CS25 RECOPCT/PTO TO MAR 2000

FORM PTO-1390 CREV 12-29-99) GEV 12-29-99) GEV 12-29-99)	TORNEY'S DOCKET NUMBER											
TRANSMITTAL LETTER TO THE UNITED STATES	SPO-108											
DESIGNATED/ELECTED OFFICE (DO/EO/US)	US 17977050 018 13 4 2 1 5)											
CONCERNING A FILING UNDER 35 U.S.C. 371	09/ 500542											
INTERNATIONAL APPLICATION NO. INTERNATIONAL FILING DATE	PRIORITY DATE CLAIMED											
PCT/JP98/04125 September 11, 1998	September 12, 1997											
TITLE OF INVENTION Mammalian Genes Involved in Circadian Periods												
APPLICANT(S) FOR DO/EO/US Yoshiyuki Sakaki, Hajime Tei												
Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the fol	lowing items and other information:											
1. This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.												
2. This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.												
This express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1). A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.												
5 X A copy of the International Application as filed (35 U.S.C. 371(c)(2))												
a. is transmitted herewith (required only if not transmitted by the International Bureau	rnational Bureau).											
b.	aiving Office (BO/US)											
6. A translation of the International Application into English (35 U.S.C. 371(c)	<u> </u>											
7. Amendments to the claims of the International Application under PCT Artic												
a. are transmitted herewith (required only if not transmitted by the Inte												
b. have been transmitted by the International Bureau.												
c. La have not been made; however, the time limit for making such amend	dments has NOT expired.											
d. have not been made and will not be made.												
8 A translation of the amendments to the claims under PCT Article 19 (35 U.S	* * * **											
9. X An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)). (unsign	ed)											
10. A translation of the annexes to the International Preliminary Examination Re (35 U.S.C. 371(c)(5)).	eport under PCT Article 36											
Items 11. to 16. below concern document(s) or information included:												
An Information Disclosure Statement under 37 CFR 1.97 and 1.98.												
12. An assignment document for recording. A separate cover sheet in compliance	te with 37 CFR 3.28 and 3.31 is included.											
13 X A FIRST preliminary amendment.												
A SECOND or SUBSEQUENT preliminary amendment.												
14 A substitute specification.												
15 A change of power of attorney and/or address letter.												
16. 🗵 Other items or information: Verified Statement Claiming S	mall Entity Status											
	j											

•		514 (Recid Pou	(PT	9440.¢	1AR = 2000 = =				
U.S. APPLICATION NO G	knofen, stager FR & J	TERNATIONAL APPLICATION NO PCT/JP98/04125		ATTORNEY'S DOCKET NUMBER SPO-108						
BASIC NATION Neither interr nor internation and Internation International	lowing fees are submitted: IAL FEE (37 CFR 1.492 (a) lational preliminary examinal locational search fee (37 CFR 1.44) local Search Report not prepare liminary examination fee	(1) - (5)) : ation fee (37 CFR 1.482) (5(a)(2)) paid to USPTO ared by the EPO or JPO · · · · ·	\$970.00	CA	LCULATIONS					
International	* 1	(37 CFR 1.482) not paid to USF								
International but all claims International	preliminary examination feed did not satisfy provisions of preliminary examination feed satisfied provisions of PCT	e paid to USPTO (37 CFR 1.48 f PCT Article 33(1)-(4)	2)\$96.00	\$	840.00	1				
	0.00 for furnishing the oath earliest claimed priority dat) 30	\$	040.00	<u> </u>					
CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE			1				
Total claims	13 - 20 =	0	X \$18.00	s	0.00	T				
Independent claims	11 .3 =	8	X \$78.00	\$	624.00					
MULTIPLE DEP	ENDENT CLAIM(S) (if application	able)	+ \$260.00	\$	0.00					
	TOTAL (OF ABOVE CALCULAT	CIONS =	\$1 ,	464.00					
	for filing by small entity, if d (Note 37 CFR 1.9, 1.27, 1.	ement	\$ -	-732.00						
		SUBT	OTAL =	\$	732.00					
	\$130.00 for furnishing the earliest claimed priority dat	English translation later than e (37 CFR 1.492(f)).	20 30 +	\$	0.00					
		TOTAL NATION.	AL FEE =	\$	732.00					
		7 CFR 1.21(h)). The assignme 37 CFR 3.28, 3.31). \$40.00 per		\$	0.00					
		TOTAL FEES ENC	LOSED =	\$	732.00					
				Am	ount to be refunded:	\$				
				<u> </u>	charged:	\$				
a. A check in the amount of \$\ to cover the above fees is enclosed. b. \times Please charge my Deposit Account No. \(\frac{19-0065}{} \) in the amount of \$\frac{732.00}{} \) to cover the above fees. A duplicate copy of this sheet is enclosed. c. \times The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. \(\frac{19-0065}{} \). A duplicate copy of this sheet is enclosed.										
NOTE: Wher 1.137(a) or (b)	e an appropriate time limi) must be filed and granted	t under 37 CFR 1.494 or 1.49 I to restore the application to	5 has not been i pending status.	met, a	petition to re	vive (37 CFR				
SEND ALL CORRE	SPONDENCE TO			2						

Doran R. Pace Saliwanchik, Lloyd & Saliwanchik A Professional Association 2421 N.W. 41st Street, Suite A-1 Gainesville, FL 32606

1
SIGNATURE:
Doran R. Pace
NAME
38,261
REGISTRATION NUMBER

Applicant or Patentee	Yoshiyuki Sakaki, Hajime Tei	MAY 1 2 2000 5	Attorney's
Serial or Patent No.			Docket No SPO-108
Filed or Issued:	March 10, 2000	PAD DANDI CE	
For:	Mammalian Genes Involved in C	ircadian Periods	

VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY STATUS (37 CFR 1.9 (f) and 1.27 (b)) – INDIVIDUAL

			STATUS (3	7 CFR 1.9 (f)	and 1.27 (b)) –	INDIVIDU	AL		
								ection 41(a) and (b) of Title 35, Ured in Circadian Periods	nted
	[]	the specification						33301133	
12 Mario 10 C 10 C 10 C 10 C 10 C 10 C	[X]	PCT application patent no		PCT/JP98/0, issu	4125, filed		<u>er 11, 1998 </u>		
person who could	l not be classifi	ed as an independ	ient inventor i	inder 37 CFR 1.9	r contract or law to (c) if that person ler 37 CFR 1 9 (e)	had made the	t, convey or lice	ense, any rights in the invention to any concern which would not qua	any alify
or license any rigi				ranted, conveyed	l, or licensed or an	n under an obl	igation under c	ontract or law to assign, grant, cor	ıvey
		ch person, concers, concers, concerns, orga	-						
Hart Hart Hart		•		•	ed from each name us as small entitie	•		ation	
FULENAME ADDRESS									
	[]INDIV	/IDUAL	[] SM.	ALL BUSINESS	CONCERN	[] NONPROFI	TORGANIZATION	
FULENAME ADDRESS									
	[] INDIV	/IDUAL	[] SM.	ALL BUSINESS	CONCERN	[) NONPROFI	T ORGANIZATION	
FULL NAME									
ADDRESS	[] INDIN	/IDUAL	[] SM.	ALL BUSINESS	CONCERN	[] NONPROFI	T ORGANIZATION	
								small entity status prior to paying longer appropriate. (37 CFR 1.28	
that these statemen	its were made w United States C	ith the knowledge ode, and that suc	that willful fa	lse statements and	the like so made a	are punishable	by fine or impr	ief are believed to be true; and fur isonment, or both, under section I latent issuing thereon, or any pater	001
		1,0			1. N. N.				
Yoshiyuki S	Sakaki	`		Hajime T	ei '				
NAME OF INDIV		\ .		NAME OF INI			NAMI	OF INDIVIDUAL	
Moshin	mki S	ale Ce		Hajime	dei				
Signature of Indiv				Signature of In-			Signat	ure of Individual	
	<u> 200, 200</u>	0	·	April 2	0, 2000				
Date '	,			Date ¹			Date		

15

20

25

30

SPO-108

SPECIFICATION

MAMMALIAN GENES INVOLVED IN CIRCADIAN PERIODS

5 Technical Field

The present invention relates to mammalian genes whose expression changes with a circadian period.

Background Art

Many biochemical processes, physiological processes, and behavioral processes in various organisms ranging from microorganisms to vertebrates exhibit circadian rhythms (Edmunds, L. N. J., Cellular and Molecular Basis of Biological Clock, Springer-Verlag, New York, 1988). Several genes have been suggested to be involved in circadian rhythms.

For example, two mammalian circadian clock mutations have been confirmed thus far. They are Clock of the mouse (Vitaterna, M. H., et al., Science 264: 719-725, 1994) and tau of the hamster (Ralph, M. R. and Menaker, M., Science 241: 1225-1227, 1988). The Clock gene has recently been identified and is believed to encode a transcription factor in the circadian clock (Moor, R. Y. and Eichler, V. B., Brain Res. 42: 201-206: 1972; Stephan, F. K. and Zucker, I., Proc. Natl. Acad. Sci. USA 69: 1583-1586, 1972). On the other hand, the tau gene has not yet been cloned.

The period (per) gene has been isolated from *Drosophila* as a gene necessary for the expression of circadian rhythms for locomotive activities and eclosion behavior (Konopka, R. J. and Benzer, S., Proc. Natl. Acad. Sci. USA 68: 2112-2116, 1971). In the brain of the fly the oscillation of the levels of the per mRNA and of the PERIOD (dPER) protein are thought to determine the rhythms (Hardin, P. E., et al., Nature 343: 536-540, 1990; Zerr, D. M., et al., J. Neurosci. 10: 2749-2762, 1990). However, per homologues in other organisms than insects have not been identified.

35 Disclosure of the Invention

An object of the present invention is to provide novel

10

15

20

35

mammalian proteins and the genes thereof that are involved in the circadian period. More specifically, the object is to provide mammalian proteins and the genes thereof that are functionally equivalent to those of the *Drosophila* period (per) gene product.

To attain the above object, the present inventors focused on a region expected to play a functionally important role within the Drosophila gene known to be involved in the circadian rhythms, and performed a type of PCR, which had been developed on our own, using the primers designed based on the sequence of the region. As a result, we succeeded in isolating a human gene that corresponds to the above-mentioned Drosophila gene. We also succeeded in isolating a mouse gene that corresponds to the human gene by using the isolated human gene as a probe. Furthermore, we analyzed structures of the proteins encoded by the human and the mouse genes thus isolated and discovered that these proteins highly conserve the functional domains and the structural domains that have been identified in the Drosophila protein. In addition, analysis of the expression of the isolated mouse gene in the suprachiasmatic nucleus, which is the region responsible for functioning as a circadian pacemaker in the mammalian brain, revealed that the expression of the gene fluctuates with a circadian period.

Namely, the present invention relates to proteins and the genes thereof that are involved in the circadian periods of mammals, and more specifically to

- 25 (1) a protein derived from a mammal whose expression level in the suprachiasmatic nucleus (SCN) fluctuates with a circadian period,
 - (2) a protein of (1) wherein the mammal is a human,
 - (3) a protein of (1) wherein the mammal is a mouse,
- (4) a protein involved in the formation of circadian rhythm in 30 the suprachiasmatic nucleus (SCN) comprising the amino acid sequence described in SEQ ID NO: 1 or said sequence in which one or more amino acids are substituted, deleted, or added,
 - (5) a protein involved in the formation of circadian rhythm in the suprachiasmatic nucleus (SCN) comprising the amino acid sequence described in SEQ ID NO: 2 or said sequence in which one or more amino acids are substituted, deleted, or added,

- •

20

30

35

- (6) a protein involved in the formation of circadian rhythm in the suprachiasmatic nucleus (SCN) encoded by the DNA having a sequence described in SEQ ID NO: 3 or by DNA that hybridizes with the DNA described in SEQ ID NO: 3,
- 5 (7) a protein involved in the formation of circadian rhythm in the suprachiasmatic nucleus (SCN) encoded by the DNA having a sequence described in SEQ ID NO: 4 or by DNA that hybridizes with the DNA described in SEQ ID NO: 4,
 - (8) DNA encoding any of the proteins of (1) to (5),
- 10 (9) DNA having the sequence described in SEQ ID NO: 3 or DNA that hybridizes with the DNA having the sequence described in SEQ ID NO: 3, wherein the DNA encodes a protein involved in the formation of circadian rhythm in the suprachiasmatic nucleus (SCN),
 - (10) DNA having the sequence described in SEQ ID NO: 4 or DNA that hybridizes with the DNA having the sequence described in SEQ ID NO: 4, wherein the DNA encodes a protein involved in the formation of circadian rhythm in the suprachiasmatic nucleus (SCN),
 - (11) a vector carrying any of the DNA of (8) to (10),
 - (12) a transformant expressibly retaining any of the DNA of (8) to (10), and
 - (13) a method for producing any of the proteins of (1) to (7), the method comprising culturing the transformant of (12).

Herein, the "circadian periods" means the activity rhythms with a period of approximately 24 hours which are observed in a wide variety of behaviors such as endocrine secretions and body temperature, blood pressure, sleep-wakefulness, and others of an organism.

The expression of the protein of the present invention oscillates autonomously with a circadian period in the suprachiasmatic nucleus (SCN), which is a major circadian pacemaker of the mammalian brain (Moor, R. Y. and Eichler, V. B., Brain Res. 42: 201-206: 1972; Stephan, F. K. and Zucker, I., Proc. Natl. Acad. Sci. USA 69: 1583-1586, 1972). The amino acid sequences of the proteins derived from the human and the mouse included in the present invention are shown in SEQ ID NO: 1 and SEQ ID NO: 2, respectively. The amino acid sequences of these two mammalian proteins fairly

2.3

15

20

25

30

35

homologous with that of the *Drosophila* protein (the period gene product) (Citri, Y., et al., Nature 326: 42-47, 1987). The period gene is required for the expression of the circadian rhythms of locomotive activities and hatching behavior in *Drosophila* (Konopka, R. J. and Benzer, S., Proc. Natl. Acad. Sci. USA 68: 2112-2116, 1971). The oscillations of its mRNA and protein levels in the fly brain are thought to determine the rhythms (Hardin, P. E., et al., Nature 343: 536-540, 1990; Zerr, D. M., et al., J. Neurosci. 10: 2749-2762, 1990). These two proteins show highly homologous with the *Drosophila* protein in the PAS domains which have been suggested to be structurally and functionally important based on the genetic and biochemical studies (Baylies, M. K. et al., Nature 326: 390-392, 1987; Saez, L. and Young, M. W., Neuron 17: 911-920, 1996).

Recently King et al. have cloned the mammalian "Clock" gene, which encodes a bHLH-PAS-polyQ polypeptide (King, D. P., et al., Cell 89: 641-653, 1997; Antoch, M. P., et al., Cell 89: 655-667, 1997). The proteins of the present invention can form dimers with other molecules such as "CLOCK" by means of the PAS-PAS interaction in the circadian clock system.

The proteins of the present invention can be prepared as a recombinant protein utilizing the genetic recombinant technology, or as a natural protein. A recombinant protein can be prepared by culturing the cells transformed with DNA encoding the protein of the present invention as described later. A natural protein can be isolated, for example, from the somatic cell tissues, such as brain, pancreas, kidney, skeletal muscle, liver, lung, placenta, heart, spleen, and testis using an affinity column with an appropriate carrier bound to an antibody that is prepared using the above-mentioned recombinant protein of the present invention.

It is possible for a person skilled in the art to prepare a protein substantially identical to the protein described in SEQ ID NO: 1 or SEQ ID NO: 2 by making amino acid substitutions and other modifications to the protein described in SEQ ID NO: 1 using known methods. Mutations of amino acids in a protein may also occur spotaneously. Thus, the present invention includes modified proteins that result from the modification of amino acids of the

.

15

20

25

30

35

protein described in SEQ ID NO: 1 or 2 by substitution, deletion, or addition, and are involved in the formation of circadian rhythms in the suprachiasmatic nucleus (SCN). The known methods to modify amino acids include the ODA (Oligonucleotide-directed Dual Amber)-LA PCR method (Hashimoto-Gotoh, T., et al., Gene 152: 271-275, 1995). The amino acids to be substituted are usually within 10 amino acids, preferably within 6 amino acids, and more preferably within 3 amino acids.

It is routine for one skilled in the art to obtain proteins that are substantially functionally equivalent to the protein described in SEQ ID NO: 1 or 2 from DNAs that are highly homologous with the DNA having a sequence described in SEQ ID NO: 3 or 4 and isolated from other organisms using such methods as the known hybridization technique (Church, G. M. and Gilbert, W., Proc. Natl. Acad. Sci. USA 81: 1991-1995, 1984; Sambrook, J., et al., Molecular Cloning, 2^{nd} ed., 1989) based on the DNA sequence described in SEQ ID NO: 3 or 4 (or part thereof). Thus the proteins encoded by the DNA that hybridizes with the DNA sequence described in SEQ ID NO: 3 or 4, which are involved in the formation of circadian rhythms in the suprachiasmatic nucleus (SCN), are also included in the proteins of the present invention. The source of the DNA for hybridization includes mammals such as rats, dogs, cats, monkeys, whales, cattle, pigs, and horses. The DNA encoding the proteins from these other organisms should usually highly homologous with the DNA described in SEQ ID NO: 3 or 4. "Being highly homologous" means having at least 60%, preferably at least 70%, more preferably at least 80%, and still more preferably at least 90% of sequence identity with the DNA described in SEQ ID NO: 3 or 4. hybridization for isolating such DNAs can be performed, for example, in a mixture consisting of 6 x SSPE, 5 x Denhardt's solution, 0.5% SDS, 100 µl/ml denatured salmon sperm DNA, and 50% formamide, usually at 42°C, less stringently at 32°C, or more stringently at 65°C.

The present invention also relates to DNAs encoding the proteins of the present invention described above. The DNAs encoding the proteins of the present invention can be cDNA, genomic DNA, or synthetic DNA. The DNAs of the present invention can be

- - -

15

20

25

30

35

utilized, for example, to manufacture the proteins of the present invention as recombinant proteins. Namely, the DNA encoding a protein of the present invention (for example, the DNA described in SEQ ID NO: 3 or 4) is inserted into an appropriate expression vector, appropriate cells are transformed with the vector, the transformants are cultured, and the expressed protein is purified to prepare the proteins of the present invention as recombinant proteins.

The preferred cells used for the production of the recombinant proteins include E. coli, yeast, insect cells, and animal cells. The vectors used to express the recombinant proteins within these cells include the pET system, pAUR system, baculovirus vectors (pBlue Bac, etc.), and the CMV or RSV promoter-driven vectors, etc.

The transfection of the vector into the host cell can be done, for example, by electroporation for E. coli and yeast, and the liposome method for insect cells and animal cells. The lithium acetate method can also be used for yeast.

The recombinant protein can be purified from the transformant, for example, by ion exchange, gel filtration, or anti-Per antibody column chromatography.

The proteins or the DNAs of the present invention are applicable to treat disorders related to circadian rhythms, such as sleep phase delay syndrome, sleep phase progression syndrome, non-circadian sleep-wake syndrome, irregular sleep-wake disorder, and time difference syndrome (so-called jet lag). They are also applicable to the labor and health management of irregular night time workers and to prevention of night poriomania in dementia.

Brief Description of the Drawings

Figure 1 shows the amino acid sequences within the PAS repeats (arrows) that were used to design the primers for IMS-PCR.

Figure 2 is a photograph showing an electrophoresis image of 3 bp ladder markers that were electrophoresed on a 10% non-denaturing PAGE gel in a non-continuous buffer solution system. A 10 bp DNA ladder (BRL) was electrophoresed on lane M.

Figure 3 is a photograph showing an electrophoresis image of

. -

20

25

30

35

the IMS-PCR product (lanes marked with arrows) that was electrophoresed along with 59 bp, 65 bp, and 68 bp of the 3 bp ladder markers (lanes marked with asterisks).

Figure 4 shows an amino acid sequence comparison among the PERIOD family members. hDIAL, mDIAL, and PERIOD indicate the human, the mouse, and the *Drosophila* version of PERIOD, respectively. Shaded or dotted boxes indicate homologous sequences, and C1 through C6 indicate regions conserved among different *Drosophila* species.

Figure 5 shows an amino acid sequence comparison among the PERIOD family members. hDIAL, mDIAL, and PERIOD indicate the human, the mouse, and the *Drosophila* version of PERIOD, respectively. Shaded or dotted portions indicate homologous sequences. Sequences corresponding to NLS, the PAS-A repeats, the PAS-B repeats, and CLD are underlined, and the TG repeats (the SG repeats in the human and mouse PER) are boxed. Amino acid identities between the human PERIOD and the mouse PERIOD are indicated by asterisks above the human PERIOD sequence. The identities and homologies between the mammalian PERIOD and the *Drosophila* PERIOD are indicated by asterisks and open circles below the *Drosophila* PERIOD sequence.

Figure 6 is a photograph showing the northern blot analysis of hPER. hPER was bound to the filter as a probe, and then G3PDH was bound as a loading control.

Figure 7 is a photograph showing the northern blot analysis of mPer. mPer was bound to the filter as a probe, and then G3PDH was bound as a loading control.

Figure 8 is a photograph showing the results of *in situ* hybridization of mPer in the mouse brain under the LD (top) and the DD (bottom) conditions. SCN is indicated by arrows. The bar indicates 2 mm.

Figure 9 shows the results of quantification of in situ hybridization data under the LD (top) and the DD (bottom) conditions. Each data point is the average \pm SEM (n=5). ** indicates significance at the 1% significance level, and * at the 5% significance level, compared with the values at ZT16 and CT16. The white portion of the bar represents the light period, and the black portions the dark periods.

-

10

15

20

25

Figure 10 shows the results of the competitive RT-PCR analysis on the mPer mRNA under the LD (top) and the DD (bottom) conditions. $\Delta mPer$ indicates a competitive factor for mPer and $\Delta\beta$ -actin indicates a competitive factor for β -actin. The white portion of the bar represents the light period, and the black portions the dark periods.

Best Mode for Carrying out the Invention

The present invention is illustrated in detail below with reference to the following examples, but is not to be construed as being limited thereto.

Example 1 Isolation of the mammalian homologues of per

In order to isolate the mammalian homologues of per, the inventors have developed a novel method, intramodule scanning (IMS) -PCR. The principle of the method is based on the fact that in the human genome short stretches of DNA sequences (modules) that encode short polypeptide fragments (motifs) are scattered over long genomic distances. If a sufficient number of "intramodule scanning" primers are used to cover the entire length of a gene, the module can be screened with equal frequencies irrespective of their expression levels.

Genetic and biochemical studies have suggested that the PAS domains in dPER are structurally and functionally important (Baylies, M. K. et al., Nature 326: 390-392, 1987; Saez, L. and Young, M. W., Neuron 17: 911-920, 1996). Therefore, we designed 18 different primers corresponding to the internal sequences of the dPER PAS-A and PAS-B repeats (Figure 1). The sequences of the degenerate primer pairs for the PAS-A and PAS-B repeats are as follows:

GTGCTGGGCTACCCN(A/C)GNGA;

30 CTGGGCTACCCCC(A/G)(A/G)GANATG;
GGCTACCCCC(A/G)(A/G)GANATGTGG;
CTGGGCT(A/T)CCTGCCNCA(A/G);
CTGGGCT(A/T)CCTGCCNCA(A/G)GA;
GGCTACCTGCC(C/T)CA(A/G)GAN(C/T);
GCCCG(G/A)TCCTTCAG(G/A)TGNAC;
TCCTCATG(A/G)TGCAC(A/G)(T/A)ANTC;

-

15

20

25

30

35

ATGTCCTCATG(A/G)TG(C/G)AC(A/G)(A/T)A; and GACAC(A/G)TCCTCATG(A/G)TG(A/G)TA.

Here, symbols such as A/G mean mixture primers between A and G.

Since homologous polypeptides share common characteristics at the corresponding positions within the molecules, when the corresponding amino acid sequences are used for synthesizing PCR primers, the lengths of the PCR products reflect the characteristics of the domain structure in each polypeptide with respect to the positions. Considering the lengths of a codon (3 bp) and an exon (100 bp on average) in a human gene, we synthesized the 3 bp ladder markers (53 to 113 bp) by PCR using the series of primers and pUC18 as the template. An electrophoretic image of these 3 bp ladder marker and a 10 bp DNA ladder marker (BRL) are shown in Figure 2. The markers were electrophoresed along with the PCR products side by side in a non-continuous buffer solution system (Ito, T., Hohjoh, H. and Sakaki, Y., Electrophoresis 14: 278-282, 1993) on a non-denaturing PAGE (10%) gel (Figure 3).

Each PCR mixture (Sambrook, J., et al., Molecular Cloning, Cold Spring Harbor Laboratory, 1989) contained 0.5 μg of human genomic DNA. The mixture was incubated at 94°C for 1 minute, and subjected to 3 cycles of [94°C for 30 seconds, 37°C for 30 seconds, and 72°C for 30 seconds], followed by 25 cycles of [94°C for 30 seconds, 45°C for 30 seconds, and 72°C for 30 seconds].

The DNA bands of expected lengths were cloned and their sequences determined. Among the 33 clones (59 to 74 bp) derived from the 12 bands that were produced by the nested PCR using a certain primer pair (corresponding to the peptide sequences 5'"GYLPQD" and 3'"FVHHEDI"), the clones of 65 bp were especially amplified 6 to 21 fold. It became clear that the genomic DNA sequence containing the 65 bp fragment has a 106 bp exon encoding 35 amino acid residues that are part of the PAS-B domain consisting of a total of 125 amino acids. We isolated the corresponding cDNA and named human PER (hPER) cDNA. Next, we cloned a mouse homologue (mPer) cDNA using the hPER cDNA as a probe. The nucleotide sequences determined are shown in SEQ ID NO: 3 for hPER, and SEQ ID NO: 4 for mPer. FISH revealed that the hPER gene and the mPer gene were located at 17p12-13.1 and

;-

15

20

25

30

35

11B, respectively, which are gene loci in synteny between the two species.

The cDNA sequences of hPER and mPer contain ORF's that are expected to encode 1,290 amino acid residues and 1,291 amino acid residues, respectively. (See Figure 5. The putative amino acid sequence of the hPER gene product is shown in SEQ ID NO: 3, and that of the mPer gene product in SEQ ID NO: 4.) The amino acid identity between hPER and mPER is 92%, clearly indicating that hPER and mPer are conserved between the two species (Figure 5). A homology search using the BLAST program on non-overlapping amino acid databases demonstrated that the two mammalian PER's showed the highest homology with dPER (type A) (Citri, Y., et al., Nature 326:42-47, Significant homologies between the mammalian PER and the Drosophila PER were concentrated on five domains (Figures 4 and 5): I) N-terminal homologous regions (residues 44 to 131 of hPER and mPER); II) PAS-A (residues 217 to 282 for both homologues); III) PAS-B (residues 338 to 456 for both homologues) and its immediate downstream sequence (residues 457 to 485 for both homologues); IV) a short segment corresponding to the downstream region from the site (residue 589) of the per S mutation (which shortens the circadian period) (residues 624 to 645 for both homologues); and V) regions homologous with the PER-C C-terminal region (residues 1006 to 1050 for hPER and residues 1005 to 1049 for mPER), subsequent serine-glycine (SG) repeats (residues 1051 to 1072 for hPER and residues 1050 to 1071 for mPER), and further downstream homologous sequences (residues 1073 to 1108 for hPER and residues 1072 to 1107 for mPER). The homology in these regions are 44%, 47%, 56%, 64%, and 37%, respectively (Figure 4). Although the PAS domains (regions II and III) of the PER homologues are fairly homologous to the corresponding region of dPER, other regions also show high homologies. Five structural domains and functional domains have been identified in dPER: a) the nuclear localization signal (NLS) (residues 66 to 79) (Vosshall, L. B., et al., Science 263: 1606-1609, 1996); b) the PAS domain (residues 233 to 490) necessary for dPER to interact with the NLS of TIM (Saez, L. and Young, M. W., Neuron 17: 911-920, 1996); c) the cytoplasmic localization domain (CLD)

15

25

30

35

(residues 453 to 511) located downstream from the PAS-B repeats (Saez, L. and Young, M. W., Neuron 17: 911-920, 1996); d) the PER-C domain (residues 524 to 685) which interacts with the PAS domain in the self-polypeptide (Huang, Z. J., et al., Science 267: 1169-1172, 1995); and e) the threonine-glycine (TG) repeats (residues 694 to 748) and the immediate downstream region (residues 749 to 868) which control the rhythm of the species-specific mating song of Drosophila (Wheeler, D. A., et al., Science 251: 1082-1085, 1991). Thus, NLS, PAS, CLD, the two domains within PER-C, and the TG repeats and a segment next to its C-terminus in each mammalian PER are arranged in exactly the same order as in dPER. Interestingly, the TG repeats of dPER are replaced with short SG repeats in the C-terminal halves of the PER homologues (Figure 5). This segment, which is adjacent to PER-C, and the sequence homologous to the C-terminal side of the TG repeats are located approximately 350 bases downstream from the original locations in dPER (Figure 4). These regions are also highly conserved in both the human and the mouse (Figure 5). segments (C1-C6) that are highly conserved among different Drosophila species are seen (Figure 4) (Colot, H. V., et al., EMBO J. 7: 3929-3937, 1988). Like in the silkmoth homologue of PER, the parts of the mammalian PER that are homologous with dPER are concentrated on the regions corresponding to C1-C3 of dPER (Figure 4) (Reppert, S.M., et al., Neuron 13: 1167-1176, 1994). Considering these observations, hPER and mPer are conclusively the structural homologues of per.

Example 2 Expression of hPER and mPer

The expression patterns of hPER and mPer were examined by northern hybridization according to the method of Church and Gilbert (Church, G. M. and Gilbert, W., Proc. Natl. Acad. Sci. USA 81: 1991-1995, 1984). The filters were purchased from Clontech. The results are shown in Figure 6 (hPER) and Figure 7 (mPer). The expression product of approximately 4.6 kb was detected in all the tissues tested from the adult human and the mouse. However, the levels of the hPER/mPer transcription product are not uniform as compared with those of glycerol-3-phosphate dehydrogenase (G3PDH),

15

25

35

which is an enzyme in the glycolytic pathway and is abundantly and relatively constantly expressed in every cell. The wide distribution of the hPER/mPer expression is not surprising because in *Drosophila* the per expression has been detected in many tissues except the brain (Liu, X., et al., Genes Dev. 2: 228-238, 1988; Saez, L. and Young, M. W., Mol. Cell. Biol. 8: 5378-5385, 1988).

Example 3 Distribution of the mPer cDNA in the mouse brain

The distribution of the mPer cDNA in the mouse brain was examined by in situ hybridization. Continuous cortical sections (40 μm thickness) of the mouse brain were prepared in the cryostat. In situ hybridization and determination of mRNA are described in the literature reference (e.q., Ban, Y., Shigeyoshi, Y. and Okamura, H., J. Neurosci. 17: 3920-3931, 1997). The 33P-labeled probes used in the hybridization were the sense and the antisense strands on the 5' side of the mPer cRNA (nucleotide positions 538-1752; data not shown). After the signals were converted into relative optical concentrations using the 14C-acrylic acid standard (Amersham, Inc. Plc.), the radioactivity was analyzed on each section on the BioMax film (Kodak) using a microcomputer connected to an image analyzer (MCID, Imaging Research, Inc.). These data were standardized against the difference in signal intensities between the equivalent regions of SCN and corpus callosum. The intensities of optical concentrations in the sections covering from the rostral end to the caudal end of SCN (10 pieces per mouse) were added, and the total was used as the measured value of the mPer mRNA quantity of this region. As a result, weak signals were detected from most brain areas including the cortical structures and non-cortical structures. Stronger mPer mRNA signals were detected from the pyramidal cell layer of piriform cortex, periventricular regions of the caudate putamen, many of the thalamic nuclei, and the granular layer of cerebellar cortex. Surprisingly, the highest mPer expression level in the brain was observed in SCN at a specific time (Figures 8 and 9; explained below).

In order to examine the time dependence of the mPer expression in SCN, mice were synchronized to an environment by keeping them

- -

15

20

25

30

35

under the 12 h light/12 h dark (LD) conditions. The mPer mRNA was quantified by in situ hybridization and the competitive RT-PCR method. The competitive RT-PCR was performed as follows. First, we prepared mouse brain sections (0.5 mm thickness) in the "Mouse Brain Matrix" (Neuroscience, Inc., Tokyo). Using a microdissection (600 µm diameter), SCN was pressed out symmetrically from the frozen sections under stereoscopic microscope. Total RNA was extracted from SCN (n=4) using TRIZOL solution (BRL), treated with DNase I (Stratagene), and purified using TRIZOL LS solution (BRL). "SUPERSCRIPT Preamplification System" (BRL) was used to reverse-transcribe approximately 1 µg of RNA, and the cDNAs of mPer and β -actin were quantified by the competitive PCR method. The PCR products were electrophoresed on a non-denaturing PAGE gel (5.5%), stained with "SYBR Green" (Molecular Probes), and the DNA in appropriate bands was quantified with "FMBI011 fluoroimage analyzer" (Hitachi). The competitive DNA fragments for mPer and β -actin were constructed by making internal deletions in the respective cDNAs. mPer, mPer competitive factor, β -actin, and β -actin competitive factor were 482 bp, 246 bp, 1228 bp, and 1044 bp, respectively.

These two methods (in situ hybridization and the competitive RT-PCR method) produced similar oscillation profiles in LD (Figures 8 and 10; upper panels). The mPer mRNA quantity reached a peak in the light condition (from ZT4 to ZT8; ZT indicates the time under the LD condition as in Figures 8 to 10), and fell to a minimum in the dark condition (from ZT16 to ZT20) (Figure 9; upper panel). Moreover, under the constant dark condition (DD), there were free-run changes (Figures 8 and 10; lower panels), in which the mPer mRNA levels reached a peak between CT4 and CT8 (CT indicates the time under the DD condition as in Figures 8 to 10) and fell to a minimum between CT16 and CT20 (Figure 9; lower panel). The mPer mRNA in SCN is expressed with a strong and autonomous circadian period under the constant dark condition as described above, suggesting that this gene functions as a circadian rhythm pacemaker. Changes of the mPer mRNA in SCN with a circadian rhythm resemble the nervous activities in this brain region (Inouye, S-T. and

. -

15

Kawamura, H., Proc. Natl. Acad. Sci. USA 76: 5962-5966, 1979; Schwarts, W. J. and Gainer, H., Science 197: 1089-1092, 1977; Gillette, M. U. and Reppert, S. M., Brain Res. Bull. 19: 135-139, 1987), reaching a peak in the daytime and falling to a minimum during the night. mPer may function as a controlling factor of the nervous activities in SCN.

Industrial Applicability

The present invention provides novel mammalian proteins and their genes involved in the circadian period. The proteins and the DNAs of the present invention are expected to be able to correct abnormalities of the circadian rhythm in the mammals, and would thus be useful for treating disorders related to circadian rhythms, such as sleep phase delay syndrome, sleep phase progression syndrome, non-circadian sleep-wake syndrome, irregular sleep-wake disorder, and time difference syndrome (so-called jet lag). They are also applicable to the labor and health management of irregular night time workers and to the prevention of such disorders as night poriomania in dementia.

25

30

CLAIMS

- 1. A protein derived from a mammal whose expression level in the suprachiasmatic nucleus (SCN) fluctuates with a circadian period.
 - 2. A protein of claim 1, wherein the mammal is a human.
 - 3. A protein of claim 1, wherein the mammal is a mouse.
- 4. A protein involved in the formation of circadian rhythm in the suprachiasmatic nucleus (SCN) comprising the amino acid sequence described in SEQ ID NO: 1 or said sequence in which one or more amino acids are substituted, deleted, or added.
- 5. A protein involved in the formation of circadian rhythm in the suprachiasmatic nucleus (SCN) comprising the amino acid sequence described in SEQ ID NO: 2 or said sequence in which one or more amino acids are substituted, deleted, or added.
- 15 \sqrt{6.} A protein involved in the formation of circadian rhythm in the suprachiasmatic nucleus (SCN) encoded by the DNA having a sequence described in SEQ ID NO: 3 or by DNA that hybridizes with the DNA described in SEQ ID NO: 3.
- 7. A protein involved in the formation of circadian rhythm in the suprachiasmatic nucleus (SCN) encoded by the DNA having a sequence described in SEQ ID NO: 4 or by DNA that hybridizes with the DNA described in SEQ ID NO: 4.
 - 8. DNA encoding the protein of any one of claims 1 to 5.
 - 9. DNA having the sequence described in SEQ ID NO: 3 or DNA that hybridizes with the DNA having the sequence described in SEQ ID NO: 3, wherein the DNA encodes a protein involved in the formation of circadian rhythm in the suprachiasmatic nucleus (SCN).
 - 10. DNA having the sequence described in SEQ ID NO: 4 or DNA that hybridizes with the DNA having the sequence described in SEQ ID NO: 4, wherein the DNA encodes a protein involved in the formation of circadian rhythm in the suprachiasmatic nucleus (SCN).
 - 11. A vector carrying the DNA of any one of claims 8 to 10.
 - 12. A transformant expressibly retaining the DNA of any one of claims 8 to 10.
- 35 13. A method for producing the protein of any one of claims 1 to 7, the method comprising culturing the transformant of claim 12.

. . .

ABSTRACT

A human gene and a mouse gene corresponding to Drosophila period gene which is known to be involved in the circadian period. The proteins and DNAs are applicable to the treatment of diseases 5 relating to the circadian rhythm such as sleep phase delay syndorom, sleep phase progression syndrom, non-circadian sleep-wake syndrome, irregular sleep-wake disorder, and time difference syndrome (so-called jet lag), and to the labor and health management of irregular night time workers and the prevention of such disorders as night poriomania in dementia.

Figure 1

Figure 2

Figure 3

The first term of the control of the

Figure 4

The state of the s

. . .

. .

Figure 5

	••••	
hDIAI mDIAI PERIC	MSGPLEGADGGGPPRGESPCPGGVPSPGPPQHRPCPGPSLADPTDANSNGSSGNESNGHESRGASQRSSHSSSSGNGKDSALLETTESSKSTNSGSPSPPSSSIAYSL MSGPLEGADGGGDPRPGEPPCPGGVPSPGAPQHRPCPGPSLADPTDANSNGSSGNESNGPESRGASQRSSHSSSSGNGKDSALLETTESSKSTNSGSPSPPSSSIAYSL D	
	SO O OF SO O STATE OF	
hDIAL mDIAL PERIO	SASSEQDNPSTSGCSSEQSARARTQKELHTALRELKLRLPPERRGKG-RSGTLATLQYALACVKQVQANQEYYQQMS-LEEGE-PCSHDMSTYTLEELEHITS SASS	210 210 200
hdial mdial Perio	EY	289 289 309
hDIAL mDIAL PERIO	TO THE TOTAL OF THE PROPERTY O	388 388 419
hdial mdial Perior	icap viltelihendeplaka takkilo — lacopponepi peraracevutaperakutaputerakutaplaedutepaperapeldito — ioelseoi Joap vilterakeplaka takkilo — lacopponepi peraracevutaperakutaputapakutaputahkutaplakoputepaperapeldisi — ioelseoi Jore iadetimedlsyaketikevakkootaaasecske kelilongevuletekitevaputakeepugenkutaplakoputemaata-cikkiseeao — sra-	493 493 523
hdial mdial Period	HRLLLQPVHSPSFTGLCGVGAVTSPGPLHSPGSSSDSNGGDAEGFGPPAPVTFQQICKDVHLVKHQGQQLFIESRARPQSRPRLPATGTFKAKALPCQSPDPELEAGSAP HRLLLQPVHSSSPTGLCGVGPLHSPGSSSDSNGGDAEGFGPPAPVTFQQICKDVHLVKHQGQQLFIESRARPQSRPRLATGTFKAKVLFCQSPNPELEVAPVP HRLLLQPVHSSSPTGLCGVGPLHSPGSSSDSNGGDAEGFGPPAPVTFQQICKDVHLVKHQGQQLFIESRARPQSRPRLATGTFKAKVLFCQSPNPELEVAPVP TRIKEDIVKRLAETVSRP-SDTV-KQEVSRRCQALASFME-TLMDEVSRADL-K-LEL-PHB-NELTVSERDSVMLGEISPHHDYTDSKS-STETP	603 603 612
hDIAL mDIAL PERIOD	VQAPLALVPERABRKEASSCF700/NVLDS/LAP/ESPNLDSTTKRKCASSSSYTTSSASDDDRQRTGPVSVGTKKDPPSAALSGEGATPRKEPVVGGTLSPLALANKAE DQASLALAPEEPERKETSGC 2707/EVLDS/LAP/ESS/STPSTKRKCASSSSYTASSASDDDKQRAGPVPVGAKKDPSSAALSGEGATPRKEPVVGGTLSPLALANKAE 7/407/EVLDS/LAP/ESS/STPSKEV/TVP AELDPPKTEPPPERGTCV	713 713 653
hDIAL mDIAL PERIOD	SVVSVTSQCSFSSTIVHVCDKKPPESDIIMMEDLPGLAPGPAPSPAPSPTVAPDPAPDAVRPVGLTKAVLSLHTQKEEQAPLSRPRDLGRLRGLDSSSTAPSALGERGCH SVVSVTSQCSPSSTIVHVGDKKPPESDIIMMEDLPGLAPGPAPSPAPSPTVAPDPTPDAVRPVGLTKAVLSLHTQKEEQAPLRAPPDLGRLRGLDTSSVAPSAPGCH	823 820
hDIAL mDIAL PERIOD	HGPAPPSRRHCRSKAKRSRHH—QNPRAEAPCIVSHPSPVPPSITWFTPPATIPPPAVVQPYPLEVFSPRGGPQPLPPAPTSVPPAAPPAPLVTFNVALVLPNYLPPTP HGPIPPGRRHCRSKAKRSRHHHHQTPRPETPCIVSHPSPVPSSGPWPPPPATTPFPANVQPYPLPVFSPRGGPQPLPPAPTSVSPATFPSPLVTFMVALVLPNYLPPTP	931 930
hdial moial Period	SSTPYGALQTPAEGPPTPASHSPSPSLPALPPSPPHRPDSPLFNSRCSSPLQLNLLQLEBLPRAEGAAVAGGPGS SAORPRASIZATERALANTERANGOALZGZS PSTPYGVSQAPVEGPPTPASHSPSPSLPPPPLSPPHRPDSPLFNSRCSSPLQLNLLQLEBSPRTEGGAAAGGPGS SAORPRASIZATERALANTERANGOALZGZS ———————————————————————————————————	1040 1039 689
hDIAL mDIAL PERIOD	rankalogaalan talahan perangan kantalogaalan kantalogaan kantalogaan kantalogaan kantalogaan kantalogaan kanta Antalogaan kantalogaan kantalogaan 1777777777777796000000000000000000000000	1119 1118 798
hdial mdial Period	QVIKYVLQDPIWILINANADQRVMMTYQVPSRDMTSVLKQDRERLR-AMQXQQPRPSEDQRRELGAVHSWVRKCQLPRALDVMACVDCGSSTQDPGHPDDPLPSELDGLGL QVIKCVLQDPIWILINANADQRVMMTYQVPSRDAASVLKQDRERLR-AMQXQPRPSEDQRRELGAVHSWVRKCQLPRALDVMACVDCGSSVQDPGHSDDPLPSELDGLGL ANDTLYKULE YSGPGHGIKRGGSH-SWEGRANKPKQQLTLGTDAIKGAAGSAGGAVGTGGVGSGGAGVAGGGGSGTGVACTPEGRATTTSGTGTFGGAGGGGGAGAAAAAG	1228 1227 907
mDIAL	EPMEEGGGEQGSSGGGGEGEGCERQGGAKASS-SQDLAMEEEKEGRSSSSPALPTACNCTS EPMEEGGGEGGGCGVGGGGGDGGERQTQIGAKGSS-SQDSAMEEEEQGGGSSSPALPAEENSTS ASSSVGSSTPGPSSYPTCTQNINLWPPFSVGITPPVHSTHTAMAQSSFSSAGLPPTFYYIPASLTPTSPTRSPRWHKHPHKGGTDMPTTSQQAAAAAAQAMPLQYMAGVH	1290 1291 1017
PERIOD	yphpslpythpaaaaatammiqpmpppgmanalqiperplgsqsaynksvytttpasmtkkvpgafhsvttpaqvqrpssqsasvktepgpsaavsdpckkevpdsspip	
		1127
PERIOD	SVNGDYNSDPPCSSSNPANNKKYIDSNGNSDDMDGSSPSSFYSSFIKTIDGSESPPDTEKDPKHRKLKSNSTSESKIMEHPDEDQTQHGDG	1218

Figure 6

G3PDH

Figure 7

Figure 8

Figure 9

Figure 10

Docket No. SPO-108P

JUN 0 5 2000

DECLARATION (37 CFR 1.63) AND POWER OF ATTORNEY

As a below-named inventor, I hereby declare that:

My residence, post office address, and citizenship are as stated below next to my name; and

I believe that I am the original, first, and sole inventor (if only one name is listed below), or an original, first, and joint inventor (if plants) names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled MAMMALIAN

GENES INVOLVED IN CIRCADIAN PERIODS the specification for which

is attached hereto.		
🖾 was filed on September 11, 1998, as PCT International Application No.	PCT/JP98/04125	

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §1.56(a).

I hereby claim foreign priority benefits under Title 35, United States Code §119 and/or §365 of any foreign application(s) for patent or inventor's certificate listed below and have also identified any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Application	Country	Filing Date	Priority Claimed
Serial No.			
9/267846	JP	September 12, 1997	Yes
		•	

I hereby claim priority benefits under Title 35, United States Code \$119 of any provisional application(s) for patent listed below:

Application Filing Date Priority Claimed Serial No.

I hereby claim the benefit under Title 35, United States Code, §120 and/or §365 of any United States application(s) listed below and, insofar, as the subject matter of each of the claims of this application is not disclosed in the prior United States application(s) in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56(a) which became available between the filing date of the prior application and the national or PCT international filing date of this application:

Application Filing Date Status (patented, Serial No. pending, abandoned)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

9

Į.

The state of the s

<u>[</u>]

CM

I hereby appoint the following persons registered to practice before the Patent and Trademark Office as my attorneys with full power of substitution and revocation to prosecute this application and all divisions and continuations thereof and to transact all business in the Patent and Trademark Office connected therewith: David R. Saliwanchik, Reg. No. 31.794; Jeff Lloyd, Reg. No. 35.589; Doran R. Pace, Reg. No. 38.261; Christine Q. McLeod, Reg. No. 36.213; Jay M. Sanders, Reg. No. 39.355; James S. Parker, Reg. No. 40.119; Jean Kyle, Reg. No. 36.987; Frank C. Eisenschenk, Reg. No. P-45.332; Seth M. Blum, Reg. No. P-45.489.

I request that all correspondence be sent to:

Doran R. Pace
Saliwanchik, Lloyd & Saliwanchik

2421 N.W. 41st Street, Suite A-1
Gainesville, FL 32606-6669

I further request that all telephone communications be directed to:

Doran R. Pace 352-375-8100

ln

SPO-108

SEQUENCE LISTING

<110> SAKAKI, Yoshiyuki

<120> Mammalian Genes Involved in Circadian Periods

<130> SEN-903PCT

<150> JP 9-267846

<151> 1997-09-12

<160> 4

<210> 1

<211> 1290

<212> PRT

<213> Homo sapiens

<400> 1

Met Ser Gly Pro Leu Glu Gly Ala Asp Gly Gly Gly Asp Pro Arg Pro 1 5 10 15

Gly Glu Ser Phe Cys Pro Gly Gly Val Pro Ser Pro Gly Pro Pro Gln
20 25 30

His Arg Pro Cys Pro Gly Pro Ser Leu Ala Asp Asp Thr Asp Ala Asn 35 40 45

Ser Asn Gly Ser Ser Gly Asn Glu Ser Asn Gly His Glu Ser Arg Gly 50 55 60

Ala Ser Gln Arg Ser Ser His Ser Ser Ser Ser Gly Asn Gly Lys Asp 65 70 75 80

Ser Ala Leu Leu Glu Thr Thr Glu Ser Ser Lys Ser Thr Asn Ser Gln 85 90 95

Ser Pro Ser Pro Pro Ser Ser Ile Ala Tyr Ser Leu Leu Ser Ala

100	105	110
100	105	110

Ser	Ser	Glu	Gln	Asp	Asn	Pro	Ser	Thr	Ser	Gly	Cys	Ser	Ser	Glu	Gln
		115					120					125			

- Ser Ala Arg Ala Arg Thr Gln Lys Glu Leu Met Thr Ala Leu Arg Glu 130 135 140
- Leu Lys Leu Arg Leu Pro Pro Glu Arg Arg Gly Lys Gly Arg Ser Gly 145 150 155 160
- Thr Leu Ala Thr Leu Gln Tyr Ala Leu Ala Cys Val Lys Gln Val Gln 165 170 175
- Ala Asn Gln Glu Tyr Tyr Gln Gln Trp Ser Leu Glu Glu Gly Glu Pro 180 185 190
- Cys Ser Met Asp Met Ser Thr Tyr Thr Leu Glu Glu Leu Glu His Ile 195 200 205
- Thr Ser Glu Tyr Thr Leu Gln Asn Gln Asp Thr Phe Ser Val Ala Val 210 215 220
- Ser Phe Leu Thr Gly Arg Ile Val Tyr Ile Ser Glu Gln Ala Ala Val 225 230 235 240
- Leu Leu Arg Cys Lys Arg Asp Val Phe Arg Gly Thr Arg Phe Ser Glu 245 250 255
- Leu Leu Ala Pro Gln Asp Val Gly Val Phe Tyr Gly Ser Thr Ala Pro 260 265 270
- Ser Arg Leu Pro Thr Trp Gly Thr Gly Ala Ser Ala Gly Ser Gly Leu 275 280 285
- Arg Asp Phe Thr Gln Glu Lys Ser Val Phe Cys Arg Ile Arg Gly Gly 290 295 300

Pro 305	Asp	Arg	Asp	Pro	Gly 310	Pro	Arg	Tyr	Gln	Pro 315	Phe	Arg	Leu	Thr	Pro 320
Tyr	Val	Thr	Lys	Ile 325	Arg	Val	Ser	Asp	Gly 330	Ala	Pro	Ala	Gln	Pro 335	Cys

- Cys Leu Leu Ile Ala Glu Arg Ile His Ser Gly Tyr Glu Ala Pro Arg 340 345 350
- Ile Pro Pro Asp Lys Arg Ile Phe Thr Thr Arg His Thr Pro Ser Cys 355 360 365
- Leu Phe Gln Asp Val Asp Glu Arg Ala Ala Pro Leu Leu Gly Tyr Leu 370 380
- Pro Gln Asp Leu Leu Gly Ala Pro Val Leu Leu Phe Leu His Pro Glu 385 390 395 400
- Asp Arg Pro Leu Met Leu Ala Ile His Lys Lys Ile Leu Gln Leu Ala 405 410 415
- Gly Gln Pro Phe Asp His Ser Pro Ile Arg Phe Cys Ala Arg Asn Gly
 420 425 430
- Glu Tyr Val Thr Met Asp Thr Ser Trp Ala Gly Phe Val His Pro Trp 435 440 445
- Ser Arg Lys Val Ala Phe Val Leu Gly Arg His Lys Val Arg Thr Ala 450 455 460
- Pro Leu Asn Glu Asp Val Phe Thr Pro Pro Ala Pro Ser Pro Ala Pro 465 470 475 480
- Ser Leu Asp Thr Asp Ile Gln Glu Leu Ser Glu Gln Ile His Arg Leu 485 490 495
- Leu Leu Gln Pro Val His Ser Pro Ser Pro Thr Gly Leu Cys Gly Val 500 505 510

. -

Asp Ser Asn Gly Gly Asp Ala Glu Gly Pro Gly Pro Pro Ala Pro Val Thr Phe Gln Gln Ile Cys Lys Asp Val His Leu Val Lys His Gln Gly Gln Gln Leu Phe Ile Glu Ser Arg Ala Arg Pro Gln Ser Arg Pro Arg Leu Pro Ala Thr Gly Thr Phe Lys Ala Lys Ala Leu Pro Cys Gln Ser Pro Asp Pro Glu Leu Glu Ala Gly Ser Ala Pro Val Gln Ala Pro Leu Ala Leu Val Pro Glu Glu Ala Glu Arg Lys Glu Ala Ser Ser Cys Ser Tyr Gln Gln Ile Asn Cys Leu Asp Ser Ile Leu Arg Tyr Leu Glu Ser Cys Asn Leu Pro Ser Thr Thr Lys Arg Lys Cys Ala Ser Ser Ser Ser Tyr Thr Thr Ser Ser Ala Ser Asp Asp Asp Arg Gln Arg Thr Gly Pro

Gly Ala Val Thr Ser Pro Gly Pro Leu His Ser Pro Gly Ser Ser Ser

Pro Leu Ala Leu Ala Asn Lys Ala Glu Ser Val Val Ser Val Thr Ser

Val Ser Val Gly Thr Lys Lys Asp Pro Pro Ser Ala Ala Leu Ser Gly

Glu Gly Ala Thr Pro Arg Lys Glu Pro Val Val Gly Gly Thr Leu Ser

705					710					715					720
Gln	Cys	Ser	Phe	Ser 725		Thr	Ile	Val	His 730		Gly	Asp	Lys	Lys 735	Pro
Pro	Glu	Ser	740		Ile	Met	Met	Glu 745		Leu	Pro	Gly	Leu 750	Ala	Pro
Gly	Pro	Ala 755		Ser	Pro	Ala	Pro 760	Ser	Pro	Thr	Val	Ala 765	Pro	Asp	Pro
Ala	Pro 770	Asp	Ala	Tyr	Arg	Pro 775	Val	Gly	Leu	Thr	Lys 780	Ala	Val	Leu	Ser
Leu 785	His	Thr	Gln	Lys	Glu 790	Glu	Gln	Ala	Phe	Leu 795	Ser	Arg	Phe	Arg	Asp 800
Leu	Gly	Arg	Leu	Arg 805	Gly	Leu	Asp	Ser	Ser 810	Ser	Thr	Ala	Pro	Ser 815	Ala
Leu	Gly	Glu	Arg 820	Gly	Cys	His	His	Gly 825	Pro	Ala	Pro	Pro	Ser 830	Arg	Arg
His	His	Cys 835	Arg	Ser	Lys	Ala	Lys 840	Arg	Ser	Arg	His	His 845	Gln	Asn	Pro
Arg	Ala 850	Glu	Ala	Pro	Cys	Tyr 855	Val	Ser	His	Pro	Ser 860	Pro	Val	Pro	Pro
Ser 865	Thr	Pro	Trp	Pro	Thr 870	Pro	Pro	Ala	Thr	Thr 875	Pro	Phe	Pro		Val 880
Val	Gln	Pro	Tyr	Pro 885	Leu	Pro	Val	Phe	Ser 890	Pro	Arg	Gly		Pro 895	Gln
Pro	Leu	Pro	Pro 900	Ala	Pro	Thr	Ser	Val 905	Pro	Pro	Ala		Phe 910	Pro	Ala

Pro Leu Val Thr Pro Met Val Ala Leu Val Leu Pro Asn Tyr Leu Phe Pro Thr Pro Ser Ser Tyr Pro Tyr Gly Ala Leu Gln Thr Pro Ala Glu Gly Pro Pro Thr Pro Ala Ser His Ser Pro Ser Pro Ser Leu Pro Ala Leu Pro Pro Ser Pro Pro His Arg Pro Asp Ser Pro Leu Phe Asn Ser Arg Cys Ser Ser Pro Leu Gln Leu Asn Leu Leu Gln Leu Glu Glu Leu Pro Arg Ala Glu Gly Ala Ala Val Ala Gly Gly Pro Gly Ser Ser Ala Gly Pro Pro Pro Ser Ala Glu Ala Ala Glu Pro Glu Ala Arg Leu Ala Glu Val Thr Glu Ser Ser Asn Gln Asp Ala Leu Ser Gly Ser Ser Asp Leu Leu Glu Leu Leu Gln Glu Asp Ser Arg Ser Gly Thr Gly Ser Ala Ala Ser Gly Ser Leu Gly Ser Gly Leu Gly Ser Gly Ser Gly Ser Gly Ser His Glu Gly Gly Ser Thr Ser Ala Ser Ile Thr Arg Ser Ser Gln Ser Ser His Thr Ser Lys Tyr Phe Gly Ser Ile Asp Ser Ser Glu Ala Glu Ala Gly Ala Ala Arg Gly Gly Ala Glu Pro Gly Asp Gln

Val Ile Lys Tyr Val Leu Gln Asp Pro Ile Trp Leu Leu Met Ala Asn 1125 1130 1135

Ala Asp Gln Arg Val Met Met Thr Tyr Gln Val Pro Ser Arg Asp Met 1140 1145 1150

Thr Ser Val Leu Lys Gln Asp Arg Glu Arg Leu Arg Ala Met Gln Lys 1155 1160 1165

Gln Gln Pro Arg Phe Ser Glu Asp Gln Arg Arg Glu Leu Gly Ala Val 1170 1175 1180

His Ser Trp Val Arg Lys Gly Gln Leu Pro Arg Ala Leu Asp Val Met 1185 1190 1195 1200

Ala Cys Val Asp Cys Gly Ser Ser Thr Gln Asp Pro Gly His Pro Asp 1205 1210 1215

Asp Pro Leu Phe Ser Glu Leu Asp Gly Leu Gly Leu Glu Pro Met Glu 1220 1225 1230

Glu Gly Gly Glu Gln Gly Ser Ser Gly Gly Gly Ser Gly Glu Gly 1235 1240 1245

Glu Gly Cys Glu Glu Ala Gln Gly Gly Ala Lys Ala Ser Ser Gln 1250 1255 1260

Asp Leu Ala Met Glu Glu Glu Glu Glu Gly Arg Ser Ser Ser Pro 1265 1270 1275 1280

Ala Leu Pro Thr Ala Gly Asn Cys Thr Ser 1285 1290

<210> 2

<211> 1291

<212> PRT

<213> Mus musculus

<400> 2 Met Ser Gly Pro Leu Glu Gly Ala Asp Gly Gly Asp Pro Arg Pro Gly Glu Pro Phe Cys Pro Gly Gly Val Pro Ser Pro Gly Ala Pro Gln His Arg Pro Cys Pro Gly Pro Ser Leu Ala Asp Asp Thr Asp Ala Asn Ser Asn Gly Ser Ser Gly Asn Glu Ser Asn Gly Pro Glu Ser Arg Gly Ala Ser Gln Arg Ser Ser His Ser Ser Ser Ser Gly Asn Gly Lys Asp Ser Ala Leu Leu Glu Thr Thr Glu Ser Ser Lys Ser Thr Asn Ser Gln Ser Pro Ser Pro Pro Ser Ser Ile Ala Tyr Ser Leu Leu Ser Ala Ser Ser Glu Gln Asp Asn Pro Ser Thr Ser Gly Cys Ser Ser Glu Gln Ser Ala Arg Ala Arg Thr Gln Lys Glu Leu Met Thr Ala Leu Arg Glu Leu Lys Leu Arg Leu Pro Pro Glu Arg Arg Gly Lys Gly Arg Ser Gly Thr Leu Ala Thr Leu Gln Tyr Ala Leu Ala Cys Vai Lys Gln Val Gln

Ala Asn Gln Glu Tyr Tyr Gln Gln Trp Ser Leu Glu Glu Gly Glu Pro

Cys Ala Met Asp Met Ser Thr Tyr Thr Leu Glu Glu Leu Glu His Ile 195 200 205

Thr Ser Glu Tyr Thr Leu Arg Asn Gln Asp Thr Phe Ser Val Ala Val 210 215 220

Ser Phe Leu Thr Gly Arg Ile Val Tyr Ile Ser Glu Gln Ala Gly Val 225 230 235 240

Leu Leu Arg Cys Lys Arg Asp Val Phe Arg Gly Ala Arg Phe Ser Glu 245 250 255

Leu Leu Ala Pro Gln Asp Val Gly Val Phe Tyr Gly Ser Thr Thr Pro 260 265 270

Ser Arg Leu Pro Thr Trp Gly Thr Gly Thr Ser Ala Gly Ser Gly Leu 275 280 285

Lys Asp Phe Thr Gln Glu Lys Ser Val Phe Cys Arg Ile Arg Gly Gly 290 295 300

Pro Asp Arg Asp Pro Gly Pro Arg Tyr Gln Pro Phe Arg Leu Thr Pro 305 310 315 320

Tyr Val Thr Lys Ile Arg Val Ser Asp Gly Ala Pro Ala Gln Pro Cys 325 330 335

Cys Leu Leu Ile Ala Glu Arg Ile His Ser Gly Tyr Glu Ala Pro Arg 340 345 350

Ile Pro Pro Asp Lys Arg Ile Phe Thr Thr Arg His Thr Pro Ser Cys 355 360 365

Leu Phe Gln Asp Val Asp Glu Arg Ala Ala Pro Leu Leu Gly Tyr Leu 370 380

Pro Gln Asp Leu Leu Gly Ala Pro Val Leu Leu Phe Leu His Pro Glu 385 390 395 400

•

Asp Arg Pro Leu Met Leu Ala Ile His Lys Lys Ile Leu Gln Leu Ala 405 410 415

Gly Gln Pro Phe Asp His Ser Pro Ile Arg Phe Cys Ala Arg Asn Gly
420 425 430

Glu Tyr Val Thr Met Asp Thr Ser Trp Ala Gly Phe Val His Pro Trp 435 440 445

Ser Arg Lys Val Ala Phe Val Leu Gly Arg His Lys Val Arg Thr Ala 450 455 460

Pro Leu Asn Glu Asp Val Phe Thr Pro Pro Ala Pro Ser Pro Ala Pro 465 470 475 480

Ser Leu Asp Ser Asp Ile Gln Glu Leu Ser Glu Gln Ile His Arg Leu 485 490 495

Leu Leu Gln Pro Val His Ser Ser Ser Pro Thr Gly Leu Cys Gly Val
500 505 510

Gly Pro Leu Met Ser Pro Gly Pro Leu His Ser Pro Gly Ser Ser Ser 515 520 525

Asp Ser Asn Gly Gly Asp Ala Glu Gly Pro Gly Pro Pro Ala Pro Val 530 535 540

Thr Phe Gln Gln Ile Cys Lys Asp Val His Leu Val Lys His Gln Gly 545 550 555 560

Gln Gln Leu Phe Ile Glu Ser Arg Ala Lys Pro Pro Pro Arg Pro Arg 565 570 575

Leu Leu Ala Thr Gly Thr Phe Lys Ala Lys Val Leu Pro Cys Gln Ser 580 585 590

Pro Asn Pro Glu Leu Glu Val Ala Pro Val Pro Asp Gln Ala Ser Leu

		595					600					605			
Ala	Leu 610	Ala	Pro	Glu	Glu	Pro 615	Glu	Arg	Lys	Glu	Thr 620	Ser	Gly	Cys	Se 1
Tyr 625	Gln	Gln	Ile	Asn	Cys 630	Leu	Asp	Ser	Ile	Leu 635	Arg	Tyr	Leu	Glu	Ser 640
Cys	Asn	Ile	Pro	Ser 645	Thr	Thr	Lys	Arg	Lys 650	Cys	Ala	Ser	Ser	Ser 655	Ser
Tyr	Thr	Ala	Ser 660	Ser	Ala	Ser	Asp	Asp 665	Asp	Lys	Gln	Arg	Ala 670	Gly	Pro
Val	Pro	Val 675	Gly	Ala	Lys	Lys	Asp 680	Pro	Ser	Ser	Ala	Met 685	Leu	Ser	Gly
Glu	Gly 690	Ala	Thr	Pro	Arg	Lys 695	Glu	Pro	Val	Val	Gly 700	Gly	Thr	Leu	Ser
Pro 705	Leu	Ala	Leu	Ala	Asn 710	Lys	Ala	Glu	Ser	Val 715	Val	Ser	Val	Thr	Ser 720
Gln	Cys	Ser	Phe	Ser 725	Ser	Thr	Ile	Val	His 730	Val	Gly	Asp	Lys	Lys 735	Pro
Pro	Glu	Ser	Asp 740	Ile	Ile	Met	Met	Glu 745	Asp	Leu	Pro	Gly	Leu 750	Ala	Pro
Gly	Pro	Ala 755	Pro	Ser	Pro	Ala	Pro 760	Ser	Pro	Thr	Val	Ala 765	Pro	Asp	Pro
Thr	Pro 770	Asp	Ala	Tyr	Arg	Pro 775	Val	Gly	Leu	Thr	Lys 780	Ala	Val	Leu	Ser
Leu 785	His	Thr	Gln	Lys	Glu 790	Glu	Gln	Ala	Phe	Leu 795	Asn	Arg	Phe	Arg	Asp 800

- Leu Gly Arg Leu Arg Gly Leu Asp Thr Ser Ser Val Ala Pro Ser Ala 805 810 815
- Pro Gly Cys His His Gly Pro Ile Pro Pro Gly Arg Arg His His Cys 820 825 830
- Arg Ser Lys Ala Lys Arg Ser Arg His His His His Gln Thr Pro Arg 835 840 845
- Pro Glu Thr Pro Cys Tyr Val Ser His Pro Ser Pro Val Pro Ser Ser 850 855 860
- Gly Pro Trp Pro Pro Pro Pro Ala Thr Thr Pro Phe Pro Ala Met Val 865 870 875 880
- Gln Pro Tyr Pro Leu Pro Val Phe Ser Pro Arg Gly Gly Pro Gln Pro 885 890 895
- Leu Pro Pro Ala Pro Thr Ser Val Ser Pro Ala Thr Phe Pro Ser Pro 900 905 910
- Leu Val Thr Pro Met Val Ala Leu Val Leu Pro Asn Tyr Leu Phe Pro 915 920 925
- Thr Pro Pro Ser Tyr Pro Tyr Gly Val Ser Gln Ala Pro Val Glu Gly 930 935 940
- Pro Pro Thr Pro Ala Ser His Ser Pro Ser Pro Ser Leu Pro Pro 945 950 955 960
- Pro Leu Ser Pro Pro His Arg Pro Asp Ser Pro Leu Phe Asn Ser Arg 965 970 975
- Cys Ser Ser Pro Leu Gln Leu Asn Leu Leu Gln Leu Glu Glu Ser Pro 980, 985 990
- Arg Thr Glu Gly Gly Ala Ala Ala Gly Gly Pro Gly Ser Ser Ala Gly 995 1000 1005

Pro Leu Pro Pro Ser Glu Glu Thr Ala Glu Pro Glu Ala Arg Leu Val 1010 1015 1020

Glu Val Thr Glu Ser Ser Asn Gln Asp Ala Leu Ser Gly Ser Ser Asp 1025 1030 1035 1040

Leu Leu Glu Leu Leu Gln Glu Asp Ser Arg Ser Gly Thr Gly Ser 1045 1050 1055

Ala Ala Ser Gly Ser Leu Gly Ser Gly Leu Gly Ser Gly Ser Gly Ser 1060 1065 1070

Gly Ser His Glu Gly Gly Ser Thr Ser Ala Ser Ile Thr Arg Ser Ser 1075 1080 1085

Gln Ser Ser His Thr Ser Lys Tyr Phe Gly Ser Ile Asp Ser Ser Glu 1090 1095 1100

Ala Glu Ala Gly Ala Ala Arg Ala Arg Thr Glu Pro Gly Asp Gln Val 1105 1110 1115 1120

Ile Lys Cys Val Leu Gln Asp Pro Ile Trp Leu Leu Met Ala Asn Ala 1125 1130 1135

Asp Gln Arg Val Met Met Thr Tyr Gln Val Pro Ser Arg Asp Ala Ala 1140 1145 1150

Ser Val Leu Lys Gln Asp Arg Glu Arg Leu Arg Ala Met Gln Lys Gln 1155 1160 1165

Gln Pro Arg Phe Ser Glu Asp Gln Arg Arg Glu Leu Gly Ala Val His 1170 1175 1180

Ser Trp Val Arg Lys Gly Gln Leu Pro Arg Ala Leu Asp Val Met Ala 1185 1190 1195 1200

Cys Val Asp Cys Gly Ser Ser Val Gln Asp Pro Gly His Ser Asp Asp

144

1205 1210 1215 Pro Leu Phe Ser Glu Leu Asp Gly Leu Gly Leu Glu Pro Met Glu Glu 1220 1225 1230 Gly Gly Glu Gly Gly Gly Cys Gly Val Gly Gly Gly Gly Asp 1235 1240 Gly Gly Glu Glu Ala Gln Thr Gln Ile Gly Ala Lys Gly Ser Ser 1250 1255 1260 Gln Asp Ser Ala Met Glu Glu Glu Glu Glu Gly Gly Gly Ser Ser Ser 1265 1270 1275 1280 Pro Ala Leu Pro Ala Glu Glu Asn Ser Thr Ser 1285 1290 <210> 3 <211> 3873 <212> DNA <213 > Homo sapiens <220> <221> CDS <222> (1)..(3873) <400> 3 atg agt ggc ccc cta gaa ggg gct gat ggg gga ggg gac ccc agg cct 48 Met Ser Gly Pro Leu Glu Gly Ala Asp Gly Gly Gly Asp Pro Arg Pro 1 5 10 15 ggg gaa tca ttt tgt cct ggg ggc gtc cca tcc cct ggg ccc cca cag 96 Gly Glu Ser Phe Cys Pro Gly Gly Val Pro Ser Pro Gly Pro Pro Gln 20 25 30

cac cgg cct tgc cca ggc ccc agc ctg gcc gat gac acc gat gcc aac

His Arg Pro Cys Pro Gly Pro Ser Leu Ala Asp Asp Thr Asp Ala Asn

45

40

															a ggc	
261	50	1 61	y Se	r Se	r Gl	y Asr 55	ı Gi	u Sei	r Ası	n Gly	y Hi: 60	s Gl	u Se:	r Ar	g Gly	
															g gac	240
65	ı Ser	· GI	n Ar	g Sei	r Sei 70	· His	s Sei	r Sei	s Ser	75	r Gly	y Asi	n Gly	y Ly:	s Asp 80	
tca	gco	ct	g cta	g gag	acc	act	gag	gago	ago	aag	gago	e aca	a aac	e te	t cag	288
Ser	` Ala	. Le	ı Let	ı Glu 85	1 Thr	` Thr	Glu	ı Ser	Ser 90	· Lys	s Ser	Thi	r Asr	95	c Gln	
															gcc	336
Ser	Pro	Ser	100		Ser	Ser	Ser	105		. Tyr	Ser	Leu	Leu 110	Ser	` Ala	
															. cag	384
Ser	Ser	Glu 115		Asp	Asn	Pro	Ser 120	Thr	Ser	Gly	Cys	Ser 125		Glu	Gln	
															gag	432
Ser	Ala 130	Arg	Ala	Arg	Thr	Gln 135	Lys	Glu	Leu	Met	Thr 140	Ala	Leu	Arg	Glu	
						cca										480
Leu 145	Lys	Leu	Arg	Leu	Pro 150	Pro	Glu	Arg	Arg	Gly 155	Lys	Gly	Arg	Ser	Gly 160	
						tac										528
Thr	Leu	Ala	Thr	Leu 165	Gln	Tyr	Ala	Leu	Ala 170	Cys	Val	Lys	Gln	Val 175	Gln	
						cag										576
Ala	Asn	Gln	Glu 180	Tyr	Tyr	Gln	Gln	Trp 185	Ser	Leu	Glu		Gly 190	Glu	Pro	
tgc	tcc	atg	gac	atg	tcc	acc	tat	acc	ctg	gag	gag	ctg	gag	cac	atc	624

	_				_											
Cys	Ser	Met 195	Asp	Met	Ser	Thr	Tyr 200	Thr	Leu	Glu	Glu	Leu 205	Glu	His	Ile	
acg	tct	gag	tac	aca	ctt	cag	aac	cag	gat	acc	ttc	tca	gtg	gct	gtc	672
Thr	Ser 210	Glu	Tyr	Thr	Leu	Gln 215	Asn	Gln	Asp	Thr	Phe 220	Ser	Val	Ala	Val	
tcc	ttc	ctg	acg	ggc	cga	atc	gtc	tac	att	tcg	gag	cag	gca	gcc	gtc	720
	Phe	Leu	Thr	Gly		Ile	Val	Tyr	Ile		Glu	Gln	Ala	Ala		
225					230					235					240	
ctg	ctg	cgt	tgc	aag	cgg	gac	gtg	ttc	cgg	ggt	acc	cgc	ttc	tct	gag	768
Leu	Leu	Arg	Cys	Lys	Arg	Asp	Val	Phe	_	Gly	Thr	Arg	Phe		Glu	
				245					250					255		
ctc	ctg	gct	ccc	cag	gat	gtg	gga	gtc	ttc	tat	ggt	tcc	act	gct	cca	816
Leu	Leu	Ala		Gln	Asp	Val	Gly		Phe	Tyr	Gly	Ser		Ala	Pro	
			260					265					270			
tct	cgc	ctg	ccc	acc	tgg	ggc	aca	ggg	gcc	tca	gca	ggt	tca	ggc	ctc	864
Ser	Arg		Pro	Thr	Trp	Gly		Gly	Ala	Ser	Ala		Ser	Gly	Leu	
		275					280					285				
agg	gac	ttt	acc	cag	gag	aag	tcc	gtc	ttc	tgc	cgt	atc	aga	gga	ggt	912
Arg		Phe	Thr	Gln	Glu		Ser	Val	Phe	Cys		Ile	Arg	Gly	Gly	
	290					295					300					
cct	gac	cgg	gat	cca	ggg	cct	cgg	tac	cag	cca	ttc	cgc	cta	acc	ccg	960
	Asp	Arg	Asp	Pro		Pro	Arg	Tyr	Gln		Phe	Arg	Leu	Thr		
305					310					315					320	
tat	gtg	acc	aag	atc	cgg	gtc	tca	gat	ggg	gcc	cct	gca	cag	ccg	tgc	1008
Tyr	Val	Thr	Lys	Ile	Arg	Val	Ser	Asp	Gly	Ala	Pro	Ala	Gln		Cys	
				325					330					335		
tgc	ctg	ctg	att	gca	gag	cgc	atc	cat	tcg	ggt	tac	gaa	gct	ccc	cgg	1056
Cys	Leu	Leu	Ile	Ala	Glu	Arg	Ile	His	Ser	Gly	Tyr	Glu	Ala	Pro	Arg	-
			340					345					350			

															c tgc	1104
lle	Pro	9 Pro 355		p Lys	S Arg	; Ile	Phe 360		r Thi	r Arg	g Hi			o Se	r Cys	
		000	,				300	,				368)			
ctc	ttc	cag	gat	t gtg	gat	gaa	. agg	get	t gcc	cco	c cta	g cta	g gg	c tac	ctg	1152
Leu			Asp	Val	Asp			Ala	a Ala	ı Pro	Let	ı Lei	ı Gl	у Туі	r Leu	
	370					375					380)				
ccc	cag	gac	cto	ctg	ggg	gcc	cca	.gtg	cto	cte	tto	cts	cat	t cc1	gag	1200
															Glu	
385					390					395					400	
gac	cga	ccc	ctc	atg	ctg	gct	atc	c a.c	ะลละ	่ลลย	att	cte	rcae	, tto	gcg	1248
															Ala	1240
				405					410					415		
g g c	cag	ccc	+++	gac	cac	tcc	aat	ata	0.00	++0	+ ~+					1000
															Gly	1296
			420					425	6		0,0		430	11011	dij	
						acc										1344
Ulu	1 9 1	435	IIII	меι	ASP	Thr	ser 440	Trp	A I a.	Gly	Phe	Va.1 445	His	Pro	Trp	
							110					770				
						gtg										1392
Ser		Lys	Val	Ala	Phe	Val	Leu	Gly	Arg	His		Val	Arg	Thr	Ala	
	450					455					460					
ccc	ctg	aat	gag	gac	gtg	ttc	act	ccc	ccg	gcc	ccc	agc	cca	gct	ccc	1440
	Leu	Asn	Glu	Asp	Val	Phe	Thr	Pro	Pro	Ala	Pro	Ser	Pro	Ala	Pro	
465					470					475					480	
tcc	ctg	gac	act	gat	atc	cag	gag	ctg	tca	gag	cag	atc	cac	cgg	ctg	1488
						Gln										
				485					490					495		
ctg	ctg	cag	ccc	etc	cac	agc	ccc	age	ccc	a n a	or or o	cto	+ - - +	or or o	at c	1536
	- 0	0		3 00		~o v	500	460		uus	55 a	000	ugu	55a	g ((1990

Leu	Leu	Gln	Pro 500	Val	His	Ser	Pro	Ser 505	Pro	Thr	Gly	Leu	Cys 510	Gly	Val	
	_				cca Pro											1584
_	_				gat Asp	_										1632
					tgt Cys 550											1680
					gag Glu											1728
					acg Thr											1776
					gag Glu											1824
					gag Glu											1872
					tgc Cys 630											1920
					acc Thr											1968

															t cca	2016
Туг	Thi	Th			· Ala	a Ser	Asp	Asp	Ası	Arg	g Gli	n Ar	Thi	Gl	y Pro	
			660)				665					670			
gto	tct:	gtg	g ggg	acc	aag	; aaa	gat	cce	CC E	tca	ı gca	ı gcı	cte	tei	t ggg	2064
															r Gly	2001
		678					680					685				
~ ~ ~																
															agc	2112
GIG	690		LIME	rru	Arg	695 695		rro	va.ı	va. 1	700		Thr	Let	ı Ser	
						000					700					
ccg	ctc	gcc	ctg	gcc	aat	aag	gcg	gag	agt	gtg	gtg	tcc	gtc	acc	agt	2160
Pro	Leu	Ala	. Leu	Ala	Asn	Lys	Ala	Glu	Ser	Val	Val	Ser	Val	Thr	Ser	
705					710					715					720	
cag	tgt	agc	ttc	agc	tcc	acc	atc	gtc	cat	ete	gga	grac	ឧឧទ	220	ccc	2208
															Pro	2200
				725					730					735		
															cca	2256
Pro	GIU	ser	740	116	116	Met	Met	G1u 745	Asp	Leu	Pro	Gly		Ala	Pro	
			140					740					750			
ggc	cca	gcc	ccc	agc	cca	gcc	ccc	agc	ccc	aca	gta	gcc	cct	gac	cca	2304
Gly	Pro		Pro	Ser	Pro	Ala	Pro	Ser	Pro	Thr	Val	Ala	Pro	Asp	Pro	
		755					760					765				
gcc	сса	gac	gcc	tac	cet	cca	ort or	or or or	nto	200	220		art ar	o t a	taa	2352
			Ala													2002
	770			•	J	775		•			780			202	551	
			cag													2400
	HIS	Thr	Gln	Lys		Glu	Gln	Ala			Ser	Arg	Phe	Arg		
785					790					795					800	
ctg	ggc	agg	ctg	cgt	gga	ctc	gac	agċ	tct	tcc	aca	gct	ccc	tca	gcc	2448 T
								-				_	_			

Leu	Gly	Arg	Leu	Arg 805	Gly	Leu	Asp	Ser	Ser 810	Ser	Thr	Ala	Pro	Ser 815	Ala	
										-				_	cga Arg	2496
						gcc Ala							_			2544
						tat Tyr 855							_			2592
						cca Pro										2640
						cca Pro										2688
						aca Thr						Ala				2736
		_				gtg Val		_							_	2784
						cct Pro 935				Leu						2832
				Pro		tcg Ser			Pro					Pro		2880

ctc	ссс	ccg	agt	cct	cct	cac	cgc	ccg	gac	tct	cca	ctg	ttc	aac	tcg	2928
Leu	Pro	Pro	Ser	Pro	Pro	His	Arg	Pro	Asp	Ser	Pro	Leu	Phe	Asn	Ser	
				965					970					975		
aga	tgc	agc	tct	cca	ctc	cag	ctc	aat	ctg	ctg	cag	ctg	gag	gag	ctc	2976
														Glu		
_	_		980					985					990			
ccc	cgt	gct	gag	ggg	gct	gct	gtt	gca	gga	ggc	cct	ggg	agc	agt	gcc	3024
														Ser		
	J	995		•			1000		. •	•		1005				
ggg	ccc	cca	cct	ccc	agt	gcg	gag	gct	gct	gag	cca	gag	gcc	aga	ctg	3072
														Arg		
	1010					1015					1020			_		
gcg	gag	gtc	act	gag	tcc	tcc	aat	cag	gac	gca	ctt	tcc	ggc	tcc	agt	3120
														Ser		
1025					1030				•	1035			•		1040	
-																
gac	ctg	ctc	gaa	ctt	ctg	ctg	caa	gag	gac	tcg	cgc	tcc	ggc	aca	ggc	3168
														Thr		
				1045	i				1050)				1055		
tcc	gca	gcc	tcg	ggc	tcc	ttg	ggc	tct	ggc	ttg	ggc	tct	ggg	tct	ggt	3216
Ser	Ala	Ala	Ser	Gly	Ser	Leu	Gly	Ser	Gly	Leu	Gly	Ser	Gly	Ser	Gly	
			1060)				1065	ļ				1070)		
tca	ggc	tcc	cat	gaa	ggg	ggc	agc	acc	tca	gcc	agc	atc	act	cgc	agc	3264
														Arg		
		1075					1080					1085				
agc	cag	agc	agc	cac	aca	agc	aaa	tac	ttt	ggc	agc	atc	gac	tct	tcc	3312
														Ser		
	1090					1095		-			1100		-			
gag	gct	gag	gct	ggg	gct	gct	cgg	ggc	ggg	gct	gag	cct	ggg	gac	cag	3360
	-		-		-	-				-	_ •			-	-	

Glu Ala G 1105		la Ala Arg 110		Ala Glu Pro 1115	Gly Asp Gln 1120	
gtg att as	ag tac gtg c	tc cag gat	ccc att	tgg ctg ctc	atg gcc aat	3408
					Met Ala Asn	0100
	1125		1130		1135	
					1100	
gct gac ca	ag ege gte at	tg atg acc	tac cag	gtg ccc tcc	agg gac atg	3456
	n Arg Val Me					0.100
	1140	1100 1111	1145		1150	
			1110		1100	
acc tct gt	g ctg aag ca	ig gat ogg	eae cee	cto oga god	ato cao aao	3504
	l Leu Lys Gl					3304
	55	1160		1165		
		1100	,	1100	•	
cag cag co	t cgg ttt to	t gag gar	നമെ നമന ഗ	ora ass ota	aat aat ata	3552
	o Arg Phe Se					3334
1170	5g	1175	uin nig i	1180	dly Ala val	
		1110		1100		
cac tcc tg	g gtc cgg aa	g ggc caa	ctg cct (egg get ett	ast ata sta	3600
	p Val Arg Ly					3000
1185		90		195	1200	
	**		1	100	1200	
gcc tgt gt	g gac tgt gg	g age age	200 022 0	rat oot gat	and act ant	3648
	l Asp Cys Gl					3040
	1205	J OCT OCT	1210	isp ito diy	1215	
	1200		1210		1210	
gac cca ct	c ttc tca ga	g ctg gat	gga ctg g	oo eto oao	cee ato oaa	3696
	u Phe Ser Gl					3030
	1220		1225		1230	
	1220		1220		1430	
gag ggt gg:	a ggc gag ca	ם מפר מפר	ago gat g	go ggo ogt	aat aan aan	3744
	y Gly Glu Gli					3144
123		1240	ser dry d	1245	dry dru dry	
12.	<i>.</i>	1440		1440		
gag gar tag	gag gag gc		oforor oran	ag got too	aga tat aag	2702
						3792
1250.	s Glu Glu Ala		ornary (1917)		ser ser Gin	y
1400		1255		1260		

	ag gag gag gaa gaa lu Glu Glu Glu Glu 1270		
Ala Leu Pro Thr A	ca gga aac tgc acc la Gly Asn Cys Thr 285		3873
<210> 4 <211> 3876 <212> DNA <213> Mus musculu	s		
<220> <221> CDS <222> (1)(3876)			
<400> 4 atg agt ggt ccc ct Met Ser Gly Pro Le 1 5	ta gaa ggg gcc gat eu Glu Gly Ala Asp	ggg gga gga gac c Gly Gly Gly Asp P 10	cc agg ccc 48 ro Arg Pro 15
	st cct gga gga gtc vs Pro Gly Gly Val 25		la Pro Gln
	a ggc ccc agc ctg o Gly Pro Ser Leu 40		
	t ggc aat gag tcc a r Gly Asn Glu Ser A 55		
	t tct cat agt tcc f r Ser His Ser Ser S 70		

															cag	288
Ser	Ala	. Leu	Leu		Thr	Thr	Glu	Ser		Lys	Ser	Thr	Asn		Gln	
				85					90					95		
agc	cca	tcc	cca	ccc	age	age	tee	att	ምሮር	tac	່ສອດ	e to	rta	· aert	gcg	336
															Ala	330
			100					105					110			
												_	_	-	cag	384
Ser	Ser		Gln	Asp	Asn	Pro		Thr	Ser	Gly	Cys	Ser	Ser	Glu	Gln	
		115					120					125				
t.ca	øct	റമ	ጀርር	арр	acc	റമന	222	ora a	ata	a t a	aat	~ 00	a t t	0.00	gag	420
															gag Glu	432
	130	J		0		135	-,-		200		140	1110	поч	0	ulu	
			cga													480
	Lys	Leu	Arg	Leu		Pro	Glu	Arg	Arg	Gly	Lys	Gly	Arg	Ser	Gly	
145					150					155					160	
acc	ttg	gcc	aca	cte	cag	tac	get	ctø	ውቦር	tøt	øtc	aag	cag	ort t	car	528
			Thr													020
				165		-			170	·				175		
			gaa													576
Ala	Asn	Gln	Glu	Tyr	Tyr	Gln	Gln		Ser	Leu	Glu	Glu		Glu	Pro	
			180					185					190			
tgt	gcc	atg	gac	atg	tet	act	tac	acc	cte	gag	даа	ttø	gag	cat	atc	624
			Asp													021
		195					200					205				
			tac													672
Thr		Glu	Tyr	Thr			Asn	Gln	Asp			Ser	Val	Ala	Val	
	210					215					220					
tcc	ttc	cte	aca	ggr	CEF	att	gto	tat	att	tro	grace	റമെ	gra e n g	or or t	σt c	720
	3.00	208		99,	~66	ասև	800	uat	பூட்ட	v 6	545	cag	gua	65 L	5 (C	140

Ser 225	Phe	Leu	Thr	Gly	Arg 230	Ile	Val	Tyr	Ile	Ser 235	Glu	Gln	Ala	Gly	Val 240	
								ttt Phe								768
								gtc Val 265								816
								ggc Gly								864
								gtc Val								912
	_							tac Tyr								960
	-					_		gat Asp								1008
								cac His 345							cgg Arg	1056
								acc Thr								1104
								gct Ala					_			1152

	Glr					Ala					ı Phe				t gag o Glu 400	1200
				Met	: Leu				Lys	Lys				Lei	g gca ı Ala	1248
					cat					ttc:					ggg Gly	1296
gaa	tat	gtc	420 acc	atg	gac	acc	agc	425 tgg	gcc	ggt	ttt	gtg	430	ccc	tgg	1344
		435					440	•				445			Trp	
													cgc Arg		gca Ala	1392
													cca Pro			1440
													cat His			1488
													tgt Cys 510			1536
		Leu				Gly	Pro	cta			Pro	Gly	tcc Ser			1584
gat	agc	515 aat	ggg	ggg	gac		520 gag	ggg	cct	ggg		525 cct	gct	cca	gtg	1632 📑

															~
Asp	Ser 530		ı Gly	Gly	Asp	535		ı Gly	Pro	Gly	7 Pro 540	o Ala	ı Pro	o Val	
	Phe					Lys					ı Val			gga Gly 560	1680
														cgc Arg	1728
														tcc Ser	1776
				ctg Leu										tta Leu	1824
				gag Glu											1872
				aac Asn											1920
				agt Ser 645											1968
		Ala		tca Ser			Asp								2016
	Pro			gcc Ala		Lys					Ala				2064

		Ala			cgg Arg							Gly			agc Ser	2112
	Leu				aat Asn 710						Val					2160
					tcc Ser											2208
					atc Ile											2256
			Pro		ccg Pro											2304
					cgc Arg											2352
					gaa Glu 790											2400
					gga Gly			Thr					Pro			2448
					ggc Gly		Ile					Arg				2496
cga	tct	aaa	gca	aag	cgt	tcc	cgc	cac	cac	cac	cac	cag	acc	ccc	cgg	2544

Arg	Ser	Lys 835	Ala	Lys	Arg	Ser	Arg 840	His	His	His	His	Gln 845	Thr	Pro	Arg	
														tct Ser		2592
														atg Met		2640
														cag Gln 895		2688
														tct Ser		2736
								_						ttc Phe		2784
														gag Glu		2832
														cca Pro		2880
														tcg Ser 975		2928
							Asn					Glu		tcc Ser		2976

			cca gga agc agt Pro Gly Ser Ser 1005	
		Thr Ala Glu	cca gag gcc aga Pro Glu Ala Arg 1020	
			ctt tca ggc tcc Leu Ser Gly Ser 1035	
			cgc tcg ggc aca Arg Ser Gly Thr	
	y Ser Leu Gly		ggc tct ggg tct Gly Ser Gly Ser 1070	Gly Ser
			agc atc acc cgc Ser Ile Thr Arg 1085	
		Tyr Phe Gly	agc atc gac tct Ser Ile Asp Ser 1100	
		Ala Arg Thr	gag cct ggg gac Glu Pro Gly Asp 1115	
			ctg ctc atg gcc Leu Leu Met Ala	
gac cag cgt gt	c atg atg aca	tac cag gtg	ccg tcc agg gat	gca gcc 3456

. . .

Asp Gln Arg Val Met Met Thr Tyr Gln Val Pro Ser Arg Asp Ala Ala tct gtg ctg aag caa gac cgg gag agg ctc cgg gcc atg cag aaa cag Ser Val Leu Lys Gln Asp Arg Glu Arg Leu Arg Ala Met Gln Lys Gln cag cca cgg ttc tca gag gac cag agg cgg gaa ctg ggt gct gtg cac Gln Pro Arg Phe Ser Glu Asp Gln Arg Arg Glu Leu Gly Ala Val His tcc tgg gtc cgg aag ggc cag ctg cct cgg gcc ctt gat gtg atg gcg Ser Trp Val Arg Lys Gly Gln Leu Pro Arg Ala Leu Asp Val Met Ala tgt gtg gac tgt ggc agc agc gtt caa gat cet ggc cac tet gat gac Cys Val Asp Cys Gly Ser Ser Val Gln Asp Pro Gly His Ser Asp Asp ccg ctc ttc tca gaa ctg gat gga ttg ggg ctg gag ccc atg gaa gag Pro Leu Phe Ser Glu Leu Asp Gly Leu Gly Leu Glu Pro Met Glu Glu ggt gga ggc gag ggt ggt ggg tgt ggt gtt ggc ggc ggt ggg ggt gat Gly Gly Glu Gly Gly Gly Cys Gly Val Gly Gly Gly Gly Gly Asp ggt ggt gag gag gcc cag acc caa att ggg gct aag ggt tca agc tct Gly Glu Glu Ala Gln Thr Gln Ile Gly Ala Lys Gly Ser Ser Ser cag gac tct gcc atg gag gaa gaa gag caa ggt ggg ggc tca tcc agc Gln Asp Ser Ala Met Glu Glu Glu Glu Gln Gly Gly Gly Ser Ser Ser cca gct tta cct gca gaa gaa aac agc acc agc tag Pro Ala Leu Pro Ala Glu Glu Asn Ser Thr Ser

United States Patent & Trademark Office

Office of Initial Patent Examination -- Scanning Division

Application deficiencies found during scanning:

□ Page(s)	of		were not present
for scanning.		(Document title)	•
□ Page(s)	of		were not present
for scanning.		(Document title)	

- Drawing There over only 10 sheets of Drawings
whilable for scanning, not 31 sheets