

ESc201, Lecture 4: Circuit Analysis

Series Resistances

From (a)

$$v_1 = R_1 i$$

$$v_2 = R_2 i$$

 $v_3 = R_3 i$

Using KVL:

$$v = v_1 + v_2 + v_3$$

= $(R_1 + R_2 + R_3)i$

(a) Three resistances in series

(b) Equivalent resistance

$$v=R_{eq}i$$

Thus,

$$R_{eq} = R_1 + R_2 + R_3$$

Both circuits are equivalent as far as \mathbf{v} vs. \mathbf{i} relation is concerned.

ESc201, Lecture 4: Circuit Analysis

Parallel Resistances

(a) Three resistances in parallel

(b) Equivalent resistance

From (a):

$$i_1 = v / R_1$$

 $i_2 = v / R_2$
 $i_3 = v / R_3$
By KCL
 $i = i_1 + i_2 + i_3$
 $= (\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3})v$

From (b)
$$i = (\frac{1}{R_{eq}}) v$$
Thus,
$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

$$R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}$$

ESc201, Lecture 4: Circuit Analysis – Super Node

The concept of Supernode is used to reduce the number of nodal equations. i.e Node 1 and node 2 are merged together into a super node. KCL is applied to the super node.

Sum of currents leaving a super node is zero. At the Supernode:

$$\frac{V_1}{R_2} + \frac{V_1 - V_3}{R_1} + \frac{V_2 - V_3}{R_3} + \frac{V_2}{R_4} = 0$$

Obviously known V_2 - V_1 =10 V

Also to reduce the number of nodes a voltage supply may be pushed through a node.

15V

ESc201, Lecture 4: Circuit Analysis – Super Mesh-1

Loop containing an independent current source:

Concept of Supermesh

Nodes A, B, and C are same node, similarly, nodes E, F, and G are same.

KVL around the mesh ABHFGA and HDEFH cannot be written, since the potential dropped across the 5A current source is unknown.

Supermesh: A mesh containing parts of other meshes i.e. ABHDEFGA.

KVL around this loop:

$$(I_1-I_2) \times 5 + (I_3-I_2) \times 3 + I_3 \times 1 - 5 = 0$$
, OR $5I_1-8I_2+4I_3=5$ with $I_1-I_3=5$ A Gives: $9I_1-8I_2=25$

Similarly KVL around BCDHB:

$$4I_2 + 3(I_2 - I_3) + 5(I_2 - I_1) = 0$$
 or $12I_2 - 5I_1 - 3I_3 = 0$ or $12I_2 - 8I_1 + 3(I_1 - I_3) = 0$
 $15 = 8I_1 - 12I_2$ or $-15(2/3) = -8(2/3)I_1 + 8I_2$
Finally gives : $I_1 = (1/3.67)[25 - 15(2/3)] = 4.09$ A, $I_2 = 1.48$ A, $I_3 = -0.91$ A

ESc201, Lecture 4: Circuit Analysis – Super Mesh-2

 I_1 =5A, and mesh equations for I_1 and I_3 cannot be written.

But $3(I_3-I_2)=V_x$ Also because of the current source $V_x/5$, $(V_x/5)=I_3-I_1$. Hence $I_3=5+(3/5)(I_3-I_2)$ or $(2/5)I_3+(3/5)I_2=5$ $3I_2+2I_3=25$

And from mesh 2, $4I_2+3(I_2-I_3)+5(I_2-5)=0$ Or $12I_2-3I_3=25$ giving $8I_2-2I_3=25(2/3)$ $11I_2=25(5/3)$ or $I_2=3.79$ A $I_3=(1/2)(25-3x3.79)=6.82$ A

Steps:

1. Take one source at a time and null all other independent sources: i.e. Short all other independent voltage sources, and open all other independent current sources.

Remember not top touch any of the dependent sources.

- 2. By adopting KCL, KVL, node voltage, or mesh current method, evaluate the currents through all branches, as well as the node voltages.
- 3. Repeat steps 1 and 2 till all the sources are exhausted.
- 4. Finally, the current through any branch or the voltage at any node is found as a linear superposition of all the currents flowing through that branch or the voltages appearing at that node, contributed by the different sources.

ESc201, Lecture 4: Circuit Analysis – Superposition

Step 1(a) : Short V_{S1}

Then R_1 and R_2 are in p/arallel and current through R₃ (B to A) is:

$$I_{R_3} = I_{s2} - KI'_x = I'_{R_1} + I'_x$$

$$= I'_{R_1} + V'_A / R_2$$

$$I_{s2} - K(V'_A/R_2) = V'_A (R_1 + R_2)/R_1R_2$$

Find V'A

and
$$I'_{\mathbf{X}} = V'_{\mathbf{A}} / R_2$$
, $I'_{\mathbf{R}_1} = V'_{\mathbf{A}} / R_1$

Step 1(b) : Open I_{s2}

Then
$$(V''_A - V_{S1})/R_1 = I''_{R1}$$
 and $I''_X = V''_A/R_2$ and $V_A = V'_A + V''_A$

$$(I"_X R_2 - V_{s1})/R_1 = I"_{R1}$$

Current through R_3 (A to B) = K $I''_x = -I''_{R_1} - I''_x$

Two equations for I"X and I"R1 and solve for each.

Step 2:

Then
$$I_X = I'_X + I''_X$$

and
$$I_{R_1} = I'_{R_1} + I''_{R_1}$$

and
$$V_A = V'_A + V''_A$$

ESc201, Lecture 4: Circuit Analysis – Laboratory

Esc 201A Expt. 1

