INTEGRALI CURVILINEI

1. Curve mel premo

Una curva PIANA è une fun avone V: I - 1R2 dove I i un intervallo du R.

J∋I ~ (x(t), y(t)) ∈ R2

Une curve so duce CHIUSA se I=[e,t] e f(a)=Y(2), mentre su dice SEMPLICE se re impettive. le sostègno delle curve r è l'inseme { (xH), yH); teI}.

curva chiusa e semplice

Le frecce sul sostegno inducano il verso di percorrenza della curva al vorione del porametro I EI.

Veduamo qualche escupio esplicito

1)
$$\begin{cases} X(t) = 2 + T \\ Y(t) = 1 - 2t \end{cases}$$
 con $t \in \mathbb{R}$

sono le equazioni persuetriche delle rette

"eliminando" el parametro t si trove l'equarione contenene:

$$T = x-2$$
, $y = 1-2(x-2) = 5-2x$.

Se su fa voivore el parametro \pm mell'intervallo $[0,\frac{1}{2}]$ il sostegno corrispondente è doto dol segmento che unisce i punti (2,1) e $(\frac{5}{2},0)$.

dove a e & sono mumeri > 0 sono le equasioni.
parametriche dell'ellisse con equazione contesiona

$$\frac{x^2}{a^2} + \frac{y^2}{4^2} = 1$$

Sous le equorioni parametiche old grafico della funzione f:[a,b] - R. Ad esempio de $f(x) = 1-x^2$ allow x(b)=t, $y(b)=1-t^2$ for $t\in[-1,\frac{3}{2}]$

he come sostiquo

Una currey so obser REGOLARE se le comfomenti x(t) e y(t) sono demodrle con le derivate continue in I e

Je vettore f'(t) si dice VETTORE TANGENTE. Se r'(td) + O allora la retta tangente (paremetrica) alla curve mel punto f(to) è data da

$$\begin{cases} x = x(t_0) + x'(t_0)(t-t_0) \\ y = y(t_0) + y'(t_0)(t-t_0) \end{cases}$$
 for $t \in \mathbb{R}$

2. Integrale curvilines del primo tipo

Sia f: D-R una funzione continua in D insième aperto di R2.

Siè $\Gamma: [a,b] \rightarrow \Omega$ une curve regolore esemplice $Y(t) = (X(t), y(t)) \text{ for } t \in [a,b]$

Allore l'INTEGRALE CURVILINEO du f lungo per definito come

(ε (x (+), g (+)) \ x'(+) + g'(+) at

I sumboli usati fer indicarlo porsono essere

Jeas oppure Secrus) 11 r'(+) 11 out

f si dice INTEGRABILE lugo y se l'intépole curulines comistondente è finito

Se f(x,y)>0 lugo y allore for represente l'area della superficie

{ (x,y,z): x=x(+), y=y(+), z=[0, p(x(+), y(E)], t=[0, c]}

Inaltre Jas (ossie se f=1) rappesenta le LUNGHEZZA rolelle curve r e M induce con IVI.

ESEMPLO 1.

Calcolar le lunghezza della circonferenze du roggio R>O. Le coordinate parametriche sono:

Il vettore tangente he componenti

$$|Y| = \int_{0}^{2\pi} \sqrt{(-Rrent)^2 + (Rcost)^2} dt = R \int_{0}^{2\pi} dt = 2\pi R$$

Si noti che il coleolo delle lunghezze di un' ellisse mon porte od une formule "chiese" perche la funzione do integrore non ammette une primiriva "semplice".

ESEMPIO 2.

Colcolore la lunghezza della curve f dota da dol grofico della funzione $f(x) = \sqrt{\frac{x}{3}} (1-x) \text{ in } [0,1]$

e phinds

$$x'(t) = 1$$
, $y'(t) = f'(t) = \frac{1}{2\sqrt{t}} \frac{(1-t)}{\sqrt{3}} - \frac{\sqrt{t}}{\sqrt{3}} = \frac{1-3t}{2\sqrt{3}\sqrt{t}}$

$$|Y| = \int_{0}^{1} \sqrt{1 + (\xi'(t))^{2}} dt = \int_{0}^{1} \frac{\sqrt{12t + (1 - 6t + t^{2})}}{2\sqrt{3}t} dt$$

$$= \int_{0}^{1} \frac{1 + 3t}{2\sqrt{3}t} dt = \frac{1}{2\sqrt{3}} \left(\int_{0}^{1} \frac{1}{\sqrt{t}} dt + 3 \int_{0}^{1} \sqrt{t} dt \right)$$

$$= \frac{1}{2\sqrt{3}} \left(\left[2\sqrt{t} \right]_{0}^{1} + 3 \left[\frac{t^{3/2}}{3/2} \right]_{0}^{1} \right) = \frac{2}{\sqrt{5}}$$

ESEMPIO 3.

Colcolore
$$\int f ds$$
 dove $f(x,y) = \frac{xy \operatorname{sen} y}{\sqrt{1+x^2}}$
 $c \ f \in \mathcal{C}$ remo en parabala $r(t) = (t, t^2/2)$
per $t \in [0, \sqrt{2\pi}]$.

10 vettore tangente e (1, t) e 11(1,t)11=VI+t?

$$= \int_{0}^{\pi} u \cdot \lambda u(u) du = \left[\lambda u(u) - u \cos u \right] = \pi$$

$$= \int_{0}^{\pi} u \cdot \lambda u(u) du = \left[\lambda u(u) - u \cos u \right] = \pi$$

$$= \int_{0}^{\pi} u \cdot \lambda u(u) du = \left[\lambda u(u) - u \cos u \right] = \pi$$

Due curve $Y_1: I_1 \to \mathbb{R}^2$ e $Y_2: I_2 \to \mathbb{R}^2$ su ducous EQUIVALENTI se $\exists \ \varphi: I_2 \to I_1$ biunivo co, derivable can derivata continua un I_2 etale ele $\varphi'(t) \neq 0$ in I_2 for cur'

Due curve equivalente hamo la stessa sostegna. Inothe hamuo la stessa versa au fercasseu za se 4>0 in Iz appure hama versa opposto se 40.

Ad esempto Y, lt) = (cost, sent) for t e [0,27]

12(t) = (coolt, - senst) pert & [O,T]

sono equivolette e sono due parametrizzonom!

diverse della circonference di centro (90) e

roggio unitario. Ke/z hanno verso apposto.

TEOREMA1.

Se rierz somo due cure equivalenti allone

ossie l'intégrale curvilines mon difende dalle parametizzarione scetter per le curve me solo dal suo sortigno. Se Y: [e, f] → R² i une curve lugo le quole è distribuite delle mosse con deusite lineare S(X, Y) ellore il CENTRODI HASSA (X, Y) e doto de:

$$\overline{X} = \frac{\int x \cdot \delta ds}{\int \delta ds}$$
, $\overline{y} = \frac{\int y \cdot \delta ds}{\int \delta ds}$

ESEMPIO 4.

Coleslare el centro di massa di una semiciron ferenza omogenea (8=1) di raggio R.

Svolgiouro il colcolo usendo due forometre ? co i oui:

1)
$$Y_1(t) = (R \cos t, R \operatorname{Aut}) \operatorname{con} t \in [0, T]$$

$$||Y_1(t)|| = |(-R \operatorname{sent})^2 + (R \operatorname{cost})^2 = R$$
Per summetrie $X = 0$. Colealismo $Y : R$

$$\overline{y} = \frac{1}{|Y|} \cdot \int_{0}^{\pi} (R \operatorname{Seut}) \cdot ||Y|'(t)|| \operatorname{out} = \frac{1}{|Y|} \cdot ||Y|'(t)|| \operatorname{out}$$

2)
$$Y_{2}(t) = (Rt, R. \sqrt{1-t^{2}})$$
 con $t \in [-1, 1]$

$$||Y_{2}(t)|| = R. \sqrt{(1)^{2} + (\frac{t}{\sqrt{1-t^{2}}})^{2}} = \frac{R}{\sqrt{1-t^{2}}}$$

$$||Y_{2}(t)|| = R. \sqrt{(1)^{2} + (\frac{t}{\sqrt{1-$$

Se la cuma per dota in coordinate

parametriche polari 9(t), 8(t) pu teI

allore è necessario qualche colcolo ini

più fer scribere il vettore tomparte:

X(t) = 9(t) cos 8(t), y(t) = 9(t) seu 8(t)

e derivando riopetto a t attembruo

X'(t) = 9'(t) cos 8(t) + 9(t). (-seu 8(t)). 8'(t)

y'(t) = 9'(t) sou 8(t) + 9(t). (cos 8(t)). 8'(t)

e così

ESEMPIO 5.

Colcolore la lunghezza della CARDIOIDE data dalle equaver parametrehe polori

$$\begin{cases} g(t) = 1 + \cos t \\ \theta(t) = t \end{cases}$$

$$\begin{cases} f(t) = t \end{cases}$$

Quinold

ESEMPIO 6.

Colcolore $\int (x^2 + y^2)^2 dx$ dove f = 1 onco della spirole dota dolle equaziones polore $g(t) = a e^{-t}$ g(t) = t pur $t = [0, +\infty)$ con a so.

$$\int_{1}^{1} (x^{2} + y^{2})^{2} ds = \int_{0}^{1} y^{4} |y|^{2} |y|^{2} dt$$

$$= \int_{0}^{1} a^{4} e^{-4t} \sqrt{(-ae^{t})^{2} + (ae^{t})^{2}} dt$$

$$= \int_{0}^{1} a^{4} e^{-4t} \sqrt{(-ae^{t})^{2} + (ae^{t})^{2}} dt$$

=
$$\int_{0}^{+\infty} a^{5} e^{-5t} \sqrt{2} dt = a^{5} \sqrt{2} \left[e^{-5t} \right]_{0}^{+\infty} = \frac{a^{5} \sqrt{2}}{5}$$

3. Integrales curvilinei del secondo tupo

Sia F: I - Re un CAMPO VETTORIALE in Il inseme aperts du Re

$$F(x,y) = (A(x,y), B(x,y))$$

con le componente A(x,y), B(x,y) contemue

A F associamo l'esprenione formole

 $\omega(x,y) = A(x,y) dx + B(x,y) dy$

della FORMA DIFFERENZIALE.

Sie $Y: [a,t] \rightarrow \mathbb{Z}$ une curve regolore e semplice Y(t) = (x(t), Y(t)) for $t \in [a,t]$.

Allore l'INTEGRALE CURVILINEO di Flungo y è definito come

I simboli usati per inducarlo possono essere

se Frappiesenta un composit force piano allero il suo integrale curvillineo lungo y rappiesente il lavoro compiuto per muoversi de y(a) a y(b) lungo y.

ESEMPIO 7.

Sia F(x,y)=(-y,x) e consideramo due curve y_1 e y_2 che portono de (1,0) e arrivano in (0,-1).

$$K: \begin{cases} x(t) = \lambda - t \\ y(t) = -t \end{cases}$$
conte[0,1]

$$Y_2$$
:
$$\begin{cases} X(t) = \cos t \\ y(t) = \sin t \in [0, \frac{3\pi}{2}] \end{cases}$$

Allora

$$\int_{r}^{r} F \cdot dr = \int_{0}^{1} (t)(1-t)^{2} + (1-t)^{2} \cdot (-t)^{2} dt$$

$$= -\int_{0}^{1} (t+1-t) dt = -1$$

$$\int_{r}^{3\pi} F \cdot dr_{2} = \int_{0}^{3\pi} (sut) \cdot (cost)^{2} + (cost) \cdot (sut)^{2} dt$$

$$= \int_{0}^{3\pi} (sut)^{2} + (cost)^{2} = \frac{3\pi}{2}$$

In questo coso, vista la semplicità del compo vettarble, possiono provone anche a representarlo graficamente:

e' ortogonale alla rette parsante per (0,0) e(x,y)
e di lunghezza uguale alla distanza ali (x,y) ala (90).
Con queste osserva zianil e' immediato concludere

Che

Far=0

se r i un segmento lungo una retta parante m (90). (in tal caso (x',y') \pm F(x,y)).

ESEMPIO 8.

Représentare graficemente il compo vettoriele

 $F(x,y) = \left(-\frac{x}{(x^2+y^2)^{3/2}}, -\frac{y}{(x^2+y^2)^{3/2}}\right) \quad \forall (x,y) \in \mathbb{R}^3 \left\{ (0,0) \right\}$ e colcolore l'integrale auxiliano di F lungo $Y = Y_1 \cup Y_2 \cup Y_3$ de (2,0) a (0,1).

Te modulo del vettore f(x,y) e

dunque disminuisce can il recipioco del quodrato delle distanza do (0,0). Inaltre F(x,y) giace lugo la retta parante per (0,0) e (x,y) e punta

verso (0,0).

3)
$$\int_{13}^{14} Fod\gamma_3 = \int_{3}^{14} -\frac{1}{4^2} ott = \left[\frac{1}{4}\right]_{3}^{14} = 1 - \frac{1}{3} = \frac{2}{3}$$

Quudu

$$\int_{Y} F dY = -\frac{1}{6} + 0 + \frac{2}{3} = \frac{1}{2}$$

A differenza dell'integrale curvilines del frimò tipo, l'integrale curvilines del secondo topo diferde dal verso un cui viene fercorso il sortiguo della curro r.

TEOREMA 2.

Se r, erz sono due curve equivalenti allare

ESEMPIO 9.

Sie F(x,y) = (y2, 2xy) e establionio [For lungo tre curve che vammo da (0,0) a (1,1)

$$\int_{r_1}^{r} F dr_1 = \int_{0}^{1} (t^{4}1 + 2t^{3}.2t) dt = [t^{5}]_{0}^{1} = 1$$

$$\int F dr_2 = \int_0^1 (t^2 \cdot 1 + 2t^2 \cdot 1) dt = [t^3]_0^1 = 1$$

$$\int_{3}^{2} F dr_{3} = \int_{0}^{3} (t^{2} \cdot 0 + 0.0) dt + \int_{0}^{3} (1.1 + 2t.0) dt = 1.$$

In questo coso i tre colcoli homo deto lo

stesso volore. Se definiamo la curve chiesa

Y=Y1UY2, dove Y2 è il la curve Y2 con

l'onentezione opposta, possieno dire che

4. Forme differenziali esatte e chiuse

Un insieme SCR2 N ONCE CONNESSO (PER ARCHI) se YP,QES Jemma r: [a,b] -> Stale che r(a)=Per(b)=Q

Ad esemtio

R/1/x2+43<19 e connesso

non è conneso

Sie I un inserne aperts e commesso du R?. Une forma différenzable

w(x,y) = A(x,y) dx + B(x,y) dy

con le componente. A, B continue in 2 Al Olice ESATTA un De se estate une funzione, dette POTENZIALE, U: D - R différenziolile con le denviote continue tole che

Il seguente teoreme riporte une caratterizzazione delle forme differenziale esatte.

TEOREMAS.

w e esatte in I CR2 aprito e connerso se

e con glu stissi puiti invisible e finali.

dum.

Se $w \in \text{enote allow } fu \circ \text{pm'} \text{ curve } \gamma : [e,t] \rightarrow \Omega$ $\int_{\gamma} w = \int_{a}^{b} \left(\frac{\partial U}{\partial x} \cdot x'(t) + \frac{\partial U}{\partial y} \cdot y'(t) \right) dt$

$$=\int\limits_{Q}^{4}\frac{d\left(U(xH),yH)\right)}{dt}dt=\left[U(xH),y(H)\right]_{Q}^{2}=U(\gamma(Q))-U(\gamma(Q))$$

Questo Aguifice che SW dupende solo dal punto imiziale e finale e non dalla porticolore cuma un I che li compiunge.

Ore supposurante che Sw=Sw + r. 1/2 (x) con glustessi muti panti imiziale e finale e dumostramo che w è esatte.

Fissianuo un puto (xo,yo) e le e definiouno una funzione U(x,y) nel seguente modo

dove p è una pulmque curve in 1 che forte de (x0,46) e ornve un (x,4).

Tale funzione U è ben definite pache per itatis a è apeits e commenso e quindi esiste dineno una cuiva che congiunge (xo, yo) e (x, y). Inaltre per (x) il volore di su mon di fenole delle forticolore cuiva scelta.

lu tol modo

$$U(x,y) = \int \omega e U(x+h,y) = \int \omega = \int \omega + \int \omega$$

for f

dove f e une aure de (xo,yo) e (x,y)
e /h(t) = (x+t, y) pu t \(\int [0,h] \)
(h) o e scelto sufficientemente piccolo in
modo che il sostigno di /h, un regnerato,
sia continuto in D) Quinoli

$$\frac{U(x+h,y)-U(x,y)}{h}=\frac{1}{h}\int_{r_{R}}^{h}\omega=\frac{1}{h}\int_{t=0}^{h}A(x+t,y)\,dt$$

= A(x+th, y) pu qualche the [0, h]
Teorena della
medra integrale

Passando el lunite pur h > 0 abbiono che th-0. Così per la continuità de A:

 $\frac{\partial U}{\partial x}(x,y) = \lim_{h \to 0} \frac{U(x+h,y) - U(x,y)}{h} = \lim_{h \to 0} A(x+t_h,y) = A(x,y).$

In mudo simule si può por vedere che

$$\frac{\partial Q}{\partial Q}(x,y) = \beta(x,y)$$

potenziale opociate.

Osserve woui:

1) Se Ui une funzuone potenziale du cu allace la el anche U+ contente. 2) Se p e una euro chiusa e un e esatte allora

$$\int \omega = \int \omega = \int \omega - \int \omega = 0$$

$$r = \int \omega - \int \omega = 0$$

con le senso de fercorrenza invertito).

ESEMPIO 10.

Le ferma différenzièle associate el compo Vettorièle $F(x,y) = (y^2, 2xy)$ dell'esempio 9 è esatte in \mathbb{R}^2 :

$$O(x/3) = x/3^2 \Rightarrow \frac{\partial x}{\partial 0} = y^2, \quad \frac{\partial y}{\partial y} = 2xy.$$

ESEMPIO 11.

La forma defferenzible

$$\omega = -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

mon è esatte in R2/2(0,0)/ puche se r è la curve chiusa date dalla circonferenza

XIA=Root, yIA=Rrent te[0,27] carR>0

allore

$$\int \omega = \int -\frac{R \operatorname{sut}}{R^2} \left(\operatorname{Reost} \right) + \frac{\operatorname{Reost}}{R^2} \left(\operatorname{Rsut} \right) \operatorname{olt} = 2\pi + 0$$

In mode smule so verifice the anche le forme w = -y dx + x dy dell'escupio 7 non è esatta en R².

Le difficolté du vocarioscere une foure différenzable esable ste melle "ostruzione" delle funzione permettorio di stablire dei critiri di esattezze.

lue forme d'fferenzièle

w(x,y)= A(x,y) dx + B(x,y) dy

con A e B differenziabili e con le loro derivate por 200le continue un Q aperts e commesso, si cuice CHIUSA se

$$\frac{\partial A}{\partial \Psi}(x^iA) = \frac{\partial X}{\partial B}(x^iA) \quad A(x^iA) \in \mathbb{T}.$$

Inaltre un imprense apento commenso Ω su duce SEMPLICEMENTE CONNESSO se ogni cuma chiuse continuta in Ω fuo essere ridate mediente una deformazione continua a un futo seuza suscire ala Ω .

converso à semple cemente converso

Ogni insvenue con lino o più "buchi" non i Semplicemente connesso

Vale el seguente rivultato.

TEOREMA4.

Sie il un aperto commesso e cu una forma différenziale différenzialité in il con le derivate continue.

- 1) Se we esatte in I allow we chilese in I.
- 2) Se we chiuse in Ω e Ω e semplicemente connerse allone we esalte e'n Ω .

dum.

Dimostriano solo il punto 1).

Se we'esotte allere JU: 1 - R:

$$\omega = Adx + Bdy e \frac{\partial U}{\partial x} = A, \frac{\partial U}{\partial y} = B$$

Quinol pu il teoreno de Schwarz

$$\frac{\partial A}{\partial Y} = \frac{\partial^2 A}{\partial x^2} = \frac{\partial x \partial A}{\partial x \partial x} = \frac{\partial x}{\partial x}$$

ESEMPIO 12.

Le forme différenzable in R2

e chiuse ferche

$$\frac{\partial \lambda}{\partial (\lambda_3 \cos x)} = 8\lambda = \frac{\partial x}{\partial (5x\lambda_1 + \lambda_5)}$$

Doto che R² è semplicemente commenso, W è anche esotte. Per colcolore il petenziale U poriamo procedere nel seguente modo. Dato the $\frac{\partial U}{\partial x} = y^2 + \cos x$, se integriamo rispetto a x ottenuamo che

dove C(y) è une funzione che difende solo dey (è le costante additive dovute all'integrazioneine)

$$\frac{\partial A}{\partial \Omega} = 5xA + C(A) = 5xA + A_5$$

Ossi'e $C'(y) = y^2$ e $C(y) = \frac{y^3}{3} + C$ (queste volte C e' le "solite" contente adoutive), Quinous $U(x,y) = xy^2 + suex + \frac{y^3}{2} + C$.

ESEMPIO 13

Nell'esemps 8 la forme différenziale cu associata al compo vettoriale F e esatta su IR21 {(90)} con potenziale

Quinds U(x,y)= 1/x2+y2.

$$\int_{r} F dr = \int_{w} w = U(0,1) - U(2,0) = 1 - \frac{1}{2} = \frac{1}{2}.$$

ESEMPIO 14

Nell'esempio II la forma differenzale w è chilesa un R2/ 1/0,0) y:

$$\frac{\partial \hat{A}}{\partial x} \left(\frac{x_5 + \hat{A}_5}{-\hat{A}} \right) = \frac{\left(x_5 + \hat{A}_5 \right)_5}{\hat{A}_5 - x_5} = \frac{\partial x}{\partial x} \left(\frac{x_5 + \hat{A}_5}{x} \right)$$

W man et esotte su 12º1/(0,0) je mohe

me dato che wè chiese passiono concludeir che w è esatte in qualumpur i'msverne semplu-Cementi commerso contemuto in R² (46,0); Ad esempno w è esatte mel semi prono 4x>0; e in tale inserne ammette une funzione patenziale

U(x,y) = archg(4).

ESEMPIO 15.

Sie $w = \frac{x}{x^2 + y^2} dx + \left(\frac{y}{x^2 + y^2} + x^2\right) dy$ for $(x,y) \in \mathbb{I} = \mathbb{R}^2 i + (0,0) i$ Colcolore $\int w$ dove γ if l'orco delle parobale $y = (-x^2 + x) + (-2,1) dx + (-2,0) dx + (-2,0$

Si note che $\omega = \omega_1 + \omega_2$ con $\omega_1 = \frac{\times}{\times^2 + y^2} dx + \frac{y}{\times^2 + y^2} dy = \omega_2 = \times^2 dy$

-2 1

Consideramo prime la forma W1.

(U) e chiuse un 12:

$$\frac{\partial A}{\partial x} \left(\frac{x_3 + A_5}{x_3 + A_5} \right) = -\frac{(x_3 + A_5)^5}{(x_3 + A_5)^5} = \frac{\partial A}{\partial x} \left(\frac{A_5 + A_5}{x_3 + A_5} \right)$$

Dato che a mon è semplicemente commenso mon è dello che cu, sie esable in a. L'eventuale funzione ptenziale U è tale che

$$\frac{\partial x}{\partial \Omega} = \frac{x_5 t A_5}{x} \quad -\frac{\partial A}{\partial \Omega} = \frac{x_5 t A_5}{A} \quad (*)$$

e intégrando la puna equezione rispetto ex otteniono

dervando rispetto a y conchiduouno che c'(y)=0.

$$U(x,y) = \frac{1}{2} \log(x^2 + y^2) + \cos t.$$

Visto che U saddista (x) + (x,y) & 12. possiamo

affermore che Wy e effettivouvente esotte in s.

Quindo

$$\int_{Y} \omega_{1} = U(1,3) - U(-2,0)$$

$$= \frac{1}{2} \log 10 - \frac{1}{2} \log 4 = \frac{1}{2} \log (5/2)$$

We mon e chiese (eduque monche esette)

$$\frac{\partial \lambda}{\partial x}(0) = 0 + yx = \frac{\partial x}{\partial x}(x_5)$$

Così il colcolo du suz ve fatto esplicatamente

$$\int_{Y} \omega_{2} = \int_{-2}^{1} (0 \cdot t^{1} + t^{2} \cdot (4 - t^{2})^{1}) dt = \int_{-2}^{1} (-2t^{3}) = \left[-\frac{t^{4}}{2} \right]_{-2}^{1} = \frac{15}{2}$$

perche $\Gamma(t) = (\pm, 4-t^2)$ pur $\pm \epsilon [-2, 1]$.
Infine

$$\int_{r}^{c} w = \int_{r}^{c} w_{1} + \int_{r}^{c} w_{2} = \frac{1}{2} \log(5/2) + \frac{15}{2}.$$

5. le teorema di GAUSS-GREEN mel piano

TEOREMAS.

Sie DCR2 un donumio semplice respetto sue a x che a y. Sie

w(x,y) = A(x,y) dx + B(x,y) dy

une forma différenzible com A,B e le loro denvote continue in un aperto IDD.

Allore vale le formule du GAUSS-GREEN

$$\iint_{D} \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y} \right) dxdy = \iint_{D} \left(A dx + B dy \right)$$

dove 9tD induce la curra chiuse che ha fer sostigno la frontiera di D fercorsa in senso antiorario.

dem

Se D= {(x,y): x \in \ta, f], y \in \[\ta, (x), \q_2(x) \] \ \ con \q, \q_2 \\ \text{fension continue}, allow

$$\iint \frac{\partial P}{\partial y} dxdy = \int_{x=Q}^{t} \left(\int \frac{\partial P}{\partial y} dy\right) dx = \int_{x=Q}^{t} \left[P(x,y)\right] dx$$

$$= \int_{Q}^{t} \left(P(x,q_{2}(x)) - P(x,q_{1}(x))\right) dx$$

$$= \int_{Q}^{t} \left(P(x,q_{1}(x)) - P(x,q_{1}(x))\right) dx$$

$$= \int_{Q}^{t} \left(P(x,q$$

$$-\iint \frac{\partial A}{\partial y} dxdy = \iint Adx \quad (1)$$

In modo Nucle se D= } (xy): y \ [c,d], x \ [4,(y),42(y)] con 4, 42 femzioni continue, allore

$$\iint \frac{\partial B}{\partial x} dxdy = \iint \left(\int \frac{\partial B}{\partial x} dx \right) dy = \iint \left[B(x,y) \right]^{\frac{1}{2}(y)}$$

$$= \iint \left(\int \frac{\partial B}{\partial x} dx \right) dy = \iint \left[B(x,y) \right]^{\frac{1}{2}(y)}$$

$$= \iint \left(\int \frac{\partial B}{\partial x} dx \right) dy = \iint \left[B(x,y) \right]^{\frac{1}{2}(y)}$$

$$= \iint \left(\int \frac{\partial B}{\partial x} dx \right) dy = \iint \left[B(x,y) \right]^{\frac{1}{2}(y)}$$

$$= \iint \left(\int \frac{\partial B}{\partial x} dx \right) dy = \iint \left[B(x,y) \right]^{\frac{1}{2}(y)}$$

$$= \iint \left(\int \frac{\partial B}{\partial x} dx \right) dy = \iint \left[B(x,y) \right]^{\frac{1}{2}(y)}$$

$$= \iint \left(\int \frac{\partial B}{\partial x} dx \right) dy = \iint \left[B(x,y) \right]^{\frac{1}{2}(y)}$$

$$= \iint \left(\int \frac{\partial B}{\partial x} dx \right) dy = \iint \left[B(x,y) \right]^{\frac{1}{2}(y)}$$

$$= \iint \left(\int \frac{\partial B}{\partial x} dx \right) dy = \iint \left[B(x,y) \right]^{\frac{1}{2}(y)}$$

$$= \iint \left(\int \frac{\partial B}{\partial x} dx \right) dy = \iint \left[B(x,y) \right]^{\frac{1}{2}(y)}$$

$$= \iint \left(\int \frac{\partial B}{\partial x} dx \right) dx = \iint \left(\int \frac{\partial B}{\partial x} dx \right$$

mentre $\begin{cases}
4z(c) & 0 \\
8dy = \int B(t,c)(c') dt
\end{cases}$

$$+\int_{c}^{\pi} B(4_{2}(t),t) \cdot (t') dt + \int_{c}^{\pi} B(4,a) \cdot (a') dt$$

+
$$\int_{a}^{c} B(Y_{1}H)_{1}t) \cdot (t^{1})^{n} dt$$

$$\iint \frac{\partial B}{\partial x} dx dy = \iint B dy \qquad (2)$$

Visto che De semplice rispetto ad entramer glu assu volgono me le (1) che le (2) e sommando membo e membo otterweno la tes.

Osservazione.

le teorema de GAUSS-GREEN vole per dominare più generale. E' sufficiente che il dominio de de componibile un domini per cui Velgano le ipotese del teoremo precedente Ad esempro el dominio D=D, vDz vDz vDz

e'amone des 4 donner Di che sono semplico rispetto ad entrombi gli assi. Rumali

Si noti che la frantière au 70 è acte de ti orientate in seuso antiorano e de 12 orientata in seuso orarvo.

ESEMPIO 16.

Mostrore che se p è una curva chrisa semplica orientata positivamente mon passante per (0,0) allora

$$\int_{Y} \frac{-y \, dx + x \, dy}{x^2 + y^2} = \begin{cases} 0 & \text{le } (0,0) \notin D \\ 2\pi & \text{le } (0,0) \in D \end{cases}$$

dove D é l'insierre delimitats de p.

Doll'esempro 14 seppreuro che bele forme
différenziale é chiuse in R²/4(0,0)}.

Quinds se (0,0) & D

pu il teorema de GAUSS-GREEN

(-4 dx + xdy GG ((2/x)_2 (-4))

 $\int_{Y}^{2} \frac{-y \, dx + x \, dy}{x^{2} + y^{2}} \frac{GG}{GG} \left(\left(\frac{\partial}{\partial x} \left(\frac{x}{x^{2} + y^{2}} \right) - \frac{\partial}{\partial y} \left(\frac{-y}{x^{2} + y^{2}} \right) \right) \, dx \, dy = 0.$ Se $(0,0) \in D$ allows it terrents on GAUSS-GREEN

mon può essere applicato direttamente perche in (90) la forma différenziale mon e definita. Questo problema può essere evitato considerando il percosso chieso YUSUCEUS

dove C_R é una eirconferenza di centro (0,0) C_R reggio R sufficiente fricalo in modo che C_R C_R C_R , mentre S e un segmento che univoce C_R C_R

$$O = \int \omega$$

$$\text{Fusing one}$$

$$= \int \omega - \int \omega - \int \omega + \int \omega = \int \omega - 2\pi$$

$$\text{Quinol}$$

$$\int \frac{-y \, dx + x \, dy}{x^2 + y^2} = 2\pi$$

ESEMPIO 17.

Colcolore $\int \omega$ for $\omega = (x-y^3) dx + (y^3 x^3) dy$ dove y è le circonferenze ou centro $(\frac{1}{2},0)$ e raggio $\frac{1}{2}$ forcorse in senso antiorono.

$$\int_{\mathbb{R}^{\frac{1}{2}}} \int_{\mathbb{R}^{\frac{1}{2}}} \int_{\mathbb{R}^{\frac{$$

$$=3 \iint (x^{2}+y^{2}) dx dy = 3 \iint \int g^{2} \cdot g dg d\theta = 6 \iint \frac{\cos^{4}\theta}{4} d\theta$$

$$= \frac{3}{2} \iint_{\theta=0} \left(\frac{1+\cos^{2}\theta}{2}\right)^{2} d\theta = \frac{3}{8} \left(\frac{\pi}{2} + 0 + \frac{\pi}{4}\right) = \frac{9\pi}{32}.$$

ESEMPIO 18.

Coledore \(\(\text{2} \) \(\text{x} \text{y}^2 \) \(\text{dx} + \text{(x+y)}^2 \) \(\text{dy} \) \(\text

Doto che il colcolo diretto sembre printesto tedioso, porsiamo "convertire" l'integrale curvilineo in un integrale doppio usondo la formula de GAUSS-GREEN

$$\int_{E} \omega = \int_{E} \left(\frac{\partial ((x+y^2))}{\partial x} - \frac{\partial (2(x^2y^2))}{\partial y} \right) dx dy$$

$$= 2 \int_{E} (x-y) dx dy = 2 \int_{E} (\int_{E} (x-y) dy) dx$$

$$= 2 \int_{E} (-\int_{E} t dt) dx = -2 \int_{E} 4 \frac{(x-2)^2}{2} dx = -4 \left[\frac{(x-2)^3}{3} \right]_{E}^{2} = -\frac{4}{3}.$$

$$dt = -ay$$

ESEMPIO 19.

Dall'esembio 7 su ricave fo almente che se $\omega = -y dx + x dy e y = y_2 v y_1 con$

allare
$$\int_{r} w = \int_{r} w - \int_{r} w = \frac{3\pi}{2} + 1$$

Allo stesso risultato so può errivore usonob il teoreno di GAUSS-GREEN

$$\int_{\Gamma} \omega = \iint_{D} \left(\frac{\partial(x)}{\partial x} - \frac{\partial(-y)}{\partial y} \right) dxdy = 2 \int dxdy$$
$$= 2 \int_{D} dx = 2 \left(\frac{3\pi}{4} + \frac{1}{2} \right) = \frac{3\pi}{2} + 1.$$

Osseworvone: l'esempio precedente induce che la formula de GAUSS-GREEN permette de espermere el Colcolo de un'orea come un integrale curvilines

Inothe se une cumo chiuse è esprene in coordinate parametriche poloni S(t), O(t)=t [[a,t]] allore l'are delle parte du prano delimitate delle cume è date da:

$$|D| = \frac{1}{2} \int_{0}^{1} (x \, dy - y \, dx)$$

$$= \frac{1}{2} \int_{0}^{1} (y(t) \cos t) (y(t) \cot t)' - (y(t) \cot t) (y(t) \cot t)' dt$$

$$= \frac{1}{2} \int_{0}^{1} (y(t) \cos t) (y(t) \cot t)' - (y(t) \cot t) (y(t) \cot t)' dt$$

$$= \frac{1}{2} \int_{0}^{1} (y(t) \cos t) (y(t) \cot t) dt$$

$$= \frac{1}{2} \int_{0}^{1} (y(t) \cos t) (\cos t) dt = \frac{1}{2} \int_{0}^{1} (y(t) \cos t) dt$$

$$= \frac{1}{2} \int_{0}^{1} (y(t) \cos t) (\cos t) dt = \frac{1}{2} \int_{0}^{1} (y(t) \cos t) dt$$

ESEMPIO 20.

Colcolore il centro di masse delle parti di priono delimitate dal CARDIOIDE

nel caso orugeneo (6=1)

Colcolieuro pura la mosse

$$|D| = \frac{1}{2} \int_{0}^{2\pi} g^{2}(t) dt$$

$$= \frac{1}{2} \int_{0}^{2\pi} (1 + 2 \cos t + \cos^{2} t) dt$$

$$= \frac{1}{2} \left(2\pi + 0 + \frac{2\pi}{2} \right) = \frac{3\pi}{2}$$

Per symmetrie y=0. Colcoborno X:

$$\overline{X} = \frac{1}{|D|} \iint_{D} X dxdy = \frac{2}{371} \iint_{\theta=0}^{271} \int_{\theta=0}^{1+\cos\theta} \int_{\theta=0}^{271} \int_{\theta=0}^{271$$

$$= \frac{2}{9\pi} \left(0 + 3\frac{2\pi}{4} + 0 + \frac{3\pi}{4}\pi\right) = \frac{5}{6}.$$

ESEMPIO 21.

$$\omega = \left(\frac{1}{\sqrt{x-2y}} + \frac{1}{x^2+1}\right) \text{ol} x + \left(\frac{-2}{\sqrt{x-2y}} + 3x^2\right) \text{ol} y$$

e reil fercosso chiveso

con 1/2, 1/3 requesti e 1. un arco della pardola 4=x2-2

Per GAUSS-GREEN

$$\int_{Y} \omega = \left(\int_{X} \frac{\left(\frac{-2}{|X-2y|} + 3x^{2}\right)}{9x} - \frac{9\left(\frac{1}{|X-2y|} + \frac{1}{x^{2}+1}\right)}{9y}\right) dxdy$$

$$= \left(\int_{X} \frac{-\frac{1}{2} \cdot (-\frac{2}{2})}{(x-2y)^{3/2}} + 6x\right) - \left(-\frac{1}{2} \cdot (-\frac{2}{2})\right) dxdy$$

$$= \int_{X=0}^{1} \int_{Y=x^{2}-2}^{1} dy dx = 6\left[x(1-x^{2})dx = 6\left[\frac{x^{2}}{2} - \frac{x^{4}}{4}\right]\right] = \frac{3}{2}$$

$$= \int_{X=0}^{1} \int_{Y=x^{2}-2}^{1} dy dx = 6\left[x(1-x^{2})dx = 6\left[\frac{x^{2}}{2} - \frac{x^{4}}{4}\right]\right] = \frac{3}{2}$$

Si ossewi che

$$\omega_1 = \left(\frac{1}{\sqrt{x-2y}} + \frac{1}{x^2+1}\right) dx + \left(\frac{-2}{\sqrt{x-2y}}\right) dy$$

è esatte mel semipue mo {y≤x} e una suar funzione potemziale è

Quadri

$$\int \omega = \int 3x^2 dy = \int 3x^2 dy = \int 3x^2 (2t) dt = \left[\frac{3}{2}t^4\right]_0^1 = \frac{3}{2}$$
.