

## TD 5 – Algorithmie

## Problème: Résolution par pénalisation.

Soit f une fonction continûment différentiable de  $\mathbb{R}^d$  dans  $\mathbb{R}$  vérifiant  $f(x) \geq ||x||_2$ . On s'intéresse aux problèmes d'optimisation

$$\mathcal{P} : \min_{\|x\|_2^2 = 1} f(x), \text{ et } \mathcal{P}_n : \min_{x \in \mathbb{R}^d} f(x) + n (\|x\|_2^2 - 1)^2,$$

où n est un entier naturel.

- (1) Justifier que  $\mathcal{P}_n$  et  $\mathcal{P}$  admettent au moins une solution. Dans toute la suite, nous supposerons que ces deux problèmes admettent une solution unique et nous noterons  $x^*$  et  $x_n^*$  les solutions respectives de  $\mathcal{P}$  et  $\mathcal{P}_n$ .
- (2) On pose  $\Phi_n(x) = f(x) + n (||x||_2^2 1)^2$ .
- (2.1) Montrer que, si  $||x||_2 \ge 2$ ,  $\Phi_n(x) \ge 2 + 9n$ .
- (2.2) Montrer qu'il existe  $M \ge 0$  tel que, pour tout x tel que  $||x||_2 = 1$ , on a  $\Phi_n(x) \le M$ .
- (2.3) En déduire que la suite  $(x_n^*)$  est bornée et que  $(x_n^*)$  admet une sous-suite convergente  $(y_n)$ , dont la limite sera notée  $y^*$  dans la suite.
- (3) Soit  $\gamma(x) = (\|x\|_2^2 1)^2$ . Calculer  $\nabla \gamma(x)$  et montrer que  $\nabla f(y_n) + 4n(\|y_n\|_2^2 1)y_n = 0$ . En déduire que  $y^*$  est tel que soit  $\|y^*\|_2 = 0$ , soit  $\|y^*\|_2 = 1$ .
- (4) Montrer que, si on suppose que  $||y^*||_2 = 0$ , alors  $\lim_{n \to +\infty} \Phi_n(y_n) = +\infty$ . Déduire des résultats de la question (2) que l'on aboutit à une contradiction et donc que  $||y^*||_2 = 1$ .
- (5) Déduire des questions précédentes que  $\lim_{n\to+\infty} 4n(\|y_n\|_2^2 1)$  existe et qu'il existe  $\beta$  tel que  $\nabla f(y^*) + \beta y^* = 0$ .
- (6) Former le lagrangien associé au problème  $\mathcal{P}$ . Montrer alors que  $y^*$  vérifie la condition au premier ordre de Kuhn-Tucker-Lagrange et donner le multiplicateur de Lagrange associé. Expliquer pourquoi chercher à résoudre  $\mathcal{P}$  en considérant  $\mathcal{P}_n$  est appelé technique de pénalisation.