

其中 L_1, L_2, L_3 是分配格, L_4 不是模格,从而也不是分配格, L_5 是模格但不是分配格。只有 L_4 和 L_5 是有补格。

19.19

证明: 对任意 $x \in L$, 令 $T(x) = \{y \mid y \in L \perp L \mid y \leq x\}$, $i_x = |T(x)|$ 。显然, 对任意 $x \in L$, 有 $1 \leq i_x \leq t+1$ 。注意到:

引理 19.1 若 L 是链,则对任意 $x,y \in L$,有

$$x \preccurlyeq y \iff i_x \leq i_y$$
.

证明: 必要性显然,下面证充分性。

由于 L 是链,所以 $x \preccurlyeq y$ 与 $y \preccurlyeq x$ 至少有一式成立。反设 $x \not\preccurlyeq y$,则必有 $y \preccurlyeq x$ 。由 $y \preccurlyeq x$ 和偏序关系传递性可知, $T(y) \subseteq T(x)$,但由于 $x \not\preccurlyeq y$,所以 $x \in T(x)$, $x \notin T(y)$,从而 $T(y) \subset T(x)$, $i_y < i_x$,矛盾。

作 $\varphi: L \to L(G)$, 对任意 $x \in L$, 令 $\varphi(x) = \langle a^{p^{t-i_x+1}} \rangle$ 。 φ 显然是函数。

对任意 $x,y \in L$,若 $\varphi(x) = \varphi(y)$,则必有 $i_x = i_y$ (这是因为,由 $p^{t-i_x+1}, p^{t-i_y+1} \mid p^t$ 和教材例 17.16 可知, $|\varphi(x)| = p^{i_x-1}$, $|\varphi(y)| = p^{i_y-1}$,若 $i_x \neq i_y$,则 $\varphi(x)$ 与 $\varphi(y)$ 不等势,与 $\varphi(x) = \varphi(y)$ 矛盾)。由引理 19.1 就有 $x \leq y$ 和 $y \leq x$,从而 x = y。这就是说, φ 是单射。

由教材定理 17.13 可知, $L(G) = \{\langle a^{p^i} \rangle \mid i = 0, 1, \cdots, t\}$,下面证明,对任意 $0 \le i \le t$,必然存在一个 $x \in L$,使得 $i = t - i_x + 1$: 若不然,则由鸽巢原理可知,存在 $x, y \in L$,使得 $x \ne y$ 且 $i_x = i_y$ 。但由 $i_x = i_y$ 和引理 19.1 应有 x = y,矛盾。这就证明了,对任意 $y \in L(G)$,必然存在 $x \in L$,使得 $\varphi(x) = y$ 。这就证明了 φ 是满射,从而是双射。

最后证明 $x \leq y \Leftrightarrow \varphi(x) \leq \varphi(y)$ 。

充分性。

注意到,对任意 $x,y\in L$,有 $0\leq t-i_x+1, t-i_y+1\leq t$,从而由教材例 17.16 可知, $|\langle a^{p^{t-i_x+1}}\rangle|=\frac{p^t}{(p^t,p^{t-i_x+1})}=\frac{p^t}{p^{t-i_x+1}}=p^{i_x-1},\ |\langle a^{p^{t-i_y+1}}\rangle|=\frac{p^t}{(p^t,p^{t-i_y+1})}=\frac{p^t}{p^{t-i_y+1}}=p^{i_y-1}.$ 因此有,

$$\varphi(x) \preccurlyeq \varphi(y)$$

$$\iff \langle a^{p^{t-i_x+1}} \rangle \subseteq \langle a^{p^{t-i_y+1}} \rangle$$

$$\iff |\langle a^{p^{t-i_x+1}} \rangle| \leq |\langle a^{p^{t-i_y+1}} \rangle|$$

$$\iff p^{i_x-1} \leq p^{i_y-1}$$

$$\iff i_x \leq i_y$$

$$\iff x \preccurlyeq y$$

$$(\beta) \mathbb{E} \chi$$

$$(\varphi 定 \chi)$$

$$(\varphi 定 \chi)$$

$$(\varphi 定 \chi)$$

$$(\varphi r)$$

$$(\varphi r)$$