MAS241 ANALYSIS 1 QUIZ 5

Problem 1. (21 points) Prove or disprove the following statements. You should write the proof or counterexample. If your answer is wrong, there will be -3 points deduction. Note that we always assume the Euclidean space with Euxlidean metric.

- (1) If $\{C_k\}$ is a sequence of compact, nonempty subsets of \mathbb{R}^n and satisfies $C_k \supseteq C_{k+1}$ for each k, then $\bigcap_{n=1}^{\infty} C_k = \{x_0\}$ for some point $x_0 \in \mathbb{R}^n$.
- (2) Let f be continuous on $[a,b] \subset \mathbb{R}$. Define g(x) on [a,b] as follows: g(a) = f(a) and $g(x) = \inf\{f(y) : y \in [a,x]\}$ for $x \in (a,b]$. Then, g is monotone decreasing and continuous on [a,b].
- (3) Let S be a compact subset of \mathbb{R}^n and $\{C_k\}$ be a sequence of closed subsets of \mathbb{R}^n which satisfies $\bigcap_{n=1}^{\infty} C_k = \emptyset$. Then, there exists a finite index set $A \subset \mathbb{N}$ which satisfies $S \cap \bigcap_{\alpha \in A} C_\alpha = \emptyset$.

Problem 2. (9 points) For $x \in \mathbb{R}$, let define function f(x) = x if x is rational and f(x) = -x if x is irrational. Show that f is continuous at only 1 point and discontinuous at others points.

Date: april 8, 2021.