distribuidos distr

seguridad

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

seguridad

introducción

Contenido

- Modelo de seguridad
 - Tipos de amenaza
- Técnicas básicas
 - Técnicas criptográficas
 - Secreto
 - Autenticación
 - Certificación y credenciales
 - Control de accesos
 - Auditoría de perfiles
- Algoritmos de encriptación simétricos y asimétricos
- Firmas digitales
- Aproximaciones al diseño de sistemas seguros
- Casos de estudio

distribuidos distr

seguridad

objetos y principales

Contenido

- Objeto (o recurso)
 - Buzón de correo, sistema de archivo, parte de una web comercial
- Principal
 - Usuario o proceso que tiene derechos para realizar acciones
 - La identidad del principal es importante

enemigo

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Ataques

 En aplicaciones que manejan transacciones comerciales u otra información cuyo secreto o integridad es crucial

Amenazas

 A procesos, a los canales de comunicación, denegación de servicio

canales seguros

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Propiedades

- Cada proceso está seguro de la identidad del otro
- Los datos son privados y protegidos contra la manipulación
- Protección contra repeticiones y reordenación de datos

Utiliza criptografía

- El secreto se preserva mediante ocultamiento criptográfico
- La autenticación basada en la prueba de posesión de secretos

seguridad

canales seguros

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Ocultamiento criptográfico basado en:

Confusión y difusión

Lus uatus suri privauus y protegiuus curita ia manipulación

l otro

Protocción contra ropoticiones y roordenación de datos

Posesión de secretos:

Claves convencionales compartidas

Pares de claves públicas/privadas

amiento criptográfico de posesión de secretos

amenazas y formas de ataque

Contenido

- Escuchar a escondidas
 - Obteniendo información privada o secreta
- Enmascarse
 - Asumiendo la identidad de otro usuario/principal
- Manipular mensajes
 - Alterando el contenido de mensajes en tránsito
- Reenviar
 - Almacenando mensajes seguros y enviándolos más tarde
- Negación de servicio
 - Inundando un canal u otro recurso, negando acceso para los otros

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

seguridad

amenazas que superan los canales seguros

- Ataques de negación de servicio
 - El uso excesivo de recursos hasta el grado de impedir su uso a usuarios legítimos
 - por ejemplo, el ataque a Amazon y Yahoo en febrero del 2000
- Los caballos de Troya y otros virus
 - Los virus sólo pueden entrar en computadoras cuando el código de programa es importado.
 - Pero los usuarios a menudo requieren programas nuevos:
 - La instalación nueva de software
 - Código móvil importado dinámicamente (p. e., los applets Java)
 - La ejecución accidental de programas transmitidos subrepticiamente

<u>Defensas</u>: autenticación de código (mediante firmas), validación de código (comprobación de tipo), seguridad JVM... *ANÁLISIS, DISEÑO Y PRUDENCIA*

seguridad ejemplo: todo empezó con un *ping*...

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Desde un servidor malicioso se hacen ping a muchas máquinas:

ifalso origen!

PING | source = x.x.x.x | destination = n.n.n.i

... resultando: PONG | source = n.n.n.i | destination = x.x.x.x

seguridad

técnicas de seguridad: nomenclatura

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Alice	Primer participante

Bob Segundo participante

Carol Otro participante en los protocolos a tres o cuatro bandas

Dave Participante en los protocolos a cuatro bandas

Eve Fisgón

Mallory Atacante malevolente

Sara Un servidor

K_A Clave secreta de Alice

K_R Clave secreta de Bob

K_{AB} Clave secreta compartida por Alice y Bob

K_{Apriv} Clave privada de Alice (sólo conocida por Alice)

K_{Apub} Clave pública de Alice (publicada por Alice para

la lectura de cualquiera)

 $\{M\}_{K}$ Mensaje M encriptado con la clave K

Mensaje M firmado con la clave K

escenario 1: secreto con clave compartida

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Alice y Bob comparten una clave secreta KAR

- Alice usa K_{AB} y acuerda una función de encriptación E(K_{AB}, M) para codificar y enviar una serie de mensajes {M_i}_{KAB}
- 2. Bob lee los mensajes encriptados usando la correspondiente función D(K_{AB}, M).

Alice y Bob pueden funcionar con K_{AB} mientras estén seguros que K_{AB} no es conocida

Problemas:

- Distribución de clave: ¿Cómo envia Alice una clave compartida a Bob de forma segura?
- Caducidad de la comunicación: ¿Cómo sabe Bob que el mensaje no es una copia capturada por Mallory y reenviada más tarde?

distribuidos distr

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

seguridad

escenario 2: autenticación con servidor

Bob es un servidor de ficheros; Sara es un servidor de autenticación. Sara comparte K_A con Alice y K_B con Bob

- Alice envía un mensaje no encriptado a Sara identificándose y solicitando un ticket para acceder a Bob.
- 2. Sara responde a Alice con $\{\{\text{Ticket}\}_{K_B}, K_{AB}\}_{K_A}$. Consistente en un mensaje codificado según K_A con un ticket (para comunicar con Bob para cada fichero) encriptado según K_B y una nueva clave K_{AB} .
- 3. Alice usa K_A para desencriptar la respuesta.
- 4. Alice envía a Bob el ticket, su identidad y una respuesta R para acceder al fichero: {Ticket}_{KR}, Alice, R.
- 5. El ticket es realmente $\{K_{AB}, Alice\}_{K_B}$. Bob usa K_B para desencriptarlo, chequea la identidad y usa K_{AB} para encriptar las respuestas a Alice.

escenario 2: autenticación con servidor

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad

coordina transaccio

Un ticket es un mensaje encriptado conteniendo la identidad del principal solicitante y una clave compartida para la sesión

- Esto es una simplificación del protocolo Needham and Schroeder (y Kerberos)
- Edad y repetición resuelto en N-S y Kerberos completo
- No válido para comercio electrónico...

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

seguridad

escenario 3: autenticación con clave pública

Bob genera un par de claves pública/privada <K_{Bpub}, K_{Bpriv}>

- Alice obtiene un <u>certificado firmado por una autoridad de</u> <u>confianza</u> que posee la clave pública de Bob, K_{Bpub}
- 2. Alice crea una clave compartida K_{AB}, la encripta según K_{Bpub} un algoritmo de clave pública y envía el resultado a Bob
- 3. Bob usa K_{Bpriv} para desencriptar K_{AB} .

(si desean asegurar que el mensaje no ha sido manipulado, Alice puede incluir algún dato aceptado por ambos y Bob chequearlo)

Problemas:

Mallory puede interceptar la solicitud de certificado de clave pública y enviarle su propia clave pública, pudiendo desencriptar el resto de mensajes. La firma digital lo impide

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

seguridad

escenar. 4: firma digital con resumen seguro

Alice quiere publicar un documento M de forma que cualquiera pueda verificar su procedencia

- Alice calcula un resumen de longitud fija del documento Resumen(M) □
- 2. Alice encripta el resumen con su clave privada, lo adjunta a M y hace el resultado (M, {Resumen(M)}_{KApriv}) público
- 3. Bob obtiene el documento firmado, extrae M y computa Resumen(M)
- 3. Bob usa la clave pública de Alice para desencriptar {Resumen(M)}_{KApriv} y lo compara con el resumen calculado por él. Si coincide, entonces la firma es válida.
- La función de resumen debe ser segura frente al "ataque del cumpleaños"

funciones de resumen seguro

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Función de resumen seguro h=H(M):

- 1. Dado M, debe ser fácil calcular h
- 2. Dado h, debe ser muy dificil calcular M
- Dado M, debe ser dificil encontrar otro M', tal que H(M)=H(M')

También llamada función de dispersión de un solo sentido

Ataque sustentado sobre la "paradoja del cumpleaños":

La probabilidad de encontrar un par idéntico en un conjunto es mucho mayor que la de encontrar la pareja para un individuo dado. Con paciencia...

ataque de cumpleaños

Contenido

- Alice prepara dos versiones M y M' de un contrato para Bob. M favorable y M' desfavorable
- 2. Alice fabrica varias versiones de M y M' sutilmente diferentes (espacios al final de línea,...). Ella compara los valores de dispersión de todos los M con todos los M' buscando un par igual
- Alice envía el contrato favorable M a Bob, éste lo firma digitalmente usando su clave privada
- Cuando lo devuelve, Alice sustituye M por M', pero manteniendo la firma de Bob sobre M

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

seguridad

ataque de cumpleaños

- Alice prepara dos versiones M y M' de un contrato para Bob. M favorable y M' desfavorable
- 2. Alice fabrica varias versiones de M y M' sutilmente diferentes

Por ejemplo, que para generar colisiones en una función aleatoria perfecta (en funciones hash) de n bits, con una probabilidad del 50% aproximadamente, se requieren solo **2**^{n/2} intentos.

- Alice envía el contrato favorable M a Bob, éste lo firma digitalmente usando su clave privada
- 4. Cuando lo devuelve, Alice sustituye M por M', pero manteniendo la firma de Bob sobre M

certificados

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Certificado de cuenta de Alice

1. Tipo de certificado: Número de cuenta

2. Nombre: Alice

3. Cuenta: 6262626

4. Autoridad certificadora: Banco de Bob

5. Firma: $\{Resumen(campo\ 2 + campo\ 3)\}_{K_{Bpriv}}$

Certificado de clave pública del Banco de Bob

1. Tipo de certificado: Clave pública

2. *Nombre:* Banco de Bob

3. Cuenta: K_{Bpub}

4. Autoridad certificadora: Fred, la Federación de Banqueros

5. Firma: {Resumen(campo2+campo3)}_{K_{Fpriv}}

certificados

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Certificado: sentencia firmada por un principal que sirve de credencial y/o autenticación.

Un certificado necesita:

- Un formato estándar acordado
- Acuerdo sobre la forma en que se construyen las cadenas de certificados
- Fechas de expiración, de forma que pueda ser revocado

seguridad

algoritmos criptográficos

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones Mensaje: M, clave: K, funciones criptográficas E, D

Simétricos (clave secreta)

$$E(K, M) = \{M\}_K$$

D(K, E(K, M)) = M

La misma clave para E y D

M debe ser difícil de computar si se desconoce K

La forma usual de ataque es la fuerza bruta. Resistente haciendo K suficientemente grande ~ 128 bits

Asimétricos (clave pública)

Claves de encriptación y desencriptación separadas: K_e, K_d

$$D(K_d. E(K_e, M)) = M$$

se basa en el uso de funciones de *puerta falsa*. E tiene un alto coste computacional. Las claves son muy grandes > 512 bits

Protocolos híbridos – usados en SSL (actualmente llamado TLS)

Usa criptografía asimétrica para transmitir la clave simétrica que es usada para encriptar la sesión

seguridad

cifradores de bloque: de cadena

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones La mayoría de cifradores trabajan sobre bloques de 64 bits

Debilidad de un cifrador de bloque simple: los patrones repetidos pueden ser detectados

- El bloque encriptado en el paso anterior es combinado con el siguiente mediante XOR
- Existe debilidad en el primer bloque cifrado. Se usa vector de inicialización
- 3. La conexión debe ser fiable, no se pueden perder bloques

algoritmos de encriptación simétrica

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones Todos estos algoritmos realizan operaciones de confusión y de difusión sobre bloques de datos binarios

- TEA: un simple pero efectivo algoritmo desarrollado en U. Cambridge (1994) [lo explicaremos a continuación]. Clave de 128-bit, 700 kbytes/s
- **DES**: US Data Encryption Standard (1977). No demasiado fuerte en su formato original. Clave de *56-bit, 350 kbytes/s*
- **Triple-DES**: aplica DES tres veces con dos claves distintas. $E_{DES}(K_1, D_{DES}(K_2, E_{DES}(K_1, M)))$. Clave 112-bit, 120 KB/s
- IDEA: International Data Encryption Algorithm (1990).
 Parecido al TEA. 128-bit key, 700 kbytes/sec
- AES: US Advanced Encryption Standard (1997). Clave de 128/256-bit

Las mediciones se refieren a un Pentium II a 330 MHZ

seguridad

algoritmo de encriptación TEA

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

```
clave 4 x 32 bits
```

```
void encrypt(unsigned long k[], unsigned long text[]) {
    unsigned long y = text[0], z = text[1];
    unsigned long delta = 0x9e3779b9, sum = 0; int n;
    for (n = 0; n < 32; n++) {
        sum += delta;
        y += ((z << 4) + k[0]) ^ (z+sum) ^ ((z >> 5) + k[1]); 5
        z += ((y << 4) + k[2]) ^ (y+sum) ^ ((y >> 5) + k[3]); 6
    }
    text[0] = y; text[1] = z;
}
```

XOR

desplazamiento

Triple de veloz que el DES

distribuidos distr

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

seguridad

algoritmos de encriptación asimétrica

- Todos ellos dependen del uso de funciones de puerta falsa:
 - funciones de un solo sentido con una salida secreta: p.e. producto de dos números grandes (primos); fácil de multiplicar, imposible de factorizar (obtener multiplicandos)
- RSA: El primer algoritmo práctico (Rivest, Shamir y Adelman 1978) y el más frecuentemente usado. Tamaño de la clave puede variar, 512-2048 bits. Velocidad 1-7 kbytes/s
- Curvas elípticas: Método reciente, claves más cortas y más veloz (Menezes 1993 – elliptic curve public key crypto)
- Los algoritmos asimétricos son ~1000 veces más lentos y no son prácticos para encriptaciones masivas; sin embargo, sus propiedades los hacen idóneos para distribución de claves y para autenticación

Sistemas stribuidos

seguridad

algoritmo RSA

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones Para encontrar el par de claves e, d:

1. Elegir dos primos muy grandes, P y Q (mayor de 10¹⁰⁰), y calcular:

$$N = P \times Q$$
$$Z = (P-1) \times (Q-1)$$

2. Para *d* elegir un número primo respecto a *Z* (es decir, *d* no tiene factores comunes con *Z*).

Ilustramos los cálculos con valores pequeños de P y Q:

$$P = 13$$
, $Q = 17 \rightarrow N = 221$, $Z = 192$
 $d = 5$

3. Para encontrar *e* se resuelve la ecuación:

$$e x d = 1 \mod Z$$

 $e \times d$ es el elemento más pequeño divisible por d en la serie Z+1, 2Z+1, 3Z+1, ...

$$e \times d = 1 \mod 192 = 1, 193, 385, ...$$

385 es divisible por d
 $e = 385/5 = 77$

algoritmo RSA

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones Para encriptar según RSA, el texto se divide en bloques de k bits donde $2^k < N$ (el valor numérico de un bloque es siempre menor que N; k entre 512 y 1024)

$$k = 7$$
, entonces $2^7 = 128$ (< $N = 221$)

La función de encriptación de un bloque de texto *M* es:

$$E'(e, N, M) = M^e \mod N$$

para M, el texto cifrado es M^{77} mod 221

La función de desencriptación del bloque cifrado c es:

$$D'(d,N,c) = c^d \mod N$$

Rivest, Shamir and Adelman probaron que E'y D'son inversas mutuas:

$$E'(D'(x)) = D'(E'(x)) = x) \ 0 \le P \le N$$

algoritmos de resumen seguro

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

- MD5: Desarrollado por Rivest (1992). Calcula un resumen de 128 bits. Velocidad: 1740 kbytes/s
 - Cuatro vueltas con una de cuatro funciones no lineales sobre cada 32 bits de un bloque de 512 bits de texto
- SHA: (1995) basado en MD4 de Rivest, pero más seguro, produce un resumen de 160-bit. Velocidad: 750 kbytes/s

Cualquier algoritmo simétrico se puede usar en CBC (cifrador de cadena):

El último bloque es el resumen H(M)

seguridad

firma digital con claves públicas

Contenido

distribula os

seguridad

caso estudio: protocolo Needham-Schroeder

Contenido

- En los primeros sistemas distribuidos (1974-84) era difícil proteger los servidores:
 - P.e. contra ataques enmascarados sobre un servidor de ficheros
 - No había mecanismos de autenticación del origen de la petición
 - La criptografía de clave pública no estaba disponible
 - computadoras demasiado lentas para cálculos importantes
 - RSA no disponible hasta 1978
- Needham y Schroeder desarrollaron un protocolo de autenticación y distribución de claves para uso en red local:
 - Supuso un primer ejemplo del cuidado en el diseño de protocolos de seguridad
 - Introdujeron varias ideas de diseño: p.e. ocasiones

Seguridad N-S: autenticación de clave secreta

Contenido

n S S	Encabezado Mensaje		Notas	
S O	1. A->S:	A, B, N_A	A solicita una clave a S para comunicarse con B	
d n s	2. S->A:	$\{N_A, B, K_{AB},$	S devuelve un mensaje encriptado en la clave secreta de A, con una clave nueva K_{AB} y un "ticket" encriptado en la clave secreta de B. La ocasión N_A	
	Ticket	$\{K_{AB}, A\}_{K_B}$	demuestra que el mensaje fue enviado en respuesta al anterior. A confía en que S envió el mensaje porque sólo S conoce la clave secreta de A	
	3. A->B:	$\{K_{AB}, A\}_{KB}$	A envía el "ticket" a B	
	4. B->A:	$\{N_B\}_{KAB}$	B desencripta el "ticket" y utiliza la nueva clave K_{AB} para encriptar otra ocasión N_B	
	5. A->B:	$\{N_B - 1\}_{KAB}$	A demuestra a B que fue el emisor del mensaje anterior devolviendo una transformación acordada sobre N_B .	

seguridad

N-S: autenticación de clave secreta

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Encabezado Mensaje Nota	3
-------------------------	---

1. A->S: A, B, N_A A solicita una clave a S para comunicarse con B

N_A es una ocasión: entero que se añaden a los mensajes para demostrar la frescura de la transacción. Son generados por el proceso emisor cuando se necesita (p.e. incrementando contador o leyendo el tic del reloj)

3. A->B:	$\{K_{AB},A\}_{KB}$	A A envía el "ticket" a B
4. B->A:	$\{N_{B}\}_{KAB}$	B desencripta el "ticket" y utiliza la nueva clave K_{AB} para encriptar otra ocasión N_B
5. A->B:	{N _B - 1} _{KAB}	A demuestra a B que fue el emisor del mensaje anterior devolviendo una transformación acordada sobre N_B .

caso estudio: Kerberos

Contenido

- Comunicación segura con servidores en una red local
 - Desarrollado en el MIT en 80s para ofrecer seguridad en la red del campus > 5000 usuarios
 - basado en Needham Schroeder
- Estandarizado e incluido en muchos SO
 - Internet RFC 1510, OSF DCE
 - BSD UNIX, Linux, Windows 2000, NT, XP, etc.
 - Disponible en la web del MIT
- El servidor Kerberos crea una clave secreta compartida para cada servidor solicitado y la envía encriptada al computador del usuario
- El password del usuario es el secreto compartido inicial en Kerberos

Arquitectura del sistema

Kerberos

Protocolo

Needham - Schroeder

1. A->S: A, B, N_A

2. S->A: $\{N_A, B, K_{AB}, \{K_{AB}, A\}_{K_B}\}_{K_A}$

3. A->B: $\{K_{AB}, A\}_{KB}$

4. B->A: $\{N_B\}_{KAB}$

5. A->B: $\{N_B - 1\}_{KAB}$

Paso A una vez por inicio de sesión

Paso B una vez por sesión clienteservidor

Paso C una vez por transacción del servidor

distribuldos distribuldos

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

seguridad

buenas prácticas en seguridad informática

1. <u>Educación de los usuarios</u>: ninguna herramienta puede proteger de los errores de un usuario. Deben sensibilizarse sobre lo que puede ocurrir. El miedo o la prohibición no son soluciones.

Los programas de sensibilización deben tratar:

- Política de seguridad corporativa
- Establecimiento de contraseñas y renovación
- Comportamiento ante los virus y prevención
- Uso y abuso del email: puerta de entrada a infección
- Acceso a Internet: un privilegio, no un derecho
- Robo de dispositivos portátiles: proteger los datos
- Ingeniería social
- Importancia del control de acceso a las instalaciones
- Régimen de regulación y jerarquía

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

seguridad

buenas prácticas en seguridad informática

- 2. <u>Defensa elástica</u>: en vez de parar el ataque, se busca ralentizarlo al máximo
 - Firewalls
 - Filtros de paquetes
 - Redes virtuales (VPN)
 - Acceso temporizado
 - Biometría
 - Soft/hard no conectado exterior
 - Auditoría y logs
 - etc.

buenas prácticas en seguridad informática

Contenido

- 3. Robustecimiento del sistema: eliminar utilidades y programas no esenciales. Parar cualquier servicio innecesario. Evitar arranques SO desde elementos externos. TCP/IP único protocolo instalado. Evitar compartición de ficheros e impresoras. Eliminar cuentas "guest". Renombrar a "root". Enjaulado de servicios (chroot).
- 4. Actualizaciones automáticas: parches y mejoras
- 5. <u>Virtualización</u>: se mejoran consumos y mantenimiento, recuperación ante desastres y procedimientos de seguridad. Mejor que el "enjaulado de servicios".
- 6. <u>Uso de herramientas de control (unix):</u> rkhunter (compara hash de archivos con originales), chkrootkit (shell script),...
- 7. <u>Registros externalizados</u>, guardando regularmente copias de seguridad de los mismos.

seguridad

buenas prácticas: passwords!!

http://xato.net/files/10k%20most%20common.zip

seguridad

buenas prácticas: passwords!!

Contenido

http://xato.net/files/10k%20most%20common.zip

seguridad

buenas prácticas: passwords!!

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones Filtración de 6.5 millones de contraseñas: LinkedIn

distribuidos distr

seguridad

buenas prácticas: passwords!!

Contenido

introducción

Filtración de 6.5 millones de contraseñas: LinkedIn

buenas prácticas: wifi!!

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones Existen diversas distribuciones linux que recogen las herramientas más actualizadas para realizar "auditoría" de redes wifi y cableadas

- WifiSlax (http://www.wifislax.net/)
- BackTrack (http://www.kali.org/)
- Wifiway (http://www.wifiway.org)

Herramientas (ataque WEP)

- Kismet (inspección)
- Airodump (sniffer y almacén)
- Aireplay (reinyección)
- Aircrack (extracción de clave → estadísticamente)
- Macchanger → en caso de filtrado MAC

buenas prácticas: wifi!!

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

¿Por qué proteger la red wifi?

- El tráfico de red puede ser capturado y examinado
 - URLs, websites, ...
 - Passwords, suplantación de identidad
- Los recursos de red están expuestos a usuarios desconocidos directamente por la vulnerabilidad del canal de transmisión
 - Ficheros y directorios
 - Instalación de programas de mal comportamiento
- Uso de la conexión para asuntos ilegales o para delinquir

buenas prácticas: wifi!!

Contenido

introducción fundamentos tecnologías nombres tiempo seguridad coordinación transacciones

Contramedidas → ataques wifi

- Cambiar las opciones por defecto de routers y webs de configuración (no usando información personal en el SSID)
- 2. Actualizar firmware y hardware → objetivo WPA o WPA2
- 3. Apagar el AP cuando no se usa (o con algún *timer*)
- 4. Filtrado de MAC y número de clientes simultáneos
- 5. Bajar al mínimo útil la potencia de transmisión de AP
- Encriptación WPA o WPA2 (con claves largas, no en diccionario y cambio periódico)
- Encriptar los volúmenes particiones y ficheros del sistema
- Incorporar siempre antivirus, firewalls de dos direcciones (ver COMODO → Windows; iceFloor → Mac) y software anti-intrusión