Отчет по Лабораторной Работе № 8

Модель конкуренции двух фирм - Вариант 51

Нзита Диатезилуа Катенди

Содержание

Цель работы

Целью данной работы является исследование модели конкуренции между друмая компаниями, где мы будем моделировать две ситуации на языке программирование Julia.

Задание

Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.

2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

Выполнение лабораторной работы

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

Случай 1

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ &\qquad \qquad \frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split},$$
 где $a_1 &= \frac{p_{cr}}{\tau_1^2 \, \tilde{p}_1^2 N q}, \ a_2 = \frac{p_{cr}}{\tau_2^2 \, \tilde{p}_2^2 N q}, \ b = \frac{p_{cr}}{\tau_1^2 \, \tilde{p}_1^2 \tau_2^2 \, \tilde{p}_2^2 N q}, \ c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \, \tilde{p}_1}, \ c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \, \tilde{p}_2}. \end{split}$

Также введена нормировка $t = c_1 \theta$.

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы — формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед М1 М2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

Случай 2

$$\frac{dM_1}{d\theta} = M_1 - \left(\frac{b}{c_1} + 0,00041\right) M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

Обозначим: N — число потребителей производимого продукта. S — доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения. M — оборотные средства

предприятия τ — длительность производственного цикла p — рыночная цена товара \tilde{p} — себестоимость продукта, то есть переменные издержки на производство единицы продукции. δ — доля оборотных средств, идущая на покрытие переменных издержек. κ — постоянные издержки, которые не зависят от количества выпускаемой продукции.

Условие задачи

Для обоих случаев рассмотрим задачу со следующими начальными условиями и

 $M1_0 = 8$ #оборотные средства предприятия 1 $M2_0 = 10$ #оборотные средства предприятия 2 р_cr = 50; #критическая стоимость продукта N = 50; #число потребителей производимого продукта q = 1 #максимальная потребность одного человека в продукте в единицу времени

Параметры модели

tau1 = 36; #длительность производственного цикла фирмы 1 tau2 = 30; #длительность производственного цикла фирмы 2 p1 = 10; #себестоимость продукта у фирмы 1 p2 = 12; #себестоимость продукта у фирмы 2

Код в Julia

Случай 1

Начальный момент времин

```
t = (0, 30)

Начальный вектор M0 = [M1_0, M2_0];

prob = ODEProblem(f1, M0, t)

sol = solve(prob)

plot(sol, label = ["фирмы 1"" фирмы 2"], xlabel = "Время", title = "Случай 1");
```

Второй случай

```
function f2(du, u, p, t) du[1] = u[1] - (a1/c1)u[1]u[1] - (b/c1 + 0.00041)u[1]u[2]; du[2] = (c2/c1)u[2] - (a2/c1)u[2]u[2] - (b/c1)u[1]*u[2]; end prob2 = ODEProblem(f2, M0, t)
```

sol2 = solve(prob2) plot(sol2, label = ["фирмы 1"" фирмы 2"], xlabel = "Время", title = "Случай 2")

Решение

Первый случай (Julia)

Второй случай (Julia)

Выводы

Тогда мы приходим к выводу, что обнаружили модели двух компании, мы понимаем как работает модель в разных ситуациях и строим график изменения данных биллинга в этих слувиях.

Список литературы

1. Модель конкуренции двух фирм