Report on Analytic Solution for Annular Ducts

Jeff Severino University of Toledo Toledo, OH 43606

email: jseveri@rockets.utoledo.edu

November 4, 2022

1 Current Research Direction

The goal is to currently compute the coefficients A and B, the weighting factors for the Bessel Functions for the first and second kind. V072 contains FORTRAN subroutines that compute these along with the Bessel functions.

2 Research Performed This Week

There are four subroutines

• eigen.f,

Computes the weighting factors, A and B for the radial mode shpe

• besj.f,

Computes the bessel functions of the first kind and their derivatives of positive or zero order, n, and zero or positive argument x

• besy.f, and

Computes the bessel function of the second kind and their derivatives of positive or zero order, n, and zero or positive argument x

• rmode.f.

Calculate radial mode shape psi for the (m,n) radial mode of an annular duct

3 Issues and Concerns

After reviewing C.S. ventres, et al., "Turbofan Noise Generation", NASA-CR-167951, July 1982, the input to eigen.f needed to be non-dimensional. The value of the duct mode radial eigenvalue needs to be multiplied by the radius as directed. m=0 $r_{min}=0.2$ $r_{max}=1$ A=1.0432423009108394 B=3.123012599045477E-02 $\kappa_{mn}=0.2$

4 Planned Research

I need to compare against a SWIRL result, however when extending r_{max} to 10 the result looks pretty close to J_0

Figure 1: Trial 1

Figure 2: Trial 1