Week 3 - Evaluating Toronto Neighborhoods

Gary Netherton - July 4, 2020

Initial download of Toronto data from Wikipedia

Use Pandas to scrape the web page and create a panda dataframe

```
In [2]: # import required Libraries
import pandas as pd
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
import numpy as np
```

```
In [3]: # Use Pandas to scrape HTML table from Wikipedia; create a dataframe from results
data = pd.read_html('http://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:
    df = data[0]
    print(df.shape)
    df.head()
```

(180, 3)

Out[3]:

	Postal Code	Borough	Neighborhood
0	M1A	Not assigned	Not assigned
1	M2A	Not assigned	Not assigned
2	МЗА	North York	Parkwoods
3	M4A	North York	Victoria Village
4	M5A	Downtown Toronto	Regent Park, Harbourfront

```
In [4]: # Remove rows where the Borough has not been assigned
df=df[df['Borough']!='Not assigned']
df.shape
```

Out[4]: (103, 3)

For next portion, collect the latitude and longitude of each Postal Code

Combine this data with the data from the initial data frame to form one dataframe with all information

In [5]: # Need to find latitude and longitude of each neighborhood
 # Per the instructions, the geocoder package is unreliable. I was unable to make
 # Using the provided CSV file to create a dataframe of postal codes with latitude
 geodata = pd.read_csv(r'C:\Users\garyn\OneDrive\Documents\Coursera_Labs\Week_3_lageodata.head()

Out[5]:

Postal Code	Latitude	Longitude
M1B	43.806686	-79.194353
M1C	43.784535	-79.160497
M1E	43.763573	-79.188711
M1G	43.770992	-79.216917
M1H	43.773136	-79.239476
	M1B M1C M1E M1G	Postal Code Latitude M1B 43.806686 M1C 43.784535 M1E 43.763573 M1G 43.770992 M1H 43.773136

In [6]: # Using merge to combine original dataframe with latitude and longitude dataframe
df = pd.merge(df, geodata, on='Postal Code', how='outer')
df.head()

Out[6]:

	Postal Code	Borough	Neighborhood	Latitude	Longitude
0	МЗА	North York	Parkwoods	43.753259	-79.329656
1	M4A	North York	Victoria Village	43.725882	-79.315572
2	M5A	Downtown Toronto	Regent Park, Harbourfront	43.654260	-79.360636
3	M6A	North York	Lawrence Manor, Lawrence Heights	43.718518	-79.464763
4	M7A	Downtown Toronto	Queen's Park, Ontario Provincial Government	43.662301	-79.389494

Download the appropriate libraries to use the Foursquare API to explore

Use Venues similar to the New York lab earlier in the course

```
In [26]: import json # library to handle JSON files

#!conda install -c conda-forge geopy --yes
from geopy.geocoders import Nominatim # convert an address into latitude and long
import requests # library to handle requests
from pandas.io.json import json_normalize # tranform JSON file into a pandas data

# Matplotlib and associated plotting modules
import matplotlib.cm as cm
import matplotlib.colors as colors

# import k-means from clustering stage
from sklearn.cluster import KMeans

#!conda install -c conda-forge folium=0.5.0 --yes
import folium # map rendering library

print('Libraries imported.')
```

Libraries imported.

```
In [8]: |# create map of Toronto using Latitude and Longitude values
        map toronto = folium.Map(location=[43.657952, -79.387383], zoom start=10)
        # add markers to map
        for lat, lng, borough, neighborhood in zip(df['Latitude'], df['Longitude'], df['E
            label = '{}, {}'.format(neighborhood, borough)
            label = folium.Popup(label, parse html=True)
            folium.CircleMarker(
                 [lat, lng],
                radius=5,
                popup=label,
                color='blue',
                fill=True,
                fill color='#3186cc',
                fill_opacity=0.7,
                parse_html=False).add_to(map_toronto)
        map_toronto
```

Out[8]:

In [9]: # Setup the Foursquare API information CLIENT_ID = 'BRBDGCKR00L1JCYN5RD3ZDJ2BN0J5YOVAN3F2KZNVVUVB3VW' # your Foursquare CLIENT_SECRET = '5N1FQNDEEVF0LSK4A1SFM41P4KFSGECE1T23QNK20K1SD4PR' # your Foursqu VERSION = '20180605' # Foursquare API version print('Your credentails:') print('CLIENT_ID: ' + CLIENT_ID) print('CLIENT_SECRET:' + CLIENT_SECRET)

Your credentails:

CLIENT_ID: BRBDGCKR00L1JCYN5RD3ZDJ2BN0J5YOVAN3F2KZNVVUVB3VW CLIENT_SECRET:5N1FQNDEEVF0LSK4A1SFM41P4KFSGECE1T23QNK20K1SD4PR

```
In [10]: LIMIT = 100 # limit of number of venues returned by Foursquare API
         radius = 500 # define radius
In [11]: # Create function to collect venue information from all neighborhoods in Toronto
         def getNearbyVenues(names, latitudes, longitudes, radius=500):
             venues list=[]
             for name, lat, lng in zip(names, latitudes, longitudes):
                 print(name)
                 # create the API request URL
                 url = 'https://api.foursquare.com/v2/venues/explore?&client id={}&client
                     CLIENT ID,
                     CLIENT SECRET,
                     VERSION,
                     lat,
                      lng,
                     radius,
                     LIMIT)
                 # make the GET request
                 results = requests.get(url).json()["response"]['groups'][0]['items']
                 # return only relevant information for each nearby venue
                 venues list.append([(
                     name,
                     lat,
                     lng,
                     v['venue']['name'],
                     v['venue']['location']['lat'],
                     v['venue']['location']['lng'],
                     v['venue']['categories'][0]['name']) for v in results])
             nearby venues = pd.DataFrame([item for venue list in venues list for item in
             nearby_venues.columns = ['Neighborhood',
                            'Neighborhood Latitude',
                            'Neighborhood Longitude',
                            'Venue',
                            'Venue Latitude',
                            'Venue Longitude',
                            'Venue Category']
```

return(nearby_venues)

Parkwoods Victoria Village Regent Park, Harbourfront Lawrence Manor, Lawrence Heights Queen's Park, Ontario Provincial Government Islington Avenue, Humber Valley Village Malvern, Rouge Don Mills Parkview Hill, Woodbine Gardens Garden District, Ryerson Glencairn West Deane Park, Princess Gardens, Martin Grove, Islington, Cloverdale Rouge Hill, Port Union, Highland Creek Don Mills Woodbine Heights St. James Town Humewood-Cedarvale Eringate, Bloordale Gardens, Old Burnhamthorpe, Markland Wood Guildwood, Morningside, West Hill The Beaches Berczy Park Caledonia-Fairbanks Woburn Leaside Central Bay Street Christie Cedarbrae Hillcrest Village Bathurst Manor, Wilson Heights, Downsview North Thorncliffe Park Richmond, Adelaide, King Dufferin, Dovercourt Village Scarborough Village Fairview, Henry Farm, Oriole Northwood Park, York University East Toronto, Broadview North (Old East York) Harbourfront East, Union Station, Toronto Islands Little Portugal, Trinity Kennedy Park, Ionview, East Birchmount Park Bayview Village Downsview The Danforth West, Riverdale Toronto Dominion Centre, Design Exchange Brockton, Parkdale Village, Exhibition Place Golden Mile, Clairlea, Oakridge York Mills, Silver Hills Downsview India Bazaar, The Beaches West Commerce Court, Victoria Hotel North Park, Maple Leaf Park, Upwood Park

Humber Summit

Cliffside, Cliffcrest, Scarborough Village West

Willowdale, Newtonbrook

Downsview

Studio District

Bedford Park, Lawrence Manor East

Del Ray, Mount Dennis, Keelsdale and Silverthorn

Humberlea, Emery

Birch Cliff, Cliffside West

Willowdale, Willowdale East

Downsview

Lawrence Park

Roselawn

Runnymede, The Junction North

Weston

Dorset Park, Wexford Heights, Scarborough Town Centre

York Mills West

Davisville North

Forest Hill North & West, Forest Hill Road Park

High Park, The Junction South

Westmount

Wexford, Maryvale

Willowdale, Willowdale West

North Toronto West, Lawrence Park

The Annex, North Midtown, Yorkville

Parkdale, Roncesvalles

Canada Post Gateway Processing Centre

Kingsview Village, St. Phillips, Martin Grove Gardens, Richview Gardens

Agincourt

Davisville

University of Toronto, Harbord

Runnymede, Swansea

Clarks Corners, Tam O'Shanter, Sullivan

Moore Park, Summerhill East

Kensington Market, Chinatown, Grange Park

Milliken, Agincourt North, Steeles East, L'Amoreaux East

Summerhill West, Rathnelly, South Hill, Forest Hill SE, Deer Park

CN Tower, King and Spadina, Railway Lands, Harbourfront West, Bathurst Quay, So uth Niagara, Island airport

New Toronto, Mimico South, Humber Bay Shores

South Steeles, Silverstone, Humbergate, Jamestown, Mount Olive, Beaumond Heights, Thistletown, Albion Gardens

Steeles West, L'Amoreaux West

Rosedale

Stn A PO Boxes

Alderwood, Long Branch

Northwest, West Humber - Clairville

Upper Rouge

St. James Town, Cabbagetown

First Canadian Place, Underground city

The Kingsway, Montgomery Road, Old Mill North

Church and Wellesley

Business reply mail Processing Centre, South Central Letter Processing Plant To ronto

Old Mill South, King's Mill Park, Sunnylea, Humber Bay, Mimico NE, The Queensway East, Royal York South East, Kingsway Park South East

Mimico NW, The Queensway West, South of Bloor, Kingsway Park South West, Royal York South West

Explore the venue information that downloaded from Foursquare

In [13]: # Get shape and head() of dataframe
 print(toronto_venues.shape)
 toronto_venues.head()

(2129, 7)

Out[13]:

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
0	Parkwoods	43.753259	-79.329656	Brookbanks Park	43.751976	-79.332140	Park
1	Parkwoods	43.753259	-79.329656	Variety Store	43.751974	-79.333114	Food & Drink Shop
2	Victoria Village	43.725882	-79.315572	Victoria Village Arena	43.723481	-79.315635	Hockey Arena
3	Victoria Village	43.725882	-79.315572	Portugril	43.725819	-79.312785	Portuguese Restaurant
4	Victoria Village	43.725882	-79.315572	Tim Hortons	43.725517	-79.313103	Coffee Shop

In [14]: # Number of venues returned for each neighborhood
toronto_venues.groupby('Neighborhood').count()

Out[14]:

	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
Neighborhood						
Agincourt	5	5	5	5	5	5
Alderwood, Long Branch	8	8	8	8	8	8
Bathurst Manor, Wilson Heights, Downsview North	20	20	20	20	20	20
Bayview Village	4	4	4	4	4	4
Bedford Park, Lawrence Manor East	24	24	24	24	24	24
Berczy Park	58	58	58	58	58	58
Birch Cliff, Cliffside West	4	4	4	4	4	4
Brockton, Parkdale Village, Exhibition Place	22	22	22	22	22	22

Summarize unique categories from returned venues

In [15]: print('There are {} uniques categories.'.format(len(toronto_venues['Venue Categor'))

There are 268 uniques categories.

Analyze Each Neighborhood in Toronto

```
In [16]: # one hot encoding
    toronto_onehot = pd.get_dummies(toronto_venues[['Venue Category']], prefix="", pr
# add neighborhood column back to dataframe
    toronto_onehot['Neighborhood'] = toronto_venues['Neighborhood']

# move neighborhood column to the first column
    fixed_columns = [toronto_onehot.columns[-1]] + list(toronto_onehot.columns[:-1])
    toronto_onehot = toronto_onehot[fixed_columns]
    print(toronto_onehot.shape)
    toronto_onehot.head()
(2129, 268)
```

Out[16]:

	Yoga Studio	Accessories Store	Afghan Restaurant	Airport	Airport Food Court			Airport Terminal	American Restaurant	Antiqu Shc
0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	
4										•

Similar to the New Yort lab, group rows by neighborhood by taking the mean

of the frequency of occurrence of each category

Out[17]:

	Neighborhood	Yoga Studio	Accessories Store	Afghan Restaurant	Airport	Airport Food Court	Airport Lounge	Airport Service	Airport Terminal	A Re
0	Agincourt	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
1	Alderwood, Long Branch	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
2	Bathurst Manor, Wilson Heights, Downsview North	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
3	Bayview Village	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
4	Bedford Park, Lawrence Manor East	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
4										•

Print each neighborhood with top 5 most common venues

Then, add that to a pandas dataframe

```
In [18]: | num_top_venues = 5
         for hood in toronto grouped['Neighborhood']:
             print("----"+hood+"----")
             temp = toronto_grouped[toronto_grouped['Neighborhood'] == hood].T.reset_index
             temp.columns = ['venue','freq']
             temp = temp.iloc[1:]
             temp['freq'] = temp['freq'].astype(float)
             temp = temp.round({'freq': 2})
             print(temp.sort_values('freq', ascending=False).reset_index(drop=True).head(r
             print('\n')
         ----Agincourt----
                                 venue freq
         0
                       Clothing Store
                                         0.2
         1
                       Breakfast Spot
                                         0.2
         2
                                Lounge
                                         0.2
            Latin American Restaurant
                                         0.2
         4
                         Skating Rink
                                         0.2
         ----Alderwood, Long Branch----
                     venue freq
               Pizza Place 0.25
            Sandwich Place 0.12
         2
                       Gym 0.12
         3
                       Pool 0.12
         4
              Dance Studio 0.12
         ----Bathurst Manor, Wilson Heights, Downsview North----
In [19]: # Insert the most common venues data into a pandas dataframe
         def return most common venues(row, num top venues):
             row categories = row.iloc[1:]
             row_categories_sorted = row_categories.sort_values(ascending=False)
             return row categories sorted.index.values[0:num top venues]
```

```
In [20]: # The following code creates a new dataframe that will display the top 10 venues
         num top venues = 10
         indicators = ['st', 'nd', 'rd']
         # create columns according to number of top venues
         columns = ['Neighborhood']
         for ind in np.arange(num top venues):
             try:
                 columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind]))
             except:
                 columns.append('{}th Most Common Venue'.format(ind+1))
         # create a new dataframe
         neighborhoods venues sorted = pd.DataFrame(columns=columns)
         neighborhoods_venues_sorted['Neighborhood'] = toronto_grouped['Neighborhood']
         for ind in np.arange(toronto_grouped.shape[0]):
             neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(toronto)
         neighborhoods venues sorted.head()
```

Out[20]:

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	(
0	Agincourt	Lounge	Latin American Restaurant	Breakfast Spot	Skating Rink	Clothing Store	Drugstore	Discount Store	Di
1	Alderwood, Long Branch	Pizza Place	Dance Studio	Pub	Gym	Coffee Shop	Sandwich Place	Pool	
2	Bathurst Manor, Wilson Heights, Downsview North	Coffee Shop	Bank	Frozen Yogurt Shop	Shopping Mall	Bridal Shop	Sandwich Place	Diner	R
3	Bayview Village	Café	Bank	Chinese Restaurant	Japanese Restaurant	Women's Store	Discount Store	Distribution Center	
4	Bedford Park, Lawrence Manor East	Coffee Shop	Restaurant	Sandwich Place	Italian Restaurant	Thai Restaurant	Pharmacy	Pizza Place	
4									•

Now to cluster the neighborhoods into 5 clusters

Picking the number 5 semi-randomly ("semi-randomly" as it was used in the New York lab)

```
In [21]: # set number of clusters
kclusters = 5

toronto_grouped_clustering = toronto_grouped.drop('Neighborhood', 1)

# run k-means clustering
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(toronto_grouped_cluster)

# check cluster labels generated for each row in the dataframe
kmeans.labels_[0:10]
```

Out[21]: array([2, 2, 2, 2, 2, 2, 2, 2, 2])

Out[28]:

	Postal Code	Borough	Neighborhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd N Comi Ve
0	МЗА	North York	Parkwoods	43.753259	-79.329656	1.0	Food & Drink Shop	Park	Wom S
1	M4A	North York	Victoria Village	43.725882	-79.315572	2.0	Portuguese Restaurant	Coffee Shop	Fr∈ Resta∟
2	M5A	Downtown Toronto	Regent Park, Harbourfront	43.654260	-79.360636	2.0	Coffee Shop	Park	
3	M6A	North York	Lawrence Manor, Lawrence Heights	43.718518	-79.464763	2.0	Clothing Store	Accessories Store	Furnit H S
4	М7А	Downtown Toronto	Queen's Park, Ontario Provincial Government	43.662301	-79.389494	2.0	Coffee Shop	Diner	S Restau
4									•

Visualize the clusters

```
In [35]: # Adminstrative information needed to map

toronto_merged['Cluster Labels'] = toronto_merged['Cluster Labels'].fillna(0.0).a

address = 'Toronto, CA'

geolocator = Nominatim(user_agent="CA_explorer")
location = geolocator.geocode(address)
latitude = location.latitude
longitude = location.longitude
print('The geograpical coordinate of Toronto are {}, {}.'.format(latitude, longit)
```

```
In [36]: # create map
         import folium
         map_clusters = folium.Map(location=[latitude, longitude], zoom_start=11)
         # set color scheme for the clusters
         x = np.arange(kclusters)
         ys = [i + x + (i*x)**2  for i  in range(kclusters)]
         colors array = cm.rainbow(np.linspace(0, 1, len(ys)))
         rainbow = [colors.rgb2hex(i) for i in colors_array]
         # add markers to the map
         markers colors = []
         for lat, lon, poi, cluster in zip(toronto_merged['Latitude'], toronto_merged['Lor
             label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True)
             folium.CircleMarker(
                 [lat, lon],
                 radius=5,
                 popup=label,
                 color=rainbow[cluster-1],
                 fill=True,
                 fill color=rainbow[cluster-1],
                 fill opacity=0.7).add to(map clusters)
         map_clusters
Out[36]:
                                           Vaughan
```


Finally, examine the clusters

In [37]: # CLUSTER #1
toronto_merged.loc[toronto_merged['Cluster Labels'] == 0, toronto_merged.columns[

Out[37]:

	Borough	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th I Com⊦ V€
5	Etobicoke	0	NaN	NaN	NaN	NaN	NaN	NaN	
11	Etobicoke	0	NaN	NaN	NaN	NaN	NaN	NaN	
32	Scarborough	0	Playground	Women's Store	Donut Shop	Dim Sum Restaurant	Diner	Discount Store	Distribı C€
45	North York	0	NaN	NaN	NaN	NaN	NaN	NaN	
52	North York	0	NaN	NaN	NaN	NaN	NaN	NaN	
64	York	0	NaN	NaN	NaN	NaN	NaN	NaN	
85	Scarborough	0	Park	Playground	Sculpture Garden	Dog Run	Dessert Shop	Dim Sum Restaurant	Ε
95	Scarborough	0	NaN	NaN	NaN	NaN	NaN	NaN	
4									•

In [38]: # CLUSTER #2

toronto_merged.loc[toronto_merged['Cluster Labels'] == 1, toronto_merged.columns|

Out[38]:

	Borough	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	71 C(
0	North York	1	Food & Drink Shop	Park	Women's Store	Diner	Discount Store	Distribution Center	С
21	York	1	Park	Pool	Women's Store	Greek Restaurant	Gourmet Shop	Ethiopian Restaurant	Ele
35	East York	1	Park	Metro Station	Convenience Store	Women's Store	Doner Restaurant	Diner	С
61	Central Toronto	1	Park	Bus Line	Swim School	Dog Run	Dim Sum Restaurant	Diner	Е
66	North York	1	Park	Convenience Store	Women's Store	Donut Shop	Diner	Discount Store	Dist
77	Etobicoke	1	Park	Sandwich Place	Department Store	Event Space	Ethiopian Restaurant	Electronics Store	Eı Re:
83	Central Toronto	1	Park	Women's Store	Donut Shop	Dim Sum Restaurant	Diner	Discount Store	Dist
91	Downtown Toronto	1	Park	Trail	Playground	Dim Sum Restaurant	Diner	Discount Store	Dist
98	Etobicoke	1	Park	River	Smoke Shop	Dog Run	Dessert Shop	Dim Sum Restaurant	
4									•

In [39]: # CLUSTER #3 toronto merged.loc[toronto merged['Cluster Labels'] == 2, toronto merged.columns Out[39]: 1st Most 2nd Most 3rd Most 4th Most 5th Most Cluster **Borough** Common Common Common Common Common Labels Venue Venue Venue Venue Venue Portuguese French Hockey 1 North York 2 Coffee Shop Intersection Restaurant Restaurant Arena Downtown 2 2 Coffee Shop Park Pub Bakery Theater **Toronto** Furniture / Accessories Vietnamese 3 North York Clothing Store **Boutique** 2 Home Store Store Restaurant Downtown College Sushi 4 2 Coffee Shop Diner Yoga Studio **Toronto** Restaurant Auditorium Asian Japanese 7 North York 2 Beer Store Coffee Shop Gym Restaurant Restaurant Gym / Fitness Fast Food 8 East York 2 Pizza Place Gastropub Intersection Center Restaurant In [40]: # CLUSTER #4 toronto merged.loc[toronto merged['Cluster Labels'] == 3, toronto merged.columns[Out[40]: 2nd 1st Most 3rd Most 4th Most 5th Most 6th Most 7th Most Cluster Most **Borough** Common Common Common Common Common Common Common Labels Venue Venue Venue Venue Venue Venue Venue Distribution Women's Donut Discount 3 12 Scarborough Bar Diner Dog Run Shop Center Store Store Þ # CLUSTER #5 In [41]: toronto_merged.loc[toronto_merged['Cluster Labels'] == 4, toronto_merged.columns[Out[41]: 2nd 1st Most 3rd Most 4th Most 5th Most 6th Most 7th Mos Cluster Most **Borough** Common Common Common Common Common Commor Labels Common Venue Venue Venue Venue Venue Venue Venue Fast Food Falafel Ethiopian Electronics Dessert **Farmers** Event Scarborough Restaurant Restaurant Restaurant Shop Market Space Store In []: