- 5.2.2 (a) Use Definition 5.2.1 to produce the proper formula for the derivative of $f(x) = \frac{1}{x}$. $f'(c) = \lim_{x \to c} \frac{f(x) f(c)}{x c} = \lim_{x \to c} \frac{\frac{1}{x} \frac{1}{c}}{x c} = \lim_{x \to c} \frac{\frac{c x}{xc}}{x c} = \lim_{x \to c} \frac{-1}{xc} = -\frac{1}{c^2}.$
 - (b) Combine the result in part (a) with the chain rule (Theorem 5.2.5) to supply a proof for part (iv) of Theorem 5.2.4.

Proof. Let $h(x) = \frac{1}{x}$. Then, we can use the chain rule to simplify

$$(\frac{1}{g(x)})' = (h \circ g)'(x)$$

$$= h'(g(x))g'(x)$$

$$= -\frac{1}{(g(x))^2}(g'(x)) = -\frac{g'(x)}{(g(x))^2}.$$

This helps us to simplify

$$(\frac{f}{g})'(x) = (f(x)(h \circ g)(x))'$$

$$= f'(x)h(g(x)) + f(x)(h \circ g)'(x)$$

$$= \frac{f'(x)}{g(x)} - \frac{f(x)g'(x)}{(g(x))^2}$$

$$= \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} .$$

(c) Supply a direct proof of Theorem 5.2.4 (iv) by algebraically manipulating the difference quotient for $(\frac{f}{g})$ in a style similar to the proof of Theorem 5.2.4 (iii).

Proof.

$$(\frac{f}{g})'(c) = \frac{(\frac{f}{g})(x) - (\frac{f}{g})(c)}{x - c} = \frac{1}{x - c} (\frac{f(x)}{g(x)} - \frac{f(c)}{g(c)})$$

$$= \frac{1}{x - c} (\frac{f(x)g(c) - g(x)f(c)}{g(x)g(c)})$$

$$= \frac{1}{g(x)g(c)} (\frac{f(x)g(c) - f(c)g(c) + f(c)g(c) - g(x)f(c)}{x - c})$$

$$= \frac{1}{g(x)g(c)} (g(c)\frac{f(x) - f(c)}{x - c} - f(c)\frac{g(x) - g(c)}{x - c})$$

Because f and g are differentiable at c, it is continuous there and thus $\lim_{x\to c} f(x) = f(c)$ and $\lim_{x\to c} g(x) = g(c)$. Using this with the Algebraic Limit Theorem for functional limits, we can simplify the answer to $\frac{1}{(g(c))^2}(g(c)f'(c) - f(c)g'(c))$.

Thus,
$$(\frac{f}{g})'(c) = \frac{g(c)f'(c) - f(c)g'(c)}{(g(c))^2}$$
 as desired.

5.2.5 Let

$$g_a(x) = \begin{cases} x^a \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

Find a particular (potentially noninteger) value for a so that

- (a) g_a is differentiable on \mathbb{R} but such that g'_a is unbounded on [0,1]. $a = \frac{3}{2}$ satisfies both requirements.
- (b) g_a is differentiable on \mathbb{R} with g'_a continuous but not differentiable at zero. a=3 satisfies all the requirements.
- (c) g_a is differentiable on \mathbb{R} with g'_a is differentiable on \mathbb{R} , but such that g''_a is not continuous at zero.
 - a = 4 satisfies all the requirements.
- 5.2.8 Decide whether each conjecture is true or false. Provide an argument for those that are true and a counterexample for each one that is false.
 - (a) If a derivative function is not constant, then the derivative must take on some irrational values.

False, take the following counterexample: f(x) = |x|. Then, f'(x) = -1 when x < 0 and f'(x) = 1 when x > 0 and f'(x) is not defined when x = 0. So, we see that f' is not constant since it has two values, -1 and 1, but it is does not take on any irrational values.

(b) If f' exists on an open interval, and there is some point c where f'(c) > 0, then there exists a δ -neighborhood $V_{\delta}(c)$ around c in which f'(x) > 0 for all $x \in V_{\delta}(c)$.

False, take the following counterexample: $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) + x & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

Then, $f'(0) = \lim_{x\to 0} \frac{x^2 sin(\frac{1}{x}) + x - 0}{x - 0} = 1 > 0$. But, the derivative at $x \neq 0$ is $f'(x) = 2x sin(\frac{1}{x}) - cos(\frac{1}{x}) + 1$ which has non-positive values at $x = \frac{1}{2n\pi}$ for $n \in \mathbb{N}$. We can see this by plugging in $\frac{1}{2n\pi}$ to get $f'(\frac{1}{2n\pi}) = \frac{1}{n\pi} sin(2n\pi) - cos(2n\pi) + 1 = 0 - 1 + 1 = 0$ and 0 > 0 is false. We can always choose n large enough so that for any $V_{\delta}(0)$ with $\delta > 0$, $\frac{1}{2n\pi} \in V_{\delta}(0)$ and thus fails to satisfy the claim.

(c) If f is differentiable on an interval containing zero and if $\lim_{x\to 0} f'(x) = L$, then it must be that L = f'(0).

True, because if $L \neq f'(0)$ then this is a violation of Darboux's Theorem.

Proof. Assume for the sake of contradiction that $L \neq f'(0)$. We will assume that f'(0) < L (A similar proof holds true for the other case as shown below this proof). Let $0 < \epsilon < \frac{L-f'(0)}{2}$. Since $\lim_{x\to 0} f'(x) = L$, we know that there exists $\delta > 0$ such that for all x with $0 < |x| < \delta$ implies $|f'(x) - L| < \epsilon$, or in more detail: $L - \epsilon < f'(x) < L + \epsilon$. Choose such a δ and choose a such that $f'(0) < a < L - \epsilon$. Then, for all x with $0 < |x| < \delta$ it is true that f'(0) < a < f'(x). By Darboux's Theorem, we have $c \in (0, x)$ such that f'(c) = a. However, this is a contradiction since $0 < c < \delta$ but $f'(c) = a < L - \epsilon$ which means it fails to satisfy $\lim_{x\to 0} f'(x) = L$. Thus, L = f'(0) must be true.

Proof. Assume for the sake of contradiction that $L \neq f'(0)$. We will assume that f'(0) > L (A similar proof holds true for the other case as shown below this proof). Let $0 < \epsilon < \frac{f'(0)-L}{2}$. Since $\lim_{x\to 0} f'(x) = L$, we know that there exists $\delta > 0$ such that for all x with $0 < |x| < \delta$ implies $|f'(x) - L| < \epsilon$, or in more detail: $L - \epsilon < f'(x) < L + \epsilon$. Choose such a δ and choose a such that $L + \epsilon < a < f'(0)$. Then, for all x with $0 < |x| < \delta$ it is true that f'(0) > a > f'(x). By Darboux's Theorem, we have $c \in (0, x)$ such that f'(c) = a. However, this is a contradiction since $0 < c < \delta$ but $f'(c) = a > L + \epsilon$ which means it fails to satisfy $\lim_{x\to 0} f'(x) = L$. Thus, L = f'(0) must be true.

- (d) Repeat conjecture (c) but drop the assumption that f'(0) necessarily exists. If f'(x) exists for all $x \neq 0$ and if $\lim_{x\to 0} f'(x) = L$, then f'(0) exists and equals L. False, take the counterexample: $f(x) = \frac{x^2+x}{x}$. We see that f'(x) exists for all $x \neq 0$. Also, we see that for $x \neq 0$, $f(x) = \frac{x^2+x}{x} = x+1$ so $\lim_{x\to 0} f'(x) = 1$. However, f'(0) is undefined since f is not differentiable at x = 0 and so it cannot be equal to 1.
- 5.3.1 Recall from Exercise 4.4.9 that a function $f: A \to \mathbb{R}$ is Lipschitz on A if there exists an M > 0 such that $\left| \frac{f(x) f(y)}{x y} \right| \le M$ for all $x, y \in A$. Show that if f is differentiable on a closed interval [a, b] and if f' is continuous on [a, b], then f is Lipschitz on [a, b].
- 5.3.5 A fixed point of a function f is a value x where f(x) = x. Show that if f is differentiable on an interval with $f'(x) \neq 1$, then f can have at most one fixed point.
- 5.3.8 Assume $g:(a,b)\to\mathbb{R}$ is differentiable at some point $c\in(a,b)$. If $g'(c)\neq 0$, show that there exists a δ -neighborhood $V_{\delta}(c)\subseteq(a,b)$ for which $g(x)\neq g(c)$ for all $x\in V_{\delta}(c)$. Compare this result with Exercise 5.3.7.
- 5.4.2 Fix $x \in \mathbb{R}$. Argue that the series $\sum_{n=0}^{\infty} \frac{1}{2^n} h(2^n x)$ converges absolutely and thus g(x) is properly defined.

Chapter 5

- 5.4.4 Show that $\frac{g(x_m)-g(0)}{x_m-0}=m+1$, and use this to prove that g'(0) does not exist.
- 5.4.5 (a) Modify the previous argument to show that g'(1) does not exist. Show that $g'(\frac{1}{2})$ does not exist.
 - (b) Show that g'(x) does not exist for any rational number of the form $x = \frac{p}{2^k}$ where $p \in \mathbb{Z}$ and $k \in \mathbb{N} \cup \{0\}$.