Cifrado simétrico

Mikel Egaña Aranguren

mikel-egana-aranguren.github.io

mikel.egana@ehu.eus

BILBOKO INGENIARITZA ESKOLA ESCUELA DE INGENIERÍA DE BILBAO

Cifrado simétrico

https://doi.org/10.5281/zenodo.4302267

https://github.com/mikel-egana-aranguren/EHU-SGSSI-01

Cifrado simétrico

- Criptosistemas de clave privada
- Historia
- Cifrado de flujo
- Cifrado por bloques
- Ataques de fuerza bruta y claves débiles

Criptosistemas de clave privada

Criptosistemas de clave privada

Cifrado en flujo: cifrar un flujo continuo de bits

Cifrado en bloque: dividir el mensaje en bloques del mismo tamaño y aplicar el algoritmo a cada uno

Criptosistemas de clave privada: Objetivos

- Convertir el mensaje en ininteligible
- Recuperar la información cifrada
- Implementación lo más sencilla posible

Criptosistemas de clave privada

Técnicas básicas en criptografía clásica

- Transposición (los caracteres originales simplemente cambian de posición)
- Sustitución (los caracteres originales se sustituyen por otros)

Historia de la Criptografía

- Hasta 1948, criptografía pre científica
- En 1948, Claude Shannon sienta las bases de la Teoría de la Información y de la criptografía moderna
- En 1976 Diffie & Hellman introducen el concepto de criptografía de clave pública

Método de Escitalo de Esparta

Enrollar una tira de papel en un bastón y escribir el mensaje

Desenrollar el papel y enviarlo al destino

Método de Escitalo de Esparta

EE_LSV_TAVASE_ONE_ENAN_ZOEU_LL

Método de Escitalo de Esparta

Se necesita un bastón exactamente igual para descifrar el mensaje

Enrollar la tira de papel alrededor del bastón y leer el mensaje

La clave de este sistema es el diámetro del bastón

Método de Escitalo 2.0

Distribuir el mensaje en columnas

La clave viene determinada por la cantidad y orden de las columnas

Método de Escitalo 2.0

Método de Escitalo 2.0

Criptoanálisis

- Basado en combinatoria
- Calcular el tamaño de los bloques
- Combinar los bloques en distinto orden hasta encontrar alguno con sentido

Método César

Cifrado monoalfabético

Empleado por Julio César

Consiste en sumar 3 a la posición de cada letra en el alfabeto

Método César

Método de Atbash (Espejo)

Cifrado monoalfabético

Técnica proveniente del alfabeto hebreo

Consiste en sustituir cada carácter por su "contrario"

Método de Atbash (Espejo)

Método Afín

Cifrado monoalfabético

Generalización método César

$$E(a;b)(M) = (aM + b) \mod N$$

N es el número de caracteres del alfabeto

César es una transformación afín con E(1,3)

Método Diccionario

Cifrado monoalfabético

Generar la tabla de correspondencias de manera "manual"

Método Polybius

Cifrado monoalfabético

Pueden ser caracteres o dígitos

Criptoanálisis basado en estadística

Método establecido por Al-Kindi en el siglo 9

Un carácter "original" siempre se sustituye por el mismo carácter/es

Se sabe cuáles son los caracteres más frecuentes en cada idioma

Se sabe las palabras de dos/tres/cuatro caracteres (bigramas, trigramas y tetragramas) más frecuentes en cada idioma

Se va "probando" y deduciendo

Cuanto más largo es el texto cifrado, mejor

Hay que saber el idioma del texto original

Porcentaje de aparición de caracteres en castellano

e- 16,78%	r - 4,94%	y - 1,54%	j - 0,30%
a - 11,96%	u - 4,80%	q - 1,53%	ñ - 0,29%
o - 8,69%	i - 4,15%	b - 0,92%	z - 0,15%
l - 8,37%	t - 3,31%	h - 0,89%	x - 0,06%
s - 7,88%	c - 2,92%	g - 0,73%	k - 0,00%
n - 7,01%	p - 2,776%	f - 0,52%	w - 0,00%
d - 6,87%	m - 2,12%	v - 0,39%	

Ejemplo de descifrado por análisis de frecuencias

Técnicas para dificultar el criptoanálisis

- Eliminar los espacios en blanco
- Alterar el texto original manteniendo su significado (Ej. SMS, WhatsApp, ...)
- Usar pictogramas con significado (Libro de códigos)
- Evitar la correspondencia 1-1 usando el mismo carácter en más de una ocasión (Sistemas polialfabéticos)

El disco de Alberti

Primer sistema polialfabético

Dos discos concéntricos, el interior móvil

Durante el cifrado, se va moviendo, por lo que en el cifrado se usan X alfabetos (correspondencias) distintas

La clave es la posición inicial, cada cuántos caracteres se gira el disco, cuánto se gira y en qué dirección

El disco de Alberti

The Alberti and Jefferson Code Disks

Es probablemente el elemento criptográfico más conocido de la historia

Originalmente diseñada para uso civil

Modificada para uso militar y usada por los nazis

158,962,555,217,826,360,000 (Enigma Machine) - Numberp...

El matemático polaco Marian Rejewski estableció las bases para desencriptar Enigma

- Crearon máquinas electromecánicas llamadas "bombas"
- Los nazis añadieron 2 nuevos rotores y las "bombas" polacas no daban abasto con el nuevo número de posibilidades

El equipo de <u>Alan Turing</u> partió de esta información para crear su propia "bomba" más eficiente y resistente a cambios de configuración

Métodos de sustitución polialfabéticos

Criptoanálisis

- Usando métodos estadísticos
- Se buscan patrones para deducir tamaños de las claves, orden de los distintos trozos, etc.
- Hace falta más texto encriptado que en los sistemas monoalfabéticos

Métodos de cifrado de flujo

En vez de cifrar un mensaje, cifran bit a bit

Usado para comunicaciones en tiempo real (No se puede esperar a tener el mensaje completo para cifrarlo y transmitirlo)

Métodos de cifrado de flujo

A partir de la clave, se usa un generador "pseudoaleatorio" que genera el flujo de clave

La operación XOR entre el bit a cifrar y el flujo de clave, genera el criptograma

Métodos de cifrado de flujo

Método de Vernam

Realiza el <u>cifrado XOR</u> entre el texto y una clave aleatoria de la misma longitud

El generador es realmente aleatorio

Método de Vernam

La clave (el flujo de clave) es lo denominado "libreta de un solo uso":

- Sólo se usa una vez
- Hay que enviársela al receptor del mensaje
- Está demostrado matemáticamente que es irrompible

No es práctico

Otros métodos de cifrado de flujo

Basados en el método de Vernam

Usar claves pseudoaleatorias generadas a partir de una semilla y un algoritmo de generación

Con la semilla y el algoritmo de generación se podría reconstruir la clave pseudoaleatoria (Depende del número de posibles semillas distintas)

Otros métodos de cifrado de flujo

No son matemáticamente irrompibles

Ejemplos:

- RC4 (ARC4) usado en TLS/SSL, WEP y WPA entre otros (Roto)
- A5/1 (y distintas versiones) usado en comunicaciones GSM (A5/1 y A5/2 rotos)

Métodos de cifrado por bloques

Partir el mensaje original en bloques de tamaño fijo:

- Si el tamaño es suficientemente pequeño, puede considerarse cifrado de flujo
- Existen algoritmos de rellenado para aquellos casos en los que el tamaño del mensaje no sea múltiplo del tamaño del bloque

Métodos de cifrado por bloques

Cada bloque de mensaje original genera un bloque de mensaje cifrado

Se pueden añadir iteraciones, permutaciones y operaciones entre los distintos bloques

Métodos de cifrado por bloques

- DES
- Triple DES
- AES
- IDEA
- KASUMI

- 1975
- Primer estándar
- Bloques de 64 bits
- Clave de 56 bits (64 8 como propuesta de la NSA para asegurarse de que podian romperlo -???-)
- 16 rondas
- Se puede romper en menos de 24 horas

 $\underline{ \text{https://commons.wikimedia.org/wiki/File:DES-key-schedule.png} }$

Triple DES

- Concebido como sucesor de DES, pero en desuso
- Todavía se usa en tarjetas de crédito
- Basado en realizar 3 ejecuciones de DES (Cifrar Descifrar Cifrar)
- Bloques de 64 bits
- Claves de 168 bits (3*56), clave efectiva 112 bits

AES (Advanced Encryption Standard)

- Rijndael
- Estandarizado por el Instituto Nacional de Normas y Tecnología (NIST), EEUU
- Sustituto de (Triple) DES
- Muy usado en todo tipo de comunicaciones y transacciones
- Bloques de 128 bits
- Claves de 128, 192 ó 256 bits
- 8 rondas (claves de 128), 12 rondas (claves de 192), 14 rondas (claves de 256)

IDEA (International Data Encryption Algorithm)

- Bloques de 64 bits
- Clave 128 bits
- 8 rondas y media
- Está considerado seguro (excepto algunas claves débiles)
- Incluído en OpenPGP

KASUMI (A5/3)

- Bloques de 64 bits
- Clave de 128 bits
- 8 rondas
- Usado en las redes 3G (con alguna variación)
- El original se puede romper fácilmente (probado en 2010)

Siempre encuentra la solución

Consiste en probar todas las claves posibles

Hay que conocer el algoritmo de cifrado y el espacio de claves

No siempre es posible por su coste temporal

Espacio de claves:

• 56 bits: 2⁵⁶ posibilidades

• 128 bits: 2¹²⁸ posibilidades

• 256 bits: 2²⁵⁶ posibilidades

Tiempo que se tardaría con un superordenador:

- 56 bits: 0,04 segundos
- 128 bits: 7.193.522.047 milenios (año arriba, año abajo)
- 256 bits: ...

Se puede hacer un ataque por fuerza menos bruta y más "inteligente":

- Usando un diccionario
- Usando datos del dueño de la clave
- ...

Claves débiles

- Pueden presentarse según las características de cada algoritmo
- Claves cuyo comportamiento no es el deseado
 - E_K(M)=M
 - $E_K(E_K(M))=M$
 - $D_{K2}(E_{K1}(M))=M$