PSC4375: Linear Regression Model Fit

Week 6: Lectures 12 & 13

Prof. Weldzius

Villanova University

Slides Updated: 2025-02-24

Presidential Popularity and the Midterms

Presidential Popularity and the Midterms

 Does popularity of the president or recent changes in the economy better predict midterm election outcomes?

Name	Description
year president	midterm election year name of president
president	Democrat or Republican
approval	Gallup approval rating at midterms
rdi.change	change in real disposable income over the year before midterms
${\tt seat.change}{}{}$ change in the number of House seats for the president's party	

Loading the data:

```
library(tidyverse)
midterms <- read.csv("../data/midterms.csv")
head(midterms)
```

```
##
          president party approval seat.change rdi.change
    1946
               Truman
                           D
                                    33
                                                -55
                                                             NΑ
                                                            8.2
   2 1950
               Truman
                           D
                                    39
                                                -29
    1954 Eisenhower
                                    61
                                                            1.0
                           R.
                                                 -4
     1958 Eisenhower
                                    57
                                                -47
                                                            1.1
                           R.
   5 1962
              Kennedy
                           D
                                    61
                                                -4
                                                            5.0
              Johnson
                                                -47
                                                            5.3
   6 1966
                           D
                                    44
```

Fitting the Approval Model

```
fit.app <- lm(seat.change ~ approval, data = midterms)</pre>
fit.app
##
## Call:
## lm(formula = seat.change ~ approval, data = midterms)
##
## Coefficients:
## (Intercept) approval
## -96.845
                     1.424
```

Fitting the Income Model

```
fit.rdi <- lm(seat.change ~ rdi.change, data = midterms)
fit.rdi
##
## Call:
## lm(formula = seat.change ~ rdi.change, data = midterms)
##
## Coefficients:
## (Intercept) rdi.change
## -27.354
                     1.004
```

Comparing Models

Comparing Models

How well do the models "fit the data"?

Comparing Models

- How well do the models "fit the data"?
 - How well does the model predict the outcome variable in the data?

• One number summary of model fit: R^2 or coefficient of determination.

- One number summary of model fit: R^2 or coefficient of determination.
 - Measure of the **proportional reduction in error** by the model.

- One number summary of model fit: R^2 or coefficient of determination.
 - Measure of the **proportional reduction in error** by the model.
- Prediction error compared to what?

- One number summary of model fit: R² or coefficient of determination.
 - Measure of the proportional reduction in error by the model.
- Prediction error compared to what?
 - Baseline prediction error: Total sum of squares
 - TSS = $\sum_{i=1}^{n} (Y_i \bar{Y})^2$

- One number summary of model fit: R^2 or **coefficient of** determination.
 - Measure of the proportional reduction in error by the model.
- Prediction error compared to what?
 - Baseline prediction error: Total sum of squares

• TSS =
$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

- Model prediction error: Sum of squared residuals
 - SSR = $\sum_{i=1}^{n} \epsilon_i^2$

- One number summary of model fit: R^2 or **coefficient of** determination.
 - Measure of the proportional reduction in error by the model.
- Prediction error compared to what?
 - Baseline prediction error: Total sum of squares

• TSS =
$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

- Model prediction error: Sum of squared residuals
 - SSR = $\sum_{i=1}^{n} \epsilon_i^2$
- TSS SSR: reduction in prediction error by the model.

- One number summary of model fit: R^2 or **coefficient of** determination.
 - Measure of the proportional reduction in error by the model.
- Prediction error compared to what?
 - Baseline prediction error: Total sum of squares

• TSS =
$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

Model prediction error: Sum of squared residuals

• SSR =
$$\sum_{i=1}^{n} \epsilon_i^2$$

- TSS SSR: reduction in prediction error by the model.
- R² is this reduction in error divided by the baseline error:

$$R^2 = \frac{\mathsf{TSS} - \mathsf{SSR}}{\mathsf{TSS}}$$

- One number summary of model fit: R^2 or **coefficient of determination**.
 - Measure of the proportional reduction in error by the model.
- Prediction error compared to what?
 - Baseline prediction error: Total sum of squares

• TSS =
$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

Model prediction error: Sum of squared residuals

• SSR =
$$\sum_{i=1}^{n} \epsilon_i^2$$

- TSS SSR: reduction in prediction error by the model.
- \bullet R^2 is this reduction in error divided by the baseline error:

$$R^2 = \frac{\mathsf{TSS} - \mathsf{SSR}}{\mathsf{TSS}}$$

• Roughly: proportion of the variation in Y_i "explained by" X_i

Total sum of squares vs. Sum of squared residuals

Total sum of squares vs. Sum of squared residuals

10 / 29

Model Fit in R

• To access R^2 from the lm() output, use the summary() function:

```
fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared</pre>
```

```
## [1] 0.4307133
```

Model Fit in R

• To access R^2 from the lm() output, use the summary() function:

```
fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared</pre>
```

```
## [1] 0.4307133
```

• Compare to fit using change in income:

```
fit.rdi.sum <- summary(fit.rdi)
fit.rdi.sum$r.squared</pre>
```

```
## [1] 0.008529029
```

Model Fit in R

• To access R^2 from the lm() output, use the summary() function:

```
fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared</pre>
```

```
## [1] 0.4307133
```

• Compare to fit using change in income:

```
fit.rdi.sum <- summary(fit.rdi)
fit.rdi.sum$r.squared</pre>
```

```
## [1] 0.008529029
```

• Which does a better job predicting midterm election outcomes?

• Little hard to see what's happening in that example.

- Little hard to see what's happening in that example.
- Let's look at fake variables x and y:

- Little hard to see what's happening in that example.
- Let's look at fake variables x and y:

$$fit.x \leftarrow lm(y \sim x)$$

• Very good model fit: $R^2 \approx 0.95$

Is R-squared useful?

 \bullet Can be very misleading. Each of these samples have the same R^2 even though they are vastly different:

• In-sample fit: how well your model predicts the data used to estimate it.

- In-sample fit: how well your model predicts the data used to estimate it.
 - R² is a measure of in-sample fit.

- In-sample fit: how well your model predicts the data used to estimate it.
 - R^2 is a measure of in-sample fit.
- Out-of-sample fit: how well your model predicts new data.

- In-sample fit: how well your model predicts the data used to estimate it.
 - R^2 is a measure of in-sample fit.
- Out-of-sample fit: how well your model predicts new data.
- Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.

- In-sample fit: how well your model predicts the data used to estimate it.
 - R^2 is a measure of in-sample fit.
- Out-of-sample fit: how well your model predicts new data.
- Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.

- In-sample fit: how well your model predicts the data used to estimate it.
 - R^2 is a measure of in-sample fit.
- Out-of-sample fit: how well your model predicts new data.
- Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.
 - Until 2016, gender was a perfect predictor of who wins the primary.

- In-sample fit: how well your model predicts the data used to estimate it.
 - R^2 is a measure of in-sample fit.
- Out-of-sample fit: how well your model predicts new data.
- Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.
 - Until 2016, gender was a **perfect** predictor of who wins the primary.
 - Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.

- In-sample fit: how well your model predicts the data used to estimate it.
 - R^2 is a measure of in-sample fit.
- Out-of-sample fit: how well your model predicts new data.
- Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.
 - Until 2016, gender was a **perfect** predictor of who wins the primary.
 - Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.
 - Bad out-of-sample prediction due to overfitting!

• What if we want to predict Y as a function of many variables?

• What if we want to predict Y as a function of many variables?

$$\mathtt{seat.change}_i = \alpha + \beta_1 \mathtt{approval}_i + \beta_2 \mathtt{rdi.change}_i + \epsilon_i$$

• What if we want to predict Y as a function of many variables?

$$\texttt{seat.change}_i = \alpha + \beta_1 \texttt{approval}_i + \beta_2 \texttt{rdi.change}_i + \epsilon_i$$

Better predictions (at least in-sample).

• What if we want to predict Y as a function of many variables?

$$\mathtt{seat.change}_i = \alpha + \beta_1 \mathtt{approval}_i + \beta_2 \mathtt{rdi.change}_i + \epsilon_i$$

- Better predictions (at least in-sample).
 - Better interpretation as ceteris paribus relationships:

• What if we want to predict Y as a function of many variables?

$$\mathtt{seat.change}_i = \alpha + \beta_1 \mathtt{approval}_i + \beta_2 \mathtt{rdi.change}_i + \epsilon_i$$

- Better predictions (at least in-sample).
 - Better interpretation as ceteris paribus relationships:
 - β_1 is the relationship between approval and seat.change holding rdi.change constant.

```
mult.fit <- lm(seat.change ~ approval + rdi.change, data = midterms)</pre>
mult.fit
##
## Call:
## lm(formula = seat.change ~ approval + rdi.change, data = midterms)
##
## Coefficients:
## (Intercept) approval rdi.change
```

3.334

1.572

-120.436

##

```
mult.fit <- lm(seat.change ~ approval + rdi.change, data = midterms)</pre>
mult.fit
##
## Call:
## lm(formula = seat.change ~ approval + rdi.change, data = midterms)
##
## Coefficients:
## (Intercept) approval rdi.change
```

• $\hat{\alpha} = -120.4$: average seat change president has 0% approval and no change in income levels.

3.334

1.572

-120.436

##

```
mult.fit <- lm(seat.change ~ approval + rdi.change, data = midterms)</pre>
mult.fit
##
## Call:
  lm(formula = seat.change ~ approval + rdi.change, data = midterms)
##
## Coefficients:
## (Intercept) approval rdi.change
##
     -120.436 1.572
                                 3.334
```

- $\hat{\alpha} = -120.4$: average seat change president has 0% approval and no change in income levels.
- ullet $\hat{eta}_1=1.57$: average increase in seat change for additional percentage point of approval, holding RDI change fixed

-120.436 1.572

```
mult.fit <- lm(seat.change ~ approval + rdi.change, data = midterms)</pre>
mult.fit
##
## Call:
## lm(formula = seat.change ~ approval + rdi.change, data = midterms)
##
## Coefficients:
## (Intercept) approval rdi.change
```

• $\hat{\alpha} = -120.4$: average seat change president has 0% approval and no change in income levels.

3.334

- ullet $\hat{eta}_1=1.57$: average increase in seat change for additional percentage point of approval, holding RDI change fixed
- $\hat{\beta}_1 = 3.334$: average increase in seat change for each additional percentage point increase of RDI, holding approval fixed

• How do we estimate the coefficients?

- How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!

- How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!
- Residuals (aka prediction error) with multiple predictors:

- How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!
- Residuals (aka prediction error) with multiple predictors:

$$\hat{\epsilon_i} = \mathtt{seat.change}_i - \hat{lpha} - \hat{eta}_1 \mathtt{approval}_i - \hat{eta}_2 \mathtt{rdi.change}_i$$

- How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!
- Residuals (aka prediction error) with multiple predictors:

$$\hat{\epsilon_i} = \mathtt{seat.change}_i - \hat{\alpha} - \hat{\beta_1} \mathtt{approval}_i - \hat{\beta_2} \mathtt{rdi.change}_i$$

 Find the coefficients that minimizes the sum of the squared residuals:

- How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!
- Residuals (aka prediction error) with multiple predictors:

$$\hat{\epsilon_i} = \mathtt{seat.change}_i - \hat{\alpha} - \hat{\beta_1} \mathtt{approval}_i - \hat{\beta_2} \mathtt{rdi.change}_i$$

Find the coefficients that minimizes the **sum of the squared** residuals:

$$SSR = \sum_{i=1}^{n} \hat{\epsilon_{i}^{2}} = (Y_{i} - \hat{\alpha} - \hat{\beta}_{1}X_{i1} - \hat{\beta}_{2}X_{i2})^{2}$$

 \bullet R^2 mechanically increases when you add a variables to the regression.

- \bullet R^2 mechanically increases when you add a variables to the regression.
 - But this could be overfitting!!

- \bullet R^2 mechanically increases when you add a variables to the regression.
 - But this could be overfitting!!
- Solution: penalize regression models with more variables.

- \bullet R^2 mechanically increases when you add a variables to the regression.
 - But this could be overfitting!!
- Solution: penalize regression models with more variables.
 - Occam's razor: simpler models are preferred

- \bullet R^2 mechanically increases when you add a variables to the regression.
 - But this could be overfitting!!
- Solution: penalize regression models with more variables.
 - Occam's razor: simpler models are preferred
- Adjusted R^2 : lowers regular R^2 for each additional covariate.

- \bullet R^2 mechanically increases when you add a variables to the regression.
 - But this could be overfitting!!
- Solution: penalize regression models with more variables.
 - Occam's razor: simpler models are preferred
- Adjusted R^2 : lowers regular R^2 for each additional covariate.
 - If the added covariates don't help predict, adjusted R² goes down!

Comparing Model Fits

```
summary(fit.app)$r.squared

## [1] 0.4307133

summary(mult.fit)$r.squared
```

```
## [1] 0.4448387
```

```
summary(mult.fit)$adj.r.squared
```

```
## [1] 0.3655299
```

22 / 29

• Political effects of government programs

- Political effects of government programs
 - Progesa: Mexican conditional cash transfer program (CCT) from c. 2000

- Political effects of government programs
 - Progesa: Mexican conditional cash transfer program (CCT) from c. 2000
 - Welfare \$ given if kids enrolled in schools, get regular check-ups, etc.

- Political effects of government programs
 - Progesa: Mexican conditional cash transfer program (CCT) from c. 2000
 - Welfare \$ given if kids enrolled in schools, get regular check-ups, etc.
 - Do these programs have political effects?

- Political effects of government programs
 - Progesa: Mexican conditional cash transfer program (CCT) from c. 2000
 - Welfare \$ given if kids enrolled in schools, get regular check-ups, etc.
 - Do these programs have political effects?
 - Program had support from most parties.

Binary and Categorical Predictors

- Political effects of government programs
 - Progesa: Mexican conditional cash transfer program (CCT) from c. 2000
 - Welfare \$ given if kids enrolled in schools, get regular check-ups, etc.
 - Do these programs have political effects?
 - Program had support from most parties.
 - Was implemented in a nonpartisan fashion.

Binary and Categorical Predictors

- Political effects of government programs
 - Progesa: Mexican conditional cash transfer program (CCT) from c. 2000
 - Welfare \$ given if kids enrolled in schools, get regular check-ups, etc.
 - Do these programs have political effects?
 - Program had support from most parties.
 - Was implemented in a nonpartisan fashion.
 - Would the incumbent presidential party be rewarded?

The Data

- Randomized roll-out of the CCT program:
 - treatment: receive CCT 21 months before 2000 election
 - control: receive CCT 6 months before 2000 election
 - Does having CCT longer mobilize voters for incumbent PRI party?

Name	Description
treatment pri2000s t2000	early Progresa (1) or late Progresa (0) PRI votes in the 2000 election as a share of adults in precinct turnout in the 2000 election as share of adults in precinct

```
cct <- read.csv("../data/progresa.csv")</pre>
```

Difference in Means Estimates

Does CCT affect turnout?

```
cct.turn.ate <- cct %>% group_by(treatment) %>%
  summarize(t2000_mean = mean(t2000)) %>%
 pivot_wider(names_from = treatment, values_from = t2000_mean) %>%
 mutate(turnout ate = `1` - `0`)
cct.turn.ate$turnout_ate
```

```
## [1] 4.269676
```

Does CCT affect PRI (incumbent) votes?

```
cct.pri.ate <- cct %>% group_by(treatment) %>%
  summarize(pri2000s mean = mean(pri2000s)) %>%
 pivot_wider(names_from = treatment, values_from = pri2000s_mean) %>%
 mutate(pri ate = `1` - `0`)
cct.pri.ate$pri_ate
```

```
## [1] 3.622496
```

$$Y_i = \alpha + \beta X_i + \epsilon_i$$

$$Y_i = \alpha + \beta X_i + \epsilon_i$$

• When independent variable X_i is binary:

$$Y_i = \alpha + \beta X_i + \epsilon_i$$

- When independent variable X_i is binary:
- Intercept α is the average outcome in the X=0 group.

$$Y_i = \alpha + \beta X_i + \epsilon_i$$

- When independent variable X_i is binary:
- Intercept α is the average outcome in the X=0 group.
- Slope β is the difference-in-means of Y between X=1 group and X=0 group.

$$Y_i = \alpha + \beta X_i + \epsilon_i$$

- When independent variable X_i is binary:
- Intercept α is the average outcome in the X=0 group.
- Slope β is the difference-in-means of Y between X=1 group and X=0 group.

$$\hat{\beta} = \bar{Y}_{treated} - \bar{Y}_{control}$$

26/29

$$Y_i = \alpha + \beta X_i + \epsilon_i$$

- When independent variable X_i is binary:
- Intercept α is the average outcome in the X=0 group.
- Slope β is the difference-in-means of Y between X=1 group and X = 0 group.

$$\hat{\beta} = \bar{Y}_{treated} - \bar{Y}_{control}$$

 If there are other independent variables, this becomes the difference-in-means controlling for those covariates.

• Under randomization, we can estimate the ATE with regression:

Under randomization, we can estimate the ATE with regression:

```
cct.turn.ate <- cct %>%
  group_by(treatment) %>%
  summarize(t2000_mean = mean(t2000)) %>%
  pivot_wider(names_from = treatment, values_from = t2000_mean) %>%
  mutate(turnout_ate = `1` - `0`)
cct.turn.ate$turnout_ate
```

```
## [1] 4.269676
```

• Under randomization, we can estimate the ATE with regression:

```
cct.turn.ate <- cct %>%
  group_by(treatment) %>%
  summarize(t2000_mean = mean(t2000)) \%\%
 pivot_wider(names_from = treatment, values_from = t2000_mean) %>%
 mutate(turnout_ate = `1` - `0`)
cct.turn.ate$turnout_ate
## [1] 4.269676
lm(pri2000s ~ treatment, data = cct)
##
## Call:
## lm(formula = pri2000s ~ treatment, data = cct)
##
## Coefficients:
   (Intercept) treatment
        34 489
                      3.622
```

• We often have categorical variables:

28 / 29

- We often have categorical variables:
 - Race/ethnicity: white, Black, Latino, Asian.

- We often have **categorical variables**:
 - Race/ethnicity: white, Black, Latino, Asian.
 - Partisanship: Democrat, Republican, Independent

- We often have categorical variables:
 - Race/ethnicity: white, Black, Latino, Asian.
 - Partisanship: Democrat, Republican, Independent
 - Strategy for including in a regression: create a series of binary variables

- We often have **categorical variables**:
 - Race/ethnicity: white, Black, Latino, Asian.
 - Partisanship: Democrat, Republican, Independent
 - Strategy for including in a regression: create a series of binary variables

Unit	Party	Democrat	Republican	Independent
1	Democrat	1	0	0
2	Democrat	1	0	0
3	Independent	0	0	1
4	Republican	0	1	0
:	<u>:</u>	:	:	÷

- We often have categorical variables:
 - Race/ethnicity: white, Black, Latino, Asian.
 - Partisanship: Democrat, Republican, Independent
 - Strategy for including in a regression: create a series of binary variables

Unit	Party	Democrat	Republican	Independent
1	Democrat	1	0	0
2	Democrat	1	0	0
3	Independent	0	0	1
4	Republican	0	1	0
:	:	:	:	÷

• Then include all but one of these binary variables:

 $turnout_i = \alpha + \beta_1 \text{Republican}_i + \beta_2 \text{Independent}_i + \epsilon_i$

$$turnout_i = \alpha + \beta_1 \text{Republican}_i + \beta_2 \text{Independent}_i + \epsilon_i$$

$$turnout_i = \alpha + \beta_1 \mathsf{Republican}_i + \beta_2 \mathsf{Independent}_i + \epsilon_i$$

• $\hat{\alpha}$: average outcome in the **omitted group/baseline** (Democrats).

$$turnout_i = \alpha + \beta_1 \text{Republican}_i + \beta_2 \text{Independent}_i + \epsilon_i$$

- $\hat{\alpha}$: average outcome in the **omitted group/baseline** (Democrats).
- $\hat{\beta}$ coefficients: average difference between each group and the baseline.

$$turnout_i = \alpha + \beta_1 \text{Republican}_i + \beta_2 \text{Independent}_i + \epsilon_i$$

- $\hat{\alpha}$: average outcome in the **omitted group/baseline** (Democrats).
- $\hat{\beta}$ coefficients: average difference between each group and the baseline.
 - ullet \hat{eta}_1 : average difference in turnout between Republicans and Democrats

$$turnout_i = \alpha + \beta_1 \mathsf{Republican}_i + \beta_2 \mathsf{Independent}_i + \epsilon_i$$

- $\hat{\alpha}$: average outcome in the **omitted group/baseline** (Democrats).
- $\hat{\beta}$ coefficients: average difference between each group and the haseline
 - $\hat{\beta}_1$: average difference in turnout between Republicans and Democrats
 - $\hat{\beta}_2$: average difference in turnout between Independents and Democrats