

WHAT IS CLAIMED:

- 1 1. A method of controlling the focus errors of a photolithographic exposure tool
2 comprising the steps of:
3
4 a) making measurements of three dimensional feature changes in a photosensitive
5 resist;
6
7 b) generating a function which defines a relationship between said feature
8 measurements and said focus of said photolithographic exposure tool;
9
10 c) computing from said function a best profile focus value wherein said best profile
11 focus value is used for controlling the focus errors of said photolithographic exposure
12 tool.

- 1 2. The method of controlling the focus errors of a photolithographic exposure tool as
2 claimed in Claim 1 wherein said step a) comprises:
3
4 exposing a focus expose matrix wafer by varying exposure levels and focus conditions
5 wherein said feature measurements include a plurality of edge width versus focus data
6 points for any given one of said exposure levels.

- 1 3. The method of controlling the focus errors of a photolithographic exposure tool as
2 claimed in Claim 1, wherein said measurements of said step a) are stored.

- 1 4. The method of controlling the focus errors of a photolithographic exposure tool as
2 claimed in Claim 2, wherein said plurality of edge width versus focus data points are
3 plotted for each of said exposure levels.

1 5. The method of controlling the focus errors of a photolithographic exposure tool as
2 claimed in Claim 2 wherein said plurality of edge width vs. focus data points are
3 retained for a default exposure level.

1 6. The method of controlling the focus errors of a photolithographic exposure tool as
2 claimed in Claim 5, wherein step b) comprises computing a derived an equation which
3 characterizes said plurality of edge width vs. focus data points to define said function.

1 7. The method of controlling the focus errors of a photolithographic exposure tool as
2 claimed in Claim 6, wherein a second derivative of said derived equation is solved to
3 obtain said best profile focus value for said feature where said second derivative is
4 equal to zero.

1 8. The method of controlling the focus errors of a photolithographic exposure tool as
2 claimed in Claim 7, wherein measurements of a specific three dimensional feature type
3 are made across an exposure field on a production wafer.

1 9. The method of controlling the focus errors of a photolithographic exposure tool as
2 claimed in Claim 8, wherein said three dimensional measurements comprise edge width
3 measurements

1 10. The method of controlling the focus errors of a photolithographic exposure tool as
2 claimed in Claim 9, wherein an average of said edge width measurements is calculated.

1 11. The method of controlling the focus errors of a photolithographic exposure tool as
2 claimed in Claim 10, wherein said average edge width is input to said function to derive
3 a measured focus of said feature type on said production wafer.

1

2 12. The method of controlling the focus errors of a photolithographic exposure tool as
3 claimed in Claim 11, wherein a difference between said measured focus and said best
4 profile focus value is feedback to said tool thereby controlling focus errors of said tool.

1 13. The method of controlling the focus errors of a photolithographic exposure tool as
2 claimed in Claim 11, wherein a difference between said measured focus and an optimal
3 product focus offset is feedback to said tool thereby controlling focus errors of said tool.

1 14. The method of controlling the focus errors of a photolithographic exposure tool as
2 claimed in Claim 6, wherein said equation defining said function is a cubic of the form:

$$y = Ax^3 - Bx^2 + Cx + D,$$

4 where y is the edge width, x is the focus, A , B , C and D are empirically derived
5 coefficients.

6

1 15. The method of controlling the focus errors of a photolithographic exposure tool as
2 claimed in Claim 7, wherein said second derivative solving step results in an equation:

$$6Ax + 2B = 0,$$

4 wherein the solution x representing said best profile focus value is governed by the
5 equation:

$$x = -1/3*(B/A).$$

1 16. A method of controlling tilt errors of a photolithographic exposure tool
2 comprising:

3 a) making measurements of three dimensional feature changes in a
4 photosensitive resist;

5

6 b) generating a function which defines a relationship between said feature
7 measurements and a focus of said photolithographic exposure tool;

8

9 c) computing from said function x/y tilt values wherein said x/y tilt values are used to
10 control said tilt errors of said photolithographic exposure tool thereby achieving an
11 optimum x/y tilt offset.

1 17. The method of controlling tilt errors of a photolithographic exposure tool as
2 claimed in Claim 16, wherein step a) comprises:

3

4 exposing a focus expose matrix wafer by varying exposure levels and focus conditions
5 wherein said feature measurements include a plurality of edge width vs. focus data
6 points for any one of said exposure levels.

7

1 18. The method of controlling tilt errors of a photolithographic exposure tool as
2 claimed in Claim 16 wherein step b) comprises computing a derived equation which
3 characterizes said plurality of edge width vs. focus data points at a default exposure
4 level to define said function.

1 19. The method of controlling the tilt of a photolithographic exposure tool as claimed
2 in Claim 16, wherein step c) comprises:

3

4 a) using said function to obtain said x/y tilt values including a y tilt value, θ_y ,
5 corresponding to a trigonometric relationship that relates a distance, D_y between
6 measurement sites on a production wafer, an edge width derived focus, $F1_y$ taken from
7 an extreme lower position of an exposure field, and an edge width derived focus, $F2_y$,
8 taken from an extreme upper position of the exposure field;

9

10 b) using said function to obtain said adjustments including an x tilt value, θ_x ,
11 corresponding to a trigonometric relationship that relates a distance D_x between
12 measurement sites on the wafer, and edge width derived focus $F1_x$ taken from the

13 extreme left position of said exposure field, and an edge width derived focus, F_{2x} , taken
14 from the extreme right position of said exposure field;

15

16 c) feeding back said x tilt value, θ_x , to said photolithographic exposure tool; and

17

18 d) feeding back said y tilt value, θ_y , to said photolithographic exposure tool.

1 20. The method of controlling the tilt of a photolithographic exposure tool as claimed
2 in Claim 19, wherein said y tilt value, θ_y , is governed by the equation,

3 $\theta_y = \arctan((F_{2y} - F_{1y})/D_y)$; and,

4 said x tilt value, θ_x , is governed by the equation,

5 $\theta_x = \arctan((F_{2x} - F_{1x})/D_x)$.

6

1 21. The method of controlling the tilt of a photolithographic exposure tool as claimed
2 in Claim 20, wherein said y tilt value in microradians being governed by the equation,

3 $\theta_y = \arctan((F_{2y} - F_{1y})/D_y) * (\pi/180) * 1E6$; and,

4 said x tilt value in microradians is governed by the equation,

5 $\theta_x = \arctan((F_{2x} - F_{1x})/D_x) * (\pi/180) * 1E6$.

6

1 22. A system for controlling the focus errors of a photolithographic exposure tool
2 comprising:

3

4 a) means for measuring three dimensional feature changes in a photosensitive resist;

5

6 b) function generation means for defining a relationship between said feature
7 measurements and said focus of said photolithographic exposure tool;

8

9 c) means for determining from said function a best profile focus value wherein said
10 best profile focus value is used to control the focus errors of said photolithographic
11 exposure tool.

1 23. The system as claimed in Claim 22 for controlling the focus errors of a
2 photolithographic exposure tool, wherein said means for measuring further comprises:

3
4 means for obtaining said measurements based on varying exposure levels and focus
5 conditions wherein said measurements include a plurality of edge width versus focus
6 data points for any one of said exposure levels.

1 24. The system as claimed in Claim 23 for controlling the focus of a photolithographic
2 exposure tool wherein said function generation means includes means for deriving an
3 equation which characterizes said edge width versus focus data for a default exposure
4 level to thereby define said function.

1 25. The system as claimed in Claim 24 for controlling the focus errors of a
2 photolithographic exposure tool further including means for solving a second derivative
3 of said equation for said best profile focus value wherein said second derivative is equal
4 to zero.

1 26. The system for controlling the focus errors of a photolithographic exposure tool as
2 claimed in Claim 25 wherein an average of measurements of a three dimensional
3 feature type on a production wafer is input to said function to derive a measured focus
4 of said three dimensional feature type on said production wafer.

1 27. The system for controlling the focus errors of a photolithographic exposure tool as
2 claimed in Claim 26 wherein a difference between said measured focus and said best
3 profile focus value is feedback to said tool thereby controlling focus errors of said
4 photolithographic exposure tool.

1 28. The system for controlling the focus errors of a photolithographic exposure tool as
2 claimed in Claim 26 further comprising:
3
4 a) means for obtaining x/y tilt values including a y tilt value, θ_y , corresponding to a
5 trigonometric relationship that relates a distance, D_y between measurement sites on said
6 production wafer, an edge width derived focus, F_{1y} taken from the extreme lower
7 position of an exposure field, and an edge width derived focus, F_{2y} , taken from an
8 extreme upper position of the exposure field;
9
10 b) means for obtaining said x/y tilt values including an x tilt value, θ_x , corresponding
11 to a trigonometric relationship relating a distance D_x between measurement sites on the
12 wafer, and edge width derived focus F_{1x} taken from the extreme bottom position of said
13 exposure field, and an edge width derived focus, F_{2x} , taken from the extreme top
14 position of said exposure field;
15
16 c) means for correcting said photolithographic exposure tool with said tilt values, θ_x
17 , θ_y .

1 29. A computer program product comprising:
2
3 a computer usable medium having computer readable program code embodied therein
4 for implementing focus error control of a photolithographic exposure tool, the computer
5 readable program code in said computer program product comprising:
6
7 a) first computer readable program code for causing a computer to measure three
8 dimensional profile changes of a feature in a photosensitive resist;
9
10 b) second computer readable program code for causing the computer to store said
11 measurements;

12
13 c) third computer readable program code for causing the computer to generate a
14 function which defines a relationship between said feature measurements and said focus
15 of said photolithographic exposure tool;
16
17 d) fourth computer readable program code for causing the computer to calculate from
18 said function a best profile focus value wherein said best profile focus value is used to
19 control the focus errors of said photolithographic exposure tool.

20

1 30. The computer program product as claimed in Claim 29 comprising fifth computer
2 program code for inputting to said function an average of measurements made on a
3 specific three dimensional feature type across an exposure field on a production wafer
4 to derive a measured focus of said specific three dimensional feature type on said
5 production wafer.

1 31. The computer program product as claimed in Claim 30 comprising sixth computer
2 program code for computing a difference between said measured focus and said best
3 profile focus value, then feeding back said difference to said photolithographic exposure
4 tool wherein said focus errors of said photolithographic exposure tool are controlled.

1 32. The computer program product as claimed in Claim 30 comprising:
2 seventh computer readable program code for causing the computer to calculate x/y tilt
3 values from said measured focus, wherein said x/y tilt values are used to control tilt
4 errors of said photolithographic exposure tool whereby an optimum x/y tilt offset is
5 achieved.

1 33. A method of checking the focus of a photolithographic exposure tool comprising:
2

- 3 a) making a data collection of EW data associated with said exposure tool versus
- 4 barometric pressure data over a predetermined time period;
- 5
- 6 b) storing said data collection;
- 7
- 8 c) making a comparison between a current focus setting of said exposure tool exposed
- 9 to a current barometric pressure and said stored data collection;
- 10
- 11 d) notifying a user that a tool problem exists based on said comparison.

卷之三