Tutorial 2

Deepank Agrawal (17CS30011) 28-07-2019

1 Problem Statement

P[1..n] is an input list of n points on xy-plane. Assume that all n points have distinct x-coordinates and distinct y-coordinates. Let p_L and p_R denote the leftmost and the rightmost points of P, respectively. The task is to find the polygon Q with P as its vertex set such that the following conditions are satisfied.

- 1. The upper vertex chain of Q is x-monotone (increasing) from p_L to p_R .
- 2. The lower vertex chain of Q is x-monotone (decreasing) from p_L to p_R .
- 3. Perimeter of Q is minimum.

2 Recurrences

To solve the problem, we can design a Dynamic Programming(DP) algorithm. The formulation of the DP is:

Suppose that we have the x-monotone sorted list S of the point set P. Now, consider that for any $i, j \in \{1, ..., n\}$, we have already constructed the vertex chain with $S_i, S_{j-1} \in \{S_1, ..., S_n\}$, as the terminal vertices. Let's consider $i \leq j$ as B[i][j] = B[j][i]. Now, for S_j , following two cases arise for construction of the open polygon $Q_{ij}(\text{say})$, with S_i being one terminal vertex:

- 1. i < i 1
 - Then the chain with terminal S_j must also include S_{j-1} . The new terminal vertices will be S_i and S_j for the vertex chains.
- 2. i = j 1 or i = j: Then the optimal solution has one of the vertex chains ending in S_j joined to some $S_k \in \{S_1, ..., S_{j-1}\}$. The other terminal vertex will be S_i .

Let $p(Q_{ij})$ denote the optimal perimeter with S_i , S_j as the terminal vertices of the chains. Then, the k for which $p(Q_{ik}) + dist(k, j)$ is minimum will be selected for case 2.

Figure 1: Cases 1 and 2

Let's define M[1..n][1..n], where M[i][j] stores the minimal value of $p(Q_{ij})$ with S_i and S_j as terminal vertices of the vertex chains. Now the recurrence relation for the DP, such that S_j is the vertex to be added and $\forall i, j \in \{1, .., n\}, i \leq j$, can be defined as:

$$M[i][j] = \begin{cases} M[i][j-1] + dist(j-1, j), & i < j-1 \\ \min_{1 \le k < j} \{M[i][k] + dist(k, j)\}, & i = j-1 \text{ or } i = j \\ -1, & else \end{cases}$$
 (1)

So, the perimeter of the optimal polygon Q will be, $p(Q_{nn}) = M[n][n]$.

3 Algorithm

Now that Optimal Substructure has been defined, let's design the algorithm. Before that, we can see there are **overlapping sub-problems** (e.g. M[3][1] will be required for M[3][3]). So, **memoization** will be used.

To solve the problem, we store the minimal value of the perimeter $p(Q_{ij})$, $\forall S_i, S_j \in \{S_1, ..., S_n\}$ using equation (1). For this we construct a matrix M[0..n][0..n], where M[i][j] stores the minimal value of the perimeter p(Q) of the polygon Q_{ij} with S_i and S_j as terminal vertices of the vertex chains. To store the polygon Q, we construct a T[0..n][0..n], where T[i][j] stores the pair of terminal vertices of the open chains just before adding S_j vertex. Bottom-up approach will be used to fill matrix M.

Main Steps:

- 1. Sort the point set P in increasing x-coordinate and store in list S.
- 2. Initialize the matrix M with -1 values. M[i][j] = -1 denotes that open polygon Q_{ij} with S_i and S_j as terminal vertices of the vertex chains is not to be considered. Set M[1][1] = 0, as the base case.
- 3. Consider any open polygon Q_{ij} and calculate the minimum perimeter $p(Q_{ij})$ using equation (1). Accordingly, update T[i][j].

- 4. M[n][n] is the minimum perimeter $p(Q_{nn})$ for the polygon Q.
- 5. To get the polygon Q, we trace back from T[n][n] up to T[1][1] and store the two chains.

4 Time and space complexities

4.1 Time Complexity

Let's refer to the above mentioned steps for calculation of time complexity.

- 1. Sorting n points $\rightarrow O(n \log(n))$ time.
- 2. In equation (1), the 1^{st} condition takes $O(n^2)$ time and the 2^{nd} condition takes O(n) time. So, for Step $3 \to O(n^2)$ time.

So, overall Time complexity = $O(n^2)$.

4.2 Space Complexity

As a matrix M[0..n][0..n] is constructed, the space complexity of the algorithm will also be $O(n^2)$.