Learning Segmentations that Balance Latency versus Quality in Spoken Language Translation

Hassan S. Shavarani, Maryam Siahbani, Ramtin M. Seraj, Anoop Sarkar Simon Fraser University, 8888 University Dr., Burnaby, BC, Canada {sshavara, msiahban, rmehdiza, anoop}@sfu.ca

Contributions

- We provide a method that will create annotated training data for segmentation classifier, considering both Latency and Accuracy
- Our method extends (Oda et al., 2014)'s greedy approach [2]
- Our method explores all potential segmentation points anywhere in the corpus to find the optimal set for data annotation (using dynamic programming)
- We provide experiments that show this method works better than the state-of-the-art methods

SEGMENTATION ALTERNATIVES

► Reference Sentence:

Ich war in meinen zwanzigern bevor ich erstmals in ein kunstmuseum ging

- ▶ BLEU Score: High (57.6)
- Segments/Second: Low

I was in my twenties before I ever went to an art museum Ich war in meine zwanziger jahre bevor ich je ging zu ein kunst museum

Reference Sentence:

Ich war in meinen zwanzigern bevor ich erstmals in ein kunstmuseum ging

- ► BLEU Score: Low (15.6)

► Reference Sentence:

Ich war in meinen zwanzigern bevor ich erstmals in ein kunstmuseum ging

- ► BLEU Score: Acceptable (38.2)
- Segments/Second: Acceptable

Example Corpus

 $NVD\overline{J}$ $\underline{\text{was in}} \mid \underline{\text{my twenties before I ever}} \mid \underline{\text{went to an art museum}}$. NV P S N P NA V P D N N grew up <u>in the middle of nowhere on a dirt road in rural Arkansas</u>. P D N N P J N $N \overline{V} \overline{R} P D N P N$

Point	Freq	Point	Freq	Point	Freq
N-P	6	J-N	3	V-R	1
P-D	5	N-N	2	P-S	1
D- N	4	P-N	2	P-J	1
N	3	D-J	2	S-N	1
N-V	3	R-P	1	A-V	1
V-D	3	N-A	1		
Full Se	gmenta	tion Set Size		40	

PARETO-OPTIMAL SEGMENTATION ALGORITHM

Algorithm Pareto-Optimal Segmentation							
1: $\Phi_0 \leftarrow \emptyset$							
2: for $k=1$ to K do							
3: for $j = 0$ to $k - 1$ do							
4: $\Phi' \leftarrow \{\phi : (\phi \not\in \Phi_j) \land (count(\phi; \mathcal{F}) = k - j)\}$							
5: $\Phi_{k,j} \leftarrow \Phi_j \cup \left\{ \text{arg pareto frontier}_{\phi \in \Phi'} \{ B_{\alpha}(s(\mathcal{F}, \Phi_j \cup \{\phi\})), \Lambda_{\alpha}(s(\mathcal{F}, \Phi_j \cup \{\phi\})) \} \right\}$							
6: end for							
7: if $k < K$ then							
8: $\Phi_{k,j} \leftarrow \operatorname{argmax}_{\phi \in \{\Phi_{k,j}: 0 \le j \le k\}} B_{\alpha}(s(\mathcal{F}, \phi))$							
9: end if							
10: $\Phi_k \leftarrow \operatorname{arg pareto frontier}_{\Phi \in \{\Phi_{k,j}: 0 \leq j \leq k\}} \{B_{\alpha}(s(\mathcal{F}, \Phi)), \Lambda_{\alpha}(s(\mathcal{F}, \Phi))\}$							
11: end for							
12: return $s(\mathcal{F}, \Phi_K)$							

Running Example

- For K = 2, We can have different segmentation choices for K=2
 - [N-N] happening twice OR [P-S,S-N] each happening once OR ...
- the run of algorithm over the example data will produce the following plot.

PARETO-OPTIMALITY **BLEU Score**

REFERENCES

- [1] H. S. Shavarani, M. Siahbani, R. M. Seraj, and A. Sarkar Learning Segmentations that Balance Latency versus Quality in Spoken Language Translation In Proc. of IWSLT 2015.
- [2] Y. Oda, G. Neubig, S. Sakti, T. Toda, and S. Nakamura Optimizing segmentation strategies for simultaneous speech translation In Proc. of ACL 2014.
- [3] V. K. Rangarajan Sridhar, J. Chen, S. Bangalore, A. Ljolje, and R. Chengalvarayan Segmentation strategies for streaming speech translation In NAACL, 2013.

PARETO-OPTIMAL SEGMENTATION

- Assumption: Sentence boundaries are predefined in the corpus!
- Greedily chooses the best potential seg. point and adds it to the previous selected points (as [2] does).
- Accuracy Measure: avg. $\{\frac{\text{Bleu}p1}{\#Segments}\}$
- Latency Measure: avg. $\{\frac{\#Segments}{Translation\ Time}\}$

Input: the desired avg. segment length

 \Rightarrow total number of expected segments (K)

RESULTS

- Task: English-German TED speech translation.
- Training/tuning the MT system data: IWSLT Train 2012-2013 + half of Europarl
- Segmenter Train/Test/Held-out data: IWSLT Dev/Test 2010,2011,2013
- Methods to be compared:
 - The state-of-the-art heuristic speech segmentation approach [3]
 - Greedy segmentation approach [2]
 - Pareto-optimal segmentation approach [1]

		$\mu =$	3	$\mu = 8$		
		Segs/Sec	Bleu	Segs/Sec	Bleu	
•	PO	0.474	18.07	0.315	21.77	
'	Greedy	0.424	18.07	0.305	21.63	