

- 2
- 3
- ___
- 5
- 6

(Semantic Image Segmentation)

Figure 1:

c.

Figure 2:

Figure 4:

10 / 26

Standard LSTM block
Figure 5:

 $\mathbf{W} \mathbf{W}^{u}, \mathbf{W}^{f}, \mathbf{W}^{o}, \mathbf{W}^{c}$

$$\mathbf{g}^{u} = \delta(\mathbf{W}^{u} * \mathbf{H})$$

$$\mathbf{g}^{f} = \delta(\mathbf{W}^{f} * \mathbf{H})$$

$$\mathbf{g}^{o} = \delta(\mathbf{W}^{o} * \mathbf{H})$$

$$\mathbf{g}^{c} = \tanh(\mathbf{W}^{c} * \mathbf{H})$$

$$\mathbf{m}' = \mathbf{g}^{f} \odot \mathbf{m} + \mathbf{g}^{u} \odot \mathbf{g}^{c}$$

$$\mathbf{h}' = \tanh(\mathbf{g}^{o} \odot \mathbf{m}')$$

$$\mathbf{H} = \begin{bmatrix} I * \mathbf{x}_{i} \\ I \end{bmatrix}$$
(1)

$$(\mathbf{h}',\mathbf{m}') = \mathsf{LSTM}\big(\mathbf{H},\mathbf{m},\mathbf{W}\big)$$

3d Grid LSTM Block

Figure 6:

$$\mathbf{H} = \begin{bmatrix} \mathbf{h}_i \\ \vdots \\ \mathbf{h}_N \end{bmatrix}$$
 (2)
$$(\mathbf{h}_1', \mathbf{m}_1') = \mathsf{LSTM}(\mathbf{H}, \mathbf{m}_1, \mathbf{W}_1)$$

$$\vdots$$

$$(\mathbf{h}_N', \mathbf{m}_N') = \mathsf{LSTM}(\mathbf{H}, \mathbf{m}_N, \mathbf{W}_N)$$

Figure 7:

- *VGG*₁₆ ¹,
- 6.5 ²

Figure 8: "

 $^{^{1}}$ Simonyan & Zissermanet, Very deep Convolutional Networks For Large-scale Image Recognition, ICLR 2015

²Chen et al, DeepLab-LargeFOV, ICLR 2015

$$(\hat{\mathbf{h}}_{i,i}^0, \hat{\mathbf{m}}_{i,i}^0) = \mathsf{LSTM}(\mathbf{H}_{i,j}, \mathbf{m}_{i,i}^0, \mathbf{W}_i)$$

$$(\hat{\mathbf{h}}_{i,j}^1, \hat{\mathbf{m}}_{i,j}^1) = \mathsf{LSTM}(\mathbf{H}_{i,j}, \mathbf{m}_{i,j}^1, \mathbf{W}_i)$$

$$(\hat{\mathbf{h}}_{i,j}^{N}, \hat{\mathbf{m}}_{i,j}^{N}) = \mathsf{LSTM}(\mathbf{H}_{i,j}, \mathbf{m}_{i,j}^{N}, \mathbf{W}_{i})$$
$$\mathbf{H}_{i,i} = [\mathbf{h}_{i,i}^{0} \ \mathbf{h}_{i,i}^{1} \dots \mathbf{h}_{i,j}^{N}]^{T}$$

VOC 2012

SIFT FLOW

Figure 10: VOC 2012

Figure 11: SIFT FLOW

$$n_{ij} \ i \ j \ n_{cl} \ t_i = \sum_{j=1}^{n_{cl}} n_{ij} \ i$$

$$= \sum_{i=1}^{n_{cl}} n_{ii} / \sum_{i=1}^{n_{cl}} t_i$$

$$= \frac{1}{n_{cl}} \sum_{i=1}^{n_{cl}} (n_{ii} / t_i)$$

$$= \frac{1}{n_{cl}} \sum_{i=1}^{n_{cl}} \frac{n_{ii}}{t_i + \sum_{j}^{n_{cl}} n_{ji} - n_{ii}}$$
(5)

† † 7.5%

Figure 12:

Figure 13:

Method	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	shep	sofa	train	tv	mloU.
															63.3						
FCN-8s ⁴	76.8	34.2	68.9	49.4	60.3	75.3	74.7	77.6	21.4	62.5	46.8	71.8	63.9	76.5	73.9	45.2	72.4	37.4	70.9	55.1	62.2
TTI-zoomout-16 ⁵	81.9	35.1	78.2	57.4	56.5	80.5	74.0	79.8	22.4	69.6	53.7	74.0	76.0	76.6	68.8	44.3	70.2	40.2	68.9	55.3	64.4
DeepLab-CRF ⁶	78.4	33.1	78.2	55.6	65.3	81.3	75.5	78.6	25.3	69.2	52.7	75.2	69.0	79.1	77.6	54.7	78.3	45.1	73.3	56.2	66.4
CNN+5LSTM	80.2	35.3	74.1	54.4	64.4	87.3	81.1	80.6	22.7	73.6	58.8	73.9	73.7	78.7	77.4	50.2	80.0	47.9	76.5	63.1	67.9

Table 1:

 $^{^3 \}text{Simultaneous Detection}$ and Segmentation, ECCV 2014

⁴Fully convolutional networks for semantic segmentation, CVPR 2015

⁵Feedforward semantic segmentation with zoom-out features, CVPR 2015

 $^{^6 \}text{Semantic}$ image segmentation with deep convolutional nets and fully connected crfs, ICLR 2015

Figure 14: Grid-5LSTM

Figure 15:

SIFT FLOW

Method	Pixel Acc.	Mean Acc.	Mean IU.
Liu et al. ⁷	76.7	-	-
Tighe et al. ⁸	78.6	39.2	-
FCN-16s ⁹	85.2	51.7	39.5
Deeplab-LargeFOV ¹⁰	85.6	51.2	39.7
Grid-5LSTM	86.2	51.0	41.2

Table 2:

⁷Sift flow: Dense correspondence across scenes and its applications, PAMI 2011

⁸Finding things: Image parsing with regions and per-exemplar detectors, CVPR 2013

 $^{^9 {\}sf Fully}$ convolutional networks for semantic segmentation, CVPR 2015

 $^{^{10}}$ emantic image segmentation with deep convolutional nets and fully connected crfs, ICLR 2015

†			
†			
†			
†			

Q & A

Questions?

Thank you!