Particle spectrograph Lagrangian density

 $\frac{\beta^2 \phi^2 + \partial_{\alpha} \phi \partial^{\alpha} \phi}{\text{Added source term: } \phi \rho}$ Wave operator

$$\phi_{0^{+}}^{\#1}$$

$$\phi_{0^{+}}^{\#1} \dagger \beta^{2} + k^{2}$$

7011

Saturated propagator

$$\rho_{0^{+}}^{\#1}$$

$$\rho_{0^{+}}^{\#1} \dagger \frac{1}{\beta^{2} + k^{2}}$$

(No source constraints)

Source constraints

Massive spectrum

$$\begin{array}{c}
? \\
J^P = 0 + \\
? \\
\hline
k^{\mu}
\end{array}$$
?

Massive particle	
Pole residue:	True
Polarisations:	1
Square mass:	$-\beta^2 > 0$
Spin:	0
Parity:	Even

Assolate the struck

Massless spectrum

(No massless particles)

Unitarity conditions

Unitarity conditions

(Unitarity is demonstrably impossible)