DM865 – Spring 2020 Heuristics and Approximation Algorithms

(Stochastic) Local Search Algorithms

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Definitions

2. Local Search Algorithms

Local Search Revisited Components

Outline

1. Definitions

2. Local Search Algorithms

3. Local Search Revisited Components

Definitions

Neighborhood function

Neighborhood function $N: S_{\pi} \rightarrow 2^{S}$

Also defined as: $\mathcal{N}: S \times S \to \{T, F\}$ or $\mathcal{N} \subseteq S \times S$

- neighborhood (set) of candidate solution $s: N(s) := \{s' \in S \mid \mathcal{N}(s, s')\}$
- neighborhood size is |N(s)|
- neighborhood is symmetric if: $s' \in N(s) \Rightarrow s \in N(s')$
- neighborhood graph of (S, N, π) is a directed graph: $G_N := (V, A)$ with V = S and $(uv) \in A \Leftrightarrow v \in N(u)$ (if symmetric neighborhood \leadsto undirected graph)

A neighborhood function is also defined by means of an operator (aka move).

An operator Δ is a collection of operator functions $\delta: S \to S$ such that

$$s' \in N(s) \implies \exists \delta \in \Delta, \delta(s) = s'$$

Definition

k-exchange neighborhood: candidate solutions s, s' are neighbors iff s differs from s' in at most k solution components

Examples:

 2-exchange neighborhood for TSP (solution components = edges in given graph)

Neighborhood Operator

Goal: providing a formal description of neighborhood functions for the three main solution representations:

- Permutation
 - linear permutation: Single Machine Total Weighted Tardiness Problem
 - circular permutation: Traveling Salesman Problem
- Assignment: SAT, CSP
- Set, Partition: Max Independent Set

A neighborhood function $N:S\to 2^S$ is also defined through an operator. An operator Δ is a collection of operator functions $\delta:S\to S$ such that

$$s' \in N(s) \iff \exists \delta \in \Delta \mid \delta(s) = s'$$

Permutations

 S_n indicates the set all permutations of the numbers $\{1, 2, \dots, n\}$

 $(1, 2, \ldots, n)$ is the identity permutation ι .

If $\pi \in \Pi(n)$ and $1 \le i \le n$ then:

- π_i is the element at position i
- $pos_{\pi}(i)$ is the position of element i

Alternatively, a permutation is a bijective function $\pi(i) = \pi_i$

The permutation product $\pi \cdot \pi'$ is the composition $(\pi \cdot \pi')_i = \pi'(\pi(i))$

For each π there exists a permutation such that $\pi^{-1} \cdot \pi = \iota$ $\pi^{-1}(i) = pos_{\pi}(i)$

Linear Permutations

Swap operator

$$\Delta_{\mathcal{S}} = \{\delta_{\mathcal{S}}^i \mid 1 \le i \le n\}$$

$$\delta_{S}^{i}(\pi_{1}\ldots\pi_{i}\pi_{i+1}\ldots\pi_{n})=(\pi_{1}\ldots\pi_{i+1}\pi_{i}\ldots\pi_{n})$$

Interchange operator

$$\Delta_X = \{ \delta_X^{ij} \mid 1 \le i < j \le n \}$$

$$\delta_X^{ij}(\pi) = (\pi_1 \dots \pi_{i-1} \pi_j \pi_{i+1} \dots \pi_{j-1} \pi_i \pi_{j+1} \dots \pi_n)$$

 $(\equiv$ set of all transpositions)

Insert operator

$$\Delta_I = \{\delta_I^{ij} \mid 1 \le i \le n, 1 \le j \le n, j \ne i\}$$

$$\delta_{l}^{ij}(\pi) = \begin{cases} (\pi_{1} \dots \pi_{i-1} \pi_{i+1} \dots \pi_{j} \pi_{i} \pi_{j+1} \dots \pi_{n}) & i < j \\ (\pi_{1} \dots \pi_{j} \pi_{i} \pi_{j+1} \dots \pi_{i-1} \pi_{i+1} \dots \pi_{n}) & i > j \end{cases}$$

Circular Permutations

Reversal (2-edge-exchange)

$$\Delta_R = \{ \delta_R^{ij} \mid 1 \le i < j \le n \}$$

$$\delta_R^{ij}(\pi) = (\pi_1 \dots \pi_{i-1} \pi_j \dots \pi_i \pi_{j+1} \dots \pi_n)$$

Block moves (3-edge-exchange)

$$\Delta_B = \{ \delta_B^{ijk} \mid 1 \le i < j < k \le n \}$$

$$\delta_B^{ij}(\pi) = (\pi_1 \dots \pi_{i-1} \pi_j \dots \pi_k \pi_i \dots \pi_{j-1} \pi_{k+1} \dots \pi_n)$$

Short block move (Or-edge-exchange)

$$\Delta_{SB} = \{ \delta_{SB}^{ij} \mid 1 \le i < j \le n \}$$

$$\delta_{SB}^{ij}(\pi) = (\pi_1 \dots \pi_{i-1} \pi_j \pi_{j+1} \pi_{j+2} \pi_i \dots \pi_{j-1} \pi_{j+3} \dots \pi_n)$$

)

Assignments

An assignment can be represented as a mapping $\sigma: \{X_1 \dots X_n\} \to \{v: v \in D, |D| = k\}$:

$$\sigma = \{X_i = v_i, X_j = v_j, \ldots\}$$

One-exchange operator

$$\Delta_{1E} = \{\delta_{1E}^{iI} \mid 1 \le i \le n, 1 \le l \le k\}$$

$$\delta_{1E}^{il}(\sigma) = \left\{\sigma' : \sigma'(X_i) = v_l \text{ and } \sigma'(X_j) = \sigma(X_j) \ \forall j \neq i \right\}$$

Two-exchange operator

$$\Delta_{2E} = \{ \delta_{2E}^{ij} \mid 1 \le i < j \le n \}$$

$$\delta_{2E}^{ij}(\sigma) = \left\{\sigma': \sigma'(X_i) = \sigma(X_j), \ \sigma'(X_j) = \sigma(X_i) \ \text{ and } \ \sigma'(X_l) = \sigma(X_l) \ \forall l \neq i,j \right\}$$

Partitioning

An assignment can be represented as a partition of objects selected and not selected $s: \{X\} \to \{C, \overline{C}\}$ (it can also be represented by a bit string)

One-addition operator

$$\Delta_{1E} = \{ \delta_{1E}^{v} \mid v \in \bar{C} \}$$

$$\delta_{1E}^{v}(s) = \{s : C' = C \cup v \text{ and } \bar{C}' = \bar{C} \setminus v\}$$

One-deletion operator

$$\Delta_{1E} = \{\delta_{1E}^{v} \mid v \in C\}$$

$$\delta_{1F}^{v}(s) = \{s : C' = C \setminus v \text{ and } \bar{C}' = \bar{C} \cup v\}$$

Swap operator

$$\Delta_{1E} = \{\delta_{1E}^{\mathsf{v}} \mid \mathsf{v} \in \mathsf{C}, \mathsf{u} \in \bar{\mathsf{C}}\}\$$

$$\delta_{1E}^{v}(s) = \{s : C' = C \cup u \setminus v \text{ and } \bar{C}' = \bar{C} \cup v \setminus u\}$$

Definitions

Definition:

- Local minimum: search position without improving neighbors wrt given evaluation function f and neighborhood function N,
 i.e., position s ∈ S such that f(s) ≤ f(s') for all s' ∈ N(s).
- Strict local minimum: search position $s \in S$ such that f(s) < f(s') for all $s' \in N(s)$.
- Local maxima and strict local maxima: defined analogously.

Outline

1. Definitions

2. Local Search Algorithms

3. Local Search Revisited Components

Local Search

- Model
 - Variables → solution representation, search space
 - Constraints:
 - implicit
 - one-way defining invariants
 - soft
 - evaluation function
- Search (solve an optimization problem)
 - Construction heuristics
 - Neighborhoods, Iterative Improvement, (Stochastic) local search
 - Metaheuristics: Tabu Search, Simulated Annealing, Iterated Local Search
 - Population based metaheuristics

Local Search Algorithms

Given a (combinatorial) optimization problem Π and one of its instances π :

- search space $S(\pi)$
 - specified by the definition of (finite domain, integer) variables and their values handling implicit constraints
 - all together they determine the representation of candidate solutions
 - common solution representations are discrete structures such as: sequences, permutations, partitions, graphs

Note: solution set $S'(\pi) \subseteq S(\pi)$

Local Search Algorithms (cntd)

- **2** evaluation function $f_{\pi}: S(\pi) \to \mathbf{R}$
 - it handles the soft constraints and the objective function
- **3** neighborhood function, $N_{\pi}: S \to 2^{S(\pi)}$
 - defines for each solution $s \in S(\pi)$ a set of solutions $N(s) \subseteq S(\pi)$ that are in some sense close to s.

Local Search Algorithms (cntd)

Further components [according to [HS]]

- **4** set of memory states $M(\pi)$ (may consist of a single state, for LS algorithms that do not use memory)
- **6** initialization function init : $\emptyset \to S(\pi)$ (can be seen as a probability distribution $\Pr(S(\pi) \times M(\pi))$ over initial search positions and memory states)
- **6** step function step : $S(\pi) \times M(\pi) \to S(\pi) \times M(\pi)$ (can be seen as a probability distribution $\Pr(S(\pi) \times M(\pi))$ over subsequent, neighboring search positions and memory states)
- **⊘** termination predicate terminate : $S(\pi) \times M(\pi) \to \{\top, \bot\}$ (determines the termination state for each search position and memory state)

Local search — global view

Neighborhood graph

- vertices: candidate solutions (search positions)
- vertex labels: evaluation function
- edges: connect "neighboring" positions
- s: (optimal) solution
- c: current search position

Local Search Algorithms

Note:

- Local search implements a walk through the neighborhood graph
- Procedural versions of init, step and terminate implement sampling from respective probability distributions.

 Local search algorithms can be described as Markov processes: behavior in any search state {s, m} depends only on current position s higher order MP if (limited) memory m.

Local Search (LS) Algorithm Components Step function

```
Search step (or move): pair of search positions s, s' for which s' can be reached from s in one step, i.e., s' \in N(s) and step(\{s, m\}, \{s', m'\}) > 0 for some memory states m, m' \in M.
```

- Search trajectory: finite sequence of search positions ⟨s₀, s₁,...,s_k⟩ such that (s_{i-1},s_i) is a search step for any i ∈ {1,...,k} and the probability of initializing the search at s₀ is greater than zero, i.e., init({s₀,m}) > 0 for some memory state m ∈ M.
- Search strategy: specified by init and step function; to some extent independent of problem instance and other components of LS algorithm.
 - random
 - based on evaluation function
 - based on memory

Iterative Improvement

Iterative Improvement (II): determine initial candidate solution s while s has better neighbors do choose a neighbor s' of s such that f(s') < f(s) s := s'

- If more than one neighbor has better cost then need to choose one (heuristic pivot rule)
- The procedure ends in a local optimum ŝ:
 Def.: Local optimum ŝ w.r.t. N if f(ŝ) ≤ f(s) ∀s ∈ N(ŝ)
- Issue: how to avoid getting trapped in bad local optima?
 - use more complex neighborhood functions
 - restart
 - allow non-improving moves

Metaheuristics

- "Restart" + parallel search
 Avoid local optima
 Improve search space coverage
- Variable Neighborhood Search and Large Scale Neighborhood Search diversified neighborhoods + incremental algorithmics ("diversified" = multiple, variable-size, and rich).
- Tabu Search: Online learning of moves Discard undoing moves, Discard inefficient moves Improve efficient moves selection
- Simulated annealing Allow degrading solutions

Summary: Local Search Algorithms

For given problem instance π :

- **1** search space S_{π} , solution representation: variables + implicit constraints
- 2 evaluation function $f_{\pi}: S \to \mathbb{R}$, soft constraints + objective
- **3** neighborhood relation $\mathcal{N}_{\pi} \subseteq \mathcal{S}_{\pi} \times \mathcal{S}_{\pi}$
- **4** set of memory states M_{π}
- **5** initialization function init : $\emptyset \to S_\pi \times M_\pi$
- **6** step function step : $S_{\pi} \times M_{\pi} \rightarrow S_{\pi} \times M_{\pi}$
- $m{0}$ termination predicate terminate : $S_\pi imes M_\pi o \{\top, \bot\}$

Decision vs Minimization

```
LS-Decision(\pi)
input: problem instance \pi \in \Pi
output: solution s \in S'(\pi) or \emptyset
(s, m) := init(\pi)
while not terminate (\pi, s, m) do
 (s,m) := step(\pi,s,m)
if s \in S'(\pi) then
    return s
else
 return Ø
```

```
LS-Minimization(\pi')
input: problem instance \pi' \in \Pi'
output: solution s \in S'(\pi') or \emptyset
(s,m) := init(\pi'):
s_b := s:
while not terminate (\pi', s, m) do
   (s,m) := \operatorname{step}(\pi',s,m);
  if f(\pi',s) < f(\pi',s_b) then c > s_b := s;
if s_b \in S'(\pi') then
    return sh
else
 return 0
```

However, the algorithm on the left has little guidance, hence most often decision problems are transformed in optimization problems by, eg, couting number of violations.

Outline

1. Definitions

2. Local Search Algorithms

3. Local Search Revisited Components

LS Algorithm Components

Search space

Search Space

Solution representations defined by the variables and the implicit constraints:

- permutations (implicit: alldiffrerent)
 - linear (scheduling problems)
 - circular (traveling salesman problem)
- arrays (implicit: assign exactly one, assignment problems: GCP)
- sets (implicit: disjoint sets, partition problems: graph partitioning, max indep. set)
- → Multiple viewpoints are useful in local search!

LS Algorithm Components

Evaluation function

Evaluation (or cost) function:

- function $f_{\pi}: S_{\pi} \to \mathbf{Q}$ that maps candidate solutions of a given problem instance π onto rational numbers (most often integer), such that global optima correspond to solutions of π ;
- used for assessing or ranking neighbors of current search position to provide guidance to search process.

Evaluation vs objective functions:

- Evaluation function: part of LS algorithm.
- Objective function: integral part of optimization problem.
- Some LS methods use evaluation functions different from given objective function (e.g., guided local search).

Constrained Optimization Problems

Constrained Optimization Problems exhibit two issues:

- feasibility
 eg, treveling salesman problem with time windows: customers must be visited within their
 time window.
- optimization minimize the total tour.

How to combine them in local search?

- sequence of feasibility problems
- staying in the space of feasible candidate solutions
- considering feasible and infeasible configurations

Constraint-based local search

From Van Hentenryck and Michel

If infeasible solutions are allowed, we count violations of constraints.

What is a violation? Constraint specific:

- decomposition-based violations number of violated constraints, eg: alldiff
- variable-based violations min number of variables that must be changed to satisfy c.
- value-based violations for constraints on number of occurences of values
- arithmetic violations
- combinations of these

Constraint-based local search

From Van Hentenryck and Michel

Combinatorial constraints

- alldiff(x_1, \ldots, x_n):
 - Let a be an assignment with values $V = \{a(x_1), \dots, a(x_n)\}$ and $c_v = \#_a(v, x)$ be the number of occurrences of v in a.

Possible definitions for violations are:

- $viol = \sum_{v \in V} I(max\{c_v 1, 0\} > 0)$ value-based
- $viol = \max_{v \in V} \max\{c_v 1, 0\}$ value-based
- $viol = \sum_{v \in V} max\{c_v 1, 0\}$ value-based
- # variables with same value, variable-based, here leads to same definitions as previous three

Arithmetic constraints

- $l \le r \rightsquigarrow \text{viol} = \max\{l r, 0\}$
- $I = r \rightsquigarrow \text{viol} = |I r|$
- $l \neq r \rightsquigarrow \text{viol} = 1$ if l = r, 0 otherwise