MAT 161 - CLASS NOTES - Section 2.6: Combinations of Functions; Composite Functions

1) Find the domain of each function.

a)
$$f(x) = x^2 - 6x + 3$$

b)
$$f(x) = \frac{5}{x-6}$$

c)
$$f(x) = \sqrt{x+3}$$

2) Algebra of Functions

For all values of x for which both f(x) and g(x) are defined, we define the following functions:

a) Sum:
$$f+g=(f+g)(x)=f(x)+g(x)$$

b) Difference:
$$f - g = (f - g)(x) = f(x) - g(x)$$

The domain of each is the intersection (overlap) of the domains of f and g.

c) Product:
$$fg = (fg)(x) = f(x)g(x)$$

d) Quotient:
$$\frac{f}{g} = \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

 $\frac{f}{g} = \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ The domain is as above except for all values of x that will make the denominator 0.

3)	Find the four algebraic functions and their domains where	f(x) = x	$x^2 + 4x + 1$	and $g(x) = x + 2$
3)	This the four algebraic functions and their domains where	$J (\sim J - \sim$	1 10 1 1	$\lim_{n \to \infty} g(n) = x + z$

a)
$$f+g$$

b)
$$f-g$$

d)
$$\frac{f}{g}$$

4)	Find the four algebraic functions and their domains where	$f(x) = x^2$	$^2+4$ and $g(x)=$	$\sqrt{7-x}$

a)
$$f+g$$

$$\overline{b}$$
) $f-g$

$$\overline{c}$$
) fg

d)
$$\frac{f}{g}$$

5) Evaluate the indicated function for
$$f(x) = 2x + 5$$
 and $g(x) = x^2 - 3$.
a) $(f - g)(-1)$

a)
$$(f-g)(-1)$$

$$\overline{b) \quad (fg)(-3)}$$

c)
$$\left(\frac{f}{g}\right)(2)$$

6) Composite Functions

For functions f and g, the **composite function** of f and g is given by:

$$f \circ g = (f \circ g)(x) = f(g(x))$$
 reads "f composed with g"

- 7) Domain of a composite function the intersection of the domain of itself and its inside function.
- 8) Find $f \circ g$ and $g \circ f$ and give the domain of each.

a)
$$f(x) = x^2 + 3; g(x) = \sqrt{x+2}$$

b)
$$f(x) = x + 4; g(x) = \frac{1}{x}$$

9) Given f(x) = 2x + 3; g(x) = x - 4, find $(f \circ g)(-2)$

10) Given the graph below, find the following:

- a) (f+g)(-3)
- b) (g-f)(2)
- c) (fg)(-1)
- d) $(f \circ g)(1)$
- e) $(g \circ f)(3)$