Unconstrained Optimization

Lecture 6

ME EN 575 Andrew Ning aning@byu.edu

Outline

Secant Rule

BFGS

Newton's method: requires Hessian (this is a problem for us)

Quasi-Newton: estimate it.

New problem: how to estimate it?

How many degrees of freedom does a Hessian have?

Secant Rule

Fundamental idea: Instead of starting over on a Hessian estimate every iteration, let's just update it. We will update it by accounting for the curvature (change in gradient) during the most recent step.

Secant rule

1D analogue:

$$f_k + f'(x)(x_{k+1} - x_k) = f_{k+1}$$

Apply to derivative:

$$g_k + f''(x)(x_{k+1} - x_k) = g_{k+1}$$

Extend to nD:

$$g_k + H(x_{k+1} - x_k) = g_{k+1}$$

Rearange:

$$H_{k+1}s_k = y_k$$
 $(s_k = x_{k+1} - x_k, \ y_k = g_{k+1} - g_k)$

$$H_{k+1}s_k = y_k$$

Always has a solution, but ...

- How many degrees of freedom?
- How many constraint equations?

More constraints are needed.

Additional constraint: of all the possible approximate Hessians to choose, let's pick the closest one to our current iterate.

BFGS

Fundamental Idea #2: What we really care about is solving:

$$p_k = -H_k^{-1} g_k$$

So, let's not bother estimating the Hessian. Instead, let's estimate the inverse of the Hessian!

$$p_k = -V_k g_k$$

- ullet design variables: estimate V
- Constraint: symmetric
- · Constraint: positive definite
- Constraint: secant rule $Hs = y \Rightarrow s = Vy$
- Objective: of all the possibilities, let's choose to closest one to last iteration.

We can solve this with optimization.

$$\begin{array}{ll} \text{minimize} & \|V-V_k\| \\ \text{with respect to} & V \\ \text{subject to} & V=V^T \\ & Vy_k=s_k \end{array}$$

Solution:

$$V_{k+1} = \left[I - \frac{s_k y_k^T}{s_k^T y_k} \right] V_k \left[I - \frac{y_k s_k^T}{s_k^T y_k} \right] + \frac{s_k s_k^T}{s_k^T y_k}.$$

But how do we ensure this is positive definite?

With this algorithm it is automatic, as long as previous estimate is postive definite.

What are some good options for a starting Hessian estimate?

Using the identity matrix in the first step corresponds to which method?

Rosenbrock

Is fewer iterations always better?

Newton's method takes fewer iterations, but each iteration is more computationally expensive.

2 reasons:

- Requires second derivatives.
- Requires solving a linear system vs a matrix vector multiply. ($\mathcal{O}(n^3)$ vs $\mathcal{O}(n^2)$)

Review

Steepest Descent:
$$p_k = \frac{-g_k}{\|g(x_k)\|}$$

Conjugate Gradient:
$$p_k = \frac{-g_k}{\|g(x_k)\|} + \beta_k p_{k-1}$$

Newton:
$$p_k = -H^{-1}g_k$$

Quasi-Newton:
$$p_k = -V_k g_k$$

Matlab example using fminunc

Python example using minimize

Trust Region Methods

Current methods: pick search direction, then pick step along that direction.

Trust region: pick a "step" first, then choose a direction. Also, when "backtracking", the direction can change.