Analyse de Survie Professeur Abdellatif El Afia

Données manquantes

Problématique

- ☐ Il est quasiment impossible dans une étude réelle d'avoir des données totalement complètes.
- ☐ Traiter ces données de façon à ne pas biaiser les résultats..

Analyse de Survie

2

Caractéristiques

Données manquantes Intentionnelles ; prévues par l'enquêteur, comme des réponses du type oui ou non ? si oui une autre sous question.

Données manquantes Non intentionnelles ; hors de contrôle de l'enquêteur, un patient oublie ou refuse de répondre à une question.

Analyse de Survie

3

Notations

- \square Y une matrice n. p contenant les valeurs de p variables pour tous les n individues de l'échantillon.
- \square R l'indicatrice des réponses, une patrice n \times p de 0 et 1 telle que :

 $r_{ij} = 1$ si y_{ij} est observée, et $r_{ij} = 0$ sinon.

- \square Les données observées sont désignées par Y_{obs} et celles manquantes par Y_{mis} .
- \square $Y = (Y_{obs}, Y_{mis})$ contient toutes les valeurs de données. Cependant les valeurs de Y_{mis} nous sont inconues elle sont indiquées par X.
- \square Si $Y = Y_{obs}$ c'està dire que l'échantillonest complètement observé
- ☐ Si aucune données n'a été obtenue pour l'individu i, la ième ligne de Y contiendra uniquement l'identifiant de i et, éventuellement, des données administratives (cas de non éponse totale).

Mécanismes des données manquantes

☐ Mécanisme de non-réponse.

☐ Le processus qui régit les probabilités d'absence des données.

 $\Box P(R/Y_{obs}, Y_{mis}, \psi)$: Le modèle de données manquantes dont les paramètres sont contenus dans ψ décrit la relation dépendance de la distrubution de R qui dépond de $Y = (Y_{obs}, Y_{mis})$.

MCAR

☐ Les données sont dites on MCAR (Missing Completly At Random) si :

$$P(R/Y_{obs}, Y_{mis}, \psi) = P(R = 0/\psi).$$

☐ MCAR est souvent irréaliste en pratique.

MAR

☐ Les donnes sont dites MAR (Missing At Random) si :

$$P(R/Y_{obs}, Y_{mis}, \psi) = P(R = 0/Y_{obs}, \psi)$$

☐MAR est plus général et plus réaliste que MCAR

MNAR

Les données sont dites MNAR (Missing Not At Random) si $P(R/Y_{obs}, Y_{mis}, \psi)$ ne se simplifie pas.

Configuration des données manquantes

Flux entrant

Le coefficient de flux entrant I_j est défini par :

$$I_{j} = \frac{\sum_{j}^{p} \sum_{k}^{p} \sum_{i}^{n} (1 - r_{ij}) r_{ik}}{\sum_{k}^{p} \sum_{i}^{n} r_{ik}}$$

 l_j est le nombre de variables paires (Y_j, Y_k) avec Y_j manquant et Y_k observé, devisé par le nombre totale de cellules observées.

Flux sortant

Le coefficient de flux sortant O_i est défini par :

$$O_{j} = \frac{\sum_{j}^{p} \sum_{k}^{p} \sum_{i}^{n} (1 - r_{ik}) r_{ij}}{\sum_{k}^{p} \sum_{i}^{n} (1 - r_{ij})}$$

 O_j est le nombre de variables paires (Y_j, Y_k) avec Y_j observé et Y_k manquante, devisé par le nombre totale de cellules incomplètes.

Méthodes de gestion de données manquantes

Analyse des cas complets (Complete case analysis)
Etude des cas disponibles (Pairwise deletion)
Procédure de modélisation de la distribution des données manquantes
Imputation par la moyenne
Imputation par régression
LOCF et BOCF
Méthode de l'indicatrice
L'imputation multiple

Analyse des cas complets (Complete case analysis)

Eliminer les lignes (individus) ayant des données manquantes da	ans les variables à
analyser	
Peut fournir des estimations de la moyenne, des coefficients de corrélation biaisés.	régression et de
Pas toujours mauvaise	

Etude des cas disponibles (Pairwise deletion)

- ☐ Ne considérer que les cas où les variables d'intérêt sont complètes.
- La moyenne d'une variable X_i est calculée sur tous les cas ayant des données observées sur X_i , et la corrélation et covariance de deux variables X_i et X_j sont calculer sur tous les cas où les deux variables sont observées à la fois.

Procédure de modélisation de la distribution des données manquantes

Pas besoin d'imputer les données incomplètes ou les éliminer de l'analys
🗖 les paramètres de la distribution du modèle sont estimés par maximum de
vraisemblance (maximal likelyhood)
☐ Faire des inférences et estimer les valeurs des données manquantes.
☐ Evaluées en estimant leur erreur standard.

Imputation par la moyenne

Remplacer les valeurs manquantes de chaque variable par sa moyenne, ou bien le
mode pour les données catégoriques.
Donne une variance sous-estimée et dérange les relations entre les variables.
Donne des estimations biaisées même pour la moyenne quand les données ne
sont as MCAR.
Utilisée uniquement pour les cas où seules quelques valeurs sont manquantes.

Imputation par régression

☐ Sous MCAR, cette méthode fournit des estimations non biaisées de la moyenne. Si les paramètres influençant les données manquantes font partie du modèle, les poids de la régression ne sont pas biaisés sous la condition MAR.

LOCF et BOCF

Remplacer les valeurs manquantes par la dernière valeur observée (Last
Observation Carried Forward).
Remplacer les valeurs manquantes par la valeur de référence (Baseline
Observation Carried Forward).
□ Estimations biaisées même sous MCAR

Méthode de l'indicatrice

Remplacer chaque valeur manquante par 0.	
Peut produire des résultats biaisés même sous la condition MCAR.	
☐ Les conditions sous lesquelles cette méthode est valide sont difficiles obtenir en pratique.	à
Ne permet pas d'avoir des données manquantes dans les événement d'intérêt.	ts

- \square Créer un nombre m de jeu de données (m > 1).
- ☐ réalise l'étude statistique souhaitée sur chacun des jeux de données.
- □ Combiner les estimations de toutes ces études en une seule avec une erreur standard calculée.

• Etape 1 : l'imputation

La méthode crée m jeu de données complets en remplaçant chaque valeur manquante par une valeur plausible tirée spécifiquement d'une distribution modélisée à partir des données observées. Les m jeux de données sont identique pour les valeurs observées, mais différentes pour celle à imputer.

• Etape 2 : l'analyse

Ensuite une analyse statistique est utilisée sur chaque jeu de données maintenant tous imputés, pour appliquer les méthodes voulues comme si les données étaient complètes et en estimer les paramètres d'intérêt. Ce qui donne *m* résultats différents. Ces différences coulent de l'incertitude sur les valeurs imputées.

• Etape 3 : combinaison des estimations

Les *m* parametres estimés sont ensuite combinés en une seule dont on estimera la variance. Sous les bonnes conditions, les valeurs estimées ne sont pas biaisées et ont des propriétés statistiques correctes.

L'imputation Multiple Bayésienne

L'imputation multiple bayésienne est une méthodes bayésienne qui permet d'imputer une variable **continue** sous le modèle linéaire normal.

$$\dot{y} = \dot{\beta}_0 + X_{mis}\dot{\beta}_1 + \dot{\epsilon}$$

Le choix idéal pour imputer les variables distribuées normalement.

☐ Permet d'imputé une variable quantitative discrète ou continue.										
☐ Pour chaque valeur manquante prendre un petit nombre de candidats (3 à 10) qui ont des valeurs proches pour les variables observées.										
☐ Remplacer ☐		variable	manquante	par	celle	d'un	candidat	du	lot	tiré

L'imputation Multiple, Variables Qualitatives.

la régression logistique : pour des variable binaires incomplètes.

$$P(y_i = 1|X_i, \beta) = \frac{\exp(X_i\beta)}{1 + \exp(X_i\beta)}$$

Le modèle Logit multinomial pour les variable nominale de k catégories

$$P(y_i = k | X_i, \beta) = \frac{\exp(X_i \beta_k)}{\sum_{k=1}^K \exp(X_i \beta_k)}$$

TP 4:

- Votre Data contient elle des données manquantes? Sinon, en faire une copie en supprimant quelque données.
- Utiliser une méthode d'imputation multiple pour compléter la copie de Data.
- Reprendre le modèle Cox-PH sur la Data imputée.
- Comparer les résultats