Precalculus Lecture 18

Todor Miley

https://github.com/tmilev/freecalc

2020

Outline

- Lines
 - Slope-intercept Form
 - Line intersection

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/
 and the links therein.

$\mathbb{R}^2, \mathbb{R}^3, \mathbb{R}^n$

Definition (\mathbb{R}^2)

The set of ordered pairs of real numbers is denoted by \mathbb{R}^2 .

Definition (\mathbb{R}^3)

The set of ordered triples of real numbers is denoted by \mathbb{R}^3 .

Definition (\mathbb{R}^n)

The set of ordered *n*-tuples of real numbers is denoted by \mathbb{R}^n .

$\mathbb{R}^2, \mathbb{R}^3, \mathbb{R}^n$

Definition (\mathbb{R}^2)

The set of ordered pairs of real numbers is denoted by \mathbb{R}^2 .

Definition (\mathbb{R}^3)

The set of ordered triples of real numbers is denoted by \mathbb{R}^3 .

Definition (\mathbb{R}^n)

The set of ordered *n*-tuples of real numbers is denoted by \mathbb{R}^n .

Example

$$(1,-2,3) \in ?$$

 $(0,5) \in$

$$(0,5,-2,4,0) \in$$

$$(0,1,2,3,\ldots,n) \in$$

$\mathbb{R}^2, \mathbb{R}^3, \mathbb{R}^n$

Definition (\mathbb{R}^2)

The set of ordered pairs of real numbers is denoted by \mathbb{R}^2 .

Definition (\mathbb{R}^3)

The set of ordered triples of real numbers is denoted by \mathbb{R}^3 .

Definition (\mathbb{R}^n)

The set of ordered *n*-tuples of real numbers is denoted by \mathbb{R}^n .

Example

$$(1,-2,3)\in\mathbb{R}^3$$

$$\left(0,5\right) \in$$

$$(0,5,-2,4,0) \in$$

$$(0,1,2,3,\ldots,n) \in$$

$\mathbb{R}^2, \mathbb{R}^3, \mathbb{R}^n$

Definition (\mathbb{R}^2)

The set of ordered pairs of real numbers is denoted by \mathbb{R}^2 .

Definition (\mathbb{R}^3)

The set of ordered triples of real numbers is denoted by \mathbb{R}^3 .

Definition (\mathbb{R}^n)

The set of ordered *n*-tuples of real numbers is denoted by \mathbb{R}^n .

Example

$$(1,-2,3)\in\mathbb{R}^3$$

$$(0,5) \in ?$$

$$(0,5,-2,4,0) \in$$

$$(0,1,2,3,\ldots,n) \in$$

$\mathbb{R}^2, \mathbb{R}^3, \mathbb{R}^n$

Definition (\mathbb{R}^2)

The set of ordered pairs of real numbers is denoted by \mathbb{R}^2 .

Definition (\mathbb{R}^3)

The set of ordered triples of real numbers is denoted by \mathbb{R}^3 .

Definition (\mathbb{R}^n)

The set of ordered *n*-tuples of real numbers is denoted by \mathbb{R}^n .

Example

$$(1,-2,3) \in \mathbb{R}^3$$

 $(0,5) \in \mathbb{R}^2$
 $(0,5,-2,4,0) \in$
 $(0,1,2,3,\ldots,n) \in$

$\mathbb{R}^2, \mathbb{R}^3, \mathbb{R}^n$

Definition (\mathbb{R}^2)

The set of ordered pairs of real numbers is denoted by \mathbb{R}^2 .

Definition (\mathbb{R}^3)

The set of ordered triples of real numbers is denoted by \mathbb{R}^3 .

Definition (\mathbb{R}^n)

The set of ordered *n*-tuples of real numbers is denoted by \mathbb{R}^n .

Example

$$(1,-2,3)\in\mathbb{R}^3$$

$$(0,5) \in \mathbb{R}^2$$

$$(0,5,-2,4,0) \in$$
?

$$(0,1,2,3,\ldots,n) \in$$

$\mathbb{R}^2, \mathbb{R}^3, \mathbb{R}^n$

Definition (\mathbb{R}^2)

The set of ordered pairs of real numbers is denoted by \mathbb{R}^2 .

Definition (\mathbb{R}^3)

The set of ordered triples of real numbers is denoted by \mathbb{R}^3 .

Definition (\mathbb{R}^n)

The set of ordered *n*-tuples of real numbers is denoted by \mathbb{R}^n .

Example

$$(1,-2,3)\in\mathbb{R}^3$$

$$(0,5)\in\mathbb{R}^2$$

$$(0,5,-2,4,0) \in \mathbb{R}^5$$

$$(0,1,2,3,\ldots,n) \in$$

$\mathbb{R}^2, \mathbb{R}^3, \mathbb{R}^n$

Definition (\mathbb{R}^2)

The set of ordered pairs of real numbers is denoted by \mathbb{R}^2 .

Definition (\mathbb{R}^3)

The set of ordered triples of real numbers is denoted by \mathbb{R}^3 .

Definition (\mathbb{R}^n)

The set of ordered *n*-tuples of real numbers is denoted by \mathbb{R}^n .

Example

$$(1,-2,3)\in\mathbb{R}^3$$

$$(0,5) \in \mathbb{R}^2$$

$$(0,5,-2,4,0) \in \mathbb{R}^5$$

$$(0,1,2,3,\ldots,n) \in ?$$

$\mathbb{R}^2, \mathbb{R}^3, \mathbb{R}^n$

Definition (\mathbb{R}^2)

The set of ordered pairs of real numbers is denoted by \mathbb{R}^2 .

Definition (\mathbb{R}^3)

The set of ordered triples of real numbers is denoted by \mathbb{R}^3 .

Definition (\mathbb{R}^n)

The set of ordered *n*-tuples of real numbers is denoted by \mathbb{R}^n .

Example

$$(1,-2,3)\in\mathbb{R}^3$$

$$(0,5)\in\mathbb{R}^2$$

$$(0,5,-2,4,0) \in \mathbb{R}^5$$

$$(0,1,2,3,\ldots,n) \in \mathbb{R}^{n+1}$$

Definition

• An equation of the form ax + by + c = 0, where a, b, c are constants such that a and b are not simultaneously zero, is called a linear equation.

Definition

• An equation of the form ax + by + c = 0, where a, b, c are constants such that a and b are not simultaneously zero, is called a linear equation.

• A set of pairs of numbers (x, y) is called a line in \mathbb{R}^2 if it is the set of solutions to some linear equation.

Definition

• An equation of the form ax + by + c = 0, where a, b, c are constants such that a and b are not simultaneously zero, is called a linear equation.

- A set of pairs of numbers (x, y) is called a line in \mathbb{R}^2 if it is the set of solutions to some linear equation.
- A set of points in the plane will be called a line if it is the graph of some linear equation.

Definition

• An equation of the form ax + by + c = 0, where a, b, c are constants such that a and b are not simultaneously zero, is called a linear equation.

- A set of pairs of numbers (x, y) is called a line in \mathbb{R}^2 if it is the set of solutions to some linear equation.
- A set of points in the plane will be called a line if it is the graph of some linear equation.
- To introduce the Cartesian coordinate system we used informal, intuitive notions of point, lines and the plane.

Definition

• An equation of the form ax + by + c = 0, where a, b, c are constants such that a and b are not simultaneously zero, is called a linear equation.

- A set of pairs of numbers (x, y) is called a line in \mathbb{R}^2 if it is the set of solutions to some linear equation.
- A set of points in the plane will be called a line if it is the graph of some linear equation.
- To introduce the Cartesian coordinate system we used informal, intuitive notions of point, lines and the plane.
- We could (and often do in more advanced subjects) remove this informality by *defining* \mathbb{R}^2 to be the Euclidean plane.

Definition

• An equation of the form ax + by + c = 0, where a, b, c are constants such that a and b are not simultaneously zero, is called a linear equation.

- A set of pairs of numbers (x, y) is called a line in \mathbb{R}^2 if it is the set of solutions to some linear equation.
- A set of points in the plane will be called a line if it is the graph of some linear equation.
- To introduce the Cartesian coordinate system we used informal, intuitive notions of point, lines and the plane.
- We could (and often do in more advanced subjects) remove this informality by *defining* \mathbb{R}^2 to be the Euclidean plane.

Definition

• An equation of the form ax + by + c = 0, where a, b, c are constants such that a and b are not simultaneously zero, is called a linear equation.

- A set of pairs of numbers (x, y) is called a line in \mathbb{R}^2 if it is the set of solutions to some linear equation.
- A set of points in the plane will be called a line if it is the graph of some linear equation.
- To introduce the Cartesian coordinate system we used informal, intuitive notions of point, lines and the plane.
- We could (and often do in more advanced subjects) remove this informality by *defining* \mathbb{R}^2 to be the Euclidean plane.

Example

Find an equation of the line passing through (1,3) and (2,6).

Example

Find an equation of the line passing through (1,3) and (2,6).

 It suffices to manufacture a linear equation such that when we plug in (1, 3) and (2, 6) we get an identity.

Example

Find an equation of the line passing through (1,3) and (2,6).

?
$$(y-3) = ?$$
 $(x-1)$

- It suffices to manufacture a linear equation such that when we plug in (1,3) and (2,6) we get an identity.
- A (very simple) equation satisfied by x = 1, y = 3 is: y 3 = x 1.

Example

Find an equation of the line passing through (1,3) and (2,6).

?
$$(y-3) = ? (x-1)$$

- It suffices to manufacture a linear equation such that when we plug in (1,3) and (2,6) we get an identity.
- A (very simple) equation satisfied by x = 1, y = 3 is: y 3 = x 1.

This is so because both sides become zero when x = 1, y = 3.

Example

Find an equation of the line passing through (1,3) and (2,6).

?
$$(y-3)=?$$
 $(x-1)$

- It suffices to manufacture a linear equation such that when we plug in (1, 3) and (2, 6) we get an identity.
- A (very simple) equation satisfied by x = 1, y = 3 is: y = 3 = x - 1.

This is so because both sides become zero when x = 1, y = 3.

Example

Find an equation of the line passing through (1,3) and (2,6).

?
$$(y-3) = ?$$
 $(x-1)$

- It suffices to manufacture a linear equation such that when we plug in (1,3) and (2,6) we get an identity.
- A (very simple) equation satisfied by x = 1, y = 3 is: y 3 = x 1. This is so because both sides become zero when x = 1, y = 3.
- If we plug in x = 2 and y = 6 in the above we don't get an identity

$$(6-3) \neq (2-1)$$

Example

Find an equation of the line passing through (1,3) and (2,6).

?
$$(y-3) = ?$$
 $(x-1)$

- It suffices to manufacture a linear equation such that when we plug in (1,3) and (2,6) we get an identity.
- A (very simple) equation satisfied by x = 1, y = 3 is: y - 3 = x - 1. This is so because both sides become zero when x = 1, y = 3.
- If we plug in x = 2 and y = 6 in the above we don't get an identity

$$(6-3) \neq (2-1)$$

Example

Find an equation of the line passing through (1,3) and (2,6).

?
$$(y-3) = ? (x-1)$$

- It suffices to manufacture a linear equation such that when we plug in (1,3) and (2,6) we get an identity.
- A (very simple) equation satisfied by x = 1, y = 3 is: y 3 = x 1. This is so because both sides become zero when x = 1, y = 3.
- If we plug in x = 2 and y = 6 in the above we don't get an identity

$$(6-3) \neq (2-1)$$

Example

Find an equation of the line passing through (1, 3) and (2, 6).

$$(2-1)(y-3) = ?$$
 $(x-1)$

- It suffices to manufacture a linear equation such that when we plug in (1, 3) and (2, 6) we get an identity.
- A (very simple) equation satisfied by x = 1, y = 3 is: y 3 = x 1.

This is so because both sides become zero when x = 1, y = 3.

• If we plug in x = 2 and y = 6 in the above we don't get an identity, but that can be easily fixed:

$$(2-1)(6-3) \neq (2-1)$$

Example

Find an equation of the line passing through (1,3) and (2,6).

$$(2-1)(y-3)=(6-3)(x-1)$$

- It suffices to manufacture a linear equation such that when we plug in (1,3) and (2,6) we get an identity.
- A (very simple) equation satisfied by x = 1, y = 3 is: y 3 = x 1.

This is so because both sides become zero when x = 1, y = 3.

• If we plug in x = 2 and y = 6 in the above we don't get an identity, but that can be easily fixed:

$$(2-1)(6-3)=(6-3)(2-1)$$

Example

Find an equation of the line passing through (1,3) and (2,6).

$$(2-1)(y-3) = (6-3)(x-1)$$

- It suffices to manufacture a linear equation such that when we plug in (1, 3) and (2, 6) we get an identity.
- A (very simple) equation satisfied by x = 1, y = 3 is: y 3 = x 1.

This is so because both sides become zero when x = 1, y = 3.

• If we plug in x = 2 and y = 6 in the above we don't get an identity, but that can be easily fixed:

$$(2-1)(6-3)=(6-3)(2-1)$$

• Perhaps the last modification caused x = 1, y = 3 to no longer be solutions?

Example

Find an equation of the line passing through (1,3) and (2,6).

$$(2-1)(y-3)=(6-3)(x-1)$$

- It suffices to manufacture a linear equation such that when we plug in (1, 3) and (2, 6) we get an identity.
- A (very simple) equation satisfied by x = 1, y = 3 is: y 3 = x 1.

This is so because both sides become zero when x = 1, y = 3.

• If we plug in x = 2 and y = 6 in the above we don't get an identity, but that can be easily fixed:

$$(2-1)(6-3)=(6-3)(2-1)$$

• Perhaps the last modification caused x = 1, y = 3 to no longer be solutions? No - both sides are still zero when x = 1, y = 3.

Example

Find an equation of the line passing through (1,3) and (2,6).

$$(2-1)(y-3)=(6-3)(x-1)$$

- It suffices to manufacture a linear equation such that when we plug in (1, 3) and (2, 6) we get an identity.
- A (very simple) equation satisfied by x = 1, y = 3 is: y 3 = x 1.

This is so because both sides become zero when x = 1, y = 3.

• If we plug in x = 2 and y = 6 in the above we don't get an identity, but that can be easily fixed:

$$(2-1)(6-3)=(6-3)(2-1)$$

• Perhaps the last modification caused x = 1, y = 3 to no longer be solutions? No - both sides are still zero when x = 1, y = 3.

Lines 7/19

Example

Find an equation of the line passing through (x_1, y_1) and (x_2, y_2) .

$$(x_2-x_1)(y-y_1)=(y_2-y_1)(x-x_1)$$

- It suffices to manufacture a linear equation such that when we plug in (x_1, y_1) and (x_2, y_2) we get an identity.
- A (very simple) equation satisfied by $x = x_1$, $y = y_2$ is: $y - y_2 = x - x_1$.

This is so because both sides become zero when $x = x_1$, $y = y_1$.

• If we plug in $x = x_2$ and $y = y_2$ in the above we don't get an identity (necessarily), but that can be easily fixed:

$$(x_2-x_1)(y_2-y_1)=(y_2-y_1)(x_2-x_1)$$

• Perhaps the last modification caused $x = x_1$, $y = y_1$ to no longer be solutions? No - both sides are still zero when $x = x_1$, $y = y_1$.

Lines 7/19

Example

Find an equation of the line passing through (x_1, y_1) and (x_2, y_2) .

$$(x_2-x_1)(y-y_1)=(y_2-y_1)(x-x_1)$$

- It suffices to manufacture a linear equation such that when we plug in (x_1, y_1) and (x_2, y_2) we get an identity.
- A (very simple) equation satisfied by $x = x_1$, $y = y_2$ is:

 $y - y_2 = x - x_1$. This is so because both sides become zero when $x = x_1$, $y = y_1$.

• If we plug in $x = x_2$ and $y = y_2$ in the above we don't get an identity (necessarily), but that can be easily fixed:

$$(x_2-x_1)(y_2-y_1)=(y_2-y_1)(x_2-x_1)$$

• Perhaps the last modification caused $x = x_1$, $y = y_1$ to no longer be solutions? No - both sides are still zero when $x = x_1$, $y = y_1$.

Lines 8/19

Proposition

Let (x_1, y_1) and (x_2, y_2) be points and L be the line between them. Then L has equation

$$(x_2-x_1)(y-y_1) = (y_2-y_1)(x-x_1).$$

Lines 8/19

Proposition

Let (x_1, y_1) and (x_2, y_2) be points and L be the line between them. Then L has equation

$$(x_2 - x_1)(y - y_1) = (y_2 - y_1)(x - x_1).$$

If $x_1 \neq x_2$, then L has also equations $y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$

Lines 8/19

Proposition

Let (x_1, y_1) and (x_2, y_2) be points and L be the line between them. Then L has equation

$$(x_2 - x_1)(y - y_1) = (y_2 - y_1)(x - x_1).$$

If $x_1 \neq x_2$, set $m = \frac{y_2 - y_1}{x_2 - x_1}$; then L has also equations
$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

Lines 8/19

Proposition

Let (x_1, y_1) and (x_2, y_2) be points and L be the line between them. Then L has equation

$$(x_2 - x_1)(y - y_1) = (y_2 - y_1)(x - x_1).$$

If $x_1 \neq x_2$, set $m = \frac{y_2 - y_1}{x_2 - x_1}$; then L has also equations
$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

$$y - y_1 = m(x - x_1)$$
point-slope form

Todor Milev Lecture 18 2020

Lines 8/19

Proposition

Let (x_1, y_1) and (x_2, y_2) be points and L be the line between them. Then L has equation

$$(x_2 - x_1)(y - y_1) = (y_2 - y_1)(x - x_1).$$

If $x_1 \neq x_2$, set $m = \frac{y_2 - y_1}{x_2 - x_1}$; then L has also equations
$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

$$y - y_1 = m(x - x_1)$$
point-slope form
$$y = m(x - x_1) + y_1$$

Lines 8/19

Proposition

Let (x_1, y_1) and (x_2, y_2) be points and L be the line between them. Then L has equation

$$(x_2 - x_1)(y - y_1) = (y_2 - y_1)(x - x_1).$$

If $x_1 \neq x_2$, set $m = \frac{y_2 - y_1}{x_2 - x_1}$; then L has also equations
$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

$$y - y_1 = m(x - x_1)$$
point-slope form
$$y = m(x - x_1) + y_1$$

$$y = mx + y_1 - mx_1$$

Todor Milev Lecture 18 2020 Lines 8/19

Proposition

Let (x_1, y_1) and (x_2, y_2) be points and L be the line between them. Then L has equation

$$(x_2 - x_1)(y - y_1) = (y_2 - y_1)(x - x_1).$$

If $x_1 \neq x_2$, set $m = \frac{y_2 - y_1}{x_2 - x_1}$; then L has also equations

 $y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$
 $y - y_1 = m(x - x_1)$ point-slope form

 $y = m(x - x_1) + y_1$
 $y = mx + y_1 - mx_1$

Set $b = y_1 - mx_1$

Todor Milev Lecture 18 2020

Proposition

Let (x_1, y_1) and (x_2, y_2) be points and L be the line between them. Then L has equation

$$(x_2-x_1)(y-y_1)=(y_2-y_1)(x-x_1).$$

If $x_1 \neq x_2$, set $m=\frac{y_2-y_1}{x_2-x_1}$; then L has also equations

 $y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)$
 $y-y_1=m(x-x_1)$ point-slope form

 $y=m(x-x_1)+y_1$
 $y=mx+y_1-mx_1$

Set $b=y_1-mx_1$
 $y=mx+b$ slope-intercept form

Todor Miley Lecture 18 2020

Lines 8/19

Proposition

Let (x_1, y_1) and (x_2, y_2) be points and L be the line between them. Then L has equation

$$(x_2 - x_1)(y - y_1) = (y_2 - y_1)(x - x_1).$$
If $x_1 \neq x_2$, set $m = \frac{y_2 - y_1}{x_2 - x_1}$; then L has also equations
$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

$$y - y_1 = m(x - x_1)$$

$$y = m(x - x_1) + y_1$$

$$y = mx + y_1 - mx_1$$
Set $b = y_1 - mx_1$

$$y = mx + b$$
| slope-intercept form

Todor Milev Lecture 18 2020

A line that is the graph of an equation of the form

$$y = mx + b$$

is called a non-vertical line.

A line that is the graph of an equation of the form

$$y = mx + b$$

is called a *non-vertical* line.

 The equation above is called the slope-intercept form of the (non-vertical) line.

A line that is the graph of an equation of the form

$$y = mx + b$$

is called a *non-vertical* line.

- The equation above is called the slope-intercept form of the (non-vertical) line.
- The number *m* is called the slope of the line.

A line that is the graph of an equation of the form

$$y = mx + b$$

is called a *non-vertical* line.

- The equation above is called the slope-intercept form of the (non-vertical) line.
- The number *m* is called the slope of the line.
- The number *b* is the *y* intercept of the line.

Geometric Interpretation of Slope

Definition (non-vertical line, slope-intercept form)

y = mx + b, m - is called slope, b is called y-intercept.

Todor Milev Lecture 18 2020

Geometric Interpretation of Slope

Definition (non-vertical line, slope-intercept form)

y = mx + b, m - is called slope, b is called y-intercept.

• Fix pts. (x_1, y_1) , (x_2, y_2) on the line with $x_2 > x_1$.

Todor Milev Lecture 18 2020

Geometric Interpretation of Slope

Definition (non-vertical line, slope-intercept form)

- Fix pts. (x_1, y_1) , (x_2, y_2) on the line with $x_2 > x_1$.
- Call $x_2 x_1$ the run of the line between the points.

Geometric Interpretation of Slope

Definition (non-vertical line, slope-intercept form)

- Fix pts. (x_1, y_1) , (x_2, y_2) on the line with $x_2 > x_1$.
- Call $x_2 x_1$ the run of the line between the points. The run is assumed positive.

Definition (non-vertical line, slope-intercept form)

- Fix pts. (x_1, y_1) , (x_2, y_2) on the line with $x_2 > x_1$.
- Call $x_2 x_1$ the run of the line between the points. The run is assumed positive.
- Call $y_2 y_1$ the rise of the line between the two points.

Geometric Interpretation of Slope

Definition (non-vertical line, slope-intercept form)

- Fix pts. (x_1, y_1) , (x_2, y_2) on the line with $x_2 > x_1$.
- Call $x_2 x_1$ the run of the line between the points. The run is assumed positive.
- Call $y_2 y_1$ the rise of the line between the two points. Negative rise is allowed.

Definition (non-vertical line, slope-intercept form)

- Fix pts. (x_1, y_1) , (x_2, y_2) on the line with $x_2 > x_1$.
- Call $x_2 x_1$ the run of the line between the points. The run is assumed positive.
- Call $y_2 y_1$ the rise of the line between the two points. Negative rise is allowed.

$$- \qquad \begin{array}{rcl} y_2 & = & mx_2 + b \\ y_1 & = & mx_1 + b \end{array}$$

Definition (non-vertical line, slope-intercept form)

- Fix pts. (x_1, y_1) , (x_2, y_2) on the line with $x_2 > x_1$.
- Call $x_2 x_1$ the run of the line between the points. The run is assumed positive.
- Call $y_2 y_1$ the rise of the line between the two points. Negative rise is allowed.

$$-\frac{y_2 = mx_2 + b}{y_1 = mx_1 + b}$$
$$\frac{y_2 - y_1 = mx_2 + b - mx_1 - b}{y_2 - y_1 = mx_2 + b - mx_1 - b}$$

Definition (non-vertical line, slope-intercept form)

- Fix pts. (x_1, y_1) , (x_2, y_2) on the line with $x_2 > x_1$.
- Call $x_2 x_1$ the run of the line between the points. The run is assumed positive.
- Call $y_2 y_1$ the rise of the line between the two points. Negative rise is allowed.

$$\frac{y_2 = mx_2 + b}{y_1 = mx_1 + b}
 \frac{y_2 - y_1 = mx_2 + b - mx_1 - b}{y_2 - y_1 = m(x_2 - x_1)}$$

Lines

Definition (non-vertical line, slope-intercept form)

- Fix pts. (x_1, y_1) , (x_2, y_2) on the line with $x_2 > x_1$.
- Call $x_2 x_1$ the run of the line between the points. The run is assumed positive.
- Call $y_2 y_1$ the rise of the line between the two points. Negative rise is allowed.

$$\begin{array}{rcl}
 & y_2 &=& mx_2 + b \\
y_1 &=& mx_1 + b \\
\hline
y_2 - y_1 &=& mx_2 + b - mx_1 - b \\
y_2 - y_1 &=& m(x_2 - x_1)
\end{array}$$

Definition (non-vertical line, slope-intercept form)

- Fix pts. (x_1, y_1) , (x_2, y_2) on the line with $x_2 > x_1$.
- Call $x_2 x_1$ the run of the line between the points. The run is assumed positive.
- Call y₂ y₁ the rise of the line between the two points. Negative rise is allowed.

$$\frac{y_2 = mx_2 + b}{y_1 = mx_1 + b}$$

$$\frac{y_2 - y_1 = mx_2 + b - mx_1 - b}{y_2 - y_1 = m(x_2 - x_1)}$$

$$\frac{m}{m} = \frac{y_2 - y_1}{x_2 - x_1}$$

Definition (non-vertical line, slope-intercept form)

- Fix pts. (x_1, y_1) , (x_2, y_2) on the line with $x_2 > x_1$.
- Call $x_2 x_1$ the run of the line between the points. The run is assumed positive.
- Call y₂ y₁ the rise of the line between the two points. Negative rise is allowed.

$$\frac{y_2 = mx_2 + b}{y_1 = mx_1 + b}$$

$$\frac{y_2 - y_1 = mx_2 + b - mx_1 - b}{y_2 - y_1 = m(x_2 - x_1)}$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Definition (non-vertical line, slope-intercept form)

- Fix pts. (x_1, y_1) , (x_2, y_2) on the line with $x_2 > x_1$.
- Call $x_2 x_1$ the run of the line between the points. The run is assumed positive.
- Call $y_2 y_1$ the rise of the line between the two points. Negative rise is allowed.

$$\frac{y_2 = mx_2 + b}{y_1 = mx_1 + b}$$

$$\frac{y_2 - y_1 = mx_2 + b - mx_1 - b}{y_2 - y_1 = m(x_2 - x_1)}$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Geometric Interpretation of Slope

Definition (non-vertical line, slope-intercept form)

- Fix pts. (x_1, y_1) , (x_2, y_2) on the line with $x_2 > x_1$.
- Call $x_2 x_1$ the run of the line between the points. The run is assumed positive.
- Call $y_2 y_1$ the rise of the line between the two points. Negative rise is allowed.

$$\frac{y_2 = mx_2 + b}{y_1 = mx_1 + b}$$

$$\frac{y_2 - y_1 = mx_2 + b - mx_1 - b}{y_2 - y_1 = m(x_2 - x_1)}$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{rise}{run}$$

Geometric Interpretation of Slope

Definition (non-vertical line, slope-intercept form)

- Fix pts. (x_1, y_1) , (x_2, y_2) on the line with $x_2 > x_1$.
- Call $x_2 x_1$ the run of the line between the points. The run is assumed positive.
- Call $y_2 y_1$ the rise of the line between the two points. Negative rise is allowed.

$$\begin{array}{rcl}
 & y_2 & = & mx_2 + b \\
 & y_1 & = & mx_1 + b \\
\hline
 & y_2 - y_1 & = & mx_2 + b - mx_1 - b \\
 & y_2 - y_1 & = & m(x_2 - x_1) \\
 & m & = & \frac{y_2 - y_1}{x_2 - x_1} \\
 & m & = & \frac{\text{rise}}{\text{run}}
\end{array}$$

 If two linear functions have positive slopes, the one with the bigger slope increases faster.

- If two linear functions have positive slopes, the one with the bigger slope increases faster.
- y = 2x increases twice as fast as y = x.

- If two linear functions have positive slopes, the one with the bigger slope increases faster.
- y = 2x increases twice as fast as y = x.
- y = 3x increases three times as fast as y = x.

- If two linear functions have positive slopes, the one with the bigger slope increases faster.
- y = 2x increases twice as fast as y = x.
- y = 3x increases three times as fast as y = x.
- $y = \frac{x}{2}$ increases half as fast as y = x.

- If two linear functions have positive slopes, the one with the bigger slope increases faster.
- y = 2x increases twice as fast as y = x.
- y = 3x increases three times as fast as y = x.
- $y = \frac{x}{2}$ increases half as fast as y = x.
- $y = \frac{x}{3}$ increases one third as fast as y = x.

• If two linear functions have negative slopes, the one with the lower slope decreases faster.

- If two linear functions have negative slopes, the one with the lower slope decreases faster.
- y = -2x decreases twice as fast as y = -x.

- If two linear functions have negative slopes, the one with the lower slope decreases faster.
- y = -2x decreases twice as fast as y = -x.
- y = -3x decreases three times as fast as y = -x.

- If two linear functions have negative slopes, the one with the lower slope decreases faster.
- y = -2x decreases twice as fast as y = -x.
- y = -3x decreases three times as fast as y = -x.
- $y = -\frac{1}{2}x$ decreases half as fast as y = -x.

- If two linear functions have negative slopes, the one with the lower slope decreases faster.
- y = -2x decreases twice as fast as y = -x.
- y = -3x decreases three times as fast as y = -x.
- $y = -\frac{1}{2}x$ decreases half as fast as y = -x.
- $y = -\frac{1}{3}x$ decreases one third as fast as y = -x.

A line of the form x = a is called a vertical line.

A line of the form x = a is called a vertical line.

 y does not participate directly in the equation x = a.

A line of the form x = a is called a vertical line.

- y does not participate directly in the equation x = a.
- Therefore the equation cannot be rewritten in slope-intercept form (y = ?x + ?).

Lines

A line of the form x = a is called a vertical line.

- y does not participate directly in the equation x = a.
- Therefore the equation cannot be rewritten in slope-intercept form (y = ?x + ?).
- Consequently the notion of a slope is not undefined for vertical lines.

Plotting Lines from line equation

Plotting Lines from line equation

To plot a line from its equation ax + by = c do the following.

• If b = 0, the line is vertical through $x = \frac{c}{a}$.

Plotting Lines from line equation

To plot a line from its equation ax + by = c do the following.

• If b = 0, the line is vertical through $x = \frac{c}{a}$. Suppose $b \neq 0$.

Plotting Lines from line equation

- If b = 0, the line is vertical through $x = \frac{c}{a}$. Suppose $b \neq 0$.
 - Plug in arbitrary number for x and find y from $y = \frac{c ax}{b}$.

Plotting Lines from line equation

- If b = 0, the line is vertical through $x = \frac{c}{a}$. Suppose $b \neq 0$.
 - Plug in arbitrary number for x and find y from $y = \frac{c ax}{b}$.
 - Use same procedure to find a second point on the line.

Plotting Lines from line equation

- If b = 0, the line is vertical through $x = \frac{c}{a}$. Suppose $b \neq 0$.
 - Plug in arbitrary number for x and find y from $y = \frac{c ax}{b}$.
 - Use same procedure to find a second point on the line.
 If a ≠ 0: can also plug in values for y to find x.

Lines

To plot a line from its equation ax + by = c do the following.

- If b = 0, the line is vertical through $x = \frac{c}{a}$. Suppose $b \neq 0$.
 - Plug in arbitrary number for x and find y from $y = \frac{c-ax}{b}$.
 - Use same procedure to find a second point on the line.
 - If $a \neq 0$: can also plug in values for y to find x.
 - Draw a line between the two dots.

Example

Plot the line with the given equation. equation pt. another pt.

$$x + y = 1$$
$$2x - y = 3$$
$$y = 2$$
$$x = -1$$

Lines

To plot a line from its equation ax + by = c do the following.

- If b = 0, the line is vertical through $x = \frac{c}{3}$. Suppose $b \neq 0$.
 - Plug in arbitrary number for x and find y from $y = \frac{c-ax}{b}$.
 - Use same procedure to find a second point on the line.
 - If $a \neq 0$: can also plug in values for y to find x.
 - Draw a line between the two dots.

Example

Plot the line with the given equation. equation pt. another pt.

$$x + y = 1$$
$$2x - y = 3$$

$$y=2$$

$$\dot{x} = -1$$

To plot a line from its equation ax + by = c do the following.

- If b = 0, the line is vertical through $x = \frac{c}{a}$. Suppose $b \neq 0$.
 - Plug in arbitrary number for x and find y from $y = \frac{c-ax}{b}$.
 - Use same procedure to find a second point on the line.
 - If $a \neq 0$: can also plug in values for y to find x.
 - Draw a line between the two dots.

Example

Plot the line with the given equation. equation pt. another pt.

$$x + y = 1$$
 (1,0) (0,1)
 $2x - y = 3$
 $y = 2$
 $x = -1$

Lines

To plot a line from its equation ax + by = c do the following.

- If b = 0, the line is vertical through $x = \frac{c}{a}$. Suppose $b \neq 0$.
 - Plug in arbitrary number for x and find y from $y = \frac{c-ax}{b}$.
 - Use same procedure to find a second point on the line.
 - If $a \neq 0$: can also plug in values for y to find x.
 - Draw a line between the two dots.

Example

Plot the line with the given equation. equation pt. another pt.

$$x + y = 1$$
 (1,0) (0,1)
2x - y = 3

$$x-y=3$$

 $y=2$

$$x = -1$$

Lines

To plot a line from its equation ax + by = c do the following.

- If b = 0, the line is vertical through $x = \frac{c}{a}$. Suppose $b \neq 0$.
 - Plug in arbitrary number for x and find y from $y = \frac{c-ax}{b}$.
 - Use same procedure to find a second point on the line.
 - If $a \neq 0$: can also plug in values for y to find x.
 - Draw a line between the two dots.

Example

Plot the line with the given equation. equation pt. another pt.

$$x + y = 1$$
 (1,0) (0,1)
 $2x - y = 3$? ? ? ? $y = 2$ $x = -1$

Lines

To plot a line from its equation ax + by = c do the following.

- If b = 0, the line is vertical through $x = \frac{c}{a}$. Suppose $b \neq 0$.
 - Plug in arbitrary number for x and find y from $y = \frac{c-ax}{b}$.
 - Use same procedure to find a second point on the line.
 - If $a \neq 0$: can also plug in values for y to find x.
 - Draw a line between the two dots.

Example

Plot the line with the given equation. equation pt. another pt.

$$x + y = 1$$
 (1,0) (0,1)

$$2x - y = 3$$
 $(0, -3)$ $(\frac{3}{2}, 0)$
 $y = 2$

$$x = -1$$

Lines

To plot a line from its equation ax + by = c do the following.

- If b = 0, the line is vertical through $x = \frac{c}{a}$. Suppose $b \neq 0$.
 - Plug in arbitrary number for x and find y from $y = \frac{c-ax}{b}$.
 - Use same procedure to find a second point on the line.
 - If $a \neq 0$: can also plug in values for y to find x.
 - Draw a line between the two dots.

Example

Plot the line with the given equation. equation pt. another pt.

$$x + y = 1$$
 (1,0) (0,1)

$$2x - y = 3$$
 $(0, -3)$ $(\frac{3}{2}, 0)$
 $y = 2$

$$x = -1$$

Lines

To plot a line from its equation ax + by = c do the following.

- If b = 0, the line is vertical through $x = \frac{c}{a}$. Suppose $b \neq 0$.
 - Plug in arbitrary number for x and find y from $y = \frac{c-ax}{b}$.
 - Use same procedure to find a second point on the line.
 - If $a \neq 0$: can also plug in values for y to find x.
 - Draw a line between the two dots.

Example

Plot the line with the given equation. equation pt. another pt.

$$x + y = 1$$
 (1,0) (0,1)
 $2x - y = 3$ (0,-3) ($\frac{3}{2}$,0)
 $y = 2$?

$$x = -1$$

Lines

To plot a line from its equation ax + by = c do the following.

- If b = 0, the line is vertical through $x = \frac{c}{3}$. Suppose $b \neq 0$.
 - Plug in arbitrary number for x and find y from $y = \frac{c-ax}{b}$.
 - Use same procedure to find a second point on the line.
 - If $a \neq 0$: can also plug in values for y to find x.
 - Draw a line between the two dots.

Example

Plot the line with the given equation. equation pt. another pt.

$$x + y = 1$$
 (1,0) (0,1)

$$x + y = 1$$
 (1,0) (0,1)
 $2x - y = 3$ (0,-3) ($\frac{3}{2}$,0)
 $y = 2$ (0,2) (1,2)

$$x = -1$$

Other points can be used as well.

Todor Milev Lecture 18

Lines

To plot a line from its equation ax + by = c do the following.

- If b = 0, the line is vertical through $x = \frac{c}{3}$. Suppose $b \neq 0$.
 - Plug in arbitrary number for x and find y from $y = \frac{c-ax}{b}$.
 - Use same procedure to find a second point on the line.
 - If $a \neq 0$: can also plug in values for y to find x.
 - Draw a line between the two dots.

Example

Plot the line with the given equation. equation pt. another pt.

$$x + y = 1$$
 (1,0) (0,1)

$$x + y = 1$$
 (1,0) (0,1)
 $2x - y = 3$ (0,-3) ($\frac{3}{2}$,0)

$$y = 2$$
 (0,2) $(\bar{1},2)$

$$x = -1$$

Lines

To plot a line from its equation ax + by = c do the following.

- If b = 0, the line is vertical through $x = \frac{c}{3}$. Suppose $b \neq 0$.
 - Plug in arbitrary number for x and find y from $y = \frac{c-ax}{b}$.
 - Use same procedure to find a second point on the line.
 - If $a \neq 0$: can also plug in values for y to find x.
 - Draw a line between the two dots.

Example

Plot the line with the given equation. equation pt. another pt.

$$x + y = 1$$
 (1,0) (0,1)
2x - y = 3 (0,-3) ($\frac{3}{2}$,0)

$$2x - y = 3$$
 $(0, -3)$ $(\frac{3}{2}, 0)$

$$y = 2$$
 (0,2) (1,2) $x = -1$?

Lines

To plot a line from its equation ax + by = c do the following.

- If b = 0, the line is vertical through $x = \frac{c}{3}$. Suppose $b \neq 0$.
 - Plug in arbitrary number for x and find y from $y = \frac{c-ax}{b}$.
 - Use same procedure to find a second point on the line.
 - If $a \neq 0$: can also plug in values for y to find x.
 - Draw a line between the two dots.

Example

Plot the line with the given equation. equation pt. another pt.

$$x + y = 1$$
 (1,0) (0,1)

$$x + y = 1$$
 (1,0) (0,1)
 $2x - y = 3$ (0,-3) ($\frac{3}{2}$,0)
 $y = 2$ (0,2) (1,2)

$$x = -1$$
 $(-1,0)$ $(-1,1)$

Lines

To plot a line from its equation ax + by = c do the following.

- If b = 0, the line is vertical through $x = \frac{c}{3}$. Suppose $b \neq 0$.
 - Plug in arbitrary number for x and find y from $y = \frac{c-ax}{b}$.
 - Use same procedure to find a second point on the line.
 - If $a \neq 0$: can also plug in values for y to find x.
 - Draw a line between the two dots.

Example

Plot the line with the given equation. equation pt. another pt.

$$x + y = 1$$
 (1,0) (0,1)

$$x + y = 1$$
 (1,0) (0,1)
 $2x - y = 3$ (0,-3) ($\frac{3}{2}$,0)
 $y = 2$ (0,2) (1,2)

$$x = -1$$
 (0,2) (1,2)
 $x = -1$ (-1,0) (-1,1)

Todor Milev Lecture 18

15/19

Example

Find an equation of a line passing though the indicated pairs of points.

- (1,2) and (2,-1).
- (1,1) and (2,-2).
- \bullet (0, 1) and (1, 0).
- (3,5) and (7,-11).

Example

Find an equation of the line passing through (1,2) with slope $-\frac{1}{2}$.

Lines Line intersection 17/19

To find the intersection of two lines (if they do intersect) with equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ we need to solve the system of equations

$$\begin{vmatrix} a_1x + b_1y + c_1 &= 0 \\ a_2x + b_2y + c_2 &= 0 \end{vmatrix}$$

Lines Line intersection 18/19

Example

Find the intersection of the following lines.

- x y = 3 and x + 2y = 10.
- 2 3x y = 3 and x = 1 3y.
- 3 Line x = 3 and x = 1 2y
- 4 Line through (2,0) and (1,2) and line through (3,7) and (2,5).
- **5** Line through (3,-1) and (-1,3) and line through (1,1) and (2,3).

Lines Line intersection 19/19

Definition

Two lines are parallel if they have no common point.

Proposition

Two non-vertical lines are parallel if and only if they have equal slopes and different y intercepts.

Proof \Leftarrow .

- Suppose the two lines have different y intercepts and have the same slope m.
- Then the lines have equations as shown below.

• System has no solutions as $b_1 \neq b_2 \Rightarrow$ the lines don't intersect. \square

Lines Line intersection 19/19

Definition

Two lines are parallel if they have no common point.

Proposition

Two non-vertical lines are parallel if and only if they have equal slopes and different y intercepts.

$\mathsf{Proof} \Rightarrow .$

- Suppose the two lines have different slopes.
- Suppose the lines have equations as shown below.

$$\frac{y=m_1x+b_1}{y=m_2x+b_2} \\
 0=(m_1-m_2)x+b_1-b_2 \\
(m_1-m_2)x=b_2-b_1 | Div. by m_1-m_2 \neq 0 \\
x=\frac{b_2-b_1}{m_1-m_2}$$

• The system has solution $x = \frac{b_2 - b_1}{m_1 - m_2}$, $y = m_1 \frac{b_2 - b_1}{m_1 - m_2} + b_1 \Rightarrow$ the lines intersect.

Todor Milev Lecture 18 2020