1.已知当 $x \to 0$ 时, $f(x) = 3\sin x - \sin x$	$13x$ 与 cx^k 是等价无穷小,则() C
(A) $k = 1, c = 4$. (B) $k = 1, c =$	-4. (C) $k = 3, c = 4$. (D) $k = 3, c = -4$.
2.已知极限 $\lim_{x\to 0} \frac{x - \arctan x}{x^k} = c$, 其中 c ,	k 为常数,且 $c \neq 0$,则() D
(A) $k = 2, c = -\frac{1}{2}$ (B) $k = 2, c = \frac{1}{2}$	(C) $k = 3, c = -\frac{1}{3}$ (D) $k = 3, c = \frac{1}{3}$
3. $\mbox{if } f(x) = \ln^{10} x, g(x) = x, h(x) = e^{\frac{x}{10}}$,则当 x 充分大时有() C
(A) $g(x) < h(x) < f(x)$.	(B) $h(x) < g(x) < f(x)$.
(C) $f(x) < g(x) < h(x)$.	(D) $g(x) < f(x) < h(x)$.
4. 曲线 $\begin{cases} x = t^2 + 7, \\ y = t^2 + 4t + 1 \end{cases}$ 上对应于 $t = 1$ 的	点处的曲率半径是(). C
(A) $\frac{\sqrt{10}}{50}$; (B) $\frac{\sqrt{10}}{100}$;	(C) $10\sqrt{10}$; (D) $5\sqrt{10}$.
5. 设函数 $f(x)$ 在 $(-\infty, +\infty)$ 内有定义, x_0	≠0是函数 $f(x)$ 的极大点,则() B
(A) x_0 必是 $f(x)$ 的驻点	(B) $-x_0$ 必是 $-f(-x)$ 的极小点
(C) $-x_0$ 必是 $-f(x)$ 的极小点	(D) 对一切 x 都有 $f(x) \le f(x_0)$
6. 设 $f(x)$ 在 $x = a$ 的邻域内连续, 且 $f(a)$ 有() C	り) 为其极大值, 则存在 $\delta > 0$, $x \in (a - \delta, a + \delta)$ 时,
(A) $(x-a)[f(x)-f(a)] \ge 0$	(B) $(x-a)[f(x)-f(a)] \le 0$
(C) $\lim_{t \to a} \frac{f(t) - f(x)}{(t - x)^2} \ge 0 (x \ne a)$	(D) $\lim_{t \to a} \frac{f(t) - f(x)}{(t - x)^2} \le 0 (x \ne a)$
7. 设 $y = f(x)$ 是 $y'' + y' - e^{\sin x} = 0$ 的解,	且 $f'(x_0) = 0$,则 $f(x)$ 在 () C
(A) x_0 的某个领域内单调增加	(B) x_0 的某个领域内单调减少
(C) x_0 处取得极小值	(D) x ₀ 处取得极大值
8. 设 $f(x)$ 有二阶连续导数, 且 $f'(0) = 0$,	$\lim_{x \to 0} = \frac{f''(x)}{ x } = 1, \text{ M} () B$
(A) $f(0)$ 是 $f(x)$ 的极大值 (C)	(0, f(0)) 是曲线 $y = f(x)$ 的拐点

(B) $f(0)$ 是 $f(x)$ 的极小值 (D) $f(0)$ 不是 $f(x)$ 的极值, $(0, f(0))$ 也不是曲线	
y = f(x) 的拐点	
9. 设函数 $f(x)$, $g(x)$ 具有二阶导数, 且 $g''(x)$ < 0 , 若 $g(x_0)$ = a 是 $g(x)$ 的极值, 则	
$f(g(x))$ 在 x_0 取极大值的一个充分条件是() B	
(A) $f'(a) < 0$. (B) $f'(a) > 0$. (C) $f''(a) < 0$. (D) $f''(a) > 0$.	
10 .设函数 $y = f(x)$ 具有二阶导数,且 $f'(x) > 0$, $f''(x) > 0$, Δx 为自变量 x 在点 x_0 处的增量,	
Δy 与 dy 分别为 $f(x)$ 在点 x_0 处对应增量与微分,若 $\Delta x > 0$,则()	
(A) $0 < dy < \Delta y$ (B) $0 < \Delta y < dy$ (C) $\Delta y < dy < 0$ (D) $dy < \Delta y < 0$	
11. 设 $f(x)$ 具有 2 阶导数, $g(x) = f(0)(1-x) + f(1)x$,则在区间[0,1]上 (). D	
(A)	
(C)	
12. 设 $f'(x_0) = f''(x_0) = 0$, $f'''(x_0) > 0$, 则下列选项正确的是 () A	
(A) $f'(x_0)$ 是 $f'(x)$ 的极大值 (B) $f(x_0)$ 是 $f(x)$ 的极大值	
(C) $f(x_0)$ 是 $f(x)$ 极小值	
13.设函数 $f(x)$ 满足关系式 $f''(x) + [f'(x)]^2 = x$,且 $f'(0) = 0$,则() C	
(A) $f(0)$ 是 $f(x)$ 的极大值. (C)点 $(0, f(0))$ 是曲线 $y = f(x)$ 的拐点.	
(B) $f(0)$ 是 $f(x)$ 的极小值. (D) $f(0)$ 不是 $f(x)$ 的极值,点 $(0,f(0))$ 也不是曲线	
y = f(x) 的拐点.	
14.曲线 $y = (x-1)^2(x-3)^2$ 的拐点个数为 () C	
(A)0. (B)1. (C)2. (D)3	
15. 设 $x > 0$ 时,曲线 $y = x \sin \frac{1}{x}$ () A	
\boldsymbol{x}	
(A) 有且仅有水平渐近线 (B) 有且仅有铅直渐近线 (C) 既有水平渐近线,也有铅直渐近线 (D) 既无水平渐近线,也无铅直渐近线	

16. 已知
$$\lim_{x\to\infty} \left(\frac{x^2}{x+1} - ax - b\right) = 0$$
,其中 a,b 是常数,则 () C

(A) $a = 1, b = 1$ (B) $a = -1, b = 1$ (C) $a = 1, b = -1$ (D) $a = -1, b = -1$

- 17. 曲线 $y = \frac{1 + e^{-x^2}}{1 e^{-x^2}}$ () D
 - (A) 没有渐近线

(B) 仅有水平渐近线

(C) 仅有铅直渐近线

(D) 既有水平渐近线又有铅直渐近线

18. 曲线
$$y = e^{\frac{1}{x^2}} \arctan \frac{x^2 + x + 1}{(x - 1)(x + 2)}$$
 的渐近线有 () B

- (A) 1条 (B) 2条 (C) 3条 (D) 4条

19.曲线
$$y = \frac{1}{x} + \ln(1 + e^x)$$
 渐近线的条数为() D

A. 0 B.1 C.2 D.3

20. 若 f''(x)不变号, 且曲线 y = f(x) 在点(1,1) 处的曲率圆为 $x^2 + y^2 = 2$, 则函数 f(x) 在

区间(1,2)内() B

- (A) 有极值点,无零点.
- (B) 无极值点,有零点.
- (C) 有极值点,有零点.
- (D) 无极值点, 无零点.