

higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE INDUSTRIAL INSTRUMENTS N6 1 April 2021

This marking guideline consists of 6 pages.

Copyright reserved Please turn over

INDUSTRIAL INSTRUMENTS N6

SECTION A

\sim	JES1		NI.	4
w	JEO I	IIU	I	

1.1 1.2 1.3 1.4 1.5	reset proportional Division joule condenser (5 × 1)	[5]
QUESTI	ON 2	
2.1 2.2 2.3 2.4 2.5	quick-opening characteristic control valve low airflow interlock cascade control loop cavitation (5 × 1)	[5]
QUESTI	ON 3	
3.1	False – Screwed connections are used for small-sized valves and flanges for large-sized valves.	(2)
3.2	False – For crystalline materials, the lines are sharply defined.	(2)
3.3	True	(1)
3.4	True	(1)
3.5	False – An increase in air pressure on the diaphragm causes the valve to open, which will result in an increase in flow through the valve.	(2)
3.6	False – Override control occurs when two or more control loops are connected to a common valve in such a way that, under normal conditions, the normal control loop is in command of the valve.	(2) [10]

Copyright reserved Please turn over

TOTAL SECTION A:

20

SECTION B

QUESTION 4: ANALYSERS

4.1

- Metered quantities of gas and air are introduced to a burner and the tank is heated.
- When air is introduced to the air chamber, it absorbs the heat from the tank.
- The temperature rise of the air is measured by resistance thermometers to provide a measure of the heating value.
- Since both thermometers sense the same temperature, the bridge is in balance.
- When the cooling medium (air) is introduced through the capillary tubing, resistance thermometer T₁ will be cooled and resistance thermometer T₂ will be heated up as a result of heat exchange between the tank and the capillary tube.
- The bridge goes out of balance and this out-of-balance signal is proportional to the heat developed by the burning gas mixture.

 $(6 \times 1 \text{ diagram and } 6 \times 1 \text{ explanation})$ (12)

- Flame excitation: The sample must be in solution form so that it may be sprayed into the flame.
 - Arc excitation: It is usually used for analyses where a minute amount of the element is present.
 - Spark excitation: The spark discharge is the most reproducible of the sources but it has a low sensitivity. (3 × 2)

Copyright reserved Please turn over

4.3

QUESTION 5: AUTOMATIC CONTROL AND VALVES

Copyright reserved Please turn over

(5) **[23]**

(5)

- 5.2 5.2.1 Measurement lag is the time taken for a detecting element to reach equilibrium with the process ✓ so that the detecting element accurately represents the process. ✓
 - 5.2.2 Process lag is the time taken for the process to respond to the correcting element. ✓ This rate response depends on the capacity of the process and the rate of transfer from the correcting element to the process. ✓
 - 5.2.3 Transfer lag is the time taken for the energy to be transferred from one inner tank (as an example) to another outer tank ✓ if the content of the outer tank is heated indirectly via the content of the inner tank, the content of which is heated by a heating coil. ✓

 (3×2) (6)

5.3
$$P_1 = 10,85 + 1,0135 = 11,8635$$
 bar

$$P_2 = 2.3 + 1.0135 = 3.3135$$
 bar

$$C_{v} = \frac{Q}{295} \sqrt{\frac{G.T}{\Delta P(P_1 + P_2)}}$$

$$2,021 = \frac{Q}{295} \sqrt{\frac{0,86 \times (86 + 273)}{(11,8635 - 3,3135)(11,8635 + 3,3135)}}$$

$$\therefore Q = 386.5 \,\mathrm{m}^3/\mathrm{h} \tag{4}$$

5.4 5.4.1 E 5.4.2 A

5.4.3 C

5.4.4 B

5.4.4 D

 (5×2) (10)

[25]

QUESTION 6: DISTILLATION COLUMN AND BOILERS

6.1	6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7	Distillation volatile constituents vapour condensation furnace fuel heat or combustible gases		(7)
6.2	(7 × 1) This is due to the fact that in a series system, a time lag in measurement ✓ or transmission of flow signals will seriously affect the combustion conditions within the boiler. ✓ If this occur, alternating periods of deficient and excess			
0.0		on air is realised.✓		(3)
6.3	6.3.1	Single-element feedwater control system		(1)
	6.3.2	Only one process variable, namely the drum level, is to the control loop. ✓ The drum level is measured and a level controller, ✓ which in turn manipulates the feet valve. ✓ As the water level lowers, the valve is opened water level rises the valve closes. ✓	transmitted to dwater control	(5)
6.4	The flow rate of measured fuel is easily measured and controlled, \checkmark e.g. gas and oil. \checkmark The amount of unmeasured fuels added to the burner is not easily determined, \checkmark e.g. coal or wood. \checkmark (2 + 2)		r is not easily	(4) [20]
QUESTIC	ON 7: INTR	RINSIC SAFETY		
7.1	 Presence of combustible material Possibility for combustible material to form combustible mixture with air Presence of a source of ignition with sufficient energy When the source comes in contact with explosive gas Quantity of combustible material large enough to support combustion Explosive gas mixture continuing to burn after ignition 			(6)
7.2	 Identify the circuit in the hazardous location. Review the circuit for mechanical or electrical isolation. Adjust circuit voltage and current levels. Compute the voltage and current level under fault conditions. Adjust the circuit parameter as required. Compute the level of voltage and current in the intrinsically safe circuit under normal operation. 			
		TOTAL	SECTION B:	[12] 80

100

GRAND TOTAL: