RNN Introduction

講者:Isaac

Outline

- Word2vect
- ▶ RNN Introduction
- ▶ LSTM/GRU Cell

Word2vect

Can machine understand the meaning of words?

"Dog" is close to "Cat"

"Love" is close to "Hate"

"Korea" is close to "America"

What happen if

we let machine read a lot of articles and use one hot encoding on each word

Drawbacks

- 1. Dog is not close to Cat
 - machine can not understand the meaning of word
- 2. Waste a lot of entity
 - most of entity are zero
 - dimension of vector = vocabulary size (very large)

This is why we need better representation of words

- We will introduce two method in this course
 - Skip-Gram
 - **CBOW**

Transform many sentences into training pairs

Transform to one hot encoding (the, quick) quick

of hidden node is less than input node

of input/output node = # of vocabulary

Note that there is no activation function on hidden layer

The quick brown fox jumps over the lazy dog

Assume vocabulary = 10000

Small example

CBOW

The quick brown fox jumps over the lazy dog

Skip-Gram V.S. CBOW

Cost function in Word2vect

Softmax function

- Computation expensive
- Use sampled version of softmax function

$$\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}} \quad \text{for } j = 1, ..., K. \qquad K = \text{number of vocabulary (very large)}$$

Cost function in Word2vect

Origin method

Sampled method (randomly select to ignore)

Perplexity

A measurement of how well a probability distribution predict a sample

$$2^{H(p)} = 2^{-\sum_{x} p(x) \log_2 p(x)}$$

RNN Introduction

Why RNN?

- Position of words is important
- Slightly change a word may change meaning of whole sentence

Why RNN?

Lack of sequence concept in ordinary NN

I will **leave** Taiwan on January

I will arrive Taiwan on January

Taiwan

Why RNN?

This type of structure contain sequence concept

Memory in RNN

$$s_t = f(Ux_t + Ws_{t-1})$$

 $o_t = \operatorname{softmax}(V s_t)$.

Input Xt can be as following:

I love you

I love you

I love you

<u>I love you</u> (word based)

Etc

RNN

- We would like our computer to read a novel
 - One common solution is feed data into RNN character by character
 - Also called character-level language model

hello, I am Isaac

Character-level Language Model

Character-level Language Model

Character-level Language Model

 After training, RNN can learn relationship of characters and even generate it

PANDARUS: Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death,

Second Senator:

I should not sleep.

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA:

I'll drink it.

Different Type of RNN Application

Good/Bad?

It is good

Movie Review (positive/negative)

Many to one

I love you

我爱你

Language translation

Many to many

Different Type of RNN Structure

Go Deep in RNN

Error surface in RNN

Very flat or very steep on error surface in practice

Learning RNN

BPTT

backpropagation through time (BPTT)

BPTT

backpropagation through time (BPTT)

BPTT

48

Some problem in BPTT

- Inefficiency on propagation under long time step RNN structure
 - Truncated BPTT
- Gradient vanish/exploding problem
 - Main reason why RNN fail in early day
 - New kind of RNN cell

Truncated BPTT

Truncated backpropagation

Gradient Vanish/Exploding problem

$$\frac{\partial C_t}{\partial h_1} = \frac{\partial C_t}{\partial y_t} * \frac{\partial y_t}{\partial h_t} * \frac{\partial h_t}{\partial h_{t-1}} * \frac{\partial h_{t-1}}{\partial h_{t-2}} * \cdots * \frac{\partial h_3}{\partial h_2} * \frac{\partial h_2}{\partial h_1}$$

- If very big (gradient exploding)
 - Clip the value

Gradient Vanish/Exploding problem

$$\frac{\partial C_t}{\partial h_1} = \frac{\partial C_t}{\partial y_t} * \frac{\partial y_t}{\partial h_t} * \frac{\partial h_t}{\partial h_{t-1}} * \frac{\partial h_{t-1}}{\partial h_{t-2}} * \cdots * \frac{\partial h_3}{\partial h_2} * \frac{\partial h_2}{\partial h_1}$$

- If very small (gradient vanish)
 - need $\frac{\partial h_n}{\partial h_{n-1}}$ to be constant

Gradient Vanish/Exploding problem

How to avoid $\frac{\partial h_n}{\partial h_{n-1}}$ too small?

If two hidden state is recursive

$$h_n = h_{n-1} + \dots$$

$$\frac{\partial C_t}{\partial h_1} = \frac{\partial C_t}{\partial y_t} * \frac{\partial y_t}{\partial h_t} * \frac{\partial h_t}{\partial h_{t-1}} * \frac{\partial h_{t-1}}{\partial h_{t-2}} * \cdots * \frac{\partial h_3}{\partial h_2} * \frac{\partial h_2}{\partial h_1}$$

LSTM/GRU Cell

Recall RNN Cell

RNN Cell

LSTM Cell

LSTM

$$egin{aligned} i_t &= \sigma(W_i h_{t-1} + U_i x_t + b_i) \ o_t &= \sigma(W_o h_{t-1} + U_o x_t + b_o) \ f_t &= \sigma(W_f h_{t-1} + U_f x_t + b_f) \end{aligned}$$

$$ilde{c_t} = \phi(Wh_{t-1} + Ux_t + b) \ c_t = f_t \odot c_{t-1} + i_t \odot ilde{c}_t$$

$$h_t = o_t \odot \phi(c_t)$$

 $\operatorname{rnn}_{out} = h_t$

LSTM

$$i_t = \sigma(W_i h_{t-1} + U_i x_t + b_i)$$

 $o_t = \sigma(W_o h_{t-1} + U_o x_t + b_o)$
 $f_t = \sigma(W_f h_{t-1} + U_f x_t + b_f)$

$$egin{aligned} ilde{c}_t &= \overline{\phi}(Wh_{t-1} + Ux_t + b) \ c_t &= f_t \odot c_{t-1} + i_t \odot ilde{c}_t \end{aligned}$$

$$h_t = o_t \odot \phi(c_t)$$

 $\operatorname{rnn}_{out} = h_t$

LSTM Structure

LSTM

$$i_t = \sigma(W_i h_{t-1} + U_i x_t + b_i)$$
 $o_t = \sigma(W_o h_{t-1} + U_o x_t + b_o)$
 $f_t = \sigma(W_f h_{t-1} + U_f x_t + b_f)$

$$ilde{c_t} = \phi(Wh_{t-1} + Ux_t + b) \ c_t = f_t \odot c_{t-1} + i_t \odot ilde{c}_t$$

$$h_t = o_t \odot \phi(c_t)$$

 $\operatorname{rnn}_{out} = h_t$

Varient LSTM

GRU

input gate, forget gate, and output gate are replaced by update gate and reset gate

$$r_t = \sigma(W_r s_{t-1} + U_r x_t + b_r)$$

 $z_t = \sigma(W_z s_{t-1} + U_z x_t + b_z)$

$$\tilde{s_t} = \phi(W(r_t \odot s_{t-1}) + Ux_t + b)$$

$$s_t = z_t \odot s_{t-1} + (1 - z_t) \odot \tilde{s}_t$$

Variant LSTM

- ▶ There are more.....
- What kind of LSTM is the best?

This is a cat **Image Caption** GRU/LSTM cell One to many

Good/Bad?

It is good

GRU/LSTM cell

Movie Review (positive/negative)

Many to one

I love you

GRU/LSTM cell

Language translation

Many to many

我爱你

Summary

- Build your RNN model
 - Observe your application which kind of RNN is suitable
 - Many to one, many to many,
- Use LSTM/GRU cell now
 - Perform better than traditional RNN