Universidade Federal do Ceará Campus de Quixadá Matemática Computacional - Trabalho Prático 01 Prof. Paulo Henrique Macêdo

Sistemas Lineares e Raízes de Equação Trabalho em equipe: Máximo de 2 pessoas

Sistemas Lineares

Questões

- 1. Implemente, na linguagem que desejar, os métodos abaixo.
 - a) Eliminação de Gauss;
 - b) Função para a verificação de convergência dos métodos de Jacobi e Gauss-Seidel;
 - c) Método de Jacobi com precisão genérica ϵ de entrada;
 - d) Gauss-Seidel com precisão genérica ϵ de entrada.
- 2. Compare as soluções retornadas pelos três métodos acima (Eliminação de Gauss, Jacobi e Gauss-Seidel) rodando-os para os sistemas lineares cujas matrizes ampliadas são as seguintes (utilize $\epsilon=0.0001$ para os métodos de Jacobi e Gauss-Seidel):

a)
$$\begin{pmatrix} 10 & 1 & 1 & 12 \\ 1 & 10 & 1 & 12 \\ 1 & 1 & 10 & 12 \end{pmatrix}$$

b)
$$\begin{pmatrix} 4 & -1 & 0 & 0 & 1 \\ -1 & 4 & -1 & 0 & 1 \\ 0 & -1 & 4 & -1 & 1 \\ 0 & 0 & -1 & 4 & 1 \end{pmatrix}$$

c)
$$\begin{pmatrix} 10 & 1 & -1 & 10 \\ 2 & 10 & 8 & 20 \\ 7 & 1 & 10 & 30 \end{pmatrix}$$

$$\begin{pmatrix}
5 & 1 & 1 & 5 \\
3 & 4 & 1 & 6 \\
3 & 3 & 6 & 0
\end{pmatrix}$$

OBS: Não esqueça de verificar a garantia de convergência nas aplicações dos métodos de Jacobi e Gauss-Seidel!

Raízes de Equação

No método da posição falsa, a função f(x) é aproximada por uma função linear g(x).

O coeficiente angular da função g(x) é:

$$m = \frac{y_1 - y_0}{x_1 - x_0} \tag{1}$$

Considerando $(x_0,y_0)=(a,f(a)),(x_1,y_1)=(b,f(b)),m=\frac{y_1-y_0}{x_1-x_0}$ e (x,0) é a raiz da função g(x). Temos que

$$y - y_0 = m(x - x_0)$$

$$-f(a) = \frac{f(b) - f(a)}{b - a}(x - a)$$

$$-f(a) = x \frac{f(b) - f(a)}{b - a} - a \frac{f(b) - f(a)}{b - a}$$

$$x \frac{f(b) - f(a)}{b - a} = -f(a) + a \frac{f(b) - f(a)}{b - a}$$

$$x \frac{f(b) - f(a)}{b - a} = \frac{-f(a)(b - a) + af(b) - f(a)}{b - a}$$

$$x(f(b) - f(a)) = -bf(a) + af(a) + af(b) - af(a)$$

$$x(f(b) - f(a)) = af(b) - bf(a)$$

$$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

A raiz de g(x) é utilizada como uma aproximação da raiz de f(x).

A ideia do método é partir de um intervalo $[a_0,b_0]$ com $f(a_0)f(b_0)<0$, em cada passo do algoritmo, encontrar um intervalo menor $[a_k,b_k]$ com $f(a_k)f(b_k)<0$. Na iteração k,

$$c_{k+1} = \frac{a_{k-1}f(b_{k-1}) - b_{k-1}f(a_{k-1})}{f(b_{k-1}) - f(a_{k-1})}$$
(2)

Se $f(c_k)f(a_{k-1})<0$ então $a_k=a_{k-1}$ e $b_k=c_k$, caso contrário, $a_k=c_k$ e $b_k=b_{k-1}$. O processo é repetido até que seja encontrada uma raiz aproximada, suficientemente compatível com o erro estimado. A única diferença entre o método da posição falsa e o método da bissecção é que o último utiliza $c_k=\frac{a_k+b_k}{2}$

Ā interpretação gráfica do método da Posição Falsa pode ser vista da Figura 1.

Figura 1: Interpretação Gráfica do método da Posição Falsa

Se a função é côncava ou convexa em [a, b], então o método da Posição Falsa uma das extremidades permanece fixa, como demonstrado na Figura 2.

A execução do método da bissecção para encontrar a raiz x da função $f(x)=2x^3-4x^2+3x$ com $\varepsilon=0.001$ e $x\in[-1,0.5]$ pode ser acompanhada pela Tabela 1.

Um resumo da execução do método da bisseção:

X	-0.000244141
Iterações	10
Intervalo da solução	(-0.000976562, 0.000488281)
Erro absoluto	0.00073266

A execução do método da posição falsa para encontrar a raiz x da função $f(x)=2x^3-4x^2+3x$ com $\varepsilon=0.001$ e $x\in[-1,0.5]$ pode ser acompanhada pela Tabela 2.

Um resumo da execução do método da posição falsa:

X	0.000266329
Iterações	19
Intervalo da solução	(-1,0.00039944)
Erro absoluto	0.000798704

A interpretação gráfica do método da posição falsa pode ser vista na Figura 3. Observe que neste caso, uma das extremidades do intervalo ficou fixa durante o método da posição falsa.

Figura 2: Comportamento do método da Posição Falsa quando a função f é côncava ou convexa no intercalo

Na literatura, podemos encontrar algumas alterações do método da posição falsa para ter uma convergência mais rápida. O método de Pégaso é umas dessas adaptações. Durante o método de Pégaso, os pesos atribuídos aos pontos $[a_k,b_k]$ são modificados apropriadamente.

Método de Pégaso

A ideia do método é partir dos valores $(a_0, F(a_0), b_0, F(b_0))$ com $F(a_0) = f(a_0), F(b_0) = f(b_0)$ e $F(a_0)F(b_0) < 0$, encontrar novos valores $(a_k, F(a_k), b_k, F(b_k))$ com $F(a_k)F(b_k) < 0$ em cada passo do método. Na iteração k,

$$c_{k+1} = \frac{a_{k-1}F(b_{k-1}) - b_{k-1}F(a_{k-1})}{F(b_{k-1}) - F(a_{k-1})}$$

$$F(c_{k+1}) = f(c_{k+1})$$

Se $F(a_{k-1})F(c_k) < 0$ então

$$(a_k, F(a_k), b_k, F(b_k)) \leftarrow (a_{k-1}, F(a_{k-1}) \frac{F(b_{k-1})}{F(b_{k-1}) + F(c_k)}, c_k, F(c_k))$$
 (3)

Note que o valor $F(a_k)$ é reduzido por um fator $\frac{F(b_{k-1})}{F(b_{k-1})+F(c_k)}$ para evitar a retenção de um ponto como ocorre no método da posição falsa. Com isso, estamos diminuindo o valor do ponto fixo na média ponderada e aumentando a velocidade de convergência. Em alguns casos, o valor de c_k pode passar da raiz,

\overline{k}	a_k	b_k	c_k	$f(c_k)$	$b_k - a_k$
0	-1.00000	0.50000	-0.25000	-1.03125	1.50000
1	-0.25000	0.50000	0.12500	0.31641	0.75000
2	-0.25000	0.12500	-0.06250	-0.20361	0.37500
3	-0.06250	0.12500	0.03125	0.08990	0.18750
4	-0.06250	0.03125	-0.01562	-0.04786	0.09375
5	-0.01562	0.03125	0.00781	0.02319	0.04688
6	-0.01562	0.00781	-0.00391	-0.01178	0.02344
7	-0.00391	0.00781	0.00195	0.00584	0.01172
8	-0.00391	0.00195	-0.00098	-0.00293	0.00586
9	-0.00098	0.00195	0.00049	0.00146	0.00293
_10	-0.00098	0.00049	-0.00024	-0.00073	0.00146

Tabela 1: Iterações do método da bisseção

Figura 3: Interpretação gráfica da execução do método da posição falsa

ou seja, $F(a_{k-1})F(c_k) > 0$. Quando isso acontece, consideramos que aconteceu um estouro. Essa condição será tratada a seguir.

Se $F(a_{k-1})F(c_k) > 0$ então

$$(a_k, F(a_k), b_k, F(b_k)) \leftarrow (b_{k-1}, F(b_{k-1}), c_k, F(c_k))$$
 (4)

Observe que o ponto fixo da função muda de a_{k-1} para b_{k-1} tornando condição $F(b_{k-1})F(c_k) < 0$ satisfeita. Dessa maneira a aproximação passa a ser contrária a anterior.

\overline{k}	a_k	b_k	c_k	$f(c_k)$	$b_k - a_k$
0	-1.00000	0.50000	0.38462	0.67592	1.50000
1	-1.00000	0.38462	0.28789	0.57987	1.38462
2	-1.00000	0.28789	0.20994	0.47202	1.28789
3	-1.00000	0.20994	0.14964	0.36605	1.20994
4	-1.00000	0.14964	0.10471	0.27257	1.14964
5	-1.00000	0.10471	0.07224	0.19659	1.10471
6	-1.00000	0.07224	0.04932	0.13846	1.07224
7	-1.00000	0.04932	0.03342	0.09586	1.04932
8	-1.00000	0.03342	0.02253	0.06557	1.03342
9	-1.00000	0.02253	0.01513	0.04448	1.02253
10	-1.00000	0.01513	0.01014	0.03000	1.01513
11	-1.00000	0.01014	0.00678	0.02016	1.01014
12	-1.00000	0.00678	0.00453	0.01351	1.00678
13	-1.00000	0.00453	0.00303	0.00904	1.00453
14	-1.00000	0.00303	0.00202	0.00604	1.00303
15	-1.00000	0.00202	0.00135	0.00403	1.00202
16	-1.00000	0.00135	0.00090	0.00269	1.00135
17	-1.00000	0.00090	0.00060	0.00180	1.00090
18	-1.00000	0.00060	0.00040	0.00120	1.00060
_19	-1.00000	0.00040	0.00027	0.00080	1.00040

Tabela 2: Iterações do método da posição falsa

k	a_k	b_k	c_k	$f(c_k)$	$b_k - a_k$
0	-1.00000	0.50000	0.38462	0.67592	1.50000
1	-1.00000	0.38462	0.21161	0.47467	1.38462
2	-1.00000	0.21161	0.03496	0.10007	1.21161
3	-1.00000	0.03496	-0.00825	-0.02503	1.03496
4	0.03496	-0.00825	0.00039	0.00118	0.04321
5	-0.00825	0.00039	0.00000	0.00001	0.00865

Tabela 3: Execução do método de Pégaso

A execução do método de Pégaso para encontrar a raiz ξ da função $f(x)=2x^3-4x^2+3x$ com $\varepsilon=0.001$ e $\xi\in[-1,0.5]$ pode ser acompanhada pela Tabela 3.

Um resumo da execução do método da Pégaso:

X	4.29961 e-006
Iterações	5
Intervalo da solução	(-0.00825343,0.000393277)
Erro absoluto	1.28987e-005

A interpretação gráfica do método da posição falsa pode ser vista na Figura

Uma comparação entre os três métodos:

Figura 4: Interpretação gráfica da execução do método de Pégaso

	Bisseção	Posição Falsa	Pégaso
X	-0.000244141	0.000266329	4.29961e-006
Iterações	10	19	5
Intervalo da solução	(-0.000976562, 0.000488281)	(-1,0.00039944)	(-0.00825343,0.000393277)
Erro absoluto	0.00073266	0.000798704	1.28987e-005

Questões

- 3. Implemente, na linguagem que desejar, os métodos abaixo. Cada método deve receber um intervalo inicial [a,b] e a precisão ϵ para encontrar a raíz de uma função f(x) no intervalo [a,b].
 - a) Método da Bisseção;
 - b) Método da Posição Falsa;
 - c) Método de Pégaso.
- 4. Compare os três métodos para encontrar uma raiz, usando um mesmo intervalo inicial [a,b] em cada método, nas seguintes situações:
 - a) $f(x) = x^5 3x^4 3x^2 + 2$, com $\epsilon = 2^{-5}$;
 - b) $f(x) = \sqrt{x} 5^{-x}$, com $\epsilon = 10^{-3}$;
 - c) $f(x) = x^5 x^4 4x + 1$, com $\epsilon = 0.01$;
 - d) $f(x) = 0.05x^3 0.4x^2 + 3xsenx = 0$, com $\epsilon = 0.005$.