Logistic Regression

Logistic regression

- When response variable is measured/counted, regression can work well.
- But what if response is yes/no, lived/died, success/failure?
- Model probability of success.
- Probability must be between 0 and 1; need method that ensures this.
- Logistic regression does this. In R, is a generalized linear model with binomial "family":

```
glm(y ~ x, family="binomial")
```

• Begin with simplest case.

Packages

```
library(MASS, exclude = "select")
library(tidyverse)
library(marginaleffects)
library(broom)
library(nnet)
# library(conflicted)
# conflict_prefer("select", "dplyr")
# conflict_prefer("filter", "dplyr")
# conflict_prefer("rename", "dplyr")
# conflict_prefer("summarize", "dplyr")
```

The rats, part 1

• Rats given dose of some poison; either live or die:

dose status

- 0 lived
- 1 died
- 2 lived
- 3 lived
- 4 died
- 5 died

Read in:

```
my_url <- "http://ritsokiguess.site/datafiles/rat.txt"
rats <- read_delim(my_url, " ")
rats</pre>
```

This doesn't work

```
status.0 <- glm(status ~ dose, family = "binomial", data = ra</pre>
```

```
Error in eval(family$initialize): y values must be 0 <= y <= :
```

Values of response variable (here status) must be either:

- 1 = "success", 0 = "failure"
- a factor (not text) with two levels.

Basic logistic regression

• So, make response into a factor first:

```
rats2 <- rats %>% mutate(status = factor(status))
rats2
```

• then fit model:

status.1 <- glm(status ~ dose, family = "binomial", data = rate</pre>

Output

summary(status.1)

```
Call:
glm(formula = status ~ dose, family = "binomial", data = rats:
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.6841 1.7979 0.937 0.349
dose -0.6736 0.6140 -1.097 0.273
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 8.3178 on 5 degrees of freedom Residual deviance: 6.7728 on 4 degrees of freedom

AIC: 10.773

Interpreting the output

- ullet Like (multiple) regression, get tests of significance of individual x's
- Here not significant (only 6 observations).
- "Slope" for dose is negative, meaning that as dose increases, probability of event modelled (survival) decreases.

Output part 2: predicted survival probs

```
cbind(predictions(status.1)) %>%
  select(dose, estimate, conf.low, conf.high)

dose estimate conf.low conf.high
1     0 0.8434490 0.137095792 0.9945564
```

```
2 1 0.7331122 0.173186479 0.9729896
3 2 0.5834187 0.168847561 0.9061463
4 3 0.4165813 0.093853682 0.8311524
5 4 0.2668878 0.027010413 0.8268135
6 5 0.1565510 0.005443589 0.8629042
```

On a graph

plot_predictions(status.1, condition = "dose")

The rats, more

- More realistic: more rats at each dose (say 10).
- Listing each rat on one line makes a big data file.
- Use format below: dose, number of survivals, number of deaths.

```
dose lived died

0 10 0

1 7 3

2 6 4

3 4 6

4 2 8

5 1 9
```

- 6 lines of data correspond to 60 actual rats.
- Saved in rat2.txt.

These data

```
my_url <- "http://ritsokiguess.site/datafiles/rat2.txt"
rat2 <- read_delim(my_url, " ")
rat2</pre>
```

```
# A tibble: 6 x 3
dose lived died
<dbl> <dbl> <dbl> 1
0 10 0
1 7 3
3 2 6 4
4 3 4 6
5 4 2 8
6 5 1
```

Response matrix:

- Each row contains *multiple* observations.
- Create *two-column* response with cbind:
 - #survivals in first column,
 - ▶ #deaths in second.

```
with(rat2, cbind(lived, died))
```

```
lived died
[1,] 10 0
[2,] 7 3
[3,] 6 4
[4,] 4 6
[5,] 2 8
[6,] 1 9
```

Fit logistic regression

• constructing the response in the glm:

```
rat2.1 <- glm(cbind(lived, died) ~ dose, family = "binomial",</pre>
```

Output

Significant effect of dose now:

```
summary(rat2.1)
```

```
Call:
glm(formula = cbind(lived, died) ~ dose, family = "binomial",
   data = rat2
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.3619 0.6719 3.515 0.000439 ***
dose -0.9448 0.2351 -4.018 5.87e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
(Dispersion parameter for binomial family taken to be 1)
```

Predicted survival probs

```
new <- datagrid(model = rat2.1, dose = 0:5)
cbind(predictions(rat2.1, newdata = new)) %>%
select(estimate, dose, conf.low, conf.high)
```

On a picture

plot_predictions(rat2.1, condition = "dose")

Logistic Regression

Comments

- Significant effect of dose.
- Effect of larger dose is to decrease survival probability ("slope" negative; also see in decreasing predictions.)
- Confidence intervals around prediction narrower (more data).

Logistic Regression

Multiple logistic regression

- ullet With more than one x, works much like multiple regression.
- Example: study of patients with blood poisoning severe enough to warrant surgery. Relate survival to other potential risk factors.
- Variables, 1=present, 0=absent:
 - survival (death from sepsis=1), response
 - shock
 - malnutrition
 - alcoholism
 - age (as numerical variable)
 - bowel infarction
- See what relates to death.

Read in data

```
my_url <-
   "http://ritsokiguess.site/datafiles/sepsis.txt"
sepsis <- read_delim(my_url, " ")
sepsis</pre>
```

# A tibble: 106 x 6							
	${\tt death}$	${\tt shock}$	${\tt malnut}$	${\tt alcohol}$	age	bowelinf	
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
1	0	0	0	0	56	0	
2	0	0	0	0	80	0	
3	0	0	0	0	61	0	
4	0	0	0	0	26	0	
5	0	0	0	0	53	0	
6	1	0	1	0	87	0	
7	0	0	0	0	21	0	
8	1	0	0	1	69	0	
9	0	0	0	0	57	0	

Logistic Regression

Make sure categoricals really are

```
sepsis %>%
mutate(across(-age, \(x) factor(x))) -> sepsis
```

The data (some)

sepsis

```
A tibble: 106 x 6
   death shock malnut alcohol
                                   age bowelinf
   <fct> <fct> <fct> <fct> <fct>
                                <dbl> <fct>
                                    56 0
                                    80 0
 3 0
                0
                                    61 0
                0
                                    26 0
                                    53 0
                0
                                    87 0
                0
                                    21 0
                                    69 0
                0
                                    57 0
10 0
                                    76 0
 i 96 more rows
```

Logistic Regression

Fit model

```
sepsis.1 <- glm(death ~ shock + malnut + alcohol + age +
  bowelinf,
family = "binomial",
data = sepsis
)</pre>
```

Output part 1

Call:

```
summary(sepsis.1)
```

Signif. codes:

```
glm(formula = death ~ shock + malnut + alcohol + age + boweling
   family = "binomial", data = sepsis)
Coefficients:
         Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.75391 2.54170 -3.838 0.000124 ***
shock1 3.67387 1.16481 3.154 0.001610 **
malnut1 1.21658 0.72822 1.671 0.094798 .
alcohol1 3.35488 0.98210 3.416 0.000635 ***
    age
bowelinf1 2.79759 1.16397 2.403 0.016240 *
```

0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '

Removing malnut

```
sepsis.2 <- update(sepsis.1, . ~ . - malnut)
summary(sepsis.2)</pre>
```

```
Call:
```

```
glm(formula = death ~ shock + alcohol + age + bowelinf, family
    data = sepsis)
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.89459 2.31689 -3.839 0.000124 ***
shock1 3.70119 1.10353 3.354 0.000797 ***
alcohol1 3.18590 0.91725 3.473 0.000514 ***
age 0.08983 0.02922 3.075 0.002106 **
bowelinf1 2.38647 1.07227 2.226 0.026039 *
---
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' :

Comments

- Most of the original x's helped predict death. Only malnut seemed not to add anything.
- Removed malnut and tried again.
- Everything remaining is significant (though bowelinf actually became less significant).
- All coefficients are *positive*, so having any of the risk factors (or being older) *increases* risk of death.

egression 27 / 89

Predictions from model without "malnut"

• A few (rows of original dataframe) chosen "at random":

```
sepsis %>% slice(c(4, 1, 2, 11, 32)) -> new
new
```

```
# A tibble: 5 x 6

death shock malnut alcohol age bowelinf
<fct> <fct> <fct> <fct> <fct> <fct> <fct> <fct> <fct> <dbl> <fct> 

1 0 0 0 0 26 0

2 0 0 0 0 56 0

3 0 0 0 0 80 0

4 1 0 0 1 66 1

5 1 0 0 1 49 0
```

```
cbind(predictions(sepsis.2, newdata = new)) %>%
  select(estimate, conf.low, conf.high, shock:bowelinf)
```

estimate conf.low conf.high shock malnut alcohol age

Comments

- Survival chances pretty good if no risk factors, though decreasing with age.
- Having more than one risk factor reduces survival chances dramatically.
- Usually good job of predicting survival; sometimes death predicted to survive.

Another way to assess effects

of age:

```
new <- datagrid(model = sepsis.2, age = seq(30, 70, 10))
new</pre>
```

```
      shock alcohol bowelinf age rowid

      1
      0
      0
      0
      30
      1

      2
      0
      0
      0
      40
      2

      3
      0
      0
      0
      50
      3

      4
      0
      0
      0
      60
      4

      5
      0
      0
      0
      70
      5
```

Assessing age effect

```
cbind(predictions(sepsis.2, newdata = new)) %>%
  select(estimate, shock:age)
```

Assessing shock effect

```
new <- datagrid(shock = c(0, 1), model = sepsis.2)
new</pre>
```

```
      alcohol
      age bowelinf shock rowid

      1
      0 51.28302
      0 0 1

      2
      0 51.28302
      0 1 2
```

```
cbind(predictions(sepsis.2, newdata = new)) %>%
  select(estimate, death:shock)
```

```
estimate death shock
1 0.01354973 0 0
2 0.35742607 0 1
```

Assessing proportionality of odds for age

- An assumption we made is that log-odds of survival depends linearly on age.
- Hard to get your head around, but basic idea is that survival chances go continuously up (or down) with age, instead of (for example) going up and then down.
- In this case, seems reasonable, but should check:

Residuals vs. age

```
sepsis.2 %>% augment(sepsis) %>%
ggplot(aes(x = age, y = .resid, colour = death)) +
geom_point()
```


Comments

- No apparent problems overall.
- Confusing "line" across: no risk factors, survived.

Probability and odds

For probability p, odds is p/(1-p):

Prob	Odds	Log-odds	Words
0.5	$0.5 \ / \ 0.5 = 1.00$	0.00	even money
0.1	0.1 / 0.9 = 0.11	-2.20	9 to 1
0.4	0.4 / 0.6 = 0.67	-0.41	1.5 to 1
8.0	0.8 / 0.2 = 4.00	1.39	4 to 1 on

- Gamblers use odds: if you win at 9 to 1 odds, get original stake back plus 9 times the stake.
- Probability has to be between 0 and 1
- Odds between 0 and infinity
- Log-odds can be anything: any log-odds corresponds to valid probability.
- Thus, predict *log-odds of probability* from explanatory variable(s), rather than probability itself.

Odds ratio

- Suppose 90 of 100 men drank wine last week, but only 20 of 100 women.
- Prob of man drinking wine 90/100 = 0.9, woman 20/100 = 0.2.
- Odds of man drinking wine 0.9/0.1 = 9, woman 0.2/0.8 = 0.25.
- Ratio of odds is 9/0.25 = 36.
- Way of quantifying difference between men and women: "odds of drinking wine 36 times larger for males than females".

37 / 89

Sepsis data again

• Recall prediction of probability of death from risk factors:

sepsis

# A tibble: 106 x 6									
	death	${\tt shock}$	${\tt malnut}$	${\tt alcohol}$	age	bowelinf			
	<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<dbl></dbl>	<fct></fct>			
1	0	0	0	0	56	0			
2	0	0	0	0	80	0			
3	0	0	0	0	61	0			
4	0	0	0	0	26	0			
5	0	0	0	0	53	0			
6	1	0	1	0	87	0			
7	0	0	0	0	21	0			
8	1	0	0	1	69	0			
9	0	0	0	0	57	0			
10	0	0	1	0	76	0			
# i	. 96 mc	re ro	/S						

Multiplying the odds

Can interpret slopes by taking "exp" of them. We ignore intercept.

```
sepsis.2.tidy %>%
  mutate(exp_coeff=exp(estimate)) %>%
  select(term, exp_coeff)
```

```
# A tibble: 5 x 2
term exp_coeff
<chr> <chr> 1 (Intercept) 0.000137
shock1 40.5
alcohol1 24.2
age 1.09
bowelinf1 10.9
```

Interpretation

- These say "how much do you *multiply* odds of death by for increase of 1 in corresponding risk factor?" Or, what is odds ratio for that factor being 1 (present) vs. 0 (absent)?
- Eg. being alcoholic vs. not increases odds of death by 24 times
- One year older multiplies odds by about 1.1 times. Over 40 years, about $1.09^{40}=31$ times.

Odds ratio and relative risk

- Relative risk is ratio of probabilities.
- Above: 90 of 100 men (0.9) drank wine, 20 of 100 women (0.2).
- Relative risk 0.9/0.2=4.5. (odds ratio was 36).
- When probabilities small, relative risk and odds ratio similar.
- Eg. prob of man having disease 0.02, woman 0.01.
- Relative risk 0.02/0.01 = 2.

Odds ratio vs. relative risk

Odds for men and for women:

```
(od1 <- 0.02 / 0.98) # men
```

[1] 0.02040816

```
(od2 <- 0.01 / 0.99) # women
```

[1] 0.01010101

Odds ratio

```
od1 / od2
```

[1] 2.020408

• Very close to relative risk of 2.

More than 2 response categories

- With 2 response categories, model the probability of one, and prob of other is one minus that. So doesn't matter which category you model.
- With more than 2 categories, have to think more carefully about the categories: are they
- ordered: you can put them in a natural order (like low, medium, high)
- nominal: ordering the categories doesn't make sense (like red, green, blue).
- R handles both kinds of response; learn how.

Ordinal response: the miners

- Model probability of being in given category or lower.
- Example: coal-miners often suffer disease pneumoconiosis. Likelihood of disease believed to be greater among miners who have worked longer.
- Severity of disease measured on categorical scale: none, moderate, severe.

Miners data

• Data are frequencies:

Exposure	None	Moderate	Severe
5.8	98	0	0
15.0	51	2	1
21.5	34	6	3
27.5	35	5	8
33.5	32	10	9
39.5	23	7	8
46.0	12	6	10
51.5	4	2	5

Reading the data

Data in aligned columns with more than one space between, so:

```
my_url <- "http://ritsokiguess.site/datafiles/miners-tab.txt"
freqs <- read_table(my_url)</pre>
```

The data

freqs

```
# A tibble: 8 x 4
  Exposure None Moderate Severe
     <dbl> <dbl>
                    <dbl> <dbl>
       5.8
              98
                               0
      15
              51
3
      21.5
              34
                        6
                               3
      27.5 35
                               8
5
      33.5 32
                       10
6
              23
                               8
      39.5
      46
              12
                        6
                              10
8
      51.5
               4
                               5
```

Logistic Regression

Tidying

```
freqs %>%
  pivot_longer(-Exposure, names_to = "Severity", values_to =
  mutate(Severity = fct_inorder(Severity)) -> miners
```

Result

miners

```
A tibble: 24 \times 3
   Exposure Severity
                      Freq
      <dbl> <fct>
                     <dbl>
        5.8 None
                         98
        5.8 Moderate
 3
        5.8 Severe
       15
            None
                         51
 5
       15 Moderate
 6
       15 Severe
       21.5 None
                         34
8
       21.5 Moderate
                          6
 9
       21.5 Severe
10
       27.5 None
                         35
# i 14 more rows
```

Plot proportions against exposure 1/2

```
miners %>%
 group_by(Exposure) %>%
 mutate(proportion = Freq / sum(Freq)) -> prop
prop
 A tibble: 24 x 4
 Groups: Exposure [8]
  Exposure Severity Freq proportion
     <dbl> <fct> <dbl>
                             <dbl>
       5.8 None
                      98
       5.8 Moderate
       5.8 Severe
    15
          None
                     51 0.944
 5
      15 Moderate 2
                            0.0370
 6
      15 Severe
                         0.0185
      21.5 None
                     34
                            0.791
 8
      21.5 Moderate
                            0.140
```

Plot proportions against exposure 2/2

Reminder of data setup

miners

```
A tibble: 24 \times 3
   Exposure Severity Freq
      <dbl> <fct>
                     <dbl>
        5.8 None
                         98
        5.8 Moderate
 3
        5.8 Severe
       15
           None
                         51
 5
       15 Moderate
       15
            Severe
       21.5 None
                         34
8
       21.5 Moderate
                          6
 9
       21.5 Severe
                          3
10
       27.5 None
                         35
# i 14 more rows
```

Fitting ordered logistic model

Use function polr from package MASS. Like glm.

```
sev.1 <- polr(Severity ~ Exposure,
  weights = Freq,
  data = miners
)</pre>
```

Output: not very illuminating

```
sev.1 <- polr(Severity ~ Exposure,
  weights = Freq,
  data = miners,
)</pre>
```

```
summary(sev.1)
```

```
Call:
```

```
polr(formula = Severity ~ Exposure, data = miners, weights = l
```

Coefficients:

Value Std. Error t value Exposure 0.0959 0.01194 8.034

Intercepts:

Value Std. Error t value None | Moderate 3.9558 0.4097 9.6558

Does exposure have an effect?

Fit model without Exposure, and compare using anova. Note 1 for model with just intercept:

```
sev.0 <- polr(Severity ~ 1, weights = Freq, data = miners)
anova(sev.0, sev.1)</pre>
```

Likelihood ratio tests of ordinal regression models

```
Response: Severity

Model Resid. df Resid. Dev Test Df LR stat.

1 1 369 505.1621

2 Exposure 368 416.9188 1 vs 2 1 88.24324

Pr(Chi)

1
2 0
```

Exposure definitely has effect on severity of disease.

Another way

• What (if anything) can we drop from model with exposure?

```
drop1(sev.1, test = "Chisq")
Single term deletions
Model:
Severity ~ Exposure
        Df AIC LRT Pr(>Chi)
<none> 422.92
Exposure 1 509.16 88.243 < 2.2e-16 ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Nothing. Exposure definitely has effect.

Predicted probabilities 1/2

```
freqs %>% select(Exposure) -> new
new
```

```
# A tibble: 8 x 1
  Exposure
     <dbl>
       5.8
      15
3
      21.5
4
      27.5
5
      33.5
6
      39.5
      46
8
      51.5
```

Logistic Regression

Predicted probabilities 2/2

```
cbind(predictions(sev.1, newdata = new)) %>%
  select(group, estimate, Exposure) %>%
  pivot_wider(names_from = group, values_from = estimate)
```

```
# A tibble: 8 x 4
 Exposure None Moderate Severe
    <dbl> <dbl> <dbl> <dbl> <
      5.8 0.968 0.0191 0.0132
2
     15 0.925 0.0433 0.0314
3
     21.5 0.869 0.0739 0.0569
4
     27.5 0.789 0.114 0.0969
5
     33.5 0.678 0.162 0.160
6
     39.5 0.542 0.205 0.253
7
     46 0.388 0.224 0.388
     51.5 0.272
                 0.210 0.517
8
```

Plot of predicted probabilities

```
plot_predictions(model = sev.1, condition = c("Exposure", "grogeom_point(data = prop, aes(x = Exposure, y = proportion, condition = c("Exposure", "grogeom_point(data = prop, aes(x = Exposure, y = proportion, condition = c("Exposure", "grogeom_point(data = prop, aes(x = Exposure, y = proportion, condition = c("Exposure", "grogeom_point(data = prop, aes(x = Exposure, y = proportion, condition = c("Exposure", "grogeom_point(data = prop, aes(x = Exposure, y = proportion, condition = c("Exposure", "grogeom_point(data = prop, aes(x = Exposure, y = proportion, condition = c("Exposure", "grogeom_point(data = prop, aes(x = Exposure, y = proportion, condition = c("Exposure, y = proportion, y = proportion, y = proportion, condition = c("Exposure, y = proportion, y = prop
```

The graph

ggg

Comments

- Model appears to match data well enough.
- As exposure goes up, prob of None goes down, Severe goes up (sharply for high exposure).
- So more exposure means worse disease.

Unordered responses

- With unordered (nominal) responses, can use generalized logit.
- Example: 735 people, record age and sex (male 0, female 1), which of 3 brands of some product preferred.
- Data in mlogit.csv separated by commas (so read_csv will work):

```
my_url <- "http://ritsokiguess.site/datafiles/mlogit.csv"
brandpref <- read_csv(my_url)</pre>
```

The data (some)

brandpref

```
A tibble: 735 x 3
   brand
            sex
                   age
   <dbl> <dbl> <dbl>
                    24
                    26
                    26
                    27
 5
                    27
 6
                    27
                    27
8
                    27
 9
                    27
10
                    27
   725 more rows
```

Bashing into shape

sex and brand not meaningful as numbers, so turn into factors:

brandpref

```
# A tibble: 735 x 3
brand sex age
<fct> <fct> <fct> <dbl>
1 1 male 24
2 1 male 26
3 1 male 26
4 1 female 27
5 1 female 27
```

Logistic Regression

Fitting model

• We use multinom from package nnet. Works like polr.

```
library(nnet)
# levels(brandpref$sex)
brands.1 <- multinom(brand ~ age + sex, data = brandpref)</pre>
# weights: 12 (6 variable)
initial value 807.480032
iter 10 value 702.990572
final value 702.970704
converged
summary(brands.1)
```

Call:

multinom(formula = brand ~ age + sex, data = brandpref)

Can we drop anything?

• Unfortunately drop1 seems not to work:

```
drop1(brands.1, test = "Chisq", trace = 0)
```

trying - age

Error in if (trace) {: argument is not interpretable as logical

 So, fall back on fitting model without what you want to test, and comparing using anova.

Do age/sex help predict brand? 1/3

Fit models without each of age and sex:

```
brands.2 <- multinom(brand ~ age, data = brandpref)

# weights: 9 (4 variable)
initial value 807.480032
iter 10 value 706.796323
iter 10 value 706.796322
final value 706.796322
converged</pre>
```

```
brands.3 <- multinom(brand ~ sex, data = brandpref)</pre>
```

```
# weights: 9 (4 variable)
initial value 807.480032
final value 791.861266
converged
```

Do age/sex help predict brand? 2/3

```
anova(brands.2, brands.1)
```

Likelihood ratio tests of Multinomial Models

```
anova(brands.3, brands.1)
```

Likelihood ratio tests of Multinomial Models

```
Response: brand
```

Do age/sex help predict brand? 3/3

- age definitely significant (second anova)
- sex significant also (first anova), though P-value less dramatic
- Keep both.
- Expect to see a large effect of age, and a smaller one of sex.

Another way to build model

• Start from model with everything and run step:

```
step(brands.1)
```

```
Start: ATC=1417.94
brand ~ age + sex
trying - age
# weights: 9 (4 variable)
initial value 807.480032
final value 791.861266
converged
trying - sex
# weights: 9 (4 variable)
initial value 807.480032
iter 10 value 706.796323
iter 10 value 706.796322
final value 706.796322
```

Logistic Regression

70 / 89

Making predictions

Find age 5-number summary, and the two sexes:

summary(brandpref)

```
brand sex age
1:207 female:466 Min. :24.0
2:307 male :269 1st Qu.:32.0
3:221 Median :32.0
Mean :32.9
3rd Qu.:34.0
Max. :38.0
```

Space the ages out a bit for prediction (see over).

Combinations

```
new <- datagrid(age = seq(24, 40, 4), # cover the entire range
             sex = c("female", "male"), model = brands.1)
new
  age sex rowid
   24 female
2 24 male 2
3 28 female 3
4
  28 male 4
5 32 female 5
6 32 male 6
7 36 female 7
8 36 male
           8
9 40 female
               9
10
   40 male
              10
```

new <- datagrid(age = seq(24, 40, 4), # cover the entire ran # model = brands.1)

The predictions

```
cbind(predictions(brands.1, newdata = new)) %>%
  select(group, estimate, age, sex) %>%
  pivot_wider(names_from = group, values_from = estimate)
```

```
# A tibble: 10 \times 5
    age sex
  <dbl> <fct> <dbl> <dbl> <dbl>
                               <dbl>
     24 female 0.915 0.0819 0.00279
 1
     24 male 0.948 0.0502 0.00181
     28 female 0.696 0.271 0.0329
     28 male 0.793 0.183 0.0236
 5
     32 female 0.291 0.495 0.214
 6
     32 male 0.405 0.408 0.187
     36 female 0.0503 0.374 0.576
 8
     36 male 0.0795 0.350 0.571
 9
     40 female 0.00473 0.153 0.842
10
     40 male 0.00759 0.146 0.847
```

Comments

- Young males prefer brand 1, but older males prefer brand 3.
- Females similar, but like brand 1 less and brand 2 more.
- A clear brand effect, but the sex effect is less clear.

Making a plot

• I thought plot_predictions doesn't work as we want, but I was (sort of) wrong about that:

Making it go

• We have to include group in the condition:

```
plot_predictions(brands.1, condition = c("age", "group"))
```


Comments

- This picks the most common sex in the data (females).
- See younger females prefer brand 1, older ones preferring brand 3.

Logistic Regression 77 / 89

For each sex

If we add the other variable to the end, we get facets for sex:

plot_predictions(brands.1, condition = c("age", "group", "sex")

Logistic Regression

A better graph

- but the male-female difference was significant. How?
- don't actually plot the graph, then plot the right things:

The graph

g

Digesting the plot

- Brand vs. age: younger people (of both genders) prefer brand 1, but older people (of both genders) prefer brand 3. (Explains significant age effect.)
- Brand vs. sex: females (solid) like brand 1 less than males (dashed), like brand 2 more (for all ages).
- Not much brand difference between genders (solid and dashed lines of same colours close), but enough to be significant.
- Model didn't include interaction, so modelled effect of gender on brand same for each age, modelled effect of age same for each gender. (See also later.)

Alternative data format

Summarize all people of same brand preference, same sex, same age on one line of data file with frequency on end:

brandpref

```
A tibble: 735 \times 3
   brand sex
                   age
   <fct> <fct> <dbl>
1 1
         male
                    24
2 1
         male
                    26
                    26
3 1
         male
         female 27
5 1
         female
                 27
6.3
         female
                    27
                    27
         male
8 1
         male
                    27
         female
                    27
9
                    27
10 1
         male
```

Logistic Regression

82 / 89

Getting alternative data format

```
brandpref %>%
  group_by(age, sex, brand) %>%
  summarize(Freq = n()) %>%
  ungroup() -> b
b
```

```
# A tibble: 65 x 4
    age sex brand Freq
  <dbl> <fct> <fct> <int>
     24 male 1
2 26 male 1
3
  27 female 1
   27 female 3
5
  27 male 1
6
     28 female 1
                       6
     28 female 2
8
     28 female 3
```

Fitting models, almost the same

- Just have to remember weights to incorporate frequencies.
- Otherwise multinom assumes you have just 1 obs on each line!
- Again turn (numerical) sex and brand into factors:

```
b %>%
  mutate(sex = factor(sex)) %>%
  mutate(brand = factor(brand)) -> bf
b.1 <- multinom(brand ~ age + sex, data = bf, weights = Freq)
b.2 <- multinom(brand ~ age, data = bf, weights = Freq)</pre>
```

P-value for sex identical

```
anova(b.2, b.1)
```

Likelihood ratio tests of Multinomial Models

```
Response: brand

Model Resid. df Resid. Dev Test Df LR stat.

1 age 126 1413.593

2 age + sex 124 1405.941 1 vs 2 2 7.651236

Pr(Chi)

1
2 0.02180496
```

Same P-value as before, so we haven't changed anything important.

Trying interaction between age and gender

```
brands.4 <- update(brands.1, . ~ . + age:sex)</pre>
```

```
# weights: 15 (8 variable)
initial value 807.480032
iter 10 value 703.191146
iter 20 value 702.572260
iter 30 value 702.570900
iter 30 value 702.570893
iter 30 value 702.570893
converged
```

```
anova(brands.1, brands.4)
```

Likelihood ratio tests of Multinomial Models

Response: brand

Logistic Regression

'^a+

Make graph again

Not much difference in the graph

g4

Compare model without interaction

g

