

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

Subject: Operating System Subject Code: 22516

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
- 8) As per the policy decision of Maharashtra State Government, teaching in English/Marathi and Bilingual (English + Marathi) medium is introduced at first year of AICTE diploma Programme from academic year 2021-2022. Hence if the students in first year (first and second semesters) write answers in Marathi or bilingual language (English +Marathi), the Examiner shall consider the same and assess the answer based on matching of concepts with model answer.

Q.	Sub		Answer		Marking
No	Q.N.				Scheme
1.		Attempt any F	IVE of the following:		10
	$\langle a \rangle$	Differentiate bet	ween Multi programme	ed and Multitasking operating	2M
	\vee	system (Any two	points)		
	Ans.	Features	Multiprogramming	Multitasking	
					Any two
		Basic	It allows multiple	A supplementary of the	relevant
			programs to utilize	multiprogramming	points, 1M each
			the CPU	system also allows for	1111 cuch
			simultaneously.	user interaction.	
		Mechanis	Based on the context	Based on the time-	
		m	switching	sharing mechanism.	
			mechanism.	_	
		Objective	It is useful for	It is useful for running	
			reducing/decreasing	multiple processes at the	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

Subject: Operating System	Subject Code:	22516

	Execution CPU Switching	CPU idle time and increasing throughput as much as possible. When one job or process completes its execution or switches to an I/O task in a multi-programmed system, the system momentarily suspends that process. It selects another process from the process scheduling pool (waiting queue) to run. In a multiuser environment, the CPU switches between programs/processes quickly. It takes maximum time to execute the	same time, effectively increasing CPU and system throughput. In a multiprocessing system, multiple processes can operate simultaneously by allocating the CPU for a fixed amount of time. In a single-user environment, the CPU switches between the processes of various programs. It takes minimum time to execute the process.	
Ans.	 User Inte Program I/O Ope File syst Commun Error De Resource Account 	Execution ration em Manipulation nication etection e Allocation	S.	2M 1/2 M each for any 4 services

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

d) Ans.	as job, task or un PCB:-Process C information of th also known as a t Define CPU and	ess is a program in execuit of work. Control Block is a data are process related to it. The eask control block, entry of a liound live of the ease control block.	ta structure that contains the process control block is of the process table, etc.	2M Correct Definition IM each 2M Correct
	with I/O resource	es.	process is busy in working	Definition 1M each
e)	Differentiate ber	tween paging and segme	entation.	2M
Ans.	Parameters	Paging	Segmentation	Any two relevant
	Individual Memory	In Paging, we break a process address space into blocks known as pages.	In the case of Segmentation, we break a process address space into blocks known as sections/segments.	differences – IM each
	Memory Size	The pages are blocks of fixed size.	The sections/segments are blocks of varying sizes.	
	Accountability	The OS divides the available memory into individual pages.	The compiler mainly calculates the size of individual segments, their actual address as well as virtual address.	
	Speed	This technique is comparatively much faster in accessing memory.	This technique is comparatively much slower in accessing memory than Paging.	
	Size	The available memory determines the individual page sizes.	The user determines the individual segment sizes.	
	Fragmentation	The Paging technique may underutilize some of the pages- thus	The Segmentation technique may not use some of the memory	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

	,				
			leading to internal	blocks at all. Thus, it	
			fragmentation.	may lead to external	
				fragmentation.	
		Logical	A logical address	A logical address	
		Address	divides into page	divides into section	
			offset and page	offset and section	
			number in the case of	number in the case of	
			Paging.	Segmentation.	
		Data Storage	In the case of Paging,	In the case of	
			the page table leads to	Segmentation, the	
			the storage of the page	segmentation table leads	
			data.	to the storage of the	
				segmentation data.	
	f)	Write center of	following commands-		2M
	1)	(i) Kill	tonowing commanus-		41VI
		(ii) Sleep			1M for each
	Ans.	i) kill			correct
	Alis.	Syntax: kill Pid			syntax
		Symax. Kill I lu			
		ii) sleep			
		_	JMBER[SUFFIX]		
		sleep OPTION	MIDLIN[SOFFIX]		
	g)	List any four file	e onerations		2M
	Ans.	• Creating	-		2111
	71113.	Writing a			Any four
		_			operations
		Reading a			½ M each
		-	ning within a file		
		• Deleting		1 6 4 61	
		* *	ng new information to the	end of the file	
			g an existing file.		
				another I/O device such as	
		printer or dis	splay		
2.			IREE of the following:		12
	استهيا	Explain Time sh	O		4M
	Ans.			multiple jobs by switching	
		_		quently that the users can	
		interact with ea	ich program while it is	s running. It includes an	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

Subject: Operating System Subject Code: 22516

interactive computer system which provides direct communication between the user and the system. A time-sharing system allows many users to share the computer resources simultaneously. The time-sharing system provides the direct access to many users where CPU time is divided among all the users on scheduled basis. The operating system allocates a time slice to each user. When this time is expired, it passes control to the next user on the system. The time allowed is extremely small and the users are given the impression that each of them has their own CPU and they are the sole owner of the CPU. In this time slice each user gets attention of the CPU. The objective of time-sharing system is to minimize response time of process.

Example: The concept of time-sharing system is shown in figure:

In above figure, the user 5 is active but user 1, user 2, user 3, and user 4 are in waiting state whereas user 6 is in ready status.

(b) Ans. Describe any two components of O.S.

List of System Components:

- 1. Process management
- **2.** Main memory management
- 3. File management
- 4. I/O system management
- 5. Secondary storage management

1.Process Management:

A program is a set of instructions. When CPU is allocated to a program, it can start its execution. A program in execution is a process. A word processing program run by a user on a PC is a process. A process needs various system resources including CPU time, memory, files and I/O devices to complete the job execution. These resources can be given to the process when it is created or allocated to it while it is running.

Relevant Explanation 4M

4M

Description of any two components of OS 2M each

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

Subject: Operating System Subject Code: 22516

The operating system responsible for the following **activities** in connection with process management:

- Creation and deletion of user and system processes.
- Suspension and resumption of processes.
- A mechanism for process synchronization.
- A mechanism for process communication.
- A mechanism for deadlock handling.

2. Main-Memory Management

Main memory is a large array of words or bytes, ranging in size from hundreds of thousands to billions. Each word or byte has its own address. Main memory is a repository of quickly accessible data shared by the CPU and I/O devices. The central processor reads instructions from main memory during the instruction fetch cycle and both reads and writes data from main memory during the data fetch cycle. The main memory is generally the only large storage device that the CPU is able to address and access directly.

The operating system responsible for the following **activities** in connection with main memory s management:

- Keeping track of which parts of memory are currently being used and by whom.
- Deciding which processes (or parts thereof) and data to move into and out of memory. 3. Allocating and deallocating memory space as needed.

3. File Management

A file is a collected of related information defined by its creator. Computer can store files on the disk (secondary storage), which provide long term storage. Some examples of storage media are magnetic tape, magnetic disk and optical disk. Each of these media has its own properties like speed, capacity, and data transfer rate and access methods. A file system normally organized into directories to ease their use. These directories may contain files and other directions.

The operating system responsible for the following **activities** in connection with file management:

- The creation and deletion of files.
- The creation and deletion of directions.
- The support of primitives for manipulating files and directions.
- The mapping of files onto secondary storage.
- The backup of files on stable storage media.

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

22516 **Subject: Operating System Subject Code:** 4. I/O device Management Input / Output device management provides an environment for the better interaction between system and the I / O devices (such as printers, scanners, tape drives etc.). To interact with I/O devices in an effective manner, the operating system uses some special programs known as device driver. The device drivers take the data that operating system has defined as a file and then translate them into streams of bits or a series of laser pulses (in regard with laser printer). The I/O subsystem consists of several components: A memory management component that includes buffering, caching, spooling A general device driver interface Drivers for specific hardware devices **1.** 5. Secondary-Storage Management The computer system provides secondary storage to back up main memory. Secondary storage is required because main memory is too small to accommodate all data and programs, and the data that it holds is lost when power is lost. Most of the programs including compilers, assemblers, word processors, editors, and formatters are stored on a disk until loaded into memory. Secondary storage consists of tapes drives, disk drives, and other media. The operating system is responsible for the following activities in connection with disk management: Free space management Storage allocation Disk scheduling. Explain shared memory model of Interprocess communication **4M** (IPC) Inter-process communication: Cooperating processes require an Explanation Ans. *3M* Inter- process communication (IPC) mechanism that will allow them Diagram to exchange data and information. *1M*

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

Subject: Ope	rating System	Subject Code:	22516
	Shared memory Process P1 Shared Region of P1 Process P2 Kernel	2	
	 In this, all processes who want processes can access a region of address space of a process creating at the exchange information by reading a memory segment. The form of data and location are down want to communicate with each the exchange information by reading a memory segment. The form of data and location are down want to communicate with each the exchange information by reading a memory segment. The form of data and location are down want to communicate with each the exchange information by reading a memory segment. The processes are not under the communicate with each the exchange information by reading a memory segment are treated and the exchange information by reading a memory segment are treated and the exchange information by reading a memory segment are treated and the exchange information by reading a memory segment. After establishing shared memory shared memory segment are treated and the exchange information by reading a memory segment. 	to communicate with of the memory residing in a shared memory segment. The memory segment should at the memory. All the processes and/or writing data in shall determined by these process to other. The operating system of the operating system for ensuring that they are the meously.	tach can ared esses tem.
d) Ans.	 Describe different scheduling criteria. CPU utilization: - In multiprogram keep CPU as busy as possible. CPU to 100 percent. Throughput: - It is the number of per unit time. It is a measure of wo CPU is busy in executing processes the system. Throughput depends or for any process. 	uming the main objective in the system. We so, then work is being done	om 0 Any four scheduling criteria -1M each eted Then he in

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

Subject: Operating System Subject Code: 22516

•	Turnaround	time:	-The	time	interval	from	the	time	of
	submission of	a proce	ess to the	he time	e of comp	oletion	of tha	at proc	ess
	is called as tu	ırnarour	nd time	e. It is	the sum	of tim	e per	riod sp	ent
	waiting to ge	et into	the me	emory,	waiting	in the	reac	ly que	ue,
	executing with	n the CP	U, and	doing	I/O opera	ations.			

- Waiting time: It is the sum of time periods spent in the ready queue by a process. When a process is selected from job pool, it is loaded into the main memory. A process waits in ready queue till CPU is allocated to it.
- 3. Ans.

Attempt any <u>THREE</u> of the following: Draw and explain process state diagram.

Different process states are as follows:

- 1. New
- 2. Ready
- 3. Running
- 4. Waiting
- 5. Terminated

12 4M

Process
state
diagram
2M
Explanation
2M

New: When a process enters into the system, it is in new state. In this state a process is created. In new state the process is in job pool.

Ready: When the process is loaded into the main memory, it is ready for execution. In this state the process is waiting for processor allocation.

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

	Running: When CPU is available, system selects one process from main memory and executes all the instructions from that process. So, when a process is in execution, it is in running state. In single user system, only one process can be in the running state. In multiuser system, there can be multiple processes which are in the running state. Waiting State: When a process is in execution, it may request for I/O resources. If the resource is not available, process goes into the waiting state. When the resource is available, the process goes back to ready state.	
	Terminated State:	
	When the process completes its execution, it goes into the terminated	
	state. In this state the memory occupied by the process is released.	
	Describe conditions for deadlock prevention.	4M
A	By ensuring that at least one of below conditions cannot hold, we can prevent the occurrence of a deadlock.	Any four conditions 1M each
	1.Mutual Exclusion: The mutual-exclusion condition must hold for non-sharable resources. Sharable resources do not require mutually exclusive access, thus cannot be involved in a deadlock.	
	 2.Hold and Wait: One way to avoid this Hold and Wait is when a process requests a resource; it does not hold any other resources. One protocol that can be used requires each process to request and be allocated all its resources before it begins execution. Another protocol that can be used is, to allow a process to request resources only when the process has none. A process may request some resources and use them. Before it requests any additional resources, it must release all the resources that are currently allocated to it. 	
	3.No Preemption: If a process that is holding some resources requests another resource that cannot be immediately allocated to it, then all resources currently being held are preempted. That is these resources are implicitly	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

Subject: Ope	rating System	Subject Code:	22516	
	released. The preempted resources for which the process is waiting. Prall the resources i.e. its old resource requesting will be available. 4.Circular Wait Circular-wait condition never holds resource types, and to require that an increasing order of enumeration. Let R = {R1, R2,, Rn} be the second resource type a unique integration of the compare two resources and to compare two resources and the compare two resources are the compared two resources and the compared two resources are the compa	rocess will be restarted only was, as well as the new ones that is to impose a total ordering of each process requests resource et of resource types. We assig ger number, which allows us determine whether one precedefine a one-to-one function I	f all s in to s to edes	
c) Ans.	 Explain fixed size memory partitic Fixed Size Memory Partitioning (a) Memory is divided into number called as fixed or static memory Each partition contains exactly of the number of programs to be partitions. When the partition is free, a selectic loaded into the free partition. When the process terminates, the another process. The operating system keeps a which are available and which a linitially, all memory is availad considered as one large block of the processes. When a process arrives, large ento the processes. 	Static) r of fixed size partitions, which partitioning. one process. e executed depends on number exted process from the input quality and partition becomes available table indicating parts of memore occupied. ble for user processes and in available memory, a hole.	h is Content of Explorer of leue for mory this is	rrect anation
d)	Explain linked file allocation metl	10d.		M
Ans.	 Linked Allocation: This allocation is on the basis of contains a pointer to the next bloc The disk block can be scattered 	ock in the chain.	expla	rrect unation ^I M,

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

22516 **Subject: Operating System Subject Code:** The directory contains a pointer to the first and the last blocks of Diagram the file. Optional To create a new file, simply create a new entry in the directory. The following figure shows the linked allocation. Directory start end file ieep 9 25 There is no external fragmentation since only one block is needed at a time. The size of a file need not be declared when it is created. A file can continue to grow as long as free blocks are available This method is used only for a sequential access files This method requires more space to store pointers So instead of blocks, clusters are used for allocation but this creates internal fragmentation. 12 4. Attempt any THREE of the following: Compare between command line and Graphical user interface. **4M** a) (Any four points)

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

Ans.	Parameter	Command Line	Graphic User	Any four points 1M
	Definition	Interface(CLI) Interaction is by typing commands	Interface(GUI) Interaction with devices is by graphics and visual components and icons	each
	Understan ding	Commands need to be memorized	Visual indicators and icons are easy to understand	
	Memory	Less memory is required for storage	More memory is required as visual components are involved.	
	Working Speed	Use of keyboard for commands makes CLI quicker.	Use of mouse for interaction makes it slow	
	Resources used	Only keyboard	Mouse and keyboard both can be used	
	Accuracy	High	Comparatively low	
	Flexibility	Command line interface does not change, remains same over time	Structure and design can change with updates	
Ans.		ır systems call related related to file manager		4M
Alls.	 create delete open f close f create delete read, v 	new file existing file ile ile directories directories vrite, reposition in file	nent are.	Any 4 system calls 1M each
	_	attributes attributes		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

	c)	Comp four p	_	d short term scheduler. (Any	4M
	Ans.	Sr. No	Long Term Scheduler	Short Term Scheduler	Any four points 1M each
80	1-21	1	It is job scheduler	It is CPU scheduler	
\	δ	2	It selects processes from job pool and loads them into memory for execution	It selects processes from ready queue which are ready to execute and allocates CPU to one of them	
		3	Access job pool and ready queue	Access ready queue and CPU	
		4	It executes much less frequently. It executes when memory has space to accommodate new process.	It executes frequently. It executes when CPU is available for allocation	
		5	Speed is less than short term scheduler	Speed is fast	
		6	It controls the degree of multiprogramming	It provides lesser control over degree of multiprogramming	
		7	It chooses a good process that is a mix-up of input/output bound and CPU bound.	It chooses a new process for a processor quite frequently.	
	d)	algori		SJF and FCFS scheduling ulate the average waiting time	4M

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

	Proces	ss Bur	rst time (in n	ns)		
	P1		9	6.8		
	P2		7			
	P3		3			
	P4		7	796		
Ans.	Gantt Chart	SJF				
	Р3	P2	P4		P1	For ea
	0 3		10	17		26 schedui Gantt c
	Waiting Tim	ie				1M,
	P1=17					Enc
	P2=3 P3=0					Each averag
	P4=10					waiting
		ting time=V	Vaiting time	of all proces	ses / Numb	er of calculation
	processes	ving vine v	, uniting time	or air proces	Ses / I (dillo	
	1		=(17+3+0+10	0) /4		
			=30/4			
	=7.5 milliseconds (ms)					
	Gantt Chart	FCFS				
	P1		P2	P3	P4	
		9	P2 1		P4 19 26	
	P1	g ne	1	of all proces	19 26	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

Subject: Operating System Subject Code: 22516

e) Ans.

Describe free space management technique. (Any two)

A file system is responsible to allocate the free blocks to the file therefore it has to keep track of all the free blocks present in the disk. There are mainly four approaches by using which, the free blocks in the disk are managed.

Any 2 techniques Correct Explanation 2M each

4M

- 1. Bit Vector
- 2. Linked List

1)Bit Vector:

The free-space list is implemented as a bit map or bit vector.

Each block is represented by 1 bit. If the block is free, the bit is 1; if the block is allocated, the bit is 0.

For example, consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13 are free and the rest of the blocks are allocated.

The free-space bit map would be : 0011110011111100

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	1	1	1	1	0	0	1	1	1	1	1	1	0	0

1=Free block

0= Allocated block

The main advantage of this approach is its relative simplicity and its efficiency in finding the first free block or n consecutive free blocks on the disk.

2) Linked List

In this approach, the free disk blocks are linked together i.e. a free block contains a pointer to the next free block. The block number of the very first disk block is stored at a separate location on disk and is also cached in memory. In this approach, link all the disk blocks together, keeping a pointer to the first free block. This block contains a pointer to the next free disk block, and so on.

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

22516 **Subject: Operating System Subject Code:** free-space list head 10 5. Attempt any TWO of the following: 12 Write two uses of following O.S. tools **6M** (i) Device Management 2 uses of (ii) Performance monitor each tool (iii) Task Scheduler 2M i) Device management: Ans. Managing all the hardware or virtual devices of computer system. Allow interaction with hardware devices through device driver. • Used to install device and component-level drivers as well as associated software. ▶ Allocate devices to the process as per process requirement and priority. Deallocate devices either temporarily or permanently depending on condition. Keeping track of all device's data and location. Monitoring device status like printers, storage drivers and other devices. • Used to enforce the predetermined policies and decides which process receives the device when and for how long. ii) Performance monitor ★. Monitor various activities on a computer such as CPU or memory. usage. 2. Used to examine how programs running on their computer affect computer's performance 3. It is used to identify performance problems or bottleneck that affect operating system or installed applications. 4. Used to observe the effect of system configuration changes.

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION **MODEL ANSWER**

Subject Code: Subject: Operating System

	iii) Task scheduler																						
	1. Assign processor to task ready for execution																						
	2. Executing predefined actions automatically whenever a certain set																						
	of c																						
	(Any t																						
b)	Writer the outputs of following commands (i) Wait 2385018 (ii) Sleep 09 (iii) PS -u Asha											6M											
A	` '						4	4 :	1 41-	_ 4		•	4:		c		c: -	1			т		
Ans.	' I I									2M for each													
	2385018 ii) Sleep command is used to delay for 9 seconds during the execution										2M Jor eacn correct												
	of a	-								-							_		CAC	Cui	1011	output	
	iii) ps	-					-												s f	or	the		
	specifi												F	,		· F -							
c)	Given					fer	enc	e	stri	ng	w	ith	th	ree	(()3)	pa	age	fr	am	ies.	6M	
	Calcul		_	_						_							_	_					
	replac	em	ent	alg	gor	ith	m r	esp	pect	ive	ly.												
	'7,0,1 ,	2,0	,3,0	,4,2	2,3,	0,3	,2,1	۱,2,	0,1	,7,0	,1												
Ans.	(Repr			tioı	n of	fr	am	e ca	an l	oe i	n a	ny	oro	ler)							Calculate	
	i) Opt	ima	al																			page fault	
	Ref	7	Λ	1	1 2	ΙΛ	2	Λ	4	2	2	Λ	2	2	1	2	Λ	1	7	0	1	with relevant	
		7	0	1	2	0	3	0		2	3	0	3	2	1	2	0	1		0		diagram-	
	F1	7	7	7	2	2	2	2	2	2	2	2	2	2	2	2	2	2	7	7	7	3M each	
	F2		0	0	0	0	0	0	4	4	4	0	0	0	0	0	0	0	0	0	0		
	F3											O	U	U	U	U		Ů		U	0		
				1	1	1	3	3	3	3	3	3	3	3	1	1	1	1	1	1	1		
	Fault	F	F	1 F	1 F	1	3 F	3	3 F	3		,									Ů		
	Fault			F	F			3		3		3			1				1		Ů		
				F	F			3		3		3			1				1		Ů		
	Fault	oag		F	F			3		3		3			1				1		Ů		
	Fault Total p	oag		F	F			0		2		3			1				1		Ů		
	Fault Total p	oag U	e fa	F	F S- 9		F		F		3	3 F	3	3	1 F	1	1	1	1 F	1	1		
	Fault Total p ii) LR Ref F1	bage U	0 7	Fults	F S- 9	0 2	3 2	0 2	F 4 4	2 4	3 4	3 F	3 0	2 0	1 F	2 1	0	1 1 1	1 F	0 1	1 1 1		
	Fault Total p ii) LR Ref F1 F2	bage U	e fa	Fults	F S- 9	0 2	3 2 0	0 2 0	4 4 0	2 4 0	3 4 3	3 F 0 0 3	3 0 3	3 2 0	1 F	1 2 1 3	0 1	1 1 1 0	1 F	1 0 1	1 1 1 0		
	Fault Total p ii) LR Ref F1 F2 F3	u 7 7	0 7 0	F ults	F S- 9 2 2 0 1	0 2	3 2 0 3	0 2	4 4 0 3	2 4 0 2	3 4 3 2	3 F 0 0 0 3 2	3 0	2 0	1 F 1 1 3 2	2 1	0 1 0 2	1 1 1	1 F 7 1 0 7 7	0 1	1 1 1		
	Fault Total p ii) LR Ref F1 F2	U 7 7 F	0 7 0 F	1 7 0 1 F	F 2 2 0 1 F	0 2 0 1	3 2 0	0 2 0	4 4 0	2 4 0	3 4 3	3 F 0 0 3	3 0 3	3 2 0	1 F	1 2 1 3	0 1	1 1 1 0	1 F	1 0 1	1 1 1 0		

22516

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

Subject: Operating System

Subject Code:

22516

12 6M

Each method 3M

1M for

Gantt chart,

1M for

Waiting

time calculation.

1M for

Average

waiting time

6.		Attempt any <u>TWO</u> of the following:
	a)	Solve given problem by using

Solve given problem by using

(i) Pre-emptive SJF

(ii) Round Robin (Time Slice = 3 ms)

Calculate average waiting time using Gantt Chart

Process	A.T.	B.T. (in ms)
P ₁₁	0	8
P ₁₂	1	4
P ₁₃	2	9
P ₁₄	3	5

Ans.

(i) Pre emptive SJF:

Waiting Time= (Total completion time -Burst time) - Arrival time

P11 - (17-8) - 0 = 9ms,

P12-(5-4)-1=0ms,

P13- (26-9)-2 =15ms,

P14-(10-5)-3=2ms

Average waiting time :- (9+0+15+2)/4=26/4=6.5 ms

(ii) Round Robin (Time Slice = 3 ms)

Waiting time: -P11 = (23-8)-0 = 15ms,

P12-(16-4)-1=11ms,

P13-(26-9)-2 =15ms,

P14-(21-5)-3 =13ms

Average waiting time:- (15+11+15+13)/4=54/4= 13.5ms

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

b)	P4 comes with memory requirements of 6 KB. Locate (Draw) this process in memory using.							
	i) First fit	O.S.		diagram 2M				
	ii) Best Fit iii) Worst Fit	P1						
		<free> 12 KB</free>						
	7 (7)	P2						
		<free> 19 KB</free>						
		P3						
		<free> 7KB</free>						
	17/10	Memory						
Ans.	First Fit: Allocate the first free block to the new process P4. O. S. P1 P4 6KB <free> 6KB P2 <free> 19 KB P3 <free> 7 KB</free></free></free>	Best Fit: Allocate the smallest free block that is big enough to accommodate new process P4. O. S. P1 <free> 12 KB P2 <free> 19 KB P3 P4 6 KB <free> 1 KB</free></free></free>	O. S. P1 <free> 12 KB P2 P4 6 KB <free> 13 KB P3 <free> 7 KB</free></free></free>					
(c)	Construct and explain	•	of a file system in	6M				
Ans.	terms of two level and							
Alls.	1) Two-level directory		own user file directory	Explanation				
	In the two-level structures, each user has its own user file directory (UFD). The UFD lists only files of a single user. System contains a							
		•	exed by user name or	2M each,				
	account number. Each	entry in MFD points to	the UFD for that user.	Constructio				
		•	s own UFD is searched.	n of structure				
	Different users can har file names within each		name, as long as all the	1M each				

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2022 EXAMINATION MODEL ANSWER

Subject: Operating System Subject Code: 22516

When we create a file for a user, operating system searches only that user's UFD to find whether same name file already present in the directory. For deleting a file again operating system checks the file name in the user' UFD only.

2. Tree structure:-

In this directory structure user can create their own sub-directories and organize their files. The tree has a root directory and every file has a unique path name. A directory contains a set of files or subdirectories. All directories have the same internal format. One bit in each directory entry defines the entry as a file (0) or as a subdirectory (1). Each process has a current directory. Current directory contains files that are currently required by the process. When reference is made to a file, the current directory is searched. If a file needed that is not in the current directory, then the user usually must either specify a path name or change the current directory.

