FINAL REPORT

Quantifying In Situ Contaminant Mobility in Marine Sediments

ESTCP Project ER-9712

JANUARY 2008

Mr. Bradley Davidson Tom Hampton Bart Chadwick SPAWAR Systems Center

Approved for public release; distribution unlimited.

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Info	s regarding this burden estimate ormation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE JAN 2008		2. REPORT TYPE		3. DATES COVE 00-00-2008	RED 3 to 00-00-2008
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER
Quantifying In Situ Contaminant Mobility in Marine Sedim			ments 5b. GRANT NUMBER		
				5c. PROGRAM E	ELEMENT NUMBER
6. AUTHOR(S)			5d. PROJECT NUMBER		
				5e. TASK NUMBER	
			5f. WORK UNIT NUMBER		
	ZATION NAME(S) AND AD V arfare Systems Cer 101	` '	Hull Street,San	8. PERFORMING REPORT NUMB	G ORGANIZATION ER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)		
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	ABILITY STATEMENT ic release; distributi	on unlimited			
13. SUPPLEMENTARY NO	OTES				
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	385	

Report Documentation Page

Form Approved OMB No. 0704-0188

Table of Contents

1. Introduction	
1.1 Background Information	1
1.2 Official DoD Requirement	3
1.2.1 How Requirements were Addressed	3
1.3 Objectives of the Demonstrations	3
1.4 Regulatory Issues	4
1.5 Previous Testing of the Technology	4
2. Technology Description	8
2.1 Description	8
2.1.1 Sampling Chamber	10
2.1.2 Acquisition and Control Subsystem	12
2.1.3 Sampling Subsystem	13
2.1.4 Circulation Subsystem	13
2.1.5 Oxygen Control Subsystem	. 14
2.1.6 Deployment and Retrieval Subsystems	
2.1.7 Analytical Methods	
2.1.7.1 Cleaning	17
2.1.7.2 Performance Indicators	17
2.1.7.3 Blank Tests	18
2.1.7.4 Computations	18
2.2 Strengths, Advantages and Weaknesses	
2.2.1 Strengths	
2.2.2 Advantages	
2.2.3 Weaknesses	20
2.3 Factors Influencing Cost and Performance	20
2.3.1 Cost influences	
2.3.2 Performance Influences	20
3. Site/Facility Description	22
3.1 Background	22
3.2 Site/Facility Characteristics	
3.2.1 San Diego Bay, California	
3.2.2 Pearl Harbor, Hawaii	
4. Demonstration Approach	. 25
4.1 Performance Objectives	25
4.2 Physical Setup and Operation	26
4.2.1 Physical Setup	26
4.2.2 Deployment	27
4.2.3 Recovery	27
4.3 Sampling Procedures	28
4.3.1 Overview of Sampling Operations	28
4.4 Analytical Procedures	
4.4.1 Selection of metals Analytical Laboratory	
4.4.2 Metals Analytical Methods	
4.4.3 Selection of Organics Analytical Laboratory	
4.4.4 Organics Analytical Methods	
4.4.5 Data Reduction and Analysis	

5. Performance Assessment	36
5.1 Performance Data	36
5.1.1 Metals Blank Tests	36
5.1.1.1 Discussion of Metals Blank Results	37
5.1.1.2 Discussion of Metals Blank Tests	39
5.1.1.3 Metals Blank Tests Assignment	40
5.1.2 Organics Blank Tests	40
5.1.2.1 Results of Organics Blank Tests	44
5.1.2.2 Discussion of Organics Blank Tests	44
5.1.2.3 Organics Blank Test Assessment	
5.1.3 San Diego Bay, Paleta Creek Metals Demonstrations	46
5.1.3.1 Discussion of Paleta Creek Demonstration Results	50
5.1.3.2 Discussion of Paleta Creek Demonstrations Tests	53
5.1.3.3 Discussion of Data Interpretation	55
5.1.4 San Diego Bay, Paleta Creek Organics Demonstration	57
5.1.4.1 Paleta Creek Organics Demonstrations Results	64
5.1.4.2 Interpretation of Paleta Creek Organics Results	
5.1.4.3 Conclusions for Paleta Creek Organics Demonstration Test	66
5.1.5 Pearl Harbor, Hawaii Metals Demonstrations	
5.1.5.1 Discussion of Pearl Harbor Metals Demonstrations Results	72
5.1.5.2 Discussion of Pearl Harbor Metals Demonstration Tests	75
5.1.5.3 Discussion of Metals Data Interpretation	79
5.1.6 Pearl Harbor, Hawaii Organics Demonstration	78
5.1.6.1 Pearl Harbor Organics Demonstration Results	
5.1.6.2 Discussion of Bishop Point Organics Results	88
5.1.6.3 Conclusions for Bishop Point Organics Demonstration Test	89
5.1.7 Pearl Harbor, Bishop Point, Combined Demonstration	89
5.1.7.1 Pearl Harbor Combined Demonstration Results	91
5.1.7.2 Pearl Harbor Combined Demonstration Discussion	101
5.1.8 Paleta Creek and Pearl Harbor Metals Demonstrations Data Assessmen	nt 102
5.1.9 Technology Comparison	103
6. Cost Assessment	104
6.1 Cost Performance	104
6.1.1 Pre-Operational Phase Costs	104
6.1.2 Operational Phase Costs	105
6.1.3 Post-Operational Phase Costs	
6.1.4 Alternative Methods	107
7. Regulatory Issues	108
7.1 Approach to Regulatory Compliance and Acceptance	108
8. Technology Implementation	110
8.1 DoD Need	109
8.2 Transition	109
8.2.1 Commercialization	109
8.2.1.1 Cooperative Research and Development Agreement	109
8.2.2 Regulatory Acceptance	
8.2.3 Product Improvement	
8.2.3.1 Incremental Product Improvements	
8.2.3.2 Continuing Product Improvements	
9. Lessons Learned	111

9.1 Flexibility	111
9.2 Mother Nature	11
9.3 Statistics	111
10. References	112
Appendix A	114
Appendix B	
Appendix C	

List of Figures

Figure 1. Benthic Flux Sampling Device 2	
Figure 2. Plot of Metal Fluxes Along East-west Transects	5
Figure 3. Plot of Metal Fluxes Along East-west Transects, Excluding Zn	
Figure 4. Benthic Flux Sampling Device 2	
Figure 5. BFSD2 Sampling Events	
Figure 6. BFSD2 Sampling Events	
Figure 7. Chamber Enclosure	
Figure 8. Sample Bottles	
Figure 9. Flow-Through Sensor System	
Figure 10. Ambient Oxygen Data	
Figure 11. Operational Oxygen Control Data	
Figure 12. BFSD Deployment	
Figure 13. Acoustic Release and Retrieval Buoy	
Figure 14. BFSD Retrieval	
Figure 15. Silica Flux for Good Chamber Seal	
Figure 16. pH data for Good Chamber Seal	
Figure 17. San Diego Bay, Paleta Creek Site	
Figure 18. Pearl Harbor, Hawaii Middle Loch Bishop and Point Sites	
Figure 19. Deployment Equipment	
Figure 20. Crane Loading Aboard Workboat	
Figure 21 Deployment	
Figure 22. Recovery	
Figure 23. Blank Performance for Copper (Cu)	
Figure 24. Blank Performance for Cadmium (Cd)	
Figure 25. Blank Performance for Lead (Pb)	
Figure 26. Blank Performance for Nickel (Ni)	
Figure 27. Blank Performance for Manganese (Mn)	
Figure 28. Blank Performance for Zinc (Zn)	
Figure 29. Blank Performance for Silica (SiO4)	
Figure 30 Blank Test Dissolved Oxygen	
Figure 31 Blank Test Pressure	
Figure 32 Ex Situ BFSD2 Organics Blank Test Physical Setup	
Figure 33 BFSD2 Paleta Creek Metals Deployment	
Figure 34 Paleta Creek Metals Pre-Demonstration Results	
Figure 35 Paleta Creek Metals Demonstration Results	
Figure 36 Paleta Creek Metals Pre-Demonstration Concentration vs. Time	
Figure 37 Paleta Creek Metals Demonstration Concentration vs. Time	
Figure 38 Paleta Creek Metals Demonstrations Oxygen Control Results	
Figure 39 Paleta Creek Metals Demonstrations pH Results	
Figure 40 Paleta Creek, San Diego Bay	
Figure 41 BFSD2 Paleta Creek Organics Deployment	
Figure 42 BFSD 2 Paleta Creek Organics Demonstration Recovery	
Figure 43 BFSD 2 Paleta Creek Organics Demonstration Sensor Plots	
Figure 44 Paleta Creek PAH Demonstration Results	
Figure 45 Paleta Creek PCB Demonstration Results	
Figure 46 Paleta Creek Pesticide Demonstration Results	. 64

Figure 47 BFSD2 Pearl Harbor, Middle Loch Metals Demonstration	67
Figure 48 BFSD2 Pearl Harbor, Bishop Point Metals Demonstration	68
Figure 49 BFSD2 Container, Front View	69
Figure 50 BFSD2 Container, Back View	69
Figure 51 Pearl Harbor Middle Loch Demonstration Results	72
Figure 52 Pearl Harbor Bishop Point Demonstration Results	72
Figure 53 Pearl Harbor Middle Loch Demonstration Concentration vs. Time	73
Figure 54 Pearl Harbor Bishop Point demonstration Concentration vs. Time	
Figure 55 Pearl Harbor Demonstrations Oxygen Control Results	76
Figure 56 Pearl Harbor Demonstrations pH Results	77
Figure 57 Pearl Harbor Demonstration Data with Iron-Normalized Bulk Sediment	
Copper Concentrations	
Figure 58 BFSD2 Pearl Harbor, Bishop Point Organics Demonstration	79
Figure 59 Deployment Equipment	
Figure 60 Pre-Deployment Checklist	80
Figure 61 Ambient Dissolved Oxygen	
Figure 62 Ambient pH	
Figure 63 Chamber pH	81
Figure 64 Chamber Dissolved Oxygen	
Figure 65 Flux to Blank Comparison for PAHs	
Figure 66 Flux to Blank Comparison for PCBs	
Figure 67 Flux to Blank Comparison for Pesticides	84
Figure 68 Flux to Blank Comparison for First Four PAH Samples	
Figure 69 Pearl Harbor, Bishop Point Demonstration Locations	90
Figure 70 Pearl Harbor, Bishop Point Combined Metals Pre-Deployment Sensor	
Graphs	91
Figure 71 Pearl Harbor, Bishop Point Combined Metals Full Test Sensor Graphs	91
Figure 72 Pearl Harbor, Bishop Point Combined Metals Comparison of Flux and	
Blanks	93
Figure 73 Pearl Harbor, Bishop Point Combined Demonstration Metals Time Serie	es
Graphs	94
Figure 74 Pearl Harbor, Bishop Point Combined PAH Comparison of Flux to Blan	ks
(All samples)	96
Figure 75 Pearl Harbor, Bishop Point Combined Demonstration PAH Time Series	
Graphs (all samples)	97
Figure 76 Pearl Harbor, Bishop Point Combined PAH Comparison of Flux to Blan	
(First 4 samples)	
Figure 77 Pearl Harbor, Bishop Point Combined Demonstration PAH Time Series	
Graphs (First 4 samples)	
Figure 78 Expected Pre-Operational Phase Schedule for BFSD2 Deployment	
Figure 79 Expected Operational Phase Schedule for BFSD2 Deployment	
Figure 80 Expected Post-Operational Phases Schedule for BFSD2 Deployment	107

List of Tables

Table 1 Analytical Methods	. 32
Table 2 Metals Blank Test Results Summary	. 36
Table 3 PAH Blank Tests Results Summary	. 42
Table 4 PCB Blank Test Results Summary	. 43
Table 5 Pesticide Blank Test Results Summary	. 43
Table 6 BFSD 2 Metals Results from the Paleta Creek Pre-Demonstration (PCPD)	. 48
Table 7 BFSD 2 Metals Results from the Paleta Creek Demonstration (PCD)	. 48
Table 8 Estimated Sediment Flux Contribution to Overlying Water Concentrations	
for the Paleta Creek Study Area	. 56
Table 9 BFSD2 PAH Results Summary for Paleta Creek Demonstration	. 61
Table 10 BFSD2 PCB Results Summary for Paleta Creek Demonstration	. 62
Table 11 BFSD2 Pesticide Results Summary for Paleta Creek Demonstration	. 62
Table 12 BFSD2 Results for Pearl Harbor Middle Loch (PHML) Metals Demonstration	. 70
Table 14 BFSD 2 Results for Pearl Harbor, Bishop Point (PHBP) Metals Demonstration	. 71
Table 14 Summary Results for PAHs	. 82
Table 15 Summary Results for PCBs	. 82
Table 16 Summary Results for Pesticides	82
Table 17 Summary Results for First Four PAH Samples	. 85
Table 18 Pearl Harbor, Bishop Point Combined Metals Summary of Metals	. 92
Table 19 Pearl Harbor, Bishop Point Combined Demo Summary Results for PAH's	
(All samples)	. 95
Table 20 Pearl Harbor, Bishop Point Combined Demo Summary Results for PAH's	
(First 4 samples)	. 98
Table 21 Comparison of Flux Rates from Metals-only and Combined Demonstrations	101
Table 22 Comparison of Flux Rates from PAH-only and Combined Demonstration	102
Table 23 Expected Pre-Operational Phase Costs for BFSD2 Deployment	104
Table 24 Expected Operational Phase Costs for BFSD2 Deployment	105
Table 25 Expected Post-Operational Phase Costs for BFSD2 Deployment	106

Quantifying In Situ Metal and Organic Contaminant Mobility in Marine Sediments

Space and Naval Warfare Systems Center San Diego, CA

January 1, 2008

1. Introduction

1.1 Background Information

Contaminants enter shallow coastal waters from many sources, including ships, shoreside facilities, municipal outfalls, spills, and non point-source runoff. Sediments are typically considered a primary sink for these contaminants. Sediments in many bays, harbors and coastal waters used by DoD are contaminated with potentially harmful metal and organic compounds. The DoD is required by the Comprehensive Environmental Resource Conservation and Liability Act, as amended by the Superfund Amendment and Reauthorization Act of 1986 (CERCLA/SARA), to assess and if necessary remove and remediate these sites and discharges in order to protect the public health or welfare of the environment. To determine whether contaminants are moving into, out of, or remaining immobilized within the sediments, a determination of contaminant flux must be made. Variations in sediment chemical and physical properties make it impossible to rely on bulk sediment contaminant concentrations alone to predict contaminant flux, bioavailability, and therefore toxicity. Diagenetic reactions in surface sediments control contaminant pore water gradients, and the direction and magnitude of these gradients control the diffusive flux across the sediment-water interface. These fluxes can be calculated from measurements of contaminant pore water gradients and sediment physical properties. However, in some coastal areas pore water gradients are very steep and therefore difficult to measure. In addition, flux calculations based on pore water gradients only provide the diffusive component of a contaminant flux. An additional concern in coastal areas is that biological irrigation by infauna and wave or current induced flushing may provide a larger component of flux through advection of water through the sediments. To avoid these problems, a direct measurement of contaminant flux in coastal areas is often the best method to assess contaminant mobility across the sediment-water interface. This direct measurement can be made with a flux chamber that isolates a volume of seawater over the sediments to quantify contaminant flux across the sediment-water interface.

An instrument for measurement of contaminant fluxes from marine sediments called the Benthic Flux Sampling Device 2(BFSD2). The instrument is a commercialized version of the original prototype BFSD used during development and is adapted from benthic flux chamber technology developed in oceanography for studying the cycles of major elements and nutrients on the seafloor.

The BFSD2 is an autonomous instrument for *in-situ* measurement of toxicant flux rates from sediments. A flux out of or into the sediment is measured by isolating a volume of water above the sediment, drawing off samples from this volume over time, and analyzing these samples for increase or decrease in toxicant concentration. Increasing concentrations indicate that the toxicant is fluxing out of the sediment. Decreasing concentrations indicate that the toxicant is fluxing into the sediment.

Figure 1 shows the BFSD2, including its pyramid-shaped tubular frame, open-bottomed chamber, and associated sampling and control equipment. At the top of the frame is an acoustically released buoy for BFSD2 recovery. At the bottom of the frame is an open-bottomed chamber and associated sampling gear, flow-through sensors, a data acquisition and control unit, video camera system, power supply, and oxygen supply system.

Figure 1. Benthic Flux Sampling Device 2.

The BFSD2 provides a unique means of evaluating the significance of in-place sediment contamination. Knowledge of the degree to which contaminants remobilize is essential in defining the most cost effective remedial action at impacted sites. At present, there is no other viable method for direct quantification of sediments as sources. At sites where it can be demonstrated that remobilization of contaminants is limited, significant cost savings may be achieved through reduction of cleanup costs. This may often be the case because many contaminants are strongly sequestered within the sediment and not likely to leach out. Estimated disposal costs for contaminated sediments

range from \$100-\$1000/cubic yard. A recent survey of Navy shoreside facilities (NRaD, 1995) indicated that of the 31 facilities that responded, 29 reported the presence of contaminated sediment sites. The actual volume of contaminated sediment at these sites is not well-documented however even conservative estimates suggest that millions of cubic yards of material may exceed typical sediment quality guidelines.

1.2 Official DoD Requirement

This project addresses the DoD/Navy requirement for compliance, cleanup assessment, and remediation decisions using innovative technology to directly quantify the mobility and bioavailability of contaminants in marine sediments. Marine sediments serve as a repository for contamination from a wide variety of sources. The environmental risks posed by these contaminants are determined largely by the degree to which they remobilize into the environment.

1.2.1 How Requirements were Addressed

The technology demonstrated in this project provides a means of quantifying risks and supports the overall goal of cost-effective, risk-based environmental cleanup. This technology provides a basis for risk-based decision making and potential cost savings by

- 1 Improving methods for measuring bioavailability for contaminated sediment
- 2 Minimizing cleanup requirements at sites where contaminants are not remobilizing
- 3 Evaluating the integrity of natural and remedial sediment caps
- 4 Providing a direct measure of the time scale of natural attenuation
- 5 Documenting the actual contaminant contribution of sediments relative to other sources.

1.3 Objectives of the Demonstrations

The primary objective of the demonstrations of the BFSD2 was to perform deployments at contaminated sites in San Diego Bay, California and Pearl Harbor, Hawaii under the observation of California EPA certification evaluators. Other observers, including local, state and federal regulators, Remediation Program Managers, academic, industry and other DoD also attended. Each site offered different validation opportunities: San Diego Bay was used to show instrument repeatability and comparison with historical trends and Pearl Harbor was used to show site differences and geochemical trend analysis. Organics demonstrations were performed at the same sites. The specific planned objectives of the demonstrations were to:

- (1) evaluate the quality of water samples collected using the BFSD2; specifically for use in determining if a statistically significant flux was occurring at the test locations in comparison to the blank flux results for the BFSD2.
- (2) evaluate the BFSD2 for repeatability.
- (3) evaluate the logistical and economic resources necessary to operate the BFSD2.
- (4) evaluate the range of conditions in which the BFSD2 can be operated.

Other objectives included exposure of various user communities to the technology to encourage continued interest and applications.

1.4 Regulatory Issues

There were no regulatory permitting issues associated with deployment of the BFSD2. Collecting sediment samples in a marine environment is considered a nonhazardous activity (although personnel handling samples must follow all safety precautions and limit their exposure to potentially hazardous samples). No hazardous waste was generated during the demonstrations.

The BFSD2 is a sample collection instrument and its prototype was the first of its kind to collect sediment-water interface samples for contaminant flux analysis. Because this technology has no current equivalent, the BFSD2 is evaluated based on the internal quality assurance/quality control (QA/QC) for the laboratory analysis performed and on an analysis and interpretation of the data. Although some clean water standards have been set for seawater, only guidelines currently exist for sediments. And, whereas sample handling, preserving, analyzing and reporting is covered by a number of established methods and regulations, the primary regulatory issue for the BFSD2 involves the integrity of the collected samples to represent ambient conditions. Further, the heterogeneous nature of sediments combined with the complex chemistry of marine aquatic environments requires thoughtful evaluation of all data before arriving at conclusions. The BFSD2 system can routinely produce accurate, precise and repeatable results, however the application of these results to site specific conditions does not lend itself readily to standardized processes. In many cases, BFSD2 results may be used as an additional factor in a "weight of evidence" approach for risk-based decisions involving regulator concurrence.

1.5 Previous Testing of the Technology

Initial development program tests included *ex situ* (laboratory) and *in situ* (field) trials of critical components, subsystems, and systems. A number of system development tests were conducted at various locations within San Diego Bay during 1989-91.

Full-scale system trials of the prototype BFSD were conducted in Sinclair Inlet, offshore from Puget Sound Naval Shipyard, Bremerton WA, during June 1991 in support of an

ongoing assessment. Ten deployments of the prototype BFSD were conducted to characterize flux rates of contaminants from seven shipyard sites and three reference sites (no blank test was conducted). Collected samples were analyzed for the trace metals arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn). The tests were successful and results generally showed low release rates (or fluxes) compared to other contaminant sources. See general reference 12 for the complete report. Following review of the data, an active oxygen control subsystem with sensor feedback was developed and implemented along with several other changes to improve operation reliability.

During 1993 four systems tests of the upgraded prototype BFSD were conducted at sites within in San Diego Bay: one at Paleta Creek (at its entrance to the bay within Naval Station San Diego); two at a commercial yacht harbor (Shelter Island); and one at a industrial shipping terminal (PACO Industries). The deployments were preceded by a system blank test to determine the lower limits of flux that could be resolved with the prototype BFSD. Several experimental subsystems including a sensor for laser-induced fluorescence (LIF) investigation of polycyclic aromatic hydrocarbon (PAH) contaminants and an electrode for potentiometric stripping analysis (PSA) of trace metal (Cu and Zn) contaminants were also tested. Results from these deployments showed significant flux rates when compared to blank test results and clear differences between the sites as related to potential trace

metal sources. Paleta Creek results showed the highest flux levels for Cd, Cu, Ni and Zn. See reference 5 for the complete report.

Seven more prototype BFSD deployments in San Diego Bay in support of a sediment quality assessment at Naval Station San Diego were conducted during 1995. Paleta Creek was again included along with five other sites near piers and quay walls and one site outside the study area used as a reference. The work, preceded by a blank test, yielded results that were consistent with the previous study and showed Cd, Ni, Zn and Mn all to have positive fluxes. Paleta Creek again showed the highest trace metal fluxes with levels which were generally consistent with those measured two years prior. Correlations between measured trace metal flux levels and complex marine chemistry processes were studied and informative trends were identified. For example in the complex oxidation-reduction (redox) marine environment, it was found that trace metal fluxes are consistent with oxidation of solid metal sulfides as a sediment source. See key reference 7 for the complete report; an extract is included below to illustrate an initial interpretation of the Naval Station San Diego results:

Some of these trace metal flux relationships may be better illustrated with bar charts showing the trends along a series of transects across the study area. Figures2 and 3 show the trace metal fluxes for the 1995 deployments along with data from the earlier 1993 deployments. The Zn fluxes in Figure 2 are so large that the other trace metal fluxes are barely visible, so the other metal fluxes are replotted in Figure 3 without Zn. This demonstrates that Zn is, by far, the trace metal with the largest flux out of the sediments. The first site displayed in both figures is the blank run, followed by the east-west transects near Pier 4 (Sites 3, 3r, 1r, and 2) and Paleta Creek (Sites 5, 4, and 6), and finally the 1993 data. Zn, Ni, and Cd fluxes in the 1995 data are high in the east (Sites 3 and 5) and decrease toward the west, and in the 1993 data higher in the central bay sites compared to north bay sites. The trends for Cu and Pb fluxes are less clear, with some sites showing fluxes into the sediments. Cu does, however, show the highest fluxes out of the sediments at Sites 3 and 5 where the sediment concentrations of most metals are high.

Figure 2. Plot of Metal Fluxes Along East-west Transects.

Figure 3. Plot of Metal Fluxes Along East-west Transects, Excluding Zn.

Looking at the NAVSTA area sediments out to the west side of the navigation channel, a surface area of approximately 3 million square meters (m2) is present. From the contour map of Zn concentrations in the sediment chemistry chapter, only approximately 500,000 m2 are above the ERM value of 410 ppm. The four Zn flux measurements from sediments with these high Zn levels (Sites 1R, 3, 3R, and 5) average 3100 + 2500 ug/ m2 / day. Sediments in the NAVSTA area with Zn levels below ERM values cover approximately 2.5 million m2 and three flux measurements from sediments with lower Zn levels average 1100 + 200 ug/ m2 / day. The overall flux of zinc directly from the sediments in the NAVSTA area is therefore 1500 + 600 kg Zn/ yr.

Finally, as mentioned above, blank tests of the prototype BFSD were conducted to determine the lowest levels of contaminants which could be resolved with the system. With the prototype BFSD prepared as it would be for a normal deployment, the test was conducted in seawater with the chamber sealed. A time-sequence for sample collection comparable to the planned deployments was used and the samples were analyzed identical to later site-collected samples. For the San Diego Bay tests discussed above the results were:

Coumpound	flux \pm S.E.	$(\mu g/m2/day)$	
	<u>1993</u>	<u>1995</u>	
Cadmium	6 ± 7	5 ± 3	
Copper	-71 ± 62	-2 ± 47	
Iron		160 ± 235	
Lead	- 4 ± 8	7 ± 67	
Manganese		-52 ± 26	
Nickle	65 ± 69	-4 ± 27	
Zinc	-227 ± 65	-149 ± 267	

Whereas the prototype BFSD performed successfully and was considered mature enough to begin technology transfer, the process of data analysis and interpretation revealed complexities requiring careful consideration prior to reaching conclusions. Technology transfer, to be fully discussed in section 8, began with a competitively awarded firm-fixed-priced contract for Benthic Flux Sampling Device 2 (BFSD2), which incorporated a number of changes from the prototype BFSD. A series of

ex situ and in situ tests and tests and checkouts assured that the instrument retained critical prototype BFSD performance attributes as well as establishing functionality of the changed features. A complete series of laboratory (ex situ) tests and checkouts were conducted. Ex situ tests included: the new rotary valve sampling system to assure reliable performance; the pump and diffuser system with dye-dispersion to assure adequate mixing; the flow-through sensor system to assure responsive and accurate readings; the vacuum-filled, in situ-filtered sample bottles to assure clog-free operation and adequate fill volume; and the data acquisition and control system to assure required performance.

2. Technology Description

2.1 Description

Contaminants enter shallow coastal waters from many sources, including ships, shoreside facilities, municipal outfalls, spills, and non point-source runoff. Sediments are typically considered a primary sink for these contaminants. Where previous shoreside practices have resulted in high concentrations of contaminants in the sediments, contaminants may flux out of the sediments. Also, in areas where pollution prevention and remediation practices have removed other contaminant sources, remaining contaminated sediments may serve as a primary contaminant source to the water column.

To determine whether contaminants are moving into, out of, or remaining immobilized within the sediments, a determination of contaminant flux must be made. Diagenetic reactions in surface sediments control contaminant pore water gradients, and the direction and magnitude of these gradients control the diffusive flux across the sediment-water interface. These fluxes can be calculated from measurements of contaminant pore water gradients and sediment physical properties. However, in some coastal areas pore water gradients are very steep and therefore difficult to measure. In addition, flux calculations based on pore water gradients provide only the diffusive component of a contaminant flux. An additional concern in coastal areas is that biological irrigation by infauna and wave or current induced flushing may provide a larger component of flux through advection of water through the sediments. To avoid these problems, a direct measurement of contaminant flux in coastal areas is required to assess contaminant mobility across the sediment-water interface. This direct measurement can be made with a flux chamber that isolates a volume of seawater over the sediments to quantify contaminant flux across the sediment-water interface.

The Navy-designed and developed, contractor-fabricated Benthic Flux Sampling Device 2 (BFSD2) is a flux chamber designed specifically for *in situ* measurement of contaminant fluxes in coastal areas. A chamber of known volume encloses a known surface area of sediment. Seawater samples are collected periodically at timed intervals. After a laboratory has analyzed the samples, and with knowledge of the time intervals between samples, a flux rate between the sediment and water in mass per surface area per unit time (micrograms per square meter per day $\lceil \Box g/m^2/day \rceil$) can be calculated.

The BFSD2, shown in Figure 4 with key components labeled, consists of an open-bottomed chamber mounted in a modified pyramid-shaped tubular framework with associated sampling gear, sensors, control system, power supply, and deployment and retrieval equipment. The entire device is approximately 1.2 by 1.2 meters from leg to leg and weighs approximately 175 pounds. The lower part of the framework contains the chamber, sampling valves, sampling bottles, and batteries. The upper frame includes a release that is acoustically burn-wire triggered. The BFSD2 is designed for use in coastal and inland waters to maximum depths of 50 meters. Maximum deployment time is approximately 4 days based on available battery capacity. Figures 5 and 6 illustrate the two basic configurations for landing and sampling events, respectively.

Figure 4. Benthic Flux Sampling Device 2.

Figure 5. BFSD2 Sampling Events.

- Sample Bottles >25 in-Hg

Figure 6. BFSD2 Sampling Events.

2.1.1 Sampling Chamber

The chamber is a bottomless box, approximately 40 centimeters (cm) square by 18 cm tall, with a volume of approximately 30.0 liters (Figure 7). The volume was chosen to allow for a maximum overall dilution of less than 10 percent due to sampling withdrawal into 11 samples of 250 milliliters (ml) each. For the combined demo, 11 combined samples were collected from within the chamber (100 mls for metals and 250 mls for PAH's) increasing the sample volume to 350 mls per sampling

event. This increased the dilution to about 13% for the combined sampling. The chamber is constructed of clear polycarbonate to avoid disrupting any exchanges that may be biologically driven and, thus, light sensitive. To prevent stagnation in the corners of the chamber, triangular blocks of polycarbonate occupy the 90-degree angles. The top of the chamber is hinged at one edge so that it may be left open during deployment to minimize sediment disturbance. Once the chamber is in place, the computer control system closes the lid. A gasket around the perimeter of the chamber ensures a positive seal between the chamber and the lid. Exact alignment is not required, because the lid is slightly larger than the sealing perimeter of the gasket and pivots on two sets of hinges. The lid is held closed by four permanent magnets situated along the chamber perimeter. The bottom of the chamber forms a knife-edge. Pressure-compensated switches mounted on the bottom surface of three sides of a flange circling the chamber at 7.6 cm above the base activate a series of three lights visible with a video camera mounted on the upper frame. Illumination of the lights indicate a uniform minimum sediment penetration depth has been achieved and a good probability that a positive seal between the chamber and the sediment has been achieved.

Figure 7. Chamber Enclosure.

Samples are drawn off through a 4-mm Teflon tube via synchronized parallel rotary valves and into evacuated 250 ml Teflon sampling bottles. For organics applications, standard precleaned 250 ml amber glass sample bottles with pre-combusted glass-fiber filter assemblies are used (Figure 8). For the combined demo, 100 ml Teflon bottles were used for metals and 250 ml amber glass bottles were used for PAH's.

Figure 8. Sample Bottles. Clockwise from Upper Left, metals Bottles; Organics Bottles; Combined Metals and Organics Configuration; and Paired Bottles for Combined Deployment.

The first sample is drawn through a 0.45 micron-filter into the sample bottle upon closure of the lid at the start of the autonomous operation of the BFSD2; the remaining 11 samples are similarly collected as the synchronized parallel rotary valves are activated at preprogrammed intervals throughout the deployment. The bottles are evacuated to a minimum of 25 inches of mercury before deployment.

2.1.2 Acquisition and Control Subsystem

The acquisition and control unit is an Ocean Sensors Model OS200 conductivity temperature depth (CTD) instrument, modified to allow control of the BFSD2. It consists of a data logger that acquires and stores data from sensors, and a control unit that regulates sampling and other functions of the BFSD2. The data logger collects data from a suite of sensors housed in the CTD and connected to the chamber through a flow-through loop. A small constant-volume pump maintains circulation in the flow-through system to the sensors and is also used to maintain homogeneity of the contents of the chamber utilizing a helical diffuser mounted vertically on the central axis of the box. The control unit closes the lid, activates the flow-through/mixing pump, activates dissolved oxygen control valves, and controls activation the synchronized parallel rotary sampling valves. Commercial sensors, installed by Ocean Sensors, Inc., are mounted in the CTD instrument housing, and are connected to the chamber by means of a flow-through pump and circulation plumbing. Sensors are used for monitoring conditions within the chamber, including conductivity, temperature, pressure, salinity, pH, and dissolved oxygen, Figure 9. Circulation in the flow-through sensor system is maintained using a constant flow rate pump adjusted to approximately 15 milliliters per second (ml/sec).

Figure 9. Flow-Through Sensor System.

2.1.3 Sampling Subsystem

Discrete samples are obtained using a vacuum collection approach consisting of sample containers, fill lines, in-line filters (with 0.45 micron membrane filters for metals or with 1.0 micron precombusted glass-fiber filters for organics), check valves, and synchronized parallel rotary valves connected to the chamber fill line. Off-the-shelf 250ml Teflon (metals) or amber-glass (organics) collection bottles are modified to allow filling through the cap. Sampling containers of any volume, material, or shape may be used, provided the cap can be modified to accept the fill line connection, the bottle walls are strong enough to withstand the pressure at the sampling depth, and the cap sea l is airtight and watertight at the sampling depth pressure. Glass, Teflon, and polycarbonate bottles have been tested and used successfully with the prototype BFSD. All valves, fittings, and tubes are made of Teflon or other nonmetallic materials to minimize potential metal contamination of samples and to facilitate cleaning. Samples are drawn from the chamber through a 4-mm Teflon tube connected to the rotary valves and into the sampling bottles. Sampling is initiated by the control system when it activates the valves at preprogrammed intervals. Seawater samples are drawn through the sampling system by a vacuum of 25 inches of mercury (minimum) which is applied to all sample bottles through check valves mounted in the bottle lids. The check valves are then sealed, and water enters each sample bottle when the rotary valves are activated (number 2 through 12) or when the lid closes and opens a valve attached to its hinge (number 1). Filtered seawater flows into each bottle until pressure is equalized, normally yielding at least 240ml.

2.1.4 Circulation Subsystem

The BFSD2 has a mixing area called the collection chamber and the process of interest is the exchange of chemical contaminants at the sediment-water interface sequestered within the chamber. The hydrodynamics inside the chamber must adequately simulate movement of water from near-bottom currents outside the chamber. For this purpose, a helical diffuser mounted vertically on the central axis of the chamber is used to mix the enclosed volume. Tests recorded on video verified that the helical diffuser provided a uniform, gentle mixing action that effectively dispersed dye injected into the chamber without disturbing the sediment layer on the chamber bottom.

The diffuser system includes a standard constant-volume submersible pump. The pump circulates water from an outlet in the chamber wall, into the sensor chamber and over the flow-through sensors, and back into the chamber via a rigid polycarbonate tube. The vertically mounted tube is capped at the discharge end and has 5mm holes drilled in a helix pattern along its length. The tests verified that this method visually dispersed a dye injection of Rhodamine in less than 120 seconds.

The acquisition and control unit, the oxygen supply bottle, a video camera and lighting system, circulation pumps, and the retrieval line canister are mounted on the frame members. The oxygen system is used to maintain aerobic conditions within the chamber by diffusing oxygen at a rate sufficient to maintain the initial dissolved oxygen levels through a coil of thin-walled, oxygen-permeable Teflon tubing.

2.1.5 Oxygen Control Subsystem

Over the course of an experiment, conditions in the isolated volume of seawater within the flux chamber begin to change from the initial conditions observed in the bottom water. Oxygen content is one factor that changes rapidly because isolated volumes of seawater in contact with the sediment surface will become anoxic without any resupply of oxygen. Since the fluxes of many contaminants, especially metals, are sensitive to redox conditions, the oxygen content is one of the most important factors that must be monitored and regulated within the flux chamber. Most contaminant fluxes are not large enough to be measured in chambers without oxygen regulation because the isolated volume of seawater will become anoxic before significant contaminant fluxes have occurred. Because of this, an oxygen control system has been built into the BFSD2. This system maintains the oxygen levels in the chamber within a user-selected window about the measured bottom water oxygen level.

The oxygen regulating system consists of a supply tank, pressure regulator, control valves, diffusion coil, oxygen sensor, and control hardware and software. The supply tank is a 13-cubic foot aluminum diving tank equipped with a first-stage regulator that allows adjustment of output pressure to the system. The control valves are housed within a watertight pressure case with connections through bulkhead fittings on the end cap. The diffusion coil is thin-walled, 4-mm, oxygen-permeable, Teflon tubing approximately 15 meters (m) long. Oxygen is monitored using the oxygen sensor in the flow-through system described previously. The oxygen control valves (pressurize or vent) activation is incorporated into the control system of the BFSD2.

During a typical deployment, when the flux chamber is initially submerged, the ambient oxygen level in the water is measured with a control program which activates the circulation subsystem and sensors until a stable value of ambient oxygen concentration is obtained. This is performed with the BFSD2 either on the bottom or suspended less than 1 meter above the sediment (with the lid open). When oxygen stability is obtained, the user then establishes a maximum and a minimum oxygen control level, based on a userspecified range around the stable ambient level. Figure 10 is a typical set of data obtained from 15 minutes of operation. The control limits are entered into the operational control program and downloaded to the BFSD2 acquisition and control subsystem. autonomous operations are started and the chamber is closed and sealed, the oxygen level inside the chamber is monitored by the control program. If the level drops below the allowable minimum, a control valve is momentarily opened, the diffusion coil is pressurized, and the oxygen level in the chamber begins to increase. When the oxygen level reaches the maximum allowable level, another control valve is activated and the pressurized tubing is vented. This sequence is repeated continuously during deployment, maintaining the oxygen level in the chamber near the ambient level. Figure 11 is a typical set of data obtained from a 72-hour deployment. Note that dissolved oxygen concentrations are reported in ml/l in this report. Dissolved oxygen concentrations in seawater can be expressed in millimolar, uMoles/kg, mg-atoms/liter, mg/liter, ml/liter or percent saturation. Conversion from mg/l to ml/l is a linear computation (mg/l x 1.4276 = ml/l). It is true Standard Methods suggests re porting in mg/l, however different reporting units are found in the literature. We have historically used oxygen sensors obtained through Seabird Electronics, and their calibration procedures and software all use ml/l for dissolved oxygen concentrations.

Figure 10. Ambient Oxygen Data.

Figure 11. Operational Oxygen Control Data.

2.1.6 Deployment and Retrieval Subsystems

During deployment the test site is surveyed for obstacles with a light-aided video camera mounted on the upper frame of the BFSD2 using a on deck television monitor. As shown in Figure 12, a deployment cable and release line are used to lower the BFSD to its intended depth for the video inspection. Following either rapid or slow descent to the bottom, the minimum depth of collection chamber insertion is sensed by pressure-compensated switches, which activate lights mounted on the chamber frame. These lights are TV-monitored on deck.

Figure 12. BFSD Deployment.

Recovery is accomplished by transmitting a coded acoustic signal to the frame-mounted receiver which in turn releases the marker buoy, Figure 13. As shown in Figure 14, the line attached to the buoy is used to lift the BFSD2 aboard the vessel. Stored sensor data is uploaded before the detaching cables.

Figure 13. Acoustic Release and Retrieval Buoy.

Figure 14. BFSD Retrieval.

2.1.7 Analytical Methods

2.1.7.1 Cleaning

Prior to each deployment, the BFSD2 sample collection system is cleaned and decontaminated. A sequential process of flowing cleaning fluids through the sampling subsystem using vacuum; of soaking disassembled parts (collection bottles and other parts) in prepared solutions; of physically brushing and rinsing the collection and sensor chambers and the circulation subsystem with prepared solutions is followed. For metals, a nitric acid soak/rinse is used before a final rinse with 18 megohm de-ionized water and for organics a methanol rinse with air dry is used prior to sealing/closing off all paths of contamination until deployment.

2.1.7.2 Performance Indicators

A series of performance indicators are used to evaluate the data obtained during operational deployments. One performance indicator is the chemistry time-series data for silica. Silica, a common nutrient used in constructing the hard parts of some planktonic organisms, typically shows a continuous flux out of the sediments due to degradation processes. The linear increase in silica concentration with time in the collected sample bottles is therefore used as an internal check for problems such as a poor chamber seal at the lid or sediment surface. A field analytical test set (Hach Model DR2010) is used to assess the silica concentrations immediately following retrieval and before sending collected samples to the analytical laboratory. Figure 15 is an example of silica flux indicating an adequate chamber seal with the sediment. Also, with a good chamber seal the ongoing bacterial degradation of organic material in the sediment consumes oxygen (which must be regulated by the BFSD2) and also generates carbon dioxide. This gradually lowers the chamber pH and Figure 16 is an example of this data for a good chamber seal with the sediment.

Figure 15. Silica Flux for Good Chamber Seal.

Figure 16. pH Data for Good Chamber Seal.

Although the expected relationships of these performance indictors aid in determining normal or successful deployments, natural variability is always present to cloud these relationships. Variations in the pore water reactions at the various sites lead to differences in the observed fluxes of oxygen, silica, and also the other contaminants. One major factor contributing to the large variations in fluxes may be burrowing activity. Enhanced biological irrigation (pumping of the overlying seawater through sediment burrows by infaunal organisms) increases the surface area of the sediment-water interface and flow rates across the interface, and may also increase the observed fluxes. The organisms responsible for this biological pumping will also affect oxygen uptake rates and may add to the complex interpretation of the analytical results.

2.1.7.3 Blank Tests

Prior to the BFSD2 demonstrations, a triplicate blank test was performed to determine the lower limit of resolution for flux determinations of various metals. A polycarbonate panel was sealed across the bottom of the chamber and the BFSD2 was lowered to within several meters of the sediment surface. A standard operational program identical to the demonstration deployments was run for 70 hours. The results will be presented later in this report.

2.1.7.4 Computations

Fluxes are computed from the trace metal concentrations in each sample bottle using a linear regression of concentration versus time after the concentrations are corrected for dilution effects. These dilution effects result from intake of bottom water from outside the chamber to replace the water removed for each collected sample. The corrected concentrations are obtained from the following equation:

$$\left[C_{n}\right] = \left[s_{n}\right] + \frac{v}{V} \left(\left(\sum_{i=1}^{n-1} \left[s_{i}\right]\right) - (n-1)\left[s_{0}\right]\right)$$

Where [C] is the corrected concentration, [s] is the measured sample concentration, n is the sample number (1 through 6), v is the sample volume, and V is the chamber volume. Fluxes are then calculated as follows:

$$Flux = \frac{mV}{A}$$

Where m is the slope of the regression of concentration versus time, V is the chamber volume, and A is the chamber area

An interactive computational spreadsheet processes most data. Analytical laboratory results, sensor and other measured data, performance indicator results and blank test results are entered into the spreadsheet template and processed. A series of tables, charts and graphs are computed and displayed, including statistical confidence and other figures of merit. Appendix C provides a set of spreadsheet products for each demonstration.

2.2 Strengths, Advantages and Weaknesses

2.2.1 Strengths

The BFSD2 is an *in situ* technology. Benthic contaminant fluxes can provide a unique *in situ* measure of contaminated sediments as well as an indication of bioavailability. Many of the disadvantages cited for various approaches towards assessing sediment contamination relate to removal of the contaminated material to the laboratory for chemical and biological assays. In concert with traditional monitoring and assessment techniques, these flux measurements can lead to a better understanding of marine sediment contamination and transport mechanisms.

2.2.2 Advantages

The BFSD2 is an easily implemented technology, as it is readily deployed from a small boat, and all sampling, data logging, and control functions are carried out automatically based on preprogrammed parameters. The BFSD2 can be used to collect samples without diver assistance to minimize costs, time necessary for sampling, and safety issues associated with sampling activities. Furthermore, the system is able to collect a wide range of contaminants, nutrients, and dissolved gases and it is operational under a wide range of environmental conditions. All materials used in the system are suitable for use and prolonged exposure in the marine environment.

Results obtained using the BFSD2 can be used for the following purposes:

- Source quantification for comparison to other sources and input to models
- Indication of bioavailability since many studies indicate that resolubilized contaminants are more readily available for uptake
- Determination of the cleansing rate of a contaminated sediment site due to natural biogeochemical cycling of the in-place contaminants
- Provision of a nonintrusive monitoring tool for sites that have been capped or sealed to minimize biological exposure

• Testing and validation of hypotheses and models for predicting the response of marine sediments to various contaminants.

2.2.3 Weaknesses

One limitation is a lower limit on the flux rates that can be calculated from data collected using the BFSD2 system. Also, the BFSD2 may be deployed to a maximum depth of 50 meters and the maximum deployment is approximately 4 days, based on available battery capacity. The BFSD is stable in bottom currents up to 3 knots.

2.3 Factors Influencing Cost and Performance

2.3.1 Cost influences

The factors influencing cost include, in order:

- 1. Analytical laboratory costs: laboratory analysis of samples by highly specialized analytical laboratories accounts for approximately 50% of total BFSD2 project costs.
- 2. Blank tests: the larger the number of sites within a common bay, harbor or other defined location the smaller the proportional cost per site for blank tests. It may be possible to eliminate blank testing in some cases, but a cost approaching 50% could occur for only one deployment.
- 3. Remote location: Acquisition of local resources such as a surface vessel configured with a davit or A-frame and equipment shipping costs most influence total project costs. Transportation, per diem, materials and supplies are equivalent for all sites other than local. Labor costs are the same.
- 4. Work schedule: Limited site access or availability can influence cost. Without such restraints a work schedule taking advantage of *in situ* BFSD2 deployment periods over weekends and/or to accomplish cleaning, sample handling, and other turnaround preparations can be instituted. Extended work hours can be compensated with offsetting periods of inactivity.

2.3.2 Performance Influences

The factors influencing performance include:

- 1. Sediment physical conditions: The BFSD2 requires a collection chamber seal with the sediment to function properly. The primary cause for lack, or loss of seal is porosity of the sediment due to large grain size and distribution. An entire deployment can be lost under extreme conditions, however the use of performance indicators can avoid analytical laboratory costs by identifying such cases immediately after retrieval.
- 2. Sediment contamination levels: The lower limit for resolving significant flux levels is based on blank test results. Sites having contaminated sediment levels lower than blank test results cannot be resolved with a high degree of confidence. Such results are reported as statistical probabilities with confidence limits and are typically well below water quality limits and do not lead to cleanup issues.

3. Site marine conditions: As with 1. above (sediment-chamber seal), the BFSD2 also must also maintain a good chamber-lid seal. Surface vessel turbulence and/or prop wash, tidal and/or local currents, or even large fish disturbances can jar the magnetically held lid. A momentary loss of the lid seal can allow ambient seawater to enter the chamber and refresh sequestered sample water. Although such an event will be detected by the previously discussed performance indicators, some or all of the deployment can be negated by loss of lid seal.

3. Site/Facility Description

3.1 Background

Two locations were selected for BFSD2 demonstrations. The first was San Diego Bay, California (Paleta Creek area); and the second was Pearl Harbor, Hawaii (Middle Loch and Bishop Point). The locations/sites were selected based on the following criteria:

- 1. (metals) The sites were known to have metal-contaminated marine sediments, and had been at least partially characterized. The sediment contaminant levels were anticipated to be high enough to demonstrate statistically significant fluxes at the sediment-water interface.
- (metals) Two deployments at the same San Diego Bay, Paleta Creek site would demonstrate repeatability; two deployments at geographically different Pearl Harbor sites would demonstrate characteristically different data and showcase analysis/interpretation results.
- 3. (metals) The contaminated sediments were located in shallow areas (less than 50 meters deep) and readily accessible.
- 4. (metals) Demonstration logistical support requirements would be demonstrated by deployments in Pearl Harbor.
- 5. (metals) Data from prototype BFSD deployments conducted at the Paleta Creek site were available for use as reference data and for comparison with demonstration results (See section 1.5).
- 6. (organics) Both sites were known to also have organics-contaminated sediments and other demonstration factors were already achieved.

3.2 Site/Facility Characteristics

3.2.1 San Diego Bay, California

With no major inputs of fresh water, the currents and residence time of water in San Diego Bay are tidally driven. The average depth of the bay is about 5 meters. The tidal range from mean lower-low water to mean higher-high water is about 1.7 meters. The maximum tidal velocity is about 0.05 to 0.1 meters per second. Sediment pore waters in San Diego Bay typically become anoxic several millimeters below the sediment surface. Dissolved oxygen concentrations range from 4 to 8 milliliters per liter; sea water pH varies from 7.9 to 8.1; and temperatures range from 14 to 25°C.

The sediments of San Diego Bay consist primarily of gray, brown, or black mud, silt, gravel, and sand. The sources of contamination in San Diego Bay have varied over time and include sewage, industrial wastes (commercial and military), ship discharges, urban runoff, and accidental spills. Current sources of pollution to San Diego Bay include underground dewatering, industries in the bay area, marinas and anchorages, Navy installations, underwater hull cleaning and vessel antifouling paints, and urban runoff. Known contaminants in the bay include arsenic, copper, chromium, lead,

cadmium, selenium, mercury, tin, manganese, silver, zinc, tributyltin, polynuclear aromatic hydrocarbons (PAH), petroleum hydrocarbons, polychlorinated biphenyls (PCB), chlordane, dieldrin, and DDT.

The Paleta Creek site, Figure 17, is located in San Diego Bay in San Diego County, California, adjacent to Naval Station San Diego. The Paleta Creek site is located on the western shore near Naval Station San Diego where Paleta Creek empties into the bay, slightly inland from the Navy Pier 8 and Mole Pier and north of Seventh Street. Naval Station San Diego began operations in 1919 as a docking/fleet repair base for the U.S. Shipping Board. In 1921, the Navy acquired the land for use as the San Diego Repair Base. From 1921 to the early 1940s, the station expanded as a result of land acquisitions and facilities development programs.

Figure 17. San Diego Bay, Paleta Creek Site.

3.2.2 Pearl Harbor, Hawaii

Pearl Harbor contains 21 square kilometers of surface water area; the mean depth is 9.1 meters. Tidal flow and circulation are weak and variable, with a mean tidal current velocity of 0.15 meter per second and a maximum ebb flow of 0.3 meters per second in the entrance channel. Salinity in Pearl Harbor ranges from 10 to 37.5 parts per thousand, with a yearly average of 32.8 parts per thousand. Harbor water temperatures annually range from 22.9 to 29.4°C, and dissolved oxygen values range from 2.8 to 11.0 milligrams per liter. Pearl Harbor is most appropriately described as a high-nutrient estuary.

Middle Loch is located in the northwestern end of Pearl Harbor, north and west of Ford Island, within the Pearl Harbor Naval Base, see Figure 18 below.

Figure 18. Pearl Harbor, Hawaii Middle Loch Bishop and Point Sites.

In 1901, the U.S. Navy acquired 800 acres of land to establish a naval station at Pearl Harbor. The Pearl Harbor Naval Base has existed since 1919. During World War I, about 12 warships were repaired and overhauled at the Navy Yard. In 1917, a temporary submarine base was relocated to the eastern shoreline of Southeast Loch. Industrial development in the vicinity of Pearl Harbor was greatly accelerated during the late 1930s and early 1940s. During the 1941 Japanese attack on Pearl Harbor during World War II, 21 of the U.S. ships in Pearl Harbor were sunk or severely damaged, and debris resulting from this attack remains buried in harbor sediments (despite initial cleanup efforts). Currently, Pearl Harbor is a major fleet homeport for nearly 40 warships, service-force vessels, submarines, and their associated support, training and repair facilities.

Middle Loch is moderately contaminated with heavy metals as well as with toxic organic compounds and hydrocarbons. Sediments contain various concentrations of metals such as silver, arsenic, cadmium, chromium, copper, iron, mercury, manganese, nickel, lead, and zinc. Toxic organic compounds include pollutants such as solvents, paints, pesticides, and PCBs. Hydrocarbon contaminants include all petroleum-based fuel products such as diesel, JP-5, JP-4, bunker fuel, gasoline, oils, sludges, and lubricants. Bishop Point is an active industrial area with ongoing salvage operations and related ship movements. Sediments contain similar contaminants as mentioned above but at higher levels.

4. Demonstration Approach

4.1 Performance Objectives

The demonstrations were intended to verify the performance of the BFSD2 by assessing whether chemicals are adsorbing to or desorbing from sediments at the sediment-water interface. Specifically, the objectives of the BFSD2 technology demonstrations were to:

- (1) Evaluate the data quality of the water samples collected for use in determining if a statistically significant flux was occurring at the test locations.
- (2) Evaluate the BFSD2 for repeatability.
- (3) Evaluate the logistical and economic resources necessary to operate the BFSD2.
- (4) Evaluate the range of conditions in which the BFSD2 can be operated.

In order to determine whether statistically significant fluxes were occurring at the test locations (Objective 1), 12 seawater samples were collected at 7-hour intervals using the BFSD2. For metals, the water samples were analyzed for cadmium, copper, manganese, nickel, lead, zinc and silica. For organics, the samples were analyzed for EPA priority PAHs, PCBs and pesticides. For metals, sediment samples, when collected, were analyzed for grain size, total solids, total organic carbon (TOC), acid volatile sulfide (AVS), simultaneously extracted metals (SEM), and total metals. Although the sediments may have been contaminated with other constituents, only the flux of the listed metals was evaluated during the demonstrations. For organics, sediment samples were analyzed for the same analytes as the associated water samples.

In addition, other metals including antimony, arsenic, selenium, silver, thallium, and iron were analyzed in the seawater samples collected during the three blank chamber tests. This data will be used at future dates when establishing baseline performance for these metals.

Sample concentrations were corrected for dilution introduced by the sampling process, and a regression curve was generated for each analyte based on the concentration data. Flux rates, with regression coefficients, were compared to the composite flux rate and standard deviation determined for each metal or organic during triplicate blank chamber tests. The measured flux rate for each metal or organic was then evaluated to assess if a statistically significant flux had been measured when compared to the blank chamber (background) test. The BFSD2 was evaluated for repeatability (Objective 2) by analyzing the metals results of repeat deployments, two weeks apart, at the same Paleta Creek site. Demonstration data was also compared to data from the site during previous prototype BFSD tests in the same approximate location. Finally, repeatability was evaluated by comparing the results from three blank chamber deployments for both metals and organics. The logistical and economic resources necessary (Objective 3) were evaluated by documenting costs associated with planning, scheduling and executing the demonstration deployments, laboratory analysis, data management, and report preparation. Lastly, the range of conditions for operating the BFSD2 were evaluated

(Objective 4) by describing the conditions under which the BFSD2 operated and the projected range of contaminants applicable to the technology.

The demonstration approach was to collect time series of water samples using the BFSD2 at two geographically different locations. For metals at the San Diego Bay location (Paleta Creek) two deployments at the same site were made; at the Pearl Harbor location, one deployment at each of two geologically different sites were made (Middle Loch and Bishop Point). Comparison of the results of the two Paleta Creek demonstrations to one another was intended to evaluate repeatability of the technology. Comparison of the results from the two geographically different sites in Pearl Harbor was intended to demonstrate data differences and analysis/interpretation approaches. Comparison of the Pearl Harbor data as a whole with that from San Diego also demonstrated geological differences between continental shelf and mid-Pacific riff measurements. For organics, one Paleta Creek deployment and one Bishop Point, Pearl Harbor deployment were performed to demonstrate the extended performance. For both metals and organics three "blank test" deployments were conducted, during which the BFSD2 was deployed in seawater with a sealed sampling chamber. Three time series of samples were collected and a baseline was established for each analyte, which provided a statistical estimate of the lower limit of flux detection measurable with the BFSD2. The data also served as another measure of precision and repeatability. Previous metals results obtained at the same location using the prototype BFSD also provided a general measure of trend repeatability. A rate of flux between the sediment and the water for each analyte for each deployment was calculated. The flux rate was calculated using knowledge of the volume of water enclosed within the BFSD2, the surface area of sediment isolated, the time the samples were collected, and the concentrations of the contaminants of interest in the individual sample. Because this technology has no current equivalent, the BFSD was evaluated based on the internal QA/QC of the laboratory analysis and an analysis of the data.

4.2 Physical Setup and Operation

4.2.1 Physical Setup

Deployment preparations included BFSD2 maintenance, decontamination and setup. Maintenance included inspection and repair due to leakage or corrosion, inspection of sealing surfaces, seals and o-rings, inspection and replacement of sacrificial zinc anodes, downloading and/or deleting unnecessary files in the memory-limited control and data acquisition subsystem, and inspection of any worn or other potentially failure prone areas.

Decontamination involves soaking and/or rinsing all surfaces contacting seawater samples in a series of fluids beginning with tap water, then de-ionized water, then a special detergent ("RBS"), then deionized water, then nitric acid for metals or Methanol for organics, then 18 meg-ohm de-ionized water (metals) and finally filtered air. For metals, the collection bottles are disassembled and all component parts are soaked, four-hours minimum, in each fluid. A 25% concentration of ultra-pure nitric acid is used to soak TeflonTM parts (bottles, lids, and sensor chamber) and a 10% concentration is used for all other parts (including acid-sensitive polycarbonate filter bodies). For organics, components are rinsed with Methanol and air-dried and precleaned amber-glass sample bottles are used. The synchronized rotary valves, tubes and fittings remain assembled to the BFSD2 and are cleaned in place by flowing the series of decontamination fluids through them. The acquisition and control subsystem is used to execute a special program which activates each valve position for specified time during which the decontamination fluids are forced through by positive pressure using a Teflon-coated pump. And finally, the collection chamber, lid, diffuser, circulation pump, tubes and fittings are physically scrubbed and rinsed in place with non-metallic brushes. All decontaminated surfaces are dried, reassembled or otherwise sealed to isolate them from ambient, air-borne contaminants

BFSD2 setup includes various tasks to be performed prior to deployment using checklists. These include: charging the gel-cell 24Vdc battery; replacing the 14 circulation subsystem C-cell batteries; replacing the 6 acoustic release 9Vdc batteries; installing a new acoustic release subsystem burn wire, cleaning the plating anode and rigging the recovery float; checking and refilling (if required) the compressed-oxygen supply tank; checking the insertion light subsystem function and replacing its one battery (if required); installing the 12 sample collection bottles and evacuating them to less than 25 in-Hg; setting up laptop computer files for post-deployment data uploading; reviewing and modifying, as required, the deployment operational control programs and downloading the predrop program into the acquisition and control subsystem.

4.2.2 Deployment

Each BFSD deployment requires at least three personnel. One person is responsible for maneuvering, positioning and securing the surface vessel. Two additional persons are required to deploy and retrieve the BFSD. The checklists included in appendix D are the step-by-step procedures followed on deck to avoid oversights and mistakes. Ancillary tasks to be performed include collection of a sediment sample with a spring-loaded grab sampler and logging site GPS coordinates. Figures 19 through 22 illustrate typical deployment and recovery scenes.

4.2.3 Recovery

Recovery is initiated following an elapse time after the planned deployment greater than the operational program by at least two hours. This allows for accumulated processing delays which lengthen the overall autonomous time period. Once within approximately 100 yards of the deployment position a coded acoustic signal is transmitted to the BFSD2 acoustic receiver from the deck unit. A 15-minute function time begins during which the burn-wire is consumed and the recovery buoy is released. The line attached to the buoy is used to wench the BFSD2 and the attached coiled cables to the surface and aboard the vessel. Heavy sediment and other debris are washed off the BFSD2 before bringing it onboard. On deck an inspection of collection bottle status is made as an immediate indicator of deployment performance. Turning the compressed-oxygen cylinder valve off and installing storage caps on the pH and oxygen sensors is also done without delay. Other assessments that may be accomplished onboard include upload of logged data from the acquisition and control subsystem and processing of pH and oxygen sensor data as performance indicators. Spreadsheet templates are used to quickly generate graphs and charts of converted and processed data which display results for the entire operational deployment. Aboard a properly configured surface vessel such as SSC SD's R/V ECOS during the San Diego Bay demonstration sample handling such as acid preservation, labeling and sealing of 100 ml laboratory samples and 25 ml splits for measurement of silica concentration was accomplished. Once off loaded to shore, the BFSD2 must be thoroughly washed down with fresh water to remove all remaining debris, sediment and seawater and to minimize corrosion. As soon as practicable, a freshwater purge and forced-air dry of the synchronous rotary valves and associated tubes and fitting is accomplished.

Figure 19. Deployment Equipment (SSC SD Dock).

Figure 20. Crane Loading Aboard Workboat (Bishop Point, Pearl Harbor).

Figure 21 Deployment (Middle Loch, Pearl Harbor).

Figure 22. Recovery (Middle Loch, Pearl Harbor).

4.3 Sampling Procedures

The sampling procedures followed for the BFSD2 demonstrations provided assurance that the overall project goals and objectives were met. Careful adherence to the procedures ensured that data collected was useful in evaluating the effectiveness of the BFSD2 for benthic flux measurements.

4.3.1 Overview of Sampling Operations

Sampling operations at each demonstration location consisted of site deployments during which the BFSD2 collected seawater samples at timed intervals and a sediment confirmation sample collected following each site deployment. Three additional identical blank (background) deployments with the BFSD2 collection chamber sealed using a polycarbonate bottom plate were used to statistically establish system blank performance as a baseline for comparison to the sediment flux data.

4.3.1.1 BFSD2 Sampling

Samples were collected *in situ* in twelve 250-ml precleaned sampling bottles at preprogrammed time intervals. A description of the sampling technology can be found in Section 2.1. Sampling was initiated by starting the acquisition and control subsystem program, which activated synchronous rotary valves connected to the sample bottles. In-line filters passed only seawater with dissolved-phase contaminants at the time of collection. After each deployment, the samples for metals analysis

were transferred to appropriate sample containers and acidified, if necessary. Samples for organics analysis were collected in non-reusable bottles and shipped to the analytical lab without further disturbance. A baseline ambient water sample was collected as the number one BFSD2 sample during deployment. The sample was analyzed and used to establish the ambient concentration at time zero for each analyte. The total time required for the 12 sampling events including the time zero sample using 7-hour intervals was approximately 72 hours with consideration for accumulated data processing delays.

4.3.1.2 Sediment Sampling

A sediment sample was collected at the end of each different site deployment using a spring-loaded grab sampler. The sediment was containerized, capped, labeled, and sealed. The sediment samples were used in various analyses, including digestion and extraction processes to measure trace metal and organic levels. Other measurements related to seawater data analysis and interpretation were conducted and are reported in a later section.

4.3.1.3 System Blank Samples

With the BFSD2 configured as described in Section 2.1, three deployments using identical procedures were accomplished for both metals and for organics. The samples were collected and handled as in the demonstrations (see 4.3.1.1 above) and shipped to the analytical laboratory for the analyses discussed below.

4.3.1.4 Quality Control

Demonstration samples and blank samples included equipment blanks, trip blanks and laboratory blanks to assess the performance of the equipment in the field.

4.3.1.5 Communications and Documentation

The SSC SD program manager communicated regularly with demonstration participants to coordinate all field activities associated with the demonstrations and to resolve any logistical, technical, or QA issues that arose as the demonstrations progressed. Successful implementation of the demonstrations required detailed coordination and constant communication among all participants. Field documentation was included in field logbooks, field data sheets, chain-of-custody forms, and kept in a bound logbook. Each page was sequentially numbered and labeled with the project name and number. All photographs were logged by the digital camera and transferred to the computer file system. Those entries included the time, date, orientation, and subject of the photograph. Specific notes about each sample collected were written on sample field sheets and in the field logbook. Any deviations from the approved final demonstration plan were thoroughly documented in the field logbook and communicated to parties affected by the change. Original field sheets and chain-of-custody forms accompanied all samples shipped to the laboratory.

4.3.1.6 Field Sample Collection

Sampling personnel collected and prepared samples using the procedures described below. All field activities conformed with the requirements of the Demonstration Plan and its attached Health and Safety Plan. Sampling operations at each site consisted of a deployment of the BFSD to collect seawater samples at timed intervals, and collection of a sediment grab sample after deployments. The series of samples collected during three blank test deployments with the chamber sealed with a polycarbonate bottom were used to assess the background level from which statistically significant fluxes can be derived.

4.3.1.6.1 Field Blanks

One field blank for the San Diego Bay metals demonstration consisted of an additional 250-mL bottle filled with de-ionized water strapped to the flux chamber. This sample was to be used to assess the integrity of the sample bottle seals if anomalous data are obtained.

4.3.1.6.2 Equipment Blanks

These samples consist of running 250 ml of de-ionized water through the BFSD2 sampling subsystem prior to deployment. One equipment blank was collected for each site demonstration. The equipment blank was used as a quality control measure to ensure that the BFSD2 was properly decontaminated between deployments.

4.3.1.6.3 Trip Blank

. One trip blank for the San Diego Bay metals demonstration was collected by placing a closed 250-ml sample of de-ionized water in a sample cooler at the beginning of the demonstration. The trip blank was used as a quality control measure, if necessary, to ensure that samples are not contaminated during sample storage and shipment to the laboratory.

4.3.1.6.4 Silica

Confirmatory silica analysis was used for metals tests to ensure that the BFSD2 is functioning properly, without any significant loss of collection chamber seal. Silica is a common component in constructing the hard parts of some planktonic organisms, and it typically fluxes out of sediments at a constant rate due to dissolution processes. By analyzing each of the samples collected using the BFSD for silica and plotting the concentration versus time data, a linear increase in silica concentration over time strongly suggests that there was a good seal of the chamber with the sediment. The first sample at time zero provides a value for silica in bottom waters at the start of the experiment. The silica analysis was performed using 25 ml of seawater removed from each sample collected prior to acid preservation. To maximize sample volume for organics analysis, measured pH data was used to ensure chamber seal integrity.

4.3.1.6.5 BFSD2 System Blanks

Finally, for metals, a triple-duplicate deployment with the collection chamber sealed with a polycarbonate bottom ("blank test") was conducted as an experiment blank at the SSC SD dock in San Diego Bay. The data collected during those deployments provided a baseline with which to compare the site-specific flux rates, in order to document a statistically significant flux rate from both analytical and system variability in a seawater environment. For organics, a triplicate set of blank tests were conducted "ex-situ" using a single supply of ambient seawater. The data collected provided less variability due to the constant seawater supply, including sample makeup volumes.

4.3.1.7 Laboratory Blanks

Laboratory Blanks and Laboratory QC checks are designed to assess the precision and accuracy of the analysis, to demonstrate the absence of interferences and contamination from glassware and reagents, and to ensure the comparability of data. Laboratory QC checks consist of laboratory duplicates, surrogates, MS/MSDs, and method blanks. For organics, a Method Detection Limit study was performed to establish modified EPA standard procedures and controls for targeting specific PAHs, PCBs and pesticides with small sample volume. No comparable MDL study was performed for metals because adequate volumes were collected from the chamber for EPA standard procedures in which detection limits were adequate to measure anticipated metals concentrations.

4.3.1.7.1 Method Blanks

Method blanks were used to verify that preparation of samples was contamination-free. Each batch of extracted and digested samples was accompanied by a blank that was analyzed in parallel with the rest of the samples, and carried through the entire preparation and analysis procedure. Method blanks may also be called calibration blanks. Calibration blanks are analyzed for seawater samples analyzed for metals, for seawater samples analyzed for sediment samples analyzed for metals, and for sediment samples analyzed for SEM.

4.3.1.7.2 Precision

Analytical precision and method detection limits are determined by replicate storage, preparation, and analysis of standard seawater. Further verification of precision is achieved by splitting 1 in 20 field samples. Laboratory duplicates are analyzed during analysis of water samples analyzed for metals, water samples analyzed for alkalinity (if performed), sediment samples analyzed for metals, and sediment samples analyzed for SEM.

4.3.1.7.3 Accuracy

Spiked replicates of field samples were processed with each analytical batch to validate method accuracy within the context of varying matrices. With water and extracted water samples that are analyzed by the method of standard additions, spiked samples are not used. MS and MSD samples were used for analysis of water samples analyzed for metals, sediment samples analyzed for metals, sediment samples for AVS, and sediment samples for SEM.

4.3.1.8 Sample Storage, Packaging, and Shipping

The field team followed chain-of-custody procedures for each sample as it was collected following BFSD2 retrieval. An example chain-of-custody form can be found in Appendix E. The following information was completed on the chain-of-custody form: project number, project name, sampler's name, station number, date, time, station location, number of containers, and analysis parameters.

Following retrieval and removal of the samples from the BFSD at the end of each single deployment, and until shipment to Battelle (metals) or Aurther D. Little (organics), all samples were stored in refrigerators or coolers and maintained with ice at a temperature of approximately 4 °C. The custody of samples was maintained in accordance with standard operation procedures (SOP). Samples to be shipped to the confirmatory laboratory were packaged and shipped according to the sample packaging and shipment requirements SOP. Copies of these SOPs are available upon request.

4.4 Analytical Procedures

4.4.1 Selection of metals Analytical Laboratory

The analytical laboratory selected to provide analytical services is Battelle Marine Sciences Laboratory (Battelle). Battelle was selected because of its experience with QA procedures, analytical result reporting requirements, and data quality parameters. Battelle is not affiliated with SSC SD or any of the demonstration team members.

4.4.2 Metals Analytical Methods

Sample and data analysis are key elements in the use of samples collected by the BFSD. Samples were analyzed for metals including cadmium, copper, lead, manganese, nickel, and zinc; and silica. The seawater samples collected by the BFSD2 and marine sediment samples were sent to Battelle for analysis. The analytical methods that were used are listed in Table 1. In addition, other metals

including antimony, arsenic, selenium, silver, thallium, and iron, were analyzed in the seawater samples collected during the three blank chamber tests. This data will be used in future projects to establish baseline data for the metals.

Table 1. Analytical Methods.

Table 1. Analytical Methods.									
ANALYTE	SEAWATER SAMPLE	SEDIMENT SAMPLE							
	Analytical Method	Analytical Method							
Cadmium	ICP-MS (Nakashima et al. 1988)	GFAA (Crecelius et al. 1993)							
Copper	ICP-MS (Nakashima et al. 1988)	XRF (Crecelius et al. 1993)							
Iron	GFAA (Crecelius et al. 1993)	XRF (Crecelius et al. 1993)							
Manganese	ICP-MS (Nakashima et al. 1988)	XRF (Crecelius et al. 1993)							
Nickel	ICP-MS (Nakashima et al. 1988)	XRF (Crecelius et al. 1993)							
Lead	ICP-MS (Nakashima et al. 1988)	XRF (Crecelius et al. 1993)							
Zinc	ICP-MS (Nakashima et al. 1988)	XRF (Crecelius et al. 1993)							
Miscellaneous Metals - Antimony, Arsenic, Selenium, Silver, and Thallium	ICP-MS (Nakashima et al. 1988) GFAA or XRF (Crecelius et al. 1993)	N/A							
Silica(1)	Strickland and Parsons 1968	N/A							
Alkalinity	Strickland and Parsons 1968	N/A							
Grain Size	N/A	(Plumb 1981)							

Total Solids	N/A	(Plumb 1981)
Total Organic		(Plumb 1981)
Carbon	N/A	
Acid Volatile		(Lasorsa and Casas 1996)
Sulfide	N/A	
Cimevitan a avaly		ICP-MS
Simultaneously Extracted		(EPA Method 1638)
Metals	N/A	

N/A – Not Applicable

ICP-MS – Inductively coupled plasma mass spectroscopy

XRF – X-ray florescence

GFAA – Graphite furnace atomic absorbtion\

4.4.2.1 Preconcentration

The preconcentration method used for this project (Nakashima et al. 1988) was a tetrahydroborate reductive precipitation as a preconcentration technique. Samples were first acidified with nitric acid to pH 1.8 for storage. Samples were then adjusted to pH 8 to 9 with high-purity ammonia solution and iron and palladium were added. A sodium tetrahydroborate solution was added before the solution was filtered through a 25-millimeter (mm) -diameter acid-washed, acid-resistant cellulose nitrate 0.45-micrometer membrane filter. Concentrated nitric and hydrochloric acids are added to the empty bottle to dissolve any precipitate adhering to the walls; the acid mixture was subsequently transferred to the filter assembly. The filter is washed with water, and the solution was diluted to 25 ml. The filter and its holder were rinsed with 3-ml aliquots of the nitric and hydrochloric acids and water between samples, and were used repeatedly. The combination of iron and palladium brought about the rapid formation of a precipitate after the addition of sodium tetrahydroborate.

4.4.2.2 Inductively Coupled Plasma Mass Spectrometry (Nakashima et al. 1988)

ICP-MS analysis allows the simultaneous, multi-elemental determination of metals by measuring the element-emitted light by optical spectrometry. Element-specific atomic-line emission spectra are dispersed by a grating spectrometer, and the intensities of the lines are monitored by photomultiplier tubes.

4.4.2.3 Graphite Furnace Atomic Absorption (Nakashima et al. 1988)

GFAA allows the individual analysis of iron, arsenic, lead, selenium, and thallium to provide lower detection limits. In the furnace, the sample is evaporated to dryness, charred, and atomized. A light beam from a hollow cathode lamp or an electrode-less discharge lamp is directed through the tube into a monochromator and onto a detector that measures the amount of light. Because the wavelength of a light beam is characteristic of a single metal, the light energy absorbed is a measure of that metal's concentration.

4.4.2.4 Silica (Strickland and Parsons 1968)

The sea water sample was allowed to react with molybdate under conditions which result in the formation of the silicomolybdate, phosphomolybdate, and arsenomolybdate complexes. A reducing solution, containing oxalic acid, is then added which reduces the silicomolybdate complex to give a blue reduction compound and simultaneously decomposes any phosphomolybdate or

⁽¹⁾ Silica was analyzed in the field using a HACH DR 2010 instrument to assure sample integrity and to determine whether samples will be sent to the laboratory for full analysis.

arsenomolybdate, so that interference from phosphate and arsenate are eliminated. The extinction of the resulting solution was measured using 25centimeter (cm) cells. This method was performed using a Hach Model DR2010 Field Kit prior to sending samples to the laboratory.

4.4.2.5 Sediment Samples

Sediment sample analysis included methods to determine grain size, TOC, AVS and total metals. The collected sediment samples were homogenized and split into subsamples before analysis. Sediment samples for total metals analysis were freeze-dried and ground prior to analysis. Total metals were then determined using X-ray fluorescence (XRF) or GFAA (Crecelius et al. 1993).

4.4.2.5.1 Grain Size (Plumb 1981)

Grain size was measured by a combination of sieving, particle counters, and pipette analysis, as described in the above reference.

4.4.2.5.2 TOC (Plumb 1981)

TOC was measured on an automated carbon analyzer by measuring total carbon and inorganic carbon contents, with the difference providing the TOC values. Inorganic carbon from carbonates and bicarbonates were removed by acid treatment. The organic compounds were decomposed by pyrolysis in the presence of oxygen or air.

4.4.2.5.3 X-ray Fluorescence (Crecelius et al. 1993)

This procedure uses energy dispersive x-ray fluorescence spectroscopy to quantify elemental concentrations in sediment and tissue samples.

4.4.2.5.4 AVS (Lasorsa and Casas 1996)

AVS is operationally defined as the fraction of sulfide present in the sediment that is extracted with cold hydrochloric acid. Analysis of AVS is an indicator of potential metal toxicity in sediments. AVS was determined by photoionization detection (PID) following a step that converted the sulfide in the sample to hydrogen sulfide. During the first step, the sample was allowed to react with 1 N hydrochloric acid, the system was purged with purified inert gas, and produced hydrogen sulfide was trapped using a column immersed in liquid nitrogen. The PID method used gas chromatographic separation and photoionization detection; the area under the curve of the chromatograph was used to calculate sulfide concentration from the linear regression of the standard curve.

4.4.3 Selection of Organics Analytical Laboratory

Arthur D. Little Analytical Laboratory, Cambridge, MA was selected for organics analysis as a result of a successful Method Detection Limit study to optimize detection limits for selected PAHs, PCBs and pesticides form 250 ml seawater samples. The resulting EPA-based procedures and controls were documented and used for all subsequent analyses.

4.4.4 Organics Analytical Methods

See Appendix C for a complete description of the Method Detection Limit study and organic sample analysis procedures and controls.

4.4.5 Data Reduction and Analysis

Correction of concentration for dilution, regression analysis, and flux rate concentrations were calculated using a custom spreadsheet template. See Appendix D for a complete set of spreadsheets for both metals and organics. Results from these complex computations require careful analysis and interpretation to reach valid conclusions. Various other sitespecific data and information must be used in combination with computed flux results to fully interpret the data. The approach taken and the conclusions reached for the demonstrations of this report are presented in the next section.

5. Performance Assessment

5.1 Performance Data

5.1.1 Metals Blank Tests

The primary purpose for performing system blank tests was to establish BFSD2 minimum performance levels, or detection limits, for assessment of flux data obtained during subsequent demonstration tests. Three replicate 70-hour blank tests were conducted using BFSD2 between May 14 and 31, 1998. The tests were conducted from the end of SSC, San Diego Pier 159 at approximately two feet off the bottom in seawater ranging from about 14 to 20 feet deep, depending on tidal flow.

As discussed earlier, the BFSD 2 collection chamber bottom was sealed with a polycarbonate plate and filled with ambient seawater at the start of each 70-hour test. Prior to each test routine procedures for decontamination of the sampling system were performed. Equipment and source blanks were taken. After each test the samples were handled in accordance with EPA Methods 1638 and 1669 and routine chain of custody procedures were used in preparation and shipment to Battelle Marine Sciences Laboratory for analysis. The Silica samples were sent to and analyzed by Scripps Institute of Oceanography.

Each test produced twelve 250ml sample bottles of seawater filtered *in situ* to 0.45 micron. Sample bottle one in each test was filled with ambient seawater taken from the water column as the BFSD 2 was lowered to its test depth at about 15 feet below the surface. Sample bottle two in each test was filled with seawater from the sealed chamber at 6 minutes after start of the 70-hour test. The remaining 10 sample bottles were filled from the chamber at 7-hour intervals. The data, analysis and graphs for each test were processed and compiled in Microsoft Excel spreadsheet, "BFSD2 Blank Tests.xls", provided with the electronic submission of this report. Appendix C provides copies of the spreadsheet results and includes data and graphs for the BFSD2 flow-through sensors. Table 2 below is a summary of the results of the blank tests

Table 2. Metals Blank Test Results Summary.

Metal	Blai	nk Flux (µg/m²/	day)	Repe	eatability (ug/m	²/day)
	Test 1(12)	Test 2 (6)	Test 3 (6)	Average Flux	+/- 95% C.L.	Std. Deviation
Copper (Cu)	25	-13	15	2.82	8.73	19.7
Cadmium (Cd)	-5.3	-0.8	-0.09	-0.52	0.75	2.8
Lead (Pb)	2.8	5	1	3.16	1.59	2.0
Nickel (Ni)	23	20	-6.7	10.28	7.34	16.4
Manganese (Mn)	-289	-249	-250	-264.85	7.49	22.8
Zinc (Zn)	-194	-13	200	-3.38	-68.61	197
Silica (SiO2)* (*mg/m2/day)	-4	-3.3	1.4	-1.97	2.88	2.9

5.1.1.1 Discussion of Metals Blank Results

Figure 23. Blank Performance for Copper (Cu).

Figure 24. Blank Performance for Cadmium (Cd).

Figure 25. Blank Performance for Lead (Pb).

Figure 26. Blank Performance for Nickel (Ni).

Figure 27. Blank Performance for Manganese (Mn).

Figure 28. Blank Performance for Zinc (Zn).

Figure 29. Blank Performance for Silica (Sio₄).

Scripps Institute of Oceanography analyzed silica concentrations, used to indicate chamber integrity and seal. The CA EPA request for an independent analysis of Silica could not be reasonably obtained from Battelle. Subsequent silica analyses were conducted on-site with field analytical systems (i.e., Hach Kit).

Results show a high, very repeatable level of Manganese uptake by the BFSD2. Results from earlier prototype BFSD blank tests were not consistent with this result and further investigation

is warranted. However, because manganese is not generally viewed as a toxic metal, the resolution of this issue is less critical than for other metals.

The somewhat higher blank fluxes observed for zinc are consistent with previous results and are attributed to the ubiquitous nature of zinc and associated contamination during sampling and analysis. Because previously measured flux rates for zinc generally lie outside the range of these blanks, and because of the higher toxicity thresholds for zinc relative to other metals, this is not considered as a serious problem. However, as with all trace metals, care must be taken to minimize zinc contamination during all phases of the experimental procedure. The higher variability between the zinc blank tests will make any results indicating small fluxes of zinc from sediments less conclusive.

5.1.1.2 Discussion of Metals Blank Tests

Although the three blank tests were reasonably trouble free and produced generally high quality data there are a number of points deserving further discussion and explanation.

5.1.1.2.1 Sensors

The flow-through sensors for dissolved oxygen and for pressure, Figures 30 and 31, produced data requiring explanation. The "noisy" dissolved oxygen data was discovered to be due to restricted flow over the sensing element. Flow improvements resolved the problem prior to the Paleta Creek demonstrations (see Figure 35). The oxygen measurements during the blank test are not critical because there is little oxygen depletion when no sediment is present. Drift of the pressure sensor readings was more problematic and resolution required trouble shooting at the factory, after the Paleta Creek demonstrations.

Figure 30. Blank Test Dissolved Oxygen.

Figure 31. Blank Test Pressure.

5.1.1.2.2 Ambient Seawater Sample

Sample bottle one was not used in blank test analyses, as well as subsequent Paleta Creek demonstration analyses. Analytical laboratory results clearly indicate that the metal concentrations in the water collected in bottle one as the BFSD2 descended to the test depth were not consistent with concentrations in the chamber after it was closed and sealed at the surface prior to descending to the test depth. CA EPA certification evaluators agreed that the sample taken at 6 minutes after the start of the test was a better representation of replacement water entering the chamber. The unused concentration value is still shown, in bold, in the spreadsheet. A sensitivity analysis of the affect of this change on dilution correction calculations and subsequent flux results show it to be insignificant. Consequently, an improved method to fill sample bottle one from more representative bottom water was implemented.

5.1.1.2.3 Metals Sample Analysis

Not all samples were analyzed to minimize analytical costs. For Blank Test 1 only the six odd-numbered samples were analyzed (with further changes, see next paragraph); for Blank Test 2 all

twelve samples were analyzed; for Blank Test 3 only the six even-numbered samples were analyzed. Also, additional trace metals beyond those identified for CA EPA certification evaluation were analyzed for future applications.

Blank Test 1 suffered a "False Start" when an error in a software control loop shut the test down after six minutes, following sample bottle two filling. The error was corrected from the surface and the test was restarted three hours later without raising the BFSD2 from the test depth. Sample bottle three filled immediately upon restart and sample bottle two was retained as representative of ambient conditions. To complete the set of six samples, sample bottle twelve with a 7-hour interval was added to the other odd-numbered samples. Blank Test 1 was 66 hours total duration.

5.1.1.3 Metals Blank Tests Assessment

It was concluded that the BFSD2 metals blank performance was statistically established and the values obtained were repeatable, precise and accurate enough to allow valid measurement of *in situ* sediment flux rates.

5.1.2 Organics Blank Tests

Three replicate 70-hour blank tests were conducted using BFSD2 between September 1, 2000 and November 27, 2000. The purpose of the tests was to establish system performance levels for selected polynuclear aromatic hydrocarbons (PAH) using standardized procedures as part of the demonstration project. Performance levels for selected polychlorinated biphenyl (PCB) congeners and pesticides were also measured for future potential applications. As shown in Figure 32, the tests were conducted *ex situ* at SSC San Diego using Naval Station San Diego (Paleta Creek) seawater.

Figure 32. Ex Situ BFSD2 Organics Blank Test Physical Setup.

The BFSD 2 collection chamber bottom was sealed with a polycarbonate plate and filled with seawater collected from the Paleta Creek industrial area within Naval Station San Diego, at the start of each 70-hour test. Paleta Creek has been designated as a "toxic hotspot" by the Regional Water Quality Control Board and has been selected for the initial demonstration of BFSD 2 for organics applications. Makeup seawater to replace collected sample volume and any leakage was likewise the same Paleta Creek source seawater. Prior to each test, routine procedures for decontamination of the sampling system were performed. The procedure differed from that used in metals applications only in that the Nitric acid rinse was omitted and a final Methanol rinse

was added. Samples were collected into 250ml precleaned amber glass sample bottles fitted with custom inline filter assemblies (Figure 6b). The filter element was a 47mm Gelman 1.0-micron binder-less borosilicate glass filter prepared by pre-combustion for 24 hours at 375 degrees Fahrenheit. The samples were collected, capped, labeled and shipped in the same commercially standard sample bottle. Routine chain of custody procedures were used for overnight shipment to Arthur D. Little, Inc. (ADL) analytical laboratory in Cambridge, MA. All samples were collected, shipped (chilled to 4 degrees), received and extracted within the EPA seven-day hold time requirement. Laboratory processing and analysis of the samples was in accordance with EPA SW-846 methods and procedures, including Methods 8270M and 8081A protocols modified based on results from a Method Detection Limit study performed under contract N66001-96-D-0050 by ADL for this project.

Each test produced twelve filtered 250ml (approximately) samples and one additional 500ml unfiltered source sample. Sample bottle one in each test was filled with source seawater passed through the chamber lid closure-activated valve at the initiation of the 70- hour test. Sample bottle two in each test was filled with seawater from the sealed chamber approximately 6 minutes after chamber lid closure. The remaining 10 sample bottles were filled from the sealed chamber at 7-hour intervals. The 500ml unfiltered sample was taken from the residual source seawater container at the conclusion of the test. Table 3, 4 and 5 are summaries of the results of the organics blank tests.

Table 3. PAH Blank Tests Results Summary.

РАН		nk Flux (ng/m²/	day)		atability (ng/m	²/day)
	Test 1	Test 2	Test 3	Average Flux	+/- 95% C.L.	Std. Deviation
1. Naphthalene	-243.5	-448.1	-629.3	-440	218.4	193.0
2. Acenaphthene	-32.4	ND	ND	-32.4	n/a	n/a
3. Acenaphthylene	-350.2	141.0	275.9	22.2	372.9	329.5
4. Fluorene	125.5	-69.3	-84.2	-9	132.4	117.0
5. Phenanthrene	89.0	-39.8	-16.3	11	77.6	68.6
6. Anthracene	182.3	53.1	-324.8	-30	298	263
7. Fluoranthene	-421.5	-1539.0	-1308.9	-1089.8	667.8	590.1
8. Pyrene	76.6	-447.1	-431.9	-267.5	337.3	298.0
9. Benzo(a)anthracene	ND	ND	ND	n/a	n/a	n/a
10. Chrysene	23.9	-61.9	ND	-19.0	84.2	60.7
11. Benzo(b)fluoranthene	ND	ND	-134.3	-134.3	n/a	n/a
12. Венzо(k)fluoranthene	ND	ND	-9.8	-9.8	n/a	n/a
13. Benzo(a)pyrene	ND	ND	ND	n/a	n/a	n/a
14.Indeno(1,2,3-c,d)pyrene	ND	ND	ND	n/a	n/a	n/a
15. Dibenz(a,h)anthracene	ND	ND	ND	n/a	n/a	n/a
16. Benzo(g,h,I)perylene	ND	19.6	ND	19.6	n/a	n/a

Table 4. PCB Blank Test Results Summary.

PCB	Bla	nk Flux (ng/m²/	day)	Repeatability (ng/m²/day)			
	Test 1	Test 2	Test 3	Average Flux	+/- 95% C.L.	Std. Deviation	
(8) 2,4'-Dichlorobiphenyl	-66.6	ND	47.8	-9.4	112.2	80.9	
(18) 2,2',5-Trichlorobiphenyl	205.2	23.3	27.0	85.2	117.6	104.0	
(28) 2,4,4'-Trichlorobiphenyl	-8.0	ND	ND	-8.0	n/a	n/a	
(52) 2,2',5,5'-Tetrachlorobiphenyl	ND	7.9	89.9	49	80.4	58.0	
(66) 2,3',4,4'-Tetrachlorobiphenyl	53.6	16.6	ND	35	36.2	26.2	
(101) 2,2',4,5,5'-Pentachlorobiphenyl	57.8	57.4	-3.5	37	40	35	
(118) 2,3',4,4',5-Pentachlorobiphenyl	ND	2.7	2.3	2.5	0.3	0.2	
(153) 2,2',4,4',5,5'-Hexachlorobiphenyl	ND	ND	9.5	9.5	n/a	n/a	
(180) 2,2',3,4,4',5,5'-Heptachlorobiphenyl	ND	-9.6	ND	-9.6	n/a	n/a	
(206) 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	-2.8	247.0	-17.0	75.7	168.0	148.5	
(209) 2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl	-18.5	ND	ND	-18.5	n/a	n/a	

Table 5. Pesticide Blank Test Results Summary.

Pesticide	Blai	nk Flux (ng/m²/	day)	Rep	eatability (ng/m²	/day)
	Test 1	Test 2	Test 3	Average Flux	+/- 95% C.L.	Std. Deviation
alpha-Chlordane	7.0	ND	ND	7.0	n/a	n/a
2,4'-DDD	7.0	ND	ND	7.0	n/a	n/a
Methoxychlor	25.7	ND	ND	25.7	n/a	n/a
Endosulfan I	48.8	ND	ND	48.8	n/a	n/a
hexachlorobutadiene	ND	ND	22.0	22.0	n/a	n/a
Heptachlor	304.5	ND	ND	304.5	n/a	n/a
Heptachlor Epoxide	ND	ND	8.8	8.8	n/a	n/a
alpha-hexachlorocyclohexane	3.3	ND	ND	3.3	n/a	n/a
beta-hexachlorocyclohexane	61.0	ND	ND	61.0	n/a	n/a
lindane	35.2	132.3	33.8	67.1	63.9	56.5
trans-Nonachlor	40.8	ND	ND	40.8	n/a	n/a

5.1.2.1 Results of Organics Blank Tests

The Paleta Creek seawater collected for these tests contained a broad mixture of dissolved organic contaminants targeted by this study, but not all 63 of them. Of the 34 targeted organic contaminants that were detected, a number of them were not measurable in all three blank tests. Further, within a number of individual blank tests where a target contaminant was detected, one or more time-series samples fell below the detection limits. Notwithstanding such issues, analysis results plotted as time-series, with non-detects removed, show little if any, release or uptake of detected target contaminants by the BFSD2 with the exception of Naphthalene and Flouranthene. These two PAHs both consistently indicated an uptake trend likely due to sorption onto the many plastic surfaces of the collection chamber and recirculation system. Statistical analysis of the data for repeatability was applied to those tests with multiple measurements.

For the targeted EPA 16 Priority PAHs, the results were generally complete for the eight lowest molecular weight (through three Benzene rings) compounds. "Non detects" were much more prevalent with the eight heavier molecular weight PAHs (four-ring including Benzo(a)anthracene and higher) and four of the 16 targeted PAHs were not detected in all three blank tests although source seawater did indicate very low concentrations (less than 2 ng/L or parts/trillion) were present. Acenaphthene, a two-ring PAH, was the only low molecular weight compound not sufficiently detected in all three blank tests to establish repeatability statistics however a time-series flux trend (uptake or release) was established. Acenaphthene was detected in all three seawater source samples and in all 12 blank test 1 samples but dropped below detection limits in 10 of 12 blank test 2 samples and 9 of 12 blank test 3 samples. All remaining light-end PAHs (up to Pyrene) were detected in all 12 samples of all three blank tests and Table 3 provides full repeatability statistics for them. Timeseries flux trends were also established for all of them. None of the heavier-end PAHs were detected sufficiently in all 12 samples of all three blank tests to yield full repeatability statistical results. Only Chrysene was detected sufficiently in two of the three blank tests to establish limited repeatability statistics. Benzo(b)fluoranthene, Benzo(k)fluoranthene and Benzo(g,h,I)perylene were detected sufficiently in only one blank test and repeatability statistics cannot be developed for them. Timeseries flux trends were established for all four of these heavier-end PAHs. The remaining four PAHs (Benzo(a)anthracene, Benzo(a)pyrene, Indeno(1,2,3c,d)pyrene and Dibenz(a,h)anthracene) were not sufficiently detected in any of three blank tests to establish either repeatability statistics or time-series trends.

For the 20 targeted PCB congeners and 16 targeted pesticides, the results were somewhat less complete. Three PCB congeners (#18, #101, #206) and one pesticide (Lindane) were sufficiently detected in all three blank tests to establish full repeatability statistics and time-series flux trends. Two of the 20 PCBs and one of the 16 pesticides were detected sufficiently in two of the three blank tests to establish limited repeatability statistics and time-series flux trends. Four of 20 targeted PCBs and nine of the 16 targeted pesticides were detected in only one blank test with sufficient data to establish time-series flux trends, but not repeatability statistics. The remaining eleven PCB congeners and five pesticides were not detected sufficiently in any of the three blank tests to establish either repeatability statistics or time-series trends. Six of these remaining eleven PCB congeners and all five of these remaining pesticides were not detected in the unfiltered source seawater.

5.1.2.2 Discussion of Organics Blank Tests

It was not unexpected to find very low levels of the heavier PAHs dissolved in the source seawater because of the known reduction in solubility of PAHs as the number of Benzene rings increase. This insolubility, combined with a low, but limited detection limit led to less complete and even non-detection of the heavier PAHs. However, the number of Benzene rings common within groupings of

PAHs allows a limited extension of the otherwise generally complete results. This applies for groupings of two and three-ring contaminants as well as the less complete and even missing results within the four, five and six-ring contaminant groupings. Within groups, time-series results for missing PAHs can be predicted to be consistent with those that were measured. This prediction can be made for both the complete lighter PAH results and the less complete heavier PAH results. Overall, the results establish that the various plastic and other materials of the BFSD2 which are in contact with the sampled seawater do not adversely adsorb or release the target PAHs within measurable limits, with the possible exceptions of Naphthalene and Flouranthene, as described in the Results section. Apparent adsorption of these two PAHs introduces a relatively small error to field measurements which are subsequently resolved by normalization during data processing. Furthermore, careful consideration was made when materials for the chamber, mixing mechanism and sample bottles were considered. Surfaces for minimal adsorption or release of the entire suite of contaminants analyzed were considered and practical decisions made. With polycarbonate chamber, Teflon flow lines and valves and glass sample bottles, the BFSDII has the most practical combination of materials for the minimal adsorption of release of these contaminants. Finally, although repeatability statistics requires more than a single data set, and three tests were conducted, those contaminants with only two data sets were analyzed albeit with lower confidence results. The repeatability of PAHs with a single data set can only be estimated, with no statistical confidence, and the four heavier PAHs with no data sets can only be predicted, as above. Thus, because of the common attributes of groups of PAHs and with the established results where data were available, it is estimated and predicted that field measurements of those PAHs with incomplete blank test results will be approximately similar to the other more complete PAHs measured. At sites where precise measurements are required for targeted PAHs which were not established with this series of blank tests an additional blank test using site-specific seawater or clean seawter or clean seawter spiked with the target PAH(s) may be necessary

Common features among PCB congeners allow much the same degree of extension of results discussed above for PAHs. Pesticides do not however support the same degree of extension because of the uncertainty of their composition and the limited results achieved. Pesticides were detected at much lower concentrations than the PAHs. For both PCBs and pesticides, blank test data sets that were sufficiently complete did establish acceptable repeatability considering such low levels (<1 ng/L). The remaining blank tests (with only one data set) established, as with PAHs, that the various plastic and other materials of the BFSD2 which are in contact with the sampled seawater do not adsorb or release the particular PCB congener or pesticide within measurable limits. The time-series flux trends for these contaminants show low and variable rates (slopes). It is noted that PCB congener 18 (2,2',5-Trichlorobiphenyl) showed a small release during the first blank test, but did not repeat in subsequent tests. In order to make the most from the available data, especially where only one of the three blank tests had sufficient detects (i.e., at least 6 measurements distributed evenly or grouped at one end), non-detects were removed and the remaining measurements used. This approach was used extensively for the PCB congeners and pesticides and much less for the heavier PAHs (only).

Ancillary data collected and recorded, including chamber temperature, pressure, salinity, pH and dissolved oxygen indicated chamber conditions remained stable throughout the tests. The pH sensor recorded a slight reduction in pH (<0.5) which occurred gradually over 70 hours in all three tests. The pressure sensor recorded changes in barometric conditions as well as the vacuum affect of each sample collection bottle being activated at 7-hour intervals during the tests.

Silica measurements used to confirm chamber integrity during BFSD2 metals applications will not be used for organics applications. The need to conserve sample volume to maximize detection levels

combined with experience in comparing onboard sensors with silica results in previous tests supports reliance on the sensors to identify any loss of chamber seal integrity. Dissolved oxygen an pH followed distinct trends when the silica test indicated a good seal. These two parameters show promise in interpreting seal integrity and will be used during organics applications.

5.1.2.3 Organics Blank Tests Assessment

It was concluded that the BFSD2 organics blank performance was adequately established and the values obtained are sufficiently repeatable, precise and accurate to statistically distinguish differences from measured *in situ* sediment flux rates for a number of targeted PAHs. Measurement of *in situ* flux rates for selected PCB congeners and pesticides are also statistically distinguishable where blank test results are available.

5.1.3 San Diego Bay, Paleta Creek Metals Demonstrations

Two 70-hour metals demonstrations of BFSD 2 were conducted at the heavily industrialized Paleta Creek entrance to San Diego Bay (see Figure 33). The quiescent, marina-like area is used for mooring support craft and receives periodic stormwater inflow from the Paleta Creek drainage basin. The site was selected due to known levels of trace metals in the sediments, as established in two previous prototype BFSD tests, and because of its convenient location for an initial field test and first demonstration of BFSD2. Two demonstrations were conducted two weeks apart (June 6-8, 1998 and June 18-22, 1998) with the first demonstration being a full dress rehearsal for the second, formal demonstration. The locations for the tests were within 10 feet of one another and within the same proximity to two previous prototype BFSD deployments. The tests were conducted at about 18 +/- 3 feet depth, depending on tidal flow, and offshore about 30 feet from a quay wall. Deployment and retrieval was from the SSC SD research vessel R/V ECOS.

Figure 33. BFSD2 Paleta Creek Metals Deployment.

Prior to both tests, the BFSD 2 was cleaned and prepared using the same procedures used during the triplicate blank tests. Aboard R/V ECOS after loading and connecting various equipment (laptop computer, TV monitor and light, cabling) a standard pre-deployment checklist was followed. Once moored at the site with the GPS location logged, the BFSD 2 was lowered to within 2 feet of the bottom and a 15-minute test was started to stabilize the flow-through sensors and to measure the ambient dissolved oxygen level. This test was run twice during the first demonstration to assure repeatability. The ambient dissolved oxygen level is used to establish system control limits for maintaining a narrow range of dissolved oxygen in the collection chamber during the 70-hour test and for assessment of sediment oxygen uptake rates. As requested by CA EPA certification

evaluators, a second, independent dissolved oxygen measurement was made outside the collection chamber during the second demonstration by attaching an additional instrument to the BFSD 2 frame next to the collection chamber.

After entering the control limits into the 70-hour test program software and downloading it, the BFSD2 was raised for manual activation of the number one sample bottle valve. A new, higher mounting location for the valve was implemented following the blank tests to improve collection of representative ambient bottom water. With the BFSD2 partially submerged and the collection chamber approximately 3 feet below the surface, the valve was opened manually and the BFSD2 was immediately lowered back to approximately 2 feet from the bottom. After a short delay to arrange deck release lines, the BFSD2 was then allowed to free-fall to the bottom and insert its collection chamber into the sediment.

The landing and insertion were monitored using a video camera. Activation of the three insertion indicator lights was verified. The video camera, aided by a floodlight, also allowed a limited assessment of the site prior to initiating the 70-hour test. And, after starting the test, it also allowed confirmation of lid closure prior to complete detachment of lanyards and connections for autonomous operation. Both demonstration deployments were straightforward and without problems. The R/V ECOS returned to SSC SD and left the BFSD2 in its autonomous operation mode.

Retrieval of the BFSD2 after the tests was routine except for malfunction of the commercial acoustic recovery system. Recovery was with a separate line stowed at the site. Acoustic receiver burn-wire modification, latch modification, and most importantly, sandpaper cleaning of the ground electrode were subsequently implemented. Once BFSD2 was washed down and on deck, the twelve 250ml sample bottles were removed for processing using EPA handling and chain of custody procedures. During the first demonstration the samples were returned to SSC SD for splits (silica and metals). For the second demonstration splits were made aboard R/V ECOS using pre-acidified 125ml containers for metals samples and pre-cleaned 25ml beakers for silica measurements. Silica measurements were made aboard R/V ECOS using a field portable Hach model DR2010 Instrument. The metals samples were packaged and shipped to Battelle Marine Sciences Laboratory for analysis of the six metals selected for CA EPA certification evaluation. All data and results for the two demonstrations are compiled in Microsoft Excel spreadsheets "BFSD2 PCPD.xls" and "BFSD2 PCD.xls", provided with the electronic submission of this report. Appendix C provides copies of the spreadsheet results and includes data and graphs for the BFSD2 flow-through sensors.

Tables 6 and 7 summarize the results of the two Paleta Creek metals demonstrations.

Table 6. BFSD 2 Metals Results from the Paleta Creek Pre-Demonstration (PCPD).

Metal	Flux	+/- 95% C.L.	Flux rate Confidence	Triplicate Blank Flux	(µg/m²/day)	Bulk Sediment	Overlying Water
	(µg/m²/clay)	(யூg/m²/day)	(%)	Average	+/- 95% C.L.	(µ9/9)	(μg/L)
Copper (Cu)	-1.75	19.71	38.1%	2.82	8.73	165	1.54
Cadmium (Cd)	9.64	4.14	100.0%	-0.52	0.75	1.16	0.148
Lead (Pb)	11.06	7.94	100.0%	3.16	1.59	98.9	0.1:561
Nickel (Ni)	25.24	4.62	100.0%	10.28	7.34	19.1	0.9262
Manganese (Mn)	71.33	701.54	80.7%	-264.85	7.49	405	28.12
Manganese (Mn) ¹	5763.99	23621.74	100.0%	-264.85	7.49	405	28.12
Zine (Zn)	715.02	257.38	100.0%	-3.38	65.22	356	8.90
Other	•						
Oxygen (O ₂)* (*ml/m ² /day)	-1050.187	86.25	na	na	na	na	5.2
Silica (SiO ₂)* (*mg/m ² /day)	30.29	11.33	100%	-1.97	2.88	na	0.81
1. Mn flux calculated	on the basis of fire	st three samples du	e to non-linearity				

Table 7. BFSD 2 Metals Results from the Paleta Creek Demonstration (PCD).

Metal	Flux	+/- 95% C.L.	Flux rate Confidence	Triplicate Blan	ık Flux (μg/m²/day)	Bulk Sediment	Overlying Water
	(_µ g/m²/day)	(µg/m²/day)	(%)	Average	+/- 95% C.L.	(μg/gl)	(μg/L)
Copper (Cu)	-6.57	17.74	80.7%	2.82	8.73	165	1.46
Cadmium (Cd)	7.02	3.87	100.0%	-0.52	0.75	1.16	0.06897
Lead (Pb)	4.32	12.39	65.6%	3.16	1.59	98.9	0.07879
Nickel (Ni)	19.44	8.75	99.8%	10.28	7.34	19.1	0.8378
Manganese (Mn)	103.94	957.14	73.3%	-264.85	7.49	405	24.02
Manganese (Mn) ¹	4194.24	101841.32	99.9%	-264.85	7.49	405	24.02
Zinc (Zn)	574.26	274.14	100%	-3.38	-68.61	356	8.38
Other							
Oxygen (O ₂)* (*ml/m ² /clay)	-1341.12	160.18	na	na	na	na	4.7
Silica (SiO ₂)* (*mg/m ² /day)	28.75	15.63	100%	-1.97	2.88	na	0.79
1. Mn flux calculated	on the basis of fire	st three samples du	e to non-linearity				

Numbers in the Flux Rate Confidence column indicate the statistical confidence that the measured flux rate is different than the blank flux rate. Results from the blank study, bulk sediment analysis, overlying water and oxygen uptake analysis are shown for comparison.

Figures 34 and 35 illustrate graphical comparison of the results.

Figure 34. Paleta Creek Metals Pre-Demonstration Results.

Figure 35. Paleta Creek Metals Demonstration Results.

5.1.3.1 Discussion of Paleta Creek Demonstrations Results

In general, BFSD2 results from the two Paleta Creek demonstrations were similar and consistent with previous prototype deployments at this location. Figures 36 and 37 are the sets of graphs of concentration versus time for each analyte (red squares) in each of the demonstrations, compared with blank performance (blue triangles). The concentrations of analyte plotted on these graphs here and throughout this report are not the measured concentrations of each sample but concentrations that have been corrected for dilution effects from sampling water from the chamber and intercept corrected for the linear slope analysis. Therefore the concentrations shown could change depending on how many samples are included in the slope analysis. This is illustrated well in the manganese graphs where two slope analyses were performed with different numbers of samples. It appears concentrations for each sample are different. These graphs were generated in the process of calculation the slope or flux of each analyte, and it is the flux rate and not individual sample concentrations which are interpreted in these graphs.

The results for the Pre-Demonstration indicate that Cadmium, Lead, Nickel and Zinc had fluxes out of the sediment that were highly significant when compared to the blank chamber results. The flux of copper indicated a negative flux (sediment uptake) although the statistical confidence was only 65%.

Manganese fluxes showed a consistent trend or pattern here at Paleta as well as at subsequent deployments in Pearl Harbor. Flux curves would define a higher rate of flux in the first part of the test while becoming lower or negative in the later part. The reason for this drop is not known, but could be attributed to oxidation and subsequent precipitation or flocculation when the chamber water reached a high concentration which results in a "quenching"-like trend. Certainly some process was changing the flux rate of manganese as the test proceeded. So, in order to estimate actual flux rates of manganese from sediments as if the chamber were not present, the first three values obtained from the test was used for calculating a flux rate. This is similar to how dissolved oxygen demand is calculated before the system becomes anoxic and/or the oxygen feed system kicks in. This approach results in a more conservative estimate of flux rates for this metal, i.e. higher outward fluxes. We will use and discuss the flux values obtained from this later method of using the first three samples drawn from the chamber for manganese. However, flux curves and values from estimated from the entire test duration are also presented here for consideration. Therefore, manganese also had a positive outward flux as did cadmium, lead, nickel and zinc but the statistical confidence was somewhat lower.

Figure 36. Paleta Creek Metals Pre-Demonstration Concentration vs. Time.

Figure 37. Paleta Creek Metals Demonstration Concentration vs. Time.

Results for the formal Demonstration were similar to those of the Pre-Demonstration with the exception of Lead. Cadmium, Nickel and Zinc all had fluxes out of the sediment that were highly significant when compared to the blank results. The magnitude of the Cadmium, Nickel and Zinc fluxes for the Demo were similar, though slightly lower, than those observed for the Pre-Demonstration. Manganese again had a positive outward flux but a lower statistical confidence. As with the Pre-Demonstration, the flux of copper was negative (sediment uptake) although the statistical confidence was <0.1%.

5.1.3.1.1 Flux Measurements

As shown in Tables 6 and 7, and illustrated in Figures 34 through 37, cadmium, lead, nickel, manganese and zinc all had positive flux rates which were statistically different from blank test results. Also, the relative magnitudes of the flux rates were consistent for both demonstrations and with earlier prototype work at the site. In other words, zinc had a larger flux rate than manganese; manganese was larger than nickel; nickel was larger than lead; lead and cadmium were very close to the same magnitude. The magnitude of the flux rates for the formal Demonstration were generally similar, though somewhat less (except manganese), than those of the Pre-Demonstration test two weeks earlier, however, the differences are not statistically significant. A correlation with sediment oxygen uptake is evident and may be an explanation for the slight downward shift of fluxes. The flux rate for manganese is likely more positive than measured when corrected by the large, very repeatable negative flux measured in the blank tests. Copper results indicate a slightly negative flux (sediment uptake) which has been observed in previous work. This may be attributed to pore water chemistry involving sulfide binding, complexation with organic matter, or elevated water column concentrations associated with hull leachate sources as discussed extensively in earlier reports. The oxygen uptake measured during both deployments is consistent and indicates continuous consumption of dissolved oxygen, which can be attributed to oxidation of organic matter and biological uptake at the sediment water interface.

5.1.3.2 Discussion of Paleta Creek Demonstrations Tests

Important aspects of the demonstrations including performance indicators and deployment problems are discussed below.

5.1.3.2.1 Performance Indicators

Several methods were used to evaluate system performance of the BFSD2 during and after the demonstrations. To assure a proper seal of the chamber, the deployment was monitored with an underwater video camera, insertion light indicators connected to pressure sensors on the sealing flange were monitored, and silica, pH, and oxygen levels within the chamber were monitored for expected trends. Landing and insertion monitored with the video camera and landing lights indicated a good seal. After starting the test, the video camera also confirmed lid closure of the chamber.

A linear increase in silica during the deployments was used as another indicator of proper system performance and chamber seal. The results, shown on Figures 36 and 37, show that silica concentration increased linearly, and that the silica flux rates were consistent and repeatable for the two deployments, indicating proper system performance and chamber seal. Oxygen variations in the chamber were monitored to assure maintenance of ambient oxygen levels, proper chamber seal, and to evaluate sediment oxygen uptake. The rate of oxygen consumption (sediment uptake) during the deployments, also shown in

Figures 36 and 37, was sufficient to cause repeated cycling of the BFSD2 oxygen recharge subsystem. Figure 38 are graphs of the oxygen sensor data for the two deployments showing the operation of the control system. The control limits selected allowed the dissolved oxygen to remain within approximately 1 ml/L of the ambient level and still yield data to assess the sediment uptake rate. The multiple cycles for both recharge and uptake were consistent and repeatable.

Figure 38. Paleta Creek Metals Demonstrations Oxygen Control Results.

As requested by CA EPA certification evaluators, an independent dissolved oxygen measurement of ambient bottom water at the BFSD2 test site was made during the formal Demonstration deployment. The measurement instrument was battery power-limited and operated for only the first 39 hours of the deployment. During that period, cyclic changes of approximately 0.5 ml/L occurred about the ambient level of approximately 5 ml/L. Thus oxygen results reconfirm that a proper chamber seal was achieved, and that oxygen levels within the chamber were maintained close to the ambient level and with similar, though slightly larger, variability to that observed outside the chamber.

In the properly sealed BFSD 2 chamber, the pH will generally show a decreasing trend as the breakdown of organic matter at the sediment water interface drives CO₂ into the chamber water. This decreasing trend was observed during both deployments as shown in Figure 39. Some small fluctuations from the expected steady decline in chamber pH were seen. While the exact cause of these fluctuations is not known, a number of factors including photosynthetic activity and sediment and pore water oxidation chemistry can account for the minor reversals. In the absence of other evidence of a breech in chamber seal, these small fluctuations were attributed to natural variations.

Figure 39. Paleta Creek Metals Demonstrations pH Results.

5.1.3.2.2 Deployment and Recovery Problems

Two minor problems were encountered during the demonstrations. The first was failure of the commercial acoustic recovery system to function. During the Pre Demonstration the failure was attributed to one too many burn-wire strands which led to excessive time for functioning. One strand was removed for the next test, however the release latch mechanism was corroded and failed to release the buoy after the burn-wire had properly functioned. The latch was subsequently modified and is an inspection point as part of the pre-deployment checklist procedure. Most importantly it was determined that abrasive cleaning of the ground (plating) electrode with sandpaper must be performed after every use.

The second problem was the concentration of metals in the water collected from the open chamber, as it descended to the bottom was not consistent with concentrations in the chamber shortly after it reached the bottom. The values from laboratory analysis of the water in sample bottle one (which filled during descent, after manual operation of its valve near the surface) and from water in sample bottle number two (filled from the chamber 6 minutes after lid closure) were inconsistent. As with the blank tests, the concentration values from the second sample bottle were considered more representative of makeup water entering the chamber and were used in dilution correction calculations. And, as with the blank tests, a sensitivity analysis indicated an insignificant affect on flux results. A more acceptable method for collecting representative bottom water was subsequently implemented and test deployed prior to the Pearl Harbor demonstrations.

5.1.3.3 Discussion of Data Interpretation

In order to understand the significance of the measured flux rates in Paleta Creek from a water quality standpoint, it is necessary to estimate the potential loading and subsequent increase in metals concentrations within the overlying water. A simplified analysis is presented here in order to illustrate the utility of the BFSD2 data for this purpose.

The Paleta Creek study area where the demonstrations were performed is bordered by land on three sides, and open to San Diego Bay only to the southwest. The bounded area has a surface area of about 62400 m². The average depth of the area is about 7 m, and thus the overall volume is about 436800 m³. The tidal range in San Diego Bay averages about 1.4 m. A simple estimate of the residence time can be obtained based on complete tidal flushing as

$$\tau_{res} = \frac{V_{pc}}{V_{tp}} = \frac{D_{pc}}{H_t N_t} = \frac{7}{1.4 \times 2} = 2.5 \, days$$

Where τ_{res} is the residence time, V_{pc} is the volume of the Paleta Creek study area, V_{tp} is the tidal prism volume for the area, D_{pc} is the depth of the study area, H_t is the tidal range, and N_t is the number of tides per day.

In steady state conditions, the residence time can be related to the overlying water concentration by the relation

$$\tau_{res} = \frac{m_{ow}}{\dot{m}_{sed}}$$

Where m_{ow} is the mass of a given metal in the Paleta Creek study area overlying water, and m_{sed} is the loading from the sediment.

The overlying water concentration can thus be estimated from the flux rates as

$$c_{\scriptscriptstyle ow} = rac{m_{\scriptscriptstyle ow}}{V_{\scriptscriptstyle pc}} = rac{ au_{\scriptscriptstyle res} \dot{m}_{\scriptscriptstyle sed}}{V_{\scriptscriptstyle pc}} = rac{ au_{\scriptscriptstyle res} F_{\scriptscriptstyle sed} A_{\scriptscriptstyle pc}}{V_{\scriptscriptstyle pc}} = rac{ au_{\scriptscriptstyle res} F_{\scriptscriptstyle sed}}{D_{\scriptscriptstyle pc}}$$

Where F_{sed} is the sediment flux rate measured by the BFSD, and A_{pc} is the surface area of the sediment in the Paleta Creek study area. Using this relation, the estimated overlying water concentrations for each of the metals from each of the surveys can be estimated as shown in Table 8 below.

Table 8. Estimated Sediment Flux Contribution to Overlying Water Concentrations for the Paleta Creek Study Area.

Metal	PCPD Flux	PCD Flux	τ_{res}	D _{pc}	C₀w PCPD	C₀w PCD	C _{ow} meas.	PCPD % of meas.	PCD % of meas.
	μg/m²/day	μg/m²/day	days	m	ug/l	ug/l	ug/l		
Copper (Cu)	-2	-7	2.5	7	-	-	2.41	-	-
Cadmlum (Cd)	10	7	2.5	7	0.0036	0.0025	0.0786	4.54%	3.2%
Lead (Pb)	11	4	2.5	7	0.0039	0.0014	0.182	2.16%	0.8%
Nickel (Ni)	25	19	2.5	7	0.0089	0.0068	1.02	0.88%	0.7%
Manganese (Mn)	73	105	2.5	7	0.0261	0.0375	21.0	0.12%	0.2%
Zinc (Zn)	716	575	2.5	7	0.2557	0.2054	8.91	2.87%	2.3%
Silica (SiO₂)	30*	30	2.5	7	0.011	0.011	0.79	1.35%	1.4%
*mg/m²/day **	mg/l								

Note: C_{ow} measured is the overlying water concentration that was measured during the PCD study. The percent of measured column indicates the fraction of the overlying water concentration that can be explained by the sediment flux.

Comparing the estimated overlying water concentration to the measured concentration indicates that the contribution due to sediment fluxes ranges from a high of 4.5% for cadmium, to a low of about 0.2% for manganese. In practice, these estimates could be used to evaluate the potential benefit of a sediment removal or capping action compared to a no-action scenario. The simple model employed here neglects many factors such a s tidal flushing efficiency of the study area and scavenging of metals near the sediment-water interface that could influence the estimated concentrations. If the tidal flushing is not complete (which is realistic), then the residence time and estimated contribution from the sediments would increase. A typical flushing efficiency is about 50%, which would increase the estimated Cow by a factor of 2. Colloid and particle scavenging near the sediment water interface would tend to reduce the s ediment flux contribution, although the magnitude of this process is not well known.

5.1.4 San Diego Bay, Paleta Creek Organics Demonstration

One 70-hour organics test using Benthic Flux Sampling Device 2 (BFSD2) was conducted March 2-5, 2001 at the heavily industrialized Paleta Creek entrance to San Diego Bay, within the borders Naval Station San Diego. Figure 40 is a picture of the area which is used for mooring Navy industrial waste and sewage collection barges, emergency oil spill response vessels, and other transient industrial support vessels. The site was selected as one heavily studied over the years and likely to produce detectable and mobile organic contaminants. Also, the site was used for the BFSD2 *metals* flux demonstrations during June, 1998 and has subsequently been designated by the California Regional Water Quality Control Board as San Diego Bay's most "toxic hotspot". A sediment survey of the area conducted by SSC SD during December, 2000 using gravity core samples produced high levels of the US EPA's 16 priority Polynuclear Aromatic Hydrocarbons (PAH) expressed as Total Petroleum Hydrocarbons (TPH). The site was also a convenient location for this first organics field test. The tests were conducted at about 18 +/- 3 feet depth, depending on tidal flow, and offshore from a quay wall about 30 feet. Deployment and retrieval was from the SSC SD research vessel (R/V) Ecos.

Figure 40. Paleta Creek, San Diego Bay.

Prior to the test, the BFSD2 was cleaned and prepared using the same procedures used for the triplicate organics blank tests. Aboard R/V Ecos, after loading and connecting various equipment (laptop computer, TV monitor and light, cabling) a standard pre-deployment checklist was followed. Once moored at the site with the GPS location logged, the BFSD2 (shown in Figure 41) was lowered to near the bottom and the landing

Figure 41. BFSD2 Paleta Creek Organics Deployment.

site was surveyed by remote video for any obstructions or other features which could prevent successful insertion of the collection chamber into the sediment. The BFSD2 was then lowered to the bottom at the maximum rate allowed by the deck hoist (about 1ft/sec) and the landing and insertion were monitored using the video camera. Activation of three battery-powered lights by switches mounted on the chamber at the 3-inch level was verified and used to establish adequate sediment insertion. The landing produced a minimal amount of resuspension. The 15-minute "Sensor Check" program was then started to close the chamber lid, to stabilize the flow-through sensors and to measure the ambient dissolved oxygen level. Closing the chamber lid sealed the chamber and activated collection of an ambient water sample. Measurement of the ambient dissolved oxygen level was used to establish system control limits for maintaining a narrow range of dissolved oxygen in the collection chamber during the 70-hour test. Dissolved oxygen measurements data taken during the test are also used for assessment of sediment oxygen uptake rates.

After establishing and entering the dissolved oxygen control limits into the 70-hour test program and downloading it to the BFSD2, the flux test was started. The initial autonomous functions were monitored from R/V Ecos to assure proper operation of the BFSD2 prior to disconnecting the cables and dropping them overboard. Proper data recording and rotary sample valve commands were confirmed. R/V Ecos departed the site and left BFSD2 in place to perform the 70-hour autonomous sampling operation.

Retrieval of BFSD2 after completion of the test, shown in Figure 42, was routine except for malfunction of the commercial acoustic recovery system (the latch required subsequent modification). Recovery was aided by the clarity of the water and allowed a boat hook to be used to jar the recovery buoy loose from the BFSD2. Once BFSD2 was washed down and on deck, the twelve 250 ml sample bottles were removed for processing using EPA handling and chain of custody procedures. All bottles were full and inline filter elements were slightly discolored, indicating low turbidity within the chamber. Before moving location, a sediment sample was collected from the BFSD2 landing site. Onboard R/V Ecos, the sample bottle filter assemblies were removed and replaced with precleaned caps, preprinted labels were attached to the samples and packaging for overnight shipment was completed.

Figure 42. BFSD 2 Paleta Creek Organics Demonstration Recovery.

As the samples were being processed onboard R/V Ecos, the recorded data files from the 70-hour test were uploaded and entered into a standardized Excel spreadsheet template for data processing. The sensor data, plotted as time-series indicated a successful deployment. As can be seen in Figure 43, there was no sudden pH level shifts indicating loss of chamber seal and the oxygen control system maintained the dissolved oxygen level within the set limits. The slowly reducing trend for pH level was normal and is indicative of biological activity. The slight increases observed in pH near 28 hours and again near 50 hours correspond to midday periods and are most likely associated with benthic algal production and a corresponding consumption of C0₂ and increase in pH. Salinity, temperature and pressure were also normal.

Figure 43. BFSD 2 Paleta Creek Organics Demonstration Recovery.

The samples were packaged and overnight air-shipped that afternoon to ADL for extraction and analysis in accordance with the processes, procedures and controls established under the Method Detection Limit study and used for the triplicate blank tests. All data and results for the demonstration are compiled in Microsoft Excel spreadsheets "PC Organics Demo - PAHs (Part1&2).xls", "PC Organics DemoPCBs.xls" and "PC Organics Demo-Pesticides.xls" provided with the electronic submission of this report. Appendix C provides copies of the spreadsheet results and includes data and graphs for the BFSD2 flow-through sensors.

Tables 9, 10 and 11 provide a summary of the flux results for selected PAHs, PCB congeners and pesticides for the Paleta Creek organics demonstration.

Table 9. BFSD2 PAH Results Summary for Paleta Creek Demonstration.

P.AH	Flux	+/- 95% C.L.	Flux Rate Confidence	Triplicate Blank I	Flux (ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.	(ng/g)	(ng/L)
1. Naphthalene	459.20	429.58	94.5%	-440.30	458.38	13	6.7
2. Acenaphthene	337.58	178.97	100.0%	-32.40	50.34	19	9.7
3. Acenaphthylene	105.51	183.82	33.8%	208.47	112.60	220	7.6
4. Fluorene	173.17	149.76	100.0%	-76.74	28.38	34	2.3
5. Phenanthrene	489.25	659.77	100.0%	10.95	10.95	240	8.2
6. Anthracene	569.42	260.29	100.0%	117.68	64.62	470	5.3
7. Fluoranthene	365.55	397.63	100.0%	-1423.95	178.41	890	37
8. Pyrene	951.97	755.67	100.0%	-439.51	70.73	740	13
14. Indeno(1,2,3-c,d)pyrene	-65.35	906.77	NA	NA	NA	470	1.4
16. Benzo(g,h,i)perylene	-46.63	263.97	67.7%	20.15	65.15	400	1.4

Table 10. BFSD2 PCB Results Summary for Paleta Creek Demonstration.

PCB	Flux	+/- 95% C.L.	Flux rate Confidence	Blank Flux (ng/m²/day)		Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Flux	+/- 95% C.L.	(ng/g)	(ng/L)
18 - 2,2',5-Trichlorobiphenyl	52.21	103.93	4%	76.82	36.49	2.6	ND
28 - 2,4,4'-Trichlorobiphenyl	41.52	80.03	61%	-8.05	82.03	2.2	1.1
52 - 2,2',5,5'-Tetrachlorobiphenyl	9.44	105.28	77%	72.74	28.12	4.9	3
66 - 2,3',4,4'-Tetrachlorobiphenyl	-19.94	62.01	96%	37.74	25.45	5.3	ND
101 - 2,2',4,5,5'-Pentachlorobiphenyl	45.99	84.57	17%	57.59	31.49	13	ND
118 - 2,3',4,4',5-Pentachlorobiphenyl	-2.34	123.95	9%	2.51	15.40	13	ND
153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	22.26	78.55	43%	9.45	11.71	23	0.11

Table 11. BFSD2 Pesticide Results Summary for Paleta Creek Demonstration.

Pesticide	Flux	+/- 95% C.L.	Blank Flux (r	ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	Flux	+/- 95% C.L.	(ng/g)	(ng/L)
2,4'-DDT	57.49	95.75	NA	NA	3.6	0.88
4,4'-DDT	31.23	55.47	NA	NA	14	ND
Dieldrin	-23.48	45.68	NA	NA	2	ND
Hexachlorobenzene	23.76	35.20	NA	NA	0.61	ND
Mirex	36.23	154.93	NA	NA	ND	ND

Numbers in the Flux Rate Confidence column indicate the statistical confidence that the measured flux rate is different than the blank flux rate. Results from the blank study, bulk sediment analysis and overlying water are shown for comparison.

Figures 44, 45 and 46 provide graphical comparison of the flux results with the blank tests results.

Figure 44. Paleta Creek PAH Demonstration Results.

Figure 45. Paleta Creek PCB Demonstration Results.

Figure 46. Paleta Creek Pesticide Demonstration Results.

5.1.4.1 Paleta Creek Organics Demonstrations Results

5.1.4.1.1 Polynuclear Aromatic Hydrocarbons (PAHs) Results

Complete individual data sets were obtained for six of the first eight PAHs (Naphthalene, Acenaphthene, Acenaphthylene, Phenanthrene, Fluoranthene and Pyrene). For the two incomplete data sets, non-detects were reported in two samples for Fluorene (samples 4 and 6) and in one sample The non-detects were removed from the data series for flux for Anthracene (sample 2). computations. All trends in concentration change were positive over time (i.e. sediment release) and the largest change among the first eight PAHs during the 70-hour test, after correction for dilution, was 18.9 ng/L (parts per trillion) for Phenanthrene. Most of the other PAHs changed less than 10 ng/L. The resulting concentration trends, when compared to the statistically derived triplicate blank test trends showed significant flux for seven of the eight lightest molecular weight PAHs. The confidence that the flux was statistically different than the associated blank was 100% for six of the first eight PAHs and 94.5% for Naphthalene. Acenaphthylene was the only PAH in the first eight with a flux less than the associated blank tests and it had a resultant flux rate confidence of 33.8%. Appendix D ("PC Organics Demo-PAHs (Part 1).xls") includes time-series graphs showing flux and blank tests concentrations over time for the eight lightest molecular weight PAHs. These graphs show reasonable linearity of the time-series flux test data and allow intuitive comparison of the flux and blank test results.

Of the remaining eight targeted PAHs with the heaviest molecular weights all but two were non-detectable throughout the full set of 12 samples. For the two with detects, Indeno(1,2,3-c,d)pyrene yielded four (samples 1,3,5,and 12) and Benzo(g,h,i)perylene yielded five (samples 1,3,5,8,and12) detectable concentrations. Additionally, only Benzo(g,h,i)perylene had adequate blank test results during the earlier triplicate test series for comparison. The Benzo(g,h,i)perylene flux, adjusted for

dilution, was negative (i.e. sediment *uptake*) and in comparison to its blank results there was a 67.7% confidence that the flux is different than the blank results. Indeno(1,2,3-c,d)pyrene also indicated a negative flux and there is no blank results for comparison. The time-series graphs included in Appendix D ("PC Organics Demo-PAHs (Part 2).xls") show the slight negative slopes, or concentration changes over time, for these two heavier molecular weight PAHs.

5.1.4.1.2 Polychlorinated Biphenyl (PCB) Congeners Results

Seven PCB congeners vielded sufficiently complete data sets for flux computations. PCB #28 (2,4,4'-Trichlorobiphenyl) yielded a complete set of 12 detectable concentration values. PCBs # 18 (2,2',5-Trichlorobipheny) yielded 9 samples with detectable concentration levels, #52 (2,2',5,5'-Tetrachlorobiphenyl) yielded 11 samples with detectable concentration levels, #66 (2,3',4,4'-Tetrachlorobiphenyl) yielded 10 samples with detectable concentration levels, #101 (2,2',4,5,5'-Pentachlorobiphenyl) yielded 8 samples with detectable concentration levels, #118 (2,3',4,4',5-Pentachlorobiphenyl) yielded 8 samples with detectable concentration levels, and #153 (2,2',4,4',5,5'-Hexachlorobiphenyl) yielded 11 samples with detectable concentration levels. In most cases, the partial data sets were composed of consecutive sample detects following initial non-detects in the series. As with PAHs, the non-detects were removed from the data series for flux computations. Five of the seven PCBs exhibited a positive trend in concentration over time (i.e. sediment release) and two exhibited a negative trend (i.e. sediment uptake). Three of the five PCBs indicating sediment release exhibited flux levels higher than the associated blank test levels and two were lower. The two PCBs indicating negative flux (sediment *uptake*) had positive blank test flux values. All changes in PCB concentration over the 70-hour test were less than 2 ng/L (parts per trillion) with the largest change (approximately 1.5 ng/L) exhibited by PCB #52. Statistical flux confidence is not high for six of the computed flux values when compared to associated blank test results. Statistical flux confidence for PCB#66 (2,3',4,4'-Tetrachlorobiphenyl) was 96%, however negative, or uptake, value introduces concern of validity and may be the result of the low concentrations measured. Appendix D ("PC Organics Demo-PCBs.xls") includes time-series graphs showing flux and blank tests concentrations over time for the seven PCBs with detectable concentrations. These graphs show marginal linearity of the time-series flux and blank test data resulting from the very low concentrations measured. Intuitive comparison of the flux and blank test results is illustrative of the low computed flux confidence levels reported in Table 10.

5.1.4.1.3 Pesticide Results

Five pesticides yielded sufficiently complete data sets for flux computations. 2,4 DDT yielded 11 samples with detectable concentration levels, 4,4 DDT yielded 9 samples with detectable concentration levels, Dieldrin yielded 8 samples with detectable concentration levels, Hexachlorobenzene yielded 11 samples with detectable concentration levels and Mirex yielded 6 samples with detectable concentration levels. Again, as with PCBs, the partial data sets consisted of consecutive sample detects following initial non-detects in all series except for Mirex. Mirex had a one sample data gap in an otherwise consecutive series. And again, the non-detects were removed from the data series for flux computations. One additional measurement (sample 6) of the Hexachlorobenzene data set was removed because it exceeded all other data in the set by an order of magnitude and introduced a large trend offset. Four of the five pesticides exhibited a positive trend in concentration over time (i.e. sediment release) and one, Dieldrin, exhibited a negative trend (i.e. sediment *uptake*). There were insufficient blank test samples with detectable concentrations of these five pesticides to compute comparable blank flux performance. All changes in pesticide concentration over the 70hour test were less than 2 ng/L (parts per trillion) with the largest change (approximately 1.8 ng/L) exhibited by 2,4'-DDT. Appendix D ("PC Organics Demo-Pesticides.xls") includes time-series graphs showing flux and blank tests concentrations over time for the five

pesticides with detectable concentrations. These graphs show reasonable linearity of the time-series flux with consideration of the very low concentrations measured.

5.1.4.2 Interpretation of Paleta Creek Organics Results

Whereas the flux results for the lighter molecular weight PAHs indicate greater mobility from the sediment into the overlying water than the heavier compounds, the measured concentration of the heavier molecular weight PAHs in samples extracted from the bulk sediment were generally higher than those of the lighter compounds. It appears that the heavier molecular weight PAHs are significantly less mobile, even with higher concentrations in the bulk sediment, than the lighter compounds. Comparison of this finding with solubility measurements of the targeted PAHs in seawater shows the same trend: the heavier molecular weight PAHs are far less soluble. A unilateral reduction in solubility of approximately five orders of magnitude occurs from lightest-to-heaviest for the 16 targeted PAHs. This relationship between PAH flux and PAH solubility does not appear to be exclusive of other factors however. For example, Pyrene (a four-ring compound with a molecular weight of 202) had a flux rate of 952ng/m²/day which is more than twice that of Naphthalene (a tworing compound with a molecular weight of 128) with a flux rate of 459ng/m²/day. This result is likely driven by the bulk sediment concentration of Pyrene which was about of 57 times larger than Naphthalene (740ng/g vs 13ng/g). It appears that the flux of a PAH from the sediment into the overlying water remains dependant, in part, on the level of bulk concentration in the sediment. Thus even a low mobility, heavier molecular weight PAH with a high enough concentration in the sediment may flux into the overlying water at a higher rate than a lighter compound at lower For the Paleta Creek test, it appears that the generally higher sediment concentrations of the heavier targeted PAHs were still too low to produce measurable concentrations. This then suggests that for PAHs in sediments, the PAH flux will vary in direct proportion to molecular weight and solubility leading to preferential removal of low molecular weight PAHs, and a relative increase in the bulk sediment fraction of the heavy molecular weight PAHs. Reduction of PAH concentrations at the sediment surface due to these diffusive fluxes will lessen, over time, the concentration levels of PAHs available for biological uptake. This reduction when combined with other natural attenuation factors such as infaunal irrigation and bacterially mediated degradation may be considered as a possible strategy for sediment remediation. Providing that risk levels are not exceeded, flux results for PAHs can be used to estimate the time required to reduce bulk sediment concentrations in the biologically active region of the sediment to acceptable levels.

The above discussion also generally applies to PCBs. The mobility of PCBs as indicated by the flux results was generally in direct proportion to solubility and in inverse proportion to molecular weight. The concentration values for the overlying water and bulk sediment were also generally consistent with trends identified with PAHs. The very low concentration levels of the PCBs in the Paleta Creek sediments introduced considerable uncertainty but a general trend is evident.

Pesticides may behave as above, however molecular weight relationships are difficult to establish with the wide range and complexity of such compounds. And, as with PCBs, the low concentration levels measured in this test introduce considerable uncertainty but still allow identification of a general trend.

5.1.4.3 Conclusions for Paleta Creek Organics Demonstration Test

The measurement of the mobility of organic compounds from contaminated sediments at the Paleta Creek location within Naval Station San Diego was successfully achieved. The measurements, when compared to triplicate blank test results resulted in quantification of statistically significant values with high confidence primarily for Polynuclear Aromatic Hydrocarbons (PAHs) fluxing into

overlying water. The complete range of targeted PAHs, Polychlorinated Biphenyl (PCB) Congeners and pesticides were not measured either because they were not present or because they were below analytical detection limits. PCBs and pesticides, where present and measurable, had very low concentrations which introduced significant data scatter and low statistical confidence levels. Some flux measurements of PCBs and all pesticides did not have blank test results for comparison. Future site measurements of known or suspected contaminants for which blank test results are not available would benefit from blank tests using spiked concentrations of targeted contaminants.

5.1.5 Pearl Harbor, Hawaii Metals Demonstrations

70-hour metals demonstrations using BFSD2 were conducted at two different sites in Pearl Harbor, Oahu, Hawaii during February 1999. The BFSD2 deployments were conducted as part of a combined demonstration with integrated sediment investigation technologies and included site screening prior to both BFSD2 deployments.

The first test was conducted Feb. 5-8, 1999 within the Naval Inactive Ship Mooring Facility (NISMF) at Middle Loch where approximately 70 moored ships await disposition (disposal, sale, temporary storage, etc.). The area is quiescent and approximately 26 feet deep with murky water and fine-grained sediment overlain with an easily disturbed 1-2 foot flocculent layer. Reports of sediment depths over 100 feet were not confirmed but are believable. Some benthic organisms were found in the sediment during screening. All work at the site was accomplished from an open-deck, 35-foot Navy workboat operated by enlisted personnel, see Figure 47. A portable generator was used to power the video monitor, underwater light and laptop computer during deployment, however for recovery all electrical connections were made after reaching the shore facility.

Figure 47. BFSD2 Pearl Harbor, Middle Loch Metals Demonstration.

The second metals test was conducted Feb. 11-14, 1999 within the area known as Alpha Docks, Marine Diving and Salvage Unit One (MDSU-1) located at Bishop Point on the entrance channel to the harbor, Figure 48. Again, historical, RI and screening data indicated elevated levels of trace

metals present in the sediment. This area is an active industrial location and included several Navy housing barges, which are moved about by tugboats. The area has a depth of approximately 25 feet with generally clear water and medium- to fine-grained sediments. Tidal currents are enough to minimize any flocculent layer. Some benthic organisms were found during sediment screening. The Navy workboat was used as before for deployment but because of proximity to the quay wall recovery was accomplished from shore using an 80-foot crane.

Figure 18. BFSD2 Pearl Harbor, Bishop Point Metals Demonstration.

Prior to both tests, the BFSD2 was cleaned and prepared using the same procedures used during triplicate metals blank tests as well as other deployments and demonstrations. For the first deployment at NISMF, Middle Loch cleaning was accomplished at SSC SD prior to loading the BFSD2 into its re-usable shipping container, Figures 49 and 50. The shipping container, designed for compatibility with commercial air cargo carriers, includes compartments, shelving and storage bays sufficient for shipment of BFSD2 as well as all materials and supplies required for extended field operations. Shipping weight was approximately 1450 pounds. For safety reasons the compressed oxygen cylinder was vented to less than 250 psi and no hazardous materials (i.e. Nitric Acid for cleaning and sample preservation) were air-shipped. The container proved convenient for onsite access and minimized working space requirements. After arrival and unpacking, system checks and oxygen bottle refilling operations preceded. Nitric acid was secured from the local Navy environmental laboratory.

Figure 49. BFSD2 Container, Front View.

Figure 50. BFSD2 Container, Back View.

Aboard the Navy workboat, after loading and connecting various equipment (laptop computer, TV monitor and light, cabling) to the portable generator, a standard pre-deployment checklist was followed. At the site, after tying off, lowering the bow platform and logging the GPS location, the BFSD2 was lowered by hand wench to near the bottom and either slowly lowered into the sediment (to minimize disturbance and maintain video coverage: as at Middle Loch) or released from about 2 feet for free-fall (to assure insertion when video coverage can be maintained as at Bishop Point). Activation of the battery-powered insertion lights by switches mounted on the chamber at the 3- inch level was verified and used to establish adequate sediment insertion. Once on the bottom a 15-minute program was started to stabilize the flow-through sensors and to measure the ambient

dissolved oxygen level. After entering the dissolved oxygen control limits into the 70-hour test program, downloading and verifying it, the test was started after visibility conditions for lid closure were confirmed. After starting the program, lid closure (which also activates #1 sample bottle) was viewed and commands for circulation pump activation (at 10 minutes) and sample valve activation (at 16 minutes) for sample bottle number two was monitored before disconnecting for autonomous operations. The disconnected cables were plugged, coiled and cast overboard in a direction away from the BFSD2. Both demonstration deployments were straightforward and without problems. For both tests, the BFSD2 was returned to the shore facility for all data recovery. After freshwater washdown and cleanup the twelve 250 ml sample bottles were removed for processing using EPA handling and chain of custody procedures. Pre-acidified 125ml containers were filled and capped, labeled, logged and refrigerated for subsequent analytical laboratory metals analysis. The remaining sample volume was used to measure silica concentrations with the field portable Hach model DR2010 Instrument. The silica concentrations plotted against time and the BFSD2 pH and dissolved oxygen sensor data, also plotted against time were reviewed for any possible sample compromise prior to shipment to the analytical laboratory. Tables 12 and 13 summarize the results of the Pearl Harbor Middle Loch and Bishop Point metals demonstrations.

Table 12. BFSD2 Results for Pearl Harbor Middle Loch (PHML) Metals Demonstration.

Metal	Flux	+/- 95% C.L.	Flux rate Confidence	Triplicate Blank Fl	ux (µg/m²/day)	Bulk Sediment	Overlying Water
	(µg/m²/day)	(µg/m²/day)	(%)	Average	+/- 95% C.L.	(μg/g)	(μg/L)
Copper (Cu)	14.79	3.46	99.9%	2.82	8.73	195	0.80
Cadmium (Cd)	1.80	0.31	100.0%	-0.52	0.75	0.2	0.02277
Lead (Pb)	-0.12	0.43	95.2%	3.16	1.59	34	0.03879
Nickel (Ni)	27.17	15.91	100.0%	10.28	7.34	214	0.9472
Manganese (Mn)	-468.18	683.35	97.9%	-264.85	7.49	1180	52.19
Manganese (Mn) ¹	2131.59	904.57	100.0%	-264.85	7.49	1180	52.19
Zinc (Zn)	49.74	17.25	93.5%	-3.38	65.22	314	2.28
Other		•					
Oxygen (O ₂)* (*ml/m ² /day)	-1085.52	64.84	na	na	na	na	4.17
Silica (SiO ₂)* (*mg/m²/day)	65.03	42.43	100%	-1.97	2.88	na	1.19
1. Mn flux calculated	on the basis of fire	st five samples due	to non-linearity				

Table 13. BFSD 2 Results for Pearl Harbor, Bishop Point (PHBP) Metals Demonstration.

Metal	Flux	+/- 95% C.L.	Flux rate Confidence		Triplicate Blank Fl	ux (µg/m²/day)	Bulk Sediment	Overlying Water
	(µg/m²/day)	(µg/m²/day)	(%)	[Average	+/- 95% C.L.	(ug/g)	(µg/L)
Copper (Cu)	112.46	17.60	100.0%		2.82	8.73	241	0.36
Cadmium (Cd)	1.85	1.96	99.4%		-0.52	0.75	0.3	0.009
Lead (Pb)	0.71	1.11	78.7%		3.16	1.59	93	0.06519
Nickel (Ni)	21.04	15.41	96.3%		10.28	7.34	42.9	0.3934
Manganese (Mn)	223.33	284.79	100.0%		-264.85	7.49	324	1.78
Manganese (Mn) ¹	2177.45	192.60	100.0%		-264.85	7.49	324	1.78
Zinc (Zn)	191.18	54.07	100.0%		-3.38	65.22	304	1.43
Other								
Oxygen (O ₂)* (*ml/m²/day)	-567.12	54,96	na		na	na	na	6,5
Silica (SiO ₂)* (*mg/m²/day)	118.61	27.62	100%		-1.97	2.88	na	0.31

Numbers in the Flux Rate Confidence column indicate the statistical confidence that the measured flux rate is different than the blank flux rate. Results from the blank study, bulk sediment analysis, overlying water and oxygen uptake analysis are shown for comparison.

The results for Middle Loch indicate that Copper, Cadmium, and Nickel had fluxes out of the sediment that were highly significant when compared to the blank chamber results. Zinc also showed an outward flux but the statistical confidence was somewhat lower, and compared to blank results, any zinc flux is inconclusive. Lead had a negative flux (sediment uptake) but the statistical confidence was again somewhat lower. The flux of Manganese was negative when calculated using all the samples, but was positive when using only the first five samples. After the first five samples, the Manganese concentration in the chamber dropped dramatically. The reason for this drop is not known, and this effect and subsequent handling of the data are discussed in the Paleta Creek discussion in Section 5.1.3.1. The Silica flux was out of the sediment and was highly significant when compared to blank results. Dissolved Oxygen indicated a sediment uptake.

The results for Bishop Point were significantly different than those of Middle Loch with the exception of Cadmium, which was nearly identical. Copper, Cadmium, Manganese and Zinc all had fluxes out of the sediment that were highly significant when compared to the blank chamber results and the magnitude of the Copper and Zinc fluxes were markedly higher than those observed for Middle Loch. The Nickel flux however was somewhat less and with a reduced confidence. Lead fluxed outward at Bishop Point, but confidence is only marginal when compared to blank chamber results. As with Middle Loch, the Manganese flux at Bishop Point was non-linear and the concentration in the chamber leveled off after the third sample. The Manganese flux calculated using only the first three samples is similar to the flux estimated using the first five samples at Middle Loch and similar to that measured at other sites. The flux calculated using all the samples is low but still positive. The Silica flux results were again highly significant compared to blank results and were

higher than Middle Loch. The Dissolved Oxygen sediment uptake was about half that of Middle Loch. Figures 50 and 51 belographically illustrate results

Figure 51. Pearl Harbor Middle Loch Demonstration Results.

Figure 52. Pearl Harbor Bishop Point Demonstration Results.

5.1.5.1 Discussion of Pearl Harbor Metals Demonstrations Results

In general, BFSD2 results from the two Pearl Harbor demonstration locations were significantly different than one another. Figures 53 and 54 are the sets of graphs of concentration versus time for each analyte in each of the demonstrations, compared with blank performance. The results for the Middle Loch demonstration indicate that Copper, Cadmium, and Nickel had fluxes out of the sediment that were highly significant when compared to the blank chamber results. Zinc also indicated an outward flux but the statistical confidence was low suggesting no conclusive flux rate. Zinc concentrations in Middle Loch were low compared to other sites and most likely not a problem

in this area. Lead had a negative flux (sediment uptake) but the statistical confidence was again somewhat lower. Manganese flux trends were similar to those observed in Paleta Creek and discussed in Section 5.1.3.1. The flux of Manganese was lower, even negative, when calculated using all the samples, but was positive when using only the first five samples. After the first five samples, the Manganese concentration in the chamber dropped dramatically. The Silica flux was out of the sediment and was highly significant when compared to blank results. Dissolved Oxygen indicated a sediment uptake.

Figure 53. Pearl Harbor Middle Loch Demonstration Concentration vs. Time.

The results for Bishop Point were significantly different than those of Middle Loch with the exception of Cadmium, which was nearly identical. Copper, Cadmium, Manganese and Zinc all had fluxes out of the sediment that were highly significant when compared to the blank chamber results and the magnitude of the Copper and Zinc fluxes were markedly higher than those observed for Middle Loch. The Nickel flux however was somewhat less and with a reduced confidence. Lead

fluxed outward at Bishop Point, but confidence is only marginal when compared to blank chamber results. As with Middle Loch, the Manganese flux at Bishop Point was non-linear and the concentration in the chamber leveled off after the third sample. The Manganese flux calculated using only the first three samples is similar to the flux estimated using the first five samples at Middle Loch and similar to that measured at other sites. The flux calculated using all the samples is low but still positive. The Silica flux results were again highly significant compared to blank results and were higher than Middle Loch. The Dissolved Oxygen sediment uptake was about half that of Middle Loch.

Figure 54. Pearl Harbor Bishop Point demonstration Concentration vs. Time.

5.1.5.1.1 Metals Flux Measurements

Flux measurements were made for the metals cadmium, copper, lead, nickel, manganese and zinc. As shown in Tables 12 and 13, and illustrated in Figures 51 through 54, the BFSD2 results from the two Pearl Harbor demonstrations were significantly different from one another and from previous surveys.

Middle Loch fluxes were lower than those of Bishop Point, with the exception of Nickel (which was slightly higher). Of interest is that the Manganese flux at Middle Loch was initially almost the same (during the first 28 hours) as that at Bishop Point during the first 14 hours and then both exhibited an abrupt downward change. Possible explanations for this observation include complex reduction-oxidation interactions, sulfide binding, complexation with organic matter, or elevated water column concentrations associated with hull leachate sources at the sediment interface. The concentration-time graphs for both Manganese and Silica at Middle Loch show similar "quenching" trends, which are also apparent to a lesser degree in comparable data from Bishop Point.

Bishop Point fluxes were all outward and larger in magnitude than Middle Loch (except Nickel, as mentioned above). Copper, Cadmium, Manganese and Zinc all had fluxes out of the sediment that were highly significant when compared to the blank chamber results and the magnitude of the Copper and Zinc fluxes were markedly higher than those observed for Middle Loch. The Nickel flux however was somewhat less and with a reduced confidence. Lead fluxed outward at Bishop Point, but confidence is only marginal when compared to blank chamber results. With consideration for the more subtle Manganese and Silica "quenching" trends and the relatively lower oxygen uptake rate at Bishop Point, the fluxes appear to be less affected by possible interactions and are mobilizing from the sediment more linearly. The larger sediment grain sizes and size distribution at Bishop Point, as determined during site screening, may also be contributing to the apparent linear mobility of the outward fluxing metals.

As with Middle Loch, the Manganese flux at Bishop Point was non-linear and the concentration in the chamber leveled off after the third sample. The Manganese flux calculated using only the first three samples is similar to the flux estimated using the first five samples at Middle Loch and similar to that measured at other sites. The flux calculated using all the samples is low but still positive. The Silica flux results were again highly significant compared to blank results and were higher at Bishop Point than Middle Loch. The Dissolved Oxygen sediment uptake at Bishop Point was about half that of Middle Loch.

5.1.5.2 Discussion of Pearl Harbor Metals Demonstration Tests

Important aspects of the demonstrations including performance indicators and deployment problems are discussed below.

5.1.5.2.1 Performance Indicators

As discussed in Section 5.1.2.2.1, several methods were used to assure system performance of the BFSD 2 during and after the demonstrations. In both deployments the landing and insertion, monitored with the video camera and landing lights, indicated a good penetration and after the test was started, the video camera also confirmed successful lid closure. At Middle Loch the "soft" landing approach was used to minimize disturbance of the flocculent layer and maintain maximum visibility in the already murky water. Penetration was about twice normal (approximately 6 inches) and all visibility was lost. Test start and lid activation was delayed (about 15 minutes) until the water cleared enough to confirm closure. At Bishop Point a "free fall" landing approach was used from

about one foot above the sediment without significant loss of visibility. The resulting outward-traveling small cloud of disturbed sediment clearly showed the "low bow-wave" design of the BFSD2 to function effectively. The color underwater video camera made viewing this performance possible.

A monotonic increase in silica during the demonstrations was used as another indicator of proper system performance and chamber seal. As shown in Figures 50 and 51, for both deployments the silica concentration increased over the duration of the test indicating proper system performance and chamber seal. The flux magnitudes were high compared to previous mainland surveys, and may be explained by the tropical conditions (i.e., calciferous-rich). Bishop Point Silica results were reasonably linear, but Middle Loch Silica flux was not. Following a rate of increase during the first 24 hours of almost twice that of Bishop Point, Middle Loch Silica flux slowed significantly for the remainder of the test. The non-linearity in both Silica and Manganese fluxes suggest that as the concentrations in the chamber build, the fluxes may be altered by the presence of the chamber itself. This could be attributed either to time/concentration dependent reactions within the chamber, or changes in fluxes due to changes in the gradient between the porewater and the overlying water trapped within the chamber.

The Dissolved Oxygen level in the chamber was monitored and recorded to assure maintenance of ambient oxygen levels, proper chamber seal, and to evaluate sediment oxygen uptake. The rate of oxygen consumption (sediment uptake) during the deployments, was shown in Figures 53 and 54, and was sufficient to cause repeated cycling of the BFSD2 oxygen control subsystem. Figure 55 are graphs of the oxygen sensor data for the two deployments showing the operation of the control system. The control limits selected allowed the dissolved oxygen to remain within approximately 1 ml/L of the ambient level and still yield data to assess the sediment uptake rate. Functioning of the system in this manner assured that chamber isolation of the water was maintained. The ambient oxygen level at Middle Loch was about one half that of Bishop Point and the sediment uptake rate was about twice that of Bishop Point. These conditions, when combined with the pH results discussed below indicate Middle Loch has a higher level of organic decomposition. Again, this is reasonable when considering the differences between the sites.

Figure 55. Pearl Harbor Demonstrations Oxygen Control Results.

The pH level in the chamber was monitored and recorded as another assurance indicator of seal integrity. In a sealed BFSD2 chamber, the pH will generally show a decreasing trend as the breakdown of organic matter at the sediment water interface drives CO₂ into the chamber water. This decreasing trend was observed during both deployments as shown in Figure 56. And, as would be expected from results of oxygen uptake discussed above, the pH level dropped at a higher rate throughout the entire 70-hour test duration at Middle Loch.

Figure 56. Pearl Harbor Demonstrations pH Results.

5.1.5.2.2 Deployment and Recovery Problems

One minor problem was encountered during recovery at the Middle Loch demonstration and no deployment problems were encountered at either site and. At Middle Loch the commercial acoustic recovery system failed to function following several transmissions of the coded signal. Diver assistance was required to deploy the marker buoy and routine recovery operations were then followed. Subsequent analysis indicated absorption of the acoustic energy by the sediment due to the depth of BFSD2 insertion (almost covering the acoustic receiver window) and a near overhead aspect during transmission. Use of a standoff distance from the approximate location of the BFSD2 for future tests will minimize reoccurrence. Buoy activation was normal (within 8 minutes) after the Bishop Point deployment.

5.1.5.3 Discussion of Metals Data Interpretation

Although the measurements from Pearl Harbor are limited to two locations, they provide significant insight into the importance of understanding contaminant mobility. One way to interpret the flux chamber measurements for Pearl Harbor is to evaluate them in the context of the exposure pathways defined in the RI study. In the RI study, sight-specific Biota-to-Sediment Accumulation Factors (BSAFs) were developed by comparing the tissue burdens of wild-caught organisms to the sediment concentrations found in the same region. In this approach, 100% of the tissue burden is attributed to sediment exposure. One of the primary pathways of sediment exposure is thought to be via remobilization of chemicals to the dissolved phase and subsequent uptake by the organism. The results from the flux chamber measurements allow us to quantify and examine this key pathway.

As an example, we can consider the potential exposure for copper in sediments at the two sites. A cursory examination of the bulk sediment data in Tables 7 and 8 indicate that the exposure levels at the two sites would be about the same, with a slightly lower level at Middle Loch than at Bishop Point. Thus the predicted bioaccumulation for the two sites would also be similar. However, examination of the flux rates for copper at the two sites suggests a much different scenario. The flux rate of copper at Middle Loch was much lower than the flux rate measured at Bishop Point. This indicates that the bulk sediment levels at the two sites do not necessarily reflect the exposure potential. This is further supported by evaluation of the bulk sediment data on a scale normalized for iron content. This analysis indicates that while the levels of copper at Middle Loch fall along the ambient trend, the copper levels at Bishop Point have sources of copper beyond that available from background weathering as shown in Figure 57. In addition, the high oxygen uptake rates at Middle Loch indicate presence of reducing sediments that are likely to contain strong copper binding phases such as sulfides.

These results suggest consideration of a refined exposure model for organisms where the primary exposure is thought to be via the dissolved phase. For example, using the measured flux rates for

copper, the contribution of the sediments to the water can be estimated. This would then be used to quantify the fraction of the biological exposure that could be attributed to this pathway. If this exposure mechanism cannot account for observed uptake or effects, then other pathways or sources must be considered.

Thus the flux rate measurements at the two Pearl Harbor sites illustrate the usefulness of the system in identifying and quantifying exposure pathways between sediments and organisms. The flux results are also consistent with existing knowledge of sediment geochemistry. The results suggest that incorporation of flux measurements on a broader scale will help to improve ecological risk assessments by providing stronger links between bulk sediment chemistry and biological exposure

Figure 57. Pearl Harbor Demonstration Data with Iron-Normalized Bulk Sediment Copper Concentrations.

5.1.6 Pearl Harbor, Hawaii Organics Demonstration

One 72-hour test to demonstrate the application of the Benthic Flux Sampling Device 2 (BFSD 2) in *organics*-contaminated sediments was conducted September 7-10, 2001. The test was conducted at the Navy's Marine Diving and Salvage Unit 1 (MDSU-1) facility located at Bishop Point, Pearl Harbor, Hawaii. Pearl Harbor is identified on the National Priority List (Super Fund) for environmental cleanup and is currently completing a four-year Remediation Investigation (RI) study. The site was selected based on RI results and field screening results conducted in February 1999. It had also been previously used for BFSD2 metals-contaminated sediment studies and provided excellent test conditions (access, support, facilities). The MDSU-1 area is an active industrial location and includes several Navy housing barges, which are periodically moved by tugboats. The area has a depth of approximately 25 feet with generally clear water and medium- to fine-grained sediments. Tidal currents are enough to minimize any flocculent layer. The Alpha Dock site selected is near the site used for the metals test and was close enough to the quay wall to allow both deployment and recovery from shore using an 80-foot crane (See Figure 58).

Figure 58. BFSD2 Pearl Harbor, Bishop Point Organics Demonstration.

The BFSD2 was cleaned and prepared at Space and Naval Warfare Systems Center, San Diego (SSC SD) using the same procedures used during triplicate blank tests and the first organics demonstration. It was then loaded into its re-usable shipping container for air-shipment to Hawaii. The shipping container, designed for compatibility with commercial air cargo carriers, includes compartments, shelving and storage bays sufficient for shipment of BFSD2 as well as all materials and supplies required for extended field operations. Shipping weight was approximately 1450 pounds. For safety reasons the compressed oxygen cylinder was vented to less than 250 psi and no hazardous materials were air-shipped. The container is convenient for onsite storage and access and minimizes working space requirements. After arrival and unpacking, system checks were performed to assure no degradation during shipment had occurred. Oxygen bottle refilling was a problem in that compressed-gas suppliers were not willing to fill the small SCUBA-type cylinder and recreational dive shops would fill it but didn't carry pure oxygen. The problem was resolved when vandals stole the tank and refill fittings from

the rental car trunk. A new, air-filled small dive tank was purchased as a replacement. It was recognized that the lower oxygen content of the compressed air would be marginal in maintaining ambient chamber conditions, however it was generally believed that the diffusive flux component of organic compounds are not dependant on dissolved oxygen levels. Test results were not anticipated to be affected by the use of compressed air.

At the site near the quay wall the crane was positioned with its lift lines measured to allow placement of the BFSD2 at the desired location. An electrical extension cord was connected to a nearby building to provide power for the various deployment equipment (laptop computer, TV monitor and cabling) located in the trunk of the rental car (Figure 59). Preparations for the deployment followed a standard pre-deployment checklist (Figure 60).

Figure 59. Deployment Equipment.

Figure 60. Pre-Deployment Checklist.

After the BFSD2 was lowered to within view of the sediment surface it was established that no obstructions to chamber penetration were present and the decision to deploy was made. The crane lowered the BFSD2 at its maximum descent rate and a good landing was observed with the underwater video monitor. The bottom landing created a minimal amount of sediment resuspension and the water cleared within 15 seconds.

After video confirmation of sufficient sediment penetration to achieve a sea I the 10minute sensor check program was initiated. This program activated closure of the chamber lid which, while closing, simultaneously opened a hinge-mounted valve to collect the ambient-condition water sample (bottle #1). Following lid closure and activation of the recirculation subsystem, measurements of the enclosed water for dissolved oxygen, pH, temperature, pressure and salinity were made and recorded at 6second intervals for 10 minutes. Following completion of the 10-minute program the sensor data was uploaded, processed and entered into a custom data template to confirm sensor functions and to establish initial ambient water conditions. The measurement for ambient dissolved oxygen was used to establish limits for the BFSD2 oxygen control subsystem. These values were entered into the 72-hour flux test program and downloaded to the submerged BFSD2. The limits selected reflected the use of compressed air in place of pure oxygen and allowed a near anoxic lower threshold to be reached before activating the oxygen (i.e. air) recharge valve. Figure 61 shows the ambient dissolved oxygen measurement with the upper and lower control limits superimposed and Figure 62 shows the ambient pH measurement.

Figure 61. Ambient Dissolved Oxygen.

Figure 62. Ambient pH.

With the BFSD2 in place on the bottom, the downloaded 72-hour flux test program with the selected control limits was verified and the program was started. The BFSD2 connections were maintained to monitor and confirm collection of the first chamber sample (bottle #2) and sensor measurement recordings at 6-minute intervals. The crane tackle block was then disengaged from the deployment line and the crane was moved from the area. The deployment line and communication cables were stowed on the pier pilings to facilitate recovery at the completion of the 72-hour flux test.

At the conclusion of the 72-hour time period the BFSD2 communication cable was reconnected to the laptop computer to verify completion of the flux test program and to upload the recorded sensor data. The crane was then repositioned, rigged for recovery and the BFSD2 was lifted off the bottom and onto shore. Once secure on land an initial inspection indicated no damage, all components were intact and all twelve sample bottles were full. From a floating platform positioned over the deployment site a hand-held GPS location record was made and a 250-ml sediment sample was collected. The samples were then removed and transported to the field lab facility for filter removal, lid installation, labeling and preparation for shipment to the Arthur D. Little (ADL) analytical laboratory in Cambridge, MA. The BFSD2 was flushed and cleaned with freshwater, the gel-cell batteries were recharged and the sample collection subsystem was purged with deionized water and dried with forced-air in preparation for the return shipment to SSC SD.

As the samples were being processed, the recorded data files for the 72-hour test were uploaded and entered into a standardized Excel spreadsheet template for data processing. The sensor data, plotted as time-series indicated a successful deployment. As can be seen in Figure 63, there was no sudden pH level shifts indicating loss of chamber seal. The slowly reducing trend for pH level was normal and is indicative of biological activity. The dissolved oxygen level, Figure 64, shows the expected steady decline and control system activation as the level dropped below the lower limit. The decline was temporarily reversed, most likely due to residual pure oxygen in the system, however the recharge was not maintained due to the low oxygen content of the compressed air and the chamber eventually fell below the lower limit and remained at a near anoxic level until the test was completed. It is also noted that the slope of the declining pH became approximately level as the chamber approached anoxic conditions, indicating reduced biological activity. Salinity, temperature and pressure were normal.

Figure 63. Chamber pH.

Figure 64. Chamber Dissolved Oxygen.

The samples were air-shipped from Honolulu International Airport by overnight express (FedEx) the afternoon of Sept 10, 2001. But the events of Sept 11, 2001 grounded all flights nation-wide and the samples were stopped and delayed in Oakland, CA until delivery to ADL on Sept 17, 2001. The samples were intact but exceeded the maximum extraction holding time (7 days) and maximum

storage temperature (4 degrees C.) when received. The conditions were noted and the decision to continue with processing and analysis was made.

5.1.6.1 Pearl Harbor Organics Demonstration Results.

Tables 14, 15 and 16 below provide a summary of the flux results for selected PAHs, PCB congeners and pesticides, respectively. Figures 65, 66, and 67 provide graphical comparison of the flux results with the blank tests results.

Table 14. Summary Results for PAHs.

PAH	Flux	+/- 95% C.L.	Flux rate Confidence	Triplicate Blank Flu	x (ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.	(ng/g)	(ng/L)
9. BENZO(A)ANTHRACENE	75.00	306.84	NA	NA	NA	16,000	Non-Detect
10. CHRYSENE	1048.91	1012.25	98.5%	23.94	22.32	48,000	5.1
11. BENZO(B)FLUORANTHENE	919.89	375.56	99.8%	-134.30	297.91	36,000	6.2
12. BENZO(K)FLUORANTHENE	234.99	156.43	93.3%	-9.71	36.30	10,000	2.5
13. BENZO(A)PYRENE	Non-Detect	NA	NA	NA	NA	12,000	Non-Detect
14. INDENO(1,2,3-C,D)PYRENE	6.72	67.06	NA	NA	NA	7,400	1.6
15. DIBENZ(A,H)ANTHRACENE	Non-Detect	NA	NA	NA	NA	1,500	1.5
16. BENZO(G,H,I)PERYLENE	7.91	64.14	11.6%	20.15	65.15	5,300	1.7

PAH	Flux	+/- 95% C.L.	Flux Rate Confidence	Triplicate Blank Flux	(ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.	(ng/g)	(ng/L)
1. Naphthalene	-110.07	596.59	38.1%	-440.30	458.38	44	13
2. Acenaphthene	2680.41	10124.62	51.2%	-32.40	50.34	3,800	37
3. Acenaphthylene	627.85	1483.64	82.7%	208.47	112.60	1,200	5.6
4. Fluorene	75.17	1894.31	23.4%	-76.74	28.38	4,800	19
5. Phenanthrene	-552.72	1305.06	98.2%	10.95	10.95	54,000	32
6. Anthracene	4053.72	3094.52	100.0%	117.68	64.62	10,000	13
7. Fluoranthene	4435.81	10157.65	97.4%	-1423.95	178.41	270,000	52
8. Pyrene	38.99	4132.13	28.5%	-439.51	70.73	150,000	20

Table 15. Summary Results for PCBs.

PCB	Flux	+/- 95% C.L.	Flux rate Confidence	Blank Flux (ı	ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Flux	+/- 95% C.L.	(ng/g)	(ng/L)
101 - 2,2',4,5,5'-Pentachlorobiphenyl	-2.62	93.70	4%	57.59	31.49	Non Detect	2.1

Table 16. Summary Results for Pesticides.

Pesticide	Flux	+/- 95% C.L.	Blank Flux (r	ng/m²/day)	Bulk Sediment	Overlying Water
	(n g/m ²/day)*	(ng/m²/day)	Flux	+/-95% C.L.	(ng/g)	(ng/L)
Mirex	61.81	110.60	NA	NA	Non Detect	1.00

Figure 65. Flux to Blank Comparison for PAHs.

Figure 66. Flux to Blank Comparison for PCBs.

Figure 67. Flux to Blank Comparison for Pesticides.

5.1.6.1.1 Polynuclear Aromatic Hydrocarbons (PAHs) Results

Complete individual data sets were obtained for all of the first eight lighter molecular weight PAHs (Naphthalene, Acenaphthene, Acenaphthylene, Fluorene, Phenanthrene, Anthracene, Fluoranthene and Pyrene). Complete individual data sets were also obtained for five of the eight heavier molecular weight PAHs (Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Indeno(1,2,3-c,d)pyrene and Benzo(g,h,I)perylene). Partial data sets were obtained for Benzo[a]anthracene (9 of 12 detects) and Dibenzo[a,h]anthracene (4 of 12 detected). No detects were obtained for Benzo[a]pyrene. Flux analysis was accomplished for all complete data sets and the partial data set for Benzo[a]anthracene. However, the Benzo[a]anthracene analysis was abandoned since two of the

three non-detects occurred in the first four samples, as discussed below, and was compounded by a lack of blank test data for statistical comparison.

All trends in concentration change (i.e. flux) were strongly positive for the first four samples in each series of twelve. R² linearity factors for these initial trends were exceptionally high for all except Phenanthrene, Indeno(1,2,3-c,d)pyrene and Benzo(g,h,I)pervlene. The concentration trends for the last eight samples in each series were generally flat or slightly negative with only Benzo(k)fluoranthene maintaining a lowered, but steady increase. R² linearity factors for these trends were correspondingly low. Due to this apparent change in concentration trends occurring after sample number four, coincident with the chamber dissolved oxygen level falling below the control limit at about 15 hours, separate analyses of the first four samples in each series and for the last eight samples in each series were accomplished. Also supporting this approach, the bulk sediment concentration levels for all the analyzed PAHs was directly related to the flux of the first four samples in the series and not for the last eight. And, whereas the relationship between bulk sediment concentrations and overlying water concentrations (measured in the number one sample) appear to be consistent with the solubility relationships discussed in the BFSD Paleta Creek demonstration report, the trend relationships identified for flux, bulk sediment concentrations and solubility appear to hold only for the first four samples. Table 17 shows these relationships for the first four PAH samples and Figure 68 shows the graphical comparison of the measured flux with the blank tests for the first four PAH samples.

Table 17. Summary Results for First Four PAH Samples.

PAH	Flux	+/- 95% C.L.	Flux Rate Confidence	Triplicate Blank Flux	(ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.	(ng/g)	(ng/L)
1. Naphthalene	1,848	4,406	59.1%	-440.30	458.38	44	13
2. Acenaphthene	71,053	327,574	100.0%	-32.40	50.34	3,800	37
3. Acenaphthylene	6,862	14,388	100.0%	208.47	112.60	1,200	5.6
4. Fluorene	10,387	110,972	100.0%	-76.74	28.38	4,800	19
5. Phenanthrene	3,031	106,689	99.4%	10.95	10.95	54,000	32
6. Anthracene	26,955	27,293	100.0%	117.68	64.62	10,000	13
7. Fluoranthene	69,812	380,980	100.0%	-1423.95	178.41	270,000	52
8. Pyrene	24,512	190,722	100.0%	-439.51	70.73	150,000	20

Flux	+/- 95% C.L.	Flux rate Confidence	l	Triplicate Blank Fluo	r (ng/m*/day)	Bulk Sediment	Overlying Water
(ng/m²/day)*	(ng/m²/day)	(%)	H	Average	+/- 95% C.L.	(ng/g)	(ng/L)
Non-Detect	NA	NA		NA	NA	16000	Non-Detect
8792.74	10650.17	100.0%	Ш	23.94	22.32	48000	5.1
3080.74	17862.21	99.4%	Ш	-134.30	297.91	36000	6.2
977.52	3135.53	99.7%	Ш	-9.71	36.30	10000	2.5
Non-Detect	NA	NA	Ш	NA	NA	12000	Non-Detect
122.97	7141.99	NA	Ш	NA	NA	7400	1.6
Non-Detect	NA	NA	Ш	NA	NA	1500	1.5
33.19	5249.47	7.0%		20.15	65.15	5300	1.7
	(ng/m²/day)* Non-Detect 8792.74 3080.74 977.52 Non-Detect 122.97 Non-Detect	(ng/m²/day)* (ng/m²/day) Non-Detect NA 8792.74 10650.17 3080.74 17862.21 977.52 3135.53 Non-Detect NA 122.97 7141.99 Non-Detect NA	Non-Detect NA NA 8792.74 10650.17 100.0% 3080.74 17862.21 99.4% 977.52 3135.53 99.7% Non-Detect NA NA 122.97 7141.99 NA Non-Detect NA NA	(ng/m²/day)* (ng/m²/day) (%) Non-Detect NA NA 8792.74 10650.17 100.0% 3080.74 17862.21 99.4% 977.52 3135.53 99.7% Non-Detect NA NA 122.97 7141.99 NA Non-Detect NA NA	(ng/m²/day)*	(ng/m²/day)* (ng/m²/day) (%) Average +/- 95% C.L. Non-Detect NA NA NA NA 8792.74 10650.17 100.0% 23.94 22.32 3080.74 17862.21 99.4% -134.30 297.91 977.52 3135.53 99.7% -9.71 36.30 Non-Detect NA NA NA NA NOn-Detect NA NA NA NA Non-Detect NA NA NA NA	(ng/m²/day)* (ng/m²/day) (%) Average +/- 95% C.L. (ng/g) Non-Detect NA NA NA NA 16000 8792.74 10650.17 100.0% 23.94 22.32 48000 3080.74 17862.21 99.4% -134.30 297.91 36000 977.52 3135.53 99.7% -9.71 36.30 10000 Non-Detect NA NA NA NA 12000 Non-Detect NA NA NA NA 1500

Figure 68. Flux to Blank Comparison for First Four PAH Samples.

The concentration trend (or flux) for the first four samples in the series, when compared to the statistically derived triplicate blank test trends showed large, significant flux for all of the eight lighter molecular weight PAHs. For seven of these eight PAHs the confidence that the flux was statistically different than the associated blank results was approximately 100%. The confidence for Naphthalene was 59.1%. For the five heavier molecular weight PAHs with complete data sets, the first four samples for Chrysene, Benzo(b)fluoranthene and Benzo(k)fluoranthene had high confidence (approximately 100%); Benzo(g,h,I)perylene had low confidence (7.0%); and

Indeno(1,2,3-c,d)pyrene had insufficient blank test data for comparison. For all the analyzed PAHs except Anthracene of the lighter molecular weight PAHs, and Benzo[b]fluoranthene and Benzo[k]fluoranthene of the heavier molecular weight PAHs, the last eight samples in the series exhibited concentration trends with low and/or negative trends as well as low confidence levels when compared to blank test results. Appendix D ("BP Organics Demo-PAHs.xls") includes time-series graphs showing flux and blank tests concentrations over time for the PAHs. Graphs for the complete data sets (12 samples), for the first four samples and for the last eight samples allow comparison of the flux and blank test results.

5.1.6.1.2 Polychlorinated Biphenyl (PCB) Congeners Results

One complete individual data set was obtained for PCB Congener number 101 (2,2',3,4,4',5,5'-Heptachlorobiphenyl). Partial data sets were obtained for ten PCB Congeners: number 8 (2,4'-Dichlorobiphenyl) with 2 of 12 detections; number 44 (2,2',3,5'-Tetrachlorobiphenyl) with 5 of 12 detections; number 52 (2,2',5,5'-Tetrachlorobiphenyl) with 5 of 12 detections; number 66 (2,3',4,4'-Tetrachlorobiphenyl) with 2 of 12 detections; number 105 (2,3,3',4,4'-Pentachlorobiphenyl) with 5 of 12 detections; number 118 (2,3',4,4',5-Pentachlorobiphenyl) with 1 of 12 detections; number 153 (2,2',4,4',5,5'-Hexachlorobiphenyl) with 1 of 12 detections; number 180 (2,2',3,4,4',5,5'-Heptachlorobiphenyl) with 7 of 12 detections; number 206 (2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl) with 4 of 12 detections; and number 209 (2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl) with 1 of 12 detections. The remaining nine targeted PCB Congeners were not detected in the samples.

Flux analysis is reported for PCB Congener number 101 only, including statistical comparison with blank test data. The flux was small compared to the blank and it was negative (i.e. uptake). The 95% confidence limit values for the computed flux were large and the statistical confidence that the flux value was different than the corresponding blank was very small (4%). PCB Congener number 101 was not detected in the bulk sediment sample. The high flux rate trend noted in the first four samples for PAHs, prior to anoxic chamber conditions, was not evident for PCB Congener number 101 and separate analysis was not undertaken. Appendix D ("BP Organics Demo-PCBs.xls") includes a time-series graph showing flux and blank tests concentrations over time for PCB Congener number 101.

Flux analysis for the remaining PCBs having partial data sets was abandoned due to the degree of incomplete data and/or large intervals between data. Also, none of the PCB congeners with detections in seawater were reported in the bulk sediment analysis results.

5.1.6.1.3 Pesticides

Partial data sets were obtained for six pesticides: 2,4'-DDT with 1 of 12 detections; 4,4'-DDT with 3 of 12 detections; 4,4'-DDD with 4 of 12 detections; Dieldrin with 1 of 12 detections; Endrin with 7 of 12 detections; Mirex with 10 of 12 detections. The remaining ten targeted pesticides were not detected in the samples.

Flux analysis was accomplished for the pesticide Mirex only. No blank test results were available for this pesticide and therefore statistical comparison cannot be made. The computed flux value for Mirex was small with large 95% confidence limit values. Mirex was also not detected in the bulk sediment sample. The high flux rate trend noted in the first four samples for PAHs, prior to anoxic chamber conditions, was not evident for Mirex and separate analysis was not undertaken. Appendix A, Excel spreadsheets(.xls"), includes a time-series graph showing flux and blank tests concentrations over time for the pesticide Mirex.

Flux analysis for the remaining pesticides having partial data sets was not accomplished due to the degree of incomplete data and/or large intervals between data. And again, none were reported in the bulk sediment analysis results.

5.1.6.2 Discussion of Bishop Point Organics Results

Prior to data reduction and analysis, close inspection of the analytical laboratory results indicated a change or "knee" in sample concentration trends occurring after sample four for most PAHs, coincident with the dissolved oxygen level falling below control limits. The same change was not evident for the PCBs or pesticides, however the preponderance of "non detect" concentration levels in the seawater samples coincident with like results in the bulk sediment sample resulted in sufficient seawater data for only one PCB congener and one pesticide flux analysis. The PAHs on the other hand exhibited very large concentrations in the bulk sediment sample and 13 of sixteen yielded sufficient data for flux analysis. After correction for dilution and normalization for comparison to the blank tests the shift in concentration trends became even more evident for the PAHs and remained obscured by low concentration levels for the PCBs and pesticides. Thus separating the data sets into pre- and post-anoxic conditions for analysis allowed the affect of the low oxygen conditions on the PAH flux rates to be isolated to the last eight samples. The mechanism for this observed damping or stopping of the release of PAHs from the sediment is not known but may be related to reduction-oxidation chemistry changes causing soluble metals to precipitate and bind with organic compounds releasing from the sediment. Another possible explanation for the observed flux change may be loss of the irrigation component of the flux due to oxygen deprivation of the infaunal microorganisms. Whatever the mechanism, it is clear that the large PAH concentrations in the sediment are the source of large flux levels entering the water column, albeit evidenced by only the first four samples. It is also clear that maintenance of at least a minimum level of dissolved oxygen (approximately 1.0 ml/L) in the chamber is required to achieve complete flux results for the full duration of the test. As a result of using compressed air in place of pure oxygen for maintenance of the chamber dissolved oxygen conditions, only the four samples collected during the first 14 hours of the test are considered valid for analysis. Of these four, only the last three were collected from the chamber at time intervals of 7 hours and thus the full value of the 12-sample, 70-hour test was not achieved. However, minimum statistical standards are met with the four samples and the following discussion and conclusions derived from them are considered valid.

As found in the Paleta Creek demonstration, the flux results for the lighter molecular weight PAHs indicate greater mobility from the sediment into the overlying water than the heavier compounds. Of interest is the measured concentration of the PAHs in the bulk sediment sample being higher for the mid-molecular weight compounds than for the lighter or the heavier compounds. This distribution of sediment concentrations resulting from the industrial and operational activity at the site, led to high flux levels for even the less soluble heavier molecular weight PAHs compared to the lighter molecular weight PAHs. Notwithstanding this result, it appears that the heavier molecular weight PAHs are significantly less mobile, even with higher concentrations in the bulk sediment, than the lighter compounds. For example, the flux value for Acenaphthene (molecular weight-154) was about the same as Fluoranthene (molecular weight-202), but the bulk sediment concentration is about 1.4% that of Fluoranthene. And, as before, comparison of this finding with solubility measurements of the targeted PAHs in seawater shows the same trend: the heavier molecular weight PAHs are far less soluble. In the example above, Acenaphthene is approximately 16.6 times more soluble than Fluoranthene. Thus even a low mobility, heavier molecular weight PAH with a high enough concentration in the sediment may flux into the overlying water at a higher rate than a lighter compound at lower concentrations.

Based on molecular weight and solubility, the above discussion also generally applies to PCBs and pesticides, i.e. their mobility as indicated by the flux results will be generally in direct proportion to solubility and in inverse proportion to molecular weight. This premise cannot be supported by the results of this demonstration due to the very low concentration levels of the PCBs and pesticides in the sediment. The one PCB and one pesticide detected with sufficient data to allow analysis yielded results with low confidence and no conclusions can be drawn from either the full set of data or the first four samples. It does appear however that both PCBs and pesticides are not a water quality issue for this site.

5.1.6.3 Conclusions for Bishop Point Organics Demonstration Test

The BFSD2 demonstration at Bishop Point, Pearl Harbor was a qualified success. A single factor, use of compressed air in place of pure oxygen for chamber dissolved oxygen maintenance, was responsible for loss of valid data after approximately 14 hours into the 72-hour test. The affect of anoxic level conditions to stop, reduce or interfere with the release of organic compounds from contaminated sediment, previously not anticipated, was established. And, prior to this affect occurring, valid data was obtained.

The results from the first 14 hours of the 72-hour test show that measurement of the mobility of organic compounds from the highly contaminated sediments at the Bishop Point site within the Pearl Harbor Naval Complex was successfully achieved. The measurements, when compared to triplicate blank test results resulted in quantification of large, statistically significant values with high confidence for Polynuclear Aromatic Hydrocarbons (PAHs) fluxing into overlying water. Complete data sets for nearly all of the targeted US EPA priority PAHs were achieved and the flux results are consistent with bulk sediment concentrations, modified by the relative solubility of the compounds. Polychlorinated Biphenyl (PCB) Congeners and pesticides were not measured either because they were not present or because they were below analytical detection limits.

Ideally, a repeat of this test should be conducted to resolve potential questions regarding oxygen control during the measurement of organic contaminant fluxes. It could be conducted at the Bishop Point site or any other site where high levels of targeted organic compounds are present in the sediment. Whereas the first demonstration at Paleta Creek established the capability of the BFSD2 and the related data analysis process to extract meaningful results at a site with moderate levels of contaminants in the sediments, this demonstration only partially established the BFSD2 performance at a site with high levels of organic contaminants in the sediment. A full 72-hour test at such a site would help to demonstrate and establish BFSD2 performance as concentration levels become very large in a high flux level condition. However, even in lieu of this additional testing, it is clear that the BFSD2 can statistically resolve fluxes for a number of organic contaminants even when the number of samples is limited.

5.1.7 Pearl Harbor, Bishop Point, Combined Demonstration

One 72-hour test was conducted to demonstrate the ability of the Benthic Flux Sampling Device 2 to collect samples for both metals and PAH analysis in a single deployment. The The MUDSU-1 facility at Bishop Point, Pearl Harbor, Hawaii was selected because both a metals deployment and a deployment for PAH's were made in the area. The combined demonstration was successfully conducted on December 9-12, 2002. A previous attempt was made in October of 2003, but because of a technical malfunction and issues with the electronic control unit of the BFSD2, that deployment was unsuccessful

The combined demo followed the metals demonstration by 3 years and 10 months and the PAH demonstration by 1 year and 3 months. Although all the deployments were made along the quay wall at the MUDSU-1 facility, deployment logistics made it impossible to sample the exact spot in all three deployments. Hence, the combined demo position was 20 meters west of the metals deployment and 34 meters east of the PAH deployment (Figure 69). These distances should not be significant in comparing overall operation of the BFSD between deployments at a general site, but some patchy contamination of sediments may be exhibited in the results with some contaminants. Also, the difference in time between deployments could conceivably show some variability in results.

The preparation and deployment for the combined demo followed very closely the procedures and events of the previous PAH demonstration deployment. The BFSD2 was cleaned, packed and shipped from SSC San Diego. When unpacked at Pearl Harbor, all systems were assembled, inspected and checked. The oxygen bottle was filled with O_2 , and no problem with oxygen limitations was anticipated or encountered during the deployment as it was with the PAH deployment.

The BFSD2 was lowered into the water with a crane along the quay wall, and a pre-deployment checklist was followed. After the bottom was scanned with the onboard video camera and determined to be appropriate, the BFSD2 was landed and pre-deployment measurements taken. After the 10-minute pretest, sensors had stabilized and an oxygen range to be maintained could then be programmed for the 72-hour test from values taken during the pretest (Fig. 70). The 72-hour test was then started. Cables leading from the BFSD were disconnected from power, computers and video monitors and, together with a recovery line, were coiled and stored along the quay wall.

Figure 70. Pearl Harbor, Bishop Point Combined Metals Pre-Deployment Sensor Graphs.

Occasionally during the test, the cables were reconnected to the computer and video monitor and status was determined. All appeared normal during these checks and the cables resecured.

After 72 hours, the test was halted. Before the BFSD2 was raised from the bottom, data were uploaded via the stored cables on the quay wall. The BFSD2 was then raised from the bottom with the crane and deposited on the pier. The 24 sample bottles were briefly checked and found to be all full. They were then washed down, disconnected and removed from their racks. Samples were then taken to the field lab where filters were removed, labels added and they were shipped to Battelle labs for analysis.

Logged data were entered into Excel spreadsheets templates for processing. Oxygen and pH data show the deployment was successful in maintaining a tight seal and maintenance of the flux chamber integrity. Figure 71 shows a steady decline in pH which indicates no loss of seal or sudden contamination from outside the chamber. Figure 71 also shows the chamber was maintained oxic with the assistance of the O₂ feedback and injection system.

Figure 71. Pearl Harbor, Bishop Point Combined Metals Full Test Sensor Graphs.

5.1.7.1 Pearl Harbor Combined Demonstration Results

Table 18 gives a summary of the flux results for metals and Figure 72 show these in graphical form. Flux of dissolved oxygen from the chamber, or the oxygen demand of the sediments, is also given in Table 18. This was calculated from the O_2 data logged from the chamber during the first decreasing slope in the 72-hour test before the O_2 feedback injection system raised the O_2 level.

Metals behaved similarly in this combined demonstration as they did in the original metals demonstration at the Bishop Point Site except for copper (Figure 73). Cadmium, lead, nickel, manganese and zinc all fluxed out of the sediments, a trend which is consistent with previous work,

while copper was adsorbed by the sediment. Copper fluxed out of the sediments during the initial study. Manganese behaved similarly in both studies in that it exhibited a higher flux rate during the first three samples of the test then leveled off for the remainder of the test period. This trend with Manganese is discussed in the Paleta Creek discussion section 5.1.3.1. Flux rates for manganese for the first 14 hours of the test as well as for the entire test are presented here. In general, flux rates were higher during this combined demonstration than during the metals-only demonstration.

PAH flux results are presented in two ways. First, the entire 72-hour test results with all twelve samples are presented. These data are presented in Figures 74 and 75 and Table 19. Then, secondly, results from the first four samples of the test, those up to 21.3 hours into the test, are shown. This is for comparison to the original organics-only demonstration where flux rates showed an initial slope then plateaued. In the original test, oxygen depletion in the chamber was theorized as the cause for this plateau, but oxygen levels were successfully maintained in the chamber during the second test. For whatever reasons this plateauing occurs, the trend seemed to repeat itself during the combined demonstration. For comparison purposes, the "first four" data are used to calculate flux rates.

Table 18. Pearl Harbor, Bishop Point Combined Metals Summary of Metals.

Metal	Flux	+/- 95% C.L.	Flux rate Confidence	Triplicate Blank	Flux (□g/m²/day)
	(□g/m²/day)*	(□g/m²/day)	(%)	Average	+/- 95% C.L.
Arsenic (As)	23.48	6.94	100%	-5.16	2.10
Copper (Cu)	-71.30	39.43	100.0%	2.82	8.73
Cadmium (Cd)	1.31	1.63	98.1%	-0.52	0.75
Lead (Pb)	17.40	24.63	99.0%	3.16	1.59
Nickel (Ni)	59.18	55.96	100.0%	10.28	7.34
Manganese (Mn)	427.65	238.42	100.0%	-264.85	7.49
Manganese (Mn) ¹	1940.13	3853.39	100.0%	-264.85	7.49
Silver (Ag)	-0.36	0.88	86.1%	0.64	0.68
Zinc (Zn)	374.36	133.74	100.0%	-3.38	65.22
Other					
Oxygen (O₂)* (*ml/m²/day)	-1457.09	48.92	na	na	na
Silica (SiO₂)* (*mg/m²/day)	0.00	0.00	48%	-1.97	2.88

Flux rates for PAH's were similar in this combined test as it was in the original test. All PAH's that were measured fluxed out of the sediments except for phenanthrene. The largest flux rate measurement was for fluoranthene which also showed a large presence in the original test. This was followed by anthracene, acenaphthene and naphthalene, again similar to the original test. Similarities from the first test were also seen in the heavier molecular weight PAH's as benzo(a)pyrene, benzo(k) flouranthene and chrysene showed large presence. Benzo(a) pyrene also showed a spike in this test but wasn't detected in the original test.

Figure 72. Pearl Harbor, Bishop Point Combined Metals Comparison of Flux and Blanks.

Figure 73. Pearl Harbor Bishop Point Combined Demonstration Metals Time Series Graphs.

Table 19. Pearl Harbor, Bishop Point Combined Demo Summary Results for PAH's (all samples).

PAH	Flux	+/- 95% C.L.	Flux Rate Confidence	Triplicate Blank Flux	k (ng/m²/day)
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.
1. Naphthalene	711.03	2352.17	92.8%	-440.30	458.38
2. Acenaphthene	-1387.81	1989.31	91.4%	-32.40	50.34
3. Acenaphthylene	106.66	213.64	31.9%	208.47	112.60
4. Fluorene	-359.38	256.56	100.0%	-76.74	28.38
5. Phenanthrene	-639.76	1228.00	99.6%	10.95	10.95
6. Anthracene	763.68	546.29	100.0%	117.68	64.62
7. Fluoranthene	2749.93	3651.35	100.0%	-1423.95	178.41
8. Pyrene	2191.62	2392.29	100.0%	-439.51	70.73
РАН	Flux	+/- 95% C.L.	Flux rate Confidence	Triplicate Blank Flux	(ng/m²/day)
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.
9. BENZO(A)ANTHRACENE	152.67	140.49	NA	NA	NA
10. CHRYSENE	286.65	341.92	94.7%	23.94	22.32
11. BENZO(B)FLUORANTHENE	561.07	376.08	97.9%	-134.30	297.91
12. BENZO(K)FLUORANTHENE	452.24	465.75	82.8%	-9.71	36.30
13. BENZO(A)PYRENE	383.46	603.38	NA	NA	NA
14. INDENO(1,2,3-C,D)PYRENE	8.68	10.98	NA	NA	NA
15. DIBENZ(A,H)ANTHRACENE	-1.97	7.69	NA	NA	NA
16. BENZO(G,H,I)PERYLENE	8.77	10.59	12.9%	20.15	65.15

Figure 74. Pearl Harbor, Bishop Point Combined PAH Comparison of Flux to Blanks (all samples).

Figure 75. Pearl Harbor, Bishop Point Combined Demonstration PAH Time Series Graphs (all samples).

Table 20. Pearl Harbor, Bishop Point Combined Demo Summary Results for PAH's (First 4 samples).

PAH	Flux	+/- 95% C.L.	Flux Rate Confidence
	(ng/m2/day)*	(ng/m2/day)	(%)
1. Naphthalene	2456.72	13211.63	100.0%
2. Acenaphthene	9222.27	6867.34	100.0%
3. Acenaphthylene	778.37	880.29	100.0%
4. Fluorene	285.70	2021.66	100.0%
5. Phenanthrene	-3555.98	7892.27	100.0%
6. Anthracene	2874.10	1330.22	100.0%
7. Fluoranthene	19696.65	3869.67	100.0%
8. Pyrene	12101.21	3884.64	100.0%
PAH	Flux	+/- 95% C.L.	Flux rate Confidence
PAH	Flux (ng/m2/day)*	+/- 95% C.L. (ng/m2/day)	Flux rate Confidence (%)
PAH 9. BENZO(A)ANTHRACI	(ng/m2/day)*		Flux rate Confidence (%)
	(ng/m2/day)*	(ng/m2/day)	(%)
9. BENZO(A)ANTHRACI	(ng/m2/day)* 760.90	(ng/m2/day) 668.14	(%)
9. BENZO(A)ANTHRACI 10. CHRYSENE	(ng/m2/day)* 760.90 1949.20	(ng/m2/day) 668.14 1370.02	(%) NA 100.0%
9. BENZO(A)ANTHRACI 10. CHRYSENE 11. BENZO(B)FLUORAN	(ng/m2/day)* 760.90 1949.20 1878.90	(ng/m2/day) 668.14 1370.02 2921.78	(%) NA 100.0% 100.0%
9. BENZO(A)ANTHRACI 10. CHRYSENE 11. BENZO(B)FLUORAN 12. BENZO(K)FLUORAN	(ng/m2/day)* 760.90 1949.20 1878.90 1890.04 1413.41	(ng/m2/day) 668.14 1370.02 2921.78 1526.34	(%) NA 100.0% 100.0% 100.0%
9. BENZO(A)ANTHRACI 10. CHRYSENE 11. BENZO(B)FLUORAN 12. BENZO(K)FLUORAN 13. BENZO(A)PYRENE	(ng/m2/day)* 760.90 1949.20 1878.90 1890.04 1413.41 41.71	(ng/m2/day) 668.14 1370.02 2921.78 1526.34 1785.07	(%) NA 100.0% 100.0% 100.0% NA

-440.30	/ 050/ 0 !
-440.30	+/- 95% C.L.
	458.38
-32.40	50.34
208.47	112.60
-76.74	28.38
10.95	10.95
117.68	64.62
-1423.95	178.41
-439.51	70.73
Triplicate	Blank Flux (ng/m2/day)
Average	
NA	NA
	22.32
23.94	I
23.94 -134.30	297.91
	297.91 36.30
-134.30	
-134.30 -9.71	36.30
-134.30 -9.71 NA	36.30 NA

Figure 76. Pearl Harbor, Bishop Point Combined PAH Comparison of Flux to Blanks (First 4 samples).

Figure 77. Pearl Harbor, Bishop Point Combined Demonstration PAH Time Series Graphs (First 4 samples).

5.1.7.2 Pearl Harbor Combined Demonstration Discussion

For the most part, flux rates for metals and organics behaved similarly at the Bishop Point sight for both the organics-only, metals-only and this combined demonstration of both organics and metals. Tables 21 and 22 show a side by side comparison of these demonstration flux results.

Table 21. Comparison of Flux Rates from Metals-only and Combined Demonstrations.

	Combine	d Demo	Metals On	ly Demo
Metal	Flux	+/- 95% C.L.	Flux	+/- 95% C.L.
	(□g/m2/day)*	(□g/m2/day)	(□g/m2/day)*	(□g/m2/day)
Arsenic (As)	23.48	6.94		
Copper (Cu)	-71.30	39.43	112.46	17.60
Cadmium (Cd)	1.31	1.63	1.85	1.96
Lead (Pb)	17.40	24.63	0.71	1.11
Nickel (Ni)	59.18	55.96	21.04	15.41
Manganese (Mn)	427.65	238.42	223.33	284.79
Manganese (Mn)1	1940.13	3853.39	2177.45	192.60
Silver (Ag)	-0.36	0.88		
Zinc (Zn)	374.36	133.74	191.18	54.07

Copper and zinc are the only metals which showed a significant difference between sampling during the first metals only demo and the combined demo. Copper actually showed a reverse trend during the second test. Zinc flux rate was higher during the combined demo than during the first. However, cadmium, lead, nickel and manganese showed similar trends and lay within the 95% confidence intervals of the calculated slopes. Arsenic and silver were not reported during the first test and could not be compared here.

Flux rates for PAH's were calculated for the first 4 samples taken in order to compare with the original Bishop Point organics test. Concentrations for PAH's for both tests evened out or plateaued after the fourth sample was collected at about 22 hours. The "first four" flux rates are probably more realistic as that was measured before any interference or interaction with natural, in-situ processes caused by the chamber itself. The only organic which was significantly different from the first test was Phenanthrene which showed a negative flux or and absorption into sediments during the combined demo. All other organic compounds measured during the first test showed similar flux rates when compared to the 95% confidence limits of the flux curves.

The cause for the organic concentrations leveling off is not immediately known. Low oxygen levels and anoxic conditions inside the chamber during the first test were blamed for the effect. However

adequate oxygen conditions were maintained during the second test with the same result. High bulk sediment concentrations measured at Bishop Point may suggest a loading or saturation of PAH's within the chamber after 22 hours which would result in a dampening of the flux processes.

Table 22. Comparison of Flux Rates from PAH-only and Combined Demonstration.

Table 22. Comparison of Flux R			Compine		
	Combined				nly Demo
PAH	Flux	+/- 95% C.L.		Flux	+/- 95% C.L.
	(ng/m2/day)*	(ng/m2/day)		(ng/m2/day)*	(ng/m2/day)
1. Naphthalene	2456.72	13211.63		1848.00	4406.00
2. Acenaphthene	9222.27	6867.34		71053.00	327574.00
3. Acenaphthylene	778.37	880.29		6862.00	14388.00
4. Fluorene	285.70	2021.66		10387.00	110972.00
5. Phenanthrene	-3555.98	7892.27		3031.00	106689.00
6. Anthracene	2874.10	1330.22		26955.00	27293.00
7. Fluoranthene	19696.65	3869.67		69812.00	380980.00
8. Pyrene	12101.21	3884.64		24512.00	190722.00
PAH	Flux	+/- 95% C.L.		Flux	+/- 95% C.L.
	(ng/m2/day)*	(ng/m2/day)		(ng/m2/day)*	(ng/m2/day)
9. BENZO(A)ANTHRACENE	760.90	668.14		Non-Detect	NA
10. CHRYSENE	1949.20	1370.02		8792.74	10650.17
11. BENZO(B)FLUORANTHENE	1878.90	2921.78		3080.74	17862.21
12. BENZO(K)FLUORANTHENE	1890.04	1526.34		977.52	3135.53
13. BENZO(A)PYRENE	1413.41	1785.07		Non-Detect	NA
14. INDENO(1,2,3-C,D)PYRENE	41.71	103.62		122.97	7141.99
15. DIBENZ(A,H)ANTHRACENE	34.46	85.60		Non-Detect	NA
16. BENZO(G,H,I)PERYLENE	39.90	99.12		33.19	5249.47

5.1.8 Paleta Creek and Pearl Harbor Metals Demonstrations Data Assessment.

BFSD2 performance assurance indicators show that: (1) a proper seal was achieved during both sets of demonstration deployments and chamber isolation of test water was maintained; (2) oxygen levels were maintained close to ambient levels, and; (3) silica, oxygen and pH trends varied as expected.

It was concluded that the two sets of deployments of BFSD2 at Paleta Creek and at Pearl Harbor, Hawaii demonstrated consistent performance and the ability to measure trace metal mobility at distinctly different sites. Ease of operation and reliability were also demonstrated. It was further concluded that BFSD2 can provide accurate and repeatable measurements of the mobility of trace metal contaminants to and from shallow water marine sediments when certain prerequisite conditions

are met. These sediment flux rates can be established with high confidence when the routine procedures, standard methods and protocols demonstrated during this study are followed. The BFSD2 and its support equipment are mobile by air transport, field portable and can be operated with a minimum of resources. Comparison of measured sediment fluxes with blank-chamber fluxes provides a statistical benchmark for the significance of the measured flux rates. Where statistically significant fluxes are observed, evaluation of impacts on water quality can be carried out, or comparisons can be made to bioaccumulation measurements to help identify exposure pathways. The resulting analysis will provide a significant new tool in evaluating potential cleanup options at contaminated sediment sites.

5.1.9 Technology Comparison

There are no directly comparable technologies to the Benthic Flux Sampling Device for *in situ* contaminated sediment flux measurements. Current alternative approaches, such as bulk sediment analysis, have been discussed throughout this report. Alternate methods and associated costs are discussed in section 6.1.4. Site specific considerations must be considered in determining which combination of technologies will provide the best information. Data analysis and interpretation is likewise dependent on site specific considerations as illustrated in this report.

6. Cost Assessment

6.1 Cost Performance

The expected operational costs for the Benthic Flux Sampling Device 2 (BFSD2) are largely driven by analytical laboratory costs. Although typical analytical laboratory prices have shown reductions, the detection level required to achieve meaningful BFSD2 flux measurements requires specialized equipment and highly skilled technicians available at limited sources. Other BFSD2 expected operational costs are driven primarily by labor, supplies and transportation costs during the preoperational, operational and post-operational phases of deployment. The combined metals and organics demo has shown how a single deployment can collect data for both metals and organic compounds thus reducing the cost if both are desired at a single location. Lab analysis costs are increased but are offset by logistical and travel costs.

6.1.1 Pre-Operational Phase Costs

The costs incurred prior to field operations are derived from expenses involved with: site research and applicability; logistics planning and scheduling; equipment maintenance and repair; and predeployment readiness preparations (supplies, packing, checkout). Table 23 and Figure 78 below include expected pre-operational phase costs and an associated schedule of activities.

Table 23. Expected Pre-Operational Phase Costs for BFSD2 Deployment.

	La	bor	Non-	Labor	Totals
	Govt	Contr	Matls	Other	
Site Research	\$5,580	\$0	n/a	\$1,000	\$6,580
Logistics Plans	\$7,000	\$0	n/a	\$0	\$7,000
Maint and Repair	\$1,600	\$4,200	\$500	\$0	\$6,300
Readiness Prep	\$2,000	\$10,850	\$500	\$0	\$13,350
Totals	\$16,180	\$15,050	1000	\$1,000	\$33,230

Figure 78. Expected Pre-Operational Phase Schedule for BFSD2 Deployment.

6.1.2 Operational Phase Costs

The costs incurred for field operations are derived from expenses involved with: equipment transportation; personnel travel and per diem; field facilities (shoreside work area, surface vessel, handling equipment); deployment, recovery and turnaround on a 5-day cycle; and analytical laboratory costs for one blank test and the required number of sites. Table 24 and Figure 79 below include expected operational phase costs and an associated schedule of activities.

Table 24. Expected Operational Phase Costs for BFSD2 Deployment.

	La	bor		Non-Labo	r	Totals
	Govt	Contr	Matls	Lab	Other	
Equip Trans	\$100	\$200	\$0	n/a	\$1,000	\$1,300
Travel	\$800	\$600	\$0	n/a	\$1,240	\$2,640
Equip/Facilities	\$1,600	\$1,200	\$0	\$0	\$0	\$2,800
Blank Test	\$4,000	\$3,000	\$0	\$12,000	\$1,200	\$20,200
Site #1	\$4,000	\$3,000	\$0	\$12,000	\$2,700	\$21,700
Site #2	\$4,000	\$3,000	\$0	\$12,000	\$2,700	\$21,700
Totals	\$14,500	\$11,000	\$0	\$36,000	\$8,840	\$70,340

Figure 79. Expected Operational Phase Schedule for BFSD2 Deployment.

The operational phase costs for one site, which includes the costs for transportation, setup and a blank test are \$48,640, of which 49% is for analysis of the samples. Each additional site adds \$21,700 to the total, of which 55% is for analysis of the samples. The operational phase schedule is likewise strongly driven by the standard 60-day laboratory analysis time, which can be shortened to 30-days or less, at additional cost. The 5-day operations period for a BFSD2 72-hour deployment, recovery and turnaround cycle fits conveniently with a standard workweek schedule. An accelerated schedule which shortens turnaround time and includes weekend work periods can achieve two deployments per week.

6.1.3 Post-Operational Phase Costs

The costs incurred following completion of site operations are derived from expenses involved with: equipment packing and transportation; personnel travel; data processing, analysis and interpretation; report preparation. Table 25 and Figure 80 below include expected post-operational phase costs and an associated schedule of activities.

Table 25. Expected Post-Operational Phase Costs for BFSD2 Deployment.

	La	bor		Non-Labo	r	Totals
	Govt	Contr	Matls	Lab	Other	
Equip Pkg/Trans	\$0	\$1,500	\$0	n/a	\$1,000	\$2,500
Travel	\$800	\$600	\$0	n/a	\$1,240	\$2,640
Data Review	\$20,000	\$13,000	\$0	\$0	\$0	\$33,000
Report Prep	\$24,000	\$0	\$0	n/a	\$0	\$24,000
Totals	\$44,800	\$15,100	\$0	\$0	\$2,240	\$62,140

				ontl	ո 4		M	ontl	ı 5	N	I oi	nth	6	N	Io	ıth	7	M	on	th 8	3	Mo	ontl	1 9	Μ	[ont	h 10	1 0	Мo
No.	Activity	Cost	1	617	18	19	20	212	222	3 24	125	26	27	28	293	303	313	233	34	35	363	373	8 39	40	41	42 4 3	344	45	46
31	Post-Operational Phase	\$62,260							+	٠	H					ŧ	+	+	H		+					+			
32	Equipment Packing/Transportation	\$2,500		\$	2,5	00																							
33	Personnel Travel	\$2,640		V	\$2	,64	0																						
34	Data Processing, Analysis, Interpretat	\$33,120											Г	Δ		Ť					+			\$	33,	120			
35	Report Preparation	\$24,000											L			+					+	+					V	\$2	24,

Figure 80. Expected Post-Operational Phases Schedule for BFSD2 Deployment.

The post-operational phase costs are largely the labor costs to process, analyze, interpret and report the results of the BFSD2 deployments. The costs are approximately the same regardless of the number of deployments as long as the sites have generally common geophysical and geochemical characteristics. The schedule is driven by the inactive period of time while awaiting results from laboratory analysis of the samples.

6.1.4 Alternative Methods

As discussed extensively in key reference 3, alternative sample collection methods to BFSD2's *in situ* collection and filtering of samples from the sediment-water diffusive interface are available. As with BFSD2, samples collected with alternative methods will require equivalent specialized laboratory analyses in order to determine contaminant flux rates. Those costs would be equivalent. Thus a direct comparison focusing on the method of sample collection is useful. Available alternate methods fall into two approaches, *ex situ* and *in situ*. Either of the approaches introduce error sources not present with BFSD2 and minimizing the affects of the error sources increases costs and complexity. Sample integrity becomes a significant factor. These issues aside, *ex situ* approaches can be as much as 50% cheaper for the field work, but this advantage quickly disappears with sediment processing costs. Alternative *In Situ* approaches, where applicable, may yield even greater savings than 50% for the field work, but careful consideration of the factors discussed below may discourage their use.

Both alternative approaches involve isolation of sediment pore water. With either approach, the primary source of error is the oxidation of anoxic pore water, which can significantly alter the aqueous phase trace metals. To prevent oxidation, samples must be processed and handled in an inert atmosphere, typically nitrogen or argon. Ex Situ methods typically first collect sediment samples which then require additional processing to extract pore water - requiring an inert atmosphere. Centrifuging or squeezing the sediment are accepted practices, but they too introduce error sources including solid-solution interactions. Sectioning samples prior to extraction to resolve sample depth for gradient determinations also adds cost and introduces errors. In addition, Ex Situ samplers must be rugged enough for field use yet provide isolation of the sediment sample from metal components. This is particularly difficult for dredging and grab sampling equipment however coring equipment can include non-metallic sleeves. Alternative in situ methods collect pore water samples at the sediment interface using either suction filtration techniques or dialysis. In Situ filtration techniques are limited to coarse grain sediments and do not offer depth resolution. Dialysis techniques incur minimum error sources, but suffer sample collection times as long as 20 days and produce small sample volumes. Periodic sample collection comparable to BFSD2 could require months, which in turn raises a number of additional issues.

7. Regulatory Issues

7.1 Approach to Regulatory Compliance and Acceptance

Regulatory acceptance has been a fundamental part of this project from the start and was included in the initial execution plan. The approach included application to the California Environmental Protection Agency (CA EPA), Department of Toxic Substances Control (DTSC) program known as "Cal Cert". A formal "Services Agreement" was signed with the State of California and funded for technology evaluation and certification services. In addition, CA EPA membership in the Interstate Technology and Regulatory Cooperation (ITRC) group of the Western Governors Association (WGA) and the resulting multi-state recognition of certified technologies by at least the 26 member states' environmental protection agencies promotes recognition and acceptance the BFSD2. Recognition and acceptance by the U.S. Environmental Protection Agency (US EPA), as well as private sector, Native American and foreign interests, is also promoted by their active participation in the ITRC. And, US EPA, state, local and private environmental professionals, as well as CA EPA evaluators were in attendance at field demonstrations, which included technology briefings and displays. Finally, certification by CA EPA includes public notifications and listings officially distributed to a wide range of recipients.

The Cal Cert application involved CA EPA review of the technology including background publications, reports, test and evaluation data, and a SSC SD site visit for technical discussions and equipment inspection. Due to the unique nature of the BFSD2 technology, a DTSC-wide search for a qualified lead technology evaluator was necessary to locate and secure the services needed for this project. Following acceptance of the Cal Cert application a performance claim was made by SSC SD After initial certification for metals, the CA Cert formal Services Agreement was amended to include organics applications. Additional funds to support their organics evaluation were provided also as amendments to previous documents.

The demonstrations performed for this project were key elements in the Cal Cert process. CA EPA evaluators reviewed the site selections, the test plans and attended the field demonstrations. Independent measurements, data review and analyses were accomplished by the CA EPA evaluators. Appendix F is the formal Cal Cert certificate and publicly released report. The Final Technology Evaluation report is listed in References, Section 10.

8. Technology Implementation

8.1 DoD Need

Sediments in many US bays and harbors are contaminated with potentially harmful metal and organic compounds. Contamination occurred directly through disposal of shipyard and shipboard waste, and indirectly through urban runoff and groundwater exchange with land sites. Federal, state and local regulatory agencies are in the process of adopting strict sediment quality criteria. These regulations represent a significant compliance issue for the DoD relative to discharge practices, dredging operations and clean-up techniques. Previous studies indicate that biological uptake, accumulation, and toxicity result primarily from the fraction of the toxicant pool that is readily solubilized. In surface sediments, the production of this soluble fraction will, in most cases, cause it to migrate through the pore water and across the sediment-water interface. Contaminated sediments at DoD sites pose a potential human health and ecological risk. Source control programs will not eliminate sediment contamination immediately because of the slow degradation and cycling processes that control many pollutants in these systems

For these reasons, benthic toxicant fluxes can provide a unique *in situ* indicator of bioavailability and hence an estimate of the potential for risk to human health or environmental harm. Using direct measurements, DoD can reduce the escalating costs of compliance and remediation of contaminated sediments by determining if the contamination poses a significant risk for remobilization. Quantifying the mobility of these in-place contaminants is an essential requirement for deciding the proper method of remediation. The complexity of marine sediment systems makes it very difficult to predict contaminant mobility by indirect methods. There is currently no other satisfactory direct means of quantifying the mobility of contaminants from marine sediments except the Benthic Flux Sampling Device (BFSD2 and its prototype version).

8.2 Transition

Technology transition of the BFSD2 is well underway. It consists of commercialization, regulatory acceptance, product improvement, and performance extension elements.

8.2.1 Commercialization

BFSD2 is a commercialized version of the prototype BFSD. The prototype BFSD was used during the Research, Development, Test and Evaluation (RDTE) phase of the program and was followed by fabrication of BFSD2 during the subsequent Acquisition phase. A Technical Data Package (TDP) and procurement package were generated to support a fixed-price, competitive contract solicitation for fabrication of a commercialized version of the prototype BFSD, called BFSD2. The winner, Ocean Sensors, Incorporated in San Diego, utilized commercial-off-the-shelf (COTS) and replaceable/repairable assemblies in meeting the requirements of the TDP.

8.2.1.1 Cooperative Research and Development Agreement

A Cooperative Research and Development Agreement (CRADA) was negotiated with Ocean Sensors, Inc., however it was not formalized and consummated. The company suggested, and SSC SD agreed, that a formal CRADA would not promote its goals for producing additional systems for other customers in response to market demand. No conflicting intellectual property issues were identified with their strategy and the company is currently awaiting new orders.

8.2.2 Regulatory Acceptance

See Approach to Regulatory Compliance and Acceptance, Section 7.1.

8.2.3 Product Improvement

Both incremental and continuing product improvements have been included in technology implementation. New methods, processes and procedures applicable to the BFSD2 were evaluated for use as a result of problems, constraints or other drawbacks identified during operations.

8.2.3.1 Incremental Product Improvements

Incremental improvements were implemented during the project, such as: reconfiguring the circulation pump for improved flow rate control: reconfiguring for *in situ* sample filtration using vacuum-filled collection bottles; installation of a insertion sensor subsystem to assure minimum sediment penetration; installation of a subsystem to inject sodium bromide into the collection chamber as a conservative tracer to facilitate more accurate volume determination. Care was taken to assure that such improvements did not invalidate ongoing certification efforts.

8.2.3.2 Continuing Product Improvements

Continuing improvements were implemented during the project, such as: method, timing and location for collection of a suitable ambient water sample; numerous computational spreadsheet data reduction, processing and display improvements; numerous improvements for turnaround cleaning and preparation; processes and procedures to improve maintenance and minimize corrosion. Again, care was taken to assure that such improvements did not invalidate ongoing certification efforts.

9. Lessons Learned

9.1 Flexibility

This project has been relatively straight forward and trouble free. As with any multi-faceted program which involves a complex new technology, flexibility must be maintained in order to accommodate any number of emergent issues. Plans and schedules must flex to allow for changes. This project suffered delayed funding at several points, but plans were flexible enough to allow work around efforts which ultimately recovered schedule losses. Technical approaches must flex to allow for changes. This project benefited from a number of incremental and continuing product improvements which were accommodated within the technical approach without invalidating demonstration results.

9.2 Mother Nature

Earlier studies had forecast it and it was clear from demonstration results that contaminated sediments are non-homogeneous and are subject to influences involving benthic organisms, complex marine geochemistry, and other factors. Accommodation of differences between blank measurements made a few days apart and site measurements made a few feet apart were necessary.

9.3 Statistics

With consideration for the very low levels of contaminants being measured (parts per *billion* and lower!) metrics involving statistical methods were needed to put meaning to results. Accommodation for results in terms of probabilities and confidence levels must be made to tease out the true meaning of some flux measurements. All throughout, consistent and repeatable materials, processes and procedures were necessary to minimize their influence on true results.

10. References

Key References

- 1. A.Tengberg, et al "Benthic Chamber and Profiling Landers in Oceanography A Review of Design, Technical Solutions and Functioning"
- 2. A.Tengberg, et al, Draft "Hydrodynamics in Benthic Chambers for *In Situ* Studies I: Results from an Intercalibration Involving 14 Different Designs", 8 Mar 1997
- 3. S.E.Bufflap and Herbert E. Allen, "Sediment Pore Water Collection Methods for Trace Metal Analysis: A Review", *Wat. Res.* Vol. 29, No. 1, pp 165-177, 1995
- 4. D.B.Chadwick, et al "A Benthic Flux Chamber for Monitoring Pollution Exchange Rates at the Sediment-Water Interface"
- 5. D.B.Chadwick, et al "Autonomous Benthic Lander for Polluted Bays, Harbors", *Sea Technology*
- 6. D.B.Chadwick, et al "An Instrument for the *In Situ* Measurement of Contaminant Flux Rates at the Sediment-water Interface", submitted to *Environmental Science and Technology*
- 7. J.M.Leather, et al "Contaminant Flux Measurements Across the Sediment-Water Interface in San Diego Bay", *Oceans '95*
- 8. NCCOSC RDTE Div, Code 52 Draft Final Report, "Sediment Quality Characterization Naval Station San Diego", October 1996
- 9. NCCOSC RDTE DIV San Diego Contract N66001-97-C-0049 Awarded to Ocean Sensors, Inc., 21 Mar 1997
- 10. SPAWARSYSCEN San Diego contract N66001-98-D-5015 awarded to Tetra Tech, Inc., 26 August 1998
- 11. Technology Demonstration Plan for ESTCP Project 199712, *In Situ* Instrument for Quantifying Contaminant Mobility in marine Sediments, May 1998
- 12. California EPA Technical Report of Evaluation and Certification of Benthic Flux Sampling Device, Report TBD
- 13. ESTCP General Cost and Performance Report Guidance for Site Characterization Projects, June 1998 (Draft)
- 14. ESTCP Final Report Guidelines for Funded Projects, 15 April 1996

General References

- 1. Berelson, WM., D.E. Hammond, K.L. Hinga, G.T. Rowe, and F. Sayles, 1987. *In Situ* Benthic Flux Measurement Devices: Bottom Lander Technology. MTS Journal, V.21(2):26-32.
- 2. Berner, R.A., 1980. *Early Diagenesis: A Theoretical Approach*. Princeton University Press, Princeton, New Jersey, 241p.
- 3. Casas, A.M., and E.A. Crecelius, 1994. Relationship Between acid Volatile Sulfide and the Toxicity of Zinc, Lead, and Copper in Marine Sediments. Environmental Toxicology and Chemistry, V.13(3):529-536.
- 4. Chadwick, D.B., S.D. Stanley, and S.H. Lieberman, 1993. A Benthic Flux Chamber for Monitoring Pollution Exchange Rates at the Sediment-water Interface. Proceedings Oceans '93:196-206.
- 5. Di Toro, D.M., J.D. Mahony, D.J. Hansen, K.J. Scott, M.B. Hicks, S.M. Mayr, and M.S. Redmond, 1990. Toxicity of Cadmium in Sediments: the Role of Acid Volatile Sulfides. Environmental Toxicology and Chemistry, V. 9:1487-1502.
- 6. Huettel, M., and G. Gust, 1992. Solute Release Mechanisms from Confined Sediment Cores in Stirred Benthic Chambers and Flume Flows. Marine Ecology Service, V.82:187-197.
- 7. Rhoads, D.C., R.C. Aller, and M.B. Goldhaber, 1977. The Influence of Colonizing Benthos on Physical Properties and Chemical Diagenesis of the Estuarine Seafloor. In Coull, B.C. (ed), *Ecology of Marine Benthos*, University of South Carolina Press, Columbia, pp. 113-138.
- 8. Westerlund, S.F.G., L.G. Anderson, P.O.J. Hall, A. Iverfelt, M.M. Rutgers van der Loeff, and B. Sundy, 1986. Benthic Fluxes of Cadmium, Copper, Nickel, Zinc, and Lead in the Coastal Environment. Geochimica et Cosmochimica Acta, V.50:1289-1296.
- 9. Lee, C. and S.G. Wakeham, 1989. Organic Matter in Seawater: Biogeochemical Processes. In: J.P Riley (ed.), Chemical Oceanography, Academic Press, New York, pp.2-51.
- 10. NCCOSC RDTE Div Brochure TD 2790, "Benthic Flux Sampling Device", April 1995
- 11. R.F.Chen, et al "Benthic Fluxes of Organic Compounds by Time-resolved Spectrofluorometry"
- 12. NCCOSC RDTE Div Technical Document 2434, "An Evaluation of Contaminant Flux Rates from Sediments of Sinclair Inlet, WA, Using a Benthic Flux Sampling Device", February 1993
- 13. NCCOSC RDTE Div Technical Document 2435, "Benthic Flux Sampling Device Prototype Design, Development, and Evaluation", August 1993
- 14. NCCOSC RDTE Div Technical Document 2387, "Benthic Flux Sampling Device Operations, Methods, and Procedures", February 1993
- 15. United States Environmental Protection Agency, 1988. Toxic Sediments: Approaches to Management. EPA 68-01-7002.

Appendix A

Points of Contact

1. Project Manager and Principal Investigator:

Combined Demo:

Bradley Davidson

Space and Naval Warfare Systems Center, Code D3604

53475 Strothe Road, Bldg 111

San Diego, CA 92152

Phone – 619-553-2804

Fax – 619-553-6305

Emai – bradley.davidson@navy.mil

Metals only and Organics only Demos:

Tom Hampton

Space and Naval Warfare Systems Center, Code D3604

53475 Strothe Road, Bldg 111

San Diego, CA 92152

Phone – 619-553-1172

Fax – 619-553-1177

Email – thampton@spawar.navy.mil

2. Co-Investigator:

Bart Chadwick, PhD

Space and Naval Warfare Systems Center, Code D362

53475 Strothe Road, Bldg 149

San Diego, CA 92152

Phone – 619-553-5333

Fax - 619-553-6305

Email – chadwick@spawar.navy.mil

3. California EPA Certification Evaluators:

Bruce Labelle, PhD

Department Of Toxic Substances Control

301 Capitol Mall, 1st floor

Sacramento, California 95814

Phone – 916-322-5591

Fax – 916-327-4494 or 445-2939

Email Blabelle@DTSC.Ca.Gov

John Wesnousky
Department of Toxic Substance Control
California Environmental Protection Agency
301 Capitol Mall, 1st Floor
Sacramento, CA 95814
Phone - 916-322-2543
Fax - 916-327-4494
Email JWesnousky@DTSC.Ca.Gov

4. Pearl Harbor Naval Complex Host:

Peter Nakamura

Naval Facilities Command, Pacific Division

Honolulu, HA

Phone – 808- 474-4505 Fax – 808- 474-4519

Email - NakamuraPM@efdpac.navfac.navy.mil

5. Commercialization Contractor:

Kim McCoy

Ocean Sensors, Inc

4901 Morena Blvd, Suite 1001

San Diego, CA 92117

 $Phone-619\hbox{-}274\hbox{-}9893$

Fax - 619-274-9895

Email – kmccoy@adnc.com

6. Development Sponsor:

Andy DelCollo

Naval Facilities Command

Washington DC

Phone – 202-685-9173

Fax - 202-685-1569

Email - delcolloa@navfac.navy.mil

7. Demonstration and Validation Sponsor:

Jeff Marqusee, Ph.D.

Office of Under Secretary of Defense (Environmental Security)

Environmental Security Technology Certification Program

Washington DC

Phone - 703-696-2120

Fax - 703-696-2114

Email - marqusj@acq.osd.mil

Appendix B

Spreadsheet Products for Each Demonstration

Bishop Point Combined - PAHs first 4 (Part 1)

Bishop Point Combined - PAHs first 4 (Part 2)

BP Organics Demo - PAHs (Part1)

BP Organics Demo - PAHs (Part1-First 4 Samples)

BP Organics Demo - PAHs (Part1-last 8 samples)

BP Organics Demo - PAHs (Part 2)

BP Organics Demo - PAHs (Part 2

BP Organics Demo - PAHs (Part 2

BP Organics Demo-PCBs

BP Organics Demo-Pesticides

PC Organics Demo - PAHs (Part1)

PC Organics Demo - PAHs (Part 2)

PC Organics Demo-PCBs

PC Organics Demo-Pesticides

BFSD2 Blank Tests (CA Cert)-Metals

BFSD2 Blank Tests- PAHs (CA Cert)

BFSD2 Blank Tests- PCBs (CA Cert)

BFSD2 Blank Tests- Pesticides (CA Cert)

BFSD2 PCD(All-CA Cert)

BFSD2 PCPD(All-CA Cert)

BFSD2 PHBP(All-CA Cert)

BFSD2 PHML(All-CA Cert)

Bishop Point Combined - Metals_1

Bishop Point Combined - PAHs (Part 1)

Bishop Point Combined - PAHs (Part 2)

BFSD 2 Triplicate Blank Tests Copper

Site: Date:

End of SSC,SD Pier 159 5/14-5/31/98 (3 tests)

Start time: See indivdual tests

Duration/Interval: 77hrs (min)/7 hrs

End time: See individual tests

1		BFSD 2 Data			Dilution Correction		From	Linear Regression	n Statistics			
Ī	Measured			Measured	Corrected		Regression			Bottle Volume =	0.235	liters
Sample id	Concentration	Sample No.*	Elapsed Time	Concentration	Concentration	# of Dilutions	Concentration			Blank Chamber Volume =	42.97	liters
	(ppb)**		(hrs)	(ppb)**	(ppb)**		(ppb)**			Chamber Area =	1701.4	cm ²
Copper (Cu)												
Test #1								Regression O				
	1.42	T-#0		1.420				Constant	1.446			
BT1-03	1.42	#1	7	1.420	1.420	0	1.475	Std Err of Y Est	0.211			
BT1-05	1.50	#2	21	1.500	1.492	2	1.532	R Squared	0.171			
BT1-07	1.53	#3	35	1.530	1.515	4	1.590	No. of Observations	6	Flux = 25 ug/m^2/day		
BT1-09	2.00	#4	49	2.000	1.978	6	1.648	Degrees of Freedom	4	· · · · · · · · · · · · · · · · · · ·		
BT1-11	1.89	#5	63	1.890	1.863	8	1.705			80% CI (low) =	-17	μg/m²/day
BT1-12	1.44	#6	70	1.440	1.416	9	1.734	X Coefficient(s)	0.004	(high) =	67	μg/m²/day
								Std Err of Coef.	0.005			
Test #2												
								Regression O				
BT2-01	2.57	T-#0	-0.1	2.574		n/a		Constant	1.759			
BT2-02	1.72	#1	0	1.718	1.718	0	1.759	Std Err of Y Est	0.045			
BT2-03	1.77	#2	7	1.769	1.764	1	1.739	R Squared	0.431			
BT2-04	1.85	#3	14	1.853	1.844	2	1.719	No. of Observations	12	Flux = -17 ug/m^2/day		
BT2-05	1.66	#4	21	1.660	1.647	3	1.700	Degrees of Freedom	4			
BT2-06	1.73	#5	28	1.730	1.712	4	1.680	ŭ .		80% CI (low) =	-27	μg/m²/day
BT2-07	1.67	#6	35	1.671	1.648	5	1.660	X Coefficient(s)	-0.003	(high) =	-7	μg/m²/day
BT2-08	1.58	#7	42	1.579	1.551	6	1.640					
BT2-09	1.64	#8	49	1.639	1.606	7	1.621					
BT2-10	1.52	#9	56	1.515	1.477	8	1.601					
BT2-11	1.69	#10	63	1.693	1.649	9	1.581					
BT2-12	1.69	#11	70	1.693	1.644	10	1.561					
								Std Err of Coef.	0.001			
Test #3												
	1.03	T-#0		1.030				Regression O Constant	Output: 0.991			
BT3-02	1.03	#1	7	1.030	1.030	0	1.010	Std Err of Y Est	0.075			
BT3-02	1.04	#2	21	1.040	1.034	2	1.049	R Squared	0.420			
BT3-06	1.10	#3	35	1.102	1.091	4	1.087	No. of Observations	6	Flux = 17 ug/m^2/day	_	
BT3-06 BT3-08	1.10		35 49	1.102	1.091			Degrees of Freedom		riux = 17 ug/iii-2/uay		
BT3-08 BT3-10	1.06 1.33	#4 #5	49 63	1.063	1.047	6 8	1.126 1.164	Degrees or Freedom	4	80% CI (low) =	•	μg/m²/day
BT3-10 BT3-12	1.33	#5 #6	70	1.326	1.304	8 10	1.164	X Coefficient(s)	0.003		2 32	μg/m /day μg/m²/day
D13-12	1.14	#6	70	1.140	1.114	10	1.184	Std Err of Coef.	0.003	(high) =	32	дулп /day

BFSD 2 Triplicate Blank Tests Cadmium

Site: End of SSC,SD Pier 159
Date: 5/14-5/31/98 (3 tests)

Start time: See indivdual tests
Duration/Interval: 77hrs (min)/7 hrs
End time: See individual tests

		BFSD 2 Data			Dilution Correction		From	Linear Regression	Statistics			
	Measured			Measured	Corrected		Regression			Bottle Volume =	0.235	liters
Sample id	Concentration	Sample No.*	Elapsed Time	Concentration	Concentration	# of Dilutions	Concentration			Blank Chamber Volume =	42.97	liters
	(ppb)**		(hrs)	(ppb)**	(ppb)**		(ppb)**			Chamber Area =	1701.4	cm ²
Cadmium (Cd)												
Test #1								Regression Ou				
	0.219	T-#0	7	0.219				Constant	0.246			
BT1-03	0.219	#1	,	0.219	0.219	0	0.240	Std Err of Y Est	0.014			
BT1-05	0.246	#2	21	0.246	0.245	2	0.228	R Squared	0.683		-	
BT1-07	0.230	#3	35	0.230	0.228	4	0.216	No. of Observations	6	Flux = -5.3 ug/m^2/day		
BT1-09	0.215	#4	49	0.215	0.212	6	0.204	Degrees of Freedom	4	·	_ '	
BT1-11	0.190	#5	63	0.190	0.185	8	0.192			80% CI (low) =	-8.0	μg/m²/day
BT1-12	0.182	#6	70	0.182	0.177	9	0.186	X Coefficient(s)	-0.001	(high) =	-2.5	μg/m²/day
								Std Err of Coef.	0.000			
Test #2								Daniel O				
		T						Regression Ou				
BT2-01	0.0752	T-#0	-0.1 0	0.075 0.094	0.004	n/a	0.120	Constant Std Err of Y Est	0.120 0.008			
BT2-02 BT2-03	0.0937 0.131	#1 #2	7	0.094	0.094 0.131	0 1	0.120	R Squared	0.008			
										Fl 0.7/m. 40/-l	7	
BT2-04	0.128	#3	14	0.128	0.128	2	0.118	No. of Observations	12	Flux = -0.7 ug/m^2/day	1	
BT2-05	0.122	#4	21	0.122	0.123	3	0.118	Degrees of Freedom	4			. 2
BT2-06	0.121	#5	28	0.121	0.122	4	0.117	V 0 / 1 / 1		80% CI (low) =	-2.5	μg/m²/day
BT2-07	0.114	#6	35	0.114	0.115	5	0.116	X Coefficient(s)	0.000	(high) =	1.0	μg/m²/day
BT2-08 BT2-09	0.108	#7 #8	42 49	0.108 0.134	0.109	6	0.115 0.114					
BT2-09 BT2-10	0.134 0.108	#8 #9	49 56	0.134	0.136 0.110	8	0.114					
BT2-10 BT2-11	0.0998	#9 #10	63	0.100	0.102	9	0.113					
BT2-11 BT2-12	0.0998	#11	70	0.104	0.102	10	0.112					
B12-12	0.104	#11	70	0.104	0.100	10	0.112					
								Std Err of Coef.	0.000			
Test #3												
	0.0622	T-#0		0.062				Regression Ou Constant	tput: 0.065			
BT3-02	0.0622	#1	7	0.062	0.062	0	0.065	Std Err of Y Est	0.002			
BT3-02 BT3-04	0.0622	#2	21	0.068	0.068	2	0.065	R Squared	0.034			
BT3-06	0.0669	#3	35	0.067	0.066	4	0.064	No. of Observations	6	Flux = -0.12 ug/m^2/day	7	
									4	Fiux = -0.12 ug/III~2/day	_	
BT3-08	0.0643	#4	49	0.064	0.063	6	0.064	Degrees of Freedom	4	000/ 01/1	0.50	
BT3-10	0.0623	#5	63	0.062	0.061	8	0.064	V Casfficient(s)	0.000	80% CI (low) =	-0.59	μg/m²/day μg/m²/day
BT3-12	0.0670	#6	70	0.067	0.065	10	0.064	X Coefficient(s) Std Err of Coef.	0.000	(high) =	0.36	μg/m /day

BFSD 2 Triplicate Blank Tests Lead

Site: End of SSC,SD Pier 159
Date: 5/14-5/31/98 (3 tests)

Start time: See indivdual tests

Duration/Interval: 77hrs (min)/7 hrs

End time: See individual tests

		BFSD 2 Data			Dilution Correction		From	Linear Regression	n Statistics			
	Measured			Measured	Corrected		Regression			Bottle Volume =	0.235	liters
Sample id	Concentration	Sample No.*	Elapsed Time	Concentration	Concentration	# of Dilutions	Concentration			Blank Chamber Volume =	42.97	liters
	(ppb)**		(hrs)	(ppb)**	(ppb)**		(ppb)**			Chamber Area =	1701.4	cm ²
Lead (Pb)												
Test #1								Regression C				
	0.159	T-#0		0.159				Constant	0.158			
BT1-03	0.159	#1	7	0.159	0.159	0	0.161	Std Err of Y Est	0.027			
BT1-05	0.146	#2	21	0.146	0.145	2	0.168	R Squared	0.142			
BT1-07	0.200	#3	35	0.200	0.198	4	0.174	No. of Observations	6	Flux = 2.8 ug/m ² /day		
BT1-09	0.216	#4	49	0.216	0.214	6	0.181	Degrees of Freedom	4			
BT1-11	0.149	#5	63	0.149	0.146	8	0.187			80% CI (low) =	-2.5	μg/m²/day
BT1-12	0.203	#6	70	0.203	0.200	9	0.191	X Coefficient(s)	0.000	(high) =	8.2	μg/m²/day
Test #2								Std Err of Coef.	0.001			
Test #2				l .				Regression C	N. stanusti			
BT2-01	0.237	T-#0	-0.1	0.237		n/a		Constant	0.137			
BT2-01	0.128	#1	0	0.128	0.128	0	0.137	Std Err of Y Est	0.018			
BT2-02	0.137	#2	7	0.127	0.126	1	0.142	R Squared	0.241			
BT2-04	0.188	#3	14	0.188	0.187	2	0.147	No. of Observations	12	Flux = 4.5 ug/m^2/day		
BT2-05	0.141	#4	21	0.141	0.140	3	0.152	Degrees of Freedom	4	1 lux = 4.5 ag/m 2/aay		
BT2-06	0.186	#5	28	0.186	0.184	4	0.152	Degrees of Freedom	4	80% CI (low) =	0.4	μg/m²/day
BT2-07	0.141	#6	35	0.141	0.138	5	0.163	X Coefficient(s)	0.001	(high) =	8.6	μg/m²/day
BT2-08	0.141	#7	42	0.141	0.138	6	0.168	(5)		(9)		/-g
BT2-09	0.159	#8	49	0.159	0.156	7	0.173					
BT2-10	0.230	#9	56	0.230	0.226	8	0.178					
BT2-11	0.144	#10	63	0.144	0.140	9	0.183					
BT2-12	0.221	#11	70	0.221	0.217	10	0.189					
								Std Err of Coef.	0.000			
Test #3								Regression C) utout:			
	0.108	T-#0		0.108				Constant	0.119			
BT3-02	0.108	#1	7	0.108	0.108	0	0.121	Std Err of Y Est	0.013			
BT3-04	0.147	#2	21	0.147	0.146	2	0.123	R Squared	0.097			
BT3-06	0.123	#3	35	0.123	0.122	4	0.126	No. of Observations	6	Flux = 1.1 ug/m^2/day		
BT3-08	0.118	#4	49	0.118	0.116	6	0.128	Degrees of Freedom	4	riux = 1.1 ag/iii 2/aay		
BT3-10	0.118	#5	63	0.118	0.116	8	0.120	Degrees or recount	+	80% CI (low) =	-1.5	μg/m²/day
BT3-12	0.134	#6	70	0.134	0.132	10	0.132	X Coefficient(s)	0.000	(high) =	3.6	μg/m²/day
	2.704	0	. •	201	552	.0	5.102	Std Err of Coef.	0.000	(g-r) =	0.0	r-g , duly

BFSD 2 Triplicate Blank Tests . Nickle

Site: Date:

End of SSC,SD Pier 159 5/14-5/31/98 (3 tests)

Start time: See indivdual tests
Duration/Interval: 77hrs (min)/7 hrs
End time: See individual tests

		BFSD 2 Data			Dilution Correction		From	Linear Regress	sion Statistics			
	Measured			Measured	Corrected		Regression			Bottle Volume =	0.235	liters
Sample id	Concentration	Sample No.*	Elapsed Time	Concentration	Concentration	# of Dilutions	Concentration			Blank Chamber Volume =	42.97	liters
	(ppb)**		(hrs)	(ppb)**	(ppb)**		(ppb)**			Chamber Area =	1701.4	cm ²
Nickle (Ni)												
Test #1								Regression	n Output:			
	0.589	T-#0		0.589				Constant	0.517			
BT1-03	0.589	#1	7	0.589	0.589	0	0.543	Std Err of Y Est	0.114			
BT1-05	0.577	#2	21	0.577	0.574	2	0.597	R Squared	0.381			
BT1-07	0.559	#3	35	0.559	0.552	4	0.651	No. of Observations	6	Flux = 23 ug/m ² /day		
BT1-09	0.730	#4	49	0.730	0.720	6	0.705	Degrees of Freedom	4			
BT1-11	0.970	#5	63	0.970	0.958	8	0.758	_		80% CI (low) =	1	μg/m²/day
BT1-12	0.657	#6	70	0.657	0.647	9	0.785	X Coefficient(s)	0.004	(high) =	46	μg/m²/day
								Std Err of Coef.	0.002			
Test #2								Regression	o Outrout.			
BT2-01	2.13	T-#0	-0.1	2.126		n/a		Constant	0.559			
BT2-02	0.615	#1	-0.1	0.615	0.615	0	0.559	Std Err of Y Est	0.085			
BT2-02	0.568	#2	7	0.568	0.560	1	0.573	R Squared	0.104			
BT2-04	0.658	#3	14	0.658	0.641	2	0.588	No. of Observations	12	Flux = 13 ug/m^2/day		
BT2-04 BT2-05	0.656	#3 #4	21	0.656	0.696	3			12	Flux = 13 ug/iii 2/uay		
BT2-05 BT2-06	0.721		28	0.721	0.585	3	0.603 0.617	Degrees of Freedom	4	80% CI (low) =	•	μg/m²/day
BT2-06 BT2-07	0.618	#5 #6	28 35	0.618	0.585	5	0.632	X Coefficient(s)	0.002	80% CI (low) = (high) =	-6 32	μg/m /day μg/m²/day
BT2-08	0.523	#6 #7	42	0.523	0.640	6	0.632	A Coefficient(s)	0.002	(riigri) =	32	дулп /day
BT2-09	0.614	#8	49	0.614	0.556	7	0.661					
BT2-10	0.617	#9	56	0.617	0.551	8	0.676					
BT2-11	0.656	#10	63	0.656	0.582	9	0.691					
BT2-12	1.13	#11	70	1.134	1.052	10	0.705					
D12 12	1.10			1.101	1.002		0.700					
								Std Err of Coef.	0.002			
Test #3								Regression	o Outrout.			
	0.511	T-#0		0.511				Constant	0.524			
BT3-02	0.511	#1	7	0.511	0.511	0	0.515	Std Err of Y Est	0.016			
BT3-02	0.492	#2	21	0.492	0.489	2	0.499	R Squared	0.754			
BT3-06	0.516	#3	35	0.516	0.510	4	0.483	No. of Observations	6	Flux = -7.1 ug/m^2/day		
BT3-08	0.462	#4	49	0.462	0.454	6	0.466	Degrees of Freedom	4	u. = ug/m Z/uuy		
BT3-10	0.474	#5	63	0.474	0.462	8	0.450	Degrees or Freedom	4	80% CI (low) =	-10.2	μg/m²/day
BT3-10	0.444	#6	70	0.444	0.429	10	0.442	X Coefficient(s)	-0.001	(high) =	-4.0	μg/m ² /day
213-12	0.144	0	.0	0.111	J. 123	.0	0.442	Std Err of Coef.	0.000	\gii) =	-4.0	µg···· / day

BFSD 2 Triplicate Blank Tests Manganese

Site: Date:

End of SSC,SD Pier 159 5/14-5/31/98 (3 tests)

Start time: See indivdual tests
Duration/Interval: 77hrs (min)/7 hrs
End time: See individual tests

		BFSD 2 Data			Dilution Correction		From	Linear Regressio	on Statistics			
	Measured			Measured	Corrected		Regression			Bottle Volume =	0.235	liters
Sample id	Concentration	Sample No.*	Elapsed Time	Concentration	Concentration	# of Dilutions	Concentration			Blank Chamber Volume =	42.97	liters
	(ppb)**		(hrs)	(ppb)**	(ppb)**		(ppb)**			Chamber Area =	1701.4	cm ²
Manganese(Mn))											
Test #1								Regression (
	7.70	T-#0	_	7.700				Constant	7.849			
BT1-03	7.70	#1	7	7.700	7.700	0	7.515	Std Err of Y Est	0.125			
BT1-05	6.67	#2	21	6.670	6.628	2	6.847	R Squared	0.987		_	
BT1-07	6.23	#3	35	6.230	6.140	4	6.179	No. of Observations	6	Flux = $-289 \text{ ug/m}^2/\text{day}$		
BT1-09	5.66	#4	49	5.660	5.520	6	5.512	Degrees of Freedom	4			_
BT1-11	5.08	#5	63	5.080	4.887	8	4.844			80% CI (low) =	-314	μg/m²/day
BT1-12	4.74	#6	70	4.740	4.532	9	4.510	X Coefficient(s)	-0.048	(high) =	-264	μg/m²/day
est #2								Std Err of Coef.	0.003			
est #2				I				Regression (Output:			
BT2-01	7.80	T-#0	-0.1	7.803		n/a		Constant	7.429			
BT2-02	7.63	#1	0	7.632	7.632	0	7.429	Std Err of Y Est	0.063			
BT2-03	7.10	#2	7	7.097	7.096	1	7.141	R Squared	0.988			
BT2-04	6.85	#3	14	6.854	6.849	2	6.853	No. of Observations	12	Flux = -249 ug/m^2/day		
BT2-05	6.45	#4	21	6.454	6.444	3	6.565	Degrees of Freedom	4	, <u> </u>		
BT2-06	6.20	#5	28	6.198	6.181	4	6.277	9		80% CI (low) =	-263	μg/m²/day
BT2-07	5.96	#6	35	5.961	5.935	5	5.989	X Coefficient(s)	-0.041	(high) =	-235	μg/m²/day
BT2-08	5.84	#7	42	5.837	5.801	6	5.702	.,		, ,		
BT2-09	5.35	#8	49	5.349	5.302	7	5.414					
BT2-10	5.23	#9	56	5.232	5.172	8	5.126					
BT2-11	4.88	#10	63	4.877	4.803	9	4.838					
BT2-12	4.76	#11	70	4.761	4.671	10	4.550					
								Std Err of Coef.	0.002			
est #3								Regression (Output			
	7.50	T-#0		7.503				Constant	7.726			
BT3-02	7.50	#1	7	7.503	7.503	0	7.416	Std Err of Y Est	0.094			
BT3-04	6.76	#2	21	6.762	6.721	2	6.795	R Squared	0.992			
BT3-06	6.14	#3	35	6.137	6.051	4	6.175	No. of Observations	6	Flux = -269 ug/m^2/day		
BT3-08	5.78	#4	49	5.777	5.642	6	5.555	Degrees of Freedom	4	u.x = 255 ug/m Z/uuy		
BT3-10	5.76	#5	63	5.208	5.023	8	4.934	Degrees or Freedom	4	80% CI (low) =	-287	μg/m²/day
BT3-10 BT3-12	4.80	#6	70	4.797	4.558	10	4.624	X Coefficient(s)	-0.044	(high) =	-250	μg/m²/day
2.13-12	00	.,0	70			.0	024	Std Err of Coef.	0.002	(gii) =	-230	µgi /day

BFSD 2 Triplicate Blank Tests Zinc

Site: Date:

End of SSC,SD Pier 159 5/14-5/31/98 (3 tests)

Start time: See indivdual tests
Duration/Interval: 77hrs (min)/7 hrs
End time: See individual tests

		BFSD 2 Data			Dilution Correction		From	Linear Regression	n Statistics			
	Measured			Measured	Corrected		Regression			Bottle Volume =	0.235	liters
Sample id	Concentration	Sample No.*	Elapsed Time	Concentration	Concentration	# of Dilutions	Concentration	1		Blank Chamber Volume =	42.97	liters
	(ppb)**		(hrs)	(ppb)**	(ppb)**		(ppb)**			Chamber Area =	1701.4	cm ²
Zinc (Zn)												
est #1								Regression C				
	8.85	T-#0		8.850				Constant	9.288			
BT1-03	8.85	#1	7	8.850	8.850	0	9.064	Std Err of Y Est	0.381			
BT1-05	8.61	#2	21	8.610	8.562	2	8.617	R Squared	0.792		_	
BT1-07	8.30	#3	35	8.300	8.202	4	8.169	No. of Observations	6	Flux = -194 ug/m^2/day		
BT1-09	8.63	#4	49	8.630	8.480	6	7.722	Degrees of Freedom	4			
BT1-11	7.35	#5	63	7.350	7.151	8	7.274			80% CI (low) =	-270	μg/m²/day
BT1-12	6.86	#6	70	6.860	6.653	9	7.051	X Coefficient(s)	-0.032	(high) =	-118	μg/m²/day
								Std Err of Coef.	0.008			
est #2								Regression C	Jutout:			
BT2-01	6.04	T-#0	-0.1	6.037		n/a		Constant	6.890			
BT2-01	6.50	#1	-0.1	6.497	6.497	0	6.890	Std Err of Y Est	0.742			
BT2-03	5.99	#2	7	5.992	5.995	1	6.877	R Squared	0.001			
BT2-03	7.10	#3	14	7.102	7.104	2	6.864	No. of Observations	12	Flux = -11 ug/m^2/day	_	
BT2-05	8.28	#4	21	8.276	8.284	3	6.851	Degrees of Freedom	4	Tiux = -11 ug/iii 2/uay	_	
BT2-05 BT2-06	8.28 7.17	#4 #5	28	7.173	8.28 4 7.193	3	6.838	Degrees of Freedom	4	80% CI (low) =	-178	μg/m²/day
BT2-07	5.46	#6	35	5.460	5.487	5	6.825	X Coefficient(s)	-0.002	(high) =	155	μg/m²/day
BT2-08	6.51	#6 #7	42	6.510	6.533	6	6.812	A Coefficient(s)	-0.002	(riigri) =	155	дулп /цау
BT2-09	7.46	#8	49	7.458	7.484	7	6.799					
BT2-10	9.35	#9	56	9.349	9.383	8	6.787					
BT2-11	5.06	#10	63	5.064	5.116	9	6.774					
BT2-12	5.96	#11	70	5.955	6.002	10	6.761					
								Std Err of Coef.	0.018			
est #3												
		T-#0		2.817				Regression C Constant	Output: 2.415			
BT3-02	2.82 2.82	1-#U #1	7	2.817	2.817	0	2.647	Std Err of Y Est	2.415 0.641			
BT3-02 BT3-04	3.31	#2	21	3.313	3.298	2	3.112	R Squared	0.592			
								· ·	0.392	El 204	_	
BT3-06	3.52	#3	35	3.521	3.493	4	3.576	No. of Observations	6	Flux = 201 ug/m^2/day		
BT3-08	3.56	#4	49	3.558	3.518	6	4.040	Degrees of Freedom	4			. 2
BT3-10	3.71	#5	63	3.708	3.657	8	4.504	V a		80% CI (low) =	73	μg/m²/day
BT3-12	5.90	#6	70	5.895	5.833	10	4.737	X Coefficient(s) Std Err of Coef.	0.033 0.014	(high) =	329	μg/m²/day

BFSD 2 Triplicate Blank Tests Silica Dioxide

Site: Date: End of SSC,SD Pier 159 5/14-5/31/98 (3 tests)

Start time: See indivdual tests
Duration/Interval: 77hrs (min)/7 hrs
End time: See individual tests

		BFSD 2 Data			Dilution Correction		From	Linear Regressi	ion Statistics			
	Measured			Measured	Corrected		Regression	_		Bottle Volume =	0.235	liters
Sample id	Concentration	Sample No.*	Elapsed Time	Concentration	Concentration	# of Dilutions	Concentration			Blank Chamber Volume =	42.97	liters
	(ppb)**		(hrs)	(ppb)**	(ppb)**		(ppb)**			Chamber Area =	1701.4	cm ²
Silica (SiO ₂)	**Concentrations a	are in ppm (mg/L)]									
Test #1								Regression				
	0.403	T-#0		0.403				Constant	0.408			
BT1-03	0.403	#1	7	0.403	0.403	0	0.404	Std Err of Y Est	0.003			
BT1-05	0.398	#2	21	0.398	0.396	2	0.395	R Squared	0.972			
BT1-07	0.386	#3	35	0.386	0.382	4	0.386	No. of Observations	6	Flux = -4.0 mg/m^2/day		
BT1-09	0.388	#4	49	0.388	0.381	6	0.376	Degrees of Freedom	4	·		
BT1-11	0.376	#5	63	0.376	0.367	8	0.367	_		80% CI (low) =	-4.5	mg/m²/day
BT1-12	0.371	#6	70	0.371	0.362	9	0.363	X Coefficient(s)	-0.001	(high) =	-3.4	mg/m²/day
								Std Err of Coef.	0.000			
Test #2								Regression	Outrout			
BT2-01	0.581	T-#0	-0.1	0.581		n/a		Constant	0.568			
BT2-01	0.556	#1	-0.1	0.556	0.556	0	0.568	Std Err of Y Est	0.020			
BT2-02 BT2-03	0.557	#2	7	0.557	0.557	1	0.564	R Squared	0.130			
			14	0.545		2		No. of Observations		$Flux = -3.4 mg/m^2/day$	_	
BT2-04	0.545	#3			0.545	2	0.560		12	riux = -3.4 mg/m-2/day		
BT2-05	0.566	#4	21	0.566	0.566	3	0.556	Degrees of Freedom	4	0001 01 11		mg/m²/day
BT2-06 BT2-07	0.548 0.523	#5	28 35	0.548 0.523	0.547 0.522	4	0.552 0.548	X Coefficient(s)	-0.001	80% CI (low) =	-7.9 1.1	mg/m²/day mg/m²/day
BT2-07 BT2-08	0.523	#6 #7	35 42	0.523	0.522	5	0.548	X Coefficient(s)	-0.001	(high) =	1.1	mg/m /day
BT2-08 BT2-09	0.638	#8	42 49	0.638	0.551	5	0.544					
BT2-10	0.552	#9	56	0.552	0.539	8	0.536					
BT2-10 BT2-11	0.508	#9 #10	63	0.508	0.507	٥	0.532					
BT2-11	0.503	#11	70	0.503	0.501	10	0.528					
D12-12	0.505	#11	70	0.505	0.501	10	0.520					
								Std Err of Coef.	0.000			
Test #3								Regression	Output			
	0.657	T-#0		0.657				Constant	0.651			
BT3-02	0.657	#1	7	0.657	0.657	0	0.654	Std Err of Y Est	0.080			
BT3-02	0.605	#2	21	0.605	0.602	2	0.660	R Squared	0.015			
BT3-06	0.766	#3	35	0.766	0.759	4	0.665	No. of Observations	6	Flux = 2.6 mg/m^2/day		
BT3-08	0.614	#4	49	0.614	0.604	6	0.671	Degrees of Freedom	4	u. = 2.5 mg/m 2/day		
BT3-10	0.801	# 4 #5	63	0.801	0.787	8	0.677	Degrees or Freedom	+	80% CI (low) =	-13.3	mg/m²/day
BT3-10	0.617	#6	70	0.617	0.600	10	0.680	X Coefficient(s)	0.000	(high) =	18.5	mg/m²/day
								Std Err of Coef.	0.002			

BATTELLE MARINE SCIENCES LABORATORY

1529 West Sequim Bay Road Sequim, WA 98382-9099 360/681-3604

DETECTION LIMIT

0.01

0.12

0.007

0.076

0.006

0.87

0.08

0.16

0.00532

0.001

TETRA TECH METALS IN SEAWATER (Samples Received 6/3/98)

(concentrations in µg/L - not blank corrected) MSL Code Sb Cd Cu Pb Se ΤI Zn Sponsor ID As Mn Ni Ag 1225-2 0.125 1.25 0.219 0.159 0.589 0.0120 0.0113 BFSD2-BT1-3 1.42 7.70 0.568 8.85 1225-4 BFSD2-BT1-5 0.126 1.16 0.246 1.50 0.146 6.67 0.577 0.521 0.0151 0.0119 8.61 1225-6 BFSD2-BT1-7 0.121 1.18 0.230 1.53 0.200 6.23 0.559 0.488 0.0181 0.0115 8.30 1225-8 BFSD2-BT1-9 0.192 1.14 0.215 2.00 0.216 5.66 0.730 0.468 0.0120 0.0125 8.63 1225-10 BFSD2-BT1-11 0.142 1.10 0.190 1.89 0.149 5.08 0.970 0.452 0.0722 0.0118 7.35 1225-11 6.86 BFSD2-BT1-12 0.143 1.15 0.182 1.44 0.203 4.74 0.657 0.450 0.0181 0.0119 1225-12 BFSD2-BT2-EB 0.0168 0.00728 J 0.0120 0.376 0.0998 0.664 J 0.0522 J 0.0351 J 0.00903 0.000499 J 3.32 1225-13 BFSD2-BT2-SB 0.0248 0.00745 J 0.00750 4.33 0.689 J 0.0729 J 0.0248 J 0.0120 0.00121 0.984 0.169 1225-14 BFSD2-BT2-1 0.117 1.16 0.0752 2.57 0.237 7.80 2.13 0.372 0.00903 0.0109 6.04 1225-15 BFSD2-BT2-2 0.127 1.13 0.0937 1.72 0.128 7.63 0.615 0.519 0.0151 0.0110 6.50 1225-16 BFSD2-BT2-3 0.118 1.16 0.131 1.77 0.137 7.10 0.568 0.461 0.0181 0.0114 5.99 1225-17 BFSD2-BT2-4 0.124 1.14 0.128 1.85 0.188 6.85 0.658 0.410 0.0181 0.0111 7.10 1225-18 BFSD2-BT2-5 0.113 1.12 0.122 1.66 0.141 6.45 0.721 0.405 0.0181 0.0112 8.28 1225-19 7.17 BFSD2-BT2-6 0.0770 1.15 0.121 1.73 0.186 6.20 0.618 0.443 0.0151 0.0116 1225-20 BFSD2-BT2-7 0.0761 1.13 0.114 1.67 0.141 5.96 0.681 0.430 0.0120 0.0122 5.46 1225-21 BFSD2-BT2-8 0.104 0.108 0.141 5.84 0.523 0.454 0.0151 0.0114 6.51 1.13 1.58 1225-22 BFSD2-BT2-9 0.0551 0.134 0.159 5.35 0.0181 0.0117 7.46 1.09 1.64 0.614 0.427 1225-23 BFSD2-BT2-10 0.0118 9.35 0.0783 1.10 0.108 1.52 0.230 5.23 0.617 0.407 0.0181 1225-24 BFSD2-BT2-11 5.06 0.0689 1.16 0.0998 1.69 0.144 4.88 0.656 0.418 0.0120 0.0124 1225-25 BFSD2-BT2-12 0.0807 1.09 0.104 1.69 0.221 4.76 1.13 0.349 0.0120 0.0123 5.96 1225-27 BFSD2-BT3-2 0.0759 1.12 0.0622 1.03 0.108 7.50 0.511 0.453 0.0120 0.0113 2.82 1225-29 BFSD2-BT3-4 0.0750 1.05 0.0679 1.04 0.147 6.76 0.492 0.341 0.00903 0.0118 3.31 1225-31 BFSD2-BT3-6 0.130 1.03 0.0669 1.10 0.123 6.14 0.516 0.441 0.0151 0.0113 3.52 1225-33 BFSD2-BT3-8 0.0867 1.14 0.0643 1.06 0.118 5.78 0.462 0.435 0.0120 0.0121 3.56 1225-35 BFSD2-BT3-10 0.0612 1.12 0.0623 1.33 0.138 5.21 0.474 0.453 0.0120 0.0119 3.71 1225-37 BFSD2-BT3-12 0.125 1.10 0.0670 1.14 0.134 4.80 0.444 0.373 0.0120 0.0112 5.90 **BLANKS** 1225-blk r1 0.0158 0.0227 J 0.000444 J 0.0420 J 0.00580 J 0.510 J 0.0165 J 0.0529 J 0.00903 0.00070 J 0.119 J 1225-blk r2 0.0145 0.0180 J 0.000611 J 0.0395 J 0.00800 0.596 J 0.0178 J 0.0212 J 0.00602 0.00054 J 0.140 J 0.0204 J 0.000528 J 0.0407 J 0.553 J 0.0171 J 0.0371 J 0.00753 0.00062 J Mean 0.0152 0.00690 0.130 J

0.66

BATTELLE MARINE SCIENCES LABORATORY

1529 West Sequim Bay Road Sequim, WA 98382-9099 360/681-3604

TETRA TECH METALS IN SEAWATER (Samples Received 6/3/98)

		(concentrations in µg/L - not blank corrected)										
MSL Code	Sponsor ID	Sb	As	Cd	Cu	Pb	Mn	Ni	Se	Ag	TI	Zn
BLANK SPIKE	RESULTS											
Amount Spiked		5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Mean Blank		0.0152	0.0204	0.00053 J	0.0407	0.00690	0.553	0.0171	0.0371	0.00753	0.00062 J	0.130
Blank Spike		3.66	2.98	3.69	4.31	4.60	5.07	4.30	1.26	2.12	4.70	4.61
Amount Recove	ered	3.64	2.96	3.69	4.27	4.59	4.52	4.29	1.22	2.11	4.69	4.48
Percent Recove	ery	73% #	59% #	74% #	85%	92%	90%	86%	24% #	42% #	94%	90%
Amount Spiked		5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Mean Blank		0.0152	0.0204	0.00053 J	0.0407	0.00690	0.553	0.0171	0.0371	0.00753	0.00062 J	0.130
Blank Spike Du	p	3.84	3.04	3.64	4.38	4.69	5.19	4.53	1.61	2.09	4.87	4.64
Amount Recove		3.83	3.01	3.63	4.34	4.68	4.64	4.51	1.57	2.08	4.87	4.51
Percent Recove	ery	77%	60% #	73% #	87%	94%	93%	90%	31% #	42% #	97%	90%
RP	D	5%	2%	1%	2%	2%	3%	5%	25%	1%	4%	1%
MATRIX SPIK	E RESULTS											
Amount Spiked		5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
1225-24		0.0689	1.16	0.0998	1.69	0.144	4.88	0.656	0.418	0.0120	0.0124	5.06
1225-24 MS		2.48	5.21	4.74	5.99	5.15	9.53	4.84	4.92	4.40	5.20	8.71
Amount Recove		2.41	4.05	4.64	4.29	5.00	4.66	4.18	4.50	4.39	5.19	3.64
Percent Recove	ery	48% #	81%	93%	86%	100%	93%	84%	90%	88%	104%	73% #
Amount Spiked		5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
1225-24		0.0689	1.16	0.0998	1.69	0.144	4.88	0.656	0.418	0.0120	0.0124	5.06
1225-24 MSD		3.12	5.30	4.74	5.93	5.17	9.58	4.89	4.97	4.44	5.18	8.56
Amount Recovered		3.05	4.14	4.64	4.24	5.02	4.71	4.24	4.55	4.43	5.17	3.50
Percent Recove	ery	61% #	83%	93%	85%	100%	94%	85%	91%	89%	103%	70% #
RP	D	24%	2%	0%	1%	0%	1%	1%	1%	1%	0%	4%

Print Date: 8/8/2008

BATTELLE MARINE SCIENCES LABORATORY

1529 West Sequim Bay Road Sequim, WA 98382-9099 360/681-3604 TETRA TECH METALS IN SEAWATER (Samples Received 6/3/98)

(concentrations in µg/L - not blank corrected)

MSL Code	Sponsor ID	Sb	As	Cd	Cu	Pb	Mn	Ni	Se	Ag	TI	Zn
STANDARD	REFERENCE MATER	RIAL										
cass3 r1		0.139	0.975	0.0339	0.550	0.0230	3.10	0.417	0.441	0.0120	0.0127	1.25
cass3 r2		0.112	0.961	0.0345	0.529	0.0230	3.03	0.400	0.404	0.0120	0.0119	1.21
	certified value	NC	1.09	0.030	0.517	0.0120	2.51	0.386	0.042 r	NC	NC	1.24
	range		±0.07	±0.005	±0.062	±0.004	±0.36	±0.062				±0.25
	percent difference	NA	11%	13%	6%	91% #	23%	8%	NA	NA	NA	1%
		NA	12%	15%	2%	91% #	21%	4%	NA	NA	NA	2%

Outside QA limits of ±25%

r Reference value only; not certified

J Value reported is below DL shown

NA Not available/applicable

NC Not certified

RPD Relative percent difference

BFSD 2
Triplicate Blank Tests
Temperature

BFSD 2 Triplicate BlankTests Pressure

BFSD 2 Triplicate BlankTests Salinity

BFSD 2 Triplicate BlankTests Dissolved Oxygen

BFSD 2 Triplicate BlankTests pH

Blank Test #1 Sensor Data

			_	0 !! !!			٠				
Record No.	(mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
1	45.276	18.011	1.881	34.455	13.262	2339916	2456346		14:34:30.70	3.917	7.610
2 3	45.265 45.255	17.998 17.986	1.866 1.834	34.457 34.459	13.312 13.325	2346641 2211156			14:40:31.49 14:46:32.28	3.963 3.034	7.605 7.605
4	45.248	17.972	1.817	34.464	13.334	2248927			14:52:33.07	3.293	7.604
5	45.233	17.971	1.823	34.452	13.337	2241082			14:58:33.86	3.239	7.607
6 7	45.227 45.225	17.96 17.953	1.813 1.811	34.457 34.461	13.342 13.342	2228945 2270518			15:04:34.65 15:10:35.44	3.156 3.441	7.605 7.607
8	45.223	17.955	1.808	34.457	13.344	2359142			15:16:36.23	4.049	7.608
9	45.212	17.947	1.769	34.456	13.309	2333397			15:22:37.02	3.873	7.607
10	45.223 45.236	17.946	1.731	34.466	13.334	2290483			15:28:37.81	3.578	7.606
11 12	45.236 45.245	17.967 17.971	1.738 1.73	34.459 34.463	13.339 13.34	2204401 2289578			15:34:38.60 15:40:39.39	2.987 3.572	7.609 7.610
13	45.257	17.982	1.715	34.464	13.342	2291758			15:46:40.18	3.587	7.612
14	45.279	18.004	1.73	34.464	13.343	2328554			15:52:40.97	3.839	7.612
15 16	45.295 45.317	18.017 18.041	1.686 1.69	34.467 34.465	13.345 13.345	2284263 2211735			15:58:41.76 16:04:42.55	3.535 3.038	7.610 7.612
17	45.335	18.057	1.715	34.467	13.346	2279745			16:10:43.34	3.504	7.613
18	45.356	18.087	1.709	34.46	13.346	2328233			16:16:44.13	3.837	7.614
19 20	45.375 45.401	18.106 18.131	1.668 1.661	34.46 34.461	13.345 13.348	2346193 2335558			16:22:44.92 16:28:45.71	3.960 3.887	7.615 7.615
21	45.422	18.152	1.657	34.461	13.346				16:34:46.50	3.164	7.617
22	45.447	18.17	1.646	34.467	13.347	2365600			16:40:47.29	4.094	7.617
23 24	45.47 45.488	18.203 18.216	1.647 1.654	34.459 34.463	13.347 13.347	2332186 2316255			16:46:48.08 16:52:48.87	3.864 3.755	7.618 7.618
25	45.502	18.235	1.687	34.459	13.346	2343800			16:58:49.66	3.944	7.621
26	45.511	18.249	1.646	34.455	13.346	2337673			17:04:50.45	3.902	7.621
27 28	45.528	18.258	1.676	34.461	13.346	2402169	2459741		17:10:51.24	4.345	7.625
29	45.541 45.551	18.263 18.28	1.648 1.656	34.468 34.463	13.345 13.328	2229313 2341141			17:16:52.03 17:22:52.82	3.158 3.926	7.625 7.625
30	45.563	18.295	1.657	34.46	13.336	2359001			17:28:53.61	4.048	7.628
31	45.566	18.3	1.68	34.459	13.34	2305131			17:34:54.40	3.679	7.629
32 33	45.577 45.579	18.309 18.314	1.682 1.698	34.461 34.458	13.339 13.34	2327314 2357361			17:40:55.19 17:46:55.98	3.831 4.037	7.627 7.625
34	45.586	18.316	1.714	34.462	13.339	2323358			17:52:56.77	3.804	7.629
35	45.587	18.318	1.726	34.462	13.339	2282749			17:58:57.56	3.525	7.629
36 37	45.593 45.593	18.322 18.327	1.752 1.739	34.463 34.459	13.34 13.34	2271057 2386149			18:04:58.35 18:10:59.14	3.445 4.235	7.629 7.630
38	45.6	18.329	1.737	34.463	13.339	2237429			18:16:59.93	3.214	7.627
39	45.6	18.329	1.739	34.463	13.338	2202846			18:23:00.72	2.977	7.630
40 41	45.602 45.605	18.336 18.338	1.763 1.804	34.459 34.46	13.339 13.339	2296880 2314948			18:29:01.51 18:35:02.30	3.622 3.746	7.630 7.632
42	45.604	18.336	1.831	34.46	13.338	2273005			18:41:03.09	3.458	7.633
43	45.607	18.333	1.82	34.466	13.336	2302834			18:47:03.88	3.663	7.633
44 45	45.609 45.612	18.335 18.339	1.883 1.906	34.465 34.464	13.337 13.337	2295581 2409399	2461217 2461591		18:53:04.67 18:59:05.46	3.613 4.394	7.631 7.633
46	45.611	18.345	1.888	34.459	13.336	2391571			19:05:06.25	4.272	7.635
47	45.616	18.339	1.889	34.468	13.336	2338360			19:11:07.04	3.907	7.634
48 49	45.617 45.611	18.341 18.338	1.922 1.946	34.468 34.465	13.336 13.338	2377738 2266786			19:17:07.83 19:23:08.62	4.177 3.415	7.635 7.635
50	45.607	18.339	1.966	34.461	13.336	2340669			19:29:09.41	3.922	7.637
51	45.612	18.339	2.004	34.464	13.335	2401428			19:35:10.20	4.339	7.635
52 53	45.608 45.61	18.34 18.335	2.084 2.042	34.461 34.467	13.335 13.337	2403924 2356018			19:41:10.99 19:47:11.78	4.357 4.028	7.635 7.637
54	45.606	18.326	2.059	34.47	13.333	2397528			19:53:12.57	4.313	7.638
55	45.6	18.327	2.081	34.465	13.333	2285816			19:59:13.36	3.546	7.640
56 57	45.584 45.567	18.303 18.285	2.117 2.137	34.471 34.472	13.333 13.332	2398260			20:05:14.15 20:11:14.94	4.318 4.172	7.637 7.641
58	45.544	18.263	2.157	34.472	13.331				20:17:15.73	4.219	7.642
59	45.531	18.25	2.191	34.471	13.331				20:23:16.52	4.113	7.639
60 61	45.52 45.504	18.235 18.221	2.219 2.226	34.475 34.473	13.331 13.331	2323805			20:29:17.31 20:35:18.10	3.807 4.172	7.640 7.640
62	45.493	18.21	2.244	34.472	13.333	2210825			20:41:18.89	3.031	7.639
63	45.48	18.2	2.297	34.47	13.33	2355678			20:47:19.68	4.025	7.640
64 65	45.477 45.465	18.187 18.176	2.263 2.349	34.478 34.476	13.33 13.331	2379611 2371687			20:53:20.47 20:59:21.26	4.190 4.135	7.640 7.643
66	45.452	18.173	2.369	34.468	13.327	2383050			21:05:22.05	4.213	7.644
67	45.437	18.158	2.397	34.468	13.327				21:11:22.84	3.994	7.640
68 69	45.43 45.422	18.152 18.133	2.397 2.375	34.467 34.477	13.326 13.326	2383023 2343310			21:17:23.63 21:23:24.42	4.213 3.941	7.639 7.642
70	45.417	18.126	2.416	34.479	13.328	2355325			21:29:25.21	4.023	7.641
71	45.406	18.112	2.431	34.481	13.327	2367457			21:35:26.00	4.106	7.641
72 73	45.401 45.388	18.116 18.093	2.52 2.496	34.473 34.481	13.324 13.324	2403576 2369041			21:42:08.00 21:48:08.79	4.354 4.117	7.641 7.641
74	45.387	18.091	2.521	34.482	13.323	2373998			21:54:09.58	4.151	7.642
75	45.37	18.078	2.559	34.478	13.324				22:00:10.37	4.173	7.643
76 77	45.371 45.365	18.084 18.074	2.524 2.555	34.474 34.478	13.324 13.322	2334801 2365159			22:06:11.16 22:12:11.95	3.882 4.091	7.642 7.645
78	45.363	18.074	2.533	34.475	13.322	2375688			22:12:11.95	4.163	7.643
79	45.362	18.055	2.555	34.492	13.323	2381254	2464032	5/14/1998	22:24:13.53	4.201	7.643
80 91	45.357	18.059	2.556	34.484 34.483	13.325 13.322	2384078			22:30:14.32 22:36:15.11	4.220 4.012	7.641 7.641
81 82	45.354 45.349	18.057 18.055	2.53 2.563	34.483	13.322	2353772			22:36:15.11	4.012 4.115	7.641 7.643
83	45.348	18.056	2.543	34.479	13.321	2356085	2463896	5/14/1998	22:48:16.69	4.028	7.643
84 85	45.342	18.053	2.566	34.476	13.32				22:54:17.48	3.919	7.643
85 86	45.323 45.306	18.027 18.016	2.562 2.546	34.482 34.477	13.32 13.319				23:00:18.27 23:06:19.06	4.126 4.099	7.643 7.646
87	45.287	17.999	2.558	34.474	13.318	2352180	2463720	5/14/1998	23:12:19.85	4.001	7.642
88	45.264	17.968	2.552	34.481	13.318	2372135			23:18:20.64	4.138	7.646
89 90	45.252 45.24	17.955 17.946	2.558 2.539	34.482 34.48	13.318 13.319	2327818 2389883			23:24:21.43 23:30:22.22	3.834 4.260	7.645 7.645
91	45.22	17.917	2.504	34.486	13.319				23:36:23.01	4.134	7.645

Record No.	Conductivity	•			CTD Bat.	D.O.	рН	Date	Time	D.O.	рН
92	(mS/cm) 45.193	(Deg. C) 17.905	(dBar) 2.486	(PSU) 34.474	(Vdc) 13.316	(Integer) 2380525		5/1//1008	23:42:23.80	(ml/L) 4.196	(Value) 7.646
93	45.174	17.876	2.47	34.482	13.315	2356383			23:48:24.59	4.030	7.647
94	45.165	17.852	2.495	34.495	13.316	2363233	2464439	5/14/1998	23:54:25.38	4.077	7.645
95	45.152	17.847	2.471	34.488	13.315	2334303			00:00:26.17	3.879	7.646
96 97	45.145 45.126	17.836 17.815	2.471 2.42	34.491 34.493	13.315 13.314	2318677 2354618			00:06:26.96 00:12:27.75	3.772 4.018	7.646 7.646
98	45.112	17.811	2.403	34.484	13.315	2396418			00:12:27:73	4.305	7.645
99	45.111	17.797	2.39	34.495	13.313	2345937			00:24:29.33	3.959	7.648
100	45.1	17.797	2.364	34.485	13.314	2343263			00:30:30.12	3.940	7.649
101 102	45.095 45.085	17.781 17.776	2.36 2.338	34.496 34.492	13.314 13.312	2361929 2397693			00:36:30.91 00:42:31.70	4.068 4.314	7.647 7.649
103	45.082	17.77	2.339	34.494	13.313	2361991			00:48:32.49	4.069	7.649
104	45.077	17.766	2.26	34.493	13.311	2359765			00:54:33.28	4.054	7.647
105	45.078	17.765	2.297	34.494	13.311	2343112			01:00:34.07	3.939	7.649
106 107	45.073 45.067	17.759 17.75	2.24 2.192	34.495 34.497	13.31 13.309	2339118 2373443			01:06:34.86 01:12:35.65	3.912 4.147	7.648 7.647
108	45.06	17.743	2.175	34.498	13.309	2358277			01:12:35:03	4.043	7.651
109	45.069	17.754	2.147	34.495	13.309	2361881			01:24:37.23	4.068	7.649
110	45.061	17.754	2.095	34.489	13.308	2360513			01:30:38.02	4.059	7.651
111	45.064	17.755	2.082	34.491	13.308	2365125 2354717			01:36:38.81	4.090	7.651
112 113	45.071 45.076	17.748 17.75	2.043 2.024	34.503 34.505	13.308 13.307	2339792			01:42:39.60 01:48:40.39	4.019 3.916	7.648 7.651
114	45.074	17.767	1.981	34.49	13.307	2359431			01:54:41.18	4.051	7.650
115	45.077	17.765	1.954	34.493	13.308	2334336			02:00:41.97	3.879	7.650
116	45.085	17.773	1.883	34.493	13.308	2349904			02:06:42.76	3.986	7.650
117 118	45.092 45.096	17.771 17.781	1.879 1.838	34.501 34.496	13.307 13.307	2357965 2346763			02:12:43.55 02:18:44.34	4.041 3.964	7.650 7.650
119	45.096	17.782	1.815	34.495	13.306	2327530			02:24:45.13	3.832	7.652
120	45.095	17.785	1.74	34.493	13.307	2356530	2465461	5/15/1998	02:30:45.92	4.031	7.649
121	45.099	17.783	1.727	34.497	13.308	2333205			02:36:46.71	3.871	7.652
122 123	45.093 45.106	17.785 17.795	1.662 1.62	34.491 34.494	13.306 13.305	2337882 2355699			02:42:47.50 02:48:48.29	3.903 4.026	7.651 7.651
124	45.108	17.797	1.596	34.493	13.306	2375615			02:54:49.08	4.162	7.652
125	45.107	17.795	1.538	34.494	13.304	2380729			03:00:49.87	4.197	7.652
126	45.113	17.79	1.505	34.504	13.303	2346873			03:06:50.66	3.965	7.650
127 128	45.117 45.108	17.799 17.795	1.463 1.426	34.498 34.496	13.303 13.302	2299817 2365956			03:12:51.45 03:18:52.24	3.642 4.096	7.651 7.654
129	45.115	17.786	1.414	34.508	13.302	23333427			03:16:52:24	3.873	7.653
130	45.115	17.791	1.368	34.504	13.302	2337033			03:30:53.82	3.898	7.651
131	45.121	17.793	1.31	34.507	13.303	2374985			03:36:54.61	4.158	7.652
132 133	45.125 45.126	17.803 17.792	1.281 1.249	34.502 34.512	13.302 13.302	2376677 2345688			03:42:55.40 03:48:56.19	4.170 3.957	7.653 7.655
134	45.133	17.792	1.249	34.5	13.302	2336899			03:54:56.98	3.897	7.653
135	45.148	17.825	1.183	34.504	13.301	2351237			04:00:57.77	3.995	7.654
136	45.178	17.863	1.134	34.498	13.303	2333080	2465691		04:06:58.56	3.870	7.650
137	45.205	17.891	1.111	34.497	13.303	2336919			04:12:59.35	3.897	7.653
138 139	45.224 45.257	17.913 17.937	1.089 1.044	34.494 34.502	13.303 13.303	2371025 2345181			04:19:00.14 04:25:00.93	4.131 3.953	7.653 7.651
140	45.285	17.968	1.008	34.5	13.301	2372030			04:31:01.72	4.138	7.655
141	45.305	17.988	0.987	34.5	13.301	2285279			04:37:02.51	3.542	7.652
142 143	45.327 45.362	18.02 18.048	0.95 0.933	34.491 34.498	13.302 13.3	2344166 2369962			04:43:44.53 04:49:45.32	3.946 4.123	7.651 7.653
144	45.381	18.062	0.892	34.502	13.3	2369947	2466500		04:45:45.32	4.123	7.654
145	45.399	18.088	0.855	34.495	13.299	2322085		5/15/1998	05:01:46.90	3.795	7.655
146	45.427	18.111	0.882	34.5	13.299	2368270			05:07:47.69	4.112	7.653
147 148	45.446 45.468	18.133 18.154	0.855 0.849	34.497 34.499	13.299 13.3				05:13:48.48 05:19:49.27	4.011 3.987	7.658 7.652
149	45.482	18.179	0.817	34.49	13.299				05:25:50.06	3.995	7.652
150	45.501	18.194	0.803	34.493	13.3	2359344			05:31:50.85	4.051	7.651
151	45.526 45.543	18.21 18.234	0.79	34.5	13.298	2349084			05:37:51.64 05:43:52.43	3.980	7.655
152 153	45.543	18.261	0.749 0.757	34.494 34.488	13.299 13.298	2362851 2381029			05:49:53.22	4.075 4.199	7.653 7.655
154	45.574	18.266	0.74	34.495	13.298	2353587			05:55:54.01	4.011	7.655
155	45.598	18.282	0.741	34.501	13.298	2386931			06:01:54.80	4.240	7.652
156	45.612	18.303	0.751	34.496	13.298				06:07:55.59 06:13:56.38	3.586	7.654
157 158	45.634 45.654	18.327 18.347	0.727 0.769	34.494 34.494	13.299 13.298	2371093 2391363			06:13:56.38	4.131 4.270	7.649 7.651
159	45.672	18.365	0.735	34.493	13.299	2362448			06:25:57.96	4.072	7.651
160	45.687	18.377	0.729	34.496	13.298	2338958			06:31:58.75	3.911	7.651
161	45.702	18.394	0.726	34.496	13.299	2314425			06:37:59.54	3.742	7.650
162 163	45.72 45.732	18.408 18.429	0.708 0.741	34.498 34.491	13.299 13.298	2328691			06:44:00.33 06:50:01.12	3.840 4.186	7.650 7.651
164	45.748	18.443	0.719	34.493	13.298				06:56:01.91	4.329	7.648
165	45.762	18.459	0.731	34.491	13.297	2380967	2465836		07:02:02.70	4.199	7.651
166	45.772	18.47	0.759	34.491	13.297	2390271			07:08:03.49	4.263	7.650
167 168	45.786 45.802	18.486 18.497	0.777 0.801	34.489 34.492	13.297 13.297	2388876 2280680			07:14:04.28 07:20:05.07	4.253 3.511	7.648 7.648
169	45.808	18.5	0.799	34.496	13.296	2359304			07:26:05.86	4.050	7.646
170	45.824	18.524	0.801	34.489	13.297	2372525			07:32:06.65	4.141	7.646
171	45.835	18.527	0.809	34.496	13.295	2375619			07:38:07.44	4.162	7.646
172 173	45.846 45.857	18.549 18.557	0.8 0.816	34.486 34.488	13.295 13.295	2380342 2371967			07:44:08.23 07:50:09.02	4.195 4.137	7.647 7.648
174	45.867	18.569	0.86	34.487	13.296	23333301			07:56:09.81	3.872	7.644
175	45.879	18.589	0.882	34.481	13.295	2351599	2464428	5/15/1998	08:02:10.60	3.997	7.645
176	45.892	18.593	0.895	34.488	13.295	2346469			08:08:11.39	3.962	7.642
177 178	45.903 45.911	18.618 18.616	0.937 0.956	34.477 34.485	13.294 13.295	2374377 2356857			08:14:12.18 08:20:12.97	4.154 4.034	7.643 7.645
178	45.911	18.631	0.966	34.485	13.295	2366693			08:20:12.97	4.101	7.645 7.645
180	45.931	18.64	0.97	34.482	13.293	2405428	2464468	5/15/1998	08:32:14.55	4.367	7.645
181	45.947	18.645	0.984	34.491	13.293				08:38:15.34	4.332	7.644
182 183	45.958 45.952	18.661 18.666	0.997	34.487	13.276	2378810			08:44:16.14	4.184	7.645 7.646
183 184	45.952 45.971	18.666 18.673	1.029 1.067	34.478 34.488	13.257 13.27	2326999 2367434			08:50:16.93 08:56:17.72	3.829 4.106	7.646 7.642
185	45.972	18.682	1.095	34.481	13.276	2373371			09:02:18.51	4.147	7.644

Record No.	Conductivity (mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
186	45.98	18.691	1.115	34.481	13.281	2364539		5/15/1998	09:08:19.30	4.086	7.644
187	45.985	18.688	1.156	34.487	13.28	2383525			09:14:20.09	4.217	7.644
188 189	45.992 45.992	18.687 18.703	1.172 1.202	34.494 34.481	13.282 13.28	2380216 2368968			09:20:20.88 09:26:21.67	4.194 4.117	7.642 7.644
190	45.992	18.694	1.213	34.488	13.283	2350019			09:32:22.46	3.987	7.642
191	45.987	18.694	1.254	34.484	13.28	2354642			09:38:23.25	4.018	7.642
192	45.983	18.692	1.282	34.482	13.28	2406127			09:44:24.04	4.372	7.643
193 194	45.976 45.972	18.682 18.674	1.325 1.347	34.484 34.488	13.282 13.283	2364024 2385935			09:50:24.83 09:56:25.62	4.083 4.233	7.644 7.642
195	45.96	18.667	1.324	34.483	13.28	2358993			10:02:26.41	4.048	7.646
196	45.952	18.657	1.4	34.485	13.282	2385743	2463581	5/15/1998	10:08:27.20	4.232	7.641
197	45.948	18.648	1.374	34.489	13.28	2337293			10:14:27.99	3.899	7.643
198 199	45.943 45.935	18.642 18.633	1.397 1.442	34.49 34.491	13.281 13.28	2382243 2350789			10:20:28.78 10:26:29.57	4.208 3.992	7.644 7.643
200	45.918	18.616	1.4	34.491	13.281	2383707			10:32:30.36	4.218	7.645
201	45.914	18.614	1.461	34.489	13.28	2369711			10:38:31.15	4.122	7.645
202	45.907	18.603	1.499	34.492	13.28	2361019			10:44:31.94	4.062	7.645
203 204	45.898 45.882	18.597 18.589	1.57 1.586	34.49 34.483	13.28 13.28	2404815 2396909			10:50:32.73 10:56:33.52	4.363 4.308	7.647 7.646
205	45.878	18.581	1.573	34.486	13.279	2280660			11:02:34.31	3.511	7.644
206	45.876	18.576	1.54	34.489	13.279	2391740			11:08:35.10	4.273	7.643
207	45.87	18.572	1.58	34.487	13.278	2356241			11:14:35.89	4.029	7.646
208 209	45.871 45.864	18.567 18.572	1.611 1.593	34.492 34.482	13.278 13.278	2378496 2395631			11:20:36.68 11:26:37.47	4.182 4.300	7.641 7.643
210	45.867	18.566	1.643	34.49	13.277	2352619			11:32:38.26	4.004	7.645
211	45.868	18.57	1.614	34.487	13.277	2369975	2463766	5/15/1998	11:38:39.05	4.124	7.642
212	45.864	18.565	1.7	34.488	13.276	2379839			11:45:21.07	4.191	7.643
213 214	45.851 45.832	18.556 18.529	1.707 1.705	34.484 34.492	13.276 13.276	2367463 2354682			11:51:21.86 11:57:22.65	4.106 4.019	7.643 7.642
215	45.82	18.523	1.683	34.486	13.276	2378706			12:03:23.44	4.184	7.642
216	45.814	18.508	1.696	34.493	13.277	2366231			12:09:24.23	4.098	7.643
217	45.798	18.488	1.698	34.497	13.274	2355692			12:15:25.02	4.026	7.642
218	45.775	18.473	1.719	34.49	13.274	2346827			12:21:25.81	3.965	7.643
219 220	45.758 45.737	18.449 18.43	1.779 1.737	34.496 34.494	13.272 13.272	2344638 2368711			12:27:26.60 12:33:27.39	3.950 4.115	7.651 7.643
221	45.712	18.403	1.74	34.496	13.273	2380056			12:39:28.18	4.193	7.642
222	45.695	18.387	1.74	34.495	13.272	2393889			12:45:28.97	4.288	7.641
223	45.677	18.361	1.753	34.501	13.271	2379914			12:51:29.76	4.192	7.642
224 225	45.661 45.637	18.348 18.331	1.769 1.736	34.499 34.493	13.27 13.27	2355802 2380692			12:57:30.55 13:03:31.34	4.026 4.197	7.642 7.642
226	45.625	18.312	1.721	34.498	13.269	2375283			13:09:32.13	4.160	7.642
227	45.605	18.305	1.709	34.488	13.269	2332420			13:15:32.92	3.866	7.643
228	45.6	18.283	1.718	34.502	13.27	2379168			13:21:33.71	4.187	7.641
229 230	45.594 45.587	18.284 18.272	1.776 1.733	34.496 34.499	13.269 13.27	2373904 2389117			13:27:34.50 13:33:35.29	4.151 4.255	7.641 7.640
231	45.569	18.262	1.717	34.493	13.267	2336928			13:39:36.08	3.897	7.644
232	45.566	18.251	1.704	34.5	13.267	2347445			13:45:36.87	3.969	7.640
233	45.553	18.236	1.719	34.501	13.267	2364355			13:51:37.66	4.085	7.641
234 235	45.55 45.533	18.233 18.216	1.674 1.692	34.501 34.502	13.267 13.266	2344025 2362191			13:57:38.45 14:03:39.24	3.945 4.070	7.641 7.642
236	45.53	18.213	1.646	34.502	13.267	2383481			14:09:40.03	4.216	7.642
237	45.52	18.201	1.668	34.503	13.268	2376804			14:15:40.82	4.170	7.639
238 239	45.509	18.185	1.649 1.629	34.507 34.503	13.266	2402584 2353467			14:21:41.61	4.347	7.643 7.641
240	45.503 45.489	18.184 18.172	1.598	34.503	13.266 13.264				14:27:42.40 14:33:43.19	4.010 3.993	7.639
241	45.482	18.165	1.639	34.501	13.265				14:39:43.98	4.226	7.641
242	45.473	18.152	1.611	34.504	13.263				14:45:44.77	4.078	7.639
243 244	45.463 45.453	18.141 18.136	1.592 1.555	34.505 34.501	13.263 13.262	2365024 2371528			14:51:45.56 14:57:46.35	4.090 4.134	7.639 7.641
245	45.448	18.13	1.575	34.502	13.262				15:03:47.14	4.001	7.641
246	45.448	18.128	1.579	34.503	13.261				15:09:47.93	3.916	7.641
247	45.442	18.117	1.492	34.507	13.262				15:15:48.72	4.187	7.641
248 249	45.432 45.423	18.104 18.11	1.527 1.499	34.51 34.497	13.261 13.261	2383217 2360587			15:21:49.51 15:27:50.30	4.214 4.059	7.638 7.640
250	45.42	18.094	1.449	34.508	13.26	2359980			15:33:51.09	4.055	7.640
251	45.41	18.091	1.425	34.503	13.259	2363695			15:39:51.88	4.080	7.640
252	45.406	18.079	1.45	34.509	13.261	2368615			15:45:52.67	4.114	7.640
253 254	45.399 45.388	18.082 18.077	1.415 1.458	34.501 34.496	13.26 13.259	2380394 2324128			15:51:53.46 15:57:54.25	4.195 3.809	7.642 7.643
255	45.394	18.071	1.451	34.505	13.258	2357274			16:03:55.04	4.036	7.644
256	45.391	18.068	1.4	34.505	13.258	2351656			16:09:55.83	3.998	7.642
257	45.385	18.058	1.381	34.508	13.258	2381841			16:15:56.62	4.205	7.642
258	45.389	18.054	1.4	34.516	13.258	2346587			16:21:57.41	3.963	7.644
259 260	45.386 45.397	18.066 18.068	1.378 1.328	34.503 34.51	13.258 13.258	2354135			16:27:58.20 16:33:58.99	4.015 4.201	7.642 7.645
261	45.41	18.084	1.345	34.509	13.258	2395788			16:39:59.78	4.301	7.643
262	45.414	18.094	1.361	34.503	13.258	2377841			16:46:00.57	4.178	7.644
263	45.429	18.104	1.301	34.507	13.259	2358469			16:52:01.36	4.045	7.642
264 265	45.443 45.458	18.12 18.123	1.315 1.344	34.505 34.517	13.257 13.258	2356930			16:58:02.15 17:04:02.94	4.034 4.063	7.651 7.643
266	45.468	18.141	1.31	34.51	13.258	2390020			17:10:03.73	4.261	7.645
267	45.479	18.152	1.308	34.509	13.258	2348005	2464148	5/15/1998	17:16:04.52	3.973	7.644
268	45.492	18.161	1.319	34.513	13.256	2396793			17:22:05.31	4.308	7.648
269 270	45.508 45.521	18.183 18.196	1.289 1.339	34.508 34.508	13.258 13.257				17:28:06.10 17:34:06.89	4.202 4.212	7.648 7.646
270 271	45.521	18.213	1.339	34.508	13.257	2397674			17:34:06.89	4.314	7.648
272	45.553	18.23	1.337	34.507	13.258	2402697			17:46:08.47	4.348	7.649
273	45.566	18.238	1.322	34.511	13.257	2353153			17:52:09.26	4.008	7.649
274 275	45.582 45.588	18.257	1.294	34.509	13.257	2380839			17:58:10.05	4.198	7.650 7.651
275 276	45.598 45.603	18.272 18.283	1.316 1.355	34.509 34.505	13.256 13.258	2394227 2351650			18:04:10.84 18:10:11.63	4.290 3.998	7.651 7.650
277	45.62	18.293	1.331	34.51	13.254	2369528			18:16:12.42	4.121	7.651
278	45.626	18.304	1.353	34.506	13.258	2397359			18:22:13.21	4.312	7.650
279	45.635	18.312	1.321	34.507	13.255	2371123	2466458	5/15/1998	18:28:14.00	4.131	7.654

Record No.	Conductivity (mS/cm)	•	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O.	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
280	45.651	(Deg. C) 18.321	1.353	34.513	13.255	(Integer) 2380264		5/15/1998	18:34:14.79	4.194	7.655
281	45.657	18.332	1.359	34.509	13.255	2387365	2466233	5/15/1998	18:40:15.58	4.243	7.653
282	45.656	18.336	1.383	34.505	13.253	2391766			18:46:57.62	4.273	7.656
283 284	45.67 45.669	18.344 18.346	1.353 1.37	34.509 34.507	13.253 13.256	2392285 2371420			18:52:58.41 18:58:59.20	4.277 4.134	7.656 7.657
285	45.675	18.351	1.4	34.508	13.254	2364223			19:04:59.99	4.084	7.657
286	45.675	18.346	1.415	34.513	13.251	2354463	2466804	5/15/1998	19:11:00.78	4.017	7.655
287	45.677	18.347	1.397	34.513	13.252	2345955			19:17:01.57	3.959	7.655
288 289	45.684 45.686	18.358 18.368	1.384 1.418	34.51 34.503	13.254 13.252	2385862 2359116			19:23:02.36 19:29:03.15	4.233 4.049	7.657 7.656
290	45.698	18.365	1.445	34.516	13.251	2381054			19:35:03.94	4.200	7.658
291	45.697	18.369	1.513	34.511	13.25	2375820			19:41:04.73	4.164	7.657
292	45.698	18.374	1.507	34.508	13.25	2377280			19:47:05.52	4.174	7.656
293	45.706	18.378	1.524	34.512	13.25 13.249	2391057 2362852			19:53:06.31	4.268	7.657
294 295	45.703 45.705	18.376 18.378	1.579 1.563	34.511 34.511	13.249	2381681			19:59:07.10 20:05:07.89	4.075 4.204	7.656 7.659
296	45.708	18.376	1.559	34.515	13.249	2385570			20:11:08.68	4.231	7.657
297	45.7	18.375	1.599	34.509	13.248	2337237	2467344	5/15/1998	20:17:09.47	3.899	7.658
298	45.703	18.376	1.558	34.51	13.249	2382983			20:23:10.26	4.213	7.658
299 300	45.702 45.697	18.365 18.371	1.58 1.627	34.519 34.51	13.249 13.248	2374780 2370041			20:29:11.05 20:35:11.84	4.157 4.124	7.656 7.655
301	45.696	18.366	1.691	34.513	13.247	2323110			20:41:12.63	3.802	7.658
302	45.688	18.359	1.734	34.512	13.246				20:47:13.42	3.982	7.661
303	45.687	18.351	1.722	34.518	13.247	2382767			20:53:14.21	4.211	7.660
304 305	45.676 45.661	18.349 18.335	1.759 1.741	34.511 34.509	13.244 13.245	2384210 2388360			20:59:15.00 21:05:15.79	4.221 4.250	7.661 7.655
306	45.637	18.31	1.756	34.51	13.243	2369829			21:11:16.58	4.123	7.658
307	45.624	18.294	1.759	34.513	13.245	2372489	2467231	5/15/1998	21:17:17.37	4.141	7.657
308	45.616	18.28	1.732	34.518	13.244	2376284			21:23:18.16	4.167	7.658
309 310	45.597 45.572	18.259 18.235	1.783 1.846	34.52 34.519	13.241 13.242	2370010 2369035			21:29:18.95 21:35:19.74	4.124 4.117	7.658 7.658
311	45.56	18.217	1.82	34.523	13.242	2359090			21:41:20.53	4.049	7.656
312	45.54	18.213	1.892	34.51	13.24	2373006			21:47:21.32	4.144	7.657
313	45.524	18.19	1.88	34.516	13.24	2384965			21:53:22.11	4.226	7.661
314 315	45.51 45.501	18.184 18.163	1.891 1.922	34.508 34.519	13.24 13.24	2372198 2367592			21:59:22.90 22:05:23.69	4.139 4.107	7.656 7.658
316	45.49	18.151	1.893	34.519	13.24	2371961			22:11:24.48	4.137	7.659
317	45.482	18.138	1.963	34.524	13.238	2337747			22:17:25.27	3.902	7.660
318	45.469	18.124	1.91	34.525	13.239	2319494			22:23:26.06	3.777	7.657
319 320	45.461 45.448	18.121 18.107	1.931 1.918	34.52 34.52	13.239 13.237	2375343 2377429			22:29:26.85 22:35:27.64	4.160 4.175	7.658 7.656
321	45.435	18.1	1.969	34.516	13.238	2376011			22:41:28.43	4.165	7.657
322	45.429	18.088	1.956	34.52	13.237	2356935	2467112	5/15/1998	22:47:29.22	4.034	7.657
323	45.423	18.08	2.023	34.523	13.237	2367734			22:53:30.01	4.108	7.658
324 325	45.418 45.414	18.073 18.073	1.985 1.998	34.524 34.52	13.237 13.237	2379972 2345571			22:59:30.80 23:05:31.59	4.192 3.956	7.659 7.659
326	45.407	18.061	1.987	34.525	13.235	2339841			23:11:32.38	3.917	7.658
327	45.408	18.071	1.978	34.517	13.236	2359499			23:17:33.17	4.052	7.660
328	45.401	18.057	1.996	34.524	13.233	2358925			23:23:33.96	4.048	7.660
329 330	45.405 45.401	18.058 18.05	1.971 2.04	34.526 34.529	13.234 13.235	2395086 2365691			23:29:34.75 23:35:35.54	4.296 4.094	7.661 7.659
331	45.405	18.062	2.014	34.522	13.234	2355304			23:41:36.33	4.023	7.657
332	45.407	18.053	1.99	34.532	13.233	2383424			23:47:37.12	4.216	7.656
333 334	45.4 45.395	18.056 18.052	2.009 2.015	34.523 34.523	13.232 13.233	2383121 2377891			23:53:37.91 23:59:38.70	4.214 4.178	7.659 7.658
335	45.405	18.05	1.989	34.533	13.232				00:05:39.49	4.301	7.660
336	45.406	18.057	1.969	34.527	13.231	2373496	2467524	5/16/1998	00:11:40.28	4.148	7.658
337	45.395 45.394	18.042 18.049	1.985 1.988	34.53 34.524	13.231 13.23				00:17:41.07 00:23:41.86	3.960 4.033	7.659 7.661
338 339	45.389	18.031	1.952	34.535	13.23				00:23:41.66	4.143	7.658
340	45.39	18.033	1.957	34.533	13.228				00:35:43.44	4.033	7.659
341	45.386	18.033	1.932	34.531	13.233	2359037			00:41:44.23	4.049	7.659
342 343	45.378 45.375	18.029 18.027	1.926 1.923	34.527 34.526	13.229 13.228	2357632			00:47:45.02 00:53:45.81	4.039 4.076	7.660 7.657
344	45.371	18.024	1.915	34.526	13.227	2359224			00:59:46.60	4.050	7.660
345	45.37	18.022	1.862	34.526	13.231				01:05:47.39	4.021	7.660
346	45.36	18.015	1.816	34.523	13.229	2352383			01:11:48.18	4.003	7.659
347 348	45.351 45.345	18.003 18.002	1.846 1.81	34.527 34.522	13.229 13.229	2340953			01:17:48.97 01:23:49.76	3.924 4.104	7.658 7.660
349	45.345	17.992	1.778	34.531	13.229	2358870			01:29:50.55	4.047	7.657
350	45.337	17.989	1.78	34.526	13.229	2377140			01:35:51.34	4.173	7.657
351	45.331	17.982	1.712	34.527	13.229	2375405			01:41:52.13	4.161	7.657
352	45.332	17.976	1.71	34.533	13.227				01:48:34.16	3.974	7.660
353 354	45.329 45.33	17.976 17.98	1.685 1.633	34.53 34.528	13.226 13.227	2374527 2349078			01:54:34.95 02:00:35.74	4.155 3.980	7.659 7.660
355	45.328	17.973	1.631	34.532	13.225	2366638			02:06:36.53	4.101	7.657
356	45.327	17.978	1.579	34.527	13.225	2350933			02:12:37.32	3.993	7.657
357	45.327	17.981	1.583	34.525	13.226	2350551			02:18:38.11	3.990	7.661
358 359	45.328 45.32	17.975 17.971	1.532 1.498	34.53 34.527	13.224 13.225	2360349 2377524			02:24:38.90 02:30:39.69	4.058 4.175	7.659 7.658
360	45.327	17.971	1.476	34.532	13.224	2362956			02:36:40.48	4.075	7.659
361	45.32	17.973	1.422	34.525	13.223	2389833	2467475	5/16/1998	02:42:41.27	4.260	7.658
362	45.323	17.976	1.398	34.526	13.224	2361460			02:48:42.06	4.065	7.658
363 364	45.317 45.325	17.969 17.969	1.356 1.28	34.526 34.533	13.222 13.222	2354738 2354665			02:54:42.85 03:00:43.64	4.019 4.019	7.657 7.657
365	45.327	17.969	1.289	34.535	13.222	2408383			03:06:44.43	4.387	7.659
366	45.327	17.974	1.278	34.53	13.221	2367075	2467466	5/16/1998	03:12:45.22	4.104	7.658
367	45.324	17.967	1.248	34.534	13.222	2330680			03:18:46.01	3.854	7.657
368 369	45.325 45.332	17.974 17.973	1.178 1.115	34.529 34.536	13.22 13.22	2369441 2334352			03:24:46.80 03:30:47.59	4.120 3.879	7.658 7.658
370	45.335	17.987	1.101	34.526	13.222	2343750	2467793		03:36:48.38	3.944	7.660
371	45.338	17.981	1.073	34.534	13.219	2338593			03:42:49.17	3.908	7.659
372 373	45.339 45.34	17.98 17.983	1.038 1.022	34.535 34.534	13.22 13.219	2297495 2362710			03:48:49.96 03:54:50.75	3.626 4.074	7.658 7.659
	70.04			2	. 5.2.10	10	0.710	2, 10, 1000			

Record No.	Conductivity (mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
374	45.345	17.988	0.97	34.534	13.218	2356859		5/16/1998	04:00:51.54	4.034	7.659
375	45.345	17.986	0.936	34.536	13.22	2344295			04:06:52.33	3.947	7.659
376 377	45.342 45.341	17.987	0.902	34.533	13.219 13.22	2359049 2362960			04:12:53.12	4.049	7.658 7.659
378	45.344	17.993 17.987	0.858 0.827	34.526 34.535	13.22	2354292			04:18:53.91 04:24:54.70	4.075 4.016	7.659
379	45.353	17.994	0.798	34.536	13.217	2346094			04:30:55.49	3.960	7.657
380	45.356	18.003	0.769	34.531	13.22	2370973			04:36:56.28	4.130	7.661
381 382	45.367 45.38	18.01 18.032	0.74 0.708	34.534 34.526	13.221 13.221	2357293 2345507			04:42:57.07 04:48:57.86	4.037 3.956	7.660 7.660
383	45.399	18.041	0.655	34.535	13.223	2333597			04:54:58.65	3.874	7.663
384	45.421	18.071	0.663	34.528	13.223	2370228			05:00:59.44	4.125	7.660
385	45.44	18.086	0.61	34.532	13.222	2391255			05:07:00.23	4.270	7.658
386 387	45.461 45.48	18.107 18.126	0.572 0.555	34.532 34.532	13.221 13.222	2366862 2367017			05:13:01.02 05:19:01.81	4.102 4.103	7.660 7.657
388	45.493	18.149	0.556	34.524	13.22	2330259			05:25:02.60	3.851	7.661
389	45.509	18.161	0.526	34.527	13.221	2377135			05:31:03.39	4.173	7.659
390	45.527	18.177	0.489	34.529	13.219	2341738			05:37:04.18	3.930	7.658
391 392	45.545 45.566	18.192 18.213	0.473 0.444	34.532 34.533	13.22 13.222	2375006 2372313			05:43:04.97 05:49:05.76	4.158 4.140	7.658 7.660
393	45.585	18.231	0.447	34.534	13.222	2328565			05:55:06.55	3.839	7.659
394	45.592	18.243	0.433	34.529	13.227	2375820			06:01:07.34	4.164	7.657
395 396	45.611 45.623	18.262 18.277	0.416 0.377	34.53 34.527	13.223 13.225	2358893 2346040			06:07:08.13 06:13:08.92	4.048 3.959	7.659 7.656
397	45.639	18.284	0.368	34.534	13.225	2372790			06:19:09.71	4.143	7.656
398	45.652	18.305	0.371	34.527	13.223	2364436	2467155	5/16/1998	06:25:10.50	4.086	7.657
399	45.67	18.313	0.364	34.537	13.224	2377688			06:31:11.29	4.177	7.655
400 401	45.679 45.689	18.333 18.345	0.365 0.343	34.527 34.526	13.222 13.222	2357551 2339971			06:37:12.08 06:43:12.87	4.038 3.918	7.657 7.655
402	45.704	18.364	0.343	34.522	13.223	2356143			06:49:13.66	4.029	7.657
403	45.716	18.36	0.289	34.536	13.224	2358772	2466608	5/16/1998	06:55:14.45	4.047	7.654
404	45.728	18.376	0.292	34.532	13.223	2348538			07:01:15.24	3.976	7.656
405 406	45.739 45.747	18.393 18.4	0.299 0.29	34.527 34.528	13.226 13.221	2360453 2365582			07:07:16.03 07:13:16.82	4.058 4.093	7.655 7.658
407	45.759	18.416	0.289	34.525	13.221	2349223			07:13:10.62	3.981	7.656
408	45.767	18.42	0.308	34.528	13.222	2352634			07:25:18.40	4.005	7.654
409	45.781	18.438	0.298	34.525	13.222	2383224			07:31:19.19	4.215	7.653
410 411	45.796 45.807	18.451 18.454	0.342 0.34	34.527 34.534	13.22 13.221	2348780 2345413			07:37:19.98 07:43:20.77	3.978 3.955	7.656 7.655
412	45.812	18.472	0.322	34.522	13.222	2363050			07:49:21.56	4.076	7.656
413	45.829	18.484	0.296	34.527	13.222	2391920	2466354	5/16/1998	07:55:22.35	4.274	7.653
414	45.838	18.491	0.306	34.528	13.221	2343056			08:01:23.14	3.939	7.652
415 416	45.851 45.863	18.5 18.52	0.303 0.354	34.532 34.525	13.222 13.221	2362069 2358005			08:07:23.93 08:13:24.72	4.069 4.041	7.652 7.651
417	45.876	18.532	0.366	34.526	13.22	2346991			08:19:25.51	3.966	7.653
418	45.888	18.54	0.367	34.529	13.22	2374849			08:25:26.30	4.157	7.650
419	45.894	18.545	0.368	34.531	13.219	2367514			08:31:27.09	4.107	7.650
420 421	45.905 45.914	18.556 18.572	0.433 0.427	34.53 34.525	13.22 13.221	2355595 2362177			08:37:27.88 08:43:28.67	4.025 4.070	7.649 7.650
422	45.916	18.572	0.407	34.527	13.219	2376817			08:50:10.73	4.171	7.651
423	45.928	18.577	0.46	34.533	13.22	2370694			08:56:11.52	4.129	7.650
424 425	45.93 45.934	18.588 18.587	0.433 0.466	34.524 34.529	13.218 13.219	2364710 2370880			09:02:12.31 09:08:13.10	4.087 4.130	7.650 7.650
426	45.946	18.603	0.49	34.526	13.219	2362163			09:14:13.89	4.070	7.650
427	45.951	18.607	0.519	34.526	13.217	2377732			09:20:14.68	4.177	7.650
428	45.954	18.613	0.542	34.524	13.218				09:26:15.47	3.941	7.649
429 430	45.958 45.957	18.619 18.615	0.555 0.571	34.522 34.525	13.218 13.217				09:32:16.26 09:38:17.05	4.086 3.956	7.651 7.648
431	45.958	18.616	0.619	34.525	13.217				09:44:17.84	4.084	7.649
432	45.965	18.624	0.645	34.524	13.217				09:50:18.63	4.180	7.647
433 434	45.962 45.968	18.615 18.626	0.629 0.661	34.53 34.525	13.216 13.217				09:56:19.42 10:02:20.21	4.108 4.131	7.649 7.648
435	45.971	18.629	0.655	34.525	13.218				10:02:20:21	4.157	7.647
436	45.974	18.636	0.683	34.522	13.215	2370542	2464716	5/16/1998	10:14:21.79	4.127	7.646
437	45.971	18.639	0.709	34.517	13.218				10:20:22.58	3.898	7.647
438 439	45.977 45.981	18.64 18.64	0.746 0.815	34.521 34.524	13.219 13.215				10:26:23.37 10:32:24.16	4.382 4.089	7.646 7.647
440	45.988	18.641	0.789	34.529	13.214	2365434			10:38:24.95	4.092	7.646
441	45.98	18.638	0.808	34.525	13.214	2363864			10:44:25.74	4.082	7.646
442 443	45.981	18.646	0.812	34.52	13.215	2355393			10:50:26.53	4.024	7.650
443 444	45.983 45.975	18.645 18.636	0.865 0.852	34.522 34.522	13.214 13.214	2369408 2375164			10:56:27.32 11:02:28.11	4.120 4.159	7.647 7.648
445	45.972	18.63	0.854	34.525	13.213	2419238			11:08:28.90	4.462	7.645
446	45.961	18.621	0.885	34.523	13.212				11:14:29.69	3.929	7.646
447 448	45.954 45.939	18.61 18.6	0.929 0.976	34.527 34.522	13.212 13.212				11:20:30.48 11:26:31.27	4.135 4.235	7.646 7.647
449	45.935	18.589	0.992	34.528	13.211				11:32:32.06	4.138	7.646
450	45.924	18.581	1.002	34.525	13.211	2356895	2464913		11:38:32.85	4.034	7.647
451	45.911	18.572	1.013	34.522	13.21	2405453			11:44:33.64	4.367	7.645
452 453	45.902 45.889	18.56 18.542	1.028 1.084	34.525 34.529	13.211 13.21	2394661			11:50:34.43 11:56:35.22	4.293 4.251	7.644 7.644
453 454	45.874	18.531	1.064	34.525	13.21				12:02:36.01	4.123	7.644
455	45.867	18.515	1.023	34.533	13.21	2346747	2463775	5/16/1998	12:08:36.80	3.964	7.642
456 457	45.853	18.515	1.107	34.521	13.209				12:14:37.59	4.173	7.646
457 458	45.839 45.825	18.499 18.474	1.12 1.143	34.522 34.532	13.209 13.208				12:20:38.38 12:26:39.17	3.953 4.166	7.642 7.645
459	45.825	18.47	1.143	34.522	13.208	2373567			12:32:39.96	4.148	7.645
460	45.816	18.465	1.129	34.532	13.206	2380481	2464950	5/16/1998	12:38:40.75	4.196	7.647
461	45.807	18.462	1.137	34.527	13.209	2327573			12:44:41.54	3.833	7.644
462 463	45.797 45.788	18.451 18.435	1.158 1.178	34.527 34.533	13.207 13.206	2389970 2379758			12:50:42.33 12:56:43.12	4.261 4.191	7.643 7.645
464	45.787	18.438	1.186	34.529	13.207	2358934			13:02:43.91	4.048	7.642
465	45.781	18.431	1.207	34.531	13.206	2353875	2464250	5/16/1998	13:08:44.70	4.013	7.644
466 467	45.767 45.757	18.424 18.407	1.188 1.183	34.525 34.531	13.206 13.203	2370977			13:14:45.49 13:20:46.28	4.130 4.071	7.648
40/	40.101	10.40/	1.103	J4.UJ I	13.203	2002241	2400003	3/10/1998	13.∠0.40.∠8	4.071	7.650

Record No.	Conductivity (mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
468	45.75	18.398	1.229	34.532	13.204	2382850		5/16/1998	13:26:47.07	4.212	7.643
469	45.739	18.386	1.211	34.533	13.203	2354702			13:32:47.86	4.019	7.648
470 471	45.734	18.389	1.215	34.526	13.203 13.202	2358478 2373397			13:38:48.65 13:44:49.44	4.045	7.644 7.644
471	45.727 45.719	18.38 18.367	1.242 1.233	34.528 34.532	13.199	2363116			13:50:50.23	4.147 4.077	7.652
473	45.706	18.367	1.227	34.521	13.2	2378673			13:56:51.02	4.183	7.646
474	45.703	18.343	1.21	34.538	13.199	2372531			14:02:51.81	4.141	7.643
475 476	45.685 45.681	18.333 18.316	1.214 1.202	34.532 34.543	13.199 13.198	2370729 2346686			14:08:52.60 14:14:53.39	4.129 3.964	7.645 7.647
477	45.662	18.308	1.228	34.533	13.190	2341954			14:14:55:59	3.931	7.645
478	45.657	18.311	1.209	34.527	13.201	2357701			14:26:54.97	4.039	7.645
479	45.653	18.302	1.209	34.531	13.199	2335402			14:32:55.76	3.886	7.643
480 481	45.639 45.632	18.283 18.282	1.193 1.196	34.535 34.53	13.198 13.199	2363415 2367654			14:38:56.55 14:44:57.34	4.079 4.108	7.648 7.643
482	45.625	18.273	1.198	34.531	13.199	2361687			14:50:58.13	4.067	7.643
483	45.616	18.262	1.192	34.534	13.199	2332234			14:56:58.92	3.865	7.644
484	45.606	18.253	1.151	34.532	13.197	2387899			15:02:59.71	4.247	7.646
485	45.599	18.241	1.165	34.536	13.198	2358923			15:09:00.50	4.048	7.642
486 487	45.595 45.583	18.238 18.223	1.168 1.159	34.536 34.538	13.2 13.197	2388218 2380298			15:15:01.29 15:21:02.08	4.249 4.194	7.643 7.646
488	45.571	18.22	1.115	34.531	13.197	2386229			15:27:02.87	4.235	7.644
489	45.566	18.203	1.143	34.541	13.197	2326244			15:33:03.66	3.823	7.645
490	45.556	18.196	1.157	34.538	13.198	2391305			15:39:04.45	4.270	7.646
491 492	45.552 45.533	18.193 18.176	1.087 1.061	34.537 34.535	13.196 13.194	2367932 2364999			15:45:05.24 15:51:47.30	4.110 4.089	7.646 7.646
493	45.526	18.17	1.072	34.534	13.195	2375858			15:57:48.09	4.164	7.647
494	45.516	18.152	1.027	34.541	13.194	2348960			16:03:48.88	3.979	7.645
495	45.504	18.147	1.062	34.535	13.194	2352109			16:09:49.67	4.001	7.647
496	45.498	18.136	1.032	34.539	13.195	2352347 2339196			16:15:50.46	4.003	7.647
497 498	45.493 45.487	18.136 18.126	1.005 1.015	34.535 34.538	13.194 13.196	2361574			16:21:51.25 16:27:52.04	3.912 4.066	7.647 7.644
499	45.482	18.12	1.022	34.539	13.193	2360144			16:33:52.83	4.056	7.645
500	45.474	18.108	0.967	34.543	13.194	2337115	2464595	5/16/1998	16:39:53.62	3.898	7.646
501	45.463	18.091	0.964	34.547	13.193	2351100			16:45:54.41	3.994	7.645
502 503	45.451 45.446	18.088 18.074	0.933 0.921	34.54 34.547	13.193 13.192	2383584 2361530			16:51:55.20 16:57:55.99	4.217 4.066	7.647 7.648
504	45.441	18.07	0.908	34.546	13.193	2391573			17:03:56.78	4.272	7.646
505	45.448	18.085	0.943	34.54	13.193	2375491			17:09:57.57	4.161	7.646
506	45.45	18.089	0.905	34.538	13.194	2389529			17:15:58.36	4.258	7.646
507 508	45.46 45.477	18.097 18.117	0.91 0.909	34.54 34.537	13.192 13.192	2340969 2342003			17:21:59.15 17:27:59.94	3.925 3.932	7.647 7.647
509	45.488	18.132	0.888	34.534	13.192	2372901			17:34:00.73	4.144	7.649
510	45.502	18.134	0.892	34.544	13.191	2374499			17:40:01.52	4.155	7.651
511	45.518	18.157	0.904	34.539	13.188	2332155			17:46:02.31	3.864	7.653
512 513	45.53 45.553	18.167 18.186	0.847 0.888	34.541 34.543	13.19 13.19	2345892 2378091			17:52:03.10 17:58:03.89	3.958 4.179	7.649 7.651
514	45.57	18.205	0.86	34.542	13.188	2367452			18:04:04.68	4.106	7.651
515	45.591	18.23	0.865	34.539	13.188	2339761			18:10:05.47	3.916	7.651
516	45.611	18.242	0.853	34.546	13.191	2346266			18:16:06.26	3.961	7.654
517 518	45.623 45.637	18.261 18.28	0.871 0.857	34.54 34.535	13.188 13.186	2364061 2372822			18:22:07.05 18:28:07.84	4.083 4.143	7.656 7.652
519	45.656	18.293	0.844	34.542	13.187	2365685			18:34:08.63	4.094	7.655
520	45.67	18.305	0.878	34.543	13.187	2353791			18:40:09.42	4.013	7.654
521 522	45.668 45.683	18.312 18.322	0.839 0.833	34.536 34.54	13.184 13.186	2386575			18:46:10.21 18:52:11.00	4.238 4.021	7.656 7.654
523	45.692	18.325	0.869	34.544	13.187				18:58:11.79	4.015	7.655
524	45.696	18.336	0.908	34.538	13.189				19:04:12.58	3.926	7.654
525	45.694	18.335	0.875	34.538	13.187	2368882			19:10:13.37	4.116	7.655
526 527	45.697 45.693	18.333 18.337	0.924 0.87	34.542 34.535	13.186 13.186	2347339			19:16:14.16 19:22:14.95	3.968 4.184	7.656 7.656
528	45.697	18.335	0.918	34.54	13.184	2362681			19:28:15.74	4.074	7.657
529	45.694	18.331	0.886	34.542	13.187	2366986	2466913	5/16/1998	19:34:16.53	4.103	7.656
530	45.691	18.324	0.89	34.545	13.185	2360421			19:40:17.32	4.058	7.662
531 532	45.687 45.693	18.325 18.32	0.894 0.901	34.541 34.549	13.183 13.183	2379600 2359686			19:46:18.11 19:52:18.90	4.190 4.053	7.663 7.661
533	45.689	18.33	0.941	34.537	13.185	2397885			19:58:19.69	4.315	7.656
534	45.685	18.319	0.949	34.544	13.187	2350642			20:04:20.48	3.991	7.656
535	45.679	18.317	0.969	34.54	13.184	2378571			20:10:21.27	4.183	7.655
536 537	45.684 45.682	18.317 18.314	0.933 0.962	34.545 34.545	13.183 13.185	2346928 2334539			20:16:22.06 20:22:22.85	3.965 3.880	7.662 7.660
538	45.682	18.318	0.982	34.542	13.184	2339871			20:22:22:63	3.917	7.656
539	45.68	18.317	0.961	34.542	13.185	2362783			20:34:24.43	4.074	7.655
540	45.683	18.318	0.974	34.543	13.184	2383029			20:40:25.22	4.213	7.656
541 542	45.681	18.318	1.006	34.541	13.182	2363565 2369824			20:46:26.01	4.080	7.662
543	45.684 45.67	18.316 18.308	1.053 1.047	34.546 34.541	13.185 13.182	2368282			20:52:26.80 20:58:27.59	4.123 4.112	7.658 7.666
544	45.666	18.299	1.073	34.545	13.183	2326759			21:04:28.38	3.827	7.660
545	45.66	18.295	1.068	34.543	13.182	2342929			21:10:29.17	3.938	7.659
546	45.658	18.304	1.076	34.534	13.179	2361774			21:16:29.96	4.067	7.659
547 548	45.653 45.648	18.286 18.276	1.12 1.125	34.544 34.548	13.181 13.179	2353908 2337217			21:22:30.75 21:28:31.54	4.013 3.899	7.659 7.660
549	45.639	18.264	1.127	34.551	13.179	2371271			21:34:32.33	4.132	7.659
550	45.632	18.262	1.117	34.547	13.178	2367347	2467603	5/16/1998	21:40:33.12	4.106	7.659
551	45.617	18.25	1.157	34.544	13.178	2352441			21:46:33.91	4.003	7.656
552 553	45.606 45.592	18.237 18.224	1.171 1.195	34.546 34.545	13.178 13.178	2354748 2368829			21:52:34.70 21:58:35.49	4.019 4.116	7.660 7.659
554	45.584	18.214	1.189	34.547	13.176	2384793			22:04:36.28	4.225	7.657
555	45.563	18.198	1.21	34.543	13.176	2348787	2467643	5/16/1998	22:10:37.07	3.978	7.659
556	45.556	18.184	1.212	34.548	13.178	2345808			22:16:37.86	3.958	7.657
557 558	45.532 45.513	18.165 18.143	1.227 1.246	34.544 34.546	13.176 13.176	2363619			22:22:38.65 22:28:39.44	4.080 4.053	7.658 7.657
559	45.513 45.491	18.143	1.232	34.546	13.176	2343311			22:34:40.23	3.941	7.661
560	45.483	18.103	1.226	34.554	13.174	2342689	2467742	5/16/1998	22:40:41.02	3.936	7.659
561	45.467	18.098	1.279	34.546	13.171	2364423	2467491	5/16/1998	22:46:41.81	4.085	7.658

Record No.	(mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
562	45.444	18.073	1.286	34.547	13.173	2365753	2467437	5/16/1998	22:53:23.87	4.095	7.658
563	45.422	18.039	1.301	34.557	13.171	2370680	2468064	5/16/1998	22:59:24.66	4.128	7.661
564	45.41	18.037	1.281	34.548	13.171	2372768	2467330	5/16/1998	23:05:25.45	4.143	7.658
565	45.397	18.017	1.311	34.553	13.171	2338758	2467691	5/16/1998	23:11:26.24	3.909	7.659
566	45.388	18.008	1.332	34.554	13.173	2347926	2467937	5/16/1998	23:17:27.03	3.972	7.660
567	45.38	17.998	1.349	34.555	13.172	2348759			23:23:27.82	3.978	7.657
568	45.364	17.977	1.334	34.56	13.169	2365185			23:29:28.61	4.091	7.657
569	45.358	17.972	1.278	34.558	13.171	2351984			23:35:29.40	4.000	7.660
570	45.352	17.962	1.343	34.562	13.172	2337874			23:41:30.19	3.903	7.658
571	45.34	17.954	1.382	34.559	13.17	2321696			23:47:30.98	3.792	7.657
572	45.322	17.941	1.399	34.554	13.169	2358306			23:53:31.77	4.044	7.658
573	45.319	17.939	1.339	34.554	13.109	2337583			23:59:32.56	3.901	7.658
574					13.17	2365470					
574 575	45.318	17.929	1.312	34.561					00:05:33.35 00:11:34.14	4.093	7.657
	45.312	17.925	1.315	34.559	13.167	2349387				3.982	7.656
576	45.311	17.916	1.402	34.565	13.168	2353205			00:17:34.93	4.008	7.658
577	45.301	17.92	1.411	34.554	13.166	2337473			00:23:35.72	3.901	7.659
578	45.3	17.914	1.351	34.559	13.169	2358633			00:29:36.51	4.046	7.657
579	45.306	17.919	1.343	34.559	13.167	2341838			00:35:37.30	3.930	7.659
580	45.303	17.921	1.378	34.555	13.168	2335597			00:41:38.09	3.888	7.659
581	45.306	17.914	1.395	34.564	13.168	2352442			00:47:38.88	4.003	7.656
582	45.298	17.92	1.357	34.551	13.167	2339605	2467423	5/17/1998	00:53:39.67	3.915	7.658
583	45.304	17.916	1.302	34.56	13.172	2325629			00:59:40.46	3.819	7.662
584	45.292	17.908	1.339	34.556	13.171	2375801	2467323	5/17/1998	01:05:41.25	4.164	7.658
585	45.291	17.901	1.371	34.561	13.171	2393714	2467936	5/17/1998	01:11:42.04	4.287	7.660
586	45.286	17.897	1.386	34.56	13.17	2344911	2467390	5/17/1998	01:17:42.83	3.952	7.658
587	45.277	17.892	1.328	34.557	13.171	2340091	2467983	5/17/1998	01:23:43.62	3.918	7.660
588	45.27	17.888	1.298	34.555	13.171	2324607	2467197	5/17/1998	01:29:44.41	3.812	7.657
589	45.256	17.871	1.286	34.557	13.17	2354488	2467486	5/17/1998	01:35:45.20	4.017	7.658
590	45.255	17.86	1.32	34.565	13.171	2334609			01:41:45.99	3.881	7.656
591	45.249	17.855	1.255	34.564	13.168	2341522			01:47:46.78	3.928	7.657
592	45.239	17.851	1.241	34.559	13.169	2357362			01:53:47.57	4.037	7.658
593	45.233	17.838	1.227	34.565	13.168	2354461			01:59:48.36	4.017	7.655
594	45.227	17.836	1.251	34.562	13.169	2346498			02:05:49.15	3.962	7.654
595	45.223	17.818	1.228	34.574	13.169	2329462			02:11:49.94	3.846	7.657
596	45.219	17.818	1.168	34.57	13.169	2303440	2467571		02:17:50.73	3.667	7.659
597	45.215	17.818	1.099	34.567	13.168	2348828			02:17:50:75	3.978	7.659
597 598					13.166						
	45.211	17.813	1.124	34.567		2315842			02:29:52.31	3.752	7.658
599	45.207	17.811	1.113	34.566	13.168	2359304			02:35:53.10	4.050	7.656
600	45.204	17.807	1.139	34.567	13.168	2341558			02:41:53.89	3.929	7.657
601	45.197	17.797	1.066	34.569	13.166	2339620			02:47:54.68	3.915	7.657
602	45.194	17.789	1.033	34.574	13.166	2336496			02:53:55.47	3.894	7.657
603	45.197	17.805	1.031	34.562	13.167	2329092			02:59:56.26	3.843	7.657
604	45.199	17.806	1.029	34.563	13.165	2345839			03:05:57.05	3.958	7.654
605	45.202	17.804	0.98	34.568	13.166	2343813	2467411		03:11:57.84	3.944	7.658
606	45.197	17.798	0.872	34.569	13.165	2330224			03:17:58.63	3.851	7.656
607	45.2	17.804	0.878	34.567	13.164	2355436			03:23:59.42	4.024	7.660
608	45.197	17.791	0.884	34.574	13.165	2361804			03:30:00.21	4.068	7.659
609	45.202	17.813	0.897	34.56	13.165	2365687	2467669	5/17/1998	03:36:01.00	4.094	7.659
610	45.205	17.797	0.794	34.576	13.166	2321636	2467781	5/17/1998	03:42:01.79	3.792	7.660
611	45.209	17.807	0.795	34.571	13.165	2325346	2467497	5/17/1998	03:48:02.58	3.817	7.658
612	45.208	17.809	0.752	34.569	13.164	2359005	2467658	5/17/1998	03:54:03.37	4.048	7.659
613	45.216	17.817	0.768	34.569	13.164	2343460	2466552	5/17/1998	04:00:04.16	3.942	7.654
614	45.227	17.827	0.71	34.57	13.163	2353426	2467467	5/17/1998	04:06:04.95	4.010	7.658
615	45.235	17.836	0.678	34.569	13.164	2354205	2467116	5/17/1998	04:12:05.74	4.015	7.657
616	45.238	17.832	0.63	34.574	13.164	2310477	2467348	5/17/1998	04:18:06.53	3.715	7.658
617	45.25	17.858	0.668	34.563	13.164	2357586	2467347	5/17/1998	04:24:07.32	4.039	7.658
618	45.256	17.863	0.643	34.564	13.163	2326316			04:30:08.11	3.824	7.656
619	45.276	17.877	0.591	34.569	13.164	2348954	2467217	5/17/1998	04:36:08.90	3.979	7.657
620	45.286	17.89	0.51	34.567	13.164	2359153			04:42:09.69	4.049	7.655
621	45.285	17.889	0.474	34.567	13.163	2338852			04:48:10.48	3.910	7.657
622	45.296	17.897	0.477	34.569	13.162	2306267			04:54:11.27	3.686	7.660
623	45.307	17.908		34.569	13.164	2346058			05:00:12.06	3.959	7.658
624			0.463			2355039			05:00:12.06		
	45.323	17.924	0.391	34.569	13.164					4.021	7.657
625	45.322	17.934	0.395	34.56	13.162	2359708			05:12:13.64	4.053	7.657
626	45.34	17.944	0.344	34.567	13.163	2348177			05:18:14.43	3.974	7.657
627	45.352	17.952	0.345	34.57	13.163	2338359			05:24:15.22	3.907	7.658
628	45.365	17.973	0.335	34.564	13.163	2335940			05:30:16.01	3.890	7.658
629	45.373	17.973	0.273	34.571	13.164	2331284			05:36:16.80	3.858	7.658
630	45.38	17.984	0.24	34.567	13.163	2322278			05:42:17.59	3.796	7.657
631	45.398	18.004	0.211	34.566	13.164	2350069	2466876	5/17/1998	05:48:18.38	3.987	7.656

Blank Test #2 Sensor Data

Record No.	Conductivity (mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
1	46.202	19.133	1.108	34.299	13.16	2390314	2440004	5/21/1998	13:38:51.25	4.263	7.539
2	46.278	19.098	1.076	34.39	13.167	2522865	2451441	5/21/1998	13:45:33.26	5.173	7.589
3	46.316	19.068	1.072	34.448	13.169	2340983	2454720	5/21/1998	13:51:34.06	3.925	7.603
4	46.337	19.061	1.105	34.471	13.172	2509529	2457809	5/21/1998	13:57:34.86	5.081	7.616
5	46.353	19.032	1.159	34.508	13.152	2501876	2458357	5/21/1998	14:03:35.66	5.029	7.619
6	46.359	19.024	1.187	34.52	13.162	2435298	2460954	5/21/1998	14:09:36.46	4.572	7.630
7	46.366	19.012	1.199	34.537	13.163	2427763	2460922	5/21/1998	14:15:37.26	4.520	7.630
8	46.363	19.001	1.208	34.543	13.163	2400872	2461056	5/21/1998	14:21:38.06	4.336	7.630
9	46.358	18.984	1.243	34.553	13.163	2361794	2461934	5/21/1998	14:27:38.86	4.067	7.634
10	46.353	18.964	1.269	34.565	13.162	2458406	2463035	5/21/1998	14:33:39.66	4.730	7.639
11	46.343	18.945	1.304	34.572	13.161	2365812	2463574	5/21/1998	14:39:40.46	4.095	7.641
12	46.334	18.937	1.328	34.571	13.16	2553596	2464094	5/21/1998	14:45:41.26	5.384	7.644
13	46.326	18.932	1.334	34.569	13.16	2584932	2464757	5/21/1998	14:51:42.06	5.599	7.646
14	46.312	18.904	1.444	34.581	13.159	2424556	2465466	5/21/1998	14:57:42.86	4.498	7.649
15	46.281	18.871	1.468	34.582	13.158	2459465	2466503	5/21/1998	15:03:43.66	4.738	7.654
16	46.243	18.838	1.51	34.579	13.159	2454382	2466498	5/21/1998	15:09:44.46	4.703	7.654
17	46.216	18.801	1.53	34.587	13.138	2423580	2466276	5/21/1998	15:15:45.26	4.491	7.653

Record No.	Conductivity (mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
18	46.184	18.77	1.512	34.586	13.148	2373287		5/21/1998	15:21:46.06	4.146	7.658
19	46.158	18.743	1.589	34.586	13.149	2507339			15:27:46.86	5.066	7.659
20 21	46.132 46.097	18.708 18.678	1.619 1.619	34.594 34.589	13.15 13.15	2505078 2515458			15:33:47.66 15:39:48.46	5.051 5.122	7.660 7.660
22	46.072	18.646	1.66	34.596	13.148	2493683			15:45:49.26	4.973	7.661
23	46.037	18.618	1.704	34.589	13.148	2533075			15:51:50.06	5.243	7.662
24	46.006	18.582	1.735	34.593	13.146	2478840			15:57:50.86	4.871	7.666
25 26	45.967 45.927	18.532 18.502	1.812 1.803	34.602 34.594	13.146 13.146	2561193 2552714			16:03:51.66 16:09:52.46	5.436 5.378	7.663 7.666
27	45.888	18.46	1.839	34.597	13.143	2355165			16:15:53.26	4.022	7.669
28	45.854	18.426	1.869	34.597	13.143	2525326			16:21:54.06	5.190	7.671
29	45.817	18.388	1.904	34.597	13.146	2458766			16:27:54.86	4.733	7.669
30 31	45.78 45.746	18.352 18.319	1.956 1.974	34.596 34.595	13.142 13.141	2470958 2374208			16:33:55.66 16:39:56.46	4.817 4.153	7.670 7.671
32	45.712	18.289	2.009	34.591	13.14	2437755			16:45:57.26	4.589	7.674
33	45.68	18.248	2.023	34.599	13.139	2431687			16:51:58.06	4.547	7.673
34 35	45.645 45.612	18.207 18.179	2.044 2.102	34.604 34.599	13.14	2558848 2413532			16:57:58.86 17:03:59.66	5.420 4.423	7.673
36	45.579	18.148	2.085	34.598	13.136 13.135	2572176			17:10:00.46	5.511	7.673 7.673
37	45.549	18.109	2.135	34.605	13.137	2480318			17:16:01.26	4.881	7.673
38	45.514	18.078	2.167	34.602	13.135	2536597			17:22:02.06	5.267	7.677
39 40	45.478 45.442	18.036 17.985	2.189 2.199	34.606 34.618	13.135 13.133	2505750 2500701			17:28:02.86 17:34:03.66	5.055 5.021	7.676 7.677
41	45.4	17.956	2.21	34.608	13.131	2525424			17:40:04.46	5.190	7.680
42	45.363	17.912	2.26	34.613	13.13	2550208			17:46:05.26	5.361	7.680
43	45.327	17.876	2.297	34.613	13.129	2506076			17:52:06.06	5.058	7.679
44 45	45.301 45.273	17.852 17.824	2.283 2.272	34.611 34.612	13.129 13.128	2418967 2471378			17:58:06.86 18:04:07.66	4.460 4.820	7.678 7.679
46	45.246	17.786	2.272	34.621	13.127	2366864			18:10:08.46	4.102	7.682
47	45.22	17.77	2.274	34.612	13.127	2485840			18:16:09.26	4.919	7.680
48	45.197	17.742	2.307	34.615	13.125	2512483			18:22:10.06	5.102	7.682
49 50	45.164 45.143	17.707 17.691	2.303 2.285	34.618 34.612	13.125 13.124	2517881 2461695			18:28:10.86 18:34:11.66	5.139 4.753	7.683 7.682
51	45.143	17.669	2.343	34.605	13.124	2521923			18:40:12.46	5.166	7.682
52	45.091	17.631	2.329	34.619	13.123	2555670			18:46:13.26	5.398	7.684
53	45.065	17.619	2.324	34.607	13.122	2530853			18:52:14.06	5.228	7.685
54 55	45.037 45.012	17.581 17.548	2.304 2.278	34.615 34.622	13.123 13.122	2527753 2520220			18:58:14.86 19:04:15.66	5.206 5.155	7.685 7.687
56	44.988	17.534	2.286	34.614	13.122	2488670			19:10:16.46	4.938	7.689
57	44.974	17.518	2.273	34.615	13.12	2340159	2473935	5/21/1998	19:16:17.26	3.919	7.686
58	44.958	17.492	2.253	34.624	13.12	2505343			19:22:18.06	5.053	7.688
59 60	44.934 44.923	17.483 17.458	2.247 2.259	34.61 34.623	13.124 13.12	2499414 2484125			19:28:18.86 19:34:19.66	5.012 4.907	7.688 7.689
61	44.911	17.449	2.206	34.62	13.12	2463238			19:40:20.46	4.764	7.689
62	44.899	17.426	2.177	34.629	13.119	2382057			19:46:21.26	4.207	7.690
63	44.885	17.418	2.161	34.624	13.118	2550609			19:52:22.06	5.363	7.689
64 65	44.864 44.852	17.402 17.389	2.125 2.079	34.619 34.621	13.119 13.118	2452850 2539657			19:58:22.86 20:04:23.66	4.692 5.288	7.692 7.688
66	44.845	17.372	2.096	34.629	13.116	2505340			20:10:24.46	5.053	7.690
67	44.826	17.357	2.065	34.625	13.118	2483477			20:16:25.26	4.903	7.692
68 60	44.816	17.358	2.054	34.615	13.117	2546740			20:22:26.06	5.337	7.691
69 70	44.814 44.796	17.334 17.329	2.003 1.99	34.634 34.623	13.117 13.116	2521575 2537269			20:28:26.86 20:34:27.66	5.164 5.272	7.691 7.690
71	44.792	17.321	1.957	34.627	13.113	2514934			20:40:28.46	5.118	7.693
72	44.784	17.304	1.888	34.634	13.114				20:47:10.46	5.202	7.693
73 74	44.773 44.769	17.298 17.301	1.858 1.835	34.63 34.624	13.113 13.111				20:53:11.26 20:59:12.06	5.259 4.957	7.692 7.692
75	44.764	17.286	1.795	34.632	13.112				21:05:12.86	4.867	7.695
76	44.747	17.28	1.764	34.623	13.111				21:11:13.66	4.462	7.693
77 70	44.751	17.269	1.703	34.636	13.109				21:17:14.46	4.944	7.692
78 79	44.753 44.752	17.271 17.282	1.71 1.671	34.636 34.625	13.111 13.112				21:23:15.26 21:29:16.06	5.042 5.101	7.697 7.697
80	44.761	17.285	1.659	34.63	13.11	2506785			21:35:16.86	5.063	7.696
81	44.761	17.285	1.563	34.631	13.111				21:41:17.66	4.721	7.693
82 83	44.767 44.776	17.284 17.3	1.527 1.502	34.637 34.63	13.109 13.109				21:47:18.46 21:53:19.26	5.411 5.080	7.697 7.696
84	44.786	17.308	1.449	34.633	13.108	2466104			21:59:20.06	4.783	7.695
85	44.791	17.313	1.413	34.633	13.108	2555568			22:05:20.86	5.397	7.695
86	44.8	17.335	1.413	34.621	13.108				22:11:21.66	5.147	7.697
87 88	44.815 44.834	17.341 17.351	1.374 1.333	34.629 34.637	13.107 13.108	2476979			22:17:22.46 22:23:23.26	4.858 4.698	7.699 7.699
89	44.847	17.377	1.312	34.627	13.108	2508059			22:29:24.06	5.071	7.698
90	44.867	17.395	1.276	34.628	13.107				22:35:24.86	4.864	7.697
91	44.871	17.4	1.244	34.627	13.107				22:41:25.66	4.789	7.698
92 93	44.876 44.889	17.406 17.42	1.175 1.137	34.627 34.626	13.108 13.107	2458859			22:47:26.46 22:53:27.26	4.734 4.488	7.699 7.699
94	44.887	17.412	1.077	34.63	13.107				22:59:28.06	4.862	7.700
95	44.893	17.408	1.092	34.64	13.107	2463486			23:05:28.86	4.765	7.701
96 07	44.906	17.428	1.052	34.633	13.108	2437951			23:11:29.66	4.590	7.699
97 98	44.912 44.921	17.442 17.451	1.045 0.969	34.627 34.627	13.104 13.105				23:17:30.46 23:23:31.26	5.456 5.055	7.699 7.700
99	44.928	17.46	0.961	34.625	13.104	2519770			23:29:32.06	5.152	7.699
100	44.939	17.466	0.902	34.63	13.106		2477066	5/21/1998	23:35:32.86	4.963	7.700
101	44.944	17.481	0.894	34.622	13.107				23:41:33.66	4.839	7.701
102 103	44.958 44.977	17.475 17.498	0.867 0.813	34.639 34.635	13.103 13.1				23:47:34.46 23:53:35.26	5.118 4.656	7.699 7.704
104	45.006	17.533	0.81	34.63	13.1				23:59:36.06	4.293	7.700
105	45.017	17.543	0.778	34.631	13.103	2441267	2476859	5/22/1998	00:05:36.86	4.613	7.699
106 107	45.057 45.006	17.586	0.803	34.629	13.103				00:11:37.66	4.820 5.120	7.698
107 108	45.096 45.129	17.624 17.666	0.778 0.731	34.63 34.623	13.103 13.103				00:17:38.46 00:23:39.26	5.120 5.126	7.701 7.700
109	45.172	17.703	0.722	34.628	13.101				00:29:40.06	4.750	7.703
110	45.214	17.742	0.717	34.631	13.103				00:35:40.86	4.602	7.700
111	45.245	17.783	0.723	34.623	13.103	2519799	2477347	5/22/1998	00:41:41.66	5.152	7.701

Record No.	Conductivity					D.O.	pH (Integer)	Date	Time	D.O.	pH (Value)
112	(mS/cm) 45.278	(Deg. C) 17.814	(dBar) 0.702	(PSU) 34.625	(Vdc) 13.102	(Integer) 2550837		5/22/1998	00:47:42.46	(ml/L) 5.365	(Value) 7.702
113	45.313	17.844	0.695	34.629	13.105	2519264			00:53:43.26	5.148	7.697
114	45.349	17.886	0.675	34.625	13.102	2427305			00:59:44.06	4.517	7.702
115 116	45.381 45.409	17.92 17.948	0.666 0.706	34.623 34.623	13.106 13.106	2510104			01:05:44.86 01:11:45.66	5.085 4.941	7.701 7.704
117	45.441	17.989	0.700	34.616	13.100	2559590			01:17:46.46	5.425	7.704
118	45.474	18.014	0.676	34.622	13.106	2449186	2477557	5/22/1998	01:23:47.26	4.667	7.702
119	45.497	18.04	0.674	34.62	13.106	2562210			01:29:48.06	5.443	7.701
120 121	45.529 45.545	18.062 18.097	0.66 0.685	34.629 34.613	13.106 13.106	2526724 2543469			01:35:48.86 01:41:49.66	5.199 5.314	7.700 7.701
122	45.573	18.105	0.706	34.629	13.106	2360954			01:47:50.46	4.062	7.702
123	45.591	18.129	0.705	34.624	13.104	2533349			01:53:51.26	5.245	7.701
124	45.608	18.145	0.715	34.626	13.104	2520575			01:59:52.06	5.157	7.700
125 126	45.621 45.641	18.173 18.176	0.708 0.722	34.613 34.627	13.105 13.104	2547123			02:05:52.86 02:11:53.66	3.848 5.339	7.702 7.700
127	45.653	18.197	0.763	34.62	13.106				02:17:54.46	5.181	7.700
128	45.66	18.208	0.761	34.616	13.104	2510639			02:23:55.26	5.089	7.700
129 130	45.672 45.688	18.225 18.24	0.781 0.798	34.612 34.613	13.104 13.102	2556839 2555538			02:29:56.06 02:35:56.86	5.406 5.397	7.699 7.700
131	45.697	18.247	0.802	34.615	13.102	2577033			02:33:50:66	5.545	7.701
132	45.713	18.261	0.826	34.616	13.104	2538299			02:47:58.46	5.279	7.700
133	45.724	18.259	0.866	34.628	13.104	2559382			02:53:59.26	5.423	7.700
134 135	45.738 45.746	18.279 18.298	0.873 0.911	34.623 34.613	13.104 13.103	2520177 2462069			03:00:00.06 03:06:00.86	5.154 4.756	7.699 7.700
136	45.758	18.308	0.906	34.615	13.102	2546888			03:12:01.66	5.338	7.699
137	45.77	18.319	0.942	34.615	13.103	2531091			03:18:02.46	5.229	7.699
138	45.781	18.33	0.988	34.616	13.101	2552020			03:24:03.26	5.373	7.702
139 140	45.786 45.798	18.337 18.344	1.017 1.04	34.614 34.619	13.101 13.101	2564959 2478992			03:30:04.06 03:36:04.86	5.462 4.872	7.701 7.699
141	45.809	18.358	1.042	34.616	13.101	2531656			03:42:05.66	5.233	7.699
142	45.813	18.365	1.081	34.613	13.1	2558407			03:48:47.68	5.417	7.700
143	45.824	18.372	1.12	34.617	13.1	2531641			03:54:48.48	5.233	7.703
144 145	45.825 45.824	18.376 18.369	1.145 1.168	34.614 34.619	13.1 13.099	2540305 2476107			04:00:49.28 04:06:50.08	5.293 4.852	7.701 7.700
146	45.808	18.357	1.198	34.616	13.1	2542306			04:12:50.88	5.306	7.699
147	45.796	18.346	1.243	34.615	13.098	2491920			04:18:51.68	4.960	7.700
148 149	45.777 45.753	18.319 18.304	1.283 1.283	34.621 34.614	13.097 13.097	2559809 2535834			04:24:52.48 04:30:53.28	5.426 5.262	7.702 7.698
150	45.738	18.286	1.306	34.616	13.097	2546808			04:36:54.08	5.337	7.698
151	45.722	18.257	1.345	34.628	13.095	2468557			04:42:54.88	4.800	7.701
152	45.701	18.251	1.383	34.614	13.096	2528798			04:48:55.68	5.214	7.697
153 154	45.671 45.648	18.217 18.191	1.396 1.405	34.617 34.62	13.095 13.095	2517556 2519308			04:54:56.48 05:00:57.28	5.136 5.148	7.699 7.700
155	45.627	18.166	1.428	34.623	13.094	2555662			05:06:58.08	5.398	7.701
156	45.596	18.152	1.425	34.61	13.093	2513395			05:12:58.88	5.108	7.699
157	45.577	18.116	1.464	34.623	13.093 13.092	2521306 2555370			05:18:59.68	5.162	7.698
158 159	45.558 45.542	18.105 18.092	1.513 1.526	34.616 34.614	13.092	2553861			05:25:00.48 05:31:01.28	5.396 5.386	7.700 7.697
160	45.537	18.083	1.524	34.617	13.093	2550637			05:37:02.08	5.363	7.697
161	45.524	18.069	1.559	34.618	13.092	2541907			05:43:02.88	5.304	7.697
162 163	45.508 45.472	18.054 18.024	1.615 1.665	34.617 34.612	13.091 13.091	2523072			05:49:03.68 05:55:04.48	5.174 5.404	7.700 7.700
164	45.458	17.994	1.638	34.625	13.09	2484451			06:01:05.28	4.909	7.699
165	45.432	17.967	1.667	34.625	13.089				06:07:06.08	4.775	7.700
166 167	45.407	17.939	1.632	34.628 34.628	13.088				06:13:06.88	5.232	7.698
168	45.386 45.369	17.918 17.909	1.659 1.695	34.621	13.088 13.089				06:19:07.68 06:25:08.48	5.053 5.003	7.701 7.702
169	45.348	17.876	1.674	34.631	13.089	2555347	2476938	5/22/1998	06:31:09.28	5.396	7.699
170	45.313	17.843	1.705	34.629	13.087				06:37:10.08	5.280	7.699
171 172	45.281 45.25	17.812 17.783	1.735 1.751	34.629 34.626	13.086 13.085				06:43:10.88 06:49:11.68	5.306 4.168	7.699 7.701
173	45.209	17.716	1.712	34.649	13.085				06:55:12.48	5.110	7.700
174	45.166	17.693	1.717	34.632	13.085	2480147			07:01:13.28	4.880	7.699
175 176	45.13 45.098	17.66 17.62	1.679 1.699	34.628 34.635	13.084 13.083	2557294			07:07:14.08 07:13:14.88	5.409 5.216	7.699 7.701
177	45.057	17.587	1.684	34.628	13.082				07:13:14.66	5.239	7.703
178	45.036	17.56	1.704	34.633	13.081	2486409			07:25:16.48	4.923	7.702
179	45.011	17.527	1.7	34.639	13.082	2508540			07:31:17.28	5.075	7.699
180 181	44.985 44.962	17.508 17.475	1.693 1.653	34.633 34.641	13.082 13.08				07:37:18.08 07:43:18.88	5.166 4.814	7.697 7.699
182	44.935	17.456	1.632	34.634	13.08	2530286			07:49:19.68	5.224	7.701
183	44.911	17.436	1.638	34.63	13.08				07:55:20.48	4.996	7.698
184 185	44.898 44.885	17.413 17.399	1.607	34.639 34.64	13.08 13.078				08:01:21.28 08:07:22.08	5.010 5.161	7.699 7.698
186	44.87	17.388	1.589 1.574	34.636	13.076				08:13:22.88	5.156	7.697
187	44.856	17.368	1.555	34.641	13.079				08:19:23.68	4.990	7.699
188	44.838	17.351	1.545	34.641	13.078	2495921			08:25:24.48	4.988	7.697
189 190	44.827 44.811	17.338 17.328	1.525 1.497	34.642 34.636	13.076 13.078	2499587			08:31:25.28 08:37:26.08	5.013 4.719	7.698 7.699
191	44.799	17.326	1.459	34.628	13.078				08:43:26.88	5.203	7.698
192	44.786	17.299	1.434	34.64	13.076	2544265	2476520	5/22/1998	08:49:27.68	5.320	7.697
193	44.773 44.767	17.287	1.378	34.64	13.074				08:55:28.48	5.285 5.225	7.701
194 195	44.767 44.76	17.276 17.276	1.381 1.358	34.643 34.637	13.075 13.074				09:01:29.28 09:07:30.08	5.225 5.392	7.698 7.696
196	44.763	17.264	1.315	34.65	13.074				09:13:30.88	4.294	7.699
197	44.752	17.261	1.284	34.643	13.074	2495131	2476273	5/22/1998	09:19:31.68	4.983	7.696
198 199	44.748 44.752	17.268 17.262	1.262 1.209	34.633 34.643	13.074 13.073	2522533 2482657			09:25:32.48 09:31:33.28	5.171 4.897	7.698 7.695
200	44.752 44.753	17.262	1.192	34.645	13.073				09:37:33.28	5.232	7.695
201	44.763	17.272	1.135	34.644	13.072	2478414	2476247	5/22/1998	09:43:34.88	4.868	7.696
202	44.776	17.281	1.113	34.647	13.072				09:49:35.68	5.104	7.696
203 204	44.782 44.795	17.3 17.303	1.069 1.054	34.636 34.645	13.072 13.073				09:55:36.48 10:01:37.28	5.311 5.113	7.695 7.696
205	44.815	17.328	1.03	34.64	13.072				10:07:38.08	4.898	7.694

Record No.	Conductivity	Temperature	Pressure	Salinity	CTD Bat.	D.O.	рН	Date	Time	D.O.	рН
206	(mS/cm)	(Deg. C)	(dBar)	(PSU)	(Vdc) 13.072	(Integer) 2521376	(Integer)	E/00/4000	40.42.20.00	(ml/L)	(Value)
206 207	44.847 44.879	17.356 17.389	1.009 0.99	34.645 34.644	13.072	2506430			10:13:38.88 10:19:39.68	5.163 5.060	7.697 7.693
208	44.917	17.419	0.951	34.651	13.074	2501957	2475565	5/22/1998	10:25:40.48	5.029	7.693
209	44.951	17.46	0.973	34.646	13.073	2508257			10:31:41.28	5.073	7.696
210 211	44.978 45.01	17.498 17.53	0.906 0.841	34.636 34.636	13.074 13.074	2527258 2520040			10:37:42.08 10:43:42.88	5.203 5.153	7.696 7.692
212	45.022	17.538	0.817	34.64	13.073	2511075			10:50:24.90	5.092	7.697
213	45.043	17.565	0.761	34.634	13.072	2573094			10:56:25.70	5.518	7.697
214 215	45.069 45.005	17.588	0.727	34.637 34.64	13.072 13.071	2553586 2555903			11:02:26.50 11:08:27.30	5.384 5.400	7.699
216	45.095 45.117	17.611 17.635	0.737 0.716	34.639	13.071	2484253			11:14:28.10	4.908	7.697 7.694
217	45.157	17.669	0.678	34.644	13.07	2479726			11:20:28.90	4.877	7.695
218	45.186	17.701	0.649	34.642	13.072	2419273			11:26:29.70	4.462	7.695
219 220	45.2 45.223	17.717 17.742	0.647 0.609	34.64 34.639	13.072 13.072	2497828 2519695			11:32:30.50 11:38:31.30	5.001 5.151	7.694 7.691
221	45.242	17.764	0.579	34.636	13.072	2544067			11:44:32.10	5.318	7.690
222	45.253	17.766	0.543	34.644	13.071	2432940			11:50:32.90	4.556	7.691
223	45.283	17.8	0.534	34.641	13.071	2537971			11:56:33.70	5.277	7.692
224 225	45.317 45.348	17.843 17.875	0.501 0.495	34.634 34.633	13.072 13.073	2562296 2440713			12:02:34.50 12:08:35.30	5.443 4.609	7.695 7.689
226	45.376	17.893	0.508	34.641	13.072	2602873			12:14:36.10	5.722	7.689
227	45.41	17.927	0.487	34.641	13.073				12:20:36.90	5.024	7.686
228 229	45.438 45.469	17.952 17.987	0.466 0.465	34.644 34.641	13.073 13.073	2524167 2536048			12:26:37.70 12:32:38.50	5.182 5.263	7.688 7.688
230	45.501	18.018	0.403	34.642	13.073	2545965			12:38:39.30	5.331	7.689
231	45.532	18.061	0.458	34.632	13.072	2533242	2474607		12:44:40.10	5.244	7.689
232	45.573	18.097	0.398	34.636	13.074	2542412			12:50:40.90	5.307	7.690
233 234	45.607 45.649	18.132 18.191	0.424 0.424	34.635 34.621	13.072 13.073	2537286 2557397			12:56:41.70 13:02:42.50	5.272 5.410	7.692 7.689
235	45.682	18.208	0.426	34.635	13.075	2572214			13:08:43.30	5.512	7.691
236	45.71	18.237	0.444	34.635	13.075	2601694	2475205	5/22/1998	13:14:44.10	5.714	7.692
237	45.738	18.261	0.434	34.638	13.073	2522882			13:20:44.90	5.173	7.693
238 239	45.77 45.795	18.288 18.328	0.47 0.452	34.642 34.629	13.074 13.073	2566391 2572739			13:26:45.70 13:32:46.50	5.472 5.515	7.691 7.693
240	45.821	18.348	0.457	34.635	13.073	2469582			13:38:47.30	4.807	7.692
241	45.855	18.386	0.44	34.631	13.072	2546359			13:44:48.10	5.334	7.694
242 243	45.878 45.896	18.403 18.429	0.449 0.512	34.636 34.63	13.073 13.072	2562619 2531384			13:50:48.90 13:56:49.70	5.446 5.231	7.693 7.693
244	45.919	18.447	0.525	34.634	13.072	2586375			14:02:50.50	5.609	7.693
245	45.936	18.463	0.523	34.635	13.072	2432841	2476249	5/22/1998	14:08:51.30	4.555	7.696
246	45.956	18.481	0.574	34.637	13.074	2596008			14:14:52.10	5.675	7.695
247 248	45.972 45.987	18.506 18.518	0.598 0.618	34.629 34.632	13.074 13.073	2559090 2567108			14:20:52.90 14:26:53.70	5.421 5.477	7.697 7.694
249	46.011	18.548	0.631	34.627	13.072	2580755			14:32:54.50	5.570	7.697
250	46.028	18.555	0.658	34.635	13.071	2590000			14:38:55.30	5.634	7.696
251	46.038	18.564	0.668	34.636	13.071	2629935 2587591			14:44:56.10	5.908	7.698
252 253	46.051 46.061	18.583 18.593	0.702 0.709	34.631 34.631	13.07 13.071	2554636			14:50:56.90 14:56:57.70	5.617 5.391	7.699 7.699
254	46.069	18.607	0.741	34.626	13.071	2549037			15:02:58.50	5.352	7.700
255	46.083	18.615	0.8	34.631	13.07	2589924			15:08:59.30	5.633	7.699
256 257	46.083 46.097	18.617 18.624	0.809 0.848	34.629 34.636	13.071 13.069	2532447 2553231			15:15:00.10 15:21:00.90	5.239 5.381	7.698 7.699
258	46.104	18.639	0.902	34.629	13.003	2565389			15:27:01.70	5.465	7.701
259	46.098	18.63	0.946	34.631	13.07	2535611			15:33:02.50	5.260	7.705
260	46.088	18.613	0.971	34.637	13.069	2590498			15:39:03.30	5.637	7.706
261 262	46.065 46.045	18.595 18.573	0.985 1.009	34.632 34.634	13.069 13.069				15:45:04.10 15:51:04.90	5.634 5.478	7.704 7.704
263	46.024	18.551	1.03	34.636	13.066	2563393	2478502	5/22/1998	15:57:05.70	5.451	7.706
264	46.002	18.529	1.044	34.635	13.066				16:03:06.50	5.809	7.702
265 266	45.98 45.959	18.504 18.483	1.101 1.186	34.637 34.637	13.066 13.064				16:09:07.30 16:15:08.10	5.782 5.233	7.703 7.707
267	45.935	18.458	1.236	34.639	13.064				16:21:08.90	5.812	7.706
268	45.911	18.434	1.249	34.638	13.064	2617829			16:27:09.70	5.825	7.706
269 270	45.882 45.854	18.407 18.375	1.26 1.314	34.636 34.64	13.062 13.062				16:33:10.50 16:39:11.30	5.486 5.692	7.708 7.706
271	45.819	18.346	1.34	34.634	13.062				16:45:12.10	5.377	7.707
272	45.784	18.309	1.384	34.636	13.06	2549410	2478786	5/22/1998	16:51:12.90	5.355	7.707
273	45.753	18.274	1.421	34.64	13.061				16:57:13.70	5.635	7.707
274 275	45.718 45.687	18.239 18.202	1.462 1.505	34.639 34.644	13.061 13.059				17:03:14.50 17:09:15.30	5.328 5.399	7.709 7.708
276	45.649	18.156	1.511	34.651	13.058	2579929			17:15:16.10	5.565	7.706
277	45.622	18.129	1.547	34.65	13.057				17:21:16.90	5.395	7.707
278 279	45.583 45.554	18.093 18.063	1.532 1.618	34.648 34.648	13.057 13.057				17:27:17.70 17:33:18.50	5.546 5.708	7.710 7.708
280	45.521	18.033	1.604	34.646	13.056				17:39:19.30	5.395	7.708
281	45.491	18.005	1.644	34.644	13.056	2531467	2479407	5/22/1998	17:45:20.10	5.232	7.710
282	45.453	17.96	1.676	34.649	13.055				17:52:02.15	5.340	7.711
283 284	45.421 45.378	17.91 17.877	1.711 1.752	34.665 34.656	13.055 13.054				17:58:02.95 18:04:03.75	5.293 5.433	7.711 7.710
285	45.333	17.833	1.743	34.656	13.053				18:10:04.55	5.280	7.710
286	45.291	17.789	1.756	34.656	13.052	2541569			18:16:05.35	5.301	7.712
287 288	45.255 45.206	17.758 17.699	1.784 1.795	34.652 34.661	13.051 13.05				18:22:06.15 18:28:06.95	5.144 5.576	7.712 7.713
289	45.206 45.156	17.699	1.795	34.664	13.05				18:34:07.75	5.576 5.174	7.713
290	45.1	17.594	1.863	34.659	13.049	2551811	2479704	5/22/1998	18:40:08.55	5.372	7.711
291	45.057	17.553	1.832	34.657	13.048				18:46:09.35	5.399	7.715
292 293	45.013 44.968	17.51 17.463	1.848 1.819	34.656 34.656	13.047 13.047				18:52:10.15 18:58:10.95	5.512 5.445	7.711 7.713
294	44.94	17.433	1.844	34.658	13.046	2527876	2480112	5/22/1998	19:04:11.75	5.207	7.713
295	44.907	17.377	1.85	34.678	13.047	2528236	2480174	5/22/1998	19:10:12.55	5.210	7.713
296	44.879	17.366	1.904	34.663	13.047				19:16:13.35	5.263	7.714 7.717
297 298	44.858 44.835	17.339 17.313	1.915 1.881	34.668 34.67	13.047 13.045	2530089 2501618			19:22:14.15 19:28:14.95	5.222 5.027	7.717 7.715
299	44.804	17.292	1.841	34.662	13.044				19:34:15.75	5.127	7.714

Record No.	Conductivity (mS/cm)	Temperature	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
300	44.787	(Deg. C) 17.259	1.846	34.675	13.046	2494858	(Integer) 2480956	5/22/1998	19:40:16.55	4.981	7.716
301	44.756	17.239	1.801	34.666	13.047	2544731			19:46:17.35	5.323	7.712
302 303	44.735	17.216	1.817	34.667	13.043 13.045	2517467 2549646			19:52:18.15 19:58:18.95	5.136	7.716
304	44.716 44.695	17.205 17.163	1.779 1.791	34.66 34.678	13.043				20:04:19.75	5.357 5.161	7.715 7.714
305	44.676	17.143	1.777	34.679	13.042	2518000			20:10:20.55	5.139	7.712
306	44.657	17.115	1.799	34.687	13.042	2574959			20:16:21.35	5.530	7.712
307 308	44.636 44.614	17.103 17.089	1.73 1.688	34.678 34.671	13.041 13.043	2532930 2532986			20:22:22.15 20:28:22.95	5.242 5.242	7.714 7.712
309	44.595	17.059	1.643	34.682	13.043	2517637			20:34:23.75	5.137	7.712
310	44.572	17.057	1.645	34.662	13.04	2465567			20:40:24.55	4.780	7.713
311	44.563	17.021	1.581	34.686	13.039				20:46:25.35	5.036	7.714
312 313	44.553 44.534	17.018 16.996	1.578 1.56	34.679 34.682	13.039 13.039	2543391 2492834			20:52:26.15 20:58:26.95	5.314 4.967	7.716 7.716
314	44.532	16.991	1.518	34.685	13.04	2484181			21:04:27.75	4.907	7.715
315	44.519	16.989	1.472	34.674	13.041				21:10:28.55	5.367	7.716
316	44.505	16.975	1.414	34.674	13.038	2534409			21:16:29.35	5.252	7.716
317 318	44.494 44.487	16.962 16.96	1.39 1.336	34.676 34.672	13.038 13.038	2503673 2505018			21:22:30.15 21:28:30.95	5.041 5.050	7.720 7.716
319	44.476	16.944	1.304	34.676	13.037	2527721			21:34:31.75	5.206	7.719
320	44.473	16.942	1.288	34.676	13.038	2497366			21:40:32.55	4.998	7.722
321 322	44.471 44.464	16.933 16.927	1.222 1.178	34.681 34.681	13.037 13.037	2540504 2500477			21:46:33.35 21:52:34.15	5.294 5.019	7.716 7.717
323	44.472	16.933	1.170	34.683	13.037	2493677			21:58:34.95	4.973	7.716
324	44.471	16.932	1.084	34.682	13.037	2555636			22:04:35.75	5.398	7.719
325	44.475	16.937	1.059	34.681	13.036	2541651			22:10:36.55	5.302	7.721
326 327	44.48 44.486	16.94 16.947	0.999 0.937	34.683 34.683	13.039 13.035	2510246 2502953			22:16:37.35 22:22:38.15	5.086 5.036	7.718 7.720
328	44.503	16.959	0.901	34.687	13.036	2551338			22:28:38.95	5.368	7.720
329	44.518	16.966	0.866	34.693	13.036	2549862	2481929	5/22/1998	22:34:39.75	5.358	7.721
330	44.54	17.007	0.831	34.678	13.035	2565331			22:40:40.55	5.464	7.720
331 332	44.567 44.599	17.032 17.056	0.778 0.721	34.68 34.687	13.036 13.036	2511606 2563539			22:46:41.35 22:52:42.15	5.096 5.452	7.719 7.718
333	44.617	17.088	0.671	34.675	13.036	2572075			22:58:42.95	5.511	7.719
334	44.662	17.121	0.634	34.686	13.036	2522143			23:04:43.75	5.168	7.719
335	44.694	17.157	0.625	34.683	13.036	2498086			23:10:44.55	5.003	7.722
336 337	44.723 44.756	17.191 17.212	0.594 0.533	34.678 34.689	13.037 13.036	2529994 2505395			23:16:45.35 23:22:46.15	5.222 5.053	7.719 7.718
338	44.786	17.255	0.486	34.678	13.036	2516920			23:28:46.95	5.132	7.720
339	44.812	17.279	0.439	34.681	13.036	2528784			23:34:47.75	5.213	7.720
340 341	44.842 44.886	17.318 17.352	0.403 0.364	34.673 34.682	13.037 13.037	2541116 2524601			23:40:48.55 23:46:49.35	5.298 5.185	7.720 7.719
342	44.91	17.386	0.315	34.673	13.04	2480835			23:52:50.15	4.884	7.720
343	44.917	17.392	0.296	34.674	13.037	2529532			23:58:50.95	5.219	7.720
344	44.946	17.418	0.253	34.678	13.036	2512864			00:04:51.75	5.104	7.720
345 346	44.989 45.025	17.47 17.513	0.239 0.2	34.669 34.664	13.036 13.037	2486088 2530735			00:10:52.55 00:16:53.35	4.920 5.227	7.718 7.721
347	45.072	17.544	0.171	34.678	13.038	2567634			00:22:54.15	5.480	7.720
348	45.111	17.585	0.127	34.676	13.039	2596736			00:28:54.95	5.680	7.719
349 350	45.138 45.154	17.614 17.637	0.102 0.053	34.675 34.669	13.039 13.037	2544673 2516014			00:34:55.75 00:40:56.55	5.323 5.126	7.718 7.719
351	45.188	17.661	0.033	34.677	13.037	2546135			00:46:57.35	5.333	7.719
352	45.223	17.703	0.014	34.672	13.037	2526513			00:53:39.39	5.198	7.721
353	45.269	17.741	0	34.68	13.037	2555885			00:59:40.19	5.399	7.721
354 355	45.306 45.333	17.783 17.823	-0.014 -0.037	34.675 34.665	13.038 13.038				01:05:40.99 01:11:41.79	5.637 5.380	7.718 7.719
356	45.366	17.854	-0.062	34.666	13.039				01:17:42.59	5.201	7.717
357	45.404	17.884	-0.071	34.673	13.038				01:23:43.39	5.295	7.718
358 359	45.452 45.495	17.934 17.976	-0.095 -0.105	34.672 34.673	13.038 13.038				01:29:44.19 01:35:44.99	5.404 5.346	7.721 7.718
360	45.531	18.013	-0.103	34.672	13.039	2592367			01:41:45.79	5.650	7.718
361	45.565	18.058	-0.109	34.662	13.038	2556901			01:47:46.59	5.406	7.719
362	45.606	18.087	-0.102	34.673	13.039	2498739			01:53:47.39	5.007	7.717
363 364	45.638 45.68	18.128 18.162	-0.099 -0.094	34.665 34.673	13.04 13.04	2560534 2512583			01:59:48.19 02:05:48.99	5.431 5.102	7.716 7.717
365	45.709	18.19	-0.12	34.674	13.04				02:11:49.79	5.457	7.719
366	45.746	18.229	-0.131	34.672	13.039				02:17:50.59	5.316	7.716
367 368	45.778 45.805	18.264 18.29	-0.101 -0.099	34.67 34.67	13.038 13.041	2568551			02:23:51.39 02:29:52.19	5.486 5.432	7.717 7.716
369	45.836	18.326	-0.105	34.666	13.038				02:35:52.19	5.416	7.716
370	45.857	18.351	-0.102	34.663	13.04	2545895			02:41:53.79	5.331	7.718
371	45.876	18.374	-0.055	34.659	13.04				02:47:54.59	5.698	7.717
372 373	45.91 45.934	18.405 18.43	-0.045 -0.026	34.662 34.661	13.04 13.038				02:53:55.39 02:59:56.19	5.326 5.169	7.717 7.715
374	45.953	18.453	-0.013	34.658	13.04				03:05:56.99	5.636	7.717
375	45.973	18.47	-0.011	34.66	13.04				03:11:57.79	5.352	7.719
376 377	45.995 46.02	18.487 18.506	0.016 0.075	34.665 34.67	13.039 13.04	2479335			03:17:58.59 03:23:59.39	4.874 5.716	7.718 7.715
378	46.041	18.544	0.073	34.655	13.04	2540454			03:30:00.19	5.294	7.717
379	46.061	18.567	0.104	34.653	13.038		2480031	5/23/1998	03:36:00.99	5.402	7.712
380	46.083	18.58	0.105	34.661	13.039				03:42:01.79	5.359	7.716
381 382	46.1 46.125	18.601 18.62	0.158 0.198	34.657 34.663	13.04 13.041	2565084 2541682			03:48:02.59 03:54:03.39	5.463 5.302	7.714 7.714
383	46.144	18.639	0.229	34.662	13.04				04:00:04.19	5.433	7.714
384	46.156	18.647	0.264	34.666	13.041				04:06:04.99	5.659	7.714
385 386	46.168	18.667 18.689	0.274 0.325	34.659	13.039				04:12:05.79 04:18:06.59	5.354	7.713 7.711
386 387	46.183 46.199	18.689	0.325	34.653 34.66	13.037 13.041				04:18:06.59	5.803 5.372	7.711 7.712
388	46.205	18.705	0.403	34.658	13.036	2572861	2480206	5/23/1998	04:30:08.19	5.516	7.713
389	46.206	18.702	0.426	34.662	13.037	2581931			04:36:08.99	5.578	7.713
390 391	46.196 46.181	18.701 18.681	0.443 0.466	34.654 34.658	13.036 13.041				04:42:09.79 04:48:10.59	5.473 5.323	7.712 7.712
392	46.173	18.671	0.51	34.659	13.037	2605728	2480230	5/23/1998	04:54:11.39	5.742	7.713
393	46.152	18.655	0.554	34.656	13.037	2603563	2479793	5/23/1998	05:00:12.19	5.727	7.711

Record No.	Conductivity	•		•		D.O.	pH	Date	Time	D.O.	pH
394	(mS/cm) 46.141	(Deg. C) 18.635	(dBar) 0.57	(PSU) 34.664	(Vdc) 13.034	(Integer) 2567619		5/23/1998	05:06:12.99	(ml/L) 5.480	(Value) 7.714
395	46.12	18.621	0.622	34.657	13.034	2580806			05:12:13.79	5.571	7.711
396	46.103	18.604	0.649	34.657	13.035	2556223			05:18:14.59	5.402	7.713
397 398	46.087 46.068	18.584 18.562	0.708 0.727	34.66 34.663	13.034 13.033	2573353 2546761			05:24:15.39 05:30:16.19	5.519 5.337	7.711 7.710
399	46.053	18.553	0.747	34.657	13.033	2543820			05:36:16.99	5.317	7.713
400	46.042	18.531	0.758	34.667	13.032	2560063	2478851	5/23/1998	05:42:17.79	5.428	7.707
401	46.025	18.518	0.807	34.664	13.032	2552301			05:48:18.59	5.375	7.711
402 403	45.994 45.97	18.496 18.469	0.828 0.86	34.656 34.659	13.032 13.032	2570116 2543335			05:54:19.39 06:00:20.19	5.497 5.313	7.712 7.712
404	45.952	18.441	0.904	34.666	13.031	2525443			06:06:20.99	5.191	7.711
405	45.93	18.418	0.93	34.667	13.031	2558889			06:12:21.79	5.420	7.709
406	45.908	18.395	0.97	34.669	13.029	2553385			06:18:22.59	5.382	7.710
407 408	45.881 45.861	18.376 18.354	0.974 1.024	34.662 34.663	13.029 13.03	2600458 2569088			06:24:23.39 06:30:24.19	5.705 5.490	7.711 7.709
409	45.843	18.337	1.019	34.663	13.029				06:36:24.99	5.201	7.708
410	45.816	18.304	1.004	34.667	13.028	2537581			06:42:25.79	5.274	7.710
411	45.799	18.277	1.03	34.676	13.031	2599347			06:48:26.59	5.698	7.709
412 413	45.78 45.749	18.265 18.235	1.097 1.118	34.67 34.668	13.027 13.025	2554368 2525123			06:54:27.39 07:00:28.19	5.389 5.188	7.709 7.709
414	45.705	18.198	1.132	34.663	13.025	2519614			07:06:28.99	5.151	7.710
415	45.682	18.167	1.151	34.669	13.025	2533448			07:12:29.79	5.246	7.709
416	45.654	18.141	1.143	34.667	13.026	2555954			07:18:30.59	5.400	7.710
417 418	45.633 45.608	18.115 18.09	1.157 1.174	34.672 34.672	13.025 13.024	2430381 2501958			07:24:31.39 07:30:32.19	4.538 5.029	7.709 7.708
419	45.584	18.07	1.17	34.668	13.023	2524197			07:36:32.99	5.182	7.709
420	45.549	18.033	1.186	34.67	13.022	2517803	2478930	5/23/1998	07:42:33.79	5.138	7.708
421	45.526	17.996	1.168	34.682	13.021	2518339			07:48:34.59	5.142	7.708
422 423	45.486 45.457	17.966 17.929	1.173 1.192	34.673 34.679	13.021 13.021	2552188			07:55:16.65 08:01:17.45	5.374 5.319	7.706 7.712
424	45.422	17.907	1.171	34.668	13.022				08:07:18.25	5.264	7.710
425	45.399	17.872	1.178	34.678	13.019	2519791			08:13:19.05	5.152	7.708
426	45.369	17.838	1.173	34.682	13.02				08:19:19.85	5.410	7.706
427 428	45.345 45.328	17.817 17.792	1.189 1.144	34.68 34.686	13.02 13.02	2507943 2501972			08:25:20.65 08:31:21.45	5.070 5.029	7.709 7.707
429	45.312	17.785	1.122	34.678	13.018	2550992			08:37:22.25	5.366	7.708
430	45.29	17.76	1.123	34.681	13.017	2534530			08:43:23.05	5.253	7.707
431	45.274	17.738	1.118	34.686	13.019	2591470			08:49:23.85	5.644	7.706
432 433	45.255 45.239	17.731 17.706	1.101 1.057	34.675 34.684	13.017 13.017	2521083 2508457			08:55:24.65 09:01:25.45	5.161 5.074	7.705 7.705
434	45.232	17.701	1.037	34.681	13.017	2506494			09:07:26.25	5.061	7.707
435	45.219	17.691	1.023	34.679	13.019	2531824			09:13:27.05	5.234	7.709
436	45.209	17.68	1.041	34.68	13.018	2517963			09:19:27.85	5.139	7.707
437 438	45.196 45.181	17.671 17.645	1.002 0.956	34.676 34.685	13.016 13.015	2528560 2565673			09:25:28.65 09:31:29.45	5.212 5.467	7.706 7.707
439	45.164	17.633	0.911	34.681	13.017	2546406			09:37:30.25	5.334	7.705
440	45.148	17.624	0.909	34.674	13.014	2517827			09:43:31.05	5.138	7.709
441 442	45.132 45.123	17.594 17.586	0.92 0.88	34.686 34.685	13.014 13.014	2531457 2512794			09:49:31.85 09:55:32.65	5.232 5.104	7.705 7.705
443	45.123	17.578	0.822	34.681	13.014	2548249			10:01:33.45	5.347	7.704
444	45.102	17.569	0.779	34.682	13.014	2534234	2478375	5/23/1998	10:07:34.25	5.251	7.705
445	45.089	17.56	0.737	34.679	13.014				10:13:35.05	5.131	7.704
446 447	45.091 45.081	17.56 17.547	0.71 0.68	34.68 34.683	13.015 13.013	2518174 2514741			10:19:35.85 10:25:36.65	5.141 5.117	7.702 7.705
448	45.079	17.539	0.609	34.689	13.013				10:31:37.45	5.021	7.703
449	45.072	17.536	0.548	34.685	13.012				10:37:38.25	5.254	7.702
450 454	45.079	17.543	0.58	34.685	13.013				10:43:39.05	5.455	7.704
451 452	45.093 45.11	17.551 17.575	0.558 0.526	34.69 34.685	13.013 13.013				10:49:39.85 10:55:40.65	5.184 4.867	7.706 7.704
453	45.128	17.593	0.549	34.684	13.013				11:01:41.45	5.585	7.703
454	45.141	17.612	0.458	34.679	13.013				11:07:42.25	5.188	7.703
455 456	45.17 45.188	17.637 17.662	0.44 0.407	34.683 34.677	13.013 13.014	2527647 2557564			11:13:43.05 11:19:43.85	5.206 5.411	7.701 7.702
457	45.217	17.691	0.357	34.678	13.015				11:25:44.65	5.194	7.701
458	45.231	17.701	0.294	34.68	13.013				11:31:45.45	5.401	7.702
459	45.248	17.713	0.292	34.685	13.014				11:37:46.25	5.491	7.698
460 461	45.269 45.292	17.729 17.767	0.259 0.257	34.689 34.677	13.014 13.013	2509790 2512965			11:43:47.05 11:49:47.85	5.083 5.105	7.700 7.699
462	45.305	17.777	0.242	34.679	13.014				11:55:48.65	5.475	7.699
463	45.313	17.782	0.142	34.681	13.012	2525979			12:01:49.45	5.194	7.699
464	45.329	17.8	0.128	34.68	13.014	2525679			12:07:50.25	5.192	7.698
465 466	45.348 45.379	17.825 17.847	0.134 0.122	34.676 34.683	13.013 13.014				12:13:51.05 12:19:51.85	5.364 5.341	7.700 7.697
467	45.405	17.873	0.097	34.683	13.016				12:25:52.65	5.505	7.699
468	45.425	17.885	0.063	34.691	13.014				12:31:53.45	5.340	7.696
469 470	45.445 45.475	17.919 17.948	0.069 0.017	34.678 34.679	13.014 13.016	2578308 2559621			12:37:54.25 12:43:55.05	5.553 5.425	7.697 7.696
471	45.505	17.976	0.017	34.681	13.015	2570899			12:49:55.85	5.503	7.703
472	45.537	18.009	0.002	34.681	13.015				12:55:56.65	5.329	7.697
473	45.553	18.036	-0.023	34.671	13.016				13:01:57.45	5.581	7.696
474 475	45.589 45.624	18.062 18.097	-0.049 -0.037	34.679 34.68	13.014 13.014	2531513 2573840			13:07:58.25 13:13:59.05	5.232 5.523	7.697 7.699
475 476	45.624 45.647	18.097 18.124	-0.037 -0.048	34.68 34.676	13.014				13:13:59.05	5.523 5.587	7.699 7.699
477	45.675	18.148	-0.068	34.68	13.015				13:26:00.65	5.141	7.699
478	45.706	18.187	-0.057	34.673	13.014	2553641	2477265	5/23/1998	13:32:01.45	5.384	7.700
479	45.745	18.223	-0.059	34.676	13.017				13:38:02.25	5.493	7.697
480 481	45.779 45.808	18.252 18.287	-0.045 -0.065	34.681 34.676	13.016 13.016				13:44:03.05 13:50:03.85	4.888 5.670	7.696 7.697
482	45.847	18.32	-0.043	34.681	13.017	2582524			13:56:04.65	5.582	7.700
483	45.886	18.365	-0.057	34.675	13.018	2575951	2476881	5/23/1998	14:02:05.45	5.537	7.699
484 485	45.915 45.93	18.405	-0.051 -0.059	34.666	13.016				14:08:06.25 14:14:07.05	5.452 5.260	7.700 7.701
485 486	45.93 45.977	18.42 18.456	-0.059 -0.038	34.666 34.676	13.016 13.015				14:14:07.05	5.260 5.960	7.701
487	46.01	18.493	-0.002	34.673	13.016				14:26:08.65	5.329	7.701

Record No.	Conductivity	•		•		D.O.	pH	Date	Time	D.O.	pH (Value)
488	(mS/cm) 46.045	(Deg. C) 18.535	(dBar) 0.016	(PSU) 34.666	(Vdc) 13.016	(Integer) 2557096		5/23/1998	14:32:09.45	(ml/L) 5.408	(Value) 7.702
489	46.081	18.572	0.034	34.666	13.017	2599859			14:38:10.25	5.701	7.704
490	46.114	18.602	0.052	34.668	13.018	2561174			14:44:11.05	5.436	7.702
491 492	46.149 46.171	18.63 18.66	0.096 0.11	34.675 34.667	13.016 13.015	2600665 2615404			14:50:11.85 14:56:53.91	5.707 5.808	7.706 7.706
493	46.203	18.688	0.11	34.67	13.016	2574101			15:02:54.71	5.525	7.706
494	46.221	18.709	0.116	34.668	13.015	2588684	2479002	5/23/1998	15:08:55.51	5.625	7.708
495	46.244	18.737	0.14	34.664	13.017	2612098			15:14:56.31	5.785	7.707
496 497	46.259 46.272	18.748 18.753	0.193 0.224	34.667 34.674	13.015 13.014	2611134 2568264			15:20:57.11 15:26:57.91	5.779 5.484	7.707 7.709
498	46.28	18.768	0.265	34.668	13.016	2608994			15:32:58.71	5.764	7.708
499	46.29	18.774	0.275	34.672	13.015	2619546			15:38:59.51	5.836	7.708
500	46.292	18.786	0.334	34.663	13.014	2614175			15:45:00.31	5.800	7.711
501 502	46.309 46.313	18.791 18.792	0.381 0.395	34.673 34.675	13.015 13.016	2590866 2585067			15:51:01.11 15:57:01.91	5.640 5.600	7.709 7.713
503	46.309	18.796	0.412	34.669	13.015				16:03:02.71	5.716	7.710
504	46.319	18.8	0.431	34.674	13.015	2613919			16:09:03.51	5.798	7.712
505	46.32	18.797	0.487	34.678	13.014 13.013	2576471 2618894			16:15:04.31	5.541	7.711
506 507	46.311 46.286	18.789 18.777	0.498 0.559	34.676 34.666	13.013	2574140			16:21:05.11 16:27:05.91	5.832 5.525	7.713 7.713
508	46.269	18.747	0.587	34.676	13.012	2615854			16:33:06.71	5.811	7.712
509	46.245	18.723	0.636	34.677	13.013	2580148			16:39:07.51	5.566	7.714
510 511	46.224 46.195	18.703 18.677	0.695 0.724	34.676 34.673	13.011 13.01	2573582 2625040			16:45:08.31 16:51:09.11	5.521 5.874	7.714 7.714
512	46.17	18.644	0.738	34.679	13.01	2541443			16:57:09.91	5.300	7.713
513	46.142	18.628	0.786	34.67	13.009	2561447	2480584	5/23/1998	17:03:10.71	5.438	7.715
514	46.117	18.595	0.8	34.676	13.009	2583691			17:09:11.51	5.590	7.716
515 516	46.091 46.058	18.564 18.535	0.863 0.869	34.681 34.677	13.008 13.009	2580512 2597700			17:15:12.31 17:21:13.11	5.569 5.686	7.718 7.717
517	46.018	18.51	0.931	34.665	13.008	2583527			17:27:13.11	5.589	7.714
518	45.997	18.473	1.007	34.679	13.006	2583268			17:33:14.71	5.587	7.717
519	45.968	18.438	1.004	34.683	13.006	2568334			17:39:15.51	5.485	7.718
520 521	45.936 45.906	18.414 18.378	1.066 1.088	34.676 34.681	13.005 13.006	2557581 2606974			17:45:16.31 17:51:17.11	5.411 5.750	7.716 7.718
522	45.878	18.346	1.107	34.684	13.005	2573104			17:57:17.91	5.518	7.719
523	45.851	18.322	1.128	34.682	13.005	2594137			18:03:18.71	5.662	7.716
524	45.826	18.286	1.168	34.691	13.004	2583724			18:09:19.51	5.591	7.717
525 526	45.799 45.78	18.272 18.25	1.214 1.263	34.68 34.683	13.003 13.003	2606361 2588500			18:15:20.31 18:21:21.11	5.746 5.623	7.719 7.719
527	45.758	18.226	1.285	34.685	13.004	2527076			18:27:21.91	5.202	7.716
528	45.735	18.208	1.332	34.679	13.002	2575497			18:33:22.71	5.534	7.720
529 530	45.714 45.682	18.179 18.147	1.341 1.357	34.687 34.686	13.002 13.002	2585060 2549996			18:39:23.51 18:45:24.31	5.600 5.350	7.720 7.717
531	45.652	18.12	1.384	34.683	13.002	2572520			18:51:25.11	5.359 5.514	7.717
532	45.623	18.088	1.391	34.686	13.001	2568332			18:57:25.91	5.485	7.719
533	45.596	18.056	1.411	34.69	13	2578605			19:03:26.71	5.555	7.723
534 535	45.556 45.527	18.021 17.994	1.419 1.468	34.687 34.684	12.999 13	2538940 2541101			19:09:27.51 19:15:28.31	5.283 5.298	7.721 7.720
536	45.505	17.96	1.491	34.695	12.999	2549788			19:21:29.11	5.358	7.725
537	45.473	17.931	1.49	34.692	13.001	2568552			19:27:29.91	5.486	7.722
538	45.445	17.905	1.48	34.689	12.998	2536868			19:33:30.71	5.269	7.719
539 540	45.417 45.396	17.872 17.855	1.482 1.503	34.694 34.69	12.998 12.997	2562550 2545116			19:39:31.51 19:45:32.31	5.445 5.326	7.723 7.721
541	45.373	17.832	1.541	34.69	12.996	2532734			19:51:33.11	5.241	7.723
542	45.349	17.813	1.501	34.686	12.995				19:57:33.91	5.519	7.721
543 544	45.334 45.316	17.782 17.772	1.504 1.465	34.699 34.692	12.995 12.997				20:03:34.71 20:09:35.51	5.040 5.302	7.722 7.722
545	45.301	17.746	1.485	34.702	12.995				20:15:36.31	5.353	7.724
546	45.288	17.734	1.472	34.701	12.995	2573047	2482208	5/23/1998	20:21:37.11	5.517	7.722
547	45.271	17.719 17.706	1.425	34.699	12.996				20:27:37.91	5.330	7.724
548 549	45.255 45.242	17.706	1.423 1.428	34.697 34.702	12.996 12.993				20:33:38.71 20:39:39.51	5.306 5.361	7.720 7.722
550	45.23	17.673	1.414	34.703	12.995	2581937			20:45:40.31	5.578	7.722
551	45.211	17.66	1.399	34.698	12.993	2570273			20:51:41.11	5.498	7.721
552 553	45.199 45.187	17.646 17.626	1.37 1.305	34.699 34.707	12.993 12.993	2549604			20:57:41.91 21:03:42.71	5.356 5.303	7.725 7.722
554	45.176	17.619	1.312	34.704	12.992				21:09:43.51	5.514	7.721
555	45.163	17.621	1.295	34.69	12.992				21:15:44.31	5.245	7.725
556	45.16	17.593	1.264	34.712	12.992				21:21:45.11	5.386	7.722
557 558	45.145 45.143	17.589 17.577	1.224 1.18	34.702 34.711	12.991 12.991				21:27:45.91 21:33:46.71	5.212 5.519	7.721 7.724
559	45.136	17.58	1.162	34.701	12.99				21:39:47.51	5.316	7.725
560	45.126	17.566	1.103	34.705	12.992				21:45:48.31	5.186	7.725
561 562	45.117	17.563	1.052	34.701	12.991				21:51:49.11	5.610	7.722
562 563	45.115 45.107	17.561 17.553	0.987 0.969	34.701 34.7	12.99 12.99				21:58:31.19 22:04:31.99	5.479 5.064	7.724 7.727
564	45.105	17.541	0.908	34.708	12.99				22:10:32.79	5.498	7.724
565	45.101	17.544	0.87	34.703	12.989	2520401			22:16:33.59	5.156	7.726
566 567	45.1 45.092	17.542 17.531	0.835 0.776	34.703 34.706	12.989 12.988	2560565 2564660			22:22:34.39 22:28:35.19	5.432 5.460	7.726 7.724
568	45.092 45.087	17.531	0.776	34.706	12.988				22:28:35.19	5.647	7.724 7.724
569	45.089	17.524	0.681	34.709	12.99	2564991	2482864	5/23/1998	22:40:36.79	5.462	7.725
570	45.08	17.525	0.635	34.701	12.989				22:46:37.59	5.454	7.723
571 572	45.087 45.081	17.531 17.521	0.563 0.523	34.701 34.705	12.989 12.989				22:52:38.39 22:58:39.19	5.411 5.388	7.724 7.725
573	45.086	17.521	0.523	34.705	12.989				23:04:39.99	5.393	7.725 7.726
574	45.086	17.513	0.412	34.716	12.988	2556514	2483846	5/23/1998	23:10:40.79	5.404	7.729
575	45.079	17.52	0.366	34.705	12.989				23:16:41.59	5.316	7.726
576 577	45.086 45.093	17.522 17.527	0.31 0.286	34.709 34.71	12.988 12.989				23:22:42.39 23:28:43.19	5.419 5.170	7.724 7.726
578	45.101	17.534	0.256	34.711	12.988				23:34:43.99	5.339	7.726
579	45.108	17.543	0.198	34.71	12.988	2523847	2482955	5/23/1998	23:40:44.79	5.180	7.725
580 581	45.105 45.115	17.537 17.556	0.128 0.086	34.712 34.705	12.987 12.986				23:46:45.59 23:52:46.39	5.418	7.729
301	40.110	17.556	0.000	J4.1UD	12.900	2000107	2403044	J123/1998	20.02.40.39	5.402	7.725

Record No.	Conductivity (mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
582	45.129	17.566	0.03	34.709	12.987	2500909		5/23/1998	23:58:47.19	5.022	7.727
583	45.137	17.573	-0.008	34.709	12.987	2540087	2483205	5/24/1998	00:04:47.99	5.291	7.726
584	45.142	17.589	-0.057	34.7	12.987	2557522			00:10:48.79	5.411	7.725
585 586	45.156 45.164	17.586 17.595	-0.112 -0.152	34.715 34.714	12.988 12.986	2544295 2512824			00:16:49.59	5.320 5.104	7.727 7.728
587	45.172	17.609	-0.208	34.709	12.986	2583169			00:22:50:33	5.587	7.727
588	45.202	17.638	-0.239	34.71	12.986	2545343			00:34:51.99	5.327	7.727
589	45.221	17.66	-0.313	34.707	12.986	2567448			00:40:52.79	5.479	7.726
590 591	45.251 45.279	17.683 17.717	-0.336 -0.372	34.714 34.708	12.987 12.988	2542378 2565647			00:46:53.59	5.307 5.466	7.728 7.725
592	45.318	17.75	-0.389	34.713	12.988	2528270	2483811		00:58:55.19	5.210	7.729
593	45.352	17.784	-0.422	34.714	12.989	2553815			01:04:55.99	5.385	7.727
594	45.39	17.828	-0.459	34.709	12.988	2547765			01:10:56.79	5.344	7.727
595 506	45.436	17.887	-0.478	34.698	12.988	2570320			01:16:57.59	5.499	7.726
596 597	45.487 45.529	17.922 17.966	-0.506 -0.523	34.712 34.71	12.989 12.99	2580803 2568912			01:22:58.39	5.571 5.489	7.726 7.725
598	45.581	18.024	-0.573	34.705	12.99	2533323			01:34:59.99	5.245	7.724
599	45.616	18.063	-0.605	34.702	12.99	2595121	2482810	5/24/1998	01:41:00.79	5.669	7.724
600	45.664	18.1	-0.635	34.712	12.99	2546168			01:47:01.59	5.333	7.725
601 602	45.711 45.748	18.159 18.192	-0.648 -0.665	34.702 34.706	12.991 12.992	2534781 2552269			01:53:02.39	5.255 5.375	7.725 7.726
603	45.786	18.235	-0.701	34.701	12.99	2568990			02:05:03.99	5.489	7.724
604	45.82	18.298	-0.684	34.676	12.991	2525259			02:11:04.79	5.189	7.725
605	45.854	18.311	-0.714	34.694	12.991	2538785			02:17:05.59	5.282	7.727
606	45.893	18.344	-0.699	34.699	12.989	2567812			02:23:06.39	5.481	7.727
607 608	45.935 45.964	18.391 18.42	-0.725 -0.719	34.695 34.695	12.99 12.992	2541899 2540393			02:29:07:19	5.304 5.293	7.726 7.724
609	45.992	18.449	-0.739	34.695	12.991	2540277			02:41:08.79	5.292	7.724
610	46.023	18.474	-0.73	34.7	12.993	2537097			02:47:09.59	5.271	7.724
611	46.043	18.493	-0.754	34.701	12.992	2576601			02:53:10.39	5.542	7.723
612 613	46.068 46.088	18.519 18.542	-0.751 -0.737	34.699 34.697	12.992 12.991	2558954 2541793			02:59:11.19	5.421 5.303	7.725 7.721
614	46.115	18.572	-0.723	34.695	12.992	2587505			03:11:12.79	5.616	7.722
615	46.146	18.592	-0.715	34.704	12.993	2575389			03:17:13.59	5.533	7.721
616	46.166	18.627	-0.71	34.692	12.991	2563601			03:23:14.39	5.452	7.725
617	46.191	18.654	-0.686	34.689	12.991	2577697			03:29:15.19	5.549	7.720
618 619	46.219 46.245	18.675 18.706	-0.661 -0.645	34.696 34.692	12.99 12.992	2537695 2545402			03:35:15.99	5.275 5.328	7.721 7.723
620	46.269	18.737	-0.62	34.685	12.991	2536966			03:47:17.59	5.270	7.721
621	46.296	18.754	-0.594	34.694	12.99	2579232			03:53:18.39	5.560	7.723
622	46.316	18.782	-0.555	34.687	12.99	2520219			03:59:19.19	5.155	7.722
623 624	46.346 46.376	18.798 18.836	-0.519 -0.49	34.699 34.692	12.991 12.991	2569504 2581072			04:05:19.99 04:11:20.79	5.493 5.572	7.721 7.720
625	46.397	18.861	-0.465	34.688	12.991	2533552			04:17:21.59	5.246	7.719
626	46.421	18.884	-0.448	34.689	12.991	2596221			04:23:22.39	5.676	7.718
627	46.437	18.902	-0.44	34.687	12.991	2538500			04:29:23.19	5.280	7.718
628 629	46.461 46.476	18.928 18.945	-0.391 -0.366	34.686 34.685	12.991 12.991	2604953 2585740			04:35:23.99 04:41:24.79	5.736 5.604	7.718 7.718
630	46.491	18.959	-0.308	34.686	12.99	2567337			04:47:25.59	5.478	7.717
631	46.513	18.978	-0.275	34.687	12.99	2529637			04:53:26.39	5.219	7.717
632	46.526	18.992	-0.233	34.687	12.99	2543221			05:00:08.47	5.313	7.715
633 634	46.538 46.553	19.008 19.021	-0.19	34.684 34.686	12.989 12.992	2592995 2569245			05:06:09.27 05:12:10.07	5.654	7.715 7.717
635	46.562	19.033	-0.14 -0.097	34.683	12.989	2547902			05:12:10.07	5.491 5.345	7.716
636	46.567	19.04	-0.081	34.68	12.99	2574859			05:24:11.67	5.530	7.718
637	46.572	19.043	-0.044	34.683	12.989				05:30:12.47	5.477	7.716
638 639	46.561 46.555	19.035 19.02	0 0.045	34.679 34.687	12.99 12.989				05:36:13.27 05:42:14.07	5.292 5.656	7.716 7.717
640	46.537	19.019	0.045	34.673	12.989				05:48:14.87	5.298	7.717
641	46.535	18.995	0.088	34.692	12.99				05:54:15.67	5.625	7.714
642	46.519	18.987	0.133	34.685	12.989				06:00:16.47	5.575	7.714
643 644	46.495 46.484	18.971 18.949	0.179 0.202	34.679 34.687	12.988 12.99	2556843 2623828			06:06:17.27 06:12:18.07	5.406 5.866	7.714 7.714
645	46.463	18.928	0.202	34.687	12.988	2553731			06:18:18.87	5.385	7.714
646	46.444	18.913	0.293	34.684	12.988				06:24:19.67	5.694	7.712
647	46.422	18.889	0.331	34.686	12.989	2534929			06:30:20.47	5.256	7.715
648	46.393	18.863	0.384	34.684	12.986	2568590			06:36:21.27	5.487	7.713
649 650	46.37 46.35	18.836 18.811	0.396 0.414	34.686 34.69	12.984 12.985	2591569 2518750			06:42:22.07	5.644 5.145	7.716 7.715
651	46.326	18.788	0.445	34.69	12.986				06:54:23.67	5.491	7.714
652	46.296	18.758	0.497	34.69	12.984				07:00:24.47	5.632	7.712
653	46.264	18.727	0.528	34.69	12.985				07:06:25.27	5.807	7.712
654 655	46.236 46.212	18.698 18.67	0.531 0.545	34.69 34.693	12.982 12.982				07:12:26.07 07:18:26.87	5.545 5.335	7.717 7.712
656	46.189	18.648	0.578	34.692	12.982	2577851			07:24:27.67	5.550	7.712
657	46.163	18.623	0.64	34.692	12.981	2569404	2480390	5/24/1998	07:30:28.47	5.492	7.714
658	46.138	18.582	0.691	34.705	12.981	2548668			07:36:29.27	5.350	7.711
659 660	46.114 46.093	18.568 18.556	0.676 0.68	34.696 34.689	12.981 12.98	2599476 2584971			07:42:30.07 07:48:30.87	5.699 5.599	7.716 7.714
661	46.093	18.535	0.735	34.692	12.981				07:54:31.67	5.374	7.714
662	46.057	18.508	0.76	34.699	12.98	2577478	2479673	5/24/1998	08:00:32.47	5.548	7.711
663	46.037	18.492	0.73	34.696	12.981	2512271			08:06:33.27	5.100	7.714
664 665	46.016 45.983	18.475 18.437	0.759 0.784	34.692 34.696	12.979 12.978				08:12:34.07 08:18:34.87	5.437 5.615	7.714 7.711
666	45.957	18.41	0.764	34.697	12.976				08:24:35.67	5.185	7.711
667	45.93	18.384	0.833	34.697	12.977	2547238	2480214	5/24/1998	08:30:36.47	5.340	7.713
668	45.898	18.349	0.809	34.7	12.978				08:36:37.27	5.079	7.712
669 670	45.873 45.848	18.317 18.295	0.808 0.817	34.704 34.702	12.977 12.978	2499807 2586391			08:42:38.07 08:48:38.87	5.015 5.609	7.712 7.709
670 671	45.848 45.813	18.295	0.817	34.702	12.976				08:54:39.67	5.332	7.709 7.711
672	45.801	18.252	0.798	34.699	12.976	2531883	2479912	5/24/1998	09:00:40.47	5.235	7.712
673	45.774	18.224	0.81	34.7	12.975				09:06:41.27	5.377	7.711
674 675	45.759 45.744	18.21 18.187	0.843 0.814	34.698 34.706	12.975 12.977				09:12:42.07	5.503 5.346	7.711 7.711
010	73.144	10.107	0.014	J+.100	14.311	2070121	2713130	5/24/1990	00.10.42.07	J.J40	1.111

Record No.		Temperature		Salinity	CTD Bat.	D.O.	pН	Date	Time	D.O.	pН
	(mS/cm)	(Deg. C)	(dBar)	(PSU)	(Vdc)	(Integer)	(Integer)			(ml/L)	(Value)
676	45.736	18.176	0.823	34.708	12.975	2528995			09:24:43.67	5.215	7.710
677	45.718	18.159	0.81	34.707	12.974	2532611	2480202	5/24/1998	09:30:44.47	5.240	7.713
678	45.708	18.152	0.753	34.704	12.975	2540490	2479465	5/24/1998	09:36:45.27	5.294	7.710
679	45.696	18.149	0.708	34.697	12.974	2560060	2479524	5/24/1998	09:42:46.07	5.428	7.710
680	45.692	18.132	0.723	34.708	12.973	2560181	2480266	5/24/1998	09:48:46.87	5.429	7.713
681	45.68	18.116	0.698	34.711	12.974	2537599	2479712	5/24/1998	09:54:47.67	5.274	7.711
682	45.663	18.103	0.657	34.708	12.972	2538305	2479775	5/24/1998	10:00:48.47	5.279	7.711
683	45.65	18.086	0.651	34.711	12.972	2526122	2480495	5/24/1998	10:06:49.27	5.195	7.714
684	45.634	18.066	0.649	34.715	12.971	2537052	2480465	5/24/1998	10:12:50.07	5.270	7.714
685	45.621	18.07	0.662	34.7	12.971	2571463	2480276	5/24/1998	10:18:50.87	5.506	7.713
686	45.609	18.046	0.567	34.71	12.97	2570091	2479485	5/24/1998	10:24:51.67	5.497	7.710
687	45.594	18.032	0.55	34.709	12.97	2576956	2480144	5/24/1998	10:30:52.47	5.544	7.713
688	45.585	18.024	0.512	34.708	12.97	2549565	2479847	5/24/1998	10:36:53.27	5.356	7.712
689	45.581	18.02	0.509	34.709	12.969	2540772	2480086	5/24/1998	10:42:54.07	5.296	7.713
690	45.574	18.019	0.486	34.704	12.97	2560019	2479711	5/24/1998	10:48:54.87	5.428	7.711
691	45.568	18.008	0.424	34.708	12.968	2561840	2479781	5/24/1998	10:54:55.67	5.440	7.711
692	45.559	17.995	0.402	34.711	12.968	2553935	2479301	5/24/1998	11:00:56.47	5.386	7.709
693	45.553	17.997	0.371	34.704	12.966	2555828	2479552	5/24/1998	11:06:57.27	5.399	7.710
694	45.554	17.994	0.331	34.708	12.968	2525852	2479064	5/24/1998	11:12:58.07	5.193	7.708
695	45.542	17.984	0.284	34.706	12.969	2558633	2479656	5/24/1998	11:18:58.87	5.418	7.711
696	45.546	17.99	0.252	34.704	12.969	2534397	2478554	5/24/1998	11:24:59.67	5.252	7.706
697	45.534	17.988	0.244	34.696	12.969	2550951	2479299	5/24/1998	11:31:00.47	5.366	7.709
698	45.538	17.981	0.211	34.705	12.97	2564371	2478272	5/24/1998	11:37:01.27	5.458	7.705
699	45.552	17.989	0.191	34.71	12.969	2540574	2479039	5/24/1998	11:43:02.07	5.294	7.708
700	45.557	17.999	0.135	34.706	12.968	2549046	2479188	5/24/1998	11:49:02.87	5.353	7.709
701	45.573	18.008	0.124	34.711	12.969	2521176	2478542	5/24/1998	11:55:03.67	5.161	7.706

Blank Test #3 Sensor Data

		Blatik Test #3 Selisor Data									
	(mS/cm)	Temperature (Deg. C)	(dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
1	45.815	18.716	1.364	34.32	13.006	2290723			09:28:05.56	3.580	7.591
2	45.925	18.688	1.382	34.436	13.015	2223053			09:34:47.56	3.115	7.635
3	45.99	18.683	1.404	34.495	12.967	2293106			09:40:48.37	3.596	7.648
4	46.056	18.669	1.456	34.563	13.001	2236476			09:46:49.16	3.207	7.655
5	46.083	18.653	1.469	34.598	13.01	2238362			09:52:49.96	3.220	7.660
6	46.096	18.634	1.486	34.626	13.016	2245414			09:58:50.76	3.269	7.667
7	46.113	18.621	1.497	34.651	13.017	2206619			10:04:51.56	3.002	7.668
8	46.12	18.609	1.537	34.667	13.02	2186797	2470326		10:10:52.36	2.866	7.670
9	46.109	18.59	1.566	34.673	13.019	2213549	2470326		10:16:53.16	3.050	7.670
10	46.093	18.569	1.616	34.678	13.02	2222627			10:22:53.96	3.112	7.678
11	46.071	18.52	1.666	34.7	13.019	2158621			10:28:54.76	2.673	7.678
12	46.028	18.485	1.627	34.694	13.018	2229338			10:34:55.56	3.158	7.679
13	45.974	18.431	1.63	34.694	13.017	2273754			10:40:56.36	3.463	7.679
14	45.909	18.363	1.691	34.696	13.016	2257372			10:46:57.16	3.351	7.685
15	45.844	18.287	1.698	34.706	13.014	2232544	2473818		10:52:57.96	3.180	7.686
16	45.787	18.235	1.734	34.702	13.014	2205787	2474933		10:58:58.76	2.997	7.690
17	45.729	18.165	1.798	34.711	13.013	2207467	2474394		11:04:59.56	3.008	7.688
18	45.668	18.097	1.792	34.717	13.011	2206701			11:11:00.36	3.003	7.690
19	45.612	18.033	1.824	34.723	13.01	2154618			11:17:01.16	2.646	7.687
20	45.552	17.966	1.816	34.729	13.008	2156546			11:23:01.96	2.659	7.689
21	45.485	17.906	1.871	34.723	13.007	2302887			11:29:02.76	3.663	7.690
22	45.426	17.855	1.867	34.716	13.007	2175133			11:35:03.56	2.786	7.690
23	45.397	17.813	1.852	34.727	13.005	2151673	2475793		11:41:04.36	2.625	7.694
24	45.341	17.76	1.816	34.724	13.005	2195048	2475315	5/28/1998	11:47:05.16	2.923	7.692
25	45.287	17.701	1.878	34.728	13.003	2170562	2475311		11:53:05.96	2.755	7.692
26	45.254	17.669	1.904	34.727	13.002	2224754			11:59:06.76	3.127	7.695
27	45.225	17.63	1.949	34.735	13.002	2236781			12:05:07.56	3.209	7.695
28	45.188	17.592	1.943	34.736	13.001	2171152			12:11:08.36	2.759	7.696
29	45.153	17.555	1.931	34.738	12.999	2205415			12:17:09.16	2.994	7.696
30	45.123	17.529	1.964	34.734	12.999	2192285			12:23:09.96	2.904	7.698
31	45.088	17.492	1.883	34.736	12.998	2176514	2476551		12:29:10.76	2.796	7.697
32	45.061	17.464	1.939	34.736	12.998	2197530			12:35:11.56	2.940	7.699
33	45.022	17.429	1.936	34.733	12.997	2210250			12:41:12.36	3.027	7.700
34	44.997	17.399	1.902	34.737	12.997	2167761			12:47:13.16	2.736	7.703
35	44.97	17.373	1.927	34.736	12.994	2240925			12:53:13.96	3.238	7.703
36	44.932	17.331	1.882	34.739	12.994	2208959	2476901		12:59:14.76	3.019	7.699
37	44.902	17.294	1.879	34.745	12.994	2183254	2477105		13:05:15.56	2.842	7.700
38	44.863	17.275	1.85	34.728	12.991	2211296			13:11:16.36	3.035	7.701
39	44.834	17.225	1.855	34.745	12.991	2191683	2477101		13:17:17.16	2.900	7.700
40	44.786	17.171	1.821	34.75	12.99	2185387	2478957		13:23:17.96	2.857	7.708
41	44.744	17.134	1.823	34.745	12.989	2270538			13:29:18.76	3.441	7.706
42	44.717	17.112	1.785	34.741	12.989	2226386			13:35:19.56	3.138	7.703
43	44.697	17.081	1.784	34.75	12.987	2287064	2478254		13:41:20.36	3.555	7.705
44	44.679	17.066	1.803	34.747	12.99	2167817	2478587		13:47:21.16	2.736	7.706
45	44.663	17.048	1.768	34.75	12.987	2231016	2478824		13:53:21.96	3.170	7.707
46	44.658	17.034	1.769	34.756	12.987	2184851			13:59:22.76	2.853	7.705
47	44.635	17.02	1.706	34.749	12.986	2225184			14:05:23.56	3.130	7.706
48	44.616	16.991	1.698	34.758	12.985	2280386			14:11:24.36	3.509	7.709
49	44.596	16.98	1.716	34.75	12.984	2169856			14:17:25.16	2.750	7.706
50	44.576	16.963	1.652	34.747	12.984	2181731	2480505		14:23:25.96	2.832	7.714
51	44.558	16.937	1.638	34.754	12.985	2296427	2478729		14:29:26.76	3.619	7.707
52	44.535	16.933	1.61	34.738	12.983	2169892	2478429		14:35:27.56	2.750	7.706
53	44.531	16.923	1.6	34.742	12.983	2253349			14:41:28.36	3.323	7.710
54	44.533	16.918	1.581	34.748	12.982	2256639			14:47:29.16	3.346	7.710
55	44.528	16.908	1.557	34.753	12.981	2226991			14:53:29.96	3.142	7.715
56	44.518	16.899	1.571	34.752	12.983	2241897			14:59:30.76	3.245	7.715
57	44.527	16.915	1.504	34.745	12.958	2316993			15:05:31.56	3.760	7.714
58	44.549	16.925	1.489	34.756	12.969	2308439	2480391		15:11:32.36	3.701	7.714
59	44.571	16.949	1.482	34.754	12.974	2298706			15:17:33.16	3.634	7.708
60	44.584	16.968	1.454	34.75	12.975	2188520			15:23:33.96	2.878	7.713
61	44.611	16.993	1.49	34.751	12.976	2281052	∠480822	5/28/1998	15:29:34.76	3.513	7.716

Record No.	Conductivity (mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
62	44.652	17.032	1.461	34.753	12.977	2232378		5/28/1998	15:35:35.56	3.179	7.713
63	44.698	17.07	1.431	34.76	12.977	2227837			15:41:36.36	3.148	7.719
64 65	44.732 44.76	17.124 17.135	1.423 1.393	34.744 34.759	12.978 12.978	2310947 2269562			15:47:37.16 15:53:37.96	3.718 3.434	7.718 7.719
66	44.793	17.184	1.387	34.745	12.978	2142602			15:59:38.76	2.563	7.719
67	44.836	17.218	1.397	34.753	12.978	2359776			16:05:39.56	4.054	7.718
68 69	44.885 44.938	17.26 17.327	1.37 1.325	34.759 34.748	12.978 12.98	2187769 2264049			16:11:40.36 16:17:41.16	2.873 3.397	7.720 7.718
70	44.979	17.327	1.323	34.745	12.98	2257395			16:23:41.96	3.351	7.716
71	45.027	17.412	1.361	34.752	12.979	2255995			16:29:42.76	3.341	7.726
72	45.075	17.466	1.344	34.747	12.978	2179090			16:36:24.77	2.814	7.722
73 74	45.12 45.163	17.505 17.553	1.357 1.318	34.752 34.748	12.979 12.98	2306360 2216848			16:42:25.57 16:48:26.37	3.687 3.073	7.725 7.725
7 5	45.206	17.602	1.312	34.743	12.982	2299811			16:54:27.17	3.642	7.726
76	45.248	17.647	1.346	34.741	12.978	2347777	2482750	5/28/1998	17:00:27.97	3.971	7.724
77 	45.294	17.686	1.295	34.747	12.979	2270299			17:06:28.77	3.440	7.729
78 79	45.341 45.379	17.736 17.773	1.28 1.276	34.745 34.746	12.979 12.978	2326224 2330116			17:12:29.57 17:18:30.37	3.823 3.850	7.728 7.728
80	45.411	17.809	1.258	34.743	12.979	2194439			17:24:31.17	2.919	7.731
81	45.44	17.832	1.294	34.748	12.977	2257972			17:30:31.97	3.355	7.731
82	45.455	17.862	1.269	34.735	12.979	2273135			17:36:32.77	3.459	7.731
83 84	45.47 45.503	17.867 17.894	1.276 1.251	34.744 34.749	12.977 12.976	2226056 2264866			17:42:33.57 17:48:34.37	3.136 3.402	7.731 7.731
85	45.524	17.918	1.303	34.746	12.974	2191887			17:54:35.17	2.901	7.734
86	45.537	17.94	1.311	34.739	12.975	2206129			18:00:35.97	2.999	7.731
87 88	45.551 45.57	17.949 17.057	1.279	34.743 34.752	12.974 12.975	2305341 2331995			18:06:36.77 18:12:37.57	3.680	7.733
89	45.57 45.578	17.957 17.982	1.311 1.308	34.738	12.975	2260783			18:18:38.37	3.863 3.374	7.735 7.735
90	45.588	17.987	1.31	34.742	12.975	2344333			18:24:39.17	3.948	7.735
91	45.599	17.997	1.345	34.743	12.975	2346424			18:30:39.97	3.962	7.735
92	45.597	17.996	1.348	34.742	12.973	2196651			18:36:40.77	2.934	7.737
93 94	45.598 45.607	17.996 18.002	1.324 1.336	34.744 34.746	12.972 12.972	2296295 2319592			18:42:41.57 18:48:42.37	3.618 3.778	7.734 7.735
95	45.613	17.996	1.325	34.756	12.97	2243620			18:54:43.17	3.256	7.741
96	45.604	18	1.376	34.745	12.968	2275180			19:00:43.97	3.473	7.739
97 98	45.592 45.579	17.994 17.97	1.381 1.459	34.74 34.749	12.969 12.967	2370584 2337242			19:06:44.77 19:12:45.57	4.128 3.899	7.742 7.743
99	45.579	17.962	1.459	34.749	12.967	2324875			19:12:45.37	3.814	7.743
100	45.549	17.947	1.538	34.743	12.969	2238043			19:24:47.17	3.218	7.741
101	45.53	17.929	1.519	34.742	12.962	2223320			19:30:47.97	3.117	7.742
102 103	45.515 45.5	17.902 17.888	1.518 1.515	34.752 34.751	12.962 12.964	2278924 2348339			19:36:48.77 19:42:49.57	3.499 3.975	7.742 7.744
104	45.489	17.873	1.542	34.755	12.966	2312372			19:48:50.37	3.728	7.744
105	45.478	17.865	1.587	34.752	12.967	2254922			19:54:51.17	3.334	7.742
106	45.448	17.844	1.594	34.745	12.966	2314330			20:00:51.97	3.742	7.741
107 108	45.425 45.403	17.817 17.792	1.618 1.62	34.748 34.75	12.967 12.966	2387819 2296862			20:06:52.77 20:12:53.57	4.246 3.622	7.744 7.741
109	45.37	17.763	1.68	34.747	12.965	2339111			20:18:54.37	3.912	7.742
110	45.341	17.729	1.736	34.751	12.966	2329803			20:24:55.17	3.848	7.742
111 112	45.294 45.264	17.679 17.654	1.705 1.731	34.753 34.748	12.964 12.965	2358646 2330498			20:30:55.97 20:36:56.77	4.046	7.744 7.743
113	45.214	17.594	1.786	34.757	12.963	2314874			20:42:57.57	3.853 3.745	7.744
114	45.168	17.555	1.775	34.751	12.962	2308275			20:48:58.37	3.700	7.746
115	45.116	17.505	1.811	34.748	12.962	2344272			20:54:59.17	3.947	7.745
116 117	45.073 45.029	17.457 17.413	1.837 1.858	34.753 34.752	12.961 12.963				21:00:59.97 21:07:00.77	3.762 3.645	7.746 7.744
118	44.99	17.358	1.924	34.766	12.96				21:13:01.57	3.860	7.747
119	44.958	17.33	1.878	34.762	12.96				21:19:02.37	3.845	7.743
120 121	44.915 44.881	17.294 17.258	1.953 1.938	34.757 34.757	12.959 12.959				21:25:03.17 21:31:03.97	3.386 3.237	7.747 7.748
122	44.846	17.223	1.958	34.757	12.958				21:37:04.77	3.634	7.747
123	44.809	17.183	1.98	34.76	12.957	2262848			21:43:05.57	3.388	7.747
124	44.778	17.139	1.945	34.771	12.957	2331855			21:49:06.37	3.862	7.746
125 126	44.744 44.708	17.119 17.078	2.03 2.065	34.758 34.762	12.956 12.955	2280193 2294880			21:55:07.17 22:01:07.97	3.507 3.608	7.748 7.746
127	44.681	17.045	2.079	34.768	12.955				22:07:08.77	3.700	7.750
128	44.664	17.005	2.063	34.787	12.955				22:13:09.57	3.747	7.746
129 130	44.651 44.617	17.013 16.977	2.068 2.087	34.769 34.771	12.955 12.953	2289608			22:19:10.37 22:25:11.17	3.572 3.625	7.744 7.748
131	44.597	16.964	2.123	34.764	12.952				22:31:11.97	3.892	7.746
132	44.581	16.941	2.11	34.77	12.953	2304030			22:37:12.77	3.671	7.743
133	44.558	16.922	2.155	34.767	12.951	2351956			22:43:13.57	4.000	7.744
134 135	44.525 44.519	16.881 16.867	2.177 2.184	34.773 34.78	12.951 12.952				22:49:14.37 22:55:15.17	3.839 3.870	7.748 7.750
136	44.51	16.869	2.167	34.771	12.95	2325469			23:01:15.97	3.818	7.746
137	44.492	16.837	2.093	34.782	12.95				23:07:16.77	3.351	7.748
138	44.472	16.82	2.202	34.779	12.95				23:13:17.57	3.775	7.744
139 140	44.455 44.432	16.818 16.787	2.154 2.194	34.766 34.773	12.951 12.949	2305456			23:19:18.37 23:25:19.17	3.681 3.710	7.748 7.743
141	44.415	16.776	2.247	34.768	12.949	2319015	2487101	5/28/1998	23:31:19.97	3.774	7.743
142	44.394	16.751	2.193	34.771	12.948				23:38:01.99	3.572	7.745
143 144	44.37 44.351	16.717 16.709	2.19 2.147	34.78 34.77	12.948 12.946				23:44:02.79 23:50:03.59	3.392 3.722	7.746 7.746
144	44.351	16.709	2.147	34.77 34.783	12.946				23:50:03.59	3.722 3.784	7.746 7.744
146	44.306	16.65	2.17	34.781	12.946	2294127	2487148	5/29/1998	00:02:05.19	3.603	7.743
147	44.273	16.621	2.141	34.778	12.947				00:08:05.99	3.867	7.743
148 149	44.254 44.211	16.6 16.558	2.127 2.099	34.779 34.778	12.945 12.944	2323867 2300681			00:14:06.79 00:20:07.59	3.807 3.648	7.745 7.743
150	44.211	16.526	2.099	34.776	12.944	2278551			00:26:08.39	3.496	7.744
151	44.165	16.503	2.034	34.786	12.942	2287298	2487392	5/29/1998	00:32:09.19	3.556	7.744
152	44.135	16.469	2.06	34.789	12.941				00:38:09.99	3.859	7.743
153 154	44.105 44.088	16.452 16.426	2.018 1.986	34.777 34.784	12.942 12.942				00:44:10.79 00:50:11.59	3.616 3.758	7.743 7.744
155	44.081	16.409	1.998	34.793	12.939				00:56:12.39	3.673	7.743

Record No.	Conductivity	•			CTD Bat.	D.O.	pH	Date	Time	D.O.	pH
156	(mS/cm) 44.068	(Deg. C) 16.398	(dBar) 1.903	(PSU) 34.791	(Vdc) 12.94	(Integer) 2228353		5/29/1998	01:02:13.19	(ml/L) 3.152	(Value) 7.746
157	44.057	16.389	1.925	34.789	12.94	2314425			01:08:13.99	3.742	7.744
158	44.051	16.381	1.876	34.791	12.939	2319702			01:14:14.79	3.779	7.748
159 160	44.046 44.045	16.384 16.383	1.839 1.79	34.784 34.785	12.939 12.938	2336415 2317515			01:20:15.59 01:26:16.39	3.893 3.764	7.744 7.748
161	44.045	16.382	1.783	34.785	12.938	2298769			01:32:17.19	3.635	7.745
162	44.051	16.378	1.777	34.793	12.94	2317622	2487845	5/29/1998	01:38:17.99	3.764	7.746
163	44.061	16.385	1.689	34.797	12.938	2309962			01:44:18.79	3.712	7.748
164 165	44.069 44.086	16.401 16.425	1.641 1.592	34.79 34.784	12.938 12.938	2313037 2291199			01:50:19.59 01:56:20.39	3.733 3.583	7.747 7.746
166	44.099	16.429	1.587	34.792	12.937	2301553			02:02:21.19	3.654	7.753
167	44.117	16.453	1.537	34.787	12.938	2285801			02:08:21.99	3.546	7.748
168	44.137	16.47	1.532	34.79	12.938	2299845			02:14:22.79	3.642	7.750
169 170	44.161 44.189	16.497 16.521	1.441 1.404	34.787 34.79	12.938 12.938	2330472 2291325			02:20:23.59 02:26:24.39	3.852 3.584	7.750 7.753
171	44.205	16.544	1.414	34.786	12.938	2313383			02:32:25.19	3.735	7.749
172	44.224	16.561	1.335	34.787	12.938	2284055			02:38:25.99	3.534	7.749
173 174	44.246	16.582	1.343	34.788	12.936 12.937	2302788 2234953			02:44:26.79	3.662	7.755
175	44.261 44.269	16.599 16.613	1.257 1.192	34.787 34.782	12.937	2320161			02:50:27.59 02:56:28.39	3.197 3.782	7.752 7.752
176	44.285	16.618	1.218	34.791	12.937	2297834			03:02:29.19	3.628	7.752
177	44.293	16.635	1.162	34.783	12.937	2314185			03:08:29.99	3.741	7.753
178 179	44.305 44.317	16.64 16.659	1.103 1.051	34.789 34.784	12.935 12.935	2282847 2313239			03:14:30.79 03:20:31.59	3.526 3.734	7.751 7.752
180	44.334	16.658	1.045	34.8	12.934	2327753			03:26:32.39	3.834	7.753
181	44.342	16.681	0.969	34.787	12.934	2323343	2488751	5/29/1998	03:32:33.19	3.804	7.750
182	44.372	16.713	0.928	34.785	12.937	2273363			03:38:33.99	3.461	7.749
183 184	44.413 44.451	16.751 16.797	0.857 0.837	34.788 34.782	12.935 12.936	2298671 2283134			03:44:34.79 03:50:35.59	3.634 3.528	7.753 7.751
185	44.487	16.83	0.795	34.784	12.935	2299437			03:56:36.39	3.639	7.749
186	44.516	16.855	0.766	34.788	12.935	2318111			04:02:37.19	3.768	7.751
187	44.561	16.898	0.719	34.79	12.936	2285798			04:08:37.99	3.546	7.752
188 189	44.604 44.624	16.947 16.97	0.684 0.622	34.785 34.782	12.935 12.937	2304356 2333743			04:14:38.79 04:20:39.59	3.673 3.875	7.751 7.750
190	44.646	16.999	0.599	34.778	12.935	2327689			04:26:40.39	3.833	7.750
191	44.689	17.023	0.563	34.794	12.935	2326769			04:32:41.19	3.827	7.751
192	44.735	17.089	0.538	34.777	12.936	2280251			04:38:41.99	3.508	7.752
193 194	44.778 44.815	17.119 17.162	0.527 0.453	34.789 34.784	12.935 12.936	2288164 2354815			04:44:42.79 04:50:43.59	3.562 4.020	7.750 7.752
195	44.858	17.201	0.432	34.787	12.936	2327043			04:56:44.39	3.829	7.753
196	44.901	17.252	0.405	34.78	12.937				05:02:45.19	2.913	7.749
197 198	44.955 44.983	17.308 17.337	0.372 0.347	34.779 34.779	12.936 12.936	2283462 2331071			05:08:45.99 05:14:46.79	3.530	7.752 7.751
199	44.983	17.351	0.347	34.779	12.936	2326903			05:14:46.79	3.857 3.828	7.751
200	45.026	17.391	0.317	34.769	12.935	2299905			05:26:48.39	3.643	7.751
201	45.074	17.43	0.274	34.777	12.935	2297999			05:32:49.19	3.630	7.751
202 203	45.111 45.156	17.468 17.504	0.274 0.201	34.777 34.785	12.936 12.937	2331391 2296867			05:38:49.99 05:44:50.79	3.859 3.622	7.751 7.752
204	45.195	17.561	0.209	34.769	12.939	2321373			05:50:51.59	3.790	7.748
205	45.243	17.598	0.216	34.779	12.937	2322803			05:56:52.39	3.800	7.750
206	45.28	17.64	0.201	34.775	12.938	2344243			06:02:53.19	3.947	7.751
207 208	45.321 45.348	17.679 17.705	0.156 0.179	34.776 34.778	12.936 12.938	2378781 2366713			06:08:53.99 06:14:54.79	4.184 4.101	7.746 7.750
209	45.388	17.747	0.172	34.776	12.936	2334393			06:20:55.59	3.879	7.750
210	45.422	17.791	0.159	34.767	12.937				06:26:56.39	3.341	7.746
211 212	45.462 45.51	17.83 17.866	0.169 0.145	34.769 34.779	12.94 12.937				06:32:57.19 06:39:39.22	3.981 3.968	7.747 7.748
213	45.538	17.905	0.138	34.77	12.936				06:45:40.02	3.587	7.745
214	45.576	17.945	0.143	34.768	12.936	2222965	2487628	5/29/1998	06:51:40.82	3.115	7.745
215	45.616	17.983	0.17	34.77	12.94				06:57:41.62	3.856	7.746
216 217	45.654 45.686	18.03 18.057	0.152 0.166	34.763 34.766	12.937 12.939	2322395			07:03:42.42 07:09:43.22	3.797 3.627	7.745 7.746
218	45.721	18.102	0.156	34.758	12.936	2334395			07:15:44.02	3.879	7.745
219	45.766	18.14	0.185	34.765	12.939	2357319			07:21:44.82	4.037	7.743
220 221	45.802 45.838	18.177 18.217	0.195 0.221	34.764 34.76	12.939 12.938				07:27:45.62 07:33:46.42	3.717 3.676	7.743 7.741
222	45.881	18.255	0.237	34.765	12.937				07:39:47.22	4.155	7.742
223	45.91	18.293	0.255	34.757	12.94	2358374			07:45:48.02	4.044	7.740
224	45.943	18.326	0.254	34.758	12.939				07:51:48.82	4.021	7.740
225 226	45.976 46.006	18.356 18.39	0.27 0.296	34.759 34.756	12.94 12.937	2331209			07:57:49.62 08:03:50.42	3.569 3.858	7.741 7.741
227	46.037	18.426	0.316	34.751	12.939	2348303			08:09:51.22	3.975	7.740
228	46.055	18.446	0.312	34.75	12.937				08:15:52.02	3.374	7.742
229 230	46.087	18.47	0.341	34.757	12.938				08:21:52.82	4.063	7.738
231	46.116 46.141	18.501 18.525	0.397 0.396	34.755 34.756	12.937 12.935				08:27:53.62 08:33:54.42	3.247 3.819	7.741 7.739
232	46.16	18.543	0.402	34.756	12.937				08:39:55.22	3.878	7.740
233	46.174	18.564	0.483	34.751	12.936	2352298			08:45:56.02	4.002	7.741
234 235	46.194 46.198	18.577 18.582	0.461 0.484	34.757 34.756	12.936 12.936	2334808			08:51:56.82 08:57:57.62	3.882 3.782	7.740 7.737
236	46.196	18.577	0.464	34.758	12.935				09:03:58.42	3.465	7.736
237	46.188	18.582	0.542	34.747	12.934	2371515	2485166	5/29/1998	09:09:59.22	4.134	7.735
238	46.179	18.563	0.528	34.755	12.934	2359711			09:16:00.02	4.053	7.738
239 240	46.16 46.146	18.544 18.524	0.592 0.607	34.756 34.761	12.933 12.936				09:22:00.82 09:28:01.62	4.263 4.165	7.737 7.734
241	46.122	18.508	0.608	34.754	12.932				09:34:02.42	3.963	7.737
242	46.11	18.494	0.679	34.756	12.931				09:40:03.22	3.445	7.736
243	46.098	18.49	0.659	34.748	12.931	2342790 2360399			09:46:04.02	3.937	7.732
244 245	46.083 46.071	18.473 18.451	0.689 0.764	34.751 34.759	12.932 12.93	2360399			09:52:04.82 09:58:05.62	4.058 4.051	7.733 7.734
246	46.057	18.44	0.802	34.757	12.93	2339065	2485960	5/29/1998	10:04:06.42	3.911	7.738
247	46.039	18.429	0.778	34.751	12.929	2374929			10:10:07.22	4.158	7.736
248 249	46.033 46.026	18.419 18.406	0.823 0.877	34.755 34.759	12.931 12.931	2380206 2347044			10:16:08.02 10:22:08.82	4.194 3.966	7.736 7.733
	.0.020	.5.400	3.377	5 00		_5	0 1000	5,25,1000	. 5.22.00.02	0.500	00

Record No.	Conductivity	•			CTD Bat.	D.O.	pH	Date	Time	D.O.	pH
250	(mS/cm) 46.012	(Deg. C) 18.396	(dBar) 0.896	(PSU) 34.756	(Vdc) 12.928	(Integer) 2355055		5/29/1998	10:28:09.62	(ml/L) 4.021	(Value) 7.735
251	45.995	18.378	0.951	34.756	12.928	2327764			10:34:10.42	3.834	7.735
252	45.973	18.355	0.923	34.757	12.927	2380058			10:40:11.22	4.193	7.732
253	45.948	18.336	0.969	34.752	12.906	2359418 2348663			10:46:12.02	4.051	7.729
254 255	45.93 45.892	18.307 18.271	0.962 1.029	34.762 34.759	12.919 12.918	2348663			10:52:12.82 10:58:13.62	3.977 3.992	7.734 7.731
256	45.858	18.234	1.051	34.762	12.919	2329614			11:04:14.42	3.847	7.731
257	45.822	18.198	1.064	34.762	12.92	2372916	2484444	5/29/1998	11:10:15.22	4.144	7.731
258	45.801	18.173	1.079	34.765	12.919	2342223			11:16:16.02	3.933	7.732
259 260	45.77	18.143 18.102	1.107	34.764	12.918 12.918	2350212 2295768			11:22:16.82 11:28:17.62	3.988	7.732 7.730
261	45.725 45.672	18.049	1.137 1.166	34.762 34.761	12.918	2360195			11:34:18.42	3.614 4.056	7.733
262	45.623	17.988	1.152	34.772	12.918	2325052			11:40:19.22	3.815	7.731
263	45.567	17.947	1.168	34.758	12.915	2360377			11:46:20.02	4.058	7.731
264	45.498	17.867	1.2	34.768	12.915	2345574			11:52:20.82	3.956	7.731
265 266	45.429 45.386	17.793 17.752	1.221 1.233	34.772 34.77	12.913 12.914	2335963 2372696			11:58:21.62 12:04:22.42	3.890 4.142	7.730 7.731
267	45.334	17.698	1.292	34.772	12.914	2228506			12:10:23.22	3.153	7.729
268	45.285	17.653	1.265	34.768	12.912	2321059			12:16:24.02	3.788	7.730
269	45.252	17.609	1.294	34.777	12.912	2344872			12:22:24.82	3.951	7.732
270	45.214	17.566	1.278	34.781	12.911	2370115			12:28:25.62	4.125	7.730
271 272	45.163 45.115	17.518 17.482	1.302 1.279	34.779 34.768	12.911 12.909	2323027 2343015			12:34:26.42 12:40:27.22	3.801 3.939	7.732 7.732
273	45.081	17.447	1.299	34.768	12.908	2339927			12:46:28.02	3.917	7.730
274	45.049	17.416	1.3	34.767	12.909	2336933			12:52:28.82	3.897	7.730
275	45.034	17.385	1.287	34.781	12.909	2342602			12:58:29.62	3.936	7.730
276	45.007	17.356	1.356	34.782	12.908	2301207			13:04:30.42	3.652	7.729
277 278	44.977 44.946	17.326 17.296	1.372 1.333	34.783 34.782	12.908 12.907	2319952 2332314			13:10:31.22 13:16:32.02	3.780 3.865	7.729 7.730
279	44.918	17.271	1.364	34.779	12.907	2338066			13:22:32.82	3.905	7.728
280	44.89	17.239	1.328	34.782	12.905	2340330	2484771	5/29/1998	13:28:33.62	3.920	7.733
281	44.851	17.202	1.309	34.781	12.905	2297767			13:34:34.42	3.628	7.732
282 283	44.811 44.786	17.158 17.13	1.289 1.28	34.784 34.786	12.902 12.903	2337772 2332777			13:41:16.46 13:47:17.26	3.903	7.731
284	44.761	17.13	1.305	34.775	12.903	2343545			13:53:18.06	3.868 3.942	7.726 7.729
285	44.712	17.05	1.31	34.791	12.902	2339659			13:59:18.86	3.916	7.729
286	44.673	17.009	1.298	34.792	12.901	2321547			14:05:19.66	3.791	7.731
287	44.639	16.982	1.33	34.786	12.903	2327921			14:11:20.46	3.835	7.727
288 289	44.607 44.598	16.95 16.924	1.256 1.228	34.785 34.8	12.9 12.901	2312211 2327343			14:17:21.26 14:23:22.06	3.727 3.831	7.731 7.730
290	44.564	16.908	1.224	34.784	12.901	2341677			14:29:22.86	3.929	7.727
291	44.536	16.867	1.17	34.795	12.899	2315049	2483388	5/29/1998	14:35:23.66	3.747	7.727
292	44.513	16.851	1.198	34.789	12.898	2329209			14:41:24.46	3.844	7.728
293 294	44.478 44.451	16.822 16.792	1.231 1.222	34.783 34.786	12.9 12.897	2335562 2338998			14:47:25.26 14:53:26.06	3.887	7.727 7.729
295	44.42	16.75	1.193	34.795	12.097	2324411			14:59:26.86	3.911 3.811	7.727
296	44.399	16.732	1.145	34.793	12.898	2304612			15:05:27.66	3.675	7.732
297	44.364	16.703	1.1	34.786	12.883	2292713			15:11:28.46	3.593	7.732
298	44.357	16.668	1.042	34.811	12.888	2308925			15:17:29.26	3.705	7.731
299 300	44.349 44.34	16.674 16.665	1.108 1.097	34.799 34.798	12.89 12.891	2327934 2282372			15:23:30.06 15:29:30.86	3.835 3.522	7.731 7.729
301	44.316	16.646	1.05	34.795	12.892	2315451			15:35:31.66	3.749	7.729
302	44.3	16.619	1.033	34.804	12.893	2251383	2483779	5/29/1998	15:41:32.46	3.310	7.729
303	44.283	16.606	1.085	34.8	12.891	2307209			15:47:33.26	3.693	7.731
304 305	44.272 44.257	16.592 16.582	1.042 0.982	34.803 34.798	12.891 12.89				15:53:34.06 15:59:34.86	3.867 3.927	7.729 7.730
306	44.228	16.553	0.977	34.798	12.89				16:05:35.66	3.738	7.729
307	44.201	16.521	0.959	34.802	12.89				16:11:36.46	3.853	7.730
308	44.187	16.509	0.923	34.8	12.889				16:17:37.26	3.670	7.730
309 310	44.176 44.151	16.493 16.467	0.932 0.888	34.804 34.805	12.89 12.888				16:23:38.06 16:29:38.86	3.939 3.945	7.732 7.732
311	44.128	16.456	0.881	34.794	12.888				16:35:39.66	3.726	7.735
312	44.127	16.449	0.912	34.799	12.887				16:41:40.46	3.798	7.731
313	44.142	16.468	0.873	34.796	12.889				16:47:41.26	3.747	7.734
314 315	44.173 44.191	16.499 16.515	0.837 0.87	34.796 34.798	12.889 12.891				16:53:42.06 16:59:42.86	3.975 3.886	7.734 7.736
316	44.191	16.533	0.83	34.798	12.891				17:05:43.66	3.851	7.739
317	44.25	16.573	0.852	34.799	12.892				17:11:44.46	3.695	7.739
318	44.286	16.61	0.825	34.8	12.891				17:17:45.26	3.856	7.739
319 320	44.32 44.359	16.644	0.8	34.8	12.892 12.892	2332307 2320140			17:23:46.06 17:29:46.86	3.865	7.738
321	44.393	16.685 16.731	0.741 0.788	34.798 34.789	12.892				17:35:47.66	3.782 3.349	7.738 7.741
322	44.446	16.761	0.774	34.808	12.891				17:41:48.46	3.908	7.737
323	44.483	16.804	0.821	34.803	12.891	2327171			17:47:49.26	3.830	7.740
324	44.519	16.85	0.808	34.796	12.893				17:53:50.06	3.906	7.738
325 326	44.557 44.604	16.884 16.923	0.787 0.815	34.798 34.807	12.892 12.892				17:59:50.86 18:05:51.66	3.945 4.028	7.741 7.740
327	44.638	16.979	0.782	34.787	12.895	2341730			18:11:52.46	3.930	7.740
328	44.674	17.01	0.787	34.793	12.893	2296214			18:17:53.26	3.617	7.744
329	44.711	17.052	0.762	34.788	12.892				18:23:54.06	3.863	7.745
330	44.742	17.087	0.794	34.785	12.892				18:29:54.86	3.979	7.743
331 332	44.771 44.783	17.113 17.12	0.81 0.776	34.787 34.792	12.892 12.892				18:35:55.66 18:41:56.46	3.787 3.801	7.744 7.742
333	44.794	17.12	0.775	34.788	12.892				18:47:57.26	3.892	7.742
334	44.809	17.151	0.777	34.787	12.892	2321517	2487226	5/29/1998	18:53:58.06	3.791	7.744
335	44.835	17.179	0.82	34.786	12.892				18:59:58.86	2.991	7.745
336 337	44.849 44.861	17.205	0.796 0.765	34.776 34.784	12.892 12.893				19:05:59.66 19:12:00.46	3.831	7.744 7.744
33 <i>1</i> 338	44.869	17.208 17.225	0.765	34.784 34.776	12.893				19:12:00.46	3.940 3.880	7.744 7.747
339	44.901	17.238	0.768	34.793	12.89				19:24:02.06	3.652	7.748
340	44.929	17.266	0.828	34.793	12.891				19:30:02.86	3.977	7.744
341	44.925	17.282	0.876	34.776	12.891				19:36:03.66	3.901	7.748
342 343	44.923 44.929	17.27 17.262	0.874 0.9	34.784 34.796	12.889 12.889				19:42:04.46 19:48:05.26	3.824 3.734	7.747 7.744
			0.0	00		0100	0. 020	20, .000		J., J-	

Record No.		Temperature			CTD Bat.	D.O.	pH (Integer)	Date	Time	D.O.	pH (Value)
344	(mS/cm) 44.934	(Deg. C) 17.277	(dBar) 0.838	(PSU) 34.788	(Vdc) 12.89	(Integer) 2352186	(Integer) 2487869	5/29/1998	19:54:06.06	(ml/L) 4.002	(Value) 7.746
345	44.939	17.277	0.9	34.792	12.888	2315448			20:00:06.86	3.749	7.746
346	44.919	17.267	0.909	34.783	12.889	2353717			20:06:07.66	4.012	7.744
347 348	44.913 44.919	17.253 17.255	0.88 0.869	34.79 34.793	12.888 12.888	2346549 2336872			20:12:08.46 20:18:09.26	3.963 3.896	7.748 7.747
349	44.917	17.254	0.894	34.793	12.889	2325632			20:24:10.06	3.819	7.749
350	44.896	17.244	0.95	34.783	12.889	2334058	2488291	5/29/1998	20:30:10.86	3.877	7.748
351	44.879	17.226	0.984	34.784	12.887	2311488			20:36:11.66	3.722	7.749
352 353	44.859 44.844	17.194 17.181	1.012 0.997	34.794 34.792	12.886 12.885	2341039 2344434			20:42:53.70 20:48:54.50	3.925 3.948	7.747 7.745
354	44.831	17.16	1.025	34.799	12.886	2337312			20:54:55.30	3.899	7.747
355	44.813	17.153	1.01	34.789	12.886	2338198			21:00:56.10	3.906	7.745
356	44.794	17.127	1.052	34.796	12.884	2344105			21:06:56.90	3.946	7.748
357 358	44.783 44.77	17.118 17.102	1.028 1.037	34.794 34.796	12.886 12.884	2325453 2331893			21:12:57.70 21:18:58.50	3.818 3.862	7.747 7.748
359	44.742	17.079	1.109	34.791	12.883	2340829			21:24:59.30	3.924	7.749
360	44.712	17.041	1.096	34.798	12.883	2321772			21:31:00.10	3.793	7.749
361	44.673	17.014	1.13	34.788	12.882	2309981			21:37:00.90	3.712	7.746
362 363	44.657 44.637	16.995 16.974	1.073 1.173	34.79 34.791	12.881 12.881	2339121 2342414			21:43:01.70 21:49:02.50	3.912 3.934	7.746 7.748
364	44.597	16.914	1.143	34.808	12.882	2315806			21:55:03.30	3.752	7.744
365	44.551	16.87	1.17	34.806	12.879	2307752			22:01:04.10	3.697	7.745
366	44.518	16.842	1.205	34.801	12.88	2361652			22:07:04.90	4.066	7.743
367 368	44.492 44.449	16.802 16.774	1.156 1.224	34.814 34.8	12.878 12.88	2303127 2330282			22:13:05.70 22:19:06.50	3.665 3.851	7.744 7.742
369	44.407	16.728	1.246	34.802	12.877	2314107			22:25:07.30	3.740	7.740
370	44.371	16.693	1.24	34.802	12.878	2323078			22:31:08.10	3.802	7.743
371	44.34	16.665	1.237	34.799	12.876	2336920			22:37:08.90	3.897	7.744
372 373	44.317 44.281	16.632 16.605	1.307 1.295	34.807 34.799	12.877 12.875	2293848 2322162			22:43:09.70 22:49:10.50	3.601 3.795	7.743 7.740
374	44.237	16.564	1.335	34.796	12.878	2329379			22:55:11.30	3.845	7.741
375	44.221	16.536	1.283	34.806	12.875	2342634			23:01:12.10	3.936	7.741
376	44.209	16.522	1.326	34.808	12.876	2322352			23:07:12.90	3.797	7.742
377 378	44.179 44.162	16.504 16.468	1.307 1.334	34.798 34.813	12.874 12.873	2328236 2314743			23:13:13.70 23:19:14.50	3.837 3.745	7.741 7.742
379	44.149	16.471	1.319	34.799	12.874	2332417	2487581		23:25:15.30	3.866	7.745
380	44.145	16.456	1.334	34.809	12.873	2307129			23:31:16.10	3.692	7.742
381	44.131	16.441	1.366	34.81	12.873	2318263			23:37:16.90	3.769	7.742
382 383	44.113 44.104	16.423 16.419	1.386 1.387	34.809 34.805	12.873 12.872	2307490 2313981			23:43:17.70 23:49:18.50	3.695 3.739	7.742 7.742
384	44.094	16.409	1.371	34.805	12.873	2319829			23:55:19.30	3.779	7.742
385	44.085	16.394	1.402	34.811	12.873	2305087			00:01:20.10	3.678	7.742
386	44.086	16.395	1.377	34.81	12.874	2316024 2319964			00:07:20.90	3.753	7.742
387 388	44.08 44.068	16.384 16.385	1.409 1.369	34.815 34.803	12.872 12.87	2334457	2486747		00:13:21.70 00:19:22.50	3.780 3.880	7.741 7.741
389	44.071	16.377	1.432	34.812	12.871	2312238			00:25:23.30	3.727	7.743
390	44.064	16.376	1.384	34.807	12.871	2325207			00:31:24.10	3.816	7.742
391 392	44.062 44.042	16.366 16.339	1.468 1.408	34.815 34.82	12.87 12.869	2326876 2328580			00:37:24.90 00:43:25.70	3.828 3.839	7.741 7.740
393	44.029	16.338	1.329	34.81	12.869	2310907			00:43:25.70	3.718	7.740
394	44.016	16.322	1.368	34.812	12.868	2293417			00:55:27.30	3.598	7.741
395	44.009	16.32	1.374	34.807	12.868	2333263			01:01:28.10	3.872	7.742
396 397	44.002 43.996	16.306 16.298	1.333 1.346	34.814 34.815	12.867 12.867	2326284 2293722			01:07:28.90 01:13:29.70	3.824 3.600	7.740 7.740
398	43.977	16.281	1.36	34.814	12.866	2305563			01:19:30.50	3.682	7.740
399	43.965	16.269	1.286	34.813	12.866	2315140			01:25:31.30	3.747	7.741
400	43.965	16.264	1.314	34.818	12.865				01:31:32.10	3.561	7.742
401 402	43.952 43.94	16.253 16.248	1.196 1.21	34.815 34.81	12.866 12.865				01:37:32.90 01:43:33.70	3.809 3.655	7.740 7.744
403	43.934	16.233	1.171	34.818	12.865	2332119			01:49:34.50	3.864	7.741
404	43.923	16.222	1.166	34.817	12.865	2283408			01:55:35.30	3.529	7.740
405	43.913	16.215	1.127	34.814	12.865				02:01:36.10 02:07:36.90	3.695	7.739
406 407	43.904 43.888	16.201 16.187	1.14 1.092	34.818 34.816	12.866 12.866	2313204			02:07:30:90	3.423 3.734	7.741 7.740
408	43.886	16.185	1.067	34.816	12.863				02:19:38.50	3.823	7.739
409	43.882	16.173	1.018	34.824	12.864				02:25:39.30	3.820	7.739
410 411	43.875 43.871	16.165 16.171	1.034 0.956	34.825 34.816	12.863 12.862	2293219			02:31:40.10 02:37:40.90	3.597 3.618	7.741 7.740
412	43.867	16.168	0.914	34.814	12.864				02:43:41.70	3.733	7.741
413	43.874	16.169	0.913	34.819	12.864				02:49:42.50	3.727	7.739
414	43.881	16.176	0.883	34.821	12.864	2301838			02:55:43.30	3.656	7.740
415 416	43.892 43.9	16.187 16.2	0.889 0.794	34.821 34.816	12.864 12.863	2321676			03:01:44.10 03:07:44.90	3.792 3.756	7.741 7.741
417	43.906	16.204	0.678	34.818	12.864				03:13:45.70	3.602	7.739
418	43.917	16.223	0.677	34.812	12.861				03:19:46.50	3.680	7.744
419	43.932	16.225	0.72	34.822	12.86				03:25:47.30	3.630	7.740
420 421	43.962 43.997	16.262 16.306	0.666 0.616	34.817 34.81	12.862 12.864	2326747 2302305			03:31:48.10 03:37:48.90	3.827 3.659	7.744 7.742
422	44.009	16.319	0.564	34.809	12.861				03:44:30.95	3.795	7.748
423	44.026	16.337	0.556	34.808	12.861	2306504	2486669	5/30/1998	03:50:31.75	3.688	7.741
424 425	44.061	16.362	0.572	34.817	12.862	2314844			03:56:32.55	3.745	7.747
425 426	44.095 44.116	16.398 16.423	0.486 0.442	34.815 34.813	12.862 12.861				04:02:33.35 04:08:34.15	3.712 3.619	7.743 7.745
427	44.119	16.423	0.365	34.824	12.861				04:06.34.15	3.769	7.743
428	44.145	16.434	0.397	34.829	12.861	2307337	2486583	5/30/1998	04:20:35.75	3.694	7.741
429	44.174	16.475	0.383	34.819	12.862				04:26:36.55	3.606	7.745
430 431	44.191 44.203	16.491 16.495	0.36 0.288	34.819 34.827	12.862 12.862	2300837 2318227			04:32:37.35 04:38:38.15	3.649 3.768	7.743 7.743
431	44.212	16.495	0.237	34.815	12.862				04:36:36:15	3.574	7.743
433	44.218	16.511	0.252	34.826	12.861	2304591	2487024	5/30/1998	04:50:39.75	3.675	7.743
434	44.245	16.555	0.206	34.811	12.862				04:56:40.55	3.811	7.744
435 436	44.265 44.277	16.557 16.588	0.177 0.15	34.826 34.811	12.861 12.861	2317846 2308299			05:02:41.35 05:08:42.15	3.766 3.700	7.742 7.744
437	44.277	16.593	0.13	34.808	12.861				05:14:42.95	3.745	7.744

Record No.	Conductivity (mS/cm)		Pressure (dBar)			D.O. (Integer)	pH (Integer)	Date	Time	D.O.	pH (Value)
438	44.305	(Deg. C) 16.613	0.072	(PSU) 34.813	(Vdc) 12.86	2309705		5/30/1998	05:20:43.75	(ml/L) 3.710	(Value) 7.747
439	44.337	16.648	0.058	34.811	12.863	2312600	2486801	5/30/1998	05:26:44.55	3.730	7.742
440	44.37	16.683	0.013	34.81	12.862	2319516			05:32:45.35	3.777	7.743
441 442	44.39 44.417	16.691 16.727	0.003 -0.102	34.82 34.813	12.861 12.861	2330909 2315582			05:38:46.15 05:44:46.95	3.855 3.750	7.744 7.741
443	44.456	16.764	-0.029	34.814	12.862	2328682			05:50:47.75	3.840	7.744
444	44.491	16.812	-0.061	34.804	12.861	2327159			05:56:48.55	3.830	7.742
445	44.533	16.851	-0.082	34.808	12.861	2319389	2486671		06:02:49.35	3.776	7.741
446 447	44.579 44.617	16.904 16.936	-0.11 -0.13	34.802 34.807	12.862 12.863	2340800 2246282			06:08:50.15 06:14:50.95	3.923 3.275	7.741 7.741
448	44.657	16.974	-0.157	34.809	12.862	2331076			06:20:51.75	3.857	7.741
449	44.697	17.016	-0.144	34.807	12.863	2307462			06:26:52.55	3.695	7.738
450	44.733	17.06	-0.206	34.801	12.863	2336385			06:32:53.35	3.893	7.739
451	44.776	17.098	-0.196	34.805	12.863	2335998			06:38:54.15	3.890	7.740
452 453	44.811 44.843	17.13 17.169	-0.192 -0.2	34.808 34.802	12.864 12.863	2330003 2326793			06:44:54.95 06:50:55.75	3.849 3.827	7.736 7.738
454	44.882	17.208	-0.233	34.802	12.862	2298696			06:56:56.55	3.634	7.741
455	44.921	17.25	-0.22	34.801	12.864	2316551			07:02:57.35	3.757	7.738
456	44.957	17.295	-0.223	34.793	12.864	2342717			07:08:58.15	3.937	7.739
457 450	44.988	17.324	-0.272	34.795	12.864	2330527			07:14:58.95	3.853	7.737
458 459	45.027 45.06	17.362 17.388	-0.259 -0.261	34.796 34.802	12.864 12.864	2332861 2341392			07:20:59.75 07:27:00.55	3.869 3.927	7.735 7.732
460	45.081	17.419	-0.244	34.793	12.864	2330915			07:33:01.35	3.856	7.733
461	45.125	17.449	-0.26	34.805	12.864	2343651			07:39:02.15	3.943	7.732
462	45.164	17.494	-0.278	34.801	12.865	2347319			07:45:02.95	3.968	7.729
463 464	45.201 45.229	17.531 17.567	-0.253 -0.213	34.8 34.794	12.864 12.865	2345763 2333827			07:51:03.75 07:57:04.55	3.957 3.876	7.732 7.734
465	45.269	17.613	-0.222	34.789	12.865	2330157			08:03:05.35	3.850	7.730
466	45.3	17.641	-0.229	34.791	12.864	2336285			08:09:06.15	3.892	7.731
467	45.337	17.67	-0.201	34.799	12.864	2331750			08:15:06.95	3.861	7.732
468	45.354	17.691	-0.207	34.795	12.865	2348329			08:21:07.75	3.975	7.731
469 470	45.392 45.421	17.736 17.764	-0.203 -0.168	34.788 34.79	12.865 12.865	2360376 2352150			08:27:08.55 08:33:09.35	4.058 4.001	7.727 7.727
471	45.446	17.794	-0.152	34.786	12.867	2343306			08:39:10.15	3.941	7.727
472	45.48	17.821	-0.144	34.792	12.865	2321326			08:45:10.95	3.790	7.728
473	45.51	17.856	-0.144	34.787	12.867	2372649			08:51:11.75	4.142	7.726
474 475	45.537 45.559	17.877 17.903	-0.081 -0.106	34.793 34.79	12.865 12.865	2337480 2356705			08:57:12.55 09:03:13.35	3.901 4.033	7.727 7.725
476	45.584	17.93	-0.100	34.788	12.865	2343080			09:09:14.15	3.939	7.725
477	45.601	17.954	-0.076	34.782	12.866	2357706			09:15:14.95	4.039	7.726
478	45.621	17.97	-0.035	34.785	12.866	2342494			09:21:15.75	3.935	7.727
479 480	45.636	17.978	-0.017 0.008	34.792	12.867	2343084 2345917			09:27:16.55	3.939	7.727
481	45.642 45.65	17.989 17.996	0.008	34.787 34.788	12.866 12.864	2324748			09:33:17.35 09:39:18.15	3.958 3.813	7.727 7.726
482	45.652	18.004	0.014	34.783	12.868	2351747			09:45:18.95	3.998	7.725
483	45.66	18.009	0.081	34.786	12.863	2345949			09:51:19.75	3.959	7.728
484	45.662	18.018	0.08	34.779	12.864	2362031			09:57:20.55	4.069	7.726
485 486	45.666 45.684	18.017 18.029	0.092 0.115	34.784 34.789	12.865 12.864	2374991 2366854			10:03:21.35 10:09:22.15	4.158 4.102	7.726 7.724
487	45.692	18.046	0.149	34.781	12.863	2338731			10:15:22.95	3.909	7.722
488	45.703	18.051	0.176	34.786	12.865	2354646			10:21:23.75	4.018	7.722
489	45.707	18.058	0.207	34.784	12.864	2353211			10:27:24.55	4.009	7.722
490 491	45.714 45.705	18.063 18.051	0.236 0.197	34.785 34.788	12.863 12.865	2348101 2359616			10:33:25.35 10:39:26.15	3.973 4.052	7.722 7.719
492	45.684	18.035	0.25	34.783	12.865	2251659			10:46:08.20	3.312	7.721
493	45.669	18.016	0.327	34.787	12.861	2356701			10:52:09.00	4.032	7.723
494	45.643	17.987	0.339	34.79	12.861	2327437			10:58:09.80	3.832	7.720
495 496	45.625 45.608	17.973 17.952	0.34 0.372	34.786 34.789	12.86 12.859	2344082 2331848			11:04:10.60 11:10:11.40	3.946 3.862	7.721 7.722
497	45.587	17.938	0.341	34.784	12.859	2280028			11:16:12.20	3.506	7.723
498	45.57	17.914	0.4	34.789	12.859	2332656			11:22:13.00	3.867	7.721
499	45.549	17.9	0.418	34.783	12.86	2357642			11:28:13.80	4.039	7.720
500 501	45.538 45.521	17.882 17.871	0.444 0.452	34.789 34.784	12.859 12.859	2330851 2344205			11:34:14.60 11:40:15.40	3.855 3.947	7.719 7.721
502	45.5	17.84	0.488	34.793	12.857	2342044			11:46:16.20	3.932	7.720
503	45.469	17.819	0.55	34.783	12.858	2353370			11:52:17.00	4.010	7.720
504	45.444	17.789	0.534	34.788	12.857	2334722			11:58:17.80	3.882	7.719
505 506	45.424 45.4	17.767 17.738	0.555 0.568	34.789 34.795	12.858 12.856	2341054 2319566			12:04:18.60 12:10:19.40	3.925 3.778	7.718 7.722
507	45.388	17.736	0.581	34.786	12.856				12:16:20.20	4.111	7.721
508	45.374	17.713	0.63	34.793	12.856	2336151			12:22:21.00	3.891	7.718
509	45.356	17.694	0.65	34.794	12.856	2330657			12:28:21.80	3.854	7.720
510 511	45.334 45.328	17.675 17.665	0.635 0.679	34.791 34.794	12.855 12.855	2338667 2338739			12:34:22.60 12:40:23.40	3.909 3.909	7.720 7.718
512	45.322	17.668	0.678	34.787	12.854	2341819			12:46:24.20	3.930	7.718
513	45.312	17.654	0.706	34.79	12.855	2305778			12:52:25.00	3.683	7.719
514	45.306	17.651	0.719	34.787	12.854	2355741			12:58:25.80	4.026	7.716
515 516	45.296	17.631	0.747	34.796	12.854	2352447			13:04:26.60	4.003	7.719
516 517	45.276 45.232	17.613 17.569	0.785 0.769	34.795 34.794	12.853 12.852	2345655 2343949			13:10:27.40 13:16:28.20	3.957 3.945	7.719 7.719
518	45.194	17.536	0.767	34.789	12.852	2316763			13:22:29.00	3.758	7.723
519	45.162	17.493	0.813	34.799	12.85	2339920			13:28:29.80	3.917	7.721
520 521	45.135 45.108	17.474 17.451	0.769	34.793	12.851	2320630			13:34:30.60	3.785	7.720
521 522	45.108 45.085	17.451 17.417	0.78 0.789	34.788 34.798	12.85 12.851	2338579 2340791			13:40:31.40 13:46:32.20	3.908 3.923	7.720 7.720
523	45.063	17.399	0.774	34.794	12.849	2338455			13:52:33.00	3.907	7.718
524	45.043	17.381	0.796	34.793	12.85	2343934	2481408	5/30/1998	13:58:33.80	3.945	7.718
525	45.01	17.347	0.834	34.793	12.848	2324896			14:04:34.60	3.814	7.721
526 527	44.972 44.953	17.313 17.27	0.861 0.796	34.79 34.81	12.848 12.847	2326023 2349034			14:10:35.40 14:16:36.20	3.822 3.980	7.718 7.719
527 528	44.901	17.236	0.796	34.794	12.847	2327044			14:10:30:20	3.829	7.719
529	44.86	17.197	0.812	34.792	12.846	2291170	2481187	5/30/1998	14:28:37.80	3.583	7.717
530	44.829	17.152	0.797	34.804	12.844	2323168			14:34:38.60	3.802	7.720
531	44.801	17.13	0.793	34.799	12.846	2316254	∠481883	o/30/1998	14:40:39.40	3.755	7.720

Record No.	Conductivity	•		•	CTD Bat.	D.O.	pH	Date	Time	D.O.	pH (Value)
532	(mS/cm) 44.788	(Deg. C) 17.111	(dBar) 0.79	(PSU) 34.804	(Vdc) 12.846	(Integer) 2316198		5/30/1998	14:46:40.20	(ml/L) 3.755	(Value) 7.718
533	44.76	17.092	0.789	34.797	12.845	2328209			14:52:41.00	3.837	7.716
534	44.723	17.059	0.761	34.792	12.843	2317699			14:58:41.80	3.765	7.719
535 536	44.699 44.661	17.011 16.977	0.803 0.737	34.812 34.809	12.848 12.846	2338119			15:04:42.60 15:10:43.40	3.905 3.688	7.716 7.716
537	44.62	16.937	0.752	34.809	12.843	2335119			15:16:44.20	3.884	7.710
538	44.589	16.908	0.706	34.806	12.841	2337976			15:22:45.00	3.904	7.716
539	44.545	16.861	0.702	34.809	12.842	2326859			15:28:45.80	3.828	7.716
540 541	44.522 44.495	16.833	0.71 0.7	34.813 34.809	12.841 12.84	2309443 2308420			15:34:46.60 15:40:47.40	3.708	7.716 7.716
542	44.495	16.81 16.785	0.7	34.804	12.84	2321747			15:46:48.20	3.701 3.793	7.716
543	44.438	16.749	0.639	34.812	12.84	2325451			15:52:49.00	3.818	7.718
544	44.415	16.717	0.648	34.82	12.843	2339895			15:58:49.80	3.917	7.718
545	44.39	16.7	0.702	34.813	12.841	2310956			16:04:50.60	3.719	7.718
546 547	44.365 44.345	16.675 16.646	0.667 0.554	34.813 34.82	12.839 12.838	2334141 2345454			16:10:51.40 16:16:52.20	3.878 3.955	7.716 7.719
548	44.321	16.628	0.616	34.815	12.838	2297626			16:22:53.00	3.627	7.718
549	44.319	16.644	0.605	34.799	12.837	2300696			16:28:53.80	3.648	7.718
550	44.339	16.647	0.628	34.814	12.844	2322034			16:34:54.60	3.795	7.720
551	44.338	16.643	0.605	34.816	12.839	2328282			16:40:55.40	3.837	7.720
552 553	44.328 44.324	16.634 16.637	0.553 0.535	34.815 34.81	12.84 12.836	2327137 2297017			16:46:56.20 16:52:57.00	3.830 3.623	7.719 7.722
554	44.333	16.645	0.55	34.811	12.837				16:58:57.80	3.742	7.726
555	44.352	16.648	0.532	34.824	12.837	2320040			17:04:58.60	3.781	7.725
556	44.365	16.663	0.505	34.823	12.837	2336185			17:10:59.40	3.892	7.722
557	44.36	16.66	0.507	34.822	12.837	2319845			17:17:00.20	3.780	7.729
558 559	44.371 44.388	16.687 16.693	0.504 0.461	34.807 34.817	12.837 12.837	2335070 2309966			17:23:01.00 17:29:01.80	3.884 3.712	7.725 7.727
560	44.408	16.709	0.504	34.821	12.837	2322082			17:35:02.60	3.795	7.727
561	44.419	16.722	0.449	34.819	12.836	2327049			17:41:03.40	3.829	7.726
562	44.423	16.737	0.424	34.81	12.836	2307450			17:47:45.47	3.694	7.726
563	44.448	16.755	0.472	34.815	12.837	2316704			17:53:46.27	3.758	7.727
564 565	44.467 44.495	16.776 16.803	0.439 0.416	34.814 34.815	12.837 12.838	2325010 2313522			17:59:47.07 18:05:47.87	3.815 3.736	7.727 7.728
566	44.517	16.829	0.412	34.812	12.838	2323538			18:11:48.67	3.805	7.729
567	44.541	16.854	0.483	34.811	12.837	2331270	2483912	5/30/1998	18:17:49.47	3.858	7.729
568	44.573	16.885	0.424	34.812	12.838	2352604			18:23:50.27	4.004	7.730
569 570	44.598 44.634	16.916 16.943	0.437 0.357	34.807 34.815	12.837 12.836	2313026 2314830			18:29:51.07 18:35:51.87	3.733 3.745	7.729 7.730
571	44.655	16.969	0.343	34.812	12.836	2316661			18:41:52.67	3.758	7.729
572	44.682	16.991	0.411	34.816	12.838	2321050			18:47:53.47	3.788	7.731
573	44.71	17.03	0.43	34.806	12.838	2305945			18:53:54.27	3.684	7.731
574	44.734	17.052	0.379	34.808	12.838	2332542			18:59:55.07	3.867	7.730
575 576	44.757 44.769	17.075 17.084	0.343 0.357	34.808 34.811	12.839 12.836	2332975 2324107			19:05:55.87 19:11:56.67	3.870 3.809	7.730 7.731
577	44.792	17.11	0.318	34.808	12.839	2331388			19:17:57.47	3.859	7.730
578	44.81	17.127	0.313	34.809	12.839	2313910			19:23:58.27	3.739	7.730
579	44.833	17.152	0.408	34.807	12.837	2328078			19:29:59.07	3.836	7.733
580 581	44.855 44.871	17.171 17.194	0.355 0.359	34.811 34.805	12.838 12.837	2344090 2339624			19:35:59.87 19:42:00.67	3.946 3.915	7.732 7.731
582	44.888	17.21	0.38	34.805	12.837	2344343			19:48:01.47	3.948	7.733
583	44.899	17.216	0.373	34.81	12.837	2310087			19:54:02.27	3.713	7.733
584	44.904	17.222	0.337	34.809	12.839	2333516			20:00:03.07	3.873	7.733
585 586	44.92 44.93	17.234 17.252	0.378 0.355	34.813 34.806	12.837 12.837	2316273			20:06:03.87 20:12:04.67	3.755 3.869	7.736 7.732
587	44.942	17.263	0.391	34.807	12.837				20:12:04:07	3.672	7.731
588	44.949	17.269	0.347	34.808	12.838		2484307	5/30/1998	20:24:06.27	3.902	7.731
589	44.947	17.273	0.403	34.802	12.835	2324849			20:30:07.07	3.814	7.734
590 591	44.957 44.973	17.286 17.294	0.375 0.408	34.8 34.807	12.837 12.836	2316579			20:36:07.87 20:42:08.67	3.757 3.919	7.733 7.732
592	44.974	17.294	0.409	34.807	12.836	2305631			20:48:09.47	3.682	7.731
593	44.97	17.289	0.443	34.809	12.835	2350368			20:54:10.27	3.989	7.733
594	44.978	17.31	0.368	34.797	12.835	2320151			21:00:11.07	3.782	7.733
595 596	44.983 44.992	17.316 17.316	0.409 0.498	34.797 34.805	12.835 12.835	2374950 2325091			21:06:11.87 21:12:12.67	4.158 3.816	7.733 7.733
597	45	17.323	0.478	34.805	12.835				21:18:13.47	3.851	7.731
598	44.999	17.321	0.49	34.806	12.835	2323568	2484905	5/30/1998	21:24:14.27	3.805	7.733
599	44.999	17.325	0.439	34.803	12.835	2312131			21:30:15.07	3.727	7.733
600 601	44.999 45.007	17.325 17.332	0.504 0.496	34.803 34.804	12.833 12.835	2357488 2356126			21:36:15.87 21:42:16.67	4.038 4.029	7.732 7.730
602	45.008	17.336	0.490	34.8	12.834	2294992			21:42:10:07	3.609	7.732
603	44.995	17.328	0.51	34.797	12.835	2344532			21:54:18.27	3.949	7.732
604	44.995	17.318	0.464	34.805	12.833	2338993			22:00:19.07	3.911	7.733
605	44.998 44.988	17.322 17.324	0.551	34.805	12.833	2336063 2347245			22:06:19.87 22:12:20.67	3.891	7.731
606 607	44.961	17.324	0.485 0.529	34.794 34.8	12.833 12.831				22:18:21.47	3.968 3.832	7.733 7.730
608	44.942	17.261	0.601	34.809	12.831				22:24:22.27	3.928	7.731
609	44.929	17.247	0.587	34.81	12.831	2320117			22:30:23.07	3.781	7.731
610	44.897	17.211	0.624	34.813	12.832	2318803			22:36:23.87	3.772	7.733
611 612	44.859 44.842	17.182 17.159	0.581 0.673	34.805 34.81	12.829 12.829	2300451 2307613			22:42:24.67 22:48:25.47	3.646 3.696	7.730 7.731
613	44.827	17.15	0.536	34.804	12.83	2342618			22:54:26.27	3.936	7.732
614	44.815	17.131	0.656	34.811	12.83	2318363	2484742	5/30/1998	23:00:27.07	3.769	7.733
615	44.809	17.133	0.658	34.804	12.829				23:06:27.87	3.832	7.733
616 617	44.78 44.744	17.102 17.07	0.651 0.707	34.805 34.801	12.828 12.829	2331690 2302998			23:12:28.67 23:18:29.47	3.861 3.664	7.736 7.731
618	44.74	17.07	0.707	34.801	12.829	2294114			23:24:30.27	3.603	7.733
619	44.705	17.029	0.728	34.802	12.827	2331940	2484474	5/30/1998	23:30:31.07	3.863	7.732
620	44.684	16.994	0.73	34.814	12.827	2323665			23:36:31.87	3.806	7.729
621 622	44.651 44.628	16.962 16.949	0.766 0.732	34.813 34.804	12.825 12.825	2307039			23:42:32.67 23:48:33.47	3.692 3.848	7.728 7.728
623	44.628	16.949	0.732	34.804	12.825				23:54:34.27	3.719	7.728
624	44.583	16.889	0.662	34.817	12.826	2323973	2484025	5/31/1998	00:00:35.07	3.808	7.730
625	44.541	16.85	0.7	34.815	12.826	2314517	2483540	5/31/1998	00:06:35.87	3.743	7.728

Record No.	Conductivity	•		Salinity	CTD Bat.	D.O.	pН	Date	Time	D.O.	рН
	(mS/cm)	(Deg. C)	(dBar)	(PSU)	(Vdc)	(Integer)	(Integer)	E/04/4000	00.40.00.07	(ml/L)	(Value)
626 627	44.514 44.501	16.81 16.807	0.718 0.795	34.826 34.817	12.825 12.823	2305950 2318720			00:12:36.67 00:18:37.47	3.684 3.772	7.727 7.730
628	44.482	16.791	0.716	34.814	12.823	2334235			00:24:38.27	3.878	7.727
629	44.458	16.757	0.749	34.822	12.823	2303660			00:30:39.07	3.668	7.725
630	44.449	16.762	0.773	34.81	12.823	2335158			00:36:39.87	3.885	7.730
631	44.442	16.745	0.767	34.819	12.822	2317035	2483806	5/31/1998	00:42:40.67	3.760	7.729
632	44.411	16.72	0.716	34.814	12.822	2335917	2483119	5/31/1998	00:49:22.74	3.890	7.726
633	44.39	16.683	0.792	34.827	12.821	2300259			00:55:23.54	3.645	7.726
634	44.382	16.683	0.748	34.819	12.821	2310443			01:01:24.34	3.715	7.725
635	44.371	16.673	0.751	34.819	12.821	2310269			01:07:25.14	3.714	7.728
636	44.357	16.656	0.692	34.822	12.82	2299976			01:13:25.94	3.643	7.726
637	44.352	16.64	0.855	34.831	12.82	2303543			01:19:26.74	3.668	7.729
638 639	44.35	16.65	0.689	34.821	12.819	2311595			01:25:27.54	3.723	7.729
640	44.348 44.335	16.654 16.644	0.729 0.741	34.815 34.813	12.821 12.819	2286198 2315982			01:31:28.34 01:37:29.14	3.549 3.753	7.725 7.728
641	44.331	16.629	0.741	34.822	12.819	2308499			01:43:29.94	3.702	7.728
642	44.32	16.607	0.786	34.833	12.819	2311654			01:49:30.74	3.723	7.726
643	44.312	16.61	0.803	34.822	12.82	2323950			01:55:31.54	3.808	7.730
644	44.299	16.592	0.811	34.826	12.819	2315010			02:01:32.34	3.746	7.726
645	44.27	16.564	0.756	34.826	12.818	2325696	2482313	5/31/1998	02:07:33.14	3.820	7.722
646	44.238	16.531	0.67	34.826	12.818	2332486	2483377	5/31/1998	02:13:33.94	3.866	7.727
647	44.216	16.517	0.72	34.819	12.817	2304895			02:19:34.74	3.677	7.725
648	44.201	16.497	0.666	34.822	12.819	2316913			02:25:35.54	3.759	7.726
649	44.179	16.472	0.599	34.825	12.819	2300896			02:31:36.34	3.649	7.726
650	44.164	16.461	0.591	34.822	12.818	2284959			02:37:37.14	3.540	7.725
651	44.167	16.46	0.637	34.825	12.816	2300911			02:43:37.94	3.650	7.724
652 653	44.166	16.459	0.65	34.825	12.816	2314387			02:49:38.74	3.742	7.724
654	44.164 44.177	16.459 16.45	0.559 0.539	34.824 34.843	12.816 12.817	2299848 2295863			02:55:39.54 03:01:40.34	3.642 3.615	7.724 7.723
655	44.185	16.47	0.5	34.832	12.818	2295104			03:07:41.14	3.610	7.730
656	44.19	16.487	0.563	34.822	12.815	2303198			03:13:41.94	3.665	7.730
657	44.21	16.489	0.547	34.838	12.817	2302181			03:19:42.74	3.658	7.731
658	44.218	16.519	0.514	34.818	12.815	2307547			03:25:43.54	3.695	7.728
659	44.236	16.534	0.48	34.821	12.816	2302167	2483421	5/31/1998	03:31:44.34	3.658	7.727
660	44.252	16.544	0.422	34.826	12.816	2321940	2483373	5/31/1998	03:37:45.14	3.794	7.727
661	44.281	16.575	0.413	34.826	12.815	2286126			03:43:45.94	3.548	7.727
662	44.302	16.603	0.435	34.82	12.818	2297277			03:49:46.74	3.625	7.728
663	44.316	16.621	0.369	34.816	12.817	2301073			03:55:47.54	3.651	7.727
664	44.336	16.631	0.395	34.825	12.816	2301366			04:01:48.34	3.653	7.730
665	44.354	16.658	0.328	34.817	12.818	2308298			04:07:49.14	3.700	7.729
666 667	44.386 44.415	16.676 16.711	0.344 0.306	34.83 34.824	12.817 12.815	2289449 2293201			04:13:49.94 04:19:50.74	3.571 3.597	7.726 7.726
668	44.441	16.736	0.275	34.827	12.816	2303105	2483821		04:19:50:74	3.665	7.729
669	44.467	16.773	0.315	34.816	12.817	2327860			04:31:52.34	3.835	7.728
670	44.492	16.797	0.179	34.818	12.817	2326132			04:37:53.14	3.823	7.730
671	44.524	16.825	0.217	34.822	12.817	2306981	2483211	5/31/1998	04:43:53.94	3.691	7.726
672	44.56	16.865	0.18	34.819	12.816	2328597	2483898	5/31/1998	04:49:54.74	3.840	7.729
673	44.589	16.892	0.166	34.821	12.816	2336069			04:55:55.54	3.891	7.725
674	44.618	16.924	0.098	34.818	12.816	2309710			05:01:56.34	3.710	7.729
675	44.65	16.949	0.109	34.824	12.817	2302109			05:07:57.14	3.658	7.726
676 677	44.68	16.986	0.072	34.818 34.823	12.817 12.817	2287068 2315699			05:13:57.94 05:19:58.74	3.555	7.726
678	44.705 44.73	17.007 17.034	0.096 0.003	34.82	12.817	2307496			05:25:59.54	3.751 3.695	7.727 7.727
679	44.754	17.057	0.003	34.821	12.82	2322230			05:32:00.34	3.796	7.727
680	44.765	17.066	-0.034	34.823	12.817				05:38:01.14	3.939	7.723
681	44.79	17.107	-0.049	34.81	12.817	2322771			05:44:01.94	3.800	7.725
682	44.822	17.131	-0.092	34.817	12.818	2297749	2483116	5/31/1998	05:50:02.74	3.628	7.726
683	44.843	17.156	-0.111	34.814	12.816	2326520	2482718	5/31/1998	05:56:03.54	3.825	7.724
684	44.874	17.183	-0.094	34.817	12.817	2324705			06:02:04.34	3.813	7.724
685	44.901	17.221	-0.127	34.808	12.818	2329389			06:08:05.14	3.845	7.725
686	44.934	17.248	-0.181	34.814	12.819	2350961			06:14:05.94	3.993	7.723
687	44.963	17.282	-0.207	34.808	12.817	2322592 2327741			06:20:06.74	3.798	7.725
688 689	44.994 45.028	17.31 17.349	-0.186 -0.27	34.812 34.808	12.817 12.818	2311642			06:26:07.54 06:32:08.34	3.834 3.723	7.726 7.723
690	45.059	17.349	-0.27	34.812	12.818	2328969			06:38:09.14	3.842	7.725
691	45.098	17.409	-0.299	34.816	12.819	2312803			06:44:09.94	3.731	7.723
692	45.122	17.431	-0.313	34.818	12.82	2323874			06:50:10.74	3.807	7.720
693	45.155	17.474	-0.317	34.81	12.818	2315301			06:56:11.54	3.748	7.724
694	45.188	17.509	-0.296	34.808	12.818	2300552	2482936	5/31/1998	07:02:12.34	3.647	7.725
695	45.217	17.534	-0.361	34.812	12.819	2316746			07:08:13.14	3.758	7.720
696	45.245	17.565	-0.345	34.81	12.819	2339566			07:14:13.94	3.915	7.727
697	45.281	17.605	-0.344	34.805	12.819	2328482			07:20:14.74	3.839	7.720
698	45.318	17.649	-0.374	34.8	12.821	2341276			07:26:15.54	3.927	7.720
699	45.342	17.67	-0.387	34.802	12.822	2331065			07:32:16.34	3.857	7.717
700 701	45.354 45.376	17.68 17.705	-0.423 -0.438	34.804 34.802	12.82 12.82	2343198 2342539			07:38:17.14 07:44:17.94	3.940 3.935	7.718 7.721
701	70.070	17.703	-0.+30	J-1.002	12.02	2072000	2701324	3/3//1330	U1.77.11.34	5.555	1.121

BFSD 2 Triplicate Blank Tests - PAHs Summary

PAH	Bla	nk Flux (ng/m²/	day)	Repeatability (ng/m²/day)				
	Test 1	Test 2	Test 3	Average Flux	+/- 95% C.L.	Std. Deviation		
1. Naphthalene	-243.5	-448.1	-629.3	-440	218.4	193.0		
2. Acenaphthene	-32.4	ND	ND	-32.4	n/a	n/a		
3. Acenaphthylene	-350.2	141.0	275.9	22.2	372.9	329.5		
4. Fluorene	125.5	-69.3	-84.2	-9	132.4	117.0		
5. Phenanthrene	89.0	-39.8	-16.3	11	77.6	68.6		
6. Anthracene	182.3	53.1	-324.8	-30	298	263		
7. Fluoranthene	-421.5	-1539.0	-1308.9	-1089.8	667.8	590.1		
8. Pyrene	76.6	-447.1	-431.9	-267.5	337.3	298.0		
9. Benzo(a)anthracene	ND	ND	ND	n/a	n/a	n/a		
10. Chrysene	23.9	-61.9	ND	-19.0	84.2	60.7		
11. Benzo(b)fluoranthene	ND	ND	-134.3	-134.3	n/a	n/a		
12. Benzo(k)fluoranthene	ND	ND	-9.8	-9.8	n/a	n/a		
13. Benzo(a)pyrene	ND	ND	ND	n/a	n/a	n/a		
14.Indeno(1,2,3-c,d)pyrene	ND	ND	ND	n/a	n/a	n/a		
15. Dibenz(a,h)anthracene	ND	ND	ND	n/a	n/a	n/a		
16. Benzo(g,h,I)perylene	ND	19.6	ND	19.6	n/a	n/a		

BFSD 2 Triplicate Blank Tests - PCBs Summary

PCB	Bla	nk Flux (ng/m²/	day)	Rep	eatability (ng/m²/	/day)
	Test 1	Test 2	Test 3	Average Flux	+/- 95% C.L.	Std. Deviation
(8) 2,4'-Dichlorobiphenyl	-66.6	ND	47.8	-9.4	112.2	80.9
(18) 2,2',5-Trichlorobiphenyl	205.2	23.3	27.0	85.2	117.6	104.0
(28) 2,4,4'-Trichlorobiphenyl	-8.0	ND	ND	-8.0	n/a	n/a
(52) 2,2',5,5'-Tetrachlorobiphenyl	ND	7.9	89.9	49	80.4	58.0
(66) 2,3',4,4'-Tetrachlorobiphenyl	53.6	16.6	ND	35	36.2	26.2
(101) 2,2',4,5,5'-Pentachlorobiphenyl	57.8	57.4	-3.5	37	40	35
(118) 2,3',4,4',5-Pentachlorobiphenyl	ND	2.7	2.3	2.5	0.3	0.2
(153) 2,2',4,4',5,5'-Hexachlorobiphenyl	ND	ND	9.5	9.5	n/a	n/a
(180) 2,2',3,4,4',5,5'-Heptachlorobiphenyl	ND	-9.6	ND	-9.6	n/a	n/a
(206) 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	-2.8	247.0	-17.0	75.7	168.0	148.5
(209) 2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl	-18.5	ND	ND	-18.5	n/a	n/a

BFSD 2 Triplicate Blank Tests - Pesticides Summary

Pesticide	Blaı	nk Flux (ng/m²/	day)	Rep	eatability (ng/m²/	/day)
	Test 1	Test 2	Test 3	Average Flux	+/- 95% C.L.	Std. Deviation
alpha-Chlordane	7.0	ND	ND	7.0	n/a	n/a
2,4'-DDD	7.0	ND	ND	7.0	n/a	n/a
Methoxychlor	25.7	ND	ND	25.7	n/a	n/a
Endosulfan I	48.8	ND	ND	48.8	n/a	n/a
hexachlorobutadiene	ND	ND	22.0	22.0	n/a	n/a
Heptachlor	304.5	ND	ND	304.5	n/a	n/a
Heptachlor Epoxide	ND	ND	8.8	8.8	n/a	n/a
alpha-hexachlorocyclohexane	3.3	ND	ND	3.3	n/a	n/a
beta-hexachlorocyclohexane	61.0	ND	ND	61.0	n/a	n/a
lindane	35.2	132.3	33.8	67.1	63.9	56.5
trans-Nonachlor	40.8	ND	ND	40.8	n/a	n/a

BFSD 2
Paleta Creek Demonstration Summary

Metal	Flux	+/- 95% C.L.	Flux rate Confidence	Triplicate Blanl	k Flux (μg/m²/day)	Bulk Sediment	Overlying Water
	(μg/m²/day)	(μg/m²/day)	(%)	Average	+/- 95% C.L.	(μ g/g)	(μ g/L)
Copper (Cu)	-6.57	17.74	80.7%	2.82	8.73	165	1.46
Cadmium (Cd)	7.02	3.87	100.0%	-0.52	0.75	1.16	0.06897
Lead (Pb)	4.32	12.39	65.6%	3.16	1.59	98.9	0.07879
Nickel (Ni)	19.44	8.75	99.8%	10.28	7.34	19.1	0.8378
Manganese (Mn)	103.94	957.14	73.3%	-264.85	7.49	405	24.02
Manganese (Mn) ¹	4194.24	101841.76	99.9%	-264.85	7.49	405	24.02
Zinc (Zn)	574.26	274.14	100%	-3.38	-68.61	356	8.38
Other							
Oxygen (O ₂)* (*ml/m²/day)	-1341.12	160.18	na	na	na	na	4.7
Silica (SiO ₂)* (*mg/m²/day)	28.75	15.63	100%	-1.97	2.88	na	0.79

^{1.} Mn flux calculated on the basis of first three samples due to non-linearity

BFSD 2
Paleta Creek Pre-Demo Summary

Metal	Flux	+/- 95% C.L.	Flux rate Confidence		Triplicate Blank Flux	(μg/m²/day)	Bulk Sediment	Overlying Water
	(μg/m²/day)	(μg/m²/day)	(%)		Average	+/- 95% C.L.	(μ g/g)	(μ g/L)
Copper (Cu)	-1.75	19.71	38.1%		2.82	8.73	165	1.54
Cadmium (Cd)	9.64	4.14	100.0%		-0.52	0.75	1.16	0.148
Lead (Pb)	11.06	7.94	100.0%		3.16	1.59	98.9	0.1561
Nickel (Ni)	25.24	4.62	100.0%		10.28	7.34	19.1	0.9262
Manganese (Mn)	71.33	701.54	80.7%		-264.85	7.49	405	28.12
Manganese (Mn) ¹	5763.99	23621.84	100.0%		-264.85	7.49	405	28.12
Zinc (Zn)	715.02	257.38	100.0%		-3.38	65.22	356	8.90
Other				-				
Oxygen (O ₂)* (*ml/m²/day)	-1050.87	86.25	na		na	na	na	5.2
Silica (SiO₂)* (*mg/m²/day)	30.29	11.33	100%		-1.97	2.88	na	0.81

^{1.} Mn flux calculated on the basis of first three samples due to non-linearity

BFSD 2
Pearl Harbor Bishop Point Site Summary

Metal	Flux	+/- 95% C.L.	Flux rate Confidence	Triplicate Blank F	lux (μg/m²/day)	Bulk Sediment	Overlying Water
	(μg/m²/day)	(μg/m²/day)	(%)	Average	+/- 95% C.L.	(μ g/g)	(μ g/L)
Copper (Cu)	112.46	17.60	100.0%	2.82	8.73	241	0.36
Cadmium (Cd)	1.85	1.96	99.4%	-0.52	0.75	0.3	0.009
Lead (Pb)	0.71	1.11	78.7%	3.16	1.59	93	0.06519
Nickel (Ni)	21.04	15.41	96.3%	10.28	7.34	42.9	0.3934
Manganese (Mn)	223.33	284.79	100.0%	-264.85	7.49	324	1.78
Manganese (Mn) ¹	2177.45	192.60	100.0%	-264.85	7.49	324	1.78
Zinc (Zn)	191.18	54.07	100.0%	-3.38	65.22	304	1.43
Other							
Oxygen (O₂)* (*ml/m²/day)	-567.12	54.96	na	na	na	na	6.5
Silica (SiO₂)* (*mg/m²/day)	118.61	27.62	100%	-1.97	2.88	na	0.31

^{1.} Mn flux calculated on the basis of first three samples due to non-linearity

BFSD 2 **Pearl Harbor Middle Loch Summary**

Metal	Flux	+/- 95% C.L.	Flux rate Confidence	Triplicate Blank F	lux (μg/m²/day)	Bulk Sediment	Overlying Water
	(μg/m²/day)	(µg/m²/day)	(%)	Average	+/- 95% C.L.	(μ g/g)	(μ g/L)
Copper (Cu)	14.79	3.46	99.9%	2.82	8.73	195	0.80
Cadmium (Cd)	1.80	0.31	100.0%	-0.52	0.75	0.2	0.02277
Lead (Pb)	-0.12	0.43	95.2%	3.16	1.59	34	0.03879
Nickel (Ni)	27.17	15.91	100.0%	10.28	7.34	214	0.9472
Manganese (Mn)	-468.18	683.35	97.9%	-264.85	7.49	1180	52.19
Manganese (Mn) ¹	2131.59	904.57	100.0%	-264.85	7.49	1180	52.19
Zinc (Zn)	49.74	17.25	93.5%	-3.38	65.22	314	2.28
Other							
Oxygen (O₂)* (*ml/m²/day)	-1085.52	64.84	na	na	na	na	4.17
Silica (SiO ₂)* (*mg/m²/day)	65.03	42.43	100%	-1.97	2.88	na	1.19

^{1.} Mn flux calculated on the basis of first five samples due to non-linearity

BFSD 2 12/9/2002 BPB Site Summary

Metal	Flux	+/- 95% C.L.	Flux rate Confidence	Triplicate Blan	k Flux (μg/m²/day)	Bulk Sediment	Overlying Water
	(μg/m²/day)*	(μg/m²/day)	(%)	Average	+/- 95% C.L.	(μ g/g)	(μ g/L)
Arsenic (As)	23.48	6.94	100%	-5.16	2.10		
Copper (Cu)	-71.30	39.43	100.0%	2.82	8.73		
Cadmium (Cd)	1.31	1.63	98.1%	-0.52	0.75		
Lead (Pb)	17.40	24.63	99.0%	3.16	1.59		
Nickel (Ni)	59.18	55.96	100.0%	10.28	7.34		
Manganese (Mn)	427.65	238.42	100.0%	-264.85	7.49		
Manganese (Mn) ¹	1940.13	3853.41	100.0%	-264.85	7.49		
Silver (Ag)	-0.36	0.88	86.1%	0.64	0.68		
Zinc (Zn)	374.36	133.74	100.0%	-3.38	65.22		
Other							
Oxygen (O₂)* (*ml/m²/day)	-1457.09	48.92	na	na	na		
Silica (SiO ₂)*	0.00	0.00	48%	-1.97	2.88		

^{1.} Mn flux calculated on the first three samples due to non-linearity and to compare with metals-only demonstration

(*mg/m²/day)

BFSD 2 - 12/9/2003 BPB Site Summary- PAHs (Part 2)

PAH	Flux	+/- 95% C.L.	Flux rate Confidence
	(ng/m²/day)*	(ng/m²/day)	(%)
9. BENZO(A)ANTHRACENE	152.67	140.49	NA
10. CHRYSENE	286.65	341.92	94.7%
11. BENZO(B)FLUORANTHENE	561.07	376.08	97.9%
12. BENZO(K)FLUORANTHENE	452.24	465.75	82.8%
13. BENZO(A)PYRENE	383.46	603.38	NA
14. INDENO(1,2,3-C,D)PYRENE	8.68	10.98	NA
15. DIBENZ(A,H)ANTHRACENE	-1.97	7.69	NA
16. BENZO(G,H,I)PERYLENE	8.77	10.59	12.9%

Triplicate Blank Flux	ι (ng/m²/day)	Bulk Sediment	Overlying Water
Average	+/- 95% C.L.	(ng/g)	(ng/L)
NA	NA		
23.94	22.32		
-134.30	297.91		
-9.71	36.30		
NA	NA		
NA	NA		
NA	NA		
20.15	65.15		

BFSD 2 BPB Site Summary- PAHs (Part 1)

PAH	Flux	+/- 95% C.L.	Flux Rate Confidence	Triplicate Blank Flux	Triplicate Blank Flux (ng/m²/day)		Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.	(ng/g)	(ng/L)
1. Naphthalene	2456.72	13211.62	100.0%	-440.30	458.38		
2. Acenaphthene	9222.27	6867.34	100.0%	-32.40	50.34		
3. Acenaphthylene	778.37	880.29	100.0%	208.47	112.60		
4. Fluorene	285.70	2021.66	100.0%	-76.74	28.38		
5. Phenanthrene	-3555.98	7892.27	100.0%	10.95	10.95		
6. Anthracene	2874.10	1330.22	100.0%	117.68	64.62		
7. Fluoranthene	19696.65	3869.67	100.0%	-1423.95	178.41		
8. Pyrene	12101.21	3884.64	100.0%	-439.51	70.73		
Other (See Metals Analysis in combined de	eployments for these	data)					
Oxygen (O₂)* (*ml/m²/day)	0.00	0.00	na	na	na		
Silica (SiO₂)* (*mg/m²/day)	0.00	0.00	48%	-1.97	2.88		

BFSD 2 - Site BPB (12/9/2002) - PAHs (Part 2)

First 4 samples only

Site: Site BPB (21 19.815 N X 157 58.000V

Start time: Interval: 7 End time:

		BFSD 2 Data			Dilution Correction		Intercept	From	Lower	Upper	Flux Statistics		Blank Statistics			
	Measured			Measured	Corrected	# of Dilutions	Corrected	Regression	95%	95%					tottle Volume = 0.25 liters hamber Volume = 30 liters	
Sample id	Concentration (pptr)**	Sample No.*	Elapsed Time (hrs)	Concentration (pptr)**	Concentration (pptr)**	# of Dilutions	Concentration (pptr)	Concentration (pptr)**	Conf. Int.	Conf. Int.					Thamber Volume	
L	(ppu)		(1113)	(ppu)	(ppsi)		(ppa)	(ppu)						Cililino		
BENZO(A)ANTHRACENE											Flux Statistics		Blank Statistics		Comparitive Statistics LINEST statistics	
											slope= 0.17		slope= #I	EF!	$S^2_{(y-4)} = \text{#REF!}$ 0.1798 4.2634	
BFSD2-BPB-1 BFSD2-BPB-2	2.72 4.50	T-#0 #1	0.3	2.720 4.500	4,5000	n/a 0	0.237	0.054	-2.783	2.891	intercept= 4.26. St. Err of Slope= 0.03				$S_{(b1:b2)} = \#REF!$ 0.0367 0.4894 t = #REF! 0.9231 0.5744	
BFSD2-BPB-3	5.62	#2	7.3	5.620	5.6348	1	1.371	1.313	-1.524	4.149	St Err of Int= 0.48	94			p = #REF! 24.01044943 2	
BFSD2-BPB-4	6.13	#3	14.3	6.130	6.1690	2	1.906	2.571	-0.266	5.408	R2= 0.92				7.920894225 0.659787252	
BFSD2-BPB-5 BFSD2-BPB-6	8.45 6.77	#4 #5	21.3	8.450 6.770	8.5174 6.8852	3	4.254 2.622	3.830 5.089	0.993 2.252	6.667 7.925	St Err of Y= 0.574 F= 24.0104		Err of Y= #I	EF!	Final Results Flux = 760.90 ng/m²/day Notes	
BFSD2-BPB-7	6.99	#6	35.3	6.990	7.1389	5	2.876	6.347	3.510	9.184	DF= 24.0104		DF= #I	EF!	95% CI (low) = 92.77 ng/m²/day	
BFSD2-BPB-8	7.56	#7	42.3	7.560	7.745	6	3.481	7.606	4.769	10.443	RegSS= 7.92089				95% CI (high) = 1429.04 ng/m ² /day	
BFSD2-BPB-10 BFSD2-BPB-11	6.51 8.43	#9 #10	56.3 63.3	6.510 8.430	6.9162 8.8904	8	2.653 4.627	10.123 11.382	7.286 8.545	12.960 14.219	ResSS= 0.65978 Sumx2= 1666			EF! EF!	% Conf (dif from blank)= #REF! Blank Flux= -134.29613 ng/m /day	
BFSD2-BPB-12	6.70	#11	70.3	6.700	7.2307	10	2.967	12.640	9.803	15.477	Average Conc. 6.47		Dunix2-		95% CI (low) = -432,20593 ng/m²/day	
											Initial Conc 4.50	00			95% CI (high) = 163.613683 ng/m ² /day	
CHRYSENE	l										Flux Statistics		Blank Statistics		Comparitive Statistics LINEST statistics	
BFSD2-BPB-1	1.18	T-#0	0	1.180		n/a					slope= 0.46 intercept= 7.10		slope= 0.003	950364	$S^{2}_{(9:4)} = 0.365088551$ 0.4606 7.1026 $S_{(9:42)} = 0.00931906$ 0.0752 1.0035	
BFSD2-BPB-1 BFSD2-BPB-2	7.90	#1	0.3	7.900	7.9000	0	0.797	0.138	-5.671	5.947	St. Err of Slope= 0.07:				\$ _{0.04.423} = 0.00951940	
BFSD2-BPB-3	10.0	#2	7.3	10.000	10.0560	1	2.953	3.362	-2.447	9.171	St Err of Int= 1.00:	35			p = 3.07797E-12 37.47442787 2	
BFSD2-BPB-4 BFSD2-BPB-5	12.4 17.6	#3	14.3 21.3	12.400 17.600	12.5295 17.8230	2 3	5.427 10.720	6.587 9.811	0.778 4.002	12.396 15.620	R2= 0.949 St Err of Y= 1.17		Err of Y= 0.003	581693	51.97894031 2.774101875 Final Results	
BFSD2-BPB-6	11.5	#5	28.3	11.500	11.8598	4	4.757	13.035	7.226	18.844	F= 37.4744		Ell 01 1 - 0.00.	381093	Flux = 1949.20 µg/m²/day Notes	
BFSD2-BPB-7	12.8	#6	35.3	12.800	13.2458	5	6.143	16.259	10.450	22.068	DF= 2		DF=	7	95% CI (low) = 579.19 ug/m²/day	
BFSD2-BPB-8	13.2	#7	42.3	13.200	13.743	6	6.640	19.484	13.675	25.293	RegSS= 51.9789				95% CI (high) = 3319.22 ug/m ⁷ /day	
BFSD2-BPB-9	11	#8	49.3	10.500	11.1428	7	4.040	22.708	16.899	28.517	ResSS= 2.77410	01875	ResSS= 0.51	425087	% Conf (dif from blank)= 100%	
BFSD2-BPB-10	16.4	#9	56.3	16.400	17.1205	8	10.018	25.932	20.123	31.741	Sumx2= 19096		Sumx2= 5	190	Blank Flux= -9.710954 µg/m²/day	
BFSD2-BPB-11	14.6	#10	63.3	14.600	15.4473	9	8.345	29.156	23.347	34.965	Average Conc. 12.0.				95% CI (low) = -46.008488 µg/m ² /day	
BFSD2-BPB-12	12.6	#11	70.3	12.600	13.5592	10	6.457	32.381	26.572	38.190	Initial Conc 7.90	00			95% CI (high) = 26.5865797 μg/m ² /day	
BENZO(B)FLUORANTHENE											Flux Statistics		Blank Statistics		Comparitive Statistics LINEST statistics	
BFSD2-BPB-1	2.32	T-#0	0	2.320		n/a					slope= 0.44 intercept= 8.28		slope= -0.0	21561	$S^2_{(0:4)} = 5.417119035$ 0.4440 8.2840 $S_{(0:4:2)} = 0.055078017$ 0.1605 2.1402	
BFSD2-BPB-1 BFSD2-BPB-2	8.99	#1	0.3	8.990	8.9900	n/a 0	0.706	0.133	-12.291	12.558	St. Err of Slope= 0.16				\$ _{014.22} = 0.05076017 0.1605 2.1402 t = 8.463451966 0.7929 2.5117	
BFSD2-BPB-3	9.32	#2	7.3	9.320	9.3756	1	1.092	3.241	-9.183	15.665	St Err of Int= 2.14	102			p = 0.00014867 7.655682812 2	
BFSD2-BPB-4 BFSD2-BPB-5	17.1 16.5	#3 #4	14.3 21.3	17.100 16.500	17.2139 16.7371	2 3	8.930 8.453	6.349 9.457	-6.075 -2.967	18.773 21.881	R2= 0.79: St Err of Y= 2.51		Err of Y= 0.049	148994	48.29702501 12.61730043 Final Results	
BFSD2-BPB-6	16.3	#5	28.3	16.300	16.6553	4	8.453 8.371	12.565	0.141	24.989	F= 7.65568		Eff of 1 = 0.049	148994	Final Results Flux = 1878.90 µg/m²/day Notes	
BFSD2-BPB-7	14.8	#6	35.3	14.800	15.2718	5	6.988	15.673	3.249	28.097	DF= 2		DF=	4	95% CI (low) = -1042.88 µg/m²/day	
BFSD2-BPB-8	18.4	#7	42.3	18.400	18.976	6	10.692	18.781	6.357	31.205	RegSS= 48.2970				95% CI (high) = 4800.68 µg/m²/day	
BFSD2-BPB-11	18.7	#10	63.3	18.700	19.5644	9	11.280	28.105	15.680	40.529	ResSS= 12.6173	30043	ResSS= 19.88	541378	% Conf (dif from blank)= 100%	
BFSD2-BPB-12	18.1	#11	70.3	18.100	19.1203	10	10.836	31.213	18.788	43.637	Sumx2= 13496		Sumx2= 2	058	Blank Flux= #PB@l µg/m²/day	
											Average Conc. 13.7				95% CI (low) = #PBO! µg/m ² /day	
											Initial Conc 8.99	90			95% CI (high) = # ?ΒΦ! μg/m ² /day	
BENZO(K)FLUORANTHENE											Flux Statistics		Blank Statistics		Comparitive Statistics LINEST statistics	
BFSD2-BPB-1	2.62	T-#0	0	2.620		n/a					slope= 0.44e intercept= 6.46		slope= -0.00	602108	$S^2_{(p+4)} = 0.890106064$ 0.4466 6.4694 $S_{(b)+4\odot)} = 0.024716639$ 0.0838 1.1181	
BFSD2-BPB-1 BFSD2-BPB-2	7.42	#1	0.3	7.420	7.4200	n/a 0	0.951	0.134	-6.356	6.624	intercept= 6.469 St. Err of Slope= 0.08				S ₍₀₁₋₀₂₎ = 0.024/16639 0.0838 1.1181 t = 18.13467808 0.9342 1.3121	
BFSD2-BPB-3	8.15	#2	7.3	8.150	8.1900	i	1.721	3.260	-3.230	9.751	St Err of Int= 1.113	81			p = 5.43699E-05 28.3865123 2	
BFSD2-BPB-4	13.4	#3	14.3	13.400	13.4861	2	7.017	6.387	-0.104	12.877	R2= 0.93				48.87136373 3.443280613	
BFSD2-BPB-5 BFSD2-BPB-6	15.9 10.9	#4 #5	21.3 28.3	15.900 10.900	16.0759	3	9.606 4.717	9.513 12.640	3.023	16.004 19.130	St Err of Y= 1.31: F= 28.386:		Err of Y= 0.005	988347	Final Results Flux = 1890.04 µg/m²/day Notes	
BFSD2-BPB-6 BFSD2-BPB-7	12.9	#5	28.3 35.3	12.900	11.1866	5	6.786		6.149	22.256	F= 28.3860 DF= 2		DF=	2		
BFSD2-BPB-7 BFSD2-BPB-8	17.9	#6	35.3 42.3	17.900	13.2556 18.341	6	6.786 11.872	15.766 18.892	9.275 12.402	25.383	RegSS= 48.8713		Da'=	4	95% CI (low) = 363.70 µg/m ² /day 95% CI (high) = 3416.37 µg/m ² /day	
BFSD2-BPB-11	17.5	#10	63.3	17.500	18.2433	9	11.774	28.271	21.781	34.762	ResSS= 48.8713 ResSS= 3.44328		ResSS= 0.117	143642	% Conf (dif from blank)= 100%	
BFSD2-BPB-12	12.4	#11	70.3	12.400	13.2891	10	6.820	31.398	24.907	37.888	Sumx2= 13496			333333	Blank Flux= #PBO! µg/m²/day	
											Average Conc. 11.2				95% CI (low) = #PBO! µg/m²/day	
											Initial Conc 7.42	20			95% CI (high) = #PBO! µg/m²/day	

Bishop Point Combined - PAHs first 4 (Part 2

BFSD2 BPB Site - 12/9/2002 PAH Flux Analysis

	1	BFSD 2 Data			Dilution Correction		Intercept	From	Lower	There are	Flux Statistics	Blank Statistics	
	Measured	BFSD 2 Data		Measured	Corrected Correction		Corrected	From Regression	95%	Upper 95%	Flux Statistics	Blank Statistics	Bottle Volume = 0.25 liters
Sample id	Concentration	Sample No.*	Elapsed Time	Concentration		# of Dilutions	Concentration	Concentration	Conf. Int.	Conf. Int.			Chamber Volume = 30 liters
	(pptr)**		(hrs)	(pptr)**	(pptr)**		(pptr)	(pptr)**					Chamber Area = 1701.4 cm ²
BENZO(A)PYRENE		T-#0	,								Flux Statistics slope= 0.3340 intercept= 1.2062	Blank Statistics slope= #REF!	Compartive Statistics LINEST statistics $S^{*}_{9^{*}9^{*}} = \#REP$ 0.3340 1.2062 $S_{203,0} = \#REP$ 0.0880 1.3076
BFSD2-BPB-1 BFSD2-BPB-2	2.00	1-#0 #1	0.3	2.000 2.000	2.0000	n/a 0	0.794	0.100	-7 469	7 669	intercept= 1.2062 St. Err of Slope= 0.0980		$S_{01452} = \#REF$ 0.0980 1.3076 t = #REF 0.8530 1.5345
BFSD2-BPB-3	2.00	#2	7.3	2.000	2.0000	1	0.794	2.438	-5.131	10.007	St Err of Int= 1.3076		p = #REF! 11.60645909 2
BFSD2-BPB-4	7.19	#3	14.3	7.190	7.1900	2	5.984	4.776	-2.793	12.345	R2= 0.8530		27.3306355 4.709556169
BFSD2-BPB-5	8.02	#4	21.3	8.020	8.0633	3	6.857	7.114	-0.455	14.683	St Err of Y= 1.5345	St Err of Y= #REF!	Final Results
BFSD2-BPB-6	2.00 6.23	#5	28.3 35.3	2.000	2.0934	4	0.887	9.452	1.883	17.021	F= 11.60645909 DF= 2	DF= #REF!	Flux = 1413.41 µg/m ² /day Notes 95% CI (low) = -371.66 µg/m ² /day
BFSD2-BPB-7 BFSD2-BPB-8	6.23 7.16	#6 #7	35.3 42.3	6.230 7.160	6.3234 7.289	5	5.117 6.083	11.790	4.221 6.559	19.359 21.697	DF= 2 RegSS= 27.3306355	DF= #REF!	95% CI (low) = -371.66 µg/m²/day 95% CI (high) = 3198.48 µg/m²/day
	18.3	#8	49.3	18.300	18.4717	7	17.266	16.466	8.897	24.035	ResSS= 4.709556169	ResSS= #REF!	57.6 CL (mgn) – 5179.48 gg/m /day % Cord (dif from blank) = #REF!
BFSD2-BPB-10	2.00	#9	56.3	2.000	2.3075	8	1.101	18.804	11.235	26.373	Sumx2= 19096.99	Sumx2= #REF!	Blank Flux= #PBO! µg/m²/day
BFSD2-BPB-11	9.68	#10	63.3	9.680	9.9875	9	8.781	21.142	13.573	28.711	Average Conc. 4.269		95% CI (low) = #PBP! µg/m²/day
BFSD2-BPB-12	6.92	#11	70.3	6.920	7.2915	10	6.085	23.480	15.911	31.049	Initial Conc 2.000		95% CI (high) = #PBΦ! µg/m ² /day
INDENO(1.2.3-C.D)PYRENE											Flux Statistics	Blank Statistics	Comparitive Statistics LINEST statistics
											slope= 0.0099	slope= #REF!	$S^2_{(0;4)} = \#REF!$ 0.0099 1.9310
BFSD2-BPB-1	1.98	T-#0	0	1.98		n/a					intercept= 1.9310		$S_{(b1-b2)} = \#REF!$ 0.0057 0.0759
BFSD2-BPB-2	1.98	#1	0.3	1.98	1.9800	0	0.049	0.003	-0.437	0.443	St. Err of Slope= 0.0057		t = #REF! 0.6000 0.0891
BFSD2-BPB-3 BFSD2-BPB-4	1.98 1.98	#2 #3	7.3 14.3	1.98 1.98	1.9800 1.9800	2	0.049	0.072 0.141	-0.368 -0.299	0.512 0.581	St Err of Int= 0.0759 R2= 0.6000		p = #REF! 3 2 0.023805 0.01587
	2.21	#4	21.3	2.21	2.2100	3	0.279	0.210	-0.230	0.650	St Err of Y= 0.0891	St Err of Y= #REF!	Final Results
BFSD2-BPB-6	1.98	#5	28.3	1.98	1.9819	4	0.051	0.279	-0.161	0.719	F= 3		Flux = $41.71 \mu \text{g/m}^2 / \text{day}$ Notes
BFSD2-BPB-7	1.98	#6	35.3	1.98	1.9819	5	0.051	0.348	-0.092	0.788	DF= 2	DF= #REF!	95% CI (low) = $-61.91 \text{ µg/m}^2/\text{day}$
BFSD2-BPB-8	1.98	#7	42.3	1.980	1.982	6	0.051	0.417	-0.023	0.857	RegSS= 0.023805		95% CI (high) = 145.34 µg/m²/day
BFSD2-BPB-10	1.98	#9	56.3	1.98	2.1139	8	0.183	0.555	0.115	0.995	ResSS= 0.01587	ResSS= #REF!	% Conf (dif from blank)= #REF!
BFSD2-BPB-11	1.98	#10	63.3	1.98	2.1304	9	0.199	0.624	0.184	1.064	Sumx2= 16666.5	Sumx2= #REF!	Blank Flux= 0 µg/m²/day
BFSD2-BPB-12	1.98	#11	70.3	1.98	2.1469	10	0.216	0.693	0.253	1.133	Average Conc. 2.026 Initial Conc 1.980		95% CI (low) = 0 $\mu g/m^2/day$ 95% CI (high) = 0 $\mu g/m^2/day$
											Initial Conc 1.980		95% CI (nign) = 0 pg/m /nay
DIBENZ(A,H)ANTHRACENE											Flux Statistics	Blank Statistics	Comparitive Statistics LINEST statistics
		_									slope= 0.0081	slope= #REF!	$S^{2}_{(y-x)} = \#REF!$ 0.0081 1.6296
BFSD2-BPB-1	1.67 1.67	T-#0	0	1.67	1 6700	n/a					intercept= 1.6296 St Frr of Slope= 0.0047		$S_{[01-52]} = \#REF!$ 0.0047 0.0627 t = #REF! 0.6000 0.0736
BFSD2-BPB-2 BFSD2-BPB-3	1.67	#1 #2	0.3 7.3	1.67 1.67	1.6700	0	0.040 0.040	0.002	-0.361 -0.304	0.365 0.422	St. Err of Slope= 0.0047 St Err of Int= 0.0627		t = #REF! 0.6000 0.0736 p = #REF! 3 2
BFSD2-BPB-4	1.67	#3	14.3	1.67	1.6700	2	0.040	0.116	-0.247	0.479	R2= 0.6000		0.016245 0.01083
BFSD2-BPB-5	1.86	#4	21.3	1.86	1.8600	3	0.230	0.173	-0.190	0.536	St Err of Y= 0.0736	St Err of Y= #REF!	Final Results
BFSD2-BPB-6	1.67	#5	28.3	1.67	1.6716	4	0.042	0.230	-0.133	0.593	F= 3		Flux = 34.46 µg/m²/day Notes
BFSD2-BPB-7	1.67	#6	35.3	1.67	1.6716	5	0.042	0.287	-0.076	0.650	DF= 2	DF= #REF!	95% CI (low) = -51.14 µg/m ² /day
BFSD2-BPB-8 BFSD2-BPB-9	1.67 1.67	#7 #8	42.3 49.3	1.670	1.672 1.6716	6	0.042 0.042	0.344 0.401	-0.019 0.038	0.707	RegSS= 0.016245 ResSS= 0.01083	ResSS= #REF!	95% CI (high) = 120.06 µg/m²/day % Conf (dif from blank) = #REF!
BFSD2-BPB-10	1.67	#9	56.3	1.67	1.6716	8	0.042	0.458	0.095	0.704	Sumx2= 19096.99	Sumx2= #REF!	Blank Flux= 23.9445835 µg/m²/day
BFSD2-BPB-11	1.67	#10	63.3	1.67	1.6716	9	0.042	0.515	0.152	0.878	Average Conc. 1.708		95% CI (low) = 1.6285102 µg/m²/day
BFSD2-BPB-12	1.67	#11	70.3	1.67	1.6716	10	0.042	0.572	0.209	0.935	Initial Conc 1.670		95% CI (high) = 46.2606567 µg/m²/day
BENZO(G.H.DPERYLENE											Flux Statistics	Blank Statistics	Comparitive Statistics LINEST statistics
DENZO(G,II,I) PER I LENE											slope= 0.0094	slope= 0.003324437	
BFSD2-BPB-1	1.98	T-#0	0	1.9800		n/a					intercent= 1.9332		S _[0142] = 0.01019853 0.0054 0.0726
BFSD2-BPB-2	1.98	#1	0.3	1.9800	1.9800	0	0.047	0.003	-0.418	0.424	St. Err of Slope= 0.0054		t = 0.598530821 0.6000 0.0852
BFSD2-BPB-3 BFSD2-BPB-4	1.98 1.98	#2	7.3 14.3	1.9800 1.9800	1.9800 1.9800	1	0.047 0.047	0.069 0.135	-0.352 -0.286	0.490 0.556	St Err of Int= 0.0726 R2= 0.6000		p = 0.568339569 3 2 0.02178 0.01452
BFSD2-BPB-4 BFSD2-BPB-5	2.20	#3	14.3 21.3	1.9800 2.2000	1.9800 2.2000	3	0.047	0.135	-0.286 -0.220	0.556	R2= 0.6000 St Err of Y= 0.0852	St Err of Y= 0.01074885	
BFSD2-BPB-6	1.98	#5	28.3	1.9800	1.9818	4	0.049	0.267	-0.154	0.688	F= 3		Flux = 39.90 µg/m²/day Notes
BFSD2-BPB-7	1.98	#6	35.3	1.9800	1.9818	5	0.049	0.333	-0.088	0.754	DF= 2	DF= 5	95% CI (low) = -59.22 µg/m²/day
BFSD2-BPB-8	1.98	#7	42.3	1.980	1.982	6	0.049	0.399	-0.022	0.820	RegSS= 0.02178		95% CI (high) = 139.02 µg/m²/day
BFSD2-BPB-10	1.98	#9	56.3	1.9800	2.1138	8	0.181	0.531	0.110	0.952	ResSS= 0.01452	ResSS= 2.434381089	
BFSD2-BPB-11	1.98	#10	63.3	1.9800	2.1303	9	0.197	0.597	0.176	1.018	Sumx2= 16666.5	Sumx2= 4214	Blank Flux= #PBФI µg/m²/day
BFSD2-BPB-12	1.98	#11	70.3	1.9800	2.1468	10	0.214	0.663	0.242	1.084	Average Conc. 2.024		95% CI (low) = #PBO! µg/m²/day
											Initial Conc 1.980		95% CI (high) = #PBΦ ! μg/m ² /day
	ı										I		

BFSD 2 Bishop Point Summary- PAHs (Part 1)

PAH	Flux	+/- 95% C.L.	Flux Rate Confidence	Triplicate Blank Flu	x (ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.	(ng/g)	(ng/L)
1. Naphthalene	-110.07	596.59	38.1%	-440.30	458.38	44	13
2. Acenaphthene	2680.41	10124.61	51.2%	-32.40	50.34	3,800	37
3. Acenaphthylene	627.85	1483.64	82.7%	208.47	112.60	1,200	5.6
4. Fluorene	75.17	1894.31	23.4%	-76.74	28.38	4,800	19
5. Phenanthrene	-552.72	1305.06	98.2%	10.95	10.95	54,000	32
6. Anthracene	4053.72	3094.52	100.0%	117.68	64.62	10,000	13
7. Fluoranthene	4435.81	10157.65	97.4%	-1423.95	178.41	270,000	52
8. Pyrene	38.99	4132.12	28.5%	-439.51	70.73	150,000	20
Other]			-		-	
Oxygen (O₂)* (*ml/m²/day)	-2518.63	152.07	na	na	na	na	na
Silica (SiO₂)* (*mg/m²/day)	na	na	na	-1.97	2.88	na	na

BFSD 2 Bishop Point Summary- PAHs (Part 1, First 4 Samples)

PAH	Flux	+/- 95% C.L.	Flux Rate Confidence	Triplicate Blank Flu	x (ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.	(ng/g)	(ng/L)
1. Naphthalene	1,848	4,406	59.1%	-440.30	458.38	44	13
2. Acenaphthene	71,053	327,575	100.0%	-32.40	50.34	3,800	37
3. Acenaphthylene	6,862	14,388	100.0%	208.47	112.60	1,200	5.6
4. Fluorene	10,387	110,973	100.0%	-76.74	28.38	4,800	19
5. Phenanthrene	3,031	106,690	99.4%	10.95	10.95	54,000	32
6. Anthracene	26,955	27,293	100.0%	117.68	64.62	10,000	13
7. Fluoranthene	69,812	380,981	100.0%	-1423.95	178.41	270,000	52
8. Pyrene	24,512	190,723	100.0%	-439.51	70.73	150,000	20
Other							
Oxygen (O₂)* (*ml/m²/day)	-2518.63	152.07	na	na	na	na	na
Silica (SiO₂)* (*mg/m²/day)	na	na	na	-1.97	2.88	na	na

BFSD 2 Bishop Point Summary- PAHs (Part 1, Last 8 Samples)

PAH	Flux	+/- 95% C.L.	Flux Rate Confidence	Triplicate Blank Flux	k (ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.	(ng/g)	(ng/L)
1. Naphthalene	27.23	1,194.31	58.0%	-440.30	458.38	44.00	13
2. Acenaphthene	-4,815.36	12,199.50	93.5%	-32.40	50.34	3,800.00	37
3. Acenaphthylene	-1,236.56	1,738.17	100.0%	208.47	112.60	1,200.00	5.6
4. Fluorene	-175.37	2,790.40	29.9%	-76.74	28.38	4,800.00	19
5. Phenanthrene	101.84	1,841.97	43.9%	10.95	10.95	54,000.00	32
6. Anthracene	803.06	2,237.54	99.0%	117.68	64.62	10,000.00	13
7. Fluoranthene	-332.26	14,269.51	31.6%	-1423.95	178.41	270,000.00	52
8. Pyrene	-2,125.92	5,818.50	99.0%	-439.51	70.73	150,000.00	20
Other]						
Oxygen (O₂)* (*ml/m²/day)	-2518.63	152.07	na	na	na	na	na
Silica (SiO₂)* (*mg/m²/day)	na	na	na	-1.97	2.88	na	na

BFSD 2 Bishop Point Site Summary- PAHs (Part 2)

PAH	Flux	+/- 95% C.L.	Flux rate Confidence
	(ng/m²/day)*	(ng/m²/day)	(%)
9. BENZO(A)ANTHRACENE	75.00	306.84	NA
10. CHRYSENE	1048.91	1012.24	98.5%
11. BENZO(B)FLUORANTHENE	919.89	375.56	99.8%
12. BENZO(K)FLUORANTHENE	234.99	156.43	93.3%
13. BENZO(A)PYRENE	Non-Detect	NA	NA
14. INDENO(1,2,3-C,D)PYRENE	6.72	67.06	NA
15. DIBENZ(A,H)ANTHRACENE	Non-Detect	NA	NA
16. BENZO(G,H,I)PERYLENE	7.91	64.14	11.6%

Triplicate Blank Flux	x (ng/m²/day) Bulk Sediment		Overlying Water
Average	+/- 95% C.L.	(ng/g)	(ng/L)
NA	NA	16,000	Non-Detect
23.94	22.32	48,000	5.1
-134.30	297.91	36,000	6.2
-9.71	36.30	10,000	2.5
NA	NA	12,000	Non-Detect
NA	NA	7,400	1.6
NA	NA	1,500	1.5
20.15	65.15	5,300	1.7

BFSD 2 Bishop Point Site Summary- PAHs (Part 2, First 4 Samples)

PAH	Flux	+/- 95% C.L.	Flux rate Confidence
	(ng/m²/day)*	(ng/m²/day)	(%)
9. BENZO(A)ANTHRACENE	Non-Detect	NA	NA
10. CHRYSENE	8792.74	10650.21	100.0%
11. BENZO(B)FLUORANTHENE	3080.74	17862.28	99.4%
12. BENZO(K)FLUORANTHENE	977.52	3135.54	99.7%
13. BENZO(A)PYRENE	Non-Detect	NA	NA
14. INDENO(1,2,3-C,D)PYRENE	122.97	7142.02	NA
15. DIBENZ(A,H)ANTHRACENE	Non-Detect	NA	NA
16. BENZO(G,H,I)PERYLENE	33.19	5249.50	7.0%

Triplicate Blank Flux	x (ng/m²/day) Bulk Sediment		Overlying Water
Average	+/- 95% C.L.	(ng/g)	(ng/L)
NA	NA	16000	Non-Detect
23.94	22.32	48000	5.1
-134.30	297.91	36000	6.2
-9.71	36.30	10000	2.5
NA	NA	12000	Non-Detect
NA	NA	7400	1.6
NA	NA	1500	1.5
20.15	65.15	5300	1.7

BFSD 2
Bishop Point Site Summary- PAHs (Part 2, Last 8 Samples)

PAH	Flux	+/- 95% C.L.	Flux rate Confidence
	(ng/m²/day)*	(ng/m²/day)	(%)
9. BENZO(A)ANTHRACENE	Non-Detect	NA	NA
10. CHRYSENE	75.45	780.02	29.4%
11. BENZO(B)FLUORANTHENE	810.32	561.62	99.7%
12. BENZO(K)FLUORANTHENE	155.56	270.41	81.2%
13. BENZO(A)PYRENE	Non-Detect	NA	NA
14. INDENO(1,2,3-C,D)PYRENE	44.68	59.36	NA
15. DIBENZ(A,H)ANTHRACENE	Non-Detect	NA	NA
16. BENZO(G,H,I)PERYLENE	35.55	101.15	38.6%

Triplicate Blank Flux (ng/m²/day)		Bulk Sediment	Overlying Water
Average	+/- 95% C.L.	(ng/g)	(ng/L)
NA	NA	16,000	Non-Detect
23.94	22.32	48,000	5.1
-134.30	297.91	36,000	6.2
-9.71	36.30	10,000	2.5
NA	NA	12,000	Non-Detect
NA	NA	7,400	1.6
NA	NA	1,500	1.5
20.15	65.15	5,300	1.7

BFSD 2 Bishop Point Demonstration Summary-PCBs

PCB	Flux	+/- 95% C.L.	Flux rate Confidence	Blank Flux (ng/m²/day)		Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Flux	+/- 95% C.L.	(ng/g)	(ng/L)
101 - 2,2',4,5,5'-Pentachlorobiphenyl	-2.62	93.70	4%	57.59	31.49	Non Detect	2.1

BFSD 2
Bishop Point Demonstration Summary-Pesticides

Pesticide	Flux	+/- 95% C.L.	Blank Flux (ng/m²/day)		Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	Flux	+/- 95% C.L.	(ng/g)	(ng/L)
Mirex	61.81	110.60	NA	NA	Non Detect	1.00

BFSD 2 Paleta Creek Demonstration Summary- PAHs

PAH	Flux	+/- 95% C.L.	Flux Rate Confidence	Triplicate Blank I	Flux (ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.	(ng/g)	(ng/L)
1. Naphthalene	459.20	429.58	94.5%	-440.30	458.38	13	6.7
2. Acenaphthene	337.58	178.97	100.0%	-32.40	50.34	19	9.7
3. Acenaphthylene	105.51	183.82	33.8%	208.47	112.60	220	7.6
4. Fluorene	173.17	149.76	100.0%	-76.74	28.38	34	2.3
5. Phenanthrene	489.25	659.77	100.0%	10.95	10.95	240	8.2
6. Anthracene	569.42	260.29	100.0%	117.68	64.62	470	5.3
7. Fluoranthene	365.55	397.63	100.0%	-1423.95	178.41	890	37
8. Pyrene	951.97	755.67	100.0%	-439.51	70.73	740	13
Other							
Oxygen (O₂)* (*ml/m²/day)	-2193.62	146.52	na	na	na	na	na
Silica (SiO ₂)* (*mg/m²/day)	na	na	na	-1.97	2.88	na	na

BFSD 2 Paleta Creek Demonstration Summary- PAHs (Part 2)

PAH	Flux	+/- 95% C.L.	Flux rate Confidence
	(ng/m²/day)*	(ng/m²/day)	(%)
9. BENZO(A)ANTHRACENE	Non-Detect	NA	NA
10. CHRYSENE	Non-Detect	NA	NA
11. BENZO(B)FLUORANTHENE	Non-Detect	NA	NA
12. BENZO(K)FLUORANTHENE	Non-Detect	NA	NA
13. BENZO(A)PYRENE	Non-Detect	NA	NA
14. INDENO(1,2,3-C,D)PYRENE	-65.35	906.77	NA
15. DIBENZ(A,H)ANTHRACENE	Non-Detect	NA	NA
16. BENZO(G,H,I)PERYLENE	-46.63	263.97	67.7%

Triplicate Blank Flux	x (ng/m²/day)	Bulk Sediment	Overlying Water
Average	+/- 95% C.L.	(ng/g)	(ng/L)
NA	NA	500	
23.94	22.32	830	
-134.30	297.91	1400	
-9.71	36.30	470	
NA	NA	790	
NA	NA	470	1.40
NA	NA	120	
20.15	65.15	400	1.40
1			

BFSD 2 Paleta Creek Demonstration Summary-PCBs

PCB	Flux	+/- 95% C.L.	Flux rate Confidence	Blank Flux (ng/m²/day)		Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Flux	+/- 95% C.L.	(ng/g)	(ng/L)
18 - 2,2',5-Trichlorobiphenyl	52.21	103.93	4%	76.82	36.49	2.6	ND
28 - 2,4,4'-Trichlorobiphenyl	41.52	80.03	61%	-8.05	82.03	2.2	1.1
52 - 2,2',5,5'-Tetrachlorobiphenyl	9.44	105.28	77%	72.74	28.12	4.9	3
66 - 2,3',4,4'-Tetrachlorobiphenyl	-19.94	62.01	96%	37.74	25.45	5.3	ND
101 - 2,2',4,5,5'-Pentachlorobiphenyl	45.99	84.58	17%	57.59	31.49	13	ND
118 - 2,3',4,4',5-Pentachlorobiphenyl	-2.34	123.95	9%	2.51	15.40	13	ND
153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	22.26	78.55	43%	9.45	11.71	23	0.11

BFSD 2 Paleta Creek Demonstration Summary-Pesticides

Pesticide	Flux	+/- 95% C.L.	Blank Flux (ng/m²/day)		Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	Flux	+/- 95% C.L.	(ng/g)	(ng/L)
2,4'-DDT	57.49	95.75	NA	NA	3.6	0.88
4,4'-DDT	31.23	55.47	NA	NA	14	ND
Dieldrin	-23.48	45.68	NA	NA	2	ND
Hexachlorobenzene	23.76	35.20	NA	NA	0.61	ND
Mirex	36.23	154.93	NA	NA	ND	ND

Appendix C

Standard Procedures and Checklists

BFSD 2 ON DECK FINAL CHECKLIST

- 1. Establish Laptop communications and verify "Sensor Check/Br Injection" program file is loaded.
- 2. Oxygen Tank Turn Valve ON
- 3. Br Injection Valve OPEN (in-line position)
- 4. Sensor Caps Slide CTD back and <u>REMOVE</u> O₂ & pH storage solution caps (reinstall CTD)
- 5. Vacuum Check Assure bottles #2- #12 have >25 in-Hg
- 6. INSTALL Check Valve plugs in bottles #2 #12 (hand tight + $\frac{1}{2}$ turn)
- 7. Check each insertion lever movement and light function
- 8. Check Camera FOV Coverage of Insertion lights, lid closure, collection chamber & Br Injection vent bubbles
- 9. Open & latch lid set rotary latch for ½ turn

- 10. Evacuate Bottle #1 to >25 in-Hg and install check valve plug
- 11. Rig release hasp and proceed to water entry

BFSD 2 IN WATER FINAL PROCEDURE/CHECKLIST

- 1. Lift BFSD, remove wheels and suspend over water
- 2. Submerge fully, stop and inspect for evidence of leakage
- 3. Lower to within view of bottom and inspect surface for adequate landing and seal potential
- 4. Execute bottom landing/chamber insertion by either
 - a. slowly descending and assuring insertion light function with minimum loss of visibility, or
 - b. rapidly descending and assuring insertion light function with possible impaired visibility.
 - IMPORTANT Surface vessel must be able to hold position (+/- ~50 feet) for next 30 minutes (max). Overboard cables must not be allowed to tighten and disturb BFSD insertion.
- 5. Run "Sensor Check/Br Injection" program and visually verify lid closure followed by vent bubbles (Br Injection). Verify commands for CTD, pump and sensor operation by evidence of laptop computer data. After ~10 minutes, upload data, paste into Excel template and establish ambient O₂ level and control values.
- 6. Modify final test program with selected O₂ control limits and download to CTD verify all loops

- 7. Run final test program and if surface vessel position hold allows, verify operation from laptop data.
- 8. <u>Important First close Laptop communications interface and *then* disconnect cables</u>
- 9. Install and tape watertight connectors, bundle cables and cast overboard clear of BFSD location
- 10. Record location, weather conditions, etc, and secure for departure

BFSD 2 SHORESIDE DEPLOYMENT PREPARATIONS

- 1. Batteries checked/replaced/refreshed:
 - a. Gel cell charged to 24 Vdc @ 25 ma rate
 - b. 14 new D-Cells pump
 - c. 6 new 9 Vdc batts acoustic receiver
 - d. 1 new D-Cell landing lights
 - e. CTD checked for 10+ Vdc
- 2. All components cleaned:
 - a. Sample bottles cleaned, assembled and vacuum checked (with slow leakers identified for early positions)
 - b. Pneumatic syringe cleaned and loaded w/52 ml Br concentrate
 - c. Valves/tubing fully rinsed and dried
 - d. Chamber cleaned (and "bagged" if req'd)
- 3. Check loops confirm all subsystems operational
- 4. Rotary valves in "start" position

- 5. Bottles installed and >25 in-Hg applied (any slow leakers in early positions).
- 6. O₂ pressure checked and adequate for deployment
- 7. Pneumatic syringe installed
- 8. Acoustic Receiver prepared:
 - a. Ground plate sanded/buffed clean of deposits
 - b. Switch in "ON" position
 - c. Burn wire (with one wire removed) installed
 - d. Function test performed
- 8. Sensors Calibrated
- 9. Laptop Status
 - a. Loops designed & checked
 - b. File structure set up (Operations: Loops Library/Data)
 - c. Template functions adjusted for calibrations

BFSD 2 DEPLOYMENT EQUIPMENT LIST

- 1. Cables
 - one 75' primary underwater 3-cable set (Comm, Video, light)
 - three Pigtail cables for Laptop comm, TV/VCR, Light
 - Underwater connector plugs
- 2. Computer Case
 - Laptop computer
 - AC Power supply
 - Log book
 - Check lists, cheat sheets, etc
 - Floppy drive w/data discs
 - Mouse w/pad
- 3. TV/VCR, controller, VHS Tape(s)
- 4. Video camera power supply
- 5. Tool box
- 6. Extension cord/power strip
- 7. Hand vacuum pump

BFSD 2 RETRIEVAL/RECOVERY CHECKLIST

- Stand off from deployment location > 100' and transmit coded sonar pulse using EdgeTech deck unit (2 series of pulses).
 Allow 15 min (max) for buoy to deploy and reach surface.
- 2. Prepare deck hoist equipment and attach to buoy line
- 3. Raise to a visible depth and inspect/clear any fouling.
- 4. Raise above surface, open and secure lid, and washdown over water. Clear cables and haul onboard
- 5. Haul over deck, install pneumatic wheels and lower to deck
- 6. Turn Oxygen tank valve "off"
- 7. Verify system is shut down (ie, pump off). Inspect for damage, leakage and/or other abnormalities
- 8. Inspect and note bottle fill conditions, Br syringe injection condition, and measure "scum" line location
- 9. Slide CTD back and install pH and O₂ storage caps
- 10. Disconnect "comm" cable plug and upload data to prepared file location. Record copy of data to floppy disc.
- 11. Remove and label sample bottles one at a time, capping inlet port immediately upon removal of teflon fill tube.
- 12. Disconnect cables and plug open connectors. Secure cables.

13. Thoroughly wash down with fresh water and flush valves/tubing with fresh/DI water without delay

BFSD 2

Sample Bottle Cleaning and Preparation

- 1. Disassembly for cleaning (After sample removed)
 - a. By hand, unscrew and remove lid from bottle. <u>Avoid</u> gripping and turning filter holder. Set bottle aside.
 - b. By hand, unscrew filter holder halves. Avoid gripping and turning bottle lid. Using tweezers, remove membrane filter and store in marked Petre dish (if required). Remove orange O-ring and, using blunt object, dislodge and remove black filter support. Set lid/lower filter holder, O-ring and support assembly aside.
 - c. Using crescent wrench, unscrew and remove plug from top of check valve (if still there), then unscrew and remove spring retainer from top of check valve. Remove spring and valve plunger. Set parts aside.
 - d. Using crescent wrench, unscrew and remove tubing plug from upper filter holder/tee assembly. Set parts aside.

2. Cleaning

- a. Rinse all parts in tap water to remove loose material.
- b. Rinse all parts thoroughly in deionized water.
- c. Soak all parts in 4% RBS solution for 4 hours minimum (24 hours preferred)
- d. Rinse all parts in deionized water
- e. Soak sample bottles and teflon tubing plugs in 25% nitric acid solution for 4 hours minimum (24 hours preferred)
- f. Soak Upper and lower filter holder assemblies, orange Orings and black filter supports in 10% nitric acid for 4 hrs (24 hours is OK but NOT preferred).
- g. Rinse all parts in deionized water followed by thorough rinsing with 18meg-ohm water.

h. Set all parts in vented hood and allow to thoroughly air dry (overnight is preferred).

3. Assembly and preservation

- a. Assemble in the reverse the order of 1. above, with the following additions:
 - Apply a very thin layer of silicon grease to the check valve O-ring. Using the attached spring, lower the assembly into the check valve body and fully rotate it several times against the mating seat. Secure the spring with the retainer and tighten with a crescent wrench.
 - Snap a black filter support into the lower filter holder/lid assembly. Using tweezers, secure a membrane filter and position it on top of the filter support. Position an orange O-ring on top of the membrane filter and hand tighten the upper filter holder assembly in place.
 Securely tighten the assembly taking care not to grip and/or rotate the lid.
 - Assemble a tube plug and tighten with a crescent wrench.
 - Install a teflon gasket into the sample bottle lid (if used) and securely tighten the lid assembly to the sample bottle. Avoid gripping and/or turning the filter holder.
 - Using a hand vacuum pump, evacuate the finished assemble to 25 in-Hg and set aside for 4 hours minimum (24 hours is preferred).
 - If no leakage occurs, sample bottles may be used. If slight leakage occurs on a few, they may be labled and used early in sample sequence. Leakage may be resolved by further tightening of sample bottle lid. Any leakage resolution requiring disassembly shall include cleaning as above.

Table of Contents

1. Introduction	
1.1 Background Information	1
1.2 Official DoD Requirement	3
1.2.1 How Requirements were Addressed	3
1.3 Objectives of the Demonstrations	3
1.4 Regulatory Issues	4
1.5 Previous Testing of the Technology	4
2. Technology Description	8
2.1 Description	8
2.1.1 Sampling Chamber	10
2.1.2 Acquisition and Control Subsystem	12
2.1.3 Sampling Subsystem	13
2.1.4 Circulation Subsystem	13
2.1.5 Oxygen Control Subsystem	. 14
2.1.6 Deployment and Retrieval Subsystems	
2.1.7 Analytical Methods	
2.1.7.1 Cleaning	17
2.1.7.2 Performance Indicators	17
2.1.7.3 Blank Tests	18
2.1.7.4 Computations	18
2.2 Strengths, Advantages and Weaknesses	
2.2.1 Strengths	
2.2.2 Advantages	
2.2.3 Weaknesses	20
2.3 Factors Influencing Cost and Performance	20
2.3.1 Cost influences	
2.3.2 Performance Influences	20
3. Site/Facility Description	22
3.1 Background	22
3.2 Site/Facility Characteristics	
3.2.1 San Diego Bay, California	
3.2.2 Pearl Harbor, Hawaii	
4. Demonstration Approach	. 25
4.1 Performance Objectives	25
4.2 Physical Setup and Operation	26
4.2.1 Physical Setup	26
4.2.2 Deployment	27
4.2.3 Recovery	27
4.3 Sampling Procedures	28
4.3.1 Overview of Sampling Operations	28
4.4 Analytical Procedures	
4.4.1 Selection of metals Analytical Laboratory	
4.4.2 Metals Analytical Methods	
4.4.3 Selection of Organics Analytical Laboratory	
4.4.4 Organics Analytical Methods	
4.4.5 Data Reduction and Analysis	

5. Performance Assessment	36
5.1 Performance Data	36
5.1.1 Metals Blank Tests	36
5.1.1.1 Discussion of Metals Blank Results	37
5.1.1.2 Discussion of Metals Blank Tests	39
5.1.1.3 Metals Blank Tests Assignment	40
5.1.2 Organics Blank Tests	40
5.1.2.1 Results of Organics Blank Tests	44
5.1.2.2 Discussion of Organics Blank Tests	44
5.1.2.3 Organics Blank Test Assessment	
5.1.3 San Diego Bay, Paleta Creek Metals Demonstrations	46
5.1.3.1 Discussion of Paleta Creek Demonstration Results	50
5.1.3.2 Discussion of Paleta Creek Demonstrations Tests	53
5.1.3.3 Discussion of Data Interpretation	55
5.1.4 San Diego Bay, Paleta Creek Organics Demonstration	57
5.1.4.1 Paleta Creek Organics Demonstrations Results	64
5.1.4.2 Interpretation of Paleta Creek Organics Results	
5.1.4.3 Conclusions for Paleta Creek Organics Demonstration Test	66
5.1.5 Pearl Harbor, Hawaii Metals Demonstrations	
5.1.5.1 Discussion of Pearl Harbor Metals Demonstrations Results	72
5.1.5.2 Discussion of Pearl Harbor Metals Demonstration Tests	75
5.1.5.3 Discussion of Metals Data Interpretation	79
5.1.6 Pearl Harbor, Hawaii Organics Demonstration	78
5.1.6.1 Pearl Harbor Organics Demonstration Results	
5.1.6.2 Discussion of Bishop Point Organics Results	88
5.1.6.3 Conclusions for Bishop Point Organics Demonstration Test	89
5.1.7 Pearl Harbor, Bishop Point, Combined Demonstration	89
5.1.7.1 Pearl Harbor Combined Demonstration Results	91
5.1.7.2 Pearl Harbor Combined Demonstration Discussion	101
5.1.8 Paleta Creek and Pearl Harbor Metals Demonstrations Data Assessmen	ıt 102
5.1.9 Technology Comparison	103
6. Cost Assessment	104
6.1 Cost Performance	104
6.1.1 Pre-Operational Phase Costs	104
6.1.2 Operational Phase Costs	105
6.1.3 Post-Operational Phase Costs	
6.1.4 Alternative Methods	107
7. Regulatory Issues	
7.1 Approach to Regulatory Compliance and Acceptance	108
8. Technology Implementation	110
8.1 DoD Need	109
8.2 Transition	109
8.2.1 Commercialization	109
8.2.1.1 Cooperative Research and Development Agreement	109
8.2.2 Regulatory Acceptance	
8.2.3 Product Improvement	
8.2.3.1 Incremental Product Improvements	
8.2.3.2 Continuing Product Improvements	
9. Lessons Learned	111

9.1 Flexibility	
9.2 Mother Nature	
9.3 Statistics	
10. References	
Appendix A	
Appendix B	
Appendix C	

List of Figures

Figure 1. Benthic Flux Sampling Device 2	
Figure 2. Plot of Metal Fluxes Along East-west Transects	5
Figure 3. Plot of Metal Fluxes Along East-west Transects, Excluding Zn	
Figure 4. Benthic Flux Sampling Device 2	
Figure 5. BFSD2 Sampling Events	
Figure 6. BFSD2 Sampling Events	
Figure 7. Chamber Enclosure	
Figure 8. Sample Bottles	
Figure 9. Flow-Through Sensor System	
Figure 10. Ambient Oxygen Data	
Figure 11. Operational Oxygen Control Data	
Figure 12. BFSD Deployment	
Figure 13. Acoustic Release and Retrieval Buoy	
Figure 14. BFSD Retrieval	
Figure 15. Silica Flux for Good Chamber Seal	
Figure 16. pH data for Good Chamber Seal	
Figure 17. San Diego Bay, Paleta Creek Site	
Figure 18. Pearl Harbor, Hawaii Middle Loch Bishop and Point Sites	
Figure 19. Deployment Equipment	
Figure 20. Crane Loading Aboard Workboat	
Figure 21 Deployment	
Figure 22. Recovery	
Figure 23. Blank Performance for Copper (Cu)	
Figure 24. Blank Performance for Cadmium (Cd)	
Figure 25. Blank Performance for Lead (Pb)	
Figure 26. Blank Performance for Nickel (Ni)	
Figure 27. Blank Performance for Manganese (Mn)	
Figure 28. Blank Performance for Zinc (Zn)	
Figure 29. Blank Performance for Silica (SiO4)	
Figure 30 Blank Test Dissolved Oxygen	
Figure 31 Blank Test Pressure	
Figure 32 Ex Situ BFSD2 Organics Blank Test Physical Setup	
Figure 33 BFSD2 Paleta Creek Metals Deployment	
Figure 34 Paleta Creek Metals Pre-Demonstration Results	
Figure 35 Paleta Creek Metals Demonstration Results	
Figure 36 Paleta Creek Metals Pre-Demonstration Concentration vs. Time	
Figure 37 Paleta Creek Metals Demonstration Concentration vs. Time	
Figure 38 Paleta Creek Metals Demonstrations Oxygen Control Results	
Figure 39 Paleta Creek Metals Demonstrations pH Results	
Figure 40 Paleta Creek, San Diego Bay	
Figure 41 BFSD2 Paleta Creek Organics Deployment	
Figure 42 BFSD 2 Paleta Creek Organics Demonstration Recovery	
Figure 43 BFSD 2 Paleta Creek Organics Demonstration Sensor Plots	
Figure 44 Paleta Creek PAH Demonstration Results	
Figure 45 Paleta Creek PCB Demonstration Results	
Figure 46 Paleta Creek Pesticide Demonstration Results	. 64

Figure 47 BFSD2 Pearl Harbor, Middle Loch Metals Demonstration	67
Figure 48 BFSD2 Pearl Harbor, Bishop Point Metals Demonstration	68
Figure 49 BFSD2 Container, Front View	69
Figure 50 BFSD2 Container, Back View	69
Figure 51 Pearl Harbor Middle Loch Demonstration Results	72
Figure 52 Pearl Harbor Bishop Point Demonstration Results	72
Figure 53 Pearl Harbor Middle Loch Demonstration Concentration vs. Time	73
Figure 54 Pearl Harbor Bishop Point demonstration Concentration vs. Time	
Figure 55 Pearl Harbor Demonstrations Oxygen Control Results	
Figure 56 Pearl Harbor Demonstrations pH Results	
Figure 57 Pearl Harbor Demonstration Data with Iron-Normalized Bulk Sediment	
Copper Concentrations	78
Figure 58 BFSD2 Pearl Harbor, Bishop Point Organics Demonstration	79
Figure 59 Deployment Equipment	
Figure 60 Pre-Deployment Checklist	
Figure 61 Ambient Dissolved Oxygen	
Figure 62 Ambient pH	
Figure 63 Chamber pH	
Figure 64 Chamber Dissolved Oxygen	
Figure 65 Flux to Blank Comparison for PAHs	
Figure 66 Flux to Blank Comparison for PCBs	
Figure 67 Flux to Blank Comparison for Pesticides	84
Figure 68 Flux to Blank Comparison for First Four PAH Samples	
Figure 69 Pearl Harbor, Bishop Point Demonstration Locations	90
Figure 70 Pearl Harbor, Bishop Point Combined Metals Pre-Deployment Sensor	
Graphs	91
Figure 71 Pearl Harbor, Bishop Point Combined Metals Full Test Sensor Graphs	91
Figure 72 Pearl Harbor, Bishop Point Combined Metals Comparison of Flux and	
Blanks	93
Figure 73 Pearl Harbor, Bishop Point Combined Demonstration Metals Time Series	
Graphs	94
Figure 74 Pearl Harbor, Bishop Point Combined PAH Comparison of Flux to Blanks	
(All samples)	96
Figure 75 Pearl Harbor, Bishop Point Combined Demonstration PAH Time Series	
Graphs (all samples)	97
Figure 76 Pearl Harbor, Bishop Point Combined PAH Comparison of Flux to Blanks	
(First 4 samples)	99
Figure 77 Pearl Harbor, Bishop Point Combined Demonstration PAH Time Series	
Graphs (First 4 samples)	
Figure 78 Expected Pre-Operational Phase Schedule for BFSD2 Deployment	
Figure 79 Expected Operational Phase Schedule for BFSD2 Deployment	
Figure 80 Expected Post-Operational Phases Schedule for BFSD2 Deployment	107

List of Tables

Table 1 Analytical Methods	. 32
Table 2 Metals Blank Test Results Summary	. 36
Table 3 PAH Blank Tests Results Summary	. 42
Table 4 PCB Blank Test Results Summary	. 43
Table 5 Pesticide Blank Test Results Summary	. 43
Table 6 BFSD 2 Metals Results from the Paleta Creek Pre-Demonstration (PCPD)	. 48
Table 7 BFSD 2 Metals Results from the Paleta Creek Demonstration (PCD)	. 48
Table 8 Estimated Sediment Flux Contribution to Overlying Water Concentrations	
for the Paleta Creek Study Area	. 56
Table 9 BFSD2 PAH Results Summary for Paleta Creek Demonstration	. 61
Table 10 BFSD2 PCB Results Summary for Paleta Creek Demonstration	. 62
Table 11 BFSD2 Pesticide Results Summary for Paleta Creek Demonstration	. 62
Table 12 BFSD2 Results for Pearl Harbor Middle Loch (PHML) Metals Demonstration	. 70
Table 14 BFSD 2 Results for Pearl Harbor, Bishop Point (PHBP) Metals Demonstration	. 71
Table 14 Summary Results for PAHs	. 82
Table 15 Summary Results for PCBs	. 82
Table 16 Summary Results for Pesticides	82
Table 17 Summary Results for First Four PAH Samples	. 85
Table 18 Pearl Harbor, Bishop Point Combined Metals Summary of Metals	. 92
Table 19 Pearl Harbor, Bishop Point Combined Demo Summary Results for PAH's	
(All samples)	. 95
Table 20 Pearl Harbor, Bishop Point Combined Demo Summary Results for PAH's	
(First 4 samples)	. 98
Table 21 Comparison of Flux Rates from Metals-only and Combined Demonstrations	101
Table 22 Comparison of Flux Rates from PAH-only and Combined Demonstration	102
Table 23 Expected Pre-Operational Phase Costs for BFSD2 Deployment	104
Table 24 Expected Operational Phase Costs for BFSD2 Deployment	105
Table 25 Expected Post-Operational Phase Costs for BFSD2 Deployment	106

Quantifying *In Situ* Metal and Organic Contaminant Mobility in Marine Sediments

Space and Naval Warfare Systems Center San Diego, CA

January 1, 2008

1. Introduction

1.1 Background Information

Contaminants enter shallow coastal waters from many sources, including ships, shoreside facilities, municipal outfalls, spills, and non point-source runoff. Sediments are typically considered a primary sink for these contaminants. Sediments in many bays, harbors and coastal waters used by DoD are contaminated with potentially harmful metal and organic compounds. The DoD is required by the Comprehensive Environmental Resource Conservation and Liability Act, as amended by the Superfund Amendment and Reauthorization Act of 1986 (CERCLA/SARA), to assess and if necessary remove and remediate these sites and discharges in order to protect the public health or welfare of the environment. To determine whether contaminants are moving into, out of, or remaining immobilized within the sediments, a determination of contaminant flux must be made. Variations in sediment chemical and physical properties make it impossible to rely on bulk sediment contaminant concentrations alone to predict contaminant flux, bioavailability, and therefore toxicity. Diagenetic reactions in surface sediments control contaminant pore water gradients, and the direction and magnitude of these gradients control the diffusive flux across the sediment-water interface. These fluxes can be calculated from measurements of contaminant pore water gradients and sediment physical properties. However, in some coastal areas pore water gradients are very steep and therefore difficult to measure. In addition, flux calculations based on pore water gradients only provide the diffusive component of a contaminant flux. An additional concern in coastal areas is that biological irrigation by infauna and wave or current induced flushing may provide a larger component of flux through advection of water through the sediments. To avoid these problems, a direct measurement of contaminant flux in coastal areas is often the best method to assess contaminant mobility across the sediment-water interface. This direct measurement can be made with a flux chamber that isolates a volume of seawater over the sediments to quantify contaminant flux across the sediment-water interface.

An instrument for measurement of contaminant fluxes from marine sediments called the Benthic Flux Sampling Device 2(BFSD2). The instrument is a commercialized version of the original prototype BFSD used during development and is adapted from benthic flux chamber technology developed in oceanography for studying the cycles of major elements and nutrients on the seafloor.

The BFSD2 is an autonomous instrument for *in-situ* measurement of toxicant flux rates from sediments. A flux out of or into the sediment is measured by isolating a volume of water above the sediment, drawing off samples from this volume over time, and analyzing these samples for increase or decrease in toxicant concentration. Increasing concentrations indicate that the toxicant is fluxing out of the sediment. Decreasing concentrations indicate that the toxicant is fluxing into the sediment.

Figure 1 shows the BFSD2, including its pyramid-shaped tubular frame, open-bottomed chamber, and associated sampling and control equipment. At the top of the frame is an acoustically released buoy for BFSD2 recovery. At the bottom of the frame is an open-bottomed chamber and associated sampling gear, flow-through sensors, a data acquisition and control unit, video camera system, power supply, and oxygen supply system.

Figure 1. Benthic Flux Sampling Device 2.

The BFSD2 provides a unique means of evaluating the significance of in-place sediment contamination. Knowledge of the degree to which contaminants remobilize is essential in defining the most cost effective remedial action at impacted sites. At present, there is no other viable method for direct quantification of sediments as sources. At sites where it can be demonstrated that remobilization of contaminants is limited, significant cost savings may be achieved through reduction of cleanup costs. This may often be the case because many contaminants are strongly sequestered within the sediment and not likely to leach out. Estimated disposal costs for contaminated sediments

range from \$100-\$1000/cubic yard. A recent survey of Navy shoreside facilities (NRaD, 1995) indicated that of the 31 facilities that responded, 29 reported the presence of contaminated sediment sites. The actual volume of contaminated sediment at these sites is not well-documented however even conservative estimates suggest that millions of cubic yards of material may exceed typical sediment quality guidelines.

1.2 Official DoD Requirement

This project addresses the DoD/Navy requirement for compliance, cleanup assessment, and remediation decisions using innovative technology to directly quantify the mobility and bioavailability of contaminants in marine sediments. Marine sediments serve as a repository for contamination from a wide variety of sources. The environmental risks posed by these contaminants are determined largely by the degree to which they remobilize into the environment.

1.2.1 How Requirements were Addressed

The technology demonstrated in this project provides a means of quantifying risks and supports the overall goal of cost-effective, risk-based environmental cleanup. This technology provides a basis for risk-based decision making and potential cost savings by

- 1 Improving methods for measuring bioavailability for contaminated sediment
- 2 Minimizing cleanup requirements at sites where contaminants are not remobilizing
- 3 Evaluating the integrity of natural and remedial sediment caps
- 4 Providing a direct measure of the time scale of natural attenuation
- Documenting the actual contaminant contribution of sediments relative to other sources.

1.3 Objectives of the Demonstrations

The primary objective of the demonstrations of the BFSD2 was to perform deployments at contaminated sites in San Diego Bay, California and Pearl Harbor, Hawaii under the observation of California EPA certification evaluators. Other observers, including local, state and federal regulators, Remediation Program Managers, academic, industry and other DoD also attended. Each site offered different validation opportunities: San Diego Bay was used to show instrument repeatability and comparison with historical trends and Pearl Harbor was used to show site differences and geochemical trend analysis. Organics demonstrations were performed at the same sites. The specific planned objectives of the demonstrations were to:

- (1) evaluate the quality of water samples collected using the BFSD2; specifically for use in determining if a statistically significant flux was occurring at the test locations in comparison to the blank flux results for the BFSD2.
- (2) evaluate the BFSD2 for repeatability.
- (3) evaluate the logistical and economic resources necessary to operate the BFSD2.
- (4) evaluate the range of conditions in which the BFSD2 can be operated.

Other objectives included exposure of various user communities to the technology to encourage continued interest and applications.

1.4 Regulatory Issues

There were no regulatory permitting issues associated with deployment of the BFSD2. Collecting sediment samples in a marine environment is considered a nonhazardous activity (although personnel handling samples must follow all safety precautions and limit their exposure to potentially hazardous samples). No hazardous waste was generated during the demonstrations.

The BFSD2 is a sample collection instrument and its prototype was the first of its kind to collect sediment-water interface samples for contaminant flux analysis. Because this technology has no current equivalent, the BFSD2 is evaluated based on the internal quality assurance/quality control (QA/QC) for the laboratory analysis performed and on an analysis and interpretation of the data. Although some clean water standards have been set for seawater, only guidelines currently exist for sediments. And, whereas sample handling, preserving, analyzing and reporting is covered by a number of established methods and regulations, the primary regulatory issue for the BFSD2 involves the integrity of the collected samples to represent ambient conditions. Further, the heterogeneous nature of sediments combined with the complex chemistry of marine aquatic environments requires thoughtful evaluation of all data before arriving at conclusions. The BFSD2 system can routinely produce accurate, precise and repeatable results, however the application of these results to site specific conditions does not lend itself readily to standardized processes. In many cases, BFSD2 results may be used as an additional factor in a "weight of evidence" approach for risk-based decisions involving regulator concurrence.

1.5 Previous Testing of the Technology

Initial development program tests included *ex situ* (laboratory) and *in situ* (field) trials of critical components, subsystems, and systems. A number of system development tests were conducted at various locations within San Diego Bay during 1989-91.

Full-scale system trials of the prototype BFSD were conducted in Sinclair Inlet, offshore from Puget Sound Naval Shipyard, Bremerton WA, during June 1991 in support of an

ongoing assessment. Ten deployments of the prototype BFSD were conducted to characterize flux rates of contaminants from seven shipyard sites and three reference sites (no blank test was conducted). Collected samples were analyzed for the trace metals arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn). The tests were successful and results generally showed low release rates (or fluxes) compared to other contaminant sources. See general reference 12 for the complete report. Following review of the data, an active oxygen control subsystem with sensor feedback was developed and implemented along with several other changes to improve operation reliability.

During 1993 four systems tests of the upgraded prototype BFSD were conducted at sites within in San Diego Bay: one at Paleta Creek (at its entrance to the bay within Naval Station San Diego); two at a commercial yacht harbor (Shelter Island); and one at a industrial shipping terminal (PACO Industries). The deployments were preceded by a system blank test to determine the lower limits of flux that could be resolved with the prototype BFSD. Several experimental subsystems including a sensor for laser-induced fluorescence (LIF) investigation of polycyclic aromatic hydrocarbon (PAH) contaminants and an electrode for potentiometric stripping analysis (PSA) of trace metal (Cu and Zn) contaminants were also tested. Results from these deployments showed significant flux rates when compared to blank test results and clear differences between the sites as related to potential trace

metal sources. Paleta Creek results showed the highest flux levels for Cd, Cu, Ni and Zn. See reference 5 for the complete report.

Seven more prototype BFSD deployments in San Diego Bay in support of a sediment quality assessment at Naval Station San Diego were conducted during 1995. Paleta Creek was again included along with five other sites near piers and quay walls and one site outside the study area used as a reference. The work, preceded by a blank test, yielded results that were consistent with the previous study and showed Cd, Ni, Zn and Mn all to have positive fluxes. Paleta Creek again showed the highest trace metal fluxes with levels which were generally consistent with those measured two years prior. Correlations between measured trace metal flux levels and complex marine chemistry processes were studied and informative trends were identified. For example in the complex oxidation-reduction (redox) marine environment, it was found that trace metal fluxes are consistent with oxidation of solid metal sulfides as a sediment source. See key reference 7 for the complete report; an extract is included below to illustrate an initial interpretation of the Naval Station San Diego results:

Some of these trace metal flux relationships may be better illustrated with bar charts showing the trends along a series of transects across the study area. Figures2 and 3 show the trace metal fluxes for the 1995 deployments along with data from the earlier 1993 deployments. The Zn fluxes in Figure 2 are so large that the other trace metal fluxes are barely visible, so the other metal fluxes are replotted in Figure 3 without Zn. This demonstrates that Zn is, by far, the trace metal with the largest flux out of the sediments. The first site displayed in both figures is the blank run, followed by the east-west transects near Pier 4 (Sites 3, 3r, 1r, and 2) and Paleta Creek (Sites 5, 4, and 6), and finally the 1993 data. Zn, Ni, and Cd fluxes in the 1995 data are high in the east (Sites 3 and 5) and decrease toward the west, and in the 1993 data higher in the central bay sites compared to north bay sites. The trends for Cu and Pb fluxes are less clear, with some sites showing fluxes into the sediments. Cu does, however, show the highest fluxes out of the sediments at Sites 3 and 5 where the sediment concentrations of most metals are high.

Figure 2. Plot of Metal Fluxes Along East-west Transects.

Figure 3. Plot of Metal Fluxes Along East-west Transects, Excluding Zn.

Looking at the NAVSTA area sediments out to the west side of the navigation channel, a surface area of approximately 3 million square meters (m2) is present. From the contour map of Zn concentrations in the sediment chemistry chapter, only approximately 500,000 m2 are above the ERM value of 410 ppm. The four Zn flux measurements from sediments with these high Zn levels (Sites 1R, 3, 3R, and 5) average 3100 + 2500 ug/ m2 / day. Sediments in the NAVSTA area with Zn levels below ERM values cover approximately 2.5 million m2 and three flux measurements from sediments with lower Zn levels average 1100 + 200 ug/ m2 / day. The overall flux of zinc directly from the sediments in the NAVSTA area is therefore 1500 + 600 kg Zn/ yr.

Finally, as mentioned above, blank tests of the prototype BFSD were conducted to determine the lowest levels of contaminants which could be resolved with the system. With the prototype BFSD prepared as it would be for a normal deployment, the test was conducted in seawater with the chamber sealed. A time-sequence for sample collection comparable to the planned deployments was used and the samples were analyzed identical to later site-collected samples. For the San Diego Bay tests discussed above the results were:

Coumpound	flux \pm S.E.	(µg/m2/day)
	<u>1993</u>	<u>1995</u>
Cadmium	6 ± 7	5 ± 3
Copper	-71 ± 62	-2 ± 47
Iron		160 ± 235
Lead	- 4 ± 8	7 ± 67
Manganese		-52 ± 26
Nickle	65 ± 69	-4 ± 27
Zinc	-227 ± 65	-149 ± 267

Whereas the prototype BFSD performed successfully and was considered mature enough to begin technology transfer, the process of data analysis and interpretation revealed complexities requiring careful consideration prior to reaching conclusions. Technology transfer, to be fully discussed in section 8, began with a competitively awarded firm-fixed-priced contract for Benthic Flux Sampling Device 2 (BFSD2), which incorporated a number of changes from the prototype BFSD. A series of

ex situ and in situ tests and tests and checkouts assured that the instrument retained critical prototype BFSD performance attributes as well as establishing functionality of the changed features. A complete series of laboratory (ex situ) tests and checkouts were conducted. Ex situ tests included: the new rotary valve sampling system to assure reliable performance; the pump and diffuser system with dye-dispersion to assure adequate mixing; the flow-through sensor system to assure responsive and accurate readings; the vacuum-filled, in situ-filtered sample bottles to assure clog-free operation and adequate fill volume; and the data acquisition and control system to assure required performance.

2. Technology Description

2.1 Description

Contaminants enter shallow coastal waters from many sources, including ships, shoreside facilities, municipal outfalls, spills, and non point-source runoff. Sediments are typically considered a primary sink for these contaminants. Where previous shoreside practices have resulted in high concentrations of contaminants in the sediments, contaminants may flux out of the sediments. Also, in areas where pollution prevention and remediation practices have removed other contaminant sources, remaining contaminated sediments may serve as a primary contaminant source to the water column.

To determine whether contaminants are moving into, out of, or remaining immobilized within the sediments, a determination of contaminant flux must be made. Diagenetic reactions in surface sediments control contaminant pore water gradients, and the direction and magnitude of these gradients control the diffusive flux across the sediment-water interface. These fluxes can be calculated from measurements of contaminant pore water gradients and sediment physical properties. However, in some coastal areas pore water gradients are very steep and therefore difficult to measure. In addition, flux calculations based on pore water gradients provide only the diffusive component of a contaminant flux. An additional concern in coastal areas is that biological irrigation by infauna and wave or current induced flushing may provide a larger component of flux through advection of water through the sediments. To avoid these problems, a direct measurement of contaminant flux in coastal areas is required to assess contaminant mobility across the sediment-water interface. This direct measurement can be made with a flux chamber that isolates a volume of seawater over the sediments to quantify contaminant flux across the sediment-water interface.

The Navy-designed and developed, contractor-fabricated Benthic Flux Sampling Device 2 (BFSD2) is a flux chamber designed specifically for *in situ* measurement of contaminant fluxes in coastal areas. A chamber of known volume encloses a known surface area of sediment. Seawater samples are collected periodically at timed intervals. After a laboratory has analyzed the samples, and with knowledge of the time intervals between samples, a flux rate between the sediment and water in mass per surface area per unit time (micrograms per square meter per day $\lceil \Box g/m^2/day \rceil$) can be calculated.

The BFSD2, shown in Figure 4 with key components labeled, consists of an open-bottomed chamber mounted in a modified pyramid-shaped tubular framework with associated sampling gear, sensors, control system, power supply, and deployment and retrieval equipment. The entire device is approximately 1.2 by 1.2 meters from leg to leg and weighs approximately 175 pounds. The lower part of the framework contains the chamber, sampling valves, sampling bottles, and batteries. The upper frame includes a release that is acoustically burn-wire triggered. The BFSD2 is designed for use in coastal and inland waters to maximum depths of 50 meters. Maximum deployment time is approximately 4 days based on available battery capacity. Figures 5 and 6 illustrate the two basic configurations for landing and sampling events, respectively.

Figure 4. Benthic Flux Sampling Device 2.

Figure 5. BFSD2 Sampling Events.

- Sample Bottles >25 in-Hg

Figure 6. BFSD2 Sampling Events.

2.1.1 Sampling Chamber

The chamber is a bottomless box, approximately 40 centimeters (cm) square by 18 cm tall, with a volume of approximately 30.0 liters (Figure 7). The volume was chosen to allow for a maximum overall dilution of less than 10 percent due to sampling withdrawal into 11 samples of 250 milliliters (ml) each. For the combined demo, 11 combined samples were collected from within the chamber (100 mls for metals and 250 mls for PAH's) increasing the sample volume to 350 mls per sampling

event. This increased the dilution to about 13% for the combined sampling. The chamber is constructed of clear polycarbonate to avoid disrupting any exchanges that may be biologically driven and, thus, light sensitive. To prevent stagnation in the corners of the chamber, triangular blocks of polycarbonate occupy the 90-degree angles. The top of the chamber is hinged at one edge so that it may be left open during deployment to minimize sediment disturbance. Once the chamber is in place, the computer control system closes the lid. A gasket around the perimeter of the chamber ensures a positive seal between the chamber and the lid. Exact alignment is not required, because the lid is slightly larger than the sealing perimeter of the gasket and pivots on two sets of hinges. The lid is held closed by four permanent magnets situated along the chamber perimeter. The bottom of the chamber forms a knife-edge. Pressure-compensated switches mounted on the bottom surface of three sides of a flange circling the chamber at 7.6 cm above the base activate a series of three lights visible with a video camera mounted on the upper frame. Illumination of the lights indicate a uniform minimum sediment penetration depth has been achieved and a good probability that a positive seal between the chamber and the sediment has been achieved.

Figure 7. Chamber Enclosure.

Samples are drawn off through a 4-mm Teflon tube via synchronized parallel rotary valves and into evacuated 250 ml Teflon sampling bottles. For organics applications, standard precleaned 250 ml amber glass sample bottles with pre-combusted glass-fiber filter assemblies are used (Figure 8). For the combined demo, 100 ml Teflon bottles were used for metals and 250 ml amber glass bottles were used for PAH's.

Figure 8. Sample Bottles. Clockwise from Upper Left, metals Bottles; Organics Bottles; Combined Metals and Organics Configuration; and Paired Bottles for Combined Deployment.

The first sample is drawn through a 0.45 micron-filter into the sample bottle upon closure of the lid at the start of the autonomous operation of the BFSD2; the remaining 11 samples are similarly collected as the synchronized parallel rotary valves are activated at preprogrammed intervals throughout the deployment. The bottles are evacuated to a minimum of 25 inches of mercury before deployment.

2.1.2 Acquisition and Control Subsystem

The acquisition and control unit is an Ocean Sensors Model OS200 conductivity temperature depth (CTD) instrument, modified to allow control of the BFSD2. It consists of a data logger that acquires and stores data from sensors, and a control unit that regulates sampling and other functions of the BFSD2. The data logger collects data from a suite of sensors housed in the CTD and connected to the chamber through a flow-through loop. A small constant-volume pump maintains circulation in the flow-through system to the sensors and is also used to maintain homogeneity of the contents of the chamber utilizing a helical diffuser mounted vertically on the central axis of the box. The control unit closes the lid, activates the flow-through/mixing pump, activates dissolved oxygen control valves, and controls activation the synchronized parallel rotary sampling valves. Commercial sensors, installed by Ocean Sensors, Inc., are mounted in the CTD instrument housing, and are connected to the chamber by means of a flow-through pump and circulation plumbing. Sensors are used for monitoring conditions within the chamber, including conductivity, temperature, pressure, salinity, pH, and dissolved oxygen, Figure 9. Circulation in the flow-through sensor system is maintained using a constant flow rate pump adjusted to approximately 15 milliliters per second (ml/sec).

Figure 9. Flow-Through Sensor System.

2.1.3 Sampling Subsystem

Discrete samples are obtained using a vacuum collection approach consisting of sample containers, fill lines, in-line filters (with 0.45 micron membrane filters for metals or with 1.0 micron precombusted glass-fiber filters for organics), check valves, and synchronized parallel rotary valves connected to the chamber fill line. Off-the-shelf 250ml Teflon (metals) or amber-glass (organics) collection bottles are modified to allow filling through the cap. Sampling containers of any volume, material, or shape may be used, provided the cap can be modified to accept the fill line connection, the bottle walls are strong enough to withstand the pressure at the sampling depth, and the cap sea l is airtight and watertight at the sampling depth pressure. Glass, Teflon, and polycarbonate bottles have been tested and used successfully with the prototype BFSD. All valves, fittings, and tubes are made of Teflon or other nonmetallic materials to minimize potential metal contamination of samples and to facilitate cleaning. Samples are drawn from the chamber through a 4-mm Teflon tube connected to the rotary valves and into the sampling bottles. Sampling is initiated by the control system when it activates the valves at preprogrammed intervals. Seawater samples are drawn through the sampling system by a vacuum of 25 inches of mercury (minimum) which is applied to all sample bottles through check valves mounted in the bottle lids. The check valves are then sealed, and water enters each sample bottle when the rotary valves are activated (number 2 through 12) or when the lid closes and opens a valve attached to its hinge (number 1). Filtered seawater flows into each bottle until pressure is equalized, normally yielding at least 240ml.

2.1.4 Circulation Subsystem

The BFSD2 has a mixing area called the collection chamber and the process of interest is the exchange of chemical contaminants at the sediment-water interface sequestered within the chamber. The hydrodynamics inside the chamber must adequately simulate movement of water from near-bottom currents outside the chamber. For this purpose, a helical diffuser mounted vertically on the central axis of the chamber is used to mix the enclosed volume. Tests recorded on video verified that the helical diffuser provided a uniform, gentle mixing action that effectively dispersed dye injected into the chamber without disturbing the sediment layer on the chamber bottom.

The diffuser system includes a standard constant-volume submersible pump. The pump circulates water from an outlet in the chamber wall, into the sensor chamber and over the flow-through sensors, and back into the chamber via a rigid polycarbonate tube. The vertically mounted tube is capped at the discharge end and has 5mm holes drilled in a helix pattern along its length. The tests verified that this method visually dispersed a dye injection of Rhodamine in less than 120 seconds.

The acquisition and control unit, the oxygen supply bottle, a video camera and lighting system, circulation pumps, and the retrieval line canister are mounted on the frame members. The oxygen system is used to maintain aerobic conditions within the chamber by diffusing oxygen at a rate sufficient to maintain the initial dissolved oxygen levels through a coil of thin-walled, oxygen-permeable Teflon tubing.

2.1.5 Oxygen Control Subsystem

Over the course of an experiment, conditions in the isolated volume of seawater within the flux chamber begin to change from the initial conditions observed in the bottom water. Oxygen content is one factor that changes rapidly because isolated volumes of seawater in contact with the sediment surface will become anoxic without any resupply of oxygen. Since the fluxes of many contaminants, especially metals, are sensitive to redox conditions, the oxygen content is one of the most important factors that must be monitored and regulated within the flux chamber. Most contaminant fluxes are not large enough to be measured in chambers without oxygen regulation because the isolated volume of seawater will become anoxic before significant contaminant fluxes have occurred. Because of this, an oxygen control system has been built into the BFSD2. This system maintains the oxygen levels in the chamber within a user-selected window about the measured bottom water oxygen level.

The oxygen regulating system consists of a supply tank, pressure regulator, control valves, diffusion coil, oxygen sensor, and control hardware and software. The supply tank is a 13-cubic foot aluminum diving tank equipped with a first-stage regulator that allows adjustment of output pressure to the system. The control valves are housed within a watertight pressure case with connections through bulkhead fittings on the end cap. The diffusion coil is thin-walled, 4-mm, oxygen-permeable, Teflon tubing approximately 15 meters (m) long. Oxygen is monitored using the oxygen sensor in the flow-through system described previously. The oxygen control valves (pressurize or vent) activation is incorporated into the control system of the BFSD2.

During a typical deployment, when the flux chamber is initially submerged, the ambient oxygen level in the water is measured with a control program which activates the circulation subsystem and sensors until a stable value of ambient oxygen concentration is obtained. This is performed with the BFSD2 either on the bottom or suspended less than 1 meter above the sediment (with the lid open). When oxygen stability is obtained, the user then establishes a maximum and a minimum oxygen control level, based on a userspecified range around the stable ambient level. Figure 10 is a typical set of data obtained from 15 minutes of operation. The control limits are entered into the operational control program and downloaded to the BFSD2 acquisition and control subsystem. autonomous operations are started and the chamber is closed and sealed, the oxygen level inside the chamber is monitored by the control program. If the level drops below the allowable minimum, a control valve is momentarily opened, the diffusion coil is pressurized, and the oxygen level in the chamber begins to increase. When the oxygen level reaches the maximum allowable level, another control valve is activated and the pressurized tubing is vented. This sequence is repeated continuously during deployment, maintaining the oxygen level in the chamber near the ambient level. Figure 11 is a typical set of data obtained from a 72-hour deployment. Note that dissolved oxygen concentrations are reported in ml/l in this report. Dissolved oxygen concentrations in seawater can be expressed in millimolar, uMoles/kg, mg-atoms/liter, mg/liter, ml/liter or percent saturation. Conversion from mg/l to ml/l is a linear computation (mg/l x 1.4276 = ml/l). It is true Standard Methods suggests re porting in mg/l, however different reporting units are found in the literature. We have historically used oxygen sensors obtained through Seabird Electronics, and their calibration procedures and software all use ml/l for dissolved oxygen concentrations.

Figure 10. Ambient Oxygen Data.

Figure 11. Operational Oxygen Control Data.

2.1.6 Deployment and Retrieval Subsystems

During deployment the test site is surveyed for obstacles with a light-aided video camera mounted on the upper frame of the BFSD2 using a on deck television monitor. As shown in Figure 12, a deployment cable and release line are used to lower the BFSD to its intended depth for the video inspection. Following either rapid or slow descent to the bottom, the minimum depth of collection chamber insertion is sensed by pressure-compensated switches, which activate lights mounted on the chamber frame. These lights are TV-monitored on deck.

Figure 12. BFSD Deployment.

Recovery is accomplished by transmitting a coded acoustic signal to the frame-mounted receiver which in turn releases the marker buoy, Figure 13. As shown in Figure 14, the line attached to the buoy is used to lift the BFSD2 aboard the vessel. Stored sensor data is uploaded before the detaching cables.

Figure 13. Acoustic Release and Retrieval Buoy.

Figure 14. BFSD Retrieval.

2.1.7 Analytical Methods

2.1.7.1 Cleaning

Prior to each deployment, the BFSD2 sample collection system is cleaned and decontaminated. A sequential process of flowing cleaning fluids through the sampling subsystem using vacuum; of soaking disassembled parts (collection bottles and other parts) in prepared solutions; of physically brushing and rinsing the collection and sensor chambers and the circulation subsystem with prepared solutions is followed. For metals, a nitric acid soak/rinse is used before a final rinse with 18 megohm de-ionized water and for organics a methanol rinse with air dry is used prior to sealing/closing off all paths of contamination until deployment.

2.1.7.2 Performance Indicators

A series of performance indicators are used to evaluate the data obtained during operational deployments. One performance indicator is the chemistry time-series data for silica. Silica, a common nutrient used in constructing the hard parts of some planktonic organisms, typically shows a continuous flux out of the sediments due to degradation processes. The linear increase in silica concentration with time in the collected sample bottles is therefore used as an internal check for problems such as a poor chamber seal at the lid or sediment surface. A field analytical test set (Hach Model DR2010) is used to assess the silica concentrations immediately following retrieval and before sending collected samples to the analytical laboratory. Figure 15 is an example of silica flux indicating an adequate chamber seal with the sediment. Also, with a good chamber seal the ongoing bacterial degradation of organic material in the sediment consumes oxygen (which must be regulated by the BFSD2) and also generates carbon dioxide. This gradually lowers the chamber pH and Figure 16 is an example of this data for a good chamber seal with the sediment.

Figure 15. Silica Flux for Good Chamber Seal.

Figure 16. pH Data for Good Chamber Seal.

Although the expected relationships of these performance indictors aid in determining normal or successful deployments, natural variability is always present to cloud these relationships. Variations in the pore water reactions at the various sites lead to differences in the observed fluxes of oxygen, silica, and also the other contaminants. One major factor contributing to the large variations in fluxes may be burrowing activity. Enhanced biological irrigation (pumping of the overlying seawater through sediment burrows by infaunal organisms) increases the surface area of the sediment-water interface and flow rates across the interface, and may also increase the observed fluxes. The organisms responsible for this biological pumping will also affect oxygen uptake rates and may add to the complex interpretation of the analytical results.

2.1.7.3 Blank Tests

Prior to the BFSD2 demonstrations, a triplicate blank test was performed to determine the lower limit of resolution for flux determinations of various metals. A polycarbonate panel was sealed across the bottom of the chamber and the BFSD2 was lowered to within several meters of the sediment surface. A standard operational program identical to the demonstration deployments was run for 70 hours. The results will be presented later in this report.

2.1.7.4 Computations

Fluxes are computed from the trace metal concentrations in each sample bottle using a linear regression of concentration versus time after the concentrations are corrected for dilution effects. These dilution effects result from intake of bottom water from outside the chamber to replace the water removed for each collected sample. The corrected concentrations are obtained from the following equation:

$$\left[C_{n}\right] = \left[s_{n}\right] + \frac{v}{V} \left(\left(\sum_{i=1}^{n-1} \left[s_{i}\right]\right) - (n-1)\left[s_{0}\right]\right)$$

Where [C] is the corrected concentration, [s] is the measured sample concentration, n is the sample number (1 through 6), v is the sample volume, and V is the chamber volume. Fluxes are then calculated as follows:

$$Flux = \frac{mV}{A}$$

Where m is the slope of the regression of concentration versus time, V is the chamber volume, and A is the chamber area

An interactive computational spreadsheet processes most data. Analytical laboratory results, sensor and other measured data, performance indicator results and blank test results are entered into the spreadsheet template and processed. A series of tables, charts and graphs are computed and displayed, including statistical confidence and other figures of merit. Appendix C provides a set of spreadsheet products for each demonstration.

2.2 Strengths, Advantages and Weaknesses

2.2.1 Strengths

The BFSD2 is an *in situ* technology. Benthic contaminant fluxes can provide a unique *in situ* measure of contaminated sediments as well as an indication of bioavailability. Many of the disadvantages cited for various approaches towards assessing sediment contamination relate to removal of the contaminated material to the laboratory for chemical and biological assays. In concert with traditional monitoring and assessment techniques, these flux measurements can lead to a better understanding of marine sediment contamination and transport mechanisms.

2.2.2 Advantages

The BFSD2 is an easily implemented technology, as it is readily deployed from a small boat, and all sampling, data logging, and control functions are carried out automatically based on preprogrammed parameters. The BFSD2 can be used to collect samples without diver assistance to minimize costs, time necessary for sampling, and safety issues associated with sampling activities. Furthermore, the system is able to collect a wide range of contaminants, nutrients, and dissolved gases and it is operational under a wide range of environmental conditions. All materials used in the system are suitable for use and prolonged exposure in the marine environment.

Results obtained using the BFSD2 can be used for the following purposes:

- Source quantification for comparison to other sources and input to models
- Indication of bioavailability since many studies indicate that resolubilized contaminants are more readily available for uptake
- Determination of the cleansing rate of a contaminated sediment site due to natural biogeochemical cycling of the in-place contaminants
- Provision of a nonintrusive monitoring tool for sites that have been capped or sealed to minimize biological exposure

• Testing and validation of hypotheses and models for predicting the response of marine sediments to various contaminants.

2.2.3 Weaknesses

One limitation is a lower limit on the flux rates that can be calculated from data collected using the BFSD2 system. Also, the BFSD2 may be deployed to a maximum depth of 50 meters and the maximum deployment is approximately 4 days, based on available battery capacity. The BFSD is stable in bottom currents up to 3 knots.

2.3 Factors Influencing Cost and Performance

2.3.1 Cost influences

The factors influencing cost include, in order:

- 1. Analytical laboratory costs: laboratory analysis of samples by highly specialized analytical laboratories accounts for approximately 50% of total BFSD2 project costs.
- 2. Blank tests: the larger the number of sites within a common bay, harbor or other defined location the smaller the proportional cost per site for blank tests. It may be possible to eliminate blank testing in some cases, but a cost approaching 50% could occur for only one deployment.
- 3. Remote location: Acquisition of local resources such as a surface vessel configured with a davit or A-frame and equipment shipping costs most influence total project costs. Transportation, per diem, materials and supplies are equivalent for all sites other than local. Labor costs are the same.
- 4. Work schedule: Limited site access or availability can influence cost. Without such restraints a work schedule taking advantage of *in situ* BFSD2 deployment periods over weekends and/or to accomplish cleaning, sample handling, and other turnaround preparations can be instituted. Extended work hours can be compensated with offsetting periods of inactivity.

2.3.2 Performance Influences

The factors influencing performance include:

- 1. Sediment physical conditions: The BFSD2 requires a collection chamber seal with the sediment to function properly. The primary cause for lack, or loss of seal is porosity of the sediment due to large grain size and distribution. An entire deployment can be lost under extreme conditions, however the use of performance indicators can avoid analytical laboratory costs by identifying such cases immediately after retrieval.
- 2. Sediment contamination levels: The lower limit for resolving significant flux levels is based on blank test results. Sites having contaminated sediment levels lower than blank test results cannot be resolved with a high degree of confidence. Such results are reported as statistical probabilities with confidence limits and are typically well below water quality limits and do not lead to cleanup issues.

3. Site marine conditions: As with 1. above (sediment-chamber seal), the BFSD2 also must also maintain a good chamber-lid seal. Surface vessel turbulence and/or prop wash, tidal and/or local currents, or even large fish disturbances can jar the magnetically held lid. A momentary loss of the lid seal can allow ambient seawater to enter the chamber and refresh sequestered sample water. Although such an event will be detected by the previously discussed performance indicators, some or all of the deployment can be negated by loss of lid seal.

3. Site/Facility Description

3.1 Background

Two locations were selected for BFSD2 demonstrations. The first was San Diego Bay, California (Paleta Creek area); and the second was Pearl Harbor, Hawaii (Middle Loch and Bishop Point). The locations/sites were selected based on the following criteria:

- 1. (metals) The sites were known to have metal-contaminated marine sediments, and had been at least partially characterized. The sediment contaminant levels were anticipated to be high enough to demonstrate statistically significant fluxes at the sediment-water interface.
- (metals) Two deployments at the same San Diego Bay, Paleta Creek site would demonstrate repeatability; two deployments at geographically different Pearl Harbor sites would demonstrate characteristically different data and showcase analysis/interpretation results.
- 3. (metals) The contaminated sediments were located in shallow areas (less than 50 meters deep) and readily accessible.
- 4. (metals) Demonstration logistical support requirements would be demonstrated by deployments in Pearl Harbor.
- 5. (metals) Data from prototype BFSD deployments conducted at the Paleta Creek site were available for use as reference data and for comparison with demonstration results (See section 1.5).
- 6. (organics) Both sites were known to also have organics-contaminated sediments and other demonstration factors were already achieved.

3.2 Site/Facility Characteristics

3.2.1 San Diego Bay, California

With no major inputs of fresh water, the currents and residence time of water in San Diego Bay are tidally driven. The average depth of the bay is about 5 meters. The tidal range from mean lower-low water to mean higher-high water is about 1.7 meters. The maximum tidal velocity is about 0.05 to 0.1 meters per second. Sediment pore waters in San Diego Bay typically become anoxic several millimeters below the sediment surface. Dissolved oxygen concentrations range from 4 to 8 milliliters per liter; sea water pH varies from 7.9 to 8.1; and temperatures range from 14 to 25°C.

The sediments of San Diego Bay consist primarily of gray, brown, or black mud, silt, gravel, and sand. The sources of contamination in San Diego Bay have varied over time and include sewage, industrial wastes (commercial and military), ship discharges, urban runoff, and accidental spills. Current sources of pollution to San Diego Bay include underground dewatering, industries in the bay area, marinas and anchorages, Navy installations, underwater hull cleaning and vessel antifouling paints, and urban runoff. Known contaminants in the bay include arsenic, copper, chromium, lead,

cadmium, selenium, mercury, tin, manganese, silver, zinc, tributyltin, polynuclear aromatic hydrocarbons (PAH), petroleum hydrocarbons, polychlorinated biphenyls (PCB), chlordane, dieldrin, and DDT.

The Paleta Creek site, Figure 17, is located in San Diego Bay in San Diego County, California, adjacent to Naval Station San Diego. The Paleta Creek site is located on the western shore near Naval Station San Diego where Paleta Creek empties into the bay, slightly inland from the Navy Pier 8 and Mole Pier and north of Seventh Street. Naval Station San Diego began operations in 1919 as a docking/fleet repair base for the U.S. Shipping Board. In 1921, the Navy acquired the land for use as the San Diego Repair Base. From 1921 to the early 1940s, the station expanded as a result of land acquisitions and facilities development programs.

Figure 17. San Diego Bay, Paleta Creek Site.

3.2.2 Pearl Harbor, Hawaii

Pearl Harbor contains 21 square kilometers of surface water area; the mean depth is 9.1 meters. Tidal flow and circulation are weak and variable, with a mean tidal current velocity of 0.15 meter per second and a maximum ebb flow of 0.3 meters per second in the entrance channel. Salinity in Pearl Harbor ranges from 10 to 37.5 parts per thousand, with a yearly average of 32.8 parts per thousand. Harbor water temperatures annually range from 22.9 to 29.4°C, and dissolved oxygen values range from 2.8 to 11.0 milligrams per liter. Pearl Harbor is most appropriately described as a high-nutrient estuary.

Middle Loch is located in the northwestern end of Pearl Harbor, north and west of Ford Island, within the Pearl Harbor Naval Base, see Figure 18 below.

Figure 18. Pearl Harbor, Hawaii Middle Loch Bishop and Point Sites.

In 1901, the U.S. Navy acquired 800 acres of land to establish a naval station at Pearl Harbor. The Pearl Harbor Naval Base has existed since 1919. During World War I, about 12 warships were repaired and overhauled at the Navy Yard. In 1917, a temporary submarine base was relocated to the eastern shoreline of Southeast Loch. Industrial development in the vicinity of Pearl Harbor was greatly accelerated during the late 1930s and early 1940s. During the 1941 Japanese attack on Pearl Harbor during World War II, 21 of the U.S. ships in Pearl Harbor were sunk or severely damaged, and debris resulting from this attack remains buried in harbor sediments (despite initial cleanup efforts). Currently, Pearl Harbor is a major fleet homeport for nearly 40 warships, service-force vessels, submarines, and their associated support, training and repair facilities.

Middle Loch is moderately contaminated with heavy metals as well as with toxic organic compounds and hydrocarbons. Sediments contain various concentrations of metals such as silver, arsenic, cadmium, chromium, copper, iron, mercury, manganese, nickel, lead, and zinc. Toxic organic compounds include pollutants such as solvents, paints, pesticides, and PCBs. Hydrocarbon contaminants include all petroleum-based fuel products such as diesel, JP-5, JP-4, bunker fuel, gasoline, oils, sludges, and lubricants. Bishop Point is an active industrial area with ongoing salvage operations and related ship movements. Sediments contain similar contaminants as mentioned above but at higher levels.

4. Demonstration Approach

4.1 Performance Objectives

The demonstrations were intended to verify the performance of the BFSD2 by assessing whether chemicals are adsorbing to or desorbing from sediments at the sediment-water interface. Specifically, the objectives of the BFSD2 technology demonstrations were to:

- (1) Evaluate the data quality of the water samples collected for use in determining if a statistically significant flux was occurring at the test locations.
- (2) Evaluate the BFSD2 for repeatability.
- (3) Evaluate the logistical and economic resources necessary to operate the BFSD2.
- (4) Evaluate the range of conditions in which the BFSD2 can be operated.

In order to determine whether statistically significant fluxes were occurring at the test locations (Objective 1), 12 seawater samples were collected at 7-hour intervals using the BFSD2. For metals, the water samples were analyzed for cadmium, copper, manganese, nickel, lead, zinc and silica. For organics, the samples were analyzed for EPA priority PAHs, PCBs and pesticides. For metals, sediment samples, when collected, were analyzed for grain size, total solids, total organic carbon (TOC), acid volatile sulfide (AVS), simultaneously extracted metals (SEM), and total metals. Although the sediments may have been contaminated with other constituents, only the flux of the listed metals was evaluated during the demonstrations. For organics, sediment samples were analyzed for the same analytes as the associated water samples.

In addition, other metals including antimony, arsenic, selenium, silver, thallium, and iron were analyzed in the seawater samples collected during the three blank chamber tests. This data will be used at future dates when establishing baseline performance for these metals.

Sample concentrations were corrected for dilution introduced by the sampling process, and a regression curve was generated for each analyte based on the concentration data. Flux rates, with regression coefficients, were compared to the composite flux rate and standard deviation determined for each metal or organic during triplicate blank chamber tests. The measured flux rate for each metal or organic was then evaluated to assess if a statistically significant flux had been measured when compared to the blank chamber (background) test. The BFSD2 was evaluated for repeatability (Objective 2) by analyzing the metals results of repeat deployments, two weeks apart, at the same Paleta Creek site. Demonstration data was also compared to data from the site during previous prototype BFSD tests in the same approximate location. Finally, repeatability was evaluated by comparing the results from three blank chamber deployments for both metals and organics. The logistical and economic resources necessary (Objective 3) were evaluated by documenting costs associated with planning, scheduling and executing the demonstration deployments, laboratory analysis, data management, and report preparation. Lastly, the range of conditions for operating the BFSD2 were evaluated

(Objective 4) by describing the conditions under which the BFSD2 operated and the projected range of contaminants applicable to the technology.

The demonstration approach was to collect time series of water samples using the BFSD2 at two geographically different locations. For metals at the San Diego Bay location (Paleta Creek) two deployments at the same site were made; at the Pearl Harbor location, one deployment at each of two geologically different sites were made (Middle Loch and Bishop Point). Comparison of the results of the two Paleta Creek demonstrations to one another was intended to evaluate repeatability of the technology. Comparison of the results from the two geographically different sites in Pearl Harbor was intended to demonstrate data differences and analysis/interpretation approaches. Comparison of the Pearl Harbor data as a whole with that from San Diego also demonstrated geological differences between continental shelf and mid-Pacific riff measurements. For organics, one Paleta Creek deployment and one Bishop Point, Pearl Harbor deployment were performed to demonstrate the extended performance. For both metals and organics three "blank test" deployments were conducted, during which the BFSD2 was deployed in seawater with a sealed sampling chamber. Three time series of samples were collected and a baseline was established for each analyte, which provided a statistical estimate of the lower limit of flux detection measurable with the BFSD2. The data also served as another measure of precision and repeatability. Previous metals results obtained at the same location using the prototype BFSD also provided a general measure of trend repeatability. A rate of flux between the sediment and the water for each analyte for each deployment was calculated. The flux rate was calculated using knowledge of the volume of water enclosed within the BFSD2, the surface area of sediment isolated, the time the samples were collected, and the concentrations of the contaminants of interest in the individual sample. Because this technology has no current equivalent, the BFSD was evaluated based on the internal QA/QC of the laboratory analysis and an analysis of the data.

4.2 Physical Setup and Operation

4.2.1 Physical Setup

Deployment preparations included BFSD2 maintenance, decontamination and setup. Maintenance included inspection and repair due to leakage or corrosion, inspection of sealing surfaces, seals and o-rings, inspection and replacement of sacrificial zinc anodes, downloading and/or deleting unnecessary files in the memory-limited control and data acquisition subsystem, and inspection of any worn or other potentially failure prone areas.

Decontamination involves soaking and/or rinsing all surfaces contacting seawater samples in a series of fluids beginning with tap water, then de-ionized water, then a special detergent ("RBS"), then deionized water, then nitric acid for metals or Methanol for organics, then 18 meg-ohm de-ionized water (metals) and finally filtered air. For metals, the collection bottles are disassembled and all component parts are soaked, four-hours minimum, in each fluid. A 25% concentration of ultra-pure nitric acid is used to soak TeflonTM parts (bottles, lids, and sensor chamber) and a 10% concentration is used for all other parts (including acid-sensitive polycarbonate filter bodies). For organics, components are rinsed with Methanol and air-dried and precleaned amber-glass sample bottles are used. The synchronized rotary valves, tubes and fittings remain assembled to the BFSD2 and are cleaned in place by flowing the series of decontamination fluids through them. The acquisition and control subsystem is used to execute a special program which activates each valve position for specified time during which the decontamination fluids are forced through by positive pressure using a Teflon-coated pump. And finally, the collection chamber, lid, diffuser, circulation pump, tubes and fittings are physically scrubbed and rinsed in place with non-metallic brushes. All decontaminated surfaces are dried, reassembled or otherwise sealed to isolate them from ambient, air-borne contaminants

BFSD2 setup includes various tasks to be performed prior to deployment using checklists. These include: charging the gel-cell 24Vdc battery; replacing the 14 circulation subsystem C-cell batteries; replacing the 6 acoustic release 9Vdc batteries; installing a new acoustic release subsystem burn wire, cleaning the plating anode and rigging the recovery float; checking and refilling (if required) the compressed-oxygen supply tank; checking the insertion light subsystem function and replacing its one battery (if required); installing the 12 sample collection bottles and evacuating them to less than 25 in-Hg; setting up laptop computer files for post-deployment data uploading; reviewing and modifying, as required, the deployment operational control programs and downloading the predrop program into the acquisition and control subsystem.

4.2.2 Deployment

Each BFSD deployment requires at least three personnel. One person is responsible for maneuvering, positioning and securing the surface vessel. Two additional persons are required to deploy and retrieve the BFSD. The checklists included in appendix D are the step-by-step procedures followed on deck to avoid oversights and mistakes. Ancillary tasks to be performed include collection of a sediment sample with a spring-loaded grab sampler and logging site GPS coordinates. Figures 19 through 22 illustrate typical deployment and recovery scenes.

4.2.3 Recovery

Recovery is initiated following an elapse time after the planned deployment greater than the operational program by at least two hours. This allows for accumulated processing delays which lengthen the overall autonomous time period. Once within approximately 100 yards of the deployment position a coded acoustic signal is transmitted to the BFSD2 acoustic receiver from the deck unit. A 15-minute function time begins during which the burn-wire is consumed and the recovery buoy is released. The line attached to the buoy is used to wench the BFSD2 and the attached coiled cables to the surface and aboard the vessel. Heavy sediment and other debris are washed off the BFSD2 before bringing it onboard. On deck an inspection of collection bottle status is made as an immediate indicator of deployment performance. Turning the compressed-oxygen cylinder valve off and installing storage caps on the pH and oxygen sensors is also done without delay. Other assessments that may be accomplished onboard include upload of logged data from the acquisition and control subsystem and processing of pH and oxygen sensor data as performance indicators. Spreadsheet templates are used to quickly generate graphs and charts of converted and processed data which display results for the entire operational deployment. Aboard a properly configured surface vessel such as SSC SD's R/V ECOS during the San Diego Bay demonstration sample handling such as acid preservation, labeling and sealing of 100 ml laboratory samples and 25 ml splits for measurement of silica concentration was accomplished. Once off loaded to shore, the BFSD2 must be thoroughly washed down with fresh water to remove all remaining debris, sediment and seawater and to minimize corrosion. As soon as practicable, a freshwater purge and forced-air dry of the synchronous rotary valves and associated tubes and fitting is accomplished.

Figure 19. Deployment Equipment (SSC SD Dock).

Figure 20. Crane Loading Aboard Workboat (Bishop Point, Pearl Harbor).

Figure 21 Deployment (Middle Loch, Pearl Harbor).

Figure 22. Recovery (Middle Loch, Pearl Harbor).

4.3 Sampling Procedures

The sampling procedures followed for the BFSD2 demonstrations provided assurance that the overall project goals and objectives were met. Careful adherence to the procedures ensured that data collected was useful in evaluating the effectiveness of the BFSD2 for benthic flux measurements.

4.3.1 Overview of Sampling Operations

Sampling operations at each demonstration location consisted of site deployments during which the BFSD2 collected seawater samples at timed intervals and a sediment confirmation sample collected following each site deployment. Three additional identical blank (background) deployments with the BFSD2 collection chamber sealed using a polycarbonate bottom plate were used to statistically establish system blank performance as a baseline for comparison to the sediment flux data.

4.3.1.1 BFSD2 Sampling

Samples were collected *in situ* in twelve 250-ml precleaned sampling bottles at preprogrammed time intervals. A description of the sampling technology can be found in Section 2.1. Sampling was initiated by starting the acquisition and control subsystem program, which activated synchronous rotary valves connected to the sample bottles. In-line filters passed only seawater with dissolved-phase contaminants at the time of collection. After each deployment, the samples for metals analysis

were transferred to appropriate sample containers and acidified, if necessary. Samples for organics analysis were collected in non-reusable bottles and shipped to the analytical lab without further disturbance. A baseline ambient water sample was collected as the number one BFSD2 sample during deployment. The sample was analyzed and used to establish the ambient concentration at time zero for each analyte. The total time required for the 12 sampling events including the time zero sample using 7-hour intervals was approximately 72 hours with consideration for accumulated data processing delays.

4.3.1.2 Sediment Sampling

A sediment sample was collected at the end of each different site deployment using a spring-loaded grab sampler. The sediment was containerized, capped, labeled, and sealed. The sediment samples were used in various analyses, including digestion and extraction processes to measure trace metal and organic levels. Other measurements related to seawater data analysis and interpretation were conducted and are reported in a later section.

4.3.1.3 System Blank Samples

With the BFSD2 configured as described in Section 2.1, three deployments using identical procedures were accomplished for both metals and for organics. The samples were collected and handled as in the demonstrations (see 4.3.1.1 above) and shipped to the analytical laboratory for the analyses discussed below.

4.3.1.4 Quality Control

Demonstration samples and blank samples included equipment blanks, trip blanks and laboratory blanks to assess the performance of the equipment in the field.

4.3.1.5 Communications and Documentation

The SSC SD program manager communicated regularly with demonstration participants to coordinate all field activities associated with the demonstrations and to resolve any logistical, technical, or QA issues that arose as the demonstrations progressed. Successful implementation of the demonstrations required detailed coordination and constant communication among all participants. Field documentation was included in field logbooks, field data sheets, chain-of-custody forms, and kept in a bound logbook. Each page was sequentially numbered and labeled with the project name and number. All photographs were logged by the digital camera and transferred to the computer file system. Those entries included the time, date, orientation, and subject of the photograph. Specific notes about each sample collected were written on sample field sheets and in the field logbook. Any deviations from the approved final demonstration plan were thoroughly documented in the field logbook and communicated to parties affected by the change. Original field sheets and chain-of-custody forms accompanied all samples shipped to the laboratory.

4.3.1.6 Field Sample Collection

Sampling personnel collected and prepared samples using the procedures described below. All field activities conformed with the requirements of the Demonstration Plan and its attached Health and Safety Plan. Sampling operations at each site consisted of a deployment of the BFSD to collect seawater samples at timed intervals, and collection of a sediment grab sample after deployments. The series of samples collected during three blank test deployments with the chamber sealed with a polycarbonate bottom were used to assess the background level from which statistically significant fluxes can be derived.

4.3.1.6.1 Field Blanks

One field blank for the San Diego Bay metals demonstration consisted of an additional 250-mL bottle filled with de-ionized water strapped to the flux chamber. This sample was to be used to assess the integrity of the sample bottle seals if anomalous data are obtained.

4.3.1.6.2 Equipment Blanks

These samples consist of running 250 ml of de-ionized water through the BFSD2 sampling subsystem prior to deployment. One equipment blank was collected for each site demonstration. The equipment blank was used as a quality control measure to ensure that the BFSD2 was properly decontaminated between deployments.

4.3.1.6.3 Trip Blank

. One trip blank for the San Diego Bay metals demonstration was collected by placing a closed 250-ml sample of de-ionized water in a sample cooler at the beginning of the demonstration. The trip blank was used as a quality control measure, if necessary, to ensure that samples are not contaminated during sample storage and shipment to the laboratory.

4.3.1.6.4 Silica

Confirmatory silica analysis was used for metals tests to ensure that the BFSD2 is functioning properly, without any significant loss of collection chamber seal. Silica is a common component in constructing the hard parts of some planktonic organisms, and it typically fluxes out of sediments at a constant rate due to dissolution processes. By analyzing each of the samples collected using the BFSD for silica and plotting the concentration versus time data, a linear increase in silica concentration over time strongly suggests that there was a good seal of the chamber with the sediment. The first sample at time zero provides a value for silica in bottom waters at the start of the experiment. The silica analysis was performed using 25 ml of seawater removed from each sample collected prior to acid preservation. To maximize sample volume for organics analysis, measured pH data was used to ensure chamber seal integrity.

4.3.1.6.5 BFSD2 System Blanks

Finally, for metals, a triple-duplicate deployment with the collection chamber sealed with a polycarbonate bottom ("blank test") was conducted as an experiment blank at the SSC SD dock in San Diego Bay. The data collected during those deployments provided a baseline with which to compare the site-specific flux rates, in order to document a statistically significant flux rate from both analytical and system variability in a seawater environment. For organics, a triplicate set of blank tests were conducted "ex-situ" using a single supply of ambient seawater. The data collected provided less variability due to the constant seawater supply, including sample makeup volumes.

4.3.1.7 Laboratory Blanks

Laboratory Blanks and Laboratory QC checks are designed to assess the precision and accuracy of the analysis, to demonstrate the absence of interferences and contamination from glassware and reagents, and to ensure the comparability of data. Laboratory QC checks consist of laboratory duplicates, surrogates, MS/MSDs, and method blanks. For organics, a Method Detection Limit study was performed to establish modified EPA standard procedures and controls for targeting specific PAHs, PCBs and pesticides with small sample volume. No comparable MDL study was performed for metals because adequate volumes were collected from the chamber for EPA standard procedures in which detection limits were adequate to measure anticipated metals concentrations.

4.3.1.7.1 Method Blanks

Method blanks were used to verify that preparation of samples was contamination-free. Each batch of extracted and digested samples was accompanied by a blank that was analyzed in parallel with the rest of the samples, and carried through the entire preparation and analysis procedure. Method blanks may also be called calibration blanks. Calibration blanks are analyzed for seawater samples analyzed for metals, for seawater samples analyzed for sediment samples analyzed for metals, and for sediment samples analyzed for SEM.

4.3.1.7.2 Precision

Analytical precision and method detection limits are determined by replicate storage, preparation, and analysis of standard seawater. Further verification of precision is achieved by splitting 1 in 20 field samples. Laboratory duplicates are analyzed during analysis of water samples analyzed for metals, water samples analyzed for alkalinity (if performed), sediment samples analyzed for metals, and sediment samples analyzed for SEM.

4.3.1.7.3 Accuracy

Spiked replicates of field samples were processed with each analytical batch to validate method accuracy within the context of varying matrices. With water and extracted water samples that are analyzed by the method of standard additions, spiked samples are not used. MS and MSD samples were used for analysis of water samples analyzed for metals, sediment samples analyzed for metals, sediment samples for AVS, and sediment samples for SEM.

4.3.1.8 Sample Storage, Packaging, and Shipping

The field team followed chain-of-custody procedures for each sample as it was collected following BFSD2 retrieval. An example chain-of-custody form can be found in Appendix E. The following information was completed on the chain-of-custody form: project number, project name, sampler's name, station number, date, time, station location, number of containers, and analysis parameters.

Following retrieval and removal of the samples from the BFSD at the end of each single deployment, and until shipment to Battelle (metals) or Aurther D. Little (organics), all samples were stored in refrigerators or coolers and maintained with ice at a temperature of approximately 4 °C. The custody of samples was maintained in accordance with standard operation procedures (SOP). Samples to be shipped to the confirmatory laboratory were packaged and shipped according to the sample packaging and shipment requirements SOP. Copies of these SOPs are available upon request.

4.4 Analytical Procedures

4.4.1 Selection of metals Analytical Laboratory

The analytical laboratory selected to provide analytical services is Battelle Marine Sciences Laboratory (Battelle). Battelle was selected because of its experience with QA procedures, analytical result reporting requirements, and data quality parameters. Battelle is not affiliated with SSC SD or any of the demonstration team members.

4.4.2 Metals Analytical Methods

Sample and data analysis are key elements in the use of samples collected by the BFSD. Samples were analyzed for metals including cadmium, copper, lead, manganese, nickel, and zinc; and silica. The seawater samples collected by the BFSD2 and marine sediment samples were sent to Battelle for analysis. The analytical methods that were used are listed in Table 1. In addition, other metals

including antimony, arsenic, selenium, silver, thallium, and iron, were analyzed in the seawater samples collected during the three blank chamber tests. This data will be used in future projects to establish baseline data for the metals.

Table 1. Analytical Methods.

Table 1. Analytical Methods.								
ANALYTE	SEAWATER SAMPLE	SEDIMENT SAMPLE						
	Analytical Method	Analytical Method						
Cadmium	ICP-MS (Nakashima et al. 1988)	GFAA (Crecelius et al. 1993)						
Copper	ICP-MS (Nakashima et al. 1988)	XRF (Crecelius et al. 1993)						
Iron	GFAA (Crecelius et al. 1993)	XRF (Crecelius et al. 1993)						
Manganese	ICP-MS (Nakashima et al. 1988)	XRF (Crecelius et al. 1993)						
Nickel	ICP-MS (Nakashima et al. 1988)	XRF (Crecelius et al. 1993)						
Lead	ICP-MS (Nakashima et al. 1988)	XRF (Crecelius et al. 1993)						
Zinc	ICP-MS (Nakashima et al. 1988)	XRF (Crecelius et al. 1993)						
Miscellaneous Metals - Antimony, Arsenic, Selenium, Silver, and Thallium	ICP-MS (Nakashima et al. 1988) GFAA or XRF (Crecelius et al. 1993)	N/A						
Silica(1)	Strickland and Parsons 1968	N/A						
Alkalinity	Strickland and Parsons 1968	N/A						
Grain Size	N/A	(Plumb 1981)						

Total Solids	N/A	(Plumb 1981)
Total Organic		(Plumb 1981)
Carbon	N/A	
Acid Volatile		(Lasorsa and Casas 1996)
Sulfide	N/A	
Cimevitan a avaly		ICP-MS
Simultaneously Extracted		(EPA Method 1638)
Metals	N/A	

N/A – Not Applicable

ICP-MS – Inductively coupled plasma mass spectroscopy

XRF – X-ray florescence

GFAA – Graphite furnace atomic absorbtion\

4.4.2.1 Preconcentration

The preconcentration method used for this project (Nakashima et al. 1988) was a tetrahydroborate reductive precipitation as a preconcentration technique. Samples were first acidified with nitric acid to pH 1.8 for storage. Samples were then adjusted to pH 8 to 9 with high-purity ammonia solution and iron and palladium were added. A sodium tetrahydroborate solution was added before the solution was filtered through a 25-millimeter (mm) -diameter acid-washed, acid-resistant cellulose nitrate 0.45-micrometer membrane filter. Concentrated nitric and hydrochloric acids are added to the empty bottle to dissolve any precipitate adhering to the walls; the acid mixture was subsequently transferred to the filter assembly. The filter is washed with water, and the solution was diluted to 25 ml. The filter and its holder were rinsed with 3-ml aliquots of the nitric and hydrochloric acids and water between samples, and were used repeatedly. The combination of iron and palladium brought about the rapid formation of a precipitate after the addition of sodium tetrahydroborate.

4.4.2.2 Inductively Coupled Plasma Mass Spectrometry (Nakashima et al. 1988)

ICP-MS analysis allows the simultaneous, multi-elemental determination of metals by measuring the element-emitted light by optical spectrometry. Element-specific atomic-line emission spectra are dispersed by a grating spectrometer, and the intensities of the lines are monitored by photomultiplier tubes.

4.4.2.3 Graphite Furnace Atomic Absorption (Nakashima et al. 1988)

GFAA allows the individual analysis of iron, arsenic, lead, selenium, and thallium to provide lower detection limits. In the furnace, the sample is evaporated to dryness, charred, and atomized. A light beam from a hollow cathode lamp or an electrode-less discharge lamp is directed through the tube into a monochromator and onto a detector that measures the amount of light. Because the wavelength of a light beam is characteristic of a single metal, the light energy absorbed is a measure of that metal's concentration.

4.4.2.4 Silica (Strickland and Parsons 1968)

The sea water sample was allowed to react with molybdate under conditions which result in the formation of the silicomolybdate, phosphomolybdate, and arsenomolybdate complexes. A reducing solution, containing oxalic acid, is then added which reduces the silicomolybdate complex to give a blue reduction compound and simultaneously decomposes any phosphomolybdate or

⁽¹⁾ Silica was analyzed in the field using a HACH DR 2010 instrument to assure sample integrity and to determine whether samples will be sent to the laboratory for full analysis.

arsenomolybdate, so that interference from phosphate and arsenate are eliminated. The extinction of the resulting solution was measured using 25centimeter (cm) cells. This method was performed using a Hach Model DR2010 Field Kit prior to sending samples to the laboratory.

4.4.2.5 Sediment Samples

Sediment sample analysis included methods to determine grain size, TOC, AVS and total metals. The collected sediment samples were homogenized and split into subsamples before analysis. Sediment samples for total metals analysis were freeze-dried and ground prior to analysis. Total metals were then determined using X-ray fluorescence (XRF) or GFAA (Crecelius et al. 1993).

4.4.2.5.1 Grain Size (Plumb 1981)

Grain size was measured by a combination of sieving, particle counters, and pipette analysis, as described in the above reference.

4.4.2.5.2 TOC (Plumb 1981)

TOC was measured on an automated carbon analyzer by measuring total carbon and inorganic carbon contents, with the difference providing the TOC values. Inorganic carbon from carbonates and bicarbonates were removed by acid treatment. The organic compounds were decomposed by pyrolysis in the presence of oxygen or air.

4.4.2.5.3 X-ray Fluorescence (Crecelius et al. 1993)

This procedure uses energy dispersive x-ray fluorescence spectroscopy to quantify elemental concentrations in sediment and tissue samples.

4.4.2.5.4 AVS (Lasorsa and Casas 1996)

AVS is operationally defined as the fraction of sulfide present in the sediment that is extracted with cold hydrochloric acid. Analysis of AVS is an indicator of potential metal toxicity in sediments. AVS was determined by photoionization detection (PID) following a step that converted the sulfide in the sample to hydrogen sulfide. During the first step, the sample was allowed to react with 1 N hydrochloric acid, the system was purged with purified inert gas, and produced hydrogen sulfide was trapped using a column immersed in liquid nitrogen. The PID method used gas chromatographic separation and photoionization detection; the area under the curve of the chromatograph was used to calculate sulfide concentration from the linear regression of the standard curve.

4.4.3 Selection of Organics Analytical Laboratory

Arthur D. Little Analytical Laboratory, Cambridge, MA was selected for organics analysis as a result of a successful Method Detection Limit study to optimize detection limits for selected PAHs, PCBs and pesticides form 250 ml seawater samples. The resulting EPA-based procedures and controls were documented and used for all subsequent analyses.

4.4.4 Organics Analytical Methods

See Appendix C for a complete description of the Method Detection Limit study and organic sample analysis procedures and controls.

4.4.5 Data Reduction and Analysis

Correction of concentration for dilution, regression analysis, and flux rate concentrations were calculated using a custom spreadsheet template. See Appendix D for a complete set of spreadsheets for both metals and organics. Results from these complex computations require careful analysis and interpretation to reach valid conclusions. Various other sitespecific data and information must be used in combination with computed flux results to fully interpret the data. The approach taken and the conclusions reached for the demonstrations of this report are presented in the next section.

5. Performance Assessment

5.1 Performance Data

5.1.1 Metals Blank Tests

The primary purpose for performing system blank tests was to establish BFSD2 minimum performance levels, or detection limits, for assessment of flux data obtained during subsequent demonstration tests. Three replicate 70-hour blank tests were conducted using BFSD2 between May 14 and 31, 1998. The tests were conducted from the end of SSC, San Diego Pier 159 at approximately two feet off the bottom in seawater ranging from about 14 to 20 feet deep, depending on tidal flow.

As discussed earlier, the BFSD 2 collection chamber bottom was sealed with a polycarbonate plate and filled with ambient seawater at the start of each 70-hour test. Prior to each test routine procedures for decontamination of the sampling system were performed. Equipment and source blanks were taken. After each test the samples were handled in accordance with EPA Methods 1638 and 1669 and routine chain of custody procedures were used in preparation and shipment to Battelle Marine Sciences Laboratory for analysis. The Silica samples were sent to and analyzed by Scripps Institute of Oceanography.

Each test produced twelve 250ml sample bottles of seawater filtered *in situ* to 0.45 micron. Sample bottle one in each test was filled with ambient seawater taken from the water column as the BFSD 2 was lowered to its test depth at about 15 feet below the surface. Sample bottle two in each test was filled with seawater from the sealed chamber at 6 minutes after start of the 70-hour test. The remaining 10 sample bottles were filled from the chamber at 7-hour intervals. The data, analysis and graphs for each test were processed and compiled in Microsoft Excel spreadsheet, "BFSD2 Blank Tests.xls", provided with the electronic submission of this report. Appendix C provides copies of the spreadsheet results and includes data and graphs for the BFSD2 flow-through sensors. Table 2 below is a summary of the results of the blank tests

Table 2. Metals Blank Test Results Summary.

Metal	Blai	nk Flux (µg/m²/	day)	Repeatability (µg/m²/day)			
	Test 1(12)	Test 2 (6)	Test 3 (6)	Average Flux	+/- 95% C.L.	Std. Deviation	
Copper (Cu)	25	-13	15	2.82	8.73	19.7	
Cadmium (Cd)	-5.3	-0.8	-0.09	-0.52	0.75	2.8	
Lead (Pb)	2.8	5	1	3.16	1.59	2.0	
Nickel (Ni)	23	20	-6.7	10.28	7.34	16.4	
Manganese (Mn)	-289	-249	-250	-264.85	7.49	22.8	
Zinc (Zn)	-194	-13	200	-3.38	-68.61	197	
Silica (SiO2)* (*mg/m2/day)	-4	-3.3	1.4	-1.97	2.88	2.9	

5.1.1.1 Discussion of Metals Blank Results

As expected, the blank results for most metals showed little or no time trend, indicating minimal source or loss of target analytes during the blank experiments. Figures 23 through 29 provide graphs of concentration versus time for each analyte for each blank test. With the exception of lead and manganese, replicate analysis indicates that none of the metal fluxes were significantly different from a zero flux condition at the 95% confidence level. Copper results for the three replicates showed both small positive and small negative flux rates. Replicate blanks for cadmium were all small and negative, however the variability was sufficient that the mean was still not significantly different than zero. Results for lead indicated small positive flux rates with a mean value of 2.9 \Box g/m²/day which was different from the zero flux condition, suggesting a potential small source of lead in the experimental procedure. Nickel results indicated small positive and negative fluxes with no obvious uptake or sources of nickel from the system. Replicates for manganese all showed substantial negative flux rates indicating a significant loss of manganese due to some aspect of the experimental procedure. Results for zinc showed both positive and negative fluxes with no clear pattern of source or uptake.

Figure 23. Blank Performance for Copper (Cu).

Figure 24. Blank Performance for Cadmium (Cd).

Figure 25. Blank Performance for Lead (Pb).

Figure 26. Blank Performance for Nickel (Ni).

Figure 27. Blank Performance for Manganese (Mn).

Figure 28. Blank Performance for Zinc (Zn).

Figure 29. Blank Performance for Silica (Sio₄).

Scripps Institute of Oceanography analyzed silica concentrations, used to indicate chamber integrity and seal. The CA EPA request for an independent analysis of Silica could not be reasonably obtained from Battelle. Subsequent silica analyses were conducted on-site with field analytical systems (i.e., Hach Kit).

Results show a high, very repeatable level of Manganese uptake by the BFSD2. Results from earlier prototype BFSD blank tests were not consistent with this result and further investigation

is warranted. However, because manganese is not generally viewed as a toxic metal, the resolution of this issue is less critical than for other metals.

The somewhat higher blank fluxes observed for zinc are consistent with previous results and are attributed to the ubiquitous nature of zinc and associated contamination during sampling and analysis. Because previously measured flux rates for zinc generally lie outside the range of these blanks, and because of the higher toxicity thresholds for zinc relative to other metals, this is not considered as a serious problem. However, as with all trace metals, care must be taken to minimize zinc contamination during all phases of the experimental procedure. The higher variability between the zinc blank tests will make any results indicating small fluxes of zinc from sediments less conclusive.

5.1.1.2 Discussion of Metals Blank Tests

Although the three blank tests were reasonably trouble free and produced generally high quality data there are a number of points deserving further discussion and explanation.

5.1.1.2.1 Sensors

The flow-through sensors for dissolved oxygen and for pressure, Figures 30 and 31, produced data requiring explanation. The "noisy" dissolved oxygen data was discovered to be due to restricted flow over the sensing element. Flow improvements resolved the problem prior to the Paleta Creek demonstrations (see Figure 35). The oxygen measurements during the blank test are not critical because there is little oxygen depletion when no sediment is present. Drift of the pressure sensor readings was more problematic and resolution required trouble shooting at the factory, after the Paleta Creek demonstrations.

Figure 30. Blank Test Dissolved Oxygen.

Figure 31. Blank Test Pressure.

5.1.1.2.2 Ambient Seawater Sample

Sample bottle one was not used in blank test analyses, as well as subsequent Paleta Creek demonstration analyses. Analytical laboratory results clearly indicate that the metal concentrations in the water collected in bottle one as the BFSD2 descended to the test depth were not consistent with concentrations in the chamber after it was closed and sealed at the surface prior to descending to the test depth. CA EPA certification evaluators agreed that the sample taken at 6 minutes after the start of the test was a better representation of replacement water entering the chamber. The unused concentration value is still shown, in bold, in the spreadsheet. A sensitivity analysis of the affect of this change on dilution correction calculations and subsequent flux results show it to be insignificant. Consequently, an improved method to fill sample bottle one from more representative bottom water was implemented.

5.1.1.2.3 Metals Sample Analysis

Not all samples were analyzed to minimize analytical costs. For Blank Test 1 only the six odd-numbered samples were analyzed (with further changes, see next paragraph); for Blank Test 2 all

twelve samples were analyzed; for Blank Test 3 only the six even-numbered samples were analyzed. Also, additional trace metals beyond those identified for CA EPA certification evaluation were analyzed for future applications.

Blank Test 1 suffered a "False Start" when an error in a software control loop shut the test down after six minutes, following sample bottle two filling. The error was corrected from the surface and the test was restarted three hours later without raising the BFSD2 from the test depth. Sample bottle three filled immediately upon restart and sample bottle two was retained as representative of ambient conditions. To complete the set of six samples, sample bottle twelve with a 7-hour interval was added to the other odd-numbered samples. Blank Test 1 was 66 hours total duration.

5.1.1.3 Metals Blank Tests Assessment

It was concluded that the BFSD2 metals blank performance was statistically established and the values obtained were repeatable, precise and accurate enough to allow valid measurement of *in situ* sediment flux rates.

5.1.2 Organics Blank Tests

Three replicate 70-hour blank tests were conducted using BFSD2 between September 1, 2000 and November 27, 2000. The purpose of the tests was to establish system performance levels for selected polynuclear aromatic hydrocarbons (PAH) using standardized procedures as part of the demonstration project. Performance levels for selected polychlorinated biphenyl (PCB) congeners and pesticides were also measured for future potential applications. As shown in Figure 32, the tests were conducted *ex situ* at SSC San Diego using Naval Station San Diego (Paleta Creek) seawater.

Figure 32. Ex Situ BFSD2 Organics Blank Test Physical Setup.

The BFSD 2 collection chamber bottom was sealed with a polycarbonate plate and filled with seawater collected from the Paleta Creek industrial area within Naval Station San Diego, at the start of each 70-hour test. Paleta Creek has been designated as a "toxic hotspot" by the Regional Water Quality Control Board and has been selected for the initial demonstration of BFSD 2 for organics applications. Makeup seawater to replace collected sample volume and any leakage was likewise the same Paleta Creek source seawater. Prior to each test, routine procedures for decontamination of the sampling system were performed. The procedure differed from that used in metals applications only in that the Nitric acid rinse was omitted and a final Methanol rinse

was added. Samples were collected into 250ml precleaned amber glass sample bottles fitted with custom inline filter assemblies (Figure 6b). The filter element was a 47mm Gelman 1.0-micron binder-less borosilicate glass filter prepared by pre-combustion for 24 hours at 375 degrees Fahrenheit. The samples were collected, capped, labeled and shipped in the same commercially standard sample bottle. Routine chain of custody procedures were used for overnight shipment to Arthur D. Little, Inc. (ADL) analytical laboratory in Cambridge, MA. All samples were collected, shipped (chilled to 4 degrees), received and extracted within the EPA seven-day hold time requirement. Laboratory processing and analysis of the samples was in accordance with EPA SW-846 methods and procedures, including Methods 8270M and 8081A protocols modified based on results from a Method Detection Limit study performed under contract N66001-96-D-0050 by ADL for this project.

Each test produced twelve filtered 250ml (approximately) samples and one additional 500ml unfiltered source sample. Sample bottle one in each test was filled with source seawater passed through the chamber lid closure-activated valve at the initiation of the 70- hour test. Sample bottle two in each test was filled with seawater from the sealed chamber approximately 6 minutes after chamber lid closure. The remaining 10 sample bottles were filled from the sealed chamber at 7-hour intervals. The 500ml unfiltered sample was taken from the residual source seawater container at the conclusion of the test. Table 3, 4 and 5 are summaries of the results of the organics blank tests.

Table 3. PAH Blank Tests Results Summary.

РАН		nk Flux (ng/m²/		Repe	atability (ng/m	²/day)
	Test 1	Test 2	Test 3	Average Flux	+/- 95% C.L.	Std. Deviation
1. Naphthalene	-243.5	-448.1	-629.3	-440	218.4	193.0
2. Acenaphthene	-32.4	ND	ND	-32.4	n/a	n/a
3. Acenaphthylene	-350.2	141.0	275.9	22.2	372.9	329.5
4. Fluorene	125.5	-69.3	-84.2	-9	132.4	117.0
5. Phenanthrene	89.0	-39.8	-16.3	11	77.6	68.6
6. Anthracene	182.3	53.1	-324.8	-30	298	263
7. Fluoranthene	-421.5	-1539.0	-1308.9	-1089.8	667.8	590.1
8. Pyrene	76.6	-447.1	-431.9	-267.5	337.3	298.0
9. Benzo(a)anthracene	ND	ND	ND	n/a	n/a	n/a
10. Chrysene	23.9	-61.9	ND	-19.0	84.2	60.7
11. Benzo(b)fluoranthene	ND	ND	-134.3	-134.3	n/a	n/a
12. Венzo(k)fluoranthene	ND	ND	-9.8	-9.8	n/a	n/a
13. Benzo(a)pyrene	ND	ND	ND	n/a	n/a	n/a
14.Indeno(1,2,3-c,d)pyrene	ND	ND	ND	n/a	n/a	n/a
15. Dibenz(a,h)anthracene	ND	ND	ND	n/a	n/a	n/a
16. Benzo(g,h,I)perylene	ND	19.6	ND	19.6	n/a	n/a

Table 4. PCB Blank Test Results Summary.

PCB	Bla	nk Flux (ng/m²/	day)	Repeatability (ng/m²/day)			
	Test 1	Test 2	Test 3	Average Flux	+/- 95% C.L.	Std. Deviation	
(8) 2,4'-Dichlorobiphenyl	-66.6	ND	47.8	-9.4	112.2	80.9	
(18) 2,2',5-Trichlorobiphenyl	205.2	23.3	27.0	85.2	117.6	104.0	
(28) 2,4,4'-Trichlorobiphenyl	-8.0	ND	ND	-8.0	n/a	n/a	
(52) 2,2',5,5'-Tetrachlorobiphenyl	ND	7.9	89.9	49	80.4	58.0	
(66) 2,3',4,4'-Tetrachlorobiphenyl	53.6	16.6	ND	35	36.2	26.2	
(101) 2,2',4,5,5'-Pentachlorobiphenyl	57.8	57.4	-3.5	37	40	35	
(118) 2,3',4,4',5-Pentachlorobiphenyl	ND	2.7	2.3	2.5	0.3	0.2	
(153) 2,2',4,4',5,5'-Hexachlorobiphenyl	ND	ND	9.5	9.5	n/a	n/a	
(180) 2,2',3,4,4',5,5'-Heptachlorobiphenyl	ND	-9.6	ND	-9.6	n/a	n/a	
(206) 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	-2.8	247.0	-17.0	75.7	168.0	148.5	
(209) 2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl	-18.5	ND	ND	-18.5	n/a	n/a	

Table 5. Pesticide Blank Test Results Summary.

Pesticide	Blai	nk Flux (ng/m²/	day)	Rep	Repeatability (ng/m²/day)			
	Test 1	Test 2	Test 3	Average Flux	+/- 95% C.L.	Std. Deviation		
alpha-Chlordane	7.0	ND	ND	7.0	n/a	n/a		
2,4'-DDD	7.0	ND	ND	7.0	n/a	n/a		
Methoxychlor	25.7	ND	ND	25.7	n/a	n/a		
Endosulfan I	48.8	ND	ND	48.8	n/a	n/a		
hexachlorobutadiene	ND	ND	22.0	22.0	n/a	n/a		
Heptachlor	304.5	ND	ND	304.5	n/a	n/a		
Heptachlor Epoxide	ND	ND	8.8	8.8	n/a	n/a		
alpha-hexachlorocyclohexane	3.3	ND	ND	3.3	n/a	n/a		
beta-hexachlorocyclohexane	61.0	ND	ND	61.0	n/a	n/a		
lindane	35.2	132.3	33.8	67.1	63.9	56.5		
trans-Nonachlor	40.8	ND	ND	40.8	n/a	n/a		

5.1.2.1 Results of Organics Blank Tests

The Paleta Creek seawater collected for these tests contained a broad mixture of dissolved organic contaminants targeted by this study, but not all 63 of them. Of the 34 targeted organic contaminants that were detected, a number of them were not measurable in all three blank tests. Further, within a number of individual blank tests where a target contaminant was detected, one or more time-series samples fell below the detection limits. Notwithstanding such issues, analysis results plotted as time-series, with non-detects removed, show little if any, release or uptake of detected target contaminants by the BFSD2 with the exception of Naphthalene and Flouranthene. These two PAHs both consistently indicated an uptake trend likely due to sorption onto the many plastic surfaces of the collection chamber and recirculation system. Statistical analysis of the data for repeatability was applied to those tests with multiple measurements.

For the targeted EPA 16 Priority PAHs, the results were generally complete for the eight lowest molecular weight (through three Benzene rings) compounds. "Non detects" were much more prevalent with the eight heavier molecular weight PAHs (four-ring including Benzo(a)anthracene and higher) and four of the 16 targeted PAHs were not detected in all three blank tests although source seawater did indicate very low concentrations (less than 2 ng/L or parts/trillion) were present. Acenaphthene, a two-ring PAH, was the only low molecular weight compound not sufficiently detected in all three blank tests to establish repeatability statistics however a time-series flux trend (uptake or release) was established. Acenaphthene was detected in all three seawater source samples and in all 12 blank test 1 samples but dropped below detection limits in 10 of 12 blank test 2 samples and 9 of 12 blank test 3 samples. All remaining light-end PAHs (up to Pyrene) were detected in all 12 samples of all three blank tests and Table 3 provides full repeatability statistics for them. Timeseries flux trends were also established for all of them. None of the heavier-end PAHs were detected sufficiently in all 12 samples of all three blank tests to yield full repeatability statistical results. Only Chrysene was detected sufficiently in two of the three blank tests to establish limited repeatability statistics. Benzo(b)fluoranthene, Benzo(k)fluoranthene and Benzo(g,h,I)perylene were detected sufficiently in only one blank test and repeatability statistics cannot be developed for them. Timeseries flux trends were established for all four of these heavier-end PAHs. The remaining four PAHs (Benzo(a)anthracene, Benzo(a)pyrene, Indeno(1,2,3c,d)pyrene and Dibenz(a,h)anthracene) were not sufficiently detected in any of three blank tests to establish either repeatability statistics or time-series trends.

For the 20 targeted PCB congeners and 16 targeted pesticides, the results were somewhat less complete. Three PCB congeners (#18, #101, #206) and one pesticide (Lindane) were sufficiently detected in all three blank tests to establish full repeatability statistics and time-series flux trends. Two of the 20 PCBs and one of the 16 pesticides were detected sufficiently in two of the three blank tests to establish limited repeatability statistics and time-series flux trends. Four of 20 targeted PCBs and nine of the 16 targeted pesticides were detected in only one blank test with sufficient data to establish time-series flux trends, but not repeatability statistics. The remaining eleven PCB congeners and five pesticides were not detected sufficiently in any of the three blank tests to establish either repeatability statistics or time-series trends. Six of these remaining eleven PCB congeners and all five of these remaining pesticides were not detected in the unfiltered source seawater.

5.1.2.2 Discussion of Organics Blank Tests

It was not unexpected to find very low levels of the heavier PAHs dissolved in the source seawater because of the known reduction in solubility of PAHs as the number of Benzene rings increase. This insolubility, combined with a low, but limited detection limit led to less complete and even non-detection of the heavier PAHs. However, the number of Benzene rings common within groupings of

PAHs allows a limited extension of the otherwise generally complete results. This applies for groupings of two and three-ring contaminants as well as the less complete and even missing results within the four, five and six-ring contaminant groupings. Within groups, time-series results for missing PAHs can be predicted to be consistent with those that were measured. This prediction can be made for both the complete lighter PAH results and the less complete heavier PAH results. Overall, the results establish that the various plastic and other materials of the BFSD2 which are in contact with the sampled seawater do not adversely adsorb or release the target PAHs within measurable limits, with the possible exceptions of Naphthalene and Flouranthene, as described in the Results section. Apparent adsorption of these two PAHs introduces a relatively small error to field measurements which are subsequently resolved by normalization during data processing. Furthermore, careful consideration was made when materials for the chamber, mixing mechanism and sample bottles were considered. Surfaces for minimal adsorption or release of the entire suite of contaminants analyzed were considered and practical decisions made. With polycarbonate chamber, Teflon flow lines and valves and glass sample bottles, the BFSDII has the most practical combination of materials for the minimal adsorption of release of these contaminants. Finally, although repeatability statistics requires more than a single data set, and three tests were conducted, those contaminants with only two data sets were analyzed albeit with lower confidence results. The repeatability of PAHs with a single data set can only be estimated, with no statistical confidence, and the four heavier PAHs with no data sets can only be predicted, as above. Thus, because of the common attributes of groups of PAHs and with the established results where data were available, it is estimated and predicted that field measurements of those PAHs with incomplete blank test results will be approximately similar to the other more complete PAHs measured. At sites where precise measurements are required for targeted PAHs which were not established with this series of blank tests an additional blank test using site-specific seawater or clean seawter or clean seawter spiked with the target PAH(s) may be necessary

Common features among PCB congeners allow much the same degree of extension of results discussed above for PAHs. Pesticides do not however support the same degree of extension because of the uncertainty of their composition and the limited results achieved. Pesticides were detected at much lower concentrations than the PAHs. For both PCBs and pesticides, blank test data sets that were sufficiently complete did establish acceptable repeatability considering such low levels (<1 ng/L). The remaining blank tests (with only one data set) established, as with PAHs, that the various plastic and other materials of the BFSD2 which are in contact with the sampled seawater do not adsorb or release the particular PCB congener or pesticide within measurable limits. The time-series flux trends for these contaminants show low and variable rates (slopes). It is noted that PCB congener 18 (2,2',5-Trichlorobiphenyl) showed a small release during the first blank test, but did not repeat in subsequent tests. In order to make the most from the available data, especially where only one of the three blank tests had sufficient detects (i.e., at least 6 measurements distributed evenly or grouped at one end), non-detects were removed and the remaining measurements used. This approach was used extensively for the PCB congeners and pesticides and much less for the heavier PAHs (only).

Ancillary data collected and recorded, including chamber temperature, pressure, salinity, pH and dissolved oxygen indicated chamber conditions remained stable throughout the tests. The pH sensor recorded a slight reduction in pH (<0.5) which occurred gradually over 70 hours in all three tests. The pressure sensor recorded changes in barometric conditions as well as the vacuum affect of each sample collection bottle being activated at 7-hour intervals during the tests.

Silica measurements used to confirm chamber integrity during BFSD2 metals applications will not be used for organics applications. The need to conserve sample volume to maximize detection levels

combined with experience in comparing onboard sensors with silica results in previous tests supports reliance on the sensors to identify any loss of chamber seal integrity. Dissolved oxygen an pH followed distinct trends when the silica test indicated a good seal. These two parameters show promise in interpreting seal integrity and will be used during organics applications.

5.1.2.3 Organics Blank Tests Assessment

It was concluded that the BFSD2 organics blank performance was adequately established and the values obtained are sufficiently repeatable, precise and accurate to statistically distinguish differences from measured *in situ* sediment flux rates for a number of targeted PAHs. Measurement of *in situ* flux rates for selected PCB congeners and pesticides are also statistically distinguishable where blank test results are available.

5.1.3 San Diego Bay, Paleta Creek Metals Demonstrations

Two 70-hour metals demonstrations of BFSD 2 were conducted at the heavily industrialized Paleta Creek entrance to San Diego Bay (see Figure 33). The quiescent, marina-like area is used for mooring support craft and receives periodic stormwater inflow from the Paleta Creek drainage basin. The site was selected due to known levels of trace metals in the sediments, as established in two previous prototype BFSD tests, and because of its convenient location for an initial field test and first demonstration of BFSD2. Two demonstrations were conducted two weeks apart (June 6-8, 1998 and June 18-22, 1998) with the first demonstration being a full dress rehearsal for the second, formal demonstration. The locations for the tests were within 10 feet of one another and within the same proximity to two previous prototype BFSD deployments. The tests were conducted at about 18 +/- 3 feet depth, depending on tidal flow, and offshore about 30 feet from a quay wall. Deployment and retrieval was from the SSC SD research vessel R/V ECOS.

Figure 33. BFSD2 Paleta Creek Metals Deployment.

Prior to both tests, the BFSD 2 was cleaned and prepared using the same procedures used during the triplicate blank tests. Aboard R/V ECOS after loading and connecting various equipment (laptop computer, TV monitor and light, cabling) a standard pre-deployment checklist was followed. Once moored at the site with the GPS location logged, the BFSD 2 was lowered to within 2 feet of the bottom and a 15-minute test was started to stabilize the flow-through sensors and to measure the ambient dissolved oxygen level. This test was run twice during the first demonstration to assure repeatability. The ambient dissolved oxygen level is used to establish system control limits for maintaining a narrow range of dissolved oxygen in the collection chamber during the 70-hour test and for assessment of sediment oxygen uptake rates. As requested by CA EPA certification

evaluators, a second, independent dissolved oxygen measurement was made outside the collection chamber during the second demonstration by attaching an additional instrument to the BFSD 2 frame next to the collection chamber.

After entering the control limits into the 70-hour test program software and downloading it, the BFSD2 was raised for manual activation of the number one sample bottle valve. A new, higher mounting location for the valve was implemented following the blank tests to improve collection of representative ambient bottom water. With the BFSD2 partially submerged and the collection chamber approximately 3 feet below the surface, the valve was opened manually and the BFSD2 was immediately lowered back to approximately 2 feet from the bottom. After a short delay to arrange deck release lines, the BFSD2 was then allowed to free-fall to the bottom and insert its collection chamber into the sediment.

The landing and insertion were monitored using a video camera. Activation of the three insertion indicator lights was verified. The video camera, aided by a floodlight, also allowed a limited assessment of the site prior to initiating the 70-hour test. And, after starting the test, it also allowed confirmation of lid closure prior to complete detachment of lanyards and connections for autonomous operation. Both demonstration deployments were straightforward and without problems. The R/V ECOS returned to SSC SD and left the BFSD2 in its autonomous operation mode.

Retrieval of the BFSD2 after the tests was routine except for malfunction of the commercial acoustic recovery system. Recovery was with a separate line stowed at the site. Acoustic receiver burn-wire modification, latch modification, and most importantly, sandpaper cleaning of the ground electrode were subsequently implemented. Once BFSD2 was washed down and on deck, the twelve 250ml sample bottles were removed for processing using EPA handling and chain of custody procedures. During the first demonstration the samples were returned to SSC SD for splits (silica and metals). For the second demonstration splits were made aboard R/V ECOS using pre-acidified 125ml containers for metals samples and pre-cleaned 25ml beakers for silica measurements. Silica measurements were made aboard R/V ECOS using a field portable Hach model DR2010 Instrument. The metals samples were packaged and shipped to Battelle Marine Sciences Laboratory for analysis of the six metals selected for CA EPA certification evaluation. All data and results for the two demonstrations are compiled in Microsoft Excel spreadsheets "BFSD2 PCPD.xls" and "BFSD2 PCD.xls", provided with the electronic submission of this report. Appendix C provides copies of the spreadsheet results and includes data and graphs for the BFSD2 flow-through sensors.

Tables 6 and 7 summarize the results of the two Paleta Creek metals demonstrations.

Table 6. BFSD 2 Metals Results from the Paleta Creek Pre-Demonstration (PCPD).

Metal	Flux	+/- 95% C.L.	Flux rate Confidence		Triplicate Blank Flux	(µg/m²/day)	Bulk Sediment	Overlying Water
	(µg/m²/day)	(யூg/m²/day)	(%)		Average	+/- 95% C.L.	(µ9/9)	(μg/L)
Copper (Cu)	-1.75	19.71	38.1%		2.82	8.73	165	1.54
Cadmium (Cd)	9.64	4.14	100.0%		-0.52	0.75	1.16	0.148
Lead (Pb)	11.06	7.94	100.0%		3.16	1.59	98.9	0.1:561
Nickel (Ni)	25.24	4.62	100.0%		10.28	7.34	19.1	0.9262
Manganese (Mn)	71.33	701.54	80.7%		-264.85	7.49	405	28.12
Manganese (Mn) ¹	5763.99	23621.74	100.0%		-264.85	7.49	405	28.12
Zinc (Zn)	715.02	257.38	100.0%		-3.38	65.22	356	8.90
Other								
Oxygen (O ₂)* (*ml/m ² /day)	-1050.87	86.25	na		na	na	na	5.2
Silica (SiO ₂)* (*mg/m ² /day)	30.29	11.33	100%		-1.97	2.88	na	0.81
I. Min flux calculated on the basis of first three samples due to non-linearity								

Table 7. BFSD 2 Metals Results from the Paleta Creek Demonstration (PCD).

Metal	Flux	+/- 95% C.L.	Flux rate Confidence	Triplicate Blan	ık Flux (μg/m²/day)	Bulk Sediment	Overlying Water		
	(_µ g/m²/day)	(µg/m²/day)	(%)	Average	+/- 95% C.L.	(μg/gl)	(μQ/L)		
Copper (Cu)	-6.57	17.74	80.7%	2.82	8.73	165	1.46		
Cadmium (Cd)	7.02	3.87	100.0%	-0.52	0.75	1.16	0.06897		
Lead (Pb)	4.32	12.39	65.6%	3.16	1.59	98.9	0.07879		
Nickel (Ni)	19.44	8.75	99.8%	10.28	7.34	19.1	0.8378		
Manganese (Mn)	103.94	957.14	73.3%	-264.85	7.49	405	24.02		
Manganese (Mn) ¹	4194.24	101841.32	99.9%	-264.85	7.49	405	24.02		
Zinc (Zn)	574.26	274.14	100%	-3.38	-68.61	356	8.38		
Other									
Oxygen (O ₂)* (*ml/m ² /clay)	-1341.12	160.18	na	na	na	na	4.7		
Silica (SiO ₂)* (*mg/m ² /day)	28.75	15.63	100%	-1.97	2.88	na	0.79		
1. Mn flux calculated	1. Mn flux calculated on the basis of first three samples due to non-linearity								

Numbers in the Flux Rate Confidence column indicate the statistical confidence that the measured flux rate is different than the blank flux rate. Results from the blank study, bulk sediment analysis, overlying water and oxygen uptake analysis are shown for comparison.

Figures 34 and 35 illustrate graphical comparison of the results.

Figure 34. Paleta Creek Metals Pre-Demonstration Results.

Figure 35. Paleta Creek Metals Demonstration Results.

5.1.3.1 Discussion of Paleta Creek Demonstrations Results

In general, BFSD2 results from the two Paleta Creek demonstrations were similar and consistent with previous prototype deployments at this location. Figures 36 and 37 are the sets of graphs of concentration versus time for each analyte (red squares) in each of the demonstrations, compared with blank performance (blue triangles). The concentrations of analyte plotted on these graphs here and throughout this report are not the measured concentrations of each sample but concentrations that have been corrected for dilution effects from sampling water from the chamber and intercept corrected for the linear slope analysis. Therefore the concentrations shown could change depending on how many samples are included in the slope analysis. This is illustrated well in the manganese graphs where two slope analyses were performed with different numbers of samples. It appears concentrations for each sample are different. These graphs were generated in the process of calculation the slope or flux of each analyte, and it is the flux rate and not individual sample concentrations which are interpreted in these graphs.

The results for the Pre-Demonstration indicate that Cadmium, Lead, Nickel and Zinc had fluxes out of the sediment that were highly significant when compared to the blank chamber results. The flux of copper indicated a negative flux (sediment uptake) although the statistical confidence was only 65%.

Manganese fluxes showed a consistent trend or pattern here at Paleta as well as at subsequent deployments in Pearl Harbor. Flux curves would define a higher rate of flux in the first part of the test while becoming lower or negative in the later part. The reason for this drop is not known, but could be attributed to oxidation and subsequent precipitation or flocculation when the chamber water reached a high concentration which results in a "quenching"-like trend. Certainly some process was changing the flux rate of manganese as the test proceeded. So, in order to estimate actual flux rates of manganese from sediments as if the chamber were not present, the first three values obtained from the test was used for calculating a flux rate. This is similar to how dissolved oxygen demand is calculated before the system becomes anoxic and/or the oxygen feed system kicks in. This approach results in a more conservative estimate of flux rates for this metal, i.e. higher outward fluxes. We will use and discuss the flux values obtained from this later method of using the first three samples drawn from the chamber for manganese. However, flux curves and values from estimated from the entire test duration are also presented here for consideration. Therefore, manganese also had a positive outward flux as did cadmium, lead, nickel and zinc but the statistical confidence was somewhat lower.

Figure 36. Paleta Creek Metals Pre-Demonstration Concentration vs. Time.

Figure 37. Paleta Creek Metals Demonstration Concentration vs. Time.

Results for the formal Demonstration were similar to those of the Pre-Demonstration with the exception of Lead. Cadmium, Nickel and Zinc all had fluxes out of the sediment that were highly significant when compared to the blank results. The magnitude of the Cadmium, Nickel and Zinc fluxes for the Demo were similar, though slightly lower, than those observed for the Pre-Demonstration. Manganese again had a positive outward flux but a lower statistical confidence. As with the Pre-Demonstration, the flux of copper was negative (sediment uptake) although the statistical confidence was <0.1%.

5.1.3.1.1 Flux Measurements

As shown in Tables 6 and 7, and illustrated in Figures 34 through 37, cadmium, lead, nickel, manganese and zinc all had positive flux rates which were statistically different from blank test results. Also, the relative magnitudes of the flux rates were consistent for both demonstrations and with earlier prototype work at the site. In other words, zinc had a larger flux rate than manganese; manganese was larger than nickel; nickel was larger than lead; lead and cadmium were very close to the same magnitude. The magnitude of the flux rates for the formal Demonstration were generally similar, though somewhat less (except manganese), than those of the Pre-Demonstration test two weeks earlier, however, the differences are not statistically significant. A correlation with sediment oxygen uptake is evident and may be an explanation for the slight downward shift of fluxes. The flux rate for manganese is likely more positive than measured when corrected by the large, very repeatable negative flux measured in the blank tests. Copper results indicate a slightly negative flux (sediment uptake) which has been observed in previous work. This may be attributed to pore water chemistry involving sulfide binding, complexation with organic matter, or elevated water column concentrations associated with hull leachate sources as discussed extensively in earlier reports. The oxygen uptake measured during both deployments is consistent and indicates continuous consumption of dissolved oxygen, which can be attributed to oxidation of organic matter and biological uptake at the sediment water interface.

5.1.3.2 Discussion of Paleta Creek Demonstrations Tests

Important aspects of the demonstrations including performance indicators and deployment problems are discussed below.

5.1.3.2.1 Performance Indicators

Several methods were used to evaluate system performance of the BFSD2 during and after the demonstrations. To assure a proper seal of the chamber, the deployment was monitored with an underwater video camera, insertion light indicators connected to pressure sensors on the sealing flange were monitored, and silica, pH, and oxygen levels within the chamber were monitored for expected trends. Landing and insertion monitored with the video camera and landing lights indicated a good seal. After starting the test, the video camera also confirmed lid closure of the chamber.

A linear increase in silica during the deployments was used as another indicator of proper system performance and chamber seal. The results, shown on Figures 36 and 37, show that silica concentration increased linearly, and that the silica flux rates were consistent and repeatable for the two deployments, indicating proper system performance and chamber seal. Oxygen variations in the chamber were monitored to assure maintenance of ambient oxygen levels, proper chamber seal, and to evaluate sediment oxygen uptake. The rate of oxygen consumption (sediment uptake) during the deployments, also shown in

Figures 36 and 37, was sufficient to cause repeated cycling of the BFSD2 oxygen recharge subsystem. Figure 38 are graphs of the oxygen sensor data for the two deployments showing the operation of the control system. The control limits selected allowed the dissolved oxygen to remain within approximately 1 ml/L of the ambient level and still yield data to assess the sediment uptake rate. The multiple cycles for both recharge and uptake were consistent and repeatable.

Figure 38. Paleta Creek Metals Demonstrations Oxygen Control Results.

As requested by CA EPA certification evaluators, an independent dissolved oxygen measurement of ambient bottom water at the BFSD2 test site was made during the formal Demonstration deployment. The measurement instrument was battery power-limited and operated for only the first 39 hours of the deployment. During that period, cyclic changes of approximately 0.5 ml/L occurred about the ambient level of approximately 5 ml/L. Thus oxygen results reconfirm that a proper chamber seal was achieved, and that oxygen levels within the chamber were maintained close to the ambient level and with similar, though slightly larger, variability to that observed outside the chamber.

In the properly sealed BFSD 2 chamber, the pH will generally show a decreasing trend as the breakdown of organic matter at the sediment water interface drives CO₂ into the chamber water. This decreasing trend was observed during both deployments as shown in Figure 39. Some small fluctuations from the expected steady decline in chamber pH were seen. While the exact cause of these fluctuations is not known, a number of factors including photosynthetic activity and sediment and pore water oxidation chemistry can account for the minor reversals. In the absence of other evidence of a breech in chamber seal, these small fluctuations were attributed to natural variations.

Figure 39. Paleta Creek Metals Demonstrations pH Results.

5.1.3.2.2 Deployment and Recovery Problems

Two minor problems were encountered during the demonstrations. The first was failure of the commercial acoustic recovery system to function. During the Pre Demonstration the failure was attributed to one too many burn-wire strands which led to excessive time for functioning. One strand was removed for the next test, however the release latch mechanism was corroded and failed to release the buoy after the burn-wire had properly functioned. The latch was subsequently modified and is an inspection point as part of the pre-deployment checklist procedure. Most importantly it was determined that abrasive cleaning of the ground (plating) electrode with sandpaper must be performed after every use.

The second problem was the concentration of metals in the water collected from the open chamber, as it descended to the bottom was not consistent with concentrations in the chamber shortly after it reached the bottom. The values from laboratory analysis of the water in sample bottle one (which filled during descent, after manual operation of its valve near the surface) and from water in sample bottle number two (filled from the chamber 6 minutes after lid closure) were inconsistent. As with the blank tests, the concentration values from the second sample bottle were considered more representative of makeup water entering the chamber and were used in dilution correction calculations. And, as with the blank tests, a sensitivity analysis indicated an insignificant affect on flux results. A more acceptable method for collecting representative bottom water was subsequently implemented and test deployed prior to the Pearl Harbor demonstrations.

5.1.3.3 Discussion of Data Interpretation

In order to understand the significance of the measured flux rates in Paleta Creek from a water quality standpoint, it is necessary to estimate the potential loading and subsequent increase in metals concentrations within the overlying water. A simplified analysis is presented here in order to illustrate the utility of the BFSD2 data for this purpose.

The Paleta Creek study area where the demonstrations were performed is bordered by land on three sides, and open to San Diego Bay only to the southwest. The bounded area has a surface area of about 62400 m². The average depth of the area is about 7 m, and thus the overall volume is about 436800 m³. The tidal range in San Diego Bay averages about 1.4 m. A simple estimate of the residence time can be obtained based on complete tidal flushing as

$$\tau_{res} = \frac{V_{pc}}{V_{tp}} = \frac{D_{pc}}{H_t N_t} = \frac{7}{1.4 \times 2} = 2.5 \, days$$

Where τ_{res} is the residence time, V_{pc} is the volume of the Paleta Creek study area, V_{tp} is the tidal prism volume for the area, D_{pc} is the depth of the study area, H_t is the tidal range, and N_t is the number of tides per day.

In steady state conditions, the residence time can be related to the overlying water concentration by the relation

$$\tau_{\rm res} = \frac{m_{\rm ow}}{\dot{m}_{\rm sed}}$$

Where m_{ow} is the mass of a given metal in the Paleta Creek study area overlying water, and m_{sed} is the loading from the sediment.

The overlying water concentration can thus be estimated from the flux rates as

$$c_{\scriptscriptstyle ow} = rac{m_{\scriptscriptstyle ow}}{V_{\scriptscriptstyle pc}} = rac{ au_{\scriptscriptstyle res} \dot{m}_{\scriptscriptstyle sed}}{V_{\scriptscriptstyle pc}} = rac{ au_{\scriptscriptstyle res} F_{\scriptscriptstyle sed} A_{\scriptscriptstyle pc}}{V_{\scriptscriptstyle pc}} = rac{ au_{\scriptscriptstyle res} F_{\scriptscriptstyle sed}}{D_{\scriptscriptstyle pc}}$$

Where F_{sed} is the sediment flux rate measured by the BFSD, and A_{pc} is the surface area of the sediment in the Paleta Creek study area. Using this relation, the estimated overlying water concentrations for each of the metals from each of the surveys can be estimated as shown in Table 8 below.

Table 8. Estimated Sediment Flux Contribution to Overlying Water Concentrations for the Paleta Creek Study Area.

Metal	PCPD Flux	PCD Flux	τ_{res}	D _{pc}	C₀w PCPD	C₀w PCD	C _{ow} meas.	PCPD % of meas.	PCD % of meas.
	μg/m²/day	μg/m²/day	days	m	ug/l	ug/l	ug/l		
Copper (Cu)	-2	-7	2.5	7	-	-	2.41	-	-
Cadmlum (Cd)	10	7	2.5	7	0.0036	0.0025	0.0786	4.54%	3.2%
Lead (Pb)	11	4	2.5	7	0.0039	0.0014	0.182	2.16%	0.8%
Nickel (Ni)	25	19	2.5	7	0.0089	0.0068	1.02	0.88%	0.7%
Manganese (Mn)	73	105	2.5	7	0.0261	0.0375	21.0	0.12%	0.2%
Zinc (Zn)	716	575	2.5	7	0.2557	0.2054	8.91	2.87%	2.3%
Silica (SiO₂)	30*	30	2.5	7	0.011	0.011	0.79	1.35%	1.4%
*mg/m²/day **	mg/l								

Note: C_{ow} measured is the overlying water concentration that was measured during the PCD study. The percent of measured column indicates the fraction of the overlying water concentration that can be explained by the sediment flux.

Comparing the estimated overlying water concentration to the measured concentration indicates that the contribution due to sediment fluxes ranges from a high of 4.5% for cadmium, to a low of about 0.2% for manganese. In practice, these estimates could be used to evaluate the potential benefit of a sediment removal or capping action compared to a no-action scenario. The simple model employed here neglects many factors such a s tidal flushing efficiency of the study area and scavenging of metals near the sediment-water interface that could influence the estimated concentrations. If the tidal flushing is not complete (which is realistic), then the residence time and estimated contribution from the sediments would increase. A typical flushing efficiency is about 50%, which wou ld increase the estimated Cow by a factor of 2. Colloid and particle scavenging near the sediment water interface would tend to reduce the s ediment flux contribution, although the magnitude of this process is not well known.

5.1.4 San Diego Bay, Paleta Creek Organics Demonstration

One 70-hour organics test using Benthic Flux Sampling Device 2 (BFSD2) was conducted March 2-5, 2001 at the heavily industrialized Paleta Creek entrance to San Diego Bay, within the borders Naval Station San Diego. Figure 40 is a picture of the area which is used for mooring Navy industrial waste and sewage collection barges, emergency oil spill response vessels, and other transient industrial support vessels. The site was selected as one heavily studied over the years and likely to produce detectable and mobile organic contaminants. Also, the site was used for the BFSD2 *metals* flux demonstrations during June, 1998 and has subsequently been designated by the California Regional Water Quality Control Board as San Diego Bay's most "toxic hotspot". A sediment survey of the area conducted by SSC SD during December, 2000 using gravity core samples produced high levels of the US EPA's 16 priority Polynuclear Aromatic Hydrocarbons (PAH) expressed as Total Petroleum Hydrocarbons (TPH). The site was also a convenient location for this first organics field test. The tests were conducted at about 18 +/- 3 feet depth, depending on tidal flow, and offshore from a quay wall about 30 feet. Deployment and retrieval was from the SSC SD research vessel (R/V) Ecos.

Figure 40. Paleta Creek, San Diego Bay.

Prior to the test, the BFSD2 was cleaned and prepared using the same procedures used for the triplicate organics blank tests. Aboard R/V Ecos, after loading and connecting various equipment (laptop computer, TV monitor and light, cabling) a standard pre-deployment checklist was followed. Once moored at the site with the GPS location logged, the BFSD2 (shown in Figure 41) was lowered to near the bottom and the landing

Figure 41. BFSD2 Paleta Creek Organics Deployment.

site was surveyed by remote video for any obstructions or other features which could prevent successful insertion of the collection chamber into the sediment. The BFSD2 was then lowered to the bottom at the maximum rate allowed by the deck hoist (about 1ft/sec) and the landing and insertion were monitored using the video camera. Activation of three battery-powered lights by switches mounted on the chamber at the 3-inch level was verified and used to establish adequate sediment insertion. The landing produced a minimal amount of resuspension. The 15-minute "Sensor Check" program was then started to close the chamber lid, to stabilize the flow-through sensors and to measure the ambient dissolved oxygen level. Closing the chamber lid sealed the chamber and activated collection of an ambient water sample. Measurement of the ambient dissolved oxygen level was used to establish system control limits for maintaining a narrow range of dissolved oxygen in the collection chamber during the 70-hour test. Dissolved oxygen measurements data taken during the test are also used for assessment of sediment oxygen uptake rates.

After establishing and entering the dissolved oxygen control limits into the 70-hour test program and downloading it to the BFSD2, the flux test was started. The initial autonomous functions were monitored from R/V Ecos to assure proper operation of the BFSD2 prior to disconnecting the cables and dropping them overboard. Proper data recording and rotary sample valve commands were confirmed. R/V Ecos departed the site and left BFSD2 in place to perform the 70-hour autonomous sampling operation.

Retrieval of BFSD2 after completion of the test, shown in Figure 42, was routine except for malfunction of the commercial acoustic recovery system (the latch required subsequent modification). Recovery was aided by the clarity of the water and allowed a boat hook to be used to jar the recovery buoy loose from the BFSD2. Once BFSD2 was washed down and on deck, the twelve 250 ml sample bottles were removed for processing using EPA handling and chain of custody procedures. All bottles were full and inline filter elements were slightly discolored, indicating low turbidity within the chamber. Before moving location, a sediment sample was collected from the BFSD2 landing site. Onboard R/V Ecos, the sample bottle filter assemblies were removed and replaced with precleaned caps, preprinted labels were attached to the samples and packaging for overnight shipment was completed.

Figure 42. BFSD 2 Paleta Creek Organics Demonstration Recovery.

As the samples were being processed onboard R/V Ecos, the recorded data files from the 70-hour test were uploaded and entered into a standardized Excel spreadsheet template for data processing. The sensor data, plotted as time-series indicated a successful deployment. As can be seen in Figure 43, there was no sudden pH level shifts indicating loss of chamber seal and the oxygen control system maintained the dissolved oxygen level within the set limits. The slowly reducing trend for pH level was normal and is indicative of biological activity. The slight increases observed in pH near 28 hours and again near 50 hours correspond to midday periods and are most likely associated with benthic algal production and a corresponding consumption of C0₂ and increase in pH. Salinity, temperature and pressure were also normal.

Figure 43. BFSD 2 Paleta Creek Organics Demonstration Recovery.

The samples were packaged and overnight air-shipped that afternoon to ADL for extraction and analysis in accordance with the processes, procedures and controls established under the Method Detection Limit study and used for the triplicate blank tests. All data and results for the demonstration are compiled in Microsoft Excel spreadsheets "PC Organics Demo - PAHs (Part1&2).xls", "PC Organics DemoPCBs.xls" and "PC Organics Demo-Pesticides.xls" provided with the electronic submission of this report. Appendix C provides copies of the spreadsheet results and includes data and graphs for the BFSD2 flow-through sensors.

Tables 9, 10 and 11 provide a summary of the flux results for selected PAHs, PCB congeners and pesticides for the Paleta Creek organics demonstration.

Table 9. BFSD2 PAH Results Summary for Paleta Creek Demonstration.

P.AH	Flux	+/- 95% C.L.	Flux Rate Confidence	Triplicate Blank I	Flux (ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.	(ng/g)	(ng/L)
1. Naphthalene	459.20	429.58	94.5%	-440.30	458.38	13	6.7
2. Acenaphthene	337.58	178.97	100.0%	-32.40	50.34	19	9.7
3. Acenaphthylene	105.51	183.82	33.8%	208.47	112.60	220	7.6
4. Fluorene	173.17	149.76	100.0%	-76.74	28.38	34	2.3
5. Phenanthrene	489.25	659.77	100.0%	10.95	10.95	240	8.2
6. Anthracene	569.42	260.29	100.0%	117.68	64.62	470	5.3
7. Fluoranthene	365.55	397.63	100.0%	-1423.95	178.41	890	37
8. Pyrene	951.97	755.67	100.0%	-439.51	70.73	740	13
14. Indeno(1,2,3-c,d)pyrene	-65.35	906.77	NA	NA	NA	470	1.4
16. Benzo(g,h,i)perylene	-46.63	263.97	67.7%	20.15	65.15	400	1.4

Table 10. BFSD2 PCB Results Summary for Paleta Creek Demonstration.

PCB	Flux	+/- 95% C.L.	Flux rate Confidence	Blank Flux	(ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Flux	+/- 95% C.L.	(ng/g)	(ng/L)
18 - 2,2',5-Trichlorobiphenyl	52.21	103.93	4%	76.82	36.49	2.6	ND
28 - 2,4,4'-Trichlorobiphenyl	41.52	80.03	61%	-8.05	82.03	2.2	1.1
52 - 2,2',5,5'-Tetrachlorobiphenyl	9.44	105.28	77%	72.74	28.12	4.9	3
66 - 2,3',4,4'-Tetrachlorobiphenyl	-19.94	62.01	96%	37.74	25.45	5.3	ND
101 - 2,2',4,5,5'-Pentachlorobiphenyl	45.99	84.57	17%	57.59	31.49	13	ND
118 - 2,3',4,4',5-Pentachlorobiphenyl	-2.34	123.95	9%	2.51	15.40	13	ND
153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	22.26	78.55	43%	9.45	11.71	23	0.11

Table 11. BFSD2 Pesticide Results Summary for Paleta Creek Demonstration.

Pesticide	Flux	+/- 95% C.L.	Blank Flux (r	ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	Flux	+/- 95% C.L.	(ng/g)	(ng/L)
2,4'-DDT	57.49	95.75	NA	NA	3.6	0.88
4,4'-DDT	31.23	55.47	NA	NA	14	ND
Dieldrin	-23.48	45.68	NA	NA	2	ND
Hexachlorobenzene	23.76	35.20	NA	NA	0.61	ND
Mirex	36.23	154.93	NA	NA	ND	ND

Numbers in the Flux Rate Confidence column indicate the statistical confidence that the measured flux rate is different than the blank flux rate. Results from the blank study, bulk sediment analysis and overlying water are shown for comparison.

Figures 44, 45 and 46 provide graphical comparison of the flux results with the blank tests results.

Figure 44. Paleta Creek PAH Demonstration Results.

Figure 45. Paleta Creek PCB Demonstration Results.

Figure 46. Paleta Creek Pesticide Demonstration Results.

5.1.4.1 Paleta Creek Organics Demonstrations Results

5.1.4.1.1 Polynuclear Aromatic Hydrocarbons (PAHs) Results

Complete individual data sets were obtained for six of the first eight PAHs (Naphthalene, Acenaphthene, Acenaphthylene, Phenanthrene, Fluoranthene and Pyrene). For the two incomplete data sets, non-detects were reported in two samples for Fluorene (samples 4 and 6) and in one sample The non-detects were removed from the data series for flux for Anthracene (sample 2). computations. All trends in concentration change were positive over time (i.e. sediment release) and the largest change among the first eight PAHs during the 70-hour test, after correction for dilution, was 18.9 ng/L (parts per trillion) for Phenanthrene. Most of the other PAHs changed less than 10 ng/L. The resulting concentration trends, when compared to the statistically derived triplicate blank test trends showed significant flux for seven of the eight lightest molecular weight PAHs. The confidence that the flux was statistically different than the associated blank was 100% for six of the first eight PAHs and 94.5% for Naphthalene. Acenaphthylene was the only PAH in the first eight with a flux less than the associated blank tests and it had a resultant flux rate confidence of 33.8%. Appendix D ("PC Organics Demo-PAHs (Part 1).xls") includes time-series graphs showing flux and blank tests concentrations over time for the eight lightest molecular weight PAHs. These graphs show reasonable linearity of the time-series flux test data and allow intuitive comparison of the flux and blank test results.

Of the remaining eight targeted PAHs with the heaviest molecular weights all but two were non-detectable throughout the full set of 12 samples. For the two with detects, Indeno(1,2,3-c,d)pyrene yielded four (samples 1,3,5,and 12) and Benzo(g,h,i)perylene yielded five (samples 1,3,5,8,and12) detectable concentrations. Additionally, only Benzo(g,h,i)perylene had adequate blank test results during the earlier triplicate test series for comparison. The Benzo(g,h,i)perylene flux, adjusted for

dilution, was negative (i.e. sediment *uptake*) and in comparison to its blank results there was a 67.7% confidence that the flux is different than the blank results. Indeno(1,2,3-c,d)pyrene also indicated a negative flux and there is no blank results for comparison. The time-series graphs included in Appendix D ("PC Organics Demo-PAHs (Part 2).xls") show the slight negative slopes, or concentration changes over time, for these two heavier molecular weight PAHs.

5.1.4.1.2 Polychlorinated Biphenyl (PCB) Congeners Results

Seven PCB congeners vielded sufficiently complete data sets for flux computations. PCB #28 (2,4,4'-Trichlorobiphenyl) yielded a complete set of 12 detectable concentration values. PCBs # 18 (2,2',5-Trichlorobipheny) yielded 9 samples with detectable concentration levels, #52 (2,2',5,5'-Tetrachlorobiphenyl) yielded 11 samples with detectable concentration levels, #66 (2,3',4,4'-Tetrachlorobiphenyl) yielded 10 samples with detectable concentration levels, #101 (2,2',4,5,5'-Pentachlorobiphenyl) yielded 8 samples with detectable concentration levels, #118 (2,3',4,4',5-Pentachlorobiphenyl) yielded 8 samples with detectable concentration levels, and #153 (2,2',4,4',5,5'-Hexachlorobiphenyl) yielded 11 samples with detectable concentration levels. In most cases, the partial data sets were composed of consecutive sample detects following initial non-detects in the series. As with PAHs, the non-detects were removed from the data series for flux computations. Five of the seven PCBs exhibited a positive trend in concentration over time (i.e. sediment release) and two exhibited a negative trend (i.e. sediment uptake). Three of the five PCBs indicating sediment release exhibited flux levels higher than the associated blank test levels and two were lower. The two PCBs indicating negative flux (sediment *uptake*) had positive blank test flux values. All changes in PCB concentration over the 70-hour test were less than 2 ng/L (parts per trillion) with the largest change (approximately 1.5 ng/L) exhibited by PCB #52. Statistical flux confidence is not high for six of the computed flux values when compared to associated blank test results. Statistical flux confidence for PCB#66 (2,3',4,4'-Tetrachlorobiphenyl) was 96%, however negative, or uptake, value introduces concern of validity and may be the result of the low concentrations measured. Appendix D ("PC Organics Demo-PCBs.xls") includes time-series graphs showing flux and blank tests concentrations over time for the seven PCBs with detectable concentrations. These graphs show marginal linearity of the time-series flux and blank test data resulting from the very low concentrations measured. Intuitive comparison of the flux and blank test results is illustrative of the low computed flux confidence levels reported in Table 10.

5.1.4.1.3 Pesticide Results

Five pesticides yielded sufficiently complete data sets for flux computations. 2,4 DDT yielded 11 samples with detectable concentration levels, 4,4 DDT yielded 9 samples with detectable concentration levels, Dieldrin yielded 8 samples with detectable concentration levels, Hexachlorobenzene yielded 11 samples with detectable concentration levels and Mirex yielded 6 samples with detectable concentration levels. Again, as with PCBs, the partial data sets consisted of consecutive sample detects following initial non-detects in all series except for Mirex. Mirex had a one sample data gap in an otherwise consecutive series. And again, the non-detects were removed from the data series for flux computations. One additional measurement (sample 6) of the Hexachlorobenzene data set was removed because it exceeded all other data in the set by an order of magnitude and introduced a large trend offset. Four of the five pesticides exhibited a positive trend in concentration over time (i.e. sediment release) and one, Dieldrin, exhibited a negative trend (i.e. sediment *uptake*). There were insufficient blank test samples with detectable concentrations of these five pesticides to compute comparable blank flux performance. All changes in pesticide concentration over the 70hour test were less than 2 ng/L (parts per trillion) with the largest change (approximately 1.8 ng/L) exhibited by 2,4'-DDT. Appendix D ("PC Organics Demo-Pesticides.xls") includes time-series graphs showing flux and blank tests concentrations over time for the five

pesticides with detectable concentrations. These graphs show reasonable linearity of the time-series flux with consideration of the very low concentrations measured.

5.1.4.2 Interpretation of Paleta Creek Organics Results

Whereas the flux results for the lighter molecular weight PAHs indicate greater mobility from the sediment into the overlying water than the heavier compounds, the measured concentration of the heavier molecular weight PAHs in samples extracted from the bulk sediment were generally higher than those of the lighter compounds. It appears that the heavier molecular weight PAHs are significantly less mobile, even with higher concentrations in the bulk sediment, than the lighter compounds. Comparison of this finding with solubility measurements of the targeted PAHs in seawater shows the same trend: the heavier molecular weight PAHs are far less soluble. A unilateral reduction in solubility of approximately five orders of magnitude occurs from lightest-to-heaviest for the 16 targeted PAHs. This relationship between PAH flux and PAH solubility does not appear to be exclusive of other factors however. For example, Pyrene (a four-ring compound with a molecular weight of 202) had a flux rate of 952ng/m²/day which is more than twice that of Naphthalene (a tworing compound with a molecular weight of 128) with a flux rate of 459ng/m²/day. This result is likely driven by the bulk sediment concentration of Pyrene which was about of 57 times larger than Naphthalene (740ng/g vs 13ng/g). It appears that the flux of a PAH from the sediment into the overlying water remains dependant, in part, on the level of bulk concentration in the sediment. Thus even a low mobility, heavier molecular weight PAH with a high enough concentration in the sediment may flux into the overlying water at a higher rate than a lighter compound at lower For the Paleta Creek test, it appears that the generally higher sediment concentrations of the heavier targeted PAHs were still too low to produce measurable concentrations. This then suggests that for PAHs in sediments, the PAH flux will vary in direct proportion to molecular weight and solubility leading to preferential removal of low molecular weight PAHs, and a relative increase in the bulk sediment fraction of the heavy molecular weight PAHs. Reduction of PAH concentrations at the sediment surface due to these diffusive fluxes will lessen, over time, the concentration levels of PAHs available for biological uptake. This reduction when combined with other natural attenuation factors such as infaunal irrigation and bacterially mediated degradation may be considered as a possible strategy for sediment remediation. Providing that risk levels are not exceeded, flux results for PAHs can be used to estimate the time required to reduce bulk sediment concentrations in the biologically active region of the sediment to acceptable levels.

The above discussion also generally applies to PCBs. The mobility of PCBs as indicated by the flux results was generally in direct proportion to solubility and in inverse proportion to molecular weight. The concentration values for the overlying water and bulk sediment were also generally consistent with trends identified with PAHs. The very low concentration levels of the PCBs in the Paleta Creek sediments introduced considerable uncertainty but a general trend is evident.

Pesticides may behave as above, however molecular weight relationships are difficult to establish with the wide range and complexity of such compounds. And, as with PCBs, the low concentration levels measured in this test introduce considerable uncertainty but still allow identification of a general trend.

5.1.4.3 Conclusions for Paleta Creek Organics Demonstration Test

The measurement of the mobility of organic compounds from contaminated sediments at the Paleta Creek location within Naval Station San Diego was successfully achieved. The measurements, when compared to triplicate blank test results resulted in quantification of statistically significant values with high confidence primarily for Polynuclear Aromatic Hydrocarbons (PAHs) fluxing into

overlying water. The complete range of targeted PAHs, Polychlorinated Biphenyl (PCB) Congeners and pesticides were not measured either because they were not present or because they were below analytical detection limits. PCBs and pesticides, where present and measurable, had very low concentrations which introduced significant data scatter and low statistical confidence levels. Some flux measurements of PCBs and all pesticides did not have blank test results for comparison. Future site measurements of known or suspected contaminants for which blank test results are not available would benefit from blank tests using spiked concentrations of targeted contaminants.

5.1.5 Pearl Harbor, Hawaii Metals Demonstrations

70-hour metals demonstrations using BFSD2 were conducted at two different sites in Pearl Harbor, Oahu, Hawaii during February 1999. The BFSD2 deployments were conducted as part of a combined demonstration with integrated sediment investigation technologies and included site screening prior to both BFSD2 deployments.

The first test was conducted Feb. 5-8, 1999 within the Naval Inactive Ship Mooring Facility (NISMF) at Middle Loch where approximately 70 moored ships await disposition (disposal, sale, temporary storage, etc.). The area is quiescent and approximately 26 feet deep with murky water and fine-grained sediment overlain with an easily disturbed 1-2 foot flocculent layer. Reports of sediment depths over 100 feet were not confirmed but are believable. Some benthic organisms were found in the sediment during screening. All work at the site was accomplished from an open-deck, 35-foot Navy workboat operated by enlisted personnel, see Figure 47. A portable generator was used to power the video monitor, underwater light and laptop computer during deployment, however for recovery all electrical connections were made after reaching the shore facility.

Figure 47. BFSD2 Pearl Harbor, Middle Loch Metals Demonstration.

The second metals test was conducted Feb. 11-14, 1999 within the area known as Alpha Docks, Marine Diving and Salvage Unit One (MDSU-1) located at Bishop Point on the entrance channel to the harbor, Figure 48. Again, historical, RI and screening data indicated elevated levels of trace

metals present in the sediment. This area is an active industrial location and included several Navy housing barges, which are moved about by tugboats. The area has a depth of approximately 25 feet with generally clear water and medium- to fine-grained sediments. Tidal currents are enough to minimize any flocculent layer. Some benthic organisms were found during sediment screening. The Navy workboat was used as before for deployment but because of proximity to the quay wall recovery was accomplished from shore using an 80-foot crane.

Figure 18. BFSD2 Pearl Harbor, Bishop Point Metals Demonstration.

Prior to both tests, the BFSD2 was cleaned and prepared using the same procedures used during triplicate metals blank tests as well as other deployments and demonstrations. For the first deployment at NISMF, Middle Loch cleaning was accomplished at SSC SD prior to loading the BFSD2 into its re-usable shipping container, Figures 49 and 50. The shipping container, designed for compatibility with commercial air cargo carriers, includes compartments, shelving and storage bays sufficient for shipment of BFSD2 as well as all materials and supplies required for extended field operations. Shipping weight was approximately 1450 pounds. For safety reasons the compressed oxygen cylinder was vented to less than 250 psi and no hazardous materials (i.e. Nitric Acid for cleaning and sample preservation) were air-shipped. The container proved convenient for onsite access and minimized working space requirements. After arrival and unpacking, system checks and oxygen bottle refilling operations preceded. Nitric acid was secured from the local Navy environmental laboratory.

Figure 49. BFSD2 Container, Front View.

Figure 50. BFSD2 Container, Back View.

Aboard the Navy workboat, after loading and connecting various equipment (laptop computer, TV monitor and light, cabling) to the portable generator, a standard pre-deployment checklist was followed. At the site, after tying off, lowering the bow platform and logging the GPS location, the BFSD2 was lowered by hand wench to near the bottom and either slowly lowered into the sediment (to minimize disturbance and maintain video coverage: as at Middle Loch) or released from about 2 feet for free-fall (to assure insertion when video coverage can be maintained as at Bishop Point). Activation of the battery-powered insertion lights by switches mounted on the chamber at the 3- inch level was verified and used to establish adequate sediment insertion. Once on the bottom a 15-minute program was started to stabilize the flow-through sensors and to measure the ambient

dissolved oxygen level. After entering the dissolved oxygen control limits into the 70-hour test program, downloading and verifying it, the test was started after visibility conditions for lid closure were confirmed. After starting the program, lid closure (which also activates #1 sample bottle) was viewed and commands for circulation pump activation (at 10 minutes) and sample valve activation (at 16 minutes) for sample bottle number two was monitored before disconnecting for autonomous operations. The disconnected cables were plugged, coiled and cast overboard in a direction away from the BFSD2. Both demonstration deployments were straightforward and without problems. For both tests, the BFSD2 was returned to the shore facility for all data recovery. After freshwater washdown and cleanup the twelve 250 ml sample bottles were removed for processing using EPA handling and chain of custody procedures. Pre-acidified 125ml containers were filled and capped, labeled, logged and refrigerated for subsequent analytical laboratory metals analysis. The remaining sample volume was used to measure silica concentrations with the field portable Hach model DR2010 Instrument. The silica concentrations plotted against time and the BFSD2 pH and dissolved oxygen sensor data, also plotted against time were reviewed for any possible sample compromise prior to shipment to the analytical laboratory. Tables 12 and 13 summarize the results of the Pearl Harbor Middle Loch and Bishop Point metals demonstrations.

Table 12. BFSD2 Results for Pearl Harbor Middle Loch (PHML) Metals Demonstration.

Metal	Flux	+/- 95% C.L.	Flux rate Confidence	Triplicate Blank Fl	ux (µg/m²/day)	Bulk Sediment	Overlying Water				
	(µg/m²/day)	(µg/m²/day)	(%)	Average	+/- 95% C.L.	(μg/g)	(μg/L)				
Copper (Cu)	14.79	3.46	99.9%	2.82	8.73	195	0.80				
Cadmium (Cd)	1.80	0.31	100.0%	-0.52	0.75	0.2	0.02277				
Lead (Pb)	-0.12	0.43	95.2%	3.16	1.59	34	0.03879				
Nickel (Ni)	27.17	15.91	100.0%	10.28	7.34	214	0.9472				
Manganese (Mn)	-468.18	683.35	97.9%	-264.85	7.49	1180	52.19				
Manganese (Mn) ¹	2131.59	904.57	100.0%	-264.85	7.49	1180	52.19				
Zinc (Zn)	49.74	17.25	93.5%	-3.38	65.22	314	2.28				
Other		•									
Oxygen (O ₂)* (*ml/m ² /day)	-1085.52	64.84	na	na	na	na	4.17				
Silica (SiO ₂)* (*mg/m ² /day)	65.03	42.43	100%	-1.97	2.88	na	1.19				
1. Mn flux calculated	I. Mn flux calculated on the basis of first five samples due to non-linearity										

Table 13. BFSD 2 Results for Pearl Harbor, Bishop Point (PHBP) Metals Demonstration.

Metal	Flux	+/- 95% C.L.	Flux rate Confidence		Triplicate Blank Flux (µg/m²/day)		Bulk Sediment	Overlying Water
	(µg/m²/day)	(µg/m²/day)	(%)	[Average	+/- 95% C.L.	(ug/g)	(µg/L)
Copper (Cu)	112.46	17.60	100.0%		2.82	8.73	241	0.36
Cadmium (Cd)	1.85	1.96	99.4%		-0.52	0.75	0.3	0.009
Lead (Pb)	0.71	1.11	78.7%		3.16	1.59	93	0.06519
Nickel (Ni)	21.04	15.41	96.3%		10.28	7.34	42.9	0.3934
Manganese (Mn)	223.33	284.79	100.0%		-264.85	7.49	324	1.78
Manganese (Mn) ¹	2177.45	192.60	100.0%		-264.85	7.49	324	1.78
Zinc (Zn)	191.18	54.07	100.0%		-3.38	65.22	304	1.43
Other				_				
Oxygen (O ₂)* (*ml/m²/day)	-567.12	54,96	na		na	na	na	6,5
Silica (SiO ₂)* (*mg/m²/day)	118.61	27.62	100%		-1.97	2.88	na	0.31

Numbers in the Flux Rate Confidence column indicate the statistical confidence that the measured flux rate is different than the blank flux rate. Results from the blank study, bulk sediment analysis, overlying water and oxygen uptake analysis are shown for comparison.

The results for Middle Loch indicate that Copper, Cadmium, and Nickel had fluxes out of the sediment that were highly significant when compared to the blank chamber results. Zinc also showed an outward flux but the statistical confidence was somewhat lower, and compared to blank results, any zinc flux is inconclusive. Lead had a negative flux (sediment uptake) but the statistical confidence was again somewhat lower. The flux of Manganese was negative when calculated using all the samples, but was positive when using only the first five samples. After the first five samples, the Manganese concentration in the chamber dropped dramatically. The reason for this drop is not known, and this effect and subsequent handling of the data are discussed in the Paleta Creek discussion in Section 5.1.3.1. The Silica flux was out of the sediment and was highly significant when compared to blank results. Dissolved Oxygen indicated a sediment uptake.

The results for Bishop Point were significantly different than those of Middle Loch with the exception of Cadmium, which was nearly identical. Copper, Cadmium, Manganese and Zinc all had fluxes out of the sediment that were highly significant when compared to the blank chamber results and the magnitude of the Copper and Zinc fluxes were markedly higher than those observed for Middle Loch. The Nickel flux however was somewhat less and with a reduced confidence. Lead fluxed outward at Bishop Point, but confidence is only marginal when compared to blank chamber results. As with Middle Loch, the Manganese flux at Bishop Point was non-linear and the concentration in the chamber leveled off after the third sample. The Manganese flux calculated using only the first three samples is similar to the flux estimated using the first five samples at Middle Loch and similar to that measured at other sites. The flux calculated using all the samples is low but still positive. The Silica flux results were again highly significant compared to blank results and were

higher than Middle Loch. The Dissolved Oxygen sediment uptake was about half that of Middle Loch. Figures 50 and 51 belographically illustrate results

Figure 51. Pearl Harbor Middle Loch Demonstration Results.

Figure 52. Pearl Harbor Bishop Point Demonstration Results.

5.1.5.1 Discussion of Pearl Harbor Metals Demonstrations Results

In general, BFSD2 results from the two Pearl Harbor demonstration locations were significantly different than one another. Figures 53 and 54 are the sets of graphs of concentration versus time for each analyte in each of the demonstrations, compared with blank performance. The results for the Middle Loch demonstration indicate that Copper, Cadmium, and Nickel had fluxes out of the sediment that were highly significant when compared to the blank chamber results. Zinc also indicated an outward flux but the statistical confidence was low suggesting no conclusive flux rate. Zinc concentrations in Middle Loch were low compared to other sites and most likely not a problem

in this area. Lead had a negative flux (sediment uptake) but the statistical confidence was again somewhat lower. Manganese flux trends were similar to those observed in Paleta Creek and discussed in Section 5.1.3.1. The flux of Manganese was lower, even negative, when calculated using all the samples, but was positive when using only the first five samples. After the first five samples, the Manganese concentration in the chamber dropped dramatically. The Silica flux was out of the sediment and was highly significant when compared to blank results. Dissolved Oxygen indicated a sediment uptake.

Figure 53. Pearl Harbor Middle Loch Demonstration Concentration vs. Time.

The results for Bishop Point were significantly different than those of Middle Loch with the exception of Cadmium, which was nearly identical. Copper, Cadmium, Manganese and Zinc all had fluxes out of the sediment that were highly significant when compared to the blank chamber results and the magnitude of the Copper and Zinc fluxes were markedly higher than those observed for Middle Loch. The Nickel flux however was somewhat less and with a reduced confidence. Lead

fluxed outward at Bishop Point, but confidence is only marginal when compared to blank chamber results. As with Middle Loch, the Manganese flux at Bishop Point was non-linear and the concentration in the chamber leveled off after the third sample. The Manganese flux calculated using only the first three samples is similar to the flux estimated using the first five samples at Middle Loch and similar to that measured at other sites. The flux calculated using all the samples is low but still positive. The Silica flux results were again highly significant compared to blank results and were higher than Middle Loch. The Dissolved Oxygen sediment uptake was about half that of Middle Loch.

Figure 54. Pearl Harbor Bishop Point demonstration Concentration vs. Time.

5.1.5.1.1 Metals Flux Measurements

Flux measurements were made for the metals cadmium, copper, lead, nickel, manganese and zinc. As shown in Tables 12 and 13, and illustrated in Figures 51 through 54, the BFSD2 results from the two Pearl Harbor demonstrations were significantly different from one another and from previous surveys.

Middle Loch fluxes were lower than those of Bishop Point, with the exception of Nickel (which was slightly higher). Of interest is that the Manganese flux at Middle Loch was initially almost the same (during the first 28 hours) as that at Bishop Point during the first 14 hours and then both exhibited an abrupt downward change. Possible explanations for this observation include complex reduction-oxidation interactions, sulfide binding, complexation with organic matter, or elevated water column concentrations associated with hull leachate sources at the sediment interface. The concentration-time graphs for both Manganese and Silica at Middle Loch show similar "quenching" trends, which are also apparent to a lesser degree in comparable data from Bishop Point.

Bishop Point fluxes were all outward and larger in magnitude than Middle Loch (except Nickel, as mentioned above). Copper, Cadmium, Manganese and Zinc all had fluxes out of the sediment that were highly significant when compared to the blank chamber results and the magnitude of the Copper and Zinc fluxes were markedly higher than those observed for Middle Loch. The Nickel flux however was somewhat less and with a reduced confidence. Lead fluxed outward at Bishop Point, but confidence is only marginal when compared to blank chamber results. With consideration for the more subtle Manganese and Silica "quenching" trends and the relatively lower oxygen uptake rate at Bishop Point, the fluxes appear to be less affected by possible interactions and are mobilizing from the sediment more linearly. The larger sediment grain sizes and size distribution at Bishop Point, as determined during site screening, may also be contributing to the apparent linear mobility of the outward fluxing metals.

As with Middle Loch, the Manganese flux at Bishop Point was non-linear and the concentration in the chamber leveled off after the third sample. The Manganese flux calculated using only the first three samples is similar to the flux estimated using the first five samples at Middle Loch and similar to that measured at other sites. The flux calculated using all the samples is low but still positive. The Silica flux results were again highly significant compared to blank results and were higher at Bishop Point than Middle Loch. The Dissolved Oxygen sediment uptake at Bishop Point was about half that of Middle Loch.

5.1.5.2 Discussion of Pearl Harbor Metals Demonstration Tests

Important aspects of the demonstrations including performance indicators and deployment problems are discussed below.

5.1.5.2.1 Performance Indicators

As discussed in Section 5.1.2.2.1, several methods were used to assure system performance of the BFSD 2 during and after the demonstrations. In both deployments the landing and insertion, monitored with the video camera and landing lights, indicated a good penetration and after the test was started, the video camera also confirmed successful lid closure. At Middle Loch the "soft" landing approach was used to minimize disturbance of the flocculent layer and maintain maximum visibility in the already murky water. Penetration was about twice normal (approximately 6 inches) and all visibility was lost. Test start and lid activation was delayed (about 15 minutes) until the water cleared enough to confirm closure. At Bishop Point a "free fall" landing approach was used from

about one foot above the sediment without significant loss of visibility. The resulting outward-traveling small cloud of disturbed sediment clearly showed the "low bow-wave" design of the BFSD2 to function effectively. The color underwater video camera made viewing this performance possible.

A monotonic increase in silica during the demonstrations was used as another indicator of proper system performance and chamber seal. As shown in Figures 50 and 51, for both deployments the silica concentration increased over the duration of the test indicating proper system performance and chamber seal. The flux magnitudes were high compared to previous mainland surveys, and may be explained by the tropical conditions (i.e., calciferous-rich). Bishop Point Silica results were reasonably linear, but Middle Loch Silica flux was not. Following a rate of increase during the first 24 hours of almost twice that of Bishop Point, Middle Loch Silica flux slowed significantly for the remainder of the test. The non-linearity in both Silica and Manganese fluxes suggest that as the concentrations in the chamber build, the fluxes may be altered by the presence of the chamber itself. This could be attributed either to time/concentration dependent reactions within the chamber, or changes in fluxes due to changes in the gradient between the porewater and the overlying water trapped within the chamber.

The Dissolved Oxygen level in the chamber was monitored and recorded to assure maintenance of ambient oxygen levels, proper chamber seal, and to evaluate sediment oxygen uptake. The rate of oxygen consumption (sediment uptake) during the deployments, was shown in Figures 53 and 54, and was sufficient to cause repeated cycling of the BFSD2 oxygen control subsystem. Figure 55 are graphs of the oxygen sensor data for the two deployments showing the operation of the control system. The control limits selected allowed the dissolved oxygen to remain within approximately 1 ml/L of the ambient level and still yield data to assess the sediment uptake rate. Functioning of the system in this manner assured that chamber isolation of the water was maintained. The ambient oxygen level at Middle Loch was about one half that of Bishop Point and the sediment uptake rate was about twice that of Bishop Point. These conditions, when combined with the pH results discussed below indicate Middle Loch has a higher level of organic decomposition. Again, this is reasonable when considering the differences between the sites.

Figure 55. Pearl Harbor Demonstrations Oxygen Control Results.

The pH level in the chamber was monitored and recorded as another assurance indicator of seal integrity. In a sealed BFSD2 chamber, the pH will generally show a decreasing trend as the breakdown of organic matter at the sediment water interface drives CO₂ into the chamber water. This decreasing trend was observed during both deployments as shown in Figure 56. And, as would be expected from results of oxygen uptake discussed above, the pH level dropped at a higher rate throughout the entire 70-hour test duration at Middle Loch.

Figure 56. Pearl Harbor Demonstrations pH Results.

5.1.5.2.2 Deployment and Recovery Problems

One minor problem was encountered during recovery at the Middle Loch demonstration and no deployment problems were encountered at either site and. At Middle Loch the commercial acoustic recovery system failed to function following several transmissions of the coded signal. Diver assistance was required to deploy the marker buoy and routine recovery operations were then followed. Subsequent analysis indicated absorption of the acoustic energy by the sediment due to the depth of BFSD2 insertion (almost covering the acoustic receiver window) and a near overhead aspect during transmission. Use of a standoff distance from the approximate location of the BFSD2 for future tests will minimize reoccurrence. Buoy activation was normal (within 8 minutes) after the Bishop Point deployment.

5.1.5.3 Discussion of Metals Data Interpretation

Although the measurements from Pearl Harbor are limited to two locations, they provide significant insight into the importance of understanding contaminant mobility. One way to interpret the flux chamber measurements for Pearl Harbor is to evaluate them in the context of the exposure pathways defined in the RI study. In the RI study, sight-specific Biota-to-Sediment Accumulation Factors (BSAFs) were developed by comparing the tissue burdens of wild-caught organisms to the sediment concentrations found in the same region. In this approach, 100% of the tissue burden is attributed to sediment exposure. One of the primary pathways of sediment exposure is thought to be via remobilization of chemicals to the dissolved phase and subsequent uptake by the organism. The results from the flux chamber measurements allow us to quantify and examine this key pathway.

As an example, we can consider the potential exposure for copper in sediments at the two sites. A cursory examination of the bulk sediment data in Tables 7 and 8 indicate that the exposure levels at the two sites would be about the same, with a slightly lower level at Middle Loch than at Bishop Point. Thus the predicted bioaccumulation for the two sites would also be similar. However, examination of the flux rates for copper at the two sites suggests a much different scenario. The flux rate of copper at Middle Loch was much lower than the flux rate measured at Bishop Point. This indicates that the bulk sediment levels at the two sites do not necessarily reflect the exposure potential. This is further supported by evaluation of the bulk sediment data on a scale normalized for iron content. This analysis indicates that while the levels of copper at Middle Loch fall along the ambient trend, the copper levels at Bishop Point have sources of copper beyond that available from background weathering as shown in Figure 57. In addition, the high oxygen uptake rates at Middle Loch indicate presence of reducing sediments that are likely to contain strong copper binding phases such as sulfides.

These results suggest consideration of a refined exposure model for organisms where the primary exposure is thought to be via the dissolved phase. For example, using the measured flux rates for

copper, the contribution of the sediments to the water can be estimated. This would then be used to quantify the fraction of the biological exposure that could be attributed to this pathway. If this exposure mechanism cannot account for observed uptake or effects, then other pathways or sources must be considered.

Thus the flux rate measurements at the two Pearl Harbor sites illustrate the usefulness of the system in identifying and quantifying exposure pathways between sediments and organisms. The flux results are also consistent with existing knowledge of sediment geochemistry. The results suggest that incorporation of flux measurements on a broader scale will help to improve ecological risk assessments by providing stronger links between bulk sediment chemistry and biological exposure

Figure 57. Pearl Harbor Demonstration Data with Iron-Normalized Bulk Sediment Copper Concentrations.

5.1.6 Pearl Harbor, Hawaii Organics Demonstration

One 72-hour test to demonstrate the application of the Benthic Flux Sampling Device 2 (BFSD 2) in *organics*-contaminated sediments was conducted September 7-10, 2001. The test was conducted at the Navy's Marine Diving and Salvage Unit 1 (MDSU-1) facility located at Bishop Point, Pearl Harbor, Hawaii. Pearl Harbor is identified on the National Priority List (Super Fund) for environmental cleanup and is currently completing a four-year Remediation Investigation (RI) study. The site was selected based on RI results and field screening results conducted in February 1999. It had also been previously used for BFSD2 metals-contaminated sediment studies and provided excellent test conditions (access, support, facilities). The MDSU-1 area is an active industrial location and includes several Navy housing barges, which are periodically moved by tugboats. The area has a depth of approximately 25 feet with generally clear water and medium- to fine-grained sediments. Tidal currents are enough to minimize any flocculent layer. The Alpha Dock site selected is near the site used for the metals test and was close enough to the quay wall to allow both deployment and recovery from shore using an 80-foot crane (See Figure 58).

Figure 58. BFSD2 Pearl Harbor, Bishop Point Organics Demonstration.

The BFSD2 was cleaned and prepared at Space and Naval Warfare Systems Center, San Diego (SSC SD) using the same procedures used during triplicate blank tests and the first organics demonstration. It was then loaded into its re-usable shipping container for air-shipment to Hawaii. The shipping container, designed for compatibility with commercial air cargo carriers, includes compartments, shelving and storage bays sufficient for shipment of BFSD2 as well as all materials and supplies required for extended field operations. Shipping weight was approximately 1450 pounds. For safety reasons the compressed oxygen cylinder was vented to less than 250 psi and no hazardous materials were air-shipped. The container is convenient for onsite storage and access and minimizes working space requirements. After arrival and unpacking, system checks were performed to assure no degradation during shipment had occurred. Oxygen bottle refilling was a problem in that compressed-gas suppliers were not willing to fill the small SCUBA-type cylinder and recreational dive shops would fill it but didn't carry pure oxygen. The problem was resolved when vandals stole the tank and refill fittings from

the rental car trunk. A new, air-filled small dive tank was purchased as a replacement. It was recognized that the lower oxygen content of the compressed air would be marginal in maintaining ambient chamber conditions, however it was generally believed that the diffusive flux component of organic compounds are not dependant on dissolved oxygen levels. Test results were not anticipated to be affected by the use of compressed air.

At the site near the quay wall the crane was positioned with its lift lines measured to allow placement of the BFSD2 at the desired location. An electrical extension cord was connected to a nearby building to provide power for the various deployment equipment (laptop computer, TV monitor and cabling) located in the trunk of the rental car (Figure 59). Preparations for the deployment followed a standard pre-deployment checklist (Figure 60).

Figure 59. Deployment Equipment.

Figure 60. Pre-Deployment Checklist.

After the BFSD2 was lowered to within view of the sediment surface it was established that no obstructions to chamber penetration were present and the decision to deploy was made. The crane lowered the BFSD2 at its maximum descent rate and a good landing was observed with the underwater video monitor. The bottom landing created a minimal amount of sediment resuspension and the water cleared within 15 seconds.

After video confirmation of sufficient sediment penetration to achieve a sea I the 10minute sensor check program was initiated. This program activated closure of the chamber lid which, while closing, simultaneously opened a hinge-mounted valve to collect the ambient-condition water sample (bottle #1). Following lid closure and activation of the recirculation subsystem, measurements of the enclosed water for dissolved oxygen, pH, temperature, pressure and salinity were made and recorded at 6second intervals for 10 minutes. Following completion of the 10-minute program the sensor data was uploaded, processed and entered into a custom data template to confirm sensor functions and to establish initial ambient water conditions. The measurement for ambient dissolved oxygen was used to establish limits for the BFSD2 oxygen control subsystem. These values were entered into the 72-hour flux test program and downloaded to the submerged BFSD2. The limits selected reflected the use of compressed air in place of pure oxygen and allowed a near anoxic lower threshold to be reached before activating the oxygen (i.e. air) recharge valve. Figure 61 shows the ambient dissolved oxygen measurement with the upper and lower control limits superimposed and Figure 62 shows the ambient pH measurement.

Figure 61. Ambient Dissolved Oxygen.

Figure 62. Ambient pH.

With the BFSD2 in place on the bottom, the downloaded 72-hour flux test program with the selected control limits was verified and the program was started. The BFSD2 connections were maintained to monitor and confirm collection of the first chamber sample (bottle #2) and sensor measurement recordings at 6-minute intervals. The crane tackle block was then disengaged from the deployment line and the crane was moved from the area. The deployment line and communication cables were stowed on the pier pilings to facilitate recovery at the completion of the 72-hour flux test.

At the conclusion of the 72-hour time period the BFSD2 communication cable was reconnected to the laptop computer to verify completion of the flux test program and to upload the recorded sensor data. The crane was then repositioned, rigged for recovery and the BFSD2 was lifted off the bottom and onto shore. Once secure on land an initial inspection indicated no damage, all components were intact and all twelve sample bottles were full. From a floating platform positioned over the deployment site a hand-held GPS location record was made and a 250-ml sediment sample was collected. The samples were then removed and transported to the field lab facility for filter removal, lid installation, labeling and preparation for shipment to the Arthur D. Little (ADL) analytical laboratory in Cambridge, MA. The BFSD2 was flushed and cleaned with freshwater, the gel-cell batteries were recharged and the sample collection subsystem was purged with deionized water and dried with forced-air in preparation for the return shipment to SSC SD.

As the samples were being processed, the recorded data files for the 72-hour test were uploaded and entered into a standardized Excel spreadsheet template for data processing. The sensor data, plotted as time-series indicated a successful deployment. As can be seen in Figure 63, there was no sudden pH level shifts indicating loss of chamber seal. The slowly reducing trend for pH level was normal and is indicative of biological activity. The dissolved oxygen level, Figure 64, shows the expected steady decline and control system activation as the level dropped below the lower limit. The decline was temporarily reversed, most likely due to residual pure oxygen in the system, however the recharge was not maintained due to the low oxygen content of the compressed air and the chamber eventually fell below the lower limit and remained at a near anoxic level until the test was completed. It is also noted that the slope of the declining pH became approximately level as the chamber approached anoxic conditions, indicating reduced biological activity. Salinity, temperature and pressure were normal.

Figure 63. Chamber pH.

Figure 64. Chamber Dissolved Oxygen.

The samples were air-shipped from Honolulu International Airport by overnight express (FedEx) the afternoon of Sept 10, 2001. But the events of Sept 11, 2001 grounded all flights nation-wide and the samples were stopped and delayed in Oakland, CA until delivery to ADL on Sept 17, 2001. The samples were intact but exceeded the maximum extraction holding time (7 days) and maximum

storage temperature (4 degrees C.) when received. The conditions were noted and the decision to continue with processing and analysis was made.

5.1.6.1 Pearl Harbor Organics Demonstration Results.

Tables 14, 15 and 16 below provide a summary of the flux results for selected PAHs, PCB congeners and pesticides, respectively. Figures 65, 66, and 67 provide graphical comparison of the flux results with the blank tests results.

Table 14. Summary Results for PAHs.

PAH	Flux	+/- 95% C.L.	Flux rate Confidence	Triplicate Blank Flu	x (ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.	(ng/g)	(ng/L)
9. BENZO(A)ANTHRACENE	75.00	306.84	NA	NA	NA	16,000	Non-Detect
10. CHRYSENE	1048.91	1012.25	98.5%	23.94	22.32	48,000	5.1
11. BENZO(B)FLUORANTHENE	919.89	375.56	99.8%	-134.30	297.91	36,000	6.2
12. BENZO(K)FLUORANTHENE	234.99	156.43	93.3%	-9.71	36.30	10,000	2.5
13. BENZO(A)PYRENE	Non-Detect	NA	NA	NA	NA	12,000	Non-Detect
14. INDENO(1,2,3-C,D)PYRENE	6.72	67.06	NA	NA	NA	7,400	1.6
15. DIBENZ(A,H)ANTHRACENE	Non-Detect	NA	NA	NA	NA	1,500	1.5
16. BENZO(G,H,I)PERYLENE	7.91	64.14	11.6%	20.15	65.15	5,300	1.7

PAH	Flux	+/- 95% C.L.	Flux Rate Confidence	Triplicate Blank Flux	(ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.	(ng/g)	(ng/L)
1. Naphthalene	-110.07	596.59	38.1%	-440.30	458.38	44	13
2. Acenaphthene	2680.41	10124.62	51.2%	-32.40	50.34	3,800	37
3. Acenaphthylene	627.85	1483.64	82.7%	208.47	112.60	1,200	5.6
4. Fluorene	75.17	1894.31	23.4%	-76.74	28.38	4,800	19
5. Phenanthrene	-552.72	1305.06	98.2%	10.95	10.95	54,000	32
6. Anthracene	4053.72	3094.52	100.0%	117.68	64.62	10,000	13
7. Fluoranthene	4435.81	10157.65	97.4%	-1423.95	178.41	270,000	52
8. Pyrene	38.99	4132.13	28.5%	-439.51	70.73	150,000	20

Table 15. Summary Results for PCBs.

PCB	Flux	+/- 95% C.L.	Flux rate Confidence	Blank Flux (ng/m²/day)		Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Flux	+/- 95% C.L.	(ng/g)	(ng/L)
101 - 2,2',4,5,5'-Pentachlorobiphenyl	-2.62	93.70	4%	57.59	31.49	Non Detect	2.1

Table 16. Summary Results for Pesticides.

Pesticide	Flux	+/- 95% C.L.	Blank Flux (ng/m²/day)		Bulk Sediment	Overlying Water
	(n g/m ²/day)*	(ng/m²/day)	Flux	+/-95% C.L.	(ng/g)	(ng/L)
Mirex	61.81	110.60	NA	NA	Non Detect	1.00

Figure 65. Flux to Blank Comparison for PAHs.

Figure 66. Flux to Blank Comparison for PCBs.

Figure 67. Flux to Blank Comparison for Pesticides.

5.1.6.1.1 Polynuclear Aromatic Hydrocarbons (PAHs) Results

Complete individual data sets were obtained for all of the first eight lighter molecular weight PAHs (Naphthalene, Acenaphthene, Acenaphthylene, Fluorene, Phenanthrene, Anthracene, Fluoranthene and Pyrene). Complete individual data sets were also obtained for five of the eight heavier molecular weight PAHs (Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Indeno(1,2,3-c,d)pyrene and Benzo(g,h,I)perylene). Partial data sets were obtained for Benzo[a]anthracene (9 of 12 detects) and Dibenzo[a,h]anthracene (4 of 12 detected). No detects were obtained for Benzo[a]pyrene. Flux analysis was accomplished for all complete data sets and the partial data set for Benzo[a]anthracene. However, the Benzo[a]anthracene analysis was abandoned since two of the

three non-detects occurred in the first four samples, as discussed below, and was compounded by a lack of blank test data for statistical comparison.

All trends in concentration change (i.e. flux) were strongly positive for the first four samples in each series of twelve. R² linearity factors for these initial trends were exceptionally high for all except Phenanthrene, Indeno(1,2,3-c,d)pyrene and Benzo(g,h,I)pervlene. The concentration trends for the last eight samples in each series were generally flat or slightly negative with only Benzo(k)fluoranthene maintaining a lowered, but steady increase. R² linearity factors for these trends were correspondingly low. Due to this apparent change in concentration trends occurring after sample number four, coincident with the chamber dissolved oxygen level falling below the control limit at about 15 hours, separate analyses of the first four samples in each series and for the last eight samples in each series were accomplished. Also supporting this approach, the bulk sediment concentration levels for all the analyzed PAHs was directly related to the flux of the first four samples in the series and not for the last eight. And, whereas the relationship between bulk sediment concentrations and overlying water concentrations (measured in the number one sample) appear to be consistent with the solubility relationships discussed in the BFSD Paleta Creek demonstration report, the trend relationships identified for flux, bulk sediment concentrations and solubility appear to hold only for the first four samples. Table 17 shows these relationships for the first four PAH samples and Figure 68 shows the graphical comparison of the measured flux with the blank tests for the first four PAH samples.

Table 17. Summary Results for First Four PAH Samples.

PAH	Flux	+/- 95% C.L.	Flux Rate Confidence	Triplicate Blank Flux	(ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.	(ng/g)	(ng/L)
1. Naphthalene	1,848	4,406	59.1%	-440.30	458.38	44	13
2. Acenaphthene	71,053	327,574	100.0%	-32.40	50.34	3,800	37
3. Acenaphthylene	6,862	14,388	100.0%	208.47	112.60	1,200	5.6
4. Fluorene	10,387	110,972	100.0%	-76.74	28.38	4,800	19
5. Phenanthrene	3,031	106,689	99.4%	10.95	10.95	54,000	32
6. Anthracene	26,955	27,293	100.0%	117.68	64.62	10,000	13
7. Fluoranthene	69,812	380,980	100.0%	-1423.95	178.41	270,000	52
8. Pyrene	24,512	190,722	100.0%	-439.51	70.73	150,000	20

Flux	+/- 95% C.L.	Flux rate Confidence	l	Triplicate Blank Fluo	r (ng/m*/day)	Bulk Sediment	Overlying Water
(ng/m²/day)*	(ng/m²/day)	(%)	H	Average	+/- 95% C.L.	(ng/g)	(ng/L)
Non-Detect	NA	NA		NA	NA	16000	Non-Detect
8792.74	10650.17	100.0%	Ш	23.94	22.32	48000	5.1
3080.74	17862.21	99.4%	Ш	-134.30	297.91	36000	6.2
977.52	3135.53	99.7%	Ш	-9.71	36.30	10000	2.5
Non-Detect	NA	NA	Ш	NA	NA	12000	Non-Detect
122.97	7141.99	NA	Ш	NA	NA	7400	1.6
Non-Detect	NA	NA	Ш	NA	NA	1500	1.5
33.19	5249.47	7.0%		20.15	65.15	5300	1.7
	(ng/m²/day)* Non-Detect 8792.74 3080.74 977.52 Non-Detect 122.97 Non-Detect	(ng/m²/day)* (ng/m²/day) Non-Detect NA 8792.74 10650.17 3080.74 17862.21 977.52 3135.53 Non-Detect NA 122.97 7141.99 Non-Detect NA	Non-Detect NA NA 8792.74 10650.17 100.0% 3080.74 17862.21 99.4% 977.52 3135.53 99.7% Non-Detect NA NA 122.97 7141.99 NA Non-Detect NA NA	(ng/m²/day)* (ng/m²/day) (%) Non-Detect NA NA 8792.74 10650.17 100.0% 3080.74 17862.21 99.4% 977.52 3135.53 99.7% Non-Detect NA NA 122.97 7141.99 NA Non-Detect NA NA	(ng/m²/day)*	(ng/m²/day)* (ng/m²/day) (%) Average +/- 95% C.L. Non-Detect NA NA NA NA 8792.74 10650.17 100.0% 23.94 22.32 3080.74 17862.21 99.4% -134.30 297.91 977.52 3135.53 99.7% -9.71 36.30 Non-Detect NA NA NA NA NOn-Detect NA NA NA NA Non-Detect NA NA NA NA	(ng/m²/day)* (ng/m²/day) (%) Average +/- 95% C.L. (ng/g) Non-Detect NA NA NA NA 16000 8792.74 10650.17 100.0% 23.94 22.32 48000 3080.74 17862.21 99.4% -134.30 297.91 36000 977.52 3135.53 99.7% -9.71 36.30 10000 Non-Detect NA NA NA NA 12000 Non-Detect NA NA NA NA 1500

Figure 68. Flux to Blank Comparison for First Four PAH Samples.

The concentration trend (or flux) for the first four samples in the series, when compared to the statistically derived triplicate blank test trends showed large, significant flux for all of the eight lighter molecular weight PAHs. For seven of these eight PAHs the confidence that the flux was statistically different than the associated blank results was approximately 100%. The confidence for Naphthalene was 59.1%. For the five heavier molecular weight PAHs with complete data sets, the first four samples for Chrysene, Benzo(b)fluoranthene and Benzo(k)fluoranthene had high confidence (approximately 100%); Benzo(g,h,I)perylene had low confidence (7.0%); and

Indeno(1,2,3-c,d)pyrene had insufficient blank test data for comparison. For all the analyzed PAHs except Anthracene of the lighter molecular weight PAHs, and Benzo[b]fluoranthene and Benzo[k]fluoranthene of the heavier molecular weight PAHs, the last eight samples in the series exhibited concentration trends with low and/or negative trends as well as low confidence levels when compared to blank test results. Appendix D ("BP Organics Demo-PAHs.xls") includes time-series graphs showing flux and blank tests concentrations over time for the PAHs. Graphs for the complete data sets (12 samples), for the first four samples and for the last eight samples allow comparison of the flux and blank test results.

5.1.6.1.2 Polychlorinated Biphenyl (PCB) Congeners Results

One complete individual data set was obtained for PCB Congener number 101 (2,2',3,4,4',5,5'-Heptachlorobiphenyl). Partial data sets were obtained for ten PCB Congeners: number 8 (2,4'-Dichlorobiphenyl) with 2 of 12 detections; number 44 (2,2',3,5'-Tetrachlorobiphenyl) with 5 of 12 detections; number 52 (2,2',5,5'-Tetrachlorobiphenyl) with 5 of 12 detections; number 66 (2,3',4,4'-Tetrachlorobiphenyl) with 2 of 12 detections; number 105 (2,3,3',4,4'-Pentachlorobiphenyl) with 5 of 12 detections; number 118 (2,3',4,4',5-Pentachlorobiphenyl) with 1 of 12 detections; number 153 (2,2',4,4',5,5'-Hexachlorobiphenyl) with 1 of 12 detections; number 180 (2,2',3,4,4',5,5'-Heptachlorobiphenyl) with 7 of 12 detections; number 206 (2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl) with 4 of 12 detections; and number 209 (2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl) with 1 of 12 detections. The remaining nine targeted PCB Congeners were not detected in the samples.

Flux analysis is reported for PCB Congener number 101 only, including statistical comparison with blank test data. The flux was small compared to the blank and it was negative (i.e. uptake). The 95% confidence limit values for the computed flux were large and the statistical confidence that the flux value was different than the corresponding blank was very small (4%). PCB Congener number 101 was not detected in the bulk sediment sample. The high flux rate trend noted in the first four samples for PAHs, prior to anoxic chamber conditions, was not evident for PCB Congener number 101 and separate analysis was not undertaken. Appendix D ("BP Organics Demo-PCBs.xls") includes a time-series graph showing flux and blank tests concentrations over time for PCB Congener number 101.

Flux analysis for the remaining PCBs having partial data sets was abandoned due to the degree of incomplete data and/or large intervals between data. Also, none of the PCB congeners with detections in seawater were reported in the bulk sediment analysis results.

5.1.6.1.3 Pesticides

Partial data sets were obtained for six pesticides: 2,4'-DDT with 1 of 12 detections; 4,4'-DDT with 3 of 12 detections; 4,4'-DDD with 4 of 12 detections; Dieldrin with 1 of 12 detections; Endrin with 7 of 12 detections; Mirex with 10 of 12 detections. The remaining ten targeted pesticides were not detected in the samples.

Flux analysis was accomplished for the pesticide Mirex only. No blank test results were available for this pesticide and therefore statistical comparison cannot be made. The computed flux value for Mirex was small with large 95% confidence limit values. Mirex was also not detected in the bulk sediment sample. The high flux rate trend noted in the first four samples for PAHs, prior to anoxic chamber conditions, was not evident for Mirex and separate analysis was not undertaken. Appendix A, Excel spreadsheets(.xls"), includes a time-series graph showing flux and blank tests concentrations over time for the pesticide Mirex.

Flux analysis for the remaining pesticides having partial data sets was not accomplished due to the degree of incomplete data and/or large intervals between data. And again, none were reported in the bulk sediment analysis results.

5.1.6.2 Discussion of Bishop Point Organics Results

Prior to data reduction and analysis, close inspection of the analytical laboratory results indicated a change or "knee" in sample concentration trends occurring after sample four for most PAHs, coincident with the dissolved oxygen level falling below control limits. The same change was not evident for the PCBs or pesticides, however the preponderance of "non detect" concentration levels in the seawater samples coincident with like results in the bulk sediment sample resulted in sufficient seawater data for only one PCB congener and one pesticide flux analysis. The PAHs on the other hand exhibited very large concentrations in the bulk sediment sample and 13 of sixteen yielded sufficient data for flux analysis. After correction for dilution and normalization for comparison to the blank tests the shift in concentration trends became even more evident for the PAHs and remained obscured by low concentration levels for the PCBs and pesticides. Thus separating the data sets into pre- and post-anoxic conditions for analysis allowed the affect of the low oxygen conditions on the PAH flux rates to be isolated to the last eight samples. The mechanism for this observed damping or stopping of the release of PAHs from the sediment is not known but may be related to reduction-oxidation chemistry changes causing soluble metals to precipitate and bind with organic compounds releasing from the sediment. Another possible explanation for the observed flux change may be loss of the irrigation component of the flux due to oxygen deprivation of the infaunal microorganisms. Whatever the mechanism, it is clear that the large PAH concentrations in the sediment are the source of large flux levels entering the water column, albeit evidenced by only the first four samples. It is also clear that maintenance of at least a minimum level of dissolved oxygen (approximately 1.0 ml/L) in the chamber is required to achieve complete flux results for the full duration of the test. As a result of using compressed air in place of pure oxygen for maintenance of the chamber dissolved oxygen conditions, only the four samples collected during the first 14 hours of the test are considered valid for analysis. Of these four, only the last three were collected from the chamber at time intervals of 7 hours and thus the full value of the 12-sample, 70-hour test was not achieved. However, minimum statistical standards are met with the four samples and the following discussion and conclusions derived from them are considered valid.

As found in the Paleta Creek demonstration, the flux results for the lighter molecular weight PAHs indicate greater mobility from the sediment into the overlying water than the heavier compounds. Of interest is the measured concentration of the PAHs in the bulk sediment sample being higher for the mid-molecular weight compounds than for the lighter or the heavier compounds. This distribution of sediment concentrations resulting from the industrial and operational activity at the site, led to high flux levels for even the less soluble heavier molecular weight PAHs compared to the lighter molecular weight PAHs. Notwithstanding this result, it appears that the heavier molecular weight PAHs are significantly less mobile, even with higher concentrations in the bulk sediment, than the lighter compounds. For example, the flux value for Acenaphthene (molecular weight-154) was about the same as Fluoranthene (molecular weight-202), but the bulk sediment concentration is about 1.4% that of Fluoranthene. And, as before, comparison of this finding with solubility measurements of the targeted PAHs in seawater shows the same trend: the heavier molecular weight PAHs are far less soluble. In the example above, Acenaphthene is approximately 16.6 times more soluble than Fluoranthene. Thus even a low mobility, heavier molecular weight PAH with a high enough concentration in the sediment may flux into the overlying water at a higher rate than a lighter compound at lower concentrations.

Based on molecular weight and solubility, the above discussion also generally applies to PCBs and pesticides, i.e. their mobility as indicated by the flux results will be generally in direct proportion to solubility and in inverse proportion to molecular weight. This premise cannot be supported by the results of this demonstration due to the very low concentration levels of the PCBs and pesticides in the sediment. The one PCB and one pesticide detected with sufficient data to allow analysis yielded results with low confidence and no conclusions can be drawn from either the full set of data or the first four samples. It does appear however that both PCBs and pesticides are not a water quality issue for this site.

5.1.6.3 Conclusions for Bishop Point Organics Demonstration Test

The BFSD2 demonstration at Bishop Point, Pearl Harbor was a qualified success. A single factor, use of compressed air in place of pure oxygen for chamber dissolved oxygen maintenance, was responsible for loss of valid data after approximately 14 hours into the 72-hour test. The affect of anoxic level conditions to stop, reduce or interfere with the release of organic compounds from contaminated sediment, previously not anticipated, was established. And, prior to this affect occurring, valid data was obtained.

The results from the first 14 hours of the 72-hour test show that measurement of the mobility of organic compounds from the highly contaminated sediments at the Bishop Point site within the Pearl Harbor Naval Complex was successfully achieved. The measurements, when compared to triplicate blank test results resulted in quantification of large, statistically significant values with high confidence for Polynuclear Aromatic Hydrocarbons (PAHs) fluxing into overlying water. Complete data sets for nearly all of the targeted US EPA priority PAHs were achieved and the flux results are consistent with bulk sediment concentrations, modified by the relative solubility of the compounds. Polychlorinated Biphenyl (PCB) Congeners and pesticides were not measured either because they were not present or because they were below analytical detection limits.

Ideally, a repeat of this test should be conducted to resolve potential questions regarding oxygen control during the measurement of organic contaminant fluxes. It could be conducted at the Bishop Point site or any other site where high levels of targeted organic compounds are present in the sediment. Whereas the first demonstration at Paleta Creek established the capability of the BFSD2 and the related data analysis process to extract meaningful results at a site with moderate levels of contaminants in the sediments, this demonstration only partially established the BFSD2 performance at a site with high levels of organic contaminants in the sediment. A full 72-hour test at such a site would help to demonstrate and establish BFSD2 performance as concentration levels become very large in a high flux level condition. However, even in lieu of this additional testing, it is clear that the BFSD2 can statistically resolve fluxes for a number of organic contaminants even when the number of samples is limited.

5.1.7 Pearl Harbor, Bishop Point, Combined Demonstration

One 72-hour test was conducted to demonstrate the ability of the Benthic Flux Sampling Device 2 to collect samples for both metals and PAH analysis in a single deployment. The The MUDSU-1 facility at Bishop Point, Pearl Harbor, Hawaii was selected because both a metals deployment and a deployment for PAH's were made in the area. The combined demonstration was successfully conducted on December 9-12, 2002. A previous attempt was made in October of 2003, but because of a technical malfunction and issues with the electronic control unit of the BFSD2, that deployment was unsuccessful

The combined demo followed the metals demonstration by 3 years and 10 months and the PAH demonstration by 1 year and 3 months. Although all the deployments were made along the quay wall at the MUDSU-1 facility, deployment logistics made it impossible to sample the exact spot in all three deployments. Hence, the combined demo position was 20 meters west of the metals deployment and 34 meters east of the PAH deployment (Figure 69). These distances should not be significant in comparing overall operation of the BFSD between deployments at a general site, but some patchy contamination of sediments may be exhibited in the results with some contaminants. Also, the difference in time between deployments could conceivably show some variability in results.

The preparation and deployment for the combined demo followed very closely the procedures and events of the previous PAH demonstration deployment. The BFSD2 was cleaned, packed and shipped from SSC San Diego. When unpacked at Pearl Harbor, all systems were assembled, inspected and checked. The oxygen bottle was filled with O_2 , and no problem with oxygen limitations was anticipated or encountered during the deployment as it was with the PAH deployment.

The BFSD2 was lowered into the water with a crane along the quay wall, and a pre-deployment checklist was followed. After the bottom was scanned with the onboard video camera and determined to be appropriate, the BFSD2 was landed and pre-deployment measurements taken. After the 10-minute pretest, sensors had stabilized and an oxygen range to be maintained could then be programmed for the 72-hour test from values taken during the pretest (Fig. 70). The 72-hour test was then started. Cables leading from the BFSD were disconnected from power, computers and video monitors and, together with a recovery line, were coiled and stored along the quay wall.

Figure 70. Pearl Harbor, Bishop Point Combined Metals Pre-Deployment Sensor Graphs.

Occasionally during the test, the cables were reconnected to the computer and video monitor and status was determined. All appeared normal during these checks and the cables resecured.

After 72 hours, the test was halted. Before the BFSD2 was raised from the bottom, data were uploaded via the stored cables on the quay wall. The BFSD2 was then raised from the bottom with the crane and deposited on the pier. The 24 sample bottles were briefly checked and found to be all full. They were then washed down, disconnected and removed from their racks. Samples were then taken to the field lab where filters were removed, labels added and they were shipped to Battelle labs for analysis.

Logged data were entered into Excel spreadsheets templates for processing. Oxygen and pH data show the deployment was successful in maintaining a tight seal and maintenance of the flux chamber integrity. Figure 71 shows a steady decline in pH which indicates no loss of seal or sudden contamination from outside the chamber. Figure 71 also shows the chamber was maintained oxic with the assistance of the O₂ feedback and injection system.

Figure 71. Pearl Harbor, Bishop Point Combined Metals Full Test Sensor Graphs.

5.1.7.1 Pearl Harbor Combined Demonstration Results

Table 18 gives a summary of the flux results for metals and Figure 72 show these in graphical form. Flux of dissolved oxygen from the chamber, or the oxygen demand of the sediments, is also given in Table 18. This was calculated from the O_2 data logged from the chamber during the first decreasing slope in the 72-hour test before the O_2 feedback injection system raised the O_2 level.

Metals behaved similarly in this combined demonstration as they did in the original metals demonstration at the Bishop Point Site except for copper (Figure 73). Cadmium, lead, nickel, manganese and zinc all fluxed out of the sediments, a trend which is consistent with previous work,

while copper was adsorbed by the sediment. Copper fluxed out of the sediments during the initial study. Manganese behaved similarly in both studies in that it exhibited a higher flux rate during the first three samples of the test then leveled off for the remainder of the test period. This trend with Manganese is discussed in the Paleta Creek discussion section 5.1.3.1. Flux rates for manganese for the first 14 hours of the test as well as for the entire test are presented here. In general, flux rates were higher during this combined demonstration than during the metals-only demonstration.

PAH flux results are presented in two ways. First, the entire 72-hour test results with all twelve samples are presented. These data are presented in Figures 74 and 75 and Table 19. Then, secondly, results from the first four samples of the test, those up to 21.3 hours into the test, are shown. This is for comparison to the original organics-only demonstration where flux rates showed an initial slope then plateaued. In the original test, oxygen depletion in the chamber was theorized as the cause for this plateau, but oxygen levels were successfully maintained in the chamber during the second test. For whatever reasons this plateauing occurs, the trend seemed to repeat itself during the combined demonstration. For comparison purposes, the "first four" data are used to calculate flux rates.

Table 18. Pearl Harbor, Bishop Point Combined Metals Summary of Metals.

Metal	Flux	+/- 95% C.L.	Flux rate Confidence	Triplicate Blank	Flux (□g/m²/day)
	(□g/m²/day)*	(□g/m²/day)	(%)	Average	+/- 95% C.L.
Arsenic (As)	23.48	6.94	100%	-5.16	2.10
Copper (Cu)	-71.30	39.43	100.0%	2.82	8.73
Cadmium (Cd)	ium (Cd) 1.31 1.63 98.1%		98.1%	-0.52	0.75
Lead (Pb)	17.40	24.63	99.0%	3.16	1.59
Nickel (Ni)	59.18	55.96	100.0%	10.28	7.34
Manganese (Mn)	427.65	238.42	100.0%	-264.85	7.49
Manganese (Mn) ¹	1940.13	3853.39	100.0%	-264.85	7.49
Silver (Ag)	-0.36	0.88	86.1%	0.64	0.68
Zinc (Zn)	374.36	133.74	100.0%	-3.38	65.22
Other					
Oxygen (O₂)* (*ml/m²/day)	-1457.09	48.92	na	na	na
Silica (SiO₂)* (*mg/m²/day)	0.00	0.00	48%	-1.97	2.88

Flux rates for PAH's were similar in this combined test as it was in the original test. All PAH's that were measured fluxed out of the sediments except for phenanthrene. The largest flux rate measurement was for fluoranthene which also showed a large presence in the original test. This was followed by anthracene, acenaphthene and naphthalene, again similar to the original test. Similarities from the first test were also seen in the heavier molecular weight PAH's as benzo(a)pyrene, benzo(k) flouranthene and chrysene showed large presence. Benzo(a) pyrene also showed a spike in this test but wasn't detected in the original test.

Figure 72. Pearl Harbor, Bishop Point Combined Metals Comparison of Flux and Blanks.

Figure 73. Pearl Harbor Bishop Point Combined Demonstration Metals Time Series Graphs.

Table 19. Pearl Harbor, Bishop Point Combined Demo Summary Results for PAH's (all samples).

PAH	Flux	+/- 95% C.L.	Flux Rate Confidence	Triplicate Blank Flux	k (ng/m²/day)
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.
1. Naphthalene	711.03	2352.17	92.8%	-440.30	458.38
2. Acenaphthene	-1387.81	1989.31	91.4%	-32.40	50.34
3. Acenaphthylene	106.66	213.64	31.9%	208.47	112.60
4. Fluorene	-359.38	256.56	100.0%	-76.74	28.38
5. Phenanthrene	-639.76	1228.00	99.6%	10.95	10.95
6. Anthracene	763.68	546.29	100.0%	117.68	64.62
7. Fluoranthene	2749.93	3651.35	100.0%	-1423.95	178.41
8. Pyrene	2191.62	2392.29	100.0%	-439.51	70.73
РАН	Flux	+/- 95% C.L.	Flux rate Confidence	Triplicate Blank Flux	(ng/m²/day)
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.
9. BENZO(A)ANTHRACENE	152.67	140.49	NA	NA	NA
10. CHRYSENE	286.65	341.92	94.7%	23.94	22.32
11. BENZO(B)FLUORANTHENE	561.07	376.08	97.9%	-134.30	297.91
12. BENZO(K)FLUORANTHENE	452.24	465.75	82.8%	-9.71	36.30
13. BENZO(A)PYRENE	383.46	603.38	NA	NA	NA
14. INDENO(1,2,3-C,D)PYRENE	8.68	10.98	NA	NA	NA
15. DIBENZ(A,H)ANTHRACENE	-1.97	7.69	NA	NA	NA
16. BENZO(G,H,I)PERYLENE	8.77	10.59	12.9%	20.15	65.15

Figure 74. Pearl Harbor, Bishop Point Combined PAH Comparison of Flux to Blanks (all samples).

Figure 75. Pearl Harbor, Bishop Point Combined Demonstration PAH Time Series Graphs (all samples).

Table 20. Pearl Harbor, Bishop Point Combined Demo Summary Results for PAH's (First 4 samples).

PAH	Flux	+/- 95% C.L.	Flux Rate Confidence
	(ng/m2/day)*	(ng/m2/day)	(%)
1. Naphthalene	2456.72	13211.63	100.0%
2. Acenaphthene	9222.27	6867.34	100.0%
3. Acenaphthylene	778.37	880.29	100.0%
4. Fluorene	285.70	2021.66	100.0%
5. Phenanthrene	-3555.98	7892.27	100.0%
6. Anthracene	2874.10	1330.22	100.0%
7. Fluoranthene	19696.65	3869.67	100.0%
8. Pyrene	12101.21	3884.64	100.0%
PAH	Flux	+/- 95% C.L.	Flux rate Confidence
PAH	Flux (ng/m2/day)*	+/- 95% C.L. (ng/m2/day)	Flux rate Confidence (%)
PAH 9. BENZO(A)ANTHRACI	(ng/m2/day)*		Flux rate Confidence (%)
	(ng/m2/day)*	(ng/m2/day)	(%)
9. BENZO(A)ANTHRACI	(ng/m2/day)* 760.90	(ng/m2/day) 668.14	(%)
9. BENZO(A)ANTHRACI 10. CHRYSENE	(ng/m2/day)* 760.90 1949.20	(ng/m2/day) 668.14 1370.02	(%) NA 100.0%
9. BENZO(A)ANTHRACI 10. CHRYSENE 11. BENZO(B)FLUORAN	(ng/m2/day)* 760.90 1949.20 1878.90	(ng/m2/day) 668.14 1370.02 2921.78	(%) NA 100.0% 100.0%
9. BENZO(A)ANTHRACI 10. CHRYSENE 11. BENZO(B)FLUORAN 12. BENZO(K)FLUORAN	(ng/m2/day)* 760.90 1949.20 1878.90 1890.04 1413.41	(ng/m2/day) 668.14 1370.02 2921.78 1526.34	(%) NA 100.0% 100.0% 100.0%
9. BENZO(A)ANTHRACI 10. CHRYSENE 11. BENZO(B)FLUORAN 12. BENZO(K)FLUORAN 13. BENZO(A)PYRENE	(ng/m2/day)* 760.90 1949.20 1878.90 1890.04 1413.41 41.71	(ng/m2/day) 668.14 1370.02 2921.78 1526.34 1785.07	(%) NA 100.0% 100.0% 100.0% NA

-440.30	/ 050/ 0 !
-440.30	+/- 95% C.L.
	458.38
-32.40	50.34
208.47	112.60
-76.74	28.38
10.95	10.95
117.68	64.62
-1423.95	178.41
-439.51	70.73
Triplicate	Blank Flux (ng/m2/day)
Average	
NA	NA
	22.32
23.94	I
23.94 -134.30	297.91
	297.91 36.30
-134.30	
-134.30 -9.71	36.30
-134.30 -9.71 NA	36.30 NA

Figure 76. Pearl Harbor, Bishop Point Combined PAH Comparison of Flux to Blanks (First 4 samples).

Figure 77. Pearl Harbor, Bishop Point Combined Demonstration PAH Time Series Graphs (First 4 samples).

5.1.7.2 Pearl Harbor Combined Demonstration Discussion

For the most part, flux rates for metals and organics behaved similarly at the Bishop Point sight for both the organics-only, metals-only and this combined demonstration of both organics and metals. Tables 21 and 22 show a side by side comparison of these demonstration flux results.

Table 21. Comparison of Flux Rates from Metals-only and Combined Demonstrations.

	Combine	d Demo	Metals On	ly Demo
Metal	Flux	+/- 95% C.L.	Flux	+/- 95% C.L.
	(□g/m2/day)*	(□g/m2/day)	(□g/m2/day)*	(□g/m2/day)
Arsenic (As)	23.48	6.94		
Copper (Cu)	-71.30	39.43	112.46	17.60
Cadmium (Cd)	1.31	1.63	1.85	1.96
Lead (Pb)	17.40	24.63	0.71	1.11
Nickel (Ni)	59.18	55.96	21.04	15.41
Manganese (Mn)	427.65	238.42	223.33	284.79
Manganese (Mn)1	1940.13	3853.39	2177.45	192.60
Silver (Ag)	-0.36	0.88		
Zinc (Zn)	374.36	133.74	191.18	54.07

Copper and zinc are the only metals which showed a significant difference between sampling during the first metals only demo and the combined demo. Copper actually showed a reverse trend during the second test. Zinc flux rate was higher during the combined demo than during the first. However, cadmium, lead, nickel and manganese showed similar trends and lay within the 95% confidence intervals of the calculated slopes. Arsenic and silver were not reported during the first test and could not be compared here.

Flux rates for PAH's were calculated for the first 4 samples taken in order to compare with the original Bishop Point organics test. Concentrations for PAH's for both tests evened out or plateaued after the fourth sample was collected at about 22 hours. The "first four" flux rates are probably more realistic as that was measured before any interference or interaction with natural, in-situ processes caused by the chamber itself. The only organic which was significantly different from the first test was Phenanthrene which showed a negative flux or and absorption into sediments during the combined demo. All other organic compounds measured during the first test showed similar flux rates when compared to the 95% confidence limits of the flux curves.

The cause for the organic concentrations leveling off is not immediately known. Low oxygen levels and anoxic conditions inside the chamber during the first test were blamed for the effect. However

adequate oxygen conditions were maintained during the second test with the same result. High bulk sediment concentrations measured at Bishop Point may suggest a loading or saturation of PAH's within the chamber after 22 hours which would result in a dampening of the flux processes.

Table 22. Comparison of Flux Rates from PAH-only and Combined Demonstration.

Table 22. Comparison of Flux R			Compine		
	Combined				nly Demo
PAH	Flux	+/- 95% C.L.		Flux	+/- 95% C.L.
	(ng/m2/day)*	(ng/m2/day)		(ng/m2/day)*	(ng/m2/day)
1. Naphthalene	2456.72	13211.63		1848.00	4406.00
2. Acenaphthene	9222.27	6867.34		71053.00	327574.00
3. Acenaphthylene	778.37	880.29		6862.00	14388.00
4. Fluorene	285.70	2021.66		10387.00	110972.00
5. Phenanthrene	-3555.98	7892.27		3031.00	106689.00
6. Anthracene	2874.10	1330.22		26955.00	27293.00
7. Fluoranthene	19696.65	3869.67		69812.00	380980.00
8. Pyrene	12101.21	3884.64		24512.00	190722.00
PAH	Flux	+/- 95% C.L.		Flux	+/- 95% C.L.
	(ng/m2/day)*	(ng/m2/day)		(ng/m2/day)*	(ng/m2/day)
9. BENZO(A)ANTHRACENE	760.90	668.14		Non-Detect	NA
10. CHRYSENE	1949.20	1370.02		8792.74	10650.17
11. BENZO(B)FLUORANTHENE	1878.90	2921.78		3080.74	17862.21
12. BENZO(K)FLUORANTHENE	1890.04	1526.34		977.52	3135.53
13. BENZO(A)PYRENE	1413.41	1785.07		Non-Detect	NA
14. INDENO(1,2,3-C,D)PYRENE	41.71	103.62		122.97	7141.99
15. DIBENZ(A,H)ANTHRACENE	34.46	85.60		Non-Detect	NA
16. BENZO(G,H,I)PERYLENE	39.90	99.12		33.19	5249.47

5.1.8 Paleta Creek and Pearl Harbor Metals Demonstrations Data Assessment.

BFSD2 performance assurance indicators show that: (1) a proper seal was achieved during both sets of demonstration deployments and chamber isolation of test water was maintained; (2) oxygen levels were maintained close to ambient levels, and; (3) silica, oxygen and pH trends varied as expected.

It was concluded that the two sets of deployments of BFSD2 at Paleta Creek and at Pearl Harbor, Hawaii demonstrated consistent performance and the ability to measure trace metal mobility at distinctly different sites. Ease of operation and reliability were also demonstrated. It was further concluded that BFSD2 can provide accurate and repeatable measurements of the mobility of trace metal contaminants to and from shallow water marine sediments when certain prerequisite conditions

are met. These sediment flux rates can be established with high confidence when the routine procedures, standard methods and protocols demonstrated during this study are followed. The BFSD2 and its support equipment are mobile by air transport, field portable and can be operated with a minimum of resources. Comparison of measured sediment fluxes with blank-chamber fluxes provides a statistical benchmark for the significance of the measured flux rates. Where statistically significant fluxes are observed, evaluation of impacts on water quality can be carried out, or comparisons can be made to bioaccumulation measurements to help identify exposure pathways. The resulting analysis will provide a significant new tool in evaluating potential cleanup options at contaminated sediment sites.

5.1.9 Technology Comparison

There are no directly comparable technologies to the Benthic Flux Sampling Device for *in situ* contaminated sediment flux measurements. Current alternative approaches, such as bulk sediment analysis, have been discussed throughout this report. Alternate methods and associated costs are discussed in section 6.1.4. Site specific considerations must be considered in determining which combination of technologies will provide the best information. Data analysis and interpretation is likewise dependent on site specific considerations as illustrated in this report.

6. Cost Assessment

6.1 Cost Performance

The expected operational costs for the Benthic Flux Sampling Device 2 (BFSD2) are largely driven by analytical laboratory costs. Although typical analytical laboratory prices have shown reductions, the detection level required to achieve meaningful BFSD2 flux measurements requires specialized equipment and highly skilled technicians available at limited sources. Other BFSD2 expected operational costs are driven primarily by labor, supplies and transportation costs during the preoperational, operational and post-operational phases of deployment. The combined metals and organics demo has shown how a single deployment can collect data for both metals and organic compounds thus reducing the cost if both are desired at a single location. Lab analysis costs are increased but are offset by logistical and travel costs.

6.1.1 Pre-Operational Phase Costs

The costs incurred prior to field operations are derived from expenses involved with: site research and applicability; logistics planning and scheduling; equipment maintenance and repair; and predeployment readiness preparations (supplies, packing, checkout). Table 23 and Figure 78 below include expected pre-operational phase costs and an associated schedule of activities.

Table 23. Expected Pre-Operational Phase Costs for BFSD2 Deployment.

	La	bor	Non-	Labor	Totals
	Govt	Contr	Matls	Other	
Site Research	\$5,580	\$0	n/a	\$1,000	\$6,580
Logistics Plans	\$7,000	\$0	n/a	\$0	\$7,000
Maint and Repair	\$1,600	\$4,200	\$500	\$0	\$6,300
Readiness Prep	\$2,000	\$10,850	\$500	\$0	\$13,350
Totals	\$16,180	\$15,050	1000	\$1,000	\$33,230

Figure 78. Expected Pre-Operational Phase Schedule for BFSD2 Deployment.

6.1.2 Operational Phase Costs

The costs incurred for field operations are derived from expenses involved with: equipment transportation; personnel travel and per diem; field facilities (shoreside work area, surface vessel, handling equipment); deployment, recovery and turnaround on a 5-day cycle; and analytical laboratory costs for one blank test and the required number of sites. Table 24 and Figure 79 below include expected operational phase costs and an associated schedule of activities.

Table 24. Expected Operational Phase Costs for BFSD2 Deployment.

	La	bor		Non-Labo	r	Totals
	Govt	Contr	Matls	Lab	Other	
Equip Trans	\$100	\$200	\$0	n/a	\$1,000	\$1,300
Travel	\$800	\$600	\$0	n/a	\$1,240	\$2,640
Equip/Facilities	\$1,600	\$1,200	\$0	\$0	\$0	\$2,800
Blank Test	\$4,000	\$3,000	\$0	\$12,000	\$1,200	\$20,200
Site #1	\$4,000	\$3,000	\$0	\$12,000	\$2,700	\$21,700
Site #2	\$4,000	\$3,000	\$0	\$12,000	\$2,700	\$21,700
Totals	\$14,500	\$11,000	\$0	\$36,000	\$8,840	\$70,340

Figure 79. Expected Operational Phase Schedule for BFSD2 Deployment.

The operational phase costs for one site, which includes the costs for transportation, setup and a blank test are \$48,640, of which 49% is for analysis of the samples. Each additional site adds \$21,700 to the total, of which 55% is for analysis of the samples. The operational phase schedule is likewise strongly driven by the standard 60-day laboratory analysis time, which can be shortened to 30-days or less, at additional cost. The 5-day operations period for a BFSD2 72-hour deployment, recovery and turnaround cycle fits conveniently with a standard workweek schedule. An accelerated schedule which shortens turnaround time and includes weekend work periods can achieve two deployments per week.

6.1.3 Post-Operational Phase Costs

The costs incurred following completion of site operations are derived from expenses involved with: equipment packing and transportation; personnel travel; data processing, analysis and interpretation; report preparation. Table 25 and Figure 80 below include expected post-operational phase costs and an associated schedule of activities.

Table 25. Expected Post-Operational Phase Costs for BFSD2 Deployment.

	La	bor		Non-Labo	r	Totals
	Govt	Contr	Matls	Lab	Other	
Equip Pkg/Trans	\$0	\$1,500	\$0	n/a	\$1,000	\$2,500
Travel	\$800	\$600	\$0	n/a	\$1,240	\$2,640
Data Review	\$20,000	\$13,000	\$0	\$0	\$0	\$33,000
Report Prep	\$24,000	\$0	\$0	n/a	\$0	\$24,000
Totals	\$44,800	\$15,100	\$0	\$0	\$2,240	\$62,140

				ontl	ո 4		M	ontl	ı 5	N	Io	nth	6	N	Io	ıth	7	M	lon	th 8	3	Mo	ontl	1 9	Μ	[ont	h 10	1 0	Мo
No.	Activity	Cost	1	617	18	19	20	212	222	3 24	125	26	27	28	293	303	313	233	34	35	363	373	8 39	40	41	42 4 3	344	45	46
31	Post-Operational Phase	\$62,260							+	٠	H					ŧ	+	+	H		+					+			
32	Equipment Packing/Transportation	\$2,500		\$	2,5	00																							
33	Personnel Travel	\$2,640		V	\$2	,64	0																						
34	Data Processing, Analysis, Interpretat	\$33,120											Г	Δ		Ť					+			\$	33,	120			
35	Report Preparation	\$24,000											L			+					+	+					V	\$2	24,

Figure 80. Expected Post-Operational Phases Schedule for BFSD2 Deployment.

The post-operational phase costs are largely the labor costs to process, analyze, interpret and report the results of the BFSD2 deployments. The costs are approximately the same regardless of the number of deployments as long as the sites have generally common geophysical and geochemical characteristics. The schedule is driven by the inactive period of time while awaiting results from laboratory analysis of the samples.

6.1.4 Alternative Methods

As discussed extensively in key reference 3, alternative sample collection methods to BFSD2's *in situ* collection and filtering of samples from the sediment-water diffusive interface are available. As with BFSD2, samples collected with alternative methods will require equivalent specialized laboratory analyses in order to determine contaminant flux rates. Those costs would be equivalent. Thus a direct comparison focusing on the method of sample collection is useful. Available alternate methods fall into two approaches, *ex situ* and *in situ*. Either of the approaches introduce error sources not present with BFSD2 and minimizing the affects of the error sources increases costs and complexity. Sample integrity becomes a significant factor. These issues aside, *ex situ* approaches can be as much as 50% cheaper for the field work, but this advantage quickly disappears with sediment processing costs. Alternative *In Situ* approaches, where applicable, may yield even greater savings than 50% for the field work, but careful consideration of the factors discussed below may discourage their use.

Both alternative approaches involve isolation of sediment pore water. With either approach, the primary source of error is the oxidation of anoxic pore water, which can significantly alter the aqueous phase trace metals. To prevent oxidation, samples must be processed and handled in an inert atmosphere, typically nitrogen or argon. Ex Situ methods typically first collect sediment samples which then require additional processing to extract pore water - requiring an inert atmosphere. Centrifuging or squeezing the sediment are accepted practices, but they too introduce error sources including solid-solution interactions. Sectioning samples prior to extraction to resolve sample depth for gradient determinations also adds cost and introduces errors. In addition, Ex Situ samplers must be rugged enough for field use yet provide isolation of the sediment sample from metal components. This is particularly difficult for dredging and grab sampling equipment however coring equipment can include non-metallic sleeves. Alternative in situ methods collect pore water samples at the sediment interface using either suction filtration techniques or dialysis. In Situ filtration techniques are limited to coarse grain sediments and do not offer depth resolution. Dialysis techniques incur minimum error sources, but suffer sample collection times as long as 20 days and produce small sample volumes. Periodic sample collection comparable to BFSD2 could require months, which in turn raises a number of additional issues.

7. Regulatory Issues

7.1 Approach to Regulatory Compliance and Acceptance

Regulatory acceptance has been a fundamental part of this project from the start and was included in the initial execution plan. The approach included application to the California Environmental Protection Agency (CA EPA), Department of Toxic Substances Control (DTSC) program known as "Cal Cert". A formal "Services Agreement" was signed with the State of California and funded for technology evaluation and certification services. In addition, CA EPA membership in the Interstate Technology and Regulatory Cooperation (ITRC) group of the Western Governors Association (WGA) and the resulting multi-state recognition of certified technologies by at least the 26 member states' environmental protection agencies promotes recognition and acceptance the BFSD2. Recognition and acceptance by the U.S. Environmental Protection Agency (US EPA), as well as private sector, Native American and foreign interests, is also promoted by their active participation in the ITRC. And, US EPA, state, local and private environmental professionals, as well as CA EPA evaluators were in attendance at field demonstrations, which included technology briefings and displays. Finally, certification by CA EPA includes public notifications and listings officially distributed to a wide range of recipients.

The Cal Cert application involved CA EPA review of the technology including background publications, reports, test and evaluation data, and a SSC SD site visit for technical discussions and equipment inspection. Due to the unique nature of the BFSD2 technology, a DTSC-wide search for a qualified lead technology evaluator was necessary to locate and secure the services needed for this project. Following acceptance of the Cal Cert application a performance claim was made by SSC SD After initial certification for metals, the CA Cert formal Services Agreement was amended to include organics applications. Additional funds to support their organics evaluation were provided also as amendments to previous documents.

The demonstrations performed for this project were key elements in the Cal Cert process. CA EPA evaluators reviewed the site selections, the test plans and attended the field demonstrations. Independent measurements, data review and analyses were accomplished by the CA EPA evaluators. Appendix F is the formal Cal Cert certificate and publicly released report. The Final Technology Evaluation report is listed in References, Section 10.

8. Technology Implementation

8.1 DoD Need

Sediments in many US bays and harbors are contaminated with potentially harmful metal and organic compounds. Contamination occurred directly through disposal of shipyard and shipboard waste, and indirectly through urban runoff and groundwater exchange with land sites. Federal, state and local regulatory agencies are in the process of adopting strict sediment quality criteria. These regulations represent a significant compliance issue for the DoD relative to discharge practices, dredging operations and clean-up techniques. Previous studies indicate that biological uptake, accumulation, and toxicity result primarily from the fraction of the toxicant pool that is readily solubilized. In surface sediments, the production of this soluble fraction will, in most cases, cause it to migrate through the pore water and across the sediment-water interface. Contaminated sediments at DoD sites pose a potential human health and ecological risk. Source control programs will not eliminate sediment contamination immediately because of the slow degradation and cycling processes that control many pollutants in these systems

For these reasons, benthic toxicant fluxes can provide a unique *in situ* indicator of bioavailability and hence an estimate of the potential for risk to human health or environmental harm. Using direct measurements, DoD can reduce the escalating costs of compliance and remediation of contaminated sediments by determining if the contamination poses a significant risk for remobilization. Quantifying the mobility of these in-place contaminants is an essential requirement for deciding the proper method of remediation. The complexity of marine sediment systems makes it very difficult to predict contaminant mobility by indirect methods. There is currently no other satisfactory direct means of quantifying the mobility of contaminants from marine sediments except the Benthic Flux Sampling Device (BFSD2 and its prototype version).

8.2 Transition

Technology transition of the BFSD2 is well underway. It consists of commercialization, regulatory acceptance, product improvement, and performance extension elements.

8.2.1 Commercialization

BFSD2 is a commercialized version of the prototype BFSD. The prototype BFSD was used during the Research, Development, Test and Evaluation (RDTE) phase of the program and was followed by fabrication of BFSD2 during the subsequent Acquisition phase. A Technical Data Package (TDP) and procurement package were generated to support a fixed-price, competitive contract solicitation for fabrication of a commercialized version of the prototype BFSD, called BFSD2. The winner, Ocean Sensors, Incorporated in San Diego, utilized commercial-off-the-shelf (COTS) and replaceable/repairable assemblies in meeting the requirements of the TDP.

8.2.1.1 Cooperative Research and Development Agreement

A Cooperative Research and Development Agreement (CRADA) was negotiated with Ocean Sensors, Inc., however it was not formalized and consummated. The company suggested, and SSC SD agreed, that a formal CRADA would not promote its goals for producing additional systems for other customers in response to market demand. No conflicting intellectual property issues were identified with their strategy and the company is currently awaiting new orders.

8.2.2 Regulatory Acceptance

See Approach to Regulatory Compliance and Acceptance, Section 7.1.

8.2.3 Product Improvement

Both incremental and continuing product improvements have been included in technology implementation. New methods, processes and procedures applicable to the BFSD2 were evaluated for use as a result of problems, constraints or other drawbacks identified during operations.

8.2.3.1 Incremental Product Improvements

Incremental improvements were implemented during the project, such as: reconfiguring the circulation pump for improved flow rate control: reconfiguring for *in situ* sample filtration using vacuum-filled collection bottles; installation of a insertion sensor subsystem to assure minimum sediment penetration; installation of a subsystem to inject sodium bromide into the collection chamber as a conservative tracer to facilitate more accurate volume determination. Care was taken to assure that such improvements did not invalidate ongoing certification efforts.

8.2.3.2 Continuing Product Improvements

Continuing improvements were implemented during the project, such as: method, timing and location for collection of a suitable ambient water sample; numerous computational spreadsheet data reduction, processing and display improvements; numerous improvements for turnaround cleaning and preparation; processes and procedures to improve maintenance and minimize corrosion. Again, care was taken to assure that such improvements did not invalidate ongoing certification efforts.

9. Lessons Learned

9.1 Flexibility

This project has been relatively straight forward and trouble free. As with any multi-faceted program which involves a complex new technology, flexibility must be maintained in order to accommodate any number of emergent issues. Plans and schedules must flex to allow for changes. This project suffered delayed funding at several points, but plans were flexible enough to allow work around efforts which ultimately recovered schedule losses. Technical approaches must flex to allow for changes. This project benefited from a number of incremental and continuing product improvements which were accommodated within the technical approach without invalidating demonstration results.

9.2 Mother Nature

Earlier studies had forecast it and it was clear from demonstration results that contaminated sediments are non-homogeneous and are subject to influences involving benthic organisms, complex marine geochemistry, and other factors. Accommodation of differences between blank measurements made a few days apart and site measurements made a few feet apart were necessary.

9.3 Statistics

With consideration for the very low levels of contaminants being measured (parts per *billion* and lower!) metrics involving statistical methods were needed to put meaning to results. Accommodation for results in terms of probabilities and confidence levels must be made to tease out the true meaning of some flux measurements. All throughout, consistent and repeatable materials, processes and procedures were necessary to minimize their influence on true results.

10. References

Key References

- 1. A.Tengberg, et al "Benthic Chamber and Profiling Landers in Oceanography A Review of Design, Technical Solutions and Functioning"
- 2. A.Tengberg, et al, Draft "Hydrodynamics in Benthic Chambers for *In Situ* Studies I: Results from an Intercalibration Involving 14 Different Designs", 8 Mar 1997
- 3. S.E.Bufflap and Herbert E. Allen, "Sediment Pore Water Collection Methods for Trace Metal Analysis: A Review", *Wat. Res.* Vol. 29, No. 1, pp 165-177, 1995
- 4. D.B.Chadwick, et al "A Benthic Flux Chamber for Monitoring Pollution Exchange Rates at the Sediment-Water Interface"
- 5. D.B.Chadwick, et al "Autonomous Benthic Lander for Polluted Bays, Harbors", *Sea Technology*
- 6. D.B.Chadwick, et al "An Instrument for the *In Situ* Measurement of Contaminant Flux Rates at the Sediment-water Interface", submitted to *Environmental Science and Technology*
- 7. J.M.Leather, et al "Contaminant Flux Measurements Across the Sediment-Water Interface in San Diego Bay", *Oceans '95*
- 8. NCCOSC RDTE Div, Code 52 Draft Final Report, "Sediment Quality Characterization Naval Station San Diego", October 1996
- 9. NCCOSC RDTE DIV San Diego Contract N66001-97-C-0049 Awarded to Ocean Sensors, Inc., 21 Mar 1997
- 10. SPAWARSYSCEN San Diego contract N66001-98-D-5015 awarded to Tetra Tech, Inc., 26 August 1998
- 11. Technology Demonstration Plan for ESTCP Project 199712, *In Situ* Instrument for Quantifying Contaminant Mobility in marine Sediments, May 1998
- 12. California EPA Technical Report of Evaluation and Certification of Benthic Flux Sampling Device, Report TBD
- 13. ESTCP General Cost and Performance Report Guidance for Site Characterization Projects, June 1998 (Draft)
- 14. ESTCP Final Report Guidelines for Funded Projects, 15 April 1996

General References

- 1. Berelson, WM., D.E. Hammond, K.L. Hinga, G.T. Rowe, and F. Sayles, 1987. *In Situ* Benthic Flux Measurement Devices: Bottom Lander Technology. MTS Journal, V.21(2):26-32.
- 2. Berner, R.A., 1980. *Early Diagenesis: A Theoretical Approach*. Princeton University Press, Princeton, New Jersey, 241p.
- 3. Casas, A.M., and E.A. Crecelius, 1994. Relationship Between acid Volatile Sulfide and the Toxicity of Zinc, Lead, and Copper in Marine Sediments. Environmental Toxicology and Chemistry, V.13(3):529-536.
- 4. Chadwick, D.B., S.D. Stanley, and S.H. Lieberman, 1993. A Benthic Flux Chamber for Monitoring Pollution Exchange Rates at the Sediment-water Interface. Proceedings Oceans '93:196-206.
- 5. Di Toro, D.M., J.D. Mahony, D.J. Hansen, K.J. Scott, M.B. Hicks, S.M. Mayr, and M.S. Redmond, 1990. Toxicity of Cadmium in Sediments: the Role of Acid Volatile Sulfides. Environmental Toxicology and Chemistry, V. 9:1487-1502.
- 6. Huettel, M., and G. Gust, 1992. Solute Release Mechanisms from Confined Sediment Cores in Stirred Benthic Chambers and Flume Flows. Marine Ecology Service, V.82:187-197.
- 7. Rhoads, D.C., R.C. Aller, and M.B. Goldhaber, 1977. The Influence of Colonizing Benthos on Physical Properties and Chemical Diagenesis of the Estuarine Seafloor. In Coull, B.C. (ed), *Ecology of Marine Benthos*, University of South Carolina Press, Columbia, pp. 113-138.
- 8. Westerlund, S.F.G., L.G. Anderson, P.O.J. Hall, A. Iverfelt, M.M. Rutgers van der Loeff, and B. Sundy, 1986. Benthic Fluxes of Cadmium, Copper, Nickel, Zinc, and Lead in the Coastal Environment. Geochimica et Cosmochimica Acta, V.50:1289-1296.
- 9. Lee, C. and S.G. Wakeham, 1989. Organic Matter in Seawater: Biogeochemical Processes. In: J.P Riley (ed.), Chemical Oceanography, Academic Press, New York, pp.2-51.
- 10. NCCOSC RDTE Div Brochure TD 2790, "Benthic Flux Sampling Device", April 1995
- 11. R.F.Chen, et al "Benthic Fluxes of Organic Compounds by Time-resolved Spectrofluorometry"
- 12. NCCOSC RDTE Div Technical Document 2434, "An Evaluation of Contaminant Flux Rates from Sediments of Sinclair Inlet, WA, Using a Benthic Flux Sampling Device", February 1993
- 13. NCCOSC RDTE Div Technical Document 2435, "Benthic Flux Sampling Device Prototype Design, Development, and Evaluation", August 1993
- 14. NCCOSC RDTE Div Technical Document 2387, "Benthic Flux Sampling Device Operations, Methods, and Procedures", February 1993
- 15. United States Environmental Protection Agency, 1988. Toxic Sediments: Approaches to Management. EPA 68-01-7002.

Appendix A

Points of Contact

1. Project Manager and Principal Investigator:

Combined Demo:

Bradley Davidson

Space and Naval Warfare Systems Center, Code D3604

53475 Strothe Road, Bldg 111

San Diego, CA 92152

Phone – 619-553-2804

Fax – 619-553-6305

Emai – bradley.davidson@navy.mil

Metals only and Organics only Demos:

Tom Hampton

Space and Naval Warfare Systems Center, Code D3604

53475 Strothe Road, Bldg 111

San Diego, CA 92152

Phone – 619-553-1172

Fax – 619-553-1177

Email – thampton@spawar.navy.mil

2. Co-Investigator:

Bart Chadwick, PhD

Space and Naval Warfare Systems Center, Code D362

53475 Strothe Road, Bldg 149

San Diego, CA 92152

Phone – 619-553-5333

Fax - 619-553-6305

Email – chadwick@spawar.navy.mil

3. California EPA Certification Evaluators:

Bruce Labelle, PhD

Department Of Toxic Substances Control

301 Capitol Mall, 1st floor

Sacramento, California 95814

Phone – 916-322-5591

Fax – 916-327-4494 or 445-2939

Email Blabelle@DTSC.Ca.Gov

John Wesnousky
Department of Toxic Substance Control
California Environmental Protection Agency
301 Capitol Mall, 1st Floor
Sacramento, CA 95814
Phone - 916-322-2543
Fax - 916-327-4494
Email JWesnousky@DTSC.Ca.Gov

4. Pearl Harbor Naval Complex Host:

Peter Nakamura

Naval Facilities Command, Pacific Division

Honolulu, HA

Phone – 808- 474-4505 Fax – 808- 474-4519

Email - NakamuraPM@efdpac.navfac.navy.mil

5. Commercialization Contractor:

Kim McCoy

Ocean Sensors, Inc

4901 Morena Blvd, Suite 1001

San Diego, CA 92117

 $Phone-619\hbox{-}274\hbox{-}9893$

Fax - 619-274-9895

Email – kmccoy@adnc.com

6. Development Sponsor:

Andy DelCollo

Naval Facilities Command

Washington DC

Phone – 202-685-9173

Fax - 202-685-1569

Email - delcolloa@navfac.navy.mil

7. Demonstration and Validation Sponsor:

Jeff Marqusee, Ph.D.

Office of Under Secretary of Defense (Environmental Security)

Environmental Security Technology Certification Program

Washington DC

Phone - 703-696-2120

Fax - 703-696-2114

Email - marqusj@acq.osd.mil

Appendix B

Spreadsheet Products for Each Demonstration

Bishop Point Combined - PAHs first 4 (Part 1)

Bishop Point Combined - PAHs first 4 (Part 2)

BP Organics Demo - PAHs (Part1)

BP Organics Demo - PAHs (Part1-First 4 Samples)

BP Organics Demo - PAHs (Part1-last 8 samples)

BP Organics Demo - PAHs (Part 2)

BP Organics Demo - PAHs (Part 2

BP Organics Demo - PAHs (Part 2

BP Organics Demo-PCBs

BP Organics Demo-Pesticides

PC Organics Demo - PAHs (Part1)

PC Organics Demo - PAHs (Part 2)

PC Organics Demo-PCBs

PC Organics Demo-Pesticides

BFSD2 Blank Tests (CA Cert)-Metals

BFSD2 Blank Tests- PAHs (CA Cert)

BFSD2 Blank Tests- PCBs (CA Cert)

BFSD2 Blank Tests- Pesticides (CA Cert)

BFSD2 PCD(All-CA Cert)

BFSD2 PCPD(All-CA Cert)

BFSD2 PHBP(All-CA Cert)

BFSD2 PHML(All-CA Cert)

Bishop Point Combined - Metals_1

Bishop Point Combined - PAHs (Part 1)

Bishop Point Combined - PAHs (Part 2)

BFSD 2 Triplicate Blank Tests Copper

Site: Date:

End of SSC,SD Pier 159 5/14-5/31/98 (3 tests)

Start time: See indivdual tests

Duration/Interval: 77hrs (min)/7 hrs

End time: See individual tests

1		BFSD 2 Data			Dilution Correction		From	Linear Regression	n Statistics			
Ī	Measured			Measured	Corrected		Regression			Bottle Volume =	0.235	liters
Sample id	Concentration	Sample No.*	Elapsed Time	Concentration	Concentration	# of Dilutions	Concentration			Blank Chamber Volume =	42.97	liters
	(ppb)**		(hrs)	(ppb)**	(ppb)**		(ppb)**			Chamber Area =	1701.4	cm ²
Copper (Cu)												
Test #1								Regression O				
	1.42	T-#0		1.420				Constant	1.446			
BT1-03	1.42	#1	7	1.420	1.420	0	1.475	Std Err of Y Est	0.211			
BT1-05	1.50	#2	21	1.500	1.492	2	1.532	R Squared	0.171			
BT1-07	1.53	#3	35	1.530	1.515	4	1.590	No. of Observations	6	Flux = 25 ug/m^2/day		
BT1-09	2.00	#4	49	2.000	1.978	6	1.648	Degrees of Freedom	4	· · · · · · · · · · · · · · · · · · ·		
BT1-11	1.89	#5	63	1.890	1.863	8	1.705			80% CI (low) =	-17	μg/m²/day
BT1-12	1.44	#6	70	1.440	1.416	9	1.734	X Coefficient(s)	0.004	(high) =	67	μg/m²/day
								Std Err of Coef.	0.005			
Test #2												
								Regression O				
BT2-01	2.57	T-#0	-0.1	2.574		n/a		Constant	1.759			
BT2-02	1.72	#1	0	1.718	1.718	0	1.759	Std Err of Y Est	0.045			
BT2-03	1.77	#2	7	1.769	1.764	1	1.739	R Squared	0.431			
BT2-04	1.85	#3	14	1.853	1.844	2	1.719	No. of Observations	12	Flux = -17 ug/m^2/day		
BT2-05	1.66	#4	21	1.660	1.647	3	1.700	Degrees of Freedom	4			
BT2-06	1.73	#5	28	1.730	1.712	4	1.680	ŭ .		80% CI (low) =	-27	μg/m²/day
BT2-07	1.67	#6	35	1.671	1.648	5	1.660	X Coefficient(s)	-0.003	(high) =	-7	μg/m²/day
BT2-08	1.58	#7	42	1.579	1.551	6	1.640					
BT2-09	1.64	#8	49	1.639	1.606	7	1.621					
BT2-10	1.52	#9	56	1.515	1.477	8	1.601					
BT2-11	1.69	#10	63	1.693	1.649	9	1.581					
BT2-12	1.69	#11	70	1.693	1.644	10	1.561					
								Std Err of Coef.	0.001			
Test #3												
	1.03	T-#0		1.030				Regression O Constant	Output: 0.991			
BT3-02	1.03	#1	7	1.030	1.030	0	1.010	Std Err of Y Est	0.075			
BT3-02	1.04	#2	21	1.040	1.034	2	1.049	R Squared	0.420			
BT3-06	1.10	#3	35	1.102	1.091	4	1.087	No. of Observations	6	Flux = 17 ug/m^2/day	_	
BT3-06 BT3-08	1.10		35 49	1.102	1.091			Degrees of Freedom		riux = 17 ug/iii-2/uay		
BT3-08 BT3-10	1.06 1.33	#4 #5	49 63	1.063	1.047	6 8	1.126 1.164	Degrees or Freedom	4	80% CI (low) =	•	μg/m²/day
BT3-10 BT3-12	1.33	#5 #6	70	1.326	1.304	8 10	1.164	X Coefficient(s)	0.003		2 32	μg/m /day μg/m²/day
D13-12	1.14	#6	70	1.140	1.114	10	1.184	Std Err of Coef.	0.003	(high) =	32	дулп /day

BFSD 2 Triplicate Blank Tests Cadmium

Site: End of SSC,SD Pier 159
Date: 5/14-5/31/98 (3 tests)

Start time: See indivdual tests
Duration/Interval: 77hrs (min)/7 hrs
End time: See individual tests

		BFSD 2 Data			Dilution Correction		From	Linear Regression	Statistics			
	Measured			Measured	Corrected		Regression			Bottle Volume =	0.235	liters
Sample id	Concentration	Sample No.*	Elapsed Time	Concentration	Concentration	# of Dilutions	Concentration			Blank Chamber Volume =	42.97	liters
	(ppb)**		(hrs)	(ppb)**	(ppb)**		(ppb)**			Chamber Area =	1701.4	cm ²
Cadmium (Cd)												
Test #1								Regression Ou				
	0.219	T-#0	7	0.219				Constant	0.246			
BT1-03	0.219	#1	,	0.219	0.219	0	0.240	Std Err of Y Est	0.014			
BT1-05	0.246	#2	21	0.246	0.245	2	0.228	R Squared	0.683		-	
BT1-07	0.230	#3	35	0.230	0.228	4	0.216	No. of Observations	6	Flux = -5.3 ug/m^2/day		
BT1-09	0.215	#4	49	0.215	0.212	6	0.204	Degrees of Freedom	4	<u>- </u>	_ '	
BT1-11	0.190	#5	63	0.190	0.185	8	0.192			80% CI (low) =	-8.0	μg/m²/day
BT1-12	0.182	#6	70	0.182	0.177	9	0.186	X Coefficient(s)	-0.001	(high) =	-2.5	μg/m²/day
								Std Err of Coef.	0.000			
Test #2								Daniel O				
		T						Regression Ou				
BT2-01	0.0752	T-#0	-0.1 0	0.075 0.094	0.004	n/a	0.120	Constant Std Err of Y Est	0.120 0.008			
BT2-02 BT2-03	0.0937 0.131	#1 #2	7	0.094	0.094 0.131	0 1	0.120	R Squared	0.008			
										Fl 0.7/m. 40/-l	7	
BT2-04	0.128	#3	14	0.128	0.128	2	0.118	No. of Observations	12	Flux = -0.7 ug/m^2/day	1	
BT2-05	0.122	#4	21	0.122	0.123	3	0.118	Degrees of Freedom	4			. 2
BT2-06	0.121	#5	28	0.121	0.122	4	0.117	V 0 / 1 / 1		80% CI (low) =	-2.5	μg/m²/day
BT2-07	0.114	#6	35	0.114	0.115	5	0.116	X Coefficient(s)	0.000	(high) =	1.0	μg/m²/day
BT2-08 BT2-09	0.108	#7 #8	42 49	0.108 0.134	0.109	6	0.115 0.114					
BT2-09 BT2-10	0.134 0.108	#8 #9	49 56	0.134	0.136 0.110	8	0.114					
BT2-10 BT2-11	0.0998	#9 #10	63	0.100	0.110	9	0.113					
BT2-11 BT2-12	0.0998	#11	70	0.104	0.102	10	0.112					
B12-12	0.104	#11	70	0.104	0.100	10	0.112					
								Std Err of Coef.	0.000			
Test #3												
	0.0622	T-#0		0.062				Regression Ou Constant	tput: 0.065			
BT3-02	0.0622	#1	7	0.062	0.062	0	0.065	Std Err of Y Est	0.002			
BT3-02 BT3-04	0.0622	#2	21	0.068	0.068	2	0.065	R Squared	0.034			
BT3-06	0.0669	#3	35	0.067	0.066	4	0.064	No. of Observations	6	Flux = -0.12 ug/m^2/day	7	
									4	Fiux = -0.12 ug/III~2/day	_	
BT3-08	0.0643	#4	49	0.064	0.063	6	0.064	Degrees of Freedom	4	000/ 01/1	0.50	
BT3-10	0.0623	#5	63	0.062	0.061	8	0.064	V Casfficient(s)	0.000	80% CI (low) =	-0.59	μg/m²/day μg/m²/day
BT3-12	0.0670	#6	70	0.067	0.065	10	0.064	X Coefficient(s) Std Err of Coef.	0.000	(high) =	0.36	μg/m /day

BFSD 2 Triplicate Blank Tests Lead

Site: End of SSC,SD Pier 159
Date: 5/14-5/31/98 (3 tests)

Start time: See indivdual tests

Duration/Interval: 77hrs (min)/7 hrs

End time: See individual tests

		BFSD 2 Data		Dilution Correction			From	Linear Regression	n Statistics			
	Measured			Measured	Corrected		Regression			Bottle Volume =	0.235	liters
Sample id	Concentration	Sample No.*	Elapsed Time	Concentration	Concentration	# of Dilutions	Concentration			Blank Chamber Volume =	42.97	liters
	(ppb)**		(hrs)	(ppb)**	(ppb)**		(ppb)**			Chamber Area =	1701.4	cm ²
Lead (Pb)												
Test #1								Regression C				
	0.159	T-#0		0.159				Constant	0.158			
BT1-03	0.159	#1	7	0.159	0.159	0	0.161	Std Err of Y Est	0.027			
BT1-05	0.146	#2	21	0.146	0.145	2	0.168	R Squared	0.142			
BT1-07	0.200	#3	35	0.200	0.198	4	0.174	No. of Observations	6	Flux = 2.8 ug/m ² /day		
BT1-09	0.216	#4	49	0.216	0.214	6	0.181	Degrees of Freedom	4	·		
BT1-11	0.149	#5	63	0.149	0.146	8	0.187			80% CI (low) =	-2.5	μg/m²/day
BT1-12	0.203	#6	70	0.203	0.200	9	0.191	X Coefficient(s)	0.000	(high) =	8.2	μg/m²/day
Test #2								Std Err of Coef.	0.001			
Test #2								Regression C	N. skov sk			
BT2-01	0.237	T-#0	-0.1	0.237		n/a		Constant	0.137			
BT2-01 BT2-02	0.128	#1	-0.1	0.128	0.128	0	0.137	Std Err of Y Est	0.018			
BT2-02 BT2-03	0.120	#2	7	0.127	0.126	1	0.142	R Squared	0.241			
BT2-04	0.188	#3	14	0.188	0.187	2	0.147	No. of Observations	12	Flux = 4.5 ug/m^2/day		
BT2-05	0.141	#4	21	0.141	0.140	3	0.152	Degrees of Freedom	4	1 lux = 4.5 ag/m 2/aay		
BT2-05	0.186	#5	28	0.186	0.184	4	0.152	Degrees of Freedom	4	80% CI (low) =	0.4	μg/m²/day
BT2-07	0.141	#6	35	0.141	0.138	5	0.163	X Coefficient(s)	0.001	(high) =	8.6	μg/m²/day
BT2-08	0.141	#7	42	0.141	0.138	6	0.168	(0)		(9)		r-g
BT2-09	0.159	#8	49	0.159	0.156	7	0.173					
BT2-10	0.230	#9	56	0.230	0.226	8	0.178					
BT2-11	0.144	#10	63	0.144	0.140	9	0.183					
BT2-12	0.221	#11	70	0.221	0.217	10	0.189					
								Std Err of Coef.	0.000			
Test #3								Regression C	Nutrout:			
	0.108	T-#0		0.108				Constant	0.119			
BT3-02	0.108	#1	7	0.108	0.108	0	0.121	Std Err of Y Est	0.013			
BT3-04	0.147	#2	21	0.147	0.146	2	0.123	R Squared	0.097			
BT3-06	0.123	#3	35	0.123	0.122	4	0.126	No. of Observations	6	Flux = 1.1 ug/m^2/day		
BT3-08	0.123	#4	49	0.123	0.122	6	0.128	Degrees of Freedom	4	riux = 1.1 ug/iii 2/uay		
BT3-10	0.118	# 4 #5	63	0.118	0.136	8	0.128	Dogress of Freedom	+	80% CI (low) =	-1.5	μg/m²/day
BT3-10 BT3-12	0.134	#6	70	0.134	0.130	10	0.131	X Coefficient(s)	0.000	(high) =	3.6	μg/m²/day
	0.101			0	0.102		002	Std Err of Coef.	0.000	(···8··/ -	5.5	pg,aa,

BFSD 2 Triplicate Blank Tests . Nickle

Site: Date:

End of SSC,SD Pier 159 5/14-5/31/98 (3 tests)

Start time: See indivdual tests
Duration/Interval: 77hrs (min)/7 hrs
End time: See individual tests

	BFSD 2 Data			Dilution Correction		From	Linear Regress	sion Statistics				
	Measured			Measured	Corrected		Regression			Bottle Volume =	0.235	liters
Sample id	Concentration	Sample No.*	Elapsed Time	Concentration	Concentration	# of Dilutions	Concentration			Blank Chamber Volume =	42.97	liters
	(ppb)**		(hrs)	(ppb)**	(ppb)**		(ppb)**			Chamber Area =	1701.4	cm ²
Nickle (Ni)												
Test #1								Regression	n Output:			
	0.589	T-#0		0.589				Constant	0.517			
BT1-03	0.589	#1	7	0.589	0.589	0	0.543	Std Err of Y Est	0.114			
BT1-05	0.577	#2	21	0.577	0.574	2	0.597	R Squared	0.381			
BT1-07	0.559	#3	35	0.559	0.552	4	0.651	No. of Observations	6	Flux = 23 ug/m ² /day		
BT1-09	0.730	#4	49	0.730	0.720	6	0.705	Degrees of Freedom	4			
BT1-11	0.970	#5	63	0.970	0.958	8	0.758	_		80% CI (low) =	1	μg/m²/day
BT1-12	0.657	#6	70	0.657	0.647	9	0.785	X Coefficient(s)	0.004	(high) =	46	μg/m²/day
								Std Err of Coef.	0.002			
Test #2								Regression	o Outrout.			
BT2-01	2.13	T-#0	-0.1	2.126		n/a		Constant	0.559			
BT2-02	0.615	#1	-0.1	0.615	0.615	0	0.559	Std Err of Y Est	0.085			
BT2-02	0.568	#2	7	0.568	0.560	1	0.573	R Squared	0.104			
BT2-04	0.658	#3	14	0.658	0.641	2	0.588	No. of Observations	12	Flux = 13 ug/m^2/day		
BT2-04 BT2-05	0.656	#3 #4	21	0.656	0.696	3			12	Flux = 13 ug/iii 2/uay		
BT2-05 BT2-06	0.721		28	0.721	0.585	3	0.603 0.617	Degrees of Freedom	4	80% CI (low) =	•	μg/m²/day
BT2-06 BT2-07	0.618	#5 #6	28 35	0.618	0.585	5	0.632	X Coefficient(s)	0.002	80% CI (low) = (high) =	-6 32	μg/m /day μg/m²/day
BT2-08	0.523	#6 #7	42	0.523	0.640	6	0.632	A Coefficient(s)	0.002	(riigri) =	32	дулп /day
BT2-09	0.614	#8	49	0.614	0.556	7	0.661					
BT2-10	0.617	#9	56	0.617	0.551	8	0.676					
BT2-11	0.656	#10	63	0.656	0.582	9	0.691					
BT2-12	1.13	#11	70	1.134	1.052	10	0.705					
D12 12	1.10			1.101	1.002		0.700					
								Std Err of Coef.	0.002			
Test #3								Regression	o Outrout.			
	0.511	T-#0		0.511				Constant	0.524			
BT3-02	0.511	#1	7	0.511	0.511	0	0.515	Std Err of Y Est	0.016			
BT3-02	0.492	#2	21	0.492	0.489	2	0.499	R Squared	0.754			
BT3-06	0.516	#3	35	0.516	0.510	4	0.483	No. of Observations	6	Flux = -7.1 ug/m^2/day		
BT3-08	0.462	#4	49	0.462	0.454	6	0.466	Degrees of Freedom	4	u. = ug/m Z/uuy		
BT3-10	0.474	#5	63	0.474	0.462	8	0.450	Degrees or Freedom	4	80% CI (low) =	-10.2	μg/m²/day
BT3-10	0.444	#6	70	0.444	0.429	10	0.442	X Coefficient(s)	-0.001	(high) =	-4.0	μg/m ² /day
213-12	0.144	0	.0	0.111	J. 123	.0	0.442	Std Err of Coef.	0.000	\gii) =	-4.0	µg···· / day

BFSD 2 Triplicate Blank Tests Manganese

Site: Date:

End of SSC,SD Pier 159 5/14-5/31/98 (3 tests)

Start time: See indivdual tests
Duration/Interval: 77hrs (min)/7 hrs
End time: See individual tests

	BFSD 2 Data			Dilution Correction			From	Linear Regressio	on Statistics			
	Measured			Measured	Corrected		Regression	_		Bottle Volume =	0.235	liters
Sample id	Concentration	Sample No.*	Elapsed Time	Concentration	Concentration	# of Dilutions	Concentration			Blank Chamber Volume =	42.97	liters
	(ppb)**		(hrs)	(ppb)**	(ppb)**		(ppb)**			Chamber Area =	1701.4	cm ²
Manganese(Mn))											
Test #1								Regression (
	7.70	T-#0	_	7.700				Constant	7.849			
BT1-03	7.70	#1	7	7.700	7.700	0	7.515	Std Err of Y Est	0.125			
BT1-05	6.67	#2	21	6.670	6.628	2	6.847	R Squared	0.987		_	
BT1-07	6.23	#3	35	6.230	6.140	4	6.179	No. of Observations	6	Flux = $-289 \text{ ug/m}^2/\text{day}$		
BT1-09	5.66	#4	49	5.660	5.520	6	5.512	Degrees of Freedom	4			_
BT1-11	5.08	#5	63	5.080	4.887	8	4.844			80% CI (low) =	-314	μg/m²/day
BT1-12	4.74	#6	70	4.740	4.532	9	4.510	X Coefficient(s)	-0.048	(high) =	-264	μg/m²/day
est #2								Std Err of Coef.	0.003			
est #2				I				Regression (Output:			
BT2-01	7.80	T-#0	-0.1	7.803		n/a		Constant	7.429			
BT2-02	7.63	#1	0	7.632	7.632	0	7.429	Std Err of Y Est	0.063			
BT2-03	7.10	#2	7	7.097	7.096	1	7.141	R Squared	0.988			
BT2-04	6.85	#3	14	6.854	6.849	2	6.853	No. of Observations	12	Flux = -249 ug/m^2/day		
BT2-05	6.45	#4	21	6.454	6.444	3	6.565	Degrees of Freedom	4			
BT2-06	6.20	#5	28	6.198	6.181	4	6.277	9		80% CI (low) =	-263	μg/m²/day
BT2-07	5.96	#6	35	5.961	5.935	5	5.989	X Coefficient(s)	-0.041	(high) =	-235	μg/m²/day
BT2-08	5.84	#7	42	5.837	5.801	6	5.702	1		, ,		
BT2-09	5.35	#8	49	5.349	5.302	7	5.414					
BT2-10	5.23	#9	56	5.232	5.172	8	5.126					
BT2-11	4.88	#10	63	4.877	4.803	9	4.838					
BT2-12	4.76	#11	70	4.761	4.671	10	4.550					
								Std Err of Coef.	0.002			
Test #3								Regression (Output			
	7.50	T-#0		7.503			1	Constant	7.726			
BT3-02	7.50	#1	7	7.503	7.503	0	7.416	Std Err of Y Est	0.094			
BT3-04	6.76	#2	21	6.762	6.721	2	6.795	R Squared	0.992			
BT3-06	6.14	#3	35	6.137	6.051	4	6.175	No. of Observations	6	Flux = -269 ug/m^2/day		
BT3-08	5.78	#4	49	5.777	5.642	6	5.555	Degrees of Freedom	4			
BT3-10	5.21	#5	63	5.208	5.023	8	4.934	209.003 01 1 10000111	-	80% CI (low) =	-287	μg/m²/day
BT3-10	4.80	#6	70	4.797	4.558	10	4.624	X Coefficient(s)	-0.044	(high) =	-250	μg/m²/day
		0	. •		500	. •		Std Err of Coef.	0.002	(91) -	200	r-5 / ddy

BFSD 2 Triplicate Blank Tests Zinc

Site: Date:

End of SSC,SD Pier 159 5/14-5/31/98 (3 tests)

Start time: See indivdual tests
Duration/Interval: 77hrs (min)/7 hrs
End time: See individual tests

	BFSD 2 Data			Dilution Correction			From	Linear Regression	n Statistics			
	Measured			Measured	Corrected		Regression			Bottle Volume =	0.235	liters
Sample id	Concentration	Sample No.*	Elapsed Time	Concentration	Concentration	# of Dilutions	Concentration	1		Blank Chamber Volume =	42.97	liters
	(ppb)**		(hrs)	(ppb)**	(ppb)**		(ppb)**			Chamber Area =	1701.4	cm ²
Zinc (Zn)												
est #1								Regression C				
	8.85	T-#0		8.850				Constant	9.288			
BT1-03	8.85	#1	7	8.850	8.850	0	9.064	Std Err of Y Est	0.381			
BT1-05	8.61	#2	21	8.610	8.562	2	8.617	R Squared	0.792		_	
BT1-07	8.30	#3	35	8.300	8.202	4	8.169	No. of Observations	6	Flux = -194 ug/m^2/day		
BT1-09	8.63	#4	49	8.630	8.480	6	7.722	Degrees of Freedom	4			
BT1-11	7.35	#5	63	7.350	7.151	8	7.274			80% CI (low) =	-270	μg/m²/day
BT1-12	6.86	#6	70	6.860	6.653	9	7.051	X Coefficient(s)	-0.032	(high) =	-118	μg/m²/day
								Std Err of Coef.	0.008			
est #2								Regression C	Jutout:			
BT2-01	6.04	T-#0	-0.1	6.037		n/a		Constant	6.890			
BT2-01	6.50	#1	-0.1	6.497	6.497	0	6.890	Std Err of Y Est	0.742			
BT2-03	5.99	#2	7	5.992	5.995	1	6.877	R Squared	0.001			
BT2-04	7.10	#3	14	7.102	7.104	2	6.864	No. of Observations	12	Flux = -11 ug/m^2/day	7	
BT2-05	8.28	#4	21	8.276	8.284	3	6.851	Degrees of Freedom	4	Tiux = -11 ug/iii 2/uay	_	
BT2-05 BT2-06	8.28 7.17	#4 #5	28	7.173	8.28 4 7.193	3	6.838	Degrees of Freedom	4	80% CI (low) =	-178	μg/m²/day
BT2-07	5.46	#6	35	5.460	5.487	5	6.825	X Coefficient(s)	-0.002	(high) =	155	μg/m²/day
BT2-08	6.51	#6 #7	42	6.510	6.533	6	6.812	A Coefficient(s)	-0.002	(riigri) =	155	дулп /цау
BT2-09	7.46	#8	49	7.458	7.484	7	6.799					
BT2-10	9.35	#9	56	9.349	9.383	8	6.787					
BT2-11	5.06	#10	63	5.064	5.116	9	6.774					
BT2-12	5.96	#11	70	5.955	6.002	10	6.761					
								Std Err of Coef.	0.018			
est #3												
		T-#0		0.047				Regression C Constant				
BT3-02	2.82	I -#0 #1	7	2.817 2.817	2.817	0	2.647	Std Err of Y Est	2.415 0.641			
BT3-02 BT3-04	2.82 3.31	#2	21	3.313	3.298	0 2	3.112	R Squared	0.592			
								· ·	0.392	Fl 204/ 10/-l	-	
BT3-06	3.52	#3	35	3.521	3.493	4	3.576	No. of Observations	6	Flux = 201 ug/m^2/day		
BT3-08	3.56	#4	49	3.558	3.518	6	4.040	Degrees of Freedom	4			. 2
BT3-10	3.71	#5	63	3.708	3.657	8	4.504	L		80% CI (low) =	73	μg/m²/day
BT3-12	5.90	#6	70	5.895	5.833	10	4.737	X Coefficient(s) Std Err of Coef.	0.033 0.014	(high) =	329	μg/m²/day

BFSD 2 Triplicate Blank Tests Silica Dioxide

Site: Date: End of SSC,SD Pier 159 5/14-5/31/98 (3 tests)

Start time: See indivdual tests
Duration/Interval: 77hrs (min)/7 hrs
End time: See individual tests

		BFSD 2 Data			Dilution Correction		From	Linear Regress	sion Statistics			
	Measured			Measured	Corrected		Regression			Bottle Volume =	0.235	liters
Sample id	Concentration	Sample No.*	Elapsed Time	Concentration	Concentration	# of Dilutions	Concentration			Blank Chamber Volume =	42.97	liters
	(ppb)**		(hrs)	(ppb)**	(ppb)**		(ppb)**			Chamber Area =	1701.4	cm ²
Silica (SiO ₂)	**Concentrations a	are in ppm (mg/L)]									
Test #1								Regression				
	0.403	T-#0		0.403				Constant	0.408			
BT1-03	0.403	#1	7	0.403	0.403	0	0.404	Std Err of Y Est	0.003			
BT1-05	0.398	#2	21	0.398	0.396	2	0.395	R Squared	0.972			
BT1-07	0.386	#3	35	0.386	0.382	4	0.386	No. of Observations	6	Flux = -4.0 mg/m^2/day		
BT1-09	0.388	#4	49	0.388	0.381	6	0.376	Degrees of Freedom	4			
BT1-11	0.376	#5	63	0.376	0.367	8	0.367			80% CI (low) =	-4.5	mg/m²/day
BT1-12	0.371	#6	70	0.371	0.362	9	0.363	X Coefficient(s)	-0.001	(high) =	-3.4	mg/m²/day
								Std Err of Coef.	0.000			
Test #2								Regression	Outout			
BT2-01	0.581	T-#0	-0.1	0.581		n/a		Constant	0.568			
BT2-01	0.556	#1	-0.1	0.556	0.556	0	0.568	Std Err of Y Est	0.020			
BT2-02 BT2-03	0.557	#2	7	0.557	0.557	1	0.564	R Squared	0.130			
			14	0.545		2		No. of Observations		Flux = -3.4 mg/m^2/day	_	
BT2-04	0.545	#3			0.545	2	0.560		12	Flux = -3.4 mg/m~2/day		
BT2-05	0.566	#4	21	0.566	0.566	3	0.556	Degrees of Freedom	4	*********		mg/m²/day
BT2-06 BT2-07	0.548 0.523	#5	28 35	0.548 0.523	0.547 0.522	4	0.552 0.548	X Coefficient(s)	-0.001	80% CI (low) =	-7.9 1.1	mg/m²/day mg/m²/day
BT2-07 BT2-08	0.523	#6 #7	35 42	0.523	0.522	5	0.548	X Coefficient(s)	-0.001	(high) =	1.1	mg/m /day
BT2-08 BT2-09	0.638	#8	42 49	0.638	0.551	5	0.544					
BT2-10	0.540	#9	56	0.552	0.539	8	0.536					
BT2-10 BT2-11	0.508	#9 #10	63	0.508	0.507	٥	0.532					
BT2-11	0.503	#11	70	0.503	0.501	10	0.528					
D12-12	0.505	#11	70	0.505	0.501	10	0.520					
								Std Err of Coef.	0.000			
Test #3								Regression	Output			
	0.657	T-#0		0.657				Constant	0.651			
BT3-02	0.657	#1	7	0.657	0.657	0	0.654	Std Err of Y Est	0.080			
BT3-04	0.605	#2	21	0.605	0.602	2	0.660	R Squared	0.015			
BT3-06	0.766	#3	35	0.766	0.759	4	0.665	No. of Observations	6	Flux = 2.6 mg/m^2/day		
BT3-08	0.614	#4	49	0.614	0.604	6	0.671	Degrees of Freedom	4			
BT3-10	0.801	#5	63	0.801	0.787	8	0.677		•	80% CI (low) =	-13.3	mg/m ² /day
BT3-12	0.617	#6	70	0.617	0.600	10	0.680	X Coefficient(s) Std Err of Coef.	0.000 0.002	(high) =	18.5	mg/m²/day

BATTELLE MARINE SCIENCES LABORATORY

1529 West Sequim Bay Road Sequim, WA 98382-9099 360/681-3604

DETECTION LIMIT

0.01

0.12

0.007

0.076

0.006

0.87

0.08

0.16

0.00532

0.001

TETRA TECH METALS IN SEAWATER (Samples Received 6/3/98)

(concentrations in µg/L - not blank corrected) MSL Code Sb Cd Cu Pb Se ΤI Zn Sponsor ID As Mn Ni Ag 1225-2 0.125 1.25 0.219 0.159 0.589 0.0120 0.0113 BFSD2-BT1-3 1.42 7.70 0.568 8.85 1225-4 BFSD2-BT1-5 0.126 1.16 0.246 1.50 0.146 6.67 0.577 0.521 0.0151 0.0119 8.61 1225-6 BFSD2-BT1-7 0.121 1.18 0.230 1.53 0.200 6.23 0.559 0.488 0.0181 0.0115 8.30 1225-8 BFSD2-BT1-9 0.192 1.14 0.215 2.00 0.216 5.66 0.730 0.468 0.0120 0.0125 8.63 1225-10 BFSD2-BT1-11 0.142 1.10 0.190 1.89 0.149 5.08 0.970 0.452 0.0722 0.0118 7.35 1225-11 6.86 BFSD2-BT1-12 0.143 1.15 0.182 1.44 0.203 4.74 0.657 0.450 0.0181 0.0119 1225-12 BFSD2-BT2-EB 0.0168 0.00728 J 0.0120 0.376 0.0998 0.664 J 0.0522 J 0.0351 J 0.00903 0.000499 J 3.32 1225-13 BFSD2-BT2-SB 0.0248 0.00745 J 0.00750 4.33 0.689 J 0.0729 J 0.0248 J 0.0120 0.00121 0.984 0.169 1225-14 BFSD2-BT2-1 0.117 1.16 0.0752 2.57 0.237 7.80 2.13 0.372 0.00903 0.0109 6.04 1225-15 BFSD2-BT2-2 0.127 1.13 0.0937 1.72 0.128 7.63 0.615 0.519 0.0151 0.0110 6.50 1225-16 BFSD2-BT2-3 0.118 1.16 0.131 1.77 0.137 7.10 0.568 0.461 0.0181 0.0114 5.99 1225-17 BFSD2-BT2-4 0.124 1.14 0.128 1.85 0.188 6.85 0.658 0.410 0.0181 0.0111 7.10 1225-18 BFSD2-BT2-5 0.113 1.12 0.122 1.66 0.141 6.45 0.721 0.405 0.0181 0.0112 8.28 1225-19 7.17 BFSD2-BT2-6 0.0770 1.15 0.121 1.73 0.186 6.20 0.618 0.443 0.0151 0.0116 1225-20 BFSD2-BT2-7 0.0761 1.13 0.114 1.67 0.141 5.96 0.681 0.430 0.0120 0.0122 5.46 1225-21 BFSD2-BT2-8 0.104 0.108 0.141 5.84 0.523 0.454 0.0151 0.0114 6.51 1.13 1.58 1225-22 BFSD2-BT2-9 0.0551 0.134 0.159 5.35 0.0181 0.0117 7.46 1.09 1.64 0.614 0.427 1225-23 BFSD2-BT2-10 0.0118 9.35 0.0783 1.10 0.108 1.52 0.230 5.23 0.617 0.407 0.0181 1225-24 BFSD2-BT2-11 5.06 0.0689 1.16 0.0998 1.69 0.144 4.88 0.656 0.418 0.0120 0.0124 1225-25 BFSD2-BT2-12 0.0807 1.09 0.104 1.69 0.221 4.76 1.13 0.349 0.0120 0.0123 5.96 1225-27 BFSD2-BT3-2 0.0759 1.12 0.0622 1.03 0.108 7.50 0.511 0.453 0.0120 0.0113 2.82 1225-29 BFSD2-BT3-4 0.0750 1.05 0.0679 1.04 0.147 6.76 0.492 0.341 0.00903 0.0118 3.31 1225-31 BFSD2-BT3-6 0.130 1.03 0.0669 1.10 0.123 6.14 0.516 0.441 0.0151 0.0113 3.52 1225-33 BFSD2-BT3-8 0.0867 1.14 0.0643 1.06 0.118 5.78 0.462 0.435 0.0120 0.0121 3.56 1225-35 BFSD2-BT3-10 0.0612 1.12 0.0623 1.33 0.138 5.21 0.474 0.453 0.0120 0.0119 3.71 1225-37 BFSD2-BT3-12 0.125 1.10 0.0670 1.14 0.134 4.80 0.444 0.373 0.0120 0.0112 5.90 **BLANKS** 1225-blk r1 0.0158 0.0227 J 0.000444 J 0.0420 J 0.00580 J 0.510 J 0.0165 J 0.0529 J 0.00903 0.00070 J 0.119 J 1225-blk r2 0.0145 0.0180 J 0.000611 J 0.0395 J 0.00800 0.596 J 0.0178 J 0.0212 J 0.00602 0.00054 J 0.140 J 0.0204 J 0.000528 J 0.0407 J 0.553 J 0.0171 J 0.0371 J 0.00753 0.00062 J Mean 0.0152 0.00690 0.130 J

0.66

BATTELLE MARINE SCIENCES LABORATORY

1529 West Sequim Bay Road Sequim, WA 98382-9099 360/681-3604

TETRA TECH METALS IN SEAWATER (Samples Received 6/3/98)

		(concentrations in μg/L - not blank corrected)											
MSL Code	Sponsor ID	Sb	As	Cd	Cu	Pb	Mn	Ni	Se	Ag	TI	Zn	
BLANK SPIKE	RESULTS												
Amount Spiked		5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	
Mean Blank		0.0152	0.0204	0.00053 J	0.0407	0.00690	0.553	0.0171	0.0371	0.00753	0.00062 J	0.130	
Blank Spike		3.66	2.98	3.69	4.31	4.60	5.07	4.30	1.26	2.12	4.70	4.61	
Amount Recove	ered	3.64	2.96	3.69	4.27	4.59	4.52	4.29	1.22	2.11	4.69	4.48	
Percent Recove	ery	73% #	59% #	74% #	85%	92%	90%	86%	24% #	42% #	94%	90%	
Amount Spiked		5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	
Mean Blank		0.0152	0.0204	0.00053 J	0.0407	0.00690	0.553	0.0171	0.0371	0.00753	0.00062 J	0.130	
Blank Spike Du	p	3.84	3.04	3.64	4.38	4.69	5.19	4.53	1.61	2.09	4.87	4.64	
Amount Recove		3.83	3.01	3.63	4.34	4.68	4.64	4.51	1.57	2.08	4.87	4.51	
Percent Recove	ery	77%	60% #	73% #	87%	94%	93%	90%	31% #	42% #	97%	90%	
RP	D	5%	2%	1%	2%	2%	3%	5%	25%	1%	4%	1%	
MATRIX SPIK	E RESULTS												
Amount Spiked		5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	
1225-24		0.0689	1.16	0.0998	1.69	0.144	4.88	0.656	0.418	0.0120	0.0124	5.06	
1225-24 MS		2.48	5.21	4.74	5.99	5.15	9.53	4.84	4.92	4.40	5.20	8.71	
Amount Recove		2.41	4.05	4.64	4.29	5.00	4.66	4.18	4.50	4.39	5.19	3.64	
Percent Recove	ery	48% #	81%	93%	86%	100%	93%	84%	90%	88%	104%	73% #	
Amount Spiked		5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	
1225-24		0.0689	1.16	0.0998	1.69	0.144	4.88	0.656	0.418	0.0120	0.0124	5.06	
1225-24 MSD		3.12	5.30	4.74	5.93	5.17	9.58	4.89	4.97	4.44	5.18	8.56	
Amount Recove		3.05	4.14	4.64	4.24	5.02	4.71	4.24	4.55	4.43	5.17	3.50	
Percent Recove	ery	61% #	83%	93%	85%	100%	94%	85%	91%	89%	103%	70% #	
RP	D	24%	2%	0%	1%	0%	1%	1%	1%	1%	0%	4%	

Print Date: 8/8/2008

BATTELLE MARINE SCIENCES LABORATORY

1529 West Sequim Bay Road Sequim, WA 98382-9099 360/681-3604

TETRA TECH METALS IN SEAWATER (Samples Received 6/3/98)

(concentrations in µg/L - not blank corrected)

MSL Code	Sponsor ID	Sb	As	Cd	Cu	Pb	Mn	Ni	Se	Ag	TI	Zn
STANDARD REFERENCE MATERIAL												
cass3 r1		0.139	0.975	0.0339	0.550	0.0230	3.10	0.417	0.441	0.0120	0.0127	1.25
cass3 r2		0.112	0.961	0.0345	0.529	0.0230	3.03	0.400	0.404	0.0120	0.0119	1.21
	certified value	NC	1.09	0.030	0.517	0.0120	2.51	0.386	0.042 r	NC	NC	1.24
	range		±0.07	±0.005	±0.062	±0.004	±0.36	±0.062				±0.25
	percent difference	NA	11%	13%	6%	91% #	23%	8%	NA	NA	NA	1%
		NA	12%	15%	2%	91% #	21%	4%	NA	NA	NA	2%

Outside QA limits of ±25%

r Reference value only; not certified

J Value reported is below DL shown

NA Not available/applicable

NC Not certified

RPD Relative percent difference

BFSD 2
Triplicate Blank Tests
Temperature

BFSD 2 Triplicate BlankTests Pressure

BFSD 2 Triplicate BlankTests Salinity

BFSD 2 Triplicate BlankTests Dissolved Oxygen

BFSD 2 Triplicate BlankTests pH

Blank Test #1 Sensor Data

				0 !! !!	070.0						
Record No.	(mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
1	45.276	18.011	1.881	34.455	13.262	2339916	2456346		14:34:30.70	3.917	7.610
2 3	45.265 45.255	17.998 17.986	1.866 1.834	34.457 34.459	13.312 13.325	2346641 2211156			14:40:31.49 14:46:32.28	3.963 3.034	7.605 7.605
4	45.248	17.972	1.817	34.464	13.334	2248927			14:52:33.07	3.293	7.604
5	45.233	17.971	1.823	34.452	13.337	2241082			14:58:33.86	3.239	7.607
6 7	45.227 45.225	17.96 17.953	1.813 1.811	34.457 34.461	13.342 13.342	2228945 2270518			15:04:34.65 15:10:35.44	3.156 3.441	7.605 7.607
8	45.223	17.955	1.808	34.457	13.344	2359142			15:16:36.23	4.049	7.608
9	45.212	17.947	1.769	34.456	13.309	2333397			15:22:37.02	3.873	7.607
10	45.223 45.236	17.946	1.731	34.466	13.334	2290483			15:28:37.81	3.578	7.606
11 12	45.245	17.967 17.971	1.738 1.73	34.459 34.463	13.339 13.34	2204401 2289578			15:34:38.60 15:40:39.39	2.987 3.572	7.609 7.610
13	45.257	17.982	1.715	34.464	13.342	2291758			15:46:40.18	3.587	7.612
14	45.279	18.004	1.73	34.464	13.343	2328554			15:52:40.97	3.839	7.612
15 16	45.295 45.317	18.017 18.041	1.686 1.69	34.467 34.465	13.345 13.345	2284263 2211735			15:58:41.76 16:04:42.55	3.535 3.038	7.610 7.612
17	45.335	18.057	1.715	34.467	13.346	2279745			16:10:43.34	3.504	7.613
18	45.356	18.087	1.709	34.46	13.346	2328233			16:16:44.13	3.837	7.614
19 20	45.375 45.401	18.106 18.131	1.668 1.661	34.46 34.461	13.345 13.348	2346193 2335558			16:22:44.92 16:28:45.71	3.960 3.887	7.615 7.615
21	45.422	18.152	1.657	34.461	13.346				16:34:46.50	3.164	7.617
22	45.447	18.17	1.646	34.467	13.347	2365600			16:40:47.29	4.094	7.617
23 24	45.47 45.488	18.203 18.216	1.647 1.654	34.459 34.463	13.347 13.347	2332186 2316255			16:46:48.08 16:52:48.87	3.864 3.755	7.618 7.618
25	45.502	18.235	1.687	34.459	13.346	2343800			16:58:49.66	3.944	7.621
26	45.511	18.249	1.646	34.455	13.346	2337673			17:04:50.45	3.902	7.621
27 28	45.528	18.258	1.676	34.461	13.346	2402169	2459741		17:10:51.24	4.345	7.625
29	45.541 45.551	18.263 18.28	1.648 1.656	34.468 34.463	13.345 13.328	2229313 2341141			17:16:52.03 17:22:52.82	3.158 3.926	7.625 7.625
30	45.563	18.295	1.657	34.46	13.336	2359001			17:28:53.61	4.048	7.628
31	45.566	18.3	1.68	34.459	13.34	2305131			17:34:54.40	3.679	7.629
32 33	45.577 45.579	18.309 18.314	1.682 1.698	34.461 34.458	13.339 13.34	2327314 2357361			17:40:55.19 17:46:55.98	3.831 4.037	7.627 7.625
34	45.586	18.316	1.714	34.462	13.339	2323358			17:52:56.77	3.804	7.629
35	45.587	18.318	1.726	34.462	13.339	2282749			17:58:57.56	3.525	7.629
36 37	45.593 45.593	18.322 18.327	1.752 1.739	34.463 34.459	13.34 13.34	2271057 2386149			18:04:58.35 18:10:59.14	3.445 4.235	7.629 7.630
38	45.6	18.329	1.737	34.463	13.339	2237429			18:16:59.93	3.214	7.627
39	45.6	18.329	1.739	34.463	13.338	2202846			18:23:00.72	2.977	7.630
40 41	45.602 45.605	18.336 18.338	1.763 1.804	34.459 34.46	13.339 13.339	2296880 2314948			18:29:01.51 18:35:02.30	3.622 3.746	7.630 7.632
42	45.604	18.336	1.831	34.46	13.338	2273005			18:41:03.09	3.458	7.633
43	45.607	18.333	1.82	34.466	13.336	2302834			18:47:03.88	3.663	7.633
44 45	45.609 45.612	18.335 18.339	1.883 1.906	34.465 34.464	13.337 13.337	2295581 2409399	2461217 2461591		18:53:04.67 18:59:05.46	3.613 4.394	7.631 7.633
46	45.611	18.345	1.888	34.459	13.336	2391571			19:05:06.25	4.272	7.635
47	45.616	18.339	1.889	34.468	13.336	2338360			19:11:07.04	3.907	7.634
48 49	45.617 45.611	18.341 18.338	1.922 1.946	34.468 34.465	13.336 13.338	2377738 2266786			19:17:07.83 19:23:08.62	4.177 3.415	7.635 7.635
50	45.607	18.339	1.966	34.461	13.336	2340669			19:29:09.41	3.922	7.637
51	45.612	18.339	2.004	34.464	13.335	2401428	2462098	5/14/1998	19:35:10.20	4.339	7.635
52 53	45.608 45.61	18.34 18.335	2.084 2.042	34.461 34.467	13.335 13.337	2403924 2356018			19:41:10.99 19:47:11.78	4.357 4.028	7.635 7.637
54	45.606	18.326	2.059	34.47	13.333	2397528			19:53:12.57	4.313	7.638
55	45.6	18.327	2.081	34.465	13.333	2285816			19:59:13.36	3.546	7.640
56 57	45.584 45.567	18.303 18.285	2.117 2.137	34.471 34.472	13.333 13.332	2398260			20:05:14.15 20:11:14.94	4.318 4.172	7.637 7.641
58	45.544	18.263	2.157	34.472	13.331				20:17:15.73	4.219	7.642
59	45.531	18.25	2.191	34.471	13.331	2368433	2463074	5/14/1998	20:23:16.52	4.113	7.639
60 61	45.52 45.50	18.235 18.221	2.219 2.226	34.475 34.473	13.331 13.331	2323805 2376991			20:29:17.31 20:35:18.10	3.807 4.172	7.640 7.640
62	45.504 45.493	18.21	2.244	34.473	13.333	2210825			20:41:18.89	3.031	7.639
63	45.48	18.2	2.297	34.47	13.33	2355678			20:47:19.68	4.025	7.640
64 65	45.477 45.465	18.187 18.176	2.263 2.349	34.478 34.476	13.33 13.331	2379611 2371687			20:53:20.47 20:59:21.26	4.190 4.135	7.640 7.643
66	45.452	18.173	2.369	34.468	13.327	2383050			21:05:22.05	4.213	7.644
67	45.437	18.158	2.397	34.468	13.327				21:11:22.84	3.994	7.640
68 69	45.43 45.422	18.152 18.133	2.397 2.375	34.467 34.477	13.326 13.326	2383023 2343310			21:17:23.63 21:23:24.42	4.213 3.941	7.639 7.642
70	45.422	18.126	2.416	34.479	13.328	2355325			21:29:25.21	4.023	7.641
71	45.406	18.112	2.431	34.481	13.327	2367457	2463585	5/14/1998	21:35:26.00	4.106	7.641
72 73	45.401	18.116 18.093	2.52 2.496	34.473 34.481	13.324 13.324	2403576 2369041			21:42:08.00 21:48:08.79	4.354 4.117	7.641 7.641
73 74	45.388 45.387	18.093	2.490	34.482	13.324	2373998			21:54:09.58	4.117	7.642
75	45.37	18.078	2.559	34.478	13.324	2377182	2463890	5/14/1998	22:00:10.37	4.173	7.643
76 77	45.371	18.084	2.524	34.474	13.324	2334801			22:06:11.16	3.882	7.642
77 78	45.365 45.363	18.074 18.076	2.555 2.533	34.478 34.475	13.322 13.323	2365159 2375688			22:12:11.95 22:18:12.74	4.091 4.163	7.645 7.642
79	45.362	18.055	2.555	34.492	13.323	2381254	2464032	5/14/1998	22:24:13.53	4.201	7.643
80	45.357	18.059	2.556	34.484	13.325	2384078			22:30:14.32	4.220	7.641
81 82	45.354 45.349	18.057 18.055	2.53 2.563	34.483 34.48	13.322 13.321	2353772 2368779			22:36:15.11 22:42:15.90	4.012 4.115	7.641 7.643
83	45.348	18.056	2.543	34.479	13.321	2356085	2463896	5/14/1998	22:48:16.69	4.028	7.643
84	45.342	18.053	2.566	34.476	13.32				22:54:17.48	3.919	7.643
85 86	45.323 45.306	18.027 18.016	2.562 2.546	34.482 34.477	13.32 13.319				23:00:18.27 23:06:19.06	4.126 4.099	7.643 7.646
87	45.287	17.999	2.558	34.474	13.318	2352180			23:12:19.85	4.001	7.642
88	45.264	17.968	2.552	34.481	13.318	2372135			23:18:20.64	4.138	7.646
89 90	45.252 45.24	17.955 17.946	2.558 2.539	34.482 34.48	13.318 13.319	2327818 2389883			23:24:21.43 23:30:22.22	3.834 4.260	7.645 7.645
91	45.22	17.917	2.504	34.486	13.319				23:36:23.01	4.134	7.645

Record No.	Conductivity			Salinity		D.O.	рН	Date	Time	D.O.	рН
92	(mS/cm) 45.193	(Deg. C) 17.905	(dBar) 2.486	(PSU) 34.474	(Vdc) 13.316	(Integer) 2380525	(Integer)	E/14/1009	23:42:23.80	(ml/L) 4.196	(Value) 7.646
93	45.193	17.905	2.460	34.482	13.315	2356383			23:48:24.59	4.030	7.647
94	45.165	17.852	2.495	34.495	13.316	2363233			23:54:25.38	4.077	7.645
95 06	45.152	17.847	2.471	34.488	13.315	2334303			00:00:26.17	3.879	7.646
96 97	45.145 45.126	17.836 17.815	2.471 2.42	34.491 34.493	13.315 13.314	2318677 2354618			00:06:26.96 00:12:27.75	3.772 4.018	7.646 7.646
98	45.112	17.811	2.403	34.484	13.315	2396418			00:18:28.54	4.305	7.645
99	45.111	17.797	2.39	34.495	13.313	2345937			00:24:29.33	3.959	7.648
100 101	45.1 45.095	17.797 17.781	2.364 2.36	34.485 34.496	13.314 13.314	2343263 2361929			00:30:30.12 00:36:30.91	3.940 4.068	7.649 7.647
102	45.085	17.776	2.338	34.492	13.312	2397693			00:30:30:31	4.314	7.649
103	45.082	17.77	2.339	34.494	13.313	2361991			00:48:32.49	4.069	7.649
104 105	45.077	17.766	2.26 2.297	34.493 34.494	13.311 13.311	2359765 2343112			00:54:33.28 01:00:34.07	4.054	7.647 7.649
105	45.078 45.073	17.765 17.759	2.297	34.495	13.31	2339118			01:06:34.86	3.939 3.912	7.649
107	45.067	17.75	2.192	34.497	13.309	2373443			01:12:35.65	4.147	7.647
108	45.06	17.743	2.175	34.498	13.309	2358277			01:18:36.44	4.043	7.651
109 110	45.069 45.061	17.754 17.754	2.147 2.095	34.495 34.489	13.309 13.308	2361881 2360513			01:24:37.23 01:30:38.02	4.068 4.059	7.649 7.651
111	45.064	17.755	2.082	34.491	13.308	2365125			01:36:38.81	4.090	7.651
112	45.071	17.748	2.043	34.503	13.308	2354717			01:42:39.60	4.019	7.648
113 114	45.076 45.074	17.75 17.767	2.024 1.981	34.505 34.49	13.307 13.307	2339792 2359431			01:48:40.39 01:54:41.18	3.916 4.051	7.651 7.650
115	45.074	17.767	1.954	34.493	13.308	2334336			02:00:41.97	3.879	7.650
116	45.085	17.773	1.883	34.493	13.308	2349904			02:06:42.76	3.986	7.650
117	45.092	17.771	1.879	34.501	13.307	2357965			02:12:43.55	4.041	7.650
118 119	45.096 45.096	17.781 17.782	1.838 1.815	34.496 34.495	13.307 13.306	2346763 2327530			02:18:44.34 02:24:45.13	3.964 3.832	7.650 7.652
120	45.095	17.785	1.74	34.493	13.307	2356530			02:30:45.92	4.031	7.649
121	45.099	17.783	1.727	34.497	13.308	2333205	2465944	5/15/1998	02:36:46.71	3.871	7.652
122	45.093	17.785	1.662	34.491	13.306	2337882			02:42:47.50	3.903	7.651
123 124	45.106 45.108	17.795 17.797	1.62 1.596	34.494 34.493	13.305 13.306	2355699 2375615			02:48:48.29 02:54:49.08	4.026 4.162	7.651 7.652
125	45.107	17.795	1.538	34.494	13.304	2380729			03:00:49.87	4.197	7.652
126	45.113	17.79	1.505	34.504	13.303	2346873			03:06:50.66	3.965	7.650
127 128	45.117 45.108	17.799 17.795	1.463 1.426	34.498 34.496	13.303 13.302	2299817 2365956			03:12:51.45 03:18:52.24	3.642 4.096	7.651 7.654
129	45.115	17.786	1.414	34.508	13.302	2333427			03:24:53.03	3.873	7.653
130	45.115	17.791	1.368	34.504	13.302	2337033			03:30:53.82	3.898	7.651
131 132	45.121 45.125	17.793	1.31 1.281	34.507	13.303 13.302	2374985 2376677			03:36:54.61 03:42:55.40	4.158	7.652
133	45.126	17.803 17.792	1.249	34.502 34.512	13.302	2345688			03:42:55.40	4.170 3.957	7.653 7.655
134	45.133	17.814	1.217	34.5	13.301	2336899			03:54:56.98	3.897	7.653
135	45.148	17.825	1.183	34.504	13.301	2351237			04:00:57.77	3.995	7.654
136 137	45.178 45.205	17.863 17.891	1.134 1.111	34.498 34.497	13.303 13.303	2333080 2336919	2465691 2466221		04:06:58.56 04:12:59.35	3.870 3.897	7.650 7.653
138	45.224	17.913	1.089	34.494	13.303	2371025			04:19:00.14	4.131	7.653
139	45.257	17.937	1.044	34.502	13.303	2345181			04:25:00.93	3.953	7.651
140 141	45.285 45.305	17.968 17.988	1.008 0.987	34.5 34.5	13.301 13.301	2372030 2285279			04:31:01.72 04:37:02.51	4.138 3.542	7.655 7.652
142	45.327	18.02	0.95	34.491	13.301	2344166			04:37:02.51	3.946	7.651
143	45.362	18.048	0.933	34.498	13.3	2369962			04:49:45.32	4.123	7.653
144	45.381	18.062	0.892	34.502	13.3	2369947	2466500		04:55:46.11	4.123	7.654
145 146	45.399 45.427	18.088 18.111	0.855 0.882	34.495 34.5	13.299 13.299	2322085 2368270			05:01:46.90 05:07:47.69	3.795 4.112	7.655 7.653
147	45.446	18.133	0.855	34.497	13.299				05:13:48.48	4.011	7.658
148	45.468	18.154	0.849	34.499	13.3				05:19:49.27	3.987	7.652
149 150	45.482 45.501	18.179 18.194	0.817 0.803	34.49 34.493	13.299 13.3	2351218			05:25:50.06 05:31:50.85	3.995 4.051	7.652 7.651
151	45.526	18.21	0.79	34.5	13.298	2349084			05:37:51.64	3.980	7.655
152	45.543	18.234	0.749	34.494	13.299	2362851			05:43:52.43	4.075	7.653
153 154	45.561 45.574	18.261 18.266	0.757 0.74	34.488 34.495	13.298 13.298	2381029 2353587			05:49:53.22 05:55:54.01	4.199 4.011	7.655 7.655
155	45.598	18.282	0.741	34.501	13.298	2386931			06:01:54.80	4.240	7.652
156	45.612	18.303	0.751	34.496	13.298	2291650			06:07:55.59	3.586	7.654
157 158	45.634 45.654	18.327 18.347	0.727 0.769	34.494 34.494	13.299 13.298	2371093 2391363			06:13:56.38 06:19:57.17	4.131 4.270	7.649 7.651
159	45.672	18.365	0.735	34.493	13.299	2362448			06:25:57.96	4.072	7.651
160	45.687	18.377	0.729	34.496	13.298	2338958			06:31:58.75	3.911	7.651
161 162	45.702 45.72	18.394 18.408	0.726 0.708	34.496 34.498	13.299 13.299	2314425 2328691			06:37:59.54 06:44:00.33	3.742 3.840	7.650 7.650
163	45.72	18.429	0.741	34.491	13.298				06:50:01.12	4.186	7.650
164	45.748	18.443	0.719	34.493	13.298				06:56:01.91	4.329	7.648
165	45.762	18.459	0.731	34.491	13.297	2380967			07:02:02.70	4.199	7.651
166 167	45.772 45.786	18.47 18.486	0.759 0.777	34.491 34.489	13.297 13.297	2390271 2388876			07:08:03.49 07:14:04.28	4.263 4.253	7.650 7.648
168	45.802	18.497	0.801	34.492	13.297	2280680			07:20:05.07	3.511	7.648
169	45.808	18.5	0.799	34.496	13.296	2359304			07:26:05.86	4.050	7.646
170 171	45.824 45.835	18.524 18.527	0.801 0.809	34.489 34.496	13.297 13.295	2372525 2375619			07:32:06.65 07:38:07.44	4.141 4.162	7.646 7.646
171	45.846	18.549	0.809	34.486	13.295				07:36.07.44	4.195	7.647
173	45.857	18.557	0.816	34.488	13.295	2371967	2465125	5/15/1998	07:50:09.02	4.137	7.648
174 175	45.867 45.879	18.569	0.86	34.487	13.296	2333301 2351599			07:56:09.81	3.872	7.644 7.645
175 176	45.879 45.892	18.589 18.593	0.882 0.895	34.481 34.488	13.295 13.295	2351599			08:02:10.60 08:08:11.39	3.997 3.962	7.645 7.642
177	45.903	18.618	0.937	34.477	13.294	2374377			08:14:12.18	4.154	7.643
178	45.911	18.616	0.956	34.485	13.295	2356857			08:20:12.97	4.034	7.645
179 180	45.919 45.931	18.631 18.64	0.966 0.97	34.479 34.482	13.294 13.293	2366693 2405428			08:26:13.76 08:32:14.55	4.101 4.367	7.645 7.645
181	45.947	18.645	0.984	34.491	13.293				08:38:15.34	4.332	7.644
182	45.958	18.661	0.997	34.487	13.276	2378810	2464468	5/15/1998	08:44:16.14	4.184	7.645
183 184	45.952 45.971	18.666 18.673	1.029 1.067	34.478 34.488	13.257 13.27	2326999 2367434			08:50:16.93 08:56:17.72	3.829 4.106	7.646 7.642
185	45.971	18.682	1.067	34.481	13.27	2373371			09:02:18.51	4.147	7.642

Record No.	Conductivity (mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
186	45.98	18.691	1.115	34.481	13.281	2364539		5/15/1998	09:08:19.30	4.086	7.644
187	45.985	18.688	1.156	34.487	13.28	2383525			09:14:20.09	4.217	7.644
188 189	45.992 45.992	18.687 18.703	1.172 1.202	34.494 34.481	13.282 13.28	2380216 2368968			09:20:20.88 09:26:21.67	4.194 4.117	7.642 7.644
190	45.992	18.694	1.213	34.488	13.283	2350019			09:32:22.46	3.987	7.642
191	45.987	18.694	1.254	34.484	13.28	2354642			09:38:23.25	4.018	7.642
192	45.983	18.692	1.282	34.482	13.28	2406127			09:44:24.04	4.372	7.643
193 194	45.976 45.972	18.682 18.674	1.325 1.347	34.484 34.488	13.282 13.283	2364024 2385935			09:50:24.83 09:56:25.62	4.083 4.233	7.644 7.642
195	45.96	18.667	1.324	34.483	13.28	2358993			10:02:26.41	4.048	7.646
196	45.952	18.657	1.4	34.485	13.282	2385743			10:08:27.20	4.232	7.641
197	45.948	18.648	1.374	34.489	13.28	2337293	2464040	5/15/1998	10:14:27.99	3.899	7.643
198	45.943	18.642	1.397	34.49	13.281	2382243			10:20:28.78	4.208	7.644
199 200	45.935 45.918	18.633 18.616	1.442 1.4	34.491 34.491	13.28 13.281	2350789 2383707			10:26:29.57 10:32:30.36	3.992 4.218	7.643 7.645
201	45.914	18.614	1.461	34.489	13.28	2369711			10:32:30:30	4.122	7.645
202	45.907	18.603	1.499	34.492	13.28	2361019			10:44:31.94	4.062	7.645
203	45.898	18.597	1.57	34.49	13.28	2404815	2464943	5/15/1998	10:50:32.73	4.363	7.647
204	45.882	18.589	1.586	34.483	13.28	2396909			10:56:33.52	4.308	7.646
205 206	45.878 45.876	18.581 18.576	1.573 1.54	34.486 34.489	13.279 13.279	2280660 2391740			11:02:34.31 11:08:35.10	3.511 4.273	7.644 7.643
207	45.87	18.572	1.58	34.487	13.279	2356241			11:14:35.89	4.029	7.646
208	45.871	18.567	1.611	34.492	13.278	2378496			11:20:36.68	4.182	7.641
209	45.864	18.572	1.593	34.482	13.278	2395631			11:26:37.47	4.300	7.643
210	45.867	18.566	1.643	34.49	13.277	2352619			11:32:38.26	4.004	7.645
211 212	45.868 45.864	18.57 18.565	1.614 1.7	34.487 34.488	13.277 13.276	2369975 2379839			11:38:39.05 11:45:21.07	4.124 4.191	7.642 7.643
213	45.851	18.556	1.707	34.484	13.276	2367463			11:51:21.86	4.106	7.643
214	45.832	18.529	1.705	34.492	13.276	2354682			11:57:22.65	4.019	7.642
215	45.82	18.523	1.683	34.486	13.276	2378706			12:03:23.44	4.184	7.640
216	45.814	18.508	1.696	34.493	13.277	2366231			12:09:24.23	4.098	7.643
217 218	45.798 45.775	18.488 18.473	1.698 1.719	34.497 34.49	13.274 13.274	2355692 2346827			12:15:25.02 12:21:25.81	4.026 3.965	7.642 7.643
219	45.758	18.449	1.779	34.496	13.272	2344638			12:27:26.60	3.950	7.651
220	45.737	18.43	1.737	34.494	13.272	2368711			12:33:27.39	4.115	7.643
221	45.712	18.403	1.74	34.496	13.273	2380056			12:39:28.18	4.193	7.642
222	45.695	18.387	1.74	34.495	13.272	2393889			12:45:28.97	4.288	7.641
223 224	45.677 45.661	18.361 18.348	1.753 1.769	34.501 34.499	13.271 13.27	2379914 2355802			12:51:29.76 12:57:30.55	4.192 4.026	7.642 7.642
225	45.637	18.331	1.736	34.493	13.27	2380692			13:03:31.34	4.197	7.642
226	45.625	18.312	1.721	34.498	13.269	2375283	2463711	5/15/1998	13:09:32.13	4.160	7.642
227	45.605	18.305	1.709	34.488	13.269	2332420			13:15:32.92	3.866	7.643
228 229	45.6 45.594	18.283 18.284	1.718 1.776	34.502 34.496	13.27 13.269	2379168 2373904			13:21:33.71 13:27:34.50	4.187 4.151	7.641 7.641
230	45.587	18.272	1.773	34.499	13.209	2389117			13:33:35.29	4.255	7.640
231	45.569	18.262	1.717	34.493	13.267	2336928			13:39:36.08	3.897	7.644
232	45.566	18.251	1.704	34.5	13.267	2347445			13:45:36.87	3.969	7.640
233	45.553	18.236	1.719	34.501	13.267	2364355			13:51:37.66	4.085	7.641
234 235	45.55 45.533	18.233 18.216	1.674 1.692	34.501 34.502	13.267 13.266	2344025 2362191			13:57:38.45 14:03:39.24	3.945 4.070	7.641 7.642
236	45.53	18.213	1.646	34.502	13.267	2383481			14:09:40.03	4.216	7.642
237	45.52	18.201	1.668	34.503	13.268	2376804	2463101	5/15/1998	14:15:40.82	4.170	7.639
238	45.509	18.185	1.649	34.507	13.266	2402584			14:21:41.61	4.347	7.643
239 240	45.503 45.489	18.184 18.172	1.629 1.598	34.503 34.501	13.266 13.264	2353467			14:27:42.40 14:33:43.19	4.010 3.993	7.641 7.639
241	45.482	18.165	1.639	34.501	13.265				14:39:43.98	4.226	7.641
242	45.473	18.152	1.611	34.504	13.263		2463111	5/15/1998	14:45:44.77	4.078	7.639
243	45.463	18.141	1.592	34.505	13.263	2365024			14:51:45.56	4.090	7.639
244 245	45.453 45.448	18.136 18.13	1.555 1.575	34.501 34.502	13.262 13.262	2371528			14:57:46.35 15:03:47.14	4.134 4.001	7.641 7.641
246	45.448	18.128	1.579	34.503	13.261				15:09:47.93	3.916	7.641
247	45.442	18.117	1.492	34.507	13.262				15:15:48.72	4.187	7.641
248	45.432	18.104	1.527	34.51	13.261	2383217			15:21:49.51	4.214	7.638
249 250	45.423 45.42	18.11 18.094	1.499 1.449	34.497 34.508	13.261 13.26	2360587 2359980			15:27:50.30 15:33:51.09	4.059 4.055	7.640 7.640
251	45.41	18.091	1.425	34.503	13.259	2363695			15:39:51.88	4.080	7.640
252	45.406	18.079	1.45	34.509	13.261	2368615			15:45:52.67	4.114	7.640
253	45.399	18.082	1.415	34.501	13.26	2380394			15:51:53.46	4.195	7.642
254 255	45.388 45.394	18.077 18.071	1.458 1.451	34.496 34.505	13.259 13.258	2324128 2357274			15:57:54.25 16:03:55.04	3.809 4.036	7.643 7.644
256	45.391	18.068	1.431	34.505	13.258	2351656			16:09:55.83	3.998	7.642
257	45.385	18.058	1.381	34.508	13.258	2381841			16:15:56.62	4.205	7.642
258	45.389	18.054	1.4	34.516	13.258	2346587			16:21:57.41	3.963	7.644
259	45.386	18.066	1.378	34.503	13.258				16:27:58.20	4.015	7.642
260 261	45.397 45.41	18.068 18.084	1.328 1.345	34.51 34.509	13.258 13.258	2381200 2395788			16:33:58.99 16:39:59.78	4.201 4.301	7.645 7.643
262	45.414	18.094	1.361	34.503	13.258	2377841			16:46:00.57	4.178	7.644
263	45.429	18.104	1.301	34.507	13.259	2358469	2463743	5/15/1998	16:52:01.36	4.045	7.642
264	45.443	18.12	1.315	34.505	13.257	2356930			16:58:02.15	4.034	7.651
265 266	45.458 45.468	18.123 18.141	1.344 1.31	34.517 34.51	13.258 13.258	2361082 2390020			17:04:02.94 17:10:03.73	4.063 4.261	7.643 7.645
266 267	45.468 45.479	18.152	1.308	34.51	13.258	2348005			17:10:03.73	3.973	7.645 7.644
268	45.492	18.161	1.319	34.513	13.256	2396793			17:22:05.31	4.308	7.648
269	45.508	18.183	1.289	34.508	13.258				17:28:06.10	4.202	7.648
270	45.521	18.196	1.339	34.508	13.257				17:34:06.89	4.212	7.646
271 272	45.533 45.553	18.213 18.23	1.313 1.337	34.504 34.507	13.256 13.258	2397674 2402697			17:40:07.68 17:46:08.47	4.314 4.348	7.648 7.649
273	45.566	18.238	1.322	34.511	13.257	2353153			17:52:09.26	4.008	7.649
274	45.582	18.257	1.294	34.509	13.257	2380839	2465578	5/15/1998	17:58:10.05	4.198	7.650
275	45.598	18.272	1.316	34.509	13.256	2394227			18:04:10.84	4.290	7.651
276 277	45.603 45.62	18.283 18.293	1.355 1.331	34.505 34.51	13.258 13.254	2351650 2369528			18:10:11.63 18:16:12.42	3.998 4.121	7.650 7.651
278	45.626	18.304	1.353	34.506	13.254	2397359			18:22:13.21	4.312	7.650
279	45.635	18.312	1.321	34.507	13.255				18:28:14.00	4.131	7.654

Record No.	Conductivity (mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
280	45.651	18.321	1.353	34.513	13.255	2380264		5/15/1998	18:34:14.79	4.194	7.655
281	45.657	18.332	1.359	34.509	13.255	2387365			18:40:15.58	4.243	7.653
282	45.656	18.336	1.383	34.505	13.253	2391766 2392285			18:46:57.62	4.273	7.656
283 284	45.67 45.669	18.344 18.346	1.353 1.37	34.509 34.507	13.253 13.256	2371420			18:52:58.41 18:58:59.20	4.277 4.134	7.656 7.657
285	45.675	18.351	1.4	34.508	13.254	2364223			19:04:59.99	4.084	7.657
286	45.675	18.346	1.415	34.513	13.251	2354463			19:11:00.78	4.017	7.655
287 288	45.677 45.684	18.347 18.358	1.397 1.384	34.513 34.51	13.252 13.254	2345955 2385862			19:17:01.57 19:23:02.36	3.959 4.233	7.655 7.657
289	45.686	18.368	1.418	34.503	13.252	2359116			19:29:03.15	4.049	7.656
290	45.698	18.365	1.445	34.516	13.251	2381054			19:35:03.94	4.200	7.658
291	45.697	18.369	1.513	34.511	13.25	2375820			19:41:04.73	4.164	7.657
292 293	45.698 45.706	18.374 18.378	1.507 1.524	34.508 34.512	13.25 13.25	2377280 2391057			19:47:05.52 19:53:06.31	4.174 4.268	7.656 7.657
294	45.703	18.376	1.579	34.511	13.249	2362852			19:59:07.10	4.075	7.656
295	45.705	18.378	1.563	34.511	13.249	2381681			20:05:07.89	4.204	7.659
296	45.708	18.376	1.559	34.515	13.249	2385570			20:11:08.68	4.231	7.657
297 298	45.7 45.703	18.375 18.376	1.599 1.558	34.509 34.51	13.248 13.249	2337237 2382983			20:17:09.47 20:23:10.26	3.899 4.213	7.658 7.658
299	45.702	18.365	1.58	34.519	13.249	2374780			20:29:11.05	4.157	7.656
300	45.697	18.371	1.627	34.51	13.248	2370041			20:35:11.84	4.124	7.655
301 302	45.696 45.688	18.366 18.359	1.691 1.734	34.513 34.512	13.247 13.246	2323110 2349356			20:41:12.63 20:47:13.42	3.802 3.982	7.658 7.661
303	45.687	18.351	1.722	34.518	13.247	2382767			20:53:14.21	4.211	7.660
304	45.676	18.349	1.759	34.511	13.244	2384210			20:59:15.00	4.221	7.661
305	45.661	18.335	1.741	34.509	13.245	2388360			21:05:15.79	4.250	7.655
306 307	45.637 45.624	18.31 18.294	1.756 1.759	34.51 34.513	13.243 13.245	2369829 2372489			21:11:16.58 21:17:17.37	4.123 4.141	7.658 7.657
308	45.616	18.28	1.732	34.518	13.244	2376284			21:23:18.16	4.167	7.658
309	45.597	18.259	1.783	34.52	13.241	2370010			21:29:18.95	4.124	7.658
310	45.572	18.235	1.846	34.519	13.242	2369035			21:35:19.74	4.117	7.658
311 312	45.56 45.54	18.217 18.213	1.82 1.892	34.523 34.51	13.243 13.24	2359090 2373006			21:41:20.53 21:47:21.32	4.049 4.144	7.656 7.657
313	45.524	18.19	1.88	34.516	13.24	2384965			21:53:22.11	4.226	7.661
314	45.51	18.184	1.891	34.508	13.24	2372198			21:59:22.90	4.139	7.656
315	45.501	18.163	1.922	34.519	13.24	2367592			22:05:23.69	4.107	7.658
316 317	45.49 45.482	18.151 18.138	1.893 1.963	34.519 34.524	13.24 13.238	2371961 2337747			22:11:24.48 22:17:25.27	4.137 3.902	7.659 7.660
318	45.469	18.124	1.91	34.525	13.239	2319494			22:23:26.06	3.777	7.657
319	45.461	18.121	1.931	34.52	13.239	2375343			22:29:26.85	4.160	7.658
320 321	45.448 45.435	18.107 18.1	1.918 1.969	34.52 34.516	13.237 13.238	2377429 2376011			22:35:27.64 22:41:28.43	4.175 4.165	7.656 7.657
322	45.429	18.088	1.956	34.52	13.237	2356935			22:47:29.22	4.034	7.657
323	45.423	18.08	2.023	34.523	13.237	2367734			22:53:30.01	4.108	7.658
324	45.418	18.073	1.985	34.524	13.237	2379972			22:59:30.80	4.192	7.659
325 326	45.414 45.407	18.073 18.061	1.998 1.987	34.52 34.525	13.237 13.235	2345571 2339841			23:05:31.59 23:11:32.38	3.956 3.917	7.659 7.658
327	45.408	18.071	1.978	34.517	13.236	2359499			23:17:33.17	4.052	7.660
328	45.401	18.057	1.996	34.524	13.233	2358925	2467783	5/15/1998	23:23:33.96	4.048	7.660
329	45.405	18.058	1.971	34.526	13.234	2395086			23:29:34.75	4.296	7.661
330 331	45.401 45.405	18.05 18.062	2.04 2.014	34.529 34.522	13.235 13.234	2365691 2355304			23:35:35.54 23:41:36.33	4.094 4.023	7.659 7.657
332	45.407	18.053	1.99	34.532	13.233	2383424			23:47:37.12	4.216	7.656
333	45.4	18.056	2.009	34.523	13.232	2383121			23:53:37.91	4.214	7.659
334 335	45.395 45.405	18.052 18.05	2.015 1.989	34.523 34.533	13.233 13.232	2377891			23:59:38.70 00:05:39.49	4.178 4.301	7.658 7.660
336	45.406	18.057	1.969	34.527	13.231				00:03:33:43	4.148	7.658
337	45.395	18.042	1.985	34.53	13.231				00:17:41.07	3.960	7.659
338	45.394	18.049	1.988	34.524	13.23				00:23:41.86	4.033	7.661
339 340	45.389 45.39	18.031 18.033	1.952 1.957	34.535 34.533	13.231 13.228				00:29:42.65 00:35:43.44	4.143 4.033	7.658 7.659
341	45.386	18.033	1.932	34.531	13.233	2359037			00:41:44.23	4.049	7.659
342	45.378	18.029	1.926	34.527	13.229				00:47:45.02	4.039	7.660
343 344	45.375 45.371	18.027 18.024	1.923 1.915	34.526 34.526	13.228 13.227	2363040 2359224			00:53:45.81 00:59:46.60	4.076 4.050	7.657 7.660
345	45.37	18.022	1.862	34.526	13.231				01:05:47.39	4.021	7.660
346	45.36	18.015	1.816	34.523	13.229	2352383			01:11:48.18	4.003	7.659
347 348	45.351 45.345	18.003 18.002	1.846 1.81	34.527 34.522	13.229 13.229	2340953			01:17:48.97 01:23:49.76	3.924 4.104	7.658 7.660
349	45.345	17.992	1.778	34.522	13.229	2358870			01:29:50.55	4.047	7.657
350	45.337	17.989	1.78	34.526	13.229	2377140			01:35:51.34	4.173	7.657
351	45.331	17.982	1.712	34.527	13.229	2375405			01:41:52.13	4.161	7.657
352 353	45.332 45.329	17.976 17.976	1.71 1.685	34.533 34.53	13.227 13.226	2348207			01:48:34.16 01:54:34.95	3.974 4.155	7.660 7.659
354	45.33	17.98	1.633	34.528	13.227	2349078			02:00:35.74	3.980	7.660
355	45.328	17.973	1.631	34.532	13.225	2366638			02:06:36.53	4.101	7.657
356	45.327	17.978	1.579	34.527	13.225	2350933			02:12:37.32	3.993	7.657
357 358	45.327 45.328	17.981 17.975	1.583 1.532	34.525 34.53	13.226 13.224	2350551 2360349			02:18:38.11 02:24:38.90	3.990 4.058	7.661 7.659
359	45.32	17.971	1.498	34.527	13.225	2377524			02:30:39.69	4.175	7.658
360	45.327	17.971	1.476	34.532	13.224	2362956			02:36:40.48	4.075	7.659
361 362	45.32 45.323	17.973 17.976	1.422 1.398	34.525 34.526	13.223 13.224	2389833 2361460			02:42:41.27 02:48:42.06	4.260 4.065	7.658 7.658
362 363	45.323 45.317	17.976	1.356	34.526	13.224	2354738			02:48:42.06	4.019	7.657
364	45.325	17.969	1.28	34.533	13.222	2354665			03:00:43.64	4.019	7.657
365	45.327	17.969	1.289	34.535	13.222	2408383			03:06:44.43	4.387	7.659
366 367	45.327 45.324	17.974 17.967	1.278 1.248	34.53 34.534	13.221 13.222	2367075 2330680			03:12:45.22 03:18:46.01	4.104 3.854	7.658 7.657
368	45.325	17.974	1.178	34.529	13.22	2369441			03:24:46.80	4.120	7.658
369	45.332	17.973	1.115	34.536	13.22	2334352	2467339	5/16/1998	03:30:47.59	3.879	7.658
370 371	45.335 45.338	17.987	1.101	34.526	13.222				03:36:48.38	3.944	7.660
371 372	45.338 45.339	17.981 17.98	1.073 1.038	34.534 34.535	13.219 13.22	2338593 2297495			03:42:49.17 03:48:49.96	3.908 3.626	7.659 7.658
373	45.34	17.983	1.022	34.534	13.219				03:54:50.75	4.074	7.659

Record No.	Conductivity (mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
374	45.345	17.988	0.97	34.534	13.218	2356859		5/16/1998	04:00:51.54	4.034	7.659
375	45.345	17.986	0.936	34.536	13.22	2344295			04:06:52.33	3.947	7.659
376 377	45.342 45.341	17.987	0.902	34.533	13.219 13.22	2359049 2362960			04:12:53.12	4.049	7.658 7.659
378	45.344	17.993 17.987	0.858 0.827	34.526 34.535	13.22	2354292			04:18:53.91 04:24:54.70	4.075 4.016	7.659
379	45.353	17.994	0.798	34.536	13.217	2346094			04:30:55.49	3.960	7.657
380	45.356	18.003	0.769	34.531	13.22	2370973			04:36:56.28	4.130	7.661
381 382	45.367 45.38	18.01 18.032	0.74 0.708	34.534 34.526	13.221 13.221	2357293 2345507			04:42:57.07 04:48:57.86	4.037 3.956	7.660 7.660
383	45.399	18.041	0.655	34.535	13.223	2333597			04:54:58.65	3.874	7.663
384	45.421	18.071	0.663	34.528	13.223	2370228			05:00:59.44	4.125	7.660
385	45.44	18.086	0.61	34.532	13.222	2391255			05:07:00.23	4.270	7.658
386 387	45.461 45.48	18.107 18.126	0.572 0.555	34.532 34.532	13.221 13.222	2366862 2367017			05:13:01.02 05:19:01.81	4.102 4.103	7.660 7.657
388	45.493	18.149	0.556	34.524	13.22	2330259			05:25:02.60	3.851	7.661
389	45.509	18.161	0.526	34.527	13.221	2377135			05:31:03.39	4.173	7.659
390	45.527	18.177	0.489	34.529	13.219	2341738			05:37:04.18	3.930	7.658
391 392	45.545 45.566	18.192 18.213	0.473 0.444	34.532 34.533	13.22 13.222	2375006 2372313			05:43:04.97 05:49:05.76	4.158 4.140	7.658 7.660
393	45.585	18.231	0.447	34.534	13.222	2328565			05:55:06.55	3.839	7.659
394	45.592	18.243	0.433	34.529	13.227	2375820			06:01:07.34	4.164	7.657
395 396	45.611 45.623	18.262 18.277	0.416 0.377	34.53 34.527	13.223 13.225	2358893 2346040			06:07:08.13 06:13:08.92	4.048 3.959	7.659 7.656
397	45.639	18.284	0.368	34.534	13.225	2372790			06:19:09.71	4.143	7.656
398	45.652	18.305	0.371	34.527	13.223	2364436	2467155	5/16/1998	06:25:10.50	4.086	7.657
399	45.67	18.313	0.364	34.537	13.224	2377688			06:31:11.29	4.177	7.655
400 401	45.679 45.689	18.333 18.345	0.365 0.343	34.527 34.526	13.222 13.222	2357551 2339971			06:37:12.08 06:43:12.87	4.038 3.918	7.657 7.655
402	45.704	18.364	0.319	34.522	13.223	2356143			06:49:13.66	4.029	7.657
403	45.716	18.36	0.289	34.536	13.224	2358772			06:55:14.45	4.047	7.654
404	45.728	18.376	0.292	34.532	13.223	2348538			07:01:15.24	3.976	7.656
405 406	45.739 45.747	18.393 18.4	0.299 0.29	34.527 34.528	13.226 13.221	2360453 2365582			07:07:16.03 07:13:16.82	4.058 4.093	7.655 7.658
407	45.759	18.416	0.289	34.525	13.221	2349223			07:19:17.61	3.981	7.656
408	45.767	18.42	0.308	34.528	13.222	2352634			07:25:18.40	4.005	7.654
409	45.781	18.438	0.298	34.525	13.222	2383224			07:31:19.19	4.215	7.653
410 411	45.796 45.807	18.451 18.454	0.342 0.34	34.527 34.534	13.22 13.221	2348780 2345413			07:37:19.98 07:43:20.77	3.978 3.955	7.656 7.655
412	45.812	18.472	0.322	34.522	13.222	2363050			07:49:21.56	4.076	7.656
413	45.829	18.484	0.296	34.527	13.222	2391920			07:55:22.35	4.274	7.653
414 415	45.838 45.851	18.491 18.5	0.306 0.303	34.528 34.532	13.221 13.222	2343056 2362069			08:01:23.14 08:07:23.93	3.939 4.069	7.652 7.652
416	45.863	18.52	0.354	34.525	13.221	2358005			08:13:24.72	4.041	7.651
417	45.876	18.532	0.366	34.526	13.22	2346991			08:19:25.51	3.966	7.653
418	45.888	18.54	0.367	34.529	13.22	2374849			08:25:26.30	4.157	7.650
419 420	45.894 45.905	18.545 18.556	0.368 0.433	34.531 34.53	13.219 13.22	2367514 2355595			08:31:27.09 08:37:27.88	4.107 4.025	7.650 7.649
421	45.914	18.572	0.427	34.525	13.221	2362177			08:43:28.67	4.070	7.650
422	45.916	18.572	0.407	34.527	13.219	2376817	2465779	5/16/1998	08:50:10.73	4.171	7.651
423	45.928	18.577	0.46	34.533	13.22	2370694			08:56:11.52	4.129	7.650
424 425	45.93 45.934	18.588 18.587	0.433 0.466	34.524 34.529	13.218 13.219	2364710 2370880			09:02:12.31 09:08:13.10	4.087 4.130	7.650 7.650
426	45.946	18.603	0.49	34.526	13.22	2362163			09:14:13.89	4.070	7.650
427	45.951	18.607	0.519	34.526	13.217	2377732			09:20:14.68	4.177	7.650
428 429	45.954 45.958	18.613 18.619	0.542 0.555	34.524 34.522	13.218 13.218				09:26:15.47 09:32:16.26	3.941 4.086	7.649 7.651
430	45.957	18.615	0.553	34.525	13.217				09:38:17.05	3.956	7.648
431	45.958	18.616	0.619	34.525	13.217				09:44:17.84	4.084	7.649
432	45.965	18.624	0.645	34.524	13.217				09:50:18.63	4.180	7.647
433 434	45.962 45.968	18.615 18.626	0.629 0.661	34.53 34.525	13.216 13.217				09:56:19.42 10:02:20.21	4.108 4.131	7.649 7.648
435	45.971	18.629	0.655	34.525	13.218				10:08:21.00	4.157	7.647
436	45.974	18.636	0.683	34.522	13.215				10:14:21.79	4.127	7.646
437 438	45.971 45.977	18.639 18.64	0.709 0.746	34.517 34.521	13.218 13.219				10:20:22.58 10:26:23.37	3.898 4.382	7.647 7.646
439	45.981	18.64	0.815	34.524	13.215				10:32:24.16	4.089	7.647
440	45.988	18.641	0.789	34.529	13.214	2365434			10:38:24.95	4.092	7.646
441 442	45.98 45.981	18.638 18.646	0.808 0.812	34.525 34.52	13.214 13.215	2363864 2355393			10:44:25.74 10:50:26.53	4.082 4.024	7.646 7.650
442	45.983	18.645	0.865	34.522	13.213	2369408			10:56:27.32	4.120	7.647
444	45.975	18.636	0.852	34.522	13.214	2375164			11:02:28.11	4.159	7.648
445	45.972	18.63	0.854	34.525	13.213	2419238			11:08:28.90	4.462	7.645
446 447	45.961 45.954	18.621 18.61	0.885 0.929	34.523 34.527	13.212 13.212				11:14:29.69 11:20:30.48	3.929 4.135	7.646 7.646
448	45.939	18.6	0.929	34.522	13.212				11:26:31.27	4.235	7.647
449	45.935	18.589	0.992	34.528	13.211				11:32:32.06	4.138	7.646
450	45.924	18.581	1.002	34.525	13.211				11:38:32.85	4.034	7.647
451 452	45.911 45.902	18.572 18.56	1.013 1.028	34.522 34.525	13.21 13.211	2405453 2394661			11:44:33.64 11:50:34.43	4.367 4.293	7.645 7.644
453	45.889	18.542	1.084	34.529	13.21				11:56:35.22	4.251	7.644
454	45.874	18.531	1.063	34.525	13.21	2369847	2464778	5/16/1998	12:02:36.01	4.123	7.647
455 456	45.867 45.853	18.515	1.023	34.533	13.21	2346747			12:08:36.80	3.964	7.642
456 457	45.853 45.839	18.515 18.499	1.107 1.12	34.521 34.522	13.209 13.209				12:14:37.59 12:20:38.38	4.173 3.953	7.646 7.642
458	45.825	18.474	1.143	34.532	13.208				12:26:39.17	4.166	7.645
459	45.81	18.47	1.125	34.522	13.208	2373567	2464374	5/16/1998	12:32:39.96	4.148	7.645
460 461	45.816 45.807	18.465 18.462	1.129 1.137	34.532	13.206	2380481 2327573			12:38:40.75 12:44:41.54	4.196 3.833	7.647 7.644
462	45.807 45.797	18.451	1.157	34.527 34.527	13.209 13.207	2389970			12:50:42.33	3.833 4.261	7.643
463	45.788	18.435	1.178	34.533	13.206	2379758	2464539	5/16/1998	12:56:43.12	4.191	7.645
464	45.787	18.438	1.186	34.529	13.207	2358934			13:02:43.91	4.048	7.642
465 466	45.781 45.767	18.431 18.424	1.207 1.188	34.531 34.525	13.206 13.206	2353875 2370977			13:08:44.70 13:14:45.49	4.013 4.130	7.644 7.648
467	45.757	18.407	1.183	34.531	13.203				13:20:46.28	4.071	7.650

Record No.	Conductivity (mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
468	45.75	18.398	1.229	34.532	13.204	2382850		5/16/1998	13:26:47.07	4.212	7.643
469	45.739	18.386	1.211	34.533	13.203	2354702			13:32:47.86	4.019	7.648
470 471	45.734	18.389	1.215	34.526	13.203 13.202	2358478 2373397			13:38:48.65 13:44:49.44	4.045	7.644 7.644
471	45.727 45.719	18.38 18.367	1.242 1.233	34.528 34.532	13.199	2363116			13:50:50.23	4.147 4.077	7.652
473	45.706	18.367	1.227	34.521	13.2	2378673			13:56:51.02	4.183	7.646
474	45.703	18.343	1.21	34.538	13.199	2372531			14:02:51.81	4.141	7.643
475 476	45.685 45.681	18.333 18.316	1.214 1.202	34.532 34.543	13.199 13.198	2370729 2346686			14:08:52.60 14:14:53.39	4.129 3.964	7.645 7.647
477	45.662	18.308	1.228	34.533	13.190	2341954			14:14:55:59	3.931	7.645
478	45.657	18.311	1.209	34.527	13.201	2357701			14:26:54.97	4.039	7.645
479	45.653	18.302	1.209	34.531	13.199	2335402			14:32:55.76	3.886	7.643
480 481	45.639 45.632	18.283 18.282	1.193 1.196	34.535 34.53	13.198 13.199	2363415 2367654			14:38:56.55 14:44:57.34	4.079 4.108	7.648 7.643
482	45.625	18.273	1.198	34.531	13.199	2361687			14:50:58.13	4.067	7.643
483	45.616	18.262	1.192	34.534	13.199	2332234			14:56:58.92	3.865	7.644
484	45.606	18.253	1.151	34.532	13.197	2387899			15:02:59.71	4.247	7.646
485	45.599	18.241	1.165	34.536	13.198	2358923			15:09:00.50	4.048	7.642
486 487	45.595 45.583	18.238 18.223	1.168 1.159	34.536 34.538	13.2 13.197	2388218 2380298			15:15:01.29 15:21:02.08	4.249 4.194	7.643 7.646
488	45.571	18.22	1.115	34.531	13.197	2386229			15:27:02.87	4.235	7.644
489	45.566	18.203	1.143	34.541	13.197	2326244			15:33:03.66	3.823	7.645
490	45.556	18.196	1.157	34.538	13.198	2391305			15:39:04.45	4.270	7.646
491 492	45.552 45.533	18.193 18.176	1.087 1.061	34.537 34.535	13.196 13.194	2367932 2364999			15:45:05.24 15:51:47.30	4.110 4.089	7.646 7.646
493	45.526	18.17	1.072	34.534	13.195	2375858			15:57:48.09	4.164	7.647
494	45.516	18.152	1.027	34.541	13.194	2348960			16:03:48.88	3.979	7.645
495	45.504	18.147	1.062	34.535	13.194	2352109			16:09:49.67	4.001	7.647
496	45.498	18.136	1.032	34.539	13.195	2352347 2339196			16:15:50.46	4.003	7.647
497 498	45.493 45.487	18.136 18.126	1.005 1.015	34.535 34.538	13.194 13.196	2361574			16:21:51.25 16:27:52.04	3.912 4.066	7.647 7.644
499	45.482	18.12	1.022	34.539	13.193	2360144			16:33:52.83	4.056	7.645
500	45.474	18.108	0.967	34.543	13.194	2337115	2464595	5/16/1998	16:39:53.62	3.898	7.646
501	45.463	18.091	0.964	34.547	13.193	2351100			16:45:54.41	3.994	7.645
502 503	45.451 45.446	18.088 18.074	0.933 0.921	34.54 34.547	13.193 13.192	2383584 2361530			16:51:55.20 16:57:55.99	4.217 4.066	7.647 7.648
504	45.441	18.07	0.908	34.546	13.193	2391573			17:03:56.78	4.272	7.646
505	45.448	18.085	0.943	34.54	13.193	2375491			17:09:57.57	4.161	7.646
506	45.45	18.089	0.905	34.538	13.194	2389529			17:15:58.36	4.258	7.646
507 508	45.46 45.477	18.097 18.117	0.91 0.909	34.54 34.537	13.192 13.192	2340969 2342003			17:21:59.15 17:27:59.94	3.925 3.932	7.647 7.647
509	45.488	18.132	0.888	34.534	13.192	2372901			17:34:00.73	4.144	7.649
510	45.502	18.134	0.892	34.544	13.191	2374499			17:40:01.52	4.155	7.651
511	45.518	18.157	0.904	34.539	13.188	2332155			17:46:02.31	3.864	7.653
512 513	45.53 45.553	18.167 18.186	0.847 0.888	34.541 34.543	13.19 13.19	2345892 2378091			17:52:03.10 17:58:03.89	3.958 4.179	7.649 7.651
514	45.57	18.205	0.86	34.542	13.188	2367452			18:04:04.68	4.106	7.651
515	45.591	18.23	0.865	34.539	13.188	2339761			18:10:05.47	3.916	7.651
516	45.611	18.242	0.853	34.546	13.191	2346266			18:16:06.26	3.961	7.654
517 518	45.623 45.637	18.261 18.28	0.871 0.857	34.54 34.535	13.188 13.186	2364061 2372822			18:22:07.05 18:28:07.84	4.083 4.143	7.656 7.652
519	45.656	18.293	0.844	34.542	13.187	2365685			18:34:08.63	4.094	7.655
520	45.67	18.305	0.878	34.543	13.187	2353791			18:40:09.42	4.013	7.654
521 522	45.668 45.683	18.312 18.322	0.839 0.833	34.536 34.54	13.184 13.186	2386575			18:46:10.21 18:52:11.00	4.238 4.021	7.656 7.654
523	45.692	18.325	0.869	34.544	13.187				18:58:11.79	4.015	7.655
524	45.696	18.336	0.908	34.538	13.189				19:04:12.58	3.926	7.654
525	45.694	18.335	0.875	34.538	13.187	2368882			19:10:13.37	4.116	7.655
526 527	45.697 45.693	18.333 18.337	0.924 0.87	34.542 34.535	13.186 13.186	2347339			19:16:14.16 19:22:14.95	3.968 4.184	7.656 7.656
528	45.697	18.335	0.918	34.54	13.184	2362681			19:28:15.74	4.074	7.657
529	45.694	18.331	0.886	34.542	13.187	2366986	2466913	5/16/1998	19:34:16.53	4.103	7.656
530	45.691	18.324	0.89	34.545	13.185	2360421			19:40:17.32	4.058	7.662
531 532	45.687 45.693	18.325 18.32	0.894 0.901	34.541 34.549	13.183 13.183	2379600 2359686			19:46:18.11 19:52:18.90	4.190 4.053	7.663 7.661
533	45.689	18.33	0.941	34.537	13.185	2397885			19:58:19.69	4.315	7.656
534	45.685	18.319	0.949	34.544	13.187	2350642			20:04:20.48	3.991	7.656
535	45.679	18.317	0.969	34.54	13.184	2378571			20:10:21.27	4.183	7.655
536 537	45.684 45.682	18.317 18.314	0.933 0.962	34.545 34.545	13.183 13.185	2346928 2334539			20:16:22.06 20:22:22.85	3.965 3.880	7.662 7.660
538	45.682	18.318	0.982	34.542	13.184	2339871			20:22:22.63	3.917	7.656
539	45.68	18.317	0.961	34.542	13.185	2362783			20:34:24.43	4.074	7.655
540	45.683	18.318	0.974	34.543	13.184	2383029			20:40:25.22	4.213	7.656
541 542	45.681	18.318	1.006	34.541	13.182	2363565 2369824			20:46:26.01	4.080	7.662
543	45.684 45.67	18.316 18.308	1.053 1.047	34.546 34.541	13.185 13.182	2368282			20:52:26.80 20:58:27.59	4.123 4.112	7.658 7.666
544	45.666	18.299	1.073	34.545	13.183	2326759			21:04:28.38	3.827	7.660
545	45.66	18.295	1.068	34.543	13.182	2342929			21:10:29.17	3.938	7.659
546	45.658	18.304	1.076	34.534	13.179	2361774			21:16:29.96	4.067	7.659
547 548	45.653 45.648	18.286 18.276	1.12 1.125	34.544 34.548	13.181 13.179	2353908 2337217			21:22:30.75 21:28:31.54	4.013 3.899	7.659 7.660
549	45.639	18.264	1.127	34.551	13.179	2371271			21:34:32.33	4.132	7.659
550	45.632	18.262	1.117	34.547	13.178	2367347	2467603	5/16/1998	21:40:33.12	4.106	7.659
551	45.617	18.25	1.157	34.544	13.178	2352441			21:46:33.91	4.003	7.656
552 553	45.606 45.592	18.237 18.224	1.171 1.195	34.546 34.545	13.178 13.178	2354748 2368829			21:52:34.70 21:58:35.49	4.019 4.116	7.660 7.659
554	45.584	18.214	1.189	34.547	13.176	2384793			22:04:36.28	4.225	7.657
555	45.563	18.198	1.21	34.543	13.176	2348787	2467643	5/16/1998	22:10:37.07	3.978	7.659
556	45.556	18.184	1.212	34.548	13.178	2345808			22:16:37.86	3.958	7.657
557 558	45.532 45.513	18.165 18.143	1.227 1.246	34.544 34.546	13.176 13.176	2363619			22:22:38.65 22:28:39.44	4.080 4.053	7.658 7.657
559	45.513 45.491	18.143	1.232	34.546	13.176	2343311			22:34:40.23	3.941	7.661
560	45.483	18.103	1.226	34.554	13.174	2342689	2467742	5/16/1998	22:40:41.02	3.936	7.659
561	45.467	18.098	1.279	34.546	13.171	2364423	2467491	5/16/1998	22:46:41.81	4.085	7.658

Record No.	(mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
562	45.444	18.073	1.286	34.547	13.173	2365753	2467437	5/16/1998	22:53:23.87	4.095	7.658
563	45.422	18.039	1.301	34.557	13.171	2370680	2468064	5/16/1998	22:59:24.66	4.128	7.661
564	45.41	18.037	1.281	34.548	13.171	2372768	2467330	5/16/1998	23:05:25.45	4.143	7.658
565	45.397	18.017	1.311	34.553	13.171	2338758	2467691	5/16/1998	23:11:26.24	3.909	7.659
566	45.388	18.008	1.332	34.554	13.173	2347926	2467937	5/16/1998	23:17:27.03	3.972	7.660
567	45.38	17.998	1.349	34.555	13.172	2348759			23:23:27.82	3.978	7.657
568	45.364	17.977	1.334	34.56	13.169	2365185			23:29:28.61	4.091	7.657
569	45.358	17.972	1.278	34.558	13.171	2351984			23:35:29.40	4.000	7.660
570	45.352	17.962	1.343	34.562	13.172	2337874			23:41:30.19	3.903	7.658
571	45.34	17.954	1.382	34.559	13.17	2321696			23:47:30.98	3.792	7.657
572	45.322	17.941	1.399	34.554	13.169	2358306			23:53:31.77	4.044	7.658
573	45.319	17.939	1.339	34.554	13.109	2337583			23:59:32.56	3.901	7.658
574					13.17	2365470					
574 575	45.318	17.929	1.312	34.561					00:05:33.35 00:11:34.14	4.093	7.657
	45.312	17.925	1.315	34.559	13.167	2349387				3.982	7.656
576	45.311	17.916	1.402	34.565	13.168	2353205			00:17:34.93	4.008	7.658
577	45.301	17.92	1.411	34.554	13.166	2337473			00:23:35.72	3.901	7.659
578	45.3	17.914	1.351	34.559	13.169	2358633			00:29:36.51	4.046	7.657
579	45.306	17.919	1.343	34.559	13.167	2341838			00:35:37.30	3.930	7.659
580	45.303	17.921	1.378	34.555	13.168	2335597			00:41:38.09	3.888	7.659
581	45.306	17.914	1.395	34.564	13.168	2352442			00:47:38.88	4.003	7.656
582	45.298	17.92	1.357	34.551	13.167	2339605	2467423	5/17/1998	00:53:39.67	3.915	7.658
583	45.304	17.916	1.302	34.56	13.172	2325629			00:59:40.46	3.819	7.662
584	45.292	17.908	1.339	34.556	13.171	2375801	2467323	5/17/1998	01:05:41.25	4.164	7.658
585	45.291	17.901	1.371	34.561	13.171	2393714	2467936	5/17/1998	01:11:42.04	4.287	7.660
586	45.286	17.897	1.386	34.56	13.17	2344911	2467390	5/17/1998	01:17:42.83	3.952	7.658
587	45.277	17.892	1.328	34.557	13.171	2340091	2467983	5/17/1998	01:23:43.62	3.918	7.660
588	45.27	17.888	1.298	34.555	13.171	2324607	2467197	5/17/1998	01:29:44.41	3.812	7.657
589	45.256	17.871	1.286	34.557	13.17	2354488	2467486	5/17/1998	01:35:45.20	4.017	7.658
590	45.255	17.86	1.32	34.565	13.171	2334609			01:41:45.99	3.881	7.656
591	45.249	17.855	1.255	34.564	13.168	2341522			01:47:46.78	3.928	7.657
592	45.239	17.851	1.241	34.559	13.169	2357362			01:53:47.57	4.037	7.658
593	45.233	17.838	1.227	34.565	13.168	2354461			01:59:48.36	4.017	7.655
594	45.227	17.836	1.251	34.562	13.169	2346498			02:05:49.15	3.962	7.654
595	45.223	17.818	1.228	34.574	13.169	2329462			02:11:49.94	3.846	7.657
596	45.219	17.818	1.168	34.57	13.169	2303440	2467571		02:17:50.73	3.667	7.659
597	45.215	17.818	1.099	34.567	13.168	2348828			02:17:50:75	3.978	7.659
597 598					13.166						
	45.211	17.813	1.124	34.567		2315842			02:29:52.31	3.752	7.658
599	45.207	17.811	1.113	34.566	13.168	2359304			02:35:53.10	4.050	7.656
600	45.204	17.807	1.139	34.567	13.168	2341558			02:41:53.89	3.929	7.657
601	45.197	17.797	1.066	34.569	13.166	2339620			02:47:54.68	3.915	7.657
602	45.194	17.789	1.033	34.574	13.166	2336496			02:53:55.47	3.894	7.657
603	45.197	17.805	1.031	34.562	13.167	2329092			02:59:56.26	3.843	7.657
604	45.199	17.806	1.029	34.563	13.165	2345839			03:05:57.05	3.958	7.654
605	45.202	17.804	0.98	34.568	13.166	2343813	2467411		03:11:57.84	3.944	7.658
606	45.197	17.798	0.872	34.569	13.165	2330224			03:17:58.63	3.851	7.656
607	45.2	17.804	0.878	34.567	13.164	2355436			03:23:59.42	4.024	7.660
608	45.197	17.791	0.884	34.574	13.165	2361804			03:30:00.21	4.068	7.659
609	45.202	17.813	0.897	34.56	13.165	2365687	2467669	5/17/1998	03:36:01.00	4.094	7.659
610	45.205	17.797	0.794	34.576	13.166	2321636	2467781	5/17/1998	03:42:01.79	3.792	7.660
611	45.209	17.807	0.795	34.571	13.165	2325346	2467497	5/17/1998	03:48:02.58	3.817	7.658
612	45.208	17.809	0.752	34.569	13.164	2359005	2467658	5/17/1998	03:54:03.37	4.048	7.659
613	45.216	17.817	0.768	34.569	13.164	2343460	2466552	5/17/1998	04:00:04.16	3.942	7.654
614	45.227	17.827	0.71	34.57	13.163	2353426	2467467	5/17/1998	04:06:04.95	4.010	7.658
615	45.235	17.836	0.678	34.569	13.164	2354205	2467116	5/17/1998	04:12:05.74	4.015	7.657
616	45.238	17.832	0.63	34.574	13.164	2310477	2467348	5/17/1998	04:18:06.53	3.715	7.658
617	45.25	17.858	0.668	34.563	13.164	2357586	2467347	5/17/1998	04:24:07.32	4.039	7.658
618	45.256	17.863	0.643	34.564	13.163	2326316			04:30:08.11	3.824	7.656
619	45.276	17.877	0.591	34.569	13.164	2348954	2467217	5/17/1998	04:36:08.90	3.979	7.657
620	45.286	17.89	0.51	34.567	13.164	2359153			04:42:09.69	4.049	7.655
621	45.285	17.889	0.474	34.567	13.163	2338852			04:48:10.48	3.910	7.657
622	45.296	17.897	0.477	34.569	13.162	2306267			04:54:11.27	3.686	7.660
623	45.307	17.908		34.569	13.164	2346058			05:00:12.06	3.959	7.658
623 624			0.463			2355039			05:00:12.06		
	45.323	17.924	0.391	34.569	13.164					4.021	7.657
625	45.322	17.934	0.395	34.56	13.162	2359708			05:12:13.64	4.053	7.657
626	45.34	17.944	0.344	34.567	13.163	2348177			05:18:14.43	3.974	7.657
627	45.352	17.952	0.345	34.57	13.163	2338359			05:24:15.22	3.907	7.658
628	45.365	17.973	0.335	34.564	13.163	2335940			05:30:16.01	3.890	7.658
629	45.373	17.973	0.273	34.571	13.164	2331284			05:36:16.80	3.858	7.658
630	45.38	17.984	0.24	34.567	13.163	2322278			05:42:17.59	3.796	7.657
631	45.398	18.004	0.211	34.566	13.164	2350069	2466876	5/17/1998	05:48:18.38	3.987	7.656

Blank Test #2 Sensor Data

Record No.	Conductivity (mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
1	46.202	19.133	1.108	34.299	13.16	2390314	2440004	5/21/1998	13:38:51.25	4.263	7.539
2	46.278	19.098	1.076	34.39	13.167	2522865	2451441	5/21/1998	13:45:33.26	5.173	7.589
3	46.316	19.068	1.072	34.448	13.169	2340983	2454720	5/21/1998	13:51:34.06	3.925	7.603
4	46.337	19.061	1.105	34.471	13.172	2509529	2457809	5/21/1998	13:57:34.86	5.081	7.616
5	46.353	19.032	1.159	34.508	13.152	2501876	2458357	5/21/1998	14:03:35.66	5.029	7.619
6	46.359	19.024	1.187	34.52	13.162	2435298	2460954	5/21/1998	14:09:36.46	4.572	7.630
7	46.366	19.012	1.199	34.537	13.163	2427763	2460922	5/21/1998	14:15:37.26	4.520	7.630
8	46.363	19.001	1.208	34.543	13.163	2400872	2461056	5/21/1998	14:21:38.06	4.336	7.630
9	46.358	18.984	1.243	34.553	13.163	2361794	2461934	5/21/1998	14:27:38.86	4.067	7.634
10	46.353	18.964	1.269	34.565	13.162	2458406	2463035	5/21/1998	14:33:39.66	4.730	7.639
11	46.343	18.945	1.304	34.572	13.161	2365812	2463574	5/21/1998	14:39:40.46	4.095	7.641
12	46.334	18.937	1.328	34.571	13.16	2553596	2464094	5/21/1998	14:45:41.26	5.384	7.644
13	46.326	18.932	1.334	34.569	13.16	2584932	2464757	5/21/1998	14:51:42.06	5.599	7.646
14	46.312	18.904	1.444	34.581	13.159	2424556	2465466	5/21/1998	14:57:42.86	4.498	7.649
15	46.281	18.871	1.468	34.582	13.158	2459465	2466503	5/21/1998	15:03:43.66	4.738	7.654
16	46.243	18.838	1.51	34.579	13.159	2454382	2466498	5/21/1998	15:09:44.46	4.703	7.654
17	46.216	18.801	1.53	34.587	13.138	2423580	2466276	5/21/1998	15:15:45.26	4.491	7.653

Record No.	Conductivity (mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
18	46.184	18.77	1.512	34.586	13.148	2373287		5/21/1998	15:21:46.06	4.146	7.658
19	46.158	18.743	1.589	34.586	13.149	2507339			15:27:46.86	5.066	7.659
20 21	46.132 46.097	18.708 18.678	1.619 1.619	34.594 34.589	13.15 13.15	2505078 2515458			15:33:47.66 15:39:48.46	5.051 5.122	7.660 7.660
22	46.072	18.646	1.66	34.596	13.148	2493683			15:45:49.26	4.973	7.661
23	46.037	18.618	1.704	34.589	13.148	2533075			15:51:50.06	5.243	7.662
24	46.006	18.582	1.735	34.593	13.146	2478840			15:57:50.86	4.871	7.666
25 26	45.967 45.927	18.532 18.502	1.812 1.803	34.602 34.594	13.146 13.146	2561193 2552714			16:03:51.66 16:09:52.46	5.436 5.378	7.663 7.666
27	45.888	18.46	1.839	34.597	13.143	2355165			16:15:53.26	4.022	7.669
28	45.854	18.426	1.869	34.597	13.143	2525326			16:21:54.06	5.190	7.671
29	45.817	18.388	1.904	34.597	13.146	2458766			16:27:54.86	4.733	7.669
30 31	45.78 45.746	18.352 18.319	1.956 1.974	34.596 34.595	13.142 13.141	2470958 2374208			16:33:55.66 16:39:56.46	4.817 4.153	7.670 7.671
32	45.712	18.289	2.009	34.591	13.14	2437755			16:45:57.26	4.589	7.674
33	45.68	18.248	2.023	34.599	13.139	2431687			16:51:58.06	4.547	7.673
34 35	45.645 45.612	18.207 18.179	2.044 2.102	34.604 34.599	13.14	2558848 2413532			16:57:58.86 17:03:59.66	5.420 4.423	7.673
36	45.579	18.148	2.102	34.598	13.136 13.135	2572176			17:10:00.46	5.511	7.673 7.673
37	45.549	18.109	2.135	34.605	13.137	2480318			17:16:01.26	4.881	7.673
38	45.514	18.078	2.167	34.602	13.135	2536597			17:22:02.06	5.267	7.677
39 40	45.478 45.442	18.036 17.985	2.189 2.199	34.606 34.618	13.135 13.133	2505750 2500701			17:28:02.86 17:34:03.66	5.055 5.021	7.676 7.677
41	45.4	17.956	2.21	34.608	13.131	2525424			17:40:04.46	5.190	7.680
42	45.363	17.912	2.26	34.613	13.13	2550208			17:46:05.26	5.361	7.680
43	45.327	17.876	2.297	34.613	13.129	2506076			17:52:06.06	5.058	7.679
44 45	45.301 45.273	17.852 17.824	2.283 2.272	34.611 34.612	13.129 13.128	2418967 2471378			17:58:06.86 18:04:07.66	4.460 4.820	7.678 7.679
46	45.246	17.786	2.272	34.621	13.127	2366864			18:10:08.46	4.102	7.682
47	45.22	17.77	2.274	34.612	13.127	2485840			18:16:09.26	4.919	7.680
48	45.197	17.742	2.307	34.615	13.125	2512483			18:22:10.06	5.102	7.682
49 50	45.164 45.143	17.707 17.691	2.303 2.285	34.618 34.612	13.125 13.124	2517881 2461695			18:28:10.86 18:34:11.66	5.139 4.753	7.683 7.682
51	45.143	17.669	2.343	34.605	13.124	2521923			18:40:12.46	5.166	7.682
52	45.091	17.631	2.329	34.619	13.123	2555670			18:46:13.26	5.398	7.684
53	45.065	17.619	2.324	34.607	13.122	2530853			18:52:14.06	5.228	7.685
54 55	45.037 45.012	17.581 17.548	2.304 2.278	34.615 34.622	13.123 13.122	2527753 2520220			18:58:14.86 19:04:15.66	5.206 5.155	7.685 7.687
56	44.988	17.534	2.286	34.614	13.122	2488670			19:10:16.46	4.938	7.689
57	44.974	17.518	2.273	34.615	13.12	2340159	2473935	5/21/1998	19:16:17.26	3.919	7.686
58	44.958	17.492	2.253	34.624	13.12	2505343			19:22:18.06	5.053	7.688
59 60	44.934 44.923	17.483 17.458	2.247 2.259	34.61 34.623	13.124 13.12	2499414 2484125			19:28:18.86 19:34:19.66	5.012 4.907	7.688 7.689
61	44.911	17.449	2.206	34.62	13.12	2463238			19:40:20.46	4.764	7.689
62	44.899	17.426	2.177	34.629	13.119	2382057			19:46:21.26	4.207	7.690
63	44.885	17.418	2.161	34.624	13.118	2550609			19:52:22.06	5.363	7.689
64 65	44.864 44.852	17.402 17.389	2.125 2.079	34.619 34.621	13.119 13.118	2452850 2539657			19:58:22.86 20:04:23.66	4.692 5.288	7.692 7.688
66	44.845	17.372	2.096	34.629	13.116	2505340			20:10:24.46	5.053	7.690
67	44.826	17.357	2.065	34.625	13.118	2483477			20:16:25.26	4.903	7.692
68 60	44.816	17.358	2.054	34.615	13.117	2546740			20:22:26.06	5.337	7.691
69 70	44.814 44.796	17.334 17.329	2.003 1.99	34.634 34.623	13.117 13.116	2521575 2537269			20:28:26.86 20:34:27.66	5.164 5.272	7.691 7.690
71	44.792	17.321	1.957	34.627	13.113	2514934			20:40:28.46	5.118	7.693
72	44.784	17.304	1.888	34.634	13.114				20:47:10.46	5.202	7.693
73 74	44.773 44.769	17.298 17.301	1.858 1.835	34.63 34.624	13.113 13.111				20:53:11.26 20:59:12.06	5.259 4.957	7.692 7.692
75	44.764	17.286	1.795	34.632	13.112				21:05:12.86	4.867	7.695
76	44.747	17.28	1.764	34.623	13.111				21:11:13.66	4.462	7.693
77 70	44.751	17.269	1.703	34.636	13.109				21:17:14.46	4.944	7.692
78 79	44.753 44.752	17.271 17.282	1.71 1.671	34.636 34.625	13.111 13.112				21:23:15.26 21:29:16.06	5.042 5.101	7.697 7.697
80	44.761	17.285	1.659	34.63	13.11	2506785			21:35:16.86	5.063	7.696
81	44.761	17.285	1.563	34.631	13.111				21:41:17.66	4.721	7.693
82 83	44.767 44.776	17.284 17.3	1.527 1.502	34.637 34.63	13.109 13.109				21:47:18.46 21:53:19.26	5.411 5.080	7.697 7.696
84	44.786	17.308	1.449	34.633	13.108	2466104			21:59:20.06	4.783	7.695
85	44.791	17.313	1.413	34.633	13.108	2555568			22:05:20.86	5.397	7.695
86	44.8	17.335	1.413	34.621	13.108				22:11:21.66	5.147	7.697
87 88	44.815 44.834	17.341 17.351	1.374 1.333	34.629 34.637	13.107 13.108	2476979			22:17:22.46 22:23:23.26	4.858 4.698	7.699 7.699
89	44.847	17.377	1.312	34.627	13.108	2508059			22:29:24.06	5.071	7.698
90	44.867	17.395	1.276	34.628	13.107				22:35:24.86	4.864	7.697
91	44.871	17.4	1.244	34.627	13.107				22:41:25.66	4.789	7.698
92 93	44.876 44.889	17.406 17.42	1.175 1.137	34.627 34.626	13.108 13.107	2458859			22:47:26.46 22:53:27.26	4.734 4.488	7.699 7.699
94	44.887	17.412	1.077	34.63	13.107				22:59:28.06	4.862	7.700
95	44.893	17.408	1.092	34.64	13.107	2463486			23:05:28.86	4.765	7.701
96 07	44.906	17.428	1.052	34.633	13.108	2437951			23:11:29.66	4.590	7.699
97 98	44.912 44.921	17.442 17.451	1.045 0.969	34.627 34.627	13.104 13.105				23:17:30.46 23:23:31.26	5.456 5.055	7.699 7.700
99	44.928	17.46	0.961	34.625	13.104	2519770			23:29:32.06	5.152	7.699
100	44.939	17.466	0.902	34.63	13.106		2477066	5/21/1998	23:35:32.86	4.963	7.700
101	44.944	17.481	0.894	34.622	13.107				23:41:33.66	4.839	7.701
102 103	44.958 44.977	17.475 17.498	0.867 0.813	34.639 34.635	13.103 13.1				23:47:34.46 23:53:35.26	5.118 4.656	7.699 7.704
104	45.006	17.533	0.81	34.63	13.1				23:59:36.06	4.293	7.700
105	45.017	17.543	0.778	34.631	13.103	2441267	2476859	5/22/1998	00:05:36.86	4.613	7.699
106 107	45.057 45.006	17.586	0.803	34.629	13.103				00:11:37.66	4.820 5.120	7.698
107 108	45.096 45.129	17.624 17.666	0.778 0.731	34.63 34.623	13.103 13.103				00:17:38.46 00:23:39.26	5.120 5.126	7.701 7.700
109	45.172	17.703	0.722	34.628	13.101				00:29:40.06	4.750	7.703
110	45.214	17.742	0.717	34.631	13.103				00:35:40.86	4.602	7.700
111	45.245	17.783	0.723	34.623	13.103	2519799	2477347	5/22/1998	00:41:41.66	5.152	7.701

Record No.	Conductivity					D.O.	pH (Integer)	Date	Time	D.O.	pH (Value)
112	(mS/cm) 45.278	(Deg. C) 17.814	(dBar) 0.702	(PSU) 34.625	(Vdc) 13.102	(Integer) 2550837		5/22/1998	00:47:42.46	(ml/L) 5.365	(Value) 7.702
113	45.313	17.844	0.695	34.629	13.105	2519264			00:53:43.26	5.148	7.697
114	45.349	17.886	0.675	34.625	13.102	2427305			00:59:44.06	4.517	7.702
115 116	45.381 45.409	17.92 17.948	0.666 0.706	34.623 34.623	13.106 13.106	2510104			01:05:44.86 01:11:45.66	5.085 4.941	7.701 7.704
117	45.441	17.989	0.700	34.616	13.100	2559590			01:17:46.46	5.425	7.704
118	45.474	18.014	0.676	34.622	13.106	2449186	2477557	5/22/1998	01:23:47.26	4.667	7.702
119	45.497	18.04	0.674	34.62	13.106	2562210			01:29:48.06	5.443	7.701
120 121	45.529 45.545	18.062 18.097	0.66 0.685	34.629 34.613	13.106 13.106	2526724 2543469			01:35:48.86 01:41:49.66	5.199 5.314	7.700 7.701
122	45.573	18.105	0.706	34.629	13.106	2360954			01:47:50.46	4.062	7.702
123	45.591	18.129	0.705	34.624	13.104	2533349			01:53:51.26	5.245	7.701
124	45.608	18.145	0.715	34.626	13.104	2520575			01:59:52.06	5.157	7.700
125 126	45.621 45.641	18.173 18.176	0.708 0.722	34.613 34.627	13.105 13.104	2547123			02:05:52.86 02:11:53.66	3.848 5.339	7.702 7.700
127	45.653	18.197	0.763	34.62	13.106				02:17:54.46	5.181	7.700
128	45.66	18.208	0.761	34.616	13.104	2510639			02:23:55.26	5.089	7.700
129 130	45.672 45.688	18.225 18.24	0.781 0.798	34.612 34.613	13.104 13.102	2556839 2555538			02:29:56.06 02:35:56.86	5.406 5.397	7.699 7.700
131	45.697	18.247	0.790	34.615	13.102	2577033			02:33:50:66	5.545	7.701
132	45.713	18.261	0.826	34.616	13.104	2538299			02:47:58.46	5.279	7.700
133	45.724	18.259	0.866	34.628	13.104	2559382			02:53:59.26	5.423	7.700
134 135	45.738 45.746	18.279 18.298	0.873 0.911	34.623 34.613	13.104 13.103	2520177 2462069			03:00:00.06 03:06:00.86	5.154 4.756	7.699 7.700
136	45.758	18.308	0.906	34.615	13.102	2546888			03:12:01.66	5.338	7.699
137	45.77	18.319	0.942	34.615	13.103	2531091			03:18:02.46	5.229	7.699
138	45.781	18.33	0.988	34.616	13.101	2552020			03:24:03.26	5.373	7.702
139 140	45.786 45.798	18.337 18.344	1.017 1.04	34.614 34.619	13.101 13.101	2564959 2478992			03:30:04.06 03:36:04.86	5.462 4.872	7.701 7.699
141	45.809	18.358	1.042	34.616	13.101	2531656			03:42:05.66	5.233	7.699
142	45.813	18.365	1.081	34.613	13.1	2558407			03:48:47.68	5.417	7.700
143	45.824	18.372	1.12	34.617	13.1	2531641			03:54:48.48	5.233	7.703
144 145	45.825 45.824	18.376 18.369	1.145 1.168	34.614 34.619	13.1 13.099	2540305 2476107			04:00:49.28 04:06:50.08	5.293 4.852	7.701 7.700
146	45.808	18.357	1.198	34.616	13.1	2542306			04:12:50.88	5.306	7.699
147	45.796	18.346	1.243	34.615	13.098	2491920			04:18:51.68	4.960	7.700
148 149	45.777 45.753	18.319 18.304	1.283 1.283	34.621 34.614	13.097 13.097	2559809 2535834			04:24:52.48 04:30:53.28	5.426 5.262	7.702 7.698
150	45.738	18.286	1.306	34.616	13.097	2546808			04:36:54.08	5.337	7.698
151	45.722	18.257	1.345	34.628	13.095	2468557			04:42:54.88	4.800	7.701
152	45.701	18.251	1.383	34.614	13.096	2528798			04:48:55.68	5.214	7.697
153 154	45.671 45.648	18.217 18.191	1.396 1.405	34.617 34.62	13.095 13.095	2517556 2519308			04:54:56.48 05:00:57.28	5.136 5.148	7.699 7.700
155	45.627	18.166	1.428	34.623	13.094	2555662			05:06:58.08	5.398	7.701
156	45.596	18.152	1.425	34.61	13.093	2513395			05:12:58.88	5.108	7.699
157	45.577	18.116	1.464	34.623	13.093 13.092	2521306 2555370			05:18:59.68	5.162	7.698
158 159	45.558 45.542	18.105 18.092	1.513 1.526	34.616 34.614	13.092	2553861			05:25:00.48 05:31:01.28	5.396 5.386	7.700 7.697
160	45.537	18.083	1.524	34.617	13.093	2550637			05:37:02.08	5.363	7.697
161	45.524	18.069	1.559	34.618	13.092	2541907			05:43:02.88	5.304	7.697
162 163	45.508 45.472	18.054 18.024	1.615 1.665	34.617 34.612	13.091 13.091	2523072 2556613			05:49:03.68 05:55:04.48	5.174 5.404	7.700 7.700
164	45.458	17.994	1.638	34.625	13.09	2484451			06:01:05.28	4.909	7.699
165	45.432	17.967	1.667	34.625	13.089				06:07:06.08	4.775	7.700
166 167	45.407	17.939	1.632	34.628 34.628	13.088				06:13:06.88	5.232	7.698
168	45.386 45.369	17.918 17.909	1.659 1.695	34.621	13.088 13.089				06:19:07.68 06:25:08.48	5.053 5.003	7.701 7.702
169	45.348	17.876	1.674	34.631	13.089	2555347	2476938	5/22/1998	06:31:09.28	5.396	7.699
170	45.313	17.843	1.705	34.629	13.087				06:37:10.08	5.280	7.699
171 172	45.281 45.25	17.812 17.783	1.735 1.751	34.629 34.626	13.086 13.085				06:43:10.88 06:49:11.68	5.306 4.168	7.699 7.701
173	45.209	17.716	1.712	34.649	13.085				06:55:12.48	5.110	7.700
174	45.166	17.693	1.717	34.632	13.085	2480147			07:01:13.28	4.880	7.699
175 176	45.13 45.098	17.66 17.62	1.679 1.699	34.628 34.635	13.084 13.083	2557294			07:07:14.08 07:13:14.88	5.409 5.216	7.699 7.701
177	45.057	17.587	1.684	34.628	13.082				07:13:14.66	5.239	7.703
178	45.036	17.56	1.704	34.633	13.081	2486409			07:25:16.48	4.923	7.702
179	45.011	17.527	1.7	34.639	13.082	2508540			07:31:17.28	5.075	7.699
180 181	44.985 44.962	17.508 17.475	1.693 1.653	34.633 34.641	13.082 13.08				07:37:18.08 07:43:18.88	5.166 4.814	7.697 7.699
182	44.935	17.456	1.632	34.634	13.08	2530286			07:49:19.68	5.224	7.701
183	44.911	17.436	1.638	34.63	13.08				07:55:20.48	4.996	7.698
184 185	44.898 44.885	17.413 17.399	1.607	34.639 34.64	13.08 13.078				08:01:21.28 08:07:22.08	5.010 5.161	7.699 7.698
186	44.87	17.388	1.589 1.574	34.636	13.076				08:13:22.88	5.156	7.697
187	44.856	17.368	1.555	34.641	13.079				08:19:23.68	4.990	7.699
188	44.838	17.351	1.545	34.641	13.078	2495921			08:25:24.48	4.988	7.697
189 190	44.827 44.811	17.338 17.328	1.525 1.497	34.642 34.636	13.076 13.078	2499587			08:31:25.28 08:37:26.08	5.013 4.719	7.698 7.699
191	44.799	17.326	1.459	34.628	13.078				08:43:26.88	5.203	7.698
192	44.786	17.299	1.434	34.64	13.076	2544265	2476520	5/22/1998	08:49:27.68	5.320	7.697
193	44.773 44.767	17.287	1.378	34.64	13.074				08:55:28.48	5.285 5.225	7.701
194 195	44.767 44.76	17.276 17.276	1.381 1.358	34.643 34.637	13.075 13.074				09:01:29.28 09:07:30.08	5.225 5.392	7.698 7.696
196	44.763	17.264	1.315	34.65	13.074				09:13:30.88	4.294	7.699
197	44.752	17.261	1.284	34.643	13.074	2495131	2476273	5/22/1998	09:19:31.68	4.983	7.696
198 199	44.748 44.752	17.268 17.262	1.262 1.209	34.633 34.643	13.074 13.073	2522533 2482657			09:25:32.48 09:31:33.28	5.171 4.897	7.698 7.695
200	44.752 44.753	17.262	1.192	34.645	13.073				09:37:33.28	5.232	7.695
201	44.763	17.272	1.135	34.644	13.072	2478414	2476247	5/22/1998	09:43:34.88	4.868	7.696
202	44.776	17.281	1.113	34.647	13.072				09:49:35.68	5.104	7.696
203 204	44.782 44.795	17.3 17.303	1.069 1.054	34.636 34.645	13.072 13.073				09:55:36.48 10:01:37.28	5.311 5.113	7.695 7.696
205	44.815	17.328	1.03	34.64	13.072				10:07:38.08	4.898	7.694

Record No.	Conductivity	•			CTD Bat.	D.O.	рН	Date	Time	D.O.	рН
206	(mS/cm) 44.847	(Deg. C) 17.356	(dBar) 1.009	(PSU) 34.645	(Vdc) 13.072	(Integer) 2521376		5/22/1009	10:13:38.88	(ml/L) 5.163	(Value) 7.697
207	44.879	17.389	0.99	34.644	13.072	2506430			10:13:30.68	5.060	7.693
208	44.917	17.419	0.951	34.651	13.074	2501957			10:25:40.48	5.029	7.693
209	44.951	17.46	0.973	34.646	13.073	2508257			10:31:41.28	5.073	7.696
210 211	44.978 45.01	17.498 17.53	0.906 0.841	34.636 34.636	13.074 13.074	2527258 2520040			10:37:42.08 10:43:42.88	5.203 5.153	7.696 7.692
212	45.022	17.538	0.817	34.64	13.073	2511075			10:50:24.90	5.092	7.697
213	45.043	17.565	0.761	34.634	13.072	2573094			10:56:25.70	5.518	7.697
214	45.069	17.588	0.727	34.637	13.072	2553586			11:02:26.50	5.384	7.699
215 216	45.095 45.117	17.611 17.635	0.737 0.716	34.64 34.639	13.071 13.072	2555903 2484253			11:08:27.30 11:14:28.10	5.400 4.908	7.697 7.694
217	45.157	17.669	0.678	34.644	13.072	2479726			11:20:28.90	4.877	7.695
218	45.186	17.701	0.649	34.642	13.072	2419273			11:26:29.70	4.462	7.695
219	45.2	17.717	0.647	34.64	13.072	2497828			11:32:30.50	5.001	7.694
220 221	45.223 45.242	17.742 17.764	0.609 0.579	34.639 34.636	13.072 13.072	2519695 2544067			11:38:31.30 11:44:32.10	5.151 5.318	7.691 7.690
222	45.253	17.766	0.543	34.644	13.072	2432940			11:50:32.10	4.556	7.691
223	45.283	17.8	0.534	34.641	13.071	2537971			11:56:33.70	5.277	7.692
224	45.317	17.843	0.501	34.634	13.072	2562296			12:02:34.50	5.443	7.695
225	45.348	17.875	0.495	34.633	13.073	2440713			12:08:35.30	4.609	7.689
226 227	45.376 45.41	17.893 17.927	0.508 0.487	34.641 34.641	13.072 13.073	2602873 2501132			12:14:36.10 12:20:36.90	5.722 5.024	7.689 7.686
228	45.438	17.952	0.466	34.644	13.073	2524167			12:26:37.70	5.182	7.688
229	45.469	17.987	0.465	34.641	13.073	2536048			12:32:38.50	5.263	7.688
230	45.501	18.018	0.43	34.642	13.072	2545965			12:38:39.30	5.331	7.689
231 232	45.532 45.573	18.061 18.097	0.458 0.398	34.632 34.636	13.072 13.074	2533242 2542412			12:44:40.10 12:50:40.90	5.244 5.307	7.689 7.690
233	45.607	18.132	0.424	34.635	13.072	2537286			12:56:41.70	5.272	7.692
234	45.649	18.191	0.424	34.621	13.073	2557397	2474541	5/22/1998	13:02:42.50	5.410	7.689
235	45.682	18.208	0.426	34.635	13.075	2572214			13:08:43.30	5.512	7.691
236	45.71	18.237	0.444	34.635	13.075	2601694			13:14:44.10	5.714	7.692
237 238	45.738 45.77	18.261 18.288	0.434 0.47	34.638 34.642	13.073 13.074	2522882 2566391			13:20:44.90 13:26:45.70	5.173 5.472	7.693 7.691
239	45.795	18.328	0.452	34.629	13.073	2572739			13:32:46.50	5.515	7.693
240	45.821	18.348	0.457	34.635	13.073	2469582			13:38:47.30	4.807	7.692
241	45.855	18.386	0.44	34.631	13.072	2546359			13:44:48.10	5.334	7.694
242 243	45.878 45.896	18.403 18.429	0.449 0.512	34.636 34.63	13.073 13.072	2562619 2531384			13:50:48.90 13:56:49.70	5.446 5.231	7.693 7.693
244	45.919	18.447	0.525	34.634	13.072	2586375			14:02:50.50	5.609	7.693
245	45.936	18.463	0.523	34.635	13.072	2432841	2476249	5/22/1998	14:08:51.30	4.555	7.696
246	45.956	18.481	0.574	34.637	13.074	2596008			14:14:52.10	5.675	7.695
247 248	45.972 45.987	18.506 18.518	0.598 0.618	34.629 34.632	13.074 13.073	2559090 2567108			14:20:52.90 14:26:53.70	5.421 5.477	7.697 7.694
249	46.011	18.548	0.631	34.627	13.073	2580755			14:32:54.50	5.570	7.697
250	46.028	18.555	0.658	34.635	13.071	2590000			14:38:55.30	5.634	7.696
251	46.038	18.564	0.668	34.636	13.071	2629935			14:44:56.10	5.908	7.698
252 253	46.051	18.583	0.702 0.709	34.631	13.07	2587591 2554636			14:50:56.90	5.617	7.699
254	46.061 46.069	18.593 18.607	0.741	34.631 34.626	13.071 13.071	2549037			14:56:57.70 15:02:58.50	5.391 5.352	7.699 7.700
255	46.083	18.615	0.8	34.631	13.07	2589924			15:08:59.30	5.633	7.699
256	46.083	18.617	0.809	34.629	13.071	2532447			15:15:00.10	5.239	7.698
257	46.097	18.624	0.848	34.636	13.069	2553231			15:21:00.90	5.381	7.699
258 259	46.104 46.098	18.639 18.63	0.902 0.946	34.629 34.631	13.07 13.07	2565389 2535611			15:27:01.70 15:33:02.50	5.465 5.260	7.701 7.705
260	46.088	18.613	0.971	34.637	13.069	2590498			15:39:03.30	5.637	7.706
261	46.065	18.595	0.985	34.632	13.069				15:45:04.10	5.634	7.704
262	46.045 46.024	18.573 18.551	1.009	34.634 34.636	13.069				15:51:04.90 15:57:05.70	5.478 5.451	7.704 7.706
263 264	46.024	18.529	1.03 1.044	34.635	13.066 13.066				16:03:06.50	5.809	7.700
265	45.98	18.504	1.101	34.637	13.066				16:09:07.30	5.782	7.703
266	45.959	18.483	1.186	34.637	13.064				16:15:08.10	5.233	7.707
267 268	45.935 45.011	18.458 18.434	1.236 1.249	34.639	13.064	2615934 2617829			16:21:08.90	5.812	7.706
269	45.911 45.882	18.407	1.249	34.638 34.636	13.064 13.062				16:27:09.70 16:33:10.50	5.825 5.486	7.706 7.708
270	45.854	18.375	1.314	34.64	13.062				16:39:11.30	5.692	7.706
271	45.819	18.346	1.34	34.634	13.062				16:45:12.10	5.377	7.707
272	45.784	18.309	1.384	34.636	13.06				16:51:12.90	5.355	7.707
273 274	45.753 45.718	18.274 18.239	1.421 1.462	34.64 34.639	13.061 13.061				16:57:13.70 17:03:14.50	5.635 5.328	7.707 7.709
275	45.687	18.202	1.505	34.644	13.059				17:09:15.30	5.399	7.708
276	45.649	18.156	1.511	34.651	13.058				17:15:16.10	5.565	7.706
277	45.622	18.129	1.547	34.65	13.057				17:21:16.90	5.395	7.707
278 279	45.583 45.554	18.093 18.063	1.532 1.618	34.648 34.648	13.057 13.057				17:27:17.70 17:33:18.50	5.546 5.708	7.710 7.708
280	45.521	18.033	1.604	34.646	13.056				17:39:19.30	5.395	7.708
281	45.491	18.005	1.644	34.644	13.056				17:45:20.10	5.232	7.710
282	45.453	17.96	1.676	34.649	13.055				17:52:02.15	5.340	7.711
283 284	45.421 45.378	17.91 17.877	1.711 1.752	34.665 34.656	13.055 13.054				17:58:02.95 18:04:03.75	5.293 5.433	7.711 7.710
285	45.333	17.833	1.743	34.656	13.053				18:10:04.55	5.280	7.710
286	45.291	17.789	1.756	34.656	13.052				18:16:05.35	5.301	7.712
287	45.255	17.758	1.784	34.652	13.051				18:22:06.15	5.144	7.712
288	45.206 45.156	17.699 17.645	1.795	34.661	13.05				18:28:06.95	5.576 5.174	7.713
289 290	45.156 45.1	17.645 17.594	1.831 1.863	34.664 34.659	13.048 13.049				18:34:07.75 18:40:08.55	5.174 5.372	7.710 7.711
291	45.057	17.553	1.832	34.657	13.048				18:46:09.35	5.399	7.715
292	45.013	17.51	1.848	34.656	13.047	2572267	2479715	5/22/1998	18:52:10.15	5.512	7.711
293	44.968	17.463	1.819	34.656	13.047	2562524			18:58:10.95	5.445	7.713
294 295	44.94 44.907	17.433 17.377	1.844 1.85	34.658 34.678	13.046 13.047				19:04:11.75 19:10:12.55	5.207 5.210	7.713 7.713
296	44.879	17.366	1.904	34.663	13.047				19:16:13.35	5.263	7.714
297	44.858	17.339	1.915	34.668	13.047	2530089	2481096	5/22/1998	19:22:14.15	5.222	7.717
298	44.835	17.313	1.881	34.67	13.045				19:28:14.95	5.027	7.715
299	44.804	17.292	1.841	34.662	13.044	2010179	2480394	3/22/1998	19:34:15.75	5.127	7.714

Record No.	Conductivity (mS/cm)	Temperature	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
300	44.787	(Deg. C) 17.259	1.846	34.675	13.046	2494858	(Integer) 2480956	5/22/1998	19:40:16.55	4.981	7.716
301	44.756	17.239	1.801	34.666	13.047	2544731			19:46:17.35	5.323	7.712
302 303	44.735	17.216	1.817	34.667	13.043 13.045	2517467 2549646			19:52:18.15 19:58:18.95	5.136	7.716
304	44.716 44.695	17.205 17.163	1.779 1.791	34.66 34.678	13.043				20:04:19.75	5.357 5.161	7.715 7.714
305	44.676	17.143	1.777	34.679	13.042	2518000			20:10:20.55	5.139	7.712
306	44.657	17.115	1.799	34.687	13.042	2574959			20:16:21.35	5.530	7.712
307 308	44.636 44.614	17.103 17.089	1.73 1.688	34.678 34.671	13.041 13.043	2532930 2532986			20:22:22.15 20:28:22.95	5.242 5.242	7.714 7.712
309	44.595	17.059	1.643	34.682	13.043	2517637			20:34:23.75	5.137	7.712
310	44.572	17.057	1.645	34.662	13.04	2465567			20:40:24.55	4.780	7.713
311	44.563	17.021	1.581	34.686	13.039				20:46:25.35	5.036	7.714
312 313	44.553 44.534	17.018 16.996	1.578 1.56	34.679 34.682	13.039 13.039	2543391 2492834			20:52:26.15 20:58:26.95	5.314 4.967	7.716 7.716
314	44.532	16.991	1.518	34.685	13.04	2484181			21:04:27.75	4.907	7.715
315	44.519	16.989	1.472	34.674	13.041				21:10:28.55	5.367	7.716
316	44.505	16.975	1.414	34.674	13.038	2534409			21:16:29.35	5.252	7.716
317 318	44.494 44.487	16.962 16.96	1.39 1.336	34.676 34.672	13.038 13.038	2503673 2505018			21:22:30.15 21:28:30.95	5.041 5.050	7.720 7.716
319	44.476	16.944	1.304	34.676	13.037	2527721			21:34:31.75	5.206	7.719
320	44.473	16.942	1.288	34.676	13.038	2497366			21:40:32.55	4.998	7.722
321 322	44.471 44.464	16.933 16.927	1.222 1.178	34.681 34.681	13.037 13.037	2540504 2500477			21:46:33.35 21:52:34.15	5.294 5.019	7.716 7.717
323	44.472	16.933	1.170	34.683	13.037	2493677			21:58:34.95	4.973	7.716
324	44.471	16.932	1.084	34.682	13.037	2555636			22:04:35.75	5.398	7.719
325	44.475	16.937	1.059	34.681	13.036	2541651			22:10:36.55	5.302	7.721
326 327	44.48 44.486	16.94 16.947	0.999 0.937	34.683 34.683	13.039 13.035	2510246 2502953			22:16:37.35 22:22:38.15	5.086 5.036	7.718 7.720
328	44.503	16.959	0.901	34.687	13.036	2551338			22:28:38.95	5.368	7.720
329	44.518	16.966	0.866	34.693	13.036	2549862	2481929	5/22/1998	22:34:39.75	5.358	7.721
330	44.54	17.007	0.831	34.678	13.035	2565331			22:40:40.55	5.464	7.720
331 332	44.567 44.599	17.032 17.056	0.778 0.721	34.68 34.687	13.036 13.036	2511606 2563539			22:46:41.35 22:52:42.15	5.096 5.452	7.719 7.718
333	44.617	17.088	0.671	34.675	13.036	2572075			22:58:42.95	5.511	7.719
334	44.662	17.121	0.634	34.686	13.036	2522143			23:04:43.75	5.168	7.719
335	44.694	17.157	0.625	34.683	13.036	2498086			23:10:44.55	5.003	7.722
336 337	44.723 44.756	17.191 17.212	0.594 0.533	34.678 34.689	13.037 13.036	2529994 2505395			23:16:45.35 23:22:46.15	5.222 5.053	7.719 7.718
338	44.786	17.255	0.486	34.678	13.036	2516920			23:28:46.95	5.132	7.720
339	44.812	17.279	0.439	34.681	13.036	2528784			23:34:47.75	5.213	7.720
340 341	44.842 44.886	17.318 17.352	0.403 0.364	34.673 34.682	13.037 13.037	2541116 2524601			23:40:48.55 23:46:49.35	5.298 5.185	7.720 7.719
342	44.91	17.386	0.315	34.673	13.04	2480835			23:52:50.15	4.884	7.720
343	44.917	17.392	0.296	34.674	13.037	2529532			23:58:50.95	5.219	7.720
344	44.946	17.418	0.253	34.678	13.036	2512864			00:04:51.75	5.104	7.720
345 346	44.989 45.025	17.47 17.513	0.239 0.2	34.669 34.664	13.036 13.037	2486088 2530735			00:10:52.55 00:16:53.35	4.920 5.227	7.718 7.721
347	45.072	17.544	0.171	34.678	13.038	2567634			00:22:54.15	5.480	7.720
348	45.111	17.585	0.127	34.676	13.039	2596736			00:28:54.95	5.680	7.719
349 350	45.138 45.154	17.614 17.637	0.102 0.053	34.675 34.669	13.039 13.037	2544673 2516014			00:34:55.75 00:40:56.55	5.323 5.126	7.718 7.719
351	45.188	17.661	0.033	34.677	13.037	2546135			00:46:57.35	5.333	7.719
352	45.223	17.703	0.014	34.672	13.037	2526513			00:53:39.39	5.198	7.721
353	45.269	17.741	0	34.68	13.037	2555885			00:59:40.19	5.399	7.721
354 355	45.306 45.333	17.783 17.823	-0.014 -0.037	34.675 34.665	13.038 13.038				01:05:40.99 01:11:41.79	5.637 5.380	7.718 7.719
356	45.366	17.854	-0.062	34.666	13.039				01:17:42.59	5.201	7.717
357	45.404	17.884	-0.071	34.673	13.038				01:23:43.39	5.295	7.718
358 359	45.452 45.495	17.934 17.976	-0.095 -0.105	34.672 34.673	13.038 13.038				01:29:44.19 01:35:44.99	5.404 5.346	7.721 7.718
360	45.531	18.013	-0.103	34.672	13.039	2592367			01:41:45.79	5.650	7.718
361	45.565	18.058	-0.109	34.662	13.038	2556901			01:47:46.59	5.406	7.719
362	45.606	18.087	-0.102	34.673	13.039	2498739			01:53:47.39	5.007	7.717
363 364	45.638 45.68	18.128 18.162	-0.099 -0.094	34.665 34.673	13.04 13.04	2560534 2512583			01:59:48.19 02:05:48.99	5.431 5.102	7.716 7.717
365	45.709	18.19	-0.12	34.674	13.04				02:11:49.79	5.457	7.719
366	45.746	18.229	-0.131	34.672	13.039				02:17:50.59	5.316	7.716
367 368	45.778 45.805	18.264 18.29	-0.101 -0.099	34.67 34.67	13.038 13.041	2568551			02:23:51.39 02:29:52.19	5.486 5.432	7.717 7.716
369	45.836	18.326	-0.105	34.666	13.038				02:35:52.19	5.416	7.716
370	45.857	18.351	-0.102	34.663	13.04	2545895			02:41:53.79	5.331	7.718
371	45.876	18.374	-0.055	34.659	13.04				02:47:54.59	5.698	7.717
372 373	45.91 45.934	18.405 18.43	-0.045 -0.026	34.662 34.661	13.04 13.038				02:53:55.39 02:59:56.19	5.326 5.169	7.717 7.715
374	45.953	18.453	-0.013	34.658	13.04				03:05:56.99	5.636	7.717
375	45.973	18.47	-0.011	34.66	13.04				03:11:57.79	5.352	7.719
376 377	45.995 46.02	18.487 18.506	0.016 0.075	34.665 34.67	13.039 13.04	2479335			03:17:58.59 03:23:59.39	4.874 5.716	7.718 7.715
378	46.041	18.544	0.073	34.655	13.04	2540454			03:30:00.19	5.294	7.717
379	46.061	18.567	0.104	34.653	13.038		2480031	5/23/1998	03:36:00.99	5.402	7.712
380	46.083	18.58	0.105	34.661	13.039				03:42:01.79	5.359	7.716 7.714
381 382	46.1 46.125	18.601 18.62	0.158 0.198	34.657 34.663	13.04 13.041	2565084 2541682			03:48:02.59 03:54:03.39	5.463 5.302	7.714 7.714
383	46.144	18.639	0.229	34.662	13.04				04:00:04.19	5.433	7.714
384	46.156	18.647	0.264	34.666	13.041				04:06:04.99	5.659	7.714
385 386	46.168	18.667 18.689	0.274 0.325	34.659	13.039				04:12:05.79 04:18:06.59	5.354	7.713 7.711
386 387	46.183 46.199	18.689	0.325	34.653 34.66	13.037 13.041				04:18:06.59	5.803 5.372	7.711 7.712
388	46.205	18.705	0.403	34.658	13.036	2572861	2480206	5/23/1998	04:30:08.19	5.516	7.713
389	46.206	18.702	0.426	34.662	13.037	2581931			04:36:08.99	5.578	7.713
390 391	46.196 46.181	18.701 18.681	0.443 0.466	34.654 34.658	13.036 13.041				04:42:09.79 04:48:10.59	5.473 5.323	7.712 7.712
392	46.173	18.671	0.51	34.659	13.037	2605728	2480230	5/23/1998	04:54:11.39	5.742	7.713
393	46.152	18.655	0.554	34.656	13.037	2603563	2479793	5/23/1998	05:00:12.19	5.727	7.711

Record No.	Conductivity (mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
394	46.141	18.635	0.57	34.664	13.034	2567619		5/23/1998	05:06:12.99	5.480	7.714
395	46.12	18.621	0.622	34.657	13.034	2580806			05:12:13.79	5.571	7.711
396 397	46.103 46.087	18.604	0.649	34.657	13.035	2556223 2573353			05:18:14.59 05:24:15.39	5.402	7.713
398	46.068	18.584 18.562	0.708 0.727	34.66 34.663	13.034 13.033	2546761			05:30:16.19	5.519 5.337	7.711 7.710
399	46.053	18.553	0.747	34.657	13.033	2543820			05:36:16.99	5.317	7.713
400	46.042	18.531	0.758	34.667	13.032	2560063			05:42:17.79	5.428	7.707
401 402	46.025 45.994	18.518 18.496	0.807 0.828	34.664 34.656	13.032 13.032	2552301 2570116			05:48:18.59 05:54:19.39	5.375 5.497	7.711 7.712
403	45.97	18.469	0.86	34.659	13.032	2543335			06:00:20.19	5.313	7.712
404	45.952	18.441	0.904	34.666	13.031	2525443	2479693	5/23/1998	06:06:20.99	5.191	7.711
405	45.93	18.418	0.93	34.667	13.031	2558889			06:12:21.79	5.420	7.709
406 407	45.908 45.881	18.395 18.376	0.97 0.974	34.669 34.662	13.029 13.029	2553385 2600458			06:18:22.59 06:24:23.39	5.382 5.705	7.710 7.711
408	45.861	18.354	1.024	34.663	13.03	2569088			06:30:24.19	5.490	7.709
409	45.843	18.337	1.019	34.663	13.029	2526933			06:36:24.99	5.201	7.708
410	45.816	18.304	1.004	34.667	13.028	2537581			06:42:25.79	5.274	7.710
411 412	45.799 45.78	18.277 18.265	1.03 1.097	34.676 34.67	13.031 13.027	2599347 2554368			06:48:26.59 06:54:27.39	5.698 5.389	7.709 7.709
413	45.749	18.235	1.118	34.668	13.025	2525123			07:00:28.19	5.188	7.709
414	45.705	18.198	1.132	34.663	13.025	2519614			07:06:28.99	5.151	7.710
415 416	45.682 45.654	18.167 18.141	1.151 1.143	34.669 34.667	13.025 13.026	2533448 2555954			07:12:29.79 07:18:30.59	5.246 5.400	7.709 7.710
417	45.633	18.115	1.143	34.672	13.025	2430381			07:10:30:39	4.538	7.710
418	45.608	18.09	1.174	34.672	13.024	2501958			07:30:32.19	5.029	7.708
419	45.584	18.07	1.17	34.668	13.023	2524197			07:36:32.99	5.182	7.709
420 421	45.549 45.526	18.033 17.996	1.186 1.168	34.67 34.682	13.022 13.021	2517803 2518339			07:42:33.79 07:48:34.59	5.138 5.142	7.708 7.708
422	45.486	17.966	1.173	34.673	13.021	2552188			07:55:16.65	5.374	7.706
423	45.457	17.929	1.192	34.679	13.021				08:01:17.45	5.319	7.712
424	45.422	17.907	1.171	34.668	13.022				08:07:18.25	5.264	7.710
425 426	45.399 45.369	17.872 17.838	1.178 1.173	34.678 34.682	13.019 13.02	2519791 2557432			08:13:19.05 08:19:19.85	5.152 5.410	7.708 7.706
427	45.345	17.817	1.173	34.68	13.02				08:25:20.65	5.070	7.700
428	45.328	17.792	1.144	34.686	13.02	2501972			08:31:21.45	5.029	7.707
429	45.312	17.785	1.122	34.678	13.018	2550992			08:37:22.25	5.366	7.708
430 431	45.29 45.274	17.76 17.738	1.123 1.118	34.681 34.686	13.017 13.019	2534530 2591470			08:43:23.05 08:49:23.85	5.253 5.644	7.707 7.706
432	45.255	17.731	1.101	34.675	13.017	2521083			08:55:24.65	5.161	7.705
433	45.239	17.706	1.057	34.684	13.017	2508457	2478320	5/23/1998	09:01:25.45	5.074	7.705
434	45.232	17.701	1.037	34.681	13.017	2506494			09:07:26.25	5.061	7.707
435 436	45.219 45.209	17.691 17.68	1.023 1.041	34.679 34.68	13.019 13.018	2531824 2517963			09:13:27.05 09:19:27.85	5.234 5.139	7.709 7.707
437	45.196	17.671	1.002	34.676	13.016	2528560			09:25:28.65	5.212	7.706
438	45.181	17.645	0.956	34.685	13.015	2565673			09:31:29.45	5.467	7.707
439	45.164	17.633	0.911	34.681	13.017	2546406			09:37:30.25	5.334	7.705
440 441	45.148 45.132	17.624 17.594	0.909 0.92	34.674 34.686	13.014 13.014	2517827 2531457			09:43:31.05 09:49:31.85	5.138 5.232	7.709 7.705
442	45.123	17.586	0.88	34.685	13.014	2512794			09:55:32.65	5.104	7.705
443	45.11	17.578	0.822	34.681	13.016	2548249			10:01:33.45	5.347	7.704
444 445	45.102 45.089	17.569 17.56	0.779 0.737	34.682 34.679	13.014 13.014	2534234 2516836			10:07:34.25 10:13:35.05	5.251 5.131	7.705 7.704
446	45.009	17.56	0.737	34.68	13.014	2518174			10:13:35.85	5.131 5.141	7.704
447	45.081	17.547	0.68	34.683	13.013	2514741			10:25:36.65	5.117	7.705
448	45.079	17.539	0.609	34.689	13.013				10:31:37.45	5.021	7.703
449 450	45.072 45.079	17.536 17.543	0.548 0.58	34.685 34.685	13.012 13.013				10:37:38.25 10:43:39.05	5.254 5.455	7.702 7.704
451	45.093	17.551	0.558	34.69	13.013				10:49:39.85	5.184	7.706
452	45.11	17.575	0.526	34.685	13.013				10:55:40.65	4.867	7.704
453 454	45.128 45.141	17.593 17.612	0.549 0.458	34.684 34.679	13.013 13.013				11:01:41.45 11:07:42.25	5.585 5.188	7.703 7.703
455	45.17	17.637	0.44	34.683	13.013				11:13:43.05	5.206	7.701
456	45.188	17.662	0.407	34.677	13.014	2557564			11:19:43.85	5.411	7.702
457	45.217	17.691	0.357	34.678	13.015				11:25:44.65	5.194	7.701
458 459	45.231 45.248	17.701 17.713	0.294 0.292	34.68 34.685	13.013 13.014				11:31:45.45 11:37:46.25	5.401 5.491	7.702 7.698
460	45.269	17.729	0.259	34.689	13.014	2509790			11:43:47.05	5.083	7.700
461	45.292	17.767	0.257	34.677	13.013	2512965			11:49:47.85	5.105	7.699
462 463	45.305 45.313	17.777 17.782	0.242 0.142	34.679 34.681	13.014 13.012	2566893 2525979			11:55:48.65 12:01:49.45	5.475 5.194	7.699 7.699
464	45.329	17.782	0.142	34.68	13.012	2525679			12:07:50.25	5.192	7.698
465	45.348	17.825	0.134	34.676	13.013	2550772	2477175	5/23/1998	12:13:51.05	5.364	7.700
466	45.379	17.847	0.122	34.683	13.014				12:19:51.85	5.341	7.697
467 468	45.405 45.425	17.873 17.885	0.097 0.063	34.683 34.691	13.016 13.014	2571228 2547223			12:25:52.65 12:31:53.45	5.505 5.340	7.699 7.696
469	45.445	17.919	0.069	34.678	13.014				12:37:54.25	5.553	7.697
470	45.475	17.948	0.017	34.679	13.016	2559621			12:43:55.05	5.425	7.696
471	45.505	17.976	0	34.681	13.015	2570899			12:49:55.85	5.503	7.703
472 473	45.537 45.553	18.009 18.036	0.002 -0.023	34.681 34.671	13.015 13.016	2545682 2582263			12:55:56.65 13:01:57.45	5.329 5.581	7.697 7.696
474	45.589	18.062	-0.049	34.679	13.014	2531513			13:07:58.25	5.232	7.697
475	45.624	18.097	-0.037	34.68	13.014	2573840			13:13:59.05	5.523	7.699
476 477	45.647 45.675	18.124 18.148	-0.048 -0.068	34.676	13.015				13:19:59.85	5.587 5.141	7.699
477 478	45.675 45.706	18.148 18.187	-0.068 -0.057	34.68 34.673	13.015 13.014	2518249 2553641			13:26:00.65 13:32:01.45	5.141 5.384	7.699 7.700
479	45.745	18.223	-0.057	34.676	13.017				13:38:02.25	5.493	7.697
480	45.779	18.252	-0.045	34.681	13.016				13:44:03.05	4.888	7.696
481 482	45.808 45.847	18.287	-0.065	34.676	13.016	2595313 2582524			13:50:03.85	5.670 5.582	7.697
482 483	45.847 45.886	18.32 18.365	-0.043 -0.057	34.681 34.675	13.017 13.018	2582524 2575951			13:56:04.65 14:02:05.45	5.582 5.537	7.700 7.699
484	45.915	18.405	-0.051	34.666	13.016	2563593	2477154	5/23/1998	14:08:06.25	5.452	7.700
485	45.93	18.42	-0.059	34.666	13.016	2535607			14:14:07.05	5.260	7.701
486 487	45.977 46.01	18.456 18.493	-0.038 -0.002	34.676 34.673	13.015 13.016				14:20:07.85 14:26:08.65	5.960 5.329	7.702 7.701
707	-70.01	10.733	J.002	J-1.01 J	13.010	20-70040	2-11-103	J, 2J, 1330	20.00.00	3.323	1.101

Record No.	Conductivity	•		•		D.O.	pH	Date	Time	D.O.	pH (Value)
488	(mS/cm) 46.045	(Deg. C) 18.535	(dBar) 0.016	(PSU) 34.666	(Vdc) 13.016	(Integer) 2557096		5/23/1998	14:32:09.45	(ml/L) 5.408	(Value) 7.702
489	46.081	18.572	0.034	34.666	13.017	2599859			14:38:10.25	5.701	7.704
490	46.114	18.602	0.052	34.668	13.018	2561174			14:44:11.05	5.436	7.702
491 492	46.149 46.171	18.63 18.66	0.096 0.11	34.675 34.667	13.016 13.015	2600665 2615404			14:50:11.85 14:56:53.91	5.707 5.808	7.706 7.706
493	46.203	18.688	0.11	34.67	13.016	2574101			15:02:54.71	5.525	7.706
494	46.221	18.709	0.116	34.668	13.015	2588684	2479002	5/23/1998	15:08:55.51	5.625	7.708
495	46.244	18.737	0.14	34.664	13.017	2612098			15:14:56.31	5.785	7.707
496 497	46.259 46.272	18.748 18.753	0.193 0.224	34.667 34.674	13.015 13.014	2611134 2568264			15:20:57.11 15:26:57.91	5.779 5.484	7.707 7.709
498	46.28	18.768	0.265	34.668	13.016	2608994			15:32:58.71	5.764	7.708
499	46.29	18.774	0.275	34.672	13.015	2619546			15:38:59.51	5.836	7.708
500 504	46.292	18.786	0.334	34.663	13.014	2614175			15:45:00.31	5.800	7.711
501 502	46.309 46.313	18.791 18.792	0.381 0.395	34.673 34.675	13.015 13.016	2590866 2585067			15:51:01.11 15:57:01.91	5.640 5.600	7.709 7.713
503	46.309	18.796	0.412	34.669	13.015				16:03:02.71	5.716	7.710
504	46.319	18.8	0.431	34.674	13.015	2613919			16:09:03.51	5.798	7.712
505	46.32	18.797	0.487	34.678	13.014 13.013	2576471 2618894			16:15:04.31	5.541	7.711
506 507	46.311 46.286	18.789 18.777	0.498 0.559	34.676 34.666	13.013	2574140			16:21:05.11 16:27:05.91	5.832 5.525	7.713 7.713
508	46.269	18.747	0.587	34.676	13.012	2615854			16:33:06.71	5.811	7.712
509	46.245	18.723	0.636	34.677	13.013	2580148			16:39:07.51	5.566	7.714
510 511	46.224 46.195	18.703 18.677	0.695 0.724	34.676 34.673	13.011 13.01	2573582 2625040			16:45:08.31 16:51:09.11	5.521 5.874	7.714 7.714
512	46.17	18.644	0.738	34.679	13.01	2541443			16:57:09.91	5.300	7.713
513	46.142	18.628	0.786	34.67	13.009	2561447	2480584	5/23/1998	17:03:10.71	5.438	7.715
514	46.117	18.595	0.8	34.676	13.009	2583691			17:09:11.51	5.590	7.716
515 516	46.091 46.058	18.564 18.535	0.863 0.869	34.681 34.677	13.008 13.009	2580512 2597700			17:15:12.31 17:21:13.11	5.569 5.686	7.718 7.717
517	46.018	18.51	0.931	34.665	13.008	2583527			17:27:13.11	5.589	7.714
518	45.997	18.473	1.007	34.679	13.006	2583268			17:33:14.71	5.587	7.717
519	45.968	18.438	1.004	34.683	13.006	2568334			17:39:15.51	5.485	7.718
520 521	45.936 45.906	18.414 18.378	1.066 1.088	34.676 34.681	13.005 13.006	2557581 2606974			17:45:16.31 17:51:17.11	5.411 5.750	7.716 7.718
522	45.878	18.346	1.107	34.684	13.005	2573104			17:57:17.91	5.518	7.719
523	45.851	18.322	1.128	34.682	13.005	2594137			18:03:18.71	5.662	7.716
524	45.826	18.286	1.168	34.691	13.004	2583724			18:09:19.51	5.591	7.717
525 526	45.799 45.78	18.272 18.25	1.214 1.263	34.68 34.683	13.003 13.003	2606361 2588500			18:15:20.31 18:21:21.11	5.746 5.623	7.719 7.719
527	45.758	18.226	1.285	34.685	13.004	2527076			18:27:21.91	5.202	7.716
528	45.735	18.208	1.332	34.679	13.002	2575497			18:33:22.71	5.534	7.720
529 530	45.714 45.682	18.179 18.147	1.341 1.357	34.687 34.686	13.002 13.002	2585060 2549996			18:39:23.51 18:45:24.31	5.600 5.350	7.720 7.717
531	45.652	18.12	1.384	34.683	13.002	2572520			18:51:25.11	5.359 5.514	7.717
532	45.623	18.088	1.391	34.686	13.001	2568332			18:57:25.91	5.485	7.719
533	45.596	18.056	1.411	34.69	13	2578605			19:03:26.71	5.555	7.723
534 535	45.556 45.527	18.021 17.994	1.419 1.468	34.687 34.684	12.999 13	2538940 2541101			19:09:27.51 19:15:28.31	5.283 5.298	7.721 7.720
536	45.505	17.96	1.491	34.695	12.999	2549788			19:21:29.11	5.358	7.725
537	45.473	17.931	1.49	34.692	13.001	2568552			19:27:29.91	5.486	7.722
538	45.445	17.905	1.48	34.689	12.998	2536868			19:33:30.71	5.269	7.719
539 540	45.417 45.396	17.872 17.855	1.482 1.503	34.694 34.69	12.998 12.997	2562550 2545116			19:39:31.51 19:45:32.31	5.445 5.326	7.723 7.721
541	45.373	17.832	1.541	34.69	12.996	2532734			19:51:33.11	5.241	7.723
542	45.349	17.813	1.501	34.686	12.995				19:57:33.91	5.519	7.721
543 544	45.334 45.316	17.782 17.772	1.504 1.465	34.699 34.692	12.995 12.997				20:03:34.71 20:09:35.51	5.040 5.302	7.722 7.722
545	45.301	17.746	1.485	34.702	12.995				20:15:36.31	5.353	7.724
546	45.288	17.734	1.472	34.701	12.995	2573047	2482208	5/23/1998	20:21:37.11	5.517	7.722
547	45.271	17.719 17.706	1.425	34.699	12.996				20:27:37.91	5.330	7.724
548 549	45.255 45.242	17.706	1.423 1.428	34.697 34.702	12.996 12.993				20:33:38.71 20:39:39.51	5.306 5.361	7.720 7.722
550	45.23	17.673	1.414	34.703	12.995	2581937			20:45:40.31	5.578	7.722
551	45.211	17.66	1.399	34.698	12.993	2570273			20:51:41.11	5.498	7.721
552 553	45.199 45.187	17.646 17.626	1.37 1.305	34.699 34.707	12.993 12.993	2549604			20:57:41.91 21:03:42.71	5.356 5.303	7.725 7.722
554	45.176	17.619	1.312	34.704	12.992				21:09:43.51	5.514	7.721
555	45.163	17.621	1.295	34.69	12.992				21:15:44.31	5.245	7.725
556	45.16	17.593	1.264	34.712	12.992				21:21:45.11	5.386	7.722
557 558	45.145 45.143	17.589 17.577	1.224 1.18	34.702 34.711	12.991 12.991				21:27:45.91 21:33:46.71	5.212 5.519	7.721 7.724
559	45.136	17.58	1.162	34.701	12.99				21:39:47.51	5.316	7.725
560	45.126	17.566	1.103	34.705	12.992				21:45:48.31	5.186	7.725
561 562	45.117	17.563	1.052	34.701	12.991				21:51:49.11	5.610	7.722
562 563	45.115 45.107	17.561 17.553	0.987 0.969	34.701 34.7	12.99 12.99				21:58:31.19 22:04:31.99	5.479 5.064	7.724 7.727
564	45.105	17.541	0.908	34.708	12.99				22:10:32.79	5.498	7.724
565	45.101	17.544	0.87	34.703	12.989	2520401			22:16:33.59	5.156	7.726
566 567	45.1 45.092	17.542 17.531	0.835 0.776	34.703 34.706	12.989 12.988	2560565 2564660			22:22:34.39 22:28:35.19	5.432 5.460	7.726 7.724
568	45.092 45.087	17.531	0.776	34.706	12.988				22:28:35.19	5.647	7.724 7.724
569	45.089	17.524	0.681	34.709	12.99	2564991	2482864	5/23/1998	22:40:36.79	5.462	7.725
570	45.08	17.525	0.635	34.701	12.989				22:46:37.59	5.454	7.723
571 572	45.087 45.081	17.531 17.521	0.563 0.523	34.701 34.705	12.989 12.989				22:52:38.39 22:58:39.19	5.411 5.388	7.724 7.725
573	45.086	17.521	0.523	34.705	12.989				23:04:39.99	5.393	7.725 7.726
574	45.086	17.513	0.412	34.716	12.988	2556514	2483846	5/23/1998	23:10:40.79	5.404	7.729
575	45.079	17.52	0.366	34.705	12.989				23:16:41.59	5.316	7.726
576 577	45.086 45.093	17.522 17.527	0.31 0.286	34.709 34.71	12.988 12.989				23:22:42.39 23:28:43.19	5.419 5.170	7.724 7.726
578	45.101	17.534	0.256	34.711	12.988				23:34:43.99	5.339	7.726
579	45.108	17.543	0.198	34.71	12.988	2523847	2482955	5/23/1998	23:40:44.79	5.180	7.725
580 581	45.105 45.115	17.537 17.556	0.128 0.086	34.712 34.705	12.987 12.986				23:46:45.59 23:52:46.39	5.418	7.729
301	40.110	17.556	0.000	J4.1UD	12.900	2000107	2403044	J123/1998	20.02.40.39	5.402	7.725

Record No.	Conductivity (mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
582	45.129	17.566	0.03	34.709	12.987	2500909		5/23/1998	23:58:47.19	5.022	7.727
583	45.137	17.573	-0.008	34.709	12.987	2540087	2483205	5/24/1998	00:04:47.99	5.291	7.726
584	45.142	17.589	-0.057	34.7	12.987	2557522			00:10:48.79	5.411	7.725
585 586	45.156 45.164	17.586 17.595	-0.112 -0.152	34.715 34.714	12.988 12.986	2544295 2512824			00:16:49.59	5.320 5.104	7.727 7.728
587	45.172	17.609	-0.208	34.709	12.986	2583169			00:22:50:33	5.587	7.727
588	45.202	17.638	-0.239	34.71	12.986	2545343			00:34:51.99	5.327	7.727
589	45.221	17.66	-0.313	34.707	12.986	2567448			00:40:52.79	5.479	7.726
590 591	45.251 45.279	17.683 17.717	-0.336 -0.372	34.714 34.708	12.987 12.988	2542378 2565647			00:46:53.59	5.307 5.466	7.728 7.725
592	45.318	17.75	-0.389	34.713	12.988	2528270	2483811		00:58:55.19	5.210	7.729
593	45.352	17.784	-0.422	34.714	12.989	2553815			01:04:55.99	5.385	7.727
594	45.39	17.828	-0.459	34.709	12.988	2547765			01:10:56.79	5.344	7.727
595 506	45.436	17.887	-0.478	34.698	12.988	2570320			01:16:57.59	5.499	7.726
596 597	45.487 45.529	17.922 17.966	-0.506 -0.523	34.712 34.71	12.989 12.99	2580803 2568912			01:22:58.39	5.571 5.489	7.726 7.725
598	45.581	18.024	-0.573	34.705	12.99	2533323			01:34:59.99	5.245	7.724
599	45.616	18.063	-0.605	34.702	12.99	2595121	2482810	5/24/1998	01:41:00.79	5.669	7.724
600	45.664	18.1	-0.635	34.712	12.99	2546168			01:47:01.59	5.333	7.725
601 602	45.711 45.748	18.159 18.192	-0.648 -0.665	34.702 34.706	12.991 12.992	2534781 2552269			01:53:02.39	5.255 5.375	7.725 7.726
603	45.786	18.235	-0.701	34.701	12.99	2568990			02:05:03.99	5.489	7.724
604	45.82	18.298	-0.684	34.676	12.991	2525259			02:11:04.79	5.189	7.725
605	45.854	18.311	-0.714	34.694	12.991	2538785			02:17:05.59	5.282	7.727
606	45.893	18.344	-0.699	34.699	12.989	2567812			02:23:06.39	5.481	7.727
607 608	45.935 45.964	18.391 18.42	-0.725 -0.719	34.695 34.695	12.99 12.992	2541899 2540393			02:29:07:19	5.304 5.293	7.726 7.724
609	45.992	18.449	-0.739	34.695	12.991	2540277			02:41:08.79	5.292	7.724
610	46.023	18.474	-0.73	34.7	12.993	2537097			02:47:09.59	5.271	7.724
611	46.043	18.493	-0.754	34.701	12.992	2576601			02:53:10.39	5.542	7.723
612 613	46.068 46.088	18.519 18.542	-0.751 -0.737	34.699 34.697	12.992 12.991	2558954 2541793			02:59:11.19	5.421 5.303	7.725 7.721
614	46.115	18.572	-0.723	34.695	12.992	2587505			03:11:12.79	5.616	7.722
615	46.146	18.592	-0.715	34.704	12.993	2575389			03:17:13.59	5.533	7.721
616	46.166	18.627	-0.71	34.692	12.991	2563601			03:23:14.39	5.452	7.725
617	46.191	18.654	-0.686	34.689	12.991	2577697			03:29:15.19	5.549	7.720
618 619	46.219 46.245	18.675 18.706	-0.661 -0.645	34.696 34.692	12.99 12.992	2537695 2545402			03:35:15.99	5.275 5.328	7.721 7.723
620	46.269	18.737	-0.62	34.685	12.991	2536966			03:47:17.59	5.270	7.721
621	46.296	18.754	-0.594	34.694	12.99	2579232			03:53:18.39	5.560	7.723
622	46.316	18.782	-0.555	34.687	12.99	2520219			03:59:19.19	5.155	7.722
623 624	46.346 46.376	18.798 18.836	-0.519 -0.49	34.699 34.692	12.991 12.991	2569504 2581072			04:05:19.99 04:11:20.79	5.493 5.572	7.721 7.720
625	46.397	18.861	-0.465	34.688	12.991	2533552			04:17:21.59	5.246	7.719
626	46.421	18.884	-0.448	34.689	12.991	2596221			04:23:22.39	5.676	7.718
627	46.437	18.902	-0.44	34.687	12.991	2538500			04:29:23.19	5.280	7.718
628 629	46.461 46.476	18.928 18.945	-0.391 -0.366	34.686 34.685	12.991 12.991	2604953 2585740			04:35:23.99 04:41:24.79	5.736 5.604	7.718 7.718
630	46.491	18.959	-0.308	34.686	12.99	2567337			04:47:25.59	5.478	7.717
631	46.513	18.978	-0.275	34.687	12.99	2529637			04:53:26.39	5.219	7.717
632	46.526	18.992	-0.233	34.687	12.99	2543221			05:00:08.47	5.313	7.715
633 634	46.538 46.553	19.008 19.021	-0.19	34.684 34.686	12.989 12.992	2592995 2569245			05:06:09.27 05:12:10.07	5.654	7.715 7.717
635	46.562	19.033	-0.14 -0.097	34.683	12.989	2547902			05:12:10.07	5.491 5.345	7.716
636	46.567	19.04	-0.081	34.68	12.99	2574859			05:24:11.67	5.530	7.718
637	46.572	19.043	-0.044	34.683	12.989				05:30:12.47	5.477	7.716
638 639	46.561 46.555	19.035 19.02	0 0.045	34.679 34.687	12.99 12.989				05:36:13.27 05:42:14.07	5.292 5.656	7.716 7.717
640	46.537	19.019	0.045	34.673	12.989				05:42:14.07	5.298	7.717
641	46.535	18.995	0.088	34.692	12.99				05:54:15.67	5.625	7.714
642	46.519	18.987	0.133	34.685	12.989				06:00:16.47	5.575	7.714
643 644	46.495 46.484	18.971 18.949	0.179 0.202	34.679 34.687	12.988 12.99	2556843 2623828			06:06:17.27 06:12:18.07	5.406 5.866	7.714 7.714
645	46.463	18.928	0.202	34.687	12.988	2553731			06:18:18.87	5.385	7.714
646	46.444	18.913	0.293	34.684	12.988				06:24:19.67	5.694	7.712
647	46.422	18.889	0.331	34.686	12.989	2534929			06:30:20.47	5.256	7.715
648	46.393	18.863	0.384	34.684	12.986	2568590			06:36:21.27	5.487	7.713
649 650	46.37 46.35	18.836 18.811	0.396 0.414	34.686 34.69	12.984 12.985	2591569 2518750			06:42:22.07	5.644 5.145	7.716 7.715
651	46.326	18.788	0.445	34.69	12.986				06:54:23.67	5.491	7.714
652	46.296	18.758	0.497	34.69	12.984				07:00:24.47	5.632	7.712
653	46.264	18.727	0.528	34.69	12.985				07:06:25.27	5.807	7.712
654 655	46.236 46.212	18.698 18.67	0.531 0.545	34.69 34.693	12.982 12.982				07:12:26.07 07:18:26.87	5.545 5.335	7.717 7.712
656	46.189	18.648	0.578	34.692	12.982	2577851			07:24:27.67	5.550	7.712
657	46.163	18.623	0.64	34.692	12.981	2569404	2480390	5/24/1998	07:30:28.47	5.492	7.714
658	46.138	18.582	0.691	34.705	12.981	2548668			07:36:29.27	5.350	7.711
659 660	46.114 46.093	18.568 18.556	0.676 0.68	34.696 34.689	12.981 12.98	2599476 2584971			07:42:30.07 07:48:30.87	5.699 5.599	7.716 7.714
661	46.093	18.535	0.735	34.692	12.981				07:54:31.67	5.374	7.714
662	46.057	18.508	0.76	34.699	12.98	2577478	2479673	5/24/1998	08:00:32.47	5.548	7.711
663	46.037	18.492	0.73	34.696	12.981	2512271			08:06:33.27	5.100	7.714
664 665	46.016 45.983	18.475 18.437	0.759 0.784	34.692 34.696	12.979 12.978				08:12:34.07 08:18:34.87	5.437 5.615	7.714 7.711
666	45.957	18.41	0.764	34.697	12.976				08:24:35.67	5.185	7.711
667	45.93	18.384	0.833	34.697	12.977	2547238	2480214	5/24/1998	08:30:36.47	5.340	7.713
668	45.898	18.349	0.809	34.7	12.978				08:36:37.27	5.079	7.712
669 670	45.873 45.848	18.317 18.295	0.808 0.817	34.704 34.702	12.977 12.978	2499807 2586391			08:42:38.07 08:48:38.87	5.015 5.609	7.712 7.709
670 671	45.848 45.813	18.295	0.817	34.702	12.976				08:54:39.67	5.332	7.709 7.711
672	45.801	18.252	0.798	34.699	12.976	2531883	2479912	5/24/1998	09:00:40.47	5.235	7.712
673	45.774	18.224	0.81	34.7	12.975				09:06:41.27	5.377	7.711
674 675	45.759 45.744	18.21 18.187	0.843 0.814	34.698 34.706	12.975 12.977				09:12:42.07	5.503 5.346	7.711 7.711
010	73.144	10.107	0.014	J+.100	14.311	2070121	2713130	5/24/1990	00.10.42.07	J.J40	1.111

Record No.		Temperature		Salinity	CTD Bat.	D.O.	pН	Date	Time	D.O.	pН
	(mS/cm)	(Deg. C)	(dBar)	(PSU)	(Vdc)	(Integer)	(Integer)			(ml/L)	(Value)
676	45.736	18.176	0.823	34.708	12.975	2528995			09:24:43.67	5.215	7.710
677	45.718	18.159	0.81	34.707	12.974	2532611	2480202	5/24/1998	09:30:44.47	5.240	7.713
678	45.708	18.152	0.753	34.704	12.975	2540490	2479465	5/24/1998	09:36:45.27	5.294	7.710
679	45.696	18.149	0.708	34.697	12.974	2560060	2479524	5/24/1998	09:42:46.07	5.428	7.710
680	45.692	18.132	0.723	34.708	12.973	2560181	2480266	5/24/1998	09:48:46.87	5.429	7.713
681	45.68	18.116	0.698	34.711	12.974	2537599	2479712	5/24/1998	09:54:47.67	5.274	7.711
682	45.663	18.103	0.657	34.708	12.972	2538305	2479775	5/24/1998	10:00:48.47	5.279	7.711
683	45.65	18.086	0.651	34.711	12.972	2526122	2480495	5/24/1998	10:06:49.27	5.195	7.714
684	45.634	18.066	0.649	34.715	12.971	2537052	2480465	5/24/1998	10:12:50.07	5.270	7.714
685	45.621	18.07	0.662	34.7	12.971	2571463	2480276	5/24/1998	10:18:50.87	5.506	7.713
686	45.609	18.046	0.567	34.71	12.97	2570091	2479485	5/24/1998	10:24:51.67	5.497	7.710
687	45.594	18.032	0.55	34.709	12.97	2576956	2480144	5/24/1998	10:30:52.47	5.544	7.713
688	45.585	18.024	0.512	34.708	12.97	2549565	2479847	5/24/1998	10:36:53.27	5.356	7.712
689	45.581	18.02	0.509	34.709	12.969	2540772	2480086	5/24/1998	10:42:54.07	5.296	7.713
690	45.574	18.019	0.486	34.704	12.97	2560019	2479711	5/24/1998	10:48:54.87	5.428	7.711
691	45.568	18.008	0.424	34.708	12.968	2561840	2479781	5/24/1998	10:54:55.67	5.440	7.711
692	45.559	17.995	0.402	34.711	12.968	2553935	2479301	5/24/1998	11:00:56.47	5.386	7.709
693	45.553	17.997	0.371	34.704	12.966	2555828	2479552	5/24/1998	11:06:57.27	5.399	7.710
694	45.554	17.994	0.331	34.708	12.968	2525852	2479064	5/24/1998	11:12:58.07	5.193	7.708
695	45.542	17.984	0.284	34.706	12.969	2558633	2479656	5/24/1998	11:18:58.87	5.418	7.711
696	45.546	17.99	0.252	34.704	12.969	2534397	2478554	5/24/1998	11:24:59.67	5.252	7.706
697	45.534	17.988	0.244	34.696	12.969	2550951	2479299	5/24/1998	11:31:00.47	5.366	7.709
698	45.538	17.981	0.211	34.705	12.97	2564371	2478272	5/24/1998	11:37:01.27	5.458	7.705
699	45.552	17.989	0.191	34.71	12.969	2540574	2479039	5/24/1998	11:43:02.07	5.294	7.708
700	45.557	17.999	0.135	34.706	12.968	2549046	2479188	5/24/1998	11:49:02.87	5.353	7.709
701	45.573	18.008	0.124	34.711	12.969	2521176	2478542	5/24/1998	11:55:03.67	5.161	7.706

Blank Test #3 Sensor Data

		ы	alik i es	1 #3 36	iisoi Da	ıa					
	(mS/cm)	Temperature (Deg. C)	(dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
1	45.815	18.716	1.364	34.32	13.006	2290723			09:28:05.56	3.580	7.591
2	45.925	18.688	1.382	34.436	13.015	2223053			09:34:47.56	3.115	7.635
3	45.99	18.683	1.404	34.495	12.967	2293106			09:40:48.37	3.596	7.648
4	46.056	18.669	1.456	34.563	13.001	2236476			09:46:49.16	3.207	7.655
5	46.083	18.653	1.469	34.598	13.01	2238362			09:52:49.96	3.220	7.660
6	46.096	18.634	1.486	34.626	13.016	2245414			09:58:50.76	3.269	7.667
7	46.113	18.621	1.497	34.651	13.017	2206619			10:04:51.56	3.002	7.668
8	46.12	18.609	1.537	34.667	13.02	2186797	2470326		10:10:52.36	2.866	7.670
9	46.109	18.59	1.566	34.673	13.019	2213549	2470326		10:16:53.16	3.050	7.670
10	46.093	18.569	1.616	34.678	13.02	2222627			10:22:53.96	3.112	7.678
11	46.071	18.52	1.666	34.7	13.019	2158621			10:28:54.76	2.673	7.678
12	46.028	18.485	1.627	34.694	13.018	2229338			10:34:55.56	3.158	7.679
13	45.974	18.431	1.63	34.694	13.017	2273754			10:40:56.36	3.463	7.679
14	45.909	18.363	1.691	34.696	13.016	2257372			10:46:57.16	3.351	7.685
15	45.844	18.287	1.698	34.706	13.014	2232544	2473818		10:52:57.96	3.180	7.686
16	45.787	18.235	1.734	34.702	13.014	2205787	2474933		10:58:58.76	2.997	7.690
17	45.729	18.165	1.798	34.711	13.013	2207467	2474394		11:04:59.56	3.008	7.688
18	45.668	18.097	1.792	34.717	13.011	2206701			11:11:00.36	3.003	7.690
19	45.612	18.033	1.824	34.723	13.01	2154618			11:17:01.16	2.646	7.687
20	45.552	17.966	1.816	34.729	13.008	2156546			11:23:01.96	2.659	7.689
21	45.485	17.906	1.871	34.723	13.007	2302887			11:29:02.76	3.663	7.690
22	45.426	17.855	1.867	34.716	13.007	2175133			11:35:03.56	2.786	7.690
23	45.397	17.813	1.852	34.727	13.005	2151673	2475793		11:41:04.36	2.625	7.694
24	45.341	17.76	1.816	34.724	13.005	2195048	2475315	5/28/1998	11:47:05.16	2.923	7.692
25	45.287	17.701	1.878	34.728	13.003	2170562	2475311		11:53:05.96	2.755	7.692
26	45.254	17.669	1.904	34.727	13.002	2224754			11:59:06.76	3.127	7.695
27	45.225	17.63	1.949	34.735	13.002	2236781			12:05:07.56	3.209	7.695
28	45.188	17.592	1.943	34.736	13.001	2171152			12:11:08.36	2.759	7.696
29	45.153	17.555	1.931	34.738	12.999	2205415			12:17:09.16	2.994	7.696
30	45.123	17.529	1.964	34.734	12.999	2192285			12:23:09.96	2.904	7.698
31	45.088	17.492	1.883	34.736	12.998	2176514	2476551		12:29:10.76	2.796	7.697
32	45.061	17.464	1.939	34.736	12.998	2197530			12:35:11.56	2.940	7.699
33	45.022	17.429	1.936	34.733	12.997	2210250			12:41:12.36	3.027	7.700
34	44.997	17.399	1.902	34.737	12.997	2167761			12:47:13.16	2.736	7.703
35	44.97	17.373	1.927	34.736	12.994	2240925			12:53:13.96	3.238	7.703
36	44.932	17.331	1.882	34.739	12.994	2208959	2476901		12:59:14.76	3.019	7.699
37	44.902	17.294	1.879	34.745	12.994	2183254	2477105		13:05:15.56	2.842	7.700
38	44.863	17.275	1.85	34.728	12.991	2211296			13:11:16.36	3.035	7.701
39	44.834	17.225	1.855	34.745	12.991	2191683	2477101		13:17:17.16	2.900	7.700
40	44.786	17.171	1.821	34.75	12.99	2185387	2478957		13:23:17.96	2.857	7.708
41	44.744	17.134	1.823	34.745	12.989	2270538			13:29:18.76	3.441	7.706
42	44.717	17.112	1.785	34.741	12.989	2226386			13:35:19.56	3.138	7.703
43	44.697	17.081	1.784	34.75	12.987	2287064	2478254		13:41:20.36	3.555	7.705
44	44.679	17.066	1.803	34.747	12.99	2167817	2478587		13:47:21.16	2.736	7.706
45	44.663	17.048	1.768	34.75	12.987	2231016	2478824		13:53:21.96	3.170	7.707
46	44.658	17.034	1.769	34.756	12.987	2184851			13:59:22.76	2.853	7.705
47	44.635	17.02	1.706	34.749	12.986	2225184			14:05:23.56	3.130	7.706
48	44.616	16.991	1.698	34.758	12.985	2280386			14:11:24.36	3.509	7.709
49	44.596	16.98	1.716	34.75	12.984	2169856			14:17:25.16	2.750	7.706
50	44.576	16.963	1.652	34.747	12.984	2181731	2480505		14:23:25.96	2.832	7.714
51	44.558	16.937	1.638	34.754	12.985	2296427	2478729		14:29:26.76	3.619	7.707
52	44.535	16.933	1.61	34.738	12.983	2169892	2478429		14:35:27.56	2.750	7.706
53	44.531	16.923	1.6	34.742	12.983	2253349			14:41:28.36	3.323	7.710
54	44.533	16.918	1.581	34.748	12.982	2256639			14:47:29.16	3.346	7.710
55	44.528	16.908	1.557	34.753	12.981	2226991			14:53:29.96	3.142	7.715
56	44.518	16.899	1.571	34.752	12.983	2241897			14:59:30.76	3.245	7.715
57	44.527	16.915	1.504	34.745	12.958	2316993			15:05:31.56	3.760	7.714
58	44.549	16.925	1.489	34.756	12.969	2308439	2480391		15:11:32.36	3.701	7.714
59	44.571	16.949	1.482	34.754	12.974	2298706			15:17:33.16	3.634	7.708
60	44.584	16.968	1.454	34.75	12.975	2188520			15:23:33.96	2.878	7.713
61	44.611	16.993	1.49	34.751	12.976	2281052	∠480822	5/28/1998	15:29:34.76	3.513	7.716

Record No.	Conductivity (mS/cm)	Temperature (Deg. C)	Pressure (dBar)	Salinity (PSU)	CTD Bat. (Vdc)	D.O. (Integer)	pH (Integer)	Date	Time	D.O. (ml/L)	pH (Value)
62	44.652	17.032	1.461	34.753	12.977	2232378		5/28/1998	15:35:35.56	3.179	7.713
63	44.698	17.07	1.431	34.76	12.977	2227837			15:41:36.36	3.148	7.719
64 65	44.732 44.76	17.124 17.135	1.423 1.393	34.744 34.759	12.978 12.978	2310947 2269562			15:47:37.16 15:53:37.96	3.718 3.434	7.718 7.719
66	44.793	17.184	1.387	34.745	12.978	2142602			15:59:38.76	2.563	7.719
67	44.836	17.218	1.397	34.753	12.978	2359776			16:05:39.56	4.054	7.718
68 69	44.885 44.938	17.26 17.327	1.37 1.325	34.759 34.748	12.978 12.98	2187769 2264049			16:11:40.36 16:17:41.16	2.873 3.397	7.720 7.718
70	44.979	17.327	1.323	34.745	12.98	2257395			16:23:41.96	3.351	7.716
71	45.027	17.412	1.361	34.752	12.979	2255995			16:29:42.76	3.341	7.726
72	45.075	17.466	1.344	34.747	12.978	2179090			16:36:24.77	2.814	7.722
73 74	45.12 45.163	17.505 17.553	1.357 1.318	34.752 34.748	12.979 12.98	2306360 2216848			16:42:25.57 16:48:26.37	3.687 3.073	7.725 7.725
7 5	45.206	17.602	1.312	34.743	12.982	2299811			16:54:27.17	3.642	7.726
76	45.248	17.647	1.346	34.741	12.978	2347777	2482750	5/28/1998	17:00:27.97	3.971	7.724
77 	45.294	17.686	1.295	34.747	12.979	2270299			17:06:28.77	3.440	7.729
78 79	45.341 45.379	17.736 17.773	1.28 1.276	34.745 34.746	12.979 12.978	2326224 2330116			17:12:29.57 17:18:30.37	3.823 3.850	7.728 7.728
80	45.411	17.809	1.258	34.743	12.979	2194439			17:24:31.17	2.919	7.731
81	45.44	17.832	1.294	34.748	12.977	2257972			17:30:31.97	3.355	7.731
82	45.455	17.862	1.269	34.735	12.979	2273135			17:36:32.77	3.459	7.731
83 84	45.47 45.503	17.867 17.894	1.276 1.251	34.744 34.749	12.977 12.976	2226056 2264866			17:42:33.57 17:48:34.37	3.136 3.402	7.731 7.731
85	45.524	17.918	1.303	34.746	12.974	2191887			17:54:35.17	2.901	7.734
86	45.537	17.94	1.311	34.739	12.975	2206129			18:00:35.97	2.999	7.731
87 88	45.551 45.57	17.949 17.057	1.279	34.743 34.752	12.974 12.975	2305341 2331995			18:06:36.77 18:12:37.57	3.680	7.733
89	45.57 45.578	17.957 17.982	1.311 1.308	34.738	12.975	2260783			18:18:38.37	3.863 3.374	7.735 7.735
90	45.588	17.987	1.31	34.742	12.975	2344333			18:24:39.17	3.948	7.735
91	45.599	17.997	1.345	34.743	12.975	2346424			18:30:39.97	3.962	7.735
92	45.597	17.996	1.348	34.742	12.973	2196651			18:36:40.77	2.934	7.737
93 94	45.598 45.607	17.996 18.002	1.324 1.336	34.744 34.746	12.972 12.972	2296295 2319592			18:42:41.57 18:48:42.37	3.618 3.778	7.734 7.735
95	45.613	17.996	1.325	34.756	12.97	2243620			18:54:43.17	3.256	7.741
96	45.604	18	1.376	34.745	12.968	2275180			19:00:43.97	3.473	7.739
97 98	45.592 45.579	17.994 17.97	1.381 1.459	34.74 34.749	12.969 12.967	2370584 2337242			19:06:44.77 19:12:45.57	4.128 3.899	7.742 7.743
99	45.579	17.962	1.459	34.749	12.967	2324875			19:12:45.37	3.814	7.743
100	45.549	17.947	1.538	34.743	12.969	2238043			19:24:47.17	3.218	7.741
101	45.53	17.929	1.519	34.742	12.962	2223320			19:30:47.97	3.117	7.742
102 103	45.515 45.5	17.902 17.888	1.518 1.515	34.752 34.751	12.962 12.964	2278924 2348339			19:36:48.77 19:42:49.57	3.499 3.975	7.742 7.744
104	45.489	17.873	1.542	34.755	12.966	2312372			19:48:50.37	3.728	7.744
105	45.478	17.865	1.587	34.752	12.967	2254922			19:54:51.17	3.334	7.742
106	45.448	17.844	1.594	34.745	12.966	2314330			20:00:51.97	3.742	7.741
107 108	45.425 45.403	17.817 17.792	1.618 1.62	34.748 34.75	12.967 12.966	2387819 2296862			20:06:52.77 20:12:53.57	4.246 3.622	7.744 7.741
109	45.37	17.763	1.68	34.747	12.965	2339111			20:18:54.37	3.912	7.742
110	45.341	17.729	1.736	34.751	12.966	2329803			20:24:55.17	3.848	7.742
111 112	45.294 45.264	17.679 17.654	1.705 1.731	34.753 34.748	12.964 12.965	2358646 2330498			20:30:55.97 20:36:56.77	4.046	7.744 7.743
113	45.214	17.594	1.786	34.757	12.963	2314874			20:42:57.57	3.853 3.745	7.744
114	45.168	17.555	1.775	34.751	12.962	2308275			20:48:58.37	3.700	7.746
115	45.116	17.505	1.811	34.748	12.962	2344272			20:54:59.17	3.947	7.745
116 117	45.073 45.029	17.457 17.413	1.837 1.858	34.753 34.752	12.961 12.963				21:00:59.97 21:07:00.77	3.762 3.645	7.746 7.744
118	44.99	17.358	1.924	34.766	12.96				21:13:01.57	3.860	7.747
119	44.958	17.33	1.878	34.762	12.96				21:19:02.37	3.845	7.743
120 121	44.915 44.881	17.294 17.258	1.953 1.938	34.757 34.757	12.959 12.959				21:25:03.17 21:31:03.97	3.386 3.237	7.747 7.748
122	44.846	17.223	1.958	34.757	12.958				21:37:04.77	3.634	7.747
123	44.809	17.183	1.98	34.76	12.957	2262848			21:43:05.57	3.388	7.747
124	44.778	17.139	1.945	34.771	12.957	2331855			21:49:06.37	3.862	7.746
125 126	44.744 44.708	17.119 17.078	2.03 2.065	34.758 34.762	12.956 12.955	2280193 2294880			21:55:07.17 22:01:07.97	3.507 3.608	7.748 7.746
127	44.681	17.045	2.079	34.768	12.955				22:07:08.77	3.700	7.750
128	44.664	17.005	2.063	34.787	12.955				22:13:09.57	3.747	7.746
129 130	44.651 44.617	17.013 16.977	2.068 2.087	34.769 34.771	12.955 12.953	2289608			22:19:10.37 22:25:11.17	3.572 3.625	7.744 7.748
131	44.597	16.964	2.123	34.764	12.952				22:31:11.97	3.892	7.746
132	44.581	16.941	2.11	34.77	12.953	2304030			22:37:12.77	3.671	7.743
133	44.558	16.922	2.155	34.767	12.951	2351956			22:43:13.57	4.000	7.744
134 135	44.525 44.519	16.881 16.867	2.177 2.184	34.773 34.78	12.951 12.952				22:49:14.37 22:55:15.17	3.839 3.870	7.748 7.750
136	44.51	16.869	2.167	34.771	12.95	2325469			23:01:15.97	3.818	7.746
137	44.492	16.837	2.093	34.782	12.95				23:07:16.77	3.351	7.748
138	44.472	16.82	2.202	34.779	12.95				23:13:17.57	3.775	7.744
139 140	44.455 44.432	16.818 16.787	2.154 2.194	34.766 34.773	12.951 12.949	2305456			23:19:18.37 23:25:19.17	3.681 3.710	7.748 7.743
141	44.415	16.776	2.247	34.768	12.949	2319015	2487101	5/28/1998	23:31:19.97	3.774	7.743
142	44.394	16.751	2.193	34.771	12.948				23:38:01.99	3.572	7.745
143 144	44.37 44.351	16.717 16.709	2.19 2.147	34.78 34.77	12.948 12.946				23:44:02.79 23:50:03.59	3.392 3.722	7.746 7.746
144	44.351	16.709	2.147	34.77 34.783	12.946				23:50:03.59	3.722 3.784	7.746 7.744
146	44.306	16.65	2.17	34.781	12.946	2294127	2487148	5/29/1998	00:02:05.19	3.603	7.743
147	44.273	16.621	2.141	34.778	12.947				00:08:05.99	3.867	7.743
148 149	44.254 44.211	16.6 16.558	2.127 2.099	34.779 34.778	12.945 12.944	2323867 2300681			00:14:06.79 00:20:07.59	3.807 3.648	7.745 7.743
150	44.211	16.526	2.099	34.776	12.944	2278551			00:26:08.39	3.496	7.744
151	44.165	16.503	2.034	34.786	12.942	2287298	2487392	5/29/1998	00:32:09.19	3.556	7.744
152	44.135	16.469	2.06	34.789	12.941				00:38:09.99	3.859	7.743
153 154	44.105 44.088	16.452 16.426	2.018 1.986	34.777 34.784	12.942 12.942				00:44:10.79 00:50:11.59	3.616 3.758	7.743 7.744
155	44.081	16.409	1.998	34.793	12.939				00:56:12.39	3.673	7.743

Record No.	Conductivity	•			CTD Bat.	D.O.	pH	Date	Time	D.O.	pH
156	(mS/cm) 44.068	(Deg. C) 16.398	(dBar) 1.903	(PSU) 34.791	(Vdc) 12.94	(Integer) 2228353		5/29/1998	01:02:13.19	(ml/L) 3.152	(Value) 7.746
157	44.057	16.389	1.925	34.789	12.94	2314425			01:08:13.99	3.742	7.744
158	44.051	16.381	1.876	34.791	12.939	2319702			01:14:14.79	3.779	7.748
159 160	44.046 44.045	16.384 16.383	1.839 1.79	34.784 34.785	12.939 12.938	2336415 2317515			01:20:15.59 01:26:16.39	3.893 3.764	7.744 7.748
161	44.045	16.382	1.783	34.785	12.938	2298769			01:32:17.19	3.635	7.745
162	44.051	16.378	1.777	34.793	12.94	2317622	2487845	5/29/1998	01:38:17.99	3.764	7.746
163	44.061	16.385	1.689	34.797	12.938	2309962			01:44:18.79	3.712	7.748
164 165	44.069 44.086	16.401 16.425	1.641 1.592	34.79 34.784	12.938 12.938	2313037 2291199			01:50:19.59 01:56:20.39	3.733 3.583	7.747 7.746
166	44.099	16.429	1.587	34.792	12.937	2301553			02:02:21.19	3.654	7.753
167	44.117	16.453	1.537	34.787	12.938	2285801			02:08:21.99	3.546	7.748
168	44.137	16.47	1.532	34.79	12.938	2299845			02:14:22.79	3.642	7.750
169 170	44.161 44.189	16.497 16.521	1.441 1.404	34.787 34.79	12.938 12.938	2330472 2291325			02:20:23.59 02:26:24.39	3.852 3.584	7.750 7.753
171	44.205	16.544	1.414	34.786	12.938	2313383			02:32:25.19	3.735	7.749
172	44.224	16.561	1.335	34.787	12.938	2284055			02:38:25.99	3.534	7.749
173 174	44.246	16.582	1.343	34.788	12.936 12.937	2302788 2234953			02:44:26.79	3.662	7.755
175	44.261 44.269	16.599 16.613	1.257 1.192	34.787 34.782	12.937	2320161			02:50:27.59 02:56:28.39	3.197 3.782	7.752 7.752
176	44.285	16.618	1.218	34.791	12.937	2297834			03:02:29.19	3.628	7.752
177	44.293	16.635	1.162	34.783	12.937	2314185			03:08:29.99	3.741	7.753
178 179	44.305 44.317	16.64 16.659	1.103 1.051	34.789 34.784	12.935 12.935	2282847 2313239			03:14:30.79 03:20:31.59	3.526 3.734	7.751 7.752
180	44.334	16.658	1.045	34.8	12.934	2327753			03:26:32.39	3.834	7.753
181	44.342	16.681	0.969	34.787	12.934	2323343	2488751	5/29/1998	03:32:33.19	3.804	7.750
182	44.372	16.713	0.928	34.785	12.937	2273363			03:38:33.99	3.461	7.749
183 184	44.413 44.451	16.751 16.797	0.857 0.837	34.788 34.782	12.935 12.936	2298671 2283134			03:44:34.79 03:50:35.59	3.634 3.528	7.753 7.751
185	44.487	16.83	0.795	34.784	12.935	2299437			03:56:36.39	3.639	7.749
186	44.516	16.855	0.766	34.788	12.935	2318111			04:02:37.19	3.768	7.751
187	44.561	16.898	0.719	34.79	12.936	2285798			04:08:37.99	3.546	7.752
188 189	44.604 44.624	16.947 16.97	0.684 0.622	34.785 34.782	12.935 12.937	2304356 2333743			04:14:38.79 04:20:39.59	3.673 3.875	7.751 7.750
190	44.646	16.999	0.599	34.778	12.935	2327689			04:26:40.39	3.833	7.750
191	44.689	17.023	0.563	34.794	12.935	2326769			04:32:41.19	3.827	7.751
192	44.735	17.089	0.538	34.777	12.936	2280251			04:38:41.99	3.508	7.752
193 194	44.778 44.815	17.119 17.162	0.527 0.453	34.789 34.784	12.935 12.936	2288164 2354815			04:44:42.79 04:50:43.59	3.562 4.020	7.750 7.752
195	44.858	17.201	0.432	34.787	12.936	2327043			04:56:44.39	3.829	7.753
196	44.901	17.252	0.405	34.78	12.937				05:02:45.19	2.913	7.749
197 198	44.955 44.983	17.308 17.337	0.372 0.347	34.779 34.779	12.936 12.936	2283462 2331071			05:08:45.99 05:14:46.79	3.530	7.752 7.751
199	44.983	17.351	0.347	34.779	12.936	2326903			05:14:46.79	3.857 3.828	7.751
200	45.026	17.391	0.317	34.769	12.935	2299905			05:26:48.39	3.643	7.751
201	45.074	17.43	0.274	34.777	12.935	2297999			05:32:49.19	3.630	7.751
202 203	45.111 45.156	17.468 17.504	0.274 0.201	34.777 34.785	12.936 12.937	2331391 2296867			05:38:49.99 05:44:50.79	3.859 3.622	7.751 7.752
204	45.195	17.561	0.209	34.769	12.939	2321373			05:50:51.59	3.790	7.748
205	45.243	17.598	0.216	34.779	12.937	2322803			05:56:52.39	3.800	7.750
206	45.28	17.64	0.201	34.775	12.938	2344243			06:02:53.19	3.947	7.751
207 208	45.321 45.348	17.679 17.705	0.156 0.179	34.776 34.778	12.936 12.938	2378781 2366713			06:08:53.99 06:14:54.79	4.184 4.101	7.746 7.750
209	45.388	17.747	0.172	34.776	12.936	2334393			06:20:55.59	3.879	7.750
210	45.422	17.791	0.159	34.767	12.937				06:26:56.39	3.341	7.746
211 212	45.462 45.51	17.83 17.866	0.169 0.145	34.769 34.779	12.94 12.937				06:32:57.19 06:39:39.22	3.981 3.968	7.747 7.748
213	45.538	17.905	0.138	34.77	12.936				06:45:40.02	3.587	7.745
214	45.576	17.945	0.143	34.768	12.936	2222965	2487628	5/29/1998	06:51:40.82	3.115	7.745
215	45.616	17.983	0.17	34.77	12.94				06:57:41.62	3.856	7.746
216 217	45.654 45.686	18.03 18.057	0.152 0.166	34.763 34.766	12.937 12.939	2322395			07:03:42.42 07:09:43.22	3.797 3.627	7.745 7.746
218	45.721	18.102	0.156	34.758	12.936	2334395			07:15:44.02	3.879	7.745
219	45.766	18.14	0.185	34.765	12.939	2357319			07:21:44.82	4.037	7.743
220 221	45.802 45.838	18.177 18.217	0.195 0.221	34.764 34.76	12.939 12.938				07:27:45.62 07:33:46.42	3.717 3.676	7.743 7.741
222	45.881	18.255	0.237	34.765	12.937				07:39:47.22	4.155	7.742
223	45.91	18.293	0.255	34.757	12.94	2358374			07:45:48.02	4.044	7.740
224	45.943	18.326	0.254	34.758	12.939				07:51:48.82	4.021	7.740
225 226	45.976 46.006	18.356 18.39	0.27 0.296	34.759 34.756	12.94 12.937	2331209			07:57:49.62 08:03:50.42	3.569 3.858	7.741 7.741
227	46.037	18.426	0.316	34.751	12.939	2348303			08:09:51.22	3.975	7.740
228	46.055	18.446	0.312	34.75	12.937				08:15:52.02	3.374	7.742
229 230	46.087	18.47	0.341	34.757	12.938				08:21:52.82	4.063	7.738
231	46.116 46.141	18.501 18.525	0.397 0.396	34.755 34.756	12.937 12.935				08:27:53.62 08:33:54.42	3.247 3.819	7.741 7.739
232	46.16	18.543	0.402	34.756	12.937				08:39:55.22	3.878	7.740
233	46.174	18.564	0.483	34.751	12.936	2352298			08:45:56.02	4.002	7.741
234 235	46.194 46.198	18.577 18.582	0.461 0.484	34.757 34.756	12.936 12.936	2334808			08:51:56.82 08:57:57.62	3.882 3.782	7.740 7.737
236	46.196	18.577	0.464	34.758	12.935				09:03:58.42	3.465	7.736
237	46.188	18.582	0.542	34.747	12.934	2371515	2485166	5/29/1998	09:09:59.22	4.134	7.735
238	46.179	18.563	0.528	34.755	12.934	2359711			09:16:00.02	4.053	7.738
239 240	46.16 46.146	18.544 18.524	0.592 0.607	34.756 34.761	12.933 12.936				09:22:00.82 09:28:01.62	4.263 4.165	7.737 7.734
241	46.122	18.508	0.608	34.754	12.932				09:34:02.42	3.963	7.737
242	46.11	18.494	0.679	34.756	12.931				09:40:03.22	3.445	7.736
243	46.098	18.49	0.659	34.748	12.931	2342790 2360399			09:46:04.02	3.937	7.732
244 245	46.083 46.071	18.473 18.451	0.689 0.764	34.751 34.759	12.932 12.93	2360399			09:52:04.82 09:58:05.62	4.058 4.051	7.733 7.734
246	46.057	18.44	0.802	34.757	12.93	2339065	2485960	5/29/1998	10:04:06.42	3.911	7.738
247	46.039	18.429	0.778	34.751	12.929	2374929			10:10:07.22	4.158	7.736
248 249	46.033 46.026	18.419 18.406	0.823 0.877	34.755 34.759	12.931 12.931	2380206 2347044			10:16:08.02 10:22:08.82	4.194 3.966	7.736 7.733
	.0.020	.5.400	3.377	5 00		_5	0 1000	5,25,1000	. 5.22.00.02	2.300	00

Record No.	Conductivity	•			CTD Bat.	D.O.	pH	Date	Time	D.O.	pH
250	(mS/cm) 46.012	(Deg. C) 18.396	(dBar) 0.896	(PSU) 34.756	(Vdc) 12.928	(Integer) 2355055		5/29/1998	10:28:09.62	(ml/L) 4.021	(Value) 7.735
251	45.995	18.378	0.951	34.756	12.928	2327764			10:34:10.42	3.834	7.735
252	45.973	18.355	0.923	34.757	12.927	2380058			10:40:11.22	4.193	7.732
253	45.948	18.336	0.969	34.752	12.906	2359418 2348663			10:46:12.02	4.051	7.729
254 255	45.93 45.892	18.307 18.271	0.962 1.029	34.762 34.759	12.919 12.918	2348663			10:52:12.82 10:58:13.62	3.977 3.992	7.734 7.731
256	45.858	18.234	1.051	34.762	12.919	2329614			11:04:14.42	3.847	7.731
257	45.822	18.198	1.064	34.762	12.92	2372916	2484444	5/29/1998	11:10:15.22	4.144	7.731
258	45.801	18.173	1.079	34.765	12.919	2342223			11:16:16.02	3.933	7.732
259 260	45.77	18.143 18.102	1.107	34.764	12.918 12.918	2350212 2295768			11:22:16.82 11:28:17.62	3.988	7.732 7.730
261	45.725 45.672	18.049	1.137 1.166	34.762 34.761	12.918	2360195			11:34:18.42	3.614 4.056	7.733
262	45.623	17.988	1.152	34.772	12.918	2325052			11:40:19.22	3.815	7.731
263	45.567	17.947	1.168	34.758	12.915	2360377			11:46:20.02	4.058	7.731
264	45.498	17.867	1.2	34.768	12.915	2345574			11:52:20.82	3.956	7.731
265 266	45.429 45.386	17.793 17.752	1.221 1.233	34.772 34.77	12.913 12.914	2335963 2372696			11:58:21.62 12:04:22.42	3.890 4.142	7.730 7.731
267	45.334	17.698	1.292	34.772	12.914	2228506			12:10:23.22	3.153	7.729
268	45.285	17.653	1.265	34.768	12.912	2321059			12:16:24.02	3.788	7.730
269	45.252	17.609	1.294	34.777	12.912	2344872			12:22:24.82	3.951	7.732
270	45.214	17.566	1.278	34.781	12.911	2370115			12:28:25.62	4.125	7.730
271 272	45.163 45.115	17.518 17.482	1.302 1.279	34.779 34.768	12.911 12.909	2323027 2343015			12:34:26.42 12:40:27.22	3.801 3.939	7.732 7.732
273	45.081	17.447	1.299	34.768	12.908	2339927			12:46:28.02	3.917	7.730
274	45.049	17.416	1.3	34.767	12.909	2336933			12:52:28.82	3.897	7.730
275	45.034	17.385	1.287	34.781	12.909	2342602			12:58:29.62	3.936	7.730
276	45.007	17.356	1.356	34.782	12.908	2301207			13:04:30.42	3.652	7.729
277 278	44.977 44.946	17.326 17.296	1.372 1.333	34.783 34.782	12.908 12.907	2319952 2332314			13:10:31.22 13:16:32.02	3.780 3.865	7.729 7.730
279	44.918	17.271	1.364	34.779	12.907	2338066			13:22:32.82	3.905	7.728
280	44.89	17.239	1.328	34.782	12.905	2340330	2484771	5/29/1998	13:28:33.62	3.920	7.733
281	44.851	17.202	1.309	34.781	12.905	2297767			13:34:34.42	3.628	7.732
282 283	44.811 44.786	17.158 17.13	1.289 1.28	34.784 34.786	12.902 12.903	2337772 2332777			13:41:16.46 13:47:17.26	3.903	7.731
284	44.761	17.13	1.305	34.775	12.903	2343545			13:53:18.06	3.868 3.942	7.726 7.729
285	44.712	17.05	1.31	34.791	12.902	2339659			13:59:18.86	3.916	7.729
286	44.673	17.009	1.298	34.792	12.901	2321547			14:05:19.66	3.791	7.731
287	44.639	16.982	1.33	34.786	12.903	2327921			14:11:20.46	3.835	7.727
288 289	44.607 44.598	16.95 16.924	1.256 1.228	34.785 34.8	12.9 12.901	2312211 2327343			14:17:21.26 14:23:22.06	3.727 3.831	7.731 7.730
290	44.564	16.908	1.224	34.784	12.901	2341677			14:29:22.86	3.929	7.727
291	44.536	16.867	1.17	34.795	12.899	2315049	2483388	5/29/1998	14:35:23.66	3.747	7.727
292	44.513	16.851	1.198	34.789	12.898	2329209			14:41:24.46	3.844	7.728
293 294	44.478 44.451	16.822 16.792	1.231 1.222	34.783 34.786	12.9 12.897	2335562 2338998			14:47:25.26 14:53:26.06	3.887	7.727 7.729
295	44.42	16.75	1.193	34.795	12.097	2324411			14:59:26.86	3.911 3.811	7.727
296	44.399	16.732	1.145	34.793	12.898	2304612			15:05:27.66	3.675	7.732
297	44.364	16.703	1.1	34.786	12.883	2292713			15:11:28.46	3.593	7.732
298	44.357	16.668	1.042	34.811	12.888	2308925			15:17:29.26	3.705	7.731
299 300	44.349 44.34	16.674 16.665	1.108 1.097	34.799 34.798	12.89 12.891	2327934 2282372			15:23:30.06 15:29:30.86	3.835 3.522	7.731 7.729
301	44.316	16.646	1.05	34.795	12.892	2315451			15:35:31.66	3.749	7.729
302	44.3	16.619	1.033	34.804	12.893	2251383	2483779	5/29/1998	15:41:32.46	3.310	7.729
303	44.283	16.606	1.085	34.8	12.891	2307209			15:47:33.26	3.693	7.731
304 305	44.272 44.257	16.592 16.582	1.042 0.982	34.803 34.798	12.891 12.89				15:53:34.06 15:59:34.86	3.867 3.927	7.729 7.730
306	44.228	16.553	0.977	34.798	12.89				16:05:35.66	3.738	7.729
307	44.201	16.521	0.959	34.802	12.89				16:11:36.46	3.853	7.730
308	44.187	16.509	0.923	34.8	12.889				16:17:37.26	3.670	7.730
309 310	44.176 44.151	16.493 16.467	0.932 0.888	34.804 34.805	12.89 12.888				16:23:38.06 16:29:38.86	3.939 3.945	7.732 7.732
311	44.128	16.456	0.881	34.794	12.888				16:35:39.66	3.726	7.735
312	44.127	16.449	0.912	34.799	12.887				16:41:40.46	3.798	7.731
313	44.142	16.468	0.873	34.796	12.889				16:47:41.26	3.747	7.734
314 315	44.173 44.191	16.499 16.515	0.837 0.87	34.796 34.798	12.889 12.891				16:53:42.06 16:59:42.86	3.975 3.886	7.734 7.736
316	44.191	16.533	0.83	34.798	12.891				17:05:43.66	3.851	7.739
317	44.25	16.573	0.852	34.799	12.892				17:11:44.46	3.695	7.739
318	44.286	16.61	0.825	34.8	12.891				17:17:45.26	3.856	7.739
319 320	44.32 44.359	16.644	0.8	34.8	12.892 12.892	2332307 2320140			17:23:46.06 17:29:46.86	3.865	7.738
321	44.393	16.685 16.731	0.741 0.788	34.798 34.789	12.892				17:35:47.66	3.782 3.349	7.738 7.741
322	44.446	16.761	0.774	34.808	12.891				17:41:48.46	3.908	7.737
323	44.483	16.804	0.821	34.803	12.891	2327171			17:47:49.26	3.830	7.740
324	44.519	16.85	0.808	34.796	12.893				17:53:50.06	3.906	7.738
325 326	44.557 44.604	16.884 16.923	0.787 0.815	34.798 34.807	12.892 12.892				17:59:50.86 18:05:51.66	3.945 4.028	7.741 7.740
327	44.638	16.979	0.782	34.787	12.895	2341730			18:11:52.46	3.930	7.740
328	44.674	17.01	0.787	34.793	12.893	2296214			18:17:53.26	3.617	7.744
329	44.711	17.052	0.762	34.788	12.892				18:23:54.06	3.863	7.745
330	44.742	17.087	0.794	34.785	12.892				18:29:54.86	3.979	7.743
331 332	44.771 44.783	17.113 17.12	0.81 0.776	34.787 34.792	12.892 12.892				18:35:55.66 18:41:56.46	3.787 3.801	7.744 7.742
333	44.794	17.12	0.775	34.788	12.892				18:47:57.26	3.892	7.742
334	44.809	17.151	0.777	34.787	12.892	2321517	2487226	5/29/1998	18:53:58.06	3.791	7.744
335	44.835	17.179	0.82	34.786	12.892				18:59:58.86	2.991	7.745
336 337	44.849 44.861	17.205	0.796 0.765	34.776 34.784	12.892 12.893				19:05:59.66 19:12:00.46	3.831	7.744 7.744
33 <i>1</i> 338	44.869	17.208 17.225	0.765	34.784 34.776	12.893				19:12:00.46	3.940 3.880	7.744 7.747
339	44.901	17.238	0.768	34.793	12.89				19:24:02.06	3.652	7.748
340	44.929	17.266	0.828	34.793	12.891				19:30:02.86	3.977	7.744
341	44.925	17.282	0.876	34.776	12.891				19:36:03.66	3.901	7.748
342 343	44.923 44.929	17.27 17.262	0.874 0.9	34.784 34.796	12.889 12.889				19:42:04.46 19:48:05.26	3.824 3.734	7.747 7.744
			0.0	00		0100	0. 020	20, .000		J., J-	

Record No.		Temperature			CTD Bat.	D.O.	pH (Integer)	Date	Time	D.O.	pH (Value)
344	(mS/cm) 44.934	(Deg. C) 17.277	(dBar) 0.838	(PSU) 34.788	(Vdc) 12.89	(Integer) 2352186	(Integer) 2487869	5/29/1998	19:54:06.06	(ml/L) 4.002	(Value) 7.746
345	44.939	17.277	0.9	34.792	12.888	2315448			20:00:06.86	3.749	7.746
346	44.919	17.267	0.909	34.783	12.889	2353717			20:06:07.66	4.012	7.744
347 348	44.913 44.919	17.253 17.255	0.88 0.869	34.79 34.793	12.888 12.888	2346549 2336872			20:12:08.46 20:18:09.26	3.963 3.896	7.748 7.747
349	44.917	17.254	0.894	34.793	12.889	2325632			20:24:10.06	3.819	7.749
350	44.896	17.244	0.95	34.783	12.889	2334058	2488291	5/29/1998	20:30:10.86	3.877	7.748
351	44.879	17.226	0.984	34.784	12.887	2311488			20:36:11.66	3.722	7.749
352 353	44.859 44.844	17.194 17.181	1.012 0.997	34.794 34.792	12.886 12.885	2341039 2344434			20:42:53.70 20:48:54.50	3.925 3.948	7.747 7.745
354	44.831	17.16	1.025	34.799	12.886	2337312			20:54:55.30	3.899	7.747
355	44.813	17.153	1.01	34.789	12.886	2338198			21:00:56.10	3.906	7.745
356	44.794	17.127	1.052	34.796	12.884	2344105			21:06:56.90	3.946	7.748
357 358	44.783 44.77	17.118 17.102	1.028 1.037	34.794 34.796	12.886 12.884	2325453 2331893			21:12:57.70 21:18:58.50	3.818 3.862	7.747 7.748
359	44.742	17.079	1.109	34.791	12.883	2340829			21:24:59.30	3.924	7.749
360	44.712	17.041	1.096	34.798	12.883	2321772			21:31:00.10	3.793	7.749
361	44.673	17.014	1.13	34.788	12.882	2309981			21:37:00.90	3.712	7.746
362 363	44.657 44.637	16.995 16.974	1.073 1.173	34.79 34.791	12.881 12.881	2339121 2342414			21:43:01.70 21:49:02.50	3.912 3.934	7.746 7.748
364	44.597	16.914	1.143	34.808	12.882	2315806			21:55:03.30	3.752	7.744
365	44.551	16.87	1.17	34.806	12.879	2307752			22:01:04.10	3.697	7.745
366	44.518	16.842	1.205	34.801	12.88	2361652			22:07:04.90	4.066	7.743
367 368	44.492 44.449	16.802 16.774	1.156 1.224	34.814 34.8	12.878 12.88	2303127 2330282			22:13:05.70 22:19:06.50	3.665 3.851	7.744 7.742
369	44.407	16.728	1.246	34.802	12.877	2314107			22:25:07.30	3.740	7.740
370	44.371	16.693	1.24	34.802	12.878	2323078			22:31:08.10	3.802	7.743
371	44.34	16.665	1.237	34.799	12.876	2336920			22:37:08.90	3.897	7.744
372 373	44.317 44.281	16.632 16.605	1.307 1.295	34.807 34.799	12.877 12.875	2293848 2322162			22:43:09.70 22:49:10.50	3.601 3.795	7.743 7.740
374	44.237	16.564	1.335	34.796	12.878	2329379			22:55:11.30	3.845	7.741
375	44.221	16.536	1.283	34.806	12.875	2342634			23:01:12.10	3.936	7.741
376	44.209	16.522	1.326	34.808	12.876	2322352			23:07:12.90	3.797	7.742
377 378	44.179 44.162	16.504 16.468	1.307 1.334	34.798 34.813	12.874 12.873	2328236 2314743			23:13:13.70 23:19:14.50	3.837 3.745	7.741 7.742
379	44.149	16.471	1.319	34.799	12.874	2332417	2487581		23:25:15.30	3.866	7.745
380	44.145	16.456	1.334	34.809	12.873	2307129			23:31:16.10	3.692	7.742
381	44.131	16.441	1.366	34.81	12.873	2318263			23:37:16.90	3.769	7.742
382 383	44.113 44.104	16.423 16.419	1.386 1.387	34.809 34.805	12.873 12.872	2307490 2313981			23:43:17.70 23:49:18.50	3.695 3.739	7.742 7.742
384	44.094	16.409	1.371	34.805	12.873	2319829			23:55:19.30	3.779	7.742
385	44.085	16.394	1.402	34.811	12.873	2305087			00:01:20.10	3.678	7.742
386	44.086	16.395	1.377	34.81	12.874	2316024 2319964			00:07:20.90	3.753	7.742
387 388	44.08 44.068	16.384 16.385	1.409 1.369	34.815 34.803	12.872 12.87	2334457	2486747		00:13:21.70 00:19:22.50	3.780 3.880	7.741 7.741
389	44.071	16.377	1.432	34.812	12.871	2312238			00:25:23.30	3.727	7.743
390	44.064	16.376	1.384	34.807	12.871	2325207			00:31:24.10	3.816	7.742
391 392	44.062 44.042	16.366 16.339	1.468 1.408	34.815 34.82	12.87 12.869	2326876 2328580			00:37:24.90 00:43:25.70	3.828 3.839	7.741 7.740
393	44.029	16.338	1.329	34.81	12.869	2310907			00:43:25.70	3.718	7.740
394	44.016	16.322	1.368	34.812	12.868	2293417			00:55:27.30	3.598	7.741
395	44.009	16.32	1.374	34.807	12.868	2333263			01:01:28.10	3.872	7.742
396 397	44.002 43.996	16.306 16.298	1.333 1.346	34.814 34.815	12.867 12.867	2326284 2293722			01:07:28.90 01:13:29.70	3.824 3.600	7.740 7.740
398	43.977	16.281	1.36	34.814	12.866	2305563			01:19:30.50	3.682	7.740
399	43.965	16.269	1.286	34.813	12.866	2315140			01:25:31.30	3.747	7.741
400	43.965	16.264	1.314	34.818	12.865				01:31:32.10	3.561	7.742
401 402	43.952 43.94	16.253 16.248	1.196 1.21	34.815 34.81	12.866 12.865				01:37:32.90 01:43:33.70	3.809 3.655	7.740 7.744
403	43.934	16.233	1.171	34.818	12.865	2332119			01:49:34.50	3.864	7.741
404	43.923	16.222	1.166	34.817	12.865	2283408			01:55:35.30	3.529	7.740
405	43.913	16.215	1.127	34.814	12.865				02:01:36.10 02:07:36.90	3.695	7.739
406 407	43.904 43.888	16.201 16.187	1.14 1.092	34.818 34.816	12.866 12.866	2313204			02:07:30:90	3.423 3.734	7.741 7.740
408	43.886	16.185	1.067	34.816	12.863				02:19:38.50	3.823	7.739
409	43.882	16.173	1.018	34.824	12.864				02:25:39.30	3.820	7.739
410 411	43.875 43.871	16.165 16.171	1.034 0.956	34.825 34.816	12.863 12.862	2293219			02:31:40.10 02:37:40.90	3.597 3.618	7.741 7.740
412	43.867	16.168	0.914	34.814	12.864				02:43:41.70	3.733	7.741
413	43.874	16.169	0.913	34.819	12.864				02:49:42.50	3.727	7.739
414	43.881	16.176	0.883	34.821	12.864	2301838			02:55:43.30	3.656	7.740
415 416	43.892 43.9	16.187 16.2	0.889 0.794	34.821 34.816	12.864 12.863	2321676			03:01:44.10 03:07:44.90	3.792 3.756	7.741 7.741
417	43.906	16.204	0.678	34.818	12.864				03:13:45.70	3.602	7.739
418	43.917	16.223	0.677	34.812	12.861				03:19:46.50	3.680	7.744
419	43.932	16.225	0.72	34.822	12.86				03:25:47.30	3.630	7.740
420 421	43.962 43.997	16.262 16.306	0.666 0.616	34.817 34.81	12.862 12.864	2326747 2302305			03:31:48.10 03:37:48.90	3.827 3.659	7.744 7.742
422	44.009	16.319	0.564	34.809	12.861				03:44:30.95	3.795	7.748
423	44.026	16.337	0.556	34.808	12.861	2306504	2486669	5/30/1998	03:50:31.75	3.688	7.741
424	44.061	16.362	0.572	34.817	12.862	2314844			03:56:32.55	3.745	7.747
425 426	44.095 44.116	16.398 16.423	0.486 0.442	34.815 34.813	12.862 12.861				04:02:33.35 04:08:34.15	3.712 3.619	7.743 7.745
427	44.119	16.423	0.365	34.824	12.861				04:06.34.15	3.769	7.743
428	44.145	16.434	0.397	34.829	12.861	2307337	2486583	5/30/1998	04:20:35.75	3.694	7.741
429	44.174	16.475	0.383	34.819	12.862				04:26:36.55	3.606	7.745
430 431	44.191 44.203	16.491 16.495	0.36 0.288	34.819 34.827	12.862 12.862	2300837 2318227			04:32:37.35 04:38:38.15	3.649 3.768	7.743 7.743
431	44.212	16.495	0.237	34.815	12.862				04:36.36.15	3.574	7.743
433	44.218	16.511	0.252	34.826	12.861	2304591	2487024	5/30/1998	04:50:39.75	3.675	7.743
434	44.245	16.555	0.206	34.811	12.862				04:56:40.55	3.811	7.744
435 436	44.265 44.277	16.557 16.588	0.177 0.15	34.826 34.811	12.861 12.861	2317846 2308299			05:02:41.35 05:08:42.15	3.766 3.700	7.742 7.744
437	44.277	16.593	0.13	34.808	12.861				05:14:42.95	3.745	7.744

Record No.	Conductivity (mS/cm)		Pressure (dBar)			D.O. (Integer)	pH (Integer)	Date	Time	D.O.	pH (Value)
438	44.305	(Deg. C) 16.613	0.072	(PSU) 34.813	(Vdc) 12.86	2309705		5/30/1998	05:20:43.75	(ml/L) 3.710	(Value) 7.747
439	44.337	16.648	0.058	34.811	12.863	2312600	2486801	5/30/1998	05:26:44.55	3.730	7.742
440	44.37	16.683	0.013	34.81	12.862	2319516			05:32:45.35	3.777	7.743
441 442	44.39 44.417	16.691 16.727	0.003 -0.102	34.82 34.813	12.861 12.861	2330909 2315582			05:38:46.15 05:44:46.95	3.855 3.750	7.744 7.741
443	44.456	16.764	-0.029	34.814	12.862	2328682			05:50:47.75	3.840	7.744
444	44.491	16.812	-0.061	34.804	12.861	2327159			05:56:48.55	3.830	7.742
445	44.533	16.851	-0.082	34.808	12.861	2319389	2486671		06:02:49.35	3.776	7.741
446 447	44.579 44.617	16.904 16.936	-0.11 -0.13	34.802 34.807	12.862 12.863	2340800 2246282			06:08:50.15 06:14:50.95	3.923 3.275	7.741 7.741
448	44.657	16.974	-0.157	34.809	12.862	2331076			06:20:51.75	3.857	7.741
449	44.697	17.016	-0.144	34.807	12.863	2307462			06:26:52.55	3.695	7.738
450	44.733	17.06	-0.206	34.801	12.863	2336385			06:32:53.35	3.893	7.739
451	44.776	17.098	-0.196	34.805	12.863	2335998			06:38:54.15	3.890	7.740
452 453	44.811 44.843	17.13 17.169	-0.192 -0.2	34.808 34.802	12.864 12.863	2330003 2326793			06:44:54.95 06:50:55.75	3.849 3.827	7.736 7.738
454	44.882	17.208	-0.233	34.802	12.862	2298696			06:56:56.55	3.634	7.741
455	44.921	17.25	-0.22	34.801	12.864	2316551			07:02:57.35	3.757	7.738
456	44.957	17.295	-0.223	34.793	12.864	2342717			07:08:58.15	3.937	7.739
457 450	44.988	17.324	-0.272	34.795	12.864	2330527			07:14:58.95	3.853	7.737
458 459	45.027 45.06	17.362 17.388	-0.259 -0.261	34.796 34.802	12.864 12.864	2332861 2341392			07:20:59.75 07:27:00.55	3.869 3.927	7.735 7.732
460	45.081	17.419	-0.244	34.793	12.864	2330915			07:33:01.35	3.856	7.733
461	45.125	17.449	-0.26	34.805	12.864	2343651			07:39:02.15	3.943	7.732
462	45.164	17.494	-0.278	34.801	12.865	2347319			07:45:02.95	3.968	7.729
463 464	45.201 45.229	17.531 17.567	-0.253 -0.213	34.8 34.794	12.864 12.865	2345763 2333827			07:51:03.75 07:57:04.55	3.957 3.876	7.732 7.734
465	45.269	17.613	-0.222	34.789	12.865	2330157			08:03:05.35	3.850	7.730
466	45.3	17.641	-0.229	34.791	12.864	2336285			08:09:06.15	3.892	7.731
467	45.337	17.67	-0.201	34.799	12.864	2331750			08:15:06.95	3.861	7.732
468	45.354	17.691	-0.207	34.795	12.865	2348329			08:21:07.75	3.975	7.731
469 470	45.392 45.421	17.736 17.764	-0.203 -0.168	34.788 34.79	12.865 12.865	2360376 2352150			08:27:08.55 08:33:09.35	4.058 4.001	7.727 7.727
471	45.446	17.794	-0.152	34.786	12.867	2343306			08:39:10.15	3.941	7.727
472	45.48	17.821	-0.144	34.792	12.865	2321326			08:45:10.95	3.790	7.728
473	45.51	17.856	-0.144	34.787	12.867	2372649			08:51:11.75	4.142	7.726
474 475	45.537 45.559	17.877 17.903	-0.081 -0.106	34.793 34.79	12.865 12.865	2337480 2356705			08:57:12.55 09:03:13.35	3.901 4.033	7.727 7.725
476	45.584	17.93	-0.100	34.788	12.865	2343080			09:09:14.15	3.939	7.725
477	45.601	17.954	-0.076	34.782	12.866	2357706			09:15:14.95	4.039	7.726
478	45.621	17.97	-0.035	34.785	12.866	2342494			09:21:15.75	3.935	7.727
479 480	45.636	17.978	-0.017 0.008	34.792	12.867	2343084 2345917			09:27:16.55	3.939	7.727
481	45.642 45.65	17.989 17.996	0.008	34.787 34.788	12.866 12.864	2324748			09:33:17.35 09:39:18.15	3.958 3.813	7.727 7.726
482	45.652	18.004	0.014	34.783	12.868	2351747			09:45:18.95	3.998	7.725
483	45.66	18.009	0.081	34.786	12.863	2345949			09:51:19.75	3.959	7.728
484	45.662	18.018	0.08	34.779	12.864	2362031			09:57:20.55	4.069	7.726
485 486	45.666 45.684	18.017 18.029	0.092 0.115	34.784 34.789	12.865 12.864	2374991 2366854			10:03:21.35 10:09:22.15	4.158 4.102	7.726 7.724
487	45.692	18.046	0.149	34.781	12.863	2338731			10:15:22.95	3.909	7.722
488	45.703	18.051	0.176	34.786	12.865	2354646			10:21:23.75	4.018	7.722
489	45.707	18.058	0.207	34.784	12.864	2353211			10:27:24.55	4.009	7.722
490 491	45.714 45.705	18.063 18.051	0.236 0.197	34.785 34.788	12.863 12.865	2348101 2359616			10:33:25.35 10:39:26.15	3.973 4.052	7.722 7.719
492	45.684	18.035	0.25	34.783	12.865	2251659			10:46:08.20	3.312	7.721
493	45.669	18.016	0.327	34.787	12.861	2356701			10:52:09.00	4.032	7.723
494	45.643	17.987	0.339	34.79	12.861	2327437			10:58:09.80	3.832	7.720
495 496	45.625 45.608	17.973 17.952	0.34 0.372	34.786 34.789	12.86 12.859	2344082 2331848			11:04:10.60 11:10:11.40	3.946 3.862	7.721 7.722
497	45.587	17.938	0.341	34.784	12.859	2280028			11:16:12.20	3.506	7.723
498	45.57	17.914	0.4	34.789	12.859	2332656			11:22:13.00	3.867	7.721
499	45.549	17.9	0.418	34.783	12.86	2357642			11:28:13.80	4.039	7.720
500 501	45.538 45.521	17.882 17.871	0.444 0.452	34.789 34.784	12.859 12.859	2330851 2344205			11:34:14.60 11:40:15.40	3.855 3.947	7.719 7.721
502	45.5	17.84	0.488	34.793	12.857	2342044			11:46:16.20	3.932	7.720
503	45.469	17.819	0.55	34.783	12.858	2353370			11:52:17.00	4.010	7.720
504	45.444	17.789	0.534	34.788	12.857	2334722			11:58:17.80	3.882	7.719
505 506	45.424 45.4	17.767 17.738	0.555 0.568	34.789 34.795	12.858 12.856	2341054 2319566			12:04:18.60 12:10:19.40	3.925 3.778	7.718 7.722
507	45.388	17.736	0.581	34.786	12.856				12:16:20.20	4.111	7.721
508	45.374	17.713	0.63	34.793	12.856	2336151			12:22:21.00	3.891	7.718
509	45.356	17.694	0.65	34.794	12.856	2330657			12:28:21.80	3.854	7.720
510 511	45.334 45.328	17.675 17.665	0.635 0.679	34.791 34.794	12.855 12.855	2338667 2338739			12:34:22.60 12:40:23.40	3.909 3.909	7.720 7.718
512	45.322	17.668	0.678	34.787	12.854	2341819			12:46:24.20	3.930	7.718
513	45.312	17.654	0.706	34.79	12.855	2305778			12:52:25.00	3.683	7.719
514	45.306	17.651	0.719	34.787	12.854	2355741			12:58:25.80	4.026	7.716
515 516	45.296	17.631	0.747	34.796	12.854	2352447			13:04:26.60	4.003	7.719
516 517	45.276 45.232	17.613 17.569	0.785 0.769	34.795 34.794	12.853 12.852	2345655 2343949			13:10:27.40 13:16:28.20	3.957 3.945	7.719 7.719
518	45.194	17.536	0.767	34.789	12.852	2316763			13:22:29.00	3.758	7.723
519	45.162	17.493	0.813	34.799	12.85	2339920			13:28:29.80	3.917	7.721
520 521	45.135 45.108	17.474 17.451	0.769	34.793	12.851	2320630			13:34:30.60	3.785	7.720
521 522	45.108 45.085	17.451 17.417	0.78 0.789	34.788 34.798	12.85 12.851	2338579 2340791			13:40:31.40 13:46:32.20	3.908 3.923	7.720 7.720
523	45.063	17.399	0.774	34.794	12.849	2338455			13:52:33.00	3.907	7.718
524	45.043	17.381	0.796	34.793	12.85	2343934	2481408	5/30/1998	13:58:33.80	3.945	7.718
525	45.01	17.347	0.834	34.793	12.848	2324896			14:04:34.60	3.814	7.721
526 527	44.972 44.953	17.313 17.27	0.861 0.796	34.79 34.81	12.848 12.847	2326023 2349034			14:10:35.40 14:16:36.20	3.822 3.980	7.718 7.719
527 528	44.901	17.236	0.796	34.794	12.847	2327044			14:10:30:20	3.829	7.719
529	44.86	17.197	0.812	34.792	12.846	2291170	2481187	5/30/1998	14:28:37.80	3.583	7.717
530	44.829	17.152	0.797	34.804	12.844	2323168			14:34:38.60	3.802	7.720
531	44.801	17.13	0.793	34.799	12.846	2316254	∠481883	o/30/1998	14:40:39.40	3.755	7.720

Record No.	Conductivity	•		•	CTD Bat.	D.O.	pH	Date	Time	D.O.	pH (Value)
532	(mS/cm) 44.788	(Deg. C) 17.111	(dBar) 0.79	(PSU) 34.804	(Vdc) 12.846	(Integer) 2316198		5/30/1998	14:46:40.20	(ml/L) 3.755	(Value) 7.718
533	44.76	17.092	0.789	34.797	12.845	2328209			14:52:41.00	3.837	7.716
534	44.723	17.059	0.761	34.792	12.843	2317699			14:58:41.80	3.765	7.719
535 536	44.699 44.661	17.011 16.977	0.803 0.737	34.812 34.809	12.848 12.846	2338119			15:04:42.60 15:10:43.40	3.905 3.688	7.716 7.716
537	44.62	16.937	0.752	34.809	12.843	2335119			15:16:44.20	3.884	7.719
538	44.589	16.908	0.706	34.806	12.841	2337976	2480970	5/30/1998	15:22:45.00	3.904	7.716
539	44.545	16.861	0.702	34.809	12.842	2326859			15:28:45.80	3.828	7.716
540 541	44.522 44.495	16.833 16.81	0.71 0.7	34.813 34.809	12.841 12.84	2309443 2308420			15:34:46.60 15:40:47.40	3.708 3.701	7.716 7.716
542	44.465	16.785	0.68	34.804	12.84	2321747			15:46:48.20	3.793	7.716
543	44.438	16.749	0.639	34.812	12.84	2325451			15:52:49.00	3.818	7.718
544	44.415	16.717	0.648	34.82	12.843	2339895			15:58:49.80	3.917	7.718
545 546	44.39 44.365	16.7 16.675	0.702 0.667	34.813 34.813	12.841 12.839	2310956 2334141			16:04:50.60 16:10:51.40	3.719 3.878	7.718 7.716
547	44.345	16.646	0.554	34.82	12.838	2345454			16:16:52.20	3.955	7.719
548	44.321	16.628	0.616	34.815	12.838	2297626		5/30/1998	16:22:53.00	3.627	7.718
549	44.319	16.644	0.605	34.799	12.837	2300696			16:28:53.80	3.648	7.718
550 551	44.339 44.338	16.647 16.643	0.628 0.605	34.814 34.816	12.844 12.839	2322034 2328282			16:34:54.60 16:40:55.40	3.795 3.837	7.720 7.720
552	44.328	16.634	0.553	34.815	12.84	2327137			16:46:56.20	3.830	7.719
553	44.324	16.637	0.535	34.81	12.836	2297017			16:52:57.00	3.623	7.722
554	44.333	16.645	0.54	34.811	12.837				16:58:57.80	3.742	7.726
555 556	44.352 44.365	16.648 16.663	0.532 0.505	34.824 34.823	12.837 12.837	2320040 2336185			17:04:58.60 17:10:59.40	3.781 3.892	7.725 7.722
557	44.36	16.66	0.507	34.822	12.837	2319845			17:17:00.20	3.780	7.729
558	44.371	16.687	0.504	34.807	12.837	2335070			17:23:01.00	3.884	7.725
559	44.388	16.693	0.461	34.817	12.837	2309966			17:29:01.80	3.712	7.727
560 561	44.408 44.419	16.709 16.722	0.504 0.449	34.821 34.819	12.837 12.836	2322082 2327049			17:35:02.60 17:41:03.40	3.795 3.829	7.727 7.726
562	44.423	16.737	0.424	34.81	12.836	2307450			17:47:45.47	3.694	7.726
563	44.448	16.755	0.472	34.815	12.837	2316704	2483429	5/30/1998	17:53:46.27	3.758	7.727
564	44.467	16.776	0.439	34.814	12.837	2325010			17:59:47.07	3.815	7.727
565 566	44.495 44.517	16.803 16.829	0.416 0.412	34.815 34.812	12.838 12.838	2313522 2323538			18:05:47.87 18:11:48.67	3.736 3.805	7.728 7.729
567	44.541	16.854	0.483	34.811	12.837	2331270			18:17:49.47	3.858	7.729
568	44.573	16.885	0.424	34.812	12.838	2352604			18:23:50.27	4.004	7.730
569	44.598	16.916	0.437	34.807	12.837	2313026			18:29:51.07	3.733	7.729
570 571	44.634 44.655	16.943 16.969	0.357 0.343	34.815 34.812	12.836 12.836	2314830 2316661			18:35:51.87 18:41:52.67	3.745 3.758	7.730 7.729
572	44.682	16.991	0.411	34.816	12.838	2321050			18:47:53.47	3.788	7.731
573	44.71	17.03	0.43	34.806	12.838	2305945			18:53:54.27	3.684	7.731
574 575	44.734	17.052	0.379	34.808	12.838	2332542 2332975			18:59:55.07	3.867	7.730
575 576	44.757 44.769	17.075 17.084	0.343 0.357	34.808 34.811	12.839 12.836	2332975			19:05:55.87 19:11:56.67	3.870 3.809	7.730 7.731
577	44.792	17.11	0.318	34.808	12.839	2331388			19:17:57.47	3.859	7.730
578	44.81	17.127	0.313	34.809	12.839	2313910			19:23:58.27	3.739	7.730
579 580	44.833 44.855	17.152 17.171	0.408	34.807 34.811	12.837 12.838	2328078 2344090			19:29:59.07 19:35:59.87	3.836	7.733 7.732
581	44.871	17.171	0.355 0.359	34.805	12.837	2339624			19:42:00.67	3.946 3.915	7.732
582	44.888	17.21	0.38	34.805	12.837	2344343			19:48:01.47	3.948	7.733
583	44.899	17.216	0.373	34.81	12.837	2310087			19:54:02.27	3.713	7.733
584 585	44.904 44.92	17.222 17.234	0.337 0.378	34.809 34.813	12.839 12.837	2333516 2316273			20:00:03.07 20:06:03.87	3.873 3.755	7.733 7.736
586	44.93	17.252	0.355	34.806	12.837				20:12:04.67	3.869	7.732
587	44.942	17.263	0.391	34.807	12.837				20:18:05.47	3.672	7.731
588	44.949	17.269	0.347	34.808	12.838				20:24:06.27	3.902	7.731
589 590	44.947 44.957	17.273 17.286	0.403 0.375	34.802 34.8	12.835 12.837	2324849 2316579			20:30:07.07 20:36:07.87	3.814 3.757	7.734 7.733
591	44.973	17.294	0.408	34.807	12.836				20:42:08.67	3.919	7.732
592	44.974	17.294	0.409	34.807	12.836	2305631			20:48:09.47	3.682	7.731
593 594	44.97 44.978	17.289 17.31	0.443 0.368	34.809 34.797	12.835 12.835	2350368 2320151			20:54:10.27 21:00:11.07	3.989 3.782	7.733 7.733
595	44.983	17.316	0.409	34.797	12.835	2374950			21:06:11.87	4.158	7.733
596	44.992	17.316	0.498	34.805	12.835	2325091	2484815	5/30/1998	21:12:12.67	3.816	7.733
597	45	17.323	0.478	34.805	12.835				21:18:13.47	3.851	7.731
598 599	44.999 44.999	17.321 17.325	0.49 0.439	34.806 34.803	12.835 12.835	2323568 2312131			21:24:14.27 21:30:15.07	3.805 3.727	7.733 7.733
600	44.999	17.325	0.504	34.803	12.833	2357488			21:36:15.87	4.038	7.732
601	45.007	17.332	0.496	34.804	12.835	2356126			21:42:16.67	4.029	7.730
602	45.008	17.336	0.5	34.8	12.834	2294992			21:48:17.47	3.609	7.732
603 604	44.995 44.995	17.328 17.318	0.51 0.464	34.797 34.805	12.835 12.833	2344532 2338993			21:54:18.27 22:00:19.07	3.949 3.911	7.732 7.733
605	44.998	17.322	0.551	34.805	12.833	2336063			22:06:19.87	3.891	7.731
606	44.988	17.324	0.485	34.794	12.833	2347245			22:12:20.67	3.968	7.733
607 608	44.961 44.942	17.29 17.261	0.529 0.601	34.8 34.809	12.831 12.831				22:18:21.47 22:24:22.27	3.832 3.928	7.730 7.731
609	44.929	17.247	0.587	34.81	12.831	2320117			22:30:23.07	3.781	7.731
610	44.897	17.211	0.624	34.813	12.832	2318803	2484852	5/30/1998	22:36:23.87	3.772	7.733
611	44.859	17.182	0.581	34.805	12.829	2300451			22:42:24.67	3.646	7.730
612 613	44.842 44.827	17.159 17.15	0.673 0.536	34.81 34.804	12.829 12.83	2307613 2342618			22:48:25.47 22:54:26.27	3.696 3.936	7.731 7.732
614	44.827	17.15	0.656	34.804	12.83				23:00:27.07	3.769	7.732
615	44.809	17.133	0.658	34.804	12.829				23:06:27.87	3.832	7.733
616	44.78	17.102	0.651	34.805	12.828	2331690	2485428	5/30/1998	23:12:28.67	3.861	7.736
617	44.744	17.07	0.707	34.801	12.829	2302998			23:18:29.47	3.664	7.731
618 619	44.72 44.705	17.046 17.029	0.725 0.728	34.801 34.802	12.827 12.827	2294114 2331940			23:24:30.27 23:30:31.07	3.603 3.863	7.733 7.732
620	44.684	16.994	0.720	34.814	12.827	2323665			23:36:31.87	3.806	7.729
621	44.651	16.962	0.766	34.813	12.825	2307039	2483608	5/30/1998	23:42:32.67	3.692	7.728
622	44.628	16.949	0.732	34.804	12.825				23:48:33.47	3.848	7.728
623 624	44.609 44.583	16.912 16.889	0.744 0.662	34.821 34.817	12.826 12.826	2310986 2323973			23:54:34.27 00:00:35.07	3.719 3.808	7.730 7.730
625	44.541	16.85	0.002	34.815	12.826				00:06:35.87	3.743	7.728

Record No.	Conductivity	•		Salinity	CTD Bat.	D.O.	pН	Date	Time	D.O.	pН
	(mS/cm)	(Deg. C)	(dBar)	(PSU)	(Vdc)	(Integer)	(Integer)	E (0.4.(4.000	00.40.00.07	(ml/L)	(Value)
626 627	44.514	16.81	0.718	34.826	12.825	2305950			00:12:36.67	3.684	7.727
627 628	44.501 44.482	16.807 16.791	0.795 0.716	34.817 34.814	12.823 12.823	2318720 2334235			00:18:37.47 00:24:38.27	3.772 3.878	7.730 7.727
629	44.458	16.757	0.749	34.822	12.823	2303660			00:30:39.07	3.668	7.725
630	44.449	16.762	0.773	34.81	12.823	2335158			00:36:39.87	3.885	7.730
631	44.442	16.745	0.767	34.819	12.822	2317035			00:42:40.67	3.760	7.729
632	44.411	16.72	0.716	34.814	12.822	2335917			00:49:22.74	3.890	7.726
633	44.39	16.683	0.792	34.827	12.821	2300259	2483212	5/31/1998	00:55:23.54	3.645	7.726
634	44.382	16.683	0.748	34.819	12.821	2310443			01:01:24.34	3.715	7.725
635	44.371	16.673	0.751	34.819	12.821	2310269			01:07:25.14	3.714	7.728
636	44.357	16.656	0.692	34.822	12.82	2299976			01:13:25.94	3.643	7.726
637	44.352	16.64	0.855	34.831	12.82	2303543			01:19:26.74	3.668	7.729
638	44.35	16.65	0.689	34.821	12.819	2311595			01:25:27.54	3.723	7.729
639 640	44.348	16.654	0.729	34.815	12.821	2286198			01:31:28.34	3.549	7.725
641	44.335 44.331	16.644 16.629	0.741 0.796	34.813 34.822	12.819 12.819	2315982 2308499			01:37:29.14 01:43:29.94	3.753 3.702	7.728 7.728
642	44.32	16.607	0.786	34.833	12.819	2311654			01:49:30.74	3.723	7.726
643	44.312	16.61	0.803	34.822	12.82	2323950			01:55:31.54	3.808	7.730
644	44.299	16.592	0.811	34.826	12.819	2315010			02:01:32.34	3.746	7.726
645	44.27	16.564	0.756	34.826	12.818	2325696			02:07:33.14	3.820	7.722
646	44.238	16.531	0.67	34.826	12.818	2332486			02:13:33.94	3.866	7.727
647	44.216	16.517	0.72	34.819	12.817	2304895	2483002	5/31/1998	02:19:34.74	3.677	7.725
648	44.201	16.497	0.666	34.822	12.819	2316913			02:25:35.54	3.759	7.726
649	44.179	16.472	0.599	34.825	12.819	2300896			02:31:36.34	3.649	7.726
650	44.164	16.461	0.591	34.822	12.818	2284959			02:37:37.14	3.540	7.725
651	44.167	16.46	0.637	34.825	12.816	2300911			02:43:37.94	3.650	7.724
652	44.166	16.459	0.65	34.825	12.816	2314387			02:49:38.74	3.742	7.724
653 654	44.164 44.177	16.459 16.45	0.559 0.539	34.824 34.843	12.816 12.817	2299848 2295863			02:55:39.54 03:01:40.34	3.642	7.724 7.723
655	44.177	16.45 16.47	0.55	34.832	12.818	2295104			03:07:40.34	3.615 3.610	7.723
656	44.19	16.487	0.563	34.822	12.815	2303198			03:13:41.94	3.665	7.730
657	44.21	16.489	0.547	34.838	12.817	2302181			03:19:42.74	3.658	7.731
658	44.218	16.519	0.514	34.818	12.815	2307547			03:25:43.54	3.695	7.728
659	44.236	16.534	0.48	34.821	12.816	2302167	2483421	5/31/1998	03:31:44.34	3.658	7.727
660	44.252	16.544	0.422	34.826	12.816	2321940	2483373	5/31/1998	03:37:45.14	3.794	7.727
661	44.281	16.575	0.413	34.826	12.815	2286126			03:43:45.94	3.548	7.727
662	44.302	16.603	0.435	34.82	12.818	2297277			03:49:46.74	3.625	7.728
663	44.316	16.621	0.369	34.816	12.817	2301073			03:55:47.54	3.651	7.727
664	44.336	16.631	0.395	34.825	12.816	2301366			04:01:48.34	3.653	7.730
665	44.354	16.658	0.328	34.817	12.818	2308298			04:07:49.14	3.700	7.729
666 667	44.386 44.415	16.676 16.711	0.344 0.306	34.83 34.824	12.817 12.815	2289449 2293201			04:13:49.94 04:19:50.74	3.571 3.597	7.726 7.726
668	44.441	16.736	0.300	34.827	12.816	2303105	2483821		04:19:50:74	3.665	7.729
669	44.467	16.773	0.315	34.816	12.817	2327860			04:31:52.34	3.835	7.728
670	44.492	16.797	0.179	34.818	12.817	2326132			04:37:53.14	3.823	7.730
671	44.524	16.825	0.217	34.822	12.817	2306981	2483211	5/31/1998	04:43:53.94	3.691	7.726
672	44.56	16.865	0.18	34.819	12.816	2328597	2483898	5/31/1998	04:49:54.74	3.840	7.729
673	44.589	16.892	0.166	34.821	12.816	2336069			04:55:55.54	3.891	7.725
674	44.618	16.924	0.098	34.818	12.816	2309710			05:01:56.34	3.710	7.729
675	44.65	16.949	0.109	34.824	12.817	2302109			05:07:57.14	3.658	7.726
676 677	44.68	16.986	0.072	34.818 34.823	12.817 12.817	2287068 2315699			05:13:57.94 05:19:58.74	3.555	7.726
678	44.705 44.73	17.007 17.034	0.096 0.003	34.82	12.817	2307496			05:25:59.54	3.751 3.695	7.727 7.727
679	44.754	17.057	0.002	34.821	12.82	2322230			05:32:00.34	3.796	7.727
680	44.765	17.066	-0.034	34.823	12.817				05:38:01.14	3.939	7.723
681	44.79	17.107	-0.049	34.81	12.817	2322771			05:44:01.94	3.800	7.725
682	44.822	17.131	-0.092	34.817	12.818	2297749	2483116	5/31/1998	05:50:02.74	3.628	7.726
683	44.843	17.156	-0.111	34.814	12.816	2326520			05:56:03.54	3.825	7.724
684	44.874	17.183	-0.094	34.817	12.817	2324705			06:02:04.34	3.813	7.724
685	44.901	17.221	-0.127	34.808	12.818	2329389			06:08:05.14	3.845	7.725
686	44.934	17.248	-0.181	34.814	12.819	2350961			06:14:05.94	3.993	7.723
687 688	44.963 44.994	17.282	-0.207 -0.186	34.808	12.817	2322592 2327741			06:20:06.74	3.798	7.725
689	45.028	17.31 17.349	-0.180	34.812 34.808	12.817 12.818	2311642			06:26:07.54 06:32:08.34	3.834 3.723	7.726 7.723
690	45.059	17.349	-0.27	34.812	12.818	2328969			06:38:09.14	3.842	7.725
691	45.098	17.409	-0.299	34.816	12.819	2312803			06:44:09.94	3.731	7.723
692	45.122	17.431	-0.313	34.818	12.82	2323874			06:50:10.74	3.807	7.720
693	45.155	17.474	-0.317	34.81	12.818	2315301			06:56:11.54	3.748	7.724
694	45.188	17.509	-0.296	34.808	12.818	2300552			07:02:12.34	3.647	7.725
695	45.217	17.534	-0.361	34.812	12.819	2316746			07:08:13.14	3.758	7.720
696	45.245	17.565	-0.345	34.81	12.819	2339566			07:14:13.94	3.915	7.727
697	45.281	17.605	-0.344	34.805	12.819	2328482			07:20:14.74	3.839	7.720
698	45.318	17.649	-0.374	34.8	12.821	2341276			07:26:15.54	3.927	7.720
699 700	45.342 45.354	17.67	-0.387 -0.423	34.802 34.804	12.822	2331065 2343198			07:32:16.34 07:38:17.14	3.857 3.940	7.717 7.718
700 701	45.376	17.68 17.705	-0.423 -0.438	34.802	12.82 12.82	2342539			07:38:17.14	3.940	7.718
701	70.070	17.703	-0.+30	J-1.002	12.02	2072000	2701324	3/3//1330	U1.77.11.34	5.555	1.121

BFSD 2 Triplicate Blank Tests - PAHs Summary

РАН	Bla	nk Flux (ng/m²/	day)	Repeatability (ng/m²/day)			
	Test 1	Test 2	Test 3	Average Flux	+/- 95% C.L.	Std. Deviation	
1. Naphthalene	-243.5	-448.1	-629.3	-440	218.4	193.0	
2. Acenaphthene	-32.4	ND	ND	-32.4	n/a	n/a	
3. Acenaphthylene	-350.2	141.0	275.9	22.2	372.9	329.5	
4. Fluorene	125.5	-69.3	-84.2	-9	132.4	117.0	
5. Phenanthrene	89.0	-39.8	-16.3	11	77.6	68.6	
6. Anthracene	182.3	53.1	-324.8	-30	298	263	
7. Fluoranthene	-421.5	-1539.0	-1308.9	-1089.8	667.8	590.1	
8. Pyrene	76.6	-447.1	-431.9	-267.5	337.3	298.0	
9. Benzo(a)anthracene	ND	ND	ND	n/a	n/a	n/a	
10. Chrysene	23.9	-61.9	ND	-19.0	84.2	60.7	
11. Benzo(b)fluoranthene	ND	ND	-134.3	-134.3	n/a	n/a	
12. Benzo(k)fluoranthene	ND	ND	-9.8	-9.8	n/a	n/a	
13. Benzo(a)pyrene	ND	ND	ND	n/a	n/a	n/a	
14.Indeno(1,2,3-c,d)pyrene	ND	ND	ND	n/a	n/a	n/a	
15. Dibenz(a,h)anthracene	ND	ND	ND	n/a	n/a	n/a	
16. Benzo(g,h,I)perylene	ND	19.6	ND	19.6	n/a	n/a	

BFSD 2 Triplicate Blank Tests - PCBs Summary

PCB	Bla	nk Flux (ng/m²/	day)	Repeatability (ng/m²/day)			
	Test 1	Test 2	Test 3	Average Flux	+/- 95% C.L.	Std. Deviation	
(8) 2,4'-Dichlorobiphenyl	-66.6	ND	47.8	-9.4	112.2	80.9	
(18) 2,2',5-Trichlorobiphenyl	205.2	23.3	27.0	85.2	117.6	104.0	
(28) 2,4,4'-Trichlorobiphenyl	-8.0	ND	ND	-8.0	n/a	n/a	
(52) 2,2',5,5'-Tetrachlorobiphenyl	ND	7.9	89.9	49	80.4	58.0	
(66) 2,3',4,4'-Tetrachlorobiphenyl	53.6	16.6	ND	35	36.2	26.2	
(101) 2,2',4,5,5'-Pentachlorobiphenyl	57.8	57.4	-3.5	37	40	35	
(118) 2,3',4,4',5-Pentachlorobiphenyl	ND	2.7	2.3	2.5	0.3	0.2	
(153) 2,2',4,4',5,5'-Hexachlorobiphenyl	ND	ND	9.5	9.5	n/a	n/a	
(180) 2,2',3,4,4',5,5'-Heptachlorobiphenyl	ND	-9.6	ND	-9.6	n/a	n/a	
(206) 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	-2.8	247.0	-17.0	75.7	168.0	148.5	
(209) 2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl	-18.5	ND	ND	-18.5	n/a	n/a	

BFSD 2 Triplicate Blank Tests - Pesticides Summary

Blaı	nk Flux (ng/m²/	day)	Rep	eatability (ng/m²/	/day)
Test 1	Test 2	Test 3	Average Flux	+/- 95% C.L.	Std. Deviation
7.0	ND	ND	7.0	n/a	n/a
7.0	ND	ND	7.0	n/a	n/a
25.7	ND	ND	25.7	n/a	n/a
48.8	ND	ND	48.8	n/a	n/a
ND	ND	22.0	22.0	n/a	n/a
304.5	ND	ND	304.5	n/a	n/a
ND	ND	8.8	8.8	n/a	n/a
3.3	ND	ND	3.3	n/a	n/a
61.0	ND	ND	61.0	n/a	n/a
35.2	132.3	33.8	67.1	63.9	56.5
40.8	ND	ND	40.8	n/a	n/a
	Test 1 7.0 7.0 25.7 48.8 ND 304.5 ND 3.3 61.0 35.2	Test 1 Test 2 7.0 ND 7.0 ND 25.7 ND 48.8 ND ND ND ND ND ND ND ND ND ND	7.0 ND ND 7.0 ND ND 25.7 ND ND 48.8 ND N	Test 1 Test 2 Test 3 Average Flux 7.0 ND ND 7.0 7.0 ND ND 7.0 25.7 ND ND 25.7 48.8 ND ND 48.8 ND ND 22.0 22.0 304.5 ND ND 304.5 ND ND 8.8 8.8 3.3 ND ND 3.3 61.0 ND ND 61.0 35.2 132.3 33.8 67.1	Test 1 Test 2 Test 3 Average Flux +/- 95% C.L. 7.0 ND ND 7.0 n/a 7.0 ND ND 7.0 n/a 25.7 ND ND 25.7 n/a 48.8 ND ND 48.8 n/a ND ND 22.0 22.0 n/a 304.5 ND ND 304.5 n/a ND ND 8.8 8.8 n/a 3.3 ND ND 3.3 n/a 61.0 ND 61.0 n/a 35.2 132.3 33.8 67.1 63.9

BFSD 2
Paleta Creek Demonstration Summary

Metal	Flux	+/- 95% C.L.	Flux rate Confidence	Triplicate Blanl	k Flux (μg/m²/day)	Bulk Sediment	Overlying Water
	(μg/m²/day)	(μg/m²/day)	(%)	Average	+/- 95% C.L.	(μ g/g)	(μ g/L)
Copper (Cu)	-6.57	17.74	80.7%	2.82	8.73	165	1.46
Cadmium (Cd)	7.02	3.87	100.0%	-0.52	0.75	1.16	0.06897
Lead (Pb)	4.32	12.39	65.6%	3.16	1.59	98.9	0.07879
Nickel (Ni)	19.44	8.75	99.8%	10.28	7.34	19.1	0.8378
Manganese (Mn)	103.94	957.14	73.3%	-264.85	7.49	405	24.02
Manganese (Mn) ¹	4194.24	101841.76	99.9%	-264.85	7.49	405	24.02
Zinc (Zn)	574.26	274.14	100%	-3.38	-68.61	356	8.38
Other							
Oxygen (O ₂)* (*ml/m²/day)	-1341.12	160.18	na	na	na	na	4.7
Silica (SiO ₂)* (*mg/m²/day)	28.75	15.63	100%	-1.97	2.88	na	0.79

^{1.} Mn flux calculated on the basis of first three samples due to non-linearity

BFSD 2
Paleta Creek Pre-Demo Summary

Metal	Flux	+/- 95% C.L.	Flux rate Confidence		Triplicate Blank Flux	(μg/m²/day)	Bulk Sediment	Overlying Water
	(μg/m²/day)	(μg/m²/day)	(%)		Average	+/- 95% C.L.	(μ g/g)	(μ g/L)
Copper (Cu)	-1.75	19.71	38.1%		2.82	8.73	165	1.54
Cadmium (Cd)	9.64	4.14	100.0%		-0.52	0.75	1.16	0.148
Lead (Pb)	11.06	7.94	100.0%		3.16	1.59	98.9	0.1561
Nickel (Ni)	25.24	4.62	100.0%		10.28	7.34	19.1	0.9262
Manganese (Mn)	71.33	701.54	80.7%		-264.85	7.49	405	28.12
Manganese (Mn) ¹	5763.99	23621.84	100.0%		-264.85	7.49	405	28.12
Zinc (Zn)	715.02	257.38	100.0%		-3.38	65.22	356	8.90
Other				•				
Oxygen (O ₂)* (*ml/m²/day)	-1050.87	86.25	na		na	na	na	5.2
Silica (SiO₂)* (*mg/m²/day)	30.29	11.33	100%		-1.97	2.88	na	0.81

^{1.} Mn flux calculated on the basis of first three samples due to non-linearity

BFSD 2
Pearl Harbor Bishop Point Site Summary

Metal	Flux	+/- 95% C.L.	Flux rate Confidence	Triplicate Blank F	lux (μg/m²/day)	Bulk Sediment	Overlying Water
	(μg/m²/day)	(μg/m²/day)	(%)	Average	+/- 95% C.L.	(μ g/g)	(μg/L)
Copper (Cu)	112.46	17.60	100.0%	2.82	8.73	241	0.36
Cadmium (Cd)	1.85	1.96	99.4%	-0.52	0.75	0.3	0.009
Lead (Pb)	0.71	1.11	78.7%	3.16	1.59	93	0.06519
Nickel (Ni)	21.04	15.41	96.3%	10.28	7.34	42.9	0.3934
Manganese (Mn)	223.33	284.79	100.0%	-264.85	7.49	324	1.78
Manganese (Mn) ¹	2177.45	192.60	100.0%	-264.85	7.49	324	1.78
Zinc (Zn)	191.18	54.07	100.0%	-3.38	65.22	304	1.43
Other						•	
Oxygen (O₂)* (*ml/m²/day)	-567.12	54.96	na	na	na	na	6.5
Silica (SiO ₂)* (*mg/m²/day)	118.61	27.62	100%	-1.97	2.88	na	0.31

^{1.} Mn flux calculated on the basis of first three samples due to non-linearity

BFSD 2
Pearl Harbor Middle Loch Summary

Metal	Flux	+/- 95% C.L.	Flux rate Confidence	Triplicate Blank Fl	ux (μg/m²/day)	Bulk Sediment	Overlying Water
	(μg/m²/day)	(μg/m²/day)	(%)	Average	+/- 95% C.L.	(μ g/g)	(μ g/L)
Copper (Cu)	14.79	3.46	99.9%	2.82	8.73	195	0.80
Cadmium (Cd)	1.80	0.31	100.0%	-0.52	0.75	0.2	0.02277
Lead (Pb)	-0.12	0.43	95.2%	3.16	1.59	34	0.03879
Nickel (Ni)	27.17	15.91	100.0%	10.28	7.34	214	0.9472
Manganese (Mn)	-468.18	683.35	97.9%	-264.85	7.49	1180	52.19
Manganese (Mn) ¹	2131.59	904.57	100.0%	-264.85	7.49	1180	52.19
Zinc (Zn)	49.74	17.25	93.5%	-3.38	65.22	314	2.28
Other							
Oxygen (O₂)* (*ml/m²/day)	-1085.52	64.84	na	na	na	na	4.17

100%

42.43

65.03

Silica (SiO₂)* (*mg/m²/day)

-1.97

2.88

na

1.19

^{1.} Mn flux calculated on the basis of first five samples due to non-linearity

BFSD 2 12/9/2002 BPB Site Summary

Metal	Flux	+/- 95% C.L.	Flux rate Confidence	Triplicate Blan	k Flux (μg/m²/day)	Bulk Sediment	Overlying Water
	(μg/m²/day)*	(μg/m²/day)	(%)	Average	+/- 95% C.L.	(μ g/g)	(μ g/L)
Arsenic (As)	23.48	6.94	100%	-5.16	2.10		
Copper (Cu)	-71.30	39.43	100.0%	2.82	8.73		
Cadmium (Cd)	1.31	1.63	98.1%	-0.52	0.75		
Lead (Pb)	17.40	24.63	99.0%	3.16	1.59		
Nickel (Ni)	59.18	55.96	100.0%	10.28	7.34		
Manganese (Mn)	427.65	238.42	100.0%	-264.85	7.49		
Manganese (Mn) ¹	1940.13	3853.41	100.0%	-264.85	7.49		
Silver (Ag)	-0.36	0.88	86.1%	0.64	0.68		
Zinc (Zn)	374.36	133.74	100.0%	-3.38	65.22		
Other							
Oxygen (O₂)* (*ml/m²/day)	-1457.09	48.92	na	na	na		
Silica (SiO ₂)*	0.00	0.00	48%	-1.97	2.88		

^{1.} Mn flux calculated on the first three samples due to non-linearity and to compare with metals-only demonstration

(*mg/m²/day)

BFSD 2 - 12/9/2003 BPB Site Summary- PAHs (Part 2)

PAH	Flux	+/- 95% C.L.	Flux rate Confidence		
	(ng/m²/day)*	(ng/m²/day)	(%)		
9. BENZO(A)ANTHRACENE	152.67	140.49	NA		
10. CHRYSENE	286.65	341.92	94.7%		
11. BENZO(B)FLUORANTHENE	561.07	376.08	97.9%		
12. BENZO(K)FLUORANTHENE	452.24	465.75	82.8%		
13. BENZO(A)PYRENE	383.46	603.38	NA		
14. INDENO(1,2,3-C,D)PYRENE	8.68	10.98	NA		
15. DIBENZ(A,H)ANTHRACENE	-1.97	7.69	NA		
16. BENZO(G,H,I)PERYLENE	8.77	10.59	12.9%		

Triplicate Blank Flux	ι (ng/m²/day)	Bulk Sediment	Overlying Water
Average	+/- 95% C.L.	(ng/g)	(ng/L)
NA	NA		
23.94	22.32		
-134.30	297.91		
-9.71	36.30		
NA	NA		
NA	NA		
NA	NA		
20.15	65.15		

BFSD 2 BPB Site Summary- PAHs (Part 1)

PAH	Flux	+/- 95% C.L.	Flux Rate Confidence	Triplicate Blank Flux (ng/m²/day)		Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.	(ng/g)	(ng/L)
1. Naphthalene	2456.72	13211.62	100.0%	-440.30	458.38		
2. Acenaphthene	9222.27	6867.34	100.0%	-32.40	50.34		
3. Acenaphthylene	778.37	880.29	100.0%	208.47	112.60		
4. Fluorene	285.70	2021.66	100.0%	-76.74	28.38		
5. Phenanthrene	-3555.98	7892.27	100.0%	10.95	10.95		
6. Anthracene	2874.10	1330.22	100.0%	117.68	64.62		
7. Fluoranthene	19696.65	3869.67	100.0%	-1423.95	178.41		
8. Pyrene	12101.21	3884.64	100.0%	-439.51	70.73		
Other (See Metals Analysis in combined de	eployments for these	data)					
Oxygen (O₂)* (*ml/m²/day)	0.00	0.00	na	na	na		
Silica (SiO₂)* (*mg/m²/day)	0.00	0.00	48%	-1.97	2.88		

BFSD 2 - Site BPB (12/9/2002) - PAHs (Part 2)

First 4 samples only

Site: Site BPB (21 19.815 N X 157 58.000V

Start time: Interval: 7 End time:

		BFSD 2 Data			Dilution Correction		Intercept	From	Lower	Upper	Flux Statistics		Blank Stat	tistics	
	Measured			Measured	Corrected		Corrected	Regression	95%	95%					Bottle Volume = 0.25 liters Chamber Volume = 30 liters
Sample id	Concentration (pptr)**	Sample No.*	Elapsed Time (hrs)	Concentration (pptr)**	Concentration (pptr)**	# of Dilutions	Concentration (pptr)	Concentration (pptr)**	Conf. Int.	Conf. Int.					Chamber Volume = 30
	(ppu)	l	(1113)	(Ppu)	(ppa)	l	(ppa)	(ppa)							-
BENZO(A)ANTHRACENE											Flux Statistics		Blank Stat		Comparitive Statistics LINEST statistics
												0.1798	slope=	#REF!	
BFSD2-BPB-1 BFSD2-BPB-2	2.72 4.50	T-#0 #1	0	2.720 4.500	4.5000	n/a 0	0.237	0.054	-2.783	2.891		4.2634 0.0367			$S_{(b1-b2)} = \#REF!$ 0.0367 0.4894 t = #REF! 0.9231 0.5744
BFSD2-BPB-3	5.62	#2	7.3	5.620	5.6348	1	1.371	1.313	-1.524	4.149	St Err of Int=	0.4894			p = #REF! 24.01044943 2
BFSD2-BPB-4	6.13	#3	14.3	6.130	6.1690	2	1.906	2.571	-0.266	5.408		0.9231			7.920894225 0.659787252
BFSD2-BPB-5 BFSD2-BPB-6	8.45 6.77	#4	21.3 28.3	8.450 6.770	8.5174 6.8852	3	4.254 2.622	3.830 5.089	0.993 2.252	6.667 7.925		0.5744 S 01044943	St Err of Y=	#REF!	! Final Results Flux = 760.90 ng/m ⁻ /day Notes
BFSD2-BPB-7	6.99	#6	35.3	6.990	7.1389	5	2.876	6.347	3.510	9.184		2	DF=	#REF!	95% CI (low) = 92.77 ng/m²/day
BFSD2-BPB-8	7.56	#7	42.3	7.560	7.745	6	3.481	7.606	4.769	10.443		20894225			95% CI (high) = 1429.04 ng/m ² /day
BFSD2-BPB-10 BFSD2-BPB-11	6.51 8.43	#9 #10	56.3 63.3	6.510 8.430	6.9162 8.8904	8	2.653 4.627	10.123 11.382	7.286 8.545	12.960 14.219		59787252 16666.5	ResSS= Sumx2=	#REF!	
BFSD2-BPB-12	6.70	#11	70.3	6.700	7.2307	10	2.967	12.640	9.803	15.477		6.474	Dunix_		95% CI (low) = -432,20593 ng/m ² /day
											Initial Conc	4.500			95% CI (high) = 163.613683 ng/m ² /day
CHRYSENE											Flux Statistics		Blank Stat		Comparitive Statistics LINEST statistics
DECOM DED 4		T #0	0	1.100		- 6						0.4606	slope=	0.003950364	
BFSD2-BPB-1 BFSD2-BPB-2	1.18 7.90	T-#0 #1	0.3	1.180 7.900	7.9000	n/a 0	0.797	0.138	-5.671	5.947		7.1026 0.0752			$S_{(b1-b2)} = 0.00931906$ 0.0752 1.0035 t = 49.00244917 0.9493 1.1777
BFSD2-BPB-3	10.0	#2	7.3	10.000	10.0560	1	2.953	3.362	-2.447	9.171		1.0035			p = 3.07797E-12 37.47442787 2
BFSD2-BPB-4	12.4	#3	14.3	12.400	12.5295	2	5.427	6.587	0.778	12.396		0.9493			51.97894031 2.774101875
BFSD2-BPB-5	17.6	#4	21.3	17.600	17.8230	3	10.720	9.811	4.002	15.620			St Err of Y=	0.003681693	
BFSD2-BPB-6 BFSD2-BPB-7	11.5 12.8	#5 #6	28.3 35.3	11.500 12.800	11.8598 13.2458	4	4.757 6.143	13.035 16.259	7.226 10.450	18.844 22.068		47442787 2	DF=	7	Flux = 1949.20 µg/m²/day Notes 95% CI (low) = 579.19 µg/m²/day
BFSD2-BPB-7 BFSD2-BPB-8	13.2	#7	42.3	13.200	13.2438	6	6.143	19.484	13.675	25.293		97894031	Dr=	,	95% CI (high) = 3319.22 µg/m²/day
BFSD2-BPB-9	11	#8	49.3	10.500	11.1428	7	4.040	22.708	16.899	28.517	ResSS= 2.7	74101875	ResSS=	0.511425087	
BFSD2-BPB-10	16.4	#9	56.3	16.400	17.1205	8	10.018	25.932	20.123	31.741	Sumx2= 19	9096.99	Sumx2=	5390	Blank Flux= -9.710954 µg/m ² /day
BFSD2-BPB-11	14.6	#10	63.3	14.600	15.4473	9	8.345	29.156	23.347	34.965		12.034			95% CI (low) = -46.008488 µg/m²/day
BFSD2-BPB-12	12.6	#11	70.3	12.600	13.5592	10	6.457	32.381	26.572	38.190	Initial Conc	7.900			95% CI (high) = 26.5865797 µg/m²/day
BENZO(B)FLUORANTHENE											Flux Statistics		Blank Stat	tistics	Comparitive Statistics LINEST statistics
												0.4440	slope=	-0.0221561	
BFSD2-BPB-1 BFSD2-BPB-2	2.32 8.99	T-#0 #1	0 0.3	2.320 8.990	8.9900	n/a 0	0.706	0.133	12 201	12.558		8.2840 0.1605			$S_{(61+32)} = 0.055078017$ 0.1605 0.1402 $t = 8.463451966$ 0.7929 0.5117
BFSD2-BPB-3	9.32	#2	7.3	9.320	9.3756	1	1.092	3.241	-12.291 -9.183	15.665		2.1402			t = 8-403-41740 p = 0.00014867
BFSD2-BPB-4	17.1	#3	14.3	17.100	17.2139	2	8.930	6.349	-6.075	18.773		0.7929			48.29702501 12.61730043
BFSD2-BPB-5	16.5	#4	21.3	16.500	16.7371	3	8.453	9.457	-2.967	21.881			St Err of Y=	0.049148994	
BFSD2-BPB-6	16.3 14.8	#5	28.3	16.300	16.6553	4	8.371	12.565	0.141	24.989		55682812	***		Flux = 1878.90 µg/m²/day Notes 95% CI (low) = -1042.88 µg/m²/day
BFSD2-BPB-7 BFSD2-BPB-8	18.4	#6	35.3 42.3	14.800 18.400	15.2718 18.976	5	6.988 10.692	15.673 18.781	3.249 6.357	28.097 31.205	DF= RegSS= 48.3	2 29702501	DF=	4	95% CI (low) = -1042.88 µg/m²/day 95% CI (high) = 4800.68 µg/m²/day
BFSD2-BPB-8 BFSD2-BPB-11	18.7	#10	63.3	18.700	19.5644	9	11.280	28.105	15.680	40.529		61730043	ResSS=	19.88541378	
BFSD2-BPB-12	18.1	#11	70.3	18.100	19.1203	10	10.836	31.213	18.788	43.637		3496.81	Sumx2=	2058	
											Average Conc.	13.794			95% CI (low) = #PBΦ! μg/m²/day
											Initial Conc	8.990			95% CI (high) = #PΒΦ μg/m ² /day
	-								-						
BENZO(K)FLUORANTHENE	1										Flux Statistics		Blank Stat	tistics	Comparitive Statistics LINEST statistics
]											0.4466	slope=	-0.001602108	
BFSD2-BPB-1	2.62 7.42	T-#0 #1	0	2.620	7 4200	n/a 0	0.051	0.124	. 250	6.624		6.4694			$S_{(b),452} = 0.024716639$ 0.0838 1.1181
BFSD2-BPB-2 BFSD2-BPB-3	7.42 8.15	#1	0.3 7.3	7.420 8.150	7.4200 8.1900	1	0.951 1.721	0.134 3.260	-6.356 -3.230	6.624 9.751		0.0838 1.1181			t = 18.13467808 0.9342 1.3121 p = 5.43699E.05 28.3865123 2
BFSD2-BPB-4	13.4	#3	14.3	13.400	13.4861	2	7.017	6.387	-0.104	12.877	R2= (0.9342			48.87136373 3.443280613
BFSD2-BPB-5	15.9	#4	21.3	15.900	16.0759	3	9.606	9.513	3.023	16.004			St Err of Y=	0.005988347	
BFSD2-BPB-6	10.9	#5	28.3	10.900	11.1866	4	4.717	12.640	6.149	19.130		.3865123			Flux = 1890.04 µg/m²/day Notes
BFSD2-BPB-7	12.9	#6	35.3	12.900	13.2556	5	6.786	15.766	9.275	22.256		2	DF=	2	95% CI (low) = 363.70 µg/m²/day
BFSD2-BPB-8 BFSD2-BPB-11	17.9 17.5	#7 #10	42.3 63.3	17.900 17.500	18.341 18.2433	6	11.872 11.774	18.892 28.271	12.402 21.781	25.383 34.762		87136373 43280613	ResSS=	0.117143642	95% CI (high) = 3416.37 µg/m²/day 642 % Conf (dif from blank)= 100%
BFSD2-BPB-12	12.4	#11	70.3	12.400	13.2891	10	6.820	31.398	24.907	37.888		3496.81		1633.333333	
2. 222-01 0-12			. 3.3	-2.400		.0	20	2				11.272			95% CI (low) = #PBØ1 pg/m²/day
												7.420			95% CI (high) = #PBΦ! µg/m²/day
	1										1				

BFSD2-SPL-10-1
BFSD2-SPL-10-2
BFSD2-SPL-10-3
BFSD2-SPL-10-4
BFSD2-SPL-10-6
BFSD2-SPL-10-6
BFSD2-SPL-10-10
BFSD2-SPL-10-10

Bishop Point Combined - PAHs first 4 (Part 2

BFSD2 BPB Site - 12/9/2002 PAH Flux Analysis

	1	BFSD 2 Data			Dilution Correction		Intercept	From	Lower	There are	Flux Statistics	Blank Statistics	
	Measured	BFSD 2 Data		Measured	Corrected Correction		Corrected	From Regression	95%	Upper 95%	Flux Statistics	Blank Statistics	Bottle Volume = 0.25 liters
Sample id	Concentration	Sample No.*	Elapsed Time	Concentration		# of Dilutions	Concentration	Concentration	Conf. Int.	Conf. Int.			Chamber Volume = 30 liters
	(pptr)**		(hrs)	(pptr)**	(pptr)**		(pptr)	(pptr)**					Chamber Area = 1701.4 cm ²
BENZO(A)PYRENE		T-#0	,								Flux Statistics slope= 0.3340 intercept= 1.2062	Blank Statistics slope= #REF!	Compartive Statistics LINEST statistics $S^{*}_{9^{*}9^{*}} = \#REP$ 0.3340 1.2062 $S_{203,0} = \#REP$ 0.0880 1.3076
BFSD2-BPB-1 BFSD2-BPB-2	2.00	1-#0 #1	0.3	2.000 2.000	2.0000	n/a 0	0.794	0.100	-7 469	7 669	intercept= 1.2062 St. Err of Slope= 0.0980		$S_{01452} = \#REF$ 0.0980 1.3076 t = #REF 0.8530 1.5345
BFSD2-BPB-3	2.00	#2	7.3	2.000	2.0000	1	0.794	2.438	-5.131	10.007	St Err of Int= 1.3076		p = #REF! 11.60645909 2
BFSD2-BPB-4	7.19	#3	14.3	7.190	7.1900	2	5.984	4.776	-2.793	12.345	R2= 0.8530		27.3306355 4.709556169
BFSD2-BPB-5	8.02	#4	21.3	8.020	8.0633	3	6.857	7.114	-0.455	14.683	St Err of Y= 1.5345	St Err of Y= #REF!	Final Results
BFSD2-BPB-6	2.00 6.23	#5	28.3 35.3	2.000	2.0934	4	0.887	9.452	1.883	17.021	F= 11.60645909 DF= 2	DF= #REF!	Flux = 1413.41 µg/m ² /day Notes 95% CI (low) = -371.66 µg/m ² /day
BFSD2-BPB-7 BFSD2-BPB-8	6.23 7.16	#6 #7	35.3 42.3	6.230 7.160	6.3234 7.289	5	5.117 6.083	11.790	4.221 6.559	19.359 21.697	DF= 2 RegSS= 27.3306355	DF= #REF!	95% CI (low) = -371.66 µg/m²/day 95% CI (high) = 3198.48 µg/m²/day
	18.3	#8	49.3	18.300	18.4717	7	17.266	16.466	8.897	24.035	ResSS= 4.709556169	ResSS= #REF!	57.6 CL (mgn) – 5179.48 gg/m /day % Cord (dif from blank) = #REF!
BFSD2-BPB-10	2.00	#9	56.3	2.000	2.3075	8	1.101	18.804	11.235	26.373	Sumx2= 19096.99	Sumx2= #REF!	Blank Flux= #PBP! µg/m²/day
BFSD2-BPB-11	9.68	#10	63.3	9.680	9.9875	9	8.781	21.142	13.573	28.711	Average Conc. 4.269		95% CI (low) = #PBP! µg/m²/day
BFSD2-BPB-12	6.92	#11	70.3	6.920	7.2915	10	6.085	23.480	15.911	31.049	Initial Conc 2.000		95% CI (high) = #PBΦ! µg/m ² /day
INDENO(1.2.3-C.D)PYRENE											Flux Statistics	Blank Statistics	Comparitive Statistics LINEST statistics
											slope= 0.0099	slope= #REF!	$S^2_{(0;4)} = \#REF!$ 0.0099 1.9310
BFSD2-BPB-1	1.98	T-#0	0	1.98		n/a					intercept= 1.9310		$S_{(b1:b2)} = \#REF!$ 0.0057 0.0759
BFSD2-BPB-2	1.98	#1	0.3	1.98	1.9800	0	0.049	0.003	-0.437	0.443	St. Err of Slope= 0.0057		t = #REF! 0.6000 0.0891
BFSD2-BPB-3 BFSD2-BPB-4	1.98 1.98	#2 #3	7.3 14.3	1.98 1.98	1.9800 1.9800	2	0.049	0.072 0.141	-0.368 -0.299	0.512 0.581	St Err of Int= 0.0759 R2= 0.6000		p = #REF! 3 2 0.023805 0.01587
	2.21	#4	21.3	2.21	2.2100	3	0.279	0.210	-0.230	0.650	St Err of Y= 0.0891	St Err of Y= #REF!	Final Results
BFSD2-BPB-6	1.98	#5	28.3	1.98	1.9819	4	0.051	0.279	-0.161	0.719	F= 3		Flux = $41.71 \mu \text{g/m}^2 / \text{day}$ Notes
BFSD2-BPB-7	1.98	#6	35.3	1.98	1.9819	5	0.051	0.348	-0.092	0.788	DF= 2	DF= #REF!	95% CI (low) = $-61.91 \text{ µg/m}^2/\text{day}$
BFSD2-BPB-8	1.98	#7	42.3	1.980	1.982	6	0.051	0.417	-0.023	0.857	RegSS= 0.023805		95% CI (high) = 145.34 µg/m²/day
BFSD2-BPB-10	1.98	#9	56.3	1.98	2.1139	8	0.183	0.555	0.115	0.995	ResSS= 0.01587	ResSS= #REF!	% Conf (dif from blank)= #REF!
BFSD2-BPB-11	1.98	#10	63.3	1.98	2.1304	9	0.199	0.624	0.184	1.064	Sumx2= 16666.5	Sumx2= #REF!	Blank Flux= 0 µg/m²/day
BFSD2-BPB-12	1.98	#11	70.3	1.98	2.1469	10	0.216	0.693	0.253	1.133	Average Conc. 2.026 Initial Conc 1.980		95% CI (low) = 0 $\mu g/m^2/day$ 95% CI (high) = 0 $\mu g/m^2/day$
											Initial Conc 1.980		95% CI (nign) = 0 pg/m /nay
DIBENZ(A,H)ANTHRACENE											Flux Statistics	Blank Statistics	Comparitive Statistics LINEST statistics
		_									slope= 0.0081	slope= #REF!	$S^{2}_{(y-x)} = \#REF!$ 0.0081 1.6296
BFSD2-BPB-1	1.67 1.67	T-#0	0	1.67	1 6700	n/a					intercept= 1.6296 St Err of Slope= 0.0047		$S_{[01-52]} = \#REF!$ 0.0047 0.0627 t = #REF! 0.6000 0.0736
BFSD2-BPB-2 BFSD2-BPB-3	1.67	#1 #2	0.3 7.3	1.67 1.67	1.6700	0	0.040 0.040	0.002	-0.361 -0.304	0.365	St. Err of Slope= 0.0047 St Err of Int= 0.0627		t = #REF! 0.6000 0.0736 p = #REF! 3 2
BFSD2-BPB-4	1.67	#3	14.3	1.67	1.6700	2	0.040	0.116	-0.247	0.479	R2= 0.6000		0.016245 0.01083
BFSD2-BPB-5	1.86	#4	21.3	1.86	1.8600	3	0.230	0.173	-0.190	0.536	St Err of Y= 0.0736	St Err of Y= #REF!	Final Results
BFSD2-BPB-6	1.67	#5	28.3	1.67	1.6716	4	0.042	0.230	-0.133	0.593	F= 3		Flux = 34.46 µg/m²/day Notes
BFSD2-BPB-7	1.67	#6	35.3	1.67	1.6716	5	0.042	0.287	-0.076	0.650	DF= 2	DF= #REF!	95% CI (low) = -51.14 µg/m ² /day
BFSD2-BPB-8 BFSD2-BPB-9	1.67 1.67	#7 #8	42.3 49.3	1.670	1.672 1.6716	6	0.042 0.042	0.344 0.401	-0.019 0.038	0.707	RegSS= 0.016245 ResSS= 0.01083	ResSS= #REF!	95% CI (high) = 120.06 µg/m²/day % Conf (dif from blank) = #REF!
BFSD2-BPB-10	1.67	#9	56.3	1.67	1.6716	8	0.042	0.458	0.095	0.704	Sumx2= 19096.99	Sumx2= #REF!	Blank Flux= 23.9445835 µg/m²/day
BFSD2-BPB-11	1.67	#10	63.3	1.67	1.6716	9	0.042	0.515	0.152	0.878	Average Conc. 1.708		95% CI (low) = 1.6285102 µg/m²/day
BFSD2-BPB-12	1.67	#11	70.3	1.67	1.6716	10	0.042	0.572	0.209	0.935	Initial Conc 1.670		95% CI (high) = 46.2606567 µg/m²/day
BENZO(G.H.DPERYLENE											Flux Statistics	Blank Statistics	Comparitive Statistics LINEST statistics
DENZO(G,II,I) PER I LENE											slope= 0.0094	slope= 0.003324437	
BFSD2-BPB-1	1.98	T-#0	0	1.9800		n/a					intercent= 1.9332	supe- 0.003324437	S _[0142] = 0.01019853 0.0054 0.0726
BFSD2-BPB-2	1.98	#1	0.3	1.9800	1.9800	0	0.047	0.003	-0.418	0.424	St. Err of Slope= 0.0054		t = 0.598530821 0.6000 0.0852
BFSD2-BPB-3 BFSD2-BPB-4	1.98 1.98	#2	7.3 14.3	1.9800 1.9800	1.9800 1.9800	1	0.047 0.047	0.069 0.135	-0.352 -0.286	0.490 0.556	St Err of Int= 0.0726 R2= 0.6000		p = 0.568339569 3 2 0.02178 0.01452
BFSD2-BPB-4 BFSD2-BPB-5	2.20	#3	14.3 21.3	1.9800 2.2000	1.9800 2.2000	3	0.047	0.135	-0.286 -0.220	0.556	R2= 0.6000 St Err of Y= 0.0852	St Err of Y= 0.01074885	
BFSD2-BPB-6	1.98	#5	28.3	1.9800	1.9818	4	0.049	0.267	-0.154	0.688	F= 3		Flux = 39.90 µg/m²/day Notes
BFSD2-BPB-7	1.98	#6	35.3	1.9800	1.9818	5	0.049	0.333	-0.088	0.754	DF= 2	DF= 5	95% CI (low) = -59.22 µg/m²/day
BFSD2-BPB-8	1.98	#7	42.3	1.980	1.982	6	0.049	0.399	-0.022	0.820	RegSS= 0.02178		95% CI (high) = 139.02 µg/m²/day
BFSD2-BPB-10	1.98	#9	56.3	1.9800	2.1138	8	0.181	0.531	0.110	0.952	ResSS= 0.01452	ResSS= 2.434381089	
BFSD2-BPB-11	1.98	#10	63.3	1.9800	2.1303	9	0.197	0.597	0.176	1.018	Sumx2= 16666.5	Sumx2= 4214	Blank Flux= #PBФI µg/m²/day
BFSD2-BPB-12	1.98	#11	70.3	1.9800	2.1468	10	0.214	0.663	0.242	1.084	Average Conc. 2.024		95% CI (low) = #PBO! µg/m²/day
											Initial Conc 1.980		95% CI (high) = #PBΦ ! μg/m ² /day
	ı										l		

BFSD 2 Bishop Point Summary- PAHs (Part 1)

PAH	Flux	+/- 95% C.L.	Flux Rate Confidence	Triplicate Blank Flu	x (ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.	(ng/g)	(ng/L)
1. Naphthalene	-110.07	596.59	38.1%	-440.30	458.38	44	13
2. Acenaphthene	2680.41	10124.61	51.2%	-32.40	50.34	3,800	37
3. Acenaphthylene	627.85	1483.64	82.7%	208.47	112.60	1,200	5.6
4. Fluorene	75.17	1894.31	23.4%	-76.74	28.38	4,800	19
5. Phenanthrene	-552.72	1305.06	98.2%	10.95	10.95	54,000	32
6. Anthracene	4053.72	3094.52	100.0%	117.68	64.62	10,000	13
7. Fluoranthene	4435.81	10157.65	97.4%	-1423.95	178.41	270,000	52
8. Pyrene	38.99	4132.12	28.5%	-439.51	70.73	150,000	20
Other]			-		-	
Oxygen (O₂)* (*ml/m²/day)	-2518.63	152.07	na	na	na	na	na
Silica (SiO₂)* (*mg/m²/day)	na	na	na	-1.97	2.88	na	na

BFSD 2 Bishop Point Summary- PAHs (Part 1, First 4 Samples)

PAH	Flux	+/- 95% C.L.	Flux Rate Confidence	Triplicate Blank Flu	x (ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.	(ng/g)	(ng/L)
1. Naphthalene	1,848	4,406	59.1%	-440.30	458.38	44	13
2. Acenaphthene	71,053	327,575	100.0%	-32.40	50.34	3,800	37
3. Acenaphthylene	6,862	14,388	100.0%	208.47	112.60	1,200	5.6
4. Fluorene	10,387	110,973	100.0%	-76.74	28.38	4,800	19
5. Phenanthrene	3,031	106,690	99.4%	10.95	10.95	54,000	32
6. Anthracene	26,955	27,293	100.0%	117.68	64.62	10,000	13
7. Fluoranthene	69,812	380,981	100.0%	-1423.95	178.41	270,000	52
8. Pyrene	24,512	190,723	100.0%	-439.51	70.73	150,000	20
Other							
Oxygen (O₂)* (*ml/m²/day)	-2518.63	152.07	na	na	na	na	na
Silica (SiO₂)* (*mg/m²/day)	na	na	na	-1.97	2.88	na	na

BFSD 2 Bishop Point Summary- PAHs (Part 1, Last 8 Samples)

PAH	Flux	+/- 95% C.L.	Flux Rate Confidence	Triplicate Blank Flux	k (ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.	(ng/g)	(ng/L)
1. Naphthalene	27.23	1,194.31	58.0%	-440.30	458.38	44.00	13
2. Acenaphthene	-4,815.36	12,199.50	93.5%	-32.40	50.34	3,800.00	37
3. Acenaphthylene	-1,236.56	1,738.17	100.0%	208.47	112.60	1,200.00	5.6
4. Fluorene	-175.37	2,790.40	29.9%	-76.74	28.38	4,800.00	19
5. Phenanthrene	101.84	1,841.97	43.9%	10.95	10.95	54,000.00	32
6. Anthracene	803.06	2,237.54	99.0%	117.68	64.62	10,000.00	13
7. Fluoranthene	-332.26	14,269.51	31.6%	-1423.95	178.41	270,000.00	52
8. Pyrene	-2,125.92	5,818.50	99.0%	-439.51	70.73	150,000.00	20
Other]						
Oxygen (O₂)* (*ml/m²/day)	-2518.63	152.07	na	na	na	na	na
Silica (SiO₂)* (*mg/m²/day)	na	na	na	-1.97	2.88	na	na

BFSD 2 Bishop Point Site Summary- PAHs (Part 2)

PAH	Flux	+/- 95% C.L.	Flux rate Confidence
	(ng/m²/day)*	(ng/m²/day)	(%)
9. BENZO(A)ANTHRACENE	75.00	306.84	NA
10. CHRYSENE	1048.91	1012.24	98.5%
11. BENZO(B)FLUORANTHENE	919.89	375.56	99.8%
12. BENZO(K)FLUORANTHENE	234.99	156.43	93.3%
13. BENZO(A)PYRENE	Non-Detect	NA	NA
14. INDENO(1,2,3-C,D)PYRENE	6.72	67.06	NA
15. DIBENZ(A,H)ANTHRACENE	Non-Detect	NA	NA
16. BENZO(G,H,I)PERYLENE	7.91	64.14	11.6%

Triplicate Blank Flux	x (ng/m²/day)	Bulk Sediment	Overlying Water	
Average	+/- 95% C.L.	(ng/g)	(ng/L)	
NA	NA	16,000	Non-Detect	
23.94	22.32	48,000	5.1	
-134.30	297.91	36,000	6.2	
-9.71	36.30	10,000	2.5	
NA	NA	12,000	Non-Detect	
NA	NA	7,400	1.6	
NA	NA	1,500	1.5	
20.15	65.15	5,300	1.7	

BFSD 2 Bishop Point Site Summary- PAHs (Part 2, First 4 Samples)

PAH	Flux	+/- 95% C.L.	Flux rate Confidence
	(ng/m²/day)*	(ng/m²/day)	(%)
9. BENZO(A)ANTHRACENE	Non-Detect	NA	NA
10. CHRYSENE	8792.74	10650.21	100.0%
11. BENZO(B)FLUORANTHENE	3080.74	17862.28	99.4%
12. BENZO(K)FLUORANTHENE	977.52	3135.54	99.7%
13. BENZO(A)PYRENE	Non-Detect	NA	NA
14. INDENO(1,2,3-C,D)PYRENE	122.97	7142.02	NA
15. DIBENZ(A,H)ANTHRACENE	Non-Detect	NA	NA
16. BENZO(G,H,I)PERYLENE	33.19	5249.50	7.0%

Triplicate Blank Flux	k (ng/m²/day)	Bulk Sediment	Overlying Water
Average	+/- 95% C.L.	(ng/g)	(ng/L)
NA	NA	16000	Non-Detect
23.94	22.32	48000	5.1
-134.30	297.91	36000	6.2
-9.71	36.30	10000	2.5
NA	NA	12000	Non-Detect
NA	NA	7400	1.6
NA	NA	1500	1.5
20.15	65.15	5300	1.7

BFSD 2
Bishop Point Site Summary- PAHs (Part 2, Last 8 Samples)

PAH	Flux	+/- 95% C.L.	Flux rate Confidence
	(ng/m²/day)*	(ng/m²/day)	(%)
9. BENZO(A)ANTHRACENE	Non-Detect	NA	NA
10. CHRYSENE	75.45	780.02	29.4%
11. BENZO(B)FLUORANTHENE	810.32	561.62	99.7%
12. BENZO(K)FLUORANTHENE	155.56	270.41	81.2%
13. BENZO(A)PYRENE	Non-Detect	NA	NA
14. INDENO(1,2,3-C,D)PYRENE	44.68	59.36	NA
15. DIBENZ(A,H)ANTHRACENE	Non-Detect	NA	NA
16. BENZO(G,H,I)PERYLENE	35.55	101.15	38.6%

Triplicate Blank Flux	k (ng/m²/day)	Bulk Sediment	Overlying Water
Average	+/- 95% C.L.	(ng/g)	(ng/L)
NA	NA	16,000	Non-Detect
23.94	22.32	48,000	5.1
-134.30	297.91	36,000	6.2
-9.71	36.30	10,000	2.5
NA	NA	12,000	Non-Detect
NA	NA	7,400	1.6
NA	NA	1,500	1.5
20.15	65.15	5,300	1.7

BFSD 2 Bishop Point Demonstration Summary-PCBs

PCB	Flux	+/- 95% C.L.	Flux rate Confidence	Blank Flux (ng/m²/day)		Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Flux	+/- 95% C.L.	(ng/g)	(ng/L)
101 - 2,2',4,5,5'-Pentachlorobiphenyl	-2.62	93.70	4%	57.59	31.49	Non Detect	2.1

BFSD 2
Bishop Point Demonstration Summary-Pesticides

Pesticide	Flux	+/- 95% C.L.	Blank Flux (ı	ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	Flux	+/- 95% C.L.	(ng/g)	(ng/L)
Mirex	61.81	110.60	NA	NA	Non Detect	1.00

BFSD 2 Paleta Creek Demonstration Summary- PAHs

PAH	Flux	+/- 95% C.L.	Flux Rate Confidence	Triplicate Blank Flux (ng/m²/day)		Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Average	+/- 95% C.L.	(ng/g)	(ng/L)
1. Naphthalene	459.20	429.58	94.5%	-440.30	458.38	13	6.7
2. Acenaphthene	337.58	178.97	100.0%	-32.40	50.34	19	9.7
3. Acenaphthylene	105.51	183.82	33.8%	208.47	112.60	220	7.6
4. Fluorene	173.17	149.76	100.0%	-76.74	28.38	34	2.3
5. Phenanthrene	489.25	659.77	100.0%	10.95	10.95	240	8.2
6. Anthracene	569.42	260.29	100.0%	117.68	64.62	470	5.3
7. Fluoranthene	365.55	397.63	100.0%	-1423.95	178.41	890	37
8. Pyrene	951.97	755.67	100.0%	-439.51	70.73	740	13
Other							
Oxygen (O₂)* (*ml/m²/day)	-2193.62	146.52	na	na	na	na	na
Silica (SiO ₂)* (*mg/m²/day)	na	na	na	-1.97	2.88	na	na

BFSD 2 Paleta Creek Demonstration Summary- PAHs (Part 2)

PAH	Flux	+/- 95% C.L.	Flux rate Confidence
	(ng/m²/day)*	(ng/m²/day)	(%)
9. BENZO(A)ANTHRACENE	Non-Detect	NA	NA
10. CHRYSENE	Non-Detect	NA	NA
11. BENZO(B)FLUORANTHENE	Non-Detect	NA	NA
12. BENZO(K)FLUORANTHENE	Non-Detect	NA	NA
13. BENZO(A)PYRENE	Non-Detect	NA	NA
14. INDENO(1,2,3-C,D)PYRENE	-65.35	906.77	NA
15. DIBENZ(A,H)ANTHRACENE	Non-Detect	NA	NA
16. BENZO(G,H,I)PERYLENE	-46.63	263.97	67.7%

Triplicate Blank Flux	k (ng/m²/day)	Bulk Sediment	Overlying Water	
Average	Average +/- 95% C.L.		(ng/L)	
NA	NA	500		
23.94	22.32	830		
-134.30	297.91	1400		
-9.71	36.30	470		
NA	NA	790		
NA	NA	470	1.40	
NA	NA	120		
20.15	65.15	400	1.40	

BFSD 2 Paleta Creek Demonstration Summary-PCBs

PCB	Flux	+/- 95% C.L.	Flux rate Confidence	Blank Flux (ng/m²/day)		Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	(%)	Flux	+/- 95% C.L.	(ng/g)	(ng/L)
18 - 2,2',5-Trichlorobiphenyl	52.21	103.93	4%	76.82	36.49	2.6	ND
28 - 2,4,4'-Trichlorobiphenyl	41.52	80.03	61%	-8.05	82.03	2.2	1.1
52 - 2,2',5,5'-Tetrachlorobiphenyl	9.44	105.28	77%	72.74	28.12	4.9	3
66 - 2,3',4,4'-Tetrachlorobiphenyl	-19.94	62.01	96%	37.74	25.45	5.3	ND
101 - 2,2',4,5,5'-Pentachlorobiphenyl	45.99	84.58	17%	57.59	31.49	13	ND
118 - 2,3',4,4',5-Pentachlorobiphenyl	-2.34	123.95	9%	2.51	15.40	13	ND
153 - 2,2',4,4',5,5'-Hexachlorobiphenyl	22.26	78.55	43%	9.45	11.71	23	0.11

BFSD 2 Paleta Creek Demonstration Summary-Pesticides

Pesticide	Flux	+/- 95% C.L.	Blank Flux (ı	ng/m²/day)	Bulk Sediment	Overlying Water
	(ng/m²/day)*	(ng/m²/day)	Flux	+/- 95% C.L.	(ng/g)	(ng/L)
2,4'-DDT	57.49	95.75	NA	NA	3.6	0.88
4,4'-DDT	31.23	55.47	NA	NA	14	ND
Dieldrin	-23.48	45.68	NA	NA	2	ND
Hexachlorobenzene	23.76	35.20	NA	NA	0.61	ND
Mirex	36.23	154.93	NA	NA	ND	ND

Appendix C

Standard Procedures and Checklists

BFSD 2 ON DECK FINAL CHECKLIST

- 1. Establish Laptop communications and verify "Sensor Check/Br Injection" program file is loaded.
- 2. Oxygen Tank Turn Valve ON
- 3. Br Injection Valve OPEN (in-line position)
- 4. Sensor Caps Slide CTD back and <u>REMOVE</u> O₂ & pH storage solution caps (reinstall CTD)
- 5. Vacuum Check Assure bottles #2- #12 have >25 in-Hg
- 6. INSTALL Check Valve plugs in bottles #2 #12 (hand tight + $\frac{1}{2}$ turn)
- 7. Check each insertion lever movement and light function
- 8. Check Camera FOV Coverage of Insertion lights, lid closure, collection chamber & Br Injection vent bubbles
- 9. Open & latch lid set rotary latch for ½ turn

- 10. Evacuate Bottle #1 to >25 in-Hg and install check valve plug
- 11. Rig release hasp and proceed to water entry

BFSD 2 IN WATER FINAL PROCEDURE/CHECKLIST

- 1. Lift BFSD, remove wheels and suspend over water
- 2. Submerge fully, stop and inspect for evidence of leakage
- 3. Lower to within view of bottom and inspect surface for adequate landing and seal potential
- 4. Execute bottom landing/chamber insertion by either
 - a. slowly descending and assuring insertion light function with minimum loss of visibility, or
 - b. rapidly descending and assuring insertion light function with possible impaired visibility.
 - IMPORTANT Surface vessel must be able to hold position (+/- ~50 feet) for next 30 minutes (max). Overboard cables must not be allowed to tighten and disturb BFSD insertion.
- 5. Run "Sensor Check/Br Injection" program and visually verify lid closure followed by vent bubbles (Br Injection). Verify commands for CTD, pump and sensor operation by evidence of laptop computer data. After ~10 minutes, upload data, paste into Excel template and establish ambient O₂ level and control values.
- 6. Modify final test program with selected O₂ control limits and download to CTD verify all loops

- 7. Run final test program and if surface vessel position hold allows, verify operation from laptop data.
- 8. <u>Important First close Laptop communications interface and *then* disconnect cables</u>
- 9. Install and tape watertight connectors, bundle cables and cast overboard clear of BFSD location
- 10. Record location, weather conditions, etc, and secure for departure

BFSD 2 SHORESIDE DEPLOYMENT PREPARATIONS

- 1. Batteries checked/replaced/refreshed:
 - a. Gel cell charged to 24 Vdc @ 25 ma rate
 - b. 14 new D-Cells pump
 - c. 6 new 9 Vdc batts acoustic receiver
 - d. 1 new D-Cell landing lights
 - e. CTD checked for 10+ Vdc
- 2. All components cleaned:
 - a. Sample bottles cleaned, assembled and vacuum checked (with slow leakers identified for early positions)
 - b. Pneumatic syringe cleaned and loaded w/52 ml Br concentrate
 - c. Valves/tubing fully rinsed and dried
 - d. Chamber cleaned (and "bagged" if req'd)
- 3. Check loops confirm all subsystems operational
- 4. Rotary valves in "start" position

- 5. Bottles installed and >25 in-Hg applied (any slow leakers in early positions).
- 6. O₂ pressure checked and adequate for deployment
- 7. Pneumatic syringe installed
- 8. Acoustic Receiver prepared:
 - a. Ground plate sanded/buffed clean of deposits
 - b. Switch in "ON" position
 - c. Burn wire (with one wire removed) installed
 - d. Function test performed
- 8. Sensors Calibrated
- 9. Laptop Status
 - a. Loops designed & checked
 - b. File structure set up (Operations: Loops Library/Data)
 - c. Template functions adjusted for calibrations

BFSD 2 DEPLOYMENT EQUIPMENT LIST

- 1. Cables
 - one 75' primary underwater 3-cable set (Comm, Video, light)
 - three Pigtail cables for Laptop comm, TV/VCR, Light
 - Underwater connector plugs
- 2. Computer Case
 - Laptop computer
 - AC Power supply
 - Log book
 - Check lists, cheat sheets, etc
 - Floppy drive w/data discs
 - Mouse w/pad
- 3. TV/VCR, controller, VHS Tape(s)
- 4. Video camera power supply
- 5. Tool box
- 6. Extension cord/power strip
- 7. Hand vacuum pump

BFSD 2 RETRIEVAL/RECOVERY CHECKLIST

- Stand off from deployment location > 100' and transmit coded sonar pulse using EdgeTech deck unit (2 series of pulses).
 Allow 15 min (max) for buoy to deploy and reach surface.
- 2. Prepare deck hoist equipment and attach to buoy line
- 3. Raise to a visible depth and inspect/clear any fouling.
- 4. Raise above surface, open and secure lid, and washdown over water. Clear cables and haul onboard
- 5. Haul over deck, install pneumatic wheels and lower to deck
- 6. Turn Oxygen tank valve "off"
- 7. Verify system is shut down (ie, pump off). Inspect for damage, leakage and/or other abnormalities
- 8. Inspect and note bottle fill conditions, Br syringe injection condition, and measure "scum" line location
- 9. Slide CTD back and install pH and O₂ storage caps
- 10. Disconnect "comm" cable plug and upload data to prepared file location. Record copy of data to floppy disc.
- 11. Remove and label sample bottles one at a time, capping inlet port immediately upon removal of teflon fill tube.
- 12. Disconnect cables and plug open connectors. Secure cables.

13. Thoroughly wash down with fresh water and flush valves/tubing with fresh/DI water without delay

BFSD 2

Sample Bottle Cleaning and Preparation

- 1. Disassembly for cleaning (After sample removed)
 - a. By hand, unscrew and remove lid from bottle. <u>Avoid</u> gripping and turning filter holder. Set bottle aside.
 - b. By hand, unscrew filter holder halves. Avoid gripping and turning bottle lid. Using tweezers, remove membrane filter and store in marked Petre dish (if required). Remove orange O-ring and, using blunt object, dislodge and remove black filter support. Set lid/lower filter holder, O-ring and support assembly aside.
 - c. Using crescent wrench, unscrew and remove plug from top of check valve (if still there), then unscrew and remove spring retainer from top of check valve. Remove spring and valve plunger. Set parts aside.
 - d. Using crescent wrench, unscrew and remove tubing plug from upper filter holder/tee assembly. Set parts aside.

2. Cleaning

- a. Rinse all parts in tap water to remove loose material.
- b. Rinse all parts thoroughly in deionized water.
- c. Soak all parts in 4% RBS solution for 4 hours minimum (24 hours preferred)
- d. Rinse all parts in deionized water
- e. Soak sample bottles and teflon tubing plugs in 25% nitric acid solution for 4 hours minimum (24 hours preferred)
- f. Soak Upper and lower filter holder assemblies, orange Orings and black filter supports in 10% nitric acid for 4 hrs (24 hours is OK but NOT preferred).
- g. Rinse all parts in deionized water followed by thorough rinsing with 18meg-ohm water.

h. Set all parts in vented hood and allow to thoroughly air dry (overnight is preferred).

3. Assembly and preservation

- a. Assemble in the reverse the order of 1. above, with the following additions:
 - Apply a very thin layer of silicon grease to the check valve O-ring. Using the attached spring, lower the assembly into the check valve body and fully rotate it several times against the mating seat. Secure the spring with the retainer and tighten with a crescent wrench.
 - Snap a black filter support into the lower filter holder/lid assembly. Using tweezers, secure a membrane filter and position it on top of the filter support. Position an orange O-ring on top of the membrane filter and hand tighten the upper filter holder assembly in place.
 Securely tighten the assembly taking care not to grip and/or rotate the lid.
 - Assemble a tube plug and tighten with a crescent wrench.
 - Install a teflon gasket into the sample bottle lid (if used) and securely tighten the lid assembly to the sample bottle. Avoid gripping and/or turning the filter holder.
 - Using a hand vacuum pump, evacuate the finished assemble to 25 in-Hg and set aside for 4 hours minimum (24 hours is preferred).
 - If no leakage occurs, sample bottles may be used. If slight leakage occurs on a few, they may be labled and used early in sample sequence. Leakage may be resolved by further tightening of sample bottle lid. Any leakage resolution requiring disassembly shall include cleaning as above.