

Rádióamatőr vizsgára felkészítő jegyzet

4. Fejezet: Alkatrészek

Radics Gábor

hg7red

Feladat

Olvasd el a Rádióamatőr vizsgára felkészítő jegyzet 4. fejezetét: Alkatrészek címen.

Ellenállások

- A töltéshordozók (elektronok, protonok, ionok) áramlása a vezetőkben nem akadálymentes. A vezető ezen akadályozó tulajdonságát jellemezzük az egyenáramú ellenállással
- Az ellenállás célja szabályozni, limitálni az átfolyó áramot.
- Ebből adódóan az energiaveszteséget az ellenállás hőként leadja a környezetének.
- Az ellenállás három fő paramétere: az ellenállás értéke (Ω , k Ω , M Ω), maximális disszipációs teljesítménye (W), és toleranciája (%).
- Potenciométer, trimer, teljesítmény ellenállás,
- SMD ellenállás
- Indukciószegény ellenállás

Ellenállások

Ellenállások

Az ellenállás egyéb paraméterei

- Ideális ellenállás nincs
- Az ellenállás értéke változik a hőmérséklettel
- Van pozitív és negatív hőmérsékleti tényezővel változó ellenállás
- Ez lehet előny és hátrány is, bár általában hátrány
- Minden ellenállásnak van valamennyi induktivitása, ami hátrány
- Hány wattos ellenállás szükséges ha U = 10 V, és $R = 100 \Omega$

Ellenállások összekapcsolása

Soros kapcsolás

<u>Jellemzők</u>

- Ugyanaz az áram halad át az ellenállásokon
- Az ellenállásokon mért feszültség összege megegyezik a táp feszültséggel
- Az ellenállásokat egy ellenállással helyettesíthetjük
- Az eredő ellenállás értéke:

$$R = R_1 + R_2 + R_3$$

Általános képlet:

$$R = \sum_{i=1}^{n} R_i$$

$$R = R_1 + R_2 + R_3 + ... + R_n$$

• Mekkora feszültség mérhető az R_2 ellenálláson, ha az értéke 100Ω és I = 10 mA?

Ellenállások összekapcsolása

Párhuzamos kapcsolás

<u>Jellemzők</u>

- Ugyanaz a feszültség mérhető az ellenállásokon
- Az ellenállásokon mért áramok összege megegyezik a feszültség forrás által leadott árammal
- Az ellenállásokat egy ellenállással helyettesíthetjük
- Az eredő ellenállás értéke:

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

• Mi az eredendő ellenállás ha $R_1 = 100\Omega$ és $R_2 = 200\Omega$?

Kondenzátor elmélet

ε = a szigetelő permittivitása

A = terület

d = felületek távolsága egymástól

kapacitás,
$$C = \frac{\varepsilon A}{d}$$

- A kondenzátor tárolja az energiát a kialakult töltés által.
- Két vezető felület egymástól adott távolságra kondenzátort képez.
- A felületet fegyverzetnek és a közte lévő szigetelést dielektrikumnak nevezzük.
- Mértékegysége: Farád.
- Leggyakrabban használt értékek pF, nF, μF.

Elektrolitikus kondenzátor

Kondenzátor tipusok

Elektrolitikus kondenzátor, polaritás nem mindegy

A következőknél mindegy a polaritás:

- Diszk, keramikus kondenzátor
- SMD kondenzátor (pici méret)
- Forgó kondenzátor (változó kapacitás)
- Csillám kondenzátor (nem hőérzékeny)
- Lég, vákuum kondenzátor (nagy feszültség)

Kondenzátor kódolás

Szín Kód	Digit 1	Digit 2	Szorzó	Tole- rancia
Black	0	0	x1	± 20%
Brown	1	1	x10	± 1%
Red	2	2	×100	± 2%
Orange	3	3	x1,000	± 3%
Yellow	4	4	x10,000	± 4%
Green	5	5	x100,000	± 5%
Blue	6	6	x1,000,000	
Violet	7	7		
Grey	8	8	x0.01	+80%,-20%
White	9	9	x0.1	± 10%
Gold			x0.1	± 5%
Silver			x0.01	± 10%

• Színkódok, vagy számokkal jelzett kapacitás értékek

Kondenzátor rajzjelei

• A különböző kondenzátorok a kapcsolási rajzban használt rajzjelei

Kondenzátorok kapcsolásai

Soros és párhuzamos kapcsolás

$$\mathbf{C} = \mathbf{C_1} + \mathbf{C_2} + \mathbf{C_3}$$

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

Párhuzamosan kapcsolt kondenzátorok eredő kapacitása:

 Egyszerűen összeadjuk a kapacitásokat.

Sorosan kapcsolt kondenzátorok eredő kapacitása:

 Ugyan úgy számítjuk mint a párhuzamosan kapcsolt ellenállásokét.

Mennyi az eredő kapacitás, ha három 120µF kondenzátort sorba kapcsolunk?

Kondenzátorok egyenáramú áramkörben

Kondenzátor feltöltés és kisülés

- Az egyenáram a kapacitást feltölti, és t = R * C idő alatt éri el a 63% töltést.
- Majd kisüléskor ugyanannyi idő alatt, t = R * C éri el a 34%-át a teljes kisülésnek.

Mi a lényeg?

Kondenzátor nem vezeti az egyenáramot. Feszültség rákapcsolásával feltöltődik, vagy áramforrásként kisül (a töltés nulla lesz). Miután a feltöltődés vagy kisülés végbemegy, szigetelőként viselkedik.

Kondenzátorok váltóáramú áramkörben

- Váltóáram a kapacitást feltölti, és majd kisüti ahogyan a periódusa váltakozik.
- Ebből adódóan periódikusan váltakozva folyik a töltő majd a kisütő áram.

Kondenzátor a váltóáramot vezeti a kapacitás és a periodicitás (frekvencia) nagyságától függően. Egy váltóáramú áramkörben ellenálláskén viselkedik, de nem ohmos ezért nem R hanem X_c – jelöljük. Az X_c – t kapacitív reaktanciának nevezzük. Mértékegysége akárcsak az ohmos ellenállásnak Ω . Növekvő frekvenciával csökken az "ellenállása", reaktanciája.

$$X_{c} = \frac{1}{2\pi fC}$$

Ahol: X_c ... kapacitív reaktancia $[\Omega]$, π = 3.14, f ... frekvencia [Hz], és C kapacitás [F].

Induktivitások

Induktivitás

- Egy huzal amiben áram halad át mágneses teret létesít maga körül.
- Vasmagra tekerve megtöbbszörözi a mágneses tér erejét.
- Az induktivitás jele az L és a mértékegysége a henry [H].
- A tekercs induktivitása függ a fizikai adataitól:
 - Huzal átmérő
 - Tekercs átmérője
 - A mag (lég-, vasmag) anyag minőségétől, stb.
- A tekercs váltóáramú áramkörben ellenálláskén viselkedik, de nem ohmos ezért nem R hanem X_L – jelöljük. Az X_L – t induktív reaktanciának nevezzük. Mértékegysége akárcsak az ohmos ellenállásnak Ω. Növekvő frekvenciával növekszik az "ellenállása", reaktanciája.

$$X_L = 2\pi f L$$

Ahol: X_L ... induktív reaktancia [Ω], = 3.14, f ... frekvencia [Hz], és L induktivitás [H].

2

Induktivitás

- A tekercs vagy induktor tárolja az energiát a kialakult mágneses tér által.
- Az induktorban folyó növekvő áram ellen hat a keletkező mágneses tér, majd amikor az áram csökken ellentétes irányban újra ellene hat.
- Különböző induktor kivitelezések:
 - Ferit magra tekercselt induktor
 - Toroid magra tekert induktor (zárt mágneses tér)
 - E I vasmagra tekert transzformátor
 - Ellenállás kinézetű induktor
 - Pici ferrit magra tekert induktor
 - Változtatható értékű kerámiára tekert induktor

Induktivitások soros és párhuzamos kapcsolása

 A tekercsek, ugyanúgy mint az ellenállások sorba és párhuzamosan is kapcsolhatóak. Ugyanazok a képletek érvényesek, de nem R hanem L-t helyettesítünk be.

Transzformátor

Transzformátor

- A transzformátor egy vagy több tekercsből áll.
- A transzformátor átalakítja az energiát:

$$\frac{Np}{Ns} = \frac{Up}{Us}$$

- Ideális transzformátornál P_p = P_s
- A gyakorlatban természetesen P_p > P_s
- Ha egy transzformátor primer menetszáma 460 menet és 230V-ot kapcsolunk rá, és a szekunder oldalon 960 a menetszám, mennyi lesz a feszültség?

$$\frac{460}{960} = \frac{230}{Us}$$

$$U_s = 230 * 960 / 460 = 480 V$$

Passzív elemek összehasonlítása

- Nem tárol energiát
- R-el jelöljük
- Mértékegysége ohm, Ω
- Valós ellenállás
- Ideálisan nem frekvencia függő
- Vezeti az DC és AC-t
- Nincs fázis eltérés az áram és a feszültség között

Ellenállás

 $\Phi = 0$ °

Kondenzátor

Induktor ф = -90 ∘

- Energiát tárol
- C-vel jelöljük
- Mértékegysége farád, F
- Meddő ellenállás
- Kapacitív reaktancia
- Jelölése X
- Növekvő frekvenciával csökken az X
- Állandó DC-t nem vezeti
- Az áram 90 fokkal megelőzi a feszültséget

$$X_{c} = \frac{1}{2\pi fC}$$

- Energiát tárol
- L-el jelöljük
- Mértékegysége henry, H
- Meddő ellenállás
- Inductív reaktancia
- Jelölése X,
- Növekvő frekvenciával emelkedik az X_c
- Állandó DC-t vezeti és zárlatként viselkedik
- Az áram 90 fokkal lemarad a feszültségtől

$$X_L = 2\pi f L$$

Diódák

Dióda

A dióda ilyen az irányba vezet

A dióda ilyen irányba nem vezet

Dióda

Dióda mint egyenirányító

A dióda záró irányban nem vezet, ezért a negatív oldala a szinusz jelnek nem jelenik meg a terhelő ellenálláson.

A szilícium diódákra jellemző, hogy vezető irányban legalább 0.7V feszültség szükséges a vezetéshez.

Dióda

Dióda fajták

- Különféle diódák használatosak az elektronikában
 - Tápfeszültség egyenirányító
 - Gyenge jel detektor dióda
 - Nagy áram egyenirányító dióda
 - Régen elektroncsövet használtak
 - Dióda híd (Graetz) négy diódát tartalmaz
- Az egyenirányító diódák szilíciumból készülnek
- A detektor dióda germánium alapanyagból készül
- A LED dióda Gallium Arzenid (GaAs)

Zéner dióda

- A zéner dióda záróirányban használatos
- Így a letörési feszültség határértékén túl is az áramváltozás ellenére is megtartja a zárófeszültséget
- Ez a tulajdonság alkalmas feszültség stabilizációhoz

Schottky dióda

- A Schottky dióda nyitó feszültsége lényegesen alacsonyabb mint a szilícium diódák nyitó feszültsége
- Gyors kapcsoló diódaként, főleg digitális áramkörökben használatos

Varicap dióda

- A varicap dióda záró irányban (mint minden dióda) nem vezet, de változó feszültség a záró irányban megváltoztatja a dióda kapacitását
- Így a kapacitását feszültséggel változtatva rezgőkörök hangolására alkalmas

• LED dióda

- A LED dióda záró irányban (mint minden dióda) nem vezet, nyitó irányban viszont fotonokat emittál, vagyis világít
- Különböző színű LED diódák léteznek, attól függően milyen spektrumban emittál fotonokat: vörös, sárga, zöld, kék...

Tranzisztorok

Tranzisztor

Bipoláris tranzisztorok NPN és PNP

- A három pólus:
 - B ... bázis
 - E ... emitter
 - C ...kollektor
- Amíg a bázison nem folyik áram I_b, addig a kollektor emitter közt sem folyik áram.
 Mihelyt I_b áram megjelenik I_c áram is folyik.
- I_c lényegesen nagyobb mint I_b, ebből adódik, hogy kapcsolásra vagy lineáris erősítésre alkalmas a tranzisztor.
- Erősítési tényező: $\beta = \frac{\Delta Ic}{\Delta IB}$

Ahol:

 $\boldsymbol{\beta}$... erősítési tényező, ... változás \boldsymbol{I}_c ... kollector áram, \boldsymbol{I}_b ... bázis áram

Tranzisztor

Tranzisztorok tipusai

Tranzisztorokat osztályozhatjuk

- **Teljesítmény** szerint
- Frekvencia szerint
- Kapcsoló tranzisztorok

Térvezérlésű tranzisztor

Field Effect Transistor (FET)

JFET

- G ... gate
- D ... drain
- S... source
- Lehet P és N csatornás
- Vezérlés nélkül D és S nyitva van, vagyis maximum áram folyik rajta keresztül
- Vezérlés növekedésével az áram csökken a D és S között

MOSFET

- Két fajtát ismerünk
- Kiürítéses: ha U_g=0, akkor I_{SD} = max
- Növekményes: ha U_g=0, akkor I_{SD}= 0

Térvezérlésű tranzisztor

Alkalmazásai

JFET és MOSFET-ek alkalmazásai

- Lineáris erősítő (hang vagy rádió frekvenciás)
- Kapcsoló áramkörök
- Feszültség vezérelt ellenállás
- Feszültség vezérelt áramforrás

Elektroncsövek

Elektroncsövek

Típusok és alkalmazásai

- Ma már elektroncsövet nagyon ritkán használnak
- Ahol még esetleg használják az a teljesítmény erősítők, főleg rádió frekvenciás végfokok
- Egyes megszállottak még ma is az elektroncsöves hangerősítőkre esküsznek és készítenek hobbi vagy akár iparilag is

- Ha nincs "grid" rács, akkor dióda
- 1 rács: trióda
- 2 rács: tetróda
- 3 rács: pentóda
- 4 rács: hexóda
- Két akár három elektroncső egy üvegbúrában

Integrált áramkörök

Integrált áramkörök

Digitális és analóg integrált áramkörök

Akár milliónyi diszkrét elemet zsúfol össze egy kis tokozatban

Előnye:

- Megbízhatóság
- Gazdaságosság
- Helytakarékosság
- Javíthatóság (cserével)

741 op-amp belső kivitelezése - 24 tranzisztort tartalmaz

Integrált áramkörök

Műveleti erősítők

- + nem-invertáló bemenet
- Invertáló bemenet

- Invertáló, nem-invertáló erősítő
- Lineáris erősítő
- Összeadó, kivonó áramkör
- Integráló, differenciátor áramkör
- Késleltető áramkör

Példák

Példa számoljuk ki

Soros párhuzamos ellenállások

- Számoljuk ki az eredő ellenállást
- R = ?
- Hol kezdjük?

Házi feladat!

Soros párhuzamos ellenállások

Jegyzetek: