## Pomiar indukcji magnetycznej solenoidu

#### Cel eksperymentu

- ✓ Sprawdzenie doświadczalne wzoru na zależność indukcji magnetycznej solenoidu B od prądu I i wyznaczenie przenikalności magnetycznej próżni μ₀
- ✓ Sprawdzenie doświadczalne wzoru na zależność indukcji magnetycznej solenoidu B od gęstości zwojów N/L i wyznaczenie przenikalności magnetycznej próżni μ₀

## 1. Wiadomości Teoretyczne

Cewki indukcyjne należą do podstawowych, biernych elementów elektronicznych. Ich zadaniem jest gromadzenie energii pola magnetycznego wytwarzanego podczas przepływu prądu *I* przez cewkę. Element ten wykonany jest z przewodnika nawiniętego na karkas. Wypełnienie karkasu materiałem ferroelektrycznym powoduje wzrost indukcji pola magnetycznego *B* wytwarzane przez cewkę. Cewka wykonana w postaci zwojnicy, w której karkas stanowi powietrze nazywana jest solenoidem.



Rys.1 Przykłady cewek indukcyjnych. źródło: https://pl.wikipedia.org/wiki/Cewka

Wielkość indukcji pola magnetycznego wytwarzanego przez cewkę dana jest wzorem:

$$B = \mu_r \mu_0 \cdot I \frac{N}{I} \tag{1}$$

gdzie  $\mu_r$  – względna przenikalność magnetyczna (dla powietrza  $\mu_r$ =1),  $\mu_0$  -przenikalność magnetyczna próżni, N – ilość zwojów cewki, L – długość solenoidu

W czasie eksperymentów będzie mierzona indukcja pola magnetycznego solenoidu. Do tego celu zastosowany zostanie detektor indukcji magnetycznej, umieszczony w osi solenoidu. Detektor zbudowany jest na bazie czujnika Halla, czułego na pole magnetyczne rozchodzące się równolegle do osi detektora.

#### 2. Opis Aparatury Pomiarowej

#### 2.1 Uwagi wstępne

Na stanowisku znajduje się solenoid o zmiennej długości, podłączony do zasilacza. W środku solenoidu umieszczony jest czujnik miernika indukcji magnetycznej. Czujnik podłączony jest do Teslomierza.



Rys.2 Układ eksperymentalny pomiaru indukcji magnetycznej solenoidu.

## 3. Przebieg Eksperymentu

#### 3.1 Pomiar indukcji magnetycznej jako funkcji prądu I, płynącego przez cewkę.

Tabela 1. Wyniki pomiarów i obliczeń dot. badań indukcji magnetycznej solenoidu (część 1)

| i  | I/A | L/m  | <i>B</i> /T | $\mu_0$ /TmA <sup>-1</sup> | $\mu_{0sr} = \frac{\sum_{i=1}^{M} \mu_{0i}}{M}$ /TA <sup>-1</sup> m | $\Delta \mu_0 = \sqrt{\frac{\sum_{i=1}^{M} (\mu_{0i} - \mu_{0isr})^2}{M - 1}}$ /TA-1m | $\Delta\mu_0/\mu_{0{ m sr}}$ |
|----|-----|------|-------------|----------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------|
| 1  | 2   | 0,16 |             |                            |                                                                     |                                                                                       |                              |
| 2  | 4   | 0,16 |             |                            |                                                                     |                                                                                       |                              |
|    |     |      |             |                            |                                                                     |                                                                                       |                              |
| 10 | 20  | 0,16 |             |                            |                                                                     |                                                                                       |                              |

#### 3.2 Pomiar indukcji magnetycznej solenoidu w funkcji długości L.

Tabela 2. Wyniki pomiarów i obliczeń dot. badań indukcji magnetycznej solenoidu (część 2)

| i   | I/A | L/m  | <i>B</i> /T | $\mu_0$ /TmA <sup>-1</sup> | $\mu_{0sr} = \frac{\sum_{i=1}^{M} \mu_{0i}}{M}$ /TmA <sup>-1</sup> | $\Delta \mu_0 = \sqrt{\frac{\sum_{i=1}^{M} (\mu_{0i} - \mu_{0isr})^2}{M - 1}} / \text{TmA}^{-1}$ | $\Delta\mu_0/\mu_{0sr}$ |
|-----|-----|------|-------------|----------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------|
| 1   | 20  | 0,12 |             |                            |                                                                    |                                                                                                  |                         |
| 2   | 20  | 0,13 |             |                            |                                                                    |                                                                                                  |                         |
| ••• | ••• | •••  |             |                            |                                                                    |                                                                                                  |                         |
| 10  | 20  | 0,21 |             |                            |                                                                    |                                                                                                  |                         |

## 4. Opracowanie wyników pomiarów.

- 1. Wykonaj wykres, w postaci punktów, zależności  $\mathbf{B} = \mathbf{f}(\mathbf{I})$ .
- Wyznacz doświadczalną wartość przenikalności magnetycznej próżni μ<sub>0</sub> dla każdego pomiaru korzystając ze wzoru (1)
- 3. Wyznacz średnią wartość przenikalności magnetycznej próżni μ<sub>0śr</sub> (wg wzoru podanego w tabeli).
- 4. Wyznacz niepewność pomiaru przenikalności magnetycznej próżni  $\Delta\mu_0$  (wg wzoru podanego w tabeli, M –ilość pomiarów) oraz niepewność względną  $\Delta\mu_0/\mu_{0\text{sr}}$
- 5. Porównaj uzyskaną wartość przenikalności magnetycznej próżni z wartością katalogową
- 6. Przeanalizuj otrzymane wyniki badań i sformułuj odpowiednie wnioski.
- 7. Wykonaj wykres, w postaci punktów, zależności  $\mathbf{B} = \mathbf{f}(N/L)$ .
- Wyznacz doświadczalną wartość przenikalności magnetycznej próżni μ<sub>0</sub> dla każdego pomiaru korzystając ze wzoru (1)
- 9. Wyznacz średnią wartość przenikalności magnetycznej próżni  $\mu_{0\text{śr}}$  (wg wzoru podanego w tabeli).
- 10. Wyznacz niepewność pomiaru przenikalności magnetycznej próżni  $\Delta\mu_0$  (wg wzoru podanego w tabeli, M –ilość pomiarów) oraz niepewność względną  $\Delta\mu_0/\mu_{0\acute{e}r}$
- 11. Porównaj uzyskaną wartość przenikalności magnetycznej próżni z wartością katalogową
- 12. Przeanalizuj otrzymane wyniki badań i sformułuj odpowiednie wnioski.

|             | Laboratorium z fizyki                         |                 |        |  |  |  |
|-------------|-----------------------------------------------|-----------------|--------|--|--|--|
| Rok akadem: | Temat: Pomiar indukcji magnetycznej solenoidu |                 |        |  |  |  |
| Kierunek:   | Imię i Nazwisko:                              |                 |        |  |  |  |
| Grupa:      |                                               |                 |        |  |  |  |
|             | Ocena                                         | Data Zaliczenia | Podpis |  |  |  |
| L           |                                               |                 |        |  |  |  |
| S           |                                               |                 |        |  |  |  |
| K           |                                               |                 |        |  |  |  |

Tabela 1. Wyniki pomiarów i obliczeń dot. badań indukcji magnetycznej solenoidu (część 1)

|    |     |      |             |                             |                                                                     | maukeji magnetycznej sofenolau (czę                                                             |                         |
|----|-----|------|-------------|-----------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------|
| i  | I/A | L /m | <i>B</i> /T | $\mu_0$ /TA <sup>-1</sup> m | $\mu_{0sr} = \frac{\sum_{i=1}^{M} \mu_{0i}}{M}$ /TA <sup>-1</sup> m | $\Delta \mu_0 = \sqrt{\frac{\sum_{i=1}^{M} (\mu_{0i} - \mu_{0isr})^2}{M - 1}} / \text{TA}^{-1}$ | $\Delta\mu_0/\mu_{0sr}$ |
| 1  | 2   | 0,16 |             |                             |                                                                     |                                                                                                 |                         |
| 2  | 4   | 0,16 |             |                             |                                                                     |                                                                                                 |                         |
| 3  | 6   | 0,16 |             |                             |                                                                     |                                                                                                 |                         |
| 4  | 8   | 0,16 |             |                             |                                                                     |                                                                                                 |                         |
| 5  | 10  | 0,16 |             |                             |                                                                     |                                                                                                 |                         |
| 6  | 12  | 0,16 |             |                             |                                                                     |                                                                                                 |                         |
| 7  | 14  | 0,16 |             |                             |                                                                     |                                                                                                 |                         |
| 8  | 16  | 0,16 |             |                             |                                                                     |                                                                                                 |                         |
| 9  | 18  | 0,16 |             |                             |                                                                     |                                                                                                 |                         |
| 10 | 20  | 0,16 |             |                             |                                                                     |                                                                                                 |                         |

# Ćwiczenie 4. Pomiar indukcji magnetycznej solenoidu

Tabela 2. Wyniki pomiarów i obliczeń dot. badań indukcji magnetycznej solenoidu (część 2)

| i  | I/A | L/m  | <i>B</i> /T | $\mu_0$ /TmA <sup>-1</sup> | $\mu_{0sr} = \frac{\sum_{i=1}^{M} \mu_{0i}}{M}$ /TmA <sup>-1</sup> | $\Delta \mu_0 = \sqrt{\frac{\sum_{i=1}^{M} (\mu_{0i} - \mu_{0isr})^2}{M - 1}} / \text{TmA}^{-1}$ | $\Delta\mu_0/\mu_{0sr}$ |
|----|-----|------|-------------|----------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------|
| 1  | 20  | 0,12 |             |                            |                                                                    |                                                                                                  |                         |
| 2  | 20  | 0,13 |             |                            |                                                                    |                                                                                                  |                         |
| 3  | 20  | 0,14 |             |                            |                                                                    |                                                                                                  |                         |
| 4  | 20  | 0,15 |             |                            |                                                                    |                                                                                                  |                         |
| 5  | 20  | 0,16 |             |                            |                                                                    |                                                                                                  |                         |
| 6  | 20  | 0,17 |             |                            |                                                                    |                                                                                                  |                         |
| 7  | 20  | 0,18 |             |                            |                                                                    |                                                                                                  |                         |
| 8  | 20  | 0,19 |             |                            |                                                                    |                                                                                                  |                         |
| 9  | 20  | 0,20 |             |                            |                                                                    |                                                                                                  |                         |
| 10 | 20  | 0,21 |             |                            |                                                                    |                                                                                                  |                         |