Lecture 14 Feedback

topics

- The series-shunt feedback
- The series-series feedback
- The shunt-shunt feedback
- The shunt-series feedback

Two port networks

Type I: Impedance z-parameters

$$v_{1} = f(i_{1}, i_{2}) = z_{11}i_{1} + z_{12}i_{2}$$

$$v_{2} = f(i_{1}, i_{2}) = z_{21}i_{1} + z_{22}i_{2}$$

$$\begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \begin{bmatrix} i_{1} \\ i_{2} \end{bmatrix}$$

$$z_{11}$$
 z_{22}
 v_1
 $z_{12}i_2$
 $z_{21}i_1$
 z_{22}
 v_2
 $z_{21}i_1$

Type II: Admittance y-parameters

$$i_{1} = f(v_{1}, v_{2}) = y_{11}v_{1} + y_{12}v_{2}$$

$$i_{2} = f(v_{1}, v_{2}) = y_{21}v_{1} + y_{22}v_{2}$$

$$\begin{vmatrix} i_{1} \\ i_{2} \end{vmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix}$$

$$+ \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} = \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix}$$

$$\begin{vmatrix} v_{1} \\ v_{21} & v_{22} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{21} & v_{22} \end{bmatrix}$$

Type III: hybrid h-parameters

$$v_{1} = f(i_{1}, v_{2}) = h_{11}i_{1} + h_{12}v_{2}$$

$$i_{2} = f(i_{1}, v_{2}) = h_{21}i_{1} + h_{22}v_{2}$$

$$\begin{bmatrix} v_{1} \\ i_{2} \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} i_{1} \\ v_{2} \end{bmatrix}$$

Type IV: Inverse-hybrid g-parameters

$$\begin{aligned}
i_1 &= f(v_1, i_2) = g_{11}v_1 + g_{12}i_2 \\
v_2 &= f(v_1, i_2) = g_{21}v_1 + g_{22}i_2
\end{aligned}
\qquad \begin{bmatrix} i_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \begin{bmatrix} v_1 \\ i_2 \end{bmatrix}$$

Type V: transmission ABCD parameters

$$v_{1} = f(v_{2}, -i_{2}) = Av_{2} + B(-i_{2})$$

$$i_{1} = f(v_{2}, -i_{2}) = Cv_{2} + D(-i_{2})$$

$$\begin{bmatrix} v_{1} \\ i_{1} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} v_{2} \\ -i_{2} \end{bmatrix}$$

Type VI: Inverse transmission parameters

$$v_{2} = f(v_{1}, -i_{1}) = A'v_{1} + B'(-i_{1})$$

$$i_{2} = f(v_{1}, -i_{1}) = C'v_{1} + D'(-i_{1})$$

$$\begin{bmatrix} v_{2} \\ i_{2} \end{bmatrix} = \begin{bmatrix} A' & B' \\ C' & D' \end{bmatrix} \begin{bmatrix} v_{1} \\ -i_{1} \end{bmatrix}$$

Two port Network combination:

I. Cascade : ABCD parameters

II: series-shunt

$$i_1$$
 i_2
 i_1
 i_2
 i_1
 i_2
 i_1
 i_2
 i_2
 i_1
 i_2
 i_2
 i_2
 i_3
 i_4
 i_1
 i_1
 i_1
 i_2
 i_2
 i_3
 i_4
 i_5
 i_1
 i_1
 i_2
 i_2
 i_2
 i_3
 i_4
 i_5
 i_5
 i_5
 i_5
 i_7
 i_8
 i_8
 i_8
 i_9
 i_9

$$\begin{bmatrix} v_1' \\ i_2' \end{bmatrix} = \begin{bmatrix} h_{11}' & h_{12}' \\ h_{21}' & h_{22}' \end{bmatrix} \begin{bmatrix} i_1' \\ v_2' \end{bmatrix} \qquad \begin{bmatrix} v_1'' \\ i_2'' \end{bmatrix} = \begin{bmatrix} h_{11}'' & h_{12}'' \\ h_{21}'' & h_{22}'' \end{bmatrix} \begin{bmatrix} i_1'' \\ v_2'' \end{bmatrix}$$

$$\begin{bmatrix} v_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} v_1' \\ i_2' \end{bmatrix} + \begin{bmatrix} v_1'' \\ i_2'' \end{bmatrix} = \{ \begin{bmatrix} h_{11}' & h_{12}' \\ h_{21}' & h_{22}' \end{bmatrix} + \begin{bmatrix} h_{11}'' & h_{12}'' \\ h_{21}'' & h_{22}'' \end{bmatrix} \} \begin{bmatrix} i_1 \\ v_2 \end{bmatrix}$$

$$h = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$
 Fin

Find
$$v_2 = ?$$

$$h_{total} = egin{bmatrix} rac{5}{2} & rac{3}{2} \ rac{1}{2} & rac{9}{2} \end{bmatrix}$$

$$v_{1} = \frac{5}{2}i_{1} + \frac{3}{2}v_{2}$$

$$i_{1} = 2, i_{2} = 0$$

$$i_{2} = \frac{1}{2}i_{1} + \frac{9}{2}v_{2}$$

$$v_{2} = -\frac{2}{9}$$

$$i_{1} = \frac{v_{1}}{1} + \frac{v_{1} - v_{2}}{1} \Rightarrow v_{1} = \frac{1}{2}i_{1} + \frac{1}{2}v_{2}$$

$$i_{2} = \frac{v_{2}}{1} + \frac{v_{2} - v_{1}}{1} \Rightarrow i_{2} = -v_{1} + 2v_{2}$$

$$i_{2} = -v_{1} + 2v_{2} = -\frac{1}{2}i_{1} + \frac{3}{2}v_{2}$$

National United University Department of Electrical Engineering ~ Meiling CHEN

III: series-series

$$i_1 = i'_1 = i''_1$$
 $v_1 = v'_1 + v''_1$
 $i_2 = i'_2 = i''_2$
 $v_2 = v'_2 + v''_2$

$$\begin{bmatrix} v_1' \\ v_2' \end{bmatrix} = \begin{bmatrix} z_{11}' & z_{12}' \\ z_{21}' & z_{22}' \end{bmatrix} \begin{bmatrix} i_1' \\ i_2' \end{bmatrix} \qquad \begin{bmatrix} v_1'' \\ v_2'' \end{bmatrix} = \begin{bmatrix} z_{11}'' & z_{12}'' \\ z_{21}'' & z_{22}'' \end{bmatrix} \begin{bmatrix} i_1'' \\ i_2'' \end{bmatrix}$$

$$\begin{bmatrix} v_1'' \\ v_2'' \end{bmatrix} = \begin{bmatrix} z_{11}'' & z_{12}'' \\ z_{21}'' & z_{22}'' \end{bmatrix} \begin{bmatrix} i_1'' \\ i_2'' \end{bmatrix}$$

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} v'_1 \\ v'_2 \end{bmatrix} + \begin{bmatrix} v''_1 \\ v''_2 \end{bmatrix} = \{ \begin{bmatrix} z'_{11} & z'_{12} \\ z'_{21} & z'_{22} \end{bmatrix} + \begin{bmatrix} z''_{11} & z''_{12} \\ z''_{21} & z''_{22} \end{bmatrix} \} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$$

IV: Shunt-shunt

$$i_1$$
 i_1'
 v_{11}'
 v_{12}'
 v_{21}'
 v_{22}'
 v_{22}'

$$i_1 = i'_1 + i''_1$$
 $v_1 = v'_1 = v''_1$
 $i_2 = i'_2 + i''_2$
 $v_2 = v'_2 = v''_2$

$$\begin{bmatrix} i'_1 \\ i'_2 \end{bmatrix} = \begin{bmatrix} y'_{11} & y'_{12} \\ y'_{21} & y'_{22} \end{bmatrix} \begin{bmatrix} v'_1 \\ v'_2 \end{bmatrix} \qquad \begin{bmatrix} i''_1 \\ i''_2 \end{bmatrix} = \begin{bmatrix} y''_{11} & y''_{12} \\ y''_{21} & y''_{22} \end{bmatrix} \begin{bmatrix} v''_1 \\ v''_2 \end{bmatrix}$$

$$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} i'_1 \\ i'_2 \end{bmatrix} + \begin{bmatrix} i''_1 \\ i''_2 \end{bmatrix} = \{ \begin{bmatrix} y'_{11} & y'_{12} \\ y'_{21} & y'_{22} \end{bmatrix} + \begin{bmatrix} y''_{11} & y''_{12} \\ y''_{21} & y''_{22} \end{bmatrix} \} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

V: shunt-series

$$i_1 = i'_1 + i''_1$$
 $v_1 = v'_1 = v''_1$
 $i_2 = i'_2 = i''_2$
 $v_2 = v'_2 + v''_2$

$$\begin{bmatrix} i_1' \\ v_2' \end{bmatrix} = \begin{bmatrix} g_{11}' & g_{12}' \\ g_{21}' & g_{22}' \end{bmatrix} \begin{bmatrix} v_1' \\ i_2' \end{bmatrix} \qquad \begin{bmatrix} i_1'' \\ v_2'' \end{bmatrix} = \begin{bmatrix} g_{11}'' & g_{12}'' \\ g_{21}'' & g_{22}'' \end{bmatrix} \begin{bmatrix} v_1'' \\ i_2'' \end{bmatrix}$$

$$\begin{bmatrix} i_1'' \\ v_2'' \end{bmatrix} = \begin{bmatrix} g_{11}'' & g_{12}'' \\ g_{21}'' & g_{22}'' \end{bmatrix} \begin{bmatrix} v_1'' \\ i_2'' \end{bmatrix}$$

$$\begin{bmatrix} i_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} i'_1 \\ v'_2 \end{bmatrix} + \begin{bmatrix} i''_1 \\ v''_2 \end{bmatrix} = \{ \begin{bmatrix} g'_{11} & g'_{12} \\ g'_{21} & g'_{22} \end{bmatrix} + \begin{bmatrix} g''_{11} & g''_{12} \\ g''_{21} & g''_{22} \end{bmatrix} \} \begin{bmatrix} v_1 \\ i_2 \end{bmatrix}$$

General feedback structure

- Gain desensitivity
- Bandwidth extension
- Noise reduction
- Nonlinear distortion reduction

1. Gain desensitivity

$$\frac{dA_f}{A_f} < \frac{dA}{A}$$

$$A_f \equiv \frac{x_o}{x_s} = \frac{A}{1 + A\beta}$$

$$dA_f = \frac{dA}{\left(1 + A\beta\right)^2}$$

$$\frac{dA_f}{A_f} = \frac{1}{1 + A\beta} \frac{dA}{A}$$

2.Bandwidth extension

$$A(s) = \frac{A_M \omega_H}{\omega_H + s} = \frac{A_M}{1 + s / \omega_H}$$

$$BW = \omega_{Hf} - \omega_{Lf}$$

$$A(s) = \frac{A_M s}{\omega_L + s} = \frac{A_M}{1 + \omega_L / s}$$

$$A_f(s) = \frac{A(s)}{1 + \beta A(s)} = \frac{A_M / (1 + \beta A_M)}{1 + s / \omega_H (1 + \beta A_M)} \qquad A_f(s) = \frac{A(s)}{1 + \beta A(s)}$$

$$\omega_{Hf} = \omega_H (1 + \beta A_M)$$

$$A_f(s) = \frac{A(s)}{1 + \beta A(s)}$$

$$\omega_{Lf} = \omega_L / (1 + \beta A_M)$$

3. Noise reduction

$$SNR = \frac{S}{N}$$

(Signal to Noise Ratio)

$$V_o = (10V_s + V_n)10$$

$$\frac{S}{N} = \frac{100V_s}{10V_n} = 10\frac{S}{N}$$

$$V_o = \frac{10}{1+100} V_n + \frac{10000}{1+100} V_s$$
$$= 0.1 V_n + 100 V_s$$
$$\frac{S}{N} = 1000 \frac{S}{N}$$

$$V_{S}$$
 V_{S}
 V_{K}
 V_{C}
 V_{C

$$V_o = 10000 (V_s - 0.01V_o + V_n)$$

$$\Rightarrow V_o = 100V_s + 100V_n$$

$$\frac{S}{N} = 1 \times \frac{S}{N}$$

4. Nonlinear distortion reduction

Figure 8.3 Illustrating the application of negative feedback to reduce the nonlinear distortion in amplifiers. Curve (a) shows the amplifier transfer characteristic without feedback. Curve (b) shows the characteristic with negative feedback (β = 0.01) applied.

Feedback Topology

Mixer network: Voltage → series Current → shunt

Sampling network: Voltage → shunt Current → Series

National United University Department of Electrical Engineering ~ Meiling CHEN

Series-shunt

voltage-mixing voltage-sampling (series-shunt) topology

current-mixing current-sampling (shunt-series) topology

voltage-mixing current-sampling (series-series) topology

current-mixing voltage-sampling (shunt-shunt) topology

The series—shunt feedback amplifier S' (b) $A_f \equiv \frac{V_o}{V_s} = \frac{A}{1 + \beta A}$ $R_{if} \equiv \frac{V_s}{I_i} = \frac{V_i + \beta V_o}{V_i/R} = \frac{V_i + \beta A V_i}{V_i/R} = R_i (1 + \beta A)$ $R_{if} = R_i (1 + \beta A)$ β circuit (a) $R_{of} \equiv \frac{V_o}{I_o}\Big|_{V_s=0}$ R_o $I_o = \frac{V_o - AV_i}{R_o}$ AV_i O' $V_i\big|_{V_c=0}=-\beta V_o$ $I = \frac{V_o + \beta A V_o}{R} \Longrightarrow R_{of} = \frac{R_o}{1 + \beta A}$

National United University Department of Electrical Engineering ~ Meiling CHEN

The series—series feedback amplifier

$$R_{if} = \frac{V}{I} \Big|_{V_o = 0} = \frac{V_i + \beta I_o}{V_i / R_i} = \frac{V_i + \beta A v_i}{V_i / R_i} = R_i (1 + \beta A)$$

$$R_{of} = \frac{V_o}{I_o}\Big|_{V_s=0} \Rightarrow V_o = (I_o - AV_i)R_o = [I_o - A(-\beta I_o)]R_o = (1 + \beta A)R_oI$$

$$R_{of} = (1 + \beta A)R_o$$

$$V_{1} = z_{11}I_{1} + z_{12}I_{2}$$

$$V_{2} = z_{21}I_{1} + z_{22}I_{2}$$

$$\begin{bmatrix} V_{1} \\ V_{2} \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} \begin{bmatrix} I_{1} \\ I_{2} \end{bmatrix}$$

Figure 8.15 (Continued) (c) A redrawing of the circuit in (b) with z_{21} neglected.

National United University Department of Electrical Engineering ~ Meiling CHEN

the shunt-shunt feedback amplifier

$$A = R_m = \frac{V_o}{I_i}$$

$$R_{if} = \frac{V_s}{I_s} = \frac{V_s}{I_i + \beta V_o} = \frac{V_s}{I_i + \beta A I_i} = \frac{I_i R_i}{I_i + \beta A I_i}$$

$$R_{if} = \frac{R_i}{1 + \beta A}$$

$$R_{of} = \frac{V_o}{I_o} = \frac{I_o R_o + A I_i}{I_o}$$

$$I_i \Big|_{I_s=0} = -\beta V_o = -\beta (I_o R_o + A I_i)$$

$$I_i = \frac{-\beta I_o R_o}{1 + \beta A}$$

$$R_{of} = \frac{V_o}{I_o} = \frac{I_o R_o + A \frac{-\beta I_o R_o}{1 + \beta A}}{I_o}$$
$$= R_o (1 + A \frac{-\beta}{1 + \beta A}) = R_o \frac{1}{1 + \beta A}$$

National United University Department of Electrical Engineering ~ Meiling CHEN

National United University Department of Electrical Engineering ~ Meiling CHEN

National United University Department of Electrical Engineering ~ Meiling CHEN

The shunt–series feedback amplifier

$$I_{s} = \frac{V_{s}}{R_{s}} + \beta I_{o}$$

$$I_o|_{V_o=0} = AI_i \Longrightarrow I_s = \frac{V_s}{R_i} + \beta AI_i = \frac{V_s}{R_i} + \beta A\frac{V_s}{R_i}$$

$$R_{if} = \frac{R_i}{1 + \beta A}$$

$$R_{of} = \frac{V_o}{I_o}\Big|_{I_s=0}$$

$$I_{o}|_{V_{o}=0} = AI_{i} \Rightarrow I_{s} = \frac{V_{s}}{R_{i}} + \beta AI_{i} = \frac{V_{s}}{R_{i}} + \beta A\frac{V_{s}}{R_{i}} \qquad \Rightarrow V_{o} = (I_{o} - AI_{i})R_{o} = [I_{o} - A(-\beta I_{o})]R_{o}$$

$$= (1 + \beta A)R_{o}I_{o}$$

$$R_{of} = \frac{V_o}{I_o}\Big|_{I_s=0} = (1 + \beta A)R_o$$

National United University Department of Electrical Engineering ~ Meiling CHEN

Type	Amplifier	Feedback parameter	$A_f = \frac{A}{1 + \beta A}$	R_{if}	R_{of}
Series-Shunt (voltage- voltage)	$A_{v} = \frac{v_{o}}{v_{i}}$	$\begin{bmatrix} v_1 \\ i_2 \end{bmatrix} = h$	$A_f = \frac{A_v}{1 + h_{12}A_v} .$	$R_{if} = (1 + \beta A)R_i$	$R_{if} = \frac{R_o}{1 + \beta A}$
Series-Series (voltage- current)	$G_m = \frac{i_o}{v_i}$	$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = z$	$G_{mf} = \frac{G_m}{1 + z_{12}G_m}$	$R_{if} = R_i (1 + \beta A)$	$R_{of} = R_o (1 + \beta A)$
Shunt-Shunt (current- voltage)	$R_m = \frac{v_o}{i_i}$	$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = y$	$R_{mf} = \frac{R_m}{1 + y_{12}R_m}$	$R_{if} = \frac{R_i}{(1 + \beta A)}$	$R_{of} = \frac{R_o}{(1 + \beta A)}$
shunt-series (current- current)	$A_{_{I}}=rac{i_{_{o}}}{i_{_{i}}}$	$\begin{bmatrix} i_1 \\ v_2 \end{bmatrix} = g$	$A_{If} = \frac{A_I}{1 + g_{12}A_I}$	$R_{if} = \frac{R_i}{1 + \beta A}$	$R_{of} = (1 + \beta A)R_o$

Example 8.1

Step 0 : Series-shunt feedback amplifier

Amplifier → Voltage amplifier Feedback → h parameters

Step 1 : Amplifier analysis

$$R_{i} = R_{id}$$

$$R_{o} = r_{o}$$

$$A_{B}$$

$$A = \frac{V_{o}}{V_{i}} = \frac{(R_{L} // h_{22})}{(R_{L} // h_{22}) + r_{o}} \frac{R_{id}}{R_{id} + R_{s} + h_{11}}$$

Step 2 : Feedback network analysis

$$V_1 = h_{11}I_1 + h_{12}V_2$$

 $I_2 = h_{21}I_1 + h_{22}V_2$

(c)

$$h_{11} = \frac{V_1}{I_1}\Big|_{V_2=0} = R_1 // R_2$$

$$h_{22} = \frac{I_1}{V_2}\Big|_{I_1=0} = R_1 + R_2$$

$$h_{12} = \frac{V_1}{V_2}\Big|_{I_1=0} = \frac{R_1}{R_1 + R_2} = \beta$$

Step 3: Amp+Feedback analysis

$$R_{if} = (1 + \beta A)(R_s + R_i + h_{11}^b) = (1 + \beta A)(R_s + R_{id} + (R_1 // R_2)) = R_s + R_{in}$$

$$R_{in} = R_s - R_{if}$$

$$R_{of} = \frac{R_o / \frac{1}{h_{22}} / R_L}{(1 + \beta A)} = \frac{r_o / (R_1 + R_2) / R_L}{(1 + \beta A)} = \frac{R_{out} / R_L}{(1 + \beta A)}$$
 Feedback AMP

$$R_{out} \Rightarrow find$$

$$A_f = \frac{A}{A_{out}}$$

Example 8.2

Step 0 : Series-series feedback amplifier

Amplifier → Transconductance amplifier Feedback → z parameters

National United University Department of Electrical Engineering ~ Meiling CHEN

Step 2 : Analysis feedback Amp

$$Z_{11} = R_1 //(R_2 + R_3)$$

$$Z_{22} = R_3 //(R_1 + R_2)$$

The equivalent circuit

Step 3: Amp+Feedback analysis

$$V_{i} = i_{e1} (r_{e1} + Z_{11})$$

$$V_{A} = -g_{m} V_{\pi} [R_{c2} / (1 + hfe) (r_{e3} + Z_{22})]$$

$$I_{o} = \frac{V_{A}}{r_{e2} + Z_{22}}$$

$$-\alpha i_{e1} = \frac{V_{\pi}}{R_{c1} / r_{\pi}} \Rightarrow A = \frac{I_{o}}{V_{i}}$$

$$R_{i}' = (r_{e1} + Z_{11}) (1 + hfe)$$

$$R_{o}' = r_{e3} + Z_{22} + \frac{R_{c2}}{1 + hfe}$$

$$R_{if} = (1 + \beta A') R_{i}'$$

$$R_{of} = (1 + \beta A') R_{o}'$$

Shunt-shunt: R_m amplifier + y parameter

$$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

(d)

$$R_{m} = \frac{v_{o}}{i_{i}} = \frac{-g_{m}v_{\pi}(R_{f} /\!/ R_{c})}{v_{\pi} /\!/ (R_{f} /\!/ R_{s} /\!/ r_{\pi})} = -358.7k\Omega$$

$$R_{i} = R_{f} /\!/ R_{s} /\!/ r_{\pi} = 1.4k$$

$$R_{o} = R_{f} /\!/ R_{c} = 4.27k$$

$$\beta = y_{12} = \frac{i_{f}}{v_{o}} \Big|_{v_{s}=0} = -\frac{1}{R_{f}}$$

$$R_{i} = -358.7k\Omega$$

$$A_{f} \equiv \frac{v_{o}}{i_{s}} = R_{mf} = \frac{R_{m}}{1 + y_{12}R_{m}} = -41.6k$$

$$R_{if} = \frac{R_{i}}{1 + y_{12}R_{m}} = 162.2 = R_{s} /\!/ R_{in}$$

$$R_{if} = \frac{R_{o}}{1 + y_{12}R_{m}} = 162.2 = R_{s} /\!/ R_{in}$$

$$R_{if} = \frac{R_{o}}{1 + y_{12}R_{m}} = 495$$

$$R_{if} = \frac{R_{o}}{1 + y_{12}R_{m}} = 495$$

$$\frac{15k}{15k+100k} \times 12V = (100k//15k)I_{B1} + 0.7 + (1+\beta)I_{B1} \times 0.87$$

$$I_{B1} = 0.0087 mA$$

$$I_{C1} = 0.87 mA$$

$$V_{C1} = 12 - 0.87 \times 10k = 3.3V$$

$$I_{E2} = \frac{3.3 - 0.7}{3.4k} = 0.765 mA$$

$$g_{m1} = \frac{I_{C1}}{V_T} = 0.0344$$

$$r_{\pi 1} = \frac{V_T}{I_{B1}} = 2.9k$$

$$r_{o1} = \frac{75}{I_{C1}}$$

$$g_{m2} = \frac{I_{C2}}{V_T} = 0.030$$

$$r_{\pi 2} = \frac{V_T}{I_{B2}} \approx r_{\pi 1}$$

$$r_{o2} = \frac{75}{I_{C2}}$$

National United University Department of Electrical Engineering ~ Meiling CHEN

Shunt-series

current Mixing – current sampling

Amplifier: Current Amplifier

Feedback network: hybrid parameters

$$\begin{bmatrix} i_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \begin{bmatrix} v_1 \\ i_2 \end{bmatrix}$$

$$g_{11} = \frac{l_1}{v_1} \Big|_{i_2 = 0}$$

$$g_{22} = \frac{v_2}{i_2} \Big|_{v_1 = 0}$$

$$\beta = g_{12} = \frac{i_1}{i_2}\Big|_{v_1=0} = \frac{i_f}{i_o} = \frac{R_{E2}}{R_{E2} + R_f}$$

