

ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ

Διευθυνσιοδότηση και Ονοματοδοσία στο Internet

Ονόματα, Διευθύνσεις, Διαδρομές

- Όνομα (ποιος)
- Διεύθυνση (πού)
- Διαδρομή (πώς)
- Θέση (location)
- ≠ Ταυτότητα (identifier)

Οντότητες

Οι οντότητες που χρήζουν ονομάτων ή διευθύνσεων στο διαδίκτυο είναι

Διευθυνσιοδότηση, ονοματοδότηση

- Οι διευθύνσεις πρέπει να είναι μοναδικές
 - Σειρά αριθμών συνήθως μεγάλου μήκους
- Δεν έχουν κατ' ανάγκη ιεραρχική μορφή, παρότι αυτό διευκολύνει

- Τα ονόματα είναι αλφαριθμητικές περιγραφές
 - π.χ. <u>www.telecom.ntua.gr</u>, <u>www.google.com</u>, <u>www.ietf.org</u>

Ονόματα των host

- Οι θύρες προσδιορίζουν διεργασίες εντός του host
- Οι διευθύνσεις φυσικού στρώματος προσδιορίζουν κάρτες δικτύου εντός ενός LAN
- Οι διευθύνσεις ΙΡ προσδιορίζουν διεπαφές υπολογιστών ή δρομολογητών
 - Η διεύθυνση ΙΡ περιέχει πληροφορία που χρησιμοποιείται για τη δρομολόγηση
- Οι διευθύνσεις δύσκολα απομνημονεύονται από τους ανθρώπους ...
- ... τα ονόματα απομνημονεύονται πιο εύκολα
 - Χρειάζεται μηχανισμός μετατροπής ονομάτων σε διευθύνσεις IP (DNS)
 - Οι διευθύνσεις ΙΡ πρέπει να αντιστοιχηθούν σε διευθύνσεις φυσικού στρώματος (ARP)

Φυσικές διευθύνσεις

Διευθύνσεις ΜΑΟ

- Οι φυσικές διευθύνσεις συνήθως ταυτίζονται με τις διευθύνσεις ΜΑС ή διευθύνσεις Ethernet
- Είναι μοναδικές
 - → κάθε διεύθυνση αντιστοιχεί σε μία κάρτα δικτύου
- Η δομή των διευθύνσεων ΜΑС ορίζεται στο πρότυπο ΙΕΕΕ 802
 - Μήκος 48 bit
 - 1 bit για Ομαδική ή Ατομική διεύθυνση
 - 1 bit για Τοπική ή Μοναδική διεύθυνση
 - 22 bit για τον κατασκευαστή ή πωλητή της κάρτας
 - 24 bit για τον αύξοντα αριθμό της κάρτας

Δομή διεύθυνσης Ethernet

Μετάδοση διευθύνσεων Ethernet

- Οι διευθύνσεις ΜΑС συνήθως αναπαριστάνονται σε δεκαεξαδική μορφή όπου κάθε byte διαχωρίζεται με ":" ή "_"
 - $-\pi.x.$ "00-08-74-4*C*-7F-1D", "FF:FF:FF:FF:FF:FF"
- Στην αναπαράσταση σε κανονική μορφή (canonical format) το πρώτο bit κάθε byte του πλαισίου Ethernet που μεταδίδεται είναι το λιγότερο σημαντικό bit του byte που καταγράφεται στη μνήμη
 - Η διεύθυνση 12-34-56-78-9*A*-B*C* στη μνήμη 00010010 00110100 01010110 01111000 10011010 10111100 θα μεταδοθεί ως 01001000 00101100 01101010 00011110 01011001 00111101

Πλήθος διευθύνσεων Ethernet

- Τα 48 bit επαρκούν για την εκχώρηση
 281.474.976.710.656 μοναδικών διευθύνσεων διεθνώς
 - ο χώρος δεν προβλέπεται να εξαντληθεί πριν το 2100
- Τα πρώτα 3 byte της διεύθυνσης, Organizationally Unique Identifier (OUI), εκχωρούνται από το IEEE σε κατασκευαστές ή οργανισμούς
- Ο αύξων αριθμός της κάρτας εκχωρείται από τον κατασκευαστή έτσι ώστε η διεύθυνση της κάρτας να είναι παγκοσμίως μοναδική
 - Ο χρήστης όμως μπορεί να τις αλλάξει (MAC spoofing)

<mark>Πολλαπλή δια</mark>νομή, εκπομπή, μονο-εκπομπή

- Το πρώτο bit της διεύθυνσης υποδηλώνει πολλαπλή διανομή (multicast)
- Εάν το πρώτο bit της διεύθυνσης που μεταδίδεται (τελευταίο του πρώτου byte) είναι ίσο με 1 το πλαίσιο θα εκπεμφθεί μία φορά και θα ληφθεί από όλες τις κάρτες του τοπικού δικτύου
 - Πλαίσια που αποστέλλονται στη διεύθυνση εκπομπής (broadcast), "FF:FF:FF:FF:FF: (όλα τα bit ίσα με 1) προωθούνται στο ανώτερο στρώμα
 - Πλαίσια που αποστέλλονται σε διευθύνσεις πολλαπλής διανομής προωθούνται στο ανώτερο στρώμα μόνο από τις κάρτες που έχουν ρυθμισθεί να ακούν τις συγκεκριμένες διευθύνσεις
- Εάν το πρώτο bit της διεύθυνσης που μεταδίδεται είναι ίσο με Ο, μονο-εκπομπή (unicast), το πλαίσιο θα εκπεμφθεί μία φορά, αλλά θα προωθηθεί στο ανώτερο στρώμα μόνο από την κάρτα με τη συγκεκριμένη φυσική διεύθυνση
 - και όποιον κρυφακούει (promiscuous mode)

<mark>Παγκόσμια μο</mark>ναδική ή τοπικά διαχειρίσιμη διεύθυνση

- Το δεύτερο bit της διεύθυνσης υποδηλώνει παγκόσμια μοναδική ή τοπικά διαχειρίσιμη διεύθυνση
- Εάν το δεύτερο bit της διεύθυνσης που μεταδίδεται (προτελευταίο του πρώτου byte) είναι ίσο με Ο, η διεύθυνση είναι μοναδική
 - Εξασφαλίζεται μέσω του κατασκευαστή
- Εάν το δεύτερο bit της διεύθυνσης που μεταδίδεται (προτελευταίο του πρώτου byte) είναι ίσο με 1, η διεύθυνση είναι τοπική
 - Οι τοπικές διευθύνσεις ορίζονται από τους διαχειριστές και υποκαθιστούν αυτές του κατασκευαστή
 - Δεν περιέχουν ΟUΙ και έχουν νόημα μόνο εντός της διαχειριστικής επικράτειας

Το μέλλον των φυσικών διευθύνσεων

- Το ΙΕΕΕ χρησιμοποιεί πλέον τον όρο EUI (Extended Unique Identifier)
 - EUI-48 είναι οι συνήθεις διευθύνσεις των 6 byte σε περίπτωση που αναφέρονται στο υλικό (κάρτες δικτύου), έχουν όμως γενικότερη χρήση και μπορεί να αφορούν άλλες συσκευές ή λογισμικό
- ΕUΙ-64 είναι διευθύνσεις των 8 byte, που δεν προβλέπεται να εξαντληθούν στο μέλλον, και χρησιμοποιούνται από πρωτόκολλα όπως
 - Firewire
 - Zigbee
 - IPv6

Διευθύνσεις ΙΡ

Διευθυνσιοδότηση στο Internet

- Οι διευθύνσεις ΙΡ είναι λογικές διευθύνσεις (όχι φυσικές)
 - Η τρέχουσα έκδοση του IP είναι η 4 (IPv4)
 - Η νεότερη έκδοση του ΙΡ είναι η 6 (ΙΡν6)
- Κάθε διεπαφή host έχει τη δική της διεύθυνση
 IP
- Οι δρομολογητές έχουν πολλαπλές διεπαφές, κάθε μία έχει τη δική της διεύθυνση ΙΡ

Διευθυνσιοδότηση στο Internet

- Οι διευθύνσεις ΙΡν4 έχουν μήκος 4 byte και δομή ιεραρχίας δύο επιπέδων
 - αριθμός δικτύου και αριθμός host
- Οι διευθύνσεις ΙΡν6 έχουν μήκος 16 byte και δομή δύο λογικών επιπέδων
 - Ένα πρόθεμα 64 bit για το (υπο-)δίκτυο
 - 64 bit για τον host που είτε παράγεται αυτόματα από τη διεύθυνση MAC είτε εκχωρείται σειριακά

Διευθύνσεις ΙΡν4

 Η διεύθυνση ΙΡν4 περιλαμβάνει έναν αριθμό δικτύου και έναν αριθμό host

Αριθμός δικτύου Αριθμός host

- Ο αριθμός δικτύου προσδιορίζει μοναδικά ένα συγκεκριμένο δίκτυο
- Ο αριθμός host προσδιορίζει μοναδικά μια διεπαφή (υπολογιστή ή δρομολογητή)

Συμβολισμός διευθύνσεων ΙΡ

 Οι διευθύνσεις ΙΡ γράφονται με δεκαδικό συμβολισμό και τελείες (dotted decimal notation)

 $128.213.1.1 \Rightarrow 10000000 11010101 00000001 00000001$

Η κατώτατη διεύθυνση ΙΡ είναι 0.0.0.0 και η ανώτατη 255.255.255.255

Θύρες

Θύρες

- Αριθμός 16 bit που υποδηλώνει την εφαρμογή
 - οι θύρες στο TCP ονοματίζουν τα λογικά άκρα συνδέσεων
- Για να δοθούν υπηρεσίες προς άγνωστους καλούντες (πελάτες) καθορίζεται μια θύρα ως σημείο πρώτης επαφής (πασίγνωστη θύρα)
 - αριθμοί μικρότεροι από 1024 αποκαλούνται πασίγνωστοι (well known)
- Όπου είναι δυνατό, χρησιμοποιούνται οι ίδιες και για το UDP
- Οι πασίγνωστες θύρες αποδίδονται από το IANA (Internet Assigned Numbers Authority) και χρησιμοποιούνται από διεργασίες του λειτουργικού συστήματος (root)
- Αριθμοί από 1024 μέχρι 49151 αποκαλούνται καταχωρημένες (registered) και αριθμοί από 49152 μέχρι 65535 είναι ιδιωτικοί ή δυναμικοί

Πασίγνωστες Θύρες

- 7 ECHO
- 20 FTP Data
- 21 FTP Control
- 22 SSH Remote Login Protocol
- 23 Telnet
- 25 Simple Mail Transfer Protocol (SMTP)
- 37 Time
- 53 Domain Name System (DNS)
- 67 DHCP Server
- 68 DHCP Client
- 69 Trivial File Transfer Protocol (TFTP)
- 70 Gopher Services

Πασίγνωστες Θύρες

- 79 Finger
- 80 HTTP
- 110 POP3
- 119 Newsgroup (NNTP)
- 143 Interim Mail Access Protocol (IMAP)
- 161 SNMP
- 179 Border Gateway Protocol (BGP)
- 194 Internet Relay Chat (IRC)
- 389 Lightweight Directory Access Protocol (LDAP)
- 443 HTTPS
- 546 DHCPv6 client
- 547 DHCPv6 server

Διευθύνσεις και δρομολόγηση

Δρομολόγηση

- Η δομή δύο επιπέδων διευκολύνει τη λειτουργία της δρομολόγησης
 - στο δημόσιο Internet, η διεύθυνση IP είναι η μοναδική ταυτότητα μιας δικτυακής διεπαφής
 - χρησιμοποιείται από υπολογιστές και δρομολογητές για την παράδοση πακέτων IP

Δρομολόγηση

- Οι δρομολογητές προωθούν τα πακέτα στον προορισμό σε δύο βήματα:
 - με βάση τον αριθμό δικτύου, το πακέτο προωθείται στον επόμενο κόμβο
 - άπαξ και το πακέτο φτάσει στο δίκτυο προορισμού, ο αριθμός host χρησιμοποιείται για να παραδοθεί στη σωστή διεπαφή
- Εντός του δικτύου αναζητείται η διεύθυνση ΜΑС της κάρτας δικτύου (πρωτόκολλο ARP)
 - Του host προορισμού, εάν αυτός βρίσκεται εντός του δικτύου
 - Του τοπικού δρομολογητή εάν το πακέτο προορίζεται για άλλο δίκτυο

Δρομολόγηση

 Αλλά πώς οι δρομολογητές γνωρίζουν το μήκος του αριθμού δικτύου;

- Όταν ξεκίνησε η προτυποποίηση του διαδικτύου ο χώρος διευθύνσεων χωρίσθηκε σε τάξεις
 - Κάθε τάξη είχε συγκεκριμένο μήκος αριθμού δικτύου
- Σήμερα, το μήκος του αριθμού δικτύου δίδεται επιπρόσθετα της αριθμητικής του τιμής
 - Με χρήση προθέματος δικτύου ("prefix notation", "slash notation") ή με μάσκα bit ("netmask")

Δίκτυα υπολογιστών

Ταξικές διευθύνσεις

Τάξεις διευθύνσεων ΙΡ

Διακρίνονται από τα αρχικά bit της διεύθυνσης

- 0 => class A (πρώτο byte < 128)
- 10 => class B (πρώτο byte στην περιοχή 128-191)
- 110 => class C (πρώτο byte στην περιοχή 192-223)
- 1110 => class D (πρώτο byte στην περιοχή 224-239)
- 11110 => class E (πρώτο byte στην περιοχή 240-247)

Τάξεις διευθύνσεων ΙΡ

Ταξική διευθυνσιοδότηση Classful Addressing

- Δεν απαιτείται η γνώση του επόμενου προορισμού για όλες τις διευθύνσεις ΙΡ
 - Αρκεί η γνώση του προορισμού μόνο για τα δίκτυα
- Με ταξικές διευθύνσεις, οι δρομολογητές έχουν μία καταχώρηση για κάθε δίκτυο κατηγορίας Α, Β ή C
- Για δίκτυα κατηγορίας Α ή Β είναι αποδεκτό
 - $-2^7 = 128 Class A$
 - $-2^{14} = 16.384$ Class B
- Για δίκτυα κατηγορίας C είναι απαράδεκτο
 - $-2^{21} = 2.097.152$ Class C

Υποδίκτυα

Υποδίκτυα

- Επιτρέπεται ο διαμελισμός του δικτύου σε πολλά μέρη για εσωτερική χρήση
 - δίκτυο όμως συμπεριφέρεται σαν ένα και μοναδικό προς όλον τον υπόλοιπο κόσμο
- Ο αριθμός υποδικτύου χρησιμοποιείται γενικά για να ομαδοποιήσει host με βάση τη φυσική τοπολογία δικτύου
- Η εκχώρηση ενός νέου αριθμού υποδικτύου δεν απαιτεί επικοινωνία με το ICANN

10	Δίκτυο	Υποδίκτυο	Host
1111111	11111111	11111111	00000000

Μάσκα υποδικτύου

- Το μέρος του υποδικτύου καθορίζεται από τη μάσκα υποδικτύου
 - Η μάσκα υποδικτύου είναι ένας αριθμός 32 bit της μορφής 11...100...0
- Το λογικό ΚΑΙ (logical AND) της διεύθυνσης ΙΡ με τη μάσκα δίνει τον αριθμό δικτύου σύμφωνα με τον εσωτερικό διαμελισμό σε υποδίκτυα
 - Ό,τι υπολείπεται είναι ο αριθμός του host στον εσωτερικό διαμελισμό

IP Addressing Examples

Example 1

Net ID	Subnet ID	Host ID
16 bits	8 bits	8 bits

Subnet Mask: 11111111 11111111 1111111 00000000

OR 255.255.255.0 OR $FFFFFF00_{(16)}$

Example 2

Net ID	Subnet ID	Host ID
16 bits	10 bits	6 bits

Subnet Mask: 11111111 11111111 11111111 11000000 OR 255.255.255.102 OR FFFFFCO₍₁₆₎

Example 3

IP Address: 140.252.1.22 and Subnet Mask: 255.255.255.0

10001100 11111100 00000001 00010110

Then: Class B address, 8 bits subnet ID and 8 bits Host ID

Υποδίκτυα (subnets)

Λειτουργία υποδικτύων

- Κάθε δρομολογητής έχει καταχωρήσεις της μορφής:
 - (δίκτυο, Ο) για κάποιο αριθμό διευθύνσεων ΙΡ
 - (αυτό το δίκτυο, host) για κάποιο άλλο αριθμό διευθύνσεων
- Η πρώτη μορφή δείχνει το πώς φθάνει σε απομακρυσμένα δίκτυα και η δεύτερη στους τοπικούς host
- Τι ισχύει όμως για δρομολόγηση εντός του ιδίου δικτύου;
- Ένας δρομολογητής υποδικτύου γνωρίζει πώς να πάει στα άλλα υποδίκτυα
 - Δεν γνωρίζει λεπτομέρειες για τους host των άλλων υποδικτύων
- Όταν έχουμε υποδίκτυα, οι πίνακες τροποποιούνται ως εξής:
 - (αυτό το δίκτυο, υποδίκτυο, Ο)
 - (αυτό το δίκτυο, αυτό το υποδίκτυο, host)

Παραδείγματα υποδικτύων

Διευθύνσεις ΙΡ: παράδειγμα

Διευθύνσεις ΙΡ: παράδειγμα

• Διευθύνσεις ΙΡ:

- μέρος δικτύου (τα πρώτα bit)
- μέρος host (τα τελευταία bit)
- Τι είναι δίκτυο ? (από πλευράς διευθύνσεων ΙΡ)
 - διεπαφές με το ίδιο μέρος διεύθυνσης δικτύου ΙΡ
 - προσεγγίσιμες χωρίς την παρέμβαση δρομολογητή

Τρία δίκτυα ΙΡ

Διευθύνσεις ΙΡ: παράδειγμα

Πώς βρίσκουμε το υποδίκτυο?

- Αποσπάστε τη διεπαφή από τον δρομολογητή ή host
- δημιουργείστε "απομονωμένες νησίδες"

Έξι υποδίκτυα ΙΡ

223.1.1.2

223.1.2.1

CIDR, Classless InterDomain Routing

Αταξική δρομολόγηση μεταξύ περιοχών

- Λύση του 1993 στο πρόβλημα
 - της έλλειψης διευθύνσεων κατηγορίας Β
 - του μεγάλου μεγέθους των πινάκων δρομολόγησης
- Οι εναπομείνασες διευθύνσεις κατηγορίας Α, Β και C εκχωρούνται σε μπλοκ μεταβλητού μεγέθους
 - 2000 διευθύνσεις ⇒ ομάδα 2048 διευθύνσεων (8 συνεχόμενα δίκτυα κατηγορίας C)
 - 8000 διευθύνσεις \Rightarrow 32 συνεχόμενα δίκτυα C

Αταξική δρομολόγηση μεταξύ περιοχών

• Σκοπός:

- Αναδόμηση του τρόπου εκχώρησης των IP διευθύνσεων για αύξηση της αποδοτικότητας
- Ιεραρχική δρομολόγηση για μείωση μεγέθους πινάκων δρομολόγησης
- CIDR εγκαταλείπει την έννοια της τάξης
- **Βασική έννοια:** Το μήκος της διεύθυνσης δικτύου είναι αυθαίρετο, προσδιορίζεται με:
 - το μήκος προθέματος (prefix) π.χ. 192.0.2.0/18
 - ή τη μάσκα δικτύου (netmask) π.χ.
 192.0.2.0 255.255.192.0

Συμβολισμός με CIDR

Συμβολισμός διευθύνσεων σύμφωνα

- 192.0.2.0/18
 - "18" δηλώνει ότι τα πρώτα 18 bit αποτελούν τη διεύθυνση του δικτύου
 - άρα τα υπόλοιπα 14 bit είναι διαθέσιμα για διευθύνσεις host
- Με μήκος προθέματος 22 bit, η CIDR επιτρέπει ένα συνεχές μπλοκ από 1024 διευθύνσεις host

200.23.16.0/22

Πρόθεμα δικτύου και μπλοκ διευθύνσεων

- Η διεύθυνση ΙΡ ενός δικτύου έχει ως αριθμό host το 0
 - 128.100.0.0
- Η διεύθυνση δικτύου μαζί με το μήκος προθέματος αποκαλείται πρόθεμα δικτύου (network prefix)
 - $128.100.0.0/16 \acute{\eta} 128.100/16$
- Το πρόθεμα δικτύου μπορεί να ερμηνευθεί ως μια περιοχή διευθύνσεων ΙΡ
 - $-128.100.0.0/16 \rightarrow 128.100.0.0-128.100.255.255$
- Το πρόθεμα δικτύου επίσης αποκαλείται μπλοκ διευθύνσεων
 - είναι η επιτρεπόμενη περιοχή διευθύνσεων του δικτύου
 - όσο μικρότερο είναι το πρόθεμα δικτύου, τόσο μεγαλύτερο είναι το μπλοκ διευθύνσεων

Σύντμηση διευθύνσεων

Σύντμηση (aggregation) διευθύνσεων

- Για να μην υπάρχουν πολλές καταχωρήσεις και διογκώνονται οι πίνακες δρομολόγησης, επιβάλλεται η σύντμηση (aggregation) διευθύνσεων μέσω του προθέματος δικτύου
- Όταν φθάσει ένα πακέτο, αποσπάται η διεύθυνση προορισμού και ερευνάται ο πίνακας δρομολόγησης, καταχώρηση προς καταχώρηση, με εφαρμογή της μάσκας στη διεύθυνση προορισμού
- Όταν στην αναζήτηση βρεθούν πολλά ταιριάσματα, το πακέτο δρομολογείται στο δίκτυο με το μακρύτερο πρόθεμα

Σύντμηση διευθύνσεων

Σύντμηση διευθύνσεων

ISP2 έχει συγκεκριμένη διαδρομή για τον οργανισμό 1

Ειδικές διευθύνσεις

Ειδικές διευθύνσεις ΙΡ

- Κάποιες από τις διαθέσιμες διευθύνσεις ΙΡ έχουν ειδική χρήση
- 127.0.0.1 διεπαφή βρόχου επιστροφής (loopback)
- Διεύθυνση όπου ο αριθμός host περιέχει μόνο μηδενικά "0... 0" είναι η διεύθυνση του υποδικτύου
 - $-\pi.\chi.$ 128.143.0.0
- Διεύθυνση όπου ο αριθμός host περιέχει μόνο άσσους "1... 1" είναι εκπομπή στο υπο-δίκτυο
 - π.χ. 128.143.**255.255**

Ειδικές διευθύνσεις ΙΡ

00000000	0000	000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0	Αυτός ο host
0 0	0 0		Host		Host στο ίδιο δίκτυο
1111111	1 1 1 1	111111	111111	111111	Εκπομπή στο τοπικό δίκτυο
Δίκτυο		1111		1111	Εκπομπή σε μακρινό δίκτυο
127	(Οτιδήποτε)			Βρόχος επιστροφής	

Πολλαπλή διανομή στο Internet

- Το ΙΡ υποστηρίζει πολλαπλή διανομή, χρησιμοποιώντας τις πρώην διευθύνσεις κατηγορίας D
- Για τις ταυτότητες των ομάδων διατίθενται 28 bit (250 εκατ. ομάδες)
- Μόνιμες και προσωρινές διευθύνσεις
- Παράδειγμα μόνιμων ομάδων
 - 224.0.0.1 Όλα τα συστήματα του LAN
 - 224.0.0.2 Όλοι οι δρομολογητές του LAN
 - 224.0.0.5 Όλοι οι δρομολογητές OSPF του LAN
 - 224.0.0.6 Όλοι οι εκλεγμένοι δρομολογητές OSPF του LAN
- Οι προσωρινές ομάδες πρέπει να δημιουργηθούν προτού χρησιμοποιηθούν

Ελεύθερα διαθέσιμες διευθύνσεις ΙΡ

- Πακέτα με αυτές τις διευθύνσεις δεν δρομολογούνται στο δημόσιο Internet!
 - $-10.0.0.0/8 \rightarrow 10.0.0.0 10.255.255.255$
 - $-172.16.0.0/12 \rightarrow 172.16.0.0 172.31.255.255$
 - $-192.168.0.0/16 \rightarrow 192.168.0.0 192.168.255.255$
 - $-100.64.0.0/10 \rightarrow 100.64.0.0 100.127.255.255$
- Είναι μοναδικές στο εσωτερικό ιδιωτικών δικτύων
 - Αναχρησιμοποιήσιμες σε διαφορετικά ιδιωτικά δίκτυα
- Για την επικοινωνία μεταξύ του ιδιωτικού δικτύου με το δημόσιο Internet η διεύθυνση τροποιείται
 - Λειτουργία ΝΑΤ

Τοπικές ανά ζεύξη διευθύνσεις

- Διατίθενται ακόμη ιδιωτικές διευθύνσεις που αποκαλούνται τοπικές ανά ζεύξη (link local)
 - 169.254.0.0/16
- Διαθέσιμες για τη δημιουργία μικρών αυτόρυθμιζόμενων δικτύων (Zero Configuration Networking)
 - Δεν απαιτείται χειροκίνητη διάρθρωση των κόμβων
 - Αποδίδονται τυχαία
 - Συγκρούσεις επιλύονται φιλικά
 - Δεν δρομολογούνται

Προβλήματα με τις διευθύνσεις ΙΡν4

Προβλήματα με τις διευθύνσεις ΙΡ

- Προβλήματα με το αρχικό σχήμα ταξικών (classful)
 διευθύνσεων
- Πρόβλημα 1. Η ιεραρχία δύο επιπέδων δεν είναι κατάλληλη για δρομολόγηση εντός μεγάλων δικτύων Class A, Class B
 - Λύση #1: Υποδίκτυα
- Πρόβλημα 2. Πολύ λίγες διευθύνσεις για μεγάλα δίκτυα
 - Κατηγορίες σύμφωνα με τον ταξικό τρόπο (classful) οδήγησαν σε εξάντληση των διευθύνσεων κατηγορίας Β
 - ένας μέσου μεγέθους οργανισμός δεν ήταν ικανοποιημένος με class C, ενώ η class B υπερ-επαρκούσε
 - Λύση #2: Αταξική δρομολόγηση μεταξύ περιοχών (CIDR)

Προβλήματα με τις διευθύνσεις ΙΡ

- Πρόβλημα 3: Τεράστιοι πίνακες δρομολόγησης
 - Οι δρομολογητές χρειάζονται μια καταχώρηση για κάθε δίκτυο
 - Το 1993, το μέγεθος των πινάκων έγινε απαγορευτικό
 - Λύση #2: CIDR
- Πρόβλημα 4. Εξάντληση διευθύνσεων 32 bit
 - Λύση #3: ΝΑΤ (προσωρινή)
 - Λύση #4: ΙΡν6 (μακροπρόθεσμη)

Εξάντληση διευθύνσεων ΙΡν4

- Υπάρχουν συνολικά 2³² = 4,294,967,296
 διευθύνσεις ΙΡ
- Class A (/8): 7 bit δηλώνουν το δίκτυο
 - μόνο 126 δίκτυα Class A
 - κάθε δίκτυο μπορεί να έχει 16 εκατομμύρια (2²⁴) hosts.
- Class B (/16): 14 bit δηλώνουν το δίκτυο
 - περίπου 16,000 δίκτυα
 - περίπου 65,000 (216) host ανά δίκτυο
- Class C (/24): 21 bit δηλώνουν το δίκτυο
 - περίπου 2 εκατομμύρια δίκτυα
 - περίπου 254 host ανά δίκτυο

Απόδοση διευθύνσεων ΙΡ

- Οι αριθμοί δικτύου εκχωρούνται από την IANA:
 Internet Assigned Numbers Authority
- Η IANA Λειτουργεί υπό την εποπτεία της ICANN
 Internet Corporation for Assigned Names and Numbers
 - Εκχωρεί διευθύνσεις και ονόματα περιοχών, διαχειρίζεται το DNS, επιλύει διαφορές
- Οι αριθμοί host εκχωρούνται τοπικά από τον διαχειριστή του εκάστοτε δικτύου

Απόδοση διευθύνσεων ΙΡ

- Η ΙΑΝΑ διαχειρίζεται ομάδες διευθύνσεων σε παγκόσμια επίπεδο
 - Εκχωρεί διευθύνσεις σε μπλοκ /8 στους πέντε ληξίαρχους RIR (Regional Internet Registry)
 - Όλα τα μπλοκ έχουν διατεθεί
- Οι RIR διαχειρίζονται ομάδες διευθύνσεων ανά γεωγραφική
 - Αποδίδουν διευθύνσεις σε χρήστες
 - Εκχωρούν μπλοκ /20 ή μεγαλύτερου μήκους προθέματος σε τοπικούς ληξίαρχους LIR (Local Internet Registry) ή παρόχους (ISP)
- Οι LIR ή ISP αποδίδουν διευθύνσεις σε χρήστες

Απόδοση διευθύνσεων ΙΡ

Οι πέντε ληξίαρχοι (RIR)

Χάρτης του Internet (από το http://xkcd.com/195/, 2006)

Η χρήση των εκχωρημένων διευθύνσεων από το https://ant.isi.edu/address/index.html

Ήρθε το τέλος;

- Η ΙΑΝΑ εξάντλησε τις διευθύνσεις που διαθέτει σε RIR την 3/2/2011
- Οι RIR (APNIC, RIPE NCC, LACNIC, ARIN, AFRINIC) εκχωρούν διευθύνσεις από το τελευταίο /8
- Θεωρείται ότι τέλειωσαν όταν μείνει μόνο το τελευταίο μπλοκ για τη μετάβαση σε ΙΡν6
 - Για ARIN, LACNIC το τελευταίο /10
 - Για APNIC, RIPE NCC το τελευταίο /8
 - Για AFRINIC το τελευταίο /11

Ήρθε το τέλος;

• Μπορείτε να δείτε την εκτίμηση για το πότε εδώ: http://www.potaroo.net/tools/ipv4/index.html

Εκτίμηση της 14/10/2019	Παραμένουσες διευθύνσεις (μπλοκ των /8)	Εκχώρηση από το τελευταίο μπλοκ
APNIC	0,1881	19/4/2011
RIPENCC	0,0553	14/9/2012
LACNIC	0,0231	10/6/2014
ARIN	0,0002	24/9/2015
AFRINIC	0,2240	5/3/2020

Ήρθε το τέλος;

Εξάντληση διευθύνσεων ΙΡν4

- Η πλειονότητα των διευθύνσεων ΙΡν4 χρησιμοποιείται
 - Θα περάσει όμως αρκετός ακόμη καιρός μέχρι να αποδοθεί και η τελευταία διεύθυνση σε χρήστη
- Η υιοθέτηση του ΙΡν6 ξεκινά από την εξάντληση διευθύνσεων ΙΡν4
 - Πρακτικά έχει συμβεί
 - Στο παρελθόν υπήρξε μεγάλη κινδυνολογία
 - Η εφευρετικότητα (πολιτικές, πρωτόκολλα, ιδιωτικές διευθύνσεις) την καθυστέρησε

Συνύπαρξη ΙΡν4 και ΙΡν6

- Καθώς οι διευθύνσεις ΙΡν4 εκλείπουν:
 - Οι ενδιαφερόμενοι πρέπει πλέον να αρχίσουν την εγκατάσταση ΙΡν6 προκειμένου να εξασφαλίσουν τη συνέχιση και επέκταση της λειτουργίας τους
- Η χρήση του ΙΡν6 θα αυξάνει
 - Στο παρελθόν αναμένονταν ότι θα αντικαταστήσει το IPv4
 - Αυτό που έχει συμβεί είναι η συνύπαρξη ΙΡν4 και ΙΡν6

Έλλειψη διευθύνσεων: η προσωρινή λύση

NAT: Network
Address Translation

Μετάφραση διευθύνσεων δικτύου (ΝΑΤ)

Όλα τα πακέτα που φεύγουν από το τοπικό δίκτυο έχουν την ίδια διεύθυνση: 138.76.29.7, αλλά διαφορετικούς αριθμούς θυρών

πακέτα εντός του τοπικού δικτύου έχουν τις συνήθεις 10.0.0.0/24 διευθύνσεις πηγής προορισμού

Μετάφραση διευθύνσεων δικτύου

- Το τοπικό δίκτυο προβάλλει μόνο μία διεύθυνση ΙΡ προς τον εξωτερικό κόσμο:
 - δεν απαιτείται να αποδοθεί ομάδα διευθύνσεων από τον ISP: μία μόνο διεύθυνση IP χρησιμοποιείται από όλες τις συσκευές
 - μπορεί να αλλάξουν οι διευθύνσεις των συσκευών σε ένα τοπικό δίκτυο χωρίς να λάβει γνώση ο εξωτερικός κόσμος
 - μπορεί να αλλάξει ο ISP χωρίς να αλλάξουν οι διευθύνσεις των συσκευών στο τοπικό δίκτυο
 - οι συσκευές μέσα στο τοπικό δίκτυο δεν έχουν άμεσες διευθύνσεις, ορατές από τον έξω κόσμο

NAT

Ο δρομολογητής ΝΑΤ:

- εξερχόμενα πακέτα: αντικαθιστά τη διεύθυνση ΙΡ πηγής και τον αριθμό θύρας κάθε εξερχόμενου πακέτου με τη διεύθυνση ΙΡ του ΝΑΤ και ένα νέο αριθμό θύρας
 - οι μακρινοί host απαντούν χρησιμοποιώντας τη διεύθυνση ΙΡ του ΝΑΤ ως διεύθυνση προορισμού
- πίνακας μετατροπής: διατηρεί πίνακα με τις αντιστοιχίες για κάθε μετατρεπόμενο ζεύγος
- εισερχόμενα πακέτα: αντικαθιστά τη διεύθυνση ΙΡ ΝΑΤ και τον αριθμό θύρας των πεδίων προορισμού κάθε εισερχόμενου πακέτου με τον αντίστοιχο συνδυασμό διεύθυνσης ΙΡ πηγής και αριθμού θύρας που διατηρεί στον πίνακά του

NAT: Network Address Translation

NAT

- πεδίο των 16-bit για τον αριθμό θύρας:
 - 60,000 ταυτόχρονες συνδέσεις με μία μόνο διεύθυνση από την πλευρά του LAN
- Αμφισβητούμενη χρήση του ΝΑΤ:
 - καταστρατήγηση της έννοιας απ' άκρη σ' άκρη
 - οι δρομολογητές πρέπει να επεξεργάζονται πληροφορίες μέχρι το στρώμα δικτύου
 - η έλλειψη διευθύνσεων θα απαλειφθεί στο ΙΡν6
 - εάν δε ληφθεί ειδική πρόνοια, πολλά πρωτόκολλα εφαρμογής δεν δουλεύουν με NAT (π.χ. FTP, SIP, IPsec)

Έλλειψη διευθύνσεων: η μακροπρόθεσμη λύση

IPv6: Internet Protocol version 6

IPv6

- IP version 6
 - Διάδοχος του σημερινού ΙΡν4
 - Οι προδιαγραφές είναι έτοιμες από το 1994
 - Κάνει προσθήκες στο ΙΡν4 (όχι ριζικές αλλαγές)
- Η πιο σημαντική αλλαγή:
 - Αυξάνει το μήκος της διεύθυνσης στο 128 bit
- Η χρήση του αυξάνει αργά
 - Την 8/6/2011 έγινε η πρώτη ΙΡν6 day, σημαντική παγκόσμια δοκιμή (trial) χρήσης του ΙΡν6, όπου συμμετείχαν Google, Facebook, Yahoo!, Akamai κλπ
 - Υποστηρίζεται από όλα τα μοντέρνα λειτουργικά
 - Τον Ιούλιο 2018 ξεπέρασε το φράγμα του 24,1%

Διευθύνσεις ΙΡν6

- Μήκος 128 bit
 - γράφονται ως 8 δεκαεξαδικοί ακέραιοι αριθμοί των 16bit χωρισμένοι με ":"
- Συντομεύσεις:
 - Τα αρχικά μηδενικά παραλείπονται: "0000"→"0", "0db8"→"db8"
 - To ":0000...:0000" γράφεται σαν "::"
- Όλες αυτές είναι η ίδια διεύθυνση
 - 2001:0db8:0000:0000:0000:0000:1428:57ab
 - 2001:db8:0:0:0:1428:57ab
 - 2001:db8:0:0::1428:57ab
 - 2001:db8::1428:57ab

Πότε θα εξαντληθούν?

- Πρακτικά ποτέ!
- Υπάρχουν 2¹²⁸ διευθύνσεις που αντιστοιχούν περίπου σε 3,403×10³⁸ διαφορετικές διεπαφές host
 - Ο αριθμός αυτός είναι τεράστιος και επαρκεί για το απώτερο μέλλον, ακόμα και εάν όλα τα κινητά τηλέφωνα και όλες οι φορητές συσκευές απαιτούσαν πρόσβαση στο Internet
 - Υπάρχουν περίπου 6,5 × 10²³ διευθύνσεις για κάθε τετραγωνικό μέτρο της επιφάνειας της Γης

Είδη διευθύνσεων ΙΡν6

- Τρεις κατηγορίες διευθύνσεων
 - Unicast
 - Multicast
 - Anycast
- Δεν υπάρχουν διευθύνσεις για εκπομπή (broadcast) στο IPv6
- Οι διευθύνσεις μονο-εκπομπής (unicast) προσδιορίζουν μοναδικές δικτυακές διεπαφές

Εκχωρημένες διευθύνσεις ΙΡν6

- IANA \rightarrow 2000::/3
 - APNIC \rightarrow 2400::/12
 - ARIN \rightarrow 2600::/12, 2610::/12, 2620::/12
 - LACNIC → 2800::/12
 - RIPE \rightarrow 2A00::/12, 2A10::/12
 - AfriNIC \rightarrow 2C00::/12
 - και πολλά άλλα μικρότερα μπλοκ
- Το ΙΑΝΑ εκχωρεί προθέματα από /23 μέχρι /12 στους RIR
- Οι RIR εκχωρούν προθέματα /32 μέχρι /19 σε LIR, ISP ή ακραίους χρήστες
- LIR/ISP αποδίδουν προθέματα από /48 μέχρι /64 σε χρήστες

Είδη διευθύνσεων ΙΡν6

- Οι διευθύνσεις πολλαπλής διανομής (multicast)
 προσδιορίζουν διεπαφές που ανήκουν σε μια ομάδα κόμβων
 - Πακέτα προς μια διεύθυνση πολλαπλής διανομής παραδίδονται σε όλα τα μέλη της ομάδας
 - Αρχίζουν με το πρόθεμα FF00::/8
- Οι διευθύνσεις προς οποιονδήποτε της ομάδας (anycast), όπως και οι πολλαπλής διανομής, προσδιορίζουν μια ομάδα
 - Το πακέτο που στέλνεται σε τέτοια διεύθυνση παραδίδεται μόνο σε **μία** διεπαφή των κόμβων της ομάδας, συνήθως, την "κοντινότερη"

Ειδικές διευθύνσεις ΙΡν6

- ::1/128 loopback, ότι και η 127.0.0.1 στο IPv4
- 2001:db8::/32 στα κείμενα όπου δίδεται παράδειγμα έχει αυτό το πρόθεμα
- fc00::/7 unique local address (ULA) για εσωτερικά δίκτυα, ότι και η 10.0.0.0/8 στο IPv4
- fe80::/10 link-local address (LLA) ό,τι και η 169.254.0.0/16 για το IPv4.
- ::ffff:0:0/96 IPv4 mapped address σε dual stack υλοποιήσεις
- Οι παραπάνω δεν είναι δρομολογίσιμες στο διαδίκτυο

Ειδικές διευθύνσεις ΙΡν6

- 2002::/16 μηχανισμός μετάβασης 6to4
 - Η διεύθυνση ΙΡν4 μετατρέπεται σε ΙΡν6 με πρόθεμα 48 επισυνάπτοντάς την στο 2002
 - $-147.102.7.1 \rightarrow 2002:9366:0701::/48.$
- 2001:0::/32 μηχανισμός μετάβασης Teredo tunneling
 - όταν υπάρχει NAT πρέπει να χρησιμοποιηθεί η IPv4 διεύθυνση ενός ενδιάμεσου
- 64:ff9b::/96 μετάφραση IPv4/IPv6
 - Στατική αντιστοίχιση κατά RFC6052
- ff00::/8 —πολλαπλή διανομή
 - ff02::1 όλοι οι κόμβοι στη τοπική ζεύξη
 - ff02::2 όλοι οι δρομολογητές στη τοπική ζεύξη

- ...