Economics 103 – Statistics for Economists

Francis J. DiTraglia

University of Pennsylvania

Lecture # 6

Basic Probability - Part II

Classical Probability Examples Where Order Doesn't Matter

Basic Outcomes

Basic Outcomes

$$\binom{52}{5}$$
 possible hands

Basic Outcomes

$$\binom{52}{5}$$
 possible hands

How Many Hands have Four Aces?

Basic Outcomes

$$\binom{52}{5}$$
 possible hands

How Many Hands have Four Aces?

48 (# of ways to choose the single card that is not an ace)

Basic Outcomes

$$\binom{52}{5}$$
 possible hands

How Many Hands have Four Aces?

48 (# of ways to choose the single card that is not an ace)

What is the Probability of Getting Four Aces?

Basic Outcomes

$$\binom{52}{5}$$
 possible hands

How Many Hands have Four Aces?

48 (# of ways to choose the single card that is not an ace)

What is the Probability of Getting Four Aces?

$$48/\binom{52}{5}$$

How Many Hands have Four of a Kind?

How Many Hands have Four of a Kind?

▶ 13 ways to choose *which* card we have four of

How Many Hands have Four of a Kind?

- ▶ 13 ways to choose *which* card we have four of
- ▶ 48 ways to choose the last card in the hand

How Many Hands have Four of a Kind?

- ▶ 13 ways to choose *which* card we have four of
- 48 ways to choose the last card in the hand
- ► $13 \times 48 = 624$

How Many Hands have Four of a Kind?

Ш

- ▶ 13 ways to choose *which* card we have four of
- 48 ways to choose the last card in the hand
- ► $13 \times 48 = 624$

What is the Probability of Being Dealt 4 of a Kind?

How Many Hands have Four of a Kind?

- ▶ 13 ways to choose *which* card we have four of
- 48 ways to choose the last card in the hand
- ► $13 \times 48 = 624$

What is the Probability of Being Dealt 4 of a Kind? $624/\binom{52}{5}$

Even if the basic outcomes are equally likely, the events of interest may not be...

"Odd Question" # 4

To throw a total of 7 with a pair of dice, you have to get a 1 and a 6, or a 2 and a 5, or a 3 and a 4. To throw a total of 6 with a pair of dice, you have to get a 1 and a 5, or a 2 and a 4, or a 3 and another 3. With two fair dice, you would expect:

- (a) To throw 7 more frequently than 6.
- (b) To throw six more frequently than 7.
- (c) To throw 6 and 7 equally often.

Basic Outcomes Equally Likely, Events of Interest Aren't

		Second Die					
		1	2	3	4	5	6
	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
First	3	4	5	6	7	8	9
Die	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12

Table: There are 36 equally likely basic outcomes, of which 5 correspond to a sum of six and 6 correspond to a sum of seven.

$$P(7) = 6/36 = 1/6$$

 $P(6) = 5/36$

Derive Rules for Computing Probabilities from Axioms

Recall: Axioms of Probability

Let S be the sample space. With each event $A \subseteq S$ we associate a real number P(A) called the probability of A, satisfying the following conditions:

Axiom 1
$$0 \le P(A) \le 1$$

Axiom 2
$$P(S) = 1$$

Axiom 3 If
$$A_1, A_2, A_3, \ldots$$
 are mutually exclusive events, then
$$P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \ldots$$

Key Point

The axoims of probability are out *starting assumptions* – they are a complete description what we *mean* when we say "probability." We use the axioms to derive various results for *computing* probabilities.

Figure :
$$A \cap A^c = \emptyset$$
, $A \cup A^c = S$

Figure :
$$A \cap A^c = \emptyset$$
, $A \cup A^c = S$

$$P(A \cup A^c) =$$

Figure :
$$A \cap A^c = \emptyset$$
, $A \cup A^c = S$

$$P(A \cup A^c) = P(A) + P(A^c) =$$

Figure :
$$A \cap A^c = \emptyset$$
, $A \cup A^c = S$

$$P(A \cup A^c) = P(A) + P(A^c) = P(S) =$$

Figure :
$$A \cap A^c = \emptyset$$
, $A \cup A^c = S$

$$P(A \cup A^c) = P(A) + P(A^c) = P(S) = 1$$

Figure :
$$A \cap A^c = \emptyset$$
, $A \cup A^c = S$

Since A, A^c are mutually exclusive and collectively exhaustive:

$$P(A \cup A^c) = P(A) + P(A^c) = P(S) = 1$$

Rearranging:

Figure :
$$A \cap A^c = \emptyset$$
, $A \cup A^c = S$

Since A, A^c are mutually exclusive and collectively exhaustive:

$$P(A \cup A^c) = P(A) + P(A^c) = P(S) = 1$$

Rearranging:

$$P(A^c) = 1 - P(A)$$

Figure :
$$A \cap A^c = \emptyset$$
, $A \cup A^c = S$

Another Important Rule – Equivalent Events

If A and B are Logically Equivalent, then P(A) = P(B).

In other words, if A and B contain exactly the same basic outcomes, then P(A) = P(B).

Although this seems obvious it's important to keep in mind, especially later in the course...

The Logical Consequence Rule

If B Logically Entails A, then $P(B) \leq P(A)$

In other words, $B \subseteq A \Rightarrow P(B) \leq P(A)$

Why is this so?

If $B \subseteq A$, then all the basic outcomes in B are also in A.

Figure : $B = A \cap B$, and $A = B \cup (A \cap B^c)$

Since $B \subseteq A$, we have $B = A \cap B$ and $A = B \cup (A \cap B^c)$.

Figure : $B = A \cap B$, and $A = B \cup (A \cap B^c)$

Since $B \subseteq A$, we have $B = A \cap B$ and $A = B \cup (A \cap B^c)$. Combining these,

$$A = (A \cap B) \cup (A \cap B^c)$$

Figure : $B = A \cap B$, and

$$B = A \cap B$$
, and $A = B \cup (A \cap B^c)$

Since $B \subseteq A$, we have $B = A \cap B$ and $A = B \cup (A \cap B^c)$. Combining these,

$$A = (A \cap B) \cup (A \cap B^c)$$

Now since $(A \cap B) \cap (A \cap B^c) = \emptyset$,

Figure : $R = A \cap R$

$$B = A \cap B$$
, and $A = B \cup (A \cap B^c)$

Since $B \subseteq A$, we have $B = A \cap B$ and $A = B \cup (A \cap B^c)$. Combining these,

$$A = (A \cap B) \cup (A \cap B^c)$$

Now since $(A \cap B) \cap (A \cap B^c) = \emptyset$,

$$P(A) = P(A \cap B) + P(A \cap B^c)$$

Figure :

$$B = A \cap B$$
, and $A = B \cup (A \cap B^c)$

Deriving The Logical Consequence Rule

Since $B \subseteq A$, we have $B = A \cap B$ and $A = B \cup (A \cap B^c)$. Combining these,

$$A = (A \cap B) \cup (A \cap B^c)$$

Now since $(A \cap B) \cap (A \cap B^c) = \emptyset$,

$$P(A) = P(A \cap B) + P(A \cap B^{c})$$
$$= P(B) + P(A \cap B^{c})$$

Figure : $B = A \cap B$, and $A = B \cup (A \cap B^c)$

Deriving The Logical Consequence Rule

Since $B \subseteq A$, we have $B = A \cap B$ and $A = B \cup (A \cap B^c)$. Combining these,

$$A = (A \cap B) \cup (A \cap B^c)$$

Now since $(A \cap B) \cap (A \cap B^c) = \emptyset$,

$$P(A) = P(A \cap B) + P(A \cap B^{c})$$

$$= P(B) + P(A \cap B^{c})$$

$$\geq P(B)$$

Figure : $B = A \cap B$, and $A = B \cup (A \cap B^c)$

Deriving The Logical Consequence Rule

Since $B \subseteq A$, we have $B = A \cap B$ and $A = B \cup (A \cap B^c)$. Combining these,

$$A = (A \cap B) \cup (A \cap B^c)$$

Now since $(A \cap B) \cap (A \cap B^c) = \emptyset$,

$$P(A) = P(A \cap B) + P(A \cap B^{c})$$

$$= P(B) + P(A \cap B^{c})$$

$$\geq P(B)$$

because $0 \le P(A \cap B^c) \le 1$.

Figure : $B = A \cap B$, and

$$B = A \cap B$$
, and $A = B \cup (A \cap B^c)$

"Odd Question" # 2

Pia is thirty-one years old, single, outspoken, and smart. She was a philosophy major. When a student, she was an ardent supporter of Native American rights, and she picketed a department store that had no facilities for nursing mothers. Rank the following statements in order from most probable to least probable.

- (a) Pia is an active feminist.
- (b) Pia is a bank teller.
- (c) Pia works in a small bookstore.
- (d) Pia is a bank teller and an active feminist.
- (e) Pia is a bank teller and an active feminist who takes yoga classes.
- (f) Pia works in a small bookstore and is an active feminist who takes yoga classes.

Write events D, E, and F in terms of A, B, C, and Y.

A = Pia is an active feminist.

B = Pia is a bank teller.

C = Pia works in a small bookstore.

Y = Pia takes yoga classes.

D = Pia is a bank teller and an active feminist

Write events D, E, and F in terms of A, B, C, and Y.

A = Pia is an active feminist.

B = Pia is a bank teller.

C = Pia works in a small bookstore.

Y = Pia takes yoga classes.

D = Pia is a bank teller and an active feminist = $A \cap B$

- A = Pia is an active feminist.
- B = Pia is a bank teller.
- C = Pia works in a small bookstore.
- Y = Pia takes yoga classes.

- D = Pia is a bank teller and an active feminist = $A \cap B$
- E = Pia is a bank teller and an active feminist who takes yoga classes

- A = Pia is an active feminist.
- B = Pia is a bank teller.
- C = Pia works in a small bookstore.
- Y = Pia takes yoga classes.

- D = Pia is a bank teller and an active feminist = $A \cap B$
- E = Pia is a bank teller and an active feminist who takes yoga classes = $A \cap B \cap Y$

- A = Pia is an active feminist.
- B = Pia is a bank teller.
- C = Pia works in a small bookstore.
- Y = Pia takes yoga classes.

- D = Pia is a bank teller and an active feminist = $A \cap B$
- E = Pia is a bank teller and an active feminist who takes yoga classes = $A \cap B \cap Y$
- F = Pia works in a small bookstore and is an active feminist who takes yoga classes

- A = Pia is an active feminist.
- B = Pia is a bank teller.
- C = Pia works in a small bookstore.
- Y = Pia takes yoga classes.

- D = Pia is a bank teller and an active feminist = $A \cap B$
- E = Pia is a bank teller and an active feminist who takes yoga classes = $A \cap B \cap Y$
- F = Pia works in a small bookstore and is an active feminist who takes yoga classes = $A \cap C \cap Y$

- A = Pia is an active feminist.
- B = Pia is a bank teller.
- C = Pia works in a small bookstore.
- Y = Pia takes yoga classes.

$$D = A \cap B$$

- A = Pia is an active feminist.
- B = Pia is a bank teller.
- C = Pia works in a small bookstore.
- Y = Pia takes yoga classes.

$$D = A \cap B \Rightarrow D \subseteq A$$

- A = Pia is an active feminist.
- B = Pia is a bank teller.
- C = Pia works in a small bookstore.
- Y = Pia takes yoga classes.

$$D = A \cap B \Rightarrow D \subseteq A, D \subseteq B$$

- A = Pia is an active feminist.
- B = Pia is a bank teller.
- C = Pia works in a small bookstore.
- Y = Pia takes yoga classes.

$$D = A \cap B \Rightarrow D \subseteq A, D \subseteq B$$

$$E = A \cap B \cap Y$$

- A = Pia is an active feminist.
- B = Pia is a bank teller.
- C = Pia works in a small bookstore.
- Y = Pia takes yoga classes.

$$D = A \cap B \Rightarrow D \subseteq A, D \subseteq B$$

$$E = A \cap B \cap Y \Rightarrow E \subseteq D$$

- A = Pia is an active feminist.
- B = Pia is a bank teller.
- C = Pia works in a small bookstore.
- Y = Pia takes yoga classes.

$$D = A \cap B \Rightarrow D \subseteq A, D \subseteq B$$

$$\mathsf{E} = \mathsf{A} \cap \mathsf{B} \cap \mathsf{Y} \Rightarrow \mathsf{E} \subseteq \mathsf{D}$$

$$F = A \cap C \cap Y$$

- A = Pia is an active feminist.
- B = Pia is a bank teller.
- C = Pia works in a small bookstore.
- Y = Pia takes yoga classes.

$$D = A \cap B \Rightarrow D \subseteq A, D \subseteq B$$

$$\mathsf{E} = A \cap B \cap Y \Rightarrow \mathsf{E} \subseteq \mathsf{D}$$

$$F = A \cap C \cap Y \Rightarrow F \subseteq A$$

- A = Pia is an active feminist.
- B = Pia is a bank teller.
- C = Pia works in a small bookstore.
- Y = Pia takes yoga classes.

$$D = A \cap B \Rightarrow D \subseteq A, D \subseteq B$$

$$\mathsf{E} = A \cap B \cap Y \Rightarrow \mathsf{E} \subseteq \mathsf{D}$$

$$F = A \cap C \cap Y \Rightarrow F \subseteq A, F \subseteq C$$

- A = Pia is an active feminist.
- B = Pia is a bank teller.
- C = Pia works in a small bookstore.
- Y = Pia takes yoga classes.

$$D = A \cap B \Rightarrow D \subseteq A, D \subseteq B$$

A = Pia is an active feminist.

B = Pia is a bank teller.

C = Pia works in a small bookstore.

Y = Pia takes yoga classes.

$$D = A \cap B \Rightarrow D \subseteq A, D \subseteq B \Rightarrow P(D) \leq P(A),$$

- A = Pia is an active feminist.
- B = Pia is a bank teller.
- C = Pia works in a small bookstore.
- Y = Pia takes yoga classes.

$$D = A \cap B \Rightarrow D \subseteq A, D \subseteq B \Rightarrow P(D) \leq P(A), P(D) \leq P(B)$$

- A = Pia is an active feminist.
- B = Pia is a bank teller.
- C = Pia works in a small bookstore.
- Y = Pia takes yoga classes.

$$D = A \cap B \Rightarrow D \subseteq A, D \subseteq B \Rightarrow P(D) \leq P(A), P(D) \leq P(B)$$

$$\mathsf{E} = A \cap B \cap Y \Rightarrow E \subseteq D$$

- A = Pia is an active feminist.
- B = Pia is a bank teller.
- C = Pia works in a small bookstore.
- Y = Pia takes yoga classes.

$$D = A \cap B \Rightarrow D \subseteq A, D \subseteq B \Rightarrow P(D) \leq P(A), P(D) \leq P(B)$$

$$\mathsf{E} = \mathsf{A} \cap \mathsf{B} \cap \mathsf{Y} \Rightarrow \mathsf{E} \subseteq \mathsf{D} \Rightarrow \mathsf{P}(\mathsf{E}) \leq \mathsf{P}(\mathsf{D})$$

- A = Pia is an active feminist.
- B = Pia is a bank teller.
- C = Pia works in a small bookstore.
- Y = Pia takes yoga classes.

$$D = A \cap B \Rightarrow D \subseteq A, D \subseteq B \Rightarrow P(D) \leq P(A), P(D) \leq P(B)$$

$$\mathsf{E} = \mathsf{A} \cap \mathsf{B} \cap \mathsf{Y} \Rightarrow \mathsf{E} \subseteq \mathsf{D} \Rightarrow \mathsf{P}(\mathsf{E}) \leq \mathsf{P}(\mathsf{D})$$

$$F = A \cap C \cap Y \Rightarrow F \subseteq A, F \subseteq C$$

- A = Pia is an active feminist.
- B = Pia is a bank teller.
- C = Pia works in a small bookstore.
- Y = Pia takes yoga classes.

$$D = A \cap B \Rightarrow D \subseteq A, D \subseteq B \Rightarrow P(D) \leq P(A), P(D) \leq P(B)$$

$$\mathsf{E} = \mathsf{A} \cap \mathsf{B} \cap \mathsf{Y} \Rightarrow \mathsf{E} \subseteq \mathsf{D} \Rightarrow \mathsf{P}(\mathsf{E}) \leq \mathsf{P}(\mathsf{D})$$

$$F = A \cap C \cap Y \Rightarrow F \subseteq A, F \subseteq C \Rightarrow P(F) \leq P(A),$$

- A = Pia is an active feminist.
- B = Pia is a bank teller.
- C = Pia works in a small bookstore.
- Y = Pia takes yoga classes.

$$D = A \cap B \Rightarrow D \subseteq A, D \subseteq B \Rightarrow P(D) \leq P(A), P(D) \leq P(B)$$

$$\mathsf{E} = \mathsf{A} \cap \mathsf{B} \cap \mathsf{Y} \Rightarrow \mathsf{E} \subseteq \mathsf{D} \Rightarrow \mathsf{P}(\mathsf{E}) \leq \mathsf{P}(\mathsf{D})$$

$$F = A \cap C \cap Y \Rightarrow F \subseteq A, F \subseteq C \Rightarrow P(F) \leq P(A), P(F) \leq P(C)$$

"Odd Question" # 2 – Putting These Together...

- (a) Pia is an active feminist.
- (b) Pia is a bank teller.
- (c) Pia works in a small bookstore.
- (d) Pia is a bank teller and an active feminist.
- (e) Pia is a bank teller and an active feminist who takes yoga classes.
- (f) Pia works in a small bookstore and is an active feminist who takes yoga classes.

Any Correct Ranking Must Satisfy:

$$(a) \geq (d) \geq (e)$$

$$(b) \ge (d) \ge (e)$$

$$(a) \geq (f)$$

$$(c) \geq (f)$$

E = roll an even number

What are the basic outcomes?

E = roll an even number

What are the basic outcomes? $\{1,2,3,4,5,6\}$

E = roll an even number

What are the basic outcomes? $\{1, 2, 3, 4, 5, 6\}$

What is P(E)?

E = roll an even number

What are the basic outcomes?

$$\{1,2,3,4,5,6\}$$

What is P(E)?

 $E = \{2, 4, 6\}$ and the basic outcomes are equally likely (and mutually exclusive), so

$$P(E) = 1/6 + 1/6 + 1/6 = 3/6 = 1/2$$

E = roll an even number M = roll a 1 or a prime number

E = roll an even number

M = roll a 1 or a prime number

What is $P(E \cup M)$?

E = roll an even number

M = roll a 1 or a prime number

What is $P(E \cup M)$?

Key point: E and M are not mutually exclusive!

$$E = \text{roll an even number}$$

$$M = \text{roll a 1 or a prime number}$$

What is $P(E \cup M)$?

Key point: E and M are not mutually exclusive!

$$P(E \cup M) = P(\{1,2,3,4,5,6\}) = 1$$

$$E = \text{roll an even number}$$

$$M = \text{roll a 1 or a prime number}$$

What is $P(E \cup M)$?

Key point: E and M are not mutually exclusive!

$$P(E \cup M) = P(\{1, 2, 3, 4, 5, 6\}) = 1$$

 $P(E) = P(\{2, 4, 6\}) = 1/2$

Throw a Fair Die Once

$$E = \text{roll an even number}$$

$$M = \text{roll a 1 or a prime number}$$

What is $P(E \cup M)$?

Key point: E and M are not mutually exclusive!

$$P(E \cup M) = P(\{1,2,3,4,5,6\}) = 1$$

 $P(E) = P(\{2,4,6\}) = 1/2$
 $P(M) = P(\{1,2,3,5\}) = 4/6 = 2/3$

Throw a Fair Die Once

$$E = \text{roll an even number}$$

$$E = \text{roll an even number}$$
 $M = \text{roll a 1 or a prime number}$

What is $P(E \cup M)$?

Key point: E and M are not mutually exclusive!

$$P(E \cup M) = P(\{1, 2, 3, 4, 5, 6\}) = 1$$

 $P(E) = P(\{2, 4, 6\}) = 1/2$
 $P(M) = P(\{1, 2, 3, 5\}) = 4/6 = 2/3$

$$P(E) + P(M) = 1/2 + 2/3 = 7/6$$

Throw a Fair Die Once

$$E = \text{roll an even number}$$

$$E = \text{roll an even number}$$
 $M = \text{roll a 1 or a prime number}$

What is $P(E \cup M)$?

Key point: E and M are not mutually exclusive!

$$P(E \cup M) = P(\{1, 2, 3, 4, 5, 6\}) = 1$$

 $P(E) = P(\{2, 4, 6\}) = 1/2$
 $P(M) = P(\{1, 2, 3, 5\}) = 4/6 = 2/3$

$$P(E) + P(M) = 1/2 + 2/3 = 7/6 \neq P(E \cup M) = 1$$

The Addition Rule - Don't Double-Count!

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Construct a formal proof as an optional homework problem.

Three Cards, Each with a Face on the Front and Back

- 1. Gaga/Gaga
- 2. Obama/Gaga
- 3. Obama/Obama

Three Cards, Each with a Face on the Front and Back

- 1. Gaga/Gaga
- 2. Obama/Gaga
- 3. Obama/Obama

I draw a card at random and look at one side: it's Obama.

What is the probability that the other side is also Obama?

Let's Try The Method of Monte Carlo...

When you don't know how to calculate, simulate.

Procedure

- 1. Close your eyes and thoroughly shuffle your cards.
- 2. Keeping eyes closed, draw a card and place it on your desk.
- 3. Stand if Obama is face-up on your chosen card.
- 4. We'll count those standing and call the total N
- Of those standing, sit down if Obama is not on the back of your chosen card.
- 6. We'll count those *still* standing and call the total *m*.

Monte Carlo Approximation of Desired Probability = $\frac{m}{N}$

Conditional Probability – Reduced Sample Space

Set of relevant outcomes restricted by condition

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
, provided $P(B) > 0$

Figure : B becomes the "new sample space" so we need to re-scale by P(B) to keep probabilities between zero and one.

$$P(O_B|O_F) =$$

$$P(O_B|O_F) = \frac{P(O_B \cap O_F)}{P(O_F)} =$$

$$P(O_B|O_F) = \frac{P(O_B \cap O_F)}{P(O_F)} = \frac{1/3}{1/2} =$$

$$P(O_B|O_F) = \frac{P(O_B \cap O_F)}{P(O_F)} = \frac{1/3}{1/2} = 2/3$$