Dependent Multiple Choice

@hyutw*

2021年8月1日

※ 自然数全体の集合を $\mathbf N$ と書く、 $0 \in \mathbf N$ である。自然数 n に対して,n 未満の自然数全体 $\{0,\ldots,n-1\}$ を n と書く.写像 f の始域を $\mathrm{dom}(f)$ と書く.すなわち,写像 $f\colon X\to Y$ について, $\mathrm{dom}(f)=X$ である.集合 X から集合 Y への写像全体の集合を Y^X と書く.

X を空でない集合, A, B を X の空でない部分集合, R を X 上の二項関係とする. 「任意の $a \in A$ に対してある $b \in B$ が存在して a R b をみたす」を $P_B(A, B)$ で表す.

定義. 次の命題を Dependent Multiple Choice (DMC) という.

空でない集合 X 上の二項関係 R が $P_R(X,X)$ をみたすとき,X のある非空有限部分集合列 $(F_n)_{n\in\mathbb{N}}$ が存在して「任意の $n\in\mathbb{N}$ に対して $P_R(F_n,F_{n+1})$ 」をみたす.

命題 1. DMC

 \iff 空でない集合 X 上の二項関係 R が $P_R(X,X)$ をみたすとき,X の任意の非空有限部分集合 F に対して,X のある非空有限部分集合列 $(F_n)_{n\in\mathbb{N}}$ が存在して $F_0=F$ と「任意の $n\in\mathbb{N}$ に対して $P_R(F_n,F_{n+1})$ 」をみたす.

すなわち、DMC において空でない有限部分集合 F_0 は任意に選べる.

証明. (←) 明らか.

 $(\Longrightarrow) X$ を空でない集合,R を X 上の二項関係で $P_R(X,X)$ をみたしているとする. X の空でない有限部分集合全体の集合を $\mathcal P$ とおく. $F\in \mathcal P$ とする.自然数 $n\in \mathbf N$ に対

^{*} Twitter: https://twitter.com/hyutw.

して

$$S(n) = \{ f \in \mathcal{P}^{n+1} \mid P_R(F, f(0)), \forall i \in n (P_R(f(i), f(i+1))) \}$$

とおき, $\mathcal{A}=\bigcup_{n\in \mathbf{N}}S(n)$ とおく. $\mathcal{A}\neq\emptyset$ である. \mathcal{A} 上の二項関係 \mathcal{T} を

$$f \mathcal{T} g \iff (\operatorname{dom}(f) < \operatorname{dom}(g)) \wedge (g|_{\operatorname{dom}(f)} = f)$$

によって定める. これは $P_{\mathcal{T}}(A,A)$ をみたす. したがって、任意の $n \in \mathbb{N}$ に対して $P_{\mathcal{T}}(\mathcal{F}_n,\mathcal{F}_{n+1})$ をみたす A の非空有限部分集合列 $(\mathcal{F}_n)_{n \in \mathbb{N}}$ が存在する. \mathcal{T} の定義から、任意の $n \in \mathbb{N}$ に対してある $f \in \mathcal{F}_n$ が存在し、n < dom(f) をみたす.

$$F_0 = F$$
, $F_{n+1} = \bigcup_{f \in \mathcal{F}_n, \ n < \text{dom}(f)} f(n) \ (n \in \mathbf{N})$

と定める. 任意の $n \in \mathbb{N}$ に対して F_n は空でない有限集合である. $\emptyset \neq F_0 \subseteq A$ であるから,ある $f \in F_0$ が存在して $P_R(F,f(0))$ をみたす.したがって $P_R(F_0,F_1)$ となる. n>0 のとき, $x \in F_n$ とすると,ある $f \in F_{n-1}$ が存在して $x \in f(n-1)$ をみたす. $P_T(F_{n-1},F_n)$ であるから f T g をみたす $g \in F_n$ が存在する. $x \in f(n-1) = g(n-1)$ であり, $P_R(g(n-1),g(n))$ であるから x R y をみたす $y \in g(n)$ が存在する.したがって, $P_R(F_n,F_{n+1})$ となる.