Regresi Linear

Made Satria Wibawa, M.Eng. 2020

PENDAHULUAN

Regresi

Proses untuk memperkirakan hubungan antara variabel tergantung (dependent variable) dengan variabel bebas (independent variable)

jika nilai \boldsymbol{x} diketahui berapakah nilai \boldsymbol{y} ?

Asumsi Linearitas

- Variabel tergantung (y) harus memiliki hubungan linear terhadap variabel bebas (x). (gunakan scatter plot)
- ullet Untuk setiap nilai $oldsymbol{x}$
 - Nilai y bersifat independen, ditunjukkan dengan pola acak pada plot residual*
 - ullet Nilai $oldsymbol{y}$ memiliki distribusi normal. Skewness dapat ditoleransi jika ukuran data besar

*anda dapat menggunakan seaborn untuk membuat residual plot (sns.residplot)

Residual Plot

import seaborn as sns
sns.residplot(x,y)

ORDINARY LEAST SQUARE (PERSAMAAN KUADRAT TERKECIL)

Persamaan

$$y = a + bx$$

$$b = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$

$$a = \frac{\sum y - b(\sum x)}{n}$$

Evaluasi

1. mean squared error n

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

2. root mean squared error $RMSE = \sqrt{MSE}$

3. koefisien determinasi

$$R^{2} = 1 - \frac{\sum (y - \hat{y})^{2}}{\sum (y - \bar{y})^{2}}$$

Koefisien Determinasi

- ullet Merupakan korelasi antara nilai y (nilai asli) dengan nilai \hat{y} (hasil prediksi)
- Mempunyai rentang nilai 0-1
- 0 berarti variabel tergantung tidak dapat diprediksikan dari variabel bebas
- 1 berarti variabel bebas dapat memprediksikan variabel tergantung tanpa error
- Nilai di antar 0-1 berarti sejauh mana variabel tergantung dapat diprediksikan. Misalnya nilai 0.1 berarti 10 persen dari hasil dapat diprediksi, dst

CONTOH PERHITUNGAN

Contoh

x	y
20	64
16	61
34	84
23	70
27	88
32	92
18	72
22	77

	y	χ	xy	x^2	y^2
	64	20	1280	400	4096
	61	16	976	256	3721
	84	34	2856	1156	7056
	70	23	1610	529	4900
	88	27	2376	729	7744
	92	32	2944	1024	8464
	72	18	1296	324	5184
	77	22	1694	484	5929
\sum	608	192	15032	4902	47094

Perhitungan

$$b = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2} = \frac{8(15032) - (192)(608)}{8(4902) - (192)^2} = 1.497$$

$$a = \frac{\sum y - b(\sum x)}{n} = \frac{(608) - 1.497(192)}{8} = 40.082$$

$$y = 40.082 + 1.497x$$

Perhitungan-Evaluasi

y	$\widehat{oldsymbol{y}}$	$(y-\widehat{y})^2$	
64	70.01	36.16	
61	64.03	9.16	
84	90.97	48.52	
70	74.50	20.28	
88	80.49	56.04	
92	87.97	16.22	
72	67.02	24.79	
77	73.01	15.95	
\sum		227.49	

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{8} (227.49) = 28.43$$

$$RMSE = \sqrt{MSE} = \sqrt{28.43} = 5.33$$

$$R^{2} = 1 - \frac{\sum (y - \hat{y})^{2}}{\sum (y - \bar{y})^{2}} = 1 - \frac{227.49}{886} = 0.74$$

IMPLEMENTASI PYTHON

Implementasi Python

Google Custom Search

scikit-learn v0.21.3 Other versions

Please cite us if you use the software.

1.1. Generalized Linear Models

1.1.1. Ordinary Least Squares

. 1.1.1.1. Ordinary Least Squares Complexity

1.1.2. Ridge Regression

- . 1.1.2.1. Ridge Complexity
- 1.1.2.2. Setting the regularization parameter: generalized Cross-

1.1.3. Lasso

- . 1.1.3.1. Setting regularization
- 1.1.3.1.1. Using cross-validation
- 1.1.3.1.2. Information-criteria based
- . 1.1.3.1.3. Comparison with the regularization parameter of SVM
- 1.1.4. Multi-task Lasso
- 1.1.5. Elastic-Net
- 1.1.6. Multi-task Elastic-Net
- 1.1.7. Least Angle Regression
- 1.1.8. LARS Lasso
- 1.1.8.1. Mathematical formulation
- 1.1.9. Orthogonal Matching Pursuit
- 1.1.10. Bayesian Regression
- 1.1.10.1. Bayesian Ridge
- 1.1.10.2. Automatic Relevance Determination - ARD
- 1.1.11. Logistic regression
- 1.1.12. Stochastic Gradient

Descent - SGD

- 1.1.13. Perceptron
- 1.1.14. Passive Aggressive Algorithms
- 1.1.15. Robustness regression:

1.1. Generalized Linear Models

The following are a set of methods intended for regression in which the target value is expected to be a linear combination of the features. In mathematical notation, if \hat{y} is the predicted value.

$$\hat{y}(w,x) = w_0 + w_1 x_1 + \dots + w_p x_p$$

Across the module, we designate the vector $w=(w_1,\ldots,w_p)$ as coef_ and w_0 as intercept_

To perform classification with generalized linear models, see Logistic regression.

1.1.1. Ordinary Least Squares

LinearRegression fits a linear model with coefficients $w=(w_1,\ldots,w_p)$ to minimize the residual sum of squares between the observed targets in the dataset, and the targets predicted by the linear approximation. Mathematically it solves a problem of the form:

$$\min_{y} ||Xw - y||_2^2$$

LinearRegression will take in its fit method arrays X, y and will store the coefficients w of the linear model in its coef_

https://scikit-learn.org/stable/modules/linear_model.html

Made Satria Wibawa Always The First stikom-bali.ac.id

pertanyaan/troubleshooting silahkan buat di channel Diskusi Teams