Learning objectives:

- 1. Compute limits using the limit laws.
- 2. Compute limits using the direct substitution property.
- 3. To be able to apply the squeeze theorem.

Limit Laws

Let $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$. Then we have

1.
$$\lim_{x \to a} [f(x) \pm g(x)] = L \pm M$$
.

$$2. \lim_{x \to a} f(x)g(x) = LM.$$

3.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}$$
 provided that $M \neq 0$.

$$4. \lim_{x \to a} cf(x) = cL.$$

5.
$$\lim_{x\to a} c = c$$
 where *c* is a constant.

$$6. \lim_{x \to a} x = a.$$

7.
$$\lim_{x \to a} [f(x)]^n = L^n$$
.

8.
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{L}$$
, given that $L \ge 0$ if *n* is even.

Example 1.

Evaluate the limit

$$\lim_{x \to 0} \frac{3x^2 + \sqrt{x} + 1}{2x^2 - x + 2} .$$

Direct substitution property

If f is a polynomial or a rational function and a is in the domain of f, then

$$\lim_{x \to a} f(x) = f(a) \; .$$

Example 2.

Evaluate the limit
$$\lim_{x\to 3} \frac{x^2-9}{x-3}$$
.

Example 3.

Evaluate
$$\lim_{h\to 0} \frac{(3+h)^2 - 9}{h}$$
.

Example 4.

Find
$$\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$$
.

Example 5.

Prove that $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

Example 6.

If $f(x) = \begin{cases} \sqrt{x-4} & \text{if } x > 4, \\ 8-2x & \text{if } x < 4, \end{cases}$ then determine whether $\lim_{x \to 4} f(x)$ exists.

The Squeeze Theorem

If $f(x) \le g(x) \le h(x)$ when x is near a, except possibly at a itself, and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L ,$$

then

$$\lim_{x \to a} g(x) = L \; .$$

Example 7.

Show that $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0$.

Example 8.

Evaluate
$$\lim_{t\to 0} \left(\frac{1}{t} - \frac{1}{t^2 + t}\right)$$
.

Example 9.

Evaluate $\lim_{x \to 3} \frac{\frac{1}{x} - \frac{1}{3}}{x - 3}$.

Example 10.

Evaluate
$$\lim_{t\to 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t}$$
.