Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа Р3112 К работе допущен

Студент Сенина Мария Михайловна Работа выполнена

Преподаватель Сорокина Е.К. Отчёт принят

Рабочий протокол и отчёт по лабораторной работе № 3-05

Температурная зависимость

электрического сопротивления

металла и полупроводника

1. Цель работы

Изучение температурной зависимости электрического сопротивления металла и полупроводника.

2. Задачи, решаемые при выполнении работы.

- 1. Получить зависимость электрического сопротивления металлического и полупроводникового образцов в диапазоне температур от комнатной до 75°С.
- 2. По результатам п.1 вычислить температурный коэффициент сопротивления металла и ширину запрещенной зоны полупроводника.

3. Объект исследования.

Металл и полупроводник.

4. Метод экспериментального исследования.

Соберём схему (см. рисунок 1), где сопротивление $R_{\rm orp} = 680~{\rm Om},~u$ нужно для чтобы, сопротивление в схеме не стало слишком малым по сравнению с внутренним сопротивлением вольтметра. С помощью вольтметра и амперметра мы можем узнать напряжение на исследуемом объекте и ток через него. А по закону Ома мы можем вычислить и значение его сопротивления, как $R=\frac{U}{A}$. Значит постепенно нагревая образец мы можем узнать зависимость его сопротивления от температуры.

A зная эту зависимость в нескольких точках по формулам $lpha=rac{1}{R_0}rac{\Delta R}{\Delta t}u$

5. Рабочие формулы и исходные данные.

Используемые формулы:

- 1. Температурный коэффициент металла $\alpha = \frac{1}{R_0} \frac{\Delta R}{\Delta t}$
- 2. Температурный коэффициент металла для двух точек зависимости R(T) -

$$\alpha = \frac{R_i - R_j}{R_j t_i - R_i t_j}$$

3. Ширина запрещённой зоны проводника $E_g=rac{2k\Delta\ln(R_n)}{\Delta\left(rac{1}{T}
ight)}$, где k- постоянная

Больцмана равная $k=1,380649\,\cdot\,10^{-23}\frac{\text{Дж}}{\text{K}}$ и $8,61733\,\cdot\,10^{-5}\frac{\text{9B}}{\text{K}}$

4. Ширина запрещённой зоны проводника для двух точек зависимости R(T) -

$$E_g = 2k \frac{T_i T_j}{T_j - T_i} \ln \left(\frac{R_i}{R_j} \right)$$

5. Среднее арифметическое всех результатов измерений: $\langle x \rangle_N = \frac{1}{N} (x_1 + x_2 + \dots + x_N) = \frac{1}{N} \sum_{i=1}^N x_i$

6.

7. Среднеквадратичное отклонение от среднего значения: $\sigma_{(x)} =$

$$\sqrt{\frac{1}{(N-1)N}\sum_{i=1}^{N}(x_i-\langle x\rangle_N)^2}$$

8. Абсолютная погрешность через коэффициент Стьюдента, где N – число измерений, α – доверительная вероятность: $\Delta x = x_{\alpha,N} \cdot \sigma_{\langle x \rangle}$

6. Схема установки

Принципиальная электрическая схема установки представлена на рисунке 1.

B качестве вольтметра и амперметра мы используем – ABI

Генератора постоянного тока – ГH1

Установка с нагревающим элементом, проводником и металлом - стенд «С3-ТТ01»

А резистор $R_{\text{огр}}$ имеет сопротивление 680 Ом.

7. Измерительные приборы.

№ n/n	Наименование	Используемый диапазон	Погрешность прибора
1.	Вольтметр	0,879 – 0,092 B	0,001 B
2.	Амперметр	627 – 1638 мкА	1 мкА
3.	Термометр	298 – 350 K	1 K

8. Результаты прямых измерений и их обработки.

Результаты измерений см в приложении.

9. Расчёт результатов косвенных измерений.

Посчитаем значения температурного коэффициента для измерений T_i , R_i и T_j , R_j , отличающихся на одинаковую температуру — т.е. объединим в пары значения I и 8, 2 и 9 и m.д. B таком случае температурный коэффициент будет считаться по следующей формуле:

$$\alpha = \frac{R_i - R_j}{R_j t_i - R_i t_j}$$

Конечное значение температурного коэффициента вычислим, как среднее получившихся значений по формуле (5) $\frac{1}{N}\sum_{i=1}^{N}\alpha_i$

Погрешность измерения а вычислим через коэффициент Стьюдента по формуле

$$\Delta x = x_{\alpha,N} \cdot \sigma_{\langle x \rangle}, \ \partial e \ \sigma_{\langle x \rangle} = \sqrt{\frac{1}{(N-1)N} \sum_{i=1}^{N} (x_i - \langle x \rangle_N)^2}$$

Аналогично разбивая значения на пары по формуле $E_g=2krac{T_iT_j}{T_j-T_i}\ln\left(rac{R_i}{R_j}
ight)$.

И аналогично посчитаем погрешность.

Результаты промежуточных расчётов представлены в таблицах 1 и 2.

10. Графики

11. Окончательные результаты.

Температурный коэффициент металла $\alpha=(42~\pm2)10^{-3} K^{-1}$ тогда, относительная погрешность: $\delta\alpha=6\%$

Из полученного значения можно сделать предположение, что этим металлом являлась медь.

Ширина запрещенной зоны полупроводника $E_g=(120\pm7)10^{-17}$ Дж или $E_g=(75\pm4)10^{-2}$ эВ тогда, относительная погрешность будет $\delta E_g=6\%$ Из полученного значения можно сделать предположение, что этим полупроводником являлся германий.

12. Выводы и анализ результатов работы.

В данной лабораторной работе я исследовала зависимость сопротивления полупроводника и металла от их температуры. Теоретические предположения подтвердились — сопротивление металла при нагревании увеличивается. А у полупроводника наоборот — уменьшается.