CS2109S: Introduction to AI and Machine Learning

Lecture 6: Logistic Regression

22 September 2023

Announcements

Admin

Midterm (Confirmed)

• Date & Time: 6 October, 10:00 – 12:00

• Venue: MPSH 1A

• Notes:

• Please come at 9:30. You are allowed into hall at 9:45

Materials: all topics covered before recess week until Lecture 4

• Cheatsheet: 1 x A4 paper, both sides

Midterm Coverage

- Uninformed search
- Local search
- Informed search
 - A* search and heuristics
- Adversarial search
 - Drawing game tree
 - Minimax
 - Alpha-beta pruning
 - Practice: https://pascscha.ch/info2/abTreePractice/
- Decision trees

Plagiarism: Policy

Dos

- Discussions without sharing/consulting/taking away any code
- Use ChatGPT with proof (e.g., give ShareGPT links)

Don'ts

- Use codes from those who has done or currently doing the course
- Use codes from the internet without proper citations
- Publish codes to any publicly accessible sites (e.g., GitHub, Google Drive) or send your codes to anyone

Plagiarism checker will be performed against all previous batches!

Plagiarism: Case Studies

- Created a base source code and **derived** solutions from the same base
 - Caught and cases submitted to BOD
- Fully/partially copy-pasted friend's solutions (current/past student) and tried to be smart by doing some nontrivial modifications
 - Caught and cases submitted to BOD
- Fully/partially copy-pasted friend's solutions (current/past student) and claimed that solutions were from ChatGPT or ported from publicly available source codes
 - Caught and cases submitted to BOD

There were many more cases, but basically, we dealt with them appropriately

Plagiarism: Amnesty

- We are currently performing plagiarism checks on PSO-PS2
- So far, the results are <u>not</u> good :(
- Two options:
 - Turn yourself in before Monday, 25th September 23:59
 - We'll zero the affected PS(es) and call it a day
 - Pretend that you didn't do it
 - You may or may not get caught; If you get caught, **BOD may be involved**

Materials

Recap

- Linear Regression: fitting a line to data
- Gradient Descent
 - Gradient Descent Algorithm: follow -gradient to reduce error
 - Linear Regression with Gradient Descent: convex optimization, one minimum
 - Variants of Gradient Descent: batch, mini-batch, stochastic
- Linear Regression: Challenges and Solutions
 - Linear Regression with Many Attributes: $h_{\mathbf{w}}(x) = \sum_{j=0}^{n} w_{j} x_{j} = \mathbf{w}^{T} x$
 - Dealing with Features of Different Scales: normalize!
 - Dealing with Non-Linear Relationship: transform features
- Normal Equation: analytically find the best parameters

Linear Regression: Loss Landscape

Hypothesis:

$$h_{w}(x) = w_{0} + w_{1}x$$

$$h_{w}(x) = 0 + w_{1}x$$

Simplify: fix $w_0 = 0$ for easier visualization

Loss Function:

$$J_{MSE}(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} \left(w_1 x^{(i)} - y^{(i)} \right)^2$$
$$= \frac{(0.5-1)^2 + (1-2)^2 + (1.5-3)^2}{2 \times 3}$$
$$= \frac{0.5^2 + 1 + (1.5)^2}{6}$$
$$= \frac{3.5}{6}$$

Gradient Descent

- Start at some w
- Pick a nearby w that reduces J(w)

$$w_j \leftarrow w_j - \gamma \frac{\partial J(w_0, w_1, \dots)}{\partial w_j}$$

Repeat until minimum is reached

Learning Rate

Common Mistakes

w_0 changed!

$$w_0 = w_0 - \gamma \frac{\partial J(w_0, w_1)}{\partial w_0}$$

$$w_1 = w_1 - \gamma \frac{\partial J(w_0, w_1)}{\partial w_1}$$

$$a = \frac{\partial J(w_0, w_1)}{\partial w_0}$$

$$b = \frac{\partial J(w_0, w_1)}{\partial w_1}$$

$$w_0 = w_0 - \gamma a$$

$$w_1 = w_1 - \gamma b$$

ERRATA

Dealing with Non-Linear Relationship

Generally:

$$h_{w}(x) = w_{0} + w_{1}f_{1} + w_{2}f_{2} + w_{3}f_{3} + \dots + w_{n}f_{n}$$
Transformed features:
$$e. g., f_{1} = x, f_{2} = x^{2}$$

Which function?

$$h_w(x) = w_0 + w_1 x + w_2 x^2$$

Polynomial Regression

ession

Need to scale this!

Variants of Gradient Descent

$$w_j \leftarrow w_j - \gamma \frac{\partial J(w_0, w_1, \dots)}{\partial w_j} \qquad J_{MSE}(w) = \frac{1}{2m} \sum_{i=1}^m \left(h_w(x^{(i)}) - y^{(i)} \right)^2$$

(Batch) Gradient Descent

• Consider <u>all</u> training examples

Mini-batch Gradient Descent

- Consider a <u>subset</u> of training examples at a time
- Cheaper (Faster) / iteration
- Randomness, may escape local minima

Stochastic Gradient Descent (SGD)

- Select <u>one</u> random data point at a time
- Cheapest (Fastest) / iteration
- More randomness, may escape local minima

Outline

- Logistic Regression
 - Classification with Continuous Inputs
 - Cross-entropy Loss
 - Logistic Regression with Gradient Descent
- Logistic Regression: Challenges and Solutions
 - Logistic Regression with Many Attributes
 - Dealing with Non-Linear Decision Boundary
- Multi-class Classification
- (More) Performance Measure
 - Receiver Operating Characteristic (ROC)
 - Area under ROC (AUC)
- Model Evaluation & Selection
 - Bias & Variance
- Hyperparameter Tuning

Outline

- Logistic Regression
 - Classification with Continuous Inputs
 - Cross-entropy Loss
 - Logistic Regression with Gradient Descent
- Logistic Regression: Challenges and Solutions
 - Logistic Regression with Many Attributes
 - Dealing with Non-Linear Decision Boundary
- Multi-class Classification
- (More) Performance Measure
 - Receiver Operating Characteristic (ROC)
 - Area under ROC (AUC)
- Model Evaluation & Selection
 - Bias & Variance
- Hyperparameter Tuning

Classification: What to Eat? Discrete Inputs!

Decide whether to wait for a table at a restaurant based on the following input attributes:

- 1. Alternate: is there an alternative restaurant nearby?
- 2. Bar: is there a comfortable bar area to wait in?
- 3. Fri/Sat: is today Friday or Saturday?
- 4. Hungry: are we hungry?
- 5. Patrons: number of people in the restaurant (None, Some, Full)
- 6. Price: price range (\$, \$\$, \$\$\$)
- 7. Raining: is it raining outside?
- 8. Reservation: have we made a reservation?
- 9. Type: kind of restaurant (French, Italian, Thai, Burger)
- 10. WaitEstimate: estimated waiting time in minutes (0-10, 10-30, 30-60, >60)

Cancer prediction: benign, malignant

Cancer prediction: benign (0), malignant (1)

$$h_{\mathbf{w}}(x) = \begin{cases} 1 & \text{if } \mathbf{w_0} + \mathbf{w_1} x > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$h_{\mathbf{w}}(x) = \begin{cases} 1 & \text{if } -3.5 + 1x > 0 \\ 0 & \text{otherwise} \end{cases}$$

Cancer prediction: benign (0), malignant (1)

$$h_{\mathbf{w}}(x) = \begin{cases} 1 & \text{if } \mathbf{w_0} + \mathbf{w_1} x > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$h_{\mathbf{w}}(x) = \begin{cases} 1 & \text{if } -3.5 + 1x > 0 \\ 0 & \text{otherwise} \end{cases}$$

Threshold function

What's the issue?

Discontinuous, not differentiable

Cancer prediction: benign (0), malignant (1)

Cancer prediction: benign (0), malignant (1)

$$h_{\mathbf{w}}(x) = \sigma(\mathbf{w_0} + \mathbf{w_1}x)$$
 Logistic function $\sigma(z) = \frac{1}{1 + e^{-z}}$

$$h_{\mathbf{w}}(x) = \sigma(-3.5 + 1x)$$

Treat the output as **probability P**(malignant) > X (e.g., 0.5) then malignant

Cancer prediction: benign, malignant

$$h_{w}(x) = \sigma(w_{0} + w_{1}x)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$h_{w}(x) = \sigma(-3.5 + 1x)$$

Treat the output as **probability P**(malignant) > X (e.g., 0.5) then malignant

Cancer prediction: benign, malignant

$$h_{w}(x) = \sigma(w_{0} + w_{1}x_{1} + w_{2}x_{2})$$
$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Cancer prediction: benign, malignant

Cancer prediction: benign, malignant

 $h_{w}(x) = \sigma(w_{0} + w_{1}x_{1} + w_{2}x_{2})$ $\sigma(z) = \frac{1}{1 + e^{-z}}$ $h_{w}(x) = \sigma(-7 + 1x_{1} + 1x_{2})$

Cancer prediction: benign, malignant

$$h_{w}(x) = \sigma(w_{0} + w_{1}x_{1} + w_{2}x_{2})$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$h_{w}(x) = \sigma(-7 + 1x_{1} + 1x_{2})$$

Find w that "best separate data"!

How?

Logistic Regression: Measuring Fit

For a set of m examples $\{(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})\}$: $\begin{vmatrix} h_w(x) = \sigma(w_0 + w_1x_1 + w_2x_2) \\ \sigma(z) = \frac{1}{1 + z^{-z}} \end{vmatrix}$

$$J_{MSE}(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\mathbf{w}}(x^{(i)}) - y^{(i)} \right)^{2}$$
$$= \frac{1}{2m} \sum_{i=1}^{m} \left(\frac{1}{1 + e^{-(\mathbf{w}_{0} + \mathbf{w}_{1}x_{1} + \mathbf{w}_{2}x_{2})}} - y^{(i)} \right)^{2}$$

Non-linear → Non-convex

$$h_{\mathbf{w}}(x) = \sigma(\mathbf{w_0} + \mathbf{w_1}x_1 + \mathbf{w_2}x_2)$$

 $\sigma(z) = \frac{1}{1 + e^{-z}}$

Any alternatives?

Hint: $h_{\mathbf{w}}(x)$ outputs **probability**

Measuring Closeness Between Prob Distribution

Cross-entropy for *C* classes:

$$CE(y, \hat{y}) = \sum_{i=1}^{c} -y_i \log(\hat{y}_i)$$

Binary cross-entropy:

$$\overline{BCE(y,\hat{y})} = -y\log(\hat{y}) - (1-y)\log(1-\hat{y})$$

P(malignant) = 0.8

P(not malignant) = 1 - 0.8 = 0.2

Logistic Regression with Cross-Entropy Loss

For a set of m examples $\{(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})\}$ we can compute the binary cross entropy <u>loss</u> as follows.

$$J_{BCE}(w) = \frac{1}{m} \sum_{i=1}^{m} BCE(h_{w}(x^{(i)}), y^{(i)})$$

$$h_{w}(x) = \sigma(w_{0} + w_{1}x_{1} + w_{2}x_{2}) \text{ (Probability output)}$$

$$BCE(y, \hat{y}) = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

$$= -y \log\left(\frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}\right)$$

$$-(1 - y) \log\left(\frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}}\right)$$
Linear! \rightarrow convex

 $\log(e^a) = ca$, where c is constant

Logistic Regression with Gradient Descent

Hypothesis:

$$h_{\mathbf{w}}(x) = \sigma(\mathbf{w_0} + \mathbf{w_1}x_1 + \mathbf{w_2}x_2)$$

Weight Update:

$$w_j \leftarrow w_j - \gamma \frac{\partial J_{BCE}(w_0, w_1, \dots)}{\partial w_j}$$

Same as Linear Regression!

Will discuss the derivations in the next Tutorial

Loss Function:

$$J_{BCE}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} BCE(h_{\mathbf{w}}(x^{(i)}), y^{(i)})$$

$$\frac{\partial J_{BCE}(\mathbf{w})}{\partial \mathbf{w}_{j}} = \frac{\partial}{\partial \mathbf{w}_{j}} \frac{1}{m} \sum_{i=1}^{m} BCE(h_{\mathbf{w}}(x^{(i)}), y^{(i)})$$

$$\frac{\partial J_{BCE}(\mathbf{w})}{\partial \mathbf{w_0}} = \frac{1}{m} \sum_{i=1}^{m} (h_{\mathbf{w}}(x^{(i)}) - y^{(i)})$$

$$\frac{\partial J_{BCE}(w)}{\partial w_{1}} = \frac{1}{m} \sum_{i=1}^{m} (h_{w}(x^{(i)}) - y^{(i)}).x_{1}^{(i)}$$

$$\frac{\partial J_{BCE}(\mathbf{w})}{\partial \mathbf{w_2}} = \frac{1}{m} \sum_{i=1}^{m} (h_{\mathbf{w}}(x^{(i)}) - y^{(i)}).x_{\mathbf{z}}^{(i)}$$

Outline

- Logistic Regression
 - Classification with Continuous Inputs
 - Cross-entropy Loss
 - Logistic Regression with Gradient Descent
- Logistic Regression: Challenges and Solutions
 - Logistic Regression with Many Attributes
 - Dealing with Non-Linear Decision Boundary
- Multi-class Classification
- (More) Performance Measure
 - Receiver Operating Characteristic (ROC)
 - Area under ROC (AUC)
- Model Evaluation & Selection
 - Bias & Variance
- Hyperparameter Tuning

Logistic Regression with Many Attributes

 χ_1

 χ_3

 χ_4

Bias	Texture	Smoothness	Grow rate	Size	Malignant?
1	24.8	0.1	2	1	No
1	15.6	0.2	2	2	No
1	9.4	0.12	0	1	No
1	18.7	0.3	2	3	Yes
1	23.1	0.27	0	3.1	Yes
1	12.4	0.01	2	2.5	No
1	7.0	0.14	1	6	Yes
1	19.9	0.1	2	10	Yes
1	21.5	0.1	3	4.2	Yes
1	11.2	0.2	2	1	No

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Hypothesis:

$$h_{w}(x) = \sigma(w_{0}x_{0} + w_{1}x_{1} + w_{2}x_{2} + w_{3}x_{3} + w_{4}x_{4})$$

Hypothesis (for n features):

$$h_{\mathbf{w}}(x) = \sigma(\sum_{j=0}^{n} \mathbf{w}_{j} x_{j}) = \sigma(\mathbf{w}^{T} x)$$
 vector

Weight Update (for *n* features):

$$w_j \leftarrow w_j - \gamma \frac{\partial J_{BCE}(w_0, w_1, \dots, w_n)}{\partial w_j}$$

$$\frac{1}{m} \sum_{i=1}^{m} (h_{\mathbf{w}}(x^{(i)}) - y^{(i)}) \cdot x_{j}^{(i)}$$

Same as Linear Regression!

Will discuss the derivations in the next Tutorial

Dealing with Non-Linear Decision Boundary

Which function?

Dealing with Non-Linear Decision Boundary

Dealing with Non-Linear Decision Boundary

Dealing with Non-Linear Decision Boundary

Dealing with Non-Linear Decision Boundary

 $h_{\mathbf{w}}(x) = \sigma(-2 + 0x_1 + 0x_2 + 1x_1^2 + 1x_2^2)$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Dealing with Non-Linear Decision Boundary

Generally:

$$h_{\mathbf{w}}(x) = w_0 + w_1 f_1 + w_2 f_2 + w_3 f_3 + \dots + w_n f_n$$

Transformed features:

$$e.g., f_1 = x_1, f_2 = x_2, f_1 = x_1^2, f_2 = x_2^2$$

Decision boundary

$$h_{\mathbf{w}}(x) = \sigma(\mathbf{w}_0 + \mathbf{w}_1 x_1 + \mathbf{w}_2 x_2 + \mathbf{w}_3 x_1^2 + \mathbf{w}_4 x_2^2)$$

$$h_{\mathbf{w}}(x) = \sigma(-2 + 0x_1 + 0x_2 + 1x_1^2 + 1x_2^2)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Outline

- Logistic Regression
 - Classification with Continuous Inputs
 - Cross-entropy Loss
 - Logistic Regression with Gradient Descent
- Logistic Regression: Challenges and Solutions
 - Logistic Regression with Many Attributes
 - Dealing with Non-Linear Decision Boundary
- Multi-class Classification
- (More) Performance Measure
 - Receiver Operating Characteristic (ROC)
 - Area under ROC (AUC)
- Model Evaluation & Selection
 - Bias & Variance
- Hyperparameter Tuning

Multi-class Classification

Blood cancer prediction: leukemia, lymphoma, myeloma

Multi-class Classification: One vs All

Blood cancer prediction: leukemia, lymphoma, myeloma

Multi-class Classification: One vs One

Blood cancer prediction: leukemia, lymphoma, myeloma

Outline

- Logistic Regression
 - Classification with Continuous Inputs
 - Cross-entropy Loss
 - Logistic Regression with Gradient Descent
- Logistic Regression: Challenges and Solutions
 - Logistic Regression with Many Attributes
 - Dealing with Non-Linear Decision Boundary
- Multi-class classification
- (More) Performance Measure
 - Receiver Operating Characteristic (ROC)
 - Area under ROC (AUC)
- Model Evaluation & Selection
 - Bias & Variance
- Hyperparameter Tuning

$$TPR = TP / (TP+FN)$$

$$TPR = 5/5 = 1$$

$$FPR = 2/9 = 0.22$$

$$TPR = TP / (TP+FN)$$

$$TPR = 4/5 = 0.8$$

$$FPR = 1/9 = 0.11$$

$$TPR = 0/5 = 0$$

$$FPR = 0/9 = 0$$

TPR = TP / (TP+FN)

$$TPR = 0/5 = 0$$

FPR = FP / (FP+TN)

$$FPR = 0/9 = 0$$

Healthy

Cancer

Receiver Operator Characteristic (ROC) Curve

Threshold π	TPR	FPR
0	1	1
0.1	1.0	1.0
0.2	1.0	0.8
0.3	0.8	0.6
0.4	0.6	0.4
0.5	0.4	0.2
0.6	0.2	0.0
0.7	0.2	0.0
0.8	0.2	0.0
0.9	0.0	0.0
1	0	0

Model is more accurate than random chance If its **ROC curve** is above the diagonal **random** line.

Area Under Curve (AUC) of ROC

Threshold π	TPR	FPR
0	1	1
0.1	1.0	1.0
0.2	1.0	0.8
0.3	0.8	0.6
0.4	0.6	0.4
0.5	0.4	0.2
0.6	0.2	0.0
0.7	0.2	0.0
0.8	0.2	0.0
0.9	0.0	0.0
1	0	0

AUC is **concise metric** instead of a full figure.
Concise metrics enable *clearer comparisons*. **AUC > 0.5** means the model is better than chance.

AUC ≈ 1 means model is very accurate.

Outline

- Logistic Regression
 - Classification with Continuous Inputs
 - Cross-entropy Loss
 - Logistic Regression with Gradient Descent
- Logistic Regression: Challenges and Solutions
 - Logistic Regression with Many Attributes
 - Dealing with Non-Linear Decision Boundary
- Multi-class classification
- (More) Performance Measure
 - Receiver Operating Characteristic (ROC)
 - Area under ROC (AUC)
- Model Evaluation & Selection
 - Bias & Variance
- Hyperparameter Tuning

Remaining Issues

- How do we pick hyperparameters (e.g., degree of polynomials)?
- How do we decide what features to use?
- ... or how do we pick hypothesis
 - Example: decision trees or logistic regression?

Hypothesis evaluation!

Measuring The Goodness of a Model

MSE, 1 - accuracy, cross-entropy

Given a dataset D and an error function error, the expected error of a model/hypothesis h is measured as follows:

$$J_{D}(h) = \frac{1}{N} \sum_{i=1}^{N} error(h(x^{(i)}), y^{(i)})$$
, where $(x^{(i)}, y^{(i)}) \in D$

Hypothesis Evaluation: Attempt 1

Can we report the goodness of our model with $J_{D_{test}}$?

No, biased result!

Hypothesis Evaluation: Attempt 2

Example 1: Model selection

1.
$$y = \sigma(w_0 + w_1 x)$$

2. $y = \sigma(w_0 + w_1 x + w_2 x^2)$
3. $y = \sigma(w_0 + w_1 x + w_2 x^2 + w_3 x^3)$
4. $y = \sigma(w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4)$
5. $y = \sigma(w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + w_5 x^5)$
6. $y = \sigma(w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + w_5 x^5 + w_6 x^6)$

Pick the model on D_{train}

Use $J_{D_{test}}(w)$ to estimate performance on unseen samples

Example 1: Bias and Variance

Example 1: Bias and Variance

Example 2: Model selection

Polynomial Regression

$$J(w) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2 \right]$$

Moderate degree

Large degree

Example 2: Model selection

$$J(w) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2 \right]$$

1. Try
$$degree = 1$$

2. Try
$$degree = 2$$

3. Try
$$degree = 3$$

4. Try
$$degree = 4$$

5. Try
$$degree = 5$$

6. ...

Train each model on D_{train}

Compute $J_{D_{val}}(w)$

Pick the model with the lowest $J_{D_{val}}(w)$!

Use $J_{D_{tost}}(w)$ to estimate performance on unseen samples

Example 2: Bias and Variance

$$J(w) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2 \right]$$

Diagnosing Bias and Variance

Bias (undefit):

$$J_{D_{train}}(w)$$
 will be high $J_{D_{train}}(w) \approx J_{D_{val}}(w)$

Variance (overfit):

$$J_{D_{train}}(w)$$
 will be low $J_{D_{val}}(w) \gg J_{D_{train}}(w)$

Outline

- Logistic Regression
 - Classification with Continuous Inputs
 - Cross-entropy Loss
 - Logistic Regression with Gradient Descent
- Logistic Regression: Challenges and Solutions
 - Logistic Regression with Many Attributes
 - Dealing with Non-Linear Decision Boundary
- Multi-class classification
- (More) Performance Measure
 - Receiver Operating Characteristic (ROC)
 - Area under ROC (AUC)
- Model Evaluation & Selection
 - Bias & Variance
- Hyperparameter Tuning

Hyperparameter Tuning

Finding the best model

Loop (Basic):

- 1. Pick hyperparameters
 - Examples: degree of polynomials, max-depth pruning
- 2. Train model with the hyperparameters
- 3. Evaluate model

Hyperparameter Tuning: Methods

Grid search (exhaustive search)

• Exhaustively try all possible hyperparameters

Random search

Randomly select hyperparameters

Successive halving

- Use all possible hyperparameters but with reduced resources
- Successively increase the resources with smaller set of hyperparameters

Bayesian optimization

• Use Bayesian methods to estimate the optimization space of the hyperparameters

Evolutionary algorithms

• Use evolutionary algorithms (e.g., genetic algo) to select a population of hyperparameters

Many "off-the-shelves" packages available

Summary

- Logistic Regression
 - Classification with Continuous Inputs: draw a line that separates classes well
 - Cross-entropy Loss: $\frac{1}{m} \sum_{i=1}^{m} BCE(h_{w}(x^{(i)}), y^{(i)}), BCE(y, \hat{y}) = -y \log(\hat{y}) (1 y) \log(1 \hat{y})$
 - Logistic Regression with Gradient Descent same as Linear Regression
- Logistic Regression: Challenges and Solutions
 - Logistic Regression with Many Attributes $\sigma(w^Tx)$, similar to Linear Regression
 - Dealing with Non-Linear Decision Boundary **feature transformations**, similar to Linear Regression
- Multi-class classification: one-vs-all, one-vs-one
- (More) Performance Measure
 - Receiver Operating Characteristic (ROC): TPR vs FPR
 - Area under ROC (AUC): summary of ROC
- Model Evaluation & Selection
 - Bias (model capacity) & Variance (model randomness)
- Hyperparameter Tuning

Coming Up Next Week

Recess Week! ... then **Midterm** assessment

Lecture 7:

- Regularizations
- Support Vector Machines
- Kernels

To Do

- Lecture Training 6
 - +100 Free EXP
 - +50 Early bird bonus