

LEC 17 복습

머티리얼(Material: 재질)

- ■물체의 재질을 정의하는 애셋 재질은 표면의 시각적 모양을 결정.
- ■물체를 색칠할 수 있는 "페인트"라 보면 됨.
- 색상, 광택, 투과성 등을 정의할 수 있음.
- 수학적 관점
 - 광원들과 물체 표면과의 상호 작용을 모델링한 계산식 == 머티리얼
 - ▶ 계산 결과는 물체 표면 위의 점들의 색상

PBR(Physically-Based Rendering)

■ Material의 핵심 속성은 딱 네가지!!!

- Base Color 바탕색
- Roughness 거칠기
- Metallic 금속성
- Specular 반사성

텍스처의 알파 채널 활용

- 알파 채널은 일반적으로 투명도를 나타내기 위해서 사용됨.
- Roughness 정보 등을 담기 위한 채널로도 빈번히 사용됨.

금-M_NormalGold

Lerp 노드

- A와 B사이를 Alpha(섞는 비율) 만큼 선형 보간.
- A와 B 두개의 정보를 섞어서, 두 개의 내용을 비율대로 반영하는 의미.
- A와 B를 단순히 더하면, 결과값이 1을 넘어갈 수 있기 때문임.

Fresnel 효과

- 관찰자가 바라보는 각도에 따라서 반사되는 빛의 세기가 달라지는 현상
- ■물을 위에서 수직으로 바라볼 때는 반사되는 수면이 많지 않으나, 물과 시선이 평행에 가까워질 수록 반사면이 많이 보임.
- 법선과 카메라방향벡터의 내적을 이용하여 계산.

프로퍼티	설명
Exponentln	지수 입력 - 프레넬 이펙트 감쇠를 제어합니다.
BaseReflectFrctionIn	기본 리플렉션 굴절 입력 - 표면을 직접 봤을 때의 스페큘러 리플렉션의 굴절율을 나타냅니다. 이 값을 1 로 설정하면 사실상 프레넬이 꺼집니다.
Normal	노멀 - 여기에 노멀을 입력시켜 프레넬 이펙트의 렌더링 방식에 영향을 끼칠 수 있습니다. 이 프로퍼티는 노멀 맵이나 벡터 3 입력 중 하나를 제공하는 것으로는 설정할 수 없습니다.

http://api.unrealengine.com/KOR/Engine/Rendering/Materials/HowTo/Fresnel/

학습 내용

- 머티리얼 인스턴싱
- 다이나믹 머티리얼 인스턴스

Material Instancing

- 머티리얼 리컴파일 작업 없이 머티리얼의 외양을 바꾸는 데 사용
- 아트 작업의 효율성 증대
- ▶ 부모 Material의 속성을 파라미터화시켜서, child material에서 실시간으로 update
- 부모를 업데이트하면, 전체 자식들이 한꺼번에 변경됨.

알록달록 유리 머티리얼

실시간 변경하고 싶은 노드를 결정

Material Instance 생성

M_StylisticMaster

Dynamic Material Instance(DMI)

- ■게임플레이 도중 (실행시간에) 계산할 수 있는 머티리얼 인스턴스
- 플레이하는 와중에 스크립트(컴파일된 코드 또는 블루프린트 비주얼 스크립트)를 사용하여 머티리얼의 파라미터를 바꾸는 것, 따라서 게임 전반에 걸쳐 머티리얼을 변경하는 것이 가능
- 입은 피해의 정도에 따라 도색을 바꾸는 것에서부터, 얼굴 표정에 반응하여 다른 스킨 텍스처를 블렌딩하는 것까지 다양한 응용 가능.

JuicyBall 블루

Timeline

시간 진행에 따른 값의 변화를 Key Frame Animation할 수 있음.

Material Element

머티리얼을 다르게 적용할 구역을 Element 로 구분함.

Granny의 기존 얼굴 Texture

RGB 채널에 눈,입,눈썹의 이미지가 담겨있으며, A 채널에는 마스크 이미지가 담겨있음.

기존 Material

Facial Animation이 담긴 Texture와 Opacity Mask

원하는 부분을 잘라서, 기존 Material 처럼 공급해야 함.

UV 좌표를 일치시켜서 공급해야 함.

텍스쳐의 특정 영역 잘라내기 - Clamp

텍스쳐의 이동 - Add

노드의 결합 순서 – 실제 연산의 역순으로!

GrannyEyeMaster Material

이미지 중에서 특정 영역만 보이게 해야하므로, Blend Mode를 "Masked"로 설정

GrannyMouthMaster Material

GrannyEyebrowMaster Material

DMI 생성 및 저장

눈 ID 결정

ID에 해당되는 눈의 텍스쳐 상의 x 좌표 계산

ID에 해당되는 눈의 텍스쳐 상의 y좌표 계산

