Analysis and Design of Algorithms

CMP 2202 Lecture 3

Analysis of Algorithms

An **algorithm** is a step-by-step procedure for solving a problem in a finite amount of time.

Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a function, like the built-in clock() function, to get an accurate measure of the actual running time
- Plot the results

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm *arrayMax*(*A*, *n*)
Input array *A* of *n* integers
Output maximum element of *A*

 $currentMax \leftarrow A[0]$ $for i \leftarrow 1 to n - 1 do$ if A[i] > currentMax then $currentMax \leftarrow A[i]$ return currentMax

Pseudocode Details

- Control flow
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces
- Method declaration

```
Algorithm method (arg [, arg...])
Input ...
Output ...
```

- Method/Function call var.method (arg [, arg...])
- Return value return expression
- Expressions
 - ← Assignment (like = in C++)
 - = Equality testing
 (like == in C++)
 - n² Superscripts and other mathematical formatting allowed

The Random Access Machine (RAM) Model

♦ A CPU

 An potentially unbounded bank of **memory** cells, each of which can hold an arbitrary number or character

Memory cells are numbered and accessing any cell in memory takes unit time.

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Counting Primitive Operations

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
Algorithm arrayMax(A, n) # operations currentMax \leftarrow A[0] for i \leftarrow 1 to n-1 do 2+n if A[i] > currentMax then 2(n-1) currentMax \leftarrow A[i] 2(n-1) { increment counter i } 2(n-1) return currentMax 1
```

Estimating Running Time

- Algorithm arrayMax executes 7n 1 primitive operations in the worst case. Define:
 - a = Time taken by the fastest primitive operation
 - b = Time taken by the slowest primitive operation
- Let T(n) be worst-case time of arrayMax. Then $a(7n-1) \le T(n) \le b(7n-1)$
- lacktriangle Hence, the running time T(n) is bounded by two linear functions

Growth Rate of Running Time

- Changing the hardware/ software environment
 - \blacksquare Affects T(n) by a constant factor, but
 - Does not alter the growth rate of T(n)
- The linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax

Growth Rates

- Growth rates of functions:
 - Linear $\approx n$
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$
- In a log-log chart, the slope of the line corresponds to the growth rate of the function

Constant Factors

- The growth rate is not affected by
 - constant factors or
 - lower-order terms
- Examples
 - 10^2 **n** + 10^5 is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function

Big-Oh Notation

• Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that

$$f(n) \le cg(n)$$
 for $n \ge n_0$

- Example: 2n + 10 is O(n)
 - $2n + 10 \le cn$
 - $(c-2) n \ge 10$
 - $n \ge 10/(c-2)$
 - Pick c = 3 and $n_0 = 10$

Big-Oh Example

- Example: the function n^2 is not O(n)
 - $n^2 \le cn$
 - $n \leq c$
 - The above inequality cannot be satisfied since c must be a constant

More Big-Oh Examples

- ♦ 7n-2
 - 7n-2 is O(n) $need \ c>0 \ and \ n_0\geq 1 \ such \ that \ 7n-2\leq c\bullet n \ for \ n\geq n_0$ this is true for c=7 and $n_0=1$
- $3n^3 + 20n^2 + 5$ $3n^3 + 20n^2 + 5$ is $O(n^3)$ need c > 0 and $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le c \cdot n^3$ for $n \ge n_0$ this is true for c = 4 and $n_0 = 21$
- 3 log n + log log n

 $3 \log n + \log \log n$ is $O(\log n)$ need c > 0 and $n_0 \ge 1$ such that $3 \log n + \log \log n \le c \bullet \log n$ for $n \ge n_0$ this is true for c = 4 and $n_0 = 2$

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

	f(n) is $O(g(n))$	g(n) is $O(f(n))$
g(n) grows more	Yes	No
f(n) grows more	No	Yes
Same growth	Yes	Yes

Big-Oh Rules

- If is f(n) a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We determine that algorithm arrayMax executes at most 7n-1 primitive operations
 - We say that algorithm arrayMax "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- The *i*-th prefix average of an array *X* is average of the first (*i* + 1) elements of *X*:

$$A[i] = (X[0] + X[1] + ... + X[i])/(i+1)$$

Computing the array A of prefix averages of another array X has applications to financial analysis

Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition

Algorithm <i>prefixAverages1(X, n)</i>	
Input array X of n integers	
Output array A of prefix averages of X	#operations
$A \leftarrow$ new array of n integers	n
for $i \leftarrow 0$ to $n-1$ do	n
$s \leftarrow X[0]$	n
$\mathbf{for} j \leftarrow 1 \ \mathbf{to} \ i \ \mathbf{do} $	$-2 + \ldots + (n-1)$
$s \leftarrow s + X[j]$ 1 +	$-2 + \ldots + (n-1)$
$A[i] \leftarrow s / (i+1)$	n
return A	1

Arithmetic Progression

- The running time of prefixAverages1 is O(1 + 2 + ... + n)
- The sum of the first n integers is n(n + 1)/2
 - There is a simple visual proof of this fact
- Thus, algorithm prefixAverages1 runs in $O(n^2)$ time

Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by keeping a running sum

Algorithm prefixAverages2(X, n)	
Input array X of n integers	
Output array A of prefix averages of X	#operations
$A \leftarrow$ new array of n integers	n
$s \leftarrow 0$	1
for $i \leftarrow 0$ to $n-1$ do	n
$s \leftarrow s + X[i]$	n
$A[i] \leftarrow s / (i+1)$	n
return A	1

lacktriangle Algorithm *prefixAverages2* runs in O(n) time

Relatives of Big-Oh

big-Omega

• f(n) is $\Omega(g(n))$ if there is a constant c > 0and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

big-Theta

• f(n) is $\Theta(g(n))$ if there are constants c' > 0 and c'' > 0 and an integer constant $n_0 \ge 1$ such that $c' \bullet g(n) \le f(n) \le c'' \bullet g(n)$ for $n \ge n_0$

little-oh

• f(n) is o(g(n)) if, for any constant c > 0, there is an integer constant $n_0 \ge 0$ such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$

little-omega

• f(n) is $\omega(g(n))$ if, for any constant c > 0, there is an integer constant $n_0 \ge 0$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

Intuition for Asymptotic Notation

Big-Oh

• f(n) is O(g(n)) if f(n) is asymptotically **less than or equal** to g(n)

big-Omega

• f(n) is $\Omega(g(n))$ if f(n) is asymptotically **greater than or equal** to g(n)

big-Theta

• f(n) is $\Theta(g(n))$ if f(n) is asymptotically **equal** to g(n)

little-oh

f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)

little-omega

• f(n) is $\omega(g(n))$ if is asymptotically **strictly greater** than g(n)

Example Uses of the Relatives of Big-Oh

■ $5n^2$ is $\Omega(n^2)$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

let c = 5 and $n_0 = 1$

■ $5n^2$ is $\Omega(n)$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

let c = 1 and $n_0 = 1$

f(n) is $\omega(g(n))$ if, for any constant c > 0, there is an integer constant $n_0 \ge 0$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

need $5n_0^2 \ge c \cdot n_0 \rightarrow \text{given } c$, the n_0 that satisfies this is $n_0 \ge c/5 \ge 0$