7.3 热力学第一定律对理想气体等值过程的应用

计算各等值过程的热量、功和内能的理论基础

(1) 状态方程
$$pV = \nu RT = \frac{M}{\mu} RT$$
 (理想气体的共性)

(2) 功的计算
$$dA = pdV$$
, $A = \int dA = \int_{V_1}^{V_2} pdV$

(3) 内能的计算
$$E = E(T) = \frac{i}{2}vRT = \frac{M}{\mu}\frac{i}{2}RT$$

任意过程的内能增量 $dE = vC_{V,m}dT = \frac{i}{2}vRdT$

任意过程的内能增量
$$dE = \nu C_{V,m} dT = \frac{\iota}{2} \nu R dT$$

(5) 等值过程的特点(等温、等容、等压、绝热,等等).

一. 等容过程(定容过程,等体过程)

(constant-volume process, isovolumetric process)

- 1. 过程特点 V = C(恒量), dV = 0
- 2. 过程方程 $\frac{p}{T} = \frac{vR}{V} = C'$ (恒量)
- 3. 内能增量

$$\Delta E = \nu C_{V,m} \Delta T = \frac{\iota}{2} \nu R \Delta T$$

过程曲线

4. 功
$$A = \int_{V_1}^{V_2} p dV = 0$$

5. 热量
$$Q_V = \Delta E + A = \Delta E = \nu C_{V,m} \Delta T = \frac{\iota}{2} \nu R \Delta T$$

意义:等容过程中,系统吸收的热量全部转变成内能.

等容过程: V = C (恒量), A = 0, $Q_V = \Delta E = \nu C_{V,m} \Delta T$

等容升压过程中,系统吸收的热量,全部用来增加系统的内能,系统对外不作功。

二. 等压过程 (定压过程)

(constant-pressure process, isobaric process)

- 1. 过程特点 p = C(恒量), dp = 0
- 2. 过程方程 $\frac{V}{T} = \frac{vR}{p} = C'$ (恒量)
- 3. 内能增量

$$\Delta E = \nu C_{V,m} \Delta T = \frac{\iota}{2} \nu R \Delta T$$

4. 功
$$A = \int_{V_1}^{V_2} p dV = p \Delta V = \nu R \Delta T$$

过程曲线

5. 热量 $Q_p = \Delta E + A = \nu C_{V,m} \Delta T + \nu R \Delta T = \nu C_{p,m} \Delta T$ 意义: 等压膨胀过程中,系统吸收的热量,一部分用来增加系统的内能,一部分用来对外做功.

等压过程: p = C (恒量), $Q_V = \Delta E + A = \nu C_{V,m} \Delta T + \nu R \Delta T$

等压膨胀过程中,系统吸收的热量,一部分用来增加系统的内能,一部分用来对外做功。

三. 等温过程(isothermal process)

- 1. 过程特点 T = C(恒量), dT = 0
- 2. 过程方程 $pV = \nu RT = C'$ (恒量)

- 3. 内能增量 $\Delta E = \nu C_{V,m} \Delta T = 0$ 理想气体 E = E(T) T 不变, E 也不变
- 4. 功 $A = \int_{V_1}^{V_2} p dV$

$$= \int_{V_1}^{V_2} vRT \frac{dV}{V} = vRT \ln \frac{V_2}{V_1}$$

由过程方程 $p_1V_1 = p_2V_2 (= C')$

过程曲线

故等温过程的功 $A = \nu RT \ln \frac{V_2}{V_1} = \nu RT \ln \frac{p_1}{p_2}$

5. 热量

摩尔热容量
$$C_{T,m} = \left(\frac{dQ_m}{dT}\right)_T = \infty$$
 $C_{T,m}$ 无法定义!

无法应用 $Q_T = \nu C_{T,m} \Delta T$ 计算等温过程的热量.

应用热力学第一定律

$$Q_T = \Delta E + A = A = \nu RT \ln \frac{V_2}{V_1} = \nu RT \ln \frac{P_1}{P_2}$$

意义: 等温过程中,系统吸收的热量全部用来对外作功,系统的内能保持不变.

等温膨胀过程中,系统吸收的热量全部转化为对外做功,系统的内能保持不变。

四. 绝热过程 (adiabatic process)

1. 过程特点 dQ = TdS = 0, S = C(等熵)

系统与外界无热量交换.

摩尔热容量
$$C_{S,m} = (\frac{dQ_m}{dT})_S = 0$$

- 2. 内能增量 $\Delta E = \nu C_{V,m} \Delta T$
- 3. 功 由热力学第一定律 $Q = \Delta E + A = 0$

$$\therefore A = -\Delta E = -\nu C_{V,m} \Delta T$$

过程曲线

意义:系统对外作功全部靠内能提供.

若已知 p_1,V_1,p_2,V_2 及 γ , 从 $pV=\nu RT$ 可得

$$A = C_{V,m} \left(\frac{p_1 V_1}{R} - \frac{p_2 V_2}{R} \right) = \frac{C_{V,m}}{C_{p,m} - C_{V,m}} (p_1 V_1 - p_2 V_2) = \frac{p_1 V_1 - p_2 V_2}{\gamma - 1}$$

获取低温的一个方法:

$$(V \uparrow \rightarrow E \downarrow \rightarrow T \downarrow)$$

绝热膨胀过程中,系统对外做功全部以消耗系统内能为代价.

4. 绝热过程方程 □准静态绝热过程

由热一律、热量表达式及状态方程的微分式,可得过程方程.

热一律微分式
$$dQ = \nu C_{V,m} dT + p dV$$
 (1)

→ 热量表达式微分式
$$dQ=0$$
 (绝热) (2)

状态方程微分式
$$pdV + Vdp = \nu RdT$$
 (3)

由(1), (2), 得
$$\nu C_{V,m} dT + p dV = 0$$
 (4)

联立(3), (4) 消去
$$dT$$
, 得 $(C_{V,m} + R) p dV + C_{V,m} V dp = 0$

分离变量得:
$$\frac{dp}{p} + \gamma \frac{dV}{V} = 0$$

积分得绝热过程方程(泊松方程):
$$pV^{\gamma} = C_1$$
(恒量)

利用状态方程, 可得绝热过程方程
$$TV^{\gamma-1} = C_2$$
 (恒量), 的其他形式: $T^{-\gamma}p^{\gamma-1} = C_3$ (恒量)

注意: 绝热自由膨胀过程不是准静态过程,不能应用绝热过程方程.

5. 绝热线与等温线比较

等温过程方程 pV = C(恒量)

两边求导 $\Rightarrow pdV + Vdp = 0$

$$\Rightarrow \left(\frac{dp}{dV}\right)_T = -\frac{p}{V}$$

绝热过程方程 $pV^{\gamma} = C_1$ (恒量)

两边求导 $V^{\gamma}dp + p\gamma V^{\gamma-1}dV = 0$

$$\Rightarrow \left(\frac{dp}{dV}\right)_{S} = -\gamma \frac{p}{V}$$

绝热线斜率是等温线斜率的 γ 倍。绝热线比等温线更陡 (S代表熵, 后面将看到, 准静 态绝热过程是等熵过程).

原因:等温膨胀过程中压强下降,仅是由于体积增大.对于绝热膨胀过程,因系统对外作功,系统的温度将因内能的减小而降低.故绝热过程中压强下降,不仅是由于体积增大,还由于温度降低,所以绝热线要比等温线陡.

绝热线比等温线陡的微观解释:

气体压强p=nkT,在等温过程中,气体膨胀 dV,温度 T 不变,而气体分子数密度 n 降低,从而引起压强 p 的 降低: 而绝热过程中,气体膨胀相同的体积 dV,一方 面引起n降低同样的数值,另一方面温度T也要降低, 这两者都要引起压强p的降低。因此气体体积改变dV, 绝热过程中气体压强的改变比等温过程要大,因而绝热 线斜率的绝对值比等温线要大,亦即绝热线比等温线要 陡。

五、多方过程

气体的实际过程,实际上是一个介于绝热和等温过程之间的过程,这种准静态过程称为多方过程.

过程方程: $pV^n = C(恒量)$, n—多方指数 $(1 \le n \le \gamma)$

1) 多方过程的功:

由过程方程
$$pV^n = p_1V_1^n = C(恒量)$$
 可得 $p = \frac{p_1V_1^n}{V^n}$

$$A = \int_{V_1}^{V_2} p dV = p_1 V_1^n \int_{V_1}^{V_2} \frac{dV}{V^n} = p_1 V_1^n \frac{V_2^{1-n} - V_1^{1-n}}{1-n} = \frac{p_1 V_1 - p_2 V_2}{n-1}$$

2) 多方过程的摩尔热容:

$$C_{n,m} = \left(\frac{dQ}{dT}\right)_n = \left(\frac{dE + dA}{dT}\right)_n = C_{V,m} + p\left(\frac{dV}{dT}\right)_n$$

$$= C_{V,m} - \frac{R}{n-1} = \frac{n-\gamma}{n-1}C_{V,m} \qquad (推导见下页)$$

由状态方程 pV = RT 和多方过程方程 $pV^n = C$ (恒量) 可得 $TV^{n-1} = C'$ (恒量),

两边求微分,得

$$V^{n-1}dT + (n-1)TV^{n-2}dV = 0 \qquad \therefore \left(\frac{dV}{dT}\right)_n = -\frac{V}{(n-1)T}$$

$$\therefore C_{n,m} = C_{V,m} + p(\frac{dV}{dT})_n = C_{V,m} - \frac{pV}{(n-1)T} = C_{V,m} - \frac{R}{n-1}$$

$$\therefore C_{n,m} = (1 - \frac{\gamma - 1}{n - 1})C_{V,m} = \frac{n - \gamma}{n - 1}C_{V,m}$$

3) 各种等值过程的多方指数 n 及热容量 $C_{n,m} = \frac{n-\gamma}{n-1}C_{v,m}$

$$C_{n,m} = \frac{n - \gamma}{n - 1} C_{V,m}$$

1、绝热: $pV^{\gamma} = C$ (恒量), $n = \gamma$, $C_{n,m} = \frac{n-\gamma}{n-1}C_{V,m} = 0$

$$n=\gamma$$
,

$$C_{n,m} = \frac{n-\gamma}{n-1} C_{V,m} = 0$$

2、等压: p = C (恒量), $pV^0 = C$, n = 0, $C_{n,m} = \frac{n-\gamma}{n-1}C_{v,m} = \gamma C_{v,m} = C_{p,m}$

3、等温: pV = C (恒量), n = 1, $C_{n,m} = \frac{n-\gamma}{n-1}C_{V,m} = \infty$

$$C_{n,m} = \frac{n - \gamma}{n - 1} C_{V,m} = \infty$$

4、等容: V = C (恒量), $P^{\frac{1}{\infty}} = P^0 = 1$, $C_{n,m} = \frac{n-\gamma}{n-1}C_{V,m} = C_{V,m}$

$$P^{\frac{1}{\infty}}V = C, \ PV^{\infty} = C'$$
(恒量), $\therefore n = \infty$

可见, n 不限于取1与)之间的值, 还可以取一 系列其它值.

理想气体准静态等值过程特性一览表

过程	特征	过程方程	$oldsymbol{A}$	ΔE	Q	气体摩尔 热容 <i>C_m</i>
等容	V = C	$\frac{p}{T} = C$	0	$ u C_{_{V,m}} \Delta T$	$ \begin{vmatrix} v C_{V,m} \Delta T \\ = \Delta E \end{vmatrix} $	$C_{V,m} = \frac{i}{2}R$
等压	p = C	$\frac{V}{T} = C$	$\begin{vmatrix} p\Delta V \\ = vR\Delta T \end{vmatrix}$	$ u C_{V,m} \Delta T$	$\nu C_{p,m} \Delta T$	$C_{p,m} = C_{V,m} + R$ $= \frac{i+2}{2}R$
等温	T = C	pV = C	$vRT \ln \frac{V_2}{V_1}$	0	=A	$C_{T,m}=\infty$
		$pV^{\gamma} = C_1$ $TV^{\gamma-1} = C_2$ $T^{-\gamma} p^{\gamma-1} = C_3$	·	$\nu C_{V,m} \Delta T$	0	$C_{S,m}=0$
多方	n = C	$pV^n = C$	$\frac{p_1V_1 - p_2V_2}{n-1}$	$ u C_{V,m} \Delta T$	$\Delta E + A$	$C_{n,m} = \frac{n - \gamma}{n - 1} C_{V,m}$

理想气体准静态等值过程特性一览表

过程名称	等容过程	等压过程	等温过程	绝热过程	多方过程
特征	dV = 0, $V = C$	dp = 0, $p = C$	dT = 0, $T = C$	dQ = T dS = 0, $S = C$ (熵保持不变)	n = C
过程方程	$\frac{p}{T} = C$	$\frac{V}{T} = C$	PV = C	$pV^{\gamma} = C_1$ $TV^{\gamma-1} = C_2$ $T^{-\gamma}p^{\gamma-1} = C_3$	$pV^n = C$
功 <i>A</i>	0	$A = p\Delta V = \nu R \Delta T$	$A = vRT \ln \frac{V_2}{V_1} = vRT \ln \frac{p_2}{p_1}$	$A = -\Delta E = -\nu C_{V,m} \Delta T = \frac{p_1 V_1 - p_2 V_2}{\gamma - 1}$	$A = \frac{p_1 V_1 - p_2 V_2}{n - 1}$
内能 ΔE	$\nu C_{V,m} \Delta T = \frac{i}{2} \nu R \Delta T$	$\nu C_{V,n} \Delta T$	0	$\nu C_{V,m} \Delta T$	$\nu C_{V,m} \Delta T$
热量 Q	$\nu C_{V,m} \Delta T = \frac{i}{2} \nu R \Delta T$	$VC_{p,m}\Delta T$	Q = A	0	$Q = \Delta E + A$
摩尔热容 Cm	$C_{V,m} = \frac{i}{2}R$	$C_{p,m} = C_{V,m} + R = \frac{i+2}{2}R$	$C_{T,m}=\infty$	$C_{S,m}=0$	$C_{n,m} = \frac{n-\gamma}{n-1}C_{V,m}$
多方指数 n	∞	0	1	$\gamma = \frac{C_{P,m}}{C_{V,m}} = \frac{i+2}{i}$	n = C
热一律	$Q = \Delta E$	$Q = \Delta E + A$	Q = A	$0 = \Delta E + A$	$Q = \Delta E + A$
物理意义	等容过程中系统吸收的热 量全部变为内能,系统对 外不作功	等压过程中系统吸收的热量一部 分用来增加系统的内能,一部分用 来对外做功	等温过程系统吸收的热量全部转 化为对外做功,系统内能保持不变	绝热膨胀过程中,系统对外做功全部以消 耗系统内能为代价	多方过程系统吸收热量,可能一部分用来增加系统的内能,一部分用来对外做功
图像		a b c d y		$ \begin{array}{c} & C \\ & A \\ $	等压 等温 绝热

例1. $1 \mod O_2$ 经历两个过程, $1)A \rightarrow D \rightarrow B$ 等温;

$$A \rightarrow C \rightarrow B$$
 等容、等压; 求两个过程的 A , ΔE , Q .

解: 1)
$$A \rightarrow D \rightarrow B$$
 等温过程

$$\Delta E = 0, \ Q = A$$

$$A = \int_{V_A}^{V_B} p dV = RT_A \ln \frac{V_B}{V_A}$$

 $V_C = 22.4 l, p_C = 1 atm,$ 故 C 点对应于标准状态

$$T_C = 273.15K$$
,

$$C \rightarrow B$$
 是等压过程 $\frac{V_C}{T_C} = \frac{V_B}{T_B}$

$$T_A = T_B = \frac{V_B}{V_C} T_C = 2T_C = 546.3 \text{ (K)}$$

$$\therefore A = Q = 8.31 \times 546.3 \times \ln 2 = 3.15 \times 10^3 \text{ (J)}$$

$2)A \rightarrow C \rightarrow B$ 过程

$$A = A_{A \to C} + A_{C \to B}$$

$$= 0 + \int_{V_C}^{V_B} p dV = p(V_B - V_C)$$

$$=1.01\times10^{5}\times22.4\times10^{-3}$$

$$=2.27\times10^3$$
 (J)

$$= 2.27 \times 10 \quad (J)$$

$$Q = Q_{A \to C} + Q_{C \to B}$$

$$= C_{V,m}(T_C - T_A) + C_{p,m}(T_B - T_C) \qquad T_A = T_B = 2T_C = 546.3K$$

$$= C_{V,m}(T_C - T_A) + (C_{V,m} + R)(T_B - T_C)$$

$$= R(T_B - T_C) \qquad (\text{fiff} \ T_A = T_B)$$

$$= p(V_B - V_C) = A = 2.27 \times 10^3 \text{ (J)}$$

$$p_C = 1 \text{ atm} = 1.01325 \times 10^5 \text{ Pa}$$
 $T_C = 273.15K,$
 $T_C = T_D = 2T_C = 546.3K$

$$\Delta E = \Delta E_{A \to C} + \Delta E_{C \to B}$$

$$= C_{V,m} (T_C - T_A) + C_{V,m} (T_B - T_C)$$

$$= 0 \qquad (利用 T_A = T_B)$$

直接应用热力学第一定律:

:初态与末态T相同($T_A = T_B$),不论中间经历什么过程,

应有 $\Delta E_{A\to C\to B}=0$,

应用热力学第一定律,得

$$Q_{A\to C\to B} = \Delta E_{A\to C\to B} + A_{A\to C\to B} = A_{A\to C\to B} = 2.27 \times 10^3 \text{ (J)}$$

与前面具体计算结果一致.

$$p_{C} = 1 atm,$$
 $T_{C} = 273.15K,$
 $T_{A} = T_{B} = 2T_{C} = 546.3K$

例2. 某理想气体的 p-V 关系如图所示,由初态 a 经准静态过程直线ab 变到终态 b. 已知该理想气体的定容摩尔热容量 $C_V = 3R$,求该理想气体在 ab 过程中的摩尔热容量.

解: 摩尔热容量
$$C_m = \frac{dQ_m}{dT} = \frac{dE + dA}{dT} = C_{V,m} + p\frac{dV}{dT}$$
 由 ab 过程方程 $\frac{V}{p} =$ 恒量 和状态方程 $pV = RT$ 可得 $V^2T^{-1} =$ 恒量,

两边求微分,得 $2VT^{-1}dV - V^2T^{-2}dT = 0$

$$\therefore \frac{dV}{dT} = \frac{V}{2T}, \qquad C_m = C_{V,m} + \frac{pV}{2T} = 3R + \frac{R}{2} = \frac{7}{2}R$$

例3. 1 mol 理想气体经历一个准静态过程,其摩尔热容 $C_m = C_{V_m} - R$,求其过程方程。

解:由热一律、热量表达式及状态方程的微分式,可得过程方程.

$$\frac{A}{A} - 律 微分式 \qquad dQ = C_{V,m} dT + p dV$$
 (1)
 热量表达式微分式
$$dQ = (C_{V,m} - R) dT$$
 (2)
 状态方程微分式
$$p dV + V dp = R dT$$
 (3)

热量表达式微分式
$$dQ = (C_{V,m} - R)dT$$
 (2)

· 状态方程微分式
$$pdV + Vdp = RdT$$
 (3)

由(1), (2)式, 得
$$pdV + RdT = 0$$
 (4)

联立(3), (4) 消去
$$dT$$
, 得 $2pdV + Vdp = 0$

分离变量得:
$$2\frac{dV}{V} + \frac{dp}{p} = 0$$

积分得过程方程:
$$pV^2 = C_1(恒量)$$

利用状态方程,可得过程方程
$$VT = C_2$$
 (恒量),

的其他形式:
$$pT^{-2} = C_3$$
(恒量)

例4.1 mol 的理想气体经图示的两个不同过程(1-4-

2) 和 (1-3-2) 由状态 $1\rightarrow 2$, $p_2=2p_1$, $V_2=2V_1$, 该气体 $C_{V,m}=5R/2$, 状态1 温度为 T_1 , 求两个过程从外界吸收的热量.

解: (1) $1 \rightarrow 4 \rightarrow 2$ 过程

$$Q_{1-4-2} = Q_{1\to 4} + Q_{4\to 2}$$
$$= C_{V,m} (T_4 - T_1)$$

$$+C_{p,m}(T_2-T_4)$$

$$\therefore T_4 = \frac{p_4}{p_1} T_1 = \frac{p_2}{p_1} T_1 = 2T_1$$

$$4 \to 2$$
 等压: $\frac{V_2}{T_2} = \frac{V_4}{T_4}$,

$$T_2 = \frac{V_2}{V_4} T_4 = \frac{V_2}{V_1} T_4 = 2T_4 = 4T_1$$

$$Q_{1-4-2} = Q_{1\to 4} + Q_{4\to 2}$$

$$= C_{V,m}(T_4 - T_1) + C_{p,m}(T_2 - T_4) \qquad T_4 = 2T_1,$$

$$= \frac{5R}{2}T_1 + \frac{7R}{2} \times 2T_1 \qquad C_{p,m} = C_{V,m} + R = \frac{7R}{2}$$

$$=\frac{19}{2}RT_1$$

(2) 1 \rightarrow 3 \rightarrow 2过程

$$Q_{1-3-2} = C_{p,m}(T_3 - T_1) + C_{V,m}(T_2 - T_3)$$

$$1 \to 3$$
 等压: $\frac{V_3}{T_3} = \frac{V_1}{T_1}$,

$$T_3 = \frac{V_3}{V_1} T_1 = \frac{V_2}{V_1} T_1 = 2T_1$$

$$\therefore Q_{1-3-2} = \frac{7}{2}R \times T_1 + \frac{5}{2}R \times 2T_1 = \frac{17}{2}RT_1$$

$$T_2$$

$$T_4=2T_1,$$

例5.1 mol 单原子理想气体,由状态 $a(p_1,V_1)$ 先等压加热至体积增大一倍,再等容加热至压力增大一倍,最后再经绝热膨胀,使其温度降至初始温度。如图,试求:

- (1) 状态d 的体积 V_d ;
- (2) 整个过程对外所作的功;
- (3) 整个过程吸收的热量。

根据状态方程可得 $T_a = \frac{p_1 V_1}{R}$, $T_c = \frac{p_c V_c}{R} = \frac{4p_1 V_1}{R} = 4T_a$

再根据绝热过程方程 $T_cV_c^{\gamma-1} = T_dV_d^{\gamma-1} \Rightarrow V_d = (\frac{T_c}{T_d})^{\frac{1}{\gamma-1}}V_c$

$$T_d = T_a = \frac{p_1 V_1}{R}, T_c = 4T_a$$

$$V_d = (\frac{T_c}{T_d})^{\frac{1}{\gamma - 1}} V_c$$
 单原子气体 $\gamma = \frac{C_{p,m}}{C_{V,m}} = 1.67$

$$=4^{1.67-1} \times 2V_1 = 15.8V_1$$

(2) 整个过程对外所作的功

先求各分过程的功

$$A_{ab} = p_1(2V_1 - V_1) = p_1V_1, \quad A_{bc} = 0$$

$$A_{cd} = -\Delta E_{cd} = -C_{V,m}(T_d - T_c) = -\frac{3}{2}R(T_a - 4T_a) = \frac{9}{2}RT_a = \frac{9}{2}p_1V_1$$

整个过程的总功 $A_{abcd} = A_{ab} + A_{bc} + A_{cd} = \frac{11}{2} p_1 V_1$

(3) 计算整个过程吸收的热量,有两种方法

方法一: 根据整个过程吸收的总热量等于各分过程 吸收热量的和。

$$Q_{ab} = C_{p,m}(T_b - T_a) = \frac{5}{2}R(T_b - T_a)$$
$$= \frac{5}{2}(p_bV_b - p_aV_a) = \frac{5}{2}p_1V_1$$

$$Q_{bc} = C_{V,m}(T_c - T_b) = \frac{3}{2}R(T_c - T_b) = \frac{3}{2}(p_cV_c - p_bV_b) = 3p_1V_1$$

$$Q_{cd} = 0$$

整个过程吸收的总热量 $Q_{abcd} = Q_{ab} + Q_{bc} + Q_{cd} = \frac{11}{2} p_1 V_1$

方法二:对abcd整个过程应用热力学第一定律

$$Q_{abcd} = A_{abcd} + \Delta E_{ad}$$

由于
$$T_a = T_d$$
, 故 $\Delta E_{ad} = 0$

则
$$Q_{abcd} = A_{abcd} = \frac{11}{2} p_1 V_1$$

