# Introduction to BigData – Spark – Processing

# Part 2: OnPrem to Cloud Experience at SG

#### Outline

- What is BigData?
  - Order of Magnitudes for « Big »
  - History
  - Evolution of Softwares, Spark
- Description of a Datalake
  - Content, data feeding
  - How it is organized
  - Who uses it
- Example of Data-Processing
  - RAW to LAKE, Reports
- Change Storage-Compute, Evolution to Cloud

#### Fundamental Resources TradeOffs

Network (Bandwith, Latency)



Horyzontal Scale



CPU (HOT, Watts)



Development price / Run cost









**Cold Storage** (SLOW)



Storage (~Small)







RAM (FAST .. Expensive)





## Historical Needs Data Locality

Resource WERE Collocated for Speed:

1 Blade = few Disks + few CPU + RAM

#### PROS:

- FAST local access
- OS Caching for re-using same files
- No need network shuffle when CO-LOCATING program on data
- Disk managed by softwares
- Easy plug

### Software / Hardware Evolutions...

Hard Disks -> SSD Disks (not in OnPrem yet)

HDI,Sata... PCI. disk can now be fast

Example on Microsoft Azure: ONLY SSD Disks

Network bandwidth + Latency ... now 1 Gb/s

=> Data Locality is NO MORE a requirement

## Not Enough Disk ... Too much/too Expensive « CPU »

#### Example at SG:

- Cost reduction plans... to reduce datacenters
- But still HUGE requirement to increase disk!!

Projects pretends they NEVER have enough cpu

BUT in reality ... too much CPU/RAM => Wasting is easier than Optimizing

Not even AWARE of consuming / wasting

### Splitting Storage / Compute

Solutions already existed, but historically not used in BigData Hadoop

**Unix Network NFS** 

Disk SAN

ObjectStorage (Appliance / API)

Cloud Storage



Example: Databases For Oracle/PostgresQL/..

Example: Scality



Azure
Storage Amazon S3

Historically lot of confidentiality constraints

... NOW used

**Data Density** 



#### Storage Price

1 Disk  $4T_0 = 100$  euros

x 10 ... 40To

x 3 (replication) = 3000 euros

🛊 🛊 🛊 🏚 🛊 101 avis clients 📗 📮 3 questions / réponses

BarraCuda 4 To. Cette gamme domine le marché en proposant les

meilleures capacités pour les ordinateurs de bureau et périphérique

500 Go 1000 Go 2000 Go 3000 Go 4000 Go

96€95

Quantité 1 V

AJOUTER AU PANIER

ACHETER CET ARTICLE

+ Plug + Maintenance + ...

Appliance used ... License cost + Annual billing .. Cost re-dispatched internally = 17 000 euros for 40To/Year



Azure Cloud Storage

- « Pay as You Go »
- + discount for reservations
- = 7000 euros for 40To/Year
  - + Costs per Read/Write Operations
  - + Network Bandwidth











6000 Go 8000 Go

5400 RPM 5900 RPM 7200 RPM

## Migration to Cloud Azure - AWS - Google

#### Goals:

- Elasticity of Storage
   (No more fear of HDFS FileSystem Full)
- Elasticity of Compute
   (adapt CPU to workload... Pay only what you use)
- Clear visibility of cost per Projects / internal refacturation
- By-Pass internal IT department
- Easier (?) Self-Service API for Provisionning
- No More Multi-tenant (no risk of 1 project crashing/consuming whole cluster)

Since 2020 SGCIB is moving its Datalake to Azure

#### Architecture of Datalake on Clouds



## Screenshot Azure Storage



increasing on last 30 days

#### 2.6 Peta on LAKE ...

+ 400 Tera on RAW + APP + ...





## HDInsight ... = HDP (HortonWorks) on Azure



Same HADOOP Ecosystem: Ambari, Yarn, Oozie, Spark, Zeppelin, ...

Kerberos security... with Azure integration (Azure AD)

No More HDFS: No more NameNode maintenance / errors replaced by « Azure Storage »
Elastic storage - but no more Ranger for permission

#### Screenshot HDI Ambari ... ~Like OnPrem



## Screenshots .. Hundreds of HDI



## BigData Engineering from OnPrem to Azure



Lot of User permissions/quota management
Development of custom Yarn/Oozie/Ranger tools

1 Huge cluster, used as Multi-tenant (several users)

Used at 100%

Almost Disk-Full

Many report on disk usage / data purges

Clear view of all Running workloads (1 Ambari screen)

Lot of Network & Security

Development of Provisionning « sudo » tools

NO more multi-tenant system... but LOT of small clusters

Hundred of clusters, each used at 5% !!!

**COST COST COST** 

Necessity to Optimize Performance

(batches too long... 100x slower / too expensive)

No more Disk worry

... data is growing (no more purges?)

NO admin central view

NO Orchestration of workloads



### What About Spark in Azure Migration?

#### **COST COST COST**

#### **Necessity to Optimize Performance**

(batches too long... 100x slower / too expensive)

=> Many projects have migrated + optimized





Optimized Spark Reduced memory + Cluster sizes







## Managed Spark? Goals: Autoscaling / « serverless »

Managed by Azure:





Managed via Kubernetes

Pull requests Issues Ma Search or jump to... ☐ GoogleCloudPlatform / spark-on-k8s-operator Public



databricks

databricks



AWS: EMR

GCP: BigQuery

Questions?

#### Take Away

What is BigData? Horyzontal Scaling

compute: cluster with Tera of RAM used by Spark apps

storage: Petas of Files, in parquet

What is Spark?

Simple unified Sql/Java engine for distributed compute (Yarn/Kube) distributed storage (HDFS/cloud)

What is Processing?

mostly spark batches
Feeding RAW

Transforming RAW to LAKE
Consuming SQL analytics

Hadoop ecosystem is complex, Spark brings simplicity Ecosystem is evolving (Cloud, Kubernetes)