Mejorando el tráfico

por Daniela Leilany del Carmen Meléndez Rangel (102/20), Thiago Tiracchia (1502/21)

A dos estudiantes de algo3 les pidieron resolver el siguiente ejercicio:

Dado un mapa de una ciudad con n puntos, y m calles unidireccionales que conectan pares de puntos. Se ha propuesto una lista de k calles bidireccionales como candidatas a ser construidas con el fin de reducir la longitud entre los dos puntos críticos s y t.

Se debe escribir un programa para elegir la calle bidireccional de la lista propuesta tal que minimice la longitud resultante del camino más corto entre s y t.

Algoritmo

- 1. G <- inicializo grafo G=(V,E,w) tq $V=\{$ los n puntos en la ciudad $\}$, $E=\{$ Las m calles unidireccionales $\}$ y w(u,v) da el peso de ir de u a v que son puntos de la ciudad
- 2. Gt <- inicializo grafo Gt=(V,Et,wt) tq V= {los n puntos en la ciudad}, $Et=(v,u):(u,v)\in E$ y wt(v,u)=w(u,v)
- 3. $d \leftarrow \text{Dijkstra}(G, s)$ //guardo en d las distancias desde s a cada nodo en G
- 4. dt <- Dijkstra(Gt,t) //guardo en dt las distancias desde t a cada nodo en Gt
- 5. nuevasCalles <- {}
- 6. para todo $(u,v,costo) \in \{ \text{las } k \text{ calles bidireccionales con el costo de ir de u hacia v ó viceversa} \}$:
 - a. nuevasCalles.push((u, v, costo))
 - b. nuevasCalles.push((v,u,costo))
- 7. res <- calleMinimizadora(nuevasCalles, d, dT, t)

Donde calleminimizadora es la función que busca la calle $(u,v)\in \mathtt{nuevasCalles}$ tal que minimiza $d[u]+w(u,v)+d^t[v]$ y devuelve el mínimo entre d[t] y $d[u]+w(u,v)+d^t[v]$.

Justificación

Sea (u,v) una propuesta de calle bidireccional, se cumplirá que $(u,v) \in$ $\mathtt{nuevasCalles}$ y que $(v,u) \in$ $\mathtt{nuevasCalles}$, sea d[k] la distancia que me da Dijkstra en el grafo G desde s hacia $k, \ \forall k \in V(G)$ y sea $d^t[k]$ la distancia que me da Dijkstra en el grafo G^t desde t hacia $k, \ \forall k \in V(G^t)$.

Como buscamos minimizar la longitud resultante del camino más corto entre s y t, para ello buscamos el mínimo entre d[t], el camino mínimo original que tenía en el mapa original; y el $(u,v) \in \mathtt{nuevasCalles}$ tal que minimice $d[u] + w(u,v) + d^t[v]$ entre todas las $\mathtt{nuevasCalles}$.

Como sabemos que el mínimo debe estar entre alguno de estos dos valores?

Justificación para d[t]: Si no construimos ninguna calle, o todas las calles propuestas aumentan la longitud, sabemos que Dijkstra nos da el camino mínimo de s a todos los vértices de G, por lo que lo mínimo que puede valer es d[t].

Justificación para $d[u]+d^t[v]+w(u,v)$: Si existe un camino mínimo de s a t que usa una calle propuesta $e=(u,v)\in \mathbf{nuevasCalles}$, sabemos que ese camino tendrá la forma $C=s,p_1,...,p_n,u,v,q_1,...,q_m,t$. Si cumple que es camino mínimo, por subestructura óptima sé que para todo par de nodos (a,b) en C tal que a sea menor en orden dado por C que b, $C_{a,b}$ es un camino mínimo de a a b. Por lo que

$$C = C_{s,u} + C_{u,v} + C_{v,t} \ \Rightarrow d[C] = d[u] + d[u,v] + d^t[v]$$
 (1)

Entonces es correcto que la calle e que minimice a (1), será candidata a ser mínimo.

Experimentación

Usamos 2 implementaciones distintas de Dijkstra la cual difiren en que una está implementada con una cola de prioridad (azul) y en la otra se extrae el mínimo a procesar en O(N) ya que lo busca por el vector de distancias linealmente (rojo). La complejidad teórica de la implementación con cola de prioridad es $O(V \cdot Log(V))$ si es un grafo ralo y $O(V^2)$ si es denso; en comparación a la complejidad teórica de la otra implementación que es $O(V^2)$ para cualquier grafo. En este ejercicio como $n \leq 10^4$ y $m \leq 10^5$ por ende, teóricamente va a depender del n cuál va a ser la mejor implementación porque mientras mas crezca el n, como el m esta acotado,

Mejorando el tráfico

2

menos denso va a hacer el grafo ya que no va a poder ser completo a partir de n = 10^3 ya que un grafo completo tiene $\frac{n \cdot (n-1)}{2}$ aristas.

Podemos ver que la experimentacion que con grafos densos son bastantes parecidas las dos implementaciones hasta un poco antes del final pero esto es debido a que m esta acotado y las aristas se acotan por 10^5 cuando el n crece mucho. Y que en la experimentacion de grafos ralos si puede notar la diferencia teórica esperada.

Experimentacion con Grafos Densos:

Comparacion con Grafos Densos

3

Mejorando el tráfico

Experimentacion con Grafos Ralos:

Comparacion con Grafos Ralos

4