Goal

Deductive reasoning in language as close as possible to full FOL

$$\neg, \land, \lor, \exists, \forall$$

Knowledge Level:

given KB, α , determine if KB $\models \alpha$. or given an open $\alpha(x_1.x_2...x_n)$, find $t_1.t_2...t_n$ such that KB $\models \alpha(t_1.t_2...t_n)$

When KB is finite $\{\alpha_1, \alpha_2, ..., \alpha_k\}$

 $\mathsf{KB} \models \alpha$

 $\begin{array}{ll} \text{iff} & \models [(\alpha_1 \wedge \alpha_2 \wedge ... \wedge \alpha_k) \supset \alpha] \\ \\ \text{iff} & \mathsf{KB} \cup \{\neg \alpha\} \text{ is unsatisfiable} \\ \\ \text{iff} & \mathsf{KB} \cup \{\neg \alpha\} \models \mathsf{FALSE} \end{array}$

So want a procedure to test for validity, or satisfiability, or for entailing FALSE.

Will now consider such a procedure

Assignment Project Exam Help

https://eduassistpro.github.io/

Add \\eartsedu_assist_pro

Formula = set of clauses

Clause = set of literals

Literal = atomic sentence or its negation

positive literal and negative literal

Notation:

If l is a literal, then $\neg l$ is its complement

$$p \Rightarrow \neg p \qquad \neg p \Rightarrow p$$

To distinguish clauses from formulas:

- [and] for clauses: $[p, \neg r, s]$
- $\{$ and $\}$ for formulas: $\{[p, \neg r, s], [p, r, s], [\neg p]\}$
 - [] is the empty clause $\{\}$ is the empty formula So $\{\}$ is different from $\{[]\}$!

Interpretation:

Formula understood as <u>conjunction</u> of clauses Clause understood as <u>disjunction</u> of literals Literals understood normally

So:

 $\{[p, \neg q], [r], [s]\} \quad \text{is representation of} \quad ((p \vee \neg q) \ \wedge \ r \ \wedge s)$

- [] is a representation of FALSE
- {} is a representation of TRUE

CNF and DNF

Every propositional wff α can be converted into a formula α' in Conjunctive Normal Form (CNF) in such a way that $|= \alpha \equiv \alpha'$.

1. eliminate ⊃ and ≡

using $(\alpha \supset \beta)$ ß $(\neg \alpha \lor \beta)$ etc.

2. push - inward

using $\neg(\alpha \land \beta)$ ß $(\neg \alpha \lor \neg \beta)$ etc.

3. distribute ∨ over ∧

using $((\alpha \land \beta) \lor \gamma)$ ß $((\alpha \lor \gamma) \land (\beta \lor \gamma))$

4. collect terms

using $(\alpha \vee \alpha)$ ß α etc.

Result is a conjunction of disjunction of literals.

an analogous procedure produces DNF, a disjunction of conjunction of literals

We can identify CNF wffs with clausal formulas

 $(p \lor \neg q \lor r) \land (s \lor \neg r)$ $\{[p, \neg q, r], [s, \neg r]\}$

So: given a finite KB and α , to find out if KB $\models \alpha$, it will be sufficient to

Assignment Project Exam Help

2.determine the satisfiability of clauses

https://eduassistpro.github.io/

<u>Adde₩ษัติทธิ</u>redu_assist_pro

Given two clauses, infer a new clause:

From clause $\{p\} \cup C_1$,

and $\{\neg p\} \cup C_2$,

infer clause $C_1 \cup C_2$.

 $C_1 \cup C_2$ is called a <u>resolvent</u> of input clauses with respect to p.

Example:

From clauses [w, p, q] and $[w, s, \neg p]$, have [w, q, s] as resolvent wrt p.

Special Case:

[p] and [$\neg p$] resolve to [] C_1 and C_2 are empty

A <u>derivation</u> of a clause c from a set S of clauses is a sequence $c_1, c_2, ..., c_n$ of clauses, where the last clause $c_n = c$, and for each c_i , either

 $1.c_i \in S$

 $\mathbf{2}.c_i$ is a resolvent of two earlier clauses in the derivation

Write: $S \vdash c$ if there is a derivation

KR & R © Brachman & Levesque 2005

Rationale

Resolution is a symbol-level rule of inference, but has a connection to knowledge-level logical interpretations

Resolvent is entailed by input clauses.

Suppose $I \models (p \lor \alpha)$ and $I \models (\neg p \lor \beta)$ Case 1: $I \models p$ then $I \models \beta$, so $I \models (\alpha \lor \beta)$. Case 2: $I \not\models p$ then $I \models \alpha$, so $I \models (\alpha \lor \beta)$.

Either way, $I = (\alpha \lor \beta)$.

So: $\{(p \lor \alpha), (\neg p \lor \beta)\} \models (\alpha \lor \beta).$

Special case:

[p] and $[\neg p]$ resolve to [], so $\{[p], [\neg p]\} \models \mathsf{FALSE}$

that is: $\{[p], [\neg p]\}$ is unsatisfiable

Assignment Project Exam Help

https://eduassistpro.github.io/

Addewed assist_pro

Can extend the previous argument to derivations:

If $S \vdash c$ then $S \models c$

Proof: by induction on the length of the derivation. Show (by looking at the two cases) that $S \models c_i$.

But the converse does not hold in general

Can have $S \models c$ without having $S \models c$.

Example: $\{ [\neg p] \} \models [\neg p, \neg q]$ i.e. $\neg p \models (\neg p \lor \neg q)$

but no derivation

However, ...

Resolution is sound and complete for []!

Theorem: $S \vdash []$ iff $S \models []$

Result will carry over to quantified clauses (later)

So for any set *S* of clauses:

S is unsatisfiable iff $S \vdash []$.

Provides method for determining satisfiability:

Search all derivations to see if [] is produced

Also provides method for determining all entailments

A procedure for entailment

To determine if KB $\mid = \alpha$,

- put KB, $\neg \alpha$ into CNF to get S, as before
- check if $S \vdash []$.

If KB = $\{\}$, then we are testing the validity of α .

Non-deterministic procedure

1. Check if [] is in S.

If yes, then return UNSATISFIABLE

2. Check if there are two clauses c_1

and c_2

in S such that they resolve to

produce

a c_3 not already in S.

If no, then return SATISFIABLE

3. Add c_3 to S and go to 1.

Note: need only convert KB to CNF once

Assignment Project Exam Help clauses α' to KB

https://eduassistpro.github.io/

Add WeEtratedu_assist_pro

KB:

FirstGrade

FirstGrade ⊃ Child

 $Child \wedge Male \supset Boy$

Kindergarten ⊃ Child

Child ∧ Female ⊃ Girl

Female

Show that $KB \models Girl$

KR & R © Brachman & Levesque 2005

Example 2

KB:

 $(Rain \lor Sun)$ $(Sun \supset Mail)$ $((Rain \lor Sleet) \supset Mail)$

Show KB |= Mail

Similarly KB | Rain Signment Numer redirect ver Exam Help

and [] will not be generated

https://eduassistpro.github.io/

Add We@httteedu_assist_pro

Clausal form as before, but atom is

 $P(t_1, t_2, ..., t_n)$, where t_i may contain variables

Interpretation as before, but variables are understood universally

Example: $\{[P(x), \neg R(a, f(b, x))], [Q(x, y)]\}$

interpreted as

 $\forall x \forall y \{ [R(a,f(b,x)) \supset P(x)] \land Q(x,y) \}$

Substitutions: $\theta = \{v_1/t_1, v_2/t_2, ..., v_n/t_n\}$

Notation: If l is a literal and θ is a substitution, then $l\theta$ is the result of the substitution (and similarly, $c\theta$ where c is a

clause)

Example: $\theta = \{x/a, y/g(x,b,z)\}$

 $P(x,z,f(x,y)) \theta = P(a,z,f(a,g(x,b,z)))$

A literal is ground if it contains no variables.

A literal l is an <u>instance</u> of l',

if for some θ , $l = l'\theta$.

KR & R © Brachman & Levesque 2005

Generalizing CNF

Resolution will generalize to handling variables

But how to convert wffs to CNF?

Need three additional steps:

Ignore = for now

- 1. eliminate \supset and \equiv
- 2. push inward

using also $\neg \forall x.\alpha \ \ \exists x.\neg \alpha \ \ \text{etc.}$

3. standardize variables: each quantifier gets its own variable

4. eliminate all existentials

(discussed later)

5. move universals to the front

using
$$\forall x[\alpha] \land \beta$$
 ß $\forall x[\alpha \land \beta]$ where β does not use x

- 6. distribute ∨ over ∧
- 7. collect terms

Assignment of the state of the

then drop the quantifiers...

https://eduassistpro.github.io/

Add Weethat edu_assist_pro

Main idea:

a literal (with variables) stands for all its instances; will allow all such inferences

So given:

$$\begin{split} &[P(x,a),\neg Q(x)] \text{ and } [\neg P(b,y),\neg R(b,f(y))],\\ &\text{want to infer: } [\neg Q(b),\neg R(b,f(a))]\\ &\text{since } [P(x,a),\neg Q(x)] \text{ has } [P(b,a),\neg Q(b)] \text{ and }\\ &[\neg P(b,y),\neg R(b,f(y))] \text{ has } [\neg P(b,a),\neg R(b,f(a))] \end{split}$$

Resolution:

Given clauses: $\{l_1\} \cup C_1$ and $\{\neg l_2\} \cup C_2$ Rename variables, so that distinct in two clauses. For any θ such that $l_1\theta = l_2\theta$, can infer $(C_1 \cup C_2)\theta$ mple below

We say that l_1 unifies with l_2 and that θ is a unifier of the two literals

Resolution derivation: as before still ignoring =

Theorem: $S \vdash []$ iff $S \models []$

iff S is unsatisfiable

Example 3

KB:

 $\forall x \operatorname{GradStudent}(x) \supset \operatorname{Student}(x)$ $\forall x \operatorname{Student}(x) \supset \operatorname{HardWorker}(x)$ $\operatorname{GradStudent}(\operatorname{sue})$

Q: HardWorker(sue)

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeCharedu_assist_pro

 $\mathsf{KB} = \{On(a,b), \ On(b,c), \ Green(a), \ \neg Green(c)\}$ $\mathsf{already in CNF}$

$$Q = \exists x \exists y [On(x,y) \land Green(x) \land \neg Green(y)]$$
Note: $\neg Q$ has no existentials to eliminate

yields $\{[\neg On(x,y), \neg Green(x), Green(y)]\}$ in CNF

 $[\neg On(x,y), \neg Green(x), Green(y)]$ $[\neg Green(b), Green(c)]$ $[\neg Green(a), Green(b)]$ $[\neg Green(b)]$ [Green(b)]

Note: Need to use On(x,y) twice, for 2 cases

KR & R © Brachman & Levesque 2005

Arithmetic

KB:

Plus(zero,x,x) Plus(x,y,z) \supset Plus(succ(x),y,succ(z))

Q: $\exists u \text{ Plus}(2,3,u)$

where for readability, we use

0 for zero,

3 for succ(succ(succ(zero))) etc.

Assignment Project Examination Help

https://eduassistpro.github.io/

Add Wethatedu_assist_pro

In full FOL, have possibility of deriving $\exists x P(x)$ without being able to derive P(t) for any t.

e.g. the three-blocks problem

 $\exists x \exists y [On(x,y) \land Green(x) \land \neg Green(y)]$

but cannot derive which block is which

Solution: answer-extraction process

• replace query $\exists x P(x)$ by $\exists x [P(x) \land \neg A(x)]$

where A is a new predicate symbol called the answer predicate

- instead of deriving [], derive any clause containing just the answer predicate
- · can always convert a derivation of []

Example KB:

{Student(john), Student(jane), Happy(john)}

Q: $\exists x [Student(x) \land Happy(x)]$

Student(jane)

Happy(john) [\neg Student(x), \neg Happy(x), A(x)]

Student(john) [\neg Student(john), A(john)]

[A(john)] An answer is: John

KR & R © Brachman & Levesque 2005

Disjunctive answers

Example KB:

{Student(john), Student(jane), [Happy(john) \times Happy(jane)]}

Q: $\exists x [Student(x) \land Happy(x)]$

can have variables in answer

https://eduassistpro.github.io/

&@maedu assist

So far, converting wff to CNF ignored existentials

e.g. $\exists x \forall y \exists z P(x,y,z)$

Idea: names for individuals claimed to exist, called **Skolem** constant and function symbols

> there exists an x, call it afor each y, there is a z, call it f(y)get $\forall y P(a, y, f(y))$

In general:

 $\forall x_1 (... \forall x_2 (... \forall x_n (... \exists y [... \ y \ ...] \ ...)...)...)$

is replaced by

 $\forall x_1 (... \forall x_2 (... \forall x_n (... [... f(x_1, x_2, ..., x_n) ...] ...)...)$

where f is a new function symbol that appears nowhere else

Skolemization does not preserve equivalence

e.g. $\neq \exists x P(x) \equiv P(a)$

But it does preserve satisfiability α is satisfiable iff α' is satisfiable where α' is the result of skolemization

Sufficient for resolution!

Variable dependence

Show that $\exists x \forall y R(x,y) \models \forall y \exists x R(x,y)$ show $\{\exists x \forall y R(x,y), \neg \forall y \exists x R(x,y)\}$ unsatisfiable $\exists x \forall y R(x,y) \quad \& \quad \forall y R(a,y)$ $\neg \forall y \exists x R(x,y) \quad \& \quad \exists y \forall x \neg R(x,y) \quad \& \quad \forall x \neg R(x,b)$ then $\{[R(a,y)], [\neg R(x,b)]\} \vdash [] \quad \text{with} \quad \{x/a, y/b\}.$

Show that $\forall y \exists x R(x,y) \not\models \exists x \forall y R(x,y)$ show $\{\forall y \exists x R(x,y), \neg \exists x \forall y R(x,y)\}$ satisfiable $\forall y \exists x R(x,y) \land \forall y R(f(y),y)$ $\neg \exists x \forall y R(x,y) \land \forall x \exists y \neg R(x,y) \land \forall x \neg R(x,g(x))$ then get $\{[R(f(y),y)], [\neg R(x,g(x))]\}$ where the two literals do <u>not</u> unify

Note:

important to get dependence of variables correct R(f(y),y) vs. R(a,y) in the above

Assignment Project Exam Help

https://eduassistpro.github.io/

Add We@hatedu_assist_pro

KB: LessThan(succ(x),y) \supset LessThan(x,y)

Q: LessThan(zero,zero)

Should fail since KB |≠ Q

[LessThan(x,y), \neg LessThan(succ(x),y)]

Infinite branch of resolvents

cannot use a simple depth-first procedure to search for $\lceil \rceil$

KR & R © Brachman & Levesque 2005

Undecidability

Is there a way to detect when this happens?

No! FOL is very powerful

can be used as a full programming language just as there is no way to detect in general when a program is looping

There can be no procedure that does this:

Proc[Clauses] =

If Clauses are unsatisfiable then return YES else return NO

Also true for Horn clauses (later)

However: Resolution is complete

some branch will contain [], for unsat clauses

Assignmental Ptroject Education Help

https://eduassistpro.github.io/

Add **Weethaticedu_assis**t_pro

In general, no way to guarantee efficiency, or even termination

later: put control into users' hands

one major way:

reduce redundancy in search, by keeping search as general as possible

Example

...,
$$P(g(x),f(x),z)$$
 [¬ $P(y,f(w),a)$, ...

unified by

$$\theta_1 = \{x/b, y/g(b), z/a, w/b\}$$
gives $P(g(b),f(b),a)$

and by

$$\theta_2 = \{x/f(z), y/g(f(z)), z/a, w/f(z)\}$$

gives $P(g(f(z)), f(f(z)), a)$.

Might not be able to derive [] from clauses having overly specific substitutions

wastes time in search!

Most general unifiers

 θ is a most general unifier of literals l_1 and l_2 iff

- 1. θ unifies l_1 and l_2
- 2. for any other unifier θ' , there is a another substitution θ^* such that $\theta' = \theta\theta^*$

Note: composition $\theta\theta^*$ requires applying θ^* to terms in θ

for previous example, an MGU is $\theta = \{x/w, y/g(w), z/a\}$

for which $\theta_1 = \theta\{w/b\}$

 $\theta_2 = \theta\{w/f(z)\}$

Theorem: Can limit search to MGUs only without loss of completeness (with certain caveats)

Computing an MGU, given a set of lits $\{l_i\}$

- 1. Start with $\theta = \{\}$.
- 2. If all the $l_i\theta$ are identical, then done; otherwise, get disagreement set, DS

e.g P(a,f(a,g(z),...) P(a,f(a,u,...)disagreement set, $DS = \{u,g(z)\}$

3. Find a variable $v \in DS$, and a term $t \in DS$ not containing v. If not, fail.

Assignment Project Exam Help

https://eduassistpro.github.io/

Add Wetchattedu_assist_pro

Some 1st-order cases can be handled by converting them to a propositional form

Given a set of clauses S

• the $\underline{\text{Herbrand universe}}$ of S is the set of all terms formed using only the function symbols (and constants, at least one) in S

for example, if *S* uses (unary) f, and c, d, $U = \{c, d, f(c), f(d), f(f(c)), f(f(d)), f(f(f(c))), ...\}$

• the $\underline{\mathsf{Herbrand\ base}}$ of S is

 $\{c\theta \mid c \in S \text{ and } \theta \text{ replaces the variables in } c \text{ by terms from the Herbrand universe}\}$

Theorem: S is satisfiable iff Herbrand base is

(applies to Horn clauses also)

Herbrand base has no variables, and so is essentially <u>propositional</u>, though usually infinite

• finite, when Herbrand universe is finite

can use propositional methods (guaranteed to terminate)

 sometimes other "type" restrictions can be used to keep the Herbrand base finite

include f(t) only if t is the correct type

Resolution is difficult!

First-order resolution is not guaranteed to terminate.

What can be said about the propositional case?

Recently shown by Haken that there are unsatisfiable clauses $\{c_1, c_2, ..., c_n\}$ such that the <u>shortest</u> derivation of [] contains on the order of 2^n clauses

Even if we could always find a derivation immediately, the most clever search procedure will still require exponential time on some problems

Problem just with resolution?

Probably not.

Determining if set of clauses is satisfiable shown by Cook to be $\underline{\text{NP-complete}}$

no easier than an extremely large variety of computational tasks

any search task where what is searched for can be verified in polynomial time can be recast as a satisfiability problem

- » satisfiability
- » does graph of cities allow for a full tour of size k miles?
- » can N queens be put on an N×N chessboard all safely?

Assignment strong contests am Help

https://eduassistpro.github.io/

Add Welchat edu_assist_pro

Problem: want to produce entailments of KB as needed for immediate action

full theorem-proving may be too difficult for KR!

need to consider other options ...

- giving control to user
 - procedural representations (later)
- less expressive languages
 - e.g. Horn clauses (and a major theme later)

In some applications, it is reasonable to wait

e.g. mathematical theorem proving,
where we only care about specific formula

Best to hope for in general: reduce redundancy

refinements to resolution to improve search

Main example: MGU, as before

but many other possibilities

need to be careful to preserve completeness

ATP: automated theorem proving

area that studies strategies for proving difficult theorems

main application: mathematics, but relevance also to KR

Strategies

1. Clause elimination

· pure clause

contains literal l such that -l does not appear in any other clause

clause cannot lead to []

· tautology

clause with a literal and its negation any path to [] can bypass tautology

· subsumed clause

a clause such that one with a subset of its literals is already present

path to [] need only pass through short clause can be generalized to allow substitutions

2. Ordering strategies

many possible ways to order search, but best and simplest is

· unit preference

prefer to resolve unit clauses first

Why? Given unit clause and another clause,

resolvent is smaller one ß [] Project Exam Help

https://eduassistpro.github.io/

ethareedu_assist_

3. Set of support

KB is usually satisfiable, so not very useful to resolve among clauses with only ancestors in KB

contradiction arises from interaction with $\neg Q$

always resolve with at least one clause that has an ancestor in -Q

preserves completeness (sometimes)

4. Connection graph

pre-compute all possible unifications

build a graph with edges between any two unifiable literals of opposite polarity

label edge with MGU

Resolution procedure:

repeatedly:

- select link
- compute resolvent
- inherit links from parents after substitution

Resolution as search:

find sequence of links $L_1, L_2, ...$ producing []

Strategies 3

5. Special treatment for equality

instead of using axioms for =
relexitivity, symmetry, transitivity,
substitution of equals for equals

use new inference rule: paramodulation

from $\{(t=s)\} \cup C_1$ and $\{P(\dots t'\dots)\} \cup C_2$ where $t\theta = t'\theta$

infer $\{P(\dots s \dots)\}\theta \cup C_1\theta \cup C_2\theta$.

collapses many resolution steps into one see also: theory resolution (later)

[father(john)=bill] [Married(father(x),mother(x))]

[Married(bill,mother(john))]

6. Sorted logic

terms get sorts:

x: Male mother:[Person \rightarrow Female]

keep taxonomy of sorts

Assignment of the Assignment o

assumes only "meaningful" paths will lead to []

https://eduassistpro.github.io/

Add WeChall edu_assist_pro

7. Directional connectives

given $[\sim p, q]$, can interpret as either

from p, infer q (forward)

to prove q, prove p (backward)

procedural reading of ⊃

In 1st case:

would only resolve $[\neg p, q]$ with [p, ...]

producing [q, ...]

In 2nd case:

would only resolve $[\neg\, p,q]$ with $[\neg\, q,...]$

producing $[\neg p, ...]$

Intended application:

forward: Battleship(x) \supset Gray(x)

do not want to try to prove something is

gray by proving it is a battleship

backward: $Human(x) \supset Has(x,spleen)$

do not want to conclude from someone

being human, that she has each property

the basis for the procedural representations

KR & R © Brachman & Levesque 2005