

Spectral and temporal modifications

Roland Badeau, roland.badeau@telecom-paris.fr

TSIA 206 - Speech and audio processing

Introduction

Original waveform and spectrogram

Une école de l'IMT

Spectral and temporal modifications

Modification of playback speed

Increased speed

Lowered speed

Modifying playback speed impacts both time and frequency scales Origin of the problem: $y(t) = x(\alpha t) \Leftrightarrow Y(f) = \frac{1}{|\alpha|}X(\frac{f}{\alpha})$

Modifications of duration and pitch

Original sound

Shorter time scale Lower frequency scale

Goal: separately control the time and frequency scales

Outline

- Separate control of the time and frequency scales
 - Synthesis by means of wavetable sampling
 - Post-synchronization of sound and video
 - Musical post-production
- ► Three categories of methods:
 - ► Spectral methods: phase vocoder
 - ► Temporal methods: TD-PSOLA
 - Parametric methods: LPC, sinusoids plus noise model

Part I

Definitions

Une école de l'IMT

Spectral and temporal modifications

Une école de l'IMT

Spectral and temporal modification

D IP PARIS

Vocal production model

Frequency response of the filter: $G(t,f) = \int_{-\infty}^{+\infty} g(t,\tau) e^{-j2\pi f \tau} d\tau = M(t,f) e^{j\varphi(t,f)}$

- ► Harmonic source: $e(t) = \sum_{k=1}^{L} e^{j\xi_k(t)}$, where $\frac{d\xi_k}{dt} = 2\pi f_k(t)$
- lacktriangle Quasi-stationarity assumption: $\xi_k(t- au)\simeq \xi_k(t)-2\pi f_k(t) au$
- Filtered signal: $x(t) = \sum_{k=1}^{L} M(t, f_k(t)) e^{j(\xi_k(t) + \varphi(t, f_k(t)))}$

Signal models

McAulay and Quatieri model (speech coding)

$$x(t) = \sum_{k=1}^{L} A_k(t) e^{j\Psi_k(t)} \text{ where } \frac{\mathrm{d}\Psi_k}{\mathrm{d}t} = 2\pi f_k(t)$$

and $A_k(t)$ and $f_k(t)$ have slow variations compared with $e^{i\Psi_k(t)}$

Serra and Smith model (music signal synthesis)

$$x(t) = \sum_{k=1}^{L} A_k(t) e^{j\Psi_k(t)} + b(t)$$

where b(t) is a white noise filtered by a time-varying filter

Complete analysis / modification / synthesis system:

- estimation of the deterministic components
- ▶ linear interpolation of amplitudes and cubic interpolation of phases
- \triangleright subtraction of the deterministic part to get b(t)
- transformation of each of the two components
- re-synthesis

Equivalence of the two modifications

Duration modification

- ▶ Temporal distortion function: $\tau = T(t)$
- ► Modified signal: $y(\tau) = \sum_{k=1}^{L} A_k(T^{-1}(\tau)) e^{j\phi_k(\tau)}$
- ▶ Preservation of the frequencies: $\phi_k(\tau) = 2\pi \int_0^{\tau} f_k(T^{-1}(u)) du$

Pitch modification

- \triangleright Spectral compression rate: $\alpha(t)$
- ► Modified signal: $y(t) = \sum_{k=1}^{L} A_k(t) e^{j\Phi_k(t)}$
- ► Frequencies modification: $\Phi_k(t) = 2\pi \int_0^t \alpha(u) f_k(u) du$

Reciprocity

 \blacktriangleright temporal distortion T plus temporal re-scaling T^{-1} \Leftrightarrow pitch modification of rate $\alpha(t) = T'(t)$

► Duration modification (shorter time scale)

D IP PARIS

Une école de l'IMT

Spectral and temporal modifications

Une école de l'IMT

Spectral and temporal modifications

Equivalence of the two modifications

► Pitch modification (lower frequency scale)

Part II

Short time Fourier transform

Principle diagram

Short time Fourier transform

Definition: $\widetilde{X}(t_a, v) = \sum_{n \in \mathbb{Z}} x(n + t_a) w_a(n) e^{-j2\pi v n}$, where

- \blacktriangleright the analysis window $w_a(n)$ is finite, real and symmetric
- \blacktriangleright the analysis times t_a are indexed by an integer u

Interpretation: band-pass convention

- $\widetilde{X}(t_a, v_p) = [x \star h](t_a)$ where $h(n) = w_a(-n) e^{j2\pi v_p n}$
- ► the FT h(n) is $H(e^{j2\pi v}) = W_a(e^{j2\pi(v_p-v)})$

Discrete version of the STFT: let $v_p = \frac{p}{N}$

$$\widetilde{X}(t_a, v_p) = \sum_{n=0}^{N-1} x(n+t_a) w_a(n) e^{-j2\pi \frac{pn}{N}}$$

 \blacktriangleright the length of the analysis window must be $\leq N$

/40 Une école de l'IMT

Spectral and temporal modifications

Une école de l'IMT

Spectral and temporal modifications

Equivalent band-pass filter

Synthesis diagram

Signal reconstruction

Perfect reconstruction condition $(t_s = t_a \text{ and } Y = \widetilde{X})$

Overlap-add (OLA) synthesis

$$y(n) = \sum_{u} w_s(n - t_s(u)) y_w(n - t_s(u), t_s(u))$$

$$\operatorname{supp}(w_s) \subset [0, N - 1],$$

$$y_w(n, t_s(u)) = \frac{1}{N} \sum_{p=0}^{N-1} Y(t_s(u), v_p) e^{j2\pi v_p n}$$

▶ sufficient condition: $\sum_{u} w_a(n - t_a(u)) w_s(n - t_a(u)) \equiv 1$

Modifications and problems raised:

- Modification of the amplitudes and phases of the STFT
- $\blacktriangleright t_a \longrightarrow t_s, \ \widetilde{X}(t_a(u), v_p) \longrightarrow Y(t_s(u), v_p)$
- ▶ Difficulty: Y is generally not the STFT of a signal
- Re-synthesis from a sinusoidal model

Part III

Phase vocoder

Une école de l'IMT

Spectral and temporal modifications

№ IP PARIS 18/40

Une école de l'IMT

Spectral and temporal modification

Instantaneous frequency

- ► McAulay and Quatieri model: $x(t) = \sum_{k=1}^{L} A_k(t) e^{j\Psi_k(t)}$
- ▶ Quasi-stationarity assumption: $\forall n \in \{0...N-1\}$ $\begin{cases} A_k(n+t_a) & \simeq A_k(t_a) \\ \Psi_k(n+t_a) & \simeq \Psi_k(t_a) + 2\pi f_k(t_a) n \end{cases}$
- ► Then $\widetilde{X}(t_a(u), v_p) = \sum_{k=1}^{L} A_k(t_a) e^{j\Psi_k(t_a)} W_a(e^{j2\pi(v_p f_k(t_a))})$
- Let f_c be the cutting frequency of the low-pass filter $w_a(n)$
- ▶ Narrow band condition: $\exists ! \ l$ such that $|v_p f_l(t_a)| \leq f_c$ Interpretation (harmonic spectrum): $N \ge \frac{4}{6}$
- ► Then $\widetilde{X}(t_a(u), V_p) = A_I(t_a) e^{j\Psi_I(t_a)} W_a \left(e^{j2\pi(V_p f_I(t_a))}\right)$ \Rightarrow the STFT permits us to estimate phases $\Psi_I(t_a)$ modulo 2π

Overlap condition

Removing the phase ambiguity modulo 2π :

- ▶ Phase difference between two successive times: $\Delta \Phi_p = 2\pi (f_l(t_a) - v_p) \Delta t_a(u) + 2\pi v_p \Delta t_a(u) + 2n\pi$
- ▶ Minimal overlap condition: $f_c \Delta t_a(u) < \frac{1}{2}$ Interpretation (Hann window): $f_c = \frac{2}{N} \Rightarrow \Delta t_a < \frac{N}{4}$
- $ightharpoonup \exists ! \ n \ \text{such that} \ |\Delta \Phi_p 2\pi v_p \Delta t_a(u) 2n\pi| < \pi$

Estimation of the instantaneous frequency $\forall p \in \{0...N-1\}$

- 1. computation of the STFT at two successive times $\longrightarrow \Delta \Phi_p$
- 2. computation of $Q(n_0) = \Delta \Phi_p 2\pi v_p \Delta t_a 2n_0 \pi$ such that $|Q(n_0)| < \pi$
- 3. computation of instantaneous frequency $f_l(t_a) = V_p + \frac{Q(n_0)}{2\pi\Delta t_a}$

Duration modification

Unwrapping of the instantaneous phases for a distortion T(t)

Modification algorithm:

- 1. computation of the STFT and of $f_I(t_a(u))$ in each channel
- 2. computation of the new synthesis time $t_s(u) = T(t_a(u))$
- 3. computation of the synthesis instantaneous phase $\Phi_s(t_s(u+1), v_p) = \Phi_s(t_s(u), v_p) + 2\pi f_l(t_a(u))(t_s(u+1) t_s(u))$
- 4. computation of the synthesis STFT at u+1 $\widetilde{Y}(t_s(u+1), v_p) = A_p(t_a(u+1)) e^{j\Phi_s(t_s(u+1), v_p)}$

Influence of the initial phases

Original sound

Une école de l'IMT

Synthesis with random phases

Modifying the initial phases changes the waveform, but neither the spectrum nor perception

21/40

Une école de l'IMT

Spectral and temporal modifications

Spectral and temporal modifications

Pitch modification

Temporal re-sampling method

- 1. time stretching of rate $T(t) = \int_0^t \alpha(u) du$
- 2. temporal re-scaling of rate $T^{-1}(\tau)$

Spectral re-sampling method

- 1. Linear interpolation of the analysis STFT
 - $\alpha(t_a) > 1$: information loss in high frequencies
 - $ightharpoonup \alpha(t_a) < 1$: spectral completion in high frequencies
- 2. re-synchronization of the phases in the re-synthesis

Problem in speech processing: "Donald Duck" effect

pitch modification, then inverse filtering

Part IV

Processing specific to speech

Time-frequency reciprocity

A piano sound still sounds natural after changing the frequency scale

Time-frequency reciprocity

Original sound

Lower frequency scale

Voiced speech sound seems unnatural after changing frequency scale

Explanation: spectral envelope is distorted with the harmonics

Une école de l'IMT

Spectral and temporal modifications

№ IP PARIS 26/40

一選問

Une école de l'IMT

Une école de l'IMT

Spectral and temporal modifications

D IP PARIS

Pitch modification of speech

Natural pitch shifting of speech keeps spectral envelope unchanged

Case of unvoiced sounds

The spectral envelope of unvoiced sounds should not be changed

Timbre and spectral envelope

The spectral envelope characterizes the timbre of speech sounds

Pitch modification

- ► Voiced sounds:
 - modify the fundamental frequency
- ► Voiced/unvoiced sounds:
 - leave the spectral envelope unchanged
- ► Use of the vocoder
 - 1. Signal whitening by filtering (LPC analysis)
 - 2. Frequency scale modification
 - 3. Inverse filtering
- ▶ Methods specific to monophonic speech signals
 - ► Voiced/unvoiced segmentation
 - ▶ Pitch estimation on the voiced frames

29/40 Une école de l'IMT

Spectral and temporal modifications

№ IP PARIS 30/40

Une école de l'IMT

Spectral and temporal modifications

Part V

TD-PSOLA

Temporal modifications

Spectral and temporal modifications

31/40

Spectral modifications

Example of pitch modification

Contrary to the phase vocoder, PSOLA performs pitch shifting without modifying the spectral envelope

TELECOM Paris

/40 Une école de l'IMT

Spectral and temporal modifications

Une école de l'IMT

Spectral and temporal modifications

P IP PARIS

Speech production mechanism

- ► Voiced sounds: vibration of the vocal cords filtered by the vocal tract
- ► Unvoiced sounds: turbulent noise filtered by the vocal tract

Part VI

Auto-regressive models

Production of unvoiced sounds

TELECOM Paris TELECOM Paris

7/40 Une école de l'IMT

Spectral and temporal modifications

№ IP PARIS 38/40

Une école de l'IMT

Spectral and temporal modifications

Signal model

► The vocal tract is modeled by an AR filter

$$h(z) = \frac{1}{1 + a_1 z^{-1} + \ldots + a_p z^{-p}}$$

estimated by linear prediction (LPC analysis)

- ► Source model depending on the voiced / unvoiced case
 - ► The glottal pulse train is modeled by an impulse train of period *T*

$$s(t) = \sum_{n} \delta(t - nT)$$

► The turbulent noise is modeled by a white noise

Synthesis with auto-regressive models

- Synthesis without modification
 - by overlap/add of the time frames
 - convolution of the source with the filter on every frame
- Synthesis with modification
 - Duration modification
 - ► Synthesis of a source of appropriate length
 - ► Pitch modification
 - Unvoiced frames: unchanged
 - ▶ Voiced frames: the period of the impulse train is changed

