

Data structure of IGG MSS

Introduction to Exercise 1 WS 2020/2021

Tomislav Medic

Institut für Geodäsie und Geoinformation Universität Bonn

all data from the MSS is stored in a special IMAR.mat file:

Name	Date modified	Туре	Size
∄ IMAR	15/09/2017 14:04	Microsoft Access	22,885 KB
Pop2ImarZf_GpsInfo20002.Dat	15/09/2017 13:12	DAT File	249 KB
Pop2ImarZf_GpsInfo20002	15/09/2017 14:04	Microsoft Access	8 KB
Pop2ImarZf_GPSPos0002.Dat	15/09/2017 13:12	DAT File	114 KB
Pop2ImarZf_GPSPos0002	15/09/2017 14:04	Microsoft Access	52 KB
Pop2ImarZf_GpsTime0002.Dat	15/09/2017 13:12	DAT File	53 KB
Pop2ImarZf_IMS0002.Dat	15/09/2017 13:12	DAT File	30,551 KB
Pop2ImarZf_IMS0002	15/09/2017 14:04	Microsoft Access	22,826 KB
Pop2ImarZf_XIODump0002.Asc	15/09/2017 14:01	ASC File	33 KB
Pop2ImarZf XIODump0002.DMP	15/09/2017 13:12	DMP File	47,663 KB

- when loaded in Matlab/Octave it is a structure with three substructures:
- gps
- gps_info
- imu

IMU structure:

- $acc_ib_b accelerometer measurements in matrix <math>f^b_{ib} = \begin{bmatrix} f^b_{ib,x} & f^b_{ib,y} & f^b_{ib,z} \end{bmatrix}_{nx3}$ [ms⁻²]
- omg_ib_b gyroscope measurements in matrix $\boldsymbol{\omega}_{ib}^b = \begin{bmatrix} \omega_{ib,x}^b & \omega_{ib,y}^b & \omega_{ib,z}^b \end{bmatrix}_{nx3}$ [rads-1]
- acc_corr & omg_corr measurements corrected for gravity influence and earths rotation rate
 - you can use this values with simplified algorithm if you omit gravity correction –

 (which is already applied in this data set)
 - this way you should get much better trajectory

 Comparison can be included in final presentation

Iments ▶ IVIATLAB						
✓ Variables - imu.acc_ib_b						
in	imu × imu.acc_ib_b ×					
190688x3 double						
	1	2	3			
1	-0.0217	0.3877	9.7769			
2	-0.0309	0.4103	9.7927			
3	-0.0210	0.3908	9.7880			
4	-0.0176	0.3978	9.7859			
5	0.0053	0.4048	9.7857			
6	0.0061	0.4212	9.7849			
7	-0.0231	0.4046	9.7871			
8	-0.0474	0.3990	9.7940			
9	-0.0476	0.3898	9.7923			
10	-0.0227	0.3690	9.7817			
11	-0.0151	0.3988	9.7839			
12	-0.0148	0.4043	9.7801			
13	-0.0414	0.4204	9.7986			

IMU structure:

- imu_time time stamp connected to GPS time use it to define t_0 , t_1 , t_2 , ... [s]
 - 1st value in imu_time vector is the initial time t₀
- imar_time another time stamp (you do not need to use it)

IMU structure:

- ekf_IIh estimate latitude longitude and ellipsoid height of the trajectory using kalman filter inside the MSS (probably incorrect you do not need to use it)
- rpy_enu estimated roll pitch & yaw angle for every moment in time (updated attitudes) –
 in EAST, NORTH, UP coordinate system (you do not need to use it)
- rpy_ned roll pitch & yaw angle for every moment in time (updated attitudes) in North,
 East, Down reference frame, solution provided by the instrument
 - Values in the 1st row should be used for initial attitude values.
 - It can be used for control of your own attitude updates
 - Comparison can be included in the final presentation
- pos_ecef estimated XYZ in ECEF coordinate frame of the trajectory recalculated from ekf_llh (probably incorrect you do not need to use it)

GPS structure:

- gps_xyz positions estimated using only GNSS data (longitude, latitude, height)
 - Values in the 1st row should be used for initial position values
 - Pay attention on the order of values in matrix (Long, Lat, height)
 - Your computed navigation solution should be graphically compared with GNSS data!
- gps_err estimated errors of GNSS measurements (you do not need to use it)
- gps_time time stamp for all GNSS measurements synchronised with imu_time, useful for the purpose of comparison

