AUTOMATE FĂRĂ PIERDERI

S.l. dr. Ing. Vlad-Cristian Miclea

Universitatea Tehnica din Cluj-Napoca Departamentul Calculatoare

- 1) Introducere
- 2) Automate fara pierderi
- 3) Metode de identificare a pierderilor
- 4) Reconstituirea secventei de intrare
- 5) Concluzii

PLAN CURS

- Partea 1 VHDL
 - 1. Limbajul VHDL 1
 - 2. Limbajul VHDL 2
 - 3. Limbajul VHDL 3
- Partea 2 Implementarea sistemelor numerice
 - 4. Microprogramare
 - 5. Partea 1 Unitate de comanda exemplu cuptor
 - 5. Partea 2 Unitate de executie exemplu cuptor
- Partea 3 Automate
 - 6. Automate finite
 - 7. Stari
 - 8. Automate sincrone
 - 9. Automate asincrone
 - 10. Identificarea automatelor
 - 11. Automate fara pierderi
 - 12. Automate liniare
- Partea 4 Probleme si discutii

CONTEXT

Cursurile trecute

- Automate finite
 - Abstractizarea circuitelor secventiale
 - Clasificarea automatelor (Moore, Mealy)
- Stari ale automatelor
 - Reducerea si codificarea eficienta a starilor
- Automate sincrone
 - Metode de eficientizare
- Automate asincrone
 - **Curse Critice**
- Identificarea automatelor
 - Aducerea automatelor in stari initiale/cunoscute

AUTOMATE FĂRĂ PIERDERI

Introducere

- Aplicaţie a automatelor finite: codificarea informaţiei în vederea transmiterii ei
- Liniile de transmisie pot genera zgomote care alterează conţinutul informaţiei
- Apare necesitatea reconstituirii secvenţei de intrare, cunoscând starea iniţială, starea finală şi secvenţa de ieşire a automatului
- Definiţie: Un automat se numeşte fără pierderi, din punctul de vedere al informaţiei, dacă pentru fiecare combinaţie a stării iniţiale, stării finale şi secvenţei de ieşire există cel mult o secvenţă de intrare care ar putea produce secvenţa de ieşire dată
- La un automat se determină întâi dacă are pierderi, iar dacă nu are pierderi se determină secvenţa de intrare

Exemple: Automat 1

	0	1
Α	A,0	B,0
В	C,0	D,1
С	C,1	B,1
D	D,0	C,0

- Din starea iniţială C, pentru secvenţele de intrare aplicate 0101 şi 1111 avem:
 - Intrări 0101, stările CBCB și ieșirile 1101
 - Intrări 1111, stările BDCB și ieșirile 1101
- Automatul este cu pierderi, pentru că la secvenţe diferite de intrări, plecând din aceeaşi stare (C) şi ajungând în aceeaşi stare (B) generează aceleaşi secvenţe de ieşiri

Exemple: Automat 2

	0	1
Α	B,1	C,0
В	A,0	D,1
С	D,0	D,1
D	C,1	В,О

- Din starea iniţială A, pentru secvenţele de intrare aplicate 0101 şi 0011 avem:
 - Intrări 0101, stările BDCD și ieșirile 1111
 - Intrări 0011, stările BACD şi ieşirile 1001
- Automatul apare ca fiind fără pierderi, pentru că la secvenţe diferite de intrări, plecând din aceeaşi stare (A) şi ajungând în aceeaşi stare
 (D) generează secvenţe de ieşiri diferite
- Observaţie: se va utiliza o metodă de determinare a pierderilor pentru a hotărî că automatul este sigur fără pierderi!!!

Determinarea pierderilor

- Se testează automatul pentru cazurile care implică pierderi
- Trebuie să existe cel puţin 2 secvenţe de intrare care să conducă automatul dintr-o stare iniţială în una finală, generând aceeaşi secvenţă de ieşire
- Avem 2 situaţii posibile:
 - Când secvenţa de intrare determină aceeaşi secvenţă de stări
 - Trebuie ca cel puţin o tranziţie să poată fi determinată de 2 intrări diferite
 - O linie din tabelul de tranziţie conţine atunci elemente identice pe 2 coloane diferite
 - Când secvenţa de intrare determină secvenţe diferite de stări
 - O pereche de astfel de secvenţe se determină într-un punct de convergenţă a stărilor

Determinarea pierderilor

Convergenţa stărilor

- Se caută perechi de stări s_i, s_i astfel:
 - s_i, s_j pot fi atinse dintr-o stare iniţială comună, prin intervenţia secvenţelor de intrare x_i, x_i, care determină ieşiri identice
 - Există valori de intrare p_i , p_j care determină tranziția automatului din stările s_i , s_i într-o stare finală comună s_k , generând aceeași ieșire

Determinarea pierderilor

Exemplu:

S-X	0	1
Α	A,1	B,1
В	C,1	D,0
С	D,0	A,0
D	C,0	D,1

■ Se pleacă din starea A și secvența de ieșire obținută este 110

Plecând din A, pentru ieşire 110, avem secvenţe diferite de stări, ABD şi BCD, care au asociate 2 secvenţe diferite de intrări, 011 şi 100

Determinarea pierderilor

- Tabelul stărilor următoare (Tabel înainte) permite determinarea punctelor de convergență
 - Se consideră toate stările iniţiale şi succesorii lor şi toate secvenţele de ieşiri posibile

SX.	0	1
Α	A,1	B,1
В	C,1	D,0
С	D,0	A,0
D	C,0	D,1

	z=0	z=1
Α	-	AB
В	D	С
С	AD	-
D	С	D
AB	D	ABC
AD	С	ABD
ABC	AD*	ABC
ABD	CD	ABCD
CD	ACD	D
ABCD	ACD*	ABCD
ACD	ACD	ABD

Metoda generală de testare pentru pierderi

- Paşii:
 - 1. Se verifică dacă în tabelul de tranziţii apar 2 elemente identice pe aceeaşi linie => automatul este cu pierderi caz simplu
 - 2. Se alcătuieşte tabelul stărilor următoare (tabel înainte),
 începând cu toate stările singulare şi apoi cu succesorii lor
 - Dacă apar stări duplicate printre stările care se combină avem o convergență => automatul este cu pierderi
 - Dacă tabelul se completează fără să se găsească duplicate de stări => automatul este fără pierderi

Metoda generală de testare pentru pierderi

Exemple:

5 X	0	1
Α	B,1	C,1
В	C,1	D,0
С	В,О	A,1
D	A,0	C,0

	z=0	z=1
Α	-	ВС
В	D	С
С	В	А
D	AC	-
ВС	BD	AC
AC	В	ABC
BD	ACD	С
ABC	BD	ABC*
ACD	ABC	ABC

 Deoarece în tabelul înainte există stări duplicate, automatul este cu pierderi

Metoda generală de testare pentru pierderi

Exemple:

S-X	0	1
Α	В,О	C,0
В	A,0	D,1
С	E,0	F,1
D	B,1	C,1
Е	F,1	D,1
F	D,0	F,0

	z=0	z=1
Α	ВС	-
В	А	D
С	Е	F
D	-	ВС
Е	-	DF
F	DF	-
ВС	AE	DF
DF	DF	ВС
AE	ВС	DF

 Deoarece în tabelul înainte nu există stări duplicate, automatul este fără pierderi

Test alternativ de determinare a pierderilor

 Simetria figurii de la determinarea convergenţelor (A) permite căutarea unor puncte (B) în care 2 secvenţe de stări care au stare finală comună diverg pentru prima dată

Se construieşte un Tabel al stărilor anterioare (Tabel înapoi)

Test alternativ de determinare a pierderilor

Exemplu:

5 X	0	1
Α	B,1	C,1
В	C,1	D,0
С	В,О	A,1
D	A,0	C,0

z=0	z=1	
D	С	Α
С	А	В
D	AB	С
В	ı	D
CD	AC	AB
BD	AB	CD
D*	ABC	AC
ВС	Α	BD
CD*	A*BC	ABC
CD	A*B	ВС

 Deoarece în tabelul înapoi există stări duplicate, automatul este cu pierderi

Metoda tabelelor individuale înainte / înapoi

- Reconstituirea secvenţei de intrări este legată de reconstituirea secvenţei de stări
- Metoda tabelelor individuale înainte / înapoi se poate aplica dacă tabelele au numai elemente singulare
- Dacă automatul este fără pierderi, există o singură succesiune de stări care duce automatul dintr-o stare iniţială în una finală

Metoda tabelelor individuale înainte / înapoi

Exemplu:

S-X	0	1
Α	B,1	C,0
В	A,0	D,1
С	D,0	B,1
D	C,1	В,О

	z=0	z=1
Α	С	В
В	Α	D
С	D	В
D	В	С

- În tabelul înainte nu există stări duplicate => automatul este fără pierderi
- Starea iniţială este, de exemplu, B
- Secvenţa arbitrară de ieşiri este 0011110
- Reconstituirea secvenţei de stări din tabelul înainte este BACBDCBA
- Reconstituirea secvenţei de intrări pe baza tabelului de tranziţii este 01110110

Metoda de reconstrucție bilaterală

- Un automat fără pierderi evoluează dintr-o stare iniţială cunoscută printr-o secvenţă de stări de lungime "m" şi ajunge într-o stare finală cunoscută
- Cum se determină starea automatului după primele "k" ieşiri?
- Condiţii care trebuie îndeplinite:
 - 1. Să existe o secvenţă de stări care să ducă automatul din starea iniţială într-o stare "s", generând la ieşire primele "k" valori
 - 2. Să existe o secvenţă de stări care să ducă automatul din starea "s" în starea finală, generând la ieşire "m-k" valori

Metoda de reconstrucție bilaterală

- Setul de stări care satisface condiţia 1 se determină prin aplicarea primelor "k" valori de ieşire tabelului înainte, plecând de la elementul singular care rezultă din starea iniţială cunoscută
- Setul de stări care satisface condiţia 2 se determină prin aplicarea ultimelor "m-k" valori de ieşire în ordine inversă tabelului înapoi, începând cu elementul singular care conţine starea finală cunoscută
- Intersecţia celor 2 seturi de stări generează o secvenţă de stări care satisface ambele condiţii
- Pentru automate fără pierderi există o singură secvenţă de stări şi de la ea se obţine o singură secvenţă de intrări

Metoda de reconstrucție bilaterală

Exemplu: Care este starea automatului între valorile 4 şi 5 de intrare?

S-X	0	1
Α	В,О	C,0
В	A,0	D,1
С	E,0	F,1
D	B,1	C,1
Е	F,1	D,1
F	D,0	F,0

z=0	z=1
ВС	-
А	D
E	F
-	ВС
1	DF
DF	ı
ΑE	DF
DF	ВС
ВС	DF
	BC A E - DF AE DF

z=O	z=1	
В	-	А
Α	D	В
А	D	С
F	BE	D
С	-	E
F	CE	F
AC	D	BE
AC	D	CE
AB	D	AC
AB	D	AB

- Starea iniţială este D
- Starea finală este F
- Secvenţa de ieşiri este 1101001

Metoda de reconstrucție bilaterală

 Pentru secvenţa de ieşire dată, folosind tabelele înainte şi înapoi, se obţine prin intersectare succesiunea de stări

ieşiri	1	1	0	1	0	0	1
→ D	В	D	D	В	Α	В	D
	С	F	F	С	Ε	С	<u> </u>
D	C	F	D	Α	Α	C ←	— F
	Е			В	С	Е	
	C	F	D	(B)	A	C	

- Între valorile 4 și 5 de intrare automatul se află în starea B
- Secvenţa de stări rezultată plecând din D este CFDBACF
- Secvenţa de intrări corespunzătoare este 1100011 şi este unică

Test bilateral de determinare a pierderilor

- Se utilizează procedura anterioară de obţinere a secvenţei de stări
- La tabelele înainte şi înapoi nu se verifică convergenţele sau divergenţele
- Dacă prin intersecţia stărilor rezultă mai multe stări => există mai multe secvenţe de stări care conduc automatul din starea iniţială în starea finală => automatul are pierderi
- Dacă vreo intersecţie de stări este vidă => nu există o secvenţă de stări care satisface cele 2 condiţii

Test bilateral de determinare a pierderilor

Exemplu: Care este starea automatului între valorile 3 și 4 de intrare?

	0	1
Α	A,0	В,О
В	C,0	D,1
С	C,1	В,1
D	D,0	C,0

z=0	z=1
AB	_
С	D
-	ВС
CD	_
ABC	D
С	BCD
CD	ВС
ABC	BCD
CD	BCD
	AB C - CD ABC C CD ABC

z=0	z=1	
Α	-	А
Α	С	В
BD	С	С
D	В	D
AD	ВС	BD
AD	В	AD
ABD	С	ВС
AD	ВС	ABD

- Starea iniţială este A
- Starea finală este C
- Secvenţa de ieşiri este 0010101

Test bilateral de determinare a pierderilor

- Pentru secvenţa de ieşire dată, folosind tabelele înainte şi înapoi, se obţine prin intersectare succesiunea de stări
 - ieşire 0 0 1 0 1 0 1 $A \longrightarrow AB \longrightarrow ABC \longrightarrow BCD \longrightarrow CD \longrightarrow BC \longrightarrow CD \longrightarrow BC$ $AD \longleftarrow ABD \blacktriangleleft BC \longleftarrow ABD \blacktriangleleft BC \longleftarrow BD \longleftarrow C \longleftarrow C$ intersecţia A AB BC (BD) C B C C
 - Între intrarea 3 şi 4 automatul se poate găsi în 2 stări diferite, B sau D
 => automatul este cu pierderi

Secvenţa de tranziţii pune în evidenţă pierderile automatului

Automate fara pierderi

- Generalitati
- Determinarea pierderilor
 - Tabel inainte
 - Tabel inapoi
- Reconstructia secentei de intrare
 - Metoda de reconstructie bilaterala
- Test bilateral de determinare a pierderilor
- Data viitoare automate liniare