MEDIDA DE PESO Y CONTROL DE ILUMINACIÓN

PROYECTO 3

JOEL SANZ MARTÍ – 2ºCFGS

ÍNDICE

1. Esquema Eléctrico	1
2. Características Técnicas de los Elementos Usados	
2.1. Célula de Carga	13
2.2. Acondicionador para Células de Carga	13
2.3. Relé Proporcional de Estado Sólido (SSR)	14
3. Acondicionado de la Célula de Carga	15
4. Gráficas de las Cadenas de Medidas	16
4.1. Célula de Carga	16
4.2. Generador de Corriente	17
4.3. Relé de Estado Sólido	18
5. Programa PLC	18
6. Pantalla Scada	24

EPLAN

EPLAN GmbH & Co. KG

An der alten Ziegelei 2

40789 Monheim am Rhein Tel. +49 (0)2173 - 39 64 - 0

Empresa/cliente Proyecto básico con estructura de designación según los estándares IEC: Estructura de página con designación Descripción de proyecto Número de proyecto IEC_bas001 Comisión **EPLAN** Fabricante (empresa) EPLAN GmbH & Co. KG Circuito Projecto de ejemplo EPLAN Nombre de proyecto ISA_P3 Producto Tipo Lugar de instalación Responsable del proyecto Particularidad de pieza 18/10/2023 Creado de (abreviatura) joel0 Número de páginas Modificado 19/10/2023 11

&Bornes/1

			Resp.	joel0				3			+	
			Probado		Proyecto básico con estructui	ra de designación según los est	ándares IEC: Estructura de página	con designación de función y designación de local	ización	IEC_bas001		Hoja 1
Cambio	Fecha	Nombre	Original		Sustitución por	Sustituido por						Página 1 / 11

Hoia de título

EPLAN GmbH & Co. KG

O 1 2 3 4 5 6 7 8 9

Plano de conexiones de bornes

F11_006

 &Portada e Indice/1
 Fecha (18/10/2023)
 18/10/2023 (19/10-10)
 FPLAN GmbH & Co. KG
 Plano de conexiones de bornes = FAB + C1-X1
 = FAB
 = FAB

 G
 Resp. (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 (19/10)
 <t

Probado Propecto básico con estructura de designación según los estindares IEC: Estructura de página con designación de función y designación de localización IEC_bas001 Hoja 1
Pógina 2/11

0 1 2 3 4 5 6 7 8 9

Plano de conexiones de bornes

F11_006

+C1&/1

| Feha | 18/10/2023 | 18/10/2023 | 19/10/202

Proyecto básico con estructura de designación según los estándares IEC: Estructura de página con designación de función y designación de localización IEC bas01 Hoja 2 mbio Fecha Nombre Original Sustitución por Sustitución por Sustitución por Sustitución por Sustitución por Página 3/11

Página 5 / 11

Sustituido por

Fecha

Nombre

Cambio

2. CARACTERÍSTICAS TÉCNICAS DE LOS ELEMENTOS USADOS

2.1. CÉLULA DE CARGA

- Fabricante: SCAIME

- Modelo: AQ15 C3

- Carga máxima: 15kg

- Sensibilidad: 2mV/V

Cableado:

- Rojo: Alimentación +

- Negro: Señal +

- Azul: Señal –

- Blanco: Alimentación -

2.2. ACONDICIONADOR PARA CÉLULAS DE CARGA

Alimentación a 230V~50Hz.

Rango de entrada ajustable mediante jumpers entre 0/10 mV, 0/20 mV y 0/30 mV.

Rango de salida ajustable mediante jumpers entre 0/1V, 0/10V, 0/20mA o 4/20mA.

Preoffset ajustable mediante jumpers entre 0%, 25% y 50%.

- Conexionado:

- Jumpers:

Rango de salida:

4/20 mA 0/20 mA 0/10 Vdc 0/1 Vdc J1 J2 J3 J4 J5

Rango de entrada:

Preoffset:

2.3. RELÉ PROPORCIONAL DE ESTADO SÓLIDO (SSR)

Entrada analógica de 0/10V o 4/20mA.

Por la salida pueden pasar de 24 a 230V~.

- Cableado:

Entrada: Bornes + y -.

Salida: Bornes L y N.

- Esquema de funcionamiento:

3. ACONDICIONADO DE LA CÉLULA DE CARGA

Primero necesitaremos saber la tensión máxima que dará la célula de carga. Como tiene una sensibilidad de 2mV/V y vamos a alimentarla a 12V, esta será su sensibilidad en mV/kg:

$$U_{15kg} = 12V * \frac{2mV}{V} = 24mV$$

$$Sensibilidad = \frac{24mV - 0mV}{15kg - 0kg} = \frac{1,6mV}{kg}$$

Sabiendo su sensibilidad y que nuestro peso máximo será de 3,8435kg, podemos averiguar la tensión máxima en la salida de la célula de carga:

$$U_{mV} = \frac{1,6mV}{kg} * 3,8435kg = 6,15mV$$

Por tanto, configuraremos el acondicionador para un rango de entrada de 0/10mV, ya que es el más cercano a la tensión máxima que entregará la célula de carga.

Queremos una salida de 0/20mA, por lo que pondremos los jumpers de salida en dicha configuración.

Configuraremos el preoffset a 0% porque el peso muerto que tenemos es muy pequeño y se puede corregir con los potenciómetros.

Para ajustar la salida de la célula de carga, primero pondremos el peso máximo en la célula de carga. Entonces, miraremos en el Tia Portal el número de bits que están llegando y ajustaremos el potenciómetro "SPAN" hasta que lleguemos a 27648 bits. Ahora quitaremos todo el peso de la célula de carga y volveremos a mirar en el Tia Portal, esta vez ajustando el potenciómetro "ZERO" hasta que veamos 0 bits. Al ajustar el "ZERO", el "SPAN" se puede desajustar, y viceversa. Por tanto, repetiremos este proceso hasta que con el peso máximo hayan 27648 bits y sin nada de peso hayan 0 bits.

4. GRÁFICAS DE LAS CADENAS DE MEDIDAS

4.1. CÉLULA DE CARGA

La salida del acondicionador de la célula de carga entrega una señal de 0 a 20mA para un rango de la célula de carga de 0 a 3843.5kg:

Desde la entrada al PLC, dicha señal pasa por estos bloques:

4.2. GENERADOR DE CORRIENTE

El generador de corriente entrega una señal de 4/20mA variando la posición de su potenciómetro (0 a 100%):

Desde la entrada del PLC, dicha señal pasa por estos bloques:

4.3. RELÉ DE ESTADO SÓLIDO

El SSR recibe una señal de 0/20mA del PLC. Internamente la señal no pasa por el bloque "NORM", ya que se aprovechan los valores normalizados de las entradas analógicas, por lo que pasa directamente al bloque "SCALE":

Totally Integrated Automation Portal	

Variable [DB1]

Variable Propiedades									
General									
Nombre	Variable	Número	1	Tipo	DB				
Idioma	DB	Numeración	Automático						
Información									
Título		Autor		Comentario					
Familia		Versión	0.1	ID personali- zado					

lombre	Tipo de datos	Valor de arranque	Remanencia
▼ Static			
norm_weight	Real	0.0	False
weight	Real	0.0	False
norm_intensity	Real	0.0	False
intensity	Int	0	False
raw_time	DTL	DTL#1970-01-01-00:00:00	False
norm_time	Real	0.0	False
time	Int	0	False
modos	Int	0	False
lamp_variable	Real	0.0	False
lamp_norm	Real	0.0	False
lamp	Int	0	False
on/off	Bool	false	False
state	Bool	false	False
flanco_S1	Bool	false	False
time_error	Int	0	False

Totally Integrated Automation Portal	

Tabla de variables estándar [36]

Variables F	Variables PLC							
lcon	Nombre	Tipo de datos	Dirección					
≪ □	lamp	Int	%QW96					
≪ □	raw_intensity	Int	%IW98					
	raw_weight	Int	%IW96					
40	S1	Bool	%10.0					

|--|--|

Main [OB123]

Main Propied	Main Propiedades									
General	General									
Nombre	Main	Número	123	Tipo	OB					
Idioma	KOP	Numeración	Automático							
Información										
Título	"Main Program Sweep (Cycle)"	Autor		Comentario						
Familia		Versión	0.1	ID personali- zado						

Nombre	Tipo de datos	Valor predet.
▼ Input		
Initial_Call	Bool	
Remanence	Bool	
Temp		
Constant		

Segmento 1: Telerruptor

Lógica de la función telerruptor del interruptor: Al pulsarse S1, si on/off estaba desactivada, la activará. De lo contrario, la desactivará.

```
%I0.0 "S1"
                       "Variable"."on/off"
                                                                                                   "Variable".state
      -|₽|-
                               <del>-</del>1/1-
                                                                                                         _( s )_
   "Variable".
   flanco_S1
                       "Variable"."on/off"
                                                                                                   "Variable".state
                             \dashv \vdash
                                                                                                        —( R )——
"Variable".state
                                                                                                  "Variable"."on/off"
                                                                                                         <del>(</del> )-
      4 H
```

Segmento 2: Conmutación de variables de salida

Según el modo seleccionado en SCADA, enviar una de las 3 señales normalizadas que pueden variar la salida a la variable que alimenta el escalado de dicha salida.

Se invierte la variable del peso para que el peso en la célula de carga sea inversamente proporcional a la intensidad con la que brilla la bombilla.

Scales [OB1]

Scales Propiedades										
General	General									
Nombre	Scales	Número	1	Tipo	OB					
Idioma	KOP	Numeración	Automático							
Información										
Título	"Main Program Sweep (Cycle)"	Autor		Comentario						
Familia		Versión	0.1	ID personali- zado						

Nombre	Tipo de datos	Valor predet.
▼ Input		
Initial_Call	Bool	
Remanence	Bool	
Temp		
Constant		

Segmento 1: Escalado de la célula de carga

El acondicionador de la célula de carga entrega una señal de 0 a 20mA para un rango de entrada de 0 a 3843.5kg, que equivale a una señal de 0 a 27648 bits.

Segmento 2: Escalado del potenciómetro

El potenciómetro entrega una señal de 4 a 20mA para un rango de entrada de 0 a 100%, que equivale a una señal de 5530 a 27648 bits.

Segmento 3: Normalizado del tiempo

Normalizar los segundos reales para poder introducirlos en el escalado de la salida.

Totally Integrated Automation Portal

Segmento 4: Escalado de la salida

Escalar la salida analógica para que entregue una señal de 0 a 40mA cuando el sistema esté activo.

6. PANTALLA SCADA

El campo de entradas y salidas simbólico sirve para seleccionar las 3 variables que pueden actuar sobre la salida: peso, tiempo y manual.

El indicador debajo de "Intensity" muestra el valor del generador de intensidad en porcentaje.

El indicador debajo de "Weight" muestra el peso que hay en la célula de carga en gramos.

El indicador debajo de "Seconds" muestra el tiempo de un minuto que ha pasado en segundos.