Package 'ConvertPar'

October 12, 2022

conv.ann	Estimating IRT Item Parameters with Small Samples via Artificia Neural Networks	ıl	
Index		(
conv.rt		1 3 4	
R topics docume	ented:		
Date/Publication 2022-	-03-14 19:20:05 UTC		
Repository CRAN			
Huseyin Yıldız [aı	/ildiz [aut, cre] (<https: 0000-0003-4374-4379="" orcid.org="">), ut] (<https: 0000-0003-2387-263x="" orcid.org="">), asakal [aut] (<https: 0000-0002-3580-5568="" orcid.org="">)</https:></https:></https:>		
NeedsCompilation no			
Encoding UTF-8			
License GPL (>= 3)			
Imports neuralnet, mirt	, RWeka, stats		
	stimate IRT item parameters (2 PL) using CTT-cs from small samples via artificial neural networks and regression trees.		
Maintainer Eda Akdog	aintainer Eda Akdogdu Yildiz <akdogdueda@gmail.com></akdogdueda@gmail.com>		
Version 0.1			
Title Estimating IRT Pa	itle Estimating IRT Parameters via Machine Learning Algorithms		
Type Package			

Description

This function can be used to estimate IRT item parameters (2 PL) using CTT-based item statistics from small samples via artificial neural networks.

conv.ann

Usage

```
conv.ann(small.data, train.data, model="2PL",layers=1,learningrate=NULL,treshold=0.01)
```

Arguments

small.data matrix or data frame: contains small sample dichotomous participant response

matrix.

train.data matrix or data frame: contains a dichotomous response matrix to use training

of ANN model. This matrix should be contain as much as possible participants for more accurate estimations. The "gen.data" function can be used to obtain a

simulative response matrix.

model string: option for desired IRT model. 'Rasch' or '2PL' ('2PL' is default)

layers vector: a vector of integers specifying the number of hidden neurons (vertices)

in each layer.

learningrate numeric: a numeric value specifying the learning rate.

treshold numeric: a numeric value specifying the threshold for the partial derivatives of

the error function as stopping criteria.

Value

This function returns a list including following:

• a matrix: Predicted IRT Parameters

• a matrix: Item Parameters of Training Data

Examples

```
## Genarating item and ability parameters (1000 participants, 100 items)

a <- rlnorm(100,0,0.3)
b <- rnorm(100,0,1)
responses <- matrix(NA, nrow=1000, ncol=100)
theta <- rnorm(1000, 0,1)

### Defining Response Function (2 PL)

pij <- function(a,b,theta) {
    1/(1+exp(-1*a*(theta-b)))
}

### Creating Response Matrix and column names.

for( i in 1:1000 ) {
    for( j in 1:100 ) {
        responses[i,j]<-ifelse(pij(a=a[j], b=b[j], theta[i]) < runif(1) , 0 ,1)
    }
}</pre>
```

conv.rt 3

```
names<-paste("i",1:ncol(responses), sep = "_")
colnames(responses)<-names
train<-as.data.frame(responses)
small.index<-sample(1:nrow(train),100,replace=FALSE)
small<-train[small.index,]
### Conducting Function
conv.ann(small.data=small, train.data=train, model="2PL",layers=c(2,2),learningrate=NULL,treshold=0.01)</pre>
```

conv.rt

Estimating IRT Item Parameters with Small Samples via Regression Trees

Description

This function can be used to estimate IRT item parameters (2 PL) using CTT-based item statistics from small samples via Regression Trees.

Usage

```
conv.rt(small.data, train.data, model="2PL",pruned=TRUE,min.inst=10)
```

Arguments

small.data	matrix or data frame: contains small sample dichotomous participant response matrix.
train.data	matrix or data frame: contains a dichotomous response matrix to use training of ANN model. This matrix should be contain as much as possible participants for more accurate estimations. The "gen.data" function can be used to obtain a simulative response matrix.

model string: option for desired IRT model. 'Rasch' or '2PL' ('2PL' is default)

pruned a logical: Use unpruned tree/rules. Default is TRUE min.inst numeric: Minimum number of items per leaf (Default 10).

Value

This function returns a list including following:

- a matrix: Predicted IRT Parameters
- a matrix: Item Parameters of Training Data
- a list: Tree Models and Regression Equations

gen.data

Examples

```
## Genarating item and ability parameters (1000 participants, 100 items)
a <- rlnorm(100,0,0.3)
b <- rnorm(100,0,1)
responses <- matrix(NA, nrow=1000, ncol=100)</pre>
theta <- rnorm(1000, 0,1)
### Defining Response Function (2 PL)
pij <- function(a,b,theta) {</pre>
     1/(1+exp(-1*a*(theta-b)))
   }
### Creating Response Matrix and column names.
 for( i in 1:1000 ) {
  for( j in 1:100 ) {
     responses[i,j]<-ifelse(pij(a=a[j], b=b[j], theta[i]) < runif(1) , 0 ,1)</pre>
  }
}
names<-paste("i",1:ncol(responses),sep = "_")</pre>
colnames(responses)<-names</pre>
train<-as.data.frame(responses)</pre>
small.index<-sample(1:nrow(train),100,replace=FALSE)</pre>
small<-train[small.index,]</pre>
### Conducting Function
conv.rt(small.data=small,
train.data=train,
model="2PL",
pruned=TRUE,
min.inst=10)
```

gen.data

Generating Dichotomous Data Sets based on Logistic IRT Models (Rasch, 2PL, 3PL).

Description

This function can be used for generating dichotomous response matrices based on Logistic IRT Models. Sample size, item number, parameter distributions can be specified.

gen.data 5

Usage

```
gen.data(model="2PL",samplesize=1000,itemsize=100,
theta.mean=0,theta.sd=1, a.mean=0, a.sd=0.2,b.mean=0,
b.sd=1, c.min=0, c.max=0.25)
```

Arguments

model	string: option for desired IRT model. 'Rasch', '2PL' or '3PL' ('2PL' is default)
samplesize	numeric: Desired Sample size (Default 1000).
itemsize	numeric: Desired item number (Default 100).
theta.mean	numeric: mean value of theta normal distribution (Default 0).
theta.sd	numeric: standart deviation of theta normal distribution (Default 1).
a.mean	numeric: mean value of a parameters log normal distribution (Default 0).
a.sd	numeric: standart deviation of a parameters \log normal distribution (Default 0.2).
b.mean	numeric: mean value of b parameters normal distribution (Default 0).
b.sd	numeric: standart deviation of b parameters normal distribution (Default 1).
c.min	numeric: minimum value of c parameters uniform distribution (Default 0).
c.max	numeric: maximum value of c parameters uniform distribution (Default 0.25).

Value

This function returns a a data frame containing simulated dichotomous response matrix.

Examples

```
gen.data(model="2PL",
samplesize=1000,
itemsize=100,
theta.mean=0,
theta.sd=1,
a.mean=0,
a.sd=0.2,
b.mean=0,
b.sd=1,
c.min=0,
c.max=0.25)
```

Index

```
conv.ann, 1
conv.rt, 3
gen.data, 4
```