

Topics

Optimization vs. Machine Learning

Regularization

Modern classification networks

- Residual networks
- Efficient architectures

Pushing classification performance

- ► Fine-tuning
- ► Handling imbalanced data

Optimization vs. Machine Learning Regularization

Recall from last lecture that our goal is to

- ► Reach high performance on unseen (validation/test) data
- By training on training data

For optimal results

- Networks should have enough capacity to overfit
- But be configured not to via regularization

Optimization vs. Machine Learning Regularization

The purpose of regularization is to

- ► Improve the validation/test performance
- ▶ At the possible expense of training performance

Usually by decreasing the models variance

- Sensitivity to small changes in training set
- And thus proneness to overfitting

Optimization vs. Machine Learning Regularization – Penalizing Large Weights

A penalty on large weights is almost always used

- Prevents certain inputs from dominating output
- Encourages model to use all inputs

Biases are not critical

Usually not subject to regularization

Optimization vs. Machine Learning Regularization – L2 Regularization

A common method is L2 regularization

▶ Implemented by adding regularization term to loss function

$$L_{reg}(\boldsymbol{\theta}) = L(\boldsymbol{\theta}) + \frac{\delta}{2} \|\mathbf{w}\|^2$$

 $\mathbf{w} \subset oldsymbol{ heta}$ is vector of all weights

 $\delta \in (0,1)$ controls amount of regularization

▶ Usually $\delta \in [0.0001, 0.01]$

Optimization vs. Machine Learning Regularization – L2 Regularization

Ignoring bias we get $\nabla L_{reg}(\mathbf{w}) = \nabla L(\mathbf{w}) + \delta \mathbf{w}$

 $\ \ \, \|\mathbf{w}\|^2 = \mathbf{w} \cdot \mathbf{w} \text{ so gradient is } 2\mathbf{w} \text{ (product rule)}$

So gradient descent update becomes

$$\mathbf{w} = \mathbf{w} - \alpha(\nabla L(\mathbf{w}) + \delta \mathbf{w})$$
$$= \mathbf{w} - \alpha \delta \mathbf{w} - \alpha \nabla L(\mathbf{w})$$
$$= (1 - \alpha \delta) \mathbf{w} - \alpha \nabla L(\mathbf{w})$$

Optimization vs. Machine Learning Regularization – L2 Regularization

Weights shrink by constant factor before each update

- ▶ So if $\nabla L(\mathbf{w}) = \mathbf{0}$, weights would decay towards $\mathbf{0}$
- lacktriangle Note that lpha also affects regularization

Decay strength $\boldsymbol{\delta}$ is another hyperparameter

- ► No effect if too small
- Dominates data loss (e.g. cross-entropy) if too large

Optimization vs. Machine Learning Regularization – Weight Decay

A very similar approach is weight decay

- ► Do not modify loss function
- ▶ Adapt weight update rule to subtract $\alpha \delta \mathbf{w}$

L2 regularization affects optimizer

- Leads to undesirable behavior with e.g. Adam
- So always use version of Adam with weight decay
- PyTorch: torch.optim.AdamW

Optimization vs. Machine Learning Regularization – Dropout

Dropout [4] is a layer whose neurons

- ▶ Output 0 with probability p
- ▶ Forward input unchanged with probability 1-p
- ► But only during training

Usually placed before last (dense) layer

- Has effect of temporarily "dropping" neurons
- ▶ Because 0 does not change output

Not as popular anymore

Optimization vs. Machine Learning

Regularization – Dropout

(a) Standard Neural Net

(b) After applying dropout.

Image from [4]

Optimization vs. Machine Learning Early Stopping

Early stopping aims to avoid overfitting by

- lacktriangle Storing a copy of $oldsymbol{ heta}$ with best validation performance p
- ightharpoonup Stopping if p does not improve anymore for e epochs
- ightharpoonup Using the stored heta afterwards

Optimization vs. Machine Learning Suggestions

Data

- ▶ Use as much as you can get
- ► Always utilize (sensible) training data augmentation

Regularization

- ightharpoonup Always use weight decay and tune δ
- Batch normalization also acts as a regularizer
- ► Consider dropout if network still overfits

Always use early stopping and with e > 1

Modern Classification Networks Baseline

Basic design from previous lecture

- ▶ Depth of 10 (number of conv and linear layers)
- ▶ Not deep enough for optimal performance

Modern Classification Networks Training Deep Networks

Increasing depth is simple in theory

▶ Just add more conv layers between pooling layers

In practice as a rule of thumb

- ▶ Increasing the depth like this improves performance
- With batch normalization and proper regularization
- ▶ Up to a depth of around 20

Modern Classification Networks Training Deep Networks

Even deeper networks eventually perform worse

- ▶ Not intuitive (network could learn identity functions)
- ► However doing so is challenging

Residual networks (ResNets) [1] facilitate this task

- Learn what to change about input
- Making it easy to learn identity function
- By using skip-connections and summation

Modern Classification Networks

Residual Networks

Idea is that

- Individual layers only change input a little
- But network has many more of them

Another benefit is easier gradient flow

- ▶ Recall that sum nodes propagate gradients without changes
- And that gradients that join are summed

Modern Classification Networks

Residual Networks

ResNet-34 (R = 224)

First and last layers identical to baseline design

Must support changes to C, H, W

- ► To enable pooling and adjusting feature map counts
- 1×1 (point-wise) convolutions are a flexible tool
 - ightharpoonup Can adjust C freely
 - ightharpoonup Can adjust H,W via stride

ResNet variant

- First 3×3 conv with stride 2 that doubles C
- \blacktriangleright Extra 1×1 conv with same configuration before sum

Such networks scale to depths of 1000 and more (!)

▶ 1202 variant overfits below (training error ≈ 0)

method			error (%)
Maxout [10]			9.38
NIN [25]			8.81
DSN [24]			8.22
	# layers	# params	
FitNet [35]	19	2.5M	8.39
Highway [42, 43]	19	2.3M	7.54 (7.72±0.16)
Highway [42, 43]	32	1.25M	8.80
ResNet	20	0.27M	8.75
ResNet	32	0.46M	7.51
ResNet	44	0.66M	7.17
ResNet	56	0.85M	6.97
ResNet	110	1.7M	6.43 (6.61±0.16)
ResNet	1202	19.4M	7.93

Image from [1]

Very deep ResNets use more efficient blocks

▶ Reduce C before expensive 3×3 conv (bottleneck layer)

ResNets still perform great today

- ightharpoonup Accuracy typically within $\approx 5\%$ of state of the art
- Good default architecture for deep networks
- PyTorch: net = torchvision.models.resnet34()

Not optimized for efficiency though

Modern Classification Networks Efficient Architectures

Efficiency usually matters

- ► More efficienct networks cost less to operate
- ► Hardware limitations (e.g. mobile phones)

We focus on efficiency during inference (not training)

▶ In terms of accuracy vs. FLOPS (or predictions/second)

Modern Classification Networks

Efficient Architectures

Point-wise and depth-wise convolutions are key ingredients

Modern Classification Networks Efficient Architectures

Building blocks of MobileNet v2 [3]

Modern Classification Networks

Efficient Architectures

We previously talked about varying the depth of our networks

This is a form of network scaling

- Adapt capacity of network
- ► To optimize performance given task at hand
- ▶ While considering the computational budget

We will next cover other forms

Scaling width, depth, and resolution are all effective

- ► Impact on FLOPS varies (depends on architecture)
- Improvements compound (with diminishing returns)

Given all this, how can we design efficient networks?

For practicioners like you

- Stick to established architectures that work well
- ► ResNet, EfficientNet, ConvNeXt are examples

For researchers in the field

- Manually via trial and error (based on prior work)
- Automatically via neural architecture search (NAS)

Modern Classification Networks

State of the art architecture

▶ Design inspired by Transformers (later)

Image from [5]

Modern Classification Networks ConvNeXt

ResNet Block ConvNeXt Block

Image from [5]

Modern Classification Networks

Pushing Classification Performance Fine-Tuning

Data augmentation & regularization cannot replace data

- ▶ Deep learning scales extremely well with data
- ► So obtaining more data should be a priority

For this reason, a powerful technique is fine-tuning

- Pre-train network on related large dataset (e.g. ImageNet)
- ▶ Then fine-tune same network on smaller target dataset

Idea is to exploit information present in both datasets

Pushing Classification Performance Fine-Tuning

For instance we could

- ▶ Pre-train a network on ImageNet (1000 classes)
- ▶ Then replace its linear classifier with one for 2 classes
- And fine-tune the network on our cats vs. dogs dataset

Fine-tuning almost always helps

- Even if target dataset is large itself
- Assuming both datasets are related (the more, the better)

Pushing Classification Performance Fine-Tuning

If the target dataset is very small

- ► Consider fine-tuning just the new classifier
- ► Can be done by freezing parameters of other layers

If not, a good strategy is to

- First fine-tune only new classifier
- Then unfreeze other layers and train some more
- Using a larger learning rate for classifier than for rest

Pushing Classification Performance Handling Imbalanced Data

So far we have assumed balanced data

Same number of samples per class

If this is not the case

- Classifier will pay more attention to majority classes
- ► Leading to bad accuracy for minority classes

This is usually not desired and must be addressed

We will cover two popular options

Pushing Classification Performance Handling Imbalanced Data

Via class weights on the loss

- ► Multiply per-sample losses by weights
- ▶ With weights based on inverse class frequencies
- Easy to implement and no computational overhead

Via oversampling of the training data

- Draw samples with replacement to balance class frequencies
- Works well in combination with data augmentation
- Considerable computational overhead

Remarks

We will now move on from classification to other tasks

- ▶ Most architectures use a classification network as backbone
- Train a classification network on large dataset (e.g. ImageNet)
- Adapt network for e.g. object detection

This is a form of transfer learning

Adapt a model trained on one task to perform well on another

Bibliography

- [1] He et al. Deep Residual Learning for Image Recognition. 2015
- [2] Sandler et al. MobileNetV2. 2018
- [3] Tan & Le.EfficientNet. 2019
- [4] Srivastava et al. Dropout. 2014
- [5] Liu et al. A ConvNet for the 2020s. 2022