The Analysis of Kosterlitz-Thouless Transition Using Monte Carlo Methods

Naoki Itsui

Department of Physics

Faculty of Science

Hiroshima University

Contents

1. Introduction	3
2. Mermin-Wagner's Theorem	6
3. A definition of Classical 2d XY Model	8
4. Correlation Function	11
5. "Topological Excitation	13
6. Monte Carlo Simulation	16
7. Conclusion	23
Bibliography	

1. Introduction

The Nobel Prize in Physics in 2016 is for theoretical discoveries of topological phase transitions and topological phases of matter [1].

© Nobel Media AB. Photo: A. Mahmoud David J. Thouless Prize share: 1/2

© Nobel Media AB. Photo: A. Mahmoud F. Duncan M. Haldane Prize share: 1/4

© Nobel Media AB. Photo: A. Mahmoud J. Michael Kosterlitz Prize share: 1/4

The Nobel Prize in Physics in 2016 consists Three parts.

- TKNN formula
- Haldane conjecture
- Kosterlitz-Thouless transition \leftarrow I will introduce

Key Word : **Topology**

2. Mermin-Wagner's Theorem

Mermin-Wagner's Theorem

When spacetime dimension d is 2, **continuous symmetry** is not spontaneously broken at finite temperature. When d = 1, continuous symmetry is not spontaneously broken including absolute zore temperature¹[2].

¹Ising model has \mathbb{Z}_2 symmetry for spin flip, which is discrete symmetry so, d=2 Ising model has spontaneous symmetry breaking phase in finite temperature.

3. A definition of Classical 2d XY Model

The Hamiltonian is

$$\begin{split} \mathcal{H} &= -J \sum_{\langle i,j \rangle} S_i \cdot S_j \\ &= -J \sum_{\langle i,j \rangle} \left(S_i^x S_j^x + S_i^y S_j^y \right) \\ &= -J \sum_{\langle i,j \rangle} \cos \left(\theta_i - \theta_j \right) \end{split} \tag{1}$$

We defined $S_i^x = \cos \theta_i$, $S_i^y = \sin \theta_i$ [3], [4].

Figure 3: definitions of $\langle i,j\rangle,\, \boldsymbol{S}_i,\, S_i^x,\, S_i^y,\, \theta_i$

4. Correlation Function

In low temperature, we use **spin wave approximation**.

In high temperature, we use **high temperature expansion**.

$$\text{Low } T: \left\langle \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j} \right\rangle = \left(\frac{1}{\left|\boldsymbol{r}_{i} - \boldsymbol{r}_{j}\right|}\right)^{-\frac{1}{2\pi J\beta}}$$

$$\text{High } T: \left\langle \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j} \right\rangle = \exp\left(-\frac{\left|\boldsymbol{r}_{i} - \boldsymbol{r}_{j}\right|}{\xi}\right), \quad \xi = \left(\log\frac{2}{\beta J}\right)^{-1}$$

5. "Topological Excitation

What are vortices? \Rightarrow singular spin configuration.

Topological charge m defines

$$m = \frac{1}{2\pi} \oint d\mathbf{r} \cdot \nabla \theta = 0, \pm 1, \pm 2, \dots$$
 (3)

We can regard the topological charge m as the electrical charge q in 2d.

In $T > T_c$, vortex excitations can occur.

6. Monte Carlo Simulation

We want to calculate this expectation value

$$\langle \mathbf{S}_j \cdot \mathbf{S}_k \rangle = \sum_i \mathbf{S}_j \cdot \mathbf{S}_k \frac{1}{Z} \exp\left(-\frac{E(C_i)}{k_B T}\right)$$
 (4)

 C_i is a *i*th certain spin configuration, $E(C_i)$ is a total energy of spin configuration C_i .

- \implies I used Metropolis Monte Carlo Method [5] to generate C_i
- 1. consider we change the spin configuration C_i to C_{i+1} .
- 2. Calculate the energy differences $\Delta E = E(C_{i+1}) E(C_i)$.
- 3. If $\Delta E < 0$, the spin configuration changes C_{i+1} .

4. If $\Delta E > 0$, the spin configuration changes to C_{i+1} with probability $\exp\left(-\frac{\Delta E}{k_B T}\right)$.

Figure 6: spin configuration at $T < T_c$. system size = 100×100 .

Figure 7: spin configuration at $T > T_c$. system size = 100×100 .

Figure 8: spin configuration at $T < T_c$. system size = 20×20

Figure 9: spin configuration at $T > T_c$. system size = 20×20

7. Conclusion

- In two dimensions, continuous symmetry breaking does not occur at finite temperature.
- Topological excitations, namely vortices, cause changes in the correlation function.
- We confirmed that correlation function changes between low and high temperature and viewd vortices excitations as demonstrated by the Monte Carlo method.

Other topics related to today's talk

- Renormalization Group Analysis in the Kosterlitz-Thouless Transition [6].
- Experimental Realizations of the Kosterlitz-Thouless Transition.
- Nambu-Goldstone's Theorem and its Generalization.
- What is the phase of matter?
- What is Topological Condensed Matter Physics?

Bibliography

- [1] "Topological phase transitions and topological phases of matter", Royal Swedish Academy of Sciences, 2016.
- [2] 永長直人, "物性論における場の量子論", 岩波オンデマンド ブックス, Jun. 2014.
- [3] J. M. Kosterlitz and D. J. Thouless, "Ordering, metastability and phase transitions in two-dimensional systems", *Journal of Physics C: Solid State Physics*, vol. 6, no. 7, p. 1181, Apr. 1973, doi: 10.1088/0022-3719/6/7/010.

- [4] 高橋和孝, "相転移・臨界現象とくりこみ群", 丸善出版, Apr. 2017.
- [5] 永井佑紀, "1 週間で学べる!Julia 数値計算プログラミング", 講談社, Jun. 2022.
- [6] J. B. Kogut, "An introduction to lattice gauge theory and spin systems", *Rev. Mod. Phys.*, vol. 51, Oct. 1979, doi: 10.1103/RevModPhys.51.659.