Formelsammlung zu Grundlagen Rechnernetze und Verteilte Systeme (GRNVS IN0010) SS 2020, Seite 1/2, Version: 2020-06-09

	Ī	Ī	Ī	Ī					Ī	П		П	П				Ī	Ī		Ī			Ī		Ī		Ī		Ī	Ī	Ī
,	0	1	2	3	4	5	6	7	8	9	10	11 1	2 13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
									0x8	001 (E	the	rnet)								Р	roto	ol T	ype	: 0x0	800	(IPv	(4)				
		Har	rdw	are.	Addi	r. Le	ngth	1		Pro	tocc	l Add	lr. Le	ngth				Op	erat	ion:	8×8	əə1 (Rec	ques	t) or	0×0	002	(Re	oly)		
													Sen	der F	lard	ware	Ad	dres	ss												
																					Sen	der F	Prot	ocol	Add	iress	8				П
				S	ende	er Pr	rotoc	col A	ddre	ess (d	conti	ntuec	1)																		
													Tan	get H	lardy	vare	Adı	dres	s												
													Tai	get F	roto	col	Add	ress													
Pε	ack	et i	For	ma	t																										
ν4																															
Ξ	_			_			_				_	_	_	_			_							_				_		_	_
0		1	2	_		5	6	7	8	9		_	2 13	14	15	16	17	18	19	20	21		_		_	26	27	28	29	30	31
L	H	_		Ty	pe					_	_	Code	_		_						_	_		ksun							L
ш							_ !	lden	tifier					Ļ							S	eque	ence	e Nu	mbe	er					
L.	_	_	_	_	_		_	_	_	_		_	_	Da	ita (≥01	3)	_		۸.	_	_		_		_			_	_	_
_		•			_	~	-		_	_	\sim	CMF	v4 E	cho	Re	que	st/F	Rep.	v	_		_	-	~			_				
0		4	2	2	4	5	0	7	8	0	10	1 1	2 13	14	15	10	17	10	10	20	21	22	22	24	25	20	27	20	20	20	24
r	٠	÷	-	Ty		_	0	Ó	_	-		Code			Ť	10		10						ksun		LU				00	
Н	۰	-		-,	-	_			-	-	-	Oout	-		unu	nod	-	-	_	-	_	Ť	1100	Noui	_		_		_	_	Н
Н	-	-								_	РН	anda	+ fire		-		nal /	lata	oran	n'o 1	lata										_
L	_	_	_	<u>_</u>	_	_	_	_	~	٠.		~	_	_	\sim	~	_	_		~	~	_	_	_	_	_	_	_	_	_	_
												IC.	MPv-	‡ Tir	ne l	Exce	ed	ed													
0		1	2	3	4	5	6	7	8	9	10	11 13	2 13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Г	т	т		Ty	pe							Code					_					С	hed	ksur	n						Т
Н	т	7	T	Ť					_	_			т		unu	sed														Т	Т
г			_		_		_			_	PΗ	eade	+ fire	t 8 E	of	origin	nal d	iata	gran	n's c	fata	_		_		_		_		_	
L	~	_	_	~	_	\sim	<u></u>	_	~	~	_	~	_	_	~	\sim	^	_	~	~	~	~	_	~	_	_	\	~	_	_	_
											IC.	MPv	4 De	stina	atior	Ur.	rea	icha	able												
	7	Гур	6										Cod		De:	cri	ntic	n											_		
	_	-			Rep	h.			_					_	Ech	_	_			_			_		_		_		_		
	_				чер	ну												_											_		
	_1	l ar	nd 2	2											Re:	seri	/ea	_											_		
																						reac		ble							
	3	3-1	De:	stin	atio	n l	Jnre	act	nah	le												hab									
																						read		ble							
	_													_	_	_	_	_	_	_	_	hab	_						_		
	_4	1-:	Soi	uro	e Q	uer	nch							0	Sou	ırce	qu	en	ch (cor	iges	stior	100	ontro	ol)				_		
	-	5_1	D.	dire	oct N	Anc	sac	10						0	Re	dire	ct E	ata	agra	ım f	fort	he N	Vet	wor	k						
		,-,	110	une	CLI	vios	oaų	30						1	Re	dire	ct E	ata	agra	ım 1	fort	he F	los	t							
	٦	3-1	Ect	no F	Req	ues	st							0	Ech	no re	equ	est											_		
	_		Ξ		_		_							0	TTI	ex	pire	ed in	n tra	ıns	it								_		
	1	11-	-Ti	me	Ex	cee	dec	ď														Tim	eЕ	хсе	ede	ed					
	-	_	_	_	_	_	_	_	_	_	1,,,,,	~~~	ählte			_	_			_		_	Ė	_	_	_	_	_	_		
		-4	_	4 05					_	_	nu Sį	jewi	211116	,UN	nr V	+ 1)	μθ	a/ C	out	3			_		_		_		_	_	_
	_			1/2																											
	He			Bir			cii			Hex		Bina		scii						ină		lsci			Не			Bin		Asc	ii
9	0	0	998	1000	100	- 1	NUL	3	2	20	001	10000	0 S	PACE	1	64	44	9 6	100	999	0	-	9	96	6	60	011	989	90		

ahler	syste	eme 1/2													
Dez	Hex	Binār	Ascii	Dez	Hex	Binär	Ascii	Dez	Hex	Binär	Ascii	Dez	Hex	Binär	Ascii
- 0	99	60666666	NUL	32	20	00100000	SPACE	64	40	01000000	0	96	60	01100000	
1	01	00000001	SOH	33	21	00100001		65	41	01000001	A	97	61	01100001	
2	02	00000010	STX	34	22	00100010		66	42	01000010	В	98	62	01100010	
3	03	00000011	ETX	35	23	00100011		67	43	01000011	C	99	63	01100011	
4	94	00000100	EOT	36	24	00100100	\$	68	44	01000100	D	100	64	01100100	
5	05	00000101	ENQ	37	25	00100101	%	69	45	01000101	E	101	65	01100101	
6	96	00000110	ACK	38	26	00100110	&	70	46	01000110	F	102	66	01100110	
7	97	00000111	BEL	39	27	00100111	,	71	47	01000111	G	103	67	01100111	
8	89	00001000	BS	48	28	00101000	(72	48	01001000	H	104	68	01101000	
9	09	00001001	HT	41	29	00101001)	73	49	01001001	I	105	69	01101001	
10	0a	00001010	LF	42	2a	00101010	*	74	4a	01001010	J	106	6a	01101010	
11	6P	00001011	VT	43	2b	00101011		75	4b	01001011	K	107	6b	01101011	
12	0c	00001100	FF	44	2c	00101100		76	4c	01001100	L	108	6c	01101100	
13	0d	00001101	CR	45	2d	00101101	-	77	4d	01001101	M	109	6d	01101101	
14	0e	00001110	SO	46	2e	00101110		78	4e	01001110	N	110	6e	01101110	
15	0f	00001111	SI	47	2f	00101111	/	79	4f	01001111	0	111	6f	01101111	
16	10	00010000	DLE	48	30	00110000	0	80	50	01010000	P	112	70	01110000	
17	11	00010001	DC1	49	31	00110001	1	81	51	01010001	Q	113	71	01110001	
18	12	00010010	DC2	50	32	00110010	2	82	52	01010010	Ŕ	114	72	01110010	
19	13	00010011	DC3	51	33	00110011	3	83	53	01010011	S	115	73	01110011	
20	14	00010100	DC4	52	34	00110100	4	84	54	01010100	T	116	74	01110100	
21	15	00010101	NAK	53	35	00110101	5	85	55	01010101	U	117	75	01110101	
22	16	00010110	SYN	54	36	00110110	6	86	56	01010110	V	118	76	01110110	
23	17	00010111	ETB	55	37	00110111	7	87	57	01010111	W	119	77	01110111	
24	18	00011000	CAN	56	38	00111000	8	88	58	01011000	X	120	78	01111000	
25	19	00011001	EM	57	39	00111001	9	89	59	01011001	Y	121	79	01111001	
26	1a	00011010	SUB	58	3a	00111010		90	5a	01011010	Z	122	7a	01111010	
27	1b	00011011	ESC	59	3b	00111011		91	5b	01011011		123	7b	01111011	
28	1c	00011100	FS	60	3c	00111100	· <	92	5c	01011100	Ñ	124	7c	01111100	
29	1d	00011101	GS	61	3d	00111101	=	93	5d	01011101	1	125	7d	01111101	
30	1e	00011110	RS	62	3e	00111110	>	94	5e	01011110		126	7e	01111110	
31	1f	00011111	US	63	3f	00111111	?	95	5f	01011111		127	7f	01111111	DE

Hinweis: Die folgenden ICMPv6 Nachrichten sind zu ihren ICMPv4-Pendants identisch:

- Echo Request/Reply
- Destination Unreachable
- Time Exceeded

Es gelten jedoch für ICMPv6 Types/Codes (s. unten) die Restriktionen hinsichtlich der minimalen Länge bzw. des Alignments (Padding).

													IVE	əıgr	iooi	50	VICII	atic	ın													
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
0 B				Ty	ре							Co	de										(hec	ksu	m						
4 B	R	s	0												F	Rese	rve	d (se	et to	zero	0)											
8B	Į														Tar	get A	Addi	ess														*
24 B	П	C	ptio	n Ty	pe -	0x6	ð2			Ор	tion	Ler	gth	- 6>	01			Т	П	Т	П	т.		. 1 2	l. A.	idre			П			
28 B		П		П		П		П		П		П			П	П						14	nye	L	. A.	Jule						
32 B	Г													Α	ıddii	tiona	l Op	otion	ıs													П.
	ι.	\sim	_	_	_	_	$\overline{}$	· -	_		_	_	\sim	_	៶	_	_	_	\sim	_	<u> </u>	~	~	\sim	\sim	_	\neg	\sim	_	\sim	_	\sim

Flags: R = Router, S = Solicited, 0 = Override Neighbor Advertisement

Type	Code	Description
0		Reserved
	0	No route to destination
1 – Destination Unreachable	3	Address unreachable
	4	Portunreachable
2 - Packet too big	0	Packet too big
3-Time Exceeded	0	Hop limit exceeded in transit
3- Tille Exceeded	1	Fragment reassembly time exceeded
128 – Echo Request	0	Echo Request
129 – Echo Reply	0	Echo Reply
133 - Router Solicitation	0	Neighbor Discovery Protocol (NDP)
134 – Router Advertisement	0	Neighbor Discovery Protocol (NDP)
135 - Neighbor Solicitation	0	Neighbor Discovery Protocol (NDP)
136 – Neighbor Advertisement	0	Neighbor Discovery Protocol (NDP)
137 - Redirect Message	0	Neighbor Discovery Protocol (NDP)

Ausgewählte ICMPv6 Types/Codes

eme	2/2											
	Dez	Hex	Binār	Dez	Hex	Binär	Dez	Hex	Binär	Dez	Hex	Binār
	128	80	10000000	160	a0	10100000	192	c0	11000000	224	eØ	11100000
	129	81	10000001	161	a1	10100001	193	c1	11000001	225	e1	11100001
	130	82	10000010	162	a2	10100010	194	c2	11000010	226	e2	11100010
	131	83	10000011	163	a3	10100011	195	c3	11000011	227	e3	11100011
	132	84	10000100	164	a4	10100100	196	c4	11000100	228	e4	11100100
	133	85	10000101	165	a5	10100101	197	c5	11000101	229	e5	11100101
	134	86	10000110	166	a6	10100110	198	c6	11000110	230	e6	11100110
	135	87	10000111	167	a7	10100111	199	c7	11000111	231	e7	11100111
	136	88	10001000	168	a8	10101000	200	c8	11001000	232	e8	11101000
	137	89	10001001	169	a9	10101001	201	c9	11001001	233	e9	11101001
	138	8a	10001010	170	aa	10101010	202	ca	11001010	234	ea	11101010
	139	8b	10001011	171	ab	10101011	203	cb	11001011	235	eb	11101011
	140	8c	10001100	172	ac	10101100	204	cc	11001100	236	ec	11101100
	141	8d	10001101	173	ad	10101101	205	cd	11001101	237	ed	11101101
	142	8e	10001110	174	ae	10101110	206	ce	11001110	238	ee	11101110
	143	8f	10001111	175	af	10101111	207	cf	11001111	239	ef	11101111
	144	90	10010000	176	Ь0	10110000	208	d0	11010000	240	f0	11110000
	145	91	10010001	177	ь1	10110001	209	d1	11010001	241	f1	11110001
	146	92	10010010	178	b2	10110010	210	d2	11010010	242	f2	11110010
	147	93	10010011	179	ь3	10110011	211	d3	11010011	243	f3	11110011
	148	94	10010100	180	b4	10110100	212	d4	11010100	244	f4	11110100
	149	95	10010101	181	b5	10110101	213	d5	11010101	245	f5	11110101
	150	96	10010110	182	b6	10110110	214	d6	11010110	246	f6	11110110
	151	97	10010111	183	ь7	10110111	215	d7	11010111	247	f7	11110111
	152	98	10011000	184	ь8	10111000	216	d8	11011000	248	f8	11111000
	153	99	10011001	185	ь9	10111001	217	d9	11011001	249	f9	11111001
	154	9a	10011010	186	ba	10111010	218	da	11011010	250	fa	11111010
	155	9b	10011011	187	bb	10111011	219	db	11011011	251	fb	11111011
	156	9c	10011100	188	bc	10111100	220	dc	11011100	252	fc	11111100
	157	9d	10011101	189	bd	10111101	221	dd	11011101	253	fd	11111101
	158	9e	10011110	190	be	10111110	222	de	11011110	254	fe	11111110
	159	9f	10011111	191	bf	10111111	223	df	11011111	255	ff	11111111
	_			_			-			-		

Physikalische Konstanten/Zusammenhänge

 $c_0 \approx 3 \cdot 10^8 \, \text{m/s}$ Lichtgeschwindigkeit Relative Ausbreitungsgeschwindigkeit in Kupfer / Glas: $\nu \approx 2/3$ Relative Ausbreitungsgeschwindigkeit in Vakuum / Luft: $\nu \approx 1$ Wellenlänge im Medium:

Informationsgehalt und Entropie: Gedächtnislose Quelle emittiert Zeichen x ∈ X ausgedrückt durch ZV X

Informationsgehalt von
$$x \in \mathcal{X}$$
: $I(x) = -\log_2 (\Pr[X = x])$
Entropie der Quelle: $H(X) = -\sum_{x \in \mathcal{X}} \Pr[X = x] \log_2 (\Pr[X = x])$

Fourierreihe: Kreisfrequenz $\omega = 2\pi/T$

$$s(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega t) + b_k \sin(k\omega t) \text{ mit } \underline{a_k} = \frac{2}{T} \int_{-T/2}^{T/2} s(t) \cos(k\omega t) dt, \ b_k = \frac{2}{T} \int_{-T/2}^{T/2} s(t) \sin(k\omega t) dt.$$

Fouriertransformation: $s(t) \circ - S(t)$

riertransformation:
$$s(t) = -S(t)$$

 $S(t) = \frac{1}{\sqrt{2\pi}} \sum_{n} s(t) e^{-j2\pi t} dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} s(t) \left(\cos(2\pi tt) - j \sin(2\pi tt)\right) dt$ (j bezeichnet die imaginäre Einheit)

Abtastung Quantisierung und Rekonstruktion:

Abtasttheorem (Nyquist): $f_N = 2B$ (B ist die einseitige Grenzfrequenz im Basisband)

ogetastetes Signal:
$$\hat{s}(t) = s(t) \sum_{n=-\infty}^{\infty} \delta[t - nT_a]$$
, mit $\delta[t - nT_a] = \begin{cases} 1 & \text{für } t = nT_a \\ 0 & \text{sonst} \end{cases}$

Rekonstruktion

Quantisiertes Signal:
$$\mathbb{E}(t) = \sum_{n=-\infty}^{\infty} \delta(n) \cdot \operatorname{rect}(t - nT_a), \operatorname{rect}(t) = \begin{cases} 1 & \text{für } -T_a/2 \le t \le T_a/2 \\ 0 & \text{sonst} \end{cases}$$
Quantisierungsfelter: $q_a(t) = s(t) - \overline{s}(t) \le \Delta/2, \text{wonn } a \le s(t) \le b$
Rekonstruktion $str(s) = \sum_{n=-\infty}^{\infty} \delta(n) \cdot \sin(t) \cdot \frac{t - nT_a}{s} \setminus \sin(t) \cdot \frac{\sin(\pi t)}{s}$

Kanalbandbreite: Conv. ist eine obere Schranke für die erzielbare Netto-Datenrate in bit/s. d. h. Übertragung redundanzfreier Daten. Dazu kann es notwendig sein, Redundanz hinzuzufügen (Kanalkoderung), was jedoch am Informationsgehalt der Nachricht nichts ändert.

Hartley: C_{1,2} = 28 log₂(M)

Shannon/Hartley:

 $SNR = \frac{P_S}{P_N} = \frac{Signalleistung}{Rauschleistung} \omega$ NRdR = 101 - (2012)Signal-to-Noise Ratio: Signal-to-Noise Ratio dB: SNR dB = 10 log. (SNR)

Obere Schranke: $C_{\text{max}} \leq \min \{C_H, C_S\}$

Kanalkodierung: Beispiel Blockcodes: Block der Länge k bit wird n bit lange Kanalwörter abgebildet (n > k). Pro Kanalwort können dafür (je nach Code) m < n - k bit korrigiert werden.

Sicherungsschicht und Graphen

Modulation:

Serialisierungszeit, Ausbreitungsverzögerung, Übertragungszeit, Bandbreitenverzögerungsprodukt:

Serialisierungszeit: $t_o = L/r$ $t_p = d/(\nu c)$ Ausbreitungsverzögerung: Übertragungszeit: $t_{cl} = t_o + t_{cl}$ Bandbreitenverzögerungsprodukt: $C = t_0 r$

Cyclic Redundancy Check (CRC): Addition = XOR

 $s(t) = \left(\sum_{i=1}^{\infty} d_i[n]g_T(t - nT)\right) \cos(2\pi f_0 t)$

Checksumme: $c(x) = m(x)x^n \mod r(x)$, mit $n = \operatorname{grad} r(x)$ Gesendete Nachricht: $s(x) = m(x)x^n + c(x)$

 $c'(x) = (s(x) + e(x)) \mod r(x)$, mit Fehlermuster e(x)

Adiazenz-und Distanzmatrix:

Vermittlungsschicht

Vermittlungsarten: Übertragungszeit einer Nachricht der Länge der L über n Zwischenstationen mit jeweils identischer Datenrate rüber die Gesamtdistanz d

Leitungsvermittlung: $T_{LV} = t_0 + 4t_0 = \frac{L}{\epsilon} + \frac{4d}{100}$

Leitungsvermittlung:
$$T_{LV} = t_S + 4t_D = \frac{L}{r} + \frac{4\sigma}{\nu c}$$

Nachrichtenvermittlung:
$$T_{NV} = (n+1)t_S + t_p = (n+1)\frac{L_H + L}{r} + \frac{d}{w}$$
, $L_H = L$ änge des Nachrichtenheaders

Nachnichterwermittung:
$$I_{NV} = (h+1)I_0 + I_0 = (h+1)\frac{1}{r} + \frac{1}{\nu C}, L_H = Lange des Nachnichtenheads Packetvermittlung:
$$T_{PV} = \frac{1}{r} \left(\left[\frac{L}{p_{max}} \right] L_h + L + n(L_h + p_{max}) + \frac{1}{\nu C}, L_h = Lange des Nachnichtenheads Packetvermittlung: T_{PV} = \frac{1}{r} \left(\frac{L}{p_{max}} \right) L_h + L + n(L_h + p_{max}) + \frac{1}{\nu C}, L_h = Lange des Nachnichtenheads Packetvermittlung: T_{PV} = \frac{1}{r} \left(\frac{L}{p_{max}} \right) L_h + L + n(L_h + p_{max}) + \frac{1}{\nu C}, L_h = Lange des Nachnichtenheads Packetvermittlung: T_{PV} = \frac{1}{r} \left(\frac{L}{p_{max}} \right) L_h + L + n(L_h + p_{max}) + \frac{1}{\nu C}, L_h = Lange des Nachnichtenheads Packetvermittlung: T_{PV} = \frac{1}{r} \left(\frac{L}{p_{max}} \right) L_h + L + n(L_h + p_{max}) + \frac{1}{\nu C}, L_h = Lange des Nachnichtenheads Packetvermittlung: T_{PV} = \frac{1}{r} \left(\frac{L}{p_{max}} \right) L_h + L + n(L_h + p_{max}) + \frac{1}{\nu C}, L_h = Lange des Nachnichtenheads Packetvermittlung: T_{PV} = \frac{1}{r} \left(\frac{L}{p_{max}} \right) L_h + L + n(L_h + p_{max}) + \frac{1}{\nu C}, L_h = Lange des Nachnichtenheads Packetvermittlung: T_{PV} = \frac{1}{r} \left(\frac{L}{p_{max}} \right) L_h + L + n(L_h + p_{max}) + \frac{1}{\nu C}, L_h = Lange des Nachnichtenheads Packetvermittlung: T_{PV} = \frac{1}{r} \left(\frac{L}{p_{max}} \right) L_h + L + n(L_h + p_{max}) + \frac{1}{\nu C}, L_h = Lange des Nachnichtenheads Packetvermittlung: T_{PV} = \frac{1}{r} \left(\frac{L}{p_{max}} \right) L_h + L + n(L_h + p_{max}) + \frac{1}{\nu C} L_h + L + n(L_h + p_{max}) + L +$$$$

Round Trip Time (RTT): RTT zwischen den Knoten $s, t \in \mathcal{N}$ über den Pfad $\mathcal{P} = \{(s, 1), (1, 2), ..., (n, t)\}$ und den i. A. nicht symmetrischen Rückweg P

$$\begin{aligned} & \text{RTT}(\text{aligemein}) : & \text{RTT}(s,t) = \sum_{(i,j) \in \mathcal{P}} \left(t_{p}(i,j) + t_{p}(i,j) \right) + \sum_{(i,j) \in \mathcal{P}'} \left(t_{p}(i,j) + t_{p}(i,j) \right) \\ & \text{RTT}(\text{symmetrische Pfade}) : \text{RTT}(s,t) = 2 \sum_{i} \left(t_{p}(i,j) + t_{p}(i,j) \right) \end{aligned}$$

T (symmetrische Pfade): RTT(s, t) = 2
$$\sum_{(i,j)\in P} (t_s(i,j) + t_p(i,j))$$

Spezielle IP-Adressen /-Adressbereiche:

Adressbereich	Funktion
0.0.0.0/8	Hosts in diesem Netzwerk
127.0.0.0/8	Loopback, speziell 127.0.0.1
10.0.0.0/8	private Adressen
172.16.0.0/12	private Adressen
192.168.0.0/16	private Adressen
169.254.0.0/16	Automatic Private IP Addressing
255.255.255.255/32	Global Broadcast

Adressbereich	Funktion
::/128	nicht-spezifizierte Adresse
::1/128	Loopback
fe80::/10	Link-Local Adressen
fc00::/7	Unique-Local Unicast Adressen
ff00::/8	Multicast Adressen
ff02::1/128	All Nodes
ff02::1:ff00:0/104	Solicited Node Adressen

IPv4/6 Adressformat: (Beispiele)

Bei IPv4 unterscheidet man nicht zwischen Präfix und Subnetz (das Präfix definiert das ieweilige Subnetz). Bei IPv6 spricht man zusätzlich von einem Subnet Identifier. der zusammen mit dem Präfix das ieweilige Subentz identifiziert. Die Schreibweise <address>/N gibt dabei immer die Länge des Netzanteils an.

Transportschicht

Schiebefensterprotokolle Kardinalität Sequenznummernraum: N. Maximale Größe des Sendefensters ws um Verwechselungen zu vermeiden:

Go-Back-N: $w_g \le N - 1$ Selective Repeat: $w_a \le \left| \frac{N}{2} \right|$

TCP-Handshake und TCP-Teardown Fenster bei TCP

Empfangsfenster: w_r Staukontrollfenster: w. Sendefenster: $w_0 = \min\{w_r, w_c\}$

TCP Durchsatz in der Congestion Avoidance Phase. Annahme: Segmentverlust im Netzwerk ab $w_o \ge x \cdot MSS$.

Zeitzwischen Segmentverlust: $T = \begin{pmatrix} x \\ -+1 \end{pmatrix} \cdot RTT$ Anzahl gesendeter Segemente in T: $n = \frac{3}{x^2}$ Varlustrata Durchsatz:

Anwendungsschicht

Präfixfreie Codes Gültige Codewörter eines präfixfreien Code sind niemals Präfix eines anderen Codeworts desselben Codes. Ein optimaler präfixfreier Code minimiert die mittlere Codewortlänge

$$\sum_{i \in A} p(i) \cdot |c(i)|,$$

wobei p(i) die Auftrittswahrscheinlichkeit von $i \in A$ und c(i) die Abbildung auf ein entsprechendes Codewort bezeichnen.

DNS Resource Records

Record-Typ	Funktion
SOA	(Start of Authority) markiert die Wurzel einer Zone
NS	geben die FQDNs der für die Zone autoritativen Nameserver an
A	assoziieren einen FQDN mit einer IPv4-Adresse
AAAA	assoziieren einen FQDN mit einer IPv6-Adresse
CNAME	Alias, verweist auf ein "Canonical Name", welcher wiederum ein FQDN ist
MX	geben den Mailserver als FQDN einer Domain an
TXT	assoziieren einen FQDN mit einem String (Text)
DTD	according on a IPv4, order IPv6, Adresse mit einem FORN (Reverse RNS)

Reverse DNS Zonen

IPv4: in-addr. arpa.. IPv6: ip6. arpa

Wahrscheinlichkeitsverteilungen

Diskrete Gleichverteilung: X ~ U(a,b)

Drückt die Wahrscheinlichkeit für das Auftreten eines bestimmten von mehreren gleichwahrscheinlichen Ereignissen aus. z. B.

Drückt ein zeitdiskretes Warteproblem aus, z. B. zählt die Anzahl der Versuche bis zum Erfolg (bzw. die Anzahl erfolgloser Versuche his zum Erfolg, wenn der Exponent entsprechend verschoben wird).

Binomialverteilung: $X \sim Bin(n, p)$ Drückt die Wahrscheinlichkeit für $0 \le k \le n$ Erfolge bei konstanter Erfolgswahrscheinlichkeit p aus, z. B. Lotto. Für $n \to \infty$ und $p \to 0$ erhählt man die Poissonverteilung. Für $n \ge 10$ und p < 0.5 kann man die Poissonverteilung als Näherung für die Binomialverteilung verwenden.

Poissonverteilung: $X \sim Po(\lambda)$

Zählt das Auftreten unabhängiger und gleich verteilter Ereignisse mit Rate λ . Stellt für $\lambda = np$ den Grenzwert der Binomialverteilung $(n \to \infty, p \to 0)$ dar.

