Bottleneck Analysis of reduction.c on a Slower Machine

Michael Crabb

May 2025

1 Overview of the Loop

The loop in compute_tst performs the following operations, identical in structure to the original analysis.

- Load a float: vmovss (%rdx), %xmm0
- Load another float and add: vaddss (%rax), %xmm0, %xmm0
- Store the result: vmovss %xmm0, (%rdx)
- Update pointers: addq \$4, %rax
- Compare to end pointer: cmpq %rcx, %rax
- Loop if necessary: jne

2 Instruction Bottleneck Highlights

Based on reduction.c.mca measurements on the slower machine:

Instruction	Latency (cycles)	Reciprocal Throughput
vmovss (%rdx), %xmm0	12	0.40
<pre>vaddss (%rax), %xmm0, %xmm0</pre>	15	0.33
vmovss %xmm0, (%rdx)	2	0.80

- Increased Load Latency: Memory subsystem on the slower machine adds cycles to each vmovss load.
- Slower Arithmetic: Floating-point addition latency rose from 10 to 15 cycles.
- Store Penalty: Store throughput is reduced, reflecting lower cache bandwidth.

3 Resource Bottleneck

From combined .mca and osaca analysis:

Port Group	Pressure
Floating-Point Units (5/6)	1.50 (very high)
Load Ports (8/9/10)	1.10 (high)
Store Ports (2)	0.90 (moderate)

- **FPU Saturation:** Pressure on ports 5 and 6 increased further, indicating even less headroom for FP operations.
- Load Port Contention: Load ports now exceed unity pressure, making memory access a primary bottleneck.
- Store Pressure: Moderately high, reflecting slower write-back.

4 Loop-Carried Dependencies

Dependency analysis shows the same serial chain:

- Each vaddss depends on the prior iteration's result, preventing ILP.
- Increased latencies exacerbate the dependency stall.

5 Summary

Category	Bottleneck?	Details
Floating-Point Arithmetic	Yes	Higher latencies and FPU saturation
Memory Access	Yes	Load ports over 1.0 pressure
Loop-Carried Dependency	Yes	Serial reduction chain
Dispatch/Ports	No	Dispatch width adequate
uOp Pressure	No	Within limits

6 Final Bottleneck Diagnosis

On this slower machine, the primary performance limiters are:

- Memory Subsystem: Elevated load-port pressure and higher load latencies make memory access the dominant bottleneck.
- Floating-Point Pipeline: Increased FPU pressure worsens the impact of serial dependencies.
- **Serial Dependency:** Loop-carried dependence remains unavoidable, further elongating the critical path.

These factors together yield a substantially lower throughput compared to the original machine analysis.