Exercise

Q1. If
$$x + \frac{1}{x} = 3$$
 find

(i)
$$x^2 + \frac{1}{x^2}$$

(ii)
$$x^4 + \frac{1}{x^4}$$

Q1. If
$$x + \frac{1}{x} = 3$$
 find
(i) $x^2 + \frac{1}{x^2}$ (ii) $x^4 + \frac{1}{x^4}$ (ii) $x^4 + \frac{1}{x^4}$ (ii) $x^4 + \frac{1}{x^4}$ (ii) $x^4 + \frac{1}{x^4}$ $\left(x^2 + \frac{1}{x^2}\right)^2 = (7)^2$ $\left(x + \frac{1}{x}\right)^2 = (3)^2$ $x^4 + \frac{1}{x^4} + 2 = 49$ $x^2 + \frac{1}{x^2} = 9 - 2$ $x^4 + \frac{1}{x^4} = 49 - 2$

$$x^2 + \frac{1}{r^2} = 9 - 2$$

$$x^2 + \frac{1}{x^2} = 7$$

(ii)
$$x^4 + \frac{1}{x^4}$$

$$\left(x^2 + \frac{1}{x^2}\right)^2 = (7)^2$$

$$x^4 + \frac{1}{x^4} + 2 = 49$$

$$x^4 + \frac{1}{r^4} = 49 - 2$$

$$x^4 + \frac{1}{r^4} = 47$$

Q2. If
$$x - \frac{1}{x} = 2$$
 find

(i)
$$x^2 + \frac{1}{x^2}$$

(ii)
$$x^4 + \frac{1}{x^4}$$

(i)
$$x - \frac{1}{x} = 2$$

Squaring

$$\left(x - \frac{1}{x}\right)^2 = (2)^2$$
$$x^2 + \frac{1}{x^2} - 2 = 4$$
$$x^2 + \frac{1}{x^2} = 4 + 2$$

$$x^2 + \frac{1}{x^2} = 6$$

(ii)
$$\left(x^2 + \frac{1}{x^2}\right) = \left(6\right)^2$$

$$x^4 + \frac{1}{x^4} + 2 = 36$$

$$x^4 + \frac{1}{x^4} = 36 - 2$$

$$x^4 + \frac{1}{x^4} = 34$$

Q3. Find value of $x^3 + y^3$ and xy if x + y = 5 and x - y = 3 $4xy = (x + y)^2 - (x - y)^2$ $4xy = (5)^2 - (3)^2$

Now

$$4xy = 25 - 9 = 16$$

$$xy = \frac{16}{4} = 4$$

$$x+v=5$$

taking cube both sides

$$(x+y)^{3} = (5)^{3}$$

$$x^{3} + y^{3} + 3xy(x+y) = 125$$

$$x^{3} + y^{3} + 3(4)(5) = 125$$

$$x^{3} + y^{3} + 60 = 125$$

$$x^{3} + y^{3} = 125 - 60$$

$$x^{3} + y^{3} = 65$$

Q4. If
$$P = 2 + \sqrt{3}$$
 find (i) $P + \frac{1}{P}$

(ii)
$$P - \frac{1}{P}$$
 (iii) $P^2 + \frac{1}{P^2}$ (iv) $P^2 - \frac{1}{P^2}$
 $P = 2 + \sqrt{3}$
 $\frac{1}{P} = \frac{1}{2 + \sqrt{3}} \times \frac{2 - \sqrt{3}}{2 - \sqrt{3}}$
 $\frac{1}{P} = \frac{2 - \sqrt{3}}{(2)^2 - (\sqrt{3})^2} = \frac{2 - \sqrt{3}}{4 - 3} = 2 - \sqrt{3}$

i)
$$P + \frac{1}{R} = 2 + \sqrt{3} + 2 - \sqrt{3} = 4$$

ii)
$$P - \frac{1}{P} = 2 + \sqrt{3} - 2 + \sqrt{3} = 2\sqrt{3}$$

iii)
$$P^{2} + \frac{1}{P^{2}} = ?$$

$$\left(P + \frac{1}{P}\right)^{2} = (4)^{2}$$

$$P^{2} + \frac{1}{P^{2}} + 2 = 16$$

$$P^{2} + \frac{1}{P^{2}} = 16 - 2$$

$$P^{2} + \frac{1}{P^{2}} = 14$$

iv)
$$P^2 - \frac{1}{R^2} = ?$$

$$P^{2} - \frac{1}{P^{2}} = \left(P + \frac{1}{P}\right)\left(P - \frac{1}{P}\right)$$
$$= (4)\left(\sqrt{3}\right)$$
$$= 8\sqrt{3}$$

Q5. If
$$q = \sqrt{5} + 2$$
 Find (i) $q + \frac{1}{q}$

(ii)
$$q - \frac{1}{q}$$
 (iii) $q^2 + \frac{1}{q^2}$ (iv) $q^2 - \frac{1}{q^2}$

Solution:
$$q = \sqrt{5} + 2$$

$$\frac{1}{q} = \frac{1}{\sqrt{5} + 2} \times \frac{\sqrt{5} - 2}{\sqrt{5} - 2}$$

$$\frac{1}{q} = \frac{\sqrt{5} - 2}{\left(\sqrt{5}\right)^2 - \left(2\right)^2}$$

$$\frac{1}{q} = \frac{\sqrt{5} - 2}{\left(\sqrt{5}\right)^2 - \left(2\right)^2}$$

(i)
$$q + \frac{1}{q} = \sqrt{5} + 2 + \sqrt{5} - 2$$

= $2\sqrt{5}$

(ii)
$$q - \frac{1}{q} = \sqrt{5} + 2 - \sqrt{5} + 2$$

$$= 4$$
(iii) $q^{2} + \frac{1}{q^{2}}$

$$\left(q + \frac{1}{q}\right)^{2} = \left(2\sqrt{5}\right)^{2}$$

$$q^{2} + \frac{1}{q^{2}} + 2 = 20$$

$$q^{2} + \frac{1}{q^{2}} = 20 - 2$$

$$q^{2} + \frac{1}{q^{2}} = 18$$

(iv)
$$q^2 - \frac{1}{q^2} = \left(q + \frac{1}{q}\right) \left(q - \frac{1}{q}\right)$$

$$= \left(2\sqrt{5}\right)(4)$$
$$= 8 \sqrt{5}$$

Q6. Simplify

i)
$$\frac{\sqrt{a^2 + 2} + \sqrt{a^2 - 2}}{\sqrt{a^2 + 2} - \sqrt{a^2 - 2}}$$

$$= \frac{\sqrt{a^2 + 2} + \sqrt{a^2 - 2}}{\sqrt{a^2 + 2} - \sqrt{a^2 - 2}} \times \frac{\sqrt{a^2 + 2} + \sqrt{a^2 - 2}}{\sqrt{a^2 + 2} + \sqrt{a^2 - 2}}$$

$$= \frac{\left(\sqrt{a^2 + 2} + \sqrt{a^2 - 2}\right)^2}{\left(\sqrt{a^2 + 2}\right)^2 - \left(\sqrt{a^2 - 2}\right)^2}$$

$$= \frac{\left(\sqrt{a^2 + 2}\right)^2 + \left(\sqrt{a^2 - 2}\right)^2 + 2\left(\sqrt{a^2 + 2}\right)\left(\sqrt{a^2 - 2}\right)}{a^2 + 2 - a^2 + 2}$$

$$= \frac{a^2 + \cancel{2} + a^2 - \cancel{2} + 2\sqrt{a^4 - 4}}{4}$$

$$= \frac{\cancel{2} \left(a^2 + \sqrt{a^4 - 4}\right)}{\cancel{4}}$$

$$= \frac{a^2 + \sqrt{a^4 - 4}}{2}$$
(ii)
$$\frac{1}{a - \sqrt{a^2 - x^2}} - \frac{1}{a + \sqrt{a^2 - x^2}}$$

$$= \frac{1}{a - \sqrt{a^2 - x^2}} \times \frac{a + \sqrt{a^2 - x^2}}{a + \sqrt{a^2 - x^2}}$$

$$a - \sqrt{a^2 - x^2} \quad a + \sqrt{a^2 - x^2}$$

$$= \frac{1}{a - \sqrt{a^2 - x^2}} \times \frac{a + \sqrt{a^2 - x^2}}{a + \sqrt{a^2 - x^2}}$$

$$- \frac{1}{a + \sqrt{a^2 - x^2}} \times \frac{a - \sqrt{a^2 - x^2}}{a - \sqrt{a^2 - x^2}}$$

$$= \frac{a + \sqrt{a^2 - x^2}}{(a)^2 - (\sqrt{a^2 - x^2})^2} - \frac{a - \sqrt{a^2 - x^2}}{(a)^2 - (\sqrt{a^2 - x^2})^2}$$

$$= \frac{a + \sqrt{a^2 - x^2}}{a^2 - a^2 + x^2} - \frac{a - \sqrt{a^2 - x^2}}{a^2 - a^2 + x^2}$$
$$= \frac{a + \sqrt{a^2 - x^2}}{x^2} - \frac{a - \sqrt{a^2 - x^2}}{x^2}$$

$$= \frac{\cancel{a} + \sqrt{a^2 - x^2} - \cancel{a} + \sqrt{a^2 - x^2}}{x^2}$$
$$= \frac{2\sqrt{a^2 - x^2}}{x^2}$$

Objective

- 4x + 3y 2 is an algebraic 1.
 - **Expression** (a)
 - **(b)** Sentence
 - (c) Equation
 - In equation (d)
- The degree of polynomial 2. $4x^4 + 2x^2y$ is ____

 - (b) 2 (a) 1
 - (c) (d) 4 3
- $a^3 + b^3$ is equal to____ 3.
 - $(a-b)(a^2+ab+b^2)$
 - (b) $(a+b)(a^2-ab+b^2)$
 - (c) $(a-b)(a^2-ab+b^2)$
 - (d) $(a-b)(a^2 + ab b^2)$
- $(3+\sqrt{2})(3-\sqrt{2})$ is equal to:____

 - (a) 7 (b) -7
 - (c)
 - (d)
- Conjugate of Surd $a + \sqrt{b}$ is____ 5.
- $-a + \sqrt{b}$ (b) $a \sqrt{b}$
 - (d) $\sqrt{a} + \sqrt{b}$ (d) $\sqrt{a} \sqrt{b}$
- $\frac{1}{a-b} \frac{1}{a+b}$ is equal to 6.
 - $\frac{2a}{a^2-b^2}$ (b) $\frac{2b}{a^2-b^2}$ (a)
 - (c) $\frac{-2a}{a^2 + b^2}$ (d) $\frac{-2b}{a^2 + b^2}$

- 7. $\frac{a^2-b^2}{a+b}$ is equal to:
 - (a) $(a-b)^2$ (b) $(a+b)^2$ (c) a+b (d) a-b
- 8. $(\sqrt{a} + \sqrt{b}) (\sqrt{a} \sqrt{b})$ is equal
 - to:____ (a) $a^2 + b^2$ (b) $a^2 b^2$
 - (c) a-b (d) a+b
- The degree of the polynomial $x^{2}y^{2}+3xy+y^{3}$ is ____

 - (d)
- 10. $x^2 4 =$ (a) (x-2)(x+2) (b) (x-2)(x-2)
 - (c) (x +2)(x+2) (d) None
- 11. $x^3 + \frac{1}{x^3} = \left(x + \frac{1}{x}\right)(\dots)$
 - (a) $x^2 1 + \frac{1}{x^2}$ (b) $x^2 + 1 + \frac{1}{x^2}$
 - (c) $x^2 + 1 \frac{1}{x^2}$ (d) $x^2 1 \frac{1}{x^2}$
- $2(a^2 + b^2) =$ 12.
 - (a) $(a+b)^2 + (a-b)^2$
 - (b) $(a+b)^2 (a-b)^2$
 - 4ab
- Order of surd $\sqrt[3]{x}$ is ____ 13.
 - (a) 3 (b)
 - (c) 0 (d)

14.
$$\frac{1}{2-\sqrt{3}} =$$

(a)
$$2+\sqrt{3}$$

(b)
$$2-\sqrt{3}$$

(a)
$$2+\sqrt{3}$$
 (b) $2-\sqrt{3}$
(d) $-2+\sqrt{3}$ (d) $-2-\sqrt{3}$

(d)
$$-2-\sqrt{3}$$

15.
$$(a+b)^2 - (a-b)^2 =$$

(a)
$$2(a^2 + b^2)$$
 (b) 4ab

- 16. $\sqrt{14} \cdot \sqrt{35} =$
 - (a) $\sqrt[4]{10}$ (b) $\sqrt[5]{10}$
 - (c) $7\sqrt{10}$ (d) $8\sqrt{10}$
- A surd which contains a single **17.** term is called surd.
 - Monomial (a)
 - (b) **Binomial**
 - (c) Trinomial
 - (d) None

ANSWER KE

1.	a	2.	d	3.	b	4.	a	5.	ь
6.	b	7.	d	8.	С	9.	a	10.	a
11.	a	12.	a	13.	a	14.	a	15.	b
16.	С	17.	a						