14. Linear Regression

HoHee Kim

Statistics Review

어떤 실험에서 여러 번 측정하여 7개의 측정값을 얻었다 가정

6.395	6.555	6.555	6.625	6.625	6.655	6.775

■ Arithmetic mean(산술평균) : n 개의 data들의 평균

- Median : data 들을 오름차순으로 나열했을 때 중앙에 있는 값
- data 의 수가 홀수일 때 중앙에 있는 값
- data 의 수가 짝수일 때 중앙에 있는 2개의 data 의 산술평균값
- Mode : data들 중에서 가장 빈번하게 발생되는 data 중 가장 낮은 값
- Range : 가장 큰 값과 가장 작은 값의 차이
- data 와 평균의 차이 (Residual) 의 제곱의 합 :

$$S_t = \sum (y_i - \overline{y})^2$$

수치해석-14장 경북대 전자공학부 김호희

한 Sample 에 대한 standard deviation (표준편차):

$$s_y = \sqrt{\frac{S_t}{n-1}}$$
 Degrees of freedom(자유도)이 n-1 이므로

■ Variance (분산):

nce
$$(\stackrel{\square}{-}\stackrel{\square}{-}\stackrel{\square}{-})$$
:
$$s_y^2 = \frac{\sum (y_i - \overline{y})^2}{n - 1} = \frac{\sum y_i^2 + n \left(\frac{\sum y_i}{n}\right)^2 - 2\left(\frac{\sum y_i}{n}\right) \sum y_i}{n - 1} = \frac{\sum y_i^2 - \left(\sum y_i\right)^2 / n}{n - 1}$$

• Coefficient of variation (분산계수): data 의 분포를 수치화한 통계값 c.v. = $\frac{S_y}{v} \times 100\%$


```
>> s = [6.395 \ 6.555 \ 6.555 \ 6.625 \ 6.625 \ 6.655 \ 6.775];
>> mean(s), median(s), mode(s)
ans = 6.5979
                               가장 빈번한 것 중 가장 낮은 값
ans = 6.6250
 ans = 6.5550
>> range = max(s)-min(s)
range =
                             variance & standard deviation
         0.38
>> var(s), std(s)
                            n 은 각 bin 사이에 있는 데이터 수
ans = 0.0135
                               x 는 각 bin 의 중간값을 의미
ans = 0.1161
                              hist(s) 만 치면 그래프만 나옴
>> [n,x] = hist(s)
                                     0
 n = 1
                  3
                           0
 x = 6.4140
             6.4520
                         6.4900
                                   6.5280
                                             6.5660
     6.6040
               6.6420
                         6.6800
                                   6.7180
                                             6.7560
 수치해석-14장
                     경북대 전자공학부 김호희
```


Fx) Fit a	straight	line to	the	values	in	the	following	table
	Straight	mic to	UIIC	values	111	UIIC	TOTIONNING	tabic.

		_		
i	Xi	y _i	X _i ²	x _i y _i
1	10	25	100	250
2	20	70	400	1400
3	30	380	900	11400
4	40	550	1600	22000
5	50	610	2500	30500
6	60	1220	3600	73200
7	70	830	4900	58100
8	80	1450	6400	116000
Σ	360	5135	20400	312850

linear regression

$$a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - \left(\sum x_i\right)^2} = \frac{8(312850) - 360(5135)}{8(20400) - (360)^2} = 19.47024$$

$$a_0 = \overline{y} - a_1 \overline{x} = (\frac{5135}{8}) - 19.47024(\frac{360}{8}) = -234.2857$$

 $\Rightarrow y = -234.2857 + 19.47024x$

수치해석-14장

령북대 전자공학부 김호희

Quantification of Error of Linear Regression:

Linear regression 의 오차를 수치로 나타내는 것

 data와 직선과의 차이는 data 범위에 걸쳐 비슷한 크기 갖고, 직선을 중 심으로 한 data들의 분포가 정규분포를 가진다면 Linear Regression 은 최적의 직선 나타냄 → maximum likelihood principle

수치해석-14장

경북대 전자공학부 김호희

10

• Standard error of the estimate:

$$s_{y/x} = \sqrt{\frac{S_r}{n-2}}$$
 a_0 , a_1 을 유도하려면 최소한 2개의 data는 있어야 하므로 자유도가 n-2

(y/x 는 특정 x 에 대한 y 의 예상 값에 대한 오차를 의미)

• Coefficient of determination(결정 계수), r²:

(r: correlation coefficient (상관계수))

Ex) Fit $y = \alpha x^{\beta}$	to the data in the table us	sing a logarithmic transformation.
---------------------------------------	-----------------------------	------------------------------------

i	x _i	y _i	Log x _i	Log y _i	(Log x _i) ²	Log x _i Log y _i
1	10	25	1.000	1.396	1.000	1.398
2	20	70	1.301	1.845	1.693	2.401
3	30	380	1.477	2.580	2.182	3.811
4	40	550	1.602	2.740	2.567	4.390
5	50	610	1.699	2.785	2.886	4.732
6	60	1220	1.778	3.086	3.162	5.488
7	70	830	1.845	2.919	3.404	5.386
8	80	1450	1.903	3.161	3.622	6.016
Σ			12.606	20.515	20.516	33.622

$$a_{1} = \frac{n \sum \log x_{i} \log y_{i} - \sum \log x_{i} \sum \log y_{i}}{n \sum (\log x_{i})^{2} - (\sum \log x_{i})^{2}} = \frac{8(33.622) - 12.606(20.515)}{8(20.516) - (12.606)^{2}} = 1.9842$$

$$a_{0} = \overline{\log y_{i}} - a_{1} \overline{\log x_{i}} = -0.5620 \qquad \Rightarrow \underline{\log y} = -0.5620 + 1.9842 \underline{\log x} \quad \text{(linear)}$$

$$\Rightarrow y = \alpha x^{1.9842} \qquad (-0.5620 = \log \alpha) \Rightarrow y = 0.2741 x^{1.9842} \quad \text{(nonlinear)}$$

수치해석-14장 경북대 전자공학부 김호희 13

