Esame per il Corso di ALGEBRA LINEARE

20/02/2023

1. **(8 punti)**

(a) Si consideri la seguente matrice:

$$A = \begin{pmatrix} \alpha & \alpha + 3 & 2\alpha \\ \alpha & 2\alpha + 2 & 3\alpha \\ 2\alpha & \alpha + 7 & 4\alpha \end{pmatrix}$$

Si studi det(A), rk(A) e invertibilità di A al variare di $\alpha \in \mathbb{R}$.

- (b) Si calcoli z^6 dove $z = \frac{2}{\sqrt{3}-i} + \frac{1}{i}$.
- 2. (8 punti) Si consideri la seguente matrice:

$$B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$$

- (a) Si calcolino tutti gli autovalori di B su \mathbb{R} e si trovino delle basi dei loro autospazi.
- (b) Si verifichi che la matrice B è diagonalizzabile e si trovino la matrice diagonale D e le matrici S, S^{-1} tali che $B = SDS^{-1}$.
- 3. (8 punti) Si considerino le seguenti matrici:

$$C = \begin{pmatrix} 3 & 0 \\ 2 & 13 \\ 0 & 8 \end{pmatrix} \quad D = \begin{pmatrix} 3 & 2 & 0 \\ 1 & -2 & 3 \end{pmatrix}$$

- (a) Si trova una base di ciascuno dei seguenti sottospazi di \mathbb{R}^3 :
 - i. Il sottospazio C(C) generato dalle colonne di C.
 - ii. Lo spazio nullo N(D) di D.
 - iii. La somma C(C) + N(D) dei sottospazi C(C) e N(D).
- (b) Si calcoli la dimensione dell'intersezione $C(C) \cap N(D)$ dei sottospazi C(C) e N(D).
- 4. **(6 punti)** Si considerino la matrice $P = \begin{pmatrix} 3 & i \\ -1 & 0 \end{pmatrix}$ Vero o falso? Si giustifichi la risposta!
 - (a) La matrice P è hermitiana, ovvero $P = P^H$.
 - (b) La matrice *P* è invertibile.
 - (c) Il vettore $c_{\mathcal{B}}(Pv)$ è uguale a $\begin{pmatrix} -1 \\ 4+i \end{pmatrix}$ dove $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$ e $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
- 5. (1 punti) Sia $A \in M_{m \times n}(\mathbb{C})$ e sia $b \in \mathbb{C}^m$. Si dimostri che, se $p \in \mathbb{C}^n$ è una soluzione particolare di Ax = b, allora ogni soluzione è della forma p + u per qualche $u \in N(A)$.