An Introduction to Design and Simulation using SNS-Toolbox and SNSTorch

William Nourse
Department of Electrical, Computer, and Systems Engineering
Case Western Reserve University
Cleveland, OH USA

Workshop Schedule

Background: SNS Networks

SNS-Toolbox

SNSTorch

https://tinyurl.com/SNS-NICE-24

Area of Interest

- Most modeling focusing on the brain function in higher mammals, such as humans/primates
 - Massive networks, neural dynamics with weight-based synapses
- Not all nervous systems use huge amounts of neurons!
 - Fruit Fly ~1 million
 - C. elegans ~100
- Not all neural computation occurs in the brain!
 - In motion specifically, high level commands from the brain are processed by neurons in the spinal cord
- Neural parameters are not homogenous!
- Modeling focus: Motor nervous system across animal body/dynamic scales

The Case for Beyond Weights

- In large neural networks, a rich set of dynamics just from neurons
- In smaller systems, the computational properties of synapses can play a greater role in behavior
- Particularly the case for heavily recurrent "hairball" networks.

What is a Synthetic Nervous System (SNS)?

- A SNS is a dynamical, mathematical model of parts of an animal's nervous system which can be applied to control a robot. [Szczecinski 2017]
- SNS networks are dynamic. Subcomponents (neurons) have states (membrane potentials, firing rates) which are dependent on time.
- All behavior comes from the interaction of mathematical equations, not simplified descriptive rules.
- By constraining SNS networks to using biologically-plausible dynamics, SNS experiments can propose neurobiological hypotheses [Mangan 2023, Webb 2002].

AnimatLab

[Cofer 2010], Screenshot courtesy of Dr. Nicholas Szczecinski

Neural Simulator Feature Comparison

Software	AnimatLab	NRP	<u>Nengo</u>	SnnTorch	<u>SpykeTorch</u>	BindsNET	Brian2	NEURON	NEST	<u>ANNArchy</u>
GUI Required	Х	Х								
Real-Time Capable	Х		Х	Х	Х	Х				Х
<u>Chemical</u> <u>Synapses</u>	X	X*	X*				Х	X		X
Electrical Synapses	X	X*	X*				Х	Х	X	X
Non- Spiking and Spiking	X	X	X				X	X		Х
GPU Support		X*	X*	Х	Х	Х	Х	X†	X†	X†
<u>Cross</u> <u>Platform</u>		Х	Х	Х	Х	Х	Х	Х	Х	

Neural Simulator Feature Comparison

<u>Software</u>	AnimatLab	NRP	<u>Nengo</u>	<u>SnnTorch</u>	<u>SpykeTorch</u>	BindsNET	Brian2	NEURON	NEST	ANNArchy	SNS-Toolbox
GUI Required	Х	Х									
Real-Time Capable	Х		Х	Х	Х	Х				Х	Х
Chemical Synapses	X	X*	X*				Х	Х		Х	Х
Electrical Synapses	X	X*	X*				Х	Х	Х	Х	Х
Non- Spiking and Spiking	Х	Х	X				X	X		Х	Х
GPU Support		X*	X*	Х	X	Х	Х	X†	X†	X†	Х
<u>Cross</u> <u>Platform</u>		Х	Х	Х	Х	Х	Х	Х	Х		Х

Two Companion Software Packages

- SNS-Toolbox
 - 10^0-10^4 neurons
 - All neural/synaptic dynamics implemented
 - pip install sns-toolbox
- SNSTorch (alpha)
 - Larger networks
 - Still in early development, not all neural/synaptic dynamics implemented currently
 - pip install snstorch

SNS-Toolbox

- Open-source Python package
- Users can design and simulate SNS networks
- Networks can run on CPU or GPU, and can interact with other systems
 - Biomechanical simulators
 - Robotic systems

Neural Dynamics

Synaptic Dynamics

$$I_{syn}^{ji} = G_{syn}^{ji} \left(V_j \right) \cdot \left(E_{syn}^{ji} - V_i \right)$$

$$I_{syn}^{ji} = G_{syn,electrical} \cdot (V_j - V_i)$$

Simulation Representation

SNS-Toolbox: Backend Performance

SNS-Toolbox: Hardware Performance

SNS-Toolbox: Software Performance Comparison

SNSTorch: SNS-Toolbox for Larger Networks

- Pytorch-based layer implementation
- Still early in development, currently available in alpha release
- Current support:
 - Nonspiking Neurons
 - Elementwise, Convolutional, and Linear Chemical Synapses

nourse@case.edu