Effective Henry's Law Constant

Henry's Law

The amount of a gas, X, in equilibrium with aqueous-phase concentration of the gas, X_{aq} , is proportional to the gas-phase partial pressure, pX.

$$X_{\text{aq}} = K_H \ pX$$

 $[K_H] = \text{moles}X/\text{liter of air/atm}$
 $[X_{\text{aq}}] = \text{moles}X/\text{liter of liquid H}_2\text{O}$
 $[p_X] = \text{atm}$

where K_H is the Henry's Law constant. The temperature dependence of the Henry's Law constant is often parameterized.

$$K_H = \mathrm{kh}_{298} \, \exp\left(\mathrm{dh}_r \, \left(\frac{1}{T} - \frac{1}{298}\right)\right)$$

Acid

For an acid, where the compound and its anions are in equilibrium,

$$H_{eff} = K_H \left(1 + \frac{K_1}{[H+]} \left(1 + \frac{K_2}{[H+]} \right) \right)$$

$$K_1 = k1_{298} \exp(\mathrm{dh}1_r \left(\frac{1}{T} - \frac{1}{298} \right))$$

$$K_2 = k2_{298} \exp(\mathrm{dh}2_r \left(\frac{1}{T} - \frac{1}{298} \right))$$

$$[H+] = 10^{-pH}$$

Base

For a base, where the compound and its cations are in equilibrium

$$H_{eff} = K_H \left(1 + \frac{K_1}{K_w} [H +] \right)$$

$$K_1 = \text{k1}_{298} \exp(\text{dh1}_r \left(\frac{1}{T} - \frac{1}{298}\right))$$

 $K_w = \text{kw}_{298} \exp(\text{dh2}_w \left(\frac{1}{T} - \frac{1}{298}\right))$
 $K_w = [H^+] [OH^-]$

Example Derivation of H_{eff} for an acid

Assume the compound and its anions are in equilibrium. Define a family for that species, in this case, CO_2 For example,

$$C(IV) = H_2CO_3 + HCO_3^- + CO_3^=$$

Find the effective Henry's Law for that family,

$$H_{eff} = \frac{[C(IV)]}{p_{CO_2}}$$

where p_{CO_2} is the partial pressure of CO_2 . Based on the equilibria,

$$[H_2CO_3] = K_H p_{CO_2}$$

 $[HCO_3^-] = K_1 \frac{[H_2CO_3]}{[H+]}$
 $[CO_3^-] = K_2 \frac{[HCO_3-]}{[H+]}$

substitute those equilibria into the C(IV) equation giving

$$H_{eff} = \left(K_H p_{CO_2} + K_1 \frac{[H_2 CO_3]}{[H+]} + K_2 \frac{[HCO_3^-]}{[H+]}\right) / p_{CO_2}$$

and further substitution gives

$$H_{eff} = K_H + K_H \frac{K_1}{[H+]} + K_H \frac{K_1 K_2}{[H+]^2}$$

resulting in

$$H_{eff} = K_H \left(1 + \frac{K_1}{[H+]} \left(1 + \frac{K_2}{[H+]} \right) \right)$$

Example derivation of H_{eff} for a base

For a gas that hydrolyzes and dissociates into a cation such as NH_3 ,

$$NH_3$$
aq = $K_H pNH_3$

 NH_3 hydrolyzes to make $NH_3 - H_2O = NH_4OH$ which dissociates:

$$NH_4OH \leftrightarrow NH_4^+ + OH^-$$

 $K_1 = \left\lceil NH4^+ \right\rceil \left\lceil OH^- \right\rceil / \left\lceil NH_4OH \right\rceil$

with an equilibrium constant K_1 .

Water also dissociates

$$H_2O \leftrightarrow H^+ + OH^-$$

 $K_w = [H^+][OH^-]$

with an equilibrium constant K_w .

The algebraic derivation follows as:

$$\begin{aligned}
[NH_4OH] &= K_H \ pNH3 \\
[NH_4^+] [OH^-] &= K_1 [NH_4OH] \\
\therefore [NH_4^+] &= K_1 [H^+] [NH_4OH] / K_w
\end{aligned}$$

Or using the same derivation as the acid above, for NH_3 define the family, N(-III), as

$$N(-III) = NH_4OH + NH4^+$$

It follows that

$$N(-III) = K_H \ pNH_3 + \frac{K_1}{[OH^-]}[NH_4OH]$$

 $N(-III) = K_H \ pNH_3 + \frac{K_1 * [H+]}{K_w} K_H \ pNH_3$

but by the definition $[N(-III)] = H_{eff} pNH_3$ we can identify

$$H_{eff} = K_H \left(1 + \frac{K_1}{K_w} \left[H^+ \right] \right)$$