Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

1 Input Parameters

	Modu	ıle				Fin Plate
	MainMo	odule				Shear Connection
	Connect	ivity				Beam-Beam
	Shear(k	:N)*				50.0
		,	Sı	ipporting Sec	ction	
		Supportin	ng Section			NPB 330x160x57
		Mate	erial *			E 250 (Fe 410 W)A
	т	Ultimate stren	ngth, fu (MPa)			410
		Yield Streng	th , fy (MPa)			250
	$(B-t)$ α	Mass	57.0	Iz(cm4)	139104000.0	
	ZZ D	Area(cm2) -	7259.99999999	9 999 (cm4)	9590400.0	
		D(mm)	334.0	rz(cm)	138.4	
	-R ₁	B(mm)	162.0	ry(cm)	36.3	
	R ₂	t(mm)	8.5	Zz(cm3)	832960.0	
	В	T(mm)	13.5	Zy(cm3)	118400.0	
	'	FlangeSlope	90	Zpz(cm3)	942790.0	
		R1(mm)	1.8	Zpy(cm3)	118400.0	
		R2(mm)	0.0			
			S	upported Sec	tion	
			d Section			MB 250
		Mate	rial *			E 250 (Fe 410 W)A
	тт	Ultimate stren	ngth, fu (MPa)			410
		Yield Streng	th , fy (MPa)			250
	$(B-t)$ α	Mass	37.2	Iz(cm4)	51190000.0	
	ZZ D	Area(cm2) - A	4740.0	Iy(cm4)	3210000.0	
		D(mm)	250.0	rz(cm)	104.0	
	R ₁	B(mm)	125.0	ry(cm)	26.0	
	R ₂	t(mm)	6.9	Zz(cm3)	409600.0	
	В	T(mm)	12.5	Zy(cm3)	51000.0	
j	ı			_ , ,		

464500.0

51000.0

Zpz(cm3)

Zpy(cm3)

Diameter (mm)*	[12.0, 16.0, 20.0, 24.0, 30.0, 36.0]
Grade *	[3.6, 4.6, 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 1
Type *	Bearing Bolt
Bolt hole type	Standard
Slip factor (µ_f)	0.3
Type of edges	a - Sheared or hand flame cut

FlangeSlope

R1(mm)

R2(mm)

98

13.0

6.5

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0
Are the members exposed to corrosive influences	False
	Plate Details
Thickness(mm)*	[3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 22.0, 24.0]
Material *	E 165 (Fe 290)
Ultimate strength, fu (MPa)	290
Yield Strength , fy (MPa)	165
	Weld Details
Weld Type	Fillet
Type of weld fabrication	Shop Weld
Material grade overwrite (MPa) Fu	410.0

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Diameter (mm)*		20.0	
Grade *		3.6	
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{300.0 * 1 * 245}{\sqrt{3} \ * 1.25}$ $= 33.95$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.51 * 20.0 * 8.0 * 290}{1.25}$ $= 47.33$	
Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (33.95, 47.33)$ = 33.95	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{50.0^{2} + 50.0^{2}}}{33.95}$ $= 3$	3	
No of Columns		1	
No of Rows		3	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 20.0 = 50.0$	0.0	N/A
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 6.9, \ 300 \ mm)$ $= 300$	0.0	N/A
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 20.0 = 50.0$	50	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 6.9, \ 300 \ mm)$ = 300	50	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 22.0 = 37.4	40	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *8.0 * \sqrt{\frac{250}{165}}$ $= 118.08$	40	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Min. Edge Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$	40	Pass
IIIII Zage Zistance (IIIII)	= 1.7 * 22.0 = 37.4		1 0000
Max. Edge Distance (mm)	$e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 * 8.0 * \sqrt{\frac{250}{165}}$ $= 118.08$	40	Pass
Capacity (kN)	44.88	47.33	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 250.0 = 150.0$	180	Pass
	$d_b - t_{bf} + r_{b1} - notch_h$		
Max. Plate Height (mm)	= 250.0 - 12.5 + 13.0 - 30	180	Pass
	= 200.0		
	$2 * e_{min} + (n \ c - 1) * p_{min}$		
Min. Plate Length (mm)	= 2 * 37.4 + (1 - 1) * 50.0	90.0	Pass
	= 84.8		
Min.Plate Thickness (mm)	$t_w = 6.9$	8.0	Pass
		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$	
		$\sqrt{3}*\gamma_{mo}$	
Shear yielding Capacity		$=\frac{180*8.0*165}{\sqrt{3}*1.1}$	
(V_dy) (kN)			
		= 124.71 $0.75 * A_{vv} * f_v$	
		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$	
Shear Rupture Capacity		= 1 * (180 - (3 * 22.0)) * 8.0 * 290)
(V_dn) (kN)		= 198.36	
Block Shear Capacity in		129.97	
Shear (V_db) (kN)			
		$V_d = Min(V_{dy}, V_{dn}, V_{db})$	
Shear Capacity (V_d)	50.0	= Min(124.71, 198.36, 129.97)	Pass
(kN)		= 124.71	
		$T_{dg} = \frac{l * t_p * f_y}{\gamma_{mo}}$	
Tension Yielding Capacity		Theo	
(kN)		$=\frac{180*8.0*165}{1.1}$	
		= 216.0	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
		γ_{m1}	
Tension Rupture Capacity		$= \frac{0.9 * (180 - 3 * 22.0) * 8.0 * 290}{1.25}$	0
(kN)			
Block Shear Capacity in		= 263.92 166.17	
Tension (T db) (kN)		100.17	
(— " / (/	$T_d = Min(T_{dq}, T_{dn}, T_{db})$		
Tension Capacity (kN)	50.0	=Min(216.0, 263.92, 166.17)	Pass
_ , ,		= 166.17	
Moment Capacity (kN-m)	2.5	9.72	Pass
Interaction Ratio	≤1	$\frac{2.5}{2.70} + \frac{50.0}{100.10} = 0.56$	Pass
THOUGHTON TONIO	+	$\frac{1}{9.72} + \frac{1}{166.17} = 0.30$	1 0000

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)		3	Pass
Max Weld Size (mm)	Thickness of Thinner part $= Min(8.5, 8.0) = 8.0$ $t_{w_{max}} = 8.0$	3	Pass
Weld Strength (kN/mm)	$R_w = \sqrt{(T_{wh} + A_{wh})^2 + (T_{wv} + V_{wv})^2}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{2500000.0 * 87.0}{878004.0}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{2500000.0 * 0.0}{878004.0}$ $V_{wv} = \frac{V}{l_w} = \frac{50000.0}{348}$ $A_{wh} = \frac{A}{l_w} = \frac{50000.0}{348}$ $R_w = \sqrt{(247.72 + 143.68)^2 + (0.0 + 143.68)^2}$ $= 416.94$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{3 * 290}{\sqrt{3} * 1.25}$ $= 568.11$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View