

11) Publication number: 0 670 370 A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 95100259.1

(22) Date of filing: 10.01.95

(5) Int. Cl.⁶: **C12N 15/52**, C12P 13/14, C12N 1/21, // (C12N1/21, C12R1:19)

(30) Priority: 10.01.94 JP 825/94

(43) Date of publication of application : 06.09.95 Bulletin 95/36

(84) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU MC

NL PT SE

(1) Applicant: Ajinomoto Co., Inc. No. 15-1, Kyobashi 1-chome, Chuo-ku Tokyo 104 (JP)

(2) Inventor: Ono, Eiji, c/o Central Research Laboratories Ajinomoto Co., Inc., No. 1-1 Suzuki-cho Kawasaki-ku, Kawasaki-shi, Kanagawa-ken (JP) Inventor: Tsujimoto, Nobuharu, c/o Central Research Lab. Aiinomoto Co., Inc., No. 1-1 Suzuki-cho Kawasaki-ku, Kawasaki-shi, Kanagawa-ken Inventor: Matsui, Kazuhiko, c/o Central Research Lab. Ajinomoto Co., Inc., No. 1-1 Suzuki-cho Kawasaki-ku, Kawasaki-shi, Kanagawa-ken (JP) Inventor: Kurahashi, Osamu, c/o Central Research Lab. Ajinomoto Co., Inc., No. 1-1 Suzuki-cho Kawasaki-ku, Kawasaki-shi, Kanagawa-ken (JP)

Representative : Strehl Schübel-Hopf Groening & Partner
Maximilianstrasse 54
D-80538 München (DE)

(54) Method of producing L-glutamic acid by fermentation.

57 The present invention provides a low-cost and efficient production method of L-glutamic acid, by improving the productivity of L-glutamic acid in a microorganism of the genus Escherichia.

[Constitution]

A method of producing L-glutamic acid by fermentation comprising culturing in a liquid culture medium a mutant of the genus Escherichia having L-glutamic acid-producing ability whose α -ketoglutarate dehydrogenase activity is deficient or reduced and phosphoenolpyruvate carboxylase and glutamate dehydrogenase activities are amplified, accumulating L-glutamic acid in the culture, and recovering L-glutamic acid ther from.

Field of the Invention

The present invention relates to a mutant useful for producing L-glutamic acid by fermentation as well as a method of producing L-glutamic acid by fermentation using such a mutant. L-glutamic acid is an amino acid widely used as an additive for foods and in medicaments.

Prior Art

L-glutamic acid has conventionally been produced by fermentation using glutamic acid-producing bacteria and mutants thereof such as those of the genus <u>Brevibacterium</u>, <u>Corynebacterium</u> or <u>Microbacterium</u> (Amino acid fermentation, Gakkai Shuppan Center, pp.195 to 215 (1986)). Other known methods of producing L-glutamic acid by fermentation include a method employing microorganisms of the genus <u>Bacillus</u>, <u>Streptomyces or Penicillium</u> (US Patent No. 3,220,929) and a method employing microorganisms of the genus <u>Pseudomonas</u>, <u>Arthrobacter</u>, <u>Serratia</u> or <u>Candida</u> (US Patent No. 3,563,857). Even though such conventional methods produce significantly large amounts of L-glutamic acid, an even more efficient and less expensive method of producing L-glutamic acid is desired in order to meet the ever-increasing demand.

Escherichia coli is a potentially excellent L-glutamic acid-producing bacterium in view of its high growth rate and the availability of sufficient gene information, while the reported amount of L-glutamic acid production by Escherichia coli is as low as 2.3 g/l (J. Biochem., Vol. 50, pp.164 to 165 (1961)). Recently, a mutant exhibiting a deficient or reduced α -ketoglutarate dehydrogenase (hereinafter referred to as α -KGDH) was reported to have the ability to produce large amounts of L-glutamic acid (French Patent Application Laid-Open No. 2680178).

Problems to be Solved by the Invention

25

30

35

40

10

An objective of the present invention is to enhance the L-glutamic acid-producing ability of strains belonging to the genus <u>Escherichia</u> and to provide a method of producing L-glutamic acid more efficiently and at a lower cost.

Means to Solve the Problems

Now it has been found surprisingly in our study on the production of L-glutamic acid by mutants of Escherichia coli that a mutant whose α -KGDH activity is deficient or reduced, and whose phosphoenolpyruvate carboxylase (hereinafter referred to as PPC) and glutamate dehydrogenase (hereinafter referred to as GDH) activities are enhanced, has a high L-glutamic acid-producing ability, and thus the present invention has been accomplished.

Accordingly, the present invention relates to:

A mutant of the genus <u>Escherichia</u> having L-glutamic acid-producing ability whose α -KGDH activity is deficient or reduced, and PPC and GDH activities are enhanced; and,

A method of producing L-glutamic acid by fermentation comprising culturing in a liquid culture medium a mutant of the genus <u>Escherichia</u> having L-glutamic acid-producing ability whose α -KGDH activity is deficient or reduced and PPC and GDH activities are enhanced, accumulating L-glutamic acid in the culture, and recovering L-glutamic acid therefrom.

The present invention is described in more detail below.

45

50

55

Derivation of a mutant of the genus Escherichia exhibiting deficient or reduced α-KGDH activity

As a starting parent strain to be used for preparing the present mutant, any non-pathogenic strain of the genus <u>Escherichia</u> may be employed. Examples of such strains are listed below.

Escherichia coli K-12 (ATCC 10798)

Escherichia coli W3110 (ATCC 27325)

Escherichia coli B (ATCC 11303)

Escherichia coli W (ATCC 9637)

A mutant of the genus <u>Escherichia</u> which has L-glutamic acid-producing ability and having deficient or reduced α -KGDH activity may be prepared as follows.

The starting parent strain mentioned above is first exposed to X-radiation or ultraviolet light or mutagenic agents such as N-methyl-N'-nitro-N-nitrosoguanidine (hereinafter referred to as NG) to introduce the mutation.

Alternatively, gene engineering technology, for example, gene recombination, gene transformation or cell

fusion, may be used to efficiently introduce the intended mutation.

A method of obtaining an α -KGDH-deficient mutant by means of gene recombination is conducted as follows. Based on the known nucleotide sequence (Euro. J. Biochem. Vol. 141, pp. 351 to 359 (1984)) of α -ketoglutarate dehydrogenase gene (hereinafter referred to as sucA gene), primers are synthesized and then the sucA gene is amplified by the PCR method using the chromosomal DNA as a template. Into the amplified the sucA gene, a drug-resistant gene is inserted to obtain a sucA gene whose function is lost. Subsequently, using homologous recombination, the sucA gene on the chromosome is replaced by a sucA gene whose function is lost by means of the insertion of the drug-resistant gene.

After subjecting the parent strain to mutagenic treatment, the intended mutants may be screened by procedures as illustrated below.

A mutant exhibiting a deficient or reduced α -KGDH activity is either not able to grow or is able to grow only at a significantly reduced growth rate in a minimum culture medium containing glucose as the carbon source under aerobic condition. However, even under such condition, normal growth is possible by adding succinic acid or lysine plus methionine to the minimum culture medium containing glucose. On the other hand, anaerobic condition allows the mutant to grow even in the minimum culture medium containing glucose (Molec. Gen. Genetics, Vol. 105, pp. 182 to 190 (1969)). Based on these findings, the desired mutants can be screened.

The following strain is an example of the mutants thus obtained whose α -KGDH activity is deficient or reduced and which are listed below.

Escherichia coli W3110 sucA::Kmr

A mutant whose α -KGDH activity is deficient or reduced is more useful in view of its enhanced ability to produce L-glutamic acid when it further has the properties that L-glutamic acid-degrading activity is reduced or the expression of ace operon, that is, malate synthase (aceB) - isocitrate lyase (aceA) - isocitrate dehydrogenase kinase/phosphatase (aceK) operon becomes constitutive. These properties are discussed in French Patent Application Laid-open No. 2680178. As a matter of course, properties already known to be effective for improving L-glutamic acid-productivity, such as various types of auxotrophy, antimetabolite resistance and antimetabolite sensitivity, are also desirable for enhancing L-glutamic acid production ability.

A mutant having reduced ability to degrade L-glutamic acid may be isolated as a mutant which either cannot grow or can grow only slightly in a minimum culture medium containing L-glutamic acid as the sole carbon source instead of glucose or containing L-glutamic acid as a sole nitrogen source instead of ammonium sulfate. However, as a matter of course, when an auxotroph is employed for the derivation, the minimum essential amount of the nutrient required for the growth may be added to the culture medium.

A mutant in which the expression of the ace operon is constitutive may be obtained as a strain whose parent strain is a phosphoenolpyruvate synthase-deficient strain and which can grow in a minimum culture medium containing lactic acid as the carbon source but cannot grow in a minimum culture medium containing pyruvic acid or acetic/pyruvic acid as the carbon source, or as a strain which shows a higher growth rate than that of its parent strain whose α-KGDH is deficient or reduced under aerobic condition (J. Bacteriol., Vol. 96, pp. 2185 to 2186 (1968)).

Examples of the mutants described above are as follows.

Escherichia coli AJ 12628 (FERM BP-3854)

Escherichia coli AJ 12624 (FERM BP-3853)

Escherichia coli AJ 12628 is a mutant having a reduced α -KGDH activity and a reduced ability to degrade L-glutamic acid in combination with constitutive expression of ace operon. Escherichia coli AJ 12624 is a mutant having reduced α-KGDH activity and a reduced ability to degrade L-glutamic acid (French Patent Application Laid-open No. 2680178).

In the mutant thus obtained which exhibits deficient or reduced α -KGDH activity, the flow of biosynthesis of L-glutamic acid via α -ketoglutaric acid in the TCA cycle is improved, resulting in an enhanced ability of producing L-glutamic acid. Also the productivity of L-glutamic acid is increased in the mutant exhibiting deficient or reduced α -KGDH activity and significantly low ability to degrade the produced L-glutamic acid or in the mutant further having a constitutive expression of the ace operon whereby the growth is improved.

(2) Derivation of a mutant of the genus Escherichia having amplified PPC activity and GDH activity

In the examples described below, a mutant of the genus Escherichia having amplified PPC and GDH activities was obtained from a starting parent strain exhibiting deficient or reduced α-KGDH activity and having the ability to produce L-glutamic acid. It is also possible to use a wild strain of the genus Escherichia as the parent strain to obtain a mutant having amplified PPC and GDH activities whereafter a mutant is bred which exhibits deficient or reduced α -KGDH activity.

Accordingly, the starting parent strain used to prepare a mutant having amplified PPC and GDH activities

50

45

40

10

20

is preferably a mutant of the genus <u>Escherichia</u> whose α-KGDH activity is deficient or reduced and which has the ability to produce L-glutamic acid or a non-pathogenic wild type strain of the genus <u>Escherichia</u>. Examples of such strains are listed below.

Escherichia coli W3100 sucA::Kmr

Escherichia coli AJ 12628 (FERM BP-3854)

Escherichia coli AJ 12624 (FERM BP-3853)

(Those listed above are the mutants of the genus Escherichia whose α -KGDH activity is deficient or reduced and which have the ability to produce L-glutamic acid.)

Escherichia coli K-12 (ATCC 10798)

Escherichia coli W3110 (ATCC 27325)

Escherichia coli B (ATCC 11303)

Escherichia coli W (ATCC 9637)

(Those listed above are the non-pathogenic wild strains of the genus Escherichia.)

In order to amplify PPC and GDH activities, the genes coding for PPC and GDH are cloned in an appropriated plasmid, which is then used to transform the starting parent strain employed as a host. The copies of the genes coding for PPC and GDH (hereinafter referred to as ppc gene and gdhA gene, respectively) in the transformed cells are increased, resulting in amplified PPC and GDH activities.

The ppc gene and gdhA gene to be cloned may be cloned into a single plasmid to be introduced into the starting parent strain employed as the host, or may be cloned separately into two types of plasmid which are compatible in the starting parent strain.

Alternatively, the amplification of PPC and GDH activities may be conducted by allowing the <u>ppc</u> and <u>gdhA</u> genes to be present as multicopies on the chromosomal DNA of the starting parent strain employed as the host. In order to introduce the <u>ppc</u> and <u>gdhA</u> genes as multicopies into the chromosomal DNA of the genus <u>Escherichia</u>, homologous recombination is applied utilizing a target sequence present as a multicopy on the chromosomal DNA. The sequence present as the multicopy may be a repetitive DNA and an inverted repeat present at the terminal of insertion sequence. Alternatively, as described in Japanese Patent Application Laidopen No. 2-109985, the <u>ppc</u> and <u>gdhA</u> genes are cloned on a transposon, which is then transposed, thereby introducing the multicopy into the chromosomal DNA. The copies of the <u>ppc</u> and <u>gdhA</u> genes in the transformed cells are increased, resulting in the amplification of PPC and GDH activities.

In addition to the gene amplification described above, the amplification of PPC and GDH activities may also be conducted by replacing the promoters of the \underline{ppc} and \underline{gdhA} genes with those having higher potencies. For example, \underline{lac} promoter, \underline{trp} promoter, \underline{trc} promoter, \underline{trc} promoter, \underline{trc} promoter, \underline{trc} promoter and $\underline{P_L}$ promoter of a lambda phage are known to be strong promoters. By enhancing the expression of the \underline{ppc} gene and of the \underline{gdhA} gene, the PPC and GDH activities are amplified.

The ppc and gdhA genes can be obtained by isolating the genes which are complementary with regard to auxotrophy of the mutants which are either PPC or GDH deficient. Alternatively, since the nucleotide sequences of these genes of Escherichia coli are known (J. Biochem., Vol. 95, pp. 909 to 916 (1984); Gene, Vol. 27, pp. 193 to 199 (1984)), the primers are synthesized based on the nucleotide sequences and then the genes are obtained by the PCR method using the chromosomal DNA as the template.

(3) Production of L-glutamic acid by fermentation using a mutant of the genus <u>Escherichia</u> capable of producing L-glutamic acid which exhibits deficient or reduced α -KGDH activity and has amplified PPC and GDH activities

For the purpose of producing L-glutamic acid by fermentation using a mutant of the genus <u>Escherichia</u> capable of producing L-glutamic acid which exhibits deficient or reduced α -KGDH activity and has amplified PPC and GDH activities, a standard culture medium containing carbon sources, nitrogen sources, inorganic salts and, if necessary, organic trace nutrients such as amino acids and vitamins and a standard culture method may be employed. The carbon sources and the nitrogen sources employed in the culture medium may be any of those catabolized by the mutant employed.

The carbon sources may be saccharides such as glucos⁻, glycerol, fructose, sucrose, maltose, mannose, galactose, starch hydrolysate and molasses, and organic acids such as acetic acid and citric acid may also be employed independently or in combination with other carbon sources.

The nitrogen sources may be ammonia and ammonium salts such as ammonium sulfate, ammonium carbonate, ammonium chloride, ammonium phosphate, ammonium acetate as well as nitrates.

The organic trace nutrients may be amino acids, vitamins, fatty acids and nucleic acids as they are or as contained in peptone, casamino acid, yeast extract, soy protein hydrolysate and the like. In cases of using an auxotroph the nutrient required for its growth should be supplemented.

40

45

50

55

5

10

15

20

25

The inorganic salts may be phosphate, magnesium salts, calcium salts, iron salts, manganese salts and the like.

Cultivation is conducted at a fermentation temperature from 20 to 45°C at a pH controlled to be in a range of from 5 to 9 with aeration. When the pH is controlled during the cultivation, calcium carbonate or alkali such as ammonia gas may be added for neutralization. After culturing for from 10 hours to 4 days, a significant amount of L-glutamic acid is accumulated in the culture medium.

L-glutamic acid in the culture medium after cultivation may be recovered by any of the known methods. For example, the cells are removed from the culture medium, which is then concentrated and precipitated or subjected to ion exchange chromatography to obtain L-glutamic acid.

10

15

20

5

Brief Description of the Drawings

Fig. 1 shows the construction procedure of pBR-sucAB,

Fig. 2 shows a procedure for disrupting the sucAgene on the chromosomal DNA of Escherichia coli W3110,

Fig. 3 shows the construction procedure of pGK.

Examples

The present invention is further described by the following examples.

Example 1

(1) Cloning of sucA gene and dihydrolipoamide succinyl transferase gene of Escherichia coli

25

55

The nucleotide sequences of <u>sucA</u> gene and dihydrolipoamide succinyl transferase gene (hereinafter referred to as <u>sucB</u> gene) of <u>Escherichia coli</u> K12 are known. The known nucleotide sequences of <u>sucA</u> gene and <u>sucB</u> gene are disclosed in Euro. J. Biochem., Vol. 141, pp. 351 to 374 (1984), and also shown here as Sequ ID No. 7 in the sequence listing. The nucleotide sequence from the 327th through the 3128th base residues corresponds to ORF (open reading frame) of the <u>sucA</u> gene, while that from the 3143rd through the 4357th base residues corresponds to ORF of the <u>sucB</u> gene. According to the nucleotide sequences reported, primers shown in Sequ ID No.1 to 4 were synthesized and <u>sucA</u> and <u>sucB</u> genes were amplified by PCR method employing the chromosomal DNA of <u>Escherichia coli</u> W3110 as a template.

The synthetic primers used to amplify the <u>sucA</u> gene had the nucleotide sequences shown in Sequ ID No.1 and 2, and Sequ ID No.1 corresponds to the sequence consisting of the 45th through the 65th base residues in the nucleotide sequence figure of the <u>sucA</u> gene described in Euro. J. Biochem., Vol. 141, p. 354 (1984). It also corresponds to the sequence consisting of the 45th through the 65th base residues of the nucleotide sequence shown as Sequ ID No. 7.

Sequ ID No. 2 corresponds to the sequence consisting of the 3173rd through the 3193rd base residues in the nucleotide sequence figure of the <u>sucB</u> gene shown in Euro. J. Biochem., Vol. 141, p. 364 (1984). It also corresponds to the sequence consisting of the 3173rd through the 3193rd base residues of the nucleotide sequence shown as Sequ ID No. 7.

The synthetic primers used to amplify the <u>sucB</u> gene had the nucleotide sequences shown in Sequ ID No.3 and 4, and Sequ ID No. 3 corresponds to the sequence consisting of the 2179th through 2198th base residues in the nucleotide sequence figure of the <u>sucA</u> gene shown in Euro. J. Biochem., Vol. 141, p. 354 (1984). It also corresponds to the sequence consisting of the 2179th through the 2198th base residues of the nucleotide sequence shown as Sequ No. 7.

Sequ ID No. 4 corresponds to the sequence consisting of the 4566th through the 4591st base residues in the nucleotide sequence figure of the <u>sucB</u> gene shown in Euro. J. Biochem., Vol. 141, p. 364 (1984). It also corresponds to the sequence consisting of the 4566th through the 4591st base residues of the nucleotide sequence shown as Sequ ID No. 7. The <u>sucA</u> gene and the <u>sucB</u> gene form an operon.

The chromosomal DNA of Escherichia coli W3110 was recovered by a standard method (Seibutsukogaku Jikkensho, Ed. by Nippon Seibutsu Kogaku Kai, pp. 97 to 98, Baifukan (1992)).

The PCR reaction was carried out under the standard conditions described on page 8 of PCR Technology (Ed. by Henry Erlich, Stockton Press (1989)).

Both ends of PCR products thus produced were converted into blunt ends using T4 DNA polymerase and cloned into a vector pBR322 at the <u>EcoRV</u> site. The plasmid obtained by cloning the <u>sucA</u> gene into pBR322 was designated as pBR-sucA, and that constructed with <u>sucB</u> was designated as pBR-sucB. The plasmids

thus obtained were introduced into Escherichia coli JM109 and the plasmids were prepared. Then the restriction maps were constructed and compared with the restriction maps of the <u>sucA</u> and <u>sucB</u> genes reported, thereby confirming that the genes which had been cloned were the sucA and sucB genes.

As shown in Fig. 1, pBR-sucB was digested with <u>KpnI</u> and <u>EcoRI</u> to prepare a DNA fragment containing the <u>sucB</u> gene. pBR-sucA was digested with <u>KpnI</u> and <u>EcoRI</u> to prepare a large fragment. Both fragments were ligated using T4 DNA ligase to produce pBR-sucAB.

(2) Disruption of the sucA gene on chromosomal DNA of Escherichia coli W3110

Fig. 2 outlines the disruption of the <u>sucA</u> gene on the chromosomal DNA of <u>Escherichia coli</u> W3110. pBR-sucAB was digested with <u>Kpnl</u> and T4 DNA polymerase was used to obtain blunt ends. On the other hand, pUC4K (purchased from Pharmacia) was digested with <u>Pstl</u> to prepare a DNA fragment containing a kanamycin-resistance gene, which was converted to have blunt ends using T4 DNA polymerase. Both fragments were ligated using T4 DNA ligase to obtain pBR-sucA::Kmr. From this plasmid, a <u>HindIII-EcoRI</u> fragment containing the kanamycin-resistance gene was cut out as a linear DNA, which was used to transform <u>Escherichia coli</u> JC7623 (<u>thr-1</u>, <u>ara-14</u>, <u>leuB6</u>, Δ(<u>gpt-proA</u>)62, <u>lacY1</u>, <u>tsx-23</u>, <u>supE44</u>, <u>gal1K2</u>, λ̄, <u>rac</u>, <u>sbcB15</u>, <u>hisG4</u>, <u>rfbD1</u>, <u>recB21</u>, <u>recC22</u>, <u>rpsL31</u>, <u>kdgK51</u>, <u>xyl-5</u>, <u>mtl-1</u>, <u>argE3</u>, <u>thi-1</u>) obtained from the <u>Escherichia coli</u> Genetic Stock Center (at Yale University, USA), and strains in which the <u>sucA</u> gene on the chromosomal DNA was replaced with the <u>sucA</u> gene into which the kanamycin-resistance gene had been inserted (sucA::Kmr) were screened on L medium (bactotrypton 10 g/l, yeast extract 5 g/l, NaCl 5 g/l, agar 15 g/l, pH 7.2) supplemented with 25 µg/ml of kanamycin. Since <u>Escherichia coli</u> JC7623 possessed recB⁻, recC⁻ and sbcB⁻, recombination can be achieved at a high frequency even if the transformation is conducted using a linear DNA.

From each of twelve (12) kanamycin-resistant strains thus obtained, the chromosomal DNA was prepared and digested with KpnI. By southern hybridization using a DNA fragment containing the sucA gene as a probe, all of 12 strains were confirmed to be strains in which the sucA gene on the chromosomal DNA was replaced with the sucA gene into which kanamycin-resistance gene had been inserted. While a wild strain exhibits two bands at 5.2 Kb and 6.2 Kb due to the presence of KpnI site in the DNA fragment containing the sucA gene when a 2.6 Kb EcoRI-HindIII fragment containing the sucA gene of pBR-sucA was used as the probe in the southern hybridization, strains having the replacement with sucA gene into which kanamycin-resistance gene has been inserted exhibits only one band at 11.4 Kb due to the disruption of the KpnI site upon introduction of the kanamycin-resistance gene. The kanamycin-resistance Escherichia coli JC7623 (sucA::Km²) thus obtained was then infected with P1 phage and the phage lysate was prepared. Then Escherichia coli W3100 strain was transduced with the sucA::Km². Transduction with P1 phage was conducted by a standard method (Seibutsu-kogaku Jikkensho, Ed. by Nippon Seibutsu Kogaku Kai, pp. 75 to 76, Baifukan (1992)). The representative of the kanamycin-resistance strains isolated was designated as W3110 sucA::Km².

The α-KGDH activities of the strain W3110 sucA::Km^r and Escherichia coli W3110 were determined according to the method by Reed et al (Methods in Enzymology, Vol. 13, pp. 55 (1969)). The results are shown in Table 1. α-KGDH activity of Escherichia coli W3110 sucA::Km^r was not detected. Thus, Escherichia coli W3110 sucA::Km^r is a strain deficient in α-KGDH activity.

Table 1

	W3110	W3110 <u>sucA</u> ::Km ^r
α-KGDH activity	3.70	Not detected
(Unit : n	nicromoles/mg	protein/min)

(3) Cloning of gdhA gene of Escherichia coli W3110

Similarly as in the cloning of the <u>sucA</u> and <u>sucB</u> genes, the PCR method was used to clone the <u>gdhA</u> gene. According to the nucleotide sequence of <u>gdhA</u> gene reported by Fernando et al, primers for PCR were synthesized. The nucleotide sequence of the <u>gdhA</u> gene is disclosed in Gene, Vol. 27, pp.193 to 199 (1984), and is also shown here as Sequ ID No. 8 in the sequence listings. The nucleotide sequences of the primers ar shown in Sequ ID Nos. 5 and 6.

Sequ ID No. 5 corresponds to the sequence from the 191st through the 171st base residues in the nucleotide sequence figure of <u>gdhA</u> gene shown in Gene, Vol. 27, p.195 (1984), and it also corresponds to the

40

10

20

30

50

55

sequence from the 3rd through the 23rd base residues in Sequ ID No. 8.

Sequ ID No. 6 corresponds to the sequence consisting of the 1687th through the 1707th base residues in the nucleotide sequence figure of the gdhA gene shown in Gene, Vol. 27, p.195, (1984), and it also corresponds to the sequence consisting of 1880th through the 1900th base residues in Sequ ID No. 8.

Using the synthetic primers the gdhA gene was amplified by the PCR method employing the chromosomal DNA of Escherichia coli W3110 as a template. PCR products thus obtained were purified and converted to have blunt ends using T4 DNA polymerase, and then ligated to pBR 322 digested with EcoRV to obtain a plasmid pBRGDH.

(4) Construction of a plasmid having the ppc and gdhA genes

Fig. 3 shows the procedure for the construction of a plasmid having the ppc and gdhA genes. The plasmid pS2 in which 4.4Kb Sall fragment containing the whole region of the ppc gene derived from Escherichia coli K-12 was inserted into the Sall site of pBR322 (J. Biochem, Vol. 9, pp.909 to 916 (1984)) was digested with Hindlll and both ends were made blunt using T4 DNA polymerase. On the other hand, a DNA fragment containing the gdhA gene synthesized by the PCR method was converted to have blunt ends using T4 DNA polymerase. Subsequently, both fragments were ligated using T4 DNA ligase. The plasmid thus obtained was used to transform a GDH deficient strain, Escherichia coli PA 340 (thr-1, fhuA2, leuB6, lacY1, supE44, gal-6, λ-, gdh-1, hisG1, rfbD1, galP63, Δ(gltB-F), rpsL19, malT1(lambdaR), xy1-7, mtl-2, argH1, thi-1) obtained from the Escherichia coli Genetic Stock Center (at Yale University, USA) and an ampicillin-resistant strain which had lost its glutamic acid requirement for growth was isolated. From this strain, a plasmid was prepared and the restriction map was constructed, whereby it was confirmed that the ppc and gdhA genes were present on this plasmid. This plasmid was designated as pGK.

(5) Introduction of pS2, pBRGDH and pGK into α-KGDH deficient strain Escherichia coli W3100 sucA::Kmr and evaluation of L-glutamic acid-production

The α -KGDH-deficient strain, Escherichia coli W3100 sucA: Km^r was transformed with each of pS2, pBRGDH and pGK, and each of the transformed strains was inoculated into a 500-ml shaker flask containing 20 ml of the culture medium having the composition shown in Table 2. Cultivation was then carried out at 37 °C until the glucose in the culture medium was consumed completely. The results are shown in Table 3.

Table 2

Component	Concentration (g/l)
Glucose	40
(NH ₄) ₂ SO ₄	20
KH ₂ PO ₄	1
MgSO₄·7H₂O	1
FeSO ₄ ·7H ₂ O	0.01
MnSO ₄ ·5H ₂ O	0.01
Yeast extract	2
Thiamine hydrochloride	0.01
CaCO ₃	50

10

20

35

40

Table 3

Strain	Accumulated L-glutamic acid (g/l)
W3110 sucA::Km ^r	19.2
W3110 sucA::Km ¹ /pS2	19.9
W3110 sucA::Km ^r /pBRGDH	2.8
W3110 sucA::Km ^r /pGK (AJ 12949)	23.3

Although the transformed strain having the PPC activity amplified by the introduction of pS2 exhibited slightly reduced growth as compared with the host strain, W3110 sucA::Kmr, it accumulated L-glutamic acid in an amount similar to that accumulated by the host strain. The strain having GDH activity amplified by the introduction of pBRGDH exhibited quite poor growth, and the amount of the accumulated L-glutamic acid was surprisingly smaller than that accumulated by the strain W3110 sucA::Kmr.

On the contrary, the transformed strain in which both of PPC and GDH activities were amplified simultaneously by the introduction of pGK exhibited growth similar to that of the host strain while producing an increased amount of accumulated L-glutamic acid. Escherichia coli W3110 sucA::Kmr into which pGK plasmid having the ppc and gdhA genes had been introduced was designated as AJ 12949. Escherichia coli AJ 12949 was originally deposited under the accession number FERM P-14039 on December 28, 1993, at the National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken 305, Japan, and the deposit was converted into a deposit under the Budapest Treaty under the accession number FERM BP-4881 on November 11, 1994.

The host strain, namely, W3110 sucA::Kmr can be obtained by curing the plasmid from the deposited strain, AJ 12949 without damaging the cell. The plasmid may be lost from AJ 12949 spontaneously, or may be cured in a curing procedure (Bact. Rev., Vol. 36, p.361 to 405 (1972)). An example of the curing procedure is as follows. The strain AJ 12949 is inoculated to the L-broth medium (Bactotrypton 10 g/l, yeast extract 5 g/l, NaCl 5 g/l, pH 7.2), and cultivated at 40°C overnight. The culture broth is diluted appropriately, and spread onto the L-medium. After incubating it at 37° C overnight, the colonies formed are transferred to the L-medium containing 100 μg/ml of ampicillin and then ampicillin-sensitive colonies are isolated. The strain thus obtained is W3110 sucA::Kmr.

Advantages of the Invention

The method according to the present invention provides a mutant of the genus <u>Escherichia</u> having a higher productivity of L-glutamic acid as well as the efficient and low-cost method for the production of L-glutamic acid.

5

10

15

20

25

35

40

45

SEQUENCE LISTING

	SDECTION OF THE PROPERTY OF TH
5	
-	GENERAL INFORMATION:
10	APPLICANT: NAME: Ajinomoto Co., Inc. STREET: 15-1, Kyobashi 1-chome CITY: Chuo-ku, Tokyo COUNTRY: Japan POSTAL CODE: none
15	TITLE OF INVENTION: Method of producing L-glutamic acid by fermentatio
	NUMER OF SEQUENCES: 8
20	COMPUTER READABLE FORM: MEDIUM TYPE: Diskette COMPUTER: IBM PC compatible OPERATING SYSTEM: MS-DOS
25	SEQUENCE DESCRIPTION:
30 35	SEQ ID No.: 1 Length: 21 base pairs Type: Nucleotide Strandedness: Single Topology: Linear Molecule type: Synthetic DNA Feature: Primer for amplification of sucA gene of Escherichia coli Sequence ACGCGCAAGC GTCGCATCAG G
40	SEQ ID No.: 2 Length : 21 base pairs Type : Nucleotide Strandedness : Single Topology : Linear
45	Molecule type: Synthetic DNA Feature: Primer for amplification of <u>sucA</u> gene of <u>Escherichia coli</u> Sequence ATCGGCTACG AATTCAGGCA G
50	SEQ ID No.: 3 Length: 20 base pairs Type: Nucleotide Strandedness: Single Tapology: Linear
55	Topology: Linear Molecule type: Synthetic DNA Feature: Primer for amplification of sucB gene of Escherichia coli

5	Sequence CCGGTCGCGG TACCTTCTTC 20	
10	SEQ ID No.: 4 Length: 26 base pairs Type: Nucleotide Strandedness: Single Topology: Linear Molecule type: Synthetic DNA Feature: Primer for amplification of sucB gene of Escherichia coli	
15	Sequence CGTAGACCGA ATTCTTCGTA TCGCTT 26	
20	SQ ID No.: 5 Length : 21 base pairs Type : Nucleotide Strandedness : Single	
25	Topology: Linear Molecule type: Synthetic DNA Feature: Primer for amplification of gdhA gene of Escherichia coli Sequence GGGTGGCAAA GCTTTAGCGT C	
30		
35	SEQ ID No.: 6 Length: 21 base pairs Type: Nucleotide Strandedness: Single Topology: Linear Molecule type: Synthetic DNA Feature: Primer for amplification of gdhA gene of Escherichia coli Sequence TCGAGAAGCA TGCATTATAT A	
40		
	SEQ ID No.: 7 Length : 4623 base pairs Type : Nucleotide	
4 5	Strandedness : Single Topology : Linear Molecule type: Genomic DNA Original source Organism : Escherichia coli Features	
50	Feature key: CDS ⇒from 327 to 318 bp coding sequence Location: 3273128 Method of feature determination: E Feature key: CDS ⇒from 3143 to 4357 bp coding sequence	CP
	Location: 31434357 Method of feature determination: E	

	Sequ	ence	-m m		CCTA	B TG(יבים:	ששככ	GTA	GGCC	TGA	TAAG	ACGC	GC A	AGCG	TCGCA	60
	TCGA	CCAA	CC N	GTGC	CGEA	ית הכני	CGT	GAAC	GCC'	TTAT	CCG	GCCT.	ACAA	GT C	ATTA	CCCGT	120
5	D.C.C.C	CTCA	TAA	cccc	AGCG	C AT(TAGG	CGTA	ACA	AAGA	AAT	GUAG	СААА	IC I	TIM	WWCI	180
	CCCC	CTC	CAC	ጥአአር	BCBC	ጥ ጥጥ	בבידיו	AGGT	TCC'	TTCG	CGA	GCCA	CTAC	GT A	GACA	AGAGC	240
	TOCO	AACT	CA A	CCCC	CCCA	c cci	ACAT	CACT	GTG	CGTG	GTA	GTAT	CCAC	GG C	GAAG	TAAGC	300
	ATAA	AAAA	GA T	GCTT	AAGG	G AT	CACG	ATG	CAG	AAC	AGC	GCT	TTG	AAA	GCC	166	353
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							Met	Gln	Asn	Ser	Ala	Leu	Lys	Ala	Trp	
10								1				5					401
10	TTG	GAC	TCT	TCT	TAC	CTC '	TCT	GGC	GCA .	AAC	CAG	AGC	TGG	ATA	GAA	CAG	401
	Leu	Asp	Ser	Ser	Tyr	Leu	Ser	Gly	Ala .	Asn	Gln	Ser	Trp	Ile	GLu	GIN	
	10					15					20					23	449
	CTC	TAT	GAA	GAC	TTC	TTA .	ACC	GAT	CCT	GAC	TCG	GTT	GAC	Ala	AAC	TGG	443
	Leu	Tyr	Glu	Asp		Leu	Thr	Asp	Pro	ASP	ser	vai	ASP	ALG	40	TTD	
15			ACG		30		mm 3	CCT	CCT	35	GGA	GTC	444	CCG		CAA	497
	CGT	TCG	ACG Thr	TTC	CAG	CAG	TTA	Dro CC1	GU	Thr	Glv	Val	Lvs	Pro	Asp	Gln	
	Arg	Ser	Thr		GIN	GIII	TEA	FLO	50		1		-1-	55			
	mmc.	CNC	TCT	45	»CG	CGT	AAD	тат	TTC	CGC	CGC	CTG	GCG	AAA	GAC	GCT	545
	Phe	Hic	Ser	Gln	Thr	Ara	Glu	Tvr	Phe	Arq	Arg	Leu	Ala	Lys	Asp	Ala	
			60					65					70				
20	TCA	CGT	TAC	тст	TCA	ACG	ATC	TCC	GAC	CCT	GAC	ACC	AAT	GTG	AAG	CAG	593
	Ser	Arg	Tyr	Ser	Ser	Thr	Ile	Ser	Asp	Pro	Asp	Thr	Asn	Val	Lys	Gln	
		75					ខេត					85					
	GTT	***	GTC	CTG	CAG	CTC	ATT	AAC	GCA	TAC	CGC	TTC	CGT	GGT	CAC	CAG	641
	Val	Lys	Val	Leu	Gln	Leu	Ile	Asn	Ala	Tyr	Arg	Phe	Arg	Gly	His	GIN	
25	90					95					100					103	689
	CAT	GCG	AAT	CTC	GAT	CCG	CTG	GGA	CTG	TGG	CAG	CAA	GAT	AAA	GIG	GCC N1 n	669
	His	Ala	Asn	Leu	Asp	Pro	Leu	Gly	Leu	Trp	GIN	GIN	Asp	гÃг	120	ALA	
					110				ama	115	C 2 2	CCN	CAC.	ጥጥር		GAG	737
	GAT	CTG	GAT	CCG	TCT	TTC	CAC	GAT	CTG	The	GAA	Bla	Agn	Phe	Gln	Glu	,
	Asp	Leu	Asp		Ser	Phe	Hls	Asp	130	1111	Gru	Λια	ωp	135	01	02.	
30			AAC	125	ccm	ጥር እ	արտարա	GCC	AGC	GGC	AAA	GAA	ACC		AAA	CTC	785
	ACC	TTC	Asn	Uni	Clu	Ser	Phe	Ala	Ser	Glv	Lvs	Glu	Thr	Met	Lys	Leu	
			140					145					120				
	GGC	GAG	CTG	CTG	GAA	GCC	CTC	AAG	CAA	ACC	TAC	TGC	GGC	CCG	ATT	GGT	833
	Glv	Glu	Leu	Leu	Glu	Ala	Leu	Lys	Gln	Thr	Tyr	Cys	Gly	Pro	Ile	Gly	
35		155					160				•	165					201
00	GCC	CAC	ייי אי	ATG	CAC	ATT	ACC	AGC	ACC	GAA	GAA	AAA	CGC	TGG	ATC	CAA	881
	Ala	Glu	Tyr	Met	His	Ile	Thr	Ser	Thr	Glu	Glu	Lys	Arg	Trp	Ile	GIN	
	170	١				175					180					102	929
	CAG	CGT	ATC	GAG	TCT	GGT	CGC	GCG	ACT	TTC	AAT	AGC	GAA	CAG	Luc	T.UE	323
	Gln	Arg	Ile	Glu			Arg	Ala	Thr	Phe	Asn	Ser	GIU	GIU	200	пåз	
40			TTA		190	cm.c	3.00	ccc	CCT	195	CCT	СФФ	GAA	CGT			977
	CGC	TTC	: TTA : Leu	AGC	GAA	CTG	ACC	N1 =	D) =	GIN	GOI	Leu	Glu	Ara	Tvr	Leu	
	Arg	Phe	. Leu			Leu	1111	Ala	210	014	013	200		215	- 2 -		
			AAA A	205	· ~~~	cec	GC A	444	CGC	ттс	TCG	CTG	GAA			GAC	1025
	C1.	. GC.	Lys	Dhe	Pro	GOC	Ala	Lvs	Ara	Phe	Ser	Leu	Glu	Gly	Gly	Asp	
45			220	1				225					230				
45	GCG	2 TT2	ነ አጥር		ATG	стт	AAA	GAG	ATG	ATC	CGC	CAC	GCT	GGC	AAC	AGC	1073
	Ala	Lei	Ile	Pro	Met	Leu	Lys	Glu	Met	Ile	Arg	His	Ala	Gly	Asn	Ser	
		231	ξ.				240)				245					
	GG	- 200	car	GA	A GTG	GTT	CTC	GGG	ATG	GCG	CAC	CGT	GGT	CGT	CTG	AAC	1121
	Gl	y Thi	r Arg	Gli	ı Val	Val	Leu	Gly	Met	Ala	His	Arg	Gly	Arg	Leu	Asn	
50	250	n				255					260)				263	1160
	GT	Ģ CT	G GT	G AAG	GT	CTG	GGI	' AAA	AAA /	CCG	CAA	GAC	TTG	TTC	GAC	GAG	1169
	Va.	l Le	u Va	l Ası	a Val	Leu	Gly	/ Lys	Lys	Pro	GIR	Asp	Leu	. rue	Asp	GIU	
					270)				275	, ,,~-	. cc	C 3 C	Cmc	280		1217
	TT	C GC	c GG	I AA	A CAI	KAA 1	GAA	CAC	CTC	GGC	, ACG	- GGT	GAC.	1/-1	ን አንዲላላ የ የነን	TAC	161/
	Ph	e Al	a Gl	y Ly:	s His	s Lys	GIL	ı Hıs	, Leu	GL	rnı	. сту	Asp	, val	. шуз	Tyr	

				285					290					295	,		
5	CAC	ATG	GGC	TTC	TCG	TCT	GAC	TTC	CAG	ACC	GAI	GGC	GGC	CTG	GTG	CAC	1265
3	His	Met	Gly	Phe	Ser	Ser	Asp	Phe	Gln	Thr	Asp	Gly	Gly	Leu	Val	His	
			300					305)				310				
	CTG	GCG	CTG	GCG	TTT	AAC	CCG	TCT	' CAC	CTT	GAG	ATT	GTA	AGC	CCG	GTA	1313
	Leu	Ala	Leu	Ala	Phe	Asn		Ser	His	Leu	Glu	Ile	Val	Ser	Pro	Val	
	~mm	315					320					325					
10	GTT.	ATC	GGT	TCT	GTT	CGT	GCC	CGT	CIG	GAC	AGA	CTT	GAT	GAG	CCG	AGC	1361
	330	TTE	GTÀ	Ser	vai		Ala	Arg	Leu	Asp		Leu	Asp	Glu	Pro		
			222	GTG.	CTC	335	n Tr	3.00	200	CAC	340		~~~			345 ACC	
	Ser	Asn	T.ve	Val	LAU	Pro	TIO	The	TIO	LAC	CI	Asp	31a	GUA	GTG	ACC	1409
			273	141	350	110	116	1117	116	355	GIY	ASP	Ala	ATa	360		
45	GGG	CAG	GGC	GTG			GAA	ACC	СТС		ATG	TCG	AAA	GCG	CGT	CCT	1457
15	Gly	Gln	Gly	Val	Val	Gln	Glu	Thr	Leu	Asn	Met	Ser	Lvs	Ala	Ara	G) v	1437
				365					370				_	375	_	-	
	TAT	GAA	GTT	GGC	GGT	ACG	GTA	CGT	ATC	GTT	ATC	AAC	AAC	CAG	GTT	GGT	1505
	Tyr	Glu	Val	Gly	Gly	Thr	Val	Arg	Ile	Val	Ile	Asn	Asn	Gln	Val	Gly	
			380					385					390			-	
20	TTC	ACC	ACC	TCT	AAT	CCG	CTG	GAT	GCC	CGT	TCT	ACG	CCG	TAC	TGT	ACT	1553
	Phe	Thr	Thr	Ser	Asn	Pro		Asp	Ala	Arg	Ser	Thr	Pro	Tyr	Cys	Thr	
	CATE	395					400					405					
	Den	TIO	CI	AAG	ATG	GTT	CAG	GCC	CCG	ATT	TTC	CAC	GTT	AAC	GCG	GAC	1601
	410	116	GIÅ	гАа	Mec	415	GIN	ATA	Pro	ite		His	Val	Asn	Ala		
25		CCG	GAA	GCC	CTT		Մ	GTG.	ACC	CCT	420	GCG	CTC	CDM	mm.c	425	1540
25	Asp	Pro	Glu	Ala	Val	Ala	Phe	Val	Thr	Ara	Len	Ala	Lau	DAT	Pho	CGT	1649
	•				430					435	Deu	ALG	Беа	ռոր	440	AIG	
	AAC	ACC	TTT	AAA	CGT	GAT	GTC	TTC	ATC		CTG	GTG	TCG	TAC	CGC	CGT	1697
	Asn	Thr	Phe	Lys	Arg	Asp	Val	Phe	Ile	Asp	Leu	Val	Ser	Tvr	Ara	Arg	
				445					450					455	_		
30	CAC	GGC	CAC	AAC	GAA	GCC	GAC	GAG	CCG	AGC	GCA	ACC	CAG	CCG	CTG	ATG	1745
	His	Gly	His	Asn	Glu	Ala	Asp		Pro	Ser	Ala	Thr	Gln	Pro	Leu	Met	
	m a m	~~~	460					465					470				
	THE	CAG	AAA	ATC	AAA	AAA	CAT	CCG	ACA	CCG	CGC	AAA	ATC	TAC	GCT	GAC	1793
	TAT	475	гÀ2	11e	гÀз	гÀг		Pro	Thr	Pro	Arg	Lys	Ile	Tyr	Ala	Asp	
35	AAG		CAC	CAG	CDD	ΔΔΔ.	480 GTG	occ	N.C.C	CTC	C	485 GAT	~~~	3.00	~~~	>	1043
•	Lvs	Leu	Glu	Gln	Glu	T.vs	Val	Ala	Thr	Len	C) 11	Asp	Bla	The	Clu	ATG	1841
	490			04	014	495	141	7114	* ***	rea	500	Asp	Ala	Int	GIU	Met 505	
	GTT	AAC	CTG	TAC	CGC		GCG	CTG	GAT	GCT		GAT	TGC	GTA	GTG	GCA	1889
	Val	Asn	Leu	Tyr	Arg	Asp	Ala	Leu	Asp	Ala	Glv	Asp	Cvs	Val	Val	Ala	1005
					510					515					520		
40	GAG	TGG	CGT	CCG	ATG	AAC	ATG	CAC	TCT	TTC	ACC	TGG	TCG	CCG	TAC	CTC	1937
	Glu	Trp	Arg	Pro	Met	Asn	Met	His	Ser	Phe	Thr	Trp	Ser	Pro	Tyr	Leu	4
				525					530					535			
	AAC	CAC	GAA	TGG	GAC	GAA	GAG	TAC	CCG	AAC	AAA	GTT	GAG	ATG	AAG	CGC	1985
	ASII	nis	GIU	Trp	Asp	Glu	Glu		Pro	Asn	Lys	Val		Met	Lys	Arg	
45	CTG	CAG	540 GAG	CTC	ccc	222	ccc	545	3.66	100	am a		550				
	Leu	Gln	Glu	Leu	Bla	T.UE	Arg	TIA	Sor	The	GIG	CCG Pro	GAA	GCA 71.	GTT	GAA	2033
		555		DCu	744	Lys	560	116	Jei	1111	Val	565	GIU	MIA	vaı	GIU	
	ATG		TCT	CGC	GTT	GCC		АТТ	TAT	GGC	GAT	CGC	CAG	GCG	ልጥር	CCT	2081
	Met	Gln	Ser	Arq	Val	Ala	Lvs	Ile	Tvr	Glv	Asp	Arg	Gln	Ala	Met	Ala	2001
	570					575					580					585	
50	GCC	GGT	GAG	AAA	CTG	TTC	GAC	TGG	GGC	GGT	GCG	GAA .	AAC	CTC	GCT	TAC	2129
	Ala	Gly	Glu	Lys	Leu	Phe	Asp	Trp	Gly	Gly	Ala	Glu .	Asn	Leu	Ala	Tyr	
					590					595					600		
	GCC	ACG	CTG	GTT	GAT	GAA	GGC	ATT	CCG	GTT	CGC	CTG '	TCG	GGT	GAA	GAC	2177
	ALA	Thr	Leu	Val	Asp	Glu	Gly	Ile		Val	Arg	Leu	Ser	Gly	Glu	Asp	
55	TCC			605					610				_	615			
	100	00T	CGC	GGT	ACC	TTC	TTC	CAC	CGC	CAC	GCG	GTG I	ATC	CAC	AAC	CAG	2225

5	Ser	Gly	Arg 620	Gly	Thr	Phe	Phe	His 625	Arg	His	Ala	Val	Ile 630	His	Asn	Gln	
ŭ	mcm	220	CCT	TCC	вст	TAC	ACG.	CCG	CTG	CAA	CAT	ATC	CAT	AAC	GGG	CAG	2273
	507	7.0	Clu	Ser	かった	Tur	Thr	Pro	Leu	Gln	His	Ile	His	Asn	Gly	Gln	
	ser	635	GIY	Ser	1111	131	640					645			•		
		633	mm c	CGT	CTC	TGG		TCC	GTA	CTG	тст		GAA	GCA	GTG	CTG	2321
	GGC	GCG	TTC	Arg	11-1	T G G	DAC.	505	V-1	LAU	Ser	Glu	Glu	Ala	Val	Leu	
40		AIA	Pne	Arg	vai		ASP	Ser	Val	Dea	660	014				665	
10	650					655			CC3	C 3 3		ccc	A CT	CTG	ACC		2369
	GCG	TTT	GAA	TAT	GGT	TAT	GCC	ACC	GCA	CAA	חשם	7.50	The	Ten	Thr	Tle	2007
	Ala	Phe	Glu	Tyr		Tyr	ALA	Thr	Ala	GIU	PIO	Arg	THE	Tea	680	110	
					670					675	com	ccc	CNC	CEC		አጥር	2417
	TGG	GAA	GCG	CAG	TTC	GGT	GAC	TTC	GCC	AAC	GGT	GCG	CAG	37-3	37-1	TIC	2417
	Trp	Glu	Ala	Gln	Phe	Gly	Asp	Phe	Ala	Asn	GTÄ	ATa	GIN	VAIT	vaı	TTE	
15				685					690					695	m.cm	ccm	2465
	GAC	CAG	TTC	ATC	TCC	TCT	GGC	GAA	CAG	AAA	TGG	GGC	CGG	ATG	TGT	GGI	2465
	Asp	Gln	Phe	Ile	Ser	Ser	Gly	Glu	Gln	Lys	Trp	GIY	Arg	Met	Cys	GTA	
			700					705					710				2512
	CTG	GTG	ATG	TTG	CTG	CCG	CAC	GGT	TAC	GAA	GGG	CAG	GGG	CCG	GAG	CAC	2513
	Leu	Val	Met	Leu	Leu	Pro	His	Gly	Tyr	Glu	Gly	Gln	Gly	Pro	Glu	His	
20		715					720					725					
	TCC	TCC	GCG	CGT	CTG	GAA	CGT	TAT	CTG	CAA	CTT	TGT	GCT	GAG	CAA	AAC	2561
	Ser	Ser	Ala	Arg	Leu	Glu	Arg	Tyr	Leu	Gln	Leu	Cys	Ala	Glu	Gln	Asn	
	730					735					740					745	
	ATG	CAG	GTT	TGC	GTA	CCG	TCT	ACC	CCG	GCA	CAG	GTT	TAC	CAC	ATG	CTG	2609
	Met	Gln	Val	Cys	Val	Pro	Ser	Thr	Pro	Ala	Gln	Val	Tyr	His	Met	Leu	
25					750					755					/60		
	CGT	CGT	CAG	GCG	CTG	CGC	GGG	ATG	CGT	CGT	CCG	CTG	GTC	GTG	ATG	TCG	2657
	Ara	Ara	Gln	Ala	Leu	Ara	Glv	Met	Arq	Arg	Pro	Leu	Val	Val	Met	Ser	
				765					770					//5			
	cce	222	TCC	CTG	CTG	CGT	CAT	CCG	CTG	GCG	GTT	TCC	AGC	CTC	GAA	GAA	2705
	Pro	T.ve	Ser	Leu	Leu	Ara	His	Pro	Leu	Ala	Val	Ser	Ser	Leu	Glu	Glu	
30		_	780					785					790				
	CTC	ccc	220	GGC	ACC	ттс	СТС	CCA	GCC	ATC	GGT	GAA	ATC	GAC	GAG	CTT	2753
	Tan	712	7.00	Gly	Thr	Dhe	T.eu	Pro	Ala	Ile	Glv	Glu	Ile	Asp	Glu	Leu	
	red	795		Gry	1111	1110	800					805		•			
	C N TT	733	777	GGC	cmc	מממ	CGC	СТР	GTG	ATG	TGT	TCT	GGT	AAG	GTT	TAT	2801
	GVI	Pro	7	Gly	V-1	Tue	Arg	Val	Val	Met	Cvs	Ser	Glv	Lvs	Val	Tyr	
35			n Lys	GIY	V 44 1	815		, ,,,,			820)	•	•		825	
	810		. cmc	CTG	- CA A	CAG	CGT	· ccr	. אאני	AAC			CAC	GAT	GTC	GCC	2849
	TAC	GAL		Leu	C1.	Cla	7.50	. 201	Tue	Asn	Asn	Gln	His	Asp	Val	Ala	
	Tyr	ASP	Leu	ı Leu	830		Ary	, ,,,,,	,.	835				•	840		
				ATC	630	, - ~ n n	CTC	- TAC				САТ	AAA	GCG	ATG	CAG	2897
	ATT	GIG	, CG1	; Ile	GAG	- CAA	Tar	, IAC	. Dro	Phe	Pro	His	Tivs	Ala	Met	Gln	
40	116	· vai	. Arç			GII	Lec	ı ıyı	850	1110			-1-	855			
				845 CAG					CTC		CAT	ւ փփան	GTC			CAG	2945
	GAA	GTG	TTC	i Gln	CAU	. Dr -	31-	UA.	. Unl	. And) Acr	Dhe	Val	Tro	Cvs	Gln	
	GIU	ı Val			GIT	1 Phe	: Ala			ьys	Lat	, , , , ,	870		-7-		
			860)				865) N TO C C	. mac	• тсс	• 360			דבר י	TTC	2993
	GAA	GAC	CCC	S CTC	AAG	CAL	- 666	نای ر	A IGG	TAC			Cla	uni.	Wie	Phe	
45	Glι			Leu	ı Ası	1 GIR	1 613	AYT	ırp	IY	. Суз	885	GII				
40		875	5				880) 			- ~~			ccc	ccc	CCG	3041
	CGI	GA	A GT	G ATT	CCC	3 TTI	GGC	GC'	r TCI	Cre	, (6)	TAI	31-	~ GGC	7	CCG	5041
	Arç	g Glι	ı Val	l Ile	e Pro			y Ala	a Ser	Let	1 Arg	Tyr	Ala	GIY	Arg	005	
	890)				895	Ò				900			. ~~		905	3089
	GC	TC	CGC	C TC	CC	G GCC	GT/	A GG	G TAT	ATO	TCC	GTI	CAC	CAG	AAA	CAG	3009
	Ala	a Sei	r Ala	a Se	c Pro	o Ala	a Vai	1 Gl	у Туг	: Met	: Sei	c Val	His	GIn	Lys	GIN	
50					91	0				915	5				920		
	CAZ	A CA	A GA	T CT	GT'	T AA	r GA	C GC	G CTC	AAC	GT	C GAA	TAP	ATA	AGG		3135
	Gli	n Gla	n As	p Le	u Va	l Ası	n Ası	p Al	a Lev	ı Ast	va]	l Glu	ì				
				92	5				930)							
	AT	ACAC	A AT	G AG'	r AG	C GT	A GA	T AT	T CT	GTO	CC	r GAC	CTC	CCI	GAA	TCC	3184
		,	Me	t Se	r Se	r Va	l As	p Il	e Lei	ı Val	l Pro	o Asp	Let	Pro	Glu	Ser	
55				1				5				10)				
				_													

	GTA	GCC	GAT	GCC	ACC	GTC	GCA	ACC	TGG	CAT	AAA	AAA	ccc	GGC	GAC	GCA	3232
5	Val	Ala	Asp	Ala	Thr	Val	Ala	Thr	Trp	His	Lys	Lys	Pro	Gly	Asp	Ala	
	15					20					25					30	
	GTC	GTA	CGT	GAT	GAA	GTG	CTG	GTA	GAA	ATC	GAA	ACT	GAC	AAA	GTG	GTA	3280
	Val	Val	Arg	Asp		Val	Leu	Val	Glu	Ile	Glu	Thr	Asp	Lys	Val	Val	
•					35					40					45		
	CTG	GAA	GTA	CCG	GCA	TCA	GCA	GAC	GGC	ATT	CTG	GAT	GCG	GTT	CTG	GAA	3328
10	rea	GIU	val	Pro 50	АТа	ser	Ата	Asp		ile	Leu	Asp	Ala			Glu	
	СУТ	CAA	GGT	ACA	»CG	CT A	»CG	עי ריזי	55 CCT	CAC	እጥሮ	CTT	CCT	60		ccm	2276
	Asp	Glu	Glv	Thr	Thr	Val	Thr	Ser	Ara	Gln	Tle	TAN	Glu	250	Ten	CGI	3376
	·F		65					70	n. y	31 11	116	neu	75	ALG	Deu	ALG	
	GAA	GGC	AAC	AGC	GCC	GGT	AAA		ACC	AGC	GCC	AAA		GAA	GAG	AAA	3424
15	Glu	Gly	Asn	Ser	Ala	Gly	Lys	Glu	Thr	Ser	Ala	Lvs	Ser	Glu	Glu	Lvs	0.2.
13		80					85					90				Ī	
	GCG	TCC	ACT	CCG	GCG	CAA	CGC	CAG	CAG	GCG	TCT	CTG	GAA	GAG	CAA	AAC	3472
		Ser	Thr	Pro	Ala	Gln	Arg	Gln	${\tt Gln}$	Ala	Ser	Leu	Glu	Glu	Gln	Asn	
	95					100					105					110	
	AAC	GAT	GCG	TTA	AGC	CCG	GCG	ATC	CGT	CGÇ	CTG	CTG	GCT	GAA	CAC	AAT	3520
20	Asn	Asp	Ala	Leu		Pro	Ala	Ile	Arg		Leu	Leu	Ala	Glu		Asn	
	CTC	C2 C		1.00	115	3 mm				120					125		
	Len	Den	712	AGC	Ala	TIO	AAA	C1	ACC.	GGT	GIG	GGT	GGT	CGT	CTG	ACT	3568
	DCu	γsp	Ala	Ser 130	AIa	TIE	гуз	GIY	135	GIĀ	VAI	GIY	GIY		Leu	The	
	CGT	GAA	GAT	GTG	GAA	AAA	CAT	CTG		444	ccc	cce	ccc	140	GNG	Jr.Carr	3616
	Ara	Glu	Asp	Val	Glu	Lvs	His	Leu	Ala	Lvs	Ala	Pro	Ala	T.ve	Glu	Ser	3010
25	3		145			-3-		150		-,,			155	273	314	261	
	GCT	CCG		GCG	GCT	GCT	CCG		GCG	CAA	CCG	GCT		GCT	GCA	CGT	3664
	Ala	Pro	Ala	Ala	Ala	Ala	Pro	Ala	Ala	Gln	Pro	Ala	Leu	Ala	Ala	Arg	
		160					165					170				_	
				CGT													3712
30		Glu	Lys	Arg	Val		Met	Thr	Arg	Leu	Arg	Lys	Arg	Val	Ala	Glu	
	175					180					185					190	
	CGT	CTG	CTG	GAA	GCG	AAA	AAC	TCC	ACC	GCC	ATG	CTG	ACC	ACG	TTC	AAC	3760
	Arg	reu	Leu	Glu	195	rys	Asn	Ser	Inr		Met	Leu	Thr	Thr		Asn	
	GAA	GTC	AAC	ATG		ccc	ב דידים	ATG	CAT	200	CCT	AAG	CNG	TAC	205	CAA	3808
	Glu	Val	Asn	Met	Lvs	Pro	Tle	Met	Asn	Leu	Ara	Lvs	Gln	Tur	GGI	GAA	3000
35				210	-3-			••••	215		,,,,	2,5	0111	220	O _T y	GIU	
	GCG	TTT	GAA	AAA	CGC	CAC	GGC	ATC		CTG	GGC	TTT	ATG		TTC	TAC	3856
	Ala	Phe	Glu	Lys	Arg	His	Gly	Ile	Arg	Leu	Gly	Phe	Met	Ser	Phe	Tvr	
			225					230					235			_	
	GTG	AAA	GCG	GTG	GTT	GAA	GCC	CTG	AAA	CGT	TAC	CCG	GAA	GTG	AAC	GCT	3904
40	Val		Ala	Val	Val	Glu		Leu	Lys	Arg	Tyr	Pro	Glu	Val	Asn	Ala	
		240					245		_			250					
	TCT	ATC	GAC	GGC	GAT	GAC	GTG	GTT	TAC	CAC	AAC	TAT	TTC	GAC	GTC	AGC	3952
		TTE	Asp	Gly	Asp		Val	Val	Tyr	Hıs		Tyr	Phe	Asp	Val		
	255 ATC	ece	CTT	TCT	7.00	260	~~~		CEC	cmc	265	ccc	- mm	cmc	~~=	270	4000
	Met	Ala	Val	Ser	Thr	Pro	Ara	GUU	LAU	Val	Thr	Pro	Naj	LOU	CGT	GAT	4000
45					275		71.29	O ₁	Dea	280	1111	110	Val	Leu	285	rsp	
	GTC	GAT	ACC	CTC		ATG	GCA	GAC	ATC		AAG	AAA	ATC	AAA		CTG	4048
	Val	Asp .	Thr	Leu	Gly	Met	Ala	Asp	Ile	Glu	Lvs	Lvs	Ile	Lvs	Glu	Leu	.0.0
		-		290	-			•	295			-1-		300			
	GCA	GTC	AAA	GGC	CGT	GAC	GGC	AAG	CTG	ACC	GTT	GAA	GAT		ACC	GGT	4096
50	Ala	Val	Lys	Gly	Arg	Asp	Gly	Lys	Leu	Thr	Val	Glu	Asp	Leu	Thr	Gly	
			305					310					315			_	
	GGT	AAC	TTC	ACC	ATC	ACC	AAC	GGT	GGT	GTG	TTC	GGT	TCC	CTG	ATG	TCT	4144
	GIA	Asn	Phe	Thr	Ile	Thr		Gly	Gly	Val	Phe		Ser	Leu	Met	Ser	
	700	320	n c= ~				325					330					
	ACG	Dr.	ATC	ATC	AAC	CCG	CCG	CAG	AGC	GCA	ATT	CTG	GGT	ATG	CAC	GCT	4192
55	TILL	ETO	115	Ile	ASII	LEO	FIO	GTU	ser	мта	TTE	ьeu	стÀ	met	nı s	MTA	

					_	
_	335	34		345		350
5	ATC AAA GAT	CGT CCG AT	TG GCG GTG	AAT GGT CAG	G GTT GAG ATC	CTG CCG 4240
	Ile Lys Asp		et Ala Val		n Val Glu Ile	Leu Pro
		355		360		365
	ATG ATG TAC	CTG GCG CT	TG TCC TAC	GAT CAC CG	T CTG ATC GAT	GGT CGC 4288
	Met Met Tyr	Leu Ala Le	eu Ser Tyr		g Leu Ile Asp	Gly Arg
		370		375	380	
10	GAA TCC GTG	GGC TTC CT	rg GTA ACG	ATC AAA GAG	G TTG CTG GAA	GAT CCG 4336
	Glu Ser Val	Gly Phe Le		Ile Lys Gl	u Leu Leu Glu	Asp Pro
	385		390		395	
*				AGTTTA AGT	TTCACCT GCACTO	STAGA 4387
	Thr Arg Leu	Leu Leu As				
	400		405			
15	CCGGATAAGG (CATTATCGCC	TTCTCCGGCA	ATTGAAGCC	T GATGCGACGC T	GACGCGTCT 4447
	TATCAGGCCT A	ACGGGACCAC	CAATGTAGGT	CGGATAAGG	C GCAACGCCGC A	ATCCGACAAG 4507
	CGATGCCTGA '	IGTGACGTTT	AACGTGTCTT	r ATCAGGCCT	A CGGGTGACCG	CAATGCCCG 4567
	GAAGCGATAC (GAAATATTCG	GTCTACGGTT	TAAAAGATA	A CGATTACTGA A	AGGATG 4623
20		_				
	SEQ ID No.:					
	Length: 19		irs			
	Type : Nucl					
	Strandednes	_				
	Topology:					
25	Molecule ty	-	C UNA			
	Original so					
	-		<u>richia coli</u>	<u>-</u>		
	Sequence fe				1527 b	
		e key : CD:	_	⇒from 194 t	to 1537 bp cod	ing sequence
	Locati	on : 194	1537			
30	Method		e determina	ation : E		
30	Method Sequence	of featur	e determina		um commando da (nm
30	Method Sequence CCGGGTGGCA	of featur	e determina GTCTGAGGT	T ATCGCAATT	T GGTTATGAGA	TTACTCTCGT 60
30	Method Sequence CCGGGTGGCA TATTAATTTG	of feature AAACTTTAGC	e determina GTCTGAGGT TCATTTTTT	T ATCGCAATT T CTTGCTTAC	C GTCACATTCT :	rgatggtata 120
30	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC	e determina GTCTGAGGT TCATTTTTT	T ATCGCAATT T CTTGCTTAC A CAACATAAG	C GTCACATTCT :	rgatggtata 120 raatatataa 180
30	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA	e determina GTCTGAGGT TCATTTTTT ATGACATAA	I ATCGCAATT I CTTGCTTAC A CAACATAAG IAT TCT CTG	C GTCACATTCT : C ACAATCGTAT : GAG TCA TTC (FGATGGTATA 120 FAATATATAA 180 ETC AAC 229
<i>30</i> <i>35</i>	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As	e determina GTCTGAGGT TCATTTTTT ATGACATAA	T ATCGCAATT T CTTGCTTAC A CAACATAAG TAT TCT CTG Tyr Ser Leu	C GTCACATTCT C C ACAATCGTAT C GGAG TCA TTC C Glu Ser Phe	FGATGGTATA 120 FAATATATAA 180 ETC AAC 229
	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As	GTCTGAGGT' TCATTTTTT' ATGACATAA T CAG ACA	T ATCGCAATT T CTTGCTTAC A CAACATAAG TAT TCT CTG Tyr Ser Leu 5	C GTCACATTCT C C ACAATCGTAT C GAG TCA TTC C Glu Ser Phe 1	FGATGGTATA 120 FAATATATAA 180 ETC AAC 229 Leu Asn
	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As 1 AAG CGC G	GTCTGAGGT' TCATTTTT' ATGACATAA T CAG ACA P Gln Thr	T ATCGCAATT T CTTGCTTAC A CAACATAAG TAT TCT CTG Tyr Ser Leu 5 CAA ACC GA	C GTCACATTCT (C) C ACAATCGTAT (C) C GAG TCA TTC (C) C Glu Ser Phe (1) LG TTC GCG CAA	GATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277
	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As 1 AAG CGC G	GTCTGAGGT' TCATTTTTT' ATGACATAA T CAG ACA ' P Gln Thr ' AC CCG AAT LSP Pro Asn	I ATCGCAATT I CTTGCTTAC A CAACATAAG TAT TCT CTG TYr Ser Leu 5 CAA ACC GA Gln Thr Gl	C GTCACATTCT C C ACAATCGTAT C GAG TCA TTC C Glu Ser Phe 1 10 LG TTC GCG CAA LU Phe Ala Gln	GATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277
	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As 1 AAG CGC G	GTCTGAGGT' TCATTTTT' ATGACATAA T CAG ACA P Gln Thr AC CCG AAT SP Pro Asn 20	T ATCGCAATT T CTTGCTTAC A CAACATAAG TAT TCT CTG TYr Ser Leu 5 CAA ACC GA GIn Thr GI	C GTCACATTCT C C ACAATCGTAT C G GAG TCA TTC C G Glu Ser Phe 1 10 LG TTC GCG CAA LU Phe Ala Gln 25	GGATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val
	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln 15 CGT GAA GTA	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA	GTCTGAGGT' TCATTTTT' ATGACATAA T CAG ACA P Gln Thr AC CCG AAT SP Pro Asn 20	T ATCGCAATT T CTTGCTTAC A CAACATAAG TAT TCT CTG TYr Ser Leu 5 CAA ACC GA Gln Thr Gl	C GTCACATTCT CONTROL C	GATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325
	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln 15 CGT GAA GTA Arg Glu Val	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA	GTCTGAGGT' TCATTTTT' ATGACATAA T CAG ACA p Gln Thr AC CCG AAT Sp Pro Asn 20 CA CTC TGG	T ATCGCAATT T CTTGCTTAC A CAACATAAG TAT TCT CTG TYr Ser Leu 5 CAA ACC GA Gln Thr Gl	C GTCACATTCT CONTROL C	GATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325
35	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Glm 15 CGT GAA GTA Arg Glu Val	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As 1 AAG CGC G Lys Arg A ATG ACC A	GTCTGAGGT' TCATTTTTT' ATGACATAA T CAG ACA P Gln Thr AC CCG AAT SP Pro Asn 20 CA CTC TGG Thr Leu Trp	T ATCGCAATT T CTTGCTTAC A CAACATAAG TAT TCT CTG Tyr Ser Leu 5 CAA ACC GA Gln Thr Gl CCT TTT CT	C GTCACATTCT CONTROL C	GGATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325 Pro Lys
35	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln 15 CGT GAA GTA Arg Glu Val 30 TAT CGC CAG	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As 1 AAG CGC G Lys Arg A ATG ACC A Met Thr T	GTCTGAGGT' TCATTTTTT' ATGACATAA T CAG ACA ' P Gln Thr ' AC CCG AAT SP Pro Asn 20 CA CTC TGG ' Tr Leu Trp 35 TA CTG GAG	I ATCGCAATT I CTTGCTTAC A CAACATAAG TAT TCT CTG TYP SER LEU 5 CAA ACC GA Gln Thr Gl CCT TTT CT Pro Phe Le	C GTCACATTCT CONTROL C	GGATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325 Pro Lys CGC GTG 373
35	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln 15 CGT GAA GTA Arg Glu Val 30 TAT CGC CAG Tyr Arg Glr	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As 1 AAG CGC G Lys Arg A ATG ACC A Met Thr T	GTCTGAGGT' TCATTTTTT' ATGACATAA T CAG ACA P GIn Thr AC CCG AAT SP Pro Asn 20 CA CTC TGG Thr Leu Trp 35 TA CTG GAG	I ATCGCAATT I CTTGCTTAC A CAACATAAG TAT TCT CTG TYP SER LEU 5 CAA ACC GA Gln Thr Gl CCT TTT CT Pro Phe Le CGT CTG GT Arg Leu Va	C GTCACATTCT CONTROL C	GGATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325 Pro Lys CGC GTG 373 Arg Val
35	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln 15 CGT GAA GTA Arg Glu Val 30 TAT CGC CAG Tyr Arg Glr	AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As 1 AAG CGC G Lys Arg A ATG ACC A Met Thr T ATG TCA T	GTCTGAGGT' TCATTTTTT' ATGACATAA T CAG ACA P Gln Thr AC CCG AAT SP Pro Asn 20 ACA CTC TGG Thr Leu Trp 35 TA CTG GAG Eu Leu Glu 50	T ATCGCAATT T CTTGCTTAC A CAACATAAG TAT TCT CTG Tyr Ser Leu 5 CAA ACC GA Gln Thr Gl CCT TTT CT Pro Phe Le CGT CTG GT Arg Leu Va	C GTCACATTCT CONTROL C	GATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325 Pro Lys CGC GTG 373 Arg Val 60
35	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln 15 CGT GAA GTA Arg Glu Val 30 TAT CGC CAG Tyr Arg Glr 45 ATC CAG TTT	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As 1 AAG CGC G Lys Arg A ATG ACC A Met Thr T ATG TCA T Met Ser I	GTCTGAGGT' TCATTTTTT' ATGACATAA T CAG ACA P Gln Thr AC CCG AAT SP Pro Asn 20 ACA CTC TGG Thr Leu Trp 35 TA CTG GAG Eu Leu Glu 50	T ATCGCAATT T CTTGCTTAC A CAACATAAG TAT TCT CTG Tyr Ser Leu 5 CAA ACC GA Gln Thr Gl CCT TTT CT Pro Phe Le CGT CTG GT Arg Leu Va 5 GAT GAT CG	C GTCACATTCT C ACACATCGTAT C ACACATCATCGTAT C ACACATCATCGTAT C ACACATCATCGTAT C ACACATCATCATCGTAT C ACACATCATCATCGTAT C ACACATCATCATCATCATCATCATCATCATCATCATCATC	GATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325 Pro Lys CGC GTG 373 Arg Val 60 CAG GTC 421
35	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln 15 CGT GAA GTA Arg Glu Val 30 TAT CGC CAG Tyr Arg Glr 45 ATC CAG TTT	AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As 1 AAG CGC G Lys Arg A ATG ACC A Met Thr T ATG TCA T Met Ser I CGC GTG G Arg Val V	GTCTGAGGT' TCATTTTTT' ATGACATAA T CAG ACA P Gln Thr AC CCG AAT SP Pro Asn 20 ACA CTC TGG Thr Leu Trp 35 TA CTG GAG Eu Leu Glu 50	I ATCGCAATT I CTTGCTTAC A CAACATAAG TAT TCT CTG Tyr Ser Leu 5 CAA ACC GA Gln Thr Gl CCT TTT CT Pro Phe Le CGT CTG GT Arg Leu Va S GAT GAT CG Asp Asp Ar	C GTCACATTCT CONTROL C	GATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325 Pro Lys CGC GTG 373 Arg Val 60 CAG GTC 421 Gln Val
35 40	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln 15 CGT GAA GTA Arg Glu Val 30 TAT CGC CAG Tyr Arg Glr 45 ATC CAG TTT Ile Gln Phe	AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As 1 AAG CGC G Lys Arg A ATG ACC A Met Thr T ATG ACC A Met Thr T ATG ACC A ATG	GTCTGAGGT' TCATTTTTT' ATGACATAA T CAG ACA P Gln Thr AC CCG AAT SP Pro Asn 20 ACA CTC TGG Thr Leu Trp 35 TA CTG GAG Leu Glu 50 TA TGG GTT Val	T ATCGCAATT T CTTGCTTAC A CAACATAAG TAT TCT CTG TYr Ser Leu 5 CAA ACC GA Gln Thr Gl CCT TTT CT Pro Phe Le CGT CTG GT Arg Leu Va Arg Leu CAA GAT GAT CG Asp Asp Ar	C GTCACATTCT CONTROL C	GATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325 Pro Lys CGC GTG 373 Arg Val 60 CAG GTC 421 Gln Val 75
35 40	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln 15 CGT GAA GTA Arg Glu Val 30 TAT CGC CAG Tyr Arg Glr 45 ATC CAG TTT Ile Gln Phe	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA	GTCTGAGGT' TCATTTTTT' ATGACATAA T CAG ACA T CAG ACA T CAG ACA T CAG CCG AAT SP Pro Asn 20 CCA CTC TGG Thr Leu Trp 35 TA CTG GAG Leu Glu 50 TA TGG GTT Val TTG CAG TTC	T ATCGCAATT T CTTGCTTAC A CAACATAAG TAT TCT CTG TYr Ser Leu 5 CAA ACC GA Gln Thr Gl CCT TTT CT Pro Phe Le CGT CTG GT Arg Leu Va Arg Leu Va Asp Asp Ar 70 AGC TCT GC	CC GTCACATTCT CONTROL	GATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325 Pro Lys CGC GTG 373 Arg Val 60 CAG GTC 421 GIn Val 75 TAC AAA 469
35 40	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln 15 CGT GAA GTA Arg Glu Val 30 TAT CGC CAG Tyr Arg Glr 45 ATC CAG TTT Ile Gln Phe	AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As 1 AAG CGC G Lys Arg A ATG ACC A Met Thr T ATG TCA T ATG	GTCTGAGGT' TCATTTTTT' ATGACATAA T CAG ACA T CAG ACA T CAG ACA T CAG CCG AAT SP Pro Asn 20 CCA CTC TGG Thr Leu Trp 35 TA CTG GAG Leu Glu 50 TA TGG GTT Val TTG CAG TTC	T ATCGCAATT T CTTGCTTAC A CAACATAAG TAT TCT CTG Tyr Ser Leu 5 CAA ACC GA Gln Thr Gl CCT TTT CT Pro Phe Le CGT CTG GT Arg Leu Va Arg Leu Va Asp Asp Ar 70 AGC TCT GC Ser Ser Al	C GTCACATTCT CONTROL C	GATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325 Pro Lys CGC GTG 373 Arg Val 60 CAG GTC 421 GIn Val 75 TAC AAA 469
35 40	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln 15 CGT GAA GTA Arg Glu Val 30 TAT CGC CAG Tyr Arg Glr 45 ATC CAG TTT Ile Gln Phe	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As 1 AAG CGC G Lys Arg A ATG ACC A Met Thr T AME Ser I CGC GTG G Arg Val ATG CGT CG TTP Arg N 80	GTCTGAGGT' TCATTTTTT' ATGACATAA T CAG ACA P GIN Thr AC CCG AAT SP Pro Asn 20 CA CTC TGG Thr Leu Trp 35 TA CTG GAG Leu Glu 50 GTA TGG GTT ATG GTT ATG GTT ATG GTT ATG GAG TTA TGG GTT ATG GTT ATG CAG TTC	I ATCGCAATT I CTTGCTTAC A CAACATAAG TAT TCT CTG TYF SEF LEU 5 CAA ACC GA Gln Thr Gl CCT TTT CT Pro Phe Le CGT CTG GT Arg Leu Va SGAT GAT CG Asp Asp Ar ASC TCT GC AGC TCT GC Ser Ser Al	CC GTCACATTCT CONTROL	GGATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325 Pro Lys CGC GTG 373 Arg Val 60 CAG GTC 421 G1n Val 75 TAC AAA 469 Tyr Lys
35 40	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln 15 CGT GAA GTA Arg Glu Val 30 TAT CGC CAG Tyr Arg Glr 45 ATC CAG TTT Ile Gln Phe	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA	GTCTGAGGT' TCATTTTTT' ATGACATAA T CAG ACA ' P Gln Thr ' AC CCG AAT SP Pro Asn 20 CA CTC TGG ' TA CTG GAG Leu Trp 35 TA CTG GAG Leu Glu 50 GTA TGG GTT ' Al Trp Val GTG CAG TTC ' Al Gln Phe CAT CCG TCA	I ATCGCAATT I CTTGCTTAC A CAACATAAG TAT TCT CTG TYR Ser Leu 5 CAA ACC GA Gln Thr Gl CCT TTT CT Pro Phe Le CGT CTG GT Arg Leu Va 5 GAT GAT CG Asp Asp Ar 70 AGC TCT GC Ser Ser Al 85	C GTCACATTCT C ACACATCTT C ACACATCGTAT C GAG TCA TTC C GAG CAA ATC C GAA CAA AATC GIU GIU GIU ASN C GAA CAA ACT GAA CCG GAG CII GIU Pro GIU G ASN GIU FIO FIO GIU FIO	GATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325 Pro Lys CGC GTG 373 Arg Val 60 CAG GTC 421 G1n Val 75 TAC AAA 469 Tyr Lys AAA TTC 517
35 40	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln 15 CGT GAA GTA Arg Glu Val 30 TAT CGC CAG Tyr Arg Glr 45 ATC CAG TTT Ile Gln Phe AAC CGT GCA Asn Arg Ala GGC GGT ATC Gly Gly Met	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As 1 AAG CGC G Lys Arg A ATG ACC A Met Thr T AME Ser I	GTCTGAGGT' TCATTTTTT' ATGACATAA T CAG ACA ' P Gln Thr ' AC CCG AAT SP Pro Asn 20 CA CTC TGG ' TA CTG GAG Leu Glu 50 GTA TGG GTT ' GTA TGG GTT ' GTA CAG TTC ' GTA CAG TTC ' CAL CTC TCAG CA	I ATCGCAATT I CTTGCTTACA CAACATAAG TAT TCT CTG TYF Ser Leu 5 CAA ACC GA Gln Thr Gl CCT TTT CT Pro Phe Le CGT CTG GT Arg Leu Va 5 GAT GAT CG Asp Asp Ar 70 AGC TCT GC Ser Ser Al 85 GTT AAC CT Val Asn Le	CC GTCACATTCT CONTROL	GATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325 Pro Lys CGC GTG 373 Arg Val 60 CAG GTC 421 G1n Val 75 TAC AAA 469 Tyr Lys AAA TTC 517
35 40 45	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln 15 CGT GAA GTA Arg Glu Val 30 TAT CGC CAG Tyr Arg Gln 45 ATC CAG TTT Ile Gln Phe AAC CGT GCA Asn Arg Ala GGC GGT ATC Gly Gly Met	AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As 1 AAG CGC G Lys Arg A ATG ACC A Met Thr T ATG TCA T Met Ser I CGC GTG G ATG CGT G ATG	GTCTGAGGT' TCATTTTTT' ATGACATAA T CAG ACA P Gln Thr AC CCG AAT SP Pro Asn 20 CA CTC TGG TA CTG GAG TA CTG GAG TA CTG GAG TA TGG GTT AIT TP Val GTG CAG TTC TAIT CAG TCA TAT CCG TCA	T ATCGCAATT T CTTGCTTAC A CAACATAAG TAT TCT CTG Tyr Ser Leu 5 CAA ACC GA Gln Thr Gl CCT TTT CT Pro Phe Le CGT CTG GT Arg Leu Va SGAT GAT CG Asp Asp Ar 70 AGC TCT GC Ser Ser Al 85 GTT AAC CT Val Asn Le	CC GTCACATTCT CONTROL	GATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325 Pro Lys CGC GTG 373 Arg Val 60 CAG GTC 421 Gln Val 75 TAC AAA 469 Tyr Lys AAA TTC 517 Lys Phe
35 40 45	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln 15 CGT GAA GTA Arg Glu Val 30 TAT CGC CAG Tyr Arg Gln 45 ATC CAG TTT Ile Gln Phe AAC CGT GCA Asn Arg Ala GGC GGT ATC Gly Gly Met 95 CTC GGC TTT	AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As 1 AAG CGC G Lys Arg A ATG ACC A Met Thr T ATG TCA T ATG TCA T ATG CGT G ATG TCA T ATG T A	GTCTGAGGT' TCATTTTTT' ATGACATAA T CAG ACA P Gln Thr AC CCG AAT SP Pro Asn 20 ACA CTC TGG Thr Leu Trp 35 TA CTG GAG TA CTG GAG TA TGG GTT AL TCG TCA TGG GTT AL TGG TCA	T ATCGCAATT T CTTGCTTAC A CAACATAAG TAT TCT CTG Tyr Ser Leu 5 CAA ACC GA Gln Thr Gl CCT TTT CT Pro Phe Le CGT CTG GT Arg Leu Va GAT GAT CG Asp Asp Ar 70 AGC TCT GC Ser Ser Al 85 GTT AAC CT Val Asn Le	C GTCACATTCT C ACC ACA ACA ACC ACC ACC ACC	GATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325 Pro Lys CGC GTG 373 Arg Val 60 CAG GTC 421 Gln Val 75 TAC AAA 469 Tyr Lys AAA TTC 517 Lys Phe CCG ATG 565
35 40 45	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln 15 CGT GAA GTA Arg Glu Val 30 TAT CGC CAG Tyr Arg Glr 45 ATC CAG TTT Ile Gln Phe AAC CGT GCA Asn Arg Ala GGC GGT ATC GGY GGY Met GGY GGY Pho	AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As 1 AAG CGC G Lys Arg A ATG ACC A Met Thr T ATG TCA T ATG TCA T ATG CGT G ATG TCA T ATG T A	GTCTGAGGT' TCATTTTTT' ATGACATAA T CAG ACA P Gln Thr AC CCG AAT SP Pro Asn 20 CA CTC TGG TA CTG GAG TA CTG GAG Leu Glu 50 GTA TGG GTT Al Trp Val GTG CAG TTC Al Gln Phe CAT CCG TCA His Pro Ser 100 ACC TTC AAA Thr Phe Lys	T ATCGCAATT T CTTGCTTAC A CAACATAAG TAT TCT CTG Tyr Ser Leu 5 CAA ACC GA Gln Thr Gl CCT TTT CT Pro Phe Le CGT CTG GT Arg Leu Va GAT GAT CG Asp Asp Ar 70 AGC TCT GC Ser Ser Al 85 GTT AAC CT Val Asn Le	C GTCACATTCT C ACC ACC ACC ACC ACC ACC ACC	GATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325 Pro Lys CGC GTG 373 Arg Val 60 CAG GTC 421 Gln Val 75 TAC AAA 469 Tyr Lys AAA TTC 517 Lys Phe CCG ATG 565
35 40 45	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Glm 15 CGT GAA GTA Arg Glu Val 30 TAT CGC CAG Tyr Arg Glm 45 ATC CAG TTT Ile Gln Phe AAC CGT GCA Asn Arg Ala GGC GGT ATC Gly Gly Met 95 CTC GGC TTT Leu Gly Phe	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA	GTCTGAGGT' TCATTTTTT' ATGACATAA' T CAG ACA' T CAG ACA' T GIN Thr AC CCG AAT SP Pro Asn 20 CA CTC TGG TA CTG GAG Leu Glu 50 TA CTG GAG TA CTG GAG TA TGG GTT AI Trp Val GTG CAG TTC Yal Gln Phe CAT CCG TCA TGC TCAAA Thr Phe Lys 115	I ATCGCAATT I CTTGCTTAC A CAACATAAG TAT TCT CTG TYF Ser Leu 5 CAA ACC GA Gln Thr Gl CCT TTT CT Pro Phe Le CGT CTG GT Arg Leu Va 5 GAT GAT CG Asp Asp Ar 70 AGC TCT GC Ser Ser Al 85 GTT AAC CT Val Asn Le AAT GCC CT	C GTCACATTCT C ACACATCT C ACACATCGTAT C ACACATCCTATCGTAT C ACACATCCTATCTATCTATCTATCTATCTATCTA	GATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325 Pro Lys CGC GTG 373 Arg Val 60 CAG GTC 421 GIn Val 75 TAC AAA 469 Tyr Lys AAA TTC 517 Lys Phe CCG ATG 565 Pro Met
35 40 45	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln 15 CGT GAA GTA Arg Glu Val 30 TAT CGC CAG Tyr Arg Gln 45 ATC CAG TTT Ile Gln Phe AAC CGT GCA Asn Arg Ala GGC GGT ATC Gly Gly Met 10 GGC GGT GGC GGC GGT GGC GGC GGC GGT GGC GGT GGC GGC GGT GGC GGC GGT GGC GGC GGT GGC	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As 1 AAG CGC G Lys Arg A ATG ACC A Met Thr T AME Ser I CGC GTG G ATG TCA T ATG CGT G	GTCTGAGGT' TCATTTTTT' ATGACATAA T CAG ACA 'P GIN Thr AC CCG AAT SP Pro Asn 20 CA CTC TGG 'AT Leu Trp 35 TA CTG GAG Leu Glu 50 TA TGG GTT 'Al Trp Val GTG CAG TTC 'Al Gln Phe CAT CCG TCA His Pro Ser 100 ACC TTC AAA Thr Phe Lys 115 GGC AGC GAT	I ATCGCAATT I CTTGCTTACA CAACATAAG TAT TCT CTG TYF Ser Leu 5 CAA ACC GA Gln Thr Gl CCT TTT CT Pro Phe Le CGT CTG GT Arg Leu Va 5 GAT GAT CG Asp Asp Ar 70 AGC TCT GC Ser Ser Al 85 GTT AAC CT Val Asn Le AAT GCC CT ASN Ala Le TTC GAT CC	C GTCACATTCT C ACACATCTT C ACACATCGTAT C ACACATCGTAT C ACACATCT C ACACATCGTAT C ACACATCATCGTAT C ACACATCATCGTAT C ACACATCATCATCGTAT C ACACATCATCATCATCATCATCATCATCATCATCATCATC	GATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325 Pro Lys CGC GTG 373 Arg Val 60 CAG GTC 421 G1n Val 75 TAC AAA 469 Tyr Lys AAA TTC 517 Lys Phe CCG ATG 565 Pro Met AGC GAA 613
35 40 45	Method Sequence CCGGGTGGCA TATTAATTTG GTCGAAAACT GGGTTTTATA CAT GTC CAA His Val Gln 15 CGT GAA GTA Arg Glu Val 30 TAT CGC CAG Tyr Arg Gln 45 ATC CAG TTT Ile Gln Phe AAC CGT GCA Asn Arg Ala GGC GGT ATC Gly Gly Met 10 GGC GGT GGC GGC GGT GGC GGC GGC GGT GGC GGT GGC GGC GGT GGC GGC GGT GGC GGC GGT GGC	of feature AAACTTTAGC CTTTCCTGGG GCAAAAGCAC TCT ATG GA Met As 1 AAG CGC G Lys Arg A ATG ACC A Met Thr T AME Ser I CGC GTG G ATG TCA T ATG CGT G	GTCTGAGGT' TCATTTTTT' ATGACATAA T CAG ACA 'P GIN Thr AC CCG AAT SP Pro Asn 20 CA CTC TGG 'AT Leu Trp 35 TA CTG GAG Leu Glu 50 TA TGG GTT 'Al Trp Val GTG CAG TTC 'Al Gln Phe CAT CCG TCA His Pro Ser 100 ACC TTC AAA Thr Phe Lys 115 GGC AGC GAT	I ATCGCAATT I CTTGCTTACA CAACATAAG TAT TCT CTG TYF Ser Leu 5 CAA ACC GA Gln Thr Gl CCT TTT CT Pro Phe Le CGT CTG GT Arg Leu Va 5 GAT GAT CG Asp Asp Ar 70 AGC TCT GC Ser Ser Al 85 GTT AAC CT Val Asn Le AAT GCC CT ASN Ala Le TTC GAT CC	C GTCACATTCT C ACACATCT C ACACATCGTAT C ACACATCCTATCGTAT C ACACATCCTATCTATCTATCTATCTATCTATCTA	GATGGTATA 120 FAATATATAA 180 CTC AAC 229 Leu Asn GCC GTT 277 Ala Val CCA AAA 325 Pro Lys CGC GTG 373 Arg Val 60 CAG GTC 421 G1n Val 75 TAC AAA 469 Tyr Lys AAA TTC 517 Lys Phe CCG ATG 565 Pro Met AGC GAA 613

	125					130					135					140	
				ATG													661
5	_			Met	145		-			150					155	•	
				GCG													709
	His	Leu	Gly	Ala	Asp	Thr	qeA	Val		Ala	Gly	Asp	Ile	-	Val	Gly	
	-			160					165					170			
10				GTC													757
10	_		175	Val	-			180	_			-	185				
				TGC													805
		190		Cys			195		_			200		_	_		
15				CCG													853
15	205	116	Arg	Pro	GIU		Thr	GIA	Tyr	GIY		val	Tyr	Pne	Inr		
		ATG	CTA	AAA	cec	210	CCT	ATG	CCT	that of the	215	ece	ATC	cec	CTT T	220	901
				Lys													901
				272	225		7			230	0	- 1		AL 9	235	561	
	GTT	TCT	GGC	TCC		AAC	GTC	GCC	CAG		GCT	ATC	GAA	AAA		ATG	949
20				Ser													
			•	240	•				245	•				250			
				GCT													997
			255	Ala				260			_		265	_			
				AGC													1045
25	Val	Asp 270	Glu	Ser	Gly	Phe	Thr 275	Lys	Glu	Lys	Leu	Ala 280	Arg	Leu	Ile	Glu	
			_	AGC													1093
		Lys	Ala	Ser	Arg		Gly	Arg	Val	Ala		Tyr	Ala	Lys	Glu		
	285	cmc				290					295					300	
30				TAT													1141
00	GIY	red	vaı	Tyr	305	GIU	оту	GIN	GIN	310	Trp	ser	rea	Pro	315	Asp	
	ATC	GCC	CTG	CCT	-	GCC	ACC	CAG	AAT		CTG	GAT	GTT	GAC		GCG	1189
				Pro													
				320	_				325			•		330			
0.5				ATC													1237
35			335	Ile			_	340	_				345	_			
				ACC													1285
		350		Thr			355					360			_		
40				CCG													1333
70		Phe	Ala	Pro	GIĀ		Ala	Ala	Asn	Ala		GIY	Val	Ala	Thr		
	365	CTC	C 2 2	3000	CCN	370	220	ccm		~~~	375	~~~	mcc			380	1201
				ATG Met													1381
					385					390					395		1400
45				GCA Ala													1429
	_		_	400	-				405			-		410			1 427
				CAT													1477
			415	His	-	-		420					425			•	
50				GCC													1525
	∧ı a	430	тте	Ala	ет Х	rne	Val 435	гйг	val	ATA	ASP	A1a 440		ьeu	ALA	GTU	
	GGT		ATT	TAAG	STT G1	CAA Z		TGAT	e ec	GCTZ	CGCT			ССТ			1574
		Val						ani	. 5 60			•21					23,1
		AATG	GC 2	ACAAT	TCAT	T G	LAGTI	CACGO	TC1	AATO	TAG	GCCG	GGCA	AG C	GCAC	CGCCC	1634
55	_		-											`			•

5	TTATGGGCCA ACGCTTCAAG	TTCAGCATCC	TTACTGTAGT GTTAACTTTC ATTTTTTTGA	GCTCCCAAAA TGCGGACTCA TAATCTTCTT	CTGCTTGTCG CGCGCGCAGC CGCTTTCGAA	TAACGATAAC ACTATGCCAG	1694 1754 1814 1874 1934 1937
					•		

Claims

- 1. A mutant of the genus Escherichia having L-glutamic acid-productivity, said mutant having deficient or reduced α-ketoglutarate dehydrogenase activity and enhanced phosphoenolpyruvate carboxylase and glutamate dehydrogenase activities.
- 2. A method of producing L-glutamic acid by fermentation comprising culturing in a liquid culture medium a mutant of the genus <u>Escherichia</u> having L-glutamic acid-productivity said mutant having deficient or reduced α-ketoglutarate dehydrogenase activity and enhanced phosphoenolpyruvate carboxylase and glutamate dehydrogenase activities, accumulating L-glutamic acid in the culture, and recovering L-glutamic acid therefrom.

Fig.1

Fig.2

Fig.3

ъ		w					
	·						
							, c
t.		· ,	, is				
		•.					
			13 + 1	en e		 . a	
					,		
€.							·

Europäisch s Pat ntamt

Europ an Patent Office

Offic urop en d s br vets

(11) EP 0 670 370 A3

(12)

EUROPEAN PATENT APPLICATION

- (88) Date of publication A3: 28.05.1997 Bulletin 1997/22
- (43) Date of publication A2: 06.09.1995 Bulletin 1995/36
- (21) Application number: 95100259.1
- (22) Date of filing: 10.01.1995
- (84) Designated Contracting States:

 AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL
 PT SE

 Designated Extension States:

 LT SI
- (30) Priority: 10.01.1994 JP 825/94
- (71) Applicant: Ajinomoto Co., Inc. Tokyo 104 (JP)
- (72) Inventors:
 - Ono, Eiji, c/o Central Research Laboratories Kawasaki-ku, Kawasaki-shi, Kanagawa-ken (JP)

- (51) Int CI.⁶: **C12N 15/52**, C12P 13/14, C12N 1/21
 // (C12N1/21, C12R1:19)
 - Tsujimoto, Nobuharu, c/o Central Research Lab.
 Kawasaki-ku, Kawasaki-shi, Kanagawa-ken (JP)
 - Matsui, Kazuhiko, c/o Central Research Lab.
 Kawasaki-ku, Kawasaki-shi, Kanagawa-ken (JP)
 - Kurahashi, Osamu, c/o Central Research Lab.
 Kawasaki-ku, Kawasaki-shi, Kanagawa-ken (JP)
- (74) Representative:
 Strehl Schübel-Hopf Groening & Partner
 Maximilianstrasse 54
 80538 München (DE)

(54) Method of producing L-glutamic acid by fermentation

(57) The present invention provides a low-cost and efficient production method of L-glutamic acid, by improving the productivity of L-glutamic acid in a microorganism of the genus <u>Escherichia</u>.

[Constitution]

A method of producing L-glutamic acid by fermen-

tation comprising culturing in a liquid culture medium a mutant of the genus $\underline{\mathsf{Escherichia}}$ having L-glutamic acid-producing ability whose $\alpha\text{-ketoglutarate}$ dehydrogenase activity is deficient or reduced and phosphoenolpyruvate carboxylase and glutamate dehydrogenase activities are amplified, accumulating L-glutamic acid in the culture, and recovering L-glutamic acid therefrom.

EUROPEAN SEARCH REPORT

Application Number EP 95 10 0259

		DERED TO BE RELEV.	ANI				
Category	Citation of document with i of relevant pa	ndication, where appropriate, swages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL6)			
D,A	FR 2 680 178 A (AJI February 1993 * page 1, line 26 -	NOMOTO CO., INC.) 12 page 3, line 8 *	1,2	C12N15/52 C12P13/14 C12N1/21			
A	EP 0 143 195 A (AJI June 1985 * page 1, line 14 -	NOMOTO CO., INC.) 5 page 4, line 14 *	1,2	//(C12N1/21, C12R1:19)			
A	FR 2 575 492 A (ASA KABUSHIKI KAISHA) 4 * page 3, line 11 - * page 7, line 9 -	July 1986 line 33 *	1,2				
				TECHNICAL FIELDS SEARCHED (Inl.(1.6)			
	The present search report has b	een drawn up for all claims	\dashv				
	Place of search THE HAGUE	Date of completion of the search 1 April 1997		Examiner tero Lopez, B			
X : part Y : part doc: A : tech O : nun	CATEGORY OF CITED DOCUME icularly relevant if taken alone icularly relevant if combined with an ument of the same category inclogical background -written disclosure rmediate document	NTS T: theory or pri E: earlier paten after the fili ther D: document ci L: document ci	nciple underlying the t document, but publing date ted in the application ted for other reasons	invention ished on, or			

EPO FORM 1503 03.82 (POICOL)