Revisão dos comandos em Python

Sumário

1. Análise Exploratória

- 1.1. Lendo um arquivo
- 1.2. Apresentando a tabela
- 1.3. Checando o tipo de cada coluna
- 1.4. Visualizando colunas específicas
- 1.5. Transformando coluna em índice
- 1.6. Filtragem do DataFrame dada uma condição
- 1.7. Ordenando valores
- 1.8. Criando categorias
- 1.9. Contando valores de uma variável qualitativa
- 1.10. Normalizando a contagem
- 1.11. Discretizando uma variável quantitativa
- 1.12. Cruzando variáveis discretas
- 1.13. Plotando o gráfico da crosstab
- 1.14. Normalizando a crosstab
- 1.15. Descrevendo uma variável quantitativa
- 1.16. Correlação entre duas colunas
- 1.17. Juntando 2 DataFrames diferentes
- 1.18. Filtrando por quantil
- 1.19. Boxplot
- 1.20. Boxplot com agrupamento
- 1.21. Histograma de densidade
- 1.22. Analisando duas variáveis

2. Modelos Probabilísticos

- 2.1. Exercícios Normal
- 2.2. Construindo as curvas e gerando amostras aleatórias
- 2.3. Construindo as curvas e gerando amostras aleatórias

Bibliotecas importantes:

In [1]:

```
import pandas as pd
from scipy import stats
import matplotlib.pyplot as plt
import numpy as np
import itertools
import seaborn as sns
%matplotlib inline
```

Análise Exploratória

Lendo um arquivo:

In [2]:

```
df = pd.read_excel('WorldBank.xlsx')
```

Apresentando a tabela:

In [3]:

```
df.head(5)
# head(n) mostra as n primeiras linhas da tabela
# tail(n) mostra as n últimas linhas da tabela
```

Out[3]:

	Country	Population	GDPcapita	surface	region	landlocked
0	Albania	2901883	1915.424459	28750	europe_east	0
1	Algeria	36036159	2231.980246	2381740	africa_north	0
2	Angola	21219954	623.245275	1246700	africa_sub_saharan	0
3	Antigua and Barbuda	87233	10614.794315	440	america_north	0
4	Argentina	41222875	10749.319224	2780400	america_south	0

Checando o tipo de cada coluna:

In [4]:

```
df.dtypes
```

Out[4]:

Country object
Population int64
GDPcapita float64
surface int64
region object
landlocked int64

dtype: object

Visualizando colunas específicas:

In [5]:

```
df['Country'].tail(5)
```

Out[5]:

VanuatuVenezuelaVietnamZambiaZimbabwe

Name: Country, dtype: object

Transformando coluna em índice:

In [6]:

```
df = df.set_index('Country')
df.head(5)
```

Out[6]:

	Population	GDPcapita	surface	region	landlocked
Country					
Albania	2901883	1915.424459	28750	europe_east	0
Algeria	36036159	2231.980246	2381740	africa_north	0
Angola	21219954	623.245275	1246700	africa_sub_saharan	0
Antigua and Barbuda	87233	10614.794315	440	america_north	0
Argentina	41222875	10749.319224	2780400	america_south	0

Filtragem do DataFrame dada uma condição:

In [7]:

```
df[df['GDPcapita'] > 5000].head(5)
```

Out[7]:

	Population	GDPcapita	surface	region	landlocked
Country					
Antigua and Barbuda	87233	10614.794315	440	america_north	0
Argentina	41222875	10749.319224	2780400	america_south	0
Australia	22162863	25190.839860	7741220	east_asia_pacific	0
Austria	8391986	26642.993858	83870	europe_west	1
Bahamas	360830	19395.152312	13880	america_north	0

Ordenando valores:

In [8]:

```
df.sort_values(by = 'Population', ascending = False).head(5)
# ascending=True é o padrão e ordenaria do menor para o maior
```

Out[8]:

	Population	GDPcapita	surface	region	landlocked
Country					
China	1340968737	2426.332466	9600000	east_asia_pacific	0
India	1230984504	794.801256	3287260	asia_west	0
United States	309876170	37329.615914	9831510	america_north	0
Indonesia	241613126	1145.385435	1904570	east_asia_pacific	0
Brazil	198614208	4716.614125	8514880	america_south	0

Criando categorias:

In [9]:

```
df['landlocked'] = df['landlocked'].astype('category')
df['landlocked'].cat.categories = ('No', 'Yes')
df.head(5)
```

Out[9]:

	Population	GDPcapita	surface	region	landlocked
Country					
Albania	2901883	1915.424459	28750	europe_east	No
Algeria	36036159	2231.980246	2381740	africa_north	No
Angola	21219954	623.245275	1246700	africa_sub_saharan	No
Antigua and Barbuda	87233	10614.794315	440	america_north	No
Argentina	41222875	10749.319224	2780400	america_south	No

Contando valores de uma variável qualitativa:

In [10]:

```
df['landlocked'].value_counts()
```

Out[10]:

No 136 Yes 32

Name: landlocked, dtype: int64

Normalizando a contagem:

In [11]:

```
df['landlocked'].value_counts(True) * 100
# Multipliquei por 100 para deixar em porcentagem
```

Out[11]:

No 80.952381 Yes 19.047619

Name: landlocked, dtype: float64

Discretizando uma variável quantitativa:

In [12]:

```
df['GDPcapita_disc'] = pd.cut(df['GDPcapita'], bins = 5)
# pd.cut discretiza uma coluna do DataFrame em um número n de faixas. O número de faixa
s desejadas dever ser passado em bins
df['GDPcapita_disc'] = df['GDPcapita_disc'].astype('category')
df['GDPcapita_disc'].cat.categories = ('Very Low', 'Low', 'Regular', 'High', 'Very Hig
h')
df.head(5)
```

Out[12]:

	Population	GDPcapita	surface	region	landlocked	GDPcapita_disc
Country						
Albania	2901883	1915.424459	28750	europe_east	No	Very Low
Algeria	36036159	2231.980246	2381740	africa_north	No	Very Low
Angola	21219954	623.245275	1246700	africa_sub_saharan	No	Very Low
Antigua and Barbuda	87233	10614.794315	440	america_north	No	Low
Argentina	41222875	10749.319224	2780400	america_south	No	Low

Cruzando variáveis discretas:

In [13]:

```
ct1 = pd.crosstab(df['landlocked'], df['GDPcapita_disc'])
ct1
```

Out[13]:

GDPcapita_disc Very Low Low Regular High Very High landlocked

No	101	14	13	8	0
Yes	29	0	1	1	1

Plotando o gráfico da crosstab:

In [14]:

```
ct1.plot(kind='bar')
plt.ylabel('Frequência Absoluta')
plt.xlabel('Acesso ao Mar')
plt.show()
```


Normalizando a crosstab:

In [15]:

```
ct2 = pd.crosstab(df['landlocked'], df['GDPcapita_disc'], normalize = 'columns')
# normalize pode receber 'index' para normalizar linhas e True para normalizar tudo
ct2 = ct2 * 100
ct2.round(2)
```

Out[15]:

GDPcapita_disc	Very Low	Low	Regular	High	Very High
landlocked					
No	77.69	100.0	92.86	88.89	0.0
Yes	22.31	0.0	7.14	11.11	100.0

Descrevendo uma variável quantitativa:

In [17]:

```
df['GDPcapita'].describe().round(2)
```

Out[17]:

count 168.00 mean 7354.00 std 10615.78 min 105.53 25% 701.35 50% 2385.57 75% 8546.12 max 52222.58

Name: GDPcapita, dtype: float64

Correlação entre duas colunas:

In [18]:

```
df['surface'].corr(df['Population'])
```

Out[18]:

0.4509581175132893

Juntando 2 DataFrames diferentes:

In [19]:

```
co2 = pd.read_excel('indicator CDIAC carbon_dioxide_emissions_per_capita.xlsx')
income = pd.read_excel('indicator gapminder gdp_per_capita_ppp.xlsx')
# Lendo os dois arquivos.
co2 = co2.set_index('CO2 per capita')
income = income.set_index('GDP per capita')
# Para fazer o join é ideal que os índices sejam os mesmos em ambos os DataFrames.
co2 = co2.loc[:, co2.columns[-5:]]
income = income.loc[:, income.columns[-8:-3]]
# Deixando apenas os anos de 2008 até 2012 de cada DataFrame para facilitar visualizaçã o.

df2 = co2.join(income, how = 'inner', lsuffix = '_co2', rsuffix = '_income')
# how = 'inner' significa que o novo índice será a intersecção dos índices dos DataFram es usados para formar o df2.
df2.head(5)
```

Out[19]:

	2008_co2	2009_co2	2010_co2	2011_co2	2012_co2	2008_income	2009_income
Abkhazia	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Afghanistan	0.131602	0.213325	0.262174	NaN	NaN	1311.0	1548.0
Akrotiri and Dhekelia	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Albania	1.297753	1.215055	1.336544	NaN	NaN	8644.0	8994.(
Algeria	3.328945	3.564361	3.480977	3.562504	3.785654	12314.0	12285.(

Filtrando por quantil:

In [20]:

```
df[df['Population'] >= df['Population'].quantile(0.95)].sort_values(by = 'Population',
ascending = False)
```

Out[20]:

	Population	GDPcapita	surface	region	landlocked	GDPcapita_
Country						
China	1340968737	2426.332466	9600000	east_asia_pacific	No	Very
India	1230984504	794.801256	3287260	asia_west	No	Very
United States	309876170	37329.615914	9831510	america_north	No	
Indonesia	241613126	1145.385435	1904570	east_asia_pacific	No	Very
Brazil	198614208	4716.614125	8514880	america_south	No	Very
Pakistan	170043918	664.711270	796100	asia_west	No	Very
Nigeria	159424742	540.685211	923770	africa_sub_saharan	No	Very
Bangladesh	151616777	558.062385	144000	asia_west	No	Very
Russia	143158099	2928.005033	17098240	europe_east	No	Very

Boxplot:

In [21]:

```
df['GDPcapita'].plot.box()
plt.grid(True);
# Limite Inferior = Primeiro Quartil - 1,5 * (Terceiro Quartil - Primeiro Quartil)
# Limite Superior = Terceiro Quartil + 1,5 * (Terceiro Quartil - Primeiro Quartil)
Q1 = df.GDPcapita.describe()[4]
Q3 = df.GDPcapita.describe()[6]
print('LS = {0:.2f}'.format(Q3 + 1.5 * (Q3 - Q1)))
print('Q3 = {:.2f}'.format(Q3))
print('Mediana = {:.2f}'.format(df.GDPcapita.describe()[5]))
print('Q1 = {:.2f}'.format(Q1))
print('LI = {0:.2f}'.format(Q1 - 1.5 * (Q3 - Q1)))
# Como não há nenhum valor inferior ao Limite Inferior a cauda vai até o menor valor.
print('Como não há outliers para baixo LI = {:.2f}'.format(df.GDPcapita.min()))
```

```
LS = 20313.27

Q3 = 8546.12

Mediana = 2385.57

Q1 = 701.35

LI = -11065.80

Como não há outliers para baixo LI = 105.53
```


Boxplot com agrupamento:

In [22]:

Histograma de densidade:

In [23]:

Analisando duas variáveis:

In [24]:

```
def reta(dados_x, dados_y):
    a = dados_y.cov(dados_x) / dados_x.var()
    b = dados_y.mean() - a * dados_x.mean()

    plt.plot((dados_x.min(), dados_x.max()), (a * dados_x.min() + b, a * dados_x.max() + b), color = 'red')

area = df.surface
    renda = df.GDPcapita

plt.scatter(area, renda)
    plt.yscale('log')
    plt.xscale('log')
    reta(area, renda)
    plt.show()

print('Correlação entre surface e GDPcapita = {}'.format(df.surface.corr(df.GDPcapita).round(2)))
```


Correlação entre surface e GDPcapita = 0.07

Modelos Probabilísticos

Exercícios Normal:

Colesterol é um ácido graxo que é componente importante da membrana das células dos animais. A faixa normal para um adulto é entre 120-240mg/dl. O Instituto de Nutrição e Saúde das Filipinas descobriu que os adultos daquele país têm média de 159.2 mg/dl e 84.1% dos adultos têm um nível de menos que 200 mg/dl. Suponha que o colesterol é distribuído normalmente

- 1. Encontre o desvio padrão desta distribuição
- 2. Quais são os quartis da distribuição?
- 3. Qual o valor de colesterol excedido por 90% da população?
- 4. Um adulto tem risco moderado se está mais que 2 desvios padrão acima da média. Qual a porcentagem da população que está em risco?

In [25]:

```
# Exercício 1
\# P(X<200) = 0.841
mi = 159.2
z = stats.norm.ppf(0.841)
\# z = (x - mi) / sigma
sigma = (200 - mi) / z
print('1. Desvio Padrão = {:.2f}'.format(sigma))
# Exercício 2
Q1 = stats.norm.ppf(0.25, loc = mi, scale = sigma)
Q3 = stats.norm.ppf(0.75, loc = mi, scale = sigma)
print('2. Q1 = {}'.format(Q1.round(2)))
print(' Q3 = {}'.format(Q3.round(2)))
# Exercício 3
#1 - 0.9 = 0.1
resp3 = stats.norm.ppf(0.1, loc = mi, scale = sigma)
print('3. 90% da população tem um colesterol maior que {:.2f}'.format(resp3))
# Exercício 4
valor = mi + 2 * sigma
risco = 1 - stats.norm.cdf(valor, loc = mi, scale = sigma)
print('4. 0 percentual de pessoas que está em risco é de {:.2f}%'.format(risco * 100))
```

- 1. Desvio Padrão = 40.86
- 2. Q1 = 131.64 Q3 = 186.76
- 3. 90% da população tem um colesterol maior que 106.84
- 4. O percentual de pessoas que está em risco é de 2.28%

Você recebeu o arquivo dados_normal.txt com dados de concentração (em $\mu g/L$) de um determinado poluente em um tanque de combustível

Pede-se:

- 1. Visualize o histograma dos dados
- 2. Usando um plot de probabilidade, ou QQ-Plot, verifique se os dados aparentam seguir uma distribuição normal
- Realize o fit de uma distribuição normal, e faça o plot da pdf sobre o histograma de densidade da distribuição

In [26]:

```
dados = ""
with open("dados_normal_1000.txt") as f:
    dados = " ".join(f.readlines())

# Exercício 1
dados = [float(value) for value in dados.split()]
plt.hist(dados, density = True, bins = 20);
```


In [27]:

```
# Exercício 2
stats.probplot(dados, dist = "norm", plot = plt);
```


In [28]:

```
# Exercício 3
loc, scale = stats.norm.fit(dados)
x = np.linspace(400, 600, 1000)
y = stats.norm.pdf(x, loc = loc, scale = scale)

plt.hist(dados, density=True, bins=20);
plt.plot(x, y, 'r-')
plt.show()
```


Construindo as curvas e gerando amostras aleatórias:

In [29]:

```
n = 100000
# Vamos criar uma faixa no eixo x, válida para ambas
eixo_x = np.linspace(-1, 20, 600)

pdf_unif = stats.uniform.pdf(eixo_x, loc = 4, scale = 3)
pdf_exp = stats.expon.pdf(eixo_x, scale = 3)

x = stats.uniform.rvs(loc = 4, scale = 3, size = n)
y = stats.expon.rvs(scale = 3, size = n)
```

Fazendo a combinação das amostras aleatórias:

In [30]:

```
z = x + y # note que estamos somando elemento a elemento de x e y e obtendo um novo arr ay
```

In [31]:

```
plt.hist(z, label="z", bins=80, density=True)
plt.plot(eixo_x, pdf_unif, label="uniforme")
plt.plot(eixo_x, pdf_exp, label="exponencial")
plt.legend();
```

