By-Molecule Folder

The By-Molecule folder contains files of individual molecules of the HITRAN absorption parameter database. The files use the arbitrary molecule number as the first two characters of a file name. correspondence for these numbers can be found in several places, such as the file molparam.txt; the table below also illustrates these numbers. example, 01 hit12.par is the file for all the water-vapor line parameters in HITRAN (1 \equiv H₂O). When these files are combined and sorted on wavenumber, one obtains the full HITRAN database (HITRAN12.par), given in the higher-level directory HITRAN2012/

The purpose of this folder is to provide data for specific molecules for applications such as laboratory experiments, theoretical analysis, or validation. It is recommended that the full HITRAN database be used for most applications, for example atmospheric simulations or modeling.

Molecules and isotopologues represented in line-by-

line portion of HITRAN.

line portion of HIIRAN.						
Molecule	Isotopo- logue ^a	Spectral Coverage (cm ⁻¹)	Number of Transitions			
(1) H₂O	161 181 171 162 182 172	$0-25711 \\ 0-19918 \\ 0-19946 \\ 0-22708 \\ 0-3825 \\ 1234-1599$	142 045 39 903 27 544 13 237 1 611 175			
(2) CO ₂	626 636 628 627 638 637 828 827 727 ^b 838 ^b	345 - 12785 406 - 12463 0 - 9558 0 - 9600 489 - 6745 583 - 6769 491 - 8161 626 - 5047 535 - 6933 4599 - 4888	169 292 70 611 116 482 72 525 26 737 2 953 7 118 821 5187 121			
(3) O ₃	666 668 686 667 676	$ 0 - 6997 \\ 0 - 2768 \\ 1 - 2740 \\ 0 - 2122 \\ 0 - 2101 $	261 886 44 302 18 887 65 106 31 935			
(4) N ₂ O	446 456 546 448 447	0 - 7797 5 - 5086 4 - 4704 542 - 4672 550 - 4430	33 074 4 222 4 592 4 250 1 705			

_			
	26	3 – 8465	1 019
	36	3 – 6279	797
(5) CO	28 27	3 - 6267 $3 - 6339$	770 728
	38	3 – 6124	712
	37	1807 – 6197	580
	211	0 - 11502	336 830
(6) CH ₄	311	0 - 11319	72 420
(0) C114	212	7 – 6511	54 550
	312	959 – 1695	4 213
	66	0 - 15928	1 787
(7) O_2	68	1 – 15853	875
(1) 32	67	0 – 14538	11 313
	46	0 - 9274	103 701
(8) NO	56	1609 - 2061	699
	48	1602 - 2039	679
(9) SO ₂	626	0 - 4093 0 - 2501	72 460
(10) NO ₂	646 646	0 - 2301 0 - 3075	22 661 104 223
	4111	0 - 7000	45 302
(11) NH ₃	5111	0-5180	1 090
(12) IINO	146	0 - 1770	903 854
(12) HNO ₃	156	0 - 923	58 108
	61	0 – 19268	30 772
(13) OH	81	0 - 329 0 - 332	295
	62 19	0 – 332 24 – 46985	912 10 073
(14) HF	29	13 – 47365	24 303
	15	8 – 34250	11 879
(15) HCl	17	8 - 34240	11 907
(15) HCI	25	5 - 33284	29 994
	27	5 – 33258	29 911
	19 11	13 - 16034 $13 - 16032$	3 039 3 031
(16) HBr	29	7 – 8781	1 455
	21	7 – 8778	1 455
(17) 111	17	10 - 13908	3 161
(17) HI	27	5 – 7625	1 590
(18) CIO	56	0 - 1208	5 721
	76 622	0 - 1200 $0 - 4200$	5 780 15 618
	624	0 – 4200	6 087
(19) OCS	632	0 – 4056	3 129
	623	0 - 4164	2 886
	822	0 - 4046	1 641
	126	0 - 3100	40 670
(20) H_2CO	136 128	0 - 117 0 - 101	2 309 1 622
	165	1 – 3800	8 877
(21) HOCl	176	1 - 3800	7 399
(22) N	44	11 - 9355	1 107
(22) N ₂	45	11 – 2578	161
(ac) HCD1	124	0 - 3424	2 955
(23) HCN	134 125	2 - 3405 $2 - 3420$	652 646
	215	2 - 3420 0 - 3198	107 642
(24) CH₃Cl	217	0 - 3198	104 854
(25) H_2O_2	1661	0 - 1731	126 983
	1221	604 - 9890	12 613
(26) C_2H_2	1231	613 – 6589	285
	1222	1 – 789	7 512

(27) C₂H₆	1221	706 - 3001	43 592
(27) C ₂ H ₆	1231	725 - 919	6 037
(28) PH ₃	1111	0 - 3602	22 189
(29) COF ₂	269	696 - 2002	168 793
	369	686 - 815	15 311
(30) SF_6	29	580 – 996	2 889 065
	121	2 - 11330	36 561
(31) H_2S	141	5 – 11227	11 352
	131	5 - 11072	6 322
(32) HCOOH	126	10 - 1890	62 684
(33) HO ₂	166	0 - 3676	38 804
(34) O	6	68 – 159	2
(35) ClONO ₂	5646	763 – 798	21 988
` ′	7646	765 – 791	10 211
(36) NO ⁺	46	1634 – 2531	1 206
(37) HOBr	169	0 - 316	2 177
(37) 22 32 2	161	0-316	2 181
(38) C_2H_4	221	701 - 3243	18 097
` ′	231	2947 – 3181	281
(39) CH₃OH	2161	0 - 1408	19 897
(40) CH₃Br	219	794 – 1706	18 692
` ′	211	796 – 1697	18 219
(41) CH₃CN	2124	890 – 946	3 572
(42) CF ₄	29	594 – 1313	60 033
$(43) \mathbf{C_4H_2}$	2211	0 - 758	124 126
(44) HC₃N	1224	0 - 760	180 332
(45) H_2	11	15 – 36024	4 017
·		3 – 36406	5 129
	22 24	1 - 2586	1 088
(46) CS		1 – 1359	396
	32 23	1 - 1331 $1 - 156$	396
(47) 80	26		198
(47) SO_3	20	0 - 2778	10 881

Note: Molecules SF_6 , $ClONO_2$, and CF_4 have been assigned to the supplemental folder.

^aAbbreviated code for isotopologues. ^bIsotopologue 727 (¹⁷O¹²C¹⁷O) introduced into HITRAN for the first time in this edition. Isotopologue 838, which existed in the database before but is of lesser terrestrial abundance, has been reassigned as the 10th isotopologue and has the number zero in the corresponding ASCII format transition field.