Reconnaissance d'écriture manuscrite

cours M2 ATAL

Adeline GRANET : adeline.granet@gmail.com

23 novembre 2020

Qui suis-je?

- Master recherche ATAL (2013-2015)
- Stage de fin d'étude : création d'un prototype de chatbot pour la Maif (2015)
- Thèse à l'Univ. Nantes: "Extraction d'information sur des documents anciens" dirigée par Emmanuel Morin, et encadrée par Solen Quiniou et Harold Mouchère => soutenue le 12 décembre 2018
- Aujourd'hui: Peevee (joinverture entre Manpower-Experis et Verteego):
 création d'un chatbot pour faire du support IT (incluant du machine learning)

Contexte applicatif

Contexte?

Contexte applicatif

Contexte:

- analyse automatique des chèques
- la reconnaissance automatique des adresses postales
- la classification des demandes administratives → adresser une requête au bon service
- classification, organisation du patrimoine ⇒ démarche d'humanité numérique

Contexte applicatif

Contexte:

- analyse automatique des chèques
- la reconnaissance automatique des adresses postales
- la classification des demandes administratives → adresser une requête au bon service
- classification, organisation du patrimoine ⇒ démarche d'humanité numérique

Particularités:

- redondances des informations dans des zones peu variantes
- vocabulaire fermé : chiffres, noms de rues, de villes

Système de reconnaissance d'écriture manuscrite

1/ Définition:

- un système automatique est construit pour répondre à 1 tâche donnée
- un apprentissage s'effectue à partir d'exemples pour généraliser la connaissance
- un exemple est une association entre 1 forme et 1 étiquette (caractère, mot)

2/ Fonctionnement:

un apprentissage et évaluation du modèle à partir d'une "vérité terrain"

Système de reconnaissance d'écriture manuscrite

1/ Définition

2/ Fonctionnement:

apprentissage et évaluation du modèle à partir d'une "vérité terrain"

3/ Problématique:

- avec nouvelles ressources constituées de milliers de pages
- une très grande quantité d'information qui est diversifiée

Première question

Vous êtes sur un nouveau projet, avec une toute nouvelle collection de documents manuscrits à étudier, quelle solution est envisageable ?

- définition d'un nouveau système de reconnaissance d'écriture dédié
- spécialisation d'un système existant avec un échantillon des données
- une autre option?

Contexte historique

Contexte historique

Exemple concret : Projet ANR Contrainte et Intégration : pour une **Ré**évaluation des **S**pectacles Forains et Italiens sous l'Ancien Régime

Contexte historique

Exemple concret : Projet ANR Contrainte et Intégration : pour une **Ré**évaluation des **S**pectacles Forains et Italiens sous l'Ancien Régime

- Période : 1716 à 1793
- 63 registres financiers ⇒ 63 saisons
- Différentes informations : les recettes, les dépenses, les acteurs et employés de la troupe, et d'autres informations contextuelles sur l'époque
- 7 types de pages identifiés : comptes journaliers, mensuels et annuels, pages blanches, couvertures, et état des pensionnaires

Date

Date

Titre

Date

Titre

Recettes

Date

Titre

Recettes

Dépenses

Date

Titre

Recettes

Dépenses

Acteurs

Date

Titre

Recettes

Dépenses

Acteurs

Notes

Date

Titre

Recettes

Dépenses

Acteurs

Notes

Tâche coûteuse ⇒ Focus sur Titre

- Différentes informations : titres + contexte (vocabulaires différents)
- Difficulté dans la représentation
- Informations sur les titres disponibles

Difficultés des registres

Détection et segmentation

- Divers types de documents
- Mises en pages variées

Difficultés des registres

Détection et segmentation

- Divers types de documents
- Mises en pages variées

Verrous scientifiques pour la reconnaissance d'écriture

- Documents anciens
- Beaucoup de données ~27 000 pages
- Plusieurs scripteurs selon les registres
- Multilingues : dialectes italiens, français
- Dispositions et informations changeantes
- Majoritairement construits avec des entitées nommées : "Raton et Rosette"

Difficultés des registres

Verrous scientifiques pour la reconnaissance d'écriture

- Documents anciens
- Beaucoup de données ~27 000 pages
- Plusieurs scripteurs : varie selon les registres
- Multilingues : dialectes italiens, français
- Dispositions et informations changeantes
- Majoritairement construits avec des entitées nommées : "Raton et Rosette"
- Caractères spéciaux et abréviations :

Rose

arleg?

Se Samedi 4 Juin 1768

(b) Invisible

c) Etc.

Objectifs

Vous êtes sur un nouveau projet, avec une toute nouvelle collection de documents manuscrits à étudier, quelle solution est envisageable ?

- définition d'un nouveau système de reconnaissance d' écriture dédié
- spécialisation d'un système existant avec un échantillon des données
- une autre option?

Étudier et analyser automatiquement les titres des comptes quotidiens

⇒ Sans vérité terrain

Sommaire

Pré-traitements

⇒ éliminer les défauts liés à l'image numérisée afin de faciliter la reconnaissance

2 types:

- la chaine de numérisation est responsable (inclinaison, luminosité, bruit, ...)
- la qualité intrinsèque du document est responsable (tâche d'humidité, de bougie, apparition du verso, des trous...)

• Conversion RGB vers niveau de gris

- Conversion RGB vers niveau de gris
- Suppression du bruit i.e. le fond de l'image
 - o par filtre passe-haut, passe-bas, ou morphologique ¹

^{1.} Ketata, Dalel et Maher Khemakhem (2010). « Un survol sur l'analyse et la reconnaissance de documents : imprimé, ancien et manuscrit ». In : Colloque International Francophone sur l'Ecrit et le Document (CIFED2010)

- Conversion RGB vers niveau de gris
- Suppression du bruit i.e. le fond de l'image
 - par filtre passe-haut, passe-bas, ou morphologique ¹ afin de différencier et supprimer les éléments superflus
 - des méthodes (comme Particle Swarm Optimization) combinant des filtres bilatéraux et des algorithmes, ou par variation totale qui construit une image intermédiaire utilisée comme masque ^{2,3}

^{1.} Ketata, Dalel et Maher Khemakhem (2010). « Un survol sur l'analyse et la reconnaissance de documents : imprimé, ancien et manuscrit ». In : Colloque International Francophone sur l'Ecrit et le Document (CIFED2010)

^{2.} Quraishi, Md Iqbal et al. (2013). « A novel hybrid approach to restore historical degraded documents ». In: Intelligent Systems and Signal Processing (ISSP), 2013 International Conference on. IEEE

^{3.} Likforman-Sulem, Laurence, Jérôme Darbon et Elisa H Barney Smith (2011).« Enhancement of historical printed document images by combining total variation regularization and non-local means filtering ». In: Image and vision computing

- Conversion RGB vers niveau de gris
- Suppression du bruit : le fond de l'image
- Binarisation: conversion de l'image en niveau de gris en noir et blanc
 - o def : séparation distincte en 2 classes le fond de l'encre
 - o méthode :
 - filtres gaussiens avec la définition d'un seuil d'intensité global appelé Otsu¹
 - alternatives locales ^{2,3,4} en cas de documents dégradés localement

^{1.} Otsu, Nobuyuki (1975). « A threshold selection method from gray-level histograms ». In: Automatica 11.285-296, p. 23-27 (cf. p. 22)

[.] Gatos, Basilios, Ioannis Pratikakis et Stavros J Perantonis (2006). « Adaptive degraded document image binarization ». In: Pattern recognition 39.3, p. 317-327

^{3.} Gatos, Basilios (2008). « Efficient binarization of historical and degraded document images ». In: Document Analysis Systems, 2008. DAS'08. The Eighth IAPR International Workshop on. IEEE, p. 447-454

^{4.} Shi, Zhixin et Venu Govindaraju (2004). « Historical document image enhancement using background light intensity normalization ». In: Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on. T. 1.IEEE

^{5.} Su, Bolan, Shijian Lu et Chew Lim Tan (2010). « Binarization of historical document images using the local maximum and minimum ». In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems. ACM. p. 159-166

- Conversion RGB vers niveau de gris
- Suppression du bruit : le fond de l'image
- Binarisation: conversion de l'image en niveau de gris en noir et blanc
 - o def : séparation distincte en 2 classes le fond de l'encre
 - o méthode :
 - filtres gaussiens avec la définition d'un seuil d'intensité global appelé Otsu¹
 - alternatives locales ^{2,3,4} en cas de documents dégradés localement

- Conversion RGB vers niveau de gris
- Suppression du bruit : le fond de l'image
- Binarisation : conversion de l'image en niveau de gris en noir et blanc

Alternative : Classification des pixels pour extraire l'encre du fond par CAE ou K-means

Limites:

- Risques de perdre des pixels d'encre fondus dans le fond
- Contour du document dans l'image suivant la couleur peut influencer les différentes techniques

- Conversion RGB vers niveau de gris
- Suppression du bruit : le fond de l'image
- Binarisation
- Correction des lignes de texte (*skew*): corriger l'inclinaison des lignes de bases
 - o méthodes:
 - projection horizontale des profils (Vinciarelli et Luettin 2001)

 -8°

 Les aveux Inviscrets, Le Roy et a lermier avec un Eurorissement

- Conversion RGB vers niveau de gris
- Suppression du bruit : le fond de l'image
- Binarisation
- Correction des lignes de texte (skew): corriger l'inclinaison des lignes de bases
 - o méthodes:
 - projection horizontale des profils (Vinciarelli et Luettin 2001)
 - par interpolation des contours (Bozinovic et Srihari 1989)
 - par estimation de la ligne de base au niveau mot ou au niveau de la ligne (Lemaitre et al. 2009,2011; Boukharouba 2017)
 - par correction locale (Espana-Boquera et al. 2011)
 - par une comparaison de l'ensemble des méthodes existantes (Rehman et Saba 2011)

- Conversion RGB vers niveau de gris
- Suppression du bruit : le fond de l'image
- Binarisation
- Correction des lignes de texte
- Correction de l'inclinaison de l'écriture (slant) : effacer les différences entre les scripteurs
 - o méthodes:
 - i. une estimation de l'angle est effectuée globalement ou localement
 - ii. l'image du texte est modifiée, généralement par cisaillement

- Conversion RGB vers niveau de gris
- Suppression du bruit : le fond de l'image
- Binarisation
- Correction des lignes de texte
- Correction de l'inclinaison de l'écriture
- Normalisation de la hauteur de l'écriture i.e. fixer les zones de hampes et de jambages et la zone centrale à une certaine hauteur

Sommaire

Différents types de segmentations : bloc, ligne, mot

Méthodes:

segmentation en ligne par projection des pixels

Différents types de segmentations : bloc, ligne, mot

Méthodes:

• segmentation en ligne par projection des pixels

Différents types de segmentations : bloc, ligne, mot

Méthodes:

- segmentation en ligne par projection des pixels
- regroupement de composantes connexes (avec une extraction de points d'intérêts, avec des projections de pixels et des HMMs, en utilisant la topologie des documents)

Différents types de segmentations : bloc, ligne, mot

Méthodes:

- segmentation en ligne par projection des pixels
- regroupement de composantes connexes (avec une extraction de points d'intérêts, avec des projections de pixels et des HMMs, en utilisant la topologie des documents)

Limites:

- croisement entre les hampes et jambages de lignes connexes
- présence de filets potentiellement

Différents types de segmentations : bloc, ligne, mot

Méthodes:

- segmentation en ligne par projection des pixels
- regroupement de composantes connexes (avec une extraction de points d'intérêts, avec des projections de pixels et des HMMs, en utilisant la topologie des documents)
- modèles hybrides combinant MLP et NN (non supervisé), NN (supervisé)

Différents types de segmentations : bloc, ligne, mot

Méthodes:

- segmentation en ligne par projection des pixels
- regroupement de composantes connexes (avec une extraction de points d'intérêts, avec des projections de pixels et des HMMs, en utilisant la topologie des documents)
- modèles hybrides combinant MLP et NN (non supervisé), NN (supervisé)

De moins en moins utilisé et nécessaire!

Sommaire

- transformation de l'image 2D en un vecteur de valeurs numériques par segment de l'image
- zone:
 - o se base sur une fenêtre glissante : à largeur fixe, et à hauteur fixe ou adaptée
 - o par segmentation de caractères, ou graphèmes
 - image complète

Caractéristiques ⇒ se base sur la valeur direct des pixels

Caractéristiques structurelles ⇒ agencement des pixels les uns par rapport aux autres

- nombre de transition observée entre l'écriture et l'arrière-plan
- nombre de pixels d'encre observés
- position des contours supérieurs et inférieurs dans la fenêtre
- moyenne des valeurs des pixels
- position du centre de gravité
- position des lignes bases (ou références)

Caractéristiques statistiques et directionnelles ⇒ permet l'orientation des traits par la construction d'histogrammes orientés

- SIFT : une transformation de caractéristiques invariante à l'échelle
 - o détection de points clés dans l'image par convolution à partir d'une gaussienne
 - calcul du gradient pour chaque point clé
 - construction de l'histogramme des orientations à 360°

Caractéristiques statistiques et directionnelles ⇒ permet l'orientation des traits par la construction d'histogrammes orientés

- SIFT : une transformation de caractéristiques invariante à l'échelle
- HOG:
 - o calcul du gradient pour l'ensemble des points de l'image regroupé par bloc ou sur l'image globale
 - o construction de l'histogramme des orientations

Caractéristiques par apprentissage

- ⇒ extraction non supervisée des caractéristiques sans connaissances à priori
- ⇒ représentation de l'image à différentes échelles

Caractéristiques par apprentissage

- réseaux de neurones simples
- réseaux de neurones à convolution (CNN) : très utilisé en *Vision Object*, taches très diverses (classification, détection d'objet, segmentation, ...)
 - entrée : objet en 2D ou 3D
 - structure : ens. de filtres (3 ou 5 pixels de largeur et hauteur)
 - calcule du produit scalaire des pixels de la fen. ⇒ carte d'activation en 2D
 - hyper-paramètre : chevauchement de la fenêtre glissante, création d'une marge autour de l'image
 - o un filtre = ensemble de caractéristiques à une échelle différente selon la position dans le réseau
 - o avantage : partage des poids des neurones d'une même couche

⇒ souvent associé à un sous-échantillonnage *Pooling* : évite le sur-apprentissage et réduit temps de

Caractéristiques par apprentissage

- réseaux de neurones simples
- réseaux de neurones à convolution (CNN) : très utilisé en *Vision Object*, taches très diverses (classification, détection d'objet, segmentation, ...)
- réseaux de type auto-encodeurs à variation, à convolution

Sommaire

Modèle de reconnaissance d'écriture

- Fin des années 90 : les modèles de Markov caché (HMM)
- Début des années 2000 : systèmes hybrides neuro-markoviens
- ⇒ pouvoir discriminant : mieux modéliser le caractère local et global de l'écriture
 - Depuis 2009 à maintenant : réseaux récurrents
- ⇒ intègrent encore mieux le mixte du local et du global, avec des effets de contexte, pour optimiser une décision sur une séquence complète

Approches stochastiques

• HMM:

- un modèle probabiliste qui modélise et reconnaît des séquences temporelles
- doublement stochastique
 - proba état vers état
 - proba d'observation
- entrée : vecteur de caractéristiques

⇒ maximiser la probabilité d'observation d'une séquence émise par les états cachés

Approches stochastiques

HMM:

- o un modèle probabiliste qui modélise et reconnaît des séquences temporelles
- doublement stochastique
 - proba état vers état
 - proba d'observation
- o entrée : vecteur de caractéristiques
- o maximiser la probabilité d'observation d'une séquence émise par les états cachés
- deux approches :
 - globale : n modèles pour n mots
 - analytique : un modèle par caractère ⇒ concaténation pour former des mots
- ⇒ attention à la segmentation et le nombre d'états par modèle : problème de ligature
- ⇒ modèle de mots : limité sur les mots reconnus mais extraction précise pour des mots clés

- Réseau de neurones récurrents (RNN) ⇒ un grand nombre d'avantage
 - robustesse au bruit
 - pas de connaissances a priori nécessaire
 - la mémoire du neurone permet de prendre le contexte ⇒ augmente les performances
 - \circ méthode de la rétro-propagation du gradient (Werbos 1990) par itération \to converger vers un minimum global

⇒ Limites :

- le gradient diminue rapidement au point de disparaître (*Vanishing gradient*) donc une prise en compte du contexte proche uniquement
- les poids d'apprentissage en grande quantité nécessitent des données suffisantes (sur-apprentissage)

- Réseau de neurones récurrents (RNN)
 - ⇒ pour résoudre le problème du gradient

a) neurone récurrent

b) neurone Long Short Term Memory

C) neurone Gated Recurrent Unit

- Réseaux de neurones récurrents (RNN)
- Réseaux de neurones xDimensionnels ⇒ considère l'information passée et future

ex: pour un caractère donné, prise en compte des caractères précédents et suivants

- Réseaux de neurones récurrents (RNN)
- Réseaux de neurones xDimensionnels
 - BRNN
 - o BLSTM

Architecture : 2 couches indépendantes durant l'apprentissage

- Réseaux de neurones récurrents (RNN)
- Réseaux de neurones xDimensionnels
 - o BRNN
 - o BLSTM
 - MDLSTM

Fig. 1. The Recurrent Neural Network considered in this paper, with the places where dropout can be applied.

Sommaire

CTC: Connexionist Temporal Classification (A. Graves 2006,2009)

Créé pour des tâches de classifications temporels ⇒ problèmes d'étiquetages de séquences où l'alignement est inconnu entre l'entrée et la sortie du système

Pré-traitement des données d'entrée ou post-traitement des données en sortie du réseau : inutile

Prédit une séquence de caractères π pour une séquence d'entrée noté x où $y_{\pi t}^{t}$ est la probabilité d'observer l'étiquette π à l'instant t

$$\mathbb{P}(\pi|x) = \prod_{t=1}^{T} \mathbb{P}(\pi_t|x,t) = \prod_{t=1}^{T} y_{\pi_t}^t$$

Caractéristiques:

- Unique couche de neurones de type Softmax
- |L| neurones où un neurone correspond à une classe
- +1 neurone "joker" appelé blank

Apprentissage : algorithme forward-backward modifié pour intégrer le label blank dans la séquence de label attendue

⇒ insertion du blank au début, à la fin et entre chaque caractère d'un label :

 $cat \Rightarrow blcblabltbl$

$$|I'| = 2 * |I| + 1$$

Apprentissage : algorithme forward-backward modifié pour intégrer le label blank dans la séquence de label attendue

• insertion du blank au début, à la fin et entre chaque caractère d'un label

une entrée → plusieurs séquences différentes

 ajout d'une fonction surjective pour supprimer les répétitions de caractères non séparées par un blank puis supprimer les blank

```
{__SSS_o _ ppp_hh_i_ee___} devient {Sophie}
```

• la probabilité de la séquence d'étiquettes finale l est calculée à partir de l'ensemble des chemins possibles $\mathbb{P}(l|x) = \prod \mathbb{P}(\pi|x)$

Décodage:

- le meilleur chemin
- par recherche de préfixe

⇒ utilisation de dictionnaires et modèles de langues : apprentissage et décodage

Visualisation du CTC pendant l'apprentissage:

Prédiction du mot "accordingly": Itération 0

Prédiction du mot "accordingly": Itération 20

: accordingly. with len=107

prediction

0.8

0.6

0.4

0.2

67

120 t

Modélisation du langage

Sortie des réseaux imparfaite ⇒ possibilité de la contraindre avec TAL

- les dictionnaires : vocabulaires des documents étudiés, de la langue ou
 Wikipedia ⇒ problème évolution de la langue donc mots hors-vocabulaire
- les modèles probabilistes : les n-grammes, les multi-grammes
- les approches neuronales :
 - o large vocabulaire : HMM/ANN montre de meilleurs résultats qu'un BLSTM

Sommaire

Un peu plus loin:

T. Bluche: reconnaissance de paragraphes

Objectifs

Vous êtes sur un nouveau projet, avec une toute nouvelle collection de documents manuscrits à étudier, quelle solution est envisageable ?

- définition d'un nouveau système de reconnaissance d' écriture dédié
- spécialisation d'un système existant avec un échantillon des données
- une autre option?

Étudier et analyser automatiquement les titres des comptes quotidiens

⇒ Sans vérité terrain

Objectifs

Vous êtes sur un nouveau projet, avec une toute nouvelle collection de documents manuscrits à étudier, quelle solution est envisageable ?

- définition d'un nouveau système de reconnaissance d' écriture dédié
- spécialisation d'un système existant avec un échantillon des données
- Apprentissage par transfert de connaissances

Étudier et analyser automatiquement les titres des comptes quotidiens

⇒ Sans vérité terrain

Apprentissage par Transfert de Connaissances (ATC)

Apprentissage par Transfert de Connaissances (ATC)

Apprentissage par Transfert de Connaissances (ATC)

14

Discussion(s)

Application du ATC sur les registres de CI

ATC appliqué à notre étude

Une tâche donnée → annoter les images de lignes de titres de la Comédie-Italienne

ATC appliqué à notre étude : nouveau modèle

Une tâche donnée → annoter les images de lignes de titres de la Comédie-Italienne décomposer le problème en 2 modèles

Pour la suite, slides de soutenance