POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Matematica

Tesi di Laurea Magistrale

Some recent results on the norm of localization operators

Relatori	Candidato
Prof. Fabio Nicola	Federico Riccardi
firma dei relatori	firma del candidato

Anno Accademico 2022-2023

Indice

1	Introduction	3
2	Basics of functional analysis	4
3	Short-Time Fourier Transform	5
	3.1 STFT	5
	3.1.1 Properties of STFT	5
	3.2 Fock Space and Bargmann Transform	5
	3.3 Faber-Krahn Inequality for the STFT	
4	Localization Operators	
	4.1 Definition and properties	6
	4.2 Eigenvalues and eigenfunctions	
5	Recent results from Nicola-Tilli	7
	5.1 Case $q = +\infty$	7
	5.2 Generic case	7

Sommario

Introduction

Basics of functional analysis

Short-Time Fourier Transform

- 3.1 STFT
- 3.1.1 Properties of STFT
- 3.2 Fock Space and Bargmann Transform
- 3.3 Faber-Krahn Inequality for the STFT

Theorem from [nicolatilli_fk]

Theorem 3.1. For every $f \in L^2(\mathbb{R}^d)$ such that $||f||_{L^2} = 1$ and every measurable subset $\Omega \subset \mathbb{R}^{2d}$ with finite measure we have

$$\int_{\Omega} |\mathcal{V}f(x,\omega)|^2 dx d\omega \le G(|\Omega|)$$

where G(s) is given by

$$G(s) := \int_0^s e^{\left(-d!\tau\right)^{1/d}} d\tau \tag{3.1}$$

Localization Operators

- 4.1 Definition and properties
- 4.2 Eigenvalues and eigenfunctions

Recent results from Nicola-Tilli

5.1 Case $q = +\infty$

5.2 Generic case

Let's now consider the case where both p and q are neither 1 or $+\infty$. The result presented in [nicolatili_norm] include the case ...

$$||L_F||_{L_2 \to L_2} \le \min\{\kappa_p^{d\kappa_p} A, \, \kappa_q^{d\kappa_q} B\}$$

Suppose that the minimum is given by $\kappa_p^{d\kappa_p}A$, therefore

$$\kappa_p^{d\kappa_p} A \le \kappa_q^{d\kappa_q} B \iff \frac{B}{A} \ge \left(\frac{\kappa_p^{\kappa_p}}{\kappa_q^{\kappa_q}}\right)^d$$

We can check if the solution of the problem with just the L^p bound solves also the problem with both bounds, that is $F|_{L^q} \leq B$, where F is given by ...

$$\|F\|_{L^q}^q = \int_{\mathbb{R}^{2d}} |F(z)|^q dz = \dots = \lambda^q \left(\frac{p-1}{q}\right)^d$$

Since we want F to satisfy the L^q constraint we should have

$$\frac{B}{A} \ge \kappa_p^{d\left(\frac{1}{q} - \frac{1}{p}\right)} \left(\frac{p}{q}\right)^{\frac{d}{q}}$$

It would be nice if this bound was less restrictive than the first one. Unfortunately that's not the case, in fact it's always true that

$$\left(\frac{p'}{q'}\right)^{\frac{1}{q'}} \left(\frac{p}{q}\right)^{\frac{1}{q}} \ge 1$$

Following the path in [nicolatilli_norm] we obtain ...

$$G'(u(t)) = \lambda_1 t^{p-1} + \lambda_2 t^{q-1} \implies u(t) = \frac{1}{d!} \left[-\log\left(\lambda_1 t^{p-1} + \lambda_2 t^{q-1}\right) \right]^d, \ t \in (0, M)$$

Our main goal now is to show that multipliers λ_1, λ_2 are unique and both positive.

The easiest fact to prove is that both multipliers are not 0. In fact if one, say λ_2 , was 0, we would obtain that the solution of our problem is the same as the one with just the L^p bound. But we already know that this function does not satisfy the L^q constraint hence it is impossible that $\lambda_2 = 0$.

Suppose now that one of the multipliers, say always λ_2 , is negative. Consider an interval $[a,b] \subset (0,M)$ and a variation $\eta \in L^{\infty}(0,M)$ supported in [a,b]. Thanks to the Gram-Schmidt process we can construct a variation orthogonal to t^{p-1} . Since η is arbitrary we can suppose that it is not orthogonal to t^{q-1} , in particular we can suppose that $\int_a^b t^{q-1} \eta(t) dt < 0$. Therefore the directional derivative of G along η is:

$$\int_{a}^{b} G'(u(t))\eta(t)dt = \int_{a}^{b} (\lambda_{1}t^{p-1} + \lambda_{2}t^{q-1})\eta(t)dt =$$
$$= \lambda_{2} \int_{a}^{b} t^{q-1}\eta(t)dt > 0$$

which contradicts the fact that u is a maximizer.

PROOF OF CONTINUITY

Lastly we shall prove that multipliers λ_1, λ_2 , and hence maximizer, are unique. For this proof it is convenient to express u in a slightly different way

$$u(t) = \frac{1}{d!} \left[\text{Log}_{-} \left((c_1 t)^{p-1} + (c_2 t)^{q-1} \right) \right]^d$$

To emphasize that u is parametrized by c_1, c_2 we may write $u(t; c_1, c_2)$. Now we define

$$f(c_1, c_2) = p \int_0^T t^{p-1} u(t; c_1, c_2) dt, \quad g(c_1, c_2) = q \int_0^T t^{q-1} u(t; c_1, c_2) dt$$

We want to highlight that, even if not explicit, also T depends on c_1 and c_2 . Our maximizer u satisfies the constraints only if $f(c_1, c_2) = A^p$, $g(c_1, c_2) = B^q$. Therefore to prove uniqueness of the maximizer we need to show that level sets $\{f = A^p\}$ and $\{g = B^q\}$ intersect in only a point.

First of all we are studying endpoints. For example, if $c_2 = 0$:

$$f(c_1,0) = p \int_0^{1/c_1} t^{p-1} \frac{1}{d!} \left[-\log(c_1 t)^{p-1} \right]^d dt \stackrel{\tau = c_1 t}{=}$$

$$= \frac{p(p-1)^d}{c_1^p d!} \int_0^1 \tau^{p-1} \left[-\log(\tau) \right]^d d\tau = \frac{\kappa_p^d}{c_1^p} = A^p \implies c_{1,f} = \frac{\kappa_p^{d/p}}{A}$$

The same can be done for g and setting $c_1 = 0$ thus we obtain four points

$$c_{1,f} = \frac{\kappa_p^{d/p}}{A}, \ c_{1,g} = \left(\frac{p-1}{q}\right)^{d/q} \frac{1}{B}, \ c_{2,f} = \left(\frac{q-1}{p}\right)^{d/p} \frac{1}{A}, \ c_{2,g} = \frac{\kappa_q^{d/q}}{B}$$

In the regime we are considering one has that $c_{1,f} < c_{1,g}$ and $c_{2,f} > c_{2,g}$, indeed

$$c_{1,f} < c_{1,g} \iff \frac{\kappa_p^{d/p}}{A} < \left(\frac{p-1}{q}\right)^{d/q} \frac{1}{B} \iff \frac{B}{A} < \kappa_p^{d\left(\frac{1}{q} - \frac{1}{p}\right)} \left(\frac{p}{q}\right)^{d/q}$$

$$c_{2,f} > c_{2,g} \iff \left(\frac{q-1}{p}\right)^{d/p} \frac{1}{A} > \frac{\kappa_q^{d/q}}{B} \iff \frac{B}{A} > \kappa_q^{d\left(\frac{1}{p} - \frac{1}{q}\right)} \left(\frac{q}{p}\right)^{d/p}$$