MT22-Fonctions de plusieurs variables et applications

Chapitre 1 : Fonctions de plusieurs variables

ÉQUIPE DE MATHÉMATIQUES APPLIQUÉES

UTC-UTT

Sommaire

Ι	Fonctions de plusieurs variables					
	I.1	Fonctions de deux variables	. 4			
	I.2	Fonctions de plusieurs variables	46			
A	Exercices 5					
	A.1	Exercices de cours	54			
	A.2	Exercices de TD	95			
В	Docu	ments 1	119			

Sommaire Concepts

Chapitre I Fonctions de plusieurs variables

I.1	Fonctions de deux variables	4
I.2	Fonctions de plusieurs variables	6

Sommaire Concepts

I.1 Fonctions de deux variables

Notations-Domaine de définition	6
Eléments de topologie	8
Définition de la continuité	10
Continuité-propriétés	11
Composée de fonctions continues	13
Etude de la continuité	15
Différentiabilité	18
Dérivées partielles	20
Différentiabilité-continuité-dérivées partielles	22
Condition suffisante de différentiabilité	24
Dérivées partielles d'ordre supérieur	27
Composition et dérivation	28
Différentielle	32
Formule des accroissements finis-formule de Taylor	34
Calcul approché	37
Théorème des fonctions implicites	38
Extrema d'une fonction de deux variables	41

Certains phénomènes naturels nécessitent, pour leur analyse, l'étude de plusieurs paramètres, ainsi :

Sommaire Concepts

- La pression atmosphérique à la surface de la terre dépend de l'altitude, de la longitude et de la latitude.
- La période d'un pendule est $T=2\pi\sqrt{\frac{l}{g}}=f(l,g)$.
- La pression d'un gaz parfait de volume V à la température T est $p=\frac{NRT}{V}=f(T,V)$.
- La chaleur dégagée par effet Joule dans une résistance est $P=RI^2t=f(R,I,t)$.

Toutes les fonctions citées ci-dessus sont des fonctions reliant une variable à deux ou trois autres variables.

Sommaire Concepts

Notations-Domaine de définition

Exercices:

Exercice A.1.1

Un vecteur de l'espace vectoriel \mathbb{R}^2 est un couple (x,y). Si on munit le plan d'un repère orthonormé d'origine O, on peut donc identifier ce vecteur et le point M du plan de coordonnées x et y.

La **norme euclidienne** de ce vecteur sera notée suivant les cas : $\left\|\overrightarrow{OM}\right\|$ ou

$$\left\| \left(\begin{array}{c} x \\ y \end{array} \right) \right\|$$
 ou $\|(x,y)\|$ et elle est égale à $\sqrt{x^2 + y^2}$.

On définit le **produit scalaire** de deux vecteurs par :

$$\overrightarrow{OM_1}.\overrightarrow{OM_2} = x_1x_2 + y_1y_2,$$

d'où
$$\|\overrightarrow{OM}\|^2 = \overrightarrow{OM}.\overrightarrow{OM}.$$

Puisque l'on peut identifier le vecteur (x,y) de \mathbb{R}^2 au point M du plan de coordonnées (x,y), on notera indifféremment $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ par :

$$f:(x,y)\longrightarrow f(x,y)$$

ou par

$$f: M \longrightarrow f(M)$$

Sommaire Concepts

ou enfin par

$$f: \left(\begin{array}{c} x \\ y \end{array}\right) \longrightarrow f\left(x,y\right).$$

Une fonction de 2 variables n'est pas toujours définie sur \mathbb{R}^2 tout entier, mais seulement sur un sous ensemble appelé domaine de définition. Ce domaine de définition est une surface, sous ensemble du plan xOy.

Notations-Domaine de définition

Sommaire Concepts

Eléments de topologie

Exercices:

Exercice A.1.2

Exercice A.1.3

Exercice A.1.4

Définition I.1.1 A étant donné dans \mathbb{R}^2 , on appelle disque ouvert de centre A et de rayon $\rho > 0$ le sous ensemble de \mathbb{R}^2 défini par

$$B(A, \rho) = \{ M \in \mathbb{R}^2, \left\| \overrightarrow{AM} \right\| < \rho \}.$$

Définition I.1.2 On appelle ouvert \mathcal{O} de \mathbb{R}^2 une partie de \mathbb{R}^2 qui est vide ou qui vérifie la propriété suivante : pour tout point A de \mathcal{O} , il existe un disque ouvert centré en A et contenu dans \mathcal{O} .

Proposition I.1.1 \mathcal{O} est un ouvert de \mathbb{R}^2 , si et seulement si \mathcal{O} est vide ou \mathcal{O} est la réunion d'un nombre quelconque de disques ouverts.

La proposition précédente donne une propriété caractéristique des ouverts, elle aurait pu être donnée comme définition. Cette proposition se démontre très facilement.

Sommaire Concepts

Définition I.1.3 On appelle fermé tout sous ensemble de \mathbb{R}^2 qui est le complémentaire d'un ouvert.

Eléments de topologie

Proposition I.1.2 L'intersection d'un nombre fini d'ouverts est un ouvert.

Définition I.1.4 Soit A un point de \mathbb{R}^2 , on appelle voisinage de A toute partie V $de \mathbb{R}^2$ qui contient un ouvert contenant A.

> Sommaire Concepts

Exercices Documents

Définition de la continuité

Exercices:

Exercice A.1.5

Exercice A.1.6

Définition I.1.5 D est un ouvert de \mathbb{R}^2 , $M_0 \in D$, soit f une fonction définie sur D, sauf éventuellement en M_0 , à valeurs dans \mathbb{R} , on dit que f admet une limite ℓ au point M_0 , si

$$\forall \varepsilon > 0, \ \exists \eta > 0 \ \textit{tel que} \ \forall M \in D, \{0 < \left\| \overrightarrow{M_0 M} \right\| < \eta \Longrightarrow |f(M) - \ell)| < \varepsilon \}.$$

Définition I.1.6 D est un ouvert de \mathbb{R}^2 , $M_0 \in D$, on dit qu'une fonction $f: D \longrightarrow \mathbb{R}$ est continue au point M_0 , si

$$\forall \varepsilon > 0, \ \exists \eta > 0 \ \textit{tel que} \ \forall M \in D, \{ \left\| \overrightarrow{M_0 M} \right\| < \eta \Longrightarrow |f(M) - f(M_0)| < \varepsilon \}.$$

On peut relier la définition de continuité et de limite : la fonction f est continue en M_0 si elle admet une limite ℓ en M_0 et si cette limite vérifie $\ell = f(M_0)$.

Géométriquement la continuité signifie que lorsque le point M tend vers M_0 (dans le plan xOy), la valeur réelle f(M) tend vers $f(M_0)$. La surface S d'équation z=f(x,y), n'a pas de "trou" au point d'abscisse x_0 et d'ordonnée y_0 .

Sommaire Concepts

Continuité-propriétés

Exercices:

Exercice A.1.7

Exercice A.1.8

Proposition I.1.3 (x_0, y_0) étant donnés, à partir de la fonction f de 2 variables on définit les fonctions d'une variable f_1 et f_2 par

$$f_1(x) = f(x, y_0), f_2(y) = f(x_0, y)$$

Si la fonction $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ est continue en (x_0, y_0) , alors f_1 est continue en x_0 et f_2 est continue en y_0 .

Remarque I.1.1 L'ensemble C_1 des points de coordonnées $(x, y_0, f_1(x))$ est une courbe tracée sur la surface S d'équation z = f(x, y). De même l'ensemble C_2 des points de coordonnées $(x_0, y, f_2(y))$ est une courbe tracée sur la surface S d'équation z = f(x, y). C_1 est la courbe intersection de S avec le plan d'équation $y = y_0$, C_2 est la courbe intersection de S avec le plan d'équation $x = x_0$.

La proposition I.1.3 donne une condition nécessaire pour que la fonction f soit continue en (x_0, y_0) , elle est utile pour démontrer que f n'est pas continue.

Sommaire Concepts

Proposition I.1.4 D est un ouvert de \mathbb{R}^2 , soient f et g deux fonctions $D \longrightarrow \mathbb{R}$, soit $M_0 \in D$

- si f et g sont continues en M_0 , f + g est continue en M_0 .
- si f est continue en M_0 , si λ est un paramètre réel, λ f est continue en M_0 .
- si f et g sont continues en M_0 , fg est continue en M_0 .
- si f et g sont continues en M_0 , et si $g(M_0) \neq 0$, $\frac{f}{g}$ est continue en M_0 .

Continuitépropriétés

Sommaire Concepts

Composée de fonctions continues

Exercices:

Exercice A.1.9

La composée de fonctions continues est continue, nous allons expliciter cette propriété fondamentale dans quelques cas particuliers maintenant.

Proposition I.1.5 Soient α et β deux fonctions réelles définies sur un voisinage de t_0 et continues en t_0 , on note $x_0 = \alpha(t_0), y_0 = \beta(t_0)$.

Soit f une fonction définie sur un voisinage de (x_0, y_0) à valeurs dans \mathbb{R} .

On définit la fonction réelle ϕ par $\phi(t) = f(\alpha(t), \beta(t))$.

Si f est continue au point (x_0, y_0) , alors la fonction ϕ est continue en t_0 .

La proposition I.1.3 est un cas particulier de la proposition I.1.5, le démontrer en exercice.

Proposition I.1.6 Soient a, b et f trois fonctions de $\mathbb{R}^2 \longrightarrow \mathbb{R}$

On définit $\psi(u,v) = f(a(u,v),b(u,v))$.

Si les fonctions a et b sont définies au voisinage du point (u_0, v_0) et continues en ce point,

si f est définie au voisinage du point $(a(u_0, v_0), b(u_0, v_0))$ et continue en ce point. alors la fonction ψ est continue au point (u_0, v_0)

Sommaire Concepts

Proposition I.1.7 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction définie dans un voisinage de M_0 et continue en M_0 ,

soit $\alpha: \mathbb{R} \to \mathbb{R}$ définie dans un voisinage de $f(M_0)$ et continue en $f(M_0)$, alors

$$\alpha \circ f : (x,y) \mapsto \alpha(f(x,y))$$

est continue en M_0 .

On ne démontrera pas ces propositions.

Les propositions I.1.4, I.1.5, I.1.6, I.1.7 nous permettent de conclure quant à la continuité dans la majorité des cas. Par exemple :

- $-x^3y^5+6xy^2$ et de façon plus générale tout polynôme en x,y est une fonction continue en tout point M_0 .
- $-\cos xy$, $\exp(x^3+y^5)$ sont continues en tout point M_0 .

Composée de fonctions continues

Sommaire Concepts

Etude de la continuité

Exercices:

Exercice A.1.10

Exercice A.1.11

Exercice A.1.12

Exercice A.1.13

Proposition I.1.8 Soit $M_0(x_0, y_0)$ et M(x, y), on pose

$$x = x_0 + r\cos\theta, y = y_0 + r\sin\theta, (r > 0), alors \left\| \overrightarrow{M_0M} \right\| = r.$$

Si l'on peut montrer que $|f(M) - f(M_0)| \le \varepsilon (r)$

où ε est une fonction réelle (qui ne dépend que de r) dont la limite est nulle quand r tend vers 0, alors f est continue en M_0 .

La proposition précédente permet de démontrer la continuité , c'est une condition suffisante de continuité.

Pour démontrer qu'une fonction f n'est pas continue en M_0 , on peut utiliser la proposition I.1.5 que l'on va énoncer différemment :

Proposition I.1.9 Soient α et β deux fonctions réelles définies sur un voisinage de t_0 et continues en t_0 , on note $x_0 = \alpha(t_0), y_0 = \beta(t_0)$.

Sommaire Concepts

Soit f une fonction définie sur un voisinage de (x_0, y_0) à valeurs dans \mathbb{R} . On définit la fonction réelle ϕ par $\phi(t) = f(\alpha(t), \beta(t))$.

Si ϕ n'est continue en t_0 alors la fonction f n'est pas continue au point (x_0, y_0) .

Là encore on est ramené à étudier une fonction réelle ϕ . Pourquoi la proposition précédente est-elle équivalente à la proposition I.1.5?

Etudions 2 exemples:

On définit la fonction f par :

$$f(x,y) = \frac{x^3y}{x^2 + y^2}$$
, si $(x,y) \neq (0,0)$, $f(0,0) = 0$.

Montrer en exercice que $|f(M) - f(O)| \le r^2$. En déduire que f est continue en O.

On définit la fonction f par :

$$f(x,y) = \frac{xy}{x^2 + y^2}$$
, **si** $(x,y) \neq (0,0)$, $f(0,0) = 0$.

Poser $\alpha(t)=t, \beta(t)=t, \phi(t)=f(\alpha(t),\beta(t))$, montrer en exercice que la fonction ϕ n'est pas continue en 0, en déduire que f n'est pas continue en (0,0).

Dans l'exemple précédent, lorsque $t \to 0$, le point M(t) = (t,t) tend vers O en restant sur la droite d'équation y = x. On a donc démontré dans l'exercice A.1.12 que lorsque M tend vers O le long du chemin d'équation y = x, f(M) ne tend pas vers f(O), donc la fonction f n'est pas continue en O.

Etude de la continuité

Sommaire Concepts

Pour démontrer que f n'est pas continue en M_0 , il suffit de trouver un chemin particulier qui passe par M_0 tel que quand M tend vers M_0 le long de ce chemin, f(M) ne tend pas vers $f(M_0)$. Bien sûr même lorsque f n'est pas continue en M_0 , il est parfois possible de trouver des chemins passant par M_0 sur lesquels quand M tend vers M_0 , f(M) tend vers $f(M_0)$. Reprendre l'exercice A.1.12

Etude de la continuité

Sommaire Concepts

Différentiabilité

Exercices:

Exercice A.1.14

Exercice A.1.15

Revoyez le chapitre dérivation des fonctions d'une variable dans le polycopié de MT21. On y a défini la dérivabilité dans le cas d'une fonction f de \mathbb{R} dans \mathbb{R} .

Définition I.1.7 D est un intervalle ouvert de \mathbb{R} , on dit qu'une fonction $f:D \longrightarrow \mathbb{R}$ est dérivable en x_0 appartenant à D, si la limite suivante existe :

$$d = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Dans ce cas on dit que le nombre d'est la dérivée de f au point x_0 et on note

$$d = \frac{df}{dx}(x_0).$$

On a démontré la proposition suivante :

Proposition I.1.10 Une condition nécessaire et suffisante pour que la fonction f soit dérivable au point $x_0 \in D$ est qu'il existe $d \in \mathbb{R}$ et une fonction ε tels que,

Sommaire Concepts

pour $x_0 + h \in D$, on puisse écrire :

$$f(x_0+h)=f(x_0)+hd+|h|\varepsilon(h), \text{ avec } \lim_{h\to 0}\varepsilon(h)=0$$

La proposition I.1.10 donne une autre caractérisation possible de la dérivabilité, c'est cette caractérisation qui sert à définir la notion de différentiabilité dans le cas d'une fonction de 2 variables.

Définition I.1.8 D est un ouvert de \mathbb{R}^2 , on dit qu'une fonction

 $f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ est différentiable au point (x_0,y_0) appartenant à D, s'il existe des constantes A et B et une fonction ε (de deux variables) telles que, pour $(x_0+h,y_0+k)\in D$, on puisse écrire

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + Ah + Bk + \|(h, k)\| \varepsilon(h, k)$$

$$avec \lim_{(h,k)\to(0,0)} \varepsilon(h, k) = 0.$$
(I.1.1)

Différentiabilité

Sommaire Concepts

Dérivées partielles

Exercices:

Exercice A.1.16

Exercice A.1.17

Exercice A.1.18

On peut maintenant définir la notion de dérivée partielle :

Définition I.1.9 D est un ouvert de \mathbb{R}^2 , $(x_0, y_0) \in D$, f est définie sur D, on appelle dérivée partielle de f par rapport à x en (x_0, y_0) , si elle existe, le réel noté

$$\frac{\partial f}{\partial x}(M_0),$$

défini par

$$\frac{\partial f}{\partial x}(M_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}.$$

De la même manière on définit :

$$\frac{\partial f}{\partial y}(M_0) = \lim_{k \to 0} \frac{f(x_0, y_0 + k) - f(x_0, y_0)}{k}.$$

Sommaire Concepts

Exemples
Exercices
Documents

Pour calculer les dérivées partielles lorsqu'elles existent, par exemple $\frac{\partial f}{\partial x}(x_0, y_0)$, la variable y est fixée à y_0 . Si on note $f_1(x) = f(x, y_0), f_2(y) = f(x_0, y)$, alors

Dérivées partielles

$$\frac{\partial f}{\partial x}(M_0) = \frac{df_1}{dx}(x_0), \quad \frac{\partial f}{\partial y}(M_0) = \frac{df_2}{\partial y}(y_0)$$

Montrer cette propriété en exercice.

Faites attention à la différence de notation entre dérivée partielle ∂ et dérivée d.

Contrairement à ce qui se passe pour les fonctions d'une variable, il n'y a pas équivalence entre la différentiabilité et l'existence de dérivées partielles, voir le paragraphe suivant.

Sommaire Concepts

Différentiabilité-continuité-dérivées partielles

Exercices:

Exercice A.1.19

Exercice A.1.20

Exercice A.1.21

Contrairement à ce qui se passe pour les fonctions d'une variable, la propriété de différentiabilité et l'existence de dérivées partielles ne sont plus des notions équivalentes, on a seulement l'implication suivante.

Théorème I.1.1 Si f est différentiable au point M_0 alors elle admet des dérivées partielles premières en M_0 .

Démontrer ce théorème en exercice.

Géométriquement, on peut montrer que si f et différentiable en (x_0, y_0) , la surface S d'équation z = f(x, y) admet un plan tangent au point

 $P_0=(x_0,y_0,f(x_0,y_0))$, donc toute courbe tracée sur S et passant par le point P_0 admet une droite tangente en P_0 (cette droite est contenue dans le plan tangent). En particulier les courbes C_1 et C_2 définies dans la remarque I.1.1 ont cette propriété, on retrouve donc que f_1 et f_2 sont dérivables, donc que les dérivées partielles existent.

Sommaire Concepts

Théorème I.1.2 Si f est différentiable au point M_0 , elle est continue en M_0 .

Démontrer ce théorème en exercice.

Il n'y a pas de d'implication entre l'existence de dérivées partielles et la propriété de continuité.

La fonction définie par $\begin{cases} f(x,y) = \frac{xy}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ f(0,0) = 0 & \end{cases}$ n'est pas continue en (0,0), mais elle admet des dérivées partielles en (0,0).

Revoir les interprétations géométriques des 2 propriétés pour se convaincre qu'il n'existe pas de lien entre les 2.

Différentiabilitécontinuitédérivées partielles

> Sommaire Concepts

Condition suffisante de différentiabilité

Exercices:

Exercice A.1.22

Exercice A.1.23

Théorème I.1.3 Si f admet des dérivées partielles premières <u>continues</u> dans un voisinage de $M_0(x_0, y_0)$, alors elle est différentiable en $M_0(x_0, y_0)$.

<u>Démonstration</u>. On reprend la définition de la différentiablilité <u>I.1.8</u>. Il s'agit donc d'établir une formule du type (<u>I.1.1</u>) en partant de l'existence des dérivées partielles. On peut décomposer :

$$f(x_0+h,y_0+k)-f(x_0,y_0)=f(x_0+h,y_0+k)-f(x_0+h,y_0)+f(x_0+h,y_0)-f(x_0,y_0).$$

On peut donc commencer par écrire (c'est la partie facile!):

$$f(x_0 + h, y_0) = f(x_0, y_0) + h \frac{\partial f}{\partial x}(x_0, y_0) + |h|\varepsilon_1(h).$$

Il suffit en effet d'écrire que la fonction $f_1(x) = f(x, y_0)$ est dérivable en x_0 .

Comme les dérivées partielles de f existent dans un voisinage de M_0 , pour h assez petit, la fonction $f_2(y) = f(x_0 + h, y)$ est dérivable en y_0 et on peut invoquer

Sommaire Concepts

le théorème des accroissements finis pour les fonctions d'une variable.

$$f(x_0 + h, y_0 + k) = f(x_0 + h, y_0) + k \frac{\partial f}{\partial y}(x_0 + h, y_0 + \theta k).$$

avec $0 < \theta < 1$, en notant que $\theta = \theta(h,k)$ puisqu'il dépend de k (comme dans le théorème des accroissements finis) et également de h qui joue, ici, le rôle d'un paramètre. Si on rassemble les deux relations on n'obtient pas exactement ce qu'on cherche puisque, dans la relation précédente, la dérivée $\frac{\partial f}{\partial y}$ n'est pas évaluée en (x_0,y_0) . Il faut donc maintenant invoquer l'argument de continuité pour écrire qu'il existe une fonction $\varepsilon_2(h,k)$ qui tend vers 0 quand $\|(h,k)\| \to 0$ telle que

 $\frac{\partial f}{\partial y}(x_0 + h, y_0 + \theta k) = \frac{\partial f}{\partial y}(x_0, y_0) + \varepsilon_2(h, k).$

En rassemblant tout ce qui précède on arrive à

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + h \frac{\partial f}{\partial x}(x_0, y_0) + k \frac{\partial f}{\partial y}(x_0, y_0) + |h|\varepsilon_1(h) + k\varepsilon_2(h, k).$$

ce qui s'écrit facilement sous la forme

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + h \frac{\partial f}{\partial x}(x_0, y_0) + k \frac{\partial f}{\partial y}(x_0, y_0) + \sqrt{h^2 + k^2} \varepsilon(h, k)$$

avec $\varepsilon(h,k)$ définie, pour $(h,k) \neq (0,0)$ par :

$$\varepsilon(h,k) = \frac{|h|\varepsilon_1(h) + k\varepsilon_2(h,k)}{\sqrt{h^2 + k^2}}$$

Condition suffisante de différentiabilité

Sommaire Concepts

Il est clair que $\varepsilon(h,k)$ vérifie bien la propriété I.1.1 de la définition puisque

$$|\varepsilon(h,k)| \le \frac{|h|}{\sqrt{h^2 + k^2}} |\varepsilon_1(h)| + \frac{|k|}{\sqrt{h^2 + k^2}} |\varepsilon_2(h,k)| \le |\varepsilon_1(h)| + |\varepsilon_2(h,k)|$$

Ce qui termine la démonstration.

Définition I.1.10 On dit qu'une fonction f est continûment différentiable sur un ouvert D si f admet des dérivées partielles continues sur D.

Condition suffisante de différentiabilité

> Sommaire Concepts

Dérivées partielles d'ordre supérieur

Exercices:

Exercice A.1.24

Si f est différentiable sur D ouvert de \mathbb{R}^2 , les dérivées partielles premières de f peuvent être considérées comme des fonctions de D dans \mathbb{R} , si elles sont différentiables, on peut calculer les dérivées partielles de ces fonctions, par exemple

$$\frac{\partial^2 f}{\partial x^2}(x_0, y_0) = \lim_{h \to 0} \frac{\frac{\partial f}{\partial x}(x_0 + h, y_0) - \frac{\partial f}{\partial x}(x_0, y_0)}{h},$$

On peut définir de façon similaire $\frac{\partial^2 f}{\partial y^2}$ ainsi que les dérivées partielles croisées

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} (\frac{\partial f}{\partial y}) \operatorname{et} \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} (\frac{\partial f}{\partial x}).$$

Théorème I.1.4 (de symétrie de SCHWARZ) Si f admet des dérivées partielles secondes au voisinage de (x_0,y_0) et si les dérivées partielles croisées $\frac{\partial^2 f}{\partial x \partial y}$ et $\frac{\partial^2 f}{\partial y \partial x}$ sont continues en (x_0,y_0) alors elles sont égales en ce point.

Ce théorème est admis.

Sommaire Concepts

Composition et dérivation

Exercices:

Exercice A.1.25

Exercice A.1.26

Exercice A.1.27

Exercice A.1.28

Revoir la dérivée des fonctions composées dans le cas des fonctions d'une variable. On va maintenant énoncer quelques résultats sur les composées de fonctions de deux variables.

 1^{er} Cas.

Proposition I.1.11 Soient α et β deux fonctions réelles et soit

 $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$. On définit $\phi(t) = f(\alpha(t), \beta(t))$. Si f est différentiable au point $(\alpha(t_0), \beta(t_0))$ et si les fonctions α et β sont dérivables au point t_0 alors ϕ est dérivable en t_0 et on a:

$$\phi'(t_0) = \frac{\partial f}{\partial x}(\alpha(t_0), \beta(t_0))\alpha'(t_0) + \frac{\partial f}{\partial y}(\alpha(t_0), \beta(t_0))\beta'(t_0)$$

<u>Démonstration</u>. $\phi(t_0 + h) = f(\alpha(t_0 + h), \beta(t_0 + h))$

 α, β sont des fonctions dérivables en t_0 , donc :

Sommaire Concepts

Composition et dérivation

$$\alpha(t_0 + h) = \alpha(t_0) + h\alpha'(t_0) + |h|\varepsilon_1(h) \text{ avec } \lim_{h \to 0} \varepsilon_1(h) = 0$$
$$\beta(t_0 + h) = \beta(t_0) + h\beta'(t_0) + |h|\varepsilon_2(h) \text{ avec } \lim_{h \to 0} \varepsilon_2(h) = 0$$

On pose

$$x_0 = \alpha(t_0), y_0 = \beta(t_0), H = h\alpha'(t_0) + |h|\varepsilon_1(h), K = h\beta'(t_0) + |h|\varepsilon_2(h)$$

On obtient $\phi(t_0 + h) = f(x_0 + H, y_0 + K)$ f est différentiable donc :

$$\begin{array}{lcl} f(x_0+H,y_0+K) & = & f(x_0,y_0)+H\frac{\partial f}{\partial x}(x_0,y_0)+K\frac{\partial f}{\partial y}(x_0,y_0)\\ & & +\sqrt{H^2+K^2}\varepsilon_3(H,K) \ \text{avec} \ \lim_{(H,K)\to(0,0)}\varepsilon_3(H,K)=0 \end{array}$$

d'où:

$$\phi(t_0 + h) = \phi(t_0)$$

$$+ h \left(\frac{\partial f}{\partial x} (\alpha(t_0), \beta(t_0)) \alpha'(t_0) + \frac{\partial f}{\partial y} (\alpha(t_0), \beta(t_0)) \beta'(t_0) \right)$$

$$+ |h| \varepsilon(h)$$

On a noté

$$\varepsilon(h) = \varepsilon_1(h) \frac{\partial f}{\partial x}(x_0, y_0) + \varepsilon_2(h) \frac{\partial f}{\partial y}(x_0, y_0) + \varepsilon_4(h)$$

Sommaire Concepts

Exercices

Documents

avec $\varepsilon_4(h) = \frac{\sqrt{H^2 + K^2}}{|h|} \varepsilon_3(H, K)$, on peut montrer que $\lim_{h \to 0} \varepsilon_4(h) = 0$, on en déduit que $\lim_{h \to 0} \varepsilon(h) = 0$.

On vient donc de montrer que ϕ est dérivable et que :

$$\phi'(t_0) = \frac{\partial f}{\partial x}(\alpha(t_0), \beta(t_0))\alpha'(t_0) + \frac{\partial f}{\partial y}(\alpha(t_0), \beta(t_0))\beta'(t_0).$$

 2^{me} Cas.

Proposition I.1.12 Soient a, b et f trois fonctions de $\mathbb{R}^2 \longrightarrow \mathbb{R}$

On définit $\psi(u,v) = f(a(u,v),b(u,v))$.

On suppose que f est différentiable au point $(a(u_0, v_0), b(u_0, v_0))$, on note $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ ses dérivées partielles.

On suppose que les fonctions a et b sont différentiables au point (u_0,v_0) , on note $\frac{\partial a}{\partial u}, \frac{\partial a}{\partial v}, \frac{\partial b}{\partial u}, \frac{\partial b}{\partial v}$ leurs dérivées partielles,

alors la fonction ψ est différentiable au point (u_0, v_0) et ses dérivées partielles sont données par :

$$\frac{\partial \psi}{\partial u}(u_0, v_0) = \frac{\partial f}{\partial x}(a(u_0, v_0), b(u_0, v_0)) \frac{\partial a}{\partial u}(u_0, v_0)
+ \frac{\partial f}{\partial y}(a(u_0, v_0), b(u_0, v_0)) \frac{\partial b}{\partial u}(u_0, v_0)$$

Composition et dérivation

Sommaire Concepts

$$\frac{\partial \psi}{\partial v}(u_0, v_0) = \frac{\partial f}{\partial x}(a(u_0, v_0), b(u_0, v_0)) \frac{\partial a}{\partial v}(u_0, v_0) + \frac{\partial f}{\partial y}(a(u_0, v_0), b(u_0, v_0)) \frac{\partial b}{\partial v}(u_0, v_0)$$

Composition et dérivation

 3^{me} Cas.

Proposition I.1.13 Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ une fonction différentiable au point (x_0, y_0) ,

soit α une fonction réelle dérivable au point $f(x_0, y_0)$, on définit $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$ par $g(x, y) = \alpha(f(x, y))$, alors g est différentiable en (x_0, y_0) et on a:

$$\frac{\partial g}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)\alpha'(f(x_0, y_0))$$

$$\frac{\partial g}{\partial y}(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0)\alpha'(f(x_0, y_0))$$

On verra à la fin de ce chapitre que tous ces cas particuliers sont inutiles, et que l'on peut énoncer un théorème général sur les composées des fonctions de plusieurs variables.

Sommaire Concepts

Différentielle

Si f est différentiable en (x_0, y_0) , l'application de \mathbb{R}^2 dans \mathbb{R} définie par :

$$(h,k) \longrightarrow \frac{\partial f}{\partial x}(x_0,y_0)h + \frac{\partial f}{\partial y}(x_0,y_0)k$$

est une application dite linéaire de \mathbb{R}^2 dans \mathbb{R} . Cette application est appelée la différentielle de f au point (x_0, y_0) et se note $df(x_0, y_0)$.

Si l'on prend comme fonction f l'application f(x,y)=x (resp. f(x,y)=y), la différentielle de cette fonction, que l'on note dx (resp. dy) est définie par :

$$dx(x_0, y_0)(h, k) = h$$
 (resp. $dy(x_0, y_0)(h, k) = k$).

D'où l'on a

$$df(x_0, y_0)(h, k) = \frac{\partial f}{\partial x}(x_0, y_0)dx(x_0, y_0)(h, k) + \frac{\partial f}{\partial y}(x_0, y_0)dy(x_0, y_0)(h, k), \ \forall (h, k)$$

donc

$$df(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0) dx(x_0, y_0) + \frac{\partial f}{\partial y}(x_0, y_0) dy(x_0, y_0),$$

ce qui explique la notation

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy.$$

Sommaire Concepts

Si on reprend la définition de la différentiabilité on a

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = df(x_0, y_0)(h, k) + ||(h, k)||\varepsilon(h, k)$$

Si on définit la fonction g par

$$g(h,k) = f(x_0 + h, y_0 + k) - f(x_0, y_0)$$

Alors la fonction g est approchée par l'application linéaire $df(x_0,y_0)$. Vous aurez l'occasion de définir et d'étudier les applications linéaires dans l'UV d'algèbre linéaire.

Différentielle

Sommaire Concepts

Formule des accroissements finis-formule de Taylor

Exercices:

Exercice A.1.29

Exercice A.1.30

formule des accroissements finis

Revoir la formule des accroissements finis pour une fonction d'une variable. On rappelle que si f est une fonction différentiable en (x_0, y_0) , on a :

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + h \frac{\partial f}{\partial x}(x_0, y_0) + k \frac{\partial f}{\partial y}(x_0, y_0) + \sqrt{(h^2 + k^2)} \varepsilon(h, k) \text{ avec } \lim_{(h, k) \to (0, 0)} \varepsilon(h, k) = 0$$

Si on suppose maintenant que f est une fonction définie et différentiable sur un disque ouvert D de centre (x_0, y_0) , pour $(x_0 + h, y_0 + k) \in D$, on a la formule des accroissements finis :

 $\exists \theta \in]0,1[$ tel que

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + h \frac{\partial f}{\partial x}(x_0 + \theta h, y_0 + \theta k) + k \frac{\partial f}{\partial y}(x_0 + \theta h, y_0 + \theta k)$$

Pour démontrer ce résultat, on définit la fonction réelle ϕ par

Sommaire Concepts

Exemples
Exercices
Documents

 $\phi(t)=f(x_0+ht,y_0+kt)$, on applique la formule des accroissements finis à la fonction réelle ϕ et on en déduit la formule des accroissements finis pour la fonction de 2 variables f. Traiter cette démonstration en exercice.

Formule de Taylor à l'ordre 2 On peut maintenant énoncer la formule de Taylor à l'ordre 2 :

On suppose que f admet des dérivées partielles continues jusqu'à l'ordre 2 sur un disque ouvert D de centre (x_0, y_0) , pour $(x_0 + h, y_0 + k) \in D$:

Il existe $\theta \in]0,1[$ tel que

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + h \frac{\partial f}{\partial x}(x_0, y_0) + k \frac{\partial f}{\partial y}(x_0, y_0)$$

$$+ \frac{1}{2} \left(h^2 \frac{\partial^2 f}{\partial x^2}(x^*, y^*) + 2hk \frac{\partial^2 f}{\partial x \partial y}(x^*, y^*) + k^2 \frac{\partial^2 f}{\partial y^2}(x^*, y^*) \right)$$

$$\mathbf{avec} \ x^* = x_0 + \theta h, y^* = y_0 + \theta k$$

Puisque les dérivées partielles secondes sont continues en (x_0, y_0) , on peut écrire une autre version de la formule de Taylor :

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + h \frac{\partial f}{\partial x}(x_0, y_0) + k \frac{\partial f}{\partial y}(x_0, y_0)$$

$$+ \frac{1}{2} \left(h^2 \frac{\partial^2 f}{\partial x^2}(x_0, y_0) + 2hk \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) + k^2 \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \right)$$

$$+ (h^2 + k^2) \varepsilon(h, k) \text{ avec } \lim_{(h,k) \to (0,0)} \varepsilon(h, k) = 0$$

Formule des accroissements finis-formule de Taylor

> Sommaire Concepts

Formule de Taylor à l'ordre n Si f admet des dérivées partielles continues jusqu'à l'ordre n sur un disque ouvert D de centre (x_0,y_0) , pour

 $(x_0+h,y_0+k)\in D$, on obtient la formule de Taylor à l'ordre n : Il existe $\theta\in]0,1[$ tel que

$$f(x_{0} + h, y_{0} + k) = f(x_{0}, y_{0}) + h \frac{\partial f}{\partial x}(x_{0}, y_{0}) + k \frac{\partial f}{\partial y}(x_{0}, y_{0})$$

$$+ \frac{1}{2} \left(h^{2} \frac{\partial^{2} f}{\partial x^{2}}(x_{0}, y_{0}) + 2hk \frac{\partial^{2} f}{\partial x \partial y}(x_{0}, y_{0}) + k^{2} \frac{\partial^{2} f}{\partial y^{2}}(x_{0}, y_{0}) \right)$$

$$+ \dots$$

$$+ \frac{1}{n!} f^{(n)}(x_{0} + \theta h, y_{0} + \theta k)(h, k)$$

οù

$$f^{(m)}(x_0, y_0)(h, k) = \sum_{p=0}^{m} C_m^p h^p k^{m-p} \frac{\partial^m f}{\partial x^p \partial y^{m-p}}(x_0, y_0)$$

 $(1 \le m \le n)$.

Puisque les dérivées partielles n -ièmes de f sont continues, on peut écrire

$$f^{n}(x_{0} + \theta h, y_{0} + \theta k)(h, k) = f^{n}(x_{0}, y_{0})(h, k) + (h^{2} + k^{2})^{\frac{n}{2}} \varepsilon(h, k).$$

 $f^m(x,y)(h,k)$ est un polynôme en h,
k homogène de degré m.

Formule des accroissements finis-formule de Taylor

> Sommaire Concepts

Calcul approché

Exercices:

Exercice A.1.31

Si on suppose connues les valeurs de la fonction f et de ses dérivées en (x_0, y_0) , la valeur (inconnue) $f(x_0 + h, y_0 + k)$ est donnée par la formule de Taylor :

$$f(x_0 + h, y_0 + k) = A(h, k) + R(h, k)$$

où

- -A(h,k) est un polynôme en h et k "facile" à calculer.
- $-R(h,k)=rac{1}{n!}f^{(n)}(x_0+\theta h,y_0+\theta k)(h,k)$, appelé reste, est un terme que la formule de Taylor ne permet pas de calculer car on ne connait pas θ . Mais ce reste est petit, d'autant plus petit que n est grand. Si par exemple $h=k=10^{-1}$, alors $h^pk^{n-p}=10^{-n}$, donc $f^{(n)}$ qui est un polynôme homogène de degré n est de l'ordre de 10^{-n} .

A(h,k) permet donc d'obtenir une approximation de $f(x_0+h,y_0+k)$ d'autant meilleure que n est grand.

Une des approximations les plus utilisées est celle au premier ordre :

$$f(x_0 + h, y_0 + k) \approx f(x_0, y_0) + h \frac{\partial f}{\partial x}(x_0, y_0) + k \frac{\partial f}{\partial y}(x_0, y_0)$$

Sommaire Concepts

Théorème des fonctions implicites

Exercice Signal Documents: Documents: Document B.1

Une courbe du plan xOy peut avoir une équation cartésienne explicite $y=\phi(x)$ ou une équation cartésienne implicite f(x,y)=0. Nous reverrons cela dans le chapitre "Courbes et surfaces".

Est-il possible de passer d'une équation à l'autre?

Par exemple $x^2 + y^2 - r^2 = 0$ est l'équation implicite d'un cercle, est-il possible de trouver une équation explicite $y = \phi(x)$ de ce même cercle?

Théorème I.1.5 Soit f une fonction $\mathbb{R}^2 \longrightarrow \mathbb{R}$ continûment différentiable, soit (x_0, y_0) un point tel que $f(x_0, y_0) = 0$. On suppose que

$$\frac{\partial f}{\partial y}(x,y) \neq 0 \ dans \ un \ voisinage \ de \ (x_0,y_0)$$
 (I.1.2)

Alors il existe un voisinage V de (x_0, y_0) de la forme $I \times J$ où I et J désignent des intervalles de \mathbb{R} et une fonction $\phi: I \longrightarrow \mathbb{R}$ tels que :

$$\forall (x,y) \in I \times J, \ f(x,y) = 0 \Longleftrightarrow y = \phi(x)$$

Sommaire Concepts

Si de plus la fonction f est différentiable, alors la fonction ϕ est dérivable sur I et sa dérivée est donnée par :

Théorème des fonctions implicites

$$\phi'(x) = -\frac{\frac{\partial f}{\partial x}(x, \phi(x))}{\frac{\partial f}{\partial y}(x, \phi(x))}.$$
 (I.1.3)

Voir en document une démonstration partielle de théorème, c'est à dire lorsque l'on admet l'existence et la continuité de ϕ , vous y trouverez une démonstration de la dérivabilité de ϕ .

On va maintenant donner une démonstration "encore plus partielle", on suppose que ϕ existe et est dérivable. On va calculer ϕ' .

D'après la définition de ϕ , on a $\forall x \in I, \ f(x, \phi(x)) = 0$

Si on définit $g(x) = f(x, \phi(x))$, g est dérivable, pourquoi?

De plus $\forall x \in I, \ g(x) = 0 \Rightarrow \forall x \in I, \ g'(x) = 0$

Calculer g'(x) et conclure.

Evidemment le théorème ne traite pas x et y de manière symétrique. On peut échanger leurs rôles et sous l'hypothèse $\frac{\partial f}{\partial x}(M_0) \neq 0$, trouver une représentation locale de S sous la forme $x = \psi(y)$.

Il y a évidemment des situations où, simultanément on a

$$\frac{\partial f}{\partial x}(M_0) = \frac{\partial f}{\partial y}(M_0) = 0$$

et là il est possible qu'il n'y ait pas de paramétrage ni en fonction de x ni en fonction de y.

Sommaire Concepts

On peut appliquer le théorème I.1.5 au calcul de la tangente à la courbe f(x,y)=0. En un point (x_0,y_0) de $I\times J$ la tangente s'écrit

$$y - y_0 = \phi'(x_0)(x - x_0)$$

soit en remplacant

$$\frac{\partial f}{\partial x}(x-x_0) + \frac{\partial f}{\partial y}(y-y_0) = 0.$$

Théorème des fonctions implicites

Sommaire Concepts

Extrema d'une fonction de deux variables

Exercices:

Exercice A.1.33

Revoir la notion d'extrema dans le chapitre dérivation de MT21

Soit f une fonction $\mathbb{R}^2 \longrightarrow \mathbb{R}$, on cherche un point (x^*,y^*) qui réalise le **minimun** de f, c'est-à-dire tel que

$$f(x^*, y^*) \le f(x, y), \forall (x, y) \in \mathbb{R}^2.$$

On dit alors que (x^*,y^*) réalise un minimum global pour f. Si on a seulement la propriété pour (x,y) appartenant à un voisinage de (x^*,y^*) , on parle de minimum local.

Théorème I.1.6 Si f est différentiable, une condition nécessaire d'optimalité est

$$\begin{cases} \frac{\partial f}{\partial x}(x^*, y^*) = 0, \\ \frac{\partial f}{\partial y}(x^*, y^*) = 0. \end{cases}$$

<u>Démonstration</u> Si (x^*, y^*) réalise le minimum de f on a

$$f(x^* + h, y^*) - f(x^*, y^*) \ge 0,$$

Sommaire Concepts

ou

$$\frac{f(x^* + h, y^*) - f(x^*, y^*)}{h} \ge 0,$$

pour h > 0. Soit en passant à la limite quand $h \longrightarrow 0$

$$\frac{\partial f}{\partial x}(x^*, y^*) \ge 0.$$

De même en prenant h < 0, on obtiendrait $\frac{\partial f}{\partial x}(x^*, y^*) \leq 0$, d'où

$$\frac{\partial f}{\partial x}(x^*, y^*) = 0$$
 et de même $\frac{\partial f}{\partial y}(x^*, y^*) = 0$.

ATTENTION: La condition

$$\left(\frac{\partial f}{\partial x}(x^*, y^*), \frac{\partial f}{\partial y}(x^*, y^*)\right) = (0, 0)$$

n'est pas une condition suffisante.

Exemple I.1.1 f(x,y) = xy. Montrer que le point (0,0) vérifie les conditions nécessaires d'optimalité. Montrer que (0,0) n'est ni un minimum ni un maximum pour f.

Si f admet des dérivées partielles secondes continues, pour voir si on est en présence d'un extremum, on peut appliquer la formule de Taylor à l'ordre 2 à la

Extrema d'une fonction de deux variables

Sommaire Concepts

fonction f. On obtient :

$$\begin{split} f(x^*+h,y^*+k) &= f(x^*,y^*) \\ &+ \frac{1}{2} \left(h^2 \frac{\partial^2 f}{\partial x^2}(x^*,y^*) + 2hk \frac{\partial^2 f}{\partial x \partial y}(x^*,y^*) + k^2 \frac{\partial^2 f}{\partial y^2}(x^*,y^*) \right) \\ &+ (h^2+k^2) \varepsilon(h,k) \text{ avec } \lim_{(h,k) \to 0} \varepsilon(h,k) = 0 \end{split}$$

On a utilisé les conditions d'optimalité, donc les dérivées partielles premières sont nulles.

On note:

$$A = f(x^* + h, y^* + k) - f(x^*, y^*).$$

$$A_1 = \left(h^2 \frac{\partial^2 f}{\partial x^2}(x^*, y^*) + 2hk \frac{\partial^2 f}{\partial x \partial y}(x^*, y^*) + k^2 \frac{\partial^2 f}{\partial y^2}(x^*, y^*)\right)$$

$$A_2 = (h^2 + k^2)\varepsilon(h, k) \text{ avec } \lim_{(h,k)\to 0} \varepsilon(h, k) = 0$$

On admet que pour h et k suffisamment petits, le terme A_2 est négligeable devant $\frac{A_1}{2}$ si ce terme n'est pas nul, il suffit de comparer les ordres de ces infiniment petits pour s'en convaincre.

Pour h et k suffisamment petits, le signe de $A = f(x^* + h, y^* + k) - f(x^*, y^*)$ est donc donné par le signe de A_1 .

On aura donc:

$$\operatorname{si}\left(h^2\frac{\partial^2 f}{\partial x^2}(x^*,y^*) + 2hk\frac{\partial^2 f}{\partial x \partial y}(x^*,y^*) + k^2\frac{\partial^2 f}{\partial y^2}(x^*,y^*)\right) > 0, \ \forall (h,k) \neq (0,0)$$

Extrema d'une fonction de deux variables

Sommaire Concepts

alors (x^*, y^*) un minimum local pour f,

$$\operatorname{si}\left(h^2\frac{\partial^2 f}{\partial x^2}(x^*,y^*) + 2hk\frac{\partial^2 f}{\partial x \partial y}(x^*,y^*) + k^2\frac{\partial^2 f}{\partial y^2}(x^*,y^*)\right) < 0, \ \forall (h,k) \neq (0,0)$$

alors (x^*, y^*) un maximum local pour f.

Voyons comment étudier le signe de A_1 , on note

$$a = \frac{\partial^2 f}{\partial x^2}(x^*, y^*), b = \frac{\partial^2 f}{\partial x \partial y}(x^*, y^*), c = \frac{\partial^2 f}{\partial y^2}(x^*, y^*)$$

 $A_1(h, k) = ah^2 + 2bhk + ck^2$.

Supposons que $k \neq 0$, on met k^2 en facteur, on se ramène à étudier le signe de

$$B_1(t) = at^2 + 2bt + c$$
, avec $t = \frac{h}{k}$.

Pour étudier le signe de ce trinôme, on calcule son discrimant

$$\Delta = 4(b^2 - ac).$$

- 1. si $\Delta < 0$, cela suppose en particulier que a et c sont de même signe et non nuls .
 - (a) si $a > 0, B_1(t) > 0$, $\forall t$, donc $A_1(h, k) > 0$, $\forall (h, k) \neq (0, 0)$, en effet on vient de démontrer cette propriété pour $k \neq 0$, elle est encore vraie quand k = 0, puisque dans ce cas $A_1(h, k) = ah^2$.

On en déduit que $A = f(x^* + h, y^* + k) - f(x^*, y^*)$ est positif pour h et k petits donc que (x^*, y^*) est un minimum local.

Extrema d'une fonction de deux variables

Sommaire Concepts

(b) si a<0, on démontre de façon analogue que $A_1(h,k)<0,\ \forall (h,k)\neq (0,0)$

On en déduit que $A = f(x^* + h, y^* + k) - f(x^*, y^*)$ est négatif pour h et k petits donc que (x^*, y^*) est un maximum local.

- 2. si $\Delta > 0$, B_1 change de signe, donc A_1 change de signe, donc A change de signe, il n'y a donc pas d'extremum en (x^*, y^*) .
- 3. si $\Delta = 0$, B_1 ne change pas de signe, mais B_1 donc A_1 peut s'annuler et alors le signe de A est donné par A_2 , il faudrait faire une étude supplémentaire.

Extrema d'une fonction de deux variables

Sommaire Concepts

I.2 Fonctions de plusieurs variables

Eléments de topologie de \mathbb{R}^n	47
Continuité et différentiabilité	48
Composition et dérivation des fonctions de plusieurs variables	50
Extrema d'une fonction de plusieurs variables	5

Sommaire Concepts

Eléments de topologie de \mathbb{R}^n

On a maintenant une fonction f qui est une fonction de n variables x_1, x_2, \ldots, x_n . A partir de maintenant $M \in \mathbb{R}^n$, donc $M = (x_1, x_2, \ldots, x_n)$.

Toutes les notions introduites dans \mathbb{R}^2 demeurent valables.

On note $O=(0,\ldots,0)$. Définissons la norme euclidienne d'un vecteur de \mathbb{R}^n ,

$$\|\overrightarrow{OM}\| = \|(x_1, \dots, x_n)\| = \sqrt{x_1^2 + \dots + x_n^2} = \sqrt{\sum_{i=1}^n x_i^2}.$$

On définit les boules ouvertes de centre $A \in \mathbb{R}^n$ et de rayon $\rho > 0$ par :

$$B(A, \rho) = \{ M \in \mathbb{R}^n : \left\| \overrightarrow{AM} \right\| < \rho \}.$$

Cette notion de boule que l'on vient de définir dans \mathbb{R}^n généralise la notion de boule que vous connaissez déjà dans \mathbb{R}^3 .

On définit les ouverts, les fermés, les voisinages de façon similaire en remplaçant disque ouvert par boule ouverte.

Sommaire Concepts

Continuité et différentiabilité

Exercices:

Exercice A.1.34

Exercice A.1.35

Notations. Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}$, on la notera $f(x_1, \dots, x_n)$ ou plus simplement f(M).

Définition I.2.1 D est un ouvert de \mathbb{R}^n , $M^* \in D$, on dit qu'une fonction $f: D \longrightarrow \mathbb{R}$ est continue au point M^* , si

$$\forall \varepsilon > 0, \ \exists \eta > 0 \ \textit{tel que} \ \forall M \in D, \{ \left\| \overrightarrow{M^*M} \right\| < \eta \Longrightarrow |f(M) - f(M^*)| < \varepsilon \}.$$

Définition I.2.2 D est un ouvert de \mathbb{R}^n , $M^* \in D$, on dit qu'une fonction $f: D \longrightarrow \mathbb{R}$ est différentiable au point M^* appartenant à D, s'il existe des constantes A_1, \ldots, A_n et une fonction ε de n variables telles que, pour $(x_1^* + h_1, x_2^* + h_2, \ldots, x_n^* + h_n) \in D$, on puisse écrire

$$f(x_1^* + h_1, x_2^* + h_2, \dots, x_n^* + h_n) = f(x_1^*, x_2^*, \dots, x_n^*) + \sum_{i=1}^n A_i h_i + \|(h_1, \dots, h_n)\| \varepsilon (h_1, \dots, h_n).$$

Sommaire Concepts

avec $\lim_{(h_1,...,h_n)\to(0,...,0)} \varepsilon(h_1,...,h_n) = 0$

Comme dans \mathbb{R}^2 , il est facile de montrer que si la fonction est différentiable au point M^* , elle possède en ce point des dérivées partielles premières et l'on a

$$A_1 = \lim_{h_1 \to 0} \frac{f(x_1^* + h_1, x_2^* \dots, x_n^*) - f(x_1^*, x_2^* \dots, x_n^*)}{h_1} = \frac{\partial f}{\partial x_1}(M^*)$$

On définirait les autres dérivées partielles de façon similaire et on aurait :

$$A_i = \frac{\partial f}{\partial x_i}(M^*)$$

Les dérivées partielles d'ordre supérieur sont définies comme dans \mathbb{R}^2 .

Les théorèmes reliant continuité, différentiabilité et existence de dérivées partielles énoncés pour les fonctions de deux variables réelles s'étendent aux fonctions de n variables.

Continuité et différentiabilité

> Sommaire Concepts

Composition et dérivation des fonctions de plusieurs variables

Exercices:

Exercice A.1.36

Exercice A.1.37

La situation générale est la suivante :

Proposition I.2.1 Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction différentiable sur \mathbb{R}^n

$$Soient \left\{egin{array}{ll} g_1: \mathbb{R}^p
ightarrow \mathbb{R} \ & \ldots & n ext{ fonctions diff\'erentiables sur } \mathbb{R}^p. \ g_n: \mathbb{R}^p
ightarrow \mathbb{R} \end{array}
ight.$$

On définit $\psi: \mathbb{R}^p \to \mathbb{R}$ par

$$\psi(u_1,\ldots,u_p) = f(g_1(u_1,\ldots,u_p),\ldots,g_n(u_1,\ldots,u_p))$$

alors ψ est différentiable et on a pour (i = 1, ..., p)

$$\frac{\partial \psi}{\partial u_i}(u_1,..,u_p) = \sum_{j=1}^n \frac{\partial f}{\partial x_j}(g_1(u_1,\ldots,u_p),\ldots,g_n(u_1,\ldots,u_p)) \frac{\partial g_j}{\partial u_i}(u_1,..,u_p).$$

Sommaire Concepts

Extrema d'une fonction de plusieurs variables

Soit f une fonction $\mathbb{R}^n \longrightarrow \mathbb{R}$, on cherche un point x^* qui réalise le minimun de f, c'est- à-dire tel que

$$f(x^*) \le f(x), \forall (x) \in \mathbb{R}^n.$$

Théorème I.2.1 Une condition nécessaire d'optimalité est

$$\frac{\partial f}{\partial x_i}(x^*) = 0, \quad 1 \le i \le n$$

Sommaire Concepts

→ précédent

Annexe A Exercices

A.1	Exercices de cours		•														54	1
A.2	Exercices de TD .																95	3

Sommaire Concepts

A.1 Exercices de cours

		chapitre ▲	section suive
A.1.21	Chap1-Exercice21		75
A.1.22	Chap1-Exercice22		
A.1.23	Chap1-Exercice23		
A.1.24	Chap1-Exercice24		
A.1.25	Chap1-Exercice25		
A.1.26	Chap1-Exercice26		
A.1.27	Chap1-Exercice27		
A.1.28	Chap1-Exercice28		
A.1.29	Chap1-Exercice29		
A.1.30	Chap1-Exercice30		
A.1.31	Chap1-Exercice31		
A.1.32	Chap1-Exercice32		
A.1.33	Chap1-Exercice33		
A.1.34	Chap1-Exercice34		
A.1.35	Chap1-Exercice35		
A.1.36	Chap1-Exercice36		
A.1.37	Chap1-Exercice37		0.1

Sommaire Concepts

section suivante ▶

Exercices Documents

Exercice A.1.1 Chap1-Exercice1

Représenter dans \mathbb{R}^2 les domaines de définition des fonctions suivantes :

$$- f(x,y) = \ln(y - \frac{x}{2})$$

- $f(x,y) = \sqrt{4 - x^2} + \sqrt{1 - y^2}$

Solution

Sommaire Concepts

Exercice A.1.2 Chap1-Exercice2

On définit les ensembles :

$$E = \{(x, y) \in \mathbb{R}^2, x > 1\}, F = \{(x, y) \in \mathbb{R}^2, x \ge 1\}, G = \{(x, y) \in \mathbb{R}^2, 2 \ge x > 1\}.$$

 $\emptyset, {\rm I\!R}^2, E, F, G$ sont-ils des ouverts? Justifier votre réponse. Solution

Sommaire Concepts

Exercice A.1.3 Chap1-Exercice3

On définit les ensembles :

$$E = \{(x, y) \in \mathbb{R}^2, x > 1\}, F = \{(x, y) \in \mathbb{R}^2, x \ge 1\}, G = \{(x, y) \in \mathbb{R}^2, 2 \ge x > 1\}.$$

 $\emptyset, {\rm I\!R}^2, E, F, G$ sont-ils des fermés? Justifier votre réponse. Solution

Sommaire Concepts

Exercice A.1.4 Chap1-Exercice4

- 1. Soient $\mathcal{O}_1, \mathcal{O}_2$ deux ouverts de \mathbb{R}^2 , on suppose que leur intersection n'est pas vide, on note $\mathcal{O} = \mathcal{O}_1 \cap \mathcal{O}_2$, soit A un point quelconque de \mathcal{O} montrer qu'il existe un disque ouvert de centre A et de rayon $\rho, \rho > 0$ contenu dans \mathcal{O} . On pourra s'aider d'une figure, bien préciser ce que vaut ρ .
- 2. Soient $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_n$ n ouverts de \mathbb{R}^2 , on suppose que leur intersection n'est pas vide, on note $\mathcal{O} = \bigcap_{i=1}^n \mathcal{O}_i$, soit A un point quelconque de \mathcal{O} montrer qu'il existe un disque ouvert de centre A et de rayon $\rho, \rho > 0$ contenu dans \mathcal{O} , bien préciser ce que vaut ρ .
- 3. En déduire que l'intersection d'un nombre fini d'ouverts est un ouvert.
- 4. La démonstration que vous venez de faire dans le cas d'un nombre fini d'ouverts, serait-elle encore valable avec un nombre infini d'ouverts?
- 5. A est un point fixé, on appelle \mathcal{O}_i le disque ouvert de centre A et de rayon 1/i. Montrer que $\{A\} = \bigcap_{i=1}^{\infty} \mathcal{O}_i$. L'ensemble $\{A\}$ est-il un ouvert?

Solution

Sommaire Concepts

Exercice A.1.5 Chap1-Exercice5

Rapppeler la définition de la continuité pour une fonction de $\mathbb R$ dans $\mathbb R$. Solution

Sommaire Concepts

Exercice A.1.6 Chap1-Exercice6

Utiliser la définition pour montrer que la fonction définie par $f(x,y)=x^2+y^2$ est continue en (0,0).

Solution

Sommaire Concepts

Exercice A.1.7 Chap1-Exercice7

f est une fonction de 2 variables continue en (x_0, y_0) .

On définit les fonctions d'une variable f_1 et f_2 par $f_1(x)=f(x,y_0), f_2(y)=f(x_0,y)$

Montrer que f_1 est continue en x_0 et que f_2 est continue en y_0 .

Solution

Sommaire Concepts

Exercice A.1.8 Chap1-Exercice8

Montrer que la fonction f définie par : $\begin{cases} f(x,y) = 2 & \text{si} & x \leq 1 \\ f(x,y) = 1 & \text{si} & x > 1 \end{cases}$ n'est pas continue en $(1,y_0)$ (y_0 est un nombre réel quelconque).

Représenter graphiquement la surface d'équation z = f(x, y).

Solution

Sommaire Concepts

Exercice A.1.9 Chap1-Exercice9

Montrer que la proposition I.1.3 est un cas particulier de la proposition I.1.5. Pour f_1 comment faut-il choisir les fonctions α et β ? Pour f_2 comment faut-il choisir les fonctions α et β ?

Solution

Sommaire Concepts

Exercice A.1.10 Chap1-Exercice10

Démontrer la proposition I.1.8.

Solution

Sommaire Concepts

Exercice A.1.11 Chap1-Exercice11

On définit la fonction f par :

$$f(x,y) = \frac{x^3y}{x^2 + y^2}$$
, **si** $(x,y) \neq (0,0)$, $f(0,0) = 0$.

On note $x = r \cos \theta$, $y = r \sin \theta$.

- 1. Montrer que $|f(M) f(O)| \le r^2$.
- 2. En déduire que f est continue en O.

Solution

Sommaire Concepts

Exercice A.1.12 Chap1-Exercice12

On définit la fonction f par :

$$f(x,y) = \frac{xy}{x^2 + y^2}$$
, si $(x,y) \neq (0,0)$, $f(0,0) = 0$.

- 1. On définit la fonction réelle ϕ par $\phi(t)=f(t,0)$, la fonction ϕ est-elle continue en 0? Est-il possible,sans calculs supplémentaires, de conclure quant à la continuité de f en (0,0)?
- 2. On définit la fonction réelle ϕ par $\phi(t)=f(t,t)$, la fonction ϕ est-elle continue en 0? Est-il possible, sans calculs supplémentaires, de conclure quant à la continuité de f en (0,0)?

Solution

Sommaire Concepts

Exercice A.1.13 Chap1-Exercice13

On définit f par : $\left\{ \begin{array}{ll} f(x,y) = \frac{x^2}{y} & \text{si} \quad y \neq 0 \\ f(x,0) = 0 \end{array} \right.$

La fonction f est-elle continue en (0,0)?

Solution

Sommaire Concepts

Exercice A.1.14 Chap1-Exercice14

Utiliser la définition pour montrer que la fonction définie par $f(x,y)=x^2+y^2$ est différentiable en (0,0). Préciser ce que valent A et B.

Solution

Sommaire Concepts

Exercice A.1.15 Chap1-Exercice15

1. x_0, y_0 sont 2 nombres réels donnés, montrer que la fonction définie par

$$\varepsilon(h,k) = \frac{h}{\sqrt{h^2 + k^2}} (y_0 h + 2x_0 k + hk) \text{ pour } (h,k) \neq 0$$

tend vers 0 quand (h, k) tend vers (0, 0).

2. En déduire que la fonction f définie par $f(x,y)=x^2y$ est différentiable en (x_0,y_0) . Préciser ce que valent A et B.

Solution

Sommaire Concepts

Exercice A.1.16 Chap1-Exercice16

f est une fonction différentiable en (x_0,y_0) , on définit $f_1(x)=f(x,y_0), f_2(y)=f(x_0,y)$.

Montrer que f_1 est dérivable en x_0 et que $\frac{df_1}{dx}(x_0) = \frac{\partial f}{\partial x}(M_0)$. Montrer que f_2 est dérivable en y_0 et que $\frac{df_2}{dy}(y_0) = \frac{\partial f}{\partial y}(M_0)$.

Solution

Sommaire Concepts

Exercice A.1.17 Chap1-Exercice17

Calculer les dérivées partielles en (x_0, y_0) des fonctions

$$f(x,y) = x^3y^5, f(x,y) = \sin(xy^2)$$

Solution

Sommaire Concepts

Exemples

Exercices Documents

Exercice A.1.18 Chap1-Exercice18

On définit la fonction f par :

$$\begin{cases} f(x,y) = \frac{xy}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ f(0,0) = 0 & \end{cases}$$

- 1. Calculer les dérivées partielles de f en (0,0).
- 2. Calculer les dérivées partielles de f en $(x_0, y_0) \neq (0, 0)$.

Solution

Sommaire Concepts

Exercice A.1.19 Chap1-Exercice19

Montrer la propriété suivante :

Si f est différentiable au point M_0 alors elle admet des dérivées partielles premières en M_0 .

Solution

Sommaire Concepts

Exercice A.1.20 Chap1-Exercice20

Montrer la propriété suivante : Si f est différentiable au point M_0 alors elle est continue en M_0 .

Solution

Sommaire Concepts

Exercice A.1.21 Chap1-Exercice21

La fonction f définie par : $\begin{cases} f(x,y) = \frac{xy}{x^2 + y^2} & \text{si} \quad (x,y) \neq (0,0) \\ f(0,0) = 0 & \end{cases}$ est-elle différentiable en (0,0)?

Solution

Sommaire Concepts

Exercice A.1.22 Chap1-Exercice22

Donner une condition nécessaire pour que f soit différentiable en (x_0, y_0) , donner une condition suffisante pour que f soit différentiable en (x_0, y_0) .

Solution

Sommaire Concepts

Exercice A.1.23 Chap1-Exercice23

On définit les propositions suivantes :

- 1: f est continue en (x_0, y_0) .
- 2 : f est différentiable en (x_0, y_0) .
- 3:f admet des dérivées partielles en (x_0,y_0) .
- 4:f admet des dérivées partielles continues dans un voisinage de (x_0,y_0) . Donner des implications correctes entre ces 4 propositions.

Solution

Sommaire Concepts

Exercice A.1.24 Chap1-Exercice24

Soit
$$f(x,y)=2xy^3$$
, calculer $\frac{\partial^2 f}{\partial x^2}(x,y), \frac{\partial^2 f}{\partial y \partial x}(x,y), \frac{\partial^2 f}{\partial x \partial y}(x,y), \frac{\partial^2 f}{\partial y^2}(x,y)$. Solution

Sommaire Concepts

Exercice A.1.25 Chap1-Exercice25

- 1. f est une fonction différentiable dont on note $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ les dérivées partielles, on définit $\phi(t) = f(\cos t, \sin t)$.

 Montrer que ϕ est une fonction réelle dérivable, calculer sa dérivée ϕ' .
- 2. On choisit $f(x,y)=x^2+y^2$, vérifier que dans ce cas particulier $\phi'(t)=0 \ \ \forall t.$ Solution

Sommaire Concepts

Exercice A.1.26 Chap1-Exercice26

f est une fonction différentiable dont on note $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ les dérivées partielles, x_0,y_0,h,k sont des réels donnés, on définit $\phi(t)=f(x_0+th,y_0+tk)$.

Montrer que ϕ est une fonction réelle dérivable, calculer sa dérivée ϕ' .

Solution

Sommaire Concepts

Exercice A.1.27 Chap1-Exercice27

f est une fonction différentiable dont on note $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ les dérivées partielles, on définit $\psi(u,v)=f(u^2-v^2,uv)$.

Montrer que ψ est différentiable, calculer ses dérivées partielles $\frac{\partial \psi}{\partial u}, \frac{\partial \psi}{\partial v}$. Solution

Sommaire Concepts

Exercice A.1.28 Chap1-Exercice28

f est une fonction différentiable dont on note $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ les dérivées partielles, on définit $\psi(r,\theta)=f(r\cos\theta,r\sin\theta)$

- 1. Montrer que ψ est différentiable, exprimer les dérivées partielles $\frac{\partial \psi}{\partial r}(r,\theta), \frac{\partial \psi}{\partial \theta}(r,\theta)$ à l'aide des dérivées partielles de f.
- 2. On suppose $r \neq 0$, montrer qu'il est possible d'exprimer les dérivées partielles de f à l'aide des dérivées partielles de ψ . Bien préciser dans chacun des cas en quel point on évalue les dérivées partielles.

Solution

Sommaire Concepts

Exercice A.1.29 Chap1-Exercice29

f est une fonction différentiable sur \mathbb{R}^2 , on définit $\phi(t) = f(x_0 + ht, y_0 + kt)$.

- 1. Calculer $\phi(0), \phi(1)$.
- 2. Calculer $\phi'(t)$, revoir l'exercice A.1.26.
- 3.

$$\exists \theta \in]0, 1[, \phi(1) = \phi(0) + \phi'(\theta),$$

pourquoi?

4. En déduire que

$$\exists \theta \in]0,1[\text{ tel que } f(x_0+h,y_0+k) = f(x_0,y_0) + h \frac{\partial f}{\partial x}(x_0+\theta h,y_0+\theta k) + k \frac{\partial f}{\partial y}(x_0+\theta h,y_0+\theta k)$$

Solution

Sommaire Concepts

Exercice A.1.30 Chap1-Exercice30

f est une fonction 2 fois continûment différentiable sur \mathbb{R}^2 , on définit $\phi(t) = f(x_0 + ht, y_0 + kt)$.

- 1. Calculer $\phi''(t)$.
- 2. Démontrer la formule de Taylor à l'ordre 2.

Solution

Sommaire Concepts

Exercice A.1.31 Chap1-Exercice31

Quelle est l'approximation au premier ordre de l'aire d'un rectangle de longueur $L+\triangle L$ et de largeur $l+\triangle l$.

Montrer que l'aire exacte diffère de l'aire approchée d'un infiniment petit d'ordre $\triangle l\triangle L$

Solution

Sommaire Concepts

Exercice A.1.32 Chap1-Exercice32

Appliquer le théorème I.1.5 à la fonction $f(x,y)=x^2+y^2-1$. En quels points la condition (I.1.2) est-elle satisfaite? Déterminer ϕ dans ces cas. Que faire quand la condition (I.1.2) n'est pas satisfaite?

Solution

Sommaire Concepts

Exercice A.1.33 Chap1-Exercice33

On définit $f(x,y)=x^2+y^2(1+\alpha)-2xy-2\alpha y+\alpha$ où α est un paramètre réel.

- 1. En oncer les conditions nécessaires d'optimalité. Déterminer leur solution x^*, y^* .
- 2. (x^*, y^*) est-il un extremum? Discuter suivant les valeurs du paramètre α . Solution

Sommaire Concepts

Exercice A.1.34 Chap1-Exercice34

Appliquer la définition de la différentiabilité I.2.2 avec n=2, montrer que l'on retrouve bien la définition I.1.8

Solution

Sommaire Concepts

Exercice A.1.35 Chap1-Exercice35

Calculer les dérivées partielles de la fonction de 3 variables

$$f(x, y, z) = x^2 y z^5 + x z^2 + y^3$$

Solution

Sommaire Concepts

Exercice A.1.36 Chap1-Exercice36

Montrer que la proposition I.2.1 est une généralisation des 3 propositions du paragragraphe "Composition et dérivation". Reprendre ces propositions et préciser ce que vaut n, p et quelles sont les fonctions utilisées.

Solution

Sommaire Concepts

Exercice A.1.37 Chap1-Exercice37

1. On rappelle les formules qui permettent d'obtenir les coordonnées cartésiennes à partir des coordonnées cylindriques :

$$\begin{cases} x = a(r, \theta, z) = r \cos \theta, & r \in \mathbb{R}^+, \\ y = b(r, \theta, z) = r \sin \theta, & \theta \in [0, 2\pi[, \\ z = c(r, \theta, z) = z, & z \in \mathbb{R}. \end{cases}$$

Soit f une fonction différentiable définie sur \mathbb{R}^3 , on note $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$ ses dérivées partielles.

On définit

$$\psi(r, \theta, z) = f(a(r, \theta, z), b(r, \theta, z), c(r, \theta, z))$$

Caculer les dérivées partielles de ψ à l'aide des dérivées partielles de f.

2. Même question avec les coordonnées sphériques

$$\begin{cases} a(\rho, \theta, \phi) = \rho \cos \theta \cos \phi, & \rho \in \mathbb{R}^+, \\ b(\rho, \theta, \phi) = \rho \sin \theta \cos \phi, & \theta \in [0, 2\pi[, \\ c(\rho, \theta, \phi) = \rho \sin \phi, & \phi \in [\frac{-\pi}{2}, \frac{\pi}{2}]. \end{cases}$$

Solution

Sommaire Concepts

A.2 Exercices de TD

A.2.1	la science du remplacement	Į.
A.2.2	domaine de définition	5
A.2.3	continuité	3
A.2.4	continuité	7
A.2.5	continuité	3
A.2.6	continuité)
A.2.7	dérivées directionnelles et différentiation 100	0
A.2.8	continuité et dérivées directionnelles 10	1
A.2.9	dérivées partielles	2
A.2.10	dérivées partielles	3
A.2.11	dérivées partielles	4
A.2.12	interprétation géométrique de la différentielle 108	5
A.2.13	différentielle, définition	6
A.2.14	calcul de différentielles	3
A.2.15	calcul de différentielles 109	9
A.2.16	forme générale des solutions de l'équation des ondes . 110	0
A.2.17	passage en polaires et calcul des drivées partielles 11	1
A.2.18	théorème de Schwarz	2
A.2.19	intégrer une différentielle?	3
A.2.20	fonctions implicites	4

Sommaire Concepts

Exercices
Documents

section	précédente	chapitre 🛦		
A.2.22	fonctions implicites développement de Taylo développement de Taylo	or	 	117

Sommaire Concepts

Exemples

Exercices Documents

Exercice A.2.1 la science du remplacement

Soit $f(x,y) = x^2 - 4xy + 3y^2$. Calculer les expressions suivantes :

- 1. f(-2,3)
- **2.** f(x,x)
- 3. $f(\frac{1}{y}, \frac{2}{x})$
- 4. $\forall h \neq 0$, $\frac{f(x+h,y)-f(x,y)}{h}$

Sommaire Concepts

Exercice A.2.2 domaine de définition

Déterminer (et on fera un beau dessin) le domaine de définition des fonctions suivantes :

1.
$$f(x,y) = \ln((9 - x^2 - y^2)(x^2 + y^2 - 1))$$

2.
$$f(x,y) = \sqrt{6 - (2x + 3y)}$$

Sommaire Concepts

Exercice A.2.3 continuité

Etudier la continuité des fonctions de 2 variables suivantes en tout point $(x_0, y_0) \in \mathbb{R}^2$ (utiliser des théorèmes sur les sommes, produits, ..., de fonctions continues pour traiter rapidement le cas $(x_0, y_0) \neq (0, 0)$, on s'attardera sur le cas problématique $(x_0, y_0) = (0, 0)$).

(1)
$$\begin{cases} f(x,y) = \frac{x}{x^2 + y^2} &, \forall (x,y) \neq (0,0) \\ f(0,0) = 0 & \end{cases}$$

(2)
$$\begin{cases} f(x,y) = \frac{x^2}{x^2 + y^2} , \ \forall (x,y) \neq (0,0) \\ f(0,0) = 0 \end{cases}$$

(3)
$$\begin{cases} f(x,y) = \frac{x^3}{x^2 + y^2} , \forall (x,y) \neq (0,0) \\ f(0,0) = 0 \end{cases}$$

(4)
$$\begin{cases} f(x,y) = \frac{y^2}{x} &, si \ x \neq 0 \\ f(0,0) = 0 & \end{cases}$$

$$(5) \begin{cases} f(x,y) = \frac{1-\cos\sqrt{x^2+y^2}}{x^2+y^2} &, \ \forall (x,y) \neq (0,0) \\ f(0,0) = \frac{1}{2} & \end{cases} (6) \begin{cases} f(x,y) = \frac{1-\cos x}{x^2+y^2} &, \ \forall (x,y) \neq (0,0) \\ f(0,0) = \frac{1}{2} & \end{cases}$$

(6)
$$\begin{cases} f(x,y) = \frac{1-\cos x}{x^2+y^2} , \ \forall (x,y) \neq (0,0) \\ f(0,0) = \frac{1}{2} \end{cases}$$

Sommaire Concepts

Exercices Documents

Exercice A.2.4 continuité

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction continue au point $x = (x_1, \dots, x_n) \in \mathbb{R}^n$.

- 1. On suppose que f(x) > 0. Montrer qu'il existe alors un voisinage V de x tel que f(t) > 0 pour tout $t \in V$.
- 2. On suppose que f(x) < 0. Que dire de f(t) pour t voisin de x?
- 3. On suppose que $f(x) \neq 0$. Que dire de f(t) pour t voisin de x?
- 4. On suppose que f(x) = 0. Que dire de f(t) pour t voisin de x?

Sommaire Concepts

Exercice A.2.5 continuité

Soit
$$f(x,y) = \frac{x+y}{x-y}$$
.

- 1. Calculer $\lim_{x\to 1} (\lim_{y\to 0} f(x,y))$, puis $\lim_{y\to 0} (\lim_{x\to 1} f(x,y))$.
- 2. Calculer $\lim_{x\to 0} (\lim_{y\to 0} f(x,y))$, puis $\lim_{y\to 0} (\lim_{x\to 0} f(x,y))$.
- 3. Expliquer en étudiant la continuité de f. Proposer une définition pour la limite double

$$\lim_{x \to x_0} f(x, y)$$
$$y \to y_0$$

Sommaire Concepts

Exercice A.2.6 continuité

Soit $A = \{(x, y) \in \mathbb{R}^2; x > 0 \text{ et } 0 < y < x^2\}.$

- 1. Montrer que toute droite passant par (0,0) contient un intervalle ouvert contenant (0,0) et contenu dans $\mathbb{R}^2 \setminus A$.
- 2. On définit $f: \mathbb{R}^2 \to \mathbb{R}$ par f(x) = 0 si $x \notin A$ et f(x) = 1 si $x \in A$. Pour tout $h \in \mathbb{R}^2$, on définit $g_h: \mathbb{R} \to \mathbb{R}$ par $g_h(t) = f(th)$. Montrer que chaque g_h est continu en 0, mais que f n'est pas continu en (0,0).

Sommaire Concepts

Exercice A.2.7 dérivées directionnelles et différentiation

Soit $f: \mathbb{R}^n \to \mathbb{R}$. On rappelle que si, pour $a, x \in \mathbb{R}^n$, la limite

$$\lim_{t \to 0} \frac{f(a+tx) - f(a)}{t}$$

existe, on l'appelle dérivée directionnelle de f en a dans la direction x et on la note $D_x f(a)$.

- 1. Montrer que $D_{e_i}f(a) = \frac{\partial f}{\partial x_i}$.
- 2. Montrer que $D_{tx}f(a) = tD_xf(a)$.
- 3. Si de plus f est différentiable en a, montrer que $D_x f(a) = df(a)x$. En déduire que $D_{x+y} f(a) = D_x f(a) + D_y f(a)$.

Sommaire Concepts

Exercice A.2.8 continuité et dérivées directionnelles

Soit la fonction définie par

$$\begin{cases} f(x,y) = \frac{x^2y}{x^4 + y^2} &, si \ (x,y) \neq (0,0) \\ f(0,0) = 0 & \end{cases}$$

- 1. Montrer que f admet à l'origine des dérivées dans toutes les directions.
- 2. Montrer que f n'est pas continue à l'origine.
- 3. Conclure.

Sommaire Concepts

Exercice A.2.9 dérivées partielles

Soit la fonction définie par $f(x,y)=x^3y+e^{xy^2}$. Calculer les dérivées partielles $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$, $\frac{\partial^2 f}{\partial y \partial x}$, Commenter l'égalité des deux derniers résultats.

Sommaire Concepts

Exercice A.2.10 dérivées partielles

Soit la fonction définie par

$$\begin{cases} f(x,y) = \frac{xy}{x^2 + y^2} &, si \ (x,y) \neq (0,0) \\ f(0,0) = 0 & \end{cases}$$

- 1. Calculer $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial y}(0,0)$.
- 2. f est-elle continue à l'origine? Commenter.

Sommaire Concepts

Exercice A.2.11 dérivées partielles

Montrer que la fonction définie par $f(x,y,z)=\sqrt{x^2+y^2+z^2}$ vérifie l'équation de Laplace dans $\mathbb{R}^3\setminus 0$.

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$$

(Une telle équation s'appelle équation aux dérivées partielles)

Sommaire Concepts

Exercice A.2.12 interprétation géométrique de la différentielle

Soit la fonction

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $M \longmapsto f(M) = x^2y - 3y$

et examinons le graphe de f autour du point $M_0 = (2, 1)$.

- 1. Déterminer l'équation de la coupe du graphe de f par le plan d'équation x=2. Calculer le coefficient directeur de la tangente à cette courbe au point de coordonnée y=1. Faire un dessin.
- 2. Déterminer l'équation de la coupe du graphe de f par le plan d'équation y=1. Calculer le coefficient directeur de la tangente à cette courbe au point de coordonnée x=2. Faire un dessin.
- 3. Calculer $df(M_0)$. Donner l'équation du plan tangent au graphe de f en M_0 . Donner une base de ce plan.

Sommaire Concepts

Exercice A.2.13 différentielle, définition

Soit une fonction $f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^q$. On dit que f est bilinéaire si $\forall x, x_1, x_2 \in \mathbb{R}^p$, $\forall y, y_1, y_2 \in \mathbb{R}^p$, $\forall \lambda \in \mathbb{R}$, on a

$$f(\lambda x, y) = \lambda f(x, y) = f(x, \lambda y)$$

$$f(x_1 + x_2, y) = f(x_1, y) + f(x_2, y)$$

$$f(x, y_1 + y_2) = f(x, y_1) + f(x, y_2)$$

Ou autrement dit f est linéaire par rapport à chacune de ses deux variables $x \in \mathbb{R}^n$ et $y \in \mathbb{R}^p$.

1. Montrer que si f est bilinéaire, alors

$$|f(h,k)| \le |h| |k| \sum_{i=1}^{n} \sum_{j=1}^{p} |f(e_i, u_j)|$$

où $(e_i)_{i=1,\dots,p}$ est la base canonique de \mathbb{R}^n et $(u_j)_{j=1,\dots,p}$ celle de \mathbb{R}^p . En déduire que

$$\lim_{(h,k)\to(0,0)} \frac{|f(h,k)|}{|(h,k)|} = 0$$

2. Montrer que si f est bilinéaire, alors elle est différentiable et df(a,b)(h,k) = f(a,k) + f(h,b). Commenter l'analogie avec la formule donnant la dérivée d'un produit de fonctions dérivables, bien connue dans le cas d'une seule variable réelle.

Sommaire Concepts

- 3. En déduire les différentielles des applications suivantes :
 - produit scalaire dans \mathbb{R}^3

$$p: \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}$$

 $(u, v) \longmapsto p(u, v) = u \cdot v$

– produit vectoriel dans \mathbb{R}^3

$$b: \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
$$(u, v) \longmapsto b(u, v) = u \wedge v$$

Exercice A.2.13 différentielle, définition

Sommaire Concepts

Exercices Documents

Exercice A.2.14 calcul de différentielles

Calculer la différentielle (là où elle existe) des fonctions suivantes :

- 1. $f(x,y) = \sin(xy)$
- $2. \ f(x,y) = \sin(x\sin y)$
- 3. $f(x,y) = x^y$
- 4. $f(x, y, z) = x^y$ (ce n'est pas une erreur d'énoncé)
- 5. $f(x, y, z) = x^{y+z}$
- **6.** $f(x, y, z) = \sin(x\sin(y\sin z))$

Sommaire Concepts

Exercice A.2.15 calcul de différentielles

Dans ce qui suit, f, g, h, k sont des fonctions différentiables. Dans chacun des cas suivants, dire pourquoi F est différentiable et calculer sa différentielle.

- 1. F(x,y) = f(x+y)
- **2.** F(x,y) = f(g(x)k(y), g(x) + h(y))
- 3. F(x, y, z) = f(g(x + y), h(y + z))
- **4.** F(x,y) = f(x,g(x),h(x,y))
- **5.** F(x,y) = f(g(x,y), h(x), k(y))

Sommaire Concepts

Exercice A.2.16 forme générale des solutions de l'équation des ondes

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^2 solution de l'équation aux dérivées partielles suivante, dite équation des ondes,

$$\frac{\partial^2 f}{\partial t^2} - c^2 \frac{\partial^2 f}{\partial x^2} = 0$$

dans laquelle c est une constante réelle positive qu'on interprête comme une vitesse.

1. Si on considère deux réels non nuls α et β , on peut faire le changement de variable suivant

$$t = \alpha(u+v)$$

$$x = \beta(u - v)$$

et on pose $\phi(u,v)=f(\alpha(u+v),\beta(u-v))$. Montrer qu'il est possible de choisr α et β de telle sorte que l'équation des ondes devienne

$$\frac{\partial^2 \phi}{\partial u \partial v} = 0$$

- 2. Résoudre cette équation en ϕ .
- 3. En déduire que la forme générale des solutions de l'équation des ondes est

$$f(t,x) = g(x+ct) + h(x-ct)$$

Sommaire Concepts

Exercice A.2.17 passage en polaires et calcul des drivées partielles

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x,y) = (x^2 + y^2)^{3/2}$.

- 1. Calculer $\frac{\partial^2 f}{\partial x^2}$.
- 2. On utilise les coordonnées polaires habituelles pour exprimer $g(r,\theta) = f(r\cos\theta, r\sin\theta)$. Calculer $\frac{\partial g}{\partial r}$ et $\frac{\partial g}{\partial \theta}$. En déduire une expression de $\frac{\partial f}{\partial x}$ en fonction de r et θ que l'on notera $g_1(r,\theta)$.
- 3. De même, calculer $\frac{\partial g_1}{\partial r}$ et $\frac{\partial g_1}{\partial \theta}$, puis en déduire une expression de $\frac{\partial f^2}{\partial x^2}$ en fonction de r et θ . Comparer avec l'expression obtenue en 1.

Sommaire Concepts

Exercice A.2.18 théorème de Schwarz

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$\begin{cases} f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2} , si (x,y) \neq (0,0) \\ f(0,0) = 0 \end{cases}$$

- 1. Montrer que $\frac{\partial f}{\partial x}(0,y)=-y$ pour tout y et que $\frac{\partial f}{\partial y}(x,0)=x$ pour tout x.
- 2. Calculer $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ et $\frac{\partial^2 f}{\partial y \partial x}(0,0)$.
- 3. Commenter ce résultat en utilisant le théorème de Schwarz.

Sommaire Concepts

Exercice A.2.19 intégrer une différentielle?

- 1. De quelle fonction l'expression $(3x^2y 2y^2)dx + (x^3 4xy + 6y^2)dy$ est-elle la différentielle.
- 2. Donner une condition nécessaire pour P(x,y)dx + Q(x,y)dy soit la différentielle d'une fonction de classe \mathcal{C}^2 . Vérifier cette condition dans l'exemple précédent.

Sommaire Concepts

Exercice A.2.20 fonctions implicites

Soit $F: \mathbb{R}^3 \to \mathbb{R}$ une fonction différentiable.

1. Si on suppose que l'équation F(x, y, z) = 0 définit une fonction z(x, y), montrer (sans utiliser les résultats du théorème des fonctions implicites) que

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}$$
$$\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}$$

dès que $\frac{\partial F}{\partial z} \neq 0$.

- 2. Quelle condition suffit-il d'imposer à F pour que l'équation F(x,y,z)=0 définisse une fonction z(x,y) (utiliser le théorème des fonctions implicites)?
- 3. En thermodynamique, on rencontre fréquemment une équation liant température, volume et pression d'un gaz du type F(P,V,T)=0. En utilisant le théorème des fonctions implicites (on fera les hypothèses qui vont bien ...), montrer que :

Sommaire Concepts

Vérifier ces relations pour la loi des gaz parfaits PV = nRT où n et R sont des constantes.

4. Ecrire (et justifier) des relations analogues dans le cas d'une équation d'état à quatre variables F(x, y, z, t) = 0.

Exercice A.2.20fonctions implicites

Sommaire Concepts

Exercice A.2.21 fonctions implicites

Si $U=x^3y$, déterminer $\frac{dU}{dt}$ dans le cas où on a les relations

$$\begin{cases} x^5 + y = t \\ x^2 + y^3 = t^2 \end{cases}$$

Sommaire Concepts

Exercice A.2.22 développement de Taylor

- 1. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^3 . Pour $(x_0,y_0) \in \mathbb{R}^2$ et $(h,k) \in \mathbb{R}^2$, on définit $\phi(t) = f(x_0 + th, y_0 + tk)$. Ecrire la formule de taylor à l'ordre 3 pour ϕ en t=0. On écrira les dérivées de ϕ à l'aide de dérivées partielles de f. Que dire du reste?
- 2. Soit $f(x,y) = x^2y + 3y 2$. En utilisant un développement de Taylor à l'ordre 3, développer f(x,y) en puissance de (x-1) et (y+2).
- 3. Développer f(x,y) = f(x-1+1,y+2-2) pour retrouver le même résultat. Cette astuce convient-elle pour toute fonction de classe \mathcal{C}^3 ?

Sommaire Concepts

Exercice A.2.23 développement de Taylor et extrema

- 1. Déterminer les extrema (locaux) de $f(x,y)=x^3+y^3-3x-12y+20$. Dans chaque cas, dire s'il s'agit d'un minimum ou d'un maximum.
- 2. Peut-on faire de même avec la fonction $f(x,y) = x^3 + y^3 3x 12y + 20\cos(xy)$?

Sommaire Concepts

→ précédent

Annexe B Documents

> Sommaire Concepts

chapitre 🛦

Document B.1 Théorème des fonctions implicites

Théorème B.0.1 Soit f une fonction $\mathbb{R}^2 \longrightarrow \mathbb{R}$ continûment différentiable, soit (x_0, y_0) un point tel que $f(x_0, y_0) = 0$.

On suppose que

$$\frac{\partial f}{\partial y}(x,y) \neq 0 \ dans \ un \ voisinage \ de \ (x_0,y_0)$$
 (B.1)

Alors il existe un voisinage V de (x_0, y_0) de la forme $I \times J$ où I et J désignent des intervalles de $\mathbb R$ et une fonction $\phi: I \longrightarrow \mathbb R$ tels que pour tout $(x,y) \in I \times J$ on ait l'équivalence :

$$f(x,y) = 0 \iff y = \phi(x)$$

Si de plus la fonction f est différentiable, alors la fonction ϕ est dérivable sur I et sa dérivée est donnée par :

$$\phi'(x) = -\frac{\frac{\partial f}{\partial x}(x, \phi(x))}{\frac{\partial f}{\partial y}(x, \phi(x))}.$$
(B.2)

Démonstration:

On suppose donc que la fonction ϕ existe, qu'elle est continue, et on veut montrer que ϕ est dérivable en tout point $a \in I$. Grâce aux hypothèses faites sur f, on peut écrire pour $x \neq 0$ assez petit :

$$f(a+x,\phi(a+x)) = f(a,\phi(a)) + x\frac{\partial f}{\partial x}(x',y') + \left[\phi(a+x) - \phi(a)\right] \frac{\partial f}{\partial y}(x',y')$$

Sommaire Concepts

avec $x' = a + \theta x$, $y' = (1 - \theta)\phi(a) + \theta\phi(a + x)$, avec $0 < \theta < 1$. Mais, comme

$$f(a+x,\phi(a+x)) = f(a,\phi(a)) = 0$$

on a, après division par x,

$$\frac{\partial f}{\partial x}(x',y') + \frac{\phi(a+x) - \phi(a)}{x} \frac{\partial f}{\partial y}(x',y') = 0.$$

Les dérivées partielles de f étant continues, on peut supposer, grâce à (B.1), que pour $M'(x',y') \in I \times J$ on a également $\frac{\partial f}{\partial y}(M') \neq 0$ et donc

$$\frac{\phi(a+x) - \phi(a)}{x} = -\frac{\frac{\partial f}{\partial x}(x', y')}{\frac{\partial f}{\partial y}(x', y')}$$

On peut alors passer à la limite, quand x tend vers 0, sur cette dernière relation, ce qui donne l'expression (B.2). Il faut noter que ce passage à la limite est licite grâce au fait que $y' \to \phi(a)$ quand $x \to 0$, ce qui résulte de la continuité de ϕ .

Document B.1

Théorème des fonctions implicites

Sommaire Concepts

Index des concepts

tion de plusieurs variables . . 48

est défini; l'italique indique un renvoi à un exercice ou un exemple, le gras italique à un document, et le romain à un grain où le concept est mentionné.	Continuité-étude 15	
C Calcul approché	Dérivées partielles	
Composition et continuité	Dérivées partielles d'ordre supérieur27 Différentiabilité	Sommaire Concepts
24 Continuité et différentiabilité d'une fonc	Extrema41	Exemples Exercices Documents
12	22	

Le gras indique un grain où le concept

Extrema d'une fonction de plusieurs va- riables <mark>51</mark>
Fonctions implicites38
Notations 6
T Taylor34
Topologie
Topologie

Sommaire Concepts

- 1. Il faut $y > \frac{x}{2}$
- 2. Il faut $|x| \le 2$ et $|y| \le 1$

- 1. E est ouvert.
- 2. F est fermé, puisque $B^c = \{(x,y) \in \mathbb{R}^2, x < 1\}$ est ouvert.
- 3. G n'est ni ouvert, ni fermé.
- 4. \emptyset et \mathbb{R}^2 sont ouverts, et comme ils sont complémentaires, ils sont aussi fermés.

Voir exercice précédent.

- 1. $\rho = \min(\rho_1, \rho_2) > 0$
- **2.** $\rho = \min(\rho_1, \dots, \rho_n) > 0$
- 3. Non, car la suite des ρ_n n'a pas forcément de minorant <u>strictement</u> positif.
- 4. Comme $A \in \mathcal{O}_i$ pour tout i, on a $A \in \bigcap_{i=1}^{\infty} \mathcal{O}_i$. D'autre part, si $B \in \bigcap_{i=1}^{\infty} \mathcal{O}_i$, on a $||B A|| \leq \frac{1}{i}$ pour tout i, et donc B = A.

L'ensemble $\{A\}$ n'est pas ouvert car il n'existe pas de $\rho>0$ tel que la boule de centre A et de rayon ρ soit incluse dans $\{A\}$. Par ce contre-exemple, on a montré qu'une intersection d'un nombre infini d'ouverts n'est pas forcément ouverte.

Par définition (revoir MT21), $f:\mathbb{R} \to \mathbb{R}$ est continue en $a \in \mathbb{R}$ si

$$\forall \epsilon > 0, \exists \eta > 0, \quad |x - a| < \eta \Longrightarrow |f(x) - f(a)| < \epsilon$$

Soit $\epsilon > 0$. Comme $|f(x,y)| < \epsilon$ dès que $||(x,y)|| = \sqrt{x^2 + y^2} < \sqrt{\epsilon}$, on a

$$\forall \epsilon > 0, \quad ||(x,y) - (0,0)|| < \sqrt{\epsilon} \Longrightarrow |f(x,y) - f(0,0)| < \epsilon$$

Ce qui prouve la continuité de f en (0,0).

Soit $\epsilon > 0$. Comme f est continue en $M_0 = (x_0, y_0)$, il existe $\eta > 0$ tel que $||\overrightarrow{M_0M}|| < \eta \Longrightarrow |f(M) - f(M_0)| < \epsilon$. En particulier, on a

$$|x - x_0| < \eta \Longrightarrow ||(x, y_0) - (x_0, y_0)|| < \eta \Longrightarrow |f_1(x) - f_1(x_0)| < \epsilon$$

. Pareil pour f_2 .

En effet, $f(1, y_0) = 2$ mais $\forall \eta > 0$, $f(1 + \eta, y_0) = 1$ et $||(1 + \eta, y_0) - (1, y_0)|| = \eta$, ce qui contredit la définition de la continuité au point $(1, y_0)$.

On pouvait aussi invoquer le critère de non-continuité : la fonction

$$f_1(x) = f(x, y_0) = 2 \quad si \quad x \le 1$$

1 $si \quad x > 1$

n'est pas continue en x = 1, donc f n'est pas continue en $(1, y_0)$.

En effet, $f_1(x) = f(x, y_0) = f(\alpha(x), \beta(x))$ avec $\alpha(x) = x$ et $\beta(x) = y_0$ qui sont 2 fonctions continues d'une variable réelle.

On applique la définition. Soit $\widetilde{\epsilon} > 0$. Comme $\lim_{r \to 0} \epsilon(r) = 0$, il existe $\eta > 0$ tel que $r < \eta \Longrightarrow \epsilon(r) < \widetilde{\epsilon}$. Et donc :

$$r = ||\overrightarrow{M_0M}|| < \eta \Longrightarrow |f(M) - f(M_0)| < \widetilde{\epsilon}$$

1.
$$f(M) - f(O) = \frac{r^3 \cos^3 \theta r \sin \theta}{r^2} \le r^2$$

2. Appliquer le critère donné en proposition I.1.8.

- 1. $\phi(t)=f(t,0)=0, \ \forall t\neq 0 \ \text{et} \ \phi(0)=0.$ ϕ est continue en 0. On ne peut rien dire quant à la continuité de f.
- 2. $\phi(t) = f(t,t) = \frac{1}{2}$, $\forall t \neq 0$ et $\phi(0) = 0$. ϕ n'est pas continue en 0. Par suite, f n'est pas continue en (0,0).

f n'est pas continue en (0,0) car $\phi(t)=f(t,t^3)=\frac{1}{t}, \ \ \forall t \neq 0$ n'est pas continue en 0.

 $f(x,y)-f(0,0)=x^2+y^2=||(x,y)||^2$. Donc f est différentiable en (0,0) et A=B=0.

1. En utilisant $|h| < \sqrt{h^2 + k^2}$ et $|k| < \sqrt{h^2 + k^2}$, on obtient :

$$|\varepsilon(h,k)| \le (|y_0| + 2|x_0| + \sqrt{h^2 + k^2}) \sqrt{h^2 + k^2}$$

qui tend vers 0 quand (h, k) tend vers (0, 0).

2.

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = (x_0 + h)^2(y_0 + k) - x_0^2 y_0 = \underbrace{2x_0 y_0}_{A} h + \underbrace{x_0^2}_{B} k + \underbrace{2x_0 hk + y_0 h^2 + h^2 k}_{\sqrt{h^2 + k^2} \varepsilon(h, k)}$$

Comme f est différentiable en (x_0, y_0) ,

$$f(x,y) = f(x_0, y_0) + \frac{\partial f}{\partial x}(M_0)(x - x_0) + \frac{\partial f}{\partial y}(M_0)(y - y_0) + ||\overrightarrow{M_0M}|| \epsilon(M - M_0)$$

En particulier, pour $y = y_0$, on obtient :

$$f_1(x) = f_1(x_0) + \frac{\partial f}{\partial x}(M_0)(x - x_0) + |x - x_0|\epsilon(x - x_0)$$

ce qui prouve que f_1 est dérivable en x_0 et que $\frac{df_1}{dx}(x_0) = \frac{\partial f}{\partial x}(M_0)$. Pareil pour f_2 en prenant $x = x_0$.

1.
$$\frac{\partial f}{\partial x}(M_0) = 3x_0^2 y_0^5$$
, $\frac{\partial f}{\partial y}(M_0) = 5x_0^3 y_0^4$

2.
$$\frac{\partial f}{\partial x}(M_0) = y_0^2 \cos(x_0 y_0^2)$$
, $\frac{\partial f}{\partial y}(M_0) = 2x_0 y_0 \cos(x_0 y_0^2)$

- 1. Pour tout $x \neq 0$, on a $\frac{f(x,0)}{x} = 0$. Par suite $\frac{\partial f}{\partial x}(0,0) = 0$. Pareil pour $\frac{\partial f}{\partial y}(0,0) = 0$.
- 2. Pour $M_0 = (x_0, y_0) \neq (0, 0)$, il n'y a aucun problème à utiliser les formules habituelles de dérivation. On obtient :

$$\frac{\partial f}{\partial x}(M_0) = \frac{(x_0^2 + y_0^2)y_0 - 2x_0^2y_0}{(x_0^2 + y_0^2)^2} = \frac{y_0(y_0^2 - x_0^2)}{(x_0^2 + y_0^2)^2}$$
$$\frac{\partial f}{\partial y}(M_0) = \frac{(x_0^2 + y_0^2)x_0 - 2x_0y_0^2}{(x_0^2 + y_0^2)^2} = \frac{x_0(x_0^2 - y_0^2)}{(x_0^2 + y_0^2)^2}$$

Observer le rôle symétrique de x et y.

(Re)voir l'exercice A.1.16.

En effet, puisque f est différentiable au point $M_0 = (x_0, y_0)$,

$$f(x_0 + h, y_0 + k) - f(M_0) = \frac{\partial f}{\partial x}(M_0)h + \frac{\partial f}{\partial y}(M_0)k + \sqrt{h^2 + k^2}\epsilon(h, k)$$

tend vers 0 quand (h, k) tend vers (0, 0).

f n'étant pas continue en (0,0) (voir l'exercice A.1.12), elle ne peut pas y être différentiable.

- 1. condition nécessaire : f continue en (x_0, y_0) .
- 2. condition suffisante : $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ existent dans un voisinage de (x_0, y_0) et sont continues en (x_0, y_0) .

 $4 \Longrightarrow 2$, $2 \Longrightarrow 1$, $2 \Longrightarrow 3$

Attention : le fait que f admette des dérivées partielles en (x_0, y_0) n'indique rien sur la continuité de f en (x_0, y_0) . A ce propos, méditer le contre-exemple formé par les exercices A.1.12 et A.1.18 .

$$\frac{\partial f}{\partial x} = 2y^3 \qquad \frac{\partial^2 f}{\partial x^2} = 0 \qquad \frac{\partial^2 f}{\partial y \partial x} = 6y^2$$
$$\frac{\partial f}{\partial y} = 6xy^2 \qquad \frac{\partial^2 f}{\partial y^2} = 12xy \qquad \frac{\partial^2 f}{\partial x \partial y} = 6y^2$$

Voir le théorème de Schwarz concernant l'égalité $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$.

1. ϕ est dérivable car composée d'applications différentiables. Pour calculer sa dérivée, on applique la formule de différentiation d'une composée d'applications (voir le cas 1 du poly, ou utiliser la chain rule du cours donné en amphi) :

$$\phi'(t) = -\frac{\partial f}{\partial x}(\cos t, \sin t)\sin t + \frac{\partial f}{\partial y}(\cos t, \sin t)\cos t$$

2. Pour $f(x,y)=x^2+y^2$, on a $\frac{\partial f}{\partial x}=2x$ et $\frac{\partial f}{\partial y}=2y$. En remplaçant dans l'expression ci-dessus, on trouve $\phi'(t)=-2\cos t\sin t+2\sin t\cos t=0$. C'est bien rassurant puisque $\phi(t)=\cos^2 t+\sin^2 t=1$ pour tout $t\in\mathbb{R}$.

Il s'agit encore du cas 1 du poly. Par le théorème de différentiation des fonctions composées, ϕ est dérivable et

$$\phi'(t) = \frac{\partial f}{\partial x}(M)h + \frac{\partial f}{\partial y}(M)k$$

où on a posé $M = (x_0 + th, y_0 + tk)$.

Par le théorème de différentiation des fonctions composées, ψ est différentiable et (voir le cas 2 du poly, ou utiliser la chain rule du cours donné en amphi) :

$$\frac{\partial \psi}{\partial u}(u,v) = 2u \frac{\partial f}{\partial x}(u^2 - v^2, uv) + v \frac{\partial f}{\partial y}(u^2 - v^2, uv)$$

$$\frac{\partial \psi}{\partial v}(u,v) = -2v \frac{\partial f}{\partial x}(u^2 - v^2, uv) + u \frac{\partial f}{\partial y}(u^2 - v^2, uv)$$

1.

$$\begin{array}{lcl} \frac{\partial \psi}{\partial r}(r,\theta) & = & \frac{\partial f}{\partial x}(r\cos\theta,r\sin\theta)\cos\theta + \frac{\partial f}{\partial y}(r\cos\theta,r\sin\theta)\sin\theta \\ \frac{\partial \psi}{\partial \theta}(r,\theta) & = & -\frac{\partial f}{\partial x}(r\cos\theta,r\sin\theta)r\sin\theta + \frac{\partial f}{\partial y}(r\cos\theta,r\sin\theta)r\cos\theta \end{array}$$

2. Pour $r \neq 0$, on peut résoudre ce système d'inconnues $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$. On trouve (procéder par élimination) :

$$\frac{\partial f}{\partial x}(r\cos\theta, r\sin\theta) = \cos\theta \frac{\partial \psi}{\partial r}(r, \theta) - \frac{\sin\theta}{r} \frac{\partial \psi}{\partial \theta}(r, \theta)$$
$$\frac{\partial f}{\partial y}(r\cos\theta, r\sin\theta) = \sin\theta \frac{\partial \psi}{\partial r}(r, \theta) + \frac{\cos\theta}{r} \frac{\partial \psi}{\partial \theta}(r, \theta)$$

1. $\phi(0) = f(x_0, y_0)$ et $\phi(1) = f(x_0 + h, y_0 + k)$.

2.

$$\phi'(t) = \frac{\partial f}{\partial x}(x_0 + ht, y_0 + kt)h + \frac{\partial f}{\partial y}(x_0 + ht, y_0 + kt)k$$

3. Comme ϕ est continue sur [0,1] et dérivable sur]0,1[, par le théorème des accroissements finis (revoir MT21)

$$\exists \theta \in]0,1[,\phi(1) = \phi(0) + \phi'(\theta)$$

4. Il suffit de regrouper les résultats précédents.

1. On rappelle (voir exercice précédent) :

$$\phi'(t) = \frac{\partial f}{\partial x}(x_0 + ht, y_0 + kt)h + \frac{\partial f}{\partial x}(x_0 + ht, y_0 + kt)k$$

On re-dérive et on obtient en utilisant le théorème de schwarz pour la seconde égalité (et en notant $M = (x_0 + ht, y_0 + kt)$):

$$\phi''(t) = \frac{\partial^2 f}{\partial x^2}(M)h^2 + \frac{\partial^2 f}{\partial y \partial x}(M)hk + \frac{\partial^2 f}{\partial y^2}(M)k^2 + \frac{\partial^2 f}{\partial x \partial y}(M)hk$$
$$\phi''(t) = \frac{\partial^2 f}{\partial x^2}(M)h^2 + 2\frac{\partial^2 f}{\partial x \partial y}(M)hk + \frac{\partial^2 f}{\partial y^2}(M)k^2$$

2. Il suffit d'appliquer Taylor à l'ordre 2 à ϕ entre 0 et 1 (même technique qu'à l'exercice précédent).

En effet,

$$(L + \triangle L)(l + \triangle l) = Ll + l\triangle L + L\triangle l + \triangle L\triangle l$$

(reconnaître d(Ll) = ldL + Ldl).

 $\frac{\partial f}{\partial y}(x,y)=2y\neq 0$ pour tout $y\neq 0.$ Dans ce cas :

$$y = \sqrt{1-x^2}$$
 au voisinage de $y_0 > 0$
 $y = -\sqrt{1-x^2}$ au voisinage de $y_0 < 0$

Au voisinage de $(x_0, y_0) = (1, 0)$ ou de $(x_0, y_0) = (-1, 0)$, on ne peut pas exprimer y comme une fonction de x. Par contre, on peut ici exprimer x comme fonction de y.

1. Les conditions nécessaires d'optimalité s'écrivent :

$$\frac{\partial f}{\partial x}(x,y) = 2x - 2y = 0$$

$$\frac{\partial f}{\partial y}(x,y) = 2(1+\alpha)y - 2x - 2\alpha = 0$$

Elles n'ont ici qu'une seule solution $(x^*, y^*) = (1, 1)$.

2. On a toujours f(1,1) = 0 et $f(x,y) = (x-y)^2 + \alpha(y-1)^2$. On voit alors que pour $\alpha \ge 0$, le point (1,1) est bien un minimum, mais si $\alpha < 0$, (1,1) n'est pas un extremum.

Si vous n'y parvenez pas, c'est sans doute parce que vous ne regardez pas les bonnes définitions . . .

$$\frac{\partial f}{\partial x} = 2xyz^5 + z^2$$

$$\frac{\partial f}{\partial y} = x^2z^5 + 3y^2$$

$$\frac{\partial f}{\partial z} = 5x^2yz^4 + 2xz$$

A faire avec le poly sous les yeux!!!

1.
$$p = 1, n = 2, g_1 = \alpha, g_2 = \beta$$

2.
$$p = 2$$
, $n = 2$, $g_1 = a$, $g_2 = b$

3.
$$p = 2, n = 1, g_1 = f$$

1.

$$\frac{\partial \psi}{\partial r} = \frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta$$

$$\frac{\partial \psi}{\partial \theta} = -\frac{\partial f}{\partial x} r \sin \theta + \frac{\partial f}{\partial y} r \cos \theta$$

$$\frac{\partial \psi}{\partial z} = \frac{\partial f}{\partial z}$$

où les dérivées partielles de f sont prises au point $(a(r, \theta, z), b(r, \theta, z), c(r, \theta, z))$.

2.

$$\begin{array}{lll} \frac{\partial \psi}{\partial \rho} & = & \frac{\partial f}{\partial x} \cos \theta \cos \phi + \frac{\partial f}{\partial y} \sin \theta \cos \phi + \frac{\partial f}{\partial x} \sin \phi \\ \frac{\partial \psi}{\partial \theta} & = & -\frac{\partial f}{\partial x} \rho \sin \theta \cos \phi + \frac{\partial f}{\partial y} \rho \cos \theta \cos \phi \\ \frac{\partial \psi}{\partial \phi} & = & -\frac{\partial f}{\partial x} \rho \cos \theta \sin \phi - \frac{\partial f}{\partial y} \rho \sin \theta \sin \phi + \frac{\partial f}{\partial z} \rho \cos \phi \end{array}$$

où les dérivées partielles de f sont prises au point $(a(\rho, \theta, \phi), b(\rho, \theta, \phi), c(\rho, \theta, \phi))$.