# прохождение космических лучей через материю

### Л. В. Мысовский, Ленинград

#### Введение

Вопрос о пригоде космических лучей тесно связан с вопросом о прохождении через материальную среду быстрых протонов, быстрых электронов и квантов с большой энергией. Изучая а., зи плучи радиоактивных элементов, мы можем отчасти путем экстраполяции, а отчасти путем теоретических вычислений получить представление о том, как должны себя вести корпускулы и фотоны с энергией в десятки и сотни миллионов вольт. Прежде чем перейти к подробному теоретическому разбору затронутого нами вопроса о прохождении космических лучей через материю, вспомним, что основная величина, характеризующая прохождение пучка через материальную среду, — коэфициент поглощения µ, может быть представлена с достаточной полнотой формулой

$$\mu = -\frac{1}{I} \frac{dI}{dx} \tag{1}$$

лишь в самых простых случаях. Из этой формулы, как известно, может быть, например, вычислен коэфициент  $\mu$  для параллельного однородного пучка, поглощаемого одинаково на всем протяжении его пути. Мы получим уже гораздо более общее выражение для коэфициента поглощения, если положим, что интенсивность параллельного пучка  $I = Z \varepsilon$ , где Z - число корпускул или фотонов в луче, а  $\varepsilon$  энергия, которой обладает один фотон или одна корпускула. Коэфициент поглощения  $\mu$  для пучка  $I = Z \varepsilon$  может быть теперь написан в следующем виде:

$$\mu = -\frac{1}{I}\frac{dI}{dx} = -\frac{1}{Z^{\epsilon}}\frac{d}{dx}(Z\epsilon) = -\frac{1}{Z^{\epsilon}}(\epsilon dZ + Zd\epsilon)$$

или

$$\mu = -\left(\frac{1}{Z}\frac{dZ}{dx}\frac{dZ}{dx} + \frac{1}{\epsilon}\frac{d\epsilon}{dx}\right).$$

Мы видим, что в этом случае поглощение может итти двумя путями. Первый путь — это уменьшение числа элементов пучка Z. Второй путь — это уменьшение энергии каждого элемента г.

В соответствии с этим мы получаем и два коэфициента поглощения:

$$\mu_1 = -\frac{1}{Z}\frac{dZ}{dx}$$

$$\mu_2 = -\frac{1}{\varepsilon} \frac{dz}{dx}.$$

Пучок х-лучей радиоактивного вещества поглощается главным образом путем постепенной потери энергии каждой отдельной х-частицей. Лишь ничтожное количество а-частиц рассеивается на большой угол и выходит за пределы пучка. Отсюда п основное свойство х-частиц -- определенный пробег данной начальной скорости. Наоборот, улучи поглощаются главным образом по показательному закону (фотоэффект или Комптон-эффект). В случае з лучей мы одновременно встречаемся с двумя родами поглощения. Часть энергии злучей теряется постепенно на понизацию вдоль пути, а другая часть идет на образование вторичных электронов, движущихся, в свою очередь, с большой скоростью. Таким образом наиболее сложным оказывается изучение поглощения быстрых электронов и несколько менее сложным - поглощения фотонов. Теоретическому рассмотрению поглощения электронов и фотонов с энергией космических лучей была посвящена Гейзенбергом специальная статья. Основные положения этой статьи мы и рассмотрим в настоящем обзоре.

#### I. Прохождение через материю выстрых электронов

Гейзенберг рассматривает лишь электроны с энергией E, которая много больше  $mc^2$ :

$$E \gg mc^2$$
. (1)

Прежде всего он останавливается на поглощении электронов путем потери энергии, или, как иногда говорят в этом случае, на торможении электрона.

# а) Торможение быстрых электронов

Пусть электрон, скорость которого весьма близка к скорости света и равна v, движется по оси x (рис. 1). Из теории прохождения  $\beta$ -лучей через материю известно, что покоящийся свободный электрон, находящайся от пути быстрого электрона на расстоянии y, получит импульс

$$p_v = \frac{2e^2}{vy} \tag{2}$$

и энергию с, равную

$$\epsilon = \frac{\sqrt{2e^4}}{mv^2y^3}.$$
 (3)

В соответствии с этим мы получаем и два коэфициента поглошения:

 $\mu_1 = -\frac{1}{Z}\frac{dZ}{dx}$ 

И

$$\mu_2 = -\frac{1}{\varepsilon} \frac{d\varepsilon}{dx}.$$

Пучок х-лучей радиоактивного вещества поглощается главным образом путем постепенной потери энергии каждой отдельной х-частицей. Лишь ничтожное количество а-частиц рассеивается на большой угол и выходит за пределы пучка. Отсюда и основное свойство х-частиц - определенный пробег данной начальной скорости. Наоборот, -- лучи поглощаются главным образом по показательному закону (фотоэффект или Комптон-эффект). В случае 3-лучей мы одновременно встречаемся с двумя родами поглощения. Часть энергии 3-лучей теряется постепенно на понизацию вдоль пути, а другая часть идет на образование вторичных электронов, движущихся, в свою очередь, с большой скоростью. Таким образом наиболее сложным оказывается изучение поглощения быстрых электронов и несколько менее сложным — поглощения фотонов. Теоретическому рассмотрению поглощения электронов и фотонов с энергией космических лучей была посвящена Гейзенбергом специальная статья. Основные положения этой статьи мы и рассмотрим в настоящем обзоре.

# I. Прохождение через материю выстрых электронов

Гейзенберг рассматривает лишь электроны с энергией E, которая много больше  $mc^2$ :

$$E \gg mc^2$$
. (1)

Прежде всего он останавливается на поглощении электронов путем потери энергии, или, как иногда говорят в этом случае, на торможении электрона.

## а) Торможение быстрых электронов

Пусть электрон, скорость которого весьма близка к скорости света и равна v, движется по оси x (рис. 1). Из теории прохождения  $\beta$ -лучей через материю известно, что покоящийся свободный электрон, находящийся от пути быстрого электрона на расстоянии y, получит импульс

$$p_v = \frac{2e^2}{vy} \tag{2}$$

и энергию €, равную

$$\epsilon = \frac{\sqrt{2e^4}}{mv^2y^2}.\tag{3}$$

Найдем теперь выражение для эпергии, теряемой первичным электроном на единице длины пути. Выразим сначала эту энергию через у. Чтобы получить ес, очевидно, нужно умножить число столкновений (7) на є:

$$\frac{\Delta E}{\Delta x} = -\int 2\pi y \, dy \, N \cdot \varepsilon.$$

Заменяя  $\epsilon$  его выражением в зависимости от y на основании формулы (3), имеем:

$$\frac{\Delta E}{\Delta x} = \frac{4\pi c^4 N}{mc^2} \int \frac{dy}{y} = -\frac{4\pi c^4 N}{mc^2} \ln \frac{Y_{\text{max}}}{Y_{\text{min}}}.$$

Мы можем, однако, выразить  $\frac{\Delta E}{\Delta x}$  не через y, а через  $\epsilon$ , если воспользуемся вместо (7) формулой (8):

$$\frac{\Delta E \varepsilon}{\Delta x} = \frac{2\pi N e^4}{m c^4} \cdot \frac{\Delta \varepsilon}{\varepsilon^2} \cdot \varepsilon = \frac{2\pi e^4 N}{m c^4} \int \frac{d\varepsilon}{\varepsilon} = \frac{2\pi e^4 N}{m c^3} \ln \frac{\varepsilon_{\min}}{\varepsilon_{\max}}.$$
 (10)

Очевидно, что энергия  $\epsilon_{\max}$ , которая может быть отдана, равна всему запасу энергии первичного электрона, т. е. E. Следовательно:

$$\varepsilon_{\text{max}} = E$$

Отсюда на основании (3):

$$y_{\min} = \frac{e^2}{mc^2} \sqrt{\frac{2 mc^2}{E}}.$$

Минимальная энергия г<sub>міп</sub> может быть определена из условия, данного Бором и заключающегося в том, что продолжительность удара

 $z = \frac{Y}{c} \frac{mc^2}{E}$ 

должна быть мала по сравнению с собственным периодом электрона

 $T=\frac{h}{E_a}$ .

 $E_{\alpha}$  можно рассматривать как ионизирующий потенциал для данного вторичного электрона.

Максимальное значение y найдем из уравнения, полученного путем приравнения  $\tau$  и T:

$$\frac{y_{\text{max}}}{c} \cdot \frac{mc^2}{E} = \frac{h}{E}.$$

Отсюда для  $y_{\text{max}}$  находим:

$$y_{\max} = \frac{E}{E} = \frac{h}{mc}.$$

Зная  $y_{\max}$ , мы при помощи (3) найдем п  $\epsilon_{\min}$ :

$$\epsilon_{\min} = \frac{2e^4}{mc^2 y_{\max}^2} = 2 \left( \frac{e^2}{hc} \frac{E_a}{E} \right)^2 \cdot mc^2.$$

Подставив  $\varepsilon_{\min}$  и  $\varepsilon_{\max}$  в фомулу (10), получим окончательное выражение для торможения первичного электрона:

$$\frac{dE}{dx} = \frac{2\pi e^4 N}{mc^2} \ln \frac{z_{\text{max}}}{z_{\text{min}}} = \frac{4\pi e^4 N}{mc^2} \ln \frac{E}{E_a} \sqrt{\frac{E}{2mc^2} \cdot \frac{hc}{c^2}}.$$
 (11)

Так как различные электроны в атоме обладают различными ионизационными потенциалами, то для формулы (11) необходимо найти соответствующее среднее значение. Прежде чем сделать это, Гейзенберг вводит на основании вычислений Бете и Блоха в эту формулу поправку в виде добавочного коэфициента 202 hc под знаком логарифма. Нетрудно видеть, что тогда логарифм будет иметь такой вид:

$$\ln \frac{2E}{E_a} \sqrt{\frac{E}{2mc^2}}.$$
 (11a)

Для того чтобы получить полное торможение электрона, нужно величину (11a) просуммировать по всем электронам атома. Заметим, что при этом нужно принять во внимание также и электроны внутри ядра, Гейзенберг разбишет электроны в одном атоме с порядковым номером  $Z_a$  на три группы, причем

ТАБЛИЦА 1

|              | энендерные<br>клостиолы | "Свобозвые"<br>ид-ряыс<br>электроны | Электроны<br>харитэар в     |
|--------------|-------------------------|-------------------------------------|-----------------------------|
| Количество . | $Z_a$                   | $\frac{Z_k - Z_a}{2}$               | $\frac{Z_a+Z_k}{2}$         |
| $E_{\alpha}$ | $Z_a \cdot Rh$          | 2mc³                                | 30 <i>mc</i> <sup>2</sup> / |

электрону каждой группы приписывает некоторую среднюю энергию. Для иллюстрации его предположений может служить табл. 1.

В этой таблице  $Z_u$  обозначает порядковый номер элемента,  $Z_k$ — число ядерных элек-

тронов,  $E_{\alpha}$  — среднее значение энергии, Rh — энергию атома водорода. Как это видно из таблицы, Гейзенберг приписывает каждому внешнему электрону энергию Rh, каждому "свободному" ядерному электрону энергию  $mc^2$  и каждому электрону в  $\alpha$ -частице энергию  $80\ mc^2$ . Опуская промежуточные расчеты, приведем окончательный результат, полученный Гейзенбергом:

$$\frac{dE}{dx} = -\frac{4\pi c^4 sL}{mc^4} B, \qquad (12)$$

где 
$$s$$
 — удельный вес среды,  $L$  — лошмидтово число и  $B=0.35+2.303\cdot\left\{\frac{Z_a}{Z_a+Z_k}\left(4.876-\lg_{10}Z_a\right)+\lg_{10}\frac{E}{2mc^2}+\right.$   $\left.+\frac{1}{2}\lg_{10}\frac{E}{15\,\tilde{m}c^2}\right\}.$ 

A COLOR OF A THE STANDING ON AND LINE OF THE COLOR

На основания (11a) и (12) может быть вычислен и пробег h первичного электрона. Он оказывается с некоторым приближением равным

$$R = \frac{E}{mc^2} \left( 4\pi sL \left( \frac{e^2}{mc^2} \right)^2 B \right)^{-1} = \frac{E}{mc^2} \cdot \frac{1.67}{s \cdot B} \text{ cm.}$$
 (13)

В табл. 2 приведены вычисленные на основании формулы (13) пробеги в воде и свинце для различных величин  $E/mc^2$ .

| T | A | Б | ЛŦ | И | Ц | A | 2 |
|---|---|---|----|---|---|---|---|
|---|---|---|----|---|---|---|---|

| E' mc²                           | 0 | 20          | 100        | 1000      | 5000      | 10000     | 20000       |
|----------------------------------|---|-------------|------------|-----------|-----------|-----------|-------------|
| $R_{ m H,O}$ (c.n) . $R_{ m Pb}$ | 0 | 4,4<br>0,55 | 16<br>1,88 | 123<br>13 | 520<br>54 | 976<br>99 | 1840<br>185 |

По мнению Гейзенберга даже для самых больших значений  $E/mc^2$  значения, даваемые формулой (13), не могут отличаться от действительных больше, чем на множитель 2, если только не принять во внимание еще каких-либо неизвестных явлений.

## б) Рассеяние быстрых электронов

Кроме постепенного торможения при прохождении электронов через материю, наблюдается также и их рассеяние. Если отклонения от пути происходят довольно часто, то пробег электрона может оказаться гораздо меньше вычисленного по формуле (13). В случае многократного рассеяния, как показал Боте, можно говорить о показательном законе поглощения. Для вычисления среднего пробега рассеяния  $R_s$  Гейзенберг пользуется формулой:

$$\frac{1}{\alpha} = R_s = \left(\frac{E}{mc^2}\right)^2 \cdot \frac{Z_a + Z_k}{sZa^2} : 0.81 \text{ c.u.}$$
 (14)

Здесь  $\alpha$  — коэфициент поглощения. Числению значения  $R_s$  для свинца и воды приведены в табл. 3.

— ТАБЛИЦА 3

| E mes                        | 0   | 20         | 100          | 1000                         | 5000,                                   | *10 000                                        |
|------------------------------|-----|------------|--------------|------------------------------|-----------------------------------------|------------------------------------------------|
| $R_s$ вода (см) $R_s$ свинец | 0 0 | 0,34<br>35 | 870 {<br>8,4 | 8,7 · 10 <sup>1</sup><br>840 | 2,2·10 <sup>6</sup> 2,1·10 <sup>4</sup> | 8,7 · 10 <sup>6</sup><br>8,4 · 10 <sup>4</sup> |

В действительности при прохождении первичного электрона через материальную среду имеют место оба явления—и тормо-

жение и рассеяние. Учитывая это обстоятельство, Гейзенберг вводит величину эффективного рассеяния  $R_{\it eff}$ , связанного с  $R_{\it s}$  и R приближенной формулой:

$$R_{eff} = R_s \left(1 - \frac{R_{eff}}{R}\right)^2. \tag{15}$$

В табл. 4 приведены значения  $R_{\it eff}$ , вычисленные по этой формуле для воды и свинца.

| 1 | E me <sup>q</sup>                       | 0 | 20           | 100  | 1000        | 5000      | 10 000 | 20 000      |
|---|-----------------------------------------|---|--------------|------|-------------|-----------|--------|-------------|
|   | $R_{eff}$ H <sub>2</sub> O $R_{eff}$ Pb | 0 | 3,1<br>0,165 | 14,2 | 118<br>11,5 | 510<br>51 | 970    | 1830<br>182 |

ТАБЛИЦА 4

Из сравнения данных табл. 2, 3 и 4 можно видеть, что величина  $R_{eff}$  для быстрых электронов совпадает с R, наоборот, для медленных электронов, двигающихся сквозь среду с малым атомным весом  $R_{eff}$ , обусловливается, главным образом, рассеянием, а не торможением. Непосредственно с этим связано и то обстоятельство, что, пройдя поглощающий экран, медленные электроны сильно отклоняются от своего пути, а быстрые—весьма мало.

#### в) Распределение вторичных электронов

Так как распределение вторичных электронов по углам чрезвичайно важно для изучения космических лучей, то Гейзенберг рассматривает этот вопрос отдельно. Пусть на 1  $c.m^2$  поглощающей плоскости в перпендпкулярном направлении падает z первичных электронов в 1 сек. Обозначим первоначальную энергию падающего электронов с энергией между, z и  $z + \Delta z$ ? Так как для нас наиболее интересны быстрые электроны, то мы можем принять, что они будут отклонены от первичных лишь на небольшой угол.

Предположим, что энергия  $\varepsilon$  пропорциональна  $R_{eff}$ . Тогда, если вторичный электрон, обладая энергией  $\varepsilon$ , прошел путь x после своего возникновения, его энергия в момент возникновения будет равна

 $\varepsilon \left(1 + \frac{x}{R_{eff}(\varepsilon)}\right).$ 

Число электронов с эпергией между  $\varepsilon$  и  $\varepsilon$  +  $\Delta \varepsilon$  и возникших на пути между x и  $x+\Delta c$  будет:

$$\frac{2\pi e^4 N \Delta x}{mc^2} \cdot \frac{\Delta z}{z^2 \left(1 + \frac{x}{R_{eff}(z)}\right)}.$$

Максимальное значение х найдется из условия

$$\varepsilon_0 \left(1 + \frac{a_{\text{max}}}{R_{eff}(\varepsilon_0)}\right) = E$$
,

откуда

$$x_{\max} = R_{eff}(\epsilon_0) \frac{E - \epsilon_0}{\epsilon_0}$$
.

Полное число  $\Delta z_1$  вторичных электронов с энергией между є  $+\Delta \varepsilon$  наидется путем интегрирования по x от 0 до  $x_{\max}$ . Таким образом имеем:

$$\Delta z_{1} = z \frac{2\pi Ne^{4}}{mc^{4}} \cdot \frac{\Delta \varepsilon}{\varepsilon^{4}} \left( R_{eff}(\varepsilon) - \frac{R_{eff}(\varepsilon)}{1 + \frac{d^{2} \max}{R_{eff}(\varepsilon)}} \right)$$
(16)

или, так как для  $\epsilon_0 \ll E$  всегда  $x_{\max} \gg R_{eff}(\epsilon)$ :

$$\Delta z_1 = z \frac{2\pi Ne^4}{mc^2} \cdot \frac{\Delta \varepsilon}{\varepsilon^4} R_{eff}(\varepsilon). \tag{17}$$

Для электронов космических элучей вместо N можно поставить сумму внешних и ядерных электронов, заключающихся в 1 см<sup>3</sup>. Тогда, имея в виду соотношение N=Ls, получим:

$$\Delta z_1 = z \cdot 0.30 \cdot s \cdot R_{eff}(\varepsilon) \frac{mc^2 \Delta \varepsilon}{\varepsilon^2} . \tag{18}$$

Из формулы (18) можно вычислить, что для малых  $\epsilon$  числовторичных электронов в свинце меньше, чем в воде. Для  $\epsilon > 100~mc^2$ , наобо-

рот, число вторичных электронов больше в свинце, чем в воде. Общий ход количества вторичных электронов с увеличением энергии с изображен кривой на рис. 2. Эта кривая показывает, что количество вторичных электронов быстро убывает с возрастанием с.

Если считать, что величина  $\frac{R_{eff} \cdot s}{\varepsilon}$  не зависит от  $\varepsilon$  ( $\varepsilon$  приблизительно пропорционально  $R_{eff}$ ), то количество вторичных электронов можно



Puc. 2.

получить, интегрируя (18) между пределами в и во:

$$z_1 = z \cdot 0.30 \frac{R_{eff}(\epsilon) s}{\epsilon_1} mc^2 \ln \frac{\epsilon_0}{\epsilon_1}. \tag{18a}$$

Положив для примера  $\varepsilon_0=5000~mc^2,~\varepsilon_1=5~mc^2,~$  получим, что для в дн  $z_1=0.35~z,$ 

11. Поглощение и рассеяние жестких у-лучей а) Формула Клейна- Нишины

Число ∆≈, вторичных рассеянных квантов с энергией hv согласно Клейна-Пишины выразится формулой:

$$\Delta z_1 = z N \Delta x \frac{e^4 \pi}{m e^2 h v^2} \left( \frac{v'}{v} + \frac{v}{v'} \right) \Delta v'. \tag{19}$$

Здесь у — частота первичных квантов и г — их число.

Угол между направлением движения первичного и вторичного кванта можно определить из соотношения:

$$v' = \frac{v}{1 + \frac{h'}{mc^2} (1 - \cos \theta)}.$$
 (20)

Предположим, что  $\nu' << \nu$ ; действительно, освободившись от внаменателя и разделив обе части на  $\nu$ , находим:

$$\frac{v'}{v} + \frac{2hv'}{mc^2} (1 - \cos \theta) = 1. \tag{20a}$$

Полагая  $\frac{y}{1} = 0$ , будем иметь:

$$\sin \frac{\theta}{2} = \sqrt{\frac{mc^2}{2h_{sl}}}.$$
 (21)

Полное число квантов  $z_1$  найдется путем интегрирования. Пределы найдем из (20a). Действительно, на основании (20a) и полагая  $h\nu >> mc^2$ , мы имеем право написать:

$$\nu \gg \nu' \gg \frac{mc^2}{2h}.\tag{21a}$$

ТАВЛИЦА 5

| E mc²                                                               | 20   | 100  | 1(00 | 5000 |
|---------------------------------------------------------------------|------|------|------|------|
| $10^2 \cdot \frac{mc^2}{\text{вода}} R_{eff} (\varepsilon) \cdot s$ | 15.մ | 14,2 | 11,8 | 10,2 |
| $10 \cdot \frac{mc^2}{\text{свивец}} R_{eff} (\varepsilon) s$       | 9,38 | 13,4 | 13,1 | 11,6 |

Следовательно,  $z_i$  выразится формулой:

$$z_1 = z \cdot N \cdot \Delta x \frac{e^4 \pi}{mc^2 h^{\nu^2}} \int_{\frac{mr^4}{2h}}^{\nu} d\nu' \left(\frac{\nu'}{\nu} + \frac{\nu}{\nu'}\right) = z \cdot N_1 \Delta x \frac{e^4 \pi}{mc^2 h^{\nu}} \left(\frac{1}{2} + \ln \frac{2h\nu}{mc^2}\right) + (22)$$

Так как образование вторичных квантов сопряжено с рассеянием первичных, то коэфициент поглощения первичных найдется из, формулы:

$$\mu = \frac{1}{\epsilon} \frac{dz}{dx} = -N \frac{e^4 \pi}{mc^2 h_V} \left( \frac{1}{2} + \ln \frac{2h_V}{mc^2} \right). \tag{23}$$

Обозначая через f отношение числа электронов, участвующих в рассеянии по всему числу электронов в атоме  $(z_n + z_k)$ , мы можем написать формулу (23) таким образом:

$$\mu = s \cdot f \frac{e^4 \pi z}{(mc^2)^2} \cdot \frac{mc^3}{h} \left( \frac{1}{2} + \ln \frac{2 h v}{mc^2} \right) = s \cdot f \frac{mc^2}{h} \cdot 0.15 \left( \frac{1}{2} + \ln \frac{2 h v}{mc^2} \right).$$

Как и вестно, за средний пробег фотона принимают обыкновенно величину, обратную коэфициенту поглощения. Следовательно,

$$R_{h\nu} = \frac{1}{\mu} = \frac{h\nu}{mc^2} \cdot \frac{6,67}{s \cdot f\left(\frac{1}{2} + \ln\frac{2h\nu}{mc^2}\right)}.$$
 (24)

Питересно отметить, что по мнению Бора формула Клейна-Нишины справедлива до hv = (800)<sup>2</sup> mc<sup>2</sup>. Гейзенберт указывает, однако, что, если принять во внимание излучение электрона при Комптон-эффекте, то граница применения этой формулы должна весьма значительно понизиться.

#### б) Рассеяние ядром атома

Если все внеядерные электроны по отношению к квантам большой энергии можно рассматривать как свободные, то далеко нельзя этого сказать об электронах, находящихся внутри ядра. Гейзенберг полагает, что для длин волн, больших, чем диаметр ядра, ядерные электроны будут рассеивать когерентно, и потому рассеяние будет пропорционально квадрату числа свободных электронов. Например, для  $h_V = 100 \, mc^2$  или  $\lambda = 2.4 \cdot 10^{-12} \, c.u$ :

$$f = \frac{Zu + \left(\frac{Z_k - Z_a}{2}\right)^2}{Z_a + Z_k}.$$
 (25)

В этом случае для кислорода f=1/2, для свинца f=6,6. Если  $h\nu>1500\ mc^2$ , то f нужно положить равным 1. Поэтому следует ожидать, что рассеяние квантов средней жесткости будет особенно интенсивно. При очень жестких лучах целиком должна применяться формула Клейна-Нишины. Вирочем, Гейзенберг тутже оговаривается и указывает на то обстоятельство, что почти все наши предположения о поведении ядерных электронов носят гипотетический характер. В действительности же электроны внутри ядра могут вести себя вовсе не так, как мы это в настоящее время представляем. К такому сомнению имеются тем большие основания, что мы до сих пор не можем с полным правом применять к ядерным электронам выводов современной квантовои механики.

# в) Распределение вторичных электронов

Обозначим через  $\Delta z_2$  число вторичных электронов с энергией  $\epsilon$ . Так как  $h\nu'=h\nu-\epsilon$ , то, разделив это равенство на  $h\nu$ , найдем:

$$\frac{v'}{v} = 1 - \frac{\varepsilon}{hv}$$

Подставляя v'/v и v/v' в (19), получим:

$$\Delta' z_2 = z \, N \Delta x \, \frac{e^4 \pi}{m e^2 h^2 v^2} \left( 1 - \frac{\varepsilon}{h v} + \frac{1}{1 - \frac{\varepsilon}{h v}} \right) \, \Delta \varepsilon \,. \tag{26}$$

Здесь г обозначает уже не первичные электроны, а первичные кванты. Угол в, составляемый направлением движения вторичного электрона с направлением первичного излучения, дается равенством:

$$\sin \theta = \sqrt{\frac{1 - \frac{\varepsilon}{h\nu} - \varepsilon \frac{mc^2}{2(h\nu)^2}}{1 + \frac{\varepsilon}{2mc^2}}}.$$
 (27)

Из этого соотношения мы видим, что для  $\epsilon >> mc^2$  угол  $\vartheta$  будет очень мал.

Аналогично предыдущему (см. вторичные электроны, вызванные первичными электронами) мы можем положить, что энергия вторичного электрона в момент его образования на расстоянии x от данной точки будет  $\varepsilon \left(1 + \frac{\varepsilon}{R_{eff}(\varepsilon)}\right)$ .

Так как кванты на пути x поглощаются, то число их в момент возникновения вторичных должно быть больше в отношении  $\epsilon^{\mu x}$ . Принимая все сказанное во внимание, получим для числа вторичных электронов на расстоянии x и  $x + \Delta x$  выражение:

$$ze^{\mu x} N\Delta x \frac{e^{4\pi\Delta \epsilon}}{mc^{2}h^{2}v^{2}} \times \left(1 - \frac{\epsilon}{hv} \left(1 + \frac{x}{R(\epsilon)}\right) + \frac{1}{1 - \frac{\epsilon}{hv} \left(1 + \frac{x}{R(\epsilon)}\right)}\right). \tag{28}$$

Чтобы получить все число вторичных электронов, нужно проинтегрировать это выражение по x. Верхний предел интегрирования  $x_{\max}$  найдется из равенства:

$$\varepsilon \left(1 + \frac{x_{\text{max}}}{R_{eff}(\varepsilon)}\right) = h\nu - \frac{mc^2}{2}.$$
 (29)

Таким образом мы можем найти число вторичных электронов, находящихся в "равновесии" с первичным излучением:

$$\Delta z_2 = \int_0^{\epsilon_{\max}} dx \cdot z e^{\mu x} \cdot N \frac{e^{4\pi \Delta \varepsilon}}{mc^2 h^2 v^2} \cdot \left(1 - \frac{\varepsilon}{hv} \left(1 + \frac{x}{R}\right) + \frac{1}{1 - \frac{\varepsilon}{hv} \left(1 + \frac{x}{R}\right)}\right). (30)$$

Введя новую переменную  $\xi = 1 - \frac{\epsilon}{h\nu} \left(1 + \frac{x}{R}\right)$  и, перевернув пределы интегрирования, находим:

интегрирования, находим: 
$$\Delta z_2 \int_{\frac{mc^2}{2\hbar v}}^{\frac{1}{\hbar v}} d\xi \, \frac{Rhv}{\varepsilon} \, z N \frac{e^2\pi \Delta \varepsilon}{mc^2h^2v^2} \left(\xi + \frac{1}{\xi}\right) \cdot e^{\mu R \left(\frac{hv}{\varepsilon} - 1 - \frac{hv}{\varepsilon} \xi\right)}.$$

<sup>\*</sup> Cm. 21a.

Если принять, что  $\mu R \frac{h\nu}{\epsilon}$  очень мало, то, взяв интеграл, получим:

$$\Delta z_{2} = \frac{R}{\varepsilon} \approx \frac{e^{i\pi}N \cdot \Delta \varepsilon}{mc^{2} \cdot h\nu} \cdot \left[ \frac{1}{2} \left( 1 - \frac{\varepsilon}{h\nu} \right)^{2} - \frac{1}{2} \left( \frac{mc^{2}}{2h\nu} \right)^{2} + \ln \frac{2h\nu}{mc^{2}} \left( 1 - \frac{\varepsilon}{h\nu} \right) \right]. (31)$$

На рис. 3 изображена кривая, показывающая зависимость  $\frac{\Delta z_r}{\pi \epsilon}$  как функцию от  $\epsilon$ . Іїривая взята для воды, и  $\hbar v = 5000 \cdot mc^2$ .

Для вычисления полного количества вторичных электронов

можно воспользоваться приближенной формулой:

$$z_2 \sim \left(\frac{R}{\varepsilon}\right) z_{\frac{h\nu}{2}} \frac{e^{4\pi Ls}}{mc^2} \ln \frac{2h\nu}{mc^2} = \left(\frac{R}{\varepsilon}\right)_{\frac{h\nu}{2}} mc^2 \cdot 0, 15 \cdot s \cdot \ln \frac{2h\nu}{mc^2}. \tag{32}$$

Для воды п  $h_V = 5000 \ mc^2$  эта формула дает:

$$z_2 = 0.19z$$
.

Интересно отметить разницу между вторичными электронами, вызванными первичными квантами, и первичными электронами. В первом случае, как мы видели, интенсивность вторичных электронов быстро убывает с увеличением энергии, во втором случае

вторичные электроны почти равномерно распределены по всему спектру (рис. 3).

# III. Сравнени теории с опытом

В своей статье Гейзенберг указывает, что цель его работы заключается лишь в том, чтобы разобрать главнейшие экспериментальные данные о космических лучах с точки зрения совре-



менных физических теорий. Он не пытается каким-либо образом выйти за пределы современной квантовой механики, считая, что в настоящее время это едва ли возможно. Тем не менее, сделанный им блестящий анализ экспериментальных фактов чрезвычайно питересен и, несомненно, поможет разобраться в новом, непрерывно наполняемом опытом материале о космических лучах. В дальнейшем мы несколько изменим порядок изложения, принятый Гейзенбергом, и начнем с вопроса о природе первичных лучей.

### а) Кривая поглощения космических лучей

Вопрос о природе космических лучей уже неоднократно раз бирался на страницах "Успехов физических наук", и потому эряд ли есть надобность упоминать о том, что этот вспрос сво-

дится к тому, состоят ли первичние лучи из электропов или из квантов лучистой энергии. Первоначальные наблюдения космических лучей, сделанные с ионизационными камерами, привели к кривой поглощения, которая была объяснена как кривая поглощения квантового излучения. Наблюдения со счетчиками Гейгера-Мюллера и особенно наблюдения с камерой Вильсона показали, что в космических лучах мы встречаемся с электронами, обладающими колоссальным запасом энергип. Главнейшпе опыты со счетчиками "Гейгера и первоначальные наблюдения космических лучей в камере Вильсона были уже описаны в предыдущих обзорах. Поэтому здесь мы скажем несколько слов лишь о тех работах, которые подтверждают выводы Гейзенберга, но появились уже после того, как его статья была напечатана. Остановимся сначала на работе американского физика Андерсона 13. Для того чтобы получить в камере Вильсона длинные пути электронов от космических лучей, камера была поставлена вертикально. Для определения энергии электронов камера помещалась между полюсами сильного магнита, создававшего поле напряжением до 17 тыс. гаусс. Действие этого поля на х-частицу с пробегом в 10 см взображено на рис. 4 (см. вклейку). Мы видим, что даже путь х-частицы оказывается значительно пскривленным. Электроны же от улучей в таком поле дают пути в виде кружков небольшого диаметра. Некоторые пути электронов имеют настолько малый радиус, что после нескольких оборотов путь их сливается в небольшое пятно. Иначе дело обстоит с электронами от космических лучей. Некоторые из них обладают такой энергией, что почти совсем не отклоняются магнитным полем на протяжении диаметра камеры. У других кривизна пути оказывается еле заметной.

В качестве примера приведем сначала снимок следа электрона, сделанный Андерсоном при напряжении в 12 тыс. гаусс (рис. 5). На этом сниже видно, что электрон усцел сделать в камере Вильсона полтора оборота. Смещение кольца объясняется тем, что магнитное поле в центре камеры спльнее, чем по краям, на 10%. Энергия этого электрона, судя по кривизне, равна 8 млн. V. На следующем рис. 6 приведен след электрона. прошедшего через свинцовую пластинку в 6 мм толщиной, помещенную внутри камеры. При прохождении через свинцовую пластинку след сместился на 0,5°. Андерсон оценивает его энергию в 600 млн. V. Снимок сделан при том же напряжении поля в 12 тыс. гаусс. Аналогичный снимок приведен и на рис. 7. Здесь смещение следа после проникновения через пластинку оказалось несколько больше, а именно 0,8°: Андерсон приппсывает ему энергию в 450 млн. V. Нужно сказать, что Андерсон не решается утверждать, что наблюденные им прямые пути принадлежат отрицательным электронам. В некоторых случаях Андерсон приписывает след положительному протону. Однако наличие протонов в космических лучах должно было бы привести к появлению сравнительно толстых следов. Сами протоны должны обладать определенным пробегом и в конце своего пути



Рис. 9.

Успеки физических наук, т. ХПС, вып. 4.

ничем не будут отличаться от хорошо известных нам И-частиц. Между тем, в камере Вильсона следы, подобные И-частицам от космических лучей, не наблюдались. Правда, в некоторых случаях Андерсону приходилось наблюдать, что кривизна пути направлена в сторону, противоположную кривизне пути отрицательного электрона, но, как мы увидим ниже, этому явлению нужно дать другое объяснение. Вскоре после Андерсона аналогичную работу произвел Кунце. Установка Кунце несколько отличалась от установки Андерсона тем, что у него магнитное поле создавалось селеновдом, через который пропускался ток, мощностью в 500 kW. Кунце в общем подтвердил результаты, полученные Андерсоном. Мы не будем здесь более подробно останавливаться на описании этих весьма интересных работ, а ограничимся лишь констатированием того факта, что в космических лучах присутствуют электроны с весьма большой энергией. Происходят ли эти электроны от первичных у-квант или же они сами представляют собой первичные космические лучивот к чему сводится в настоящее время вопрос о природе космических лучей. Гейзенберг указывает, как должны выглядеть кривые поглощения в первом и во втором случаях. Если первичные космические лучи представляют собой жесткие ч-кванты, то на очень большой высоте нонизация, наблюдаемая в ионизационной камере, должна быть ничтожна и практически равняться нулю. По мере уменьшения высоты будет увеличиваться поглощающий слой атмосферы, и вместе с тем будет увеличиваться число вторичных электронов до тех пор, пока между первичным ү-излучением и вторичными электронами не наступит равновесия (рис. 8, кривая рисунка имеет максимум). В дальнейшем кривая будет показывать поглощение первичного излучения Z. Если же первичные космические лучи состоят из электронов с энергией, большей, чем 100  $mc^2$ , то ход кривой интенсивности будет уже несколько иным. Эта кривая должна начинаться с некоторого конечного значения и в момент равновесия со вторичным излучением достигать максимума, а затем спадать по мере уменьшения числа первичных электронов (рис. 10). Так как сначала будут поглощаться электроны с меньшей энергией, а потом все с большей и большей, то характер спадания крибой, очевидно, будет зависеть от того, как распределена энергия между первичными электронами. Промеры питенсивности космических лучей на очень больших высотах при полетах самих наблюдателей в стратосферу (Пикар) или шаров зондов (Регенер) могли бы дать нам некоторые сведения о природе космического излучения. К сожалению, имеющиеся в настоящее время данные еще далеко не достаточны для решения этого вопроса.

# б) Отклонение космических лучей в магнитном поле земли

Как мы видели, в последнее время удалось применить магнитное поделя изучения различных электронов в космических лучах. Сделаны были также наблюдения, указывающие на отклонение космических лучей в магнитном поле земли. Гейзенбергу были еще не известны эти новые данные, и он рассматривал этот вопрос тожко с чисто теоретической точки зрения исходя из теории полярных сияний, данной Штермером. Согласно этой теории, угол  $\Theta$  (считаемый от магнитного полюса), внутри которого могут встречаться электроны, дается равенством:

$$\sin\theta = \sqrt{\frac{2R}{a} + \frac{R^4}{4a^4}} + \frac{R^2}{2a^2}.$$

Здесь R—радиус земли, а характеристическая длина, связанная с магнитным моментом земли  $M=8,5\cdot 10^{25}~CGS$  и энергией быстрых электронов E, выражается равенством:

| ТАБЛИЦА 6                         |     |       |        |        |        |  |  |  |
|-----------------------------------|-----|-------|--------|--------|--------|--|--|--|
| $\frac{\theta}{\frac{E}{mc^2}} =$ | 20° | 40°   | 60°    | 80°    | 90°    |  |  |  |
|                                   | 406 | 5 100 | 12 900 | 19 300 | 20 400 |  |  |  |

$$a = \sqrt{\frac{Me}{E}}$$
.

В таблей приведены значения угла О, соответствующие различным величинам E.

Из этой таблицы мы видим, что только электроны, энергия которых больше, чем 20 400  $mc^2$  (или больше 10 млрд. V на электрон) могут достигать земной поверхности во всех областях. Однако даже для этих электронов зависимость интенсивности от широты места должна была бы быть весьма заметной. В действительности Комптон, а также Клейн нашли, что близ экватора интенсивность космического излучения на 16% меньше, чем в остальных широтах. Милликен, однако, настапвает на своем прежнем заключения о независимости космического излучения от широты места. В самом последнем номере Physical Review напечатан доклад в Американском физическом обществе Милликена и Негера, в котором на основании своих наблюдений с усовершенствованной аппаратурой авторы категорически настанвают на том, что космические лучи состоят из фотонов. При этом они считают, что в верхних слоях и фотоны космических лучей не сопровождаются вторичными электронами, по крайней мере в таких количествах, которые могли бы повлиять на равномерное распределение интенсивности космической радиации. Надо полагать, что дальнейние опыты по распределению интенсивности с широтой места и с высотой дадут нам достаточный материал для окончательного выяснения вопроса о природе космических лучей. В настоящее же время, по мнению Гепзенберга, можно лишь утверждать, что если космические лучи состоят из электронов с энергией  $> 20\,000~mc^2$  (только тогда распределение их будет равномерно), то выведенные для торможения электронов формулы дают слишком малые значения для объяснения экспериментальной кривой поглощения. Если космические лучи считать состоящими из фотонов, способных вызывать вторичные электроны с энергией в 10° V, то формула Клейна-Нишины дает,

в свою очередь, в 25 раз меньшие значения, чем это пужно для согласия с опытом. Разбирая счет совиадений в счетчиках Гейгера-Мюллера, мы подробнее остановимся на втором предноложении и его следствиях.

Счет совпадений в цилиндрических счетчиках. Если вопрос о природе первичных космических лучей все еще доставляет нам непреодолимые пока трудности, то природа и свойсть вторичных лучей легче укладываются в рамки существующих теорий. Остановимся прежде всего на опытах со счетчиками Гейгера - Мюллера. Из схематического рисунка (11), данного Гейзенбергом, можно составить себе представление об условиях совпадающих показаний двух счетчиков Гейгер - Мюллера. Совпадения могут наблюдаться в тех случаях, когда через оба счетчика проходит один и тот же электрон или же, когда электрон проходит только через один счетчик, но вызывает путем



столкновений еще один электрон, который, в свою очередь, попадает во второй счетчик. В обоих случаях будет зарегистрировано совпадение. Наиболее интересным, по мнению Гензенберга, является тот известный уже давно факт, что, номестив между счетчиками экраны и изучая, таким образом, поглощение коемических лучей, мы получим ковфициент поглощения, совиадающий в пределах точности опыта с обычным коэфициентом поглощения, измеренным при помощи понизационной камеры. Это обстоятельство указывает, что на уровне моря при всех наших измерениях мы имеем дело главным образом с электронами. Если первичными космическими лучами являются кванты, то они должны поглотиться в верхних слоях атмосферы, а до нас, следовательно, доходят только вызванные ими вторичные электроны. Такое предположение неизбежно приводит к заключению, что весьма жесткие у-кванты, способные вызывать наблюдаемые нами быстрые электроны, должны поглощаться приблизительно в 25 раз сильнее, чем это следует из формулы Клейна-Нишини. Возможный выход из этих затруднений о поглощением мы укажем при изложении новой работы Блэккетта и Оккиачини \*, теперь же об

<sup>\*</sup> Сч. продилущую статью в постоимой випуско У. а. 11

ратимся к объяснению явлений, зависящих от вторичных лучей. На рис. 12, дана кривая поглощения при переходе космических лучей из воды в свинец, а на рис. 13, наоборот, из

Pac. 11.

свинца В воду. эффект переходного слоя , легко объясняется нарушением равновесия между вторичными и первичными электронами. Из формул (18) и (18а) следует, что число втохингид электронов свинце должно быть гораздо меньше, чем в воде. Опыты С переходным слоем дают, что интенсивности в переходном слоесвинец-вода - меняются в отношении 8:1. в то время как теоретическое

значение, получаемое из формул, оказывается равным 10:1. Принимая во внимание допущения, сделанные при выводе фор-





Рис. 13.

мул, нужно считать, что совпадение между экспериментальными данными и теоретическими вполне удовлетворительно объясняет эффект переходного слоя.

#### Заключение

## Взрывы, вызываемые космическими лучами

Только что разобранный нами эффект переходного слоя еще раз подтверждает, что известные нам теоретические формулы вполне применимы к наблюдаемым на уровне моря вторичным электронам. Однако теже самые формулы дают слишком малые значения как в случае гипотезы первичных квантов, так и в случае гипотезы первичных электронов. Наблюдения, сделанные

рлэккеттом и Оккиалини, повидимому, дают ключ к выяслению

причин этого расхождения.

Преимущество установки Блэнкетта и Оккиалини заключалось з том, что они скомбинировали действие счетчиков и камеры Вильсона. Над и под камерой Вильсона, поставленной вертикально, находилось по цилиндрическому счетчику Гейгера. Установка была устроена так, что "совпадения" в счетчиках вызыгали опускание поршня в камере Вильсона и действие затвора фотографического аппарата. Таким образом снимки со следов в камере Вильсона производились лишь в том случае, когда через счетчики и камеру проходил космический луч. При помощи такой установки удалось показать, что при прохождении космического луча наблюдаются целые потоки электронов, выходящих из одной точки. Число электронов в одном пучке доходило до 20. Такие потоки электронов Блэккетта и Оккиалини назвали "ливнями". Применение магнитного поля показало, что среди электронов, составляющих "ливни" и выходящих из одного центра, пмеются и положительные электроны, существование которых витекало из теории Дирака. Как известно, наблюдать такие электроны до сих пор не удавалось. Не имея возможности в этом обзоре подробно останавливаться на различных весьма интересных деталях этого вновь открытого явления "ливней" и "взрыва" атомов под действием космических лучей, укажем лишь на то значение, которое это явление должно иметь для теории поглощения. При выводе всех указанных здесь формул явление ,варыва" не принималось во внимание. Если на образование варыва" должна быть затрачена гораздо большая энергия, чем ча ускорение одного только электрона, то становится вполне понятным, почему все выведенные рачее теоретические формулы давали слишком малые значения для коэфициентов поглощения. Явление "ливней" и "варыва" атомов только что открыто, это явление подтверждено и письмом Андерсона, напечатанным в последнем номере Physical Review, но каких-либо количественных соотношений между лучом и вызванным им пучком электронов еще не установлено. Однако вряд ли можно сомневаться в том, что установление такого соотношения прольет совершенно новый свет не только на законы поглощения космических лучей, но и на их природу и происхождение.

Одновременно с этим мы, очевидно, получим еще новые и весьма интересные данные о строении ядер атомов различных элементов.

#### ЛИТЕРАТУРА

- Heisenberg W., Ann. d. Physik 5 F., Bd. 13, 1933.
   Bethe H., Zs. Physik 76, 293, 1932.

- Bothe W., Zs. Physik 54, S. 161, 1929.
   Klein O. u. Nishina J., Zs. Physik 52, 853, 1929.
- 5. Anderson Carl, D. Phys. Rev. 41, 405, 1932.
- 6. Kunze P., Zs. Physik 79, 203, 1932; 80, 559, 1933. 7. Piccard, Naturwiss. 20, 1932. 8. Regener, Naturwiss. 20, 1932.

- 9. Compton, Phys. Rev. 41, 111, 1932.
  10. Clay, Naturwiss. 20, 637, 1932; 21, H. 3, 1933.
  11. Millikan R. A. a. Neher H. Vict., Phys. Rev. 43, 381, 1933.
  12. Blackett P. M. S. a. Occhialini G. P. S., Pr. Roy. Soc., A. v. 139, 699, 1933 (полный перевод этой работы см. предыдущую статью в настоящем выпуске У. Ф. Н.).
  - 13. Anderson Carl. D., Phys. Rev. 43, 368, 1933.