Sequence to Sequence Learning

for NLP

정상근 미래기술원 SKT

2015-10-16

Introduction

SEQUENCE TO SEQUENCE LEARNING

S2S example – Speech Recognition

Sequence 2 Sequence
Learning

Input: Speech Signal

Output : Text

오늘 날씨 좀 알려 주세요

S2S example – Movie Frame Labeling

Swing Swing Hit Bat_Broken Output: Scene Labels

Sequence 2 Sequence Learning

Input : Video Frame

S2S example – POS Tagging

명사 명사 조사 부사 동사 *Output : 품사*

Sequence 2 Sequence Learning

Input : Text

오늘 날씨 가 참 좋습니다

S2S – Machine Translation

자세한 경로 정보 보기 실행해 M2000번 버스 운행 정보 좀 보여줘 이 목록 밑에서 세 번째 거 들어가봐 98번 녹색 버스 첫차 시간 언제야 삼성동에서 스타벅스 한번 보여줘 영주 지천로 지도로 좀 보자 놀이방 있는 식당 좀 이 근처에서 찾아 줘 내 위치에서 스타벅스 다 보여줘 다른 데 어디 있나 찾아봐 가까운 지하철역 찾아줘 센트레빌 아파트 안내해주세요 울집까지 얼마나 더 가야 돼

자세한 경로 정보 보기 실행해 M2000번 버스 운행 정보 좀 보여줘 이 목록 밑에서 세 번째 거 들어가봐 98번 녹색 버스 첫차 시간 언제야 삼성동에서 스타벅스 한번 보여줘 영주 지천로 지도로 좀 보자 놀이방 있는 식당 좀 이 근처에서 찾아 줘 내 위치에서 스타벅스 다 보여줘 다른 데 어디 있나 찾아봐 가까운 지하철역 찾아줘 센트레빌 아파트 안내해주세요 울집까지 얼마나 더 가야 돼

자세한 경로 정 M2000번 버스 운 이 목록 밑에서 서 98번 녹색 버스 삼성동에서 스티 영주 지천로 놀이방 있는 식당 좀 내 위치에서 스 다른 데 어디 가까운 지히 센트레빌 아파 울집까지 얼다

보 보기 실행해 ·행 정보 좀 보여줘 번째 거 들어가봐 첫차 시간 언제야 벅스 한번 보여줘 지도로 좀 보자 이 근처에서 찾아 줘 타벅스 다 보여줘 있나 찾아봐 **ŀ철역 찾아줘** 트 안내해주세요 나나 더 가야 돼

S2S – Location Labeling

Sequence 2 Sequence Learning

 $\begin{bmatrix} 52 \\ 6 \\ 81 \end{bmatrix} \begin{bmatrix} 34 \\ 31 \\ 50 \end{bmatrix} \begin{bmatrix} 66 \\ 73 \\ 69 \end{bmatrix} \begin{bmatrix} 66 \\ 82 \\ 69 \end{bmatrix} \begin{bmatrix} 34 \\ 70 \\ 55 \end{bmatrix} \begin{bmatrix} 30 \\ 21 \\ 27 \end{bmatrix}$

Input: GPS Sequence

Output: Location Labels

Sequence 를 모델링

Neural Network + Memory

기억: 과거의 어떤 것이 현재에 영향을 미치는 것

Neural Network + Memory = Recurrent Neural Network

Feed forward network

Recurrent Neural Network

Recurrent Neural Network

We can process a sequence of vectors **x** by applying a recurrence formula at every time step:

$$h_t = f_W(h_{t-1}, x_t)$$

Notice: the same function and the same set of parameters are used at every time step.

Character-level language model example

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

LSTM - Idea

neural	memory	의미
input	Write	1이면 입력 x가 들어 올수 있도록 허용(open). 0이면 Block(closed)
output	Read	1이면 의미있는 결과물로 최종 Output(open). 0이면 해당 연산 출력 안함(closed)
forget	Reset	1이면 바로 전 time 의 memory 를 유지. 0이면 reset. Keep gate

LSTM - Implementation

Language Modeling - Code

```
typedef struct {
   int requestNumber;
   void (*dispatchFunction) (Parcel &p, struct RequestInfo *pRI);
   int(*responseFunction) (Parcel &p, void *response, size_t responselen);
} CommandInfo;
typedef struct {
   int requestNumber;
   int (*responseFunction) (Parcel &p, void *response, size_t responselen);
   WakeType wakeType;
} UnsolResponseInfo;
typedef struct RequestInfo {
   int32 t token; //this is not RIL Token
   CommandInfo *pCI;
   struct RequestInfo *p next;
   char cancelled;
   char local;
   RIL SOCKET ID socket id;
 RequestInfo;
```

Language Modeling - Code

```
typedef struct {
   int requestNumber;
   void (*dispatchFunction) (Parcel &p, struct RequestInfo *pRI);
   int(*responseFunction) (Parcel &p, void *response, size t responselen);
} CommandInfo;
typedef struct {
   int requestNumber;
   int (*responseFunction) (Parcel &p, void *response, size_t responselen);
   WakeType wakeType;
} UnsolResponseInfo;
typedef struct RequestInfo {
   int32 t token; //this is not RIL Token
   CommandInfo *pCI;
   struct RequestInfo *p next;
   char cancelled;
   char local;
   RIL SOCKET ID socket id;
} RequestInfo;
```

Character based LM

Generated code

Dataset: Android Source Code

RNN: LSTM

```
the specific language governing permissions and
 * limitations under the license.
 * /
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/types.h>
#include <sys/types.h>
#include <sys/types.h>
#include <sys/types.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
```

Generated code

Dataset: Android Source Code

RNN: LSTM

```
id* restrict buckets, size t num elems) {
    int ret = 0;
    std::string str;
    char buf[1024];
    char buf[size];
    assert_eq(0, pthread_create(&thread, &attr, threadstacksize);
    assert_eq(0, ioctl(m_devicefd, ion_ioc_test_set_fd, fd));
                if (!map) {
        return -einval;
    if (max len == 0) {
        rloge("invalid response: null");
        return ril_errno_invalid_response;
```

Generated code

Dataset: Android Source Code

RNN: LSTM

```
Given: static int Iteration: 47
```

```
static int do_compare(const char *fmt, ...)
{
    va_list ap;
    va start(ap, fmt);
    vsnprintf(buf, log_buf_size, fmt, ap);
    va_end(ap);
    return 0;
static void requestsendsms(const char *fmt, ...)
{
    va_list ap;
    va_start(ap, fmt);
    vsnprintf(buf, log buf size, fmt, ap);
    va_end(ap);
    return 0;
```


Recurrent Neural Network - Review

Output 이 잘나오도록 하는 정보를 RNN Layer 에 기억하게 됨

:: 이해의 편의를 위한 도식화. 실제로는 input dimension 과 Hidden layer dimension 이 다름

Idea: RNN 에 누적된 정보가 결국 Sequence 의 Vector Form 일 것이다.

Sequence Encoding-Decoding Approach

* 주의 : 덧셈, 뺄셈이 섞여 있는 식에서 는 순서를 바꾸어 계산하여도 그 결과 가 같습니다.

덧셈, 뺄셈, 곱셈이 섞여 있는 식에서의 계산

The That The

Output: Numbers

Sequence 2 Sequence Learning

Input: Math Expression

 $3 \ 4 \ 2 \ + \ 2 \ 1$

Sequence Modeling for Arithmetic Calculation 6 3 N to M Output **RNN** Layer Hidden RNN Layer Symbol to Vector Input Lookup Table Layer One-Hot 4 2

Sequence Modeling for Arithmetic Calculation - Performance

50 Iteration 이내에서, 오차 1 미만으로 수렴