Neural Network Basics

NOTA DO ENVIO MAIS RECENTE

80%

1.	What	does	а	neuron	com	pute?
----	------	------	---	--------	-----	-------

1/1 ponto

- \bullet A neuron computes a linear function (z = Wx + b) followed by an activation function
- A neuron computes a function g that scales the input x linearly (Wx + b)
- A neuron computes the mean of all features before applying the output to an activation function
- A neuron computes an activation function followed by a linear function (z = Wx + b)

Correct, we generally say that the output of a neuron is a = g(Wx + b) where g is the activation function (sigmoid, tanh, ReLU, ...).

2. Which of these is the "Logistic Loss"?

1/1 ponto

- $\bigcap \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = |y^{(i)} \hat{y}^{(i)}|$
- $\bigcirc \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = -(y^{(i)}\log(\hat{y}^{(i)}) + (1 y^{(i)})\log(1 \hat{y}^{(i)}))$
- $\mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = max(0, y^{(i)} \hat{y}^{(i)})$
- $\bigcirc \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = |y^{(i)} \hat{y}^{(i)}|^2$

3. Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector?

1 / 1 ponto

- x = img.reshape((32*32,3))
- \bigcirc x = img.reshape((3,32*32))
- x = img.reshape((32*32*3,1))
- \bigcirc x = img.reshape((1,32*32,*3))

✓ Correto

	4.	Cor	nside	r th	ne t	WC	fo	low	/ing	ţ ra	nde	mc	arr	ay	S "ā	a" a	nd	"b":	:																	1	1 pc	nto	
			1 a 2 b 3 c	=	np. np.	and b	lom.	rand	In(2 In(2	, 3) #	a.sh b.sh	nape	2 =	(2	, 3) , 1))																						
		Wh	at wi	III b	e t	ne	sha	pe	of '	'c"?																													
		0 0 0	c.sh c.sh	nap	e =	(2,	1)	on c	anı	not	ha	ppe	n b	oec	cau	ıse t	the	siz€	es d	on't	ma	atcl	h. It'	s go	oing	to b	e "	Erro	r"!										
		•	c.sh	nap	e =	(2,	3)																																
5.	Co	onsid	ler th	ne i	W) fc	llo	win	g r	and	dor	n ar	ra	ys	"a'	" an	nd "	'b":																			1/1	l por	nto
		2	a = b = c =	np.	ran	dom dom	rar rar	idn(4,	3) ;	# a.	sha sha	pe :	= ((4, (3,	3)																							
	W	hat v	will b	e t	he	sh	аре	of	"c"	?																													
	C) c.:	shap	e =	(3	3)																																	
	C) c.:	shap	e =	(4	3)																																	
	C) c.:	shap	e =	(4	2)																																	
	•) Th	ne co	m	out	atio	on	can	no	t h	эpp	en	be	ca	use	e th	ne s	size:	s do	on't	ma	atch	h. It	's go	oing	g to	be	"Err	or"!										
		~		dee	d!													s el					mul	tipli	icati	on.	lt i	s difi	fere	nt fr	om	"np.	.dot()	". If	you				
		Sup _l X?	oose	yo	ı h	ave	n_x	inp	out	fea	tur	es p	er	ex	am	ıple	. Re	ecall	l tha	at X	=	= [x]	$^{(1)}x$	⁽²⁾	$x^{(r)}$	$^{n)}].$	Wh	at is	the	dime	nsic	n of		(1/	1 pc	onto		
		0	(m,	n_x)																																		
		•	$(n_x,$	m	١																																		
		0	(1, r)	n)																																			
		0	(m,	1)																																			

7. Recall that "np.dot(a,b)" performs a matrix multiplication on a and b, whereas "a*b" performs an element-wise multiplication.

1/1 ponto

Consider the two following random arrays "a" and "b":

```
1 a = np.random.randn(12288, 150) # a.shape = (12288, 150)

2 b = np.random.randn(150, 45) # b.shape = (150, 45)

3 c = np.dot(a.b)
```

What is the shape of c?

- oc.shape = (12288, 45)
- The computation cannot happen because the sizes don't match. It's going to be "Error"!
- C.shape = (150,150)
- c.shape = (12288, 150)

Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because :

"number of columns of a = 150 = number of rows of b"

8. Consider the following code snippet:

0 / 1 ponto

```
1 # a.shape = (3,4)
2 # b.shape = (4,1)
3
4 * for i in range(3):
5 * for j in range(4):
6 c[i][i] = a[i][i] + b[i]
```

How do you vectorize this?

- c = a + b
- \bigcirc c = a + b.T
- \bigcirc c = a.T + b
- C = a.T + b.T

Incorreto

9. Consider the following code:

```
1 a = np.random.randn(3, 3)
2 b = np.random.randn(3, 1)
3 c = a*b
```

What will be c? (If you're not sure, feel free to run this in python to find out).

- This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so c.shape will be (3, 3)
- This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)
- This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1).
- It will lead to an error since you cannot use "*" to operate on these two matrices. You need to instead use np.dot(a,b)
 - Incorreto

10. Consider the following computation graph.

1/1 ponto

What is the output J?

$$\int J = (c - 1)*(b + a)$$

$$\int J = a*b + b*c + a*c$$

$$\bigcirc$$
 J = (b - 1) * (c + a)