Set - 3: Logistic Equation and its Modifications

Rakshit Pandhi (202201426)* and Kalp Shah (202201457)[†]

Dhirubhai Ambani Institute of Information & Communication Technology,

Gandhinagar, Gujarat 382007, India

CS302, Modelling and Simulation

I. MODEL

A. Human Population

The human population grows according to the logistic equation

$$\frac{dx}{dt} = ax - bx^2 \tag{1}$$

where $k = \frac{a}{b}$ represents the carrying capacity. On solving this equation with initial condition x(0) = x0 and k = a/b we get the following result,

$$x(t) = \frac{kx_0 e^{at}}{k + x_0 (e^{at} - 1)}$$
 (2)

B. Spread of Agricultural Innovation

The x(t) for the spread of agricultural innovations among farmers through personal communications is given by

$$x = \frac{Ne^{CNt}}{(N-1) + e^{CNt}} \tag{4}$$

The dynamical equation for the spread of agricultural innovations among farmers through impersonal communications is given by

$$\dot{x} = (Cx + C')(n - x) \tag{5}$$

The x(t) for the spread of agricultural innovations among farmers through impersonal communications is given by

$$x = \frac{NC'[1 - e^{-(CN + C')t}]}{C' + CNe^{-(CN + C')t}}$$
 (6)

Defining X = x/N, T = cNt, A = C/CN and X = dX/dT,

Recast dynamical equation for the spread of agricultural innovations among farmers through personal communications is given by

$$\dot{X} = X(1 - X) \tag{7}$$

*Electronic address: 202201426@daiict.ac.in †Electronic address: 202201457@daiict.ac.in X(T) for the spread of agricultural innovations among farmers through personal communications is given by

$$X = \frac{1}{1 + A^{-1}e^{-T}} \tag{8}$$

Recast dynamical equation for the spread of agricultural innovations among farmers through impersonal communications is given by

$$\dot{X} = (X+A)(1-X) \tag{9}$$

X(T) for the spread of agricultural innovations among farmers through impersonal communications is given by

$$X = \frac{1 - e^{-(1+A)T}}{1 + A^{-1}e^{-(1+A)T}}$$
 (10)

C. Harvesting Model

The logistic equation is modified as

$$\dot{x} = f(x) = rx[1 - (x/k)] - h \tag{1}$$

Where h is the "harvesting" rate. For h=0 this equations is same as the logistic equation with a=r and $b=\frac{r}{r}$

For h=0 the solution becomes

$$x(t) = \frac{x_0 e^{rt}}{1 + \frac{x_0}{k} (e^{rt} - 1)}$$

II. RESULTS

A. Human Population

Fig. 9 shows the plot of analytical solution for Eq. 1.

FIG. 1: a=0.03 per annum and b= $3*10^{-12}$ and $x0=3*10^{9}$

The limiting value of the world population from the plot and by using $k=\frac{a}{b}$ is **10 billion**. As per the current data, it is **8 billion** which is very close .

Fig. $\frac{2}{3}$ shows x (by Euler's method) versus t with timestep of 0.01.

FIG. 2: Euler Solution

Fig. 3 shows relative error between Euler method and Analytical solution

FIG. 3: shows the Relative error between Analytical and Euler Solution $\,$

B. Agricultural Innovation

Fig. 4 $\frac{dX}{dT}$ versus X plot for different A values

FIG. 4: Here shows the plot of \dot{X} versus X for A=0,0.20,0.50

Fig. 5 X(T) verus T for different A values

FIG. 5: Here shows the plot of X versus T for A=0,0.2,0.5 and $\mathbf{X}(0){=}0.0001$

C. Harvesting Model

Fig. 6 $\frac{dx}{dt}$ versus x for different h values

FIG. 6: Here shows the plot of \dot{x} versus x for h=0,100,500 and r=1,k=1000

Fig. 7 Numerical Solution for different h values

FIG. 7: Here shows the plot of Euler solution for h=0,100,500 and $\mathbf{x}(0){=}10$ and $\mathbf{r}{=}1,\mathbf{k}{=}1000$

Fig. 8 Comparison of Analytical and Euler

FIG. 8: Here shows the euler and analytical solution for h=0 and r=1,k=1000 $\,$

Fig. 9 Relative error between the two graphs

FIG. 9: Here shows the Relative error for h=0