Q.1 Write a program to distinguish between Array Indexing and Fancy Indexing.

```
In [ ]: import numpy as np
        array1 = np.array([1, 2, 3, 4, 5, 6, 7, 8])
        simple indexing = array1[3]
        print("Simple Indexing:", simple_indexing)
        fancy_indexing = array1[[1, 2, 5, 7]]
        print("Fancy Indexing:",fancy_indexing)
       Simple Indexing: 4
       Fancy Indexing: [2 3 6 8]
        Q2. Execute the 2D array Slicing.
In [ ]: import numpy as np
        array1 = np.array([[1, 3, 5, 7],
                               [9, 11, 13, 15],
                               [2, 4, 6, 8]])
        subarray1 = array1[:2, :2]
        subarray2 = array1[1:3, 2:4]
        print("First Two Rows and Columns: \n", subarray1)
        print("Last two Rows and Columns: \n", subarray2)
       First Two Rows and Columns:
        [[ 1 3]
        [ 9 11]]
       Last two Rows and Columns:
        [[13 15]
        [68]]
In [ ]: Q3. Create the 5-Dimensional arrays using ndmin.
In [ ]: import numpy as np
        arr = np.array([1, 2, 3, 4], ndmin=5)
        print(arr)
       [[[[[1 2 3 4]]]]]
        Q4. Reshape the array from 1-D to 2-D array.
In [ ]: import numpy as np
        arr_1d = np.array([1, 2, 3, 4, 5, 6])
        arr_2d = arr_1d.reshape(2, 3)
```

```
print(arr_2d)
[[1 2 3]
[4 5 6]]
```

Q5. Perform the Stack functions in Numpy arrays – Stack(), hstack(), vstack(), and dstack().

```
In [ ]: import numpy as np
        arr1 = np.array([1, 2, 3])
        arr2 = np.array([4, 5, 6])
        a= np.stack((arr1, arr2), axis=0)
        b = np.hstack((arr1, arr2))
        c=np.vstack((arr1,arr2))
        d=np.dstack((arr1,arr2))
        print(a,"\n")
        print(b,"\n")
        print(c,"\n")
        print(d,"\n")
       [[1 2 3]
       [4 5 6]]
       [1 2 3 4 5 6]
       [[1 2 3]
       [4 5 6]]
       [[[1 4]
         [2 5]
         [3 6]]]
```

Q6. Perform the searchsort method in Numpy array.

Q7. Create Numpy Structured array using your domain features.

```
In []: import numpy as np

dtype = [('name', 'U50'), ('price', float), ('availability', bool), ('category', 'U

canteen_items = np.array([], dtype=dtype)

item1 = ('Sandwich', 5.99, True, 'Snacks')
item2 = ('Salad', 4.49, True, 'Healthy')
```

```
item3 = ('Pizza', 7.99, False, 'Fast Food')

canteen_items = np.array([item1, item2, item3], dtype=dtype)

print("Item Names:", canteen_items['name'])
print("Prices:", canteen_items['price'])
print("Availability:", canteen_items['availability'])
print("Categories:", canteen_items['category'])

snacks = canteen_items[canteen_items['category'] == 'Snacks']
print("\nSnacks:")
print(snacks)

Item Names: ['Sandwich' 'Salad' 'Pizza']
Prices: [5.99 4.49 7.99]
```

```
Item Names: ['Sandwich' 'Salad' 'Pizza']
Prices: [5.99 4.49 7.99]
Availability: [ True True False]
Categories: ['Snacks' 'Healthy' 'Fast Food']
Snacks:
[('Sandwich', 5.99, True, 'Snacks')]
```

Q8. Create Data frame using List and Dictionary.

```
In [ ]: import pandas as pd
        # Create a DataFrame using a list of dictionaries
            {'Name': 'Alice', 'Age': 28, 'City': 'New York'},
            {'Name': 'Bob', 'Age': 32, 'City': 'Los Angeles'},
            {'Name': 'Charlie', 'Age': 24, 'City': 'Chicago'}
        ]
        df_from_list_of_dicts = pd.DataFrame(data)
        # Create a DataFrame using a dictionary of lists
        data = {
            'Name': ['Alice', 'Bob', 'Charlie'],
            'Age': [28, 32, 24],
            'City': ['New York', 'Los Angeles', 'Chicago']
        df_from_dict_of_lists = pd.DataFrame(data)
        print("DataFrame created from a list of dictionaries:")
        print(df from list of dicts)
        print("\nDataFrame created from a dictionary of lists:")
        print(df_from_dict_of_lists)
```

```
DataFrame created from a list of dictionaries:
      Name Age
                        City
                    New York
0
    Alice
            28
1
       Bob
            32 Los Angeles
2
  Charlie
            24
                     Chicago
DataFrame created from a dictionary of lists:
      Name Age
                        City
    Alice
0
            28
                    New York
1
      Bob
            32 Los Angeles
2 Charlie
            24
                     Chicago
```

Q9. Create Data frame on your Domain area and perform the following operations to find and eliminate the missing data from the dataset.

```
In [ ]: import pandas as pd
    df=pd.read_csv(r"university_canteen_data_with_nan.csv")
    df=df.head(10)
    df.isnull()
```

Out[]: Student_ID Student_Name Student_Department Student_Year Student_Contact_Info Tr 0 **False False False False** False 1 False False False False False 2 False True False False False 3 False False False False False 4 False False False **False** False 5 False True False False False 6 False False False False False 7 False False False False False 8 False False False False False False False False False False

10 rows × 30 columns

```
In []: df=df.head(7)
df.notnull()
```



```
Out[]:
            Student_ID Student_Name Student_Department Student_Year
                                                                          Student_Contact_Info
        0
                 7311
                        Richard Barron
                                                                          qcrane@example.com
                                                            Sophomore
                                                     pay
         1
                           Shelly Cruz
                 7890
                                                    might
                                                            Sophomore
                                                                            vlewis@example.org
        2
                 1663
                                hello
                                                     type
                                                              Freshman cobbdana@example.com
        3
                 5242
                         Kathleen Kelly
                                                    small
                                                                 Junior
                                                                          qlopez@example.com
        4 rows × 30 columns
In [ ]:
In [ ]:
        import pandas as pd
        # Step 1: Read the CSV file into a DataFrame
        df = pd.read_csv('university_canteen_data_with_nan.csv')
        # Step 2: Perform the data replacement operation on the 'Quantity_Purchased' column
        # For example, let's replace all occurrences of '10' with '20'
        df['Quantity_Purchased'] = df['Quantity_Purchased'].replace(4, 5)
        # Step 3: Write the modified DataFrame back to the same CSV file
        df.to_csv('university_canteen_data_with_nan', index=False)
        df=df.head(4)
        df
```

```
Out[]:
            Student_ID Student_Name Student_Department Student_Year
                                                                            Student_Contact_Info
         0
                  7311
                         Richard Barron
                                                              Sophomore
                                                                             qcrane@example.com
                                                       pay
         1
                  7890
                            Shelly Cruz
                                                              Sophomore
                                                                              vlewis@example.org
                                                     might
         2
                  1663
                                 NaN
                                                       type
                                                                Freshman cobbdana@example.com
         3
                          Kathleen Kelly
                  5242
                                                      small
                                                                   Junior
                                                                             qlopez@example.com
```

4 rows × 30 columns

```
import pandas as pd

# Step 1: Read the CSV file into a DataFrame
df = pd.read_csv('university_canteen_data_with_nan.csv')
b=df.interpolate(method='linear', inplace=True)
df.head(5)

# Step 3: Write the modified DataFrame back to the same CSV file
```

Out[]:		Student_ID	Student_Name	Student_Department	Student_Year	Student_Contact_Info
	0	7311	Richard Barron	рау	Sophomore	qcrane@example.com
	1	7890	Shelly Cruz	might	Sophomore	vlewis@example.org
	2	1663	NaN	type	Freshman	cobbdana@example.com
	3	5242	Kathleen Kelly	small	Junior	qlopez@example.com
	4	9376	Heather Brown	billion	Freshman	kimberly71@example.net

5 rows × 30 columns

```
→
```

Q10. Perform the Hierarchical Indexing in the above created dataset.

```
In []: import pandas as pd

# Read the CSV file without a hierarchical index
df = pd.read_csv('university_canteen_data_with_nan.csv')

df.set_index(['Menu_Item_ID', 'Total_Cost'], inplace=True)
a=df.head(5)
b=a.sort_index()
b
```

Out[]:

		Student_ID	Student_Name	Student_Department	Student_Year
Menu_Item_ID	Total_Cost				
20	3.06	1663	NaN	type	Freshman
21	9.83	7890	Shelly Cruz	might	Sophomore
35	13.57	7311	Richard Barron	рау	Sophomore
38	12.53	9376	Heather Brown	billion	Freshman
75	11.08	5242	Kathleen Kelly	small	Junior

5 rows × 28 columns