Задача 6.

Безусловно, каждому известно, что химия изучает различные вещества и их превращения. Однако в нашей любимой науке речь идёт не только о химических процессах. Существует отдельная большая область, изучающая ядерные реакции, называемая радиохимией.

Среди всех путей радиоактивного распада наиболее распространёнными являются два: α -распад, сопровождающийся испусканием ядра атома гелия 4_2He , и β -распад, в результате которого из ядра вылетает электрон и элементарная частица антинейтрино $\bar{\nu}$, не имеющая массы и заряда.

1. Запишите общие схемы процессов α - и β -распадов, считая, что в них вступает ядро элемента **X** с массовым числом M и зарядом Z, а образуется ядро элемента **Y**.

Природные радиоактивные ядра, к которым относится и **A**, зачастую претерпевают целый каскад превращений, образуя большие семейства. Одно из них представлено на рисунке:

$$A \xrightarrow{\alpha} B \xrightarrow{\beta^{-}} C \xrightarrow{\beta^{-}} D \xrightarrow{\alpha} E \xrightarrow{\alpha} F \xrightarrow{\alpha} G \xrightarrow{\alpha} H$$

$$\downarrow^{\alpha}$$

$$^{206}Pb \xrightarrow{\alpha} N \xrightarrow{\beta^{-}} M \xrightarrow{\beta^{-}} L \xrightarrow{\alpha} K \xrightarrow{\beta^{-}} J \xrightarrow{\beta^{-}} I$$

2. Расшифруйте ядра А-N, представленные на схеме превращений.

Рекомендации к решению

Для решения задачи необходимо вспомнить два фундаментальных закона, которые обязательно выполняются в данном случае. В ходе любых радиоактивных превращений суммарные массы и заряды должны сохраняться.

Поскольку в ходе α -распада ядро испускает α -частицу 4_2He , то заряд ядра уменьшается на 2, а масса — на 4. Аналогично в случае β -распада заряд ядра увеличивается на 1, а масса не изменяется:

$${}_{Z}^{M}X \xrightarrow{\alpha} {}_{Z-2}^{M-4}Y + {}_{2}^{4}He$$

$${}_{Z}^{M}X \xrightarrow{\beta^{-}} {}_{Z+1}^{M}Y + {}_{-1}^{0}e + {}_{0}^{0}\overline{\nu}$$

Основываясь на приведённых выше схемах распадов, расшифруем цепочку превращений А \rightarrow ²⁰⁶Pb, двигаясь в обратную сторону:

N	M	L	K	J	I	Н
²¹⁰ Po	²¹⁰ Bi	²¹⁰ Pb	²¹⁴ Po	²¹⁴ Bi	²¹⁴ Pb	- ²¹⁸ Po
G	F	E	D	C	В	A
²²² Rn	²²⁶ Ra	²³⁰ Th	²³⁴ U	²³⁴ Pa	²³⁴ Th	²³⁸ U

Критерии оценивания	
1. Общие схемы процессов α- и β ⁻ -распадов	по 3 балла
2. Установление ядер A-N	по 1 баллу
Итого	20 баллов