Mostafa Sabri

Lecture 21

6.4 The Gram-Schmidt Process

6.5 Least Square Problems

The Gram-Schmidt Process

Suppose $W = \operatorname{Span}\{\mathbf{x}_1, \mathbf{x}_2\}$, where \mathbf{x}_1 and \mathbf{x}_2 are linearly independent in \mathbb{R}^n , and we want to construct an orthogonal basis for W. Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$ be this basis. We can take the first vector in \mathcal{B} to be \mathbf{x}_1 itself, i.e. $\mathbf{v}_1 = \mathbf{x}_1$. For the second vector, we need it

- (i) To be orthogonal to $\mathbf{v}_1 = \mathbf{x}_1$,
- (ii) To be a linear combination of \mathbf{x}_1 and \mathbf{x}_2 .

Recalling Lec20, we take $\mathbf{v}_2 = \mathbf{x}_2 - \hat{\mathbf{x}}_2$, where $\hat{\mathbf{x}}_2$ is the orthogonal projection of \mathbf{x}_2 onto \mathbf{x}_1 . Then $\mathbf{v}_2 \perp \mathbf{x}_1$ and $\mathbf{v}_2 = \mathbf{x}_2 - \alpha \mathbf{x}_1$ satisfies (ii) as well.

The Gram-Schmidt Process is simply an iteration of this.

The Gram-Schmidt Process

Thm (Gram-Schmidt): Let $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ be a basis for a nonzero subspace W of \mathbb{R}^n . Define

$$\mathbf{v}_1 = \mathbf{x}_1,$$

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1,$$

$$\vdots$$

$$\mathbf{v}_{\rho} = \mathbf{x}_{\rho} - \frac{\mathbf{x}_{\rho} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{\rho} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} - \dots - \frac{\mathbf{x}_{\rho} \cdot \mathbf{v}_{\rho-1}}{\mathbf{v}_{\rho-1} \cdot \mathbf{v}_{\rho-1}} \mathbf{v}_{\rho-1}$$

- (i) Then $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is an orthogonal basis for W.
- (ii) Moreover, for any $1 \le k \le p$, we have

$$\operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}=\operatorname{Span}\{\mathbf{x}_1,\ldots,\mathbf{x}_k\}. \tag{1}$$

The Gram-Schmidt Process

<u>Proof.</u> The proof is by induction. If p = 1 the statement is trivial. Now suppose (i)-(ii) are true for p = k. Let $W_k = \text{Span}\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ and define

$$\mathbf{v}_{k+1} = \mathbf{x}_{k+1} - \operatorname{proj}_{W_k} \mathbf{x}_{k+1} \tag{2}$$

From Lec20, we get that $\mathbf{v}_{k+1} \in W_{k}^{\perp}$. Also, $\operatorname{proj}_{W_k} \mathbf{x}_{k+1} \in W_k \subset W_{k+1}$, so $\mathbf{v}_{k+1} \in W_{k+1}$ as W_{k+1} is a subspace. Finally $\mathbf{v}_{k+1} \neq \mathbf{0}$ since $\mathbf{x}_{k+1} \notin W_k$. Using our hypothesis that the theorem holds for p = k, and in view of (1), we deduce that $\{\mathbf{v}_1, \dots, \mathbf{v}_{k+1}\}$ is an orthogonal set in W_{k+1} , which has dimension k+1. Since it is in particular linearly independent, it must be a basis for W_{k+1} by the basis theorem. This proves (ii) for p = k + 1, and also (i) since $W = W_{k+1}$ if p = k + 1. \square

Orthonormal Bases

It follows that any nonzero subspace W of \mathbb{R}^n has an orthogonal basis.

This implies that any such W also has an orthonormal basis, simply by normalizing the vectors \mathbf{v}_k of the orthogonal basis.

```
Find an orthonormal basis for W = \text{Span}\{(1, 2, -1, 0), (2, 2, 0, 1), (1, 1, -1, 0)\}.
```

Computer algorithms can apply the Gram-Schmidt process to the columns of a matrix A. The result is a QR factorization for A. This can be useful for solving equations.

QR Factorization

Thm (QR Factorization): Let A be an $m \times n$ matrix with linearly independent columns. Then A can be factored as A = QR, where

- \triangleright Q is an $m \times n$ matrix whose columns form an orthonormal basis of Col(A),
- ightharpoonup R is an $n \times n$ upper triangular invertible matrix with positive diagonal entries.

<u>Proof.</u> The columns $\mathcal{B} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ form a basis of Col(A). Apply the Gram-Schmidt process to \mathcal{B} and normalize the resulting vectors to obtain an orthonormal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ of Col(A). Let $Q = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_n \end{bmatrix}$. Since Span $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ = Span $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$, there are

OR Factorization

some $r_{ik} \in \mathbb{R}$ such that

$$\mathbf{x}_k = r_{1k}\mathbf{u}_1 + \dots + r_{kk}\mathbf{u}_k + 0\mathbf{u}_{k+1} + \dots + 0\mathbf{u}_n$$
. (3)

We may assume that $r_{kk} \ge 0$ by multiplying both r_{kk} and \mathbf{u}_k by -1 if necessary.

Equation (3) says that
$$\mathbf{x}_k = Q\mathbf{r}_k$$
, where $\mathbf{r}_k = \begin{bmatrix} r_{1k} \\ \vdots \\ r_{kk} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$. If $R = \begin{bmatrix} \mathbf{r}_1 & \cdots & \mathbf{r}_n \end{bmatrix}$, then R is clearly upper triangular and $A = \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} Q\mathbf{r}_1 & \cdots & Q\mathbf{r}_n \end{bmatrix} = QR$

$$R = \begin{bmatrix} \mathbf{r}_1 & \cdots & \mathbf{r}_n \end{bmatrix}$$
, then R is clearly upper triangular and $A = \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} Q\mathbf{r}_1 & \cdots & Q\mathbf{r}_n \end{bmatrix} = QR$.

QR Factorization

To see that R is invertible, suppose $R\mathbf{x} = \mathbf{0}$. Then $A\mathbf{x} = QR\mathbf{x} = Q\mathbf{0} = \mathbf{0}$. As A has linearly independent columns, the only solution to $A\mathbf{x} = \mathbf{0}$ is $\mathbf{x} = \mathbf{0}$ (Lec3). It follows that R is invertible (Lec7).

Finally, $\det(R) = r_{11}r_{22}\cdots r_{nn}$ and $r_{kk} \ge 0$. Since R is invertible, we must have $r_{kk} > 0$ for all k.

Find a QR factorization for
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$
.

Least-Squares Problems

Inconsistent systems often arise in applications. If $A\mathbf{x} = \mathbf{b}$ has no solution, we can try to search for the best approximation $\hat{\mathbf{x}}$ of a solution, i.e. try to find $\hat{\mathbf{x}}$ such that $\|A\hat{\mathbf{x}} - \mathbf{b}\|$ is as small as possible.

If A is an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^m$, a least-squares solution of $A\mathbf{x} = \mathbf{b}$ is an $\hat{\mathbf{x}} \in \mathbb{R}^n$ such that

$$\|\mathbf{b} - A\widehat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\| \qquad \forall \mathbf{x} \in \mathbb{R}^n.$$

Since $A\mathbf{x} = \sum_{i=1}^{n} x_i \mathbf{a}_i \in \text{Col}(A)$, we can simply take $\hat{\mathbf{x}} = \mathbf{x}_0$, where $A\mathbf{x}_0 = \text{proj}_{\text{Col}(A)}(\mathbf{b})$, by Lec20. If $\mathbf{b} \in \text{Col}(A)$, then $A\mathbf{x} = \mathbf{b}$ has a solution \mathbf{x}_0 (Lec2), and we can take $\hat{\mathbf{x}} = \mathbf{x}_0$.

Least-Squares Problems

Thm: The set of least-square solutions of $A\mathbf{x} = \mathbf{b}$ coincides with the nonempty set of solutions of the normal equations $A^T A\mathbf{x} = A^T \mathbf{b}$.

<u>Proof.</u> Let $\hat{\mathbf{b}} = \text{proj}_{\text{Col}(A)}(\mathbf{b})$. The set of least-squares solutions is the set of solutions \mathbf{y} of $A\mathbf{y} = \hat{\mathbf{b}}$.

Since
$$\mathbf{b} - \widehat{\mathbf{b}} \in \text{Col}(A)^{\perp} = \text{Nul}(A^{T})$$
, if $A\mathbf{y} = \widehat{\mathbf{b}}$, then $A^{T}A\mathbf{y} = A^{T}\widehat{\mathbf{b}} = A^{T}(\mathbf{b} - (\mathbf{b} - \widehat{\mathbf{b}})) = A^{T}\mathbf{b}$.

Conversely, if $A^T A \mathbf{y} = A^T \mathbf{b}$, then $A^T (\mathbf{b} - A \mathbf{y}) = \mathbf{0}$. So $\mathbf{b} = A \mathbf{y} + (\mathbf{b} - A \mathbf{y})$, and $\mathbf{b} - A \mathbf{y} \in \operatorname{Nul}(A^T) = \operatorname{Col}(A)^{\perp}$, while $A \mathbf{y} \in \operatorname{Col}(A)$. By uniqueness of orthogonal decomposition, we must have $A \mathbf{y} = \operatorname{proj}_{\operatorname{Col}(A)}(\mathbf{b}) = \widehat{\mathbf{b}}$.

Least-Squares Problems

Find a least-squares solution to the problem $A\mathbf{x} = \mathbf{b}$ if

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}.$$

The terminology "least-squares" is due to the fact that we are trying to find an \mathbf{x} minimizing $\sum_{i=1}^{n} |b_i - (A\mathbf{x})_i|^2$, instead of one minimizing $\sum_{i=1}^{n} |b_i - (A\mathbf{x})_i|$ for example.

Find the orthogonal projection of
$$\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$
 onto the

column space of
$$A = \begin{bmatrix} 0 & 2 \\ 3 & 0 \\ 1 & 0 \end{bmatrix}$$
.

Unique least-squares solution

Thm: Let A be an $m \times n$ matrix. The following statements are equivalent.

- (1) The equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution for each $\mathbf{b} \in \mathbb{R}^m$.
- (2) The columns of A are linearly independent.
- (3) The matrix $A^T A$ is invertible.

If any of these statements holds, the unique solution is $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$.

<u>Proof.</u> (1) \Longrightarrow (3). If (1) holds then $A^T A \mathbf{x} = A^T \mathbf{b}$ has a unique solution for any \mathbf{b} . Taking $\mathbf{b} = \mathbf{0}$, we get that $A^T A \mathbf{x} = \mathbf{0}$ has a unique solution, which must be the trivial solution. So (3) holds (Lec7).

Unique least-squares solution

(3) \Longrightarrow (1) Conversely, if (3) holds, then $A^T A \mathbf{x} = A^T \mathbf{b}$ has the unique solution $\mathbf{x} = (A^T A)^{-1} A^T \mathbf{b}$ so (1) holds.

(2) \iff (3) We first prove that $Nul(A) = Nul(A^TA)$. In fact, if $A\mathbf{x} = \mathbf{0}$ then $A^TA\mathbf{x} = \mathbf{0}$. This shows $Nul(A) \subseteq Nul(A^TA)$. Conversely, if $A^TA\mathbf{x} = \mathbf{0}$, then $\mathbf{x}^T(A^TA\mathbf{x}) = 0$, so $(\mathbf{x}^TA^T)(A\mathbf{x}) = 0$, so $(A\mathbf{x})^T(A\mathbf{x}) = 0$ and thus $A\mathbf{x} = 0$. Thus, $Nul(A) = Nul(A^TA)$.

It follows (Lec3) that the columns of A are linearly independent iff the columns of A^TA are linearly independent, which occurs iff A^TA is invertible (Lec7). \Box

If $\hat{\mathbf{x}}$ is a least-squares solution, we call $\|\mathbf{b} - A\hat{\mathbf{x}}\|$ the least square error.

QR Factorizations and Least-Square Solutions Find the least-squares errors in the previous examples.

The following theorem gives a method which is often more reliable for computer calculations.

Thm: Let A be an $m \times n$ matrix with linearly independent columns. Let A = QR be a QR factorization for A. Then for each $\mathbf{b} \in \mathbb{R}^m$, the equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution given by $\hat{\mathbf{x}} = R^{-1}Q^T\mathbf{b}$.

<u>Proof.</u> We already know the solution is unique. Let $\hat{\mathbf{x}} = R^{-1}Q^T\mathbf{b}$. Then $A\hat{\mathbf{x}} = QQ^T\mathbf{b}$. As Q has orthonormal columns, then $QQ^T\mathbf{b} = \operatorname{proj}_{\operatorname{Col}(A)}(\mathbf{b})$ by Lec20. So $\hat{\mathbf{x}}$ is a least-squares solution.

QR Factorizations and Least-Square Solutions

Find the least-squares solution of $A\mathbf{x} = \mathbf{b}$ if

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 4 \\ -1 \\ 0 \\ 1 \end{bmatrix}.$$