UNIT 2

1. Regular Expressions and Identities

- Regular Expression (RE):
 - o A symbolic representation to define regular languages.
 - o Operators:
 - Union (A \cup B): Denoted as A+BA+B or A|BA|BA|B.
 - Concatenation (AB): Denoted as A·BA \cdot BA·B or simply ABABAB.
 - *Kleene Star (A)**: Zero or more repetitions of AAA.

• Identities:

- $R+\phi=RR + \phi=R$ (Union with empty set is RRR).
- o $R \cdot \epsilon = RR \cdot \text{cdot } = RR \cdot \epsilon = R \cdot \text{(Concatenation with epsilon is RRR)}.$
- o $(R*)*=R*(R^*)^*=R^*(R*)*=R*$ (Double Kleene star is the same as one).
- \circ R+R=RR + R = RR+R=R (Union is idempotent).

2. Finite Automata and Regular Expressions

- Transition System with Null Moves:
 - ο NDFA allows **null (ε) transitions**, enabling state changes without input.
- NDFA with Null Moves to DFA:
 - ο Eliminate ε-transitions using ε-closure (all reachable states including null transitions).
- Finite Automata and RE Equivalence:
 - o Any regular expression can be converted to an equivalent finite automaton, and vice versa.

3. Conversion Methods

- Arden's Theorem:
 - Used to solve regular expression equations.
 - ο If R=Q+RPR=Q+RPR=Q+RP, then $R=QP*R=QP^*R=QP^*$ (provided PPP doesn't contain ε).
- Construction of Finite Automata from RE:
 - o Steps:
 - 1. Create NDFA from the given RE.
 - 2. Convert NDFA to DFA if needed.

4. Equivalence of Two Finite Automata and Regular Expressions

• Finite Automata Equivalence:

o Two finite automata are equivalent if they accept the same language.

• Regular Expression Equivalence:

o Two REs are equivalent if they describe the same language.

5. Closure Properties of Regular Sets

• Regular languages are closed under:

 \circ Union: L1UL2L₁ U L₂L1UL2.

Intersection: $L1 \cap L2L_1 \cap L_2L1 \cap L2$.

○ **Complement**: $\Sigma * L1\Sigma * \text{ setminus } L_1\Sigma * L1$.

o Concatenation: L1·L2L₁ \cdot L2L1·L2.

o Kleene Star: $L1*L_1^*L1*$.

6. Pumping Lemma for Regular Sets

• Statement:

- - 1. $|xy| \le p|xy| \le p|xy| \le p$,
 - 2. |y| > 0|y| > 0|y| > 0,
 - 3. $xynz\in Lx y^n z \in Lxynz\in L \text{ for } n\geq 0 n\geq 0.$

Application:

o Used to prove that certain languages are **not regular**.

7. Myhill-Nerode Theorem

• Theorem:

O A language LLL is regular if and only if it has a finite number of equivalence classes under the relation $x\sim Lyx \sim Ly$ (indistinguishability of strings with respect to LLL).

• Significance:

o Helps in proving language regularity and minimizing finite automata.

8. Properties of Regular Languages

• Decidability:

o Determining emptiness, finiteness, and equivalence is decidable for regular languages.

• Non-Regularity Proofs:

o Use Pumping Lemma or Myhill-Nerode Theorem.

Important MCQ

1. Regular Expressions Basics

- 1. What does the regular expression $a*a^*a*$ denote?
 - a) Zero or more occurrences of aaa
 - b) At least one aaa
 - c) Exactly one aaa
 - d) None of the above

Answer: a

- 2. Which regular expression represents all strings over $\{a,b\}\setminus\{a,b\setminus\}$ $\{a,b\}$?
 - a) $(a+b)*(a+b)^*(a+b)*$
 - b) (ab)*(ab)^*(ab)*
 - c) a+ba+ba+b
 - d) None of the above

Answer: a

- 3. What does $(a|b)+(a|b)^++(a|b)+$ represent?
 - a) All strings with at least one aaa or bbb
 - b) Empty string
 - c) Strings with zero or more aaa and bbb
 - d) None of the above

Answer: a

2. Regular Languages

- 4. Which of the following is NOT a regular language?
 - a) $\{an|n\geq 0\}\setminus \{a^n|n\geq 0\} \{an|n\geq 0\}$
 - b) $\{anbn|n\geq 0\}\setminus \{a^n b^n \mid n\geq 0\} \{anbn|n\geq 0\}$
 - c) $(a+b)*(a+b)^*(a+b)*$
 - d) $\{\epsilon\}\setminus\{\epsilon\setminus\}\{\epsilon\}$

Answer: b

- 5. Regular languages are closed under which operation?
 - a) Union
 - b) Concatenation
 - c) Kleene Star
 - d) All of the above

Answer: d

- 6. Which property is true for regular languages?
 - a) Infinite memory is required
 - b) Can be represented by finite automata
 - c) Context-free grammar is required
 - d) None of the above

Answer: b

3. Finite Automata and Regular Expressions

- 7. Finite automata and regular expressions are:
 - a) Equivalent in power
 - b) Not equivalent
 - c) Regular expressions are more powerful
 - d) None of the above

Answer: a

- 8. What is used to convert NDFA with null moves to DFA?
 - a) Subset construction
 - b) Transition table
 - c) Kleene Star
 - d) Pumping Lemma

Answer: a

- 9. What is the output of solving R=Q+RPR=Q+RPR=Q+RP using Arden's Theorem?
 - a) $R=QP*R=QP^*R=QP*$
 - b) R=PQR=PQR=PQ
 - c) R=Q+PR=Q+PR=Q+P
 - d) None of the above

Answer: a

4. Properties of Regular Languages

- 10. Which of the following is TRUE about regular languages?
 - a) Closed under intersection
 - b) Closed under complement
 - c) Closed under union
 - d) All of the above

Answer: d

- 11. Which operation is NOT closed for regular languages?
 - a) Union
 - b) Complement
 - c) Intersection
 - d) Infinite repetition

Answer: d

- 12. What is the smallest automaton that can recognize a regular language?
 - a) DFA
 - b) NDFA
 - c) Turing machine
 - d) Moore machine

Answer: a

5. Pumping Lemma

- 13. Pumping Lemma is used to prove:
 - a) A language is regular
 - b) A language is not regular
 - c) Closure properties of languages
 - d) Equivalence of two finite automata

Answer: b

- 14. Which condition is NOT part of the Pumping Lemma?
 - a) $|xy| \le p|xy| \le p|xy| \le p$
 - b) |y| > 0|y| > 0|y| > 0
 - c) xynz∉Lx y^n z \notin Lxynz∈/L
 - d) xynz∈Lx y^n z \in Lxynz∈L

Answer: c

- 15. What does ppp in the Pumping Lemma denote?
 - a) Pumping length
 - b) Number of states
 - c) Transition function
 - d) None of the above

Answer: a

6. Conversion Methods

- 16. NDFA to DFA conversion uses:
 - a) Subset construction method
 - b) Pumping Lemma
 - c) Transition graph
 - d) State minimization

Answer: a

- 17. Which theorem helps in solving equations involving regular expressions?
 - a) Pumping Lemma
 - b) Arden's Theorem
 - c) Myhill-Nerode Theorem
 - d) Kleene's Theorem

Answer: b

- 18. What is true about null moves in finite automata?
 - a) They do not consume input symbols
 - b) They add power to finite automata
 - c) They make automata non-deterministic
 - d) Both a and c

Answer: d

7. Myhill-Nerode Theorem

- 19. Myhill-Nerode Theorem is used to:
 - a) Minimize finite automata
 - b) Prove regularity of a language
 - c) Construct finite automata from RE
 - d) Both a and b

Answer: d

- 20. According to Myhill-Nerode Theorem, a language is regular if:
 - a) It has a finite number of equivalence classes
 - b) It is closed under union
 - c) It can be represented by a Turing Machine
 - d) None of the above

Answer: a

8. Regular Expressions and Automata Equivalence

- 21. A finite automaton can be constructed from:
 - a) A regular expression
 - b) A context-free grammar
 - c) Both a and b
 - d) None of the above

Answer: a

- 22. Which step is NOT required in constructing a DFA from an NDFA?
 - a) Finding ε-closure
 - b) Subset construction
 - c) State minimization
 - d) Adding new states

Answer: d

- 23. How are two finite automata considered equivalent?
 - a) When they have the same number of states
 - b) When they recognize the same language
 - c) When they have the same transitions
 - d) None of the above

Answer: b

9. Closure Properties

- 24. Regular languages are NOT closed under:
 - a) Complement
 - b) Union
 - c) Infinite intersection
 - d) Concatenation

Answer: c

- 25. If L1L₁L1 and L2L₂L2 are regular languages, then L1·L2L₁ \cdot L₂L1·L2:
 - a) Is not regular
 - b) Is always regular
 - c) Depends on L1L₁L1 only
 - d) None of the above

Answer: b

- 26. Which of the following is a valid closure property of regular languages?
 - a) Difference
 - b) Reversal
 - c) Homomorphism
 - d) All of the above

Answer: d

10. Miscellaneous

- 27. What is the significance of Kleene Star in regular expressions?
 - a) Adds complement functionality
 - b) Adds infinite repetition functionality
 - c) Represents union of languages
 - d) None of the above

Answer: b

- 28. Which of the following operations on a regular language is undecidable?
 - a) Membership test
 - b) Emptiness test
 - c) Equality test
 - d) None of the above

Answer: d

- 29. What is the relationship between DFA and NDFA?
 - a) DFA is a subset of NDFA
 - b) NDFA is more powerful than DFA
 - c) DFA and NDFA recognize the same class of languages
 - d) None of the above

Answer: c

- 30. What is the result of concatenating two regular languages L1L₁L1 and L2L₂L2?
 - a) A regular language
 - b) A context-free language
 - c) An undecidable language
 - d) None of the above

Answer: a