KOMMUNIKATIONSFEHLER, VERKLEMMUNG UND DIVERGENZ BEI INTERFACE-AUTOMATEN KOLLOQUIUM ZUR BACHELORARBEIT

Ayleen Schinko

18. Mai 2016

INHALT

- **1** ÜBERSICHT/MOTIVATION
- 2 Definitionen
- 3 Verfeinerungen über Fehler-Freiheit
- HIDING

ÜBERSICHT/MOTIVATION

- Modellierung von Systemen und deren Kommunikationsverhalten
- simulation parallel arbeitender Softwarekomponenten
- Kommunikationsfehler in Interface-Automaten nicht zulässig, deshalb Error-IO-Transitionssysteme mit optimistischer Fehlererreichbarkeit als Abwandlung davon betrachtet
 - Kommunikationsfehler (bzw. Error) zwischen Komponenten
 - Verklemmung (bzw. Ruhe) innerhalb einer Softwarekomponenten (keine Outputs mehr möglich)
 - Divergenz einer Softwarekomponenten (unendliche viele intere Aktionen)
- Verfeinerungsrelation über den Transitionssystemen (fehlerfreie Spezifikation durch fehlerfreies System verfeinert)
- gewünscht verfeinernde Präkongruenz
- Hiding (bzw. Internalisierung) von Outputs bildet Verbergen in der Parallelkomposition nach

ÜBERSICHT/MOTIVATION

- Modellierung von Systemen und deren Kommunikationsverhalten
- simulation parallel arbeitender Softwarekomponenten
- Kommunikationsfehler in Interface-Automaten nicht zulässig, deshalb Error-IO-Transitionssysteme mit optimistischer Fehlererreichbarkeit als Abwandlung davon betrachtet
 - Kommunikationsfehler (bzw. Error) zwischen Komponenten
 - Verklemmung (bzw. Ruhe) innerhalb einer Softwarekomponenten (keine Outputs mehr möglich)
 - Divergenz einer Softwarekomponenten (unendliche viele intere Aktionen)
- Verfeinerungsrelation über den Transitionssystemen (fehlerfreie Spezifikation durch fehlerfreies System verfeinert)
- gewünscht verfeinernde Präkongruenz
- Hiding (bzw. Internalisierung) von Outputs bildet Verbergen in der Parallelkomposition nach

ÜBERSICHT/MOTIVATION

- Modellierung von Systemen und deren Kommunikationsverhalten
- simulation parallel arbeitender Softwarekomponenten
- Kommunikationsfehler in Interface-Automaten nicht zulässig, deshalb Error-IO-Transitionssysteme mit optimistischer Fehlererreichbarkeit als Abwandlung davon betrachtet
 - Kommunikationsfehler (bzw. Error) zwischen Komponenten
 - Verklemmung (bzw. Ruhe) innerhalb einer Softwarekomponenten (keine Outputs mehr möglich)
 - Divergenz einer Softwarekomponenten (unendliche viele intere Aktionen)
- Verfeinerungsrelation über den Transitionssystemen (fehlerfreie Spezifikation durch fehlerfreies System verfeinert)
- gewünscht verfeinernde Präkongruenz
- Hiding (bzw. Internalisierung) von Outputs bildet Verbergen in der Parallelkomposition nach

DEFINITIONEN

DEFINITION (ERROR-IO-TRANSITIONSSYSTEME)

Ein Error-IO-Transitionssysteme (EIO) ist ein Tupel $S = (Q, I, O, \delta, q_0, E)$ mit den Komponenten:

- Q die Menge der Zustände,
- I,O die disjunkte Menge der (sichtbaren) Input- und Output-Aktionen,
- $\delta \subseteq Q \times (I \cup O \cup \{\tau\}) \times Q$ die Transitionsrelation,
- $q_0 \in Q$ der Startzustand,
- $E \subseteq Q$ die Menge der Error-Zustände.

Aktionsmenge von $S: \Sigma = I \cup O$

Signatur: Sig(S) = (I, O)

DEFINITION (PARALLELKOMPOSITION)

Zwei ElOs S_1, S_2 sind **komponierbar**, falls $O_1 \cap O_2 = \emptyset$ gilt. Die Parallelkomposition der ElOs S_1 und S_2 ist $S_{12} := S_1 || S_2 = (Q, I, O, \delta, q_0, E)$ mit den Komponenten:

$$Q = Q_1 \times Q_2,$$

•
$$I = (I_1 \backslash O_2) \cup (I_2 \backslash O_1)$$
,

•
$$O = O_1 \cup O_2$$
,

$$q_0 = (q_{01}, q_{02}),$$

mit $\operatorname{Sync}(S_1, S_2) = (I_1 \cap O_2) \cup (O_1 \cap I_2) \cup (I_1 \cap I_2).$

DEFINITION (PARALLELKOMPOSITION)

Zwei ElOs S_1, S_2 sind **komponierbar**, falls $O_1 \cap O_2 = \emptyset$ gilt. Die Parallelkomposition der ElOs S_1 und S_2 ist $S_{12} := S_1 || S_2 = (Q, I, O, \delta, q_0, E)$ mit den Komponenten:

•
$$\delta = \{((q_1, q_2), \alpha, (p_1, q_2)) \mid (q_1, \alpha, p_1) \in \delta_1, \\ \alpha \in (\Sigma_1 \cup \{\tau\}) \setminus \operatorname{Synch}(S_1, S_2) \} \\ \cup \{((q_1, q_2), \alpha, (q_1, p_2)) \mid (q_2, \alpha, p_2) \in \delta_2, \\ \alpha \in (\Sigma_2 \cup \{\tau\}) \setminus \operatorname{Synch}(S_1, S_2) \} \\ \cup \{((q_1, q_2), \alpha, (p_1, p_2)) \mid (q_1, \alpha, p_1) \in \delta_1, (q_2, \alpha, p_2) \in \delta_2, \\ \alpha \in \operatorname{Synch}(S_1, S_2) \},$$

 $mit \ {\rm Sync}(S_1, S_2) = (I_1 \cap O_2) \cup (O_1 \cap I_2) \cup (I_1 \cap I_2).$

DEFINITION (PARALLELKOMPOSITION)

Zwei ElOs S_1, S_2 sind **komponierbar**, falls $O_1 \cap O_2 = \emptyset$ gilt. Die Parallelkomposition der ElOs S_1 und S_2 ist $S_{12} := S_1 || S_2 = (Q, I, O, \delta, q_0, E)$ mit den Komponenten:

• ...,

•
$$E = (Q_1 \times E_2) \cup (E_1 \times Q_2)$$

 $\cup \left\{ (q_1, q_2) \mid \exists a \in O_1 \cap I_2 : q_1 \xrightarrow{a} \land q_2 \xrightarrow{a} \right\}$
 $\cup \left\{ (q_1, q_2) \mid \exists a \in I_1 \cap O_2 : q_1 \xrightarrow{a} \land q_2 \xrightarrow{a} \right\},$

mit $\operatorname{Sync}(S_1, S_2) = (I_1 \cap O_2) \cup (O_1 \cap I_2) \cup (I_1 \cap I_2).$

DEFINITION (PARTNER)

 S_1 wird **Partner** von S_2 genannt, wenn die Parallelkomposition von S_1 und S_2 geschlossen ist.

18. Mai 2016 6 / 20

DEFINITION (PARTNER)

 S_1 wird Partner von S_2 genannt, wenn die Parallelkomposition von S_1 und S_2 geschlossen ist.

Definition (ω -Partner)

Ein ElO S_1 ist ein ω -Partner von einem ElO S_2 , wenn $I_1 = O_2$ und $O_1 = I_2 \cup \{\omega\}$ mit $\omega \notin I_2 \cup O_2$ gilt.

18. Mai 2016 6 / 20

Traces sind die möglichen Wege eines EIOs, mit ihrer Transitionsbeschriftung.

- prune : $\Sigma^* \to \Sigma^*$, $w \mapsto u$, mit w = uv, $u = \varepsilon \land u \in \Sigma^* \cdot I$ und $v \in O^*$,
- cont: $\Sigma^* \to \mathfrak{P}(\Sigma^*), w \mapsto \{wu \mid u \in \Sigma^*\},\$
- cont : $\mathfrak{P}(\Sigma^*) \to \mathfrak{P}(\Sigma^*), L \mapsto \bigcup \{ \operatorname{cont}(w) \mid w \in L \}.$

18. Mai 2016 7 / 20

Traces sind die möglichen Wege eines EIOs, mit ihrer Transitionsbeschriftung.

Definition (Pruning- und Fortsetzungs-Funktion)

Für ein EIO S wird definiert:

- prune : $\Sigma^* \to \Sigma^*$, $w \mapsto u$, mit w = uv, $u = \varepsilon \land u \in \Sigma^* \cdot I$ und $v \in O^*$,
- cont: $\Sigma^* \to \mathfrak{P}(\Sigma^*), w \mapsto \{wu \mid u \in \Sigma^*\},\$
- cont : $\mathfrak{P}(\Sigma^*) \to \mathfrak{P}(\Sigma^*), L \mapsto \bigcup \{\operatorname{cont}(w) \mid w \in L\}.$

18. Mat 2016 7 / 20

DEFINITION (RUHE)

Ein Ruhe-Zustand ist ein Zustand in einem EIO, der keine Outputs und kein τ zulässt.

Die Menge der Ruhe-Zustände in einem EIO ist wie folgt formal definiert:

$$Qui := \left\{ q \in Q \mid \forall \alpha \in (O \cup \{\tau\}) : q \not\xrightarrow{\alpha} \right\}.$$

DEFINITION (DIVERGENZ)

Ein **Divergenz-Zustand** ist ein Zustand in einem EIO, der eine unendliche Folge von τs ausführen kann.

Die Menge Div(S) besteht aus all diesen divergenten Zuständen des ElOs S.

DEFINITION (RUHE)

Ein Ruhe-Zustand ist ein Zustand in einem ElO, der keine Outputs und kein T zulässt.

Die Menge der Ruhe-Zustände in einem EIO ist wie folgt formal definiert:

$$Qui := \left\{ q \in Q \mid \forall \alpha \in (O \cup \{\tau\}) : q \not\to^{\alpha} \right\}.$$

DEFINITION (DIVERGENZ)

Ein Divergenz-Zustand ist ein Zustand in einem EIO, der eine unendliche Folge von τs ausführen kann.

Die Menge Div(S) besteht aus all diesen divergenten Zuständen des ElOs S.

Verfeinerung

DEFINITION (BASISRELATION)

Für ElOs S_1 und S_2 mit der gleichen Signatur wird . . .

... $S_1 \sqsubseteq_{Qui}^B S_2$ geschrieben, wenn ein **Error**- oder **Ruhe**-Zustand in S_1 nur dann lokal erreichbar ist, wenn er auch in S_2 lokal erreichbar ist.

... $S_1 \sqsubseteq_{Div}^{B} S_2$ geschrieben, wenn ein **Error**-, **Ruhe**- oder **Divergenz**-Zustand in S_1 nun dann lokal erreichbar ist, wenn er auch in S_2 lokal erreichbar ist.

 $\sqsubseteq_{Qui}^{\mathrm{C}}$ (bzw. $\sqsubseteq_{Div}^{\mathrm{C}}$) bezeichnet die vollständige abstrakte Präkongruenz von $\sqsubseteq_{Qui}^{\mathrm{B}}$ (bzw. $\sqsubseteq_{Div}^{\mathrm{B}}$) bezüglich $\cdot \parallel \cdot$.

Verfeinerung

DEFINITION (BASISRELATION)

Für ElOs S_1 und S_2 mit der gleichen Signatur wird ...

... $S_1 \sqsubseteq_{Qui}^B S_2$ geschrieben, wenn ein **Error**- oder **Ruhe**-Zustand in S_1 nur dann lokal erreichbar ist, wenn er auch in S_2 lokal erreichbar ist.

... $S_1 \sqsubseteq_{Div}^{\mathrm{B}} S_2$ geschrieben, wenn ein **Error**-, **Ruhe**- oder **Divergenz**-Zustand in S_1 nur dann lokal erreichbar ist, wenn er auch in S_2 lokal erreichbar ist.

 $\sqsubseteq_{Qui}^{\mathrm{C}}$ (bzw. $\sqsubseteq_{Div}^{\mathrm{C}}$) bezeichnet die vollständige abstrakte Präkongruenz von $\sqsubseteq_{Qui}^{\mathrm{B}}$ (bzw. $\sqsubseteq_{Div}^{\mathrm{B}}$) bezüglich $\cdot \parallel \cdot$.

Verfeinerung

DEFINITION (BASISRELATION)

Für ElOs S_1 und S_2 mit der gleichen Signatur wird ...

... $S_1 \sqsubseteq_{Qui}^B S_2$ geschrieben, wenn ein **Error**- oder **Ruhe**-Zustand in S_1 nur dann lokal erreichbar ist, wenn er auch in S_2 lokal erreichbar ist.

... $S_1 \sqsubseteq_{Div}^{\mathrm{B}} S_2$ geschrieben, wenn ein **Error**-, **Ruhe**- oder **Divergenz**-Zustand in S_1 nur dann lokal erreichbar ist, wenn er auch in S_2 lokal erreichbar ist.

 $\sqsubseteq_{Qui}^{\mathrm{C}}$ (bzw. $\sqsubseteq_{Div}^{\mathrm{C}}$) bezeichnet die vollständige abstrakte Präkongruenz von $\sqsubseteq_{Qui}^{\mathrm{B}}$ (bzw. $\sqsubseteq_{Div}^{\mathrm{B}}$) bezüglich $\cdot \parallel \cdot$.

DEFINITION (TRACES)

- strikte Errortraces: $StET(S) := \left\{ w \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} q \in E \right\}$,
- gekürzte Errortraces: $PrET(S) := \bigcup \{ prune(w) \mid w \in StET(S) \}$,
- Input-kritische Traces:

$$MIT(S) := \left\{ wa \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} q \land a \in I \land q \not\stackrel{a}{\not\rightarrow} \right\},\,$$

- strikte Ruhetraces: $StQT(S) := \left\{ w \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} q \in Qui \right\}$,
- strikte Divergenztraces: $StDT(S) := \left\{ w \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} q \in Div \right\}$,
- gekürzte Divergenztraces:

$$PrDT(S) := \bigcup \{prune(w) \mid w \in StDT(S)\}\$$

DEFINITION (TRACES)

- strikte Errortraces: $StET(S) := \left\{ w \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} q \in E \right\}$,
- gekürzte Errortraces: $PrET(S) := \bigcup \{ prune(w) \mid w \in StET(S) \}$,
- Input-kritische Traces:

$$MIT(S) := \left\{ wa \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} q \land a \in I \land q \not\stackrel{a}{\not\rightarrow} \right\},\,$$

- ullet strikte Ruhetraces: $StQT(S) := \left\{ w \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} q \in Qui \right\}$,
- strikte Divergenztraces: $StDT(S) := \left\{ w \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} q \in Div \right\}$,
- gekürzte Divergenztraces:

$$PrDT(S) := \bigcup \{prune(w) \mid w \in StDT(S)\}\$$

DEFINITION (TRACES)

- strikte Errortraces: $StET(S) := \left\{ w \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} q \in E \right\}$,
- gekürzte Errortraces: $PrET(S) := \bigcup \{ prune(w) \mid w \in StET(S) \}$,
- Input-kritische Traces:

$$MIT(S) := \left\{ wa \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} q \land a \in I \land q \not\stackrel{a}{\not\rightarrow} \right\},\,$$

- ullet strikte Ruhetraces: $StQT(S) := \left\{ w \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} q \in Qui \right\}$,
- $\bullet \ \, \mathbf{strikte} \ \, \mathbf{Divergenztraces} \colon StDT(S) := \Big\{ w \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} q \in Div \Big\},$
- gekürzte Divergenztraces:

$$PrDT(S) := \bigcup \{prune(w) \mid w \in StDT(S)\}.$$

- Errortraces:
 - $ET(S) := cont(PrET(S)) \cup cont(MIT(S)),$
- error-geflutete Ruhetraces: $QET(S) := StQT(S) \cup ET(S)$,
- error-geflutete Sprache: $EL(S) := L(S) \cup ET(S)$.

- $\begin{array}{l} \bullet \ \, \mathbf{Error\text{-}Divergenztraces:} \\ EDT(S) := \\ ET(S) \cup \mathrm{cont}(PrDT(S)), \end{array}$
- $\begin{array}{l} \bullet \ \ \text{error-divergenz-gefluteten} \\ \ \ \text{Ruhetraces: } QDT(S) := \\ StQT(S) \cup EDT(S), \end{array}$
- error-divergenz-gefluteten Sprache: $EDL(S) := L(S) \cup EDT(S)$.

Für ein EIO S wird definiert:

cont(MIT(S)),

- Errortraces: $ET(S) := cont(PrET(S)) \cup$
- error-geflutete Ruhetraces: $QET(S) := StQT(S) \cup ET(S)$,
- error-geflutete Sprache: $EL(S) := L(S) \cup ET(S)$.

- Error-Divergenztraces: EDT(S) := $ET(S) \cup cont(PrDT(S)),$
- error-divergenz-gefluteten Ruhetraces: $QDT(S) := StQT(S) \cup EDT(S)$,
- error-divergenz-gefluteten Sprache: $EDL(S) := L(S) \cup EDT(S)$.

Für zwei ElOs S_1, S_2 mit der gleichen Signatur schreibt man ...

- $\dots S_1 \sqsubseteq_{Qui} S_2$, wenn:
 - $ET_1 \subseteq ET_2$,
 - $QET_1 \subseteq QET_2$ und
 - $EL_1 \subseteq EL_2$ gilt.

- $\ldots S_1 \sqsubseteq_{Div} S_2$, wenn
 - $EDT_1 \subseteq EDT_2$,
 - $QDT_1 \subseteq QDT_2$ und
 - $EDL_1 \subseteq EDL_2$ gilt.

Für zwei ElOs S_1, S_2 mit der gleichen Signatur schreibt man ...

- ... $S_1 \sqsubseteq_{Qui} S_2$, wenn:
 - $ET_1 \subseteq ET_2$,
 - $QET_1 \subseteq QET_2$ und
 - $EL_1 \subseteq EL_2$ gilt.

- ... $S_1 \sqsubseteq_{Div} S_2$, wenn:
 - $EDT_1 \subseteq EDT_2$,
 - \bullet $QDT_1 \subseteq QDT_2$ und
 - $EDL_1 \subseteq EDL_2$ gilt.

SATZ (SEMANTIK FÜR PARALLELKOMPOSITION)

Für zwei komponierbare EIOs S_1, S_2 und ihre Komposition S_{12} gilt:

- $ET_{12} =$ cont (prune $((ET_1 || EL_2) \cup (EL_1 || ET_2)))$,
- **2** $QET_{12} = (QET_1 || QET_2) \cup ET_{12}$,
- $\bullet EL_{12} = (EL_1 || EL_2) \cup ET_{12}.$

- $DT_{12} = cont (prune ((EDT_1 || EDL_2)) \cup (EDL_1 || EDT_2))),$
- 2 $QDT_{12} = (QDT_1 || QDT_2) \cup EDT_{12},$
- § $EDL_{12} = (EDL_1 || EDL_2) \cup EDT_{12}$.

Proposition (Präkongrunez)

Die Relation \sqsubseteq_{Qui} (bzw. \sqsubseteq_{Div}) ist eine Präkongruenz bezüglich $\cdot \| \cdot \|$

SATZ (SEMANTIK FÜR PARALLELKOMPOSITION)

Für zwei komponierbare EIOs S_1, S_2 und ihre Komposition S_{12} gilt:

- $ET_{12} =$ cont (prune $((ET_1 || EL_2) \cup (EL_1 || ET_2)))$,
- **2** $QET_{12} = (QET_1 || QET_2) \cup ET_{12}$,
- $\bullet EL_{12} = (EL_1 || EL_2) \cup ET_{12}.$

- $EDT_{12} =$ cont (prune ($(EDT_1 || EDL_2)$) $\cup (EDL_1 || EDT_2)$)),
- ② $QDT_{12} = (QDT_1 || QDT_2) \cup EDT_{12},$
- $EDL_{12} = (EDL_1 || EDL_2) \cup EDT_{12}.$

Proposition (Präkongrunez)

Die Relation \sqsubseteq_{Qui} (bzw. \sqsubseteq_{Div}) ist eine Präkongruenz bezüglich $\cdot \| \cdot \|$

SATZ (SEMANTIK FÜR PARALLELKOMPOSITION)

Für zwei komponierbare EIOs S_1, S_2 und ihre Komposition S_{12} gilt:

- $ET_{12} =$ cont (prune $((ET_1 || EL_2) \cup (EL_1 || ET_2)))$,
- $QET_{12} = (QET_1 || QET_2) \cup ET_{12},$
- $EL_{12} = (EL_1 || EL_2) \cup ET_{12}.$

- $EDT_{12} =$ $cont (prune ((EDT_1 || EDL_2))$ $\cup (EDL_1 || EDT_2))),$
- ② $QDT_{12} = (QDT_1 || QDT_2) \cup EDT_{12},$
- $EDL_{12} = (EDL_1 || EDL_2) \cup EDT_{12}.$

Proposition (Präkongrunez)

Die Relation \sqsubseteq_{Qui} (bzw. \sqsubseteq_{Div}) ist eine Präkongruenz bezüglich $\cdot \parallel \cdot$.

LEMMA (VERFEINERUNG)

Gegeben sind zwei ElOs S_1 und S_2 mit der gleichen Signatur.

Wenn $U \| S_1 \sqsubseteq_{Qui}^B U \| S_2$ für alle Partner U gilt, dann folgt daraus $S_1 \sqsubseteq_{Qui} S_2$.

Wenn $U||S_1 \sqsubseteq_{Div}^B U||S_2$ fü alle ω -Partner U gilt, dann folgt daraus $S_1 \sqsubseteq_{Div} S_2$.

Satz (Vollstänige Abstraktheit)

Seinen S_1 und S_2 zwei EIOs mit derselben Signatur. Dann gilt.

$$S_1 \sqsubseteq_{Qui}^{\mathbb{C}} S_2 \Leftrightarrow S_1 \sqsubseteq_{Qui} S_2$$

$$S_1 \sqsubseteq_{Div}^{\mathbb{C}} S_2 \Leftrightarrow S_1 \sqsubseteq_{Div} S_2$$

LEMMA (VERFEINERUNG)

Gegeben sind zwei ElOs S_1 und S_2 mit der gleichen Signatur.

Wenn $U \| S_1 \sqsubseteq_{Qui}^B U \| S_2$ für alle Partner U gilt, dann folgt daraus $S_1 \sqsubseteq_{Qui} S_2$.

Wenn $U||S_1 \sqsubseteq_{Div}^B U||S_2$ für alle ω -Partner U gilt, dann folgt daraus $S_1 \sqsubseteq_{Div} S_2$.

Satz (Vollstänige Abstraktheit)

Seinen S_1 und S_2 zwei EIOs mit derselben Signatur. Dann gilt

$$S_1 \sqsubseteq_{Qui}^{\mathbb{C}} S_2 \Leftrightarrow S_1 \sqsubseteq_{Qui} S_2$$

$$S_1 \sqsubseteq_{Div}^{\mathbb{C}} S_2 \Leftrightarrow S_1 \sqsubseteq_{Div} S_2$$

Lemma (Verfeinerung)

Gegeben sind zwei ElOs S_1 und S_2 mit der gleichen Signatur.

Wenn $U \| S_1 \sqsubseteq_{Qui}^B U \| S_2$ für alle Partner U gilt, dann folgt daraus $S_1 \sqsubseteq_{Qui} S_2$.

Wenn $U||S_1 \sqsubseteq_{Div}^B U||S_2$ für alle ω -Partner U gilt, dann folgt daraus $S_1 \sqsubseteq_{Div} S_2$.

SATZ (VOLLSTÄNIGE ABSTRAKTHEIT)

Seinen S_1 und S_2 zwei EIOs mit derselben Signatur. Dann gilt:

$$S_1 \sqsubseteq_{Qui}^{\mathbb{C}} S_2 \Leftrightarrow S_1 \sqsubseteq_{Qui} S_2.$$

$$S_1 \sqsubseteq_{Div}^{\mathbb{C}} S_2 \Leftrightarrow S_1 \sqsubseteq_{Div} S_2$$

Lemma (Verfeinerung)

Gegeben sind zwei ElOs S_1 und S_2 mit der gleichen Signatur.

Wenn $U \| S_1 \sqsubseteq_{Qui}^{\operatorname{B}} U \| S_2$ für alle Partner U gilt, dann folgt daraus $S_1 \sqsubseteq_{Qui} S_2$.

Wenn $U||S_1 \sqsubseteq_{Div}^B U||S_2$ für alle ω -Partner U gilt, dann folgt daraus $S_1 \sqsubseteq_{Div} S_2$.

SATZ (VOLLSTÄNIGE ABSTRAKTHEIT)

Seinen S_1 und S_2 zwei EIOs mit derselben Signatur. Dann gilt:

$$S_1 \sqsubseteq_{Qui}^{\mathbb{C}} S_2 \Leftrightarrow S_1 \sqsubseteq_{Qui} S_2.$$

$$S_1 \sqsubseteq_{Div}^{\mathbb{C}} S_2 \Leftrightarrow S_1 \sqsubseteq_{Div} S_2.$$

ABBILDUNG: Folgerungskette für Ruhe

ABBILDUNG: Folgerungskette für Divergenz

KOROLLAR

Es gilt:

für alle komponierbaren U.

KOROLLAR

Es gilt:

$$S_1 \sqsubseteq_{Qui} S_2$$

$$\updownarrow$$

$$U \| S_1 \sqsubseteq_{Qui}^{\mathsf{B}} U \| S_2$$

für alle komponierbaren U.

HIDING

Ab hier wird nun nur noch Ruhe und nicht mehr Divergenz betrachtet.

DEFINITION (INTERNALISIERUNGSOPERATOR)

Für ein ElO $S=(Q,I,O,\delta,q_0.E)$ ist S/X, mit dem Internalisierungsoperator \cdot/\cdot , definiert als (Q,I,O',δ',q_0,E) mit:

- $\tau \notin X$,
- $X \subseteq O$,
- $O' = O \backslash X$,
- $\bullet \ \delta' = (\delta \cup \{(q,\tau,q') \mid (q,x,q') \in \delta, x \in X\}) \setminus \{(q,x,q') \mid x \in X\}.$

Proposition (Basisrelation bzgl. Internalisierung)

Wenn $S_1 \sqsubseteq_{Qui}^{\operatorname{B}} S_2$ gilt, dann folgt daraus, dass auch $S_1/X \sqsubseteq_{Qui}^{\operatorname{B}} S_2/X$ gilt.

Ayleen Schinko 18. Mai 2016 18 / 20

HIDING

Ab hier wird nun nur noch Ruhe und nicht mehr Divergenz betrachtet.

DEFINITION (INTERNALISIERUNGSOPERATOR)

Für ein ElO $S=(Q,I,O,\delta,q_0.E)$ ist S/X, mit dem Internalisierungsoperator \cdot/\cdot , definiert als (Q,I,O',δ',q_0,E) mit:

- $\tau \notin X$,
- $X \subseteq O$,
- $O' = O \backslash X$,
- $\bullet \ \delta' = (\delta \cup \{(q, \tau, q') \mid (q, x, q') \in \delta, x \in X\}) \setminus \{(q, x, q') \mid x \in X\}.$

Proposition (Basisrelation bzgl. Internalisierung)

Wenn $S_1 \sqsubseteq_{Qui}^B S_2$ gilt, dann folgt daraus, dass auch $S_1/X \sqsubseteq_{Qui}^B S_2/X$ gilt.

Ayleen Schinko 18. Mai 2016 18 / 20

Satz (Präkongruenz bzgl. Internalisierung)

Seien S_1 und S_2 zwei EIOs für die $S_1 \sqsubseteq_{Qui} S_2$ gilt, somit gilt auch $S_1/X \sqsubseteq_{Oui} S_2/X$. Es ist also \sqsubseteq_{Oui} eine Präkongruenz bezüglich \cdot/\cdot . Es gilt für die Sprachen und Traces:

- $(I) L(S/X) = \{ w \in (\Sigma \backslash X)^* \mid \exists w' \in L(S) : w'|_{\Sigma \backslash X} = w \},$
- (II) $ET(S/X) = \{ w \in (\Sigma \backslash X)^* \mid \exists w' \in ET(S) : w'|_{\Sigma \backslash X} = w \},$
- (III) $EL(S/X) = \{ w \in (\Sigma \backslash X)^* \mid \exists w' \in EL(S) : w' |_{\Sigma \backslash X} = w \},$
- (IV) $QET(S/X) = \{ w \in (\Sigma \backslash X)^* \mid \exists w' \in QET(S) : w' |_{\Sigma \backslash X} = w \}.$

18. Mai 2016 19 / 20

DEFINITION (PARALLELKOMPOSITION MIT INTERNALISIERUNG)

Seinen S_1 und S_2 komponierbare EIOs, dann ist die Parallelkomposition mit Internalisierung definiert als $S_1|S_2 = S_{12}/(\operatorname{Synch}(S_1, S_2) \cap O_{12})$.

18. Mat 2016 20 / 20

DEFINITION (PARALLELKOMPOSITION MIT INTERNALISIERUNG)

Seinen S_1 und S_2 komponierbare EIOs, dann ist die Parallelkomposition mit Internalisierung definiert als $S_1|S_2 = S_{12}/(\operatorname{Synch}(S_1, S_2) \cap O_{12})$.

Korollar (Präkongruenz mit Internalisierung)

Die Relation ⊑_{Qui} ist eine Präkongruenz bezüglich der Parallelkomposition mit Internalisierung · |·.

18. Mat 2016 20 / 20