The above determinant is called the resultant of f and g.

Note that the matrix of the resultant is an $(n+m) \times (n+m)$ matrix, with the first row (involving the a_i s) occurring n times, each time shifted over to the right by one column, and the (n+1)th row (involving the b_j s) occurring m times, each time shifted over to the right by one column.

Hint. Express the matrix of T over some suitable basis.

- (4) Compute the resultant in the following three cases:
- (a) m = n = 1, and write f(X) = aX + b and g(X) = cX + d.
- (b) m = 1 and $n \ge 2$ arbitrary.
- (c) $f(X) = aX^2 + bX + c$ and g(X) = 2aX + b.
 - (5) Compute the resultant of $f(X) = X^3 + pX + q$ and $g(X) = 3X^2 + p$, and

$$f(X) = a_0 X^2 + a_1 X + a_2$$

$$g(X) = b_0 X^2 + b_1 X + b_2.$$

In the second case, you should get

$$4R(f,g) = (2a_0b_2 - a_1b_1 + 2a_2b_0)^2 - (4a_0a_2 - a_1^2)(4b_0b_2 - b_1^2).$$

Problem 7.9. Let A, B, C, D be $n \times n$ real or complex matrices.

(1) Prove that if A is invertible and if AC = CA, then

$$\det\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD - CB).$$

- (2) Prove that if H is an $n \times n$ Hadamard matrix $(n \ge 2)$, then $|\det(H)| = n^{n/2}$.
- (3) Prove that if H is an $n \times n$ Hadamard matrix $(n \ge 2)$, then

$$\det\begin{pmatrix} H & H \\ H & -H \end{pmatrix} = (2n)^n.$$

Problem 7.10. Compute the product of the following determinants

$$\begin{vmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{vmatrix} \begin{vmatrix} x & -y & -z & -t \\ y & x & -t & z \\ z & t & x & -y \\ t & -z & y & x \end{vmatrix}$$

to prove the following identity (due to Euler):

$$(a^{2} + b^{2} + c^{2} + d^{2})(x^{2} + y^{2} + z^{2} + t^{2}) = (ax + by + cz + dt)^{2} + (ay - bx + ct - dz)^{2} + (az - bt - cx + dy)^{2} + (at + bz - cy - dx)^{2}.$$