PRACTICA 5. MODULACIONES DIGITALES

Se simularán con Matlab diversas modulaciones digitales de las familias PSK y QAM, utilizando como filtro transmisor pulsos rectangulares o coseno alzado. En cada caso se visualizará la forma de onda, el diagrama de ojo, la constelación y el espectro de la señal banda base equivalente. Asimismo, se analizará el efecto del ruido térmico sobre la señal recibida.

Anote el valor del régimen simbólico proporcionado por el profesor:

• Régimen simbólico, $R_s = 1200$ baudios.

I. Filtro transmisor: pulsos rectangulares

Abra el script LTC_P5_Rect.m y configure una modulación BPSK. Ejecute el script y visualice la constelación, las formas de onda en fase y cuadratura y el diagrama de ojo. Deberá hacer lo mismo con las siguientes modulaciones: QPSK, 8PSK fase inicial 0° , 8PSK fase inicial $\pi/8$, 16QAM y 64QAM. Rellene las Tablas 1 y 2.

Tabla 1. Visualización de forma de onda. Número de niveles en fase y cuadratura

	BPSK	QPSK	8PSK 0°	8PSK π/8	16QAM	64QAM
Nº Niveles I	2	2	5	4	4	8
Nº Niveles Q	1	2	5	4	4	8

Tabla 2. Diagrama de ojo. Número de ojos apilados en vertical

	BPSK	QPSK	8PSK 0°	8PSK π/8	16QAM	64QAM
Nº de ojos en I	1	1	4	3	3	7
Nº de ojos en Q	0	1	4	3	3	7

II. Filtro transmisor: coseno alzado

Abra el script LTC_P5_CosenoAlzado.m y configure una modulación QPSK con factor de coseno alzado, roll-off, $\alpha = 0.5$. Ejecute el script y visualice las formas de onda IQ y el diagrama de ojo.

Cambie el factor de coseno alzado a 0.2 y 0.8 y visualice las nuevas figuras. Note como las señales I y Q en el dominio del tiempo presentan flancos temporales más suaves según α se va haciendo mayor; y cómo aumenta el ancho de banda ocupado con al incrementar α . Copie a continuación los diagramas de ojo para los tres factores de *roll-off*.

$$\alpha = 0,2$$

$$\alpha = 0.8$$

III. Espectro

Deberá determinar de manera aproximada el ancho de banda ocupado por una señal modulada QPSK con diversos filtros transmisores, y compararlo con el valor teórico. Rellene la Tabla 3.

Notas:

- El ancho de banda teórico es $B = 2 \cdot R_s$ para pulsos rectangulares y $B = R_s \cdot (1 + \alpha)$ para coseno alzado.
- Para medir el ancho de banda con coseno alzado se aconseja seleccionar puntos que estén unos 20 dB por debajo del máximo.

Tabla 3. Ancho	de	banda	ocupado
----------------	----	-------	---------

	Pulsos rectangulares (entre nulos)	Coseno alzado $\alpha = 0.2$	Coseno alzado $\alpha = 0.5$	Coseno alzado $\alpha = 0.8$
Valor teórico (Hz)	2400	2880	3600	4320
Valor medido (Hz)	2692 Hz	2868 Hz	3604 Hz	4340 Hz

IV. Estudio de la influencia del ruido

Abra el script LTC_P5_Ruido.m y configure una modulación QPSK con factor de coseno alzado $\alpha = 0,3$. Seleccione una relación E_b/N_0 de 12 dB y visualice las diversas figuras generadas por el script. Repita con una relación de 10 y 8 dB. Compare los resultados obtenidos (dispersión en la constelación, apertura del ojo...) y coméntelos brevemente.

 $E_b/N_0 = 10 \text{ dB}$

En la ventana de comandos de Matlab podrá consultar el número de símbolos transmitidos y el número de bits que se han recibido erróneamente. A partir de esos valores calcule la tasa de error de bit (BER) medida y rellene la fila correspondiente en la Tabla 4. Complete dicha tabla con el valor teórico (use la fórmula vista en clase: $P_b \approx (1/2) \cdot \operatorname{erfc}\left(\sqrt{e_b/n_0}\right)$) y con el valor proporcionado por Matlab, que emplea una fórmula algo más exacta.

```
Command Window

>> LTC_P5_Ruido
Longitud de la trama transmitida: 10000000 simbolos
Número de bits erróneos: 0
Valor teórico de Pb para Eb/N0 = 12 dB: 9.00601e-09
>> LTC_P5_Ruido
Longitud de la trama transmitida: 10000000 simbolos
Número de bits erróneos: 64
Valor teórico de Pb para Eb/N0 = 10 dB: 3.87211e-06
>> LTC_P5_Ruido
Longitud de la trama transmitida: 10000000 simbolos
Número de bits erróneos: 3805
Valor teórico de Pb para Eb/N0 = 8 dB: 1.90908e-04

fx >>
```

2 bits por símbolo por lo que hay 20 millones de bits: 0 bits fallos \rightarrow 0/20millones = 0

64/20millones=3.2e-6

3805/20millones=191.25 e-6

Tabla 4. Tasa de error de bit

	$E_b/N_0=12~\mathrm{dB}$	$E_b/N_0=10~\mathrm{dB}$	$E_b/N_0=8~\mathrm{dB}$
BER medida	0	3.2e-6	191.25 e-6
P_b (fórmula de clase)	9.0115 e-09	3.8721e-6	191.025 e-06
P _b (valor de Matlab)	9.00601e-09	3.87211e-06	1.90908e-04