Lecture 29:

Multinomial Logit & Intro to Deep Learning

Big Data and Machine Learning for Applied Economics Econ 4676

Ignacio Sarmiento-Barbieri

Universidad de los Andes

November 23, 2021

Announcements

- ► Thursday turn in your predictions
- ► Friday PS5 and PS6 are due
- ► Next week presentations

Recap: Text as Data

- ► Topic Models
- ► PCA Theory
- ► Latent Dirichlet Allocation (LDA): Example
- Word Embedings

Agenda

- 1 Multinomial Logit
 - Multinomial Inverse Regression
- 2 Deep Learning: Intro
- 3 Word Embedding: Demo
- 4 Review & Next Steps
- 5 Further Readings

- ▶ We've seen different techniques to use text in a regression
- So far all have been linear models,
- ▶ But what happens when we have to predict multiple outcomes

- ► The MNLM can be thought of as simultaneously fitting binary logits for all comparisons among the alternatives.
- ► For example,
 - We have a categorical variable with the outcomes for Democrat, for Independent, and for Republican.
 - ▶ Assume that there is one independent variable measuring income in 1,000s.
 - ▶ We can examine the effect of income on party by fitting three binary logits,

► The MNLM can be thought of as simultaneously fitting binary logits for all comparisons among the alternatives.

$$\ln \frac{Pr(D|X)}{Pr(I/X)} = \beta_{0,D|I} + \beta_{1,D|I}Income$$

$$\ln \frac{Pr(R|X)}{Pr(I/X)} = \beta_{0,R|I} + \beta_{1,R|I}Income$$

$$\ln \frac{Pr(D|X)}{Pr(R/X)} = \beta_{0,D|R} + \beta_{1,D|R}Income$$
(1)

• where the subscripts to the $\beta's$ indicate which comparison is being made.

Sarmiento-Barbieri (Uniandes) Lecture 29 November 23, 2021 6/34

These logits include redundant info

$$\ln \frac{Pr(D|X)}{Pr(I/X)} - \ln \frac{Pr(R|X)}{Pr(I/X)} = \ln \frac{Pr(D|X)}{Pr(R/X)}$$
(2)

which implies

$$\beta_{0,D|I} - \beta_{0,R|I} = \beta_{0,D|R} \tag{3}$$

$$\beta_{1,D|I} - \beta_{1,R|I} = \beta_{1,D|R} \tag{4}$$

▶ In general, with I alternatives, only I-1 binary ligts need to be fit (minimal set)

Sarmiento-Barbieri (Uniandes)

	Binary			Multinomial Logit		
	(1)	(2)	(3)			
VARIABLES	dem_ind	rep_ind	dem_rep	Democrat	Independent	Republican
income	-0.00249	0.0157***	-0.0184***	-0.00272		0.0152***
	(0.00355)	(0.00374)	(0.00230)	(0.00372)		(0.00366)
Constant	1.605***	0.659***	0.953***	1.613***		0.678***
	(0.149)	(0.162)	(0.105)	(0.153)		(0.160)
Observations	844	689	1,231	1,382	1,382	1,382

- Fitting the MNLM by fitting a series of binary logits is not optimal
 - ▶ Binary logit is based on a different sample.
 - ▶ It ignores the restricctions that are implicit in the definition of the MNLM

The multinomial logit model: formal statement

► Formally

$$\ln \Omega_{m|b}(X) = \ln \frac{Pr(y=m|X)}{Pr(y=b|X)} = X\beta_{m|b} \text{ for } m=1,\ldots,J$$
 (5)

- ▶ were *b* is the base outcome (reference category)
- ▶ These J equations can be solved to compute the probabilities for each outcome

$$Pr(y = m|X) = \frac{exp(X\beta_{m|b})}{\sum_{j=1}^{J} exp(X\beta_{j|b})}$$
(6)

9 / 34

Multinomial Inverse Regression

- ► A task that comes up often in social science is understanding how text connects to a set of related covariates.
- ► For example, you might want to connect the we8there reviews simultaneously to all five aspect ratings, allowing you to determine which content is predictive of ratings on, say, atmosphere separate from food or service.
- ► For such tasks, we can turn to multinomial inverse regression (MNIR) to link the text with observable covariates through a multinomial distribution.

Multinomial Inverse Regression

- ▶ The "inverse" in MNIR comes from the fact that, while text regression usually fits a single document attribute as a function of word counts, we are inverting the process by regressing the counts on any number of document attributes.
- \triangleright Given document attributes v_i (author characteristics, date, beliefs, sentiment, etc.), MNIR follows the familiar generalized linear model framework.
- Each document x_i is modeled as arising from a multinomial with a logit link onto a linear function of v_i

Multinomial Inverse Regression

ightharpoonup Each document x_i is modeled as arising from a multinomial with a logit link onto a linear function of v_i

$$x_i \sim MN(q_i, m_i) \tag{7}$$

with

$$q_{ij} = \frac{exp(\alpha_j + v_i'\phi_j)}{\sum_{l=1}^p exp(\alpha_l + v_i'\phi_l)}$$
(8)

12/34

Now, the number of outcome categories is the number of tokens in our text vocabulary. This can be viewed as a natural extension of topic modeling: we are keeping the multinomial model for token counts but replacing unknown topics with known attributes.

- ► We have 6,166 reviews, with an average length of 90 words per review, we8there.com.
- ► A useful feature of these reviews is that they contain both text and a multidimensional rating on overall experience, atmosphere, food, service, and value.
- ► For example, one user submitted a glowing review for Waffle House #1258 in Bossier City, Louisiana:

I normally would not revue a Waffle House but this one deserves it. The workers, Amanda, Amy, Cherry, James and J.D. were the most pleasant crew I have seen. While it was only lunch, B.L.T. and chili, it was great. The best thing was the 50's rock and roll music, not to loud not to soft. This is a rare exception to what you all think a Waffle House is. Keep up the good work.

Overall: 5, Atmosphere: 5, Food: 5, Service: 5, Value: 5.

- ▶ Looking again at the we8there data, we can set v_i as the vector of five aspect ratings:
 - 1 overall
 - 2 atmosphere
 - 3 value
 - 4 food
 - 5 service
- The multinomial response will be the vector of word counts for each review x_i , which implies 2640 outcome categories.

Overall	Food	Service	Value	Atmosphere
plan.return	again.again	cozi.atmospher	big.portion	walk.down
feel.welcom	mouth.water	servic,terribl	around.world	great.bar
best.meal	francisco.bay	servic.impecc	chicken.pork	atmospher.wonder
select.includ	high.recomend	attent.staff	perfect.place	dark.wood
finest.restaur	cannot.wait	time.favorit	place.visit	food.superb
steak.chicken	best.servic	servic.outstand	mahi.mahi	atmospher.great
love.restaur	kept.secret	servic.horribl	veri.reason	alway.go
ask.waitress	food.poison	dessert.great	babi.back	bleu.chees
good.work	outstand.servic	terribl.servic	low.price	realli.cool
can.enough	far.best	never.came	peanut.sauc	recommend.everyon
after.left	food.awesom	experi.wonder	wonder.time	great.atmospher
come.close	best.kept	time.took	garlic.sauc	wonder.restaur
open.lunch	everyth.menu	waitress.come	great.can	love_atmospher
warm.friend	excel.price	servic.except	absolut.best	bar_just
spoke.manag	keep.come	final.came	place.best	expos.brick
definit.recommend	hot.fresh	new.favorit	year.alway	back.drink
expect.wait	best.mexican	servic.awesom	over.price	fri.noth
great.time	best.sushi	sever.minut best.dine veri.rude peopl.veri poor.servic ask.check	dish.well	great.view
chicken.beef	pizza.best		few.place	chicken.good
room.dessert	food.fabul		authent.mexican	bar.great
price.great	melt.mouth		wether.com	person.favorit
seafood.restaur	each.dish		especi.good	great.decor
friend.atmospher	absolut wonder		like.sit	french.dip
sent.back Il.definit anyon.look most.popular order.wrong delici.food fresh.seafood	foie.gras	real.treat	open.until	pub.food
	menu.chang	never.got	great.too	coconut.shrimp
	food.bland	non.exist	open.daili	go.up
	noth.fanci	flag.down	best.valu	servic.fantast
	back.time	tabl.ask	just.great	gas.station
	food.excel	least.minut	fri.littl	pork.loin
	worth.trip	won.disappoint	portion.huge	place.friend
nesn.sealood	wordt.drip	жоплаваррони	— nega	

- ► This is truly a Big Data problem
- ► Traditional multiomial packages won't work
- ▶ In R you can use the package distrom
- ▶ It was designed to be efficient for these types of massive-response multinomials.
- ► It uses a Poisson distribution representation of the multinomial to distribute computation for each vocabulary element across multiple processors.

- ► Neural networks are simple models.
- ► Their strength lays in their simplicity because basic patterns facilitate fast training and computation.
- ▶ The model has linear combinations of inputs that are passed through nonlinear activation functions called nodes (or, in reference to the human brain, neurons).

Let's start with a familiar and simple model, the linear model

$$y = f(X) + u$$

$$y = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$$
(9)

Let's start with a familiar and simple model, the linear model

$$y = f(X) + u$$

$$y = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$$
(9)

- Linear Models may be to simple, and miss the nonlinearities that best approximate $f^*(x)$
- We can overcome these limitations of linear models and handle a more general class of functions by incorporating one or more hidden layers.
- ▶ Deep feed forward networks, also called feed forward neural networks, or multilayer perceptrons (MLPs), are the quintessential deep learning models

- ► Feed forward neural networks are called networks because they are typically represented by composing together many different functions.
- ► For example, we might have two functions $f^{(2)}$, $f^{(1)}$ and connected in a chain to form $f(x) = f^{(2)}(f^{(1)}(x))$
- ▶ These chain structures are the most commonly used structures of neural networks.

- ► The overall length of the chain gives the depth of the model. The name "deep learning" arose from this terminology.
- ▶ The final layer of a feed forward network is called the output layer
- ▶ During neural network training, we try to train f(x) to match $f^*(x)$
- ▶ In the training data we observe the first layer, inputs (x), and the last layer, output (y)
- ▶ We do not observe the intermediate layers, they are then called hidden layers.
- ► Finally, these networks are called neural because they are loosely inspired by neuroscience.

```
library(keras)
fashion_mnist <- dataset_fashion_mnist()</pre>
```



```
train_images <- train_images / 255
test_images <- test_images / 255
model <- keras_model_sequential()</pre>
model %>%
  layer_flatten(input_shape = c(28, 28)) %>%
  layer_dense(units = 128, activation = 'relu') %>%
 laver_dense(units = 10, activation = 'softmax')
model %>% compile(
  optimizer = 'adam'.
  loss = 'sparse_categorical_crossentropy',
 metrics = c('accuracy')
model %>% fit(train_images, train_labels, epochs = 5, verbose = 2)
```

```
## Epoch 1/5
## 1875/1875 - 2s - loss: 0.5003 - accuracy: 0.8238
## Epoch 2/5
## 1875/1875 - 2s - loss: 0.3782 - accuracy: 0.8643
## Epoch 3/5
## 1875/1875 - 2s - loss: 0.3362 - accuracy: 0.8784
## Epoch 4/5
## 1875/1875 - 2s - loss: 0.3141 - accuracy: 0.8844
## Epoch 5/5
## 1875/1875 - 2s - loss: 0.2934 - accuracy: 0.8922
score <- model %>% evaluate(test_images, test_labels, verbose = 0)
cat('Test loss:', score[1], "\n")
## Test loss: 0.3377942
```

4 D > 4 B > 4 E > 4 E > 9 Q P

Sarmiento-Barbieri (Uniandes)

- ► In the original deep learning context, embedding layers replace each word with a vector value
 - ▶ for example, man becomes the location [1,2, 0.25] in a three-dimensional embedding space

- ▶ Word embeddings preserve semantic relationships.
 - ▶ Words with similar meaning have similar representations.
 - ▶ Dimensions induced by word differences can be used to identify cultural concepts

▶ The dimensions are useful because they produce quantitative measures of similarity between the associated concepts and specific words in the corpus.

Figure 2: Measuring Gender Stereotypes using Cosine Similarity


```
library(text2vec)
load('shakes_words_df_4text2vec.RData')
head(shakes_words)
                              word
## 1 A_Lover_s_Complaint
                               nor
## 2 A Lover s Complaint
                             gives
## 3 A_Lover_s_Complaint
                                it.
## 4 A_Lover_s_Complaint satisfaction
## 5 A_Lover_s_Complaint
                                t.o
shakes_words_ls <- list(shakes_words$word)</pre>
it <- itoken(shakes_words_ls, progressbar = FALSE)</pre>
shakes_vocab <- create_vocabulary(it)</pre>
shakes_vocab <- prune_vocabulary(shakes_vocab, term_count_min= 5)</pre>
head(shakes_vocab)
## Number of docs: 1
## 0 stopwords: ...
## ngram_min = 1; ngram_max = 1
## Vocabulary:
          term_term_count_doc_count
        ahhass
## 2: abilities
## 3: accessarv
           ace
```

addere

5.

- ▶ The next step is to create the token co-occurrence matrix (TCM).
- ▶ The definition of whether two words occur together is arbitrary.

```
# maps words to indices
vectorizer <- vocab_vectorizer(shakes_vocab)

# use window of 10 for context words
shakes_tcm <- create_tcm(it, vectorizer, skip_grams_window = 10)</pre>
```

Now we are ready to create the word vectors based on the GloVe model.

```
glove <- GlobalVectors$new(rank = 50, x_max = 10)
shakes_wv_main = glove$fit_transform(shakes_tcm, n_iter = 10, convergence_tol = 0.01, n_threads = 8)

## INFO [16:55:08.317] epoch 1, loss 0.1242
## INFO [16:55:08.764] epoch 2, loss 0.0844
## INFO [16:55:11.249] epoch 3, loss 0.0762
## INFO [16:55:13.680] epoch 4, loss 0.0707
## INFO [16:55:13.680] epoch 5, loss 0.0666
## INFO [16:55:18.540] epoch 6, loss 0.0634
## INFO [16:55:23.419] epoch 8, loss 0.0699
## INFO [16:55:23.419] epoch 8, loss 0.0589
## INFO [16:55:28.288] epoch 10, loss 0.0558
```

```
dim(shakes_wv_main)
## [1] 9094 50
shakes_wv_context <- glove$components</pre>
dim(shakes_wv_context)
## [1] 50 9094
# Either word-vectors matrices could work, but the developers of the technique
# suggest the sum/mean may work better
shakes_word_vectors <- shakes_wv_main + t(shakes_wv_context)
rom <- shakes_word_vectors["romeo", , drop = F]</pre>
cos_sim_rom <- sim2(x =shakes_word_vectors, y = rom, method = "cosine", norm = "12")
# head(sort(cos\_sim\_rom[,1], decreasing < - T). 10)
```

```
## romeo juliet tybalt nurse benvolio banished
## 1.0000000 0.7712391 0.7575977 0.6697068 0.6517349 0.6436404
```

```
test <- shakes_word_vectors["romeo", , drop = F] -
    shakes_word_vectors["mercutio", , drop = F] +
    shakes_word_vectors["nurse", , drop = F]

cos_sim_test <- sim2(x = shakes_word_vectors, y = test, method = "cosine", norm = "12")
head(sort(cos_sim_test[,1], decreasing = T), 10)</pre>
```

```
## nurse juliet romeo lady mother bed o wife
## 0.8904362 0.7584004 0.7179267 0.6440354 0.6374490 0.5880860 0.5756074 0.5638571
## capulet dromio
```

Review & Next Steps

- ► Multinomial Regression
- ▶ Deep Learning: Intro and Demo
- ▶ Next class: More on Neural Nets
- ▶ Please fill the perception survey https://encuestacursosuniandes.com/login

Further Readings

- Ash, E., Chen, D. L., & Ornaghi, A. (2020). Stereotypes in High-Stakes Decisions: Evidence from US Circuit Courts (No. 1256). University of Warwick, Department of Economics.
- ► Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola (2020) Dive into Deep Learning. Release 0.15.1. http://d2l.ai/index.html
- ▶ Long, J. S., & Freese, J. (2014). Regression models for categorical dependent variables using Stata. Stata press. Rstudio (2020). Tutorial TensorFlow https:
 - //tensorflow.rstudio.com/tutorials/beginners/basic-ml/tutorial_basic_classification/
- ► Taddy, M. (2019). Business data science: Combining machine learning and economics to optimize, automate, and accelerate business decisions. McGraw Hill Professional.
- ▶ Voigt, R., Camp, N. P., Prabhakaran, V., Hamilton, W. L., Hetey, R. C., Griffiths, C. M., ... & Eberhardt, J. L. (2017). Language from police body camera footage shows racial disparities in officer respect. Proceedings of the National Academy of Sciences, 114(25), 6521-6526.