Cap. 1- Funções reais de variável real

M.Elfrida Ralha (eralha@math.uminho.pt)

M.Isabel Caiado (icaiado@math.uminho.pt)

setembro 2016

[MIEInf] Cálculo-2016-17

1 / 46

Funções reais de variável real

1.1 Generalidades

Definição de função real de variável real

Operações algébricas

Composição de funções

Restrição e prolongamento de uma função

Características geométricas

Função inversa

1.2 Limite

Ponto de acumulação de um conjunto

Definição

Alguns resultados sobre limites

Limites no infinito e limites infinitos

Indeterminações

1.3 Continuidade

Definição

Resultados sobre continuidade pontual

Descontinuidades

Resultados sobre funções contínuas

Parte I

Generalidades sobre funções reais de variável real

[MIEInf] Cálculo-2016-17

3 / 46

Definição

- ▶ Chama-se função real de variável real a um terno D, E e f onde D e E são dois subconjuntos não vazios de \mathbb{R} , e f é de uma lei de formação (regra de correspondência) que a cada elemento x de D associa um único elemento f(x) de E.
 - $\bullet \ \ \mathsf{denota}\text{-se a função por } f:D\longrightarrow E;$
 - usar-se-à as notações $x \mapsto f(x)$ ou $x \rightsquigarrow f(x)$ para indicar que o elemento x de D é transformado por f no elemento f(x) de E;
 - o conjunto D designa-se domínio da função;
 - ullet o conjunto E designa-se conjunto de chegada da função

- ightharpoonup Seja $f:D\longrightarrow \mathbb{R}$ e $D\subset \mathbb{R}$ não vazio. Nestas condições
 - ullet a imagem ou contradomínio de f é o subconjunto de ${\mathbb R}$ definido por

$$\mathsf{CD}_f = \{ f(x) \mid x \in D \};$$

• o gráfico de f é o conjunto G_f dos pares ordenados (x, f(x)) com $x \in D$, isto é,

$$G_f = \{(x, f(x)) | x \in D\}.$$

[MIEInf] Cálculo-2016-17

5 / 46

Observação

- $f: D \longrightarrow \mathbb{R}$ significa que a função f a cada elemento de D faz corresponder um número real.
- ▶ $D \subset \mathbb{R}$ significa que D é um subconjunto de \mathbb{R} , isto é, D é um intervalo ou é a reunião de intervalos. Alguns exemplos:

$$D = [1, 2], \quad D =]1, 2], \quad D =]-\infty, 2], \quad D =]1, 2] \cup [5, 6], \quad \dots$$

- ▶ Quando não houver dúvidas denotar-se-á a função $f:D\longrightarrow \mathbb{R}$ simplesmente por f.
- Há diferentes formas para descrever uma função
 - tabelas
- fórmulas
- •

- gráficos
- séries

Casos particulares

 $f: \mathbb{R} \longrightarrow \mathbb{R} \text{ com}$

$$f(x) = a_n x^n + \dots + a_1 x + a_0,$$

onde $n \in \mathbb{N}_0$ e a_0, \ldots, a_n são números reais tais que $a_n \neq 0$, denomina-se função polinomial de grau n.

• [Caso particular n=0] um polinómio de grau zero também se diz função constante e escreve-se

$$f(x) = a_0.$$

O contradomínio de f é o conjunto $\mathrm{CD}_f = \{a_0\}$ e o gráfico de f representa-se como os pontos da reta definida por $y = a_0$.

[MIEInf] Cálculo-2016-17

7 / 46

 Uma função racional f é uma função real de variável real definida por

$$f(x) = \frac{p(x)}{q(x)}$$

onde p e q são funções polinomiais e cujo domínio é o conjunto $D_f = \{x \in \mathbb{R} \mid q(x) \neq 0\}.$

 $lackbox{ O valor absoluto \'e a função } |\cdot|:\mathbb{R}\longrightarrow\mathbb{R}$ definida por

$$|x| := \begin{cases} -x, & \text{se } x < 0 \\ x, & \text{se } x \ge 0. \end{cases}$$

A função identidade é a função $id_{\mathbb{R}}:\mathbb{R}\longrightarrow\mathbb{R}$ definida por $id_{\mathbb{R}}(x)=x.$

Operações algébricas

Sejam $A,B\subset\mathbb{R},\,A\cap B\neq\emptyset$ e $f:A\longrightarrow\mathbb{R},\,g:B\longrightarrow\mathbb{R}$ duas funções.

▶ A soma diferença de f e g é a função $f+g:A\cap B\longrightarrow \mathbb{R}$ definida por

$$(f \pm g)(x) = f(x) \pm g(x), \quad \forall x \in A \cap B.$$

- $lackbox{ O produto de }f$ e g é a função $f\cdot g:A\cap B\longrightarrow \mathbb{R}$ definida por $(f\cdot g)(x)=f(x)\cdot g(x), \quad \forall x\in A\cap B.$
- $lackbox{ O quociente de }f$ e g é a função $\dfrac{f}{g}:D\longrightarrow \mathbb{R}$ definida por

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \quad \forall x \in D = A \cap \{x \in B : g(x) \neq 0\}.$$

[MIEInf] Cálculo-2016-17

9 / 46

Composição de funções

lacksquare Sejam $D_f, D_g, B, C \subset \mathbb{R}$, não vazios, tais que $B \cap D_g
eq \emptyset$ e

$$f:D_f\longrightarrow B$$
 e $g:D_g\longrightarrow C$

duas funções.

A função composta de g e f, denotada $g \circ f$, é a função definida por

$$g \circ f : D \longrightarrow C$$

 $x \mapsto (g \circ f)(x) = g(f(x))$

onde

$$D = \{ x \in D_f : f(x) \in D_q \}.$$

Exemplo

Sejam

$$f:]0, +\infty[\longrightarrow \mathbb{R},$$
 $f(x) = \sqrt{x}$
 $g: \mathbb{R} \longrightarrow \mathbb{R}$ $g(x) = x^2.$

Caracterize as funções $g\circ f$ e $f\circ g$

[MIEInf] Cálculo-2016-17

11 / 46

Restrição e prolongamento de uma função

▶ A restrição de uma função $f:A \longrightarrow \mathbb{R}$ a um subconjunto $X \subset A$ é a função $f|_X:X \longrightarrow \mathbb{R}$ definida por

$$f\Big|_{X}(x) = f(x), \qquad \forall x \in X$$

[Nota] Conceito fundamental no Cap. 1.3

▶ Um prolongamento de uma função $g: X \longrightarrow \mathbb{R}$ a um conjunto $A \supset X$ é uma função $f: A \longrightarrow \mathbb{R}$ que coincida com g em X, isto é tal que

$$f\Big|_{X}(x) = g(x), \qquad \forall x \in X$$

Nota

A restrição é única mas o prolongamento não!

Exemplo

- ► Seja $f:[0,5] \longrightarrow \mathbb{R}, \qquad f(x)=x^2.$
 - Restrição de f a X=[1,2] é a função, seja $h=f\big|_{[1,2]}$,

$$h: [1,2] \longrightarrow \mathbb{R}, \qquad h(x) = x^2$$

- Prolongamento de f a A = [-5, 5]
 - $g: [-5,5] \longrightarrow \mathbb{R}, \qquad g(x) = x^2;$

 - ▶ e muitas outras funções . . .

[MIEInf] Cálculo-2016-17

13 / 46

Características geométricas

Seja $D \subset \mathbb{R}$ e $f:D \longrightarrow \mathbb{R}$ uma função. Diz-se que:

- ▶ f é uma função par quando para qualquer $x \in D$, $-x \in D$ e $\forall x \in D$ f(-x) = f(x);
- ▶ f é uma função ímpar quando para qualquer $x \in D$, $-x \in D$ e $\forall x \in D$ f(-x) = -f(x);
- ▶ f é uma função periódica de período p quando para qualquer $x \in D$, $x + p \in D$ e $\forall x \in D$ f(x + p) = f(x).

Exemplo

•
$$f:[0,5] \longrightarrow \mathbb{R}, \qquad f(x)=x^2 \text{ não \'e par};$$

$$ightharpoonup h: [1,2] \longrightarrow \mathbb{R}, \qquad h(x) = x^2 \text{ não \'e par;}$$

•
$$g: [-5,5] \longrightarrow \mathbb{R}, \qquad g(x) = x^2 \text{ \'e par};$$

Sugestão: Represente graficamente as funções acima indicadas.

15 / 46

Seja $D \subset \mathbb{R}$. Diz-se que a função $f:D \longrightarrow \mathbb{R}$ é

- ▶ majorada quando existe $M \in \mathbb{R} : f(x) \leq M$, qualquer que seja $x \in D$
- lacktriangledown minorada quando existe $m\in\mathbb{R}\,:\,f(x)\geq m,$ qualquer que seja $x\in D$
- ▶ limitada se f é majorada e minorada, isto é,

$$\exists A \in \mathbb{R}^+ : \forall x \in D \quad |f(x)| \le A.$$

- rescente quando para quaisquer x, y em $D x < y \Rightarrow f(x) \le f(y)$
- ▶ decrescente quando para quaisquer x, y em D $x < y \Rightarrow f(x) \ge f(y)$
- ightharpoonup monótona quando f é crescente ou decrescente.

Sejam $D, E \subset \mathbb{R}$. Uma função $f: D \longrightarrow E$ diz-se

▶ injetiva quando

$$\forall x, y \in D \quad x \neq y \Rightarrow f(x) \neq f(y)$$

sobrejetiva quando

$$\forall y \in E \quad \exists x \in D : \quad f(x) = y$$

ightharpoonup bijetiva quando f for simultaneamente injetiva e sobrejetiva.

[MIEInf] Cálculo-2016-17

17 / 46

Exemplo

▶ Não é injetiva nem sobrejetiva a função

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto f(x) = x^2$$

Não é injetiva mas é sobrejetiva a função

$$g: \mathbb{R} \longrightarrow [0, +\infty[$$

 $x \longmapsto g(x) = x^2$

▶ É injetiva e sobrejetiva, logo bijetiva, a função

$$h:]-\infty, 0] \longrightarrow [0, +\infty[$$

 $x \longmapsto h(x) = x^2$

Função inversa

lacksquare Seja $f:D\longrightarrow E$ uma função bijetiva. A função

$$E \longrightarrow D$$

que faz corresponder a $y \in E$ o único $x \in D$ tal que f(x) = yé chamada função inversa de f e é indicada por f^{-1} .

Nota

Não confundir f^{-1} com $\frac{1}{f}$.

[MIEInf] Cálculo-2016-17

19 / 46

Propriedades da função inversa

Seja $f:D\longrightarrow E$ uma função bijetiva.

- 1. Se $g:E\longrightarrow D$ é uma função bijetiva, então g é a função inversa de f se e só se
 - g(f(x)) = x, $\forall x \in D$;
 - f(g(y)) = y, $\forall y \in E$.
- 2. Se g é a função inversa de f, então

 - $D_f = \mathsf{CD}_g$; $\mathsf{CD}_f = D_g$; $g^{-1} = f$.

Representação gráfica de uma função e da sua inversa

Partindo de uma representação gráfica da função f pode obter-se uma representação gráfica de f^{-1} :

[MIEInf] Cálculo-2016-17

21 / 46

Exemplo

- ▶ A função $f: \mathbb{R} \longrightarrow \mathbb{R}$, tal que $f(x) = x^2$ tem inversa?
- lndique, caracterizando, uma restrição de f que admita função inversa. Designe-a por g.
- lacktriangle Caracterize a inversa de g.

Parte II

Limite

[MIEInf] Cálculo-2016-17

23 / 46

Ponto de acumulação de um conjunto

lackbox Um número real $a\in\mathbb{R}$ diz-se um ponto de acumulação de D e escreve-se $a\in D'$ quando

para todo o r > 0 existe $x \in D$ tal que 0 < |x - a| < r.

Nota

- Se a é um ponto de acumulação de D não significa que $a \in D$.
- ▶ [Ideia intuitiva] $a \in \mathbb{R}$ é um ponto de acumulação de D se estiver "rodeado" por pontos de D.

Exemplos

▶
$$D =]-1, 2], D' =$$

▶
$$D = [-1, 5] \setminus \{0, 2\},$$
 $D' =$

$$D = \{-1, 1, 2\}, \qquad D' = \{-1, 1, 2\},$$

[MIEInf] Cálculo-2016-17

25 / 46

Limite

Sejam $f:D\longrightarrow \mathbb{R}$ uma função de domínio D e $a\!\in\!D'$.

▶ O número real ℓ é o limite segundo Cauchy de f(x), quando x tende para a, e escreve-se

$$\lim_{x \longrightarrow a} f(x) = \ell$$

quando

$$\forall \delta > 0, \exists \varepsilon > 0 : (x \in D \land 0 < |x - a| < \varepsilon) \Longrightarrow |f(x) - \ell| < \delta.$$

Observação

- ▶ Na definição anterior ℓ pode ser 0 (zero), mas não pode ser ∞ (infinito).
- ▶ $\forall \delta > 0, \exists \varepsilon > 0: (x \in D \land 0 < |x a| < \varepsilon) \Longrightarrow |f(x) \ell| < \delta$ ler-se-á, por exemplo,

"dado um número positivo δ , arbitrariamente pequeno, existe um número real positivo ε , suficientemente pequeno, tais que, se $x \in D$, $x \neq a$ e a distância de x a a é menor do que ε , então a distância do correspondente f(x) a ℓ é menor do que δ ";

► [Ideia intuitiva] Escrever-se-á

$$\lim_{x \longrightarrow a} f(x) = \ell$$

sempre que as imagens f(x) se aproximam de ℓ , desde que x se aproxime de a, percorrendo apenas pontos do domínio D mas sem nunca atingir o ponto a.

27 / 46

Observação

- ▶ Em \mathbb{R} , um intervalo aberto centrado em a pode designar-se simplesmente por vizinhança do ponto a:
 - $]a \varepsilon, a + \varepsilon[, \quad \varepsilon > 0;$
 - geometricamente

• Um número real x pertence à vizinhança de raio ε do ponto a se e só se

$$|x-a|<\varepsilon$$
.

Alguns resultados sobre limites

Teorema (Unicidade do limite)

Sejam $f: D \longrightarrow \mathbb{R}$ e $a \in D'$. Se

$$\lim_{x \to a} f(x) = \ell_1$$

$$\lim_{x \to a} f(x) = \ell_1$$
 e $\lim_{x \to a} f(x) = \ell_2$ então $\ell_1 = \ell_2$.

Teorema

Sejam $f,g\colon D\longrightarrow \mathbb{R}$ e $a\in D'$. Se $\lim_{x\to a}g(x)=0$ e f é limitada em $D \setminus \{a\}$ então

$$\lim_{x \to a} [f(x) \cdot g(x)] = 0.$$

[MIEInf] Cálculo-2016-17

29 / 46

Teorema (Enquadramento)

Sejam $f,g,h\colon D\longrightarrow \mathbb{R}$ e $a\!\in\! D'$ tais que

$$h(x) \le f(x) \le g(x), \quad \forall x \in D \setminus \{a\}.$$

Se $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = \ell$ então também $\lim_{x \to a} g(x) = \ell .$

Teorema (Aritmética dos limites)

Sejam $f,g:D\longrightarrow \mathbb{R},\ a\!\in\! D'.$ Suponha-se que existem

$$\ell = \lim_{x \to a} f(x)$$
 e $m = \lim_{x \to a} g(x)$.

Então:

- $\lim_{x \to a} (f+g)(x) = \ell + m; \qquad \lim_{x \to a} (f \cdot g)(x) = \ell m;$

[MIEInf] Cálculo-2016-17

30 / 46

Limites no infinito e limites infinitos

Seja $f: D \longrightarrow \mathbb{R}$.

▶ O que acontece se D for ilimitado, à direita ou à esquerda, e se fizer $x \in D$ tender para $+\infty$ ou $-\infty$? Qual o significado de

$$\lim_{x \longrightarrow +\infty} f(x) = \ell \qquad \text{ou} \qquad \lim_{x \longrightarrow -\infty} f(x) = \ell?$$

▶ Dado $a \in D'$, qual o significado de

$$\lim_{x \longrightarrow a} f(x) = +\infty \qquad \text{ou} \qquad \lim_{x \longrightarrow a} f(x) = -\infty?$$

[MIEInf] Cálculo-2016-17

31 / 46

- ▶ [Limites no infinito] Seja $f: D \longrightarrow \mathbb{R}$. Se D é um conjunto não majorado, diz-se que:
 - f(x) tende para ℓ quando x tende para $+\infty$, e escreve-se

$$\lim_{x \to +\infty} f(x) = \ell,$$

quando

$$\forall \delta > 0, \exists A > 0 : (x \in D \land x > A) \Longrightarrow |f(x) - \ell| < \delta$$

• f(x) tende para ℓ quando x tende para $-\infty$, e escreve-se

$$\lim_{x \to -\infty} f(x) = \ell,$$

quando

$$\forall \delta > 0, \exists A > 0: (x \in D \land x < -A) \Longrightarrow |f(x) - \ell| < \delta$$

- ▶ [Limites infinitos] Sejam $f: D \longrightarrow \mathbb{R}$ e $a \in D'$. Diz-se que
 - f(x) tende para $+\infty$ quando x tende para a e escreve-se

$$\lim_{x \longrightarrow a} f(x) = +\infty$$

quando

$$\forall A > 0, \exists \varepsilon > 0 : (x \in D \land 0 < |x - a| < \varepsilon) \Longrightarrow f(x) > A$$

• f(x) tende para $-\infty$ quando x tende para a, e escreve-se

$$\lim_{x \longrightarrow a} f(x) = -\infty$$

quando

$$\forall A > 0, \exists \varepsilon > 0 : (x \in D \land 0 < |x - a| < \varepsilon) \implies f(x) < -A$$

[MIEInf] Cálculo-2016-17

33 / 46

► [Indeterminações] Se

$$\lim_{x \to a} f(x) = +\infty \quad \text{e} \quad \lim_{x \to a} g(x) = -\infty,$$

o que se pode dizer sobre o limite

$$\lim_{x \to a} [f(x) + g(x)]?$$

- Diz-se que $+\infty + (-\infty)$ é uma indeterminação.
- Outras indeterminações são:

$$0\cdot\infty,\ \frac{\infty}{\infty},\ \frac{0}{0},\ 1^{\infty},\ 0^{0},\ \infty^{0}.$$

Veremos como tratar algumas destas indeterminações quando estudarmos derivadas!

Observação

► Diz-se que não existe

$$\lim_{x \to a} f(x)$$

quando

- $\bullet \lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$
- $f(x) \longrightarrow \infty$ quando $x \longrightarrow a$
- e em situações análogas a

$$\lim_{x \to 0} \operatorname{sen}\left(\frac{1}{x}\right)$$

ou

$$\lim_{x \to a} f(x)$$
 onde $f(x) = \left\{ egin{array}{ll} 1, & x & \text{\'e racional;} \\ 0, & x & \text{\'e irracional} \end{array}
ight.$ e $a \in \mathbb{R}.$

[MIEInf] Cálculo-2016-17

35 / 46

Parte III

Continuidade

Função contínua

▶ Os pontos de $D \subset \mathbb{R}$ que não estão em D' dizem-se pontos isolados, isto é, $x \in D$ é ponto isolados de D se existe r > 0 tal que

$$]x - r, x + r[\cap D = \{x\}.$$

- ▶ Seja $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ uma função e $a \in D$ um ponto do seu domínio.
 - A função f é contínua em $a \in D$ quando
 - ▶ a é ponto isolado de D ou
 - $a \in D' \in \lim_{x \to a} f(x) = f(a).$
- ► Diz-se que:
 - $f: [a,b] \longrightarrow \mathbb{R}$ é contínua em a quando $f(a) = \lim_{x \to a^+} f(x)$;
 - $ullet f\colon [a,b] \longrightarrow \mathbb{R} \ ext{ \'e contínua em } b \ ext{quando} \ f(b) = \lim_{x \to b^-} f(x) \, ;$
 - $\bullet \ f$ é contínua em D quando f é contínua em todo $x \in D$.

[MIEInf] Cálculo-2016-17

37 / 46

De acordo com esta definição de continuidade as funções a seguir são ambas contínuas.

$$\begin{array}{ccc} f: \mathbb{Z} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x \end{array}$$

$$g: [0,2] \cup]4,6] \longrightarrow \mathbb{R}$$
 $x \longmapsto x$

Resultados sobre continuidade pontual

► [Aritmética das funções contínuas]

Sejam $f,\,g:D\longrightarrow\mathbb{R}$ duas funções contínuas em $a\in D$ e $\alpha\in\mathbb{R}$ uma constante. Então as funções

- f+g, αf e fg são contínuas em a;
- $\frac{f}{g}$ é contínua em a desde que $g(a) \neq 0$.
- ► [Continuidade da função composta]

Sejam $f\colon D\longrightarrow \mathbb{R}$ e $g\colon B\longrightarrow \mathbb{R}$ tais que $f(D)\subset B$. Se f é contínua em $a\in D$ e g é contínua em b=f(a), então $g\circ f$ é contínua em a .

[MIEInf] Cálculo-2016-17

39 / 46

Exemplo: continuidade da função composta

Sejam $f, q : \mathbb{R} \longrightarrow \mathbb{R}$.

1. f contínua, g contínua, $g \circ f$ contínua:

$$f(x) = 2x$$
, $g(x) = x^3$ e $(g \circ f)(x) = 8x^3$, $\forall x \in \mathbb{R}$.

2. f contínua, g descontínua, $g \circ f$ contínua:

$$f(x)=2, \quad g(x)=\left\{ egin{array}{ll} 1, & x
eq 5 \ 0, & x=5 \end{array}
ight. \quad ext{e} \quad (g\circ f)(x)=1, orall x\in \mathbb{R}.$$

3. f descontínua, g contínua, $g \circ f$ contínua:

$$f(x) = \begin{cases} 2, & x \le 0 \\ -2, & x > 0 \end{cases}, \quad g(x) = 5 \quad \text{e} \quad (g \circ f)(x) = 5, \forall x \in \mathbb{R}.$$

4. f e g descontínuas, $g \circ f$ contínua:

$$f(x) = \begin{cases} 2, & x \le 0 \\ -2, & x > 0 \end{cases}, \qquad g(x) = \begin{cases} 1, & x \ne 5 \\ 0, & x = 5 \end{cases}$$

е

$$(g \circ f)(x) = g(f(x)) = \begin{cases} 1, & f(x) \neq 5 \\ 0, & f(x) = 5 \end{cases} = 1, \text{ pois } f(x) \neq 5 \ \forall x \in \mathbb{R}.$$

Há contradição com o teorema? Não! Porquê?

41 / 46

► [Continuidade da função inversa]

Se I e J são intervalos reais e $f:I\longrightarrow J$ é uma função bijetiva e contínua, então f^{-1} existe e é contínua.

Exemplo Contradição com o teorema?

$$f(x) = \begin{cases} x+1, & 0 \le x < 1 \\ x, & 2 \le x \le 3 \end{cases}$$

f é contínua

$$f^{-1}(x) = \begin{cases} x - 1, & 1 \le x < 2 \\ x, & 2 \le x \le 3 \end{cases}$$

 f^{-1} é descontínua

Descontinuidades

Considere-se função $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$.

- ▶ Diz-se que $a \in D$ é um ponto de descontinuidade de f, ou que f possui uma descontinuidade no ponto $a \in D$, quando se verificar uma das duas condições seguintes:
 - $a \in D'$ e não existe $\lim_{x \to a} f(x)$;
 - $a \in D'$ existe $\ell = \lim_{x \to a} f(x)$ e $\ell \neq f(a)$.

[MIEInf] Cálculo-2016-17

43 / 46

Destacam-se dois tipos particulares de descontinuidade:

(a) descontinuidade removível, quando

$$\lim_{x \to a} f(x) = \ell \quad \land \quad \ell \neq f(a)$$
 ;

(b) descontinuidade de essencial, quando não existe limite. Em particular, diz-se que uma descontinuidade essencial é de salto quando

$$\lim_{x \to a^+} f(x) = \ell_1 \quad \wedge \quad \lim_{x \to a^-} f(x) = \ell_2 \quad \wedge \quad \ell_1 \neq \ell_2.$$

Nota

No caso (a), modificando o valor da função no ponto a, seria possível obter uma função contínua nesse ponto.

Exemplo: descontinuidades

Descontinuidade de salto na origem

$$f(x) = \begin{cases} 1, & x \ge 0 \\ x, & x < 0 \end{cases}$$

Descontinuidade removível na origem

$$g(x) = \begin{cases} 2, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

Descontinuidade na origem que nem é de salto nem removível

$$h(x) = \left\{ egin{array}{l} |x|, \ x \in \mathbb{R} \setminus \mathbb{Q} \\ -1, \ x \in \mathbb{Q} \end{array} \right.$$

[MIEInf] Cálculo-2016-17

45 / 46

Resultados sobre funções contínuas

Teorema (de Weierstrass)

Se $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ é contínua e D é fechado e limitado então f é limitada e atinge os seus extremos em D, isto é,

$$\exists a, b \in D : f(a) \le f(x) \le f(b), \forall x \in D$$

Teorema (de Bolzano)

Seja $f\colon [a,b] \longrightarrow \mathbb{R}$ uma função contínua e tal que $f(a)\cdot f(b) < 0$. Então

$$\exists c \in]a,b[: f(c) = 0$$