ETUDE D'UNE CENTRALE NUCLEAIRE

Amélioration du rendement du cycle secondaire

Les propriétés thermodynamiques de l'eau à saturation pour les différents niveaux de pressions utiles à la résolution de ce projet sont données en annexes.

Rappel des résultats obtenus lors du « Projet 1 – Etude d'une Centrale Nucléaire » (partie II).

Le cycle simple qui a été étudié dans la partie II de l'énoncé du Projet 1 est représenté dans la figure 1 ci-dessous. Les propriétés thermodynamiques des différents points calculés en séance sont résumées dans le tableau 1 avec, pour les points H et L en amont des pompes de compression liquide, également le rappel des volumes massiques nécessaires aux calculs des points en aval des pompes (en l'absence de propriétés données aux conditions de sortie, l'hypothèse de liquide incompressible est utilisée). Le tableau 2 rappelle les débits calculés, en valeurs relatives par rapport à D₀ et en valeurs absolues dans le cas où la puissance thermique du générateur de vapeur est donnée à 2 970 MW.

Figure 1 – Circuit du cycle secondaire simple

Tableau 1 – Propriétés thermodynamiques des points du cycle secondaire simple

Point	Pression (bar)	Température (°C)	Titre massique vapeur	Enthalpie (kJ/kg)	Entropie (kJ/kg.K)	Volume massique (m³/kg)
Α	56,0	271,1	1,000	2 788,745	5,92238	
В	50,0	263,9	0,997	2 788,745	5,96350	
C is.	11,0	184,1	0,865	2 511,580	5,96350	
С	11,0	184,1	0,891	2 562,578	6,07505	
D	11,0	184,1	1,000	2 780,648	6,55200	
E	11,0	253,0	1,000	2 946,097	6,88981	
F	50,0	263,9	0,997	2 788,745	5,96350	
G is.	0,070	39,0	0,821	2 139,505	6,88981	
G	0,070	39,0	0,882	2 287,918	7,36526	
Н	0,070	39,0	0	163,353	0,55903	0,001007502
I is.	15,0	39,0	0	164,857	0,55903	
- 1	15,0	39,1	0	165,024	0,55957	
J	11,0	184,1	0	781,028	2,17849	
K	50,0	263,9	0	1 154,641	2,92099	
L	11,0	73,5	0	308,527	0,99679	0,001132990
M is.	70,0	73,9	0	315,212	0,99679	
М	70,0	74,1	0	315,955	1,00080	

Tableau 2 – Débits du cycle secondaire simple (colonne de droite pour 2970 MW au GV)

D ₀	1,000	1201,1 kg/s
D ₁	0,917	1101,7 kg/s
D ₂	0,083	99,4 kg/s
D ₃	0,100	120,1 kg/s
D ₄	0,817	981,5 kg/s

Le tableau 3 ci-dessous rappelle les bilans de puissance sur les différents composants du cycle simple, ce qui permet également de calculer le rendement du cycle, défini ici comme étant le rapport entre la puissance utile nette (c'est dire la valeur absolue de la puissance mécanique des 2 turbines diminuée de la puissance mécanique des 2 pompes) divisée par la puissance payante qui correspond à la puissance thermique du GV (tableau 4).

Tableau 3 – Bilan de puissance du cycle secondaire simple

Transformation	Point Entrée	Point Sortie	Bilan d'enthalpie (MW)
Générateur de vapeur	M	Α	2 970,00
Détente isenthalpe	Α	В	-
Turbine HP	В	С	- 249,17
Turbine BP	E	G	- 646,03
Condenseur	G	Н	- 2 085,36
Pompe d'extraction	Н	_	1,64
Pompe alimentaire	L	М	8,92
Sécheur	С	D,J	-
Bâche	I,J,K	Г	-
Détente isenthalpe	Α	F	-
Surchauffeur (fluide froid)	D	Ε	162,40
Surchauffeur (fluide chaud)	F	K	- 162,40
		TOTAL	-

Tableau 4 – Bilan de puissance du cycle secondaire simple

Rendement Energétique du cycle	29,79 %
Puissance payante	2 970,00 MW
Puissance utile nette	884,64 MW

Optimisation du rendement du cycle par prélèvement au cours de la détente dans la turbine basse pression et réchauffage de la ligne basse pression

Dans cette partie, un soutirage dans la turbine BP est proposé (figure 2, point T, débit D_7). Comptetenu des niveaux de température au cours de la détente BP (de 184°C à 39°C), le préchauffage du liquide se fera sur la ligne liquide BP, en aval de la pompe d'extraction qui recomprime à 15 bar (point I), grâce à un échangeur de chaleur. Ce réchauffeur R_1 va permettre la condensation complète du flux prélevé dans la turbine BP (transformation $T \rightarrow U$), ce qui va dégager la chaleur pour préchauffer la ligne liquide (transformation $I \rightarrow V$).

L'optimisation du rendement du cycle va porter sur un paramètre qui est le niveau de pression auquel est réalisé le soutirage dans la turbine BP, qui travaille entre 11 bar et 0,07 bar. L'autre paramètre essentiel est le débit de soutirage dont la valeur va résulter des règles de conception données ci-après. Il est proposé d'étudier 3 niveaux de pression de soutirage : 2 bar, 1 bar et 0,5 bar. Les propriétés thermodynamiques de l'eau à saturation, nécessaires aux calculs sont fournies en annexe.

Figure 2 – Circuit du cycle secondaire avec soutirage et réchauffage Basse Pression

Les règles de conception sont les suivantes :

- 1. Le flux soutiré à un niveau de pression dans la turbine BP est entièrement condensé dans le réchauffeur R₁. Le point de sortie U du réchauffeur est donc aux conditions de liquide saturé.
- 2. Le dimensionnement du réchauffeur R₁ est réalisé de telle sorte que la température de réchauffage de la ligne liquide (point V en sortie du réchauffeur) soit 10 K inférieure à la température du flux soutiré à la turbine (température du point T). En d'autres termes, la surface d'échange du réchauffeur R₁ est dimensionnée sous la contrainte que l'écart de température minimal entre le fluide chaud et le fluide froid (pincement) soit de 10 K.

Ces 2 règles vont permettre de déterminer, de manière itérative, le débit de soutirage.

- (i) En effet, pour une hypothèse initiale de débit soutiré D₇, la puissance liée à la condensation du flux soutiré peut être calculée (condensation du fluide chaud).
- (ii) Par ailleurs concernant les enthalpies côté fluide froid, les propriétés du point H sont inchangées (fixées par la source froide) et les propriétés du point V se déduisent de la seconde règle de conception. Etant donné que l'eau à 15 bar est à l'état liquide sous-refroidi, il est possible de faire l'hypothèse que dh = c_p.dT avec c_p constant (4,18 kJ/kg.K) pour déterminer l'enthalpie du point de sortie V. Il faudra s'assurer que le fluide ainsi réchauffé reste à l'état liquide, c'est-à-dire que son enthalpie est bien inférieure à l'enthalpie de saturation liquide à la pression de 15 bar (donnée en annexe).
- (iii) Enfin, le débit D_8 étant égal au débit D_4 diminué du débit D_7 soutiré, le débit D_7 est ajusté pour atteindre l'objectif d'égalité des puissances thermiques échangées au niveau du réchauffeur R_1 (considéré parfait, sans perte thermique).
- **Question 1:** Pour chaque niveau de pression considéré pour le soutirage au niveau de la turbine BP, déterminer, selon la méthode présentée ci-dessus, le débit de soutirage D₇. Donner également la puissance échangée au niveau du réchauffeur R₁.
- Question 2: Calculer la puissance fournie par la turbine BP avec ce soutirage. Attention à bien prendre en compte le fait que le débit varie dans la turbine en amont du soutirage (débit D₄) et en aval du soutirage (débit D₈). Il faut donc déterminer les conditions du point T, en commençant par faire un calcul de T_{is} en considérant une turbine parfaite, puis en appliquant le rendement isentropique.
- **Question 3 :** Etablir le bilan au niveau de la bâche et en déduire les nouvelles conditions en sortie de bâche (point L). Recalculer la pompe d'alimentation (point M) avec ces nouvelles conditions, ainsi que sa puissance absorbée.
- **Question 4 :** Etablir le rendement de l'installation pour chaque niveau de pression de soutirage. La puissance thermique du GV est toujours fixée à 2 970 MW.

Optimisation du rendement du cycle par prélèvement au cours de la détente dans la turbine basse pression et réchauffage de la ligne basse pression

Dans cette partie, le circuit précédent avec un soutirage dans la turbine BP, est complété par 2 soutirages au niveau de la turbine HP (figure 3). Le premier soutirage (point O, débit D_5) va permettre de réchauffer à environ 200°C la ligne liquide HP en aval de la pompe alimentaire, avant l'entrée dans le GV. Le second soutirage (point O, débit O_6) va permettre de débuter la surchauffe grâce à un flux de vapeur dont le niveau de température est plus proche du besoin (ce qui limite les irréversibilités) et ainsi réduire le débit prélevé en sortie de GV pour terminer la surchauffe de la branche principale jusqu'au point E à 253°C.

Figure 3 – Circuit du cycle secondaire avec soutirages et réchauffages BP et HP

Bien qu'étant tout à fait similaires à ceux déjà réalisés pour les cycles précédents, la mise en œuvre des calculs pour les 2 prélèvements HP est assez lourde, notamment en ce qui concerne la résolution du système d'équations pour déterminer les débits dans le circuit. Il n'est donc pas proposé dans ce projet de disposer du modèle complet, ni de trouver l'optimum sur les niveaux de pression de soutirage et les débits associés.

Le tableau 5 ci-dessous donne les propriétés thermodynamiques et les débits pour tous les points du cycle secondaire, dans une configuration donnée. Les prélèvements HP sont tous les 2 réalisés à 19,1 bar et le soutirage BP est réalisé à 2 bar. Le tableau 6 fournit les débits.

Tableau 5- Propriétés thermodynamiques des points du cycle secondaire avec soutirages HP et BP

Point	Pression	Température	Titre massique	Enthalpie	Entropie
Polit	(bar)	(°C)	vapeur	(kJ/kg)	(kJ/kg.K)
Α	56,0	271,1	1,000	2 788,745	5,92238
В	50,0	263,9	0,997	2 788,745	5,96350
O is.	19,1	210,0	0,900	2 607,481	5,96350
0	19,1	210,0	0,918	2 640,833	6,03254
C is.	11,0	184,1	0,865	2 511,580	5,96350
С	11,0	184,1	0,891	2 562,578	6,07505
D	11,0	184,1	1,000	2 780,648	6,55200
S	11,0	200,0	1,000	2 822,261	6,64149
E	11,0	253,0	1,000	2 946,097	6,88981
F	50,0	263,9	0,997	2 788,745	5,96350
T is.	2,0	120,2	0,958	2 612,972	6,88981
Т	2,0	120,2	0,985	2 674,267	7,04564
U	2,0	120,2	-	504,704	1,53017
G is.	0,070	39,0	0,821	2 139,505	6,88981
G	0,070	39,0	0,882	2 287,918	7,36526
Н	0,070	39,0	-	163,353	0,55903
l is.	15,0	39,0	-	164,857	0,55903
ı	15,0	39,1	-	165,024	0,55957
V	15,0	110,2	-	463,290	1,42000
J	11,0	184,1	-	781,028	2,17849
K	50,0	263,9	-	1 154,641	2,92099
L	11,0	142,4	-	599,801	1,76297
M is.	70,0	143,0	-	606,486	1,76297
М	70,0	143,2	-	607,229	1,76550
N	70,0	200,0	-	854,515	2,32200
P	19,1	210,0	-	897,631	2,42454
Q	19,1	210,0	0,918	2 640,833	6,03254
R	19,1	210,0	-	897,631	2,42454

Tableau 6 – Débits du cycle secondaire avec soutirages HP et BP (colonne de droite pour 2970 MW au GV)

D ₀	1,000	1 535,5 kg/s
D ₁	0,947	1 453,8 kg/s
D ₂	0,053	81,7 kg/s
D ₃	0,086	132,0 kg/s
D ₄	0,702	1 078,2 kg/s
D ₅	0,142	217,8 kg/s
D ₆	0,017	25,7 kg/s
D ₇	0,085	130,3 kg/s
D ₈	0,617	947,9 kg/s
D ₉	0,788	1 210,2 kg/s

Question 5 : Etablir les puissances et le rendement de l'installation, en remplissant les tableaux suivants.

Transformation	Point	Point	Bilan d'enthalpie
Transiornation	Entrée	Sortie	(MW)
Générateur de vapeur	M	Α	
Détente isenthalpe	Α	В	
Turbine HP	В	С	
Turbine BP	Е	G	
Condenseur	G	Н	
Pompe d'extraction	Н	- 1	
Pompe alimentaire	L	М	
Sécheur	С	D,J	
Bâche	J,K,P,R,U,V	L	
Détente isenthalpe	Α	F	
Réchauffeur R ₁ (fluide froid)	1	V	
Réchauffeur R ₁ (fluide chaud)	Т	U	
Réchauffeur R ₂ (fluide froid)	M	N	
Réchauffeur R ₂ (fluide chaud)	0	Р	
Surchauffeur S ₁ (fluide froid)	D	S	
Surchauffeur S ₁ (fluide chaud)	Q	R	
Surchauffeur S ₂ (fluide froid)	S	E	
Surchauffeur S ₂ (fluide chaud)	F	K	
_		TOTAL	

Puissance utile nette	
Puissance payante	
Rendement Energétique du cycle	

ANNEXE – Propriétés thermo physiques de l'eau

Valeurs à saturation (hormis le point à 11 bar et 253°C qui est à l'état vapeur surchauffée)

Pression	Température	Titre massique	Enthalpie	Entropie	Volume massique
(bar)	(°C)	vapeur	(kJ/kg)	(kJ/kg.K)	(m³/kg)
70,0	285,8	1	2 772,630	5,81475	0,027378441
70,0	285,8	0	1 267,659	3,12239	0,001351856
56,0	271,1	1	2 788,745	5,92238	0,034959273
56,0	271,1	0	1 190,980	2,98676	0,001306181
50,0	263,9	1	2 794,205	5,97367	0,039445867
50,0	263,9	0	1 154,641	2,92099	0,001286390
19,1	210,1	0	897,909	2,42511	0,001172824
19,1	210,1	0	897,909	2,42511	0,001172824
15,0	198,3	0	844,557	2,31433	0,001153869
11,0	253,0	1	2 946,097	6,88981	0,177448291
11,0	184,1	1	2 780,648	6,55200	0,177448291
11,0	184,1	0	781,028	2,17849	0,001132990
2,0	120,2	1	2 706,231	7,12689	0,885681677
2,0	120,2	0	504,704	1,53017	0,001060516
1,0	99,6	1	2 674,948	7,35885	1,693927665
1,0	99,6	0	417,504	1,30276	0,001043154
0,5	81,3	1	2 645,215	7,59300	3,240027215
0,5	81,3	0	340,542	1,09120	0,001029927
0,070	39,0	1	2 571,721	8,27446	20,524482405
0,070	39,0	0	163,351	0,55903	0,001007502