Homework: page 148-149, #1-4, 6, 8

Heine-Borel Theorem

 $\emptyset \neq S \subset \mathbb{R}$ is compact iff S is closed and bounded.

Proof.

 \longrightarrow Done. \longleftarrow **Suppose:** S is closed and bounded.

Let: $S \subset \bigcup_{\alpha \in I} G_{\alpha}$ where G_{α} is open $\forall \alpha \in I$

Since is is bounded, sup S, inf $S \in \mathbb{R}$ both exist.

Define, for $x \in \mathbb{R}$,

 $S_x = S \cap (-\infty, x].$

 $S \subset \bigcup_{x \in S} N(x, \epsilon)$

 $\beta = \{ \mathbf{x} \in \mathbb{R} : \mathbf{S}_x \text{ has a finite subcover from the } \mathbf{G}_{\alpha}\text{'s} \}$

 $\beta \neq \emptyset$, inf $S \in \beta$

 $S_{infS} = S \cap (-\infty, \inf S]$

We need to prove that S has a finite subcover of the G_{α} 's.

If β is unbounded above, then $\exists z \in \beta \text{ st } z > \sup S$.

Then $S_z = S \cap (-\infty, z] = S$

Since $S_z = S$ has a finite subcover of the G_{α} 's, we see that, in this case, S is compact.

We prove that β is unbounded above using contradiction.

Suppose: β is bounded above.

Thus, sup $\beta \in \mathbb{R}$ exists.

Case i: sup $\beta \in S$.

In this case, $\exists \ \epsilon \in I \text{ st sup } \beta \in G_{\alpha_0}$

Since G_{α_0} is open, $\exists \epsilon_0 > 0$ st

 $N(\sup \beta, \epsilon_0) = (\sup \beta - \epsilon_0, \sup \beta + \epsilon_0) \subset G_{\alpha_0}$

By the definition of the supremum,

 $\exists x_0 \in \beta st$

 $\sup \beta - \epsilon_0 < y_0 \le \sup B < \sup B + \frac{\epsilon_0}{2} < \sup \beta + \epsilon_0$

Since $x_0 \in \beta_1$, $\exists k \in \mathbb{N}$ and $\{\alpha_1, \alpha_2, ... \alpha_n\} \subset I$

st $S_{x_0} \subset \bigcup_{i=1}^k G_{\alpha_i}$

-Side Note-

$$\begin{split} S_{x_0} &= S \cap (-\infty, x_0] \\ S_{\sup\beta} &+ \frac{\epsilon_0}{2} \\ &= S \cap (-\infty, \sup \beta + \frac{\epsilon_0}{2}] \end{split}$$

This produces the contradiction that sup $\beta + \frac{\epsilon_0}{2} \in \beta$

Case ii):

sup $\beta \in \mathbb{R} \setminus S$, which is open since S is closed.

Thus, $\exists \ \epsilon_1 > 0 \text{ st N}(\sup \beta, \epsilon_1) \subset \mathbb{R} \setminus S$

As in case i), $\exists x_1 \in \beta$ st

$$\sup \beta - \epsilon_1 < x_1 \le \sup \beta < \sup \beta + \frac{\epsilon_1}{2} < \sup \beta + \epsilon_1$$

From (1),
$$N(\sup \beta, \epsilon_1) = (\sup \beta - \epsilon_1, \sup \beta + \epsilon_1 \cap S = \emptyset)$$

Notice that:

 $S_{x_1} = S \cap (-\infty, x_1] = S \cap (-\infty, \sup \beta + \frac{\epsilon_1}{2}]$

Again we obtain the contradiction that sup $\beta + \frac{\epsilon_1}{2} \in \beta$

Hence, result by contradiction.

Theorem 3.5.6: Bolzond-Weierstrass Theorem

If a bounded set $S \subset \mathbb{R}$ contains an infinite number of points, then there exists at least one point in \mathbb{R} that is an accumulation point of S.

Proof.

Suppose: $\exists S \subset \mathbb{R}$ where S has an infinite number of points and S is bounded but $S' = \emptyset$

Since cl $S = S \cup S' = S \cup \emptyset = S$, we can see by Theorem 3.4.17 a) that S is closed.

Since S is also bounded, it follows by the Heire-Borel theorem that S is compact.

Let: $x \in S$

Then $x \notin S'$, so $\exists \epsilon_x > 0$ st

 $N(x, \epsilon_x) \cap S = \{x\}$

-Side Note

---(----) --- x-ep(x?), x, yMemS, xplusep(x?)

If $x \in S'$, then:

 $\neg [\forall \ \epsilon > 0, \ N^*(x, \epsilon) \ \cap \ S \neq \emptyset]$

 $\exists \ \epsilon > 0 \ st \ N(x, \epsilon) \cap S = \{x\}$

Then:

 $S \subset \bigcup_{x \in S} N(x, \epsilon_x)$

Since S is compact,

 $\exists k \in \mathbb{N} \text{ and } \{x_1, x_2, \dots x_k\} \subset S$

 $S \subset \bigcup_{i=1}^k N(x_{i_1}, \epsilon_{i_1})$

However, S \cap ($\bigcup_{i=1}^{k} N(x_{i_1}, \epsilon_{i_1})$) = {x₁, x₂, ... x_k}

This produces the contradiction that S contains a **finite** number of points.

Hence, result.

Theorem 3.5.7 (F.I.P.)

Let: $\{K_{\alpha}\}_{{\alpha}\in I}$ be a family of compact sets, where I is an index.

Suppose that the intersection of any finite subfamily of the K_{α} 's has a nonempty intersection.

Then $\bigcap_{\alpha \in I} K_{\alpha} \neq \emptyset$

Proof.

Assume that $\bigcap_{\alpha \in I} K_{\alpha} = \emptyset$

Then $\mathbb{R} \setminus (\bigcap_{\alpha \in I} K_{\alpha}) = \bigcup_{\alpha \in I} (\mathbb{R} \setminus K_{\alpha}) = \mathbb{R}$

Notice, by the Heine-Borel Theorem that $\mathbb{R} \setminus K_{\alpha}$ is open $\forall \alpha \in I$.

Let: $\alpha \in I$

Since K_{α_0} is compact,

 $\exists \ \mathbf{k} \in \mathbb{N} \ \mathrm{and} \ \{\alpha_1, \, \alpha_2, \, \dots \, \alpha_n\} \subset \mathbf{I} \ \mathrm{st}.$

 $K_{\alpha_0} \subset \bigcup_{\alpha \in I} (\mathbb{R} \setminus K_{\alpha})$ $\subset \bigcup_{i=1}^k (\mathbb{R} \setminus K_{\alpha_0})$

-Side Note

If $A \subset B$, then $\mathbb{R} \setminus B \subset \mathbb{R} \setminus A$

Let $x \in \mathbb{R} \setminus B$.

Then $x \notin B$.

So, $x \notin A$.

Thus, $x \in \mathbb{R} \setminus A$

$$\mathbb{R} \setminus (\bigcup_{i=1}^{k} (\mathbb{R} \setminus \mathbf{K}_{\alpha})) \subset \mathbb{R} \setminus K_{\alpha_0}$$

$$\bigcap_{i=1}^{k} K_{\alpha_i} \subset \mathbb{R} \setminus K_{\alpha_0}$$
We obtain the contradiction that:
$$\bigcap_{i=0}^{k} K_{\alpha_i} = \emptyset$$
Hence, result.

Corollary 3.5.8 Nested Intervals Theorem

Let: $\{A_n\}_{n=1}^{\infty}$ be a family of nonempty closed bounded intervals in \mathbb{R} st $A_{n+1} \subset A_n \ \forall \ n \in \mathbb{N}$

Then:

$$\bigcap_{n=1}^{\infty} A_n \neq \emptyset$$

Proof.

We use Theorem 3.5.7.

Will this be contradiction?

Suppose: $\forall k \in \mathbb{N}$, that $\{n_1, n_2, ... n_k\} \subset \mathbb{N}$

Then,

$$\bigcap_{i=1}^k A_{ni} = A_m \neq \emptyset$$

where

 $m = \max \{n_1, n_2, \dots n_k\}$

_____Side Note ___[__[__]__]__- not imp, not imp, A3, A2, A1

Assignment Set: 6, 7, 15, 17, 19, 21 from pages 141 - 142

6)

Find the closure of each set:

- a. $\left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$
 - Answer: \emptyset
- b. №

Answer: \mathbb{N}

c. \mathbb{Q}

Answer: \mathbb{R}

- d. $\bigcap_{n=1}^{\infty} (0, \frac{1}{n})$
 - Answer: \emptyset
- e. $\{ \mathbf{x} : |x 5| \le \frac{1}{2} \}$

[4.5, 5.5]

Answer: [4.5, 5.5]

- f. $\{ x : x^2 > 0 \}$
 - $(0,\infty)$

Answer: $[0, \infty)$

7)

Let S, T $\subset \mathbb{R}$. Find a counterexample of each of the following:

- a. If P is the set of all isolated points of S, then P is a closed set.
 - Answer: Let $S = \mathbb{N}$
- b. Every open set contains at least two points.
 - Answer: \emptyset
- c. If S is closed, then cl(int S) = S.
 - Answer: Let $S = \mathbb{Q}$
- d. If S is open, then int (cl S) = S.
 - Answer: Let $S = (-1, 0) \cup (0, 1)$
- e. bd (cl S) = bd S
 - Answer: Let $S = (-1, 0) \cup (0, 1)$
- f. bd (bd S) = bd S

Answer: Let $S = \mathbb{Q}$. Then bd S is \mathbb{R} , and bd (bd S) = $\emptyset \neq \mathbb{R}$.

- g. $\operatorname{bd}(S \cup T) = (\operatorname{bd} S) \cup (\operatorname{bd} T)$
 - Answer: Let $S = \mathbb{R}$, T = (0,1). bd $(S \cup T) = \emptyset$, but bd $S \cup$ bd $T = \emptyset \cup \{0,1\}$
- h. $bd (S \cap T) = (bd S) \cap (bd T)$
 - Answer: Let S = (0, 1), T = (1, 2). bd $(S \cap T) = \emptyset$, but bd $S \cap$ bd T = 1.

15)

Prove: If x is an accumulation point of the set S, then every neighborhood of x contains infinitely many points of S.

Proof.

Suppose that \exists a deleted neighborhood of x, called N, that contains n points $x_1, x_2, ... x_n$ of S where n is a finite amount and $x_1 \le x_2, \le ... x_n$

x is an accumulation point on S if $\forall \epsilon > 0$, $N^*(x, \epsilon) \cap S \neq \emptyset$.

N is a deleted neighborhood of S if $\forall x \in \{y \in \mathbb{R} : 0 < |y - x| < \epsilon\}, x \in \mathbb{N}$.

Let $\hat{\epsilon} = \epsilon + \epsilon$, and $x_0 = x_1 - \hat{\epsilon}$.

By definition, $x_0 \in N$, since N is a neighborhood $\forall \epsilon > 0$.

However, N only has n elements. A contradiction.

So, N can't be a deleted neighborhood since it has a finite number of elements, which means x can't be an accumulation point.

17)

Prove: S' is a closed set.

Proof.

By definition, $\forall s \in S', \, \epsilon > 0, \, N^*(s, \epsilon) \cap S \neq \emptyset$

Notice that if S' is empty or S' is \mathbb{R} , then S' is a closed set and we are done.

If S' is not empty, \exists at least one element.

Let: $\mathbb{R} \setminus S' \subset \mathbb{R}$, $x \in \mathbb{R} \setminus S'$

Want to show: $\mathbb{R} \setminus S'$ is open.

 $\mathbb{R} \ \backslash \, S' \ \text{ is open iff } \mathbb{R} \ \backslash \, S' \ = \operatorname{int} \ (\mathbb{R} \ \backslash \, S' \)$

int $\mathbb{R} \setminus S' = \{s: N(s, \epsilon) \subset \mathbb{R} \setminus S' \}$

19)

Suppose S is a nonempty bounded set and let $m = \sup S$. Prove or give a counter example: m is a boundary point of S.

Proof.

By definition,

 $s \leq m, \forall s \in S, and,$

 $\forall \epsilon > 0, \exists s' \in S \text{ st } m - \epsilon < s'$

By the second part of the definition of the supremum of S, $N(m, \epsilon) \cap S \neq \emptyset$.

Notice also that, by the first part of the definition of the supremum of S, $(m + \epsilon) \notin S$. This means that $N(m, \epsilon) \cap \mathbb{R} \setminus S \neq \emptyset$.

By definition, m is a boundary point.

21)

Let A be a nonempty open subset of \mathbb{R} and let $Q \subset \mathbb{Q}$. Prove: $A \cap Q \neq \emptyset$.

Proof.

Notice that $Q \subset \mathbb{Q} \subset \mathbb{R}$.

Since A is nonempty, \exists at least one element $a \in \mathbb{R}$.

Since A is nonempty and open, $a + \epsilon \in A$.

If $a \in \mathbb{Q}$, then result.

If a $+\epsilon \in \mathbb{Q}$, then result.

If $a \notin \mathbb{Q}$ and $(a + \epsilon) \notin \mathbb{Q}$, then:

Let $x = a, y = a + \epsilon, z = y - x$.

By Archimedes' axiom, \exists n st n > $\frac{1}{z}$

nz > 1

ny - nx > 1

Since the difference between ny and nx is bigger than 1,

 $\exists m \in \mathbb{Z} \text{ st nx} < \mathbf{m} < \mathbf{ny}.$

See that since $\mathbf{x} < \frac{m}{n} < y, \, \frac{m}{n}$ is a rational number, and $\frac{m}{n} \in \mathbf{A}$.

Hence, result.