Informed Search

CS161

Prof. Guy Van den Broeck

Best-First Search Motivation

Evaluation function f(n)?

Heuristic Search Motivation

211

101

Pitesti

138

97

146

Craiova

111

Lugoj

Mehadia

120

70

75

Drobeta

142

98

Urziceni

Bucharest

90

Giurgiu

Hirsova

86

Eforie

Greedy Best-First Search

- Minimize estimated cost to goal
 h(n) estimated cost of cheapest path from n to goal
- Evaluation function to choose node f(n) = h(n)
- Require: h(n) = 0 when n is goal
- Where does h come from?
 - Not easily read from search problem formulation
 - Application-specific
 - E.g., straight-line distance from map coordinates

Arad to Bucharest?

Bucharest

Giurgiu

Craiova

Drobeta 📋

Eforie

Properties

- Arad to Bucharest 32km longer than optimal
- Minimal search cost:
 Solution was found with no unnecessary expansion!
- Optimal? No
- Complete?

lasi to Fagaras?

Properties

- Arad to Bucharest 32km longer than optimal
- Minimal search cost:
 - Solution was found with no unnecessary expansion!
- Optimal? No
- Complete? No
 - Infinite paths
 - Yes if finite state space with graph search
- Time and Space Complexity?
 - $O(b^m)$ -- when h(n) = 0 it's blind search!

How to fix this mess?

 Greedy best-first search with heuristic h(n) is too greedy

no idea where it came from...

Uniform-cost search with cost g(n) is too conservative

no idea where the goal is...

Solution?

A* Search

- f(n) = g(n) + h(n)
 - -g(n) = distance from start
 - -h(n) = heuristic
- Estimated cost of cheapest solution through n

A* Search

366	Mehadia	241
0	Neamt	234
160	Oradea	380
242	Pitesti	100
161	Rimnicu Vilcea	193
176	Sibiu	253
77	Timisoara	329
151	Urziceni	80
226	Vaslui	199
244	Zerind	374
	0 160 242 161 176 77 151 226	0 Neamt 160 Oradea 242 Pitesti 161 Rimnicu Vilcea 176 Sibiu 77 Timisoara 151 Urziceni 226 Vaslui

Heuristic Properties

Optimality of A*

Memory-Bounded Heuristic Search

Constructing Heuristics

Effective Branching Factor

	Search Cost (nodes generated)			Effective Branching Factor		
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	3644035	227	73	2.78	1.42	1.24
14	_	539	113	_	1.44	1.23
16	_	1301	211	_	1.45	1.25
18		3056	363	-	1.46	1.26
20	_	7276	676	_	1.47	1.27
22	_	18094	1219	_	1.48	1.28
24	_	39135	1641	_	1.48	1.26

Figure 3.29 Comparison of the search costs and effective branching factors for the ITERATIVE-DEEPENING-SEARCH and A^* algorithms with h_1 , h_2 . Data are averaged over 100 instances of the 8-puzzle for each of various solution lengths d.

Relaxed Problems

Subproblems

Korf's Breakthroughs

- 15-puzzle optimal (1985)
- 24-puzzle optimal (1996)
- Rubik's cube optimal (1997)
- 15-puzzle exhaustive (2005)
- •