Thomas Lacroix

INSA Lyon Soutenance de PFE (Option R&D)

19/06/2019

Section 1

Motivation

- Motivation
 - Formal verification
 - Security critical systems
 - Network Interface Controllers (NIC)
- - Subsection 1
 - How trustful is it?
- - Subsection 1

HOL4

Motivation

Proof-producing analysis

Motivation

00000000000000000

Machine-checked proofs

Table of Contents

Motivation

- Motivation
 - Formal verification.
 - Security critical systems
 - Network Interface Controllers (NIC)
- - Subsection 1
 - How trustful is it?
- - Subsection 1

Security critical systems

Privacy

- Smartphones
- Smart TVs

Security

- Hospital equipment
- Traffic control systems
- Power plants

https://www.wired.com/2014/04/ hospital-equipment-vulnerable/ It's Insanely Easy to Hack Hospital Equipment

https://www.wired.com/2015/07/ hackers-remotely-kill-jeephighway/ Hackers Remotely Kill a Jeep on the Highway—With Me in It

Security critical systems - vulnerable

Motivation

Vulnerabilities come because of:

- Increased surface of attack (more and more features, codebases explode in size)
- Connected to networks → remote attacks

¹ https://sel4.systems/Info/FAQ/proof.pml

Formal proof¹:

- The binary code correctly implements its abstract specification.
- The specification guarantees integrity and confidentiality.

Formal proof¹:

- The binary code correctly implements its abstract specification.
- The specification guarantees integrity and confidentiality.
- Integrity: data cannot be *changed* without permission.
- **Confidentiality**: data cannot be *read* without permission.

Proof assumptions²:

Secure operating systems

Proof assumptions²:

 Use of Direct Memory Access (DMA) is excluded, or only allowed for trusted drivers that have to be formally verified by the user.

Table of Contents

- Motivation
 - Formal verification.
 - Security critical systems
 - Network Interface Controllers (NIC)
- - Subsection 1
 - How trustful is it?
- - Subsection 1

Figure: BeagleBone Black.

Research question

Can we apply traditional software verification techniques and tools to show security properties of hardware devices?

Non proof-producing verification

Table of Contents

- Motivation
 - Formal verification
 - Security critical systems
 - Network Interface Controllers (NIC)
- Non proof-producing verification
 - Subsection 1
 - How trustful is it?
- Proof-producing verification
 - Subsection 1
- 4 Conclusion

Title

Table of Contents

- - Formal verification
 - Security critical systems
 - Network Interface Controllers (NIC)
- 2 Non proof-producing verification
 - Subsection 1
 - How trustful is it?
- - Subsection 1

Title

Proof-producing verification

Table of Contents

- - Formal verification
 - Security critical systems
 - Network Interface Controllers (NIC)
- - Subsection 1
 - How trustful is it?
- Proof-producing verification
 - Subsection 1

Section 4

References I