Melody Infilling with

User-Provided Structural Context

Check the demo website!

Chih-Pin Tan^{1,2} Alvin W.Y. Su¹ Yi-Hsuan Yang²

¹National Cheng Kung University ²Academia Sinica

Abstract

Music infilling without content controlled has been well done by recent researches:

→ Help composers create music by their outline? No

We propose a Transformer-based model for music infilling:

- → Accept past context, future context, and extra structural contexts as the model input
- ⇒ Use special segment embedding to generate missing part before future context
- ⇒ Generate result with structural correspondence to provided-context

Dataset

POP909 MIDI songs with structure labels:

- 3 tracks: melody, bridge, and piano
 - ⇒ We remove piano to simplify the data
- Similar phrases (often having structural correspondence in pop songs) are marked with the same letters:
 - Ex: A4B4A4B4 means bars 1~4 are similar to bars 9~12, and bars 5~8 are similar to bars 13~16. Phrases belong to A sound different from phrases belong to B.

Architecture

Transformer-based Model:

- Carry structural information & control length:
 - ⇒ REMI-based token representation
- Generate middle part:
 - → Order embedding (segment embedding)
- Refer to corresponding context:
 - → Attention-selecting

Model Overview

REMI-based Representation

We Convert music into tokens with 6 kinds of event: Tempo, Position, Pitch, Duration, Bar, and Struct. The number assigned to Bar indicates the remaining length of generated contents. Struct is the reference of corresponding structural context.

Attention-Selection

The encoder processes multiple sections of the structural context at once, where each section corresponds to a unique *Struct* token. The decoder select the right structural context for the generated content on cross-attention.

Order Embedding

Vanilla Transformer cannot generate middle part due to the limitation of sequential generative model. We **reorder** the target to the last position of the prompt and add order embedding to let the model know the target **sitting on the middle** actually.

Experiment

Objective Evaluation

There are 3 objective metrics used:

- Pitch Class Histogram Cross Entropy (H)
 - Cross entropy of note pitches
- Grooving Pattern Similarity (**GS**)
- ➡ Rhythmic similarity of onset patterns
- Melody Distance (D)
 - ➡ Similarity of two melody lines

The values of **H** and **GS** represent that each model performs well on connecting prompts. The lower value of **D** shows that our model behaves better on the structural correspondence.

	$H\downarrow$	$GS\uparrow$	$D\downarrow$
Ours	2.75 ±0.80	0.70 ±0.08	25.73 ±19.45
VLI	$3.47{\pm}1.57$	0.67 ± 0.09	$49.40{\pm}25.12$
Hsu	$9.87{\pm}4.64$	0.64 ± 0.09	65.41 ± 38.00
Original	2.78 ± 0.89	0.70 ± 0.09	0.00 ± 0.00

User Study

Subjects are asked to evaluate the result with 4 aspects:

- Melody fluency (M)
- Rhythmic fluency (R)
- Structural corresponded (**S**)
- Overall (**O**)

Our model get higher score in each aspects.

		M	R	S	0
all	Ours	3.46	3.51	3.40	3.42
	VLI	2.96	3.14	3.12	2.97
	Hsu	2.60	2.95	2.75	2.64
	Real	3.77	3.77	3.62	3.66
pro	Ours	3.58	3.28	3.28	3.42
	VLI	2.67	2.86	2.78	2.72
	Hsu	2.36	2.75	2.39	2.44
	Real	3.61	3.56	3.42	3.42

Over-Imitation

Model generates the result by directly copying the structural context

- Solution (after formal submission)
 - ➡ Consider the loss of past context on training
- Check it on the demo page and Github!

Conclusion

- Teach the model how to generate content by following the user's guidance
- Another way to provided the context instead the whole music segment

