

K. J. Somaiya College of Engineering, Mumbai-77(A Constituent College of Somaiya Vidyavihar University)

Department of Sciences and Humanities

Course Name:	Elements of Electrical and Electronics Engineering	Semester:	I
Date of Performance:	13/12 / 2022	Batch No:	C2-2
Faculty Name:	Jyoti Varavedkar	Roll No:	1601012210 9
Faculty Sign & Date:		Grade/Marks:	/ 25

Experiment No: 8

Title: Measurement of Power using Two Wattmeter Method

Aim and Objective of the Experiment:

• To measure the power of three phase power using Two Wattmeter Method

COs to be achieved:

CO1: Analyze resistive networks excited by DC sources using various network theorems.

EEEE Semester: I Academic Year: 2022-23

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

R1 = 15 ohm, L1 = 31.85 mH,

Stepwise-Procedure:

- 1. Connect the circuit as shown in circuit diagram
- 2. Increase the load and note down the reading VL,IL,W1 and W2
- 3. Practically you will obtain total power W=W1+W2
- 4. Theoretically power is measured by using formula $P=\sqrt{3}V_LI_L\cos\phi$, using $\cos\phi=1$ (unity) for resistive load.

Observation Table:

Sr.no	$V_L V$ $I_L A$ $W_1 KW$ $W_2 KW$ $W=$ $P = \sqrt{3}V_L I_L COSC$			$P = \sqrt{3}V_LI_LCOS\phi$		
31.110	VL V	11, 11	WILKW		$(W_1+W_2)KW$	KW
1	416.2	3.5	1000	1200	2200	2523.00
2	417.2	2.6	98	980	1960	1878.74
3	417.5	1.7	800	600	1400	1314.11
4	423.2	0.8	500	400	900	585.71

Screenshot of Output:

EEEE Semester: I Academic Year: 2022-23

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University)

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

	As co	$load$ is $\phi = 1$	res	sistive	- j j	5-11-50 /5	
	Obser	rvation	Table				
	Sr.No.	VL	\mathcal{I}_{L}	M,	W ₂	W=W1+W2	P= 53V_I
2400	1	416.2	3.5	1000	1200	2200	2523.00
1800	2	417.2	2.6	980	980	1960	1878.74
200	3	417.5	1.7	800	600	1400	1314.11
600	5	423.2	6.8	500	400	900	585.71
	13		,				
					24.7		

Conclusion:

Thus, we learnt how to measure power using two wattmeter method.

Signature of faculty in-charge with Date: