ITEC4433 - Data Warehousing and Data Mining Term Project Report

"HOW TO PREDICT CAR SELLING"

Student Name & Surname: Gizem Başaran

Student Number: 20SOFT1041

The Definition of the Problem:

To analyze Vehicle dataset using Weka. And estimate the selling price of the vehicles with Linear Regression and Random Forest Algorithms.

Data Acquisition and Dataset Properties

I got my dataset from kaggle. The subject is to be able to make a price estimation with used vehicle data. It has 8 features. these; name, year, selling_price, km_driven, fuel, seller_type, transmission, owner. It contains 4340 sample data in total.

Attributes:

Name: Name of the cars.

Year: Year of the car when it was bought.

Selling_price: Price at which the car is being sold. Km_driven: Number of Kilometres the car is driven.

Fuel: petrol / diesel / CNG / LPG / electric.

Seller_type: Individual or a Dealer. Transmission: Automatic/Manual.

Owner: Number of previous owners of the car.

Selecting the Data Mining Method

I checked if I have empty data by preprocessing.

Data # 	columns (total Column	8 columns): Non-Null Count	Dtype			
0 1 2 3 4 5 6	name year selling_price km_driven fuel seller_type transmission owner	4340 non-null 4340 non-null 4340 non-null 4340 non-null 4340 non-null 4340 non-null 4340 non-null 4340 non-null	object int64 int64 int64 object object object			
dtype	es: int64(3), ok					

Missing values control with isna() in Python Pandas Library.

name	0
year	0
selling price	0
km driven	0

fuel	0
seller_type	0
transmission	0
owner	0
dtyne. int64	

dtype: int64

Afterwards, I tried the classify methods from Weka and chose the Random Forest machine learning algorithm and reached 70% accuracy.

I selected the factors that I thought were related to the vendor's pricing and used them to fit a linear model to the training data to create a linear regression model. Using an optimization approach, I have estimated the coefficients of this linear model. Linear Regression machine learning algorithm reached 85% accuracy.

Executing the Data Mining Function

I applied the algorithm I chose by choosing Classify and Random Forest from Weka. I applied Linear Regression using pandas, numpy, LinearRegression libraries using python. I removed these object features to feature selection part; seller_type, owner, fuel, name, transmission.

Random Forest:

Correctly Cl	lassifi	ed Ins	tances		3054		70.	3687 %
Incorrectly	Classi	fied I	nstances		1286		29.	6313 %
Kappa statistic					0.353			
Mean absolut	te erro	r			0.146	8		
Root mean squared error				0.2866				
Relative absolute error				72.7831 %				
Root relative squared error				90.2699 %				
Total Number	r of In	stance	S		4340			
					F-Measure			
	0.881	0.499	0.768	0.881	0.821	0.419	0.821	0.893

Owner	0.881	0.499	0.768	0.881	0.821	0.419	0.821	0.893	First
Owner	0.442	0.112	0.574	0.442	0.499	0.362	0.768	0.556	Second
& Above Owner	0.160	0.008	0.289	0.160	0.206	0.204	0.724	0.132	Fourth
Owner	0.181	0.033	0.291	0.181	0.223	0.185	0.704	0.199	Third
Drive Car	0.118	0.001	0.333	0.118	0.174	0.196	0.945	0.409	Test
Weighted Avg.	0.704	0.357	0.675	0.704	0.683	0.383	0.798	0.743	

Obtaining the Results and Interpretation

Linear Regression:

MAE: 0.9937753386731192 MSE: 2.162871527787962 RMSE: 1.4706704347976682

Random Forest:

MAE: 0.1468

MSE: 0.2866 RMSE: 0.5354

Examples for Customers:

```
prediction: 366599.48, target value: [350000]
prediction: 502965.82, target value: [450000]
prediction: 1157524.28, target value: [930000]
prediction: 823426.73, target value: [685000]
prediction: 332507.89, target value: [325000]
prediction: 502965.82, target value: [450000]
```