

Ayudantía Nº4: Opciones

Curso: Instrumentos Derivados Profesor: Francisco Rantul Ayudante: Mateo Canales

Pregunta 1, Hull, 15.13

Calcule el precio de una opción put europea a 3 meses sobre una acción que no paga dividendos, con un precio de ejercicio de \$50, cuando el precio actual de la acción es \$50, la tasa de interés libre de riesgo es de 10% anual, y la volatilidad es de 30% anual.

Pregunta 2, Hull, 15.14

¿Qué diferencia produce en los cálculos del Problema 15.13 si se espera un dividendo de \$1,50 dentro de 2 meses?

Pregunta 3, Hull, 15.16

El precio de una acción sigue un movimiento browniano geométrico con un rendimiento esperado de 16% y una volatilidad de 35%. El precio actual es de \$38.

- a) ¿Cuál es la probabilidad de que una opción call europea sobre la acción con un precio de ejercicio de \$40 y vencimiento en 6 meses sea ejercida?
- b) ¿Cuál es la probabilidad de que una opción put europea sobre la acción con el mismo precio de ejercicio y vencimiento sea ejercida?

Pregunta 4, Hull, 15.21

¿Cuál es el precio de una opción call europea sobre una acción que no paga dividendos, cuando el precio de la acción es de \$52, el precio de ejercicio es de \$50, la tasa de interés libre de riesgo es de 12% anual, la volatilidad es de 30% anual, y el tiempo hasta el vencimiento es de 3 meses?

Pregunta 5, Hull, 15.26

Demuestre que las fórmulas de Black–Scholes–Merton para opciones call y put satisfacen la paridad put–call.

Pregunta 6, Hull, 15.35

El precio de una acción es actualmente \$50. Suponga que el rendimiento esperado de la acción es de 18% y su volatilidad es de 30%. ¿Cuál es la distribución de probabilidad para el precio de la acción en 2 años? Calcule la media y desviación estándar de la distribución. Determine el intervalo de confianza del 95%.

Pregunta 7, Hull, 14.20

Suponga que x es el rendimiento al vencimiento (yield to maturity) con capitalización continua de un bono cupón cero que paga \$1 en el tiempo T. Se asume que x sigue el siguiente proceso estocástico:

$$dx = (a_1x_0 - x^2) dt + sx dz \tag{1}$$

donde a, x_0 y s son constantes positivas, y dz es un proceso de Wiener. ¿Cuál es el proceso seguido por el precio del bono?