MATH5735: Modules and Representation Theory (2014,S1) Problem Set 3 $^{\rm 1}$

This problem set covers lectures 11-14. Throughout, k will denote some field and R a ring.

1. Consider the sequence of \mathbb{Z} -modules

$$\dots \xrightarrow{2} \mathbb{Z}/4\mathbb{Z} \xrightarrow{2} \mathbb{Z}/4\mathbb{Z} \xrightarrow{2} \mathbb{Z}/4\mathbb{Z} \xrightarrow{2} \dots$$

where the maps are multiplication by 2. Show that the sequence is exact.

- 2. Let $R = M \oplus M'$ as R-modules. Hence we may write $1_R = e + e'$ where $e \in M, e' \in M'$. Show that e is an idempotent of R.
- 3. A set $\{e_1, \ldots, e_n\}$ of idempotents for R is said to be *complete* if $1 = e_1 + \ldots + e_n$ and *orthogonal* if $e_i e_j = 0$ for $i \neq j$. Show that if $\{e_1, \ldots, e_n\}$ is a complete, orthogonal set of idempotents and B is an (R, S)-bimodule then we have a direct sum decomposition of right S-modules

$$B = e_1 B \oplus \ldots \oplus e_n B.$$

- 4. Let k be a field and A be a finite dimensional k-algebra. Show that any finitely generated A-module M is both noetherian and artinian.
- 5. Consider the subring $\mathbb{Z}[\frac{1}{2}] = \{\frac{n}{2^m} | n, m \in \mathbb{Z}\}$ of \mathbb{Q} . Note that since \mathbb{Z} is a subring of $\mathbb{Z}[\frac{1}{2}]$, we may consider it as a \mathbb{Z} -module. Consider the quotient \mathbb{Z} -module $M = \mathbb{Z}[\frac{1}{2}]/\mathbb{Z}$. Is M noetherian? Is M artinian? Justify your answer fully in either case. Hint: $\mathbb{Z}[\frac{1}{2}]$ is the union of submodules $\frac{1}{2^m}\mathbb{Z}$.
- 6. Which of the following rings are noetherian and/or artinian? Give full reasons for your answer. i) $\mathbb{Q}(\sqrt{7})$, ii) $M_3(\mathbb{R})$, iii) $M_3(\mathbb{Z}[i])$, iv) $k[x,y,z]/\langle y^2-xyz^5\rangle$, v) $k\langle x,y,z\rangle/\langle y^2-xyz^5\rangle$, vi) $k\langle x,y\rangle/\langle yx-qxy\rangle$ for some $q\in k^\times$, vii) $\mathbb{Z}G$ for a finite group G.
- 7. Show that a module has finite length if and only if it is both noetherian and artinian.

¹by Daniel Chan

- 8. Consider the k[x]-module $M = k[x]/\langle x^3 x^2 \rangle$. Show that M has finite length by constructing a composition series for it. Write down the composition factors.
- 9. Let R = k[x, y] and consider the R-modules $M = (R/\langle x, y \rangle)^3, N = R/\langle x^2, xy, y^2 \rangle$. Show that they have the same composition factors but are not isomorphic as R-modules.
- 10. Let $R = \mathbb{Z}[x]$ and $M = R/\langle 6, x^2 \rangle$. Find the composition factors of M. Is M a direct sum of simple modules?
- 11. This question concerns the first Weyl algebra A_1 which is the subalgebra of $E = \operatorname{End}_{\mathbb{C}}\mathbb{C}[x]$ defined as follows. Let $\partial \in E$ be differentiation and $\lambda_x \in E$ be multiplication by x. Then by the universal property of free algebras, there is a unique \mathbb{C} -algebra homomorphism $\phi : \mathbb{C}\langle x, y \rangle \longrightarrow E$ which sends x to λ_x and y to ∂ . Then A_1 is the image of ϕ and is often written as $\mathbb{C}\langle x, \partial \rangle$. (Note that in this notation, the algebra is not the free algebra on x, ∂ and that x really means λ_x .)
 - (a) Show that $\partial x = x\partial + 1$ so A_1 is non-commutative.
 - (b) Prove that $A_1 \simeq \mathbb{C}\langle x, y \rangle / \langle yx xy 1 \rangle$. Hint: It may be useful to show that a \mathbb{C} -basis for A_1 is $\{x^i \partial^j | i, j \in \mathbb{N}\}$.
 - (c) Prove that A_1 is noetherian.
- 12. Consider the matrices

$$e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, e_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, f = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

in $M_2(k)$ where k is a field. They span the subalgebra A of upper triangular matrices (see problem set 1, question 2).

- (a) Show that $\{e_1, e_1\}$ form a complete set of orthogonal idempotents so any right A-module M decomposes as a vector space in the form $M = Me_1 \oplus Me_2$. Show also that $(Me_1)f \subseteq Me_2$.
- (b) Show that up to isomorphism, there are only two simple modules.
- (c) Show that A_A is the direct sum of two non-isomorphic indecomposable submodules and find their composition factors.
- (d) Show that up to isomorphism, there are only 3 indecomposable A-modules. Hint: If $m \in Me_1$ is non-zero, show that km + kmf is a direct summand of M.