

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

	(міт 13 им. п.Э. Ваумана)
ФАКУЛЬТЕ КАФЕДРА_	
	Отчет по лабораторной работе №4 «Подготовка обучающей и тестовой выборки, кросс-валидация и подбор гиперпараметров на примере метода ближайших соседей» по курсу «Технологии машинного обучения»
	Выполнил: Студент группы ИУ5Ц-81Б Тураев Глеб
	Проверил: Преподаватель кафедры ИУ5 Гапанюк Ю.Е.

Цель лабораторной работы: Изучение способов предварительной обработки данных для дальнейшего формирования моделей.

Задание:

- 1. Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- 2. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 3. Обучите модель ближайших соседей для произвольно заданного гиперпараметра К. Оцените качество модели с помощью подходящих для задачи метрик.
- 4. Постройте модель и оцените качество модели с использованием кроссвалидации.
- 5. Произведите подбор гиперпараметра К с использованием GridSearchCV и кросс-валидации.

Выполнение лабораторной работы:

Импортируем библиотеки:

Осуществим импорт библиотек с помощью команды import:

```
[63] import numpy as np
import pandas as pd

from typing import Dict, Tuple
from scipy import stats
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split, cross_val_score, cross_validate, GridSearchCV
from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier
from sklearn.metrics import *

import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

```
[64] wine = load_wine()
[65] #наименование признаков
     wine.feature names
 ['alcohol',
      'malic_acid',
      'ash',
      'alcalinity_of_ash',
      'magnesium',
      'total_phenols',
      'flavanoids',
      'nonflavanoid_phenols',
      'proanthocyanins',
      'color_intensity'
      'hue'
      'od280/od315 of diluted wines',
      'proline']
[66] #узнаем размер датасета
     wine.data.shape
 [, (178, 13)
```

Формирование DataFrame:

Разделение на обучающую и тестовую выборку:

```
[69] wine_X_train, wine_X_test, wine_Y_train, wine_Y_test = train_test_split(wine.data, wine.target, test_size = 0.3, random_state=1)
```

Размер обучающей выборки:

Размер тестовой выборки:

3 ближайших соседа:

5 ближайших соседей:

class_2

class_0

Predicted label

Метрики качества классификации:

```
[74] accuracy_score(wine_Y_test, target3)

[> 0.7407407407407407

[75] accuracy_score(wine_Y_test, target5)

[> 0.7037037037037037
```

Конвертация целевого признака в бинарный:

```
[76] def convert_target_to_binary(array:np.ndarray, target:int) -> np.ndarray:
         res = [1 if x == target else 0 for x in array]
         return res
     bin_wine_Y_test = convert_target_to_binary(wine_Y_test, 2)
     bin_target3=convert_target_to_binary(target3, 2)
     bin_target5=convert_target_to_binary(target5, 2)
     confusion_matrix(bin_wine_Y_test,bin_target3, labels=[0,1])
C, array([[36, 6], [6, 6]])
[77] tn, fp, fn, tp = confusion_matrix(bin_wine_Y_test, bin_target3).ravel()
    tn, fp, fn, tp
[ (36, 6, 6, 6)
[78] plot_confusion_matrix(cl3, wine_X_test, wine_Y_test, display_labels = wine.target_names, cmap = plt.cm.Greens)
 <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7f9a49b9a240>
        class_0 -
        class_1
                                                10.0
                                                7.5
                                                - 5.0
```

- 2.5

class_2

[79] plot_confusion_matrix(cl3, wine_X_test, wine_Y_test, display_labels = wine.target_names, cmap = plt.cm.Greens, normalize='true') <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7f9a4972ceb8> 0.8 0.91 0.087 0.11 0.21 - 0.2 dass_1 Predicted label dass_2 dass_0 [80] fig, ax=plt.subplots(1, 2, sharex='col', sharey = 'row', figsize = (15,5)) plot_confusion_matrix(cl3, wine_X_test, wine_Y_test, display_labels=wine.target_names, cmap=plt.cm.Greens, normalize='true', ax=ax[0]) plot_confusion_matrix(c15, wine_X_test, wine_Y_test, display_labels=wine.target_names, cmap=plt.cm.Greens, normalize='true', ax=ax[1]) fig.suptitle("Матрицы ошибок") ax[0].title.set_text('K=2') ax[1].title.set_text('K=10') C+ Матрицы ошибок K=2 K=10 0.087 0.91 0 0.91 0.087 0.11 0.21 0.11 0.26 0.4 0.4 0.2 0.2 0.42 0.42 0.083 class_0 dass_1 Predicted label class_2 dass_0 dass_1 Predicted label class_2 [81] precision_score(bin_wine_Y_test, bin_target3), recall_score(bin_wine_Y_test, bin_target3) [· (0.5, 0.5) [82] precision_score(bin_wine_Y_test, bin_target5), recall_score(bin_wine_Y_test, bin_target5) Γ₂ (0.41666666666666667)

С учетом веса класса:

Без учета веса класса:

```
[84] precision_score(wine_Y_test, target3, average = 'macro')

D. 0.6990740740740741
```

С учетом веса классов:

```
[85] precision_score(wine_Y_test, target3, average = 'weighted')
0.7379115226337448
```

```
[86] classification report(wine Y test, target3, target names = wine.target names,output dict=True)
 ('accuracy': 0.7407407407407407,
        class_0': {'f1-score': 0.8936170212765957, 'precision': 0.875,
        'recall': 0.9130434782608695,
        'support': 23},
       'class_1': {'f1-score': 0.7027027027027027, 'precision': 0.722222222222222,
        'recall': 0.6842105263157895,
        'support': 19},
       'class_2': {'f1-score': 0.5, 'precision': 0.5, 'recall': 0.5, 'support': 12},
       'macro avg': {'f1-score': 0.6987732413264328, 'precision': 0.6990740740740741,
        'recall': 0.6990846681922197,
        'support': 54},
       'weighted avg': {'f1-score': 0.7389730155687603,
        'precision': 0.7379115226337448,
        'recall': 0.7407407407407407,
        'support': 54}}
```

ROC-кривая и ROC AUC:

```
[87] fpr, tpr, thresholds = roc_curve(bin_wine_Y_test, bin_target3, pos_label=1)
     fpr, tpr, thresholds
                       , 0.14285714, 1.
 ┌→ (array([0.
                                              ]),
     array([0. , 0.5, 1. ]),
      array([2, 1, 0]))
    def draw_roc_curve(y_true, y_score, pos_label, average):
         fpr, tpr, thresholds = roc_curve(y_true, y_score, pos_label)
         roc_auc_value = roc_auc_score(y_true, y_score, average=average)
         plt.figure()
         plt.plot(fpr, tpr, color = 'orange', lw=lw, label = 'ROC curve (area = %0.2f' % roc_auc_value)
         plt.plot([0, 1], [0, 1], color = 'red', lw=lw, linestyle='--')
         plt.xlim([0.0, 1.0])
         plt.ylim([0.0, 1.05])
         plt.xlabel('False Positive Rate')
         plt.ylabel('True Positive Rate')
         plt.title('Receiver operating characteristic example')
         plt.legend(loc='lower right')
         plt.show()
     draw_roc_curve(bin_wine_Y_test, bin_target3, pos_label=1, average = 'micro')
     draw_roc_curve(bin_wine_Y_test, bin_target5, pos_label=1, average = 'micro')
```


По полученным метрикам качества классификации можно говорить о среднем качестве классификации.

Разбиение выборки на K частей с помощью кросс-валидации. Стратегия кросс-валидации определяется автоматически (cross_val_score).

```
[89] wine_cross = cross_val_score(KNeighborsClassifier(n_neighbors=2), wine.data, wine.target, cv = 11)
         wine_cross
                                                                              , 0.5625
                                                                                                   , 0.5625
                                     , 0.64705
, 0.8125
])
       array([0.58823529, 0.64705882, 0.6875
                    0.75
[90] np.mean(wine_cross)
 D. 0.68048128342246
[91] wining = {
                 'precesion': 'precision_weighted',
                'recall': 'recall_weighted',
                'f1': 'f1_weighted'
         wine_cross = cross_validate(KNeighborsClassifier(n_neighbors=2), wine.data, wine target, scoring=wining, cv=3, return_train_score=True)
         wine cross
 C> {'fit_time': array([0.00151014, 0.00049448, 0.00041747]),
   'score_time': array([0.00567651, 0.00400376, 0.00401187]),
   'test_f1': array([0.51069094, 0.6198816, 0.6798559]),
   'test_precesion': array([0.48984127, 0.62317561, 0.70585516]),
   'test_recall': array([0.56666667, 0.6440678, 0.72881356]),
   'train_f1': array([0.89415947, 0.8703245, 0.8181316]),
   'train_precesion': array([0.91000807, 0.8877454, 0.85825075]),
   'train_precesion': array([0.91000807, 0.8877454, 0.85825075]),
           'train_recall': array([0.89830508, 0.87394958, 0.83193277])}
```

Нахождение наилучшего параметра К с использованием GridSearchCV и кросс-валидации.

```
[92] n range = np.array(range(5, 30,1))
     tuned_param = [{'n_neighbors': n_range}]
     tuned_param
 ['n_neighbors': array([ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
              22, 23, 24, 25, 26, 27, 28, 29])}]
[93] %%time
     classific_gs = GridSearchCV(KNeighborsClassifier(),tuned_param, cv=5, scoring='accuracy')
     classific_gs.fit(wine_X_train, wine_Y_train)
 CPU times: user 292 ms, sys: 273 μs, total: 293 ms
     Wall time: 295 ms
[94] classific gs.cv_results_
     {'mean fit time': array([0.00068803, 0.0004283 , 0.00043416, 0.00042524, 0.00041771,
             0.00042973, 0.0004241 , 0.000419 , 0.00047507, 0.00043502,
             0.00040317, 0.00039215, 0.00038939, 0.00040283, 0.00040059,
             0.00042143, 0.00041099, 0.000421 , 0.0004334 , 0.00040708,
             0.00040131, 0.00040536, 0.00039268, 0.00042624, 0.00040474]),
      'mean score time': array([0.00276728, 0.00158863, 0.00158939, 0.00154924, 0.00156426,
             0.00160794, 0.00169392, 0.00145273, 0.00176802, 0.00155969,
             0.0014349 , 0.00141783, 0.00144849, 0.00142608, 0.00149074,
             0.0015275 , 0.00144463, 0.0015048 , 0.00152011, 0.00152073,
             0.0014235 , 0.00145135, 0.00145826, 0.00145411, 0.00146427]),
      'mean_test_score': array([0.67666667, 0.725 , 0.66833333, 0.676
                                                                          , 0.69266667,
             0.67666667, 0.67666667, 0.70033333, 0.70933333, 0.685
             0.69333333, 0.71766667, 0.726 , 0.72633333, 0.726
             0.734
                      , 0.734
                                , 0.75
                                             , 0.726 , 0.718
             0.71733333, 0.73366667, 0.709 , 0.71766667, 0.709
      'param_n_neighbors': masked_array(data=[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
                        20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
                   mask=[False, False, False, False, False, False, False, False, False,
                        False, False, False, False, False, False, False, False,
                        False, False, False, False, False, False, False, False,
             fill value='?',
                 dtype=object),
      'params': [{'n neighbors': 5},
       {'n_neighbors': 6},
       {'n_neighbors': 7},
       {'n neighbors': 8},
       {'n_neighbors': 9},
       {'n neighbors': 10},
       {'n neighbors': 11},
```

Лучшая модель:

```
[95] classific_gs.best_estimator_

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=22, p=2, weights='uniform')
```

Лучшее значение метрики:

Лучшее значение параметров:

```
[97] classific_gs.best_params_

[→ {'n_neighbors': 22}
```

Вывод: видим, что лучшее найденное значение гиперпараметра K=22. При этом K наилучшее значение метрики = 0,75.