

La couche réseau du modèle OSI

La couche réseau du modèle OSI

Le protocole IP : Internet Protocol

Présentation

- C'est LE protocole d'Internet de la couche Réseaux
 - Autres protocoles de la couche Réseaux : IPv6, AppleTalk, IPX, CLNS
- Protocole :
 - Non fiable
 - Sans connexion
- Il apporte les fonctions suivantes :
 - Adressage de bout en bout
 - Encapsulation/Dés-encapsulation
 - Routage des paquets

Modèle OSI

- 7. Application
- 6. Présentation
 - 5. Session
 - 4. Transport
 - 3. Réseau
- 2. Liaison de données
 - 1. Physique

Fonctionnement

- Chaque segment TCP est encapsulé dans un paquet IP
 - Acheminement sans connexion (pas de connexion préalable à l'envoie des paquets)
 - Best effort non fiable, pas de sur-cout dû aux acquittements
 - Indépendant du média

Similarité avec l'envoi postal

- Quand vous envoyez un courrier par la poste
 - Vous ne savez pas quand la lettre arrivera
 - Vous ne savez pas si le destinataire est présent
 - Vous ne savez pas si le destinataire pourra lire votre lettre
 - Vous ne savez pas quand la lettre est arrivée

Best effort?

- Les paquets vont être envoyés le plus rapidement possible
- Ils peuvent emprunter des chemins différents
- Certains paquets peuvent être perdus
- L'ordre de réception des paquets et celui d'expédition peuvent être différents

Indépendance par rapport au médium

- Pour supporter tous les types de média, les paquets peuvent être fragmentés
- La fragmentation se fait en fonction de la MTU (Maximum Transfert Unit) du medium utilisé
 - Les paquets de taille trop importante par rapport à la MTU du média seront « découpés » en plusieurs paquets de taille plus petits

L'en-tête

- Version pour indiquer si c'est IPv4 ou IPv6
- Hlen indique la longueur de l'en-tête, en mot de 32 bits
- Type de service pour la qualité de service
- Longueur totale du paquet (en-tête + données)
- Protocole : indique le protocole encapsulé dans la paquet IP
 - ▶ ICMP : 1, TCP : 6, UDP : 17, IPv6 : 41 (valeur décimale)

Version (4 bits)	HLen (4 bits)	Type of Service (8 bits)	Longueur Totale (16 bits)				
Identification (16 bits) Flags (3 bits) Fragment Offset (13 bits)							
Time To Live (8 bits) Protocole (8 bits) Checksum en-tête (16 bits)							
IP Source (32 bits)							
IP Destination (32 bits)							
Options (si présent) Padding							
Données de la couche applicative							

La fragmentation

La fragmentation : utilisation du flag MF (More Fragment) de l'en-tête et du champs Fragment offset

La couche réseau du modèle OSI

L'adresse IP et les réseaux

Regroupement de réseaux ? (1/2)

- Les équipements réseaux ont besoin d'une adresse pour échanger de l'information
- Les équipements sont regroupés et chaque groupe peut-être identifié
- Comme les échanges postaux, les habitants sont regroupées dans des villes et des rues

Regroupement de réseaux ? (2/2)

- Le regroupement permet
 - D'isoler les équipements en fonction des rôles des utilisateurs (comptabilité, marketing, vente, ...)
 - Augmentation des performances (limitation des trames de broadcast, ...)
 - Augmentation de la sécurité (possibilité de contrôler les échanges entre les groupes)

Le routage

- Chaque équipement possède une adresse IP qui appartient à un groupe (à un réseau)
 - Adresse IP : longueur de 32 bits, écrit en décimal pointée de la forme X.Y.Z.T
 - Exemple: 192.168.23.4, 10.2.3.4, 23.4.23.67, ...
- Quel chemin le paquet doit-il suivre pour atteindre sa destination ?
 - C'est le processus de routage qui le détermine
- Chaque équipement connait donc sa passerelle : le routeur qui lui permet de joindre les autres réseaux

Fonctionnement du routage

- Next-hop : passerelle suivante pour atteindre la destination finale
 - ▶ Rappel : dans le paquet IP, nous avons l'adresse source ET l'adresse de destination

L'adresse IP

- L'adresse IP est codée sur 32 bits
- Écrit en notation décimale pointée, de la forme X.X.X.X
 - Exemple: 192.168.10.2, 34.45.65.2, ...
- Chaque « bloc » représente un octet (8 bits)

- Conversion en binaire ?
 - Chaque digit représente le nombre de 2^x que l'on a dans la valeur décimale

Exemple de conversion

- **129** =
- **▶** 132 =
- **▶** 194 =
- Une méthode de calcul : décomposer en puissance de 2 la valeur décimale à convertir et faire les soustractions successives
 - Les puissances de 2 « utiles » dans la conversion binaire : 1, 2, 4, 8, 16, 32, 64, 128

Exemple de conversion

- ightharpoonup 129 = 128 + 1 = 10000001
- ightharpoonup 132 = 128 + 4 = 10000100
- ightharpoonup 194 = 128 + 64 + 2 = 11000010
- Une méthode de calcul : décomposer en puissance de 2 la valeur décimale à convertir et faire les soustractions successives
 - Les puissances de 2 « utiles » dans la conversion binaire : 1, 2, 4, 8, 16, 32, 64, 128

Adresse IP est hiérarchisée

Comme pour une adresse postale

Distinction d'une partie dite réseau et d'une partie dite machine (host)

Le masque ?

- Le masque d'une adresse est un élément qui permet de préciser où est la limite entre partie réseau et la partie hôte d'une adresse
- Ce masque a le même format qu'une adresse IP (décimale pointée)
- Dans son écriture binaire,
 - les 1 indiquent la position des digits de l'adresse IP appartenant à la partie réseau
 - les 0 indiquent la position des digits de l'adresse IP appartenant à la partie hôte

Masque en écriture abrégée

- ▶ Il est possible d'écrire le masque ainsi : /24, /16, /8, ...
- Cela indique le nombre de bit à 1 dans l'écriture binaire du masque
- Exemple
 - /8 correspond au masque 255.0.0.0
 - ▶ 11111111.00000000.00000000.00000000
 - /16 correspond au masque 255.255.0.0
 - ▶ 11111111.11111111.00000000.00000000
 - /24 correspond au masque 255.255.255.0
 - ▶ 11111111.11111111.11111111.00000000

Type de communication IP

Type d'adresse

- Adresse réseaux
 - L'écriture binaire de la partie host est égale à 0

192 . 168 . 10 . 0

11000000.10101000.00001010.00000000

- Adresse de broadcast
 - L'écriture binaire de la partie host est égale à 1
 - A destination de tous les devices du même réseau

192 . 168 . 10 . 255

11000000.10101000.00001010.11111111

- Adresse unicast (adresse d'un host)
 - A destination d'un seul host uniquement

Plages d'adresses

- Classe A
 - De 0.0.0.0 à 127.255.255.255 (en binaire, le 1er octet : 00000000 à 01111111)
 - Masque /8
- Classe B
 - ▶ De 128.0.0.0 à 191.255.255.255.0 (en binaire, le 1er octet : **10**0000000 à **10**111111)
 - Masque /16
- Classe C
 - De 192.0.0.0 à 223.255.255.255 (en binaire, le 1er octet : 110000000 à 11011111)
 - Masque /24
- Classe D (multicast)
 - De 224.0.0.0 à 239.255.255.255 (en binaire, le 1er octet : 11100000 à 11101111)
- Classe E (expérimental)
 - De 240.0.0.0 à 255.255.255.254 (en binaire, le 1er octet : 11110000 à 11111110)

Les adresses privées

- Ils existent des adresses à usage privées, non routé sur Internet
 - Les équipements ayant une adresse de ce type ne peuvent donc pas être joignable depuis internet
 - Usage uniquement en interne, sur un LAN
- Une plage d'adresse privée dans chaque classe A, B et C (définit dans la RFC1918)
- Dans la classe A : 10.0.0.0/8
 - ▶ De 10.0.0.0 à 10.255.255.255
- Dans la classe B : 172.16.0.0/12
 - De 172.16.0.0 à 172.31.255.255
- Dans la classe C : 192.168.0.0/16
- Usage : pour des équipements qui n'ont nullement besoin d'être joignable depuis Internet. Ces adresses ne sont pas routées sur Internet.

La couche réseau du modèle OSI

Les sous-réseaux

Calcul des adresses de réseaux et de broadcast

- Existence de 3 types de communication
 - Adresse unicast
 - Adresse de broadcast
 - Adresse de multicast
- Pour chaque communication, il existe une adresse spécifique
 - Multicast : la classe D
 - Broadcast : il faut faire le calcul par rapport à l'adresse unicast ou de réseaux
- Adresse réseau ?
 - C'est l'identifiant du groupe d'équipements qui pourront échanger des informations entre-eux, sans routeur
 - L'adresse réseau permet d'identifier toutes les adresses unicast d'un même groupe

ET

0

1

0

0

0

1

0

1

Exemple

Dans la classe A, le masque est toujours /8

Partie Réseau

Partie Host

- Trouver l'adresse réseau ?
 - ET logique entre l'adresse IP et son masque

Adresse IP Masque	000010 111111			0 = 1 0 0				
Adresse Réseaux	000010 9	01.00	90000 0	00.00	00000	00.00	000000	

L'adresse 9.9.10.2/8 fait donc partie du réseau 9.0.0.0/8

Le calcul

- Chaque adresse IP appartient à une classe et donc à un masque associé
- Trouver l'adresse réseaux ?
 - Convertir l'adresse IP en binaire
 - Convertir le masque en binaire
 - ▶ Faire un ET logique entre l'adresse IP et le masque
- Plus rapide
 - Ne convertir que l'octet utile (X ET 255 = X et X ET 0 = 0)

Adresse IP	9.9.10.2
Masque	255.0.0 .0
Adresse Réseaux	9.0.0.0

Quelques exemples

- A quels réseaux appartiennent les adresses suivantes ?
 - **1**0.10.34.2
 - **192.168.34.2**
 - **172.17.34.5**
 - **1**30.45.6.7

Quelques exemples

- A quel réseau appartient les adresses suivantes ?
 - **1**0.10.34.2
 - Classe A, masque 255.0.0.0, adresse réseau 10.0.0.0
 - **192.168.34.2**
 - Classe C, masque 255.255.255.0, adresse réseau 192.168.34.0
 - **172.17.34.5**
 - Classe B, masque 255.255.0.0, adresse réseau 172.17.0.0
 - **1**30.45.6.7
 - Classe B, masque 255.255.0.0, adresse réseau 130.45.0.0

L'adresse de broadcast?

- Pour chaque réseau, il existe une adresse de broadcast
 - Permet de communiquer avec tous les équipements du réseau
- Calcul de l'adresse de broadcast
 - Mettre tous les bits de la partie host de l'adresse réseau à 1
- Exemple :
 - Sur le réseau 9.9.10.2/8, l'adresse de broadcast est donc 9.255.255.255

Adresse Réseaux	9		0		0		0
	00001001	. 00	00000	0.00	00000	9.00	000000
Adresse Broadcast	00001001	. 11	11111	1.11	11111	1.1	1111111
	9		255		255		255

Quelques exemples

- ► Trouver les adresses de broadcast des adresses suivantes ?
 - **1**0.10.34.2
 - **192.168.34.2**
 - **172.17.34.5**
 - **1**30.45.6.7

Quelques exemples

- Trouver les adresses de broadcast des adresses suivantes ?
 - **1**0.10.34.2
 - Classe A, masque 255.0.0.0, adresse broadcast 10.255.255.255
 - **192.168.34.2**
 - Classe C, masque 255.255.255.0, adresse broadcast 192.168.34.255
 - **172.17.34.5**
 - Classe B, masque 255.255.0.0, adresse broadcast 172.17.255.255
 - **1**30.45.6.7
 - Classe B, masque 255.255.0.0, adresse broadcast 130.45.255.255

La couche réseau du modèle OSI

Les sous-réseaux

Nombre d'adresses attribuables (1/2)

- A partir d'une adresse réseau, le nombre total d'adresses IP attribuables à des équipements est fixé par le masque
 - Exemple : dans la classe C, Masque 255.255.255.0 (/24) donc 8 bits à disposition pour numéroter les équipements, soit 2^8 = 256
- Toujours 2 adresses réservées, non attribuable à un équipement
 - Adresse réseau et l'adresse de broadcast

Nombre d'adresses attribuables (2/2)

Classe	Plage du 1er octet (en décimal)	Plage du 1er octet (en binaire)	Partie Réseaux (R) et Host (H)	Masque par défaut	Nombre de réseaux et d'adresses utilisables par réseaux
Α	1. à 127.	0 0000001. à 0 1111111	R.H.H.H	255.0.0.0	127 réseaux (2 ⁷ -1) 16 777 214 hosts (2 ²⁴ - 2)
В	128. à 191.	10 000001. à 10 111111	R.R.H.H	255.255.0.0	16 384 réseaux (2 ¹⁴) 65 534 hosts (2 ¹⁶ -2)
С	192. à 223.	110 00001. à 110 11111	R.R.R.H	255.255.255.0	2 097 150 réseaux (2 ²¹) 254 hosts (2 ⁸ -2)
D	224. à 239.	1110 0001. à 1110 1111	N.A. (multicast)	N.A.	N.A.
Е	240. à 254.	1111 0001. à 1111 1110	N.A. (expérimental)	N.A.	N.A.

Les sous-réseaux (1/2)

- Configuration habituelle
 - Besoin de 6 réseaux
 - Entre les routeurs : besoin que de 2 IP !
 - Perte de plusieurs centaines d'IP au minimum
- Avec les sous-réseaux
 - Possibilité de re-découper la partie host pour faire de nouveaux sous-réseaux
 - On ajoute donc une 3ème portion au découpage habituel d'une adresse IP
 - Permet d'économiser des adresses IP

F. Nolot © 2020 3

Les sous-réseaux (2/2)

Sans sous-réseaux

Avec des sous-réseaux, nous découpons la partie Host

F. Nolot © 2020 38

Calcul des sous-réseaux

- La taille de la portion sous-réseau d'une adresse IP permet de déterminer le nombre de sous-réseaux pouvant exister dans un réseau donné
 - Si la taille de la portion sous-réseau d'une adresse IP est de m bits, le nombre de sous-réseau possible est 2m
 - Si la taille de la portion sous-réseau est de x bits, le nombre d'adresses IP utilisable par des machines dans chaque sous-réseau est 2x-2
 - La premier adresse IP du sous-réseau est l'adresse du sous-réseau
 - La dernière adresse IP du sous-réseau est l'adresse de broadcast
- Les sous-réseaux sur IP sont définit dans la RFC 950 puis dans la RFC 1878
- Dans la **RFC950** (Août 1985), il est spécifié de **retirer** systématiquement **2 adresses de sous-réseaux**, la première (portion sous-réseau à 0, **appelé sous-réseau zero** ou zero subnet) et la dernière (portion sous-réseau à 1)
- Dans la RFC1878 (Décembre 1995), il est précisé qu'il était maintenant obsolète de retirer 2 sous-réseaux par réseaux
- Dans la littérature, le nombre de sous-réseau est parfois égal à 2^m-2

Référence à la RFC950

F. Nolot ©2020 39

Exemple

- Soit l'adresse 8.1.4.5/16
- Adresse de Classe A donc avec le masque par défaut /8
 - Ici, le masque est /16, des sous-réseaux sont donc utilisés
 - Calculons le nombre de sous-réseau qu'il est possible de faire
- Le nombre de bits de la portion sous-réseau est donc 8
 - ▶ Il est donc possible de faire 2⁸ = 256 sous-réseaux /16
- Le nombre de bits de la portion hôte est 16, donc 2¹⁶ -2=65534 hôtes par sousréseaux
- A partir de l'adresse 8.1.4.5/16 nous avons
 - L'adresse de sous-réseau : 8.1.0.0 (ET logique entre 8.1.4.5 et le masque 255.255.0.0)

L'adresse de broadcast : 8.1.255.255

F. Nolot ©2020 4

Exemple (1/4)

- Sur le réseau 131.1.123.0/27, quelle est la dernière adresse qui peut être affecté à une machine ?
 - **131.1.123.30**
 - **131.1.123.31**
 - **131.1.123.32**
 - **131.1.123.33**

F. Nolot ©2020 4

Exemple (1/4)

Sur le réseau 131.1.123.0/27, quelle est la dernière adresse qui peut être affecté à une machine ?

- 1)131.1.123.30
- 2) 131.1.123.31
- 3) 131.1.123.32
- 4) 131.1.123.33

Exemple 2/4

- Quelle est la 1ère adresse IP qu'il est possible d'affecter à une interface d'une machine dans le 6ème sous-réseaux du réseaux 192.168.8.0/29 ?
 - 1) 192.168.8.32
 - 2) 192.168.8.33
 - 3) 192.168.8.41
 - 4) 192.168.8.48
 - 5) 192.168.8.49
 - 6) 192.168.8.56

Exemple 2/4

- Quelle est la 1ère adresse IP qu'il est possible d'affecter à l'interface d'une machine, dans le 6ème sous-réseau du réseaux 192.168.8.0/29 ?
 - 1) 192.168.8.32
 - 2) 192.168.8.33
 - 3) 192.168.8.41
 - 4) 192.168.8.48
 - 5) 192.168.8.49
 - 6) 192.168.8.56
- Adresse de classe C, Masque /29, ce qui fait en décimal pointé 255.255.255.248., soit 6 IP utilisables par sous-réseau
 - lère sous-réseaux : de 192.168.8.0 à 192.168.8.7
 - 2ème sous-réseaux : de 192.168.8.8 à 192.168.8.15
 - **>** ...
 - 6ème sous-réseaux commence donc à 192.168.8.8*(6-1)=192.168.8.40

F. Nolot © 2020

Exemple 3/4

- Dans le réseau 191.0.2.0/23, quelle adresse IP valide peut être affectée à un hôte ?
 - 1) 191.0.2.0
 - 2) 191.0.2.255
 - 3) 191.0.3.255
 - 4) 191.0.4.0

Exemple 3/4

- Dans le réseau 191.0.2.0/23, quelle adresse IP valide peut être affectée à un hôte ?
 - 1) 191.0.2.0 : adresse du sous-réseau
 - 2) 191.0.2.255
 - 3) 191.0.3.255 : adresse de broadcast du sous-réseau
 - 4) 191.0.4.0 : n'appartient pas au sous-réseau 191.0.2.0/23

F. Nolot © 2020 4

Exemple 4/4

- Combien d'adresses peuvent être affectées à un hôte parmi celles disponibles dans le réseau 124.12.4.0/22 ?
 - 1) 510
 - 2) 1022
 - 3) 1024
 - 4) 2048

Exemple 4/4

- Combien d'adresses peuvent être affectées à un hôte parmi celles disponibles dans le réseaux 124.12.4.0/22 ?
 - 1) 510
 - 2)1022
 - 3) 1024
 - 4) 2048
- Explication : /22 donc 10 bits sur la partie host, soit 2¹⁰-2 IP utilisables pour un host

F. Nolot ©2020

La couche réseau du modèle OSI

Merci pour votre attention

F. Nolot ©2020 4: