

- Justifique todas as respostas e indique os cálculos efetuados -

- [30pts] 1. Determine a solução geral da equação diferencial $y'' 4y' + 4y = 5\cos x$.
- [35pts] 2. Resolva o seguinte problema de valores iniciais: $\begin{cases} y'' + 4y = e^t \\ y(0) = y'(0) = 1. \end{cases}$
- [20pts] 3. Encontre a solução geral da equação diferencial de primeira ordem 2y' + y = x.
- [10pts] 4. Seja (a_n) a sucessão definida por $a_n=\frac{n}{2n+1}$, $n\in\mathbb{N}$. Calcule (caso exista) a soma da série $\sum_{n=1}^\infty \frac{a_n-a_{n+1}}{a_n\cdot a_{n+1}}$.
 - 5. Estude a natureza (divergência, convergência simples ou absoluta) das seguintes séries:
- [20pts] (a) $\sum_{n=1}^{\infty} \left(\frac{(-1)^n (n-1)}{3n+1} \right)^n$
- [20pts] (b) $\sum_{n=3}^{\infty} \frac{n^2 9}{2n^3 + n + 3}$
 - 6. Considere a série de potências de x

$$\sum_{n=1}^{\infty} \frac{\beta^{n+1}}{n+1} x^n$$
 (β é um parâmetro real positivo).

- [20pts] (a) Determine o raio de convergência da série (em função de β) e estude a sua natureza nos extremos do intervalo de convergência.
- [5pts] (b) Justifique que existe um único valor de β para o qual a série é simplesmente convergente no ponto x=-3 e determine-o.
- [20pts] 7. Desenvolva em série de MacLaurin a função f definida por $f(x)=\frac{x}{(1+x)^2}$, indicando o maior subconjunto de $\mathbb R$ onde o desenvolvimento é válido.

(Sugestão: Comece por observar que
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
, $x \in]-1,1[$).

- 8. Considere a função f, periódica de período 2π , definida em $[-\pi,\pi]$ por $f(x)=|\sin x|$.
- [10pts] (a) Justifique que a série de Fourier de f possui a forma

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) \qquad (a_n \in \mathbb{R}, \ n \in \mathbb{N}_0)$$

e calcule os coeficientes $\,a_0\,$ e $\,a_1\,$ que figuram naquela série.

Cálculo II — Exame de Recurso

[10pts]

(b) Sabe-se que a série de Fourier de f é dada por $\frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2nx)}{(2n)^2 - 1}$.

Mostre que esta série converge para a função f e use este facto para calcular a soma da série numérica $\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)^2-1}$.

- FORMULÁRIO -

(Em geral nada é referido sobre as hipóteses que validam as fórmulas indicadas).

$$F(s) = \mathcal{L}\lbrace f(t)\rbrace(s) = \int_0^{+\infty} e^{-st} f(t) dt, \quad s > s_f.$$

Tabela de transformadas de Laplace $(a \in \mathbb{R})$.

f(t)	F(s)
t^n	$\frac{n!}{s^{n+1}}, \ s > 0, \ n \in \mathbb{N}_0 \ (0! = 1)$
e^{at}	$\frac{1}{s-a} , \ s > a$
sen(at)	$\frac{a}{s^2 + a^2}, \ s > 0$

f(t)	F(s)
$\cos(at)$	$\frac{s}{s^2 + a^2}, \ s > 0$
senh(at)	$\frac{a}{s^2 - a^2}, \ s > a $
$\cosh(at)$	$\frac{s}{s^2 - a^2}, \ s > a $

- $\mathcal{L}\{e^{\lambda t}f(t)\} = F(s-\lambda), \ s > s_f + \lambda, \ \lambda \in \mathbb{R}$
- $\mathcal{L}\{t^n f(t)\} = (-1)^n F^{(n)}(s), \ s > s_f, \ n \in \mathbb{N}.$
- $\bullet \ \mathcal{L}\{f(t-a)\} = \mathrm{e}^{-as}F(s) \,, \ s>s_f \,, \ a>0 \quad \ (f \ \mathrm{nula} \ \mathrm{em} \ \mathbb{R}^-).$
- $\mathcal{L}{f(at)}$ = $\frac{1}{a} F\left(\frac{s}{a}\right)$, $s > a s_f$, a > 0.
- $\mathcal{L}{f^{(n)}(t)} = s^n F(s) s^{n-1} f(0) s^{n-2} f'(0) s^{n-3} f''(0) \dots s f^{(n-2)}(0) f^{(n-1)}(0),$ $s > \max\{s_f, s_{f'}, s_{f''}, \dots, s_{f^{(n-1)}}\}, \quad n \in \mathbb{N}.$