

Week 4:

POS tags and tagging

Overview

- Mini-talks
- Lecture:
 - POS tags
 - Tagging
- Lab

Part-of-Speech (POS)
Tagging: Intro

Synchronic Model of Language

POS tags are assigned to words, but may be determined by adjacent words

School of Information Studies

What is Part-Of-Speech Tagging?

The general purpose of a part-of-speech tagger is to associate each word in a text with its correct lexicalsyntactic category (represented by a tag)

Example using tags from the Penn Treebank POS tag set

"Helicopters will patrol the temporary no-fly zone around New Jersey's MetLife Stadium Sunday, with F-16s based in Atlantic City ready to be scrambled if an unauthorized aircraft does enter the restricted airspace."

What are Parts-of-Speech?

• Approximately 8 traditional basic word classes, sometimes called syntactic classes or types

These are the ones taught in grade school grammar

• N	noun	chair, bandwidth, pacing
• V	verb	study, debate, munch
 ADJ 	adjective	purple, tall, ridiculous (includes articles)
ADV	adverb	unfortunately, slowly
• P	preposition	of, by, to
CON	conjunction	and, but
PRO	pronoun	I, me, mine
• INT	interjection	um

For example, see the shows from "Schoolhouse Rock" on grammar

POS Tag Sets

Possible Tag Sets for English

- Kucera & Francis (Brown Corpus) 87 POS tags
- C5 (British National Corpus) − 61 POS tags
 - Tagged by Lancaster's UCREL project
- Penn Treebank 45 POS tags
 - Most widely used of the tag sets today

Penn Treebank

- A corpus containing:
 - over 1.6 million words of hand-parsed material from the Dow Jones News Service, plus an additional 1 million words tagged for part-of-speech.

• Separate licensing needed for commercial use

Word Classes: Penn Treebank Tag Set

Tag	Description	Example	Tag	Description	Example
CC	coordinating conjunction	and, but, or	SYM	symbol	+, %, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential "there"	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/subordinating conjunction	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adjective, comparative	bigger	VBP	verb, non-3sg present	eat
JJS	adjective, superlative	wildest	VBZ	verb, 3sg present	eats
LS	list item marker	1, 2, One	WDT	wh- determiner	which, that
MD	modal	can, should	WP	wh- pronoun	what, who
NN	noun, singular or mass	llamas	WP\$	possessive wh-	whose

Word Classes: Penn Treebank Tag Set

Tag	Description	Example	Tag	Description	Example
NNS	noun, plural	llamas	WRB	wh- adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	S
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT predeterminer		all, both	22	left quote	° OI °°
POS	possessive ending	Ś	22	right quote	or"
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	fastest	-	sentence – final punctuation	.1?
RBS	adverb, superlative	fastest	:	mid-sentence punctuation	:;
RP	particle	up, off			

Examples of Penn Treebank Tagging

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.

Book/VB that/DT flight/NN ./.

Does/VBZ that/DT flight/NN serve/VB dinner/NN ?/.

POS Tagging: Introduction

Why is Part-Of-Speech Tagging Needed?

- Knowledge on the function of the word
- Support for the higher levels of NL processing:
 - Phrase Bracketing (use regex with POS tag matching)
 - *E.g.*, *(Det) Adj* * *N* +
 - Parsing
 - Semantics
- Applications that use POS tagging
 - Speech synthesis Text-to-speech (how do we pronounce "lead"?)
 - Word-sense disambiguation
 - Sentiment detection selection of high-opinion or emotion words

Why is Part-Of-Speech Tagging Hard?

- The POS tagging task is to assign a sequence of tags to a sequence of words (usually a sentence)
 - Or can be viewed as assigning a tag to a word in the context of a sequence
- Words may be ambiguous in different ways:
 - A word may have multiple meanings as the same part- of-speech
 - *file* **noun**, a folder for storing papers
 - *file* **noun**, instrument for smoothing rough edges
 - A word may function as multiple parts-of-speech
 - a round table: adjective
 - a *round* of applause: **noun**
 - to *round* out your interests: **verb**
 - to work the year **round**: **adverb**

Overview of Approaches

Rule-based Approach

• Simple and doesn't require a tagged corpus, but not as accurate as other approaches.

Stochastic Approaches

- Refers to any approach which incorporates <u>frequencies or probabilities</u>
- Requires a <u>tagged corpus</u> to learn frequencies of words with POS tags
- N-gram taggers: uses the context of (a few) previous tags
- Hidden Markov Model (HMM) taggers: uses the context of the entire sequence of words and previous tags
 - This technique has been the <u>most widely used</u> of modern taggers, but has the problem of unknown words

Uses the structure of words and parts of words, such as stems

Classification Taggers

- Uses morphology of word and (a few) surrounding words
- Helps solve the problem of unknown words

N-gram Approach

N-gram taggers: uses the context of (a few) previous tags

- N-gram approach to probabilistic POS tagging:
 - calculates the <u>probability of a given sequence of tags</u> occurring <u>for a sequence of words</u>
 - the <u>best tag for a given word</u> is determined by the (already calculated) <u>probability that it occurs with the n previous tags</u>
 - may be bi-gram, tri-gram, etc
 - In practice, bigram and trigram probabilities have the problem that the combinations of words are sparse in the corpus

POS Tagging: HMM probabilities

HMM taggers

Hidden Markov Model (HMM) taggers: uses the context of the entire sequence of words and previous tags

- A more comprehensive approach to tagging considers the entire sequence of words
 - Bolt is expected to race tomorrow
- What is the best sequence of tags which corresponds to this sequence of observations?
- Probabilistic view:
 - Consider all possible sequences of tags
 - Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words: $W_1...W_n$.

HMM decoding

- We want, out of all sequences of n tags $t_1...t_n$ the single tag sequence such that $P(t_1...t_n|w_1...w_n)$ is highest.
 - i.e. the probability of the tag sequence $t_1...t_n$ given the word sequence $w_1...w_n$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n)$$

Hat ^ means "our estimate of the best one"

 $Argmax_x f(x)$ means "the x such that f(x) is maximized"

• i.e. find the tag sequence that maximizes the probability

Road to HMMs

This equation is guaranteed to give us the best tag sequence

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

But how to make it operational? How to compute this value?

Intuition of Bayesian classification:

 Use Bayes rule to transform into a set of other probabilities that are easier to compute

Thomas Bayes 1701 - 1761

Using Bayes Rule Bayes rule: P(y|x)P(x)

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

Apply Bayes Rule:

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} \frac{P(w_1^n | t_1^n) P(t_1^n)}{P(w_1^n)}$$

Note that this is **using the conditional probability**, given a tag sequence, what is the most likely word sequence with those tags.

• Drop denominator $P(w_1^n)$ as it is the same for every sequence

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(w_1^n | t_1^n) P(t_1^n)$$

Likelihood and Prior

• Further simplify

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} \ \overbrace{P(w_1^n | t_1^n)}^{\text{prior}} \ \overbrace{P(t_1^n)}^{\text{prior}}$$

• Likelihood: assume that the probability of the word depends only on its tag

$$P(w_1^n|t_1^n) \approx \prod_{i=1}^n P(w_i|t_i)$$

• **Prior**: use the bigram assumption that the tag only depends on the previous tag

$$P(t_1^n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n|w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n P(w_i|t_i) P(t_i|t_{i-1})$$

Two Sets of Probabilities (1)

- 1. Tag transition probabilities $p(t_i|t_{i-1})$ (priors)
 - Determiners(DT) likely to precede adjs(JJ) and nouns(NN)
 - That/DT flight/NN
 - The/DT yellow/JJ hat/NN
 - So we expect P(NN|DT) and P(JJ|DT) to be high
 - Compute P(NN|DT) by counting in a labeled corpus:

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$$
 Count of DT NN sequence $P(NN|DT) = \frac{C(DT,NN)}{C(DT)} = \frac{56,509}{116,454} = .49$

Two Sets of Probabilities (2)

2. Word likelihood probabilities p(w_i|t_i)

- VBZ (3sg Pres verb) likely to be "is"
- Compute P(is|VBZ) by counting in a labeled corpus:

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

Count of "is" tagged with VBZ

$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$$

An Example: the word "race"

- The word "race" can occur as a verb or as a noun:
 - Bolt/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR
 - People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN
- How do we pick the right tag?

Disambiguating "race"

Syracuse University

Example

The equations only differ in "to race tomorrow"

P(NN|TO) = .00047

The tag transition probabilities P(NN|TO) and P(VB|TO)

P(VB|TO) = .83

P(race|NN) = .00057

Lexical likelihoods from the Brown corpus

P(race|VB) = .00012

for 'race' given a POS tag NN or VB.

P(NR|NN) = .0012

P(NR|VB) = .0027

Tag sequence probability for the likelihood of an adverb occurring given the previous tag verb or noun

P(VB|TO)P(NR|VB)P(race|VB) = .00000027

P(NN|TO)P(NR|NN)P(race|NN)=.00000000032

So we (correctly) choose the verb tag.

In-class activity

 Calculate the probabilities for the POS tags (IN/ RB) of word "around" in this sentence:

Meet/VB me/PRP around/(IN or RB) the/DT corner/NN.

Here are a list of probabilities that you might need:

- P(around \mid IN)=0.03 P(around \mid RB)= 0.04
- $P(IN \mid PRP) = 0.007$
 - P(RB | PRP)=0.0001

• P(DT | IN)=0.025

• P(DT | RB)=0.009

Post your calculation of the probabilities and the selected tag in Discussion.

POS Tagging: Classifier

Feature-based Classifiers

- A feature-based classifier is an algorithm that will take a word and assign a POS tag <u>based on features of the word in its</u> context in the sentence.
 - typically feature classifier uses information from 1-3 surrounding words on either side

Word₋₂ Word₋₁ Word Word₊₁ Word₊₂

- Many algorithms are used for these traditional classifiers, including
 - Naïve Bayes
 - Maximum Entropy (MaxEnt)
 - Support Vector Machines (SVM)

Features of words

• We can do surprisingly well just looking at a word by itself:

• Word the: the \rightarrow DT (determiner)

• Prefixes unhappy: $un \rightarrow JJ$ (adjective)

• Suffixes Importantly: $-ly \rightarrow RB$

tangential: $-al \rightarrow JJ$

• Capitalization Syracuse: $CAP \rightarrow NNP$ (proper noun)

• Word shapes 35-year: d-x \rightarrow JJ

- These properties can include information about the previous or the next word(s)
 - The word "be" appears to the left of "pretty" \rightarrow JJ
- But **not** information about **tags** of the previous or next words, unlike HMM

Development process for features

- •The tagged data should be separated into a <u>training set</u> and a <u>test</u> set.
 - The classifier is trained on the training set, which produces a "tagger"
 - And evaluated on the test set, by applying the tagger to every word and comparing the predicted tag with the answer in the test set
- If our feature-based tagger has errors, then we improve the features.
 - Suppose we incorrectly tag as as IN in the phrase as soon as, when it should be RB:
 PRP VBD IN RB IN PRP VBD .
 They left as soon as he arrived .

• We could fix this with a feature that include the next word.

POS Tagging: Evaluation and Demos

Evaluation: Is our POS tagger any good?

- Answer: we use a manually tagged corpus, which we will call the "Gold Standard"
 - We run our POS tagger on the gold standard and compare its predicted tags with the gold tags
 - We compute the accuracy (and other evaluation measures)
- Important: 100% is impossible even for human annotators.
 - We estimate humans can do POS tagging at about 98% accuracy.
 - Some tagging decisions are very subtle and hard to do:
 - All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT corner/NN
 - Subaru/NNP Outback/NNP costs/VBZ around/RB 25000/CD
 - The "Gold Standard" will have human mistakes; humans are subject to fatigue, etc.

Overview of POS tagger Accuracies

• Stanford NLP group performed experiments with different tagging techniques and looked at the improvements.

Rough accuracies:

Most freq tag:

- Trigram HMM:
 - HMM with trigrams
- Maxent P(t|w):
 - Feature based tagger
- MEMM tagger:
 - Combines feature based and HMM tagger
- Upper bound:

all words / unknown words ~90% / ~50%

~95% / ~55%

93.7% / 82.6%

96.9% / 86.9%

~98% (human agreement)

Most errors on unknown words

POS taggers with online demos

- Many pages list downloadable taggers (and other resources)
 - http://nlp.stanford.edu/software/tagger.shtml
 - https://cogcomp.seas.upenn.edu/page/software_view/POS
- There are not too many on-line taggers available for demos, but here are some possibilities:
 - The Stanford online parser demo includes POS tags: http://corenlp.run/

Conclusions

- POS tagging is a doable task with high performance results
 - In addition to the standard text POS taggers discussed here, there are now POS tag systems and taggers developed for social media text.
- Contributes to many practical, real-world NLP applications and is now used as a pre-processing module in most systems
- Computational techniques learned at this level can be applied to NLP tasks at higher levels of language processing

Lab

Tasks

- 1. Demo tagging
 - Brown corpus— its own POS tags
 - Penn treebank POS
- 2. POS Tagging
- 3. N-gram tagger
 - unigram tagging
 - bigram tagger
 - bigram tagger with backoff