# 18.S996: Category Theory for Scientists (David Spivak), Problem Set 1

### 2.3.2.7



### 2.3.3.1



### 2.3.3.3

Omitted.

### 2.3.3.6

Given x, an operational landline phone, consider the following. We know that x is an operational landline phone, which is assigned a phone number, which has an area code, which corresponds to a region that we'll call P(x).

We also know that x is an operational landline phone, which is a physical phone, which is currently located in a region that we'll call Q(x).

Fact: whenever x is an operational landline phone, we will have P(x) = Q(x).

### 2.3.3.7

No.

### 2.3.3.9

Every type T is the image of the aspect "is a T which is identical with some example of", that is, the aspect is the identity function on Ts. More interestingly,

- $\lceil a \text{ book} \rceil$  "yields as b" (coming from, e.g.,  $\lceil a \text{ pair } (b, c)$  where b is a book and c is a sentence, and c describes the contents of b $\rceil$ )
- $\lceil$  a material that has been fabricated by a process of type  $T \rceil$  "yields as m" (coming from  $\lceil$  a pair (m,T) where m is a material and T is a type of process and m has been fabricated by a process of type  $T \rceil$ )
- 'a bicycle owner' "is a bicycle owned by a single person, which has as an owner"
- 'a child' "yields as c" (coming from 'a pair (c, p) where c and p are people and p is a parent of c')
- 'a used book' "yields as b" (coming from 'a pair (b, u) where b is a book and u is a person and u has used b', or, more amusingly, coming from 'a pair (b, u) where b is a book and u is proof that b has been used')
- 'an inhabited residence' "resides in" (coming from 'a person who resides somewhere')

### 2.4.1.4

The set  $A \times B$  has  $|A| \cdot |B|$  elements. I have no idea why categorical limits are related to the operation  $0 \cdot m := 0$ ;  $Sn \cdot m := m + (n \cdot m)$ . In this case, it works out to 12.

### 2.4.1.8

The lower left diagram and the upper center diagram commute.

## 2.4.1.13

$$\operatorname{Hom}_{\mathbf{Set}}(A,X) \times \operatorname{Hom}_{\mathbf{Set}}(A,Y) \cong \operatorname{Hom}_{\mathbf{Set}}(A,X \times Y)$$

### 2.4.1.14

The function is  $s: x \mapsto (\pi_2 x) \times (\pi_1 x)$ . More rigorously, here's some coq code which does this construction and proof

# Library SwapExercise

prod snd commutes : forall A f g,

```
Require Import Setoid JMeq.
Require Import Common.
Set Implicit Arguments.
Generalizable All Variables.
Definition compose X Y Z (f : Y \rightarrow Z) (g : X \rightarrow Y) := fun x \Rightarrow f (g x).
Arguments compose [X Y Z] f g x / .
Infix "o" := (@compose _ _ _ ) (at level 70).
Record is isomorphism X Y (f : X -> Y) :=
  {
    isomorphism inverse : Y -> X;
    isomorphism right inverse
    : forall x, (f o isomorphism inverse) x = (fun x \Rightarrow x) x;
    isomorphism left inverse
    : forall x, (isomorphism inverse o f) x = (fun x => x) x
  } .
Record isomorphic X Y :=
    isomorphic morphism :> X -> Y;
    isomorphic is isomorphism : is isomorphism isomorphic morphism
  } .
Infix "\cong" := (isomorphic) (at level 70).
Section univ prod.
 Variables X Y: Type.
 Define products by the universal property
  Record product type :=
      prodXY :> Type;
      prod fst : prodXY -> X;
      prod snd : prodXY -> Y;
      prod map : forall A (f : A \rightarrow X) (g : A \rightarrow Y), A \rightarrow prodXY;
      prod fst commutes prop := (fun A f g prod map =>
                                      forall x,
                                        (prod fst o prod map) x = f x);
      prod snd commutes prop := (fun A f g prod map =>
                                      forall x,
                                        (prod snd o prod map) x = g x);
      prod fst commutes : forall A f g,
                              prod fst commutes prop A f g (@prod map A f g);
```

```
prod snd commutes prop A f g (@prod map A f g);
     prod map unique : forall A f g prod map',
                          prod fst commutes prop A f g prod map'
                          -> prod snd commutes prop A f g prod map'
                          \rightarrow forall x, prod map' x = (prod map f g) x
    } .
  Existing Class product type.
  Definition product := { p : product type & p }.
  Definition product element (p : product) := projT2 p.
  Definition product of `(p : product type) (x : p) : product := existT p x.
  Global Coercion product element : product >-> prodXY.
  Global Coercion product of : prodXY >-> product.
End univ prod.
Delimit Scope product scope with product.
Bind Scope product scope with prodXY.
Arguments prod fst_commutes_prop _ _ _ _ / .
Arguments prod_snd_commutes_prop _ _ _ _ _ / .
Infix "x" := product : type scope.
Infix "x" := (fun a b =>
                @prod_map _ _ unit (fun _ => a) (fun _ => b) tt) : product_scope.
Infix "x" := prod : old type scope.
Notation "\pi_1" := (@prod_fst _ _ _).
Notation "\pi_2" := (@prod snd ).
Delimit Scope category scope with category.
Delimit Scope old scope with old type.
Section swap.
```

Define swap via the universal property; note that the object type doesn't change, but the projection maps are switched. This is because the objects are truely opaque.

```
Definition swap_types X Y : product_type X Y -> product_type Y X :=
  fun xy =>
    {|
      prodXY := prodXY xy;
      prod_fst := prod_snd xy;
      prod_snd := prod_fst xy;
      prod_map := (fun _ f g => prod_map xy g f);
      prod_fst_commutes := (fun _ f g => prod_snd_commutes xy g f);
      prod_snd_commutes := (fun _ f g => prod_fst_commutes xy g f);
      prod_map_unique := (fun _ _ _ _ Hfst Hsnd => prod_map_unique Hsnd Hfst)
      |}.
```

We must have  $swap\_types$  in the environment for type class resolution to pick it up. Use Eval simpl so that it doesn't stick around.

```
Definition swap X Y : X × Y -> Y × X
:= Eval simpl in
```

```
fun xy => let s := swap_types (projT1 xy) in (\pi_2 \text{ xy} \times \pi_1 \text{ xy}) \text{ product.}
```

### Prove that swap types is an isomorphism; its inverse is swap types

```
Definition swap_types_iso X Y : is_isomorphism (@swap_types X Y).
Proof.
    exists (@swap_types _ _);
    abstract (
        repeat intro;
        destruct_head_hnf @product_type;
        reflexivity
    ).
Defined.
```

### Prove that swap is an isomorphism; its inverse is swap

```
Definition swap iso X Y : is isomorphism (@swap X Y).
  Proof.
   exists (@swap );
    abstract (
        repeat intro; simpl; unfold swap, swap types; simpl;
        destruct head hnf @sigT;
        destruct head hnf @product type;
        simpl in *;
        simpl eq; simpl;
        trivial;
        symmetry;
        repeat match goal with
                [ - JMeq ?a ?b ] => (cut (a = b);
                                          [ let H := fresh in
                                            intro H;
                                              solve [ rewrite <- H; reflexivity</pre>
                                                    | rewrite H; reflexivity ]
                                          | ])
                 | [ H : _ |- _ ] => rewrite H
                 | [ x : _, H : _ |- _ ] => (eapply (H _ _ _ (fun _ : unit => x));
                                              hnf;
                                              trivial)
               end
      ) .
 Defined.
End swap.
```

Index

This page has been generated by cogdoc

## 2.4.1.15

 $s:x\mapsto f(\pi_1(x))\times f(\pi_2(x)).$  Slightly more rigorously, here's some coq code which does this construction

# Library FunctionProduct

```
Require Import Setoid.
Require Export SwapExercise.
Require Import Common.

Set Implicit Arguments.

Generalizable All Variables.

Local Open Scope type_scope.
Local Open Scope product_scope.

Section function_prod.

If A × B and A' × B' exist, then we can build a function from A × B to A' × B'

Definition function_prod A A' B B' `(product_type A' B') (f : A -> A') (g : B -> B') : A × B -> A' × B'

:= fun x => f (\Pi_1 x) × g (\Pi_2 x).

End function_prod.
```

<u>Index</u>

This page has been generated by cogdoc

### 2.4.2.4

If there are no non-landline phones which are not cell-phones, then, yes, 'a phone' is the coproduct of 'a cellphone' and 'a landline phone'. But maybe walkie-talkies are "phones", or maybe there are non-landline phones on submarines or other boats which are not considered cellphones.

### 2.4.2.10

$$\operatorname{Hom}_{\mathbf{Set}}(X, A) \sqcup \operatorname{Hom}_{\mathbf{Set}}(Y, A) \cong \operatorname{Hom}_{\mathbf{Set}}(X \sqcup Y, A)$$

### 2.4.2.13



Photons, can either be viewed as a wave or as a particle, and must be labeled with our viewpoint when mapped to the disjoint union in the center.

### 2.4.2.14

Following "Ologging products" very closely

Given two types c, d in an olog, there is a canonical label " $c \sqcup d$ " for their product  $c \sqcup d$ , written in terms of the labels "c" and "d". Namely,

"
$$c \sqcup d$$
" := a " $c$ " (labeled  $x$ ) or a " $d$ " (labeled  $y$ ).

The inclusions  $c \to c \sqcup d \leftarrow d$  can be labeled "is, when labeled x," and "is, when labeled y," respectively.

Suppose that e is another object and  $p:c\to e$  and  $q:d\to e$  are two arrows. By the universal property of coproducts, p and q induce a unique arrow  $c\sqcup d\to e$  making the evident diagrams commute. This arrow can be labeled

as "c", insofar as it is "c" (labeled x), "p"; or as "d", insofar as it is "d" (labeled y), "q"



### 2.5.1.2

The pullback is  $\{(x_1, z_1, y_1), (x_2, z_2, y_2), (x_3, z_2, y_2), (x_2, z_2, y_4), (x_3, z_2, y_4)\}.$ 

### 2.5.1.3

Omitted

### 2.5.1.5

We have  $X \times_Z \emptyset = \emptyset$ . We have  $X \times_{\{*\}} Y = X \times Y$ , the Cartesian product.

### 2.5.1.6

We have  $W_1 = \{(\smile, f_1(\smile), y) | g_1(y) = f_1(\smile)\}$ . When we take the third projection, we get the set of space-time coordinates whose spatial component corresponds to the center of mass of MIT at the time of it's founding.

We have  $W_2 = \{(\smile, f_2(\smile), y) | g_2(y) = f_2(\smile)\}$ . When we take the third projection, we get the set of space-time coordinates whose temporal component corresponds to the time of MIT's founding.

### 2.5.1.10

Top: Looks fine to me.

Middle: mostly-all-right, except for maybe that dog's don't necessarily have unique owners.

Bottom: "good fit"s, whatever that might mean, are generally not uniquely associated with a piece of furniture, nor with a width. (What is a "good fit", as a noun, rather than an adjective, anyway?)

### 2.5.1.11

Yes, the square where two pairs are projected from a triplet, and then both project to their common component, is a pullback square.

Under the simplified world-view that every child is legitimate and from a couple who are in their first marriage, the pullback of the diagram on the left is 'a brother', and the pullback of the diagram on the right is 'a sister'



### 2.5.1.13

