MATH 222: Calculus III Review

Julian Lore

Last updated: April 17, 2017

Adapted from Alexander Garver's Winter 2017 MATH222 lecture notes.

Contents

1	Series					
	1.1	Special Series				
	1.2	Tests		3		
	1.3	Power	Series	4		
		1.3.1	Important Power Series to Know	4		
		1.3.2	Convergence	4		
		1.3.3	Representing Functions As Power Series	5		
2	3-D	imensi	ional Coordinate System	5		
	2.1	Vector	rs	5		
		2.1.1	Dot Product	6		
		2.1.2	Projections	7		
		2.1.3	Cross Product	7		
	2.2	Lines		7		
	2.3	Planes				
	2.4	Right-Hand Rule				
	2.5	Vector	r Functions and Space Curves	8		
	2.6	Arc Le	ength, Curvature and the TNB Frame	9		
	2.7	Veloci	ity & Acceleration	11		
3	Multi-variable Functions					
	3.1	Conto	our Maps	11		
	3.2	Level	Surfaces	12		

	3.3	Limits and Continuity	12			
	3.4	Partial Derivatives	12			
	3.5	Tangent Planes	13			
	3.6	The Chain Rule	14			
	3.7	Direction Derivatives	14			
4	Hov	v to Solve Problems	15			
	4.1	Series	15			
	4.2	Vectors	15			
	4.3	Vector Functions	16			
	4.4	Multi-variable Functions	17			
5	Problems					
	5.1	Important Problems	18			
		5.1.1 Assignment 1	18			
		5.1.2 Assignment 2	18			
	5.2	Review Problems	18			
6	Mis	\mathbf{c}	18			

1 Series

 n^{th} partial sum of a sequence. a_n , the terms of the series, must tend to 0, or else the series diverges.

1.1 Special Series

Harmonic $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Geometric $\sum_{n=1}^{\infty} r^n$ converges to $\frac{1}{1-r} \iff -1 < r < 1$.

1.2 Tests

Alternating Series Test/Leibniz Test Sequence $a_1, a_2, ...$ is decreasing and has limit 0. Then $\sum_{n=1}^{\infty} (-1)^n a_n$ converges. In other words, absolute value of the alternating series forms a convergence sequence.

Absolute Convergence Test $\sum_{n=1}^{\infty} |a_n|$ converges $\implies \sum_{n=1}^{\infty} a_n$ converges.

Ratio Test Suppose $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = r$. $r < 1 \implies \sum_{n=1}^{\infty} |a_n|$ converges and $r > 1 \implies \sum_{n=1}^{\infty} a_n$ diverges.

Root Test Suppose $\lim_{n\to\infty} \sqrt[n]{|a_n|} = r$. $r < 1 \implies \sum_{n=1}^{\infty} |a_n|$ converges and $r > 1 \implies \sum_{n=1}^{\infty} a_n$ diverges.

Comparison Test Suppose fixed number K s.t. $0 < a_n < Kb_n$, \forall sufficiently large n.

 $\sum_{n=1}^{\infty} b_n \text{ converges } \Longrightarrow \sum_{n=1}^{\infty} a_n \text{ converges.}$ $\sum_{n=1}^{\infty} a_n \text{ diverges } \Longrightarrow \sum_{n=1}^{\infty} b_n \text{ diverges.}$

Limit Comparison Test Suppose $a_n > 0, b_n > 0$ and $\lim_{n \to \infty} \frac{a_n}{b_n} = R \neq 0$. Then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge or both diverge.

Integral Test Suppose f(x) is **positive** and **decreasing**, \forall large enough x. Then the following are equivalent:

1) $\int_{1}^{\infty} f(x)dx$ is finite, i.e. converges.

2) $\sum_{n=1}^{\infty} f(n)$ is finite, i.e. converges.

The p-test follows from this.

p-test
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 converges $\iff p > 1$.

Alternating Series Estimation Theorem If $s = \sum_{n=1}^{\infty} (-1)^{n-1} b_n$ is the sum of an alternating series that satisfies:

$$b_{n+1} \le b_n$$
 and $\lim_{n\to\infty} b_n = 0$
then $|R_n| = |s - s_n| \le b_{n+1}$.

1.3 Power Series

Series of the form $\sum_{n=0}^{\infty} c_n x^n$ or $\sum_{n=0}^{\infty} c_n (x-a)^n$

1.3.1 Important Power Series to Know

- $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, R = \infty$
- $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, R = \infty$
- $\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, R = \infty$
- $\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, R = 1$
- $\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}, R = 1$

1.3.2 Convergence

Theorem 1. $\sum_{n=0}^{\infty} c_n(x-a)^n$ does exactly one of the following:

- (i) Converges only when x = a.
- (ii) Converges for all x.
- (iii) $\exists R > 0 \text{ s.t. } |x-a| < R, \text{ the series converges and diverges if } |x-a| > R.$

R is the **radius of convergence**. The values of x where the series converges is called the **interval of convergence**. Radius of convergence **does not** tell you if endpoints are included, have to check both. Ratio test is usually a good tool to find the radius of convergence.

1.3.3 Representing Functions As Power Series

If $f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n$ for some c_0, c_1, \ldots then f'(x) and $\int f(x)dx$ can also be represented by a power series.

If
$$f(x) = \sum_{n=0}^{\infty} c_n(x-a)$$
 then $c_n = \frac{f^n(a)}{n!}$

Work with a familiar power series: $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ for |x| < 1.

Theorem 2. Suppose $\sum_{n=0}^{\infty} c_n(x-a)^n$ with R>0. Then $f(x)=\sum_{n=0}^{\infty} c_n(x-a)^n$ is differentiable on (a-R,a+R) and

1)
$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + \dots$$

2)
$$\int f(x)dx = c + c_0(x-a) + \frac{c_1}{2}(x-a)^2 + \frac{c_2}{3}(x-a)^3 + \dots$$

The radius of convergence of f'(x) and $\int f(x)dx$ is R.

Otherwise said, you can easily differentiate & integrate series.

Theorem 3. If f(x) has a power series representation $\sum_{n=0}^{\infty} c_n(x-a)^n$ then $c_n = \frac{f^n(a)}{n!}$. Called the n! **Taylor series** of f at a.

How to show a function is represented by a power series?

Theorem 4. Suppose $\sum_{n=0}^{\infty} c_n(x-a)^n$ is the Taylor series of f(x) with R > 0. If $\lim_{n\to\infty} (f(x) - \sum_{i=0}^{\infty} c_i(x-a)^i) = 0$ for |x-a| < R, then $f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n$ for |x-a| < R.

2 3-Dimensional Coordinate System

XYZ plane.

Distance Between 2 Points, P and Q

$$|PQ| = \sqrt{(a_2 - a_1)^2 + (b_2 - b_1)^2 + (c_2 - c_1)^2}$$

2.1 Vectors

Definition 1. A vector \underline{v} is a quantity with a magnitude and direction. Vectors are equal if they have the same magnitude and direction. There is a zero vector, denoted $\underline{0}$. It has no magnitude or direction.

Vector Addition

Definition 2. Sum of $\underline{u}, \underline{v}$ denoted $\underline{u} + \underline{v}$ is the vector whose initial point is that of \underline{u} and whose terminal point is that of \underline{v} . $\underline{u} + \underline{v} = \underline{v} + \underline{u}$.

Scalar Multiplication

Definition 3. If c is a scalar, i.e. $c \in \mathbb{R}$, then $c\underline{v}$ is the vector whose length is |c| times the length of \underline{v} and whose direction is the same as \underline{v} if c > 0 and opposite if c < 0. $c = 0 \implies c\underline{v} = \underline{0}$.

Vectors in Coordinates

$$\underline{v} = \langle a_1, a_2, a_3 \rangle = a_1 \underline{i} + a_2 \underline{j} + a_3 \underline{k}$$
, where $\underline{i} = \langle 1, 0, 0 \rangle$
 $\underline{j} = \langle 0, 1, 0 \rangle$
 $\underline{k} = \langle 0, 0, 1 \rangle$

Magnitude The magnitude of \underline{v} is $|\underline{v}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$.

2.1.1 Dot Product

"Multiplying" vectors.

Definition 4. Given $\underline{v} = \langle a_1, a_2, a_3 \rangle, \underline{u} = \langle b_1, b_2, b_3 \rangle$, their **dot product** is defined as:

$$v \cdot u = a_1b_1 + a_2b_2 + a_3b_3$$

Theorem 5. i) $\underline{v} \cdot \underline{v} = |\underline{v}|^2$

- ii) $\underline{v} \cdot \underline{u} = |\underline{v}||\underline{u}|\cos\theta$, where θ is the angle between $\underline{v},\underline{u}$ with $0 \le \theta \le \pi$
- iii) \underline{v} and \underline{u} are **orthogonal** (or **perpendicular**) $\iff \underline{v} \cdot \underline{u} = 0$, and $\underline{v} \cdot \underline{u} \iff \theta = \frac{\pi}{2}$ Note that $\underline{v} \cdot \underline{u} > 0 \implies \theta < \frac{\pi}{2}$ (acute) and $\underline{v} \cdot \underline{u} < 0 \implies \theta > \frac{\pi}{2}$ (obtuse).

2.1.2 Projections

Scalar Projection

Definition 5. Scalar Projection of \underline{v} onto \underline{u} is given by: $comp_{\underline{u}}(\underline{v}) = \frac{\underline{u} \cdot \underline{v}}{|\underline{u}|}$

Vector Projection

Definition 6. Vector Projection of \underline{v} onto \underline{u} is given by: $proj_{\underline{u}}(\underline{v}) = \left(\frac{\underline{u} \cdot \underline{v}}{|\underline{u}|^2}\right) \underline{u}$

2.1.3 Cross Product

Definition 7. Let $\underline{v}_1 = \langle a_1, a_2, a_3 \rangle, \underline{v}_2 = \langle b_1, b_2, b_3 \rangle$. The **cross product** of $\underline{v}_1, \underline{v}_2$ is given by $\underline{v}_1 \times \underline{v}_2 = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$

Can be obtained from the determinant of:

$$\begin{bmatrix} \underline{i} & \underline{j} & \underline{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$

Theorem 6. i) $|\underline{v}_1 \times \underline{v}_2| = |\underline{v}_1||\underline{v}_2|\sin\theta, 0 \le \theta \le \pi$ In fact, $|\underline{v}_1||\underline{v}_2|\sin\theta$ is the area of the parallelogram determined by $\underline{v}_1,\underline{v}_2$

ii) Two nonzero vectors $\underline{v}_1, \underline{v}_2$ are parallel if and only if $\underline{v}_1 \times \underline{v}_2 = 0$.

2.2 Lines

Equation of a Line

Definition 8. The equation of a line is given by: $\underline{r} = \underline{r}_0 - t\underline{v}$. Now let $\underline{r} = \langle x, y, z \rangle, \underline{r}_0 = \langle x_0, y_0, z_0 \rangle, \underline{v} = \langle a, b, c \rangle$.

The **parametric equations** of the line L passing through (x_0, y_0, z_0) and parallel to $\underline{v} =$

 $\langle a, b, c \rangle$ is given by: $x = x_0 + at, y = y_0 + bt, z = z_0 + ct$ Solving for t produces the **symmetric equations** of the line L: $\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$

Definition 9. 2 lines are **skew lines** if they are not parallel and do not intersect.

2.3 Planes

What determines a plane in 3-D?

- 3 noncolinear points in the plane.
- 2 nonparallel vectors and a point p_0 in the plane.
- a point p_0 in the plane and a vector \underline{n} (normal vector) that is perpendicular to the plane.

Definition 10. Let $p_0 = (x_0, y_0, z_0)$ and p = (x, y, z). $\underline{n} \cdot (\underline{r} - \underline{r}_0) = 0$ is the **vector equation** of the plane. $\underline{r} = \langle x, y, z \rangle, \underline{r}_0 = \langle x_0, y_0, z_0 \rangle, \underline{n} = \langle a, b, c \rangle$ $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$ is the **scalar equation** of the plane that contains $p_0 = (x_0, y_0, z_0)$ and is perpendicular to \underline{n} .

ax + by + cz + d = 0 is the linear equation for the plane.

Theorem 7. $\underline{v}_1 \times \underline{v}_2$ is orthogonal to \underline{v}_1 and \underline{v}_2 .

2.4 Right-Hand Rule

If the finger of your right hand curl in the direction of rotation from \underline{a} to \underline{b} through θ (0° $\leq \theta \leq$

180°), then your thumb points in the direction of $a \times b$.

2.5 Vector Functions and Space Curves

Vector Functions

Definition 11. We say $\underline{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\underline{i} + g(t)\underline{j} + h(t)\underline{k}$ is a vector function.

Definition 12. f(t), g(t), h(t) are the **component functions** of $\underline{r}(t)$. The **domain** is the set $t \in \mathbb{R}$ s.t f, g, h are defined at t.

Definition 13. The **limit** of \underline{r} is defined by taking the limits of its component functions, that is:

$$\lim_{t \to a} \underline{r}(t) = \langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \rangle$$

Definition 14. A vector function \underline{r} is **continuous** at a if

$$\lim_{t \to a} \underline{r}(t) = \underline{r}(a)$$

 \underline{r} is **continuous** at a if and only if f, g, h also are.

Definition 15. Let f, g, h be continuous on an interval I. Let C be the set of points (x, y, z) satisfying

$$x = f(t), y = g(t), z = h(t)$$

$$\tag{1}$$

for any t in I. We say C is a space curve and the equations given by equation (1) are its parametric equations.

We say t is a **parameter**.

2.6 Arc Length, Curvature and the TNB Frame

Definition 16. The **derivative** of a vector function r(t) is given by:

$$\lim_{h \to 0} \frac{\underline{r}(t+h) - \underline{r}(t)}{h} = \underline{r}'(t) = \frac{d\underline{r}}{dt}$$

if it exists.

Theorem 8. If $\underline{r}(t) = \langle f(t), g(t), h(t) \rangle$ and f, g, h are differentiable, then $\underline{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle$

Definition 17. We say $\underline{r}'(t)$ is the **tangent vector** of $\underline{r}(t)$ at t.

Arc Length

Definition 18. Suppose we have a curve given by $\underline{r}(t) = \langle f(t), g(t), h(t) \rangle$ with $a \leq t \leq b$ and f', g', h' are continuous. The **arc length** is defined as

$$\int_{a}^{b} |\underline{r}'(t)| dt = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt$$

The arc length function is given by:

$$s(t) = \int_{a}^{t} |\underline{r}'(u)| du$$

Definition 19. A parametrization of a curve C is a representation of C by a vector function using arc length.

Curvature

Definition 20. A parametrization $\underline{r}(t)$ of C is **smooth** on an interval I if $\underline{r}'(t)$ is continuous and $\underline{r}'(t) \neq 0$ on I. A curve C is **smooth** if it has a smooth parametrization.

TNB Vectors

Definition 21. The unit tangent vector of r(t) is given by

$$\underline{T}(t) = \frac{\underline{r}'(t)}{|\underline{r}'(t)|}$$

The **unit normal vector** of $\underline{r}(t)$ is given by

$$\underline{N}(t) = \frac{\underline{T}'(t)}{|\underline{T}'(t)|}$$

The **binormal vector** of $\underline{r}(t)$ is given by

$$\underline{B}(t) = \underline{T}(t) \times \underline{N}(t)$$

They are all pairwise orthogonal and are of unit length.

Definition 22. The curvature κ of C is the length of the derivative of $\underline{T}(s)$, given by:

$$\kappa = \left| \frac{dI}{dS} \right|$$

$$\kappa(t) = \left| \frac{\underline{\underline{T}}'(t)}{\underline{\underline{r}}'(t)} \right| = \frac{|\underline{\underline{r}}'(t) \times \underline{\underline{r}}''(t)|}{|\underline{\underline{r}}'(t)|^3}$$

2.7 Velocity & Acceleration

Definition 23. Given a curve C denoted by r(t), the **velocity** of r(t) is given by:

$$\underline{r}'(t) = \lim_{h \to 0} \frac{\underline{r}(t+h) - \underline{r}(t)}{h} = \underline{v}(t)$$

Note that speed is given by $|\underline{r}'(t)| = |\underline{v}(t)|$

Definition 24. The acceleration of $\underline{r}(t)$ is

$$\underline{a}(t) = \underline{r}''(t) = \underline{v}'(t)$$

Components of Acceleration

 $\underline{a}(t)$ can be expressed purely in terms of \underline{T} and \underline{N} like so:

$$\underline{a} = \underbrace{v'}_{a_T} \underline{T} + \underbrace{\kappa v^2}_{a_N} \underline{N}$$

One can also show:

$$a_T = \frac{\underline{r}'(t) \cdot \underline{r}''(t)}{|\underline{r}'(t)|}$$

$$a_N = \frac{|\underline{r}'(t) \times r''(t)|}{|\underline{r}'(t)|}$$

3 Multi-variable Functions

Definition 25. A function of two variables is a rule that assigns to each ordered pair of real numbers (x, y) a real number f(x, y) when (x, y) is in the **domain** D of f.

Domain of f is $D = \{(x, y) : f(x, y) \text{ is defined}\} \subseteq \mathbb{R}^2$

Range of f is $\{f(x,y):(x,y)\in D\}\subseteq \mathbb{R}$

Graph of f is the set $\{(x, y, z) \in D \text{ and } z = f(x, y)\} \subseteq \mathbb{R}^3$

3.1 Contour Maps

Definition 26. We can represent functions f(x, y) by taking horizontal slices of their graphs. These slices indicate height. The slices or **level curves** of f(x, y) are the curves with equations f(x, y) = k where k is a constant in the range of f. If we draw the level curves we obtain a **contour map** of f.

3.2 Level Surfaces

To understand graphs of functions of 3 variables, we draw **level surfaces**.

3.3 Limits and Continuity

Definition 27. Let f be a function of two variables whose domain D includes points that are arbitrarily close to (a, b). We say the **limit** of f(x, y) as (x, y) approaches (a, b) is L:

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

if
$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.t.}$$
 if (x,y) is in D and $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta \implies |f(x,y) - L| < \varepsilon$

Limit Laws

Theorem 9. If the limits $\lim_{(x,y)\to(a,b)} f(x,y)$ and $\lim_{(x,y)\to(a,b)} g(x,y)$ exist, then

- i) $\lim_{(x,y)\to(a,b)} c(f(x,y)) = c \lim_{(x,y)\to(a,b)} f(x,y)$
- $ii) \lim_{(x,y)\to(a,b)} (f(x,y)+g(x,y)) = \lim_{(x,y)\to(a,b)} f(x,y) + \lim_{(x,y)\to(a,b)} g(x,y)$
- $iii) \lim_{(x,y)\to(a,b)} f(x,y)g(x,y) = (\lim_{(x,y)\to(a,b)} f(x,y))(\lim_{(x,y)\to(a,b)} g(x,y))$
- iv) $\lim_{(x,y)\to(a,b)}\frac{f(x,y)}{g(x,y)}=\frac{\lim_{(x,y)\to(a,b)}f(x,y)}{\lim_{(x,y)\to(a,b)}g(x,y)}$, where denominator is nonzero.

Continuity

Definition 28. A function f is **continuous** at (a, b) if $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$. A function f is **continuous** on a set D if it is continuous at each (a,b) in D.

Theorem 10. $\frac{f}{g}$ is continuous if f, g are continuous.

We can also show that polynomials and rational functions are continuous on their domains.

3.4 Partial Derivatives

Definition 29. The partial derivative of f(x,y) with respect to x is

$$f(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

In order to evaluate these limits, fix y and differentiate wrt x to obtain $f_x(x, y)$ or fix x and wrt y to get $f_y(x, y)$.

Notation:

$$f_x = \frac{\partial f}{\partial x} = \frac{\partial z}{\partial x} = D_x f$$
$$f_y = \frac{\partial f}{\partial y} = \frac{\partial z}{\partial y} = D_y f$$

Higher Order Derivatives We can differentiate f_x and f_y to obtain

$$(f_x)_y = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x}$$

$$(f_x)_x = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{(\partial x)^2}$$

$$(f_y)_x = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}$$

$$(f_y)_y = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial f^2}{(\partial y)^2}$$

Note that, with ∂ notation, we derive from right to left, but with f_x notation we derive from left to right.

Clairaut's Theorem:

Theorem 11. Suppose f is defined on a disk D that contains point (a,b). If the functions f_{xy}, f_{yx} are continuous on D, then $f_{xy}(a,b) = f_{yx}(a,b)$

3.5 Tangent Planes

Let f(x, y) be a function and let S be the surface z = f(x, y).

 T_1 : tangent line in x-direction at $(x_0, y_0, f(x_0, y_0))$.

 T_2 : tangent line in y-direction at $(x_0, y_0, f(x_0, y_0))$.

Definition 30. Define the **tangent plane** to S at $(x_0, y_0, f(x_0, y_0))$ to be the plane that contains both T_1, T_2 , given by:

$$z = z_0 + a(x - x_0) + b(y - y_0)$$

Its intersection with the plane $y = y_0$ (or $x = x_0$) is T_1 (or T_2)

$$\implies T_1 = z - z_0 = a(x - x_0), T_2 = z - z_0 = b(y - y_0)$$

Theorem 12. If f has continuous partial derivatives, an equation of the tangent plane to z = f(x, y) at $(x_0, y_0, f(x_0, y_0))$ is

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Approximation Using Tangent Planes

Definition 31. The linearization of f(x,y) at (a,b) is defined as

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

The approximation

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

is called the linear approximation or tangent plane approximation of f at (a,b).

Theorem 13. If f_x, f_y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

3.6 The Chain Rule

Theorem 14. Suppose z = f(x, y) is a differentiable function and x = x(t), y = y(t) are differentiable. Then z is a differentiable function of t and

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Theorem 15. Suppose u is a differentiable function of t_1, \ldots, t_m . Then

$$\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

for each $i = 1, \ldots, m$

3.7 Direction Derivatives

Definition 32. Let z = f(x, y) be the surface s. Let $p = f(x_0, y_0, z_0)$ be a point on s, and let $\underline{u} = \langle a, b \rangle$ be any unit vector. The directional derivative of f in direction \underline{u} at (x_0, y_0) is

$$D_{\underline{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if it exists.

Theorem 16. If f is a differentiable function of x and y, then f has a directional derivative in any direction and

$$D_{\underline{u}}f(x,y) = f_x(x,y)a + f_y(x,y)b$$

4 How to Solve Problems

4.1 Series

Representing a Function as a Power Series Look for a familiar function that has a power series representation, plug it in and simplify. Integrate and differentiate as required.

Finding the Radius of Convergence Usually involves the ratio test and checking when r < 1.

Finding the Interval of Convergence Use the radius of convergence and check if endpoints converge.

Finding the Sum of a Series Look for a familiar series that can be represented as a function.

Using the Definition of Taylor Series To find a power series representation or to find first few terms, just derive and use $c_n = \frac{f^n(a)}{n!}$.

Evaluating an Indefinite Integral with Series Replace known function by a familiar series, try to cancel out other terms, integrate the series.

Evaluating a Limit with Series Same as above for integrating.

4.2 Vectors

Compute Something Compute what it asks for given the corresponding formula, whether it's the dot product, cross product, projection, etc.

Angle Between 2 Vectors Use either the dot product or cross product.

Values for x Such that 2 Vectors are Orthogonal Use the dot product and solve for it being 0.

Finding a Parametric Equation of a Line Use a point and a direction vector.

Finding the Equation of a Plane Use a point and a normal vector.

Find Where a Line Intersects a Plane Plug in parameters (x, y, z) from line into the equation of a plane and solve for t and get the corresponding point from the line with that value of t.

Distance from a Line to the Origin Take $DV = \underline{a}$ and \underline{b} some point on the line (usually t = 0). Then $d = \frac{|\underline{a} \times \underline{b}|}{|a|}$.

Are 2 Lines Skew, Parallel or Intersecting? If DV are multiples of each other, parallel. If you equate each component x = x, y = y, z = z from both lines and you can solve the system, then they intersect. Otherwise, skew.

Angles Between Planes/Parallel or Perpendicular To show parallel, compare NV. To show perpendicular, use the dot product. If neither, the angle can be computed with the dot product.

Line of Intersection of Two Planes Find an intersecting point and use the cross product with both NV to get a DV.

Distance Between 2 Parallel Planes Given plane equations of the form ax+by+cz=d, then distance $D=\frac{|d_1-d_2|}{\sqrt{a^2+b^2+c^2}}$

Distance Between a Point and a Plane $p = (x_1, y_1, z_1)$, then $D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$

Diagonals of a Parallelogram Given \underline{u} and \underline{v} that form the sides of a parallelogram, lengths of two diagonals are $|\underline{u} + \underline{v}|$ and $|\underline{u} - \underline{v}|$.

4.3 Vector Functions

Find the Domain of a Vector Function Check where it isn't defined.

Limit of a Vector Function Take the limit of each component.

Integral of a Vector Function Take the integral of each component.

Curve of Intersection Between Cylinder and Plane If you have a projection of a cylinder onto a circle like $x^2 + y^2 = 16$, z = 0, then you can write $x = 4\cos t$, $y = 4\sin t$, $0 \le t \le 2\pi$. Take the plane, isolate for z and plug in x, y from circle. Then your vector function is given by x & y from circle and z from plane with plugged in x, y.

Where does a Curve Intersect a Plane? xz-plane $\implies y = 0$, xy-plane $\implies z = 0$, etc.

Parametric Equation of a Line at a Certain Point Get $\underline{r}'(t)$ and plug in t to get DV. Can use this DV as a NV for a normal plane to the curve.

Length of the Curve Use arc length formula.

Angle of Intersection of 2 Curves Get the point where they intersect, then find tangents at those points and use dot product.

Reparametrizing a Curve Given a point, get the corresponding t value. Then measure arc length from 0 to t and solve for t wrt s and plug it into arc length formula wrt t, getting r(t(s)).

Computing $\underline{T} \underline{N} \underline{B}$, κ Use the formulas.

Particle Velocity, Speed and Acceleration Compute with formulas, note that speed is |v(t)|. Might have to work backwards by integrating if given acceleration and/or velocity to get position, don't forget constant.

Acceleration and Normal Components of Acceleration Vector Formulas.

4.4 Multi-variable Functions

Showing Limits Don't Exist Approach from different lines, show that they approach different values.

Where is a Function Continuous Check if polynomial, rational function, composition of continuous functions and check domain.

5 Problems

5.1 Important Problems

5.1.1 Assignment 1

14, 15, 16, 17, 18, 19

5.1.2 Assignment 2

2, 3, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17

5.2 Review Problems

- p.811-812: 5-16, 35-44, 53-56, 61-65, 73-80
- p.882-883: 4-7, 9, 15-25, 27
- p.922: 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 17, 19, 22
- Section 14.2: 9, 11, 15, 21, 29-38
- Section 15.7 (Cylindrical coordinates): 15-26, 29-30
- Section 15.8 (Spherical coordinates): 9-30, 41-43, 48

6 Misc

$$\lim_{n \to \infty} \arctan(n) = \frac{\pi}{2} \tag{2}$$

$$\frac{d}{dx}(a^x) = a^x log(a) \tag{3}$$