CONJUNTOS: DEFINICIONES Y CARDINALIDAD

Conceptos básicos

Intuitivamente, un conjunto es: una colección de objetos, y a los objetos se los denominará elementos.

Cuando un elemento a forma parte de un conjunto A, se dice que *pertenece* a él, y se acostumbra a representar ese hecho como $a \in A$; si no pertenece, se simboliza por $a \notin A$ (o también como: $\neg(a \in A)$)

Conjunto Universal o de referencia es aquel conformado por todos los elementos de interés en una situación particular. El universal X puede formalizarse como aquel conjunto que satisface: $\forall x (x \in X)$ donde x es un elemento cualquiera en una situación particular.

...cuando se establece una propiedad o característica de tal forma

Determinación de un conjunto por comprensión	que aquellos elementos que la satisfacen quedan perfectamente estipulados, y pertenecen, por tanto, al conjunto; y los que no la cumplen, no pertenecen al conjunto. La determinación formal de un conjunto por comprensión se representa como: $A = \{x x \in X \land P\}^1$ donde x representa cualquier elemento de un conjunto universal X P es una fbf del cálculo cuantificacional (o del proposicional) que hace referencia a un atributo, propiedad, regla, condición, relación o restricción que debe exhibir el elemento x para ser parte de A .
Determinación de un conjunto por extensión	cuando se listan todos, y cada uno, de los elementos que pertenecen a él; ejemplo: $A = \{a, b, c, f\}$.
Operaciones con conjuntos	1
Unión	$A + B = \{x x \in A \lor x \in B \}$ $x \in (A + B) \leftrightarrow x \in A \lor x \in B$ $x \notin (A + B) \leftrightarrow x \notin A \land x \notin B$
Intersección	$A \cdot B = \{x x \in A \land x \in B \}$ $x \in A \cdot B \leftrightarrow x \in A \land x \in B$ $x \notin A \cdot B \leftrightarrow x \notin A \lor x \notin B$
Diferencia de A respecto de B	$A - B = \{x x \in A \land x \notin B \}$ $x \in (A - B) \leftrightarrow x \in A \land x \notin B$ $x \notin (A - B) \leftrightarrow x \notin A \lor x \in B$
Diferencia Simétrica entre A y B	$A \oplus B = (A - B) + (B - A)$ $= \{x (x \in A \land x \notin B) \lor (x \in B \land x \notin A) \}$ $x \in A \oplus B \leftrightarrow (x \in A \land x \notin B) \lor (x \in B \land x \notin A)$ $x \notin A \oplus B \leftrightarrow (x \notin A \land x \notin B) \lor (x \in B \land x \in A)$
Complementación (Conjunto complemento)	$A' = X - A = \{x x \in X \land x \notin A\}$ $x \in A' \leftrightarrow x \in X \land x \notin A$ $x \notin A' \leftrightarrow x \notin X \lor x \in A$ $x \in A'' \leftrightarrow x \notin A'$
Relaciones básicas entre conjun	tos
Igualdad Diferencia	$A = B \leftrightarrow \forall x (x \in A \leftrightarrow x \in B)$ $A \neq B \leftrightarrow \exists x (x \in A \leftrightarrow x \notin B)$

¹ También es usual emplear la siguiente notación $A = \{x \mid x \in X, P\}$

	$A \neq B \leftrightarrow \exists x (x \in A \land x \notin B) \lor \exists x (x \in B \land x \notin A)$
Inclusión No inclusión	$A \subseteq B \leftrightarrow \forall x (x \in A \to x \in B)$ $A \nsubseteq B \leftrightarrow \exists x (x \in A \land x \notin B)$
Inclusión propia No inclusión propia	$A \subset B \leftrightarrow \forall x (x \in A \to x \in B) \land \exists x (x \notin A \land x \in B)$ $A \not\subset B \leftrightarrow \exists x (x \in A \land x \notin B) \lor \forall x (x \in B \to x \in A)$
Exclusión mutua No exclusión mutua	$A <> B \leftrightarrow \forall x (x \in A \to x \notin B)$ $A \not< \Rightarrow B \leftrightarrow \exists x (x \in A \land x \in B)$
Otros conceptos	
Conjunto <i>n</i> -ario	$z \in \{x_1, \dots, x_n\} \leftrightarrow z = x_1 \lor \dots \lor z = x_n$ $z \notin \{x_1, \dots, x_n\} \leftrightarrow z \neq x_1 \land \dots \land z \neq x_n$
Familia de Conjuntos	$A = \{x \mid s(x)\};$ donde $s(x)$: " x es un conjunto". $A = \{A_i \mid i \in I\}$: i índice o identificador del conjunto A_i . I conjunto de identificación o conjunto índice $(I_n = \mathbb{N}_n = \{1, 2,, n\})$
Conjunto Vacío	$\emptyset = \{x x \in A \land x \notin A\}$ $x \in \emptyset \leftrightarrow x \in A \land x \notin A$ $x \notin \emptyset \leftrightarrow x \notin A \lor x \in A$
Conjunto Potencia de <i>A</i> (Conjunto de Partes de <i>A</i>)	$\mathcal{P}(A) = \{B B \subseteq A\}$ $B \in \mathcal{P}(A) \leftrightarrow B \subseteq A$ $B \notin \mathcal{P}(A) \leftrightarrow B \nsubseteq A$
Alcance de las operaciones y relaciones	 De encontrar signo de complementación, ', debe aplicársele al conjunto más próximo que le antecede. De hallar los siguientes signos, aplíquense a los conjuntos más próximos a izquierda y derecha: ·, +, -, ⊕. De hallar los siguientes signos, aplíquense a los conjuntos más próximos a izquierda y derecha: ; =, ≠; ⊆, ⊈, ⊂, ⊄, <>, ∢≯; ∈, ∉ De hallar el signo ¬, aplíqueselo al enunciado más próximo a su derecha. De hallar los siguientes signos, aplíquense a los enunciados más próximos a izquierda y derecha: ∧;∨; →; ↔ De encontrar signos de agrupación, (), deben aplicarse a los conjuntos o enunciados que agrupe
Prioridad, precedencia (jerarquía) de aplicación	$();';\cdot;+;-,\oplus;=,\neq;\subseteq,\nsubseteq,\subset,\not\subset,<\triangleright,\not<\not>;\in,\notin;\neg;\Lambda;V;\rightarrow;\leftrightarrow$

Relaciones deducibles entre conju	untos (Teoremas)
T I1	
Teorema J1	$\forall x (x \notin \emptyset)$
Teorema J2	$A \subseteq 1 \to \emptyset \subseteq A$
Teorema J3	$A = \emptyset \leftrightarrow \forall x (x \notin A)$
Teorema J4	$x \in A \leftrightarrow \{x\} \subseteq A$
Teorema J5	$A \subseteq B \leftrightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$
Teorema J6	$A \subseteq A + B$
Teorema J7	$A \cdot B \subseteq A$
Teorema J8	$A \cdot B \subseteq A + B$
Teorema J9	$(A+B\subseteq A\cdot B)\to A=B$
Teorema J10	$A \subseteq B \to A \subseteq B + C$
Teorema J11	$(A \subseteq C \land B \subseteq C) \leftrightarrow A + B \subseteq C$
Teorema J12	$(C \subseteq A \land C \subseteq B) \leftrightarrow C \subseteq A \cdot B$
Teorema J13	$(A \subseteq B \land B \subseteq C) \to A \subseteq C$
Teorema J14a	$(A \subseteq B) \leftrightarrow (A + B = B)$
Teorema J14b	$(A \subseteq B) \leftrightarrow (A \cdot B = A)$
Teorema J15a	$(A \subseteq B) \to (A + C \subseteq B + C)$
Teorema J15b	$(A \subseteq B) \to (A \cdot C \subseteq B \cdot C)$
Teorema J16a	$(A \subseteq B \land C \subseteq D) \to (A + C \subseteq B + D)$
Teorema J16b	$(A \subseteq B \land C \subseteq D) \to (A \cdot C \subseteq B \cdot D)$
Teorema J17a (Conmutatividad)	$A \cdot B = B \cdot A$
Teorema J17b (Conmutatividad)	A + B = B + A
Teorema J18a (Asociatividad)	$A \cdot B \cdot C = (A \cdot B) \cdot C = A \cdot (B \cdot C)$
Teorema J18b (Asociatividad)	A + B + C = (A + B) + C = A + (B + C)
Teorema J19a (Idempotencia)	$A \cdot A = A$
Teorema J19b (Idempotencia)	A + A = A
Teorema J20a (Distributividad de la intersección respecto a la unión)	$A \cdot (B+C) = A \cdot B + A \cdot C$
Teorema J20b (Distributividad de la intersección respecto a la intersección)	$A + B \cdot C = (A + B) \cdot (A + C)$
Teorema J21a (Absorción)	$A + A \cdot B = A$
Teorema J21b (Absorción)	$A \cdot (A + B) = A$

Teorema J22a (Acotación)	$A \cdot \emptyset = \emptyset$
Teorema J22b (Acotación)	A + 1 = 1
Teorema J23a (Elemento neutro de la unión)	$A + \emptyset = A$
Teorema J23b (Elemento neutro de la intersección)	$A \cdot 1 = A$
Teorema J24a	$\emptyset' = 1$
Teorema J24b	$1' = \emptyset$
Teorema J25 (Involución)	$A^{\prime\prime}=A$
Teorema J26a (DeMorgan)	$(A \cdot B)' = A' + B'$
Teorema J26b (DeMorgan)	$(A+B)'=A'\cdot B'$
Teorema J27a (Tercio excluido)	$A \cdot A' = \emptyset$
Teorema J27b (Tercio excluido)	A + A' = 1
Teorema J28a	$(A \subseteq B) \leftrightarrow (B' \subseteq A')$
Teorema J28b	$(A \subseteq B) \leftrightarrow (A \cdot B' = \emptyset)$
Teorema J28c	$(A \subseteq B) \leftrightarrow (A' + B = 1)$
Teorema J29	$(A+B=1) \leftrightarrow (A' \subseteq B)$
Teorema J30	Si $x \in 1$, $A \subseteq 1$ y $B \subseteq 1$, entonces sólo una de las siguientes relaciones es válida:
	$x \in A \cdot B$
	$x \in A \cdot B'$
	$x \in A' \cdot B$
	$x \in A' \cdot B'$
Teorema J31a	$(A \cdot B + A \cdot B') = A$
Teorema J31b	$((A+B)\cdot (A+B'))=A$

CARDINALIDAD

Conceptos básicos

Si A es un conjunto finito, la cardinalidad se define como el número de elementos que lo componen.

La cardinalidad de un conjunto A se denota $ A $, o $card(A)$.	
Postulados	
Card1	$ \emptyset = 0$
Card2	$A \subseteq B \to A \le B $
Card3	$(A \cdot B = \emptyset) \to A + B = A + B $
Teoremas	
Teorema Card4	$ A \cdot B \le A $
Teorema Card5	$ A \le A + B $
Teorema Card6	$ A+B = A + B - A \cdot B $
Teorema Card7	A' = X - A donde $ X $ es la cardinalidad del conjunto referencia X .
Teorema Card8	$(a \le A \le b) \leftrightarrow (X - b \le A' \le X - a)$
Teorema Card9a	$\underbrace{\max(A , B)}_{uno\ incluye\ al\ otro} \leq A+B \leq \underbrace{ A + B }_{ A + B \leq X }$
Teorema Card9b	$\max(A , B) \le A+B \le \min(A + B , X)$ $uno\ incluye\ al\ otro$ $ A + B > X \ (implica\ que\ A\cdot B\neq\emptyset)$
Teorema Card10a	$\underbrace{0}_{A \cdot B = \emptyset} \leq A \cdot B \leq \underbrace{\min(A , B)}_{uno \ est\'a \ incluido \ en \ el \ otro}$
Teorema Card10b	$\max(0, (A + B) - X) \leq A \cdot B \leq \min(A , B)$ A y B no necesariamente excluyentes uno está incluido en el otro