UNIVERSITÀ DI BOLOGNA

School of Engineering Master Degree in Automation Engineering

Distributed Autonomous Systems

TITLE

Professors:
Giuseppe Notarstefano
Ivano Notarnicola

Students: Valerio Costa Tian Cheng Xia

Contents

In	trod	uction		5			
1	Multi-Robot Target Localization						
	1.1	Gradi	ient tracking with quadratic functions				
		1.1.1	Different graph patterns comparison	6			
		1.1.2	Comparison with centralized gradient	8			
	1.2	Coope	erative multi-robot target localization	8			
		1.2.1	Different graph patterns comparison	8			
		1.2.2	Comparison with centralized gradient	9			
		1.2.3	Different noises	9			
2	Agg	gregati	ive Optimization for Multi-Robot Systems	10			
\mathbf{C}	onclı	ısions		11			
$\mathbf{B}^{:}$	iblios	graphy	7	12			

Introduction

Motivations

Contributions

Chapter 1

Multi-Robot Target Localization

1.1 Gradient tracking with quadratic functions

1.1.1 Different graph patterns comparison

Figure 1.1: Configuration with 5 agents in \mathbb{R}^3

Figure 1.2: Configuration with 5 agents in \mathbb{R}^{15}

Figure 1.3: Configuration with 15 agents in \mathbb{R}^3

Figure 1.4: Configuration with 15 agents in \mathbb{R}^{15}

Figure 1.5: Configuration with 15 agents in \mathbb{R}^3 to convergence

1.1.2 Comparison with centralized gradient

Figure 1.6: Configuration with 15 agents in \mathbb{R}^3 compared to centralized gradient

1.2 Cooperative multi-robot target localization

1.2.1 Different graph patterns comparison

Figure 1.7: Configuration with 5 robots and 1 target

Figure 1.8: Configuration with 5 robots and 3 targets

Figure 1.9: Configuration with 15 robots and 3 targets

1.2.2 Comparison with centralized gradient

Figure 1.10: Configuration with 5 robots and 3 targets with centralized gradient

1.2.3 Different noises

Chapter 2

Aggregative Optimization for Multi-Robot Systems

Conclusions

Bibliography