Deep Neural Networks

Janghun Jo Computer Graphics Lab. jhjo432@postech.ac.kr

Contents

- Classification
 - XOR problem
- Regression
 - Non-linear regression with DNN
 - Robust regression

Classification and Regression

Machine learning tasks have two types

- Classification: predict class with categorical data

- Regression: predict continuous value

Classification

- Classification: predict class with categorical data
 - Logistic regression
 - Single layer
 - Sigmoid activation function
 - Softmax regression (for multi class Classification)
 - Single layer
 - Softmax activation function
 - DNN classifier

◆Note: Logistic regression and Softmax regression are not regression algorithms.

Loss function for Classification

- Cross entropy loss (typically for classification)
 - Entropy of probability distribution P

$$H(P) = E_P[-\log P] = -\sum_X P(X) \log P(X)$$

- Cross entropy between two probability distributions P and Q

$$H(P,Q) = E_P[-\log Q] = -\sum_{X} P(X) \log Q(X)$$

- Cross entropy loss
 - P: Ground truth label distribution
 - \bullet Q: Predicted probability distribution

$$L(\mathbf{y}, i) = -\log\left(\frac{\exp(y_i)}{\sum_{j=1}^{C} \exp(y_j)}\right) = -y_i + \log\left(\sum_{j=1}^{C} \exp(y_j)\right)$$

Multilayer Perceptron

- Stacking layers of multiple perceptrons
- Advantages
 - Nonlinear classification:
 More complex decision boundary can be defined using multiple layers.
 - Typically achieves better performance.

Multilayer Perceptron

Single Perceptron

Multi-layer perceptron

XOR Problem

- What is the XOR operation?
 - Exclusive OR
 - XOR gives a True output when the number of True inputs is odd.

INPUT		OUTPUT
Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

- XOR problem: predict output of XOR operation using a neural network.
 - Single layer neural networks cannot solve the XOR problem
 - Data points are not linearly separable.
 - Deep Neural Networks can solve the XOR problem.

Quiz 1. Solving XOR problem

- XOR 데이터 셋 구현
- Network 구현
 - single layer network구현
 - Fully connected layer in_features: 2, out_features: 1
 - DNN 구현
 - Fully connected layer in_features: 2, out_features: 20
 - Fully connected layer in_features: 20, out_features: 20
 - Fully connected layer in_features: 84, out_features: 1
 - Note
 - Apply ReLU activation function for hidden layers.
 - Apply Sigmoid activation function for output layers.
- Define a Loss function and optimizer
 - Cross-Entropy loss
 - SGD with learning rate 0.01 and momentum 0.5
- Train the network on the training data
- Test the network on the test data

Creating XOR Dataset

- We can make XOR dataset using torch.randn function
 - Generate random (x, y) using torch.randn function
 - if x * y < 0 then label should be 0
 - else (x * y \geq = 0) then label should be 1

Recap: How to make datasets?

- All datasets are subclass of torch.utils.data.Dataset
 - Make new class and inherit torch.utils.Dataset
 - It should have __len__(self) method and __getitem__(self, idx) method
 - <u>len_(self)</u>: returns size of dataset
 - <u>__getitem__(self, idx)</u>: returns (idx)th data sample in Dataset
- torch.utils.data.DataLoader reads datasets and make the batch

```
CLASS torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False,
```

- dataset dataset from which to load the data. (torch.utils.data.Dataset)
- batch_size how many samples per batch to load (default: 1)
- shuffle set to True to have the data reshuffled at every epoch (default: False).
- Usage: for batch_idx, data, label in enumerate(trainloader)