The last, the least and the urgent...

A story of three policies

Andres Ferragut

con Diego Goldsztajn y Fernando Paganini

Seminario de Probabilidad y Estadística - Agosto 2025

Outline

Introduction

A crash course on measure valued processes

Partial service queues and Earliest-Deadline-First

Deadline-oblivious policies

Simulations

Final remarks

Outline

Introduction

A crash course on measure valued processes

Partial service queues and Earliest-Deadline-First

Deadline-oblivious policies

Simulations

Final remarks

A bit of history...

- Several queueing systems have service and timing requirements.
- Examples:
 - Computing tasks with real-time constraints.
 - Item delivery problems in logistics.
 - Emergency response.
 - etc. etc. etc.
- This has led to a long and rich history of research about queues with abandonments [Barrer, 1957; Stanford, 1979; Baccelli et al., 1984].

Recent developments...

One of the most used policies is Earliest-Deadline-First (EDF)

• Give priority to tasks with more urgent deadlines.

Recent developments...

One of the most used policies is Earliest-Deadline-First (EDF)

• Give priority to tasks with more urgent deadlines.

Through fluid limits and diffusion approximations, establish performance:

- [Decreusefond and Moyal, 2008] establish EDF fluid limits in the single server case.
- [Kruk et al., 2011] provides diffusion approximations.
- [Moyal, 2013] establish some optimality properties of EDF.
- [Kang and Ramanan, 2010, 2012] analyze the many-server case.
- [Atar et al., 2018, 2023] establish asymptotic performance.

and many others...

Common assumption

Customers renege *only* in the queue, and not during service.

Common assumption

Customers renege *only* in the queue, and not during service.

We call this the call-center scenario:

- Akin to waiting for the customer-help line to pick your call while you listen to annoying music.
- The underlying idea is that when a task reaches service, it will stay until completion.

Key performance metric: number of satisfied tasks (or reneging probability).

Partial service queues

In several queueing systems:

- Tasks may abandon during service.
- More importantly, all service provided may be useful.

We call this setting queues with partial service.

Partial service queues

In several queueing systems:

- Tasks may abandon during service.
- More importantly, all service provided may be useful.

We call this setting queues with partial service.

Some examples:

- Electrical vehicle charging: customers leave the system with a partial charge.
- LLM inference: longer computation times lead to better answers, but these may be interrupted to deliver a quick response.
- File transfers over the Internet, that can be resumed later.

Key points of this talk

- Provide some suitable representation of the state space and dynamics of these partial service queues.
- Analyze several interesting policies under a suitable fluid model.
- Compute the main performance metric here: attained work.
- Last but not least: show that the simple LCFS policy exhibits the same performance than EDF in this setting, without using deadline information.

Outline

Introduction

A crash course on measure valued processes

Partial service queues and Earliest-Deadline-First

Deadline-oblivious policies

Simulations

Final remarks

- Tasks arrive as a Poisson process of intensity λ .
- Each task has a service requirement $S \sim g(\sigma)$.

- Tasks arrive as a Poisson process of intensity λ .
- Each task has a service requirement $S \sim g(\sigma)$.

- Tasks arrive as a Poisson process of intensity λ .
- Each task has a service requirement $S \sim g(\sigma)$.

- Tasks arrive as a Poisson process of intensity λ .
- Each task has a service requirement $S \sim g(\sigma)$.

Consider the simple $M/G/\infty$ queue:

- Tasks arrive as a Poisson process of intensity λ .
- Each task has a service requirement $S \sim g(\sigma)$.

Steady-state

Consider the simple $M/G/\infty$ queue:

- Tasks arrive as a Poisson process of intensity λ .
- Each task has a service requirement $S \sim g(\sigma)$.

State-descriptor:

$$\Phi_t = \sum_i \delta_{\sigma_i(t)}$$

a Point-process on the positive half-line.

$M/G/\infty$, steady state

- $lackbox{\bullet}_t$ is a measure-valued Markov process.
- Its dynamics can be characterized through its generator.
- In steady state:

 $\Phi \sim$ Poisson Process with mean measure $\mu(d\sigma) = \lambda \bar{G}(\sigma) d\sigma$

where \bar{G} is the CCDF of S.

$M/G/\infty$, steady state

- $lackbox{ }\Phi_t$ is a measure-valued Markov process.
- Its dynamics can be characterized through its generator.
- In steady state:

 $\Phi \sim$ Poisson Process with mean measure $\mu(d\sigma) = \lambda \bar{G}(\sigma) d\sigma$

where \bar{G} is the CCDF of S.

Interpretation:

- Write $\mu(d\sigma) = \rho\left[\frac{1}{E[S]}(1-G(\sigma))\right]d\sigma$, with $\rho = \lambda E[S]$.
- Then $\left[\frac{1}{E[S]}(1-G(\sigma))\right]d\sigma$ is the *residual service time distribution* associated to G.
- In steady-state, the total number of customers $\sim \text{Poisson}(\rho)$ and distributed in σ as the residual lifetime distribution.

$M/G/\infty$, fluid approximation.

Suppose that we can replace Φ_t by a general measure μ_t with density $f(\sigma;t)$.

- Mass is transported to the left at rate 1.
- New mass arrives at σ with intensity $\lambda g(\sigma) d\sigma dt$.

We can combine this in the following transport equation:

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial \sigma} + \lambda g(\sigma).$$

$M/G/\infty$, fluid approximation.

Imposing equilibrium and the boundary condition $f(\sigma) \to 0$ as $\sigma \to \infty$ we get:

$$\frac{\partial f}{\partial \sigma} + \lambda g(\sigma) = 0 \Longrightarrow f(\sigma) = \lambda \int_{\sigma}^{\infty} g(u) du = \lambda \bar{G}(\sigma),$$

so the fluid approximation recovers the mean measure of $\boldsymbol{\Phi}.$

$M/G/\infty$, fluid approximation.

Imposing equilibrium and the boundary condition $f(\sigma) \to 0$ as $\sigma \to \infty$ we get:

$$\frac{\partial f}{\partial \sigma} + \lambda g(\sigma) = 0 \Longrightarrow f(\sigma) = \lambda \int_{\sigma}^{\infty} g(u) du = \lambda \bar{G}(\sigma),$$

so the fluid approximation recovers the mean measure of Φ .

- This is a deterministic measure, with total mass ρ ...
- ...distributed in the real line as the residual service distribution.
- Serves as an approximation of Φ in a large scale system $(\lambda \to \infty)$.

Attained service state descriptor

Here is another approach to model the same system [Kang and Ramanan, 2010]:

Attained service state descriptor

Here is another approach to model the same system [Kang and Ramanan, 2010]:

Attained service state descriptor

Here is another approach to model the same system [Kang and Ramanan, 2010]:

Drifts to the right ar rate 1

Attained service state descriptor

Here is another approach to model the same system [Kang and Ramanan, 2010]:

Attained service state descriptor

Here is another approach to model the same system [Kang and Ramanan, 2010]:

Attained service state descriptor

Here is another approach to model the same system [Kang and Ramanan, 2010]:

State-descriptor:

$$\tilde{\Phi}_t = \sum_i \delta_{x_i(t)}$$

a Point-process on the positive half-line, where $x_i(t)$ is the elapsed time in the system

Steady-state

 $ilde{\Phi}_t$ is a measure-valued Markov process.

- Mass always arrive at 0 with rate λdt .
- Transports to the right at rate 1.
- Leaves the system at rate h(x), the hazard rate function:

$$h(x) = \lim_{dt \to 0} P(S \in [x, x + dt] \mid S > x) = \frac{g(x)}{\overline{G}(x)} = -\frac{\partial}{\partial x} \log \overline{G}(x).$$

Steady-state

 $\tilde{\Phi}_t$ is a measure-valued Markov process.

- Mass always arrive at 0 with rate λdt .
- Transports to the right at rate 1.
- Leaves the system at rate h(x), the hazard rate function:

$$h(x) = \lim_{dt \to 0} P(S \in [x, x + dt] \mid S > x) = \frac{g(x)}{\overline{G}(x)} = -\frac{\partial}{\partial x} \log \overline{G}(x).$$

Steady-state:

$$ilde{\Phi}\sim$$
 Poisson Process with mean measure $u(dx)=\lambda ar{G}(x)dx$

So the reversed representation has the same distribution, because in a random point in time the elapsed service and the remaining service have the same distribution.

Fluid approximation.

Suppose that we can replace $\tilde{\Phi}_t$ by a general measure ν_t with density $\tilde{f}(x;t)$.

Fluid approximation.

Suppose that we can replace $\tilde{\Phi}_t$ by a general measure ν_t with density $\tilde{f}(x;t)$.

The corresponding transport equation is (informally):

$$\frac{\partial \tilde{f}}{\partial t} = -\frac{\partial \tilde{f}}{\partial x} - h(x)\tilde{f} + \lambda \delta_0.$$

Imposing equilibrium we get:

$$\frac{\partial \tilde{f}}{\partial x} = -h(x)\tilde{f} + \lambda \delta_0.$$

Solving (in a distribution sense) with the boundary condition $\widetilde{f}(\infty)=0$ we get:

$$\tilde{f}(x) = \lambda e^{-\int_0^x h(u)du}.$$

But by definition $\int_0^x h(u)du = -\log \bar{G}(x)$, and thus:

$$\tilde{f}(x) = \lambda \bar{G}(x)$$

So the transport fluid equation recovers again the mean measure of the steady-state.

Lessons learned

- We can model M/G systems by using two state descriptors:
 - The remaining service Φ .
 - The attained service $\tilde{\Phi}$.
- Both admit reasonable fluid approximations, which correspond to transport equations.
- In fact this has been used in the literature to model abandonments (since they operate as $M/G/\infty$ systems in some sense).

Lessons learned

- We can model M/G systems by using two state descriptors:
 - The remaining service Φ .
 - The attained service $\tilde{\Phi}$.
- Both admit reasonable fluid approximations, which correspond to transport equations.
- In fact this has been used in the literature to model abandonments (since they operate as $M/G/\infty$ systems in some sense).

Question: can we do more using this machinery of measure-valued processes?

Outline

Introduction

A crash course on measure valued processes

Partial service queues and Earliest-Deadline-First

Deadline-oblivious policies

Simulations

Final remarks

Setting

Consider an M/G/C system where:

 Tasks arrive as a Poisson process of intensity λ.

Setting

Consider an M/G/C system where:

- Tasks arrive as a Poisson process of intensity λ.
- Each task i has two characteristics (marks):
 - lacksquare S_i : service time (at rate 1).
 - \blacksquare T_i : sojourn time or deadline.

Setting

Consider an M/G/C system where:

- Tasks arrive as a Poisson process of intensity λ.
- Each task i has two characteristics (marks):
 - lacksquare S_i : service time (at rate 1).
 - \blacksquare T_i : sojourn time or deadline.
- (S_i, T_i) are independent across jobs.
- Follow a common distribution $G(\sigma, \tau)$, possibly correlated.

Definition

Partial service queue

Customers depart whenever S_i is attained or the timer T_i expires.

Definition

Partial service queue

Customers depart whenever S_i is attained or the timer T_i expires.

- In particular, they may leave during service.
- Key performance metrics:
 - \blacksquare S_a : amount of service attained.
 - Equivalently, $S_r := S S_a$, amount of service reneged.

Definition

Partial service queue

Customers depart whenever S_i is attained or the timer T_i expires.

- In particular, they may leave during service.
- Key performance metrics:
 - \blacksquare S_a : amount of service attained.
 - Equivalently, $S_r := S S_a$, amount of service reneged.
- Problem: we have to keep track of remaining service and deadlines simultaneously!

System load

■ Before proceeding, it is useful to define the system load:

$$\rho := \lambda E[\min\{S, T\}].$$

System load

■ Before proceeding, it is useful to define the system load:

$$\rho := \lambda E[\min\{S, T\}].$$

- Interpretation: the mean number of customers on a system with $C = \infty$.
- What we expect in a large scale fluid model:
 - If ρ < C (underload), all tasks can be served, $S_a = \min\{S, T\}$.
 - If $\rho > C$ (overload), demand *curtailing* will occur. How? It depends on the policy...

- Consider the remaining time space.
- Policy defines how tasks are served.
- May depend on any combination of (σ, τ) .

- Consider the remaining time space.
- Policy defines how tasks are served.
- May depend on any combination of (σ, τ) .

- Consider the remaining time space.
- Policy defines how tasks are served.
- May depend on any combination of (σ, τ) .
- State descriptor:

$$\Phi_t = \sum_i \delta_{(\sigma_i(t), \tau_i(t))}$$

Example: Earliest-deadline-first

- Replace Φ_t by a (fluid) measure μ_t .
- Now mass drifts along the field:

$$\mathbf{r}_{\mu}(\sigma, \tau) = \begin{pmatrix} -r_{\mu}(\sigma, \tau) \\ -1 \end{pmatrix}$$

■ With r_{μ} satisfying:

$$0\leqslant r_{\mu}\leqslant 1$$

$$\iint r_{\mu}(\sigma,\tau)\mu(d\sigma,d\tau)\leqslant \min\{\mu(\mathbb{R}^2_{++}),C\}.$$

Weak formulation

We will describe these dynamics in terms of the projections

$$\langle arphi, \mu
angle := \iint arphi(\sigma, au) \, \mu(d\sigma, d au)$$

of the state measure with respect to a test function $\varphi: \mathbb{R}^2_{++} \to \mathbb{R}$, with continuous derivatives and compact support, i.e. $\varphi \in \mathcal{C}^1_c(\mathbb{R}^2_{++})$.

We have:

$$\langle arphi, \mu_{t+dt}
angle = \iint arphi(\sigma - r_{\mu_t} dt, \tau - dt) \, \mu_t(d\sigma, d au) + \lambda dt \iint arphi(\sigma, au) g(\sigma, au) \, d\sigma d au + o(dt).$$

Weak formulation

$$\begin{split} \frac{\partial}{\partial t} \left\langle \varphi, \mu_{t} \right\rangle &= \lim_{dt \to 0} \iint \frac{1}{dt} \left[\varphi(\sigma - r_{\mu_{t}} dt, \tau - dt) - \varphi(\sigma, \tau) \right] \mu_{t}(d\sigma, d\tau) \\ &+ \lambda \iint \varphi(\sigma, \tau) g(\sigma, \tau) d\sigma d\tau \\ &= - \iint \left[r_{\mu_{t}}(\sigma, \tau) \varphi_{\sigma}(\sigma, \tau) + \varphi_{\tau}(\sigma, \tau) \right] \mu_{t}(d\sigma, d\tau) + \lambda \iint \varphi(\sigma, \tau) g(\sigma, \tau) d\sigma d\tau, \end{split}$$

Weak formulation

Equivalently:

$$\langle \varphi, \mu_t \rangle = \langle \varphi, \mu_0 \rangle + \int_0^t \left[-\iint \left[r_{\mu_s}(\sigma, \tau) \varphi_{\sigma}(\sigma, \tau) + \varphi_{\tau}(\sigma, \tau) \right] \mu_t(d\sigma, d\tau) \right] + \lambda \iint \varphi(\sigma, \tau) g(\sigma, \tau) d\sigma d\tau d\tau$$

for any $\varphi \in \mathcal{C}^1_c(\mathbb{R}^2_{++})$.

Weak formulation

Equivalently:

$$\langle \varphi, \mu_t \rangle = \langle \varphi, \mu_0 \rangle + \int_0^t \left[-\iint \left[r_{\mu_s}(\sigma, \tau) \varphi_{\sigma}(\sigma, \tau) + \varphi_{\tau}(\sigma, \tau) \right] \mu_t(d\sigma, d\tau) \right] + \lambda \iint \varphi(\sigma, \tau) g(\sigma, \tau) d\sigma d\tau d\tau$$

for any $\varphi \in \mathcal{C}^1_c(\mathbb{R}^2_{++})$.

Looks daunting, but is not that bad...

Transport PDE

If μ_t admits a density $f(\sigma, \tau; t)$ with respect to the Lebesgue measure, it corresponds to:

$$\frac{\partial f}{\partial t} + \nabla \cdot [\mathbf{r}_{\mu_t} f] = \lambda g$$

a transport equation.

Transport PDE

If μ_t admits a density $f(\sigma, \tau; t)$ with respect to the Lebesgue measure, it corresponds to:

$$\frac{\partial f}{\partial t} + \nabla \cdot [\mathbf{r}_{\mu_t} f] = \lambda g$$

a transport equation.

Example: EDF

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial \sigma} \mathbf{1}_{\{\tau < \tau_{\mu_t}\}} + \frac{\partial f}{\partial \tau} + \lambda \mathbf{g}$$

EDF Fluid model equilibrium

Imposing equilibrium we get:

- $au_{\mu^*} = au^*$ becomes a constant.
- The measure μ^* must satisfy:

$$\frac{\partial f}{\partial \sigma} \mathbf{1}_{\{\tau < \tau^*\}} + \frac{\partial f}{\partial \tau} + \lambda g = 0.$$

■ Linear PDE that can be easily solved by the method of characteristics.

Solving the EDF transport equation

EDF in overload

Fluid model equilibrium

Theorem

Assume that $\rho > C$ and the equation

$$\lambda E[\min\{S, T, \tau^*\}] = C$$

has a unique solution $\tau^* > 0$. Consider the measure μ^* given by the following density:

$$f(\sigma,\tau) = \lambda \left[\int_0^{(\tau^*-\tau)^+} g(\sigma+u,\tau+u) du + \int_{(\tau^*-\tau)^+}^{\infty} g\left(\sigma+(\tau^*-\tau)^+,\tau+u\right) du \right].$$

This measure is a fluid equilibrium for the EDF policy, and

$$\tau^* = \sup \{ \tau \ge 0 : \mu^*(\mathbb{R}_{++} \times (0, \tau]) \le C \}.$$

EDF performance in equilibrium

- Let us compute the rate at which work is reneged.
- Compute the rate at which mass exits with $S_r < \sigma_0$.

Proposition

$$\int_0^{ au^*} f(0, au) d au + \int_0^{\sigma_0} f(\sigma,0) d\sigma = \lambda P\left(S - \min\left\{S,T, au^*
ight\} < \sigma_0
ight).$$

i.e.
$$S_a = S - S_r = \min\{S, T, \tau^*\}.$$

Outline

Introduction

A crash course on measure valued processes

Partial service queues and Earliest-Deadline-First

Deadline-oblivious policies

Simulations

Final remarks

What if we do not know the deadlines?

- Deadlines are often hard to estimate in practice.
- Moreover, tasks may under-report their deadline to get priority!
- What about deadline-oblivious policies?
 - Can we model them?
 - What is their performance?

What if we do not know the deadlines?

- Deadlines are often hard to estimate in practice.
- Moreover, tasks may under-report their deadline to get priority!
- What about deadline-oblivious policies?
 - Can we model them?
 - What is their performance?

Problem: we need a new state-space...

- Consider the elapsed time space.
- Policy again defines how tasks are served.
- May depend on any combination of (x, y).

- Consider the elapsed time space.
- Policy again defines how tasks are served.
- May depend on any combination of (x, y).

- Consider the elapsed time space.
- Policy again defines how tasks are served.
- May depend on any combination of (x, y).
- State descriptor:

$$\tilde{\Phi}_t = \sum_i \delta_{(x_i(t), y_i(t))}$$

Example: Least-Attained-Service policy

- Serve the *C* least-served tasks.
- Corresponds to taking:

$$r_{\tilde{\Phi}}(x,y) = \mathbf{1}_{\{x \leqslant x_{\tilde{\Phi}}\}}$$

with

$$x_{\tilde{\Phi}} := \sup\{x : \tilde{\Phi}([0,x] \times \mathbb{R}_+) \leqslant C\}.$$

Example: Last-Come-First-Served policy

The hazard rate field

We have a new problem: what is the rate at which users leave the system?

The hazard rate field

We have a new problem: what is the rate at which users leave the system?

Let $\bar{G}(x, y) = P(S > x, T > y)$ and define:

Definition (Hazard rate field)

$$\mathbf{h}(x, y) = -\nabla \log \bar{G}(x, y)$$
 i.e.

- $h^{x}(x, y) = P(S \in [x, x + dx], T > S \mid S > x, T > y)$
- $h^{y}(x, y) = P(T \in [y, y + dy], S > T \mid S > x, T > y)$

Interpretation: **h** stores the rate at which $\min\{S, T\}$ is attained due to S or T expiring.

Fluid model dynamics

- Replace $\tilde{\Phi}_t$ by a (fluid) measure ν_t .
- Now mass arrives at (0,0) at rate λ .
- Drifts along the field:

$$\mathbf{r}_{\nu}(x,y) = \begin{pmatrix} r_{\nu}(x,y) \\ 1 \end{pmatrix}$$

• With r_{ν} satisfying:

$$0 \leqslant r_{\nu} \leqslant 1$$

$$\iint r_{\nu}(x, y)\nu(dx, dy) \leqslant \min\{\nu(\mathbb{R}^{2}_{+}), C\}.$$

Departure rate

Now we have to compute the departure rate $\eta_{\nu}(x, y)$:

$$\eta_{\nu}(x,y) := \lim_{dt \to 0} \frac{1}{dt} P\left(\left\{S \in \left(x, x + r_{\tilde{\Phi}} dt\right)\right\} \cup \left\{T \in \left(y, y + dt\right)\right\} \mid S > x, T > y\right)$$

By the chain rule and some computations:

$$\eta_{
u}(x,y) = rac{1}{ar{G}(x,y)} \left[-rac{\partial}{\partial x} ar{G}(x,y) r_{\tilde{\Phi}}(x,y) - rac{\partial}{\partial y} ar{G}(x,y)
ight]$$

Departure rate

Now we have to compute the departure rate $\eta_{\nu}(x, y)$:

$$\eta_{\nu}(x,y) := \lim_{dt \to 0} \frac{1}{dt} P\left(\left\{S \in \left(x, x + r_{\tilde{\Phi}} dt\right)\right\} \cup \left\{T \in \left(y, y + dt\right)\right\} \mid S > x, T > y\right)$$

By the chain rule and some computations:

$$\eta_{\nu}(x,y) = \frac{1}{\bar{G}(x,y)} \left[-\frac{\partial}{\partial x} \bar{G}(x,y) r_{\tilde{\Phi}}(x,y) - \frac{\partial}{\partial y} \bar{G}(x,y) \right]$$

Therefore:

$$\eta_{\nu}(x,y) = h^{x}(x,y)r_{\nu}(x,y) + h^{y}(x,y) = \mathbf{r}_{\nu}(x,y) \cdot \mathbf{h}(x,y).$$

Attained service transport equation

- We now have all ingredients to formulate the dynamics of the system.
- The transport equation in the elapsed service space is (informally):

$$rac{\partial ar{f}}{\partial t} +
abla \cdot \left[\mathbf{r}_{
u_t} ar{f}
ight] + \left[\mathbf{r}_{
u_t} \cdot \mathbf{h}
ight] ar{f} = \lambda \delta_{(0,0)}.$$

where \tilde{f} is the density of ν_t .

Attained service transport equation

- We now have all ingredients to formulate the dynamics of the system.
- The transport equation in the elapsed service space is (informally):

$$rac{\partial ar{f}}{\partial t} +
abla \cdot \left[\mathbf{r}_{
u_t} ar{f}
ight] + \left[\mathbf{r}_{
u_t} \cdot \mathbf{h}
ight] ar{f} = \lambda \delta_{(0,0)}.$$

where \tilde{f} is the density of ν_t .

- The above equation must be treated in weak form:
 - To account for the impulse mass at (0,0) driving the system.
 - To allow solutions without a density as we shall see.

Last come first served

Fluid equilibrium

Recall that LCFS can be modeled by:

$$r_{\nu}(x,y) = \mathbf{1}_{\{y < y_{\nu}\}}$$

with

$$y_{\nu} = \sup \left\{ y \geq 0 : \nu(\mathbb{R}_+ \times [0, y]) \leqslant C \right\}.$$

Last come first served

Fluid equilibrium

Recall that LCFS can be modeled by:

$$r_{\nu}(x,y) = \mathbf{1}_{\{y < y_{\nu}\}}$$

with

$$y_{\nu} = \sup \left\{ y \geq 0 : \nu(\mathbb{R}_+ \times [0, y]) \leqslant C \right\}.$$

Imposing equilibrium, ν^* , y^* fixed, we have to solve:

$$\nabla \cdot \left[\mathbf{r}_{\nu^*} \bar{f} \right] + \left[\mathbf{r}_{\nu^*} \cdot \mathbf{h} \right] \bar{f} = \lambda \delta_{(0,0)}.$$

Deadline-oblivious policies in overload

Theorem

Assume that $\rho > C$ and the equation

$$\lambda E[\min\{S, T, z^*\}] = C$$

has a unique solution $z^* > 0$. Consider the measure ν^* given by:

$$\langle \varphi, \nu^* \rangle = \lambda \left[\int_0^{z^*} \varphi(u, u) \bar{G}(u, u) du + \int_{z^*}^{\infty} \varphi(z^*, u) \bar{G}(z^*, u) du \right],$$

for all $\varphi \in C_c(\mathbb{R}^2_+)$. Then this measure is the equilibrium measure for both the Least-Attained-Service and Last-Come-First-Served policies.

LAS/LCFS performance in equilibrium

Compute the rate at which mass leaves the system with less than x_0 attained service:

$$\iint_{[0,x_0] imes \mathbb{R}_+} \eta_{
u^*}(x,y)
u^*(dx,dy).$$

LAS/LCFS performance in equilibrium

Compute the rate at which mass leaves the system with less than x_0 attained service:

$$\iint_{[0,x_0]\times\mathbb{R}_+} \eta_{\nu^*}(x,y) \nu^*(dx,dy).$$

Proposition

Assume that $\rho > C$. Then

$$\int_{[0,x_0]\times\mathbb{R}_+} \left[h^x(x,y) \mathbf{1}_{\{y < z^*\}} + h^y(x,y) \right] \nu^*(dx,dy) = \lambda P\left(\min\{S,T,z^*\} \leqslant x_0 \right).$$

So again the attained work is $S_a = \min\{S, T, z^*\}!!$

Graphical explanation

Since $\tau^* = x^* = y^* = z^*$, performance is the same in all three policies!!!

Outline

Introduction

A crash course on measure valued processes

Partial service queues and Earliest-Deadline-First

Deadline-oblivious policies

Simulations

Final remarks

Simulations with correlated *S* and *T*

- We finally validate our fluid approximation by stochastic simulations
- In order to account for correlations, we take:

$$S = e^U$$
 and $T = e^V$ with $(U,V) \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}\right)$.

- In particular, the random variables *U* and *V* are correlated with normal distributions, and therefore *S* and *T* are correlated with log-normal distributions.
- In this case, $E[\min\{S, T\}] \approx 1.37$ can only be numerically estimated.
- We choose $\lambda = 200$ and C = 100, then $z^* \approx 0.593$.

State space snapshots

Blue dots are in service, red dots are not in service.

Stochastic threshold evolution

Attained work empirical CDF

Comparison with FIFO

Outline

Introduction

A crash course on measure valued processes

Partial service queues and Earliest-Deadline-First

Deadline-oblivious policies

Simulations

Final remarks

Messages from the talk

- Measure-valued processes are a powerful tool to model general service queues.
- Partial service queues require two-dimensional measures.
- Our proposed dynamics for fluid models are tractable and approximate the real system.
- Last-but-not-least: in this setting, deadline-oblivious policies can be used without performance penalty!

Future work

- Analyze further policies using these tools (FCFS is easy for instance).
- Establish process-level convergence to the fluid models (long work...help needed...)
- Devise new policies and/or analyze different settings:
 - Tasks stay until service completion, but we want to measure the average *tardiness*, i.e. how late they depart.

Gracias!

Andres Ferragut ferragut@ort.edu.uy https://aferragu.github.io

References I

- R. Atar, A. Biswas, and H. Kaspi. Law of large numbers for the many-server earliest-deadline-first queue. *Stochastic Processes and their Applications*, 128(7):2270–2296, 2018.
- R. Atar, W. Kang, H. Kaspi, and K. Ramanan. Long-time limit of nonlinearly coupled measure-valued equations that model many-server queues with reneging. *SIAM Journal on Mathematical Analysis*, 55(6):7189–7239, 2023.
- F. Baccelli, P. Boyer, and G. Hebuterne. Single-server queues with impatient customers. *Advances in Applied Probability*, 16(4):887–905, 1984.
- D. Barrer. Queuing with impatient customers and ordered service. *Operations Research*, 5(5): 650-656, 1957.
- L. Decreusefond and P. Moyal. Fluid limit of a heavily loaded EDF queue with impatient customers. *Markov Processes and Related Fields*, 14(1):131–158, 2008.
- W. Kang and K. Ramanan. Fluid limits of many-server queues with reneging. *Annals of Applied Probabability*, 20(6):2204–2260, Dec. 2010.

References II

- W. Kang and K. Ramanan. Asymptotic approximations for stationary distributions of many-server queues with abandonment. *Annals of Applied Probabability*, 22(2):477–521, Apr. 2012.
- Ł. Kruk, J. Lehoczky, K. Ramanan, and S. Shreve. Heavy traffic analysis for EDF queues with reneging. *Annals of Applied Probability*, 21(2):484–545, 2011.
- P. Moyal. On queues with impatience: stability, and the optimality of earliest deadline first. *Queueing Systems*, 75:211–242, 2013.
- R. E. Stanford. Reneging phenomena in single channel queues. *Mathematics of Operations Research*, 4(2):162–178, 1979.