## **LISTING OF CLAIMS**

Please amend the Claims as shown below:

1. (Currently amended) A method for hashing, comprising:

storing a plurality of partial keys in memory;

applying a hash function to an original key to generate a hash value,

wherein said hash function comprises any polynomial;

accessing the memory according to the hash value;

reading [[the]] [[a]]partial key from the memory corresponding to the

hash value;

executing a conflict check by comparing a partial key derived from an

incoming full key with [a] [the] partial key stored in the memory.

2. (Currently amended) The method of Claim 1, wherein the partial key

from the memory corresponding to the hash value includes saved bits comprise

comprising a consecutive, sequential string of bits, less than or equal to N, which

is part of the original key.

3. (Currently amended) The method of Claim 2, wherein the partial key

from the memory corresponding to the hash value comprises a number of bits

equal to or more than the number of bits of the original key minus the number of

bits of the hash value.

4. (Original) The method of Claim 1, wherein the hash function is

implemented by a linear feedback shift register.

CSCO-7059 2 Serial No.:10/696,467

Examiner: Walter, Craig E. Group Art Unit: 2188

5. (Currently amended) The method of Claim 1 further comprising applying a reverse function on the partial key <u>from the memory corresponding</u> to the hash value and hash value to generate the original key.

6. (Original) The method of Claim 1 further comprising the steps of: reading a result from the memory corresponding to the hash value; forwarding a packet of data according to the result read from the memory.

7. (Currently amended) A hashing apparatus, comprising:
a memory which stores a plurality of partial keys used to determine hashing conflicts;

a hash function block coupled to a memory that applies [[a]] any polynomial to a full key and generates a hash value which is used to point to one of the plurality of partial keys stored the in in the memory, wherein the partial keys include saved bits comprising a consecutive, sequential string of bits derived from the original key.

- 8. (Original) The hashing apparatus of Claim 7, wherein the memory comprises a  $2^N$  hash table size.
- 9. (Currently amended) The hashing apparatus of Claim 7, wherein the partial key the one of the plurality of partial keys stored in the memory comprises a number of bits equal to or more than the number of bits of the original key minus the number of bits of the hash value.
- 10. (Original) The hashing apparatus of Claim 7, wherein the hash function block comprises a linear feedback shift register.

CSCO-7059

3

Serial No.:10/696,467

Examiner: Walter, Craig E.

Group Art Unit: 2188

- 11. (Original) The hashing apparatus of Claim 9, wherein the linear feedback shift register corresponds to a Galois version.
- 12. (Original) The hashing apparatus of Claim 9, wherein the linear feedback shift register corresponds to a Fibonacci version.
- 13. (Currently amended) The hashing apparatus of Claim 7 further including a reverse function generator coupled to the memory, wherein the reverse function generator generates the original key based on the partial key the one of the plurality of partial keys stored in the memory and hash value.
- 14. (Currently amended) The hashing apparatus of Claim 7 further comprising a forwarding engine coupled to the memory, wherein the forwarding engine forwards a data packet according to information read from the memory at an address corresponding to the partial key the one of the plurality of partial keys stored in the memory.
- 15. (Currently amended) A hashing apparatus comprising:
  means for storing a plurality of partial keys in memory;
  means for applying a hash function to an original key to generate a hash
  value, the hash function comprising any N bit polynomial;

means for accessing the memory according to the hash value, wherein a position to save comprises any N consecutive bits;

means for reading [[the]] [[a]] partial key from the memory corresponding to the hash value, wherein a size to save comprises • N bits;

4

CSCO-7059 Examiner: Walter, Craig E. means for executing a conflict check by comparing a partial key derived from an incoming full key with [[a]] [[the]] partial key stored in the memory,

wherein the memory comprises a  $2^{N}$  hash table size.

16. (Original) The hashing apparatus of Claim 15, wherein saved bits

comprise a consecutive, sequential string of bits which is part of the original key.

17. (Currently amended) The hashing apparatus of Claim 16, wherein the

partial key from the memory corresponding to the hash value comprises a

number of bits equal to or more than the number of bits of the original key minus

the number of bits of the hash value.

18. (Original) The hashing apparatus of Claim 15, wherein the hash

function is implemented by a linear feedback shift register means.

19. (Currently amended) The hashing apparatus of Claim 15 further

comprising means for applying a reverse function on the partial key from the

memory corresponding to the hash value and hash value to generate the original

key.

20. (Original) The hashing apparatus of Claim 15 further comprising:

means for reading a result from the memory corresponding to the hash

value;

means for forwarding a packet of data according to the result read from

5

the memory.

21. (canceled)

Examiner: Walter, Craig E.

- 22. (canceled)
- 23. (canceled)
- 24. (canceled)
- 25. (canceled)
- 26. (Original) A method for accessing data, comprising:
  storing a plurality of partial keys in memory;
  applying a function to an original key to generate a value;
  accessing the memory according to the value;
  reading a partial key from the memory corresponding to the value;
  comparing the partial key to the value in determining which data is
  accessed;

applying a reverse function on the partial key and value to generate the original key.

CSCO-7059 Examiner: Walter, Craig E. Serial No.:10/696,467 Group Art Unit: 2188