4	enample 01
	$V(t) = a_1 t^2 + a_2 t + a_3$, $5 \le t \le 12$ time velocity
	sidue.
	Using Matrix tournate
	+12 +1 7 a, 7 1 v. 7
	$ t_2^2 + t_2 a_2 \cdot v_2 $
	$\begin{bmatrix} +1^2 & +1 & 1 \\ +2^2 & +2 & 1 \\ +3^2 & +3 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$
£ .	the system of equations -
	$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106 \cdot 8 \\ 177 \cdot 2 \\ 279 \cdot 2 \end{bmatrix}$
	Hissume $\rightarrow \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$
no	w appling the Instial guess to solvie for a;
a	$1 = \frac{106.8 - 5a_2 - a_3}{25} = \frac{106.8 - 6 \times 2 - 8}{25} = 3.7520$
a	$= \frac{177.2 - 640, -03}{8} = \frac{177.2 - 64x(3.7520) - 3}{8} = -8.241$
1	$8 = \frac{2792 - 1440, -1202}{1} = \frac{279.2 - 144x(3.7520) - 12x(8.241)}{1} = -162$
1	

10 plant
at the end of the 1st iteration.
$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 3.7520 \\ -8.2410 \\ -162.1960 \end{bmatrix}$
finding the abs. relative appoximate eneron - tali= xiew - xiew x 100
$ t_{a} _{3} = \left \frac{-162.1960 - 3}{-162.1960} \right \times 100 = 101.849614\%$
herce, the maximum absolute relative approximate
enron 18 125.47%
iteration 2
using itercation 1 values of ai
$a_1 = \frac{106 \cdot 8 - 5(-8 \cdot 2410) + 162 \cdot 1960}{25} = 12 \cdot 40804$
az= 1772-64(1240804) + 162.1960 = -56.83982
$a_3 = \frac{279.2 - 144(12.40804) - 12(-56.82982)}{1} = -825.47992$

at the end of 2nd 9 terration.
$abs. Rela. app. etror find - \begin{bmatrix} a_1 \\ a_2 \\ -56.83982 \\ 12.40804 - 3.7520 \\ 12.40804 \end{bmatrix} \times 100\% = 69.7615\% = 69.85982 + 9.2410 \times 100\% = 85.5013\%$ $ tal_2 = \left \frac{-56.83982 + 9.2410}{-56.83982} \right \times 100\% = 85.5013\%$ $ tal_3 = \left \frac{-825.47992 + 169.1960}{-825.47992} \right \times 100\% = 80.35130\%$
here, the maximum abs. rela. app. enron is 85.5013% . Iteration 3 Using Iten. 2 values of ai \rightarrow $a_1 = \frac{106.8 - 5(-56.83982) + 825.47992}{25} = 48.6591$
$a_{2} = \frac{177.2 - 64(48.6591) + 825.47992}{8} = -263.93781$ $a_{3} = \frac{279.2 - 144(48.6591) - 12(-263.9378)}{1} = -3560.4568$
$find abs.$ = $\frac{48.6591 - 12.4080}{48.6591} \times 100\%$ = 74.5001%
$ ta _{2} = \left[\frac{-263.93781 + 56.83982}{-263.93781}\right] = 78.4646^{10}$
$ \text{teal}_3 = \left \frac{-3560.4568 + 825.47992}{-3560.4568} \right = 76.8153 \text{d}.$

pitfall using

herre, need one with a diagonally dominant coefficient matrix. diagonally dominant = [A] [X] = [e]

12x1 + 3x2 - 5x3 = 1 Example: x1 + 5x2 + 3x3 = 28 3x1 + 7x2 + 13x3 = 76

solue: the cofficient matrix is diagonally dominant-

$$[A] = \begin{bmatrix} 12 & 3 & -5 \\ 1 & 5 & 3 \\ 3 & 7 & 13 \end{bmatrix}$$

$$[a_{11}] \ge [a_{12}] + [a_{13}]$$

 $|a_{1}| = |12| = |2|$ $\geq |a_{12}| + |a_{13}| = |3| + |-5| = 8 - \text{true}$ $|a_{22}| = |5| = 5$ $\geq |a_{21}| + |a_{23}| = |1| + |3| = 4 - \text{true}$ $|a_{33}| = |13| = |3|$ $\geq |a_{31}| + |a_{32}| = |3| + |7| = 10 - \text{tree}$

I assume that, $\begin{bmatrix} 6_1 \\ 6_2 \\ 6_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$

$$b_{3} = \frac{76 - 3b_{1} - 7b_{2}}{13} = \frac{76 + 3\times(0.3500) - 7\times9.960}{3.6923}$$

iteration	03:			
61= 1-	3 × 3.773978	\$ - 3× 3.7801	Louy Fa	
	12		= -1.80	1 5
b2= 20	H.8081-3	X 3.7801	= 3.69	296
14.7	6 + 3 V 1. 8 N	all sales		
63 =	13	51 - 7 x 3,692	26 4.23	4198462
8/10	a diagon	Ands of	boon equ	grand and
1 tal, = 1	-1.8081 -0.1	14679 X10	0 % 619 5 7	108.13 %
1ta/22	3.6929	3.77397	100%	
	1 1. 9740 -	3.7801 1		11.56%
1ca13	4.27	abs rela de	OMMON 15	108:13%
here, th	le mare.	albs of tella . Je	74 76-)	Mar Jahrigas
;			of the de	H. M. Rains In
6 iterat	tion values	3 3 30 00 .		and the second
	63] = [
[01 -2				

0 spring 2022
D spring 2022 [1,0,1] [1,0,1] [1,0,1]
Dispring 2022 [1,0,1] [1,0,1] [1,0,1] [1,0,1] [1,0,1] [1,0,1] [1,0,1] [1,0,1] [1,0,1] [1,0,1] [1,0,1] [1,0,1] [1,0,1] [1,0,1] [1,0,1]
the Gavess-Seidel
will the solution converige using the Giauss-Seidel
method? emplain. Solve: herce, we need to check a diagonally
solve: herce we need to eneed
dominant coefficient Matrix.
using a > a + a foremula to check -
[a ₁₁]=[12]=12 ≥ 2 +15 =2+5=7 - true
1033 2/13 2/13 ≥ 1-31 +1-61 = 3+6 = 9 -true
1433 2 2 1 3 2 1 3
nerre, one lazel is not frue.
that's why is not converge the method?
To be bed and a

	Co. Tu y 241002 3004
-	66 [x,y,z] = [1,0,0] [A] [x] [2]
	3x + 20y - z = -18 $2x - 3y + 20z = 25$ $20 - 1 - 2$ $2 - 3y + 20z = 25$
	1. check it's diagonally dominant -
	$ \alpha_{11} = 20 = 20 \ge \alpha_{12} + \alpha_{13} = 1 + -2 = +2 = 3 - true$
	ag2 = 20 = 20 ≥ ag1 + az3 = 3 + -1 =3+1=4 - true
	[azz] = 20 = 20 > azz + azz = 2 + -3 = 2+3 = 5 - true
	$\frac{\text{iteration 01}}{2. \ \varkappa = \frac{17 - 1 + 2z}{20}} = \frac{17 - 0 + 0}{20} = 0.85$
	$y = \frac{-18 - 3x + 2}{20} = \frac{-18 - 3x \ge 0.85}{20} = 1.0275$
	$\frac{y^{2}-20}{z^{2}-2x+3y}=\frac{25-2x0.85+3x(-1.0276)}{20}$
	[x y z] = [-0.85 -1.0275 1.0108]
	$\frac{3}{3} \epsilon_{0} _{x} = \frac{0.85 - 1}{0.85} _{x} 00\% = 13.667\%$
	$ fal_0 = \left \frac{-10275 - 0}{1.0075} \right $
	16a/3 = 1.0108-0
	herre, the max abs. rela. EMNON 15 100%.