# Wissenschaftliches Rechnen - Übung 4.3

Wiederholung der letzten Wochen

08.01.2024 bis 12.01.2024

#### Aufgabe 1: Lineare Gleichungssysteme

1. In diesem Kurs wurden verschiedene Lösungsverfahren für lineare Gleichungssysteme  $\mathbf{A}\mathbf{x} = \mathbf{b}$  vorgestellt. Im Folgenden sollen Sie die effizienteste Methode und deren Laufzeit nennen, um ein lineares Gleichungssystem mit zusätzlichen Eigenschaften der Matrix  $\mathbf{A} \in \mathbb{R}^{n \times n}$  und des Vektors  $\mathbf{b} \in \mathbb{R}^n$  zu lösen.

| Eigenschaft A         | Eigenschaft b                                              | Lösungsmethode                                     | Laufzeit           |
|-----------------------|------------------------------------------------------------|----------------------------------------------------|--------------------|
| regulär               | $\mathbf{b}  eq 0$ Gauß-Elimination und Rückwärtseinsetzen |                                                    | $\mathcal{O}(n^3)$ |
| obere Dreiecksmatrix  | $\mathbf{b}  eq 0$ Rückwärtseinsetzen                      |                                                    | $\mathcal{O}(n^2)$ |
| untere Dreiecksmatrix | $\mathbf{b}  eq 0$                                         | Vorwärtseinsetzen                                  | $\mathcal{O}(n^2)$ |
| Diagonalmatrix        | $\mathbf{b}  eq 0$                                         | $x_i = \frac{b_i}{a_{i,i}}$                        | $\mathcal{O}(n)$   |
| symmetrisch und PD    | $\mathbf{b}  eq 0$                                         | Cholesky-Zerlegung,<br>Vor- und Rückwärtseinsetzen | $\mathcal{O}(n^3)$ |
| orthogonal            | $\mathbf{b}  eq 0$                                         | $\mathbf{x} = \mathbf{A}^T \mathbf{b}$             | $\mathcal{O}(n^2)$ |
| beliebig              | $\mathbf{b} = 0$                                           | Singulärwertzerlegung                              | $\mathcal{O}(n^3)$ |

### Aufgabe 2: Lineare Ausgleichsrechnung

1. Berechnen Sie die Cholesky-Zerlegung folgender Matrix:

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 2 & 8 \\ 2 & 10 & 10 & 7 \\ 2 & 10 & 11 & 9 \\ 8 & 7 & 9 & 22 \end{bmatrix}$$

Lösung -

$$\ell_{1,1} = \sqrt{4} = 2$$

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 2 & 8 \\ 2 & 10 & 10 & 7 \\ 2 & 10 & 11 & 9 \\ 8 & 7 & 9 & 22 \end{bmatrix} \quad \mathbf{L} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ ? & ? & 0 & 0 \\ ? & ? & ? & 0 \\ ? & ? & ? & 0 \end{bmatrix}$$

$$e_{2,1} = \frac{1}{2}\mathbf{2} = \mathbf{1}$$

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 2 & 8 \\ 2 & 10 & 10 & 7 \\ 2 & 10 & 11 & 9 \\ 8 & 7 & 9 & 22 \end{bmatrix} \quad \mathbf{L} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ \mathbf{1} & ? & 0 & 0 \\ ? & ? & ? & 0 \\ ? & ? & ? & ? \end{bmatrix}$$

$$\ell_{2,2} = \sqrt{10 - 1^2} = 3$$

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 2 & 8 \\ 2 & 10 & 10 & 7 \\ 2 & 10 & 11 & 9 \\ 8 & 7 & 9 & 22 \end{bmatrix} \quad \mathbf{L} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ ? & ? & ? & ? & 0 \\ ? & ? & ? & ? & 0 \\ ? & ? & ? & ? & ? \end{bmatrix}$$

$$\ell_{3,1} = \frac{1}{2}\mathbf{2} = \mathbf{1}$$

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 2 & 8 \\ 2 & 10 & 10 & 7 \\ 2 & 10 & 11 & 9 \\ 8 & 7 & 9 & 22 \end{bmatrix} \quad \mathbf{L} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & ? & ? & ? & ? \\ ? & ? & ? & ? & ? \end{bmatrix}$$

$$\ell_{3,2} = \frac{1}{3}(10 - 1 \cdot 1) = \mathbf{3}$$

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 2 & 8 \\ 2 & 10 & 10 & 7 \\ 2 & 10 & 11 & 9 \\ 8 & 7 & 9 & 22 \end{bmatrix} \quad \mathbf{L} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 3 & ? & 0 \\ ? & ? & ? & ? & ? \end{bmatrix}$$

$$\ell_{3,3} = \sqrt{11 - 3^2 - 1^2} = \mathbf{1}$$

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 2 & 8 \\ 2 & 10 & 10 & 7 \\ 2 & 10 & 11 & 9 \\ 8 & 7 & 9 & 22 \end{bmatrix} \quad \mathbf{L} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 3 & 1 & 0 \\ ? & ? & ? & ? & ? \end{bmatrix}$$

$$\ell_{4,1} = \frac{1}{2}8 = 4$$

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 2 & 8 \\ 2 & 10 & 10 & 7 \\ 2 & 10 & 11 & 9 \\ 8 & 7 & 9 & 22 \end{bmatrix} \quad \mathbf{L} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 3 & 1 & 0 \\ 4 & ? & ? & ? & ? \end{bmatrix}$$

$$\ell_{4,2} = \frac{1}{3}(7 - 4 \cdot 1) = \mathbf{1}$$

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 2 & 8 \\ 2 & 10 & 10 & 7 \\ 2 & 10 & 11 & 9 \\ 8 & 7 & 9 & 22 \end{bmatrix} \quad \mathbf{L} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 3 & 1 & 0 \\ 4 & 1 & ? & ? & ? \end{bmatrix}$$

$$\ell_{4,3} = \frac{1}{1}(9 - 4 \cdot 1 - 1 \cdot 3) = 2$$

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 2 & 8 \\ 2 & 10 & 10 & 7 \\ 2 & 10 & 11 & 9 \\ 8 & 7 & 9 & 22 \end{bmatrix} \quad \mathbf{L} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 3 & 1 & 0 \\ 4 & 1 & ? & ? & ? \end{bmatrix}$$

$$\ell_{4,4} = \sqrt{22 - 4^2 - 1^2 - 2^2} = \mathbf{1}$$

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 2 & 8 \\ 2 & 10 & 10 & 7 \\ 2 & 10 & 11 & 9 \\ 8 & 7 & 9 & 22 \end{bmatrix} \quad \mathbf{L} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 3 & 1 & 0 \\ 4 & 1 & 2 & ? \end{bmatrix}$$

$$\ell_{4,4} = \sqrt{22 - 4^2 - 1^2 - 2^2} = \mathbf{1}$$

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 2 & 8 \\ 2 & 10 & 10 & 7 \\ 2 & 10 & 11 & 9 \\ 8 & 7 & 9 & 22 \end{bmatrix} \quad \mathbf{L} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 3 & 1 & 0 \\ 4 & 1 & 2 & ? \end{bmatrix}$$

2. Im Folgenden möchten wir folgende Punkte (x,y,f(x,y)) mittels einer quadratischen Funktion  $f:\mathbb{R}^2\to\mathbb{R}$  approximieren:

| x      | 0 | 1 | 1 | 2  | 1 | 2 | 3 | 3 |
|--------|---|---|---|----|---|---|---|---|
| y      | 1 | 0 | 1 | 1  | 2 | 2 | 2 | 3 |
| f(x,y) | 1 | 2 | 1 | -1 | 5 | 3 | 1 | 0 |

Stellen Sie ein lineares Gleichungssystem  $\mathbf{A}\mathbf{x}=\mathbf{b}$  auf, dessen approximative Lösung mit der Normalengleichung die Koeffizienten des gewünschten Polynoms liefert.

Hinweis: Die Menge der Basisfunktionen ist  $\{1, x, y, x^2, xy, y^2\}$ .

Wir wählen  $f(x,y) = a + bx + cy + dx^2 + exy + fy^2$ . Dann ist das LGS:

Lösung Ende -

#### Aufgabe 3: Eigenzerlegung

1. Gegeben ist folgende Matrix  $\mathbf{A}_{\alpha} \in \mathbb{R}^{2 \times 2}$ :

$$\mathbf{A}_{\alpha} = \begin{bmatrix} 1 & \alpha \\ \alpha & 1 \end{bmatrix}$$

Für welche Werte von  $\alpha \in \mathbb{R}$  ist  $\mathbf{A}_{\alpha}$  indefinit?

Lösung –

Da sie symmetrisch ist, ist  $\mathbf{A}_{\alpha}$  genau dann indefinit, wenn sie einen positiven und einen negativen Eigenwert hat. Da sie  $2\times 2$  ist, hat sie zwei Eigenwerte. Ihre Determinante ist das Produkt der beiden Eigenwerte:  $\det\mathbf{A}_{\alpha}=1-\alpha^2=\lambda_1\cdot\lambda_2$ . Damit  $1-\alpha^2<0$  gilt, muss  $\alpha^2>1$  gelten. Damit ist die Matrix für  $\alpha\in(-\infty,-1)\cup(1,\infty)$  indefinit.

Lösung Ende

## Aufgabe 4: Singulärwertzerlegung

1. Geben Sie eine Singulärwertzerlegung sowie die Pseudoinverse folgender Matrizen an:

a) 
$$\mathbf{A} = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$$
 b)  $\mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 3 \end{bmatrix}$  c)  $\mathbf{C} = \begin{bmatrix} 0 & 0 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$  d)  $\mathbf{D} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ 

– Lösung -

Im Folgenden nutzen wir die volle Form der SVD. Die SVDs der gegebenen Matrizen kann man intuitiv ablesen bzw. raten, jedoch können wir diese auch schematisch berechnen: Zunächst bestimmen wir  $\mathbf{A}^{\mathsf{T}}\mathbf{A}$  und eine orthonormale Eigenbasis jener Matrix, welche die rechten Singulärvektoren  $\mathbf{V}$  bilden. Die zugehörigen linken Singulärvektoren und Singulärwerte erhalten wir aus

dem Ansatz  $\mathbf{A}\mathbf{v}_i = \sigma_i\mathbf{u}_i$ , wobei  $\sigma_i = \|\mathbf{A}\mathbf{v}_i\|$  (da  $\sigma_i \geq 0$ ) und  $\mathbf{u}_i = \frac{\mathbf{A}\mathbf{v}_i}{\sigma_i}$  (für  $\sigma_i \neq 0$ , sonst muss man einen geeigneten SV durch z.B. Orthogonalisierung bestimmen). Die Pseudoinverse erhält man durch  $\mathbf{A}^+ = \mathbf{V}\mathbf{\Sigma}^+\mathbf{U}^\top$ .

a) Zunächst bestimmen wir die Gram-Matrix A und eine orthonormale Eigenbasis:

$$\mathbf{A}^\mathsf{T}\mathbf{A} = \begin{bmatrix} 9 & 0 \\ 0 & 4 \end{bmatrix} \quad \text{und somit} \quad \mathbf{V} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Die zugehörigen linken SV und SW sind gegeben durch

$$\mathbf{A} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \text{und} \quad \mathbf{A} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

Somit gilt

$$\mathbf{A} = \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}}_{\mathbf{I}} \underbrace{\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}}_{\mathbf{X}} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\mathbf{Y}^{\mathbf{I}}} \quad \text{sowie} \quad \mathbf{A}^{+} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & -\frac{1}{2} \end{bmatrix}.$$

b) Wir bestimmen erneut die Gram-Matrix und eine orthonormale Eigenbasis:

$$\mathbf{B}^\mathsf{T}\mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 9 \end{bmatrix} \quad \text{und somit} \quad \mathbf{V} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Die zugehörigen linken SV und SW erhalten wir durch:

$$\mathbf{B} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \text{und} \quad \mathbf{B} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0 \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Den linken Singulärvektor zum Singulärwert  $\sigma_2=0$  muss man so wählen, dass er orthogonal zum anderen ist. Alternativ hätte man auch (-1,0) wählen können, was sich nicht auf das Ergebnis ausgewirkt hätte. Nach korrekter Sortierung erhalten wir als Ergebnis:

$$\mathbf{B} = \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{\mathbf{II}} \underbrace{\begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}}_{\mathbf{\Sigma}} \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{\mathbf{V}^\mathsf{T}} \quad \text{sowie} \quad \mathbf{B}^+ = \begin{bmatrix} 0 & 0 \\ 0 & \frac{1}{3} \end{bmatrix}.$$

c) Auch hier geht man genauso vor wie in den vorherigen zwei Aufgaben, jedoch erhält man nur zwei linke Singulärvektoren und damit folgende reduzierte SVD:

$$\mathbf{C} = \underbrace{\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\mathbf{\Sigma}} \underbrace{\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}}_{\mathbf{\Sigma}} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\mathbf{V}^T} \quad \text{und als Pseudoinverse} \quad \mathbf{C}^+ = \begin{bmatrix} 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Für eine volle SVD benötigen wir einen weiteren linken SV, der zu den anderen beiden orthogonal sein muss. Dazu eignen sich (1,0,0) bzw. (-1,0,0). Daraus ergibt sich folgende volle SVD:

$$\mathbf{C} = \underbrace{\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}}_{\mathbf{U}} \underbrace{\begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}}_{\mathbf{Y}^{\mathsf{T}}} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\mathbf{V}^{\mathsf{T}}}.$$

d) Wir berechnen erneut die Gram-Matrix  $\mathbf{D}^T\mathbf{D}$  und eine orthonormale Eigenbasis  $\mathbf{V}$ , welche in diesem Fall eine besondere Gestalt haben, da  $\mathbf{D}$  ein Spaltenvektor ist:

$$\mathbf{D}^\mathsf{T}\mathbf{D} = 5$$
 und damit folgt  $\mathbf{V} = \begin{bmatrix} 1 \end{bmatrix}$ .

Dann als zugehörigen linken Singulärvektor:

$$\mathbf{D}\begin{bmatrix}1\end{bmatrix} = \begin{bmatrix}1\\-2\end{bmatrix} = \sqrt{5} \begin{bmatrix}\frac{1}{\sqrt{5}}\\\frac{-2}{\sqrt{5}}\end{bmatrix}.$$

Damit erhalten wir folgende reduzierte SVD und Pseudoinverse:

$$\mathbf{D} = \underbrace{\frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ -2 \end{bmatrix}}_{\mathbf{L}} \underbrace{\begin{bmatrix} \sqrt{5} \end{bmatrix}}_{\mathbf{\Sigma}} \underbrace{\begin{bmatrix} 1 \end{bmatrix}}_{\mathbf{V}^{\mathsf{T}}} \quad \mathsf{und} \quad \mathbf{D}^{+} = \frac{1}{5} \begin{bmatrix} 1 & -2 \end{bmatrix}.$$

Eine volle SVD erhält man durch einen weiteren orthogonalen linken Singulärvektor:

$$\mathbf{D} = \underbrace{\frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}}_{\mathbf{U}} \underbrace{\begin{bmatrix} \sqrt{5} \\ 0 \end{bmatrix}}_{\mathbf{\Sigma}} \underbrace{\begin{bmatrix} 1 \\ \end{bmatrix}}_{\mathbf{V}^{\mathsf{T}}}.$$

– Lösung Ende –

2. Sei  $\mathbf{U} \in \mathbb{R}^{n \times k}$  eine Matrix mit n > k, die orthonormale Spalten hat. Zeigen Sie, dass  $\mathbf{U}^\mathsf{T}$  ihre Pseudoinverse ist.

- Lösung -

Da  ${\bf U}$  orthonormale Spalten hat, gilt  ${\bf U}^{\sf T}{\bf U}={\bf I}$  (aber nicht unbedingt  ${\bf U}{\bf U}^{\sf T}={\bf I}$ ). Nun müssen wir die notwendigen und hinreichenden Eigenschaften der Pseudoinverse überprüfen:

- $\bullet \ \mathbf{U}\mathbf{U}^\mathsf{T}\mathbf{U} = \mathbf{U}\mathbf{I} = \mathbf{U}$
- $\bullet \ \mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{U}^{\mathsf{T}} = \mathbf{I}\mathbf{U}^{\mathsf{T}} = \mathbf{U}^{\mathsf{T}}$
- $\bullet~\mathbf{U}^\mathsf{T}\mathbf{U}$  und  $\mathbf{U}\mathbf{U}^\mathsf{T}$  sind offensichtlich symmetrisch

Damit gilt  $U^+ = U^T$ .

Lösung Ende -

## Aufgabe 5: Interpolation

1. Gegeben seien die folgenden zwei Punktmengen  $(x_i, y_i) \in \mathbb{R}^2$ :





Welche Menge an (Basis-)Funktionen genügt, um die Punkte mittels einer Linearkombination dieser zu interpolieren?

- a)  $\{x\}$  1: Nein, 2: Nein
- b)  $\{1, x\}$  1: Nein, 2: Ja

- c)  $\{x, x^2, x^3\}$  1: Ja, 2: Nein
- d)  $\{1, x^3, x^5\}$  1: Ja, 2: Ja
- e)  $\{\exp(x), \exp(2x), \exp(3x)\}$  1: Ja, 2: Ja
- f)  $\{1, x^2, \exp(x)\}$  1: Ja, 2: Ja
- g)  $\{1,\cos^2(x),\sin^2(x)\}$  1: Nein, 2: Nein
- h)  $\{1, x, x^2 \cos(x), \sin(x), \exp(x)\}$  1: Ja, 2: Ja
- 2. Gegeben die folgenden zwei Polynome 2. Grades:  $p_1(x) = -x^2 + 3x 2$  und  $p_2(x) = 3x^2 2x + 4$ .
  - a) Stellen Sie die Polynome in der Monombasis dar, welche alle Polynome 4. Grades darstellen kann
  - b) Stellen Sie die Polynome in der Lagrange-Basis zu den Stützstellen 0,1,2,3,4 dar.
  - c) Berechnen Sie das Produktpolynom  $p(x) = p_1(x) \cdot p_2(x)$ . Welche Basisrepräsentation eignet sich besser?
  - d) Berechnen Sie die Matrix, welche einen Basiswechsel von der Monombasis in die Lagrange-Basis durchführt.
  - e) Berechnen Sie die Matrix, welche einen Basiswechsel von der Lagrange-Basis in die Monombasis durchführt.

a) Wir wählen die Monombasis  $M=(1,x,x^2,x^3,x^4)$ . Dann ist:

$$\mathbf{p}_1 = (-2, 3, -1, 0, 0)^\mathsf{T}, \quad \mathbf{p}_2 = (4, -2, 3, 0, 0)^\mathsf{T}$$

b) Um die Repräsentation der Polynome bezüglich der Lagrange-Basis zu berechnen, müssen wir die Lagrange-Basispolynome gar nicht berechnen. Es reicht den Funktionswert der Polynome an jeder Stützstelle zu bestimmen:

$$\mathbf{p}_{1}' = \begin{bmatrix} p_{1}(0) \\ p_{1}(1) \\ p_{1}(2) \\ p_{1}(3) \\ p_{1}(4) \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 0 \\ -2 \\ -6 \end{bmatrix}, \quad \mathbf{p}_{2}' = \begin{bmatrix} p_{2}(0) \\ p_{2}(1) \\ p_{2}(2) \\ p_{2}(3) \\ p_{2}(4) \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 12 \\ 25 \\ 44 \end{bmatrix},$$

c) Die Lagrange-Basis eignet sich besser zum Multiplizieren von Polynomen, da man in der Monombasis jeden Koeffizienten des einen Polynoms mit jedem Koeffizienten des anderen Polynoms multiplizieren muss, wohingegen in der Lagrange-Basis die elementweise Multiplikation der Vektoren genügt, d.h.

$$(\mathbf{p}_1\mathbf{p}_2)' = \mathbf{p}_1' \circ \mathbf{p}_2' = \begin{bmatrix} -8\\0\\0\\-50\\-264 \end{bmatrix}$$

d) Die Matrix für den Basiswechsel von Monombasis zu Lagrange-Basis ist die Vandermonde-Matrix:

$$\mathbf{V} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 & 16 \\ 1 & 3 & 9 & 27 & 81 \\ 1 & 4 & 16 & 64 & 256 \end{bmatrix}$$

e) Die Inverse der Matrix aus der Aufgabe zuvor führt besagten Basiswechsel durch.

- Lösung Ende ——