

- o Each key is a node.
- Each value is a list of neighboring nodes (edges).
- This is known as an **adjacency list** representation.
- It is a **dynamic representation**, meaning the user can build any custom graph by specifying nodes and edges.

Why Each Line is Written This Way

- **Using Sets for Visited Nodes:** Sets provide efficient O(1) average time complexity for membership checking.
- Recursion in DFS: DFS is naturally suited for recursive implementation because of its depth-based nature.
- Queue in BFS: BFS is iterative, using a queue (FIFO) for breadth-based traversal.
- Flexible Graph Input: The user can create any graph structure using the input prompts.

Would you like me to improve this code with error handling (like invalid inputs) and better structure? 🚀

give me indetailed explanation of the code line by line

Got it. I will now explain this Python code **line by line in extreme detail**, covering the logic, why it is written that way, and what it does.

In-Depth Line-by-Line Explanation

1. Depth First Search (DFS) Function

python

def dfs(visited, graph, node):

- `def`: This is a keyword to define a new function in Python.
- `dfs`: The function name, which stands for **Depth First Search**, a popular graph traversal algorithm.
- visited: This parameter is a set used to track nodes that have been visited.
- `graph`: This parameter is a dictionary that represents the graph (nodes and their edges).
- `node`: This is the starting node for the DFS traversal.

```
python
  if node not in visited:
```

- `if`: This is a conditional statement.
- `node not in visited`: It checks if the current node has not already been visited.
 - **Reason:** To avoid visiting the same node multiple times (infinite recursion in cyclic graphs).

```
python
print(node, end=" ")
```

- `print(node, end=" ")`: This prints the current node without creating a new line.
 - o `end=" "`: This ensures that all nodes are printed on the same line, separated by a space.

```
python

visited.add(node)
```

- `visited.add(node)`: This adds the current node to the `visited` set.
 - **Reason:** To mark this node as visited so it will not be visited again.

```
python

for neighbour in graph[node]:
```

- `for`: This starts a loop.
- `neighbour in graph[node]`: This iterates through all neighbors (connected nodes) of the current node.
 - **Reason:** To explore all directly connected nodes.

```
python

dfs(visited, graph, neighbour)
```

- `dfs(visited, graph, neighbour)`: This calls the `dfs` function recursively for each neighbor.
 - **Reason:** To explore the graph in a depth-first manner (exploring a path fully before backtracking).

2. Breadth First Search (BFS) Function

```
python

def bfs(visited, graph, node, queue):
```

- `def`: This defines another function, this time for Breadth First Search (BFS).
- `visited`: A set to keep track of visited nodes.
- `graph`: A dictionary representing the graph (nodes and their edges).
- `node`: The starting node for BFS.
- `queue`: A list acting as a queue (FIFO First In First Out) for BFS.

```
python

visited.add(node)
```

- `visited.add(node)`: Adds the starting node to the `visited` set.
 - **Reason:** Marks the starting node as visited.

```
python
  queue.append(node)
```

- `queue.append(node)`: Adds the starting node to the queue.
 - **Reason:** In BFS, we explore nodes in the order they were added to the queue.

```
python

while queue:
```

- `while queue:`: This loop continues as long as the queue is not empty.
 - **Reason:** In BFS, we process nodes until there are no more nodes to explore.

```
python
s = queue.pop(0)
```

- `s = queue.pop(0)`: Removes (dequeues) the first node from the queue.
 - **Reason:** BFS is a FIFO algorithm (First In, First Out).
- `s`: Stores the dequeued node for further processing.

```
python
print(s, end=" ")
```


- `print(s, end=" ")`: Prints the dequeued node.
 - `end=" "`: Ensures nodes are printed in a single line with spaces between them.

```
python
    for neighbour in graph[s]:
```

- `for`: This starts a loop.
- `neighbour in graph[s]`: Iterates over all neighbors of the dequeued node.

```
python

if neighbour not in visited:
```

- `if neighbour not in visited:`: Checks if the neighbor has not been visited.
 - **Reason:** To prevent re-visiting nodes.

```
python

visited.add(neighbour)
```

- `visited.add(neighbour)`: Marks the neighbor as visited.
 - **Reason:** Prevents re-processing the same node.

```
python
   queue.append(neighbour)
```

- `queue.append(neighbour)`: Enqueues the neighbor to explore it later.
 - **Reason:** This ensures the neighbor is processed in FIFO order.

3. Main Function (Program Entry Point)

```
python
def main():
```

- `def`: Defines the main function of the program.
- `main`: The function name, which is the entry point of the program.

```
python

visited1 = set()
visited2 = set()
```

```
queue = []
```

- `visited1` and `visited2`: Two sets to track visited nodes for DFS and BFS separately.
- `queue`: A list that will serve as the queue for BFS.

```
python

n = int(input("Enter number of nodes : "))
```

- `n`: The total number of nodes in the graph.
- `input()`: Prompts the user to enter the number of nodes.
- `int()`: Converts the input from string to integer.

```
python
graph = dict()
```

- `graph`: Initializes an empty dictionary to store the graph.
 - **Key**: Node number.
 - Value: List of connected nodes (edges).

```
python

for i in range(1, n + 1):
```

- `for`: A loop to create each node in the graph.
- `range(1, n + 1)`: Iterates from 1 to `n` (inclusive).

```
python

edges = int(input("Enter number of edges for node {} : ".format(i)))
graph[i] = list()
```

- `edges`: The number of connections (edges) for the current node.
- `graph[i] = list()`: Creates an empty list for each node to store its edges.

```
for j in range(1, edges + 1):
    node = int(input("Enter edge {} for node {} : ".format(j, i)))
    graph[i].append(node)
```

- A nested loop that:
 - Takes user input for each edge of the current node.

• Adds each edge (connected node) to the list of the current node in the graph dictionary.

```
print("The following is DFS")
dfs(visited1, graph, 1)
```

- **Prints** a heading for DFS.
- Calls the DFS function with:
 - visited1` set (DFS tracking).
 - o The created graph.
 - Starting node `1`.

```
print("\nThe following is BFS")
bfs(visited2, graph, 1, queue)
```

- **Prints** a heading for BFS.
- Calls the BFS function with:
 - `visited2` set (BFS tracking).
 - o The graph.
 - Starting node `1`.
 - The BFS queue.

4. Entry Point (Program Control)

```
python

if __name__ == "__main__":
    main()
```

- `if __name__ == "__main__": `: Checks if this file is run directly.
 - o `main()`: Calls the main function.
 - **Reason:** Prevents the main function from running if this file is imported as a module.


```
g=0
def print_board(elements):
```

```
for i in range(9):
     if i%3 == 0:
       print()
    if elements[i]==-1:
       print("_", end = " ")
       print(elements[i], end = " ")
  print()
def solvable(start):
  inv=0
  for i in range(9):
     if start[i] <= 1:
       continue
     for j in range(i+1,9):
       if start[j]==-1:
         continue
       if start[i]>start[j]:
         inv+=1
  if inv%2==0:
     return True
  return False
def heuristic(start,goal):
  global g
  h = 0
  for i in range(9):
     for j in range(9):
       if start[i] == goal[j] and start[i] != -1:
         h += (abs(j-i))//3 + (abs(j-i))%3
  return h + g
def moveleft(start,position):
  start[position],start[position-1]= start[position-1],start[position]
def moveright(start,position):
  start[position],start[position+1]= start[position+1],start[position]
def moveup(start,position):
  start[position], start[position-3] = start[position-3], start[position]
def movedown(start,position):
  start[position],start[position+3]= start[position+3],start[position]
def movetile(start,goal):
  emptyat= start.index(-1)
  row = emptyat//3
  col = emptyat%3
  t1,t2,t3,t4 = start[:],start[:],start[:]
  f1,f2,f3,f4 = 100,100,100,100
```

```
if col -1 >= 0:
    moveleft(t1, emptyat)
    f1 = heuristic(t1, goal)
  if col+1<3:
    moveright(t2, emptyat)
    f2 = heuristic(t2, goal)
  if row + 1 < 3:
    movedown(t3, emptyat)
    f3 = heuristic(t3, goal)
  if row-1>=0:
    moveup(t4, emptyat)
    f4 = heuristic(t4, goal)
  min_heuristic = min(f1, f2,f3,f4)
  if f1==min_heuristic:
     moveleft(start, emptyat)
  elif f2==min_heuristic:
    moveright(start, emptyat)
  elif f3==min_heuristic:
    movedown(start, emptyat)
  elif f4 == min_heuristic:
     moveup(start, emptyat)
def solveEight(start,goal):
  global g
  q+=1
  movetile(start,goal)
  print_board(start)
  f = heuristic(start,goal)
  if f == q:
    print("Solved in {} moves".format(f))
    return
  solveEight(start,goal)
def main():
  global g
  start = list()
  goal = list()
  print("Enter the start state:(Enter -1 for empty):")
  for i in range(9):
    start.append(int(input()))
  print("Enter the goal state:(Enter -1 for empty):")
  for i in range(9):
    goal.append(int(input()))
  print_board(start)
```

```
# To check if solvable
if solvable(start):
    solveEight(start,goal)
    print("Solved in {} moves".format(g))
else:
    print("Not possible to solve")

if __name__ == '__main__':
    main()

# start = [3,7,6,5,1,2,4,-1,8]
# goal = [5,3,6,7,-1,2,4,1,8]
```

🚀 In-Depth Line-by-Line Explanation of the 8-Puzzle Solver Code

1. Global Variable Initialization

```
python g = 0
```

- `g`: A global variable that tracks the **number of moves** (steps) made to solve the puzzle.
- It is initialized to `0` because the solution begins with no moves.

2. Function: `print_board(elements)`

```
python

def print_board(elements):
```

- This function displays the 8-puzzle board in a 3x3 format.
- `elements`: A list of 9 values representing the current state of the board.

```
python
for i in range(9):
```

• A loop iterates over all 9 elements of the puzzle (since it is a 3x3 grid).

```
python

if i % 3 == 0:
    print()
```

- `if i % 3 == 0`: This condition checks if the current position is at the start of a new row (index 0, 3, 6).
- A newline (`\n`) is printed to create the next row.

```
python

if elements[i] == -1:
    print("_", end=" ")
```

- If the current element is `-1`, it is considered the **empty space** in the puzzle.
- The program prints an underscore (`_`) to represent the empty space.

```
else:
    print(elements[i], end=" ")
```

• For all other values, it prints the number itself, separated by a space.

```
python
print()
```

• Prints a final newline for formatting.

3. Function: `solvable(start)`

```
python

def solvable(start):
```

- This function determines if the given puzzle is **solvable**.
- `start`: A list representing the initial puzzle state.

```
python inv = 0
```

- `inv`: A counter for inversions (pairs of tiles that are in the wrong order).
- An inversion is a pair where a larger number appears before a smaller one.

```
python

for i in range(9):
    if start[i] <= 1:</pre>
```

- Loops over all 9 tiles.
- Skips any tile that is `-1` (empty) or `1` because `1` is the smallest and does not cause inversions.

```
for j in range(i + 1, 9):
    if start[j] == -1:
        continue
```

- A nested loop starts from the next tile (`j = i + 1`).
- Skips the empty tile (`-1`).

```
python

if start[i] > start[j]:
    inv += 1
```

• If the current tile is greater than the next tile, an inversion is counted.

```
python

if inv % 2 == 0:
    return True
```

• If the total number of inversions is **even**, the puzzle is **solvable**.

```
python

return False
```

• If the number of inversions is **odd**, the puzzle is **unsolvable**.

4. Function: `heuristic(start, goal)`

```
python

def heuristic(start, goal):
```

- This function calculates the **heuristic cost** (estimated distance) between the current state (`start`) and the goal state (`goal`).
- It uses the **Manhattan Distance** formula (number of moves required to place each tile in the correct position).
- Heuristic Function (f = g + h):

- o `g` is the actual cost (number of moves made so far).
- o `h` is the heuristic cost (Manhattan Distance).

- The global variable `g` is used to account for the number of moves so far.
- `h` is initialized to `0` to accumulate the heuristic cost.

```
python

for i in range(9):
    for j in range(9):
```

• Double loop to compare each tile in the start state with its correct position in the goal state.

```
python

if start[i] == goal[j] and start[i] != -1:
```

- Checks if the current tile in the start state matches any tile in the goal state.
- Excludes the empty tile (`-1`).

```
python h \ += \ (abs(j - i)) \ // \ 3 \ + \ (abs(j - i)) \ \% \ 3
```

• This calculates the **Manhattan Distance**:

```
\circ `(abs(j - i)) // 3` calculates vertical distance (row difference).
```

- o `(abs(j i)) % 3` calculates horizontal distance (column difference).
- This value is added to the total heuristic cost `h`.

```
python

return h + g
```

• Returns the total heuristic cost (`h + g`).

5. Functions: Move Tiles

5.1 Moving Left

```
python

def moveleft(start, position):
    start[position], start[position - 1] = start[position - 1], start[position]
```

• Swaps the empty tile (`-1`) with the tile to its **left**.

5.2 Moving Right

```
python

def moveright(start, position):
    start[position], start[position + 1] = start[position + 1], start[position]
```

• Swaps the empty tile with the tile to its **right**.

5.3 Moving Up

```
python

def moveup(start, position):
    start[position], start[position - 3] = start[position - 3], start[position]
```

• Swaps the empty tile with the tile **above** it.

5.4 Moving Down

```
python

def movedown(start, position):
    start[position], start[position + 3] = start[position + 3], start[position]
```

Swaps the empty tile with the tile **below** it.

6. Function: `movetile(start, goal)`

```
python

def movetile(start, goal):
```

• This function decides the **best move** based on the lowest heuristic value.

6.1 Calculating Heuristic for Each Move

- Four copies ('t1, t2, t3, t4') represent four possible moves (left, right, up, down).
- Each move's heuristic value is calculated using the `heuristic` function.

6.2 Selecting the Best Move

- The minimum heuristic value is determined using `min()`.
- The corresponding move is executed.

7. Function: `solveEight(start, goal)`

```
python

def solveEight(start, goal):
```

• This is a **recursive function** that solves the 8-puzzle using a **Greedy Best-First Search**.

7.1 Move Tile

```
python

movetile(start, goal)
```

• Moves the empty tile in the best direction.

7.2 Display the Board

```
python
print_board(start)
```

• Prints the current puzzle state.

7.3 Check for Solution

```
python
if heuristic(start, goal) == g:
```

• If the heuristic value matches the move count `g`, the puzzle is solved.

7.4 Recursive Call

```
python
solveEight(start, goal)
```

• Recursively calls itself until the puzzle is solved.

8. Main Function

```
python

def main():
```

- Prompts user for initial and goal state of the puzzle.
- Checks if the puzzle is solvable.
- If solvable, solves it using `solveEight()`.
- If not, displays "Not possible to solve".


```
import heapq
def dijkstra(graph, start):
  # Distance to all nodes initially infinity
  distances = {node: float('inf') for node in graph}
  distances[start] = 0
  # Priority queue to get the node with the smallest distance
  pq = [(0, start)]
  while pq:
     current_distance, current_node = heapq.heappop(pq)
    # Skip if we already found a better path
     if current_distance > distances[current_node]:
       continue
     for neighbor, weight in graph[current_node]:
       distance = current_distance + weight
       # If new distance is smaller, update it
       if distance < distances[neighbor]:
         distances[neighbor] = distance
         heapq.heappush(pq, (distance, neighbor))
  return distances
# Define the graph as an adjacency list
graph = {
  'A': [('B', 4), ('C', 5)],
  'B': [('A', 4), ('C', 11), ('D', 9), ('E', 7)],
  'C': [('A', 5), ('B', 11), ('E', 3)],
  'D': [('B', 9), ('F', 2)],
  'E': [('B', 7), ('C', 3), ('F', 6)],
```

```
'F': [('D', 2), ('E', 6)]

# Run Dijkstra from source node 'A'
distances = dijkstra(graph, 'A')

print("Shortest distances from A:")
for node in distances:
    print(f"{node}: {distances[node]}")
```

🚀 In-Depth Line-by-Line Explanation of the Dijkstra Algorithm Code

1. Importing the `heapq` Module

```
python
import heapq
```

- `heapq`: A Python module providing an implementation of the min-heap (priority queue).
- It is used here because Dijkstra's algorithm requires efficient access to the smallest distance node.

2. Function: `dijkstra(graph, start)`

```
python

def dijkstra(graph, start):
```

- This function implements **Dijkstra's algorithm**, which finds the **shortest paths from a starting node** to all other nodes in a weighted graph.
- `graph`: A dictionary representing the graph as an adjacency list.
 - **Key**: The node.
 - Value: A list of tuples, where each tuple is `(neighbor, weight)`.
- `start`: The starting node for finding shortest paths.

3. Initializing Distances

```
python

distances = {node: float('inf') for node in graph}
distances[start] = 0
```

- `distances`: A dictionary that keeps track of the shortest known distance from the start node to each other node.
- `float('inf')`: Represents infinity, meaning all nodes initially have an unknown distance (infinity).

• `distances[start] = 0`: The starting node's distance is set to `0` because the distance from a node to itself is zero.

№ Why Infinity?

• Setting the distance to infinity for all other nodes ensures that any discovered path will be shorter, making it possible to replace these values with actual shortest distances.

4. Initializing the Priority Queue

```
python

pq = [(0, start)]
```

- `pq`: A priority queue (min-heap) initialized with the starting node.
- The tuple `(0, start)` means:
 - `0`: The distance to the start node is zero.
 - o `start`: The starting node itself.
- Reason: The priority queue will always pop the node with the smallest distance.

5. Main Loop: Exploring Nodes

```
python
    while pq:
```

- `while pq:`: Runs until the priority queue is empty.
- **Reason:** This loop allows the algorithm to explore the graph until all reachable nodes are processed.

6. Popping the Nearest Node

```
python

current_distance, current_node = heapq.heappop(pq)
```

- `heapq.heappop(pq)`: Removes and returns the smallest distance node from the priority queue.
- `current_distance`: The smallest distance to the `current_node` found so far.

7. Skip if Already Processed

- If the current distance is greater than the already known shortest distance to this node, we skip it.
- **Reason:** A better path has already been found.

8. Exploring Neighboring Nodes

```
python
    for neighbor, weight in graph[current_node]:
```

- Loops through all neighboring nodes of the `current_node`.
- `neighbor`: The connected node.
- `weight`: The weight (distance) of the edge connecting `current_node` to `neighbor`.

9. Calculating Distance

```
python

distance = current_distance + weight
```

- The **new distance** is calculated as:
 - `current_distance`: The distance to reach the `current_node`.
 - `weight`: The distance to the `neighbor` from the `current_node`.

10. Updating Shortest Distance

```
python

if distance < distances[neighbor]:
    distances[neighbor] = distance
    heapq.heappush(pq, (distance, neighbor))</pre>
```

- If this new distance is **smaller than the previously known distance**:
 - The shortest distance to this `neighbor` is updated in the `distances` dictionary.
 - The `neighbor` and its new distance are pushed to the priority queue.
- `heapq.heappush()`: Adds a new element to the priority queue.

11. Returning the Result

```
python
return distances
```

• The function returns the `distances` dictionary, which now contains the shortest distances from the starting node to all other nodes.

12. Defining the Graph (Adjacency List)

```
python

graph = {
    'A': [('B', 4), ('C', 5)],
    'B': [('A', 4), ('C', 11), ('D', 9), ('E', 7)],
    'C': [('A', 5), ('B', 11), ('E', 3)],
    'D': [('B', 9), ('F', 2)],
    'E': [('B', 7), ('C', 3), ('F', 6)],
    'F': [('D', 2), ('E', 6)]
}
```

- The graph is represented as an **adjacency list**, where:
 - Keys: Nodes (`A`, `B`, `C`, `D`, `E`, `F`).
 - **Values**: Lists of tuples, each containing a connected neighbor and the weight (distance) of the edge.
- This graph is **undirected**, meaning each connection appears twice (e.g., `('A', 'B')` and `('B', 'A')`).

13. Running Dijkstra's Algorithm

```
python
distances = dijkstra(graph, 'A')
```

- Calls the `dijkstra` function with the graph and the starting node `'A'`.
- The result (shortest distances) is stored in the `distances` dictionary.

14. Displaying the Shortest Distances

```
print("Shortest distances from A:")
for node in distances:
    print(f"{node}: {distances[node]}")
```

- This prints the shortest distance from the starting node `'A'` to each other node.
- Formatted Output: Each node is displayed with its calculated shortest distance.

15. Sample Output

```
vbnet
Shortest distances from A:
A: 0
B: 4
C: 5
D: 13
E: 8
F: 14

• `A`: The starting node, distance is `0`.
• `B`: The shortest distance is `4` (A → B).
• `C`: The shortest distance is `5` (A → C).
• `D`: The shortest distance is `13` (A → B → D).
• `E`: The shortest distance is `8` (A → C → E).
• `F`: The shortest distance is `14` (A → B → D → F).
```



```
class DisjointSet:
  def __init__(self, n):
    self.parent = list(range(n))
  def find(self, x):
    if self.parent[x] != x:
       self.parent[x] = self.find(self.parent[x]) # Path compression
    return self.parent[x]
  def union(self, x, y):
    xroot = self.find(x)
    yroot = self.find(y)
    if xroot == yroot:
       return False
    self.parent[yroot] = xroot
    return True
def kruskal_mst(edges, n):
  # Sort edges based on weight
  edges.sort(key=lambda x: x[2])
  ds = DisjointSet(n)
  mst = []
  total_weight = 0
```

```
for u, v, weight in edges:
     if ds.union(u, v):
       mst.append((u, v, weight))
       total_weight += weight
  return mst, total_weight
# Define edges (u, v, weight)
edges = [
  (0, 1, 4),
  (0, 7, 8),
  (1, 2, 8),
  (1, 7, 11),
  (2, 3, 7),
  (2, 8, 2),
  (2, 5, 4),
  (3, 4, 9),
  (3, 5, 14),
  (4, 5, 10),
  (5, 6, 2),
  (6, 7, 1),
  (6, 8, 6),
  (7, 8, 7),
]
n = 9 # Number of vertices (0 to 8)
mst, total_weight = kruskal_mst(edges, n)
print("Edges in MST:")
for u, v, weight in mst:
  print(f"{u} - {v}: {weight}")
print(f"Total weight of MST: {total_weight}")
```

1. Class: `DisjointSet` (Union-Find Data Structure)

```
python
class DisjointSet:
```

- This is a **Disjoint Set (Union-Find)** class, an efficient data structure used to keep track of connected components.
- Essential for cycle detection in Kruskal's algorithm.

2. Initializing the Disjoint Set

```
python

def __init__(self, n):
    self.parent = list(range(n))
```

- `__init__` (Constructor):
 - Takes the total number of elements (`n`) as an argument.
 - Initializes a list `self.parent`, where each element is its own parent.
 - This means each node is initially its own separate component.

₰ Example:

• For `n = 5`, the parent list would be:

```
`[0, 1, 2, 3, 4]`
```

• Node `0` is its own parent, node `1` is its own parent, and so on.

3. Method: `find(self, x)`

```
python

def find(self, x):
```

- This method finds the **root parent (representative)** of a given node `x`.
- It uses Path Compression, which is an optimization to flatten the structure.

```
python

if self.parent[x] != x:
    self.parent[x] = self.find(self.parent[x]) # Path compression
```

- If the node is **not its own parent**, it means it is part of a larger component.
- The method recursively finds the root parent.
- Path Compression: This makes future lookups faster by directly connecting nodes to their root.

Example:

• Before Path Compression:

```
0 \rightarrow 1 \rightarrow 2 \rightarrow 3
```

After Path Compression:

```
\begin{array}{c} 0 \rightarrow 3 \\ 1 \rightarrow 3 \\ 2 \rightarrow 3 \end{array}
```

```
python
    return self.parent[x]
```

• Finally, it returns the root parent of the node.

4. Method: `union(self, x, y)`

```
python

def union(self, x, y):
```

• This method **unites two components** (**x and y**) by connecting their root parents.

```
python

xroot = self.find(x)
yroot = self.find(y)
```

• Finds the root of each component using the `find` method.

```
python

if xroot == yroot:
    return False
```

• If both nodes share the same root, they are already in the same component (a cycle), so no union is performed.

```
python

self.parent[yroot] = xroot
    return True
```

- If the nodes are in different components, one root is assigned as the parent of the other.
- This effectively merges the two components.

Disjoint Set Recap:

- The `find` method determines the root of a component.
- The `union` method connects two components, ensuring they become one.

5. Function: `kruskal_mst(edges, n)`

```
python

def kruskal_mst(edges, n):
```

- This function implements **Kruskal's Algorithm** to find the **Minimum Spanning Tree (MST)** of a graph.
- `edges`: A list of edges, each defined as `(u, v, weight)`.
- `n`: The total number of vertices in the graph.

6. Sorting Edges by Weight

```
python

edges.sort(key=lambda x: x[2])
```

- The edges are sorted in ascending order of their weight.
- Why? Kruskal's algorithm always adds the smallest edge to the MST first.

Example:

• If edges are:

```
css
[(0, 1, 4), (0, 7, 8), (1, 2, 8)]
```

• After sorting:

```
css
[(0, 1, 4), (0, 7, 8), (1, 2, 8)]
```

7. Initializing Data Structures

```
python

ds = DisjointSet(n)
mst = []
total_weight = 0
```

- `ds`: An instance of the `DisjointSet` class for cycle detection.
- `mst`: A list to store the edges of the Minimum Spanning Tree.
- `total_weight`: A counter to track the total weight of the MST.

8. Building the MST

```
for u, v, weight in edges:
```

• Loops through each edge (in ascending order).

```
python
if ds.union(u, v):
```

- Checks if the two vertices (`u` and `v`) can be connected without forming a cycle.
- If yes:
 - The edge is added to the MST.
 - The weight is added to the total weight.

```
mst.append((u, v, weight))
total_weight += weight
```

- The edge is added to the MST list.
- The total weight is incremented.

9. Returning the MST and Total Weight

```
python
    return mst, total_weight
```

- The function returns:
 - The list of edges in the MST.
 - The total weight of the MST.

10. Defining the Graph Edges

```
python

edges = [
    (0, 1, 4),
    (0, 7, 8),
    (1, 2, 8),
    (1, 7, 11),
    (2, 3, 7),
    (2, 8, 2),
    (2, 5, 4),
```

```
(3, 4, 9),

(3, 5, 14),

(4, 5, 10),

(5, 6, 2),

(6, 7, 1),

(6, 8, 6),

(7, 8, 7),
```

- The graph is represented as a list of edges, each with:
 - ∘ Start node (`u`), End node (`v`), and Weight.

11. Number of Vertices

```
python  n = 9 \text{ # Number of vertices } (0 \text{ to } 8)
```

• The graph has `9` vertices (labeled from `0` to `8`).

12. Running Kruskal's Algorithm

```
python
mst, total_weight = kruskal_mst(edges, n)
```

- The `kruskal_mst` function is called with the edges and the number of vertices.
- It returns:
 - o `mst`: List of edges in the MST.
 - `total_weight`: The total weight of the MST.

13. Displaying the MST

```
print("Edges in MST:")
for u, v, weight in mst:
    print(f"{u} - {v}: {weight}")
print(f"Total weight of MST: {total_weight}")
```

- Prints each edge in the MST.
- Prints the total weight of the MST.

14. Sample Output


```
Edges in MST:
6 - 7: 1
2 - 8: 2
5 - 6: 2
0 - 1: 4
2 - 5: 4
0 - 7: 8
2 - 3: 7
3 - 4: 9
Total weight of MST: 37
```



```
import sys
class Graph():
  def __init__(self, vertices):
    self.V = vertices
    self.graph = [[0 for column in range(vertices)]
            for row in range(vertices)]
  def printMST(self, parent):
    print("Edge \tWeight")
    total_weight = 0
    for i in range(1, self.V):
       weight = self.graph[parent[i]][i]
       print(parent[i] + 1, "-", i + 1, "\t", weight)
       total_weight += weight
    print("Total weight of MST:", total_weight)
  def minKey(self, key, mstSet):
    min = sys.maxsize
    min index = -1
    for v in range(self.V):
       if key[v] < min and not mstSet[v]:
         min = key[v]
         min_index = v
    return min_index
  def primMST(self):
    key = [sys.maxsize] * self.V
    parent = [None] * self.V
    key[0] = 0
    mstSet = [False] * self.V
```

```
parent[0] = -1
    for _ in range(self.V):
       u = self.minKey(key, mstSet)
       mstSet[u] = True
       for v in range(self.V):
         if self.graph[u][v] > 0 and not mstSet[v] and key[v] > self.graph[u][v]:
            key[v] = self.graph[u][v]
           parent[v] = u
    self.printMST(parent)
if __name__ == '__main__':
  g = Graph(6)
  g.graph = [
    [0, 2, 0, 1, 4, 0], # Node 1
    [2, 0, 3, 0, 0, 7], # Node 2
    [0, 3, 0, 5, 0, 8], # Node 3
    [1, 0, 5, 0, 9, 0], # Node 4
    [4, 0, 0, 9, 0, 0], # Node 5
    [0, 7, 8, 0, 0, 0] # Node 6
  ]
  g.primMST()
```


1. Class: `Graph`

```
python
class Graph():
```

- Defines a `Graph` class to represent an undirected graph using an Adjacency Matrix.
- This graph class is specifically for implementing **Prim's Minimum Spanning Tree (MST)** algorithm.

2. Initialization Method: `__init__`

```
python

def __init__(self, vertices):
    self.V = vertices
    self.graph = [[0 for column in range(vertices)] for row in range(vertices)]
```

• The `__init__` method initializes:

- o `self.V`: The total number of vertices in the graph.
- o `self.graph`: A `V x V` matrix (2D list) representing the graph.
 - Each value in the matrix is initially `0`, meaning no edges exist between nodes.
 - The graph is represented as an **adjacency matrix**, where `graph[i][j]` is the weight of the edge between node `i` and node `j`.

Example: If `vertices = 4`, the initial graph is:

3. Method: `printMST(self, parent)`

```
def printMST(self, parent):
    print("Edge \tWeight")
    total_weight = 0
```

- This method is used to print the edges of the Minimum Spanning Tree (MST) and its total weight.
- `parent`: A list where each index represents a vertex, and the value at each index is the parent of that vertex in the MST.

4. Printing the MST Edges

```
for i in range(1, self.V):
    weight = self.graph[parent[i]][i]
    print(parent[i] + 1, "-", i + 1, "\t", weight)
    total_weight += weight
```

- The loop starts from `1` because the root of the MST has no parent (`parent[0] = -1`).
- For each vertex `i`:
 - It prints the edge between the vertex and its parent (`parent[i]`).
 - The weight of this edge is retrieved from the adjacency matrix.
 - The total weight of the MST is calculated by summing these edge weights.

Example Output:

```
Edge Weight
1 - 4   1
1 - 2   2
2 - 3   3
1 - 5   4
2 - 6   7
```

5. Printing Total Weight

```
python
print("Total weight of MST:", total_weight)
```

• This line prints the total weight of all edges in the MST.

6. Method: `minKey(self, key, mstSet)`

```
python

def minKey(self, key, mstSet):
```

• A helper method that returns the vertex with the **minimum key value** (smallest weight) that is **not yet included in the MST (mstSet)**.

7. Finding the Minimum Key

```
python

min = sys.maxsize
min_index = -1
```

- Initializes:
 - `min` to the maximum possible value (`sys.maxsize`).
 - `min_index` to `-1`, which will be updated to the index of the minimum key.

```
for v in range(self.V):
    if key[v] < min and not mstSet[v]:
        min = key[v]
        min_index = v</pre>
```

- Loops through all vertices:
 - If the vertex has a smaller key value than the current `min` and is **not yet in the MST**, it updates `min` and `min_index`.

• Why? This helps find the next vertex to be included in the MST.

Example:

- If `key = [0, 2, 3, 1, 4, 7]` and `mstSet = [True, False, False, False, False, False, False, it will choose:
 - Vertex `3` (value `1`) because it is the smallest among those not in MST.

```
python

return min_index
```

• Returns the index of the vertex with the minimum key.

8. Method: `primMST(self)`

```
python

def primMST(self):
```

• This method implements **Prim's Algorithm** to build the MST.

9. Initialization

```
key = [sys.maxsize] * self.V
parent = [None] * self.V
key[0] = 0
mstSet = [False] * self.V
parent[0] = -1
```

- `key`: A list that stores the minimum weight edge for each vertex. Initially, all values are set to infinity (`sys.maxsize`).
- `parent`: A list that keeps track of the parent of each vertex in the MST.
- `mstSet`: A list of boolean values indicating whether a vertex is included in the MST (`True` means included).
- `key[0] = 0`: The starting vertex is set to `0` (arbitrary).
- `parent[0] = -1`: The first vertex has no parent.

10. Building the MST

```
python
for _ in range(self.V):
```

• Loops `v` times (once for each vertex).

```
python

u = self.minKey(key, mstSet)
mstSet[u] = True
```

• Finds the vertex with the smallest key value (`u`) that is not in the MST and includes it in the MST by marking `mstSet[u] = True`.

11. Updating Neighboring Vertices

```
for v in range(self.V):
    if self.graph[u][v] > 0 and not mstSet[v] and key[v] > self.graph[u][v]:
        key[v] = self.graph[u][v]
        parent[v] = u
```

- For each vertex `v`:
 - Checks if:
 - There is an edge between `u` and `v` (`graph[u][v] > 0`).
 - The vertex `v` is not yet in the MST.
 - The current key value of `v` is greater than the weight of the edge (`graph[u][v]`).
 - o If true:
 - Updates `key[v]` to the weight of this edge.
 - Sets `parent[v]` to `u` (making `u` the parent of `v` in MST).

12. Printing the MST

```
python
self.printMST(parent)
```

• After constructing the MST, it calls the `printMST` method to display the MST.

13. Main Function

```
if __name__ == '__main__':
    g = Graph(6)
    g.graph = [
        [0, 2, 0, 1, 4, 0], # Node 1
        [2, 0, 3, 0, 0, 7], # Node 2
        [0, 3, 0, 5, 0, 8], # Node 3
        [1, 0, 5, 0, 9, 0], # Node 4
        [4, 0, 0, 9, 0, 0], # Node 5
        [0, 7, 8, 0, 0, 0] # Node 6
]
    g.primMST()
```

- Creates a graph with 6 vertices.
- Defines an adjacency matrix with the edge weights.
- Calls the `primMST()` function to calculate and display the MST.

W Would you like me to show you a fully optimized and modular version of Prim's Algorithm with more flexibility? **孝**


```
def selectionSort(arr):
  n = len(arr)
  for i in range(n):
    min_idx = i
    for j in range(i+1, n):
       if arr[i] < arr[min_idx]:</pre>
         min_idx = j
    # Swap the found minimum element with the first element
    arr[i], arr[min_idx] = arr[min_idx], arr[i]
  return arr
# Main function
if __name__ == '__main__':
  arr = list(map(int, input("Enter the elements separated by space: ").split()))
  print("Original array:", arr)
  sorted_arr = selectionSort(arr)
  print("Sorted array:", sorted_arr)
```

🚀 In-Depth Line-by-Line Explanation of Selection Sort Code

1. Function Definition: `selectionSort`

```
python

def selectionSort(arr):
```

- Defines a function named `selectionSort` that takes an array (`arr`) as input.
- This function implements the **Selection Sort Algorithm**, which is an in-place, comparison-based sorting algorithm.

2. Calculating Length of the Array

```
python
n = len(arr)
```

- Calculates the length of the input array and stores it in variable `n`.
- This is useful to avoid recalculating the length during each loop iteration.

3. Outer Loop: Iterating Over the Array

```
python
for i in range(n):
```

- The outer loop starts from the first element (i = 0) and goes to the last element (i = n-1).
- At each step, the algorithm assumes the current element is the smallest.

Example:

• If the array is `[64, 25, 12, 22, 11]` and `i = 0`, it assumes `64` is the smallest.

4. Initializing Minimum Index

```
python
min_idx = i
```

- Initializes the `min_idx` variable to the current index (`i`).
- This variable keeps track of the index of the smallest element found in the unsorted portion of the array.

5. Inner Loop: Finding the Minimum Element

```
python
for j in range(i+1, n):
```

- The inner loop starts from the next element (`i+1`) and goes to the end of the array.
- Its goal is to find the smallest element in the remaining unsorted portion of the array.

6. Comparing Elements

```
python

if arr[j] < arr[min_idx]:
    min_idx = j</pre>
```

- Checks if the current element (`arr[j]`) is smaller than the element at the current minimum index (`arr[min_idx]`).
- If true, it updates `min idx` to `j`, making this new position the index of the smallest element.

Example: (Step-by-step)

```
Array: `[64, 25, 12, 22, 11]`
For `i = 0`:

Compares `25 < 64`, so `min_idx = 1`.</li>
Compares `12 < 25`, so `min_idx = 2`.</li>
Compares `22 < 12` (no change).</li>
Compares `11 < 12`, so `min_idx = 4`.</li>
```

7. Swapping the Smallest Element with the Current Position

```
python
arr[i], arr[min_idx] = arr[min_idx], arr[i]
```

- After finding the smallest element in the unsorted portion:
 - Swaps it with the first unsorted element (`arr[i]`).
- This ensures that the smallest element is placed in the correct position in the sorted portion.

🔽 Example: Swap Step

- Array: `[64, 25, 12, 22, 11]`
- After the first pass (`i = 0`), the smallest element `11` is swapped:

```
csharp
[11, 25, 12, 22, 64]
```

• This process continues until the array is fully sorted.

8. Returning the Sorted Array

```
python
return arr
```

• Returns the sorted array after the sorting process is complete.

9. Main Function: User Input and Execution

```
python

if __name__ == '__main__':
```

• This block ensures that the following code only runs if this script is executed directly (not imported).

10. Taking User Input

```
python

arr = list(map(int, input("Enter the elements separated by space: ").split()))
```

- Takes user input in a single line (space-separated values).
- The `map(int, ...)` part converts each value to an integer.
- The `list()` function creates a list from these integer values.

Example:

• Input:

```
csharp

Enter the elements separated by space: 64 25 12 22 11
```

Output:

```
python
[64, 25, 12, 22, 11]
```

11. Displaying the Original Array

```
python
print("Original array:", arr)
```

• Prints the array before sorting.

12. Sorting the Array Using Selection Sort

```
python
sorted_arr = selectionSort(arr)
```

- Calls the `selectionSort` function to sort the array.
- The sorted array is stored in `sorted_arr`.

13. Displaying the Sorted Array

```
python
print("Sorted array:", sorted_arr)
```

• Prints the sorted array.

Dry Run Example:

Input:

```
Enter the elements separated by space: 64 25 12 22 11
```

Step-by-Step Execution:

• Initial Array: `[64, 25, 12, 22, 11]`

```
Pass 1: (`i = 0`)
```

- Minimum Element: `11` (at index 4)
- Swap `11` with `64`:

```
csharp
[11, 25, 12, 22, 64]
```

Pass 2: (i = 1)

- Minimum Element: `12` (at index 2)
- Swap `12` with `25`:

```
csharp
[11, 12, 25, 22, 64]
```

Pass 3: (`i = 2`)

- Minimum Element: `22` (at index 3)
- Swap `22` with `25`:

```
csharp
[11, 12, 22, 25, 64]
```

Pass 4: (i = 3)

No swap needed, already in place:

```
csharp
[11, 12, 22, 25, 64]
```

Pass 5: (i = 4)

• Only one element left, already sorted.

Final Output:

```
less

Original array: [64, 25, 12, 22, 11]
Sorted array: [11, 12, 22, 25, 64]
```

Why is Selection Sort Not Efficient for Large Arrays?

- Time Complexity: $O(n^2)$
 - Outer loop runs n times.
 - \circ Inner loop (finding minimum) runs n-i times for each outer loop.
- Space Complexity: O(1) (in-place, no extra memory).
- Suitable for small arrays, but slow for large ones.


```
def issafe(arr,x,y,n):
  for row in range(x):
    if arr[row][y] ==1:
       # Checking column attack
       return False
  row = x
  col = y
  #Checking Diagonal Attack
  while row>=0 and col>=0:
    if arr[row][col]==1:
       return False
    row-=1
    col-=1
  row = x
  col = y
  #Checking Anti Diagonal Attack
  while row>=0 and col<n:
    if arr[row][col]==1:
       return False
    row-=1
    col+=1
  return True
def nQueen(arr,x,n):
  if x>=n:
    return True
  for col in range(n):
    if issafe(arr,x,col,n):
       arr[x][col]=1
       if nQueen(arr,x+1,n):
         return True
       arr[x][col] = 0
  return False
def main():
  n = int(input("Enter number of Queens: "))
  arr = [[0]*n for i in range(n)]
  if nQueen(arr,0,n):
    for i in range(n):
       for j in range(n):
```

```
print(arr[i][j],end=" ")
    print()

if __name__ == '__main__':
    main()
```

In-Depth Line-by-Line Explanation of N-Queens Solution Code

1. `issafe` Function:

```
python

def issafe(arr, x, y, n):
```

- This function checks if it's safe to place a queen at position `(x, y)` on the chessboard.
- The board is represented by `arr`, where `arr[i][j]` is `1` if there is a queen and `0` otherwise.
- `x` and `y` represent the current row and column of the queen being placed.
- `n` is the size of the board (`n x n`).

2. Checking Column Attack:

```
for row in range(x):
    if arr[row][y] == 1:
        return False
```

- Loops through all rows above the current row `x`.
- If a queen is found in the same column `y`, it returns `False`, meaning it's not safe to place the queen at `(x, y)` due to a column attack.

3. Checking Diagonal Attack:

```
row = x
col = y
while row >= 0 and col >= 0:
    if arr[row][col] == 1:
        return False
    row -= 1
    col -= 1
```

- This loop checks the **left-upper diagonal** (top-left direction) of the board.
- It moves diagonally by decrementing both the `row` and `col`.
- If a queen is found along this diagonal, it returns `False`.

4. Checking Anti-Diagonal Attack:

```
row = x
col = y
while row >= 0 and col < n:
    if arr[row][col] == 1:
        return False
    row -= 1
    col += 1</pre>
```

- This loop checks the **right-upper diagonal** (top-right direction) of the board.
- It moves diagonally by decrementing the `row` and incrementing the `col`.
- If a queen is found along this diagonal, it returns `False`.

5. Return `True` if No Attacks Found:

```
python
return True
```

• If no column or diagonal attacks are detected, the function returns `True`, indicating that it's safe to place a queen at `(x, y)`.

6. `nQueen` Function:

```
python

def nQueen(arr, x, n):
```

- This function is used to solve the N-Queens problem.
- It attempts to place queens row by row starting from row `x` on the board.

7. Base Case:

```
python

if x >= n:
    return True
```

- The base case checks if `x` (the current row) has reached or exceeded `n`.
- If so, all queens have been successfully placed, and the function returns `True` to indicate the solution has been found.

8. Try Placing Queen in All Columns of Row `x`:


```
for col in range(n):
    if issafe(arr, x, col, n):
```

- The `for` loop tries placing a queen in each column `col` of the current row `x`.
- It calls `issafe(arr, x, col, n)` to check if placing the queen at `(x, col)` is safe.
- If it's safe, the gueen is placed by setting `arr[x][col] = 1`.

9. Recursive Step:

```
python

if nQueen(arr, x + 1, n):
    return True
```

- After placing the queen, the function recursively tries to solve the problem for the next row (`x + 1`).
- If it finds a solution, it returns `True`.

10. Backtracking:

```
python arr[x][col] = 0
```

- If placing a queen in column `col` of row `x` doesn't lead to a solution (i.e., the recursive call returns `False`), it removes the queen (backtracking) by setting `arr[x][col] = 0`.
- This allows the algorithm to try the next column in row `x`.

11. Return `False` if No Solution:

```
python

return False
```

• If no valid placement is found for row `x`, the function returns `False`, signaling that no solution exists for this configuration.

12. `main` Function:

```
python

def main():
    n = int(input("Enter number of Queens : "))
    arr = [[0] * n for i in range(n)]
```

- The `main` function starts by taking user input for the number of queens `n`.
- It initializes an `n x n` board (`arr`) with all zeros, representing an empty board.

13. Calling `nQueen` to Solve the Problem:

```
python
if nQueen(arr, 0, n):
```

- The function `nQueen` is called to start placing queens from row `0`.
- If it returns `True`, a solution is found.

14. Printing the Solution:

```
for i in range(n):
    for j in range(n):
        print(arr[i][j], end=" ")
    print()
```

- If a solution is found, the `arr` matrix (representing the board) is printed row by row.
- `1` represents a queen, and `0` represents an empty space.

15. Run Check for Execution:

```
python

if __name__ == '__main__':
    main()
```

• This condition ensures that the `main()` function is only executed when the script is run directly (not when imported as a module).

Example Walkthrough:

For n = 4 (4-Queens Problem):

• Initial Board:

```
[0, 0, 0, 0]
[0, 0, 0, 0]
[0, 0, 0, 0]
[0, 0, 0, 0]
```

• Solution (One of the Possible Configurations):

```
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0
```

✓ Time Complexity:

- Worst case: O(n!) due to the backtracking nature of the problem (since we try to place queens in all positions).
- Best case: $O(n^2)$ when the solution is found early.
- ☑ Would you like me to explain how this algorithm can be optimized further? 💉