ra e nome:

e-mail:

Prova hpsu de Análise no \mathbb{R}^n , ps2012

(1) (3 pontos) Mostre, no estilo hpsu, a regra de Leibnitz,

$$d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta$$

... mostre também que $\alpha \wedge \beta = (-1)^{kl}\beta \wedge \alpha$ onde α é k-forma e β é l-forma. Mostre ainda, que interpretando estas relações, se

$$F = F_1 i + F_2 j + F_3 k$$
 e $G = G_1 i + G_2 j + G_3 k$

são campos vetoriais no \mathbb{R}^3 , concluímos que

$$\nabla \bullet (F \times G) = (\nabla \times F) \bullet G - F \bullet (\nabla \times G).$$

- (2) (2 pontos) Empregue o teorema de Stokes para obter, sem cálculo direto, o valor da integral de superfície $\iint_H \omega$, onde $\omega = xzdydz yzdzdx 5dxdy$ e H é o hemisfério norte da esfera $x^2 + y^2 + z^2 = 4$ com a normal saindo. Para tanto, primeiro encontre, por tentativa, uma 1-forma λ tal que $d\lambda = \omega$... e daí empregue o teorema para trocar a integral de ω no hemisfério por uma integral de linha de λ no equador da esfera.
- (3) (2 pontos) No problema clássico de Frobenius é dado um campo vetorial não que não se anula $F = F_1i + F_2j + F_3k$ no \mathbb{R}^3 . Então faz-se a pergunta de se existe ou não uma família de superfícies orientáveis tais que suas normais são proporcionais a F em cada ponto. Explique que a resposta é afirmativa se podemos encontrar 0-formas, ou funções continuamente diferenciáveis g e $\lambda \geq 0$ tais que $\alpha = \lambda dg$ onde $\alpha = F \bullet dr = F_1 dx + F_2 dy + F_3 dz$. Mostre daí, com o emprego do lema de Poincaré e propriedades do produto de formas, que uma condição necessária para tanto é que $d\alpha \wedge \alpha = 0$. Explique que tal condição é o mesmo que dizer que F é ortogonal ao seu rotacional em cada ponto.
- (4) (3 pontos) Considere o tronco da esfera quadrimensional

$$S = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5, x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 = 4\}$$

contido entre os planos $x_5=0$ e $x_5=1$. Encotre seu quadrivolume.