A Final Problem

May 2020

1 Taylor Wage-Setting

Here you will enter and solve the simple wage-setting model à la Taylor presented in Sims (2002). The equations are as follows:

$$w_{t} = \frac{1}{3} \mathbb{E}_{t} \left[W_{t} + W_{t+1} + W_{t+2} \right] - \alpha (u_{t} - u^{*}) + v_{t}$$
 (1)

$$W_t = \frac{1}{3} \left[w_t + w_{t-1} + w_{t-2} \right] \tag{2}$$

$$u_t = \theta u_{t-1} + \gamma W_t + \mu + \epsilon_t \tag{3}$$

$$v_t \sim \mathcal{N}(0, \sigma_v^2)$$
 (4)

$$\epsilon_t \sim \mathcal{N}(0, \sigma_\epsilon^2).$$
 (5)

Here, u, w, and W are endogenous variables while ϵ and v are exogenous white noise processes. We have seven parameters to estimate: $[\alpha, u^*, \theta, \gamma, \mu, \sigma_v, \sigma_{\epsilon}]$.

We have data from this model, but don't know the values of the parameters. We have the following priors for the parameters.

	Prior		
	Dist.	Mean	Stdev.
α	Normal	0.8	0.1
u^*	Beta	0.05	0.125
θ	Normal	0.8	0.1
γ	Normal	0.5	0.1
μ	Normal	1.5	0.3
σ_v	Inv. Gamma	0.15	0.7
σ_{ϵ}	Inv. Gamma	0.15	0.7

A.

Given that this is a model of wage-setting, what could each of these equations mean? What could the shocks ϵ and v represent?

В.

Given the equations, parameters, and priors fill in the blanks of $tm_322f_s20.mod$. In this file, our variables are w(w), bw(W), u(u), vee(v), and $eps(\varepsilon)$. The parameters that show up in the model are $alpha(\alpha)$,

 $\mathtt{ustar}\ (u^*),\mathtt{theta}\ (\theta),\mathtt{gamma}\ (\gamma),\mathtt{mu}\ (\mu),\mathtt{stderr}\ \mathtt{vee}\ (\sigma_{\!v}),\mathtt{and}\ \mathtt{stderr}\ \mathtt{eps}\ (\sigma_{\!\varepsilon}).$

C.

Estimate the model. Comment on how the posteriors differ from the priors. Comment on what you see in the impulse responses. How may we interpret them?

2 Code