

Calcolo integrale — Scheda di esercizi n. 3 14 Marzo 2023 — Compito n. 00015

 $\label{eq:caselle} \textbf{Istruzioni} : \mbox{le prime due caselle } (\mathbf{V} \slash \mathbf{F}) \\ \mbox{permettono di selezionare la risposta vero/falso.} \\ \mbox{La casella "\mathbf{C}" serve a correggere eventuali errori invertendo la risposta data.}$

Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes o \bigcirc).

Nome:				
Cognome: _				
2 2811211121				
Matricola:				
wiadi icola.				

Punteggi: 1 punto per ogni risposta esatta, 0 punti per risposte sbagliate o lasciate in bianco.

	1 A	1B	1C	1D	2A	2B	2C	2D	3A	3B	3C	3D	4A	4B	4C	4D
\mathbf{v}																
\mathbf{F}																
\mathbf{C}																

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **1A)** Si ha

$$e^{-6x} = \sum_{k=0}^{+\infty} \frac{(-1)^k 6^k x^k}{k!}.$$

1B) Si ha

$$\cos(4x) = \sum_{k=0}^{+\infty} \frac{(-1)^k 4^{2k} x^{2k}}{(2k)!}.$$

1C) Si ha

$$x e^{6x} = \sum_{k=0}^{+\infty} \frac{6^x x^k}{k!}.$$

1D) Si ha

$$\frac{1}{1+7x} = \sum_{k=0}^{+\infty} (-1)^k 7^k x^k.$$

2) Sia

$$f(x) = x^4 \sin(2x),$$

e sia $T_n(x;0)$ il polinomio di Taylor di ordine n di f(x) nell'origine.

- **2A)** Si ha $T_1(x;0) = 2x$.
- **2B)** Si ha $T_4(x,0) = 0$.
- **2C)** Si ha $f^{(5)}(0) = 2 \cdot 5!$.
- **2D)** Si ha $f^{(5)}(0) = 2 \cdot 6!$.

3) Si consideri la serie di potenze

$$f(x) = \sum_{k=0}^{+\infty} a_k (x-2)^k$$
.

- **3A)** Il centro della serie è $x_0 = 0$.
- **3B)** Se L in $(0, +\infty)$, $L \neq 1$, è il limite di $\frac{|a_{k+1}|}{|a_k|}$, il raggio di convergenza della serie è $R = \frac{1}{L}$.
- **3C)** Se il raggio di convergenza della serie è R = 7, la serie converge per x = 16.
- **3D)** Se $a_3 \neq 0$, si ha $f^{(3)}(2) = a_3$.
- 4) Si consideri la serie di potenze

$$\sum_{k=0}^{+\infty} \frac{(10 x - 17)^k}{(k+1) 11^k}.$$

- **4A)** Il centro della serie è $x_0 = \frac{17}{10}$.
- **4B)** Il raggio di convergenza della serie è $R = \frac{11}{10}$.
- **4C)** La serie diverge per $x = \frac{39}{10}$.
- **4D**) La serie converge per $x = \frac{3}{5}$.

_		
Docente:		
LICCONTO		
L/UUUIIUU.		

Cognome Nome Matricola Compito 00015

5) Sia

$$f(x) = x^7 \cos(6x^2).$$

- a) Si scriva la serie di Taylor di f(x).
 b) Si scriva il polinomio di Taylor di ordine 10 di f(x).
 c) Si calcoli f⁽⁷⁾(0).
 d) Si calcoli f⁽⁹⁾(0).

$$f(x) = \sum_{k=1}^{+\infty} \frac{(x-4)^k}{k \cdot 5^k}$$
.

- a) Si determini il centro della serie di potenze.
- b) Si determini il raggio di convergenza della serie di potenze.c) Si determini l'insieme di convergenza della serie di potenze.
- **d)** Si calcoli f'(x).

Soluzioni del compito 00015

1) Si dica se le seguenti affermazioni sono vere o false.

1A) Si ha

$$e^{-6x} = \sum_{k=0}^{+\infty} \frac{(-1)^k 6^k x^k}{k!}.$$

Vero: Ricordando che

$$e^y = \sum_{k=0}^{+\infty} \frac{y^k}{k!} \,,$$

sostituendo y = -6x si ha

$$e^{-6x} = \sum_{k=0}^{+\infty} \frac{(-1)^k 6^k x^k}{k!}.$$

1B) Si ha

$$\cos(4x) = \sum_{k=0}^{+\infty} \frac{(-1)^k 4^{2k} x^{2k}}{(2k)!}.$$

Vero: Ricordando che

$$\cos(y) = \sum_{k=0}^{+\infty} \frac{(-1)^k y^{2k}}{(2k)!},$$

con la sostituzione y = 4x si ha

$$\cos(4x) = \sum_{k=0}^{+\infty} \frac{(-1)^k 4^{2k} x^{2k}}{(2k)!}.$$

1C) Si ha

$$x e^{6x} = \sum_{k=0}^{+\infty} \frac{6^x x^k}{k!}.$$

Falso: Ricordando che

$$e^y = \sum_{k=0}^{+\infty} \frac{y^k}{k!} \,,$$

sostituendo y = 6x si ha

$$e^{6x} = \sum_{k=0}^{+\infty} \frac{6^k x^k}{k!},$$

da cui segue che

$$x e^{6x} = \sum_{k=0}^{+\infty} \frac{6^k x^{k+1}}{k!} \neq \sum_{k=0}^{+\infty} \frac{6^k x^k}{k!}.$$

1D) Si ha

$$\frac{1}{1+7x} = \sum_{k=0}^{+\infty} (-1)^k 7^k x^k.$$

Vero: Ricordando che

$$\frac{1}{1-y} = \sum_{k=0}^{+\infty} y^k,$$

con la sostituzione y = -7 x si ha

$$\frac{1}{1+7x} = \sum_{k=0}^{+\infty} (-1)^k 7^k x^k.$$

2) Sia

$$f(x) = x^4 \sin(2x),$$

e sia $T_n(x;0)$ il polinomio di Taylor di ordine n di f(x) nell'origine.

Ricordando che

$$\sin(y) = \sum_{k=0}^{+\infty} \frac{(-1)^k y^{2k+1}}{(2k+1)!},$$

con la sostituzione y = 2x si ha

$$\sin(2x) = \sum_{k=0}^{+\infty} \frac{(-1)^k 2^{2k+1} x^{2k+1}}{(2k+1)!},$$

e quindi

(1)
$$x^4 \sin(2x) = \sum_{k=0}^{+\infty} \frac{(-1)^k 2^{2k+1} x^{2k+5}}{(2k+1)!} = 2x^5 - \frac{4}{3}x^7 + \text{ termini di grado maggiore di 7}.$$

2A) Si ha $T_1(x;0) = 2x$.

Falso: Dalla (1) si vede che lo sviluppo di Taylor di f(x) non ha termini di grado minore o uguale a 1. Ne segue che $T_1(x;0) = 0 \neq 2x$.

2B) Si ha $T_4(x,0) = 0$.

Vero: Dalla (1) si vede che lo sviluppo di Taylor di f(x) non ha termini di grado minore o uguale a 4. Ne segue che $T_4(x;0) = 0$.

2C) Si ha $f^{(5)}(0) = 2 \cdot 5!$.

Vero: Dalla (1) si ha che

$$T_5(x;0) = 2x^5$$
.

Dato che il termine di grado 5 nel polinomio di Taylor di f(x) è $\frac{f^{(5)}(0)}{5!}x^5$, si ha

$$\frac{f^{(5)}(0)}{5!} = 2 \qquad \iff \qquad f^{(5)}(0) = 2 \cdot 5!.$$

2D) Si ha $f^{(5)}(0) = 2 \cdot 6!$.

Falso: Dalla (1) si vede che non ci sono termini di grado 6 nel polinomio di Taylor di f(x). Ne segue che $f^{(6)}(0) = 0 \neq 2 \cdot 6!$.

$$f(x) = \sum_{k=0}^{+\infty} a_k (x-2)^k$$
.

Ricordiamo che in una serie di potenze

(1)
$$\sum_{k=0}^{+\infty} a_k (x - x_0)^k,$$

il punto x_0 si dice **centro** della serie, mentre la successione $\{a_k\}$ è la **successione dei coefficienti** della serie.

3A) Il centro della serie è $x_0 = 0$.

Falso: Dalla (1) segue che il centro della serie è $x_0 = 2 \neq 0$.

3B) Se L in $(0, +\infty)$, $L \neq 1$, è il limite di $\frac{|a_{k+1}|}{|a_k|}$, il raggio di convergenza della serie è $R = \frac{1}{L}$.

Vero: Se L è come nella domanda, il raggio di convergenza della serie è $R = \frac{1}{L}$.

3C) Se il raggio di convergenza della serie è R=7, la serie converge per x=16.

Falso: Dato che il raggio di convergenza è R=7, e il centro è $x_0=2$, la serie non converge se |x-2|>7. Dato che |16-2|=14>7, la serie non converge per x=16.

3D) Se $a_3 \neq 0$, si ha $f^{(3)}(2) = a_3$.

Falso: Confrontando la serie di potenze con il polinomio di Taylor di ordine 3 di f(x), che è

$$T_3(x;2) = \sum_{k=0}^{3} \frac{f^{(k)}(2)}{k!} (x-2)^k,$$

si ha che i termini di grado 3 sono

$$a_3 (x-2)^3$$
 e $\frac{f^{(3)}(2)}{3!} (x-2)^3$,

da cui si deduce che

$$f^{(3)}(2) = a_3 \cdot 3! \neq a_3 \,,$$

dato che $a_3 \neq 0$.

$$\sum_{k=0}^{+\infty} \frac{(10 x - 17)^k}{(k+1) 11^k}.$$

Mettendo in evidenza 10 al numeratore, si ha

(1)
$$f(x) = \sum_{k=0}^{+\infty} \frac{(10x - 17)^k}{(k+1)11^k} = \sum_{k=0}^{+\infty} \frac{10^k}{(k+1)11^k} \left(x - \frac{17}{10}\right)^k,$$

che è una serie di potenze di centro $x_0 = \frac{17}{10}$ e di coefficienti

$$a_k = \frac{10^k}{(k+1)\,11^k} \,.$$

Siccome

$$L = \lim_{k \to +\infty} \sqrt[k]{\frac{10^k}{(k+1)\,11^k}} = \lim_{k \to +\infty} \frac{10}{11} \, \frac{1}{\sqrt[k]{k+1}} = \frac{10}{11} \,,$$

si ha che il raggio di convergenza della serie è

(2)
$$R = \frac{1}{L} = \frac{11}{10},$$

e quindi la serie converge se $|x-\frac{17}{10}|<\frac{11}{10},$ e non converge se $|x-\frac{17}{10}|>\frac{11}{10}.$

4A) Il centro della serie è $x_0 = \frac{17}{10}$.

Vero: Per la (1) il centro della serie è $x_0 = \frac{17}{10}$.

4B) Il raggio di convergenza della serie è $R = \frac{11}{10}$.

Vero: Per la (2) il raggio di convergenza della serie è $R = \frac{11}{10}$.

4C) La serie diverge per $x = \frac{39}{10}$

Vero: Dato che $\left|\frac{39}{10} - \frac{17}{10}\right| = \frac{11}{5} > \frac{11}{10} = R$, la serie non converge per $x = \frac{39}{10}$. Dato che per tale valore di x la serie è a termini positivi, la serie diverge.

4D) La serie converge per $x = \frac{3}{5}$.

Vero: Per $x = \frac{3}{5}$ la serie diventa

$$\sum_{k=0}^{+\infty} \frac{10^k}{(k+1) \cdot 11^k} \left(\frac{3}{5} - \frac{17}{10} \right)^k = \sum_{k=0}^{+\infty} \frac{10^k}{(k+1) \cdot 11^k} \left(-\frac{11}{10} \right)^k = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k+1} ,$$

che è una serie convergente per il criterio di Leibniz, dato che la successione $b_k = \frac{1}{k+1}$ è positiva, decrescente e infinitesima.

5) Sia

$$f(x) = x^7 \cos(6x^2).$$

- a) Si scriva la serie di Taylor di f(x).
- **b)** Si scriva il polinomio di Taylor di ordine 10 di f(x).
- **c)** Si calcoli $f^{(7)}(0)$.
- **d)** Si calcoli $f^{(9)}(0)$.

Soluzione:

a) Ricordando che

$$\cos(y) = \sum_{k=0}^{+\infty} \frac{(-1)^k y^{2k}}{(2k)!},$$

con la sostituzione $y = 6 x^2$ si ha

$$\cos(6x^2) = \sum_{k=0}^{+\infty} \frac{(-1)^k 6^{2k} x^{4k}}{(2k)!},$$

e quindi

(1)
$$x^7 \cos(6x^2) = \sum_{k=0}^{+\infty} \frac{(-1)^k 6^{2k} x^{4k+7}}{(2k)!}.$$

b) Dalla (1), scrivendo i termini corrispondenti a k = 0 e k = 1 si ha

$$f(x) = x^7 - 18x^{11} + \text{ termini di grado maggiore di 11},$$

da cui segue che

$$T_{10}(x;0) = x^7$$
.

c) Sempre dalla (1), si ha

$$f(x) = x^7 + \text{ termini di grado maggiore di 7},$$

da cui segue (per confronto con i coefficienti del polinomio di Taylor di ordine 7 di f(x)) che

$$\frac{f^{(7)}(0)}{7!} x^7 = x^7,$$

e quindi che

$$f^{(7)}(0) = 7!.$$

d) Nello sviluppo di Taylor di f(x) non compaiono termini di grado 9, dato che $4k+7\neq 9$ per ogni k naturale. Ne segue che si ha

$$f^{(9)}(0) = 0.$$

$$f(x) = \sum_{k=1}^{+\infty} \frac{(x-4)^k}{k \cdot 5^k}$$
.

- a) Si determini il centro della serie di potenze.
- b) Si determini il raggio di convergenza della serie di potenze.
- c) Si determini l'insieme di convergenza della serie di potenze.
- **d)** Si calcoli f'(x).

Soluzione:

- a) Il centro della serie di potenze è $x_0 = 4$.
- **b)** Dato che $a_k = \frac{1}{k \, 5^k}$, e che

$$L = \lim_{k \to +\infty} \sqrt[k]{\frac{1}{k \cdot 5^k}} = \frac{1}{5},$$

il raggio di convergenza della serie di potenze è $R = \frac{1}{L} = 5$.

c) Dato che il raggio di convergenza della serie di potenze è R=5, e che il centro è $x_0=4$, la serie converge se |x-4|<5, ovvero se x appartiene a (-1,9), e non converge se |x-4|>5, ovvero se x non appartiene a [-1,9]. Rimane da studiare la convergenza per x=-1 e per x=9. Per x=-1 si ha x-4=-5 e la serie diventa

$$\sum_{k=1}^{+\infty} \frac{(-1)^k}{k} \,,$$

che convege per il criterio di Leibniz. Per x=9 si ha x-4=5, e la serie diventa

$$\sum_{k=1}^{+\infty} \frac{1}{k},$$

che diverge essendo la serie armonica. In definitiva, l'insieme di convergenza della serie è

$$E = [-1, 9)$$
.

d) Derivando termine a termine si ha

$$f'(x) = \sum_{k=1}^{+\infty} \frac{k (x-4)^{k-1}}{k \cdot 5^k} = \sum_{k=1}^{+\infty} \frac{(x-4)^{k-1}}{5 \cdot 5^{k-1}} = \frac{1}{5} \sum_{k=1}^{+\infty} \left(\frac{x-4}{5}\right)^{k-1} = \frac{1}{5} \sum_{k=0}^{+\infty} \left(\frac{x-4}{5}\right)^k.$$

Ricordando la formula per la somma di una serie geometrica, si ha

$$f'(x) = \frac{1}{5} \sum_{h=0}^{+\infty} \left(\frac{x-4}{5}\right)^h = \frac{1}{5} \frac{1}{1 - \frac{x-4}{5}} = \frac{1}{9-x}.$$