CMSC 510 Regularization Methods for Machine Learning

Graph Neural Networks

Instructor:

Dr. Tom Arodz

CNN vs GNN - similarities

- Convolutional Neural Networks
 - Input is provided on a regular lattice (pixels in a grid)

- At every graph node (pixel)
 we have a vector of node features
 - In the input layer: RBG colors
 - In subsequent layers: filter activations

- Graph Neural Networks
 - Input is provided on a general graph (typically not regular)

- At every graph node we have a vector of node features
 - E.g. it's a social network, a node is a person, features describe that person
 - Or a chemical molecule, each node has some properties of that atom

CNN vs GNN - differences

- Convolutional Neural Networks
 - Subsequent layers SOMEWHAT preserve the underlying lattice (pixel grid)
 - But: often there is pooling to reduce the lattice size

The output is unrelated to input graph
 it's vector of class probabilities

- Graph Neural Networks
 - Subsequent layers TYPICALLY preserve the underlying graph
 - Often there is no pooling, the structure is preserved all they way till the end

- Often, the output is the same graph as input – we're predicting some missing information (e.g. class) for each node
 - Each node is like a "sample", some have class, some don't, like in semisupervised learning

Graph Neural Networks

- Key intuition
 - Information about a node come
 - From its features
 - But also from features of its neighbors in the graph

Graph Neural Networks

Regularization

- Like in semi-supervised learning
 - Leverage information from neighbors in a graph
 - Leverage information from unlabeled samples

Like in CNNs

"Weight sharing" – single set of weights applied at different nodes

http://snap.stanford.edu/proj/embeddings-www/files/nrltutorial-part2-gnns.pdf

Graph Neural Networks

Challenges

- In CNNs, filters can have a fixed structure (e.g. 3x3)
 - Graphs are irregular how to account for that?
- Graphs (e.g. social networks) are often small-world
 - After a few hops, everything is connected to everything

