浙江工业大学2019/2020(一)期末试卷《复变函数与积分变换》

《Final Exam for 'Functions of a Complex Variable and Integral Transforms'》

Class:			Name (in Chinese):					Student ID:				
Ple	ase write in	Englisł	n! Good	d luck!								
	Question 1		2 3 4			5	6	7	8	Total		
	Score											
1. (Choose only	one co	rrect a	nswer	to each	questi	on (3	points	each, t	otal 15]	poin	ts)
(1)	If $z = \frac{1}{\sqrt{2}}(1-i)$, then $z^{100} =$									()	
	(A) -i		(B) i		(C) 1		(D)) -1			
(2)	Let $f(t) = te^{iw_0t}$, then $\mathscr{F}[f(t)] =$									()	
	(A) $2\pi\delta'(w-1)$	$-w_0$)	(B) 27	$\tau\delta'(w+1)$	(w_0) (C) 2πίδ'	'(w-w)	(D)	2 <i>πiδ</i> ′($w + w_0$)		
(3)	If $C: z-1 = \frac{1}{2}$ in counterclockwise oriented, then $\oint_C \frac{\cos z}{z^2} dz =$										()
	(A) $2\pi i$		(B) 0		(C) π <i>i</i>		(D)) 1			
(4)	Let $F(s) = \frac{5}{(s+1)^2 + 25}$, then $f(t) = \mathcal{L}^{-1}[F(s)] =$										()
	(A) $e^{-t}\cos 5$	i t	(B) e ⁻	$\sin 5t$	(C) e^t co	s 5 <i>t</i>	(D)	$e^t \sin s$	5 <i>t</i>		
(5)	Which of the followings is not correct?										()
	(A) $\delta(-t) = \delta(t)$					(B) $\mathscr{F}[u(t)] = \frac{1}{w} + \pi \delta(w)$						
	(C) $\mathscr{F}[e^{-at}]$		(D) $\mathscr{F}[sgnt] = \frac{2}{iw}$									
2. Fill in each blank (3 points each, total 30 points)												

- $(1) \quad \sqrt[3]{-2+2i} = \underline{\qquad}.$
- $(2) \lim_{z \to 1+i} \frac{\bar{z}}{z} = \underline{\qquad}.$
- (3) Let C: |z| = 1 in counterclockwise oriented, then when |a| < 1, $\oint_C \frac{\sin z}{(z-a)^2} dz =$ _____; when |a| > 1, $\oint_C \frac{\sin z}{(z-a)^2} dz =$ _____.
- (4) The radius of the convergence of $\sum_{n=0}^{\infty} \frac{n}{2^n} z^n$ is ______.

(5) The Taylor series of $\frac{1}{1+z}$ around z = 0 is _____.

(6) Let
$$f(z) = \frac{z^2}{1+z^2}$$
, then Res $[f(z), -i] =$ _____, Res $[f(z), i] =$ _____.

(7) What kind of isolated singular point of $\frac{\sin z - z}{z^3}$ at z = 0?_____.

What kind of isolated singular point of $f(z) = \frac{\sin z}{z^3}$ at z = 0?_____.

(Please fill in removable singularity, pole and its order, essential singularity, or not isolated singularity).

3. (7 points)

Given a function $v(x, y) = \arctan \frac{y}{x}$ (x > 0), find an analytic function f(z) = u(x, y) + iv(x, y).

4. (4 points each)

Compute Laurent series of function $f(z) = \frac{1}{(z-1)(z-2)}$ in the assigned annulus:

$$(1)\ 0<|z-1|<1$$

(2)
$$1 < |z - 1| < +\infty$$

$$(3)\ 0 < |z - 2| < 1$$

5. (5 points each)

Find Laplace transform of the following f(t):

$$(1) f(t) = e^{-at} \sin kt$$

$$(2) f(t) = t \cos t.$$

6. (6 points each)

Evaluate the following integrals:

$$(1) \int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 2}$$

$$(2) \int_0^{2\pi} \frac{d\theta}{2 + \cos \theta}.$$

7. (**7 points**)

Solve the following differential equation using Laplace transform:

$$y'' + 4y' + 3y = e^{-t}, y(0) = y'(0) = 1.$$

8. (7 points) Suppose that f(z) and g(z) are analytic at z = a and $f(a) \neq 0$. If g(z) has a zero of order 2 at z = a, then prove that $\text{Res}[\frac{f(z)}{g(z)}, a] = \frac{6f'(a)g''(a) - 2f(a)g'''(a)}{3[g''(a)]^2}$.