Data Analysis and Visualization in R (IN2339)

Exercise Session 6 - Graphically supported hypotheses

Daniela Klaproth-Andrade, Felix Brechtmann, Julien Gagneur

Section 00 - Getting ready

1. Make sure you have already installed and loaded the following libraries:

```
library(ggplot2)
library(data.table)
library(magrittr) # Needed for %>% operator
library(tidyr)
```

Section 01 - Color guidelines

What are best practices when using color for data visualizations? Select all that apply.

- 1. Avoid having too many colors for categorical data.
- 2. Use one bright color to attract the readers attention.
- 3. Use color only when it actually adds meaning to the plot.
- 4. Use divergent color scales for categorical data types.

```
# Correct are 1, 3
```

Section 02 - Confounding factors

Investigate the file coffee_sim.csv by first loading it as a data.table.

```
coffee_dt <- fread("./extdata/coffee_sim.csv")
coffee_dt</pre>
```

```
##
         V1
                  risk packs_per_day cups_per_day
##
             3.514369
     1:
          0
                                    0
                                                 1-5
##
     2:
             6.338370
                                     0
                                                 1-5
          1
                                    0
##
             2.173321
                                                 1-5
     3:
          2
##
     4:
          3
             4.152559
                                    0
                                                 5+
                                    0
                                                 1-5
##
     5:
             6.091390
## 196: 195 15.033181
                                    2+
                                                   0
## 197: 196 14.692839
                                                   0
                                    2+
                                                  0
## 198: 197 15.759205
                                    2+
## 199: 198 17.125810
                                    2+
                                                 5+
## 200: 199 14.378317
                                                 1-5
                                    2+
summary(coffee_dt)
```

```
## V1 risk packs_per_day cups_per_day
## Min. : 0.00 Min. : 1.943 Length:200 Length:200
## 1st Qu.: 49.75 1st Qu.: 4.700 Class :character Class :character
```

```
Median : 7.258
##
    Median: 99.50
                                       Mode
                                            :character
                                                          Mode :character
##
    Mean
           : 99.50
                     Mean
                             : 8.182
##
    3rd Qu.:149.25
                     3rd Qu.:10.218
           :199.00
                             :18.088
##
    Max.
                     Max.
```

1. Visualize the trend between coffee and coronary heart disease (CHD)-related deaths (risk), which suggests a possible causal relationship.

2. From this plot you could conclude that coffee causes CHD. Do you think this conclusion explains the original observation? Provide plots supporting other conclusions.


```
# But the effect of smoking is not the same within each
# coffee consumption group.
ggplot(coffee_dt, aes(cups_per_day, risk, fill = packs_per_day)) +
    geom_boxplot() +
    labs(x = "Cups of coffee per day",
        y = "Deaths per 1,000") +
    guides(fill = guide_legend(title = "Packs of cigarettes"))
```


Section 03 - Supporting hypotheses with visualizations

1. Read the titanic.csv file into a data.table. You can read the description of the dataset on kaggle: https://www.kaggle.com/c/titanic/data.

```
##' Load data
titanic <- fread("./extdata/titanic.csv")</pre>
titanic
##
         pclass survived
                                                                         name
                                                                                 sex
##
               1
                        1
                                              Allen, Miss. Elisabeth Walton female
      1:
##
      2:
               1
                        1
                                             Allison, Master. Hudson Trevor
                        0
##
                                               Allison, Miss. Helen Loraine female
      3:
               1
##
      4:
               1
                                      Allison, Mr. Hudson Joshua Creighton
      5:
                        O Allison, Mrs. Hudson J C (Bessie Waldo Daniels) female
##
               1
##
## 1305:
               3
                        0
                                                       Zabour, Miss. Hileni female
## 1306:
               3
                        0
                                                      Zabour, Miss. Thamine female
               3
                        0
## 1307:
                                                  Zakarian, Mr. Mapriededer
               3
                        0
## 1308:
                                                        Zakarian, Mr. Ortin
                                                                                male
## 1309:
               3
                        0
                                                          Zimmerman, Mr. Leo
                                                                                male
```

##		age	sibsp	parch	ticket	fare	cabin	embarked	boat	body	
##	1:	29.00	0	0	24160	211.3375	B5	S	2	NA	
##	2:	0.92	1	2	113781	151.5500	C22 C26	S	11	NA	
##	3:	2.00	1	2	113781	151.5500	C22 C26	S		NA	
##	4:	30.00	1	2	113781	151.5500	C22 C26	S		135	
##	5:	25.00	1	2	113781	151.5500	C22 C26	S		NA	
##											
##	1305:	14.50	1	0	2665	14.4542		C		328	
##	1306:	NA	1	0	2665	14.4542		C		NA	

```
## 1307: 26.50
                    0
                          0
                               2656
                                      7.2250
                                                              C
                                                                      304
## 1308: 27.00
                    0
                               2670
                                      7.2250
                                                              C
                                                                       NA
                          0
## 1309: 29.00
                    0
                          0 315082
                                      7.8750
                                                              S
                                                                       NA
##
                                 home.dest
##
      1:
                              St Louis, MO
##
      2: Montreal, PQ / Chesterville, ON
      3: Montreal, PQ / Chesterville, ON
##
      4: Montreal, PQ / Chesterville, ON
##
##
      5: Montreal, PQ / Chesterville, ON
##
## 1305:
## 1306:
## 1307:
## 1308:
## 1309:
```

2. Describe what you see in the data. Have a look at the first and last observations. Make a summary of the variables in the dataset.

summary(titanic)

```
##
                        survived
        pclass
                                          name
                                                               sex
##
    Min.
           :1.000
                             :0.000
                                      Length: 1309
                                                           Length: 1309
                     1st Qu.:0.000
##
    1st Qu.:2.000
                                      Class : character
                                                           Class : character
    Median :3.000
                     Median : 0.000
                                      Mode :character
                                                           Mode : character
##
    Mean
            :2.295
                     Mean
                             :0.382
    3rd Qu.:3.000
                     3rd Qu.:1.000
##
##
           :3.000
                             :1.000
    Max.
                     Max.
##
##
         age
                         sibsp
                                            parch
                                                            ticket
                             :0.0000
##
    Min.
           : 0.17
                     Min.
                                       Min.
                                               :0.000
                                                         Length: 1309
##
    1st Qu.:21.00
                     1st Qu.:0.0000
                                       1st Qu.:0.000
                                                         Class : character
##
    Median :28.00
                     Median :0.0000
                                       Median :0.000
                                                         Mode : character
            :29.88
##
    Mean
                     Mean
                             :0.4989
                                       Mean
                                               :0.385
##
    3rd Qu.:39.00
                     3rd Qu.:1.0000
                                       3rd Qu.:0.000
##
    Max.
            :80.00
                     Max.
                             :8.0000
                                       Max.
                                               :9.000
##
    NA's
            :263
##
         fare
                           cabin
                                              embarked
                                                                    boat
##
           : 0.000
                       Length: 1309
                                                                Length: 1309
    Min.
                                            Length: 1309
##
    1st Qu.: 7.896
                       Class : character
                                            Class : character
                                                                Class : character
    Median: 14.454
                       Mode : character
                                            Mode :character
                                                                Mode : character
##
##
    Mean
           : 33.295
##
    3rd Qu.: 31.275
    Max.
           :512.329
##
##
    NA's
            :1
                      home.dest
##
         body
##
    Min.
           : 1.0
                     Length: 1309
    1st Qu.: 72.0
                     Class : character
##
  Median :155.0
                     Mode :character
##
    Mean
           :160.8
##
    3rd Qu.:256.0
##
    Max.
            :328.0
    NA's
            :1188
titanic[, table(survived)]
```

```
## survived
## 0 1
## 809 500
```

3. What do you think are the factors that have the strongest influence on the survival rate? Make claims and justify your argument with plots. *Hint*: check variables like pclass, sex and age, and visualize whether they associate with survival. Additionally check their interactions.

```
# How many survived?
ggplot(titanic, aes(factor(survived))) +
  geom_bar()
```



```
# Does passenger class play a role?

# We can see below that the better the class, the higher is the survival rate.
ggplot(titanic, aes(x = factor(pclass), fill = factor(survived))) +
    geom_bar(position = 'fill')
```



```
# Does sex play a role?
ggplot(titanic, aes(factor(sex), fill = factor(survived))) +
  geom_bar(position = 'fill')
```



```
# Does the fare paid play a role?
ggplot(titanic, aes(factor(survived), fare)) +
  geom_boxplot() +
  geom_jitter(width = 0.3) +
  scale_y_log10()
```



```
# Does age play a role?

# It seems that age does not associate with survival.
ggplot(titanic, aes(factor(survived), age)) +
   geom_boxplot() +
   geom_jitter(width = 0.3)
```



```
# Does this mean age plays almost no role?
# We could investigate the influence of age when we control for sex or the class.
ggplot(titanic, aes(factor(survived), age)) +
   geom_boxplot() +
   geom_jitter(width = 0.3) +
   facet_wrap(~ sex)
```



```
# Below we can observe that within each class being younger increased the chances of surviving.
ggplot(titanic, aes(factor(survived), age)) +
geom_boxplot() +
geom_jitter(width = 0.3) +
facet_wrap(~ pclass)
```


We can additionally check the interaction between gender and the passenger class or control for both
Interaction between gender and pclass
ggplot(titanic, aes(factor(sex), fill = factor(survived))) +
 geom_bar(position = 'fill') +
 facet_wrap(~ pclass)

```
1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.
```

```
# Controlling for both

# Below we can observe that the gender had huge impact in the first two classes.
# Here a much higher fraction of women than men survied.
# Additionally we can observe that the claim we made above that being younger
# increased the chances of surviving is mostly true for men.
ggplot(titanic, aes(factor(survived), age)) +
geom_boxplot() +
geom_jitter(width = 0.3) +
facet_grid(pclass ~ sex)
```



```
# [OPTIONAL] Check if the title has an impact on the survival.
titanic <- separate(titanic, name, into = c("Name_A", "Name_B"), sep = ",")
titanic <- separate(titanic, Name_B, into = c("Title", "Name"), sep = ".")
rare_title <- names(table(titanic[,Title])[table(titanic[,Title]) < 7])
titanic$Title[titanic$Title %in% rare_title] <- "Rare"
ggplot(titanic, aes(Title, fill = factor(survived))) +
    geom_bar(position = 'fill')</pre>
```


Section 04 - General

guidelines in data visualization

Below is a graph taken from one published paper. Read the figure legend.

Figure 2. Maximal 3 H proline uptake of wildtype (WT) and all tested mutants. The maximum in uptake was measured in the presence of 3 μ M cold L-proline. Data are expressed as means \pm standard deviation (SD) obtained from triplicate samples. Mutants with a circle were tested in a second independent experiment. doi:10.1371/journal.pone.0068645.g002

1. [OPTIONAL] Discuss good and bad graphical properties of the plot, make suggestions on how to improve.

```
# GOOD
# - simple design
# - not too many colors
# - clear labels
# - no chart junk
#
# BAD
# - no highlight, e.g. by color
# - x-axis not sorted
# - summary by mean+sd hides the data, which is at most four points per bar
#
# Suggestion
# - plot single points instead of bars, with small median line (too few points for boxplot)
# - sort Mutants by median
# - give color for above and below WT
```

2. [OPTIONAL] Implement a better visualization. As the original data is not available, we use the data

simulated with the code below.

```
# simulate data
dt <- data.table(pro uptake = c(rnorm(3, 10100, 300), rnorm(4, 12100, 300),
                                rnorm(3, 9850, 300), rnorm(4, 11100, 300),
                                rnorm(4,8300, 300), rnorm(3,10050, 300),
                                rnorm(3, 12000, 300), rnorm(3, 10020, 300),
                                rnorm(3, 10080, 300), rnorm(3, 10070, 300) ),
                 mutants = c(rep('WT',3), rep('T49A',4), rep('K227N',3), rep('A400V',4),
                            rep('L421P',4), rep('I500T',3), rep('N591D',3),
                            rep('A601T',3), rep('E684D',3), rep('G710R',3))
# sort by median
dt[, median_per_mut := median(pro_uptake), by = mutants]
wt_med = unique(dt[mutants == 'WT', median_per_mut])
dt[, mutants:= factor(mutants, levels=unique(dt[order(median_per_mut), mutants]))]
# assign color by relation to WT
dt[, rel_to_wt := ifelse(median_per_mut < wt_med, 'Smaller than WT', 'Larger than WT'),</pre>
   by = mutants]
dt[mutants == 'WT', rel_to_wt := 'WT']
p <- ggplot(dt, aes(mutants, pro_uptake, fill = rel_to_wt)) +</pre>
  geom_boxplot() +
  geom jitter(width = 0.4) +
 labs(y = "Proline Uptake")
# ggplotly(p)
p
```



```
# Another solution with bar plot:
summary_dt <- dt[, .(mean = mean(pro_uptake),</pre>
                     sd = sd(pro_uptake)),
                 by = "mutants"]
x_order <- summary_dt[order(mean), mutants]</pre>
summary_dt[, mutants := factor(mutants, levels = x_order)]
dt[, mutants := factor(mutants, levels = x_order)]
# get wt mean
wt <- summary_dt[mutants == "WT", mean]</pre>
# group mutants to larger and smaller than wt
summary_dt[, color := ifelse(mean > wt, "Larger",
                              ifelse(mean == wt, "WT", "smaller"))]
ggplot(summary_dt) +
  geom_bar(aes(mutants, mean, fill = color), stat='identity') +
  geom_errorbar(aes(mutants, ymax=mean+sd, ymin=mean-sd), width = 0.2) +
  geom_jitter(data = dt, aes(mutants, pro_uptake))
```


Section 5 - Case Study Feedback

Feedback for the report (Rmd) with the entire analysis

- \square Does the notebook run and create all figures from the presentation?
- \square Is the notebook cleaned-up?
- □ Is the report (Rmd) stand alone? (Only Rmd needed to understand the performed analysis. It should contain explanations/interpretations and code.)
- ☐ Is the data after the data preparation tidy? Is the definition of an observation clear?

Feedback on the presentation / slides

Gene	eral considerations
	Has the presentation a clear structure? Did the presentation tell a clear and convincing story? Did the presenter stick to the 7 min limit?
Intro	duction
	Did the presentation start with a short motivation? Are the goals of the analyses formulated at the beginning of the presentation?
Data	Preparation
	Were important data preparation steps explained during the presentation? Was additional data used in the presentation? If, was it made clear how that data was obtained?
Data	Exploration/Analysis
	 Were the stated claims communicated well? Were all stated claims supported by appropriate figures? - Was the appropriate plot type (line plot, scatter plot, box plot, violin plot) selected for the data shown? - Did the plot support the claim? Is there a better alternative to visualize the claim? - Was an associative plot used to show the relationship stated in the claim. Did the figures follow the plotting guidelines (no double-encoding, good paper-ink-ratio)? Were alternative interpretations of the associations discussed (directionality, effect of a third variable robustness)? Where there any circularities in the presented claims?
Conc	elusion
	Did the presentation end with a conclusion slide recapping the main findings? Did the claims answer the problem/goals formulated in the motivation? Did the presentation help to learn something that we/you did not know before? (non-evident claims/acceptation/pattern/relationship in the data presented)