Matematično modeliranje III domača naloga

Avtor: Melanija Kraljevska, 63170368

Podano je matematično nihalo, pri katerem točkasta masa m visi na lahki, ravni palici dolžine L, ki se lahko prosto vrti okrog vpenjališča. Na maso m deluje gravitacijska sila F_g = mg, kot odmika od ravnovesne lege občasu t pa označimo s $\varphi(t)$. To nihalo vpnemo v konec druge lahke palice dolžine l, ki je vpeta v pogonsko os pod stropom.

1. Iz 2. Newtonovega zakona F = ma izpelji enačbo običajnega matematičnega nihala:

$$L\theta'' + g \sin\theta = 0$$

Koordinatni sistem postavimo kot na sliki. Pogledamo sile za vsako smer.

X smer: $-F_L \sin\theta = m a_x$ $-F_L \sin\theta = m x$

Y smer: $-F_g + F_L \cos\theta = m a_y$ $-mg + F_L \cos\theta = m y$

Pospešek a_x je enak drugemu odvodu $x = I \sin\theta$, a_y je enak drugemu odvodu $y = -I \cos\theta$. Računamo $x' = \theta'L\cos\theta$, $x'' = \theta''L\cos\theta - \theta'L\sin\theta = a_x$.

Podobno je za $a_y = y^{"}, y^{"} = \theta^{"} L \sin \theta + \theta^{"} L \cos \theta$.

Ustavimo v obeh enačbah in dobimo:

X: $-F_L \sin \theta = m \theta^{"}L\cos\theta - m \theta^{'}L\sin\theta$ Y: $-mg + F_L \cos\theta = m\theta^{"}L\sin\theta + m\theta^{'}L\cos\theta$

Da bi se F_L pokrajšal, prvo enačbo bomo pomnožili z cosθ, drugo z in ju bomo sešteli.

X: - $F_L \sin \theta \cos \theta = m \theta L \cos^2 \theta - m \theta L \sin \theta \cos \theta$

Y: $-mg \sin\theta + F_L \sin\theta \cos\theta = m\theta'' L\sin^2\theta + m\theta' L\cos\theta \sin\theta$

Pri seštevanju se člani: $F_L \sin \theta \cos \theta$ pa m $\theta L \sin \theta \cos \theta$ pokrajšata.

- mg sin θ = m θ "Lcos² θ + m θ "Lsin² θ
- mg $\sin\theta$ = m θ "L ($\sin^2\theta + \cos^2\theta$) /pokrajšamo z m, uporabimo trig.identiteto
- $-g \sin\theta = \theta^{"}L$

$$=> L\theta'' + g \sin\theta = 0$$

Za lažjo izpeljavo enačbe lahko uporabimo navor. Navor sile teže je enak navoru, s katerim bi sila teže delovala v eni sami tocki – v masnem središču telesa. Obesimo telo na neko os, okrog katere se lahko vrti. Os je vodoravna, koordinatno izhodišce pa naj leži tej osi.

Za vektor rocice r* vzamemo vektor od izhodišca do težišča, ki je v našem primeru L. Velikost navora je potem Mg = mg L sin θ , kjer je θ kot med vektorjem rocice in silo teže. Od drugi strani je navor enak: $M = J \alpha$, kjer je I vztrajnostni moment, v našem primeru, točkastega telesa, ki je enak: $J = m L^2$, α pa je kotni pospešek, ki ga lahko zapišemo kot drug odvor spremenljivke θ . Torej dobimo:

-mg L
$$\sin\theta = m L^2 \alpha$$

- mg L $\sin\theta = m L^2 \theta'' / pokrajšamo m in L$
- g L $\sin\theta = L\theta''$
=> $L\theta'' + g \sin\theta = 0$

2. Koordinati x in y položaja točkaste mase m v odvisnosti od kotov θ in φ ter dolžin palic l in L lahko izračunamo tako, da najprej pogledamo prvi sistem (kot θ) in zapišemo koordinati točke A:

$$x_A = I \sin\theta$$

 $y_A = -I \cos\theta$

Za izračun koordinate točke B pride vpoštev celotni sistem, oziroma sta odvisna od oba kota in dolžin. Dobimo ju tako da koordinate seštevamo:

$$x_B = x_A + L \sin\theta = I \sin\theta + L \sin\theta$$

 $y_B = y_A - L \cos\theta = -I \cos\theta - L \cos\theta$

3. Diferencialno enačbo $L\varphi^{-} + g \sin(\varphi) = -l \theta^{-}\cos(\theta - \varphi) + l \theta^{-2} \sin(\theta - \varphi)$ lahko zapišemo kot sistem dveh diferencialnih enačb prvega reda za funkciji φ in $\omega = \varphi^{-}$.

$$L\omega^{\cdot} + g \sin(\varphi) = -I \theta^{\cdot \cdot} \cos(\theta - \varphi) + I \theta^{\cdot 2} \sin(\theta - \varphi)$$

$$Zdaj lahko izrazimo \omega^{\cdot}:$$

$$\omega^{\cdot} = (-g \sin(\varphi) - I \theta^{\cdot \cdot} \cos(\theta - \varphi) + I \theta^{\cdot 2} \sin(\theta - \varphi)) / L \quad (prva enačba)$$

$$\varphi^{\cdot} = \omega \quad (druga enačba)$$

4. Funkcija [x; y] = $\underline{\text{pendulum}}(\text{Phi0}, \text{Theta}, \text{T})$, za začetne pogoje $\varphi_0 = [\varphi_0, \omega_0]^T$ in funkcijo $\theta(t) = [\theta(t), \theta^-(t), \theta^-(t)]^T$ rešuje diferencialno enačbo iz 3. točke, do končega časa T in vrne položaj [x, y]^T, v katerem je točkasta masa ob času T. Phi0 je vektor: Phi0 = [phi0; omega0], Theta je funkcija spremenljivke t, $\theta(t)$, T je število. Pri reševanju bomo privzeli, da za naše nihalo velja g = m = l = L = 1, $-1 \le x_0 \le 1$.

Za izračun položaja pri tej funkciji si pomagamo s Runge-Kutta metodo:

rk4(f, [t0, tk], y0, h), ki poisce priblizek resitve diferencialne enacbe y' = f(t,Y) z zacetnim pogojem y(t0) = y0, s korakom dolzine h.

Pri tej funkciji bomo vzeli korak h=0.1. Spremenljivka t bo vektor ki bo vseboval vrednosti od 0 do T s korakom h (0, 0+h, 0+2h,...T). Vektor Y na začetku bo vseboval vektor Phi0. Z metodo rk4 bomo izracunali nove vrednosti vektora Y in sproti shranili. Rabimo še funkcijo f(t, Y) ki je definirana na naslednji način (glej točko 3): prvi element φ ki je enak ω , je vbistvu drugi element vektorja Y. Drugi element funkcije je ω ki je enak opisanemu izrazu. Vrednosti θ in njegovi odvodi so že podani kot funckije ki so odvisni od trenutega t-ja, za φ pa vzamemo prvi element vektorja Y.

Ko se zanka zaključi, zadnji stolpec vektorja Y bo vseboval rešitve za φ in ω . Za izračun položaja telesa v podanem času, uporabimo formule iz 2. (xB in yB). Za kot θ vzamemo vrednost prve funkcije v času T, oziroma θ (T).