Lecture Notes 6.14 ECS 154A

2018-08-14 Error checking, sequential circuits Summer Session II 2018

- 1. More on error correction
 - a. From last time which parity bits check which data bits
 - i. For a 3 digit number (say, 100) the first, most significant bit is the 4 bit
 - ii. The 0 right next to it is the 2 bit, then the 0 next to it is the 1 bit
 - b. Can expand further for larger bit numbers
 - i. C0 is in location 1
 - 1. Checks all bits with bit 1 high (except for itself)
 - 2. 3 (011), 5 (101), 7 (111), 8, 11, 13, so on
 - ii. C1 is in location 2
 - 1. Checks all bits with bit 2 high (except for itself)
 - 2. 3 (011), 6 (110), 7 (111), 10, 11, 14, 15, 18, 19, so on
 - iii. C2 is in location 4
 - 1. Checks all bits with bit 4 high (except for itself)
 - 2. 5 (101), 6 (110), 7 (111), 12, 13, 14, 15, 20, 21, so on
 - iv. If we had a C3, it would be in location 8
 - 1. Would check all bits with bit 8 high (except for itself)
 - 2. 9, 10, 11, 12, 13, 14, 15, 24, 25, so on
 - v. In general, next check bit lies at bit positions that are powers of 2
 - c. Why we can XOR to determine the bit position
 - i. We are essentially creating a binary number based on all the check bits
 - ii. Whether or not a given data position is set or not affects all the check bits that check that location
 - 1. If a bit is changed in the data, all the check bits associated with that location will be affected
 - 2. All them will differ by 1 from the original calculation for the check bit at that position
 - 3. Take the example above: bit 6 changed, so the two check bits that were checking it (C2 and C1) changed as well
 - Combination of which check bits were affected form the position of which bit was changed
 - d. Expanding it further
 - i. Expanding to cover a larger data size
 - 1. $2^{K}-1 >= M + K$, where M = data bits, and K = check bits
 - 2. From above, $2^3 1 \ge 4$ data bits + 3 check bits
 - ii. Covering more errors
 - 1. Given T errors
 - a. Hamming distance between valid code words must be T + 1 to detect
 - b. Hamming distance between valid code words must be 2T + 1 to correct
- 2. Sequential circuits
 - a. So far, only discussed combinational circuits
 - i. Output strictly dependent on the inputs only
 - b. Sequential circuits output depends on the current inputs as well as the history of inputs
 - i. Other way to phrase it they have memory
 - ii. History of inputs determines "state" of the circuit
 - c. Examples
 - i. House alarm that needs to be reset once an intrusion is detected
 - ii. Combination lock
- 3. Latches
 - a. Circuit that has two stable states, can be used to store information
 - b. Change state via signals applied to the control inputs

- c. S-R latches
 - i. Set sets the latch
 - ii. Reset clears the latch
 - iii. Q and !Q give the output and complement
- d. Implementation

e. Characteristic tables

S R	Q _{n+1}	_	S	R	\overline{S}	\overline{R}	Q _{n+1}
0 0	Q_n	_	0	0	1	1	Q _n
0 1	0		0	1	1	0	0
1 0	1		1	0	0	1	1
1 1	Undefined		1	1	0	0	Undefined
S-R N	NOR Latch			S-	-R N	ANI) Latch

- f. State transition table for S-R NOR latch
 - i. When creating a state transition table, need to list out all possible current states and inputs, like below
 - ii. Combination of inputs and present state form entire list of possible outcomes

Present Inputs		Present State	Next State	Type of Circuit	
S	R	Q	Q'	Type of circuit	
0	0	0	0	Memory	
0	0	1	1	Memory	
0	1	0	0	Combinational	
0	1	1	0	Combinational	
1	0	0	1	Combinational	
1	0	1	1	Combinational	
1	1	0	?	Combinational	
1	1	1	?	Combinational	

6.14 ECS 154A

Summer Session II 2018

Error checking, sequential circuits

- g. State transition diagram
 - i. The values in the circles are Q, the output of the latch
 - ii. The values in parentheses (0, 1) are the combination of (S, R) respectively
 - iii. The arrows are transitions from one state to the next (or staying in the same state)
 - iv. For every state, all possible output combinations need to be listed for transitions to the same or other states
 - 1. (1, 1) isn't listed here as it leads to undefined behavior

