

Machine learning approaches for Scheduling problem

Master Thesis Presentation

Name: Nga Nguyen – 221188

Email: nga1.nguyen@st.ovgu.de

Program: Operations Research and Business Analytics

Supervisor: Dr. Janis Sebastian Neufeld

AGENDA

- o1 Introduction to Scheduling problems and Machine Learning
- o2 Permutation Flow-shop Scheduling problem
- o₃ Solution approach: Q-Learning
- **04** Experimental results
- o5 Conclusion and further research

► 1. Introduction Scheduling Problems

- **Scheduling** is a decision-making process that is used on a regular basis in many manufacturing and service industries.
- It deals with the allocation of jobs(i.e. the tasks in which each job is divided) to resources over given time periods. The goal is to optimize one or more objectives.
- In manufacturing process:
 - Job: the item you wish to manufacture
 - Resources: Machines
- Minimize production time and costs, by deciding when to make, with which staff, on which equipment.

Time required for each job in each machine

	Machine 0	Machine 1	Machine 2
Job 0	3	2	0
Job 1	2	4	4
Job 2	2	1	3

Source: Google OR tools

Different types of scheduling

► 1. Introduction Scheduling Objectives

Flowtime:

 The sum of all jobs' finishing times.

Makespan:

 The maximum finishing time, which is the time when the last job is completed.

Lateness:

 The difference between the due date and the finishing time.
 When this value is positive, it refers to tardiness, and when negative, the measure is earliness.

Earliness-tardiness:

 Sum of earliness and tardiness.

Machine learning

- "Machine Learning is the field of scientific study that concentrates on induction algorithms and on other algorithms that can be said to "learn."" Ron Kohavi (1998)
- Machine learning algorithms build a model based on sample data, known as training data, in order to make predictions or decisions without explicitly programmed to do so - Arthur Samuel(1959)
- Machine learning is considered as an optimization.
- Application: automatic recommendation, personalized advertisements, object detection in videos and pictures, etc.

Types of Machine learning

Literature review

- The earliest work to be known used **expert systems** to solve scheduling problems (Kanet and Adelsberger, 1987). They proposed a reformulative approach, which focused on proactively restating the problem until a satisfactory solution is easy to be found
- Haldun Aytug and Siddhartha (1994) presented a review of Machine Learning in Scheduling

Supervised learning	Reinforcement learning	
Training examples must be generated from scheduling data. Then these examples are used to build a machine learning model.	Construct the algorithm directly from scheduling data	
 Shahzad and Mebarki (2012) generated training examples with an optimization module which solves instances base on tabu search Frank Benda [2019] generated training samples including different feasible solutions using constraint programming and mixed-integer programming 	 Gabel and Riedmiller (2007) use Reinforcement Learning for scheduling problems, more specifically job shop scheduling. Reyna, Jiménez, Cabrera and Hernández (2015,2017) followed the idea to solve JSSP and FSSP Reyna, Jiménez, Cabrera and Hernández (2019) proposed a new combination of RL, more specifically Q-Learning and a local search in order to give better solution. 	

▶ 2. Problem description

Permutation flow shop Scheduling (P-FSSP)

- A set of *m* machines and a set of *n* jobs
- All jobs have the same processing order through machines
- Each machine processes the jobs in the same order
- Operations cannot be interrupted and each machine can process only one operation at a time.

=> find the job sequences on the machines that minimize the Makespan, which is the maximum completion time of all the operations.

• n! feasible sequences

	Machine 0	Machine 1	Machine 2
Job 0	3	2	0
Job 1	2	4	4
Job 2	2	1	3

▶ 2. Problem description

Permutation flow shop Scheduling (P-FSSP)

Input:

- A set of *m* machines and a set of *n* jobs
- p(i,j) is the processing time of job i on machine j

Need to find:

• A job permutation {J₁, J₂,...,J_n}

Objective:

 Minimize C(J_i, j), the completion time of J_i on machine j is defined as follow:

$$C(J_1, 1) = p(J_1, 1)$$

 $C(J_i, 1) = C(J_{i-1}, 1) + p(J_i, 1)$ for $i = 2,...,n$
 $C(J_i, 1) = C(J_1, j-1) + p(J_1, j)$ for $j = 2,...,m$
 $C(J_i, j) = max \{C(J_{i-1}, j), C(J_i, j-1) + p(J_i, j)\}$
for $i = 2,...,n$; for $j = 2,...,m$
 $C_{max} = C(J_n, m)$ Minimize!

	Machine 0	Machine 1	Machine 2
Job 0	3	2	0
Job 1	2	4	4
Job 2	2	1	3

Feasible Sequence	Makespan
0-1-2	16
0-2-1	15
Etc.	117

► 3. Q —Learning Definition

- Q-Learning is a type of reinforcement learning
- Q-Learning is a model-free algorithm
- Q-Learning learns in an interactive environment by trial and error feedback

An agent

- has a goal
- is able to observe/monitor states
- is able to perform actions that change its current state

Q-value

- indicates the quality of a particular action a in a given state s: Q(s,a)
- is current estimate of sum of future rewards

Q-table

- Store Q-values
- Has one row for each possible state, and one column for each possible action

▶ 3. Q —Learning Definition

- Actions will be chosen using an ϵ -greedy algorithm. This algorithm balances between exploration and exploitation. ϵ is set at the beginning.
- When action a is selected by the agent located in state s, the Q-value for that state-action pair is updated based on the reward received when selecting that action and the best Qvalue for the subsequent state

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a)\right]$$

- $\alpha \in [0, 1]$ is the learning rate
- γ discount factor
- \emph{r} the reward resulting from taking action lpha
- Max_{a'}Q(s',a') is the largest Q value for any action in the current state

▶ 3. Q —Learning for P-FSSP

Define Environment

- States:
 - Jobs left to be processed => 2ⁿ states, n is #jobs
- Actions:
 - Take one job to process => n actions
- Rewards to be maximized:

•
$$r = \frac{1}{Makespan}$$

- $\varepsilon = 0.2$ # greedy policy
- $\alpha = 0.4$ # learning rate
- γ = 0.8 # discount factor

	Machine 0	Machine 1	Machine 2
Job 0	3	2	0
Job 1	2	4	4
Job 2	2	1	3

Actions States	Take Job 0	Take Job 1	Take Job 2
0,1,2	0	0	0
0,1	0	0	
0,2	0		0
1,2		0	0
0	0		
1		0	
2			0
Ø			

▶ 3. Q —Learning for P-FSSP Pseudo-code

Initialize : $Q(s,a) = \{\}$ $Best = \{\}$ for each episode step do

while not_finished(all jobs)

Initialize $s = \{0,...,n\}$

Choose a from s using policy derived from Q(e.g., ϵ -greedy)

Take action a, observe state s' and r as 1/makespan(s')

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a)\right]$$

$$s \leftarrow s'$$

end while

if makespan(s) < makespan(Best):</pre>

Best \leftarrow s

end for

1st episode:

- Current state: [0,1,2]
- Choose a random action: [1]
- Sequence: [1]

• Reward
$$r = \frac{1}{Makespan(1)} = \frac{1}{2+4+4} = 0.1$$

• New Q([0,1,2],[1])

=
$$Q([0,1,2],[1]) + \alpha (r + \gamma^* max(Q([0,2],0),Q([0,2],2)) - Q([0,1,2],[1]))$$

= 0.04

ε = 0.2
$\alpha = 0.4$
y = 0.8

	Machine 0	Machine 1	Machine 2
Job 0	3	2	0
Job 1	2	4	4
Job 2	2	1	3

States Actions	Take Job 0	Take Job 1	Take Job 2
0,1,2	0	0	0
0,1	0	0	
0,2	0		0
1,2		0	0
0	0		
1		0	
2			0
Ø			

1st episode:

- Current state: [0,1,2]
- Choose a random action: [1]
- Sequence: [1]

• Reward
$$r = \frac{1}{Makespan(1)} = \frac{1}{2+4+4} = 0.1$$

• New Q([0,1,2],[1])

=
$$Q([0,1,2],[1]) + \alpha (r + \gamma*max(Q([0,2],0),Q([0,2],2)) - Q([0,1,2],[1]))$$

$$=$$
 0 $+0.4(0.1 + 0.1)$

$$= 0.04$$

ε = 0.2
$\alpha = 0.4$

	Machine 0	Machine 1	Machine 2
Job 0	3	2	0
Job 1	2	4	4
Job 2	2	1	3

Actions States	Take Job 0	Take Job 1	Take Job 2
0,1,2	0	0.04	0
0,1	0	0	
0,2	0		0
1,2		0	0
0	0		
1		0	
2			0
Ø			

1st episode:

- Current state: [0,2]
- Choose a random action: [2]
- Sequence: [1,2]

• Reward
$$r = \frac{1}{Makespan(1,2)} = \frac{1}{13} = 0.0769$$

• New Q([0,2],[2])

=
$$Q([0,2],[2]) + \alpha (r + \gamma^* max(Q([0],0) - Q([0,2],[2]))$$

$$= 0 +0.4(0.0769+0.8*0 - 0)$$

$$= 0.0307$$

ε = 0.2
$\alpha = 0.4$

	Machine 0	Machine 1	Machine 2
Job 0	3	2	0
Job 1	2	4	4
Job 2	2	1	3

Actions States	Take Job 0	Take Job 1	Take Job 2
0,1,2	0	0.04	0
0,1	0	0	
0,2	0		0
1,2		0	0
0	0		
1		0	
2			0
Ø			

1st episode:

- Current state: [0,2]
- Choose a random action: [2]
- Sequence: [1,2]

• Reward
$$r = \frac{1}{Makespan(1,2)} = \frac{1}{13} = 0.0769$$

• New Q([0,2],[2])

=
$$Q([0,2],[2]) + \alpha (r + \gamma^* max(Q([0],0) - Q([0,2],[2]))$$

$$= 0 +0.4(0.0769+0.8*0 - 0)$$

$$= 0.0307$$

ε = 0.2
$\alpha = 0.4$

	Machine 0	Machine 1	Machine 2
Job 0	3	2	0
Job 1	2	4	4
Job 2	2	1	3

Actions States	Take Job 0	Take Job 1	Take Job 2
0,1,2	0	0.04	0
0,1	0	0	
0,2	0		0.0307
1,2		0	0
0	0		
1		0	
2			0
Ø			

1st episode:

- Current state: [0]
- Choose a random action: [0]
- Sequence: [1,2,0]

• Reward
$$r = \frac{1}{Makespan(1,2,0)} = \frac{1}{13} = 0.0769$$

• New Q([0],[0])

=
$$Q([0],[0]) + \alpha (r + \gamma*max(Q([0],\emptyset)-Q([0],[0])$$

$$=$$
 0 +0.4(0.0769+ 0.8* 0 - 0)

= 0.0307

ε =	0.2
α =	0.4

	Machine 0	Machine 1	Machine 2
Job 0	3	2	0
Job 1	2	4	4
Job 2	2	1	3

Actions States	Take Job 0	Take Job 1	Take Job 2
0,1,2	0	0.04	0
0,1	0	0	
0,2	0		0.0307
1,2		0	0
0	0		
1		0	
2			0
Ø			

1st episode:

- Current state: [0]
- Choose a random action: [0]
- Sequence: [1,2,0]

• Reward
$$r = \frac{1}{Makespan(1,2,0)} = \frac{1}{12} = 0.0769$$

• New Q([0],[0])

=
$$Q([0],[0]) + \alpha (r + \gamma*max(Q([0],\emptyset)-Q([0],[0])$$

$$=$$
 0 +0.4(0.0769+0.8*0 - 0)

= 0.0307

• Makespan= 12

ε = 0.2
$\alpha = 0.4$
y = 0.8

	Machine 0	Machine 1	Machine 2
Job 0	3	2	0
Job 1	2	4	4
Job 2	2	1	3

Actions States	Take Job 0	Take Job 1	Take Job 2
0,1,2	0	0.04	0
0,1	0	0	
0,2	0		0.0307
1,2		0	0
0	0.0307		
1		0	
2			0
Ø			

2st episode:

- Current state: [0,1,2]
- Base on ε-greedy algorithm:
 - Generate a random number $r=0.3 > \varepsilon$
 - Choose the best action => choose job 1
- Sequence: [1]
- Reward $r = \frac{1}{Makespan(1)} = \frac{1}{10} = 0.1$
- New_Q([0,1,2],[1])

=
$$Q([0,1,2],[1]) + \alpha (r + \gamma^* max(Q([0,2],0),Q([0,2],2)) - Q([0,1,2],[1])$$

$$= 0.04 +0.4(0.1 + 0.8*max(0;0.0307) - 0.04)$$

$$= 0.0738$$

$\epsilon = 0.2$
$\alpha = 0.4$
y = 0.8

	Machine 0	Machine 1	Machine 2
Job 0	3	2	0
Job 1	2	4	4
Job 2	2	1	3

Actions States	Take Job 0	Take Job 1	Take Job 2
0,1,2	0	0.04	0
0,1	0	0	
0,2	0		0.0307
1,2		0	0
0	0.0307		
1		0	
2			0
Ø			

2st episode:

- Current state: [0,1,2]
- Base on ε-greedy algorithm:
 - Generate a random number $r=0.3 > \varepsilon$
 - Choose the best action => choose job 1
- Sequence: [1]
- Reward $r = \frac{1}{Makespan(1)} = \frac{1}{10} = 0.1$
- New_Q([0,1,2],[1])

=
$$Q([0,1,2],[1]) + \alpha (r + \gamma^* max(Q([0,2],0),Q([0,2],2)) - Q([0,1,2],[1])$$

$$= 0.04 +0.4(0.1 + 0.8*max(0;0.0307) - 0.04)$$

$$= 0.0738$$

$\epsilon = 0.2$
$\alpha = 0.4$
y = 0.8

	Machine 0	Machine 1	Machine 2
Job 0	3	2	0
Job 1	2	4	4
Job 2	2	1	3

Actions States	Take Job 0	Take Job 1	Take Job 2
0,1,2	0	0.0738	0
0,1	0	0	
0,2	0		0.0307
1,2		0	0
0	0.0307		
1		0	
2			0
Ø			

▶ 3. Q —Learning for P-FSSP

Learning

$$\varepsilon = 0.2$$

 $\alpha = 0.4$
 $\gamma = 0.8$

	Machine 0	Machine 1	Machine 2
Job 0	3	2	0
Job 1	2	4	4
Job 2	2	1	3

Makespan of each episode while learning

Best sequence: 2-1-0

Best Makespan: 12

► 4. Experimental results

- The algorithm is tested on 30 small datasets with 10 jobs and up to 20 machines
 - EPSILON = 0.2 # greedy police
 - ALPHA = 0.4 # learning rate
 - GAMMA = 0.8 # discount factor
 - MAX_EPISODES = 3000
- Percentage error = $\frac{\text{Makespan}_{\text{Qlearning}} \text{Makespan}_{\text{optimal}}}{\text{Makespan}_{\text{optimal}}} \times 100\%$

Instance	Optimal Solution	Q learning
10x10	1097	1138
10x15	1307	1338
10x20	1652	1683

Data set (increase by size)

▶ 5. Conclusion and Further research

Conclusion

- The proposed method constitutes an interesting alternative to solve complex scheduling problems
- This new approach gives a satisfactory solution

Further research

- Application of the approach in other types of scheduling problems
- The effect of parameters to the result
- Apply the algorithm with bigger dataset
- Compare with metaheuristics in terms of computational time and result

▶ 5. References

- Yunior César Fonseca-Reyna (2019)- A reinforcement learning approach for scheduling problems (2015)
- Yunior César Fonseca-Reyna(2017) An Improvement of Reinforcement Learning Approach for Permutation of Flow-Shop Scheduling Problems
- Yunior César Fonseca-Reyna(2015) Q-learning algorithm performance for m-machine, n-jobs flow shop scheduling problems to minimize makespan
- Frank Benda (2019) A machine learning approach for flow shop scheduling problems with alternative resources, sequence-dependent setup times, and blocking
- Haldun Aytug, Bhattacharyya (1994)- A Review of Machine Learning in Scheduling
- Yailen Martínez Jiménez (2012)- A Generic Multi-Agent Reinforcement Learning Approach for Scheduling Problems
- Tom Mitchell (1997) Machine Learning

1/22/2021 27

THANK YOU FOR YOUR ATTENTION