기업과제 3. 학습 보고서

1. 자신이 담당한 역할

- 모델 조사
- 데이터 전처리
- 결과물 시각화 및 통계 분석

2. 모델 선택 및 그 이유

- ELECTRA는 NLP STS task에서 SOTA의 성능을 보이는 모델 중 하나이다.
- 그 중에서 KoELECTRA는 한국어 Pretrained Model 중 유사도 분석 TASK에서 가장 높은 성능을 보인 검증된 모델 중 하나이다.

	NSMC (acc)	Naver NER (F1)	PAWS (acc)	KorNLI (acc)	KorSTS (spearman)	Question Pair (acc)	Korean- Hate- Speech (Dev) (F1)
KoBERT	89.59	87.92	81.25	79.62	81.59	94.85	66.21
HanBERT	90.06	87.70	82.95	80.32	82.73	94.72	68.32
kcbert-base	89.87	85.00	67.40	75.57	75.94	93.93	68.78
KoELECTRA- Base-v3	90.63	88.11	84.45	82.24	85.53	95.25	67.61
OURS							
albert-kor- base	89.45	82.66	81.20	79.42	81.76	94.59	65.44
bert-kor- base	90.87	87.27	82.80	82.32	84.31	95.25	68.45
electra-kor- base	91.29	87.20	85.50	83.11	85.46	95.78	66.03
funnel-kor- base	91.36	88.02	83.90		84.52	95.51	68.18

- 유사도 측정에 강세를 보이는 SentenceBERT와 성능을 비교 시험해 본 결과, pearson score가 88:92 로 더 높은 성능임을 확인하였다.
- Replaced token detection을 활용하는 ELECTRA 모델은 계산량이 기존 BERT 계열 모델보다 적고 효율적이다.(속도 면에서 우세)

3. 파라미터 튜닝 및 결과

Wandb 활용하여 최적의 parameter 선정

epochs: 1

• grad_norm: 1

learning_rate: 5e-05

• max_length: 128

• train_batch_size: 32

warm_up_ratio: 0

weight_decay: 0.01

4. 훈련 과정

A. 전처리 : 홈페이지 주소 및 특수문자 등 불필요한 부분을 전처리하였다.

- B. KOELECTRA로 Training& Validation 진행
 - i. Metric은 validation loss로 정하여 학습을 진행하였다.
 - ii. Validation loss는 떨어지지 않지만, Metric인 F1-Score 및 Pearson's r 은 상승하는 현상을 확인하고 개선의 필요성을 확인하였다.
- C. Label 불균형 해소를 위한 Data Augumentation
 - i. Test set과 validation set의 분포가 균일하지 않다면, test set의 recall과 precision의 편 차가 크고 결과적으로 F1score가 더 낮게 나타날 것이라고 판단하였다.
 - ii. Test set의 분포를 미리 측정할 수는 없으나, 1~5까지의 Label이 균일하도록 Augumentation 진행
 - iii. <u>Augumented SBERT</u>: SentenceBERT에서 Data augumentation을 진행했던 논문을 참고하여 문장 pair와 label(유사도)을 또다른 모델로부터 생성 (기존 Gold Dataset + 새로 만든 Silver Dataset)
 - iv. Label 생성을 위해 semantic search 로 sampling하였으며, 논문에는 bert를 사용하였으나, 성능이 더 좋을 것으로 판단되는 Roberta-large를 사용하였다.

[Data 생성 후 균일해진 Training label 분포]

5. API 서버 코드[Repository]

A. 모듈화 및 로컬호스팅으로 유사도를 확인할 수 있도록 구성

Wanted Pre-Onboarding 기업과제 3 이 아래에 문장 두개를 입력해주세요! 문장1: 변한가 로페백에에 먹고 있는 문장2: 로페백에에 먹고 있는 도장2: 로페백에에 막는 변한 Solumit 박스안에 문장 두개를 입력하고 submit 해줍니다. Wanted Pre-Onboarding 기업과제 3 아래에 문장 두개를 입력해주세요! 문장1: 문장2:

"제 친구가 로제떡볶이를 먹고 있네요"과 "로제떡볶이를 먹는 내 친구"의 유사도는 88% 입니다.

B. 디렉터리 구조

i. running_model: fine_tuning 된 best model과 필요한 모듈을 포함

1. config.json : hyperparmeter 설정값 포함

2. pytorch_model: model bin 파일

3. data_preprocessing.py: 전처리 모듈

ii. templates : 화면 UI 구성을 위한 HTML 템플릿

iii. main.py: Flask를 이용한 REST API 구현

6. 최종 결과 분석

	guid	truc_real_label	true_binary_label	prediot_real_label	predict_binary_label	sentenoe1	sentenoe2
0	klue-sts- v1_dev_00000	4.857143		4.993932		무엇보다도 호스트분들이 너무 친절하셨 습니다	무엇보다도 호스트들은 매우 친절했습니다
1	klue-sts- v1_dev_00001	1.428571		2.249855		주요 관광지 모두 걸어서 이동가능합니 다	위치는 피렌체 중심가까지 걸어서 이동 가 능합니다
2	klue-sts- v1_dev_00002	1.285714		1.326538		학생들의 균형 있는 영어능력을 항상시 킬 수 있는 학교 수업을 유도하기 위해 2018	영어 영역의 경우 학생들이 한글 해석본을 암기하는 문제를 해소하기 위해 2016학년
3	klue-sts- v1_dev_00003	3.714286		4.026398		다만 도로와 인접해서 거리의 소음이 들 려요	하지만 길과 가깝기 때문에 거리의 소음을 들을 수 있습니다
4	klue-sts- v1_dev_00004	2.500000		2.717107		형이 다시 캐나다 들어가야 하니 가족모 임 일정은 바꾸지 마세요	가족 모임 일정은 바꾸지 말도록 하십시오

A. 최종 결과 및 성능

i. Binary Classification(F1: 0.8668)

- precision : 0.81 /recall : 0.93

- recall>> precision의 의미

1. 유사하지 않은데 유사하다고 예측한 것(fp)이 유사한데 유사하지 않다고 예측한 것(fn)보다 많다.

2. 모델은 대체로 실제보다 유사하다고 예측하는 비율이 높다.

3. threshold 값을 조금씩 낮추면서 성능을 비교하면 더 높은 f1 score를 기대해 볼수 있다.

ii. Regression (Pearson's r : 0.933)

1. True label VS predicted label

대체로 상관계수에 맞는 양의 상관관계 분포를 확인할 수 있었다.

2. 분포 비교

실제로는 균일한 반면, 예측한 유사도 분포의 경우 비교적 더 3,4 쪽에 치우쳐져 있는 것을 확인할 수 있었다. 이는 precision보다 recall이 높은 결과와 일맥상통 하는 부분임을 확인할 수 있다.

B. 고찰

- i. 전처리로 인해 F1 score 0.7, correlation coefficient 0.1 정도의 성능 향상이 있었다.
- ii. Data Augumentation은 Validation loss를 더 감소시켜주지만, Test set에서의 성능을 늘려주지는 못했다. 이는 새로 생성한 데이터의 labelling 성능과 실제 label간의 gap으로부터 비롯된 것으로 사료된다.

[Augumentation 후 개선된 valid loss 확인]

- iii. F1 score는 Threshold 값을 3보다 조금 더 높은 값으로 올려서 classification을 진행 하면 classification의 성능을 확인할 수 있을 것이라 예상된다.
- iv. 향후 database 구축 및 sqlalchemy 활용한 연결, 모듈 고도화를 통해 프로젝트를 발 전시켜나갈 수 있을 것으로 보인다.