James Munkres - Topology Carter Hinsley's notes Last edited May 7, 2022

29 Local Compactness

Definition. A space X is *locally compact at* x if there is some compact subspace C of X that contains a nbhd of x. If X is locally compact at each of its points, X is said to be *locally compact*.

We ask: "Under what conditions is a space homeomorphic with a subspace of a compact Hausdorff space?"

Theorem 29.1. Let X be a space. X is locally compact Hausdorff iff there exists a space Y satisfying the following conditions:

- X is a subspace of Y.
- Y X comprises a single point.
- Y is a compact Hausdorff space.

Definition. If Y is a compact Hausdorff space and X is a proper subspace of Y dense in Y, then Y is said to be a *compactification* of X. If Y - X equals a single point, then Y is called the *one-point* compactification of X.

Theorem 29.2. Let X be a Hausdorff space. Then X is locally compact iff given $x \in X$ and a nbhd U of x, there is a nbhd V of x such that \overline{V} is compact and $\overline{V} \subset U$.

Corollary 29.3. Any open or closed subspace of a locally compact Hausdorff space is itself locally compact.

Corollary 29.4. A space X is homeomorphic to an open subspace of a compact Hausdorff space iff X is locally compact Hausdorff.

Exercises

1. Show that the rationals \mathbb{Q} are not locally compact.

Proof. It will be sufficient to show that \mathbb{Q} is not locally compact at 0; i.e., that there is no compact subspace of \mathbb{Q} containing a neighborhood of 0.

Suppose for the sake of contradiction that there existed a compact subspace C of $\mathbb Q$ and an open nbhd U of 0 in C. Then there would be some open nbhd $(-\varepsilon,\varepsilon)\cap\mathbb Q\subseteq U$ of 0. Note that the inclusion $\mathbb Q\stackrel{\iota}{\to}\mathbb R$ is continuous; this map preserves compactness. Hence $\iota(C)$ is compact in $\mathbb R$. As $\mathbb R$ is Hausdorff, $\iota(C)$ is closed in $\mathbb R$. Thus $[-\varepsilon,\varepsilon]=\overline{(-\varepsilon,\varepsilon)\cap\mathbb Q}\subseteq\iota(C)$. Since $[-\varepsilon,\varepsilon]$ is uncountable while $\iota(C)$ is countable, we obtain a contradiction. Hence $\mathbb Q$ is not locally compact. \square