Examen du cours d'Algorithmique et de Programmation Parallèles et Distribuées

Frédéric Vivien

29 janvier, 2016, 9h00-12h00

- No documents are authorized.
- \bullet All the requested algorithms must be written in pseudo-code.
- Explanations of the algorithms are as important as the pseudo-codes themselves; a perfect algorithm without any explanation will only be awarded half of the points.
- Answers can be provided either in French or in English.

1 Algorithms for PRAMs

1.1 Matrix generation

We consider a PRAM with p processors. We are given two vectors, x and y, both of size n. We want to generate the $n \times n$ matrix A defined by $A_{i,j} = x_i \times y_j$ for $1 \le i, j \le n$.

- 1. Propose an algorithm to generate such a matrix on a CRCW PRAM with $p = n^2$ processors. What is its complexity? Is your algorithm optimal?
- 2. Propose an algorithm to generate such a matrix on a CREW PRAM with $p=n^2$ processors. What is its complexity? Is your algorithm optimal?
- 3. Propose an algorithm to generate such a matrix on a EREW PRAM with $p=n^2$ processors. What is its complexity? Is your algorithm optimal?
- 4. What would be the complexity of your algorithms on PRAMs with $n^2/\log(n)$ processors?
- 5. Are your algorithms optimal on PRAMs with $n^2/\log(n)$ processors?
- 6. Propose an algorithm to compute the sum of the elements of each diagonal on an EREW PRAM with n^2 processors. The sum of the k-th diagonal is the sum of the elements $A_{i,i+k}$.
- 7. What is the complexity of your solution. Is it optimal?

1.2 Changing the playground

Let us assume that we have an algorithm \mathcal{A} that solves a certain problem on a CREW PRAM with n^2 processors in time $O(\log n)$ while executing a total of $n \log n$ operations.

- 1. What would be the execution time of an algorithm solving the same problem on a CREW PRAM with n processors?
- 2. What would be the execution time of an algorithm solving the same problem on a EREW PRAM with n^2 processors?
- 3. What would be the execution time of an algorithm solving the same problem on a EREW PRAM with n processors?

1.3 Tree of largest size

In this exercise we consider CRCW PRAMs. Let \mathcal{F} be a forest, that is, a set of trees. Overall, this forest contains n nodes. Each node i is associated to a processor P(i) and holds a pointer to its father parent(i). If node i is the root of a tree, parent(i) is equal to NULL.

- 1. Propose a CRCW algorithm that computes the size (in number of nodes) of the tree of maximum size in the forest.
- 2. What is the complexity of your algorithm?
- 3. Can your algorithm be adapted to run on an EREW PRAM? (If not, could it be adapted assuming some additional hypotheses?.)

2 Message-passing algorithms for grids of processors

We assume here that we have a set of p processors which are arranged along a 3-dimensional grid. Each processor will be identified by its three coordinates in the 3D grid. We will thus consider the set of processors $P_{i,j,k}$ with $1 \le i \le p_1$, $1 \le j \le p_2$, and $1 \le k \le p_3$, with $p_1 \times p_2 \times p_3 = p$. Processor $P_{i,j,k}$ has a direct communication link with the processors $P_{i-1,j,k}$, $P_{i,j+1,k}$, $P_{i,j+1,k}$, $P_{i,j,k-1}$, and $P_{i,j,k+1}$ (whenever these processors exist).

We have three matrices of size $n \times n$, A, B, and C and we want to compute $C = C + A \times B$.

2.13D Matrix Multiplication

We assume here that the p processors form a "perfect" 3-dimensional grid of size $\sqrt[3]{p}$: $p_1 = p_2 = p_3 = \sqrt[3]{p}$. We consider the following data layout:

- Matrix A is distributed so that processor $P_{i,j,1}$ owns a $\frac{n}{\sqrt[3]{p}}$ -by- $\frac{n}{\sqrt[3]{p}}$ block $\hat{A}_{i,j}$ of A (for $1 \le i, j \le \sqrt[3]{p}$).
- Matrix B is distributed so that processor $P_{1,j,k}$ owns a $\frac{n}{\sqrt[3]{p}}$ -by- $\frac{n}{\sqrt[3]{p}}$ block $\hat{B}_{j,k}$ of B (for $1 \leq j,k \leq j$)
- Matrix C is distributed so that processor $P_{i,1,k}$ owns a $\frac{n}{3\sqrt{p}}$ -by- $\frac{n}{3\sqrt{p}}$ block $\hat{C}_{i,k}$ of A (for $1 \leq i,k \leq n$ $\sqrt[3]{p}$).
- 1. Propose a matrix-multiplication algorithm using this data layout.
 - Remark: if you need more involved communication primitives than send and receive (like macrocommunications), provide the pseudo-code for the primitives used by your algorithm.
- 2. What is the complexity of your solution?

2.22.5D Matrix Multiplication

We assume here that the p processors form a grid of size $\sqrt{\frac{p}{c}} \times \sqrt{\frac{p}{c}} \times c$. In other words, we assume that:

 $p_1 = p_2 = \sqrt{\frac{p}{c}}$, and that $p_3 = c$. Here, A, B, and C have the same initial data layout: processor $P_{i,j,1}$ owns the $\frac{n}{\sqrt{\frac{p}{c}}}$ -by- $\frac{n}{\sqrt{\frac{p}{c}}}$ blocks $\hat{A}_{i,j}$, $\hat{B}_{i,j}$, and $\hat{C}_{i,j}$ of matrices A, B and C (for $1 \leq i, j \leq \sqrt{\frac{p}{c}}$).

- 1. Propose a matrix-multiplication algorithm using this data layout. Hint: Initially, processor $P_{i,j,1}$ sends its blocks $\hat{A}_{i,j}$ and $\hat{B}_{i,j}$ to all the $P_{i,j,k}$ processors.
- 2. What is the complexity of your solution?
- 3. Could this approach be beneficial with respect to a classic 2D matrix multiplication?

Figure 1: Task graph without communications.

Figure 2: Task graph with communications.

3 Task graph scheduling

3.1 Task graph scheduling without communications

We now consider the directed acyclic task graph on Figure 1 and a computing platform with an infinite number of processors and with negligible communication times. All execution times are indicated between parentheses besides the labels of the vertices.

- 1. What is the optimal execution time on an unlimited number of processors $MS_{opt}(\infty)$?
- 2. What is the minimal number of processors needed to execute the As Soon As Possible schedule?
- 3. What is the minimal number of processors needed to execute the As Late As Possible schedule?
- 4. What is the minimal number p_{opt} of processors needed to schedule this graph in a time $MS_{opt}(\infty)$?

3.2 Task graph scheduling with communications

We now consider the task graph on Figure 2. All execution times are indicated between parentheses besides the labels of the vertices; the communication costs are written between parentheses besides the edges. We assume that we have 3 processors.

- 1. Compute the top-level and the bottom-level of each task.
- 2. Schedule the task graph using the modified critical path heuristic.
- 3. Schedule the task graph using at least two of the *clustering* heuristics seen during the lectures (you will mention which heuristics you are using and recall their definition).

4 Dependence analysis and parallelization

We consider the following loop nest:

```
\begin{array}{l} \text{for } i=1 \text{ to } N \text{ do} \\ \text{for } j=i+2 \text{ to } N \text{ do} \\ S_1 \colon a(i+1,j-2)=c(i+1,j-1) \\ S_2 \colon b(i,j+3)=a(i+2,j-6) \\ S_3 \colon c(i+1,j)=d(i-2,j+1)+c(i+1,j-5) \\ S_4 \colon d(i+1,j)=a(i+1,j-3)+c(i,j+2) \\ \text{endfor} \\ \end{array}
```

- 1. Compute the dependences for the above loop nest. The type (flow, anti, output) of dependences must be specified with their distance vectors.
- 2. What contraints should be satisfied by a Lamport's vector $\pi = (a, b)$ used to schedule this loop nest? (Iteration I = (i, j) being executed at time $\pi \cdot I$.)
- 3. What is the value of Lamport's vector that minimizes the execution time?

5 Distributed algorithms

We consider a connected distributed system with an arbitrary topology. We assume that each processor stores an integer.

- 1. Propose a distributed algorithm to compute the maximum of the integers stored on the different processors.
 - Remark: you will explicit the assumptions, if any, for your solution to be correct.
- 2. How many processors hold the answer when the algorithm terminates?
- 3. What is the complexity of your solution?
- 4. Could your algorithm be reused to compute the sum of the integers? Why?
- 5. If the answer to the previous question was negative, provide a distributed algorithm to compute the sum. What is its complexity?