Introduction au signal et bruit Exercices

Gabriel Dauphin

October 24, 2025

Contents

1	Relations entrées-sorties sans effet mémoire	2
2	Signaux temps continu, fonction affine par morceaux	4
3	Définition et utilisation de la transformée de Fourier	6
4	Propriété de la transformée de Fourier	8
5	Diracs	11
6	Transformées de Fourier et dérivation	13
7	Équations différentielles	16
8	Filtres et effet mémoire	19
9	Description fréquentielle des filtres	22
10	Signaux périodiques	24
11	Filtres agissant sur des signaux périodiques	28
12	Échantillonnage d'un signal non-périodique	30
13	Modélisation stochastique du bruit	32
14	Filtrage des processus aléatoires	35
15	Autocorrélation et densité spectrale	36
16	Densité de probabilité et filtrage 16.1 Exercices	37 37
A	Supplément pour faire les pseudo-programmes A.1 Outils	40 40 40

Relations entrées-sorties sans effet mémoire

Figure 1.1: Relation entrée-sortie associée à un Relu (exercice 1)

Exercice 1 Le graphique représente la relation entrée-sortie d'un Relu pour Rectified Linear Unit.

- 1. En utilisant la figure 1.1, combien valent les signaux en sortie lorsque respectivement, les signaux en entrées valent -3 et 3 ?
- 2. Combien valent les puissances de ces signaux?
- 3. Proposez une formule utilisant la valeur absolue, l'addition et la multiplication pour modéliser cette relation?
- 4. On considère le filtre $\mathcal{H}_1(x) = 0.5x$ et $\mathcal{H}_2(x) = |x|$, montrez comment en les associant on peut fabriquer le filtre Relu.
- 5. Écrire le pseudo-code permettant de générer la figure 1.1.

Simulation de la figure 1.1.

```
x=linspace(-4,4,1e2);
y=zeros(size(x));
y(x<=0)=0;
y(x>0)=x(x>0);
figure(1); plot(x,y); figure_jolie(1);
xlabel('x'); ylabel('y'); axis('equal');
saveas(1,'./figures/fig exSEB6a.png');
```


Figure 1.2: Schéma décrivant \mathcal{H} à partir de $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3$ pour l'exercice 2.

Exercice 2 Les filtres \mathcal{H}_1 , \mathcal{H}_2 et \mathcal{H}_3 sont définis par

$$\mathcal{H}_1(x) = |x| \quad \mathcal{H}_2(x) = \min(1, x) \quad \mathcal{H}_3(x) = \max(0, x)$$
 (1.1)

On appelle \mathcal{H} le filtre décrit par la figure 1.2 et défini par les filtres $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3$. et associé à la relation transformant x en y.

- 1. Calculez les sorties y associées aux valeurs -2, -1, 0, 1, 2 pour x.
- 2. Écrivez la formule modélisant H?
- 3. Dessinez la relation associée à \mathcal{H} transformant x en y sur un graphe.

Signaux temps continu, fonction affine par morceaux

Figure 2.1: Visualisation de x(t) qui a la forme d'une maison avec son lampadaire (exercice 3).

Exercice 3 On considère le signal x(t) décrit par la figure 2.1.

- 1. Calculez les valeurs de x(t) pour les valeurs de t-2.5, 0.5, 1, 2.5.
- 2. Écrivez une formule décrivant x(t) au moyen de différents intervalles de temps.
- 3. Utilisez quelques unes des fonctions de base présentées en cours pour définir x(t).
- 4. Utilisez le crochet d'Iverson pour décrire x(t).

Simulation de la figure 2.1

```
t=linspace(-3,3,500);
x=2*fonction_porte((t-1)/2)+fonction_T(t-1)+4*fonction_porte((t+2.5)*4);
figure(1); plot(t,x); figure_jolie(1);
xlabel('t'); ylabel('x(t)');
saveas(1,'./figures/fig_exSEB8a.png');
```

Exercice 4 On considère le signal x(t) ainsi défini

$$x(t) = (at + b) [t_1 \le t \le t_2]$$
(2.1)

1. Représentez ce signal pour a = 1, b = 0 et $t_1 = 2$, $t_2 = 3$.

- 2. Représentez ce signal pour $a=-1,\ b=1$ et $t_1=0,\ t_2=1.$
- 3. Montrez que pour a=0, x(t) peut se mettre sous la forme

$$x(t) = \alpha \Pi(\gamma t + \delta) \tag{2.2}$$

4. Montrez que pour a > 0, x(t) peut se mettre sous la forme

$$x(t) = \alpha \Pi(\gamma t + \delta) + \beta \mathbb{C}(\gamma t + \delta)$$
(2.3)

5. Donnez un pseudo-code permettant de visualiser de signal.

Définition et utilisation de la transformée de Fourier

Exercice 5 On cherche à déterminer la transformée de Fourier de $s(t) = e^{-|t|}$.

- 1. Calculer la somme et l'énergie de ce signal.
- 2. On note $s_1(t) = s(t)[[t \ge 0]](t)$. Calculez la transformée de Fourier de $s_1(t)$ notée $\widehat{S}_1(f)$.
- 3. On note $s_2(t) = s(t)[[t \le 0]](t)$. Calculez la transformée de Fourier de $s_2(t)$ notée $\widehat{S}_2(f)$.
- 4. On remarque $s(t) = s_1(t) + s_2(t)$ pour $t \neq 0$. Que peut-on en déduire sur la relation entre $\widehat{S}(f)$ et $\widehat{S}_1(f)$ et $\widehat{S}_2(f)$.
- 5. Déduisez $\widehat{S}(f)$.
- 6. En établissant le lien avec la première question, déterminez $\int_{-\infty}^{+\infty} \frac{1}{1+4\pi^2t^2} dt$.

Figure 3.1: Visualisation du signal x(t) (exercice 6).

Exercice 6 On considère le signal noté x(t) et décrit par la figure 3.1. Donnez un pseudo-algorithme permettant de calculer sa transformée de Fourier.

```
t=np.linspace(-3,3,10**3)
x=2*seb.fonction_P(t/2)-seb.fonction_T(t)
plt,np = seb.debut()
fig,ax = plt.subplots()
ax.plot(t,x)
```

```
set.x_label('t')
set.y_label('x(t)')
plt.tight_layout()
fig.savefig('./figures/fig_exSEB25_fig1.png')
fig.show()
```

Exercice 7 On considère le signal $x(t)=e^{-|t|}$ dont la transformée de Fourier vaut $\widehat{X}(f)=\frac{2}{1+4\pi^2f^2}$. On considère

$$y(t) = \sum_{n=0}^{+\infty} \frac{x(t-n)}{2^n}$$
 (3.1)

Montrez que la transformée de Fourier de y(t) est

$$\widehat{Y}(f) = \frac{2}{1 + 4\pi^2 f^2} \left(\frac{1}{1 - \frac{e^{-j2\pi f}}{2}} \right) \tag{3.2}$$

Propriété de la transformée de Fourier

Exercice 8 Cet exercice cherche à illustrer la notion de parité.

- 1. On considère le signal $s(t) = e^{-|t|}$. Montrez que la transformée de Fourier de ce signal est à valeurs réelles.
- 2. En considérant différents fonctions de bases, proposez un algorithme montrant que la transformée de Fourier d'un signal pair est réel et que la transformée de Fourier d'un signal impair est imaginaire pur.

Exercice 9 On se donne des fonctions de bases et des tirages aléatoires. Montrez comment par simulation on peut confirmer que $TF\left[x\left(\frac{t}{a}\right)\right](f) = a\widehat{X}(af)$ pour a > 0.

Figure 4.1: Figure associée à l'exercice 10.

Exercice 10 On considère le signal $x(t) = \mathbb{T}(t) = (1 - |t|)[-1 \le t \le 1](t)$

1. En s'inspirant de la figure 4.1, montrez que

$$2x\left(\frac{t}{2}\right) = 2x(t) + x(t-1) + x(t+1) \tag{4.1}$$

2. Montrez en utilisant l'équation (4.1) que

$$2\hat{X}(2f) = \hat{X}(f)\left(2 + e^{-2j\pi f} + e^{2j\pi f}\right)$$
(4.2)

- 3. On remarque que $2 + e^{-2j\pi f} + e^{2j\pi f} = \left(e^{-j\pi f} + e^{j\pi f}\right)^2 = 4\cos^2(\pi f)$. En déduire l'expression de $\frac{\widehat{X}(2f)}{\widehat{X}(f)}$
- 4. On sait par ailleurs que $\hat{X}(f) = \frac{\sin(\pi f)}{\pi f}$, montrez que cette affirmation est compatible avec l'expression trouvée plus haut.

Figure 4.2: Graphe de x(t) relatif à l'exercice 11.

Exercice 11 Le signal montré sur la figure 4.2 est noté x(t). Sa transformée de Fourier est notée \hat{X} .

- 1. Donnez une expression de x(t) sous la forme de sa description sur plusieurs intervalles.
- 2. Donnez une expression de x(t) en fonction de [].
- 3. Calculez x(0), x(1), E_x .
- 4. Calculez $\widehat{X}(0)$ et $\widehat{X}(1)$.
- 5. Construire $y_1(t) = x(\frac{t}{2})$
- 6. Construire $y_1(t) = x(t-1)$
- 7. Construire $y_1(t) = \frac{1}{2}x(t)$
- 8. Construire $y_1(t) = x(t) x(t-2)$

Simulation générant la figure 4.2 de l'exercice 11

```
t=linspace(-1,5,1e3);
x=3/2*t.*(t>=0).*(t<=2)+(4-t)*3/2.*(t>2).*(t<=4);
figure(1);
plot(t,x,'b-','linewidth',2);
set(gca,'fontsize',20);
saveas(1,'C:\A\SIMU\SEB\ex\exSEB1_fig1.png');</pre>
```

Solutions

1.

Figure 4.3: Graphe de x(t) et de sa tangente pour l'exercice 41.

Exercice 12 Le signal montré sur la figure 16.1 est noté x(t). Sa transformée de Fourier est notée \widehat{X} . Ce signal est de la forme $x(t) = ae^{-bt}\mathbf{1}(t \ge 0)$.

- 1. Justifiez la valeur de a avec la courbe exponentielle sur la figure 16.1.
- 2. Justifiez la valeur de b avec la ligne tangente à la courbe exponentielle sur la figure 16.1.
- 3. Donnez une expression de x(t) en fonction de $[\![]\!]$.
- 4. Calculez x(0), x(1), E_x .
- 5. Calculez $\widehat{X}(0)$ et $\widehat{X}(1)$.
- 6. Construire $y_1(t) = x\left(\frac{t}{2}\right)$
- 7. Construire $y_1(t) = x(t-1)$
- 8. Construire $y_1(t) = \frac{1}{2}x(t)$
- 9. Construire $y_1(t) = x(t) x(t-2)$

Simulation générant le graphe

```
t=linspace(-1,5,1e3);
x=2*exp(-t).*(t>=0);
t_tg=t((t>=0)&(t<=1));
x_tg=2-2*t_tg;
figure(1);
plot(t,x,'b-','linewidth',2,t_tg,x_tg,'r:','linewidth',2);
set(gca,'fontsize',20);
saveas(1,'C:\A\SIMU\SEB\ex\exSEB2_fig1.png');</pre>
```

Solutions

1.

Diracs

Exercice 13 On considère le signal $x(t) = \Pi(t) = [-0.5 \le t \le 0.5](t)$.

- 1. Calculez sa dérivée $y(t) = \frac{d}{dt}x(t)$.
- 2. Calculez $z(t) = \int_{-\infty}^{t} x(\tau) d\tau$.
- 3. Calculez la transformée de Fourier de y(t) notée $\hat{Y}(f)$ et en déduire celle de x(t) notée $\hat{X}(f)$.
- 4. Représentez les signaux x(t), y(t), z(t).

Solution

1.
$$y(t) = \delta(t + 0.5) - \delta(t - 0.5)$$

2.
$$z(t) = (t + 0.5)[-0.5 \le t < 0.5](t) + [0.5 \le t](t) = \mathbb{C}(t) + \mathbb{H}(t - 0.5)$$

3.

$$\hat{Y}(f) = \text{TF} \left[\delta(t+0.5) \right](f) - \text{TF} \left[\delta(t-0.5) \right](f) = e^{j\pi f} - e^{-j\pi f} = 2j\sin(\pi f)$$
(5.1)

Par conséquent,

$$\widehat{X}(f) = \frac{1}{i2\pi f} \widehat{Y}(f) = \frac{\sin(\pi f)}{\pi f} = \operatorname{sinc}(f)$$
(5.2)

Exercice 14 On considère un oscillateur obtenu avec un comparateur (un amplificateur opérationnel monté en comparateur) et une capacité qui se charge et se décharge avec une résistance en fonction de la sortie du comparateur.

- 1. Proposez un montage électronique ou un schéma bloc.
- 2. Donnez les équations de charge et décharge du condensateur.
- 3. Donnez l'algorithme permettant de simuler le fonctionnement de cet oscillateur.
- 1. On utilise un amplificateur opérationnel monté en comparateur et réalisant

$$V_{s} = \begin{cases} +V_{cc} \text{ si } V_{+} > V_{-} \\ -V_{cc} \text{ si } V_{+} < V_{-} \end{cases}$$
 (5.3)

où V_s est la tension à la sortie, $+V_{cc}$ et $-V_{cc}$ sont les tensions d'alimentation, V_+ et V_- sont les tensions aux entrées plus et moins.

On fixe la tension de référence du comparateur à $\frac{V_s}{2}$ grâce à un diviseur de tension, cette tension est relié à l'amplificateur sur la borne plus.

La tension mesurée par le comparateur avec sa borne moins est la tension du condensateur de capacité C qui est chargé et déchargé à partir de la tension de sortie de l'amplificateur par le biais d'une résistance R.

2. L'équation principale concerne la tension du condensateur :

$$C\frac{d}{dt}V_y = \frac{V_s - V_y}{R} \tag{5.4}$$

où V_y est la tension du condensateur. Celle-ci est continue. On a deux équations d'évolutions :

$$\begin{cases}
\text{Tant que } V_y < \frac{V_{cc}}{2}, \quad V_s = V_{cc}, V_y(t) = V_{cc} + (V_y(t_0) - V_{cc})e^{-\frac{t - t_0}{RC}} \\
\text{Tant que } V_y > -\frac{V_{cc}}{2}, \quad V_s = -V_{cc}, V_y(t) = -V_{cc} + (V_y(t_0) + V_{cc})e^{-\frac{t - t_0}{RC}}
\end{cases}$$
(5.5)

- 3. Le pseudo-programme est le suivant où y joue le rôle de V_y .
 - Créer une échelle de temps t
 - Créer un vecteur y de même taille que t
 - Initialiser l'index int qui va parcourir y
 - While 1+ind < len(t)
 - While y[ind] < Vcc/2</pre>
 - * Calcul de y[ind+1] avec Vs=+Vcc
 - * Incrémentation de ind
 - While y[ind]>-Vcc/2
 - * Calcul de y[ind+1] avec Vs=-Vcc
 - * Incrémentation de ind

Transformées de Fourier et dérivation

Exercice 15 On considère le signal $x(t) = e^{-t}[t \ge 0](t)$ et on note $\widehat{X}(f)$ sa transformée de Fourier.

- 1. Calculez $\hat{X}(f)$.
- 2. Vérifiez qu'à partir de $\hat{X}(0) = 1$ vous retrouvez un résultat cohérent avec la définition de x(t).
- 3. Un calcul mathématique ¹ montre que $\int_{-\infty}^{+\infty} \frac{dx}{1+x^2} = \pi$. Proposez un algorithme permettant de vérifier que ce résultat est correct.
- 4. Sachant que x(t) est en fait réel, expliquez pourquoi

$$x(0) = \int_{-\infty}^{+\infty} \frac{df}{1 + 4\pi^2 f^2} \tag{6.1}$$

- 5. En utilisant le résultat précédent calculez la valeur théorique de $x(0) = \frac{1}{2}$.
- 6. Expliquez pourquoi on ne trouve pas le résultat x(0) = 1.

Solution

1.
$$\widehat{X}(f) = \frac{1}{1+j2\pi f}$$

2.
$$x=np.linspace(-100,100,10**8)$$

 $g=1/(1+x**2)$
 $print(f"err=\{np.abs(seb.TF(x,g,0)-np.pi):.3g\}")$
 $err = 0.02$

3.

$$x(0) = \text{Re}(x(0)) = \text{Re}\left[\int_{-\infty}^{+\infty} \frac{df}{1 + j2\pi f}\right] = \frac{1}{2} \int_{-\infty}^{+\infty} \left[\frac{1}{1 + j2\pi f} + \frac{1}{1 - j2\pi f}\right] df$$
 (6.2)

4.

$$\int_{-\infty}^{+\infty} x(t) dt = \int_{0}^{+\infty} e^{-t} dt = 1 = \frac{1}{1 + j2\pi \times 0} = \widehat{X}(0)$$
 (6.3)

- 5. On fait le changement de variable $\omega = 2\pi f$, $d\omega = 2\pi df$.
- 6. On a bien

$$x(0) = \frac{1}{2} \lim_{t \to 0^{-}} + \frac{1}{2} \lim_{t \to 0^{+}} = \frac{1}{2} \times 0 + \frac{1}{2} \times 1$$
(6.4)

¹Ce calcul utilise un simple changement de variable $x = tan(\theta)$

Exercice 16 On considère l'équation différentielle

$$\tau_2 \frac{d}{dt} y(t) + y(t) = e^{-\frac{t}{\tau_1}} [t \ge 0](t)$$
(6.5)

On note la transformée de Fourier de y(t), $\hat{Y}(f)$.

- 1. Calculez $\hat{Y}(f)$
- 2. Montrez que $\widehat{Y}(f)$ se met sous la forme

$$\widehat{Y}(f) = \frac{a}{1 + j2\pi f \tau_1} + \frac{b}{1 + j2\pi f \tau_2}$$
(6.6)

Trouvez les valeurs de a et b.

- 3. Donnez un algorithme permettant de confirmer la façon dont a et b dépendent de τ_1 et τ_2 en tirant aléatoirement des valeurs de τ_1 et τ_2 .
- 4. Donnez un algorithme permettant d'en déduire y(t)
- 5. Montrez que la solution de l'équation différentielle est

$$y(t) = \frac{\tau_1}{\tau_2 - \tau_1} \left(e^{-\frac{t}{\tau_1}} - e^{-\frac{t}{\tau_2}} \right) [t \ge 0]$$
 (6.7)

Solution

1.

$$\widehat{Y}(f) = \frac{\tau_1}{1 + j2\pi f \tau_1} \frac{1}{1 + j2\pi f \tau_2}$$
(6.8)

2.

$$\frac{a}{1+j2\pi f\tau_1} + \frac{b}{1+j2\pi f\tau_2} = \frac{(a+b)+j2\pi f(\tau_1 b + a\tau_2)}{(1+j2\pi f\tau_1)(1+j2\pi f\tau_2)}$$
(6.9)

On en déduit que c'est possible si le système suivant a une solution

$$\begin{cases} a + b = \tau_1 \\ \tau_2 a + \tau_1 b = 0 \end{cases}$$
 (6.10)

Ce système a une unique solution lorsque $\tau_1 \neq \tau_2$ et c'est $a = -\frac{\tau_1^2}{\tau_2 - \tau_1}$ et $b = \frac{\tau_2 \tau_1}{\tau_2 - \tau_1}$.

3. import numpy.random as rd import numpy.linalg as li

tau1,tau2 = rd.uniform(0,1),rd.uniform(0,1)

A=np.array([[tau1 ,tau2]

[1 ,1]])

B=np.array([[tau1], [0]]

X=li.inv(A)@B

X_th=np.array([[-tau1/(tau2-tau1)],[tau2/(tau2-tau1)]])*tau1
print(f"err={np.sum(np.abs(X-X_th)):.3g}")

4. plt.close('all')

import numpy.random as rd

tau1,tau2 = rd.uniform(0,1),rd.uniform(0,1)

 $X_{th=np.array}([[-tau1/(tau2-tau1)],[tau2/(tau2-tau1)]])*tau1$

t=np.linspace(-1,5,10**2)

```
x_th=seb.val(X_th[0])*np.exp(-t/tau1)*(t>=0)/tau1+seb.val(X_th[1])*np.exp(-t/tau2)*(t>=0)/tau2
f=np.linspace(-50,50,10**3)
Y=lambda f: tau1/(1+1j*2*np.pi*f*tau1)/(1+1j*2*np.pi*f*tau2)
x=np.real(seb.TFI(f,Y(f),t))
fig,ax = plt.subplots()
ax.plot(t,x_th,label='th')
ax.plot(t,x,label='x')
ax.legend()
ax.set_xlabel('t')
plt.tight_layout()
fig.show()
print(f"err={np.max(x_th-x)}")
```

Équations différentielles

Figure 7.1: Visualisation de l'entrée x(t) et de la sortie y(t) illustrant l'exercice 17.

Exercice 17 On considère un filtre défini par l'équation différentielle

$$LC\frac{d^2}{dt^2}y(t) + RC\frac{d}{dt}y(t) + y(t) = RC\frac{d}{dt}x(t)$$
(7.1)

avec R = 3, C = 0.5, L = 1. On considère un signal en entrée défini par $x(t) = \mathbb{T}(t)$ et on cherche à simuler le signal de sortie y(t) associé à ce filtre décrit par l'équation (7.1).

1. Montrez que

$$\frac{d}{dt}\mathbb{T}(t) = \int_{-\infty}^{t} \left[\delta(\tau - 1) - 2\delta(\tau) + \delta(\tau + 1)\right] d\tau \tag{7.2}$$

2. On appelle $\tilde{y}(t)$ la solution de cette deuxième équation différentielle

$$LC\frac{d^2}{dt^2}\tilde{y}(t) + RC\frac{d}{dt}\tilde{y}(t) + \tilde{y}(t) = \delta(t)$$
(7.3)

Exprimez y(t) en fonction de $\tilde{y}(t)$.

- $\begin{array}{l} \bullet \quad Cela \ peut \ se \ faire \ en \ considérant \ a(t) = \tilde{y}(t-1), \ b(t) = \tilde{y}(t+1) \ et \ c(t) = a(t) + b(t) 2\tilde{y}(t) \ et \ en \ calculant \\ LC\frac{d^2}{dt^2}a(t) + RC\frac{d}{dt}a(t) + a(t), \ LC\frac{d^2}{dt^2}b(t) + RC\frac{d}{dt}b(t) + b(t) \ et \ LC\frac{d^2}{dt^2}c(t) + RC\frac{d}{dt}c(t) + c(t). \end{array}$
- Cela peut se faire aussi en calculant d'une part $TF(\tilde{y}(t))(f)$ et d'autre part TF(y(t))(f) à partir des équations différentielles puis en remarquant la ressemblance entre ces deux expressions, on peut calculer $\frac{TF(y(t))(f)}{TF(\tilde{y}(t))(f)}$, on peut trouver une relation entre y(t) et $\tilde{y}(t)$.

3. En utilisant les fonctions sol_eq_diff, deriver, integrer et retarder de seb, donnez un pseudo-programme permettant de simuler y(t).

Solution:

1. On remarque que la fonction triangle dérivée une fois est une fonction porte avancée et une fonction porte retardée, (la porte étant définie $\Pi(t) = [\![t]\!] \le 0.5]\!]$).

$$\frac{d}{dt}\mathbb{T}(t) = \Pi(t+0.5) - \Pi(t-0.5) \tag{7.4}$$

Dérivée deux fois, ce sont trois, l'un avancé, le deuxième au milieu et un retardé.

$$\frac{d^2}{dt^2}\mathbb{T}(t) = \delta(t-1) - 2\delta(t) + \delta(t+1) \tag{7.5}$$

En intégrant cette expression, on trouve alors que

$$\frac{d}{dt}\mathbb{T}(t) = \int_{-\infty}^{t} \left[\delta(\tau - 1) - 2\delta(\tau) + \delta(\tau + 1)\right] d\tau \tag{7.6}$$

2.

$$y(t) = RC \int_{-\infty}^{t} \left[\tilde{y}(\tau - 1) - 2\tilde{y}(\tau) + \tilde{y}(\tau + 1) \right] d\tau$$
 (7.7)

3. Le pseudo-code est donne par

Algorithm 1 générant la figure 7.1.

Rentrer les valeurs de R,L,C

Créer une échelle de temps t entre -2 et 4 avec 1000 points

Calculer $\tilde{y}(t)$ en utilisant sol_eq_diff avec les coefficients LC,RC et 1 et l'échelle de temps t.

Utiliser retarder pour calculer $\tilde{y}_2(t) = \tilde{y}(t+1) - 2\tilde{y}(t) + \tilde{y}(t-1)$

Utiliser integrer pour calculer $y(t) = RC \int_{-\infty}^{t} \tilde{y}_2(\tau) d\tau$

```
def y(R,L,C,t):
  """réponse à une fonction triangle utilisant une equation différentielle"""
  import seb
  y_tilde=seb.sol_eq_diff((L*C,R*C,1),t)
  assert all(y_tilde[t<0]==0)
  y_tilde2=R*C*(seb.retarder(t,y_tilde,-1)-2*y_tilde+seb.retarder(t,y_tilde,1))
  y=seb.integrer(t,y_tilde2)
  return y
R,C,L = 3,0.5,1
t=np.linspace(-2,4,10**3)
fig,ax = plt.subplots()
ax.plot(t,seb.fonction_T(t),label='x(t)')
ax.plot(t,y(R,L,C,t),label='y')
ax.set_xlabel('t')
ax.legend()
plt.tight_layout()
fig.savefig('./figures/fig_exSeb11_fig1.png')
fig.show()
```

Exercice 18 On considère l'équation différentielle associée à une relation entrée-sortie :

$$\frac{d^2}{dt^2}y(t) + 3\frac{d}{dt}y(t) + 2y(t) = \delta(t)$$
(7.8)

- 1. Écrivez le polynôme caractéristique.
- 2. Trouvez les solutions de ce polynôme.
- 3. En déduire la solution y(t).
- 4. Calculez $\hat{Y}(f)$ à partir de la solution trouvée
- 5. Comparez avec $\hat{Y}(f)$ calculée à partir de l'équation différentielle.

Solution

- 1. Le polynôme caractéristique est $p^2 + 3p + 1$
- 2. Ses racines sont p = -1 et p = -2.
- 3. Je pose $p_1 = -1$ et $p_2 = -2$, je propose comme solution $y(t) = c_1 e^{p_1 t} [t \ge 0] + c_2 e^{p_2 t} [t \ge 0]$. Après calcul, je trouve

$$\frac{d^2}{dt^2}y(t) + 3\frac{d}{dt}y(t) + 2y(t) = (p_1^2 + 3p_1 + 2)c_1e^{p_1t} + (p_2^2 + 3p_2 + 2)c_2e^{p_2t} + ((p_1 + 3)c_1 + (p_2 + 3)c_2)\delta(t) + (c_1 + c_2)\delta'(t)$$
(7.9)

Par identification, on obtient le système suivant

$$\begin{cases}
c_1 + c_2 = 0 \\
2c_1 + c_2 = 1
\end{cases}$$
(7.10)

La solution de ce système est $c_1=1$ et $c_2=-1$. D'où $y(t)=(e^{-t}-e^{-2t})[t\geq 0]$

4.

$$\widehat{Y}(f) = \text{TF}[(e^{-t} - e^{-2t})[t \ge 0]](f) = \frac{1}{1 + i2\pi f} - \frac{1}{2 + i2\pi f}$$
(7.11)

Après calcul, on trouve

$$\widehat{Y}(f) = \frac{1}{2 + 3(j2\pi f) + (j2\pi f)^2}$$
(7.12)

5. Il se trouve qu'en convertissant les dérivées en $i2\pi f$ dans l'équation (7.8), on trouve

$$(j2\pi f)^2 \hat{Y}(f) + 3(j2\pi f)\hat{Y}(f) + 2\hat{Y}(f) = 1$$
(7.13)

Ce qui s'avère être la même expression que précédemment.

Filtres et effet mémoire

Exercice 19 Dans cet exercice, on cherche à montrer par simulation que

$$\Pi(t) * \Pi(t) = \mathbb{T}(t) \tag{8.1}$$

 $où \Pi(t) = [|t| \le 0.5](t) \ et \ T(t) = (1 - |t|)[|t| \le 1](t).$

- 1. Montrez que $TF[\Pi(t) * \Pi(t)](f) = \operatorname{sinc}^2(f)$ où $\operatorname{sinc}(f) = \frac{\sin(\pi t)}{\pi t}$.
- 2. Proposez un algorithme utilisant la transformée de Fourier pour montrer l'équation (8.1).
- 3. Donnez un autre algorithme utilisant le produit de convolution pour démontrer aussi l'équation (8.1).

Solution

1. On sait d'après le cours que TF $[\Pi(t)](f) = \operatorname{sinc}(f)$.

$$TF \left[\Pi(t) * \Pi(t)\right](f) = TF \left[\Pi(t)\right](f)TF \left[\Pi(t)\right](f) = \operatorname{sinc}^{2}(f)$$
(8.2)

2. L'algorithme proposé utilise le fait qu'on sait d'après le cours que TF $[\Pi(t)](f) = \text{sinc}(f)$:

Créer une échelle de temps tx entre -2 et 2 avec 1000 points

Calculer x associé à tx en utilisant la fonction fonction_T de seb.py.

Créer une échelle de fréquence f entre -3 et 3.

Calculez la transformée de Fourier de x appelé X.

Calculez X_th défini par $\hat{X}_{\mathrm{th}}(f) = \mathrm{sinc}^2(f)$.

Comparez X avec X_th en calculant le maximum de la valeur absolue de la différence.

Algorithm 2: associé à l'exercice 19

3. Créer une échelle de temps tx entre -2 et 2 avec 1000 points

Calculer x associé à tx en utilisant la fonction fonction_P de seb.py.

Utilisez convolution de seb.py pour en déduire $x'(t) = \Pi(t) * \Pi(t)$ sur l'échelle tx.

Comparer en calculant le maximum de la valeur absolue de la différence entre x'(t) et $\mathbb{T}(t)$.

Algorithm 3: associé à l'exercice 19

tx=np.linspace(-2,2,1000)
x=seb.fonction_P(tx)
xp=seb.convolution(tx,x,tx,x,tx)

Exercice 20 Dans cet exercice, on cherche à montrer par <u>simulation</u> que

$$\Pi(t) * \Pi(t) = \mathbb{T}(t) \tag{8.3}$$

 $où \Pi(t) = [|t| \le 0.5](t) \text{ et } \mathbb{T}(t) = (1 - |t|)[|t| \le 1](t).$

- 1. On note $s(t) = \Pi(t) * \Pi(t)$, donnez une expression intégrale à s(t).
- 2. Montrez que pour t < -1, s(t) = 0.
- 3. Montrez que s(-t) = s(t) et que donc s(t) est un signal pair.
- 4. En déduire que pour t > 1, s(t) = 0.
- 5. Montrez que s(0) = 1.
- 6. Montrez que $s(t) = 1 t \text{ pour } t \in [0, 1]$.
- 7. Déduisez que $s(t) = \mathbb{T}(t)$.

Solution

1.

$$s(t) = \int_{-\infty}^{+\infty} \Pi(t - \tau)\Pi(\tau) d\tau \tag{8.4}$$

```
2. import seb
  plt,np = seb.debut()
  def s(t):
    tau = np.linspace(-20,20,10**4)
    x = seb.fonction_P(tau)*seb.fonction_P(t-tau)
    return seb.TF(tau,x,0)
  import numpy.random as nr
  K = 10**4
  for k in range(K):
    t = nr.uniform(-100,-1)
    assert np.abs(s(t))<0.01</pre>
```

3. On rajoute

```
K = 10**4
for k in range(K):
    t = nr.uniform(-100,100)
    assert np.abs(s(t)-s(-t))<0.01</pre>
```

- 4. On rajoute print(1-s(0))
- 5. On rajoute

```
K = 10**4
for k in range(K):
    t = nr.uniform(0,1)
    assert np.abs(s(t)-(1-t))<0.01</pre>
```

6. On rajoute

```
K = 10**4
for k in range(K):
   t = nr.uniform(-100,100)
   assert np.abs(s(t)-seb.fonction_T(t))<0.01</pre>
```

Exercice 21 On cherche à trouver la réponse impulsionnelle associée à

$$y(t) = \int_{t-3}^{t} x(\tau) d\tau \tag{8.5}$$

1. Montrez que l'équation (8.5) peut se mettre sous la forme

$$y(t) = \int_{-\infty}^{+\infty} \llbracket t - 3 \le \tau \le t \rrbracket(\tau) x(\tau) d\tau \tag{8.6}$$

Mathématiquement, voici la définition d'une intégrale de a à b de f(t)

$$\int_{a}^{b} f(t) dt = \int_{-\infty}^{+\infty} [a \le t \le b](t) f(t) dt$$
(8.7)

2. En s'appuyant sur l'équation (8.6), trouvez h(t) tel que

$$y(t) = \int_{-\infty}^{+\infty} h(t - \tau)x(\tau)d\tau \tag{8.8}$$

En déduire la réponse impulsionnelle h(t).

3. On suppose maintenant que $x(t) = \delta(t)$. Trouvez une nouvelle façon de déterminer la réponse impulsionnelle en considérant successivement t < 0, $t \in [0,1]$ et t > 1.

Exercice 22 On considère l'équation différentielle associée à une relation entrée-sortie :

$$\frac{d^2}{dt^2}y(t) + 3\frac{d}{dt}y(t) + 2y(t) = x(t)$$
(8.9)

- 1. Donnez la réponse fréquentielle.
- 2. Donnez un algorithme donnant la réponse impulsionnelle.
- 3. Écrivez le polynôme caractéristique.
- 4. Trouvez les solutions de ce polynôme.
- 5. En déduire la réponse impulsionnelle.

Soluton

1.

$$\widehat{H}(f) = \frac{1}{2 + 3(j2\pi f) + (j2\pi f)^2}$$
(8.10)

- 2. t = np.linspace(-2,5,200)
 h = seb.sol_eq_diff((1,3,2),t)
- 3. Le polynôme caractéristique est $p^2 + 3p + 1$
- 4. Ses racines sont p = -1 et p = -2.
- 5. Je pose $p_1 = -1$ et $p_2 = -2$, je propose comme solution $h(t) = c_1 e^{p_1 t} [t \ge 0] + c_2 e^{p_2 t} [t \ge 0]$. Après calcul, je trouve

$$\frac{d^2}{dt^2}h(t) + 3\frac{d}{dt}h(t) + 2h(t) = (p_1^2 + 3p_1 + 2)c_1e^{p_1t} + (p_2^2 + 3p_2 + 2)c_2e^{p_2t} + ((p_1 + 3)c_1 + (p_2 + 3)c_2)\delta(t) + (c_1 + c_2)\delta'(t)$$
(8.11)

Par identification, on obtient le système suivant

$$\begin{cases}
c_1 + c_2 = 0 \\
2c_1 + c_2 = 1
\end{cases}$$
(8.12)

La solution de ce système est $c_1 = 1$ et $c_2 = -1$. D'où $h(t) = (e^{-t} - e^{-2t})[t \ge 0]$

Description fréquentielle des filtres

Exercice 23 On considère un filtre de réponse impulsionnelle

$$h(t) = \cos(2\pi t)e^{-t} [t \ge 0](t)$$
(9.1)

Ce filtre est un passe-haut. Donnez un <u>algorithme</u> permettant de trouver les deux fréquences de coupure et sa bande passante.

Solution:

- Créer une échelle de fréquence f entre -5 et 5 avec 10^4 valeurs de fréquences
- Créer une échelle de temps t entre 0 et 100 avec 10^4 points.
- Calculer le module de la transformée de Fourier notée $|\hat{H}(f)|$ avec seb. TF et la réponse impulsionnelle
- Trouver la fréquence f_{\max} et la valeur du module en f_{\max} notée $|\widehat{H}_{\max}|$.
- Trouver la fréquence f_0 entre 0 et f_{\max} qui minimise la valeur absolue de la différence entre $\frac{|\widehat{H}_{\max}|}{\sqrt{2}}$ et $|\widehat{H}(f)|$
- Trouver la fréquence f_2 entre f_{\max} et $+\infty$ qui minimise la valeur absolue de la différence entre $\frac{|\widehat{H}_{\max}|}{\sqrt{2}}$ et $|\widehat{H}(f)|$
- La bande passante est $f_2 f_1$.

Exercice 24 On considère un filtre de réponse impulsionnelle

$$h(t) = \cos(2\pi t)e^{-|t|} \tag{9.2}$$

1. Montrer que la réponse fréquentielle de ce filtre est

$$\widehat{H}(f) = \frac{1}{1 + 4\pi^2 (f - 1)^2} + \frac{1}{1 + 4\pi^2 (f + 1)^2}$$
(9.3)

Pour cela vous pouvez utiliser le fait que $\cos(2\pi t) = \frac{1}{2}e^{-j2\pi t} + \frac{1}{2}e^{j2\pi t}$ et que quand z est un complexe,

$$\frac{1}{z} + \frac{1}{\overline{z}} = \frac{2\Re e(z)}{|z|^2}$$

- 2. Pourquoi en observant h(t), on pouvait savoir que $\hat{H}(f) = |\hat{H}(f)|$
- 3. En observant l'équation (9.3), montrez trouvez la valeur de f > 0 qui maximise $|\widehat{H}(f)|$.
- 4. On considère maintenant

$$|\widehat{H}_1(f)| = \frac{1}{1 + 16\pi^2} + \frac{1}{1 + 4\pi^2(f - 1)^2}$$
(9.4)

Montrez que $|\hat{H}_1(f)|$ est une bonne approximation de $|\hat{H}(f)|$ autour de f=1.

5. En utilisant cette nouvelle approximation, calculez les deux fréquences de coupures et la bande passante.

Exercice 25 On considère un filtre défini par

$$y(t) = \int_{t-3}^{t} x(\tau) d\tau = \int_{-\infty}^{+\infty} [t - 3 \le \tau \le t] (\tau) x(\tau) d\tau$$
 (9.5)

La troisième expression étant une façon de donner un sens à la deuxième expression.

1. Calculez par rapport à τ , la dérivée de

$$z(\tau) = [t - 3 \le \tau \le t](\tau) \tag{9.6}$$

t étant fixe dans ce calcul de dérivée.

2. Déduisez que

$$\frac{d}{dt}y(t) = x(t) - x(t-3) \tag{9.7}$$

- 3. Déduisez $\widehat{H}(f)$.
- 4. On suppose maintenant qu'on connaisse la réponse impulsionnelle de ce filtre h(t) défini par $[0 \le t \le 3](t)$, déduisez-en un autre de calcul de $\widehat{H}(f)$.

Exercice 26 On considère un filtre dont la réponse fréquentielle vérifie

$$\widehat{H}(f) = \frac{j2\pi f RC}{1 - 4\pi^2 f^2 + 4j RC\pi f}$$
(9.8)

- 1. Trouvez l'équation différentielle associée à la relation entrée-sortie ?
- 2. Trouvez l'équation différentielle associée à la réponse impulsionnelle ?
- 3. Proposez un algorithme permettant de caculer la réponse impulsionnelle.

Signaux périodiques

Exercice 27 On considère un signal non-périodique défini par $x(t) = e^{-t} [0 \le t < 1](t)$ et un signal périodique obtenu en périodisant x(t).

$$y(t) = \sum_{k=-\infty}^{+\infty} x(t-k) \tag{10.1}$$

- 1. Donnez l'algorithme permettant de tracer y(t) pour $t \in [-3,3]$.
- 2. Donnez l'algorithme permettant d'estimer M_y et P_y .
- 3. Donnez l'algorithme permettant de calculer la série de Fourier associée à y(t).
- 4. Donnez un algorithme permettant de vérifier expérimentalement que $P_y = \sum_{k=-\infty}^{+\infty} |\widehat{Y}_k|^2$ et que $M_y = \widehat{Y}_0$ non pas seulement pour ce signal spécifiquement mais pour des signaux construits à partir de x(t) et tirés aléatoirement.

Exercice 28 On considère un signal non-périodique défini par $x(t) = e^{-t} [0 \le t < 1](t)$ et un signal périodique obtenu en périodisant x(t).

$$y(t) = \sum_{k=-\infty}^{+\infty} x(t-k)$$
(10.2)

- 1. Représentez graphiquement x(t) et y(t) pour $t \in [-3,3]$.
- 2. Calculez A_x et en déduire M_y .
- 3. Calculez E_x et en déduire P_y .
- 4. Montrez que les coefficients de la série de Fourier sont

$$\widehat{Y}_k = \frac{1 - e^{-1}}{1 + j2\pi k} \tag{10.3}$$

5. En utilisant le fait que

$$\sum_{k=-\infty}^{+\infty} \frac{1}{1+4\pi^2 k^2} = \frac{1}{2} \frac{e+1}{e-1} \tag{10.4}$$

montrez qu'on retrouve le résultat précédent $P_y = \frac{1}{2} \frac{e^2 - 1}{e^2}$.

Solution:

Figure 10.1: Graphe de x(t) et y(t) correspondant à l'exercice 28.

1. La figure 10.1 montre x(t) en bleu et y(t) en orange.

2.

$$A_x = \int_{-\infty}^{+\infty} x(t) dt = \int_0^1 e^{-t} dt = \frac{e - 1}{e}$$
 (10.5)

Il se trouve que $M_x = \int_0^1 e^{-t} dt = A_x$.

3.

$$E_x = \int_{-\infty}^{+\infty} x^2(t) dt = \int_0^1 e^{-2t} dt = \frac{1}{2} \frac{e^2 - 1}{e^2}$$
 (10.6)

Il se trouve que $P_y = \int_0^1 e^{-2t} dt = E_x$.

4. On remarque que comme la période est de $T=1,\,e^{j2\pi k}=1.$

$$\widehat{Y}_k = \int_0^1 e^{-t} e^{-j2\pi k} dt = \frac{1 - e^{-1}}{1 + j2\pi k}$$
(10.7)

```
import seb
plt,np = seb.debut()
tx=np.linspace(-3,3,10**3)
x=np.exp(-tx)*(tx>=0)*(tx<=1)
ty=seb.periodiser_ech_t(tx,(0,1))
assert all(ty>=0)&all(ty<=1)
y=np.exp(-ty)
plt.close('all')
fig,ax=plt.subplots()
ax.plot(tx,x,label='x(t)')
ax.plot(tx,y,label='y(t)')
ax.set_xlabel('t')
ax.legend()
plt.tight_layout()
fig.savefig('../figures/fig_exSEB22_fig1a.png')
fig.show()
ty2=tx[(tx>=0)*(tx<1)]
My=seb.TF(ty2,np.exp(-ty2),0)
```

```
k=np.arange(-10**3,10**3)
e=np.exp(1)
print(np.sum(1/(1+4*np.pi**2*k**2))-(e+1)/(e-1))
""" 2.0.0.
alors que numpy.__version__ 0.24.2
```

Exercice 29 On considère un signal $x(t) = [0 \le t \le 2](t)$. On définit deux autres signaux à partir de x(t).

$$y(t) = \sum_{k=-\infty}^{+\infty} x(t-3k) \ et \ z(t) = \sum_{k=-\infty}^{+\infty} x(t-4k)$$
 (10.8)

- 1. x(t), y(t), z(t) sont-ils périodiques et si oui, quelles sont leurs périodes ?
- 2. Calculez M_y et P_y la moyenne et la puissance de y(t).
- 3. Calculez M_z et P_z la moyenne et la puissance de z(t).

Exercice 30 On considère un signal $x(t) = [0 \le t \le 2](t)$ dont la transformée de Fourier est notée \hat{X} . On définit un autre signal périodiques à partir de x(t).

$$y(t) = \sum_{k = -\infty}^{+\infty} x(t - 3k)$$
 (10.9)

Sa transformée de Fourier est notée \hat{Y} . On utilise dans les questions suivantes que

$$TF[[-0.5 \le t \le 0.5](t)](f) = \frac{\sin(\pi f)}{\pi f}$$
(10.10)

- 1. Calculez \hat{X} .
- 2. Calculez \hat{Y} .

Exercice 31 Le signal étudié ici est $x(t) = t[t \in [0,1]] + (2-t)[t \in [1,2]]$ On considère y(t) obtenu en périodisant le signal x(t) pour $t \in [0,3]$.

- 1. x(t) est-il un signal périodique ou non-périodique.
- 2. y(t) est-il un signal périodique ou non-périodique.
- 3. Dessiner x(t) pour $t \in [-1, 5]$ sur un graphe.
- 4. Dessiner y(t) pour $t \in [-1, 5]$ sur le même graphe.
- 5. Calculez x(0), x(-2), E_x et P_x .
- 6. Calculez y(0), y(-2), E_y et P_y .
- 7. Calculez \widehat{X}_0 et \widehat{Y}_0 .
- 8. Calculez \hat{X}_0 et \hat{Y}_0 .
- 9. Dessiner sur le graphe $y_1(t) = y(\frac{t}{2})$
- 10. Dessiner sur le graphe $y_2(t) = y(t-1)$
- 11. Dessiner sur le graphe $y_3(t) = \frac{1}{2}y(t)$
- 12. Dessiner sur le graphe $y_4(t) = y(t) y(t-2)$

```
Simulation générant le graphe
```

```
t=linspace(-1,5,1e3);
x=2*cos(pi*t+0.5*pi);
figure(1);
plot(t,x,'b-','linewidth',2);
set(gca,'fontsize',20);
saveas(1,'C:\A\SIMU\SEB\ex\exSEB3_fig1.png');
Solutions
1.
```

Filtres agissant sur des signaux périodiques

Exercice 32 On considère un signal défini par

$$x(t) = \Pi(t) - \frac{1}{2}\Pi\left(\frac{t}{3}\right) \tag{11.1}$$

On note y(t) le signal périodisé en répétant l'intervalle $\left[-\frac{3}{2},\frac{3}{2}\right]$. On considère le filtre défini par l'équation différentielle

$$\frac{d^2}{dt^2}y(t) + \frac{d}{dt}y(t) + y(t) = x(t)$$
(11.2)

- 1. Représentez graphiquement y(t) pour $t \in [-3, 3]$.
- 2. Montrez que $\widehat{X}(f) = \operatorname{sinc}(f) \frac{3}{2}\operatorname{sinc}(f)$.
- 3. En déduire que $\hat{Y}_k = \frac{1}{3}\operatorname{sinc}(\frac{k}{3}) \frac{1}{2}\delta_k$, δ_k étant la suite nulle sauf en k = 0 ou elle vaut 1.
- 4. Calculez la réponse fréquentielle du filtre
- 5. En déduire la \hat{Y}_k .
- 6. Proposez une approximation de y(t).

Figure 11.1: Courbe x(t) et y(t) pour l'exercice 11.1.

Exercice 33 La figure 11.1 représente le signal x(t). On considère le filtre $y(t) = \int_{t-0.5}^{t} x(\tau) d\tau$ de réponse fréquentielle $\hat{H}(f) = \frac{\sin(\pi f/2)}{\pi f} e^{-j\pi f/2}$.

- 1. Donnez une définition de x(t) avec des équations.
- $2. \ \ Calculez \ les \ coefficients \ de \ la \ s\'erie \ de \ Fourier \ \widehat{X}_{-1}, \widehat{X}_{0}, \widehat{X}_{1}. \ \ \grave{A} \ quelle \ fr\'equences \ ces \ coefficients \ correspondent.$
- 3. Expliquez une approximation permettant de calculer y(t) en utilisant $\widehat{X}_{-1}, \widehat{X}_0, \widehat{X}_1$.

- 4. Calculez y(t) avec cette approximation.
- 5. Donnez un algorithme permettant de calculer y(t) sans utiliser cette approximation.

Simulation

```
plt,np = seb.debut()
t = np.linspace(-2.1, 4.1, 10**3)
tp = seb.periodiser_ech_t(t,1)
x = (0.1 \le tp) * (tp < 0.9)
plt.close('all')
fig,ax = plt.subplots()
ax.plot(t,x)
ax.set_xlabel('t')
ax.set_ylabel('x(t)')
plt.tight_layout()
fig.savefig('./figures/fig_exSEB42a.png')
fig.show()
k = np.arange(-10,10)
fk, Xk = seb.coef_serie_Fourier(tp,x,1,k)
Hk = np.sinc(fk/2)*np.exp(-1j*np.pi*fk/2)
Yk = Hk*Xk
y = np.zeros(len(t),dtype=complex)
for k_ind in range(len(k)):
  k_val = k[k_ind]
  y += Yk[k_ind]*np.exp(1j*2*np.pi*k_val*t)
y = np.real(y)
fig,ax = plt.subplots()
ax.plot(t,y)
ax.set_xlabel('t')
ax.set_ylabel('y(t)')
plt.tight_layout()
fig.savefig('./figures/fig_exSEB42b.png')
fig.show()
```

Échantillonnage d'un signal non-périodique

Exercice 34 On considère le signal $x(t) = e^{-t}[t \ge 0](t)$ et on souhaite illustrer la question du repliement spectral.

- 1. Donnez un algorithme permettant de simuler y_n le signal x(t) échantillonné à la fréquence f_e .
- 2. Donnez un algorithme permettant de simuler $\hat{Y}(f)$ la transformée de Fourier de y_n .
- 3. Donnez un algorithme permettant de simuler $\widehat{Z}(f)$, défini par

$$\widehat{Z}(f) = \left| \frac{1}{f_e} \widehat{Y}(f) - \widehat{X}(f) - \widehat{X}(f - f_e) - \widehat{X}(f + f_e) \right|$$
(12.1)

x(t) présente une discontinuité en t=0, aussi il est nécessaire pour la valeur de x(t) en t=0 d'utiliser

$$\frac{1}{2} \lim_{t \to 0^{-}} x(t) + \frac{1}{2} \lim_{t \to 0^{+}} x(t) = \frac{1}{2}$$
 (12.2)

Exercice 35 On considère le signal $x(t) = e^{-t} [t \ge 0](t)$ et on souhaite calculer la transformée de Fourier du signal échantillonné. On considère f_e une fréquence d'échantillonnage. On note y_n le signal x(t) échantillonné à la fréquence f_e .

- 1. Montrez que $y_n = e^{-nT_e} \frac{1}{2}\delta_n$
- 2. Montrez que

$$\widehat{Y}(f) = -0.5 + \frac{1}{1 - e^{-T_e - j2\pi f T_e}}$$
(12.3)

Exercice 36 Le signal étudié ici est $x(t) = t[t \in [0,1[] + (2-t)[t \in [1,2[]]]]$ On considère y(t) obtenu en périodisant le signal x(t) pour $t \in [0,3]$.

- 1. x(t) est-il un signal périodique ou non-périodique.
- 2. y(t) est-il un signal périodique ou non-périodique.
- 3. Dessiner x(t) pour $t \in [-1, 5]$ sur un graphe.
- 4. Dessiner y(t) pour $t \in [-1, 5]$ sur le même graphe.
- 5. Calculez x(0), x(-2), E_x et P_x .
- 6. Calculez y(0), y(-2), E_u et P_u .
- 7. Calculez \hat{X}_0 et \hat{Y}_0 .
- 8. Calculez \hat{X}_0 et \hat{Y}_0 .
- 9. Dessiner sur le graphe $y_1(t) = y(\frac{t}{2})$

```
10. Dessiner sur le graphe y_2(t) = y(t-1)

11. Dessiner sur le graphe y_3(t) = \frac{1}{2}y(t)

12. Dessiner sur le graphe y_4(t) = y(t) - y(t-2)

Simulation générant le graphe

t=linspace(-1,5,1e3);

x=2*cos(pi*t+0.5*pi);

figure(1);

plot(t,x,'b-','linewidth',2);

set(gca,'fontsize',20);

saveas(1,'C:\A\SIMU\SEB\ex\exSEB3_fig1.png');
```

Solutions

1.

Modélisation stochastique du bruit

Exercice 37 On considère $\overset{r}{X}_1$ et $\overset{r}{X}_2$ deux variables aléatoires gaussiennes indépendantes de moyenne μ et σ . On définit

$$\begin{cases} \vec{X} = \vec{X}_1 + \vec{X}_2 \\ \vec{Y} = \vec{X}_1 - \vec{X}_2 \end{cases}$$
 (13.1)

- 1. Calculez $\mu_X, \sigma_X, \mu_Y, \sigma_Y$ les moyennes statistiques et les racine carrés des variance de $\overset{r}{X}$ et $\overset{r}{Y}$.
- 2. Montrez que $\overset{r}{X}$ et $\overset{r}{Y}$ sont indépendantes au second ordre
- 3. Donnez un algorithme permettant de tester que $\overset{r}{X}$ et $\overset{r}{Y}$ sont en fait indépendantes pas seulement au second ordre.

Solution:

1. Pour les espérances de X et Y, on trouve

$$\begin{cases} \mu_X = \mathbf{E}[\bar{X}] = \mathbf{E}[\bar{X}_1] + \mathbf{E}[\bar{X}_2] = 2\mu \\ \mu_Y = \mathbf{E}[\bar{Y}] = \mathbf{E}[\bar{X}_1] - \mathbf{E}[\bar{X}_2] = 0 \end{cases}$$
(13.2)

Une première solution pour les variances de $\overset{r}{X}$ et $\overset{r}{Y}$.

$$\begin{cases} \sigma_X^2 = \text{Var}[\bar{X}] = \text{Var}[\bar{X}_1] + \text{Var}[\bar{X}_2] = 2\sigma^2 \\ \sigma_Y^2 = \text{Var}[\bar{X}] = \text{Var}[\bar{X}_1] + \text{Var}[-\bar{X}_2] = 2\sigma^2 \end{cases}$$
(13.3)

Donc
$$\sqrt{\operatorname{Var}\left[\stackrel{r}{X}\right]} = \sqrt{2}\sigma.$$

2. Une deuxième solution est illustrée pour $\overset{r}{X}$.

$$\mathrm{E}[\overset{r}{X}^{2}] = \mathrm{E}\left[\overset{r}{X}_{1}^{2}\right] + 2\mathrm{E}\left[\overset{r}{X}_{1}\overset{r}{X}_{2}\right] + \mathrm{E}\left[\overset{r}{X}_{2}^{2}\right] = (\mu^{2} + \sigma^{2}) + (2\mu^{2}) + (\mu^{2} + \sigma^{2}) = (2\mu)^{2} + 2\sigma^{2} = \mathrm{E}[\overset{r}{X}]^{2} + 2\sigma^{2}(13.4)$$

$$\operatorname{Donc}\,\sqrt{\operatorname{Var}\left[\overset{r}{X}\right]}=\sqrt{\operatorname{E}\left[\overset{r}{X}^2\right]-\operatorname{E}\left[\overset{r}{X}\right]^2}=\sqrt{2}\sigma.$$

import numpy.random as nr

K = 10**2

for k in range(K):

for $k \in \{0...K - 1\}$ pour $K = 10^2$ do

Choisir aléatoirement des valeurs mu, sigma suivant une loi uniforme entre 0 et 3.

Choisir aléatoirement des valeurs x0, y0 en tirant aléatoirement une valeur pour X_1 et X_2 .

Tirer aléatoirement $N = 10^7$ valeurs pour X_1 et X_2 .

Estimer pxy= $P\left(\overset{r}{X} \leq x0 \text{ et } \overset{r}{Y} \leq y0\right)$.

Estimer $px = P\left(\overset{r}{X} \le x0\right)$ et $py = P\left(\overset{r}{Y} \le y0\right)$. Vérifier que $|pxpy - pxy| < 10^{-3}$.

end for

```
mu, sigma = nr.uniform(0,3), nr.uniform(0,3)
         = nr.normal(mu, sigma), nr.normal(mu, sigma)
x0,y0
         = x1+x2, x1-x2
         = 10**7
x1,x2
         = nr.normal(mu,sigma,N), nr.normal(mu,sigma,N)
         = x1+x2, x1-x2
x,y
         = np.mean((x<=x0)&(y<=y0))
рху
         = np.mean(x <= x0), np.mean(y <= y0)
px,py
assert np.abs(px*py-pxy) < 1e-3
```

Exercice 38 On considère un bruit blanc gaussien B(t) de moyenne μ et d'écart-type σ que l'on observe entre t=0et t=1. On l'échantillonne à $f_e=10 \mathrm{Hz}$ et l'on note les variables aléatoires ainsi obtenues $\overset{r}{X}_n$. C'est le même bruit blanc que l'on échantillonne à $f_e^y = 20$ Hz et l'on note les variables aléatoires obtenues $\overset{r}{Y}_n$.

- 1. Combien y a-t-il de variables aléatoires $\overset{r}{X}_n$ et $\overset{r}{Y}_n$. Lesquelles sont identiques ?
- 2. On définit $\stackrel{r}{Z}_n$ de la façon suivante

$$\begin{cases}
\vec{Z}_{0} = \vec{Y}_{0} \\
\vec{Z}_{1} = \vec{Y}_{1} + \vec{Y}_{2} \\
\vec{Z}_{2} = \vec{Y}_{3} + \vec{Y}_{4} \\
\vdots
\end{cases} (13.5)$$

Combien y a-t-il de variables aléatoires $\stackrel{r}{Z}_n$?

- 3. Calculez l'espérance et la variance de Z_n .
- 4. Calculez la corrélation entre Z_n et X_n .
- 5. Calculez la corrélation entre Z_n et Z_{n-1} .
- 6. Donnez l'algorithme permettant de répondre par simulation à ces trois dernières questions.

Exercice 39 On considère une variable aléatoire uniforme sur $[0,2\pi]$, notée $\overset{r}{T}$. On note $\overset{r}{X}$ et $\overset{r}{Y}$ deux variables aléatoires construites à partir de T.

$$\overset{r}{X} = \cos(\overset{r}{T}) \ et \ \overset{r}{Y} = \sin(\overset{r}{T}) \tag{13.6}$$

1. Donnez un algorithme permettant d'estimer la corrélation entre $\overset{\circ}{X}$ et $\overset{\circ}{Y}$ et aussi de vérifier si elles sont indépendantes.

2. Montrez que

$$E\left[\stackrel{r}{X}\stackrel{r}{Y}\right] = \frac{1}{2\pi} \int_0^{2\pi} \cos(t)\sin(t) dt \tag{13.7}$$

En déduire que $\overset{r}{X}$ et $\overset{r}{Y}$ ne sont pas corrélées.

3. Montrez que

$$\begin{cases} P(X \le -\frac{\sqrt{3}}{2}) = \frac{1}{6} \\ P(Y \le -\frac{\sqrt{3}}{2}) = \frac{1}{6} \\ P(X \le -\frac{\sqrt{3}}{2} \ et \ Y \le -\frac{\sqrt{3}}{2}) = 0 \end{cases}$$
 (13.8)

La dernière affirmation pourrait se montrer en utilisant le fait $X^2 + Y^2 = 1$. En déduire que X^r et Y^r ne sont pas indépendantes.

Filtrage des processus aléatoires

Exercice 40 On considère un signal $x(t) = e^{-t} [\![t \ge 0]\!](t)$ et une troncature sur [0,T] définie par $x_T(t) = e^{-t} [\![0 \le t \le T]\!](t)$. On note $R_x(t)$ et $R_{x_T}(t)$ leurs autocorrélations.

- 1. Montrez que $R_x(\tau) = e^{\tau} \int_{\max(0,\tau)}^{+\infty} e^{-2t} dt$
- 2. Montrez que $R_x(t) = 0.5e^{-|t|}$
- 3. Montrez que $R_{x_T}(0) = 0.5(1 e^{-2T})$.
- 4. Montrez que sa densité spectrale $S_x(f) = \frac{1}{1+4\pi^2 f^2}$.
- 5. Donnez le pseudo-programme permettant de simuler $R_x(t)$ et $S_x(f)$.

Autocorrélation et densité spectrale

Densité de probabilité et filtrage

16.1 Exercices

Figure 16.1: Graphe de x(t) et de sa tangente pour l'exercice 41.

Exercice 41 Le signal montré sur la figure 16.1 est noté x(t). Sa transformée de Fourier est notée \widehat{X} . Ce signal est de la forme $x(t) = ae^{-bt}\mathbf{1}(t \ge 0)$.

- 1. Justifiez la valeur de a avec la courbe exponentielle sur la figure 16.1.
- 2. Justifiez la valeur de b avec la ligne tangente à la courbe exponentielle sur la figure 16.1.
- 3. Donnez une expression de x(t) en fonction de $[\![]\!]$.
- 4. Calculez x(0), x(1), E_x .
- 5. Calculez $\widehat{X}(0)$ et $\widehat{X}(1)$.
- 6. Construire $y_1(t) = x\left(\frac{t}{2}\right)$
- 7. Construire $y_1(t) = x(t-1)$
- 8. Construire $y_1(t) = \frac{1}{2}x(t)$
- 9. Construire $y_1(t) = x(t) x(t-2)$

Simulation générant le graphe

```
t=linspace(-1,5,1e3);
x=2*exp(-t).*(t>=0);
t_tg=t((t>=0)&(t<=1));
x_tg=2-2*t_tg;
figure(1);
plot(t,x,'b-','linewidth',2,t_tg,x_tg,'r:','linewidth',2);
set(gca,'fontsize',20);
saveas(1,'C:\A\SIMU\SEB\ex\exSEB2_fig1.png');
Solutions
  1.
Exercice 42 Le signal étudié ici est x(t) = t[t \in [0,1]] + (2-t)[t \in [1,2]] On considère y(t) obtenu en périodisant
le signal x(t) pour t \in [0,3].
   1. x(t) est-il un signal périodique ou non-périodique.
  2. y(t) est-il un signal périodique ou non-périodique.
  3. Dessiner x(t) pour t \in [-1, 5] sur un graphe.
  4. Dessiner y(t) pour t \in [-1, 5] sur le même graphe.
  5. Calculez x(0), x(-2), E_x et P_x.
   6. Calculez y(0), y(-2), E_y et P_y.
   7. Calculez \hat{X}_0 et \hat{Y}_0.
  8. Calculez \hat{X}_0 et \hat{Y}_0.
  9. Dessiner sur le graphe y_1(t) = y(\frac{t}{2})
  10. Dessiner sur le graphe y_2(t) = y(t-1)
 11. Dessiner sur le graphe y_3(t) = \frac{1}{2}y(t)
 12. Dessiner sur le graphe y_4(t) = y(t) - y(t-2)
```

Simulation générant le graphe

```
t=linspace(-1,5,1e3);
x=2*cos(pi*t+0.5*pi);
figure(1);
plot(t,x,'b-','linewidth',2);
set(gca,'fontsize',20);
saveas(1, 'C:\A\SIMU\SEB\ex\exSEB3_fig1.png');
```

Solutions 1.

Exercice 43 Le signal montré sur la figure 16.2 est noté x(t). Sa transformée de Fourier est notée \hat{X} . Ce signal est de la forme $x(t) = a\cos(bt + c)$.

- 1. x(t) est-il un signal temps continu, temps discret, périodique, non-périodique, déterministe ou aléatoire.
- 2. Justifiez la valeur de a en observant la valeur maximale et minimale sur la figure 16.2.
- 3. Justifiez la valeur de b en mesurant la période sur la figure 16.2.

Figure 16.2: Graphe de x(t) relatif à l'exercice 43.

- 4. Justifiez la valeur de c en interprétant cette courbe comme en retard (ou en avance) par rapport à $a\cos(bt)$ sur la figure 16.1.
- 5. Calculez x(0), x(1), P_x .
- 6. Calculez \hat{X}_0 et \hat{X}_1 .
- 7. Dessiner sur le graphe $y_1(t) = x(\frac{t}{2})$
- 8. Dessiner sur le graphe $y_1(t) = x(t-1)$
- 9. Dessiner sur le graphe $y_1(t) = \frac{1}{2}x(t)$
- 10. Dessiner sur le graphe $y_1(t) = x(t) x(t-2)$

Simulation générant le graphe

```
t=linspace(-1,5,1e3);
x=2*cos(pi*t+pi/2);
figure(1);
plot(t,x,'b-','linewidth',2);
grid;
set(gca,'fontsize',20);
saveas(1,'C:\A\SIMU\SEB\ex\exSEB4_fig1.png');
```

Solutions

- 1.
- $2. \ a = 2$
- 3. $b = \pi$
- 4. $c = \frac{\pi}{2}$.

Appendix A

Supplément pour faire les pseudo-programmes

A.1 Outils

Python:

Lignes à mettre en début de séance

```
import sys
sys.path.append('rep_prg')
import os
os.chdir('rep_tra')
import seb
plt,np=seb.debut()
```

seb.debut

La fonction debut renvoie un tuple (plt,np).

- plt sert pour faire des graphes et ses paramètres sont modifiés par debut de façon à rendre les graphes plus visibles.
- np correspond à numpy, c'est utile pour faire des calculs.

A.1.1 Commandes générales

- help suivi de parenthèses avec le nom de la fonction. Le contenu affiché est celui entre trois guillemets dans une fonction.
- assert provoque une erreur si ce qui suit n'est pas vrai.
- len suivi de parenthèses et le nom d'un vecteur ligne ou colonne, cela donne sa longueur.
- 1j est le complexe imaginaire j.
- round qui fournit ¹ un entier à partir d'un nombre réel.
- def et return pour définir une fonction.
- # pour mettre une ligne en commentaire.
- type pour connaître le type d'une valeur ou d'une variable.
- min et max

¹La fonction round de numpy fournit un entier de type float.

Contenu susceptible d'être utilisé dans np pour numpy

- linspace permet de définir un ensemble de valeur régulièrement réparties en précisant la valeur initiale, la valeur finale et le nombre de ces valeurs. La dernière valeur est atteinte. Cette fonction n'entraîne pas en général que les valeurs soient des multiples d'un pas donné ce qui est contradictoire avec ce qui est contradictoire avec ce qu'on attend d'une échelle en temps ou en fréquence en traitement du signal. seb.linspace assure cette propriété.
- arange permet de définir un ensemble de valeur régulièrement réparties en précisant la valeur initiale, la valeur finale et l'espacement entre ces valeurs. La dernière valeur n'est jamais atteinte. Comme linspace, cette fonction n'est pas non plus conforme avec ce qu'on attend d'une échelle en temps ou en fréquence en traitement du signal. seb.arange assure cette propriété.
- sqrt pour racine carré
- exp pour exponentielle
- array suivi d'une liste entre crochets de valeurs espacées de virgules, pour définir un vecteur de type numpy.ndarray. On peut l'utiliser pour définir une matrice en utilisant deux séries de crochets.
- real suivi d'un complexe entre parenthèses pour prendre la partie réelle.
- abs suivi d'un complexe ou d'un réel entre parenthèses pour prendre le module ou la valeur absolue.
- sinc est la fonction sinus cardinal définie par $\frac{\sin(\pi t)}{\pi t}$
- concatenate
- zeros, ones, zeros_like et ones_like. Pour les deux premières le premier paramètre est un entier ou un tuple indiquant soit la taille du vecteur soit le nombre de lignes et de colonnes de la matrice à définir. Les deux dernières permettent de créer un vecteur ou une matrice ayant les mêmes dimension qu'un certain objet qu'on transmet en paramètre. Les valeurs de l'objet créés sont nulles si on utilise zeros ou zeros_like et 1 si on utilise ones ou ones_like.

Contenu susceptible d'être utilisé dans plt récupéré dans debut

- subplots
- plot
- set_xlabel et set_ylabel
- set_legend
- tight_layout
- savefig
- show

Contenu susceptible d'être utilisé dans seb

- Les fonctions pour définir un signal
 - fonction_H est la fonction échelon $[t \ge 0](t)$.
 - function P est la fonction porte sur [-0.5, 0.5].
 - fonction_T est la fonction triangle sur [-1, 1].
 - fonction_C est la demi-fonction triangle croissante sur [-0.5, 0.5].
 - fonction_D est la demi-fonction triangle décroissante sur [-0.5, 0.5].

- gaussian(x,mu,sigma) renvoie la fonction associe a densité de probabilité de la Gaussienne de moyenne mu et d'écart-type sigma.
- Les fonctions pour calculer une transformée de Fourier
 - TF et TFI pour transformée de Fourier et transformée de Fourier inverse
 - TFTD(t,x,f) calcule la TFTD du signal temps discret défini par t,x en les fréquences f.
 - TFTDI(f,X,t) calcule la TFTD inverse du spectre complexe X définis pour les fréquences f. Le résultat est un signal temps discret pour les instants contenus dans t.
 - TFD(t,s,T,bool) calcule la TFD, T indique soit la période soit l'intervalle utilise pour décrire le signal periodique t,s défini l'échelle de temps et le signal. bool vaut True si on veut une représentation centrée et False si on n'en veut pas . f est l'échelle de fréquence retournée. S est l'ensemble des coefficients associés f,S=seb.TFD(t,s,T,bool)
 - coef_serie_Fourier(t,x,T,k) calcule les coefficients de la série de Fourier X_k T est soit la periode du signal soit un tuple indiquant un intervalle sur lequel est defini x(t). Si T est une valeur alors l'intervalle considere est [0,T] k est la liste des indices des fréquences calculées. Le programme retourne un tuple avec d'abord les fréquences et d'autre part les coefficients associés.
- Les fonctions relatives aux échelles
 - synchroniser(t) change l'échelle de temps de façon que le vecteur soit un multiple de la periode d'échantillonnage.
 - linspace(start,stop,num,dtype) et arange(start,stop,step,dtype) similaires à celles définies dans numpy mais qui assurent que les échelles sont bien constituées de multiples d'un certain pas et ainsi conforme au traitement du signal.
- Les fonctions pour transformer un signal
 - retarder(t,x,tau) retarde le signal x(t) défini par t et x de tau lorsque tau est positif et avance de -tau si tau est négatif.
 - periodiser_ech_t(t,T) produit un vecteur de meme taille que t mais dont les valeurs sont entre 0 et T de facon a définir un signal periodique de période T. Si T est un intervalle alors c'est le motif entre T[0] et T[1] qui est répété.
- Les fonctions associées au produit de convolution
 - convolution(tx,x,th,h,ty) Le programme fournit le produit de convolution de x par h aux instants demandes par ty tx, th et ty sont les échelles de temps de x h et y x et tx doivent être de même taille th et h doivent être de même taille tx doit contenir au moins deux composantes x et h sont supposés d'énergie finie.
 - correlation(tx,x,ty,y,tz) calcule l'intercorrelation entre tx,x et ty,y en tz
- Les fonctions associées aux équations différentielles et au fait de dériver et d'intégrer.
 - sol_eq_diff(coef,t) coef sont les coefficients devant les termes de l'équation différentielle définis comme un tuple t est l'ensemble des instants dont a cherche a calculer y(t) t est un vecteur avec des points régulièrement espacés
 - deriver(t,x) dérive le signal défini par t,x en retournant la dérivée en tous les instants de t.
 - integrer(t,x) intègre le signal défini par t,x en retournant l'intégrale $\int_{-\infty}^{t} x(t) dt$ en tous les instants de t.
- Des fonctions pour trouver une valeur particulière dans un vecteur.
 - find_nearest(array, value) retourne la valeur de array la plus proche de value.
 - where_nearest(array, value) retourne l'indice dans array correspondant à la valeur la plus proche de value.

- erreur_quad(fun,intervalle) est une fonction pour calculer l'erreur quadratique. Cette fonction utilise une variable aléatoire sur un support uniforme pour calculer une erreur quadratique. intervalle doit indique avec un tuple contenant deux valeurs. fun est une fonction à transmettre qui estime l'erreur pour une valeur particulière.
- Des fonctions pour aider à gérer les types en Python. Python distingue une liste contenant une unique valeur de la valeur elle-même et d'un tableau de type numpy contenant cette valeur.
 - val(x) vérifie si x est un numpy array contenant une seule valeur, si c'est une seule valeur ou autre chose.
 Si c'est autre chose, cette fonction déclenche une erreur. Sinon elle renvoie cette unique valeur.
 - vect(x) vérifie si x est un numpy array contenant une ou plusieurs valeurs, une seule valeur ou autre chose Si c'est autre chose, elle prend le premier élément et vérifie que celui-ci est bien un numpy array et elle renvoie ce vecteur. Sinon une erreur est déclenchée.
 - milieux(b_val) renvoie un vecteur ayant une composante en moins que b_val et correspondant aux milieux des termes consécutifs de b_val. Cette fonction suppose que b_val est régulièrement réparti.
- Les fonctions pour enregistrer des données et pour les récupérer à nouveau.
 - save(nom_fichier,list_nom_var,list_var) sauvegarde sous format binaire la liste des variables indiquées dans list_var le fichier s'appelle nom_fichier les noms des variables doivent etre mises avec des apostrophes autour.
 - load(nom_fichier) lit le fichier binaire et renvoie un dictionnaire dont les clés sont les noms des variables enregistrés.

Contenu susceptible d'être utilisé dans sympy

- Symbol
- solve
- simplify
- matrices.Matrix