CLOUD COMPUTING

ENABLING TECNOLOGIES

NIST DEFINITION OF CLOUD COMPUTING

BEHIND IAAS

- laaS are evolution of classic Data Center (DC)
- A DC is a controlled, secure environment ensuring continuous and reliable digital services. It includes
 - Cooling systems: air conditioning and centralized cooling to maintain optimal temperature.
 - **Power supply:** stable electrical power with backup systems.
 - Fire protection: sprinklers or gas-based systems to prevent equipment damage.
 - **Security:** personnel, access control, surveillance, and other protective measures.

DATA CENTER TECHNOLOGY

COMPUTING UNITS

- The hardware building blocks of a DC are low-end servers, with rack enclosure (rack-mounted) or a blade enclosure
- Rack-mounted have all the components to run stand-alone (including power-supply), whereas blades need
 external supply and consequently need less space
- The size of a rackmount server is conventionally indicated in Rack Units (RU or U) (U=44.45mm)
- A sever space ranges from IU to 4U

SOME EXAMPLE OF SERVER RACK

- Server grade hardware
 - hardware is designed for 24/7 operation.
- Mainboards usually contain > 2 CPUs per board and have larger caches.
 - RAM sizes are usually very large in size (> ITB).
 - Network interface cards (NIC) are usually equipped with multiple ports, different port specifications and have high bandwidths(>10 GBit/s!).
- Storage capabilities are usually designed for fault tolerance and performance (e.g. RAID 6).

RACK OF SERVERS

- A standard rack consists of a payload bay to usually host 42 units (server, storage) and networking devices (switches, routers) known as ToR (Top o Rack) switch
- Communication occurs among servers inside the same rack, or with external endpoints

NETWORKING

- The traffic is not confined within servers of the same rack; rather, it can be directed to other racks (east—west traffic) or outside the DC (north—south traffic)
 - For example, Ref [*] shows how a single Facebook HTTP request generated 88 cache lookups (648 KB), 35 database lookups (25.6 KB), and 392 remote procedure calls (257 KB).
- To avoid communication bottleneck, the commutation topology is hierarchical (fat-tree of leaf-span)

Figure 2: A traditional 2Tbps four-post cluster (2004). Top of Rack (ToR) switches serving 40 1G-connected servers were connected via 1G links to four 512 1G port Cluster Routers (CRs) connected with 10G sidelinks.

In addition, new communication protocols that allow parallel multi-path communications can be used instead of single path, TCP

(*) N. Farrington and A. Andreyev. Facebook'sdata center network architecture. In Proc. IEEE Optical Interconnects, May 2013

LEAD-SPINETOPOLOGY

https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/

Figure 2: Schematic of Facebook data center fabric network topology

NETWORKING

- An Availability Zone (AZ) is a name used to denote single physical data center, or more often, a group of physically separate data centers located close to each other, sharing network infrastructure and low-latency connectivity.
- AZ further aggregated in regions (a region usually has 2–6 Azs)
- Latency is lower for users of that region
- To increase availability, user traffic can be distributed among different AZ of a region using an Application (level)
 Load Balancer (ALB)

VIRTUAL PRIVATE CLOUD

 A Virtual Private Cloud (VPC) is a set of subnets in different DCs

Credits: Distributed and Cloud Computing From Parallel Processing to the Internet of Things

EXAMPLE: GOOGLE CLOUD PLATFORM (GCP)

- Google Cloud's infrastructure follows a similar philosophy:
- The infrastructure is based in five major geographic locations: North America, South America, Europe, Asia, and Australia, connected via high-speed networks and subsea cables
- Locations are currently divided into 40 regions and regions into 121 zones

GCP LOCATIONS

GCP REGIONS

TYPE OF SERVERS

Web server

Database server

File server

DNS server

- Web server
 - Designed for the hosting of websites.
 - Supports web standards (HTTP/S) and frameworks (HTML/JavaScript).
- Database server
 - Specialized for data storage and retrieval (Relational/NoSQL).
 - Concurrent access of data by users.
- File server
 - Serves files or file systems to clients.
 - Supports standard protocols (FTP/S).
- DNS server
 - Specialized for the name resolution in computer networks.
 - Functionality by DNS-Software

SERVER VIRTUALIZATION

Bare metal sever

- One standalone physical server with one dedicated OS installed on the server
- Exclusive access to all hardware resources (CPU, RAM, storage, networks)
- Suitable for high performance, because of direct access to hardware capabilities

Drawbacks

- Management and maintenance is complex
- Management and maintenance is very expensive
- High cost for operation of servers
- Dedicated usage of server leads to many idle times

VM server

- Virtual server, which a 'slice' of the bare metal server
- It acts like a hw server, i.e. allows to run applications that usually require a dedicated server

HW VIRTUALIZATION

- Hardware virtualization involves virtualizing the hardware of a server (called host) by creating a Virtual Machine (VM) that provides the illusion of a physical machine (guest), using a special software called Virtual Machine Manager (VMM) or Hypervisor. VM old idea (1964 IBM's CP-40).
- Each virtual machine, is composed of a virtual CPU (vCPU), memory, I/O, and network devices
- This sounds familiar: exactly what an OS does to support multi-programming, right?
- Each process sees its own CPU, Memory, IO etc. so what is the difference with VMM?
- What if one just map a tenant to a user \rightarrow tenant = user ???

HW VIRTUALIZATION

- A VM provides much higher isolation respect to multi-users solution:
 - In a multi-user system:
 - A user can see who else are using the server
 - Processes IDs are unique system-wide
 - It easier to compromise the system if a user is attacked ..
- But, an OS is different than a process

MACHINE REFERENCE MODEL


```
import math

x = 16

y = math.sqrt(x)  # call to the math library API
print(y)  # output: 4.0
```

```
#include <unistd.h>
int main() {
   const char *msg = "Hello, world!\n";
   write(1, msg, 14); // file descriptor 1 = stdout
   return 0;
}
```

MOV EAX, EBX
MOV [ECX], EAX

VIRTUAL MACHINE MANAGER

VMM AND PRIVILEGED INSTRUCTIONS

- Privileged instructions may vary the state of the physical CPU, or pCPU (like disabling interrupts).
- These instructions are dangerous if used maliciously
- .. should change the flag in the vCPU, not in the pCPU
- This is achieved by managing the state of the vCPU through the VMM either completely by sw (trap-and-emulate)
 or with hw assistance

NOISY NEIGHBOURS

- Depending on the load on the other VMs, cache miss rate may for example increase, network bandwidth decrease, etc, ('noisy neighbours')
- In general, when the number of VMs increases behind the real pCPU capabilities, e.g. due to VM overcommitment, the vCPU clock runs at lower rate
- Wall clock correction

BENEFIT OF VM

- High isolation among tenants
- Server consolidation
- VM management

BENEFIT OF VM (CONT.)

- **Templating** create an OS + application VM, provide it to customers, use it to create multiple instances of that combination
- Live migration move a running VM from one host to another
 - No interruption of user access

EXAMPLE: LIVE MIGRATION OF VM

EXAMPLE: EC2

- Amazon Web Service (AWS), provides a large options of preconfigured VM, suitable for different purposes
- For example,
- t3.medium → 2 vCPU, 4 GB RAM
- m5.large \rightarrow 2 vCPU, 8 GB RAM
- r5.xlarge → 4 vCPU, 32 GB RAM

Series	Options
C – Compute optimized D – Dense storage F – FPGA G – Graphics intensive Hpc – High performance computing I – Storage optimized Im – Storage optimized (1 to 4 ratio of vCPU to memory) Is – Storage optimized (1 to 6 ratio of vCPU to memory)	 a – AMD processors b200 – Accelerated by NVIDIA Blackwell GPUs g – AWS Graviton processors i – Intel processors m1ultra – Apple M1 Ultra chip m2 – Apple M2 chip m2pro – Apple M2 Pro chip b – Block storage optimization d – Instance store volumes
 Inf – AWS Inferentia M – General purpose Mac – macOS P – GPU accelerated R – Memory optimized T – Burstable performance Trn – AWS Trainium U – High memory VT – Video transcoding X – Memory intensive Z – High memory 	 e – Extra storage (for storage optimized instance types), extra memory (for memory optimized instance types), or extra GPU memory (for accelerated computing instance types). flex – Flex instance n – Network and EBS optimized q – Qualcomm inference accelerators *tb – Amount of memory for high-memory instances (3 TiB to 32 TiB) z – High CPU frequency

IMPLEMETATION OPTIONS

- Type 0 hypervisors Hardware-based solutions that provide support for virtual machine creation by HW portioning. They do not mange VM, e.g. do not allow migration, rather partition and HW allocation to OS
 - ▶ IBM LPARs and Oracle LDOMs are examples
 - Used on mainframe or high-end servers
- Type 1 hypervisors Operating-system-like software built to provide virtualization
 - Including VMware ESX, Citrix XenServer, Nitro Hypervisor (by ASW plus custom HW cards)
- Type 1 hypervisors Also includes general-purpose operating systems that provide standard functions as well as VMM functions (e.g. as kernel module)
 - Including Microsoft Windows Server with HyperV and RedHat Linux KVM

IMPLEMETATION OPTIONS

- Type 2 hypervisors Applications that run on standard operating systems but provide VMM features to guest operating systems
 - Including VMware Workstation and Fusion, Parallels Desktop, and Oracle VirtualBox

IMPLEMENTATION OPTIONS

- Other variations include:
 - Paravirtualization Technique in which the guest operating system is modified to work in cooperation with the VMM to optimize performance
 - Emulators Allow applications written for one hardware environment to run on a very different hardware environment,
 such as a different type of CPU

IMPLEMENTATION OPTIONS

- Application containment provides virtualization-like features by segregating applications from the operating system, making them more secure, manageable
 - Including Oracle Solaris Zones, BSD Jails, and IBM AIX WPARs
 - Linux Containers (LXC)
 - Docker containers

BUILDING BLOCKS OF A VMM

- Most VMMs implement a virtual CPU (vCPU) to represent state of CPU per guest as guest believes it to be
 - When guest context switched onto CPU by VMM, information from vCPU loaded and stored (much like processes in a OS, vCPU like PCB Process Control Block)
 - Most of the binary instructions are performed without any change by the physical CPU (pCPU)
- Several techniques

BASICS OF THE X86 ARCHITECTURE

- x86-compatible CPUs implement 4 privilege levels (or rings) via a register (CPL, Current Privilege Level)
- The current state of the CPU is given by the value of the CPL
- In ring 0 (= kernel mode), the CPU can execute all the machine operations runs the kernel so that a process have full hardware access. When the OS runs, the CPU is in ring 0
- In ring 3 (= user mode), CPU cannot execute some 'dangerous' operations;
 User applications must run only when the CPU is on ring 3
- Unmodified modern operating systems only use these 2 privilege levels
- If a user-mode process must carry out a higher privileged task (e.g. access hardware), it can tell this the kernel via a system call.
- The user-mode process generates an exception, which is intercepted in ring 0 and handled there

BUILDING BLOCK - TRAP AND EMULATE

- AVM also needs two modes virtual user mode and virtual kernel mode
- In trap and emulate the OS runs in real user mode
- Actions in guest OS that usually cause switch to kernel mode must cause switch to a virtual kernel mode

TRAP-AND-EMULATE (CONT.)

- How does switch from virtual user mode to virtual kernel mode occur?
 - Attempting a privileged instruction in user mode causes an error \rightarrow trap
 - VMM gains control, analyzes error, executes operation as attempted by guest
 - Returns control to guest in user mode
- User mode code in guest runs at same speed as if not a guest
- But kernel mode privilege mode code runs slower due to trap-and-emulate
 - Especially a problem when multiple guests running, each needing trap-and-emulate
- CPUs adding hardware support, mode CPU modes to improve virtualization performance

TRAP-AND-EMULATE VIRTUALIZATION IMPLEMENTATION

EXAMPLE

- Not privileged instruction
- 2. CPU executes a privileged instruction of the Guest OS while being in user mode
- 3. CPU generates a trap
- 4. Control passes to the VMM that emulates the instruction
- 5. 2' is different of 2, but is produces the same effect (for example, CLI→vCPU.IF=0)
- 6. Control returned to the guest OS

green= User Mode red= Kernel Mode

POPEK AND GOLDBERG VIRTUALIZATION REQUIREMENTS

- Popek and Goldberg (1974) defined a set of conditions sufficient for a computer architecture to support system virtualization efficiently
- They classified machine instructions into 3 groups:
 - Privileged instructions: do not trap when the processor is in supervisor mode, but trap when in user mode
 - Sensitive instructions: change underlying resources (e.g., do I/O or change page tables) or observe information that indicates current privilege level (thus exposing that guest OS does not run on bare metal); for example, change the privileged state
 - Innocuous instructions: not sensitive
 - Necessary condition: For any conventional computer, a virtual machine monitor may be constructed if the set of sensitive instructions for that computer is a subset of the set of privileged instructions

EXAMPLE: INSTRUCTION ACCESSING THE PRIVILEGE REGISTER (X86)

Innocuous instruction

- ADD EAX, I (adds I to the EAX register).
- Does not touch privileged resources nor reveal anything about privilege level.
- Always safe and does not require VMM intervention.

Sensitive instruction

- PUSHF / POPF (save or restore the processor flags, including the Interrupt Flag that controls interrupts).
- This instruction can reveal the current privilege state or modify it.
- If it does not trap in user mode → it becomes problematic for virtualization

Privileged instruction

- MOV CR3, EAX (changes the CR3 register, which contains the base of the page table).
- If executed in kernel mode → works normally.
- If executed in **user mode** \rightarrow causes a **trap** \rightarrow the VMM can intercept it.