

Redes de Flujo: Variantes

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Circulación con demandas

Sea una red de flujo G=(V,E)

Cada v e V, tiene una demanda d_v entera

Si $d_v > 0 \implies V$ demanda d_v de flujo (es un sumidero)

Si $d_v < 0 \implies V$ produce d_v de flujo (es una fuente)

Si $d_{v} = 0 \implies V$ es un vértice interno

Existen:

un set S de fuentes que generan flujo

un set T de sumideros que absorben flujo

Tanto los S y T pueden tener vértices de entrada y de salida

Circulación con demandas (cont.)

La circulación con demanda {d_v} es una función f que asigna un número real no negativo a cada vertice

Debe satisfacer:

- Para cada e \in E, $0 \le f(e) \le C_e$ (condición de capacidad)
- Para cada $v \in V$, $f_{in}(V) f_{out}(V) = d_v$ (condición de demanda)

Problema de la circulación con demandas

demanda.

Determinar si existe una circulación que cumpla con las condiciones de

Igual oferta que demanda

Si existe una circulación con demanda $\{d_v\}$ entonces $\sum d_v = 0$

Supongamos que existe una circulación con demanda f factible, entonces

$$\sum_{v} d_{v} = \sum_{v} f_{in}(v) - f_{out}(v)$$

Para cada eje e = (u,v) su f(e) se contabiliza 2 veces Una para fout(u) y otra para fin(v)

Por lo tanto la suma total es cero

Podemos afirmar:
$$D = \sum_{v:d_v>0} d_v = \sum_{v:d_v<0} -d_v$$

Reducción al problema de flujo máximo

Sea una red de flujo G=(V,E) tal que Cada v ∈ V, tiene una

demanda d_v entera,

Creamos:

Una "super" fuente S*

Un "super" sumidero T*

Para cada $v \in V / d_v > 0$

Creamos el eje e=(v, T^*) con C(e)= d_v

Para cada $u \in V / d_{II} < 0$

Creamos el eje $e=(S^*,u)$ con $C(e)=-d_u$

Verificación de existencia

Resolvemos el problema de flujo máximo

Realizamos un corte s-t dejando el S* en A y el resto en B

Circulación con demandas y límite inferior

Variante del problema anterior

Se agrega como condición que ciertos ejes tengan un flujo mínimo

Debe satisfacer:

- Para cada $v \in V$, $f_{in}(V) f_{out}(V) = d_v$ (condición de demanda)

Decidir si existe una circulación factible

Resolución

Reducimos al problema de circulación con demanda

Limite inferior

Nos valdremos de un G* ficticio

Forzaremos que los ejes con limite tengan el ese valor

Sea Lv = $\sum_{e \text{ in } v} l_e - \sum_{e \text{ out } v} l_e$

Cada eje cambiará su capacidad en C_e – l_e

Cada vertice cambiara su demanda en d_v - L_v

Resolución (cont.)

$$L_a = 0 - 5 = -5$$

$$L_b = 2 - 0 = 2$$

$$L_f = 5 - 2 = 3$$

$$Da^* = Da - La = -20 - (-5) = -15$$

$$Db^* = 0 - 2 = -2$$

$$Df^* = 0 - 3 = -3$$

$$Caf^* = Caf - laf = 10 - 5 = 5$$

$$Cfb^* = 10 - 2 = 8$$

Resolución (cont.)

$$L_a = 0 - 5 = -5$$

$$L_b = 2 - 0 = 2$$

$$L_f = 5 - 2 = 3$$

$$Da^* = Da - La = -20 - (-5) = -15$$

$$Db^* = 0 - 2 = -2$$

$$Df^* = 0 - 3 = -3$$

$$Caf^* = Caf - laf = 10 - 5 = 5$$

$$Cfb^* = 10 - 2 = 8$$

Presentación realizada en Mayo de 2020