Sebastian Banert

Exercise 6

29 December 2020

Problem 1. Let \mathcal{H} be a finite-dimensional inner-product space, let $f \colon \mathcal{H} \to \mathbb{R}$ be convex and proper, and let $C \subseteq \operatorname{int} (\operatorname{dom} f)$ be non-empty, closed, and convex. We want to minimise f(x) over $x \in C$. Given $x_0 \in C$, the *projected subgradient method* is given by the following iteration for $n \geq 0$:

- choose $s_n \in \partial f(x_n)$,
- choose $\gamma_n > 0$,
- set $x_{n+1} := \operatorname{Proj}_C(x_n \gamma_n s_n)$, where Proj_C denotes the projection on the set C.

Show that, for all $x \in C$,

$$||x_{n+1} - x||^2 \le ||x_n - x||^2 - 2\gamma_n (f(x_n) - f(x)) - ||x_{n+1} - (x_n - \gamma_n s_n)||^2 + \gamma_n^2 ||s_n||^2.$$
 (1)

Which parts of the proof of the subgradient method have to be adapted to show the convergence of the projected subgradient method?

Problem 2. Assume that you know that there exists $m \in \mathbb{R}$ such that $f(x) \geq m$ for all $x \in \mathcal{H}$. If you set

$$\gamma_n := \frac{f(x_n) - m}{\|s_n\|^2}$$

for all $n \geq 0$ in the subgradient method (or the projected subgradient method), show that

$$\sum_{n=0}^{N-1} \frac{(f(x_n) - f(\bar{x}))^2 - (f(\bar{x}) - m)^2}{\|s_n\|^2} \le \|x_0 - \bar{x}\|^2$$

for all $N \geq 0$, where \bar{x} is a minimiser of f.

Note: If, for some reason, you know the optimal value $f(\bar{x})$ of your optimisation problem and want to find a solution \bar{x} , you can set $m = f(\bar{x})$. This minimises the expression $-2\gamma_n(f(x_n) - f(x)) + \gamma_n^2 ||s_n||^2$ in eq. (1). If you don't know $f(\bar{x})$, then the rule here does not guarantee $f(x_n) \to f(\bar{x})$, but it can be a good rule of thumb as long as $f(x_n) - f(\bar{x})$ is big compared with $f(\bar{x}) - m$. You can read more about this and the subgradient method in Polyak's book [1, Chapter 5.3].

Problem 3. Implement the projected subgradient algorithm in a programming language of your choice (e.g., Julia, Python, GNU Octave, ...). Make sure that I only need free (open source) software to execute your code. (Matlab is not open source; if you want to use Matlab syntax, make sure that your code runs with GNU Octave.)

Use your implementation to numerically solve the shortest-path problem from the lecture:

min
$$\sum_{k=1}^{N} ||x_k - x_{k-1}|| \quad \text{over } x_0, \dots, x_N \in \mathbb{R}^n$$
 s.t.
$$x_0 = a, \quad x_N = b.$$

with n = 2 and $a = (0, 0) \in \mathbb{R}^2$ and $b = (1, 2) \in \mathbb{R}^2$.

- Choose the initial path randomly.
- Don't be confused by the overlapping notation in the problem formulation and the subgradient algorithm.
- Use $\gamma_n = \frac{a}{(b+n)\|s_n\|}$ for a reasonable (manually tuned) choice of a, b > 0 and the γ_n from problem 3 with $m = f(\bar{x}) = \|a b\|$ and m = 0.
- Plot the function values $f(x_n)$, n = 0, 1, ... and the weighted averages from the ergodic convergence rate for each choice of stepsizes.
- Check that eq. (1) is satisfied for each step (using for x the point with the lowest objective function value you found).

Visualise the shortest path found by your algorithm. Change the norm in the objective function to $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$, given by

$$||(a,b)||_1 = |a| + |b|, \qquad ||(a,b)||_{\infty} = \max\{|a|,|b|\},$$

and visualise the shortest paths for those. Send me your code and all the calculations you need for your implementation.

References

[1] Boris T. Polyak, Introduction to optimization, Optimization Software, 1987.