Math Self Diagnostique

A.Belcaid

ENSA-Fès

March 2, 2019

- Espérance
- probabilité jointe
- Probabilité conditionnelle
- 4 Systèmes d'équations linéaires
- 5 Logarithmes
- 6 Structure de données

Enoncé

Une personne lance un Dé à six faces. Vous gagner le nombre points affiché par le dé.

Enoncé

Une personne lance un Dé à six faces. Vous gagner le nombre points affiché par le dé.

Quelle est l'espérance des points gagnés pour une seul lancement.

Enoncé

Une personne lance un **Dé** à six faces. Vous gagner le nombre points affiché par le dé.

- Quelle est l'espérance des points gagnés pour une seul lancement.
- Même Question après 2 lancements.

Enoncé

Une personne lance un **Dé** à six faces. Vous gagner le nombre points affiché par le dé.

- Quelle est l'espérance des points gagnés pour une seul lancement.
- Même Question après 2 lancements.
- Après 100

Probabilité jointe

Enoncé

Pour deux distributions X et Y, choisissez les formules correctes:

Probabilité jointe

Enoncé

Pour deux distributions X et Y, choisissez les formules correctes:

- \square P(x,y) = P(x)P(y)
- P(x,y) = P(x|y)P(y)
- $\square \ P(x,y) = P(x|y)P(y|x)$
- \square $P(x) = \sum_{y} P(x|y)$
- \square $P(x) = \sum_{y} P(x, y)$
- Aucune formule

Probabilité conditionnelle

Enoncé

Nous lançons deux Dé uniformes à 6 faces.

- Calculer la probabilité d'obtenir un double.
- Sachant que le résultat obtenu est inférieur à 4. Calculer la probabilité qu'un double à été lancé.

Équations linéaires

Enoncé

Sachant que
$$x = (\frac{1}{2})y + \frac{1}{2}(x+1)$$
 et que $y = (\frac{1}{3})y + (\frac{1}{3})(x+2)$

- ullet Quelle est la valeur de χ
- Quelle est la valeur de y

Logarithmes

Enoncé

Selectionner les formules correctes:

- $2^{xy} = 2^x 2^y$
- $2^{x+y} = 2^x 2^y$
- $2^{x+y} = 2^x + 2^y$
- $\Box \ \log(3^x) = \log(3)\log(x)$
- $\square \log(3^{x}) = x\log(3)$
- $\log(3^{x}) = x\log(3)$
- \square log(3 x) = 3 x
- Aucune formule

Structure de données

Enconé

•	Quelle est l'opération critique qui est plus rapide dans les tables de hashage que dans les listes chainées
	☐ Insérer un élement.☐ Tester l'existence d'un élement.
2	En moyenne, quelle est la compléxité de cette opération dans une table de hashage.
	$\begin{array}{c} \bigcirc \ \mathcal{O}(1) \\ \bigcirc \ \mathcal{O}(\mathfrak{n}) \\ \bigcirc \ \mathcal{O}(\log(\mathfrak{n})) \\ \bigcirc \ \mathcal{O}(\mathfrak{n}^2) \\ \bigcirc \ \text{Aucne réponse} \end{array}$
3	Quelle est la complexité de cette opération pour les listes chainnées:
	$ \begin{array}{c} $