Análise de Fluxo de Dados

Guido Araújo guido@ic.unicamp.br

Otimização

- Transformações para ganho de eficiência
- Não podem alterar a saída do programa

Exemplos:

- Dead Code Elimination: Apaga uma computação cujo resultado nunca será usado
- Common-subexpression Elimination: Se uma expressão é computada mais de uma vez, elimine uma das computações
- Constant Folding: Se os operandos são constantes, calcule a expressão em tempo de compilação
- Register Allocation: Reaproveitamento de registradores

- Essas transformações são feitas com base em informações coletas do programa
- Esse é o trabalho da análise de fluxo de dados
- Intraprocedural global optimization
 - Interna a um procedimento ou função
 - Engloba todos os blocos básicos

Idéia básica

- Atravesse o grafo de fluxo do programa coletando informações sobre a execução
- Conservativamente!
- Modifique o programa para torná-lo mais eficiente em algum aspecto:
 - Desempenho
 - Tamanho
- Maioria das análises podem ser descrita através de equações de fluxo de dados:
 - Ex.: Análise de Longevidade (Cap 10)

Exemplos de Otimizações de Código Básicas

Otimizações

- Melhorar o algoritmo é tarefa do programador
- O compilador pode ser útil para
 - Aplicar transformações que tornam o código gerado mais eficiente
 - Deixa o programador livre para escrever um código limpo

- Usar as informações coletadas pelas análises
- Tornar o código mais eficiente
- Vamos começar olhando:
 - Dead Code Elimination
 - Constant Propagation
 - Copy Propagation
 - CSF

Principais Fontes de Otimização

Transformações que preservam a funcionalidade

- Eliminação de Sub-expressões comuns (CSE)
- Propagação de Cópias
- Eliminação de código morto
- Constant folding
- Transformações Locais
 - Dentro de um bloco básico
- Transformações Globais
 - Envolve mais de um bloco básico
- Livro do dragão: seção 9.1

Copy Propagation

Constant Propagation

Dead Code Elimination

Common Sub-expression Elimination

Quick Sort

```
void quicksort(m,n)
int m,n;
    int i, j;
    int v.x:
    if ( n <= m ) return;
    /* fragment begins here */
    i = m-1; j = n; v = a[n];
    while(1) {
        do i = i+1; while (a[i] < v);
        do j = j-1; while (a[j] > v);
        if (i >= j) break;
        x = a[i]; a[i] = a[j]; a[j] = x;
    x = a[i]; a[i] = a[n]; a[n] = x;
    /* fragment ends here */
    quicksort(m,j); quicksort(i+1,n);
```

Fig. 10.2. C code for quicksort.

Quick Sort (original)

18 instruções

Fig. 10.5. Flow graph.

Quick Sort (otimizado)

Análise de Fluxo de Dados

- Veremos análises baseadas no CFG de quádruplas:
 - a ← b op c é representada como (a, b, c, op)
- Reaching Definitions
- Available Expressions
- Liveness Analysis

Definição não ambígua de t:

- d: t ← a op b
- d: t ← M[a]

d alcança uma sentença u:

- Se existe um caminho no CFG de d para u
- Esse caminho não contém outra definição não ambígua de t

Definição ambígua

- Uma sentença que pode ou não atribuir um valor a t
 - CALL
 - Não acontecem no compilador Minijava

- Pode ser expressa como equações de fluxo de dados
- Criamos IDs para as definições
 - d1: t ← x op y
 - Gera d1
 - Mata todas as outras definições de t, pois não alcançam o final dessa instrução
- defs(t): conjunto de todas as definições de t

Conjuntos Gen e Kill

Table 17.2	: Gen and	kill for	reaching	definitions.
-------------------	-----------	----------	----------	--------------

Statement s	gen[s]	kill[s]
$d: t \leftarrow b \oplus c$	{ <i>a</i> }	$defs(t) - \{d\}$
$d: t \leftarrow M[b]$	{ <i>d</i> }	$defs(t) - \{d\}$
$M[a] \leftarrow b$	{}	{ }
if a relop b goto L_1 else goto L_2	{ }	{ }
goto L	{}	{ }
L:	{}	{ }
$f(a_1,\ldots,a_n)$	{ }	{ }
$d: t \leftarrow f(a_1,, a_n)$	{ <i>a</i> }	$defs(t) - \{d\}$

- Usando gen e kill computamos:
 - In[n]: conjunto de definições que alcançam o início de n
 - Out[n]: conjunto de definições que alcançam o final de n

$$in[n] = \bigcup_{p \in pred[n]} out[p]$$
 $out[n] = gen[n] \cup (in[n] - kill[n])$

In e Out inicializados com vazio.

1:
$$a \leftarrow 5$$

$$4: c \leftarrow c + c$$

$$6:L2:a \leftarrow c - a$$

7:
$$c \leftarrow 0$$

			Iter. 1		
n	gen[n]	kill[n]	in[n]	out[n]	
1	1	6		1	
2	2	4,7	1	1,2	
3			1,2	1,2	
4	4	2,7	1,2	1,4	
5			1,4	1,4	
6	6	1	1,2	2,6	
7	7	2,4	2,6	6,7	

1:
$$a \leftarrow 5$$

2: $c \leftarrow 1$
3: L1: if $c > a$ goto L2
4: $c \leftarrow c + c$
5: goto L1
6: L2: $a \leftarrow c - a$
7: $c \leftarrow 0$

 Você imagina alguma otimização que poderia fazer no programa usando essa informação?

			Ite	er. 1	Ite	er. 2	Ite	er. 3
n	gen[n]	kill[n]	in[n]	out[n]	in[n]	out[n]	in[n]	out[n]
1	1	6		1		1		1
2	2	4,7	1	1,2	1	1,2	1	1,2
3			1,2	1,2	1,2,4	1,2,4	1,2,4	1,2,4
4	4	2,7	1,2	1,4	1,2,4	1,4	1,2,4	1,4
5			1,4	1,4	1,4	1,4	1,4	1,4
6	6	1	1,2	2,6	1,2,4	2,4,6	1,2,4	2,4,6
7	7	2,4	2,6	6,7	2,4,6	6,7	2,4,6	6,7


```
W \leftarrow the set of all nodes
while W is not empty
   remove a node n from W
   old \leftarrow out[n]
   in \leftarrow \bigcup_{p \in pred[n]} out[p]
   out[n] \leftarrow gen[n] \cup (in - kill[n])
   if old \neq out[n]
     for each successor s of n
          if s \notin W
             put s into W
```


x op y está disponível em n no CFG se:

- Para todo caminho a partir do nó de entrada até n, x op y é computada pelo menos uma vez
- Não há definições de x ou y após a mais recente ocorrência de x op y no caminho

Gen e kill se tornam conjuntos de expressões

- Nó que calcula x op y: Gera x op y
- Qualquer definição de x ou y mata x op

Table 17.4: Gen and kill for available expressions.

Statement s	gen[s]	kill[s]
$t \leftarrow b \oplus c$	$\{b\oplus c\}-kill[s]$	expressions containing t
$t \leftarrow M[b]$	$\{M[b]\} - kill[s]$	expressions containing t
$M[a] \leftarrow b$	{ }	expressions of the form $M[x]$
if $a > b$ goto L_1 else goto L_2	{ }	◊
goto L	0	€
L:	{ }	{ }
$f(a_1, \ldots, a_n)$	{ }	expressions of the form $M[x]$
$t \leftarrow f(a_1, \dots, a_n)$	{}	expressions containing t , and expressions of the form $M[x]$

- Usando gen e kill computamos:
 - In[n]: conjunto de expressões disponíveis no início de n
 - Out[n]: conjunto de expressões disponíveis no final de n

$$in[n] = \bigcap_{p \in pred[n]} out[p]$$
 if n is not the start node $out[n] = gen[n] \cup (in[n] - kill[n])$

- In e Out inicializados com "cheio".
 - Por que?
- Exceção para in do nó de entrada

Liveness Analysis

Podemos usar gen e kill:

- Usos de variável geram liveness
- Definições de variável matam liveness

gen[s]	kill[s]	
{b, c}	{ <i>t</i> }	
{b}	{ <i>t</i> }	
{a, b}	{}	
{a, b}	{ }	
{ }	{ }	
{ }	{}	
$\{a_1,,a_n\}$	{ }	
$\{a_1,, a_n\}$	{ <i>t</i> }	
	{b, c} {b} {a, b} {a, b} {a, b} {} {}	

Liveness Analysis

- Podemos usar gen e kill:
 - Usos de variável geram liveness
 - Definições de variável matam liveness

$$in[n] = gen[n] \cup (out[n] - kill[n])$$
 $out[n] = \bigcup_{s \in succ[n]} in[s]$

Liveness tem fluxo contrário ao do grafo

Liveness Analysis

- Suponha dois nós no CFG n e p
 - p é o único predecessor de n
- Neste caso, podemos combinar os efeitos gen e kill de n e p
- Teremos apenas um nó no grafo
- Podemos repetir para todas as instruções de um bloco básico!

- Bloco básico: Apenas uma entrada, uma saída e nenhum desvio contido nele.
- Pense em Reaching Definitions
 - Como combinar gen e kill para um bloco básico?
- $out[n] = gen[n] \cup (in[n] kill[n])$.
- in[n] = out[p]. Por quê?

Então temos:

 $- out[n] = gen[n] \cup ((gen[p] \cup (in[p] - kill[p])) - kill[n]).$

Lembre-se que

- $(A \cup B) C = (A C) \cup (B C)$
- $A (B \cup C) = (A B) C$

Logo:

 $- out[n] = gen[n] \cup ((gen[p] - kill[n]) \cup (in[p] - (kill[p] \cup kill[n])))$

- Logo:
 - $out[n] = gen[n] \cup ((gen[p] kill[n]) \cup (in[p] (kill[p] \cup kill[n]))$
- Daí tiramos que:
 - $gen[pn] = gen[n] \cup (gen[p] kill[n])$
 - $kill[pn] = kill[p] \cup kill[n]$
- Exercício: Deduza essas equações para outras análises
 - Available expressions, liveness

- Usando essa técnica podemos
 - Combinar todas as sentenças de um bloco básico
 - Criar gen e kill para o bloco todo
- O CFG de BBs é muito menor que o de sentenças individuais
- Acelera a análise

Ordenação dos Nós

Forward analysis:

- Ordenar os nós com DFS
- Topológica (sem ciclos)
- Quase-topológica (com ciclos)
- Faz com que a maioria dos predecessores seja computada antes dos sucessores

Backward analysis

Começar pelo nó saída

