1. Rings, subrings and fields

- Ring R: set with binary operations addition and subtraction, where (R, +) is an abelian group and:
 - **Identity**: exists $1 \in R$ such that $\forall x \in R, 1 \cdot x = x \cdot 1 = x$
 - Associativity: for every $x, y, z \in R, x(yz) = (xy)z$
 - **Distributivity**: for every $x, y, z \in R, x(y+z) = xy + xz$ and (y+z)x = yx + zx
- Set of remainders modulo n (residue classes): \mathbb{Z} / $n=\left\{\overline{0},\overline{1},...,\overline{n-1}\right\}$
- \mathbb{Z} / n is a ring: $\overline{a} + \overline{b} = \overline{a+b}, \overline{a} \overline{b} = \overline{a-b}, \overline{a} \cdot \overline{b} = \overline{a \cdot b}$
- Subring S of ring R: a set $S \subseteq R$ that contains 0 and 1 and is closed under addition, multiplication and negation:
 - $0 \in S, 1 \in S$
 - $\forall a, b \in S, a+b \in S$
 - $\forall a, b \in S, ab \in S$
 - $\forall a \in S, -a \in S$
- **Field** F is a ring with:
 - *F* is commutative
 - $0 \neq 1 \in F$ (F has at least two elements)
 - $\forall 0 \neq a \in R, \exists b \in R, ab = 1. b$ is the **inverse** of a
- a is a **zero divisor** if ab = 0 for some $b \neq 0$

2. Integral domains

- Integral domain R: ring which is commutative, has at least two elements $(0 \neq 1)$, and has no zero divisors apart from 0
- Any subring of a field is an integral domain
- If R is an integral domain, then $R[x]=\{a_0+a_1x+\ldots+a_nx^n:a_i\in R\}$ is also an integral domain.
- a is a **unit** if ab = ba = 1 for some $b \in R$. $b = a^{-1}$ is the **inverse** of a
- Inverses are unique
- R^{\times} , set of all units in R, is a group under multiplication of R
- For field $F, F^{\times} = F \{0\}$
- $a \in \mathbb{Z} / n$ is a unit iff gcd(a, n) = 1
- \mathbb{Z} / p is a field iff p is prime
- \mathbb{Z} / n is an integral domain iff n is prime (iff \mathbb{Z} / n is a field)

3. Polynomials over a field

• Degree of $f(x) = a_0 + a_1 x + \dots + a_n x^n$:

$$\deg(f) = \begin{cases} \max\{i: a_i \neq 0\} \text{ if } f \neq 0 \\ -\infty & \text{if } f = 0 \end{cases}$$

- deg(fg) = deg(f) + deg(g)
- $\deg(f+g) \le \max\{\deg(f), \deg(g)\}$
- If $\deg(f) \neq \deg(g)$ then $\deg(f+g) = \max\{\deg(f), \deg(g)\}\$

• Let $f(x), g(x) \in F[x], g(x) \neq 0$, then $\exists q(x), r(x) \in F[x]$ with $\deg(r) < \deg(g)$ such that f(x) = q(x)g(x) + r(x)

4. Divisibility and greatest common divisor in a ring

- a divides b, $a \mid b$, if $\exists r \in R$ such that b = ra
- d is a **greatest common divisor** of a and b, gcd(a,b), if:
 - $d \mid a$ and $d \mid b$ and
 - If $e \mid a$ and $e \mid b$ then $e \mid d$
- gcd(0,0) = 0
- Euclidean algorithm example: find gcd of $f(x) = x^2 + 7x + 6$ and $g(x) = x^2 5x 6$ in $\mathbb{Q}[x]$:

$$f(x) = g(x) + 12(x+1)$$

$$g(x) = \frac{1}{12}x \cdot 12(x+1) - 6(x+1)$$

$$12(x+1) = -2 \cdot -6(x+1) + 0$$

Remainder is now zero so stop. A gcd is given by the last non-zero remainder, -6(x+1). We can write -6(x+1) as a combination of f(x) and g(x):

$$\begin{split} -6(x+1) &= g(x) - \frac{1}{12}x \cdot 12(x+1) \\ &= g(x) - \frac{1}{12}x \cdot (f(x) - g(x)) \\ &= \left(1 + \frac{1}{12}x\right)g(x) - \frac{1}{12}xf(x) \end{split}$$

- Let R be integral domain, $a, b \in R$ and $d = \gcd(a, b)$. Then $\forall u \in R^{\times}$, ud is also a $\gcd(a, b)$. Also, for d and d' gcds of a and b, $\exists u \in R^{\times}$ such that d = ud' (so gcd is unique up to units).
- Polynomial is **monic** if leading coefficient is 1
- There always exists a unique monic gcd of two polynomials in F[x]
- Let $R = \mathbb{Z}$ or $F[x], a, b \in R$. Then
 - A gcd(a, b) always exists
 - $a \neq 0$ or $b \neq 0$ then a gcd(a, b) can be computed by Euclidean algorithm
 - If d is a gcd(a, b) then $\exists x, y \in R$ such that ax + by = d

5. Factorisations in rings

- $r \in R$ irreducible if:
 - $r \notin R^{\times}$ and
 - If r = ab then $a \in R^{\times}$ or $b \in R^{\times}$
- $a \in F$ is **root** of $f(x) \in F[x]$ if f(a) = 0
- Let $f(x) \in F[x]$.
 - If deg(f) = 1, f is irreducible.
 - If deg(f) = 2 or 3 then f is irreducible iff it has no roots in F.

- If deg(f) = 4 then f is irreducible iff it has no roots in F and it is not the product of two quadratic polynomials.
- Let $f(x)=a_0+a_1x+\ldots+a_nx^n\in\mathbb{Z}[x],$ $\deg(f)\geq 1.$ If $f(p\mid q)=0,$ $\gcd(p,q)=1,$ then $p\mid a_0$ and $q\mid a_n.$
- Gauss's lemma: let $f(x)=a_0+a_1x+...+a_nx^n\in\mathbb{Z}[x], \deg(f)\geq 1.$ Then f(x) is irreducible in $\mathbb{Z}[x]$ iff it is irreducible in $\mathbb{Q}[x]$ and $\gcd(a_0,a_1,...,a_n)=1.$
- If monic polynomial in $\mathbb{Z}[x]$ factors in $\mathbb{Q}[x]$ then it factors into integer monic polynomials.
- Let R be commutative, $x \in R$ be irreducible and $u \in R^{\times}$. Then ux is also irreducible.
- Eisenstein's criterion: let $f(x)=a_0+a_1x+...+a_nx^n\in\mathbb{Z}[x]$, p be prime with $p\mid a_0$, $p\mid a_1,...,p\mid a_{n-1},p\nmid a_n,p^2\nmid a_0$. Then f(x) is irreducible in $\mathbb{Q}[x]$
- Let $f(x) \in F[x]$, then f can be uniquely factorised into a product of irreducible elements, up to order of factors and multiplication by units.
- Let R be commutative. $x \in R$ is **prime** if:
 - $x \neq 0$ and $x \notin R^{\times}$ and
 - If $x \mid ab$ then $x \mid a$ or $x \mid b$
- If $R = \mathbb{Z}$ or F[x] then $a \in R$ is prime iff it is irreducible.
- Let R be an integral domain and $x \in R$ prime. Then x is irreducible.
- Integral domain R is **unique factorisation domain (UFD)** if every non-zero non-unit element in R can be written as a unique product of irreducible elements, up to order of factors and multiplication by units.

6. Ring homomorphisms

- For R, S rings, $f: R \to S$ is **homomorphism** if:
 - f(1) = 1 and
 - f(a+b) = f(a) + f(b) and
 - f(ab) = f(a)f(b)
- Let $f: R \to S$ homomorphism, then
 - f(0) = 0 and
 - f(-a) = f(a)
- Kernel:

$$\ker(f) := \{ a \in R : f(a) = 0 \}$$

• Image:

$$Im(f) := \{ f(a) : a \in R \}$$

- **Isomorphism**: bijective homomorphism.
- R and S isomorphic, $R \cong S$ if there exists isomorphism between them.
- Homomorphism f injective iff $ker(f) = \{0\}$.
- Direct product of R and S, $R \times S$:
 - (r,s) + (r',s') = (r+r',s+s').
 - (r,s)(r',s') = (rr',ss').
 - Identity is (1, 1).

• For $p_1(r,s)=r$ and $p_2(r,s)=s$, $\ker(p_1)=\{(0,s):s\in S\}$ and $\ker(p_2)=\{(r,0):r\in R\}$. These are both rings, with $\ker(p_1)\cong S$ (via $(0,s)\to s$) and $\ker(p_2)\cong R$ (via $(r,0)\to r$). $(\ker(p_1)$ and $\ker(p_2)$ are not subrings of $R\times S$ though). So

$$\ker \bigl(p_1\bigr) \times \ker \bigl(p_2\bigr) \cong R \times S$$

7. Ideals and quotient rings

- $I \subseteq R$ is an **ideal** if I closed under addition and if $x \in I$, $r \in R$ then $rx \in I$ and $xr \in I$.
- Left ideal: I closed under addition and if $x \in I$, $r \in R$ then $rx \in I$.
- **Right ideal**: *I* closed under addition and if $x \in I$, $r \in R$ then $xr \in I$.
- If $x \in I$, then $(-1)x = x(-1) = -x \in I$ so I closed under negation.
- For $f: R \to S$ homomorphism, $\ker(f)$ is ideal of R.
- For R commutative ring and $a \in R$, principal ideal generated by a is

$$(a) := \{ra : r \in R\}$$

• For R commutative and $a_1, ... a_n \in R$,

$$(a_1, ..., a_n) := \{r_1 a_1 + \cdots + r_n a_n : r_1, ..., r_n \in R\}$$

is an ideal. $(a_1,...,a_n)$ is **generated** by $a_1,...,a_n.$ $a_i\in(a_1,...,a_n)$ for all i.

- If ideal I contains unit u, then $u^{-1}u=1\in I$ so $\forall r\in R, r\cdot 1=r\in I$. So $R\subseteq I$ so R=I
- For field F, any ideal is either $\{0\}$ or F.
- Let $I_1=(a_1,...,a_m), I_2=(b_1,...,b_n)$ then $I_1=I_2$ iff $a_1,...,a_m\in I_2$ and $b_1,...,b_n\in I_1$.
- $a, b \in R$ equivalent modulo I if $a b \in I$. Write $\overline{a} = \overline{b}$ or $a \equiv b \pmod{I}$.
- Let $a(x) \in \mathbb{Q}[x]$, then p(x) = q(x)a(x) + r(x) with $\deg(r) < \deg(a)$. $\underline{p(x)} r(x) = q(x)a(x) \in (a(x)) \text{ so } \overline{p(x)} = \overline{r(x)}. \ r(x) \text{ is } \mathbf{representative} \text{ of the class } \overline{p(x)}.$
- Let $I \subseteq R$ ideal. Coset of I generated by $x \in I$ is

$$\overline{x} \coloneqq x + I = \{x + r : r \in I\} \subseteq R$$

x is a **representative** of x + I.

• For $x, y \in R$,

$$x+I=y+I \Longleftrightarrow x+I\cap y+I \neq \emptyset \Longleftrightarrow x-y \in I$$

- If x is a representative of x + I, so is x + r for every $r \in I$.
- Quotient of R by I (" $R \mod I$ "): set of all cosets of R by I:

$$R / I := \{ \overline{x} : x \in R \} = \{ x + I : x \in R \}$$

with

- (x+I) + (y+I) = (x+y) + I.
- (x+I)(y+I) = xy + I.
- R / I is a ring, with zero element 0 + I = I and identity $1 + I \in R / I$.
- Quotient map (canonical map/homomorphism): $R \to R / I$, $r \to \overline{r} = r + I$.
- Kernel of quotient map is I and image is R / I. Hence every ideal is a kernel.

• First isomorphism theorem (FIT): Let $\varphi: R \to S$ be homomorphism. Then

$$\overline{\varphi}: R / \ker(\varphi) \to \operatorname{Im}(\varphi), \overline{\varphi}(\overline{x}) = \varphi(x)$$

is an isomorphism: $R / \ker(\varphi) \cong \operatorname{Im}(\varphi)$.

8. Prime and maximal ideals

- Ideal $I \subseteq R$ prime ideal if $I \neq R$ and $ab \in I \Longrightarrow a \in I$ or $b \in I$.
- $I \subseteq R$ maximal if only ideals containing I are I and R (so no ideals strictly between I and R).
- $x \in R$ is prime iff (x) is prime ideal.
- To contain is to divide:

$$a \in (x) \iff (a) \subseteq (x) \iff x \mid a$$

- For R commutative and I ideal:
 - I prime iff R / I integral domain.
 - I maximal iff R / I field.
- (I, x) is ideal generated by I and x:

$$(I,x): \{rx + x' : r \in R, x' \in I\}$$

• If I is maximal ideal, then it is prime.

9. Principal ideal domains

- Principal ideal domain (PID): integral domain where every ideal is principal.
- \mathbb{Z} , F[x], $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{\pm 2}]$ are PIDs.
- Every PID is a UFD.
- Let R be PID and $a, b \in R$. Then $d = \gcd(a, b)$ exists and (d) = (a, b).

10. Fields as quotients

- Let R be PID, $a \in R$ irreducible. Then (a) is maximal.
- Let $f(x) \in F[x]$ irreducible. Then F[x] / (f(x)) is field and F[x] / (f(x)) is a vector space over F with basis $\{\overline{1}, \overline{x}, ..., \overline{x}^{n-1}\}$ where $n = \deg(f)$. So every element in F[x] / f(x) can be uniquely written as $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$, $a_i \in F$.
- Let p prime and $n \in \mathbb{N}$, then there exists irreducible $f(x) \in (\mathbb{Z} / p)[x]$ with $\deg(f) = n$ and $(\mathbb{Z} / p)[x] / (f(x))$ is a field with p^n elements. Any two such fields are isomorphic so unique (up to isomorphism) field with p^n elements is written \mathbb{F}_{p^n} .

11. The Chinese remainder theorem

- $a, b \in R$ **coprime** if no irreducible element divides a and b.
- Let R be PID, $a, b \in R$ coprime. Then (a, b) = (1) = R so ax + by = 1 for some $x, y \in R$. So any $\gcd(a, b)$ is a unit.
- Chinese remainder theorem (CRT): Let R be PID, $a_1, ..., a_k$ pairwise coprime. Then

$$\varphi: R / (a_1 \cdots a_k) \to R / (a_1) \times \cdots \times R / (a_k)$$
$$\varphi(r + (a_1 \cdots a_k)) = (r + (a_1), ..., r + (a_k))$$

is an isomorphism.

12. Basics of groups

- Group (G, \circ) : set G with binary operation $\circ: G \times G \to G$ satisfying:
 - Closure: $g \circ h \in G$.
 - Associativity: $a \circ (b \circ c) = (a \circ b) \circ c$.
 - **Identity**: $g \circ e = g$ and $e \circ g = g$ for some $e \in G$.
 - Inverse: $g \circ h = h \circ g = e$ for some $h = g^{-1} \in G$.
- Group **abelian** if \circ commutative: $g \circ h = h \circ g$.
- $H \subseteq G$ is **subgroup** of (G, \circ) , H < G if H is group under same operation.
- Subgroup H **proper** if $H \neq \{e\}$ and $H \neq G$.
- Subgroup criterion: H < G iff:
 - *H* non-empty.
 - $h_1, h_2 \in H \Longrightarrow h_1 \circ h_2 \in H$.
 - $h \in H \Longrightarrow h^{-1} \in H$.
- **Order** of group G is number of elements in it, |G|.
- Lagrange's theorem: Let G finite, H < G, then

$$\#H \mid \#G$$

• Let $H < G, g \in G$. Left coset of g with respect to H in G:

$$g\circ H\coloneqq\{g\circ h:h\in H\}$$

- All left cosets with respect to H have same cardinality as cardinality of H.
- **Right coset** of $g \in G$ with respect to H < G in G:

$$H \circ g := \{h \circ g : h \in H\}$$

- H < G normal, $H \triangleleft G$, if $\forall g \in G, gH = Hg$.
- H is normal iff $\forall g \in G$,

$$\forall h \in H, qhq^{-1} \in H \iff qHq^{-1} \subset H$$

where $gHg^{-1} = \{ghg^{-1} : h \in H\}.$

- Every subgroup of abelian group is normal.
- Subgroup of G generated by g:

$$\langle g \rangle := \{ g^n : n \in \mathbb{Z} \}$$

• Subgroup of G generated by $S \subseteq G$:

 $\langle S \rangle := \{ \text{all finite products of elements in } S \text{ and their inverses} \}$

so if G abelian (doesn't hold for non-abelian), for $S = \left\{g_1, ..., g_n\right\}$,

$$\langle S \rangle = \left\{ g_1^{a_1} \cdots g_n^{a_n} : a_i \in \mathbb{Z} \right\}$$

• If G not abelian,

$$\langle g,h
angle = \left\{ g^{a_1} h^{b_1} \cdots g^{a_m} h^{a_m} \right\}$$

• **Order** of $g \in G$, $\operatorname{ord}_G(g)$ is smallest r > 0 such that $g^r = e$. If r doesn't exist, order is ∞ .

• Order of $\overline{m} \in \mathbb{Z} / n$ is $n / \gcd(m, n)$.

13. Specific families of groups

- Cyclic group: can be generated by single element.
- Cyclic groups are abelian.
- If |G| is prime, G is cyclic and is generated by any $e \neq g \in G$.
- **Permutation** of $X \neq \emptyset$: bijection $X \to X$.
- $S_X := \{ \text{bijection } X \to X \}.$
- Notation: $S_n \coloneqq S_{\{1,\dots,n\}}.$
- (S_X, \circ) is group where \circ is composition of permutations.
- (S_n, \circ) is symmetric group of degree n (or symmetric group on n letters).
- Notation: write $\sigma \in S_n$ as

$$\begin{bmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{bmatrix}$$

- $|S_n| = n!$.
- Cycle of length k (or k-cycle): permutation σ in S_n , with

$$\sigma(i_1) = i_2, \quad \sigma(i_2) = i_3, ..., \sigma(i_{k-1}) = i_k, \quad \sigma(i_k) = i_1$$

and leaves all other elements fixed. Write as $(i_1 \ i_2 \ ... \ i_k)$ or

$$\begin{bmatrix} i_1 & i_2 & \dots & i_k \\ i_2 & i_3 & \dots & i_1 \end{bmatrix}$$

- 2-cycles are **transpositions** (or **inversions**).
- k-cycle has order k.
- There are k ways of writing k cycle.
- Cycles are disjoint if they don't have any common elements.
- Disjoint cycles commute.
- Every permutation is product of disjoint cycles, unique up to swapping cycles and *k* ways of writing a *k*-cycle.
- *k*-cycle can be written as product of transpositions:

$$(i_1\ i_2\ ...\ i_k) = (i_1\ i_2)(i_2\ i_3)\ \cdots\ (i_{k-1}\ i_k)$$

- When composing cycles, work right to left.
- $g, g' \in G$ conjugate in G to each other if for some $h \in G$, $hgh^{-1} = g'$.
- Any conjugate of transposition in S_n is transposition.
- Every $\sigma \in S_n$ can be factored into product of transpositions.
- Parity of number of transpositions needed in any factorisation of σ is the same. So remainder of this number modulo 2 is well-defined.
- Element made of disjoint cycles of lengths $k_1, ..., k_m$ has order $lcm(k_1, ..., k_m)$.
- Sign of permutation σ :

$$\operatorname{sgn}(\sigma) := (-1)^t = \begin{cases} 1 & \text{if } t \text{ is even} \\ -1 & \text{if } t \text{ is odd} \end{cases}$$

where t is number of transpositions needed in factorisation of σ . If t even, σ is **even**, else σ is **odd**.

- Alternating group, A_n : subgroup of even permutations of S_n .
- $|A_n| = \frac{n!}{2}$.
- A_n normal in S_n .
- A_n generated by 3-cycles.
- Isometry: map from plane to itself which preserves distances between points.
- For $n \ge 3$, there are 2n isometries of the plane which preserve regular n-gon.
- Group of isometries of regular n-gon form group, the **dihedral group**, D_n .
- D_n alternative definition: group with two generators r (rotation) and s (reflection), with $srs^{-1}=r^{-1}$, $r^n=e$ and $s^2=e$. So $D_n=\langle r,s\rangle$.
- Every element in D_n can be written $r^j s^k$, $0 \le j < n$, $0 \le k \le 1$.
- $|D_n| = 2n$.
- Rotations of plane which preserve regular n-gon form cyclic subgroup of D_n , which is normal in D_n .

14. Relating, identifying and distinguishing groups

• **Group homomorphism**: map $\varphi: G \to G'$ between groups, with

$$\varphi \! \left(g_1^{} g_2^{} \right) = \varphi \! \left(g_1^{} \right) \! \varphi \! \left(g_2^{} \right)$$

- Group isomorphism: bijective group homomorphism.
- G and G' isomorphic, $G \cong G'$ if exists isomorphism between them.
- **Kernel** of group homomorphism:

$$\ker(\varphi) := \{ g \in G : \varphi(g) = e \}$$

• **Image** of group homomorphism:

$$\operatorname{im}(\varphi) := \{ \varphi(g) : g \in G \}$$

- $\ker(\varphi)$ is normal subgroup of G.
- $\operatorname{im}(\varphi)$ is subgroup of G'.
- Let N normal subgroup of G. Quotient group (factor group) of G with respect to N, is $G / N := \{gN : g \in G\}$, with group multiplication

$$\left(g_{_{1}}N\right)\left(g_{_{2}}N\right)=\left(g_{_{1}}g_{_{2}}\right)N$$

and inverse

$$\left(gN\right)^{-1} = \left(g^{-1}\right)N$$

• First isomorphism theorem for groups (FIT): let $\varphi: G \to G'$ homomorphism, then

$$G / \ker(\varphi) \cong \operatorname{im}(\varphi)$$

- Let *p* prime, then every group of order *p* is isomorphic to $(\mathbb{Z}/p, +)$.
- Each cyclic group of order n isomorphic to $(\mathbb{Z}/n, +)$.
- Each infinite cyclic group isomorphic to $(\mathbb{Z}, +)$.
- For groups $G,H,G \times H$ also a group, with $e=(e_G,e_H),$ $(g,h)\circ (g',h')=(g\circ_G g',h\circ_H h'),$ inverse $(g,h)^{-1}=\left(g^{-1},h^{-1}\right).$

- $\mathbb{Z} / 2 \times \mathbb{Z} / 3 \cong \mathbb{Z} / 6$.
- $\mathbb{Z} / (mn) \cong \mathbb{Z} / m \times \mathbb{Z} / n \iff \gcd(m, n) = 1.$
- Group isomorphism preserves:
 - · Order of group.
 - Set of orders of elements (with multiplicity i.e. count repeated occurences of an order).
 - Size of its centre.
 - Property of being abelian/non-abelian.
 - Property of having proper (normal) subgroups and their sizes.
- **Notation**: for $E_1, E_2 \subseteq G$,

$$E_1 \circ E_2 \coloneqq \{e_1 \circ e_2 : e_1 \in E_1, e_2 \in E_2\}$$

- Let H, K subgroups of G with:
 - $H \circ K = G$,
 - $H \cap K = \{e\},\$
 - $\forall h \in H, k \in K, hk = kh$.

Then $G \cong H \times K$.

- Group of symmetries of unit cube in \mathbb{R}^3 isomorphic to S_4 .
- Every group (G,\cdot) isomorphic to a subgroup of (S_G,\circ) where S_G is set of bijections of G by isomorphism $\psi(g)=L_g$, where $L_g(h)=gh$.

15. Group actions

• Action of group G on non-empty set X: homomorphism

$$\varphi: G \to S_X$$

G acts on X.

• Let $\varphi: G \to S_X$ group action, $x \in X$. Orbit of x inside X is

$$G(x) := \mathcal{O}(x) := \{ \varphi(g)(x) : g \in G \}$$

• Let $\varphi: G \to S_X$ group action, $x \in X$. Stabiliser of x in G is

$$G_r := \operatorname{Stab}_G(x) := \{ g \in G : \varphi(g)(x) = x \}$$

- For every $x \in X$, $\operatorname{Stab}_G(x)$ is subgroup of G.
- **Notation**: can write g(x) instead of $\varphi(g(x))$.
- Let $\varphi:G\to S_X$ group action. Then all orbits $\mathcal{O}(x)$ partition X so:
 - Every orbit non-empty subset of X.
 - Union of all orbits is X.
 - Two orbits either disjoint or equal.
- Action of group on itself:
 - By left translation: g(h) = gh.
 - By conjugation: $g(h) = ghg^{-1}$.
- Conjugacy class of $g \in G$ is set of all elements conjugate to g:

$$\operatorname{ccl}_G(g)\coloneqq\left\{hgh^{-1}:h\in G\right\}$$

• Conjugacy class of g is orbit of conjugation action of g.

- Conjugacy classes of G all of size 1 iff G abelian.
- Let G act on X. Then $\forall x \in X$, exists bijection

$$\beta: \mathcal{O}(x) \to \{ \text{left cosets of } \mathrm{Stab}_G(x) \text{ in } G \}$$

$$\beta(g(x)) = g \mathrm{Stab}_G(x)$$

• Consequence of Orbit-Stabiliser theorem: if finite G acts on finite X, then $\forall x \in X$,

$$|\mathcal{O}(x)| \cdot |\operatorname{Stab}_{G}(x)| = |G|$$

- So size of each conjugacy class in G divides |G|.
- If $x \in \mathcal{O}(y)$, then $\operatorname{Stab}_G(x)$ and $\operatorname{Stab}_G(y)$ conjugate to each other:

$$\exists h \in H$$
, $\operatorname{Stab}_G(x) = h \operatorname{Stab}_G(y) h^{-1}$

16. Cauchy's theorem and classification of groups of order 2p

- Cauchy's theorem: let G finite group, p prime, $p \mid |G|$. Then exists subgroup of G of order p.
- Let p odd prime, then any group of order 2p is either cyclic or dihedral.

17. Classification of groups of order p^2

• **Centre** of group *G*:

$$Z(G) := \{ g \in G : \forall h \in G, gh = hg \}$$

- Z(G) is normal subgroup of G.
- Z(G) is union of all conjugacy classes of size 1. So every $z \in Z(G)$ has $|\operatorname{ccl}_G(z)| = 1$.
- Z(G) = G iff G abelian.
- If G acts on itself via conjugation then for every $h \in G$, $Z(G) \subset \operatorname{Stab}_G(h)$.
- Let p prime, $|G| = p^r$, $r \ge 0$. Then Z(G) non-trivial $(Z(G) \ne \{e\})$.
- If $|G| = p^2$, p prime, then G abelian.
- Let p prime, $|G| = p^2$. Then $G \cong \mathbb{Z} / p^2$ or $G \cong \mathbb{Z} / p \times \mathbb{Z} / p$.
- Sylow's theorem: let G group, $|G| = p^r m$, $\gcd(p, m) = 1$. Then G has subgroup of order p^r (and subgroup of order p^i for all $1 \le i \le r$).

18. Classification of finitely generated abelian groups

- G finitely generated if exists set $\left\{g_1,...,g_r\right\}$ such that $G=\langle g_1,...,g_r\rangle$.
- · Any finitely generated abelian group can be written as

$$G \cong \mathbb{Z}^n / K$$

for some $n \geq 0$, K is subgroup of \mathbb{Z}^n , $K = \{\underline{a} \in \mathbb{Z}^n : a_1g_1 + \dots + a_ng_n = 0\}$. $\underline{a} \in K$ is **relation** and K is **relation subgroup** of G.

- G is **free abelian group of rank** n if no non-trivial solutions in K, i.e. $a_1g_1+\cdots+a_rg_r=0\Longrightarrow a_1=\cdots=a_r=0$. Here, $K=\{\underline{0}\}$.
- Every subgroup of \mathbb{Z}^n is free abelian group generated by $r \leq n$ elements, so rank $\leq n$.

• Fundamental theorem of finitely generated abelian groups: let G be finitely generated abelian group. Then

$$G \cong \mathbb{Z} / d_1 \times \cdots \times \mathbb{Z} / d_k \times \mathbb{Z}^r$$

where $r \ge 0$, $k \ge 0$, $d_i \ge 1$. If $d_1 \mid d_2 \mid \cdots \mid d_k$ and $d_1 > 1$, then this form is unique.

- r is rank of G, d_1 , ..., d_k are torsion invariants (torsion coefficients). Torsion coefficients are given with repetitions (multiplicities).
- To classify all groups of order n, use that $d_1 \cdots d_k = n$ and $1 < d_1 \mid d_2 \mid \cdots \mid d_k$.
- Let $e \neq x \in S_n$ be written as product of disjoint cycles:

$$x = ig(a_1 \ a_2 \ ... \ a_{k_1}ig) ig(b_1 \ b_2 \ ... \ b_{k_2}ig) \cdots ig(t_1 \ t_2 \ ... \ t_{k_r}ig)$$

where $r \ge 1, 2 \le k_1 \le k_2 \le \dots \le k_r, n \ge k_1 + \dots + k_r$. Then x has **cycle shape** $[k_1, k_2, \dots, k_r]$.

• Let $x=(i_1\ i_2\ ...\ i_k)\in S_n,$ $g\in S_n.$ Then action of g on x by conjugation is

$$gxg^{-1} = (g(i_1)\ g(i_2)\ ...\ g(i_k))$$

- Let $x \in S_n$, then $\operatorname{ccl}_{S_n}(x)$ consists of all permutations with same cycle shape as x.
- Conjugacy classes of S_n have cycle shapes given by non-decreasing partitions of n, without 1 (except for cycle shape [1]).
- Let $x = (a_1 \ a_2 \ ... \ a_m) \in S_n$, then

$$\gamma(n;m) \coloneqq \left|\operatorname{ccl}_{S_n}(x)\right| = \frac{n(n-1)\cdots(n-m+1)}{m}$$

• Let $x \in S_n$ have cycle shape $[m_1,...,m_r], m_1 < m_2 < \cdots < m_r$. Then

$$\gamma(n;m_1,...,m_r)\coloneqq \left|\operatorname{ccl}_{S_n}(x)\right| = \prod_{k=1}^r \gamma \left(n - \sum_{i=1}^{k-1} m_i; m_k\right)$$

• Let $x \in S_n$ has cycle shape $[m_1,...,m_1,m_2,...,m_2,...,m_r,...,m_r]$, $m_1 < m_2 < \cdots < m_r$, m_i repeated s_i times, then number of elements of that cycle shape is

$$\left| \mathrm{ccl}_{S_n}(x) \right| = \frac{\gamma(n; m_1, ..., m_1, m_2, ..., m_2, ..., m_r, ..., m_r)}{s_1! s_2! \, \cdots \, s_r!}$$

- Let H subgroup of G. Then H normal in G iff H is union of conjugacy classes of G.
- So if H normal then sum of sizes of its conjugacy classes divides |G|. But converse doesn't imply H is subgroup.
- To find all normal subgroups H of S_n , use that size of H is sum of sizes of conjugacy classes of S_n . Use formula above to work out all possible sizes of conjugacy classes, and fact that H must contain identity so must include 1 in its sum (size of conjugacy class of 1 is 1). Then use Lagrange's theorem to restrict the possible sums of the sizes. Then check that each set formed by the union is a group.