An electron with a speed of 8 x 10⁶ m/s is projected along the positive x direction into a medium containing a uniform magnetic flux density $\mathbf{B} = (\hat{\mathbf{x}}4 - \hat{\mathbf{z}}3)T$

Given that $e = 1.6*10^{19}$ C and the mass of an electron is $me = 9.1*10^{-31}$ kg, determine the initial acceleration vector of the electron (at the moment it is projected into the medium).

An electron with a speed of 8 x 10⁶ m/s is projected along the positive x direction into a medium containing a uniform magnetic flux density $\mathbf{B} = (\hat{\mathbf{x}}4 - \hat{\mathbf{z}}3)T$

Given that $e = 1.6*10^{19}$ C and the mass of an electron is me = $9.1*10^{-31}$ kg, determine the initial acceleration vector of the electron (at the moment it is projected into the medium).

Known Values:

Electron speed:
$$u = 8 * 10^6 \frac{m}{s}$$

Magnetic Flux Density:
$$\mathbf{B} = (\hat{\mathbf{x}}4 - \hat{\mathbf{z}}3)T$$

Elementary Charge:
$$e = 1.6 * 10^{19} C$$

Electron Mass:
$$m_e = 9.1 * 10^{-31} kg$$

Particle of a charge q moving with velocity \mathbf{u} in a magnetic field experiences magnetic force \mathbf{F}_{m} given by:

Electron speed:
$$u = 8 * 10^6 \frac{m}{s}$$

Magnetic Flux Density: $\mathbf{B} = (\hat{\mathbf{x}}4 - \hat{\mathbf{z}}3)T$

Elementary Charge: $e = 1.6 * 10^{19} C$

Electron Mass: $m_e = 9.1 * 10^{-31} kg$

Use Newton's Second Law: F = m * a

Rearrange equation and substitute **F** for equation above.

$$a = \frac{\mathbf{F}_m}{m_e} = \frac{q\mathbf{u} \times \mathbf{B}}{m_e}$$

Assuming q = -e

$$= \frac{-1.6 * 10^{-19}}{9.1 * 10^{-31}} (\hat{\mathbf{x}}8 * 10^6) \times (\hat{\mathbf{x}}4 - \hat{\mathbf{z}}3)$$

$$= -\widehat{y}4.22 * 10^{18} \quad (m/s^2)$$

Electron speed:
$$u = 8 * 10^6 \frac{m}{s}$$

Magnetic Flux Density: $\mathbf{B} = (\hat{\mathbf{x}}4 - \hat{\mathbf{z}}3)T$

Elementary Charge: $e = 1.6 * 10^{19} C$

Electron Mass: $m_e = 9.1 * 10^{-31} kg$

$$\overline{a} \times \overline{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 8000000 & 0 & 0 \\ 4 & 0 & -3 \end{vmatrix} = \mathbf{i} (0 \cdot (-3) - 0 \cdot 0) - \mathbf{j} (8000000 \cdot (-3) - 0 \cdot 4) + \mathbf{k} (8000000 \cdot 0 - 0 \cdot 4) = \mathbf{k} (0 \cdot (-3) - 0 \cdot 0) - \mathbf{j} ($$

= $\mathbf{i}(0 - 0) - \mathbf{j}(-24000000 - 0) + \mathbf{k}(0 - 0) = \{0; 24000000; 0\}$