

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta079

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\$

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul numărului complex i^{2007} .
- (4p) b) Să se determine coordonatele centrului de greutate al triunghiului cu vârfurile în punctele L(-1, 2), M(-2, 3) și N(6,1).
- (4p) c) Să se determine punctele care au coordonatele egale și care aparțin cercului de ecuație $x^2 + y^2 = 8$.
- (4p) d) Să se scrie un vector paralel cu vectorul $\vec{v} = 2\vec{i} + 6\vec{j}$.
- (2p) e) Să se calculeze $\sin \frac{\pi}{2} + \cos \frac{\pi}{2}$.
- (2p) | f) Să se determine numărul de soluții reale ale ecuației $z^6 = 1$.

SUBIECTUL II (30p)

1.

- (3p) a) Să se determine numărul de elemente din mulțimea {12, 13, ..., 52} care **nu** sunt divizibile cu 4.
- (3p) b) Să se calculeze probabilitatea ca un element al inelului $(\mathbf{Z}_{12}, +, \cdot)$ să fie inversabil față de înmultire.
- (3p) c) Să se rezolve în mulțimea numerelor reale ecuația $16^x = 4$.
- (3p) d) Să se determine suma coeficienților polinomului $f = X^{2006} + X^{2005} + ... + X + 1$.
- (3p) e) Să se determine numărul funcțiilor $f:\{1,2,3\} \rightarrow \{1,2\}$ care verifică relația $f(1) \cdot f(2) \cdot f(3) = 4$.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^{2006} + x^{2008}$
- (3p) a) Să se calculeze $f'(x), x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f(x) dx$.
- (3p) c) Să se arate că funcția f este convexă pe \mathbf{R} .
- (3p) d) Să se calculeze $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}.$
- (3p) e) Să se determine valoarea minimă a funcției f.

1

SUBIECTUL III (20p)

În mulțimea $M_3(\mathbf{C})$ se consideră matricele $A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ și $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

- (4p) a) Să se calculeze determinantul și rangul matricei A.
- (4p) b) Să se arate că matricea A este inversabilă și să se calculeze inversa sa.
- (4p) c) Să se arate că, dacă $Y \in M_3(\mathbb{C})$ și $Y \cdot A = A \cdot Y$, atunci există $a, b, c \in \mathbb{C}$ astfel încât $Y = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$.
- (2p) d) Să se găsească o matrice $B \in M_3(\mathbb{C})$, astfel încât $A \cdot B = A + I_3$.
 - e) Utilizând metoda inducției matematice să se arate că

(2p)
$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}^n = \begin{pmatrix} a^n & 0 & 0 \\ 0 & b^n & 0 \\ 0 & 0 & c^n \end{pmatrix}, \ \forall n \in \mathbf{N}^*, \ \forall a, b, c \in \mathbf{C}.$$

- (2p) f) Să se arate că polinomul $f = X^n \alpha$ nu are rădăcini multiple, $\forall \alpha \in \mathbb{C}^*$.
- (2p) g) Să se determine numărul de soluții $X \in M_3(\mathbb{C})$ ale ecuației $X^{2007} = A$.

SUBIECTUL IV (20p)

Se consideră șirul $(I_n)_{n \in \mathbb{N}}$, definit prin $I_0 = \int_0^1 e^{-x} dx$ și $I_n = \int_0^1 e^{-x} x^n dx$, $n \in \mathbb{N}^*$.

- (4p) a) Să se calculeze I_0 .
- (4p) b) Utilizând metoda integrării prin părți, să se arate că $I_n = -\frac{1}{e} + n \cdot I_{n-1}, \ \forall n \in \mathbb{N}^*$.

(4p) c) Să se arate că
$$I_n = \frac{n!}{e} \left(e - \left(1 + \frac{1}{1!} + \dots + \frac{1}{n!} \right) \right), \forall n \in \mathbb{N}^*.$$

(2p) d) Să se arate că $\frac{x^n}{e} \le x^n e^{-x} \le x^n, \forall x \in [0,1]$ şi $\forall n \in \mathbb{N}^*$.

(2p) e) Să se arate că
$$\frac{1}{(n+1)e} \le I_n \le \frac{1}{n+1}, \forall n \in \mathbb{N}^*$$
.

- (2p) f) Utilizând inegalitățile de la punctul e), să se arate că $\forall n \in \mathbb{N}^* \ e \in \mathbb{R} \mathbb{Q}$.
- (2p) g) Să se arate că $\lim_{n \to \infty} \left(1 + \frac{1}{1!} + ... + \frac{1}{n!} \right) = e$.