Lecture 22: Convex Optimization in Control With Powered Descent Guidance Example

Textbook Sections 4.3 & 12.7

Dr. Jordan D. Larson

Introduction

- Optimal control problems: can be solved using generalized calculus of variations
 - Pontryagin's principle
 - Hamilton-Jacobi-Bellman equation

Introduction

Intro

- Optimal control problems: can be solved using generalized calculus of variations
 - Pontryagin's principle
 - Hamilton-Jacobi-Bellman equation
- Linear optimal control problems:
 - Simpler solutions possible if convex optimization
 - Special convex optimization: semidefinite programming
 - Non-convex constraints may make solution more difficult

Introduction

Intro

- Optimal control problems: can be solved using generalized calculus of variations
 - Pontryagin's principle
 - Hamilton-Jacobi-Bellman equation
- Linear optimal control problems:
 - Simpler solutions possible if convex optimization
 - Special convex optimization: semidefinite programming
 - · Non-convex constraints may make solution more difficult
- Lecture: introduce concepts behind standard semidefinite programming solvers for optimal control

- Many OCPs can be set up convex optimization problems
 - Use concept of convexity

- Many OCPs can be set up convex optimization problems
 - Use concept of convexity
- To explain, consider two points in vector space V, i.e. $\vec{v}_1 \in V$ and $\vec{v}_2 \in V$

- Many OCPs can be set up convex optimization problems
 - Use concept of convexity
- To explain, consider two points in vector space V, i.e. $\vec{v}_1 \in V$ and $\vec{v}_2 \in V$
- Line segment $L(\vec{v}_1, \vec{v}_2)$ between them contains set of points:

$$L(\vec{v}_1, \vec{v}_2) = {\vec{v} \in \mathcal{V} : \vec{v} = \mu \vec{v}_1 + (1 - \mu) \vec{v}_2 \text{ for some } \mu \in [0, 1]}$$
 (1)

- Many OCPs can be set up convex optimization problems
 - Use concept of convexity
- To explain, consider two points in vector space V, i.e. $\vec{v}_1 \in V$ and $\vec{v}_2 \in V$
- Line segment $L(\vec{v}_1, \vec{v}_2)$ between them contains set of points:

$$L(\vec{v}_1, \vec{v}_2) = {\{\vec{v} \in \mathcal{V} : \vec{v} = \mu \vec{v}_1 + (1 - \mu) \vec{v}_2 \text{ for some } \mu \in [0, 1]\}}$$
 (1)

• Let $Q \subset V$ be nonempty, then Q convex set of V if for any $\vec{v}_1, \vec{v}_2 \in Q$, $L(\vec{v}_1, \vec{v}_2) \subset Q$

- Many OCPs can be set up convex optimization problems
 - Use concept of convexity
- To explain, consider two points in vector space V, i.e. $\vec{v}_1 \in V$ and $\vec{v}_2 \in V$
- Line segment $L(\vec{v}_1, \vec{v}_2)$ between them contains set of points:

$$L(\vec{v}_1, \vec{v}_2) = \{ \vec{v} \in \mathcal{V} : \vec{v} = \mu \vec{v}_1 + (1 - \mu) \vec{v}_2 \text{ for some } \mu \in [0, 1] \}$$
 (1)

- Let $Q \subset V$ be nonempty, then Q convex set of V if for any $\vec{v}_1, \vec{v}_2 \in Q$, $L(\vec{v}_1, \vec{v}_2) \subset Q$
- Consider expression $\vec{v} = \mu \vec{v}_1 + (1 \mu) \vec{v}_2$ as weighed average, i.e. if $\mu_1, \mu_2 \in [0, 1]$ with $\mu_1 + \mu_2 = 1$, then $\vec{v} = \mu_1 \vec{v}_1 + \mu_2 \vec{v}_2$

- Many OCPs can be set up convex optimization problems
 - Use concept of convexity
- To explain, consider two points in vector space V, i.e. $\vec{V}_1 \in V$ and $\vec{V}_2 \in V$
- Line segment $L(\vec{v}_1, \vec{v}_2)$ between them contains set of points:

$$L(\vec{v}_1, \vec{v}_2) = {\vec{v} \in \mathcal{V} : \vec{v} = \mu \vec{v}_1 + (1 - \mu) \vec{v}_2 \text{ for some } \mu \in [0, 1]}$$
 (1)

- Let $Q \subset V$ be nonempty, then Q convex set of V if for any $\vec{v}_1, \vec{v}_2 \in Q, L(\vec{v}_1, \vec{v}_2) \subset Q$
- Consider expression $\vec{v} = \mu \vec{v}_1 + (1 \mu) \vec{v}_2$ as weighed average, i.e. if $\mu_1, \mu_2 \in [0, 1]$ with $\mu_1 + \mu_2 = 1$, then $\vec{V} = \mu_1 \vec{V}_1 + \mu_2 \vec{V}_2$
- Generalized to average of *n* points as $\vec{v} = \mu_1 \vec{v}_1 + \cdots + \mu_n \vec{v}_n$ with $\mu_1, \dots, \mu_n \in [0, 1]$ and $\mu_1 + \cdots + \mu_n = 1$

Convex Set of Points

• Set comprised of all weighted averages of points $\vec{v}_1, ..., \vec{v}_n$: convex hull, $co(\{\vec{v}_1, ..., \vec{v}_n\})\}$

Convex Set of Points

- Set comprised of all weighted averages of points $\vec{v}_1, ..., \vec{v}_n$: convex hull, $co(\{\vec{v}_1,...,\vec{v}_n\})\}$
- Following diagram shows two-dimensional example of convex set defined by finite number of points & convex hull

Convex Set of Points

- Set comprised of all weighted averages of points $\vec{v}_1, \dots, \vec{v}_n$: convex hull, $co(\{\overrightarrow{v}_1,...,\overrightarrow{v}_n\})\}$
- Following diagram shows two-dimensional example of convex set defined by finite number of points & convex hull

- More generally, given set Q, **Convex hull**, $co(\mathcal{Q})$, by $set\{\vec{v} \in \mathcal{V} : \text{there exists } n \text{ and } \vec{v}_1, ..., \vec{v}_n \in \mathcal{Q} \text{ such that } \vec{v} \in co(\{\vec{v}_1, ..., \vec{v}_n\})\}$
 - I.e. convex hull of Q: collection of all possible weighted averages of points in Q

2D Example of Convex Hull

Set Q

2D Example of Convex Hull

Set Q

- Can show:
 - Subset $Q \subset co(Q)$ satisfied
 - Convex hull co(Q) convex
 - co(Q) = co(co(Q))
 - Set \mathcal{Q} convex if and only if $co(\mathcal{Q}) = \mathcal{Q}$

2D Example of Convex Hull

Set Q

- Can show:
 - Subset $Q \subset co(Q)$ satisfied
 - Convex hull co(Q) convex
 - co(Q) = co(co(Q))
 - Set Q convex if and only if co(Q) = Q
- Note: by definition, intersection of convex sets always convex

Convex Cones

• Set $Q \subset V$ called **cone** if closed under positive scalar multiplication, i.e. if

$$\vec{v} \in \mathcal{Q}$$
 implies $t\vec{v} \in \mathcal{Q}$ for every $t > 0$ (2)

Convex Cones

• Set $\mathcal{Q} \subset \mathcal{V}$ called **cone** if closed under positive scalar multiplication, i.e. if

$$\vec{v} \in \mathcal{Q}$$
 implies $t\vec{v} \in \mathcal{Q}$ for every $t > 0$ (2)

• Subspaces are cones, but cones broader set, e.g. half-line $C_v = \{\alpha \vec{v} : \alpha > 0\}$ for fixed vector \vec{v}

Convex Cones

• Set $\mathcal{Q} \subset \mathcal{V}$ called **cone** if closed under positive scalar multiplication, i.e. if

$$\vec{v} \in \mathcal{Q}$$
 implies $t\vec{v} \in \mathcal{Q}$ for every $t > 0$ (2)

- Subspaces are cones, but cones broader set, e.g. half-line $C_v = \{\alpha \vec{v} : \alpha > 0\}$ for fixed vector \vec{v}
- Convex cone: cones closed under addition, i.e. $\vec{v}_1, \vec{v}_2 \in \mathcal{Q}$ implies $\vec{v}_1 + \vec{v}_2 \in \mathcal{Q}$

Convexity

• Set $Q \subset V$ called **cone** if closed under positive scalar multiplication, i.e. if

$$\vec{v} \in \mathcal{Q}$$
 implies $t\vec{v} \in \mathcal{Q}$ for every $t > 0$ (2)

- Subspaces are cones, but cones broader set, e.g. half-line $C_V = \{\alpha \vec{V} : \alpha > 0\}$ for fixed vector \vec{v}
- Convex cone: cones closed under addition, i.e. $\vec{v}_1, \vec{v}_2 \in \mathcal{Q}$ implies $\vec{v}_1 + \vec{v}_2 \in \mathcal{Q}$.
- Two-dimensional example of convex and nonconvex cone

Linear Programs (LP)

Quadratic Programs (QP)

Second-Order Cone Programs (SOCP)

Semidefinite Programs (SDP)

- Many generalized OCPs formulated as semidefinite programs (SDP): type of convex optimization
 - Use LMI constraints on solution space \mathcal{X} , e.g. ARIs

Semidefinite Programs (SDP)

- Many generalized OCPs formulated as semidefinite programs (SDP): type of convex optimization
 - Use LMI constraints on solution space \mathcal{X} , e.g. ARIs
- General form of SDP formulation:

$$X^{opt} = \underset{X \in \mathcal{X}}{\operatorname{argmin}} c(X)$$

$$\underset{X \in \mathcal{X}}{\underline{\text{subject to}}} F(X) \leq Q$$

$$X \in \mathcal{X}$$
(3)

- c(X): *linear* functional on vector space \mathcal{X}
- A.k.a. type of linear objective problem

Feasibility Problem

• For this SDP, LMI constraint must be feasible

Feasibility Problem

- For this SDP, LMI constraint must be feasible
- Simplest SDP may be formulated as **feasibility problem**, if there exists $X \in \mathcal{X}$ satisfying F(X) < Q also recast as linear objective problem

$$J = \inf t$$
subject to: $F(X) - tI \le Q$ (4)

• If and only if J < 0, then LMI F(X) < Q feasible

Feasibility Problem

- For this SDP, LMI constraint must be feasible
- Simplest SDP may be formulated as **feasibility problem**, if there exists $X \in \mathcal{X}$ satisfying F(X) < Q also recast as linear objective problem

$$J = \inf t$$
subject to: $F(X) - tI \le Q$ (4)

- If and only if J < 0, then LMI F(X) < Q feasible
- Feasibility question can be made part of SDP and focus of solving SDPs on solving linear objective problems with LMI constraints

• To derive solutions for SDPs, note set $C = \{X \in \mathcal{X} : F(X) < Q\}$: **convex set** in \mathcal{X}

- To derive solutions for SDPs, note set $C = \{X \in \mathcal{X} : F(X) < Q\}$: **convex set** in \mathcal{X}
- Proof: let $X_1, X_2 \in \mathcal{C}$, satisfies $F(X_1) < Q$ and $F(X_2) < Q$

- To derive solutions for SDPs, note set $C = \{X \in \mathcal{X} : F(X) < Q\}$: **convex set** in \mathcal{X}
- Proof: let $X_1, X_2 \in \mathcal{C}$, satisfies $F(X_1) < Q$ and $F(X_2) < Q$
- Then, consider any point $X_3 \in L(X_1, X_2)$, i.e. $X_3 = \mu X_1 + (1 \mu)X_2$ for some value $\mu \in [0, 1]$

- To derive solutions for SDPs, note set $C = \{X \in \mathcal{X} : F(X) < Q\}$: **convex set** in \mathcal{X}
- Proof: let $X_1, X_2 \in \mathcal{C}$, satisfies $F(X_1) < Q$ and $F(X_2) < Q$
- Then, consider any point $X_3 \in L(X_1, X_2)$, i.e. $X_3 = \mu X_1 + (1 \mu)X_2$ for some value $\mu \in [0, 1]$
- Using linearity of F():

$$F(X_3) = \mu F(X_1) + (1 - \mu)F(X_2) < \mu Q + (1 - \mu)Q = Q$$
 (5)

- Inequality follows from fact that positive definite matrices: convex cones
- Therefore: $X_3 \in \mathcal{C}$

Linear Objective Problem Example

• For $X = [x_1 \ x_2]^T \in \mathbb{R}^2$ with

$$c(X) = Y^T X = y_1 x_1 + y_2 x_2 (6)$$

• For some fixed $Y \in \mathbb{R}^2$

Linear Objective Problem Example

• For $X = [x_1 \ x_2]^T \in \mathbb{R}^2$ with

$$c(X) = Y^{T}X = y_1x_1 + y_2x_2$$
 (6)

- For some fixed $Y \in \mathbb{R}^2$
- Represent feasibility set $C = \{X \in \mathbb{R}^2 : F(X) < Q\}$ for linear objective problem:
 - X_n: current guess
 - X_{min} : element of C with most negative projection in direction of Y and solution to problem

Global Minimum for Convex Set

- Note: diagram correctly suggests no other local minima for function in set
 - Namely, for every other point exists "descent" direction
 - This property, fundamental to convex optimization problems, stated precisely as follows.

Global Minimum for Convex Set

- Note: diagram correctly suggests no other local minima for function in set
 - Namely, for every other point exists "descent" direction
 - This property, fundamental to convex optimization problems, stated precisely as follows.
- If X_0 local minimum of linear objective problem, i.e. $c(X_0) \le c(X)$ for every X in some neighborhood $\mathcal{N}(X_0) \cap \mathcal{C}$, then X_0 : global minimum of problem over \mathcal{C}

Global Minimum for Convex Set

- Note: diagram correctly suggests no other local minima for function in set
 - Namely, for every other point exists "descent" direction
 - This property, fundamental to convex optimization problems, stated precisely as follows.
- If X_0 local minimum of linear objective problem, i.e. $c(X_0) \le c(X)$ for every X in some neighborhood $\mathcal{N}(X_0) \cap \mathcal{C}$, then X_0 : global minimum of problem over \mathcal{C}
- Proof, let X_1 be any other point in C

Global Minimum for Convex Set

- Note: diagram correctly suggests no other local minima for function in set
 - Namely, for every other point exists "descent" direction
 - This property, fundamental to convex optimization problems, stated precisely as follows.
- If X_0 local minimum of linear objective problem, i.e. $c(X_0) \le c(X)$ for every X in some neighborhood $\mathcal{N}(X_0) \cap \mathcal{C}$, then X_0 : global minimum of problem over \mathcal{C}
- Proof, let X_1 be any other point in C
- Since \mathcal{C} convex: contains $L(X_0, X_1)$ and by definition, neighborhood $\mathcal{N}(X_0)$ contains points $\mu X_1 + (1 \mu)X_0$ for some sufficiently small μ , i.e. $\mu \in [0, \epsilon)$

Global Minimum for Convex Set

- Note: diagram correctly suggests no other local minima for function in set
 - Namely, for every other point exists "descent" direction
 - This property, fundamental to convex optimization problems, stated precisely as follows.
- If X_0 local minimum of linear objective problem, i.e. $c(X_0) \le c(X)$ for every X in some neighborhood $\mathcal{N}(X_0) \cap \mathcal{C}$, then X_0 : global minimum of problem over \mathcal{C}
- Proof, let X_1 be any other point in C
- Since \mathcal{C} convex: contains $L(X_0, X_1)$ and by definition, neighborhood $\mathcal{N}(X_0)$ contains points $\mu X_1 + (1 \mu)X_0$ for some sufficiently small μ , i.e. $\mu \in [0, \epsilon)$
- Function $f(\mu) = c(\mu X_1 + (1 \mu)X_0)$ linear in $\mu \in [0, \epsilon)$ and $f(0) \le f(\mu)$ for $\mu \in [0, \epsilon)$ by hypothesis
 - $f(\mu)$ non-decreasing and $f(0) \le f(1)$, or equivalently, $c(X_0) \le c(X_1)$

 Property generalizes to any convex optimization problem and ensures these problems can be solved globally, not just locally, by numerical search algorithms

- Property generalizes to any convex optimization problem and ensures these problems can be solved globally, not just locally, by numerical search algorithms
- At first glance, think minimum if it exists must lie on boundary of feasible set which would restrict search to boundary
 - Case for linear programming
 - Boundary in general SDPs complicated, thus, **interior point methods** favored in practice

- Property generalizes to any convex optimization problem and ensures these problems can be solved globally, not just locally, by numerical search algorithms
- At first glance, think minimum if it exists must lie on boundary of feasible set which would restrict search to boundary
 - Case for linear programming
 - Boundary in general SDPs complicated, thus, interior point methods favored in practice
- Example of convex optimization method: suppose point X_n in feasible set

- Property generalizes to any convex optimization problem and ensures these problems can be solved globally, not just locally, by numerical search algorithms
- At first glance, think minimum if it exists must lie on boundary of feasible set which would restrict search to boundary
 - Case for linear programming
 - Boundary in general SDPs complicated, thus, interior point methods favored in practice
- Example of convex optimization method: suppose point X_n in feasible set
- Immediate consequence: one only needs to keep set

$$\{X \in \mathcal{C} : c(X) \le c(X_n)\}\tag{7}$$

- For remaining search for global minimum
- Amounts to setting C with half-space

- Property generalizes to any convex optimization problem and ensures these problems can be solved globally, not just locally, by numerical search algorithms
- At first glance, think minimum if it exists must lie on boundary of feasible set which would restrict search to boundary
 - Case for linear programming
- Boundary in general SDPs complicated, thus, interior point methods favored in practice
- Example of convex optimization method: suppose point X_n in feasible set
- Immediate consequence: one only needs to keep set

$$\{X \in \mathcal{C} : c(X) \le c(X_n)\}\tag{7}$$

- For remaining search for global minimum
- Amounts to setting C with half-space
- Can progressively shrink feasibility region to zero, provided able to successively generate "good" feasible point, e.g. X_{n+1}

Ellipsoid Algorithm

- Many optimization methods based on principle, one of simplest known as ellipsoid algorithm
 - Alternates between "cutting" and bounding resulting set by ellipsoid
 - X_{n+1} would be center of such ellipsoid

Ellipsoid Algorithm

- Many optimization methods based on principle, one of simplest known as ellipsoid algorithm
 - Alternates between "cutting" and bounding resulting set by ellipsoid
 - X_{n+1} would be center of such ellipsoid
- More efficient methods for SDPs: based on barrier functions to impose feasibility constraint.
 - Idea: minimize function

$$c(X) + \alpha \phi(X) \tag{8}$$

- Where $\alpha > 0$ and barrier function $\phi(X)$ convex and approaches infinity on boundary of feasible set
- E.g. for set C

$$\phi(X) = -\log(\det[Q - F(X)]) \tag{9}$$

Serve as barrier function

Convex Optimization Algorithms

 Provided one starts from feasible point, minimization can be globally solved by unconstrained optimization methods, e.g. Newton's method

Convex Optimization Algorithms

unconstrained optimization methods, e.g. Newton's method

• By successively reducing weight of barrier function; iteration produced converges to

Provided one starts from feasible point, minimization can be globally solved by

- By successively reducing weight of barrier function: iteration produced converges to global minimum
 - Computational complexity of polynomial growth with problem size characterized by dimension of $\mathcal X$ and constraint set $\mathbb H^n$

Convex Optimization Algorithms

- Provided one starts from feasible point, minimization can be globally solved by unconstrained optimization methods, e.g. Newton's method
- By successively reducing weight of barrier function: iteration produced converges to global minimum
 - Computational complexity of polynomial growth with problem size characterized by dimension of $\mathcal X$ and constraint set $\mathbb H^n$
- Additional details on convex optimization algorithms beyond scope of textbook and left to reader

Algebraic Riccati Equation

• *Will be shown*: solutions to infinite-horizon OCPs found by setting up algebraic Riccati equations (ARE) of general form:

$$A^T P + PA + Q + PRP = 0 (10)$$

• Typically, required to find particular solution $P = P^T \in \mathbb{R}^{n_x \times n_x}$ such that A + RP stable, i.e. all its eigenvalues have strict negative real part

Algebraic Riccati Equation

• *Will be shown*: solutions to infinite-horizon OCPs found by setting up algebraic Riccati equations (ARE) of general form:

$$A^T P + PA + Q + PRP = 0 (10)$$

- Typically, required to find particular solution $P = P^T \in \mathbb{R}^{n_x \times n_x}$ such that A + RP stable, i.e. all its eigenvalues have strict negative real part
- For such problems, define Hamiltonian matrix of ARE of (A, Q, R):

$$H = \begin{bmatrix} A & R \\ -Q & -A^T \end{bmatrix} \tag{11}$$

Algebraic Riccati Equation (continued)

Alternate ARE:

$$\begin{bmatrix} P & -I \end{bmatrix} H \begin{bmatrix} I \\ P \end{bmatrix} = 0 \tag{12}$$

• Eigenvalue decomposition of H: key to solving ARE

Algebraic Riccati Equation (continued)

Alternate ARE:

$$\begin{bmatrix} P & -I \end{bmatrix} H \begin{bmatrix} I \\ P \end{bmatrix} = 0 \tag{12}$$

- Eigenvalue decomposition of H: key to solving ARE
- In this case, state if:
 - $A, Q = Q^T$ and $R = R^T$ given
 - H has no purely imaginary axis eigenvalues
 - $R \ge 0$ or $R \le 0$
 - (A, R) stabilizable

Then ARE of (A, Q, R) has unique solution $P = P^T$ such that A + RP stable

• For more advanced control synthesis, instead use algebraic Riccati inequality (ARI):

$$A^T P + PA + Q + PRP < 0 ag{13}$$

• Type of linear matrix inequality discussed in following section.

• For more advanced control synthesis, instead use algebraic Riccati inequality (ARI):

$$A^T P + PA + Q + PRP < 0 ag{13}$$

- Type of linear matrix inequality discussed in following section.
- For example, consider inequality

$$A^T P + PA + C^T C + \gamma^{-2} PBB^T P < 0$$
 (14)

• Quadratic in $P \in \mathbb{S}^n > 0$

Rewriting this as

$$\begin{bmatrix} A^T P + PA + C^T C + \gamma^{-2} PBB^T P & 0 \\ 0 & -\gamma^{-2} I \end{bmatrix} < 0$$
 (15)

Rewriting this as

$$\begin{bmatrix} A^T P + PA + C^T C + \gamma^{-2} PBB^T P & 0 \\ 0 & -\gamma^{-2} I \end{bmatrix} < 0$$
 (15)

By Schur Complement Lemma, form equivalent LMI for P

$$\begin{bmatrix} A^T P + PA + C^T C & PB \\ B^T P & -\gamma^2 I \end{bmatrix} < 0$$
 (16)

$$\begin{bmatrix} A^T P + PA & PB \\ B^T P & \gamma^{-2} I \end{bmatrix} < \begin{bmatrix} -C^T C & 0 \\ 0 & 0 \end{bmatrix}$$
 (17)

- LMI in *P* as left side can be assigned as $F(P) : \mathbb{S}^n \to \mathbb{S}^n$
- Right side assigned as $Q \in \mathbb{S}$

$$\begin{bmatrix} A^T P + PA & PB \\ B^T P & \gamma^{-2} I \end{bmatrix} < \begin{bmatrix} -C^T C & 0 \\ 0 & 0 \end{bmatrix}$$
 (17)

- LMI in *P* as left side can be assigned as $F(P) : \mathbb{S}^n \to \mathbb{S}^n$
- Right side assigned as $Q \in \mathbb{S}$
- In this case, relate solutions to AREs and ARIs for OCPs

$$\begin{bmatrix} A^T P + PA & PB \\ B^T P & \gamma^{-2} I \end{bmatrix} < \begin{bmatrix} -C^T C & 0 \\ 0 & 0 \end{bmatrix}$$
 (17)

- LMI in *P* as left side can be assigned as $F(P) : \mathbb{S}^n \to \mathbb{S}^n$
- Right side assigned as $Q \in \mathbb{S}$
- In this case, relate solutions to AREs and ARIs for OCPs
- One of important lemmas between AREs/ARIs: known as Bounded Real Lemma, a.k.a. Kalman-Yacubovich-Popov (KYP) lemma stated as follows

$$\begin{bmatrix} A^T P + PA & PB \\ B^T P & \gamma^{-2} I \end{bmatrix} < \begin{bmatrix} -C^T C & 0 \\ 0 & 0 \end{bmatrix}$$
 (17)

- LMI in *P* as left side can be assigned as $F(P) : \mathbb{S}^n \to \mathbb{S}^n$
- Right side assigned as $Q \in \mathbb{S}$
- In this case, relate solutions to AREs and ARIs for OCPs
- One of important lemmas between AREs/ARIs: known as Bounded Real Lemma, a.k.a. Kalman-Yacubovich-Popov (KYP) lemma stated as follows
- Consider following LTI system, $F_L(G, K)$:

$$\dot{\vec{x}}(t) = A_L \vec{x}(t) + B_1 \vec{d}(t)
\vec{e}(t) = C_1 \vec{x}(t)$$
(18)

• Let $\gamma > 0$ be given

Bounded Real Lemma (continued)

- Following three statements equivalent
 - **1** $F_I(G, K)$ stable, i.e. A_I stable, and $||F_I(G, K)||_{\infty} < \gamma^2$
 - 2 Exists unique $P_1 \ge 0$ such that $A_L + \gamma^{-2} P_1 B_1 B_1^T P_1$ stable and satisfies ARE:

$$A^{T}P_{1} + P_{1}A + C_{1}^{T}C_{1} + \gamma^{-2}P_{1}B_{1}B_{1}^{T}P_{1} = 0$$
(19)

3 Exists $P_2 > 0$ satisfying strict ARI:

$$A^{T}P_{2} + P_{2}A + C_{1}^{T}C_{1} + \gamma^{-2}P_{2}B_{1}B_{1}^{T}P_{2} < 0$$
(20)

Bounded Real Lemma (continued)

- Following three statements equivalent
 - **1** $F_L(G, K)$ stable, i.e. A_L stable, and $||F_L(G, K)||_{\infty} < \gamma^2$
 - 2 Exists unique $P_1 \ge 0$ such that $A_L + \gamma^{-2} P_1 B_1 B_1^T P_1$ stable and satisfies ARE:

$$A^{T}P_{1} + P_{1}A + C_{1}^{T}C_{1} + \gamma^{-2}P_{1}B_{1}B_{1}^{T}P_{1} = 0$$
(19)

3 Exists $P_2 > 0$ satisfying strict ARI:

$$A^{T}P_{2} + P_{2}A + C_{1}^{T}C_{1} + \gamma^{-2}P_{2}B_{1}B_{1}^{T}P_{2} < 0$$
(20)

- To solve ARIs for P₂ requires semidefinite programming (SDP)
 - Class of convex optimization
 - Discussed in later subsection and then applied to both \mathcal{H}_2 and \mathcal{H}_∞ OCPs in later lectures

Generalized Feedback Control System

Generalized plant, G(s):

$$\dot{\vec{x}}(t) = A\vec{x}(t) + B_1 \vec{d}(t) + B_2 \vec{u}(t)
\vec{e}(t) = C_1 \vec{x}(t) + D_{11} \vec{d}(t) + D_{12} \vec{u}(t)$$

State feedback control policy for K(s):

$$\vec{u}(t) = D_K \vec{x}(t) \tag{22}$$

(21)

Generalized Feedback Control System (continued)

Results in closed-loop system:

$$\dot{\vec{x}}(t) = (A + B_2 D_K) \vec{x}(t) + B_1 \vec{d}(t)
\vec{e}(t) = (C_1 + D_{12} D_K) \vec{x}(t) + D_{11} \vec{d}(t)$$
(23)

• Stable if and only if $A_L = A + B_2 D_K$ stable

Generalized Feedback Control System (continued)

Results in closed-loop system:

$$\dot{\vec{x}}(t) = (A + B_2 D_K) \vec{x}(t) + B_1 \vec{d}(t)
\vec{e}(t) = (C_1 + D_{12} D_K) \vec{x}(t) + D_{11} \vec{d}(t)$$
(23)

- Stable if and only if $A_L = A + B_2 D_K$ stable
- LMI for stabilizing D_K , enforce stable condition by matrix Lyapunov inequality:

$$A_L P + P A_L^T < 0 (24)$$

• Solution *P* > 0

Generalized Feedback Control System (continued)

Results in closed-loop system:

$$\vec{x}(t) = (A + B_2 D_K) \vec{x}(t) + B_1 \vec{d}(t)$$

 $\vec{e}(t) = (C_1 + D_{12} D_K) \vec{x}(t) + D_{11} \vec{d}(t)$

- Stable if and only if $A_1 = A + B_2 D_K$ stable
- LMI for stabilizing D_{κ} , enforce stable condition by matrix Lyapunov inequality:

$$A_{l}P+PA_{l}^{T}<0 (24)$$

- Solution P > 0
- Substituting for *A_L*:

$$(A + B_2 D_K)P + P(A + B_2 D_K)^T < 0$$

(25)

(23)

LMI Construction

Expanded:

$$AP + PA^{T} + B_{2}(D_{K}P) + (PD_{K}^{T})B_{2}^{T} < 0$$
 (26)

LMI Construction

Expanded:

$$AP + PA^{T} + B_{2}(D_{K}P) + (PD_{K}^{T})B_{2}^{T} < 0$$
 (26)

• Substituting $Y = D_K P$, then LMI in P and Y:

$$\begin{bmatrix} A & B_2 \end{bmatrix} \begin{bmatrix} P \\ Y \end{bmatrix} - \begin{bmatrix} P & Y^T \end{bmatrix} \begin{bmatrix} A^T \\ B_2^T \end{bmatrix} < 0$$
 (27)

• Solved for P and Y and obtain stabilizing feedback controller as $D_K = YP^{-1}$

LMI Construction

Expanded:

$$AP + PA^{T} + B_{2}(D_{K}P) + (PD_{K}^{T})B_{2}^{T} < 0$$
 (26)

• Substituting $Y = D_K P$, then LMI in P and Y:

$$\begin{bmatrix} A & B_2 \end{bmatrix} \begin{bmatrix} P \\ Y \end{bmatrix} - \begin{bmatrix} P & Y^T \end{bmatrix} \begin{bmatrix} A^T \\ B_2^T \end{bmatrix} < 0$$
 (27)

- Solved for P and Y and obtain stabilizing feedback controller as $D_k = YP^{-1}$
- Note: process can be expanded to general LMI characterizations for non-state feedback controllers D_K

- Linear optimal control problems:
 - Finite-horizon, quadratic cost: Riccati differential equation
 - Infinite-horizon, quadratic-like costs: algebraic Riccati equation & algebraic Riccati inequality
 - Inequalities for stability and constraints: semidefinite programming

- Linear optimal control problems:
 - Finite-horizon, quadratic cost: Riccati differential equation
 - Infinite-horizon, quadratic-like costs: algebraic Riccati equation & algebraic Riccati inequality
 - Inequalities for stability and constraints: semidefinite programming
- Convex optimal control problems:
 - Interior point methods: search iteratively for minimum in convex set
 - Local minimum = global minimum

- Linear optimal control problems:
 - Finite-horizon, quadratic cost: Riccati differential equation
 - Infinite-horizon, quadratic-like costs: algebraic Riccati equation & algebraic Riccati inequality
 - Inequalities for stability and constraints: semidefinite programming
- Convex optimal control problems:
 - Interior point methods: search iteratively for minimum in convex set
 - Local minimum = global minimum
- Bounded real lemma: stabilize and bound \mathcal{H}_{∞} -norm for generalized feedback control system

- Linear optimal control problems:
 - Finite-horizon, quadratic cost: Riccati differential equation
 - Infinite-horizon, quadratic-like costs: algebraic Riccati equation & algebraic Riccati inequality
 - Inequalities for stability and constraints: semidefinite programming
- Convex optimal control problems:
 - Interior point methods: search iteratively for minimum in convex set
 - Local minimum = global minimum
- Bounded real lemma: stabilize and bound $\mathcal{H}_{\infty}\text{-norm}$ for generalized feedback control system
- Simple LMI for stabilizing state feedback control