Parallel Programming DS295

#### Agenda

- Sorting Algorithms (Complexity Overview)
- Merge-Sort Algorithm
- Parallel Merge-Sort Algorithm
- Distributed Implementation of Merge-Sort Algorithm (MPI)
- Theoretical Analysis

## Sorting Animation



## Sorting Animation



## Sorting Algorithms

(Complexity Overview)

N: Input Size

| Algorithm  | Best       | Average    | Worst      | Memory   | Stable | Method                         | Notes                      |
|------------|------------|------------|------------|----------|--------|--------------------------------|----------------------------|
| Quick-Sort | N log N    | N log N    | $N^2$      | log N    | No     | Partitioning                   | Easy to Implement          |
| Heap-Sort  | $N \log N$ | $N \log N$ | $N \log N$ | In-place | No     | Selection                      |                            |
| Intro-sort | N log N    | N log N    | N log N    | log N    | No     | Partitioning<br>&<br>Selection | Used in C++ STL Containers |
| Merge-Sort | N log N    | N log N    | N log N    | N        | Yes    | Merging                        | Highly<br>Parallelizable   |



















# Merge-Sort Algorithm Distributed Implementation

# Live Demo!

#### **Distributed Implementation**



#### **Theoretical Analysis**

Sequential Runtime:

$$T(n) = 2T(\frac{n}{2}) + O(n) = O(n \log n)$$

Parallel Runtime:

(with sequential merge) 
$$T(n,p) = 2T(\frac{n}{2},\frac{p}{2}) + O(n) = O(\frac{n}{p}\log\frac{n}{p} + (n + \frac{n}{2} + \frac{n}{4}\cdots\frac{n}{p}))$$
$$\Longrightarrow T(n,p) = O(\frac{n}{p}\log\frac{n}{p} + n)$$

Upper bound on S (speedup):

$$\lim_{p \to \infty} \frac{O(n \log n)}{O(\frac{n}{p} \log \frac{n}{p}) + O(n)} = O(\log n)$$

# Thank you! धन्यवाद!

ghanshyamc@iisc.ac.in