数论

kczno1

2020.2.10.

对于两个整数 a, b ,且 b > 0 ,则存在唯一的整数 q 和 r ,使得 $a = qb + r, r \in [0, b)$ 。记 $q = \lceil \frac{a}{b} \rceil, r = a \mod b$ 。如果 $a \mod b = 0$,则称 a 被 b 整除,或 b 整除 a ,记作 $b \mid a$ 。

```
引理:
若正整数 a,b,c,q 满足 a=bq+c ,则 gcd(a,b)=gcd(b,c) 欧几里得算法(Euclidean algorithm)): gcd(a,b)=gcd(b,a \bmod b) ,递归计算。
若 a\geq b ,则 a\bmod b\leq \min(b-1,a-b)\leq \frac{a}{2} 故时间复杂度为 O(\log a + \log b)
```

斯坦因算法(Binary GCD algorithm):

$$\gcd(a,b) = \begin{cases} a & \text{if a = b} \\ 2\gcd\left(\frac{a}{2},\frac{b}{2}\right) & \text{if a,b are even} \\ \gcd\left(\frac{a}{2},b\right) & \text{if a is even,b is odd} \\ \gcd\left(a,\frac{b}{2}\right) & \text{if a is odd,b is even} \\ \gcd(a-b,b) & \text{if a,b are odd} \end{cases}$$

时间复杂度 $O(\log a + \log b)$

引理(min - max 容斥):

对于集合
$$S,\max(S) = \sum_{\emptyset
eq T \subseteq S} (-1)^{|T|+1} \min(T),$$

$$\min(S) = \sum_{\emptyset
eq T \subseteq S} (-1)^{|T|+1} \max(T).$$

对于正整数
$$a, b$$
 ,有 $\gcd(a, b) \operatorname{lcm}(a, b) = ab$ 。
对于集合 S , $\operatorname{lcm}(S) = \prod_{\emptyset \neq T \subseteq S} \gcd(T)^{(-1)^{|T|+1}}$, $\gcd(S) = \prod_{\emptyset \neq T \subseteq S} \operatorname{lcm}(T)^{(-1)^{|T|+1}}$ 。

XVI Open Cup, Grand Prix of SPb, D At Least Half

给定一个长度为 n 的正整数序列 $r_{1...n}$,找到一个最长的区间满足能从区间中选出一半的数字,使得它们的 $\gcd > 1$ 。 $1 < n < 5 \times 10^5, 1 < r_i < 10^6$

CF 1034A Enlarge GCD

给定 n 个正整数 $x_{1...n}$,从中删除尽量少的数字,使得剩下的数的 gcd 变大,或者确定无解。

$$1 \le n \le 3 \times 10^5, 1 \le x_i \le 1.5 \times 10^7$$

题目

Easy:

CF 1114C Trailing Loves

SDOI 2009 SuperGCD

Medium:

LOJ 530 最小倍数

CF 438D The Child and Sequence

BZOJ 4921 互质序列

CCPC 长春 2016 F Harmonic Value Description

Hard:

Hackerrank Fibonacci LCM

对于正整数 m , 如果 $a \mod m = b \mod m$, 则称 $a \subseteq b$ 关于 m = 0 同余,记作 $a \equiv b \pmod m$ 。

将所有模 m 同余的元素归为一个集合,那么全体整数被分为 m 个集合,这些集合被称为模 m 的剩余类。

在模 m 的每个剩余类里各取一个数,得到一个大小为 m 的集合,称为模 m 的一个完全剩余系。

对于正整数 x, y ,对于任意整数 s, t ,有 $\gcd(x, y)|sx + ty$ 。 所以如果要解方程 sx + ty = a ,如果 $\gcd(x, y)$ /a 则无解,否则只需解出 $sx + ty = \gcd(x, y)$ 再乘上 $\frac{a}{\gcd(x, y)}$ 。 扩展欧几里得算法 (Extended Euclidean algorithm): 求出 $sx + ty = \gcd(x, y)$ 的一组特解 (s_0, t_0) ,则通解为 $\{s' = s_0 + k \frac{y}{\gcd(x, y)}, t' = t_0 + k \frac{x}{\gcd(x, y)} | k \in \mathbb{Z} \}$ 。 令 x = ky + z , $xx + ty = \gcd(x, y) \rightarrow s(ky + z) + ty = \gcd(x, y) \rightarrow (sk + t)y + sz = \gcd(x, y) = \gcd(y, z)$,所以只需对 y, z 递归操作。 时间复杂度同欧几里得算法。

乘法逆元: 对于正整数 m ,整数 x ,若存在整数 a 满足 $ax \equiv 1$ (mod m) ,则称 a 是 x 关于 m 的乘法逆元。 这等价于存在整数 b ,ax + mb = 1 。 故 a 存在当且仅当 $\gcd(x, m) = 1$,且可用扩展欧几里得算法求出。

考虑解同余方程组

$$\begin{cases} x \equiv r_1 \pmod{m_1} \\ x \equiv r_2 \pmod{m_2} \\ \dots \\ x \equiv r_n \pmod{m_n} \end{cases}$$

中国剩余定理(Chinese remainder theorem):

当
$$m_1, m_2 \dots m_n$$
 两两互质时,解为 $x \equiv \sum_{i=1}^n r_i M_i' M_i \pmod{M}$,

其中
$$M=\prod_{i=1}^n m_i, M_i=rac{M}{m_i}, M_i'\equiv M_i^{-1} \pmod{m_i}$$
 。

对于一般的情况,考虑每次合并两个方程,重复 n-1 次。 对于方程 $x \equiv r_1 \pmod{m_1}$ 和 $x \equiv r_2 \pmod{m_2}$,存在整数 k_1, k_2 ,使得 $x = k_1 m_1 + r_1 = k_2 m_2 + r_2$,即 $k_1 m_1 - k_2 m_2 = r_2 - r_1$,使用扩展欧几里得算法即可。

CF 819D Mister B and Astronomers

有 n 个观察员,第一个观察员在 0 秒会观察星空一次,第 i 个会在第 i-1 个观察员之后 a_i 秒观察,第一个观察员会在第 n 个观察员之后 a_1 观察。

有一颗星星随机在 [-T,-1] 中的一个整数秒开始闪烁,每隔 T 秒闪烁一次。

问每个观察员有多大概率称为第一个观察到这颗星星的人,答案 乘以 T 输出。

$$1 \le T \le 10^9, 2 \le n \le 2 \times 10^5, 1 \le a_i \le 10^9$$

题目

Easy:

POJ 青蛙的约会

The Balance

NOI2018 屠龙勇士

Medium:

CF 492E Vanya and Field

Hard:

projecteuler Chinese leftovers II

在模 m 意义下与 m 互质的剩余类中各取一数组成的集合,叫做 模 m 的一个简化剩余系,也叫缩系。 将模 m 缩系的大小记作欧拉函数 $\varphi(m)$ 。 若 $\gcd(k,m)=1$,且 $\{a_0,a_1,\ldots a_{\varphi(m)-1}\}$ 为模 m 的一个缩系,则 $\{ka_0,ka_1,\ldots ka_{\varphi(m)-1}\}$ 也是模 m 的一个缩系。

```
费马小定理(Fermat's little theorem): 对于质数 p 和整数 a ,有 a^p \equiv a \pmod{p} 。 欧拉定理(Euler's totient theorem): 对于正整数 m,a ,若 \gcd(m,a)=1 ,则 a^{\varphi(m)}\equiv 1 \pmod{m} 。 威尔逊定理(Wilson's theorem): 对于大于 1 的正整数 n ,n 是质数当且仅当 (n-1)!\equiv -1 \pmod{n} 。 扩展欧拉定理: 对于正整数 m,a,b ,a^b\equiv a^{b \bmod \varphi(m)+\varphi(m)} \pmod{m} (b\geq \varphi(m)) 。
```

题目

Medium: BZOJ 上帝与集合的正确用法 Ynoi2016 炸脖龙

离散对数问题:

给定 A, B, C ,解同余方程 $A^x \equiv B \pmod{C}$ 。

首先考虑 gcd(A, C) = 1,即 A 在mod C 意义下存在逆元的情 况。

注意到. A^{\times} mod C 随着 X 的变化具有周期性.最大周期不超 **讨** *C* 。

故 $A^x \equiv B \pmod{C}$ 有解的充要条件为在 $x \in [0, C)$ 有解。 所以我们只要解出 $x \in [0, C)$ 的一个解即可。(再结合最小周期 即可得到通解,但一般不需要)

大步小步算法 (Baby-step giant-step, BSGS):

设定一个块的大小 n ,考虑把每 n 个 x 分成一块,这时第 i 块 内要解的方程相当于: $A^{in-j} \equiv B \pmod{C}$,这里

 $1 \le i \le \lceil \frac{C}{n} \rceil, 1 \le j \le n$.

两边同乘 A^{j} 得 $A^{in} \equiv B \times A^{j} \pmod{C}$ 。

枚举 i , 把所有 $B \times A^i \mod C$ 存入哈希表; 然后枚举 i , 在哈 希表中查询 Ain mod C。

时间复杂度 $O(n + \frac{C}{n})$, 当 n 取 $O(\sqrt{C})$ 时, 时间复杂度取到最 优值 $O(\sqrt{C})$ 。

注意到, 当 $gcd(A, C) \neq 1$,即 A amod C 意义下不存在逆元时, 得到 $A^{in} \equiv B \times A^{j} \pmod{C}$ 后并不能在两边同乘 A^{-j} ,因此这 个做法是不可行的。

扩展大步小步算法 (Extended Baby-step giant-step): 考虑通过预处理把问题转化成 A, C 互质的情况。将 $A^x \equiv B \pmod{C}$ 看做是 $A^x + Cy = B$ 方便叙述与处理。考虑将方程一直除去 A, C 的 gcd 进行变形,最终使得 A, C 互质。

将方程左右同除 $d_1 = \gcd(A, C)$,得到 $B_1 = \frac{A}{d_1}A^{x-1} + C_1y$ (其中 $B_1 = \frac{B}{d_1}$, $C_1 = \frac{C}{d_1}$);如果 A 和 C_1 不互质,继续将方程左右同除 $d_2 = \gcd(A, C_1)$ 得到 $B_2 = \frac{A^2}{d_1d_2}A^{x-2} + C_2y$ 。重复操作直到 A 和 C_i 互质。

需要注意,能将 $B_i = \frac{A'}{d_1 d_2 d_i} A^{x-i} + C_i y$ 两边同除 $gcd(A, C_i)$ 的 前提是答案 > i。

一个方便的解决方法就是预先特判答案较小(比如 < 100)的情 况。

在特判小答案之后,如果遇到 $gcd(A, C_i) \nmid B_i$ 的情况就可以直接 认为无解了。

最终得到 $B_n = \frac{A^n}{d_1d_2..d_n}A^{x-n} + C_ny$ 。记 $D = \frac{A^n}{d_1d_2..d_n}$,因为 $gcd(A,C_n)=1$,所以 $gcd(D,C_n)=1$,所以 D 在 $modC_n$ 意义 下存在逆元,所以原式等价于 $D \times A^{x-n} \equiv B_n \pmod{C}$,等价 于 $A^{\times -n} \equiv B_n \times D^{-1} \pmod{C_n}$ 。此时就可以求解了。

将满足 $x'\equiv 1\pmod m$ 的最小正整数 I 称为 x 的阶 $ord_m(x)$ 。 $ord_m(x)$ 存在当且仅当 $\gcd(x,m)=1$ 。 若存在正整数 N , $x^N\equiv 1\pmod m$,则 $ord_m(x)|N$ 。由此可知,当 $ord_m(x)$ 存在时有 $ord_m(x)|\varphi(m)$ 。 若 $ord_m(x)=u$,则对于任意正整数 k , x^k 的阶为 $\frac{u}{\gcd(u,k)}$ 。

若存在阶为 $\varphi(m)$ 的元素 g ,则称 g 是模 m 意义下的一个原根。 $\{g^i|i=0,1\ldots\varphi(m)-1\}$ 构成一组缩系。

若
$$m=\prod_{i=1}^{\kappa}p_{i}^{e_{i}}$$
 ,则

 $\operatorname{ord}_m(x) = \operatorname{lcm}(\operatorname{ord}_{p_1^{e_1}}(x), \operatorname{ord}_{p_2^{e_2}}(x) \dots \operatorname{ord}_{p_k^{e_k}}(x))$.

原根存在的充要条件是 $m = 2, 4, p^n, 2p^n$,这里 p 是奇质数, n 是正整数。

原根若存在,则有 $\varphi(\varphi(m))$ 种互不同余的原根。

求质数 p 的原根:

最小的原根都比较小,故可以通过从小到大枚举来寻找原根。对于一个待检查的正整数 g,对于 p-1 的每个质因子 a ,检查 $g^{\frac{p-1}{a}} \equiv 1 \pmod{p}$ 是否成立,如果成立说明 g 不是原根;如果都不成立,说明 g 是原根。

高次剩余问题: 给定 B, C, M , 解同余方程 $A^B \equiv C \pmod{M}$ 。

由于该问题比较复杂,我们只考虑 M 是质数的情况。 令 g 为 M 的原根,通过 g 可以将 $1,2,\ldots M-1$ 和 $g^1,g^2,\ldots g^{M-1}$ 建立一一映射。 特判 C=0 的情况。设 $g^s=A,g^t=C$ (t 可以用离散对数解出),则 $g^{sB}\equiv g^t\pmod M$,即 $sB\equiv t\pmod {M-1}$,解同余方程即可。

题目

Easy:
BSGS 模板题
原根 模板题
Medium:
exBSGS 模板题
质数高次剩余 模板题
SDOI2015 序列统计
Very Hard:
高次剩余 模板题

问题:快速判断一个数 n是不是质数。

根据费马小定理,若 n 是质数,则有 $a^{n-1} \equiv 1 \pmod{n}$,其中 0 < a < n 。

因此一个想法就是多次在 [1, n-1] 随机一个 a ,并检验是否有 $a^{n-1} \equiv 1 \pmod{n}$,一旦不成立,就说明 n 是合数。

这个算法是正确的,因为若 $n = x \times y(x > 1, y > 1)$,则 $x \mid x^{n-1} \mod n$,因此 $x^{n-1} \mod n \neq 1$ 。然而对于某些合数,使 得同余式不成立的 a 很少,于是这个算法随机次数需要很大, 因此这个算法的复杂度是很高的。

```
引理: 若 p 是质数,则 x^2 \equiv 1 \pmod{p} 的解为 x \equiv \pm 1 \pmod{p} 。
证明: x^2 \equiv 1 \pmod{p}
移项得: (x-1)(x+1) \equiv 0 \pmod{p}
即 p|(x-1)(x+1)
因此 p|x-1 或 p|x+1
即 x \equiv \pm 1 \pmod{p} 。
证毕。
```

米勒拉宾测试 (Miller-Rabin primality test):

考虑利用这个引理优化上面那个方法。

- 1. 多次在 [1, n-1] 随机一个 a。
- 2. ♦ x = n 1 ∘
- 3. 判断 $a^x \equiv 1 \pmod{n}$ 是否成立,若不成立就说明 n 是合数(根据费马小定理)。
- 4. 如果 x 是奇数,那么结束这次的检验;否则进行步骤 5 。
- 5. 判断 $a^{x/2} \equiv \pm 1 \pmod{n}$ 是否成立,若不成立就说明 n 是合数(根据引理);

否则若 $a^{x/2} \equiv -1 \pmod{n}$,则结束这次的检验,否则令 x/=2

, 然后重复步骤 4。

如果分别选取 2,3,5,7 作为 a ,那么就能保证 10^9 以内所有数的正确判断。

如果分别选取最小的 12 个质数作为 a , 那么就能保证 10^{18} 以内所有数的正确判断。

具体实现时,先求出 $n-1=n_1\times 2^l$,其中 n_1 是奇数,然后求出 $x=a^{n_1} \mod n$,若 x=1 或 x=n-1 结束检验;否则重复 l-1 次,每次让 $x=x^2 \mod n$,若 x=n-1 结束检验,若 l-1 次后还没出现 x=n-1 则说明 n 为合数。

问题: 给定一个 $< 10^{18}$ 的数,输出它分解质因数后的结果。 Pollard's rho algorithm:

首先如果 n 是质数或者 n=1 ,直接返回。(用 Miller-Rabin 算 法判断)

否则我们找出 n 的一个非平凡因子 i(1 < i < n) , 然后递归对 i和 $\frac{n}{1}$ 操作。

如何找出一个 n 的非平凡因子呢?

考虑对于 n 的一个质因子 p ,如果我们得到两个数 x, y ,满足 $x \equiv y \pmod{p}$ 但 $x \not\equiv y \pmod{n}$, 那么 $\gcd(|x-y|, n)$ 就一定 是 n 的一个非平凡因子。

这时候就有一个很巧妙的想法。

考虑这样生成一个模 n 意义下的随机数列 $\{x_m\}$: $x_1 = a$, $x_i = f(x_{i-1}) \mod n$ (i > 1) ,其中 a 是一个 $\in [0, n)$ 的随机数。其中 f(x) 为一个随机函数,一般取 $f(x) = x^2 + c$,其中 c 是一个常数。

由于 x_i 由 x_{i-1} 唯一确定,因此 $\{x_m\}$ 一定会形成一个 ρ 形,也就是说从某个 x_i 开始会进入一个循环,即对于所有 $j \geq i$ 有 $x_{j+t} = x_j$,其中 t 是这个循环节的长度。由生日悖论可知, i+t (即 ρ 的长度)期望下是 $O(\sqrt{n})$ 的。

对于 n 的一个质因子 p ,考虑模 p 意义下的随机数列 $\{x'_m\}$,即满足 $x'_1 = a \mod p$, $x'_i = f(x'_{i-1}) \mod p$ (i > 1) 。类似的,假如 $\{x'_m\}$ 从 x'_i 开始进入循环节为 t 的循环,那么 i + t 期望下是 $O(\sqrt{p})$ 的。由于 $x'_i = x_i \mod p$,因此 x_i 和 x_{i+t} 模 p 相等,并且很有可能模 n 不相等,因此 $\gcd(|x_i - x_{i+t}|, n)$ 很可能是 n 的一个非平凡因子。

那么我们考虑从 i = 1 开始,每次检查 $v = \gcd(|x_i - x_{2i}|, n)$,如果 v = 1,那么接着枚举 i;如果 v = n,那么说明对于所有 p 第一个满足 $x_i = x_{2i}$ 的 i 都相等,这种情况很少出现,因此我们可以直接停止枚举,判定这次寻找失败,换一个初始值和随机函数继续寻找;否则 v 就是 n 的一个非平凡因子,返回 v 即可。

考虑对于一个 p 第一个满足 $x_i = x_{2i}$ 的 i 是多少,相当于 x,y 两个人从同一个起点出发走同一个 ρ 形,每次 x 走一步,y 走两步,那么当 x 第一次走到环上的时候,接下来就变成一个追及问题,再走当前距离次,y 就会追上 x 了。因此 i 不超过 ρ 的长度的两倍,期望下是 $O(\sqrt{p})$ 的。

由于合数 n 的最小质因子不超过 $O(\sqrt{n})$,因此分解一次的期望时间复杂度为 $O(n^{1/4}\log n)$,其中 $\log n$ 是因为要求 gcd 。由于 n 每次会被分成两个数,可以证明总复杂度同样为 $O(n^{1/4}\log n)$

0

同时,Pollard's rho 有一个不常用的优化,可以将期望时间复杂度变成 $O(n^{1/4})$ 。

设定一个参数 β ,每 β 个 i 一起搞,计算这 β 个 $|x_i - x_{2i}|$ 的乘积和 n 的 gcd :

如果 gcd 为 1 ,说明每个 $|x_i - x_{2i}|$ 和 n 的 gcd 都是 1 ,接着枚举;

否则说明存在至少一个 i , $|x_i - x_{2i}|$ 和 n 的 gcd 不是 1 ,这时我们一个个 i 枚举过来就好了。

分解一次时间复杂度为 $O(n^{1/4} + \frac{n^{1/4}\log n}{\beta} + \beta\log n)$,合理设置 β (比如设为 $\log n$)即可做到 $O(n^{1/4})$ 。

大数分解

试除法:

预处理不超过 $n^{\frac{1}{K+1}}$ 的质数,筛去 n 的这部分质因子,则剩下的质因子数量不超过 K 。

利用素性检测做一些分类讨论,避免大数分解。

IX Open Cup, Kharkiv Grand Prix K Minimal Power of Prime

T 组询问,每组询问给定一个整数 n ,问 n 的质因数分解里最小的幂指数是多少。 $T < 10^5, 2 < n < 10^{18}$

Easy:

Miller-Rabin 模板题

Medium:

Pollard's rho 模板题

CQOI 2016 密钥破解

HDU 5447 Good Numbers

Hard:

POI 2010 Divine divisor

卢卡斯定理

Lucas's theorem : 对于非负整数 n, m 和质数 p ,令 n, m 的 p 进制表示分别为 $\sum_{k\geq 0} n_k p^k, \sum_{k\geq 0} m_k p^k (0 \leq n_k, m_k < p) \text{ ,则有 } \binom{n}{m} \equiv \prod_{k\geq 0} \binom{n_k}{m_k} \pmod{p} \text{ 。}$

一些扩展

卢卡斯定理

基于母函数的证明 [編輯]

本证明由Nathan Fine[2]给出。

对于素数p和n, 满足 $1 \le n \le p-1$, 二项式系数

$$egin{pmatrix} p \ n \end{pmatrix} = rac{p \cdot (p-1) \cdots (p-n+1)}{n \cdot (n-1) \cdots 1}$$

可被p整除。由此可得,在母函数中

$$(1+X)^p \equiv 1+X^p \pmod{p}.$$

应用数学归纳法可证,对于任意非负整数i,有

$$(1+X)^{p^i}\equiv 1+X^{p^i}\pmod{p}.$$

对于任意非负整数m和素数p,将m用p进制表示,即 $m=\sum_{i=0}^{K}m_{i}p^{i}$,其中k为非负整数、 m_{i} 为整数且 $0\leq m_{i}\leq p$ -1。注意到

$$\begin{split} \sum_{n=0}^m \binom{m}{n} X^n &= (1+X)^m = \prod_{i=0}^k \left((1+X)^{p^i} \right)^{m_i} \\ &\equiv \prod_{i=0}^k \left(1+X^{p^i} \right)^{m_i} = \prod_{i=0}^k \left(\sum_{n_i=0}^{m_i} \binom{m_i}{n_i} X^{n_i p^i} \right) \\ &= \prod_{i=0}^k \left(\sum_{n_i=0}^{p-1} \binom{m_i}{n_i} X^{n_i p^i} \right) = \sum_{n=0}^m \left(\prod_{i=0}^k \binom{m_i}{n_i} \right) X^n \pmod{p}, \end{split}$$

其中 n;是n的p进制表达的第i位。此即证明了本定理。

Medium:

ZOJ 2116 Christopher's Christmas Letter

Hard:

2017 计蒜之道复赛商汤智能机器人

BZOJ 2629 binomial

Hackerrank Binomial Coefficients Revenge

类欧几里得

问题:给定正整数 a,b,c,n,求 $f(a,b,c,n) = \sum_{i=1}^{n} \lfloor \frac{ai+b}{c} \rfloor$ 。要 求时间复杂度为 $O(\log \max(a, b, c, n))$ 。 首先做可以简单的转化使得 a, b 分别对 c 取模。 然后令 $m = \lfloor \frac{an+b}{a} \rfloor$ $f(a,b,c,n) = \sum_{i=0}^{n} \sum_{j=0}^{m} [j < \lfloor \frac{ai+b}{c} \rfloor] = \sum_{j=0}^{m} \sum_{i=0}^{n} [j < \lfloor \frac{ai+b}{c} \rfloor]$ 由于 $j < |\frac{ai+b}{c}| \Leftrightarrow |\frac{jc+c-b-1}{2}| < i$ 所以 $f(a,b,c,n) = \sum_{i=0}^{m} \sum_{i=0}^{n} \left[\left| \frac{jc+c-b-1}{2} \right| < i \right] =$ $\sum_{i=0}^{m} (n-|\frac{jc+c-b-1}{2}|) = nm-f(c,c-b-1,a,m-1)$ 注意到 a, c 交换了位置,所以又可以取模,再递归。这就是个辗 转相除的过程。故时间复杂度为 $O(\log a + \log c)$ 。

Medium:

CCPC 杭州 2016 Mod, Xor and Everything

POJ A Modular Arithmetic Challenge

Hard:

洛谷 类欧几里得算法

LOJ类欧几里得算法

Vijos 强大的区间

2016 Petrozavodsk Winter, Makoto Soejima Contest 4 K Stains

Timus 1797 Summit Online Judge 2

Very Hard:

LOJ 万能欧几里得

2014 Petrozavodsk Summer, Petr Mitrichev Contest 12 F

Recognize Power of Two

问题:求积性函数 f(x) 的前缀和。

以 简单的函数 为例。

对于例题,显然 f(x) 是积性函数,然而想找到其他的性质却不容易。

这时直接上 Min_25 筛就好了。

$$2 \le x \le n$$

那么答案就是 g(n,0) + f(1) 。

g(n,m) 可以暴力枚举下一个最小质因子 p 及其幂次 e 转移:

$$g(n,m) = \sum_{m$$

注意到,当 $p > \sqrt{n}$ 时,贡献就是 f(p) ,因此考虑特判所有质数的贡献来减少 p 的枚举。

$$g(n,m) = \sum_{m 1] + g(\lfloor \frac{n}{p^e} \rfloor, p))} + \sum_{m$$

定义
$$h(n) = \sum_{2 \leq p \leq n, p \text{ is prime}} f(p)$$
 ,则
$$g(n,m) = \sum_{m 1] + g(\lfloor \frac{n}{p^e} \rfloor, p)) \\ + h(n) - h(m)$$
 如果预处理出了 h ,那么 g 只用这样暴力 dfs 递归即可,当 $n \leq 10^{13}$ 时,时间复杂度接近 $O(\frac{n^3}{\log n})$ (实际时间复杂度为 $O(n^{1-\epsilon})$,见朱震霆论文)。

下面考虑如何求h。

可以发现对于用到的 h(i) 一定存在 m ,使得 $\lfloor \frac{n}{m} \rfloor = i$ 。 而且在例题及大多题目中,f(p) (p是质数) 是一个关于 p 的低次多项式,即 $f(p) = \sum_t a_t p^t$ 且 t 的最大值很小,而每个 t 显然是可以分开计算贡献然后相加的,因此下面只考虑 $f(p) = p^t$ 的情况。

也就是说,我们的问题为,对所有的 $i = \lfloor \frac{n}{m} \rfloor$,求 $h(i) = \sum_{p \leq i, p \text{ is prime}} p^t$ 。

考虑埃式筛法的过程,即从小到达枚举每个 p ,筛去所有 $\geq p^2$ 的 p 的倍数。

定义 $h'_{i,j}$ 表示埃式筛法枚举了前 i 个质数后, $\leq j$ 的还剩下的数的 t 次方之和, p_i 表示第 i 个质因子。

即 $h'_{i,j} = \sum_{1 \le x \le j} [x \ge 1, 质数, 或没有 \le p_i$ 的质因子的数] x^t 。转移:

对于 $j \geq p_i^2$, $h_{i,j}' = h_{i-1,j}' - p_i^t(h_{i-1,\lfloor\frac{j}{p_i}\rfloor}' - h_{i-1,p_i-1}')$,因为所有

被 p_i 第一次筛去的数一定是 $p_i \times x$,其中 x 没有 $< p_i$ 的质因子:

对于 $j < p_i^2$, $h'_{i,j} = h'_{i-1,j}$ 。

使用滚动数组,时间复杂度 $O(\frac{n^{\frac{3}{4}}}{\log n})$ (可以用积分证明)。

有时候我们需要对每个 $\lfloor \frac{n}{i} \rfloor$ 求前缀和,这时如果跑 \sqrt{n} 次会很慢,如果记忆化,那么时间复杂度不变,空间复杂度为 $O(\frac{n^{\frac{3}{4}}}{\log n})$

0

实际上 g(n,m) 也可以非递归的求出,且时间复杂度为 $O(\frac{n^{\frac{3}{4}}}{\log n})$

令

$$g'(n,m) = \sum_{m 1] + g(\lfloor \frac{n}{p^e} \rfloor, p))$$
 o

考虑从大到小枚举
$$i$$
 , 对 $d(n,i) = g'(n,p_i) - g'(n,p_{i+1}) = \sum_{e \geq 1, p_{i+1}^e \leq n} f(p_{i+1}^e)([e > 1] + g(\lfloor \frac{n}{p_{i+1}^e} \rfloor, p_{i+1}))$ 暴力计算即可。

见 tangjz's blog。