Лабораторная работа 1.2.3

Определение моментов инерции твердых тел с помощью трифилярного подвеса 22 сентября 2023 г.

1. Цели и задачи

- измерение момента инерции ряда тел и сравнение резальтатов с расчётами по теоретическим формалам
- проверка аддитивности моментов инерции и справедливости формулы Гюйгенса-Штейнера.

2. Оборудование

• трифилярный подвес, счётчик числа колебаний, набор тел, момент инерции которых принадлежит измерить (диск, стержень, полый цилиндр и другие).

Секундомер: $\Delta_{\rm cek} = 0.01~{\rm c}$ Линейка: $\Delta_{\rm лин} = 0.05~{\rm cm}$

Штангенциркуль: $\Delta_{\text{шт}} = 0.01 \text{ см}$

3. Теория

Момент инерции:

$$I = \int r^2 \, \mathrm{d}m. \tag{1}$$

Формула момента инерции подвеса с грузом:

$$I=kmT^2,$$
где $k=rac{gRr}{4\pi^2z_0}$

Таблица 1. Моменты инерций тел

Кольцо	$I_{\scriptscriptstyle \rm K} = m_{\scriptscriptstyle \rm K} \frac{R_{\scriptscriptstyle \rm BHYT}^2 + R_{\scriptscriptstyle \rm BHeIII}^2}{2}$
Диск	$I_{\scriptscriptstyle m I}=rac{m_{\scriptscriptstyle m I}R_{\scriptscriptstyle m I}^2}{2}$
Горизонтальный брусок	$I_{6\mathrm{p}} = rac{m_{6\mathrm{p}}}{12}(w^2 + h^2)$
Вертикальный брусок	$I_{ m 6p}=rac{m_{ m 6p}}{6}w^2$

Погрешности рассчитываются по формуле:

$$\Delta f = \sqrt{\sum_{i} \left(\frac{\partial f}{\partial x_{i}} \Delta x_{i}\right)^{2}} \tag{3}$$

4. Результаты измерений

Измерим параметры установки.

Таблица 2. Параметры установки

Длина нитей <i>Н</i>	$214,\!40\pm0,\!10$ см
Радиус подвеса R	$114,\!60\pm0,\!10$ мм
Радиус верхнего диска r	$30,\!20\pm0,\!10$ мм
Масса подвеса т	$965{,}7\pm0{,}5$ г
Радиус нижнего диска R_k	$12,\!40\pm0,\!05$ см

Рассчитаем некоторые параметры установки:

Высота подвеса
$$z_0=\sqrt{H^2-R_k^2}=214{,}04\pm0{,}10$$
 см
$$\Delta k=k\sqrt{\left(\frac{\Delta R}{R}\right)^2+\left(\frac{\Delta r}{r}\right)^2+\left(\frac{\Delta z_0}{z_0}\right)^2}=1{,}4\text{ мм}^2\cdot\text{c}^{-2}$$

$$k=\frac{gRr}{4\pi^2z_0}=401{,}8\pm1{,}4\text{ мм}^2\cdot\text{c}^{-2}$$

Проведём измерения периода колебаний для различных тел.

4.1. Измерения колебаний

Таблица 3. Измерения момента инерции подвеса Таблица 8. Измерения раздвижного диска

N	t, c.		N	t, c.
10	44,702		10	30,336
12	53,272		10	30,394
15	66,091		10	30,345
10	43,978		10	30,357
10	43,910		10	30,349
10	43,862		10	30,317
10	43,828		10	30,631
10	43,776		10	30,615
11	48,132		10	30,599
10	43,698		10	30,985
10	43,985		10	30,990
20	85,395		10	30,903
гия	т момен	та инерции кольца	10	31,450

Таблица 4. Измерения момента инерции кольца

N	t, c.
10	41,705
10	41,681
10	41,638
10	41,676
10	41,593

Таблица 5. Измерения момента инерции диска

N	t, c.
10	39,078
10	39,100
10	39,044
10	39,016
10	39,013

Таблица 6. Измерения момента инерции кольца и диска

N	t, c.
10	38,947
10	38,932
10	38,928
10	38,916
10	38,913

Таблица 7. Измерения момента инерции бруска в горизонтальном положении

N	t, c.
10	37,154
10	37,129
10	37,163

0,336 1.0 0,394 1,0 0,3451,0 0,3571,0 0,349 1,0 0,317 1,0 0,631 2,0 0.6152,0 2,0 0,599 0,9853,0 0,990 3,0 $0,90\overline{3}$ 3,0 1,450 4,0 10 31,433 4,0 10 31,429 4.0 10 31,984 5,0 10 31,970 5,0 10 31,964 5,0 10 32,606 6,0 10 32,555 6,0 10 32,548 6,0 10 33,424 7,0 10 33,364 7,0 10 33,369 7,0 10 34,252 8,0 10 34,283 8,0 10 34,231 8,0 10 35,248 9.0 10 35,234 9.0 10 35,266 9,0

 Δh , cm

Таблица 9. Измерения момента инерции бруска в вертикальном положении

N	t, c.
10	29,829
10	29,780
10	29,714

4.2. Моменты инерций

Формула момента инерции подвеса с грузом:

$$I = kmT^2$$

Момент инерции тела:

$$I = km_{\Sigma}T^2 - I_{\text{поп}}$$

4.2.1. Подвес

$$I_{\text{tight}} = kmT^2 = 7.47 \pm 0.16 \text{ f} \cdot \text{m}^2$$

Теоретическое значение:

$$I'_{
m nog} = m R_k^2 = 7.42 \pm 0.06 \ {
m r\cdot m}^2$$

4.2.2. Кольцо

$$I_{\mbox{\tiny K}} = k m_{\Sigma} T^2 - I_{\mbox{\tiny HOI}} = 4{,}68 \pm 0{,}16 \ \mbox{r} \cdot \mbox{m}^2$$

Теоретическое значение:

$$I_{ ext{\tiny K}}' = m_{ ext{\tiny K}} rac{R_{ ext{\tiny BHYT}}^2 + R_{ ext{\tiny BHEIII}}^2}{2} = 4{,}665 \pm 0{,}005 \; ext{г} \cdot ext{м}^2$$

4.2.3. Диск

$$I_{_{\mathrm{I}}} = km_{\Sigma}T^2 - I_{_{\mathrm{ПОЛ}}} = 2{,}06 \pm 0{,}16$$
 г \cdot м 2

Теоретическое значение:

$$I'_{\mathrm{I}} = \frac{m_{\mathrm{I}} R_{\mathrm{I}}^2}{2} = 2.1400 \pm 0.0031 \; \mathrm{r} \cdot \mathrm{m}^2$$

4.2.4. Кольцо + диск

$$I_{\mathrm{kg}} = k m_{\Sigma} T^2 - I_{\mathrm{под}} = 6.72 \pm 0.16 \ \mathrm{r} \cdot \mathrm{m}^2$$

Теоретические значение:

$$I_{\mathrm{kg}}' = I_{\mathrm{k}} + I_{\mathrm{f}} = 6.805 \pm 0.006 \ \mathrm{r} \cdot \mathrm{m}^2$$

4.2.5. Брусок

$$I_{
m 6p\ rop} = km_{\Sigma}T^2 - I_{
m nog} = 3.85 \pm 0.15\ {
m r}\cdot {
m m}^2$$

$$I_{
m 6p \ Bept} = k m_{\Sigma} T^2 - I_{
m mom} = 0.20 \pm 0.16 \ {
m r\cdot m}^2$$

Теоретическое значения:

$$I'_{
m 6p\ rop} = rac{m_{
m 6p}}{12}(w^2 + h^2) = 4{,}056 \pm 0{,}004\ {
m r\cdot m}^2$$

$$I_{
m 6p\; Bept}' = rac{m_{
m 6p}}{6} w^2 = 0.1280 \pm 0.0010\; {
m r}\cdot {
m m}^2$$

Все значения в пределах погрешности совпадают с теоретическими.

4.3. Раздвижные диски

Построим зависимость $I(h^2)$ по таблице 8, где $I_{\scriptscriptstyle \Pi} = kmT^2 - I_{\scriptscriptstyle \Pi O I}, d = \Delta h - 0.5$ см.

Рис. 1. График зависимости I от d^2

$$I(d) = I_{\scriptscriptstyle \Pi} + m_{\scriptscriptstyle \Pi} d^2$$

Используя метод χ^2 , найдём коэффиценты прямой:

$$I_{\rm \pi} = 1{,}779 \pm 0{,}008~{\rm r}\cdot{\rm m}^2$$

$$m = 1597 \pm 8~{\rm r}$$

Что близко соответствует массе половинок и теоретическому значению момента инерции:

$$m_{\pi} = 1536,2 \pm 0,5 \text{ r}$$

$$I_{\mathrm{\Pi}}' = rac{m_{\mathrm{\Pi}} R_{\mathrm{\Pi}}^2}{2} = 1{,}654 \pm 0{,}004 \; \mathrm{r} \cdot \mathrm{m}^2$$

Следовательно, закон Гюйгенса-Штейнера выполняется.

5. Вывод

С помощью трифилярного подвеса мы определили моменты инерции различных тел с высокой точностью и сравнили их с теоретическими значениями.

Также, мы доказали аддитивность моментов инерции.

Была показана справедливость формулы Гюйгенса-Штейнера.