2-メチル - 2-[3-(3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロパン酸 (320 mg, 収率 42%)を得た。ヘキサンから再結晶した。融点 82 ~ 83 °C。

【0198】

実施例 160

3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール (500 mg)、2-メチル-2-(3-ヒドロキシフェニル)プロパン酸メチル (370 mg)、トリブチルホスフィン (650 mg) およびテトラヒドロフラン (30 ml) の混合物に 1, 1' - アゾジカルボニルジピペリジン (810 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、4 規定水酸化ナトリウム水溶液 (1 ml)、メタノール (10 ml) の混合物を 15 時間還流した。冷却後、反応混合物に 1 規定塩酸 (5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取り、2-[3-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]-2-メチルプロパン酸 (420 mg, 収率 87%)を得た。ヘキサンから再結晶した。融点 131 ~ 132 °C。

実施例 161

3-[4-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリ

ジル] - 1 H - ピラゾール - 4 - イル} プロポキシ) - 3 - ヒドロキシフェニル] プロパン酸エチル (500 mg)、1規定水酸化ナトリウム水溶液 (3 ml)、テトラヒドロフラン (4 ml) およびメタノール (4 ml) の混合物を室温で5時間かき混ぜた後、1規定塩酸 (3 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、3-[4-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル} プロポキシ) - 3-ヒドロキシフェニル] プロパン酸 (330 mg, 収率 75%) を得た。イソプロピルエーテルから再結晶した。融点 124~125°C。

実施例 162

3-[4-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル} プロポキシ) - 3-ヒドロキシフェニル] プロパン酸エチル (500 mg)、炭酸カリウム (160 mg)、ヨードエタン (0.3 ml) および N, N-ジメチルホルムアミド (8 mL) の混合物を室温で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1:4, 容積比) 溶出部から無色結晶を得た。得られた結晶、1規定水酸化ナトリウム水溶液 (1.5 ml)、テトラヒドロフラン (4 ml) およびメタノール (4 ml) の混合物を室温で5時間かき混ぜた後、1規定塩酸 (1.5 ml) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、3-[3-エトキシ-4-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル} プロポキシ) フェニル] プロパン酸 (370 mg, 収率 75%) を得た。イソプロピルエーテル-ヘキサンから再結晶した。融点 114~115°C。

【0199】

実施例 163

3-[4-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル} プロポキシ) - 3-ヒドロキシフェニル]

プロパン酸エチル (500 mg)、炭酸カリウム (160 mg)、1-ヨードプロパン (0.2 mL) および N, N-ジメチルホルムアミド (8 mL) の混合物を室温で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 4, 容積比) 溶出部から無色結晶を得た。得られた結晶、1 規定水酸化ナトリウム水溶液 (1.5 mL)、テトラヒドロフラン (4 mL) およびメタノール (4 mL) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (1.5 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、3-[4-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)-3-プロポキシフェニル]プロパン酸 (440 mg, 収率 86%) を得た。イソプロピルエーテル-ヘキサンから再結晶した。融点 106~107 °C。

実施例 164

3-[4-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)-3-ヒドロキシフェニル]プロパン酸エチル (200 mg)、2-プロパノール (0.11 mL)、トリブチルホスフィン (400 mg) およびテトラヒドロフラン (30 mL) の混合物に 1, 1'-アゾジカルボニルジピペリジン (500 mg) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン (1 : 4, 容積比) 溶出部から無色油状物を得た。得られた油状物、1 規定水酸化ナトリウム水溶液 (1.5 mL)、テトラヒドロフラン (4 mL) およびメタノール (4 mL) の混合物を室温で 5 時間かき混ぜた後、1 規定塩酸 (1.5 mL) を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥 ($MgSO_4$) 後、濃縮した。得られた無色結晶をろ取し、3-[4-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)-3-イソプロポキシフェニル]プロパン酸 (320 mg, 収率 62%) を得た。イソプロ

ピルエーテル-ヘキサンから再結晶した。融点93~94°C。

実施例165

3-[4-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)-3-ヒドロキシフェニル]プロパン酸エチル(500mg)、炭酸カリウム(160mg)、1-ヨードブタン(0.3ml)およびN,N-ジメチルホルムアミド(8mL)の混合物を室温で終夜かき混ぜた。反応混合物を水に注ぎ、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色結晶を得た。得られた結晶、1規定水酸化ナトリウム水溶液(1.5ml)、テトラヒドロフラン(4ml)およびメタノール(4ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(1.5ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[3-ブトキシ-4-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロパン酸(450mg, 収率86%)を得た。イソプロピルエーテル-ヘキサンから再結晶した。融点92~93°C。

【0200】

実施例166

3-[3-ベンジルオキシ-4-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロパン酸エチル(665mg)、1規定水酸化ナトリウム水溶液(2ml)、テトラヒドロフラン(4ml)およびメタノール(4ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(2ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[3-ベンジルオキシ-4-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロパン酸(460mg, 収率71%)を得た。イソプロピルエーテルから再結晶した。融点115~116°C。

実施例167

3-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール(500mg)、3-(3-ヒドロキシ-5-メトキシフェニル)プロパン酸エチル(380mg)、トリブチルホスフィン(650mg)およびテトラヒドロフラン(30ml)の混合物に1,1'-アゾジカルボニルジペリジン(810mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(2ml)、テトラヒドロフラン(4ml)およびメタノール(4ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(2ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、3-[5-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル)プロポキシ]-3-メトキシフェニル]プロパン酸(430mg, 収率55%)を得た。イソプロピルエーテル-ヘキサンから再結晶した。融点99~100℃。

実施例168

3-[3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル]-1-プロパノール(500mg)、3-ヒドロキシ-5-メトキシフェニル酢酸メチル(345mg)、トリブチルホスフィン(650mg)およびテトラヒドロフラン(30ml)の混合物に1,1'-アゾジカルボニルジペリジン(810mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(2ml)、テトラヒドロフラン(4ml)およびメタノール(4ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(2ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、[5-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピ

ラゾール-4-イル}プロポキシ)-3-メトキシフェニル]酢酸(370mg, 収率49%)を得た。イソプロピルエーテルから再結晶した。融点125~126°C。

【0201】

実施例169

3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール(500mg)、3-ヒドロキシ-5-メトキシフェニル酢酸メチル(345mg)、トリブチルホスフィン(650mg)およびテトラヒドロフラン(30ml)の混合物に1, 1'-アゾカルボニルジペリジン(810mg)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:4, 容積比)溶出部から無色油状物を得た。得られた油状物、1規定水酸化ナトリウム水溶液(2ml)、テトラヒドロフラン(4ml)およびメタノール(4ml)の混合物を室温で5時間かき混ぜた後、1規定塩酸(2ml)を加え、酢酸エチルで抽出した。酢酸エチル層は、飽和食塩水で洗浄、乾燥(MgSO₄)後、濃縮した。得られた無色結晶をろ取し、[3-メトキシ-5-(3-{3-プロピル-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]酢酸(410mg, 収率54%)を得た。イソプロピルエーテルから再結晶した。融点139~140°C。

実施例170

3-{3-ベンジルオキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}-1-プロパノール(9.04g)、3-(2-エトキシ-4-ヒドロキシフェニル)プロパン酸メチル(6.42g)、トリフェニルホスフィン(7.51g)およびテトラヒドロフラン(150ml)の混合物にアゾジカルボン酸ジイソプロピル(5.79g)を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:5, 容積比)溶出部から、3-[4-(3-{3-ベンジルオキシ-1-[5-(トリフルオロメチル)-2-ピリジル]

] - 1 H - ピラゾール - 4 - イル} プロポキシ) - 2 - エトキシフェニル] プロパン酸メチル (13.03 g, 収率 94%) を淡黄色油状物として得た。

¹H-NMR (CDCl₃) δ : 1.39(3H, t, J=7.0 Hz), 2.08(2H, quintet, J=7.2 Hz), 2.55-2.66(4H, m), 2.86(2H, t, J=7.7 Hz), 3.65(3H, s), 3.93-4.00(4H, m), 5.35(2H, s), 6.35(1H, dd, J=8.3, 2.4 Hz), 6.40(1H, d, J=2.4 Hz), 7.00(1H, d, J=8.3 Hz), 7.31-7.49(5H, m), 7.84(1H, d, J=8.8 Hz), 7.91-7.95(1H, m), 8.22 (1H, s), 8.55-8.57(1H, m)。

実施例 171

3 - [4 - (3 - {3 - ベンジルオキシ - 1 - [5 - (トリフルオロメチル) - 2 - ピリジル] - 1 H - ピラゾール - 4 - イル} プロポキシ) - 2 - エトキシフェニル] プロパン酸メチル (12.67 g)、5%パラジウム - 炭素 (1.3 g) およびエタノール (150 ml) の混合物を水素雰囲気下、室温で、終夜かき混ぜた。パラジウム - 炭素をろ過により除去した後、母液を濃縮し、3 - [2 - エトキシ - 4 - (3 - {3 - ヒドロキシ - 1 - [5 - (トリフルオロメチル) - 2 - ピリジル] - 1 H - ピラゾール - 4 - イル} プロポキシ) フェニル] プロパン酸メチルを無色結晶として得た。融点 147~148°C。

【0202】

実施例 172

3 - {3 - エトキシ - 1 - [5 - (トリフルオロメチル) - 2 - ピリジル] - 1 H - ピラゾール - 4 - イル} - 1 - プロパノール (3.00 g)、3 - (3 - ベンジルオキシ - 4 - ヒドロキシフェニル) プロパン酸エチル (2.90 g)、トリブチルホスフィン (3.84 g) およびテトラヒドロフラン (100 ml) の混合物に 1, 1' - アゾジカルボニルジピペリジン (4.80 g) を室温で加えた後、終夜かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル - ヘキサン (1 : 4, 容積比) 溶出部から、3 - [3 - ベンジルオキシ - 4 - (3 - {3 - エトキシ - 1 - [5 - (トリフルオロメチル) - 2 - ピリジル] - 1 H - ピラゾール - 4 - イル} プロポキシ) フェニル] プロパン酸エチル (4.14 g, 収率 73%) を無色油状物として得た。

¹H-NMR (CDCl₃) δ : 1.22(3H, t, J=7.1 Hz), 1.40(3H, t, J=7.1 Hz), 2.13(2H,

quintet, $J=6.9$ Hz), 2.57(2H, t, $J=7.8$ Hz), 2.64(2H, t, $J=7.4$ Hz), 2.86(2H, t, $J=7.8$ Hz), 4.07(2H, t, $J=6.3$ Hz), 4.11(2H, q, $J=7.1$ Hz), 4.35(2H, q, $J=7.1$ Hz), 5.11(2H, s), 6.68(1H, dd, $J=8.2, 1.8$ Hz), 6.76(1H, d, $J=2.0$ Hz), 6.84(1H, d, $J=8.1$ Hz), 7.27-7.47(5H, m), 7.80(1H, d, $J=8.8$ Hz), 7.90(1H, dd, $J=8.7, 2.3$ Hz), 8.19(1H, s), 8.53-8.55(1H, m)。

実施例173

3-[3-ベンジルオキシ-4-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)フェニル]プロパン酸エチル(4.14g)、5%パラジウム-炭素(0.4g)、テトラヒドロフラン(25mL)およびエタノール(25mL)の混合物を水素雰囲気下、室温で、終夜かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮した。残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-クロロホルム(1:20, 容積比)溶出部から、3-[4-(3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジル]-1H-ピラゾール-4-イル}プロポキシ)-3-ヒドロキシフェニル]プロパン酸エチル(3.25g, 収率92%)を無色結晶として得た。融点92~93°C。

実施例174

3-{3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル}-1-プロパノール(2.69g)、3-[2-(ベンジルオキシ)-4-ヒドロキシフェニル]プロパン酸エチル(2.56g)、トリプチルホスフィン(4.24mL)およびテトラヒドロフラン(180mL)の混合物に1,1'-アゾジカルボニルジピペリジン(4.29g)を室温で加えた後、3日間かき混ぜた。反応溶液を濃縮した後、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-ヘキサン(1:6, 容積比)溶出部から、白色固体として3-[2-(ベンジルオキシ)-4-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)プロポキシ]フェニル]プロパン酸エチル(2.79g, 収率55%)を得た。得られた固体は酢酸エチル-ヘキサンから再結晶し、無色結晶を得た。融点80~81°C。

【0203】

実施例175

3-[2-(ベンジルオキシ)-4-(3-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)プロポキシ)フェニル]プロパン酸エチル(2.44g)、5%パラジウム-炭素(1.00g)、テトラヒドロフラン(25mL)およびエタノール(50mL)の混合物を水素雰囲気下、室温で終夜かき混ぜた。パラジウム-炭素をろ過により除去した後、母液を濃縮し、無色油状物として3-[4-(3-(3-エトキシ-1-[5-(トリフルオロメチル)-2-ピリジニル]-1H-ピラゾール-4-イル)プロポキシ)-2-ヒドロキシフェニル]プロパン酸エチル(1.63g、収率79%)を得た。

¹H-NMR(CDCl₃) δ : 1.23 (3H, t, J = 6.9 Hz), 1.41 (3H, t, J = 6.9 Hz), 2.01 - 2.12 (2H, m), 2.54 - 2.62 (2H, m), 2.64 - 2.71 (2H, m), 2.77 - 2.84 (2H, m), 3.92 - 3.98 (2H, m), 4.14 (2H, q, J = 6.9 Hz), 4.34 (2H, q, J = 6.9 Hz), 6.40 - 6.48 (2H, m), 6.94 (1H, d, J = 8.1 Hz), 7.50 (1H, s), 7.80 (1H, d, J = 8.7 Hz), 7.86 - 7.92 (1H, m), 8.17 (1H, s), 8.52 - 8.54 (1H, m)。

【0204】

製剤例1(カプセルの製造)

1) 実施例1の化合物	30 mg
2) 微粉末セルロース	10 mg
3) 乳糖	19 mg
4) ステアリン酸マグネシウム	1 mg
	計 60 mg

1)、2)、3)および4)を混合して、ゼラチンカプセルに充填する。

製剤例2(錠剤の製造)

1) 実施例1の化合物	30 g
2) 乳糖	50 g
3) トウモロコシデンプン	15 g

4) カルボキシメチルセルロースカルシウム	44 g
<u>5) ステアリン酸マグネシウム</u>	<u>1 g</u>
1000錠 計 140 g	

1)、2)、3)の全量および30gの4)を水で練合し、真空乾燥後、整粒を行う。この整粒末に14gの4)および1gの5)を混合し、打錠機により打錠する。このようにして、1錠あたり実施例1の化合物30mgを含有する錠剤100錠を得る。

【0205】

【発明の効果】

本発明化合物は、血糖低下作用、血中脂質低下作用、血中インスリン低下作用、インスリン抵抗性改善作用、インスリン感受性増強作用およびレチノイド関連受容体機能調節活性に優れ、例えば糖尿病（例、1型糖尿病、2型糖尿病、妊娠糖尿病等）の予防・治療剤；高脂血症（例、高トリグリセリド血症、高コレステロール血症、低HDL血症、食後高脂血症等）の予防・治療剤；インスリン抵抗性改善剤；インスリン感受性増強剤；耐糖能不全 [IGT (Impaired Glucose Tolerance)] の予防・治療剤；および耐糖能不全から糖尿病への移行抑制剤として用いることができる。

【0206】

【配列表】

SEQUENCE LISTING

<110> Takeda Chemical Industries, Ltd.

<120> 1,2-Azole Derivatives

<130> B02317

<150> JP 2002-151405

<151> 2002-05-24

<160> 10

<210> 1

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 1

aacggtaacct cagccatgga gcagcctcag gagg 34

<210> 2

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 2

taagtcgacc cgtagtaca tgtccttgta gatc 34

<210> 3

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 3

ttagaattcg acatggacac caaacatttc ctg 33

<210> 4

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 4

ccccctcgagc taagtcattt ggtgcggcgc ctc 33

<210> 5

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 5

tcgacagggg accaggacaa aggtcacgtt cgggag 36

<210> 6

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 6

tcgactcccg aacgtgacct ttgtcctggc cccctg 36

<210> 7

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 7

cccgatctc cccagcgctc tgtcattg 28

<210> 8

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 8

tcaccatggtaaagctttttagcgggtc 28

<210> 9

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 9

gtgggttaccgaaatgaccatggttgacaca gag 33

<210> 10

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 10

gggtcgaccaggactctctgttagtacaa gtc 33

【書類名】要約書

【要約】

【課題】糖尿病等の予防・治療薬として有用な1,2-アゾール誘導体を提供する

【解決手段】式

【化1】

[式中、環Aは1ないし3個の置換基を有していてもよい環を；

環Bは1ないし3個の置換基をさらに有していてもよい1,2-アゾール環を；

X_a、X_bおよびX_cは同一または異なって、結合手、-O-、-S-などを；

Y_aは炭素数1ないし20の2価の脂肪族炭化水素残基を；

Y_bおよびY_cは同一または異なって、結合手または炭素数1ないし20の2価の脂肪族炭化水素残基を；

環Cは1ないし3個の置換基をさらに有していてもよい单環式芳香環を；

Rは-O-R⁴ (R⁴は水素原子または置換されていてもよい炭化水素基を示す)

などを示す。]で表される化合物もしくはその塩またはそのプロドラッグ。

【選択図】なし

出願人履歴情報

識別番号 [000002934]

1. 変更年月日 1992年 1月 22日

[変更理由] 住所変更

住 所 大阪府大阪市中央区道修町四丁目1番1号
氏 名 武田薬品工業株式会社

2. 変更年月日 2003年 5月 9日

[変更理由] 名称変更

住 所 大阪府大阪市中央区道修町四丁目1番1号
氏 名 武田薬品工業株式会社