Cuplaje aplicatii

Aplicație: Matrice de permutări

Problemă

Pe o tablă de tip șah de dimensiuni nxn sunt așezate ture, astfel încât pe fiecare linie și fiecare coloană sunt **același număr de ture**. Să se arate că se pot păstra pe tablă n dintre aceste ture, care nu se atacă două câte două

$$M = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} \longrightarrow P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$P = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Reformulare cu matrice

Fie p>1 și M o matrice nxn cu elemente {0,1} a.î pe fiecare linie și pe fiecare coloană sunt exact p elemente 1.

Atunci M conține o matrice de permutări (având un unic 1 pe fiecare linie și coloană)

Modelare cu grafuri

$$M = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1$$

- există matrice de permutări în M

 există cuplaj perfect în
 G
- Rezultă din consecințele teoremei lui HALL (teorema căsătoriei)

Aplicaţie: Acoperire tabla cu piese de domino

Acoperirea unei table cu piese de

domino

- Tabla
- Acoperire

graful grid

cuplaj perfect

Graful grid

- Tabla
- Acoperire

graful grid cuplaj perfect

Graful grid

- Acoperirea unei table m x n cu piese de domino
 - Este acoperibilă ⇔ mn par
- Dacă tabla este acoperibilă, dar eliminăm două pătrățele din ea, în ce condiții rămâne acoperibilă?

- Tabla
- Acoperire

⇒ cuplaj perfect

- Acoperirea unei table m x n cu piese de domino
 - Este acoperibilă ⇔ mn par
 - Dacă tabla este acoperibilă, dar eliminăm două pătrățele din ea, în ce condiții rămâne
 coperibilă?
 - dacă și numai dacă pătrățelele au culori diferite

Aplicaţie: Sistem de reprezentanţi distincţi pentru submulţimi

Problemă - sistem de reprezentanți distincţi

Fie A – mulţime finită cu n elemente

$$X_1, X_2, ..., X_m \subseteq A$$

S.n. **sistem de reprezentanţi distincţi** pentru colecţia de submulţimi $(X_1, X_2, ..., X_m)$ un vector $(r_1, r_2, ..., r_m)$ cu proprietăţile

- $r_i \in X_i$, $\forall i=1,...,m$
- $r_i \neq r_j$, $\forall i, j=1,...,m, i \neq j$ $A = \{1, 2, 3, 4\}$

$$X_1 = \{2, 3\}$$
 \Rightarrow $r_1 = 2$

$$X_2 = \{1, 3, 4\}$$
 \Rightarrow $r_2 = 3$
 $X_3 = \{2, 4\}$ \Rightarrow $r_3 = 4$

Problemă - sistem de reprezentanți distincţi

Nu orice colecție de submulțimi admite un sistem de reprezentanți distincți. **Exemplu**:

A =
$$\{1, 2, 3, 4\}$$

 $X_1 = \{2, 3\}$
 $X_2 = \{3\}$
 $X_3 = \{2\}$

Problemă - sistem de reprezentanți distincți

Condiții necesare și suficiente pentru existența unui sistem de reprezentanți distincți ai unei colecții de submulțimi din A

Problemă - sistem de reprezentanți distincţi

Modelăm problema cu ajutorul uni graf bipartit:

- vârf x_i asociat submulțimii X_{i,} i=1,...,m
 ⇒ mulțimea X de vârfuri
- vârf a_j -asociat fiecărui element din A, j = 1,...,n,
 ⇒ mulțimea Y de vârfuri
- muchie de la \mathbf{x}_i la $\mathbf{a}_j \Leftrightarrow \mathbf{a}_j \in X_i$

Problemă - sistem de reprezentanți distincţi

Exemplu:

$$A = \{1, 2, 3, 4\}$$

- $X_1 = \{2, 3\}$
- $X_2 = \{1, 3, 4\}$
- $X_3 = \{2, 4\}$

Observație

 Există un sistem de reprezentanți pentru colecția de submulțimi (X₁, X₂, ..., X_m) ale lui A ⇔

există un cuplaj al lui X în Y în graful asociat

$$X_1 = \{2, 3\}$$
 $X_2 = \{1, 3, 4\}$
 $X_3 = \{2, 4\}$

$$r=(2, 3, 4)$$

Observație

 Există un sistem de reprezentanți pentru colecția de submulțimi (X₁, X₂, ..., X_m) ale lui A ⇔

există un cuplaj al lui X în Y în graful asociat

Teorema lui HALL:

Dacă pentru orice submultime $S=\{x_{i1}, x_{i2}, ..., x_{ik}\} \subseteq X$ avem

$$|N(S)| \ge |S| = k \text{ (imaginea lui S)}$$

$$N(S) = X_{i1} \cup X_{i2} \cup ... \cup X_{ik}$$

Are loc astfel următorul rezultat

Teoremă -existența unui sistem de reprezentanți distincți

Fie A o mulțime finită și $(X_1, X_2, ..., X_m)$ o colecție de submulțimi din A.

Colecția **nu** are un sistem de reprezentanți distincți \Leftrightarrow

∃ k submulțimi în colecție a căror reuniune are mai puțin de k elemente

