Islamic University Of Gaza Faculty of Engineering Computer Department

Assembly Language Discussion Chapter 1

Created By: Eng. Ahmed M. Ayash

Date: 15/02/2015

Modified and Presented by: Eng. Eihab S. El-Radie

CHAPTER 1

Basic Concepts

- ➤ Machine code or machine language is a system of impartible instructions executed directly by a computer's central processing unit (CPU).
 - Instructions consist of binary code: 1s and 0s
- An **assembly language:** is a low-level programming language that is very similar to machine language, but uses symbols instead of binary numbers.
 - Slightly higher-level language
- An assembler is a program that converts source-code programs written in assembly language into object files in machine language.

Assembler Examples:

- MASM (Macro Assembler from Microsoft),
- TASM (Turbo Assembler from Borland)
- NASM (Netwide Assembler for both Windows and Linux),

We will use MASM6.15 (Macro Assembler from Microsoft)

- Masm.exe creates an .obj file from an .asm file.
- ➤ A **linker** is a program that combines individual files created by an assembler into a single executable program.
 - Two linkers: LINK.EXE and LINK32.EXE are provided with the MASM 6.15 distribution to link 16-bit real-address mode and 32-bit protected-address mode programs respectively.

16-Bit Real-Address Mode: 16-bit real-address mode programs run under MS-DOS and in the console window under MS-Windows. Also known as real mode programs, they use a segmented memory model required of programs written for the Intel 8086 and 8088 processors.

32-Bit Protected Mode:

32-bit protected mode programs run under all 32-bit versions of Microsoft Windows. They are usually easier to write and understand than real mode programs.

- Link.exe creates an .exe file from a .obj file.
- Use make 16.bat to assemble and link a 16-bit format assembly program.
- Use make 32.bat to assemble and link a 32-bit format assembly program.
- A **debugger** is a program that allows you to trace the execution of a program and examine the content of registers and memory.
 - For 16-bit programs, MASM supplies a 16-bit debugger named CodeView. CodeView can be used to debug only 16-bit programs and is already provided with the MASM 6.15 distribution.
 - For 32-bit protected-mode programs, you need a 32-bit debugger. The latest version of the 32-bit Windows debugger is available for download for free from Microsoft.
- ➤ Compilers translate high-level programs to machine code either directly or indirectly via an assembler.

- ➤ Programs in high level language are portable; However, Assembly language programs are not portable.
 - A portable application (portable app), sometimes also called standalone, is a computer program designed to run independently from an operating system.
 - Portable versions of applications can usually also be used instead of the normal installable version, which some users find useful.
- ➤ The Microsoft Macro Assembler (MASM) is an x86 assembler that uses the Intel syntax for MS-DOS and Microsoft Windows.
 - x86-64 (or x64) is often used to denote 64-bit software, while the term x86 implying only 32-bit.

> Integer Storage Sizes

The basic storage unit for all data in an x86 computer is a *byte*, containing 8 bits. Other storage sizes are *word* (2 bytes), *doubleword* (4 bytes), and *quadword* (8 bytes).

Large Measurements: A number of large measurements are used when referring to both memory and disk space:

- One *kilobyte* is equal to 2^{10} , or 1024 bytes.
- One *megabyte* (1 MByte) is equal to 2^{20} , or 1,048,576 bytes.
- One *gigabyte* (1 GByte) is equal to 2^{30} , or 1024^3 , or 1,073,741,824 bytes.
- One *terabyte* (1 TByte) is equal to 2^{40} , or 1024^4 , or 1,099,511,627,776 bytes.
- One petabyte is equal to 2^{50} , or 1,125,899,906,842,624 bytes.
- One exabyte is equal to 2^{60} , or 1,152,921,504,606,846,976 bytes.
- One zettabyte is equal to 2^{70} bytes.
- One yottabyte is equal to 2^{80} bytes.

The unsigned range:

Storage Type	Range (Low to High)	Powers of 2	Byte Measurements		
Unsigned byte	0 to 255	0 to (2 ⁸ – 1)	1 byte		
Unsigned word	0 to 65,535	0 to (2 ¹⁶ – 1)	2 bytes		
Unsigned doubleword	0 to 4,294,967,295	0 to (2 ³² – 1)	4 bytes		
Unsigned quadword	0 to 18,446,744,073,709,551,615	0 to (2 ⁶⁴ – 1)	8 bytes		

(1.3.7 P28) What is the largest value you can represent using a 256-bit unsigned integer?

The signed range:

Storage Type	Range (Low to High)	Powers of 2			
Signed byte	-128 to +127	-2^7 to $(2^7 - 1)$			
Signed word	-32,768 to +32,767	-2^{15} to $(2^{15}-1)$			
Signed doubleword	-2,147,483,648 to 2,147,483,647	-2^{31} to $(2^{31}-1)$			
Signed quadword	-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807	-2 ⁶³ to (2 ⁶³ - 1)			

(1.3.7 P29) What is the largest positive value you can represent using a 256-bit signed integer?

Sol:
$$+2^{255}-1$$

> Overflow

Overflow occurs when

- Adding two positive numbers and the sum is negative
- Adding two negative numbers and the sum is positive

> Character Storage

- Standard ASCII: 7-bit character codes (0 127)
- Extended ASCII: 8-bit character codes (0-255)

Printable ASCII Codes

	0	1	2	3	4	5	6	7	8	9	Α	В	O	Δ	Е	F
2	space	!	"	#	\$	ક્ર	&	•	()	*	+	,	-		/
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	@	A	В	С	D	E	F	G	н	I	J	K	L	М	N	0
5	P	Q	R	s	T	U	v	W	х	Y	Z	[١	1	^	_
6	`	a	b	С	d	e	f	g	h	i	j	k	1	m	n	0
7	р	ā	r	Ø	t	u	v	W	x	У	z	{	1	}	~	DEL

Examples:

- ASCII code for space character = 20 (hex) = 32 (decimal)
- ASCII code for 'L' = 4C (hex) = 76 (decimal)
- ASCII code for 'a' = 61 (hex) = 97 (decimal)

(1.3.7 P26) What are the hexadecimal and decimal representations of the ASCII character capital M?

Sol: 4Dh and 77d

Control Characters

• Control character codes = 00 to 1F (hex)

Examples of Control Characters

- Character 0 is the NULL character, used to terminate a string
- Character 9 is the Horizontal Tab (HT) character
- Character 0A (hex) = 10 (decimal) is the Line Feed (LF)
- Character 0D (hex) = 13 (decimal) is the Carriage Return (CR)
- The LF and CR characters are used together, they advance the cursor to the beginning of next line