Cours la projection dans le plan avec Exercices avec solutions Tronc CS

La projection dans le plan

I) La projection sur une droite parallèlement à une autre droite

1)Définition

Soient (D) et (Δ) deux droites sécantes en un pont A, et soit M un point du plan

La droite qui passe par M et parallèle $a(\Delta)$ coupe (D) en un point M'

le point M' s'appelle la projection du point M sur (D) parallèlement à (Δ) ou le projeté M sur

(D) parallèlement a (Δ) ou l'Image du point M par la

projection $P_{(D:\Delta)}$ sur (D) parallèlement à (Δ) et on

écrit : $P_{(D:\Delta)}(M) = M'$ ou P(M) = M'

la droite (Δ) s'appelle la direction de la projection

 $P(M) = M \, ' \quad : M \, ' \, \, \text{l'Image du point M par la}$ projection P

si $B \in (D)$ alors P(B) = B on dit alors que le point B est invariant par la projection P

2. Propriétés

- Chaque point de (D) est confondu avec sa projection
- Est tout point confondu avec sa projection est un point de (D)
- \blacksquare On dit que la droite (D) est invariante par la projection sur (D) parallèlement à $\left(\Delta\right)$

Cas particulier

Si les droite (D) et (Δ) sont perpendiculaire (on dit aussi orthogonales) on dit que M'est la projection orthogonale de M sur (D)

PROF: ATMANI NAJIB

Exercice1: Soit ABC est un triangle et M le milieu de [AB]

1)Soit P_1 la projection sur (BC) parallèlement à (AC)

Déterminer : $P_1(A)$; $P_1(C)$, $P_1(B)$, $P_1(M)$,

2)Soit P_2 la projection sur (AC) parallèlement à (BC)

Déterminer : $P_2(A)$,, $P_2(C)$ $P_2(B)$, $P_2(M)$

Réponse : 1) soit P_1 la projection sur (BC)

parallèlement à (AC)

On a $A \in (AC)$ et $(AC) \cap (BC) = \{C\}$ donc

 $P_1(A) = C$

On a $B \in (BC)$ donc B est invariante par la projection

 P_1 donc $P_1(B) = B$

On a $C \in (BC)$ donc C est invariante par la projection

 P_1 donc $P_1(C) = C$

Soit $M'=P_{_1}ig(Mig)$ on a M le milieu de [AB]

La parallèle à (AC) passant par M passe forcément par le milieu de [BC] donc M' est le milieu de [BC]

1) soit: P_2 la projection sur (AC) parallèlement à (BC)

On a
$$A \in (AC)$$
 donc $P_2(A) = A$

On a $C \in (AC)$ donc C est invariante par la projection

$$P_2$$
 donc $P_2(C) = C$

On a
$$B \in (BC)$$
 et $(AC) \cap (BC) = \{C\}$ donc

$$P_2(B) = C$$

On a M le milieu de [AB] donc la parallèle à (BC) passant par M coupe [AC] en son milieu soit: M'' ce milieu donc $P_2(M) = M''$

3. La projection d'un segment et de son milieu sur une droite parallèlement à une autre droite Soi A et B deux points du plan et A' et B' sont respectivement leur projection P sur sur (D) parallèlement à (Δ)

Propriété 1: L'image du segment [AB] par le projection P **est le** segment [A'B'] et on écrit P([AB]) = [A'B']

Propriété 2 : Si I est le milieu de [AB] alors P(I) = I' est le milieu du segment [A'B']

On dit que la projection conserve les milieux

Remarque :

on a : P([AB]) = [A'B'] donc pour tout point M du

segment [AB] : $P(M) = M' \in [A'B']$

II)Théorème de Thales et son théorème réciproque

1)Théorème de Thales :

Soient (D) et (Δ) deux droites sécantes en un pont, et soient A; B; C trois points alignés du plan tel que (AB) et (Δ) ne sont pas parallèles

soient A'; B'; C' respectivement les projetés des points A; B; C sur(D) parallèlement à (Δ)

Alors: $\frac{AB}{AC} = \frac{A'B'}{A'C'}$

2)Théorème de Thales avec les vecteurs :

Propriété 1: L'image du segment [AB] par la Soient A'; B'; C' respectivement les projetés des points A; B; C sur droite D parallèlement à D

Si
$$\overrightarrow{AB} = k\overrightarrow{AC}$$
 avec $k \in \mathbb{R}$ Alors:
 $\overrightarrow{A'B'} = k\overrightarrow{A'C'}$

On dit que la projection conserve le coefficient d'alignement de trois points

Exercice2: Soient ABC est un triangle et M un point définie par : $\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AB}$

1)Construire le point M' le projeté de M sur la droite (AC) parallèlement à (BC)

2)Montrer que $\overrightarrow{AM'} = \frac{2}{3} \overrightarrow{AC}$ et en déduire que

$$\overrightarrow{MM'} = \frac{2}{3}\overrightarrow{BC}$$

Réponse : 1) soit: P la projection sur(AC)

parallèlement à (BC)

On a $A \in (AC)$ donc A est invariante par la projection

 $P ext{ donc } P(A) = A$

On a $_{C\in(BC)}$ donc C est invariante par la projection P

donc P(C) = C

On a aussi : P(B) = C

Et puisque $\overrightarrow{AM} = \frac{2}{3}\overrightarrow{AB}$ et la projection conserve le coefficient d'alignement de trois points

Alors:
$$\overrightarrow{AM'} = \frac{2}{3}\overrightarrow{AC}$$

On a

$$\overrightarrow{MM'} = \overrightarrow{MA} + \overrightarrow{AM'} = -\frac{2}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC} = \frac{2}{3}(-\overrightarrow{AB} + \overrightarrow{AC}) = \frac{2}{3}\overrightarrow{BC}$$

3)le théorème réciproque de Thales

Soient (D) et (D') deux droites non parallèles a une troisième (Δ) , et soient A; B deux points de la droite (D) tel que A' et B' respectivement les projetés des points A; B sur (D') parallèlement à (Δ)

Si C un point de la droite (D) et C' un point de la droite (D') tel que $\frac{AB}{AC} = \frac{A'B'}{A'C'}$

Et les points A; B et C sont dans le même ordre sur la droite (D) que les points A'; B' et C' sur la droite (D')

Alors: le point C' est la projection de C sur la droite (D') parallèlement à (Δ) et on a $(AA') \parallel (BB') \parallel (CC')$

Propriété :soit $P = P_{(D:\Delta)}$

Si:
$$\overrightarrow{AB} = k \overrightarrow{EF}$$
 et $P(B) = B'$; $P(A) = A'$; $P(E) = E'$ et $P(F) = F'$

Alors: $\overrightarrow{A'B'} = k \overrightarrow{E'F'}$

On dit que la projection conserve le coefficient de colinéarité de deux vecteurs

Soient (Δ) et (Δ') deux droites sécantes et A; B; C; D des points distinctes et $k \in \mathbb{R}$ tel que $\overrightarrow{AB} = k\overrightarrow{CD}$ ET si A'; B'; C' et D' respectivement les projetés des points A; B; C et D sur la droite (Δ) parallèlement à (Δ')

Alors:
$$\overrightarrow{A'B'} = k\overrightarrow{C'D'}$$

On dit que la projection conserve le coefficient de colinéarité de deux vecteurs

Exercice3: (réciproque de Thales):

Soient ABC est un triangle et I et I' deux

points tel que :
$$\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AC}$$

$$\det \overrightarrow{AI'} = \frac{2}{3} \overrightarrow{AB}$$

1) Montrer que I' est par la projection de I sur la droite (AB) parallèlement à (BC)

2) soit M est le milieu de

[BC]; la droite (AM) coupe la droite (II') en G

Montrer que
$$\overrightarrow{AG} = \frac{2}{3} \overrightarrow{AM}$$

Réponse: 1) On a
$$\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AC}$$
 donc $\|\overrightarrow{AI}\| = \left\|\frac{2}{3}\overrightarrow{AC}\right\|$

donc
$$AI = \frac{2}{3}AC$$
 donc $\frac{AI}{AC} = \frac{2}{3}$ (1)

Et on a :
$$\overrightarrow{AI'} = \frac{2}{3} \overrightarrow{AB}$$
 donc $\|\overrightarrow{AI'}\| = \|\frac{2}{3} \overrightarrow{AB}\|$ donc

$$AI' = \frac{2}{3}AB$$
 donc $\frac{AI'}{AB} = \frac{2}{3}$ ②

D'après ① et ② on a
$$\frac{AI}{AC} = \frac{AI'}{AB}$$
 et d'après

la réciproque de Thales : $ig(II'ig) \|ig(BCig)$

Et puisque (AB) coupe (II') en I' donc I' est

la projection de I sur la droite (AB)

parallèlement à (BC)

2) On a I' est la projection de I sur la droite (AB) parallèlement à (BC) et M est le milieu

de [BC] Mq :
$$\overrightarrow{AG} = \frac{2}{3} \overrightarrow{AM}$$
 ???

On considère P la projection sur (AM)

Parallèlement à (BC)

On a $A \in (AM)$ donc A est invariante par la projection

$$P$$
 donc $P(A) = A$

la parallèle à (BC) passant par C est (BC) elle coupe (AM) en M donc P(C) = M

la parallèle à (BC) passant par I est (II')elle

coupe
$$(AM)$$
 en G donc $P(I) = G$ 3

Et on a en plus $\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AC}$ 4 donc D'après 1 et 2

et **3** et **4** on
$$a\overrightarrow{AG} = \frac{2}{3}\overrightarrow{AM}$$
 car la projection

conserve le coefficient d'alignement de trois points **Exercice4** : Soient ABC est un triangle et I le milieu de [AC]. E un point de (AC) tel que :

$$\overrightarrow{IE} = \frac{1}{3}\overrightarrow{IC} \text{ et } P_{((AB);(IB))}(E) = F$$

Faire une figure et montrer que : $\overrightarrow{BF} = \frac{1}{3} \overrightarrow{AB}$

Solution:

On a: $\overrightarrow{IE} = \frac{1}{3}\overrightarrow{IC}$ et I le milieu de [AC]

Donc:
$$\overrightarrow{AI} = \overrightarrow{IC}$$
 donc: $\overrightarrow{IE} = \frac{1}{3}\overrightarrow{AI}$

Et on a :
$$P_{((AB);(IB))}(E) = F$$
 et $P_{((AB);(IB))}(I) = B$ et $P_{((AB);(IB))}(A) = A$

Et puisque le la projection conserve le coefficient d'alignement de trois points alors :

$$\overrightarrow{BF} = \frac{1}{3} \overrightarrow{AB}$$

Exercice5 : Soient ABC est un triangle et I le milieu de $\begin{bmatrix} AC \end{bmatrix}$

$$E$$
 un point tel que : $\overrightarrow{BC} = 4\overrightarrow{BE}$

La droite qui passe par E et parallèle a (IB) coupe $(A\,C)$ en J

1)montrer que $\overrightarrow{IC} = 4\overrightarrow{IJ}$ et en déduire que :

$$\overrightarrow{AJ} = 5\overrightarrow{IJ}$$

2)si $(IB) \cap (AE) = \{K\}$ montrer que :

$$\overrightarrow{AE} = 5\overrightarrow{KE}$$

Solution : 1)soit $P_{((AC);(IB))}$ la projection sur (AC) parallèlement à(IB)

On a:
$$\overrightarrow{BC} = 4\overrightarrow{BE}$$
 et $P_{((AC),(IB))}(B) = I$ et

 $P_{((AC);(IB))}(E) = J$ et $P_{((AC);(IB))}(C) = C$ et puisque la

projection conserve le coefficient d'alignement

de trois points alors : $\overrightarrow{IC} = 4\overrightarrow{IJ}$

La déduction:

On a
$$\overrightarrow{AJ} = \overrightarrow{AI} + \overrightarrow{IJ}$$
 et I le milieu de $\begin{bmatrix} AC \end{bmatrix}$

Donc : $\overrightarrow{AI} = \overrightarrow{IC}$ et par suite :

$$|\overrightarrow{AJ} = \overrightarrow{AI} + \overrightarrow{IJ} = \overrightarrow{IC} + \overrightarrow{IJ} = 4\overrightarrow{IJ} + \overrightarrow{IJ} = 5\overrightarrow{IJ}$$

2) soit $P_{((AE);(IB))}$ la projection sur (AE) parallèlement à (IB)

On a:
$$\overrightarrow{AJ} = 5\overrightarrow{IJ}$$
 et $P_{((AE);(IB))}(A) = A$ et $P_{((AE);(IB))}(I) = K$ et $P_{((AE);(IB))}(J) = E$

et puisque la projection conserve le coefficient d'alignement de trois points alors : $\overrightarrow{AE} = 5\overrightarrow{KE}$

C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

