Модуль №5. Инновации в технологии устройства электрических сетей и линий связи. Показатели и критерии качества устройства электрических сетей и линий связи

5.1 Устройство внутренних электрических сетей и линий связи

Работы по монтажу и наладке электротехнических устройств следует производить в соответствии с рабочими чертежами основных комплектов чертежей электротехнических марок; по рабочей документации электроприводов; по рабочей документации нестандартизированного оборудования, выполненной проектной организацией; по рабочей документации предприятий-изготовителей технологического оборудования, поставляющих вместе с ним шкафы питания и управления.

Монтаж электротехнических устройств следует осуществлять на основе применения узлового и комплектно-блочного методов строительства, с установкой оборудования, поставляемого укрупненными узлами, не требующими при установке правки, резки, сверления или других подгоночных операций и регулировки. При приемке рабочей документации к производству работ надлежит проверять учет в ней требований индустриализации монтажа электротехнических устройств, а также механизации работ по прокладке кабелей, такелажу и установке технологического оборудования.

Электромонтажные работы следует выполнять, как правило, в две стадии.

В первой стадии внутри зданий и сооружений производятся работы по монтажу опорных конструкций для установки электрооборудования и шинопроводов, для прокладки кабелей и проводов, монтажу троллеев для электрических мостовых кранов, монтажу стальных и пластмассовых труб для электропроводок, прокладке проводов скрытой проводки до штукатурных и отделочных работ, а также работы по монтажу наружных кабельных сетей и сетей заземления. Работы первой стадии следует выполнять в зданиях и сооружениях по совмещенному графику одновременно с производством основных строительных работ, при этом должны быть приняты меры по защите установленных конструкций и проложенных труб от поломок и загрязнений.

Во второй стадии выполняются работы по монтажу электрооборудования, прокладке кабелей и проводов, шинопроводов и подключению кабелей и проводов к выводам электрооборудования. В электротехнических помещениях объектов работы второй стадии следует выполнять после завершения комплекса общестроительных и отделочных работ и по окончании работ по монтажу сантехнических устройств, а в других помещениях и зонах - после установки технологического оборудования, электродвигателей и других электроприемников, монтажа технологических, санитарно-технических трубопроводов и вентиляционных коробов.

На небольших объектах, удаленных от мест расположения электромонтажных организаций, работы следует производить выездными комплексными бригадами с совмещением двух стадий их выполнения в одну.

Электрооборудование, изделия и материалы следует поставлять по согласованному с электромонтажной организацией графику, который должен предусматривать первоочередную поставку материалов и изделий, включенных в спецификации на блоки, подлежащие изготовлению на сборочно-комплектовочных предприятиях электромонтажных организаций.

Окончанием монтажа электротехнических устройств является завершение индивидуальных испытаний смонтированного электрооборудования и подписание рабочей комиссией акта о приемке электрооборудования после индивидуального испытания. Началом индивидуальных испытаний электрооборудования является момент введения эксплуатационного режима на данной электроустановке, объявляемого заказчиком на основании извещения пусконаладочной и электромонтажной организаций.

На каждом объекте строительства в процессе монтажа электротехнических устройств следует вести специальные журналы производства электромонтажных работ согласно СНиП 3.01.01-85, а при завершении работ электромонтажная организация обязана передать генеральному подрядчику документацию, предъявляемую рабочей комиссии согласно СНиП III-3-81. Перечень актов и протоколов проверок и испытаний определяется ВСН, утвержденными в установленном СНиП 1.01.01-82 порядке.

Подготовка к производству электромонтажных работ

Монтажу электротехнических устройств должна предшествовать подготовка в соответствии со СНиП 3.01.01-85.

До начала производства работ на объекте должны быть выполнены следующие мероприятия:

- а) получена рабочая документация в количестве и в сроки;
- б) согласованы графики поставки оборудования, изделий и материалов с учетом технологической последовательности производства работ, перечень электрооборудования, монтируемого с привлечением шефмонтажного персонала предприятий-поставщиков, условия транспортирования к месту монтажа тяжелого и крупногабаритного электрооборудования;
- в) приняты необходимые помещения для размещения бригад рабочих, инженернотехнических работников, производственной базы, а также для складирования материалов и инструмента с обеспечением мероприятий по охране труда, противопожарной безопасности и охране окружающей среды в соответствии со СНиП 3.01.01-85;
- г) разработан проект производства работ, проведено ознакомление инженерно-технических работников и бригадиров с рабочей документацией и сметами, организационными и техническими решениями проекта производства работ;
- д) осуществлена приемка по акту строительной части объекта под монтаж электротехнических устройств в соответствии с требованиями настоящих правил и выполнены предусмотренные нормами и правилами мероприятия по охране труда, противопожарной безопасности и охране окружающей среды при производстве работ;
- е) выполнены генподрядчиком общестроительные и вспомогательные работы, предусмотренные Положением о взаимоотношениях организаций генеральных подрядчиков с субподрядными организациями.

Оборудование, изделия, материалы и техническая документация должны передаваться в монтаж в соответствии с Правилами о договорах подряда на капитальное строительство и Положением о взаимоотношениях организаций - генеральных подрядчиков с субподрядными организациями.

При приемке оборудования в монтаж производится его осмотр, проверка комплектности (без разборки), проверка наличия и срока действия гарантий предприятий-изготовителей.

Состояние кабелей на барабанах должно быть проверено в присутствии заказчика путем наружного осмотра. Результаты осмотра оформляются актом.

При приемке сборных железобетонных конструкций воздушных линий (ВЛ) следует проверять:

- -размеры элементов, положение стальных закладных деталей, а также качество поверхностей и внешний вид элементов. Указанные параметры должны соответствовать ГОСТ 13015.0-83, ГОСТ 22687.0-85, ГОСТ 24762-81, ГОСТ 26071-84, ГОСТ 23613-79, а также ПУЭ;
- -наличие на поверхности железобетонных конструкций, предназначенных для установки в агрессивную среду, гидроизоляции, выполненной на предприятии-изготовителе.
- -Изоляторы и линейная арматура должны отвечать требованиям соответствующих государственных стандартов и технических условий. При их приемке следует проверять:
- -наличие паспорта предприятия-изготовителя на каждую партию изоляторов и линейной арматуры, удостоверяющего их качество;
- -отсутствие на поверхности изоляторов трещин, деформаций, раковин, сколов, повреждений глазури, а также покачивания и поворота стальной арматуры относительно цементной заделки или фарфора;
- -отсутствие у линейной арматуры трещин, деформаций, раковин и повреждений оцинковки и резьбы.

Мелкие повреждения оцинковки допускается закрашивать.

Устранение дефектов и повреждений, обнаруженных при передаче электрооборудования, осуществляется в соответствии с Правилами о договорах подряда на капитальное строительство.

Электрооборудование, на которое истек нормативный срок хранения, указанный в государственных стандартах или технических условиях, принимается в монтаж только после

проведения предмонтажной ревизии, исправления дефектов и испытаний. Результаты проведенных работ должны быть занесены в формуляры, паспорта и другую сопроводительную документацию или должен быть составлен акт о проведении указанных работ.

Электрооборудование, изделия и материалы, принятые в монтаж, следует хранить в соответствии с требованиями государственных стандартов или технических условий.

Для крупных и сложных объектов с большим объемом кабельных линий в тоннелях, каналах и кабельных полуэтажах, а также электрооборудования в электропомещениях в проекте организации строительства должны быть определены меры по опережающему монтажу (против монтажа кабельных сетей) систем внутреннего противопожарного водопровода, автоматического пожаротушения и автоматической пожарной сигнализации, предусмотренных рабочими чертежами.

В электропомещениях (щитовые, пультовые, подстанции и распределительные устройства, машинные залы, аккумуляторные, кабельные тоннели и каналы, кабельные полуэтажи и т.п.) должны быть выполнены чистовые полы с дренажными каналами, необходимым уклоном и гидроизоляцией и отделочные работы (штукатурные и окрасочные), установлены закладные детали и оставлены монтажные проемы, смонтированы предусмотренные проектом грузоподъемные и грузоперемещающие механизмы и устройства, подготовлены в соответствии с архитектурно-строительными чертежами и проектом производства работ блоки труб, отверстия и проемы для прохода труб и кабелей, борозды, ниши и гнезда, выполнен подвод питания для временного электроосвещения во всех помещениях.

В зданиях и сооружениях должны быть введены в действие системы отопления и вентиляции, смонтированы и испытаны мостики, площадки и конструкции подвесных потолков, предусмотренные проектом для монтажа и обслуживания электроосветительных установок, расположенных на высоте, а также конструкции крепления многоламповых светильников (люстр) массой свыше 100 кг; проложены снаружи и внутри зданий и сооружений предусмотренные рабочими строительными чертежами асбестоцементные трубы и патрубки и трубные блоки для прохода кабелей.

Фундаменты под электрические машины следует сдавать под монтаж с полностью законченными строительными и отделочными работами, установленными воздухоохладителями и вентиляционными коробами, с реперами и осевыми планками (марками) в соответствии с требованиями СНиП 3.02.01-83 и настоящих правил.

На опорных (черновых) поверхностях фундаментов допускаются впадины не более $10\,\mathrm{Mm}$ и уклоны до 1:100. Отклонения в строительных размерах должны быть не более: по осевым размерам в плане - плюс $30\,\mathrm{mm}$, по высотным отметкам поверхности фундаментов (без учета высоты подливки) - минус $30\,\mathrm{mm}$, по размерам уступов в плане - минус $20\,\mathrm{mm}$, по размерам колодцев - плюс $20\,\mathrm{mm}$, по отметкам уступов в выемках и колодцах - минус $20\,\mathrm{mm}$, по осям анкерных болтов в плане - $\pm 5\,\mathrm{mm}$, по осям закладных анкерных устройств в плане - $\pm 10\,\mathrm{mm}$, по отметкам верхних торцов анкерных болтов - $\pm 20\,\mathrm{mm}$.

Сдача-приемка фундаментов для установки электрооборудования, монтаж которого производится с привлечением шефмонтажного персонала, производится совместно с представителями организации, осуществляющей шефмонтаж.

По окончании отделочных работ в аккумуляторных помещениях должны быть выполнены кислото- или щелочестойкие покрытия стен, потолков и пола, смонтированы и опробованы системы отопления, вентиляции, водопровода и канализации.

До начала электромонтажных работ на открытых распределительных устройствах напряжением 35 кВ и выше строительной организацией должно быть закончено сооружение подъездных путей, подходов и подъездов, установлены шинные и линейные порталы, сооружены фундаменты под электрооборудование, кабельные каналы с перекрытиями, ограждениями вокруг ОРУ, резервуары для аварийного сброса масла, подземные коммуникации и закончена планировка территории. В конструкциях порталов и фундаментов под оборудование должны быть установлены предусмотренные проектом закладные части и крепежные детали, необходимые для крепления гирлянд изоляторов и оборудования. В кабельных каналах и тоннелях должны быть

установлены закладные детали для крепления кабельных конструкций и воздухопроводов. Должно быть также закончено сооружение водопровода и других предусмотренных проектом противопожарных устройств.

Строительную часть ОРУ и подстанций напряжением 330-750 кВ следует принимать в монтаж на полное их развитие, предусмотренное проектом на расчетный период.

До начала электромонтажных работ по сооружению воздушных линий электропередачи напряжением до 1000 В и выше должны быть выполнены подготовительные работы согласно СНиП 3.01.01-85, в том числе:

- -подготовлены инвентарные сооружения в местах размещения прорабских участков и временные базы для складирования материалов и оборудования; сооружены временные подъездные дороги, мосты и монтажные площадки;
 - -устроены просеки;
- -осуществлены предусмотренный проектом снос строений и реконструкция пересекаемых инженерных сооружений, находящихся на трассе ВЛ или вблизи нее и препятствующих производству работ.

Трассы для прокладки кабеля в земле должны быть подготовлены к началу его прокладки в объеме: из траншеи откачана вода и удалены камни, комья земли, строительный мусор; на дне траншеи устроена подушка из разрыхленной земли; выполнены проколы грунта в местах пересечения трассы с дорогами и другими инженерными сооружениями, заложены трубы.

После прокладки кабелей в траншею и представления электромонтажной организацией акта на скрытые работы по прокладке кабелей траншею следует засыпать.

Трассы блочной канализации для прокладки кабелей должны быть подготовлены с учетом следующих требований:

- -выдержана проектная глубина заложения блоков от планировочной отметки;
- -обеспечены правильность укладки и гидроизоляция стыков железобетонных блоков и труб;
- -обеспечена чистота и соосность каналов;
- -выполнены двойные крышки (нижняя с запором) люков колодцев, металлические лестницы или скобы для спуска в колодец.

При сооружении эстакад для прокладки кабелей на их опорных конструкциях (колоннах) и на пролетных строениях должны быть выполнены предусмотренные проектом закладные элементы для установки кабельных роликов, обводных устройств и других приспособлений.

Генподрядчик должен предъявить к приемке под монтаж строительную готовность в жилых домах - посекционно, в общественных зданиях - поэтажно (или по помещениям).

Железобетонные, гипсобетонные, керамзитобетонные панели перекрытия, внутренние стеновые панели и перегородки, железобетонные колонны и ригели заводского изготовления должны иметь каналы (трубы) для прокладки проводов, ниши, гнезда с закладными деталями для установки штепсельных розеток, выключателей, звонков и звонковых кнопок в соответствии с рабочими чертежами. Проходные сечения каналов и замоноличенных неметаллических труб не должны отличаться более чем на 15% от указанных в рабочих чертежах.

Смещение гнезд и ниш в местах сопряжений смежных строительных конструкций не должно быть более 40 мм.

В зданиях и сооружениях, сдаваемых под монтаж электрооборудования, генподрядчиком должны быть выполнены предусмотренные архитектурно-строительными чертежами отверстия, борозды, ниши и гнезда в фундаментах, стенах, перегородках, перекрытиях и покрытиях, необходимые для монтажа электрооборудования и установочных изделий, прокладки труб для электропроводок и электрических сетей.

Указанные отверстия, борозды, ниши и гнезда, не оставленные в строительных конструкциях при их возведении, выполняются генподрядчиком в соответствии с архитектурно-строительными чертежами.

Отверстия диаметром менее 30 мм, не поддающиеся учету при разработке чертежей и которые не могут быть предусмотрены в строительных конструкциях по условиям технологии их изготовления (отверстия в стенах, перегородках, перекрытиях только для установки дюбелей,

шпилек и штырей различных опорно-поддерживающих конструкций), должны выполняться электромонтажной организацией на месте производства работ.

После выполнения электромонтажных работ генподрядчик обязан осуществить заделку отверстий, борозд, ниш и гнезд.

При приемке фундаментов под трансформаторы должны быть проверены наличие и правильность установки анкеров для крепления тяговых устройств при перекатке трансформаторов и фундаментов под домкраты для разворота катков.

Производство электромонтажных работ

При погрузке, разгрузке, перемещении, подъеме и установке электрооборудования должны быть приняты меры по его защите от повреждений, при этом тяжеловесное электрооборудование необходимо надежно стропить за предусмотренные для этой цели детали или в местах, указанных предприятием-изготовителем.

Электрооборудование при монтаже разборке и ревизии не подлежит, за исключением случаев, когда это предусмотрено государственными и отраслевыми стандартами или техническими условиями, согласованными в установленном порядке.

Разборка оборудования, поступившего опломбированным с предприятия-изготовителя, запрещается.

Электрооборудование и кабельная продукция деформированные или с повреждением защитных покрытий монтажу не подлежат до устранения повреждений и дефектов в установленном порядке.

При производстве электромонтажных работ следует применять нормокомплекты специальных инструментов по видам электромонтажных работ, а также механизмы и приспособления, предназначенные для этой цели.

В качестве опорных конструкций и крепежных изделий для установки троллеев, шинопроводов, лотков, коробов, навесных щитков и постов управления, защитно-пусковой аппаратуры и светильников следует применять изделия заводского изготовления, имеющие повышенную монтажную готовность (с защитным покрытием, приспособленные для скрепления без сварки и не требующие больших трудозатрат на механическую обработку).

Крепление опорных конструкций следует выполнять сваркой к закладным деталям, предусмотренным в строительных элементах, или крепежными изделиями (дюбелями, штырями, шпильками и т.п.). Способ крепления должен быть указан в рабочих чертежах.

Цветовое обозначение токоведущих шин распределительных устройств, троллеев, шин заземления, проводов ВЛ следует выполнять в соответствии с указаниями, приведенными в проекте.

3.7. При производстве работ электромонтажная организация должна выполнять требования ГОСТ 12.1.004-76 и Правил пожарной безопасности при производстве строительно-монтажных работ. При введении на объекте эксплуатационного режима обеспечение пожарной безопасности является обязанностью заказчика.

Контактные соединения

Разборные присоединения шин и жил проводов и кабелей к контактным выводам электрооборудования, установочным изделиям и шинопроводам должны удовлетворять требованиям ГОСТ 10434-82.

В местах присоединения жил проводов и кабелей следует предусматривать запас провода или кабеля, обеспечивающий возможность повторного присоединения.

Места соединений и ответвлений должны быть доступны для осмотра и ремонта. Изоляция соединений и ответвлений должна быть равноценна изоляции жил соединяемых проводов и кабелей.

В местах соединений и ответвлений провода и кабели не должны испытывать механических усилий.

Оконцевание жилы кабеля с бумажной пропитанной изоляцией следует выполнять уплотненной токоведущей арматурой (наконечниками), не допускающей вытекания кабельного пропиточного состава.

Соединения и ответвления шин следует выполнять, как правило, неразборными (при помощи сварки).

В местах, где требуется наличие разборных стыков, соединения шин должны быть выполнены болтами или сжимными плитами. Число разборных стыков должно быть минимальным.

Соединения проводов ВЛ напряжением до 20 кВ следует выполнять:

- а) в петлях опор анкерно-углового типа: зажимами анкерными и ответвительными клиновыми; соединительными овальными, монтируемыми методом обжатия; петлевыми плашечными, при помощи термитных патронов, а проводов разных марок и сечений аппаратными прессуемыми зажимами;
- б) в пролетах: соединительными овальными зажимами, монтируемыми методом скручивания.

Однопроволочные провода допускается соединять путем скрутки. Сварка встык однопроволочных проводов не допускается.

Соединение проводов ВЛ напряжением выше 20 кВ необходимо выполнять:

- а) в шлейфах опор анкерно-углового типа:
- сталеалюминиевых проводов сечением 240 м м и выше при помощи термитных патронов и опрессовкой с помощью энергии взрыва;
- сталеалюминиевых проводов сечением 500 мм и выше при помощи прессуемых соединителей;
 - проводов разных марок болтовыми зажимами;
- проводов из алюминиевого сплава зажимами петлевыми плашечными или соединителями овальными, монтируемыми методом обжатия;
 - б) в пролетах:
- сталеалюминиевых проводов сечением до 185 мм и стальных канатов сечением до 50 мм овальными соединителями, монтируемыми методом скручивания;
- стальных канатов сечением 70-95 мм овальными соединителями, монтируемыми методом обжатия или опрессования с дополнительной термитной сваркой концов;
- сталеалюминиевых проводов сечением 240-400 мм соединительными зажимами, монтируемыми методом сплошного опрессования и опрессования с помощью энергии взрыва;
- сталеалюминиевых проводов сечением 500 мм и более соединительными зажимами, монтируемыми методом сплошного опрессования.

Соединение медных и сталемедных канатов сечением 35-120 мм, а также алюминиевых проводов сечением 120-185 мм при монтаже контактных сетей следует выполнять овальными соединителями, стальных канатов - зажимами с соединительной планкой между ними. Сталемедные канаты сечением 50-95 мм допускается стыковать клиновыми зажимами с соединительной планкой между ними.

Электропроводки

Правила настоящего подраздела распространяются на монтаж электропроводок силовых, осветительных и вторичных цепей напряжением до 1000 В переменного и постоянного тока, прокладываемых внутри и вне зданий и сооружений изолированными установочными проводами всех сечений и небронированными кабелями с резиновой или пластмассовой изоляцией сечением до 16 мм.

Монтаж контрольных кабелей следует выполнять с учетом требований пп.3.56-3.106.

Проходы небронированных кабелей, защищенных и незащищенных проводов через несгораемые стены (перегородки) и междуэтажные перекрытия должны быть выполнены в отрезках труб, или в коробах, или проемах, а через сгораемые - в отрезках стальных труб.

Проемы в стенах и перекрытиях должны иметь обрамление, исключающее их разрушение в процессе эксплуатации. В местах прохода проводов и кабелей через стены, перекрытия или их выхода наружу следует заделывать зазоры между проводами, кабелями и трубой (коробом, проемом) легко удаляемой массой из несгораемого материала.

Уплотнение следует выполнять с каждой стороны трубы (короба и т.п.).

При открытой прокладке неметаллических труб заделка мест их прохода через противопожарные преграды должна быть произведена несгораемыми материалами непосредственно после прокладки кабелей или проводов в трубы.

Заделка зазоров между трубами (коробом, проемом) и строительной конструкцией (см. п.2.25), а также между проводами и кабелями, проложенными в трубах (коробах, проемах), легко удаляемой массой из несгораемого материала должна обеспечивать огнестойкость, соответствующую огнестойкости строительной конструкции.

Прокладка проводов и кабелей на лотках и в коробах

Конструкция и степень защиты лотков и коробов, а также способ прокладки проводов и кабелей на лотках и в коробах (россыпью, пучками, многослойно и т.п.) должны быть указаны в проекте.

Способ установки коробов не должен допускать скопления в них влаги. Применяемые короба для открытых электропроводок должны иметь, как правило, съемные или открывающиеся крышки.

При скрытых прокладках следует применять глухие короба.

Провода и кабели, прокладываемые в коробах и на лотках, должны иметь маркировку в начале и конце лотков и коробов, а также в местах подключения их к электрооборудованию, а кабели, кроме того, также на поворотах трассы и на ответвлениях.

Крепления незащищенных проводов и кабелей с металлической оболочкой металлическими скобами или бандажами должны быть выполнены с прокладками из эластичных изоляционных материалов.

Прокладка проводов на изолирующих опорах

При прокладке на изолирующих опорах соединение или ответвление проводов следует выполнять непосредственно у изолятора, клицы, ролика или на них.

Расстояния между точками крепления вдоль трассы и между осями параллельно проложенных незащищенных изолированных проводов на изолирующих опорах должны быть указаны в проекте.

Крюки и кронштейны с изоляторами должны быть закреплены только в основном материале стен, а ролики и клицы для проводов сечением до 4 мм включ. могут быть закреплены на штукатурке или на обшивке деревянных зданий. Изоляторы на крюках должны быть надежно закреплены.

При креплении роликов глухарями под головки глухарей должны быть подложены металлические и эластичные шайбы, а при креплении роликов на металле под их основания должны быть подложены эластичные шайбы.

Прокладка проводов и кабелей на стальном канате

Провода и кабели (в поливинилхлоридной, найритовой, свинцовой или алюминиевой оболочках с резиновой или поливинилхлоридной изоляцией) надлежит закреплять к несущему стальному канату или к проволоке бандажами или клицами, устанавливаемыми на расстояниях не более 0,5 м друг от друга.

Кабели и провода, проложенные на канатах, в местах перехода их с каната на конструкции зданий должны быть разгружены от механических усилий.

Вертикальные подвески проводки на стальном канате должны быть расположены, как правило, в местах установки ответвительных коробок, штепсельных разъемов, светильников и т.п. Стрела провеса каната в пролетах между креплениями должна быть в пределах 1/40-1/60 длины пролета. Сращивание канатов в пролете между концевыми креплениями не допускается.

Для предотвращения раскачивания осветительных электропроводок на стальном канате должны быть установлены растяжки. Число растяжек должно быть определено в рабочих чертежах.

Для ответвлений от специальных тросовых проводов надлежит использовать специальные коробки, обеспечивающие создание петли троса, а также запаса жил, необходимого для подсоединения отходящей линии с помощью ответвительных сжимов без разрезания магистрали.

Прокладка установочных проводов по строительным основаниям и внутри основных строительных конструкций

Открытая и скрытая прокладка установочных проводов не допускается при температуре ниже минус 15° С.

При скрытой прокладке проводов под слоем штукатурки или в тонкостенных (до 80 мм) перегородках провода должны быть проложены параллельно архитектурно-строительным линиям. Расстояние горизонтально проложенных проводов от плит перекрытия не должно превышать 150 мм. В строительных конструкциях толщиной свыше 80 мм провода должны быть проложены по кратчайшим трассам.

Все соединения и ответвления установочных проводов должны быть выполнены сваркой, опрессовкой в гильзах или с помощью зажимов в ответвительных коробках.

Металлические ответвительные коробки в местах ввода в них проводов должны иметь втулки из изолирующих материалов. Допускается вместо втулок применять отрезки поливинилхлоридной трубки. В сухих помещениях допускается размещать ответвления проводов в гнездах и нишах стен и перекрытий, а также в пустотах перекрытий. Стенки гнезд и ниш должны быть гладкими, ответвления проводов, расположенные в гнездах и нишах, должны быть закрыты крышками из несгораемого материала.

Крепление плоских проводов при скрытой прокладке должно обеспечивать плотное прилегание их к строительным основаниям. При этом расстояния между точками крепления должны составлять:

- а) при прокладке на горизонтальных и вертикальных участках заштукатуриваемых пучков проводов не более 0,5 м; одиночных проводов 0,9 м;
 - б) при покрытии проводов сухой штукатуркой до 1,2 м.

Устройство плинтусной проводки должно обеспечивать раздельную прокладку силовых и слаботочных проводов.

Крепление плинтуса должно обеспечивать плотное его прилегание к строительным основаниям, при этом усилие на отрыв должно быть не менее 190 H, а зазор между плинтусом, стеной и полом - не более 2 мм. Плинтусы следует выполнять из несгораемых и трудносгораемых материалов, обладающих электроизоляционными свойствами.

В соответствии с ГОСТ 12504-80, ГОСТ 12767-80 и ГОСТ 9574-80 в панелях должны быть предусмотрены внутренние каналы или замоноличенные пластмассовые трубы и закладные элементы для скрытой сменяемой электропроводки, гнезда и отверстия для установки распаечных коробок, выключателей и штепсельных розеток.

Отверстия, предназначенные для электроустановочных изделий, и протяжные ниши в стеновых панелях смежных квартир не должны быть сквозными. Если по условиям технологии изготовления отверстия не представляется возможным выполнить несквозными, то в них должны быть заложены звукоизолирующие прокладки из винипора или другого несгораемого звукоизолирующего материала.

Установку труб и коробок в арматурных каркасах следует выполнять на кондукторах по рабочим чертежам, определяющим места крепления установочных, ответвительных и потолочных коробок. Для обеспечения расположения коробок после формования заподлицо с поверхностью панелей их следует крепить к арматурному каркасу таким образом, чтобы при блочной установке коробок высота блока соответствовала толщине панели, а при раздельной установке коробок для исключения их смещения внутрь панелей лицевая поверхность коробок должна выступать за плоскость арматурного каркаса на 30-35 мм.

Каналы должны на всем протяжении иметь гладкую поверхность без натеков и острых углов. Толщина защитного слоя над каналом (трубой) должна быть не менее 10 мм.

Длина каналов между протяжными нишами или коробками должна быть не более 8 м.

Прокладка проводов и кабелей в стальных трубах

Стальные трубы допускается применять для электропроводок только в специально обоснованных в проекте случаях в соответствии с требованиями нормативных документов, утвержденных в порядке, установленном СНиП 1.01.01-82.

Применяемые для электропроводок стальные трубы должны иметь внутреннюю поверхность, исключающую повреждение изоляции проводов при их затягивании в трубу и антикоррозионное покрытие наружной поверхности. Для труб, замоноличиваемых в строительные конструкции, наружное антикоррозионное покрытие не требуется. Трубы, прокладываемые в помещениях с химически активной средой, внутри и снаружи должны иметь антикоррозионное покрытие, стойкое в условиях данной среды. В местах выхода проводов из стальных труб следует устанавливать изоляционные втулки.

Стальные трубы для электропроводки, укладываемые в фундаментах под технологическое оборудование, до бетонирования фундаментов должны быть закреплены на опорных конструкциях или на арматуре. В местах выхода труб из фундамента в грунт должны быть осуществлены мероприятия, предусматриваемые в рабочих чертежах, против среза труб при осадках грунта или фундамента.

В местах пересечения трубами температурных и осадочных швов должны быть выполнены компенсирующие устройства в соответствии с указаниями в рабочих чертежах.

Расстояния между точками крепления открыто проложенных стальных труб не должны превышать величин, указанных в табл.1 СНиП 3.05.06-85. Крепление стальных труб электропроводки непосредственно к технологическим трубопроводам, а также их приварка непосредственно к различным конструкциям не допускаются.

При изгибании труб следует, как правило, применять нормализованные углы поворота 90, 120 и 135° и нормализованные радиусы изгиба 400, 800 и 1000 мм. Радиус изгиба 400 мм следует применять для труб, прокладываемых в перекрытиях, и для вертикальных выходов; 800 и 1000 мм - при прокладке труб в монолитных фундаментах и при прокладке в них кабелей с однопроволочными жилами. При заготовке пакетов и блоков труб следует также придерживаться указанных нормализованных углов и радиусов изгиба.

Закрепление проводов следует выполнять с помощью клиц или зажимов в протяжных или ответвительных коробках либо на концах труб.

Трубы при скрытой прокладке в полу должны быть заглублены не менее чем на 20 мм и защищены слоем цементного раствора. В полу разрешается устанавливать ответвительные и протяжные коробки, например для модульных проводок.

Расстояния между протяжными коробками (ящиками) не должны превышать, м: на прямых участках 75, при одном изгибе трубы - 50, при двух - 40, при трех - 20.

Провода и кабели в трубах должны лежать свободно, без натяжения. Диаметр труб следует принимать в соответствии с указаниями в рабочих чертежах.

Прокладка проводов и кабелей в неметаллических трубах

Прокладку неметаллических (пластмассовых) труб для затяжки в них проводов и кабелей необходимо производить в соответствии с рабочими чертежами при температуре воздуха не ниже минус 20 и не выше плюс 60 °C.

В фундаментах пластмассовые трубы (как правило, полиэтиленовые) должны быть уложены только на горизонтально утрамбованный грунт или слой бетона.

В фундаментах глубиной до 2 м допускается прокладка поливинилхлоридных труб. При этом должны быть приняты меры против механических повреждений их при бетонировании и обратной засыпке грунта.

Крепление прокладываемых открыто неметаллических труб должно допускать их свободное перемещение (подвижное крепление) при линейном расширении или сжатии от изменения температуры окружающей среды. Расстояния между точками установки подвижных креплений должны соответствовать указанным в табл.2 СНиП 3.05.06-85.

Толщина бетонного раствора над трубами (одиночными и блоками) при их замоноличивании в подготовках полов должна быть не менее 20 мм. В местах пересечения трубных трасс защитный слой бетонного раствора между трубами не требуется. При этом глубина заложения верхнего ряда должна соответствовать приведенным выше требованиям. Если при пересечении труб невозможно обеспечить необходимую глубину заложения труб, следует предусмотреть их защиту от механических повреждений путем установки металлических гильз, кожухов или иных средств в соответствии с указаниями в рабочих чертежах.

Выполнение защиты от механических повреждений в местах пересечения проложенных в полу электропроводок в пластмассовых трубах с трассами внутрицехового транспорта при слое бетона 100 мм и более не требуется. Выход пластмассовых труб из фундаментов, подливок полов и других строительных конструкций должен быть выполнен отрезками или коленами поливинилхлоридных труб, а при возможности механических повреждений - отрезками из тонкостенных стальных труб.

При выходе поливинилхлоридных труб на стены в местах возможного механического повреждения их следует защищать стальными конструкциями на высоту до 1,5 м или выполнять выход из стены отрезками тонкостенных стальных труб.

Соединение пластмассовых труб должно быть выполнено:

- полиэтиленовых плотной посадкой с помощью муфт, горячей обсадкой в раструб, муфтами из термоусаживаемых материалов, сваркой;
- поливинилхлоридных плотной посадкой в раструб или с помощью муфт. Допускается соединение склеиванием.

Технология выполнения работ по устройству автоматизированных систем локального управления

Технология выполнения работ по устройству автоматизированных систем локального управления включает в себя требования к производству работ и правила их выполнения.

Автоматизированные системы локального управления в зданиях и сооружениях обеспечивают контроль и поддержание заданных рабочей документацией параметров технологического процесса и состоят из системы первичной автоматики, модуля управления и системы исполнительных механизмов.

Работы по устройству автоматизированных систем локального управления включают следующие этапы:

- подготовительные работы;
- производство монтажных работ;
- пусконаладочные работы;
- сдача систем в эксплуатацию.

При выполнении работ по монтажу и пусконаладке автоматизированных систем локального управления должны соблюдаться требования настоящего стандарта, СП 48.13330, СП 68.13330, СП 77.13330, СНиП 12-04-2002.

Работы по монтажу автоматизированных систем локального управления должны производиться в соответствии с утвержденной рабочей документацией, проектом производства работ, а также технической документацией предприятий-изготовителей, согласно СП 75.13330 (пункт 1.2).

Монтаж приборов и средств автоматизации при узловом методе строительства и комплектно-блочном методе монтажа технологического оборудования и трубопроводов, согласно СП 75.13330 (пункт 1.3), должен осуществляться в процессе укрупненной сборки технологических линий, узлов и блоков.

При монтаже и пусконаладке автоматизированных систем локального управления следует оформлять документацию в соответствии с перечнем, приведенным в приложении А.

Подготовительные работы включают:

- приемку документации;
- разработку проекта производства работ;
- приемку строительной и технологической готовности объекта под монтаж;
- приемку приборов и средств автоматизации, материалов и изделий под монтаж.

На этапе подготовительных работ изучается проектная и рабочая документация, а также техническая документация предприятий - изготовителей технических средств систем автоматизации.

Рабочая документация, принимаемая к производству работ, должна быть утверждена заказчиком со штампом «в производство работ».

Монтажная организация должна проверить виды и комплектность принимаемой РД.

Минимальный объем принимаемой РД должен включать (по ГОСТ 34.201):

- схему структурную комплекса технических средств;
- схему автоматизации;
- схемы принципиальные питания, управления, сигнализации и измерения;
- схемы соединения внешних проводок;
- схемы подключения внешних проводок;
- план расположения оборудования и проводок;
- чертежи общего вида модулей управления;
- общее описание системы;
- программу и методику испытаний (компонентов, комплексов средств автоматизации, подсистемы, систем).

Количество экземпляров принимаемых ПД и РД определяется договором.

Окончанием приемки документации является оформление акта (приложение А, пункт 1).

Проект производства работ разрабатывается монтажной организацией совместно с заказчиком до начала монтажных работ с учетом требований СНиП 12-01-2004 и раздела 4 СП 12-136-2002 [2].

Минимальный состав ППР:

- календарный план производства работ АС на объекте;
- график поступления на объект изделий, материалов и оборудования АС;
- график движения рабочих кадров по объекту;
- график движения основных строительных машин по объекту;
- технологические карты на выполнение работ;
- пояснительная записка, содержащая решения по прокладке временных сетей водоснабжения, теплоснабжения, электроснабжения и освещения строительной площадки и рабочих мест;
 - решения по производству работ, включая зимнее время;
 - потребность в энергоресурсах;
- мероприятия по обеспечению сохранности материалов, изделий, конструкций и оборудования на строительной площадке;
 - мероприятия по охране труда и безопасности в строительстве;
 - технико-экономические показатели.
- В процессе приемки строительной и технологической готовности объекта под монтаж в зданиях или отдельных помещениях проверяются:
 - строительная готовность помещений;
 - готовность инженерного оборудования к монтажу средств автоматизации.

Допускается поэтапная приемка помещений, при которой обеспечивается возможность выполнения законченного комплекса работ по монтажу автоматизированных систем локального управления.

При строительной готовности помещений должны быть:

- нанесены разбивочные оси и рабочие высотные отметки;
- установлены закладные конструкции для размещения технических средств автоматизированных систем локального управления;
- выполнены каналы, тоннели, ниши, борозды, закладные трубы для скрытой проводки, проемы для прохода трубных и электрических проводок с установкой в них необходимых закладных конструкций (обрамления, гильзы, патрубки и т.п.);
 - установлены площадки для монтажа и обслуживания приборов и средств автоматизации;
- оставлены временные монтажные проемы для перемещения крупногабаритных узлов и блоков;
- предусмотрены мероприятия и средства, обеспечивающие сохранность технических средств автоматизированных систем локального управления;
- завершены отделочные работы, произведена разборка опалубок, строительных лесов и подмостей, не требующихся для монтажа автоматизированных систем локального управления, а также убран мусор.

Специальные помещения должны быть оборудованы системами отопления, вентиляции, освещения, при необходимости системами кондиционирования, смонтированными по постоянной схеме, иметь остекление и дверные запоры. В помещениях должна поддерживаться температура не ниже $5\,^{\circ}\mathrm{C}$.

Окраска специальных помещений меловой побелкой запрещается.

После приемки строительной готовности помещений под монтаж в них не допускается производство строительных работ и монтаж санитарно-технических систем.

К началу монтажа автоматизированных систем локального управления на инженерном оборудовании, на трубопроводах инженерных систем должны быть установлены:

- закладные и защитные конструкции для монтажа первичных приборов;
- закладные конструкции отборных устройств давления, расхода и уровня, заканчивающиеся запорной арматурой;
- приборы и средства автоматизации, встраиваемые в трубопроводы, воздуховоды и аппараты (сужающие устройства, объемные и скоростные счетчики, ротамеры, проточные датчики расходомеров и концентратомеров, уровнемеры всех типов, регулирующие органы и т.п.).

При готовности инженерного оборудования к монтажу средств автоматизации должны быть:

- проложены магистральные и разводящие сети для обеспечения сварочного оборудования и инструмента электроэнергией;
- выполнена заземляющая сеть, предназначенная для защиты от помех приборов и средств автоматизации;
 - выполнен монтаж систем автоматического пожаротушения.

Заземляющая сеть, предназначенная для защиты от помех приборов и средств автоматизации, должна отвечать требованиям предприятий - изготовителей этих технических средств.

Приемка строительной и технологической готовности объекта под монтаж оформляется актом.

Приемка приборов, средств автоматизации, материалов и изделий под монтаж, а также технической документации осуществляется в соответствии с условиями договора.

Комплектность и количество средств автоматизации должно соответствовать РД. Для измерительных приборов, сигнализаторов, преобразователей должно быть проверено соответствие их основных технических характеристик (пределы и диапазоны измерений, шкалы, величины выходных сигналов и др.) требованиям РД.

Принимаемые приборы, средства автоматизации, материалы и изделия должны соответствовать техническим условиям и в необходимых случаях иметь соответствующие сертификаты, технические паспорта или другие документы, удостоверяющие их качество.

При приемке приборов, средств автоматизации, материалов и изделий проверяют комплектность, отсутствие повреждений и дефектов, сохранность окраски и специальных

покрытий, сохранность пломб, наличие специального инструмента и приспособлений, поставляемых комплектно предприятиями-изготовителями.

Устранение дефектов оборудования, обнаруженных в процессе приемки, осуществляют в соответствии с договором.

Средства автоматизации должны приниматься в комплекте с инструкциями по монтажу и изделиями для его крепления.

Приемка модулей управления осуществляется в комплекте с технической документацией предприятий-изготовителей. При этом необходимо проверить в ее составе наличие:

- чертежа общего вида модуля управления;
- электрических принципиальных схем;
- схем подключения внешних подводок.

Детали трубных проводок на давление свыше 10 МПа принимаются в виде подготовленных к монтажу изделий (трубы, фасонные части к ним, соединительные детали, метизы, арматура и т.п.) или собранными в сборочные единицы, укомплектованными по РД. Отверстия труб должны быть закрыты. Изделия и сборочные единицы, имеющие сварные швы, должны приниматься по акту или другим документам, подтверждающим качество сварных соединений в соответствии с ПБ 03-585-03*1.

При приемке барабанов с электрическим кабелем проверяют внешнее состояние барабанов и заделку концов кабеля на них.

По окончании приемки приборов, средств автоматизации, материалов и изделий оформляется акт сдачи-приемки в произвольной форме. К акту прикладывают техническую документацию предприятий-изготовителей (паспорта на оборудование, сертификаты на материалы и т.п.), подтверждающую качество их изготовления.

Монтажные работы

Монтаж автоматизированных систем локального управления должен производиться в соответствии с РД с учетом требований, предусмотренных техническими условиями или технической документацией предприятий-изготовителей.

Работы по монтажу автоматизированных систем локального управления должны осуществляться в две стадии.

Первая стадия состоит из:

- а) подготовительных работ, выполняемых вне зоны монтажа:
- заготовка монтажных конструкций для установки приборов и прокладки проводок;
- сборка укрупненных узлов;
- заготовка узлов трубных проводок;
- обезжиривание труб, арматуры и соединителей для кислородных трубных проводок;
- б) подготовительных работ непосредственно на объекте:
- закладка труб или глухих коробов для скрытых проводок в фундаменты оборудования, а также в стены, полы и перекрытия помещений;
- разметка трасс и установка опорных и несущих конструкций для прокладки проводок, а также для установки исполнительных механизмов, приборов в соответствии с РД;
- прогрев кабеля на барабане для дальнейшей его прокладки в соответствии с РД при отрицательных температурах;
- расстановка механизмов и приспособлений для выполнения работ по прокладке электропроводок и установке оборудования в проектное положение.

Вторая стадия состоит из:

- прокладки проводок по установленным конструкциям;
- установки приборов и средств автоматизации;
- подключения трубных и электрических проводок;
- проверки правильности смонтированных приборов и средств автоматизации на соответствие РД.

Результаты освидетельствования скрытых работ оформляются актом (приложение А, пункт 4).

Смонтированные средства автоматизации, металлические трубные проводки должны быть присоединены к заземляющей сети в соответствии с требованиями РД и технической документации предприятий-изготовителей.

При возникновении вынужденных перерывов в работах по причинам, не зависящим от монтажной организации, составляется акт, к которому прикладываются ведомости выполненных работ (приложение A, пункт 3).

Ответственность за сохранность смонтированных средств автоматизации несет заказчик в соответствии с договором.

Монтаж электропроводок

Монтаж электропроводок автоматизированных систем локального управления должен выполняться в соответствии с требованиями СП 76.13330, СП 77.13330 и настоящего стандарта.

Кабели и провода, подведенные к средствам автоматизации, подключают через присоединительные устройства: винтовые зажимы, штепсельные разъемы, низкочастотные соединители (например, кабельные вилки и розетки и др.).

Жилы кабелей и проводов, подключаемые к средствам автоматизации, должны иметь запас по длине, достаточный для их двукратного подключения.

Присоединение однопроволочных медных жил кабелей и проводов сечением 0,50 и 0,75 мм и многопроволочных медных жил сечением 0,35; 0,50 и 0,75 мм к приборам, аппаратам, сборкам зажимов выполняется пайкой, если конструкция их выводов позволяет это осуществить (согласно СП 77.13330). Если медные жилы указанных сечений крепятся к аппаратам, имеющим выводы для подсоединения под винт или болт, то жилы этих кабелей и проводов должны оконцовываться наконечником под обжим.

Однопроволочные медные жилы кабелей и проводов сечением 1,0; 1,5; 2,5; 4,0 мм могут присоединяться непосредственно к аппаратам под винт или болт, а многожильные провода таких же или больших сечений должны подсоединяться с помощью наконечников или муфт.

Каждая жила кабеля или провод на месте присоединения к аппарату или устройству должны быть пронумерованы согласно номеру электрической цепи в соответствии с монтажной схемой, представленной в РД.

Применение алюминиевых кабелей и проводов в автоматизированных системах локального управления запрещено.

Присоединение жил кабелей и проводов к средствам автоматизации, имеющим выводные устройства в виде штепсельных разъемов, должно выполняться через переходные участки (распределительные коробки, муфты) с использованием гибких медных кабелей или проводов.

Разборные и неразборные соединения медных жил кабелей и проводов с выводами и зажимами приборов, аппаратов, сборок зажимов выполняют в соответствии с требованиями ГОСТ 10434.

Соединение стальных защитных труб между собой, с протяжными коробками, коробами и т.д. в помещениях всех классов следует осуществлять стандартными резьбовыми соединениями.

В помещениях всех категорий, кроме взрыво- и пожароопасных зон, допускается производить соединение стальных тонкостенных защитных труб гильзами из листовой стали или стальными трубами большего диаметра с последующей обваркой по всему периметру мест соединения, при этом не допускается прожог труб.

Средства автоматизации, элементы проводки монтажных конструкций заземляются согласно РД.

Заземляющие и специальные защитные проводники средств автоматизации не должны использоваться в качестве нулевого рабочего проводника (при электропитании по схеме «фазануль»).

Специальные защитные проводники, используемые для защиты информационных каналов от электромагнитных помех, использовать в качестве защитных проводников от поражения электрическим током не допускается.

Заземление средств автоматизации и электропроводок автоматизированных систем локального управления должно осуществляться медными гибкими проводниками, при этом для заземления экранов и брони контрольных кабелей проводники типа П-проводники припаивают к брони или экрану кабельной линии.

Сечение заземляющих медных проводников должно быть не менее 4 мм.

Сопротивление заземляющих устройств автоматизированных систем локального управления должно быть не более 4 Ом.

СНиП 3.05.06-85 «Электротехнические устройства» п.1.2-3.5

СТО НОСТРОЙ 2.15.8-2011 «Инженерные сети зданий и сооружений внутренние. Устройство систем локального управления. Монтаж, испытания и наладка. Требования, правила и методы контроля» п.5.1-7.1, п. 7.3

5.2 Устройство наружных электрических сетей и линий связи

Настоящие правила следует соблюдать при монтаже силовых кабельных линий напряжением до 220 кВ.

Монтаж кабельных линий метрополитена, шахт, рудников следует выполнять с учетом требований ВСН, утвержденных в порядке, установленном СНиП 1.01.01-82.

Наименьшие допустимые радиусы изгиба кабелей и допустимая разность уровней между высшей и низшей точками расположения кабелей с бумажной пропитанной изоляцией на трассе должны соответствовать требованиям ГОСТ 24183-80*, ГОСТ 16441-78, ГОСТ 24334-80, ГОСТ 1508-78* Е и утвержденным техническим условиям.

При прокладке кабелей следует принимать меры по защите их от механического повреждения. Усилия тяжения кабелей до 35 кВ должны быть в пределах величин, приведенных в табл.3. Лебедки и другие тяговые средства необходимо оборудовать регулируемыми ограничивающими устройствами для отключения тяжения при появлении усилий выше допустимых. Протяжные устройства, обжимающие кабель (приводные ролики), а также поворотные устройства должны исключать возможность деформации кабеля.

Для кабелей напряжением 110-220 кВ допустимые усилия тяжения приведены в п.3.100.

Кабели следует укладывать с запасом по длине 1-2%. В траншеях и на сплошных поверхностях внутри зданий и сооружений запас достигается путем укладки кабеля «змейкой», а по кабельным конструкциям (кронштейнам) этот запас используют для образования стрелы провеса.

Укладывать запас кабеля в виде колец (витков) не допускается.

Кабели, прокладываемые горизонтально по конструкциям, стенам, перекрытиям, фермам и т.п., следует жестко закреплять в конечных точках, непосредственно у концевых муфт, на поворотах трассы, с обеих сторон изгибов и у соединительных и стопорных муфт.

Кабели, прокладываемые вертикально по конструкциям и стенам, должны быть закреплены на каждой кабельной конструкции.

Расстояния между опорными конструкциями принимаются в соответствии с рабочими чертежами. При прокладке силовых и контрольных кабелей с алюминиевой оболочкой на опорных конструкциях с расстоянием 6000 мм должен быть обеспечен остаточный прогиб в середине пролета: 250-300 мм при прокладке на эстакадах и галереях, не менее 100-150 мм в остальных кабельных сооружениях.

Конструкции, на которые укладывают небронированные кабели, должны иметь исполнение, исключающее возможность механического повреждения оболочек кабелей.

В местах жесткого крепления небронированных кабелей со свинцовой или алюминиевой оболочкой на конструкциях должны быть проложены прокладки из эластичного материала (например, листовая резина, листовой поливинилхлорид); небронированные кабели с пластмассовой оболочкой или пластмассовым шлангом, а также бронированные кабели допускается крепить к конструкциям скобами (хомутами) без прокладок.

Бронированные и небронированные кабели внутри помещений и снаружи в местах, где возможны механические повреждения (передвижение автотранспорта, грузов и механизмов, доступность для неквалифицированного персонала), должны быть защищены до безопасной высоты, но не менее 2 м от уровня земли или пола и на глубине 0,3 м в земле.

Концы всех кабелей, у которых в процессе прокладки нарушена герметизация, должны быть временно загерметизированы до монтажа соединительных и концевых муфт.

Проходы кабелей через стены, перегородки и перекрытия в производственных помещениях и кабельных сооружениях должны быть осуществлены через отрезки неметаллических труб (асбестовых безнапорных, пластмассовых и т.п.), отфактурованные отверстия в железобетонных конструкциях или открытые проемы. Зазоры в отрезках труб, отверстиях и проемы после прокладки кабелей должны быть заделаны несгораемым материалом, например цементом с песком по объему 1:10, глиной с песком - 1:3, глиной с цементом и песком - 1,5:1:11, перлитом вспученным со строительным гипсом - 1:2 и т.п., по всей толщине стены или перегородки.

Зазоры в проходах через стены допускается не заделывать, если эти стены не являются

противопожарными преградами.

Траншея перед прокладкой кабеля должна быть осмотрена для выявления мест на трассе, содержащих вещества, разрушительно действующие на металлический покров и оболочку кабеля (солончаки, известь, вода, насыпной грунт, содержащий шлак или строительный мусор, участки, расположенные ближе 2 м от выгребных и мусорных ям, и т.п.). При невозможности обхода этих мест кабель должен быть проложен в чистом нейтральном грунте в безнапорных асбестоцементных трубах, покрытых снаружи и внутри битумным составом, и т.п. При засыпке кабеля нейтральным грунтом траншея должна быть дополнительно расширена с обеих сторон на 0,5-0,6 м и углублена на 0,3-0,4 м.

Вводы кабелей в здания, кабельные сооружения и другие помещения должны быть выполнены в асбестоцементных безнапорных трубах в отфактурованных отверстиях железобетонных конструкций. Концы труб должны выступать из стены здания в траншею, а при наличии отмостки - за линию последней не менее чем на 0,6 м и иметь уклон в сторону траншеи.

При прокладке нескольких кабелей в траншее концы кабелей, предназначенные для последующего монтажа соединительных и стопорных муфт, следует располагать со сдвигом мест соединения не менее чем на 2 м. При этом должен быть оставлен запас кабеля длиной, необходимой для проверки изоляции на влажность и монтажа муфты, а также укладки дуги компенсатора (длиной на каждом конце не менее 350 мм для кабелей напряжением до 10 кВ и не менее 400 мм для кабелей напряжением 20 и 35 кВ).

В стесненных условиях при больших потоках кабелей допускается располагать компенсаторы в вертикальной плоскости ниже уровня прокладки кабелей. Муфта при этом остается на уровне прокладки кабелей.

Проложенный в траншее кабель должен быть присыпан первым слоем земли, уложена механическая защита или сигнальная лента, после чего представителями электромонтажной и строительной организаций совместно с представителем заказчика должен быть произведен осмотр трассы с составлением акта на скрытые работы.

Траншея должна быть окончательно засыпана и утрамбована после монтажа соединительных муфт и испытания линии повышенным напряжением.

Засыпка траншеи комьями мерзлой земли, грунтом, содержащим камни, куски металла и т.п., не допускается.

Бестраншейная прокладка с самоходного или передвигаемого тяговыми механизмами ножевого кабелеукладчика допускается для 1-2 бронированных кабелей напряжением до 10 кВ со свинцовой или алюминиевой оболочкой на кабельных трассах, удаленных от инженерных сооружений. В городских электросетях и на промышленных предприятиях бестраншейная прокладка допускается только на протяженных участках при отсутствии на трассе подземных коммуникаций, пересечений с инженерными сооружениями, естественных препятствий и твердых покрытий.

При прокладке трассы кабельной линии в незастроенной местности по всей трассе должны быть установлены опознавательные знаки на столбиках из бетона или на специальных табличках-указателях, которые размещаются на поворотах трассы, в местах расположения соединительных муфт, с обеих сторон пересечений с дорогами и подземными сооружениями, у вводов в здания и через каждые 100 м на прямых участках.

На пахотных землях опознавательные знаки должны устанавливаться не реже чем через 500 м.

Прокладка в блочной канализации

Общая длина канала блока по условиям предельно допустимых усилий тяжения для небронированных кабелей со свинцовой оболочкой и медными жилами не должна превышать следующих значений:

Сечение кабеля, мм - до 3х50 3х70 3х95 и выше

Предельная длина, м - 145 115 108

Для небронированных кабелей с алюминиевыми жилами сечением 95 мм² и выше в

свинцовой или пластмассовой оболочке длина канала не должна превышать 150 м.

Предельно допустимые усилия тяжения небронированных кабелей со свинцовой оболочкой и с медными или алюминиевыми жилами при креплении тягового каната за жилы, а также требуемые усилия на протягивание 100 м кабеля через блочную канализацию приведены в табл.4 СНиП 3.05.06-85.

Для небронированных кабелей с пластмассовой оболочкой предельно допустимые усилия тяжения следует принимать по табл.4 с поправочными коэффициентами для жил:

- -мелных-0.7
- -из твердого алюминия-0,5
- **-**мягкого-0,25

Прокладка в кабельных сооружениях и производственных помещениях

При прокладке в кабельных сооружениях, коллекторах и производственных помещениях кабели не должны иметь наружных защитных покровов из горючих материалов. Металлические оболочки и броня кабеля, имеющие несгораемое антикоррозионное (например, гальваническое) покрытие, выполненное на предприятии-изготовителе, не подлежат окраске после монтажа.

Кабели в кабельных сооружениях и коллекторах жилых кварталов следует прокладывать, как правило, целыми строительными длинами, избегая по возможности применения в них соединительных муфт.

Кабели, проложенные горизонтально по конструкциям на открытых эстакадах (кабельных и технологических), кроме крепления в местах согласно п.3.60, должны быть закреплены во избежание смещения под действием ветровых нагрузок на прямых горизонтальных участках трассы в соответствии с указаниями, приведенными в проекте.

Кабели в алюминиевой оболочке без наружного покрова при прокладке их по оштукатуренным и бетонным стенам, фермам и колоннам должны отстоять от поверхности строительных конструкций не менее чем на 25 мм. По оштукатуренным поверхностям указанных конструкций допускается прокладка таких кабелей без зазора.

Прокладка на стальном канате

Диаметр и марка каната, а также расстояние между анкерными и промежуточными креплениями каната определяются в рабочих чертежах. Стрела провеса каната после подвески кабелей должна быть в пределах 1/40-1/60 длины пролета. Расстояния между подвесками кабелей должны быть не более 800-1000 мм.

Анкерные концевые конструкции должны быть закреплены к колоннам или стенам здания. Крепление их к балкам и фермам не допускается.

Стальной канат и другие металлические части для прокладки кабелей на канате вне помещений независимо от наличия гальванического покрытия должны быть покрыты смазкой (например, солидолом). Внутри помещений стальной канат, имеющий гальваническое покрытие, должен быть покрыт смазкой только в тех случаях, когда он может подвергаться коррозии под действием агрессивной окружающей среды.

Прокладка в вечномерзлых грунтах

Глубина прокладки кабелей в вечномерзлых грунтах определяется в рабочих чертежах.

Местный грунт, используемый для обратной засыпки траншей, должен быть размельчен и уплотнен. Наличие в траншее льда и снега не допускается. Грунт для насыпи следует брать из мест, удаленных от оси трассы кабеля не менее чем на 5 м. Грунт в траншее после осадки должен быть покрыт мохоторфяным слоем.

В качестве дополнительных мер против возникновения морозобойных трещин следует применять:

- засыпку траншей с кабелем песчаным или гравийно-галечниковым грунтом;
- устройство водоотводных канав или прорезей глубиной до 0,6 м, располагаемых с обеих сторон трассы на расстоянии 2-3 м от ее оси;

- обсев кабельной трассы травами и обсадку кустарником.

Прокладка при низких температурах

Прокладка кабелей в холодное время года без предварительного подогрева допускается только в тех случаях, когда температура воздуха в течение 24 ч до начала работ не снижалась, хотя бы временно, ниже:

- $-0~^{\circ}\mathrm{C}$ для силовых бронированных и небронированных кабелей с бумажной изоляцией (вязкой, нестекающей и обедненно пропитанной) в свинцовой или алюминиевой оболочке;
 - минус 5 °C для маслонаполненных кабелей низкого и высокого давления;
- минус 7 °C для контрольных и силовых кабелей напряжением до 35 кВ с пластмассовой или резиновой изоляцией и оболочкой с волокнистыми материалами в защитном покрове, а также с броней из стальных лент или проволоки;
- минус 15 °C для контрольных и силовых кабелей напряжением до 10 кВ с поливинилхлоридной или резиновой изоляцией и оболочкой без волокнистых материалов в защитном покрове, а также с броней из профилированной стальной оцинкованной ленты;
- минус $20~^{\circ}\mathrm{C}$ для небронированных контрольных и силовых кабелей с полиэтиленовой изоляцией и оболочкой без волокнистых материалов в защитном покрове, а также с резиновой изоляцией в свинцовой оболочке.

Кратковременные в течение 2-3 ч понижения температуры (ночные заморозки) не должны приниматься во внимание при условии положительной температуры в предыдущий период времени.

При температуре воздуха ниже указанной в п.3.86 кабели должны предварительно подогреваться и укладываться в следующие сроки:

- -более 1 ч от 0 до минус 10 °C
- -40 мин минус 10 до минус 20 °C
- -30 мин 20 °С и ниже

Небронированные кабели с алюминиевой оболочкой в поливинилхлоридном шланге даже предварительно подогретые не допускается прокладывать при температуре окружающего воздуха ниже минус $20\,^{\circ}\mathrm{C}$.

При температуре окружающего воздуха ниже минус 40 °C прокладка кабелей всех марок не допускается.

Подогретый кабель при прокладке не должен подвергаться изгибу по радиусу меньше допустимого. Укладывать его в траншее змейкой необходимо с запасом по длине согласно п.3.59. Немедленно после прокладки кабель должен быть засыпан первым слоем разрыхленного грунта. Окончательно засыпать траншею грунтом и уплотнять засыпку следует после охлаждения кабеля.

Монтаж муфт кабелей напряжением до 35 кВ

Монтаж муфт силовых кабелей напряжением до 35 кВ и контрольных кабелей должен выполняться в соответствии с ведомственными технологическими инструкциями, утвержденными в установленном порядке.

Типы муфт и концевых заделок для силовых кабелей напряжением до 35 кВ с бумажной и пластмассовой изоляцией и контрольных кабелей, а также способы соединения и оконцевания жил кабелей должны быть указаны в проекте.

Расстояние в свету между корпусом муфты и ближайшим кабелем, проложенным в земле, должно быть не менее 250 мм. На крутонаклонных трассах (свыше 20° к горизонтали) устанавливать соединительные муфты, как правило, не следует. При необходимости установки на таких участках соединительных муфт они должны располагаться на горизонтальных площадках. Для обеспечения возможности повторного монтажа муфт в случае их повреждения с обеих сторон муфты должен быть оставлен запас кабеля в виде компенсатора (см. п.3.68).

Кабели в кабельных сооружениях следует прокладывать, как правило, без выполнения на них соединительных муфт. При необходимости применения на кабелях напряжением 6-35 кВ соединительных муфт каждая из них должна быть уложена на отдельной опорной конструкции и

заключена в противопожарный защитный кожух для локализации пожара (изготовленный в соответствии с утвержденной нормативно-технической документацией). Кроме того, соединительная муфта должна быть отделена от верхних и нижних кабелей несгораемыми защитными перегородками со степенью огнестойкости не менее 0,25 ч.

Соединительные муфты кабелей, прокладываемых в блоках, должны быть расположены в колодцах.

На трассе, состоящей из проходного туннеля, переходящего в полупроходной туннель или непроходной канал, соединительные муфты должны быть расположены в проходном туннеле.

Особенности монтажа кабельных линий напряжением 110-220 кВ

Рабочие чертежи кабельных линий с маслонаполненными кабелями на напряжение 110-220 кВ и кабелями с пластмассовой (вулканизированного полиэтилена) изоляцией напряжением 110 кВ и ППР на их монтаж должны быть согласованы с предприятием-изготовителем кабеля.

Температура кабеля и окружающего воздуха при прокладке должна быть не ниже: минус 5 °C - для маслонаполненного кабеля и минус 10 °C - для кабеля с пластмассовой изоляцией. При меньших температурах прокладка может быть допущена лишь в соответствии с ППР.

Кабели с круглой проволочной броней при механизированной прокладке следует тянуть за проволоки с помощью специального захвата, обеспечивающего равномерное распределение нагрузки между проволоками брони. При этом во избежание деформации свинцовой оболочки общее усилие тяжения не должно превышать 25 кН. Небронированные кабели допускается тянуть только за жилы с помощью захвата, смонтированного на верхнем конце кабеля на барабане. Наибольшее допустимое усилие тяжения при этом определяется из расчета: 50 МПа (H/mm^2) - для медных жил, 40 МПа (H/mm^2) - для жил из твердого алюминия и 20 МПа (H/mm^2) - для жил из мягкого алюминия.

Тяговая лебедка должна быть снабжена регистрирующим устройством и устройством автоматического отключения при превышении максимально допустимой величины тяжения. Регистрирующее устройство должно быть оборудовано самопишущим прибором. Надежная телефонная или УКВ связь должна быть установлена на время прокладки между местами расположения барабана с кабелем, лебедки, поворотами трассы, переходами и пересечениями с другими коммуникациями.

Кабели, проложенные на кабельных конструкциях с пролетом между ними 0,8-1 м, должны быть закреплены на всех опорах алюминиевыми скобами с прокладкой двух слоев резины толщиной 2 мм, если нет иных указаний в рабочей документации.

Маркировка кабельных линий

Каждая кабельная линия должна быть промаркирована и иметь свой номер или наименование.

На открыто проложенных кабелях и на кабельных муфтах должны быть установлены бирки.

На кабелях, проложенных в кабельных сооружениях, бирки должны быть установлены не реже чем через каждые 50-70 м, а также в местах изменения направления трассы, с обеих сторон проходов через междуэтажные перекрытия, стены и перегородки, в местах ввода (вывода) кабеля в траншеи и кабельные сооружения.

На скрыто проложенных кабелях в трубах или блоках бирки следует устанавливать на конечных пунктах у концевых муфт, в колодцах и камерах блочной канализации, а также у каждой соединительной муфты.

На скрыто проложенных кабелях в траншеях бирки устанавливают у конечных пунктов и у каждой соединительной муфты.

Бирки следует применять: в сухих помещениях - из пластмассы, стали или алюминия; в сырых помещениях, вне зданий и в земле - из пластмассы.

Обозначения на бирках для подземных кабелей и кабелей, проложенных в помещениях с химически активной средой, следует выполнять штамповкой, кернением или выжиганием. Для кабелей, проложенных в других условиях, обозначения допускается наносить несмываемой

краской.

Бирки должны быть закреплены на кабелях капроновой нитью или оцинкованной стальной проволокой диаметром 1-2 мм, или пластмассовой лентой с кнопкой. Место крепления бирки на кабеле проволокой и сама проволока в сырых помещениях, вне зданий и в земле должны быть покрыты битумом для защиты от действия влаги.

Токопроводы напряжением до 1 кВ (шинопроводы)

Секции с компенсаторами и гибкие секции магистральных шинопроводов должны быть закреплены на двух опорных конструкциях, устанавливаемых симметрично по обе стороны гибкой части секции шинопровода. Крепление шинопровода к опорным конструкциям на горизонтальных участках следует выполнять прижимами, обеспечивающими возможность смещения шинопровода при изменениях температуры. Шинопровод, проложенный на вертикальных участках, должен быть жестко закреплен на конструкциях болтами.

Для удобства съема крышек (деталей кожуха), а также для обеспечения охлаждения шинопровод следует устанавливать с зазором 50 мм от стен или других строительных конструкций здания.

Трубы или металлические рукава с проводами должны вводиться в ответвительные секции через отверстия, выполненные в кожухах шинопроводов. Трубы следует оконцовывать втулками.

Неразъемное соединение шин секций магистрального шинопровода должно быть выполнено сваркой, соединения распределительного и осветительного шинопроводов должны быть разборными (болтовыми).

Соединение секций троллейного шинопровода должно выполняться с помощью специальных соединительных деталей. Токосъемная каретка должна свободно перемещаться по направляющим вдоль щели короба смонтированного троллейного шинопровода.

Токопроводы открытые напряжением 6-35 кВ

Настоящие правила должны соблюдаться при монтаже жестких и гибких токопроводов напряжением 6-35 кВ.

Как правило, все работы по монтажу токопроводов должны производиться с предварительной заготовкой узлов и секций блоков на заготовительно-сборочных полигонах, мастерских или заводах.

Все соединения и ответвления шин и проводов выполняются в соответствии с требованиями пп.3.8; 3.13; 3.14.

В местах болтовых и шарнирных соединений должны быть обеспечены меры по предотвращению самоотвинчивания (шплинты, контргайки - стопорные, тарельчатые или пружинные шайбы). Все крепежные изделия должны иметь антикоррозионное покрытие (цинкование, пассивирование).

Монтаж опор открытых токопроводов производится в соответствии с пп.3.129-3.146.

При регулировке подвеса гибкого токопровода должно быть обеспечено равномерное натяжение всех его звеньев.

Соединения проводов гибких токопроводов следует выполнять в середине пролета после раскатки проводов до их вытяжки.

Воздушные линии электропередачи

Рубка просек

Просека по трассе ВЛ должна быть очищена от вырубленных деревьев и кустарников. Деловая древесина и дрова должны быть сложены вне просеки в штабеля.

Расстояния от проводов до зеленых насаждений и от оси трассы до штабелей сгораемых материалов должны быть указаны в проекте. Вырубка кустарника на рыхлых почвах, крутых склонах и местах, заливаемых во время половодья, не допускается.

Сжигание сучьев и других порубочных остатков следует производить в разрешенный для этого период времени.

Древесина, оставленная в штабелях на трассе ВЛ на пожароопасный период, а также оставшиеся на этот период «валы" порубочных остатков должны быть окаймлены минерализированной полосой шириной 1 м, с которой полностью следует удалить травяную растительность, лесную подстилку и прочие горючие материалы до минерального слоя почвы.

Устройство котлованов и фундаментов под опоры

Устройство котлованов под фундаменты следует выполнять согласно правилам производства работ, изложенным в СНиП III-8-76 и СНиП 3.02.01-83.

Котлованы под стойки опор следует разрабатывать, как правило, буровыми машинами. Разработку котлованов необходимо производить до проектной отметки.

Разработку котлованов в скальных, мерзлых, вечномерзлых грунтах допускается производить взрывами на «выброс» или «рыхление» в соответствии с Едиными правилами безопасности при ведении взрывных работ, утвержденными Госгортехнадзором СССР.

При этом должна производиться недоработка котлованов до проектной отметки на 100-200 мм с последующей доработкой отбойными молотками.

Котлованы следует осушать откачиванием воды перед устройством фундаментов.

В зимнее время разработку котлованов, а также устройство в них фундаментов следует выполнять в предельно сжатые сроки, исключающие промерзание дна котлованов.

Сооружение фундаментов на вечномерзлых грунтах осуществляется с сохранением естественного мерзлого состояния грунта в соответствии со СНиП II-18-76 и СНиП 3.02.01-83.

Сборные железобетонные фундаменты и сваи должны отвечать требованиям СНиП 2.02.01-83, СНиП II-17-77, СНиП II-21-75, СНиП II-28-73 и проекта типовых конструкций.

При монтаже сборных железобетонных фундаментов и погружении свай следует руководствоваться правилами производства работ, изложенными в СНиП 3.02.01-83 и СНиП III-16-80.

При устройстве монолитных железобетонных фундаментов следует руководствоваться СНиП III-15-76.

Сварные или болтовые стыки стоек с плитами фундаментов должны быть защищены от коррозии. Перед сваркой детали стыков должны быть очищены от ржавчины. Железобетонные фундаменты с толщиной защитного слоя бетона менее 30 мм, а также фундаменты, устанавливаемые в агрессивных грунтах, должны быть защищены гидроизоляцией.

Пикеты с агрессивной средой должны быть указаны в проекте.

Обратную засыпку котлованов грунтом надлежит выполнять непосредственно после устройства и выверки фундаментов. Грунт должен быть тщательно уплотнен путем послойного трамбования.

Шаблоны, используемые для устройства фундаментов, следует снимать после засыпки не менее чем на половину глубины котлованов.

Высота засыпки котлованов должна приниматься с учетом возможной осадки грунта. При устройстве обвалования фундаментов откос должен иметь крутизну не более 1:1,5 (отношение высоты откоса к основанию) в зависимости от вида грунта.

Грунт для обратной засыпки котлованов следует предохранять от промерзания.

Допуски при монтаже сборных железобетонных фундаментов даны в табл.5 СНиП 3.05.06-85.

Сборка и установка опор

Размер площадки для сборки и установки опоры должен приниматься в соответствии с технологической картой или схемой сборки опоры, указанной в ППР.

При изготовлении, монтаже и приемке стальных конструкций опор ВЛ следует руководствоваться требованиями СНиП III-18-75.

Тросовые оттяжки для опор должны иметь антикоррозионное покрытие. Они должны быть изготовлены и замаркированы до вывозки опор на трассу и доставлены на пикеты в комплекте с опорами.

Установка опор на фундаменты, не законченные сооружением и не полностью засыпанные грунтом, запрещается.

Перед установкой опор методом поворота с помощью шарнира необходимо предусматривать предохранение фундаментов от сдвигающих усилий. В направлении, обратном подъему, следует применять тормозное устройство.

Гайки, крепящие опоры, должны быть завернуты до отказа и закреплены от самоотвинчивания закерниванием резьбы болта на глубину не менее 3 мм. На болтах фундаментов угловых, переходных, концевых и специальных опор надлежит устанавливать две гайки, а промежуточных опор - по одной гайке на болт.

При креплении опоры на фундаменте допускается устанавливать между пятой опоры и верхней плоскостью фундамента не более четырех стальных прокладок общей толщиной до 40 мм. Геометрические размеры прокладок в плане должны быть не менее размеров пяты опоры. Прокладки должны быть соединены между собой и пятой опоры сваркой.

При монтаже железобетонных конструкций следует руководствоваться правилами производства работ, изложенными в СНиП III-16-80.

Перед установкой железобетонных конструкций, поступивших на пикет, надлежит еще раз проверить наличие на поверхности опор трещин, раковин и выбоин и других дефектов согласно указанным в п.2.7 СНиП 3.05.06-85.

При частичном повреждении заводской гидроизоляции покрытие должно быть восстановлено на трассе путем окраски поврежденных мест расплавленным битумом (марки 4) в два слоя.

Надежность закрепления в грунте опор, устанавливаемых в пробуренные или открытые котлованы, обеспечивается соблюдением предусмотренной проектом глубины заделки опор, ригелями, анкерными плитами и тщательным послойным уплотнением грунта обратной засыпки пазух котлована.

Деревянные опоры и их детали должны отвечать требованиям СНиП II-25-80 и проекта типовых конструкций.

При изготовлении и монтаже деревянных опор ВЛ следует руководствоваться правилами производства работ, изложенными в СНиП III-19-76.

Для изготовления деталей деревянных опор следует применять лесоматериалы хвойных пород по ГОСТ 9463-72*, пропитанные антисептическим способом.

Качество пропитки деталей опор должно соответствовать нормам, установленным ГОСТ 20022.0-82, ГОСТ 20022.2-80, ГОСТ 20022.5-75*, ГОСТ 20022.7-82, ГОСТ 20022.11-79*.

При сборке деревянных опор все детали должны быть пригнаны друг к другу. Зазор в местах врубок и стыков не должен превышать 4 мм. Древесина в местах соединений должна быть без суков и трещин. Зарубы, затесы и отколы должны быть выполнены на глубину не более 20% диаметра бревна. Правильность врубок и затесов должна быть проверена шаблонами. Сквозные щели в стыках рабочих поверхностей не допускаются. Заполнение клиньями щелей или других неплотностей между рабочими поверхностями не допускается.

Отклонение от проектных размеров всех деталей собранной деревянной опоры допускается в пределах: по диаметру - минус 1 плюс 2 см, по длине - 1 см на 1 м. Минусовый допуск при изготовлении траверс из пиленых лесоматериалов запрещается.

Отверстия в деревянных элементах опор должны быть сверлеными. Отверстие для крюка, высверленное в опоре, должно иметь диаметр, равный внутреннему диаметру нарезанной части хвостовика крюка, и глубину, равную 0,75 длины нарезанной части. Крюк должен быть ввернут в тело опоры всей нарезанной частью плюс 10-15 мм.

Диаметр отверстия под штырь должен быть равен наружному диаметру хвостовика штыря.

Бандажи для сопряжения приставок с деревянной стойкой опоры должны выполняться из мягкой стальной оцинкованной проволоки диаметром 4 мм. Допускается применение для бандажей неоцинкованной проволоки диаметром 5-6 мм при условии покрытия ее асфальтовым лаком. Число витков бандажа должно приниматься в соответствии с проектом опор. При разрыве одного витка весь бандаж следует заменить новым. Концы проволок бандажа надлежит забивать в

дерево на глубину 20-25 мм. Допускается взамен проволочных бандажей применять специальные стяжные (на болтах) хомуты. Каждый бандаж (хомут) должен сопрягать не более двух деталей опоры.

Деревянные сваи должны быть прямыми, прямослойными, без гнили, трещин и прочих дефектов и повреждений. Верхний конец деревянной сваи должен быть срезан перпендикулярно к ее оси во избежание отклонения сваи от заданного направления в процессе ее погружения.

Допуски при монтаже деревянных и железобетонных одностоечных опор даны в табл.6 СНиП 3.05.06-85.

Допуски при монтаже железобетонных портальных опор даны в табл.7 СНиП 3.05.06-85. Допуски в размерах стальных конструкций опор даны в табл.8 СНиП 3.05.06-85.

Монтаж изоляторов и линейной арматуры

На трассе перед монтажом изоляторы должны быть осмотрены и отбракованы.

Сопротивление фарфоровых изоляторов ВЛ напряжением выше 1000 В должно проверяться перед монтажом мегомметром напряжением 2500 В; при этом сопротивление изоляции каждого подвесного изолятора или каждого элемента многоэлементного штыревого изолятора должно быть не менее 300 МОм.

Чистка изоляторов стальным инструментом не допускается.

Электрические испытания стеклянных изоляторов не производятся.

На В Π со штыревыми изоляторами установку траверс, кронштейнов и изоляторов следует, как правило, производить до подъема опоры.

Крюки и штыри должны быть прочно установлены в стойке или траверсе опоры; их штыревая часть должна быть строго вертикальной. Крюки и штыри для предохранения от ржавчины следует покрывать асфальтовым лаком.

Штыревые изоляторы должны быть прочно навернуты строго вертикально на крюки или штыри при помощи полиэтиленовых колпачков.

Допускается крепление штыревых изоляторов на крюках или штырях с применением раствора, состоящего из 40% портландцемента марки не ниже M400 или M500 и 60% тщательно промытого речного песка. Применение ускорителей схватывания раствора не допускается.

При армировании верхушка штыря или крюка должна быть покрыта тонким слоем битума.

Установка штыревых изоляторов с наклоном до 45° к вертикали допускается при креплении спусков к аппаратам и шлейфам опор.

На ВЛ с подвесными изоляторами детали сцепной арматуры изолирующих подвесок должны быть зашплинтованы, а в гнездах каждого элемента изолирующей подвески поставлены замки. Все замки в изоляторах должны быть расположены на одной прямой. Замки в изоляторах поддерживающих изолирующих подвесок следует располагать входными концами в сторону стойки опоры, а в изоляторах натяжных и арматуре изолирующих подвесок - входными концами вниз. Вертикальные и наклонные пальцы должны располагаться головкой вверх, а гайкой или шплинтом вниз.

Монтаж проводов и грозозащитных тросов (канатов)

Алюминиевые, сталеалюминиевые провода и провода из алюминиевого сплава при монтаже их в стальных поддерживающих и натяжных (болтовых, клиновых) зажимах должны быть защищены алюминиевыми прокладками, медные провода - медными прокладками.

Крепление проводов на штыревых изоляторах следует выполнять проволочными вязками, специальными зажимами или хомутами; при этом провод должен быть уложен на шейку штыревого изолятора. Проволочная вязка должна быть выполнена проволокой из такого же металла, что и провод. При выполнении вязки не допускается изгибание провода вязальной проволокой.

Провода ответвлений от ВЛ напряжением до 1000 В должны иметь анкерное крепление.

В каждом пролете ВЛ напряжением выше 1000 В допускается не более одного соединения на каждый провод или канат.

Соединение проводов (канатов) в пролете должно отвечать требованиям пп.3.13-3.14 СНиП 3.05.06-85.

Опрессовку соединительных, натяжных и ремонтных зажимов следует выполнять и контролировать согласно требованиям ведомственных технологических карт, утвержденных в установленном порядке. Прессуемые зажимы, а также матрицы для опрессовки зажимов должны соответствовать маркам монтируемых проводов и канатов. Не допускается превышать номинальный диаметр матрицы более чем на 0,2 мм, а диаметр зажима после опрессовки не должен превышать диаметра матрицы более чем на 0,3 мм. При получении после опрессовки диаметра зажима, превышающего допустимую величину, зажим подлежит вторичной опрессовке с новыми матрицами. При невозможности получения требуемого диаметра, а также при наличии трещин зажим следует вырезать и вместо него смонтировать новый.

Геометрические размеры соединительных и натяжных зажимов проводов ВЛ должны соответствовать требованиям ведомственных технологических карт, утвержденных в установленном порядке. На их поверхности не должно быть трещин, следов коррозии и механических повреждений, кривизна опрессованного зажима должна быть не более 3% его длины, стальной сердечник опрессованного соединителя должен быть расположен симметрично относительно алюминиевого корпуса зажима по его длине. Смещение сердечника относительно симметричного положения не должно превышать 15% длины прессуемой части провода. Зажимы, не удовлетворяющие указанным требованиям, должны быть забракованы.

Термитную сварку проводов, а также соединение проводов с использованием энергии взрыва следует выполнять и контролировать согласно требованиям ведомственных технологических карт, утвержденных в установленном порядке.

При механическом повреждении многопроволочного провода (обрыв отдельных проволок) следует устанавливать бандаж, ремонтный или соединительный зажим.

Ремонт поврежденных проводов следует выполнять в соответствии с требованиями ведомственных технологических карт, утвержденных в установленном порядке.

Раскатку проводов (канатов) по земле следует, как правило, производить с помощью движущихся тележек. Для опор, конструкция которых полностью или частично не позволяет применять движущиеся раскаточные тележки, допускается производить раскатку проводов (канатов) по земле с неподвижных раскаточных устройств с обязательным подъемом проводов (канатов) на опоры по мере раскатки и принятием мер против повреждения их в результате трения о землю, скальные, каменистые и другие грунты.

Раскатка и натяжение проводов и канатов непосредственно по стальным траверсам и крюкам не допускаются.

Раскатка проводов и канатов при отрицательных температурах должна производиться с учетом мероприятий, предотвращающих вмерзание провода или каната в грунт.

Перекладку проводов и канатов из раскаточных роликов в постоянные зажимы и установку распорок на проводах с расщепленной фазой следует производить непосредственно после окончания визирования проводов и канатов в анкерном участке. При этом должна быть исключена возможность повреждения верхних повивов проводов и канатов.

Монтаж проводов и канатов на переходах через инженерные сооружения следует производить в соответствии с Правилами охраны электрических сетей напряжением свыше 1000 В с разрешения организации - владельца пересекаемого сооружения, в согласованные с этой организацией сроки. Раскатанные через автодороги провода и канаты надлежит защищать от повреждений путем подъема их над дорогой, закапывания в грунт или закрытия щитами. В случае необходимости в местах, где возможны повреждения проводов, должна быть выставлена охрана.

При визировании проводов и канатов стрелы провеса должны быть установлены согласно рабочим чертежам по монтажным таблицам или кривым в соответствии с температурой провода или каната во время монтажа. При этом фактическая стрела провеса провода или каната не должна отличаться от проектной величины более чем на $\pm 5\%$ при условии соблюдения требуемых габаритов до земли и пересекаемых объектов.

Разрегулировка проводов различных фаз и канатов относительно друг друга должна

составлять не более 10% проектной величины стрелы провеса провода или каната. Разрегулировка проводов в расщепленной фазе должна быть не более 20% для ВЛ 330-500 кВ и 10% для ВЛ 750 кВ. Угол разворота проводов в фазе должен быть не более 10° .

Визирование проводов и канатов ВЛ напряжением выше 1000 В до 750 кВ включ. следует производить в пролетах, расположенных в каждой трети анкерного участка при его длине более 3 км. При длине анкерного участка менее 3 км визирование разрешается производить в двух пролетах: наиболее отдаленном и наиболее близком от тягового механизма.

Отклонение поддерживающих гирлянд вдоль ВЛ от вертикали не должно превышать, мм: 50 - для ВЛ 35 кВ, 100 - для ВЛ 110 кВ, 150 - для ВЛ 150 кВ и 200 - для ВЛ 220-750 кВ.

Монтаж трубчатых разрядников

Разрядники должны быть установлены таким образом, чтобы указатели действия были отчетливо видны с земли. Установка разрядников должна обеспечивать стабильность внешнего искрового промежутка и исключать возможность перекрытия его струей воды, которая может стекать с верхнего электрода. Разрядник должен быть надежно закреплен на опоре и иметь хороший контакт с заземлением.

Разрядники перед установкой на опору должны быть осмотрены и отбракованы. Наружная поверхность разрядника не должна иметь трещин и отслоений.

После установки трубчатых разрядников на опоре следует отрегулировать величину внешнего искрового промежутка в соответствии с рабочими чертежами, а также проверить их установку с тем, чтобы зоны выхлопа газов не пересекались между собой и не охватывали элементов конструкций и проводов.

Распределительные устройства и подстанции

Требования настоящих правил следует соблюдать при монтаже открытых и закрытых распределительных устройств и подстанций напряжением до 750 кВ.

До начала монтажа электрооборудования распределительных устройств и подстанций заказчиком должны быть поставлены:

- трансформаторное масло в количестве, необходимом для заливки полностью смонтированного маслонаполненного оборудования, с учетом дополнительного количества масла на технологические нужды;
 - чистые герметичные металлические емкости для временного хранения масла;
 - оборудование и приспособления для обработки и заливки масла;
- специальный инструмент и приспособления, поступающие в комплекте с оборудованием в соответствии с технической документацией предприятия-изготовителя, необходимые для ревизии и регулировки (передаются на период монтажа).

Ошиновка закрытых и открытых распределительных устройств

Внутренний радиус изгиба шин прямоугольного сечения должен быть: в изгибах на плоскость - не менее двойной толщины шины, в изгибах на ребро - не менее ее ширины. Длина шин на изгибе штопором должна быть не менее двукратной их ширины.

Взамен изгибания на ребро допускается стыкование шин сваркой.

Изгиб шин у мест присоединений должен начинаться на расстоянии не менее 10 мм от края контактной поверхности.

Стыки сборных шин при болтовом соединении должны отстоять от головок изоляторов и мест ответвлений на расстоянии не менее чем 50 мм.

Для обеспечения продольного перемещения шин при изменении температуры следует выполнять жесткое крепление шин к изоляторам лишь в середине общей длины шин, а при наличии шинных компенсаторов - в середине участка между компенсаторами.

Отверстия проходных шинных изоляторов после монтажа шин должны быть закрыты специальными планками, а шины в пакетах в местах входа в изоляторы и выхода из них должны быть скреплены между собой.

Шинодержатели и сжимы при переменном токе более 600 A не должны создавать замкнутого магнитного контура вокруг шин. Для этого одна из накладок или все стяжные болты, расположенные по одной из сторон шины, должны быть выполнены из немагнитного материала (бронзы, алюминия и его сплавов и т.п.) либо должна быть применена конструкция шинодержателя, не образующая замкнутого магнитного контура.

Гибкие шины на всем протяжении не должны иметь перекруток, расплеток, лопнувших проволок. Стрелы провеса не должны отличаться от проектных более чем на $\pm 5\%$. Все провода в расщепленной фазе ошиновки должны иметь одинаковое тяжение и должны быть раскреплены дистанционными распорками.

Соединения между смежными аппаратами должны быть выполнены одним отрезком шины (без разрезания).

Трубчатые шины должны иметь устройства для гашения вибрации и компенсации температурных изменений их длины. На участках подсоединения к аппаратам шины должны быть расположены горизонтально.

Соединения и ответвления гибких проводов должны быть выполнены сваркой или опрессовкой.

Присоединение ответвлений в пролете должно быть выполнено без разрезания проводов пролета. Болтовое соединение допускается только на зажимах аппаратов и на ответвлениях к разрядникам, конденсаторам связи и трансформаторам напряжения, а также для временных установок, для которых применение неразъемных соединений требует большого объема работ по перемонтажу шин. Присоединения гибких проводов и шин к выводам электрооборудования следует выполнять с учетом компенсации температурных изменений их длины.

Изоляторы

Изоляторы перед монтажом должны быть проверены на целостность фарфора (быть без трещин и сколов). Подкладки под фланцы изоляторов не должны выступать за пределы фланцев.

Поверхность колпачков опорных изоляторов при их установке в закрытых распределительных устройствах должна находиться в одной плоскости. Отклонение не должно составлять более 2 мм.

Оси всех стоящих в ряду опорных и проходных изоляторов не должны отклоняться в сторону более чем на 5 мм.

При установке проходных изоляторов на 1000 А и более в стальных плитах должна быть исключена возможность образования замкнутых магнитных контуров.

Монтаж гирлянд подвесных изоляторов открытых распределительных устройств должен удовлетворять следующим требованиям:

- соединительные ушки, скобы, промежуточные звенья и др. должны быть зашплинтованы;
- арматура гирлянд должна соответствовать размерам изоляторов и проводов.

Сопротивление изоляции фарфоровых подвесных изоляторов должно быть проверено мегомметром напряжением 2,5 кВ до подъема гирлянд на опору.

Выключатели напряжением выше 1000 В

Установку, сборку и регулировку выключателей следует производить в соответствии с монтажными инструкциями предприятий-изготовителей; при сборке следует строго придерживаться маркировки элементов выключателей, приведенной в указанных инструкциях.

При сборке и монтаже воздушных выключателей должны быть обеспечены: горизонтальность установки опорных рам и резервуаров для воздуха, вертикальность опорных колонок, равенство размеров по высоте колонок изоляторов треноги (растяжек), соосность установки изоляторов. Отклонение осей центральных опорных колонок от вертикали не должно превышать норм, указанных в инструкциях предприятий-изготовителей.

Внутренние поверхности воздушных выключателей, с которыми соприкасается сжатый воздух, должны быть очищены; болты, стягивающие разборные фланцевые соединения изоляторов, должны быть равномерно затянуты ключом с регулируемым моментом затяжки.

После окончания монтажа воздушных выключателей следует проверить величину утечки сжатого воздуха, которая не должна превышать норм, указанных в заводских инструкциях. Перед включением необходимо проветрить внутренние полости воздушного выключателя.

Распределительные шкафы и шкафы управления выключателями должны быть проверены, в том числе на правильность положения блок-контактов и бойков электромагнитов. Все клапаны должны иметь легкий ход, хорошее прилегание конусов к седлам. Сигнально-блокировочные контакты должны быть правильно установлены, электроконтактные манометры должны быть проверены в лаборатории.

Разъединители, отделители и короткозамыкатели напряжением выше 1000 В

Установку, сборку и регулировку разъединителей, отделителей и короткозамыкателей следует производить в соответствии с инструкциями предприятий-изготовителей.

При сборке и монтаже разъединителей, отделителей, короткозамыкателей должны быть обеспечены: горизонтальность установки опорных рам, вертикальность и равенство по высоте колонок опорных изоляторов, соосность контактных ножей. Отклонение опорной рамы от горизонтали и осей собранных колонок изоляторов от вертикали, а также смещение осей контактных ножей в горизонтальной и вертикальной плоскости и зазор между торцами контактных ножей не должны превышать норм, указанных в инструкциях предприятий-изготовителей. Выравнивание колонок допускается с помощью металлических подкладок.

Штурвал или рукоятка рычажного привода должна иметь (при включении и отключении) направление движения, указанное в табл.9 СНиП 3.05.06-85.

Холостой ход рукоятки привода не должен превышать 5°.

Ножи аппаратов должны правильно (по центру) попадать в неподвижные контакты, входить в них без ударов и перекосов и при включении не доходить до упора на 3-5 мм.

При положениях ножа заземления «Включено» и «Отключено» тяги и рычаги должны находиться в положении «Мертвая точка», обеспечивая фиксацию ножа в крайних положениях.

Блок-контакты привода разъединителя должны быть установлены так, чтобы механизм управления блок-контактами срабатывал в конце каждой операции за $4-10^{\circ}$ до конца хода.

Блокировка разъединителей с выключателями, а также главных ножей разъединителей с заземляющими ножами не должна допускать оперирования приводом разъединителя при включенном положении выключателя, а также заземляющими ножами при включенном положении главных ножей и главными ножами при включенном положении заземляющих ножей.

Разрядники

До начала монтажа все элементы разрядников следует подвергнуть осмотру на отсутствие трещин и сколов в фарфоре и на отсутствие раковин и трещин в цементных швах. Должны быть измерены токи утечки и сопротивления рабочих элементов разрядников согласно требованиям инструкции предприятия-изготовителя.

При сборке разрядников на общей раме должна быть обеспечена соосность и вертикальность изоляторов.

После окончания монтажа кольцевые просветы в колоннах между рабочими элементами и изоляторами должны быть зашпатлеваны и закрашены.

Измерительные трансформаторы

При монтаже трансформаторов должна быть обеспечена вертикальность их установки. Регулировку вертикальности допускается производить с помощью стальных прокладок.

Неиспользуемые вторичные обмотки трансформаторов тока должны быть закорочены на их зажимах. Один из полюсов вторичных обмоток трансформаторов тока и трансформаторов напряжения должен быть заземлен во всех случаях (кроме специально оговоренных в рабочих чертежах).

Высоковольтные вводы смонтированных измерительных трансформаторов напряжения должны быть закорочены до их включения под напряжение. Корпус трансформатора должен быть

Реакторы и катушки индуктивности

Фазы реакторов, установленные одна под другой, должны быть расположены согласно маркировке (Н - нижняя фаза, С - средняя, В - верхняя), причем направление обмоток средней фазы должно быть противоположно направлению обмоток крайних фаз.

Стальные конструкции, расположенные в непосредственной близости от реакторов, не должны иметь замкнутых контуров.

Комплектные и сборные распределительные устройства и комплексные трансформаторные подстанции

При приемке в монтаж шкафов комплектных распределительных устройств и комплектных трансформаторных подстанций должны быть проверены комплектность технической документации предприятия-изготовителя (паспорт, техническое описание и инструкция по эксплуатации, электрические схемы главных и вспомогательных цепей, эксплуатационная документация на комплектующую аппаратуру, ведомость ЗИП).

При монтаже КРУ и КТП должна быть обеспечена их вертикальность. Допускается разность уровней несущей поверхности под распределительные комплектные устройства 1 мм на 1 м поверхности, но не более 5 мм на всю длину несущей поверхности.

Трансформаторы

Все трансформаторы должны допускать включение их в эксплуатацию без осмотра активной части при условии транспортирования и хранения трансформаторов в соответствии с требованиями ГОСТ 11677-75*.

Трансформаторы, доставляемые заказчиком на территорию подстанции, должны быть при транспортировке ориентированы относительно фундаментов в соответствии с рабочими чертежами. Скорость перемещения трансформатора в пределах подстанции на собственных катках не должна превышать 8 м/мин.

Вопрос о монтаже трансформаторов без ревизии активной части и подъема колокола должен решать представитель шефмонтажа предприятия-изготовителя, а в случае отсутствия договора на шефмонтаж - монтирующая организация на основании требований документа, указанного в п.3.195, и данных следующих актов и протоколов:

- осмотра трансформатора и демонтированных узлов после транспортирования трансформатора с предприятия-изготовителя к месту назначения;
 - выгрузки трансформатора;
 - перевозки трансформатора к месту монтажа;
 - хранения трансформатора до передачи в монтаж.

Вопрос о допустимости включения трансформатора без сушки должен решаться на основании комплексного рассмотрения условий и состояния трансформатора во время транспортировки, хранения, монтажа и с учетом результатов проверки и испытаний в соответствии с требованиями документа, указанного в п.3.195.

Статические преобразователи

Разборка полупроводниковых приборов не допускается. При монтаже их следует:

- не допускать резких толчков и ударов;
- удалять консервирующую смазку и очищать контактные поверхности растворителем;
- устанавливать приборы с естественным охлаждением так, чтобы ребра охладителей находились в плоскости, обеспечивающей свободный проход воздуха снизу вверх, а приборы с принудительным воздушным охлаждением так, чтобы направление потока охлаждающего воздуха было вдоль ребер охладителя;
 - устанавливать приборы с водяным охлаждением горизонтально;
 - располагать штуцера охладителя в вертикальной плоскости так, чтобы входной штуцер был

нижним:

- смазывать контактные поверхности охладителей перед ввинчиванием в них полупроводниковых приборов тонким слоем технического вазелина; закручивающий момент при сборке должен соответствовать указанному предприятием-изготовителем.

Компрессоры и воздухопроводы

Компрессоры, опломбированные заводом-изготовителем, разборке и ревизии на месте монтажа не подлежат. Компрессоры, не имеющие пломбы и поступающие на строительную площадку в собранном виде, перед монтажом подвергаются частичной разборке и ревизии в объеме, необходимом для снятия консервирующих покрытий, а также для проверки состояния подшипников, клапанов, сальников, систем маслосмазки и водяного охлаждения.

Смонтированные компрессорные агрегаты должны быть испытаны в соответствии с требованиями инструкции предприятия-изготовителя совместно с системами автоматического управления, контроля, сигнализации и защиты.

Внутренняя поверхность воздухопроводов должна быть протерта трансформаторным маслом. Допустимые отклонения линейных размеров каждого узла воздухопровода от проектных размеров не должны быть более ± 3 мм на каждый метр, но не более ± 10 мм на всю длину. Отклонения угловых размеров и неплоскостность осей в узле не должны превышать $\pm 2,5$ мм на 1 м, но не более ± 8 мм на весь последующий прямой участок.

Смонтированные воздухопроводы должны быть подвергнуты продувке при скорости воздуха $10\text{-}15\,$ м/с и давлении, равном рабочему (но не более 4,0 МПа), в течение не менее $10\,$ мин и испытаны на прочность и плотность. Давление при пневматическом испытании на прочность для воздухопроводов с рабочим давлением $0,5\,$ МПа и выше должно составлять $1,25\,$ $P_{\text{раб}}$, но не менее $P_{\text{раб}}\pm0,3\,$ МПа. При испытании воздухопроводов на плотность испытательное давление должно быть равно рабочему. В процессе подъема давления производится осмотр воздухопровода при достижении $30\,$ и $60\%\,$ испытательного давления. На время осмотра воздухопровода подъем давления прекращается. Испытательное давление на прочность должно выдерживаться в течение $5\,$ мин, после чего снижается до рабочего, при котором в течение $12\,$ ч воздухопровод испытывается на плотность.

Конденсаторы и заградители высокочастотной связи

При сборке и монтаже конденсаторов связи должна быть обеспечена горизонтальность установки подставок и вертикальность установки конденсаторов.

Высокочастотные заградители до начала монтажа должны пройти настройку в лаборатории.

При монтаже высокочастотных заградителей должна быть обеспечена вертикальность их подвески и надежность контактов в местах присоединения элементов настройки.

Распределительные устройства напряжением до 1000 B, щиты управления, защиты и автоматики

Щиты и шкафы должны поставляться предприятиями-изготовителями полностью смонтированными, прошедшими ревизию, регулировку и испытание в соответствии с требованиями ПУЭ, государственных стандартов или технических условий предприятий-изготовителей.

Распределительные щиты, станции управления, щиты защиты и автоматики, а также пульты управления должны быть выверены по отношению к основным осям помещений, в которых они устанавливаются. Панели при установке должны быть выверены по уровню и отвесу. Крепление к закладным деталям должно выполняться сваркой или разъемными соединениями. Допускается установка панелей без крепления к полу, если это предусмотрено рабочими чертежами. Панели должны быть скреплены между собой болтами.

Аккумуляторные установки

Приемка под монтаж стационарных кислотных (ГОСТ 825-73) и щелочных (ГОСТ 9240-79Е

и ГОСТ 9241-79E) аккумуляторных батарей закрытого исполнения и деталей аккумуляторов открытого исполнения должна производиться в объеме требований, приведенных в государственных стандартах, ТУ и других документах, определяющих комплектность поставки, их технические характеристики и качество.

Аккумуляторы должны быть установлены в соответствии с рабочими чертежами на деревянных, стальных или бетонных стеллажах или на полках вытяжных шкафов. Конструкция, размеры, покрытие и качество деревянных и стальных стеллажей должны соответствовать требованиям ГОСТ 1226-82.

Внутренняя поверхность вытяжных шкафов дли размещения аккумуляторов должна быть окрашена краской, стойкой к воздействию электролита.

Аккумуляторы в батарее должны быть пронумерованы крупными цифрами на лицевой стенке сосуда либо на продольном бруске стеллажа. Краска должна быть кислотостойкой для кислотных и щелочестойкой для щелочных аккумуляторов. Первый номер в батарее, как правило, наносится на аккумуляторе, к которому подсоединена положительная шина.

При монтаже ошиновки в помещении аккумуляторной батареи должны выполняться следующие требования:

- шины должны быть проложены на изоляторах и закреплены в них шинодержателями; соединения и ответвления медных шин должны быть выполнены сваркой или пайкой, алюминиевых только сваркой; сварные швы в контактных соединениях не должны иметь наплывов, углублений, а также трещин, короблений и прожогов; из мест сварки должны быть удалены остатки флюса и шлаков;
- концы шин, присоединяемые к кислотным аккумуляторам, должны быть предварительно облужены и затем впаяны в кабельные наконечники соединительных полос;
- к щелочным аккумуляторам шины должны быть присоединены с помощью наконечников, которые должны быть приварены или припаяны к шинам и зажаты гайками на выводах аккумуляторов;
- неизолированные шины по всей длине должны быть окрашены в два слоя краской, стойкой к длительному воздействию электролита.

Конструкция плиты для вывода шин из аккумуляторного помещения должна быть приведена в проекте.

Сосуды кислотных аккумуляторов должны быть установлены по уровню на конусных изоляторах, широкие основания которых должны быть уложены на выравнивающие прокладки из свинца или винипласта. Стенки сосудов, обращенные к проходу, должны находиться в одной плоскости.

При применении бетонных стеллажей аккумуляторные сосуды должны быть установлены на изоляторах.

Пластины в кислотных аккумуляторах открытого исполнения должны быть расположены параллельно друг к другу. Перекос всей группы пластин или наличие кривопаяных пластин не допускается. В местах припайки хвостовиков пластин к соединительным полосам не должно быть раковин, слоистости, выступов и подтеков свинца.

На кислотные аккумуляторы открытого исполнения должны быть уложены покровные стекла, опирающиеся на выступы (приливы) пластин. Размеры этих стекол должны быть на 5-7 мм меньше внутренних размеров сосуда. Для аккумуляторов с размерами бака свыше 400х200 мм можно применять покровные стекла из двух или более частей.

При заготовке сернокислого электролита надлежит:

- -применять серную кислоту, удовлетворяющую требованиям ГОСТ 667-73;
- -для разбавления кислоты применять воду, удовлетворяющую требованиям ГОСТ 6709-72.

Качество воды и кислоты должно быть удостоверено заводским сертификатом либо протоколом химического анализа кислоты и воды, проведенного в соответствии с требованиями соответствующих государственных стандартов. Химический анализ производит заказчик.

Аккумуляторы закрытого исполнения должны быть установлены на стеллажах на изоляторах или изолирующих прокладках, стойких к воздействию электролита. Расстояние между

аккумуляторами в ряду должно быть не менее 20 мм.

Щелочные аккумуляторы должны быть соединены в последовательную цепь с помощью стальных никелированных межэлементных перемычек сечением, указанным в проекте.

Аккумуляторные щелочные батареи должны быть соединены в последовательную цепь с помощью перемычек из медного кабеля (провода) сечением, указанным в проекте.

Для приготовления щелочного электролита должна применяться готовая смесь гидрата окиси калия и гидрата окиси лития или едкого натра и гидрата окиси лития заводского изготовления и дистиллированная вода. Содержание примесей в воде не нормируется.

Допускается применение отдельно гидрата окиси калия по ГОСТ 9285-78 или едкого натра по ГОСТ 2263-79 и гидрата окиси лития по ГОСТ 8595-75, дозируемых в соответствии с инструкцией предприятия-изготовителя по уходу за аккумуляторами.

Поверх щелочного электролита в аккумуляторы должно быть залито вазелиновое масло или керосин.

Плотность электролита заряженных щелочных аккумуляторов должна быть $1,205\pm0,005$ г/см 3 при температуре 293 К (20 °C). Уровень электролита кислотных аккумуляторов должен быть не менее чем на 10 мм выше верхней кромки пластин.

Плотность калиево-литиевого электролита щелочных аккумуляторов должна составлять $1,20\pm0,01\ \text{г/cm}^3$ при температуре 288-308 К (15-35 °C).

СНиП 3.05.06-85 «Электротехнические устройства» п.3.5.6-3.220