

## **Related Work**

**Submitted By: Group No: 05** 

| Member's Name: 1. Ayasha Naima Chowdhury | ID: 2021-3-60-190 |
|------------------------------------------|-------------------|
| 2. Fahimun Islam Lamiha                  | ID: 2021-3-60-181 |
| 3. Samia Jahan Mariam                    | ID: 2022-1-60-376 |
| 4. Sayma Sultana                         | ID: 2021-3-60-105 |

## **Submitted To:**

Dr. Raihan Ul Islam, Associate Professor, CSE Dept.

**Submission Date : 10.07.2025** 

## **Table: Comparison Machine Learning and Deep Learning Models for Melanoma Skin Cancer Detection**

| Ref<br>ere<br>nce<br>No | Publis<br>hing<br>Year  | Dataset                                                               | Method                                                                                                                                                            | Best<br>Model                                                                | Worst<br>Model                          | Accuracy                                                                 | Limitations                                                                                                       | Category               |
|-------------------------|-------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------|
| 1                       | 17<br>Marc<br>h<br>2022 | Small<br>version of<br>ISIC 2018                                      | Deep learning (transfer learning with ResNet50, DenseNet121, MobileNet) and ensemble stacking of machine learning models (SVM, RF, GBM, KNN, Logistic Regression) | Ensembl<br>e of<br>ResNet5<br>0,<br>DenseN<br>et121,<br>and<br>MobileN<br>et | KNN                                     | Best: 92%<br>(Ensembl<br>e of 3 DL<br>models),<br>Worst:<br>82%<br>(KNN) | Small dataset size, imbalanced original data, image occlusions like hair or rulers affecting model performance.   | Supervised<br>Learning |
| 2                       | 2025                    | Kaggle:<br>Skin Cancer<br>Malignant<br>vs Benign<br>(3,297<br>images) | EfficientNetV<br>2L for feature<br>extraction +<br>LightGBM                                                                                                       | Efficient<br>NetV2L-<br>LGBM<br>(Ensemb<br>le)                               | ViT,<br>VGG1<br>6                       | Best: 99.90% (test), Worst: ~89.7%                                       | Focused only<br>on image<br>datasets; not<br>designed for<br>numerical or<br>time-series<br>data<br>applications. | Supervised<br>Learning |
| 3                       | 2023                    | ISIC dataset<br>(600 images<br>used)                                  | Preprocessing<br>(noise/hair<br>removal,<br>grayscale),<br>Feature<br>extraction<br>(GLCM),<br>Classification<br>(SVM)                                            | SVM<br>(GLCM<br>+ shape<br>& color<br>features)                              | SVM<br>(shape-<br>only<br>feature<br>s) | Best:<br>83%,<br>Worst:<br>59%                                           | Lacked dark-skinned images in dataset; needs diverse skin tones for improved future applicability.                | Supervised<br>Learning |
| 4                       | 2023                    | ISIC "siim-isic-m elanoma-cla ssification"                            | Hybrid:<br>VGG16 for<br>feature<br>extraction +<br>XGBoost &<br>LightGBM for<br>classification                                                                    | VGG16<br>+<br>XGBoos<br>t                                                    | VGG1<br>6+<br>LightG<br>BM              | Best:<br>99.1%,<br>Worst:<br>97.2%                                       | Limited scalability                                                                                               | Supervised learning    |

| 5 | 2025 | ISIC 2016(1270+ images), ISIC2018/H AM 10000(11,52 0+ images) PH2(200+ images) MED-NOD E(165+imag es) DERMOFI T(1300+ images) | CNN(AlexNet<br>, VGG16,<br>ResNet)<br>SVM,<br>KNN(texture,<br>color)                                                                                                                            | Pre-train<br>ed<br>ResNet<br>+<br>Inceptio<br>n-ResNe<br>t-v2 | KNN                     | Best: 97.5%,<br>Worst: 68.57% | Lack of<br>diverse skin<br>data                                                                                   | Supervised<br>Learning       |
|---|------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------|
| 6 | 2024 | ISIC2017 +<br>HAM10000<br>0<br>(2000)                                                                                         | Deep learning Preprocessing( Noise removing while preserving edge details via Bilateral Filtering) Segmentation( u Net for fine grained details), Classification, Hyperparamet er Optimization) | ASCDC<br>-CSOD                                                | Mobile<br>Net +<br>KELM | Best: 98.44%, Worst: 69.05%   | Impacting real time processing, challenging in balancing sensitivity                                              | Supervised<br>Learning       |
| 7 | 2023 | PH2, ISBI,<br>ISIC(21,659<br>images)                                                                                          | Fusion AlexNet, VGG16 deep learning                                                                                                                                                             | AlexNet<br>,<br>VGG16                                         | LDA,<br>CNN             | Best: 99%,<br>Worst: 85.4%    | Insufficient<br>of rare<br>images, lack<br>of dark skin<br>datasets,<br>small lesion<br>sixes hinder<br>detection | Semi-Supervi<br>sed Learning |

| 8  | 2024 | ISIC, PH2,<br>DermIS,<br>MED-NOD<br>E,<br>DermQuest,<br>HAM10000<br>0<br>(11000<br>images) | Feature extraction, Classification, distance based classification                                                     | Hybrid<br>Adaboos<br>t-SVM,<br>Fast<br>Fourier<br>Transfor<br>m | SVM,S<br>tatistic<br>metrics | Best: 98%,<br>Worst: 52%                                                 | Poor<br>scalability for<br>large<br>datasets,<br>sensitive to<br>noise, scaling<br>issues                             | Supervised<br>Learning |
|----|------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------|
| 9  | 2023 | The<br>HAM10000<br>dataset                                                                 | images,<br>extracting and<br>selecting<br>features, then<br>classifying<br>with a CNN.                                | Propose d method (VGG19 +HFE)                                   | HOG                          | Best<br>99.85%<br>Worst<br>90.73%                                        | Its dependence on preprocessing , which may not completely remove noise, impacting classification accuracy.           | Supervised<br>Learning |
| 10 | 2025 | ISIC 2020                                                                                  | (N-DCNN) with preprocessing segmentation, and classification for melanoma vs. benign skin lesion detection.           | N-DCN<br>N                                                      | ResNet<br>18                 | Best<br>93.4%<br>Worst<br>81.2%                                          | Imbalanced<br>data; needs<br>labeled data;<br>high training<br>compute;<br>generalizatio<br>n risk                    | Supervised<br>Learning |
| 11 | 2024 | Kaggle<br>(HAM1000<br>0 dataset)                                                           | Deep Learning Models: Light Weight Convolutional Neural Network (LWCNN), GoogleNet, ResNet-18, MobileNet-v2. Transfer | LWNet<br>(propose<br>d<br>lightwei<br>ght<br>CNN).              | Mobil<br>eNet-v<br>2.        | Best 97.30% (train), 88.43% (test). Worst 96.32% (train), 86.74% (test). | Computation al complexity with high-resoluti on images.  Dependency on preprocessing (image enhancement ) for optimal | Supervised<br>Learning |

|    |      |                                             | Learning: Utilized pretrained models (GoogleNet, ResNet-18, MobileNet-v2) for feature extraction.                                                                                                                                                                                                                                                                                       |                                                                                                 |                                  |                          | performance. Limited generalizabili ty to datasets with different distributions or smaller samples.                                                                                                                                                                                                                   |                     |
|----|------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 12 | 2023 | ISIC Archive: Over 20,000 dermoscopy images | Feature Extraction: ABCD (Asymmetry, Border, Color, Dimension), GLCM (Gray-Level Co-occurrence Matrix), LBP (Local Binary Patterns). Deep Learning: CNN (ResBCU-Net, DenseNet201, GoogLeNet Inception-v3). Machine Learning: SVM, Decision Tree, K-NN. Optimization: Hybrid frameworks (e.g., Stokes-decom position with AI models). Preprocessing: Data augmentation (GANs), resizing, | ResBCU -Net (CNN-b ased with Residual blocks, Batch Normali zation, Bi-direct ional ConvLS TM). | Naive<br>Bayes<br>classifi<br>er | Best 97.7% Worst 75.295% | Data Quality: Unbalanced, noisy, and limited labeled datasets (e.g., rare diseases). Generalizabil ity: Performance varies across datasets (e.g., ISIC vs. PH2). Interpretabilit y: Lack of explainability in deep learning models. Computation al Cost: High resource demands for training complex models like GANs. | Supervised Learning |

|  | normalization. |  |  |  |
|--|----------------|--|--|--|
|  |                |  |  |  |

## **References:**

- 1. Alfi, I. A., Rahman, M. M., Shorfuzzaman, M., & Nazir, A. (2022). A non-invasive interpretable diagnosis of melanoma skin cancer using deep learning and ensemble stacking of machine learning models. *Diagnostics*, 12(3), 726.
- 2. Swapno, S. M. R., Nobel, S. N., Meena, P. K., Meena, V. P., Bahadur, J., & Appaji, A. (2025). Accelerated and Precise Skin Cancer Detection through an Enhanced Machine Learning Pipeline for Improved Diagnostic Accuracy. *Results in Engineering*, 104168.
- 3. Kotian, A. L., Madhura, K. J., & Rahul, P. T. (2023). Machine Learning-Based Melanoma Skin Cancer Detection. *International Journal of Engineering Management and Humanities*, 4(3), 72-76.
- 4. Thanka, M. R., Edwin, E. B., Ebenezer, V., Sagayam, K. M., Reddy, B. J., Günerhan, H., & Emadifar, H. (2023). A hybrid approach for melanoma classification using ensemble machine learning techniques with deep transfer learning. *Computer methods and programs in biomedicine update*, *3*, 100103.
- 5. Akinrinade, O., & Du, C. (2025). Skin cancer detection using deep machine learning techniques. *Intelligence-Based Medicine*, *11*, 100191.
- 6. Rajendran, V. A., & Shanmugam, S. (2024). Automated skin cancer detection and classification using cat swarm optimization with a deep learning model. *Engineering, Technology & Applied Science Research*, *14*(1), 12734-12739.
- 7. Mazhar, T., Haq, I., Ditta, A., Mohsan, S. A. H., Rehman, F., Zafar, I., ... & Goh, L. P. W. (2023, January). The role of machine learning and deep learning approaches for the detection of skin cancer. In *Healthcare* (Vol. 11, No. 3, p. 415). Multidisciplinary Digital Publishing Institute.
- 8. Patil, H. (2024). Frontier machine learning techniques for melanoma skin cancer identification and categorization: a thorough review. *Oral Oncology Reports*, 100217
- 9. Rahman, M. M., Nasir, M. K., Nur-A-Alam, M., & Khan, M. S. I. (2023). Proposing a hybrid technique of feature fusion and convolutional neural network for melanoma skin cancer detection. *Journal of Pathology Informatics*, *14*, 100341.
- Kaur, R., GholamHosseini, H., & Lindén, M. (2025). Advanced Deep Learning Models for Melanoma Diagnosis in Computer-Aided Skin Cancer Detection. Sensors, 25(3), 594.
   Alabahallanana F., Elmannai H., Saad, A., Kamil, J.S., Elambar, A. (2024). Dans
  - 11. Alabdulkreem, E., Elmannai, H., Saad, A., Kamil, I.S., Elaraby, A. (2024). Deep learning-based classification of melanoma and non-melanoma skin cancer. Traitement du Signal, Vol. 41, No. 1, pp. 213-223.
- 12. Kaushik, P. (2023). Deep learning and machine learning to diagnose melanoma. *International Journal of Research in Science and Technology, 13*(1), 58–72.