Why you need logistic regression

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

Bank churn dataset

has_churned	time_since_first_purchase	time_since_last_purchase
0	0.3993247	-0.5158691
1	-0.4297957	0.6780654
0	3.7383122	0.4082544
0	0.6032289	-0.6990435
•••	•••	•••
response	length of relationship	recency of activity

¹ https://www.rdocumentation.org/packages/bayesQR/topics/Churn

Churn vs. recency: a linear model

```
Intercept 0.490780
time_since_last_purchase 0.063783
dtype: float64
```

```
intercept, slope = mdl_churn_vs_recency_lm.params
```

Visualizing the linear model

Zooming out

```
sns.scatterplot(x="time_since_last_purchase",
                y="has_churned",
                data=churn)
plt.axline(xy1=(0,intercept),
           slope=slope)
plt.xlim(-10, 10)
plt.ylim(-0.2, 1.2)
plt.show()
```


What is logistic regression?

- Another type of generalized linear model.
- Used when the response variable is logical.
- The responses follow logistic (S-shaped) curve.

Logistic regression using logit()

```
Intercept -0.035019
time_since_last_purchase 0.269215
dtype: float64
```


Visualizing the logistic model

Zooming out

Let's practice!

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON

Predictions and odds ratios

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

The regplot() predictions

Making predictions

Adding point predictions

```
sns.regplot(x="time_since_last_purchase",
            y="has_churned",
            data=churn,
            ci=None,
            logistic=True)
sns.scatterplot(x="time_since_last_purchase",
                y="has_churned",
                data=prediction_data,
                color="red")
plt.show()
```


Getting the most likely outcome

```
prediction_data = explanatory_data.assign(
    has_churned = mdl_recency.predict(explanatory_data))
prediction_data["most_likely_outcome"] = np.round(prediction_data["has_churned"])
```


Visualizing most likely outcome

```
sns.regplot(x="time_since_last_purchase",
            y="has_churned",
            data=churn,
            ci=None,
            logistic=True)
sns.scatterplot(x="time_since_last_purchase",
                y="most_likely_outcome",
                data=prediction_data,
                color="red")
plt.show()
```


Odds ratios

Odds ratio is the probability of something happening divided by the probability that it doesn't.

$$odds_ratio = \frac{probability}{(1 - probability)}$$

odds_ratio =
$$\frac{0.25}{(1-0.25)} = \frac{1}{3}$$

Calculating odds ratio

Visualizing odds ratio

Visualizing log odds ratio

```
plt.yscale("log")
plt.show()
```


Calculating log odds ratio

```
prediction_data["log_odds_ratio"] = np.log(prediction_data["odds_ratio"])
```


All predictions together

time_since_last_prchs	has_churned	most_likely_rspns	odds_ratio	log_odds_ratio
0	0.491	0	0.966	-0.035
2	0.623	1	1.654	0.503
4	0.739	1	2.834	1.042
6	0.829	1	4.856	1.580
•••	•••	•••	•••	•••

Comparing scales

Scale	Are values easy to interpret?	Are changes easy to interpret?	ls precise?
Probability		×	✓
Most likely outcome			×
Odds ratio		×	✓
Log odds ratio	×	✓	✓

Let's practice!

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON

Quantifying logistic regression fit

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

The four outcomes

	predicted false	predicted true
actual false	correct	false positive
actual true	false negative	correct

Confusion matrix: counts of outcomes

```
actual_response = churn["has_churned"]
predicted_response = np.round(mdl_recency.predict())
outcomes = pd.DataFrame({"actual_response": actual_response,
                         "predicted_response": predicted_response})
print(outcomes.value_counts(sort=False))
                 predicted_response
actual_response
0
                 0.0
                                       141
                 1.0
                                        59
                 0.0
                                       111
                 1.0
                                        89
```


Visualizing the confusion matrix

```
conf_matrix = mdl_recency.pred_table()
print(conf_matrix)
```

```
[[141. 59.]
[111. 89.]]
```

true negative	false positive
false negative	true positive

```
from statsmodels.graphics.mosaicplot
import mosaic
mosaic(conf_matrix)
```


Accuracy

Accuracy is the proportion of correct predictions.

$$\operatorname{accuracy} = \frac{TN + TP}{TN + FN + FP + TP}$$

```
[[141., 59.],
[111., 89.]]
```

```
TN = conf_matrix[0,0]
TP = conf_matrix[1,1]
FN = conf_matrix[1,0]
FP = conf_matrix[0,1]
```

```
acc = (TN + TP) / (TN + TP + FN + FP)
print(acc)
```

0.575

Sensitivity

Sensitivity is the proportion of true positives.

$$ext{sensitivity} = rac{TP}{FN + TP}$$

```
[[141., 59.],
[111., 89.]]
```

```
TN = conf_matrix[0,0]
TP = conf_matrix[1,1]
FN = conf_matrix[1,0]
FP = conf_matrix[0,1]
```

```
sens = TP / (FN + TP)
print(sens)
```

0.445

Specificity

Specificity is the proportion of true negatives.

$$ext{specificity} = rac{TN}{TN + FP}$$

```
[[141., 59.],
[111., 89.]]
```

```
TN = conf_matrix[0,0]
TP = conf_matrix[1,1]
FN = conf_matrix[1,0]
FP = conf_matrix[0,1]
```

```
spec = TN / (TN + FP)
print(spec)
```

0.705

Let's practice!

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON

Congratulations

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

You learned things

Chapter 1

- Fit a simple linear regression
- Interpret coefficients

Chapter 3

- Quantifying model fit
- Outlier, leverage, and influence

Chapter 2

- Make predictions
- Regression to the mean
- Transforming variables

Chapter 4

- Fit a simple logistic regression
- Make predictions
- Get performance from confusion matrix

Multiple explanatory variables

Intermediate Regression with statsmodels in Python

Unlocking advanced skills

- Generalized Linear Models in Python
- Introduction to Predictive Analytics in Python
- Linear Classifiers in Python

Happy learning!

INTRODUCTION TO REGRESSION WITH STATSMODELS IN PYTHON

