MA476 Lsn 4

Clark

Admin

-HW Due

-Next HW is posted to website, due Lesson 7

Recall a random variable, X(s) is a mapping from events in our sample space to \mathbb{R} . A random variable, X(s) is discrete if the values X(s) = x where P(X(s) = x) > 0 is contained within the set of integers. Or, in other words, the values of x where P(X(s) = x) > 0 are either finite or countably infinite. Note from here on out, we will usually drop the (s) and just write X while keeping in mind that a random variable is a function of points within our sample space.

However, note definition 3.2 in WMD. We could either calculate probabilities on our sample space directly or we can think of P(Y = y) as the sum of the probabilities of all values of $s \in S$ such that $Y(s) \to y$.

Some important theorems/definitions/results

We let p(y) be the probability distribution and we note that our probability distribution is a well defined probability. That is, $p(y) \in [0,1]$ for all y and $\sum_{y} p(y) = 1$.

The probability distribution of a discrete random variable Y is given by $p(y) = c\lambda^y/y!$. Using the identity $e^{\lambda} = \sum_{y=0}^{\infty} \lambda^y/y!$ find c.

Find P(Y > 2)

Expected Value

We define the expected value of Y as $E[Y] = \sum_y yp(y)$. In teneral, we can caluate the expected value for any function of Y say g(Y) as $E[g(Y)] = \sum_y g(y)p(y)$.

Some very important properties of expectation are given in Theorems 3.3, 3.4, and 3.5 in WMD.

Theorem 3.3 says that the expected value of a constant is a contant. That is, if c is any fixed number, E[c] = c. Constants can be multiplied by a variable. If we recall that $X \sim \text{Binomial}(n, p)$ means that E[X] = np. Then if we wanted to calculate E[3X] we would have E[3X] = 3np. If we wanted E[X+3] we would have E[X+3] = 3+np.

Putting theorems 3.3-3.6 all together gives us a convenient way to find the Variance of a random variable. Recall that $V(Y) = E[(Y - \mu)^2]$. By 3.6 we can take a shortcut and say that $V(Y) = E(Y^2) - E(Y)^2$.

A single fair die is tossed once. Le	et Y be the number	facing up. Find	the expected value a	and variance of Y
A person tosses a fair coin until a t	ail annears for the	first time. If the t	ail annears on the n	th flip the person
wins 2^n dollars. Let X denote the	player's winnings.	Show that $E[X]$	$=\infty$.	on mp, one person
Would you be willing to pay \$1 m	illion to play this g	ame once? Does t	his contradict what	you found above?