Computer Vision HW10

R08922156 黄劍韜

(a) Laplace Mask1 (Threshold 15)

用[[0, 1, 0], [1, -4, 1], [0, 1, 0]]這個 Kernel 去做 convolution 並和門檻值去比較,然後去做 Zero Crossing Edge Detection。

(b) Laplace Mask2 (Threshold 15)

用 $\frac{1}{3}$ [[1, 1, 1], [1, -8, 1], [1, 1, 1]] 即 [[$\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$], [$\frac{1}{3}$, $\frac{-8}{3}$, $\frac{1}{3}$], [$\frac{1}{3}$, $\frac{1}{3}$,]這個 Kernel 去做 convolution 並和門檻值去比較,然後去做 Zero Crossing Edge Detection。

(c) Minimum Variance Laplacian (Threshold 15)

用 $\frac{1}{3}$ [[2, -1, 2], [-1, -4, -1], [2, -1, 2]] 即 [$\frac{2}{3}$, $\frac{-1}{3}$, $\frac{2}{3}$], [$\frac{-1}{3}$, $\frac{-4}{3}$, $\frac{-1}{3}$], [$\frac{2}{3}$, $\frac{-1}{3}$, $\frac{2}{3}$]]這個 Kernel 做 convolution 並和門檻值去比較,然後去做 Zero Crossing Edge Detection。

(d) Laplace of Gaussian (Threshold 3000)

用右上角所示的 Kernel 去做 convolution 並與門檻值進行比較,然後去做 Zero Crossing Edge Detection。

(e) Difference of Gaussian (Threshold 5)

用右上角所示的 Kernel 去做 convolution 並與門檻值進行比較,然後去做 Zero Crossing Edge Detection。