

RAPPORT DE STAGE

Norvège

2^{ème} année F4

Projet réalisé par

Julien Feuillas

le 15 mai 2019

État de l'art – Stage Norvège 2^{ème} année F4

Tuteur de Stage : **Arvid Lundervold** Co-encadrant de Stage : **Alexander Lundervold**

Jury

durée : 5 mois

Partie 1

Deep Learning

1.1 Qu'est-ce que c'est?

Il s'agit d'une variante du Machine Learning. Le Machine Learning permet de déterminer des relations au sein d'un jeu de données et ainsi de penser un modèle mathématiques qui permettra par la suite de retrouver sans trop de calcul où placer une donnée que nous voudrions ajouter à ce jeu de données.

Le Deep Learning (aussi appelé en français l'apprentisage profond), détermine des modèles mathématiques plus complet. Les relations peuvent alors être plus complexe. Les principales méthodes utilisées pour réaliser du Deep Learning sont les réseaux de neurones.

1.2 Évolution

Partie 2

TensorFlow

Partie 3

NiftyNet

Bibliographie

- [1] Tensorflow. https://www.tensorflow.org/, date of consultation: April 2019.
- [2] Vitaly Bushaev. Adam latest trends in deep learning optimization, October 2018. https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c, date of consultation: 25th April 2019.
- [3] Vitaly Bushaev. Improving the way we work with learning rate, November 2018. https://techburst.io/improving-the-way-we-work-with-learning-rate-5e99554f163b, date of consultation: 30th April 2019.
- [4] Eli Gibson, Wenqi Li, Carole Sudre, Lucas Fidon, Dzhoshkun I. Shakir, Guotai Wang, Zach Eaton-Rosen, Robert Gray, Tom Doel, Yipeng Hu, Tom Whyntie, Parashkev Nachev, Marc Modat, Dean C. Barratt, Sébastien Ourselin, M. Jorge Cardoso, and Tom Vercauteren. Niftynet: a deep-learning platform for medical imaging. <u>Computer Methods and Programs in Biomedicine</u>, 2018. date of consultation: April 2019.
- [5] Eli Gibson, Wenqi Li, Carole Sudre, Lucas Fidon, Dzhoshkun I. Shakir, Guotai Wang, Zach Eaton-Rosen, Robert Gray, Tom Doel, Yipeng Hu, Tom Whyntie, Parashkev Nachev, Marc Modat, Dean C. Barratt, Sébastien Ourselin, M. Jorge Cardoso, and Tom Vercauteren. Niftynet source code, April 2019. https://github.com/NiftK/NiftyNet, date of last consultation: 25th April 2019.
- [6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. <u>Deep Learning</u>. MIT Press, 2016. http://www.deeplearningbook.org.
- [7] Alexander Selvikvåg Lundervold and Arvid Lundervold. An overview of deep learning in medical imaging focusing on mri. https://www.sciencedirect.com/science/article/pii/S0939388918301181, page 26, December 2018.
- [8] Marc Modat, Miklos Espak, Eli Gibson, Imanol Luengo, Dzhoshkun Shakir, Zach Eaton-Rosen, Carole Sudre, Tom Vercauteren, Matteo Mancini, Guotai Wang, Lucas Fidon, Wenq Li, Jorge Cardoso, Matt Clarkson, Mian Asbat Ahmad, and Tom Doel. Niftynet, October 2018. https://cmiclab.cs.ucl.ac.uk/CMIC/NiftyNet, date of consultation: 4th April 2019.
- [9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in python, March 2019. https://scikit-learn.org/stable/.
- [10] Wikipedia. Content-based image retrieval, March 2019. https://en.wikipedia.org/wiki/Content-based_image_retrieval, date of consultation: 3rd April 2019.