User behavior modeling

With Multi-Modal Attention-based Hierarchical Graph Neural Network (MM-AHGNN)

References:

- 1. A Survey on Knowledge Graphs: Representation, Acquisition and Applications, IEEE Transactions on Neural Networks and Learning Systems 2021
- 2. Object Interaction Recommendation with Multi-Modal Attention-based Hierarchical Graph Neural Network, IEEE International Conference on Big Data 2021

Objective:

コンテンツ:

- 1. 領域紹介及び背景知識.
- 2. ビジネス側のメリット.
- 3. 従来手法及び問題点.
- 4. MM-AHGNN.

User behavior modeling

- 1. What is user behavior?
- 2. Knowledge Graphとは?どのような従来手法がある?
- 3. MM-AHGNN
 - GNN: 図理論で動態数のデータでのモデリング技術
 - MM-AHGNN: GNN をKnowledge Graph領域に応用
 - 性能分析
- 4. まとめ

行動歴史モデリングとは?

実体間の行動から実体関係を推論する手法 関連性の応用例:

例:スマートウォッチユーザーの行動歴史

- ユーザー: {行動1,行動2, …}
- ユーザーA. Bの行動パターンが近いよっ て関連性が高い
- ユーザーA, Cの行動パターンが遠いよっ て関連性が低い

- 興味推論: Aの興味≈Bの興味
- 行動予測: A,B {行動1,行動2}; A{行動3} -> B{行動3}
- ユーザーグルーピング:ユーザーを種類 別分類できる

手順の全体像は?

実体間の行動から実体関係を推論する手法

- 入力: $U_1{A_1,...,A_n}, U_2{A_1,...,A_m},...$
- 出力: $s_{iht} \in S$, $s_{iht} = f_i(E_h, E_t)$

Rule based

ユーザー行動歴史モデリング

- 1. 行動歴史モデリングとは?手順の全体像は?
- 2. Knowledge Graphとは?どのような従来手法がある?
- 3. MM-AHGNN
 - GNN: 図理論で動態数のデータでのモデリング技術
 - MM-AHGNN: GNN をKnowledge Graph領域に応用
 - 性能分析
- 4. まとめ

Knowledge Graphとは?

- 関連性の応用例:
- I・ 興味推論: Aの興味≈Bの興味
- └• 行動予測: A,B {行動1,行動2}; A{行動3} -> B{行動3}
- ユーザーグルーピング:ユーザーを種類別分類できる

Method	Ent. embedding	Rel. embedding	Scoring function $f_r(h,t)$	Constraints/Regularization			
TransE [14]	$\mathbf{h},\mathbf{t} \in \mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$-\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ _{1/2}$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1$			
FransH [15] $\mathbf{h}, \mathbf{t} \in \mathbb{R}^d$		$\mathbf{r},\mathbf{w}_r \in \mathbb{R}^d$	$-\ (\mathbf{h} - \mathbf{w}_r^\top \mathbf{h} \mathbf{w}_r) + \mathbf{r} - (\mathbf{t} - \mathbf{w}_r^\top \mathbf{t} \mathbf{w}_r)\ _2^2$	$\ \mathbf{h}\ _{2} \leq 1, \ \mathbf{t}\ _{2} \leq 1$ $\ \mathbf{w}_{r}^{\top}\mathbf{r} /\ \mathbf{r}\ _{2} \leq \epsilon, \ \mathbf{w}_{r}\ _{2} = 1$			
TransR [16]	$\mathbf{h},\mathbf{t} \in \mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^k, \mathbf{M}_r \in \mathbb{R}^{k imes d}$	$-\ \mathbf{M}_r\mathbf{h}+\mathbf{r}-\mathbf{M}_r\mathbf{t}\ _2^2$	$\ \mathbf{h}\ _{2} \le 1, \ \mathbf{t}\ _{2} \le 1, \ \mathbf{r}\ _{2} \le 1$ $\ \mathbf{M}_{r}\mathbf{h}\ _{2} \le 1, \ \mathbf{M}_{r}\mathbf{t}\ _{2} \le 1$			
TransD [50]	$egin{aligned} \mathbf{h}, \mathbf{w}_h &\in \mathbb{R}^d \ \mathbf{t}, \mathbf{w}_t &\in \mathbb{R}^d \end{aligned}$	$\mathbf{r},\mathbf{w}_r \in \mathbb{R}^k$	$-\ (\mathbf{w}_r\mathbf{w}_h^\top + \mathbf{I})\mathbf{h} + \mathbf{r} - (\mathbf{w}_r\mathbf{w}_t^\top + \mathbf{I})\mathbf{t}\ _2^2$	$\begin{aligned} \ \mathbf{h}\ _{2} &\leq 1, \ \mathbf{t}\ _{2} \leq 1, \ \mathbf{r}\ _{2} \leq 1 \\ \ (\mathbf{w}_{r}\mathbf{w}_{h}^{\top} + \mathbf{I})\mathbf{h}\ _{2} &\leq 1 \\ \ (\mathbf{w}_{r}\mathbf{w}_{t}^{\top} + \mathbf{I})\mathbf{t}\ _{2} &\leq 1 \end{aligned}$			
TranSparse [51]	$\mathbf{h},\mathbf{t} \in \mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^k, \mathbf{M}_r(\theta_r) \in \mathbb{R}^{k \times d}$ $\mathbf{M}_r^1(\theta_r^1), \mathbf{M}_r^2(\theta_r^2) \in \mathbb{R}^{k \times d}$	$-\ \mathbf{M}_r(\theta_r)\mathbf{h} + \mathbf{r} - \mathbf{M}_r(\theta_r)\mathbf{t}\ _{1/2}^2 \\ -\ \mathbf{M}_r^1(\theta_r^1)\mathbf{h} + \mathbf{r} - \mathbf{M}_r^2(\theta_r^2)\mathbf{t}\ _{1/2}^2$	$\begin{aligned} &\ \mathbf{h}\ _{2} \leq 1, \ \mathbf{t}\ _{2} \leq 1, \ \mathbf{r}\ _{2} \leq 1 \\ &\ \mathbf{M}_{r}(\theta_{r})\mathbf{h}\ _{2} \leq 1, \ \mathbf{M}_{r}(\theta_{r})\mathbf{t}\ _{2} \leq 1 \\ &\ \mathbf{M}_{r}^{1}(\theta_{r}^{1})\mathbf{h}\ _{2} \leq 1, \ \mathbf{M}_{r}^{2}(\theta_{r}^{2})\mathbf{t}\ _{2} \leq 1 \end{aligned}$			
TransM [52]	$\mathbf{h},\mathbf{t} \in \mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$- heta_r \ \mathbf{h} + \mathbf{r} - \mathbf{t}\ _{1/2}$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1$			
ManifoldE [53]	$\mathbf{h},\mathbf{t} \in \mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$-(\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ _2^2-\theta_r^2)^2$	$\ \mathbf{h}\ _2 \le 1, \ \mathbf{t}\ _2 \le 1, \ \mathbf{r}\ _2 \le 1$			
TransF [54]	$\mathbf{h},\mathbf{t} \in \mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d$	$(\mathbf{h} + \mathbf{r})^{\top} \mathbf{t} + (\mathbf{t} - \mathbf{r})^{\top} \mathbf{h}$	$\ \mathbf{h}\ _2 \le 1, \ \mathbf{t}\ _2 \le 1, \ \mathbf{r}\ _2 \le 1$			
TransA [55]	$\mathbf{h},\mathbf{t} \in \mathbb{R}^d$	$\mathbf{r} \in \mathbb{R}^d, \mathbf{M}_r \in \mathbb{R}^{d imes d}$	$-(\mathbf{h}+\mathbf{r}-\mathbf{t})^{\top}\mathbf{M}_r(\mathbf{h}+\mathbf{r}-\mathbf{t})$	$\ \mathbf{h}\ _{2} \le 1, \ \mathbf{t}\ _{2} \le 1, \ \mathbf{r}\ _{2} \le 1$ $\ \mathbf{M}_{r}\ _{F} \le 1, [\mathbf{M}_{r}]_{ij} = [\mathbf{M}_{r}]_{ji} \ge 0$			
KG2E [45]	$egin{aligned} \mathbf{h} \! \sim \! \mathcal{N}(oldsymbol{\mu}_h, oldsymbol{\Sigma}_h) \ \mathbf{t} \! \sim \! \mathcal{N}(oldsymbol{\mu}_t, oldsymbol{\Sigma}_t) \ oldsymbol{\mu}_h, oldsymbol{\mu}_t \! \in \! \mathbb{R}^d \ oldsymbol{\Sigma}_h, oldsymbol{\Sigma}_t \! \in \! \mathbb{R}^{d imes d} \end{aligned}$	$\mathbf{r} \sim \mathcal{N}(oldsymbol{\mu}_r, oldsymbol{\Sigma}_r) \ oldsymbol{\mu}_r \in \mathbb{R}^d, oldsymbol{\Sigma}_r \in \mathbb{R}^{d imes d}$	$-\text{tr}(\boldsymbol{\Sigma}_r^{-1}(\boldsymbol{\Sigma}_h + \boldsymbol{\Sigma}_t)) - \boldsymbol{\mu}^\top \boldsymbol{\Sigma}_r^{-1} \boldsymbol{\mu} - \ln \frac{\det(\boldsymbol{\Sigma}_r)}{\det(\boldsymbol{\Sigma}_h + \boldsymbol{\Sigma}_t)} \\ - \boldsymbol{\mu}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} - \ln (\det(\boldsymbol{\Sigma})) \\ \boldsymbol{\mu} = \boldsymbol{\mu}_h + \boldsymbol{\mu}_r - \boldsymbol{\mu}_t \\ \boldsymbol{\Sigma} = \boldsymbol{\Sigma}_h + \boldsymbol{\Sigma}_r + \boldsymbol{\Sigma}_t$	$\begin{split} & \ \boldsymbol{\mu}_h\ _2 \leq 1, \ \boldsymbol{\mu}_t\ _2 \leq 1, \ \boldsymbol{\mu}_r\ _2 \leq 1 \\ & c_{min}\mathbf{I} \leq \boldsymbol{\Sigma}_h \leq c_{max}\mathbf{I} \\ & c_{min}\mathbf{I} \leq \boldsymbol{\Sigma}_t \leq c_{max}\mathbf{I} \\ & c_{min}\mathbf{I} \leq \boldsymbol{\Sigma}_r \leq c_{max}\mathbf{I} \end{split}$			
TransG [46]	$\begin{aligned} \mathbf{h} \! \sim \! \mathcal{N}(\boldsymbol{\mu}_h, \! \sigma_h^2 \mathbf{I}) \\ \mathbf{t} \! \sim \! \mathcal{N}(\boldsymbol{\mu}_t, \! \sigma_t^2 \mathbf{I}) \\ \boldsymbol{\mu}_h, \boldsymbol{\mu}_t \! \in \! \mathbb{R}^d \end{aligned}$	$\begin{aligned} \boldsymbol{\mu}_r^i \sim & \mathcal{N} \! \left(\boldsymbol{\mu}_t \!\!-\!\! \boldsymbol{\mu}_h, \! (\boldsymbol{\sigma}_h^2 \!\!+\!\! \boldsymbol{\sigma}_t^2) \mathbf{I} \right) \\ \mathbf{r} &= \sum_i \boldsymbol{\pi}_r^i \boldsymbol{\mu}_r^i \in \mathbb{R}^d \end{aligned}$	$\textstyle \sum_i \pi_r^i \exp\left(-\frac{\ \mu_h + \mu_r^i - \mu_t\ _2^2}{\sigma_h^2 + \sigma_t^2}\right)$	$\ \boldsymbol{\mu}_h \ _2 \leq 1, \ \boldsymbol{\mu}_t \ _2 \leq 1, \ \boldsymbol{\mu}_r^i \ _2 \leq$			
UM [56]	$\mathbf{h},\mathbf{t} \in \mathbb{R}^d$	-	$-\ \mathbf{h}-\mathbf{t}\ _2^2$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1$			
SE [57]	$\mathbf{h},\mathbf{t} \in \mathbb{R}^d$	$\mathbf{M}_r^1, \mathbf{M}_r^2 \in \mathbb{R}^{d imes d}$	$-\ \mathbf{M}_r^1\mathbf{h}-\mathbf{M}_r^2\mathbf{t}\ _1$	$\ \mathbf{h}\ _2 = 1, \ \mathbf{t}\ _2 = 1$			

- 1. Introduction
- 2. Theory
- 3. Application and SOTA works
 - Appetizer: image classification task
 - Main-dish: speech recognition task
 - Dessert: what about self-supervised learning
- 4. Summary

Theory

Normal training

(loss inside single group)

$$L_{reg} = \sum_{i,j} \|h(\mathbf{x}_i) - h(\mathbf{x}_j)\|_2^2,$$
 Accumulate Instance A,B, all pairs of selected by samples and instance A

samples Weight, calculated strategy by A,B, optional.

What people focus:

- How to choose instance pairs without label?
- How to add weight on these pairs?
- How to maximize distance between groups?

- 1. Introduction
- 2. Theory
- 3. Application and SOTA works
 - Appetizer: image classification task
 - Main-dish: speech recognition task
 - Dessert: what about self-supervised learning
- 4. Summary

Appetizer: Weak-shot image classification

Novelty:

- Use *transferred similarity* + *denoise strategy* to tackle web training data.
- Apply adversarial loss to similarity net.

Network (derived from *ref.1.1*):

Pair-enumerate: $(k, d) \rightarrow (k, k, 2d) \rightarrow (k^2, 2d)$

Fc: $(k^2, 2d) \rightarrow (k^2)$; Similar prediction: Y/N

Feature constraint: cluster unlabeled data based

on feature from labeled data.

Weak-shot Fine-grained Classification via Similarity Transfer, NIPS 2021

Appetizer: Weak-shot image classification

$$L_{reg} = \sum_{i,j} \tilde{s}_{i,j} \|h(\mathbf{x}_i) - h(\mathbf{x}_j)\|_2^2, \quad w_{c,i} = \frac{1}{N_c^n} \sum_{j=1}^{N_c^n} \frac{s_{c,i,j} + s_{c,j,i}}{2}.$$

Training steps:

- 1. Train network on labeled data.
 - Prediction target: binary classification of similar or not.
 - CE loss.
 - Strong constraint: batch size k s.t. k^2 items pre-step.

Cluster unlabeled data via pre-trained network.

- Select k_1 samples from labeled data.
- Select k_2 samples from unlabeled data.
- Calculate feature f_1 , f_2 .
- Weighted L2 loss by similarity.

Weak-shot Fine-grained Classification via Similarity Transfer, NIPS 2021

- 1. Introduction
- 2. Theory
- 3. Application and SOTA works
 - Appetizer: image classification task
 - Main-dish: speech recognition task
 - Dessert: what about self-supervised learning
- 4. Summary

Embedding E_* : codebook consisted by trainable parameters.

Token: vocabulary + start token + end token

Segment: (2, ch) parameters
Position: trainable parameters based on location.

Input: 2 sentences A,B from articles.

Task: randomly mask multi-words (15%) in A and B, predict the words by context (CE loss).

Task: randomly select continuous and discontinuous (50%/50%) sentences A and B, determine whether B is the post sentence of A (CE Joss).

determine whether B is the next sentence of A (CE loss).

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NACCL 2019, Google Al

Pre-training

Bidirectional encoder network: transformer with unfixed sequence.

Fine-Tuning

Normal supervised training for task with low amount (e.g. 1/1000 of unlabeled data), labeled, specific data (so called downstream task).

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NACCL 2019, Google Al

Auxiliary task: identify the true quantized representation from masked region (*ref2.1.1*).

G codebooks $\in \mathbb{R}^{V \times d}$, product quantization: $z \in \mathbb{R}^{ch} \overrightarrow{f(z)} I \in \mathbb{R}^{G \times V} \overrightarrow{Gum.Smax(I)} p_{g,v}$ select G rows $e_1, ..., e_G$ by $p_{g,v}$ via argmax concatenate into $e \in \mathbb{R}^{G \times d} \overrightarrow{f(z)} q \in \mathbb{R}^{ch}$ Gumbel softmax: $p_{g,v} = \frac{\exp(l_{g,v} + n_v)/\tau}{\sum_{k=1}^{V} \exp(l_{g,k} + n_k)/\tau}$,

 τ : non-negative temperature

 $n = -\log(-\log(u))$

u: uniform sample from (0,1)

Input: speech voice (1d sequence, float)

Task 1: identify the true quantized latent speech representation

Task 2: keep vectors in codebooks used as equal as possible.

Wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations, NIPS 2020, Facebook AI

Random mask: replace inputs of transformer by shared, trained feature vector

Contrastive Loss (ref2.1.2):

$$\mathcal{L}_{m} = -\log \frac{\exp(sim(\mathbf{c}_{t}, \mathbf{q}_{t})/\kappa)}{\sum_{\tilde{\mathbf{q}} \sim \mathbf{Q}_{t}} \exp(sim(\mathbf{c}_{t}, \tilde{\mathbf{q}})/\kappa)}$$

c: context representation

q: quantized representation

sim: cosine similarity

$$sim(\mathbf{a}, \mathbf{b}) = \mathbf{a}^T \mathbf{b} / \|\mathbf{a}\| \|\mathbf{b}\|$$

$$\mathcal{L}_{m} = -\log \frac{\exp(sim(\mathbf{c}_{t}, \mathbf{q}_{t})/\kappa)}{\sum_{\mathbf{\tilde{q}} \sim \mathbf{Q}_{t}} \exp(sim(\mathbf{c}_{t}, \mathbf{\tilde{q}})/\kappa)} \qquad \mathcal{L}_{d} = \frac{1}{GV} \sum_{g=1}^{G} -H(\bar{p}_{g}) = \frac{1}{GV} \sum_{g=1}^{G} \sum_{v=1}^{V} \bar{p}_{g,v} \log \bar{p}_{g,v}$$

Diversity Loss: encourage the equal use of the V entries in each of the G codebooks by maximizing the entropy of the averaged softmax distribution I

Wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations, NIPS 2020, Facebook Al

Combine W2v and BERT to conduct WSL on unlabeled voice data.

Input: unlabeled voice data

Task: identify the true quantized latent speech representation (contrastive loss)

Task: randomly mask words and predict them by context (**M**asked **L**anguage **M**odeling).

Contrastive stack: transformer-based encoder

MLM stack: transformer-based decoder

W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-Supervised Speech Pre-Training, 2021, MIT & Google Brain

Method	Unlabeled	AM	LM	No LM			With LM				
	Data (hrs)	Size (B)	Size (B)	dev	dev-other	test	test-other	dev	dev-other	test	test-other
Trained from Scratch											
Conformer L [21]*	N/A	0.1	0.1	1.9	4.4	2.1	4.3	_	_	1.9	3.9
Self-training Only											
Conformer L with NST [21]	60k	0.1	0.1	1.6	3.3	1.7	3.5	1.6	3.1	1.7	3.3
Pre-training Only											
wav2vec 2.0 [22]	60k	0.3	$> 0.4^{\dagger}$	2.1	4.5	2.2	4.5	1.6	3.0	1.8	3.3
HuBERT Large [25]	60k	0.3	-	_	_	_	_	1.5	3.0	1.9	3.3
HuBERT X-Large [25]	60k	1.0	_	_	_	_	-	1.5	2.5	1.8	2.9
w2v-Conformer XL [21]	60k	0.6	0.1	1.7	3.5	1.7	3.5	1.6	3.2	1.5	3.2
w2v-Conformer XXL [21]	60k	1.0	0.1	1.6	3.2	1.6	3.3	1.5	3.0	1.5	3.1
w2v-BERT XL (Ours)	60k	0.6	0.1	1.5	2.9	1.5	2.9	1.4	2.8	1.5	2.8
w2v-BERT XXL (Ours)	60k	1.0	0.1	1.5	2.7	1.5	2.8	1.4	2.6	1.5	2.7
Pre-training + Self-training											
wav2vec 2.0 [22]	60k	0.3	> 0.4	1.3	3.1	1.7	3.5	1.1	2.7	1.5	3.1
w2v-Conformer XXL [21]	60k	1.0	0.1	1.3	2.7	1.5	2.8	1.3	2.6	1.4	2.7
w2v-Conformer XXL+ [21]	60k	1.1	0.1	1.3	2.7	1.5	2.7	1.3	2.6	1.4	2.6
w2v-BERT XL (Ours)	60k	0.6	0.1	1.3	2.6	1.4	2.7	1.3	2.6	1.4	2.6
w2v-BERT XXL (Ours)	60k	1.0	0.1	1.4	2.4	1.4	2.5	1.3	2.4	1.4	2.5

W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-Supervised Speech Pre-Training, 2021, MIT & Google Brain

- 1. Introduction
- 2. Theory
- 3. Application and SOTA works
 - Appetizer: image classification task
 - Main-dish: speech recognition task
 - Dessert: what about self-supervised learning
- 4. Summary

Dessert: SSL, strategy purely for pre-training

Teacher-student structure: x^1 : teacher input, weak augmentation from x^2 : student input, normal augmentation from x^2

Data augmentation based **S**elf-**S**upervised **L**earning: distribution of predicted classes of instances between two augmentations should be similar.

Calculate the similarity between single z_i^1 and all z_j^2 .

ReSSL: Relational Self-Supervised Learning with Weak Augmentation, NIPS 2021

Dessert: SSL, strategy purely for pre-training

Preliminaries:

Noise Contrastive Estimation

sim: cosine similarity

$$sim(\mathbf{u}, \mathbf{v}) = \mathbf{u}^T \mathbf{v} / \|\mathbf{u}\| \|\mathbf{v}\|$$

Week aug. and normal aug. vs. original image:

 $\mathbf{p}_{i}^{1} = \frac{\exp(sim(\mathbf{z}^{1}, \mathbf{z}_{i})/\tau_{t})}{\sum_{k=1}^{K} \exp(sim(\mathbf{z}^{1}, \mathbf{z}_{k})/\tau_{t})}. \quad \mathbf{p}_{i}^{2} = \frac{\exp(sim(\mathbf{z}^{2}, \mathbf{z}_{i})/\tau_{s})}{\sum_{k=1}^{K} \exp(sim(\mathbf{z}^{2}, \mathbf{z}_{k})/\tau_{s},)}$ 1-all similarity

 $z^{1,2}$: 1st image from week and normal aug. z_i : *i-th* original image in batch.

Minimize Kullback-Leibler divergence

$$\mathcal{L}_{relation} = D_{KL}(\mathbf{p}^1 || \mathbf{p}^2) = H(\mathbf{p}^1, \mathbf{p}^2) - H(\mathbf{p}^1)$$

Because $H(p^1)$ is target distribution so only regress $H(p^1, p^2)$ hence $L = H_{CE}(p^1, p^2)$

ReSSL: Relational Self-Supervised Learning with Weak Augmentation, NIPS 2021

- 1. Introduction
- 2. Theory
- 3. Application and SOTA works
 - Appetizer: image classification task
 - Main-dish: speech recognition task
 - Dessert: what about self-supervised learning
- 4. Summary

WSL: a way to utilize public, unlabeled data

Methodology:

- Clustering on feature space: reduce feature distance, increase similarity, etc.
- Data augmentation: add uncertainty on certain data.

From view of business:

- Convert pre-trained network as asset: one network to multiple downstream tasks.
- Reduce labeling cost.
- Reduce data storage cost: unlabeled data can be removed after producing pre-trained network.

From view of R&D:

- Additional supervision is conducive to regress network more quickly, precisely.
- Graph based supervision positively contribute to class robustness.
- Flexible, dynamic network structure to deliver: FC layer is no longer the only choice.
- Easily used as novelty in research.