федеральное государственное автономное образовательное учреждение высшего образования

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Масленников Никита (студент ФАКИ М03-305)

Исследовательская работа

Численное решение задачи Сода и верификация модели на точном решении

Оглавление

Основные сокращения и условные обозначения Введение				$\frac{2}{3}$
Ι	\mathbf{C}^{r}	грукт	гура программы	4
	1	Стру	ктура решения задачи Римана для уравнения Эйлера	4
		1.1	Возможные конфигурационные решения	4
		1.2	Соотношения для ударных волн	4
		1.3	Соотношения для волн разрежения	4
		1.4	Метод Ньютона	4
		1.5	Распределение физических величин в решении	4
TŢ	т	Геори	я	4

Основные сокращения и условные обозначения

Сокращения

 НУ - начальные условия для моделирования задачи или решения уравнений, системы уравнений;

Условные обозначения

 $n^*(\mathbf{x},t)$ - число заселенности частиц после столкновений;

Введение

Поставлена задача создать математическую модель численного решения задачи Римана - исследование 1D течения, которое возникает при создании произвольного разрыва в среде. Получившаяся математическая модель проходит верификацию через моделирование задачи Сода и дальнейшей проверкой численного решения с точным.

Программа разбита на 2 части: вычислительная часть реализована на C++, точка входа в программу и обработка результатов написана на Python.

Цель работы:

- 1. создание математическую модель численного решения задачи Римана для ударной трубы;
- 2. верификация модели на задаче Сода;
- 3. реализация математической модели как отдельный вычислительный модуль для последующей обработки на Python.

Этот документ представляет собой полную информацию о структуре решения задачи Римана для уравнения Эйлера и теоретический материал. Краткое изложение процесса решения находится в Jupyter Notebook.

Часть I Структура программы

0.1 Структура решения задачи Римана для уравнения Эйлера

Уточним задачу Римана: рассмотрим задачу Коши для системы уравнений газовой динамики с разрывом I рода в начальных данных: формулы!

0.1.1 Возможные конфигурационные решения

бебра

0.1.2 Соотношения для ударных волн

бебра

0.1.3 Соотношения для волн разрежения

бебра

0.1.4 Метод Ньютона

бебра

0.1.5 Распределение физических величин в решении

бебра

Часть II

Теория