COMP3251 Lecture 5: Fast Multiplication (Chapter 2.1 and 2.5)

Recall Divide and Conquer (Ch. 2)

The divide-and-conquer algorithm design paradigm solves a problem as follows:

- 1) **Divide:** Breaking the problem into subproblems that are themselves smaller instances of the same type of problem;
- 2) Recurse: Recursively solving these subproblems;
- 3) **Combine:** Appropriately combining their answers to get an answer of the original problem.

Note: If the size of a subproblem is small enough, we will stop using the divide-and-conquer strategy; instead, we may solve the subproblem by brute-force.

Input: Two *n*-bit binary integers x, y, e.g., $(1011)_2$ and $(0110)_2$.

Output: A (2n-1)-bit integer that equals the product of x and y.

Warm-up: The straightforward algorithm runs in $O(n^2)$ time.

roughly *n* steps for calculating each bit in the final result, and there are 2*n*-1 bits in total

Input: Two *n*-bit binary integers x, y, e.g., $(1011)_2$ and $(0110)_2$.

Output: A (2n-1)-bit integer that equals the product of x and y.

Method: Use divide and conquer to design an algorithm for integer multiplication with running time faster than $O(n^2)$.

Input: Two *n*-bit binary integers x, y, e.g., $(1011)_2$ and $(0110)_2$.

Output: A (2n-1)-bit integer that equals the product of x and y.

Method: Use divide and conquer to design an algorithm for integer multiplication with running time faster than $O(n^2)$.

Fact: Any n-bit binary integer $x = (x_n x_{n-1} \dots x_1)_2$ can be decomposed into two n/2-bit binary integers $x_L = (x_n \dots x_{n/2+1})_2$ and $x_R = (x_{n/2} \dots x_1)_2$ such that $x = x_L \times 2^{n/2} + x_R$.

Input: Two *n*-bit binary integers x, y, e.g., $(1011)_2$ and $(0110)_2$.

Output: A (2n-1)-bit integer that equals the product of x and y.

Method: Use divide and conquer to design an algorithm for integer multiplication with running time faster than $O(n^2)$.

Fact: Any n-bit binary integer $x = (x_n x_{n-1} \dots x_1)_2$ can be decomposed into two n/2-bit binary integers $x_L = (x_n \dots x_{n/2+1})_2$ and $x_R = (x_{n/2} \dots x_1)_2$ such that $x = x_L \times 2^{n/2} + x_R$.

Note: We don't need to do any multiplication here; we may simply shift x_L n/2 positions left, or pad it with n/2 zeros.

Input: Two *n*-bit binary integers x, y, e.g., $(1011)_2$ and $(0110)_2$.

Output: A (2n-1)-bit integer that equals the product of x and y.

Method: Use divide and conquer to design an algorithm for integer multiplication with running time faster than $O(n^2)$.

Fact: Any n-bit binary integer $x = (x_n x_{n-1} \dots x_1)_2$ can be decomposed into two n/2-bit binary integers $x_L = (x_n \dots x_{n/2+1})_2$ and $x_R = (x_{n/2} \dots x_1)_2$ such that $x = x_L \times 2^{n/2} + x_R$.

Note: We don't need to do any multiplication here; we may simply shift x_L n/2 positions left, or pad it with n/2 zeros.

For example,
$$(1011)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

= $(1 \times 2^1 + 0 \times 2^0) \times 2^2 + 1 \times 2^1 + 1 \times 2^0$
= $(10)_2 \times 2^2 + (11)_2$

A Simple Divide and Conquer Algorithm for Integer Multiplication

Input: Two *n*-bit binary integers x, y, e.g., $(1011)_2$ and $(0110)_2$.

Output: A (2n-1)-bit integer that equals the product of x and y.

Divide: Let $x = x_L \times 2^{n/2} + x_R$ and $y = y_L \times 2^{n/2} + y_R$,

where x_L , x_R , y_L , y_R are n/2-bit binary integers.

Recurse: Compute 4 multiplications of n/2-bit integers,

XL yL, XL yR, XR yL, and XR yR.

Combine: $x y = (x_L \times 2^{n/2} + x_R) (y_L \times 2^{n/2} + y_R)$

 $= x_L y_L \times 2^n + (x_L y_R + x_R y_L) \times 2^{n/2} + x_R y_R$

Running time: T(n), total time for multiplying two n-bit integers.

- Computing 4 multiplications of n/2-bit integers: 4 T(n/2);
- Padding the results with zeros and adding them together: O(n).

Hence, T(n) = 4 T(n/2) + O(n).

What is T(n) = 4 T(n/2) + O(n)?

Recall that $O(n) \le cn$ for some constant c. Hence,

$$T(n) \le 4 T(n/2) + cn$$

 $\le 4 (4 T(n/2^2) + c(n/2)) + cn$
 $= 4^2 T(n/2^2) + cn (2 + 1)$
 $\le 4^2 (4 T(n/2^3) + c(n/2^2)) + cn (2+1)$
 $= 4^3 T(n/2^3) + cn (2^2 + 2 + 1)$
 $\le ...$
 $\le 4^k T(n/2^k) + cn (2^{k-1} + ... + 2^2 + 2 + 1)$

Note that when $k = log_2 n$, we have $2^k = n$. Thus,

$$T(n) \le 4^k T(n/2^k) + cn (2^{k-1} + ... + 2^2 + 2 + 1)$$

= $n^2 T(1) + cn (2^k - 1)/(2 - 1)$
= $n^2 T(1) + cn (n-1)$
= $O(n^2)$

We can also use Master Theorem to get the same result.

Input: Two *n*-bit binary integers x, y, e.g., $(1011)_2$ and $(0110)_2$.

Output: A (2n-1)-bit integer that equals the product of x and y.

Divide: Let $x = x_L \times 2^{n/2} + x_R$ and $y = y_L \times 2^{n/2} + y_R$,

where x_L , x_R , y_L , y_R are n/2-bit binary integers.

Recurse: Compute 4 multiplications of n/2-bit integers,

XL yL, XL yR, XR yL, and XR yR.

Combine: $x y = (x_L \times 2^{n/2} + x_R) (y_L \times 2^{n/2} + y_R)$

 $= x_L y_L \times 2^n + (x_L y_R + x_R y_L) \times 2^{n/2} + x_R y_R$

Input: Two *n*-bit binary integers x, y, e.g., $(1011)_2$ and $(0110)_2$.

Output: A (2n-1)-bit integer that equals the product of x and y.

Divide: Let $x = x_L \times 2^{n/2} + x_R$ and $y = y_L \times 2^{n/2} + y_R$,

where x_L , x_R , y_L , y_R are n/2-bit binary integers.

Recurse: Compute 4 multiplications of n/2-bit integers,

XL yL, XL yR, XR yL, and XR yR.

Combine: $x y = (x_L \times 2^{n/2} + x_R) (y_L \times 2^{n/2} + y_R)$

 $= x_L y_L \times 2^n + (x_L y_R + x_R y_L) \times 2^{n/2} + x_R y_R$

• The combine step needs 3 terms: $x_L y_L$, $x_L y_R + x_R y_L$, and $x_R y_R$.

Input: Two *n*-bit binary integers x, y, e.g., $(1011)_2$ and $(0110)_2$.

Output: A (2n-1)-bit integer that equals the product of x and y.

Divide: Let $x = x_L \times 2^{n/2} + x_R$ and $y = y_L \times 2^{n/2} + y_R$,

where x_L , x_R , y_L , y_R are n/2-bit binary integers.

Recurse: Compute 4 multiplications of n/2-bit integers,

XL yL, XL yR, XR yL, and XR yR.

Combine: $x y = (x_L \times 2^{n/2} + x_R) (y_L \times 2^{n/2} + y_R)$

 $= x_L y_L \times 2^n + (x_L y_R + x_R y_L) \times 2^{n/2} + x_R y_R$

- The combine step needs 3 terms: $x_L y_L$, $x_L y_R + x_R y_L$, and $x_R y_R$.
- The recurse step uses 4 multiplications to get the 3 terms.

Input: Two *n*-bit binary integers x, y, e.g., $(1011)_2$ and $(0110)_2$.

Output: A (2n-1)-bit integer that equals the product of x and y.

Divide: Let $x = x_L \times 2^{n/2} + x_R$ and $y = y_L \times 2^{n/2} + y_R$,

where x_L , x_R , y_L , y_R are n/2-bit binary integers.

Recurse: Compute 4 multiplications of n/2-bit integers,

XL yL, XL yR, XR yL, and XR yR.

Combine: $x y = (x_L \times 2^{n/2} + x_R) (y_L \times 2^{n/2} + y_R)$

 $= x_L y_L \times 2^n + (x_L y_R + x_R y_L) \times 2^{n/2} + x_R y_R$

• The combine step needs 3 terms: $x_L y_L$, $x_L y_R + x_R y_L$, and $x_R y_R$.

The recurse step uses 4 multiplications to get the 3 terms.

Question: Can we use 3 multiplications to find the 3 terms?

A Faster Divide and Conquer Algorithm for Integer Multiplication

Input: Two *n*-bit binary integers x, y, e.g., $(1011)_2$ and $(0110)_2$.

Output: A (2n-1)-bit integer that equals the product of x and y.

Divide: Let $x = x_L \times 2^{n/2} + x_R$ and $y = y_L \times 2^{n/2} + y_R$,

where x_L , x_R , y_L , y_R are n/2-bit binary integers.

Recurse: Compute 3 multiplications of n/2-bit integers,

 $x_L y_L$, $(x_L + x_R) (y_L + y_R)$, and $x_R y_R$.

Combine: Compute $x_L y_R + x_R y_L = (x_L + x_R) (y_L + y_R) - x_L y_L - x_R y_R$.

Then, $x y = x_L y_L \times 2^n + (x_L y_R + x_R y_L) \times 2^{n/2} + x_R y_R$.

Running time: $T(n) = 3T(n/2) + O(n) = O(n^{\log_2 3}) = O(n^{1.59})$

Note: Actually, it should be T(n) = 2T(n/2) + T(n/2+1) + O(n) because $x_L + x_R$ and $y_L + y_R$ could be (n/2+1)-bit integers, which also leads to $T(n) = O(n^{1.59})$.

Optional: Matrix multiplication

Matrix Multiplication

A 2×2 matrix

$$\begin{bmatrix} 2 & 9 \\ 7 & 5 \end{bmatrix}$$

The product of two 2×2 matrices:

$$\begin{bmatrix} 2 & 9 \\ 7 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 \times 1 + 9 \times 3 & 2 \times 2 + 9 \times 4 \\ 7 \times 1 + 5 \times 3 & 7 \times 2 + 5 \times 4 \end{bmatrix} = \begin{bmatrix} 29 & 40 \\ 22 & 34 \end{bmatrix}$$

The product $Z = (z_{ij})$ of two $n \times n$ matrices $X = (x_{ij})$ and $Y = (y_{jk})$ is:

$$z_{ik} = \sum_{1 \le j \le n} x_{ij} y_{jk}$$

Running time: Since Z has n^2 entries, and computing each entry z_{ij} takes O(n) time. So O(n^3) time in total to find Z = XY.

Note: Here, we assume that algorithm can add or multiply two numbers in constant time and count the number of additions/multiplications.

A Simple Divide and Conquer Matrix Multiplication Algorithm

Key fact: If
$$X = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 and $Y = \begin{bmatrix} E & F \\ G & H \end{bmatrix}$, then

$$XY = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$$

X, Y are $n \times n$ matrices,

A, B, C, D, E, F, G, H are $n/2 \times n/2$ matrices.

Divide: Decompose X and Y each into four $n/2 \times n/2$

matrices as above, namely, A, B, C, D, E, F, G, H.

Recurse: Compute 8 multiplications of $n/2 \times n/2$ matrices,

AE, BG, AF, BH, CE, DG, CF, DH.

Combine: Add them as above to get XY.

Running time: $T(n) = 8 T(n/2) + O(n^2) = O(n^3)$.

Strassen's Magical Idea

Divide: Decompose X and Y into two $n/2 \times n/2$ matrices

as above, namely, A, B, C, D, E, F, G, H.

Recurse: Compute 7 multiplications of $n/2 \times n/2$ matrices,

 $P_1 = A(F-H), P_2 = (A+B)H, P_3 = (C+D)E, P_4 = D(G-E),$

 $P_5 = (A+D)(E+H), P_6 = (B-D)(G+H), P_7 = (A-C)(E+F).$

Combine: Add them as above to get XY as follows:

$$XY = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$$
$$= \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 - P_3 - P_7 \end{bmatrix}$$

So, the running time becomes

$$T(n) = 7T(n/2) + O(n^2) = O(n^{\log_2 7}) = O(n^{2.81})$$