TFT LCD Approval Specification

MODEL NO.: M236H1-P07

Customer : TPV
Approved by :
Note:

核准時間	部門	審核	角色	投票
2009-10-01 10:18:16	MTR 產品管理處	吳 2009.10.01 柏 勳	Director	Accept

②

- CONTENTS -

REVISION HISTORY		3
1. GENERAL DESCRIPTION		4
1.1 OVERVIEW		
1.2 FEATURES		
1.3 APPLICATION		
1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		
1.0 MESTIMITORE OF ESTITION TO TO		
2. ABSOLUTE MAXIMUM RATINGS		5
2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASE ON CMO M	ODULE M236H1-L07)	
2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)		
2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)		
3. ELECTRICAL CHARACTERISTICS		6
3.1 TFT LCD MODULE		
3.2 Vcc POWER DIP CONDITION		
4. BLOCK DIAGRAM		8
4.1 TFT LCD MODULE		U
4.1 11 1 EGD WIGDOLL		
5. INPUT TERMINAL PIN ASSIGNMENT		9
5.1 TFT LCD MODULE		
5.2 LVDS DATA MAPPING TABLE		
5.3 COLOR DATA INPUT ASSIGNMENT		
6. INTERFACE TIMING		11
6.1 INPUT SIGNAL TIMING SPECIFICATIONS		
6.2 POWER ON/OFF SEQUENCE		
7. OPTICAL CHARACTERISTICS		15
7.1 TEST CONDITIONS		
7.2 OPTICAL SPECIFICATIONS		
7.3 FLICKER ADJUSTMENT		
8. PACKAGING		19
8.1 PACKING SPECIFICATIONS		
8.2 PACKING METHOD		
9. DEFINITION OF LABELS		20
		20
9.1 OPEN CELL LABEL 9.2 CARTON LABEL		
5.2 57 H. H. 611 E. E. E.		
10. RELIABILITY TEST		21
11 DDECAUTIONS		20
11. PRECAUTIONS		22
11.1 ASSEMBLY AND HANDLING PRECAUTIONS 11.2 SAFETY PRECAUTIONS		
11.3 OTHER		
12. MECHANICAL DRAWING		22

②

Approval

REVISION HISTORY

Version	Date	Section	Description
Ver. 2.0	Sep. 21, '09		Description M236H1-P07 Approval Specification was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The M236H1-P07 is a 23.6-inch wide TFT LCD open cell with driver ICs and a 30-pins-2ch-LVDS circuit board. The product supports 1920 x 1080 Full HD mode and can display up to 16.7M colors. The backlight unit is not built in.

1.2 FEATURES

- Super wide viewing angle
- High contrast ratio
- Fast response time
- High color saturation
- Full HDTV (1920 x 1080 pixels) resolution
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- RoHS Compliance

1.3 APPLICATION

- TFT LCD Monitor

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Diagonal Size	23.547	inch	
Active Area	521.28 (H) x 293.22 (V)	mm	(1)
Driver Element	a-Si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1080	pixel	-
Pixel Pitch	0.2715 (H) x 0.2715 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Transmissive Mode	Normally White	-	-
Surface Treatment	Hard coating (3H), Anti-glare (Haze 25%)	-	-
Power Consumption	7.5	Watt	(3)

1.5 MECHANICAL SPECIFICATIONS

Item	Min.	Тур.	Max.	Unit	Note
Weight	-	-	710	g	-
I/F connector mounting	The mounting in	clination of the	connector makes		(2)
position	the screen center	r within ±0.5mm a	s the horizontal.		(2)

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

- (2) Connector mounting position
- (3) Please refer to sec.3.1 for more information of power consumption.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON CMO MODULE M236H1-L07)

Item	Symbol Valu		lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Storage Temperature	T _{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T _{OP}	0	+50	ç	(1), (2)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C)
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C)
- (c) No condensation.

Note (2) The temperature of panel display surface area should be 0 °C Min. and 60 °C Max.

2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

High temperature or humidity may reduce the performance of panel. Please store LCD panel within the specified storage conditions.

Storage Condition: With packing

Storage temperature range: 25±5 °C

Storage humidity range: 50±10%RH

Shelf life: 30days

2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

Item	Symbol	Value)	Unit	Note			
	Symbol	Min	Max	Offic	Note			
Power Supply Voltage	V _{CC}	-0.3	+6.0	V	(1)			
Logic Input Voltage	Vlogic	-0.3	+3.6					

Note (1) Permanent damage might occur if the module is operated at conditions exceeding the maximum values.

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD OPEN CELL

Ta = 25 ± 2 °C

Parame	tor	Symbol		Value		Unit	Note
Faranie	lei	Symbol	Min.	Тур.	Max.	Ullit	Note
Power Supply Voltage		Vcc	4.5	5.0	5.5	V	-
Ripple Voltage		V_{RP}	ı	-	300	mV	-
Rush Current	I _{RUSH}	ı	-	3.5	Α	(2)	
AC OFF Rush Current	loff_ _{RUSH}	ı	-	4	Α	(5)	
	White		ı	0.55	0.67	Α	(3)
Power Supply Current	Black	lcc	-	1.5	1.9	Α	(3)
	Vertical Stripe		-	1.18	1.43	Α	(3)
Power Consumption		PLCD	-	7.5	9.5	Watt	(4)
LVDS differential input v	oltage	Vid	100	-	600	mV	
LVDS common input vol	ltage	Vic		1.2	-	V	
Logic High Input Voltage	VIH	2.64	-	3.6	V		
Logic Low Input Voltage	}	VIL	-0.3	-	0.66	V	

Note (1) The product should be always operated within above ranges.

Note (2) Power On Rush Current Measurement Conditions: (must follow power sequence)

Vcc rising time is 470µs

Global LCD Panel Exchange Center

c. Vertical Stripe Pattern

Active Area

Note (4) The power consumption is specified at the pattern with the maximum current.

Note (5) The rush current would happen if system doesn't follow power sequence.

3.2 Vcc Power Dip Condition:

Dip condition: 4.0V: Vcc: 4.5V,Td: 20ms

4. BLOCK DIAGRAM

4.1 TFT LCD OPEN CELL

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Name	Description
1	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
2	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
3	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
4	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
5	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
6	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
7	GND	Ground
8	RXOC-	Negative LVDS differential clock input. (odd)
9	RXOC+	Positive LVDS differential clock input. (odd)
10	RXO3-	Negative LVDS differential data input. Channel O3(odd)
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXE0-	Negative LVDS differential data input. Channel E0 (even)
13	RXE0+	Positive LVDS differential data input. Channel E0 (even)
14	GND	Ground
15	RXE1-	Negative LVDS differential data input. Channel E1 (even)
16	RXE1+	Positive LVDS differential data input. Channel E1 (even)
17	GND	Ground
18	RXE2-	Negative LVDS differential data input. Channel E2 (even)
19	RXE2+	Positive LVDS differential data input. Channel E2 (even)
20	RXEC-	Negative LVDS differential clock input. (even)
21	RXEC+	Positive LVDS differential clock input. (even)
22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
23	RXE3+	Positive LVDS differential data input. Channel E3 (even)
24	GND	Ground
25	NC	Not connection, this pin should be open.
26	NC	Not connection, this pin should be open.
27	NC	Not connection, this pin should be open.
28	Vcc	+5.0V power supply
29	Vcc	+5.0V power supply
30	Vcc	+5.0V power supply

Note (1) Connector Part No.: 187066-30091 (P-TWO) or FI-XB30SL-HF10 (JAE)

Note (2) The first pixel is odd.

Note (3) Input signal of even and odd clock should be the same timing.

5.2 LVDS DATA MAPPING TABLE

LVDS Channel O0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Charinei O0	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Channel OT	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 Charmer 02	Data order	DE	NA	NA	OB5	OB4	OB3	OB2
LVDS Channel O3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Charmer 03	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6
LVDS Channel E0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Channel Eu	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0
LVDS Channel E1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Channel E1	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1
LVDS Channel E2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 Challie E2	Data order	DE	NA	NA	EB5	EB4	EB3	EB2
LVDS Channel E3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Challiel E3	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

	Therit of Color vers			۷								Da	ata	Sigr	nal										
	Color				Re	ed				Green							Blue								
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	В5	B4	ВЗ	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Basic Colors	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	. 1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:		:	:	:	:	:			:		:	:	:	:	:	:	:	:
Scale	: D = 4(050)	:	:	:	;	;	:		:	:	:	:	:	6		6	: (•	:	:	:	:	:	:	:
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)			ı	ı			ı	ı	U	0	0	0	0	U	0	U	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	: (1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:		:\		÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Orccii	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:		\:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of Blue	:	:	;	:	:	:] :	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	;
	Blue(253)	0	0<	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	58.54	74.25	98	MHz	-
	Period	Tc	-	13.47	-	ns	
	Input cycle to cycle jitter	T _{rcl}	-0.02*Tc	-	0.02*Tc	ns	(1)
LVDS Clock	Spread spectrum modulation range	Fclkin_mod	0.98*Fc	-	1.02*Fc	MHz	
	Spread spectrum modulation frequency	F _{SSM}	-	-	200	KHz	(2)
	High Time	Tch	-	4/7	- 0	Tc	-
	Low Time	Tcl	-	3/7	-	Tc	-
LVDC Data	Setup Time	Tlvs	600	-		ps	(3)
LVDS Data	Hold Time	Tlvh	600	-	-	ps	(3)
	Frame Rate	Fr	50	60	75	Hz	Tv=Tvd+Tvb
Vertical Active Display Term	Total	Tv	1115	1125	1136	Th	-
	Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	35	45	56	Th	-
Harizantal Active Diapley	Total	Th	1050	1100	1150	Tc	Th=Thd+Thb
Horizontal Active Display	Display	Thd	960	960	960	Tc	-
Term	Blank	Thb	90	140	190	Tc	-

Note: (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

Note (1) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

Note (2) The SSCG (Spread spectrum clock generator) is defined as below figures.

Global LCD Panel Exchange Center

Note (3) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Approval

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should follow the conditions shown in the following diagram.

Timing Specifications:

0.5< t1 \leq 10 msec

 $0 < t2 \le 50 \text{ msec}$

 $0 < t3 \le 50 \text{ msec}$

 $t4 \ge 500 \; msec$

 $t5 \ge 450 \text{ msec}$

 $t6 \ge 90 \text{ msec}$

 $5 \le t7 \le 100 \text{ msec}$

Note:

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.
- (6) CMO won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.
- (7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "t7 spec".

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Та	25 ± 2	°C
Ambient Humidity	На	50 ± 10	%RH
Supply Voltage	V _{CC}	7.0	V
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"
Inverter Current	Iμ	7.5 ± 0.5	mA
Inverter Driving Frequency	FL	55 ±5	KHz

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Item	1	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rcx			0.650		-	
	Neu	Rcy			0.328		-	
0.1	Green	Gcx	0 00 0 00		0.268		-	
Color	Green	Gcy	$\theta_x = 0^\circ$, $\theta_Y = 0^\circ$	Тур -	0.598	Typ +	-	(0) (6)
Chromaticity (CIE 1931)	Blue	Всх	CS-1000T Standard light source "C"	0.03	0.147	0.03		(0),(6)
(OIL 1001)	Dide	Всу	Standard light source C		0.111		-	
	White	Wcx			0.313		-	
	vviille	Wcy			0.366		-	
Center	DBEFD	Т%	0 -00 0 -00	12	13.5	-	%	(1), (5)
Transmittance			θ_x =0°, θ_Y =0° CS-1000T, CMO BLU	5.25	6.25	-	%	(1), (5)
Contrast Ratio		CR	CS-10001, CIVIO BEO	800	1200	-	(
Response Time		T_R	$\theta_x=0^\circ$, $\theta_Y=0^\circ$	-	0.7	1.5	ms	(4)
response fille		T _F	0 _x -0 , 0 _Y -0	-	2.3	4.5	ms	(4)
Transmittance ur	niformity	δΤ%	θ_{x} =0°, θ_{Y} =0° USB2000	-	-	1.33	-	(1), (7)
	1400:	θ_x +		75	85	-		
Viewing Angle	Horizontal	θ _x -	CR≥10	75	85	-	Dea	(1), (2)
viewing Angle	Vartical	θ _Y +	USB2000	70	80	-	Deg.	(6)
	Vertical	θ _Y -		70	80	-	% % - ms ms	

- Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages. The calculating method is as following:
 - 1. Measure Module's and BLU's spectrums. White is without signal input and R, G, B are with signal input. BLU (for M236H1-L07) is supplied by CMO.
 - 2. Calculate cell's spectrum.
 - 3. Calculate cell's chromaticity by using the spectrum of standard light source "C".
- Note (1) Light source is the BLU which is supplied by CMO and driving voltages are based on suitable gamma voltages.

Note (2) Definition of Viewing Angle (θx , θy):

Note (3) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (7).

Note (5) Definition of Transmittance (T%):

Module is without signal input.

L(x) and $L_{\text{BLU}}(X)$ are corresponding to the luminance of the point X at Figure in Note (7).

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 40 minutes to avoid abrupt

temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room.

Note (7) Definition of Transmittance Variation ($\delta T\%$):

Measure the transmittance at 9 points

$$\delta T\% = \frac{\text{Maximum [L (1), L (2),.....L (8), L (9)]}}{\text{Minimum [L (1), L (2),.....L (8), L (9)]}}$$

Version 2.0

7.3 Flicker Adjustment

(1) Adjustment Pattern: 2H1V checker pattern is as follows,

R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	в	R	G	В	R	G	в	R	G	В	R	G	в	R	G	В
R	G	в	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В

(2) Adjustment Method:

Flicker should be adjusted by turning the volume for flicker adjustment by the ceramic driver. It is adjusted to the point with least flickering of the whole screen. After making it surely overrun at once, it should be adjusted to the optimum point.

8. PACKAGING

8.1 PACKING SPECIFICATIONS

- (1) 24 open cells / 1 Box
- (2) Box dimensions: 670 (L) X 575 (W) X 325 (H) mm
- (3) Weight: approximately 23.8Kg (24 open cells per box)

8.2 PACKING METHOD

9. DEFINITION OF LABELS

9.1 CMO OPEN CELL LABEL

The barcode nameplate is pasted on each OPEN CELL as illustration for CMO internal control.

Barcode definition:

Serial ID: CM-23H17-X-X-X-XX-L-XX-L-YMD-NNNN

Code	Meaning	Description
CM	Supplier code	CMO=CM
23H17	Model number	M236H1-P07=23H17
Х	Revision code	C1:1 ,C2:2
Х	Source driver IC code	Century=1, CLL=2, Demos=3, Epson=4, Fujitsu=5, Himax=6, Hitachi=7, Hynix=8, LDI=9, Matsushita=A, NEC=B, Novatec=C,
Х	Gate driver IC code	OKI=D, Philips=E, Renasas=F, Samsung=G, Sanyo=H, Sharp=I, TI=J, Topro=K, Toshiba=L, Windbond=M
XX	Cell location	Tainan, Taiwan=TN
L	Cell line #	1,2,~,9,A,B,~,Y,Z
XX	Module location	Tainan, Taiwan=TN; Ningbo China=NP
L	Module line #	1,2,~,9,A,B,~,Y,Z
	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4
YMD		Month: 1~12=1, 2, 3, ~, 9, A, B, C
		Day: 1~31= 1, 2, 3, ~, 9, A, B, C, ~, T, U, V
NNNN	Serial number	Manufacturing sequence of product

9.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation.

(a) Model Name: M236H1-P07

(b) Carton ID: CMO internal control

(c) Quantities: 24 pcs

10. RELIABILITY TEST

Environment test conditions are listed as following table.

Items	Required Condition	Note		
Temperature Humidity Bias (THB)	Ta= 50℃, 80%RH, 240hours			
High Temperature Operation (HTO)	Ta= 50℃, 50%RH , 240hours			
Low Temperature Operation (LTO)	Ta= 0℃, 240hours	(1)		
High Temperature Storage (HTS)	Ta= 60℃, 240hours			
Low Temperature Storage (LTS)	Ta= -20℃ , 240hours			
Package Vibration Test	ISTA STANDARD 1.14Grms Random, Frequency Range: 1 ~ 200 Hz Top & Bottom: 30 minutes (+Z), 10 min (-Z), Right & Left: 10 minutes (X) Back & Forth 10 minutes (Y)	(2)		
Thermal Shock Test (TST)	-20°C/30min, 60°C/30min, 100 cycles			
On/Off Test	25°C, On/10sec, Off/10sec, 30000 cycles			
Altitude Test	Operation: 10000 ft/24hours Non-Operation: 30000 ft/24hours	(1)		

Note (1) The tests are done with LCD modules.

Note (2) The test is done with a package (24 open cells / 1 Box) shown in Section 8.

11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the product during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. Dust and oil may cause electrical short or worsen the polarizer.
- (3) It is not permitted to have pressure or impulse on the product because the LCD panel will be damaged.
- (4) Always follow the correct power sequence when the product is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull I / F connector in or out while the module is operating.
- (6) Use a soft dry cloth without chemicals for cleaning because the surface of polarizer is very soft and easily scratched.
- (7) It is dangerous that moisture comes into or contacts the product because moisture may damage the product when it is operating.
- (8) High temperature or humidity may reduce the performance of module. Please store this product within the specified storage conditions.
- (9) When ambient temperature is lower than 10°C, it may reduce display quality. For example, the response time will become slowly.

11.2 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from eyes or mouth. In case of contacting with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the product's end of life, it is not harmful in case of normal operation and storage.

11.3 OTHER

(1) When fixed patterns are displayed for a long time, remnant image is likely to occur.

12. MECHANICAL DRAWING

