

Vier Physizierende mit Schluckauf...

Sommerakademie Annecy 2024

Theo Lequy^{1,5}, Jakov Wallbrecher^{1,6}, Erik Haufs^{2,3}, Linn Fischbach¹, ChatGPT⁴

 $^1\mathrm{ETH}$ Zürich, $^2\mathrm{Ruhr}$ -Universität Bochum, $^3\mathrm{Heinrich}$ -Heine-Universität Düsseldorf, $^4\mathrm{OpenAI}$ San Francisco, $^5\mathrm{Otto}$ -von-Guericke-Universität Magdeburg, $^6\mathrm{Ludwig}$ -Maxmilians-Universität München

große Bins, Datensatz A-D

Abb. Der gesamte Datensatz wurde mit photon_isTightID == True & photon_ptcone30 < 5 gefiltert und mit einer Background Funktion von $a*e^{b*x} + c*x + d$ modelliert.

große Bins, Datensatz A-D

Abb. Wenn der Background abgezogen wird entsteht eine grobe Gauss Verteilung um 125 GeV/c^2 zentriert.

Manual Filters

Abb. gefilterte Datensätze A-D mit photon_isTightID == True & jet_n == 0 & met_et/1000 < 25

Manual Filters

Abb. applied moving average with disjoint rectangles, trend fit with $a \exp(bx + cx^2)$

Manual Filters: Sliding

Abb. applied moving average with rectangular kernel, trend fit with $a \exp(bx + cx^2)$

Manual Filters: Sliding & Epanechnikov

Abb. applied weighted moving average with Epanechnikov kernel, trend fit with $a \exp(bx + cx^2)$

Manual Filters: Sliding & Epanechnikov detrended

Abb. manually filtered, applied weighted moving average with Epanechnikov kernel, detrended with exp-polynomial of degree 2

Manual Filters: Sliding & Epanechnikov detrended

Abb. manually filtered, applied weighted moving average with Epanechnikov kernel, detrended with poly-exponential of degree 2, fitted Gauß-curve

XGB decision tree

Training eines Decision-trees zur Unterscheidung zwischen Background und Higgs-Event.

Parameter: photon_trigMatched, jet_n, lep_n, met_et, photon_isTightID, photon_ptcone30, photon_etcon20

Decision Tree, Feature importance

Abb. Feature importance

Decision Tree, Data Separation

Abb. Separation of signal and background.

Decision Tree, Data Separation

Abb. with 0.01% artificial signal

Abb. without artificial signal

XGB decision tree & Sliding Epanechnikov

Abb. filtered data with XGB decision tree, applied weighted moving average with Epanechnikov kernel, trend fit with $a \exp(bx + cx^2)$

XGB decision tree & Sliding Epanechnikov, Detrended

Abb. filtered data with XGB decision tree, applied weighted moving average with Epanechnikov kernel, detrended with poly-exponential of degree 2, fitted Gauß-curve

p-Wert & Signifikanz

- Über Poisson-Näherung: im Bereich [120,124]
- p = 0.008, Z = 2.38
- Über simulierte Verteilung:
- $p = 1.018 \cdot 10^{-5}, Z = 4.26$
- Mit Vorsicht zu genießen!
- Besser: Nun auf unbekannten Daten testen!

Einsatz von ChatGPT

- Erklärung der verschiedenen Parameter der Diphoton-Events
- Finden relevanter Parameter zur Higgs-Event-Filterung
- Generieren von Code-Logik bis zu einem gewissen Grad hilfreich, oft Debugging nötig (verwendet zB falsche Variablen zum Filtern)
 - ightarrow falls genaue Vorstellung von Codeaufbau, ist Eigenentwicklung oft schneller
- Generieren von Plotting-Code