An introduction to Bayesian modelling with JAGS and R

Francisco Rodriguez-Sanchez (@frod_san)
April 2015

This is a practical workshop

BUT do read the literature e.g.

- Data analysis using regression and multilevel/hierarchical models
- Bayesian data analysis
- Bayesian methods for ecology
- The BUGS book
- Introduction to WinBUGS for ecologists
- Models for ecological data
- · and many more

2/73

Bayesian modelling software

- WinBUGS/OpenBUGS
- JAGS
- · STAN
- Filzbach
- Nimble
- Many R packages: MCMCpack, MCMCglmm, LaplacesDemon, r-inla, etc (see Bayesian task view)

Why JAGS?

- Very similar to BUGS, both very popular
- · Gate to other software e.g. STAN, Filzbach, etc
- Easy to start, can deal with complex models too (open-ended modelling)
- But look for specific implementations of your analysis (e.g. hSDM)

Why R?

Just kidding

• }

The very basics: linear regr

$$y_i = a + bx_i + \epsilon_i$$

How many parameters?

6/73

The very basics: linear regr

$$\epsilon \sim N\left(0,\sigma^2
ight)$$

$$y_i \sim N\left(\mu_i, \sigma^2
ight)$$

$$\mu_i = a + bx_i$$

7/73

Our dataset: tree heights and DBH

- · One species
- · 10 plots
- · 1000 trees
- Number of trees per plot ranging from 4 to 392

```
trees <- read.csv("trees.csv")
summary(trees[,1:3])</pre>
```

plot	dbh	height
Min. : 1.0	Min. : 5.06	Min. :13.40
1st Qu.: 1.0	1st Qu.:17.69	1st Qu.:29.68
Median: 2.0	Median :28.62	Median:36.55
Mean : 2.7	Mean :27.88	Mean :36.51
3rd Qu.: 4.0	3rd Qu.:38.97	3rd Qu.:43.33
Max. :10.0	Max. :49.92	Max. :59.30

What's the relationship between DBH and height?

First step: linear regression (lm)

Interpretation?

Always centre continuous variables

summary(trees\$dbh)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 5.06 17.69 28.62 27.88 38.96 49.92
```

```
trees$dbh.c <- trees$dbh - 25
```

So, all parameters will be referred to a 25 cm DBH tree.

Linear regression with cen

Let's make it Bayesian

Things we'll need

- Data
- A function describing the model (including priors)
- · Decide number of MCMC chains
- Define initial values
- Decide number of iterations (and burnin)
- · Choose parameters to save

Specify the model as an R function

```
model1 <- function(){

# LIKELIHOOD
for (i in 1:length(height)){
  height[i] ~ dnorm(mu[i], tau)  # tau = precision (inverse of variance)
  mu[i] <- alfa + beta*dbhc[i]  # centred diameter
}

# PRIORS (vague or weakly informative)
alfa ~ dunif(1, 100)  # prior for average height of a 25-cm-DBH tree
beta ~ dunif(0, 10)  # how much do we expect height to scale with DBH?
tau <- pow(sigma, -2)  # tau = 1/sigma^2
sigma ~ dunif(0, 50)  # residual standard deviation
}</pre>
```

14 of 73 14/04/2015 02:48

A note on priors

Avoid 'non-informative' priors (see this and this)

Use weakly informative (e.g. bounded Uniform, Normal with reasonable parameters, Cauchy...)

or strongly informative priors based on previous knowledge and common sense.

Example: estimating people height across countries

Unreasonable prior

```
plot(density(rnorm(1000, 0, 1000)),
    main="", xlab="Height (m)")
```


(from STAN manual)

Reasonable prior

```
plot(density(rnorm(1000, 2, 0.5)),
    main="", xlab="Height (m)")
```


16/73

Next step: create list with data

Now call JAGS to run the model

Viewing MCMC in action

traceplot(m1, ask=FALSE, mfrow=c(2,2))

Obviously we haven't achieved convergence yet...

19 of 73

19/73

Let's run JAGS for longer

Traceplots

traceplot(m1, ask=FALSE, mfrow=c(2,2))

21/73

Results

For each parameter, n.eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

```
DIC info (using the rule, pD = var(deviance)/2)
pD = 3.2 and DIC = 5660.5
DIC is an estimate of expected predictive error (lower deviance is better).
```

Results pretty similar to simple.lm (because of vague priors)

22/73

A plot of the whole model

plot(m1)

Bugs model at "C:/Users/FRS/AppData/Local/Temp/RtmpwpZd1g/model18fc32fa311f.txt", fit using jags, 3 chains, each with 10000 iterations (first 5000 discarded)

medians and 80% intervals

4.3 7 23/73

Comparing prior and posterior densities

Height of average 25-cm DBH tree (alfa)

Comparing prior and posterior densities

Residual sd (sigma)

Now using Normal vague priors

Model with Normal priors

```
model1b <- function(){

# LIKELIHOOD
for (i in 1:length(height)){
  height[i] ~ dnorm(mu[i], tau)  # tau = precision (inverse of variance)
  mu[i] <- alfa + beta*dbhc[i]  # centred diameter
}

# PRIORS
alfa ~ dnorm(0, 0.001)  # prior for intercept
beta ~ dnorm(0, 0.001)  # prior for beta (slope)
tau <- pow(sigma, -2)  # tau = 1/sigma^2
sigma ~ dunif(0, 50)  # residual standard deviation
}</pre>
```

Calling JAGS

Results

```
Inference for Bugs model at "C:/Users/FRS/AppData/Local/Temp/RtmpwpZdlg/model18fcecc6lde.txt", fi
 3 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5
n.sims = 3000 iterations saved
                            2.5% 97.5% Rhat n.eff
         mu.vect sd.vect
alfa
          34.732 0.131 34.470 34.980 1.001 3000
           0.615 0.010
                        0.595 0.636 1.003
                                                950
beta
           4.098 0.095
                        3.918 4.286 1.001
siqma
                                               3000
deviance 5657.292 2.526 5654.481 5664.219 1.004
                                                600
```

```
For each parameter, n.eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
```

```
DIC info (using the rule, pD = var(deviance)/2)
pD = 3.2 and DIC = 5660.5
DIC is an estimate of expected predictive error (lower deviance is better).
```

Very similar

29/73

Bayesian inference

$$p(\theta | x) = \frac{p(x | \theta)p(\theta)}{p(x)}$$

Posterior distribution ∝ Likelihood × Prior distribution

30/73

Varying-intercept models

Accounting for plot effects

Do it yourself using Im

33/73

Im results

```
lm.plot <- lm(height ~ factor(plot) + dbh.c, data=trees)</pre>
lm(formula = height ~ factor(plot) + dbh.c, data = trees)
               coef.est coef.se
(Intercept)
               32.13
                         0.16
factor(plot)2
                6.50
                         0.26
factor(plot)3
                4.36
                         0.35
factor(plot)4
                1.93
                         0.36
factor(plot)5
                3.64
                         0.34
factor(plot)6
                4.20
                         0.42
factor(plot)7
               -0.18
                         0.67
factor(plot)8 -5.31
                         0.89
factor(plot)9
                         1.09
                5.44
factor(plot)10 2.26
                         1.37
dbh.c
                0.62
                         0.01
n = 1000, k = 11
residual sd = 3.04, R-Squared = 0.88
```

Interpretation?

Single vs varying intercept

Pooling all plots

Different intercept for each plot

Let's make it Bayesian

Things we'll need

- · Data
- A function describing the model (including priors)
- · number of MCMC chains
- · initial values
- number of iterations (and burnin)
- parameters to save

Bayesian varying-intercept model with no pooling

```
model2 <- function(){</pre>
  # LIKELIHOOD
  for (i in 1:length(height)){
    height[i] ~ dnorm(mu[i], tau) # tau = precision (inverse of variance)
    mu[i] <- alfa[plot[i]] + beta*dbhc[i] # centred diameter</pre>
  # PRIORS
  \#alfa \sim dnorm(0, .001)
  for (j in 1:10){
    alfa[i] ~ dnorm(0, .001) # Plot effects drawn from Normal distribution
                                # with large **fixed** variance
 beta \sim dnorm(0, .001)
  tau \leftarrow pow(sigma, \leftarrow2) # tau = 1/sigma^2
  sigma \sim dunif(0, 50)
```

This fits same model as lm.plot

Call JAGS

```
data <- list(height=trees$height,</pre>
             dbhc=trees$dbh.c,
             plot=trees$plot)
m2 <- jags(data,</pre>
           model.file=model2,
           parameters.to.save = c("alfa", "beta", "sigma"),
           n.chains=3,
           inits=NULL,
           n.iter=10000,
           n.burnin=5000)
Compiling model graph
   Resolving undeclared variables
   Allocating nodes
   Graph Size: 4880
Initializing model
```

Results

Inference for Bugs model at "C:/Users/FRS/AppData/Local/Temp/RtmpwpZdlg/model18fc4f7b76af.txt", f
 3 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5
 n.sims = 3000 iterations saved

	mu.vect	sd.vect	2.5%	97.5%	Rhat	n.eff
alfa[1]	32.126	0.152	31.828	32.420	1.001	3000
alfa[2]	38.628	0.208	38.219	39.037	1.003	750
alfa[3]	36.472	0.315	35.871	37.085	1.001	2700
alfa[4]	34.058	0.319	33.425	34.683	1.002	1000
alfa[5]	35.760	0.310	35.137	36.372	1.002	1500
alfa[6]	36.314	0.399	35.571	37.082	1.001	3000
alfa[7]	31.949	0.640	30.680	33.210	1.002	1800
alfa[8]	26.790	0.870	25.086	28.452	1.001	3000
alfa[9]	37.498	1.057	35.490	39.596	1.001	3000
alfa[10]	34.322	1.384	31.648	37.016	1.002	1900
beta	0.617	0.007	0.602	0.632	1.001	3000
sigma	3.047	0.068	2.915	3.188	1.001	3000
deviance	5064.492	4.914	5056.952	5075.810	1.001	3000

For each parameter, n.eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

38/73

DIC info (using the rule, pD = var(deviance)/2)

Plot whole model

Bugs model at "C:/Users/FRS/AppData/Local/Temp/RtmpwpZd1g/model18fc4f7b76af.txt", fit using jags, 3 chains, each with 10000 iterations (first 5000 discarded)

39/73

39 of 73 14/04/2015 02:48

The varying-intercept model is much better

DIC(m1) = 5660

DIC(m2) = 5077

40/73

Estimation of plot effects improves with sample size

Average height of a 25-cm DBH tree in each plot

41/73

Varying-intercepts with pooling

(mixed/multilevel/hierarchical model)

42 of 73 14/04/2015 02:48

Multilevel model with varying intercepts

$$egin{aligned} y_i &= a_j + b x_i + arepsilon_i \ a_j &\sim N\left(0, au^2
ight) \ arepsilon_i &\sim N\left(0, \sigma^2
ight) \end{aligned}$$

In our example:

$$Height_{i} = plot_{j} + bDBH_{i} + arepsilon_{i} \ plot_{j} \sim N\left(0, au^{2}
ight) \ arepsilon_{i} \sim N\left(0, \sigma^{2}
ight)$$

43/73

Fitting mixed models with Imer

```
mixed <- lmer(height ~ dbh.c + (1|plot), data = trees)
lmer(formula = height ~ dbh.c + (1 | plot), data = trees)
           coef.est coef.se
(Intercept) 34.43
                     1.08
dbh.c
            0.62
                      0.01
Error terms:
                      Std.Dev.
Groups
         Name
plot
          (Intercept) 3.35
 Residual
                      3.04
number of obs: 1000, groups: plot, 10
AIC = 5116.3, DIC = 5096.3
deviance = 5102.3
```

coef(mixed)

Imer coefficients

27.30620 0.6169271

37.27097 0.6169271 34.39546 0.6169271

attr(,"class")
[1] "coef.mer"

8

10

Bayesian varying-intercept model with pooling across plots

```
model3 <- function(){</pre>
    # LIKELIHOOD
 for (i in 1:length(height)){
   height[i] ~ dnorm(mu[i], tau) # tau = precision (inverse of variance)
   mu[i] <- alfa[plot[i]] + beta*dbhc[i] # centred diameter</pre>
    # PRIORS
 for (j in 1:10){
    alfa[j] ~ dnorm(grandmu, tauplot) # Now we are estimating the plot variance!
  grandmu ~ dnorm(0, .001) # Overall mean height across all plots
  tauplot \leftarrow pow(sigmaplot, -2)
  sigmaplot ~ dunif(0, 20) # between-plot variance
 beta \sim dnorm(0, .001)
  tau \leftarrow pow(sigma, -2)
  sigma ~ dunif(0, 50) # residual variance
```

Call JAGS

```
data <- list(height=trees$height,</pre>
             dbhc=trees$dbh.c,
             plot=trees$plot)
m3 <- jags(data,
           model.file=model3,
           parameters.to.save = c("alfa", "beta", "sigma", "grandmu", "sigmaplot"),
           n.chains=3,
           inits=NULL,
           n.iter=10000,
           n.burnin=5000)
Compiling model graph
   Resolving undeclared variables
   Allocating nodes
   Graph Size: 4884
Initializing model
```

Results

Inference for Bugs model at "C:/Users/FRS/AppData/Local/Temp/RtmpwpZdlg/model18fc4e2f632e.txt", f 3 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5 n.sims = 3000 iterations saved

	mu.vect	sd.vect	2.5%	97.5%	Rhat	n.eff
alfa[1]	32.131	0.156	31.822	32.421	1.001	3000
alfa[2]	38.611	0.211	38.206	39.029	1.002	1400
alfa[3]	36.474	0.325	35.835	37.105	1.001	2100
alfa[4]	34.068	0.318	33.448	34.694	1.001	3000
alfa[5]	35.746	0.305	35.158	36.352	1.002	1500
alfa[6]	36.305	0.392	35.499	37.068	1.001	3000
alfa[7]	32.044	0.667	30.731	33.345	1.001	3000
alfa[8]	27.288	0.896	25.541	29.064	1.002	1400
alfa[9]	37.294	1.037	35.254	39.425	1.001	3000
alfa[10]	34.363	1.281	31.897	36.861	1.001	3000
beta	0.617	0.008	0.602	0.632	1.001	2700
grandmu	34.336	1.304	31.599	36.871	1.001	3000
sigma	3.048	0.071	2.916	3.186	1.001	3000
sigmaplot	3.942	1.237	2.304	6.982	1.001	3000
deviance	5064.988	5.105	5057.256	5076.492	1.002	1500

For each parameter, n.eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor (at convergence. Rhat=1).

48/73

A plot of the whole model

Bugs model at "C:/Users/FRS/AppData/Local/Temp/RtmpwpZd1g/model18fc4e2f632e.txt", fit using jags, 3 chains, each with 10000 iterations (first 5000 discarded)

49/73

49 of 73 14/04/2015 02:48

Comparing plot coefficients

Average height of a 25-cm DBH tree in each plot

A gradient from complete to no pooling

The multilevel model (with pooling) is somewhere between the complete-pooling (single intercept) and the no-pooling (one intercept for each plot, without shrinkage) models.

51/73

51 of 73 14/04/2015 02:48

Growing the hierarchy: adding plot-level predictors

52 of 73 14/04/2015 02:48

Model with group-level predictors

We had:

$$egin{aligned} y_i &= a_j + b x_i + arepsilon_i \ a_j &\sim N\left(0, au^2
ight) \ arepsilon_i &\sim N\left(0,\sigma^2
ight) \end{aligned}$$

Now

$$y_i = a_j + bx_i + arepsilon_i \ a_j \sim N\left(\mu_j, au^2
ight) \ \mu_j = \gamma + \delta \cdot predictor_j \ arepsilon_i \sim N\left(0, \sigma^2
ight)$$

53/73

Reading plot data

```
plotdata <- read.csv("plotdata.csv")
temp.c <- plotdata$temp - 15</pre>
```

Model with group-level predictors

```
model4 <- function(){</pre>
  # LIKELIHOOD
  for (i in 1:length(height)){
    height[i] ~ dnorm(mu[i], tau)
    mu[i] <- alfa[plot[i]] + beta*dbhc[i]</pre>
  # PRIORS
  for (j in 1:10){
    alfa[j] ~ dnorm(grandmu + beta.temp*tempc[j], tauplot)
  beta.temp \sim dnorm(0, .001) # slope for temperature effects
  grandmu ~ dnorm(0, .001)
  tauplot \leftarrow pow(sigmaplot, -2)
  sigmaplot \sim dunif(0, 20)
  beta \sim dnorm(0, .001)
  tau \leftarrow pow(sigma, -2)
  sigma \sim dunif(0, 50)
```

running JAGS...

```
data <- list(height=trees$height,</pre>
             dbhc=trees$dbh.c,
             plot=trees$plot,
             tempc=temp.c)
m4 <- jags(data,
           model.file=model4,
           parameters.to.save = c("alfa", "beta", "sigma", "grandmu", "sigmaplot", "beta.temp"),
           n.chains=3,
           inits=NULL,
           n.iter=10000,
           n.burnin=5000)
Compiling model graph
   Resolving undeclared variables
   Allocating nodes
   Graph Size: 4913
Initializing model
```

Average heights among plots related to temperature

Average height of a 25-cm DBH tree in the plot

Adding plot-level predictors (pooling) may improve parameter estimation

Average height of a 25-cm DBH tree in each plot

58/73

Adding plot-level predictors (pooling) may improve parameter estimation

From Gelman & Hill p. 253

59 of 73

14/04/2015 02:48

Slopes can also vary...

- · and coefficients be estimated with pooling
- but the correlation between slopes and intercepts must be modelled explicitly
- see e.g. Gelman & Hill 2007, ch. 13.

So what's a multilevel/hierarchical model?

Parameters/coefficients are given a probability model (with their own hyperparameters estimated from data).

Intercepts and/or slopes may vary, and can be modelled (sometimes including their own predictors).

62/73

Advantages of hierarchical Bayes

- Perfect for structured data (space-time)
- Predictors enter at the appropriate level
- Accommodate variation in treatment effects
- More efficient inference of regression parameters
- Using all the data to perform inferences for groups with small sample size
- Predictions fully accounting for uncertainty and variability
- Prior information

Datasets are stochastic realisations of a process

data1=rnorm(100, 2 + 1.6*x, 5)

data2=rnorm(100, 2 + 1.6*x, 5)

Histogram of data1

Histogram of data2

These two datasets are different, even though they arise from same process

63/73

Hierarchical Bayes: data, process, parameters


```
f(\text{data,process,parameters})

\propto f(\text{data|process, parameters})

\times f(\text{process|parameters})

\times f(\text{parameters}).
```

Clark et al. 2006, Clark 2007

Exercise

Does sex influence height?

Do it yourself

66/73

66 of 73 14/04/2015 02:48

Bayesian logistic regression

Relationship between tree size and mortality

Logistic regression model

```
model5 <- function(){

# LIKELIHOOD
for (i in 1:length(dead)){
   dead[i] ~ dbern(pdeath[i])
   logit(pdeath[i]) <- mu + beta*dbhc[i]
}

# PRIORS
mu ~ dnorm(0, .001)
beta ~ dnorm(0, .001)
}</pre>
```

Calling JAGS

```
data <- list(dead=trees$dead,</pre>
             dbhc=trees$dbh.c)
m5 <- jags(data,
           model.file=model5,
           parameters.to.save = c("mu", "beta"),
           n.chains=3,
           inits=NULL,
           n.iter=10000,
           n.burnin=5000)
Compiling model graph
   Resolving undeclared variables
   Allocating nodes
   Graph Size: 4668
Initializing model
```

Results

```
Inference for Bugs model at "C:/Users/FRS/AppData/Local/Temp/RtmpwpZdlg/model18fc588f6cea.txt", f
 3 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5
n.sims = 3000 iterations saved
        mu.vect sd.vect 2.5% 97.5% Rhat n.eff
                  0.014 0.029 0.084 1.002 1600
beta
          0.055
         -3.461 0.222 -3.916 -3.076 1.002 1300
mu
                  5.831 343.745 351.241 1.001 3000
deviance 345.865
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 17.0 and DIC = 362.9
DIC is an estimate of expected predictive error (lower deviance is better).
```

Compare with glm

END

