AE4301 Automatic Flight Control System Design Part I: Control Theory

Anahita Jamshidnejad Aerospace Engineering Lecture 3

What we learned by now

- Laplace transform: From differential equations to transfer function
- Transfer function for computing output in Laplace domain
- Effects of poles and zeros of transfer functions on system behavior
- Pole locations for various gains with root-locus method

Main objectives

- Being able to derive state-space representation (in time domain)
- Being able to compute transfer function from state-space representation and vice versa
- Being able to determine controllability and observability of dynamical systems

Control design methods

- Based on Laplace transform:
 - Based on input-output relationship (transfer function)
 - Valid for linear time-invariant systems
 - Works in frequency domain
- Based on state-space representation:
 - Based on 1st-order differential equation (vector & matrix) representation
 - Valid for various (linear or nonlinear, time-invariant or time-varying) systems
 - Works in time domain

Preliminary definitions

- State variables: Variables of a dynamical system describing system behavior for all time instants
- State: Smallest set of state variables such that knowing value of these variables at t=0 & knowing input for $t\geq 0$ completely determines system behavior for $t\geq 0$
- State vector: Vector consisting of all state variables
- State space: Space of n dimensions (for nth order system) composing of n coordinate axis for n state variables (any state of system can be represented as a point in state space)

State-space equations

- Three types of variables are used:
 - Input variables
 - Output variables
 - State variables
- State-space representation of a given system is <u>not</u> unique
- For linear time-invariant systems:
 - State equation: $\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t)$
 - Output equation: y(t) = Cx(t) + Du(t)

$$\ddot{y} + 2\dot{y} + y = u$$

$$\ddot{y} + 2\dot{y} + y = u$$

For a 2nd-order system a set of 2 1st-order equations

$$\ddot{y} + 2\dot{y} + y = u$$

- For a 2nd-order system a set of 2 1st-order equations
- Use $x_1 = y$ and $x_2 = \dot{y}$:

$$\ddot{y} + 2\dot{y} + y = u$$

- For a 2nd-order system a set of 2 1st-order equations
- Use $x_1 = y$ and $x_2 = \dot{y}$:

$$\dot{x_1} = x_2 \\ \dot{x_2} = -2x_2 - x_1 + u$$

$$\ddot{y} + 2\dot{y} + y = u$$

- For a 2nd-order system a set of 2 1st-order equations
- Use $x_1 = y$ and $x_2 = \dot{y}$:

$$\dot{x_1} = x_2 \\ \dot{x_2} = -2x_2 - x_1 + u$$

Rewrite in vector-matrix form:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

Introduction

State space to transfer function

State-space representation for SISO system:

$$\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t)$$

$$y(t) = C\boldsymbol{x}(t) + Du(t)$$

Applying Laplace transform:

$$sX(s) = AX(s) + BU(s) \Rightarrow$$

$$\boldsymbol{X}(s) = (sI - A)^{-1} B\boldsymbol{U}(s)$$

Determine output in frequency domain:

$$\mathbf{Y}(s) = \left[C(sI - A)^{-1}B + D\right]\mathbf{U}(s)$$

State space to transfer function

State-space representation for SISO system:

$$\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t)$$

$$y(t) = C\boldsymbol{x}(t) + Du(t)$$

Applying Laplace transform:

$$sX(s) = AX(s) + BU(s) \Rightarrow$$

$$\boldsymbol{X}(s) = (sI - A)^{-1} B\boldsymbol{U}(s)$$

Determine output in frequency domain:

$$\mathbf{Y}(s) = \left[C \left(sI - A \right)^{-1} B + D \right] \mathbf{U}(s)$$

Transfer function: $G(s) = C(sI - A)^{-1}B + D$

Note: Eigenvalues of A = poles of G(s)

Introduction

Transfer function to state space

There may be infinitely many possible state-space representations for a transfer function

Example: For
$$\frac{Y(s)}{U(s)} = \frac{1}{(s+10)(s^2+4s+16)}$$

Option 1:
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -160 & -56 & -14 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^\top + 0u$$

Option 2:
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -14 & -56 & -160 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^{\mathsf{T}} + 0u$$

Introduction

State-space

Correlation

Ctrl & obs

Summary

Example: Controllable canonical form

Consider transfer function $\frac{Y(s)}{U(s)} = \frac{b_0 s^n + b_1 s^{n-1} + \ldots b_{n-1} s + b_n}{s^n + a_1 s^{n-1} + \ldots + a_{n-1} s + a_n}$ Controllable cannonical form

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_{n-1} \\ \dot{x}_n \end{pmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} u$$

$$y = \begin{bmatrix} b_n - a_n b_0 & b_{n-1} - a_{n-1} b_0 & \cdots & b_1 - a_1 b_0 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + b_0 u$$

Introduction

State-space

Correlation

Ctrl & obs

Summary

Exercise:

Convert the following transfer function into a state-space representation (the input and output of the state-space representation are the same as those of the transfer function)

$$G(s) = \frac{2s^2}{s^2 + 2s + 1}$$

Solve at home & ask for help from teaching assistants

Controllability

Controllability

Introduction

State-space

Correlation

Observability

Do all the state variables of this system appear directly via output?

TUDelft

Introduction

Observability

Do all the state variables of this system appear directly via output?

State variable $x_2(t)$ does not end up in the output, so it is not *observable*.

TUDelft

Controllability & observability

- Concepts of controllability and observability play an important role in design of control systems in state space
- A complete solution to control system design problem may not exist if system is not controllable
- When state variables are not observable or accessible for direct measurement state feedback control faces difficulties (estimation of such states will be required)
- It is important to know conditions under which a system is controllable and observable

Controllability condition

Definition: A system is (state) *controllable* at time t_0 if there is a control input $\boldsymbol{u}(t)$ that transfers the system from any initial state $\boldsymbol{x}(t_0)$ to any other state $\boldsymbol{x}(t)$ in a finite interval of time.

Condition for complete state controllability:

The system $\dot{x} = Ax + Bu$ is completely state controllable if for the controllability matrix C_M :

$$C_M = \begin{bmatrix} B & AB & \dots & A^{n-1}B \end{bmatrix}$$

the rank of the matrix is n:

$$\operatorname{rank}(C_M) = n$$
.

Controllability condition

Definition: A system is (state) *controllable* at time t_0 if there is a control input u(t) that transfers the system from any initial state $\boldsymbol{x}(t_0)$ to any other state $\boldsymbol{x}(t)$ in a finite interval of time.

Condition for complete state controllability:

The system $\dot{x} = Ax + Bu$ is completely state controllable if for the controllability matrix C_M :

$$C_M = \begin{bmatrix} B & AB & \dots & A^{n-1}B \end{bmatrix}$$

the rank of the matrix is n:

$$rank(C_M) = n$$
.

Is this system controllable?
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

Observability condition

Definition: A system is *observable* at time t_0 if, knowing the initial state $x(t_0)$ of the system, this state can be determined from the observation of the output y(t) over a finite time interval.

Condition for complete state observability:

The system $\dot{x} = Ax + Bu$ and y = Cx is observable if for the observability matrix C_O :

$$C_O = \begin{bmatrix} C \\ CA \\ \dots \\ CA^{n-1} \end{bmatrix}$$

the rank of the matrix is n:

$$\operatorname{rank}(C_O) = n$$

TUDelft

Summary

- State-space representation in time domain is an alternative to transfer function in Laplace domain
- An $n^{\rm th}$ -order dynamical system corresponds to
 - an n^{th} -order differential equation
 - an $n^{\rm th}$ -order transfer function
 - a state-space representation with n state variables
- State-space & transfer function representations for a system may be derived from each other
- Controllability and observability are conditions of systems and can be obtained from state-space representation

AE4301 Automatic Flight Control System Design Part I: Control Theory

Anahita Jamshidnejad Aerospace Engineering Lecture 3

