Getting Started with WPA Hacking

Taking the first steps into SIGINT

Disclaimer

I am not a lawyer. Nothing in this presentation is meant to be legal advice. Do not hack anything without permission. Accessing networks without permission is illegal. Have fun, don't be stupid.

WEP - Wired Equivalent Privacy

Misnamed and utterly broken. <u>Almost</u> never seen now.

WPA/WPA2 - Pre-shared key

Wi-Fi Protected Access. Virtually all consumer and small businesses use this.

WPA/WPA2-Enterprise

Uses a RADIUS server to authenticate each connection attempt separately. Still possible to hack but not the focus today.

WPA and WPA2?

What's the difference?

WPA 1

- Supports TKIP and AES
- Defaults to TKIP
- TKIP uses RC4 like WEP so existing hardware could be used

WPA 2

- Supports TKIP and AES
- Defaults to AES
- AES may have required new hardware

The Handshake

AP=Access Point

STA=Station (Client)

PMK=Pairwise Master Key

PTK=Pairwise Transient Key

ANonce=Number used once (from AP)

SNonce=Number used once (from STA)

MIC=Message Integrity Code

GTK=Group Transient Key

The Handshake

AP=Access Point

STA=Station (Client)

PMK=Pairwise Master Key

PTK=Pairwise Transient Key

ANonce=Number used once (from AP)

SNonce=Number used once (from STA)

MIC=Message Integrity Code

GTK=Group Transient Key

The PTK

Pairwise Transient Key

```
PTK=HMAC-SHA1( PMK,

"Pairwise key expansion" ||

AP MAC ||

STA MAC ||

ANonce ||

SNonce )
```

The PTK

Pairwise Transient Key

PTK=HMAC-SHA1(PMK,

```
"Pairwise key expansion" ||
AP MAC ||
STA MAC ||
ANonce ||
SNonce )
```

The PMK

Pairwise Master Key

```
PMK=PBKDF2( HMAC-SHA1, password/PSK, ESSID (SSID), 4096, 256)
```

The PMK

Pairwise Master Key

```
PMK=PBKDF2( HMAC-SHA1, password/PSK, ESSID (SSID), 4096, 256)
```

The Handshake

MIC = HMAC-SHA1(KCK, Message)

KCK = PTK[0:16]

Put it Altogether

Password Guess >> PMK >> PTK >> MIC Guess

If the MIC Guess == Real MIC...

Put it altogether

Password Guess >> PMK >> PTK >> MIC Guess

If the MIC Guess == Real MIC...

Cracked!

Capture Handshake (AP+Station)

If we can capture a legitimate handshake, we can crack it offline

Evil Twin (Station Only)

If we pretend to be the AP, we can get a station to try to handshake with us

RSN/PMKID (AP Only)

Some access points will give us the HMAC'd PMKID without a handshake!

RSN/PMKID

AP-Only Attack

Because it should be even easier to get that hash apparently

```
▼ WPA Key Data: dd14000fac04e51d67ada6b2b709a63908e5c1a62bfd
```

▼ Tag: Vendor Specific: Ieee 802.11: RSN

Tag Number: Vendor Specific (221)

Tag length: 20

OUI: 00:0f:ac (Ieee 802.11) Vendor Specific OUI Type: 4

RSN PMKID: e51d67ada6b2b709a63908e5c1a62bfd

PMKID = HMAC-SHA1(PMK, "PMK Name" || AP MAC ||

STA MAC)

Requirements

Hardware

Monitor Mode

Packet Injection

RT3070 or RT5370 Based

IISR Adanter

Alfa Network
USB Adapters
eg: AWUS036NH

Requirements Software

Linux - Choose your flavour

Wireshark - Capture and view captures

hcxdumptool - Better captures

hextools - Extract hashes for cracking

hashcat - Crack those hashes!

Viewing Traffic

Disable NetworkManager and wpa_supplicant

```
$ sudo systemctl stop NetworkManager
```

\$ sudo systemctl stop wpa_supplicant

Find the correct adapter and enable monitor mode

```
$ hcxdumptool -I
wlan interfaces
aabbccddeeff wlp2s0 (mt7601u)
$ sudo hcxdumptool -m wlp2s0
```

Start Wireshark as root

\$ sudo wireshark

Viewing Traffic

Set the filter to "eapol" to view handshakes

eapol								
No.	Time	Source	Destination	Protoco Leng	th Info			
	9 1.719009243	fe:ed:ab:ed:ca:fe	aa:bb:cc:dd:11:00			(Message 1		
	10 1.721969837	fe:ed:ab:ed:ca:fe	aa:bb:cc:dd:11:00	EAPOL :	191 Key	(Message 1	of 4)	
	12 1.724299683	aa:bb:cc:dd:11:00	fe:ed:ab:ed:ca:fe	EAPOL 2	213 Key	(Message 2	of 4)	
	13 1.726237317	aa:bb:cc:dd:11:00	fe:ed:ab:ed:ca:fe	EAPOL 2	213 Key	(Message 2	of 4)	
	14 1.731315818	fe:ed:ab:ed:ca:fe	aa:bb:cc:dd:11:00	EAPOL 2	247 Key	(Message 3	of 4)	
	16 1.733211170	aa:bb:cc:dd:11:00	fe:ed:ab:ed:ca:fe	EAPOL :	191 Key	(Message 4	of 4)	
4								
	Replay Counter: 1							
	WPA Kéy Nonce: 539342a9bfe6bd3d437442cfbbd9148a8bc07c39175cc2c3							
	Key IV: 00000000000000000000000000000000000							
	WPÁ Key RSC: 0000000000000000							
	WPA Key ID: 0000000000000000							
WPA Key MIC: f1b0f0c0403b9395e1f435fab0541ac6								
	WPA Key Data Length: 22							
•	▶ WPA Key Data: 301401000000fac040100000fac0401000000fac020000							

Capturing Traffic

Most basic - Run all attacks on all targets (DO NOT DO THIS)

\$ sudo hcxdumptool -i wlp2s0 -o capture

Completely passive - safe to run

\$ sudo hcxdumptool --silent -i wlp2s0 -o capture

Target specific APs - ACTIVE

\$ sudo hcxdumptool --filtermode=2 -filterlist_ap=ap.txt -i wlp2s0 -o capture

Target specific Stations (clients) - ACTIVE

\$ sudo hcxdumptool --filtermode=2 -filterlist_client=clients.txt -i wlp2s0 -o capture

Extracting Hashes

Extract all hashes for Hashcat mode 22000

- \$ hcxpcapngtool -o hashes capture
- \$ cat hashes

Both handshakes and PMKID's use the same hash format and hashcat mode 22000 now. Previously, handshakes used a fixed-size binary format with hashcat mode 2600, and PMKID's used mode 16800.

Cracking the Hashes

Run hashcat on the hashes

```
$ hashcat -m22000 hashes rockyou.txt
...
f1b0f0c0403b9395e1f435fab0541ac6:feedabedcafe:aabbccdd1
100:DC604:bettyboop1

Session....: hashcat
Status...: Cracked
Hash.Name...: WPA-PBKDF2-PMKID+EAPOL
```


- WPA passwords must be between 8 and 32 bytes long
- Can be non-ASCII (ie: UTF-8 or any bytes)

Social Effects

- Meant to be shared. Often all lowercase, no spaces.
- "Clever" passwords. Often related to the SSID
- Often use common knowledge
 - Phone numbers, street addresses, regions
 - Names and meaningful dates

Default Passwords

• APs often have default passwords on stickers on the devices. These often appear to be random. End-users may change the SSID but leave the default password.

Commonly Used Dictionaries

- SecLists/probable-v2-wpa-topXXX.txt
- rockyou.txt Still a classic
- Crackstation Often finds more than rockyou.txt
- BIG-WPA-LIST-1 Extensive list but less focused

CeWL

- Higher probability of being effective because of shared knowledge
- Will often pick up phone numbers, addresses, and regions

Why does this help us?

Everyone is using WPA-Enterprise now. Why does this matter?

Guest networks

- Likely not WPA-Enterprise. Highly value availability over integrity or confidentiality
- Employees will often connect to guest networks accidentally or because "it's easier"
- What else is exposed on a guest network? Internal DNS server? EULA/Landing page web server? Do the firewall rules correctly handle guest network traffic?

Branch or chain locations

- Deployed by the company IT or local manager? ISP?
- Location-based password?
- VPN tunnel to the head office? Local RODC?

Why does this help us?

Everyone is using WPA-Enterprise now. Why does this matter?

Shadow IT

 Bad coverage? Team needed that new crazy-fast wi-fi the company hasn't deployed yet?

Recon

- Can be done completely passively
- Can target off-site company devices (company guest wi-fi shows up at the local coffee shop?)
- Can provide some insight into the company spending for the location (Cisco or TP-Link APs? Wide coverage? Device counts)

Thanks for Listening!

Dan Reimer (oldrho)

oldrho [at]oldrho.com

github.com/oldrho

Currently looking for work!

Links

Tools

- 1. https://www.wireshark.org/
- 2. https://github.com/ZerBea/hcxdumptool
- 3. https://github.com/ZerBea/hcxtools
- 4. https://hashcat.net/hashcat/
- 5. https://github.com/hashcat/hashcat/

Wordlists

- 1. https://github.com/danielmiessler/SecLists
- 2. https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm
- 3. https://www.wirelesshack.org/wpa-wpa2-word-list-dictionaries.html