Correction:

Diazoalkanes:

diazomethane

$$\bigoplus_{\mathsf{H}_2\mathsf{C}-\mathsf{N}\equiv\mathsf{N}}$$

Powerful esterification reagent:

Source of carbenes: Divalent Carbon (Chapter 10, p 436. 303?)

$$\Theta \oplus H_2C-N\equiv N$$
 or h $N_2 + H_2C$

Special cases of divalent nitrogen:

Related:

Hoffman Rearrangement

$$R \stackrel{O}{\longleftarrow} + NH_3 \longrightarrow R \stackrel{O}{\longleftarrow} \frac{NaOH, Br_2}{H_2O} = R-NH_2 + CO_2$$

Amino acids, peptides, proteins

Proteins: structures [bone support, skin, muscle]

enzymes [catalysts]

transport [hemeoglobin, etc] hormones [regulation, signaling] antibodies [immune system]

Composed of - amino acids

20 are genetically encoded by DNA for assembly into proteins: differ in **R** 150 total variations appear in proteins

Biosynthesis and chemical synthesis

Proteins are polymers via the amide bond = this version is called the **peptide bond**

Biosynthesis and chemical synthesis

Structure: Primary structure--sequence of amino acids Chemical determination

Secondary structure--interactions between chains ribbons, helix

Tertiary structure----folding of secondary structure

Quarternary structure--Separate proteins (subunits) associate together

The 20 suspects:

side chains differ in: acid/base H-bonding van der Waals dipole-dipole charge/charge (hydrophobic)

Nonpolar: ala, val, leu, ile

Aromatic phe, tyr, try

Cyclic pro

Acidic asp, glu

Basic lys, arg, his

Neutral, polar gly, ser, thr, cys, met, asn, gln

$$H_2N$$
 H_2N
 H_1
 R
 H_2N
 H_2N
 H_1
 R
 H_2N
 H_1
 H_2N
 $H_$

But, in polypeptides [proteins], the amino group is non-basic and the acidic group is non-acidic

More important: the side chains can be protonated and deprotonated

Henderson-Hasselbalch equation:

$$pH = pK_a + log \frac{[A^-]}{[HA^-]} \qquad HA \implies H^+ + A^-$$

Check Table 25.3, Handout on amino acids. [Overhead]

Basic side chains: histidine--imidazole

$$H_2N$$
 H_3N
 H_3N

analysis of proteins involves determining the amino acid content:

which amino acids are present what is the sequence of the amino acids?

Separation of amino acids by **electrophoresis:**

Amino acids can be (+), (-), or neutral (zwitterion): when the net charge is zero, **isoelectric point in pH**

Each amino acid has a characteristic pH for the isoelectric point.

R name isoelectric point

R	name	isoelectric point
Н	glycine	6
CH ₃	alanine	6
$CH(CH_3)_2$	valine	6
$CH_2CH(CH_3)_2$	leucine	6
$CHCH_3(CH_2CH_3)$	isoleucine	6
-CH ₂ Ph	phenyl alanine	5.9
H ₂ C—OH	tyrosine	5.7
H ₂ C N	histidine	7.6
H ₂ C	tryptophane	5.9
H -CH ₂ OH	serine	5.7
-CH(CH ₃)OH	threonine	5.6
-CH ₂ SH	cysteine	5.0
-CH ₂ CH ₂ SCH ₃	threonine	5.6
-CH ₂ CO ₂ H	aspartic acid	2.9
CH ₂ CH ₂ CO ₂ H	glutamic acid	3.2
-CH ₂ CONH ₂	asparagine	5.4
-CH ₂ CH ₂ CONH ₂	glutamine	5.7

-CH₂CH₂CH₂CH₂NH₂ lysine 9.7

NH₂ arginine 10.8

$$CO_2H$$
 proline 6.1

Apparatus: Fig 26.11 in text [overhead]

Assume pH 5.5
$$\bigoplus_{H_3N} \bigoplus_{O} \bigoplus_{O}$$

Apply potential; allow migration. Then "visualize" Add ninhydrin Text 26.2C