Gene ordering by spatial variability in human brain tissues using spatial transcriptomics

Candidate: Francesco Edoardo Vallone

Tutor: Prof. Andrea Sottosanti

scRNA-seq vs Bulk RNA-seq: Unveiling Tissue Pathophysiology

- scRNA-seq provides gene expression data at the single-cell level, unlike bulk RNA-seq which averages expression across cell populations.
- This allows the identification of cellular heterogeneity and distinct cell types.
- It has been crucial in understanding specific cellular roles in the pathophysiology of human tissues, revealing insights that bulk RNA-seq often misses.

Spatial Transcriptomics: beyond scRNA-seq

- Captures gene expression in the context of tissue structure and cell location.
- Reveals how **cell position** influences function and interactions, providing insights scRNA-seq cannot.

Standard workflow for spatially resolved transcriptomics

https://doi.org/10.1038/s41586-021-03634-9

Spatial transcriptomic in neuroscience

Importance of Spatial Transcriptomics in Neuroscience

- Enables study of gene expression while preserving spatial organization.
- Crucial for understanding complex brain circuits and cell interactions.
- Maps cell types/functions, revealing patterns linked to neurological diseases.

Aim of the project

https://doi.org/10.1101/2022.02.28.482392

Aim of the project

Compare **gene expression patterns** between two distinct layers of the human DLPFC

Workflow of the project

Methods

R packages used for the analyses

spatialLIBD;

- SingleCellExperiment;
- SpatialExperiment;
- nnSVG;

- ggplot2;
- rmarkdown

Data acquisition and spatial registration analysis

Gene ranking analysis

R version 4.4.1 (2024-06-14)

Platform: x86_64-redhat-linux-gnu

Running under: Fedora Linux 40 (Workstation Edition)

- (A) This study focuses on a portion of the DLPFC comprising six neuronal layers and white matter.
- **(B)** Data includes three subjects with two pairs of spatially adjacent replicates.
- **(C)** Each DLPFC dissection (histology) spans all six layers plus white matter.

151673 LIBD Layers

- Layer1
- Layer2
- Layer3
- Layer4
- Layer5
- Layer6
- WM
- NA

- Pre-processed DLPFC data were acquired from the spatialLIBD R package, loading the SingleCellExperiment object (sce).
- Data were subsequently converted into a SpatialExperiment object for seamless handling of both spatial coordinates and gene expression.
- Ensured proper integration of metadata (sample IDs, spatial coordinates, tissue images).
- Verified data consistency using update functions from SingleCellExperiment to maintain compatibility with the latest methods.

• Data Preparation:

 Log-transformed counts (calculated with scran) were already present in the spe object imported from the spatialLIBD package.

Spot Downsampling:

 A seed was set for reproducibility and 20,000 spots (from 47,681) were sampled from the dataset.

Gene Filtering:

 Genes with at least 3 counts and present in 70% of spots were retained (< 1000 final genes)

Duplicate Handling:

Removed duplicate spots to ensure unique coordinates for analysis.

Gene ranking

Identifying and Comparing Spatially Variable Genes (SVGs) in White Matter and Layer 2 of the brain tissue

Analytical steps:

- Identified significant SVGs in White Matter (adjusted p-value ≤ 0.05, top 15).
- Extracted same genes from Layer 2 for comparison.
- Ranked genes in both layers using the Plackett-Luce model.

ELOVL1 WM>rest p=1.11e-20

NCDN WM>rest p=1.68e-14

- Genes are ranked by their log coefficients, indicating how strongly they are expressed in the White Matter (WM) vs Layer 2, and enrichments were checked
- Among the genes, two exhibited opposite trends in their spatial expression:
 - a. **ELOVL1**: more prevalent in the **White Matter**.
 - b. NCDN: more prevalent in Layer 2.

cluster	layer_confidence	layer_label
Oligo	good	WM
Astro	good	L1
OPC	good	WM
Micro	good	WM
Mural	poor	L1*
Excit_B	good	L2/3
Excit_C	good	L3
Excit_A	good	L5
Excit_E	good	L6
Excit_F	good	L6/5
Inhib_A	poor	L2/3/4*
Inhib_C	poor	L2*
Excit_D	good	L4
Inhib_B	poor	L4*
Inhib_D	good	L4

-0.1

- Used spatialLIBD for aligning spatial transcriptomics data to DLPFC layers.
- Performed pseudobulk analysis to group cells by spatial location and aggregate gene expression.
- Mapped spatial data to pre-labeled cell types using known marker genes.

CONCLUSIONS AND DISCUSSION

- **ELOVL1** was highly expressed (ranked) in the white matter. Importantly, *ELOVL1* is known to be involved in myelination, which is essential for creating and maintaining the myelin sheath. (doi: 10.1002/emmm.201000061)
- NCDN was more abundant in Layer 2 of the brain, which was primarily occupied by excitatory neurons. NCDN was shown to play regulatory roles in cognitive functions and neuronal plasticity, highlighting its relevance in this layer. (doi: 10.1016/j.ajhg.2021.02.015)
- This approach enabled to rank genes across different brain layers, revealing insights into spatial gene
 expression patterns that traditional methods often miss.
- This methodology has **important implications** for both medical and basic research, helping to identify layer-specific gene dysregulation in neurological disorders and virtually other diseases.
- One **limitation** of this technique is its reduced ability to detect rare cell types or subtle differences in gene expression among similar cell populations.

Thank you for your kind attention

