Package 'caracas'

November 30, 2023

140vember 50, 2025			
Version 2.1.1			
Title Computer Algebra			
Maintainer Mikkel Meyer Andersen <mikl@math.aau.dk></mikl@math.aau.dk>			
Encoding UTF-8			
Description Computer algebra via the 'SymPy' library (https://www.sympy.org/). This makes it possible to solve equations symbolically, find symbolic integrals, symbolic sums and other important quantities.			
Depends R ($>= 3.0$), methods			
Imports reticulate (>= 1.14), Matrix, doBy (>= 4.6.15), magrittr			
Suggests Ryacas, testthat (>= 2.1.0), knitr, rmarkdown, tinytex, magick, pdftools, qpdf			
License GPL			
SystemRequirements Python (>= 3.6.0)			
<pre>URL https://github.com/r-cas/caracas</pre>			
BugReports https://github.com/r-cas/caracas/issues			
RoxygenNote 7.2.3			
VignetteBuilder knitr			
NeedsCompilation no			
Author Mikkel Meyer Andersen [aut, cre, cph], Søren Højsgaard [aut, cph]			
Repository CRAN			
Date/Publication 2023-11-30 15:30:02 UTC			
R topics documented:			
add_prefix all_vars apart as.character.caracas_symbol			

ask		
as_character	 	6
as_character_matrix	 	7
as_diag	 	7
as_expr		
as_func		
_ as_sym		
as_vec		10
cancel		11
collect		
colspan		
cumsum.caracas_symbol		
def_sym		13
der		14
der2		15
diag		16
diag-set		16
diag.caracas_symbol		17
diag <caracas_symbol< td=""><td></td><td>17</td></caracas_symbol<>		17
diag		18
diff_mat		18
dim.caracas_symbol		19
dim <caracas_symbol< td=""><td></td><td>19</td></caracas_symbol<>		19
doit	 	20
do_la	 	21
drop_remainder	 	22
eval_to_symbol	 	23
expand		23
expand_func		
expand_trig		
factor		
fraction_parts		
free_symbols		
generic-matrices		
get_basis		
get_py		
get_sympy		29
has_sympy		
· · · · · · · · · · · · · · · · · · ·		
install_sympy		
int		
is_sym		31
jacobian		31
kronecker,caracas_symbol,caracas_symbol-method		
lim		
linalg		
listify		
ls svm	 	36

Index

63

Math.caracas_symbol	
matrify	
matrix-products	
matrix	38
matrix_cross_product	38
mat_pow	39
$N \dots $	39
Ops.caracas_symbol	40
print.caracas_scaled_matrix	40
print.caracas_solve_sys_sol	41
print.caracas_symbol	41
prod	42
rankMatrix	43
reciprocal_matrix	43
rowSums_colSums	44
scale_matrix	44
score_hessian	45
simplify	46
solve.caracas_symbol	46
solve_lin	47
solve_sys	48
special_matrices	49
subs	49
sum.caracas_symbol	50
sum	51
symbol	51
symbol_class	52
symbol_is_matrix	53
sympy_func	53
sympy_version	54
sym_class	55
sym_inherits	55
t.caracas_symbol	55
taylor	56
tex	56
tex.caracas_scaled_matrix	57
texshow	58
to_something	58
tuplify	59
unbracket	59
unscale_matrix	60
vectorfy	60
[.caracas_symbol	61
[<caracas_symbol< td=""><td>61</td></caracas_symbol<>	61
%>%	62

4 all_vars

add_prefix

Add prefix to each element of matrix

Description

Add prefix to each element of matrix

Usage

```
add_prefix(x, prefix = "")
```

Arguments

x Numeric or symbolic matrix

prefix A character vector

Examples

```
if (has_sympy()) {
    X <- matrix_sym(2, 3)
    X
    add_prefix(X, "e")

    X <- matrix(1:6, 3, 2)
    X
    add_prefix(X, "e")
}</pre>
```

all_vars

All variables

Description

Return all variables in caracas symbol

Usage

```
all_vars(x)
```

Arguments

Х

caracas symbol

apart 5

Examples

```
if (has_sympy()){
  x <- vector_sym(5)
  all_vars(x)
}</pre>
```

apart

Partial fraction decomposition on a rational function

Description

apart() performs a partial fraction decomposition on a rational function

Usage

```
apart(x)
```

Arguments

Х

A caracas_symbol

Examples

```
if (has_sympy()){
  def_sym(x)
  expr = (4*x**3 + 21*x**2 + 10*x + 12)/(x**4 + 5*x**3 + 5*x**2 + 4*x)
  apart(expr)
}
```

as.character.caracas_symbol

Convert symbol to character

Description

Convert symbol to character

Usage

```
## S3 method for class 'caracas_symbol'
as.character(x, replace_I = TRUE, ...)
```

Arguments

```
x A caracas_symbol
replace_I Replace constant I (can both be identity and imaginary unit)
... not used
```

6 as_character

ask

Ask for a symbol's property

Description

Ask for a symbol's property

Usage

```
ask(x, property)
```

Arguments

```
x symbol property property, e.g. 'positive'
```

Examples

```
if (has_sympy()) {
  x <- symbol("x", positive = TRUE)
  ask(x, "positive")
}</pre>
```

as_character

Coerce symbol to character

Description

Coerce symbol to character

Usage

```
as_character(x)
```

Arguments

Χ

caracas symbol

as_character_matrix 7

as_character_matrix

Get matrix as character matrix

Description

Get matrix as character matrix

Usage

```
as_character_matrix(x)
```

Arguments

Х

caracas symbol

Examples

```
if (has_sympy()) {
   s <- as_sym("[[r1, r2, r3], [u1, u2, u3]]")
   s2 <- apply(as_character_matrix(s), 2, function(x) (paste("1/(", x, ")")))
   as_sym(s2)
}</pre>
```

as_diag

Construct diagonal matrix from vector

Description

Construct diagonal matrix from vector

Usage

```
as_diag(x)
```

Arguments

Χ

Matrix with 1 row or 1 column that is the diagonal in a new diagonal matrix

```
if (has_sympy()) {
  d <- as_sym(c("a", "b", "c"))
  D <- as_diag(d)
  D
}</pre>
```

8 as_func

as_expr

Convert caracas object to R

Description

Potentially calls doit().

Usage

```
as_expr(x, first_doit = TRUE)
## S3 method for class 'caracas_symbol'
as.expression(x, ...)
## S3 method for class 'caracas_solve_sys_sol'
as.expression(x, ...)
```

Arguments

```
x caracas_symbol first_doit Try doit() first ... not used
```

Examples

```
if (has_sympy()) {
    v <- vector_sym(2)
    x <- as_expr(v)
    x
    y <- as.expression(v)
    y
}</pre>
```

as_func

Convert expression into function object.

Description

Convert expression into function object.

Usage

```
as_func(x, order = NULL, vec_arg = FALSE)
## S3 method for class 'caracas_symbol'
as.function(x, ...)
```

as_sym

Arguments

x caracas expression.
 order desired order of function argument. Defaults to alphabetical ordering.
 vec_arg should the function take vector valued argument.
 not used

Examples

```
if (has_sympy()) {
  def_sym(b0, b1, b2, k, x)
  e <- b1 + (b0 - b1)*exp(-k*x) + b2*x

  f1 <- as_func(e)
  f1
  f1(1, 2, 3, 4, 5)
  f1 <- as_func(e, order = sort(all_vars(e)))
  f1(1, 2, 3, 4, 5)
  f2 <- as_func(e, vec_arg = TRUE)
  f2
  f2(c(1, 2, 3, 4, 5))
  f2 <- as_func(e, order = sort(all_vars(e)), vec_arg = TRUE)
  f2
  f2(c(1,2,3,4,5))

  f1a <- as.function(e)
  f1a
  f1a(1, 2, 3, 4, 5)
  f1(1, 2, 3, 4, 5)
}</pre>
```

as_sym

Convert R object to caracas symbol

Description

Variables are detected as a character followed by a number of either: character, number or underscore.

Usage

```
as_sym(x, declare_symbols = TRUE)
```

Arguments

```
x R object to convert to a symbol declare_symbols declare detected symbols automatically
```

10 as_vec

Details

Default is to declare used variables. Alternatively, the user must declare them first, e.g. by symbol(). Note that matrices can be defined by specifying a Python matrix, see below in examples.

Examples

```
if (has_sympy()) {
  x <- symbol("x")
  A <- matrix(c("x", 0, 0, "2*x"), 2, 2)
  A
  B <- as_sym(A)
  B
  2 * B
  dim(B)
  sqrt(B)
  D <- as_sym("[[1, 4, 5], [-5, 8, 9]]")
  D
}</pre>
```

as_vec

Stacks matrix to vector

Description

Stacks matrix to vector

Usage

```
as_vec(x)
```

Arguments

Χ

Matrix

```
if (has_sympy()) {
   A <- as_sym(matrix(1:9, 3))
   as_vec(A)
}</pre>
```

cancel 11

cancel

Put rational function into standard form

Description

cancel() will take any rational function and put it into the standard canonical form

Usage

```
cancel(x)
```

Arguments

Х

A caracas_symbol

Examples

```
if (has_sympy()){
  def_sym(x, y, z)
  expr = cancel((x**2 + 2*x + 1)/(x**2 + x))
  cancel(expr)
  expr = (x*y**2 - 2*x*y*z + x*z**2 + y**2 - 2*y*z + z**2)/(x**2 - 1)
  cancel(expr)
  factor_(expr)
}
```

collect

Collects common powers of a term in an expression

Description

Collects common powers of a term in an expression

Usage

```
collect(x, a)
```

Arguments

x,a

 $A \; {\sf caracas_symbol} \\$

```
if (has_sympy()){
  def_sym(x, y, z)
  expr = x*y + x - 3 + 2*x**2 - z*x**2 + x**3
  collect(expr, x)
}
```

colspan

Column space (range) of a symbolic matrix

Description

Column space (range) of a symbolic matrix

Usage

```
colspan(x)
```

Arguments

Х

Symbolic matrix

Examples

```
if (has_sympy()) {
   X1 <- matrix_(paste0("x_",c(1,1,1,1, 2,2,2,2, 3,4,3,4)), nrow = 4)
   X1
   colspan(X1)
   do_la(X1, "columnspace")
   rankMatrix_(X1)

  X2 <- matrix_(paste0("x_",c(1,1,1,1, 0,0,2,2, 3,4,3,4)), nrow = 4)
   X2
   colspan(X2)
   do_la(X2, "columnspace")
   rankMatrix_(X2)
}</pre>
```

 ${\tt cumsum.caracas_symbol} \quad {\it Cumulative Sums}$

Description

Cumulative Sums

Usage

```
## S3 method for class 'caracas_symbol'
cumsum(x)
```

Arguments

Х

Elements to sum

def_sym

Examples

```
if (has_sympy()) {
  A <- matrix(1:9, 3)
  cumsum(A)
  B <- matrix_sym(3, 3)
  cumsum(B)
  C <- vector_sym(3)
  cumsum(C)
}</pre>
```

 ${\sf def_sym}$

Define (invisibly) caracas symbols in global environment

Description

Define (invisibly) caracas symbols in global environment

Define symbol for components in vector

Usage

```
def_sym(..., charvec = NULL, warn = FALSE, env = parent.frame())
def_sym_vec(x, env = parent.frame())
```

Arguments

• • •	Names for new symbols, also supports non-standard evaluation
charvec	Take each element in this character vector and define as caracas symbols
warn	Warn if existing variable names are overwritten
env	The environment in which the assignment is made.
x	Character vector.

Value

Names of declared variables (invisibly)

See Also

```
symbol(), as_sym()
```

14 der

Examples

```
if (has_sympy()) {
 ls()
 def_sym(n1, n2, n3)
 ls()
 def_sym("x1", "x2", "x3")
 # def_sym("x1", "x2", "x3", warn = TRUE) # Do not run as will cause a warning
 def_{sym}(i, j, charvec = c("x", "y"))
 ls()
}
if (has_sympy()) {
 def_{sym}(z1, z2, z3)
 u <- paste0("u", seq_len(3))</pre>
 ## Creates symbols u1, u2, u3 and binds to names u1, u2, u3 in R.
 def_sym_vec(u)
 ## Same as (but easier than)
 def_sym(u1, u2, u3)
 ## Notice: this creates matrix [u1, u2, u3]
 as_sym(u)
```

der

Symbolic differentiation of an expression

Description

Symbolic differentiation of an expression

Usage

```
der(expr, vars, simplify = TRUE)
```

Arguments

expr A caracas_symbol
vars variables to take derivate with respect to
simplify Simplify result

```
if (has_sympy()) {
  x <- symbol("x")
  y <- symbol("y")
  f <- 3*x^2 + x*y^2
  der(f, x)</pre>
```

der2 15

```
g \leftarrow der(f, list(x, y))
  dim(g)
  G <- matrify(g)</pre>
  G
  dim(G)
  h \leftarrow der(g, list(x, y))
  h
  dim(h)
  as.character(h)
  H <- matrify(h)</pre>
  dim(H)
 g %>%
    der(list(x, y), simplify = FALSE) %>%
    der(list(x, y), simplify = FALSE) %>%
    der(list(x, y), simplify = FALSE)
}
```

der2

Symbolic differentiation of second order of an expression

Description

Symbolic differentiation of second order of an expression

Usage

```
der2(expr, vars, simplify = TRUE)
```

Arguments

expr A caracas_symbol
vars variables to take derivate with respect to
simplify Simplify result

```
if (has_sympy()) {
  x <- symbol("x")
  y <- symbol("y")
  f <- 3*x^2 + x*y^2
  der2(f, x)
  h <- der2(f, list(x, y))
  h
  dim(h)</pre>
```

diag-set

```
H <- matrify(h)
H
dim(H)
}</pre>
```

diag

Matrix diagonal

Description

Matrix diagonal

Usage

```
diag(x, ...)
```

Arguments

x Object x

... Passed on

diag-set

Replace matrix diagonal

Description

Replace matrix diagonal

Usage

Arguments

x Object x

value Replacement value

diag.caracas_symbol 17

diag.caracas_symbol

Matrix diagonal

Description

Matrix diagonal

Usage

```
## S3 method for class 'caracas_symbol' diag(x, ...)
```

Arguments

```
x Object x ... Not used
```

diag<-.caracas_symbol Replace diagonal</pre>

Description

Replace diagonal

Usage

```
## S3 replacement method for class 'caracas_symbol'
diag(x) <- value</pre>
```

Arguments

```
x A caracas_symbol.
value Replacement value
```

```
if (has_sympy()) {
    A <- matrix(c("a", 0, 0, 0, "a", "a", "a", 0, 0), 3, 3)
    B <- as_sym(A)
    B
    diag(B)
    diag(B) <- "b"
    B
    diag(B)
}</pre>
```

18 diff_mat

diag_

Symbolic diagonal matrix

Description

Symbolic diagonal matrix

Usage

```
diag_(x, n = 1L, declare_symbols = TRUE, ...)
```

Arguments

Examples

```
x Character vector with diagonal
n Number of times x should be repeated
declare_symbols
```

Passed on to rep(x, n, ...)

Passed on to as_sym() when constructing symbolic matrix

```
if (has_sympy()) {
    diag_(c(1,3,5))
    diag_(c("a", "b", "c"))
    diag_("a", 2)
    diag_(vector_sym(4))
}
```

diff_mat

Difference matrix

Description

Difference matrix

Usage

```
diff_{mat}(N, 1 = "-1", d = 1)
```

Arguments

N	Number of rows (and columns)
1	Value / symbol below main diagonal

d Value / symbol on main diagonal

dim.caracas_symbol 19

Examples

```
if (has_sympy()){
   Dm <- diff_mat(4)
   Dm
   y <- vector_sym(4, "y")
   Dm %*% y
}</pre>
```

dim.caracas_symbol

Dimensions of a caracas symbol

Description

Dimensions of a caracas symbol

Usage

```
## S3 method for class 'caracas_symbol'
dim(x)
```

Arguments

Χ

caracas symbol

Description

Dimensions of a caracas symbol

Usage

```
## S3 replacement method for class 'caracas_symbol' \dim(x) \leftarrow value
```

Arguments

```
x caracas symbolvalue new dimension
```

20 doit

Examples

```
if (has_sympy()) {
  v <- vector_sym(4)
  v
  dim(v)
  dim(v) <- c(2, 2)
  v
  m <- matrix_sym(2, 2)
  dim(m)
  dim(m) <- c(4, 1)
  m
}</pre>
```

doit

Perform calculations setup previously

Description

Perform calculations setup previously

Usage

```
doit(x)
```

Arguments

Х

A caracas_symbol

```
if (has_sympy()) {
    x <- symbol('x')
    res <- lim(sin(x)/x, "x", 0, doit = FALSE)
    res
    doit(res)
}</pre>
```

do_la 21

do_la

Do linear algebra operation

Description

Do linear algebra operation

Usage

```
do_la(x, slot, ...)
```

Arguments

x A matrix for which a property is requestedslot The property requested... Auxillary arguments

Value

Returns the requested property of a matrix.

```
if (has_sympy()) {
 A <- matrix(c("a", "0", "0", "1"), 2, 2) %>% as_sym()
 do_la(A, "QR")
 QRdecomposition(A)
 do_la(A, "LU")
 LUdecomposition(A)
 do_la(A, "cholesky", hermitian = FALSE)
 chol(A, hermitian = FALSE)
 do_la(A, "singular_value_decomposition")
 do_la(A, "svd")
 svd_res <- svd_(A)</pre>
 svd_res
 U_expr <- svd_res$U |> as_expr()
 U_expr
 eval(U_expr, list(a = 3+2i))
 b <- symbol("b", real = TRUE)</pre>
 B <- matrix(c("b", "0", "0", "1"), 2, 2) %>% as_sym(declare_symbols = FALSE)
 svd_(B)
 do_la(A, "eigenval")
 eigenval(A)
```

22 drop_remainder

```
do_la(A, "eigenvec")
eigenvec(A)

do_la(A, "inv")
inv(A)

do_la(A, "trace")
trace_(A)

do_la(A, "echelon_form")
do_la(A, "rank")

do_la(A, "det") # Determinant
det(A)
}
```

drop_remainder

Remove remainder term

Description

Remove remainder term

Usage

```
drop_remainder(x)
```

Arguments

Х

Expression to remove remainder term from

See Also

```
taylor()
```

```
if (has_sympy()) {
  def_sym(x)
  f <- cos(x)
  ft_with_0 <- taylor(f, x0 = 0, n = 4+1)
  ft_with_0
  ft_with_0 %>% drop_remainder() %>% as_expr()
}
```

eval_to_symbol 23

eval_to_symbol

Create a symbol from a string

Description

Create a symbol from a string

Usage

```
eval_to_symbol(x)
```

Arguments

Χ

String to evaluate

Value

A caracas_symbol

Examples

```
if (has_sympy()) {
    x <- symbol('x')
    (1+1)*x^2
    lim(sin(x)/x, "x", 0)
}</pre>
```

expand

Expand expression

Description

Expand expression

Usage

```
expand(x, ...)
```

Arguments

```
x A caracas_symbol
```

... Pass on to SymPy's expand, e.g. force = TRUE

24 expand_log

Examples

```
if (has_sympy()) {
  def_sym(x)
  y <- log(exp(x))
  simplify(y)
  expand(simplify(y))
  expand(simplify(y), force = TRUE)
  expand_log(simplify(y))
}</pre>
```

expand_func

Expand a function expression

Description

Expand a function expression

Usage

```
expand_func(x)
```

Arguments

Х

A caracas_symbol

expand_log

Expand a logarithmic expression

Description

Note that force as described at https://docs.sympy.org/latest/tutorial/simplification. html#expand-log is used meaning that some assumptions are taken.

Usage

```
expand_log(x)
```

Arguments

Х

A caracas_symbol

expand_trig 25

Examples

```
if (has_sympy()) {
    x <- symbol('x')
    y <- symbol('y')
    z <- log(x*y)
    z
    expand_log(z)
}</pre>
```

expand_trig

Expand a trigonometric expression

Description

Expand a trigonometric expression

Usage

```
expand_trig(x)
```

Arguments

Х

A caracas_symbol

factor_

Expand expression

Description

Expand expression

Usage

```
factor_(x)
```

Arguments

Х

A caracas_symbol

```
if (has_sympy()){
  def_sym(x, y, z)
  factor_(x**3 - x**2 + x - 1)
  factor_(x**2*z + 4*x*y*z + 4*y**2*z)
}
```

26 free_symbols

fraction_parts

Get numerator and denominator of a fraction

Description

Get numerator and denominator of a fraction

Usage

```
fraction_parts(x)
numerator(x)
denominator(x)
```

Arguments

Х

Fraction

Examples

```
if (has_sympy()) {
    x <- as_sym("a/b")
    frac <- fraction_parts(x)
    frac
    frac$numerator
    frac$denominator
}</pre>
```

free_symbols

Get free symbol in expression

Description

Get free symbol in expression

Usage

```
free_symbols(x)
```

Arguments

Х

Expression in which to get the free symbols in

generic-matrices 27

Examples

```
if (has_sympy()) {
  def_sym(a, b)
  x <- (a - b)^4
  free_symbols(x)
}</pre>
```

generic-matrices

Generate generic vectors and matrices

Description

Generate generic vectors and matrices.

Usage

```
vector_sym(n, entry = "v")
matrix_sym(nrow, ncol, entry = "v")
matrix_sym_diag(nrow, entry = "v")
matrix_sym_symmetric(nrow, entry = "v")
```

Arguments

n Length of vector
entry The symbolic name of each entry.
nrow, ncol Number of rows and columns

```
if (has_sympy()) {
  vector_sym(4, "b")
  matrix_sym(3, 2, "a")
  matrix_sym_diag(4, "s")
  matrix_sym_symmetric(4, "s")
}
```

28 get_py

get_basis

Get basis

Description

Get basis

Usage

```
get_basis(x)
```

Arguments

Х

caracas vector / matrix

Examples

```
if (has_sympy()) {
    x <- vector_sym(3)
    get_basis(x)

W <- matrix(c("r_1", "r_1", "r_2", "r_2", "0", "0", "u_1", "u_2"), nrow=4)
    W <- as_sym(W)
    get_basis(W)
}</pre>
```

get_py

Access 'py' object

Description

Get the 'py' object. Note that it gives you extra responsibilities when you choose to access the 'py' object directly.

Usage

```
get_py()
```

Value

The 'py' object with direct access to the library.

```
if (has_sympy()) {
  py <- get_py()
}</pre>
```

get_sympy 29

get_sympy

Access 'SymPy' directly

Description

Get the 'SymPy' object. Note that it gives you extra responsibilities when you choose to access the 'SymPy' object directly.

Usage

```
get_sympy()
```

Value

The 'SymPy' object with direct access to the library.

Examples

```
if (has_sympy()) {
  sympy <- get_sympy()
  sympy$solve("x**2-1", "x")
}</pre>
```

has_sympy

Check if 'SymPy' is available

Description

Check if 'SymPy' is available

Usage

```
has_sympy()
```

Value

TRUE if 'SymPy' is available, else FALSE

```
has_sympy()
```

30 int

Install 'SymPy'

Description

Install the 'SymPy' Python package into a virtual environment or Conda environment.

Usage

```
install_sympy(method = "auto", conda = "auto")
```

Arguments

method Installation method. By default, "auto" automatically finds a method that will

work in the local environment. Change the default to force a specific installation

method. Note that the "virtualenv" method is not available on Windows.

conda Path to conda executable (or "auto" to find conda using the PATH and other

conventional install locations).

Value

None

int Integrate a function	
--------------------------	--

Description

If no limits are provided, the indefinite integral is calculated. Otherwise, if both limits are provided, the definite integral is calculated.

Usage

```
int(f, var, lower, upper, doit = TRUE)
```

Arguments

f	Function to integrate
var	Variable to integrate with respect to (either string or caracas_symbol)
lower	Lower limit
upper	Upper limit
doit	Evaluate the integral immediately (or later with doit())

is_sym 31

Examples

```
if (has_sympy()) {
    x <- symbol("x")

int(1/x, x, 1, 10)
    int(1/x, x, 1, 10, doit = FALSE)
    int(1/x, x)
    int(1/x, x, doit = FALSE)
    int(exp(-x^2/2), x, -Inf, Inf)
    int(exp(-x^2/2), x, -Inf, Inf, doit = FALSE)
}</pre>
```

is_sym

Is object a caracas symbol

Description

Is object a caracas symbol

Usage

```
is_sym(x)
```

Arguments

Х

object

jacobian

Compute Jacobian

Description

Compute Jacobian

Usage

```
jacobian(expr, vars)
```

Arguments

expr 'caracas expression'.

variables to take derivative with respect to

See Also

```
score(), hessian() der()
```

Examples

```
if (has_sympy()) {
  x <- paste0("x", seq_len(3))
  def_sym_vec(x)
  y1 <- x1 + x2
  y2 <- x1^2 + x3
  y <- c(y1, y2)
  jacobian(y, x)
  u <- 2 + 4*x1^2
  jacobian(u, x1)
}</pre>
```

kronecker, caracas_symbol, caracas_symbol-method

Kronecker product of two matrices

Description

Computes the Kronecker product of two matrices.

Usage

```
## S4 method for signature 'caracas_symbol,caracas_symbol'
kronecker(X, Y, FUN = "*", make.dimnames = FALSE, ...)
```

Arguments

```
X, Y matrices as caracas symbols.

FUN a function; it may be a quoted string.

make.dimnames Provide dimnames that are the product of the dimnames of 'X' and 'Y'.

optional arguments to be passed to 'FUN'.
```

Value

Kronecker product of A and B.

```
if (has_sympy()) {
  A <- matrix_sym(2, 2, "a")
  B <- matrix_sym(2, 2, "b")
  II <- matrix_sym_diag(2)
  EE <- eye_sym(2,2)
  JJ <- ones_sym(2,2)
  kronecker(A, B)
  kronecker(A, B, FUN = "+")
  kronecker(II, B)</pre>
```

lim 33

```
kronecker(EE, B)
kronecker(JJ, B)
}
```

lim

Limit of a function

Description

Limit of a function

Usage

```
lim(f, var, val, dir = NULL, doit = TRUE)
```

Arguments

f	Function to take limit of
var	Variable to take limit for (either string or caracas_symbol)
val	Value for var to approach
dir	Direction from where var should approach val: '+' or '-'
doit	Evaluate the limit immediately (or later with doit())

Examples

```
if (has_sympy()) {
  x <- symbol("x")
  lim(sin(x)/x, "x", 0)
  lim(1/x, "x", 0, dir = '+')
  lim(1/x, "x", 0, dir = '-')
}</pre>
```

linalg

Do linear algebra operation

Description

Performs various linear algebra operations like finding the inverse, the QR decomposition, the eigenvectors and the eigenvalues.

34 linalg

Usage

```
columnspace(x, matrix = TRUE)
nullspace(x, matrix = TRUE)
rowspace(x, matrix = TRUE)
singular_values(x)
inv(x, method = c("gauss", "lu", "cf", "yac"))
eigenval(x)
eigenvec(x)
GramSchmidt(x)
pinv(x)
rref(x)
QRdecomposition(x)
LUdecomposition(x)
## S3 method for class 'caracas_symbol'
chol(x, ...)
svd_(x, ...)
det(x, ...)
trace_(x)
```

Arguments

X	A matrix for which a property is requested.
matrix	When relevant should a matrix be returned.
method	The default works by Gaussian elimination. The alternatives are \$LU\$ decomposition (1u), the cofactor method (cf), and Ryacas (yac).
	Auxillary arguments.

Value

Returns the requested property of a matrix.

listify 35

See Also

```
do_la()
```

Examples

```
if (has_sympy()) {
 A <- matrix(c("a", "0", "0", "1"), 2, 2) |> as_sym()
 QRdecomposition(A)
 LUdecomposition(A)
 #chol(A) # error
 chol(A, hermitian = FALSE)
 eigenval(A)
 eigenvec(A)
 inv(A)
 det(A)
 ## Matrix inversion:
 d <- 3
 m <- matrix_sym(d, d)</pre>
 print(system.time(inv(m)))
                                               ## Gauss elimination
 print(system.time(inv(m, method="cf")))
                                               ## Cofactor
 print(system.time(inv(m, method="lu")))
                                               ## LU decomposition
 if (requireNamespace("Ryacas")){
   print(system.time(inv(m, method="yac"))) ## Use Ryacas
 A <- matrix(c("a", "b", "c", "d"), 2, 2) %>% as_sym()
 evec <- eigenvec(A)</pre>
 evec
 evec1 <- evec[[1]]$eigvec</pre>
 evec1
 simplify(evec1)
 lapply(evec, function(l) simplify(l$eigvec))
 A <- as_sym("[[1, 2, 3], [4, 5, 6]]")
 pinv(A)
```

listify

Convert object to list of elements

Description

Convert object to list of elements

36 Math.caracas_symbol

```
Usage
```

```
listify(x)
```

Arguments

Х

Object

Examples

```
if (has_sympy()) {
    x <- as_sym("Matrix([[b1*x1/(b2 + x1)], [b1*x2/(b2 + x2)], [b1*x3/(b2 + x3)]])")
    listify(x)

    xT <- t(x)
    listify(xT)
}</pre>
```

 ls_sym

List defined symbols

Description

List defined symbols

Usage

```
ls_sym()
```

Math.caracas_symbol

Math functions

Description

If x is a matrix, the function is applied component-wise.

Usage

```
## S3 method for class 'caracas_symbol' Math(x, ...)
```

Arguments

```
x caracas_symbol.
```

... further arguments passed to methods

matrify 37

matrify

Creates matrix from array symbol

Description

Creates matrix from array symbol

Usage

```
matrify(x)
```

Arguments

Х

Array symbol to convert to matrix

Examples

```
if (has_sympy()) {
    x <- symbol("x")
    y <- symbol("y")
    f <- 3*x^2 + x*y^2
    matrify(f)
    h <- der2(f, list(x, y))
    h
    dim(h)
    H <- matrify(h)
    H
    dim(H)</pre>
```

 ${\tt matrix-products}$

 $Matrix\ multiplication$

Description

Matrix multiplication

Matrix multiplication

```
x %*% y
## S3 method for class 'caracas_symbol'
x %*% y
```

Arguments

```
x Object x y Object y
```

See Also

```
base::%*%()
base::%*%()
```

matrix_

Symbolic matrix

Description

Symbolic matrix

Usage

```
matrix_(..., declare_symbols = TRUE)
```

Arguments

```
 \qquad \qquad \text{Passed on to matrix()} \\ \text{declare\_symbols}
```

Passed on to as_sym() when constructing symbolic matrix

Examples

```
if (has_sympy()) {
  matrix_(1:9, nrow = 3)
  matrix_("a", 2, 2)
}
```

 $matrix_cross_product$ $Matrix\ cross\ product$

Description

Matrix cross product

```
crossprod_(x, y = NULL)
tcrossprod_(x, y = NULL)
```

mat_pow 39

Arguments

x, y caracas matrices

mat_pow

Matrix power

Description

Matrix power

Usage

```
mat_pow(x, pow = "1")
```

Arguments

x A caracas_symbol, a matrix.

pow Power to raise matrix x to

Examples

```
if (has_sympy() && sympy_version() >= "1.6") {
  M <- matrix_(c("1", "a", "a", 1), 2, 2)
  M
  mat_pow(M, 1/2)
}</pre>
```

Ν

Numerical evaluation

Description

Numerical evaluation

Usage

```
N(x, digits = 15)
```

Arguments

x caracas objectdigits Number of digits

Examples

```
if (has_sympy()) {
  n_2 <- as_sym("2")
  n_pi <- as_sym("pi", declare_symbols = FALSE)
  x <- sqrt(n_2) * n_pi
  x
  N(x)
  N(x, 5)
  N(x, 50)
  as.character(N(x, 50))
}</pre>
```

Ops.caracas_symbol

Math operators

Description

Math operators

Usage

```
## S3 method for class 'caracas_symbol'
Ops(e1, e2)
```

Arguments

```
e1 A caracas_symbol.
e2 A caracas_symbol.
```

```
print.caracas_scaled_matrix
```

Print scaled matrix

Description

Print scaled matrix

Usage

```
## S3 method for class 'caracas_scaled_matrix'
print(x, ...)
```

Arguments

Description

Print solution

Usage

```
## S3 method for class 'caracas_solve_sys_sol'
print(
    x,
    simplify = getOption("caracas.print.sol.simplify", default = TRUE),
    ...
)
```

Arguments

```
x A caracas_symbol
simplify Print solution in a simple format
... Passed to print.caracas_symbol()
```

Examples

```
if (has_sympy()) {
    x <- symbol('x')
    solve_sys(x^2, -1, x)

    y <- symbol("y")
    lhs <- cbind(3*x*y - y, x)
    rhs <- cbind(-5*x, y+4)
    sol <- solve_sys(lhs, rhs, list(x, y))
    sol
}</pre>
```

```
print.caracas_symbol Print symbol
```

Description

Print symbol

prod_

Usage

```
## S3 method for class 'caracas_symbol'
print(
    x,
    prompt = getOption("caracas.prompt", default = "c: "),
    method = getOption("caracas.print.method", default = "utf8"),
    rowvec = getOption("caracas.print.rowvec", default = TRUE),
    ...
)
```

Arguments

x A caracas_symbol

prompt Which prompt/prefix to print (default: 'c: ')

method What way to print (utf8, prettyascii, ascii, compactascii)

rowvec FALSE to print column vectors as is

... not used

prod_

Product of a function

Description

Product of a function

Usage

```
prod_(f, var, lower, upper, doit = TRUE)
```

Arguments

f Function to take product of
var Variable to take product for (either string or caracas_symbol)
lower Lower limit
upper Upper limit

doit Evaluate the product immediately (or later with doit())

Examples

```
if (has_sympy()) {
  x <- symbol("x")
  p <- prod_(1/x, "x", 1, 10)
  p
  as_expr(p)
  prod(1/(1:10))</pre>
```

rankMatrix_ 43

```
n <- symbol("n")
prod_(x, x, 1, n)
}</pre>
```

rankMatrix_

Rank of matrix

Description

Rank of matrix

Usage

```
rankMatrix_(x)
```

Arguments

Χ

Numeric or symbolic matrix

Examples

```
if (has_sympy()) {
    X <- matrix_(paste0("x_",c(1,1,1,1,2,2,2,2,3,4,3,4)), nrow=4)
    X
    rankMatrix_(X)
    colspan(X)
}</pre>
```

reciprocal_matrix

Elementwise reciprocal matrix

Description

Elementwise reciprocal matrix

Usage

```
reciprocal_matrix(x, numerator = 1)
```

Arguments

Х

Object x

numerator

The numerator in the result.

scale_matrix

Examples

```
if (has_sympy()) {
   s <- as_sym("[[r1, r2, r3], [u1, u2, u3]]")
   reciprocal_matrix(s, numerator = 7)
}</pre>
```

rowSums_colSums

Form Row and Column Sums

Description

Form Row and Column Sums

Usage

```
rowSums_(x)
colSums_(x)
```

Arguments

Х

Symbolic matrix

Examples

```
if (has_sympy()) {
   X <- matrix_(paste0("x_",c(1,1,1,1,2,2,2,2,3,4,3,4)), nrow=4)
   rowSums_(X)
   colSums_(X)
}</pre>
```

scale_matrix

Create list of factors as in a product

Description

Create list of factors as in a product

```
scale_matrix(X, k = NULL, divide = TRUE)
```

score_hessian 45

Arguments

X matrix

k scalar to be factored out

divide Should X be divided with k before constructing scaled matrix?

Examples

```
if (has_sympy()) {
    V <- matrix_sym(2, 2, "v")
    a <- symbol("a")

    K <- a*V
    scale_matrix(K, a)
    scale_matrix(V, a, divide = FALSE)

    Ks <- scale_matrix(V, a, divide = FALSE)

    Ks
    W <- matrix_sym(2, 2, "w")
    unscale_matrix(Ks) %*% W
    unscale_matrix(Ks) %*% W
    unscale_matrix(Ks) %*% W |> scale_matrix(a)
    Ksi <- unscale_matrix(Ks) |> inv() |> scale_matrix(a/det(unscale_matrix(Ks)))
    (Ksi |> unscale_matrix()) %*% (Ks |> unscale_matrix()) |> simplify()
    tex(Ksi)
}
```

score_hessian

Score and Hessian matrix

Description

Compute column vector of first derivatives and matrix of second derivatives of univariate function.

Usage

```
score(expr, vars, simplify = TRUE)
hessian(expr, vars, simplify = TRUE)
```

Arguments

expr 'caracas expression'.

variables to take derivative with respect to.

simplify Try to simplify result using simplify(); may be time consuming.

See Also

```
jacobian(), der()
```

46 solve.caracas_symbol

Examples

```
if (has_sympy()) {
  def_sym(b0, b1, x, x0)
  f <- b0 / (1 + exp(b1*(x-x0)))
  S <- score(f, c(b0, b1))
  S
  H <- hessian(f, c(b0, b1))
  H
}</pre>
```

simplify

Simplify expression

Description

Simplify expression

Usage

```
simplify(x)
```

Arguments

Х

A caracas_symbol

```
solve.caracas_symbol Solve a System of Linear Equations
```

Description

Solve a System of Linear Equations

Usage

```
## S3 method for class 'caracas_symbol'
solve(a, b, ...)
```

Arguments

```
a caracas_symbol
```

b If provided, either a caracas_symbol (if not, as_sym() is called on the object)

... Not used

solve_lin 47

Examples

```
if (has_sympy()) {
    A <- matrix_sym(2, 2, "a")
    b <- vector_sym(2, "b")
# Inverse of A:
    solve(A)
    inv(A)
    solve(A) %*% A |> simplify()
# Find x in Ax = b
    x <- solve(A, b)
    A %*% x |> simplify()
    solve(A, c(2, 1)) |> simplify()
}
```

solve_lin

Solve a linear system of equations

Description

Find x in Ax = b. If b not supplied, the inverse of A is returned.

Usage

```
solve_lin(A, b)
```

Arguments

A matrix b vector

Examples

```
if (has_sympy()) {
    A <- matrix_sym(2, 2, "a")
    b <- vector_sym(2, "b")
    # Inverse of A:
    solve_lin(A) %*% A |> simplify()
    # Find x in Ax = b
    x <- solve_lin(A, b)
    A %*% x |> simplify()
}
```

48 solve_sys

solve_sys

Solves a system of non-linear equations

Description

If called as solve_sys(lhs, vars) the roots are found. If called as solve_sys(lhs, rhs, vars) the solutions to lhs = rhs for vars are found.

Usage

```
solve_sys(lhs, rhs, vars)
```

Arguments

lhs	Equation (or equations as row vector/1xn matrix)
rhs	Equation (or equations as row vector/1xn matrix)
vars	vector of variable names or symbols

Value

A list with solutions (with class caracas_solve_sys_sol for compact printing), each element containing a named list of the variables' values.

Examples

```
if (has_sympy()) {
    x <- symbol('x')
    exp1 <- 2*x + 2
    exp2 <- x
    solve_sys(cbind(exp1), cbind(exp2), x)

    x <- symbol("x")
    y <- symbol("y")
    lhs <- cbind(3*x*y - y, x)
    rhs <- cbind(-5*x, y+4)
    sol <- solve_sys(lhs, rhs, list(x, y))
    sol
}</pre>
```

special_matrices 49

special_matrices

Special matrices: zeros_sym, ones_sym, eye_sym

Description

```
Special matrices: zeros_sym, ones_sym, eye_sym
```

Usage

```
zeros_sym(nrow, ncol)
ones_sym(nrow, ncol)
eye_sym(nrow, ncol)
```

Arguments

nrow, ncol

Number of rows and columns of output

See Also

```
diag_(), matrix_sym(), vector_sym()
```

Examples

```
if (has_sympy()){
  zeros_sym(3, 4)
  ones_sym(3, 4)
  eye_sym(3, 4)
}
```

subs

Substitute symbol for value

Description

Substitute symbol for value

```
subs(sym, nms, vls)
```

50 sum.caracas_symbol

Arguments

sym	Expression
nms	Names of symbols (see Details)
vls	Values that nms is substituted with (see Details)

Details

Two different ways to call this function is supported:

- 1. Supplying nms as a named list and omitting vls. If two components have the same name, the behaviour is undefined.
- 2. Supplying both nms and v1s See Examples.

Examples

```
if (has_sympy()) {
    x <- symbol('x')
    e <- 2*x^2
    e
    subs(e, "x", "2")
    subs(e, x, 2)
    subs(e, list(x = 2))

A <- matrix_sym(2, 2, "a")
    B <- matrix_sym(2, 2, "b")
    e <- A %*% A
    subs(e, A, B)
}</pre>
```

sum.caracas_symbol

Summation

Description

Summation

Usage

```
## S3 method for class 'caracas_symbol'
sum(..., na.rm = FALSE)
```

Arguments

```
na.rm Elements to sum
```

sum_ 51

sum_

Sum of a function

Description

Sum of a function

Usage

```
sum_(f, var, lower, upper, doit = TRUE)
```

Arguments

f Function to take sum of

var Variable to take sum for (either string or caracas_symbol)

lower Lower limit upper Upper limit

doit Evaluate the sum immediately (or later with doit())

Examples

```
if (has_sympy()) {
    x <- symbol("x")
    s <- sum_(1/x, "x", 1, 10)
    as_expr(s)
    sum(1/(1:10))
    n <- symbol("n")
    simplify(sum_(x, x, 1, n))
}</pre>
```

symbol

Create a symbol

Description

 $Find \ available \ assumptions \ at \ https://docs.sympy.org/latest/modules/core.html \# module-sympy. \\ core.assumptions.$

```
symbol(x, ...)
```

52 symbol_class

Arguments

x Name to turn into symbol

... Assumptions like positive = TRUE

Value

```
A \; {\tt caracas\_symbol}
```

See Also

```
as_sym()
```

Examples

```
if (has_sympy()) {
  x <- symbol("x")
  2*x

  x <- symbol("x", positive = TRUE)
  ask(x, "positive")
}</pre>
```

symbol_class

Ask type of caracas symbol

Description

Ask type of caracas symbol

Usage

```
symbol_class(x)
```

Arguments

Х

A

An object, a caracas object is expected

symbol_is_matrix 53

symbol_is_matrix

Check if object is a caracas matrix

Description

Check if object is a caracas matrix

Usage

```
symbol_is_matrix(x)
```

Arguments

Χ

An object

Examples

```
if (has_sympy() && sympy_version() >= "1.6") {
    x <- vector_sym(4)
    symbol_is_matrix(x) ## TRUE
    x2 <- as.character(x) ## "Matrix([[v1], [v2], [v3], [v4]])"
    symbol_is_matrix(x2) ## TRUE
    x3 <- as_character_matrix(x) ## R matrix
    symbol_is_matrix(x3) ## FALSE
}</pre>
```

sympy_func

Call a SymPy function directly on x

Description

Extend caracas by calling SymPy functions directly.

Usage

```
sympy_func(x, fun, ...)
```

Arguments

```
x Object to call fun on fun Function to call
... Passed on to fun
```

54 sympy_version

Examples

```
if (has_sympy()) {
    def_sym(x, a)
    p <- (x-a)^4
    p
    q <- p %>% sympy_func("expand")
    q
    q %>% sympy_func("factor")

    def_sym(x, y, z)
    expr <- x*y + x - 3 + 2*x^2 - z*x^2 + x^3
    expr
    expr %>% sympy_func("collect", x)

    x <- symbol("x")
    y <- gamma(x+3)
    sympy_func(y, "expand_func")
    expand_func(y)
}</pre>
```

sympy_version

Get 'SymPy' version

Description

Get 'SymPy' version

Usage

```
sympy_version()
```

Value

The version of the 'SymPy' available

Examples

```
if (has_sympy()) {
   sympy_version()
}
```

sym_class 55

sym_class

Ask type of caracas symbol

Description

Ask type of caracas symbol

Usage

```
sym_class(x)
```

Arguments

Х

An object, a caracas object is expected

sym_inherits

Ask if type of caracas symbol is of a requested type

Description

Ask if type of caracas symbol is of a requested type

Usage

```
sym_inherits(x, what)
```

Arguments

Χ

An object, a caracas object is expected

what

Requested type (e.g. atomic, vector, list, matrix)

t.caracas_symbol

Transpose of matrix

Description

Transpose of matrix

Usage

```
## S3 method for class 'caracas_symbol'
t(x)
```

Arguments

Х

If caracas_symbol treat as such, else call base::t().

56 tex

taylor

Taylor expansion

Description

Taylor expansion

Usage

```
taylor(f, x0 = 0, n = 6)
```

Arguments

f Function to be expandedx0 Point to expand aroundn Order of remainder term

See Also

```
drop_remainder()
```

Examples

```
if (has_sympy()) {
  def_sym(x)
  f <- cos(x)
  ft_with_0 <- taylor(f, x0 = 0, n = 4+1)
  ft_with_0
  ft_with_0 %>% drop_remainder() %>% as_expr()
}
```

tex

Export object to TeX

Description

Export object to TeX

```
tex(x, zero_as_dot = FALSE, matstr = NULL, ...)
```

Arguments

```
x A caracas_symbol
zero_as_dot Print zero as dots

matstr Replace \begin{matrix} with another environment, e.g. pmatrix. If vector of length two, the second element is an optional argument.

... Other arguments passed along
```

Examples

```
if (has_sympy()) {
S <- matrix_sym_symmetric(3, "s")
S[1, 2] <- "1-x"
S
tex(S)
tex(S, matstr = "pmatrix")
tex(S, matstr = c("pmatrix", "r"))
}</pre>
```

```
tex.caracas_scaled_matrix
```

Export scaled matrix to tex

Description

Export scaled matrix to tex

Usage

```
## S3 method for class 'caracas_scaled_matrix' tex(x, ...)
```

Arguments

x scaled matrix

... Other arguments passed along

58 to_something

texshow

Dump latex representation of sympy object.

Description

Dump latex representation of sympy object and compile document into pdf.

Usage

```
texshow(x)
```

Arguments

Х

An object that can be put in latex format with caracas' tex() function or a character string with tex code (in math mode).

Value

Nothing, but a .tex file and a .pdf file is generated.

Examples

```
if (has_sympy()) {
S <- matrix_sym_symmetric(3, "s")
S
## Not run:
texshow(S)
texshow(paste0("S = ", tex(S)))
## End(Not run)
}</pre>
```

to_something

Coerce caracas object

Description

Coerce caracas object

```
to_list(x)
to_vector(x)
to_matrix(x)
```

tuplify 59

Arguments

Χ

a caracas object is expected

tuplify

Convert object to tuple

Description

Convert object to tuple

Usage

```
tuplify(x)
```

Arguments

Х

Object

Examples

```
if (has_sympy()) {
   x <- as_sym("Matrix([[b1*x1/(b2 + x1)], [b1*x2/(b2 + x2)], [b1*x3/(b2 + x3)]])")
   tuplify(x)
}</pre>
```

unbracket

Remove inner-most dimension

Description

Remove inner-most dimension

Usage

```
unbracket(x)
```

Arguments

Х

Array symbol to collapse dimension from

60 vectorfy

Examples

```
if (has_sympy()) {
    x <- as_sym(paste0("x", 1:3))
    y <- as_sym("y")
    1 <- list(x, y)
    1
    unbracket(1)
}</pre>
```

unscale_matrix

Extract matrix from scaled matrix

Description

Extract matrix from scaled matrix

Usage

```
unscale_matrix(X)
```

Arguments

Χ

scaled matrix created with scale_matrix()

Examples

```
if (has_sympy()) {
  V <- matrix_sym(2, 2, "v")
  a <- symbol("a")
  Ks <- scale_matrix(V, a, divide = FALSE)
  Ks
  unscale_matrix(Ks)
  V %*% a
}</pre>
```

vectorfy

Creates symbol vector from list of caracas symbols

Description

Creates symbol vector from list of caracas symbols

```
vectorfy(x)
```

[.caracas_symbol 61

Arguments

Χ

Symbol to be coerced to vector

[.caracas_symbol

Extract or replace parts of an object

Description

Extract or replace parts of an object

Usage

```
## S3 method for class 'caracas_symbol' x[i, j, ..., drop = TRUE]
```

Arguments

X	A caracas_symbol.
i	row indices specifying elements to extract or replace
j	column indices specifying elements to extract or replace
	Not used
drop	Simplify dimensions of resulting object

Examples

```
if (has_sympy()) {
    A <- matrix(c("a", 0, 0, 0, "a", "a", "a", 0, 0), 3, 3)
    B <- as_sym(A)
    B[1:2, ]
    B[, 2]
    B[2, , drop = FALSE]
}</pre>
```

[<-.caracas_symbol

Extract or replace parts of an object

Description

Extract or replace parts of an object

```
## S3 replacement method for class 'caracas_symbol' x[i, j, ...] \leftarrow value
```

62 %>%

Arguments

```
    x A caracas_symbol.
    i row indices specifying elements to extract or replace
    j column indices specifying elements to extract or replace
    ... Not used
    value Replacement value
```

Examples

```
if (has_sympy()) {
  A <- matrix(c("a", 0, 0, 0, "a", "a", "a", 0, 0), 3, 3)
  B <- as_sym(A)
  B[, 2] <- "x"
  B[, 3] <- vector_sym(3)
  B
}</pre>
```

%>%

Pipe

Description

Pipe operator

Arguments

lhs, rhs specify what lhs and rhs are

Index

* assumptions	as_character_matrix,7
ask, 6	as_diag, 7
* calculus	as_vec, 10
der, 14	colspan, 12
der2, 15	diag, 16
drop_remainder, 22	diag-set, 16
int, 30	diag.caracas_symbol,17
jacobian, 31	diag_, 18
lim, 33	diff_mat, 18
prod_, 42	dim.caracas_symbol, 19
score_hessian,45	<pre>dim<caracas_symbol, 19<="" pre=""></caracas_symbol,></pre>
sum, 51	do_1a, 21
taylor, 56	generic-matrices, 27
* caracas_symbol	get_basis, 28
all_vars,4	<pre>kronecker,caracas_symbol,caracas_symbol-method,</pre>
as_character, 6	32
as_expr, 8	linalg, 33
$as_{func}, 8$	mat_pow, 39
as_sym, 9	matrix-products, 37
def_sym, 13	matrix_, 38
doit, 20	<pre>matrix_cross_product, 38</pre>
fraction_parts, 26	rankMatrix_, 43
free_symbols, 26	reciprocal_matrix,43
is_sym, 31	rowSums_colSums, 44
listify, 35	scale_matrix, 44
ls_sym, 36	special_matrices, 49
matrify, 37	<pre>symbol_is_matrix, 53</pre>
N, 39	t.caracas_symbol, 55
subs, 49	unscale_matrix, 60
<pre>sym_inherits, 55</pre>	lowlevel
symbol, 51	eval_to_symbol, 23
symbol_class, 52 *	output
sympy_func, 53	as.character.caracas_symbol, 5
to_something, 58	<pre>print.caracas_scaled_matrix, 40</pre>
tuplify, 59	print.caracas_solve_sys_sol,41
unbracket, 59	print.caracas_symbol,41
vectorfy, 60	tex, 56
* linalg	tex.caracas_scaled_matrix,57
add_prefix,4	texshow, 58

INDEX

* simple_algebra	as_sym(), <i>13</i> , <i>52</i>
Math.caracas_symbol, 36	as_vec, 10
Ops.caracas_symbol,40	ask, 6
* simplify	
apart, 5	base::%*%(), <i>38</i>
cancel, 11	base::t(), 55
collect, 11	1 11
expand, 23	cancel, 11
expand_func, 24	chol.caracas_symbol(linalg), 33
expand_log, 24	collect, 11
expand_trig, 25	colspan, 12
factor_, 25	colSums_(rowSums_colSums), 44
simplify, 46	columnspace (linalg), 33
* solve	crossprod_(matrix_cross_product), 38
<pre>solve.caracas_symbol, 46</pre>	cumsum.caracas_symbol, 12
solve_lin, 47	dof our 12
solve_sys, 48	def_sym, 13
* sympy	def_sym_vec (def_sym), 13
get_py, 28	denominator (fraction_parts), 26
get_sympy, 29	der, 14
has_sympy, 29	der(), 31, 45
install_sympy, 30	der2, 15
sympy_version, 54	det (linalg), 33
* vectors	diag, 16
[.caracas_symbol, 61	diag-set, 16
[<caracas_symbol, 61<="" td=""><td>diag.caracas_symbol, 17</td></caracas_symbol,>	diag.caracas_symbol, 17
cumsum.caracas_symbol, 12	diag <caracas_symbol, 17<="" td=""></caracas_symbol,>
diag <caracas_symbol, 17<="" td=""><td>diag<- (diag-set), 16</td></caracas_symbol,>	diag<- (diag-set), 16
sum.caracas_symbol, 50	diag_, 18
[.caracas_symbol, 61	diag_(), 49
[<caracas_symbol, 61<="" td=""><td>diff_mat, 18</td></caracas_symbol,>	diff_mat, 18
%*% (matrix-products), 37	dim.caracas_symbol, 19
%>%, 62	dim <caracas_symbol, 19<="" td=""></caracas_symbol,>
76-76, 02	do_la, 21
add_prefix, 4	do_la(), 35
all_vars, 4	doit, 20
apart, 5	doit(), 8, 30, 33, 42, 51
as.character.caracas_symbol, 5	drop_remainder, 22
as.expression.caracas_solve_sys_sol	$drop_remainder(), 56$
(as_expr), 8	eigenval (linalg), 33
as.expression.caracas_symbol (as_expr),	eigenvec (linalg), 33
8	eval_to_symbol, 23
as.function.caracas_symbol(as_func), 8	expand, 23
as_character, 6	·
as_character_matrix, 7	expand_lag_24
as_diag, 7	expand_log, 24
as_expr, 8	expand_trig, 25
as_func, 8	eye_sym(special_matrices),49
as_sym, 9	factor_, 25
— J / -	· · · · · · · · · · · · · · · · · · ·

INDEX 65

fraction_parts, 26	<pre>print.caracas_scaled_matrix, 40</pre>
free_symbols, 26	<pre>print.caracas_solve_sys_sol,41</pre>
	<pre>print.caracas_symbol, 41</pre>
generic-matrices, 27	<pre>print.caracas_symbol(), 40, 41</pre>
get_basis, 28	prod_, 42
get_py, 28	
get_sympy, 29	QRdecomposition (linalg), 33
GramSchmidt (linalg), 33	
had aumpy 20	rankMatrix_,43
has_sympy, 29	reciprocal_matrix,43
hessian (score_hessian), 45	rowspace(linalg), 33
hessian(), <i>31</i>	<pre>rowSums_ (rowSums_colSums), 44</pre>
install_sympy, 30	rowSums_colSums, 44
int, 30	rref(linalg), 33
inv (linalg), 33	
is_sym, 31	scale_matrix, 44
10_0J, 0 1	scale_matrix(),60
jacobian, 31	score (score_hessian), 45
jacobian(),45	score(), <i>31</i>
	score_hessian, 45
kronecker,caracas_symbol,caracas_symbol-met	hoଷ୍ଟimplify,46
32	singular_values(linalg), 33
	solve.caracas_symbol,46
lim, 33	solve_lin,47
linalg, 33	solve_sys, 48
listify, 35	special_matrices, 49
ls_sym, 36	subs, 49
LUdecomposition (linalg), 33	<pre>sum.caracas_symbol, 50</pre>
. 20	sum_, 51
mat_pow, 39	svd_(linalg), 33
Math.caracas_symbol, 36	sym_class, 55
matrify, 37	sym_inherits, 55
matrix(), 38	symbol, 51
matrix-products, 37	symbol(), <i>10</i> , <i>13</i>
matrix_, 38	symbol_class, 52
matrix_cross_product, 38	symbol_is_matrix, 53
matrix_sym (generic-matrices), 27	sympy_func, 53
matrix_sym(),49	sympy_version, 54
matrix_sym_diag(generic-matrices), 27	
matrix_sym_symmetric	t.caracas_symbol, 55
(generic-matrices), 27	taylor, 56
N 20	taylor(), 22
N, 39	tcrossprod_(matrix_cross_product), 38
nullspace (linalg), 33	tex, 56
numerator(fraction_parts), 26	tex.caracas_scaled_matrix, 57
ones_sym(special_matrices),49	texshow, 58
Ops.caracas_symbol, 40	to_list(to_something), 58
ops. car acas_symbor, +0	to_matrix(to_something), 58
pinv (linalg), 33	to_something, 58
· · · · · · · · · · · · · · · · · · ·	— · · · · · · · · · · · · · · · · · · ·

INDEX

```
to_vector (to_something), 58
trace_ (linalg), 33
tuplify, 59
unbracket, 59
unscale_matrix, 60
vector_sym(generic-matrices), 27
vector_sym(), 49
vectorfy, 60
zeros_sym(special_matrices), 49
```