Задание 4 по курсу "Вычислительная математика"

Лукашевич Илья, 792 группа 11 октября 2019 г.

Теоретическая задача 4.1

Итерационный метод Якоби применяется для решения линейной системы с трехдиагональной матрицей A. Диагональные элементы (i=j) равны 4, элементы на 2-ух ближайших дианоналях (|i-j|=1) равны 1. Найдите число итераций, нужное для достижения точности 10^{-6} в ∞ норме, если известно, что для начального приближения $||x-x_0||_{\infty} < 10$, где x— точное решение системы.

Решение.

Воспользуемся достаточным условием сходимости итерационного метода:

$$||e^k|| = ||S^k e^0|| \le ||S||^k ||e^0||,$$

где e^k — вектор ошибки решения на k-ом шаге, e^0 — вектор ошибки при начальном приближении, то есть в данной задаче $e^0 = x - x_0$.

Тогда оценим число итераций, необходимое для достижения заданной точности ($\varepsilon = 10^{-6}$):

$$||S||^k ||e^0|| \le \varepsilon \Rightarrow k \ge \frac{\log(\varepsilon/||e^0||)}{\log||S||} > \frac{\log(10^{-7})}{\log||S||}.$$

В итерационном методе Якоби $S=-D^{-1}(L+U)$, где D — диагональная часть матрицы $A,\ L,\ U$ — строго нижнетреугольная и верхнетреугольная части матрицы A соответственно. Матрица $-D^{-1}$ имеет вид

$$-D^{-1} = \begin{pmatrix} -1/4 & & & \\ & -1/4 & & \\ & & \ddots & \\ & & & -1/4 \end{pmatrix}.$$

Тогда матрица $S=-D^{-1}(L+U)$ является трехдиагональной с элементами главной диагонали, равными 0, при этом элементы на двух ближайших диагоналях равны -1/4. Тогда имеем

$$||S||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.$$

Таким образом, искомое число итераций можно оценить как

$$k > \frac{\log(10^{-7})}{\log||S||} = \frac{\log(10^{-7})}{\log(1/2)} \approx 23.2 \Rightarrow k_{min} = 24.$$

Следовательно, для достижения необходимой точности нужно не менее 24 итераций.