03: Linear Algebra - Review

Previous Next Index

Matrices - overview

- Rectangular array of numbers written between square brackets
 - o 2D array
 - Named as capital letters (A,B,X,Y)
- Dimension of a matrix are [Rows x Columns]
 - o Start at top left
 - o To bottom left
 - o To bottom right
 - o R[r x c] means a matrix which has r rows and c columns

$$A = \begin{bmatrix} 1402 & 191\\ 1371 & 821\\ 949 & 1437\\ 147 & 1448 \end{bmatrix}$$

- Is a [4 x 2] matrix
- Matrix elements
 - $\circ \ A_{(i,j)} = \text{entry in } i^{\text{th}} \text{ row and jth column}$

· Provides a way to organize, index and access a lot of data

Vectors - overview

- Is an n by 1 matrix
 - o Usually referred to as a lower case letter
 - o n rows
 - o 1 column
 - o e.g.

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

- Is a 4 dimensional vector
 - o Refer to this as a vector R4
- Vector elements
 - \circ $v_i = i^{th}$ element of the vector
 - \circ Vectors can be o-indexed (C++) or 1-indexed (MATLAB)
 - o In math 1-indexed is most common
 - \blacksquare But in machine learning o-index is useful
 - o Normally assume using 1-index vectors, but be aware sometimes these will (explicitly) be o index ones

Matrix manipulation

- Addition
 - Add up elements one at a time
 - o Can only add matrices of the same dimensions
 - Creates a new matrix of the same dimensions of the ones added

$$\begin{bmatrix} 1 & 0 \\ 2 & 5 \\ \hline 3 & 1 \end{bmatrix} + \begin{bmatrix} 4 & 0.5 \\ 2 & 5 \\ \hline 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0.5 \\ 4 & 0.5 \\ \hline 2 & 2 \end{bmatrix}$$

• Multiplication by scalar

- Scalar = real number
- Multiply each element by the scalar
- o Generates a matrix of the same size as the original matrix

$$3 \times \begin{bmatrix} 1 & 0 \\ 2 & 5 \\ 3 & \overline{1} \end{bmatrix} = \begin{bmatrix} 3 & \emptyset \\ \zeta & 1 \zeta \\ 9 & 3 \end{bmatrix}$$

• Division by a scalar

- Same as multiplying a matrix by 1/4
- o Each element is divided by the scalar

• Combination of operands

Evaluate multiplications first

$$3 \times \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix} - \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} / 3$$

• Matrix by vector multiplication

- [3 x 2] matrix * [2 x 1] vector New matrix is [3 x 1]
 - - More generally if [a x b] * [b x c]
 - Then new matrix is [a x c]
 - How do you do it?
 - Take the two vector numbers and multiply them with the first row of the matrix
 - Then add results together this number is the first number in the new vector
 - The multiply second row by vector and add the results together
 - Then multiply final row by vector and add them together

Detailed explanation

- $\circ A * x = y$
 - A is m x n matrix
 - x is n x 1 matrix
 - n must match between vector and matrix
 - i.e. inner dimensions must match
 - Result is an m-dimensional vector
- $\circ\,$ To get y_i multiply A's $i^{\mbox{th}}$ row with all the elements of vector x and add them up
- Neat trick
 - o Say we have a data set with four values
 - Say we also have a hypothesis $h_{\theta}(x) = -40 + 0.25x$
 - Create your data as a matrix which can be multiplied by a vector

- Have the parameters in a vector which your matrix can be multiplied by
- o Means we can do
 - Prediction = Data Matrix * Parameters

- Here we add an extra column to the data with 1s this means our θ_0 values can be calculated and expressed
- The diagram above shows how this works
 - This can be far more efficient computationally than lots of for loops
 - This is also easier and cleaner to code (assuming you have appropriate libraries to do matrix multiplication)

• Matrix-matrix multiplication

- o General idea
 - Step through the second matrix one column at a time
 - Multiply each column vector from second matrix by the entire first matrix, each time generating a vector
 - The final product is these vectors combined (not added or summed, but literally just put together)
- o Details
 - $A \times B = C$
 - $\bullet A = [m \times n]$
 - $B = [n \times o]$
 - C = [m x o]With vector multiplications o = 1
 - Can only multiply matrix where columns in A match rows in B
- o Mechanism
 - Take column 1 of B, treat as a vector
 - Multiply A by that column generates an [m x 1] vector
 - Repeat for each column in B
 - There are o columns in B, so we get o columns in C
- o Summary
 - The i th column of matrix C is obtained by multiplying A with the i th column of B
- o Start with an example
- o AxB

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \\ 5 & 2 \end{bmatrix}$$

- Initially
 - o Take matrix A and multiply by the first column vector from B
 - Take the matrix A and multiply by the second column vector from B

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 11 \\ q \end{bmatrix}$$
$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 10 \\ 14 \end{bmatrix}$$

• 2 x 3 times 3 x 2 gives you a 2 x 2 matrix

Implementation/use

- House prices, but now we have three hypothesis and the same data set
- To apply all three hypothesis to all data we can do this efficiently using matrix-matrix multiplication
 - o Have
 - Data matrix
 - Parameter matrix
 - Example
 - Four houses, where we want to predict the prize
 - Three competing hypotheses
 - Because our hypothesis are one variable, to make the matrices match up we make our data (houses sizes) vector into a 4x2 matrix by adding an extra column of 1s

- · What does this mean
 - o Can quickly apply three hypotheses at once, making 12 predictions
 - Lots of good linear algebra libraries to do this kind of thing very efficiently

Matrix multiplication properties

- Can pack a lot into one operation
 - However, should be careful of how you use those operations
 - Some interesting properties
- Commutativity
 - o When working with raw numbers/scalars multiplication is commutative
 - 3 * 5 == 5 * 3 This is not true for matrix
 - \blacksquare A x B != B x A
 - Matrix multiplication is not commutative
- Associativity
 - \circ 3 x 5 x 2 == 3 x 10 = 15 x 2
 - Associative property
 - Matrix multiplications is associative
 - A x (B x C) == (A x B) x C
- Identity matrix
 - o 1 is the identity for any scalar
 - \blacksquare i.e. $1 \times z = z$
 - for any real number
 - $\circ\,$ In matrices we have an identity matrix called I
 - Sometimes called *I*{n x n}

$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 2 x 2	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 3 x 3	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0	0	0
2 x 2	$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	0	0	1	0
	3 x 3	0	0	0	1
			4 x 4		

- See some identity matrices above
 - o Different identity matrix for each set of dimensions
 - o Has
 - 1s along the diagonals
 - os everywhere else
 - o 1x1 matrix is just "1"
- Has the property that any matrix A which can be multiplied by an identity matrix gives you matrix A back
 - o So if A is [m x n] then
 - A * I
 - \blacksquare I = n x n
 - I * A
 - \blacksquare I = m x m
 - (To make inside dimensions match to allow multiplication)
- · Identity matrix dimensions are implicit
- Remember that matrices are not commutative AB != BA
 - Except when B is the identity matrix
 - Then AB == BA

Inverse and transpose operations

- Matrix inverse
 - How does the concept of "the inverse" relate to real numbers?
 - 1 = "identity element" (as mentioned above)
 - Each number has an inverse
 - \blacksquare This is the number you multiply a number by to get the identify element
 - i.e. if you have x, x * 1/x = 1
 - e.g. given the number 3
 - $3 * 3^{-1} = 1$ (the identity number/matrix)
 - In the space of real numbers **not everything has an inverse**
 - e.g. o does not have an inverse
 - o What is the inverse of a matrix
 - If A is an m x m matrix, then A inverse = A^{-1}
 - So $A*A^{-1} = I$
 - Only matrices which are m x m have inverses
 - Square matrices only!
 - o Example
 - 2 x 2 matrix

- How did you find the inverse
 - Turns out that you can sometimes do it by hand, although this is very hard
 - Numerical software for computing a matrices inverse
 - Lots of open source libraries
- o If A is all zeros then there is no inverse matrix
 - Some others don't, intuition should be matrices that don't have an inverse are a singular matrix or a degenerate matrix (i.e. when it's too close to o)
 - So if all the values of a matrix reach zero, this can be described as reaching singularity

• Matrix transpose

- $\circ \ \ \text{Have matrix A (which is [n \ x \ m]) how do you change it to become [m \ x \ n] while keeping the same values}$
 - i.e. swap rows and columns!
- How you do it;
 - Take first row of A becomes 1st column of A^T
 - Second row of A becomes 2nd column...
- $\circ\,$ A is an m x n matrix
 - B is a transpose of A
 - Then B is an n x m matrix
 - $A_{(i,j)} = B_{(j,i)}$

$$\underline{A} = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 5 & 9 \end{bmatrix} \quad \underline{A}^T = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ 0 & 9 \end{bmatrix}$$