Multiclass Total Variation Clustering (Supplementary Material)

Xavier Bresson

University of Lausanne Lausanne, Switzerland xavier.bresson@unil.ch

David Uminsky

University of San Francisco San Francisco, CA 94117 duminsky@usfca.edu

Thomas Laurent

Loyola Marymount University Los Angeles, CA 90045 tlaurent@lmu.edu

James H. von Brecht

University of California, Los Angeles Los Angeles, CA 90095 jub@math.ucla.edu

1 Proofs of Theorems

Theorem 1. If $f = \mathbf{1}_A$ is the indicator function of a subset $A \subset V$ then

$$\frac{\|f\|_{TV}}{\|f - \operatorname{med}_{\lambda}(f)\|_{1,\lambda}} = \frac{2 \operatorname{Cut}(A, A^c)}{\min\left\{\lambda |A|, |A^c|\right\}}.$$

Proof. The fact that $||f||_{TV} = 2 \operatorname{Cut}(A, A^c)$ follows directly from the definition of the total variation. Indeed, a straightforward computation shows

$$||f||_{TV} = \sum_{\mathbf{x}_i \in A} \sum_{j=1}^N w_{ij} |1 - f(\mathbf{x}_j)| + \sum_{\mathbf{x}_i \in A^c} \sum_{j=1}^N w_{ij} |f(\mathbf{x}_j)| = \sum_{\mathbf{x}_i \in A} \sum_{\mathbf{x}_j \in A^c} w_{ij} + \sum_{\mathbf{x}_i \in A^c} \sum_{\mathbf{x}_j \in A} w_{ij}.$$

Thus $\|f\|_{TV}=2$ $\operatorname{Cut}(A,A^c)$ as W is symmetric. Let $B(f):=\|f-\operatorname{med}_{\lambda}(f)\|_{1,\lambda}$. To show that $B(f)=\min{\{\lambda|A|,|A^c|\}}$, suppose first that $\lambda|A|\leq |A^c|$. This inequality implies $\lambda|A|\leq N-|A|$, or equivalently that $|A|\leq N/(1+\lambda)$. Thus $|A|\leq k:=\lfloor N/(1+\lambda)\rfloor$, and since $f=\mathbf{1}_A$ for $|A|\leq k$ it follows immediately that the $(k+1)^{\operatorname{st}}$ largest entry in the range of f equals zero. Thus $\operatorname{med}_{\lambda}(f)=0$ by definition. A direct computation then yields that $B(f)=\sum_{i\in V}|f(\mathbf{x}_i)|_{\lambda}=\lambda|A|$. In the converse case, the fact that $|A^c|<\lambda|A|$ implies $|A|>N/(1+\lambda)\geq k$. Thus $|A|\geq k+1$ and $\operatorname{med}_{\lambda}(f)=1$. Direct computation then shows that $B(f)=\sum_{i\in V}|f(\mathbf{x}_i)-1|_{\lambda}=|A^c|$ as claimed.

Lemma 1. Let $h \in \mathbb{R}^N$ and suppose $v \in \mathbb{R}^N$ satisfies

$$v(\mathbf{x}_i) \in \begin{cases} \lambda & \text{if } h(\mathbf{x}_i) > 0\\ [-1, \lambda] & \text{if } h(\mathbf{x}_i) = 0\\ -1 & \text{if } h(\mathbf{x}_i) < 0. \end{cases}$$
 (1)

Then $v \in \partial ||h||_{1,\lambda}$.

Proof. Note that $|h(\mathbf{x}_i)|_{\lambda} = v(\mathbf{x}_i)h(\mathbf{x}_i)$ for each \mathbf{x}_i , so that for arbitrary $g \in \mathbb{R}^N$ and each \mathbf{x}_i the inequality

$$|g(\mathbf{x}_i)|_{\lambda} - |h(\mathbf{x}_i)|_{\lambda} \ge v(\mathbf{x}_i) \left(g(\mathbf{x}_i) - h(\mathbf{x}_i)\right)$$

holds. Summing both sides over all $\mathbf{x}_i \in V$ then gives the claim.

Theorem 2. The functions B and T are convex. Moreover, given $f \in \mathbb{R}^N$ the vector $v \in \mathbb{R}^N$ defined by

$$v(\mathbf{x}_i) = \begin{cases} \lambda & \text{if } f(\mathbf{x}_i) > \text{med}_{\lambda}(f) \\ \frac{n^- - \lambda n^+}{n^0} & \text{if } f(\mathbf{x}_i) = \text{med}_{\lambda}(f) \\ -1 & \text{if } f(\mathbf{x}_i) < \text{med}_{\lambda}(f) \end{cases} \quad \text{where} \quad \begin{cases} n^0 = |\{\mathbf{x}_i \in V : f(\mathbf{x}_i) = \text{med}_{\lambda}(f)\}| \\ n^- = |\{\mathbf{x}_i \in V : f(\mathbf{x}_i) < \text{med}_{\lambda}(f)\}| \\ n^+ = |\{\mathbf{x}_i \in V : f(\mathbf{x}_i) > \text{med}_{\lambda}(f)\}| \end{cases}$$

belongs to $\partial B(f)$.

Proof. The convexity of T(f) follows directly from its definition and a straightforward computation using the definition of convexity. Due to the continuity B(f), to show convexity it suffices to establish the existence of a subdifferential at every point.

To this end note that $\operatorname{med}_{\lambda}(f) \in \operatorname{range}(f)$, so that in particular $n^0 \geq 1$ by definition. Let $1 \leq k := \lfloor N/(1+\lambda) \rfloor < N$ denote that entry of f so that $f(\mathbf{x}_k) = \operatorname{med}_{\lambda}(f)$. By definition of $\operatorname{med}_{\lambda}(f)$ there exist at most k elements of f larger than $\operatorname{med}_{\lambda}(f)$, so that $n^+ \leq k \leq N/(1+\lambda)$. As $N = n^- + n^0 + n^+$ this implies $\frac{\lambda n^+ - n^-}{n^0} \leq 1$. Similarly there exist at most N - (k+1) elements of f smaller than $\operatorname{med}_{\lambda}(f)$, so that $n^- \leq N - (k+1) \leq N - N/(1+\lambda)$. The fact that $N = n^- + n^0 + n^+$ then implies $\frac{n^- - \lambda n^+}{n^0} \leq \lambda$. Combining this with the previous inequality yields $-1 \leq \frac{n^- - \lambda n^+}{n^0} \leq \lambda$.

Put $h:=f-\mathrm{med}_{\lambda}(f)\mathbf{1}$, and note that the vector v defined above satisfies $v\in\partial\|h\|_{1,\lambda}$ by the preceding lemma. Thus for any $g\in\mathbb{R}^N$ it holds that

$$||g - \operatorname{med}_{\lambda}(g)\mathbf{1}||_{1,\lambda} - ||f - \operatorname{med}_{\lambda}(f)\mathbf{1}||_{1,\lambda} \ge \langle v, g - f + (\operatorname{med}_{\lambda}(f) - \operatorname{med}_{\lambda}(g))\mathbf{1} \rangle$$

by definition of the subdifferential. Note also that $\langle v, \mathbf{1} \rangle = 0$, so that in fact

$$B(g) - B(f) = ||g - \operatorname{med}_{\lambda}(g)\mathbf{1}||_{1,\lambda} - ||f - \operatorname{med}_{\lambda}(f)\mathbf{1}||_{1,\lambda} \ge \langle v, g - f \rangle$$

for $g \in \mathbb{R}^N$ arbitrary. Thus $v \in \partial B(f)$ by definition of the subdifferential. In particular $\partial B(f)$ is always non-empty, so B(f) is convex.

Theorem 3 (Estimate of the energy descent). Each of the F^k belongs to C, and if $B_r^k \neq 0$ then

$$\sum_{r=1}^{R} \frac{B_r^{k+1}}{B_r^k} \left(E_r^k - E_r^{k+1} \right) \ge \frac{\|F^k - F^{k+1}\|^2}{\Delta^k} \tag{2}$$

where B_r^k, E_r^k stand for $B(f_r^k), E(f_r^k)$.

Proof. Let $V^k \in \partial \mathcal{B}^k(F^k)$. Then by definition of the subdifferential it follows that

$$\mathcal{B}^k(F^{k+1}) \ge \mathcal{B}^k(F^k) + \langle F^{k+1} - F^k, V^k \rangle. \tag{3}$$

As $F^{k+1} = \operatorname{prox}_{\mathcal{T}^k + \delta_C}(F^k + V^k)$ the definition of the proximal operator implies that $F^{k+1} \in C$ and that also

$$F^k + V^k - F^{k+1} \in \partial(\mathcal{T}^k + \delta_C)(F^{k+1}).$$

The definition of the subdifferential and the fact that $\delta_C(F^k) = \delta_C(F^{k+1}) = 0$ then combine to imply

$$\mathcal{T}^{k}(F^{k}) \ge \mathcal{T}^{k}(F^{k+1}) + \langle F^{k} - F^{k+1}, F^{k} + V^{k} - F^{k+1} \rangle$$

$$= \mathcal{T}^{k}(F^{k+1}) + ||F^{k} - F^{k+1}||^{2} + \langle F^{k} - F^{k+1}, V^{k} \rangle$$
(4)

Adding (3) and (4) yields

$$\mathcal{T}^k(F^k) + \mathcal{B}^k(F^{k+1}) \ge \mathcal{T}^k(F^{k+1}) + \mathcal{B}^k(F^k) + ||F^k - F^{k+1}||^2$$

or equivalently that $\mathcal{B}^k(F^{k+1}) \geq \mathcal{T}^k(F^{k+1}) + \|F^k - F^{k+1}\|^2$ since $\mathcal{B}^k(F^k) = \mathcal{T}^k(F^k)$ by construction. Expanding this last inequality shows

$$\sum_{r=1}^{R} \frac{\Delta^k}{B_r^k} \left(E_r^k B_r^{k+1} - T_r^{k+1} \right) \ge \|F^k - F^{k+1}\|^2,$$

which yields the claim after by B_r^{k+1} in each term of the summation.

2 Primal-Dual Formulation

Consider the minimization

$$F^{k+1} := \operatorname{prox}_{\mathcal{T}^k + \delta_C}(G^k).$$

We may write this as the saddle-point problem

$$\min_{u \in \mathbb{R}^{NR}} \max_{p \in \mathbb{R}^{MR}} \langle p, \mathcal{K}u \rangle + G(u) - F^*(p).$$

Here the vector $u = (f_1, \dots, f_R)^t$ is a "vectorized" version of F and the matrix K denotes the block diagonal matrix

$$\mathcal{K} := \text{blkdiag}\left(\frac{\Delta^k}{B_1^k}K, \dots, \frac{\Delta^k}{B_R^k}K\right)$$

where K is the gradient matrix of the graph. We define the convex function G(u) as

$$G(u) := \frac{1}{2} \sum_{r=1}^{R} ||f_r - g_r^k||^2 + \delta_C(u),$$

where δ_C denotes the barrier function of the convex set C (either the simplex or simplex with labels) as before. The convex function $F^*(p)$ denotes the barrier function of the l^{∞} unit ball, so that

$$F^*(p) = \begin{cases} 0 & \text{if} \quad |p_i| \le 1 \ \, \forall \ 1 \le i \le MR \\ +\infty & \text{otherwise}. \end{cases}$$

Note also that G(u) is uniformly convex, in that if $v \in \partial G(u)$ denotes any subdifferential then for any $u' \in \mathbb{R}^{NR}$ the inequality

$$G(u') - G(u) \ge \langle v, u' - u \rangle + \frac{1}{2}||u - u'||^2$$

holds. We may therefore apply algorithm 2 of [1] with $\gamma = 1$ with to solve the saddle-point problem. This algorithm consists in the iterations

$$\begin{split} p^{n+1} &= \operatorname{prox}_{\sigma^n F^*}(p^n + \sigma^n \mathcal{K} \bar{u}^n) \\ u^{n+1} &= \operatorname{prox}_{\tau^n G}(u^n - \tau^n \mathcal{K}^t p^{n+1}) \\ \theta^n &= \frac{1}{\sqrt{1 + 2\tau^n}} \quad \tau^{n+1} = \theta^n \tau^n \quad \sigma^{n+1} = \sigma^n/\theta^n \\ \bar{u}^{n+1} &= u^{n+1} + \theta^n (u^{n+1} - u^n) \end{split}$$

and converges provided the inequality $\sigma^0 \leq (\tau^0||\mathcal{K}||_2^2)^{-1}$ holds for the initial timesteps. We may compute the inner proximal operators analytically to find

$$(\text{prox}_{\sigma^n F^*}(z))_i = z_i / \max\{1, |z_i|\} \quad \forall \ 1 \le i \le MR,$$

and by completing the square that

$$\mathrm{prox}_{\tau^n G}(z) = \mathrm{proj}_C\left(\frac{z + \tau^n g}{1 + \tau^n}\right),$$

where $g = (g_1^k, \dots, g_R^k)^t$ denotes G^k in vectorized form. The inner loop of algorithm 1 then follows by re-writing these computations in matrix form.

References

[1] A. Chambolle and T. Pock. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging. *Journal of Mathematical Imaging and Vision*, 40(1):120–145, 2011.