THE UNIVERSITY OF CALGARY Schulich School of Engineering

ENGG 202 – Engineering Statics First Midterm Exam February 23, 2015 (Monday) 19:00 – 20:30 (90 minutes)

- 1. The examination is closed textbook
- 2. There are 4 short answer questions and 2 comprehensive questions. Answer all questions directly on the question sheets. For the short answer questions, write your answer in the space provided; only the answer will be marked. You may write on the back of the page.
- 3. Only the SSE sanctioned, non-programmable, scientific calculators are permitted.
- 4. **Free body diagrams are required** on all long-answer **equilibrium** questions to obtain full marks. Diagrams must be separate from the given figure.

DO NOT OPEN THE EXAM BOOKLET UNTIL INSTRUCTED TO DO SO

Student's Last name:	
Student's First name: _	
T (0: 1	
Lecture Section (Circle	One):

Student ID#:

USEFUL FORMULAE:

Sine Law:
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Cosine Law:
$$c^2 = a^2 + b^2 - 2ab\cos C$$

Q1. The curved rod lies in the xy plane and has a radius of 3 m. The force **F**, acts at its end on point A as shown. Determine the:

- a) angle between the lines AC and AO.
- b) magnitude of the component of the force that acts parallel to the line that connects points A and O.

ANSWER:

- (a) angle $\theta_{AO-AC} =$
- /1.5 marks
- (b) $F_{IIOA} =$ _____N
- /1 mark

Q2. The block has a mass of 10 kg and rests on the smooth plane.

- a) Draw the free body diagram of the block in the space given.
- b) Determine the unstretched length of the spring in mm.

ANSWER: (a) FBD of block (use box above)

/1.5 marks

(b) $L_{unstretched} = \underline{\hspace{1cm}} mm$

/1.5 marks

Q3. The mass of the suspended object A is m_A and the masses of the pulleys are negligible. Determine the force T necessary for the system to be in equilibrium.

ANSWER: T =	N	/2 marks

Q4. The towline exerts a force P = 4 kN at the end of a 20 m long crane boom. If $\theta = 20^{\circ}$, determine:

- a) the placement *x* of the hook at A so that this force creates a maximum moment about point O.
- b) the magnitude and direction of the moment about O created by the force P.

ANSWER: (a)
$$x = _____ m$$
 /1.5 marks
(b) $M_o = ____ kNm$ /1 mark

Q5. The bulldozer exerts a force $\mathbf{F} = 3000 \, \text{N}$ at A, directed along the positive y-axis. If the system is in equilibrium, what are the magnitudes of the tensions in cables AB, AC, and AD?

/10 marks

Q6. The bar CB is located in the xz plane. An applied force **F**, located at point A, has a magnitude of F = 120N. The angle from F to the xy plane is $\theta = 65^{\circ}$, and the angle $\alpha = 20^{\circ}$ is to a line parallel to the y axis. Determine the magnitude and direction (state your answer with magnitude and directional angles θ_x , θ_y , θ_z) of the moment created by **F** around the axis CB.

/10 marks

