whether prediction

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
data = pd.read_csv("DailyDelhiClimateTrain.csv")
print(data.head())
output:
```

	date	meantemp	humidity	wind_speed	meanpressure
0	2013-01-01	10.000000	84.500000	0.000000	1015.666667
1	2013-01-02	7.400000	92.000000	2.980000	1017.800000
2	2013-01-03	7.166667	87.000000	4.633333	1018.666667
3	2013-01-04	8.666667	71.333333	1.233333	1017.166667
4	2013-01-05	6.000000	86.833333	3.700000	1016.500000

Let's have a look at the descriptive statistics of this data before moving forward:

print(data.describe())

output:

count 1 mean std min	meantemp 1462.000000 25.495521 7.348103	humidity 1462.000000 60.771702	wind_speed 1462.000000 6.802209	meanpressure 1462.000000 1011.104548
mean std	25.495521	60.771702		
std			6.802209	1011.104548
	7.348103			
min		16.769652	4.561602	180.231668
	6.000000	13.428571	0.000000	-3.041667
25%	18.857143	50.375000	3.475000	1001.580357
50%	27.714286	62.625000	6.221667	1008.563492
75%	31.305804	72.218750	9.238235	1014.944901
max	38.714286	100.000000	42.220000	7679.333333

Now let's have a look at the information about all the columns in the dataset: print(data.info())

output:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1462 entries, 0 to 1461
Data columns (total 5 columns):
    Column
                Non-Null Count Dtype
    -----
                -----
0
    date
           1462 non-null object
1 meantemp 1462 non-null float64
   humidity 1462 non-null float64
2
3
    wind_speed 1462 non-null float64
    meanpressure 1462 non-null float64
dtypes: float64(4), object(1)
memory usage: 57.2+ KB
```

The date column in this dataset is not having a datetime data type. We will change it when required. Let's have a look at the mean temperature in Delhi over the years:

```
figure = px.line(data, x="date", y="meantemp",title='Mean Temperature in Delhi Over the Years') figure.show()
```

output:

Now let's have a look at the humidity in Delhi over the years:

figure = px.line(data, x="date",

y="humidity",

title='Humidity in Delhi Over the Years')

figure.show()

output:

Humidity in Delhi Over the Years

Now let's have a look at the wind speed in Delhi over the years:

figure = px.line(data, x="date", y="wind_speed", title='Wind Speed in Delhi Over the Years') figure.show()

output:'

Wind Speed in Delhi Over the Years

Now let's have a look at the temperature change in Delhi over the years: plt.style.use('fivethirtyeight')

```
plt.figure(figsize=(15, 10))

plt.title("Temperature Change in Delhi Over the Years")

sns.lineplot(data = data, x='month', y='meantemp', hue='year')

plt.show()

output:
```


Forecasting Weather using Python

Now let's move to the task of weather forecasting. I will be using the Facebook prophet model for this task. The Facebook prophet model is one of the best techniques for time series forecasting. If you have never used this model before, you can install it on your system by using the command mentioned below in your command prompt or terminal:

Now below is how we can use the Facebook prophet model for weather forecasting using Python:

```
from prophet import Prophet

from prophet.plot import plot_plotly, plot_components_plotly

model = Prophet()

model.fit(forecast_data)

forecasts = model.make_future_dataframe(periods=365)

predictions = model.predict(forecasts)

plot_plotly(model, predictions)

output:
```


Summary

Weather forecasting is the task of forecasting weather conditions for a given location and time. With the use of weather data and algorithms, it is possible to predict weather conditions for the next n number of days. I hope you liked this article on Weather Analysis and Forecasting using Python. Feel free to ask valuable questions in the comments section below.