Chapter 1

Integration

1.1 Heat Equation

The heat flow is proportional to the cross sectional area and is inversely proportional to the length. The thermal conductivity is this constant of proportionality.

heat flow
$$= \kappa \frac{A(T_h - T_c)}{L} = \kappa A \frac{\partial T}{\partial x}$$

net heatflow into region $= \kappa A \left[\frac{T_2 - T}{\Delta x} - \frac{T - T_1}{\Delta x} \right] \Rightarrow \kappa A \frac{\partial^2 T}{\partial x} L$
 $= \kappa \frac{\partial^2 T}{\partial x^2} V$

From chemistry,

$$Q = mc_p \Delta T$$

So,

$$\kappa \frac{\partial^2 T}{\partial x} V = m c_p \frac{\partial T}{\partial t}$$

Rearranging,

$$\frac{\partial T}{\partial t} = \frac{\kappa}{\rho c_p} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

This gives us the heat equation:

$$\boxed{\frac{\partial T}{\partial t} = \frac{\kappa}{\rho c_p} \nabla^2 T}$$

In steady-state or equilibrium temperature distributions, temperature is time independent so $\nabla^2 T = 0$. Thus, steady-state temperature distributions are harmonic functions.

1.2 Contour Integrals

Given a function f and a contour C, define the contour integral $\int_C f(z)dz$ by parameterizing C: z(0) = starting point of C, z(1) = ending point of C. Then,

$$\int_C f(z)dz = \lim_{n \to \infty} \sum_{k=1}^n f\left(z\left(\frac{k}{n}\right)\right) \left(z\left(\frac{k}{n}\right) - z\left(\frac{k-1}{n}\right)\right)$$

1.3 Integral Bounds

If $|f(z)| < M \,\forall z \in C$, then

$$\left| \int_{C} f(z)dz \right| \leq \lim_{n \to \infty} \sum_{k=1}^{n} \left| f\left(z\left(\frac{k}{n}\right)\right) \right| \left| z\left(\frac{k}{n}\right) - z\left(\frac{k-1}{n}\right) \right|$$
$$< M \cdot \lim_{n \to \infty} \sum_{k=1}^{n} \left| z\left(\frac{k}{n}\right) - z\left(\frac{k-1}{n}\right) \right| \leq ML$$

1.4 Fundamental Theorem of Contour Integrals

1.4.1 Definition

If F(z) can be found for which $F'(z) = f(z) \,\forall z \in \mathbb{C}$, then,

$$\int_{c} f(z)dz = F(z_{end}) - F(z_{start})$$

1.4.2 Proof

Parameterize $C:z(t),t\in[0,1].$ Let $z_k=z\left(\frac{k}{n}\right)$

$$F(z(1)) - F(z(0)) = F(z_n) - F(z_0) = F(z_n) - F(z_1) + F(z_1) - F_{z_0}$$

$$= \sum_{k=1}^{n} (F_{z_k} - F_{z_{k-1}}) = \sum_{k=1}^{n} (F(z_{k-1}) + F'(z_{k-1})(z_k - z_{k-1}) + \xi(z_k, z_{k-1}) - F(z_{k-1}))$$

$$= \sum_{k=1}^{n} F'(z_{k-1})(z_k - z_{k-1}) + \sum_{k=1}^{n} \xi(z_k, z_{k-1})$$

As $n \to \infty$, we get the Fundamental Theorem of Contour Integerals.

1.4.3 Corollary

If $F'(z) = f(z) \forall z \in D$ where D is a domain, then $\int_c f(z)dz$ is independent of path for every controur $C \subset D$.

1.4.4 Branch Cuts

$$\int_C \frac{dz}{z^2 + 1} = \int_C \left(\frac{1}{z - i} - \frac{1}{z + i}\right) \frac{dz}{2i}$$

If C avoids the following branch cuts, this is valid:

$$= \frac{1}{2i} \left(\log(z - i) - \log(z + i) \right)_{\text{start}}^{\text{end}}$$

If C crosses the branch cuts, this no longer works. We just need to manipulate the branch cuts so that the function does not cross it. So if C crosses the top branch cut in a downwards facing parabola, we can do the following to move the top branch cut.

$$= \frac{1}{2i} \left(\log(-i(z-i)) + \frac{i\pi}{2} - \log(z+i) \right)_{\text{start}}^{\text{end}}$$

1.5 Path Independence

If C_1, C_2 are on C,

$$\int_{C_1} f(z)dz - \int_{C_2} f(z)dz = \oint_C f(z)dz = \oint_C ((udx - vdy) + i(vdx + udy))$$

Using Green's theorem (not rigorous),

$$= \iint_D ((-v_x - u_y + i(u_x - v_y))dA$$

This = 0 if f(z) satisfies Cauchy reimann. So, whenever f(z) is analytic throughout a region that allows one contour to be deformed to the other.

1.6 Contour Deformation

If C_1 and C_2 both begin at z_1 and end at z_2 and C_1 can be continuously deformed into C_2 without leaving the domain D of analyticity of f(z), then

$$\int_{C_1} f(z)dz = \int_{C_2} f(z)dz$$

1.7 Cauchy's Integral Formula

Suppose f(z) is analytic on a simply connected domain D containing the closed loop C with z_0 in its interior.

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$

1.8 Cauchy's Integral Formula for Derivatives

For analytic f at z_0 .

$$f(z) - f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(\xi)}{\xi - z} d\xi - \frac{1}{2\pi i} \oint \frac{f(\xi)}{\xi - z_0} d\xi$$
$$= \frac{1}{2\pi i} \oint_C f(\xi) \frac{z - z_0}{(\xi - z)(\xi - z_0)} d\xi$$

Manipulating,

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{1}{2\pi i} \oint_C \frac{f(\xi)}{(\xi - z)(\xi - z_0)} d\xi$$

Taking limits as $z \to z_0$,

$$f'(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(\xi)}{(\xi - z)^2} d\xi$$

This shows that for a function that is analytic at z_0 , it's derivative also exists. This differentiation can continue yielding the following:

$$f^{(k)}(z_0) = \frac{k!}{2\pi i} \oint_C \frac{f(\xi)}{(\xi - z)^{k+1}} d\xi$$

. Thus a function that is analytic at a given point is infinitely differentiable at that given point.

1.9 Liouville's Theorem

1.9.1 Statement

A bounded entire function is constant.

1.9.2 **Proof**

$$f'(z_0) = \frac{1}{2\pi i} \oint_{|z-z_0|=R} \frac{f(\xi)}{(\xi-z)^2} d\xi$$

for an arbitrary point z_0 by CIFFD. Using integral bounds, suppose

$$|f(z)| < M \,\forall z \in \mathbb{C}$$

then,

$$|f'(z)| < \frac{1}{2\pi} \frac{M}{R^2} 2\pi R = \frac{M}{R}$$

As $R \to \infty$, this statement still holds true so f'(z) = 0 so f(z) is constant.

1.10 Another Statement

Suppose f(z) is entire and $|f(z)| < 10|z|^3 \sqrt{|z|} \, \forall z : |z| > 30$. Then f(z) is a polynomial of degree 3 at most.

1.10.1 Proof

For any point z_0 ,

$$f^{(4)}(z_0) = \frac{4!}{2\pi i} \oint_{|z-z_0|=R} \frac{f(\xi)}{(\xi-z_0)^5} d\xi$$

is true by CIFFD. For $R > 30 + |z_0|$,

$$|f^{(4)}(z_0)| < \frac{24}{2\pi} \cdot \frac{10R^{\frac{7}{2}}}{R^5} \cdot 2\pi R = \frac{240}{R^{\frac{1}{2}}}$$

Expanding R without bound, this must still be true to $f^{(4)}(z) = 0$.

1.10.2 General Statemnt

If a entire function is bounded by any power of z, it must be a polynomial function or constant. Any non-polynomial entire functions must grow faster than any power of z (think exponential).

1.11 Poisson's Formula

$$f(z) = \frac{1}{2\pi i} \oint_{|\xi|=R} \frac{f(\xi)}{\xi - z} d\xi$$

Adding a term,

$$f(z) = \frac{1}{2\pi i} \oint_{|\xi|=R} \frac{f(\xi)}{\xi - z} d\xi + \frac{1}{2\pi i} \oint_{|\xi|=R} \frac{f(\xi)\overline{z}}{R^2 - \xi\overline{z}} d\xi$$

Note that the modulus of the singularity is $|\xi| = |\frac{R^2}{z}| = \frac{R^2}{z} > R$ for |z| < R. This means that the added term is 0.

$$= \frac{1}{2\pi i} \oint_{|\xi|=R} f(\xi) \left(\frac{1}{\xi - z} + \frac{\overline{z}}{R^2 - \xi \overline{z}} \right) d\xi$$

Note that when this fraction is combined, the numerator is independent of z.

$$= \frac{1}{2\pi i} \oint_{|\xi|=R} \frac{R^2 - r^2}{(Re^{it} - z)(R^2 - Re^{it}z)}$$
$$= \frac{1}{2\pi i} \oint_{|\xi|=R} \frac{R^2 - r^2}{Re^{it}} \cdot \frac{1}{(Re^{it} - z)(Re^{-it} - \overline{z})}$$

$$= \frac{R^2 - r^2}{2\pi i} \oint_{|\xi| = R} \frac{f(\xi)}{Re^{it} |Re^{it} - z|^2}$$

Completing the substitution of $\xi = Re^{it}$,

$$= \frac{R^2 - r^2}{2\pi i} \int_0^{2\pi} \frac{f(Re^{it})}{Re^{it}|Re^{it} - z|^2} \cdot iRe^{it} dt$$

Simplifying,

$$= \frac{R^2 - r^2}{2\pi} \int_0^{2\pi} \frac{f(Re^{it})}{|Re^{it} - z|^2} dt$$

Taking the real part,

$$u(x,y) = \frac{R^2 - r^2}{2\pi} \int_0^{2\pi} \frac{u(R\cos t, R\sin t)}{|Re^{it} - z|^2}$$

This shows that if we know the value of a harmonic function everywhere on circle, we can use this to find information of its values inside.

1.12 Harnack's Inequality

Manipulating Poisson's formula above,

$$u(r\cos\theta, r\sin\theta) = \frac{R^2 - r^2}{2\pi} \int_0^{2\pi} \frac{u(R\cos t, R\sin t)}{R^2 - 2Rr\cos(t - \theta) + r^2} dt$$

Taking bounds,

$$u(r\cos\theta, r\sin\theta) \le \frac{R^2 - r^2}{2\pi} \int_0^{2\pi} \frac{u(R\cos t, R\sin t)}{(R - r)^2} dt$$

$$= \frac{R+r}{R-r} \frac{1}{2\pi} \int_0^{2\pi} u(R\cos t, R\sin t) dt = \frac{R+r}{R-r} u(0,0)$$

Using the same manipulation on the other side,

$$\frac{R-r}{R+r}u(0,0) \le u(r\cos\theta, r\sin\theta)$$

This yields Harnack's Inequality,

$$\frac{R-r}{R+r}u(0,0) \le u(r\cos\theta, r\sin\theta) \le \frac{R+r}{R-r}u(0,0)dt$$

1.13 Reimann Mapping Theorem

Any simply connected domain whose boundary consists of more than two points can be mapped in a one to one invertible analytic way to the interior of a unit disk.