Logik und diskrete Mathematik, Übung 12

Andreas Timmermann, Mat. 4994606, Alena Dudarenok, Mat. 4999780, Gruppe: 3

26. Januar 2016

Aufgabe 1

Nein.

Ein vollständiger Graph mit 12 Knoten hat genau $\binom{12}{2} = 66$ Kanten. Wenn dieser Graph unterteilt wird in disjunkte Untergraphen, so gehen Kanten zwischen den Knoten verloren.

Aufgabe 2

geg: $G_1 = (V_1, E_1)$ und $G_2 = (V_2, E_2)$ und $G = (V_1 \cup V_2, E_1 \cup E_2)$. Annahme: wenn G ein zusammenhängender Graph ist $\Rightarrow V_1 \cap V_2 \neq \emptyset$.

Widerspruchsbeweis: wenn G ein zusammenhängender Graph ist $\Rightarrow V_1 \cap V_2 = \emptyset$. wenn G ein zusammenhängender Graph ist $\Rightarrow \exists (u, v) \in E_1 \cup E_2 : u \in V_1 \land v \in V_2$ $\Rightarrow u \in V_2 \land v \in V_1 \Rightarrow V_1 \cap V_2 \neq \emptyset$. Ein Widerspruch! Also muss die Annahme wahr sein.

Aufgabe 3

- a) $i = \frac{n-1}{q}, l = n i$
- **b)** minimum sind 0 Kanten. Und maximum sind n-1 Kanten.

Aufgabe 4

Das liegt daran, dass sich die Senke in diesem Diagramm so darstellt, dass wenn n die totale Senke ist, die n-te Spalte mit nur 0 aufgefüllt und die n-te Zeile nur mit 1, bis auf die Stelle $n \times n = 0$, gefüllt ist. Es geht auch umgedreht. Je nachdem, wie man das Diagramm aufgebaut hat.

Aufgabe 5

geg: G ist ein vollständiger Graph mit n Knoten und gerichteten Verbindungen zwischen den einzelnen Knoten in der Art, dass $\exists v_i \in V : \forall v_j \in V, v_i \neq v_j : \exists$ ein gerichteter Weg zwischen v_i und $v_j \Rightarrow v_i$ ist Champion. Nennen wir ihn T-Graph.

I.A: $n = 2 \Rightarrow v_i \rightarrow v_j : i \neq j : \exists$ ein gerichteter Weg zwischen v_i und $v_j \Rightarrow v_i$ ist Champion.

I.V: Es gilt $1 \le t \le n$ mit G ist ein vollständiger Graph mit t Knoten und gerichteten Verbindungen zwischen den einzelnen Knoten in der Art, dass

 $\exists v_i \in V : \forall v_j \in V, v_i \neq v_j : \exists$ ein gerichteter Weg zwischen v_i und $v_j \Rightarrow v_i$ ist Champion. Nennen wir ihn T-Graph.

I.S: n + 1,

Wir nehmen einen T- Graphen mit n+1 Knoten.

Von diesem Graphen entfernen wir einen Punkt und erhalten einen T-Graphen mit n Knoten. Das ist unsere Induktionsvoraussetzung.

Nennen wir den Champion dieses T-Graphen v_s .

Den zusätzlichen Knoten vom T-Graphen mit n+1 Knoten nennen wir v_n .

Dieser hat Kanten zu allen Knoten im T-Graphen mit n Knoten.

Falle 1) $\exists \overrightarrow{e} \in E : \overrightarrow{e} = (v_i, v_n), i \neq n \Rightarrow \exists$ ein gerichteter Weg von v_s nach $v_n \Rightarrow v_s$ dominiert $v_n \Rightarrow v_s$ ist der neue und alte Champion. Falle 2) $\nexists \overrightarrow{e} \in E : \overrightarrow{e} = (v_i, v_n), i \neq n \Rightarrow v_n$ dominiert alle Knoten des T Graphen mit

Falle 2) $\not\equiv \overrightarrow{e} \in E : \overrightarrow{e} = (v_i, v_n), i \neq n \Rightarrow v_n$ dominiert alle Knoten des T Graphen mit n Knoten, auch v_s , da es auch eine gerichtete Kante von v_n nach v_s geben muss. Somit ist v_n der neue Champion.