Convexité & Normes p

Partie I : Convexité

Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$. La fonction f est convexe si

$$\forall (x,y) \in I^2, \forall t \in [0,1], f(tx + (1-t)y) \leqslant tf(x) + (1-t)f(y).$$

La fonction f est concave si -f est convexe.

- **1.** Montrer que les fonctions affines sont convexes.
- 2. Montrer que la courbe représentative d'une fonction convexe se situe toujours au-dessous de chacune de ses cordes.
- ${\bf 3.}$ Montrer, par une récurrence soigneuse, l'inégalité de ${\bf Jensen}$: si f est convexe, alors

$$\forall n \in \mathbb{N}^*, \forall (x_i)_{i \in [\![1,n]\!]} \in I^n, \forall (\lambda_i)_{i \in [\![1,n]\!]} \in [0,1]^n,$$

$$\left[\sum_{i=1}^{n} \lambda_i = 1 \implies f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \leqslant \sum_{i=1}^{n} \lambda_i f(x_i)\right].$$

- **4. Croissance du taux d'accroissement.** Pour tout $x_0 \in I$, on pose $\tau_{x_0} : I \setminus \{x_0\} \to \mathbb{R}, \ x \mapsto \frac{f(x) f(x_0)}{x x_0}$.
- **a)** On suppose que, pour tout $x_0 \in I$, f_{x_0} est croissante. En utilisant la croissance de φ_{x_0} sur $x < \lambda x + (1 \lambda)y < y$ (réels à choisir convenablement), montrer que f est convexe.
- **b)** On suppose que f est convexe. En utilisant l'inégalité de convexité en $x_0 < x = \lambda x_0 + (1 \lambda)y < y$, montrer que φ_{x_0} est croissante sur $|x_0, +\infty| \cap I$.

On montre de manière analogue que φ_{x_0} est croissante sur $I \setminus \{x_0\}$.

5. Caractérisation dérivable.

- a) On suppose que f est une fonction dérivable sur I. En utilisant la croissance du taux d'accroissement, montrer que f est convexe si et seulement si f' est croissante sur I.
- **b)** En déduire que la courbe représentative d'une fonction convexe se situe toujours au-dessus de ses tangentes.
- **6. Caractérisation deux fois dérivable.** On suppose que f est une fonction deux fois dérivable sur I. Montrer que f est convexe si et seulement si f'' est positive sur I.
- **7. a)** En déduire que les fonctions exp et sin sont convexes et que la fonction ln est concave, sur des ensembles à préciser.
 - **b)** En déduire que

$$e^{x} \geqslant 1 + x, \ \forall \ x \in \mathbb{R}.$$

$$\frac{2}{\pi}x \leqslant \sin(x) \leqslant x, \ \forall \ x \in \left[0, \frac{\pi}{2}\right].$$

$$\ln(1+x) \leqslant x, \ \forall \ x \in]-1, +\infty[.$$

8. En déduire l'inégalité arithmético-géométrique :

$$\forall n \geqslant 2, \forall (x_1, \dots, x_n) \in \mathbb{R}^n_+, \sqrt[n]{x_1 \cdots x_n} \leqslant \frac{x_1 + \dots + x_n}{n}.$$

Partie II : Inégalités de Holder

Soient $p, q \in]1, +\infty[$ tels que $\frac{1}{p} + \frac{1}{q} = 1$. Les inégalités de **Holder** que nous allons établir généralisent les inégalités de **Cauchy-Schwarz**.

Soient $n \in \mathbb{N}^*$ et $x = (a_i)_{i \in \llbracket 1,n \rrbracket}$ et $y = (b_i)_{i \in \llbracket 1,n \rrbracket}$ deux familles de réels strictement positifs et f, g sont des fonctions continues sur un intervalle borné I dans \mathbb{R}_+^* . On notera $\mathscr{L}^p(I,\mathbb{R})$ l'ensemble des fonctions f continues sur I telles que $|f|^p$ soit intégrable sur I.

9. Montrer que pour tout $(u, v) \in (\mathbb{R}^*_{+})^2$,

$$\ln(uv) \leqslant \ln\left\{\frac{1}{p}u^p + \frac{1}{q}v^q\right\}.$$

T

10. Montrer que

$$\left| \sum_{i=1}^{n} (a_i b_i) \right| \leqslant \left(\sum_{i=1}^{n} a_i^p \right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} b_i^q \right)^{\frac{1}{q}}.$$

11. Montrer que

$$\left| \int_I fg \right| \leqslant \left(\int_I \left| f \right|^p \right)^{1/p} \left(\int_I \left| g \right|^p \right)^{1/p}.$$

En déduire que le produit d'une fonction \mathcal{L}^p par une fonction \mathcal{L}^q est dans \mathcal{L}^1 (on rappelle que $\frac{1}{p} + \frac{1}{q} = 1$.

Partie III: Inégalité de Minkowski

On reprend les notations précédentes. On note $||x||_p = \left(\sum_{i=1}^p |a_i|^p\right)^{1/p}$ et

$$\left\|f\right\|_p = \left(\int_I \left|f\right|^p\right)^{1/p}.$$

12. Montrer que si a et b sont des réels, alors

$$|a+b|^p \le (|a|+|b|)|a+b|^{p-1}$$
.

13. a) En étudiant $||x+y||_p^p$, montrer que

$$||x+y||_p \le ||x||_p + ||y||_p$$
.

- **b**) En déduire que $\left\|\cdot\right\|_p$ est une norme sur \mathbb{R}^n .
- c) Déterminer $\lim_{p \to +\infty} ||x||_p$.
- **14. a)** En étudiant $||f+g||_p^p$, montrer que

$$||f + g||_p \le ||f||_p + ||g||_p$$
.

- **b)** En déduire que $\|\cdot\|_p$ est une norme sur $\mathscr{C}(I,\mathbb{R})$.
- c) Montrer que $\mathcal{L}^p(I,\mathbb{R})$ est un espace vectoriel normé.
- **d)** Déterminer $\lim_{p \to +\infty} \|f\|_p$.