Лекция 6. Унитарность. Характеры представлений.

В квантовой механике обычно встречаются унитарные пространства, т.е. пространства V, в которых есть скалярное произведение $(x|y), x,y \in V$ удовлетворяющие условиям

$$(x|y) = \overline{(y|x)},\tag{1}$$

$$(\alpha_1 x_1 + \alpha_2 x_2 | y) = \overline{\alpha_1}(x_1 | y) + \overline{\alpha_2}(x_2 | y) \tag{2}$$

$$(x|\alpha_1 y_1 + \alpha_2 y_2) = \alpha_1(x|y_1) + \alpha_2(x|y_2)$$
(3)

Обычно скалярное произведение предполагается положительно определенным, т.е.

$$(x|x) > 0, \forall x \neq 0.$$

Скаляное произведение можно задавать через матрицу произведений базисных векторов (матрицу Грамма) $S_{ij} = (e_i|e_j)$. Эта матрица должна быть эрмитовой $S^* = S$. При замене базиса $e_i' = A_{ij}e_j$ матрица S преобразуется $S \mapsto A^*SA$, где матрица A^* получается из A транспонированием и комплексным сопряжением. В ортонормированным базисе матрица Грамма равна единичной.

Оператор называется унитарным, если он сохраняет форму. Это означает, что (Ax|Ay)=(x|y), для любых $x,y\in A$. В базисе это равносильно матричному уравнению $S=A^*SA$. Обычно это уравнение пишется в ортонормированном базисе, тогда оно выглядит $A^*A=E$, матрицы удовлетворяющие этому условию называется унитарными.

Предложение 1. Любое комплексное представление $\rho \colon G \to GL(V)$ конечной группы G является унитаризуемым, т.е. в каком-то базисе все матрицы представления являются унитарными.

Доказательство. Надо доказать, что операторы $\rho(g)$ сохраняют некоторое положительно определенное скалярное произведение. Тогда в базисе в котором его матрица Грамма является единичной все матрицы $\rho(g)$ будут унитарными. Доказательство основано на усреднении по группе.

А именно, введем какое-то эрмитово скалярное произведение (x|y) и усредним его по группе

$$(x|y)^G = \frac{1}{|G|} \sum_{h \in G} (\rho(h)x|\rho(h)y).$$

В базисе, в котором матрица (x|y) была единичной, матрица $(x|y)^G$ имеет вид

$$S = \frac{1}{|G|} \sum_{h \in G} \rho(h)^* \rho(h).$$

Это скалярное произведение является положительно определенным, как сумма положительно определенных скалярных произведений. Теперь легко проверить, что

это скалярное произведение является G инвариантным, на матричным языке это вычисление:

$$\rho(g)^* S \rho(g) = \frac{1}{|G|} \sum_{h \in G} \rho(g)^* \rho(h)^* \rho(h) \rho(g) = \frac{1}{|G|} \sum_{\tilde{h} \in G} \rho(\tilde{h})^* \rho(\tilde{h}) = S,$$

где $\tilde{h} = hg$.

Пример. Условие, что группа G конечная является существенным, как показывает следующий пример. Рассмотрим двумерное представление группы $G=\mathbb{Z}$, $n\mapsto \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$. Тогда, для любого $n\neq 0$ матрица $\rho(n)$ не является диагонализуемой (оба корня характеристического многочлена равны 1, но матрица не единичная). Значит матрица для любого $n\neq 0$ матрица $\rho(n)$ не может быть сделана унитарной.

Предложение 2. Пусть V — представление конечной группы G, (x|y) — G-инвариантное скалярное произведение, $U_1 \subset V - G$ -инвариантное подпространство. Тогда, его ортогональное дополнение $U_2 = U_1^{\perp}$ также является G инвариантным пространством.

Доказательство. Для любого вектора $x \in U_2$ надо проверить, что $\rho(g)x \in U_2$. Для этого надо проверить, что для любого $y \in U_1$ верно, что $(\rho(g)x|y) = 0$. Это следует из вычисления

$$(\rho(g)x|y) = (x, \rho(g^{-1})y) = 0,$$

где мы воспользовались G-инвариантностью скалярного произведения и пространства U_1 . \blacksquare

Тем самым мы дали другое доказательство теоремы из прошлой лекции о том, что у любого подпредставления есть дополнительное подпредставление. Напомним, что их той теоремы следовало, что любое представление разлагается в прямую сумму неприводимых.

Напомним определение характера $\chi_V(g) = \text{Tr}(\rho(g))$.

Предложение 3. a) $\chi_V(e) = \dim(V)$.

б) Характер прямой суммы представлений равен сумме характеров

$$\chi_{V_1 \oplus V_2}(g) = \chi_{V_1}(g) + \chi_{V_2}(g).$$

в) Для любого представления V конечной группы G

$$\chi_V(g^{-1}) = \overline{\chi_V(g)}.$$

Доказательство. а) Так как ρ это гомоморфизм групп, то $\rho(e)$ — это единичная матрица размера $\dim V$, значит, ее след равен $\dim V$.

- б) Очевидно из определения прямой суммы представлений.
- в) Матрица $\rho(g)$ может быть сделана унитарной. Тогда $\rho(g)^{-1} = \rho(g)^*$, значит $\mathrm{Tr}(\rho(g^{-1})) = \overline{\mathrm{Tr}(\rho(g))}$.

Приведем еще пару конструкций которые позволяют строить новые представления из уже имеющихся.

Определение 1. Пусть $\rho\colon G\to GL(V)$ представление группы G, тогда можно определить действие группы на двойственном пространстве V^* — пространстве линейных функционалов на V — по формуле

$$\rho^*(g)\varphi(x) = \varphi(\rho(g^{-1})x), \quad \forall \varphi \in V^*, x \in V.$$

Заметим, что появление g^{-1} связано с тем, что мы хотим получить левое, а не правое действие. На языке матриц, двойственное представление задается отображением $g \mapsto (\rho(g)^t)^{-1}$, легко проверить, что это гомомрфизм групп. Для унитарных матриц это тоже самое, что комплексное сопряжение $(\rho(g)^t)^{-1} = \overline{\rho(g)}$. Характеры двойственных представлений комплексно сопряжены $\chi_{V^*}(g) = \overline{\chi_V(g)}$.

Определение 2. Пусть V,U векторные пространства. Тензорным произведением $V\otimes U$ векторных пространств называется пространство порожденное векторами $v\otimes u$ с соотношениями

$$\lambda(v \otimes u) = \lambda v \otimes u = v \otimes \lambda u$$
$$(v_1 + v_2) \otimes u = v_1 \otimes u + v_2 \otimes u$$
$$v \otimes (u_1 + u_2) = v \otimes u_1 + v \otimes u_2.$$

Если выбрать базисы $V = \langle e_1, \dots, e_n \rangle$, $U = \langle f_1, \dots, f_m \rangle$, то базисом в тензорном произведении $V \otimes U$ будут вектора $e_i \otimes f_j$. В самом деле, если $v = \sum a^i e_i$, $u = \sum b^j f_j$, то

$$v \otimes u = \left(\sum a^i e_i\right) \otimes u = \sum a^i e_i \otimes u = \sum a^i b^j e_i \otimes f_j.$$

В частности, мы видим, что $\dim(V \otimes U) = \dim V \cdot \dim U$.

Тензоры вида $v\otimes u$ называются разложимыми. Не любой тензор является разложимым, например $e_1\otimes f_1+e_2\otimes f_2$ не разложим, см упражнение ниже.

Определение 3. Пусть $A\colon V\to V$ и $B\colon U\to U$ два линейных оператора. Их тензорным произведением называется оператор $A\otimes B\colon V\otimes U\to V\otimes U$, определенный на разложимых тензорах по формуле $(A\otimes B)(v\otimes u)=Av\otimes Bu$.

Пример. Пусть dim $V = \dim U = 2$, матрицы A, B диагональны: $A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $B = \begin{pmatrix} \mu_1 & 0 \\ 0 & \mu_2 \end{pmatrix}$. Тогда матрица $A \otimes B$ имеет вид:

$$\lambda_1 \mu_1 \quad 0 \quad 0$$

$$A \otimes B = \begin{pmatrix} \lambda_1 \mu_1 & 0 & 0 & 0 \\ 0 & \lambda_1 \mu_2 & 0 & 0 \\ 0 & 0 & \lambda_2 \mu_1 & 0 \\ 0 & 0 & 0 & \lambda_2 \mu_2 \end{pmatrix}$$

В общем случае, если операторы заданы матрицами $Ae_i = \sum a_i^{i'}e_{i'}$ и $Bf_j = \sum b_i^{j'}f_{j'}$, то матрица $A\otimes B$ равна $A\otimes B(e_i\otimes f_j) = \sum a_i^{i'}b_j^{j'}e_{i'}\otimes f_{j'}$.

Предложение 4. $Tr(A \otimes B) = TrA \cdot TrB$

Определение 4. Пусть $\rho: G \to GL(V)$ и $\rho': G \to GL(U)$ два представления одной группы G. Их тензорным произведением $\rho \otimes \rho'$ называется представление группы G в пространстве $V \otimes U$ определенное по формуле $g \mapsto (\rho(g) \otimes \rho'(g))$.

Предложение 5.
$$\chi_{V\otimes U}(g) = \chi_V(g) \cdot \chi_U(g)$$

Пусть дана группа G. Обозначим характеры ее неприводимых представлений $\chi^{(1)}, \ldots, \chi^{(k)}$, пусть их размерности равны d_1, \ldots, d_k . Обозначим через C_1, C_2, \ldots, C_l классы сопряженности в группе G, через h_i обозначим представителей этих классов $h_i \in C_i$.

Рассмотрим пространство Θ состоящее из функций на группе, инвариантных на классах сопряженности. По задаче из прошлого задания характеры всех представлений лежат в пространстве Θ . Другой пример — это функции γ_i равные 1 на классе C_i и нулю на других классах. Таких функций l штук $\gamma_1, \ldots, \gamma_l$, они образуют базис в пространстве Θ .

Введем эрмитово скалярное произведение на пространстве Θ :

$$\langle \phi, \psi \rangle := \frac{1}{|G|} \sum_{g \in G} \overline{\phi(g)} \psi(g) = \frac{1}{|G|} \sum_{i=1}^{l} |C_i| \cdot \overline{\phi(h_i)} \psi(h_i).$$
 (4)

Последнее равенство следует, из того, что функции ϕ, ψ постоянны на классах сопряженности. Из этой формулы очевидно, что $\langle \gamma_i, \gamma_j \rangle = \delta_{i,j} \frac{|C_i|}{|G|}$, т.е. γ_i образуют ортогональный базис в пространстве Θ .

Теорема 6 (Соотношение ортогональности характеров). $\langle \chi^{(i)}, \chi^{(j)} \rangle = \delta_{i,j}$.

Теорема 7 (Полнота). Характеры неприводимых представлений *ортонорми-* $posanhu\dot{u}$ базис в пространстве Θ .

В частности из свойства полноты следует, что число неприводимых представлений группы равно числу классов сопряженных элементов.

Алгоритм разложения на неприводимые. Пусть при разложении пространства V на неприводимые пространство V_1 встречается a_1 раз, пространство V_2 встречается a_2 раз и т.д. Тогда $\chi = \sum a_i \chi^{(i)}$ и кратности a_i могут быть найдены по формуле $a_i = \langle \chi^{(i)}, \chi \rangle$.

Заметим еще, что $\langle \chi, \chi \rangle = \sum a_i^2$, поэтому из условия $\langle \chi, \chi \rangle = 1$ следует, что одно из a_i равно 1, а остальные равны 0, то есть представление V является неприводимым.

Характеры неприводимых представлений удобно записывать в виде таблицы где в столбцах стоят представители классов сопряженности, а в строках характеры неприводимых. Эта таблица называется *таблицей характеров*.

Пример Таблица характеров для группы S_3 имеет вид:

		,	
	e	$(1,2)^{3}$	$(1,2,3)^{\frac{1}{2}}$
$\chi^{(1)}$	1	1	1
$\chi^{(2)}$	1	-1	1
$\chi^{(3)}$	2	0	-1
$\chi_{\mathbb{C}^3}$	3	1	0
$\chi_{ m reg}$	6	0	0

В столбцах верхним индексом написано количество элементов в соответствующем классе. По строкам, в первой строке стоит тривиальное представление, во второй знаковое, в третьей двумерное построенное на прошлой лекции, далее для полноты картины приведены еще два приводимых представления — перестановочное и регулярное. Характер $\chi^{(3)}$ легче всего найти вычитанием характера тривиального представления из характера перестановочного представления $\chi_{\mathbb{C}^3}$.

Предложение 8. Характер регулярного представления группы G равен

$$\chi_{\text{reg}}(g) = \begin{cases} |G|, & \text{при } g = e \\ 0, & \text{при } g \neq e \end{cases}.$$

Предложение 9. Скалярное произведение $\langle \chi_{\rm reg}, \chi^{(i)} \rangle = d_i$. Следствие. $\chi_{\rm reg} = d_1 \chi^{(1)} + d_2 \chi^{(2)} + \dots + d_k \chi^{(k)}$.

Следствие. $|G| = d_1^2 + d_2^2 + \dots + d_k^2$. Пример. $|S_3| = 6 = 1^2 + 1^2 + 2^2$.

Пример. Пусть группа $G = S_4$. В ней есть 5 классов сопряженности, значит должно быть 5 непривидимых представлений. Мы знаем два одномерных — тривиальное и знаковое. Сумма квадратов размерностей трех остальных должна быть равна 22 — единственная возможность $22 = 3^2 + 3^2 + 2^2$. Характеры этих представлений частично были в прошлом домашнем задании, частично будут в этом.

Пример. Пусть группа G абелева. Тогда у нее |G| классов сопряженности, значит, |G| неприводимых представлений. Сумма квадратов их размерностей также должна равняться |G| — единственная возможность для этого, это все представления являются одномерными. Мы это видели на прошлой лекции на примере группы C_k .

Для произвольной, возможно неабелевой группы G мы знаем, что коммутант [G,G] лежит в ядре любого одномерного представления. Значит, любое одномерное представление G является представлением фактора по коммутанту G/[G,G]. По задаче из прошлого задания этот фактор является абелевой группой, значит количество его представлений (т.е. одномерных представлений группы G) равно |G/[G,G]|.

Домашнее задание

Решения задач 2 и 4 надо прислать или принести до начала лекции 21 марта. Решения остальных задач надо прислать или принести до начала лекции 28 марта.

Упражнение 1. а) Докажите, что вектор $e_1 \otimes f_1 + e_2 \otimes f_2$ не является разло-

жимым (т.е. не существует v,u таких, что $v\otimes u=e_1\otimes f_1+e_2\otimes f_2$. б) Пусть $A=\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix},\ B=\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$. Напишите матрицу $A\otimes B$. Проверьте, что $\operatorname{Tr}(A \otimes B) = \operatorname{Tr} A \cdot \operatorname{Tr} B$.

Задача 2. а) Найдите все одномерные неприводимые представления группы D_7 . б) Найдите все неприводимые представления группы D_7 , составьте таблицу характеров. Для каждого неприводимого представления задайте его указав матрицы соответствующие образующим группы D_7 .

Задача 3. Найдите таблицу характеров группы S_4 . Проверьте соотношения ортогональности между характерами. Для любых двух неприводимых трехмерных представлений V_1, V_2 группы S_4 (возможно изоморфных) разложите тензорное произведение $V_1 \otimes V_2$ на неприводимые.

Указание: размерности неприводимых представлений мы нашли на лекции, одномерные мы знаем. Трехмерные можно искать геометрически как в задании к прошлой лекции. Можно также получать недостающие представления разлагая какие-то известные вам представления на неприводимые: использовать перестановочные представления, регулярное представление, тензорные произведения представлений. Также можно использовать соотношения ортогональноcmu.

Задача 4 (Второе соотношение ортогональности для характеров). Докажите, что для любых двух классов сопряженности C_i, C_j , где $1 \leqslant i, j \leqslant k$ верно:

$$\sum_{\alpha=1}^{k} \chi^{(\alpha)}(h_i) \overline{\chi^{(\alpha)}(h_j)} = \delta_{i,j} \frac{|G|}{|C_i|}$$

Yказание: используйте, то что матрица характеров является матрицей переход от одного ортонормированного базиса $\chi^{(i)}$, к другому ортогональному базису γ_i , поэтому после некоторого домножения столбцов должна стать унитарной, а значит ее столбцы будут попарно ортогональны.