Natural Language Processing

Assignment 1

September 23, 2024 (small update: September 26, 2024)

This is the first hand-in assignment for Natural Language Processing, and it counts towards 15% of your final grade. The pen& paper assignments constitute 40% of the assignment grade, the other 60% are for the Python assignments. You may work in pairs (i.e. at most two students); hand in the assignment as a single zip file on Brightspace.

Assignment 1: Finite State Automata (9 points)

A non-deterministic finite state automaton is a finite state automaton where different transitions between states can be allowed for a single symbol. Given the non-deterministic nature of such an automaton, there may be *ambiguity*, i.e. one input word may be accepted by multiple paths through the automaton. An example is given below:

The assignment

- 1. (2 points) Give two sequences of states (aka a path) for recognizing the string sequence aba.
- 2. (3 points) Give a symbol sequence that is recognized by the above automaton but in only one possible way.
- 3. (4 points) What is the regular expression that corresponds to this automaton?

Assignment 2: N-grams and smoothing (11 points)

Given is a very simple corpus with counts as below:

Unigram counts:

$$\langle \mathsf{s} \rangle$$
 the lecture was fun $\langle \mathsf{s} \rangle$ 20 9 5 8 7 14

Bigram counts:

	<s></s>	the	lecture	was	fun	
<s></s>	0	8	3	6	2	1
the	0	0	6	0	3	0
lecture	0	0	0	4	0	1
was	0	4	0	0	4	0
fun	0	0	1	2	0	4
	14	0	0	0	0	0

Additionally, we have the following counts:

$$\begin{split} &C(<\mathsf{s}> \text{ the lecture}) = 5 \\ &C(\text{the lecture was}) = 2 \\ &C(\text{lecture was fun}) = 3 \\ &C(\text{was fun }) = 1 \end{split}$$

The assignment

- 1. (2 points) Calculate the bigram probability P(was | lecture).
- 2. (3 points) Calculate the add-2 smoothed trigram probability $P(\text{fun} \mid \text{lecture was})$.
- 3. (3 points) Calculate the sequence probability of P(<s> the lecture was fun </s>), given a bigram model.
- 4. (3 points) Calculate the sequence probability of P(<s> the lecture was fun </s>), given a trigram model.

Assignment 3: Part-of-speech tagging (10 points)

Recall the part-of-speech tagset from the universal dependencies project, (different from the tagset for the Penn Treebank!)

	Tag	Description	Example
Open Class	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
	VERB	words for actions and processes	draw, provide, go
	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
Closed Class Words	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by, under
		spacial, temporal, or other relation	
	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
	DET	Determiner: marks noun phrase properties	a, an, the, this
	NUM	Numeral	one, two, first, second
	PART	Particle: a function word that must be associated with an-	's, not, (infinitive) to
190		other word	
	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
Other	PUNCT	Punctuation	; , ()
	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

The assignment Use the tags above to give the tag sequences for the sentences below:

- 1. (2 points) I love Utrecht!
- $2.~(\emph{4}~points)$ Their successor may suffer a breakdown .
- $3.~(\emph{4 points})~\text{Hello}$, is this the droid you are looking for ?

Assignment 4: Constituency & dependencies (10 points)

The following grammar is given:

Non-terminal rules

 $\begin{array}{l} S \longrightarrow \text{NP VP} \\ \text{VP} \longrightarrow \text{ITV} \mid \text{TV NP } \mid \text{DTV NP NP } \mid \text{VP PP} \\ \text{NP} \longrightarrow \text{Det NN } \mid \text{NP PP } \mid \text{NNS } \mid \text{NN } \mid \text{Pron} \\ \text{PP} \longrightarrow \text{Prep NP} \end{array}$

Terminal rules

$$\begin{split} \text{ITV} &\longrightarrow \text{sleep} \mid \text{eat} \\ \text{TV} &\longrightarrow \text{eat} \mid \text{repeat} \mid \text{write} \\ \text{DTV} &\longrightarrow \text{show} \mid \text{give} \mid \text{promise} \\ \text{Det} &\longrightarrow \text{a} \mid \text{the} \\ \text{NN} &\longrightarrow \text{rice} \mid \text{joy} \mid \text{grammar} \\ \text{NNS} &\longrightarrow \text{llamas} \mid \text{lectures} \mid \text{exercises} \\ \text{Pron} &\longrightarrow \text{I} \mid \text{you} \mid \text{me} \\ \text{Prep} &\longrightarrow \text{to} \mid \text{on} \mid \text{without} \end{split}$$

The assignment

1. (5 points) Give the corresponding constituency tree for the following sentence:

Exercises without grammar give me joy

2. (5 points) Now add the dependency annotation to your constituency tree above. You can ignore unary branches (i.e. a node that only refers to a single leaf does not require a dependency label). Just like in the exercises, use the mod label for prepositional phrases, consider the preposition the head of the phrase, and the noun (phrase) complement to be the prepositional object (pobj).

Assignment 5, 6, 7 (60 points)

See the Python notebook.