Matrix Theory 1st Assignment

AI24BTECH11017 - Maanya sri

16) Using mathematical induction, prove that $\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \dots + \tan^{-1}\left(\frac{1}{(n^2+n+1)}\right) =$ $\tan^{-1}\left\{\frac{n}{(n+2)}\right\}$

(1993-5 Marks)

17) Prove that $\sum_{r=1}^{k} (-3)^{r-1} {}^{3n}C_{2n-1} = 0$, where k = 1 $\frac{(3n)}{2}$ and *n* is an even positive integer.

(1993-5 Marks)

- 18) If x is not an integral multiple of 2π use mathematical induction to prove that : $\cos x +$ $\cos 2x + \dots + \cos nx = \cos \frac{n+1}{2} x \sin \frac{nx}{2} \operatorname{cosec} \frac{x}{2}$ $(1994-4 \text{ Marks})^{2}$
- 19) Let *n* be a positive integer and $(1 + x + x^2)^n =$ $a_0 + a_1 x + \dots + a_{2n} x^{2n}$. Show that $a_0^2 - a_1^2 + a_2^2 + \dots + a_2 n^2 = a_n$

(1994-5 Marks)

20) Using mathematical induction prove that for every integer $n \ge 1, (3^{2n} - 1)$ is divisible by 2^{n+2} but not by 2^{n+3} .

(1996-3 Marks)

21) Let $0 < A_i < \pi$ for i = 1, 2, ..., n. Use mathematical induction to prove that $\sin A_1$ + $\sin A_2... + \sin A_n \le n \sin \left(\frac{A_1 + \hat{A}_2 + \dots + A_n}{n}\right)$ where ≥ 1 is a natural number .{You may use the fact that $p \sin x + (1-p) \sin y \le \sin \left[px + (1-p)y \right]$, where $0 \le p \le 1$ and $0 \le x, y \le \pi$.

(1997-5 Marks)

22) Let p be a prime number and m a positive integer. By mathematical induction on m, or otherwise, prove that whenever r is an integer such that p does not divide r, p divides ${}^{mp}C_r$ [**Hint:** You may use the fact that $(1 + x)^{(m+1)p} =$ $(1+x)^p (1+x)^{mp}$

(1998-8 Marks)

- 23) Let n be any positive integer. Prove that $\sum_{k=0}^{m} \frac{\binom{2n-k}{k}}{\binom{2n-1}{n}} \cdot \frac{2n-4k+1}{2n-2k+1} 2^{n-2k} = \frac{\binom{n}{m}}{\binom{2n-2m}{n-m}} 2^{n-2m}$ for each nonbe gatuve integer $m \le n$. (Here $\binom{p}{q} = {}^{p}C_{q}$). (1999-10 Marks)
- 24) For any positive integer $m, n(\text{with } n \ge m)$, let $\binom{n}{m} = {}^{n}C_{m}$. Prove that $\binom{n}{m} + \binom{n-1}{m} + \binom{n-2}{m} + \dots + \binom{n-2}{m}$

 $\binom{m}{m} = \binom{n+1}{m+2}$. Hence or otherwise, prove that $\binom{n}{m} + 2\binom{n-1}{m} + 3\binom{n-2}{m} + \dots + (n-m+1)\binom{m}{m} = \binom{n+2}{m+2}$. (2000-6 Marks)

25) For every positive integer n, prove that $\sqrt{(4n+1)} < \sqrt{n} + \sqrt{n+1} < \sqrt{4n+2}$. Hence or otherwise, prove that $\left| \sqrt{n} + \sqrt{(n+1)} \right| =$ $\sqrt{4n+1}$, where [x] denotes the greatest integer not exceeding x.

(2000-6 Marks)

26) Let a, b, c be positive real numbers such that $b^2 - 4ac > 0$ and let $\alpha_1 = c$. Prove by induction that $\alpha_{n+1} = \frac{a\alpha_n^2}{(b^2 - 2a(\alpha_1 + \alpha_2 + ...\alpha_n))}$ is well-defined and $\alpha_{n+1} < \frac{\alpha_n}{2}$ for all n = 1, 2, ... (Here, 'well-defined' means that the denominator in the expression for α_{n+1} is not zero.)

(2001-5 Marks)

27) Use mathematical induction to show that $(25)^{n+1} - 24n + 5735$ is divisible by $(24)^2$ for all n = 1, 2,

28) Prove that $2^{k} \binom{n}{0} \binom{n}{k} - 2^{k-1} \binom{n}{2} \binom{n}{1} \binom{n-1}{k-1} + 2^{k-2} \binom{n-2}{k-2} - \dots (-1)^{k} \binom{n}{k} \binom{n-k}{0} = \binom{n}{k}.$

(2003-2 Marks)

29) A coin has probability p of showing head when tossed. It is tossed n times. Let p_n denote the probability that no two (or more) consequtive heads occur. Prove that $p_1 = 1$, $p_2 = 1 - p^2$ and $p_n = (1 - p).p_{n-1} + p(1 - p)p_{n-2}$ for all $n \ge 3$. Prove by induction on n, that $p_n = A\alpha^n + B\beta^n$ for all $n \ge 1$, where α and β are the roots of quadratic equation $x^2 - (1 - p)x - p(1 - p) = 0$ and $A = \frac{p^2 + \beta - 1}{\alpha \beta - \alpha^2}$, $B = \frac{p^2 + \alpha - 1}{\alpha \beta - \beta^2}$.

(2000-5 Marks)