Introduction to Groups

1.1: Basic Axioms and Examples

Exercises

- 1. (a) no: $a (b c) = a b + c \neq (a b) c$
 - (b) yes

$$(a \star b) \star c = (a + b + ab) \star c = a + b + ab + c + (a + b + ab)c = a + b + c + ab + ac + bc + abc$$
 (1)

$$a \star (b \star c) = a \star (b + c + bc) = a + b + c + bc + a(b + c + bc) = a + b + c + bc + ab + ac + abc$$
 (2)

(c) no:

$$(a \star b) \star c = \frac{a+b}{5} \star c = \frac{\frac{a+b}{5} + c}{5} = \frac{a+b+5c}{25}$$
 (3)

$$a \star (b \star c) = a \star \frac{b+c}{5} = \frac{a + \frac{b+c}{5}}{5} = \frac{5a+b+c}{25}$$
 (4)

(d) yes:

$$((a,b)\star(c,d))\star(e,f) = (ad+bc,bd)\star(e,f) = ((ad+bc)\cdot f + bd\cdot e,bd\cdot f) = (adf+bcf+bde,bdf) \quad (5)$$

$$(a,b)\star((c,d)\star(e,f)) = (a,b)\star(cf+de,df) = (a\cdot df+b\cdot(cf+de),b\cdot df) = (adf+bcf+bde,bdf) \quad (6)$$

(e) no:

$$(a \star b) \star c = \frac{a}{b} \star c = \frac{a}{bc} \tag{7}$$

$$a \star (b \star c) = a \star \frac{b}{c} = \frac{a}{\frac{b}{c}} = \frac{ac}{b}$$
 (8)

- 2. (a) no: $a \star b = a b \neq b a = b \star a$
 - (b) yes: $a \star b = a + b + ab = b + a + ba = b \star a$
 - (c) yes: $a \star b = \frac{a+b}{5} = \frac{b+a}{5} = b \star a$
 - (d) yes: $(a,b)\star(c,d)=(ad+bc,bd)=(cb+da,db)=(c,d)\star(a,b)$
 - (e) no: $a \star b = \frac{a}{b} \neq \frac{b}{a} = b \star a$
- 3. I usually don't distinguish between a and \bar{a} but here I will. This is basically just spamming modulo n (since applying it once is the same as applying it e.g. ten times), and then using the associativity of addition.

$$(\bar{a} + \bar{b}) + \bar{c} = ((a+b) \bmod n + c) \bmod n \tag{9}$$

$$= ((a+b) \bmod n + c \bmod n) \bmod n \tag{10}$$

$$= (a \bmod n + (b+c) \bmod n) \bmod n \tag{11}$$

$$= (a + (b+c) \bmod n) \bmod n \tag{12}$$

$$= (\bar{a} + \bar{b}) + \bar{c} \tag{13}$$

- 4. This is identical to the above with all +'s replaced with \cdot 's.
- 5. We just showed it was associative, we know that $\bar{1}$ is the identity, so we need to show that not every element has an inverse. For n > 1, clearly $\bar{0}$ has no inverse since $\bar{0} \cdot \bar{a} = \bar{a} \cdot \bar{0} = \bar{0} \neq \bar{1}$ for all \bar{a} . For n = 1, $\bar{0} = \bar{1}$ is the only element.

- 6. Addition on the reals is obviously associative, and all of these examples contain the additive identity 0, so we just need to check closure and inverses.
 - (a) Closure: idk

<u>Inverse</u>: For any $\frac{a}{2n+1}$ in this set, $\frac{(-a)}{2n+1}$ is also in the set; the two add to zero.

- (b) no closure: $\frac{1}{2} + \frac{1}{2} = 1 = \frac{1}{1}$
- (c) no closure: $\frac{1}{2} + \frac{1}{2} = 1$ again
- (d) no closure: $-\frac{3}{2} + 1 = -\frac{1}{2}$ (can't reuse the same example a third time sadly)
- (e) Closure: A (reduced) rational number with a denominator of 1 can be written with a denominator of 2: $\frac{a}{1} = \frac{2a}{2}, a \in \mathbb{Z}$. A (reduced) rational number with a denominator of 2 must have an odd numerator, since if it didn't then we could divide both top and bottom by 2; so these fractions are of the form $\frac{2b+1}{2}, b \in \mathbb{Z}$. Now just following the rules of adding even and odd numbers (in the numerators) we see that this set is closed under addition: adding two reduced rational numbers with denominator 1, or adding two numbers with a denominator 2, yields a sum with denominator 1; adding a denominator 1 with a denominator 2 gives an denominator 2.

Inverse: The inverse of $\frac{a}{1}$ is $\frac{(-a)}{1}$; likewise for denominator 2.

- (f) no closure: $\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$.
- 7. idk how to prove something is well defined
 - (a) Closure: this is so obvious I don't even know what to write

Associativity: Follow from associativity of addition over \mathbb{R} .

 $\overline{\text{Identity: The}}$ additive identity of addition (zero) is in G.

<u>Inverse</u>: For $x \in G$, the inverse is $x^{-1} = 1 - x$ since $x + x^{-1} = x + (1 - x) = 1 \equiv 0$. The exception here is that zero is its own inverse; these two rules cover all elements of G.

Commutativity: $x \star y = x + y - \lfloor x + y \rfloor = y + x - \lfloor y + x \rfloor = y \star x$.

8. (a) Closure: If $z_1^n = z_2^n = 1$, then $(z_1 z_2)^n = 1$.

Associativity: Follows from associativity of multiplication over \mathbb{C} .

Identity: $1^n = 1$ so $1 \in G$.

<u>Inverse</u>: We want to show that the obvious candidate $z^{-1} = \frac{1}{z}$ is the inverse of z where $z^n = 1$. Clearly $z \cdot z^{-1} = 1$, so we just need to check that $z^{-1} \in G$. This follows from $(z^{-1})^n = (\frac{1}{z})^n = \frac{1}{z^n} = 1$.

- (b) Writing each $z \in G$ in polar form, we see that |z| = 1. Clearly $1 \in G$ for all n; but 1 + 1 = 2 has absolute value 2 and hence is not in G, so the operation of addition is not closed.
- 9. (a) Closure: The addition of two generic elements is $(a+b\sqrt{2})+(c+d\sqrt{2})=(a+c)+(b+d)\sqrt{2}$. There is no weird edge case where maybe something cancels because $\sqrt{2} \notin \mathbb{Q}$ so the two terms are guaranteed to stay separate.

Associativity: Follows from associativity of addition for Q.

Identity: $a + b\sqrt{2}$ with a, b = 0 gives the additive identity.

Inverse: For $a + b\sqrt{2} \in G$, $(-a) + (-b)\sqrt{2} \in G$; the two add to the identity of zero.

(b) Closure: The multiplication of two generic elements is $(a+b\sqrt{2})(c+d\sqrt{2})=(ac+2bd)+(ad+bc)\sqrt{2}$. Since $a,b,c,d\in\mathbb{Q},\ ac+2bd\in\mathbb{Q}$ and $ad+bc\in\mathbb{Q}$ so the product is still in G.

Associativity: Follows from associativity of multiplication for \mathbb{R} .

Identity: $a + b\sqrt{2}$ with a = 1, b = 0 gives the multiplicative identity.

<u>Inverse</u>: For $a + b\sqrt{2}$, we can define the number $\frac{1}{a+b\sqrt{2}}$ since $0 \notin G$. Now we massage:

$$\frac{1}{a+b\sqrt{2}} = \frac{a-b\sqrt{2}}{a^2-2b^2} = \frac{a}{a^2-2b^2} + \frac{(-b)}{a^2-2b^2} \cdot \sqrt{2} \ . \tag{14}$$

Since $a, b \in \mathbb{Q}$, both $\frac{a}{a^2 - 2b^2}$ and $\frac{(-b)}{a^2 - 2b^2}$ are also in \mathbb{Q} , so the inverse is in G.

10. Label the elements of G as $i_1, i_2, \ldots, i_{|G|}$, and denote the matrix of the multiplication as M (so the product $i_j \cdot i_k$ is in M_{jk}). If G is abelian then $i_j i_k = i_k i_j$ for all j, k, which means $M_{jk} = M_{kj}$ for all j, k. Likewise if $M_{jk} = M_{kj}$ for all j, k, then $i_j i_k = i_k i_j$ for all j, k.

- 11. This question asks to find the smalled k such that $ka \equiv 1 \mod 12$. This is only possible if (a, 12) = 1; otherwise the order is infinite.
 - $\bar{0}$: the order is infinite since 0+0=0 no matter how hard you try
 - $\bar{1}$: order 1
 - $\bar{2}$: infinite
 - $\bar{3}$: infinite
 - $\bar{4}$: infinite
 - $\bar{5}: 5+5=10 \to 10+5=3 \to 3+5=8 \to 8+5=1$ so the order is 5
 - $\bar{6}$: infinite
 - $\bar{7}$: not typing this out but the order is 7 since $49 \equiv 1$
 - $\bar{8}$: infinite
 - $\bar{9}$: infinite
 - 10: infinite
 - $\bar{11}$: definitely not typing this out but the order is 11 since $121 \equiv 1$
- 12. $\bar{1}$: order 1
 - $-\bar{1} : -1 \cdot -1 = 1$; order 2
 - $\bar{5}: 5 \cdot 5 = 25 \equiv 1$; order 2
 - $\bar{7}: 7 \cdot 7 = 49 \equiv 1; \text{ order } 2$
 - $-\bar{7}:-7\equiv 5$; order 2
 - $\overline{13}$: $13 \equiv 1$; order 1
- 13. Again, the order is infinite exactly when $(a, 36) \neq 1$.
 - $\bar{1}$: order 1
 - $\bar{2}$: infinite
 - $\bar{6}$: infinite
 - $\bar{9}$: infinite
 - $\bar{10}$: infinite
 - $\overline{12}$: infinite
 - $-\bar{1}:1\equiv -35$ so we need to add -1 to itself 35 times to reach the identity; order is 35
 - $-\bar{10}$: $-10 \equiv 26$; infinite
 - $-\bar{18}$: $-18 \equiv 18$; infinite
- 14. $\bar{1}$: order 1
 - $-\bar{1} : -1 \cdot -1 = 1$; order 2
 - $\bar{5}\,:\,5^2=25\to 25\cdot 5=125\equiv 17\to 17\cdot 5=85\equiv 13\to 13\cdot 5=65\equiv 29\to 29\cdot 5=145\equiv 1;\,\text{order }6\to 120$
 - $\bar{13}: 13^2 = 169 \equiv 25 \rightarrow 25 \cdot 13 = 325 \equiv 1$; order 3
 - $-\bar{13}$: from above, $13^3 \equiv 1$, so $(-13)^3 \equiv -1$. Then $(-13)^6 \equiv -1 \cdot -1 = 1$; order 6
 - $\overline{17}$: $17^2 = 289 \equiv 1$; order 2 (thank you)
- 15. For n=1 the equality is trivial. For n=2 we want the inverse of (a_1a_2) . Call it x. Then

$$(a_1 a_2)x = 1 \tag{15}$$

$$a_2 x = a_1^{-1} (16)$$

$$x = a_2^{-1} a_1^{-1} (17)$$

Now we want the inverse of $(a_1 \dots a_n)$, and we know the inverse of $(a_1 \dots a_{n-1})$ is $a_{n-1}^{-1} \dots a_1^{-1}$. Call the total inverse x again.

$$(a_1 \dots a_{n-1} a_n) x = 1 \tag{18}$$

$$(a_1 \dots a_{n-1})a_n x = 1 \tag{19}$$

$$a_n x = (a_1 \dots a_{n-1})^{-1} \tag{20}$$

$$a_n x = a_{n-1}^{-1} \dots a_1^{-1}$$

$$x = a_n^{-1} \cdot a_{n-1}^{-1} \dots a_1^{-1}$$
(21)
(22)

$$x = a_n^{-1} \cdot a_{n-1}^{-1} \dots a_1^{-1} \tag{22}$$

- 16. The easy direction first: if |x| = 1 then $x^1 = x = 1$, so $x^2 = 1 \cdot 1 = 1$. If |x| = 2 then by definition $x^2 = 1$. The other direction idk
- 17. If n=1 then $x^1=x=1$ so trivially any power of x is the identity. For n>1, expand $x^n=1$ to get $x\cdot x\cdot \dots\cdot x=1$ where there are a total of n factors of x. Group all but the first factor together to get $x\cdot x^{n-1}=1$. By the uniqueness of the inverse, $x^{n-1} = x^{-1}$.
- 18. Start with xy = yx. Left multiply by y^{-1} to get $y^{-1}xy = x$. Left multiply by x^{-1} to get $x^{-1}y^{-1}xy = 1$. The other direction of implications follows from this operation being reversible since e.g. $y = (y^{-1})^{-1}$.