Digital Signal Processing

Ravula Karthik

CONTENTS

1	Software Instanation	J
2	Digital Filter	1
3	Difference Equation	2
4	Z-transform	2
5	Impulse Response	4

Abstract—This manual provides a simple introduction to digital signal processing.

1 Software Installation

Run the following commands

sudo apt-get update sudo apt-get install libffi-dev libsndfile1 python3 -scipy python3-numpy python3-matplotlib sudo pip install cffi pysoundfile

2 Digital Filter

2.1 Download the sound file from

wget https://github.com/karthik6281/Signal-Processing/blob/main/sig-pro/codes/ Sound Noise.wav

- 2.2 You will find a spectrogram at https: //academo.org/demos/spectrum-analyzer. Upload the sound file that you downloaded in Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find? Solution: There are a lot of yellow lines between 440 Hz to 5.1 KHz. These represent the synthesizer key tones. Also, the key strokes are audible along with background noise.
- 2.3 Write the python code for removal of out of band noise and execute the code. **Solution:**

import soundfile as sf
from scipy import signal

#read .wav file
input_signal,fs = sf.read('Sound_Noise.wav'
)

#sampling frequency of Input signal sampl_freq=fs

#order of the filter order=4

#cutoff frquency 4kHz cutoff freq=4000.0

#digital frequency Wn=2*cutoff_freq/sampl_freq

b and a are numerator and denominator polynomials respectively

b, a = signal.butter(order, Wn, 'low')

#filter the input signal with butterworth filter output_signal = signal.filtfilt(b, a, input_signal)

#output_signal = signal.lfilter(b, a,
 input_signal)

2.4 The script output of the python Problem 2.3 is the audio file Sound With ReducedNoise.wav. Play the file in the spectrogram in Problem 2.2. What do you observe?

Solution: The key strokes as well as background noise is subdued in the audio. Also, the signal is blank for frequencies above 5.1 kHz.

3 DIFFERENCE EQUATION

3.1 Let

$$x(n) = \left\{ \frac{1}{1}, 2, 3, 4, 2, 1 \right\} \tag{3.1}$$

Sketch x(n).

Solution: The following code yields Fig. 3.1.

wget https://github.com/karthik6281/Signal— Processing/blob/main/sig-pro/codes/3_1. py

Fig. 3.1

3.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$

$$y(n) = 0, n < 0 \quad (3.2)$$

Sketch y(n).

Solution: The following code yields Fig. 3.2.

wget https://github.com/karthik6281/Signal— Processing/blob/main/sig-pro/codes/3_2. py

3.3 Repeat the above exercise using a C code. **Solution:** The c code can be obtained from

wget https://github.com/karthik6281/Signal— Processing/blob/main/sig-pro/codes/3_3. c

4 Z-TRANSFORM

4.1 The Z-transform of x(n) is defined as

$$X(z) = \mathbb{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.1)

Fig. 3.2

Show that

$$Z{x(n-1)} = z^{-1}X(z)$$
 (4.2)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{4.3}$$

Solution: From (4.1),

$$\mathcal{Z}\{x(n-1)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} x(n)z^{-n-1} = z^{-1} \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(4.4)

resulting in (4.2). Similarly, it can be shown that

$$\mathcal{Z}\{x(n-k)\} = z^{-k}X(z) \tag{4.6}$$

4.2 Obtain X(z) for x(n) defined in problem ??. **Solution:** Z-transform of x(n), X(z) is given by

$$\mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.7)

$$=\sum_{n=0}^{5} x(n)z^{-n} \tag{4.8}$$

$$= 1 + 2z^{-1} + 3z^{-2} + 4z^{-3} + 2z^{-4} + z^{-5}$$
(4.9)

4.3 Find

$$H(z) = \frac{Y(z)}{X(z)} \tag{4.10}$$

from (3.2) assuming that the Z-transform is a linear operation.

Solution: Applying (4.6) in (3.2),

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (4.11)

$$\implies \frac{Y(z)}{X(z)} = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} \tag{4.12}$$

4.4 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.13)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.14)

is

$$U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1 \tag{4.15}$$

Solution: The *Z*-transform of $\delta(n)$ is defined as

$$\mathcal{Z}\{\delta(n)\} = \sum_{n=-\infty}^{\infty} \delta(n) z^{-n}$$
 (4.16)

$$= \delta(0)z^{-0} \tag{4.17}$$

$$= 1 \tag{4.18}$$

Hence we can say that

$$\delta(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} 1 \tag{4.19}$$

and from (4.14),

$$U(z) = \sum_{n=0}^{\infty} z^{-n}$$
 (4.20)

$$=\frac{1}{1-z^{-1}}, \quad |z| > 1 \tag{4.21}$$

using the fomula for the sum of an infinite geometric progression.

4.5 Show that

$$a^{n}u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{4.22}$$

Solution:

$$\mathcal{Z}\lbrace a^{n}u(n)\rbrace = \sum_{n=-\infty}^{\infty} a^{n}u(n)z^{-n}$$
 (4.23)

$$=\sum_{n=0}^{\infty} a^n z^{-n}$$
 (4.24)

$$=\sum_{n=0}^{\infty} (z^{-1}a)^n \tag{4.25}$$

$$= \frac{1}{1 - az^{-1}}, \quad \left| z^{-1}a \right| < 1 \quad (4.26)$$

$$= \frac{1}{1 - az^{-1}}, \quad |z| > |a| \tag{4.27}$$

using the fomula for the sum of an infinite geometric progression.

4.6 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}).$$
 (4.28)

Plot $|H(e^{j\omega})|$. Is it periodic? If so, find the period. $H(e^{j\omega})$ is known as the *Discret Time Fourier Transform* (DTFT) of h(n).

Solution: $H(e^{jw})$ is given by

$$H(e^{jw}) = \frac{1 + (e^{jw})^{-2}}{1 + \frac{1}{2}(e^{jw})^{-1}}$$
(4.29)

$$=2\frac{1+\cos(-2\omega)+j\sin(-2\omega)}{2+\cos(-\omega)+j\sin(-\omega)} \quad (4.30)$$

$$=2\frac{1+\cos(2\omega)-j\sin(2\omega)}{2+\cos(\omega)-j\sin(\omega)}$$
(4.31)

$$=2\frac{2\cos^2(\omega) - 2j\sin(\omega)\cos(\omega)}{2 + \cos(\omega) - j\sin(\omega)}$$
(4.32)

$$= 4\cos(\omega) \frac{\cos(\omega) - j\sin(\omega)}{2 + \cos(\omega) - j\sin(\omega)}$$
(4.33)

$$= 4|\cos(\omega)| \frac{e^{jw}}{2 + e^{jw}}$$
 (4.34)

So,

$$|H(e^{jw})| = 4|\cos(\omega)|\frac{|e^{jw}|}{|2 + e^{jw}|}$$
 (4.35)

$$= \frac{|4\cos(\omega)|}{5 + 4\cos(\omega)} \tag{4.36}$$

 $|H(e^{j\omega})|$ is periodic with period π .(The LCM of the period of $|\cos(\omega)|$ and $5+4\cos(\omega)$ is π) The graph of $|H(e^{j\omega})|$ is symmetric with respect to y-axis. It is continuous over ω . The following code plots Fig. 4.6.

wget https://github.com/ karthik6281/Signal— Processing/blob/main/ Assignment1/codes/4_6. py

Fig. 4.6: $|H(e^{j\omega})|$

4.7 Express h(n) in terms of $H(e^{j\omega})$. **Solution:**

$$\int_{-\pi}^{\pi} H(e^{j\omega})e^{j\omega k}d\omega = \sum_{-\infty}^{\infty} h(n) \int_{-\pi}^{\pi} e^{j\omega n}e^{-j\omega k}d\omega$$
(4.37)

$$=\sum_{-\infty}^{\infty}h(n)\int_{-\pi}^{\pi}(\cos(n-k)+i\sin(n-k))d\omega$$
(4.38)

$$\int_{-\pi}^{\pi} (\cos(n-k) + i\sin(n-k))d\omega = \begin{cases} 2\pi & n=k\\ 0 & n\neq k \end{cases}$$
(4.39)

$$\therefore h(n) = \frac{\int_{-\pi}^{\pi} H(e^{j\omega})e^{j\omega n}d\omega}{2\pi}$$
 (4.40)

5 Impulse Response

5.1 Using long division, find

$$h(n), \quad n < 5 \tag{5.1}$$

for H(z) in (4.12).

Solution: H(z) is given by

$$H(z) = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} = \frac{2 + 2z^{-2}}{2 + z^{-1}}$$
 (5.2)

$$\begin{array}{r}
2z^{-1} - 4 \\
z^{-1} + 2 \overline{\smash{\big)}\ 2z^{-2} + 2} \\
\underline{2z^{-2} + 4z^{-1}} \\
\underline{-4z^{-1} + 2} \\
\underline{-4z^{-1} - 8} \\
\underline{10}
\end{array}$$

So,

$$H(z) = 2z^{-1} - 4 + \frac{10}{z^{-1} + 2}$$
 (5.3)

$$=2z^{-1}-4+\frac{5}{\frac{1}{2}z^{-1}+1}$$
 (5.4)

$$=2z^{-1}-4+5\sum_{n=0}^{\infty}\left(-\frac{z^{-1}}{2}\right)^{n}$$
 (5.5)

$$=1-\frac{1}{2}z^{-1}+5\sum_{n=2}^{\infty}\left(-\frac{1}{2}\right)^{n}z^{-n} \qquad (5.6)$$

So,h(n) will be given by

$$h(n) = \begin{cases} 5 \times \left(-\frac{1}{2}\right)^n & n \ge 2\\ \left(-\frac{1}{2}\right)^n & 2 > n \ge 0\\ 0 & n < 0 \end{cases}$$
 (5.7)

5.2 Find an expression for h(n) using H(z), given that

$$h(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} H(z)$$
 (5.8)

and there is a one to one relationship between h(n) and H(z). h(n) is known as the *impulse response* of the system defined by (3.2).

Solution: From (4.12),

$$H(z) = \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.9)

$$\implies h(n) = \left(-\frac{1}{2}\right)^{n} u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(5.10)

using (4.22) and (4.6).

5.3 Sketch h(n). Is it bounded? Justify theoretically.

Solution: The following code plots Fig. 5.3.

wget https://github.com/ karthik6281/Signal— Processing/blob/main/ Assignment1/codes/5_3. py on simplfying we get h(n) as

$$\begin{cases}
5 \times \left(-\frac{1}{2}\right)^n & n \ge 2 \\
\left(-\frac{1}{2}\right)^n & 2 > n \ge 0 \\
0 & n < 0
\end{cases}$$
(5.11)

$$: 5 \times \left(-\frac{1}{2}\right)^n \to 0 \quad \text{for} \quad n \to \infty$$
 (5.12)

So, we can conclude that h(n) is bounded.

Fig. 5.3: h(n) wrt n

5.4 Convergent? Justify using the ratio test. **Solution:** A sequence $\{x_n\}$ is convergent if

$$\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| < 1 \tag{5.13}$$

This is known as Ratio test. In this case the limit will become,

$$\lim_{n \to \infty} \left| \frac{h(n+1)}{h(n)} \right| = \lim_{n \to \infty} \left| \frac{5\left(\frac{-1}{2}\right)^{n+1}}{5\left(\frac{-1}{2}\right)^n} \right|$$
 (5.14)
$$= \frac{1}{2} < 1$$
 (5.15)

 $\therefore h(n)$ is convergent.

5.5 The system with h(n) is defined to be stable if

$$\sum_{n=1}^{\infty} h(n) < \infty \tag{5.16}$$

Is the system defined by (3.2) stable for the impulse response in (5.8)?

Solution: Taking h(n) as defined in (5.7) Then

$$\sum_{n=-\infty}^{\infty} h(n) = +\sum_{n=-\infty}^{-1} 0 + \sum_{n=0}^{1} \left(-\frac{1}{2}\right)^n + \sum_{n=2}^{\infty} 5 \times \left(-\frac{1}{2}\right)^n$$

$$= \frac{4}{3}$$
(5.18)

Since the sum is finite so the system is stable for impulsive response

5.6 Verify the above result using a python code.
Solution: The above result is verified using the below python code

wget https://github.com/karthik6281/Signal-Processing/tree/main/Assignment1/codes/5 _6.py

5.7 Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2), \quad (5.19)$$

This is the definition of h(n).

Solution: The following code plots Fig. 5.7. Note that this is the same as Fig. 3.1.

wget https://github.com/karthik/Signal-Processing/tree/main/Assignment1/codes/5 _7.py

Fig. 5.7: h(n) from the definition

5.8 Compute

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.20)

Comment. The operation in (5.20) is known as *convolution*.

Solution: The following code plots Fig. 5.8. Note that this is the same as y(n) in Fig. 3.1.

wget https://github.com/karthik/Signal-Processing/tree/main/Assignment1/codes/5 _8.py

Fig. 5.8: y(n) from the definition of convolution

5.9 Express the above convolution using a Toeplitz matrix.

Solution:

wget https://github.com/karthik6281/Signal-Processing/tree/main/Assignment1/codes/5 _9.py

From (5.20), we express y(n) as

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$
 (5.21)

Fig. 5.9: Convolution of x(n) and h(n) using toeplitz matrix

To understand how we can use a Toeplitz matrix, we will see what we are doing in (5.20)

$$y(0) = x(0)h(0) (5.22)$$

$$y(1) = x(0)h(1) + x(1)h(0)$$
 (5.23)

$$y(2) = x(0) h(2) + x(1) h(1) + x(2) h(0)$$
(5.24)

.

The same thing can be written as,

$$y(0) = (h(0) \quad 0 \quad 0 \quad . \quad . \quad .0) \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ . \\ x(5) \end{pmatrix}$$
 (5.25)

$$y(1) = \begin{pmatrix} h(1) & h(0) & 0 & 0 & . & . & .0 \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ . \\ x(5) \end{pmatrix}$$
(5.26)

$$y(2) = \begin{pmatrix} h(2) & h(1) & h(0) & 0 & . & .0 \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ . \\ x(5) \end{pmatrix}$$
(5.27)

.

Using Toeplitz matrix of h(n) we can simplify it as,

$$y(n) = \begin{pmatrix} h(0) & 0 & 0 & . & . & .0 \\ h(1) & h(0) & 0 & . & . & .0 \\ h(2) & h(1) & h(0) & . & . & .0 \\ & & . & & & \\ 0 & 0 & 0 & . & . & .h(m-1) \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ . \\ x(5) \end{pmatrix}$$
(5.28)

Now from (3.1) we will take n

$$x(n) = \begin{pmatrix} 1\\2\\3\\4\\2\\1 \end{pmatrix}$$
 (5.29)

And from (5.7) we will take some values of n,

$$h(n) = \begin{pmatrix} 1\\ -0.5\\ 1.25\\ .\\ . \end{pmatrix}$$
 (5.30)

Now using (5.28),

$$y(n) = x(n) * h(n)$$

$$= \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ -0.5 & 1 & 0 & \dots & 0 \\ 1.25 & -0.5 & 1 & \dots & \dots & 0 \\ & & & & \dots & & \\ 0 & 0 & 0 & \dots & \dots & \\ \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(5) \end{pmatrix}$$

$$(5.32)$$

$$= \begin{pmatrix} 1\\1.5\\3.25\\ .\\ .\\ . \end{pmatrix}$$
 (5.33)

5.10 Show that

$$y(n) = \sum_{k=-\infty}^{\infty} x(n-k)h(k)$$
 (5.34)

Solution: From (5.20)

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.35)

Replacing n-k with a,we get

$$y(n) = \sum_{n=a=-\infty}^{\infty} x(n-a)h(a)$$
 (5.36)

$$=\sum_{-a=-\infty}^{\infty}x(n-a)h(a)$$
 (5.37)

$$=\sum_{a=-\infty}^{\infty}x(n-a)h(a)$$
 (5.38)