CIR ₂	DS de Maths	17/01/2019
<u>-</u>		

Durée 2 heures

Pas de document, ni calculatrice, ni téléphone portable

Les réponses (succinctes) sont à faire sur cette feuille d'énoncé, dans les cadres prévus à cet effet, sans râture ni surcharge.

Exercice 1

Soit
$$\mathcal{C}$$
 la courbe définie en polaires par
$$\begin{cases} \rho = \cos(2\theta) \\ \theta \in \left[-\frac{\pi}{4}, +\frac{\pi}{4} \right] \end{cases}$$

Tracer l'allure de la courbe ${\mathcal C}$ et calculer l'aire du domaine limité par ${\mathcal C}$.

Tracé de la courbe	 Formule à utiliser pour calculer l'aire Une étape du calcul Le résutat
	Le resutat $\int_{-\pi/4}^{\pi/4} \int_{0}^{\rho(\theta)} r dr d\theta$ $\int_{-\pi/4}^{\pi/4} \frac{\cos^{2}(2\theta)}{2} d\theta = \int_{-\pi/4}^{\pi/4} \frac{\cos(4\theta) + 1}{4} d\theta$ $= \pi/8 \approx 0.4 \text{ (voir ordre de grandeur sur la figure)}$
-1	

Exercice 2

Soit la courbe
$$\gamma$$

$$\begin{cases} x(t) = \frac{t}{1+t^2} \\ y(t) = \frac{2}{1+t^2} \end{cases}$$
, $t \in]0,+\infty[$ et \vec{V} le champ de vecteurs $\vec{V} = \begin{pmatrix} 2 \\ \frac{1}{x} \end{pmatrix}$

On étudie la circulation \mathbb{C} de \vec{V} le long de la courbe γ . On appelle J l'intégrale impropre $J = \int_0^\infty \frac{x^2}{\left(1+x^2\right)^2} dx$

Montrer que l'intégrale J converge	Intégrer J par parties en posant $u = x$ et $v' =$
$\frac{x^2}{\left(1+x^2\right)^2} \sim \frac{1}{x^2} \text{ et } \int_1^\infty \frac{dx}{x^2} \text{ converge (Riemann)} \text{ou}$	$u = x \to u' = 1 ; v = \frac{x}{(1+x^2)^2} \to v = -\frac{1}{2} \frac{1}{1+x^2}$
$0 \leqslant \frac{x^2}{\left(1+x^2\right)^2} \leqslant \frac{1}{1+x^2} \operatorname{et} \int_0^\infty \frac{dx}{1+x^2} \operatorname{converge} \left(\operatorname{vers} \frac{\pi}{2}\right)$	$J = \left[-\frac{1}{2} \frac{x}{1+x^2} \right]_0^{\infty} - \int_0^{\infty} -\frac{1}{2} \frac{dx}{1+x^2} = 0 + \frac{1}{2} \left[\arctan x \right]_0^{\infty} = \frac{\pi}{4}$

Calculer le vecteur vitesse $\frac{\overline{di}}{a}$	Exprimer C par une intégrale	Simplifier cette expression en faisant apparaître J .	Résultat : C =
$\frac{dM}{dt} = \begin{pmatrix} \frac{1 - t^2}{(1 + t^2)^2} \\ \frac{-4t}{(1 + t^2)^2} \end{pmatrix}$	$C = \int \vec{V} \cdot \overrightarrow{dM} = \int_0^\infty V \left(\frac{x(t)}{y(t)} \right) \cdot \frac{\overrightarrow{dM}}{dt} dt$ $C = \int_0^\infty \left(\frac{2(1-t^2)}{(1+t^2)^2} + \frac{-4}{1+t^2} \right) dt$	$C = \int_0^\infty \frac{-2 - 6t^2}{\left(1 + t^2\right)^2} dt = \int_0^\infty \frac{-2\left(1 + t^2\right) - 4t^2}{\left(1 + t^2\right)^2} dt$ $C = \int_0^\infty \frac{-2}{1 + t^2} dt - 4\int_0^\infty \frac{t^2}{\left(1 + t^2\right)^2} dt$	$C = -2\frac{\pi}{2} - 4J$ $C = -2\pi$

Exercice 3

Soit l'équation différentielle (1-x) y'+y=x (où x est la variable et y la fonction inconnue),

avec la condition initiale y(0) = 0. On cherche une solution développable en série entière $y = \sum_{n=0}^{\infty} a_n x^n$.

	n=0	
Justifier que $a_0 = 0$	$a_0 = y(0) = 0$	
Justifier que $a_1 = 0$	$a_1 = y'(0)$ et dans l'équa diff, en posant $x = 0$, on obtient $y'(0) = 0$	
Calculer y, y' et xy' sous la forme $\sum_{n=k}^{\infty} \dots x^n$ avec un même k	$y = \sum_{n=1}^{\infty} a_n x^n \text{ ou } \sum_{n=2}^{\infty} a_n x^n \text{ car } a_0 = a_1 = 0 y' = \sum_{n=2}^{\infty} n a_n x^{n-1} = \sum_{n=1}^{\infty} (n+1) a_{n+1} x^n$ $xy' = \sum_{n=2}^{\infty} n a_n x^n = \sum_{n=1}^{\infty} n a_n x^n \text{ car } a_1 = 0$	
Justifier que $a_2 = \dots$	comme $y'-x$ $y'+y=x$, le coefficient de x est 1 : $2a_2-a_1+a_1=1$ et $a_n=\frac{1}{2}$	
Établir une relation de	Pour $n \ge 2$ le coefficient de x^n est nul :	
récurrence sur les a_n	$(n+1)a_{n+1} - na_n + a_n = 0 : a_{n+1} = \frac{n-1}{n+1}a_n \text{ et } a_n = \frac{1}{2}$	
Déterminer le rayon de convergence de la série obtenue	$\frac{a_{n+1}}{a_n} = \frac{n-1}{n+1} \to 1 \text{ donc le rayon de convergence est } 1$	
Calculer a_n en fonction de n seulement (pour $n \ge 2$)	Pour $n \ge 3$ $a_n = \frac{\boxed{n-2}}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{\boxed{n}} \dots \frac{\boxed{4-1}}{4+1} \cdot \frac{3-1}{3+1} \cdot \frac{2-1}{\boxed{2+1}} a_2 = \frac{1}{n(n+1)}$	
Exprimer y' sous forme de série	$y' = \sum_{n=1}^{\infty} (n+1)a_{n+1}x^n = \sum_{n=1}^{\infty} \frac{x^n}{n}$	
Exprimer y' avec les fonctions usuelles	On reconnait le développement en série $y' = -\ln(1-x)$	
usuciies	En intégrant par parties, on trouve $y = (1-x)\ln(1-x)-1+x$ $(y(0) = 0)$	

Exercice 4

Soit $\boldsymbol{\mathcal{S}}$ la surface définie par $-\pi \leqslant x \leqslant \pi$, $\sin x \leqslant y \leqslant \cos x$

Dessiner la surface S et calculer $\iint_S y \ dx \ dy$.

