गणितीय निदर्शन (Mathematical Modelling)

A.2.1 भूमिका (Introduction)

कक्षा XI में हम गणितीय निदर्शन को वास्तिवक जीवन की समस्याओं के कुछ अंश का गणितीय भाषा में अध्ययन के एक प्रयास के रूप में जान चुके हैं, अर्थात्, उपयुक्त प्रतिबंधों का प्रयोग करके किसी भौतिक स्थिति का गणितीय रूपांतरण ही गणितीय निदर्शन है। मोटे तौर पर गणितीय निदर्शन एक प्रक्रिया है, जिसमें हम अपनी रुचि के साधनों या वस्तुओं के व्यवहार का वर्णन करने हेतु निदर्शों (Models) की रचना, विविध प्रकार से शब्दों, आरेखों या रेखाचित्रों, कंप्यूटर प्रोग्रामों, गणितीय सूत्रों आदि के प्रयोग द्वारा करते हैं।

पिछली कक्षाओं में हमने देखा है कि, विविध गणितीय संकल्पनाओं के प्रयोग से संबंधित अधिकांश प्रश्नों के हल के लिए एक प्रकार से गणितीय निदर्शन की आवश्यकता पड़ती है। अत: यह महत्वपूर्ण है कि गणितीय निदर्शन का अध्ययन एक पृथक् विषय के रूप में किया जाना चाहिए।

इस अध्याय (परिशिष्ट) में हम पुन: गणितीय निदर्शन का अध्ययन वास्तविक जीवन की कुछ ऐसी समस्याओं के लिए करेंगे, जिनमें आव्यूह, कलन तथा रैखिक प्रोग्रामन की प्राविधिओं का प्रयोग किया जाता है।

A.2.2 गणितीय निदर्शन क्यों? (Why Mathematical Modelling?)

विद्यार्थियों को अंकगणित, बीजगणित, त्रिकोणिमित तथा रैखिक प्रोग्रामन आदि के शाब्दिक प्रश्नों को हल करने का ज्ञान है। कभी-कभी हम पिरिस्थितिजन्य प्रश्नों को भौतिक रूप से उनकी गहराई में गए बिना ही सरल करते हैं। पिरिस्थितिजन्य प्रश्नों को हल करने के लिए भौतिक रूप से उनकी गहराई में जाने की आवश्यकता पड़ती है, अर्थात् भौतिक नियमों तथा कुछ प्रतीकों के प्रयोग की आवश्यकता जिससे प्राप्त गणितीय पिरणामों का संगत प्रायोगिक मानों से तुलना की जा सके। अनेक प्रस्तुत प्रश्नों को सरल करने के लिए हमें एक कौशल की आवश्यकता पड़ती है जिसे गणितीय निदर्शन कहते हैं। आइए हम निम्नलिखित समस्याओं पर विचार करें:

- (i) किसी नदी की चौडाई ज्ञात करना (विशेष रूप से जब नदी को पार करना कठिन हो)।
- (ii) किसी गोले के फेंकने हेतु महत्तम कोण ज्ञात करना (गोला फेंकने वाले की ऊँचाई, माध्यम का प्रतिरोध, गुरूत्वाकर्षण g आदि प्राचलों पर विचार करते हुए)।

- (iii) किसी मीनार की ऊँचाई ज्ञात करना (विशेषरूप से जब मीनार का शीर्ष अगम्य हो)।
- (iv) सूर्य की सतह का तापमान ज्ञात करना।
- (v) ज्ञात करना कि हृदय रोगियों को लिफ्ट के प्रयोग का निषेध क्यों है (बिना मानव शरीर क्रिया विज्ञान जाने)।
- (vi) पृथ्वी का द्रव्यमान ज्ञात करना।
- (vii) खड़ी फसल से भारत में दालों की पैदावार का अनुमान लगाना (जब किसी को फसल के काटने की अनुमति नहीं है)।
- (viii) किसी व्यक्ति के शरीर में रक्त का आयतन ज्ञात करना (व्यक्ति का रक्त निकालने की अनुमित नहीं है)।
- (ix) सन् 2009 ई. में भारत की जनसंख्या का अनुमान लगाना (जब कि सन् 2009 ई. तक प्रतीक्षा करने की अनुमति नहीं है)।

उपर्युक्त सभी समस्याओं को गणितीय निदर्शन के प्रयोग द्वारा सरल किया जा सकता है और वास्तव में सरल किया जा चुका है। वस्तुत: इनमें से कुछ समस्याओं को सरल करने की विधियों का अध्ययन आप इसी पाठ्यपुस्तक में करेंगे। तथापि यह शिक्षाप्रद होगा यदि आप इनको स्वयं सरल करने का प्रयास करें वह भी बिना गणित के प्रयोग किए। तब आप गणित की क्षमता तथा गणितीय निदर्शन की आवश्यकता के महत्त्व को समझ सकेंगे।

A.2.3 गणितीय निदर्शन के सिद्धांत (Principles of Mathematical Modelling)

गणितीय निदर्शन एक सिद्धांतयुक्त क्रिया है अतः इससे संबंधित कुछ सिद्धांत हैं। इन सिद्धांतों का स्वरूप लगभग दार्शनिक हैं। गणितीय निदर्शन के कुछ मूल सिद्धांतों को अनुदेशात्मक रूप में नीचे सूचीबद्ध किया गया है:

- (i) निदर्श की आवश्यकता को पहचानिए (हम मॉडल क्यों खोज रहे हैं)।
- (ii) मॉडल के लिए प्राचलों/चरों को सूचीबद्ध कीजिए (हम क्या ज्ञात करना चाहते हैं)।
- (iii) उपलब्ध प्रासंगिक आँकड़ों को पहचानिए (क्या दिया हुआ है)।
- (iv) प्रयोग योग्य परिस्थितियों को पहचानिए (पूर्वधारणा, कल्पना)।
- (v) नियंत्रक भौतिक नियमों को पहचानिए।
- (vi) पहचानिए:
 - (a) प्रयुक्त होने वाले समीकरण।
 - (b) की जाने वाली गणना।
 - (c) परिणामस्वरूप प्राप्त होने वाला हल।

- (vii) उन परीक्षणों को पहचानिए जिनसे निम्नलिखित जाँच की जा सके:
 - (a) मॉडल तथा उससे संबंधित नियमों एवं कल्पनाओं का संगत होना।
 - (b) मॉडल की उपयोगिता।
- (viii) उन प्राचलों को पहचानिए जो मॉडल को सुधार सकें।

निदर्शन के उपर्युक्त सिद्धांतों के आधार पर हमें गणितीय निदर्शन के निम्नलिखित चरण प्राप्त होते हैं:

चरण 1: भौतिक स्थिति को पहचानिए।

चरण 2: प्राचलों / चरों के चयन और ज्ञात भौतिक नियमों तथा प्रतीकों के प्रयोग द्वारा भौतिक स्थिति को गणितीय मॉडल में परिवर्तित कीजिए।

चरण 3: गणितीय प्रश्नों के हल ज्ञात कीजिए।

चरण 4: प्राप्त परिणाम की मूल प्रश्न (समस्या) के संदर्भ में व्याख्या कीजिए और उसकी (परिणाम) प्रेक्षणों अथवा प्रयोगों से तुलना कीजिए।

चरण 5: यदि परिणाम लगभग मेल खाते हैं, तो मॉडल को स्वीकार कीजिए अन्यथा भौतिक स्थिति की परिकल्पना / कल्पना को संशोधित कीजिए और चरण 2 पर जाइए।

उपर्युक्त चरणों को नीचे दर्शाए आरेख में देखा जा सकता है:

उदाहरण 1 गणितीय निर्दशन के प्रयोग द्वारा एक दी गई मीनार की ऊँचाई ज्ञात कीजिए।

हल चरण 1 "एक दी गई मीनार की ऊँचाई ज्ञात करना" प्रदत्त भौतिक स्थिति है।

चरण 2 मान लीजिए कि AB दी गई मीनार है (आकृति A.2.2)। मान लीजिए PQ मीनार की ऊँचाई नापने वाला एक प्रेक्षक है, जिसकी आँख बिंदु P पर है। मान लीजिए कि PQ = h तथा मीनार की ऊँचाई H है। पुन: मान लीजिए कि प्रेक्षक की आँख से मीनार के शिखर (शीर्ष) का उन्नयन-कोण α है तथा $l=\mathrm{OB}=\mathrm{PC}$

या

$$\tan \alpha = \frac{AC}{PC} = \frac{H - h}{l}$$

$$H = h + l \tan \alpha \qquad ... (1)$$

चरण 3 ध्यान दीजिए कि प्राचल h, l तथा α के मान प्रेक्षक को ज्ञात हैं अत: परिणाम (1) से समस्या का हल प्राप्त होता है।

चरण 4 उस दशा में जब मीनार का आधार अगम्य हो, अर्थात् जब प्रेक्षक को l का मान ज्ञात नहीं हो, तब मान लीजिए कि मीनार के आधार B का बिंदु P से अवनमन-कोण β है। अत: ΔPQB से हमें

प्राप्त होता है कि

$$\tan \beta = \frac{PQ}{QB} = \frac{h}{l} \text{ an } l = h \cot \beta$$

चरण 5 इस स्थिति में इस चरण की आवश्यकता नहीं है क्योंकि h, l, α तथा β प्राचलों के सही मान ज्ञात हैं।

उदाहरण 2 मान लीजिए कि एक व्यावसायिक फर्म तीन प्रकार के उत्पाद P_1, P_2 और P_3 का उत्पादन करती है, जिनमें तीन प्रकार के कच्चे माल R_1, R_2 तथा R_3 का प्रयोग होता है। मान लीजिए कि फर्म से दो ग्राहक F_1 और F_2 खरीद की माँग करते हैं। यह मानते हुए कि फर्म के पास R_1, R_2 तथा R_3 की सीमित मात्रा है, एक मॉडल बनाइए, जो माँग को पूरा करने के लिए कच्चे माल R_1, R_2 और R_3 की मात्राओं को सुनिश्चित करे।

हल चरण 1 इस समस्या में भौतिक स्थिति की पहचान भलीभाँति है।

चरण 2 मान लीजिए कि A एक आव्यूह है, जो ग्राहकों F_1 तथा F_2 की आवश्यकता को निरूपित करता है। तब A का रूप ऐसा होगा,

$$A = \begin{bmatrix} P_1 & P_2 & P_3 \\ F_1 & \bullet & \bullet \\ F_2 & \bullet & \bullet \end{bmatrix}$$

मान लीजिए कि B एक आव्यूह है, जो उत्पाद P_1 , P_2 तथा P_3 की प्रत्येक इकाई के उत्पादन हेतु कच्चे माल R_1 , R_2 तथा R_3 , की आवश्यक मात्राओं को निरूपित करता है। तब B नीचे दिए गए प्रकार का होगा.

$$\begin{array}{c|c}
R_1 R_2 R_3 \\
P_1 & \bullet & \bullet \\
B = P_2 & \bullet & \bullet \\
P_3 & \bullet & \bullet
\end{array}$$

चरण 3 ध्यान दीजिए कि A तथा B आव्यूहों का गुणनफल (जो इस स्थिति में सुपरिभाषित है) निम्नलिखित आव्यूह द्वारा प्राप्त होता है।

$$AB = \begin{bmatrix} R_1 R_2 R_3 \\ F_1 \\ \vdots \\ F_2 \end{bmatrix}$$

जिससे वास्तव में ग्राहकों F_1 तथा F_2 के फरमाइशों को पूरा करने हेतु कच्चे माल R_1 , R_2 तथा R_3 की वांछित मात्राएँ ज्ञात होती हैं।

उदाहरण 3 उदाहरण 2 के मॉडल की व्याख्या कीजिए, जब कि

$$A = \begin{bmatrix} 10 & 15 & 6 \\ 10 & 20 & 0 \end{bmatrix}, B = \begin{bmatrix} 3 & 4 & 0 \\ 7 & 9 & 3 \\ 5 & 12 & 7 \end{bmatrix}$$

तथा कच्चे माल की उपलब्ध मात्राएँ $\mathbf{R}_{_{1}}$ की 330 इकाईयाँ, $\mathbf{R}_{_{2}}$ की 455 इकाईयाँ और $\mathbf{R}_{_{3}}$ की 140 इकाईयाँ हैं।

हल नोट कीजिए कि

$$AB = \begin{bmatrix} 10 & 15 & 6 \\ 10 & 20 & 0 \end{bmatrix} \begin{bmatrix} 3 & 4 & 0 \\ 7 & 9 & 3 \\ 5 & 12 & 7 \end{bmatrix} = \begin{bmatrix} R_1 & R_2 & R_3 \\ F_2 \begin{bmatrix} 165 & 247 & 87 \\ 170 & 220 & 60 \end{bmatrix}$$

यह स्पष्टतया दर्शाता है कि F_1 और F_2 की माँग को पूरा करने के लिए कच्चे माल R_1 की 335 इकाई,

 ${\bf R}_2$ की 467 इकाई तथा ${\bf R}_3$ की 147 इकाई की आवश्यकता है जो कि कच्चे माल की उपलब्ध मात्राओं से अधिक है। क्योंकि तीनों उत्पादों की प्रत्येक इकाई के निर्माण हेतु कच्चे माल के अपेक्षित मात्राएँ निश्चित हैं, इसलिए हम या तो कच्चे माल की उपलब्ध मात्राओं के बढ़ाने की माँग कर सकते हैं अथवा हम ग्राहकों से उनकी माँगों को कम करने का निवेदन कर सकते हैं।

टिप्पणी यदि हम उदाहरण 3 में A को A_1 से बदल दें, जहाँ

$$A_1 = \begin{bmatrix} 9 & 12 & 6 \\ 10 & 20 & 0 \end{bmatrix}$$

अर्थात्, यदि ग्राहक लोग अपनी माँगों को कम करने के लिए मान जाते हैं, तो

$$A_{1}B = \begin{bmatrix} 9 & 12 & 6 \\ 10 & 20 & 0 \end{bmatrix} \begin{bmatrix} 3 & 4 & 0 \\ 7 & 9 & 3 \\ 5 & 12 & 7 \end{bmatrix} = \begin{bmatrix} 141 & 216 & 78 \\ 170 & 220 & 60 \end{bmatrix}$$

यहाँ R_1 की 311, R_2 की 436 तथा R_3 की 138 इकाइयाँ आपेक्षित हैं जो कि कच्चे माल की उपलब्ध मात्राओं अर्थात् R_1 की 330, R_2 की 455 तथा R_3 की 140 इकाइयों से कम हैं।

टिप्पणी हम A को पुन: इस प्रकार संशोधित कर सकते हैं जिससे उपलब्ध कच्चे माल का पूर्णतया उपयोग हो जाए।

इस प्रकार यदि ग्राहकों की माँग को पूरा करने के लिए A_1 के द्वारा क्रय-आदेश दिए जाते हैं, तो फर्म दोनों ग्राहकों के क्रय-आदेशों को सरलता से पूरा कर सकता है।

पूछताछ प्रदत्त B तथा उपलब्ध कच्चे माल की निर्धारित मात्राओं के लिए क्या हम, फर्म के मालिक की सहायतार्थ, एक ऐसा गणितीय मॉडल बना सकते है, जिससे वह ग्राहकों से अनुरोध कर सके कि वे अपनी मॉंगों को इस प्रकार संशोधित करें कि उपलब्ध कच्चा माल पूर्णतया उपयोग में आ जाए। इस पृछताछ का उत्तर निम्नलिखित उदाहरण में दिया गया है:

उदाहरण 4 मान लिजिए कि P_1 , P_2 , P_3 तथा R_1 , R_2 , R_3 उसी प्रकार है जैसा उदाहरण 2 में दिया है। मान लीजिए कि फर्म के पास R_1 की 330, R_2 की 455 और R_3 की 140 इकाइयाँ उपलब्ध हैं और मान लीजिए कि तीनों उत्पाद की प्रत्येक इकाई के निर्माण के लिए कच्चे माल R_1 , R_2 तथा R_3 , की मात्राएँ निम्नलिखित आव्यूह से प्राप्त होतीं हैं

$$\begin{array}{cccc}
R_1 & R_2 & R_3 \\
P_1 & 3 & 4 & 0 \\
P_2 & 7 & 9 & 3 \\
P_3 & 5 & 12 & 7
\end{array}$$

प्रत्येक उत्पाद की कितनी इकाइयाँ बनाइ जाएँ कि उपलब्ध कच्चे माल का उपयोग पूर्णतया हो जाए?

हल चरण 1 स्थिति सरलता से पहचान योग्य है।

चरण 2 मान लीजिए कि फर्म P_1 की x इकाइयों , P_2 की y तथा P_3 की z इकाइयों का उत्पादन करती है। क्योंकि उत्पाद P_1 के लिए R_1 की 3, P_2 के लिए R_1 की 7 तथा P_3 के लिए R_1 की 5 इकाइयों की आवश्यकता पड़ती है (आव्यूह B देखिए) और R_1 की कुल 330 इकाइयाँ उपलब्ध हैं, अत:

3x + 7y + 5z = 330 (कच्चे माल R_1 के लिए) 4x + 9y + 12z = 455 (कच्चे माल R_2 के लिए) 3y + 7z = 140 (कच्चे माल R_3 के लिए)

इसी प्रकार और

इस (उपर्युक्त) समीकरण निकाय को आव्यूह रूप में निम्न प्रकार व्यक्त कर सकते हैं,

$$\begin{bmatrix} 3 & 7 & 5 \\ 4 & 9 & 12 \\ 0 & 3 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 330 \\ 455 \\ 140 \end{bmatrix}$$

चरण 3 प्रारम्भिक पंक्ति संक्रिया द्वारा, हमें प्राप्त होता है;

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 20 \\ 35 \\ 5 \end{bmatrix}$$

इससे x=20, y=35 तथा z=5 मिलता है। अतएव फर्म P_1 की $20, P_2$ की 35 तथा P_3 की 5 इकाइयाँ उत्पन्न कर सकती है।

टिप्पणी कोई भी देख सकता है कि यदि निर्माता ग्राहकों F_1 और F_2 की माँगों (जैसा उदाहरण 3 में है) पर विचार किए बिना ही केवल उपलब्ध कच्चे माल के अनुसार उत्पादन करने का निर्णय लेता है, तो वह उनकी माँगों को पूरा नहीं कर सकता है, क्योंकि F_1 ने P_3 की 6 इकाइयाँ माँगी है जब कि निर्माता उसकी केवल 5 इकाइयाँ ही बना सकता है।

उदाहरण 5 एक दवा-निर्माता M_1 और M_2 दवाइयों की उत्पादन-योजना बनाता है। M_1 की 20,000 तथा M_2 की 40,000 बोतलों के लिए दवा बनाने हेतु यथेष्ट कच्चा-माल उपलब्ध है, िकंतु उसके पास केवल 45,000 बोतलों हैं, िजनमें वह दोनों में से कोई भी दवा भर सकता है। M_1 की 1,000 बोतलें भरने के लिए पर्याप्त माल तैयार करनें में 3 घंटे और M_2 की 1000 बोतलें भरने के लिए पर्याप्त माल तैयार करनें में 1 घंटा लगते हैं तथा इस प्रक्रिया के लिए केवल 66 घंटे उपलब्ध हैं। M_1 की प्रत्येक बोतल पर Rs 8 तथा M_2 की प्रत्येक बोतल पर Rs 7 लाभ होता है। दवा-निर्माता, महत्तम लाभ अर्जित करने हेतु, अपनी उत्पादन-योजना किस प्रकार बनाए?

हल चरण 1 प्रदत्त परिकल्पना के अंतर्गत, महत्तम लाभ अर्जित करने हेतु, दवाओं $\mathbf{M}_{_1}$ तथा $\mathbf{M}_{_2}$ की बोतलों की संख्या ज्ञात करना।

चरण 2 मान लीजिए कि दवा M_1 की x और दवा M_2 की y बोतलें हैं। क्योंकि M_1 की प्रत्येक बोतल पर लाभ Rs 8 तथा M_2 की प्रत्येक बोतल पर लाभ Rs 7 होता है, अतः उद्देश्य-फलन (objective

function), जिसे अधिकतम करना है नीचे लिखे समीकरण से दिया गया है।

$$Z \equiv Z(x, y) = 8x + 7y$$

इस उद्देश्य-फलन का निम्नलिखित प्रतिबंधों (व्यवरोधों) के अंतर्गत अधिकतम करना है (रैखिक प्रोग्रामन के अध्याय 12 पर ध्यान दीजिए)।

$$x \le 20000 y \le 40000 x + y \le 45000 3x + y \le 66000 x \ge 0, y \ge 0$$
 ... (1)

चरण 3 प्रदत्त व्यवरोधों (constraints) (1) के अंतर्गत छायांकित क्षेत्र OPQRST सुसंगत-क्षेत्र है (आकृति A.2.3) बिंदुओं O, P, Q, R, S तथा T कोंनीय के निर्देशांक क्रमश: (0, 0), (20000, 0), (20000, 6000), (10500, 34500), (5000, 40000) तथा (0, 40000) हैं। नोट कीजिए कि

आकृति A.2.3

$$P(0,0) \text{ } \forall Z = 0$$

P(20000, 0) पर $Z = 8 \times 20000 = 160000$

Q (20000, 6000) पर $Z = 8 \times 20000 + 7 \times 6000 = 202000$

 $S = (5000, 40000) \text{ TR } Z = 8 \times 5000 + 7 \times 40000 = 320000$

T = (0, 40000) पर $Z = 7 \times 40000 = 280000$

ध्यान दीजिए कि x=10500 और y=34500 पर महत्तम लाभ अर्जित होता है, जो कि Rs 325500 है। अतः निर्माता (उत्पादक) को Rs 325500 का महत्तम लाभ अर्जित करने के लिए \mathbf{M}_1 की 10500 तथा \mathbf{M}_2 की 34500 बोतलें उत्पन्न करनी चाहिए।

उदाहरण 6 मान लीजिए कि एक कंपनी कोई नया उत्पाद बनाना चाहती है, जिस पर कुछ लागत (स्थिर और चर लागत) आती है और मान लीजिए कि कंपनी उस उत्पाद को एक स्थिर मूल्य पर विक्रय करने की योजना बनाती है। इस स्थिति में लाभ-हानि के परीक्षण हेतु एक गणितीय मॉडल बनाइए।

हल चरण 1 यहाँ स्थिति स्पष्टतया पहचान योग्य है।

चरण 2 सूत्रण से हमें ज्ञात है की लागत दो प्रकार की होती है, स्थिर तथा चर। स्थिर लागत उत्पाद की संख्या से स्वतंत्र होती है (जैसे किराया, शुल्क आदि), जब कि चर लागत उत्पाद की संख्या बढ़ने से बढ़ती है (जैसे सामग्री, पैकिंग इत्यादि)। प्रारंभ में हम मान लेते हैं कि चर लागत उत्पाद की संख्या की अनुक्रमानुपाती है – इससे हमारा मॉडल सरल हो जाता है। कंपनी को कुछ धन राशि विक्रय द्वारा प्राप्त होती है, और वह (कंपनी) यह सुनिश्चित करना चाहती है कि यह प्राप्त धन महत्तम है। सुविधा के लिए, हम यह मान लेते हैं कि प्रत्येक उत्पादित इकाई तत्काल बेच दी जाती है।

गणितीय मॉडल

मान लीजिए कि उत्पादित तथा विक्रय की गई इकाइयों की संख्या x है,

C = उत्पादन की कुल लागत है (रुपयों में)

I = विक्रय से होने वाली कुल आय है (रुपयों में)

P = कुल लाभ है (रुपयों में)

हमारी I उपर्युक्त मान्यता (assumption) के अनुसार C दो भागों से मिल कर बनता है:

स्थिर लागत = a (रुपयों में).

चर लागत = b (रुपए प्रति इकाई).

अतएव C = a + bx ... (1)

साथ ही आय I विक्रय मूल्य s (रुपए प्रति इकाई) पर निर्भर है,

अत:
$$I = sx ... (2)$$

लाभ P आय और लागत के अंतर के बराबर होता है, इस प्रकार

$$P = I - C$$

= $sx - (a + bx)$
= $(s - b) x - a$... (3)

इस प्रकार अब हमें चर राशिओं x, C, I, P, a, b, तथा s के बीच (1), (2) तथा (3) में दर्शाए पारस्परिक संबंधों का एक गणितीय मॉडल प्राप्त होता है। इन चर राशिओं का वर्गीकरण इस प्रकार है,

स्वतंत्र x

आश्रित (परतंत्र) C, I, P

प्राचल *a, b, s*

उत्पादक को x, a, b, s, की जानकारी है और वह P ज्ञात कर सकता है।

चरण 3 संबंध (3) द्वारा हम देखते हैं कि सम विच्छेदन बिंदु (न कोई लाभ और न कोई हानि)

के लिए
$$P=0$$
, अर्थात्, $x=\frac{a}{s-b}$ इकाइयाँ।

चरण 4 तथा 5 सम विच्छेदन बिंदु के विचार से हम निष्कर्ष निकाल सकते हैं कि यदि कंपनी कुछ इकाइयाँ ही उत्पादित करती है, अर्थात् $x = \frac{a}{s-b}$ इकाइयों से कम हो तो उसे हानि होगी और यदि वह

अधिक इकाइयाँ उत्पादित करती है, अर्थात् $\frac{a}{s-b}$ इकाइयों से अधिक तो उसे लाभ होगा। इसके अतिरिक्त, यदि सम विच्छेदन बिंदु अवास्तविक सिद्ध होता है, तब कोई अन्य मॉडल प्रयुक्त किया जा सकता है अथवा धन प्रवाह से संबंधित अभिधारणाओं में संशोधन किया जा सकता है। $\frac{1}{1000} \frac{1}{1000} \frac{1}{10$

$$\frac{dP}{dx} = s - b$$

अर्थात्, x के सापेक्ष P के परिवर्तन की दर, राशि s-b पर निर्भर करती है जो कि उत्पाद के विक्रय मूल्य तथा उसके चर लागत के अंतर के बराबर है। अत: लाभ अर्जित करने के लिए इस राशि को धनात्मक होना चाहिए और प्रचुर मात्रा में लाभ अर्जित करने के लिए हमें बहुत अधिक मात्रा उत्पादित करनी चाहिए साथ ही साथ चर लागत को कम करने का प्रयास भी करना चाहिए।

उदाहरण 7 मान लीजिए कि एक टैंक में 1000 लिटर लवण-जल है जिसमें प्रति लिटर 250 g लवण है। 200 g/L लवण वाला लवण-जल, 25 L/min की दर से टैंक में आ रहा है तथा इस प्रकार प्राप्त मिश्रण समान दर से टैंक से बाहर निकल रहा है। किसी क्षण t पर टैंक में लवण की मात्रा क्या है? हल चरण 1 यहाँ स्थिति सरलता से पहचान करने के योग्य है।

चरण 2 मान लीजिए कि y = y(t) द्वारा अंतर्वाह-बहिर्वाह प्रारंभ होने के बाद, किसी समय t (मिनट में) पर, टैंक में उपस्थित लवण की मात्रा (किलो ग्राम में) सूचित (प्रकट) होती है। जब t=0, अर्थात् अंतर्वाह-बहिर्वाह प्रारंभ होने से पूर्व $y = 250 \text{ g} \times 1000 = 250 \text{ kg}$

ध्यान दीजिए कि y में परिवर्तन, मिश्रण में अंतर्वाह-बहिर्वाह के कारण होता है

अब टैंक में लवण-जल का अंतर्वाह, 5 kg/min (क्योंकि $25 \times 200 \, \mathrm{g} = 5 \, \mathrm{kg}$) की दर से लवण लाता है तथा लवण-जल का बहिर्वाह $25\left(\frac{y}{1000}\right) = \frac{y}{40}\,\mathrm{kg/min}$ (क्योंकि t समय पर टैंक में लवण की मात्रा $\frac{y}{t}$ kg है)

में लवण की मात्रा $\frac{y}{1000}$ kg है)

अत: t के सापेक्ष टैंक में लवण की मात्रा में परिवर्तन की दर निम्नलिखित समीकरण से प्राप्त होती है,

$$\frac{dy}{dt} = 5 - \frac{y}{40}$$
 (क्यों?)

या

$$\frac{dy}{dt} = 5 - \frac{y}{40}$$
 (क्यों?)
$$\frac{dy}{dt} + \frac{1}{40}y = 5$$
 ... (1)

यह परिणाम प्रदत्त समस्या का एक गणितीय मॉडल देता है।

चरण 3 परिणाम (1) एक रैखिक समीकरण है, जिसे आसानी से सरल किया जा सकता है। समीकरण (1) का हल नीचे दिया है

$$ye^{\frac{t}{40}} = 200e^{\frac{t}{40}} + C$$
 या $y(t) = 200 + Ce^{-\frac{t}{40}}$... (2)

जहाँ C समाकलन का अचर है।

ध्यान दीजिए कि ज्ञात है कि जब t = 0, y = 250. अतएव, 250 = 200 + C

अथवा C = 50

तब समीकरण (2) नीचे लिखित रूप में परिवर्तित हो जाता है.

$$y = 200 + 50 e^{-\frac{t}{40}} \qquad \dots (3)$$

या

$$\frac{y-200}{50} = e^{-\frac{t}{40}}$$

या
$$e^{\frac{t}{40}} = \frac{50}{y - 200}$$
 अत:
$$t = 40 \log \left(\frac{50}{y - 200} \right) \qquad \dots (4)$$

इस प्रकार समीकरण (4) वह समय t देता है, जब टैंक में लवण की मात्रा $y \lg \xi$ ।

चरण 4 समीकरण (3) से हम निष्कर्ष निकालते हैं कि सदैव y>200 क्योंकि $e^{-\frac{t}{40}}$ का मान सर्वदा धनात्मक रहता है

अत: टैंक में लवण की न्यूनतम मात्रा लगभग 200 kg (किंतु ठीक-ठीक 200 kg नहीं) हो सकती है। इसके अतिरिक्त समीकरण (4) से हम निष्कर्ष निकालते हैं कि t>0 यदि और केवल यदि 0< y-200<50 अर्थात् यदि और केवल यदि 200< y<250 अंतर्गत टैंक के लवण-जल के अंतर्वाह और बहिर्वाह के प्रारंभ होने के बाद लवण की मात्रा 200 kg और 250 kg के मध्य है।

गणितीय निदर्शन की परिसीमाएँ (Limitations)

अभी तक अनेक गणितीय मॉडल विकसित किए गए हैं और उनका अनुप्रयोग (application) अनेकानेक परिस्थितियों को गहनता से समझने में सफलतापूर्वक किया जा चुका है। कुछ विषय जैसे गणितीय भौतिकी, गणितीय अर्थशास्त्र, संक्रिया विज्ञान (operations research), जीव-गणित (Bio-mathematics) आदि, गणितीय निदर्शन के (लगभग) पर्यायवाची/समानार्थी हैं।

परंतु, आज भी कई परिस्थितियाँ ऐसी है, जिनके मॉडल अभी बनने हैं। जिसके पीछे कारण यह है कि या तो वे परिस्थितियाँ बहुत जटिल हैं अथवा विकसित मॉडल गणितानुसार असाध्य हैं।

शक्तिशाली कंप्यूटरों तथा अति-कंप्यूटरों (Super Computers) के विकास ने, परिस्थितियों की एक बहुत बड़ी संख्या के लिए, गणितानुसार मॉडल बनाने में, हमें सक्षम बना दिया है।

त्वरित (fast) तथा उन्नत कंप्यूटर के कारण यह संभव हो सका है कि हम अधिक यथार्थ मॉडलों की रचना कर सकते हैं जिनके द्वारा प्रेक्षण के साथ बेहतर सहमति प्राप्त की जा सकती है।

तथापि हमारे पास, किसी गणितीय मॉडल में प्रयुक्त विभिन्न चरों के चयन तथा इन चरों के मूल्याकंन हेतु अच्छे मार्गदर्शक सिद्धांत नहीं है। वास्तव में हम पाँच या छ: चरों का चयन करके किंही भी आँकड़ों के लिए बहुत हद तक यथार्थ (accurate) मॉडलों का निर्माण कर सकते हैं। इनके ठीक-ठीक मूल्यांकन हेतु हमें चरों की संख्या कम से कम रखनी चाहिए।

बृहत् अथवा जटिल परिस्थितियों के गणितीय निदर्शन की अपनी विशेष (विशिष्ट) समस्याएँ होती है। इस प्रकार की परिस्थितियाँ प्राय: पर्यावरण (environment), समुद्र विज्ञान (oceanography), जनसंख्या नियंत्रण (population control) आदि के लोक निदर्शों (world models) के अध्ययन में आती हैं। शिक्षा की सभी शाखाओं-गणित, कंप्यूटर विज्ञान, भौतिकी, अभियंत्रिकी, समाजशास्त्र आदि के गणितीय निदर्शक, इस चुनौती का सामना साहसपूर्वक कर रहे हैं।

