מבוא לתורת הקבוצות – תרגיל 10

להגשה עד ליום רביעי ה־25 בינואר 2012

- חס סדר R האם $y\subseteq x$ או $x\subseteq y$ אם ורק אם ורק $xRy:\mathcal{P}\left(\mathbb{N}\right)$ הנו יחס סדר .1 נגדיר את היחס $xRy:\mathcal{P}\left(\mathbb{N}\right)$ הנו יחס סדר .1 חלקי? האם הוא יחס שקילות?
 - a יחס סדר חלקי על 2.
 - a או סדר חלקי על R^{-1} הנו יחס סדר חלקי על
- ב) הראו סדר חלקי על .b ניחס סדר חלקי כי $S=R\cap(b\times b)$ נכן , $b\subseteq a$ נב) תהי הסדר הנורש.
- 3. תהי (a,<) קבוצה סדורה קווית. הוכיחו כי (a,<) סדורה היטב אם ורק אם אין סדרה אינסופית יורדת (לפי a,<) של איברי a.
- הגדרה נניח כי (a, \leq_a) ו־ (b, \leq_b) הנן קבוצות סדורות חלקית. נגדיר סדר מילוני שמאלי על $a \times b$ הגדרה נניח כי (a, \leq_a) ור הבא: $(x,y) \leq_L (x',y')$ אם ורק אם $x <_a x'$ או $x <_a x'$ אם ורק אם הבא:
 - a imes b קבוצות השמאלי על הסדר הסדר ויהי בהסדר חלקית, ויהי קבוצות השמאלי על (a, \leq_a) יהיו (a, \leq_a) יהיו
 - . הנה סדורה סדורה הנה קבוצה ($a \times b, \leq_L$) או הוכיחו (א)
 - (ב) הוכיחו/הפריכו: אם (a,\leq_a) ו־ (b,\leq_b) סדורות קווית אז (a,\leq_a) סדורה קווית.
 - . סדורה ($a imes b, \leq_L$) איז היטב אז סדורה (a, \leq_a) איז היטב אז (a, \leq_a) איז הוכיחו/הפריכו: אם
- הגדרה תהי $a^{<\omega}=\bigcup_{n\in\omega}a^n$ על מדרה מילוני שמאלי (גדיר סדר חלקית. נגדיר חלקית. הבאים: $a^{<\omega}=\bigcup_{n\in\omega}a^n$ אם ורק אם מתקיים אחד מן הבאים: $x\leq_L y$
 - $(x\left(k\right)=y\left(k\right)$, $k\leq n$ ולכל וולכל איז $|y|\geq n$ אז או |x|=n כלומר, אם y
 - $x\left(k\right) < y\left(k\right)$ טבעי ראשון עבורו $x\left(k\right)
 eq y\left(k\right)$ עבורו מתקיים k סיים
 - $a^{<\omega}$ קבוצה סדורה חלקית, ויהי \leq_L הסדר המילוני השמאלי על .5
 - (א) הוכיחו כי $(a^{<\omega},\leq_L)$ הנה קבוצה סדורה חלקית.
 - (ב) סדורה קווית אז (a, \leq) סדורה קווית אז ($a, \leq)$ סדורה קווית.
 - (ג) הוכיחו/הפריכו: אם (a,\leq) סדורה היטב אז (a,\leq) סדורה היטב.
- האם סופית. הגו קבוצה ב־x הנו של כל איבר ב־x הנו האם המפית. האם הכיח הגין קבוצה סדורה חלקית, ונניח כי הרישא של כל איבר ב-x (מקו!) בהכרח $|x| \leq x$ ואם בהכרח האם בהכרח האם בהכרח הגין אוב בהנו סדר קווי:
 - . מצאו סדר קווי \succeq על \mathbb{Z} כך שלכל z, הרישא של z (לפי \succeq) הנה סופית.
 - $n \in \mathbb{N}$ יהי.
- הנה (לפי ב) a סדר קווי הרישא של מעוצמה $a\in A$ מעוצמה מעוצמה אינסופית. אינסופית, ולכל $a\in A$ הרישא של הנה סופית.
- הנה (לפי $a \in A$ הרישא של הרישא (לפי ב) מעוצמה מעוצמה (לפי בי וקבוצה חדר קווי אוי וקבוצה בי וקבוצה אינסופית. לפי אויכb הרישא של b הרישא של הנה אינסופית.

 $O\left(a
ight) = \{b \in x \mid b < a\}$ מוגדר להיות $a \in x$ של של הרישא של