Goal

Quantify whether **closer-to-zero portal entry** (the point where log10 ratio = 0) leads to a **stronger post-portal acceleration**—interpreted as higher multidimensional branching ("exoticness").

Concept

Each β -curve in mu_phase_data.csv crosses the horizontal axis at some slope $\approx s_0$. Immediately after this point, the fast-path ratio begins to rise. We'll measure:

- 1. The **portal position** s₀ (where the sign flips).
- 2. The **acceleration magnitude** of log10 ratio just beyond so (first derivative peak).

If your intuition holds, β with portal closer to 0 will show larger acceleration right after the fold.

Predictions

β	Expected portal slope so	Expected accel (Δ^2 ratio)	Interpretation
8	≈ -0.12	small	early/loose entry → mild burst
9	≈ -0.05	medium	mid coherence
10	≈ 0	strong	tight coherence → large burst

What You'll Get

- A printed table showing each β , its crossover s_0 , and the acceleration magnitude.
- Two plots:
 - 1. mu_portal_accel_compare.png overlay of all β curves with portal markers.
 - 2. $mu_accel_vs_portal.png acceleration vs |s_0|$ (to see if closer-to-zero \Rightarrow greater burst).