

Lecture 6: Policy Gradient II

12th April. 2022

Recap: policy gradients

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

Causality: policy at time t' cannot affect reward at time t when t < t'

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t' \in t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$
"reward to go"

 $\hat{Q}_{i,t}$: estimate of expected reward if we take action $\mathbf{a}_{i,t}$ in state $\mathbf{s}_{i,t}$ can we get a better estimate?

 $\hat{Q}_{i,t}$

$$Q(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^T E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$$
: true expected reward-to-go

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

Recap: policy gradients

REINFORCE algorithm:

1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run the policy)

2.
$$\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \left(\sum_{t'=t}^{T} r(\mathbf{s}_{t'}^{i}, \mathbf{a}_{t'}^{i}) \right) \right)$$

3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \hat{Q}_{i,t}^{\pi}$$

"reward to go"

Implementing Policy Gradients

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \hat{Q}_{i,t}$$
 pretty inefficient to compute these explicitly!

How can we compute policy gradients with automatic differentiation?

We need a graph such that its gradient is the policy gradient!

maximum likelihood:
$$\nabla_{\theta} J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \qquad J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t})$$

Just implement "pseudo-loss" as a weighted maximum likelihood:

$$\tilde{J}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \hat{Q}_{i,t}$$
 cross entropy (discrete) or squared error (Gaussian)

Recap: policy gradients

Pseudocode example (with discrete actions):

Maximum likelihood:

```
# Given:
# actions - (N*T) x Da tensor of actions
# states - (N*T) x Ds tensor of states
# Build the graph:
logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative_likelihoods = tf.nn.softmax_cross_entropy_with_logits(labels=actions, logits=logits)
loss = tf.reduce_mean(negative_likelihoods)
gradients = loss.gradients(loss, variables)
```

Policy gradient:

```
# Given:
# actions - (N*T) x Da tensor of actions
# states - (N*T) x Ds tensor of states
# q_values - (N*T) x 1 tensor of estimated state-action values
# Build the graph:
logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative_likelihoods = tf.nn.softmax_cross_entropy_with_logits(labels=actions, logits=logits)
weighted_negative_likelihoods = tf.multiply(negative_likelihoods, q_values)
loss = tf.reduce_mean(weighted_negative_likelihoods)
gradients = loss.gradients(loss, variables)
```

$$ilde{J}(heta) pprox rac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_{ heta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}|\hat{Q}_{i,t})$$
q_values

Policy gradient in practice

- Remember that the gradient has high variance
 - This isn't the same as supervised learning!
 - Gradients will be really noisy!
- Consider using much larger batches
- Tweaking learning rates is very hard
 - Adaptive step size rules like ADAM can be OK-ish
 - We'll learn about policy gradient-specific learning rate adjustment methods later!

What about the baseline?

$$Q(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^T E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$$
: true expected reward-to-go

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) - V(\mathbf{s}_{i,t}) \right)$$

$$b_{t} = \frac{1}{N} \sum_{i} Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \quad \text{average what?}$$

$$b_t = \frac{1}{N} \sum_{i} Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$
 average what?

$$V(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}[Q(\mathbf{s}_t, \mathbf{a}_t)]$$

State & state-action value functions

$$Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}}[r(\mathbf{s}_{t'}, \mathbf{a}_{t'})|\mathbf{s}_t, \mathbf{a}_t]$$
: total reward from taking \mathbf{a}_t in \mathbf{s}_t

$$V^{\pi}(\mathbf{s}_t) = E_{\mathbf{a}_t \sim \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)}[Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)]$$
: total reward from \mathbf{s}_t

$$A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) - V^{\pi}(\mathbf{s}_t)$$
: how much better \mathbf{a}_t is

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) A^{\pi}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

fit $Q^\pi, V^\pi, \text{ or } A^\pi$ generate samples (i.e. run the policy)

improve the policy $\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta)$

the better this estimate, the lower the variance

$$Q^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) = r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \sum_{t'=t+1}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t}, \mathbf{a}_{t} \right]$$
$$A^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) \approx r(\mathbf{s}_{t}, \mathbf{a}_{t}) + V^{\pi}(\mathbf{s}_{t+1}) - V^{\pi}(\mathbf{s}_{t+1})$$

let's just fit $V^{\pi}(\mathbf{s})!$

An actor-critic algorithm

batch actor-critic algorithm:

- 1. sample $\{\mathbf{s}_i, \mathbf{a}_i\}$ from $\pi_{\theta}(\mathbf{a}|\mathbf{s})$ (run it on the robot)
- 2. fit $\hat{V}_{\phi}^{\pi}(\mathbf{s})$ to sampled reward sums
- 3. evaluate $\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \hat{V}_{\phi}^{\pi}(\mathbf{s}_i') \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$
- 4. $\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i},\mathbf{a}_{i})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

$$y_{i,t} \approx \sum_{t'=t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'})$$

$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

$$V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t \right]$$

Architecture design

online actor-critic algorithm:

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$
- 2. update \hat{V}_{ϕ}^{π} using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$
- 3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}') \hat{V}_{\phi}^{\pi}(\mathbf{s})$
- 4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s}, \mathbf{a})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

- + simple & stable
- no shared features between actor & critic

Online actor-critic in practice

online actor-critic algorithm:

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$
- 2. update \hat{V}_{ϕ}^{π} using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$ works best with a batch (e.g., parallel workers)

 3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}') \hat{V}_{\phi}^{\pi}(\mathbf{s})$ 4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s}, \mathbf{a})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

synchronized parallel actor-critic

get
$$(\mathbf{s}, \mathbf{a}, \mathbf{s}', r) \leftarrow$$

update $\theta \leftarrow$

get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r) \leftarrow$

update $\theta \leftarrow$

asynchronous parallel actor-critic

Can we remove the on policy assumption entirely?

online actor-critic algorithm:

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$
- 2. update \hat{V}_{ϕ}^{π} using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$
- 3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}') \hat{V}_{\phi}^{\pi}(\mathbf{s})$
- 4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s},\mathbf{a})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

form a **batch** by using old previously seen transitions

off-policy actor-critic

$$\begin{array}{c} \text{get } (\mathbf{s}, \mathbf{a}, \mathbf{s}', r) \longleftarrow \\ \text{update } \theta \longleftarrow \\ \text{get } (\mathbf{s}, \mathbf{a}, \mathbf{s}', r) \longleftarrow \\ \text{update } \theta \longleftarrow \\ \text{transitions that} \\ \text{to we saw in prior} \\ \text{time steps} \end{array}$$

Can we remove the on policy assumption entirely?

online actor-critic algorithm:

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$, store in \mathcal{R}
- 2. sample a batch $\{\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i'\}$ from buffer \mathcal{R}
- 3. update \hat{V}_{ϕ}^{π} using targets $y_i \in r_i + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_i')$ to each \mathbf{s}_i
- 4. evaluate $\hat{A}^{\pi}(\mathbf{s}_i, \mathbf{a}_i) = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_i') \hat{V}_{\phi}^{\pi}(\mathbf{s}_i)$
- 5. $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i}) \hat{\boldsymbol{\lambda}}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i})$
- 6. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

replay buffer

$$\mathcal{L}(\phi) = rac{1}{N} \sum_i \left\| \hat{V}_\phi^\pi(\mathbf{s}_i) - y_i
ight\|^2$$
 batch size

not the right target value

not the action
$$\pi_{\theta}$$
 would have taken!

3. update \hat{Q}_{ϕ}^{π} using targets $y_i = r_i + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_i')$ for each $\mathbf{s}_i, \mathbf{a}_i$

$$= r_i + \gamma \hat{Q}_{\phi}^{\pi}(\mathbf{s}_i', \mathbf{a}_i')$$

$$\uparrow$$

$$\mathbf{not}$$
 from replay buffer \mathcal{R} !

$$\mathbf{a}_{i}' \sim \pi_{\theta}(\mathbf{a}_{i}'|\mathbf{s}_{i}')$$

$$V^{\pi}(\mathbf{s}_{t}) = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t} \right] = E_{\mathbf{a} \sim \pi(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[Q(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

not the action π_{θ} would have taken! use the same trick, but this time for \mathbf{a}_i rather than \mathbf{a}_i' ! sample $\mathbf{a}_i^{\pi} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s}_i)$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}^{\pi}|\mathbf{s}_{i}) \hat{A}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i}^{\pi})$$

$$\uparrow$$

$$\mathbf{not} \text{ from replay buffer } \mathcal{R}!$$

The off-policy AC

online actor-critic algorithm:

2. update
$$\hat{V}_{\phi}^{\pi}$$
 using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$

3. evaluate
$$\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}') - \hat{V}_{\phi}^{\pi}(\mathbf{s})$$

4.
$$\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s},\mathbf{a})$$

5.
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

form a **batch** by using old previously seen transitions

online actor-critic algorithm:

2. sample a batch $\{\mathbf{s}_i, \mathbf{a}_i, r_i, \mathbf{s}_i'\}$ from buffer \mathcal{R}

3. update \hat{Q}_{ϕ}^{π} using targets $y_i = r_i + \gamma \hat{Q}_{\phi}^{\pi}(\mathbf{s}_i', \mathbf{a}_i')$ for each $\mathbf{s}_i, \mathbf{a}_i$

4. $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}^{\pi}|\mathbf{s}_{i}) \hat{Q}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i}^{\pi}) \text{ where } \mathbf{a}_{i}^{\pi} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s}_{i})$

5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Policy gradient is on-policy

$$\theta^{\star} = \arg\max_{\theta} J(\theta)$$

$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$$

$$\nabla_{\theta} J(\theta) = E_{\underline{\tau \sim p_{\theta}(\tau)}} [\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]$$
 this is trouble...

- Neural networks change only a little bit with each gradient step
- On-policy learning can be extremely inefficient!

can't just skip this!

REINFORCE algorithm:

- 1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run it on the robot)
- 2. $\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \right) \left(\sum_{t} r(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) \right)$
 - 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Off-policy learning & importance sampling

$$\theta^* = \arg\max_{\theta} J(\theta)$$

$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$$

what if we don't have samples from $p_{\theta}(\tau)$? (we have samples from some $\bar{p}(\tau)$ instead)

$$J(\theta) = E_{\tau \sim \bar{p}(\tau)} \left[\frac{p_{\theta}(\tau)}{\bar{p}(\tau)} r(\tau) \right]$$

$$p_{\theta}(\tau) = p(\mathbf{s}_1) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\frac{p_{\theta}(\tau)}{\bar{p}(\tau)} = \frac{p(\mathbf{s}_1) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)}{p(\mathbf{s}_1) \prod_{t=1}^{T} \bar{\pi}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)} = \frac{\prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}{\prod_{t=1}^{T} \bar{\pi}(\mathbf{a}_t | \mathbf{s}_t)}$$

importance sampling

$$E_{x \sim p(x)}[f(x)] = \int p(x)f(x)dx$$

$$= \int \frac{q(x)}{q(x)}p(x)f(x)dx$$

$$= \int q(x)\frac{p(x)}{q(x)}f(x)dx$$

$$= E_{x \sim q(x)}\left[\frac{p(x)}{q(x)}f(x)\right]$$

Deriving the policy gradient with IS

$$\theta^{\star} = \arg\max_{\theta} J(\theta)$$

$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$$

can we estimate the value of some new parameters θ' ?

$$J(heta') = E_{ au \sim p_{ heta}(au)} \left[\underbrace{\frac{p_{ heta'}(au)}{p_{ heta}(au)}}_{p_{ heta}(au)} r(au)
ight]$$
 the only bit that depends on $heta'$

$$\nabla_{\theta'} J(\theta') = E_{\tau \sim p_{\theta}(\tau)} \left[\frac{\nabla_{\theta'} p_{\theta'}(\tau)}{p_{\theta}(\tau)} r(\tau) \right] = E_{\tau \sim p_{\theta}(\tau)} \left[\frac{p_{\theta'}(\tau)}{p_{\theta}(\tau)} \nabla_{\theta'} \log p_{\theta'}(\tau) r(\tau) \right]$$

now estimate locally, at $\theta = \theta'$: $\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]$

a convenient identity

$$p_{\theta}(\tau)\nabla_{\theta}\log p_{\theta}(\tau) = \nabla_{\theta}p_{\theta}(\tau)$$

The off-policy policy gradient

$$\theta^* = \arg\max_{\theta} J(\theta)$$
 $J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$

$$\nabla_{\theta'} J(\theta') = E_{\tau \sim p_{\theta}(\tau)} \left[\frac{p_{\theta'}(\tau)}{p_{\theta}(\tau)} \nabla_{\theta'} \log \pi_{\theta'}(\tau) r(\tau) \right] \quad \text{when } \theta \neq \theta'$$

$$\frac{p_{\theta'}(\tau)}{p_{\theta}(\tau)} = \frac{\prod_{t=1}^{T} \pi_{\theta'}(\mathbf{a}_t | \mathbf{s}_t)}{\prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}$$

$$= E_{\tau \sim p_{\theta}(\tau)} \left[\left(\prod_{t=1}^{T} \frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \right) \left(\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right]$$
what about causality?

$$= E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) \left(\prod_{\underline{t'}=1}^{t} \frac{\pi_{\theta'}(\mathbf{a}_{t'}|\mathbf{s}_{t'})}{\pi_{\theta}(\mathbf{a}_{t'}|\mathbf{s}_{t'})} \right) \left(\sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \left(\prod_{\underline{t''}=t}^{t'} \frac{\pi_{\theta'}(\mathbf{a}_{t''}|\mathbf{s}_{t''})}{\pi_{\theta}(\mathbf{a}_{t''}|\mathbf{s}_{t''})} \right) \right) \right]$$

future actions don't affect current weight

if we ignore this, we get a policy iteration algorithm (more on this in a later lecture)

A first-order approximation for IS (preview)

$$\nabla_{\theta'} J(\theta') = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) \left(\prod_{t'=1}^{t} \frac{\pi_{\theta'}(\mathbf{a}_{t'}|\mathbf{s}_{t'})}{\pi_{\theta}(\mathbf{a}_{t'}|\mathbf{s}_{t'})} \right) \left(\sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right) \right]$$

exponential in T...

let's write the objective a bit differently...

on-policy policy gradient:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \hat{Q}_{i,t}$$

off-policy policy gradient:
$$\nabla_{\theta'} J(\theta') \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \frac{\pi_{\theta'}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})}{\pi_{\theta}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \hat{Q}_{i,t}$$

We'll see why this is reasonable later in the course!

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \frac{\pi_{\theta'}(\mathbf{s}_{i,t})}{\pi_{\theta}(\mathbf{s}_{i,t})} \frac{\pi_{\theta'}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t})}{\pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t})} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \hat{Q}_{i,t}$$

ignore this part

Why does policy gradient work?

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \hat{A}_{i,t}^{\pi}$$

- 1. Estimate $\hat{A}^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ for current policy π
- 2. Use $\hat{A}^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ to get improved policy π'

look familiar?

policy iteration algorithm:

- 1. evaluate $A^{\pi}(\mathbf{s}, \mathbf{a})$
- 2. set $\pi \leftarrow \pi'$

Policy gradient as policy iteration

claim:
$$J(\theta') - J(\theta) = E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t} \gamma^t A^{\pi_{\theta}}(\mathbf{s}_t, \mathbf{a}_t) \right] \quad J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} \gamma^t r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

Policy gradient as policy iteration

$$\begin{aligned} \text{claim:} J(\theta') - J(\theta) &= E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t} \gamma^t A^{\pi_{\theta}}(\mathbf{s}_t, \mathbf{a}_t) \right] \quad J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} \gamma^t r(\mathbf{s}_t, \mathbf{a}_t) \right] \\ J(\theta') - J(\theta) &= J(\theta') - E_{\mathbf{s}_0 \sim p(\mathbf{s}_0)} \left[V^{\pi_{\theta}}(\mathbf{s}_0) \right] \\ &= J(\theta') - E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t V^{\pi_{\theta}}(\mathbf{s}_t) - \sum_{t=1}^{\infty} \gamma^t V^{\pi_{\theta}}(\mathbf{s}_t) \right] \\ &= J(\theta') + E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t (\gamma V^{\pi_{\theta}}(\mathbf{s}_{t+1}) - V^{\pi_{\theta}}(\mathbf{s}_t)) \right] \\ &= E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t r(\mathbf{s}_t, \mathbf{a}_t) \right] + E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t (\gamma V^{\pi_{\theta}}(\mathbf{s}_{t+1}) - V^{\pi_{\theta}}(\mathbf{s}_t)) \right] \\ &= E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t r(\mathbf{s}_t, \mathbf{a}_t) + \gamma V^{\pi_{\theta}}(\mathbf{s}_{t+1}) - V^{\pi_{\theta}}(\mathbf{s}_t) \right] \\ &= E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi_{\theta}}(\mathbf{s}_t, \mathbf{a}_t) \right] \end{aligned}$$

Policy gradient as policy iteration

$$J(\theta') - J(\theta) = E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t} \gamma^t A^{\pi_{\theta}}(\mathbf{s}_t, \mathbf{a}_t) \right]$$
expectation under $\pi_{\theta'}$ advant

$$E_{x \sim p(x)}[f(x)] = \int p(x)f(x)dx$$

$$= \int \frac{q(x)}{q(x)}p(x)f(x)dx$$

$$= \int q(x)\frac{p(x)}{q(x)}f(x)dx$$

$$= E_{x \sim q(x)}\left[\frac{p(x)}{q(x)}f(x)\right]$$

advantage under π_{θ}

$$E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] = \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta'}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right]$$

$$= \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta'}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right]$$

is it OK to use $p_{\theta}(\mathbf{s}_t)$ instead?

Ignoring distribution mismatch?

$$\sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta'}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right] \approx \sum_{t} E_{\mathbf{s}_{t}} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\mathbf{a}_{t}|\mathbf{s}_{t}}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right]$$
why do we want this to be true?

why do we want this to be true?

$$J(\theta') - J(\theta) \approx \bar{A}(\theta') \quad \Rightarrow \quad \theta' \leftarrow \arg\max_{\theta'} \bar{A}(\theta)$$

2. Use $\hat{A}^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ to get improved policy π'

is it true? and when?

Claim: $p_{\theta}(\mathbf{s}_t)$ is close to $p_{\theta'}(\mathbf{s}_t)$ when π_{θ} is close to $\pi_{\theta'}$

Bounding the distribution change

Claim: $p_{\theta}(\mathbf{s}_t)$ is close to $p_{\theta'}(\mathbf{s}_t)$ when π_{θ} is close to $\pi_{\theta'}$

Simple case: assume π_{θ} is a deterministic policy $\mathbf{a}_t = \pi_{\theta}(\mathbf{s}_t)$

 $\pi_{\theta'}$ is close to π_{θ} if $\pi_{\theta'}(\mathbf{a}_t \neq \pi_{\theta}(\mathbf{s}_t)|\mathbf{s}_t) \leq \epsilon$

$$p_{\theta'}(\mathbf{s}_t) = (1 - \epsilon)^t p_{\theta}(\mathbf{s}_t) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}(\mathbf{s}_t)$$
probability we made no mistakes some *other* distribution

$$|p_{\theta'}(\mathbf{s}_t) - p_{\theta}(\mathbf{s}_t)| = (1 - (1 - \epsilon)^t)|p_{\text{mistake}}(\mathbf{s}_t) - p_{\theta}(\mathbf{s}_t)| \le 2(1 - (1 - \epsilon)^t)$$
useful identity: $(1 - \epsilon)^t \ge 1 - \epsilon t$ for $\epsilon \in [0, 1]$ $\le 2\epsilon t$

not a great bound, but a bound!

Bounding the distribution change

Claim: $p_{\theta}(\mathbf{s}_t)$ is close to $p_{\theta'}(\mathbf{s}_t)$ when π_{θ} is close to $\pi_{\theta'}$

General case: assume π_{θ} is an arbitrary distribution

 $\pi_{\theta'}$ is close to π_{θ} if $|\pi_{\theta'}(\mathbf{a}_t|\mathbf{s}_t) - \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)| \leq \epsilon$ for all \mathbf{s}_t

Useful lemma: if $|p_X(x)-p_Y(x)| = \epsilon$, exists p(x,y) such that $p(x) = p_X(x)$ and $p(y) = p_Y(y)$ and $p(x = y) = 1 - \epsilon$ $\Rightarrow p_X(x)$ "agrees" with $p_Y(y)$ with probability ϵ $\Rightarrow \pi_{\theta'}(\mathbf{a}_t|\mathbf{s}_t)$ takes a different action than $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ with probability at most ϵ

$$|p_{\theta'}(\mathbf{s}_t) - p_{\theta}(\mathbf{s}_t)| = (1 - (1 - \epsilon)^t)|p_{\text{mistake}}(\mathbf{s}_t) - p_{\theta}(\mathbf{s}_t)| \le 2(1 - (1 - \epsilon)^t)$$

$$\le 2\epsilon t$$

Bounding the objective value

 $\pi_{\theta'}$ is close to π_{θ} if $|\pi_{\theta'}(\mathbf{a}_t|\mathbf{s}_t) - \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)| \leq \epsilon$ for all \mathbf{s}_t

$$|p_{\theta'}(\mathbf{s}_t) - p_{\theta}(\mathbf{s}_t)| \le 2\epsilon t$$

$$E_{p_{\theta'}(\mathbf{s}_t)}[f(\mathbf{s}_t)] = \sum_{\mathbf{s}_t} p_{\theta'}(\mathbf{s}_t) f(\mathbf{s}_t) \ge \sum_{\mathbf{s}_t} p_{\theta}(\mathbf{s}_t) f(\mathbf{s}_t) - |p_{\theta}(\mathbf{s}_t) - p_{\theta'}(\mathbf{s}_t)| \max_{\mathbf{s}_t} f(\mathbf{s}_t)$$

$$\ge E_{p_{\theta}(\mathbf{s}_t)}[f(\mathbf{s}_t)] - 2\epsilon t \max_{\mathbf{s}_t} f(\mathbf{s}_t)$$

$$\sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta'}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right] \geq O(Tr_{\max}) \text{ or } O\left(\frac{r_{\max}}{1 - \gamma}\right)$$

$$\sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right] - \sum_{t} 2\epsilon t C$$

maximizing this maximizes a bound on the thing we want!

$$\theta' \leftarrow \arg \max_{\theta'} \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right]$$
such that $|\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) - \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})| \leq \epsilon$
for small enough ϵ , this is guaranteed to improve $J(\theta') - J(\theta)$

Policy Gradients with Constraints

Claim: $p_{\theta}(\mathbf{s}_t)$ is close to $p_{\theta'}(\mathbf{s}_t)$ when π_{θ} is close to $\pi_{\theta'}$

 $\pi_{\theta'}$ is close to π_{θ} if $|\pi_{\theta'}(\mathbf{a}_t|\mathbf{s}_t) - \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)| \leq \epsilon$ for all \mathbf{s}_t

$$|p_{\theta'}(\mathbf{s}_t) - p_{\theta}(\mathbf{s}_t)| \le 2\epsilon t$$

a more convenient bound: $|\pi_{\theta'}(\mathbf{a}_t|\mathbf{s}_t) - \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)| \leq \sqrt{\frac{1}{2}D_{\mathrm{KL}}(\pi_{\theta'}(\mathbf{a}_t|\mathbf{s}_t)|\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t))}$

 $\Rightarrow D_{\mathrm{KL}}(\pi_{\theta'}(\mathbf{a}_t|\mathbf{s}_t)||\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t))$ bounds state marginal difference

$$D_{\text{KL}}(p_1(x)||p_2(x)) = E_{x \sim p_1(x)} \left[\log \frac{p_1(x)}{p_2(x)} \right]$$

KL divergence has some very convenient properties that make it much easier to approximate!

How do we enforce the constraint?

$$\theta' \leftarrow \arg \max_{\theta'} \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right]$$
such that $D_{\mathrm{KL}}(\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) \| \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})) \leq \epsilon$

$$\mathcal{L}(\theta', \lambda) = \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right] - \lambda \left(D_{\mathrm{KL}}(\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) \| \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})) - \epsilon \right)$$

- 1. Maximize $\mathcal{L}(\theta', \lambda)$ with respect to θ' \leftarrow can do this incompletely (for a few grad steps)
- 2. $\lambda \leftarrow \lambda + \alpha(D_{\mathrm{KL}}(\pi_{\theta'}(\mathbf{a}_t|\mathbf{s}_t)||\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)) \epsilon)$

Intuition: raise λ if constraint violated too much, else lower it an instance of dual gradient descent (more on this later!)

Natural Gradient

$$\frac{\bar{A}(\theta')}{\theta' \leftarrow \arg \max_{\theta'} \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right]}$$
such that $D_{\mathrm{KL}}(\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) || \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})) \leq \epsilon$

for small enough ϵ , this is guaranteed to improve $J(\theta') - J(\theta)$

$$\theta' \leftarrow \arg \max_{\theta'} \nabla_{\theta} \bar{A}(\theta)^{T} (\theta' - \theta)$$

such that $D_{\text{KL}}(\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) || \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})) \leq \epsilon$

Use first order Taylor approximation for objective (a.k.a., linearization)

Can we just use the gradient then?

$$\theta' \leftarrow \arg \max_{\theta'} \nabla_{\theta} J(\theta)^{T} (\theta' - \theta)$$

such that $D_{\text{KL}}(\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) || \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})) \leq \epsilon$

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$
 $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$

some parameters change probabilities a lot more than others!

Claim: gradient ascent does this:

$$\theta' \leftarrow \arg \max_{\theta'} \nabla_{\theta} J(\theta)^{T} (\theta' - \theta)$$
such that $\|\theta - \theta'\|^{2} \le \epsilon$

$$\theta' = \theta + \sqrt{\frac{\epsilon}{\|\nabla_{\theta} J(\theta)\|^{2}}} \nabla_{\theta} J(\theta)$$

Can we just use the gradient then?

$$\theta' \leftarrow \arg\max_{\theta'} \nabla_{\theta} J(\theta)^T (\theta' - \theta)$$

such that $D_{\mathrm{KL}}(\pi_{\theta'}(\mathbf{a}_t|\mathbf{s}_t)||\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)) \leq \epsilon$

not the same!

$$\theta' \leftarrow \arg\max_{\theta'} \nabla_{\theta} J(\theta)^T (\theta' - \theta)$$

such that $\|\theta - \theta'\|^2 \le \epsilon$

second order Taylor expansion

$$D_{\mathrm{KL}}(\pi_{\theta'} \| \pi_{\theta}) \approx \frac{1}{2} (\theta' - \theta)^T \mathbf{F} (\theta' - \theta) \qquad \mathbf{F} = E_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta} (\mathbf{a} | \mathbf{s}) \nabla_{\theta} \log \pi_{\theta} (\mathbf{a} | \mathbf{s})^T]$$

Fisher-information matrix

can estimate with samples

$$\theta' = \theta + \alpha \mathbf{F}^{-1} \nabla_{\theta} J(\theta)$$
 natural gradient
$$\alpha = \sqrt{\frac{2\epsilon}{\nabla_{\theta} J(\theta)^T \mathbf{F} \nabla_{\theta} J(\theta)}}$$

Summary of Policy Gradient Algorithms

The policy gradient has many equivalent forms

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ v_{t} \right] \qquad \text{REINFORCE}$$

$$= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ Q^{w}(s, a) \right] \qquad \text{Q Actor-Critic}$$

$$= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ A^{w}(s, a) \right] \qquad \text{Advantage Actor-Critic}$$

$$= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \delta \right] \qquad \text{TD Actor-Critic}$$

$$= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \delta e \right] \qquad \text{TD}(\lambda) \text{ Actor-Critic}$$

$$G_{\theta}^{-1} \nabla_{\theta} J(\theta) = w \qquad \text{Natural Actor-Critic}$$

- Each leads a stochastic gradient ascent algorithm
- Critic uses policy evaluation (e.g. MC or TD learning) to estimate $Q^{\pi}(s, a)$, $A^{\pi}(s, a)$ or $V^{\pi}(s)$