Homework 3

Nov. 26, 2020

NOTE: Homework 3 is due next Thursday (Dec. 3, 2020). The questions started with * are for Exercise only, and you are not required to submit the answers.

1. Let $X = (X_1, \dots, X_n)$ be a random sample from the distribution with p.d.f.

$$f(x; \mu, \sigma) = \frac{1}{\sigma} \exp\left\{-\frac{x-\mu}{\sigma}\right\}, \quad x \ge \mu.$$

- When μ is known, derive the moment estimator and MLE of σ ;
- When σ is known, derive the moment estimator and MLE of μ ;
- When both μ and σ are unknown, derive the moment estimators and MLEs of μ , σ and $P(X_1 \ge t)$ $(t > \mu \text{ and } t \text{ is known})$.
- 2. Let $X = (X_1, \dots, X_n)$ be a random sample from uniform distribution $U(\theta/2, \theta)$, $0 < \theta < +\infty$.
 - Derive the MLE of θ :
 - Is the MLE unbiased? If not, find an unbiased estimate based on the MLE.
 - Is the MLE weakly consistent? Why?
- 3. Let $X = (X_1, \dots, X_n)$ be a random sample from Geometric distribution:

$$P(X_1 = i) = \theta(1 - \theta)^{i-1}, i = 1, 2, \dots, 0 < \theta < 1.$$

Derive the UMVUE of θ^{-1} and θ .

- 4. Let $\boldsymbol{X}=(X_1,\cdots,X_n)$ be a random sample from normal distribution $N(\mu,\sigma^2)$, where both μ and σ^2 are unknown. Derive the UMVUE of (1) $\mu+\sigma^2$, and (2) μ^2/σ^2 .
- 5. Let $X = (X_1, \dots, X_n)$ be a random sample from normal distribution $N(1, \sigma^2)$. Derive the UMVUE of σ .
- 6. Let X_1, \dots, X_m i.i.d. $\sim N(\mu, \sigma^2), Y_1, \dots, Y_n$ i.i.d. $\sim N(2\mu, \sigma^2)$, and suppose that X_i 's and Y_j 's are independent, derive the UMVUE of μ and σ^2 .
- 7. Let $X = (X_1, \dots, X_n)$ be a random sample from normal distribution $N(0, \sigma^2), \sigma^2 > 0$.
 - Derive the moment estimator and MLE of σ^2 ;
 - Derive the C-R lower bound for the variance of the unbiased estimator of σ^2 ;
 - Derive the UMVUE of σ^2 .
- 8. Let $(X_1, Y_1), \dots, (X_n, Y_n)$ i.i.d. drawn from a Bivariate Normal distribution $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$.
 - Derive the MLEs of $(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$;
 - Calculate the observed values of the above MLEs using the data in Homework 2.

*1. Let $\boldsymbol{X}=(X_1,\cdots,X_n)$ be a random sample from the distribution with p.d.f.

$$f(x;\theta) = \frac{1}{2\sigma} \exp\{-|x - a|/\sigma\},\,$$

where $\sigma > 0, \ -\infty < a < +\infty$. Find the MLE of a and σ .

*2. Let $X = (X_1, \dots, X_n)$ be a random sample from the Weibull distribution with p.d.f.

$$f(x) = \alpha \beta x^{\beta - 1} e^{-\alpha x^{\beta}}, \quad x > 0 \quad (\alpha, \beta > 0).$$

Suppose β is known, determine the MLE of α .