# Machine learning with biomedical ontologies

Presented by Sarah Alghamdi, Azza Althaqafi, Robert Hoehndorf, Maxat Kulmanov, Sumyyah Toonsi, Fernando Zhapa-Camacho

# **Learning Outcomes**

- Introduce different methods that use ontologies in machine learning models
- Discuss unsupervised machine learning methods that can "embed" from one structure to another.
- Introduce mOWL, a software library for machine learning with ontologies
- Incorporate mOWL in Biomedical data analysis using different approaches

- "An ontology is an explicit specification of a conceptualization"
   ... Gruber 1993
- "An ontology is an explicit formal specification of a shared conceptualization" ... Borst 1997
- "An ontology is a logical theory designed in order to capture the intended models corresponding to a certain conceptualization and to exclude the unintended ones" ... Guarino 2009

- Ontology consist of :
- T-Box
  - Set of terminological Component

- A-Box
  - Set of assertions using T-Box
    - Concept assertions
    - Relation Assertion

- Metadata
  - representation of a resource in terms of attribute name-value pairs
    - Definition
    - Labels
    - ı ...



Description Logic (DL) is used to formally and exipisity represent ontologies

| Name                    | DL syntax             | Semantics                                                                                                                     |
|-------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|
|                         |                       |                                                                                                                               |
| Top concept             | T                     | $\Delta^{\mathcal{I}}$                                                                                                        |
| Bottom concept          |                       | $\emptyset$                                                                                                                   |
| Concept                 | C                     | $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$                                                                              |
| Concept disjunction     | $C_1 \sqcap C_2$      | $C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}}$                                                                                    |
| Concept conjunction     | $C_1 \sqcup C_2$      | $C_1^{\mathcal{I}} \cup C_2^{\mathcal{I}}$                                                                                    |
| Concept negation        | $\neg C$              | $\Delta^{\mathcal{I}} ackslash C^{\mathcal{I}}$                                                                               |
| Universal restriction   | $\forall R.C$         | $\{x \in \Delta^{\mathcal{I}}   \forall y \in \Delta^{\mathcal{I}}((x, y) \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}})\}$ |
| Existential restriction | $\exists R.C$         | $\{x \in \Delta^{\mathcal{I}}   \exists y \in \Delta^{\mathcal{I}}((x, y) \in R^{\mathcal{I}} \to y \in C^{\mathcal{I}})\}$   |
| Subclass of             | $C_1 \sqsubseteq C_2$ | $C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}$                                                                               |
| Subproperty of          | $R_1 \sqsubseteq R_2$ | $R_1^{\mathcal{I}} \subseteq R_2^{\mathcal{I}}$                                                                               |
| Equivalent class        | $C_1 \equiv C_2$      | $C_1^{\tilde{\mathcal{I}}} = C_2^{\tilde{\mathcal{I}}}$                                                                       |
| Equivalent property     | $R_1 \equiv R_2$      | $R_1^{\overline{I}} = R_2^{\overline{I}}$                                                                                     |

Parent ≡ ∃ has\_child. Peron
Son ⊆ Male □ ∃ child\_of. Person
Mother ⊆ Female □ Parent
Sibling ⊑ ∃ has\_sibling. Person

Description Logic (DL) is used to formally and exipisity represent ontologies

| DL Syntax                | Manchester Syntax |
|--------------------------|-------------------|
| $C \sqcap D$             | C and D           |
| $C \sqcup D$             | C or D            |
| $\neg C$                 | not C             |
| ∃R.C                     | R some C          |
| ∀R.C                     | R only C          |
| $(\geq nR.C)$            | R min n C         |
| $(\leq nR.C)$            | R max n C         |
| (= nR.C)                 | R exactly n C     |
| $\{a\}\sqcup\{b\}\sqcup$ | {a b}             |

Parent ≡ ∃ has\_child. Peron
Son ⊆ Male □ ∃ child\_of. Person
Mother ⊆ Female □ Parent
Sibling ⊆ ∃ has\_sibling. Person

## How Ontologies are used in Databases

- Annotations and data integration
  - Ontologies play a crucial role in facilitating data integration across databases due to their usage of standard identifiers for classes and relations



- True path rule:
  - Annotation for a class is immediately passed to its ancestors
  - Unannotated entities for a class is not used to annotate its descendants

## How Ontologies are used in Databases

Annotations and data integration

Ontologies play a crucial role in facilitating data integration across databases due to their usage of standard identifiers for classes and relations

• True path rule:

Annotation for a class is immediately passed to its ancestors

 Unannotated entities for a class is not used to annotate its descendants



## How Ontologies are used in Databases

Annotations and data integration

Ontologies play a crucial role in facilitating data integration across databases due to their usage of standard identifiers for classes and relations

True path rule:

Annotation for a class is immediately passed to its ancestors

Unannotated entities for a class is not used to annotate its descendants

Person is a is a is a **Parent** Female is a is a is a Mother is a Father Broth T-Box Туре A-Box

Daught

## Annotations to OWL axioms

Example:

Annotating protein **A0AVI2** To Gene Ontology

- Annotations to T-Box
  - $A0AV12 \sqsubseteq \exists annotated with. GO:0005886$



## Annotations to OWL axioms

#### Example:

Annotating protein **A0AVI2** To Gene Ontology

- Annotations to T-Box
  - $A0AVI2 \sqsubseteq \exists$  annotated with. GO:0005886

- Annotations to A-Box
  - Protein(A0AVI2)
  - annotated\_with(*A0AVI2*, *GO:0005886*)



## Annotations to OWL axioms

#### Example:

Annotating protein **A0AVI2** To Gene Ontology

- Annotations to T-Box
  - $\Rightarrow$  **A0AVI2**  $\sqsubseteq \exists$  annotated with. **GO:0005886**

- Annotations to A-Box
  - OWL:Thing(A0AVI2)
  - annotated\_with(A0AVI2, GO:0005886)



- Creating the family ontology
  - Using Protégé
    - Download from: https://protege.stanford.edu/

- Protégé:
  - Add new classes



- Protégé:
  - Add new classes
  - Add new object properties





- Protégé:
  - Add new classes
  - Add new object properties
  - Adding axioms
    - SubclassOf
    - Equivalent
    - ...





- Protégé:
  - Add new classes
  - Add new object properties
  - Adding axioms
  - Adding GCIs



- Protégé:
  - Add new classes
  - Add new object properties
  - Adding axioms
  - Adding GCIs
  - Adding definitions, synonyms



#### Protégé:

- Add new classes
- Add new object properties
- Adding axioms
- Adding GCIs
- Adding definitions, synonyms
- Using reasoners

