ASSIGNMENT-2 PERCEPTRON MODELS

IMRAZ ZIYA 241058045 BIG DATA ANALYTIO

Develop a perceptron for the following logic functions with Bipolax inputs and targets (initial weights are 0; learning rate = 1; and threshold = 1)

(1) OR

(i) NAND

(iii) NOR

(N) NOT

$$\frac{\chi_{2}}{\chi_{2}} = \frac{1}{\sqrt{2}} \frac{$$

Given
$$W_1 = |M_2 = B = 0$$
, $K = 1$, $O = 1$

	*/	X2	t= 2t, OR X2	Youf = ?
•		1		9
	1	-1	1 =	
	-1	1	1	
	-1	-1	1 -1	-

(i)
$$x_1 = 1$$
 $x_2 = 1$ $t = 2$

$$\omega_1 = 0$$
 $\omega_2 = 0$ $\delta = 0$

$$\frac{1}{100} = \frac{1}{100} + \frac{1}{100} = \frac{1}{100}$$

$$\frac{1}{100} = \frac{1}{100} = \frac{1}{100}$$

$$\frac{1}{100} = \frac{1}{100}$$

For
$$2^{nd}$$
 set of inputs

 $x_{1}=1$ $x_{2}=-1$ $t=1$
 $\omega_{1}=1$ $\omega_{2}=1$ $b=1$
 $\forall i_{1}=x_{1}\omega_{1}+x_{2}\omega_{2}+b$
 $=|x|+(-1)x+1+1$
 $=|-1+1|$
 $|y_{1}=1|$
 $|y_{1}=1|$

$$V_{ln} = x_1 \omega_1 + x_2 \omega_2 + 5$$

$$= (-1) \times 1 + (-1) \times 1 + 1$$

$$V_{ln} = -1 - 1 + 1$$

$$V_{ln} = -1$$

$$I = V_{out} = -1$$

$$Slop$$

For the linear class
$$\omega_1 \times_1 + \omega_2 \times_2 + \delta = 0$$

$$\omega_1 = 1 \quad \omega_2 = 1 \quad \delta = 1$$

$$\chi_1 \times_1 + \chi_2 \times_1 + 1 = 0$$

$$\chi_1 \times_1 + \chi_2 \times_1 + 1 = 0$$

$$\chi_1 \times_1 + \chi_2 \times_1 + 1 = 0$$

1 2 t= 2,0 k	2 tout 1
1 1	1
	1
$\begin{vmatrix} -1 \\ -1 \end{vmatrix}$ $\begin{vmatrix} -1 \\ -1 \end{vmatrix}$	-1

(I) NAND:

$$x_1 - x_1$$
 $x_1 - x_2$
 $x_1 - x_2 - x_2 - x_3 - x_4 - x_2 - x_4 - x_4 - x_2 - x_4 - x_5 - x_5$

$$\begin{array}{l}
\sqrt{\sin} = \frac{2}{1} + \frac{2}{2} + \frac{2}{5} \\
= 1 \times 0 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 0 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 0 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 0 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 0 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 0 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 0 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 0 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 0 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 0 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 0 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 0 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} \\
= 1 \times 1 + \frac{1}{5} + \frac$$

For 3 ded of inputs

(1)
$$x_1 = -1$$
 $x_2 = 1$ $t = 1$
 $Y_{in} = x_{i0} + x_{i0} + t_{i0}$
 $= (-1) \times (i) + (i) (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= (-1) + 1$
 $= ($

For the linear class $\omega_{1} \neq_{1} + \omega_{2} \neq_{2} + \overline{b} = 0$ $\omega_{1} = 0$ $\omega_{2} = 0$ $\overline{b} = 0$ $\omega_{1} \neq_{1} + 0 + 0 + 2 + 2 = 0$

5	x,	742	1 to 72, NANDOX	Yout
	1 -2 -1	-1 1 -1	1 1 1	1 1 1

B Nor
$$\chi_1$$
 ω_2 ω_2 ω_3 ω_4 ω_2 ω_3 ω_4 ω_2 ω_3 ω_4 ω_4

$\frac{\omega_{l} = \omega_{2}}{1 + \omega_{1}}$	t= 2, xlor 2	Yout =?
1 1	-1	?
	-1 -1	
-1 -1	1	

$$\begin{array}{lll}
V_{in} &= x_{i} + v_{i} + x_{i} + v_{i} + v_{i} \\
&= (-1) + 0 + (1) / (0) + 0 \\
\hline
V_{in} &= 0 \\
\hline
V_{out} &= f(f_{in}) = f(g_{in}) \\
\hline
V_{out} &= -1 \\
\hline
V_{out} &= -1
\end{array}$$

$$\begin{array}{lll}
V_{out} &= -1 \\
\hline
V_{out} &= -1
\end{array}$$

$$\begin{array}{lll}
V_{out} &= -1
\end{array}$$

$$\begin{array}{lll}
V_{in} &= v_{i} + v_{i} + v_{i} \\
&= (-1) + 0 + (-1) + 0 + 0
\end{array}$$

$$\begin{array}{lll}
V_{in} &= v_{i} \\
V_{in} &= v_{i} + v_{i} + v_{i} \\
&= (-1) + 0 + (-1) + 0 + 0
\end{array}$$

$$\begin{array}{lll}
V_{in} &= 0
\end{array}$$

$$= (-1)x(-1) + (-1)x(-1)+1$$

$$= 1+1+1$$

$$|Y_{in} = 3|$$

$$|Y_{out} = f(y_{in}) = f(3)$$

$$|Y_{out} = 1|$$

$$|Y_{out}$$

A Not

$$\chi_{in} = \chi_{i} \omega_{i} + 5$$

Given $\omega_{i} = \omega_{i} = 5 = 0$, $\omega_{i} = 1$, $\omega_{i} = 2$

$$\frac{\chi_{i}}{1} = 1$$

$$\frac{\chi_{i}}{1} = 1$$

$$\frac{\chi_{i}}{1} = 1$$

$$\frac{\chi_{i}}{1} = 1$$

(ii)
$$x_1 = -1$$
 $t = 1$

$$\lambda_1 = x_1 \lambda_1 + 5$$

$$= (-1) \times (-1) + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$

$$= 1 + 1$$