Student Information

Full Name : Alperen OVAK

Id Number: 2580801

Answer 1

Answer 2

To find the generating function for the sequence

$$1, 4, 7, 10, 13, \dots$$

we can use the formula for an arithmetic sequence.

The n^{th} term of an arithmetic sequence can be represented as:

$$a_n = a_1 + (n-1) \cdot d$$

where:

 a_n is the n^{th} term of the sequence, a_1 is the first term of the sequence, n is the term number (position),

d is the common difference between consecutive terms.

From the given sequence, we can observe that:

$$a_1 = 1$$

(first term) and

$$d = 3$$

(since the difference between consecutive terms is 3).

Plugging these values into the formula, we get:

$$a_n = 1 + (n-1) \cdot 3$$

which simplifies to:

$$a_n = 1 + 3n - 3$$

and further simplifies to:

$$a_n = 3n - 2$$

Starting with the basic generating functions:

1. The generating function for the sequence $\langle 1, 1, 1, 1, \dots \rangle$ is:

$$\frac{1}{1-x}$$

2. Differentiating the above generating function gives:

$$\frac{d}{dx}\left(\frac{1}{1-x}\right) = \frac{1}{(1-x)^2}$$

Which represents the sequence $< 1, 2, 3, 4, \dots >$.

3. Using the scaling theorem:

Multiplying $\frac{1}{1-x}$ by 2 gives:

$$\frac{2}{1-x}$$

Which represents the sequence $\langle 2, 2, 2, 2, \dots \rangle$.

Multiplying $\frac{1}{(1-x)^2}$ by 3 givx "es:

$$\frac{3}{(1-x)^2}$$

Which represents the sequence $\langle 3, 6, 9, 12, \dots \rangle$.

4. Subtracting the generating function for the sequence $<2,2,2,2,\cdots>$ from the generating function for the sequence $<3,6,9,12,\cdots>$ gives:

$$\frac{3}{(1-x)^2} - \frac{2}{1-x}$$

This resulting generating function represents the sequence $<1,4,7,10,13,\cdots>$.

Therefore, the difference of $\frac{3}{(1-x)^2}$ and $\frac{2}{1-x}$ is the generating function for the sequence $<1,4,7,10,13,\cdots>$.

Answer 3

Answer 4