The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Withdrawn) A light-emitting element comprising:
- a first electrode and a second electrode,
- a first layer and a second layer formed between the first electrode and the second electrode,

wherein the first layer contains an anthracene derivative represented by a general formula (1) and a substance that shows electron acceptability to the anthracene derivative,

wherein the second layer contains a light emitting substance,

$$R^{2} \longrightarrow R^{3}$$

$$R^{1} \longrightarrow R^{4}$$

$$R^{5} \longrightarrow R^{8}$$

$$R^{6} \longrightarrow R^{7}$$

$$R^{7} \longrightarrow R^{9}$$

$$R^{1} \longrightarrow R^{1}$$

$$R^{2} \longrightarrow R^{2}$$

$$R^{4} \longrightarrow R^{2}$$

$$R^{5} \longrightarrow R^{8}$$

$$R^{7} \longrightarrow R^{9}$$

$$R^{7} \longrightarrow R^{9}$$

$$R^{7} \longrightarrow R^{9}$$

$$R^{7} \longrightarrow R^{9}$$

wherein R¹ to R⁸ are individually any one of hydrogen and an alkyl group having 1 to 4 carbon atoms, or R¹ and R², R³ and R⁴, R⁵ and R⁶, and R⁷ and R⁸ are individually bonded to from an aromatic ring,

wherein the bond of R^1 and R^2 , the bond of R^3 and R^4 , the bond of R^5 and R^6 , and the bond of R^7 and R^8 are independent of one another.

- 2. (Withdrawn) A light-emitting element comprising:
- a first electrode and a second electrode,
- a first layer and a second layer formed between the first electrode and the second electrode,

wherein the first layer contains an anthracene derivative represented by a general formula (2) and a substance that shows electron acceptability to the anthracene derivative,

wherein the second layer contains a light emitting substance,

$$R^{12}$$

$$R^{13}$$

$$R^{14}$$

$$R^{14}$$

$$tert$$

$$R^{15}$$

$$R^{18}$$

$$R^{16}$$

$$R^{17}$$

$$R^{18}$$

$$R^{17}$$

$$R^{18}$$

$$R^{18}$$

$$R^{19}$$

$$R^{$$

wherein R¹¹ to R¹⁸ are individually any one of hydrogen and an alkyl group having 1 to 4 carbon atoms, or R¹¹ and R¹², R¹² and R¹³, R¹⁵ and R¹⁶, and R¹⁶ and R¹⁷ are individually bonded to from an aromatic ring,

wherein the bond of R^{11} and R^{12} , the bond of R^{12} and R^{13} , the bond of R^{15} and R^{16} , and the bond of R^{16} and R^{17} are independent of one another.

- (Withdrawn) The light-emitting element according to claim 1, wherein the substance is at least one of metal oxide selected from molybdenum oxide, vanadium oxide, ruthenium oxide, and rhenium oxide.
- 4. (Withdrawn) The light-emitting element according to claim 2, wherein the substance is at least one of metal oxide selected from molybdenum oxide, vanadium oxide, ruthenium oxide, and rhenium oxide.
 - 5. (Currently Amended) A light-emitting element comprising:
 - a first electrode and a second electrode, and
- a first layer, a second layer and a third layer formed between the first electrode and the second electrode,

wherein the first layer contains an anthracene derivative represented by a general formula (1) and a first substance that shows electron acceptability to the anthracene derivative,

wherein the second layer contains a light-emitting substance, and

wherein the third layer contains a second substance having electron mobility of 1 ×10⁻⁶ cm²/Vs or more and a third substance that shows electron acceptability electrondonating property to the second substance,

$$R^{2} \longrightarrow R^{3}$$

$$R^{1} \longrightarrow R^{4}$$

$$R^{5} \longrightarrow R^{8}$$

$$R^{6} \longrightarrow R^{7}$$

$$R^{7} \longrightarrow R^{9}$$

wherein R^1 to R^8 are individually any one of hydrogen and an alkyl group having 1 to 4 carbon atoms, or R^1 and R^2 , R^3 and R^4 , R^5 and R^6 , and R^7 and R^8 are individually bonded to from form an aromatic ring,

wherein the bond of R^1 and R^2 , the bond of R^3 and R^4 , the bond of R^5 and R^6 , and the bond of R^7 and R^8 are independent of one another.

- 6. (Withdrawn) A light-emitting element comprising:
- a first electrode and a second electrode,
- a first layer, a second layer and a third layer formed between the first electrode and the second electrode,

wherein the first layer contains an anthracene derivative represented by a general formula (2) and a first substance that shows electron acceptability to the anthracene derivative,

wherein the second layer contains a light-emitting substance, and

wherein the third layer contains a second substance having electron mobility of 1×10^{-6} cm²/Vs or more and a third substance that shows electron acceptability to the second substance,

$$R^{12}$$

$$R^{11}$$

$$R^{14}$$

$$R^{15}$$

$$R^{18}$$

$$R^{16}$$

$$R^{17}$$

$$R^{17}$$

$$R^{18}$$

$$R^{17}$$

$$R^{18}$$

$$R^{17}$$

$$R^{18}$$

$$R^{17}$$

$$R^{18}$$

$$R^{17}$$

$$R^{18}$$

$$R^{19}$$

wherein R^{11} to R^{18} are individually any one of hydrogen and an alkyl group having 1 to 4 carbon atoms, or R^{11} and R^{12} , R^{12} and R^{13} , R^{15} and R^{16} , and R^{16} and R^{17} are individually bonded to from an aromatic ring,

wherein the bond of R^{11} and R^{12} , the bond of R^{12} and R^{13} , the bond of R^{15} and R^{16} , and the bond of R^{16} and R^{17} are independent of one another.

- 7. (Currently Amended) The light-emitting element according to claim 5, wherein the first substance is at least one of substances selected from molybdenum oxide, vanadium oxide, ruthenium oxide, and rhenium oxide, and wherein the third substance is at least one of substances selected from lithium oxide, calcium oxide, natrium oxide, potassium oxide, magnesium oxide, lithium fluoride, cesium fluoride, and calcium fluoride.
- 8. (Withdrawn) The light-emitting element according to claim 6, wherein the first substance is at least one of substances selected from molybdenum oxide, vanadium oxide, ruthenium oxide, and rhenium oxide, and wherein the third substance is at least one of substances selected from lithium oxide, calcium oxide, natrium oxide, potassium oxide, magnesium oxide, lithium fluoride, cesium fluoride, and calcium fluoride.
 - 9. (Withdrawn) A light-emitting element comprising:
 - a first electrode and a second electrode,
- a first layer, a second layer and a third layer formed between the first electrode and the second electrode,

wherein the first layer contains an anthracene derivative represented by a general formula (1) and a first substance that shows electron acceptability to the anthracene derivative,

wherein the second layer contains a second substance having electron mobility of 1×10^{-6} cm²/Vs or more and a third substance that shows electron acceptability to the second substance,

wherein the third layer contains a light-emitting substance,

wherein the first layer is provided nearer the first electrode side than the second layer,

wherein the third layer is provided nearer the second electrode side than the second layer, and

wherein the second layer and the third layer emits light when a voltage is applied so that the potential of the first electrode gets lower than that of the second electrode,

$$R^{2} \longrightarrow R^{3}$$

$$R^{1} \longrightarrow R^{4}$$

$$R^{5} \longrightarrow R^{8}$$

$$R^{6} \longrightarrow R^{7}$$

$$R^{7} \longrightarrow R^{9}$$

wherein R¹ to R⁸ are individually any one of hydrogen and an alkyl group having 1 to 4 carbon atoms, or R¹ and R², R³ and R⁴, R⁵ and R⁶, and R⁷ and R⁸ are individually bonded to from an aromatic ring,

wherein the bond of R^1 and R^2 , the bond of R^3 and R^4 , the bond of R^5 and R^6 , and the bond of R^7 and R^8 are independent of one another.

10. (Withdrawn) A light-emitting element comprising: a first electrode and a second electrode,

a first layer, a second layer and a third layer formed between the first electrode and the second electrode,

wherein the first layer contains an anthracene derivative represented by a general formula (2) and a first substance that shows electron acceptability to the anthracene derivative,

wherein the second layer contains a second substance having electron mobility of 1×10^{-6} cm²/Vs or more and a third substance that shows electron acceptability to the second substance,

wherein the third layer contains a light-emitting substance,

wherein the first layer is provided nearer the first electrode side than the second layer,

wherein the third layer is provided nearer the second electrode side than the second layer, and

wherein the second layer and the third layer emits light when a voltage is applied so that the potential of the first electrode gets lower than that of the second electrode,

$$R^{12}$$

$$R^{11}$$

$$R^{14}$$

$$R^{14}$$

$$R^{15}$$

$$R^{18}$$

$$R^{16}$$

$$R^{17}$$

$$R^{18}$$

$$R^{17}$$

$$R^{18}$$

$$R^{17}$$

$$R^{18}$$

$$R^{17}$$

$$R^{18}$$

$$R^{17}$$

$$R^{18}$$

$$R^{19}$$

$$R$$

wherein R¹¹ to R¹⁸ are individually any one of hydrogen and an alkyl group having 1 to 4 carbon atoms, or R¹¹ and R¹², R¹² and R¹³, R¹⁵ and R¹⁶, and R¹⁶ and R¹⁷ are individually bonded to from an aromatic ring,

wherein the bond of R^{11} and R^{12} , the bond of R^{12} and R^{13} , the bond of R^{15} and R^{16} , and the bond of R^{16} and R^{17} are independent of one another.

11. (Withdrawn) The light-emitting element according to claim 9, wherein the first substance is at least one of metal oxides selected from molybdenum oxide, vanadium oxide, ruthenium oxide, and rhenium oxide, and wherein the third substance is at least one of substances selected from lithium oxide, calcium oxide, natrium oxide, potassium oxide, magnesium oxide, lithium fluoride, cesium fluoride, and calcium fluoride.

- 12. (Withdrawn) The light-emitting element according to claim 10, wherein the first substance is at least one of metal oxides selected from molybdenum oxide, vanadium oxide, ruthenium oxide, and rhenium oxide, and wherein the third substance is at least one of substances selected from lithium oxide, calcium oxide, natrium oxide, potassium oxide, magnesium oxide, lithium fluoride, cesium fluoride, and calcium fluoride.
 - 13. (Withdrawn) A light-emitting element comprising:
 - a first electrode and a second electrode,

a first layer, a second layer and a third layer formed between the first electrode and the second electrode,

wherein the first layer contains an anthracene derivative represented by a general formula (1) and a first substance that shows electron acceptability to the anthracene derivative,

wherein the second layer contains a second substance having electron mobility of 1×10^{-6} cm²/Vs or more and a third substance that shows electron acceptability to the second substance,

wherein the third layer contains an electron-transporting layer, a light-emitting layer, a hole-transporting layer, and a hole-generating layer,

wherein the first layer is provided nearer the first electrode side than the second layer,

wherein the third layer is provided nearer the second electrode side than the second layer, and

wherein the second layer and the electron-transporting layer are in contact with each other,

$$R^{2} \longrightarrow R^{3}$$

$$R^{1} \longrightarrow R^{4}$$

$$R^{5} \longrightarrow R^{8}$$

$$R^{6} \longrightarrow R^{7}$$

$$R^{7} \longrightarrow R^{8}$$

$$R^{6} \longrightarrow R^{7}$$

$$R^{7} \longrightarrow R^{8}$$

$$R^{8} \longrightarrow R^{7}$$

$$R^{8} \longrightarrow R^{7}$$

wherein R¹ to R⁸ are individually any one of hydrogen and an alkyl group having 1 to 4 carbon atoms, or R¹ and R², R³ and R⁴, R⁵ and R⁶, and R⁷ and R⁸ are individually bonded to from an aromatic ring,

wherein the bond of R^1 and R^2 , the bond of R^3 and R^4 , the bond of R^5 and R^6 , and the bond of R^7 and R^8 are independent of one another.

- 14. (Withdrawn) A light-emitting element comprising:
- a first electrode and a second electrode,
- a first layer, a second layer and a third layer formed between the first electrode and the second electrode,

- 14 -

wherein the first layer contains an anthracene derivative represented by a general formula (2) and a first substance that shows electron acceptability to the anthracene derivative,

wherein the second layer contains a second substance having electron mobility of 1×10^{-6} cm²/Vs or more and a third substance that shows electron acceptability to the second substance,

wherein the third layer contains an electron-transporting layer, a light-emitting layer, a hole-transporting layer, and a hole-generating layer,

wherein the first layer is provided nearer the first electrode side than the second layer,

wherein the third layer is provided nearer the second electrode side than the second layer, and

wherein the second layer and the electron-transporting layer are in contact with each other,

$$R^{12}$$

$$R^{13}$$

$$R^{14}$$

$$R^{14}$$

$$R^{15}$$

$$R^{18}$$

$$R^{16}$$

$$R^{17}$$

$$R^{18}$$

$$R^{17}$$

$$R^{18}$$

$$R^{17}$$

$$R^{18}$$

$$R^{17}$$

$$R^{19}$$

$$R^{17}$$

$$R^{19}$$

$$R$$

wherein R¹¹ to R¹⁸ are individually any one of hydrogen and an alkyl group having 1 to 4 carbon atoms, or R¹¹ and R¹², R¹² and R¹³, R¹⁵ and R¹⁶, and R¹⁶ and R¹⁷ are individually bonded to from an aromatic ring,

wherein the bond of R^{11} and R^{12} , the bond of R^{12} and R^{13} , the bond of R^{15} and R^{16} , and the bond of R^{16} and R^{17} are independent of one another.

15. (Withdrawn) The light-emitting element according to claim 13, wherein the first substance is at least one of metal oxides selected from molybdenum oxide, vanadium oxide, ruthenium oxide, and rhenium oxide, and wherein the third substance is at least one of substances selected from lithium oxide, calcium oxide, natrium oxide, potassium oxide, magnesium oxide, lithium fluoride, cesium fluoride, and calcium fluoride.

- 16. (Withdrawn) The light-emitting element according to claim 14, wherein the first substance is at least one of metal oxides selected from molybdenum oxide, vanadium oxide, ruthenium oxide, and rhenium oxide, and wherein the third substance is at least one of substances selected from lithium oxide, calcium oxide, natrium oxide, potassium oxide, magnesium oxide, lithium fluoride, cesium fluoride, and calcium fluoride.
- 17. (Original) The light-emitting device using a light-emitting element according to any one of claims 1 to 16 as a pixel or a light source.
- 18. (Currently Amended) The electronic device using a light-emitting element to any one of claims [[1-16]] 1 to 16 as a display portion.
- 19. (New) The light-emitting element according to claim 5, wherein one of the first electrode and the second electrode includes indium tin oxide or indium tin oxide containing silicon oxide.
- 20. (New) The light-emitting element according to claim 5, wherein one of the first electrode and the second electrode includes aluminum or magnesium.
- 21. (New) The light-emitting element according to claim 5, wherein the first substance is metal oxide.
- 22. (New) The light-emitting element according to claim 5, wherein the third substance is at least one of substances selected from lithium oxide, calcium oxide, natrium oxide, potassium oxide, magnesium oxide, lithium fluoride, cesium fluoride, and calcium fluoride.

- 17 - Application Serial No. 10/579,804 Attorney Docket No. 0756-7698

23. (New) The light-emitting element according to claim 5, wherein the second layer is provided between the first layer and the third layer.