

Registro y Versionado de Modelos

Diego Mosquera Uzcátegui Abril, 2025

Etapas de MLOps

Herramientas para MLOps

Plataforma de código abierto para administrar el ciclo de vida de un modelo de ML

Reproducibilidad

Implementación

Registro

Registro y versionado con MLFlow

https://mlflow.org/docs/latest/tutorials-and-examples/index.html

Record and query experiments: code, data, config, and results.

PROJECTS

Package data science code in a format that enables reproducible runs on many platforms

MODEL REGISTRY

Store, annotate, and manage models in a central repository

MODELS

Deploy machine learning models in diverse serving environments

Versión actual del ecosistema de MLFlow

Componente	Descripción Actualizada	
Tracking	Registro completo de runs: código, métricas, parámetros, artefactos, inputs/outputs, y ahora también prompts y respuestas de LLMs.	
Projects	Ejecución reproducible de proyectos ML en diferentes entornos. Se integra con pipelines.	
Model Registry	Versión centralizada de modelos con estados, metadata y transición entre entornos.	
Models	Estándar de empaquetado, despliegue local y en la nube. Compatible con múltiples frameworks.	
Pipelines (nuevo)	Templates de entrenamiento y despliegue con validaciones y automatización.	
LLM Tracking (nuevo)	Observabilidad para modelos generativos y APIs LLM.	

Registro de un modelo Scikit-learn y MLFlow

En google colab

Registro de un modelo Pycaret y MLFlow

En google colab

Versionado con DVC

(Data Version Control)

Data Version Control

- Herramienta open-source que extiende Git para gestionar versiones de datos, modelos y pipelines de machine learning.
- Desarrollada en Python.
- ¿Para qué sirve?
 - Rastrear **cambios en conjuntos de datos y artefactos** de ML (modelos, métricas, configuraciones).
 - Definir y ejecutar pipelines reproducibles (dvc repro).
 - Compartir datos y resultados sin sobrecargar el repositorio Git (usando "**remotos**" **de almacenamiento**).
- Complementa a Git para los proyectos de Ciencia de Datos e IA.

¿Por qué no usar solo Git directamente?

Git está optimizado para texto (código), no para datos y modelos de ML (binarios)

Características principales

- Compatible con Git
- Control de Versiones de Datos simple
- Independiente de almacenamiento
- Reproducible
- Independiente del lenguaje y marco de desarrollo
- Ramificación de baja fricción
- Fácil de utilizar

Principales comandos DVC

```
$ dvc init # Inicializa el repositorio
```

- \$ dvc add . # Agrega los archivos que han sido cambiados
- \$ git commit -m "cambios realizados" # Commit de las actualizaciones con un mensaje
- \$ dvc remote add newremote s3://bucket/path # Apunta el repositorio a un bucket de S3
- \$ dvc push # Envía los cambios al repositorio DVC alojado en el bucket de S3 por defecto
- \$ dvc pull # Extrae el último cambio del repositorio DVC alojado en el bucket de S3 por defecto

Los archivos y carpetas con datos grandes van al almacenamiento remoto de DVC. Los archivos .dvc pequeños van a Github.

DVC Control Git Control

DVC Remote	GitHub
DVC Cache	Git staging area
Local DVC control	Local Git control

\$ dvc add data/raw/train

Archivos .dvc

Los archivos DVC son archivos YAML. La información se almacena en pares clave-valor y listas. La primera es md5 seguida de una cadena de caracteres.

```
yaml
# YAMI
md5: 62bdac455a6574ed68a1744da1505745
outs:
  - md5: 96652bd680f9b8bd7c223488ac97f151
    path: model.joblib
    cache: true
    metric: false
    persist: false
```

Uso de DVC

- \$ dvc init # Inicializa el repositorio
- \$ dvc add . # Agrega los archivos que han sido cambiados
- \$ git commit -m "cambios realizados" # Commit de las actualizaciones con un mensaje
- \$ dvc remote add newremote s3://bucket/path # Apunta el repositorio a un bucket de S3
- \$ dvc push # Envía los cambios al repositorio DVC alojado en el bucket de S3 por defecto
- \$ dvc pull # Extrae el último cambio del repositorio DVC alojado en el bucket de S3 por defecto

Pasos para probar DVC

1. Preparación del remote

- a. Crear una carpeta en google drive
- b. Crear una cuenta de servicio de google
 - i. Ir a la consola de google
 - ii. Ir a IAM & Admin → Cuentas de servicio y crea una Service Account
 - iii. En la pestaña de la cuenta, ir a Claves → Crear clave, elige JSON (por ejemplo sa-credentials.json).
- Compartir la carpeta de Drive con el e-mail de la service account con permisos de "Editor").

2. Preparación del local

- a. Crear el directorio del repositorio local
- b. Instalar el paquete de dvc[qdrive]
- c. Inicializar el repositorio y agregar el archivo de datos (por ejemplo, .csv)
- d. Configurar el repositorio remoto asociado
- e. Habilitar el uso de Service Account
- f. Editar el archivo de configuración y agregar el gdrive_service_account_json_file_path =
- g. Hacer el commit del archivo de configuración del repositorio remoto
- h. Hacer el push al repositorio remoto

Crear el directorio del repositorio local

Esta carpeta será utilizada como ubicación de los archivos del proyecto de ciencia de datos en el repositorio local. Por ejemplo:

C:\dvc-test

Instalar el paquete de dvc[gdrive]

pip install "dvc[gdrive]"

Inicializar el repositorio

```
Inicializar y hacer un primer commit
git init
dvc init
git commit -m "Inicializando DVC"

crear una carpeta /data dentro del directorio raíz del repositorio local
dvc add data # Esto genera el data.dvc (archivo YAML)
git add data.dvc
git commit -m "Agregando data.dvc"
```

Agregar un archivo de datos (por ejemplo .csv) a la subcarpeta /data

Configurar el repositorio remoto asociado

dvc remote add -d gdrive-remote gdrive://<FOLDER_ID>

Habilitar el uso de Service Account

dvc remote modify gdrive-remote gdrive_use_service_account true

Editar el archivo de configuración

Agregar

gdrive_service_account_json_file_path = ...

Hacer el commit del archivo de configuración

git commit .dvc/config -m "Configuracion del storage remoto"

Hacer el push al repositorio remoto

dvc push

Gestionar cambios en los datos

dvc add data

git commit data.dvc -m "Actualización de los datos"

dvc push

git push

Uso del repositorio remoto

dvc pull