

现代密码学

可证明安全性与Elgamal加密方案简介

王煜宇 信息与软件工程学院 电子科技大学

- 密码游戏与规约
- CDH假设
- 加密方案的定义
- 具体的加密方案
- 加密方案的安全性证明

- 密码游戏与规约
- · CDH假设
- 加密方案的定义
- 具体的加密方案
- 加密方案的安全性证明

密码游戏

Pr[CH 输出 1]=negl=>密码游戏是安全的

密码游戏

Pr[CH 输出 1]=negl=>密码游戏是安全的

可忽略的概率

密码游戏

几乎所有的计算性的假设和安全 性都能用密码游戏来表示

Pr[CH 输出 1]=negl=>密码游戏是安全的

 G_1 的可证明安全性: 基于 G_2 证明 G_1 的安全性

 G_1 的可证明安全性: 基于 G_2 证明 G_1 的安全性

$$G_2$$
安全====> G_1 安全

$$G_1$$
的可证明安全性: 基于 G_2 证明 G_1 的安全性 G_2 安全===> G_1 安全 G_1 不安全===> G_2 不安全

存在敌手攻破 $G_1 ====>$ 存在敌手攻破 G_2

Pr[CH 输出 1]=negl=>密码游戏是安全的

$$G_1$$
的可证明安全性: 基于 G_2 证明 G_1 的安全性
$$G_2$$
安全===> G_1 安全
$$G_1$$
不安全==> G_2 不安全

存在敌手攻破 $G_1 ====>$ 存在敌手攻破 G_2

Pr[CH 输出 1]=negl=>密码游戏是安全的

存在敌手攻破 $G_1 ====>$ 存在敌手攻破 G_2

• 密码游戏与规约

- CDH假设
- 加密方案的定义
- 具体的加密方案
- 加密方案的安全性证明

CDH假设[DH76]

G: 阶为q的循环群 {g¹,g²,...,g^q}

$$Z_q = \{1,2,...,q\}$$

CDH假设[DH76]

G: 阶为q的循环群 $\{g^1,g^2,\ldots,g^q\}$

$$Z_q = \{1,2,...,q\}$$

输出1 当且仅当 K=gab

Pr[CH 输出 1]=negl==>CDH假设成立

- 密码游戏与规约
- · CDH假设
- 加密方案的定义
- 具体的加密方案
- 加密方案的安全性证明

 $Gen(1^k) \rightarrow (pk,sk)$

 $Enc(pk,m) \rightarrow ct$

Dec(sk,ct) = m

正确性: Dec(sk,(Enc(pk,m)))=m

 $Gen(1^k) \rightarrow (pk,sk)$

 $Enc(pk,m) \rightarrow ct$

Dec(sk,ct) = m

随机生成的密文

正确性: Dec(sk,(Enc)px

-11

单向性:

1 当且仅当 m=m'

Pr[CH 输出 1]=negl=>加密方案满足单向性

- 密码游戏与规约
- · CDH假设
- 加密方案的定义
- 具体的加密方案
- 加密方案的安全性证明

Elgamal加密方案 [Elgamal84]

Gen(1^k):
$$x \leftarrow Z_q$$
, $pk=g^x$, $sk=x$

Enc(pk,m):
$$r \leftarrow Z_q$$
, $ct=(c=mg^{xr}, c'=g^r)$

$$Dec(sk,ct=(c,c')): m=cc'-x$$

- 密码游戏与规约
- · CDH假设
- 加密方案的定义
- 具体的加密方案
- 加密方案的安全性证明

Elgamal加密基于CDH假设的单向性

Gen(1^k):
$$x \leftarrow Z_q$$
, $pk=g^x$, $sk=x$

Enc(pk,m):
$$r \leftarrow Z_q$$
, $ct=(c=mg^{xr}, c'=g^r)$

Dec(sk,ct=(c,c')): m=cc'-x

Elgamal加密基于CDH假设的单向性

从敌手的视角看, 规约算法给出的公钥和密文与单向性的挑战者是一 致的 Gen(1^k): $x \leftarrow Z_q$, $pk=g^x$, sk=x

Enc(pk,m): $r \leftarrow Z_q$, $ct=(c=mg^{xr}, c'=g^r)$

Dec(sk,ct=(c,c')): m=cc'-x

单向性到CDH对规约

以大概率攻破单向性的敌手A

CDH的挑战者

Elgama1加密基于CDH假设的单向性

从敌手的视角看,规约算法给出的 公钥和密文与单向性的挑战者是一 致的 Gen(1^k): $x \leftarrow Z_q$, $pk=g^x$, sk=x

Enc(pk,m): $r \leftarrow Z_q$, $ct=(c=mg^{xr}, c'=g^r)$

Dec(sk,ct=(c,c')): m=cc'-x

单向性到CDF对规约

以大概率攻破单向性的敌手A

CDH的挑战者 g^x, g^r ▲ **3** ▲ **3** ▲

Pr[规约算法解决CDH困难问题]=Pr[c/m=g^{rx}]=Pr[c=mg^{rx}]=Pr[敌手A打破单向性]

====>如果CDH假设成立,不存在敌手能打破Elgamal加密的单向性。

• CDH安全性

• Elgamal加密方案

• 安全性证明: CDH安全性→加密方案安全性(证明方法: 构造规约)

感谢聆听! wangyuyu@uestc.edu.cn