ENE 3031 Computer Simulation

Week 3: Queueing Theory

Chuljin Park

Assistant Professor Industrial Engineering Hanyang University

Examples of Queues Arrivals Queue Checkout line Clerks Shoppers Patients Doctor Waiting room Operating teams Waiting list Patients Customers Stock Backorders Machine breakdowns Repair persons Broken machines Traffic jams Automobiles Intersection HANYANG UNIVERSITY

- How does the system perform?
 - Utilization of servers
 - Average waiting time in queue
 - Average staying time in the system
 - Average number of customers in queue
 - Average number of customers in the system

Basic Performance Measures

- A(t): Number of arrivals until time t
- D(t): Number of departures until time t
- L(t): Number of customers in system at t
- Lq(t): Number of customers in queue at t

Basic Performance Measures

- a: time when the first customer enters to the empty system
- b: time when the last customer leaves from the system (the system just becomes empty).
- WIP(a,b): Number of customers in system per unit time from time a to time b.
- CT(a,b): Time spent in system per customer from time a to time b.

HANYANG UNIVERSITY

13

WIP(a,b)

- Consider a time interval (*a*,*b*) such that the system **starts empty** and **returns to empty**
- Let L(t)=A(t)-D(t), number of customers in the system at time t

$$WIP(a,b) = \frac{1}{b-a} \int_{a}^{b} L(t)dt = \frac{1}{b-a} \int_{a}^{b} (A(t) - D(t))dt$$

(HANYANG UNIVERSITY

CT(a,b)

- *M*: number of customers that arrive to (or depart from) the system during the interval (*a*,*b*)
- T_i^d : departure time for the ith customer
- T_i^a : arrival time for the ith customer

CT(a,b) and WIP(a,b)

$$WIP(a,b) = \frac{1}{b-a} \int_{a}^{b} \left(A(t) - D(t) \right) dt$$

$$CT(a,b) = \frac{1}{M} \int_{a}^{b} (A(t) - D(t)) dt$$

Throughput: Average number of customers arriving to (departing from) the system per unit time

Performance Measure (infinite T)

• Long-run time-average number of customers in system (L)

$$L = \lim_{T \to \infty} WIP_{(0,T)} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} L(t)dt = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \left(A(t) - D(t)\right)dt$$

 Long-run average time spent in system per customer (W)

$$W = \lim_{T \to \infty} CT_{(0,T)} = \lim_{M \to \infty} \frac{1}{M} \sum_{i=1}^{M} \left(T_i^d - T_i^a \right)$$

Example: ATM case - Hand Simulation-

Let's consider an ATM process. We observed 1) interarrival times and 2) service times for 6 customers as follows:

i	Interarrival time Between i-1 and i	Service time for i
1	2	3
2	1	1
3	1	2
4	1	1
5	2	2
6	3	1

Find estimates of 1) Cycle time, 2) WIP, 3) Throughput, and 4) waiting time of the process.

Performance Measure (infinite T)

• Long-run time-average number of customers in queue (Lq)

$$L_{Q} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} L_{Q}(t) dt$$

 Long-run average time spent in queue per customer (W_Q)

 $W_O = W - E[S]$ where S is a service time.

Little's Law

- Throughput Rate (TH)
 - The number of completed jobs leaving the system per unit of time
- For a system satisfying steady-state conditions,

$$L = \lambda W$$

(cf. WIP(0,T) = $\hat{\lambda} \times CT(0,T)$)

Examples

- If six customers visit a store during a hour on average, the arrival rate would be expressed as 6 customers/hour, and mean inter-arrival time would be equal to 10 minutes/customer (=1/6 hour/customer)
- If a cashier can attend, on an average 5 customers in an hour, the service rate would be expressed as 5 customers/hour, and mean service time would be equal to 12 minutes/customer (=1/5 hour/customer)

23

Steady-State Behavior

Steady-State: the probability that the system is in a given state is independent of t

	Arrival	Service
Rate	Arrival Rate λ	Service Rate μ
	The mean number of arrivals during a time period	The mean number of customers serviced during a time period
Time	Mean Inter-arrival Time	Mean Service Time
	The expected amount of time between two sequential arrivals	The expected amount of time needed to service a customer

Steady-State Behavior (Stability)

$$\lambda = 10 / \text{hr}$$

$$\mu = 20 / \text{hr}$$

$$\lambda = 10 / \text{hr}$$

$$\mu = 5 / \text{hr}$$

Steady-State Behavior (Stability)

- Stability (server utilization or traffic intensity)
 - Proportion of time that a server is busy.

$$\rho = \frac{\lambda}{\mu}$$

– For the stable system (normally operating), the system need $\rho < 1$

Characteristics of Queuing Systems

- Arrivals
 - Population size
 - Arrival distribution (inter-arrival time)
- Services
 - Number of servers
 - Service distribution (service time)
- Queue
 - Queue size (finite? Infinite?)
 - Service priority among customers
- Customer behavior in queue
 - Balking customers do not join if a line is long
 - Reneging customer quit the line if waiting too long

Chuljin Park

27

Customer population Manufacturing/Service System (Queuing System) Waiting line (Queue) Priority Service System (Pacilities Served Jobs/customers Customer System (Queuing System) Waiting line (Queue) Priority Servers) Priority Customers Chuljin Park Chuljin Park 26

Queue Notation

- A / B / c / K / N (/ Queue discipline)
 - Symbols for A and B:
 - D deterministic
 - M exponential
 - G general
 - c: number of identical and parallel servers
 - K: system capacity
 - N: size of population
 - Example 1: M/M/1(/∞/∞)
 - Example 2: There are 10 PC's and 5 pagers for students waiting for a PC.
 (a) students can still wait for a PC even if a lab runs out of pagers.
 M/M/10 (b) If not, M/M/10/15

Chuljin Park

$M/M/c(\infty/\infty)$

$$\rho = \frac{\lambda}{c\mu}$$

$$> L_Q = \frac{(\frac{\lambda}{\mu})^c \rho}{c! (1-\rho)^2} \Biggl(\sum_{n=0}^{c-1} \frac{(\frac{\lambda}{\mu})^n}{n!} + \frac{(\frac{\lambda}{\mu})^c}{c!} \cdot \frac{1}{1-\frac{\lambda}{c\mu}} \Biggr)^{-1}$$

$$> W_Q = \frac{L_Q}{\lambda}$$

$$W = W_Q + \frac{1}{\mu}$$

$$L = \lambda W = \lambda \left(W_q + \frac{1}{\mu} \right) = L_q + \frac{\lambda}{\mu}$$

HANYANG UNIVERSITY

Chuljin Park

35

Queueing Networks (Rough-cut Modeling)

Chuljin Park

Example: Hospital

- Patients arrive according to a Poisson process with intensity of 2 patients per hour.
- The service time (the doctor's examination and treatment time of a patient) follows an exponential distribution with its mean of 20 minutes.
- What is the number of doctors to make the average wait time before the service for a patient no bigger than 30 minutes?

Chuljin Park

34

Overall Arrival Rate

- We use the fact that
 - Arrival rate into a queue = departure rate out of a queue
 - The overall arrival rate into a queue is the *sum* of all the arrival rates
 - # servers does not matter

Chuljin Park

Example

$$\lambda_{j} = a_{j} + \sum_{\text{all queues } i} \lambda_{i} p_{ij}$$

$$\lambda_{1} = a_{1} = 5$$

$$\lambda_{2} = a_{2} + \sum_{i=1}^{3} \lambda_{i} p_{i2} = 6 + 0.2\lambda_{1}$$

$$\lambda_3 = a_3 + \sum_{i=1}^{3} \lambda_i p_{i3} = 0.8\lambda_1 + 0.5\lambda_2 + 0.1\lambda_3$$

$$\lambda_1 = 5, \lambda_2 = 7, \lambda_3 = 8\frac{1}{3}$$

Chuljin Park

R-C example

- A production line consists of two stations (station 1 and 2) and one rework station (station 3). An engineer recorded some time study data between 8am and 6pm over one week (5 days).
 - # of arrivals to station 1: 1000
 - Average service time of station 1: 1/15 hr (2 servers)
 - Average service time of station 2: 1/24 hr (1 server)
 - Average service time of station 3: 1/8 hr
 - 20% jobs are found to have defects at station 1 and sent to rework station.
 Only 50% are salvaged at rework station and sent to station 2.
 - Note that we don't know the distribution of number of arrivals and service times
- The question is the following:
 - One extra server is available now. I'd like to know which station to put him.

Chuljin Park

39

Comments

- Result assumes no capacity restriction
- Result does not depend on service rate at each queue [but must be fast enough to keep up]
- The number of servers does not matter.
- If
 - external arrival processes are Poisson,
 - Service times are exponential.
 - Infinite queue and probabilistic routing

Then each queue behaves like an independent M/M/c Queue!

Chuljin Park

Next Class

• Hand and Spreadsheet Simulation

HANYANG UNIVERSITY

Chuljin Park

40