

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA Segundo Semestre de 2019

Ánalisis Funcional - MAT2555

Índice

Ι	Espacios de Banach	3
1.	Introducción a los Espacios de Banach	3
	1.1. Problema	7
	1.1.1. Pregunta	7
	1.1.2. Primero	7
2.	Consecuencias del Lema de Baire	10
	2.1. Recuerdo	10

Preliminares

Contenidos

- 1) Espacios de Banach: Definiciones Básicas, Hahn-Banach, Consecuencias del Teorema de Bairi
- 2) Espacios de Hilbert: Definiciones, Bases Hilbertianas, Proyección Dual de un Hilbert, Lax-Milgram
- 3) Topologías débiles: Espacios reflexivos
- 4) Teoría Espectral

Textos

- Reed and Simon (Functional Analysis)
- Rudin (Functional Analysis)
- Hain Brenzin

Interrogaciones

3 Interrogaciones + 1 Examen. Si hay exención sería con 6

Fechas

- I1: Semana 23-27/9
- I2: Semana 14-19/10
- I3: Semena 18-22/11

Ex: Semana 2-6/12

Parte I

Espacios de Banach

1. Introducción a los Espacios de Banach

Definición 1.1 (Espacio de Banach). Sea E un e.v., una función $\|\cdot\|$ tq

- $\|x\| \ge 0 \forall x \in E, \|x\| = 0 \iff x = 0$
- $||x + y|| \le ||x|| + ||y||, \forall x, y, \in R$

Ejemplo: 1.1. En
$$\mathbb{C}^n$$
, si $z \in \mathbb{C}^n$, $z = (z_1, \dots, z_n) ||z||_p = \left(\sum_{j=1}^n |z_j|^p\right)^{1/p}$

Ejemplo: 1.2. Si (X, \mathcal{B}, μ) es e. de medida y si $1 \leq p < \infty$, $E = L^p(X)$; La norma es $||[f]|| = (\int_X |f(x)|^p dx)^{1/p}$

Observación 1.1. Si $\|\cdot\|$ es norma en E, entonces $d_E(x,y) = \|x-y\|$ es una métrica o distancia en E.

Definición 1.2 (Espacio de Banach). E e.v. con norma $\|\cdot\|$ se dice espacio de Banach si es completo con respecto a d_E .

Ejemplo: 1.3. Todos los anteriores son Banach

Ejemplo: 1.4. Sea $\Omega \subseteq \mathbb{R}^n$ abierto, y sea $E = \{f : \Omega \to \mathbb{R}, \text{continúa tq } \int_{\Omega} |f(x)| \, \mathrm{d}x < \infty \}$ en E, $||f||_1 = \int_{\Omega} |f(x)| \, \mathrm{d}x < \infty$ es norma

Ejemplo: 1.5. Sea E un e.v. con norma, y sea $x_n \in E$ tal que $\sum_{k=1}^{\infty} |x_n| < \infty$

Q: Si $s_n = \sum_{k=1}^n x_k$, ¿qué podemos decir de s_n ?

Si $1 \le m < n$ entonces $s_n - s_m = \sum_{k=m+1}^n x_k$, luego $||s_n - s_m|| \le \sum_{k=m+1}^n ||x_k|| \le \sum_{k=m+1}^\infty ||x_k||$

De aquí no es difícil ver que, como $\sum_{k=1}^{\infty} ||x_k|| < \infty$. Entonces s_n es de Cauchy. Ciertamente s_n tiene límite en E cuando E es de Banach.

Definición 1.3 (Convergencia Absoluta). Un E e.v. con norma, si $x_n \in E$ es tq $\sum_{k=1}^{\infty} ||x_k|| < \infty$, diremos que la serie es absolutamente convergente

Definición 1.4 (Convergencia en Norma). Si $s_n = \sum_{k=1}^n x_k$ es convergente en E converge respecto a d_E , diremos que s_n converge en norma

Proposición 1.1. Si E es Banach y $\sum_{k=1}^{\infty} ||x_k|| < \infty$, entonces $s = \lim_{n \to \infty} s_n$ converge en norma. (Notación: $s = \sum_{k=1}^{\infty} x_k$) Recíprocamente si E e.v. con norma y si cada serie absolutamente convergente es también convergente en norma, entonces E es Banach.

 $Demostración. \iff : Listo anteriormente.$

 \Longrightarrow : Sea x_n de Cauchy en E. Claramente, basta encontrar x_{n_k} convergente.

Como x_n es de Cauchy, existe x_{n_k} tq $||x_{n_k} - x_{n_{k-1}}|| \le \frac{1}{2^k}$ si esto es verdad.

$$x_{n_k} - x_{n_1} = \sum_{j=2}^{k} (x_{n_j} - x_{n_{j-1}})$$

Pero $\sum_{j=2}^{\infty} \|x_{n_k} - x_{n_{k-1}}\| \le \sum_{j=2}^{\infty} \frac{1}{2^k} < \infty$ así que $x_{n_k} - n_{n_1} \to x \implies x_{n_k} \to x + n_{n_1}$. Para ver que $\exists x_{n_k}$ con $\|x_{n_k} - x_{n_{k-1}}\| \le \frac{1}{2^k}$, sea k = 1, para $\varepsilon = \frac{1}{2} \exists n_1$ tq $\|x_n - x_m\| \le \frac{1}{2} \forall n, m \ge n_1$, esto da n_1 . Si $1 \le n_1 < \ldots < n_k$ son tq $\|x_{n_j} - x_{n_{j-1}}\| \le \frac{1}{2^j}$, $j = 1, \ldots, k-1$, $\|x_n - x_m\| < \frac{1}{2^k} \forall n, m \ge n_k$, sea $\varepsilon = \frac{1}{2^{k+1}}$. Sea $n_{k+1} > n_k$ tq $\|x_{n_{k+1}} - x_{n_k}\| \le \frac{1}{2^{k+1}}$. Esto construye x_{n_k} .

Ejemplo: 1.6. $M^n(\mathbb{R})$ matrices de $n \times n$ en \mathbb{R} , $A \in M^n(\mathbb{R})$ entonces $||A|| = (\operatorname{tr}(A^T A))^{1/2}$

Definición 1.5 (Transformación Lineal). Sean E, F e.v. (sobre \mathbb{C} o \mathbb{R}). Una transformación lineal es una función $T: E \to F$ tq $T(x + \lambda y) = Tx + \lambda Ty \forall x, y \in E \forall \lambda$.

Teorema 1.2 (Caracterización de continuidad de funciones lineales). Sean E, F e.v.n., y sea $T: E \to F$ una transformación lineal. Las siguientes proposiciones son equivalentes:

- 1) T es continua en x para todo $x \in E$.
- 2) T es continua en 0_E
- 3) $\sup_{\|x\|_F=1} \|Tx\|_F < \infty$
- 4) $\exists c > 0 \forall x \in E : ||Tx||_F \le c \, ||x||_E$

Demostración. Se demostrará $1 \implies 2 \implies 3 \implies 4 \implies 1$

 $1 \implies 2 \text{ es trivial}$

Para 2 \implies 3, sea $\varepsilon = 1$, y un $\delta > 0$ tq

$$||x - 0_E||_E < \delta \implies ||Tx - T(0)||_F < 1$$

Como T es lineal tenemos que Tx - T(0) = Tx, y además se tiene que $x - 0_E = x$. Luego,

$$\|x\|_E < \delta \implies \|Tx\|_F < 1$$

Ahora, para todo $x \in E$ t
q $\|x\| = 1, \, \|\delta x\| = \delta \, \|x\|.$ Con esto,

$$\left\| \frac{\delta}{2} x \right\| = \frac{\delta}{2} < \delta$$

Así, por lo anterior tenemos que

$$\left\| T\left(\frac{\delta}{2}x\right) \right\| < 1$$

Eso significa que para todo $x \in E$ to ||x|| = 1 se tiene que

$$||Tx|| < \frac{2}{\delta}$$

Con lo que tenemos lo pedido.

Para $3 \implies 4$, sea $c_0 = \sup_{\|x\|=1} \|Tx\|$, entonces para todo $x \in E$ distinto de cero, tenemos que

$$\left(\left\| \frac{x}{\|x\|} \right\| = 1 \implies \left\| T\left(\frac{x}{\|x\|} \right) \right\| \le c_0 \right) \implies \|Tx\|_F \le c_0 \|x\|_E$$

Con lo que se llega a lo que queríamos.

Por último, para $4 \implies 1$, sea c > 0 tq $||Tx||_F \le c ||x||_E$. Luego,

$$||Tx - Ty||_F = ||T(x - y)||_F \le c ||x - y||_E$$

Por lo que T es Lipschitz, por lo que es continua.

Definición 1.6 (Norma de operador/Funcional Acotado). Para E, V e.v.n $T: E \to F$ que cumple 1-2-3-4 se llama funcional acotado (u operador lineal acotado); se define $||T||_{E,F} = \sup_{||x||_E=1} ||Tx||_F = \inf\{c>0: ||Tx|| \le c \, ||x|| \, \forall x \in E\}$

Definición 1.7. Para E, V e.v.n. sea $\mathcal{L}(E, F) = \{T : E \to F \text{ lineal, acotado}\}$

Proposición 1.3. $\|\cdot\|_{E,F}$ es norma en $\mathcal{L}(E,F)$

Demostración. Claramente cumple todo en base a la definición

Proposición 1.4. Si F es Banach, entonces $\mathcal{L}(E,F)$ es Banach con respecto a $\|\cdot\|_{E,F}$

Demostración. Sean $T_n: E \to F$ lineales continuas, Cauchy con respecto a $\|\cdot\|_{E,F}$. Observemos que, para cada $x \in R$ fijo, $y_n = T_n x$ es Cauchy en F; pues $\|y_n - y_m\|_F = \|T_n x - T_m x\|_F = \|T_n$

Si x = 0, y_n es constante, por lo que es Cauchy.

Si $x \neq 0$, sea $\varepsilon > 0$. T_n es Cauchy $\implies \exists n_0 : \|T_n - T_m\| < \frac{\varepsilon}{\|x\|} \forall n, m \geq n_0$. Así: $y_n = T_n x$ es

de Cauchy en F, como F es completo, $y_n \to y \equiv Tx$. En otras palabras, $T_n x \to Tx$.

Vamos a ver que $T \in \mathcal{L}(E, F)$ y que $||T_n - T|| \xrightarrow{n \to \infty} 0$.

<u>Primero</u>: $\forall x \in R \forall n \in \mathbb{N}$ se tiene que $T_n(x + \lambda y) = T_n x + \lambda T_n y \to T(x + \lambda y) = Tx + \lambda Ty$.

Segundo: (Ejercicio) Como T_n es Cauchy, $\sup_{n\in\mathbb{N}} \|T_n\| = C < \infty$. Entonces $\|T_nx\| \le \|T_n\| \|x\| \le C \|x\| \to \|Tx\| \le C \|x\|$.

<u>Último</u>: Verificar que $||T_n - T|| \xrightarrow{n \to \infty} 0$, sea ε, n_0 tq $||T_n - T_m|| < \varepsilon \forall m, n \ge n_0$. Entonces $||T_n(x) - T_m(x)|| \le \varepsilon ||x|| \ \forall n, m \ge n_0 \forall x \in E$. Así $||Tx - T_nx|| \le \varepsilon ||x|| \ \forall n \ge n_0 \forall x \in E$ por lo que $||T - T_n|| \le \varepsilon \ \forall n \ge n_0$

Definición 1.8 (Dual). Si E es e.v.n., definimos su dual (topológico) como:

$$E^* = \mathcal{L}(E, \mathbb{C}) \text{ o } \mathcal{L}(E, \mathbb{R})$$

Ejemplo: 1.7. Tomemos $E = \mathbb{R}^n$, y sean $S, T \in \mathcal{L}(E)$.

$$||S \circ T(x)|| = ||S(Tx)|| \le ||S|| \, ||Tx|| \le ||S|| \, ||T|| \, ||x||$$

por lo que

$$||S \circ T|| \le ||T|| \, ||S||$$

Entonces $||T^k|| \le ||T||^k$

Proposición 1.5. Si E es Banach, $T \in \mathcal{L}(E)$, ||T|| < 1, I - T es invertible, con inversa continua, entonces $(I - T)^{-1} = \sum_{k=0}^{\infty} T^k$

Demostración. Sale con truco típico.

Ejemplo: 1.8. Sea $\Omega \subseteq \mathbb{R}^n$ abierto, y sea $\kappa \in L^2(\Omega \times \Omega; \mathbb{R})$. Definamos $T_{\kappa} : L^2(\Omega) \to L^2(\Omega)$ donde $f \mapsto T_{\kappa}(f)(x) = \int_{\Omega} \kappa(x, y) f(y) \, \mathrm{d}y$ T_{κ} es lineal. Veamos que $T_{\kappa}(f) \in L^2(\Omega)$

$$\int_{\Omega} \left| \int_{\Omega} \kappa(x, y) f(y) \, dy \right|^{2} dx \le \int_{\Omega} \int_{\Omega} \kappa^{2}(x, y) \, dy \int_{\Omega} f^{2}(y) \, dy \, dx$$

O sea, ya que $\int_{\Omega} |T(f)(x)|^2 dx = ||T_{\kappa}f||_{L^{2}(\Omega)}^2$

$$||T_{\kappa}f|| \le ||\kappa|| \, ||f||$$

Definición 1.9. Sea E e.v.n., $p: E \to \mathbb{R}$ se dice semi-norma si:

$$p(x+y) \le p(x) + p(y) \forall x, y \in E$$

 $p(\lambda x) = |\lambda| p(x) \forall x \in E \forall \lambda$

Ejemplo: 1.9. Sea $\Omega \subseteq \mathbb{R}^n$, y sea $\mathcal{C}' = \{f : \Omega \to \mathbb{R} \text{ continuas, con derivadas continuas acotadas}\}$, $p(f) = \int_{\Omega} |\nabla f|$ es una semi-norma.

1.1. Problema

Sea E e.v.n. sobre \mathbb{R} , $p:E\to\mathbb{R}$ semi-norma, $F\subseteq E$ s.e.v. y $\varphi:F\to\mathbb{R}$ lineal tq $\varphi(x)\leq p(x)\forall x\in F$

1.1.1. Pregunta

 $\exists \varphi_1 : E \to \mathbb{R} \text{ lineal tq } \varphi_1(x) = \varphi(x) \forall x \in F \text{ y } \varphi(x) \leq p(x) \forall x \in E?$

1.1.2. Primero

Sea F s.e.v. de E, $F \subsetneq E$; tomemos $x \in E \setminus F$ (en particular $x \neq 0$), y consideramos $F_1 = \langle \{x\} \rangle \oplus F$. Entonces $\forall y \in F_1 \exists ! \lambda \in \mathbb{R}, z \in F$ tq $y = \lambda x + z$. Si $\varphi_1 : F_1 \to \mathbb{R}$, entonces la linealidad implica que $\varphi_1(y) = \lambda \varphi_1(x) + \varphi_1(z)$ y si φ_1 es extensión de φ , $\varphi_1(y) = \lambda \varphi_1(x) + \varphi(z)$. En otras palabras, para extender φ a F_1 basta escoger $\varphi_1(x) \in \mathbb{R}$, pero tenemos que escogerlo de modo que $\lambda \varphi_1(x) + \varphi(z) \leq p(\lambda x + z) \, \forall z \in F$.

Lema 1.6. Para E, p, F, φ como se acaban de describir.

$$A = \sup_{\substack{z \in F \\ \alpha > 0}} \left(\frac{1}{\alpha} \left(-p(z - \alpha x) + \varphi(z) \right) \right) \leq \inf_{\substack{z \in F \\ \alpha > 0}} \left(\frac{1}{\alpha} \left(p(z + \alpha x) - \varphi(z) \right) \right) = B$$

Demostración. Se tiene $\forall \alpha, \beta > 0, \forall z_1, z_2 \in F$

$$\alpha \varphi(z_1) + \beta \varphi(z_2) = (\alpha + \beta) \left(\frac{\alpha z_1}{\alpha + \beta} + \frac{\beta z_2}{\alpha + \beta} \right)$$
$$= (\alpha + \beta) \left(\frac{\alpha (z_1 - \beta x)}{\alpha + \beta} + \frac{\beta (z_2 + \alpha x)}{\alpha + \beta} \right)$$
$$\leq \alpha p(z_1 = \beta x) + \beta p(z_2 + \alpha x)$$

Con esto se puede escribir

$$\alpha\varphi(z_1) - \alpha p(z_1 - \beta x) \le -\beta\varphi(z_2) + \beta p(z_2 + \alpha x)$$

$$\frac{1}{\beta} (\varphi(z_1) - p(z_1 - \beta x)) \le \frac{1}{\alpha} (-\varphi(z_2) + p(z_2 + \alpha x))$$

$$\sup_{\substack{\beta > 0 \\ z_1 \in F}} \frac{1}{\beta} (\varphi(z_1) - p(z_1 - \beta x)) \le \inf_{\substack{\alpha > 0 \\ z_2 \in F}} \frac{1}{\alpha} (-\varphi(z_2) + p(z_2 + \alpha x))$$

Corolario. $\exists \mu \in \mathbb{R} \ tq \ si \ definimos \ \varphi_1(x) = \mu, \ con \ x \in E \setminus F, \ entonces \ \varphi_1(y) \leq p(y) \ \forall y \in F_1$ Demostración. Sea $\mu \in [A, B]$, para $y = \alpha x + z, \alpha > 0, z \in F$,

$$\varphi_1(y) = \varphi_1(\alpha x + z)$$

$$= \alpha \left(\frac{1}{\alpha} (\varphi(z) - p(z + \alpha x)) + \mu \right) + p(\alpha x + z)$$

$$\leq p(z + \alpha x)$$

Entonces $\varphi_1(\alpha x + z) \le p(\alpha x + z) \, \forall \alpha > 0$. Para $-\alpha$, $\alpha > 0$ se usa una idea similar, pero con el supremo.

Teorema 1.7 (Hahn-Banach real). Sea E e.v. sobre \mathbb{R} , $F \subseteq E$ s.e.v., p semi-norma, $\varphi : F \to \mathbb{R}$ lineal tq $\varphi(x) \leq p(x) \forall x \in F$. Entonces existe $\varphi_1 : E \to \mathbb{R}$ lineal tq $\varphi_1(x) = \varphi(x) \forall x \in F$, $\varphi_1(x) \leq p(x) \forall x \in E$

Demostración. Sea E e.v. sobre \mathbb{R} , p semi-norma en E, $F \subseteq E$ s.e.v., si $\varphi : F \to \mathbb{R}$ es lineal y $\varphi(x) \leq p(x) \forall x \in F$. Entonces, existe $\varphi_1 : E \to \mathbb{R}$ lineal, extensión de φ , tq $\varphi_1(x) \leq p(x) \forall x \in E$

Definamos $C = \{(H, \psi) : H \text{ s.e.v. de } E, F \subseteq H, \psi : H \to \mathbb{R}, \psi \mid_{F} = \varphi, \psi(x) \leq p(x) \forall x \in H\}$. Para $(H_1, \psi_1), (H_2, \psi_2) \in C$. Se define $(H_1, \psi_1) \leq (H_2, \psi_2)$ ssi $H_1 \subseteq H_2$ y $\psi_2 \mid_{H_1} = \psi_1$. \leq es un orden parcial sobre C.

- 1) $C \neq \emptyset$, pues $(F, \varphi) \in C$.
- 2) Si $\{(H_i, \psi_i)\}_{i \in I} \subseteq \mathcal{C}$ es totalmente ordenado, $\exists (H_S, \psi_s)$ cota superior de $\{(H_i, \psi_i)\}_{i \in I}$, o sea $H_s \supseteq H_i \forall i \in I, \psi_s \mid_{H_i} = \psi_i$.

Para esto:

Sea $H_s = \bigcup_{i \in I} H_i$. H_s es s.e.v. de E pues si $x, y \in H_s$, $\lambda \in \mathbb{R}$ entonces $\exists i, j \in I$ tq $x \in H_i$, $y \in I$

 H_j , como $\{(H_i, \psi_i)\}$ es totalmente ordenado, se tiene que $H_i \subseteq H_j$ o $H_j \subseteq H_i$. Ahora, s.p.d.g. $H_i \subseteq H_j \implies x, y \in H_j \implies x + \lambda y \in H_j \subseteq H_s$.

Definamos $\psi_s: H_s \to \mathbb{R}$ de la siguiente forma:

$$\psi_s(x) = \psi_i(x) \text{ si } x \in H_i$$

Esto esta bien definido, pues $\{(H_i, \psi_i)\}$ es totalmente ordenado. Además $\psi(x) \leq p(x) \forall x \in H_s$ pues todo ψ_i satisface esto.

Esto prueba que $(H_s, \psi_s) \in \mathcal{C}$ y que $(H_i, \psi_i) \leq (H_s, \psi_s) \forall i \in I$. Ahora, por el lemma de Zorn existe $(H_*, \psi_*) \in \mathcal{C}$ que es maximal. Esto es $((H, \psi) \in \mathcal{C} \land (H_*, \psi_*) \leq (H, \psi)) \implies (H_*, \psi_*) = (H, \psi)$.

Afirmación: $H_* = E$. Si no: $\exists x \in E \setminus H_*$, por lo que podemos extender H_* y ψ_* , lo que es una contradicción, ya que (H_*, ψ_*) es maximal. Con esto se tiene que

Corolario. Sea E e.v.n. (sobre \mathbb{R} por ahora), $\forall x \in E, x \neq 0, \exists \varphi \in E^*$ tq $\varphi(x) = ||x|| y$ $||\varphi|| = 1$

Demostración. Definamos $\varphi(\lambda x) = \lambda \|x\|$, $\varphi : \langle x \rangle \to \mathbb{R}$ es lineal y claramente $\varphi(\lambda x) \leq \|\lambda x\|$. Ahora usamos HB con $p(x) = \|x\|$.

Teorema 1.8 (Hahn-Banach complejo). *Hahn-Banach*, pero sobre \mathbb{C} .

Demostración. La misma demostración, pero cambiar la frase $\forall x \varphi(x) \leq p(x)$ por $\forall x |\varphi(x)| \leq p(x)$ donde $|\cdot|$ es la norma en \mathbb{C} .

Corolario. Si $F \subseteq E$, $\overline{F} \neq E \ \forall x \in E \setminus \overline{F} \ \exists \varphi \in E^* \ tq \ \varphi(z) = 0 \ \forall z \in F \ pero \ \varphi(x) \neq 0$

Demostración. Para todo $A \subseteq E$ y $x \in E$ se define:

$$d(x, A) = \inf\{\|x - y\| : y \in A\}$$

Sea $x \in \overline{F}$, y sea $F_1 = \langle x \rangle \oplus F$. Se toma $y \in F_1$, $y = \lambda x + z$, $z \in F$. Se define $\varphi(y) = \lambda d(x, F)$ para $z \in F$ y $\lambda \neq 0$. Luego,

$$|\varphi(\lambda x + z)| = |\lambda| d(x, F)$$

$$\leq |\lambda| \left\| x + \frac{1}{\lambda} z \right\|$$

Con lo que $|\varphi(\lambda x + z)| \le \|\lambda x + z\|$. O sea, $|\varphi(y)| \le \|y\|$ para $y \in F_1$ y $\varphi(z) = 0 \forall z \in F$ Luego por HB $\exists \varphi' : E \to \mathbb{C}$, $\|\varphi'(y)\| \le \|y\| \forall y \in E$ y además $\varphi'(x) = d(x, F) > 0$ para $x \notin \overline{F}$. **Observación 1.2.** Esta proposición dice que si $x \notin \overline{F}$ entonces $\exists \varphi \in E^*$ tq $\Re(\varphi(x)) > \Re(\varphi(y))$ para todo $y \in F$.

En ese espíritu uno puede probar que:

Si E es e.v.n., A, B convexos cerrados y disjuntos, con B compacto, $\exists \varphi \in E^*$, y $\alpha, \beta \in \mathbb{R}$ con $\alpha < \beta$ tq $\Re(\varphi(x)) \le \alpha < \beta \le \Re(\varphi(y)) \, \forall x \in A \, \forall y \in B$.

2. Consecuencias del Lema de Baire

2.1. Recuerdo

Sea X e.m. completo. Si $O_n \subseteq X$ es abierto denso en $X \forall n \in \mathbb{N}$, entonces su intersección $\bigcap_{n \in \mathbb{N}} O_n$ es densa.

Esto es equivalente a:

Si F_n es cerrado de interior vacío en X para todo $n \in \mathbb{N}$. Entonces $\bigcup_{n \in \mathbb{N}} F_N$ tiene interior vacío.

Teorema 2.1 (Banach Steinhaus o Teorema de la cota uniforme). Sean E, F Banach, y sean $T_i: E \to F$ lineales indexadas por $i \in I$. Supongamos que $\forall x \in E \exists c_x \geq 0 \ tq \ ||T_ix||_F \leq c_x \ \forall i \in I$.

En estas condiciones $\exists c \geq 0 \ tq$

$$||T_i x||_E \le C ||x||_E$$
 $\forall x \in E, \forall i \in I$

Equivalentemente $||T_i||_{\mathcal{L}(E,F)} \leq C \, \forall i \in I$

Demostración. Por hipótesis, $\forall x \in E \ \exists c_x \geq 0 \ \mathrm{tq} \ \|T_i x\| \leq c_x \ \forall i \in I$. Esto dice que si definimos

$$B_n = \{ x \in E \text{ tq } ||T_i x|| \le n \forall i \in I \}$$

Entonces $\bigcup_{n\in\mathbb{N}} B_n = E$. Además, B_n son cerrados.

Por el lema de Baire, algún B_n tiene interior no vacío, digamos B_{n_0} . Entonces $\exists x_0 \in E$ y $\delta > 0$ tq $B_{2\delta}(x_0) \subseteq B_{n_0}$.

Entonces $\forall x \in E, x \neq 0$,

$$T_i(x) = \frac{\|x\|}{\delta} T_i \left(x_0 + \frac{\delta x}{\|x\|} - x_0 \right)$$

Como $x_0 + \frac{\delta x}{\|x\|} \in B_{2\delta}(x_0)$ se tiene que

$$||T_i x|| = \frac{||x||}{\delta} \left| |T_i (x_0 + \frac{\delta x}{||x||}) - T_i x_0 \right||$$

$$\leq \frac{||x||}{\delta} \left(\left| |T_i \left(x_0 + \frac{\delta x}{||x||} \right) \right| + ||T_i x_0|| \right)$$

$$\leq \frac{2n_0}{\delta} ||x||$$

Esto es, $||T_i x|| \le \frac{2n_0}{\delta} ||x|| \ \forall x \in E, \forall i \in I.$

Teorema 2.2 (Teorema de la aplicación abierta). Sean E, F Banach, sea $T: E \to F$ lineal continua y sobreyectiva. Entonces T es abierto, esto es, T(O) es abierto en F para todo O abierto en E.

Corolario. $Si\ E, F\ Banach,\ y\ T: E \to F\ es\ lineal\ continua\ y\ biyectiva,\ entonces\ es\ bicontinua.$