

planetmath.org

Math for the people, by the people.

Pythagorean field

Canonical name PythagoreanField
Date of creation 2013-03-22 14:22:36
Last modified on 2013-03-22 14:22:36

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 11

Author CWoo (3771) Entry type Definition Classification msc 12D15

Defines Pythagorean extension Defines Pythagorean closure Let F be a field. A field extension K of F is called a *Pythagorean extension* if $K = F(\sqrt{1 + \alpha^2})$ for some α in F, where $\sqrt{1 + \alpha^2}$ denotes a root of the polynomial $x^2 - (1 + \alpha^2)$ in the algebraic closure \overline{F} of F. A field F is *Pythagorean* if every Pythagorean extension of F is F itself.

The following are equivalent:

- 1. F is Pythagorean
- 2. Every sum of two squares in F is a square
- 3. Every sum of (finite number of) squares in F is a square

Examples:

- \mathbb{R} and \mathbb{C} are Pythagorean.
- Q is not Pythagorean.

Remark. Every field is contained in some Pythagorean field. The smallest Pythagorean field over a field F is called the *Pythagorean closure* of F, and is written F_{py} . Given a field F, one way to construct its Pythagorean closure is as follows: let K be an extension over F such that there is a tower

$$F = K_1 \subseteq K_2 \subseteq \cdots \subseteq K_n = K$$

of fields with $K_{i+1} = K_i(\sqrt{1 + \alpha_i^2})$ for some $\alpha_i \in K_i$, where i = 1, ..., n - 1. Take the compositum L of the family K of all such K's. Then $L = F_{py}$.