01204211 Discrete Mathematics Lecture 10a: Nondeterministic automata¹

Jittat Fakcharoenphol

September 17, 2024

¹Based on lecture notes of *Models of Computation* course by Jeff Erickson.□ → ← ② → ← ② → ← ② → ◆ ○ ◆

Review: DFA (Formal definitions)

A finite-state machine or a deterministic finite-state automaton (DFA) has five components:

- ightharpoonup the input alphabet Σ ,
- ightharpoonup a finite set of states Q,
- ightharpoonup a transition function $\delta: Q \times \Sigma \longrightarrow Q$
- ightharpoonup a start state $s \in Q$, and
- ▶ a subset $A \subseteq Q$ of accepting states.

Review: Acceptance

One step move: from state q with input symbol a, the machine changes its state to $\delta(q,a)$.

Extension: from state q with input string w, the machine changes its state to $\delta^*(q,w)$ defined as

$$\delta^*(q, w) = \begin{cases} q & \text{if } w = \varepsilon, \\ \delta^*(\delta(q, a), x) & \text{if } w = ax. \end{cases}$$

The signature of δ^* is $Q \times \Sigma^* \longrightarrow Q$.

$\mathsf{accepting}\ w$

For a finite-state machine with starting state s and accepting states A, it accepts string w iff

$$\delta^*(s, w) \in A$$
.

Language of a DFA

L(M)

For a DFA M , let L(M) be the set of all strings that M accepts. More formally, for $M=(\Sigma,Q,\delta,s,A)$,

$$L(M) = \{ w \in \Sigma^* \mid \delta^*(s, w) \in A \}.$$

We refer to L(M) as the language of M.

Acceptance

We also says M accepts L(M).

New example 1

nondeterministic

What's going on here?

More relaxed transitions

From state $q \in Q$, for input a, the machine can "possibly" change its state to many states.

More relaxed transitions

From state $q \in Q$, for input a, the machine can "possibly" change its state to many states.

New transition function δ :

More relaxed transitions

From state $q \in Q$, for input a, the machine can "possibly" change its state to many states.

New transition function $\delta: Q \times \Sigma \longrightarrow 2^{Q}$.

We refer to this new kind of automaton as a nondeterministic finite-state automaton or NFA.

powerset set room subset roll.

Pa

A nondeterministic finite-state automaton (NFA) has five components:

ightharpoonup the input alphabet Σ ,

- ightharpoonup the input alphabet Σ ,
- \triangleright a finite set of states Q,

- ightharpoonup the input alphabet Σ ,
- \triangleright a finite set of states Q,
- ightharpoonup a transition function δ

- ightharpoonup the input alphabet Σ ,
- \triangleright a finite set of states Q,
- ▶ a transition function $\delta: Q \times \Sigma \longrightarrow 2^Q$

- ightharpoonup the input alphabet Σ ,
- \triangleright a finite set of states Q,
- ▶ a transition function $\delta: Q \times \Sigma \longrightarrow 2^Q$
- ightharpoonup a start state $s \in Q$, and
- ightharpoonup a subset $A \subseteq Q$ of accepting states.

A nondeterministic finite-state automaton (NFA) has five components:

- ightharpoonup the input alphabet Σ ,
- ightharpoonup a finite set of states Q,
- ▶ a transition function $\delta: Q \times \Sigma \longrightarrow 2^Q$
- ightharpoonup a start state $s \in Q$, and
- ightharpoonup a subset $A \subseteq Q$ of accepting states.

Remark: δ can return the empty set \emptyset .

A nondeterministic finite-state automaton (NFA) has five components:

- ightharpoonup the input alphabet Σ ,
- ightharpoonup a finite set of states Q,
- ▶ a transition function $\delta: Q \times \Sigma \longrightarrow 2^Q$
- ightharpoonup a start state $s \in Q$, and
- ightharpoonup a subset $A \subseteq Q$ of accepting states.

Remark: δ can return the empty set \emptyset .

What else do we need to define to "properly" talk about NFAs?

One step move: from state q with input symbol a, the machine changes its state to one of $\delta(q,a)$. \longrightarrow φ . accepts ω \Longrightarrow $\Im mov$ $\Im m$ state \Longrightarrow accepting states

One step move: from state q with input symbol a, the machine changes its state to one of $\delta(q,a)$ $\leq \mathcal{Q}$

Thus, instead of thinking of a machine that maintains **one** state, we can think of an NFA as a machine that maintains a **set** of states.

If the current set of states is $C\subseteq Q$ and the input is $a\in \Sigma$ what would the new set of

states be?

One step move: from state q with input symbol a, the machine changes its state to one of $\delta(q,a)$.

Thus, instead of thinking of a machine that maintains **one** state, we can think of an NFA as a machine that maintains a **set** of states.

If the current set of states is $C \subseteq Q$ and the input is $\underline{a} \in \Sigma$ what would the new set of states be?

Extension: from state \widehat{q} with input string w, the machine changes its set of states $\delta^*(q,w)$ defined as

$$\delta^*(q,w) = \begin{cases} \{q\} & \text{if } w = \varepsilon, \\ \\ & \omega > \alpha \cdot \chi \end{cases}$$

One step move: from state q with input symbol a, the machine changes its state to one of $\delta(q,a)$.

Thus, instead of thinking of a machine that maintains **one** state, we can think of an NFA as a machine that maintains a **set** of states.

If the current set of states is $C\subseteq Q$ and the input is $a\in \Sigma$ what would the new set of states be?

Extension: from state q with input string w, the machine changes its set of states $\delta^*(q,w)$ defined as

$$\delta^*(q,w) = \left\{ \begin{array}{ll} \{q\} & \text{if } w = \varepsilon, \\ \bigvee_{r \in \delta(q,a)} \overbrace{\delta^*(r,x)} & \text{if } w = ax. \end{array} \right.$$

The signature of δ^* is $Q \times \Sigma^* \longrightarrow 2^Q$.

Acceptance

accepting w

For a nondeterministic finite-state machine with starting state s and accepting states A, it accepts string w iff

$$\delta^*(s,w) \cap A \neq \emptyset.$$

► Clairvoyance. (あつなみ)

- Clairvoyance.
- ► Parallel threads. (भार्गाम:)

- Clairvoyance.
- ► Parallel threads.
- ► Proofs/oracles.

$\varepsilon\text{-transition}$

DPA M2 ε -transition L(M) L(M2)

ε -transition

ε -transition

An NFA accepts string w iff there is a sequence of transitions

$$\underbrace{3} \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_3} q_3 \xrightarrow{a_4} \cdots \xrightarrow{a_{k-1}} q_{k-1} \xrightarrow{a_k} \underbrace{q_k} ,$$

where $\underline{q_k} \in \underline{A}$ and $\underline{w} = a_1 a_2 \cdots a_k$ where $\underline{a_i} \in \Sigma \cup \{\varepsilon\}$ for $1 \leq i \leq k$.

ε -transition

$$\delta(q, r) = \{-\}$$

An NFA accepts string w iff there is a sequence of transitions

$$s \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \xrightarrow{a_3} q_3 \xrightarrow{a_4} \cdots \xrightarrow{a_{k-1}} q_{k-1} \xrightarrow{a_k} q_k,$$

where $q_k \in A$ and $w = a_1 a_2 \cdots a_k$ where $a_i \in \Sigma \cup \{\varepsilon\}$ for $1 \le i \le k$. The transition function also changes its domain to $Q \times (\Sigma \cup \{\varepsilon\})$.

ε -transition: examples

$\widehat{\varepsilon}$ reach

The ε -reach of state $q \in Q$ (denoted by ε -reach(q)) consists of all states r that satisfy one of the following conditions:

$$\rightarrow$$
 $r = q$, or $*$

$$ightharpoonup r \in \delta(q', \varepsilon)$$
 for some state q' in the ε -reach of q .

We define $\delta^*: Q \times \Sigma^* \longrightarrow 2^Q$ as follows:

Notation abuse

We sometimes also write, for subset $S \subseteq Q$,

$$\delta(S,a) = \bigcup_{q \in S} \delta(q,a),$$

Notation abuse

We sometimes also write, for subset $S \subseteq Q$,

$$\delta(S,a) = \bigcup_{q \in S} \delta(q,a),$$

$$\delta^*(S, a) = \bigcup_{q \in S} \delta^*(q, a),$$

Notation abuse

We sometimes also write, for subset $S \subseteq Q$,

$$\delta(S,a) = \bigcup_{q \in S} \delta(q,a),$$

$$\delta^*(S, a) = \bigcup_{q \in S} \delta^*(q, a),$$

and

$$\varepsilon\text{-reach}(S) = \bigcup_{q \in S} \varepsilon\text{-reach}(q).$$

We define $\delta^*: Q \times \Sigma^* \longrightarrow 2^Q$ as follows:

$$\delta^*(p,w) = \left\{ \begin{array}{ll} \varepsilon\text{-reach}(p) & \text{if } w = \varepsilon \\ \\ \delta^*(\delta(\varepsilon\text{-reach}(p),a),x) & \text{if } w = ax. \end{array} \right.$$

Removing ε -transitions: idea

Lemma 1

For any NFA
$$M=(\Sigma,Q,\delta,s,A)$$
 with ε -transitions, there is an NFA $M'=(\Sigma,Q',\underline{\delta'},s',A')$ without ε -transitions such that $L(M)=L(M')$.

Proof.

In
$$G'=Q$$
, $G'=S$,

that items S' now, $\forall g \in G'$, $\forall a \in E$

$$S'(g,a) = S(\varepsilon - reach(g), a), \overline{S'(g,\varepsilon)} = \emptyset$$

that in $A'=\{g \in G' \mid \varepsilon - reach(g) \cap A \neq \emptyset\} \subseteq \emptyset$

that in $A'=\{g \in G' \mid \varepsilon - reach(g) \cap A \neq \emptyset\} \subseteq \emptyset$

that in $A'=\{g \in G' \mid \varepsilon - reach(g) \cap A \neq \emptyset\} \subseteq \emptyset$

$$(g,w) = S'(g,w) = S'(g$$

Main question

- \blacktriangleright We see that ε -transitions does not add any "power" to the machine.
- Does nondeterminism add any power to NFA (over typical DFA)?

Simulating parallel machines

Subset construction: idea

NFA to DFA: subset construction

$$S': Q' \times \Sigma \to Q'$$
 $S: Q \times \Sigma \to 2^Q$

Given an NFA $M=(\Sigma,Q,\delta,s,A)$, we can construct an equivalent DFA $M'=(\Sigma,Q',\delta',s',A')$ as follows:

NFA to DFA: subset construction

Given an NFA $M=(\Sigma,Q,\delta,s,A)$, we can construct an equivalent DFA $M'=(\Sigma,Q',\delta',s',A')$ as follows:

- $\blacktriangleright \text{ Let } Q' = 2^Q,$
- $ightharpoonup s' = \{s\},$
- ▶ and let $\delta': \overline{Q'} \times \Sigma \longrightarrow Q'$ be such that

NFA to DFA: subset construction

Given an NFA $M=(\Sigma,Q,\delta,s,A)$, we can construct an equivalent DFA $M'=(\Sigma,Q',\delta',s',A')$ as follows:

- $\blacktriangleright \text{ Let } Q' = 2^Q,$
- $ightharpoonup s' = \{s\},$
- $A' = \{ S \subseteq Q \mid S \cap A \neq \emptyset \},$
- ▶ and let $\delta': Q' \times \Sigma \longrightarrow Q'$ be such that

$$\delta'(\underline{q'},\underline{a}) = \bigcup_{p \in q'} \underline{\delta(p,a)},$$

for all $q' \subseteq Q$ and $a \in \Sigma$.

Example

Every language L can be described by a regular expression if and only if L is the language accepted by a DFA.

Every language L can be described by a regular expression if and only if L is the language accepted by a DFA.

Steps:

Every DFA can be transformed into an equivalent NFA.

Every language L can be described by a regular expression if and only if L is the language accepted by a DFA.

Steps:

Every DFA can be transformed into an equivalent NFA. (trivial)

Every language L can be described by a regular expression if and only if L is the language accepted by a DFA.

- Every DFA can be transformed into an equivalent NFA. (trivial)
- Every NFA can be transformed into an equivalent DFA.

Every language L can be described by a regular expression if and only if L is the language accepted by a DFA.

- Every DFA can be transformed into an equivalent NFA. (trivial)
- Every NFA can be transformed into an equivalent DFA. (done)

Every language L can be described by a regular expression if and only if L is the language accepted by a DFA.

- Every DFA can be transformed into an equivalent NFA. (trivial)
- Every NFA can be transformed into an equivalent DFA. (done)
- Every regular expression can be transformed into an equivalent NFA.

Every language L can be described by a regular expression if and only if L is the language accepted by a DFA.

- Every DFA can be transformed into an equivalent NFA. (trivial)
- Every NFA can be transformed into an equivalent DFA. (done)
- ▶ Every regular expression can be transformed into an equivalent NFA. (TODO)

Every language L can be described by a regular expression if and only if L is the language accepted by a DFA.

- Every DFA can be transformed into an equivalent NFA. (trivial)
- Every NFA can be transformed into an equivalent DFA. (done)

- Every regular expression can be transformed into an equivalent NFA. (TODO)
- Every NFA can be transformed into an equivalent regular expression. (only idea)

Warm-up: union of DFA \Longrightarrow NFA

Warm-up: union of DFA \Longrightarrow NFA

Concatenation: idea

Concatenation: idea

М1

(0+1) (00)* 1*+ (10)*+ (100)*

Stronger claim

Our goal is to prove:

Lemma 2

Every regular language is accepted by a nondeterministic finite-state automaton.

Stronger claim

Our goal is to prove:

Lemma 2

Every regular language is accepted by a nondeterministic finite-state automaton.

But we will prove a "stronger" claim.

Lemma 3 (Thompson's algorithm)

Every regular language is accepted by a nondeterministic finite-state automaton with exactly one accepting state, which is different from its start state.

Consider any regular expression R over alphaget Σ . We prove that there is an NFA N that accepts the language described by R by induction.

Induction hypothesis: for any subexpression S of R, there is an NFA that accepts the language described by S.

We denote an NFA with this notation:

Consider any regular expression R over alphaget Σ . We prove that there is an NFA N that accepts the language described by R by induction.

Induction hypothesis: for any subexpression S of R, there is an NFA that accepts the language described by S.

We denote an NFA with this notation:

Consider any regular expression R over alphaget Σ . We prove that there is an NFA N that accepts the language described by R by induction.

Induction hypothesis: for any subexpression S of R, there is an NFA that accepts the language described by S.

We denote an NFA with this notation:

$$ightharpoonup R = \emptyset$$
:

Consider any regular expression R over alphaget Σ . We prove that there is an NFA N that accepts the language described by R by induction.

Induction hypothesis: for any subexpression S of R, there is an NFA that accepts the language described by S.

We denote an NFA with this notation:

- $ightharpoonup R = \emptyset$:
- $ightharpoonup R = \varepsilon$:

Consider any regular expression R over alphaget Σ . We prove that there is an NFA N that accepts the language described by R by induction.

Induction hypothesis: for any subexpression S of R, there is an NFA that accepts the language described by S.

We denote an NFA with this notation:

- $ightharpoonup R = \emptyset$:
 - $ightharpoonup R = \varepsilon$:
 - ightharpoonup R = a for some $a \in \Sigma$:

Consider any regular expression R over alphaget Σ . We prove that there is an NFA N that accepts the language described by R by induction.

Induction hypothesis: for any subexpression S of R, there is an NFA that accepts the language described by S.

We denote an NFA with this notation:

- $ightharpoonup R = \emptyset$:
- $ightharpoonup R = \varepsilon$:
- ightharpoonup R = a for some $a \in \Sigma$:
- ightharpoonup R = ST for some regular expression S and T:

Consider any regular expression R over alphaget Σ . We prove that there is an NFA N that accepts the language described by R by induction.

Induction hypothesis: for any subexpression S of R, there is an NFA that accepts the language described by S.

We denote an NFA with this notation:

- $ightharpoonup R = \emptyset$:
- $ightharpoonup R = \varepsilon$:
- ightharpoonup R = a for some $a \in \Sigma$:
- ightharpoonup R = ST for some regular expression S and T:
- ightharpoonup R = S + T for some regular expression S and T:

Consider any regular expression R over alphaget Σ . We prove that there is an NFA N that accepts the language described by R by induction.

Induction hypothesis: for any subexpression S of R, there is an NFA that accepts the language described by S.

We denote an NFA with this notation:

- $ightharpoonup R = \emptyset$:
- $ightharpoonup R = \varepsilon$:
- $ightharpoonup R = a ext{ for some } a \in \Sigma$:
- ightharpoonup R = ST for some regular expression S and T:
- ightharpoonup R = S + T for some regular expression S and T:
- $ightharpoonup R = S^*$ for some regular expression S:

Consider any regular expression R over alphaget Σ . We prove that there is an NFA N that accepts the language described by R by induction.

Induction hypothesis: for any subexpression S of R, there is an NFA that accepts the language described by S.

We denote an NFA with this notation:

There are 6 cases:

- $ightharpoonup R = \emptyset$:
- $ightharpoonup R = \varepsilon$:
- ightharpoonup R = a for some $a \in \Sigma$:
- ightharpoonup R = ST for some regular expression S and T:
- ightharpoonup R = S + T for some regular expression S and T:
- $ightharpoonup R = S^*$ for some regular expression S:

In all cases, the language L(R) is accepted by an NFA with exactly one accepting state which is different from its start state, as required.

Example: 1 + 00

Example: $(1 + 00)^*$

Example: $(1+00)^* + 1^*0$

NFA to Regular expressions

State elimination: example 1

State elimination: example 2

State elimination: example 3

