Titanic Disaster Survival Prediction

CodSoft-DataScience-Internship-Task-1

```
#import libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
Load the Data
#load data
titanic_data=pd.read_csv('/content/Titanic-Dataset.csv')
len(titanic_data)
    891
View the data using head function which returns top rows
titanic_data.head()
        PassengerId Survived Pclass
                                       Name
                                               Sex Age SibSp Parch
                                                                       Ticket
                                                                                 Fare
                                     Braund,
                                    Mr. Owen
                                              male 22.0
                                                                  0 A/5 21171 7.2500
                                       Harris
                                    Cumings,
                                    Mrs. John
                                     Bradley
                 2
                                             female 38.0
                                                                  0 PC 17599 71.2833
                          1
                                    (Florence
    4
titanic_data.index
    RangeIndex(start=0, stop=891, step=1)
titanic_data.columns
    dtype='object')
titanic_data.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 891 entries, 0 to 890
    Data columns (total 12 columns):
                    Non-Null Count Dtype
     # Column
                     -----
     0 PassengerId 891 non-null
                                   int64
                     891 non-null
     2
        Pclass
                     891 non-null
                                   int64
     3
         Name
                     891 non-null
                                   object
                     891 non-null
                     714 non-null
                                   float64
```

dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

891 non-null

891 non-null

891 non-null

891 non-null

204 non-null

889 non-null

int64

int64

object

float64

object

object

Age SibSp

Parch

9 Fare 10 Cabin

11 Embarked

Ticket

titanic_data.dtypes

int64
int64
object
object
float64
int64
int64
object
float64
object
object

titanic_data.describe()

		PassengerId	Survived	Pclass	Age	SibSp	Parch	
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.0
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.2
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.€
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.0
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.§
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.4
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.0
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.3
4								>

Explaining Dataset

survival: Survival 0 = No, 1 = Yes

pclass: Ticket class 1 = 1st, 2 = 2nd, 3 = 3rd

sex:Sex

Age : Age in years

sibsp: Number of siblings / spouses aboard the Titanic

parch # of parents / children aboard the Titanic

ticket: Ticket number fare Passenger fare cabin Cabin number

embarked: Port of Embarkation C = Cherbourg, Q = Queenstown, S = Southampton

Data Analysis

Import Seaborn for visually analysing the data

Find out how many survived vs Died using countplot method of seaboarn

#countplot of subrvived vs not survived

sns.countplot(x='Survived',data=titanic_data)

<Axes: xlabel='Survived', ylabel='count'>

Male vs Female Survival

#Male vs Female Survived?

sns.countplot(x='Survived',data=titanic_data,hue='Sex')

<Axes: xlabel='Survived', ylabel='count'>

^{*}See age group of passengeres travelled *

Note: We will use displot method to see the histogram. However some records does not have age hence the method will throw an error. In order to avoid that we will use dropna method to eliminate null values from graph

#Check for null

titanic_data.isna()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False
886	False	False	False	False	False	False	False	False	False	False
887	False	False	False	False	False	False	False	False	False	False
888	False	False	False	False	False	True	False	False	False	False
889	False	False	False	False	False	False	False	False	False	False
890	False	False	False	False	False	False	False	False	False	False
891 rows × 12 columns										
4										>

#Check how many values are null

titanic_data.isna().sum()

PassengerId	6
Survived	6
Pclass	6
Name	9
Sex	6
Age	177
SibSp	6
Parch	6
Ticket	6
Fare	6
Cabin	687
Embarked	2
dtype: int64	

#Visualize null values

sns.heatmap(titanic_data.isna())

#find the % of null values in age column

#find the % of null values in cabin column

 $({\tt titanic_data['Cabin'].isna().sum()/len(titanic_data['Cabin']))*100}$

77.10437710437711

#find the distribution for the age column

sns.displot(x='Age',data=titanic_data)

<seaborn.axisgrid.FacetGrid at 0x7fed2bed6c50>

Data Cleaning

Fill the missing values

we will fill the missing values for age. In order to fill missing values we use fillna method. For now we will fill the missing age by taking average of all age

#fill age column

titanic_data['Age'].fillna(titanic_data['Age'].mean(),inplace=True)

We can verify that no more null data exist

we will examine data by isnull mehtod which will return nothing

#verify null value

titanic_data['Age'].isna().sum()

0

Alternatively we will visualise the null value using heatmap

we will use heatmap method by passing only records which are null.

#visualize null values

sns.heatmap(titanic_data.isna())

We can see cabin column has a number of null values, as such we can not use it for prediction. Hence we will drop it

#Drop cabin column

titanic_data.drop('Cabin',axis=1,inplace=True)

#see the contents of the data

titanic_data.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	
1	2	1	1	Cumings, Mrs. John Bradley (Florence	female	38.0	1	0	PC 17599	7
4										•

Preaparing Data for Model

No we will require to convert all non-numerical columns to numeric. Please note this is required for feeding data into model. Lets see which columns are non numeric info describe method

#Check for the non-numeric column

titanic_data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 11 columns):
                 Non-Null Count Dtype
    Column
   PassengerId 891 non-null
                                int64
    Survived
                 891 non-null
1
                                int64
    Pclass
                 891 non-null
                                int64
    Name
                 891 non-null
                                object
```

```
4
    Sex
                891 non-null
                               object
5
    Age
                891 non-null
                               float64
6
   SibSp
                891 non-null
                              int64
7
    Parch
                891 non-null
                              int64
8
   Ticket
                891 non-null
                               object
                891 non-null
                              float64
   Fare
10 Embarked
                889 non-null
                              object
dtypes: float64(2), int64(5), object(4)
memory usage: 76.7+ KB
```

titanic_data.dtypes

PassengerId	int64
Survived	int64
Pclass	int64
Name	object
Sex	object
Age	float64
SibSp	int64
Parch	int64
Ticket	object
Fare	float64
Embarked	object
dtype: object	

We can see, Name, Sex, Ticket and Embarked are non-numerical. It seems Name, Embarked and Ticket number are not useful for Machine Learning Prediction hence we will eventually drop it. For Now we would convert Sex Column to dummies numerical values****

#convert sex column to numerical values

gender=pd.get_dummies(titanic_data['Sex'],drop_first=True)

titanic_data['Gender']=gender

titanic_data.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
() 1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171
,	1 2	1	1	Cumings, Mrs. John Bradley (Florence	female	38.0	1	0	PC 17599 7
4									+

#drop the columns which are not required

titanic_data.drop(['Name','Sex','Ticket','Embarked'],axis=1,inplace=True)

titanic_data.head()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	Gender
0	1	0	3	22.0	1	0	7.2500	1
1	2	1	1	38.0	1	0	71.2833	0
2	3	1	3	26.0	0	0	7.9250	0
3	4	1	1	35.0	1	0	53.1000	0
4	5	0	3	35.0	0	0	8.0500	1

#Seperate Dependent and Independent variables

```
x=titanic_data[['PassengerId','Pclass','Age','SibSp','Parch','Fare','Gender']]
y=titanic_data['Survived']
```

```
0 0
1 1
2 1
3 1
4 0 ...
886 0
887 1
888 0
889 1
890 0
Name: Survived, Length: 891, dtype: int64
```

Data Modelling

Building Model using Logestic Regression

Build the model

```
#import train test split method
from sklearn.model_selection import train_test_split
#train test split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
#import Logistic Regression
from sklearn.linear_model import LogisticRegression
#Fit Logistic Regression
lr=LogisticRegression()
lr.fit(x_train,y_train)
     /usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458: Con
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (\mbox{max\_iter}) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         \underline{\texttt{https://scikit-learn.org/stable/modules/linear\_model.html} \\ \underline{\texttt{model.html#logistic-regression}}
       n_iter_i = _check_optimize_result(
      ▼ LogisticRegression
     LogisticRegression()
#predict
predict=lr.predict(x_test)
```

Testing

See how our model is performing

```
#print confusion matrix
from sklearn.metrics import confusion_matrix
```

pd.DataFrame(confusion_matrix(y_test,predict),columns=['Predicted No','Predicted Yes'],index=['Actual No','Actual Yes'])

	Predicted No	Predicted Yes
Actual No	151	24
Actual Yes	37	83

Double-click (or enter) to edit

#import classification report

from sklearn.metrics import classification_report

print(classification_report(y_test,predict))

	precision	recall	f1-score	support
0	0.80	0.86	0.83	175
1	0.78	0.69	0.73	120
accuracy			0.79	295
macro avg	0.79	0.78	0.78	295
weighted avg	0.79	0.79	0.79	295

Precision is fine considering Model Selected and Available Data. Accuracy can be increased by further using more features (which we dropped earlier) and/or by using other model

Note:

Precision: Precision is the ratio of correctly predicted positive observations to the total predicted positive observations

Recall: Recall is the ratio of correctly predicted positive observations to the all observations in actual class F1 score - F1 Score is the weighted average of Precision and Recall.