주요 개념

1. 활성화 함수 (Activation Function)

신경망의 각 뉴런에서 입력 신호의 총합을 비선형 출력 신호로 변환하는 함수입니다. 비선형성을 도입하여 신경망이 복잡한 패턴을 학습할 수 있도록 합니다.

- **ReLU (Rectified Linear Unit)**: max(0, x). 구현이 간단하고 계산 비용이 적으며, 기울기 소실(Vanishing Gradient) 문제를 완화합니다. 가장 널리 사용됩니다.
- **Sigmoid**: 1 / (1 + exp(-x)). 0과 1 사이의 값을 출력하여 이진 분류의 출력층이나 게이트 메커니즘 에 사용됩니다. 기울기 소실 문제가 있습니다.
- Tanh (Hyperbolic Tangent): (exp(x) exp(-x)) / (exp(x) + exp(-x)). -1과 1 사이의 값을 출력 하며, Sigmoid보다 중심이 0에 가까워 학습에 유리합니다. 기울기 소실 문제가 있습니다.
- Softmax: 다중 분류 문제의 출력층에서 사용되며, 각 클래스에 속할 확률 분포를 출력합니다. 모든 출력 값의 합은 1이 됩니다.

2. 손실 함수 (Loss Function)

모델의 예측 값과 실제 값 사이의 오차를 측정하는 함수입니다. 모델 학습 시 이 손실 함수 값을 최소화하는 방향으로 가중치를 업데이트합니다.

- MSE (Mean Squared Error): 회귀 문제에서 주로 사용되며, 예측 값과 실제 값 차이의 제곱 평균입니다.
- MAE (Mean Absolute Error): 회귀 문제에서 사용되며, 예측 값과 실제 값 차이의 절댓값 평균입니다.
- Binary Cross-Entropy: 이중 분류 문제에서 사용됩니다.
- Categorical Cross-Entropy: 다중 분류 문제에서 사용되며, 원-핫 인코딩된 타겟 레이블에 사용됩니다.
- Sparse Categorical Cross-Entropy: 다중 분류 문제에서 사용되며, 정수 인코딩된 타겟 레이블에 사용됩니다.

3. 옵티마이저 (Optimizer)

손실 함수를 최소화하기 위해 모델의 가중치(Weight)와 편향(Bias)을 업데이트하는 알고리즘입니다.

- SGD (Stochastic Gradient Descent): 가장 기본적인 옵티마이저로, 배치(Batch) 단위로 기울기를 계산하여 가중치를 업데이트합니다.
- Adam (Adaptive Moment Estimation): 학습률을 자동으로 조절하며, 모멘텀(Momentum)과 RMSprop의 장점을 결합하여 빠르고 안정적인 수렴을 돕습니다. 가장 널리 사용됩니다.
- RMSprop (Root Mean Square Propagation): 학습률을 적응적으로 조절하여 진동을 줄이고 수렴 속도를 높입니다.

4. 규제 (Regularization)

모델의 과적합을 방지하고 일반화 성능을 향상시키기 위한 기법입니다.

- L1 규제 (Lasso): 가중치의 절댓값 합에 비례하는 항을 손실 함수에 추가합니다. 일부 가중치를 0으로 만들어 피처 선택 효과가 있습니다.
- L2 규제 (Ridge, Weight Decay): 가중치의 제곱 합에 비례하는 항을 손실 함수에 추가합니다. 가중치 값을 작게 만들어 과적합을 방지합니다.

5. Dropout

신경망 학습 시 무작위로 일부 뉴런을 비활성화(드롭아웃)시켜 모델의 과적합을 방지하는 기법입니다. 각 학습 단계마다 다른 신경망 구조를 사용하는 효과를 내어 앙상블 학습과 유사한 효과를 얻습니다.

6. 파인튜닝 관련 개념

사전 학습된 모델(Pre-trained Model)을 기반으로, 새로운 작업(Task)에 맞게 모델을 미세 조정하는 기법입니다. 대규모 데이터셋으로 학습된 모델의 가중치를 가져와 우리가 가진 더 작은 데이터셋에 맞게 조정함으로써, 학습 시간을 단축하고 성능을 향상시킬 수 있습니다.

- 전이 학습 (Transfer Learning): 특정 도메인에서 학습된 지식을 다른 관련 도메인에 적용하는 광범위한 개념입니다. 파인튜닝은 전이 학습의 한 종류입니다.
- 특징 추출 (Feature Extraction): 사전 학습된 모델의 일부(주로 합성곱 기반)를 특징 추출기로 사용하고, 그 위에 새로운 분류기(Classifier)를 추가하여 학습합니다. 이 과정에서는 사전 학습된 모델의 가중치는 고정(Freeze)합니다.
- 파인튜닝 (Fine-tuning): 특징 추출과 유사하지만, 사전 학습된 모델의 가중치 일부 또는 전체를 새로운 데이터에 맞게 재학습(미세 조정)합니다. 일반적으로 낮은 학습률(Learning Rate)을 사용하여 기존 가중 치를 크게 변경하지 않도록 합니다.

각종 기법 예제 코드

PyTorch

```
import torch
import torch.nn as nn
from torchvision import models
# 1. 활성화 함수
relu = nn.ReLU()
sigmoid = nn.Sigmoid()
tanh = nn.Tanh()
softmax = nn.Softmax(dim=1)
# 2. 손실 함수
mse loss = nn.MSELoss()
mae_loss = nn.L1Loss()
binary cross entropy = nn.BCELoss()
categorical_cross_entropy = nn.CrossEntropyLoss() # Softmax 포함
# 3. 옵티마이저
# model.parameters()는 예시이며, 실제 모델의 파라미터를 전달해야 합니다.
# model = YourModel()
# optimizer sgd = torch.optim.SGD(model.parameters(), lr=0.01)
# optimizer adam = torch.optim.Adam(model.parameters(), lr=0.001)
# optimizer rmsprop = torch.optim.RMSprop(model.parameters(), lr=0.001)
# 4. 규제 (옵티마이저에 weight decay 파라미터로 L2 규제 적용)
# optimizer adam 12 = torch.optim.Adam(model.parameters(), lr=0.001,
weight_decay=1e-5)
```

```
# 5. Dropout
dropout = nn.Dropout(p=0.5)

# 6. 파인튜닝 (예: ResNet18 모델 로드 및 수정)
# 사전 학습된 ResNet18 모델 로드
model_ft = models.resnet18(pretrained=True)

# 모든 파라미터를 고정 (가중치 동결)
for param in model_ft.parameters():
    param.requires_grad = False

# 마지막 분류기(fc layer)를 새로운 작업에 맞게 교체
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 10) # 10개 클래스로 분류하는 작업으로 가정

# 교체한 레이어의 파라미터만 학습하도록 설정
# optimizer_ft = torch.optim.Adam(model_ft.fc.parameters(), lr=0.001)
```

Keras

```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, models, regularizers
from tensorflow.keras.applications import ResNet50
# 1. 활성화 함수
relu = layers.Activation('relu')
sigmoid = layers.Activation('sigmoid')
tanh = layers.Activation('tanh')
softmax = layers.Activation('softmax')
# 2. 손실 함수 (compile 시 문자열로 지정)
# model.compile(loss='mean_squared_error')
# model.compile(loss='mean absolute error')
# model.compile(loss='binary crossentropy')
# model.compile(loss='categorical_crossentropy')
# model.compile(loss='sparse categorical crossentropy')
# 3. 옵티마이저 (compile 시 문자열 또는 객체로 지정)
# model.compile(optimizer='sgd')
# model.compile(optimizer=keras.optimizers.Adam(learning rate=0.001))
# model.compile(optimizer='rmsprop')
# 4. 규제 (레이어에 kernel regularizer 인자로 L1/L2 규제 적용)
l1_reg = regularizers.l1(0.01)
12_reg = regularizers.12(0.01)
# dense layer = layers.Dense(64, activation='relu', kernel regularizer=12 reg)
# 5. Dropout
dropout_layer = layers.Dropout(0.5)
```

```
# 6. 파인튜닝 (예: ResNet50 모델 로드 및 수정)
# 사전 학습된 ResNet50 모델 로드 (include top=False로 분류기 제외)
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224,
224, 3))
# 베이스 모델의 가중치 동결
base_model.trainable = False
# 새로운 분류기 추가
inputs = keras.Input(shape=(224, 224, 3))
x = base_model(inputs, training=False)
x = layers.GlobalAveragePooling2D()(x)
outputs = layers.Dense(10, activation='softmax')(x) # 10개 클래스로 분류
model_ft = keras.Model(inputs, outputs)
# 새로운 분류기만 학습하도록 컴파일
# model_ft.compile(optimizer=keras.optimizers.Adam(),
                 loss='categorical crossentropy',
                 metrics=['accuracy'])
# (선택적) 일부 레이어의 동결 해제 후 미세 조정
# base model.trainable = True
# for layer in base_model.layers[:-10]: # 마지막 10개 레이어를 제외하고 동결
     layer.trainable = False
# model_ft.compile(optimizer=keras.optimizers.Adam(learning_rate=1e-5), # 낮은 학
습률 사용
#
                 loss='categorical_crossentropy',
                 metrics=['accuracy'])
#
```