

Día, Fecha: 27/01/2024

Hora de inicio: 12:20 - 14:00

Laboratorio de Arquitectura de Computadores y Ensambladores 2 Sección: N

Tutor: Diego Alejandro Martinez Garcia

Laboratorio de Arquitectura de Computadores y Ensambladores 2

Generalidades

Correo: diegomartinezgt502@gmail.com

Asunto: [ACE2]asunto

Dudas o consultas:

Solo por los foros que se habilitarán en UEDI

Nombre de Archivo

Individual

[ACE2]Nombre_#Carnet

Grupo

[ACE2]Nombre_G#grupo

Slido:9909324

Programa del Curso

ARQUITECTURA DE COMPUTADORES Y ENSAMBLADORES 2
SEGUNDO SEMESTRE 2022

MICROCONTROLADOR

¿QUÉ ES UN MICROCONTROLADOR?

- Es un circuito integrado programable el cual es capaz de ejecutar instrucciones las cuales son grabadas dentro de su memoria.
- Este cuenta con una serie de componentes que lo hacen similar a una computadora entre los cuales están el CPU, memoria, entradas y salidas.

EJEMPLO DE MICROCONTROLADORES

- Arduino
 - UNO
 - Mega
 - Nano
- RaspberryPi
 - PI ZERO
 - PI I
 - PI 2
 - PI 3

- Texas
 Instruments
 - Launchpad
 - MSP430
- BASIC Stamp

¿QUÉ ES ARDUINO?

Arduino es una plataforma de desarrollo basada en una placa electrónica de hardware libre que incorpora un microcontrolador re-programable y una serie de pines hembra. Estos permiten establecer conexiones entre el microcontrolador y los diferentes sensores y actuadores de una manera muy sencilla

TIPOS DE ARDUINO

• Dependiendo el modelo de placa que elijamos de Arduino contaremos con una serie de características tales como cierta cantidad de puertos de salida y entrada.

รายละเอียดสเปคข้อมูลต่างๆของอุปกรณ์บน บอร์ด

Arduino UNO R3 Arduino MEGA ADK Microcontroller ATmega328 ATmega2560 5V Operating Voltage 5V 7-12V Input Voltage (recommended) 7-12V 6-20V Input Voltage (limits) 6-20V 14 (of which 6 provide PWM output) Digital I/O Pins 54 (of which 15 provide PWM output) 16 6 Analog Input Pins 40 mA DC Current per I/O Pin 40 mA 50 mA DC Current for 3.3V Pin 50 mA 32 KB (ATmega328) of which 0.5 KB used by Flash Memory 256 KB of which 8 KB used by bootloader bootloader 2 KB (ATmega328) 8 KB SRAM 1 KB (ATmega328) 4 KB **EEPROM** 16 MHz Clock Speed 16 MHz

SENSORES

¿QUÉ ES UN SENSOR?

- Es un dispositivo de entrada el cual tiene la capacidad de percibir magnitudes por medio de estímulos externos del entorno, esto nos permite obtener información del entorno físico que nos rodea.
- Las magnitudes son transformadas por el sensor en señales eléctricas las cuales pueden ser interpretadas y manejadas por un microcontrolador.

TIPOS DE SENSORES

- Sensor de luz
 - Permite medir o detectar la luz en el entorno
- Sensor de proximidad
 - Permite medir la posición o movimiento de un objeto
- Sensor acústico
 - Permite medir las ondas de sonido del entorno

- Sensores de presión
 - Permiten detectar el contacto con un objeto
- Sensores de temperatura
 - Permite medir la temperatura del entorno o de una objeto en especifico
- Sensores de aceleración
 - Permite medir la aceleración sufrida por un objeto, un ejemplo de este tipo de sensores es el giroscopio

CARACTERÍSTICAS

- Rango de medida: dominio en la magnitud medida en el que puede aplicarse el sensor.
- Precisión: es el error de medida máximo esperado.
- Offset o desviación de cero: valor de la variable de salida cuando la variable de entrada es nula. Si el rango de medida no llega a valores nulos de la variable de entrada, habitualmente se establece otro punto de referencia para definir el offset. (down)
- Sensibilidad de un sensor: suponiendo que es de entrada a salida y la variación de la magnitud de entrada.
- Resolución: mínima variación de la magnitud de entrada que puede detectarse a la salida.
- Rapidez de respuesta: puede ser un tiempo fijo o depender de cuánto varíe la magnitud a medir. Depende de la capacidad del sistema para seguir las variaciones de la magnitud de entrada.
- Repetitividad: error esperado al repetir varias veces la misma medida.

SEÑALES

TIPOS DE SEÑALES

Cuando un equipo electrónico nos muestra una información, puede hacerlo de forma **analógica** o de forma **digital**

.

Analógica quiere decir que la información, la señal, para pasar de un valor a otro pasa por todos los valores intermedios, es continua.

La señal **digital**, en cambio, va "a saltos", pasa de un valor al siguiente sin poder tomar valores intermedios.

Señal Analógica

Una señal **analógica** es continua, y puede tomar infinitos valores.

Señal Digital

Una señal **digital** es discontinua, y sólo puede tomar dos valores o estados: 0 y 1, que pueden ser impulsos eléctricos de baja y alta tensión, interruptores abiertos o cerrados, etc.

Pines en Arduino Mega

dDUDAS?