Today's Data Files

- fuel.txt
- nematodes.txt

MATH 651: Regression Methods & Generalized Linear Models

Lecture 9: One-way Analysis of Variance (One way ANOVA) Reading: KNNL Chapters 16-17

Kimberly F. Sellers
Department of Mathematics & Statistics

Regression and ANOVA

- ANOVA concept more general than our use in regression analysis suggests
- ANOVA concerns relationship between quantitative response variable and (usually, one or more) qualitative predictor variables

Single Factor ANOVA: Setup

- Response variable: Y quantitative
- Explanatory variable: X categorical (r groups)

- Goals:
 - Examine the relationship between X and Y
 - Compare means across > 2 two groups $(\mu_1, \mu_2, ..., \mu_r)$

Single Factor ANOVA: Notation

Sample 1: $Y_{11}, Y_{12}, ..., Y_{1n_1} \Rightarrow \bar{Y}_1, s_1$

Sample 2: $Y_{21}, Y_{22}, \dots, Y_{2n_2} \Rightarrow \overline{Y}_2, S_2$

:

Sample $r: Y_{r1}, Y_{r2}, ..., Y_{rn_r} \Rightarrow \overline{Y}_{r}, s_r$

Total sample size: $n_T = n_1 + n_2 + \cdots n_r = \sum_{i=1}^r n_i$

Group mean: $\overline{Y}_{i.} = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij}$

Group variance: $s_i^2 = \frac{1}{n_i-1} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i.})^2$

Grand mean: $\overline{Y}_{..} = \frac{\sum \sum Y_{ij}}{n_T}$

Motivating Example

The driver of a diesel-powered automobile decided to test the quality of three types of diesel fuel sold in the area based on mpg. Are the three average mpg equal, or does a difference exist based on brand?

Brand A	38.7	39.2	40.1	38.9	
Brand B	41.9	42.3	41.3		
Brand C	40.8	41.2	39.5	38.9	40.3

The data (fuel.txt) are provided on Blackboard.

Using R:

> fuel <- read.table("C:/MATH651data/fuel.txt", sep="\t", header=TRUE)

The Point

- Test equality of means (i.e., Y is not related to X)
 versus something otherwise (i.e., Y is somehow
 related to X)
- H_0 : $\mu_1 = \mu_2 = \cdots = \mu_k$ vs. H_1 : not all μ_i' s equal
- Note: H_1 above $\Rightarrow H_1$: $\mu_1 \neq \mu_2 \neq \cdots \neq \mu_k$

Exercise: Make comparative boxplots of the **fuel.txt** data. What is your guess regarding the outcome of this hypothesis test?

Using R: > boxplot(mpg~brand, data=fuel)

Do Means Differ Across Groups?

 Want to know if observed differences in sample means can occur by chance (because of random sampling) or not

Thought this was Analysis of VARIANCE, not Analysis of Means?!

- First figure: Can't imagine means that far apart just from natural sampling variability alone.
- **Second figure**: These observations could have occurred from treatments (populations) with the same means.
- Moral: Conclusions depend on both the variation between sample means, and how much variation exists within each sample.

F-test

- Compares differences/variation between group means with variation within groups
- When differences between means are large compared with variation within groups, we reject H_0 and conclude means are (probably) not equal
- F-statistic:

 $F = \frac{\text{variation among averages } \overline{Y}_{1}, \ \overline{Y}_{2}, \ \dots, \ \overline{Y}_{r}}{\text{variation within samples}}$

The One-Way ANOVA Model

$$Y_{ij} = \mu_i + \epsilon_{ij}; \quad i = 1, 2, ..., r \quad j = 1, 2, ..., n_i$$

- Y_{ij} = response variable value in jth trial for ith treatment
- μ_i = (fixed) parameters representing unknown population mean for ith treatment
- $\epsilon_{ij} = \text{independent } N(0, \sigma^2) \text{ (random) errors}$
- Called the cell means model

Note: Formulation $\Rightarrow Y_{ij} \sim N(\mu_i, \sigma^2)$ indpt.

Parameter Estimation: Means

Estimating $\mu_1, \mu_2, \dots, \mu_r$:

$$\hat{\mu}_i = \bar{Y}_{i.} = \frac{\sum_{j=1}^{n_i} Y_{ij}}{n_i} = \frac{Y_{i.}}{n_i}$$

$$\hat{\mu}_A = \bar{Y}_A. = 39.225$$
 $\hat{\mu}_B = \bar{Y}_B. = 41.833$
 $\hat{\mu}_C = \bar{Y}_C. = 40.140$

$$\hat{\mu}_C = \bar{Y}_{C.} = 40.140$$

Using R:

- > summary(fuel\$mpg[fuel\$brand=="A"]) # similarly for B and C
- > fuel.lm1 <- lm(mpg ~ brand-1,data=fuel)
- > fuel.lm1 # alternative approach; see "coefficients"

Lecture 9

Visual Depictions: Bar Graphs and Main Effects Plots

- Used to display estimated factor level means in two dimensions
- Used to compare magnitudes of different factor level means
- In main effects plots, trend lines most appropriate for quantitative factors; not particularly meaningful for qualitative factors

13

Using R: Plots of Estimated Factor Level Means

- Bar Graph:
- > barplot(fuel.lm1\$coeff)

- Main Effects Plot:
- > plot(fuel.lm1\$coeff,type="l",ylab="MPG",
 xlab="Brand (A=1,B=2,C=3)")
- > abline(h=mean(fuel.lm1\$coeff),lty=2)

Parameter Estimation: Variance

- ullet Pool information from all r samples to estimate σ
- Recall estimating σ for one sample: For data $y_1, y_2, ..., y_n$, we took their average (\bar{y}) and computed sample standard deviation as:

$$s = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}}$$

where deviations,

$$(y_1 - \bar{y}), (y_2 - \bar{y}), \dots, (y_n - \bar{y})$$

sum to 0

n terms but only n − 1 are "free to vary"

Estimating σ From r Samples

- Based on residual estimates, $e_{ij}=Y_{ij}-\bar{Y}_i$ Sample 1: $(Y_{11}-\bar{Y}_1), (Y_{12}-\bar{Y}_1), \dots, (Y_{1n_1}-\bar{Y}_1) \Rightarrow n_1-1$ can vary
- Sample 2: $(Y_{21} \bar{Y}_2), (Y_{22} \bar{Y}_2), ..., (Y_{2n_2} \bar{Y}_2) \Rightarrow n_2 1$ can vary
- Sample $r: (Y_{r1} \bar{Y}_r), (Y_{r2} \bar{Y}_r), \dots, (Y_{rn_r} \bar{Y}_r) \Rightarrow \frac{n_r 1}{n_T r}$ can vary $\widehat{\sigma^2} = s^2 = \frac{\sum_i \sum_j (Y_{ij} \bar{Y}_i)^2}{n_T r} \quad \text{and} \quad \widehat{\sigma} = s$

$$\widehat{\sigma^2} = s^2 = \frac{\sum_i \sum_j (Y_{ij} - \bar{Y}_i)^2}{n_T - r}$$
 and $\widehat{\sigma} = s$

Estimating Variation

We can reconsider the model as

$$Y_{ij} = \mu_i + \epsilon_{ij} = \mu + \tau_i + \epsilon_{ij}$$

and ask H_0 : $au_1 = au_2 = \cdots = au_r = 0$

Data can be represented as

Data = Grand mean + Treatment effect + Residual

$$Y_{ij} = \overline{Y}_{..} + (\overline{Y}_i - \overline{Y}_{..}) + (Y_{ij} - \overline{Y}_i)$$

$$= (\overline{Y}_i - \overline{Y}_{..}) + (Y_{ij} - \overline{Y}_i)$$

• Total sum of squares (SSTO): $\sum_{i=1}^{r} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{..})^2$

17

Estimating Variation (cont.)

• Doing the same on the right-hand side,

$$\sum_{i=1}^{r} \sum_{j=1}^{n_i} \left[(\bar{Y}_i - \bar{Y}_{-}) + (Y_{ij} - \bar{Y}_{i}) \right]^2 = \sum_{i=1}^{r} \sum_{j=1}^{n_i} (\bar{Y}_i - \bar{Y}_{-})^2 + \sum_{i=1}^{r} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i})^2$$

– Variation between groups:

SSTR =
$$\sum_{i=1}^{r} \sum_{j=1}^{n_i} (\bar{Y}_i - \bar{Y}_{..})^2 = \sum_{i=1}^{r} n_i (\bar{Y}_i - \bar{Y}_{..})^2$$

- Variation within groups:

SSE =
$$\sum_{i=1}^{r} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_i)^2 = \sum_{i=1}^{r} \sum_{j=1}^{n_i} e_{ij}^2 = \sum_{i=1}^{r} (n_i - 1)s_i^2$$

• Total sum of squares: SSTO = SSTR + SSE

One-Way ANOVA Table

Source of Variation	df	Sum of Squares (SS)	Mean Square (MS)	F-ratio
Between treatments (groups)	r-1	SSTR	$MSTR = \frac{SSTR}{r - 1}$	$F = \frac{MSTR}{MSE}$
Error (within groups)	$n_T - r$	SSE	$MSE = \frac{SSE}{n_T - r}$	
Total	$n_T - 1$	SSTO		

- r = number of treatments/groups
- $n_T = \text{total number of observations in the study}$
- F-statistic follows F-distribution with df $r-1, n_T-r$

Using R

- You already know how to do this (sort of)
- > fuel.aov <- aov(mpg ~ brand, data=fuel)
- > summary(fuel.aov)
- > fuel.lm <- lm(mpg~brand, data=fuel)
- > anova(fuel.lm)

Analysis of Variance Table

Response: mpg

Df Sum Sq Mean Sq F value Pr(>F)

Brand 2 11.7830 5.8915 10.224 0.004823 **

Residuals 9 5.1862 0.5762

Clearly, you can use regression methods instead of ANOVA

Lecture 9

Cell Means Linear Model

• To write as linear model:

$$Y_{ij} = \mu_i + \epsilon_{ij} = \mu_1 X_{ij1} + \mu_2 X_{ij2} + \dots + \mu_r X_{ijr} + \epsilon_{ij}$$
$$= X\beta + \epsilon$$

where $X_{ijk} = \begin{cases} 1, & \text{if kth factor level used} \\ 0, & \text{otherwise} \end{cases}$

Example: for the fuel.txt dataset....

$$\begin{array}{c}
\begin{pmatrix}
Y_{11} \\
Y_{21} \\
Y_{221}
\end{pmatrix} = \begin{pmatrix}
1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
\beta_1 = \mu_1 \\
\beta_2 = \mu_2 \\
\beta_3 = \mu_3
\end{pmatrix} + \begin{pmatrix}
\xi_{11} \\
\xi_{23} \\
\xi_{31}
\end{pmatrix}$$
where $\beta_1 = \mu$

$$Y = \beta_1 \frac{1}{2} + \beta_2 \frac{1}{2} + \beta_3 \frac{1}{2} + \xi$$

Linear Model (cont.)

- Can use least squares for estimation
- $b=(\hat{\mu}_1,\ldots,\hat{\mu}_r)'=(X'X)^{-1}X'Y$ is BLUE for $\beta=(\mu_1,\ldots,\mu_r)'$

where
$$X'X = \begin{pmatrix} n_1 & 0 \dots & 0 \\ 0 & n_2 & 0 \\ 0 \dots & 0 & \ddots n_r \end{pmatrix}$$
, $X'Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_r \end{pmatrix}$
• $E(\boldsymbol{b}) = \boldsymbol{\beta}$

•
$$V(b) = \rho$$

• $V(b) = \sigma^2 (X'X)^{-1} = \sigma^2 \begin{pmatrix} 1/n_1 & 0 \dots & 0 \\ 0 & 1/n_2 & 0 \\ 0 \dots & 0 & \ddots 1/n_r \end{pmatrix}$

Linear Model: Background for F-Statistic

- $Var(b_i) = Var(\hat{\mu}_i) = \frac{\sigma^2}{n_i}$ $b \sim N(\beta, \sigma^2(X'X)^{-1})$ $MSE = \frac{1}{n_T r} \sum_i \sum_j (Y_{ij} \bar{Y}_{i.})^2 = \frac{1}{n_T r} \sum_i (n_i 1) s_i^2$ $E(s_i^2) = \sigma^2 \Rightarrow E(MSE) = \frac{1}{n_T r} \sum_i (n_i 1) \sigma^2 = \sigma^2$ \Rightarrow MSE unbiased estimator of σ^2

$$E(MSTR) = \sigma^2 + \frac{\sum_{i=1}^{r} n_i (\mu_i - \mu_i)^2}{r - 1}$$
 where $\mu_i = \frac{\sum_{i=1}^{r} n_i \mu_i}{n_T}$

– All treatment means equal $\Rightarrow E(MSTR) = \sigma^2$

F-Statistic (cont.)

- Consider H_0 : $\mu_1 = \cdots = \mu_r$ vs. H_1 : not all μ_i equal
- Test statistic: $F = \frac{MSTR}{MSE}$
 - Large F support H_1 ; F near 1 supports H_0
- ullet Background: Cochran's theorem implies that, if H_0 holds, then $\frac{SSE}{\sigma^2}$, $\frac{SSTR}{\sigma^2}$ independent χ^2 variables with $n_T - r$ and r - 1 df, respectively

Alternative Parametrization

- Reconsider model as $Y_{ij} = \mu + \tau_i + \epsilon_{ij}$, where
 - μ = constant component, common to all observations
 - $\tau_i = i$ th treatment effect
 - $\epsilon_{ij} = \text{independent } N(0, \sigma^2) \text{ random errors}$
 - Called treatment effects formulation; also linear model
- Exercise: rewrite $Y_{ij} = \mu + \tau_i + \epsilon_{ij}$ in matrix form

Alternative Parametrization: Linear Model

- Normal equations: $b = (X'X)^{-1}X'Y$
- $\bullet \text{ Problem: } \textbf{\textit{X'X}} = \begin{pmatrix} n_T & n_1 & \cdots & n_r \\ n_1 & n_1 & 0 & 0 \\ \vdots & 0 & \ddots & 0 \\ n_r & 0 & 0 & n_r \end{pmatrix} \text{singular}$
- Resolve by imposing restrictions on parameters to obtain full rank X matrix
 - Here, assume $\sum_{i=1}^{r} au_i = 0$

26

Factor Effects Linear Model

- μ: grand (or overall) mean
- $au_i = (\mu + au_i) \mu = \mu_i \mu = ext{Treatment Mean} ext{Grand Grand Effect}$
- $\sum_{i=1}^{r} \tau_i = 0 \Rightarrow \tau_r = -\tau_1 \tau_2 \dots \tau_{r-1}$ (e.g.) $\Rightarrow \mu_r = \mu + \tau_r = \mu - \tau_1 - \tau_2 - \dots - \tau_{r-1}$ \Rightarrow model only needs $\mu, \tau_1, \tau_2, \dots, \tau_{r-1}$

SEE ATTACHED

• Different reparametrization details produce different X and β ; in all cases, columns of X span same space

Multiple Comparisons

- Failing to reject $H_0 \Rightarrow Done$.
- Rejecting H₀ ⇒ <u>Asking which means are different?</u>
- Can't do multiple simple *t*-tests
 - Performing multiple tests increases the risk of making
 Type I error
 - Performing enough tests can result in rejecting a H₀ by mistake but won't know which one.
- Methods of multiple comparisons avoid inflation of experiment-wise error (overall Type I error)
- Can also calculate simultaneous confidence intervals

Estimation and Testing of Treatment Effects

- Inferences for treatment effects usually concerned with:
 - Single treatment mean, μ_i
 - Difference between two treatment means
 - Contrast among treatment means
 - Linear combination of treatment means

Inference for Single Treatment Mean

- Estimate $\hat{\mu}_i = \overline{Y}_i$ has $E(\overline{Y}_i) = \mu_i$ and $V(\overline{Y}_i) = \frac{\sigma^2}{n_i}$
- Confidence limits for μ_i :

$$\bar{Y}_{i\cdot} \pm t_{n_T-r} \left(1 - \frac{\alpha}{2}\right) \cdot s(\bar{Y}_{i\cdot})$$

- Consider hypotheses, $H_0: \mu_i = c$ vs. $H_1: \mu_i \neq c$
 - Test statistic: $T = \frac{\bar{Y}_i.-c}{s(\bar{Y}_i.)} \sim t_{n_T-r}$
 - Rejection region: reject H_0 when $|T|>t_{n_T-r}\left(1-rac{\alpha}{2}
 ight)$

Inference for Differences Between **Treatment Means**

Pairwise comparisons: consider difference

$$D = \mu_i - \mu_{i'}$$

- Has unbiased estimator, $\widehat{D} = \overline{Y}_{i\cdot} \overline{Y}_{i'\cdot}$
- \overline{Y}_{i} and $\overline{Y}_{i'}$ indpt

$$\Rightarrow V(\widehat{D}) = V(\overline{Y}_{i\cdot}) + V(\overline{Y}_{i'\cdot}) = \sigma^2 \left(\frac{1}{n_i} + \frac{1}{n_{i'}}\right)$$
• $V(\widehat{D})$ estimated by $S^2(\widehat{D}) = MSE\left(\frac{1}{n_i} + \frac{1}{n_{i'}}\right)$

Inference for Differences Between **Treatment Means (cont.)**

Resulting inference:

$$\frac{\widehat{D}-D}{s(\widehat{D})}\sim t_{n_T-r}$$

Confidence interval for *D*:

$$\widehat{D} \pm t_{n_T - r} \left(1 - \frac{\alpha}{2} \right) \cdot s(\widehat{D})$$

- Hypothesis test: H_0 : $\mu_i = \mu_{i'}$ vs. H_1 : $\mu_i \neq \mu_{i'}$
 - Test statistic: $T = \frac{\bar{D}}{s(\bar{D})}$
 - Rejection region: reject H_0 when $|T| > t_{n_T-r} \left(1 \frac{\alpha}{2}\right)$

Inferences for Contrasts of Treatment Means

Contrasts: linear combination of treatment means

$$L = \sum_{i=1}^{r} c_i \, \mu_i$$

where c_i non-random constants summing to zero, i.e. $\sum_{i=1}^r c_i = 0$

Contrast Estimator

- Unbiased contrast estimator: $\hat{L} = \sum_{i=1}^{r} c_i \, \bar{Y}_i$.
- $Var(\hat{L}) = \sigma^2 \sum_{i=1}^r \frac{c_i^2}{n_i}$ is estimated by

$$s^{2}(\hat{L}) = MSE \sum_{i=1}^{r} \frac{c_{i}^{2}}{n_{i}}$$

• Resulting inference: $\frac{\hat{L}-L}{s(\hat{L})} \sim t_{n_T-r}$

Inferences for Contrasts of Treatment Means (cont.)

• Confidence interval for L:

$$\hat{L} \pm t_{n_T - r} \left(1 - \frac{\alpha}{2} \right) \cdot s(\hat{L})$$

- Hypothesis test: H_0 : L = 0 vs. H_1 : $L \neq 0$
 - Test statistic: $T = \frac{\hat{L}}{s(\hat{L})}$
 - Rejection region: reject H_0 when $|T|>t_{n_T-r}\left(1-\frac{\alpha}{2}\right)$

Inferences for a Linear Combination of Treatment Means

- Supposed interested in linear combination of factor levels that is not a contrast, i.e. consider no restrictions on c_i coefficients with $L = \sum_{i=1}^r c_i \mu_i$
 - Confidence limits and test statistics for a linear combination L obtained like those for contrast
- ⇒ Tests of a single treatment mean, two treatment means, and contrasts all special cases of:

$$H_0: \sum_{i=1}^r c_i \mu_i = c$$
 vs. $H_1: \sum_{i=1}^r c_i \mu_i \neq c$

Inferences for a Linear Combination of Treatment Means (cont.)

 Corresponding t-statistics can be considered equivalently as F-tests:

$$F = T^2$$

where F follows F_{1,n_T-r} distribution when H_0 true

 Numerator df always 1 in these cases, these tests called single degree-of-freedom tests

37

Multiple Comparison

- Suppose we want to test simultaneously $k \ge 2$ contrasts
- Two limitations for comparing multiple contrasts:
 - Confidence coefficient $1-\alpha$ only applies to particular estimate, not series of estimates; similarly, Type I error rate (α) applies to a particular test, not a series of tests
 - Example: three "indpt" t-tests at $\alpha = 0.05 \Rightarrow$ confidence $(0.95)^3 = 0.857$ (Thus $\alpha = 0.143$, not .05)
 - The confidence coefficient $1-\alpha$ and significance level α appropriate only if estimate not suggested by the data
 - Often, experiment's results suggest important (potentially significant) relationships

Tukey Multiple Comparison Procedure

 Applies for considering all pairwise comparisons of factor level means, i.e. consider

$$H_0: \mu_i - \mu_{i'} = 0 \text{ vs. } H_1: \mu_i - \mu_{i'} \neq 0$$

- Equal group sample sizes \Rightarrow Tukey method family confidence coefficient $\equiv 1 \alpha$; significance level $\equiv \alpha$
- Unequal group sample sizes \Rightarrow Tukey method family confidence coefficient $> 1 \alpha$; significance level $< \alpha$ (i.e. conservative test)

Tukey Multiple Comparison Procedure (cont.)

- Considers studentized range distribution:
 - Suppose have $Y_1, ..., Y_r$ observations from $N(\mu, \sigma^2)$ distribution.
 - Let $w = \max(Y_i) \min(Y_i) = \text{observation range}$
 - s^2 estimates σ^2 with ν df
 - Studentized range: $q(r, v) = \frac{w}{s}$
 - Distribution of q can be determined (see Table B.9 in KLLN)

Tukey Multiple Comparison Procedure (cont.)

• Tukey multiple comparison CIs for all pairwise comparisons ($D=\mu_i-\mu_{i'}$) with family confidence interval $1-\alpha$ are:

$$\widehat{D} \pm T \cdot s(\widehat{D})$$

where

$$\widehat{D} = \overline{Y}_{i\cdot} - \overline{Y}_{i'\cdot}$$

$$s(\widehat{D}) = MSE\left(\frac{1}{n_i} + \frac{1}{n_{i'}}\right)$$

$$T = \left(\frac{1}{\sqrt{2}}\right) q_{r,n_T-r} (1 - \alpha)$$

Simultaneous Testing: Tukey

- Consider H_0 : $\mu_i \mu_{i'} = 0$ vs. H_1 : $\mu_i \mu_{i'} \neq 0$
 - Test statistic: $q^* = \frac{\sqrt{2}\hat{D}}{s(\hat{D})}$
 - Reject H_0 if $|q^*| > q_{r,n_T-r}(1-\alpha)$
- Notes:
 - When not all pairwise comparisons of interest, family confidence coefficient for family of comparisons considered $> 1 \alpha$ (with the significance level $< \alpha$)
 - Tukey procedure can be used for "data snooping" as long as effects to be studied on basis of preliminary data analysis are pairwise comparisons

Using R: Tukey's Honest Significant Difference (HSD)

> TukeyHSD(fuel aov)

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = mpg ~ brand, data = fuel)

\$brand

	diff	lwr	upr	p adj
B-A	2.608333	0.9895950	4.2270717	0.0038199
		-0.5067542		
С-В	-1.693333	-3.2411433	-0.1455234	0.0332056

Scheffé Multiple Comparison Procedure

 Method applies when family of interest is set of possible contrasts among treatment means:

$$L = \sum_{i=1}^{r} c_i \mu_i$$
 where $\sum_{i=1}^{r} c_i = 0$

- Consider H_0 : L = 0 vs. H_1 : $L \neq 0$
 - Infinite number of such tests
 - Family confidence level = $1-\alpha$ (i.e., significance level equals α) whether sample sizes equal or not

Scheffé Multiple Comparison Procedure (cont.)

• Scheffé Cls for family of contrasts L:

$$\hat{L} \pm S \cdot s(\hat{L})$$

where

$$\hat{L} = \sum_{i=1}^{r} c_i \, \bar{Y}_i.$$

$$s^2(\hat{L}) = MSE \sum_{i=1}^{r} \frac{c_i^2}{n_i}$$

$$S^2 = (r-1)F_{r-1,n_T-r}(1-\alpha)$$

Simultaneous Testing: Scheffé

- Consider H_0 : L = 0 vs. H_1 : $L \neq 0$
 - Test statistic:

$$F^* = \frac{\hat{L}^2}{(r-1) \cdot s^2(\hat{L})}$$

– Reject
$$H_0$$
 if
$$F^* > F_{r,n_T-r}(1-\alpha)$$

Scheffé Multiple Comparison Procedure: Notes

- Since applications of Scheffé procedure never involve all conceivable contrasts, finite family confidence coefficient will be larger than $1-\alpha$, so $1-\alpha$ is lower bound. Thus, people often consider larger α (e.g., 90% confidence interval)
- Scheffé procedure can be used for wide variety of "data snooping" since family of statements contains all possible contrasts
- If only pairwise comparisons considered, Tukey procedure gives narrower confidence limits

Bonferroni Multiple Comparison Procedure

- Bonferroni approach can be used for ANOVA when family of interest is a particular set of pairwise comparisons, contrasts, or linear combinations - specified in advance
- Applicable whether sample sizes are equal or unequal

Lecture 9

Bonferroni Multiple Comparison Procedure (cont.)

Cls for g linear combinations L:

$$\hat{L} \pm B \cdot s(\hat{L})$$

where

$$B = t_{n_T - r} \left(1 - \frac{\alpha}{2g} \right)$$

ullet g= number of comparisons in family

Simultaneous Testing: Bonferroni

- Consider H_0 : L = 0 vs. H_1 : $L \neq 0$
- Test statistic:

$$T = \frac{\hat{L}}{s(\hat{L})}$$

Rejection region:

Reject
$$H_0$$
 if $|T|>t_{n_T-r}\left(1-rac{lpha}{2\,a}
ight)$

Comparing Multiple Comparison Procedures

- If all pairwise comparisons of interest, Tukey procedure is superior (narrower confidence intervals). If not all pairwise comparisons are of interest, Bonferroni may be better.
- Bonferroni better than Scheffé when number of contrasts about the same as treatment levels (or less)
- Best approach: compute Bonferroni, Tukey, Scheffé intervals and pick the smallest
 - This is a valid approach!
- Bonferroni can't be used for "snooping" unless one decides in advance the family of interest

Exercise: Nemotode Levels

Do nematodes affect plant growth? A botanist prepares 16 identical planting pots and adds different numbers of nematodes into the pots. Seedling growth (in mm) is recorded two weeks later; see nematodes.txt on Blackboard. Does a difference in seedling growth exist among the four levels?

- State the null and alternative hypotheses.
- Perform an ANOVA on these data. What do you conclude?
- Check the assumptions and conditions for an ANOVA. Are they satisfied?
- Perform a multiple comparisons test to determine which levels differ in terms of mean seedling growth.

51