

ИНСТРУКЦИЯ ПО СЕРВИСНОМУ ОБСЛУЖИВАНИЮ ТЕЛЕФОНА

ИНСТРУКЦИЯ ПО СЕРВИСНОМУ ОБСЛУЖИВАНИЮ ТЕЛЕФОНА

S5200

Model : S5200

Оглавление

1. Введение	5
1.1 Назначение	5
1.2 Регламентирующие положения.....	5
1.3 Список сокращений.....	7
2. Рабочие характеристики	9
2.1 Аппаратные характеристики.....	9
2.2 Технические характеристики	10
3. Краткая техническая информация.....	15
3.1 Приемопередатчик	15
3.2 Тактовый генератор частоты 13 МГц	22
3.3 Питание приемопередатчика.....	22
3.4 Центральный цифровой процессор	24
3.5 Центральный аналоговый процессор с блоком управления питанием.....	30
3.6 ИС зарядки	38
3.7 ИС камеры	41
3.8 ИС MIDI	43
3.9 Нажатия клавиш и сканирование сигналов клавиатуры	47
3.10 Микрофон.....	48
3.11 Основной динамик	48
3.12 Интерфейс гарнитуры	49
3.13 Память	50
3.14 Модуль Bluetooth.....	51
3.15 Разъем камеры, LDO камеры.....	52
3.16 Подсветка клавиатуры	53
3.17 Светодиод вспышки.....	54
3.18 Память NAND	55
3.19 Датчик сдвига крышки	56
3.20 VIBRATOR	56
3.21 Мультимедийный микрофон.....	57
4. Устранение неисправностей.....	58
4.1 Неисправность приема сигнала.....	58
4.2 Неисправность передачи сигнала	64
4.3 Неисправность включения.....	71
4.4 Неисправность зарядного устройства	73
4.5 Неисправность виброзвонка	75
4.6 Неисправность ЖКД.....	77
4.7 Неисправность модуля Bluetooth	80
4.8 Неисправность громкоговорителя	83
4.9 Неисправность обнаружения SIM-карты	85
4.10 Неисправность гарнитуры	87
4.11 Неисправность подсветки клавиатуры.....	90
4.12 Неисправность динамика.....	92
4.13 Неисправность микрофона	94
4.14 Неисправность часов реального времени.....	96
4.15 Неисправность датчика сдвига крышки.....	98
4.16 Неисправность камеры и вспышки.....	100
5. Загрузка программного обеспечения и калибровка	103
5.1 Загрузка программного обеспечения	103
5.2 Калибровка.....	107
6. Блок схема	110
7. Принципиальная схема.....	111
8. Расположение элементов на печатной плате.....	120
9. Инженерное меню	125
9.1 Проверка НЧ части (Меню 1)	126
9.2 Проверка РЧ тракта (МЕНЮ 2)	128
9.3 Заводской тест (МЕНЮ 3)	128
9.4 Параметр трассировки (МЕНЮ 4).....	129
9.5 Таймер (МЕНЮ 5)	129
9.6 Заводской сброс (МЕНЮ 6)	129
9.7 Версия программного обеспечения	129
10. Тест «STAND ALONE»	130
10.1 Введение	130
10.2 Метод настройки	130
10.3 Методика тестирования.....	131
11. Автоматическая калибровка.....	133
11.1 Описание	133
11.2 Необходимое оборудование	133
11.3 Меню и настройки	133
11.4 Как провести калибровку	134
12. Сборочный чертеж и список заменяемых деталей	137
12.1 Сборочный чертеж.....	137
12.2 Список заменяемых деталей	139
12.3 Принадлежности	160

1. Введение

1.1 Назначение

В данном руководстве приводится техническое описание и необходимая информация для выполнения ремонта, калибровки, а также для загрузки программного обеспечения этой модели телефона.

1.2 Регламентирующие положения

A. Безопасность

Коммутационное мошенничество, т. е. несанкционированное использование телекоммуникационной системы неуполномоченной стороной (например, лицами, не являющимися служащими компании, ее представителями, субподрядчиками, либо действующими от имени компании) может стать причиной представления необоснованных счетов за пользование телекоммуникационными услугами. Пользователи системы несут ответственность за безопасность собственной системы. Имеется определенный риск коммутационного мошенничества в отношении Вашей телекоммуникационной системы. Пользователи системы несут ответственность за программирование и конфигурирование своего оборудования с целью предотвращения несанкционированного использования системы. Изготовитель не может гарантировать защищенность данного изделия в отношении вышеупомянутых случаев, и его возможностей по предотвращению несанкционированного пользования телекоммуникационными услугами коммерческих линий связи путем получения доступа или подключения оборудования. Изготовитель не несет ответственности за любые расходы, понесенные в результате подобного несанкционированного пользования телекоммуникационными услугами.

B. Причинение ущерба

В случае если компания телефонной связи определит, что предоставленное клиенту оборудование является неисправным и его использование может нанести ущерб или нарушить работу телефонной сети связи, компания может временно приостанавливать оказание услуг телефонной связи на время необходимое для ремонта.

C. Изменения предоставляемых услуг.

Местная компания телефонной связи может вносить изменения в свое оборудование связи и изменять порядок его работы. При наличии оснований полагать, что такие изменения способны оказать воздействие на работу данного телефонного аппарата, либо его совместимость с телефонной сетью, компании телефонной связи следует заранее письменно уведомить об этих изменениях пользователя, предоставляя тем самым ему возможность предпринять необходимые меры с целью продолжения пользования услугами телефонной связи.

D. Ограничения на выполнение техобслуживания

Некоторые работы по техническому обслуживанию данной модели могут быть выполнены только предприятием-изготовителем, либо его уполномоченными представителями. Следует иметь в виду, что любые несанкционированные модификации либо ремонт могут повлечь изменение нормативного статуса системы и стать основанием для аннулирования всего периода гарантии.

1. Введение

E. Уведомление о наличии излучения

Настоящее изделие соответствует действующим в стране законодательным нормативам в отношении высокочастотного излучения. Согласно этим положениям, необходимая информация должна быть предоставлена потребителю.

F. Иллюстрации

Иллюстрации в настоящем руководстве приведены исключительно для наглядности. Реальное оборудование может выглядеть несколько иначе.

G. Помехи и подавление сигнала

Телефон может создавать помехи в работе чувствительного лабораторного оборудования, медицинского оборудования и т.п. На работу самого телефона могут оказать влияние помехи, исходящие от машин и электродвигателей, не оборудованных устройствами подавления помех.

H. Приборы, чувствительные к электростатическим разрядам

ВНИМАНИЕ

Платы, детали которых чувствительны к электростатическим разрядам, обозначены следующей пиктограммой . Ниже приведена информация о порядке работы с такими деталями:

- Выполняя замену плат системы, технические специалисты должны иметь закрепленную на кисти руки линию заземления;
- При выполнении работ на системной плате специалист должен стоять на антистатическом покрытии (также заземленном);
- Паяльник (соответствующий выполняемой работе) должен быть заземлен;
- Чувствительные к статическому электричеству детали следует хранить в защитной упаковке вплоть до их непосредственного использования;
- Перед отправкой на завод системные платы, а также электрически перепрограммируемые ПЗУ и им подобные детали необходимо упаковать указанным способом.

1.3 Список сокращений

В настоящем «Руководстве используются следующие сокращения:

APC	Автоматическая регулировка мощности
BB	Низкочастотная часть
BER	Частота ошибок по битам
CC-CV	Постоянный ток-постоянное напряжение
DAC	Цифро-аналоговый преобразователь (ЦАП)
DCS	Система цифровой связи
дБм	дБ на 1 милливатт (дБм)
DSP	Цифровой сигнальный процессор
EEPROM	Electrical Erasable Programmable Read-Only Memory
ESD	Электростатический разряд
FPCB	Гибкая печатная плата
GMSK	Модуляция GMSK
GPIB	Интерфейс общего назначения
GSM	Глобальная система мобильной связи
IPUI	Международный код абонента мобильной связи
IF	Промежуточная частота (ПЧ)
LCD	Жидкокристаллический дисплей (ЖКД)
LDO	Стабилизатор напряжения
LED	Светодиода излучающий диод
OPLL	Схема фазовой автоподстройки частоты (ФАПЧ)

1. Введение

PAM	Усилитель мощности
PCB	Печатная плата
PGA	Усилитель с программируемым усилением
PLL	Система фазовой автоподстройки частоты (система ФАПЧ)
PSTN	Коммутируемая телефонная сеть общего пользования
RF	Радиочастота (РЧ)
RLR	Номинал громкости приема
RMS	Среднеквадратичное действующее значение (СДЗ)
RTC	Генератор импульсов реального времени
SAW	Поверхностная акустическая волна (ПАВ)
SIM	Модуль идентификации абонента
SLR	Номинал громкости передачи
SRAM	Статическое запоминающее устройство с произвольной выборкой
PSRAM	Псевдостатическое запоминающее устройство с произвольной выборкой
STMR	Противоместный эффект
TA	Зарядное устройство
TDD	Дуплекс временного разделения
TDMA	Множественный доступ с временным разделением
UART	Универсальный асинхронный интерфейс приема/передачи
VCO	Генератор, управляемый напряжением (ГУН)
VCTCXO	Термостабилизированный генератор, управляемый напряжением
WAP	Протокол WAP (для распространения данных по Internet)

2. Рабочие характеристики

2.1 Аппаратные характеристики

Наименование	Характеристики	Примечания
Стандартная батарея	Тип: Литий-полимер, 800 мА/ч Габариты: 34 (Ш) × 50 (В) × 3.8 (Т) [мм] Масса: не определена	
Потребляемый ток в дежурном режиме	В условиях минимального расхода электроэнергии (период опроса сети 9) сила тока в дежурном режиме не превышает 4 мА.	
Продолжительность разговора	До 2 часов (GSM, уровень передачи 5)	
Продолжительность работы в дежурном режиме	До 200 часов (период опроса сети: 9, уровень сигнала RSSI: -85 дБм)	
Продолжительность подзарядки	Около 3.00 часов	
Чувствительность приемного устройства	GSM, EGSM: -109 дБм, DCS: -109 дБм	
Выходная мощность передатчика	GSM, EGSM: 32.5 дБм (Уровень 5), DCS, PCS: 29.5 дБм (Уровень 0)	
Совместимость GPRS	Класс 10	
Тип SIM-карты	Только малая, 3В	
Дисплей	Основной ЖКД: TFT, 128 x 160 пикс. 262 тыс. цветов	
Индикация состояния и клавиатура	Контрастные пиктограммы. клавиатура: 0 – 9, #, *, кнопки «Меню», «Сброс», «Подтвердить», боковые клавиши, кнопка фотоаппарата, «Отправить», «Окончание»/ВКЛ, навигационные кнопки «Вверх», «Вниз», «Вправо» и «Влево», две программируемые клавиши (левая/правая) и две горячие клавиши (левая/правая).	
Антенна	Внутренняя	
Разъем гарнитуры	Есть (стерео)	
Разъем для соединения с ПК	Есть	
Речевая кодировка	EFR/FR/HR	
Передача данных и факс	Есть	
Виброзвонок	Есть	
Громкая связь	Есть	
Диктофон	Есть	
Микрофон	Есть	
Громкоговоритель/динамик	Двухрежимный громкоговоритель/динамик	
Зарядное устройство	Есть	
MIDI	64-голосая полифония (стерео динамик)	
MP3/AAC	Есть	
Дополнительно	Кабель для передачи данных	

2. Рабочие характеристики

2.2 Технические характеристики

№	Наименование	Характеристики																																																																																																																		
1	Диапазон частот	EGSM <ul style="list-style-type: none"> TX: $890 + (n-1024) \times 0.2 \text{ МГц}$ RX: $935 + (n-1024) \times 0.2 \text{ МГц}$ ($n=975 \sim 1024$) DCS <ul style="list-style-type: none"> TX: $1710 + (n-512) \times 0.2 \text{ МГц}$ RX: $1805 + (n-512) \times 0.2 \text{ МГц}$ ($n=512 \sim 885$) PCS <ul style="list-style-type: none"> TX: $1810 + (n-512) \times 0.2 \text{ МГц}$ RX: $1905 + (n-512) \times 0.2 \text{ МГц}$ ($n=512 \sim 885$) 																																																																																																																		
2	Фазовая погрешность	RMS < 5 градусов Пик < 20 градусов																																																																																																																		
3	Погрешность по частоте	< 0.1 промилле																																																																																																																		
4	Уровень мощности	GSM, EGSM <table border="1"> <thead> <tr> <th>Уровень</th> <th>Мощность</th> <th>Допустимое отклонение</th> <th>Уровень</th> <th>Мощность</th> <th>Допустимое отклонение</th> </tr> </thead> <tbody> <tr><td>5</td><td>33 дБм</td><td>$\pm 2\text{дБ}$</td><td>13</td><td>17 дБм</td><td>$\pm 3\text{дБ}$</td></tr> <tr><td>6</td><td>31 дБм</td><td>$\pm 3\text{дБ}$</td><td>14</td><td>15 дБм</td><td>$\pm 3\text{дБ}$</td></tr> <tr><td>7</td><td>29 дБм</td><td>$\pm 3\text{дБ}$</td><td>15</td><td>13 дБм</td><td>$\pm 3\text{дБ}$</td></tr> <tr><td>8</td><td>27 дБм</td><td>$\pm 3\text{дБ}$</td><td>16</td><td>11 дБм</td><td>$\pm 5\text{дБ}$</td></tr> <tr><td>9</td><td>25 дБм</td><td>$\pm 3\text{дБ}$</td><td>17</td><td>9 дБм</td><td>$\pm 5\text{дБ}$</td></tr> <tr><td>10</td><td>23 дБм</td><td>$\pm 3\text{дБ}$</td><td>18</td><td>7 дБм</td><td>$\pm 5\text{дБ}$</td></tr> <tr><td>11</td><td>21 дБм</td><td>$\pm 3\text{дБ}$</td><td>19</td><td>5 дБм</td><td>$\pm 5\text{дБ}$</td></tr> <tr><td>12</td><td>19 дБм</td><td>$\pm 3\text{дБ}$</td><td></td><td></td><td></td></tr> </tbody> </table> DCS, PCS <table border="1"> <thead> <tr> <th>Уровень</th> <th>Мощность</th> <th>Допустимое отклонение</th> <th>Уровень</th> <th>Мощность</th> <th>Допустимое отклонение</th> </tr> </thead> <tbody> <tr><td>0</td><td>30 дБм</td><td>$\pm 2\text{дБ}$</td><td>8</td><td>14 дБм</td><td>$\pm 3\text{дБ}$</td></tr> <tr><td>1</td><td>28 дБм</td><td>$\pm 3\text{дБ}$</td><td>9</td><td>12 дБм</td><td>$\pm 4\text{дБ}$</td></tr> <tr><td>2</td><td>26 дБм</td><td>$\pm 3\text{дБ}$</td><td>10</td><td>10 дБм</td><td>$\pm 4\text{дБ}$</td></tr> <tr><td>3</td><td>24 дБм</td><td>$\pm 3\text{дБ}$</td><td>11</td><td>8 дБм</td><td>$\pm 4\text{дБ}$</td></tr> <tr><td>4</td><td>22 дБм</td><td>$\pm 3\text{дБ}$</td><td>12</td><td>6 дБм</td><td>$\pm 4\text{дБ}$</td></tr> <tr><td>5</td><td>20 дБм</td><td>$\pm 3\text{дБ}$</td><td>13</td><td>4 дБм</td><td>$\pm 4\text{дБ}$</td></tr> <tr><td>6</td><td>18 дБм</td><td>$\pm 3\text{дБ}$</td><td>14</td><td>2 дБм</td><td>$\pm 5\text{дБ}$</td></tr> <tr><td>7</td><td>16 дБм</td><td>$\pm 3\text{дБ}$</td><td>15</td><td>0 дБм</td><td>$\pm 5\text{дБ}$</td></tr> </tbody> </table>							Уровень	Мощность	Допустимое отклонение	Уровень	Мощность	Допустимое отклонение	5	33 дБм	$\pm 2\text{дБ}$	13	17 дБм	$\pm 3\text{дБ}$	6	31 дБм	$\pm 3\text{дБ}$	14	15 дБм	$\pm 3\text{дБ}$	7	29 дБм	$\pm 3\text{дБ}$	15	13 дБм	$\pm 3\text{дБ}$	8	27 дБм	$\pm 3\text{дБ}$	16	11 дБм	$\pm 5\text{дБ}$	9	25 дБм	$\pm 3\text{дБ}$	17	9 дБм	$\pm 5\text{дБ}$	10	23 дБм	$\pm 3\text{дБ}$	18	7 дБм	$\pm 5\text{дБ}$	11	21 дБм	$\pm 3\text{дБ}$	19	5 дБм	$\pm 5\text{дБ}$	12	19 дБм	$\pm 3\text{дБ}$				Уровень	Мощность	Допустимое отклонение	Уровень	Мощность	Допустимое отклонение	0	30 дБм	$\pm 2\text{дБ}$	8	14 дБм	$\pm 3\text{дБ}$	1	28 дБм	$\pm 3\text{дБ}$	9	12 дБм	$\pm 4\text{дБ}$	2	26 дБм	$\pm 3\text{дБ}$	10	10 дБм	$\pm 4\text{дБ}$	3	24 дБм	$\pm 3\text{дБ}$	11	8 дБм	$\pm 4\text{дБ}$	4	22 дБм	$\pm 3\text{дБ}$	12	6 дБм	$\pm 4\text{дБ}$	5	20 дБм	$\pm 3\text{дБ}$	13	4 дБм	$\pm 4\text{дБ}$	6	18 дБм	$\pm 3\text{дБ}$	14	2 дБм	$\pm 5\text{дБ}$	7	16 дБм	$\pm 3\text{дБ}$	15	0 дБм	$\pm 5\text{дБ}$
Уровень	Мощность	Допустимое отклонение	Уровень	Мощность	Допустимое отклонение																																																																																																															
5	33 дБм	$\pm 2\text{дБ}$	13	17 дБм	$\pm 3\text{дБ}$																																																																																																															
6	31 дБм	$\pm 3\text{дБ}$	14	15 дБм	$\pm 3\text{дБ}$																																																																																																															
7	29 дБм	$\pm 3\text{дБ}$	15	13 дБм	$\pm 3\text{дБ}$																																																																																																															
8	27 дБм	$\pm 3\text{дБ}$	16	11 дБм	$\pm 5\text{дБ}$																																																																																																															
9	25 дБм	$\pm 3\text{дБ}$	17	9 дБм	$\pm 5\text{дБ}$																																																																																																															
10	23 дБм	$\pm 3\text{дБ}$	18	7 дБм	$\pm 5\text{дБ}$																																																																																																															
11	21 дБм	$\pm 3\text{дБ}$	19	5 дБм	$\pm 5\text{дБ}$																																																																																																															
12	19 дБм	$\pm 3\text{дБ}$																																																																																																																		
Уровень	Мощность	Допустимое отклонение	Уровень	Мощность	Допустимое отклонение																																																																																																															
0	30 дБм	$\pm 2\text{дБ}$	8	14 дБм	$\pm 3\text{дБ}$																																																																																																															
1	28 дБм	$\pm 3\text{дБ}$	9	12 дБм	$\pm 4\text{дБ}$																																																																																																															
2	26 дБм	$\pm 3\text{дБ}$	10	10 дБм	$\pm 4\text{дБ}$																																																																																																															
3	24 дБм	$\pm 3\text{дБ}$	11	8 дБм	$\pm 4\text{дБ}$																																																																																																															
4	22 дБм	$\pm 3\text{дБ}$	12	6 дБм	$\pm 4\text{дБ}$																																																																																																															
5	20 дБм	$\pm 3\text{дБ}$	13	4 дБм	$\pm 4\text{дБ}$																																																																																																															
6	18 дБм	$\pm 3\text{дБ}$	14	2 дБм	$\pm 5\text{дБ}$																																																																																																															
7	16 дБм	$\pm 3\text{дБ}$	15	0 дБм	$\pm 5\text{дБ}$																																																																																																															

2. Рабочие характеристики

№	Наименование	Характеристики	
5	Спектр РЧ на выходе (из-за модуляции)	GSM, EGSM	
		Смещение от несущей (кГц).	Макс. дБс
		100	+0.5
		200	-30
		250	-33
		400	-60
		600~ <1,200	-60
		1,200~ <1,800	-60
		1,800~ <3,000	-63
		3,000~ <6,000	-65
		6,000	-71
		DCS, PCS	
		Смещение от несущей (кГц).	Макс. дБс
		100	+0.5
		200	-30
		250	-33
		400	-60
		600~ <1,200	-60
		1,200~ <1,800	-60
		1,800~ <3,000	-65
		3,000~ <6,000	-65
		6,000	-73
6	Спектр РЧ на выходе (из-за переходного процесса при коммутации)	GSM, EGSM	
		Смещение от несущей (кГц).	Макс. дБм
		400	-19
		600	-21
		1,200	-21
		1,800	-24

2. Рабочие характеристики

№	Наименование	Характеристики		
6	Спектр РЧ на выходе (из-за переходного процесса при коммутации)	DCS, PCS		
		Смещение от несущей (кГц).		Макс. (дБм).
		400		-22
		600		-24
		1,200		-24
		1,800		-27
7	Помехи	Проводимость, излучение		
8	Частота ошибок по битам (ЧОБ)	GSM, EGSM BER (Класс II) < 2.439% @ -105 дБм		
		DCS, PCS BER (Класс II) < 2.439% @ -105 дБм		
9	Точность информации об уровне приема	± 3 дБ		
10	SLR	8 ± 3 дБ		
11	Частотная характеристика передачи	Частота (Гц)	Максимум (дБ)	Минимум (дБ)
		100	-12	-
		200	0	-
		300	0	-12
		1,000	0	-6
		2,000	4	-6
		3,000	4	-6
		3,400	4	-9
		4,000	0	-
12	RLR	2 ± 3 дБ		
13	Частотная характеристика приема	Частота (Гц)	Максимум (дБ)	Минимум (дБ)
		100	-12	-
		200	0	-
		300	2	-7
		500	*	-5
		1,000	0	-5
		3,000	2	-5
		3,400	2	-10
		4,000	2	
* Означает прямую между 300 Гц и 1000 Гц, принятую в качестве максимального уровня в данном диапазоне.				

2. Рабочие характеристики

№	Наименование	Характеристики	
14	STMR	13 \pm 5 дБ	
15	Запас устойчивости	> 6 дБ	
16	Искажение сигнала	дБ ARL (дБ)	Соотношение уровня (дБ)
		-35	17.5
		-30	22.5
		-20	30.7
		-10	33.3
		0	33.7
		7	31.7
		10	25.5
17	Искажение побочного тона	Трехступенчатое искажение < 10%	
18	Допустимое отклонение частоты (13 МГц) в сети	\leq 2.5 промилле	
19	Допустимое отклонение (32.768 кГц)	\leq 30 промилле	
20	Громкость звонка	Не менее 65 дБ при следующих характеристиках: 1. Звонок установлен в режим звонка. 2. Расстояние тестирования 50 см.	
21	Ток подзарядки	Быстрая зарядка: < 440 мА Медленная зарядка: < 66 мА	
22	Индикатор приема	Кол-во делений индикатора приема	Мощность
		5	-85 дБм ~
		4	-90 дБм ~ -86 дБм
		3	-95 дБм ~ -91 дБм
		2	-100 дБм ~ -96 дБм
		1	-105 дБм ~ -101 дБм
		0	~ -105 дБм
23	Индикатор заряда батареи	Кол-во делений индикатора приема	Напряжение
		0	3.36 ~ 3.54 В
		1	3.55 ~ 3.66 В
		2	3.67 ~ 3.72 В
		3	3.73 ~ 3.84 В
		4	3.85 В ~
24	Предупреждение о разрядке аккумулятора	3.55 \pm 0.03В (В режиме разговора)	
		3.48 \pm 0.03В (В режиме ожидания)	

2. Рабочие характеристики

№	Наименование	Характеристики
25	Напряжение принудительного отключения	3.35 ± 0.03 В
26	Тип батареи	1 батарея на основе лития-полимера Стандартное напряжение = 3.7 В Напряжение полного заряда = 4.2 В Емкость: 800 мА/ч
27	Зарядное устройство	Импульсное зарядное устройство Входное напряжение: 100 ~ 240 В, 50/60 Гц Выходное напряжение: 5.2 В, 800 мА

3. Краткая техническая информация

3.1 Приемопередатчик (SKY74400, U602)

Радиочастотная часть состоит из передающего и приемного устройства, генератора частоты, источника питания и ТГУНа.

SKY74400 - это четырехдиапазонный приемопередатчик, предназначенный для применения в мобильных решениях с использованием форматов GSM (Global System for Mobile Communications), GPRS (General Packet Radio Service) и EDGE (Enhanced Data for GSM Evolution). Устройство поддерживает диапазоны GSM850, EGSM900, DCS1800, и PCS1900.

Приемопередатчик содержит приемное устройство прямого преобразования и усилитель мощности со встроенным регулятором усиления (iPAC). Все РЧ вводы и выводы устройства согласованы с сопротивлением 50 Ом.

Тракт усилителя мощности обеспечивает прямое понижение частоты, что снимает необходимость использования промежуточной частоты и соответствующих элементов схемы. Четыре интегрированных малошумящих усилителя (LNA) согласованы с сопротивлением 50 Ом, избавляя от необходимости использования для этих целей внешних компонентов. Приемное устройство так же содержит квадратурный демодулятор, НЧ фильтр полос пропускания приемного устройства, схема стабилизации постоянного тока, и встроенная цепь калибровки точки пересечения второго порядка (IP2).

SKY74400 та же содержит встроенный программируемый сигма-дельта синтезатор с дробным делением на N, предназначенный для работы с EGPRS. Опорная частота передается на синтезатор с интегрированного в схему ТГУН. Такая архитектура позволяет использовать в схеме менее дорогостоящие компоненты.

Вывод ТГУН, снабженный буфером, питает прочие схемы в системе.

Тракт передающего устройства использует контур подстройки. Он содержит синфазный и квадратурный (I/Q) модулятор и схему фазовой подстройки частоты, предназначенной для повышения частоты с высокой спектральной чистотой. Контур подстройки содержит фазочастотный детектор, генератор подкачки заряда, смеситель, программируемые делители, и высокомощный ГУН передающего устройства, не требующий использования внешних модулей. Схема передающего устройства на прямую подключена к усилителю мощности приемопередатчика, который содержит отдельные блоки для GSM850/EGSM900 и для DCS1800/PCS1900 (Блоки на одном кристалле гетеропереходного биполярного транзистора из арсенида галлия), схему согласования полных сопротивлений для 50-омных выводов, и отдельный блок управления усилителем мощности BiCMOS со встроенным токочувствительным резистором.

- Секция приемного устройства. Включает в себя четыре малошумящих усилителя с 50-омными выводами, цепь квадратурного демодулятора, осуществляющую прямое понижение частоты, цепь НЧ усилителя мощности с синфазным и квадратурным (I/Q) выводами, НЧ фильтр с программируемыми полосами пропускания, блок пятиуровневой стабилизации постоянного тока цепь калибровки точки пересечения второго порядка.
- Секция синтезатора. Включает в себя ГУН, подключенный к цепи сигма-дельта синтезатора с дробным делением на N, кварцевый генератор, создающий опорную частоту, выходной буфер опорной частоты и встроенный контурный фильтр.
- Секция передающего устройства. Эта секция использует контур подстройки, который состоит из синфазного и квадратурного (I/Q) модулятора, интегрированных высокомощных ГУН, миксера, программируемого делителя, датчика фазы и частоты (PFD), генератора подкачки заряда и контурного фильтра. Секция так же содержит усилитель мощности для GSM850/EGSM900 и для DCS1800/PCS1900 с общими контактами питания, схему согласования полных сопротивлений (50 Ом) и модуль регулятора усиления (PAC) со встроенным токочувствительным резистором.

3. Краткая техническая информация

3. Краткая техническая информация

(1) Приемное устройство

A. Малошумящий усилитель и квадратурный демодулятор

Блок SKY74400 содержит четыре отдельных малошумящих усилителя, предназначенных для работы в различных диапазонах. Эти усилители используют 50 отдельных несимметричных вводов. Мощность усилителей переключается между двумя режимами (высокая и низкая) с помощью трехпроводной шины. Выводы малошумящих усилителей подключены к квадратурному демодулятору, который понижает частоту РЧ сигнала до уровня НЧ. НЧ синфазный и квадратурный тракты состоят из каскадных усилителей и фильтра нижних частот. НЧ часть предоставляет восемь вариантов установки полосы пропускания расположенных в пределах от 90 кГц до 160 кГц, что придает гибкость при связи с любым НЧ устройством. Для НЧ фильтрации не требуется никаких внешних конденсаторов. Цепь фильтра использует две фиксированные полярности, две пары сопряженных полюсов и одну настраиваемую пару сопряженных полюсов. Результатом фильтрации при любых настройках полосы пропускания становится однородная полоса пропускания со сведенными к минимуму искажениями, вызываемыми эффектом мультиплексирования (групповой задержкой).

B. Коррекция смещения постоянной составляющей.

Пять контуров коррекции смещения гарантируют, что искажения постоянного тока, генерируемого в схеме SKY74400, не повредят цепь НЧ части. После стабилизации, напряжения цифровыми средствами удерживаются в необходимых пределах в течение требуемого времени. Положительный сигнал RXENA начинает цифровую стабилизацию постоянного тока. Поскольку стабилизация производится цифровым методом, для работы системы требуется тактовая частота. Для создания тактовой частоты внутри схемы производится деление опорной частоты. Специальная, быстрая коррекция смещения производится каждый раз при установке коэффициента усиления приемного устройства до тех пор, пока сигнал RXENA имеет высокий логический уровень. Это гарантирует, что стабилизация постоянного тока успеет произойти до того момента, как коэффициент усиления сменит канал в многоканальном режиме.

C. Подавление амплитудной модуляции и калибровка точки пересечения второго порядка (IP2)

При прямом преобразовании GSM передач необходимо, чтобы искажения второго порядка имели как можно более низкий уровень. Математически, искажение второго порядка постоянного тона создает постоянный ток прямо пропорциональный квадрату амплитуды. Другими словами, сильный амплитудно-модулированный сигнал, создающий помехи, демодулируется искажением второго порядка, в результате создавая НЧ помехи. SKY74400 эффективно справляется с такого рода амплитудно-модулированными мешающими сигналами. Наиболее часто используемым способом измерения искажения второго порядка на приемном устройстве является точка пересечения второго порядка (IP2). Например, чтобы опустить уровень мешающего сигнала на 9 дБ ниже полезного сигнала, необходимо провести проверку на подавление амплитудной модуляции для установления типа (См. 3GPP TS 51.010-1), входная IP2 должна быть равна 43 дБм. Приемопередатчик SKY74400 имеет в своем составе схему, которая снижает до минимума искажения второго порядка. Схема калибровки точки пересечения второго порядка эффективно компенсирует любые искажения второго порядка в цепи приемного устройства, которые в противном случае, создавали бы мешающие НЧ сигналы из-за сильных помех. При правильной калибровке, точка пересечения второго порядка SKY74400 отвечает требованиям проверки на подавление амплитудной модуляции GSM на всех диапазонах, результатом станет сигнал с минимальными искажениями. Заводская калибровка вносит в настройки телефона параметры I/Q компенсации, что уменьшает смещение постоянного тока, неизбежное при искажении второго порядка. Эффективность применения точки пересечения второго порядка повышается при снижении коэффициента постоянного тока, которое связано с помехами. Установленные коэффициенты передаются по последовательному интерфейсу, сохраняются в энергонезависимой памяти и используются SKY74400 для самонастройки при каждом запуске устройства. Процесс оптимизации выполняется модулем SKY74400 автономно.

3. Краткая техническая информация

D. Управление гибкой полосой пропускания приемного устройства.

НЧ фильтр приемного устройства имеет 8 предустановленных режимов полосы пропускания.

(2) Секция синтезатора

Блок SKY74400 включает в себя интегрированный УВЧ ГУН и контурный фильтр третьего порядка. Сигмадельта синтезатор с дробным делением на N синхронизирован по частоте с местным гетеродином, который используется как передающим, так и принимающим трактом для точного ввода опорной частоты. Функция деления на N обеспечивает низкий фазовый шум и высокую скорость подстройки, что позволяет использовать многоканальные приложения, такие как, например, GPRS.

Функция переключения частот с разрешением 3 Гц позволяет приемопередатчику SKY74400 производить прием и передачу в четырех диапазонах, используя интегрированный УВЧ ГУН. Разрешение синтезатора позволяет производить прямую компенсацию и подстройку для корректировки ошибок несущей частоты.

Частота задается следующим уравнением:

$$f_{vco} = \frac{\left(N + 3.5 + \frac{FN}{2^{22}} \right) f_{ref}}{R}$$

Где: f_{vco} = Частота, созданная ГУН

N = Коэффициент деления N, целое число

FN = Дробная часть

R = Коэффициент деления R

f_{ref} = Опорная частота

A. Настройка частоты УВЧ ГУН

Для настройки частоты приема приемного устройства (f_{RX}), частота ГУН (f_{VCO}) устанавливается в соответствии со следующими уравнениями:

$$\text{GSM850/EGSM900: } f_{vco} = \frac{3}{2} f_{rx}$$

$$\text{DCS1800/PCS1900: } f_{vco} = \frac{3}{4} f_{rx}$$

B. Цифровое центрирование частоты (DFC)

Модуль SKY74400 рецентрирует диапазон частот УВЧ ГУН каждый раз при программировании синтезатора. Собственная разработка компании Skyworks - технология цифрового центрирования частоты (Digital Frequency Centering - DFC), увеличивает покрытие частоты ГУН, уменьшает время подстройки и обеспечивает высокую производительность, благодаря тому, что ГУН постоянно работает в центре своего диапазона перестройки. При каждом программировании синтезатора схема DFC активируется и центрирует ГУН на запрограммированной частоте менее чем за 20 мс. По окончанию центрирования ФАПЧ заканчивает установку настроенной частоты. Перед началом работы ФАПЧ, система DFC настраивает среднюю частоту ГУН в диапазоне от нескольких МГц и до частоты не более 5 МГц, и устанавливает напряжение настройки в центр диапазона.

3. Краткая техническая информация

Такая конфигурация системы позволяет ускорить подстройку частоты и гарантирует, что управляющее напряжение ФАПЧ не превысит допустимый уровень. Система DFC является адаптивной схемой, которая исправляет любые погрешности средней частоты несущей, которые могут возникнуть из-за различных отрицательных воздействий изнутри схемы ГУН, таких как воздействие температуры, проблемы, связанные с подаваемым напряжением или старение. ГУН может быть центрирован на любой частоте в диапазоне от 990 МГц до 1550 МГц. Однажды настроенный, ГУН имеет минимальный аналоговый диапазон перестройки 20 МГц. Системе DFC не требуется устройств хранения данных калибровки. Система активируется в одном из двух случаев:

- Когда синтезатор запрограммирован, передний фронт сигнала запускает схему DFC.
- Когда логический уровень сигнала SXENA меняется с низкого на высокий, тем самым, запускает синтезатор, передний фронт сигнала SXENA запускает схему DFC.

C. Встроенные контурные фильтры

В систему встроены два контурных фильтра: фильтр УВК ФАПЧ и фильтр передающей ФАПЧ. Функции передачи контурных фильтров могут быть настроены. Контурный фильтр УВК содержит два синхронизированных генератора подкачки заряда (ГПЗ). Частота "zero" factor (z1) в фазочастотных характеристиках ФАПЧ может быть настроена с помощью изменения токов ГПЗ и значений внутренних резисторов R3 и конденсаторов C3.

Для компенсации токов ПЗС постоянной полосы пропускания ФАПЧ, ГУН приемопередатчика SKY74400 использует технологию DFC компании Skyworks. Система DFC увеличивает управляемость ГУН (KVCO), посредством увеличения частоты ГУН. Без дополнительной компенсации эта операция приводит к увеличению коэффициента петлевого усиления ФАПЧ, а так же увеличению контурной полосы пропускания на высоких частотах. В стандартных схемах ФАПЧ коэффициент KVCO воспринимается как константная величина. В результате, коэффициент петлевого усиления снижается с увеличением частоты, так как коэффициент деления в контуре увеличивается пропорционально к частоте. Поскольку обычно желательно удерживать контурную полосу пропускания постоянно выше диапазона требуемых частот, модуль SKY74400 включает в себя схему, компенсирующую токи генератора подкачки заряда, чтобы удерживать неизменный общий коэффициент петлевого усиления. Компенсация тока ГПЗ для УВК ФАПЧ может быть запрограммирована в один из трех режимов (номинальный, высокий или низкий). Так же, ток ГПЗ может быть запрограммирован на постоянную величину без использования компенсации. За дополнительной информацией обращайтесь к руководству по программированию приемопередатчика Skyworks SKY74117 для мобильных приборов или встраиваемых МКМ.

D. Кварцевый генератор

Кварцевый генератор создает для синтезатора опорную частоту 26 МГц. Генератор использует внутренний кристалл с частотой 26 МГц для создания точной частоты. Опорная частота может быть грубо настроена при помощи встроенной в модуль конденсаторной матрицы или может быть настроена более точно при помощи встроенного параметрического диода. Грубая настройка производится включением и выключением (используя цифровое слово, запрограммированное в последовательном интерфейсе) матрицы конденсаторов (CAP_A и CAP_B), находящейся на входе интегрированного буфера. Более точная настройка кварцевого генератора может быть проведена путем изменения напряжения, подаваемого на параметрический диод.

Для управления НЧ цепью используется выходной буфер. Выходная частота определяется сигналом FREQ_SEL. Когда этот контакт подключен к заземлению, выходная частота приравнивается к 13 МГц. При подключении питания или в случае если контакт останется не подключенным, выходная частота становится равной 26 МГц. Ядро кварцевого генератора включается при изменении логического значения сигнала SXENA на логическую 1.

3. Краткая техническая информация

Рис. 3-2 Блок-схема кварцевого генератора

(3) Передающее устройство

Чтобы минимизировать требования выходного фильтра усилителя мощности и все последующие потери усиления, передающий тракт содержит векторный модулятор и контур смещения частоты. Контур смещения содержит следующие элементы:

- PFD и ГПЗ
- Контурный модулятор
- Один программируемый делитель
- Встроенный в передающий тракт контурный фильтр
- Два ГУН передачи и выходных фильтра

А. Передающий контур

Передающий контур включает в себя векторный модулятор и контур смещения частоты, чтобы минимизировать требования выходного фильтра усилителя мощности. Контур используется в качестве ФАПЧ со смесителем в цепи обратной связи и модулятор на тракте опорной частоты. Контур содержит PFD и генератор подкачки заряда, встроенные контурные фильтры, два передающих ГУН, смеситель с конвертором понижения частоты в цепи обратной связи, делитель частоты, используемый для придания гибкости схеме распределения частот. Модулятор на тракте опорной частоты использует векторное суммирование для отсеваания зеркальной полосы частот, а также гашения 3-й и 5-й гармоник. Поэтому, системе не требуются внешние фильтры промежуточной частоты. Контурный фильтр, необходимый передающим ГУН интегрирован в SKY74400.

В. Передающие ГУН

Два ГУН передачи предназначены для работы в диапазонах GSM850, EGSM900, DCS1800 и PCS1900. Передающие ГУН используют ту же технологию DFC, что и синтезатор для синхронизации с передающим контуром. Передний фронт сигнала TXENA инициализирует систему DFC. Выходные буферы подают сигнал на усилители мощности. В системе используются два передающих буфера: один для низкочастотного ГУН, другой для высокочастотного ГУН.

3. Краткая техническая информация

C. Усилитель мощности

Усилитель мощности приемопередатчика SKY74400 состоит из отдельных блоков для GSM850/EGSM900 и DCS1800/PCS1900, цепь, согласованная по выходному сопротивлению 50 Ом, и блоку PAC со встроенным токочувствительным резистором. BiCMOS включает в себя цепь регулятора мощности и схему интерфейса. Усилитель мощности на гетеропереходном биполярном транзисторе расположен на кристалле из арсенида галлия и поддерживает диапазоны GSM850 и GSM900. Другой усилитель поддерживает диапазоны DCS1800 и PCS1900. Оба усилителя мощности подключены к одним контактам блока питания. Входной и выходной порты SKY74400, содержат внутренние цепи согласования с нагрузкой в 50 Ом, чтобы понизить количество используемых внешних компонентов, обычно применяемых в четырехдиапазонных устройствах. SKY74400 содержит схему переключения диапазонов и управляется сигналом BAND_SELECT, который может принимать два значения: 0 для диапазона GSM и 1 для DCS/PCS. Контакты VBAT подключены к внутреннему токочувствительному резистору и соединяют схему с системой iPAC, которая нечувствительна к изменениям температуры, параметров напряжения и подаваемой мощности. Сигнал ENABLE включает усилитель мощности, что позволяет снизить расход энергии.

(4) Стабилизаторы линейного напряжения

Приемопередатчик SKY74400 включает в себя цепь стабилизаторов, избавляя от необходимости использовать отдельный блок управления питанием или отдельных стабилизаторов. Каждый функциональный блок SKY74400 содержит отдельный встроенный стабилизатор.

3. Краткая техническая информация

3.2 Тактовый генератор частоты 13 МГц (ТГУН, X601)

Тактовый генератор частоты 13 МГц (X601) состоит из термостабилизированного генератора, управляемого напряжением (ТГУН), выдающего частоту 13 МГц. Этот ТГУН используется SKY74400, аналоговым процессором низкочастотной части (U101, AD6535) и цифровым процессором низкочастотной части (U103, AD6527B).

Рис. 3-3. Схема ТГУН

3.3 Питание приемопередатчика (FL601)

	Vc1	Vc2	Vc3	Ток
EGSM-Tx	0.0-0.1В	0.0-0.1В	2.3-3.0В	Макс. 10 мА
EGSM-Rx	0.0-0.1В	0.0-0.1В	0.0-0.1В	≈ 0 мА
DCS/PCS-Tx	0.0-0.1В	2.3-3.0В	0.0-0.1В	Макс. 10 мА
DCS-Rx	0.0-0.1В	0.0-0.1В	0.0-0.1В	≈ 0 мА
PCS-Rx	2.3-3.0В	0.0-0.1В	0.0-0.1В	Макс. 10 мА

Таблица 3-1. Логика управления входного каскада.

3. Краткая техническая информация

Рис. 3-4. Схема входного каскада (FEM)

3. Краткая техническая информация

3.4 Центральный цифровой процессор (AD6527B, U103)

Рисунок 3-5. Функциональная блок-схема внешнего интерфейса AD6527

3. Краткая техническая информация

- AD6527 является процессором ADI.

- AD6527 содержит следующие модули:

1. Подсистема управляющего процессора.

- 32-битный управляющий процессор ARM7TDMI
- тактовая частота 58.5 МГц при напряжении питания 1.7В
- Встроенный кэш инструкций/данных 16 Кб
- 1 Мбит системной памяти SRAM

2. Подсистема DSP

- 16-бит процессор DSP с фиксированной запятой
- 91 MIPS при напряжении питания 1.7В
- 16Кб данных и 16Кб программной памяти SRAM
- Кэш 4Кб программных инструкций
- Архитектура поддерживает режимы: Full Rate, Enhanced Full Rate, Half Rate, а так же алгоритмы кодировки речевого сигнала AMR.

3. Периферийные подсистемы

- Встроенные периферийные системы и внешний интерфейс
- Поддержка для Burst и Page Mode режимов памяти
- Поддерживается PSRAM
- Модуль кодировки GPRS сигналов поддерживающий алгоритмы кодировки GAE1 и GAE2
- Параллельный и последовательный интерфейсы дисплея
- Клавиатурный интерфейс 8 x 8
- Четыре независимых программируемых подсветки и сервисная подсветка.
- Интерфейс 1.8В и 3.0В SIM-карты, 64 килобит в секунду
- Интерфейс USB
- IrDA интерфейс передачи данных (медленная, средняя и быстрая передача данных)
- Улучшенный последовательный порт
- Специальный интерфейс SPI
- Интерфейс дискового переключателя
- Интерфейс JTAG для тестирования и эмуляции внутренней схемы

4. Другие

- Поддерживается частоты 13 МГц и 26 МГц
- Рабочее напряжение ядра 1.8 В
- 204-контактная микросхема типа LFBGA (мини-BGA)

5. Приложения

- Радиотерминал для диапазонов GSM900/DCS1800/PCS1900/PCS850
- GSM фаза 2+
- GPRS Класс 12
- Служба мультимедийных сообщений - Multimedia Services (MMS)
- Расширенная система обмена сообщениями - Extended Messaging System(EMS)

3. Краткая техническая информация

3.4.1 Межэлементные соединения с внешними устройствами

А. Интерфейс блока часов реального времени.

Управляется с помощью внешнего кварцевого резонатора.

Кварцевый резонатор генерирует 32,768 кГц.

В. Интерфейс модуля ЖКД

ЖК-дисплей управляется AD6527B(U103), НЧ частью.

В рабочем режиме AD6527B(U103) управляет ЖК-дисплеем через порты: _LCD_CS, LCD_DIM_CTRL, LCD_RESET, LCD_WR, LCD_RS, IF_MODE.

Сигнал	Описание
_LCD_CS	Сигнал включения схемы запуска основного ЖКД. Схема запуска основного ЖКД имеет свой контакт для сигналов CS.
LCD_DIM_CTRL	Управляет режимом гашения экрана. (GPIO_5)
LCD_RESET (GPIO 15)	Сброс модуля ЖКД. Этот сигнал поступает напрямую из цифровой НЧ части.
_WR	Управление записью
2V8_MV	Напряжение 2.8 В подается на схему запуска ЖКД.

Таблица 3-2. Описание управляющих сигналов ЖКД.

3. Краткая техническая информация

Подсветка модуля ЖКД управляется цифровой НЧ частью через AAT2806IXN-4.5-T1, U402. Управляющие сигналы диодов подсветки модуля ЖКД даны в таблице:

Сигнал	Описание
LCD_DIM_CTL (GPO 23)	Управление уровнем яркости подсветки ЖКД (16 уровней)

Таблица 3-3. Управление диодами подсветки ЖКД

C. Интерфейс РЧ

AD6527B осуществляет управление РЧ компонентами подачей команд PA_BAND, ANT_SW1, ANT_SW2, ANT_SW3, CLKON, PA_EN, S_EN, S_DATA, S_CLK, RF_PWR_DWN.

Сигнал	Описание
PA_BAND (GPO 17)	Выбор частотного диапазона усилителя мощности
ANT_SW1 (GPO 9)	Выбор диапазона антенным переключателем
ANT_SW2 (GPO 10)	Выбор диапазона антенным переключателем
ANT_SW3 (GPO 11)	Выбор диапазона антенным переключателем
CLKON	Включение/выключение РЧ стабилизатора.
PA_EN (GPO 16)	Включение/выключение усилителя мощности
S_EN (GPO 19)	Включение системы ФАПЧ
S_DATA (GPO 20)	Последовательные данные к системе ФАПЧ
S_CLK (GPO 21)	Тактовые импульсы системы ФАПЧ
RF_PWR_DWN (GPO 4)	Выключение питания

Таблица 3-4. Описание управляющих сигналов РЧ интерфейса

3. Краткая техническая информация

D. Интерфейс SIM

Микросхема AD6527B является модулем SIM интерфейса. Во время звонка микросхема AD6527 периодически проверяет наличие SIM-карты в телефоне, однако в режиме ожидания проверка не происходит. Для связи с SIM-картой используются 3 сигнала: SIM_DATA, SIM_CLK, SIM_RST(GPIO_23). Функции управляющих сигналов интерфейса SIM детально описаны в таблице 3-6.

Сигнал	Описание
SIM_DATA	Этот вывод получает и отправляет данные на SIM-карту. Данная модель поддерживает только SIM-карты с интерфейсом 3.0 В
SIM_CLK	Тактовый генератор частоты 3,25 МГц.
SIM_RST (GPIO_23)	Сброс блока SIM

Таблица 3-5. Описание управляющих сигналов интерфейса SIM.

Рисунок 3-6. Интерфейс SIM схемы AD6527B

E. Интерфейс клавиатуры

Включает в себя 5 вертикальных и 5 горизонтальных рядов, а так же GPIO 35. AD6527B определяет, нажата ли кнопка или нет по сигналу прерывания.

F. Прерывания AD6535

Высокий выходной сигнал прерывания генерируется в AD6535 вспомогательным АЦП модулем, звуковым модулем и модулем зарядки.

3.4.2 Архитектура AD6527B

Рис. 3-7. Архитектура AD6527B

Архитектура AD6527B изображена выше на рисунке 3-10. Схема AD6527 состоит из трех основных подсистем, соединенных между собой с помощью динамической и гибкой коммуникационной шины. Она так же включает в себя системную память (SRAM) и соединена с флэш-памятью, НЧ конвертером и терминалом MMI, SIM и USC (Universal System Connector). Подсистема цифровой обработки сигналов (DSP) выполняет функции обработки речи, коррекции каналов, функцию кодека. Программы, используемые для выполнения таких задач, могут храниться во внешней флэш-памяти и по желанию могут быть динамически загружены в память DSP и кэш инструкций. Подсистема микроконтроллера поддерживает все программное обеспечение GSM, включая 1, 2 и 3 уровни протоколов GSM, MMI и прикладное программное обеспечение, например, службы передачи данных, программное обеспечение для тестирования и настройки. Подсистема так же связана с системной памятью (SRAM), а так же содержит загрузочную память (boot ROM) со специальным программным обеспечением для инициализации внешней флэш-памяти с помощью встроенного последовательного интерфейса, соединяющего чип с внешней флэш-памятью.

Периферийная подсистема состоит из внешних системных устройств, таких как контроллер прерываний, часы реального времени, сторожевой таймер, блок управления питанием, а так же модуль синхронизации и управления. Она так же включает периферийный интерфейс функций терминала: клавиатура, мониторинг батареи, радио часть и дисплей. Микроконтроллер, наряду с подсистемой цифровой обработки сигналов, подключен к периферийной подсистеме через периферийную шину (PBUS).

Для хранения программного обеспечения и других данных, микроконтроллер и подсистема цифровой обработки сигналов имеют доступ к встроенной системной памяти (SRAM) и внешней флэш-памяти. Системная память подключена через шину памяти (RBUS) и управляет арбитражной логикой шины.

Флэш-память подключена подобным способом через внешнюю шину памяти (EBUS)

3. Краткая техническая информация

3.5 Центральный аналоговый процессор с блоком управления питанием (AD6535, U101)

Рис. 3-8. Функциональная блок-схема AD6535

3. Краткая техническая информация

- AD6535 - процессор, разработанный компанией ADI. AD6535 содержит интерфейс GMSK модуляции, вспомогательный АЦП, а так же осуществляет обработку голосового сигнала и обеспечивает управление питанием.
- AD6535 состоит из
 1. Передающая секция НЧ части
 - Модуляция GMSK
 - Передающие ЦАП синфазных и квадратурных сигналов, фильтры
 - ЦАП линейной регулировки мощности
 2. Принимающая секция НЧ части
 - Принимающие ЦАП синфазных и квадратурных сигналов, фильтры
 3. Вспомогательный участок
 - Цепь проверки напряжения
 - ЦАП автоматической регулировки частоты
 - Вспомогательный АЦП
 - Контроллеры подсветки
 4. Секция обработки звука
 - Кодек обработки речевого сигнала на 8 кГц и 16 кГц
 - 48 кГц монофонический ЦАП
 - Усилители мощности
 5. Секция управления питанием
 - Стабилизаторы напряжения
 - Цепь зарядки батареи
 - Цепь Защиты батареи
 6. Секция цифрового процессора
 - Управление, НЧ часть и звуковые последовательные порты
 - Логика прерываний

3. Краткая техническая информация

3.5.1 Передача сигнала в НЧ части

1. Передающая секция AD6535 создана для поддержки GMSK, как для одноканальных, так и для многоканальных приложений.
2. Схема AD6535 включает в себя GMSK модулятор, используемый для работы с GSM. Для модуляции потока последовательных данных, поступающих с порта BSSPORT, модулятор GMSK использует таблицу, записанную в ПЗУ. Модулятор GMSK основан на 3GPP TS 45.004 версии 5.1.0, выпуск 5.

Рисунок 3-9. Передающая секция НЧ части процессора AD6535

3.5.2 Прием сигнала в НЧ части

1. Данный участок включает в себя два идентичных канала АЦП, обрабатывающие синфазные (I) и квадратурные (Q) входные сигналы.

Рисунок 3-10. Секция приема сигнала в НЧ части процессора AD6535

3.5.3 Вспомогательный участок

1. Эта секция включает в себя ЦАП автоматического управления частотой, буферы подачи опорного напряжения, вспомогательный АЦП, контроллеры подсветки.
 - AFC DAC:13-битный
2. Эта секция также включает в себя вспомогательный АЦП и буферы подачи опорного напряжения.
 - IDAC:10-битный
 - Вспомогательный АЦП обеспечивает:
 - Два дифференциальных входа для считывания температуры.
 - Дифференциальный вход для считывания тока зарядки

Рисунок 3-11. Вспомогательный участок процессора AD6535

3. Краткая техническая информация

3.5.4 Аудио секция обработки звукового сигнала

1. Секция обработки звукового сигнала AD6535 поддерживает различные коммуникации и персональные аудио приложения.
2. Секция обработки звукового сигнала включает в себя аудио кодек с двумя ЦАП, контроллер громкости звука звонка, интерфейс микрофона, многоканальные аналоговые вход и выход.

Рис. 3-12. Аудио секция процессора AD6535

3.5.5 Управление системой электропитания

Рисунок 3-13. Секция управления системой электропитания процессора AD6535

1. Логическая схема последовательности включения питания

1. AD6535 управляет последовательностью включения питания.
2. Последовательность включения питания.
 - Если батарея установлена на место, то она подает питание на 8 стабилизаторов.
 - Затем, при обнаружении сигнала PWRONKEY, включается выход стабилизаторов.
 - Также поступает разрешающий сигнал REFOUT.
 - Генерируется сигнал сброса и посыпается на AD6527B.

3. Краткая техническая информация

Рисунок 3-14. Логическая схема электропитания AD6535

2. Блок стабилизаторов

1. В AD6537В имеются 8 стабилизаторов.
 - VCORE : подается на ядро цифрового НЧ процессора и цифровое ядро процессора AD6535
 - VMEM : подается на внешнюю память и интерфейс внешней памяти цифрового НЧ процессора (1.8В или 2.8В, 150mA)
 - VEXT : подается на цифровой радио интерфейс и высоковольтный интерфейс (2.8В, 170mA)
 - VSIM : подается на цепи интерфейса SIM в цифровом процессоре и SIM-карте (2.85В, 20mA)
 - VRTC : подается на модуль часов реального времени (1.8 В, 20 мА)
 - VABB : подается на аналоговые части AD6537В
 - VMIC : подается на цепи интерфейса микрофона (2.5 В, 1 мА)
 - VVCXO : подается на генератор с квадратной стабилизацией частоты (2.75 В, 10 мА)
 - VBACK : заряжает батарею резервного питания и подается на стабилизатор часов реального времени (2.8 В, 1.8 В)
 - VAPP : подается на сопроцессоры, например, сопроцессор оцифровки сигналов сенсорного экрана (3.0 В, 1.8 В)
 - VUSB : питает интерфейс USB.

3. Краткая техническая информация

3. Блок зарядки батареи

1. Блок может быть использован для зарядки ионно-литиевых батарей.

Аппаратура выполняет управление инициализацией зарядного устройства, процессом непрерывной подзарядки малым током, зарядкой ионно-литиевой батареи.

2. Процесс подзарядки

- Проверка подключения зарядного устройства.
- Если AD6535 определяет что зарядное устройство подключено, начинается зарядка постоянным током/постоянным напряжением.
- Исключение: Если напряжение батареи ниже 3,2 В, то сначала начинается предварительная зарядка (режим зарядки слабым током).
- Когда напряжение батареи достигает 3,2 В, начинается зарядка постоянным током/постоянным напряжением.

3. Используемые для подзарядки выводы

- VCHG : Питание зарядки
- GATEDRIVE : Вывод зарядного ЦАП
- ISENSE : Питание датчика зарядного тока
- VBATSENSE : Питание входа датчика напряжения батареи
- BATTYP : Вход датчика типа батареи
- REFCHG : Вывод опорного напряжения

4. Зарядное устройство

- Напряжение на входе: переменный ток 85 В - 260 В, 50 - 60 Гц.
- Напряжение на выходе: постоянный ток 5.2 В (0.2 А).
- Выходной ток: макс. 800 мА (50 мА).

5. Батарея

- Ионно-литиевая батарея (макс. 4.2 В, номинальное - 3.7 В)
- Стандартная батарея: Емкость 830 мА

Рисунок 3-15 Блок зарядки батареи AD6535

3. Краткая техническая информация

3.6 ИС зарядки (ISL6299, U508)

Рисунок 3-16 Схема зарядного блока

Схема ISL6299 спроектирована для зарядки одномодульных ионно-литиевых и литий-полимерных батарей, используя в качестве источника питания порт USB или настольный «кредл».

Автоматический выбор ввода

При наличии обоих источников питания одновременно, блок зарядки выбирает один из них. Если сигнал CRDL выше сигнала POR, в качестве источника выбирается ввод CRDL. В противном случае для зарядки используется ввод USB. Если входное напряжение CRDL ниже напряжения батареи, в то время как входное напряжение USB выше напряжения батареи, то для зарядки батареи используется канал USB. Схема управления питанием отключает оба внутренних источника питания перед переключением с одного источника питания на другой, для предотвращения короткого замыкания двух канальных полевых униполярных МОП-транзисторов (MOSFET).

Зарядный ток USB

Если в качестве источника питания выбран канал USB, зарядный ток управляет логикой ввода USBON. Если сигнал USBON приобретает логическое значение «низкий», зарядный блок отключается. Если сигнал USBON приобретает логическое значение «высокий» зарядный ток фиксируется на стандартном коэффициенте 380 мА. Говоря о USB, мы можем сказать, что контакт USBON имеет ту же функцию, что и контакт EN. Таблица, представленная ниже показывает, как осуществляется управление зарядкой батареи через USB с помощью контактов USBON и EN. Если контакт USBON остается единственным подключенным к схеме, это воспринимается схемой так, как если бы USBON приобрел логическое значение «низкий». Обычно P-channel MOSFET на входе USB при комнатной температуре имеет $r_{DS(ON)} = 700$ мОм. С зарядным током 380 мА обычное максимальное значение напряжения 260 мВ. Если входное напряжение падает до такого уровня, что разница между контактом USB и контактом BAT становится меньше 260 мВ, $r_{DS(ON)}$ становится лимитирующим фактором зарядного тока и зарядный блок возвращается к стандартным настройкам питания.

3. Краткая техническая информация

Рис 3-17. Блок-схема

Зарядный ток «кредла»

Зарядный ток «кредла» управляет только контактом EN, контакт USBON не влияет на зарядный ток «кредла». Зарядный ток «кредла» управляет внешним резистором, подключенным между контактами ICDL и GND. Ток можно посчитать с помощью одного из уравнений данных в описании вывода ICDL. Два уравнения используются для расчета тока «кредла», каждое отвечает за отдельный диапазон токов. Обычно P-channel MOSFET на входе CRDL при комнатной температуре имеет $r_{DS(ON)} = 600$ мОм. Когда разница между входным и выходным током невелика, реальный зарядный ток, так же, как в случае с USB, лимитируется $r_{DS(ON)}$. В противном случае, при большой разнице между входным и выходным током, ток может лимитироваться системой термозащиты.

Напряжение непрерывной подзарядки

Напряжение при константной фазе составляет 4.2 В.. Этот коэффициент может смещаться в пределах 1%, в зависимости от температуры внешней среды в пределах от -40°С до 70°С.

3. Краткая техническая информация

Ток непрерывной зарядки малым током

Когда напряжение батареи опускается ниже минимального напряжения батареи, подается соответствующий сигнал V_{MIN} , и зарядный блок переходит в режим предварительной зарядки малым током, когда зарядный ток составляет 14% от зарядного тока, обычно подаваемого через «кредл». Если для предварительной зарядки используется USB, ток зарядки составит приблизительно 53 мА.

Индикация окончания зарядки

Контакт CHG MOSFET отключается, когда зарядный ток падает ниже уровня значения I_{MIN} , который программируется для «кредла» и неизменен для USB. Когда статус окончания зарядки достигнут, статус сигнала CHG блокируется. Блокировка может быть снята при одном из следующих условий:

1. Модуль выключен и включен
2. Выбранный источник питания отключен и снова подключен
3. Сигнал USBON принимает логическое значение «низкий», а затем снова «высокий» при использовании USB
4. Напряжение на контакте BAT падает ниже минимального напряжения для режима зарядки постоянным током. Тем не менее, статус контакта CHG приводит к тому, что зарядный блок не отключается до тех пор, пока источник питания подключен.

Индикация подключенного источника питания

При подключенном USB или «кредле», когда входное напряжение достигает границы POR, контакт PPR MOSFET включает индикатор присутствия источника питания.

Диапазон удовлетворительного напряжения

Даже при наличии питания зарядный блок может не выдавать зарядный ток, если не соблюdenы требования к источнику питания. Чтобы напряжение отвечало требованиям к диапазону напряжения, должны быть соблюdenы два следующих условия:

1. V_{CDRL} или $V_{USB} > V_{POR}$
2. V_{CDRL} или $V_{USB} - V_{BAT} > V_{OS}$

Где переменная V_{OS} - это компенсатор входного напряжения и компаратор выходного напряжения.

V_{POR} и V_{OS} имеют отставание фаз, что показано в таблице электрических спецификаций.

Зарядное устройство не будет производить зарядку, если входное напряжение не отвечает условиям удовлетворительного напряжения.

Система термозащиты (Thermal Foldback) (Thermaguard™)

Система термозащиты снижает зарядный ток, если внутренняя температура достигает границы термобезопасности, обычно это 100°C. Эта система защищает зарядное устройство от термической перегрузки и подачи высоких напряжений.

3.7 ИС камеры (AIT811,U701)

Рис. 3-18. Блок-схема AIT813

3. Краткая техническая информация

Рис. 3-19. Схема цепи АИТ813

3. Краткая техническая информация

3.8 ИС MIDI (YMU787, U203)

Рис 3-20. Блок-схема YMU787

3. Краткая техническая информация

Рис. 3-21. Схема цепи YMU787

Интерфейс центрального процессора (ЦП)

Центральный процессор использует 8-битный параллельный интерфейс.

Четыре управляющих сигнала (/wr, /rd, /cs, A0 pin), 8 каналов передачи данных (D0 to D7), и 1 канал прерываний (/IRQ) составляют 13-контактный интерфейс, подключенный к ЦП. Этот блок управляет записью и считыванием данных, используя изменение полярности управляющего сигнала.

Реестр интерфейса

Доступ к этому реестру возможен напрямую от внешнего ЦП. Доступный объем реестра интерфейса - 2 байта. Реестр интерфейса обеспечивает доступ к промежуточному реестру.

Промежуточный реестр

Этот реестр доступен через реестр интерфейса.

Промежуточный реестр предназначен для обеспечения доступа к управляющему реестру и памяти ROM/SRAM. Реестр называется промежуточным потому, что находится между реестром интерфейса и управляющим реестром. Промежуточный реестр содержит несколько разделов для управления различными функциями.

3. Краткая техническая информация

Управляющий реестр+ Память ROM/SRAM

Управляющий регистр и память ROM/SRAM доступны из систем промежуточного регистра: регистра мгновенной записи, регистра отложенной записи и регистра мгновенного чтения.

В управляющем регистре существует специальный регистр для управления синтезатором. Голосовые параметры для FM (GM 128 голосов + DRUM 40 голосов) и волновые параметры для WT хранятся в ROM. Память SRAM используется для загрузки произвольных голосовых параметров FM и волновых данных для WT. Кроме того, она используется в качестве буфера при потоковом воспроизведении PCM/ADPCM.

FIFO

Аббревиатура FIFO (First Input First Output - Система очереди) означает, что данныечитываются из памяти в том порядке, в котором они были туда записаны. Есть два способа, которыми информация может быть записана в FIFO в промежуточном регистре: «путь мгновенной записи», для доступа в управляющий регистр и память ROM/SRAM мгновенно, а так же «путь отложенной записи» для доступа в управляющий регистр по прохождении через контроллер последовательности. Размер FIFO при мгновенной записи - 64 байта, а при отложенной - 512 байт.

Контроллер последовательности

Предназначен для интерпретации типов данных, использующих «путь отложенной записи». В основном - это музыка. Здесь музыкальные данные интерпретируются и направляются на синтезатор, установленный в цепи после контроллера последовательности. Затем музыка проигрывается.

Гибридный синтезатор

Это устройство включает в себя встроенный полифонический синтезатор, содержащий стереофоническую гибридную систему, которая воспроизводит до 64 голосов. Доступны синтезатор FM, синтезатор WT, воспроизведение аудио потока, синтезатор HV, и синтезатор AL.

Интерфейс цифрового аудио входа

Это трехпроводной последовательный интерфейс. Объем файла не более 16 бит.

Секция ЦФАПЧ / Секция конвертирования частоты дискретизации

Частоты дискретизации сигналов с секции цифрового аудио интерфейса меняются на 48 кГц.

Секция цифрового эквалайзера

Это цифровой эквалайзер. Занимается настройкой звуковых сигналов гибридного синтезатора и цифровых звуковых сигналов.

Арифметическое управление DVX

Функция двухканальной визуализации звука, основанная на технологии DVX позволяет создавать реалистичный звук с помощью двух близко расположенных динамиков.

Фильтр дискретизации с повышенной частотой

Фильтр с четырехкратным повышением частоты. Этот фильтр конвертирует сигнал с частотой 48 кГц в сигнал с частотой 192 кГц, затем этот сигнал пересыпается на ЦАП.

Секция общего параллельного порта ввода/вывода (GPIO)

Всего 6 общих параллельных портов ввода/вывода. С помощью них производится запись и чтение промежуточного реестра.

3. Краткая техническая информация

Управление светодиодами подсветки и vibrозвонком

Осуществляет синхронизацию vibrозвонка и светодиодов с воспроизведенной мелодией и управляет ими. Возможно так же управление, не синхронизированное с мелодией. Модуль поддерживает управление трехцветными светодиодами, максимально может отображать до 7 цветов одновременно.

Блок создания частоты синхронизации

Этот прибор поддерживает диапазон частот от 1.5 МГц до 27 МГц.

Блок генерирует частоту, которая требуется БИС и ФАПЧ.

ЦАП

Секция конвертирует цифровые сигналы синтезатора и цифровые звуковой секции в аналоговые сигналы.

Работает с разрешением 16 бит.

Аналоговый линейный вход (EXTIN, RXIN)

Используется для ввода внешних звуковых сигналов и звуковых сигналов динамиков.

Уровень громкости регулируется для каждого канала отдельно.

Секция смесителя

Предназначен для совмещения источника входного сигнала (Выход ЦАП, RXIN, и EXTIN) с аналоговым выходом (SPOUT, HPOUT, EXTOUT, TXOUT) и осуществляет смешивание.

Усилитель эквалайзера

С помощью настройки резисторов и внешних модулей изменяет настройки фильтра и усиления.

Усилитель динамиков

Усиливает сигнал двух цифровых динамиков. Усилитель имеет максимальную выходную мощность 500 мВт при SPVDDL/R = 3.6 В и RL= 8 Ом. Громкость регулируется настройкой уровня на первой стадии усиления.

Усилитель наушников (HPOUT)

Усилитель, предназначенный для стереофонических наушников (RL = 16 Ом).

Когда используется в качестве монофонического выхода, Rch отключается.

Содержит схемы настройки громкости и регулировки низких частот.

Внешний выходной усилитель (EXTOUT)

Усилитель для внешнего выхода (RL = 600 Ом)

Содержит схемы настройки громкости и регулировки выходного уровня сигнала.

Аналоговый линейный выход (TXOUT)

Монофонический выход (RL = 10 кОм)

Содержит схемы настройки громкости и регулировки выходного уровня сигнала.

3. Краткая техническая информация

3.9 Нажатия клавиш и сканирование сигналов клавиатуры

Рис. 3-22. Нажатия клавиш и сканирование сигналов клавиатуры

3. Краткая техническая информация

3.10 Микрофон

Микрофон расположен на передней стороне корпуса телефона и подсоединен к основной плате. Звуковой сигнал передается через контакты AIN1P и AIN1N схемы AD6535. Напряжение VMIC передается из AD6535, и является напряжением смещения для AIN1P. Затем сигналы AIN1P и AIN1N проходят в голосовом диапазоне через АЦП AD6535. Оцифрованная речь (PCM 8KHz, 16KHz) передается через секцию DSP AD6527B для дальнейшей обработки (кодирование, интерлинвинг и пр.).

Рис. 3-23. Соединение микрофона с AD6535

3.11 Основной динамик

Рис. 3-24. Основной динамик

3. Краткая техническая информация

3.12 Интерфейс гарнитуры

Рис. 3-25 Интерфейс гарнитуры, аналоговый переключатель гарнитуры

3. Краткая техническая информация

3.13 Память (INTEL, U202)

Рис. 3-26. Память

3. Краткая техническая информация

3.14 Модуль BLUETOOTH (LBMA-2C67B2, M401)

Рис. 3-27. Модуль Bluetooth

3. Краткая техническая информация

3.15 Разъем камеры, стабилизатор (LDO) камеры (U401,U403)

Figure 3-28. CAMERA CONNECTOR

Рис. 3-29. Стабилизатор (LDO) камеры

3. Краткая техническая информация

3.16 Подсветка клавиатуры (AAT2806IXN-4.5-T1,U402)

Рис. 3-30. Основная подсветка клавиатуры

Рис. 3-31. Верхняя подсветка клавиатуры

3. Краткая техническая информация

3.17 Светодиод вспышки

Рис. 3-32. LDO светодиода вспышки

3.18 Память NAND (K9F1208U0B-J1B0, U702)

Рис. 3-33. Память NAND

3. Краткая техническая информация

3.19 Датчик сдвига крышки (U506, U507)

Рис. 3-34. Датчик сдвига крышки

3.20 Виброзвонок

Виброзвонок расположен на основной плате. Виброзвонок управляет сигналом VIBRATOR от AD6527B

Рис. 3-35. Мотор

3. Краткая техническая информация

3.21 Мультимедийный микрофон (OSF213, MIC701)

Рис. 3-36. Мультимедийный микрофон

4. Устранение неисправностей

4.1 Неисправность приема сигнала

Точки проверки

Генератор частоты 13 МГц

SKY74400

Входной каскад (FEM)

Рис. 4-1

Последовательность проверки

4. Устранение неисправностей

(1) Проверка цепи ТГУН

Точки проверки

Последовательность проверки

Схема включения

Осциллографма

График 4-2(a)

График 4-2(b)

4. Устранение неисправностей

(2) Проверка FEM и антенного коммутатора

Точки проверки

Схема включения

Осциллографма

FEM управляет режимом передачи GSM и DCS
График 4-3(a)

FEM управляет режимом передачи PCS
График 4-3(b)

4. Устранение неисправностей

Последовательность проверки

	Vc1	Vc2	Vc3	Ток
EGSM Передача	0.0-0.1В	0.0-0.1В	2.3-3.0В	Макс. 10 мА
EGSM Прием	0.0-0.1В	0.0-0.1В	0.0-0.1В	≈ 0mA
DCS/PCS Передача	0.0-0.1В	2.3-3.0В	0.0-0.1В	Макс. 10 мА
DCS Прием	0.0-0.1В	0.0-0.1В	0.0-0.1В	≈ 0mA
PCS Прием	2.3-3.0В	0.0-0.1В	0.0-0.1В	Макс. 10 мА

Таблица 4-2

4. Устранение неисправностей

(3) Проверка принимаемых сигналов I и Q

Точки проверки

Схема включения

Осциллограмма

График 4-4

Последовательность проверки

Проверить C512, C513.
Проверить есть ли
значительное различие.
• См. график 4-4

4. Устранение неисправностей

4.2 Неисправность передачи сигнала

Точки проверки

Генератор частоты 13 МГц

SKY74400

FEM

Рис. 4-2.

Последовательность проверки

4. Устранение неисправностей

(1) Проверка цепи ТГУН

Точки проверки

Последовательность проверки

Схема включения

Waveform

Graph 4-6(a)

Graph 4-6(b)

(2) Проверка FEM и антенного коммутатора

Точки проверки

Схема включения

Осциллографма

График 4-7(а)
FEM управляет EGSM

График 4-7(б)
FEM управляет DCS и PCS

4. Устранение неисправностей

Последовательность проверки

	Vc1	Vc2	Vc3	Ток
EGSM Передача	0.0-0.1В	0.0-0.1В	2.3-3.0В	Макс. 10 мА
EGSM Прием	0.0-0.1В	0.0-0.1В	0.0-0.1В	≈ 0mA
DCS/PCS Передача	0.0-0.1В	2.3-3.0В	0.0-0.1В	Макс. 10 мА
DCS Прием	0.0-0.1В	0.0-0.1В	0.0-0.1В	≈ 0mA
PCS Прием	2.3-3.0В	0.0-0.1В	0.0-0.1В	Макс. 10 мА

Таблица 4-3

4. Устранение неисправностей

(3) Проверка управляющих сигналов усилителя мощности

Точки проверки

Схема включения

Осциллографмма

График. 4-8

Последовательность проверки

Проверить TX_RAMP и PA_EN
Проверить есть ли
значительное различие.
• См. график 4-8

4. Устранение неисправностей

(4) Проверка передаваемых сигналов I и Q

Точки проверки

Схема включения

График. 4-9

Осциллографма

Последовательность проверки

Проверить есть ли
значительное различие.
• См. график 4-9

4.3 Неисправность включения.

Точки проверки

Рис. 4-3

Схема включения

4. Устранение неисправностей

Последовательность проверки

4.4 Неисправность зарядного устройства.

Точки проверки

Рис. 4-4

Схема включения

4. Устранение неисправностей

Последовательность проверки

4.5 Неисправность виброзвонка

Точки проверки

Рис 4-5

Схема включения

4. Устранение неисправностей

Последовательность проверки

Подготовка: Войти в сервисный режим, установить «Vibrator on» в пункте «Vibrator» меню «BB test».

4.6 Неисправность ЖКД

Точки проверки

Рис 4-6

• Точки проверки

- Исправность сборки модуля ЖКД
- Исправность пайки разъема
- Исправность гибкой печатной платы, соединяющей основную плату с верхней платой.

4. Устранение неисправностей

Схема включения

- Разъем IF

UPPER

- Разъем ЖКД

Последовательность проверки

4. Устранение неисправностей

4.7 Неисправность модуля Bluetooth

Точки проверки

Рис 4-7

Схема включения

Последовательность проверки

4. Устранение неисправностей

График 4-10(a) _Blue_RST

График 4-10(b) _DEBUG_Tx, Rx

График 4-10(c) _PCM SYNCs, Tx, Rx, USCO

4.8 Неисправность громкоговорителя

Точки проверки

Рис. 4-8

Схема включения

4. Устранение неисправностей

Последовательность проверки

4.9 Неисправность обнаружения SIM-карты

Точки проверки

Рис. 4-9

Схема включения

4. Устранение неисправностей

Последовательность проверки

4.10 Неисправность гарнитуры.

Точки проверки

Рис. 4-10

Схема включения

4. Устранение неисправностей

Последовательность проверки

Неисправность принимающего канала гарнитуры

Неисправность определения гарнитуры

Неисправность передающего канала гарнитуры

4. Устранение неисправностей

4.11 Неисправность подсветки клавиатуры.

Рис. 4-11

Основная плата

Последовательность проверки

4. Устранение неисправностей

Точки проверки

Схема включения

Подсветка верхней клавиатуры

Рис. 4-12

Верхняя плата

Последовательность проверки

4. Устранение неисправностей

4.12 Неисправность динамика

Точки проверки

Рис. 4-13

Схема включения

Логика переключения

	SPK_RCV_SEL
L	RECEIVER
H	SPEAKER

Последовательность проверки

Установить Agilent 8960, тестирование EGSM, режим DCS, PCS.
Установить аудио оборудование в режим PRBS или незатухающего колебания.
Громкость установить на максимум.

4. Устранение неисправностей

4.13 Неисправность микрофона

Точки проверки

Рис. 4-14

Схема включения

Последовательность проверки

Установить Agilent 8960, тестирование EGSM, режим DCS, PCS

4. Устранение неисправностей

4.14 Неисправность часов реального времени

Точки проверки

Рис. 4-15

Схема включения

Последовательность проверки

4. Устранение неисправностей

4.15 Неисправность датчика сдвига крышки

Точки проверки

Рис. 4-16

Схема включения

Последовательность проверки

4. Устранение неисправностей

4.16 Неисправность камеры и вспышки

Точки проверки

Рис. 4-17

4. Устранение неисправностей

Схема включения

Разъем 1.3 мегапиксельной камеры (ELCO, MALE, 24PIN, 1.5T)

4. Устранение неисправностей

Последовательность проверки

5. Загрузка программного обеспечения и калибровка.

5. Загрузка программного обеспечения и калибровка.

5.1 Загрузка программного обеспечения

А. Схема соединений для загрузки программного обеспечения.

Рисунок 5-1 изображает схему соединений для загрузки программного обеспечения.

Рис. 5-1. Схема соединений для загрузки программного обеспечения.

5. Загрузка программного обеспечения и калибровка.

В. Порядок загрузки программного обеспечения.

1. После скачивания программы GSMULTI на GSCS, создайте новый каталог на диска C:, как показано ниже.

2. Запуск и настройка

5. Загрузка программного обеспечения и калибровка.

3. Нажмите клавишу «Start» и подключите телефон к кабелю.

5. Загрузка программного обеспечения и калибровка.

С. Ввод конфигурационной информации.

5. Загрузка программного обеспечения и калибровка.

5.2 Калибровка.

A. Список необходимого оборудования для калибровки.

Таблица 5-1. Список необходимого для калибровки оборудования.

Необходимое для калибровки оборудование	Тип/Модель	Изготовитель
Измерительное устройство для радиотелефонного оборудования.	HP-8960	Agilent
Кабель RS-232 и устройство JIG.		LG
РЧ кабель.		LG
Источник питания.	HP-66311B	Agilent
Интерфейсная плата GPIB	HP-GPIB	Agilent
Программное обеспечение для калибровки и заключительного испытания.		LG
Тестовая SIM.		
ПК (для установки программного обеспечения)	Pentium II, не менее 300 МГц	

B. Схема подключения оборудования.

Рис. 5-2 Подключение оборудования

5. Загрузка программного обеспечения и калибровка.

Рис. 5-3 Вид устройства JIG сверху.

С. Выполнение операций с использованием JIG.

Источник питания	Описание
Подаваемое электропитание	Обычно 4,0 В
Зарядное устройство	Используйте зарядное устройство TA-20G (24-х контактное)

Таблица 5-2. Питание устройства JIG.

№ переключателя	Наименование	Функциональная характеристика
Переключатель 1	ADI-REMOTE	В положении ВКЛ телефон переходит в активное состояние. Используется набор микросхем ADI.
Переключатель 2	TI-REMOTE	В положении ВКЛ телефон переходит в активное состояние. Используется набор микросхем TI.
Переключатель 3	VBAT	К телефону подается питание от батареи.
Переключатель 4	PS	К телефону подается питание от источника питания.

Таблица 5-3. Описание микропереключателя JIG.

5. Загрузка программного обеспечения и калибровка.

№ светодиода	Наименование	Функциональная характеристика
LED 1	Power	Подача питания на JIG.
LED 2	TA	Индикация уровня зарядки батареи телефона.
LED 3	UART	Индикация состояния передачи данных через порт UART.
LED 4	MON	Индикация состояния передачи данных через порт MON.

Таблица 5-4. Описание светодиодов JIG.

1. Выполнить соединение как указано на Рис. 5-2 (последовательный кабель RS232 соединяет порт COM компьютера с портом MON устройства JIG).
2. Подключить питание 4,0 В.
3. Установить 3-й и 4-й микропереключатели DIP в положение ON (ВКЛ).
4. Нажать кнопку включения питания телефона+ если используется дистанционное включение – поставить 1-й переключатель DIP в положение ON (ВКЛ).

D. Процедура выполнения.

1. Выполнить соединение как указано на Рис. 5-2 (последовательный кабель RS232 соединяет порт COM компьютера с портом MON устройства JIG).
2. Включить питание ПК, загрузить операционную программу Windows 98
(Примечание: допускается работа в Windows 2000).
3. Запустить AUTOCAL.exe, на экране появится окно приложения AUTOCAL.

6. Блок схема

6. Блок схема

7. Принципиальная схема

8. Расположение элементов на печатной плате

8. Расположение элементов на печатной плате

S5200-SPFY0110801-1.1 BTM

8. Расположение элементов на печатной плате

S5200-SPE Y0037201-1.2 TOP

8. Расположение элементов на печатной плате

S5200-SPEY0037201-1.2 BTM

9. Инженерное меню

A. Об инженерном меню

Инженерное меню дает возможность специалисту по ремонту (техническому обслуживанию) проверить и протестировать основные функции аппарата.

B. Коды доступа

Последовательность нажатия кнопок для входа в инженерное меню - 2945#*. При нажатии «END» устройство возвращается из сервисного режима в обычный режим.

C. Использование кнопок

Для выбора пунктов меню используются кнопки «Up» («Вверх») и «Down» («Вниз»), для перехода к очередным операциям - кнопка «Select» («Выбор»). При нажатии кнопки «Back» происходит возврат к начальному меню проверки.

D. Структура инженерного меню

9. Инженерное меню

9.1 Проверка НЧ части (Меню 1).

9.1.1 Модуль ЖКД.

- 1) Цвета: Белый, Красный, Зеленый, Синий, Черный.

9.1.2 Камера.

- 1) Main LCD preview: Вывод изображения на основной ЖК-дисплей.
- 2) Sub LCD Preview: Вывод изображения на дополнительный ЖК-дисплей.
- 3) Flash on: Этот пункт меню включает вспышку
- 4) Flash off: Этот пункт меню выключает вспышку

9.1.3 Светодиоды.

- 1) Green On: Включить зеленый светодиод
- 2) Green Off: Выключить зеленый светодиод
- 3) Red On: Включить красный светодиод
- 4) Red Off: Выключить красный светодиод

9.1.4 Backlight

Это меню предназначено для проверки подсветки модуля ЖКД и подсветки клавиатуры.

- 1) Backlight on: одновременно включена подсветка ЖКД и подсветка кнопок.
- 2) Backlight off: одновременно выключена подсветка ЖКД и подсветка кнопок.
- 3) Backlight value: служит для изменения яркости подсветки. При входе в меню на дисплее индицируется яркость подсветки дисплея на данный момент. Для настройки уровня яркости используются кнопки Влево/Вправо. Последнее установленное значение яркости подсветки сохраняется в памяти энергонезависимого ЗУПВ.

9.1.5 Сигнал вызова.

Данное меню предназначено для проверки музыкального сигнала вызова.

- 1) Melody on: через громкоговоритель воспроизводится музыкальный сигнал.
- 2) Melody off: музыкальный сигнал не воспроизводится.

9.1.6 Виброзвонок.

Это меню предназначено для проверки режима виброзвонка.

- 1) Vibrator on: виброзвонок включен.
- 2) Vibrator off: виброзвонок выключен.

9.1.7 АЦП (Аналого-цифровой преобразователь).

Указывает параметр каждого АЦП.

- 1) MVBAT ADC (АЦП батареи основного напряжения)
- 2) AUX ADC (вспомогательный АЦП).
- 3) TEMPER ADC (температурный АЦП)

9.1.8 Батарея.

- 1) Bat Cal: Указывает значение калибровки батареи.

Следующие пункты меню индицируются на дисплее в приведенном порядке:

BAT_LEV_4V, BAT_LEV_3_LIMIT, BAT_LEV_2_LIMIT, BAT_LEV_1_LIMIT, BAT_IDLE_LI MIT,
BAT_INCALL_LIMIT, SHUT_DOWN_VOLTAGE, BAT_RECHARGE_LMT

- 2) TEMP Cal: Указывает значение калибровки температуры.

Следующие пункты меню индицируются на дисплее в приведенном порядке:

TEMP_HIGH_LIMIT, TEMP_HIGH_RECHARGE_LMT, TEMP_LOW_RECHARGE_LMT,
TEMP_LOW_LIMIT

9.1.9 Аудио.

Данное меню предназначено для установки регистра управления в микросхеме кодека речевого канала НЧ части. Фактическое значение может быть переписано, однако система возвращается к значению по умолчанию при выключении и включении телефона.

- 1) VbControl1: установка значений регистра VbControl1.
- 2) VbControl2: установка значений регистра VbControl2.
- 3) VbControl3: установка значений регистра VbControl3.
- 4) VbControl4: установка значений регистра VbControl4.
- 5) VbControl5: установка значений регистра VbControl5.
- 6) VbControl6: установка значений регистра VbControl6.

9.1.0 ЦАИ (Цифровой аудио-интерфейс).

Это меню предназначено для установки режима цифрового аудио-интерфейса для речевого транскодера и акустического тестирования.

- 1) DAI AUDIO: Аудио режим ЦАИ.
- 2) DAI UPLINK: тестирование речевого кодера.
- 3) DAI DOWNLINK: тестирование речевого декодера.
- 4) DAI OFF: выключение режима ЦАИ.

9.1.11 Модуль Bluetooth

Это меню предназначено для тестирования модуля Bluetooth.

- 1) Enter test mode: Вход в режим тестирования
- 2) Bypass mode On: Режим передачи включен
- 3) Bypass mode Off: Режим передачи выключен

9. Инженерное меню

9.2 Проверка РЧ тракта (МЕНЮ 2).

9.2.1 Проверка степени поглощения.

- 1) SAR Test On: Телефон непрерывно обрабатывает только передающий сигнал. Оборудование для настройки вызова не требуется.
- 2) SAR Test Off: обработка передающего сигнала отключена.

9.3 Заводской тест (МЕНЮ 3).

Заводской тест предназначен для автоматического тестирования НЧ части. При выборе данного меню тестирование будет произведено автоматически, и по его завершении на дисплей будет выведено предшествующее меню.

9.3.1 Автоматическая проверка.

В течение определенного времени производится тестирование по порядку: ЖКД, подсветки, виброзвонка, звонка, клавиатуры, микрофона и динамика.

9.3.2 Подсветка.

Подсветки ЖКД и клавиатуры включаются примерно на 1,5 секунды одновременно, затем выключаются.

9.3.3 Звуковой сигнал.

Данное меню предназначено для проверки громкости музыкального сигнала. Последовательность уровней громкости сигнала следующая: Уровень 1, Уровень 2, Уровень 3, Уровень 0 (без звука), Уровень 4, Уровень 5.

9.3.4 Виброзвонок.

Виброзвонок включается примерно на 1,5 секунды.

9.3.5 Модуль ЖКД.

- 1) Основной ЖКД

Тестирование производится путем попиксельного заполнения основного экрана ЖКД

9.3.6 Клавиатура.

При появлении «всплывающего» сообщения «Press any key» («Нажмите любую кнопку»), Вы можете нажать любую кнопку, включая боковые, кроме кнопки «Soft Key 2». Если кнопка работает нормально, ее название отображается на экране. Тестирование происходит автоматически в течение 15 секунд, после чего на дисплей будет выведено предшествующее меню.

9.3.7 Проверка микрофона и громкоговорителя.

Звуковой сигнал длительностью 3 секунды, записывается в память и автоматически воспроизводится через динамик.

9.4 Параметр трассировки (МЕНЮ 4).

Это меню НЕ является необходимым ни для специалистов технического обслуживания, ни для пользователей.

9.5 Таймер (МЕНЮ 5).

Это меню предназначено для установки режима цифрового аудио интерфейса для проверки речевого транскодера и акустического тестирования.

- 1) Все звонки: Отображает общее время разговора. Пользователи не могут изменять этот параметр.
- 2) Сброс таймера: Сброс общего времени разговора на (00:00:00).
- 3) DAI DOWNLINK : Speech decoder test
- 4) DAI OFF : DAI mode off

9.6 Заводской сброс (МЕНЮ 6).

Этот пункт меню форматирует блок данных в флэш-памяти и возвращает телефон к заводским настройкам.

ВНИМАНИЕ!

- ① Функция возврата к заводским настройкам должна использоваться только в процессе производства.
- ② Специалисты сервисных центров не должны использовать эту функцию, так как это может повлечь потерю данных, таких как настройки, данные РЧ калибровки, и т.д. Эти данные невозможно восстановить.

9.7 Версия программного обеспечения.

Здесь отображается версия ПО, установленного в телефоне

10. Тест «STAND ALONE»

10. Тест «STAND ALONE»

10.1 Введение

Данная инструкция объясняет, как проверить статус приемника и передатчика данной модели

A. Тест передающего устройства

Тест передатчика - проверка нормальной активации передатчика телефона

B. Тест приемного устройства

Тест приемника - проверка нормальной активации приемника телефона

10.2 Метод настройки

A. Последовательный порт

- a. Передвиньте курсор мыши на кнопку “Connect”, нажмите правую кнопку мыши и выберите “Com setting”.
- b “Dialog Menu” выберите значения показанные ниже.
 - Порт: выберите нужный последовательный порт
 - Скорость передачи: 38400
 - Остальные параметры оставьте без изменений

B. Передатчик

1. Выбор канала

- Выберите один из диапазонов GSM или DCS , и один из каналов

2. Выбор значения ARU

- a. Выберите любой уровень мощности или масштабный коэффициент.
- b. Уровень мощности
 - Введите подходящее значение для GSM (между 5~19) или для DCS (между 0~15)
- c. Масштабный коэффициент
 - «Ramp Factor» показывается на экране
 - Вы можете регулировать форму импульса или ввести значения напрямую.

C. Приемник

1. Выберите канал

- Выберите один из диапазонов GSM или DCS , и один из каналов

2. Индекс усиления (0~ 26) и уровень RSSI

- Проверьте, что значение RSSI близко к -16дБм, при изменении значения коэффициента усиления (Gain Control Index) в пределах 0 ~ 25
- Телефон в нормальном состоянии должен показывать значение RSSI близкое к -16дБм.

10.3 Методика тестирования

- a. Выберите COM порт
- b. Выберите режим приема или передачи (Rx или Tx)
- c. Выберите диапазон и канал
- d. После выполнения всех предыдущих настроек нажмите кнопку «Connect»
- e. Нажмите кнопку «Start»

Рис. 10-1 Программа проверки оборудования

10. Тест «STAND ALONE»

Рис. 10-2 Настройки проверки оборудования

Рис. 10-3 Настройка формы сигнала

11. Автоматическая калибровка

11.1 Описание

AutoCal (Auto Calibration - Автоматическая калибровка) это компьютерная программа, предназначенная для калибровки передающего и принимающего устройств, калибровки батареи с помощью Agilent 8960(инструмент настройки GSM) и Tektronix PS2521G(Программируемый источник питания). AutoCal создает калибровочные данные, соединяется с телефоном и измерительным оборудованием, а затем записывает эти данные в флэш-память телефона GSM

11.2 Необходимое оборудование

- ПК или ноутбук с установленной операционной системой Microsoft Windows 98/ME/2000/XP
- Программа авто калибровки (Autocal.exe)
- GSM телефон
- LGE PIF JIG, последовательный кабель, кабель данных
- Agilent 8960(инструмент настройки)
- Tektronix PS2521G(Программируемый источник питания)

11.3 Меню и настройки

1. После загрузки программы 'Hotkimchi' на GCSC создайте новый каталог, как показано ниже.
2. Установите "C:/CAL/Hot_Kimchi"

3. Файл 'Info_DB' и конфигурационные данные
Прим) Модель: C1100

11. Автоматическая калибровка


```
/*cal*/[Default]=[C1100_hp]
/*cal*/[C1100_hp]=[..WWCal-ADI-C1100_Ver3.01WWMain_Sequence.dll]
/*cal*/[C3100_hp]=[..WWCal-ADI-C3100_Ver3.0WWMain_Sequence.dll]
/*cal*/[C1100_cmu]=[..WWCal-ADI-C1100_Ver2_CMU200WWMain_Sequence.dll]
/*cal*/[G1600_cmu]=[..WWCal-ADI-G1600_Ver2_CMU200WWMain_Sequence.dll]
/*cal*/[G5600_cmu]=[..WWCal-ADI-G5600_Ver2_CMU200WWMain_Sequence.dll]
/*cal*/[F7100_cmu]=[..WWCal-ADI-F7100_Ver2_CMU200WWMain_Sequence.dll]
/*cal*/[F1200_hp]=[..WWF1200_ver2WWMain_Sequence.dll]
/*cal*/[L3100_hp]=[..WWCal-ADI-L3100_Ver2.0WWMain_Sequence.dll]
[ezlooks]=[off]
[batcal]=[off]
[svc]=[on]
[standalone]=[off]
```

- Для настройки канала данных, необходимо внести соответствующие изменения в файл info_Db.TXT.
- Названия файлов в цикле должны совпадать с используемыми файлами.

11.4 Как произвести калибровку

1. Запустите файл Hot_kimchiD.exe

11. Автоматическая калибровка

2. Выберите модель Вашего телефона.
3. Нажмите клавишу “APPLY”.
4. Нажмите клавишу “CALIBRATION START”.

11. Автоматическая калибровка

5. Нажмите клавишу “START”.

6. Сообщение об окончании тестирования будет отображено внизу экрана.

12. Сборочный чертеж и список заменяемых деталей

12.1 Сборочный чертеж

NO	DESCRIPTION	DRAWING NO	Q'TY
1	TAPE, PROTECTION	MTAB0082801	1
2	COVER, SLIDE(UPPER)	MCJW00051**	1
3	WINDOW, LCD	MWAC00579**	1
4	TAPE, WINDOW	MTAD0040501	1
5	FILTER, SPEAKER	MFBC0017501	1
6	TAPE_(FILTER SPEAKER)	MTAZ0085701	1
7	FRAME(lcd)	MFEZ0006801	1
8	PAD, CAMERA_(BOTTOM)	MPBT0020601	1
9	GRIP	MGCZ0000901	1
10	PAD, LCD	MPBG0037401	1
11	TAPE, PROTECTION	MTAB0089401	1
12	LCD MOUDLE	SVLM0013701	1
13	TAPE(TAPE_LCD_TAPE_L)	MTAZ0089501	1
14	TAPE(TAPE_LCD_TAPE_R)	MTAZ0108801	1
15	DOME ASSY METAL_SLIDE	ADCA0040401	1
16	TAPE(TAPE_LCD MODULE)	MTAZ0099601	1
17	PCB ASSY, KEYPAD	SAEY0046601	1
18	HOLDER, MIKE	MHGF0003701	1
19	CAMERA	SVCY0007301	1
20	Insulator	MIDZ0079201	1
21	BUTTON ASSY FUNCTION	ABGB0002601	1
22	Gasket shield form	MGAD0106101	1
23	SPEAKER	SUSY0017901	1
24	Insulator	MIDZ0079501	2
25	Insulator	MIDZ0079301	1
26	TAPE, PROTECTION(CAMERA window)	MTAB0097301	1
27	SCREW MACHINE(M14 L20)	GMEY0010401	12
28	PAD, FLEXIBLE PCB	MPBF0012601	1
29	GAUZE(GAUZE_CMKE)	MGBY0003501	1
30	PAD, CAMERA	MPBT0020001	1
31	COVER, SLIDE(LOWER)	MCJV00045**	1
32	LENS, FLASH	MLCE0005001	1
33	LENS, CAMERA	MLCD00005501	1
34	TAPE, DECO CAMERA	MTAA0095501	1
35	DECO, CAMERA	MDAD0015501	1
36	TAPE, PROTECTION(DECO CAMERA)	MTAB0087301	1
37	STOPPER	MSGY0013701	2
38	SCREW MACHINE(M14 L30)	GMZ0017701	6
39	RAIL	MRAY00029**	1
40	SUPPORT(POM)	MSHY00080**	1
41	STOPPER	MSGY0012401	1
42	TAPE_PROTECTION	MTAB0020202	2
43	BUTTON VOLUME	MBJN006301	1
44	BUTTON FUNCTION	MBJC0017101	1
45	COVER, FRONT	MCJK00483**	1
46	PAD_MIKE	MPBH0016901	1
47	PAD(FRONT_FPCB)	MPBZ009501	1
48	PAD(PAD_VIBRATOR_FRONT)	MPBZ0102201	1
49	BUTTON ASSY, DIAL	ABGA00051**	1
50	DOME ASSY METAL_MAIN	ADCA0040501	1
51	INSULATOR	MIDZ0078201	1
52	PCB ASSY, MAIN	SAFY0148001	1
53	ANTENNA, GSM, FIXED	SNGF0010301	1
54	CAP, EARPHONE JACK	MCCC00285**	1
55	PAD, VIBRATOR	MPBZ0099301	1
56	COVER, REAR	MCJN00432**	1
57	SPRING, COIL	MSDB0001701	2
58	CAP, MOBIL SWITCH	MCCF00284**	1
59	BAT_LOCKER	MLEA00259**	1
60	BATTERY PACK	SBPP00136**	1

12. Сборочный чертеж и список заменяемых деталей

12.2 Заменяемые компоненты <Механические компоненты>

Примечание: Эта глава может быть использована для проверки соответствия деталей стандартам SBOM GCSC

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
1		GSM(SLIDE)	TGLL0002426		STARRY BLACK	
2	AAAY00	ADDITION	AAAY0134715		STARRY BLACK	
3	MLAJ00	LABEL,MASTER BOX	MLAJ0004401	LABEL,MASTER BOX(for C1300i NEW_CGR)	Without Color	
3	MLAQ00	LABEL,UNIT BOX	MLAQ0001601		Dark Gray	
2	APEY00	PHONE	APEY0262001	S5200 RUSYK	STARRY BLACK	
3	ABGA00	BUTTON ASSY,DIAL	ABGA0005102	S5200_RUS**	Black	49
3	ACGM	COVER ASSY,REAR	ACGM0066701		STARRY BLACK	
4	MCCC00	CAP,EARPHONE JACK	MCCC0028502		EPI BLACK	54
4	MCJN00	COVER,REAR	MCJN0043202		STARRY BLACK	56
4	MLEA00	LOCKER,BATTERY	MLEA0025902		STARRY BLACK	59
4	MPBH00	PAD,MIKE	MPBH0017401	PAD,MIKE_REAR	Black	
4	MPBZ00	PAD	MPBZ0099301	PAD_VIBRATOR	Without Color	55
4	MSDB00	SPRING,COIL	MSDB0001701	G7000	Pearl White	57
3	ACGQ00	COVER ASSY,SLIDE	ACGQ0008601		STARRY BLACK	
4	ABFZ00	BRACKET ASSY	ABFZ0006201	LCD BRACKET ASSY	Black	
5	MFBC00	FILTER,SPEAKER	MFBC0017501		Black	5
5	MFEZ00	FRAME	MFEZ0006801	SLIDE UPPER_LCD FRAME	Black	7
5	MGCZ00	GRIP	MGCZ0000901		Black	9
5	MPBG00	PAD,LCD	MPBG0037401		Black	10
5	MPBT00	PAD,CAMERA	MPBT0020601	S5200_PAD,CAMERA_BOTTOM	Black	8
5	MTAD00	TAPE,WINDOW	MTAD0040501		Without Color	4
5	MTAZ00	TAPE	MTAZ0085701	TAPE_FILTER_SPEAKER	Without Color	6
4	ABGB00	BUTTON ASSY,FUNCTION	ABGB0002601		EPI BLACK	21
4	ACGK00	COVER ASSY,FRONT	ACGK0065501		STARRY BLACK	
5	MBJC00	BUTTON,FUNCTION	MBJC0017101		Silver	44
5	MBJN00	BUTTON,VOLUME	MBJN0006301		Silver	43

12. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	Цвет	Примечания
5	MCJK00	COVER,FRONT	MCJK0048302		STARRY BLACK	45
5	MIDZ	INSULATOR	MIDZ0082701	Front_POM_insulator	Without Color	
5	MPBH00	PAD,MIKE	MPBH0016901		Black	46
5	MPBZ00	PAD	MPBZ0099501	PAD_FRONT_FPCB	Black	47
5	MPBZ01	PAD	MPBZ0102201	PAD_VIBRATOR_FRONT	Black	48
5	MSGY00	STOPPER	MSGY0012401		Black	41
5	MSHY00	SUPPORT	MSHY0008001	SUPPORT FRONT POM	Black	40
5	MTAB00	TAPE,PROTECTION	MTAB0020202	50X83 PROTECTION TAPE	Silver	42
4	ACGR00	COVER ASSY, SLIDE(LOWER)	ACGR0005801		STARRY BLACK	
5	ADBY00	DECO ASSY	ADBY0007801	DECO CAMERA ASSY	Black	
6	MDAD00	DECO,CAMERA	MDAD0015501		Black	35
6	MTAA00	TAPE,DECO	MTAA0095501	TAPE DECO CAMERA	Without Color	34
5	MCJV00	COVER,SLIDE(LOWER)	MCJV0004502		STARRY BLACK	31
5	MGBY00	GAUZE	MGBY0003501	GAUZE_CMIKE_LOWER	Black	29
5	MICZ00	INSERT	MICZ0025201	M1.4XP0.3, L1.43_S5200 SLIDE_LOWER	Gold	
5	MIDZ00	INSULATOR	MIDZ0079301	30 x 7 x 0.05t	Without Color	25
5	MIDZ01	INSULATOR	MIDZ0079501	10 X 7 0.05t	Without Color	24
5	MLCD00	LENS,CAMERA	MLCD0005501		Without Color	33
5	MLCE00	LENS,FLASH	MLCE0005001		Without Color	32
5	MMAA00	MAGNET,SWITCH	MMAA0005201		Metal Silver	
5	MPBF00	PAD,FLEXIBLE PCB	MPBF0012601		Black	28
5	MPBT00	PAD,CAMERA	MPBT0020001		Black	30
5	MSGY00	STOPPER	MSGY0013701	s5200_stopper_lower	Black	37
5	MTAB	TAPE,PROTECTION	MTAB0097301	s5200_protection_camera_win	Without Color	26
5	MTAB00	TAPE,PROTECTION	MTAB0087301	TAPE,PROTECTION _DECO,CAMERA	Without Color	36
4	ACGS00	COVER ASSY, SLIDE(UPPER)	ACGS0006901		STARRY BLACK	
5	MCJW00	COVER,SLIDE(UPPER)	MCJW0005102		STARRY BLACK	2
4	GMEY	SCREW MACHINE,BIND	GMEY0010402	1.4 mm,2 mm,MSWR3(FN),N,+ ,NYLOK	Black	27
4	GMZZ00	SCREW MACHINE	GMZZ0017701	1.4 mm,3.0 mm,MSWR3 ,N ,+ , - ,	Silver	38

12. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
4	MGAD	GASKET,SHIELD FORM	MGAD0106101	3.0 x 2.5 x 0.3t	Without Color	22
4	MHGF00	HOLDER,MIKE	MHGF0003701		Black	18
4	MIDZ	INSULATOR	MIDZ0079201	s5200_lcd_fpcb_insulator,tape	Without Color	20
4	MLAC00	LABEL,BARCODE	MLAC0003401	EZ LOOKS(user for mechanical)	Without Color	
4	MRAY00	RAIL	MRAY0002901		Without Color	39
4	MTAB00	TAPE,PROTECTION	MTAB0082801		Without Color	1
4	MTAB01	TAPE,PROTECTION	MTAB0089401	TAPE,PROTECTION_window_inner	Without Color	11
4	MTAZ	TAPE	MTAZ0108801	S5200_lcd_tape(R)	Dark Gray	14
4	MTAZ00	TAPE	MTAZ0089501	s5200_TAPE_LCD MODULE_0.1T	Without Color	13
4	MTAZ01	TAPE	MTAZ0099601	s5200_tape_lcdmodule_0.18t	Without Color	16
4	MWAC00	WINDOW,LCD	MWAC0057902	WINDOW,LCD_Bluetooth text	STARRY BLACK	3
6	ADCA00	DOME ASSY,METAL	ADCA0040401	DOME ASSY METAL_SLIDE	Without Color	15
3	GMZZ00	SCREW MACHINE	GMZZ0017701	1.4 mm,3.0 mm,MSWR3 ,N ,+ ,-,	Silver	
3	MCCF	CAP,MOBILE SWITCH	MCCF0028402		STARRY BLACK	58
3	MLAA00	LABEL,APPROVAL	MLAA0035601	s5200_RUS**	White	
3	MLAK00	LABEL,MODEL	MLAK0006901			
5	ADCA00	DOME ASSY,METAL	ADCA0040501	DOME ASSY METAL_MAIN	Without Color	50
5	MIDZ00	INSULATOR	MIDZ0078201	S5200_Main,pcb_insulator,tape	Without Color	51
5	MLAB00	LABEL,A/S	MLAB0000601	HUMIDITY STICKER	Without Color	
5	MLAC00	LABEL,BARCODE	MLAC0003301	EZ LOOKS(use for PCB ASSY MAIN(hardware))	Without Color	

12. Сборочный чертеж и список заменяемых деталей

<Основные компоненты>

Примечание: Эта глава может быть использована для проверки соответствия деталей стандартам SBOM GCSC

№	№ Позиции	Описание	№ Детали	Поставляемость	Цвет	Примечания
4	SNGF00	ANTENNA,GSM,FIXED	SNGF0010301	5.0:1 lower , -1.5 dBd , EGSM/DCS1800,1900MHz, Triple Band		53
4	SAEY00	PCB ASSY,KEYPAD	SAEY0046601			17
5	SAEB00	PCB ASSY,KEYPAD,INSERT	SAEB0013001			
6	SACE00	PCB ASSY,FLEXIBLE,SMT	SACE0035601			
7	ENBY00	CONNECTOR,BOARD TO BOARD	ENBY0031001	60 PIN,0.4 mm,ETC , ,H=1.0, Male		
7	SPCY00	PCB,FLEXIBLE	SPCY0061401	POLYI ,0.3 mm,DOUBLE ,		
6	SBCL00	BATTERY,CELL,LITHIUM	SBCL0001302	2 V,1 mAh,COIN ,W3000 Back Up Battery		
5	SAEE00	PCB ASSY,KEYPAD,SMT	SAEE0014301			
6	SAEC00	PCB ASSY,KEYPAD,SMT BOTTOM	SAEC0012801			
7	BAT801	CONN,JACK/PLUG,EARPHONE	ENJE0003001	2 ,2 PIN,W3000 Back Up Battery Holder		
7	C701	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
7	C702	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C703	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
7	C704	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C705	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
7	C706	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C707	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
7	C708	CAP,CERAMIC,CHIP	ECCH0007701	1 uF,10V ,K ,X5R ,TC ,1608 ,R/TP		
7	C709	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
7	C710	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
7	C711	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
7	C712	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C713	CAP,TANTAL,CHIP	ECTH0002201	10 uF,6.3V ,M ,STD ,1608 ,R/TP		
7	C714	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
7	C715	CAP,CERAMIC,CHIP	ECCH0000186	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
7	C716	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
7	C717	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
7	C718	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
7	C719	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		

12. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
7	C720	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
7	C721	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
7	C722	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
7	C723	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
7	C724	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
7	C725	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
7	C726	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C727	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
7	C728	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C729	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
7	C730	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C739	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C740	CAP,CERAMIC,CHIP	ECCH0007701	1 uF,10V ,K ,X5R ,TC ,1608 ,R/TP		
7	C741	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
7	C742	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C743	CAP,CERAMIC,CHIP	ECCH0006201	4.7 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
7	C744	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C745	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
7	C801	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
7	C805	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C806	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
7	C807	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C808	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C809	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C810	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C811	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C812	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
7	C813	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
7	C814	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
7	C816	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C817	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C818	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C819	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
7	C820	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		

12. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
7	C821	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
7	C822	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
7	C823	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
7	C824	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
7	CN801	CONNECTOR,FFC/FPC	ENQY0010102	61 PIN,0.3 mm,ETC ,AU ,H::1.0MM		
7	CN803	CONNECTOR,FFC/FPC	ENQY0010901	35 PIN,0.3 mm,ETC , ,H=1.2		
7	FB701	FILTER,BEAD,CHIP	SFBH0008101	600 ohm,1005 ,		
7	FB801	FILTER,BEAD,CHIP	SFBH0007101	120 ohm,1005 ,Ferrite Bead		
7	FB802	FILTER,BEAD,CHIP	SFBH0007101	120 ohm,1005 ,Ferrite Bead		
7	FL801	FILTER,EMI/POWER	SFEY0007103	SMD ,18 V, ,SMD ,4ch. R-Varistor Array(50Ohm,15pF), Pb-free		
7	FL802	VARISTOR	SEVY0005502	18 V, ,SMD ,10 Ohm , 7.5pF , 4ch Array		
7	FL803	VARISTOR	SEVY0005502	18 V, ,SMD ,10 Ohm , 7.5pF , 4ch Array		
7	FL804	FILTER,EMI/POWER	SFEY0007103	SMD ,18 V, ,SMD ,4ch. R-Varistor Array(50Ohm,15pF), Pb-free		
7	FL805	VARISTOR	SEVY0005502	18 V, ,SMD ,10 Ohm , 7.5pF , 4ch Array		
7	FL806	FILTER,EMI/POWER	SFEY0007103	SMD ,18 V, ,SMD ,4ch. R-Varistor Array(50Ohm,15pF), Pb-free		
7	FL807	VARISTOR	SEVY0005502	18 V, ,SMD ,10 Ohm , 7.5pF , 4ch Array		
7	FL808	FILTER,EMI/POWER	SFEY0007103	SMD ,18 V, ,SMD ,4ch. R-Varistor Array(50Ohm,15pF), Pb-free		
7	FL809	FILTER,EMI/POWER	SFEY0007103	SMD ,18 V, ,SMD ,4ch. R-Varistor Array(50Ohm,15pF), Pb-free		
7	FL810	FILTER,EMI/POWER	SFEY0011001	SMD ,SMD ,2012,9 V, ,4ch.0 Ohm,30pF, Pb-free		
7	FL811	FILTER,EMI/POWER	SFEY0011001	SMD ,SMD ,2012,9 V, ,4ch.0 Ohm,30pF, Pb-free		
7	FL812	FILTER,EMI/POWER	SFEY0011001	SMD ,SMD ,2012,9 V, ,4ch.0 Ohm,30pF, Pb-free		
7	FL813	FILTER,EMI/POWER	SFEY0011001	SMD ,SMD ,2012,9 V, ,4ch.0 Ohm,30pF, Pb-free		
7	FL814	FILTER,EMI/POWER	SFEY0011001	SMD ,SMD ,2012,9 V, ,4ch.0 Ohm,30pF, Pb-free		
7	L801	INDUCTOR,CHIP	ELCH0004715	27 nH,J ,1005 ,R/TP ,		
7	L802	INDUCTOR,CHIP	ELCH0004715	27 nH,J ,1005 ,R/TP ,		
7	LD801	DIODE,LED,MODULE	EDLM0008601	WHITE ,1 LED,2.0*1.5*0.45 ,R/TP ,PB-FREE		
7	MIC701	MICROPHONE	SUMY0010502	UNIT ,42 dB,4*1.35 ,SMD 4*4		
7	Q701	TR,BJT,NPN	EQBN0007101	EMT3 ,0.15 W,R/TP ,LOW FREQUENCY		
7	R704	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
7	R708	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
7	R710	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		
7	R711	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		

12. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
7	R712	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
7	R713	RES,CHIP	ERHY0000247	2.2K ohm,1/16W,J,1005,R/TP		
7	R716	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
7	R717	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
7	R718	RES,CHIP	ERHY0000247	2.2K ohm,1/16W,J,1005,R/TP		
7	R723	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
7	R724	RES,CHIP	ERHY0000273	47K ohm,1/16W,J,1005,R/TP		
7	R729	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
7	R739	RES,CHIP	ERHY0000262	12K ohm,1/16W,J,1005,R/TP		
7	R740	RES,CHIP	ERHY0000262	12K ohm,1/16W,J,1005,R/TP		
7	R741	RES,CHIP	ERHY0000203	10 ohm,1/16W,J,1005,R/TP		
7	R742	RES,CHIP	ERHY0000203	10 ohm,1/16W,J,1005,R/TP		
7	R745	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
7	R747	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
7	R751	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
7	R804	RES,CHIP	ERHY0000212	39 ohm,1/16W,J,1005,R/TP		
7	R805	RES,CHIP	ERHY0000212	39 ohm,1/16W,J,1005,R/TP		
7	R806	RES,CHIP	ERHY0000212	39 ohm,1/16W,J,1005,R/TP		
7	R807	RES,CHIP	ERHY0000212	39 ohm,1/16W,J,1005,R/TP		
7	R808	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
7	R809	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
7	R810	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
7	R811	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
7	R814	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
7	U701	IC	EUSY0265201	BGA(8*8) ,140 PIN,R/TP ,1.3M Camera, ISP+, NAND I/F, M/M Chip, Pb-free		
7	U702	IC	EUSY0273701	BGA ,63 PIN,R/TP ,512Mbit NAND Flash Memory		
7	U703	IC	EUSY0223007	HVSOF5 ,5 PIN,R/TP ,2.5V, 150mA,LDO		
7	U704	IC	EUSY0154410	MLF ,10 PIN,R/TP ,Dual(1.8V/150mA,2.8V/300mA) LDO Regulator		
7	U705	IC	EUSY0223003	HVSOF5 ,5 PIN,R/TP ,150mA CMOS LDO WITH OUTPUT CONTROL / 3.3V		
7	U801	IC	EUSY0154412	MLF ,10 PIN,R/TP ,Dual(1.8V/150mA, 2.6V/300mA) LDO Regulator		
7	U802	IC	EUSY0245401	DFN ,16 PIN,R/TP ,Main 3 LEDs(60mA) + Flash (300mA) Charge pump		
7	VA705	VARISTOR	SEVY0003901	5.5 V, ,SMD ,480pF, 1005		

12. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	Цвет	Примечания
7	VA706	VARISTOR	SEVY0003901	5.5 V, ,SMD ,480pF, 1005		
7	VA801	VARISTOR	SEVY0003901	5.5 V, ,SMD ,480pF, 1005		
7	VA802	VARISTOR	SEVY0003901	5.5 V, ,SMD ,480pF, 1005		
6	SAED00	PCB ASSY,KEYPAD, SMT TOP	SAED0013001			
7	C731	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C732	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C733	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C734	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C735	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C736	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C737	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C738	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C802	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C803	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C804	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	CN802	CONNECTOR,BOARD TO BOARD	ENBY0019101	24 PIN,0.4 mm,STRAIGHT , ,H1.5, MALE		
7	LD701	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
7	LD702	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
7	LD703	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
7	LD704	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
7	LD705	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
7	LD706	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
7	LD707	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
7	LD708	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
7	R727	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
7	R728	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
7	R731	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
7	R732	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
7	R733	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
7	R734	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
7	R735	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
7	R736	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
7	R743	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		

12. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
7	R744	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
7	R749	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
7	R750	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
7	R803	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
7	VA703	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
7	VA704	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
6	SPEY00	PCB,KEYPAD	SPEY0037201	FR-4 ,0.5 mm,BUILD-UP 6 ,		
4	SUSY00	SPEAKER	SUSY0017901	ASSY ,8 ohm,87 dB,17 mm,,10mm(Oblong Type)		23
4	SVCY00	CAMERA	SVCY0007301	CMOS ,MEGA ,1.3M Magnachip Sensor		19
4	SVLM00	LCD MODULE	SVLM0013701	MAIN ,1.77" _128*160 ,33.8*46.24*2.5 ,262k ,TFT ,TM ,LGDP4212 ,Single		12
3	SAFY00	PCB ASSY,MAIN	SAFY0148014			52
4	SAFB00	PCB ASSY,MAIN,INSERT	SAFB0051201			
5	SJMY00	VIBRATOR,MOTOR	SJMY0008003	3 V,80 mA,9*3.4 ,17mm		
5	SPKY00	PCB,SIDEKEY	SPKY0021301	POLYI ,0.2 mm,DOUBLE ,VOLUME		
5	SPKY01	PCB,SIDEKEY	SPKY0021401	POLYI ,0.2 mm,DOUBLE ,camera		
5	SUMY00	MICROPHONE	SUMY0003802	FPCB ,-42 dB,4*1.5 ,		
4	SAFF00	PCB ASSY,MAIN,SMT	SAFF0071013			
5	SAFC00	PCB ASSY,MAIN,SMT BOTTOM	SAFC0063401			
6	ANT401	ANTENNA,GSM,FIXED	SNGF0010801	2.5:1 200Mhz ,0 dBd, ,2.5:1,0 dBd, ,B/T Chip, Pb Free, SMD 9.0x3.0x1.2		
6	C101	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
6	C102	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C103	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C104	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C107	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
6	C110	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C111	CAP,CERAMIC,CHIP	ECCH0000393	22 uF,6.3V ,M ,X5R ,HD ,2012 ,R/TP		
6	C112	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C113	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
6	C114	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V ,Z ,Y5V ,TC ,1005 ,R/TP		
6	C115	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C116	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C117	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C118	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		

12. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	Цвет	Примечания
6	C119	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C120	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C121	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C122	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
6	C123	CAP,CERAMIC,CHIP	ECCH0000165	68 nF,6.3V,K,X5R,HD,1005,R/TP		
6	C124	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C125	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C126	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
6	C127	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
6	C128	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C129	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C133	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C134	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C135	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C137	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C138	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C139	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C140	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C141	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C142	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C143	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C144	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C145	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C146	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C147	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V ,Z ,Y5V ,TC ,1005 ,R/TP		
6	C148	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C149	CAP,CERAMIC,CHIP	ECCH0007901	10 uF,4V ,M ,X5R ,TC ,1608 ,R/TP		
6	C152	CAP,CERAMIC,CHIP	ECCH0000140	560 pF,50V,K,X7R,HD,1005,R/TP		
6	C153	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
6	C201	CAP,CERAMIC,CHIP	ECCH0000129	120 pF,50V,J,NP0,TC,1005,R/TP		
6	C202	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C203	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
6	C204	CAP,CERAMIC,CHIP	ECCH0000159	22 nF,16V,K,X7R,HD,1005,R/TP		
6	C205	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		

12. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
6	C207	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
6	C208	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
6	C211	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C212	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C213	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C214	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C215	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C216	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C217	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C218	CAP,CERAMIC,CHIP	ECCH0000133	220 pF,50V ,K ,X7R ,HD ,1005 ,R/TP		
6	C219	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C220	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C221	CAP,TANTAL,CHIP	ECTH0001702	4.7 uF,10V ,M ,STD ,2012 ,R/TP		
6	C222	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C223	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C224	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C225	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C226	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C227	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C228	CAP,TANTAL,CHIP,MAKER	ECTZ0004202	10 uF,10V ,M ,STD ,2012 ,R/TP		
6	C229	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C231	CAP,TANTAL,CHIP,MAKER	ECTZ0003602	22 uF,6.3V ,M ,STD ,2012 ,R/TP		
6	C232	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C234	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C235	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C236	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C237	CAP,TANTAL,CHIP	ECTH0004402	33 uF,6.3V ,M ,L_ESR ,2012 ,R/TP		
6	C238	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C239	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C240	CAP,TANTAL,CHIP	ECTH0004402	33 uF,6.3V ,M ,L_ESR ,2012 ,R/TP		
6	C241	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C242	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C243	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C246	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		

12. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
6	C247	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C248	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C249	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C301	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C302	CAP,TANTAL,CHIP,MAKER	ECTZ0004201	22 uF,6.3V ,M ,STD ,2012 ,R/TP		
6	C303	CAP,TANTAL,CHIP,MAKER	ECTZ0004201	22 uF,6.3V ,M ,STD ,2012 ,R/TP		
6	C304	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C305	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C306	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C307	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
6	C308	CAP,CERAMIC,CHIP	ECCH0000104	3 pF,50V,C,NP0,TC,1005,R/TP		
6	C316	CAP,CERAMIC,CHIP	ECCH0004902	220 nF,10V ,Z ,Y5V ,TC ,1005 ,R/TP		
6	C319	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C320	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
6	C321	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C322	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C402	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C403	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C404	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C405	CAP,CERAMIC,CHIP	ECCH0000112	15 pF,50V,J,NP0,TC,1005,R/TP		
6	C406	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C407	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C408	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C409	CAP,CERAMIC,CHIP	ECCH0000112	15 pF,50V,J,NP0,TC,1005,R/TP		
6	C410	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C412	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C413	CAP,CERAMIC,CHIP	ECCH0000112	15 pF,50V,J,NP0,TC,1005,R/TP		
6	C414	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C415	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C501	CAP,CERAMIC,CHIP	ECCH0000196	0.75 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
6	C502	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
6	C503	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C504	CAP,CERAMIC,CHIP	ECCH0000112	15 pF,50V,J,NP0,TC,1005,R/TP		
6	C505	CAP,CERAMIC,CHIP	ECCH0000393	22 uF,6.3V ,M ,X5R ,HD ,2012 ,R/TP		

12. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
6	C506	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C507	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C508	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C509	CAP,CERAMIC,CHIP	ECCH0000393	22 uF,6.3V ,M ,X5R ,HD ,2012 ,R/TP		
6	C510	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C511	CAP,CERAMIC,CHIP	ECCH0000186	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C512	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C513	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C514	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C515	CAP,CERAMIC,CHIP	ECCH0000186	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C516	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
6	C517	CAP,CERAMIC,CHIP	ECCH0000186	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C518	CAP,CERAMIC,CHIP	ECCH0000393	22 uF,6.3V ,M ,X5R ,HD ,2012 ,R/TP		
6	C519	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C521	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C527	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C528	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C530	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP		
6	C531	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
6	C533	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C534	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
6	C535	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	CN303	CONNECTOR,I/O	ENRY0005301	3 PIN,0.5 mm,ETC , ,1.48Offset		
6	D101	DIODE,SWITCHING	EDSY0017301	VSM ,15 V,100 mA,R/TP ,PB-FREE		
6	D401	DIODE,SWITCHING	EDSY0012101	US-FLAT ,30 V,1 A,R/TP ,2.5*1.25*0.6(t)		
6	FL301	FILTER,EMI/POWER	SFEY0007101	SMD ,1CH,1608Feedthru ESD/EMI filter for power		
6	FL501	FILTER,SEPERATOR	SFAY0006503	900 ,1800.1900 ,3.7 dB,3.8 dB,30 dB,30 dB,ETC ,5.2*4.0*1.8 Size, Triple FEM with unbalanced SAW		
6	J201	CONN,JACK/PLUG, EARPHONE	ENJE0003102	4 ,4 PIN,BOSS-2		
6	J301	CONN,SOCKET	ENSY0014601	6 PIN,ETC , ,2.54 mm,H=2.3		
6	L101	INDUCTOR,CHIP	ELCH0001556	270 nH,J ,1608 ,R/TP ,		
6	L402	INDUCTOR,CHIP	ELCH0004711	22 nH,J ,1005 ,R/TP ,		
6	L502	INDUCTOR,CHIP	ELCH0005013	4.7 nH,S ,1005 ,R/TP ,		
6	M401	IC	EUSY0239102	6.9 * 7.9 * 1.5 mm ,28 PIN,R/TP ,Bluetooth Module v1.2, 26MHz, For GSM		

12. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	Цвет	Примечания
6	Q302	TR,BJT,NPN	EQBN0007101	EMT3 ,0.15 W,R/TP ,LOW FREQUENCY		
6	R101	RES,CHIP	ERHY0000225	200 ohm,1/16W,J,1005,R/TP		
6	R102	RES,CHIP	ERHY0010201	1.2 Mohm,1/16W ,F ,1005 ,R/TP		
6	R103	RES,CHIP	ERHY0000106	100 ohm,1/16W,F,1005,R/TP		
6	R105	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R107	RES,CHIP	ERHY0000512	10M ohm,1/16W,J,1608,R/TP		
6	R108	RES,CHIP	ERHY0000152	82K ohm,1/16W,F,1005,R/TP		
6	R109	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP		
6	R111	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP		
6	R113	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
6	R114	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R115	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
6	R116	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R117	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R201	RES,CHIP	ERHY0000149	68K ohm,1/16W,F,1005,R/TP		
6	R202	RES,CHIP	ERHY0000149	68K ohm,1/16W,F,1005,R/TP		
6	R203	RES,CHIP	ERHY0000269	30K ohm,1/16W,J,1005,R/TP		
6	R204	RES,CHIP	ERHY0000138	33K ohm,1/16W,F,1005,R/TP		
6	R205	RES,CHIP	ERHY0000250	3.3K ohm,1/16W,J,1005,R/TP		
6	R206	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R208	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R210	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R211	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R212	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		
6	R213	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		
6	R214	RES,CHIP	ERHY0000265	20K ohm,1/16W,J,1005,R/TP		
6	R215	RES,CHIP	ERHY0000244	1.5K ohm,1/16W,J,1005,R/TP		
6	R216	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		
6	R217	RES,CHIP	ERHY0000265	20K ohm,1/16W,J,1005,R/TP		
6	R218	RES,CHIP	ERHY0000247	2.2K ohm,1/16W,J,1005,R/TP		
6	R219	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R220	RES,CHIP	ERHY0000296	1M ohm,1/16W,J,1005,R/TP		
6	R221	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R222	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		

12. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
6	R223	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R224	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R225	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP		
6	R226	RES,CHIP	ERHY0000247	2.2K ohm,1/16W,J,1005,R/TP		
6	R229	RES,CHIP	ERHY0000291	330K ohm,1/16W,J,1005,R/TP		
6	R230	RES,CHIP	ERHY0000296	1M ohm,1/16W,J,1005,R/TP		
6	R232	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R233	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R234	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R309	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R310	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R311	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R312	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R313	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R314	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R315	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R316	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R317	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R318	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R324	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R325	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R326	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R327	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R328	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R329	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R330	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R331	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R332	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R333	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R334	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R335	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R337	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R345	RES,CHIP	ERHY0000265	20K ohm,1/16W,J,1005,R/TP		
6	R355	RES,CHIP	ERHY0000262	12K ohm,1/16W,J,1005,R/TP		

12. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
6	R356	RES,CHIP	ERHY0000262	12K ohm,1/16W,J,1005,R/TP		
6	R357	RES,CHIP	ERHY0000203	10 ohm,1/16W,J,1005,R/TP		
6	R358	RES,CHIP	ERHY0000203	10 ohm,1/16W,J,1005,R/TP		
6	R359	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R365	RES,CHIP	ERHY0000244	1.5K ohm,1/16W,J,1005,R/TP		
6	R401	RES,CHIP	ERHY0000125	10K ohm,1/16W,F,1005,R/TP		
6	R402	RES,CHIP	ERHY0000125	10K ohm,1/16W,F,1005,R/TP		
6	R403	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R404	RES,CHIP	ERHY0000230	330 ohm,1/16W,J,1005,R/TP		
6	R405	RES,CHIP	ERHY0000140	36K ohm,1/16W,F,1005,R/TP		
6	R406	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R407	RES,CHIP	ERHY0000125	10K ohm,1/16W,F,1005,R/TP		
6	R408	RES,CHIP	ERHY0000125	10K ohm,1/16W,F,1005,R/TP		
6	R409	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R410	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R411	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R413	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R414	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R415	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R416	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R417	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
6	R502	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R503	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R504	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R506	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R507	RES,CHIP	ERHY0000296	1M ohm,1/16W,J,1005,R/TP		
6	R508	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
6	R510	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R511	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	SW501	CONN,RF SWITCH	ENWY0002301	ANGLE ,SMD ,0.8 dB,		
6	U101	IC	EUSY0181601	BGA ,148 PIN,R/TP ,GSM ANALOG BASEBAND, Pb Free		
6	U102	IC	EUSY0280401	HVSOF5.5 PIN,R/TP ,150mA CMOS LDO WITH OUTPUT CONTROL / 2.85V		
6	U103	IC	EUSY0181504	CSP BGA ,204 PIN,R/TP ,AD6527 w/USB		

12. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
6	U201	IC	EUSY0227901	SON5-P-0.35(fSV) ,5 PIN,R/TP ,2-INPUT AND GATE, Pb Free		
6	U202	IC	EUSY0229501	88 BALL MATRIX SCSP (8*11*1.2) ,80 PIN,R/TP ,256M + 64M PSRAM / IO 3.0V / BOTTOM BOOT / PB FREE		
6	U203	IC	EUSY0259801	WLCSP ,67 PIN,R/TP ,WLCSP ,67PIN,R/TP ,MA5Si2(64POLY MIDI / Internal D-AMP)		
6	U205	IC	EUSY0077701	SC70-5 ,5 PIN,R/TP ,1.8V Low Voltage Comparator with Rail-to-Rail Input, Pb Free		
6	U206	IC	EUSY0204801	SC82-AB (SC70-4) ,4 PIN,R/TP ,80mA CMOS LOW IQ LDO VOLTAGE REGULATOR / 2.5V		
6	U207	IC	EUSY0119002	4X3 UCSP / CODE : B12-4 ,10 PIN,R/TP ,DUAL SPDT ANALOG SWITCHES(Pb Free)		
6	U301	IC	EUSY0163901	uCSP ,10 PIN,R/TP ,Dual Analog Switch, 300MHz Bandwidth		
6	U302	DIODE,TVS	EDTY0006501	SC70-6L ,5.25 V,100 W,R/TP ,		
6	U401	IC	EUSY0254701	DFN 3*3*0.9 ,10 PIN,R/TP ,Charger IC, I Max 1A, Wall Adaptor/USB Charger		
6	U402	IC	EUSY0223002	HVSOF5 ,5 PIN,R/TP ,150mA CMOS LDO WITH OUTPUT CONTROL / 2.8V		
6	U403	IC	EUSY0227901	SON5-P-0.35(fSV) ,5 PIN,R/TP ,2-INPUT AND GATE, Pb Free		
6	U404	IC	EUSY0163901	uCSP ,10 PIN,R/TP ,Dual Analog Switch, 300MHz Bandwidth		
6	U501	IC	EUSY0263001	MCM ,64 PIN,R/TP ,RFIC integrated PAM, 6 *11Size		
6	U502	IC	EUSY0216301	SC70 ,5 PIN,R/TP ,Single 2-Input NAND Gate		
6	VA201	VARISTOR	SEVY0003901	5.5 V, ,SMD ,480pF, 1005		
6	VA202	VARISTOR	SEVY0003901	5.5 V, ,SMD ,480pF, 1005		
6	VA204	VARISTOR	SEVY0003901	5.5 V, ,SMD ,480pF, 1005		
6	VA205	VARISTOR	SEVY0003901	5.5 V, ,SMD ,480pF, 1005		
6	VA306	VARISTOR	SEVY0003901	5.5 V, ,SMD ,480pF, 1005		
6	VA307	VARISTOR	SEVY0003901	5.5 V, ,SMD ,480pF, 1005		
6	VA309	VARISTOR	SEVY0003901	5.5 V, ,SMD ,480pF, 1005		
6	X101	X-TAL	EXXY0004602	.032768 MHz,20 PPM,12.5 pF,65000 ohm,SMD ,6.9*1.4*1.3 ,		
6	X501	VCTCXO	EXSK0006201	13 MHz,2 PPM,10 pF,SMD ,3.2*2.5*1.0 ,		
5	SAFD00	PCB ASSY,MAIN,SMT TOP	SAFD0062001			
6	C105	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C106	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C108	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
6	C109	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
6	C131	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		

12. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	Цвет	Примечания
6	C150	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C151	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C230	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C244	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C250	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C310	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C311	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C312	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C313	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C314	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C315	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C317	CAP,CERAMIC,CHIP	ECCH0006201	4.7 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C323	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C324	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C416	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
6	C417	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
6	C536	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V ,Z ,Y5V ,TC ,1005 ,R/TP		
6	C538	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C601	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C602	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C603	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C604	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C609	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C610	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C611	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C612	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C613	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C614	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
6	C615	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C616	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C617	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C618	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C619	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C620	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		

12. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
6	C621	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C622	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C623	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C624	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C625	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C626	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C629	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C630	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C631	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C633	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C637	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C639	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C640	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C644	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	CN601	CONNECTOR,BOARD TO BOARD	ENBY0031101	60 PIN,0.4 mm,ETC , ,H=1.0, Female		
6	D301	DIODE,SWITCHING	EDSY0012301	1-1E1A ,85 V,1 A,R/TP ,P=200mW, IFM=200mA		
6	FL601	VARISTOR	SEVY0005501	18 V, ,SMD ,4ch. R-Varistor Array(100Ohm,15pF)		
6	FL602	VARISTOR	SEVY0005501	18 V, ,SMD ,4ch. R-Varistor Array(100Ohm,15pF)		
6	FL603	VARISTOR	SEVY0005501	18 V, ,SMD ,4ch. R-Varistor Array(100Ohm,15pF)		
6	FL604	VARISTOR	SEVY0005501	18 V, ,SMD ,4ch. R-Varistor Array(100Ohm,15pF)		
6	FL605	VARISTOR	SEVY0005501	18 V, ,SMD ,4ch. R-Varistor Array(100Ohm,15pF)		
6	FL606	VARISTOR	SEVY0005501	18 V, ,SMD ,4ch. R-Varistor Array(100Ohm,15pF)		
6	FL607	VARISTOR	SEVY0005501	18 V, ,SMD ,4ch. R-Varistor Array(100Ohm,15pF)		
6	FL608	VARISTOR	SEVY0005501	18 V, ,SMD ,4ch. R-Varistor Array(100Ohm,15pF)		
6	L301	INDUCTOR,CHIP	ELCH0000716	68 nH,J ,1608 ,R/TP ,PBFREE		
6	L302	INDUCTOR,CHIP	ELCH0000716	68 nH,J ,1608 ,R/TP ,PBFREE		
6	LD301	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
6	LD302	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
6	LD303	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
6	LD304	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
6	LD305	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
6	LD306	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
6	LD307	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		
6	LD308	DIODE,LED,CHIP	EDLH0006001	Blue ,1608 ,R/TP ,Blue SMD LED		

12. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	Цвет	Примечания
6	Q301	TR,BJT,ARRAY	EQBA0002701	EMT6 ,150 mW,R/TP ,NPN, PNP, 150 mA		
6	R110	RES,CHIP	ERHY0000267	24K ohm,1/16W,J,1005,R/TP		
6	R112	RES,CHIP	ERHY0000291	330K ohm,1/16W,J,1005,R/TP		
6	R227	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R319	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R320	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R321	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R322	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R323	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R338	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R339	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R340	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R342	RES,CHIP	ERHY0000273	47K ohm,1/16W,J,1005,R/TP		
6	R343	RES,CHIP	ERHY0000207	20 ohm,1/16W,J,1005,R/TP		
6	R344	RES,CHIP	ERHY0000226	220 ohm,1/16W,J,1005,R/TP		
6	R346	RES,CHIP	ERHY0000244	1.5K ohm,1/16W,J,1005,R/TP		
6	R347	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R348	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R349	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R350	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R351	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R352	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R354	RES,CHIP	ERHY0000258	7.5K ohm,1/16W,J,1005,R/TP		
6	R361	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R362	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R366	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R367	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
6	R412	RES,CHIP	ERHY0000274	51K ohm,1/16W,J,1005,R/TP		
6	R509	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
6	R601	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
6	R602	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R603	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R605	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R606	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		

12. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
6	R607	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R608	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
6	R615	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R616	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R617	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R618	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R619	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R620	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R621	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R622	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	U204	IC	EUSY0119002	4X3 UCSP / CODE : B12-4 ,10 PIN,R/TP ,DUAL SPDT ANALOG SWITCHES(Pb Free)		
6	U208	IC	EUSY0159101	MICRO FOOT(6 BUMP) ,6 PIN,R/TP ,SPDT ANALOG SWITCH		
6	U405	IC	EUSY0200301	Leadless chip ,6 PIN,R/TP ,Hall S/W, Pb Free		
6	U503	IC	EUSY0223006	HVSOF5 ,5 PIN,R/TP ,1.8V ,150mA LDO		
6	VA203	VARISTOR	SEVY0003901	5.5 V, ,SMD ,480pF, 1005		
6	VA301	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
6	VA302	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
6	VA303	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
6	VA304	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
6	VA305	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
6	VA310	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
5	SPFY00	PCB,MAIN	SPFY0110801	FR-4 ,0.8 mm,BUILD-UP 8 ,		

12. Сборочный чертеж и список заменяемых деталей

12.3 Принадлежности

Примечание: Эта глава может быть использована для проверки соответствия деталей стандартам SBOM GCSC

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
3	MHBY00	HANDSTRAP	MHBY0000404	Hand Strap 135mm	Black	
3	SBPP00	BATTERY PACK,LI-POLYMER	SBPP0013603	3.7 V,800 mAh,1 CELL,PRISMATIC ,S5200 AREYK, Batt. Pb-Free	STARRY BLACK	60
3	SGDY00	DATA CABLE	SGDY0005601	DK-40G ,K8000 24PIN I/O + USB A TYPE		
3	SGEY00	EAR PHONE/EAR MIKE SET	SGEY0003505	S5200 ,3501 TO BLACK COLOR		
3	SSAD00	ADAPTOR,AC-DC	SSAD0007828	100-240V ,60 Hz,5.2 V,800 mA,CE,CB,GOST ,EU PLUG(24P),STD		

Note

Note
