Trabalho 1

Aplicativo de simulação de um reator tipo quench

Um reator tipo quench é formado por uma série de leitos adiabáticos em sequência, onde a variação da temperatura do meio reacional é contida pela injeção de carga entre os leitos.

Figura 1 – Reator tipo quench

Desenvolva um aplicativo para simulação de reatores tipo queench utilizando um modelo pseudo-homogêneo, sendo os dados de entrada:

- Dados da corrente de carga
- Temperatura de entrada no primeiro leito
- Quantidade de leitos em série
- Diâmetro dos leitos
- Comprimento dos leitos
- Fração da carga direcionada para cada leito

Os dados de saída do aplicativo são:

- Dados da corrente de produto
- Gráfico da temperatura ao longo do comprimento dos leitos
- Gráfico da pressão ao longo do comprimento dos leitos
- Gráfico da vazão molar dos componentes ao longo do comprimento dos leitos

Teste seu programa para a síntese de amônia. A reação é dada pela equação a seguir:

$$N_2 + 3H_2 \rightarrow 2NH_3 \tag{1}$$

A equação da taxa é baseada em Dyson and Simon (1968):

$$r_{NH_3} = 2k \left[K_a^2 \ a_{N_2} \left(\frac{a_{H2}^3}{a_{NH_3}^2} \right)^{0.5} - \left(\frac{a_{NH_3}^2}{a_{H_2}^3} \right)^{0.5} \right]$$
[kmol/(m³.h)] (2)

onde r_{NH_3} é a taxa de formação da amônia em $kmol \cdot m^{-3} \cdot s^{-1}$, K_a é a constante de equilíbrio, a_i a atividade do componente i e k é dado por: Não funcionou. Usar:

$$k = 2.457 \cdot 10^{11} e^{-\frac{40765}{1.987T}}$$

$$E = 170560 \text{ #kJ/kmol}$$

$$R = 8.314 \text{ #kJ/(kmol.K)}$$

$$k0 = 8.849e14$$

$$k = k0^*\text{exp(-E/(R*T))}$$
(3)

onde T é a temperatura em Kelvin. A constante de equilíbrio pode ser calculada por (*Dyson and Simon*, 1968):

$$\log_{10} K_a = -2.691122 \log_{10} T - 5.519265 \cdot 10^{-5} T + 1.848863 \cdot 10^{-7} T^2 + 2001.6 T^{-1} + 2.6899$$
(4)

onde T é a temperatura em Kelvin. O fator de efetividade (Dyson and Simon, 1968):

$$\eta = b_0 + b_1 T + b_2 X_{N_2} + b_3 T^2 + b_4 X_{N_2}^2 + b_5 T^3 + b_6 X_{n_2}^3$$
 (5)

onde T é a temperatura em Kelvin, X_{N_2} é a conversão do nitrogênio e as constantes da Equação 5 são obtidas por interpolação a partir da tabela abaixo.

	Pressure			
Parameter	150 atm	225 atm	300 atm	
b_0	-17.539096	-8.2125534	-4.6757259	
b_1	0.07697849	0.03774149	0.02354872	
b_2	6.900548	6.190112	4.687353	
b_3	$-1.082790 \cdot 10^{-4}$	$-5.354571 \cdot 10^{-5}$	-3.463308 · 10 ⁻⁵	
b_4	-26.424699	-20.86963	11.28031	
b ₅	4,927648 · 10 ⁻⁸	2.379142 10-8	1.540881 · 10 ⁻⁸	
b_6	38.93727	27.88403	10.46627	

Referências:

Dyson, D.C., Simon, J.M., 1968. Kinetic Expression with Diffusion Correction for Ammonia Synthesis on Industrial Catalyst. Ind. Eng. Chem. Fundamentals. 7, 605–610.

Trabalho 1 – João

Aplicativo para avaliação de uma unidade de expansão de vapor d'água em uma turbina

Você trabalha em uma empresa de engenharia que realiza projetos voltados na área de equipamentos térmicos e eficiência energética, sendo um dos serviços prestados o projeto de forno industriais. É comum aumentar a eficiência destes equipamentos a partir do aproveitamento de uma fração do calor residual para geração de vapor d'água superaquecido visando a operação de uma turbina.

Você foi solicitado, portanto, que desenvolvesse um aplicativo para avaliar a viabilidade e a rentabilidade de instalar este tipo de recuperação de calor. Neste aplicativo, os dados de entrada são:

- Pressão e temperatura da água de caldeira disponível na unidade industrial
- Calor residual que pode ser recuperado para a geração do vapor
- Temperatura de entrada na turbina
- Eficiência da turbina
- Pressão de saída da turbina

Os dados de saída do aplicativa devem ser:

- Vazão de vapor gerada
- Qualidade e temperatura do vapor que deixa a turbina
- A potência gerada na turbina
- A carga térmica do condensador que levará o vapor que deixa a turbina até a condição de líquido saturado.

Utilize as equações do IAWPS, e teste seu aplicativo com os seguintes dados:

Água de caldeira disponível a 250°C e 8600 kPa, absorvendo um calor de 20 MW de energia no forno e deixando o equipamento a 500°C. A eficiência da turbina é 75% e o vapor se expande até uma pressão de 10 kPa.

Trabalho 1 - Renata

Software de avaliação de trocadores bitubulares

Trocadores de calor bitubulares são equipamentos destinados a promover a troca de calor entre duas correntes por meio de um tubo inserido concentricamente no interior de um tubo externo de maior diâmetro, conforme ilustra imagem a seguir:

Desenvolva um software de avaliação de trocadores de calor bitubulares em série.

Os dados de entrada fornecidos pelo usuário são:

- i) Vazão mássica das correntes quente e fria, suas respectivas propriedades físicas e a resistência de depósito
 - ii) Temperatura de entrada e saída das correntes
- iii) Diâmetro e espessura do tubo interno e externo, e a condutividade térmica do material
 - iv) Comprimento dos tubos
 - v) Número de grampos conectados em série
 - vi) Alocação das correntes

Os dados de saída são:

- a) Um relatório apresentando na tela os dados de entrada
- b) Os resultados termo-fluidodinâmicos das correntes: velocidade, Número de Reynolds, coeficiente de convecção e as perdas de carga.

c) Os resultados do trocador: coeficiente global de transferência limpo e sujo, o valor do LMTD, área requerida, efetiva e a área em excesso.

Teste o seu programa com o seguinte estudo de caso:

Trocador com diâmetro do tubo interno e externo iguais a 1 in e 2 in, respectivamente. A espessura dos tubos é igual a 0.065 in, o comprimento igual 12 ft e a condutividade térmica 50 W/mK. A água escoa na região dos tubos, e o número de grampos é igual a 6.

Propriedade	Óleo	Água
Vazão mássica (kg/s)	0.5016	0.5
Temperatura de entrada (°C)	200	30
Temperatura de saída (°C)	100	90
Massa específica (kg/m³)	800	996
Capacidade térmica (J/Kg.K)	2500	4180
Viscosidade (Pa.s)	1.2·10 ⁻³	0.797·10 ⁻³
Condutividade térmica (W/m.K)	0.250	0.618
Resistência de depósito (m²K/W)	0.0001	0.0001

Trabalho 1 - Fabrício

Programa de cotação de uma mistura de gases

O mercado de gases industriais é dominado por grandes empresas que operam a nível mundial. Visando apresentar uma proposta inovadora neste mercado tão concorrido, você foi contratado pela startup ProxyAir LTDA para o desenvolvimento de soluções customizadas, formulando misturas de gases na exata necessidade de cada cliente. A empresa trabalha com o seguinte portfólio de produtos:

Oxigênio	Hélio	
Nitrogênio	Hidrogênio	
Argônio	Metano	
Acetileno	Etano	

A proposta da empresa é que todo o processo de comercialização seja digital, ou seja, o cliente acessa o site da empresa e faz o seu pedido automaticamente. Com este objetivo, você é responsável pelo programa que recebe dos dados do pedido e apresenta a cotação correspondente.

No aplicativo, as seguintes informações serão coletadas:

- Gases que compõe a mistura
- Composição molar da mistura desejada
- Pressão do reservatório que será armazenada a mistura (bar)
- Volume do reservatório (m³)
- Temperatura na qual o reservatório estará submetido (°C)

A partir destes dados, o aplicativo deve fornecer as seguintes informações:

- Massa (kg) e quantidade de matéria (kmol) da mistura gasosa contida no reservatório do cliente
 - Volume molar da mistura (kmol/m³)
 - Orçamento preliminar do serviço

Para desenvolver o programa, considere que:

i) As pressões de operação envolvidas no problema são baixas o suficiente para a lei de gases ideais ser válida

ii) O preço de cada	gás é dado por:
---------------------	-----------------

Gás	Preço (R\$/m³)	Gás	Preço (R\$/m³)
Oxigênio	14,11	Hélio	9,21
Nitrogênio	8,21	Hidrogênio	12,55
Argônio	6,52	Metano	3,02
Acetileno	11,65	Etano	3,56

Trabalha 1 - Laís

Simulação de uma Planta Industrial

A produção de um produto C é realizada através de um processo químico baseado na seguinte transformação:

$$A + 2 B \rightarrow C + D$$

O subproduto D não possui valor comercial, devendo ser enviado para a estação de tratamento de efluentes da planta.

Um fluxograma de processo (PFD) simplificado está apresentado na figura abaixo (os trocadores de calor não estão representados, pois não são importantes para o balanço material).

Dados do processo:

- As correntes de matéria-prima são a corrente (1) contendo A puro e a corrente (2) com B puro.
- Um sistema de controle automático garante que a vazão da corrente (2) seja tal que na carga de alimentação do reator (3), o componente B esteja com um determinado excesso desejado em relação ao componente A.

- A corrente efluente do reator (4) é alimentada no vaso de flash D-101. Este vaso promove a separação da mistura resultante na corrente (5) contendo todos os produtos formados na reação e na corrente (9) contendo os reagentes que não reagiram.
- A corrente (5) é alimentada no vaso de acúmulo D-103. A corrente (6) que sai deste vaso alimenta a coluna de destilação T-101.
- A coluna de destilação T-101 efetua a separação da mistura. O produto de interesse C sai no fundo da coluna e o componente D no topo.
- A corrente (9) alimenta o reator R-102 para tentar aproveitar a matéria-prima que não reagiu
- A corrente efluente deste reator (10) é alimentada no vaso de flash D-102. Este vaso separa os produtos da reação na corrente (12) que é enviada para o vaso D-103. Os reagentes remanescentes saem na corrente (11).

Dados de entrada a serem fornecidos pelo usuário (os valores entre parênteses correspondem aos dados de um caso base que pode ser utilizado no desenvolvimento do programa):

- Valor da corrente de entrada de A no processo (kmol/h)
- Excesso do componente B na carga do reator (10%)
- Conversão no reator R-101 (80 %)
- Conversão no reator R-102 (50 %)
- Recuperação do produto C na corrente de fundo da coluna (97 %)
- Recuperação do componente D na corrente de topo da coluna (99 %)

Resultado:

- Relatório com a vazão em kmol/h e a composição molar de todas as correntes do processo