

Logique, ensembles, raisonnements

1 Logique

Exercice 1

Compléter les pointillés par le connecteur logique qui s'impose : \Leftrightarrow , \Leftarrow , \Rightarrow .

- 1. $x \in \mathbb{R}$ $x^2 = 4$ x = 2;
- 2. $z \in \mathbb{C}$ $z = \overline{z} \dots z \in \mathbb{R}$;
- 3. $x \in \mathbb{R}$ $x = \pi$ $e^{2ix} = 1$.

Correction ▼

Vidéo

[000108]

Exercice 2

Soient les quatre assertions suivantes :

- (a) $\exists x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad x+y > 0 \quad ; \quad (b) \ \forall x \in \mathbb{R} \quad \exists y \in \mathbb{R} \quad x+y > 0 \; ;$
 - (c) $\forall x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad x + y > 0 \quad ; \quad (d) \exists x \in \mathbb{R} \quad \forall y \in \mathbb{R} \quad y^2 > x.$
- 1. Les assertions a, b, c, d sont-elles vraies ou fausses?
- 2. Donner leur négation.

Indication ▼

Correction ▼

Vidéo

[000106]

Exercice 3

Dans \mathbb{R}^2 , on définit les ensembles $F_1 = \{(x,y) \in \mathbb{R}^2, y \leq 0\}$ et $F_2 = \{(x,y) \in \mathbb{R}^2, xy \geq 1, x \geq 0\}$. On note M_1M_2 la distance usuelle entre deux points M_1 et M_2 de \mathbb{R}^2 . Évaluer les propositions suivantes :

- 1. $\forall \varepsilon \in]0, +\infty[\exists M_1 \in F_1 \exists M_2 \in F_2 \quad M_1M_2 < \varepsilon$
- 2. $\exists M_1 \in F_1 \quad \exists M_2 \in F_2 \quad \forall \varepsilon \in]0, +\infty[\qquad M_1M_2 < \varepsilon$
- 3. $\exists \varepsilon \in]0, +\infty[\forall M_1 \in F_1 \quad \forall M_2 \in F_2 \quad M_1M_2 < \varepsilon$
- 4. $\forall M_1 \in F_1 \quad \forall M_2 \in F_2 \quad \exists \varepsilon \in]0, +\infty[\qquad M_1 M_2 < \varepsilon$

Quand elles sont fausses, donner leur négation.

Indication ▼

Correction ▼

Vidéo 🔳

[000109]

Exercice 4

Nier la proposition : "tous les habitants de la rue du Havre qui ont les yeux bleus gagneront au loto et prendront leur retraite avant 50 ans".

Correction ▼

Vidéo 📕

[000110]

Exercice 5

Nier les assertions suivantes :

- 1. tout triangle rectangle possède un angle droit;
- 2. dans toutes les écuries, tous les chevaux sont noirs;
- 3. pour tout entier x, il existe un entier y tel que, pour tout entier z, la relation z < x implique le relation z < x + 1;

4. $\forall \varepsilon > 0 \quad \exists \alpha > 0 \quad (|x - 7/5| < \alpha \Rightarrow |5x - 7| < \varepsilon).$

Correction ▼ Vidéo ■ [000112]

Exercice 6

Soient f,g deux fonctions de $\mathbb R$ dans $\mathbb R$. Traduire en termes de quantificateurs les expressions suivantes :

- 1. f est majorée;
- 2. f est bornée;
- 3. f est paire;
- 4. f est impaire;
- 5. *f* ne s'annule jamais;
- 6. f est périodique;
- 7. *f* est croissante;
- 8. f est strictement décroissante;
- 9. f n'est pas la fonction nulle;
- 10. f n'a jamais les mêmes valeurs en deux points distincts;
- 11. f atteint toutes les valeurs de \mathbb{N} ;
- 12. f est inférieure à g;
- 13. f n'est pas inférieure à g.

Correction ▼ Vidéo ■ [000120]

Exercice 7

Soit f une application de \mathbb{R} dans \mathbb{R} . Nier, de la manière la plus précise possible, les énoncés qui suivent :

- 1. Pour tout $x \in \mathbb{R}$ $f(x) \leq 1$.
- 2. L'application f est croissante.
- 3. L'application f est croissante et positive.
- 4. Il existe $x \in \mathbb{R}^+$ tel que $f(x) \leq 0$.
- 5. Il existe $x \in \mathbb{R}$ tel que quel que soit $y \in \mathbb{R}$, si x < y alors f(x) > f(y).

On ne demande pas de démontrer quoi que ce soit, juste d'écrire le contraire d'un énoncé.

Correction ▼ Vidéo ■ [000107]

Exercice 8

Montrer que

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \text{ tel que } (n \geqslant N \Rightarrow 2 - \varepsilon < \frac{2n+1}{n+2} < 2 + \varepsilon).$$

Indication ▼ Correction ▼ Vidéo ■ [000119]

2 Ensembles

Exercice 9

Soit A, B deux ensembles, montrer $\mathbb{C}(A \cup B) = \mathbb{C}A \cap \mathbb{C}B$ et $\mathbb{C}(A \cap B) = \mathbb{C}A \cup \mathbb{C}B$.

Indication ▼ Correction ▼ Vidéo ■ [000123]

Exercice 10

Montrer par contraposition les assertions suivantes, *E* étant un ensemble :

1. $\forall A, B \in \mathscr{P}(E) \quad (A \cap B = A \cup B) \Rightarrow A = B$,

2. $\forall A, B, C \in \mathscr{P}(E)$ $(A \cap B = A \cap C \text{ et } A \cup B = A \cup C) \Rightarrow B = C.$

Correction ▼ Vidéo ■ [000122]

Exercice 11

Soient E et F deux ensembles, $f: E \to F$. Démontrer que :

$$\forall A, B \in \mathscr{P}(E) \quad (A \subset B) \Rightarrow (f(A) \subset f(B)),$$

$$\forall A, B \in \mathscr{P}(E) \quad f(A \cap B) \subset f(A) \cap f(B),$$

$$\forall A, B \in \mathscr{P}(E) \quad f(A \cup B) = f(A) \cup f(B),$$

$$\forall A, B \in \mathscr{P}(F)$$
 $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$,

$$\forall A \in \mathscr{P}(F) \quad f^{-1}(F \setminus A) = E \setminus f^{-1}(A).$$

Correction ▼ Vidéo ■

[000124]

Exercice 12

Montrez que chacun des ensembles suivants est un intervalle que vous calculerez.

$$I = \bigcap_{n=1}^{+\infty} \left[-\frac{1}{n}, 2 + \frac{1}{n} \right] \quad \text{et} \quad J = \bigcup_{n=2}^{+\infty} \left[1 + \frac{1}{n}, n \right]$$

Correction ▼

Vidéo

[000137]

3 Absurde et contraposée

Exercice 13

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications de l'ensemble \mathbb{N} dans lui-même. On définit une application f de \mathbb{N} dans \mathbb{N} en posant $f(n) = f_n(n) + 1$. Démontrer qu'il n'existe aucun $p \in \mathbb{N}$ tel que $f = f_p$.

Indication ▼

Correction ▼

Vidéo 🔳

[000150]

Exercice 14

- 1. Soit p_1, p_2, \dots, p_r, r nombres premiers. Montrer que l'entier $N = p_1 p_2 \dots p_r + 1$ n'est divisible par aucun des entiers p_i .
- 2. Utiliser la question précédente pour montrer par l'absurde qu'il existe une infinité de nombres premiers.

Indication ▼

Correction ▼

Vidéo

[000151]

4 Récurrence

Exercice 15

Montrer:

1.
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \quad \forall n \in \mathbb{N}^*.$$

2.
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \quad \forall n \in \mathbb{N}^*$$
.

Correction ▼

Vidéo

[000153]

Exercice 16

Soit *X* un ensemble. Pour $f \in \mathscr{F}(X,X)$, on définit $f^0 = id$ et par récurrence pour $n \in \mathbb{N}$ $f^{n+1} = f^n \circ f$.

- 1. Montrer que $\forall n \in \mathbb{N} \ f^{n+1} = f \circ f^n$.
- 2. Montrer que si f est bijective alors $\forall n \in \mathbb{N} \ (f^{-1})^n = (f^n)^{-1}$.

Indication ▼ Correction ▼ Vidéo ■ [000157]

Exercice 17

Soit la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_0=4$ et $x_{n+1}=\frac{2x_n^2-3}{x_n+2}$.

- 1. Montrer que : $\forall n \in \mathbb{N} \quad x_n > 3$.
- 2. Montrer que : $\forall n \in \mathbb{N}$ $x_{n+1} 3 > \frac{3}{2}(x_n 3)$.
- 3. Montrer que : $\forall n \in \mathbb{N}$ $x_n \geqslant \left(\frac{3}{2}\right)^n + 3$.
- 4. La suite $(x_n)_{n\in\mathbb{N}}$ est-elle convergente?

Indication ▼ Correction ▼ Vidéo ■ [000155]

Indication pour l'exercice 2 A

Attention : la négation d'une inégalité stricte est une inégalité large (et réciproquement).

Indication pour l'exercice 3 A

Faire un dessin de F_1 et de F_2 . Essayer de voir si la difficulté pour réaliser les assertions vient de ε "petit" (c'est-à-dire proche de 0) ou de ε "grand" (quand il tend vers $+\infty$).

Indication pour l'exercice 8 ▲

En fait, on a toujours : $\frac{2n+1}{n+2} \le 2$. Puis chercher une condition sur *n* pour que l'inégalité

$$2-\varepsilon<\frac{2n+1}{n+2}$$

soit vraie.

Indication pour l'exercice 9

Il est plus facile de raisonner en prenant un élément $x \in E$. Par exemple, soit F, G des sous-ensembles de E. Montrer que $F \subset G$ revient à montrer que pour tout $x \in F$ alors $x \in G$. Et montrer F = G est équivalent à $x \in F$ si et seulement si $x \in G$, et ce pour tout $x \in E$. Remarque : pour montrer F = G on peut aussi montrer $F \subset G$ puis $G \subset F$.

Enfin, se rappeler que $x \in CF$ si et seulement si $x \notin F$.

Indication pour l'exercice 13 ▲

Par l'absurde, supposer qu'il existe $p \in \mathbb{N}$ tel que $f = f_p$. Puis pour un tel p, évaluer f et f_p en une valeur bien choisie.

Indication pour l'exercice 14 ▲

Pour la première question vous pouvez raisonner par contraposition ou par l'absurde.

Indication pour l'exercice 16 ▲

Pour les deux questions, travailler par récurrence.

Indication pour l'exercice 17 ▲

- 1. Récurrence : calculer $x_{n+1} 3$.
- 2. Calculer $x_{n+1} 3 \frac{3}{2}(x_n 3)$.
- 3. Récurrence.

Correction de l'exercice 1 A

- 1. ⇐
- $2. \Leftrightarrow$
- $3. \Rightarrow$

Correction de l'exercice 2

- 1. (a) est fausse. Car sa négation qui est $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x+y \leqslant 0$ est vraie. Étant donné $x \in \mathbb{R}$ il existe toujours un $y \in \mathbb{R}$ tel que $x+y \leqslant 0$, par exemple on peut prendre y = -(x+1) et alors $x+y = x-x-1 = -1 \leqslant 0$.
- 2. (b) est vraie, pour un x donné, on peut prendre (par exemple) y = -x + 1 et alors x + y = 1 > 0. La négation de (b) est $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x + y \le 0$.
- 3. (c) : $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x+y>0$ est fausse, par exemple x=-1, y=0. La négation est $\exists x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x+y \leq 0$.
- 4. (d) est vraie, on peut prendre x = -1. La négation est : $\forall x \in \mathbb{R} \exists y \in \mathbb{R} \quad y^2 \leq x$.

Correction de l'exercice 3 A

- 1. Cette proposition est vraie. En effet soit $\varepsilon > 0$, définissons $M_1 = (\frac{2}{\varepsilon}, 0) \in F_1$ et $M_2 = (\frac{2}{\varepsilon}, \frac{\varepsilon}{2}) \in F_2$, alors $M_1 M_2 = \frac{\varepsilon}{2} < \varepsilon$. Ceci étant vrai quelque soit $\varepsilon > 0$ la proposition est donc démontrée.
- 2. Soit deux points fixés M_1 , M_2 vérifiant cette proposition, la distance $d = M_1M_2$ est aussi petite que l'on veut donc elle est nulle, donc $M_1 = M_2$; or les ensembles F_1 et F_2 sont disjoints. Donc la proposition est fausse. La négation de cette proposition est :

$$\forall M_1 \in F_1 \ \forall M_2 \in F_2 \ \exists \varepsilon \in]0, +\infty[\ M_1M_2 \geqslant \varepsilon$$

et cela exprime le fait que les ensembles F_1 et F_2 sont disjoints.

3. Celle ci est également fausse, en effet supposons qu'elle soit vraie, soit alors ε correspondant à cette proposition. Soit $M_1 = (\varepsilon + 2, 0)$ et $M_2 = (1, 1)$, on a $M_1 M_2 > \varepsilon + 1$ ce qui est absurde. La négation est :

$$\forall \varepsilon \in]0, +\infty[\exists M_1 \in F_1 \exists M_2 \in F_2 \quad M_1M_2 \geqslant \varepsilon$$

C'est-à-dire que l'on peut trouver deux points aussi éloignés l'un de l'autre que l'on veut.

4. Cette proposition est vraie, il suffit de choisir $\varepsilon = M_1 M_2 + 1$. Elle signifie que la distance entre deux points donnés est un nombre fini!

Correction de l'exercice 4 A

"Il existe un habitant de la rue du Havre qui a les yeux bleus, qui ne gagnera pas au loto ou qui prendra sa retraite après 50 ans."

Correction de l'exercice 5 ▲

- 1. "Il existe un triangle rectangle qui n'a pas d'angle droit." Bien sûr cette dernière phrase est fausse!
- 2. "Il existe une écurie dans laquelle il y a (au moins) un cheval dont la couleur n'est pas noire."
- 3. Sachant que la proposition en langage mathématique s'écrit

$$\forall x \in \mathbb{Z} \ \exists y \in \mathbb{Z} \ \forall z \in \mathbb{Z} \ (z < x \Rightarrow z < x + 1),$$

la négation est

$$\exists x \in \mathbb{Z} \ \forall y \in \mathbb{Z} \ \exists z \in \mathbb{Z} \ (z < x \text{ et } z \geqslant x+1).$$

4. $\exists \varepsilon > 0 \ \forall \alpha > 0 \ (|x-7/5| < \alpha \text{ et } |5x-7| \geqslant \varepsilon)$.

Correction de l'exercice 6 ▲

- 1. $\exists M \in \mathbb{R} \quad \forall x \in \mathbb{R} \qquad f(x) \leqslant M$;
- 2. $\exists M \in \mathbb{R} \quad \exists m \in \mathbb{R} \quad \forall x \in \mathbb{R} \quad m \leqslant f(x) \leqslant M$;
- 3. $\forall x \in \mathbb{R}$ f(x) = f(-x);
- 4. $\forall x \in \mathbb{R}$ f(x) = -f(-x);
- 5. $\forall x \in \mathbb{R}$ $f(x) \neq 0$;
- 6. $\exists a \in \mathbb{R}^* \quad \forall x \in \mathbb{R} \qquad f(x+a) = f(x);$
- 7. $\forall (x,y) \in \mathbb{R}^2$ $(x \leqslant y \Rightarrow f(x) \leqslant f(y));$
- 8. $\forall (x, y) \in \mathbb{R}^2$ $(x < y \Rightarrow f(x) > f(y));$
- 9. $\exists x \in \mathbb{R}$ $f(x) \neq 0$;
- 10. $\forall (x, y) \in \mathbb{R}^2$ $(x \neq y \Rightarrow f(x) \neq f(y))$;
- 11. $\forall n \in \mathbb{N} \quad \exists x \in \mathbb{R} \qquad f(x) = n;$
- 12. $\forall x \in \mathbb{R}$ $f(x) \leq g(x)$;
- 13. $\exists x \in \mathbb{R}$ f(x) > g(x).

Correction de l'exercice 7 A

Dans ce corrigé, nous donnons une justification, ce qui n'était pas demandé.

- 1. Cette assertion se décompose de la manière suivante : (Pour tout $x \in \mathbb{R}$) $(f(x) \le 1)$. La négation de "(Pour tout $x \in \mathbb{R}$)" est "Il existe $x \in \mathbb{R}$ " et la négation de " $(f(x) \le 1)$ " est f(x) > 1. Donc la négation de l'assertion complète est : "Il existe $x \in \mathbb{R}$, f(x) > 1".
- 2. Rappelons comment se traduit l'assertion "L'application f est croissante" : "pour tout couple de réels (x_1,x_2) , si $x_1 \le x_2$ alors $f(x_1) \le f(x_2)$ ". Cela se décompose en : "(pour tout couple de réels x_1 et x_2) $(x_1 \le x_2$ implique $f(x_1) \le f(x_2)$)". La négation de la première partie est : "(il existe un couple de réels (x_1,x_2))" et la négation de la deuxième partie est : " $(x_1 \le x_2)$ et $f(x_1) > f(x_2)$ ". Donc la négation de l'assertion complète est : "Il existe $x_1 \in \mathbb{R}$ et $x_2 \in \mathbb{R}$ tels que $x_1 \le x_2$ et $f(x_1) > f(x_2)$ ".
- 3. La négation est : "l'application f n'est pas croissante ou n'est pas positive". On a déjà traduit "l'application f n'est pas croissante", traduisons "l'application f n'est pas positive" : "il existe $x \in \mathbb{R}$, f(x) < 0". Donc la négation de l'assertion complète est : "Il existe $x_1 \in \mathbb{R}$ et $x_2 \in \mathbb{R}$ tels que $x_1 < x_2$ et $f(x_1) \geqslant f(x_2)$, ou il existe $x \in \mathbb{R}$, f(x) < 0".
- 4. Cette assertion se décompose de la manière suivante : "(Il existe $x \in \mathbb{R}^+$) $(f(x) \le 0)$ ". La négation de la première partie est : "(pour tout $x \in \mathbb{R}^+$)", et celle de la seconde est :"(f(x) > 0)". Donc la négation de l'assertion complète est : "Pour tout $x \in \mathbb{R}^+$, f(x) > 0".
- 5. Cette assertion se décompose de la manière suivante : " $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(x < y \Rightarrow f(x) > f(y))$ ". La négation de la première partie est " $(\forall x \in \mathbb{R})$ ", celle de la seconde est " $(\exists y \in \mathbb{R})$ ", et celle de la troisième est "(x < y) et $f(x) \leq f(y)$ ". Donc la négation de l'assertion complète est : " $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}$ telsquex < y et $f(x) \leq f(y)$ ".

Correction de l'exercice 8 ▲

Remarquons d'abord que pour $n \in \mathbb{N}$, $\frac{2n+1}{n+2} \le 2$ car $2n+1 \le 2(n+2)$. Étant donné $\varepsilon > 0$, nous avons donc

$$\forall n \in \mathbb{N} \quad \frac{2n+1}{n+2} < 2 + \varepsilon$$

Maintenant nous cherchons une condition sur n pour que l'inégalité

$$2-\varepsilon<\frac{2n+1}{n+2}$$

soit vraie.

$$\begin{aligned} 2 - \varepsilon &< \frac{2n+1}{n+2} \Leftrightarrow (2 - \varepsilon)(n+2) < 2n+1 \\ &\Leftrightarrow 3 < \varepsilon(n+2) \\ &\Leftrightarrow n > \frac{3}{\varepsilon} - 2 \end{aligned}$$

Ici ε nous est donné, nous prenons un $N \in \mathbb{N}$ tel que $N > \frac{3}{\varepsilon} - 2$, alors pour tout $n \geqslant N$ nous avons $n \geqslant N > \frac{3}{\varepsilon} - 2$ et par conséquent : $2 - \varepsilon < \frac{2n+1}{n+2}$. Conclusion : étant donné $\varepsilon > 0$, nous avons trouvé un $N \in \mathbb{N}$ tel que pour tout $n \geqslant N$ on ait $2 - \varepsilon < \frac{2n+1}{n+2}$ et $\frac{2n+1}{n+2} < 2 + \varepsilon$.

En fait nous venons de prouver que la suite de terme (2n+1)/(n+2) tend vers 2 quand n tend vers $+\infty$.

Correction de l'exercice 9 A

$$x \in \mathbb{C}(A \cup B) \Leftrightarrow x \notin A \cup B$$
$$\Leftrightarrow x \notin A \text{ et } x \notin B$$
$$\Leftrightarrow x \in \mathbb{C}A \text{ et } x \in \mathbb{C}B$$
$$\Leftrightarrow x \in \mathbb{C}A \cap \mathbb{C}B.$$

$$x \in \mathbb{C}(A \cap B) \Leftrightarrow x \notin A \cap B$$

 $\Leftrightarrow x \notin A \text{ ou } x \notin B$
 $\Leftrightarrow x \in \mathbb{C}A \text{ ou } x \in \mathbb{C}$
 $\Leftrightarrow x \in \mathbb{C}A \cup \mathbb{C}B.$

Correction de l'exercice 10 A

Nous allons démontrer l'assertion 1. de deux manières différentes.

1. Tout d'abord de façon "directe". Nous supposons que A et B sont tels que $A \cap B = A \cup B$. Nous devons montrer que A = B.

Pour cela étant donné $x \in A$ montrons qu'il est aussi dans B. Comme $x \in A$ alors $x \in A \cup B$ donc $x \in A \cap B$ (car $A \cup B = A \cap B$). Ainsi $x \in B$.

Maintenant nous prenons $x \in B$ et le même raisonnement implique $x \in A$. Donc tout élément de A est dans B et tout élément de B est dans A. Cela veut dire A = B.

2. Ensuite, comme demandé, nous le montrons par contraposition. Nous supposons que $A \neq B$ et non devons montrer que $A \cap B \neq A \cup B$.

Si $A \neq B$ cela veut dire qu'il existe un élément $x \in A \setminus B$ ou alors un élément $x \in B \setminus A$. Quitte à échanger A et B, nous supposons qu'il existe $x \in A \setminus B$. Alors $x \in A \cup B$ mais $x \notin A \cap B$. Donc $A \cap B \neq A \cup B$.

Correction de l'exercice 11 ▲

Montrons quelques assertions.

 $f(A \cap B) \subset f(A) \cap f(B)$.

Si $y \in f(A \cap B)$, il existe $x \in A \cap B$ tel que y = f(x), or $x \in A$ donc $y = f(x) \in f(A)$ et de même $x \in B$ donc $y \in f(B)$. D'où $y \in f(A) \cap f(B)$. Tout élément de $f(A \cap B)$ est un élément de $f(A) \cap f(B)$ donc $f(A \cap B) \subset f(A) \cap f(B)$.

Remarque : l'inclusion réciproque est fausse. Exercice : trouver un contre-exemple.

$$f^{-1}(F \setminus A) = E \setminus f^{-1}(A).$$

$$x \in f^{-1}(F \setminus A) \Leftrightarrow f(x) \in F \setminus A$$

$$\Leftrightarrow f(x) \notin A$$

$$\Leftrightarrow x \notin f^{-1}(A) \quad \text{car } f^{-1}(A) = \{x \in E \mid f(x) \in A\}$$

$$\Leftrightarrow x \in E \setminus f^{-1}(A)$$

Correction de l'exercice 12 A

$$I = [0,2]$$
 et $J =]1, +\infty[$.

Correction de l'exercice 13

Par l'absurde, supposons qu'il existe $p \in \mathbb{N}$ tel que $f = f_p$. Deux applications sont égales si et seulement si elles prennent les mêmes valeurs.

$$\forall n \in \mathbb{N} \ f(n) = f_p(n).$$

En particulier pour $n=p, f(p)=f_p(p)$. D'autre part la définition de f nous donne $f(p)=f_p(p)+1$. Nous obtenons une contradiction car f(p) ne peut prendre deux valeurs distinctes. En conclusion, quelque soit $p \in \mathbb{N}$, $f \neq f_p$.

Correction de l'exercice 14 ▲

1. Montrons en fait la contraposée.

S'il existe i tel que p_i divise $N = p_1 p_2 \dots p_r + 1$ (i est fixé) alors il existe $k \in \mathbb{Z}$ tel que $N = k p_i$ donc

$$p_i(k-p_1p_2...p_{i-1}p_{i+1}...p_r)=1$$

soit $p_i q = 1$ (avec $q = k - p_1 p_2 \dots p_{i-1} p_{i+1} \dots p_r$ un nombre entier). Donc $p_i \in \mathbb{Z}$ et $1/p_i = q \in \mathbb{Z}$, alors p_i vaut 1 ou -1. Et donc p_i n'est pas un nombre premier.

Conclusion : par contraposition il est vrai que N n'est divisible par aucun des p_i

2. Raisonnons par l'absurde : s'il n'existe qu'un nombre fini r de nombres premiers p_1, \ldots, p_r alors $N = p_1 p_2 \ldots p_r + 1$ est un nombre premier car divisible par aucun nombre premier autre que lui même (c'est le 1.).

Mais N est strictement supérieur à tous les p_i . Conclusion on a construit un nombre premier N différent des p_i , il y a donc au moins r+1 nombres premiers, ce qui est absurde.

Correction de l'exercice 15 ▲

Rédigeons la deuxième égalité. Soit \mathscr{A}_n , $n \in \mathbb{N}^*$ l'assertion suivante :

$$(\mathscr{A}_n)$$
 $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}.$

— \mathcal{A}_0 est vraie (1=1).

— Étant donné $n \in \mathbb{N}^*$ supposons que \mathcal{A}_n soit vraie. Alors

$$\sum_{k=1}^{n+1} k^2 = \sum_{k=1}^{n} k^2 + (n+1)^2$$

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^2$$

$$= \frac{n(n+1)(2n+1) + 6(n+1)^2}{6}$$

$$= \frac{(n+1)(n(2n+1) + 6(n+1))}{6}$$

$$= \frac{(n+1)(n+2)(2(n+1) + 1)}{6}$$

Ce qui prouve \mathcal{A}_{n+1} .

— Par le principe de récurrence nous venons de montrer que \mathscr{A}_n est vraie pour tout $n \in \mathbb{N}^*$.

Correction de l'exercice 16 ▲

1. Montrons la proposition demandée par récurrence : soit \mathscr{A}_n l'assertion $f^{n+1} = f \circ f^n$. Cette assertion est vraie pour n = 0. Pour $n \in \mathbb{N}$ supposons \mathscr{A}_n vraie. Alors

$$f^{n+2} = f^{n+1} \circ f = (f \circ f^n) \circ f = f \circ (f^n \circ f) = f \circ f^{n+1}.$$

Nous avons utiliser la definition de f^{n+2} , puis la proposition \mathcal{A}_n , puis l'associativité de la composition, puis la définition de f^{n+1} . Donc \mathcal{A}_{n+1} est vraie. Par le principe de récurrence

$$\forall \in \mathbb{N} \ f^n \circ f = f \circ f^n.$$

2. On procède de même par récurrence : soit \mathcal{A}_n l'assertion $(f^{-1})^n = (f^n)^{-1}$. Cette assertion est vraie pour n = 0. Pour $n \in \mathbb{N}$ supposons \mathcal{A}_n vraie. Alors

$$(f^{-1})^{n+1} = (f^{-1})^n \circ f^{-1} = (f^n)^{-1} \circ f^{-1} = (f \circ f^n)^{-1} = (f^n \circ f)^{-1} = (f^{n+1})^{-1}.$$

Donc \mathcal{A}_{n+1} est vraie. Par le principe de récurrence

$$\forall \in \mathbb{N} \ (f^{-1})^n = (f^n)^{-1}.$$

Correction de l'exercice 17

1. Montrons par récurrence $\forall n \in \mathbb{N} \ x_n > 3$. Soit l'hypothèse de récurrence :

$$(\mathcal{H}_n)$$
: $x_n > 3$.

- La proposition \mathcal{H}_0 est vraie car $x_0 = 4 > 3$.
- Soit $n \ge 0$, supposons \mathcal{H}_n vraie et montrons que \mathcal{H}_{n+1} est alors vraie.

$$x_{n+1} - 3 = \frac{2x_n^2 - 3}{x_n + 2} - 3 = \frac{2x_n^2 - 3x_n - 9}{x_n + 2}.$$

Par hypothèse de récurrence $x_n > 3$, donc $x_n + 2 > 0$ et $2x_n^2 - 3x_n - 9 > 0$ (ceci par étude de la fonction $x \mapsto 2x^2 - 3x - 9$ pour x > 3). Donc $x_{n+1} - 3$ et \mathcal{H}_{n+1} est vraie.

• Nous avons montré

$$\forall n \in \mathbb{N} \quad \mathscr{H}_n \Rightarrow \mathscr{H}_{n+1}$$

et comme \mathcal{H}_0 est vraie alors \mathcal{H}_n est vraie quelque soit n. Ce qui termine la démonstration.

2. Montrons que $x_{n+1} - 3 - \frac{3}{2}(x_n - 3)$ est positif.

$$x_{n+1} - 3 - \frac{3}{2}(x_n - 3) = \frac{2x_n^2 - 3}{x_n + 2} - \frac{3}{2}(x_n - 3) = \frac{1}{2} \frac{x_n^2 - 3x_n}{x_n + 2}$$

Ce dernier terme est positif car $x_n > 3$.

3. Montrons par récurrence $\forall n \in \mathbb{N} \ x_n > \left(\frac{3}{2}\right)^n + 3$. Soit notre nouvelle l'hypothèse de récurrence :

$$(\mathcal{H}_n)$$
 $x_n > \left(\frac{3}{2}\right)^n + 3.$

- La proposition \mathcal{H}_0 est vraie.
- Soit $n \ge 0$, supposons que \mathcal{H}_n vraie et montrons que \mathcal{H}_{n+1} est vérifiée. D'après la question précédente $x_{n+1} - 3 > \frac{3}{2}(x_n - 3)$ et par hypothèse de récurrence $x_n > \left(\frac{3}{2}\right)^n + 3$; en réunissant ces deux inégalités nous avons $x_{n+1} - 3 > \frac{3}{2}\left(\left(\frac{3}{2}\right)^n\right) = \left(\frac{3}{2}\right)^{n+1}$.
- Nous concluons en résumant la situation : \mathcal{H}_0 est vraie, et $\mathcal{H}_n \Rightarrow \mathcal{H}_{n+1}$ quelque soit n. Donc \mathcal{H}_n est toujours vraie.
- 4. La suite (x_n) tend vers $+\infty$ et n'est donc pas convergente.