C2 Algebra

Robin Adams

August 19, 2022

1 Groups

Definition 1 (Group). A *group* is a triple (G, \cdot, e) where G is a set, \cdot is a binary operation on G, and $e \in G$, such that:

- $1. \cdot is associative.$
- 2. $\forall x \in G.xe = ex = x$
- 3. $\forall x \in G. \exists y \in G. xy = yx = e$

Lemma 2. The integers \mathbb{Z} form a group under + and 0.

Proof: Easy.

Lemma 3. In any group, inverses are unique.

PROOF: Suppose y and z are inverses to x. Then

y = ey = zxy = ze = z

Definition 4. We write x^{-1} for the inverse of x.

2 Abelian Groups

Definition 5 (Abelian Group). A group (G, +, 0) is *Abelian* iff + is commutative.

When using additive notation (i.e. the symbols + and 0) for a group, we write -y for the inverse of y, and x - y for x + (-y).

Lemma 6. The integers \mathbb{Z} are Abelian.

Proof: Easy.

3 Ring Theory

Definition 7 (Commutative Ring). A commutative ring is a quintuple $(R, +, \cdot, 0, 1)$ consisting of a set R, binary operations + and \cdot on R, and elements $0, 1 \in R$ such that:

- 1. (R, +, 0) is an Abelian group.
- 2. The operation \cdot is commutative, associative, and distributive over +.
- $3. \ \forall x \in R.x1 = x$
- 4. $0 \neq 1$

Definition 8 (Integral Domain). An *integral domain* is a ring such that, whenever xy = 0, then x = 0 or y = 0.

Lemma 9. The integers form an integral domain.

Proof: Easy. \square