can provide a *document-specific entity prior* for EL. Concretely, using the topic knowledge and the topic distribution of documents, the prior for an entity appearing in a document *d* is highly related to the document's topics:

$$P(e|d) = \sum_{z} P(z|d)P(e|z)$$

This prior is obviously more reasonable than the "information less prior" (i.e., all entities have equal prior) or "a global entity popularity prior" (Han & Sun, 2011). To demonstrate, Table 2-3 show the 3 topics where the *Apple Inc.* and the fruit *Apple* have the largest generation probability P(e|z) from these topics. We can see that the topic knowledge can provide a reasonable prior for entities appearing in a document: the *Apple Inc.* has a large prior in documents about *Computer*, *Video* and *Software*, and the fruit *Apple* has a large prior in documents about *Wine*, *Food* and *Plant*.

Topic(Computer)	Topic(Video)	Topic(Software)
Computer	Video	Computer software
CPU	Mobile phone	Microsoft Windows
Hardware	Mass media	Linux
Personal computer	Music	Web browser
Computer memory	Television	Operating system

Table 2. The 3 topics where the *Apple Inc.* has the largest P(e|z)

Topic(Wine)	Topic(Food)	Topic(Plant)
Wine	Food	Plant
Grape	Restaurant	Flower
Vineyard	Meat	Leaf
Winery	Cheese	Tree
Annle	Vegetable	Fruit

Table 3. The 3 topics where the fruit *Apple* has the largest P(e|z)

The effects of a fine-tuned context model. The second advantage of our model is that it provides a statistical framework for fine-tuning the context model from data. To demonstrate such an effect, Table 4 compares the EL performance of ① the entity-topic model with no context model is used (No Context), i.e., we determine the referent entity of a mention by deleting the 3rd term of the formula $P(e_i = e | \mathbf{z}, \mathbf{e}_{-i}, \mathbf{a}, \mathbf{D})$ in Section 3; ② with the context model estimated using the entity's Wikipedia page (Article Content), 3 with the context model estimated using the 50 word window of all its mentions in Wikipedia (Mention Context) and; (4) with the context model in the original entity-topic model (Entity-Topic Model). From Table 4 we can see that a fine-tuned context model will result in a 2~7% F1 improvement.

Context Model	F1
No Context	0.73
Article Content	0.75
Mention Context	0.78
Entity-Topic Model	0.80

Table 4. The F1 using different context models

3) The effects of joint model. The third advantage of our model is that it *jointly* model the context compatibility and the topic coherence, which bring two benefits: ① the mutual reinforcement between the two directions can be captured in our model; ② the context compatibility and the topic coherence are uniformly modeled and jointly estimated, which makes the model more accurate for EL.

4.5.4 EL Accuracies on TAC 2009 dataset

We also compare our method with the top 5 EL systems in TAC 2009 and the two state-of-the-art systems (EM-Model and EL-Graph) on TAC 2009 data set in Figure 5 (For EL-Graph and our method, a NIL threshold is used to detect whether the referent entity is contained in the knowledge base, if the knowledge base not contains the referent entity, we assign the mention to a NIL entity). From Figure 5, we can see that our method is competitive: 1) Our method can achieve a 3.4% accuracy improvement over the best system in TAC 2009; 2) Our method, EM-Model and EL-Graph get very close accuracies (0.854, 0.86 and 0.838 correspondingly), we believe this is because: ① The mentions to be linked in TAC data set are mostly salient mentions; 2 The influence of the NIL referent entity problem, i.e., the referent entity is not contained in the given knowledge base: Most referent entities (67.5%) on TAC 2009 are NIL entity and our method has no special handling on this problem, rather than other methods such as the EM-Model, which affects the overall performance of our method.

Figure 5. The EL accuracies on TAC 2009 dataset