Лекция 14.

Локальный экстремум функции многих переменных.

Определение 1. Точка $x^0 = (x_1^0, ..., x_n^0)$, внутренняя для области определения функции $f(x) = f(x_1, ..., x_n)$ называется её *точкой локального экстремума*, если для любой точки некоторой её окрестности $B_{\delta}(x^0)$ (за исключением самой точки x^0) разность $\Delta f = f(x) - f(x^0)$ отлична от нуля и сохраняет знак. В частности, если $\Delta f > 0$, то это точка *локального минимума*, а если $\Delta f < 0$, то точка *локального максимума*.

Теорема 1. (*Необходимое условие существования локального экстремума*). Если у функции f(x) в точке x^0 существуют все частные производные f'_{x_k} , и эта точка является точкой локального экстремума, то все частные производные в ней равны нулю, то есть $f'_{x_k}(x^0) = 0, k = 1,...,n$.

Доказательство. Зафиксируем у функции f(x) все переменные, кроме x_k ($1 \le k \le n$), и рассмотрим функцию одной переменной $\varphi(x_k) = f(x_1^0,...,x_{k-1}^0,x_k,x_{k+1}^0,...,x_n^0)$. Очевидно, что для функции $\varphi(x_k)$ точка x_k^0 является также точкой локального экстремума. Как известно из материала первого семестра, производная функции одной переменной в точке локального экстремума равна нулю. Поэтому $\varphi'(x_k^0) = f'_{x_k}(x^0) = 0$, что и требовалось доказать.

Определение 2. Точка $x^0 = (x_1^0, ..., x_n^0)$ называется *стационарной* для функции $f(x) = f(x_1, ..., x_n)$, если она внутренняя для её области определения, и все частные производные в ней определены, и $f'_{x_n}(x^0) = 0$ (k = 1, ..., n).

Однако одно только условие равенства нулю всех частных производных не является достаточным условием для существования в данной точке локального экстремума.

Пример. Рассмотрим функцию f(x,y) = xy. Её частные производные в точке (0,0), очевидно, равны нулю. Но разность $\Delta f = f(x,y) - f(0,0) = xy - 0$ больше нуля при одинаковых знаках x и y, и меньше нуля, если у них разные знаки. Таким образом, локального экстремума в точке (0,0) у этой функции нет.

Определение 3. *Квадратичной формой* переменных $(h_1, h_2, ..., h_n)$ называется функция

$$A(h_1, h_2, ..., h_n) = \sum_{i,j=1}^{n} a_{ij}h_ih_j.$$

Здесь $a_{ij} \in \mathbb{R}$ - коэффициенты квадратичной формы. Квадратичная форма называется симметричной, если $a_{ij} = a_{ji}$ для всех индексов $1 \le i, j \le n$.

Квадратичная форма $A(h_1,h_2,...,h_n)$ называется положительно определенной, если для любого набора переменных, кроме тождественно нулевого, выполнено неравенство: $A(h_1,h_2,...,h_n)>0$. Квадратичная форма $A(h_1,h_2,...,h_n)$ называется отрицательно определенной, если для любого набора переменных, кроме тождественно нулевого, выполнено неравенство: $A(h_1,h_2,...,h_n)<0$. Такие формы называются знакоопределенными.

Квадратичная форма $A(h_1,h_2,...,h_n)$ называется *знакопеременной*, если существуют два набора переменных $(h'_1,h'_2,...,h'_n)$ и $(h''_1,h''_2,...,h''_n)$, для которых выполнены неравенства: $A(h'_1,h'_2,...,h'_n)>0$, $A(h''_1,h''_2,...,h''_n)<0$.

Замечание. Квадратичная форма может не являться ни знакоопределенной, ни знакопеременной. Например, $A(h_1, h_2) = (h_1 - h_2)^2 \ge 0$ при всех значениях переменных h_1, h_2 , однако она обращается в ноль на ненулевых наборах переменных: A(h, h) = 0.

Теорема 2. (Достаточные условия локального экстремума). Пусть функция $f(x) = f(x_1,...,x_n)$ n независимых переменных 1 раз дифференцируема в некоторой окрестности точки $x^0 = (x_1^0,...,x_n^0)$, и дважды дифференцируема в самой точке x^0 . Пусть x^0 - стационарная точка, то есть $df(x^0) = 0$. Тогда, если второй дифференциал $d^2f(x^0)$ представляет собой знакоопределённую квадратичную форму, то x^0 - точка локального экстремума. При этом, если форма $d^2f(x^0)$ положительно определена, то x^0 - точка локального максимума, если $d^2f(x^0)$ отрицательно определена, то x^0 - точка локального экстремума. Если же квадратичная форма $d^2f(x^0)$ знакопеременна, то локального экстремума в точке x^0 нет.

Доказательство. Разложим разность Δf по формуле Тейлора при n=2 с остаточным членом в форме Пеано:

$$\Delta f = f(x) - f(x^{0}) = df(x^{0}) + \frac{d^{2} f(x^{0})}{2!} + \overline{o}(\|\Delta x\|^{2}) = \frac{1}{2!} \sum_{i=1}^{n} \sum_{j=1}^{n} f''_{x_{i}x_{j}}(x^{0}) \Delta x_{i} \Delta x_{j} + \overline{o}(\|\Delta x\|^{2}).$$

Обозначим
$$h_i = \frac{\Delta x_i}{\left\|\Delta x\right\|}, \quad f_{x_i x_j}''(x^0) = a_{ij}, \quad \alpha = \alpha(\left\|\Delta x\right\|) = \frac{\overline{o}(\left\|\Delta x\right\|^2)}{\left\|\Delta x\right\|^2}$$
 - бесконечно малая при

$$\|\Delta x\| \to 0$$
 . Тогда $\Delta f = \frac{1}{2} \|\Delta x\|^2 \left(\sum_{1 \le i, j \le n} a_{ij} \cdot h_i h_j + \alpha \right)$. Заметим, что вектор $h = \{h_1, ..., h_n\}$ имеет

норму $||h|| = \sqrt{\sum_{i=1}^n h_i^2} = 1$, то есть это элемент единичной сферы.

Рассмотрим случай, когда $d^2f(x^0)$ - положительно определённая квадратичная форма. Тогда функция $\Phi(h) = \sum_{1 \le i,j \le n} a_{ij} h_i h_j$ - также положительно определённая

непрерывная функция на единичной сфере S , которая является замкнутым ограниченным множеством. Следовательно, по второй теореме Вейерштрасса, функция $\Phi(h)$ достигает на S своей точной нижней грани, то есть существует точка $\xi=(\xi_1,...,\xi_n)\in S$, где $\Phi(\xi)=\inf_{h\in S}\{\Phi(h)\}=\mu$. Поскольку всюду на сфере $\Phi(h)>0$, то и $\Phi(\xi)=\mu>0$.

Воспользовавшись этим, получаем: $\Delta f = \frac{1}{2} \left\| \Delta x \right\|^2 \left(\Phi(h) + \alpha \right) \ge \frac{1}{2} \left\| \Delta x \right\|^2 (\mu + \alpha)$. Так как $\alpha \to 0$

при $\|\Delta x\| \to 0$, то найдётся такое $\delta = \delta(\mu) > 0$, что при $\|\Delta x\| < \delta$ будет $|\alpha| < \frac{\mu}{2}$. При этих условиях

$$\Delta f \ge \frac{1}{2} \|\Delta x\|^2 (\mu + \alpha) > \frac{1}{2} \|\Delta x\|^2 (\mu - \frac{\mu}{2}) = \frac{1}{2} \|\Delta x\|^2 \frac{\mu}{2} > 0.$$

Итак, для любого x такого, что $\|\Delta x\| < \delta$, всегда будет $\Delta f > 0$. Следовательно, точка x^0 точка локального минимума.

В случае отрицательно определённой квадратичной формы $d^2f(x^0)$ совершенно аналогично доказывается, что точка x^0 - точка локального максимума.

Пусть теперь $d^2f(x^0)$ - знакопеременная квадратичная форма. Тогда, пользуясь предыдущими обозначениями, $\Delta f = \frac{1}{2} \rho^2 (\Phi(h) + \alpha)$, где $\rho = \|\Delta x\|$, а $\Phi(h)$ - знакопеременная квадратичная форма на единичной сфере S.

Следовательно, существуют такие точки $h',h''\in S$, что $\Phi(h')<0$, $\Phi(h'')>0$. При этом $\Phi(h)$ не зависит от ρ . Поэтому, взяв ρ_1 достаточно малым, можно добиться, чтобы $\left|\alpha_1\right|=\left|\alpha(\rho_1)\right|<\min\{\frac{\left|\Phi(h')\right|}{2},\frac{\left|\Phi(h'')\right|}{2}\}\ (\text{поскольку }\alpha=\alpha(\rho)\to 0\ \text{при }\rho\to 0\).$

При этих условиях будет одновременно: $\Phi(h') + \alpha_1 < 0$, $\Phi(h'') + \alpha_1 > 0$. Тогда для $x_1 = x^0 + \rho h'$, $x_2 = x^0 + \rho h''$ будет выполнено

$$(\Delta f)' = f(x_1) - f(x^0) = \frac{1}{2} \rho^2 (\Phi(h') + \alpha_1) < 0, \text{ и}$$

$$(\Delta f)'' = f(x_2) - f(x^0) = \frac{1}{2} \rho^2 (\Phi(h'') + \alpha_1) > 0.$$

Итак, приращение функции меняет знак, следовательно, точка x^0 не является в этом случае точкой экстремума функции f(x). Теорема полностью доказана.

Замечание. В случаях квази-знакоопределённости (или, другими словами, полуопределённости) квадратичной формы второго дифференциала $d^2f(x^0)$ ответ о существовании локального экстремума в точке x^0 неясен. (Напомним, что квадратичная форма $A(h) = \sum_{i=1}^n \sum_{j=1}^n a_{ij}h_ih_j$ называется квази-знакоопределённой (или полуопределённой), если $A(h) \ge 0$ при любом $h = (h_1, ..., h_n)$ (или $A(h) \le 0$ при любом h), и кроме того, существует $h_0 \ne 0$ такой, что $A(h_0) = 0$.)

Пример. Рассмотрим функции $f(x,y) = x^3 + y^3$, $g(x,y) = x^4 + y^4$. В точке (0;0) вторые дифференциалы обеих функций равны нулю. Однако несложно проверить, что у функции g(x,y) имеется экстремум в точке (0;0), а у функции f(x,y) в этой точке экстремума нет.

Случай функции двух переменных. Рассмотрим более подробно частный случай теоремы 2 для функции двух переменных.

Теорема 3. Пусть функция $f(x_1, x_2)$ дифференцируема в некоторой окрестности точки $x^0 = (x_1^0, x_2^0)$ и дважды дифференцируема в самой точке x^0 . Пусть точка x^0 является стационарной, то есть $df(x^0) = 0$, а второй дифференциал в этой точке имеет вид:

$$d^2 f(x_0) = a_{11} (dx_1)^2 + 2a_{12} dx_1 dx_2 + a_{22} (dx_2)^2 ,$$

где $a_{ij}=f_{x_ix_j}''(x^0), 1 \le i, j \le 2$. Тогда, если определитель $A_2=\begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix}>0$, то точка x^0

является точкой локального экстремума (локального минимума, если $a_{11} > 0$, и локального максимума, если $a_{11} < 0$).

Если же
$$A_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix} < 0$$
 , то экстремума в точке x^0 нет.

Доказательство. Из курса линейной алгебры известен критерий Сильвестра знакоопределённости квадратичной формы, заключающийся в следующем: если все главные миноры матрицы симметричной квадратичной формы положительны, то квадратичная форма положительно определена. Если же знаки главных миноров чередуются, начиная с минуса, то квадратичная форма отрицательно определена. В силу этого критерия, при условии $A_2 > 0$ и $a_{11} \neq 0$ второй дифференциал $d^2 f(x^0; dx)$ является знакоопределённой (положительной или отрицательной, в зависимости от знака a_{11}) квадратичной формой. Следовательно, по теореме 2, в этом случае в точке x^0 имеется локальный экстремум.

Можно заметить также, что $A_2 = -D/4$, где D - дискриминант квадратного уравнения $y(h) = a_{11}h^2 + 2a_{12}h + a_{22} = 0$. Если $A_2 > 0$, то D < 0, и парабола y(h) расположена либо полностью выше оси абсцисс (если $a_{11} > 0$), либо полностью ниже (если $a_{11} < 0$). Значит, в первом случае $d^2 f(x^0; dx) > 0$, следовательно, x^0 - точка локального минимума. Во втором случае x^0 - точка локального максимума.

Пусть теперь $A_2 < 0$. Покажем, что тогда экстремума нет.

Предположим сначала, что $a_{11} \neq 0$. Обозначим, как и в теореме 2, $h_i = \frac{dx_i}{\rho}$, i = 1,2, где

$$\begin{split} \rho = & \left\| dx \right\| = \sqrt{(dx_1)^2 + (dx_2)^2} \text{ . Тогда} \\ & \qquad \qquad d^2 f(x^0; dx) = a_{11} (dx_1)^2 + 2a_{12} dx_1 dx_2 + a_{22} (dx_2)^2 = \rho^2 (a_{11} (h_1)^2 + 2a_{12} h_1 h_2 + a_{22} (h_2)^2) = \\ & = \frac{\rho^2}{a_{11}} (a_{11}^2 (h_1)^2 + 2a_{12} a_{11} h_1 h_2 + a_{12}^2 (h_2)^2 + (a_{22} a_{11} - a_{12}^2) (h_2)^2) = \frac{\rho^2}{a_{11}} [(a_{11} h_1 + a_{12} h_2)^2 + A_2 (h_2)^2] \,. \end{split}$$

Следовательно, при $h_1=1,\,h_2=0$ имеем: $d^2f(x^0;dx)=\frac{\rho^2}{a_{11}}\cdot(a_{11})^2=\rho^2a_{11}$ - имеет такой же

знак, как
$$a_{11}$$
. Однако при $h_{\!\scriptscriptstyle 1} = -\frac{a_{12}}{\sqrt{\left(a_{11}\right)^2 + \left(a_{12}\right)^2}}, \, h_{\!\scriptscriptstyle 2} = \frac{a_{11}}{\sqrt{\left(a_{11}\right)^2 + \left(a_{12}\right)^2}}$ второй

дифференциал:

$$d^{2}f(x_{0};dx) = \frac{\rho^{2}}{a_{11}} \cdot A_{2} \frac{(a_{11})^{2}}{(a_{11})^{2} + (a_{12})^{2}} = \frac{\rho^{2}a_{11}A_{2}}{(a_{11})^{2} + (a_{12})^{2}}$$

имеет знак, противоположный знаку a_{11} . Таким образом, второй дифференциал является в этом случае знакопеременной квадратичной формой, поэтому, в силу теоремы 2, экстремума нет.

Пусть теперь $A_2 < 0$, $a_{11} = 0$. Заметим, что в этом случае обязательно $a_{12} \neq 0$. Тогда $d^2f(x^0;dx) = \rho^2h_2(2a_{12}h_1 + a_{22}h_2)$. Зафиксируем $h_1^0 \neq 0$ и возьмём $|h_2^0|$ настолько малым, чтобы выражение в круглых скобках имело такой же знак, как произведение $a_{12}h_1^0$. Тогда $d^2f(x^0;\{\rho h_1^0,\rho h_2^0\})$ и $d^2f(x^0;\{\rho h_1^0,\rho (-h_2^0)\})$ имеют разные знаки, то есть при изменении знака малого h_2^0 , знак d^2f также меняется. Итак, второй дифференциал в данном случае есть знакопеременная квадратичная форма, и по теореме 2, экстремума нет. Теорема 3 полностью доказана.

Пример. Исследуем на экстремум функцию: $f(x, y) = x^2 + xy + y^2 + \frac{1}{x} + \frac{1}{y}$.

Вычислим частные производные первого порядка функции f(x, y):

$$f'_x = 2x + y - \frac{1}{x^2}, \ f'_y = 2y + x - \frac{1}{y^2}.$$

Тогда необходимыми условиями экстремума являются:

$$\begin{cases} 2x + y - \frac{1}{x^2} = 0, \\ 2y + x - \frac{1}{y^2} = 0 \end{cases} \Leftrightarrow \begin{cases} 2x^3 - 2y^3 = xy^2 - yx^2, \\ 2y + x - \frac{1}{y^2} = 0 \end{cases}$$

Отсюда получаем, что либо $x=y=\frac{1}{\sqrt[3]{3}}$, либо $2x^2+3xy+2y^2=0$. Так как последнее уравнение не имеет решений, то единственной критической точкой является точка $M\left(\frac{1}{\sqrt[3]{3}},\frac{1}{\sqrt[3]{3}}\right)$.

Вычислим второй дифференциал в точке M . Так как

$$f''_{xx} = 2 + \frac{2}{x^3}$$
; $f''_{yy} = 2 + \frac{2}{v^3}$; $f''_{xy} = 1$,

то $d^2f(x,y)\Big|_M=8dx^2+2dxdy+8dy^2>0$ при любых значениях приращений dx,dy. Поскольку второй дифференциал функции является в точке M положительно определенной квадратичной формой, то по достаточному условию экстремума заключаем, что M - точка локального минимума.

Ответ: $M\left(\frac{1}{\sqrt[3]{3}}, \frac{1}{\sqrt[3]{3}}\right)$ - точка локального минимума.

Ответ: $\left(\frac{1}{\sqrt[3]{3}}, \frac{1}{\sqrt[3]{3}}\right)$ - точка локального минимума.

OTBET: $\left(\frac{1}{\sqrt[3]{3}}, \frac{1}{\sqrt[3]{3}}\right)$ - точка локального минимума.