$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

A REVIEW GOES HERE - Check our WWW List of Reviews

ρ (1700) MASS

 $\eta \rho^0$ AND $\pi^+\pi^-$ MODES

VALUE (MeV)

DOCUMENT ID

1720±20 OUR ESTIMATE

$\eta \rho^0$ MODE

• • • We do not use the following data for averages, fits, limits, etc. • •

ANTONELLI 88 DM2 $e^+e^- \rightarrow \eta \pi^+\pi^ 1740 \pm 20$ 88 SPEC 8.95 $\pi^- p \to \eta \pi^+ \pi^- n$ 1701 ± 15

$\pi\pi$ MODE

TECN COMMENT VALUE (MeV) **EVTS**

The data in this block is included in the average printed for a previous datablock.

• • • We do not use the following data for averages, fits, limits, etc. • • •

1780	± 20	$^{+15}_{-20}$	63.5k	¹ ABRAMOWIC	Z12	ZEUS	$e p \rightarrow e \pi^+ \pi^- p$
1861	± 17			² LEES	12G	BABR	$e^+e^- \rightarrow \pi^+\pi^-\gamma$
1728	± 17	± 89	5.4M	^{3,4} FUJIKAWA	80	BELL	$ au^- ightarrow ~\pi^- \pi^0 u_{ au}$
1780	$^{+37}_{-29}$			⁵ ABELE	97	CBAR	$\overline{p} n \rightarrow \pi^- \pi^0 \pi^0$
1719	± 15			⁵ BERTIN	97C		$0.0 \overline{p}p \rightarrow \pi^{+}\pi^{-}\pi^{0}$
1730	± 30			CLEGG	94	-	$e^+e^- \rightarrow \pi^+\pi^-$
1768	± 21			BISELLO	89	DM2	$e^+e^- ightarrow \pi^+\pi^-$
1745.	7 ± 91.9	9		DUBNICKA	89	RVUE	$e^+e^- ightarrow \pi^+\pi^-$
1546	± 26			GESHKEN	89	RVUE	
1650				⁶ ERKAL	85		20–70 $\gamma p \rightarrow \gamma \pi$
1550	± 70			_ ABE	84 B	HYBR	$20 \ \gamma p \rightarrow \ \pi^+ \pi^- p$
1590	± 20			⁷ ASTON	80	OMEG	20–70 $\gamma p \rightarrow p2\pi$
1600	± 10			⁸ ATIYA	79 B	SPEC	$50 \ \gammaC \to \ C2\pi$
1598	$+24 \\ -22$			BECKER	79	ASPK	17 $\pi^- p$ polarized
1659	± 25			⁶ LANG	79	RVUE	
1575				⁶ MARTIN	78 C	RVUE	17 $\pi^- p \to \pi^+ \pi^- n$
1610	± 30			⁶ FROGGATT	77	RVUE	17 $\pi^- p \to \pi^+ \pi^- n$
1590	± 20			⁹ HYAMS	73	ASPK	$17 \pi^- p \rightarrow \pi^+ \pi^- n$

¹ Using the KUHN 90 parametrization of the pion form factor, neglecting $\rho - \omega$ interference.

¹ Assuming $\rho^+ f_0(1370)$ decay mode interferes with $a_1(1260)^+ \pi$ background. From a two Breit-Wigner fit.

 $^{^2}$ Using the GOUNARIS 68 parametrization of the pion form factor leaving the masses and widths of the $\rho(1450)$, $\rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit.

 $^{^{3}|}F_{\pi}(0)|^{2}$ fixed to 1.

$\pi\omega$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not	use the fo	llowing data for a	verages	s, fits, lir	nits, etc. • • •
1708 ± 41	7815				1.05–2.00 $e^+e^- \rightarrow \pi^0\pi^0\gamma$
1550 to 1620		² ACHASOV			$e^+e^- ightarrow \ \pi^0\pi^0\gamma$
1580 to 1710		³ ACHASOV	001	SND	$e^+e^- ightarrow \pi^0\pi^0\gamma$
1710 ± 90		ACHASOV	97	RVUE	$e^+e^- ightarrow \omega \pi^0$

 $^{^1}$ From a phenomenological model based on vector meson dominance with the interfering $\rho(1450)$ and $\rho(1700)$ and their widths fixed at 400 and 250 MeV, respectively. Systematic uncertainty not estimated.

$K\overline{K}$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1541 ±12	±33	190k	¹ AAIJ	16N	LHCB		$D^0 \rightarrow K_S^0 K^{\pm} \pi^{\mp}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$1740.8\!\pm\!22.2$	27k	² ABELE		$0.0 \overline{p} p \rightarrow K^+ K^- \pi^0$
1582 ± 36	1600	CLELAND	82B SPEC \pm	$50 \pi p \rightarrow K_S^0 K^{\pm} p$

 $^{^1}$ Using the GOUNARIS 68 parameterization with a fixed width. Value is average using different $\mbox{\it K}\,\pi$ S-wave parametrizations in fit.

$2(\pi^+\pi^-)$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use t	he following	data for averages	s, fits,	limits, e	etc. • • •
1851^{+}_{-} 27		ACHASOV	97	RVUE	$e^+e^- ightarrow 2(\pi^+\pi^-)$
$1570\pm\ 20$		¹ CORDIER	82	DM1	$e^+e^- \to 2(\pi^+\pi^-)$
1520 ± 30		² ASTON	81E	OMEG	20–70 $\gamma p \rightarrow p 4\pi$
$1654\pm\ 25$		³ DIBIANCA	81	DBC	$\pi^+ d \rightarrow pp2(\pi^+\pi^-)$
1666 ± 39		$^{ m 1}$ BACCI	80	FRAG	$e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-})$
1780	34	KILLIAN	80	SPEC	11 $e^- p \rightarrow 2(\pi^+ \pi^-)$
1500		⁴ ATIYA	79 B	SPEC	$50 \ \gamma \text{C} ightarrow \ \text{C} 4\pi^{\pm}$
1570 ± 60	65	⁵ ALEXANDER	75	HBC	$7.5 \gamma p \rightarrow p4\pi$
1550 ± 60		² CONVERSI	74	OSPK	$e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-})$
1550 ± 50	160	SCHACHT	74	STRC	5.5–9 $\gamma p \rightarrow p 4\pi$
1450 ± 100	340	SCHACHT	74	STRC	9–18 $\gamma p \rightarrow p 4\pi$
1430 ± 50	400	BINGHAM	72 B	HBC	$9.3 \ \gamma p \rightarrow p4\pi$
	COV	D 0		C	- J. E /20 /2017 17:01

HTTP://PDG.LBL.GOV

Page 2

⁴ From the GOUNARIS 68 parametrization of the pion form factor.

⁵ T-matrix pole.

⁶ From phase shift analysis of HYAMS 73 data.

⁷ Simple relativistic Breit-Wigner fit with constant width.

⁸ An additional 40 MeV uncertainty in both the mass and width is present due to the choice of the background shape.

⁹ Included in BECKER 79 analysis.

² Taking into account both $\rho(1450)$ and $\rho(1700)$ contributions. Using the data of ACHASOV 00I on $e^+e^-\to \omega\pi^0$ and of EDWARDS 00A on $\tau^-\to \omega\pi^-\nu_{\tau}$. $\rho(1450)$ mass and width fixed at 1400 MeV and 500 MeV respectively.

³ Taking into account the $\rho(1700)$ contribution only. Using the data of ACHASOV 00I on $e^+e^-\to\omega\pi^0$ and of EDWARDS 00A on $\tau^-\to\omega\pi^-\nu_\tau$.

² K-matrix pole. Isospin not determined, could be $\omega(1650)$ or $\phi(1680)$.

$\pi^+\pi^-\pi^0\pi^0$ MODE

DOCUMENT ID TECN COMMENT VALUE (MeV)

• • • We do not use the following data for averages, fits, limits, etc. • • •

 1660 ± 30 **ATKINSON** 85B OMEG 20-70 γp

$3(\pi^{+}\pi^{-})$ AND $2(\pi^{+}\pi^{-}\pi^{0})$ MODES

DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • •

¹ FRABETTI 04 E687 $\gamma p \rightarrow 3\pi^+ 3\pi^- p$ 1730 ± 34

RVUE $e^+e^- \rightarrow 3(\pi^+\pi^-)2(\pi^+\pi^-\pi^0)$ 1783 ± 15 **CLEGG**

ρ (1700) WIDTH

$\eta \rho^0$ AND $\pi^+\pi^-$ MODES

DOCUMENT ID

250±100 OUR ESTIMATE

$n\rho^0$ MODE

 VALUE (MeV)
 DOCUMENT ID
 TECN
 COMMENT

 The data in this block is included in the average printed for a previous datablock.

• • • We do not use the following data for averages, fits, limits, etc. • •

 150 ± 30

ANTONELLI 88 DM2 $e^+e^- \rightarrow \eta \pi^+\pi^-$ FUKUI 88 SPEC 8.95 $\pi^-p \rightarrow \eta \pi^+\pi^-n$ 282 ± 44

$\pi\pi$ MODE

VALUE (MeV) DOCUMENT ID TECN COMMENT

The data in this block is included in the average printed for a previous datablock.

• • • We do not use the following data for averages, fits, limits, etc. • • •

310 ± 30	+ 25 - 35	63.5k	¹ ABRAMOWICZ	Z12	ZEUS	$ep \rightarrow e\pi^+\pi^-p$
$316 \ \pm \ 26$			² LEES	12G	BABR	$e^+e^- \rightarrow \pi^+\pi^-\gamma$
164 ± 21	+89 -26	5.4M	^{3,4} FUJIKAWA	80	BELL	$\tau^- \rightarrow \ \pi^- \pi^0 \nu_\tau$
$275 \ \pm \ 45$			⁵ ABELE	97	CBAR	$\overline{p} n \rightarrow \pi^- \pi^0 \pi^0$
310 ± 40			⁵ BERTIN	97 C	OBLX	$0.0 \overline{p} p \rightarrow \pi^+ \pi^- \pi^0$
400 ± 100			CLEGG	94	RVUE	$e^+e^- ightarrow \pi^+\pi^-$
$224 \ \pm \ 22$			BISELLO			$e^+e^- ightarrow \pi^+\pi^-$
242.5 ± 163.0			DUBNICKA	89	RVUE	$e^+e^- ightarrow \pi^+\pi^-$
620 ± 60			GESHKEN	89	RVUE	

HTTP://PDG.LBL.GOV

Page 3

¹Simple relativistic Breit-Wigner fit with model dependent width.

² Simple relativistic Breit-Wigner fit with constant width.

³One peak fit result.

⁴ Parameters roughly estimated, not from a fit.

⁵ Skew mass distribution compensated by Ross-Stodolsky factor.

¹ From a fit with two resonances with the JACOB 72 continuum.

¹ Assuming $\rho^+ f_0(1370)$ decay mode interferes with $a_1(1260)^+ \pi$ background. From a two Breit-Wigner fit.

<315		⁶ ERKAL	85	RVUE	20–70 $\gamma p \rightarrow \gamma \pi$
280	+ 30 - 80	ABE	84 B	HYBR	$20 \ \gamma p \rightarrow \ \pi^+ \pi^- p$
230	± 80	⁷ ASTON	80	OMEG	20–70 $\gamma p \rightarrow p2\pi$
283	\pm 14	⁸ ATIYA	79 B	SPEC	50 γ C $ ightarrow$ C 2π
175	+ 98 - 53	BECKER	79	ASPK	17 $\pi^- p$ polarized
232	\pm 34			RVUE	
340					$17 \pi^- p \rightarrow \pi^+ \pi^- n$
300	± 100				$17 \pi^- p \rightarrow \pi^+ \pi^- n$
180	\pm 50	⁹ HYAMS	73	ASPK	$17 \pi^- p \rightarrow \pi^+ \pi^- n$

¹ Using the KUHN 90 parametrization of the pion form factor, neglecting $\rho-\omega$ interference.

$K\overline{K}$ MODE

<i>VALUE</i> (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
• • • We do not	use the fol	lowing data for a	verages	, fits, lir	nits, e	tc. • • •
187.2 ± 26.7	27k	¹ ABELE				$0.0 \overline{p} p \rightarrow K^+ K^- \pi^0$
265 ± 120	1600	CLELAND	82 B	SPEC	\pm	$50 \pi p \rightarrow K_S^0 K^{\pm} p$

 $^{^{1}\,\}mathrm{K\text{-}matrix}$ pole. Isospin not determined, could be $\omega(1650)$ or $\phi(1680).$

$2(\pi^+\pi^-)$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e following	g data for averages	s, fits,	limits, e	etc. • • •
510± 40		¹ CORDIER	82	DM1	$e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-})$
400± 50		² ASTON	81E	OMEG	20–70 $\gamma p \rightarrow p 4\pi$
400 ± 146		³ DIBIANCA	81	DBC	$\pi^+ d \rightarrow pp2(\pi^+\pi^-)$
700 ± 160		¹ BACCI	80	FRAG	$e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-})$
100	34	KILLIAN	80	SPEC	11 $e^- p \rightarrow 2(\pi^+ \pi^-)$
600		⁴ ATIYA	79 B	SPEC	$50 \ \gamma \text{C} \rightarrow \ \text{C} 4\pi^{\pm}$
340 ± 160	65	⁵ ALEXANDER	75	HBC	$7.5 \ \gamma p \rightarrow p 4\pi$
360 ± 100		² CONVERSI	74	OSPK	$e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-})$
400 ± 120	160	⁶ SCHACHT	74	STRC	5.5–9 $\gamma p \rightarrow p4\pi$
850 ± 200	340	⁶ SCHACHT	74	STRC	9–18 $\gamma p \rightarrow p 4\pi$
650 ± 100	400	BINGHAM	72 B	HBC	$9.3 \ \gamma p \rightarrow p 4\pi$

 $^{^{1}}$ Simple relativistic Breit-Wigner fit with model-dependent width.

² Using the GOUNARIS 68 parametrization of the pion form factor leaving the masses and widths of the $\rho(1450)$, $\rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit.

 $^{^{3}|}F_{\pi}(0)|^{2}$ fixed to 1.

⁴ From the GOUNARIS 68 parametrization of the pion form factor.

⁵ T-matrix pole.

⁶ From phase shift analysis of HYAMS 73 data.

⁷ Simple relativistic Breit-Wigner fit with constant width.

⁸ An additional 40 MeV uncertainty in both the mass and width is present due to the choice of the background shape.

⁹ Included in BECKER 79 analysis.

² Simple relativistic Breit-Wigner fit with constant width.

³One peak fit result.

⁴ Parameters roughly estimated, not from a fit.

⁵ Skew mass distribution compensated by Ross-Stodolsky factor.

⁶ Width errors enlarged by us to $4\Gamma/\sqrt{N}$; see the note with the $K^*(892)$ mass.

$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$ MODE

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the follow	wing data for averages, fi	ts, limits, e	etc. • • •
300±50	ATKINSON 85	B OMEG	20-70 γp

$\omega\pi^0$ MODE

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the follow	wing data for averages, fits,	limits,	etc. • • •	

 $\begin{array}{ccc} e^+ \, e^- & \pi^0 \, \pi^0 \, \gamma \\ e^+ \, e^- & \pi^0 \, \pi^0 \, \gamma \end{array}$ ¹ ACHASOV ² ACHASOV 00ı SND 350 to 580

00ı SND 490 to 1040

¹Taking into account both $\rho(1450)$ and $\rho(1700)$ contributions. Using the data of ACHASOV 00I on $e^+e^- \to \omega \pi^0$ and of EDWARDS 00A on $\tau^- \to \omega \pi^- \nu_\tau$. $\rho(1450)$ mass and width fixed at 1400 MeV and 500 MeV respectively.

 2 Taking into account the ho(1700) contribution only. Using the data of ACHASOV 001 on $e^+e^-
ightarrow \ \omega \pi^0$ and of EDWARDS 00A on $\tau^-
ightarrow \ \omega \pi^-
u_{ au}$.

$3(\pi^{+}\pi^{-})$ AND $2(\pi^{+}\pi^{-}\pi^{0})$ MODES

DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

E687 $\gamma p \rightarrow 3\pi^+ 3\pi^- p$ ¹ FRABETTI 315 ± 100 RVUE $e^+e^- \rightarrow 3(\pi^+\pi^-)2(\pi^+\pi^-\pi^0)$ $285\pm\ 20$ **CLEGG**

ρ (1700) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	4π	
Γ_2	$2(\pi^+\pi^-)$	large
•	$ ho\pi\pi$	dominant
•	$ ho^0 \pi^+ \pi^-$	large
Γ_5	$ ho^0 \pi^0 \pi^0$	
	$\rho^{\pm}\pi^{\mp}\pi^{0}$	large
	$a_1(1260)\pi$	seen
	$h_1(1170)\pi$	seen
Γ_9	$\pi(1300)\pi$	seen
	ho ho	seen
Γ_{11}	$\pi^+\pi^-$	seen
	$\pi \pi$	seen
	$K\overline{K}^*(892)+$ c.c.	seen
Γ_{14}	ηho	seen
	$a_2(1320)\pi$	not seen
	$K\overline{K}$	seen
	$e^{+}e^{-}$	seen
Γ ₁₈	$\pi^0 \omega$	seen

¹ From a fit with two resonances with the JACOB 72 continuum.

ρ (1700) Γ (i) Γ (e^+e^-)/ Γ (total)

This combination of a partial width with the partial width into e^+e^- and with the total width is obtained from the cross-section into channel in e^+e^- annihilation.

$\Gamma(2(\pi^+\pi^-)) \times \Gamma(e^+e^-)$	/Γ _{total}				$\Gamma_2\Gamma_{17}/\Gamma$
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the follow	ing data for average				
2.6 ± 0.2	DELCOURT			$e^+e^- \rightarrow$	
2.83 ± 0.42	BACCI	80	FRAG	$e^+e^ \rightarrow$	$2(\pi^{\top}\pi^{-})$
$\Gamma(\pi^+\pi^-) \times \Gamma(e^+e^-)/\Gamma_{to}$	otal				$\Gamma_{11}\Gamma_{17}/\Gamma$
VALUE (keV)	DOCUMENT ID	TEC	N CO	MMENT	
• • • We do not use the follow	ing data for average	es, fits,	limits,	etc. • • •	
				$e^- \rightarrow \pi^+$	
$0.029^{igoplus 0.016}_{igoplus 0.012}$	KURDADZE 83	OL	/A 0.6	4-1.4 e ⁺ e ⁻	$\rightarrow \pi^+\pi^-$
1 Using total width $=$ 220 Me	eV.				
$\Gamma(V\overline{V}^*(902) + 6.6) \times \Gamma(4.6)$	+ ₂ -) /Γ				FF/F
$\Gamma(K\overline{K}^*(892) + \text{c.c.}) \times \Gamma(6)$	DOCUMENT ID		TECN	COMMENT	$\Gamma_{13}\Gamma_{17}/\Gamma$
0.305 ± 0.071	¹ BIZOT	80		e^+e^-	
¹ Model dependent.					
					F F /F
$\Gamma(\eta \rho) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ VALUE (eV)	DOCUMENT ID		TECN	COMMENT	$\Gamma_{14}\Gamma_{17}/\Gamma$
• • • We do not use the follow					
7 ± 3	ANTONELLI			$e^+e^- \rightarrow$	$_{n\pi}+_{\pi}-$
		00	DIVIZ	C C /	η κ
$\Gamma(K\overline{K}) \times \Gamma(e^+e^-)/\Gamma_{\text{tota}}$	I				$\Gamma_{16}\Gamma_{17}/\Gamma$
VALUE (keV)	DOCUMENT ID			COMMENT	
 ● We do not use the follow 					
0.035 ± 0.029	¹ BIZOT	80	DM1	e ⁺ e ⁻	
$^{ m 1}$ Model dependent.					
$\Gamma(\rho\pi\pi) \times \Gamma(e^+e^-)/\Gamma_{\text{tota}}$	nl				$\Gamma_3\Gamma_{17}/\Gamma$
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the follow	ing data for average	es, fits,	limits,	etc. • • •	
3.510 ± 0.090	$^{ m 1}$ BIZOT	80	DM1	e^+e^-	
$^{ m 1}$ Model dependent.					

$\rho(1700) \Gamma(i)/\Gamma(total) \times \Gamma(e^+e^-)/\Gamma(total)$

$\Gamma(\pi^0\omega)/\Gamma_{\text{total}} \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_{18}/\Gamma \times \Gamma_{17}/\Gamma$

VALUE (units 10^{-6}) EVTSDOCUMENT ID TECN • • • We do not use the following data for averages, fits, limits, etc. • • •

¹ ACHASOV 16D SND $1.05-2.00 e^+e^- \rightarrow \pi^0\pi^0\gamma$ 0.09 ± 0.05 10.2k

² ACHASOV 7815 $1.7\ \pm0.4$

$\rho(1700)$ BRANCHING RATIOS

 $\Gamma(\rho\pi\pi)/\Gamma(4\pi)$ Γ_3/Γ_1 DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • • ¹ ABELE 0.28 ± 0.06 01B CBAR $0.0 \overline{p}n \rightarrow 5\pi$

 $^{1}\omega\pi$ not included.

 $\Gamma(\rho^0\pi^+\pi^-)/\Gamma(2(\pi^+\pi^-))$ Γ_4/Γ_2 DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $e^+e^- \to 2(\pi^+\pi^-)$ **DELCOURT** 81B DM1 ~ 1.0 0.7 ± 0.1 500 **SCHACHT** STRC 5.5–18 $\gamma p \rightarrow p 4\pi$ ¹ BINGHAM 72B HBC 0.80 $9.3 \gamma p \rightarrow p4\pi$

¹ The $\pi\pi$ system is in *S*-wave.

 Γ_5/Γ_6

<u>DOCUMEN</u>T ID • • We do not use the following data for averages, fits, limits, etc.

< 0.10 **ATKINSON** 85B OMEG $20-70 \gamma p$ < 0.15 20–70 $\gamma p \rightarrow p 4\pi$ **ATKINSON** 82 OMEG 0

 $\Gamma(a_1(1260)\pi)/\Gamma(4\pi)$ Γ_7/Γ_1

TECN CHG

DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • •

¹ ABELE 01B CBAR $0.0 \overline{p}n \rightarrow 5\pi$ 0.16 ± 0.05

 $^{1}\omega\pi$ not included.

 $\Gamma(h_1(1170)\pi)/\Gamma(4\pi)$

 Γ_8/Γ_1

Created: 5/30/2017 17:21

DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • •

¹ ABELE 0.17 ± 0.06 01B CBAR $0.0 \overline{p}n \rightarrow 5\pi$

 $^{1}\omega\pi$ not included.

 $^{^{}m 1}$ From a phenomenological model based on vector meson dominance with interfering $\rho(700)$, $\rho(1450)$, and $\rho(1700)$. The $\rho(1700)$ mass and width are fixed at 1720 MeV and 250 MeV, respectively. Systematic uncertainty not estimated. Supersedes ACHASOV 13.

² From a phenomenological model based on vector meson dominance with the interfering $\rho(1450)$ and $\rho(1700)$ and their widths fixed at 400 and 250 MeV, respectively. Systematic uncertainty not estimated.

$\Gamma(\pi(1300)\pi)/\Gamma(4\pi)$					Γ_9/Γ_1
VALUE	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following		s, fits,	limits, 6	etc. • • •	
0.30 ± 0.10	¹ ABELE	01 B	CBAR	$0.0 \ \overline{p} n \rightarrow 5\pi$	Г
$^1\omega\pi$ not included.					
$\Gamma(ho ho)/\Gamma(4\pi)$					Γ_{10}/Γ_{1}
VALUE	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following					
0.09 ± 0.03	¹ ABELE	01 B	CBAR	$0.0 \ \overline{p} n \rightarrow 5\pi$	Т
$^1\omega\pi$ not included.					
$\Gamma(\pi^+\pi^-)/\Gamma_{ ext{total}}$					Γ_{11}/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •	
$0.287 ^{igoplus 0.043}_{-0.042}$	BECKER	79	ASPK	17 $\pi^- p$ polar	rized
0.15 to 0.30	¹ MARTIN			$17 \pi^- p \rightarrow \tau$	
<0.20	² COSTA ¹ FROGGATT			$e^+e^- \rightarrow 2\pi$ $17 \pi^- p \rightarrow \pi$	
0.30 ± 0.05 < 0.15	³ EISENBERG	77 73		$5 \pi^+ p \rightarrow \Delta$	
0.25 ± 0.05	⁴ HYAMS	73		$17 \pi^{-} p \rightarrow 7$	
¹ From phase shift analysis of H' ² Estimate using unitarity, time i ³ Estimated using one-pion-exch ⁴ Included in BECKER 79 analys	reversal invariance ange model.	, Brei	t-Wigne	r.	
$\Gamma(\pi^+\pi^-)/\Gamma(2(\pi^+\pi^-))$					Γ_{11}/Γ_2
VALUE	DOCUMENT ID			<u>COMMENT</u>	
• • • We do not use the following	_				2
0.13±0.05 <0.14	ASTON ¹ DAVIER	80 73		$20-70 \ \gamma p \rightarrow 6-18 \ \gamma p \rightarrow$	•
<0.2	² BINGHAM			$9.3 \gamma p \rightarrow p2$	
1 Upper limit is estimate. 2 $_{2\sigma}$ upper limit.					
$\Gamma(\sigma,\sigma)/\Gamma(\Lambda\sigma)$					Γ /Γ.
$\Gamma(\pi\pi)/\Gamma(4\pi)$ VALUE	DOCUMENT ID		TFCN	COMMENT	Γ_{12}/Γ_1
• • We do not use the following	•			•	
	^{1,2} ABELE			$0.0 \; \overline{p} n \rightarrow 5\pi$	ī
1 Using ABELE 97. $^{2}\omega\pi$ not included.					
$\Gamma(K\overline{K}^*(892) + \text{c.c.})/\Gamma_{\text{total}}$					Γ ₁₃ /Γ
VALUE	DOCUMENT ID			•	
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •	
possibly seen	COAN	04	CLEO	$\tau^- \rightarrow K^- \pi$	$^-$ K $^+$ $\nu_ au$

$\Gamma(K\overline{K}^*(892) + c.c.)/$	$\Gamma(2(\pi^+\pi$	·-))				Γ_{13}/Γ_2
VALUE	•	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •	
0.15 ± 0.03		¹ DELCOURT	81 B	DM1	$e^+e^- \rightarrow$	$\overline{K}K\pi$
1 Assuming $ ho(1700)$ an	nd ω radial	excitations to be	dege	nerate ir	n mass.	
$\Gamma(\eta ho)/\Gamma_{total}$						Γ ₁₄ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	•
• • • We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •	
possibly seen		AKHMETSHIN	1 00 D	CMD2	$e^+e^- \rightarrow$	$\eta \pi^+ \pi^-$
< 0.04		DONNACHIE	87 B	RVUE		•
< 0.02	58	ATKINSON	86 B	OMEG	20–70 γp	
$\Gamma(\eta \rho)/\Gamma(2(\pi^+\pi^-))$						Γ_{14}/Γ_{2}
VALUE		DOCUMENT ID		TECN	COMMENT	
• • • We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •	
0.123 ± 0.027		DELCOURT	82	DM1	$e^+e^- \rightarrow$	$\pi^+\pi^-$ MM
~ 0.1		ASTON	80	OMEG	20–70 γp	
$\Gamma(\pi^+\pi^-\text{ neutrals})/\Gamma(\pi^+\pi^-)$	$(2(\pi^{+}\pi^{-}$))		(1	- 	714Г ₁₄)/Г ₂
		<u>DOCUMENT ID</u>		•	•	// -
• • • We do not use the						_
2.6 ± 0.4		¹ BALLAM	74	нвс	9.3 γ <i>p</i>	
$^{ m 1}$ Upper limit. Backgro	und not su	btracted.			, .	
$\Gamma(a_2(1320)\pi)/\Gamma_{\text{total}}$						Γ ₁₅ /Γ
VALUE		DOCUMENT ID		TECN	COMMENT	
• • • We do not use the						
not seen		AMELIN	00	VES	37 π ⁻ p -	$\eta \pi^+ \pi^- n$
$\Gamma(K\overline{K})/\Gamma(2(\pi^+\pi^-))$)					Γ_{16}/Γ_{2}
VALUE		DOCUMENT ID		TECN	CHG COM	IMENT
• • • We do not use the		data for averages	s, fits,	limits, e	etc. • • •	
0.015 ± 0.010		¹ DELCOURT	81 B	DM1	e^+e^-	$e^- \rightarrow \overline{K}K$
< 0.04	95	BINGHAM	72 B	HBC	0 9.3	γp
1 Assuming $ ho(1700)$ an	nd ω radial	excitations to be	dege	nerate ir	n mass.	
$\Gamma(K\overline{K})/\Gamma(K\overline{K}^*(892))$) + c.c.)					Γ_{16}/Γ_{13}
VALUE		DOCUMENT ID		TECN	COMMENT	-9/ =9
• • • We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •	
$0.052\!\pm\!0.026$		BUON	82	DM1	$e^+e^-\to$	hadrons

$\Gamma(\pi^0\omega)/\Gamma_{total}$					Γ ₁₈ /Γ
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use t	he following	data for averages,	fits,	limits, e	etc. • • •
not seen					$\overline{B}^0 \rightarrow D^{*+} \omega \pi^-$
seen	1.6k				$e^+e^- ightarrow \pi^0\pi^0\gamma$
not seen	2382				$e^+e \rightarrow \pi^0\pi^0\gamma$
seen		ACHASOV 9	97	RVUE	$e^+e^- ightarrow~\omega\pi^0$

ρ (1700) REFERENCES

AAIJ	16N	PR D93 052018	R. Aaij <i>et al.</i>	(LHCb Collab.)
ACHASOV	16D	PR D94 112001	M.N. Achasov et al.	`(SND Collab.)
MATVIENKO	15	PR D92 012013	D. Matvienko et al.	(BÈLLE Collab.)
ACHASOV	13	PR D88 054013	M.N. Achasov et al.	` (SND Collab.)
ABRAMOWICZ	12	EPJ C72 1869	H. Abramowicz et al.	(ŻEUS Collab.)
ACHASOV	12	JETPL 94 734	M.N. Achasov et al.	,
		Translated from ZETFP	94 796.	
LEES	12G	PR D86 032013	J.P. Lees <i>et al.</i>	(BABAR Collab.)
FUJIKAWA	80	PR D78 072006	M. Fujikawa <i>et al.</i>	(BELLE Collab.)
COAN	04	PRL 92 232001	T.E. Coan <i>et al.</i>	(CLEO Collab.)
FRABETTI	04	PL B578 290	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
AKHMETSHIN		PL B562 173	R.R. Akhmetshin et al.	(Novosibirsk CMD-2 Collab.)
ABELE	01B	EPJ C21 261	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ACHASOV	001	PL B486 29	M.N. Achasov et al.	(Novosibirsk SND Collab.)
AKHMETSHIN		PL B489 125	R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
AMELIN	00	NP A668 83	D. Amelin <i>et al.</i>	(VES Collab.)
EDWARDS	00A	PR D61 072003	K.W. Edwards et al.	(CLEO Collab.)
ABELE	99D	PL B468 178	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ABELE	97	PL B391 191	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ACHASOV	97	PR D55 2663	N.N. Achasov et al.	(NOVM)
BERTIN	97C	PL B408 476	A. Bertin <i>et al.</i>	(OBELIX Collab.)
CLEGG	94	ZPHY C62 455	A.B. Clegg, A. Donnachie	(LANC, MCHS)
CLEGG	90	ZPHY C45 677	A.B. Clegg, A. Donnachie	(LANC, MCHS)
KUHN	90	ZPHY C48 445	J.H. Kuhn <i>et al.</i>	(MPIM)
BISELLO	89	PL B220 321	D. Bisello <i>et al.</i>	(DM2 Collab.)
DUBNICKA	89	JP G15 1349	S. Dubnicka <i>et al.</i>	(JINR, SLOV)
GESHKEN	89	ZPHY C45 351	B.V. Geshkenbein	(ITEP)
ANTONELLI	88	PL B212 133	A. Antonelli <i>et al.</i>	(DM2 Collab.)
DIEKMAN	88	PRPL 159 99	B. Diekmann	(BONN)
FUKUI	88	PL B202 441		(SUGI, NAGO, KEK, KYOT $+$)
DONNACHIE	87B	ZPHY C34 257	A. Donnachie, A.B. Clegg	(MCHS, LANC)
ATKINSON	86B	ZPHY C30 531	M. Atkinson et al.	(BONN, CERN, GLAS+)
ATKINSON	85B	ZPHY C26 499	M. Atkinson et al.	(BONN, CERN, GLAS+)
ERKAL	85	ZPHY C29 485	C. Erkal, M.G. Olsson	(WISC)
ABE	84B	PRL 53 751	K. Abe <i>et al.</i>	(SLAC HFP Collab.)
KURDADZE	83	JETPL 37 733	L.M. Kurdadze <i>et al.</i>	(NOVO)
ATIZINICONI	00	Translated from ZETFP		(DONN CEDN CLAC+)
ATKINSON	82	PL 110B 55	M. Atkinson <i>et al.</i>	(BONN, CERN, GLAS+)
BUON	82	PL 118B 221	J. Buon <i>et al.</i>	(LALO, MONP)
CLELAND	82B	NP B208 228	W.E. Cleland et al.	(DURH, GEVA, LAUS+)
CORDIER	82	PL 113B 03	A. Cordier <i>et al.</i>	(LALO)
DELCOURT	82	PL 113B 93	B. Delcourt et al.	(LALO)
ASTON	81E	NP B189 15		CERN, EPOL, GLAS, LANC+)
DELCOURT	81B	Bonn Conf. 205	B. Delcourt	(ORSAY)
Also	01	PL 109B 129	A. Cordier <i>et al.</i>	(LALO)
DIBIANCA	81	PR D23 595	F.A. di Bianca <i>et al.</i>	(CASE, CMU)
ASTON	80	PL 92B 215		CERN, EPOL, GLAS, LANC+)
BACCI	80	PL 95B 139	C. Bacci et al.	(ROMA, FRAS)
BIZOT	80	Madison Conf. 546	J.C. Bizot <i>et al.</i>	(LALO, MONP)
KILLIAN	80 70B	PR D21 3005	T.J. Killian <i>et al.</i>	(COLUME TNAL)
ATIYA	79B	PRL 43 1691	M.S. Atiya <i>et al.</i>	(COLU, ILL, FNAL)
BECKER	79 70	NP B151 46		(MPIM, CERN, ZEEM, CRAC)
LANG	79 79 <i>C</i>	PR D19 956	C.B. Lang, A. Mas-Parared	
MARTIN COSTA	78C 77B	ANP 114 1 PL 71B 345	A.D. Martin, M.R. Penning	
COSTA	IID	I L /1D 343	B. Costa de Beauregard, B	o. The, T.N. Huong (EPOL)

FROGGATT	77	NP B129 89	C.D. Froggatt, J.L. Petersen	(GLAS, NORD)
ALEXANDER	75	PL 57B 487	G. Alexander et al.	(TELA)
BALLAM	74	NP B76 375	J. Ballam <i>et al.</i>	(SLAC, LBL, MPIM)
CONVERSI	74	PL 52B 493	M. Conversi et al.	` (ROMA, FRAS)
SCHACHT	74	NP B81 205	P. Schacht <i>et al.</i>	` (MPIM)
DAVIER	73	NP B58 31	M. Davier et al.	(SLAC)
EISENBERG	73	PL 43B 149	Y. Eisenberg <i>et al.</i>	(ŘEHO)
HYAMS	73	NP B64 134	B.D. Hyams et al.	(CERN, MPIM)
BINGHAM	72B	PL 41B 635	H.H. Bingham <i>et al.</i>	(LBL, UCB, SLAC) IGJP
JACOB	72	PR D5 1847	M. Jacob, R. Slansky	,
GOUNARIS	68	PRL 21 244	G.J. Gounaris, J.J. Sakurai	