Math 230a Problem Set 2

Lev Kruglyak

Due: September 18, 2024

Collaborators: AJ LaMotta, Leonardo Kaplan, Ignasi Vicente

Problem 4. For each of the following Lie groups G, answer the questions: If G abelian? Is G compact? Is G connected? Is G simply connected? What is the Lie algebra of G?

A finite dimensional real vector space V.

This is an abelian, non-compact, connected, simply connected Lie group. Since it's abelian, it's Lie bracket vanishes and the Lie algebra can be canonically identified with the trivial Lie algebra V itself.

$$\mathbb{T} = \{ \lambda \in \mathbb{C} : |\lambda| = 1 \}.$$

This is an abelian, compact, connected, not simply connected Lie group. Since it is abelian, it's Lie bracket vanishes and the Lie algebra is the trivial Lie algebra \mathbb{R} .

 SU_2 .

This is a non-abelian, compact, connected, simply connected Lie group. This is evident if we view SU₂ as

$$\mathrm{SU}_2 = \left\{ \begin{pmatrix} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{pmatrix} : \alpha, \beta \in \mathbb{C}, \quad \mathrm{and} \quad |\alpha|^2 + |\beta|^2 = 1 \right\},$$

which gives us the homeomorphism $SU_2 \to S^3 \subset \mathbb{C}^2$ which sends a matrix to (α, β) . We know the Lie algebra \mathfrak{su}_2 must be 3-dimensional, and indeed we have generators of SU_2 given by the matrices

$$X = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.$$

Equipped with the commutator relations [X, Y] = 2Z, [Y, Z] = 2X, and [Z, X] = Y, these give us generators for \mathfrak{su}_2 as a Lie algebra.

 SL_2 .

This is a non-abelian, non-compact, connected, and not simply connected Lie group. Its Lie algebra is the space of traceless 2×2 matrices, which is three dimensional, with basis E, F, H and commutator relations

$$[E, F] = H$$
, $[H, F] = -2F$, and $[H, E] = 2E$.

 GL_n .

For n=1, we know that $\operatorname{GL}_1 \cong \mathbb{R}^{\times}$, so it is abelian, non-compact, non-connected, and simply connected. More generally, when $n\geq 2$, GL_n is non-abelian, non-compact, non-connected, and not simply connected Lie group. In any case GL_n is not compact or connected because it's image under det is \mathbb{R}^{\times} , which is not connected or compact. It's not simply connected because there is a deformation retraction of GL_n^+ onto SO_n , and SO_n fits into the fiber bundle

$$SO_{n-1} \longrightarrow SO_n \longrightarrow S^{n-1}$$
.

The long exact sequence on homotopy shows that $\pi_1(SO_n) \cong \pi_1(SO_3)$ when $n \geq 3$, but $SO_3 \cong \mathbb{RP}^3$, which is not simply connected. In the case that n = 2, we know that $SO_2 \simeq S^1$. In either case, SO_n is not simply connected and so neither is GL_n^+ , which shows that GL_n isn't simply connected either.

We showed in class that the Lie algebra of GL_n is \mathfrak{gl}_n – the space of $n \times n$ matrices with Lie bracket given by the commutator of matrices.

 O_n .

For n = 1, we know that $O_1 \cong \mathbb{Z}_2$, so it is abelian, compact, non-connected, and simply connected. More generally, when $n \geq 2$, O_n is non-abelian, compact, non-connected, and not simply connected. The simple connectedness follows the same argument as for GL_n , only now we don't have to perform a deformation retract since $O_n^+ = SO_n$ directly.

Under the identification of \mathfrak{gl}_n with $M_n(\mathbb{R})$, Lie algebra \mathfrak{so}_n is the space of $n \times n$ skew-symmetric matrices with Lie bracket given by the commutator of matrices and determinant 1.

Problem 5. Let G be a Lie group.

(a). Let V be a finite dimensional real vector space. Define a real line $|\operatorname{Det} V|$ such that an ordered n-tuple $\xi_1,\ldots,\xi_n\in V$ defines an element $|\xi_1\wedge\cdots\wedge\xi_n|\in|\operatorname{Det} V|$ which transforms by the absolute value of the determinant of a change of basis matrix. Identify $|\operatorname{Det} V^*|$ as a certain space of functions $V^n\to\mathbb{R}$. Show that positive functions determine an orientation of $|\operatorname{Det} V^*|$. Interpret a positive function as a notion of volume for n-dimensional parallelepipeds in V. Does this induce a notion of volume for lower dimensional parallelepipeds? Identify positive elements as translationally invariant positive measures on V. Construct such a positive element from an inner product on V.

Let's first define the real line $\text{Det }V = \wedge^n V$. Any linearly independent tuple $\{v_i\}$ gives an identification of this space with \mathbb{R} , since $v_1 \wedge \cdots \wedge v_n$ spans $\wedge^n V$. We can then quotient by the antipodal relation to get a half-line, and gluing together two copies of these half lines by zero give us |Det V|, i.e.

$$| \operatorname{Det} V | = \operatorname{Det}^+ V \cup \operatorname{Det}^- V / 0_+ \sim 0_-.$$

The orientation on this line is given by Det^+V – this is an "arbitrary" part of our construction. Clearly, any tuple of elements $\{v_i\}$ can be sent to a non-negative element $|v_1 \wedge \cdots \wedge v_n|$ in the positive half line.

Now if we want to work with $|\operatorname{Det} V^*|$, recall that $\wedge^n V^*$ can be canonically identified with the space of alternating bilinear forms $\operatorname{Alt}_n(V) \subset \operatorname{Fun}(V^n,\mathbb{R})$. We can then identify $\operatorname{Det}^+ V^*$ with the image of $\operatorname{Alt}_n(V)$ after post-composition with the absolute value map, and $\operatorname{Det}^- V^*$ after post-composition with the negative absolute value map. This gives us another way to write $|\operatorname{Det} V^*|$, namely:

$$|\operatorname{Det} V^*| = \left\{ \omega \in (V^n)^* : \omega(b \cdot g) = \frac{\epsilon(b)}{|\det(g)|} \quad \text{for all} \quad b \in V^n, g \in \operatorname{End}(V) \right\}.$$

The volume of a parallelipiped spanned by v_1, \ldots, v_n can then be measured by a positive element of $\omega \in |\operatorname{Det} V^*|$ as $\omega(v_1, \ldots, v_n)$. For degenerate parallelipipeds, it's clear that the volume under ω is 0, so the measure induced on lower dimensional parallelipipeds is trivial. Any parallelipiped in V can then be translated back to the origin in a concistent manner, and it's volume taken. Extending in a standard measure theoretic way, we obtain a translationally invariant measure over V corresponding to a positive element $\omega \in |\operatorname{Det} V^*|$.

(b). Apply to the tangent bundle of a smooth manifold. Define the notion of a smooth positive measure on a smooth manifold. Do they always exist?

On a smooth manifold M, we can construct a line bundle $|\operatorname{Det} TM^*|$. A positive section of this line bundle is a smooth positive measure (or in most texts, a density.) They always exist because the determinant line bundle is oriented, and all oriented line bundles are trivial.

- (c). The real line $|\operatorname{Det} \mathfrak{g}^*|$ consists of left-invariant measures on G. Define an action of G on this line. Compute the action in case G is compact. Compute it for $G = \operatorname{GL}_n$ and $G = \operatorname{SL}_n$.
- (d). A Haar measure on G is a bi-invariant positive smooth measure on G. Prove that a Haar measure exists if G is compact. Normalize it so the total volume of G is 1.
- (e). Write a formula for the Haar measure on the circle group $\mathbb{T} \subset \mathbb{C}$; the formula should be in terms of $\lambda \in \mathbb{T}$. What about on the multiplicative group \mathbb{R}^{\times} . What about on the additive group \mathbb{R} ? What about on the orthogonal group O_2 ?

Problem 6. Suppose G is a connected compact Lie group.

(a). Let $\Omega^{\bullet}_{\text{linv}}(G) \subset \Omega^{\bullet}(G)$ denote the vector subspace of left-invariant differential forms. Show that $\Omega^{\bullet}_{\text{linv}}(G)$ is in fact a sub-differential graded algebra, i.e. it is closed under multiplication and the differential d.

It's clear that the wedge product of two left-invariant differential forms is left-invariant since q acts as

$$L_g^*(\omega \wedge \eta) = (L_g^*\omega) \wedge (L_g^*\eta).$$

Similarly, a left-invariant form is still left-invariant after an exterior derivative since

$$L_q^*(d\omega) = d(L_q^*\omega).$$

(b). Construct an isomorphism

$$\wedge^{\bullet} \mathfrak{g}^* \longrightarrow \Omega^{\bullet}_{\mathrm{linv}}(G).$$

Transfer the differential on $\Omega_{\text{linv}}^{\bullet}(G)$ to $\wedge^{\bullet}\mathfrak{g}^*$ and write a formula for it. In this way you obtain a differential graded complex defined directly from the Lie algebra \mathfrak{g} . Observe that this definition of any Lie algebra.

Firstly, recall that there is a natural "extension by left-translation" injective map $\mathfrak{g}^* \to \mathfrak{X}^*(G)$ where $\mathfrak{X}^*(G) = \Gamma(T^*G)$ is the space of covector fields. More precisely, given some $\omega \in \mathfrak{g}^*$, there is a corresponding covector field L_{ω} on G is defined by:

$$L_{\omega}(\xi) = \omega \circ L_{g^{-1}}^*(\xi)$$
 for $\xi \in T_gG$.

Such a covector field is exactly a differential 1-form, so we've exhibited a map $\mathfrak{g}^* \to \Omega^1(G)$. The form L_{ω} is left-invariant because for any $h \in G$, we have

$$(L_h^*L_\omega)(\xi) = \omega \circ dL_{(hq)^{-1}} \circ dL_h(\xi) = \omega \circ dL_{q^{-1}}(\xi) = L_\omega(\xi) \quad \text{for all} \quad \xi \in T_qG.$$

This means that we actually have a linear map $\mathfrak{g}^* \to \Omega^1_{\text{linv}}(G)$. Since the inverse is given by $\omega = (L_\omega)_e$, we have an isomorphism. There is also an isomorphism $\mathbb{R} \to \Omega^0_{\text{linv}}(G)$ which sends a real number to its constant function on G. This is an isomorphism since the only left-invariant functions are the constant functions. This pair of isomorphisms uniquely extends to a graded algebra isomorphism $\wedge^{\bullet}\mathfrak{g}^* \to \Omega^{\bullet}_{\text{linv}}(G)$.

To express the differential d as a coboundary map in $\wedge^{\bullet}\mathfrak{g}^*$, first note that df = 0 for any 0-form $f \in \Omega^0_{\text{linv}}(G)$ since left-invariant 0-forms are constant. To derive an expression for 1-forms, let $\omega \in \mathfrak{g}^*$ be a covector. Given vector fields $\xi_1, \xi_2 \in \mathfrak{X}(G)$, a corollary of Cartan's formula tells us that:

$$dL_{\omega}(\xi_1, \xi_2) = \xi_1(L_{\omega}(\xi_2)) - \xi_2(L_{\omega}(\xi_1)) - L_{\omega}([\xi_1, \xi_2]) = -L_{\omega}([\xi_1, \xi_2]).$$

Here the terms $\xi_1(L_{\omega}(\xi_2))$ and $\xi_2(L_{\omega}(\xi_1))$ vanish since L_{ω} is left-invariant. Let $\{\xi_i\}$ be a basis for \mathfrak{g} and define structure coefficients $c_{i,j}^k$ by $[\xi_i,\xi_j]=c_{i,j}^k\xi_k$. Let $\{\theta^i\}$ be the corresponding dual basis for \mathfrak{g}^* . Note that:

$$d\theta^k(\xi_i,\xi_j) = -\widetilde{\theta^k}([\xi_i,\xi_j]) = -\widetilde{\theta^k}(c^q_{i,j}\xi_q) = -c^q_{i,j}\widetilde{\theta^k}(\xi_q) = -c^k_{i,j}$$

where the last equality follows since $\theta^k(\xi_q) = \delta_q^k$. Writing this this form in terms of $\Lambda^{\bullet}\mathfrak{g}^*$, we get the expression

$$d\theta^k = -\frac{1}{2}c_{i,j}^k\theta^i \wedge \theta^j$$

where the 1/2 factor accounts for repeat terms. Along with the observation that df = 0 for any 0-form f, using the Leibniz rule this coboundary operator extends over the entire graded algebra so that the isomorphism $\wedge^{\bullet}\mathfrak{g}^* \to \Omega^{\bullet}_{\text{linv}}(G)$ is an isomorphism of

(c). Prove that the inclusion in (a) induces an isomorphism on cohomology. A map of cochain complexes with this property is called a *quasi-isomorphism*.

To show that inclusion (we'll call it ι) is a quasi-isomorphism, we'll prove that $\Omega^{\bullet}_{\text{linv}}(G)$ is a deformation retract of $\Omega^{\bullet}(G)$. To do this, we'll have to construct two operators, or cochain maps:

$$A: \Omega^{\bullet}(G) \to \Omega^{\bullet}_{\operatorname{linv}}(G)$$
 and $H: \Omega^{\bullet}(G) \to \Omega^{\bullet-1}(G)$.

Here, A is a cochain map satisfying $A \circ \iota = \operatorname{id}$ and $A \circ (\iota \circ A) = A$, and H is a linear map satisfying dH + Hd = A - 1. Put together, these maps would prove that ι induces an isomorphism on cohomology.

$$\cdots \longrightarrow \Omega^{k-1}_{\mathrm{linv}}(G) \stackrel{d}{\longrightarrow} \Omega^{k}_{\mathrm{linv}}(G) \stackrel{d}{\longrightarrow} \Omega^{k+1}_{\mathrm{linv}}(G) \longrightarrow \cdots$$

$$A \uparrow \downarrow \iota \qquad A \uparrow \downarrow \iota \qquad A \uparrow \downarrow \iota$$

$$\cdots \longrightarrow \Omega^{k-1}(G) \stackrel{d}{\longleftarrow} \Omega^{k}(G) \stackrel{d}{\longleftarrow} \Omega^{k+1}(G) \longrightarrow \cdots$$

Using the assumption that G is compact, let μ be a left-invariant Haar measure on G. Since G is compact, we scale μ by a factor of $1/\mu(G)$ so that $\mu(G) = 1$. First, let's use this measure to construct A. A succinct form for A is:

$$A = \int_G L_h^* d\mu(h) \quad \Longrightarrow \quad A(\omega)_g(\xi_1, \dots, \xi_k) = \int_G (L_h^* \omega)_g(\xi_1, \dots, \xi_k) d\mu(h)$$

for all $g \in G$, $\omega \in \Omega^k(G)$, and $\xi_1, \ldots, \xi_k \in T_gG$. Clearly, if ω is already left-invariant, then $A(\omega) = \omega$ since $L^*h\omega = \omega$. For any $g' \in G$, we can act on A to get:

$$L_{g'}^* A = \int_G L_{hg'}^* d\mu(h) = A(\omega)$$

since the transformation $h \mapsto hg'$ is a bijection and left multiplication preserves the measure μ . This shows that $A \circ \iota$ is the identity on $\Omega^{\bullet}_{\text{linv}}(G)$ as well as $A \circ (\iota \circ A) = A$. A is a cochain map because differentials commute with integration, i.e. we have

$$A \circ d = \int_G L_h^* \circ d \, d\mu(h) = \int_G d \circ L_h^* \, d\mu(h) = d \circ A.$$

This proves A is a retract the cochain complexes. To show that A is a deformation retract, we must construct the cochain homotopy operator $H: \Omega^{\bullet}(G) \to \Omega^{\bullet-1}(G)$ which satisfies dH + Hd = A - 1. For any vector $\xi \in \mathfrak{g}$, define the operator

 $H_{\xi} = \int_0^1 L_{\overline{\exp}(t\xi)}^* \iota_{R_{\xi}} d\mu(h).$

where R_{ξ} is the right-invariant vector field generated by ξ , and $\overline{\exp}$ is the right exponential map. Computing $dH_{\xi} + H_{\xi}d$, we get:

$$\begin{split} dH_{\xi} + H_{\xi} d &= d \int_{0}^{1} L_{\overline{\exp}(t\xi)}^{*} \iota_{R_{\xi}} \, d\mu(t) + \int_{0}^{1} L_{\overline{\exp}(t\xi)}^{*} \iota_{R_{\xi}} d \, d\mu(t) \\ &= \int_{0}^{1} L_{\overline{\exp}(t\xi)}^{*} (d\iota_{R_{\xi}} + \iota_{R_{\xi}} d) \, d\mu(t) \\ &= \int_{0}^{1} L_{\overline{\exp}(t\xi)}^{*} \mathcal{L}_{R_{\xi}} \, d\mu(t) \\ &= \int_{0}^{1} L_{\overline{\exp}(t\xi)}^{*} \frac{d}{ds} \Big|_{s=0} L_{\overline{\exp}(s\xi)}^{*} \, d\mu(t) \\ &= \int_{0}^{1} \frac{d}{ds} \Big|_{s=0} L_{\overline{\exp}((s+t)\xi)}^{*} \, d\mu(t) \\ &= \int_{0}^{1} \frac{d}{ds} \Big|_{s=t} L_{\overline{\exp}(s\xi)}^{*} \, d\mu(t) \\ &= L_{\overline{\exp}(\xi)}^{*} - 1. \end{split}$$

Now, let $\{U_{\alpha}\}$ be a locally finite open cover of G such that there are diffeomorphisms $\log_{\alpha}: U_{\alpha} \to V_{\alpha} \subset \mathfrak{g}$ with $\overline{\exp}(\log_{\alpha}(g)) = g$ for all $g \in U_{\alpha}$. Let $\{\psi_{\alpha}\}$ be a partition of unity subordinate to this open cover.

Consider the operator:

$$H = \sum_{\alpha} \int_{U_{\alpha}} \psi_{\alpha}(h) \cdot H_{\log_{\alpha}(h)} \, d\mu(h).$$

Using our previous expression for $dH_{\xi} + H_{\xi}d$, we get:

$$dH + Hd = \sum_{\alpha} \int_{U_{\alpha}} \psi_{\alpha}(h) \cdot (dH_{\log_{\alpha}(h)} + H_{\log_{\alpha}(h)}d) d\mu(h)$$

$$= \sum_{\alpha} \int_{U_{\alpha}} \psi_{\alpha}(h) \cdot (L_{h}^{*} - 1) d\mu(h)$$

$$= \int_{G} L_{h}^{*} d\mu(h) - 1$$

$$= A - 1.$$

This completes the proof.

(d). Use the inverse map $g \mapsto g^{-1}$ to show that the differential of a *bi-invariant* differential form vanishes. Show that the de Rham cohomology of G is isomorphic to the algebra of bi-invariant forms.

I was not able to come up with a proof that the differential of a bi-invariant differential form vanishes.

Now, we could repeat the proof of (c) but with all parity flipped (left instead of right). This would show us that $\Omega_{\text{binv}}^{\bullet} \subset \Omega_{\text{linv}}^{\bullet} \subset \Omega^{\bullet}$ is a quasi-isomorphism, and since the differential of any bi-invariant differential form is zero, it follows that

$$\Omega_{\mathrm{binv}}^{\bullet}(G) \cong \mathrm{H}_{\mathrm{dR}}^{\bullet}(G),$$

since all image groups in the cohomology quotient are trivial.

(e). Use these ideas to compute $H_{dR}^{\bullet}(SU_2)$.

Recall that SU_2 is the Lie group of 2×2 unitary complex matrices with determinant 1, i.e.

$$\mathrm{SU}_2 = \left\{ \begin{pmatrix} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{pmatrix} : \alpha, \beta \in \mathbb{C}, \quad \mathrm{and} \quad |\alpha|^2 + |\beta|^2 = 1 \right\}.$$

There is a basis of \mathfrak{su}_2 by elements X, Y, Z satisfying the commutator relations

$$[X, Y] = 2Z$$
, $[Y, Z] = 2X$, and $[Z, X] = 2Y$.

This means that our defining relations for the differential d on $\wedge^{\bullet} \mathfrak{g}^*$ are

$$dZ = -2X \wedge Y$$
, $dX = -2Y \wedge Z$, and $dY = -2Z \wedge X$.

Letting $d^k: \wedge^k \mathfrak{g}^* \to \wedge^{k+1} \mathfrak{g}^*$ be the differential map and applying the Leibniz rule to the above relations, we can now compute the kernels and images of the differential map and obtain the cohomology:

$$\begin{split} \operatorname{im}(d^{-1}) &= 0 & \ker(d^0) = \mathbb{R} & \Longrightarrow & \operatorname{H}^0_{\operatorname{dR}}(\operatorname{SU}_2) = \mathbb{R}, \\ \operatorname{im}(d^0) &= 0 & \ker(d^1) = 0 & \Longrightarrow & \operatorname{H}^1_{\operatorname{dR}}(\operatorname{SU}_2) = 0, \\ \operatorname{im}(d^1) &= \bigwedge^2 \mathfrak{g}^* & \ker(d^2) = \bigwedge^2 \mathfrak{g}^* & \Longrightarrow & \operatorname{H}^2_{\operatorname{dR}}(\operatorname{SU}_2) = 0, \\ \operatorname{im}(d^2) &= 0 & \ker(d^3) = \bigwedge^3 \mathfrak{g}^* & \Longrightarrow & \operatorname{H}^3_{\operatorname{dR}}(\operatorname{SU}_2) = \mathbb{R}. \end{split}$$

If we want to include multiplicative structure, we see that $H_{dR}^{\bullet}(SU_2) \cong \mathbb{R}[x]/(x^2)$ with |x| = 3. This makes sense, since $SU_2 \simeq S^3$, and there are exactly the homology groups of the 3-sphere.