### Департамент образования города Москвы

# Государственное автономное образовательное учреждение высшего образования города Москвы «Московский городской педагогический университет»

Институт цифрового образования Департамент информатики, управления и технологий

#### ПРАКТИЧЕСКАЯ РАБОТА №4

по дисциплине «Распределенные системы» Направление подготовки 38.03.05 — бизнес-информатика Профиль подготовки «Аналитика данных и эффективное управление» (очная форма обучения)

#### Выполнила:

Студентка группы АДЭУ-221 Вознесенская В. Е.

## Проверил:

Босенко Т. М., доцент

Вариант 1. Влияние Gossip Interval на малые сети

| Gossip   | Gossip | Nodes | Packet | Node     | Время  | Время  | Макс.         |
|----------|--------|-------|--------|----------|--------|--------|---------------|
| Interval | Fanout |       | Loss   | Failures | до     | до     | использование |
|          |        |       |        |          | "Хотя  | "Bce   | полосы        |
|          |        |       |        |          | бы     | живые  | пропускания   |
|          |        |       |        |          | один   | узлы   |               |
|          |        |       |        |          | узел   | знают" |               |
|          |        |       |        |          | знает" |        |               |
| 0.1      | 3      | 15    | 1%     | 25%      |        | 1.50   | 2,985,984.00  |
| 0.2      | 3      | 15    | 1%     | 25%      |        | 3.0    | 1,492,992.00  |
| 0.5      | 3      | 15    | 1%     | 25%      |        | 7.5    | 597,196.80    |
| 1.0      | 3      | 15    | 1%     | 25%      |        | 15.0   | 298,598.40    |
| 2.0      | 3      | 15    | 1%     | 25%      |        | 30.0   | 149,299.20    |

#### Ширина полосы пропускания

```
Gossip Interval (c) | Ширина полосы пропускания (бит/с)

0.1 | 2,985,984.00

0.2 | 1,492,992.00

0.5 | 597,196.80

1.0 | 298,598.40

2.0 | 149,299.20

Средняя ширина полосы пропускания: 1,104,814.08 бит/с
```

```
→ Gossip Interval (c) | Ширина полосы пропускания (бит/с) | Время конвергенции (с)

            0.1
                                2,985,984.00
                                                                          1.50
                                   1,492,992.00
597,196.80
298,598.40
            0.2
                                                                           3.00
            0.5
                                                                           7.50
            1.0
                                                                          15.00
                                     149,299.20
            2.0
                                                                           30.00
    Анализ результатов:
    1. Влияние Gossip Interval на использование полосы пропускания:
       При увеличении интервала с 0.1 до 0.2 с, использование полосы пропускания изменяется на -50.00%
       При увеличении интервала с 0.2 до 0.5 с, использование полосы пропускания изменяется на -60.00% При увеличении интервала с 0.5 до 1.0 с, использование полосы пропускания изменяется на -50.00%
       При увеличении интервала с 1.0 до 2.0 с, использование полосы пропускания изменяется на -50.00%
    2. Влияние Gossip Interval на время конвергенции:
        При увеличении интервала с 0.1 до 0.2 с, время конвергенции изменяется на 100.00%
        При увеличении интервала с 0.2 до 0.5 с, время конвергенции изменяется на 150.00%
        При увеличении интервала с 0.5 до 1.0 с, время конвергенции изменяется на 100.00%
        При увеличении интервала с 1.0 до 2.0 с, время конвергенции изменяется на 100.00%
```

Выводы о влиянии параметров на производительность системы:

Чем меньше интервал (например, 0.1 c), тем быстрее система достигает конвергенции (1.5 c), однако при этом ширина полосы пропускания сильно увеличивается, что может привести к повышенной нагрузке на сеть.

Увеличение интервала (до 2.0 c) приводит к замедлению конвергенции (до 30 c), но значительно снижает требования к полосе пропускания.

Ширина полосы пропускания обратно пропорциональна интервалу распространения: чем больше интервал, тем меньше требуется полосы пропускания. Например, при интервале 2.0 - ширина полосы 149,299.20 бит/с, а при интервале 0.1 — почти 3,000,000 бит/с.

Задание: сравнить производительность Serf с другими протоколами обнаружения отказов, такими как heartbeat или ping-based методами.



```
Результаты симуляции:

Serf:
Время до 'Хотя бы один узел знает': 0.00 с
Время до 'Все живые узлы знают': 10.01 с
Использование полосы пропускания: 0 (условных единиц)

Heartbeat:
Время до 'Хотя бы один узел знает': 0.00 с
Время до 'Все живые узлы знают': 0.00 с
Использование полосы пропускания: 168 (условных единиц)

Ping:
Время до 'Хотя бы один узел знает': 0.00 с
Время до 'Все живые узлы знают': 5.51 с
Использование полосы пропускания: 144 (условных единиц)
```

- 1. Serf использует протокол типа Gossip, что объясняет более долгое время конвергенции (10.01 с) для полного распространения информации среди всех узлов. Вывод: наиболее экономичен по использованию полосы пропускания, но менее эффективен по времени распространения информации среди всех узлов.
- 2. Неаrtbeat метод работает быстро, так как все узлы знают о состоянии друг друга практически мгновенно (0.00 с). Однако это достигается за счет постоянного использования полосы пропускания 168 условных единиц, что делает этот метод ресурсоемким. Вывод: мгновенная конвергенция за счет значительного использования сетевых ресурсов, этот метод лучше использовать в системах, где важно минимизировать задержки.
- 3. Ping метод имеет промежуточные результаты по сравнению с Heartbeat и Serf. Он быстрее, чем Serf но использует больше полосы пропускания (144 условных единиц). Вывод: компромиссный вариант с приемлемой скоростью конвергенции и умеренным использованием полосы пропускания.

Вывод: для сетей с ограниченной пропускной способностью лучше использовать Serf, для систем с высокими требованиями к скорости отказоустойчивости лучше использовать Heartbeat, для систем с балансом между сетью и скоростью лучше использовать Ping.