LOG 111 Hand-in 1

Frank Tsai (gustsafe)

September 11, 2024

1 Prop 1.6

Proof. Let us proceed by induction.

- Case p or \bot : In this case, the formula is atomic. Its only proper initial segment is the empty string ε , which is not a formula.
- Case $\neg \varphi$: Let σ be a proper initial segment of $\neg \varphi$. The ε case is immediate. In the non- ε case, suppose that $\sigma \equiv \neg \xi$ and that it is a formula. Then it follows that ξ is a formula by inverting the inductive definition. Since ξ is a proper initial segment of φ , this contradicts the induction hypothesis.
- Case $(\varphi \star \psi)$: In this case, \star denotes any binary connective. The ε case is immediate. Suppose that σ is a proper initial segment of $(\varphi \star \psi)$ and that σ is a formula. Then by Prop 1.5, σ is balanced. This rules out $\sigma \equiv (\varphi$ and $\sigma \equiv (\varphi \star \psi)$ because φ and ψ are also balanced. Thus, there are only two cases to consider:
 - Case $\sigma \equiv (\sigma'$: In this case, σ' is a proper initial segment of φ . By inversion, $\sigma' \equiv \xi \star' \zeta$), where \star' is any binary connective. Note that ξ is a proper initial segment of φ . This contradicts the induction hypothesis.
 - Case $\sigma \equiv (\varphi \star \sigma')$: In this case, σ' is a proper initial segment of ψ . By inversion, $\sigma' \equiv \xi$. The rest of the argument mirrors the previous case. □

2 Prob 1.3

Let φ denote the given formula in each sub-problem.

1. $\varphi \equiv p_0[\varphi/p_0].$

2.

 $\varphi \equiv p_0[\varphi/p_0]$ $\varphi \equiv (\neg p_0 \land p_1)[p_0/p_1].$

3. $\varphi \equiv p_0[\varphi/p_0].$

4.

$$\varphi \equiv p_0[\varphi/p_0].$$

5.

$$\varphi \equiv p_0[\varphi/p_0] \varphi \equiv ((\neg p_0 \to p_1) \land p_2)[(p_0 \to p_1)/p_0, (p_0 \lor p_1)/p_1, \neg(p_0 \land p_1)/p_2].$$

3 Prob 1.6

4 Prob 1.13

DNF: $p_0 \land \neg p_1 \land p_2$

CNF:

$$(p_0 \lor p_1 \lor p_2) \land (p_0 \lor p_1 \lor \neg p_2) \land (p_0 \lor \neg p_1 \lor \neg p_2) \land (p_0 \lor \neg p_1 \lor p_2) \land (\neg p_0 \lor \neg p_1 \lor p_2) \land (\neg p_0 \lor \neg p_1 \lor p_2) \land (\neg p_0 \lor \neg p_1 \lor \neg p_2)$$

5

- 1. Let us define $\bigwedge \varnothing := \top$. This is sensible as for any valuation $v, v \models \varnothing$. For a given permutation $\sigma = \varphi_1, \ldots, \varphi_n$, let us write $\bigwedge \sigma$ for the formula $\varphi_1 \land \cdots \land \varphi_n$.
- 2. *Proof.* It suffices to show that for any valuation $v,v\models\varphi_i$ for all i iff $v\models\psi_j$ for all j. Let us proceed by induction on the length of Γ . When $\Gamma=\varnothing$, $T\approx T$ is trivial. When Γ has length n+1, let $\varphi_1,\ldots,\varphi_{n+1}$ and ψ_1,\ldots,ψ_{n+1} be two permutations of Γ and v be a valuation. Suppose that $\varphi_{n+1}\equiv\psi_j$. Then clearly $v\models\varphi_{n+1}$ iff $v\models\psi_j$. Excluding these formulas from their respective permutation yields two permutations of the same context of length n. The result now follows from the induction hypothesis. \square

6

A three-valued semantics can describe the local view of a process in a distributed system, where the valuations of some propositional variables cannot be locally determined because they rely on an external process.

φ	$\neg \varphi$	φ	ψ	$\varphi \lor \psi$	φ	ψ	$\varphi \wedge \psi$	φ	ψ	$\varphi \to \psi$
T	F	T	T	T	T	T	T	T	T	T
F	T	T	F	T	T	F	F	T	F	F
U	U	T	U	T	T	U	U	T	U	U
	'	F	T	T	F	T	F	F	T	Т
		F	F	F	F	F	F	F	F	T
		F	U	U	F	U	F	F	U	T
		U	T	T	U	T	U	U	T	T
		U	F	U	U	F	F	U	F	U
		U	U	U	U	U	U	U	U	U

The Law of Excluded Middle is not a tautology in this semantics because $U \vee \neg U = U$, but every tautology in this semantics is automatically a tautology in classical logic (by deleting rows with U).