Fractional Programming in Cooperative Games

Introduction to my PhD work

Xian Qiu

Discrete Mathematics and Mathematical Programming Group University of Twente

Aug 28, 2013

Supervised by

Prof. dr. M.J. Uetz Dr. W. Kern

This is a test frame

Example block

This is an example.

Alerted block.

some alerted text.

Normal block

This is a block.

Two types of players

- ▶ A: Each $i \in A$ possesses an item of size a_i
- ▶ B: Each $j \in B$ possesses a truck of capacity b_i

Two types of players

- \blacktriangleright A: Each $i \in A$ possesses an item of size a_i
- ▶ B: Each $j \in B$ possesses a truck of capacity b_i

Profit: Proportional to the total size of packed items.

Two types of players

- \blacktriangleright A: Each $i \in A$ possesses an item of size a_i
- ▶ B: Each $j \in B$ possesses a truck of capacity b_i

Profit: Proportional to the total size of packed items.

Question: How to allocate the total profit?

Two types of players

- ▶ A: Each $i \in A$ possesses an item of size a_i
- ▶ B: Each $j \in B$ possesses a truck of capacity b_j

Profit: Proportional to the total size of packed items.

Question: How to allocate the total profit?

▶ Fairness

Two types of players

- ▶ A: Each $i \in A$ possesses an item of size a_i
- ▶ B: Each $j \in B$ possesses a truck of capacity b_j

Profit: Proportional to the total size of packed items.

Question: How to allocate the total profit?

- Fairness
- Cooperative games

- 1. Cooperative games
- 2. The uniform bin packing game

- 1. Cooperative games
- 2. The uniform bin packing game
- 3. Integrality gap

- 1. Cooperative games
- 2. The uniform bin packing game
- 3. Integrality gap
- 4. The non-uniform bin packing game

- ▶ A cooperative game $\langle N, v \rangle$
 - ► N: Player set
 - v: Value function: $v: 2^N \to \mathbb{R}$ satisfying $v(\emptyset) = 0$.

- A cooperative game $\langle N, v \rangle$
 - ► N: Player set
 - ▶ v: Value function: $v: 2^N \to \mathbb{R}$ satisfying $v(\emptyset) = 0$.
- ▶ A subset $S \subseteq N$ is called a *coalition*.

- A cooperative game $\langle N, v \rangle$
 - ► N: Player set
 - v: Value function: $v: 2^N \to \mathbb{R}$ satisfying $v(\emptyset) = 0$.
- ▶ A subset $S \subseteq N$ is called a *coalition*.
- ► core: $x \in \mathbb{R}^N$ satisfying
 - (i) x(N) = v(N),
 - (ii) $x(S) \ge v(S), \forall S \subseteq N$, where $x(S) = \sum_{i \in S} x_i$.

- A cooperative game $\langle N, v \rangle$
 - ► N: Player set
 - ▶ v: Value function: $v: 2^N \to \mathbb{R}$ satisfying $v(\emptyset) = 0$.
- ▶ A subset $S \subseteq N$ is called a *coalition*.
- ► core: $x \in \mathbb{R}^N$ satisfying
 - (i) x(N) = v(N),
 - (ii) $x(S) \ge v(S), \forall S \subseteq N$, where $x(S) = \sum_{i \in S} x_i$.
- (multiplicative) ϵ -core: Replace (ii) by

(ii')
$$x(S) \geq (1 - \epsilon)v(S)$$
.

 ϵ : taxation rate.

- A cooperative game $\langle N, v \rangle$
 - ► N: Player set
 - v: Value function: $v: 2^N \to \mathbb{R}$ satisfying $v(\emptyset) = 0$.
- ▶ A subset $S \subseteq N$ is called a *coalition*.
- ► core: $x \in \mathbb{R}^N$ satisfying
 - (i) x(N) = v(N),
 - (ii) $x(S) \ge v(S), \forall S \subseteq N$, where $x(S) = \sum_{i \in S} x_i$.
- (multiplicative) ϵ -core: Replace (ii) by

(ii')
$$x(S) \geq (1 - \epsilon)v(S)$$
.

- ϵ : taxation rate.
- ▶ A game is called ϵ -balanced if ϵ -core $\neq \emptyset$.

Player set N:

▶ k bins of capacity 1 each

Player set *N*:

- ▶ k bins of capacity 1 each
- ▶ *n* items of size $a_i \in (0,1]$ for $i = 1, \dots, n$

Player set *N*:

- ▶ k bins of capacity 1 each
- ▶ *n* items of size $a_i \in (0,1]$ for $i = 1, \dots, n$

v(S): The maximum total size of items of S which can be packed to the bins of S.

Player set N:

- ▶ k bins of capacity 1 each
- ▶ *n* items of size $a_i \in (0,1]$ for $i = 1, \dots, n$

v(S): The maximum total size of items of S which can be packed to the bins of S.

Player set N:

- ▶ k bins of capacity 1 each
- ▶ *n* items of size $a_i \in (0,1]$ for $i = 1, \dots, n$

v(S): The maximum total size of items of S which can be packed to the bins of S.

Example

► Testing core emptiness and core membership are NP-complete. (Liu 2009)

- ► Testing core emptiness and core membership are NP-complete. (Liu 2009)
- ▶ $\frac{1}{3}$ -core $\neq \emptyset$. (Woeginger 1995)

- ► Testing core emptiness and core membership are NP-complete. (Liu 2009)
- ▶ $\frac{1}{3}$ -core $\neq \emptyset$. (Woeginger 1995)
- $\frac{1}{7}$ -core $\neq \emptyset$ if $a_i > \frac{1}{3}$ (tight bound). (Kuipers 1998)

- ► Testing core emptiness and core membership are NP-complete. (Liu 2009)
- ▶ $\frac{1}{3}$ -core $\neq \emptyset$. (Woeginger 1995)
- $\frac{1}{7}$ -core $\neq \emptyset$ if $a_i > \frac{1}{3}$ (tight bound). (Kuipers 1998)
- ▶ ϵ -core $\neq \emptyset$ if $k \geq O(\epsilon^{-5})$. (Faigle and Kern 1998)

- ► Testing core emptiness and core membership are NP-complete. (Liu 2009)
- ▶ $\frac{1}{3}$ -core $\neq \emptyset$. (Woeginger 1995)
- $\frac{1}{7}$ -core $\neq \emptyset$ if $a_i > \frac{1}{3}$ (tight bound). (Kuipers 1998)
- ▶ ϵ -core $\neq \emptyset$ if $k \geq O(\epsilon^{-5})$. (Faigle and Kern 1998)
- $(\frac{1}{3} \frac{1}{108})$ -core $\neq \emptyset$. (Kern and Qiu 2011)

- ► Testing core emptiness and core membership are NP-complete. (Liu 2009)
- ▶ $\frac{1}{3}$ -core $\neq \emptyset$. (Woeginger 1995)
- $\frac{1}{7}$ -core $\neq \emptyset$ if $a_i > \frac{1}{3}$ (tight bound). (Kuipers 1998)
- ▶ ϵ -core $\neq \emptyset$ if $k \geq O(\epsilon^{-5})$. (Faigle and Kern 1998)
- \blacktriangleright $(\frac{1}{3} \frac{1}{108})$ -core $\neq \emptyset$. (Kern and Qiu 2011)
- \blacktriangleright $\frac{1}{4}$ -core $\neq \emptyset$. (Kern and Qiu 2013)

▶ Feasible set F: Total size $a_F := \sum_{i \in F} a_i \le 1$.

- ▶ Feasible set F: Total size $a_F := \sum_{i \in F} a_i \le 1$.
- ▶ $y_F \in \{0,1\}.$

- ▶ Feasible set F: Total size $a_F := \sum_{i \in F} a_i \le 1$.
- ▶ $y_F \in \{0, 1\}.$

maximize
$$\sum_F a_F y_F$$
 subject to $\sum_{F\ni i} y_F \le 1, \quad i=1,2,\cdots,n,$ $\sum_F y_F \le k,$ $y_F \in \{0,1\}\,.$

- ▶ Feasible set F: Total size $a_F := \sum_{i \in F} a_i \le 1$.
- ▶ $y_F \in \{0,1\}.$

maximize
$$\sum_F a_F y_F$$
 subject to $\sum_{F\ni i} y_F \le 1, \quad i=1,2,\cdots,n,$ $\sum_F y_F \le k,$ $y_F \in \{0,1\}\,.$

▶ Integrality gap: $\frac{ILP}{LP}$.

► Integral packing: feasible to ILP Fractional packing: feasible to LP

- Integral packing: feasible to ILP Fractional packing: feasible to LP
- ▶ v: value of an optimal integral packing v': value of an optimal fractional packing

- Integral packing: feasible to ILP Fractional packing: feasible to LP
- ▶ v: value of an optimal integral packing v': value of an optimal fractional packing

Lemma 1 (Faigle and Kern [1998])

$$\epsilon$$
-core(N) $\neq \emptyset \Leftrightarrow \epsilon \geq 1 - \frac{v}{v'}$.

- Integral packing: feasible to ILP Fractional packing: feasible to LP
- v: value of an optimal integral packing v': value of an optimal fractional packing

Lemma 1 (Faigle and Kern [1998])

$$\epsilon$$
-core(N) $\neq \emptyset \Leftrightarrow \epsilon \geq 1 - \frac{v}{v'}$.

Trivially, $\frac{1}{2}$ -core(N) $\neq \emptyset$ (for all N).

Fractional packing

Fractional packing: (y'_F) , satisfying

- (a) $\sum_{F\ni i} y_F' \leq 1$, \forall item i;
- (b) $\sum_{F} y'_{F} \leq k$.

Fractional packing

Fractional packing: (y_F) , satisfying

- (a) $\sum_{F\ni i}y_F'\leq 1$, \forall item i;
- (b) $\sum_{F} y_F' \le k$.

Example (continue)

Fractional packing

Fractional packing: (y_F) , satisfying

- (a) $\sum_{F\ni i} y_F' \leq 1$, \forall item i;
- (b) $\sum_{F} y'_{F} \leq k$.

Example (continue)

Fractional packing

Fractional packing: (y_F) , satisfying

- (a) $\sum_{F\ni i} y_F' \leq 1$, \forall item i;
- (b) $\sum_{F} y'_{F} \leq k$.

Example (continue)

▶ Non-uniform: $1 = b_1 \ge \cdots \ge b_k$.

- ▶ Non-uniform: $1 = b_1 \ge \cdots \ge b_k$.
- ▶ Feasible set F_j : $a_{F_j} \le b_j$.

- ▶ Non-uniform: $1 = b_1 \ge \cdots \ge b_k$.
- ▶ Feasible set F_j : $a_{F_j} \le b_j$.
- \triangleright \mathcal{F}_i : collection of feasible set for bin j.

- ▶ Non-uniform: $1 = b_1 \ge \cdots \ge b_k$.
- ▶ Feasible set F_j : $a_{F_i} \le b_j$.
- ▶ \mathcal{F}_j : collection of feasible set for bin j.
- $\blacktriangleright \ \mathcal{F} := \mathcal{F}_1 \supseteq \cdots \supseteq \mathcal{F}_k \ (\supseteq \mathcal{F}_{k+1} := \emptyset).$

- ▶ Non-uniform: $1 = b_1 \ge \cdots \ge b_k$.
- ▶ Feasible set F_j : $a_{F_i} \le b_j$.
- ▶ \mathcal{F}_j : collection of feasible set for bin j.
- $\blacktriangleright \ \mathcal{F} := \mathcal{F}_1 \supseteq \cdots \supseteq \mathcal{F}_k \ (\supseteq \mathcal{F}_{k+1} := \emptyset).$
- ▶ $y_F \in \{0,1\}$, $F \in \mathcal{F}$: Pack F or not.

- ▶ Non-uniform: $1 = b_1 \ge \cdots \ge b_k$.
- ▶ Feasible set F_j : $a_{F_i} \leq b_j$.
- \triangleright \mathcal{F}_i : collection of feasible set for bin j.
- $\blacktriangleright \ \mathcal{F} := \mathcal{F}_1 \supseteq \cdots \supseteq \mathcal{F}_k \ (\supseteq \mathcal{F}_{k+1} := \emptyset).$
- ▶ $y_F \in \{0,1\}$, $F \in \mathcal{F}$: Pack F or not.

maximize
$$\sum_{F\in\mathcal{F}} a_F y_F$$
 subject to $\sum_{F\ni i, F\in\mathcal{F}} y_F \leq 1, \quad i=1,2,\cdots,n,$
$$\sum_{F\in\mathcal{F}\setminus\mathcal{F}_{j+1}} y_F \leq j, \quad j=1,\cdots,k,$$
 $y_F\in\{0,1\}\,, \quad \text{for all } F\in\mathcal{F}.$

Literature

► Results are poor!

Literature

- ► Results are poor!
- ▶ 1/2-core $\neq \emptyset$ if any item fits any bin. (Faigle and Kern 1995)

Literature

- ► Results are poor!
- ▶ 1/2-core $\neq \emptyset$ if any item fits any bin. (Faigle and Kern 1995)
- ► Kern and Qiu (2012) proved the following results:
 - 1. 1/2-core $\neq \emptyset$.
 - 2. 5/12-core $\neq \emptyset$ if $a_i > 1/3$.
 - 3. ϵ -core $\neq \emptyset$ if $k \geq O(\epsilon \bar{b})^{-5}$, where \bar{b} is the average bin capacity.

► Uniform case:

- ► Uniform case:
 - 1. $\epsilon_{\min} \in [1/7, 1/4]$. Interesting to close the gap.

► Uniform case:

- 1. $\epsilon_{min} \in [1/7, 1/4]$. Interesting to close the gap.
- 2. $v' v \le 1/4$ if $a_i > 1/3$. (Faigle and Kern 1998) $v' v \le C$ in general? (Woeginger)

- Uniform case:
 - 1. $\epsilon_{\min} \in [1/7, 1/4]$. Interesting to close the gap.
 - 2. $v' v \le 1/4$ if $a_i > 1/3$. (Faigle and Kern 1998) v' - v < C in general? (Woeginger)
- Non-uniform case:
 - 1. Improve the 1/2 bound.

- ► Uniform case:
 - 1. $\epsilon_{\min} \in [1/7, 1/4]$. Interesting to close the gap.
 - 2. $v' v \le 1/4$ if $a_i > 1/3$. (Faigle and Kern 1998) $v' v \le C$ in general? (Woeginger)
- ► Non-uniform case:
 - 1. Improve the 1/2 bound.
 - 2. Improve the 5/12 bound for $a_i > 1/3$.