Optimistic Distributionally Robust Optimization for Nonparametric Likelihood Approximation The Hong Kong Polytechnic University 香港理工大學

Viet Anh Nguyen[†], Soroosh Shafieezadeh-Abadeh[†], Man-Chung Yue[‡], Daniel Kuhn[†] and Wolfram Wiesemann[§]

†EPFL, †The Hong Kong Polytechnic University, §Imperial College London

Contributions

Evaluating the likelihood of an observation is a fundamental question in various fields **Motivation:**

- ► Data-generating distribution **P** is unknown
- ► Estimation of parameters from training samples leads to overfitting
- ► Ignoring this uncertainty leads to poor out-of-sample performance

Contributions:

- ► Nonparametric estimation using **Optimistic Likelihood** (OL) approach
- \blacktriangleright KL ambiguity sets \Rightarrow a finite convex problem
- \blacktriangleright Mean-variance ambiguity sets \Rightarrow a semidefinite program with analytical solution
- \triangleright Wasserstein ambiguity sets \Rightarrow a linear program solved with sorting

Generic Optimistic Likelihood Model

Kullback-Leibler Divergence

For distributions P_0 and P_1 with density functions $p_0(x)$ and $p_1(x)$, we have

$$\mathrm{KL}(\mathbf{P_0}||\mathbf{P_1}) = \int_{-\infty}^{\infty} \boldsymbol{p_0}(\boldsymbol{x}) \log \left(\frac{\boldsymbol{p_0}(\boldsymbol{x})}{\boldsymbol{p_1}(\boldsymbol{x})} \right) \mathrm{d}\boldsymbol{x}$$

The KL ambiguity set with radius $\varepsilon > 0$:

$$\mathcal{B}(\hat{oldsymbol{
u}}) = \{ oldsymbol{
u} \in \mathcal{M}(\mathcal{X}) : \mathrm{KL}(\hat{oldsymbol{
u}} \parallel oldsymbol{
u}) \leq oldsymbol{arepsilon} \}$$

OL solution:

 $x \in \{\hat{x}_1, \dots, \hat{x}_N\}$: OL reduces to the finite convex program

$$\sup_{\boldsymbol{\nu} \in \mathcal{B}_{\mathrm{KL}}(\hat{\boldsymbol{\nu}})} \boldsymbol{\nu}(\boldsymbol{x}) = \max \left\{ \sum_{i} \boldsymbol{y_i} \mathbb{1}_{\boldsymbol{x}}(\hat{\boldsymbol{x}_i}) : \boldsymbol{y} \in \Delta, \sum_{i} \hat{\boldsymbol{\nu}_i} \log(\hat{\boldsymbol{\nu}_i}/y_i) \leq \boldsymbol{\varepsilon} \right\},$$

 $\boldsymbol{x} \notin \{\hat{\boldsymbol{x}}_1, \dots, \hat{\boldsymbol{x}}_N\}$: OL is independent of \boldsymbol{x}

$$\sup_{\boldsymbol{\nu} \in \mathcal{B}_{\mathrm{KL}}(\hat{\boldsymbol{\nu}})} \boldsymbol{\nu}(\boldsymbol{x}) = 1 - \exp(-\boldsymbol{\varepsilon})$$

Mean-Variance Ambiguity Set

The mean-variance ambiguity set defined as

$$\mathcal{oldsymbol{\mathcal{B}}}_{ ext{MV}}(\hat{oldsymbol{
u}}) = \left\{ oldsymbol{
u} \in \mathcal{M}(\mathcal{X}): \; \mathbb{E}_{oldsymbol{
u}}[ilde{oldsymbol{x}}] = \hat{oldsymbol{\mu}}, \; \mathbb{E}_{oldsymbol{
u}}[ilde{oldsymbol{x}} ilde{oldsymbol{x}}^ op] = \hat{oldsymbol{\Sigma}} + \hat{oldsymbol{\mu}}\hat{oldsymbol{\mu}}^ op
ight\},$$

where
$$\hat{\boldsymbol{\mu}} = \frac{1}{N} \sum_{i} \hat{\boldsymbol{x}}_{i}$$
 and $\hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{i} (\hat{\boldsymbol{x}}_{i} - \hat{\boldsymbol{\mu}}) (\hat{\boldsymbol{x}}_{i} - \hat{\boldsymbol{\mu}})^{\top}$

OL solution:

$$\sup_{\boldsymbol{\nu} \in \mathcal{B}_{MV}(\hat{\boldsymbol{\nu}})} \boldsymbol{\nu}(\boldsymbol{x}) = \frac{1}{1 + (\boldsymbol{x} - \hat{\boldsymbol{\mu}})^{\top} \hat{\boldsymbol{\Sigma}}^{-1} (\boldsymbol{x} - \hat{\boldsymbol{\mu}})} \in (0, 1].$$

Wasserstein Ambiguity Set

Wasserstein distance:

$$W(\mathbb{P}_{1}, \mathbb{P}_{2}) \triangleq \inf_{\pi \in \Pi(\mathbb{P}_{1}, \mathbb{P}_{2})} \mathbb{E}_{\pi} \left[d(\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}) \right]$$

Reduce to the linear program

$$\sup_{\boldsymbol{\nu} \in \mathcal{B}_{W}(\widehat{\boldsymbol{\nu}})} \boldsymbol{\nu}(\boldsymbol{x}) = \max \left\{ \sum_{i} \boldsymbol{y}_{i} : \boldsymbol{y}_{i} \in [0, 1/N], \sum_{i} d(\boldsymbol{x}, \widehat{\boldsymbol{x}}_{i}) \boldsymbol{y}_{i} \leq \boldsymbol{\varepsilon}, \right\}$$

► Can be solved in $O(N \log N)$ using greedy heuristics.

ELBO Problem

Assumption: Finite parameter space $\Theta = \{\theta_1, \dots, \theta_C\}$

Evidence Lower BOund:

$$\mathcal{J}^{\text{true}} \triangleq \min_{\mathbb{Q} \in \mathcal{Q}} \text{ KL}(\mathbb{Q} \parallel \pi) - \mathbb{E}_{\mathbb{Q}}[\log \boldsymbol{p}(\boldsymbol{x}|\theta)]$$

$$= \min_{q \in \mathcal{Q}} \sum_{i=1}^{\infty} q_{i}(\log q_{i} - \log \pi_{i}) - \sum_{i=1}^{\infty} q_{i} \log \boldsymbol{p}(\boldsymbol{x}|\theta_{i})$$

- ► Unknown $p(x|\theta_i)$
- ► ELBO with OL: Given observations $\hat{\boldsymbol{x}}_1, \dots, \hat{\boldsymbol{x}}_{N_i} \sim \boldsymbol{p}(\cdot | \theta_i)$ for all $i \in [C]$

$$\hat{\mathcal{J}}_{\mathcal{B}} = \min_{q \in \mathcal{Q}} \sum_{i} q_i (\log q_i - \log \pi_i) - \sum_{i} q_i \log \left(\sup_{oldsymbol{
u_i \in \mathcal{B}(\hat{oldsymbol{
u}_i)}}} oldsymbol{
u_i(oldsymbol{x})}
ight)$$

Question: is $\hat{\mathcal{J}}_{\mathcal{B}}$ close to $\mathcal{J}^{\text{true}}$?

Performance Guarantees

KL Ambiguity Set – Asymptotic Guarantee: set $n = \min\{N_1, \dots, N_C\}$

$$\limsup_{n\to\infty} \frac{1}{n} \log \mathbb{P}^{\infty}(\boldsymbol{\mathcal{J}}^{\mathsf{true}} < \hat{\boldsymbol{\mathcal{J}}}_{\mathcal{B}}) \le -\min \boldsymbol{\varepsilon}_{\boldsymbol{i}} < 0.$$

Wasserstein Ambiguity Set – Finite sample guarantee: If $\varepsilon_i = \varepsilon_i(\beta, C, N_i)$ defined as

$$\varepsilon_{i}(\beta, C, \mathbf{N}_{i}) \triangleq \begin{cases} \left(\frac{\log(k_{i1}C\beta^{-1})}{k_{i2}\mathbf{N}_{i}}\right)^{1/\max\{m, 2\}} & \text{if } \mathbf{N}_{i} \geq \frac{\log(k_{i1})C\beta^{-1}}{k_{i2}}, \\ \left(\frac{\log(k_{i1}C\beta^{-1})}{k_{i2}\mathbf{N}_{i}}\right)^{1/a_{i}} & \text{if } \mathbf{N}_{i} < \frac{\log(k_{i1})C\beta^{-1}}{k_{i2}}, \end{cases}$$

then $\mathbb{P}^N(\boldsymbol{\mathcal{J}}^{\mathsf{true}} < \hat{\boldsymbol{\mathcal{J}}}_{\mathcal{B}}) \leq \beta$.

Wasserstein Ambiguity Set – Asymptotic Guarantee:

If $\boldsymbol{\varepsilon_i} = \varepsilon_i(\beta, C, N_i)$, then $\hat{\mathcal{J}}_{\mathcal{B}} \to \mathcal{J}^{\text{true}}$ as $N_1, \dots, N_C \to \infty$ almost surely.

Simulation Results

Beta-Binomial Inference:

- ► True (unknown) likelihood: $p(\boldsymbol{x}|\theta) = \text{Bin}(\boldsymbol{x}|M,\theta)$
- ► Prior: $\pi(\theta) = \text{Beta}(\theta | \alpha, \beta)$ ► True posterior: $q(\theta | \boldsymbol{x}) = \text{Beta}(\theta | \boldsymbol{x} + \alpha, M \boldsymbol{x} + \beta)$

Empirical Experiments (UCI dataset): average area under the precision-recall curve

References

▶ Nguyen, V.A., Shafieezadeh-Abadeh, S., Yue, M.C., Kuhn, D. and Wiesemann, W. (2019). Calculating optimistic likelihoods using (geodesically) convex optimization. Advances in Neural Information Processing Systems.