(*): Assigned to weekly problem set.

Gamma and Beta Distributions

- 1. (*) Let $X \sim \text{Gamma}(a, \lambda)$ and $Y \sim \text{Gamma}(b, \lambda)$ be independent. Show that $X + Y \sim \text{Gamma}(a + b, \lambda)$ in three ways:
 - (a) Using MGFs.
 - (b) Using a story about a Poisson process. (For this part only, assume a and b are positive integers).
 - (c) By going through the following process:
 - i. Define Z = X + Y. Find the conditional CDF of Z given X = x. Then, differentiate this CDF to obtain the conditional PDF of Z given X = x, Don't forget to specify the support of the PDF and define the CDF everywhere.
 - ii. Use continuous LoTP (Theorem 7.1.18) to express the marginal PDF of Z in terms of the conditional PDF of Z given X = x and the marginal PDF of X.
 - iii. Evaluate the integral from above by recognizing it as a Beta integral (you may need to make an appropriate *u*-substitution first).
 - iv. Verify that the marginal PDF of Z is indeed the PDF for Gamma $(a + b, \lambda)$.
- 2. Let $B \sim \text{Beta}(a, b)$. Find the distribution of W = 1 B using change of variables. Can you also find the distribution of W using a story proof?

Poisson Processes

A process of arrivals in continuous time is called a *Poisson process* with rate λ if the following two conditions hold:

- The number of arrivals that occur in an interval of length t is a $Pois(\lambda t)$ random variable
- The number of arrivals that occur in disjoint intervals are independent of each other. For example, the number of arrivals in the interval (0, 10], (10, 12] and (15, 100] are independent.

We'll now define a few variables related to this process:

- For each real number $t \geq 0$, let N_t be the number of arrivals in the interval (0, t]; then $N_t \sim \text{Pois}(\lambda t)$.
- For s < t, the variable $N_t N_s$ counts the number of arrivals in the interval (s, t]; then $N_t N_s \sim \text{Pois}(\lambda(t s))$.
- For each integer $k \geq 1$, let T_j the time of the jth arrival; we will show $T_j \sim \text{Gamma}(j, \lambda)$.
- For each integer $k \geq 1$, let R_j be the time between the kth and (k-1)th arrival; we will show $R_j \sim \text{Expo}(\lambda)$.
- 3. The following exercises outline a proof that $T_j \sim \text{Gamma}(j, \lambda)$
 - (a) Find the CDF for T_1 using the fact that $P(T_1 \le t) = P(N_t \ge 1)$. Then calculate the PDF of T_1 .
 - (b) Express the probability $P(T_j > t)$ as a finite sum, using the fact that $P(T_j > t) = P(N_t < j)$.
 - (c) Use your previous answer to write the CDF of T_j as a **finite** sum.
 - (d) Differentiate and use the product rule to write the PDF of T_j as a finite sum. Be careful about the derivative of the constant term.
 - (e) Explicitly write out the terms of the sum for the PDF of T_2 and T_3 . What pattern do you notice?
 - (f) Make a conjecture for how to simplify the sum for the PDF of T_j .
 - (g) Based on your formula in the previous part, what is the name of the distribution of T_j ?