"Introduction to Models of Computation" Solutions

Yanyan Jiang

Spring, 2012

1 Recursive Functions

1.1 Prove: for any fixed k, unary number theoretic function $x + k \in \mathcal{BF}$.

Proof. We have
$$+_0 = P_1^1$$
 and $+_k = \underbrace{S \circ S \circ \ldots \circ S}_{k-1 \text{ times}} \in \mathcal{BF}$ for all $k \geq 1$. \square

1.2 Prove: for any $k \in \mathbb{N}^+$, $f : \mathbb{N}^k \to \mathbb{N}$, there always exists h satisfying $f(\mathbf{x}) < ||\mathbf{x}|| + h$ if $f \in \mathcal{BF}$.

Proof. We perform a structural induction on the constructive length ℓ of basic function f.

When $\ell = 0$, $f \in \mathcal{IF}$. Thus $f(x) \leq S(x) < x + 2$ for all x. Let $h_0 = 2$. We assume when $0 \leq \ell \leq n$, all functions f with constructive length no longer than ℓ satisfy $f(\mathbf{x}) < ||\mathbf{x}|| + h_n$.

In the case of $\ell = n+1$, assume that f is constructed by sequence f_0, f_1, \ldots, f_n, f . If $f \in \mathcal{IF}$, it is trivial that $f(x) \leq S(x) < \|\mathbf{x}\| + 2h_n$. Elsewise, $f = \text{Comp}_k^m[f_{i_0}, f_{i_1}, \ldots, f_{i_k}]$. By inductive hypothesis we have $f_{i_j} < h_n$ for all j, thus $f(\mathbf{x}) < \max\{f_{i_j}(\mathbf{x})\} + h_n < \|\mathbf{x}\| + 2h_n$. Therefore, by letting $h = 2^{\ell+1}$, $f(\mathbf{x}) < \|\mathbf{x}\| + h$ always holds.

1.3 Prove: binary number theoretic function $x + y \notin \mathcal{BF}$.

Proof. We have already proved that for any $k \in \mathbb{N}^+$, $f : \mathbb{N}^k \to \mathbb{N}$, there always exists h satisfying $f(\mathbf{x}) < ||\mathbf{x}|| + h$ if $f \in \mathcal{BF}$.

If $x + y \in \mathcal{BF}$, there is h such that $x + x = 2x = 2||\mathbf{x}|| < ||\mathbf{x}|| + h$, which implies x < h, leading to contradiction.

1.4 Prove: binary number theoretic function $x - y \notin \mathcal{BF}$.

Proof. Since pred = Comp₂¹[$P_1^1, S \circ Z$], proving pred $\notin \mathcal{BF}$ is enough to show $x - y \notin \mathcal{BF}$. Assume there exists shortest construction procedure f_0, f_1, \ldots, f_n , pred. There are two cases:

Case 1. $f_n \in \{S, Z, P\}$ is not the case.

Case 2. f_n is a composition of S, Z or P. f_n cannot be composition of S because S(x) > 0 for all x, and pred(1) = 0. Also, f_n cannot be composition of Z because pred(x) can be arbitrarily large. Finally, f_n cannot be composition of P because this contradicts the shortest construction assumption.

1.5 Let $pg(x,y) = 2^x(2y+1) - 1$. Prove that there exists elementary function K(x) and L(x) such that K(pg(x,y)) = x, L(pg(x,y)) = y and pg(K(z),L(z)) = z.

Proof. Let
$$K(x) = \exp_0(x+1), L(x) = \frac{1}{2} \left(\frac{x+1}{2^{K(x)}} - 1 \right)$$
, we have
$$\operatorname{pg}(K(z), L(z)) = 2^{\operatorname{ep}_0(z+1)} \left(\frac{z+1}{2^{\operatorname{ep}_0(z+1)}} \right) - 1 = z.$$

1.6 Let $f: \mathbb{N} \to \mathbb{N}$. Prove that f could be left function in a pairing function if and only if $|\{x \in \mathbb{N} : f(x) = i\}| = \aleph_0$ for all $i \in \mathbb{N}$.

Proof. The necessity is trivial by a simple contradiction. For the sufficiency, $|\{x \in \mathbb{N} : f(x) = i\}| = \aleph_0$ implies that there exists 1-1 onto mapping $f_i : N_i \to \mathbb{N}$ such that $N_i = \{x \mid f(x) = i\}$ for all i, which implies that f_i^{-1} exists for all i. By letting $pg(x,y) = f_x^{-1}(y)$, we have $K(z) = f(f_x^{-1}(z)) = x$ and $L(z) = f_x(z) = f_x(f_x^{-1}(y)) = y$.

1.7 Prove that all elementary function can be generated by applying composition and $\prod_{i=n}^{m} [\cdot]$ operator.

Proof. We first build some function by the conditioning ability of Π :

$$N(x) = \prod_{i=1}^x Z(i), \ \operatorname{leq}(x,y) = \prod_{i=x}^y Z(i), \ \operatorname{and} \ \operatorname{geq}(x,y) = \prod_{i=y}^x Z(i).$$

Also, we can construct integral power and thus equality by

$$pow(x,k) = \prod_{i=1}^{k} x,$$

$$eq(x,y) = leq(x,y)^{N(geq(x,y))},$$

and finally Σ operator by creating logarithm:

$$\log(x) = \prod_{i=0}^{x} i^{N(\operatorname{eq}(2^{i}, x))},$$
$$\sum_{i=n}^{m} f(i, \mathbf{x}) = \log \prod_{i=n}^{m} 2^{f(i, \mathbf{x})}.$$

Notice that
$$x \times y = \sum_{i=1}^{x} y$$
, $x + y = \log(2^{x} \cdot 2^{y})$, and $|x - y| = \left(\sum_{i=x+1}^{y} 1\right) + \left(\sum_{i=x+1}^{x} 1\right)$, our proof is complete.

1.8 Let M(x) be M(M(x+11)) when $x \le 100$ and x-10 when x > 100. Prove M(x) = 91 when $x \le 100$.

Proof. The basic case is M(99) = M(M(110)) = M(100) = M(M(111)) = M(101) = 91, and M(x) = M(M(x)) = M(x+1) when $90 \le x \le 100$. An induction on x shows M(x) = 91 for all $0 \le x \le 100$.

1.9 **Prove:** $\min x \le n.[f(x, y)] = n - \max x \le n.[f(n - x, y)],$ and $\max x \le n.[f(x, y)] = n - \min x \le n.[f(n - x, y)].$

Proof. For simplicity, let $m = \min x \le n.[f(x, \mathbf{y})]$ and $M = \max x \le n.[f(n - x, \mathbf{y})].$

If there is no $0 \le x \le n$ satisfying $f(x, \mathbf{y}) = 0$, we have m = n and M = 0, hence m + M = n. Otherwise, let a be the minimum root of $f(x, \mathbf{y})$, thus $f(x, \mathbf{y}) \ne 0$ for all x < a, and $f(n - x, \mathbf{y}) \ne 0$ for all x > n - a. By definition, we can easily see that m + M = n. Since both m and M will not exceed n, m + M = n yields m = n - M and M = n - m.

The another case is trivial by symmetry.

1.10 Prove: \mathcal{EF} is closed under the bounded max operator.

Proof. For any $f \in \mathcal{EF}$,

$$\max x \le n.[f(x, \mathbf{y})] = \sum_{i=0}^{n} \left[\left\lfloor \left(\sum_{x=0}^{i} N(x, \mathbf{y}) \right) / \left(\sum_{x=0}^{n} N(x, \mathbf{y}) \right) \right\rfloor \times i \right]. \quad \Box$$

1.11 Prove: Euler's totient function $\varphi \in \mathcal{EF}$.

Proof.
$$\varphi(x) = \left\{ \sum_{y=0}^{n} N \left[\left(\sum_{d=0}^{x+y} \left| \operatorname{rs}(x,d) - \operatorname{rs}(y,d) \right| \right) - 2 \right] \right\} - 1 . \quad \Box$$

1.12 Let h(x) be subscript of the greatest prime factor. Assume that h(0) = h(1) = 0, prove that $h \in \mathcal{EF}$.

Proof.
$$h(x) = \max i \le x$$
. $\left\{ N^2 \left| \sum_{j=0}^i [N(\text{rs}(i,j))] - 2 \right| + N^2[\text{rs}(x,i)] \right\}$. \square

1.13 Prove that the Fibonacci sequence f(0) = f(1) = 1, $f(x+2) = f(x) + f(x+1) \in \mathcal{EF}$ and \mathcal{PRF} .

Proof. Let $\{pg, K, L\}$ be any paring function in \mathcal{PRF} . Let

$$F(0) = pg(1,0)$$

$$F(x+1) = pg(K(F(x)) + L(f(x)), K(F(x))),$$

we have F is in \mathcal{PRF} and K(F(x)) = f(x), therefore $f \in \mathcal{PRF}$.

On the other hand, f(x) is the number of binary strings of length x-1 without successive 1s. Therefore

$$f(x) = \sum_{i=0}^{2^{n-1}-1} N \left[\sum_{j=0}^{n-2} \text{neq}\left(\frac{\text{rs}(i, 2^j)}{2^{j-1}}, 1\right) \text{neq}\left(\frac{\text{rs}(i, 2^{j+1})}{2^j}, 1\right) \right] \in \mathcal{EF}. \quad \Box$$

1.14 Prove that the number theoretic function $Q(x, y, z, v) \equiv p(\langle x, y, z \rangle) \mid v$ is elementary.

Proof. We have already seen that $p(n) \in \mathcal{EF}$ and $\langle x, y, z \rangle = 2^x \cdot 3^y \cdot 5^z \in \mathcal{EF}$. Therefore $Q(x, y, z) = \operatorname{eq}(\operatorname{rs}(v, p(\langle x, y, z \rangle)), 0) \in \mathcal{EF}$.

1.15 Let $f: \mathbb{N} \to \mathbb{N}$, f(0) = 1, f(1) = 4, f(2) = 6, $f(x+3) = f(x) + f^2(x+1) + f^3(x+2)$. Prove that $f \in \mathcal{PRF}$.

Proof. Let $G(0) = \langle 1, 4, 6 \rangle$ and

$$G(x+1) = \langle ep_1(G(x)), ep_2(G(x)), ep_0(G(x)) + ep_1^2(G(x)) + ep_2^3(G(x)) \rangle,$$

we have $ep_0(G(x)) = f(x)$.

1.16 Let $f(n) = n^{n^{\dots^n}}$, prove that $f \in \mathcal{PRF} - \mathcal{EF}$.

Proof. Let g(n,0) = 0 and $g(n,x+1) = n^{g(n,x)}$. Thus $g \in \mathcal{PRF}$ and g(n,n) = f(n), therefore $f \in \mathcal{PRF}$. On the other hand, $G(k,x) = 2^{2^{\dots^x}}$ is one among the control functions of \mathcal{EF} . If $f \in EF$, there exists k such that G(k,n) > f(n) for all n. However, this is impossible because f(k+2) is always greater than G(k,k+2).

1.17 Let $g: \mathbb{N} \to \mathbb{N} \in \mathcal{PRF}, f: \mathbb{N}^2 \to \mathbb{N}$ satisfies that $f(x,0) = g(x), f(x,y+1) = f(f(\dots f(f(x,y),y-1),\dots),0)$. Prove that $f \in \mathcal{PRF}$.

Proof. Let G(x,0) = x and G(x,y+1) = g(G(x,y)). A simple induction shows that $f(x,y) = g^{2^{y-1}}(x)$, thust $f(x,y) = G(x,2^{y-1}) \in \mathcal{PRF}$.

1.18 If $f, g : \mathbb{N} \to \mathbb{N}$ differs for only finitely many values. Prove that $f \in \mathcal{GRF}$ if and only if $g \in \mathcal{GRF}$.

Proof. For the necessity, we have $g \in \mathcal{GRF}$ and $S = \{s_0, s_1, \dots, s_k\}$ satisfies that for all $x \in \mathbb{N} \setminus S$, f(x) = g(x).

Let
$$F(x) = \sum_{i=0}^{k} g(s_i) \cdot N(\operatorname{eq}(s_i, x)) + N\left(\sum_{i=0}^{k} N(\operatorname{eq}(s_i, x))\right) g(x)$$
, be-

cause the Σ in F is walked through finitely many of values, F is in \mathcal{GRF} , and f(x) = F(x) for all x, thus $f \in \mathcal{GRF}$. Also, the sufficiency case is trivial by symmetry.

1.19 Prove that
$$\left\lfloor \left(\frac{\sqrt{5}+1}{2} \right) n \right\rfloor \in \mathcal{EF}$$
.

Proof. Let $\varphi = \frac{\sqrt{5}+1}{2}$, we can rewrite the solution of $y = \lfloor \varphi n \rfloor$ by

$$\begin{array}{rcl} y & = & \max_{x \in \mathbb{N}} x \\ & \text{s.t.} & \varphi n \leq x, \end{array}$$

therefore $y = \max x \le 2n \cdot \operatorname{eq}(x^2 - nx - n^2, 0)$.

1.20 Prove that $Ack(4, n) \in \mathcal{PRF} - \mathcal{RF}$.

Proof. Let f(0) = 1, $f(n+1) = 2^{f(n)}$, we immediately have $f \in \mathcal{PRF}$, therefore $Ack(4, n) = f(n+3) - 3 \in \mathcal{PRF}$.

 $G(k,x) = 2^{2\cdots^x}$ is the control function of \mathcal{EF} . Assume that $\operatorname{Ack}(4,n) \in \mathcal{EF}$, thus $G'(k,x) = \operatorname{Ack}(4,x+k) + 3 \in \mathcal{EF}$. However, G(k,x) < G'(k,x) contradicts the assumption, yielding $\operatorname{Ack}(4,n) \in \mathcal{PRF} - \mathcal{EF}$.

1.21 Let $f: \mathbb{N} \to \mathbb{N}$ and being 1-1 and onto. Prove that $f \in \mathcal{GRF}$ if and only if $f^{-1} \in \mathcal{GRF}$.

Proof. The sufficiency can be shown by the fact that

$$f^{-1}(x) = \mu y.|f(y) - x|$$

because there exists unique y such that f(y) = x, and hence the root of |f(y) - x|. Therefore, $\mu y.|f(y) - x|$ is the unique value of y satisfying f(y) = x, i.e., $y = f^{-1}(x)$. Also because $(f^{-1})^{-1} = f$, the case of necessity is trivial by symmetry.

1.22 Let p be a polynomial with integral coefficient, and $f: \mathbb{N} \to \mathbb{N}$ defined by the non-negative root of f(a) = p(x) - a. Prove that $f \in \mathcal{RF}$.

Proof. Let $p(x) = a_n x^n + ... + a_1 x + a_0$, $S = \{i \mid a_i > 0\}$, and $T = \{i \mid a_i < 0\}$, we have

$$|p(x) - a| = \left| \sum_{i \in S} |a_i| x^i - \left(a + \sum_{i \in T} |a_i| x^i \right) \right| \in \mathcal{EF}.$$

Therefore, $f(a) = \mu x . |p(x) - a| \in \mathcal{RF}.$

1.23 Let f(x,y) = x/y if $y \neq 0 \land y \mid x$ and \uparrow otherwise. Prove that $f \in \mathcal{RF}$.

Proof.
$$f(x,y) = \mu k.|x - ky| + \mu k.N(x + y) \in \mathcal{RF}.$$

1.24 Define $g: \mathbb{N} \to \mathbb{N}$ by g(0) = 0, g(1) = 1, g(n+2) = rs((2002g(n+1) + 2003g(n)), 2005). Find g(2006).

Proof. We have $g(n) = \operatorname{rs}\left(\frac{(-1)^{n+1} + 2003^n}{2004}, 2005\right)$ and $2005 = 5 \cdot 401$, therefore

$$g(2006) \mod 2005 = \left((2003^{2006} - 1) \times 2004^{-1} \right) \mod 2005$$

= $\left((2^{2006} - 1) \times 2004 \right) \mod 2005$.

Since $a^{p-1} \equiv 1 \mod p$ for all prime p, $2^{2006} \equiv 2^2 \equiv 4 \mod 5$, $2^{2006} \equiv 2^6 \equiv 64 \mod 401$. According to the Chinese remainder theorem, $2^{2006} \equiv 64 \mod 2005$. Therefore, $g(2006) \equiv 63 \times 2004 \equiv 1942 \mod 2005$.

1.25 Let $f: \mathbb{N} \to \mathbb{N}$ be the *n*-th digit in the decimal representation of π . Prove that $f \in \mathcal{GRF}$.

Proof. Given a m by m grid, we count the integral point of (x, y) within a circle centered at (0, 0) with radius m by

$$S = \left| \{ (x, y) \mid x, y \in \mathbb{N} \text{ and } x^2 + y^2 \le m^2 \} \right|$$

to approximately find π . S is elementary because

$$S(m) = \sum_{i=0}^{m} \sum_{j=0}^{m} N(i^2 + j^2 - m^2).$$

Area of the circle is $S_c(m) = \pi m^2/4$, and by the fact that the circle intersects with at most $2m \ 1 \times 1$ blocks, we have $|S(m) - S_c(m)| < 2m$, therefore

$$\left| \frac{S(m)}{m^2} - \frac{\pi}{4} \right| = \frac{1}{m^2} |S(m) - S_c(m)| < 2m^{-1}, \text{ and}$$
$$|4S(m) - m^2 \pi| < 8m.$$

To compute f(n), we need an exponentially large grid, say, $m = 10^k$. Then we have $|4S(10^k) - 10^{2k} \cdot \pi| < 10^{k+1}$. We know that $4S(10^k)$ has 2k digits and last k of them is inaccurate, so we use regular μ operator to enumerate k until we met a non-zero digit between the first n+1 digits and the last k digits:

$$K(n) = \mu k. \left\{ n + 1 - k + N \left[rs \left(\frac{S(10^k)}{10^k}, 10^{k-n-1} \right) \right] \right\}.$$

Since there is no infinitely long successive zeros in decimal representation of π (otherwise π will be rational), regularity is ensured and thus $K \in$

$$\mathcal{GRF}$$
, therefore $f(n) = \operatorname{rs}\left[\frac{S\left(10^{K(n)}\right)}{10^{K(n)+1}}, 10\right] \in \mathcal{GRF}$.

2 Abacus Machines

2.1 Construct AM for f(x) = 2x.

Proof.
$$f = \langle \mathbf{S}_1 \mathbf{A}_2 \mathbf{A}_3 \rangle_1 \text{ move}_{2,1} \text{move}_{3,1}.$$

2.2 Construct AM for $f(x) = \lfloor x/2 \rfloor$.

Proof.
$$f = \mathbf{A}_1 \langle \mathbf{S}_1 \mathbf{S}_1 \mathbf{A}_2 \rangle_1 \operatorname{move}_{2,1} \mathbf{S}_1.$$

2.3 Construct AM for $f(x) = x \cdot y$.

Proof.
$$f = \mathbf{move}_{1,3} \langle \mathbf{copy}_{3,1,4} \mathbf{S}_2 \rangle_2 \mathbf{Z}_3.$$

2.4 Construct AM for $g(x) = \mu y.[f(x,y)]$ assuming that $\mathbf{F} \in \mathrm{AM}$ defines f.

Proof. Assume that **F** uses at most k pillars. If x, y is located at position k+1, k+2, respectively, we can compute f(x,y) by

$$\mathbf{M} = \mathbf{copy}_{k+1,1} \mathbf{copy}_{k+2,2} \mathbf{F}.$$

Therefore, g can be constructed by repeatedly enumerate y until f becomes zero:

$$g = \mathbf{move}_{1,k+1} \mathbf{M} \left\langle \mathbf{A}_{k+2} \mathbf{copy}_{k+1,1} \mathbf{copy}_{k+2,2} \mathbf{M} \right\rangle_1 \mathbf{move}_{k+2,1} \mathbf{Z}_{k+1}.$$

2.5 Construct AM for $f(x) = 2^x$.

Proof.
$$f = \text{move}_{1,2} \mathbf{Z}_1 \mathbf{A}_1 \langle \text{copy}_{1,3} \text{move}_{3,1} \mathbf{S}_2 \rangle_2$$
.

- 3 λ -calculus
- 3.1 Prove the *Parenthesis Lemma*: for all $M \in \Lambda$, the occurrence of left parenthesis is equal to the occurrence of right parenthesis.

Proof. Let p(M) be the difference of the occurrence of left and right parenthesis in M, We have p(x) = 0, $p[(M_1M_2)] = p(M_1) + p(M_2)$ and $p[(\lambda x.M)] = p(M)$. A formal proof comes from a simple structural induction.

3.2 Find β -nf of SSSS.

Proof. According to $S \equiv \lambda xyz.xz(yz)$ and $SS =_{\beta} \lambda xyz.yz(xyz)$, we have

$$\begin{array}{ll} SSSS & =_{\beta} & SS(SS) \\ & =_{\beta} & \lambda xy.[xy(SSxy)] \\ & =_{\beta} & \lambda xy.xy(\lambda z.yz(xyz)) = M. \end{array}$$

 $M =_{\beta} SSSS$ is β -nf of SSSS because it has no redex.

3.3 Prove that there is no β -nf for $(\lambda x.xxx)(\lambda x.xxx)$.

Proof. Let $N = \lambda x.xxx$ and M = NN, we have $\mathrm{Sub}(M) = \{N, NN\}$. It is trivial that $NN \in \mathrm{Sub}(M)$. If $\mathrm{Sub}(A) = \bigcup_{i=1}^k N^k$ and $A \to_{\beta} B$, $\mathrm{Sub}(B)$ will be either $\mathrm{Sub}(A)$ or $\mathrm{Sub}(A) \cup N^{k+1}$, hence $NN \in \mathrm{Sub}(M')$ holds for all $M \twoheadrightarrow_{\beta} M'$.

Assume that the β -nf of M is M_{β} , we have $NN \in \operatorname{Sub}(M_{\beta})$ which leads to a contradiction.

3.4 Let $F \in \Lambda$ with the form of $\lambda x.M$. Prove that $\lambda z.Fz =_{\beta} F$ and $\lambda z.yz \neq_{\beta} y$.

Proof. $\lambda z.Fz \equiv \lambda z.(\lambda x.M)z \rightarrow_{\beta} \lambda z.(M[x:=z]) \equiv M.$

3.5 Prove the fixed-point theorem for two variables: for all $F, G \in \Lambda$, exists $X, Y \in \Lambda$ such that FXY = X and GXY = Y.

Proof. According to the equation (GX)Y = Y, let Y be the fixed-point of GX, say $\mathbf{Y}(GX)$, we have $FX(\mathbf{Y}(GX)) = X$, thus

$$\lambda x.[Fx(\mathbf{Y}(Gx))]X = X.$$

We can now derive a solution by letting $X = \mathbf{Y}[\lambda x.Fx(\mathbf{Y}(Gx))]$ and $Y = \mathbf{Y}(GX)$.

3.6 Prove for all $M, N \in \Lambda^{\circ}$, there is a solution for xN = Mx.

Proof. Let x be the form of $\lambda a.T$, this makes $(\lambda a.T)N = T$. This reduces rest of our proof to finding a solution to

$$T = M(\lambda a.T) = [\lambda t.M(\lambda a.t)]T.$$

Let $T = \mathbf{Y}[\lambda t.M(\lambda a.t)]$ hence $x = \lambda x.\mathbf{Y}[\lambda y.M(\lambda z.y)], \ xN = Mx$ is satisfied.

3.7 Prove that for all $P, Q \in \Lambda$, $P \to_{\beta} Q$ implies the existence of $n \geq 0$ and $P_0, \ldots, P_n \in \Lambda$ satisfying $P \equiv P_0$, $Q \equiv P_n$ and $P_i \to_{\beta} P_{i+1}$ for all i < n.

Proof. According to the fact that

$$\Rightarrow_{\beta} = \bigcup_{i=0}^{\infty} (\rightarrow_{\beta})^i,$$

for all $P, Q \in \Lambda$, $P \to_{\beta} Q$ implies existence of k such that $P(\to_{\beta})^k Q$. A structural induction on k directly leads to a proof.

3.8 Prove that for all $P,Q \in \Lambda$, $P \twoheadrightarrow_{\beta} Q$ implies $\lambda z.P \twoheadrightarrow_{\beta} \lambda z.Q$.

Proof. According to 3.7, sequence $P_0, \ldots, P_n \in \Lambda$ with $P \equiv P_0$, $Q \equiv P_n$ and $P_i \to_{\beta} P_{i+1}$. Also because \to_{β} is the compatible closure of β , we have $\lambda z.A \to_{\beta} \lambda z.B$ for all $A \to_{\beta} B$. Thus for all i < n,

$$\lambda z.P_i \rightarrow_{\beta} \lambda z.P_{i+1}$$

in $\lambda z.P_0, \lambda z.P_1, \dots, \lambda z.P_n$ always holds, that is, $\lambda z.P \twoheadrightarrow_{\beta} \lambda z.Q$.

3.9 Prove that for all $P, Q \in \Lambda$, $P =_{\beta} Q$ implies the existence of $n \geq 0$ and $P_0, \ldots, P_n \in \Lambda$ satisfying $P \equiv P_0$, $Q \equiv P_n$ and $P_i \to_{\beta} P_{i+1}$ or $P_{i+1} \to_{\beta} P_i$ for all i < n.

Proof. The technique used is exactly the same as in problem 3.7, except we are using $=_{\beta} = \bigcup_{k=0}^{\infty} \left(\rightarrow_{\beta} \cup \rightarrow_{\beta}^{-1} \right)^{k}$.

3.10 Prove that for all $M, N \in \Lambda$, $M =_{\beta} N$ if and only if $\lambda \beta \vdash M = N$.

Proof. The axiom of $\lambda\beta$ shows that M=M and $(\lambda x.M)N=M[x:=N]$. Also because $\beta \equiv \{((\lambda x.M)N, M[x:=N]): M, N \in \Lambda \land x \in V\}$ and $=_{\beta}$ is reflexive, $M=_{\beta}M$ and $(\lambda x.M)N=_{\beta}M[x:=N]$ holds. This serves our inductive basis.

Assume that $\lambda\beta \vdash M = N$ implies $M =_{\beta} N$ for all formula M = N with construction length less or equal to ℓ . A formula of construction length $\ell + 1$ will be within either of the following cases:

- 1. $(\sigma): M = N \vdash N = M, =_{\beta}$ is symmetric makes $N =_{\beta} M$;
- 2. $(\tau): M = N, N = L \vdash M = L, =_{\beta}$ is transitive makes $N =_{\beta} M$;
- 3. $(\mu): M = N \vdash ZM = ZN, =_{\beta}$ is compatible makes $ZM =_{\beta} ZN$;
- 4. $(\nu): M = N \vdash MZ = NZ, =_{\beta}$ is compatible makes $MZ =_{\beta} NZ$;
- 5. $(\xi): M = N \vdash \lambda x.M = \lambda x.N, =_{\beta}$ is compatible makes $\lambda x.M =_{\beta} \lambda x.N$.

Therefore, $\lambda \beta \vdash M = N$ implies $M =_{\beta} N$.

On the other side, $M \to_{\beta} N$ implies $M =_{\beta} N$ because either $M\beta N$ thus M = N by (β) , or (M, N) is in the compatible closure of $\{(M', N')\}$ for some $M'\beta N'$.

By the theorem proved in 3.9, for all $M =_{\beta} N$, there exists $n \geq 0$ and $P_0, \ldots, P_n \in \Lambda$ such that $P \equiv P_0, Q \equiv P_n$ and either $P_i \to_{\beta} P_{i+1}$ or $P_{i+1} \to_{\beta} P_i$ for all i < n. Take the case of n = 0, which is that $M =_{\beta} M$ implies $\lambda \beta \vdash M = M$ as inductive basis, we perform an induction on the shortest construction length of n.

Assuming that for all $A =_{\beta} B$ with construction length of m less than $n, \lambda \beta \vdash A = B$ holds. For construction sequence $M = P_0, \ldots, P_{n-1}, P_n = N$, we have $\lambda \beta \vdash M = P_{n-1}$ by the inductive hypothesis. Because $P_{n-1} \to_{\beta} P_n$ or $P_n \to_{\beta} P_{n-1}$ means that $\lambda \beta \vdash P_{n-1} = P_n$, according to $(\tau), \lambda \beta \vdash M = P_{n-1} = P_n = N$, therefore $A =_{\beta} B$ implies $\lambda \beta \vdash A = B$. In summary, $=_{\beta}$ is equivalent to the formal system of $\lambda \beta$.

3.11 Prove that for all $M, N \in \Lambda$, $M =_{\beta\eta} N$ if and only if $\lambda \beta \eta \vdash M = N$.

Proof. Exactly the same technique used in problem 3.10 can be applied to this problem. \Box

- 3.12 (This problem is duplicated with 3.16.)
- 3.13 Prove that by extending $\lambda \beta$ by axiom of $\lambda xy.x = \lambda xy.y$, $\lambda \beta^* \vdash M = N$ for all $M, N \in \Lambda$.

Proof. For all $M, N \in \Lambda$, $\lambda xy.x = \lambda xy.y \Rightarrow (\lambda xy.x)M = (\lambda xy.y)N \Rightarrow (\lambda xy.x)MN = (\lambda xy.y)MN \Rightarrow M = (\lambda xy.y)MN \Rightarrow M = N.$

3.14 Prove that for binary relation R on Λ , $M \in NF_R$ implies: (1) there is no $N \in \Lambda$ such that $M \to_R N$; (2) $M \to_R N \Rightarrow M \equiv N$.

Proof. (1) Trivial by the definition of NF_R that, M has no redex. (2) Assume that $M \not\equiv N$. $M \to_R N$ implies existence of $M = P_0, \ldots, P_n = N$ that, $P_i \to_R P_{i+1}$ for i < n. We must have $n \ge 1$ because $M \not\equiv N$. This leads to contradiction because there exists N such that $M \to_R N$.

3.15 Prove that $M \rhd_{\operatorname{mcd}} M'$ and $N \rhd_{\operatorname{mcd}} N'$ implies $MN \rhd_{\operatorname{mcd}} M'N'$.

Proof. $M \rhd_{\mathrm{mcd}} M'$ means that there exists sequence M_1, M_2, \ldots, M_n reduces M to M', and so does $N \rhd_{\mathrm{mcd}} N'$. Merging the two sequences will yield minimal complete development from MN to M'N' because M_i will always be minimal redex of the remaining sequence.

3.16 Prove that for all $M, N \in \Lambda$, $M =_{\beta} N$ implies the existence of T such that $M \to_{\beta} T$ and $N \to_{\beta} T$.

Proof. $M =_{\beta} N$ implies that

$$(M,N) \in \bigcup_{k=0}^{\infty} (\rightarrow_{\beta} \cup \leftarrow_{\beta})^k.$$

We take the basis case of k=0, that is, $M \equiv N$ as our basis. Assume that for all $(M,N) \in (\rightarrow_{\beta} \cup \leftarrow_{\beta})^k$, there exists $T \in \Lambda$ such that $M \twoheadrightarrow_{\beta} T$ and $N \twoheadrightarrow_{\beta} T$. For the case of $(M,N) \in (\rightarrow_{\beta} \cup \leftarrow_{\beta})^{k+1}$, either

$$(1) M \to_{\beta} P =_{\beta} N$$

or

(2)
$$M \leftarrow_{\beta} P =_{\beta} N$$

holds where $(P, N) \in (\rightarrow_{\beta} \cup \leftarrow_{\beta})^k$. According to the inductive hypothesis, there exists T_0 such that $P \twoheadrightarrow_{\beta} T_0$ and $N \twoheadrightarrow_{\beta} T_0$. Because $\twoheadrightarrow_{\beta}$ is transitive, We have $M \twoheadrightarrow_{\beta} T_0$ in the case (1).

In the case (2), according to the CR-property of $\twoheadrightarrow_{\beta}$, $P \twoheadrightarrow_{\beta} M$ and $P \twoheadrightarrow_{\beta} T_0$ implies the existence of $T \in \Lambda$ that, $M \twoheadrightarrow_{\beta} T$ and $T_0 \twoheadrightarrow_{\beta} T$. Again because the transitivity of $\twoheadrightarrow_{\beta}$, $N \twoheadrightarrow_{\beta} T_0$ and $T_0 \twoheadrightarrow_{\beta} T$ yields $N \twoheadrightarrow_{\beta} T$. Therefore such a T exists for all $k \in \mathbb{N}$.

3.17 Find $F \in \Lambda^{\circ}$ such that F λ -defines f(x) = 3x.

Proof. We are to construct $F^{\vdash}n^{\urcorner} = {\ulcorner}3n^{\urcorner} = \lambda fx.f^n(f^n(f^nx)).$

$$\begin{array}{lll} \lambda fx.f^n(f^n(f^nx)) & = & \lambda fx.f^n(f^n(\lceil n\rceil fx)) \\ & = & \lambda fx.f^n(\lceil n\rceil f(\lceil n\rceil fx)) \\ & = & \lambda fx.\lceil n\rceil f(\lceil n\rceil f(\lceil n\rceil fx)) \\ & = & [\lambda nfx.nf(nf(nfx))]\lceil n\rceil. \end{array}$$

Therefore, $F \equiv \lambda xyz.xy(xy(xyz))$ λ -defines f(x) = 3x.

3.18 Let $D \equiv \lambda xyz.z(\mathbf{K}y)x$. Prove that for all $X, Y \in \Lambda$, $DXY \vdash 0 \dashv X$ and $DXY \vdash n + 1 \dashv X$.

Proof. We have $\mathbf{D}XY \cap 0 = 0 \cap (\lambda y.Y)X = (\lambda fx.x)(\lambda y.Y)X = X$, and

$$\begin{aligned} \mathbf{D}XY^{\lceil n+1 \rceil} &= \lceil n+1 \rceil (\lambda y.Y)X \\ &= (\lambda fx.f^{n+1}x)(\lambda y.Y)X \\ &= (\lambda x.(\lambda y.Y)^{n+1}x)X \\ &= (\lambda x.(\lambda y.Y)^nY)X \\ &= (\lambda x.Y)X = Y. \end{aligned}$$

 \mathbf{D} is very powerful because it have the ability of separating cases.

3.19 Let $\text{Exp} \equiv \lambda xy.yx$. Prove that for all $n \in \mathbb{N}$ and $m \in \mathbb{N}^+$, $\text{Exp} \lceil n \rceil \lceil m \rceil =_{\beta} \lceil n^m \rceil$.

Proof. We simply expand **Exp** by

$$\mathbf{Exp}^{\lceil n \rceil \lceil m \rceil} = (\lambda xy.yx)(\lambda fx.f^n x)(\lambda fx.f^m x)$$
$$= (\lambda fx.f^m x)(\lambda fx.f^n x)$$
$$= (\lambda x.(\lambda fy.f^n y)^m x).$$

For m=1, $(\lambda fy.f^ny)x=\lambda y.x^ny$. Assume that $(\lambda fy.f^ny)^mx=\lambda y.x^{n^m}y$, we have

$$\begin{array}{rcl} (\lambda fy.f^ny)^{m+1}x & = & (\lambda fy.f^ny)[(\lambda fy.f^ny)^mx)] \\ & = & (\lambda fy.f^ny)(\lambda y.x^{n^m}y) \\ & = & \lambda y.(\lambda z.x^{n^m}z)^ny \\ & = & \lambda y.x^{n^{m+1}}y. \end{array}$$

This implies $\mathbf{Exp} \lceil n \rceil \lceil m \rceil = \lambda xy. x^{n^m} y = \lceil n^m \rceil$ for all m > 0.

3.20 Find $\mathbf{F} \in \Lambda^{\circ}$ such that for all $n \in \mathbb{N}$, $\mathbf{F}^{\lceil} n^{\rceil} =_{\beta} \lceil 2^{n} \rceil$.

Proof.
$$\mathbf{F} \equiv \lambda x.\mathbf{D}x^{\mathsf{T}}\mathbf{1}^{\mathsf{T}}(\mathbf{E}\mathbf{x}\mathbf{p}^{\mathsf{T}}\mathbf{2}^{\mathsf{T}}x).$$

3.21 Let $f,g:\mathbb{N}\to\mathbb{N},\ f(0)=0$ and f(n+1)=g(f(n)). If $G\in\Lambda^\circ$ λ -defines g, find $F\in\Lambda^\circ$ such that F λ -defines f.

Proof. Our goal is to achieve

$$\begin{array}{rcl} F^{\ulcorner}n^{\urcorner} &=& \mathbf{D}^{\ulcorner}n^{\urcorner}0^{\urcorner}G[F(\mathbf{pred}^{\ulcorner}n^{\urcorner})]\\ &=& \{\lambda n.\mathbf{D}n^{\ulcorner}0^{\urcorner}G[F(\mathbf{pred}n)]\}^{\ulcorner}n^{\urcorner}\\ &=& \{(\lambda fn.\mathbf{D}n^{\ulcorner}0^{\urcorner}G[f(\mathbf{pred}n)])F\}^{\ulcorner}n^{\urcorner}. \end{array}$$

Therefore, $F \equiv \mathbf{Y}(\lambda xy.\mathbf{D}y^{\Gamma}0^{\gamma}G[x(\mathbf{pred}y)]) \lambda$ -defines f.

3.22 Prove that there are var, app, abs, num : $\mathbb{N} \to \mathbb{N} \in \mathcal{GRF}$ such that (1) $\forall n \in \mathbb{N}$, $\text{var}(n) = \sharp(v^{(n)})$; (2) $\forall M, N \in \Lambda$, $\text{app}(\sharp M, \sharp N) = \sharp(MN)$; (3) $\forall x \in V, M \in \Lambda$, $\text{abs}(\sharp x, \sharp M) = \sharp(\lambda x.M)$; (4) $\forall n \in \mathbb{N}$, $\text{num}(n) = \sharp^{\Gamma} n^{\neg}$.

Proof. (1)-(3) is trivial because $\sharp(v^{(n)}) = [0, n], \ \sharp(MN) = [1, [\sharp M, \sharp N]]$ and $\sharp(\lambda x.M) = [2, [\sharp x, \sharp M]]$ are both elementary. Also,

$$\begin{array}{rcl} \operatorname{num}(n) & = & \sharp \lceil n \rceil \\ & = & \sharp (\lambda f x. f^n x) \\ & = & [2, [\sharp f, [2, [\sharp x, \sharp (f^n x)]]]]. \end{array}$$

Thus we only need to show that $\sharp(f^nx)$ is recursive by the fact that $\sharp(f^nx)=\sharp(f(f^{n-1}x))=[1,[\sharp f,\sharp(f^{n-1}x)].$

3.23 Prove that there exists $B \in \Lambda^{\circ}$ such that $F_{[\lceil x \rceil \mapsto x]} =_{\beta} BFx^{\lceil}x^{\rceil}$.

Proof. We first construct the minimum representation of a λ term to identify the \equiv relationship of Λ° such that

$$\min X = \underset{M \in \Lambda^{\circ}, M \equiv X}{\operatorname{argmin}} \lceil M \rceil.$$

We can compute **min** by a recursive procedure that keeps a table of variable substitution, and log the minimum unused number in each abstraction operation (very complicated, though). Since every function in \mathcal{PRF} can be represented in λ -calculus, $\min \in \Lambda^{\circ}$ exists. Also, we have $\min \mathbf{us} \in \Lambda^{\circ}$ such that $\min \mathbf{us} \lceil x \rceil \lceil y \rceil = \lceil |x - y| \rceil$. Therefore, let

$$B = \lambda fxyz.\mathbf{D}(\mathbf{minus}(\mathbf{min}y)(\mathbf{min}z))x(fz),$$

$$F_{\lceil \lceil x \rceil \mapsto x \rceil} =_{\beta} BFx \lceil x \rceil$$
 is achieved.

3.24 Find $\mathbf{H} \in \Lambda^{\circ}$ such that for all $n \in \mathbb{N}$ and $x_1, \dots, x_n \in \Lambda$, $\mathbf{H}^{\vdash} n^{\lnot} x_1 \dots x_n =_{\beta} \lambda z. z x_1 \dots x_n$.

Proof. We are to find $\mathbf{H}^{\lceil}n^{\rceil} = \lambda x_1 \dots x_n z.zx_1 \dots x_n$. We use the technique to encode $M_n \equiv \lambda x_1 \dots x_n z.zx_1 \dots x_n$ and to decode it with \mathbf{E} . $\sharp M_n$ is recursive because

$$\sharp M_n = [2, [\sharp x_1, \sharp (\lambda x_2 \dots x_n. z x_1 \dots x_n)]]$$

and

$$\sharp(zx_1\ldots x_n)$$

is recursive. Therefore, there is $G \in \Lambda^{\circ}$ λ -defines $f(n) = \sharp M_n$, thus $\mathbf{H} = \lambda x. \mathbf{E}(Gx)$ is our solution.

3.25 Prove that there is $\mathbf{H}_2 \in \Lambda^{\circ}$ such that for all $F \in \Lambda$, $\mathbf{H}_2 \ulcorner F \urcorner =_{\beta} F \ulcorner \mathbf{H}_2 \ulcorner F \urcorner \urcorner$.

Proof. I have not solved it yet. If you have any idea about this problem, please contact me. $\hfill\Box$