REVIEW OF LOGISTIC REGRESSION

Dr. Aric LaBarr
Institute for Advanced Analytics

MATH REVIEW

Odds vs. Probability

Odds is the ratio of events to non-events:

$$Odds = \frac{\#yes}{\#no}$$

 Probability is the ratio of event to the total number of outcomes:

$$p = \frac{\#yes}{\#yes + \#no}$$

Odds and Probability are related:

$$Odds = \frac{p}{1 - p} \qquad \qquad p = \frac{Odds}{1 + Odds}$$

	No Buy	Buy	Total
No Checking	30	54	84
Checking	291	125	416
Total	321	179	500

	No Buy	Buy	Total
No Checking	30	54	84
Checking	291	125	416
Total	321	179	500

Probability of **NO BUY** in **Checking** account customers
$$= \frac{291}{416} = 0.70$$

	No Buy	Buy	Total
No Checking	30	54	84
Checking	291	125	416
Total	321	179	500

Probability of **BUY** in **Checking** account customers

$$=\frac{125}{416}=0.30$$

	No Buy	Buy	Total
No Checking	30	54	84
Checking	291	125	416
Total	321	179	500

$$=\frac{\text{Prob. of Buy}}{\text{Prob. of No Buy}} = \frac{0.30}{0.70} = 0.43$$

Odds Ratio

 Odds Ratio indicates how likely (in terms of odds) an event is for one group relative to another:

$$OR = \frac{Odds_A}{Odds_B}$$

- Since odds are always non-negative, so are odds ratios
 - OR > 1 → Event more likely for A than for B
 - OR < 1 → Event more likely for B than for A
 - OR = 1 → Event equally likely in each group

	No Buy	Buy	Total
No Checking	30	54	84
Checking	291	125	416
Total	321	179	500

Odds of BUY in No Checking
$$= 1.77$$

Odds of BUY in Checking
$$= 0.43$$

Odds Ratio: No Checking to Checking
$$=\frac{1.77}{0.43}=4.12$$

Odds Ratio

Odds of BUY in Checking
$$= 0.43$$

Odds Ratio: No Checking to Checking
$$=\frac{1.77}{0.43}=4.12$$

Non-Checking account customers have **4.12 times the odds** of buying the insurance product as compared to checking account customers.

Relative Risk

 Relative Risk indicates how likely (in terms of probability) an event is for one group relative to another:

$$RR = \frac{p_A}{p_B}$$

- Since probabilites are always non-negative, so are relative risks
 - RR > 1 → Event more likely for A than for B
 - RR < 1 → Event more likely for B than for A
 - RR = 1 → Event equally likely in each group

Math for Logistic Regression

- The following are rules involving the exponential function and natural logarithm:
 - $e^a > 0$ for any number a

•
$$e^{a+b} = e^a e^b$$
, and $e^{a-b} = \frac{e^a}{e^b}$

- log(a) can be any number, but a > 0
 - $\log(a) = -\infty$ if a = 0
 - $\log(a)$ does not exist if a < 0
- $\log(a \times b) = \log(a) + \log(b)$, and $\log\left(\frac{a}{b}\right) = \log(a) \log(b)$
- $\log(e^a) = a$, and $e^{\log(a)} = a$
- $a^{-1} = \frac{1}{a}$

BINARY LOGISTIC REGRESSION REVIEW

Birth Weight Data Set

- Model the association between various factors and child being born with low birth weight (< 2.5kg)
- 189 observations in the data set

Birth Weight Data Set

- Model the association between various factors and child being born with low birth weight (< 2.5kg)
- Predictors:
 - age: mother's age (years)
 - lwt: mother's weight at last menstrual period (lbs)
 - smoke: mother's smoking status during pregnancy
 - race: mother's race (1=White, 2 = Black, 3 = Other)
 - ptl: number of premature labors
 - ht: history of hypertension
 - ui: uterine irritability
 - ftv: number of physician visits during first trimester

Why Not Least Squares Regression?

$$y_i = \beta_0 + \beta_1 x_{1,i} + \varepsilon_i$$

- If the response variable is categorical, then how do you code the response numerically?
- If the response is coded (1=Yes and 0=No) and your regression equation predicts 0.5 or 1.1 or -0.4, what does that mean practically?
- If there are only two (or a few) possible response levels, is it reasonable to assume constant variance and normality?

OLS Regression Plot

- The random error term has a Normal distribution with a mean of zero.
- The random error term has constant variance.
- The error terms are independent.
- Linearity of the mean.
- No perfect collinearity.

Linear Probability Model

$$p_i = \beta_0 + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i}$$

Problems:

- Probabilities are bounded, but linear functions can take on any value. (How do you interpret a predicted value of -0.4 or 1.1?)
- The relationship between probabilities and X is usually nonlinear. Example, one unit change in X will have different effects when the probability is near 1 or 0.5.

Logistic Regression Model

$$p_{i} = \frac{1}{1 + e^{-(\beta_{0} + \beta_{1} x_{1,i} + \cdots + \beta_{k} x_{k,i})}}$$

- Has desired properties:
 - The predicted probability will always be between 0 and
 1.
 - The parameter estimates do not enter the model equation linearly.
 - The rate of change of the probability varies as the X's vary.

Logistic Regression Curve

The Logit Link Transformation

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_{1,i} + \dots + \beta_k x_{k,i}$$

- To create a linear model, a link function (logit) is applied to the probabilities.
- The relationship between the parameters and the logits are linear.
- Logits unbounded.

The Logit Link Transformation

CATEGORICAL INPUTS

Reference Coding

- Categorical variables need to be coded differently because they are not numerical in nature.
- Reference coding is a common way to code categorical variables.
- 2 Category Example (A, B): $x = \begin{cases} 1 & \text{if A} \\ 0 & \text{if B} \end{cases}$
- 3 Category Example (A, B, C):

	x_1	x_2
Α	1	0
В	0	1
С	0	0

Reference Coding

- Categorical variables need to be coded differently because they are not numerical in nature.
- Reference coding is a common way to code categorical variables.
- 3 Category Example (A, B, C):

$\hat{y} = \hat{\beta}_0$	$+(\hat{\beta}_1)_{1}$	$+\hat{\beta}_2 x_2$

Average difference between category A and C.

	x_1	x_2
Α	1	0
В	0	1
С	0	0

Reference Coding

- Categorical variables need to be coded differently because they are not numerical in nature.
- Reference coding is a common way to code categorical variables.
- 3 Category Example (A, B, C):

$\hat{y} = \hat{\beta}_0$	$+\hat{\beta}_1x_1$	$+\hat{\beta}_2x_2$

Average difference between category B and C.

	x_1	x_2
Α	1	0
В	0	1
С	0	0

Effects Coding

- Categorical variables need to be coded differently because they are not numerical in nature.
- Effects coding is another common way to code categorical variables.
- 2 Category Example (A, B): $x = \begin{cases} 1 & \text{if A} \\ -1 & \text{if B} \end{cases}$

3 Category Example (A, B, C):

	x_1	x_2
Α	1	0
В	0	1
С	-1	-1

Effects Coding

- Categorical variables need to be coded differently because they are not numerical in nature.
- Effects coding is another common way to code categorical variables.
- 3 Category Example (A, B, C):

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

Average difference between category A and the overall average of categories A, B, & C.

	x_1	x_2
Α	1	0
В	0	1
С	-1	-1

Effects Coding

- Categorical variables need to be coded differently because they are not numerical in nature.
- Effects coding is another common way to code categorical variables.
- 3 Category Example (A, B, C):

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

Average difference between category B and the overall average of categories A, B, & C.

	x_1	x_2
Α	1	0
В	0	1
С	-1	-1

BINARY LOGISTIC REGRESSION IN SAS

Modeling Low Birth Weight The LOGISTIC Procedure

Model Information					
Data Set LOGISTIC.LOWBWT					
Response Variable	low				
Number of Response Levels	2				
Model	binary logit				
Optimization Technique	Fisher's scoring				

Number of Observations Read	189
Number of Observations Used	189

Response Profile					
Ordered low Frequen					
1	0	130			
2	1	59			

Probability modeled is low='1'.

Class Level Information							
Class	Class Value Design Variables						
race	black	1 0					
	other	0	1				
	white	0	0				

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics						
Criterion Intercept Only Intercept and Covariate						
AIC	236.672	226.577				
SC	239.914	246.028				
-2 Log L	234.672	214.577				

Testing Global Null Hypothesis: BETA=0								
Test	Test Chi-Square DF Pr > ChiSq							
Likelihood Ratio	20.0948	5	0.0012					
Score	18.6377	5	0.0022					
Wald	16.4973	5	0.0056					

Type 3 Analysis of Effects						
Effect	Pr > ChiSq					
age	1	0.4326	0.5107			
race	2	7.8419	0.0198			
lwt	1	3.8470	0.0498			
smoke	1	7.6991	0.0055			

Analysis of Maximum Likelihood Estimates						
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept		1	0.3324	1.1077	0.0900	0.7641
age		1	-0.0225	0.0342	0.4326	0.5107
race	black	1	1.2316	0.5171	5.6718	0.0172
race	other	1	0.9432	0.4162	5.1351	0.0234
lwt		1	-0.0125	0.00639	3.8470	0.0498
smoke		1	1.0544	0.3800	7.6991	0.0055

Type 3 Analysis of Effects						
Effect DF Wald Chi-Square Pr > ChiSo						
age	1	0.4326	0.5107			
race	2	7.8419	0.0198			
lwt	1	3.8470	0.0498			
smoke	1	7.6991	0.0055			

Analysis of Maximum Likelihood Estimates						
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept		1	0.3324	1.1077	0.0900	0.7641
age		1	-0.0225	0.0342	0.4326	0.5107
race	black	1	1.2316	0.5171	5.6718	0.0172
race	other	1	0.9432	0.4162	5.1351	0.0234
lwt		1	-0.0125	0.00639	3.8470	0.0498
smoke		1	1.0544	0.3800	7.6991	0.0055

Association of Predicted Probabilities and Observed Responses							
Percent Concordant 68.4 Somers' D 0.367							
Percent Discordant	31.6 Gamma 0.36						
Percent Tied 0.0 Tau-a 0.159							
Pairs	7670 c 0.684						

Parameter Estimates and Profile-Likelihood Confidence Intervals					
Parameter		Estimate	95% Confidence Limits		
Intercept		0.3324	-1.8092	2.5609	
age		-0.0225	-0.0909	0.0436	
race	black	1.2316	0.2206	2.2648	
race	other	0.9432	0.1401	1.7809	
lwt		-0.0125	-0.0259	-0.00064	
smoke		1.0544	0.3238	1.8222	

Odds Ratio Estimates and Profile-Likelihood Confidence Intervals						
Effect	Unit	Estimate	95% Confidence Limits			
age	1.0000	0.978	0.913	1.045		
race black vs white	1.0000	3.427	1.247	9.629		
race other vs white	1.0000	2.568	1.150	5.935		
lwt	1.0000	0.988	0.974	0.999		
smoke	1.0000	2.870	1.382	6.186		

Predicted Probabilities for low=1 with 95% Confidence Limits

At 1wt=129.8 smoke=0.392

