Reg. izrazi in avtomati, neregularnost

Uroš Čibej

Pregled

- $KA \rightarrow RI$
- Lema o napihovanju
- Uporaba leme o napihovanju

Literatura

- Sipser razdelka 1.3 in 1.4
- https://introtcs.org/public/lec_05_infinite.html (za radovedne, razdelek 6.5)

Posplošeni NKA

Avtomati, ki imajo prehode preko reg. izrazov

4

Posebna oblika (PNKA)

- 1. začetno stanje ima prehode do vseh stanj in nobenega prehoda do njega
- 2. obstaja zgolj eno končno stanje, ki ima prehode iz vseh stanj in nobenega prehoda iz njega
- 3. Vsa ostala stanja imajo prehode do vseh ostalih stanj (razen začetnega) in tudi do sebe.

Vsak PNKA -> posebno obliko

- 1. dodamo dve novi stanji, eno začetno eno končno (q_s,q_e)
- 2. dodamo ε prehod iz novega začetnega do starega začetnega in od starih končnih do novega končnega
- 3. Vsi ostali manjkajoči prehodi so preko \emptyset

Formalna definicija PNKA (posebne oblike)

$$M = \langle Q, \Sigma, \delta, q_s, q_e
angle$$

 $ullet \ \delta: (Q\setminus \{q_e\}) imes (Q\setminus \{q_s\})\longrightarrow RI$

Jezik PNKA

$$L(M) = \{w = w_1w_2\dots w_n \mid \exists q_sq_1\dots q_e, w_i \in L(\delta(q_{i-1},q_i))\}$$

$$q_0 = q_s$$

$$q_n = q_e$$

8

Odstranjevanje stanj

Algoritem KA o RI

convert(G):

- ullet if |Q|==2: return $\delta(q_s,q_e)$
- ullet izberi poljubno vozlišče $q_x
 ot\in \{q_s,q_e\}$
- ullet zgradimo avtomat G', ki nima več stanja q_x in funkcijo δ'
- $\delta'(q_i,q_j)=r_1r_2^*r_3+r_4$, kjer so: $\circ \ r_1=\delta(q_i,q_x)$, $r_2=\delta(q_x,q_x)$, $r_3=\delta(q_x,q_j)$, $r_4=\delta(q_i,q_j)$
- return *convert*(*G*′)

Dokaz pravilnosti

Izrek.

$$orall G \in PNKA: L(G) = L(convert(G))$$

Indukcija pa številu stanjG

|Q| = 2:

obstaja samo prehod $q_s o q_e$ in to je tudi edino možno zaporedje stanj iz začetnega v končno stanje. Jezik avtomata je torej enak $\delta(q_s,q_e)$ kar tudi *convert* vrne.

Indukcija pa številu stanjG

Indukcijski korak predpostavimo, da izrek drži za k-1 stanj (avtomat G') in pokažimo, da drži tudi za G. Pokazati moramo:

$$w \in L(G) \iff w \in L(G')$$

- $\bullet \implies$
 - $\circ q_s q_1, \ldots, q_e$ je zaporedje, ki sprejema w v avtomatu G in $w_1 w_2 \ldots w_n$ je pripadajoče razbitje besede w.
 - a. q_x ni v tem zaporedju, potem isto zaporedje sprejema w v G^\prime
 - b. q_x je v tem zaporedju, potem odstranimo vse pojavitve q_x iz zaporedja (pripadajoče besede staknemo) in dobimo veljavno zaporedje stanj.

$$\leftarrow$$

$$w\in L(G')$$

- ullet vsak prehod v G' q_iq_{i+1} predstavlja dve stanji tudi v G
- ullet regularni izraz $\delta'(q_i,q_{i+1})=R_1+R_2$:
 - $\circ\;$ če $w_i \in L(R_2)$ potem to predstavlja prehod $q_i q_{i+1}$ tudi v G
 - \circ sicer w_i ustrezno razbijemo s prehodi preko q_x

Primer

Primer: pretvorba v posebno obliko

Neregularnost

- česa avtomati niso sposobni?
- kako to dokazati?
- Ideja dokaza:
 - i. identificirati lastnost, ki velja za vse regularne jezike
 - ii. pokazati, da za nek jezik ta lastnost ne velja

Izziv

Poiščite najdaljšo besedo $w \in L(M)$, pri kateri se stanje ne ponovi

Lema o napihovanju

Lema: Za vsak regularni jezik L, obstaja konstanta n, da vsako besedo $w \in L$, ki je daljša od n ($|w| \ge n$) lahko razbijemo na 3 komponente:

$$w = xyz$$

za katere velja:

- 1. |y| > 0
- $|xy| \leq n$
- 3. $orall i \geq 0: xy^iz \in L$

Preizkusimo

 $w_1 = abbbbabb$

 $w_2 = bababbabb$

 $w_3 = abbbbbbbbbbbbb$

Dokaz - opis splošnega stanja

- ullet Naj bo M DKA\$, L(M)=L in n=|Q|.
- $w=a_1a_2\ldots a_k$, pri $k\geq n$ in $w\in L$.
- zaporedje stanj pri sprejemanju $r_1r_2 \dots r_kr_{k+1}$.
- ullet $\exists j,l: j < l \leq n+1$, $q_j = q_l$

Dokaz - zaključki

- $x = a_1 \dots a_{j-1}, y = a_j \dots a_{l-1}, z = a_l \dots a_k$
- ullet vemo $r_{k+1} \in F$ in besedo xy^iz sprejmemo s ponavljanjem zaporedja stanj $q_j \dots q_l$
- ullet ker $j < l \le n+1$ vemo |y| > 0 in $|xy| \le n$

Uporaba

Kako dokažemo, da za jezik L LON ne velja:

1. Izberemo besedo $w \in L, |w| \geq n$

2. $\forall w=xyz\ |y|>0, |xy|\leq n$

3. $\exists i: xy^iz
otin L$

Interpretacija tega dokazovanja

Poljuben avtomat, ki bi se pretvarjal, da zna sprejeti ${\cal L}$

- 1. n predstavlja |Q|
- 2. izbrana beseda w se v tem avtomatu "zacikla"
 - $\circ w = xyz$
 - o ker moramo biti pripravljeni na vse avtomate, pregledamo vse možne delitve
- 3. najdemo število ciklov i, pri katerem ta avtomat besedo sprejme, pa je ne bi smel

Primer

$$L=\{a^kb^k|k\geq 0\}$$

Jezik ni regularen

Dokaz

1. izberemo dovolj dolgo besedo, ki pripada jeziku (n je konstanta iz leme)

$$w = a^n b^n$$

2. parametrično zapišimo vse možne delitve

$$w = xyz, |xy| \le n, |y| > 0$$

- $\circ \ x = a^l$
- $\circ y = a^m$
- $\circ z = a^{n-l-m}b^n$

3. pri vseh delitvah pri i=2 dobimo besedo

$$a^{n+m}b^n
otin L$$

Primer

$$L = \{a^i b^j \mid i > j\}$$