1 Further Topics in Group Theory

1.1 p-Groups, Nilpotent Groups, and Solvable Groups

Definition. A maximal subgroup of a group G is a proper subgroup M of G such that there is no subgroups H of G with M < H < G.

Theorem 1. Let p be a prime and let P be a group of order p^a , $a \ge 1$. Then

- 1. The center of P is nontrivial: $Z(P) \neq 1$.
- 2. If H is a nontrivial normal subgroup of P then H contains a subgroup of order p^b that is normal in P for each divisor p^b of |H|. In particular, P has a normal subgroup of order p^b for every $b \in \{0, 1, \ldots, a\}$.
- 3. If H < P then $H < N_P(H)$ (i.e., every proper subgroup of P is a proper subgroup of its normalizer in P).
- 4. Every maximal subgroup of P is of index p and is normal in P.

Definition.

1. For any (finite or infinite) group G define the following subgroups inductively:

$$Z_0(G) = 1 \qquad Z_1(G) = Z(G)$$

and $Z_{i+1}(G)$ is the subgroup of G containing $Z_i(G)$ such that

$$Z_{i+1}(G)/Z_i(G) = Z(G/Z_i(G))$$

(i.e., $Z_{i+1}(G)$ is the complete preimage in G of the center of $G/Z_i(G)$ under the natural projection). The chain of subgroups

$$Z_0(G) < Z_1(G) < Z_2(G) < \dots$$

is called the upper central series of G. (The use of the term "upper" indicates that $Z_i(G) \leq Z_{i+1}(G)$.)

2. A group G is called *nilpotent* if $Z_c(G) = G$ for some $c \in \mathbb{Z}$. The smallest c is called the *nilpotence class* of G.

Note.

- 1. If G is abelian then it is nilpotent since $G = Z(G) = Z_1(G)$.
- 2. The following containments are proper

cyclic groups \subset abelian groups \subset nilpotent groups \subset solvable groups \subset all groups

3. For any finite group there must, by order considerations, be an integer n such that

$$Z_n(G) = Z_{n+1} = Z_{n+2} = \cdots$$
.

4. For infinite groups G it may happen that all $Z_i(G)$ are proper subgroups of G (so G is not nilpotent) but

$$G = \bigcup_{i=0}^{\infty} Z_i(G).$$

Proposition 2. Let p be a prime and let P be a group of order p^a . Then P is nilpotent of nilpotence class at most a-1 for all $a \ge 2$ (and class equal to a when a=0 or 1).

Theorem 3. Let G be a finite group, let p_1, p_2, \ldots, p_s be the distinct primes dividing its order and let $P_i \in Syl_{p_i}(G), 1 \le i \le s$. Then the following are equivalent:

- 1. G is nilpotent
- 2. if H < G then $H < N_G(H)$, i.e., every proper subgroup of G is a proper subgroup of its normalizer in G
- 3. $P_i \subseteq G$ for $1 \le i \le s$, i.e., every Sylow subgroup is normal in G
- 4. $G \cong P_1 \times P_2 \times \cdots \times P_s$.

Corollary 4. A finite abelian group is the direct product of its Sylow subgroups.

Proposition 5. If G is a finite group such that for all positive integers n dividing its order, G contains at most n elements x satisfying $x^n = 1$, then G is cyclic.

Proposition 6. (Frattini's Argument) Let G be a finite group, let H be a normal subgroup of G and let P be a Sylow p-subgroup of H. Then $G = HN_G(P)$ and |G: H| divides $|N_G(P)|$.

Proposition 7. A finite group is nilpotent if and only if every maximal subgroup is normal.