Notas Econometria I

Thiago Oliveira Coelho

7 de junho de 2021

Sumário

Sumário	
1	INTRODUÇÃO A SÉRIES DE TEMPO
1.1	Estática
1.2	Não-Estática
1.2.1	Lag
1.2.2	Impacto
1.3	Tendência

1 Introdução a séries de tempo

Um processo estocástico (aleatório), ou uma série temporal, é uma sequência de variáveis aleatórias indexadas pelo tempo. Cada coleta de dados em um certo substrato de tempo é chamado de *realização*. Estas séries podem ser estáticas ou dinâmicas.

1.1 Estática

$$Y_t = \beta_0 + Z_t + u_t \tag{1.1}$$

Uma série estática é aquela na qual o Y_t é afetado por variáveis independentes somente no mesmo tempo que esta, ou seja, por Z_t .

1.2 Não-Estática

$$Y_t = \beta_0 + Z_t + Z_{t-1} + u_t \tag{1.2}$$

Nos modelos não estáticos, Y_t responde a variáveis independentes de tempos anteriores, como por exemplo Z_{t-1} .

1.2.1 Lag

O lag é a defasagem apresentada pelo modelo, o que significa que, por exemplo, um lag de ordem 5, indica que a variável dependente é afetada pela variável independente nos últimos cinco períodos.

1.2.2 Impacto

$$\delta_1 = Y_t - Y_{t-1} \tag{1.3}$$

O δ é chamado de propensão de impacto, e demonstra a alteração em Y decorrente de mudanças no tempo. No exemplo, é utilizado δ_1 , mas o substrato depende da distância entre as realizações. Por exemplo: $\delta_2 = Y_{t+2} - Y_t$. A soma de todos os δ resulta no que chamamos de *Propensão de Longo Prazo (PLP)*:

$$PLP = \delta_0 + \delta_1 + \delta_2 + \dots + \delta_k \tag{1.4}$$

1.3 Tendência

Se Y possui uma tendência ao longo do tempo, se adiciona o valor de t as variáveis independentes. Ao se identificar o efeito de sazonalidade, de modo semelhante, se adiciona dessa vez uma dummy, que indica quando a sazonalidade está presente. Se a variação é constante, admitimos que a tendência é exponencial, o que resulta num modelo da seguinte forma:

$$Y_t = e^{\beta_{0t} + \beta_{1t} + \dots + \beta_{nt} + u_t} \tag{1.5}$$

Que ao ser linearizado se torna:

$$\log Y_t = \beta_{0t} + \beta_{1t} + \dots + \beta_{nt} + u_t \tag{1.6}$$

Neste caso, podemos obter uma aproximação das taxas de crescimento com log Y_t – log Y_{t-1} .