

Contrast and Generation Make BART a Good Dialogue Emotion Recognizer

Shimin Li, Hang Yan, Xipeng Qiu Fudan University 2022.01.08

Contrast and Generation Make BART a Good Dialogue Emotion Recognizer

Task Introduction

Emotion Recognition in Conversation:

• Identifying the emotion of several speakers' utterances in a conversation.

Social sentiment mining

empathetic dialogue system

Task Description

Characters:

- Chronological: the previous utterance directly influences the current speaker's emotion.
- the same speaker is influenced by other utterances and may expresses different emotions.

Main challenges

• The emotion of each utterance may be affected by contextual information.

• Each speaker's emotion is influenced by other speakers in the conversation (or emotional shifts).

• It is difficult to distinguish semantically similar sentiment categories, such as "frustrated" to "sad", "happy" to "excited", etc.

Method Overview

- To model context dependency:
 - ➤ Dialogue-level Transformer for long-range context dependency

- > Response generation for short-turn context dependency
- To distinguish semantically similar emotions:
 - > Supervised contrastive learning

- Utterance Encoding:
 - > splice the speaker's name or category before the utterance and encode with BART

- Dialogue Modeling:
 - \triangleright modelling the contextual dependencies with dialogue-level Transformer for H_{d-win}

- Supervised contrastive loss for ERC:
 - \triangleright a copy of the hidden state of utterances is made to obtain \overline{H}_{d-win} , and its gradient is detached.

where $i \in I = \{1, 2, \dots, 2N\}$ indicate the index of the samples in a multi-view batch, $P(i) = I_{j=i} - \{i\}$ represents samples with the same category as i while excluding itself, $A(i) = I - \{i, N + i\}$ indicates samples in the multi-view batch except itself.

- Auxiliary Response Generation
 - > Generate response base on the current utterance.

$$\mathcal{L}_{\mathrm{Gen}} = -\sum_{i=1}^{N} \log p(u_{t+1}|u_t, \boldsymbol{\theta}),$$

- Modeling Training
 - > The total loss is the weighted sum of cross entropy loss, contrastive loss and generation loss.

$$\mathcal{L} = (1 - \alpha - \beta)\mathcal{L}_{CE} + \alpha\mathcal{L}_{SCL} + \beta\mathcal{L}_{Gen}$$

Experiments

• Metrics:

- ➤ MELD, EmoryNLP and IEMOCAP: weighted average F1
- ➤ DailyDialog: micro-F1 (ignore the label "neutral" when calculating the results)

Dataset	et MELD		EmoryNLP		IEMOCAP		DailyDialog	
Model	Weighted -Avg-F1	Micro-F1	Weighted -Avg-F1	Micro-F1	Weighted -Avg-F1	Micro-F1	Weighted -F1-neural	Micro -F1-neutral
BERT	62.28	63.49	34.87	41.11	60.98	-	53.41	54.85
RoBERTa	62.51	63.75	35.90	40.81	63.38	-	52.84	54.33
HiTrans	61.94	-	36.75	-	64.50	-	-	-
DialogXL	62.41	-	34.73	-	65.94	-	-	54.93
TODKAT	68.23	64.75	43.12	42.68	61.33	61.11	52.56	58.47
BART	66.89	64.28	47.53	39.01	53.76	53.31	54.57	53.16

CoG-BART **69.70** (\pm **0.31**) 63.66 (\pm 0.63) **49.08** (\pm **0.50**) 37.57 (\pm 0.76) **67.00** (\pm **0.47**) **64.10** (\pm 0.51) **56.46** (\pm **1.03**) 54.71 (\pm 0.99)

Compared with pre-train-based models, our method yields very competitive results in four datasets.

Experiments

The t-SNE visualization when α is 0 and 0.8

Metric		W				
Datasets	α=0.2	α=0.4	α=0.6	α=0.8	β = 0.1	β=0.2
MELD	68.71	69.70	69.23	69.17	69.70	69.53
IEMOCAP	65.86	65.75	65.02	67.00	65.38	65.57
EmoryNLP	48.82	49.08	48.32	47.74	49.08	48.73

Quantitative Analysis

 Qualitatively, supervised contrastive learning clarifies the boundaries of the different emotional categories.

• The proportion of supervised contrastive loss in achieving optimal results varies between datasets.

Experiments

Dataset	MELD	IEMOCAP			
Methods	Weight-Avg-F1				
CoG-BART	69.70	67.00			
-Gen	68.50 (\1.20)	66.63 (\\ 0.37)			
-SCL loss	67.71 (\1.99)	62.01 (\.4.99)			
-Speaker	68.28 (\1.42)	56.68 (\10.32)			
-Gen, SCL loss	$67.32 (\downarrow 2.38)$	64.68 (\12.32)			
-SCL loss, Speaker	67.05 (_2.65)	54.57 (\12.43)			
-Gen, Speaker	68.39 (\1.31)	56.14 (\10.86)			
-Dialog-Trans	69.40 (\(\psi 0.30 \)	66.83 (\\ 0.17)			

Ablation Study

- Supervised contrastive loss is of great help for this task
- Speaker information plays a vital role in IEMOCAP

Thanks