RST	Γ 1 <i>4</i> Λ	751	final	exam
יט	140	. I JI	IIIIai	еханн

Notes:

- You may not use a calculator for this exam.
- Please be neat and write legibly. Use the back of the pages if necessary.
- Good luck!

printed name

- 1. Let $Y=X\beta+\epsilon$ where Y is $n\times p$, X is $n\times p$ of rank p< n and $\epsilon\sim N(0,\sigma^2I)$. Let X=UDV' where U is $n\times p$ so that U'U=I, D is a diagonal matrix $(p\times p)$ and V is a $p\times p$ matrix so that V'V=I. Let $\gamma=DV'\beta$.
 - A. Argue that $Y = U\gamma + \epsilon$.
 - B. Argue that $U'Y = \gamma + \tilde{\epsilon}$ where $\tilde{\epsilon} \sim N(0, \sigma^2 I)$.
 - C. Write out and simplify the least squares estimate of γ . What is its distribution?
 - D. Suppose that X is orthormal (i.e. X'X = I), argue that no matrix inversion is necessary to obtain $\hat{\beta}$ and write out the ML estimate for β .
 - E. Let

$$X = \begin{pmatrix} 1/2 & 1/2 & 1/\sqrt{2} & 0\\ 1/2 & 1/2 & -1/\sqrt{2} & 0\\ 1/2 & -1/2 & 0 & 1/\sqrt{2}\\ 1/2 & -1/2 & 0 & -1/\sqrt{2} \end{pmatrix}$$

and $Y=(y_1,y_2,y_3,y_4)$. Derive the ML estimate for β in the terms of the y_i .

- 2. Let $Y \mid \beta \sim N(X\beta, \sigma^2 I)$
 - A. Suppose that σ^2 is known, what is the sufficient statistic for β ?
 - B. Suppose that $\beta \sim N(\beta_0, \Sigma)$. Derive the posterior distribution for β .

- 3. Let \bar{X} be the sample average of positive iid variables from a population with mean μ and variance σ^2 . Assume σ^2 is known.
 - A. Calculate an asymptotic 95% confidence interval for $\log(\mu)$ using the delta method.
 - B. Suppose that you were to calculate an ordinary confidence interval for the mean using the logged data, eg with sample mean $\frac{1}{n}\sum_{i=1}^n \log(X_i)$. Would this be estimating $\log(\mu)$? If not, what would it be estimating?
 - C. Let \bar{Y} be the sample average of an independent collection of positive iid variables from a population with mean δ and known variance τ^2 . Calculate a delta method confidence interval for $\log(\mu/\delta)$.

- 4. Let $X_1 \dots X_n$ be independent Poisson λt_i
 - A. Derive the sufficient statistic for λ .
 - B. Derive the ML estimate of λ .
 - C. Derive the conditional distribution of $X_1 \dots X_n \mid \sum_{i=1}^n X_i$? (You may assume that the sum of independent Poissons is Poisson).
 - D. Let $t_1 \dots t_n$ be $Gamma(x_i, 1/\lambda)$. Argue that this model is likelihood equivalent to that in A.