Ministerul Educației Tineretului și Sportului al Republicii Moldova Universitatea Tehnică a Moldovei

REFERAT

Lucrarea de Laborator nr. 1

Tema: Studiul legii fundamentale a dinamicii mișcării de rotație

A efectuat		Studentul grupei			
	Se	rmnătura		nume, prenume	
A verificat	nota	data	semnătura	nume, prenume profesor	
		Chis	inău	_	

3. Schema instalației

Unde:

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
19	

18_____

4. Formule de calcul:

$$\varepsilon = (mgr - M_{fr})/I$$
, $\varepsilon = a/r = 2h/t^2$, $I = \frac{M_2 - M_1}{\varepsilon_2 - \varepsilon_1}$

unde

=	Tabala	măgunăuil	A 4 6 i	dataumi	năuilau
Э.	i abeia	măsurăril	OT 51	ueteriii	narnor

data / semnătura profesorului

	$10^{-3}\mathrm{kg}$
$m_1 =$	
$m_2 =$	
$m_3 =$	
$m_4 =$	
$m_5 =$	
$\Delta m =$	

	10^{-3}m
d=	
$\Delta d =$	

	m/s^2
g =	
$\Delta g =$	

	10-2	² m
h=		

Nr	t_1, s	t_2,s	t ₃ ,s	t_4,s	t ₅ ,s
1					
2					
3					
4					
5					

6. Exemplul de calcul

Teorie:					Experiment:	
	s^{-2}		$N \cdot m$		s ⁻²	
$\varepsilon_1 =$		$M_1 =$		$\varepsilon_1 =$		
$\varepsilon_2 =$		$M_2 =$		$\varepsilon_2 =$		
$\varepsilon_3 =$		$M_3 =$		$\varepsilon_3 =$		
$\varepsilon_4 =$		$M_4 =$		$\varepsilon_4 =$		
$\varepsilon_5 =$		$M_5 =$		$\varepsilon_5 =$		

$$M_{fr} = 10^{-3} \text{ N} \cdot \text{m};$$
 $tg\alpha = \frac{1}{I} = kg^{-1} \cdot \text{m}^{-2}.$

7	0-1	1	11	
/.	Cal	lCu1	lui	erorilor:

 $\Delta \varepsilon =$

 $\Delta I = \underline{\hspace{1cm}}$

8. Rezultatul final

$$\varepsilon_1 = \qquad \qquad s^{-2}; \qquad \frac{\Delta \varepsilon_1}{\varepsilon_1} = \qquad \%;$$

$$\varepsilon_2 = s^{-2}; \qquad \frac{\Delta \varepsilon_2}{\varepsilon_2} = \%;$$

$$\varepsilon_3 = S^{-2}; \qquad \frac{\Delta \varepsilon_3}{\varepsilon_3} = \%$$

$$\varepsilon_4 = S^{-2}; \qquad \frac{\Delta \varepsilon_4}{\varepsilon_4} = \%;$$

$$\varepsilon_5 = S^{-2}; \qquad \frac{\Delta \varepsilon_5}{\varepsilon_5} = \%.$$

9. Concluzii