- 1. Василий составляет 4-буквенные коды из букв Г, А, Ф, Н, И, Й. Каждую букву можно использовать любое количество раз, при этом код не может начинаться с буквы Й и должен содержать хотя бы одну гласную. Сколько различных кодов может составить Василий?
- **2.** (А. Куканова) Аня составляет слова, переставляя буквы в слове ОДЕКОЛОН, избегая слов, где соседние буквы одинаковые. Сколько различных слов, включая исходное, может составить Аня?
- **3.** Сколько существует различных символьных последовательностей длины 5 в четырёхбуквенном алфавите {A, C, G, T}, которые содержат ровно две буквы A?
- **4.** Вася составляет 5-буквенные коды из букв К, А, Л, И, Й. Каждую букву нужно использовать ровно 1 раз, при этом код не может начинаться с буквы Й и не может содержать сочетания ИА. Сколько различных кодов может составить Вася?
- **5.** (Е. Джобс) Вася составляет 4-буквенные слова, в которых есть только буквы С, Ч, И, Т, А, Й, причём буква А может встретиться в каждом слове не более 1 раза. Каждая из других допустимых букв может встречаться в слове любое количество раз или не встречаться совсем. Словом считается любая допустимая последовательность букв, не обязательно осмысленная. Сколько различных слов может написать Вася?
- **6.** Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки символов.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА НЕ нашлось(00)
заменить(01, 21022)
заменить(02, 310)
заменить(03, 230112)
КОНЕЦ ПОКА
КОНЕЦ
```

Известно, что исходная строка начиналась с нуля и заканчивалась нулём, а между ними были только цифры 1, 2 и 3. После выполнения данной программы получилась строка, содержащая 96 единиц, 36 двоек и 80 троек. Сколько цифр было в исходной строке?

7. Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА нашлось (5555)
заменить (5555, 33)
заменить (333, 5)
КОНЕЦ ПОКА
КОНЕЦ
```

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 150 цифр 5? 8. Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА нашлось (777)
заменить (77, 2)
заменить (22, 7)
КОНЕЦ ПОКА
КОНЕЦ
```

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 170 цифр 7? 9. (Досрочный ЕГЭ 2020 г.) Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w, вторая проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Дана программа для исполнителя Редактор:

На вход приведённой ниже программе поступает строка, начинающаяся с символа «>», а затем содержащая 10 цифр 1, 20 цифр 2 и 30 цифр 3, расположенных в произвольном порядке. Определите сумму числовых значений цифр строки, получившейся в результате выполнения программы. Так, например, если результат работы программы представлял бы собой строку, состоящую из 50 цифр 4, то верным ответом было бы число 200.

10. Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки символов.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА нашлось (555) ИЛИ нашлось (333)
ЕСЛИ нашлось (555)
ТО заменить (555, 3)
ИНАЧЕ заменить (333, 5)
КОНЕЦ ЕСЛИ
КОНЕЦ ПОКА
КОНЕЦ
```

Дана строка, состоящая из 400 цифр 5. Сколько троек было удалено за время обработки строки по этой программе? 11. На числовой прямой даны два отрезка: P = [25, 38] и Q = [9, 44]. Найдите наименьшую возможную длину отрезка A, при котором формула

```
(x \in P) \land \neg(\neg(x \in Q) \lor (x \in A))
```

тождественно ложна, то есть принимает значение 0 при любых х.

12. Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа A формула

```
(ДЕЛ(x, A) \land ДЕЛ(x, 16)) \rightarrow (¬ДЕЛ(x, 16) \lor ДЕЛ(x, 24))
```

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)? **13.** (В.Н. Шубинкин) Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наименьшего натурального числа A формула

```
(ДЕЛ(x, A) \to ДЕЛ(x, 54) \lor ДЕЛ(x, 130)) \land (A > 110)
```

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

14. Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наибольшего натурального числа A формула

```
\negДЕЛ(x,A) \rightarrow (\negДЕЛ(x,21) \land \negДЕЛ(x,35))
```

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)? **15.** Обозначим через m&n поразрядную конъюнкцию неотрицательных целых чисел m и n. Так, например, $14\&5=1110_2\&0101_2=0100_2=4$. Для какого наименьшего неотрицательного целого числа A формула

```
(x \& 29 \neq 0) \rightarrow ((x \& 17 = 0) \rightarrow (x \& A \neq 0))
```

тождественно истинна (т.е. принимает значение 1 при любом неотрицательном целом значении переменной x)? **16.** Функция F(n), где n – натуральное число, задана следующим образом:

```
ПаскальPythonСиfunction F(n: integer):def F(n):int F(int n) \{integer;if n < 5:if (n < 5)beginreturn F(n+3) + \ return F(n+3) + \ retur
```

```
\begin{array}{lll} & \text{if } n < 5 \text{ then} & F(2^*n) + \backslash & F(2^*n) + \\ F := F(n+3) + & F(3^*n \mathbin{/\!/} 2) & F(3^*n \mathbin{/\!/} 2); \\ F(2^*n) + & \text{else:} & \text{else} \\ F(3^*n \text{ div } 2) & \text{return } n + 2 & \text{return } n + 2; \\ \text{else} & & \\ F := n + 2; \\ \text{end;} & & \\ \end{array}
```

Чему будет равно значение, вычисленное алгоритмом при выполнении вызова F(3)?

17. Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:

```
F(n) = 3 при n ≤ 1
F(n) = F(n-1) + 2·F(n-2) - 5, если n > 1
```

Чему равно значение функции F(22)?

18. Алгоритм вычисления значения функции F(n), где n – целое число, задан следующими соотношениями:

```
F(n) = n при n < 1
 F(n) = n + 3 \cdot F(n-3), если n \ge 1 и чётно,
 F(n) = 5 \cdot n + 2 \cdot F(n-5), если n \ge 1 и нечётно.
```

Чему равно значение функции F(30)?

19. Функция F(n), где n – целое число, задана следующим образом:

Паскаль **Python** Си function F(n: integer): int F(int n) { integer; def F(n): if (n > 1)begin if n > 1: if n > 1 then return 2*n + return 2*n + \ F := 2*n +F(n-2)+F(n-3);F(n-2)+F(n-3)F(n-2)+F(n-3)else else: else return n + 5; return n + 5F := n + 5;end:

Чему будет равно значение, вычисленное алгоритмом при выполнении вызова F(6)?

20. Ниже записаны две рекурсивные функции (процедуры): F и G.Сколько символов «звёздочка» будет напечатано на экране при выполнении вызова F(11)?

```
Python
                                                    Си
       Паскаль
procedure F(n: integer);
begin
                                            void F(int n) {
if n > 0 then G(n - 1);
                                            if (n > 0) G(n - 1);
                          def F(n):
                          if n > 0: G(n - 1)
procedure G(n: integer); def G(n):
                                            void G(int n) {
                          print("*")
                                            printf("*");
begin
writeln('*');
                          if n > 1: F(n - 2) if (n > 1) F(n - 2);
if n > 1 then F(n - 2);
                                            }
end:
```

- **21.** В файле <u>17-243.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от 0 до 10 000 включительно. Определите количество пар чисел, в которых хотя бы один из двух элементов больше, чем наибольшее из всех чисел в файле, делящихся на 171, и хотя бы один элемент из двух содержит стоящие рядом две цифры 1. В ответе запишите два числа: сначала количество найденных пар, а затем минимальную сумму элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.
- 22. В файле 17-243.txt содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от 0 до 10 000 включительно. Определите количество пар чисел, в которых хотя бы один из двух элементов больше, чем наибольшее из всех чисел в файле, делящихся на 173, и в троичной записи хотя бы одного элемента из двух содержится сочетание цифр 22. В ответе запишите два числа: сначала количество найденных пар, а затем минимальную сумму элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.
- **23.** (П. Волгин) В файле <u>17-7.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать значения от 0 до 200 включительно. Определите сначала количество троек элементов последовательности, в которых хотя бы одно число в троичной системе счисления в нулевом разряде имеет 2, а затем сумму минимальных чисел из таких троек. Под тройкой подразумевается три идущих подряд элемента последовательности.
- **24.** В файле <u>17-1.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от –10 000 до 10 000 включительно. Определите количество троек, в которых хотя бы один из трёх элементов меньше, чем среднее арифметическое всех чисел в файле, и десятичная запись хотя бы одного из трёх элементов оканчивается на 6. В ответе запишите два числа: сначала количество найденных троек, а затем максимальную сумму элементов таких троек. В данной задаче под тройкой подразумевается три идущих подряд элемента последовательности.
- **25.** В файле <u>17-205.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от –10 000 до 10 000 включительно. Определите количество пар, в которых хотя бы один из двух элементов заканчивается на 17, а их сумма делится на 2. В ответе запишите два числа: сначала количество найденных пар, а затем максимальную сумму элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.