Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики

Кафедра «Телематика (при ЦНИИ РТК)»

Отчет по лабораторной работе

Метод максимального правдоподобия и проверка гипотез критерием хи-квадрат

По дисциплине «Теория вероятностей и математическая статистика»

Выполнил Студент гр.3630201/80101		В.Н. Сеннов
Руководитель доцент к.фм.н.		А.Н. Баженов
	«»	202г.

Содержание

1	Пос	становка задачи	4
2	Ma 2.1 2.2	тематическое описание Метод максимального правдоподобия	
3	Occ	обенности реализации	6
4	Рез	вультаты работы программы	7
	4.1	Метод максимального правдоподобия	. 7
	4.2	Критерий хи-квадрат	. 7
	4.3	Проверка чувствительности критерия хи-квадрат	
За	клю	очение	9
\mathbf{C}_{1}	писо	к литературы	10
A	Реп	позиторий с исходным кодом	11

Список таблиц

1	Вычисление χ^2_B при проверке гипотезы о нормальном законе распределения	7
2	Вычисление χ^2_B при проверке гипотезы о нормальном законе распределения для	
	выборки $L(0,1)$	7
3	Вычисление χ^2_B при проверке гипотезы о нормальном законе распределения для	
	выборки $N(-\sqrt{3},\sqrt{3})$	8

1 Постановка задачи

В рамках данной работы необходимо сгенерировать выборку размером 100 элементов для нормального распределения N(0,1). Для нее найти методом максимального правдоподобия оценки параметров μ и σ для функции распределения $N(\mu,\sigma)$. Проверить эту гипотезу критерием χ^2 при уровне значимости $\alpha=0.05$. Привести таблицу вычисления χ^2 .

Также необходимо сгенерировать выборку размером 20 элементов для распределения Лапласа L(0,1) и равномерного распределения $U(-\sqrt{3},\sqrt{3})$. Для них необходимо проделать теже действия.

2 Математическое описание

2.1 Метод максимального правдоподобия

Для выборки x_1, \ldots, x_n и функции распределения f с вектором параметров θ определяют функцию правдоподобия L:

$$L(x_1, x_2, \dots, x_n, \theta) = f(x_1, \theta) \cdot f(x_2, \theta) \cdots f(x_n, \theta)$$

Оценка максимального правдоподобия $\hat{\theta}$ находится по формуле:

$$\hat{\theta} = \arg\max_{\theta} L(x_1, x_2, \dots, x_n, \theta).$$

Если f дифференцируема, то оценка максимального правдоподобия находится из системы уравнений:

$$\frac{\partial L}{\partial \theta_k} = 0$$
 или $\frac{\partial \ln L}{\partial \theta_k}$, $k = 1, 2, \dots, m$. (1)

2.2 Проверка гипотезы о законе распределения методом хи-квадрат

Пусть выдвинута гипотеза H_0 о генеральном законе распределения с функцией F(x), которая не содержит неизвестных параметров.

Проверить эту гипотезу можно по следующему алгоритму:

- 1. Выбираем уровень значимости α .
- 2. Разбиваем выборку на k промежутков Δ_i .
- 3. Находим квантиль $\chi^2_{1-\alpha}(k-1)$ по таблице [2].
- 4. Вычисляем $p_i = P(x \in \Delta_i)$ с помощью F(x).
- 5. Находим частоты n_i попадания в промежуток Δ_i .
- 6. Вычисляем выборочное значение χ^2 :

$$\chi_B^2 = \sum_{i=1}^k \frac{(n_i - np_i)}{np_i} \tag{2}$$

- 7. Сравниваем χ_B^2 и квантиль $\chi_{1-\alpha}(k-1)$.
 - (a) Если $\chi_B^2 < \chi_{1-\alpha}(k-1)$, то гипотеза H_0 принимается на данном этапе проверки.
 - (b) Иначе гипотеза H_0 отвергается, выбирается другая гипотеза, для нее проделываются те же действия.

Количество интервалов k можно определить с помощью эвристики:

$$k \approx 1.72 \cdot \sqrt[3]{n} \tag{3}$$

3 Особенности реализации

Программа для выполнения лабораторной была написана на языке Python 3.8.2. Для генерации выбороки был использован модуль **stats** библиотеки scipy.

Можно показать, что для

$$f(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

решениями системы (1) являются значения $\mu=\bar{x},\ \sigma=\sqrt{\bar{x}^2-\bar{x}^2}.$ Таким образом искались оценки для параметров $\mu,\ \sigma$ методом максимального правдоподобия.

Остальные вычисления были проведены по формулам (2) и (3).

В приложении А приведена ссылка на репозиторий с исходным кодом.

4 Результаты работы программы

4.1 Метод максимального правдоподобия

С помощью метода максимального правдоподобия были получены следующие оценки:

$$\hat{\mu} \approx -0.01617$$
 $\hat{\sigma} \approx 0.9251$

4.2 Критерий хи-квадрат

Для выборки из 100 элементов был выбран k=8 по формуле (3). Уровень значимости был выбран $\alpha=0.05$.

В таблице 1 вычислен выборочный коэффициент χ_B^2 по формуле (2).

i	Δ_i	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$(-\infty; -2.03)$	1	0.0125	1.25	-0.25	0.05
2	(-2.03; -1.45)	2	0.0489	4.89	-2.88	1.71
3	(-1.45; -0.87)	20	0.1377	13.77	6.23	2.82
4	(-0.87; -0.29)	22	0.2425	24.25	-2.25	0.21
5	(-0.29; 0.29)	28	0.2675	26.75	1.25	0.06
6	(0.29; 0.87)	15	0.185	18.5	-3.5	0.66
7	(0.87; 1.45)	7	0.0801	8.01	-1.00	0.13
8	$(1.45; +\infty)$	5	0.0258	2.58	2.42	2.27
Сумма	-	100	1.0000	100.00	0.00	7.91

Таблица 1: Вычисление χ^2_B при проверке гипотезы о нормальном законе распределения

Табличное значение $\chi^2_{0.95}(7) = 14.0671$, выборочное значение $\chi^2_B = 7.91$, значит гипотеза может быть принята на данном этапе.

4.3 Проверка чувствительности критерия хи-квадрат

Для выборок из 20 элементов был выбран k=5. Уровень значимости был выбран $\alpha=0.05$. В таблице 2 вычислен выборочный коэффициент χ_B^2 для выборки, соответствующей распределению Лапласа.

i	Δ_i	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$(-\infty; -2.56)$	5	0.1042	2.08	2.91	4.08
2	(-2.56; -1.65)	0	0.1739	3.47	-3.47	3.48
3	(-1.65; -0.74)	4	0.2542	5.08	-1.08	0.23
4	(-0.74; 0.17)	5	0.2413	4.82	0.17	0.01
5	$(0.17; +\infty)$	6	0.2265	4.53	1.46	0.48
Сумма	-	20	1.0000	20.00	0.00	8.28

Таблица 2: Вычисление χ_B^2 при проверке гипотезы о нормальном законе распределения для выборки L(0,1)

Табличное значение $\chi^2_{0.95}(4)=9.4877$, выборочное значение $\chi^2_B=8.28$, значит гипотеза также может быть принята на данном этапе.

В таблице 3 вычислен выборочный коэффициент χ^2_B для выборки, соответствующей равномерному распределению.

i	Δ_i	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$(-\infty; -1.04)$	4	0.1586	3.17	0.82	0.22
2	(-1.04; -0.37)	3	0.2078	4.15	-1.15	0.32
3	(-0.37; 0.3)	6	0.2582	5.16	0.83	0.14
4	(0.3; 0.97)	2	0.211	4.22	-2.21	1.17
5	$(0.96; +\infty)$	5	0.1668	3.33	1.66	0.83
Сумма	-	20	1.0000	20.00	0.00	2.68

Таблица 3: Вычисление χ_B^2 при проверке гипотезы о нормальном законе распределения для выборки $N(-\sqrt{3},\sqrt{3})$

Табличное значение $\chi^2_{0.95}(4)=9.4877$, выборочное значение $\chi^2_B=2.68$, значит гипотеза также может быть принята на данном этапе.

Заключение

В рамках лабораторной работы была сгенерирована выборка для размером 100 элементов для нормального распределения N(0,1). Для нее найти методом максимального правдоподобия оценки параметров μ и σ для функции распределения $N(\mu,\sigma)$. Такая гипотеза была проверена критерием χ^2 . Те же действия были сделаны для выборок размером 20 элементов, соответствующих распределению Лапласа и равномерному распределению.

Было установлено, что применение метода максимального правдоподобия для нормального распределения сводится к нахождению выборочного среднего и среднеквадратичного отклонения.

Критерий χ^2 не отверг гипотезу о соответствии нормальной выборки нормальному распределению, чего и следовало ожидать.

Критерий χ^2 также не отверг гипотезу о соответствии нормальному распределению малых выборок, которые были сгенерированы в соответствии с распределением Лапласа и равномерным распределением. Это объясняется тем, что критерий χ^2 имеет асимптотический характер, а значит может давать ошибочные результаты при малых размерах выборки. Стоит также отметить, что при реализации лабораторной работы сначала генерировались выборки размером 100 элементов, и для них примерно в половине случаев критерий χ^2 отвергал гипотезу о нормальности.

Программа для лабораторной была написана языке Python 3.8.2, для генерации выборок была использована библиотека scipy.

Список литературы

- [1] Теоретическое приложение к лабораторным работам №5-8 по дисциплине «Математическая статистика». Спб.: Санкт-Петербургский политехнический университет, 2020. $12~\rm c.$
- [2] Chi-square distribution. // Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Chi-square_distribution . (дата обращения: 05.12.20)

А Репозиторий с исходным кодом

Исходный код программы для данной лабораторной размещен на сервисе GitHub. Ссылка на репозиторий: https://github.com/Vovan-S/TV-Lab1.