Replication files for "Spectral estimation of large stochastic blockmodels with discrete nodal covariates"

Angelo Mele

Package installation

To run this code you need to install the grdpg package from Github.

library(devtools)
install_github("/meleangelo/grdpg")

Examples

The examples in the text are generated with the file

• simulations.R

These results are shown in Tables 1, 2, 3 and 4 in the paper.

Monte carlo

Disclaimer: if you run the Monte Carlo code for replication, please note that each network simulation generates large matrices and may overwhelm your RAM. In the simulations we use a PC with 64GB RAM, and for the simulations with n = 10000 we can only use 10 processors. If you use more processors you may run out of memory.

In the Monte Carlo experiments we estimate a model with two binary observed covariates,

$$\mathbf{Z}_i \sim Bernoulli(b_z)$$
 and $\mathbf{W}_i \sim Bernoulli(b_w)$ (1)

and vary the probabilities b_z and b_w , as well as the correlation among the two variables. We estimate the following model in each Monte Carlo design

$$\log\left(\frac{P_{ij}}{1 - P_{ij}}\right) = \mathbf{X}_i^T \mathbf{X}_j + \beta_1 \mathbf{1}_{\{\mathbf{Z}_i = \mathbf{Z}_j\}} + \beta_2 \mathbf{1}_{\{\mathbf{W}_i = \mathbf{W}_j\}}.$$
 (2)

The Monte Carlo design considers networks of sizes n = 2000, 5000, 10000 and we set the number of blocks to K = 2. For all the simulations the parameter value that generates the data is $\beta = (0.5, 0.75)$ and the centers of the blocks are $\nu = (-1.5, 1.0)$.

The Monte Carlo experiments follow 5 different designs, as shown in the following table

Design	π_1	b_z	b_w	correlation
1	0.5	0.5	0.5	independent
2	0.5	0.5	0.5	0.3

Design	π_1	b_z	b_w	correlation
3	0.3	0.5	0.5	independent
4	0.3	0.4	0.6	independent
5	0.3	0.4	0.6	0.3

- Design 1: mc_multiple_covariates.R
- Design 2: mc_multiple_covariates_correlated.R
- Design 3: mc_multiple_covariates_unbalanced.R
- Design 4: mc multiple covariates unbalanced unbalcov.R
- Design 5: mc_multiple_covariates_unbalanced_unbalcov_correlated.R

These results are shown in Tables 5, 6 and 7 in the paper.

Variance plug-in estimator

The plug-in estimator for the variance is tested using the code

• TestingVarianceFormula.R

The results are in Table 8.

Empirical Application to Facebook data

The code for descriptive statistics and estimation is

• FacebookHarvardLarge.R

and the data are cotained in the Matlab file

• Harvard1.mat

The results are in Table 9 and 10 in the paper.