ИДЗ №1

Вершинин Данил Алексеевич

19 марта 2024 г.

1 Найти все значения корня: $\sqrt[3]{8i}$

Решение:

$$w = 8i$$

Найду модуль и аргумент:

$$\rho = |8i| = \sqrt{64} = 8$$

$$\phi = \arctan\left(\frac{8}{0}\right) = \arctan\left(+\infty\right) = \frac{\pi}{2}$$

$$2 = 8\left(\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)\right)$$

$$z_k = 2\left(\cos\left(\frac{\pi}{2 \cdot 3} + \frac{2\pi k}{3}\right) + i\sin\left(\frac{\pi}{2 \cdot 3} + \frac{2\pi k}{3}\right)\right) = 2\left(\cos\left(\frac{\pi}{6} + \frac{2\pi k}{3}\right) + i\sin\left(\frac{\pi}{6} + \frac{2\pi k}{3}\right)\right)$$

$$z_0 = 2\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right) = \sqrt{3} + i$$

$$z_1 = 2\left(\cos\left(\frac{\pi}{6} + \frac{2\pi}{3}\right) + i\sin\left(\frac{\pi}{6} + \frac{2\pi}{3}\right)\right) = 2\left(\cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)\right) = -\sqrt{3} + i$$

$$z_2 = 2\left(\cos\left(\frac{\pi}{6} + \frac{4\pi}{3}\right) + i\sin\left(\frac{\pi}{6} + \frac{4\pi}{3}\right)\right) = 2\left(\cos\left(\frac{3\pi}{2}\right) + i\sin\left(\frac{3\pi}{2}\right)\right) = 2i$$

Ответ:

$$z_0 = \sqrt{3} + i$$

$$z_1 = -\sqrt{3} = i$$

$$z_3 = 2i$$

2 Представить в алгебраической форме: $\mathrm{sh}(2-\pi i)$

Решение:

$$sh(2-\pi) = sh(2) ch(\pi i) - ch(2) sh(\pi i) = -sh(2)$$
$$ch(\pi i) = cos(\pi) = -1$$
$$sh(i\pi) = i sin(\pi) = 0$$

Ответ:

$$-\operatorname{sh}(2)$$

3 Представить в алгебраической форме: $\operatorname{arcth}(1+\sqrt{3}i)$

Решение:

$$\operatorname{arcth}(1+\sqrt{3}i)$$

$$\operatorname{arcth}(z) = w \Rightarrow \operatorname{cth}(w) = z$$

$$\frac{e^w + e^{-w}}{e^w - e^{-w}} = z$$

$$\frac{e^w + 1/e^w}{e^w - 1/e^w} = \frac{e^{2w} + 1}{e^{2w} - 1} = z \Rightarrow e^{2w} + 1 = z \left(e^{2w} - 1\right)$$

$$e^{2w}(1-z) + z + 1 = 0$$

$$e^{2w}(1-z) + (z+1) = 0 \Rightarrow e^{2w} = \frac{z+1}{z-1}$$

$$2w = \operatorname{Ln}\left(\frac{z+1}{z-1}\right) = \operatorname{ln}\left|\frac{z+1}{z-1}\right| + i\operatorname{Arg}\left(\frac{z+1}{z-1}\right)$$

$$w = \frac{1}{2}\left(\operatorname{ln}\left|\frac{z+1}{z-1}\right| + i\left(\operatorname{arg}\left(\frac{z+1}{z-1}\right) + 2\pi n\right)\right), \ n \in \mathbb{Z}$$

$$\frac{z+1}{z-1} = \frac{2+\sqrt{3}i}{\sqrt{3}i} \cdot \frac{-\sqrt{3}i}{-\sqrt{3}i} = \frac{3-2\sqrt{3}i}{3} = 1 - \frac{2\sqrt{3}i}{3}$$

$$\left|\frac{z+1}{z-1}\right| = \left|1 - \frac{2\sqrt{3}i}{3}\right| = \sqrt{1+\frac{4}{3}} = \sqrt{\frac{7}{3}}$$

$$\operatorname{arg}\left(1 - \frac{2\sqrt{3}i}{3}\right) = \operatorname{arctg}\left(-\frac{2}{\sqrt{3}}\right) = -\operatorname{arctg}\left(\frac{2}{\sqrt{3}}\right)$$

$$w = \frac{1}{2}\left(\operatorname{ln}\sqrt{\frac{7}{3}} + i\left(-\operatorname{arctg}\left(\frac{2}{\sqrt{3}}\right) + 2\pi n\right)\right), \ n \in \mathbb{Z}$$

Ответ:

$$\frac{1}{2}\left(\ln\sqrt{\frac{7}{3}} + i\left(-\arctan\left(\frac{2}{\sqrt{3}}\right) + 2\pi n\right)\right), \ n \in \mathbb{Z}$$

4 Представить в алгебраической форме: $(-3i)^i$

Решение:

$$(-3i)^{i} = e^{i\operatorname{Ln}(-3i)}$$

$$\operatorname{Ln}(-3i) = \ln|-3i| + i\operatorname{Arg}(-3i) = \ln(3) + i\left(\frac{\pi}{2} + 2\pi k\right), k \in \mathbb{Z}$$

$$e^{i\operatorname{Ln}(-3i)} = e^{-\left(\frac{\pi}{2} + 2\pi k\right) + i\ln(3)} = e^{-\left(\frac{\pi}{2} + 2\pi k\right)}\left(\cos\left(\ln(3)\right) + i\sin\left(\ln(3)\right)\right), k \in \mathbb{Z}$$

Ответ:

$$e^{-\left(\frac{\pi}{2}+2\pi k\right)}\left(\cos\left(\ln(3)\right)+i\sin\left(\ln(3)\right)\right), k\in\mathbb{Z}$$

5 Представить в алгебраической форме: $\text{Ln}(2 + 2\sqrt{3}i)$

Решение:

$$\operatorname{Ln}(2 + 2\sqrt{3}i) = \ln|2 + 2\sqrt{3}i| + i\operatorname{Arg}(2 + 2\sqrt{3}i) = \ln 4 + i\left(\frac{\pi}{3} + 2\pi k\right), k \in \mathbb{Z}$$

Ответ:

$$\ln 4 + i\left(\frac{\pi}{3} + 2\pi k\right), k \in \mathbb{Z}$$

6 Вычертить область, заданную неравествами:

$$D = \{z : |z - 1 + i| \ge 1, Re(z) < 1, Im(z) \le 1\}$$

Ответ:

7 Определить вид пути и в случае, когда он проходит через точку ∞ , исследовать его поведение в этой точке: $z=\frac{4}{{\rm ch}(4t)}+i2\,{\rm th}(4t)$

Решение:

Ответ:

8 Восстановить голоморфную в окрестности точки z_0 функцию f(z) по известной действительной части u(x,y) или мнимой v(x,y) и начальному значению $f(z_0)$: $u=x^2-y^2+x,\ f(0)=0$

Решение:

$$u = x^{2} - y^{2} + x$$
$$\frac{\delta u}{\delta x} = 2x + 1$$
$$\frac{\delta u}{\delta y} = -2y$$

$$\begin{cases} \frac{\delta^2 u}{\delta x^2} = 2\\ \frac{\delta^2}{\delta y^2} = -2 \end{cases} \Rightarrow 2-2 = 0$$
- следовательно, условие Лапласа выполнено

$$\begin{cases} \frac{\delta u}{\delta x} = \frac{\delta v}{\delta y} \\ \frac{\delta u}{\delta y} = -\frac{\delta v}{\delta x} \end{cases} \Rightarrow \begin{cases} \frac{\delta v}{\delta y} = 2x + 1 \\ \frac{\delta v}{\delta x} = 2y \end{cases}$$

$$v = 2yx + \phi(y) \Rightarrow \frac{\delta v}{\delta y} = 2x + \phi'(y) \Rightarrow \phi'(y) = 1 \Rightarrow \phi(y) = y + C$$

$$f(x,y) = u(x,y) + iv(x,y) = x^2 - y^2 + x + i(2xy + y + C) = x + iy + x^2 - y^2 + 2ixy + iC = ()*)$$

$$z = x + iy \Rightarrow z^2 = x^2 - y^2 + 2ixy$$

$$(*) = z + z^2 + iC$$

$$f(0) = 0 \Rightarrow C = 0$$

$$f(z) = z^2 + z$$

Ответ:

9 Вычислить интеграл от функции комплексной переменной по данному пути: $\int_{AB}zImz^2dz;\ AB$ – отрезок прямой $z_A=0,\ z_B=1+i$

Решение:

Ответ:

Найти радиус сходимости степенного ряда: $\sum_{n=1}^{\infty} (\cos^2(n)) \cdot z^n$ 10 Решение: Ответ: Найти все лорановское разложение данной функции в 0 и в ∞ : $f(z) = \frac{5z + 100}{50z - 5z^2 - 2z^3}$ Решение: Ответ: Найти все лорановское разложение данной функции по степе**ням** $z-z_0$: $f(z)=\frac{z+3}{z^2-1}, \ z_0=-2-2i$ Решение: Ответ: Данную функцию разложить в ряд Лорана в окрестности точки z_0 : $f(z) = ze^{\frac{z}{z-5}}, z_0 = 5$ Решение: Ответ: Определить тип особой точки z=0 для данной функции: f(z)=Решение: Ответ: Для данной функции найти все изолированные особые точки и определить их тип: $f(z) = \operatorname{ctg}(\pi z)$ Решение: Ответ: