Model Combination

24 Novembre 2009

- 1 Principles of model combination
- 2 Resampling methods
 - Bagging
 - Random Forests
 - Boosting
- 3 Hybrid methods
 - Stacking
 - Generic algorithm for mulistrategy learning

Model selection versus model combination

For a given learning task, we typically train several models.

- Model selection
 Choose the model that maximizes some performance criterion on a test set.
- Model combination
 Combine several models into a single aggregate model (aka ensemble or committee)

Why combine models?

The error of an ensemble < the error of an individual model provided that:

- 1 the models are diverse or independent;
- 2 each model performs at least slightly better than chance : err < 0.5.

Justification: The error probability of a set of J models

- follows a binomial distribution → assumes independent models;
- **2** equals the probability that at least J/2 models are wrong.

Ex. An ensemble of 21 models is in error when \geq 11 make an error.

- $p < 0.5 \Rightarrow P(ensemble error) < P(individual error)$
- $p > 0.5 \Rightarrow P(ensemble error) > P(individual error)$

Phases of model combination

- **Diversification**: choose diverse models to cover different regions of your instance space
- **Intégration**: combine these models to maximize the performance of the ensemble.

Model diversity

- The diversity of 2 models h_1 et h_2 is quantified in terms of their error (non)correlation
- Different definitions, e.g. the error correlation of 2 models is the probability that both make the same error given that one of them makes an error:

$$C_{err}(h_1, h_2) = P(h_1(x_i) = h_2(x_i) | h_1(x_i) \neq y_i \lor h_2(x_i) \neq y_i)$$

Many other measures of diversity have been proposed [Kuncheva, 2003].

Diversification techniques

- Resampling: vary the data used to train a given algorithm
 - Bagging: "bootstrap aggregation"
 - Random Forests : bagging + "variable resampling"
 - Boosting: resampling through adaptive weighting
- Hybrid learning : vary the algorithms trained on a given dataset
 - Stacking: "stacked generalization"
 - So-called multistrategy models

Integration techniques

- **Static**: integration procedure is fixed, e.g., vote and retain the majority or mean/median of the individual predictions
- Dynamic : base predictions are combined using an adaptive procedure, e.g. meta-learning

Plan

- Principles of model combination
- 2 Resampling methods
 - Bagging
 - Random Forests
 - Boosting
- 3 Hybrid methods
 - Stacking
 - Generic algorithm for multistrategy learning

Bagging

- Bagging = "bootstrap aggregation"
- Diversification via resampling
 - Create T bootstrap replicates of the dataset D (samples of size |D| using random draws with replacement)
 - \blacksquare Apply a given learning algorithm to the T replicates to produce T models or hypotheses
- Static integration
 - Ensemble prediction = mean (regression) or uniform vote (classification) of the T models

Bagging schema

Diversification: Create bootstrap replicates of D

Integration: Final hypothesis $H=f(h_1, h_2,..., h_T)$

C4.5 with and without bagging

Bagging: summary

- Bootstrap resampling yields highly overlapping training sets
- Reduces error due to variance: improves highly unstable or high-variance algorithms, i.e., where small data variations lead to very different models (e.g. decision trees, neural networks)
- \blacksquare "Reasonable" values of T
 - \sim 25 for regression
 - \sim 50 for classification

[Breiman, 1996]

Plan

- 1 Principles of model combination
- 2 Resampling methods
 - Bagging
 - Random Forests
 - Boosting
- 3 Hybrid methods
 - Stacking
 - Generic algorithm for multistrategy learning

Random Forests (RF)

- RF combines random instance selection (bagging) with random variable selection
- Base learning algorithm: decision trees (CART).
- Forest = an ensemble of T trees.

[Breiman, 2001]

RF algorithm

- lacktriangleright TRN contains n examples and p variables
- Hyperparameters : T = # of trees to build; m = # of variables to choose at each test node, $m \ll p$
- To build each tree
 - 1 Create a bootstrap replicate TRN_i of TRN
 - Create a CART tree with the following modifications:
 - lacktriangle At each tree node, randomly choose m candidate variables
 - Do not prune the tree
- lacktriangle Integration method: uniform vote of the T trees

Optimizing RF

- lacktriangle The ensemble error ϵ_F depends on two factors :
 - lacktriangle correlation co among trees of the forest: if co / then ϵ_F /
 - strength s_i of individual trees. Strength \approx prediction accuracy: if $s_i \nearrow$ then $\epsilon_F \searrow$
- Impact of m, the # of randomly drawn variables
 - Increasing m increases both co $(\epsilon_F \nearrow)$ and s $(\epsilon_F \searrow)$: co vs s trade-off
 - Choose m by estimating ϵ_i on $VAL_i = \{x_j \in TRN | x_j \notin TRN_i\}$
- \blacksquare Impact of T, the number of trees
 - $lue{T}$ can be increased without risk of overfitting [Breiman, 2001]

Plan

- Principles of method combination
- 2 Resampling methods
 - Bagging
 - Random Forests
 - Boosting
- 3 Hybrid methods
 - Stacking
 - Generic algorithm for multistrategy learning

Boosting: the basic idea

- Diversification: sequential adaptive resampling by instance weighting
 - Initially: all instances have equal weights: 1/|TRN|
 - At each of the T iterations,
 - apply the algorithm and estimate the resubsitution error
 - increase/decrease weights of misclassified/correctly classified cases (focus learning on difficult cases)
- Integration by weighted voting :
 - Apply the T base models to the current instance
 - \blacksquare Return the weighted majority prediction (base classifiers' weights \propto their predictive power).

Boosting schema

Diversification through instance weighting

Integration : Final hypothesis $H=f(h_1, h_2,..., h_T)$

Bagging versus boosting

	Bagging	Boosting				
Diversification: resampling						
1	in parallel	sequentially				
2	random draws	adaptive weighting				
Integration : vote						
3	uniform weighted by $1 - \epsilon(h_j)$					

AdaBoost algorithm

Input:
$$TRN=\{(x_i,y_i)\},y_i\in\{-1,1\}$$
, algo $\mathcal L$ Initialization: $D_1(i)=1/N$ uniform distribution For $t=1$ to T

- 1 $h_t \leftarrow \mathcal{L}(TRN, D_i)$
- $\epsilon_t \leftarrow \sum_{i|h_t(x_i)\neq y_i} D_t(i)$ (weighted error)
- 3 if $\epsilon_t > 0.5$ then $T \leftarrow t 1$; exit
- 4 Compute D_{t+1} by adjusting weights of training cases

Result: $H_{final}(x) \leftarrow \text{weighted combination of } h_t$'s

Freund & Schapire, 1996-1998

Algorithmic details

 \mathcal{L} a weak learner ($\epsilon < 0.5$)

Computing D_{t+1}

•
$$\alpha_t \leftarrow \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$
 (since $\epsilon_t \leq 0.5$, $\Rightarrow \alpha_t \geq 0 \Rightarrow e^{\alpha_t} \geq 1$)

•
$$D_{t+1}(i) \leftarrow \frac{D_t(i)}{Z_t} \cdot \begin{cases} e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \Rightarrow \text{weight} \\ e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \Rightarrow \text{weight} \end{cases}$$

$$\leftarrow \frac{D_t(i)}{Z_t} exp(-\alpha_t y_i h_t(x_i))$$

$$Z_t \text{ normalization factor } \rightarrow \sum_i D_{t+1}(i) = 1$$

$$H_{final}(x) \leftarrow sgn\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

C4.5 with and without boosting

Performance of bagging vs boosting

Boosting: summary

- The power of boosting comes from adaptive resampling
- Like bagging, boosting reduces variance
- Also reduces bias by obliging the learner to focus on hard cases → combined hypothesis more flexible
- Fast convergence
- Sensitive to noise : when base learners misclassify noisy examples ⇒ weights increase ⇒ overfitting to noise

Plan

- Principles of method combination
- 2 Resampling methods
 - Bagging
 - Random Forests
 - Boosting
- 3 Hybrid methods
 - Stacking
 - Generic algorithm for multistrategy learning

Stacking

- "Stacked generalization" [Wolpert 1992]
- Level 0 : diversification through the use of different learning algorithms
- Level 1 : integration through meta-learning

Stacking schema

Level 0 : Diversification

- \blacksquare Input : $D_0 = \{(\mathbf{x}_i, y_i)\}$, i = 1..N, J learning algorithms L_j
- $lue{}$ Diversification by K-fold cross-validation :

$$\begin{aligned} &\text{for } k = 1 \text{ to } K \text{ do} \\ &\text{for } j = 1 \text{ to } J \\ &\quad h_{kj} \leftarrow L_j(D_0^{-TST_k}) \\ &\text{foreach } \mathbf{x_i} \in TST_k \\ &\quad pred_{ij} \leftarrow h_{kj}(\mathbf{x}) \end{aligned}$$

 \blacksquare Result: J predictions for each instance of D_0

Level 1 meta-data

- Notation : $i = 1 \dots N$ examples; $j = 1 \dots J$ models
- Input : $D_1 = \{(\mathbf{z}_{i,}y_i)\}$, $\mathbf{z}_i \in \mathcal{R}^J$ are the base predictions, y_i the target values
 - regression : $\mathbf{z}_i = [z_{i1}, \dots, z_{kJ}]$, where $z_{ij} = \mathsf{approximation}$ of y_i by model h_j
 - classification :
 - discrete classifier: $\mathbf{z}_i = [z_{i1}, \dots, z_{iJ}]$, with $z_{ij} \in \mathcal{C}$ = class predicted by model h_j for example i
 - probabilistic classifier: $\mathbf{z}_i = [\mathbf{z}_{i1}, \dots, \mathbf{z}_{iJ}]$, with $\mathbf{z}_{ij} = (z_{ij1}, z_{ij2}, \dots, z_{ij|\mathcal{C}|}) = \text{class}$ probability distribution

Examples de meta-data

- Level 0 (base-level) : Iris. $L_1 = J48$, $L_2 = IB1$, $L_3 = NB$
- Level 1 : discrete classifiers

#	J48	IB1	NB	Target	
1	setosa	setosa	versicolor	setosa	
150	virginica	setosa	virginica	virginica	

■ Level 1 : probabilistic classifiers

#	J48			IB1		NB			Target	
	p1	p2	рЗ	p1	p2	рЗ	p1	p2	рЗ	
1	0.58	0.22	0.2	0.74	0.20	0.06	0.37	0.59	0.04	setosa
150	0.02	0.16	0.82	0.45	0.39	0.16	0.36	0.23	0.41	virginica

Level 1: Integration through meta-learning

- lacktriangle The level 1 algorithm depends on the variables of D_1
 - real-valued predictions (regression ou probabilistic classification) : $\mathcal{L}_{\mathcal{M}} \in \{\text{trees, IBk, MLP, SVM, linear regressors, ...}\}$
 - discrete predictions (discrete classification) : $\mathcal{L}_{\mathcal{M}} \in \{\text{trees, IBk, Naïve Bayes, ...}\}$
- The combined model $H \leftarrow \mathcal{L}_{\mathcal{M}}(D_1)$

Using stacked models

- After creation of the combined model H, create the final base models h_i by training the J algorithmes on D_0 .
- In production mode: 2-step prediction given a new case $\mathbf{x} \in \mathcal{R}^d$
 - Level 0 : generate a meta-example $\mathbf{z} \in \mathcal{R}^J$: For j=1 to J, $z_j \leftarrow h_j(\mathbf{x})$
 - Level 1: combined prediction $\leftarrow H(\mathbf{z})$

Stacking: summary

- improves considerably over cross-validated model selection
- on average, 3 hypotheses play a significant role in the combined hypothesis
- stacking is just one example of hybrid model combination, many other examples have been proposed

Generic multistrategy learning algorithm

- Diversification
 - lacktriangle Train M learning algorithms on a base-level dataset and measure their performance on a test set
 - Select J models with minimal correlation error
- Integration
 - Static :
 - continuous predictions: compute the mean, median, linear combination, etc.
 - discrete prédictions : uniform or weighted vote
 - Dynamic : use meta-learning

References

- L. Breiman (1996). Bagging Predictors. *Machine Learning* 24(2): 123-140.
- L. Breiman (2001). Random Forests. Machine Learning 45: 5-32.
- T. G. Dietterich (1998). Machine Learning Research: Four Current Directions. *AI Magazine* 18(4): 97–136.
- Y. Freund, R. E. Schapire (1996). Experiments with a new boosting algorithm. *ICML-96*.
- L. Kuncheva, C. J. Whitaker (2003). Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. *Machine Learning* 51: 181–207.
- D. Wolpert (1992). Stacked Generalization, Neural Networks 5: 241-259.