ЗАДАНИЕ на лабораторные работы №1

Тема: Построение и программная реализация алгоритма полиномиальной интерполяции табличных функций.

Цель работы. Получение навыков построения алгоритма интерполяции таблично заданных функций полиномами Ньютона и Эрмита.

Входные данные

1. Таблица функции и её производных (задается в файле)

X	y(x)	y'(x)	y''(x)
0	-1.000	3.000	0.000
0.2	-0.411	2.842	-1.558
0.4	0.117	2.393	-2.869
0.6	0.532	1.725	-3.728
0.8	0.800	0.942	-3.998
1	0.909	0.168	-3.637
1.2	0.875	-0.475	-2.702
1.4	0.735	-0.884	-1.340
1.6	0.542	-0.997	0.233
1.8	0.357	-0.794	1.770
2	0.243	-0.307	3.027
2.2	0.248	0.385	3.806
2.4	0.404	1.175	3.985
2.6	0.717	1.937	3.534
2.8	1.169	2.551	2.525
3	1.721	2.920	1.118
3.2	2.317	2.986	-0.466
3.4	2.894	2.739	-1.976
3.6	3.394	2.217	-3.175
3.8	3.768	1.503	-3.872
4	3.989	0.709	-3.957
4.2	4.055	-0.039	-3.418

- 2. Степень **n** для аппроксимирующего полинома Ньютона и количество узлов для аппроксимирующего полинома Эрмита.
- 3. Значение аргумента X, для которого выполняется интерполяция.

Выходные данные

Значения у(х) для заданного значения аргумента.

Применить разработанную программу для решения следующих задач

- 1. Получить таблицу значений y(x) для ряда значений степеней полиномов Ньютона и Эрмита, например, n=1, 2, 3, 4 и 5 при фиксированном x. Сравнить результаты при одинаковых **степенях**. полиномов Ньютона и Эрмита.
- 2. Найти корень заданной выше табличной функции с помощью обратной интерполяции обоими полиномами.
- 3. Решить систему нелинейных уравнений, основываясь на простой идее обратной интерполяции.

$$\begin{cases} f(x,y) = e^{0.5x} - \sqrt{\dots} = 0, & (1) \\ \varphi(x,y) = x^2 - \sqrt{\frac{y+\dots}{2}} = 0. & (2) \end{cases}$$

Для реализации указанной идеи необходимо иметь явные зависимости одной переменной от другой. Из неявных функций системы (1), (2) численно получены в табличной форме явные зависимости x(y) и y(x) для области определения переменных, в которой существует единственное решение системы уравнений (таблицы 1,2):

 Таблица 1 (из (1))
 Таблица 2 (из (2))

У	X
0.005	0.137
0.035	0.343
0.055	0.421
0.065	0.454
0.135	0.626
0.155	0.664
0.195	0.731
0.275	0.843
0.315	0.891
0.405	0.985

X	У
0.1	-0.284
0.3	-0.300
0.4	-0.293
0.48	-0.266
0.6	-0.165
0.68	-0.037
0.75	0.128
0.88	0.610
0.95	0.988
1.03	1.547

Используя таблицы 1 и 2 найдите корни системы.

Указание. С помощью интерполяции перестроить приведенные табличные представления функций к новой таблице, в которой содержится зависимость разности функций у(х) из (1) и (2) от фиксированного набора значений аргумента х, например, такого, как во второй таблице, или любого другого из рассматриваемого интервала. Затем применить процедуру обратной интерполяции.

Примерные вопросы при защите лабораторной работы.

- 1. Будет ли работать программа при степени полинома Ньютона n=0?
- 2. Как практически оценить погрешность интерполяции? Почему сложно применить для этих целей теоретическую оценку?
- 3. Если в одной точке заданы значения функции и ее первой, второй и третьей производных, а в другой точке заданы значения функции и ее первой производной, то какова будет степень полинома Эрмита, построенного на этих двух точках?
- 4. Если в одной точке заданы функция и все ее производные, то, что собой представляет полином Эрмита, построенный в этой точке?
- 5. В каком месте алгоритма построения полинома существенна информация об упорядоченности аргумента функции (возрастает, убывает)?
- 6. Что такое выравнивающие переменные и как их применить для повышения точности интерполяции?
- 7. Будет ли работать ваша программа при произвольном неупорядоченном расположении узлов в исходной таблице?

- 8. Принципиально ли для корректной работы вашего алгоритма, чтобы узлы были расположены обязательно по возрастанию?
- 9. Что будет происходить с точностью интерполяции по мере продвижения от центра к краям таблицы?
- 10. Всегда ли можно использовать для обратной интерполяции полином Эрмита?
- 11. Предложите алгоритм получения явной зависимости у(x) из неявной функции f(x,y)=0.

Методика оценки работы.

Модуль 1, срок - 6-я неделя.

- 1. Задание полностью выполнено 9 баллов (минимум).
- 2. В дополнение к п.1 даны исчерпывающие ответы на вопросы при защите работы до 15 баллов (максимум).