14. 고급 주제 및 최신 기술

14.1 PLC와 IIoT (산업용 사물인터넷) 연동

(PLC 시스템을 산업용 사물인터넷(IIoT) 플랫폼으로 확장하는 통합 설계 전략)

☑ 개요

PLC와 IIoT 연동은 이제 단순 제어를 넘어 데이터 기반 운영, 공정 최적화, 원격 모니터링, 예측정비, AI 분석 등 스마트팩토리 핵심 기술로 확장되고 있다.

IIoT는 PLC에서 수집한 데이터를 실시간으로 상위 IT 시스템, 클라우드, 분석 플랫폼으로 전달하고 상시 모니터링, 원격 제어, 고급 분석을 가능하게 한다.

✓ 1. IIoT 연동 구조 개념

- PLC는 IIoT에서 현장 실시간 데이터 수집·제어 중심 역할
- IIoT 플랫폼은 데이터 저장·분석·예측 중심 역할

✓ 2. PLC-기반 IIoT 확장 방식

유형	설명
직접 연결형	PLC 자체가 OPC UA, MQTT, REST API 지원
게이트웨이 중계형	PLC는 기존제어 유지, IIoT 게이트웨이 장치 통해 상위 연결
통합 SCADA 중계형	SCADA 시스템이 lloT 브로커 역할 병행

☑ 3. 주요 표준 통신 프로토콜

프로토콜	특징	
OPC UA	산업용 표준 IIoT 통신 프로토콜 (보안·실시간성 지원)	
MQTT	경량 메시지 기반 실시간 퍼블리시/서브스크라이브	

프로토콜	특징
REST API	웹 기반 상호 통신
Modbus TCP	단순 이더넷 기반 저비용 연동
AMQP, CoAP	일부 고급 IoT 환경에서 추가 지원

☑ 4. 제조사별 IIoT 내장지원 여부

제조사	기본 지원 수준
Siemens	OPC UA, MQTT, REST (S7-1500 내장)
Rockwell	FactoryTalk Edge Gateway, OPC UA, MQTT 지원
Mitsubishi	iQ-R OPC UA 내장, MES Interface 제공
LS	XGR 일부 OPC UA 확장 가능
Omron	Sysmac OPC UA, MQTT 기본 지원
Keyence	최신 KV-8000 MQTT 확장 가능
Delta	MQTT 일부 최신 시리즈 확장 지원
Panasonic	일부 FP7 모델 MQTT, OPC UA 지원

☑ 5. IIoT 연동 실전 아키텍처 예시

📌 (1) OPC UA 기반 통합

 $1 \mid \mathsf{PLC} \to \mathsf{OPC} \ \mathsf{UA} \ \mathsf{Server} \to \mathsf{IIoT} \ \exists \mathsf{\mathfrak{G}}\mathsf{B}\mathsf{Historian}$

📌 (2) MQTT 기반 경량 메시지 통합

- 1 | PLC \rightarrow MQTT Broker (Local Edge Gateway) \rightarrow Cloud AI Analytics
- MQTT는 저지연·저대역폭·비동기 전송에 최적화

☑ 6. IIoT 연동시 주요 실전 활용 분야

활용분야	예시
원격 모니터링	장비 상태 실시간 가시화
생산지시 최적화	MES 실시간 연계
품질이력 관리	수집데이터 장기 분석

활용분야	예시
AI 이상탐지	센서 데이터 기반 이상조기진단
예방정비	센서이력 기반 Predictive Maintenance
에너지 모니터링	공정 전력 소모량 실시간 감시

☑ 7. IIoT 연동 도입시 실전 설계 고려사항

항목	설계 기준
데이터 취득 주기	1~10초 단위 → 실시간 대응성 조정
데이터 보안	TLS 암호화, 사용자 인증
네트워크 설계	제어망과 IT망 물리적 분리(VLAN, Firewall)
이중화	Edge Gateway 이중화, 메시지 큐 이중화
장애복구	네트워크 끊김 시 버퍼링 기능 확보
표준화	통신 태그명·데이터 타입 표준 설계 유지

☑ 8. IIoT 연동시 가장 자주 사용하는 게이트웨이 구조

구성	설명
Edge Gateway	산업용 소형 서버 장치
주요기능	OPC UA ↔ MQTT 변환, 데이터전처리, 통합통신 중계
대표제품	Siemens IOT2040, Kepware, Rockwell FT Edge, Moxa 등

☑ 9. 실전 적용 사례

산업분야	사례
반도체	설비이력 통합 수집 → 불량률 개선
자동차	라인 실시간 모니터링 → 라인변속 최적화
식음료	충진기 품질이력 → AI 기반 제품변동 자동보정
에너지	공장 전력피크 실시간 예측 → 수요예측제어
물류	AGV 시스템 PLC ↔ IIoT 연동 → 실시간 물류 최적화

✓ 10. IIoT 도입 ROI의 핵심

- 기존 PLC 변경 최소화 \rightarrow 안정적 제어 유지
- **데이터의 실시간성 확보** → 분석·예측 정확도 향상
- **유지보수 비용 절감** → 현장 점검 횟수 최소화
- 생산성·품질 향상 → AI 기반 최적화 가능성 확보

✓ 정리

- PLC + IIoT 통합은 단순 "제어" \rightarrow "데이터 중심 공장 운영"으로의 본질적 전환
- 제조사 내장지원이 빠르게 확대되고 있으며
- 게이트웨이 방식, OPC UA 표준화, MQTT 경량화, 클라우드 연동을 종합 설계하는 것이 **현대 PLC 설계의 필수 확장 전략**이 되었다.

14.2 Edge Computing과 PLC

(PLC 시스템과 엣지 컴퓨팅 통합 구조 설계 완전 정리)

☑ 개요

Edge Computing은 IIoT 확장에서 PLC 다음 단계 핵심 아키텍처다.

- PLC는 하드 실시간 제어 중심
- Edge는 데이터 수집·전처리·분석·AI 연산 중심

즉, **제어는 PLC** → **데이터 분석은 Edge**로 분리 설계되면서 "**스마트 공장 실시간 지능화**" 기반이 완성된다.

☑ 1. Edge Computing의 PLC 내 역할

구분	기능
PLC	장비 제어, I/O 실시간 응답, 공정 안전
Edge	대용량 데이터 수집, 필터링, 이력저장, AI 연산, 예측진단, 클라우드 게이트웨이 역할

☑ 2. Edge Computing 연동 구조

- 1 [센서 → PLC → Edge Node → Cloud / MES / AI Analytics]
- Edge 노드는 현장 제어망 가장 가까운 곳에 위치
- 네트워크 대역폭 절감 / 실시간 데이터 유지 / 클라우드 의존도 분산

☑ 3. Edge Node 하드웨어 예시

제품군	특징
Siemens IOT2050 / 2040	산업용 엣지 게이트웨이
Rockwell FactoryTalk Edge Gateway	Allen-Bradley 전용
Moxa Industrial Computer	범용 Edge 서버
Dell EMC Edge	공장현장 산업용 서버
Advantech EdgeLink	lloT 전용 엣지 게이트웨이

• 대부분 OPC UA \leftrightarrow MQTT \leftrightarrow SQL \leftrightarrow AI 엔진 내장

☑ 4. 엣지 컴퓨팅의 핵심 기능

기능	설명
실시간 수집	PLC 태그 실시간 수집 (ms~s 단위)
데이터 정제	노이즈 제거, 이동평균, 스파이크 필터링
이벤트 추출	이상 패턴 실시간 감지
이력저장	로컬 Historian 구축
AI 연산	ML/Al 알고리즘 현장측 적용
클라우드 연계	MQTT, REST API로 중앙 시스템 연동

☑ 5. PLC ↔ Edge 통신 연계 방식

방법	설명
OPC UA 직접	PLC가 OPC UA Server 제공, Edge가 Client 역할
MQTT 브로커 중계	Edge가 브로커 중계, PLC MQTT Publisher 동작
Modbus 중계	저가 PLC에서는 Modbus TCP 통해 Edge 연결
SCADA 연계형	SCADA가 Edge 중계서버 역할 병행 가능

☑ 6. Edge Computing 적용 분야

적용영역	실전 활용 예시
Predictive Maintenance	모터전류 진동패턴 → AI 이상징후 조기탐지
품질 예측	용접·충진 공정 센서 패턴 → 실시간 품질보정
에너지 최적화	대용량 장비 전력소모 최적화
AI 기반 시뮬레이션	공정 변수 변화 예측 기반 시뮬레이션
자율보정 제어	Edge AI 연산 → PID 세팅 자동보정

☑ 7. 엣지 컴퓨팅이 필요한 이유

기존 한계	Edge의 해결
PLC 연산 한계	대규모 데이터 처리 가능
클라우드 의존	현장 자체 연산 가능
대역폭 부담	데이터 사전 전처리
지연시간 문제	실시간 AI 연산 가능
보안 문제	민감데이터 현장 잔류 보호 가능

☑ 8. 실전 설계 고려 사항

항목	설계 지침
연산 자원	Edge Node 스펙 → AI, 통계연산 대비 충분한 CPU/GPU
신뢰성	산업용 장기운영 가능 하드웨어 선택
이중화	Edge 서버 이중화 구성 고려
데이터모델	OPC UA 기반 공통 데이터모델 통일
보안	현장망 내부 폐쇄형 Edge 운영 기본, 클라우드 구간만 외부 개방

☑ 9. PLC + Edge 융합형 최신 확장

영역	특징
Edge+PLC 통합장치	일부 제조사는 Edge 기능 내장된 PLC 제공 (Omron, Siemens 최신)
Edge Al 연산 내장	AI 추론 엔진 내장된 산업용 Edge Box 등장

영역	특징
Edge Historian	장기 데이터 저비용 분산저장 기반 구축
Edge Digital Twin	현장 디지털트윈 실시간 현장측 연산 가능

☑ 10. 실전 적용 사례

분야	사례
반도체	공정압력 이상패턴 조기탐지 → 품질불량 20% 감소
자동차	용접품질 AI 분석 → 자동 오퍼셋 보정
식음료	충진량 초정밀 Al 예측 → 재공정률 감소
플랜트	대형 펌프 진동패턴 → 고장예지 후 무정지 운전
물류	AGV 이동패턴 AI 최적화 → 충돌·지연 최소화

☑ 정리

- Edge Computing은 PLC + IIoT를 넘어 '현장 실시간 AI 제어'를 가능하게 만든다
- 초기 설계시부터 **제어** → **데이터** → **분석** → **보정**이 순환되는 구조를 설계하면 진정한 **스마트 팩토리 고급 자동화 아키텍처**로 발전할 수 있다.

14.3 AI 기반 예지보전 시스템과의 연계

(PLC 데이터를 활용한 인공지능 기반 예측정비 설계 완전 정리)

☑ 개요

예지보전 (Predictive Maintenance, PdM) 은

스마트 제조 핵심 중에서도 가장 ROI가 높은 영역이다.

- PLC \rightarrow 실시간 공정 데이터 수집
- Edge → 데이터 전처리 및 1차 분석
- AI → 이상징후 탐지·예측정비 모델 학습

"PLC 제어 + Edge Computing + AI 학습"

이 3단계가 완전히 융합될 때

고장 발생 전 선제적 예방조치 \rightarrow 생산 손실 최소화 \rightarrow 유지보수 비용 최적화 가 가능하다.

☑ 1. 예지보전 기본 흐름 구조

- 1 [센서] → [PLC I/O 수집] → [Edge Preprocessing] → [AI 분석] → [예측알람 발생] → [유지보수 조치]
- 기존 PLC가 측정하는 **일상적 센서 데이터** 자체가 예지보전의 핵심 입력이 된다.

☑ 2. 예지보전 AI 연계 핵심 데이터 요소

측정요소	활용예시
전류	모터 부하 이상 감지
진동	베어링 손상 조기 감지
온도	냉각장치 노후화 탐지
압력	밸브 막힘, 유량 이상 진단
유량	펌프 성능 저하 탐지
속도	서보위치 이상 조기감지
품질이력	제품 불량패턴과 공정 변수 연결

☑ 3. PLC 단에서의 데이터 수집 설계

구조	설계 방법
고주기 수집	100ms ~ 1s 단위로 태그 업데이트
이벤트 기반 트리거	이상신호 발생시 고속로그
FIFO 버퍼링	네트워크 장애시 데이터 보존
장기이력	Edge Historian 연계 장기 저장 설계

☑ 4. AI 예지보전 시스템 구성 요소

구성요소	설명
Edge Layer	실시간 데이터 필터링, 이상 트리거 발생
Al Layer	머신러닝/딥러닝 기반 고장 예측모델 운용
Visualization	실시간 예측상태 시각화 및 운영자 알람
Maintenance Layer	유지보수 스케줄 최적화, 교체주기 조정

✓ 5. AI 모델 유형

알고리즘	활용예시
시계열 예측 (LSTM, GRU)	센서 신호 패턴 장기 추세 예측
이상탐지 (AutoEncoder, Isolation Forest)	정상범위 벗어난 패턴 조기 탐지
분류 모델 (Random Forest, XGBoost)	상태분류 (정상/주의/위험 등급)
회귀모델	잔존수명(RUL: Remaining Useful Life) 예측
클러스터링 (KMeans, DBSCAN)	고장징후 군집 탐색

☑ 6. AI 학습 데이터 구성

요소	설명
정상운영 이력	장기 정상 데이터 축적
장애 발생 이력	과거 고장 발생시 패턴 수집
유지보수 로그	교체·정비 기록 연계
환경조건	온습도, 생산조건 기록 포함

☑ 7. 실전 예지보전 도입 예시 흐름

- 1 ® PLC 실시간 태그 수집
- 2 ② Edge Node 실시간 Preprocessing
- 3 ③ AI 서버 학습 및 실시간 추론 배포
- 4 ④ 이상감지시 운영자 알림 → 정비스케줄 변경
- 5 ⑤ 고장발생 전 선제적 교체

☑ 8. PLC 제조사별 예지보전 연계 지원

제조사	지원 현황
Siemens	Industrial Edge, MindSphere, Al Runtime
Rockwell	FactoryTalk Analytics, Logix Al Module
Mitsubishi	iQ Works AI 연동 패키지
Omron	Sysmac Al Controller 내장형 Al 추론
LS산전	EdgeBox, OPC UA 연계 기반 AI 시스템 가능
Keyence	KV-8000 실시간 고속 진동분석 지원

제조사	지원 현황
Delta	lloT Edge 기반 Al 연계 가능 (일부 모델)

☑ 9. 실전 적용 분야 사례

분야	사례
모터 구동계	전류·진동·소음 → 베어링 파손 조기 감지
펌프·압축기	유량·압력 → 캐비테이션 초기 징후 탐지
공정용 히터	PID 보정패턴 → 열효율 저하 진단
로봇 서보축	위치오차·속도패턴 → 감속기 마모 조기 감지
반도체 장비	압력·온도·유량 조합 → 공정불량 사전 경고

☑ 10. 예지보전 ROI 실전 수치 예시

개선항목	성과
갑작스러운 정지시간	50~80% 감소
유지보수 비용	20~40% 절감
부품 교체주기 최적화	불필요한 조기교체 감소
생산품질 안정성	불량률 10~30% 저감
유지보수팀 업무부하	단순점검 → 문제부위 집중화

☑ 11. 초기 설계 핵심 전략

단계	설계포인트
① 센서 확장	PLC에 필요한 진동, 전류 등 신규 센서 증설
② Edge 수집 안정화	네트워크 이중화, 실시간 수집 완전성 확보
③ Al PoC (파일럿)	초기 제한영역 AI 모델 실증시험
④ 시스템 표준화	데이터모델, 태그명 표준화
⑤ 유지보수 프로세스 통합	AI 결과를 유지보수 스케줄 자동반영

✓ 정리

- PLC 예지보전은 센서 기반 데이터 중심 정비로의 패러다임 전환 핵심
- Edge → Al → PLC의 순환구조 구축이 장기적 스마트공장 고장감소·비용절감·품질향상 핵심이다.

14.4 PLC와 클라우드 데이터 연동

(PLC 데이터를 클라우드로 안전하고 실시간으로 연계하는 통합 설계 전략 정리)

☑ 개요

PLC + 클라우드 연동은 이제 현대 스마트팩토리에서

가장 필수적이면서도 전략적인 설계 영역이다.

- 현장 제어는 PLC 중심 유지
- 데이터 분석·장기 이력·AI 학습·MES 통합·전사 가시화 → 클라우드로 이동

현장 Edge \rightarrow 클라우드 중앙분석 \rightarrow 피드백 최적화 제어

이 흐름이 PLC 기반 제조라인의 미래형 아키텍처가 된다.

☑ 1. 전체 통합 아키텍처

```
1 [센서 / 장비]
2 ↓
3 [PLC 실시간 제어]
4 ↓
5 [Edge Gateway (실시간 수집·전처리)]
6 ↓
7 [클라우드 데이터 플랫폼 (AWS / Azure / GCP / Private Cloud)]
8 ↓
9 [AI, BI, MES, ERP, 중앙 가시화]
```

• 현장 실시간성은 PLC 유지, 장기분석은 클라우드에서 처리

☑ 2. 클라우드 연동의 주요 필요성

목적	설명
이력저장	장기 데이터 축적 (수년 단위 가능)
고급 분석	AI, BI 기반 품질·생산성 최적화
MES/ERP 통합	생산·경영 전사 통합
현장간 통합	다공장, 해외공장 중앙 집중 가시화
협업 플랫폼	R&D, 품질, 경영팀간 협업데이터 공유

☑ 3. 주요 통신 연동 방식

방식	설명
OPC UA → Cloud	표준 OPC UA 서버 → 클라우드 게이트웨이 연계
$\mathbf{MQTT}\ \mathbf{Broker} \to \mathbf{Cloud}$	현장 Edge Broker → Cloud MQTT Broker 연계
REST API → Cloud	SCADA ↔ RESTful API로 중앙 시스템 직접 연계
Message Bus	Kafka / AMQP 기반 메시징 연동
Cloud Connector	제조사 전용 클라우드 게이트웨이 솔루션 활용

☑ 4. 제조사별 클라우드 연동 플랫폼 예시

제조사	클라우드 연계 솔루션
Siemens	MindSphere, Industrial Edge
Rockwell	FactoryTalk Edge, Plex Cloud MES
Mitsubishi	iQ Edgecross, MELSEC Edge Gateway
Omron	Sysmac Al Cloud Connect
LS산전	EdgeBox → OPC UA → MES/ERP 연동
Keyence	OPC UA, MQTT 확장 연결
Delta	DIACloud 플랫폼 제공

☑ 5. 클라우드 플랫폼 일반 구조

계층	기능
Device Layer	PLC, 센서, 장비
Edge Layer	실시간 수집, 필터링, 버퍼링
Ingestion Layer	Cloud Gateway (OPC UA/MQTT 수신)
Storage Layer	Data Lake, SQL, NoSQL
Analytics Layer	AI/ML, BI, 시계열 예측
Application Layer	MES, ERP, Dashboard, API 서비스

☑ 6. 데이터 수집 주기 실전 설계

구분	수집주기
알람 이벤트	즉시 이벤트
일반 생산이력	1~10초
품질변수	1초 이하 가능
고속 진동	100ms 이하 (Edge 전처리 필요)

☑ 7. 데이터보안 설계

위험요소	대응 설계
제어망 노출	현장망 ↔ IT망 분리 (DMZ 이중 네트워크 설계)
데이터암호화	TLS 기반 전송 암호화
인증관리	Device 인증서 기반 접속 관리
로그감사	이력조회 이중 기록체계 유지
Fail-safe	네트워크 중단시 Edge 버퍼 기능 확보

☑ 8. 실전 연동 흐름 예시

📌 예: Siemens S7-1500 → MindSphere 연동

```
1 S7-1500 PLC → OPC UA Server 활성화
2 ↓
3 Edge Gateway (Industrial Edge) → MindSphere Cloud Ingestion
4 ↓
5 Data Lake → AI Analytics → MES / ERP → Dashboard
```

★ 예: LS XGK → MES Cloud 연동

```
1 LS PLC → OPC UA Gateway → EdgeBox → Private Cloud MES
2 ↓
3 생산계획 ↔ 실시간 생산량 ↔ 품질피드백 실시간 연계
```

☑ 9. 실전 적용 사례

산업	활용 사례
반도체	설비이력 전사 클라우드 집계 → 품질분석

산업	활용 사례
자동차	글로벌 공장 MES 통합 → 생산진도 실시간 통합
식음료	공장간 에너지소비 실시간 비교
제약	생산이력 eBR 전사 디지털로그 관리
전력	발전소 설비 Health Monitoring 글로벌 통합감시

☑ 10. 초기 도입시 실전 전략

단계	전략
① 파일럿 선정	단일 장비·라인부터 시작
② Tag Mapping	PLC ↔ 클라우드 태그명 일관성 유지
③ Edge 안정화	현장 데이터완전성 확보 (결측 최소화)
④ AI/BI 활용 확장	예지보전·에너지관리부터 적용
⑤ 중앙통합 확장	MES/ERP 통합으로 발전

☑ 정리

- PLC의 클라우드 연동은 스마트제조 '제어 ightarrow 경영 최적화' 통합 핵심
- 초기에 안정적 수집 아키텍처와 데이터 표준모델을 잡아두면 장기적으로 AI, BI, MES, ERP 확장이 손쉽게 이루어진다.

14.5 사이버 보안 (PLC 해킹 대응)

☑ 개요

PLC 해킹은 과거엔 이론적 위협이었지만, 실제 산업제어시스템(ICS) 공격 사례가 급증하고 있다.

- Stuxnet (이란 핵시설 PLC 파괴)
- Triton (석유플랜트 Safety PLC 해킹)
- Industroyer, BlackEnergy (발전소·전력망 공격)

스마트팩토리로 PLC가 네트워크화되고 IIoT·클라우드 연계가 확산되면서 **PLC 보안은 이제 필수 시스템 설계 요소**가 되었다.

☑ 1. PLC 보안의 취약 포인트

영역	주요 취약점
물리 접근	유지보수 PC 통한 비인가 접근
네트워크 취약점	PLC ↔ SCADA ↔ MES 연계망 해킹
펌웨어 공격	펌웨어 변조, 악성코드 삽입
프로그램 조작	래더 프로그램 비인가 수정
통신스니핑	실시간 I/O 제어 신호 탈취
이중화 우회	Fail-Safe 시스템 무력화 시도

☑ 2. ICS 해킹 시나리오 예시

단계	공격방법
초기 침입	유지보수 노트북 → 현장망 침입
lateral 이동	SCADA, PLC 네트워크 확산
제어권 장악	PLC 프로그램 직접 변경
파괴적 실행	모터 과속, 압력초과, Safety 무력화 등 파괴지령

☑ 3. PLC 보안 설계의 핵심 계층

보안층	내용
물리보안	제어실 출입통제, 유지보수 장비 관리
네트워크분리	OT망 ↔ IT망 논리적·물리적 분리
인증·권한	접근자 인증, 권한별 계정 분리
프로그램보호	소스 무결성 검증, 서명기반 펌웨어
실시간 탐지	이상제어명령, 비인가 접속 감시
이력·감사	모든 접속·변경 이력 무결성 저장

☑ 4. PLC 보안 아키텍처 기본 설계

- 제어망은 절대 인터넷 직접 연결 금지
- 현장 유지보수용 임시접속도 무조건 감시·기록

☑ 5. 통신계층 보안 강화

계층	방어전략
PLC ↔ SCADA	OPC UA 암호화 통신 (TLS 기반)
$PLC \leftrightarrow MES$	Secure MQTT, HTTPS, 인증서 기반
Remote Maintenance	VPN + 다중인증 기반 제한적 허용
프로그램 다운로드	Secure Boot / Code Signing 필수 적용

☑ 6. 제조사별 보안 기능 현황

제조사	주요 내장 보안
Siemens	Secure Communication, Certificate-based Access (S7-1500), TIA Security
Rockwell	FactoryTalk Security, CIP Security, Signed Firmware
Mitsubishi	iQ-R Secure Key, Access Control, Firmware Signature
LS산전	XGR 이중화 Secure Key, Secure Remote Access
Omron	Sysmac Secure Key, Safety Lock, Signed Project
Keyence	일부 모델 암호화 통신 지원
Delta	일부 고급 모델 Secure Firmware 적용

☑ 7. 실전 유지보수 보안 설계

관리항목	권고방안
유지보수 장비	현장용 노트북 전용, 외부망 분리
USB 접근	이동식 미디어 사용금지 또는 이중검사

관리항목	권고방안
원격진단	VPN 전용계정, 시간제한 접속, MFA
유지보수 기록	모든 다운로드 이력, 계정이력 로그화

☑ 8. 이상제어 탐지 시스템 (ICS IDS)

기능	설명
실시간 명령분석	비정상 제어명령 발생시 즉시 경고
패턴이상 탐지	정상 제어패턴 벗어남 감지
I/O 비정상감시	센서값과 제어명령 불일치 감지
ICS 전용 IDS 솔루션	Claroty, Nozomi, Dragos, Fortinet 등 적용 가능

☑ 9. 실전 해킹 사고 분석 사례

사례	특징
Stuxnet	원심분리기 과속 제어 (PLC 래더변조)
Triton	Safety PLC Disable (SIS 이중화 무력화 시도)
Industroyer	변전소 제어망 장악 (Modbus, OPC 우회 공격)
BlackEnergy	발전소 SCADA 무력화 (원격조작 파괴명령)

☑ 10. 스마트팩토리 PLC 보안 도입 원칙

단계	목표
제어망 폐쇄 기본	외부망 직접노출 차단
통신계층 암호화	TLS 기반 모든 통신 보안
계정권한 분리	관리자/유지보수/모니터 분리
이력무결성 확보	모든 변경이력 불변성 기록
비인가 소프트웨어 금지	승인된 엔지니어링 소프트웨어만 사용
정기 보안교육	현장운영자 보안 교육 필수화

✓ 정리

- PLC 보안은 이제 제어 설계의 필수 내장 요소
- 초기 설계에서 폐쇄성·감시성·인증성·무결성 체계를 구조적으로 확보해야 장기적 산업보안 체계가 된다.

스마트팩토리는 항상 '제어+보안'을 동시에 설계해야 한다.

14.6 Safety PLC (Fail-safe, SIL 인증)

✓ 개요

Safety PLC는 산업자동화에서 "생명·장비·시설 보호"를 목적으로 하는 Fail-safe 전용 제어 시스템이다.

- 기존 일반 PLC와 논리구조는 유사하지만
- 안전회로에 요구되는 **이중진단·무결성·SIL/PL 인증 기준**을 만족한다.

특히 대형 제조설비, 중공업, 플랜트, 발전, 반도체, 제약, 로봇라인 등에서는 **Safety PLC 통합설계**가 거의 필수화되고 있다.

☑ 1. 일반 PLC와 Safety PLC의 핵심 차이

구분	일반 PLC	Safety PLC
목적	생산제어	안전제어
고장 대응	Stop or 계속 운전	반드시 안전상태로 Fail-safe
내부진단	일반 연산오류 검사	이중CRC, 이중메모리, 진단회로
프로그래밍	표준 LD 등	전용 Safety 블록 사용
인증	필요없음	SIL / PL 등 국제안전인증 필요
이중화	선택사항	내부 이중구조 내장 필수

☑ 2. Safety PLC가 보호하는 주요 대상

보호대상	예시
인명안전	작업자 협착, 로봇 충돌, 감전, 낙하물
장비보호	과부하, 이상동작, 모터 손상
공정안정	연쇄사고 확산 방지
시설보전	폭발위험, 과압파괴, 과열손상

☑ 3. 국제 안전 인증 체계

인증명	의미	적용범위
SIL (IEC 61508, 62061)	Safety Integrity Level	일반 산업안전
PL (ISO 13849)	Performance Level	기계안전, 로봇제어
TÜV 인증	독립 인증기관 인증	각종 Safety 모듈 기준

★ SIL 수준 예시

SIL 등급	평균 고장발생 간격 (MTTFd)
SIL 1	≥ 10 ⁴ 시간
SIL 2	≥ 10⁵ 시간
SIL 3	≥ 106 시간
SIL 4	≥ 10 ⁷ 시간 (특수분야만 해당)

☑ 4. Safety PLC 내부 진단 구조

진단영역	설명
이중 CPU 연산	병렬 이중처리 → 상호검증
이중 RAM / ROM	CRC 이중무결성 검사
Watchdog	사이클 이상 감시
통신진단	Safety Protocol 이중화 (CRC 기반)
출력회로 자기검사	릴레이접점, 솔리드스테이트 출력 자기진단 내장

☑ 5. Fail-safe 제어 구조 흐름

```
1 [ 입력 (이중센서, 안전스위치) ]
2 ↓
3 [ Safety PLC 이중진단 ]
4 ↓
5 [ 안전 출력 (접촉기, 밸브 차단, 로봇정지) ]
6 ↓
7 [ 안전 상태 유지 → 비상복구 승인 후 정상복귀 ]
```

☑ 6. 제조사별 Safety PLC 제공 체계

제조사	안전제어 시스템
Siemens	S7-1500F, S7-1200F (F-CPU), Fail-safe IO
Rockwell	GuardLogix (ControlLogix 통합), Safety IO
Mitsubishi	iQ-R Safety CPU, Safe Motion 내장
LS산전	XGR Safety 이중화 (국내 공급 확대 중)
Omron	NX-S Safety Controller, Safety Task 분리
Keyence	Safety PLC KV-S Series
Pilz, Sick, ABB, Schmersal	전용 독립 Safety PLC 전문회사 존재

☑ 7. Safety PLC 프로그램 구조 예시

★ Siemens S7-1500F 기준

- Safety Program (F-Program) 이 일반 OB와 별도 존재
- Safety 기능 블록 예시:

블록명	기능
F-ESTOP	비상정지 회로
F-Mode	운전/보호모드 전환
F-Door	보호문 스위치 감시
F-Light Curtain	광커튼 감시
F-Monitoring	속도·위치 이상 감시

☑ 8. Safety Protocol (통신 이중화 안전프로토콜)

프로토콜	특징
PROFIsafe (Siemens)	PROFINET 기반 이중 CRC
CIP Safety (Rockwell)	EtherNet/IP 기반 확장
CC-Link Safety (Mitsubishi)	CC-Link Field 기반
Fail-safe over EtherCAT (FSoE)	EtherCAT 확장 안전층
Safety over OPC UA (IEC 62541)	차세대 Safety Layer 연구중

☑ 9. 실전 현장 Safety PLC 적용 사례

산업	적용사례
로봇라인	작업자 협착방지, 로봇속도제어
프레스공정	이중비상정지, 광커튼 인터록
용접라인	가스차단, 냉각수 이상시 자동정지
물류자동화	AGV 충돌방지, 스태커크레인 안전구간
발전소	증기배관 과압, 터빈 속도이상 차단

☑ 10. 도입시 초기설계 전략

단계	핵심
위험도 평가	위험요소 리스트 정량화 (Risk Graph 기반)
SIL/PL 목표 수립	공정별 인증목표 등급 정의
이중센서 설계	단일센서 오류 대비 이중화
Fail-safe 회로화	모든 비정상 → 안전정지 경로 확보
비인가변경 차단	프로그램 인증키·서명 관리
유지보수 교육	비상정지 복귀 절차 체계화

☑ 정리

- Safety PLC는 "사고 전 반드시 안전상태로 넘어가는 보장 시스템" 설계의 핵심
- 단순 제어가 아니라 **무조건 안전 우선 보호 설계 철학이 핵심**
- 초기부터 전체 설비 안전설계가 통합되면, 장기운영시 **작업자 안전, 장비수명, 품질 안정성**이 모두 극적으로 향상된다.

14.7 모델 기반 자동화 설계 (MBSE)

(PLC 기반 제어 시스템에서의 모델 기반 시스템 엔지니어링(MBSE) 완전 정리)

☑ 개요

MBSE (Model-Based Systems Engineering)는

전통적 문서중심 설계에서 → "**디지털 모델 중심 시스템 설계**" 로 전환하는 핵심 개념이다.

PLC 시스템 설계에서도 MBSE 개념을 적용하면:

공정 분석 → 제어 논리 → 안전시나리오 → 통신 연계 → 시뮬레이션 → 테스트 → 문서화
 전 과정을 일관된 모델로 관리할 수 있게 된다.

☑ 1. PLC 설계에서 MBSE가 필요한 이유

기존 문제	MBSE 해결
사양서-회로-소프트 분리	통합 모델로 자동 일관성 유지
프로그램-하드웨어 불일치	모델기반 하드+소프트 동시 설계
변경·추적 어려움	변경 이력 자동화
시뮬레이션 부족	가상 시뮬레이션 모델 동시검증
협업 한계	공통 표준모델 통한 다부서 협업 지원

✓ 2. PLC 시스템 MBSE 적용 흐름

```
1 요구분석 → SysML 기반 시스템 모델 생성
2 ↓
3 동작 논리 모델링 (시퀀스, 상태기계)
4 ↓
5 제어 블록 설계 (Function Block 설계)
6 ↓
7 I/O 모델링, 통신 매핑
8 ↓
9 안전 논리 모델링 (Safety Logic 설계 포함)
10 ↓
11 시뮬레이션 및 검증
12 ↓
13 PLC 코드 자동생성 → 다운로드 → 운영
```

☑ 3. MBSE 표준 모델링 언어

언어	설명
SysML	시스템 전체기능 요구분석 모델링
UML	시퀀스, 상태전이, 클래스 다이어그램
IEC 61131-3 표준	PLC Function Block 구조 직접 연계
SCD (System Control Diagram)	공정 중심 상태기계 설계
Statechart	시퀀스 기반 상태전이 설계

☑ 4. MBSE가 적용되는 PLC 설계 상세영역

설계영역	모델 적용
I/O 설계	입출력 매트릭스 모델
시퀀스 제어	상태기계 기반 모델링
에러처리	인터록·에러상태 상태도 모델
Safety 설계	ISO13849 / SIL 통합 위험도 모델
통신설계	통신 링크 매핑 다이어그램
공정동작 흐름	전체 시스템 시퀀스 모델

▼ 5. MBSE 도구 환경 예시

도구	설명
Siemens PLM	TIA Portal + Polarion MBSE
Rockwell Emulate 3D	PLC 시뮬레이션 연계 3D MBSE
IBM Rhapsody	SysML/UML 통합 시스템 모델링
Enterprise Architect	일반 MBSE 통합 도구
Simulink / Simscape	제어 모델 기반 시뮬레이션 연계
TwinCAT 3	PLC 모델 기반 자동코드생성 지원
Codesys UML	PLC 소프트웨어 직접 UML 연동 가능

☑ 6. MBSE 기반 PLC 프로젝트 실전 가치

효과	설명
요구정의 명확화	현장 요구 → 제어 모델 바로 매핑
시뮬레이션 사전검증	실제 하드설비 없이 가상 검증 가능
코드 일관성	모델 → 코드 자동생성 가능
변경추적성	모델 변경이력 자동 기록
협업성	공정, 기계, 전기, 제어 부서간 공통모델 공유 가능
문서자동화	유지보수 문서 자동생성 가능

☑ 7. MBSE와 디지털 트윈의 연결

구분	역할
MBSE	시스템 "설계 초기단계" 전체 모델링
디지털트윈	"운영중 현장설비" 실시간 가상연동

☑ 8. MBSE 적용 시 필수 개념

항목	설명
요구명세 추적성 (Requirement Traceability)	사양 요구 → 모델 요소 연결
상태기계(State Machine)	시퀀스 논리의 핵심 표현
블록다이어그램	전체 기능 블록 흐름 정의
인터페이스 명확화	각 모듈간 신호·데이터 흐름 일관성 확보
Safety Logic 통합	Fail-safe 조건 완전 모델화

☑ 9. 실전 PLC MBSE 적용 사례

산업	적용 사례
자동차	용접·조립라인 통합 시퀀스 자동생성
반도체	장비 자동이력 생성, Safety 상태기계 모델 자동검증
식음료	공정모듈화 라이브러리 기반 재사용
물류	AGV 제어 시뮬레이션 검증 포함 전체 모델링
발전	전체 발전제어시퀀스 통합 모델로 안정성 검증

☑ 10. 초기 MBSE 도입 전략

단계	실전 전략
① 파일럿 선택	단일설비 시퀀스부터 시작
② 표준블록 정의	재사용가능 FB, 시퀀스블록 설계
③ Safety 모델화	Fail-safe 시나리오부터 통합
④ 시뮬레이션 통합	물리장치 없이 가상테스트 환경 구축

단계	실전 전략
⑤ 조직협업 체계화	다부서간 공통모델 언어 표준화 추진

☑ 정리

- PLC 기반 자동화는 이제 단순 "코드 작성"이 아니라 "시스템 모델링 기반 설계" 시대로 확장되고 있다.
- MBSE를 적용하면 $\mathbf{\Omega}$ 구분석 \rightarrow 설계 \rightarrow 시뮬레이션 \rightarrow 자동코드생성 \rightarrow 운영유지보수까지 모든 과정을 일관된 논리로 통합관리할 수 있다.