ICSPIS 2021

Perceptually-Optimized Loss Function for Image Super-Resolution

Amirhossein Arezoomand ¹ Pooryaa Cheraaqee ¹ Azadeh Mansouri ¹

¹Department of Electrical and Computer Engineering, Kharazmi University

December 30, 2021

- Problem Definition
 - Image Super-Resolution
 - Loss Function

- Problem Definition
 - Image Super-Resolution
 - Loss Function
- 2 Previous Attempts

- Problem Definition
 - Image Super-Resolution
 - Loss Function
- 2 Previous Attempts
- The Taken Approach

- Problem Definition
 - Image Super-Resolution
 - Loss Function
- Previous Attempts
- The Taken Approach
- 4 Results
 - Qualitative
 - Quantitative

- Problem Definition
 - Image Super-Resolution
 - Loss Function
- Previous Attempts
- The Taken Approach
- 4 Results
 - Qualitative
 - Quantitative
- 5 Conclusion& Future Works

• increasing the dimension

- increasing the dimension
 - $\bullet \ \ \mathsf{input} \ (X_{M \times N}) \xrightarrow{\mathsf{upsampling} \ \mathsf{by} \ \mathsf{a} \ \mathsf{factor} \ \mathsf{of} \ 2 \ (\mathsf{i.e.} \ \ 2 \uparrow)} \mathsf{output} \ (Y_{2M \times 2N})$

- increasing the dimension
 - $\bullet \ \ \mathsf{input} \ (X_{M \times N}) \xrightarrow{\mathsf{upsampling} \ \mathsf{by} \ \mathsf{a} \ \mathsf{factor} \ \mathsf{of} \ 2 \ (\mathsf{i.e.} \ \ 2 \uparrow)} \mathsf{output} \ (Y_{2M \times 2N})$
 - BiLinear, BiCubic, etc.

• increasing the dimension

• !! Preserving the quality !!

• increasing the dimension

• !! Preserving the quality !!

Input patch

Super-Resolver CNNs

network could have achieved)

- Super-Resolver CNNs
- The Loss Function

- Super-Resolver CNNs
- The Loss Function
 X → Network's input

- Super-Resolver CNNs
- The Loss Function
 - $X \rightarrow \text{Network's input}$
 - $\hat{Y} \rightarrow \mathsf{Network's}$ output

- Super-Resolver CNNs
- The Loss Function
 - $X \rightarrow \text{Network's input}$
 - $\hat{Y} \to \mathsf{Network's} \ \mathsf{output}$
 - $Y \rightarrow \text{The correct answer}$

- Super-Resolver CNNs
- The Loss Function
 - $X \rightarrow Network's input$
 - $\hat{Y} \rightarrow \mathsf{Network's}$ output
 - $Y \rightarrow \mathsf{The}\ \mathsf{correct}\ \mathsf{answer}$
 - $W \rightarrow \mathsf{Current}$ network's weight

- Super-Resolver CNNs
- The Loss Function
 - $X \rightarrow Network's input$
 - $\hat{Y} \rightarrow \mathsf{Network's}$ output
 - $Y \rightarrow \mathsf{The}\ \mathsf{correct}\ \mathsf{answer}$
 - W o Current network's weight
 - Y = F(X, W)

- Super-Resolver CNNs
- The Loss Function
 - $X \rightarrow \text{Network's input}$
 - $\hat{Y} \rightarrow \mathsf{Network's}$ output
 - $Y \rightarrow \mathsf{The}\ \mathsf{correct}\ \mathsf{answer}$
 - $W \rightarrow \mathsf{Current}$ network's weight
 - Y = F(X, W)

The amount of update that must be applied to W (i.e. ΔW) = $E(Y, \hat{Y})$; where $E \in [0, 1]$

- Super-Resolver CNNs
- The Loss Function
 - $X \rightarrow \text{Network's input}$
 - $\hat{Y} \rightarrow \mathsf{Network's}$ output
 - $Y \rightarrow \mathsf{The}\ \mathsf{correct}\ \mathsf{answer}$
 - $W \rightarrow \mathsf{Current}$ network's weight
 - Y = F(X, W)

The amount of update that must be applied to W (i.e. ΔW) = $E(Y, \hat{Y})$; where $E \in [0, 1]$

The updated network's weights $(i.e.W') = W + \Delta W$

- Super-Resolver CNNs
- The Loss Function
 How to define E(Y, Ŷ)?

Visible Error

Visible Error

$$E(Y, \hat{Y}) = \frac{1}{M \times N} \sum_{i=1}^{M} \sum_{j=1}^{N} (Y(i, j) - \hat{Y}(i, j))^{2}$$

Visible Error

$$E(Y, \hat{Y}) = \frac{1}{M \times N} \sum_{i=1}^{M} \sum_{j=1}^{N} (Y(i, j) - \hat{Y}(i, j))^{2}$$

Quality Metrics

Visible Error

$$E(Y, \hat{Y}) = \frac{1}{M \times N} \sum_{i=1}^{M} \sum_{j=1}^{N} (Y(i, j) - \hat{Y}(i, j))^{2}$$

• Quality Metrics $E(Y, \hat{Y}) = SSIM(Y, \hat{Y})[1]$

Visible Error

$$E(Y, \hat{Y}) = \frac{1}{M \times N} \sum_{i=1}^{M} \sum_{j=1}^{N} (Y(i, j) - \hat{Y}(i, j))^{2}$$

• Quality Metrics $E(Y, \hat{Y}) = SSIM(Y, \hat{Y})[1]$

(a) MSE=0, SSIM=1

(b) MSE=309

(c) MSE=308, SSIM=0.641

(d) MSE=309, SSIM=0.580

(e) MSE=871, SSIM=0.404

DCT

- DCT
 - Expressive

- DCT
 - Expressive

- DCT
 - Expressive

- DCT
 - Expressive
 - Fast!

- DCT
 - Expressive
 - Fast!
- Weighting the Important Components

- DCT
 - Expressive
 - Fast!
- Weighting the Important Components
 Empirically determined compression quantization

- DCT
 - Expressive
 - Fast!
- Weighting the Important Components
 Empirically determined compression quantization

```
     16
     11
     18
     24
     48
     51
     61

     12
     12
     14
     18
     26
     58
     68
     55

     14
     13
     16
     24
     49
     57
     69
     56

     14
     17
     22
     29
     51
     87
     80
     62

     18
     22
     37
     56
     68
     190
     193
     77

     24
     35
     55
     64
     81
     194
     113
     92

     49
     64
     78
     87
     121
     108
     109
     103
     77
```

$$Y, \hat{Y} \rightarrow [0, 1]$$

$$Y,\,\hat{Y}\to[0,1]$$

 $\xrightarrow{(1)} \mathsf{compute}\ \mathit{DCT}(Y)\ \mathsf{and}\ \mathit{DCT}(\hat{Y})$

$$Y, \hat{Y} \rightarrow [0, 1]$$

- $\xrightarrow{(1)}$ compute $DCT(\hat{Y})$ and $DCT(\hat{Y})$
- $\xrightarrow{(2)}$ quantize DCT(Y) and $DCT(\hat{Y})$

$$Y,\,\hat{Y}\to[0,1]$$

- $\xrightarrow{(1)}$ compute $DCT(\hat{Y})$ and $DCT(\hat{Y})$
- $\xrightarrow{(2)}$ quantize DCT(Y) and $DCT(\hat{Y})$
- $\xrightarrow{\mbox{(3)}}$ compute the visible error between the quantized coefficients

$$\stackrel{(2)}{\longrightarrow}$$
 quantize $DCT(Y)$ and $DCT(\hat{Y})$

```
\xrightarrow{(2)} quantize DCT(Y) and DCT(\hat{Y})
```

 $\xrightarrow{(2)}$ quantize DCT(Y) and $DCT(\hat{Y})$

upsample

 $\xrightarrow{(2)}$ quantize DCT(Y) and $DCT(\hat{Y})$

$$Q_I = \alpha \cdot \uparrow (Q)$$

$$Y, \hat{Y} \rightarrow [0, 1]$$

$$popSR(Y, \hat{Y}) = \frac{1}{21 \times 21} \sum_{i=1}^{21} \sum_{j=1}^{21} \left(\frac{DCT(Y)(i,j)}{Q_l(i,j)} - \frac{DCT(\hat{Y})(i,j)}{Q_l(i,j)} \right)^2$$

Experimental Setup

- train SRCNN [2] with MSE
- train SRCNN with popSR
- Timofte et. al [3] for train
- Set5 [4] Set14 [5] for test on various scales

Sample Outputs

Sample Outputs

Sample Outputs

- Three metrics:
 - PSNR
 - SSIM
 - GMSD [6]
- Two datasets:
 - set5
 - set14
- 3 scaling factors
 - 2 ↑
 - 3 ↑
 - 4 ↑

set5 & 2 ↑

	Proposed Loss Function			MSE Loss Function			
Set5 Dataset	PSNR	SSIM	GMSD	PSNR	SSIM	GMSD	
Baby	37.28	0.96	0.075	36.53	0.95	0.077	
Butterfly	28.06	0.92	0.111	29.87	0.90	0.120	
Bird	34.21	0.96	0.076	36.13	0.96	0.078	
Head	34.10	0.88	0.078	31.91	0.83	0.082	
Woman	34.90	0.96	0.086	28.80	0.94	0.092	
Average	33.71	0.94	0.085	32.65	0.92	0.090	

set5 & $3 \uparrow$

	Proposed Loss Function			MSE Loss Function			
Set5 Dataset	PSNR	SSIM	GMSD	PSNR	SSIM	GMSD	
Baby	34.68	0.91	0.090	30.01	0.86	0.099	
Butterfly	29.70	0.85	0.129	28	0.73	0.140	
Bird	31.67	0.93	0.091	32.40	0.84	0.102	
Head	32.86	0.80	0.098	31.90	0.72	0.109	
Woman	33.43	0.91	0.099	28.75	0.83	0.113	
Average	32.34	0.88	0.101	30.21	0.80	0.113	

set5 & 4 ↑

	Proposed Loss Function			MSE Loss Function			
Set5 Dataset	PSNR	SSIM	GMSD	PSNR	SSIM	GMSD	
Baby	33.48	0.85	0.098	32.48	0.85	0.100	
Butterfly	29.79	0.78	0.137	28.07	0.73	0.142	
Bird	28.77	0.85	0.102	29.88	0.86	0.105	
Head	32.03	0.74	0.109	31.94	0.74	0.111	
Woman	32.48	0.85	0.108	28.73	0.82	0.113	
Average	31.31	0.81	0.111	30.22	0.80	0.114	

set14 & 2 ↑

	Proposed Loss Function			MSE Loss Function			
Set14 Dataset	PSNR	SSIM	GMSD	PSNR	SSIM	GMSD	
Baboon	27.77	0.74	0.133	27.75	0.70	0.137	
Barbara	32.86	0.85	0.106	31.54	0.82	0.109	
Bridge	28.99	0.84	0.120	29.26	0.81	0.125	
Coastguard	30	0.82	0.118	29.43	0.77	0.121	
Comic	28.62	0.88	0.120	27.92	0.84	0.127	
Face	34.10	0.88	0.078	31.92	0.84	0.082	
Flowers	29.98	0.90	0.098	29.43	0.88	0.101	
Foreman	29.54	0.94	0.079	28.90	0.92	0.084	
Lena	34.9	0.91	0.073	29.94	0.89	0.080	
Man	28.46	0.79	0.102	27.73	0.75	0.107	
Monarch	27.46	0.95	0.077	26.76	0.94	0.082	
Pepper	27.82	0.89	0.069	27.81	0.88	0.072	
PPT3	28.11	0.88	0.081	28.12	0.86	0.090	
Zebra	29.28	0.90	0.101	28.98	0.86	0.104	
Average	29.85	0.87	0.097	28.96	0.84	0.102	

set14 & 3 ↑

	Proposed Loss Function			MSE Loss Function			
Set14 Dataset	PSNR	SSIM	GMSD	PSNR	SSIM	GMSD	
Baboon	29.52	0.58	0.150	27.81	0.50	0.156	
Barbara	31.67	0.76	0.122	30.57	0.68	0.128	
Bridge	28.65	0.70	0.140	28.42	0.60	0.146	
Coastguard	30.38	0.61	0.142	28.92	0.51	0.148	
Comic	28.32	0.73	0.142	27.92	0.61	0.150	
Face	32.86	0.80	0.098	31.91	0.72	0.109	
Flowers	30.93	0.81	0.117	28.37	0.71	0.128	
Foreman	30.58	0.91	0.094	27.82	0.84	0.107	
Lena	33.77	0.86	0.090	30.65	0.80	0.106	
Man	28.37	0.70	0.120	30.49	0.68	0.131	
Monarch	30.16	0.92	0.089	27.63	0.87	0.100	
Pepper	27.74	0.85	0.080	31.41	0.82	0.091	
PPT3	27.03	0.83	0.099	27.07	0.78	0.122	
Zebra	30.2	0.79	0.122	28	0.69	0.133	
Average	30.01	0.78	0.115	29.07	0.70	0.125	

set14 & 4 ↑

	Proposed Loss Function			MSE Loss Function			
Set14 Dataset	PSNR	SSIM	GMSD	PSNR	SSIM	GMSD	
Baboon	29.25	0.47	0.155	27.78	0.46	0.160	
Barbara	31.02	0.68	0.127	29.30	0.67	0.131	
Bridge	29.05	0.59	0.148	28.37	0.57	0.149	
Coastguard	29.89	0.49	0.150	29.49	0.47	0.150	
Comic	29.02	0.62	0.153	28.10	0.59	0.156	
Face	32.03	0.74	0.109	31.94	0.74	0.111	
Flowers	29.51	0.72	0.128	28.64	0.69	0.130	
Foreman	29.52	0.86	0.101	28.64	0.84	0.105	
Lena	32.78	0.81	0.100	30.17	0.79	0.105	
Man	27.97	0.62	0.129	29.01	0.66	0.133	
Monarch	27.65	0.88	0.098	27.19	0.86	0.100	
Pepper	27.90	0.82	0.088	28.90	0.81	0.091	
PPT3	28.69	0.79	0.112	29.32	0.77	0.121	
Zebra	29.29	0.67	0.134	28.32	0.67	0.137	
Average	29.54	0.70	0.124	28.94	0.68	0.127	

Perceptual

- Perceptual
- Portable

- Perceptual
- Portable
- Efficient

- Perceptual
- Portable
- Efficient
- Faster Convergence

- Perceptual
- Portable
- Efficient
- Faster Convergence
- Incorporating Color

Bibliography

- 📵 Wang, Zhou, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. "Image quality assessment: from error visibility to structural similarity." IEEE transactions on image processing 13, no. 4 (2004): 600-612.
- 🔕 Dong, Chao, Chen Change Loy, Kaiming He, and Xiaoou Tang. "Learning a deep convolutional network for image super-resolution." In European conference on computer vision, pp. 184-199, Springer, Cham. 2014.
- Timofte, Radu, Vincent De Smet, and Luc Van Gool, "Anchored neighborhood regression for fast example-based super-resolution." In Proceedings of the IEEE international conference on computer vision, pp. 1920-1927. 2013.
- 🚯 Bevilacqua, Marco, Aline Roumy, Christine Guillemot, and Marie Line Alberi-Morel, "Low-complexity single-image super-resolution based on nonnegative neighbor embedding." (2012): 135-1.
- September 1 de la companta de la companya del companya de la companya de la companya del companya de la companya del companya de la companya de la companya de la companya del companya de la companya del companya de la companya de la companya del companya del companya del companya del companya del companya del company International conference on curves and surfaces, pp. 711-730. Springer, Berlin, Heidelberg, 2010.
- Xue, Wufeng, Lei Zhang, Xuangin Mou, and Alan C. Bovik, "Gradient magnitude similarity deviation: A highly efficient perceptual image quality index." IEEE Transactions on Image Processing 23, no. 2 (2013): 684-695.

