Numero di Nepero e, criterio del rapporto per successioni, confronti e stime asintotiche, algebra di opiccolo #Analisi1

Teorema (numero di Nepero e):

la successione $a_n = (a + 1/n)^n \in Q$, $\forall n \in N$ è monotona, crescente e

limitata

in particolare ammette limite in R

Definizione:

$$e = Lim_{n \to \infty} (1 + 1/n)^n = 2,71828...$$

Osservazione:

 $e = \sup (1 + 1/n)^n \quad n \in N, \qquad e > (1 + 1/n)^n \quad \forall n \in N$

Dimostrazione (cenno):

 a_n crescente, cioè $\forall n \in \mathbb{N}$ $a_n / a_{n-1} \ge 1$ $a_n / a_{n-1} = (1 + 1/n)^n / (1 + 1/n)^n$

 $(n-1)^{n-1} \ge ...(diseguaglianza di Bernoulli)... \ge 1$

- a_n è limitata, introduciamo una successione b_n decrescente t.c. $a_n \le$

 $b_n \forall n \in \mathbb{N}, n \neq 0$ allora $a_n \leq b_n \leq b_1 \forall n \geq 1$

e a_n sarà limitata; scegliamo $b_n = (1 + 1/n)^{n+1}$; $a_n = (1 + 1/n)$ allora $a_n \le b_n$ inoltre b_n decrescente, cioè $b_{n-1}/b_n \ge 1 \ \forall n \ge 2$

 $b_{n-1}/b_n = (1 + 1/n)^n / (1 + 1/n-1)^{n+1} \ge ... (diseguaglianza di Bernoulli)...$

 $\geq 1 \Rightarrow a_n$ limitata, crescente

Teorema: sia c_n una successione t.c. $\lim_{n\to\infty} c_n = \pm \infty$ allora $\lim_{n\to\infty} (a + 1/a)$

$$c_n$$
) $^{c_n} = e$

Corollario: $\forall a \in R \lim_{n\to\infty} (1 + a/n)^n = e^a$

Teorema (criterio del rapporto per successione):

se a_n successione t.c. $a_n > 0$ definitivamente ed $\exists \lim_{n \to \infty} a_{n+1}/a_n$ allora

- Se I > 1,
$$\lim_{n\to\infty} a_n = +\infty$$

- Se
$$0 \le I < 1$$
, $\lim_{n \to \infty} a_n = 0$

Osservazione: se I = 1 non si può concludere nulla

—Dimostrazione contenuta nella dimostrazione del criterio del rapporto per serie che tratteremo più avanti—

Esempio:
$$\lim_{n\to\infty} a^n/n! = 0$$
 $\forall a > 0$ ovvio se $a \in [0,1]$

Dimostrazione:

$$a_{n+1}/a_n = a^{n+1}/(n+1)! * n!/a^n = (a^n * a)/((n+1)n!) * n!/a^n = a/n+1 -> 0$$

=> $\lim_{n\to\infty} a_{n+1}/a_n = 0$ => $\lim_{n\to\infty} a_n = 0$ per criterio del rapporto

Osservazione: $\lim_{n\to\infty} n!/n^n = 0$

Gerarchia degli infiniti:

$$(\text{Log}_a n)^{\beta} << n^{\delta} << a^n << n! << n^n \qquad \forall a >1, \ \forall \beta >0, \ \forall \delta >0$$

Esempio:

$$\lim_{n\to\infty} n^{1/2} \qquad a_n^{b_n} = e^{\log_{an}(bn)} = e^{bn*Log \ an}$$

$$\lim_{n\to\infty} n^{1/2} = e^{1/n \log n}; \ 1/n*Log \ n = 0 \Rightarrow \lim_{n\to\infty} e^0 = 1 \Rightarrow \lim_{n\to\infty} n^{1/2} = 1$$

Definizione (confronti e stime asintotiche):

 a_{n} , b_{n} successioni infinite cioè $\lim_{n\to\infty} a_{n} = \pm \infty$ e $\lim_{n\to\infty} b_{n} = \pm \infty$,

se $\lim_{n\to\infty} a_n/b_n =$

– 0 a_n infinito di ordine inferiore rispetto b_n

- $l∈R\setminus\{0\}$ a_{n'} b_n infiniti dello stesso ordine

 $-\pm\infty$ a_n infinito di ordine maggiore rispetto b_n

- ∄ a_n, b_n non confrontabili

Esempio:

Esempio:

 $\log n \ e \ \log n^2 = 2\log n$ infiniti dello stesso ordine $\log n \ e$ infinito di ordine inferiore rispetto $(\log n)^2$

Definizione:

date $a_{n'}$ b_n successioni infinitesime, $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 0$ ($b_n \ne 0$ definitivamente), $\lim_{n\to\infty} a_n/b_n = 0$

– 0 a_n infinitesimo di ordine superiore rispetto b_n

- $l∈R\setminus\{0\}$ a_{n'} b_n infinitesimi dello stesso ordine

 $-\pm\infty$ a_n infinitesimo di ordine inferiore rispetto b_n

Esempio: 1/n! è infinitesimo di ordine superiore rispetto a $1/n^{\partial}$

Esempio: $a_n = \sin n / n$ $b_n = 1/n$ non confrontabili

Definizione:

date $a_{n'}$ b_n successioni (con $b_n \neq 0$ definitivamente) diremo che:

- a_n è o-piccolo di b_n e scriveremo $a_n = o(b_n)$ se $\lim_{n\to\infty} a_n/b_n = 0$
- a_n è asintotico a b_n e scriveremo $a_n \sim b_n$ se $\lim_{n \to \infty} a_n/b_n = +1$

Osservazione:

- se $\lim_{n\to\infty} a_n/b_n = \pm \infty$ allora $\lim_{n\to\infty} b_n/a_n = 0 \Rightarrow b_n = o(a_n)$
- se $\lim_{n\to\infty} a_n/b_n = I \in \mathbb{R} \setminus \{0\}$ allora $\lim_{n\to\infty} b_n/a_n = +1 => b_n \sim a_n$

Osservazione (gerarchia degli infiniti):

$$(\text{Log}_{a}n)^{\beta} = o(n^{\partial})$$
 $\forall a > 1, \forall \beta > 0, \forall \delta > 0$

$$n^{\partial} = o(a^n)$$
 $\forall a > 1, \forall a > 0$

$$a^n = o(n!)$$
 $\forall a > 1$

$$n! = o(n^n)$$

Osservazione:

- $-a_n \sim a_n$
- Se $a_n \sim b_n$ e $b_n \sim c_n$ allora $a_n \sim c_n$ infatti $a_n / c_n = a_n / b_n * b_n / c_n$
- Se $a_n \sim b_n$ allora $b_n \sim a_n$ infatti $b_n / a_n = (a_n / b_n)^{-1} -> 1^{-1} = 1$

Asintotico (~) è una relazione di equivalenza tra le successioni

Osservazione:

$$a_n \sim b_n <=> a_n = b_n + o(b_n) => (a_n - b_n = o(b_n))$$

Dimostrazione:

$$a_n \sim b_n <=> \lim_{n \to \infty} a_n/b_n = 1 <=> \lim_{n \to \infty} a_n/b_n -1 = 0 <=> \lim_{n \to \infty} (a_n - b_n)/b_n <=> a_n - b_n = o(b_n) <=> <=> a_n = (a_n b_n) + b_n <=> a_n = b_n + o(b_n)$$

Proposizione:

1. Se
$$a_n \sim a'_n$$
 e $b_n \sim b'_n => a_n b_n \sim a'_n b'_n$

2. Se
$$a_n \sim a'_n$$
 e $b_n \sim b'_n => a_n/b_n \sim a'_n/b'_n$

3. Se
$$a_n \sim a'_n e \partial \in R => (a_n)^{\partial} \sim (a'_n)^{\partial}$$

4. Se $a_n \sim a'_n$ allora le due successioni hanno lo stesso comportamento al limite, cioè o convergono entrambe allo stesso limite $I \in R$ o divergono entrambe a $\pm \infty$ o sono entrambe irregolari

Osservazione:

in generale
$$a_n \sim a'_n e b_n \sim b'_n$$
 $\Rightarrow \qquad a_n \pm b_n \sim a'_n \pm b'_n$
 $e^n \sim e^n$
 $e^n \sim e^n$
 $a_n \sim a'_n$
 $a_n \sim a'_n$
 $a_n \sim a'_n$
 $a_n \sim a'_n$

Osservazione:

$$a_n \sim b_n \neq > a_n - b_n -> 0$$

 $a_n - b_n -> 0 \neq > a_n \sim b_n$

Dimostriamo la proposizione:

1.
$$a_n \sim a'_n e b_n \sim b'_n => a_n b_n \sim a'_n b'_n$$

infatti $a_n b_n / a'_n b'_n = (a_n / a'_n ->1) * (b_n / b'_n ->1) --> 1$

2.
$$a_n \sim a'_n e b_n \sim b'_n => a_n/b_n \sim a'_n/b'_n$$

infatti $(a_n/b_n) / (a'_n b'_n) = a_n/b_n * b'_n/a'_n = (a_n/a'_n ->1) * (b_n/b'_n)$

3. Se
$$a_n \sim a'_n$$
 e $\partial \in \mathbb{R} = > (a_n)^{\partial} \sim (a'_n)^{\partial}$
infatti $(a_n)^{\partial} / (a'_n)^{\partial} = (a_n/a'_n ->1)^{\partial} = 1^{\partial} = 1$

4. Se $a_n \sim a'_n$ allora le due successioni hanno lo stesso limite

- Se
$$\lim_{n\to\infty} a_n = I \in \mathbb{R}$$
 (o $\pm \infty$) allora $a'_n = (a'_n / a_n ->1) * (a_n ->I \in \mathbb{R}$ o $\pm \infty$) -> $I \in \mathbb{R}$ (o $\pm \infty$)

– Se a_n è irregolare, anche a'_n deve esserlo, se per assurdo così non fosse $\exists \text{Lim}_{n->\infty} \ a'_n \in \mathbb{R}^*$

allora per quanto dimostrato sopra essendo $a'_n \sim a_n$ anche per

$$a_n \exists I = Lim_{n->\infty} a_n \in \mathbb{R}^*$$

assurdo perché a_n è irregolare => a'_n è irregolare

Osservazione: $o(1) <=> \lim_{n \to \infty} a_n / 1 = 0 <=> \lim_{n \to \infty} a_n = 0$

Osservazione (algebra degli o-piccoli):

$$- o(a_n) = o(-a_n) = -o(a_n)$$

$$- \ c^*o(a_n) = o(a_n) = o(c^*a_n) \qquad \forall c \in R$$

-
$$a_n^*o(b_n) = o(a_nb_n)$$
 infatti $a_n^*o(b_n) / a_n^*b_n = o(b_n) / b_n \longrightarrow 0$ in particolare $a_n^*o(1) = o(a_n)$

$$- o(1/n) + o(1/n^2) = o(1/n^2)$$

- Se
$$a_n \sim b_n$$
 allora $o(a_n) = o(b_n)$ infatti $(o(a_n) / b_n) * (a_n/a_n) = (o(a_n) / a_n ->0) * (a_n / b_n ->1) -> 0$ in particolare $o(\sin 1/n) = o(1/n)$

Osservazione: è possibile usare la relazione di asintotico con funzioni composte h(g(f(n))), partendo dalla funzione più esterna quando si fa lo sviluppo (h)

$$\begin{split} & \text{Esempio: } \exp(x) = e^X \qquad \forall x \in R \\ & a_n = \exp(\sin(\log(1+1/n))) - 1 \sim ? \qquad \text{se } \epsilon_n \longrightarrow 0 \\ & \exp(\epsilon_n) - 1 \sim \epsilon_n \qquad \sin(\epsilon_n) \sim \epsilon_n \qquad \log(1+\epsilon_n) \sim \epsilon_n \\ & a_n \text{ va pensata come } \exp(\epsilon_n) - 1 \text{ con } \epsilon_n = \sin(\log(1+1/n)) \longrightarrow 0 \implies a_n = \exp(\sin(\log(1+1/n))) - 1 \sim \epsilon_n = \sin(\log(1+1/n)) \\ & a_n \text{ va pensata come } \sin(\epsilon'_n) \text{ con } \epsilon'_n = \log(1+1/n) \longrightarrow 0 \implies a_n = \sin(\log(1+1/n)) \\ & a_n \text{ va pensata come } \log(1+\epsilon''_n) \text{ con } \epsilon''_n = 1/n \longrightarrow 0 \implies a_n = \log(1+1/n) \\ & \sim \epsilon''_n = 1/n \\ & \text{Osservazione: } \text{se } \text{Lim}_{n\to\infty} \text{ a}_n = \text{I} \in \mathbb{R} \setminus \{0\} \text{ allora } \text{a}_n \sim \text{I} \end{split}$$