6.1 下列码字代表 8 个字符:

0000000 1000111 0101011 0011101 1101100 1011010 0110110 1110001

找出其最小的汉明距离dmin,并说明该组码字的检错和纠错能力。

一个(n. k.) 伐此公组码中非零码字的最小重量等子须码的最小

要检测 e 个随机错误,则要求 d mla ≥ c+1。则 c≤ d mla -1=3。说明该组码字能检测至多 3个随机错误。

要纠正 t 个随机错误,则要求 $d_{min} \ge 2*t+1$ 。则 t $\le [(d_{min}-1)/2]=1$ 。说明该组码字能纠 正至多1个随机错误。

信息组排在研究的最大地广泛

6.2 设有 4 个消息 a₁, a₂, a₃, a₄, 被编成长为 5 的二元线性系统码 00000,01101,10111, 11010。试给出码的一致校验关系。

解: 设信息位m=(m_2 , m_1), 码字C=($c_5c_4c_3c_2c_1$)=($m_5m_1c_5c_2c_1$)。根据编码规则可得:

6.3 一个纠错码消息与码字的对应关系如下: (00)——(00000), (01)——(00111), (10) (11110), (11)—(11001).

(1) 证明该码是线性分组码。.

(2) 求该码的码长、编码效率和最小码距。

(3) 求该码的生成矩阵和一致校验矩阵。

(4) 构造该码 BSC 上的标准阵列:

设信息位m=(m_1 , m_2), 码字C=($c_4c_3c_2c_1c_0$)。根据编码规则可得:

$$\begin{cases} c_{4} = m_{2} \\ c_{3} = m_{2} \\ c_{2} = m_{2} + m_{1} \\ c_{1} = m_{2} + m_{1} \\ c_{0} = m_{1} \end{cases}$$

$$\begin{cases} c_1 + c_2 = 0 \\ c_3 + c_4 = 0 \\ c_0 + c_2 + c_4 = 0 \end{cases}$$

码字之间存在线性关系,所以该码是线性分组码。

(2) 该码的码长为 5,

编码效率
$$\eta = \frac{k}{n} = \frac{2}{5} = 40\%$$

最小码距 $d_{\min} = 3$

(3)根据码字之间的线性关系,可得一致校验矩阵为:

$$H = \begin{bmatrix} 00011 \\ 11000 \\ 10101 \end{bmatrix} \begin{bmatrix} 00110 \\ 11000 \\ 10101 \end{bmatrix} \qquad H\vec{C}^{T} = \vec{O}^{T}$$

$$\vec{C}H^{T} = \vec{O}$$

再根据: $\overline{C} = \overline{M}G$ 得

$$G = \begin{bmatrix} 11110 \\ 00111 \end{bmatrix} \qquad \overrightarrow{\mathcal{M}} = (m_1, m_2) \qquad G = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

(4)对
$$G$$
 进行初等变换,得到标准生成矩阵 $G' = \begin{bmatrix} 10111 \\ 01011 \end{bmatrix}$

6.4 设二元(6,3)码的生成矩阵为

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$
 系统形式的生成矩阵.

试给出其一致校验矩阵。

解:
$$G = [I_k P]$$

$$H = [P^{T} J_{n-k}] = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

6.5 设二元(7,4)码的生成矩阵为:

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

- (1) 求该码的所有码字。
- (2) 求该码的一致校验矩阵。

	•		
0000000	0100101	1000111	1100010
0001110	0101011	1001001	1101100
0010011	0110110	1010100	1110001
0011101	0111000	1011010	1111111

$$(2)H = \begin{bmatrix} 110110 \\ 101101 \\ 111001 \end{bmatrix} \begin{bmatrix} 1101100 \\ 1011010 \\ 111000 \end{bmatrix}$$

6.8 (15,5)循环码的生成多项式为

$$g(x) = x^{10} + x^8 + x^5 + x^4 + x^2 + x + 1$$

1101010000000000

试求:

- (1) 该码的校验多项式。 $X^n+1 = g(x) h(x)$.
- (2) 写出该码的系统形式的生成矩阵和一致校验矩阵。

解: (1)
$$h(x) = \frac{x^{15} + 1}{g(x)}$$
 , $h(x) = x^5 + x^3 + x + 1$

线性分组码的另一种通用译码方法是标准阵列译码,标准阵列如表 5.2.3 所示。标准阵列的构造方法是:

- (1) 选择所有码字构成阵列的第 0 行,通常将全零码字 c,作为第 0 行第 1 列元素。
- (2) 选择差错图案 《作为第 0 列,通常以无差错图案 e, = (0…0)作为第 0 列第 1 行元素。
- (3) 阵列中的i行 / 列元素为 c, + c, j=1,2,...,2*, i=1,2,...;2"-k.
- (4) 对越小的i, q选为越容易出现的差错图案。对于二元对称信道, e, 的选择要满足如下条件:

https://blog.csdn.net/h568630659.

$$\begin{cases} w(e_i) \leq w(e_{i-1}) \\ e_i \not\in \bigcup_{i=1}^{i-1} (e_i + C) \end{cases}$$
 (5.2.16)

其中, 6,+C表示第 k 行, □表示集合的并, 即行号小的差错图案重量也小, 第 i 行的差错图案 不在阵列的所有前 i - 1 行内。

表 5.2.3 标准阵列

由表 5.2.3 阵列中的 | 至2⁴列和 | 至2⁵⁻¹行 组成的阵列,称为二元(n,k)线性分组码的标准阵列。它有如下特点:

- (1)任意两行均不相同,每一行称为码的一个陪集,该行的差错图案称为该陪集的陪集首:
 - (2) 所有阵列元素组成全部可能的 n 元组;
 - (3) 每行都有相同的伴随式,即每个陪集有相同的陪集(ittps://plog.csdn.net/h5686396

消息	00	01	10	11
许用码	00000	00111	11110	11001
禁用码	00001	00110	11111	11000
	00010	00101	11100	11011
	00100	00011	11010	11101
	01000	01111	10110	10001
	10000	10111	01110	01001
	. 10010	10101	01100	01011
	10100	10011	01010	01101