Math 307: 201 — Midterm 2 — 50 minutes

Last Name	$\mathbf{First}____$	
Student Number	Signature	

- The test consists of 13 pages and 4 questions worth a total of 50 marks.
- You are allowed 1 page of notes (single-sided, in your handwriting).
- Aside from that is a closed-book examination. None of the following are allowed: documents, or electronic devices of any kind (including calculators, cell phones, etc.)
- No work on this page will be marked.

Please do not write on this page — it will not be marked.

Additional instructions

- Please use the spaces indicated.
- Unless it is specified not to do so, justify your answers.
- There is a blank page at the end of the exam that you can use as scratch paper.
- Please do not dismember your test. You must submit all pages.

1	10
2	21
3	10
4	9
Total	50

1.
$$10 \text{ marks}$$
 Let $A = \begin{pmatrix} 3 & -1 \\ 3 & 1 \end{pmatrix}$.

(a) Compute the Singular value decomposition of A. (Hint: you are allowed to compute the SVD in any way you want, but one of the two ways is a lot easier than the other).

Solution: $A^t A = \begin{pmatrix} 18 & 0 \\ 0 & 2 \end{pmatrix}$, so the eigenvalues of $A^t A$ are 18, 2. So $\sigma_1 = \sqrt{18}$, $\sigma_2 = \sqrt{2}$.

Computing the nullspaces of $A^tA - 18I$ and $A^tA - 2I$, we get $q_1 = (1,0)^t$ and $q_2 = (0,1)^t$.

So
$$p_1 = \frac{1}{\sigma_1} A q_1 = \frac{1}{\sqrt{18}} (3,3)^t = \frac{1}{\sqrt{2}} (1,1)^t$$
,
and $p_2 = \frac{1}{\sigma_2} A q_2 = \frac{1}{\sqrt{2}} (-1,1)^t$.

So
$$A = P\Sigma Q^T$$
 where $P = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$, $\Sigma = \begin{pmatrix} \sqrt{18} & 0 \\ 0 & \sqrt{2} \end{pmatrix}$, and $Q = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

(b) Find ||A||.

Solution: We know that ||A|| is the largest singular value, so $||A|| = \sqrt{18}$.

- 2. 21 marks Short answer questions, each question 3 marks. For True or False questions, if true, provide a short justification. If false, show a counter-example that contradicts the statement. For other questions, justify your answer by showing your work.
 - (a) Let A have the singular value decomposition $A = P\Sigma Q^T$ where

Calculate (no part marks):

(i) ||P||, i.e., the operator norm of P. (Not ||A||.)

(ii) The dimension of the null space of A.

(iii) $||A^TAA^TA||$.

Solution: (i) Since P is orthogonal, ||P|| = 1. (ii) $r = \operatorname{rank}(A) = \operatorname{number}$ of singular values = 3. $\dim(\operatorname{N}(A)) = n - r = 4 - 3 = 1$. (iii) The eigenvalues of the symmetric matrix A^TA are the squares of the singular values. The eigenvalues of $(A^TA)^2$ are the squares of the eigenvalues of A^TA . The operator norm of $(A^TA)^2$ is the magnitude of the largest eigenvalue, that is $(3^2)^2 = 3^4 = 81$.

(b) Let

$$A = \begin{pmatrix} 1 & 2 \\ 1 & -1 \\ 1 & -1 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}.$$

Calculate the least squares solution to $Ax \approx b$.

Solution: Since b is orthogonal to the columns of A, it is orthogonal to the range of A. Thus the projection of b onto the range of A returns 0, so the solution is $x = (0,0)^T$. Alternatively, use the formula $x = (A^T A)^{-1} A^T b$.

(c) Let A be a 2×2 matrix. Suppose that $N(A - I) = span\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$ and $N(A + 2I) = span\left\{ \begin{pmatrix} 3 \\ 3 \end{pmatrix} \right\}$, find an invertible 2×2 matrix S and a diagonal matrix D such that $A = SDS^{-1}$.

Solution: Since A has eigenvalue 1 and -2 with eigenvectors $(1,2)^t$ and $(3,3)^t$, so $A = SDS^{-1}$ where $S = \begin{pmatrix} 1 & 3 \\ 2 & 3 \end{pmatrix}$ and $D = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$.

(d) **True or False:** Let
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 2024 \end{pmatrix}$$
, then A is diagonalizable.

Solution: True. The eigenvalues of A are 1,5,8,2024, which are all distinct. So A is diagonalizable.

(e) **True or False:** Let
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & -2024 & -2024 & 3 \\ 3 & -2024 & -2024 & 2 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$
. Then all eigenvalues of A are real, and A is diagonalizable.

Solution: True. Since A is symmetric, and symmetric matrices have real eigenvalues and are diagonalizable.

(f) **True or False:** Let A, B be $n \times n$ matrices. If v is an eigenvector for both A, B, then v is an eigenvector for AB.

Solution: True. Let $Av = \lambda v$ and $Bv = \mu v$, then $ABv = A(\mu v) = \mu Av = \mu \lambda v$.

(g) **True or False:** Let A, B be $n \times n$ matrices that are orthogonal projections. If $R(A) \perp R(B)$, then A + B is an orthogonal projection.

Solution: True. We have AB = BA = 0 because $R(A) \perp R(B)$. So we have $(A+B)^2 = A^2 + AB + BA + B^2 = A + 0 + 0 + B = A + B$. We also have $(A+B)^t = A^t + B^t = A + B$.

Updated Mar 27: Alternative solution from students: Let $\{u_i\}$, $\{v_i\}$ be orthonormal bases for U and V. Then $A = \sum u_i u_i^T$ and $B = \sum v_i v_i^T$. Since $R(A) \perp R(B)$, the union of these two bases is an orthonormal basis. And since $A + B = \sum u_i u_i^T + \sum v_i v_i^T$, so A + B is orthogonal projection.

3. 10 marks Let $\{\mathbf{x}_1, \mathbf{x}_2\}$ be a basis of the subspace $U \subseteq \mathbb{R}^3$ where

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

(a) Find a 3×2 matrix A such that $U = N(A^T)^{\perp}$.

(b) Find a basis for U^{\perp} .

(c) Construct an orthogonal projection matrix which projects onto U.

Solution:

(a) Let

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

chosen so that R(A) = U. Then, $U = R(A) = N(A^T)^{\perp}$.

(b) We want to find a basis for $U^{\perp} = N(A^T)$, so we need to solve the

linear system $A^T \mathbf{x} = 0$. First, row reduce A^T :

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \to \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$
$$\to \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

This tells us the solution to the linear system $A^T \mathbf{x} = 0$ has a free variable in the 3th coordinate of \mathbf{x} . In particular,

$$\mathbf{x} = s \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

for some $s \in \mathbb{R}$. So a basis for U^{\perp} is

$$\left\{ \begin{bmatrix} -1\\1\\1 \end{bmatrix} \right\}.$$

(c) From part (b), a basis for U is $\{x\}$ where

$$\mathbf{x} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}.$$

The orthogonal projection matrix onto U^{\perp} is

$$P = \frac{1}{\langle \mathbf{x}, \mathbf{x} \rangle} \mathbf{x} \mathbf{x}^T = \frac{1}{3} \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}.$$

Now, the orthogonal projection matrix onto ${\cal U}$ is

$$I - P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}.$$

4. 9 marks Find a thin QR decomposition of

$$A = \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ 2 & 2 \end{bmatrix}.$$

Solution: Let $\mathbf{x}_1, \mathbf{x}_2$ be the column vectors of A. We use Gram-Schmidt to find an orthogonal basis $\{\mathbf{y}_1, \mathbf{y}_2\}$ for R(A):

$$\mathbf{y}_1 = \mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\mathbf{y}_2 = \mathbf{x}_2 - \frac{\langle \mathbf{y}_1, \mathbf{x}_2 \rangle}{\left|\left|\mathbf{y}_1\right|\right|^2} \mathbf{y}_1 = \mathbf{x}_2 - \frac{3}{9} \mathbf{y}_1 = \frac{1}{3} \begin{bmatrix} -4 \\ -2 \\ 4 \end{bmatrix}$$

Normalizing, an orthonormal basis for R(A) is

$$\{\mathbf{u}_1, \mathbf{u}_2\} = \left\{ \frac{1}{3} \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \frac{1}{3} \begin{bmatrix} -2\\-1\\2 \end{bmatrix} \right\}.$$

Then, $A = Q_1 R_1$ is a thin QR decomposition where

$$Q_1 = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix} = \begin{bmatrix} 1/3 & -2/3 \\ 2/3 & -1/3 \\ 2/3 & 2/3 \end{bmatrix}$$

and

$$R_1 = \begin{bmatrix} \langle \mathbf{u}_1, \mathbf{x}_1 \rangle & \langle \mathbf{u}_1, \mathbf{x}_2 \rangle \\ 0 & \langle \mathbf{u}_2, \mathbf{x}_2 \rangle \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}.$$

THIS PAGE IS INTENTIONALLY LEFT BLANK. USE AS NEEDED.

THIS PAGE IS INTENTIONALLY LEFT BLANK. USE AS NEEDED.