МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

Тема: Оценка параметров надежности программ
по временным моделям обнаружения ошибок

Студент гр. 7304	 Соколов И.Д.
Преподаватель	Ефремов М.А.

Санкт-Петербург

Формулировка задания

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение *интервала* между соседними (i-1)—ой u i-ой ошибками (i=[1,30], также смотри примечание в п.3), в соответствии с:
 - а. равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}}=10$, СКО $s_{\text{равн}}=20/(2*\text{sqrt}(3))=5.8$.
 - b. экспоненциальным законом распределения: W(y) = b*exp(-b*y), y>=0, с параметром b=0.1 и соответственно $m_{\rm эксп}=s_{\rm эксп}=1/b=10.$ Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = $-\ln(t)/b$
 - с. релеевским законом распределения: $W(y) = (y/c^2)*exp(-y^2/(2*c^2)),$ y>=0, с параметром c=8.0 и соответственно $m_{pen}=c*sqrt(\pi/2), s_{pen}=c*sqrt(2-\pi/2).$ Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y=c*sqrt(-2*ln(t)).
- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками $_{\text{упорядочить}}$ по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%,

80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать $n=30,\,24$ и 18 элементов).

Примечание: для каждого значения п следует генерировать и сортировать новые массивы.

- 4. Если B>n, оценить значения средних времен Xj, j=n+1,n+2..., n+k до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы.

1. Равномерный закон распределения

import numpy numbers = numpy.random.uniform(0,20,30) numbers.sort() for i in range(30): print(numbers[i])

	princ(namber s[i])		
	Равномерное 100	Равномерное 80	Равномерное 60
1	0.017	0.288	0.334
2	0.285	0.682	0.782
3	1.485	1.35	2.89
4	1.669	2.953	5.957
5	1.89	3.703	6.015
6	1.99	4.88	6.698
7	2.145	7.091	7.695
8	2.368	8.091	10.224
9	2.469	8.401	11.483
10	3.357	9.656	12.172
11	3.357	11.405	13.448
12	7.093	11.53	14.991
13	7.316	11.848	15.378
14	7.393	12.187	17.375
15	7.593	12.227	18.059
16	11.033	13.584	18.863
17	11.496	13.701	19.395
18	11.505	14.456	19.654
19	11.543	16.387	
20	11.69	18.195	
21	12.684	18.378	
22	13.164	18.497	
23	13.601	18.964	

24 13.784 19.474 25 16.93 26 17.457 27 18.847 28 19.361 29 19.452 30 19.573

Для n = 30

Проверка существования максимума: 21,532 > 15.5

$$A > \frac{n+1}{2} = 15.5$$

$$A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 21.532$$

Поиск т

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$

$$g_n(m, A) = \frac{n}{m - A}$$

m	f	g	f - g
31	3.99499	3.168733957	0.8262531744
32	3.02725	2.866012879	0.1612323166
33	2.5585	2.616088136	0.0575929404
34	2.25546	2.40625558	0.1507906876

Минимум при m = 33, B = m - 1=32

$$K = \frac{n}{\sum_{i=1}^{n} (B^{\wedge} - i + 1) * X_{i}} = \frac{n}{(B^{\wedge} + 1) * \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0.0095987677$$

$$X^{\wedge}_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{K^{\wedge}(B^{\wedge} - n)}$$

i X

31 26.04501

32 34.72668006

Время до полного завершения тестирования: 60.7717

Полное время тестирования: 333.316

Для n = 24

Проверка существования максимума: 16.3 > 12.5

$$A > \frac{n+1}{2} = 12.5A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 16,3$$

Поиск т

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$

$$g_n(m, A) = \frac{n}{m-A}$$

m	f	g	f - g
25	3.73429	2.760614506	0.9736770051
26	2.77596	2.475830595	0.3001275824
27	2.31596	2.2443086	0.0716495781
28	2.02109	2.052384279	0.0312978964
29	1.80812	1.890699223	0.0825758027

$$K = \frac{n}{\sum_{i=1}^{n} (B^{\wedge} - i + 1) * X_{i}} = \frac{n}{(B^{\wedge} + 1) * \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0.0079571736$$

$$X^{\wedge}_{n+1} = \frac{1}{\hat{Z}\left(t_{n}\right)} = \frac{1}{K^{\wedge}(B^{\wedge}-n)}$$

i	X
25	41.89092111
26	62.83638167
27	125.6727633

Время до полного завершения тестирования: 230.4000661284

Полное время тестирования: 488.329

Для n = 18

Проверка существования максимума: 12.375 > 10.5

$$A > \frac{n+1}{2} = 12.5A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 12.375$$

Поиск т

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$

$$g_n(m, A) = \frac{n}{m-A}$$

m	f	g	f - g
19	3.43955	2.717118669	0.7224338532
20	2.49511	2.360759565	0.1343485136
21	2.04774	2.087037668	0.039298011
22	1.76441	1.8702	0.10579

Минимум при m = 21, B = m - 1 = 20

$$K = \frac{n}{\sum_{i=1}^{n} (B^{-}i+1)*X_{i}} = \frac{n}{(B^{+}1)*\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i*X_{i}} = 0.0103619989$$

$$X^{\wedge}_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{K^{\wedge}(B^{\wedge}-n)}$$

i	X
19	48.2532
20	96.5056

Время до полного завершения тестирования: 144.76

Полное время тестирования: 346.172

2. Экспоненциальный закон распределения

import numpy
numbers = numpy.random.exponential(10, 30)
numbers.sort()
for i in range(30):
 print(numbers[i])

i	Экспонента 100	Экспонента 80	Экспонента 60	
1	0.564	0.306	0.767	ı
2	0.804	0.940	2.113	
3	1.255	1.076	2.424	
4	1.339	1.627	3.246	
5	1.397	3.826	3.977	
6	3.209	3.888	4.197	
7	3.212	4.002	4.442	
8	3.496	4.726	6.346	
9	3.833	5.508	7.145	
10	3.881	6.274	7.451	
11	4.141	6.673	11.199	
12	4.706	6.702	11.434	
13	4.749	7.714	11.618	
14	5.695	8.076	16.621	
15	5.852	10.444	22.346	
16	6.228	10.592	26.762	
17	6.564	12.851	30.480	
18	6.776	15.255	36.644	
19	6.925	18.598		
20	7.138	22.324		
21	8.989	22.982		
22	9.560	28.436		
23	12.531	30.811		

24 13.820 34.225 25 14.052 26 14.597 27 29.372 28 31.791 29 34.416 30 45.776

Для n = 30

Проверка существования максимума: 23.273 > 15.5

$$A > \frac{n+1}{2} = 15.5A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 23.273$$

Поиск т

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$

$$g_n(m, A) = \frac{n}{m-A}$$

m f g |f-g|

31 3.99499 3.8826017061 0.1123854249

32.000 3.02725 3.437695021 0.4104498255

Минимум при m = 31, B = m - 1 = 30

$$K = \frac{n}{\sum_{i=1}^{n} (B^{\wedge} - i + 1) * X_{i}} = \frac{n}{(B^{\wedge} + 1) * \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0.0130872653$$

Среднее время

$$X^{\wedge}_{n+1} = \frac{1}{\hat{Z}\left(t_{n}\right)} = \frac{1}{K^{\wedge}(B^{\wedge}-n)}$$

Время до полного завершения тестирования: 0

Полное время тестирования: 296.670

Для n = 24

Проверка существования максимума: 18.132 > 12.5

$$A > \frac{n+1}{2} = 12.5A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 18.132$$

Поиск т

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$

$$g_n(m, A) = \frac{n}{m-A}$$

m	f	g	f - g
25	3.77596	3.4948708139	0.2810873639
26.000	2.81596	3.0506380663	0.2346798886
27	2.35442	2.7066020924	0.3521823762

Минимум при m = 26, B = m - 1 = 25

$$K = \frac{n}{\sum_{i=1}^{n} (B^{\wedge} - i + 1) * X_{i}} = \frac{n}{(B^{\wedge} + 1) * \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0.0113890165$$

Среднее время

$$X^{\wedge}_{n+1} = \frac{1}{\hat{Z}(t_n)} = \frac{1}{K^{\wedge}(B^{\wedge}-n)}$$

i	X
25	87.8039

Время до полного завершения тестирования: 87.8039

Полное время тестирования: 355.662

Для n = 18

Проверка существования максимума: 13.748 > 10.5

$$A > \frac{n+1}{2} = 10.5$$

$$A = \frac{\sum_{i=1}^{n} i * X_{i}}{\sum_{i=1}^{n} X_{i}} = 13.748$$

Поиск т

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$

$$g_n(m, A) = \frac{n}{m-A}$$

m f g |f-g|

19 3.43955 3.4272861569 0.0122663658

20.000 2.49511 2.8790930579 0.3839849797

Минимум при m = 19, B = m - 1 = 18

$$K = \frac{n}{\sum_{i=1}^{n} (B^{\wedge} - i + 1) * X_{i}} = \frac{n}{(B^{\wedge} + 1) * \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0,026190871$$

Среднее время

$$X^{\wedge}_{n+1} = \frac{1}{\hat{\mathbf{Z}}(t_n)} = \frac{1}{K^{\wedge}(B^{\wedge} - n)}$$

i X

Время до полного завершения тестирования: 0

Полное время тестирования: 209.209

3. Релеевский закон распределения

```
import numpy
numbers = numpy.random.rayleigh(8, 30)
numbers.sort()
for i in range(30):
    print(numbers[i])
```

i	Релеевское 100	Релеевское 80	Релеевское 60
1	1.1114442195	2.7581015398	2.0466951642
2	1.3331616235	3.2324675271	4.0864488144
3	1.6695807272	3.7004411384	4.8822563263
4	3.8951358412	3.8666982765	5.3934901757
5	4.072814395	4.1830771545	5.3947891549
6	4.6596394404	4.8889654686	6.4094400065
7	5.0204047531	5.5697691136	6.8898468829
8	6.2348406978	6.5859418369	7.6636048118
9	6.3062186191	6.7075193058	7.6909608313
10	6.3474623154	7.0622446794	7.9890559452
11	6.3482272322	7.229309367	8.3902596525
12	6.8159137698	7.9177001344	8.567920585
13	7.3675891476	7.9443981036	9.2877580628
14	7.4767418915	9.1741120831	10.7876499917
15	7.6065027639	11.4745722275	11.2125672953
16	7.6734119909	12.1317814404	16.263834967
17	8.1177194007	12.3772020372	19.6444503342
18	8.3919813076	12.4563032301	20.9818411435
19	9.4841863996	13.5120301669	
20	9.6524168897	13.7603650448	
21	9.9907813425	14.3380016651	
22	10.0800836703	14.3920958088	
23	10.8325967215	16.4051399882	

24	11.4846704026	17.9566756362
25	12.2836063628	
26	15.0062680601	
27	16.218744595	
28	18.0657282599	
29	18.2701066679	
30	20.7880431105	

Для n = 30

Проверка существования максимума: 20.106 > 15.5

$$A > \frac{n+1}{2} = 15.5A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 20.106$$

Поиск т

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$

$$g_n(m, A) = \frac{n}{m-A}$$

m	f	g	f-g
31	3.99499	2.7538671069	1.241120024
32.000	3.02725	2.522328522	0.5049166735
33	2.55850	2.3267047317	0.2317904637
34.000	2.03488	2.159240867	0.1243642099
35	1.86345	2.0142647731	0.1508166875

Минимум при m = 34, B = m - 1 = 33

$$K = \frac{n}{\sum_{i=1}^{n} (B^{-i+1}) * X_{i}} = \frac{n}{(B^{+1}) * \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0.0082223585$$

Среднее время

٧٨	_ 1	1
n+1	$-\frac{\hat{\mathbf{z}}(t_n)}{\hat{\mathbf{z}}(t_n)}$	$K^{\wedge}(B^{\wedge}-n)$

i	X
31	40.5398685305
32	60.8098027957
33	121.6196055914

Время до полного завершения тестирования: 222.9692769176

Полное время тестирования: 485.575

Для n = 24

Проверка существования максимума: 15.816 > 12.5

$$A > \frac{n+1}{2} = 12.5A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 15.816$$

Поиск т

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$

$$g_n(m, A) = \frac{n}{m - A}$$

m	f	g	f-g
25	3.77596	2.6134473749	1.1625108029
26.000	2.81596	2.3568061707	0.4591520071
27	2.35442	2.146062301	0.2083574152
28.000	2.05812	1.9699140402	0.0882093797
29	1.84384	1.8204887737	0.0233489319
30.000	1.67832	1.6921341402	0.0138136759
31	1.54499	1.5806868804	0.0356997494

Минимум при m = 30, B = m - 1 = 29

$$K = \frac{n}{\sum_{i=1}^{n} (B^{\wedge} - i + 1) * X_{i}} = \frac{n}{(B^{\wedge} + 1) * \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0.0077046548$$

$$X^{\wedge}_{n+1} = \frac{1}{\hat{Z}\left(t_{n}\right)} = \frac{1}{K^{\wedge}(B^{\wedge}-n)}$$

i	X
25	18.5416668944
26	21.6319447102
27	25.9583336522
28	32.4479170653
29	43.2638894203

Время до полного завершения тестирования: 141.844

Полное время тестирования: 361.469

Для n = 18

Проверка существования максимума: 12.088 > 10.5

$$A > \frac{n+1}{2} = 10.5A = \frac{\sum_{i=1}^{n} i * X_i}{\sum_{i=1}^{n} X_i} = 12.088$$

Поиск т

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$$

$$g_n(m, A) = \frac{n}{m-A}$$

21.000	2.04774	2.0198077724	0.0279318848
20.000	2.49511	2.2751002857	0.2200077925
19	3.43955	2.6042649484	0.8352875742
m	f	g	f - g

6441 1.8160284213

Минимум при m = 21, B = m - 1 = 20

$$K = \frac{n}{\sum_{i=1}^{n} (B^{\wedge} - i + 1) * X_{i}} = \frac{n}{(B^{\wedge} + 1) * \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i * X_{i}} = 0.0123473061$$

Среднее время

$$X^{\wedge}_{n+1} = \frac{1}{\hat{\mathbf{Z}}(t_n)} = \frac{1}{K^{\wedge}(B^{\wedge}-n)}$$

i	X
19	40.2532381064
20	80.5064762129

Время до полного завершения тестирования: 121.484

Полное время тестирования: 285.067

4. Результаты

а. Оценка первоначального числа ошибок

	Равномерный	Экспоненциальный	Релеевский
n = 30	32	30	33
n = 24	27	25	29
n = 18	20	18	20

Оценка полного времени проведения тестирования

	Равномерный	Экспоненциальный	Релеевский
n = 30	333.316	296.670	485.575
n = 24	488.329	355.662	361.469
n = 18	346.172	209.209	285.067

Экспоненциальный закон распределения показывает наилучшие результаты по двум оценкам сразу при любых входных данных, так как по предположению модели Джелински-Моранды время до следующего отказа программы распределено экспоненциально.

Релеевское распределение демонстрирует наихудшие результаты полного времени проведения тестирования при 60% и 80% входных данных, однако в плане оценки первоначального числа ошибок сравнимо с равномерным. При

100% входных данных наихудший результат показывает равномерное распределение.

Вывод

В ходе выполнения данной лабораторной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок.