FCC ID: YI7HES10000R1W ATTACHMENT

** MPE Calculations **

802.11g

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

EIRP = P + G	Where,
EIRP = 16.65dBm + 2dBi	P = Power input to the antenna (mW)
EIRP = 18.65 dBm	G = Power gain of the antenna (dBi)

Power density at the specific separation:

$S = PG/(4R^2\pi)$	Where,
5 - 1 0/(TIC /C)	S = Maximum power density (mW/cm2)
$S = (46.24 * 1.58) / (4 * 20^2 * \pi)$	P = Power input to the antenna (mW)
	G = Numeric power gain of the antenna
$S = 0.0146 \text{ mW/cm}^2$	R = Distance to the center of the radiation of the antenna
	(20cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is $1~\text{mW/cm}^2$.

The power density does not exceed the 1 mW/cm² limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG/4\pi)}$	Where,
κ - γ (10/ τπ)	P = Power input to the antenna (mW)
$R = \sqrt{(46.24*1.58/4\pi)}$	G = Numeric power gain of the antenna
	R = Distance to the center of the radiation of the antenna
R = 2.42Cm	(20cm = limit for MPE)

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

$$G = Log^{-1}$$
 (dB antenna gain / 10)

$$G = Log^{-1} (2 / 10)$$

$$G = 1.58$$

** MPE Calculations **

Zigbee-SPI

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

EIRP = P + G	Where,
EIRP = 22.80dBm + 2dBi	P = Power input to the antenna (mW)
EIRP = 24.8 dBm	G = Power gain of the antenna (dBi)

Power density at the specific separation:

$S = PG/(4R^2\pi)$	Where,
S = 1 G/(4R / R)	S = Maximum power density (mW/cm2)
$S = (190.55 * 1.58) / (4 * 20^2 * \pi)$	P = Power input to the antenna (mW)
	G = Numeric power gain of the antenna
$S = 0.0601 \text{ mW/cm}^2$	R = Distance to the center of the radiation of the antenna
	(20cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm².

The power density does not exceed the 1 mW/cm² limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$$R = \sqrt{(PG/4\pi)}$$
 Where,
$$P = \text{Power input to the antenna (mW)}$$

$$G = \text{Numeric power gain of the antenna}$$

$$R = 4.9\text{Cm}$$

$$(20\text{cm} = \text{limit for MPE})$$

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

$$G = Log^{-1}$$
 (dB antenna gain / 10)

$$G = Log^{-1} (2 / 10)$$

$$G = 1.58$$

** MPE Calculations **

Zigbee-UART

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

EIRP = P + G	Where,
EIRP = 21.41dBm + 2dBi	P = Power input to the antenna (mW)
EIRP = 23.41 dBm	G = Power gain of the antenna (dBi)

Power density at the specific separation:

$S = PG/(4R^2\pi)$	Where,
5 - 1 0/(4K /t)	S = Maximum power density (mW/cm2)
$S = (138.36 * 1.58) / (4 * 20^2 * \pi)$	P = Power input to the antenna (mW)
	G = Numeric power gain of the antenna
$S = 0.0436 \text{ mW/cm}^2$	R = Distance to the center of the radiation of the antenna
	(20cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is $1\ mW/cm^2$.

The power density does not exceed the 1 mW/cm² limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG/4\pi)}$	Where,
K - Y (10/7K)	P = Power input to the antenna (mW)
$R = \sqrt{(138.36* 1.58 / 4\pi)}$	G = Numeric power gain of the antenna
	R = Distance to the center of the radiation of the antenna
R = 4.18Cm	(20cm = limit for MPE)

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

$$G = Log^{-1}$$
 (dB antenna gain / 10)

$$G = Log^{-1} (2 / 10)$$

$$G = 1.58$$