Capítulo 5: A camada de enlace

Uma Abordagem Top-Down

Objetivos do capítulo:

- entender os princípios por trás dos serviços da camada de enlace de dados:
 - detecção e correção de erro
 - Compartilhamento de um canal de broadcast: acesso múltiplo
 - o endereçamento da camada de enlace
- instanciação e implementação de várias tecnologias da camada de enlace

Camada de enlace

REDES DE COMPUTADORES E A INTERNET 5' edição

- 5.1 Introdução e serviços
- 5.2 Detecção e correção de erros
- 5.3 Protocolos de acesso múltiplo
- 5.4 Endereçamento na camada de enlace
- 5.5 Ethernet

- 5.6 Comutadores de camada de enlace
- □ 5.7 PPP
- 5.8 Virtualização de enlace: MPLS
- 5.9 Um dia na vida de uma solicitação de página Web

<u>Camada de enlace:</u> <u>introdução</u>

Alguma terminologia:

- hospedeiros e roteadores são nós
- canais de comunicação que se conectam a nós adjacentes pelo caminho de comunicação são enlaces
 - enlaces com fio
 - enlaces sem fio
- pacote na camada-2 é um quadro, encapsula datagrama

Camada de enlace de dados tem a responsabilidade de transferir um datagrama de um nó ao nó adjacente por um enlace.

REDES DE COMPUTADORES E A INTERNET 5' edição

Serviços da camada de enlace

REDES DE COMPUTADORES E A INTERNET 5º edição

- enquadramento, acesso ao enlace:
 - o encapsula datagrama no quadro, incluindo cabeçalho, trailer
 - acesso ao canal de meio compartilhado
 - endereços "MAC" usados nos cabeçalhos de quadro para identificar origem, destino
 - diferente do endereço IP!
- entrega confiável entre nós adjacentes
 - raramente usado em enlace com pouco erro de bit (fibra, alguns pares trançados)
 - enlaces sem fio: altas taxas de erro
 - P: Por que confiabilidade em nível de enlace e fim a fim?

REDES DE COMPUTADORES E A INTERNET 5' edição

- controle de fluxo:
 - o controle entre nós de emissão e recepção adjacentes
- detecção de erro:
 - erros causados por atenuação de sinal, ruído.
 - receptor detecta presença de erros:
 - pede ao remetente para retransmitir ou descarta quadro
- correção de erro:
 - receptor identifica e corrige erro(s) de bit sem lançar mão da retransmissão
- half-duplex e full-duplex
 - com half-duplex, os nós nas duas extremidades do enlace podem transmitir, mas não ao mesmo tempo

Onde é implementada a camada de enlace?

- em todo e qualquer hosp.
- camada de enlace implementada no "adaptador" (ou placa de interface de rede, NIC)
 - placa Ethernet, placa PCMCI, placa 802.11
 - implementa camada de enlace, física
- conecta aos barramentos de sistema do hospedeiro
- combinação de hardware e software

REDES DE COMPUTADORES E A INTERNET 5⁴ edição

Comunicação entre adaptadores

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

lado emissor:

- encapsula datagrama no quadro
- inclui bits de verificação de erro, controle de fluxo, endereços, etc.

lado receptor

- procura erros, controle de fluxo, verifica endereço, etc.
- extrai datagrama, passa para camada superior no lado receptor

Camada de enlace

REDES DE COMPUTADORES E A INTERNET 5' edição

- 5.1 Introdução e serviços
- 5.2 Detecção e correção de erros
- 5.3 Protocolos de acesso múltiplo
- 5.4 Endereçamento na camada de enlace
- 5.5 Ethernet

- 5.6 Comutadores de camada de enlace
- □ 5.7 PPP
- 5.8 Virtualização de enlace: MPLS
- 5.9 Um dia na vida de uma solicitação de página Web

Detecção de erros

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

EDC = Bits de detecção e correção de erros (redundância)

D = Dados protegidos por verificação de erro, podem incluir campos de cabeçalho

Detecção de erro não 100% confiável!

- protocolo pode perder alguns erros, mas raramente
- maior campo EDC gera melhor detecção e correção

Verificação de paridade

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Paridade bidimensional:

Detecta e corrige erros de único bit

Paridade de único bit: Detecta erros de único bit

Soma de verificação da Internet (análise)

REDES DE COMPUTADORES E A INTERNET 5¹ edição

Uma Abordagem Top-Down

Objetivo: detectar "erros" (p. e., bits invertidos) no pacote transmitido

Emissor:

- trata conteúdo do segmento como sequência de inteiros de 16 bits
- soma de verificação:
 adição (soma no complemento de 1) do conteúdo do segmento
- emissor colocar valor da soma de verificação no campo de soma de verificação UDP

Receptor:

- calcula soma de verificação do segmento recebido
- verifica se soma de verificação calculada é igual ao valor do campo de soma de verificação:
 - NÃO erro detectado
 - SIM nenhum erro detectado. Mas pode haver erros, apesar disso?

Soma de verificação: verificação de redundância cíclica

REDES DE COMPUTADORES E A INTERNET 5' edição

- veja bits de dados, D, como um número binário
- 🗖 escolha padrão de bits r + 1 (gerador), G
- objetivo: escolher r bits de CRC, R, tal que
 - <D,R> exatamente divisível por G (módulo 2)
 - receptor sabe G, divide <D,R> por G. Se resto diferente de zero: erro detectado!
 - pode detectar todos os erros em rajada menores que r + 1 bits
 - muito usada na prática (Ethernet, 802.11 WiFi, ATM), p.e., G com 33 bits

Exemplo de CRC

Queremos:

 $D \cdot 2^r XOR R = nG$

de modo equivalente:

 $D \cdot 2^r = nG XOR R$

de modo equivalente:

se dividirmos D 2^r por G, queremos resto R

$$R = resto[\frac{D \cdot 2^r}{G}]$$

REDES DE COMPUTADORES E A INTERNET 5³ edição

Camada de enlace

REDES DE COMPUTADORES E A INTERNET 5' edição

- 5.1 Introdução e serviços
- 5.2 Detecção e correção de erros
- 5.3 Protocolos de acesso múltiplo
- 5.4 Endereçamento na camada de enlace
- 5.5 Ethernet

- 5.6 Comutadores de camada de enlace
- □ 5.7 PPP
- 5.8 Virtualização de enlace: MPLS
- 5.9 Um dia na vida de uma solicitação de página Web

Enlaces e protocolos de acesso múltiplo

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Dois tipos de "enlaces":

- ponto a ponto
 - PPP para acesso discado
 - enlace ponto a ponto entre comutador Ethernet e hospedeiro
- broadcast (fio ou meio compartilhado)
 - Ethernet à moda antiga
 - HFC anterior
 - LAN sem fio 802.11

fio compartilhado (p. e., Ethernet cabeado)

RF compartilhada (p. e., WiFi 802.11)

RF compartilhada (satélite)

Protocolos de acesso múltiplo

REDES DE COMPUTADORES E A INTERNET 5' edição

- único canal de broadcast compartilhado
- duas ou mais transmissões simultâneas por nós: interferência
- colisão se o nó recebe dois ou mais sinais ao mesmo tempo protocolo de acesso múltiplo
- algoritmo distribuído que determina como os nós compartilham canal, ou seja, determinam quando o nó pode transmitir
- comunicação sobre compartilhamento de canal deve usar o próprio canal!
 - nenhum canal fora-de-banda para coordenação

Protocolo de acesso múltiplo ideal

Uma Abordagem Top-Down

Canal de broadcast de velocidade R bps

- 1. quando um nó quer transmitir, ele pode enviar na velocidade R.
- 2. quando M nós querem transmitir, cada um pode enviar na velocidade média de transmissão R/M
- 3. totalmente descentralizado:
 - nenhum nó especial para coordenar transmissões
 - o nenhuma sincronização de clocks, intervalos
- 4. simples

Protocolos MAC: uma taxonomia

Uma Abordagem Top-Down

Três classes gerais:

- Particionamento de canal
 - divide o canal em "pedaços menores" (intervalos de tempo, frequência, código)
 - aloca pedaço ao nó para uso exclusivo
- Acesso aleatório
 - canal não dividido, permite colisões
 - "recupera" de colisões
- "Revezando"
 - os nós se revezam, mas os nós com mais a enviar podem receber mais tempo

<u>Protocolos MAC de</u> <u>particionamento de canal:</u> TDMA

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

TDMA: Time Division Multiple Access

- acesso ao canal em "rodadas"
- cada estação recebe intervalo de tamanho fixo
 (tamanho = tempo transm. pacote) a cada rodada
- intervalos não usados ficam ociosos
- exemplo: LAN de 6 estações, 1, 3, 4 têm pacote, intervalos 2, 5, 6 ociosos

<u>Protocolos MAC de</u> <u>particionamento de canal:</u> FDMA

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

FDMA: Frequency Division Multiple Access

- espectro do canal dividido em bandas de frequência
- cada estação recebe banda de frequência fixa
- tempo de transmissão não usado nas bandas de frequência fica ocioso

exemplo: LAN de 6 estações, 1, 3, 4 têm pacote, bandas de frequência 2, 5, 6 ociosas

Protocolos MAC de particionamento de canal: Code Division Multiple Access (CDMA)

REDES DE COMPUTADORES E A INTERNET 5⁴ edição

- usado em vários padrões de canais de broadcast sem fio (celular, satélite etc.)
- "código" exclusivo atribuído a cada usuário; ou seja, particionamento de conjunto de código
- todos usuários compartilham mesma frequência, mas cada usuário tem a própria sequência de "chipping" (ou seja, código) para codificar dados
- sinal codificado = (dados originais) X (sequência de chipping)
- decodificação: produto interno entre sinal codificado e sequência de chipping
- permite que múltiplos usuários "coexistam" e transmitam simultaneamente com o mínimo de interferência (se os códigos forem "ortogonais")

Codificação/decodificação CDMA

REDES DE COMPUTADORES E A INTERNET 5' edição

<u>CDMA: interferência de</u> <u>dois remetentes</u>

REDES DE COMPUTADORES E A INTERNET 5' edição

Protocolos de acesso aleatório

- Quando o nó tem um pacote a enviar
 - transmite na velocidade de dados R total do canal.
 - sem coordenação a priori entre os nós
- □ dois ou mais nós transmitindo → "colisão",
- protocolo MAC de acesso aleatório especifica:
 - como detectar colisões
 - o como recuperar-se de colisões (p. e., via retransmissões adiadas)
- Exemplos de protocolos MAC de acesso aleatório:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Slotted ALOHA

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Suposições:

- todos os quadros do mesmo tamanho
- tempo dividido em intervalos de mesmo tamanho (tempo para transmitir 1 quadro)
- nós começam a transmitir somente no início dos intervalos
- nós são sincronizados
- se 2 ou mais nós transmitem no intervalo, todos os nós detectam colisão

Operação:

- quando nó obtém quadro novo, transmite no próximo intervalo
 - se não há colisão: nó pode enviar novo quadro no próximo intervalo
 - se há colisão: nó retransmite quadro em cada intervalo subsequente com probabilidade p até que haja sucesso

REDES DE COMPUTADORES E A INTERNET 5³ edição

Uma Abordagem Top-Down

Prós

- único nó ativo pode transmitir continuamente na velocidade plena do canal
 - altamente descentralizado: somente intervalos nos nós precisam estar em sincronismo simples

Contras

- colisões, intervalos desperdiçados
- intervalos ociosos
- nós podem ser capazes de detectar colisão em menos tempo do que para transmitir pacote
- sincronismo de clock

Eficiência do Slotted Aloha

Eficiência: fração durante longo tempo de intervalos bem sucedidos (muitos nós, todos com muitos quadros para enviar)

- suponha: N nós com muitos quadros a enviar, cada um transmitindo no intervalo com probabilidade p
- prob de um nó ter sucesso em um intervalo = p(1-p)№-1
- prob de *qualquer* nó ter sucesso = Np(1-p)^{N-1}

REDES DE COMPUTADORES E A INTERNET 5³ edição

Uma Abordagem Top-Down

- □ eficiência máxima: ache
 p* que maximiza
 Np(1-p)^{N-1}
- □ para muitos nós, com limite de Np*(1-p*)^{N-1} enquanto N tende a infinito, temos:

Eficiência máxima = 1/e = 0.37

Na melhor das hipóteses: canal usado para transmissões úteis 37% do tempo!

ALOHA puro (não slotted)

REDES DE COMPUTADORES E A INTERNET 5º edição

- Aloha não slotted: mais simples, sem sincronismo
- quando quadro chega primeiro
 - transmite imediatamente
- probabilidade de colisão aumenta:
 - quadro enviado em t₀ colide com outros quadros enviados em [t₀-1,t₁+1]

Eficiência do Aloha puro

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

P(sucesso por determinado nó) = P(nó transmite)

P(nenhum outro nó transmite em $[p_0-1,p_0]$ · P(nenhum outro nó transmite em $[p_0-1,p_0]$

$$= p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}$$
$$= p \cdot (1-p)^{2(N-1)}$$

... escolhendo p ideal e depois considerando n -> infinito ...

$$= 1/(2e) = 0.18$$

ainda pior que slotted Aloha!

CSMA (Carrier Sense Multiple Access)

Uma Abordagem Top-Down

CSMA: ouça antes de falar:

se perceber canal ocioso: transmite quadro inteiro

- se perceber canal ocupado, adia transmissão
- analogia humana: não interrompa os outros!

Colisões CSMA

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

colisões ainda *podem* ocorrer:

atraso de propagação significa que dois nós podem não ouvir a transmissão um do outro

colisão:

tempo de transmissão de pacote inteiro desperdiçado

nota:

papel da distância & atraso de propagação determinando probabilidade de colisão

layout espacial dos nós

CSMA/CD (Collision Detection)

REDES DE COMPUTADORES E A INTERNET 5º edição

Uma Abordagem Top-Down

CSMA/CD: detecção de portadora, adiada como no CSMA

- o colisões detectadas dentro de pouco tempo
- transmissões colidindo abortadas, reduzindo desperdício do canal
- detecção de colisão:
 - fácil em LANs com fio: mede intensidades de sinal, compara sinais transmitidos, recebidos
 - difícil nas LANs sem fio: intensidade do sinal recebido abafada pela intensidade da transmissão local
- analogia humana: o interlocutor educado

Detecção de colisão CSMA/CD

REDES DE COMPUTADORES E A INTERNET 5' edição

CSMA/CA (Collision Avoidance)

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

CSMA/CA: detecção de portadora, adiada como no CSMA

- Utilizado em Rede Wireless
 - Dificuldade em detectar colisões (sinal enviado muito mais forte)
 - Nó pode não receber por estar em zona de sombra
- Funcionamento
 - Escuta o canal por um tempo pré-determinado
 - Se o canal está vazio, envia um pacote RST (Request to Send) com tamanho do pacote a ser enviado
 - Se recebe um CST (Clear to Send), então envia o pacote de dados e outros hosts esperam o tempo especificado em CST
 - Se não recebe CST, espera por Back Off aleatório

"Revezando" protocolos MAC

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

protocolos MAC de particionamento de canal:

- compartilham canal de modo eficaz e justo com alta carga
- ineficaz com baixa carga: atraso no acesso ao canal, 1/N largura de banda alocada mesmo que apenas 1 nó ativo!

Protocolos MAC de acesso aleatório

- eficaz com baixa carga: único nó pode utilizar o canal totalmente
- o alta carga: sobrecarga de colisão

"revezando" protocolos

procure o melhor dos dois mundos!

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Polling (seleção):

- nó mestre "convida" nós escravos a alterarem a transmissão
- preocupações:
 - o sobrecarga da seleção
 - latência
 - único ponto de falha (mestre)

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Passagem de permissão (token):

- permissão de controle passada de um nó para o próximo sequencialmente.
- mensagem de permissão
- preocupações:
 - sobrecarga da permissão
 - latência
 - único ponto de falha (permissão)

Resumo de protocolos MAC

REDES DE COMPUTADORES E A INTERNET 5' edição

- particionamento de canal, por tempo, frequência ou código
 - Time Division, Frequency Division
- acesso aleatório (dinâmico),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - percepção de portadora: fácil em algumas tecnologias
 (com fio), difícil em outras (sem fio)
 - CSMA/CD usado na Ethernet
 - CSMA/CA usado na 802.11
- revezamento
 - polling do servidor central, passagem de permissão
 - Bluetooth, FDDI, Token Ring

Camada de enlace

REDES DE COMPUTADORES E A INTERNET 5' edição

- 5.1 Introdução e serviços
- 5.2 Detecção e correção de erros
- 5.3 Protocolos de acesso múltiplo
- 5.4 Endereçamento na camada de enlace
- 5.5 Ethernet

- 5.6 Comutadores de camada de enlace
- □ 5.7 PPP
- 5.8 Virtualização de enlace: MPLS
- 5.9 Um dia na vida de uma solicitação de página Web

Endereçamento MAC e ARP

- □ Endereço IP de 32 bits:
 - o endereço da camada de rede
 - usado para obter datagrama até sub-rede IP de destino
- Endereço MAC (ou LAN ou físico ou Ethernet) :
 - função: levar quadro de uma interface para outra interface conectada fisicamente (na mesma rede)
 - Endereço MAC de 48 bits (para maioria das LANs)
 - queimado na ROM da NIC, às vezes também configurável por software

Endereços de LAN e ARP

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Cada adaptador na LAN tem endereço de LAN exclusivo

Endereços de LAN (mais)

- alocação de endereço MAC administrada pelo IEEE
- fabricante compra parte do espaço de endereços MAC (para garantir exclusividade)
- analogia:
 - (a) Endereço MAC: como o CPF
 - (b) Endereço IP: como o endereço postal
- endereço MAC plano → portabilidade
 - pode mover placa de LAN de uma LAN para outra
- endereço IP hierárquico NÃO portável
 - o endereço depende da sub-rede IP à qual o nó está conectado

ARP: Address Resolution Protocol

REDES DE COMPUTADORES E A INTERNET 5º edição

Uma Abordagem Top-Down

<u>Pergunta:</u> Como determinar endereço MAC de B sabendo o endereço IP de B?

- Cada nó IP (hosp., roteador) na LAN tem tabela ARP
- Tabela ARP: mapeamentos de endereço IP/MAC para alguns nós da LAN

<endereço IP; endereço MAC;
TTI >

TTL (Time To Live):
 tempo após o qual o
 mapeamento de endereço
 será esquecido
 (normalmente, 20 min)

Protocolo ARP: mesma LAN (rede)

REDES DE COMPUTADORES E A INTERNET 5¹ edição

- A quer enviar datagrama a B, e endereço MAC de B não está na tabela ARP de A.
- A envia por broadcast pacote de consulta ARP, contendo endereço IP de B
 - endereço MAC de destino = FF-FF-FF-FF-FF
 - todas as máquinas na LAN recebem consulta ARP
 - B recebe pacote ARP, responde para A com seu endereço MAC (de B)
 - quadro enviado ao endereço MAC de A (unicast)

- A salva em cache par de endereços IP-para-MAC em sua tabela ARP até a informação expirar
 - estado soft: informação que expira (desaparece) se não for renovada
- ARP é "plug-and-play":
 - nós criam suas tabelas
 ARP sem intervenção do administrador de rede

Endereçamento: roteando para outra LAN

REDES DE COMPUTADORES E A INTERNET 5³ edição

Uma Abordagem Top-Down

acompanhamento: enviar datagrama de A para B via R suponha que A saiba o endereço IP de B

duas tabelaso ARP no roteador R, uma para cada rede IP (LAN)

- A cria datagrama IP com origem A, destino B
- A usa ARP para obter endereço MAC de R para 111.111.111.110

REDES DE COMPUTADORES E A INTERNET 5' edição

- A cria quadro da camada de enlace com endereço MAC de R como destino, quadro contém datagrama IP A-para-B
- NIC de A envia quadro
- NIC de R recebe quadro
- R remove datagrama IP do quadro Ethernet, vê o seu destinado a B
- R usa ARP para obter endereço MAC de B
- R cria quadro contendo datagrama IP A-para-B e envia para B

Camada de enlace

REDES DE COMPUTADORES E A INTERNET 5⁴ edição

- 5.1 Introdução e serviços
- 5.2 Detecção e correção de erros
- 5.3 Protocolos de acesso múltiplo
- 5.4 Endereçamento na camada de enlace
- 5.5 Ethernet

- 5.6 Comutadores de camada de enlace
- □ 5.7 PPP
- 5.8 Virtualização de enlace: MPLS
- 5.9 Um dia na vida de uma solicitação de página Web

Ethernet

REDES DE COMPUTADORES E A INTERNET 5º edição

Uma Abordagem Top-Down

Tecnologia de LAN com fio "dominante":

- barata
- primeira tecnologia de LAN utilizada em larga escala
- mais simples e mais barata que as LANs de permissão e ATM
- acompanhou corrida da velocidade: 10 Mbps 10 Gbps

Projeto original da Ethernet de Metcalfe

Topologia de estrela

REDES DE COMPUTADORES E A INTERNET 5' edição

topologia de barramento popular até meados dos anos 90

- Uma Abordagem Top-Down
- todos os nós no mesmo domínio de colisão (podem colidir uns com os outros)
- hoje: topologia de estrela prevalece
 - comutador ativo no centro
 - cada "ponta" roda um protocolo Ethernet (separado) nós não colidem uns com os outros

Estrutura do quadro Ethernet

Uma Abordagem Top-Down

Adaptador enviando encapsula datagrama IP (ou outro pacote de protocolo da camada de rede) no quadro Ethernet

Preâmbulo:

- 7 bytes com padrão 10101010 seguido por um byte com padrão 10101011
- usado para sincronizar taxas de clock do receptor e emissor

REDES DE COMPUTADORES E A INTERNET 5' edição

- Endereços: 6 bytes
 - se adaptador recebe quadro com endereço de destino combinando, ou com endereço de broadcast (p. e., pacote ARP), passa dados do quadro ao protocolo da camada de rede
 - o caso contrário, adaptador descarta quadro
- □ Tipo: indica protocolo da camada mais alta (principalmente IP, mas outros são possíveis, p. e., Novell IPX, AppleTalk)
- Dados: mínimo 64 bytes, máximo 1518
- CRC: verificado no receptor; se detectar erro, quadro é descartado

Ethernet: não confiável, sem conexão

- sem conexão: sem apresentação entre NICs de origem e destino
- não confiável: NIC de destino não envia confirmações ou não confirmações à NIC de origem
 - fluxo de datagramas passados à camada de rede pode ter lacunas (datagramas faltando)
 - lacunas serão preenchidas se aplicação estiver usando TCP
 - o caso contrário, aplicação verá lacunas
- Protocolo MAC da Ethernet: CSMA/CD não slotted

Algoritmo CSMA/CD da Ethernet

- 1. NIC recebe datagrama da camada de rede e cria quadro
- 2. Se NIC sentir canal ocioso (96 tempos de bits), inicia transmissão do quadro; canal ocupado, espera até estar ocioso, depois transmite
- 3. Se NIC transmitir quadro inteiro sem detectar outra transmissão, NIC terminou com o quadro!

REDES DE COMPUTADORES E A INTERNET 5' edição

- 4. Se NIC detectar outra transmissão enquanto transmite, aborta e envia sinal de congestionamento
- 5. Depois de abortar, NIC entra em **backoff exponencial**: após *m* colisões, NIC escolhe *K* aleatoriamente dentre {0,1,2,...,2^{m-1}}. NIC espera K · 512 tempos de bit, retorna à Etapa 2

CSMA/CD da Ethernet (mais)

REDES DE COMPUTADORES E A INTERNET 5º edição

Uma Abordagem Top-Down

Sinal de congestionamento: cuide para que todos os outros transmissores saibam da colisão; 48 bits

Tempo de bit: 0,1 μs para Ethernet de 10 Mbps; para K = 1023, tempo de espera cerca de 50 ms

Backoff exponencial:

- Objetivo: adaptar tentativas de retransmissão à carga estimada
 - carga pesada: espera aleatória será maior
- primeira colisão: escolha K a partir de {0,1}; atraso é K · 512 tempos de transmissão de bit
- após segunda colisão: escolha K dentre {0,1,2,3}...
- após dez colisões, escolha K dentre {0,1,2,3,4,...,1023}

Eficiência do CSMA/CD

REDES DE COMPUTADORES E A INTERNET 5' edição

- □ t_{prop} = atraso máx. propag. entre 2 nós na LAN
- □ t_{trans} = tempo para transmitir quadro de tamanho máximo

$$eficiencia = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- eficiência vai para 1
 - o quando t_{prop} vai para 0
 - o quando t_{trans} vai para infinito
- melhor desempenho que ALOHA: é simples, barato, descentralizado!

<u>Padrões Ethernet 802.3:</u> <u>camadas de enlace e física</u>

REDES DE COMPUTADORES E A INTERNET 5º edição

- muitos padrões Ethernet diferentes
 - o protocolo MAC e formato de quadro comuns
 - diferentes velocidades: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10G bps
 - diferentes meios da camada física: fibra, cabo

Codificação Manchester

REDES DE COMPUTADORES E A INTERNET 5' edição

- usado no 10BaseT
- 🗾 cada bit tem uma transição
- permite que clocks nos nós emissor e receptor sejam sincronizados entre si
 - desnecessário para um clock centralizado, global entre os nós!

Capítulo 6: Esboço

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

□ 6.1 Introdução

Redes sem fio

- 6.2 Características de enlaces e redes sem fio
 - O CDMA
- 6.3 LANs sem fio 802.11 ("wi-fi")
- 6.4 Acesso celular à Internet
 - arquitetura
 - padrões (p. e., GSM)

Mobilidade

- 6.5 Gerenciamento da mobilidade: princípios
- 6.6 IP móvel
- 6.7 Gerenciamento de mobilidade em redes celulares
- 6.8 Mobilidade e protocolos de camadas superiores
- □ 6.9 Resumo

Características do enlace sem fio

Uma Abordagem Top-Down

Diferenças do enlace com fio...

- Redução fora do sinal: sinal de rádio se atenua enquanto se propaga pela matéria (perda do caminho)
- interferência de outras fontes: frequências padrão de rede sem fio (p. e., 2,4 GHz) compartilhadas por outros dispositivos (p. e., telefone); dispositivos (motores) também interferem
- propagação multivias: sinal de rádio reflete-se em objetos e no solo, chegando ao destino em momentos ligeiramente diferentes

... tornam a comunicação por enlace sem fio muito mais "difícil"

Características da rede sem fio

REDES DE COMPUTADORES E A INTERNET 5º edição

Uma Abordagem Top-Down

Múltiplos remetentes e receptores sem fio criam problemas adicionais (além do acesso múltiplo):

Problema do terminal oculto

- B, A escutam um ao outro
- B, C escutam um ao outro
- A, C não podem ouvir um ao outro

significa que A, C não sabem de sua interferência em B

Atenuação do sinal:

- B, A escutam um ao outro
- B, C escutam um ao outro
- A, C não podem escutar um ao outro interferindo em B

LAN sem fio IEEE 802.11

REDES DE COMPUTADORES E A INTERNET 5' edição

- □ 802.11b
 - espectro n\u00e3o licenciado de 2,4-5 GHz
 - até 11 Mbps
 - Direct Sequence Spread
 Spectrum (DSSS) na camada física
 - todos os hospedeiros usam o mesmo código de chipping

- □ 802.11a
 - intervalo 5-6 GHz
 - o até 54 Mbps
- □ 802.11g
 - o intervalo 2,4-5 GHz
 - até 54 Mbps
- 802.11n: múltiplas antenas
 - intervalo 2,4-5 GHz
 - o até 200 Mbps
- todos usam CSMA/CA para acesso múltiplo
- todos têm versões de estação-base e rede ad-hoc

Arquitetura de LAN 802.11

REDES DE COMPUTADORES E A INTERNET 5³ edição

Uma Abordagem Top-Down

- hospedeiro sem fio se comunica com estação-base
 - estação-base = ponto de acesso (AP)
 - Basic Service Set (BSS) (ou "célula") no modo de infraestrutura contém:
 - hospedeiros sem fio
 - ponto de acesso (AP): estação-base
 - modo ad hoc: apenas hosts

BSS₂

802.11: Canais, associação

REDES DE COMPUTADORES E A INTERNET 5' edição

- 802.11b: espectro de 2,4 GHz-2,485 GHz dividido em 11 canais em diferentes frequências
 - Admin. do AP escolhe frequência para AP
 - possível interferência: canal pode ser o mesmo daquele escolhido pelo AP vizinho!
- hospedeiro: precisa associar-se a um AP
 - varre canais, escutando quadros de sinalização contendo nome do AP (SSID) e endereço MAC
 - seleciona AP para associar-se
 - pode realizar autenticação [Capítulo 8]
 - normalmente rodará DHCP para obter endereço IP na sub-rede do AP

802.11: varredura passiva/ativa

<u>Varredura passiva:</u>

- (1) quadros de sinalização enviados dos APs
- (2) quadro de solicitação de associação enviado: H1 para AP selecionado
- (3) quadro de resposta de associação enviado: H1 para AP selecionado

REDES DE COMPUTADORES E A INTERNET 5⁴ edição

Uma Abordagem Top-Down

Varredura ativa:

- (1) Broadcast de quadro de solicitação de investigação de H1
- (2) Quadro de resposta de investigações enviado de APs
- (3) Quadro de resposta de associação enviado: H1 para AP selecionado
- (4) Quadro de resposta de associação enviado: AP selecionado para H1

IEEE 802.11: acesso múltiplo

REDES DE COMPUTADORES E A INTERNET 5³ edição

- evita colisões: 2 ou + nós transmitindo ao mesmo tempo
- CSMA/CD detecta antes de transmitir
 - não colide com transmissão contínua de outro nó
- □ 802.11: sem detecção de colisão!
 - difícil de receber (sentir colisões) na transmissão devido a sinais recebidos fracos (desvanecimento)
 - não pode sentir todas as colisões em qualquer caso: terminal oculto, desvanecimento
 - objetivo: evitar colisões: CSMA/C(ollision)A(voidance)

Protocolo MAC IEEE 802.11: CSMA/CA

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

<u>Distribution Coordination Function</u> <u>remetente</u>

- 1 se sentir canal ocioso por **DIFS** então transmite quadro inteiro (sem CD)
- 2 se sentir canal ocupado então
 - inicia tempo aleatório de backoff
 - temporizador conta regressivamente enquanto canal está ocioso
 - transmite quando temporizador expira
 - se não há ACK, aumenta intervalo de backoff aleatório, repete 2

receptor

- se quadro recebido OK

retorna ACK após **SIFS** (ACK necessário devido ao problema de terminal oculto)

Evitando colisões (mais)

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Point Coordination Function

ideia: permite que remetente "reserve" canal em vez de acesso aleatório aos quadros de dados: evitar colisões de quadros de dados longos

- remetente primeiro transmite pequenos pacotes request-to-send (RTS)
 ao AP usando CSMA
 - RTSs ainda podem colidir uns com os outros (mas são curtos)
- AP envia por broadcast clear-to-send (CTS) em resposta a RTS
 - CTS escutado por todos os nós
 - remetente transmite quadro de dados
 - outras estações adiam transmissões

Evite colisões de quadro de dados completamente usando pequenos pacotes de reserva!

Prevenção de colisão: troca RTS-CTS

REDES DE COMPUTADORES E A INTERNET 5' edição

802.11: capacidades avançadas

Adaptação de taxa

estação-base, disp.
 móvel muda taxa de transmissão dinamicamente (técnica de modulação da camada física) enquanto móvel se move, SNR varia

QAM256 (8 Mbps)
QAM16 (4 Mbps)
BPSK (1 Mbps)
ponto operacional

REDES DE COMPUTADORES E A INTERNET 5' edição

- 1. SNR diminui, BER aumenta quando nó se afasta da estação-base
- 2. Quando BER se torna muito alto, passa para taxa de transmissão inferior, mas com BER mais baixo

Camada de enlace

REDES DE COMPUTADORES E A INTERNET 5' edição

- 5.1 Introdução e serviços
- 5.2 Detecção e correção de erros
- 5.3 Protocolos de acesso múltiplo
- 5.4 Endereçamento na camada de enlace
- 5.5 Ethernet

- 5.6 Comutadores de camada de enlace
- □ 5.7 PPP
- 5.8 Virtualização de enlace: MPLS
- 5.9 Um dia na vida de uma solicitação de página Web

<u>Hubs</u>

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

... repetidores da camada física ("burros") :

- todos os nós conectados ao hub podem colidir uns com os outros
- sem buffering de quadros
- sem CSMA/CD no hub: NICs do hospedeiro detectam colisões
- bits chegando a um enlace saem em todos os outros enlaces na mesma velocidade

Comutador (switch)

REDES DE COMPUTADORES E A INTERNET 5⁴ edição

- dispositivo da camada de enlace: mais inteligente que os hubs, têm papel ativo
 - o armazenam e repassam quadros Ethernet
 - examinam endereço MAC do quadro que chega, repassam seletivamente o quadro para um ou mais enlaces de saída quando o quadro deve ser repassado no segmento, usa CSMA/CD para acessar segmento
- transparente
 - hosps. n\u00e3o sabem da presen\u00e7a de comutadores
- plug-and-play, autodidata
 - o comutadores não precisam ser configurados

Comutador: permite *múltiplas* transmissões simultâneas

- hosps. têm conexão dedicada, direta com comutador
- comutadores mantêm pacotes
- Protocolo Ethernet usado em cada enlace de chegada, mas sem colisões; full duplex
 - o cada enlace é seu próprio domínio de colisão
 - comutação: A-para-A' e Bpara-B' simultaneamente, sem colisões
 - não é possível com hub burro

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

comutador com seis interfaces (1,2,3,4,5,6)

Tabela de comutação

- P: Como o comutador sabe que A' se encontra na interface 4, B' C' se encontra na interface 5?
- R: Cada comutador tem uma tabela de comutação, cada entrada:
 - (endereço MAC do nó, interface para alcançar nó, horário)
- parece com tab. de roteamento!
- P: Como as entradas são criadas, mantidas na tabela comutação?
 - algo como um prot. de roteamento?

REDES DE COMPUTADORES E A INTERNET 5³ edição

Uma Abordagem Top-Down

comutador com 6 interfaces (1,2,3,4,5,6)

Comutador: autodidata

- comutador descobre quais nós podem ser alcançados por quais interfaces
 - quando quadro recebido, comutador "aprende" local do emissor: segmento de LAN de chegada
 - registra par emissor/local na tabela de comutação

end. MAC	interface	TTL
Α	1	60

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Tabela comutação (inicialmente vazia)

Switch: filtragem/repasse de quadros

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Quando quadro recebido:

- 1. Registra enlace associado ao host emissor
- 2. Indexa tabela de comutação usando endereço MAC de destino
- 3. if entrada encontrada para o destino then {
 if dest no segmento do qual o quadro chegou then remove o quadro
 else repassa o quadro na interface indicada
 }
 else inunda

repassa para todas as interfaces, menos aquela em que o quadro chegou

<u>Autoaprendizagem, repasse:</u> exemplo

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- destino do quadro desconhecido: inunda
- local de destino A conhecido: envio seletivo

end. MAC	interface	TTL
Α	1	60
A'	4	60

Tabela comutação (inicialmente vazia)

<u>Interconectando</u> <u>comutadores</u>

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

comutadores podem ser conectados

- P: Enviando de A p/ G como S₁ sabe repassar quadro destinado a G por S₄ e S₃?
- R: Autoaprendizagem! (funciona da mesma forma que no caso do único comutador!)

<u>Multicomutação com</u> <u>autoaprendizagem</u>

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Suponha que C envie quadro para I, I responde a C

Description P: Mostre tabelas de comutação e repasse de pacotes em S_1 , S_2 , S_3 , S_4

Rede institucional

REDES DE COMPUTADORES E A INTERNET 5⁴ edição

<u>Comutadores versus</u> <u>roteadores</u>

REDES DE COMPUTADORES E A INTERNET 5' edição

- ambos dispositivos de armazenamento e repasse
 - roteadores: dispositivos da camada de rede (examinam cabeçalhos da camada de rede)
 - comutadores são dispositivos da camada de enlace
- roteadores mantêm tabelas de roteamento, implementam algoritmos de roteamento
- switches mantêm tabelas de comutação, implementam filtragem, algoritmos de aprendizagem

Camada de enlace

REDES DE COMPUTADORES E A INTERNET 5' edição

- 5.1 Introdução e serviços
- 5.2 Detecção e correção de erros
- 5.3 Protocolos de acesso múltiplo
- 5.4 Endereçamento na camada de enlace
- 5.5 Ethernet

- 5.6 Comutadores de camada de enlace
- □ 5.7 PPP
- 5.8 Virtualização de enlace: MPLS
- 5.9 Um dia na vida de uma solicitação de página Web

Síntese: um dia na vida de uma solicitação Web

- viagem pela pilha de protocolos completa!
 - o aplicação, transporte, rede, enlace
- juntando tudo: síntese!
 - objetivo: identificar, analisar, entender os protocolos (em todas as camadas) envolvidos no cenário aparentemente simples: solicitar página WWW
 - cenário: aluno conecta laptop à rede do campus, solicita/recebe www.google.com

Um dia na vida: cenário

REDES DE COMPUTADORES E A INTERNET 5' edição

Um dia na vida... conectando à Internet

REDES DE COMPUTADORES E A INTERNET 5¹ edição

- o laptop conectando precisa obter seu próprio endereço IP, end. do roteador do 1º salto e do servidor DNS: use DHCP
- Solicitação DHCP encapsulada no UDP, encapsulada no IP, encapsulada na Ethernet 802.1
- Quadro Ethernet enviado por broadcast (dest.: FFFFFFFFFFFFFFF) na LAN, recebido no roteador rodando servidor DHCP
- Ethernet demultiplexado para IP demultiplexado, UDP demultiplexado para DHCP

REDES DE COMPUTADORES E A INTERNET 5º edição

Uma Abordagem Top-Down

- Servidor DHCP formula ACK DHCP contendo endereço IP do cliente, IP do roteador no 1º salto para cliente, nome & endereço IP do servidor DNS
- Encapsulamento no servidor DHCP, quadro repassado (aprendizagem do comutador) através da LAN, demultiplexando no cliente
- Cliente DHCP recebe resposta ACK do DHCP

Cliente agora tem endereço IP, sabe nome e endereço do servidor DNS, endereço IP do seu roteador no primeiro salto

Um dia na vida... ARP (antes do DNS, antes do HTTP)

REDES DE COMPUTADORES E A INTERNET 5º edição

- Antes de enviar solicitação *HTTP*, precisa de endereço IP de www.google.com: *DNS*
- Consulta DNS criada, encap. no UDP, no IP, na Ethernet. Para enviar quadro ao roteador, precisa de endereço MAC da interface do roteador: **ARP**
- Broadcast da *consulta ARP*, recebido pelo roteador, que responde com *resposta ARP* dando endereço MAC da interface do roteador
- cliente agora sabe endereço MAC do roteador no 1º salto, e agora pode enviar quadro contendo consulta DNS

Um dia na vida... usando DNS

REDES DE COMPUTADORES E A INTERNET 5⁴ edição

Uma Abordagem Top-Down

Datagrama IP contendo consulta DNS repassada via comutador da LAN do cliente ao roteador do 1º salto

DNS

UDP

DNS

- campus para rede comcast, roteado (tabelas criadas por *RIP*, *OSPF* e/ou protocolos de roteamento *BGP*) ao servidor DNS
- demultiplexado ao servidor DNS
- Servidor DNS responde ao cliente com endereço IP de www.google.com

Um dia na vida... conexão TCP REDES DE COMPUTADORES TRANSPORTANTO HTTP

- □para enviar solicitação HTTP, cliente primeiro abre socket TCP com servidor Web
- segmento SYN TCP (etapa 1 na apresentação de 3 vias)
 roteado interdomínio com servidor Web
- servidor Web responde comSYNACK TCP (etapa 2 na apresentação de 3 vias)
- Conexão TCP estabelecida!

Capítulo 5: Resumo

REDES DE COMPUTADORES E A INTERNET 5' edição

- princípios por trás dos serviços da camada de enlace de dados:
 - detecção e correção de erro
 - compartilhamento de canal de broadcast: acesso múltiplo
 - endereçamento da camada de enlace
- instanciação e implementação de várias tecnologias da camada de enlace
 - Ethernet
 - LANS comutadas
 - **WiFi**
- síntese: um dia na vida de uma solicitação Web

Capítulo 5: vamos fazer uma pausa

REDES DE COMPUTADORES E A INTERNET 5' edição

- viagem pela pilha de protocolos completa (exceto a camada física)
- conhecimento sólido dos princípios de rede e da prática
- Outros tópicos interessantes!
 - redes sem fio
 - multimídia
 - segurança
 - o gerenciamento de rede