Universidade Federal do Paraná Setor de Tecnologia Departamento de Engenharia Elétrica

Seguidor de Fonte Luminosa – *SunFollower*

CURITIBA

Universidade Federal do Paraná Setor de Tecnologia Departamento de Engenharia Elétrica

Wesley Mateus Becker – GRR20122517

Seguidor de Fonte Luminosa – *SunFollower*

Projeto realizado sob a orientação do Prof. Márlio J. do C. Bonfim, Dr., como requisito para obtenção de nota parcial na disciplina TE-149 — Instrumentação Eletrônica — do curso de graduação em Engenharia Elétrica da Universidade Federal do Paraná.

CURITIBA

1. Sumário

1.	Sumário	. 3
2.	Introdução	. 5
3.	Desenvolvimento Teórico	. 6
4.	Soluções e Projeto	. 9
	Sensores LDR	. 9
	Interfaceamento para os Servos	10
	Topologia do Circuito	10
	Curva de Calibração	11
5.	Controlador e afins	13
	Signal to Noise Ratio (SNR)	13
	Identificação das Funções-Transferência	13
	Controlador	14
6.	Resultados Obtidos	15
7.	Conclusões	16
8.	Anexos	17
	Bottom do Shield	17
	Top Layer do Shield	17
	Bottom da placa de sensores	18
	Top da placa de sensores	18
	Projeto Acabado	19
	Face da Placa com Logo	20

2. Introdução

Este trabalho foi proposto tendo como plano de fundo o advento das energias renováveis e, especificamente, a possibilidade do aumento de colheita energética de painéis fotovoltaicos pelo controle da sua orientação. A ideia principal é medir o ângulo entre a normal de uma placa (que em uma implementação real seria o painel fotovoltaico em si) e a linha definida pelo centro da placa e a fonte luminosa da qual se quer tirar proveito (aqui considerada pontual, mas o sistema acabou se mostrando confiável mesmo para fontes extensas). A filosofia do projeto se alinha bem àquela da disciplina, já que uma grandeza é medida (o ângulo entre a normal da placa e a linha até a fonte), os dados processados por um microcontrolador (no caso, o msp430g2553 da Texas Instruments), e uma intervenção é feita no sistema por meio de atuadores (servo-motores), fechando assim a malha de controle. O ganho em *insight* do funcionamento de um sistema de controle, dos métodos de condicionamento de sinal de sensores, e os diferentes arranjos empregados para tanto foram significativos. Fica óbvio, então, o benefício do projeto semestral à formação do aluno.

3. Desenvolvimento Teórico

Optou-se pelo uso de sensores LDR (Light Dependent Resistor) pela sua abundância e seu baixo custo. Como o objetivo era medir um ângulo, dois sensores tiveram de ser empregados em cada eixo, para que se pudesse, a partir da luminosidade em cada sensor, inferir a orientação da placa.

Figura 1 - Ideia geral do sensoreamento para um eixo. Podem ser observados a placa a ser controlada, a disposição dos sensores, e os principais ângulos com os quais trabalhou-se na dedução teórica das equações.

Figura 2 - Intensidade luminosa em cada sensor, como função do ângulo da normal com a fonte.

De posse de tais dados, podemos equacionar uma expressão para o ângulo heta em função da diferença normalizada ΔI_n , definida como:

$$\Delta I_n = \frac{I_1 - I_2}{I_1 + I_2} \tag{1}$$

É explícito que:

$$I_{1}(\alpha_{1}) = I_{m\acute{a}x}\cos(\alpha_{1}) + I_{res} = I_{m\acute{a}x}\cos(\theta - 45^{\circ}) + I_{res}$$
 (2)

$$I_{2}(\alpha_{1}) = I_{m\acute{a}x}\cos(\alpha_{2}) + I_{res} = I_{m\acute{a}x}\cos(\theta + 45^{\circ}) + I_{res}$$
 (3)

$$I_2(\alpha_1) = I_{m\acute{a}r}\cos(\alpha_2) + I_{res} = I_{m\acute{a}r}\cos(\theta + 45^\circ) + I_{res}$$
 (3)

•
$$I_{1} - I_{2} = I_{m\acute{a}x} [\cos(\theta - 45^{\circ}) - \cos(\theta + 45^{\circ})]$$

$$= I_{m\acute{a}x} [\cos\theta \cdot \cos45^{\circ} + \sin\theta \cdot \sin45^{\circ} - \cos\theta \cdot \cos45^{\circ} + \sin\theta \cdot 45^{\circ}]$$

$$= I_{m\acute{a}x} \cdot \frac{\sqrt{2}}{2} \cdot [\cos\theta + \sin\theta - \cos\theta + \sin\theta]$$

$$I_1 - I_2 = I_{m\acute{a}x}\sqrt{2} \cdot sin\theta \tag{4}$$

•
$$I_{1} + I_{2} = I_{m\acute{a}x}[\cos(\theta - 45^{\circ}) + \cos(\theta + 45^{\circ})]$$

$$= I_{m\acute{a}x}[\cos\theta \cdot \cos45^{\circ} + \sin\theta \cdot \sin45^{\circ} + \cos\theta \cdot \cos45^{\circ} - \sin\theta \cdot 45^{\circ}]$$

$$= I_{m\acute{a}x} \cdot \frac{\sqrt{2}}{2} \cdot [\cos\theta + \frac{\sin\theta}{2} + \cos\theta - \frac{\sin\theta}{2}]$$

$$I_{1} + I_{2} = I_{m\acute{a}x} \sqrt{2} \cdot \cos\theta$$
(5)

Assim, de (1), (4), e (5), fica claro que:

$$\Delta I_n = tg\theta$$

E, consequentemente:

$$\theta = tg^{-1}\Delta I_n \tag{6}$$

O gráfico idealizado ficaria da seguinte forma:

Figura 3 - Ângulo da normal da placa com a fonte luminosa como função da diferença normalizada de intensidade luminosa. Essa curva ideal é a curva artg(x).

Mas é claro que, com múltiplos fatores não ideias e diversas camadas de tratamento do sinal, as relações se deturpam, a começar pelos sensores, não-lineares. A curvas reais ser parecerão mais com alguma da próxima Figura 4. Ali, tomou-se como variável de abcissa a diferença normalizada da medida de luminosidade que são entregues já para o software, isto é, depois de passar pelo circuito de condicionamento e pelo conversor A/D. Portanto, espera-se que a curva de calibração final incorpore todas as relações entre os componentes e deformações pelas quais o sinal passa.

Figura 4 - Curvas que ocorrem na prática, fazendo o ângulo que se quer medir ser função, diretamente dos valores depois do conversor A/D.

Aqui, chama-se D_i o valor digitalizado da luminosidade do i-ésimo sensor, após todas as camadas de hardware.

Tendo em vista as curvas práticas esperadas, procurou-se uma função pra a curva de calibração que mantivesse as principais características da artg(x), mas que fosse parametrizável e pudesse ser facilmente implementada em código pra o microcontrolador. Uma das primeiras candidatas, e função que foi finalmente adotada, é (7), com sua versão com parâmetros ajustáveis em (8).

$$f(x) = \frac{x}{1 + |x|} \tag{7}$$

$$\theta(\Delta D_n) = k_0 \cdot \frac{\Delta D_n + k_1}{1 + k_2 \cdot |\Delta D_n + k_1|} \tag{8}$$

Resultados da regressão não-linear empregada na identificação da curva de calibração de ambos os eixos do projeto podem ser acompanhados na seção.

4. Soluções e Projeto

Sensores LDR

Os sensores de luminosidade utilizados são do tipo LDR. Seu princípio de funcionamento é a variação de sua resistência com a luminosidade, regrada por (9).

Figura 5 - Exemplar de sensor LDR como os usados no projeto.

Uma curva típica de tal sensor encontra-se na Figura 6. Notar que existe, na verdade, uma gama de curvas que o sensor pode assumir, havendo necessidade de identificar a curva de cada sensor individualmente.

$$R = \frac{a}{I^b} \tag{9}$$

Figura 6 - Curva característica dos sensores utilizados. Nota-se a característica hiperbólica explicitada na equação (9).

Desejava-se obter um sinal de tensão que fosse diretamente proporcional à luminosidade. Para isso, utilizou-se um divisor de tensão como o da Figura 5.

Figura 7 - Divisor de tensão utilizado para gerar um sinal de tensão a partir da resistência variável do sensor LDR.

Notar que, apesar de utilizarmos um microcontrolador sendo alimentado com 3,6 V, utilizou-se uma tensão de 5 V para a excitação do circuito. Isso foi feito devido à pequena janela de tensão que o divisor proporcionava quando se variava a intensidade luminosa do máximo ao mínimo com a tensão original. Aumentando a tensão, pode-se aumentar a resolução da medida. Aliado ao aumento da tensão de excitação, reduziu-se a tensão de referência do conversor A/D de 3,6 para 2,5 V, tornando possível o uso de mais da metade da escala do conversor e eliminando a necessidade de um amplificador.

Interfaceamento para os Servos

O controle dos servo-motores, alimentados com $5\,\mathrm{V}$, é feito com uma onda retangular de $50\,\mathrm{Hz}$ e, também, $5\,\mathrm{V}$ de pico. Novamente, como o microcontrolador é alimentado com $3,6\,\mathrm{V}$, precisou-se interfacear o circuito, o que foi feito com o circuito da Figura 8.

Figura 8 - Circuito de mudança de nível lógico para controle dos servos.

Topologia do Circuito

Como precaução contra ruídos, foi adicionado um filtro passa-baixas a cada entrada do divisor de tensão dos LDRs para o microcontrolador. Isso foi feito pois a probabilidade de que o nível de ruído fosse alto era grande, já que a placa dos sensores fica separa do *shield* que é

conectado ao microcontrolador e a conexão é feita por meio de cabos planos. Os únicos componentes que não foram declarados nas seções acima são os reguladores de tensão.

Figura 9 - Topologia de todo o circuito. Os trilhos nas laterais são as conexões para o launchpad do msp430 e os conectores no centro são saídas para os chicotes dos sensores e dos servos.

Os layouts de ambas as PCIs podem ser vistos nos Anexos A e B. Modificações tiveram que ser feitas porém, pois a descuido fez com que se utilizasse portas indevidas do *launchpad*, por exemplo, o uso das portas de comunicação serial (essencial para o projeto) para conversão A/D. Tais modificações não se encontram documentadas pois foram feitas à medida que foram percebidas e corrigidas de modo provisório.

Curva de Calibração

Para cada eixo, foram coletados vários pontos, medindo-se o ângulo da fonte com a normal da placa e a intensidade luminosa (já no *range* de 10 bits) de cada sensor (pertencente àquele eixo). Como dito ao fim da seção 3, a equação usada para aproximar a curva de calibração foi a seguinte:

$$\theta(\Delta D_n) = k_0 \cdot \frac{\Delta D_n + k_1}{1 + k_2 \cdot |\Delta D_n + k_1|} \tag{8}$$

Com a dispersão de pontos de cada eixo, performou-se uma regressão não-linear, utilizando-se do pacote de funções do *software* MATLAB®. Os resultados podem ser acompanhados nas figuras subsequentes:

Figura 10 - Curva de calibração do eixo 0.

Figura 11 - Curva de calibração do eixo 1.

A segunda curva acabou ficando diferente da primeira pois a montagem mecânica não permitiu que o LED usado como excitação para os sensores ficasse sempre apontado perfeitamente para o centro da placa. Mesmo assim, os resultados obtidos com a medida do ângulo são bastante satisfatórios.

5. Controlador e afins

Signal to Noise Ratio (SNR)

Foram medidos aproximadamente 200 pontos a 16° e, inicialmente, a SNR obtida foi de **74,9**. Depois da aplicação de média móvel (sugere-se que o código fonte seja referenciado para informação de como esta foi implementada), conseguiu-se uma SNR de **202,4**, que foi considerada satisfatória. Notar que a SNR inicial era baixa, apesar do filtro passa-baixas empregado na entrada do conversor A/D.

Identificação das Funções-Transferência

Foram aplicados degraus de 400 milésimos de amplitude do movimento dos servos (essa era, inclusive, a resolução empregada para o PWM dos servos, de 1000 partes). A partir das respostas, identificou-se as plantas e a resposta a degrau de ambas foram plotadas juntamente com as respostas originais.

Figura 12 - Resultados do processo de identificação da planta do eixo 0. Em vermelho, a resposta ao degrau original, em verde, a resposta da função transferência encontrada.

Figura 13 - Resultados do processo de identificação da planta do eixo 1. Em vermelho, a resposta ao degrau original, em verde, a resposta da função transferência encontrada.

Os modelos não se aproximam tanto das respostas reais, mas são suficientemente bons para o controle desejado e apresentaram resultados satisfatórios.

As funções-transferência encontradas foram:

$$H_0(s) = \frac{-84,35 \cdot 10^{-3}}{0,39 \cdot s + 1}$$

$$H_1(s) = \frac{-121,53 \cdot 10^{-3}}{0,80 \cdot s + 1}$$

Controlador

Para o controlador, foi utilizado uma arquitetura PI, já esse é o costumeiro para sistemas de primeira ordem e deseja-se zerar por completo o erro em regime permanente. Os ganhos foram ajustados de forma empírica e ficaram:

Eixo 0:

$$K_P = -20; K_I = -0.5$$

Eixo 1:

$$K_P = -20; K_I = -0.8$$

6. Resultados Obtidos

Por fim, os resultados foram o esperado. Desejava-se um tempo de subida moderado, para que não se comprometesse a estrutura mecânica do projeto, mas queria-se que o erro em regime permanente fosse zerado.

Figura 14 - Resultados do controle do eixo 0. Foram aplicados vários distúrbios e o ângulo pode ser sempre guiado de novo para zero com rapidez e exatidão (e precisão) satisfatórios.

Figura 15- Resultados do controle do eixo 1. Foram aplicados vários distúrbios e o ângulo pode ser sempre guiado de novo para zero com rapidez e exatidão (e precisão) satisfatórios.

7. Conclusões

Os resultados de controle alcançados foram satisfatórios. Porém, várias melhorias ainda poderiam ser feitas, a começar pelo *hardware*. O software também apresenta alguns pequenos *bugs* que não foram completamente localizados nem sanados. Outra melhoria certa é a compra de melhores motores. Sua confiabilidade sempre foi um problema, no decorrer de todo o projeto. O ganho de experiência com o projeto, porém, foi, como era seu objetivo, o maior resultado obtido. Houve um sensível crescimento do poder de resolução de problemas, tanto no projeto e confecção de hardware, como (na verdade, principalmente) na composição de código para microcontroladores (e máquinas em geral, já que o código foi escrito em C++).

8. Anexos

Bottom do Shield

Top Layer do Shield

Bottom da placa de sensores

Top da placa de sensores

Projeto Acabado

Face da Placa com Logo

