Q1

(b) da que temos 4 estados, podemos utilizar 2 Flip-Flops

()	DIN Estado	0	1
	- A 5	B/0	A/0
a .	В	B/0	c/0
	· · · · ·	D10	Alo
	D	B/0	c/1

-> Tabela de Transição de Estados (Modelo Mealy)

Se usarmos dois Flip-Flops D (FF-D), sabemos que sua tabela de existação é tal que que que D. Além disso, podemos codificar os estados da sequinte maneira: -> Livre de Corrida Critica

	9, 90 N	0	1	Mapa de l	Karnaugh
D	00	11/0	01/1	,	,
Č	01	00/0	10/0	para 9,	FOUND
B	11	11/0	01/0		
A	10	11/0	10/0		

$$\frac{96}{10}$$
: $\frac{1}{90}$ $\Rightarrow 96 = (90 + 94). DIN + 94.90 + 94.96$

$$\Rightarrow 96 = (90 + 94). DIN + (94.96 + 94.96)$$

1085: Cada Transição representa.

Nin Din Vispense Change

Dé que temos 4 estados, podemos utilizar 2 Flip-Flops

			\rightarrow	Don't C	(are		
Nin Din Estados	00	01	11	10	_	→	Tabela de Transição
A	A/00	c/00	×	B/00	•		de Estados
B	B/00	D/00	×	c/00			(Modelo Kealy)
(c/00	A/10	×	2/00			Chrose to hear h
D	D/00	A/11	×	A/10			

De usarmos dois Flip-Flops D (FF-D), sabemos que sua tabela de excitação é tal que q_(n+1) = D. Além disso, podemos codificar os estados da seguinte maneira:

A = 0 A =

D= 10

Temos .

Nin Din	00	01	11	10	-> Mapa de Karnaugh
00	00/00	11/00	×	01/00	para
01	01/00	10/00	×	11/00	7,+ 8+ Dispense Change
11	11/00	00/10	×	10/00	14 6 Topiense Change
10	10/00	00/11	×	00/10	

$$0 \quad (1 \quad \times \quad 1) \rightarrow q + = q_0 \cdot \overline{N_{in}} \cdot \overline{D_{in}} + \overline{q_1} \cdot \overline{q_2} \cdot D_{in} + \overline{q_1} \cdot N_{in}$$

$$0 \quad \times \quad 1$$

$$0 \quad \times \quad 0$$

$$0 \quad \times \quad 0$$

se: 0 0 x 0
$$\rightarrow$$
 Dispense = $q_1 \cdot \overline{Din} + q_1 \cdot \overline{q}_2 \cdot \overline{Nin}$
0 0 x 0
0 1×0
0 1×1

Change: 0 0 X 0 -> Change =
$$9.\overline{9}$$
. Din
0 0 X 0
0 0 X 0
0 1 X 0

