Homework 2 (Due Jan 29, 2025)

Jack Hyatt MATH 547 - Algebraic Structures II - Spring 2025

January 29, 2025

Justify all of your answers completely.

1. Let F be a field, $f(X) \in F[X]$ a polynomial, and $u \in F$ a root of f. Prove that u is a multiple root of f(X) if and only if it is also a root of the derivative f'(x).

Proof. For both directions, u is a root of f.

 (\Longrightarrow)

Assume u is a multiple root of f(x).

Then $f(x) = g(x)(x - u)^k$ with $k \ge 2$.

Consider f'(x).

$$f'(x) = g(x)k(x-u)^{k-1} + g'(x)(x-u)^k = (x-u)^{k-1}(kg(x) + g'(x)(x-u))$$

Since $k \ge 2$, we have $k - 1 \ge 1$. So $x - u \mid f'$, making u a root of f'.

 (\longleftarrow)

Assume u is a root of f' (still is also a root of f).

Then $x - u \mid f$, we have f(x) = g(x)(x - u) for some polynomial g.

Consider f'(x).

$$f'(x) = g(x) + g'(x)(x - u)$$

 $0 = f'(u) = g(u) + g'(u)(u - u) \implies g(u) = 0$

Since u is a root of g, it also divides. So we have g(u) = h(u)(x-u) for some function h. So then

$$f(x) = g(x)(x - u) = h(x)(x - u)(x - u)$$

making u a multiple root.

2. Let $f(x) = x^5 + 4x^4 + 2x^3 + 3x^2 \in \mathbb{Z}_5[x]$ and $g(x) = x^2 + 3 \in \mathbb{Z}_5[x]$. Find the quotient and the remainder when f(x) is divided by g(x).

First divide and subtract the first terms:

$$x^{5}/x^{2} = x^{3} \implies (x^{5} + 4x^{4} + 2x^{3} + 3x^{2}) - (x^{2} + 3)x^{3} = 4x^{4} + 4x^{3} + 3x^{2}$$

Next term:

$$4x^4/x^2 = 4x^2 \implies (4x^4 + 4x^3 + 3x^2) - (x^2 + 3)4x^2 = 4x^3 + x^2$$

Next term:

$$4x^3/x^2 = 4x \implies (4x^3 + x^2) - (x^2 + 3)4x = x^2 + 3x$$

Next term:

$$x^2/x^2 = 1 \implies (x^2 + 3x) - (x^2 + 3)1 = 3x + 2$$

So then we finally have

$$x^{5} + 4x^{4} + 2x^{3} + 3x^{2} = (x^{2} + 3)(x^{3} + 4x^{2} + 4x + 4) + (3x + 2)$$

- 3. Let $f(x) = x^4 5x^2 + 6$. Observe that f(x) can be viewed as a polynomial in $\mathbb{Q}[x]$, or $\mathbb{R}[x]$, or $\mathbb{Z}_p[x]$. A different one of these fields is used in each of the parts below.
 - (a) Find all the roots of f in \mathbb{Q} .

Let us act like we are looking for roots in \mathbb{R} , and see if the values would land in \mathbb{Q} .

$$f(x) = (x^2)^2 - 5(x^2) + 6 \implies x^2 = \frac{5 \pm \sqrt{(-5)^2 - 4(1)(6)}}{2(1)} = 3, 2$$
$$x = \pm \sqrt{3}, \pm \sqrt{2}$$

So there are no roots in \mathbb{Q} .

- (b) Find all the roots of f in \mathbb{R} . Found in part (a), $\{-\sqrt{3}, -\sqrt{2}, \sqrt{2}, \sqrt{3}\}$
- (c) Find all the roots of f in \mathbb{Z}_3 .

Since f is in $\mathbb{Z}_3[x]$, we can write it as

$$f(x) = x^4 + x^2 = x^2(x^2 + 1)$$

which gives roots of just 0, since no element in \mathbb{Z}_3 squares to 2 (i.e. -1).

(d) Find all the roots of f in \mathbb{Z}_5 .

Since f is in $\mathbb{Z}_5[x]$, we can write it as

$$f(x) = x^4 + 1.$$

We can just check all 5 elements to look for $x^4 = 4$.

$$((0)^4, (1)^4, (2)^4, (3)^4, (4)^4) = (0, 1, 1, 1, 1)$$

So we have no roots.

- 4. Let $f(x) = x^4 + 5x^2 + 6 \in \mathbb{R}[x]$.
 - (a) Prove that f(x) does not have any roots in \mathbb{R} .

$$x^2 = \frac{-5 \pm \sqrt{5^2 - 4(1)(6)}}{2(1)} = -3, -2$$

We can stop here, as we know that no elements in \mathbb{R} can square to -3 or -2. So therefore, f does not have any roots in \mathbb{R} .

(b) Find all the roots of f(x) in \mathbb{C} .

Continuing from part (a), we have

$$x = \pm \sqrt{-3}, \pm \sqrt{-2}$$

(c) Factor f into irreducible factors in $\mathbb{R}[x]$. Explain why the factors are irreducible. Using our work from part (a), we can easily get

$$f(x) = (x^2 + 3)(x^2 + 2)$$

We know these terms are irreducible since they have degree less than or equal to 3, and no roots in \mathbb{R} .

(d) Factor f into irreducible factors in $\mathbb{C}[x]$. Explain why the factors are irreducible.

$$f(x) = (x - i\sqrt{3})(x + i\sqrt{3})(x + i\sqrt{2})(x - i\sqrt{2})$$

Since these are linear terms, they are obviously irreducible.