## Chaotic social contagion

from zombies to hipsters

## Kameron Decker Harris with Peter Dodds and Chris Danforth

**UVM** Math

April 19, 2012



#### You may think



I think



## Networks: quick definitions



# Networks: quick definitions A network (graph) is a collection of nodes and links, which connect the nodes. Degree the number of links incident a node





Typical features:





#### Typical features:

• Network structure or fully mixed





#### Typical features:

- Network structure or fully mixed
- Nodes turn on according to **response function** f and stay on





#### Typical features:

- Network structure or fully mixed
- Nodes turn on according to response function f and stay on
- **Percolation transition**. Varies with network parameters, contagiosity (f), or initial seed size

## Percolation models & Networks (cont'd)

#### **SIR**

Most models are

- Susceptible
- Infected
- Removed



## Or SZR



## Other possible extensions



source: http://blog.priceonomics.com/post/16013457968/the-fixie-bike-index

- Social contagion → trends?
- Volatility: not something we get from SIR

#### Main idea

Nodes turn on and off (contact process, SIS, SZS, etc.)

#### Main idea

Nodes turn on and off (contact process, SIS, SZS, etc.)

#### How we do this

Non-monotonic response functions

#### Main idea

Nodes turn on and off (contact process, SIS, SZS, etc.)

#### How we do this

Non-monotonic response functions

#### Ingredients:

Nodes like to imitate up to a limit — don't want to be like everyone else.



#### Main idea

Nodes turn on and off (contact process, SIS, SZS, etc.)

#### How we do this

Non-monotonic response functions

#### Ingredients:

Nodes like to imitate up to a limit — don't want to be like everyone else.

(Hipsters!!!)





## Crazy behavior





#### Stochastic response functions:



#### Avenues of attack

#### How to understand this?

#### Mean field theory

This leads to a 1d, nonlinear map:

$$\rho_{t+1} = \alpha g(\rho_t | P, f) + (1 - \alpha)\rho_t \tag{1}$$

## Rigorous analytic results

#### Result 1

As  $\langle k \rangle_P = z$  grows, for reasonable P,  $g \nearrow f$  (More connected  $\implies$  dynamics close to f)



## Rigorous analytic results

#### Result 1

As  $\langle k \rangle_P = z$  grows, for reasonable P,  $g \nearrow f$  (More connected  $\implies$  dynamics close to f)

#### Result 2

#### For

- quenched Poisson random networks (not mean field)
- in the dense limit

the dynamics also approach f





### Conclusions, to-dos

- Look at individual node dynamics
- Quenched networks, quenched response functions

#### Main conclusion

Academics can study anything (including zombies, hipsters, swearing on Twitter...)

## Acknowledgments

- advisors Peter Dodds and Chris Danforth
- Josh Payne
- the whole Computational Story Lab/Onehappybird team
- Andi Elledge (you rock!)
- the VACC, UVM Complex Systems Center, UVM Math & Stats
- NASA, NSF
- ...and those of you who came to see this

## Invariant densities—stochastic response functions









Trying out higher values of  $\langle k \rangle$ ...

## Invariant densities—deterministic response functions



Trying out higher values of  $\langle k \rangle$ ...