2015 Mathematical Methods (CAS) Trial Exam 1 Solutions © 2015 itute.com Free download from www.itute.com

Q1a Let $2(x-a)^2 + b = -x^2$, expand and collect like terms, $3x^2 - 4ax + (2a^2 + b) = 0$

To have one point of contact, $\Delta = 0$, $\therefore 2a^2 + 3b = 0$ Pick a value for a, say a = 3, then b = -6

Q1b
$$b = -\frac{2}{3}a^2$$

Q2a
$$y = \frac{1}{x+1} + 1 \to x = \frac{1}{y+1} + 1 \to x+2 = \frac{1}{y+1} + 1$$

 $\rightarrow x + 2 = \frac{1}{y - 2 + 1} + 1$, simplify and write y as the subject of

the equation, $y = \frac{1}{x+1} + 1$

Q2b
$$\frac{1}{x+1} + 1 \ge 0$$
, $x \ne -1$ and $\frac{1}{x+1} \ge -1$

If x+1>0, x>-1 and $1 \ge -x-1$, i.e. $x \ge -2$, ... x>-1

If x+1<0, x<-1 and $1 \le -x-1$, i.e. $x \le -2$, $\therefore x \le -2$

 $\therefore D \text{ is } (-\infty, -2] \cup (-1, \infty)$

Q2c $\left(a, \frac{5\pi}{6}\right)$ is a continuous interval,

 \therefore the range of g is also a continuous interval

 $h \circ g$ is defined if the range of $g \subseteq D$

.: the range of $g \subseteq (-1, \infty)$

 $\therefore 2\sin a = -1, \ a = -\frac{\pi}{6}$

Q3a

Q3b

Q3c

Q4a Let $\sqrt{2x+2} - 2 = \sqrt{x} - 1$, $\sqrt{2x+2} = \sqrt{x} + 1$ where $x \ge 0$ and 2x+2 > 0, i.e. $x \ge 0$ $(\sqrt{2x+2})^2 = (\sqrt{x} + 1)^2$, $2x+2 = x + 2\sqrt{x} + 1$, $x+1 = 2\sqrt{x}$

$$(\sqrt{2x+2})^2 = (\sqrt{x}+1)^2$$
, $2x+2=x+2\sqrt{x}+1$, $x+1=2\sqrt{x}$
 $(x+1)^2 = (2\sqrt{x})^2$, $x^2+2x+1=4x$, $x^2-2x+1=0$, $(x-1)^2=0$
 $x=1$ and $x=0$, the intersection is $(1,0)$.

Q4b $y = \sqrt{2x+2} - 2$, $\frac{dy}{dx} = \frac{1}{\sqrt{2x+2}}$

$$y = \sqrt{x} - 1$$
, $\frac{dy}{dx} = \frac{1}{2\sqrt{x}}$

The gradient of the common tangent is $-\frac{b}{a}$.

$$\therefore -\frac{b}{a} = \frac{1}{\sqrt{2x+2}} = \frac{1}{2\sqrt{x}}, \therefore 2x+2 = 4x, x=1 \text{ and } y=0$$

.: the common tangent $\frac{x}{a} + \frac{y}{b} = 1$ is at (1,0) and has a gradient

of
$$-\frac{b}{a} = \frac{1}{2}$$

$$\therefore \frac{1}{a} + \frac{0}{b} = 1$$
, $a = 1$ and $b = -\frac{1}{2}$

Q5a 2x-1>0 and x+1>0, .: $x>\frac{1}{2}$ and x>-1, .: $x>\frac{1}{2}$ The domain is $\left(\frac{1}{2},\infty\right)$.

Q5b As $x \to 0.5^+$, the value of $f(x) \to -\infty$, .: $x = \frac{1}{2}$ is an asymptote of y = f(x). It is the only one.

Q5c Let $2\log_{10}(2x-1)-\log_{10}(x+1)=0$.

:
$$\log_{10} \frac{(2x-1)^2}{x+1} = 0$$
, : $\frac{(2x-1)^2}{x+1} = 1$

Expand and simplify to $4x^2 - 5x = 0$, x(4x - 5) = 0

Since
$$x > \frac{1}{2}$$
, .: $x = \frac{5}{4}$ and $y = 0$.

The only *x*-intercept is $\left(\frac{5}{4}, 0\right)$.

Q6
$$\sin 46^\circ = \sin(45^\circ + 1^\circ) = \sin\left(\frac{\pi}{4} + \frac{\pi}{180}\right)$$

$$\approx \sin\frac{\pi}{4} + \frac{\pi}{180} \times \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}} + \frac{\pi}{180} \times \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(1 + \frac{\pi}{180}\right)$$

Q7a
$$\frac{dy}{dx} = e^x(\cos x + \sin x) + e^x(\sin x - \cos x) = 2e^x \sin x$$

Q7b
$$\frac{dy}{dx} = 2e^x \sin x$$
, .: $\int_{0}^{\frac{\pi}{3}} 2e^x \sin x \, dx = \left[e^x (\sin x - \cos x) \right]_{0}^{\frac{\pi}{3}}$
.: $\int_{0}^{\frac{\pi}{3}} e^x \sin x \, dx = \frac{1}{2} \left[e^x (\sin x - \cos x) \right]_{0}^{\frac{\pi}{3}}$

$$= \frac{1}{2} \left(e^{\frac{\pi}{3}} \left(\frac{\sqrt{3}}{2} - \frac{1}{2} \right) - e^{0} (0 - 1) \right) = \frac{1}{4} e^{\frac{\pi}{3}} \left(\sqrt{3} - 1 \right) + \frac{1}{2}$$

Q8a Equation of the inverse: $(y-1)^2 + 1 = x$, $(y-1)^2 = x-1$, $y = 1 \pm \sqrt{x-1}$

Q8b It is the same area as the region bounded by $y = (x-1)^2 + 1$ and y = 2. When y = 2, $2 = (x-1)^2 + 1$, x = 0, 2

Area =
$$\int_{0}^{2} (2 - [(x-1)^{2} + 1]) dx = \int_{0}^{2} (1 - (x-1)^{2}) dx$$

$$= \left[x - \frac{(x-1)^3}{3}\right]_0^2 = \frac{4}{3}$$

Q9 Binomial distribution, N = 5, $p = \frac{1}{2}$

	2					
X	0	1	2	3	4	5
$\Pr(X=x)$	$\frac{1}{32}$	$\frac{5}{32}$	$\frac{10}{32}$	$\frac{10}{32}$	$\frac{5}{32}$	$\frac{1}{32}$

$$\Pr(X \ge n) = \frac{13}{16}, :: n = 2$$

$$\Pr(X \le 2) = \frac{1}{32} + \frac{5}{32} + \frac{10}{32} = \frac{1}{2}$$

Q10a
$$f(1) = k + \frac{1}{5}$$
, $f(2) = \frac{1}{5}$, $f(5) = 3k + \frac{1}{5}$

Area under graph =
$$\frac{1}{2} \left(\left| k \right| + \frac{1}{5} + \frac{1}{5} \right) + \frac{3}{2} \left(3 \left| k \right| + \frac{1}{5} + \frac{1}{5} \right) = 1$$

$$\frac{10|k|}{2} + \frac{4}{5} = 1$$
, $|k| = \frac{1}{25}$

Q10b By inspection of the graph, the median $m \in [2, 5]$

$$f(x) = \frac{1}{25}(x-2) + \frac{1}{5} = \frac{x+3}{25}$$

:
$$f(m) = \frac{m+3}{25}$$

Area under the graph from x = m to x = 5:

$$\frac{1}{2} \left(\frac{m+3}{25} + \frac{8}{25} \right) (5-m) = \frac{1}{2}, \ m^2 + 6m - 30 = 0 \text{ and } m > 0$$

$$m = -3 + \sqrt{39}$$

Please inform mathline@itute.com re conceptual and/or mathematical errors