ELSŐ EXCEL GYAKORLAT

MONTE-CARLO MÓDSZER

Ebben a feladatban a Pi értékét fogjuk meghatározni Excelben a Monte-Carlo módszer segítségével. A feladat megoldása során az Excel 2010 használata a javasolt, de a segédlet a 2003as verzióhoz és Calchoz is használható.

A feladat elvégzése során a következőket fogjuk gyakorolni:

- Táblázatok kialakítása Excel-munkafüzetben.
- Táblázatkezelővel történő feladatmegoldás lépéseinek megtervezése, megvalósítása.
- Képletek használata, másolása.
- Véletlenszám generálás függvénnyel.
- Nagy táblázat kezelése.
- HA(), ABS(), PI() függvény és hatványozás.

A feladat megoldása hozzávetőlegesen 80 percet vesz igénybe.

BEVEZETÉS

Ha nem jut eszünkbe a Pi értéke és épp egy lőtér közelében járunk, akkor egy négyzet alakú céltábla és egy gépfegyver segítségével megközelítőleg meg tudjuk határozni a Pi értékét. A meghatározás első lépéseként a céltáblára rajzolnunk kell egy olyan maximum kört, ami kitölti a négyzetet. Majd a rajz után véletlenszerűen célzás nélkül rá kell lőni a táblára sokszor a gépfegyver segítségével. A Pi értékét pedig a véletlenszerű találatokból lehet kiszámolni, hiszen a körön belüli találatok száma úgy aránylik a négyzeten belüli találatok számához, mint a kör területe a négyzet területéhez, a Pi pedig a kör területképletéből adódik.

$$\begin{split} \frac{T_{\circ}}{T_{\square}} &\approx \frac{db_{\circ}}{db_{\square}} \\ \frac{r^{2}\pi}{(2r)^{2}} &\approx \frac{db_{\circ}}{db_{\square}} \\ \frac{\pi}{4} &\approx \frac{db_{\circ}}{db_{\square}} \\ \pi &\approx 4 \frac{db_{\circ}}{db_{\square}} \end{split}$$

Ha az összefüggés a teljes négyzetre igaz, akkor annak egy részére is az. A könnyebb számolás érdekében a következőekben nem a teljes céltáblával, hanem annak a jobb felső r*r-es négyzet alakú szeletével fogunk csak dolgozni.

A legkönnyebben úgy tudjuk megszámolni a körön belüli és kívüli pontokat, ha ezt a négyzetet egy koordináta rendszerként értelmezzük, mert akkor minden pontot azonosítani lehet egy x és egy y koordináta segítségével.

Azok a pontok helyezkednek el a körön belül, melyeknek az origótól való távolsága kisebb, mint a kör sugara. A távolságot Pitagorasz tétele szerint a $\sqrt{x^2 + y^2}$ képlettel kapjuk meg.

$$\sqrt{x^2 + y^2} < r$$

$$r = 1$$

$$\sqrt{x^2 + y^2} < 1$$

$$x^2 + y^2 < 1$$

LÖVÉSEK TÁBLÁZATKEZELŐBEN

Lőtér és gépfegyver híján a lövésekhez az Excelt (vagy a Calcot) fogjuk használni és abban fogunk a céltábla felső negyedére egymilliószor lőni.

A feladat megoldásához először ki kell alakítanunk magát a táblázatot. A táblázat első oszlopában a találatok x, a másodikban pedig az y koordinátáit fogjuk tárolni, ezért fejlécként a táblázatkezelő A1-es cellájába írjunk bele egy "x"-et, a B1-be pedig egy "v"-t.

Az x és az y értékei 0 és 1 között bármik lehetnek, ezért ezeket a **VÉL()** véletlenszámot generáló függvénnyel fogjuk előállítani. A VÉL() argumentum nélküli függvénnyel előállított érték nagyobb vagy egyenlő, mint 0 és kisebb, mint 1.

A táblázat első sorában a feliratok vannak, ezért az x, y koordinátákat a második sortól kezdve az egymillió-egyedik sorig fogjuk elhelyezni.

Nagy táblázatot különböző módon lehet feltölteni Excelben és Calcban. A következő lépésben ezt fogjuk megmutatni.

1. Táblázat kialakítás Excellel

a. Jelöljük ki az A2:B1000001 blokkot, ezt a legkönnyebben a Név mezőben való blokkhivatkozással tudjuk megoldani. A2:B1000001

b. A kijelölés után írjuk be a szerkesztőlécbe az =VÉL() függvényt és nyomjuk le a Ctrl+Enter billentyűket. Ha a függvény beírása után csak az Entert ütnénk le, akkor csak a kijelölésben fehérrel jelölt aktív cellába illesztené be a program a függvényt, de ha a Ctrl+Enter billentyűkombinációt alkalmazzuk, akkor a kijelölés összes cellájába bemásolja.

		A2	- (**)		f _x =VÉL()		()		
		А	В	С	[)	Е		
	1	х	у						
	2	0,014974	0,987823						
	3	0,299041	0,976207						
	4	0,110501	0,921844						
	5	0,549552	0,311735						
99	998	0,832769	0,358916						
99	999	0,394995	0,719687						
000	000	0,757028	0,306616						
000	001	0,522512	0,864561						

Táblázat kialakítás Calc-kal

A példában most is egymillió lövést fogunk készíteni, hogy az Excel és a Calc rész egyforma legyen, de a Calc lassabb számítása miatt érdemesebb csak százezer lövéssel dolgozni.

- Az A2 cellába írjuk be az =VÉL() függvényt.
- b. Jelöljük ki az A2:B1000001 blokkot, ezt a legkönnyebben a Névdobozban való blokkhivatkozással tudjuk megoldani.

A kijelölés után a Szerkesztés/Kitöltés/Le paranccsal (vagy a Ctrl+D billentyűkombinációval) másoljuk le a képletet a kijelölés első oszlopának minden sorába, majd a Szerkesztés/Kitöltés/Jobbra paranccsal a második oszlopba.

Excelben is és Calcban is a véletlenszámok újragenerálását az **F9**-es billentyűvel lehet kérni, illetve újraszámolja a táblázat összes módosításánál, ha a munkafüzet kiszámítása automatikusra van állítva.

HOL A PONT?

A következő lépésben a körön belüli pontok darabszámát fogjuk meghatározni. A meghatározáshoz hozzunk létre egy új segédoszlopot a C1 cellába írt "Körön belül" fejléccel. Ebbe az oszlopba, ha az adott sorban lévő pont a körön belül helvezkedik el 1-est, ha körön kívül 0-t fogunk írni, hogy a későbbiekben könnyen, egy összeadással meg tudjuk számolni a darabszámot

Az adott pontról a bevezetésben leírtak szerinti $x^2 + y^2 < 1$ egyenlet segítségével döntjük el, hogy a körön belül van-e. Mivel két lehetőség van, és ha a feltétel igaz 1-est, ha hamis 0-t kell írni az adott cellába a **HA()** függvényt fogjuk használni.

A HA() függvénynek három argumentuma van a Logikai feltételvizsgálat, az Érték ha igaz és az Érték ha hamis. A Logikai feltételvizsgálat mezőbe kell a vizsgálandó feltételt beírni, és ha a feltétel igaz, akkor az Érték ha igaz, ellenkező esetben az Érték ha hamis argumentumba beírt értéket adja vissza eredményül a függvény. Kötelezően csak a Logikai feltételvizsgálatot kell kitölteni, az Érték ha igaz és az Érték ha hamis elhagyható. Abban az esetben, ha elhagyjuk logikai **IGAZ** és **HAMIS** értékeket fog a függvény eredményül adni.

A feltételben a pontok koordinátáit négyzetre kell emelni. Excelben és Calcban hatványozni a ^ (kalap) operátor vagy a HATVÁNY() függvény segítségével lehet. A HATVÁNY() függvénynek két argumentuma van az első a szám, amit hatványozni szeretnénk, a második a kitevő, amire az alapot emelni szeretnénk. Mindkét függvényargumentum megadása kötelező.

Az előzőek alapján írjuk be a C2-es cellába a megfelelő HA() függvényt. A C2 cellához tartozó x és y értékek az A1 és B1 cellákban vannak. A C2-be a következő függvényt írhatjuk a ^ jelet és a HATVÁNY() függvényt is használva =HA(A2^2+HATVÁNY(B2;2)<1;1;0).

A függvényt az $\mathbf{f}(\mathbf{x})$ gombra kattintva grafikusan is össze lehet állítani a Függvényvarázsló (Calcban Függvénytündér) segítségével.

A C2 cellán a kitöltőjelre való dupla kattintással másoljuk végig a függvényt a C oszlop öszszes cellájába. A kitöltőjelre való kattintás után a táblázatkezelő mindaddig lemásolja a függvényt az adott oszlopban, amíg az előtte lévő oszlopban adat található.

MENNYI A PI ÉRTÉKE?

A következő lépésben a $\pi=4\frac{db_0}{db_0}$ képlet alapján az előző lövések koordinátáiból kiszámoljuk a Pi értékét. A Pit egy, tíz, száz, ezer, tízezer, százezer és egymillió lövés alapján fogjuk kiszámolni, majd a kapott eredményeket összehasonlítjuk.

- 1. Az **F1** cellába írjuk bele fejlécként, hogy "**Lövések**", majd soroljuk fel alája az 1, 10, 100... 100000 számokat. A G1-es cellába pedig írjuk azt, hogy "Becsült pi".
- 2. A G2-es cellába pedig írjuk be a megfelelő $4\frac{db_0}{db_0}$ képletet. A db_0 az mindig az összes lövés, mert a véletlenszerű találatokat úgy alakítottuk ki, hogy az négyzeten belüli találat legyen. A db_{\circ} pedig az előbb létrehozott körön belüli találat oszlop adatainak összege. Egy lövés esetében a db_{\circ} értéke a ${\bf C2}$ -es cellában található szám, tehát a G2-be a =4*(C2/F2) képletet kell írni.
- 3. A G3-as cellába, ahol a 10 lövésre akarjuk kiszámolni a Pit, a képlet annyiban változik, hogy a db_0 értéke nem egy cellában van, hanem úgy kapjuk meg, hogy a SZUM() függvénnyel összeadjuk a "Körön belül" oszlop első 10 celláját, C2-től C11-ig. Tehát a G3-as cellába az =4*SZUM(C2:C11)/F3 képletet kell írni.
- A G oszlop kitöltésénél arra kell figyelni, hogy a db_{\circ} -nél a C oszlop adataiból, mindig annyit kell összeadni, amennyi lövést vizsgálunk és a db_{\square} -nél mindig a megfelelő lövésszámra kell hivatkozni.

F	G	Н
Lövések	Becsült Pi	Pi képlettel
1	4,000000	=4*C2/F2
10	3,200000	=4*SZUM(C2:C11)/F3
100	3,320000	=4*SZUM(C2:C101)/F4
1000	3,056000	=4*SZUM(C2:C1001)/F5
10000	3,104800	=4*SZUM(C2:C10001)/F6
100000	3,137720	=4*SZUM(C2:C100001)/F7
1000000	3,141810	=4*SZUM(C2:C1000001)/F8

A LEGJOBB KÖZELÍTÉS

A feladat legvégén azt fogjuk megvizsgálni, hogy az előzőek közül melyik közelítés áll a legközelebb a Pi valódi értékéhez.

A Pi értékét Excelben és Calcban a Monte Carlo módszernél egyszerűbben is meg lehet adni a PI() függvény segítségével. A G13 cellába írjuk be, hogy "Pi valódi értéke:", a H13-ba pedig az =PI() függvényt. A H13-as cellát a Név mező segítségével (Calcban: Névdoboz) nevezzük át **PI**-nek.

A különböző lövésekből számított Pi és a valódi Pi közötti eltéréseket az I oszlopba fogjuk kiszámítani, ezért az II-es cellába írjuk be fejlécként, hogy "Eltérés". Az egy lövésből számított Pi eltérését az I2-es cellába úgy kapjuk meg, hogy PI-ből kivonjuk a G2-es cellában található számított Pi értéket. Az eltérés lehet pozitív és negatív irányú is, ezért a könnyebb összehasonlítás érdekében az ABS() függvény segítségével vegyük a kapott szám abszolút értékét. Az előzőek alapján írjuk az I2-es cellába az =ABS(PI-G2) függvényt, majd kattintsunk duplán a kitöltőjelre, hogy az egész oszlopba végigmásoljuk a függvényt.

F	G	Н	1
Lövések	Becsült Pi	Pi képlettel	Eltérés
1	4,000000	=4*C2/F2	0,858407
10	3,200000	=4*SZUM(C2:C11)/F3	0,058407
100	3,320000	=4*SZUM(C2:C101)/F4	0,178407
1000	3,056000	=4*SZUM(C2:C1001)/F5	0,085593
10000	3,104800	=4*SZUM(C2:C10001)/F6	0,036793
100000	3,137720	=4*SZUM(C2:C100001)/F7	0,003873
1000000	3,141810	=4*SZUM(C2:C1000001)/F8	0,000217

Megfigyelhető, hogy minél több lövéssel próbálkozunk annál jobban meg tudjuk közelíteni a Pi valódi értékét a Monte-Carlo módszerrel.

FELADAT BEFEJEZÉSE

Végezetül mentsük el a munkafüzetet a táblázatkezelő saját formátumában pi néven. Gratulálunk! Ezzel elérkeztünk a példa végéhez.

