Table 1: Benchmark results. FAcc is flow accuracy rate for an error threshold of 5 pixels in a normalized scale. SAcc is segmentation accuracy by intersection-over-union ratios. SAcc scores (\star) of optic flow mothods are computed by post-processing using left right consistency check.

Optic flow /	FG3DCar		JODS		PASCAL	
cosegment. Methods	FAcc	SAcc	FAcc	SAcc	FAcc	SAcc
Ours	0.830	0.744	0.595	0.495	0.483	0.624
Our single layer ([5])	0.728	0.746	0.473	0.500	0.414	0.616
SIFT Flow [4]	0.634	(0.405)	0.522	(0.242)	0.453	(0.392)
DSP [3]	0.487	(0.279)	0.465	(0.224)	0.382	(0.329)
DFF [6]	0.495	(0.312)	0.304	(0.210)	0.224	(0.195)
Factor and Irani [1]	-	0.678	-	0.539	-	0.492
Joulin et. al. [2]	_	0.450	_	0.318	_	0.389

References

- [1] A. Faktor and M. Irani. Co-segmentation by composition. In *Proc. of Int'l Conf. on Computer Vision (ICCV)*, pages 1297–1304, 2013.
- [2] A. Joulin, F. Bach, and J. Ponce. Discriminative clustering for image cosegmentation. In *Proc. of IEEE Conf. on Computer Vision and Pattern Recogni*tion (CVPR), 2010.
- [3] J. Kim, C. Liu, F. Sha, and K. Grauman. Deformable spatial pyramid matching for fast dense correspondences. In *Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, pages 2307–2314, 2013.
- [4] C. Liu, J. Yuen, and A. Torralba. SIFT Flow: Dense Correspondence across Scenes and Its Applications. *IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)*, 33(5):978–994, 2011.
- [5] T. Taniai, Y. Matsushita, Y. Sato, and T. Naemura. Continuous Stereo Matching Using Local Expansion Moves. arXiv:1603.08328, http://arxiv.org/abs/1603.08328, 2016.
- [6] H. Yang, W. Lin, and J. Lu. DAISY filter flow: A generalized discrete approach to dense correspondences. In *Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, pages 3406–3413, 2014.