

CRISP-DM (required for cw, useful for any project...)

Based on Intro to Data Mining: CRISP-DM

Prof Chris Clifton, Purdue Univ

Thanks also to Laura Squier, SPSS for some of the material

Data Mining Process

- Cross-Industry Standard Process for Data Mining (CRISP-DM) – a Methodology, not for Software Engineering, but data-analysis work
- European Community funded effort to develop framework for data mining and text mining tasks

Goals:

- Encourage interoperable tools across entire data mining process, by defining subtasks
- Take the mystery/high-priced expertise out of simple data mining tasks – anyone can do it! (even students)

Why Should There be a Standard Process?

The data mining process must be reliable and repeatable by people with little data mining background.

- Framework for recording experience
 - Allows projects to be replicated, "real science"
- Aid to project planning and management
- "Comfort factor" for new adopters
 - Demonstrates maturity of Data Mining
 - Reduces dependency on "stars"

Process Standardization

- CRoss Industry Standard Process for Data Mining
- Initiative launched Sept.1996
- http://www.crisp-dm.org/
- SPSS/ISL, NCR, Daimler-Benz, OHRA
- Funding from European commission
- Over 200 members of the CRISP-DM SIG worldwide
 - DM Vendors SPSS, NCR, IBM, SAS, SGI, Data Distilleries, Syllogic, Magnify, ...
 - System Suppliers / consultants Cap Gemini, ICL Retail, Deloitte
 Touche, ...
 - End Users BT, ABB, Lloyds Bank, AirTouch, Experian, ...
 - <u>Linkedin.com</u> group discussion

CRISP-DM

- Non-proprietary
- Application/Industry neutral
- Tool neutral
- Focus on business issues and practical problems
 - As well as technical analysis
- Framework for guidance
- Experience base
 - Templates and case studies for guidance and analysis

CRISP-DM: Overview

CRISP-DM: Phases

Business Understanding

- Understanding project objectives and requirements
- Data mining problem definition

Data Understanding

- Initial data collection and familiarization
- Identify data quality issues
- Initial, obvious results

Data Preparation

- Record and attribute selection
- Data cleansing

Modeling

Run the data analysis and data mining tools

Evaluation

- Determine if results meet business objectives
- Identify business issues that should have been addressed earlier

Deployment

- Put the resulting models into practice
- Set up for repeated/continuous mining of the data

Phases and Tasks/Reports

Business Understanding

Data Understanding

Data Preparation

Modeling

Deployment

Determine

Business Objectives

Background **Business Objectives** Business Success Criteria

Situation Assessment

Inventory of Resources Requirements, Assumptions, and Constraints Risks and Contingencies Terminology Costs and Benefits

Determine

Data Mining Goal

Data Mining Goals Data Mining Success Criteria

Produce Project Plan

Project Plan Initial Assssment of Tools and Techniques

Collect Initial Data

Initial Data Collection Report

Describe Data

Data Description Report

Explore Data

Verify Data Quality

Data Exploration Report

Data Quality Report

Data Set Description

Select Data

Data Set

Rationale for Inclusion / Exclusion

Clean Data

Data Cleaning Report

Construct Data

Derived Attributes Generated Records

Integrate Data

Merged Data

Format Data

Reformatted Data

Select Modeling Technique

Modeling Technique Modeling Assumptions

Generate Test Design

Test Design

Build Model

Parameter Settings Models Model Description

Assess Model

Model Assessment Revised Parameter Settings

Evaluate Results

Assessment of Data Mining Results w.r.t. **Business Success** Criteria Approved Models

Evaluation

Review Process

Review of Process

Determine Next Steps

List of Possible Actions Decision

Plan Deployment

Deployment Plan

Plan Monitoring and Maintenance

Monitoring and Maintenance Plan

Produce Final Report

Final Report Final Presentation

Review Project

Experience Documentation

Phases in the DM Process

(1)

- BusinessUnderstanding:
 - Statement of BusinessObjective
 - Statement of Data
 Mining objective
 - Statement of SuccessCriteria

Phases in cw DM Process

(1)

Business Understanding:

- Business Objective: learn
 Weka basics; learn to find texts on "subject of interest"
- Data Mining objective: create and use arff files, explore classifiers and evaluate: measure "goodness"
- Success Criteria: specific evidence: docx with answers and screenshots; set of attributes and values in an arff file, example classifier outputs, analysis of cs490D performance

Phases in the DM Process

(2)

- Data Understanding
 - Collect data
 - Describe data
 - Explore the data
 - Verify the quality and identify outliers

Phases in cw DM Process

(2)

Data Understanding

- Data is provided; google ReutersCorn-train.arff
- attribute: string, and
 CLASS of each news-story
- Explore/verify that the features and values "seem relevant and sensible" – if not, how to transform?
- identify outliers (values which don't "belong")

Phases in the DM Process (3)

Data preparation:

- Can take over 90% of the time
 - Consolidation and Cleaning
 - missing values
 - Remove "noisy" data, repetitions, etc
 - Remove outliers?
 - Feature selection
 - Select features
 - Use visualization tools
 - Transformations create new variables, change formats

Phases in cw DM Process (3)

Data preparation:

- do NOT take up 90% of your time!
- Clean Data
- Look for repetitions?
- Remove illegal values eg text in number fields (you should not have this anyway!)
- Select Features
- Rationale for Inclusion / Exclusion: if it isn't relevant to classification – remove
- Transform Data
- (maybe) add attributes, eg StringToWordVector filter?
- Split into train and test parts?

Phases in the DM Process(4)

Model building

- Selection of the modeling techniques is based upon the data mining objective
- Modeling can be an iterative process; may model for description or prediction (or both)

Phases in cw DM Process(4)

Model building

- Data Mining objective is to explore and learn – so try several classifiers
- "model" can be ZeroR rule, or J48 Decision Tree, or other classifiers
- Try Data Visualization tools as well as Data Mining
- For each, record accuracy and confusion matrix
- Capture a few screenshots

Phases in the DM Process(5)

Model Evaluation

- Evaluation of model: how well it performed, how well it met business needs
- Methods and criteria depend on model type:
 - e.g., confusion matrix with classification models, ALSO meeting business goals: "understanding"
- Interpretation of models:
 important or not, easy or
 hard depends on algorithm

Phases in cw DM Process(5)

Model Evaluation

- Evaluation of model:
 have you found and
 quantified key features
 to classify the data?
- Interpretation: don't just present the results, try to explain possible reasons, e.g. news-story as a vector of words is a poor representation of its "meaning"

Phases in the DM Process (6)

Deployment

- Determine how the results need to be utilized
- Who needs to use them?
- How often do they need to be used
- Deploy Data Mining results by:
 - Producing report for users, with recommendations to improve their business
 - Deploy the results directly in the business

Phases in cw DM Process (6)

Deployment

- Write a report with answers to Ch17 questions
- Deploy directly: use what you learned in your future studies - to pass the Exam, then in Project etc

Why CRISP-DM?

- The data mining process must be reliable and repeatable by people with little data mining skills (e.g. IT Consultants, students?...)
- CRISP-DM provides a uniform framework for
 - guidelines
 - experience documentation
- CRISP-DM is flexible to account for differences
 - Different business/agency problems
 - Different data

Why DM?: Concept Description

- Descriptive vs. predictive data mining
 - Descriptive mining: describes concepts or taskrelevant data sets in concise, informative form: Decision Tree, Decision Rules, ...
 - Predictive mining: Based on data and analysis, constructs models from the data-set, and predicts the trend and properties of unknown data: "model" need not be visualized, eg Neural Net, Ensemble
- Concept description:
 - Characterization: provides a concise and succinct summarization of the given collection of data

Data Mining v. Visualization

- Data Mining:
 - can handle complex data types of many attributes/features/dimensions
 - a more automated process
- OLAP Online Analytic Processing (Visualization):
 - restricted to a small number of dimensions and feature types (eg not so good for text)
 - user-controlled process

CRISP-DM: Summary

Business Understanding

- Understanding project objectives and requirements
- Data mining problem definition

Data Understanding

- Initial data collection and familiarization
- Identify data quality issues
- Initial, obvious results

Data Preparation

- Record and attribute selection
- Data cleansing

Modeling

Run the data mining tools

Evaluation

- Determine if results meet business objectives
- Identify business issues that should have been addressed earlier

Deployment

- Put the resulting models into practice
- Set up for repeated/continuoussaniming of the data