

Office of Naval Research

Contract N00014-87-K-0738

Task No. 431a020

Technical Report No. 1

PREPARATION AND MECHANISM OF FORMATION
OF SPHERICAL SUBMICRON Zns POWDERS

by

Ahmet Celikkaya and Mufit Akinc

Prepared for Publication in the

Journal of Colloid and Interface Science

Iowa State University

Department of Materials Science and Engineering

Ames, Iowa 50011

June 24, 1988

Production in whole or in part is permitted for any purpose of the United States of Government

*This document has been approved for public release and sale; its distribution is unlimited

REPORT DOCUMENTATION PAGE						
1a. REPORT SECURITY CLASSIFICATION	16. RESTRICTIVE MARKINGS					
Unclassified 2a. SECURITY CLASSIFICATION AUTHORITY	3 DISTRIBUTION/AVAILABILITY OF REPORT					
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE			or public re			
		Distribution	on unlimited			
4 PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION RE	PORT NUMB	ER(S)	
#1	N00014-87-K-0738					
6a. NAME OF PERFORMING ORGANIZATION	6b OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION Office of Naval Research				
Iowa State University Mufit Akinc		Dr. R. Schwartz				
6c. ADDRESS (City, State, and ZIP Code)	7b. ADDRESS (City, State, and ZIP Code) Code 38504 Naval Weapons Center China Lake, CA 93555-6001					
8a. NAME OF FUNDING SPONSORING ORGANIZATION	8b OFFICE SYMBOL (If applicable)		I INSTRUMENT IDE		NUMBER	
8c. ADDRESS (City, State, and ZIP Code)	I	10 SOURCE OF F	UNDING NUMBER	5		
		PROGRAM ELEMENT NO.	PROJECT NO	TASK NO.	WORK UNIT NO 4312020	
11. TITLE (Include Security Classification)		L	l			
Preparation and Mechanism of Formation of Spherical Submicron ZnS Powders						
12. PERSONAL AUTHOR(\$)						
Ahmet Celikkaya and Mufit Akin						
13a. TYPE OF REPORT 13b. TIME CO Technical FROM	4 DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 25					
16. SUPPLEMENTARY NOTATION						
Submitted to Journal of Colloi	id and Interface	Science				
17 COSATI CODES	18. SUBJECT TERMS (C	continue on reverse	e if necessary and	identify by	block number)	
FIELD GROUP SUB-GROUP						
	-	•				
19. ABSTRACT (Continue on reverse if necessary	and identify by block n	umber)				
	÷					
			_			
			•		•	
		•				
	÷					
·						
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS F	21 ABSTRACT SECURITY CLASSIFICATION					
228 NAME OF RESPONSIBLE INDIVIOUAL	226 TELEPHONE (Include Area Code	22c OFFIC	E SYMBOL		
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted						

83 APR edition may be used until exhauste All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAG

SERVICE TO SERVICE

SALANIA SALA

PREPARATION AND MECHANISM OF FORMATION OF SPHERICAL SUBMICRON Zns POWDERS

Ahmet Celikkaya

and

Mufit Akinc

Department of Materials Science and Engineering

Iowa State University, Ames, IA 50011

July, 1988

This manuscript is prepared to be submitted to Journal of Colloid and Interface Science.

ABSTRACT

Spherical, submicron particles of zinc sulfide were homogeneously precipitated by thermal decomposition of thioacetamide in acidic aqueous solutions. Rate of sulfide ion generation, determined by various combinations of temperature, pH, and initial concentrations of zinc ions and of thioacetamide, as related to particle growth rate had the paramount effect on the particle size distribution.

Monosized, bimodal or narrow size distribution powders were obtained under certain combinations of experimental variables.

Particles were found to be porous agglomerates of 10 nm sphalerite crystallites. Particle growth was determined to proceed through diffusion-controlled aggregation of crystallites. Kaywor (SI) Thioacetamical process of the support of the same of the same

Acce	ssion For	
NTIS	15420	
DIIC	T. ··	
Uneil	Carlotti (file	
Just	ilia de con	
		4
By		
	: 15:04 say	
Ava	the other concepts	
	(Average)	
Pist	1 2 0	:
		-
1		j
H-1		1
<u> </u>	J	- 1

INTRODUCTION

Princ sulfide is an attractive infrared window material as it possesses good IR transmittance in the 8-12 μm range as well as high melting temperature. When a polycrystalline material is used for applications such as this, a uniform final microstructure is Although starting powders consisting of spherical, submicron particles are normally considered desirable, there is no general agreement as to whether particle assemblies with a narrow or a wide size distribution are more preferable for achieving a theoretically dense uniform microstructure. It is well known that random packing of particles with a size distribution yields denser green compacts than do monosize particles. On the other hand, monosize powder assemblies are believed to sinter more uniformly and so result in a more uniform sintered microstructure. Ability to control precipitation variables in order to yield reproducible ceramic powders with spherical, submicron particles having a specific type of particle size distribution in sufficient quantities is a prerequisite to the understanding of variables that influence packing efficiency and uniformity of initial and final microstructure.

Zinc sulfide has long been prepared by a variety of methods, including gas phase, solid/vapor and aqueous solution reactions (1-5). Chiu (3) was the first to prepare monosized, spherical particles of sulfides of several metals including zinc. His procedure involved complexing zinc ions with EDTA followed by precipitation by bubbling $\rm H_2S$ gas through the solution. A mean particle diameter of 0.2 μm was obtained employing very low zinc

ion concentrations (<10⁻³M). Later, Wilhelmy and Matijevic (4) employed thermal decomposition of thioacetamide (TAA) to prepare micron-sized spherical particles by aging the reaction mixture several hours using a two step procedure. Williams et al. (5) employed the same technique to prepare monosized, spherical particles of ZnS about 3 µm in diameter. In this case, however, the critical nuclei appeared as faceted single crystals rather than the spherical, submicron "seeds" observed by Wilhelmy and Matijevic, and the resulting powder was a mixture of sphalerite (cubic) and wurtzite (hexagonal) phases.

The main objective of this work was to investigate the influence of experimental variables on the morphology of the ZnS particles produced by thioacetamide decomposition and to understand the mechanism of particle formation.

EXPERIMENTAL

- A. Materials: Reagent grade TAA (99% pure) was supplied by Aldrich Chemical Co. All other chemicals, used in this study were Fisher Reagent grade and were used without further purification.
- Precipitation: A stock solution of zinc ions was prepared by dissolving Zn(NO₃)₂•6H₂O in deionized water and then filtering through 0.1 µm cellulose nitrate membrane filters to give a final zinc ion concentration of 1.56 M. An 8.3 mL aliquot of this stock was transferred into a beaker and nitric acid solution (0.1 N or 0.01 N) was added to bring the total volume slightly less than 250 mL. The solution was heated to reaction temperature, the desired amount of thioacetamide was added and final volume was brought to 250 mL. The beaker was then immersed in a water bath at the set reaction temperature. After a certain period of aging, a bluish tint in the solution was judged to indicate the onset of precipitation. The time interval necessary to induce the change in the solution color was recorded. Thirty milliliter aliquots were collected and quenched to 15°C periodically after precipitation had started. A number of combinations of experimental variables were investigated: Aging temperature of 60, 70, and 80°C were employed. Initial thioacetamide concentrations were varied to give $[TAA]_{\circ}/[Zn]_{\circ}$ ratios of 4, 8 and 16 for pH = 1 and pH = 2. Initial zinc ion concentration [Zn] was held constant at 0.05 M in all experiments.

C. Characterization: The change of particle size distribution over time was determined by a centifugal particle size analyzer using a portion of 30 mL aliquots collected at various times during the aging process. The remainder of the aliquot was centrifuged at 5000 rpm for 30 min. and the recovered precipitate was washed once with deionized water and once with acetone. A drop of suspension in acetone was placed on an aluminum foil and dried are observation of morphology by SEM. Selected area electron diffraction patterns were obtained to determine structure of individual particles. X-ray diffraction spectra of the powders were also obtained to determine crystallite sizes and phase purity of the powders. Specific surface areas of the powders were determined by a single point BET method using a N2-He gas mixture.

RESULTS AND DISCUSSION

A. Determination of critical supersaturation:

Homogeneous precipitation of zinc sulfide by thermal decomposition of thioacetamide in acidic (pH < 3) aqueous solutions proceeds as follows:

$$CH_3C(S)NH_2 \xrightarrow{H_3O^+} CH_3C(O)NH_2 + H_2S$$
 (1)

$$H_2S \stackrel{\longrightarrow}{\longleftrightarrow} HS^- + H_30^+ \qquad K_1 = [HS^-][H_30^+]/[H_2S]$$
 (2)

$$HS^{-} \stackrel{\longrightarrow}{\longleftarrow} S^{-} + H_{3}O^{+} \qquad K_{2} = [S^{-}][H_{3}O^{+}]/[HS^{-}] \qquad (3)$$

Swift and Butler (6) had studied the kinetics of TAA decomposition, the rate determining step, and found a rate expression of

$$-\frac{d[TAA]}{dt} = k[H_30^+][TAA]$$
 (4)

For the rate constant, k, an Arrhenius type expression was found with a pre-exponential factor of $6.58 \times 10^{11} \text{ L.mole}^{-1}.\text{min}^{-1}$ and an activation energy of $79.87 \text{ kJ.mole}^{-1}$. The total concentration of sulfide species at time t can then be found by recognizing that $[TAA]_{\circ}-[TAA]_{t}=[S]_{total}=[H_{2}S]+[HS^{-}]+[S^{-}]$ and integrating equation (4) from t = 0 to t = t to give:

$$[TAA]_{o} (1 - exp (-k[H30+]t)) = [H2S] + [HS-] + [S=] (5)$$

Combining equation (5) with (2) and (3) yields:

$$[TAA]_{\circ} (1-exp(-k[H_30^+]t)) = \frac{[H_30^+]^2[S^-]}{K_1K_2} + \frac{[H_30^+][S^-]}{K_2} + [S^-] (6)$$

or, equivalently stated

$$[S^{-}] = \frac{[TAA]_{o} (1-exp(-k[H_{3}0^{+}]t))}{[H_{3}0^{+}]^{2}/K_{1}K_{2} + [H_{3}0^{+}]/K_{2} + 1}$$
(7)

Accurate thermodynamic data are available in the literature for the dissociation reactions of H_2S and the formation of aqueous sulfide species at room temperature (7). Assuming that ΔH° and ΔS° are constant over the temperature range studied, values of K_1 , K_2 and solubility product K_{sp} for zinc sulfide at any temperature can easily be calculated. Expressions for these constants were calculated to be:

$$K_{1,T} = 8.71 \times 10^{-4} \exp (-5404.80/RT)$$
 (8)

$$K_{2,T}$$
 5919.46 exp (-24195.56/RT) (9)

$$K_{sp,T} = 2.30 \times 10^{-10} \exp(-17575.45/RT)$$
 (10)

where R is the gas constant in Joules per mole per degree Kelvin.

Using this information, the relative supersaturation at any time t,
which is defined as

$$S' = \frac{\left[Zn^{2+} \right]_{\epsilon} \left[S^{-} \right]_{\epsilon}}{K_{sp}}$$
 (11)

can be calculated for any combination of T, pH and initial concentrations of TAA and zinc ions. Figure 1 shows the variation of S with time for various combinations of experimental parameters, assuming that no precipitation occurs. Also indicated on these curves are the times at which precipitation started with corresponding values of critical supersaturation for that particular combination of experimental variables. The value of critical supersaturation for nucleation remained more or less constant around 8.5 in each case. This value of critical supersaturation found is an order of magnitude less than what Williams et al. (5) report. The difference arises mainly due to differences in the K_{sp} values used. Williams et al. used a K_{sp} of $4.8 \times 10^{-2.3}$ at 75°C whereas we estimated a value of $2.13 \times 10^{-2.1}$ at the same temperature for cubic ZnS. All other constants used were of the same magnitude. Another contribution to the observed difference may arise from a stronger interaction between Zn. and the SO₄ ions in the solution which they have employed as a supporting anion as opposed to the NO3 in our study. Our experiments using sulfate salts showed a strong effect of SOZ ions on the precipitation kinetics (8).

B. Effect of sulfide ion generation rate on particle size distribution:

Although the absolute value of relative supersaturation at the time of nucleation remained constant for various combinations of

experimental parameters, the time needed to reach the critical relative supersaturation varied over two orders of magnitude. The reciprocal time to reach critical supersaturation is related to sulfide ion generation rate in the solution, and we have defined it as the 'rate-to-nucleation' for the context of this study. Table 1 gives the rate-to-nucleation for several combinations of experimental variables at $[Zn]_o = 0.05 \text{ M}$. Rate-to-nucleation had the paramount influence on the particle size distribution of the powders. Rates higher than 0.250 min^{-1} was the range where most variability in particle size distribution was observed

Figure 2 shows an electron micrograph taken 180 min. after precipitation had started for run #2 (pH = 1, T = 60°C, [Zn]_o = 0.05 M and [TAA]_o/[Zn]_o = 8) corresponding to a rate of 1.41x10⁻² min⁻¹. Formation of the particles was first observed after 70 min. Growth of these particles with time is given in curve 'a' of Figure 3. The drop in the mean particle size for this run at 180 minutes is a result of formation of a second generation of particles, as may be observed in the electron micrograph of Figure 2. Similar bimodal size distributions were observed for rate-to-nucleation values of up to 0.250 min⁻¹, with higher growth rates, as indicated by higher slopes of curves b and c in Figure 3, and shorter times for formation of second generation of particles, as demonstrated by the shift of maxima toward shorter times.

At least two plausible explanations can be offered for observing two generations of particles. First, as the initially formed particles reach a critical size (typically lm) where they can settle out of the solution, a new generation of particles

Run #	Temperature (°C)	pН	$[TAA]_{o}/[Zn]_{o}$	Rate to Nucleation (min-1)
1	60	1	4	6.6x10 ⁻³
2	60	1	8	1.41x10 ⁻²
3	70	1	4	2.70x10 ⁻²
4	70	1	8	5.88x10 ⁻²
5	70	1	16	1.11x10 ⁻²
6	70	2	4	0.250
7	70	2	8	0.500
8	70	2	16	1.00
9	80	2	4	1.50
10	80	2	8	2.00
11	80	2	16	4.00

may form from the solution. Secondly, if the rate of sulfide ion formation is slightly larger than the rate of its consumption in the growth process, a build up of excess sulfide ions may result in formation of a second generation of particles. The first mechanism does not appear to be likely as calculations based on the limiting size of first generation particles show that settling times are approximately the same as the total aging time.

At intermediate rates, such as 0.250 to 1.00 min⁻¹, the population density of first generation particles is high enough that growth of these particles can maintain [S=] low enough to prevent formation of second generation particles and hence monosize particles are obtained. Figure 4 shows micrographs of precipitates for run #7 at various precipitation times. The precipitation was completed (~100% recovery), in approximately one hour with a final mean particle size of about 0.5 μm .

At still higher rates-to-nucleation (specifically at around 1.00 to 1.50 min⁻¹), a bimodal particle size distribution was ag in obtained, with larger particles (first generation) having a mean size of about 0.6 µm at the end of precipitation. A scanning electron micrograph of such a sample is given in Figure 5.

Observation of bimodal size distribution at high rates supports the earlier paradigm that second generation of particles is a direct consequence of growth rate not keeping up with the sulfide ion generation rate, resulting in a net sulfide ion build-up in the solution.

Beyond a rate of $1.50~\rm{min^{-1}}$, a continuous distribution of particle sizes was obtained as shown by the electron micrograph of

particles obtained for run #10 in Figure 6. As indicated in the figure, particle size ranges between 0.2 and 0.5 μm and distribution is continuous.

C. Mechanism of Particle Formation and Growth:

Specific surface area values for a larger number of samples were found to be around 50 m²/g. This value of surface area is much higher than the value of 4.87 m²/g expected for a monosize powder having a mean particle diameter of 0.3 μ m, and corresponds to an equivalent spherical diameter of about 29 nm. The apparent discrepancy between the observed mean particle diameter and the equivalent spherical diameter, calculated from specific surface area value, can be resolved if one assumes that the large particles (~0.3 μ m) are extremely porous or are collections of much smaller (~29 nm) crystallites.

A transmission electron micrograph and selected area diffraction pattern of a monosize powder are shown in Figure 7. As the figure clearly indicates, the spherical particles are actually agglomerates of about 14 nm crystallites which the diffraction pattern shows to be sphalerite. An independent determination of the crystallite size was made with the x-ray diffraction line broadening technique. The crystallite size was found to be 13 nm, in reasonably good agreement with the values obtained by surface area and TEM observations.

Alternatively, one can estimate the size of the nuclei that form during the precipitation using a modified form of the Kelvin equation (9):

$$\frac{RT}{m} = \frac{a_r^2}{n} = \frac{2\gamma}{\rho r^2}$$
 (12)

where at is the activity of the ions in equilibrium with a nucleus having a critical radius r^* , a is the activity of ions in equilibrium with a macroscopic crystal phase, r is the interfacial tension between solid and liquid phase, r is the density of the solid, M is the molecular weight, R is the gas constant and T is the absolute temperature. Comparison of this equation with equation (11), and assuming that the activity coefficient is unity and that the ionic strengths of the solution in equilibrium and in supersaturated condition are roughly the same (10), gives

$$2 \frac{RT}{M} \text{ In } S = \frac{2\gamma}{\rho r^*}$$
 (13)

Using this equation and substituting 1.672 J/m² for (for the (100) face of sphalerite) and a density of 4.10 Mg/m³, the critical nucleus size at a relative supersaturation of 8.5 is found to be 13 nm, which is in excellent agreement with the crystallite sizes determined experimentally. This implies that the nuclei, once formed, do not grow significantly and growth of spherical particles occurs through agglomeration of 13 nm size sphalerite crystallites. The agglomeration time necessary to reduce the population of these crystallites by half is estimated to be less than one second assuming no barrier for agglomeration. Since the precipitation was carried at low pH near its isoelectric point (4), agglomeration is likely to proceed quite rapidly preventing growth of individual nuclei.

A straight line was obtained when the diffusion chronomal, $I_{\rm D}$, was plotted against time for particle growth of monosized powders for run #7 (Figure 7) indicating that the growth was a diffusion controlled process (11). Diffusion coefficient, D, is proportional to the slope of $I_{\rm D}$ versus t plot and estimated to be about 10^{-6} cm²/sec, which is about an order of magnitude less than that of ionic species in aqueous solutions. Such a low diffusion coefficient confirms that the growth of the spherical particles proceeds by diffusion of crystallites through the depleted aqueous layer. Similar observations were reported by Bleier and Cannon (12) for formation of uniform m-ZrO₂ particles and by Edelson and Gleaser (13) for spherical TiO₂ particles.

Formation of monosize particles at moderate rates may be explained in light of the above agglomeration mechanism. If the rate of crystallite generation is comparable to that of diffusion of these crystallites to deposit on the growing agglomerate, then the agglomerates will grow uniformly to produce monosized particles. If on the other hand, the crystallite generation rate is higher than the diffusion rate, then the population of these crystallites may reach a critical value at which second generation of particles forms, resulting in a bimodal size distribution.

Figure 8 shows schematically the formation mechanism for bimodal size distribution. Figure 8a represents the formation of crystallites result in agglomeration of nearly uniform size spherical particles as predicted by estimated agglomeration rate (Figure 8b). Broken circles around each agglomerate represents the aqueous layer with

depleted crystallite concentration. Since the sulfide ion generation rate is considerably high, a large number of new crystallites form throughout the solution. Crystallite population outside the layer builds up while those crystallites that form within the layer contribute to the growth of agglomerates (Figure 8c). As soon as the crystallite concentration outside the layer reaches to a critical value, a second agglomeration event takes place, resulting in a second generation of agglomerates which are smaller than the first generation as shown in Figure 8d. A very high percentage of crystallites forming afterwards is consumed in the growth process due to the large number of growing agglomerates. Depending on the sulfide ion generation rate, it is possible that multiple agglomeration events may occur resulting in a wide particle size distribution as is shown in Figure 6.

CONCLUSION

PROFILE BOLLEGO BOLLEG

Formation of uniform spherical particles of ZnS was investigated, with primary consideration being given to the influence of experimental variables on the morphology. It was determined that nucleation starts at a constant supersaturation level of 8.5 for a number of combinations of experimental variables. Type of particle size distribution was found to be controlled by the rate at which this critical nucleation event is reached (i.e. the rate-to-nucleation), irrespective of the value of the individual variables. Furthermore, rate-to-nucleation was determined to be significant that the nucleation is primarily controlled by the rate of sulfide ion generation at constant zinc concentration.

The mechanism of particle formation is believed to follow a two-step process with the formation of nuclei of about 10 nm size then aggregation of these crystallites to form spherical particles consisting of clusters of about 0.3 to 1.0 µm size. The type of the particle size distribution was controlled by two competing processes, rate of sulfide ion generation and rate of growth of agglomerates. Spherical submicron ZnS powders with desired size distribution were produced reproducibly by controlling the rate of sulfide ion generation.

ACKNOWLEDGEMENTS

This work was supported in part by the Office of Naval Research and by Iowa State University. Authors are grateful to Prof. M. F. Berard for critical review and Ms. Lynne Gaskill for typing the manuscript.

REFERENCES

- Miles, P. A., J. Opt. Soc. Am. 63, 1323 (1973)
- 2. Leverenz, H. W., Science 109, 183 (1929).
- 3. Chiu, G., J. Coll. and Int. Sci. 83(1), 309 (1981).
- 4. Wilhelmy, D. M. and Matijevic, E., J. Chem. Soc., Faraday Trans. 1 80, 563 (1984).
- 5. Williams, R., Yocom, P. N. and Stofko, F. S., J. Coll. and Int. Sci. 106(2), 388 (1985)
- 6. Swift, E. H., Butler, E. A., Anal. Chem., 28(2), 146, (1956).
- 7. Harris, D. C., "Quantitative Chemical Analysis, 2nd Edition", pp. 725, 726. W. H. Freeman and Company, New York, 1987.
- 8. Celikkaya, A. and Akinc, M., unpublished work.
- 9. LaMer, V. K. and Dinegar, R. J., Am. Chem. Soc. 73, 3280 (1951).
- 10. Akinc, M., Proposal Submitted to Office of Naval Research 1986.
- 11. Nielsen, A. E., "Kinetics of Precipitation", pp. 29-39. The Macmillan Company, New York, 1964.
- 12. Bleier, A., and Cannon, R. M., in "Better Ceramics Through Chemistry II", (Brinker, C. J., Clark, D. E., Ulrich, D. R., Eds.), p. 71. Materials Research Society, Pittsburgh, Pennsylvania, 1986.
- 13. Edelson, L. H., and Gleaser, A. M., J. Am. Ceram. Soc. 71(4), 225 (1988).

FIGURE CAPTIONS

- Figure 1. Variation of relative supersaturation S with time for various combinations of experimental parameters with $[Zn]_o = 0.05 \text{ M}$ and a) pH = 1, T = 60°C, $[TAA]_o]/[Zn]_o = 4$ b) pH = 1, T = 60°C, $[TAA]_o]/[Zn]_o = 8$ c) pH = 1, T = 70°C, $[TAA]_o]/[Zn]_o = 4$ d) pH = 2, T = 60°C, $[TAA]_o]/[Zn]_o = 4$ Values of critical supersaturation are also indicated for each case.
- Figure 2. Scanning Electron micrograph of particles obtained (with experimental parameters pH = 1, T = 60°C, [Zn]_o = 0.05 M and [TAA]_o/[Zn]_o = 8) 180 min. after precipitation started.
- Figure 3. Variation of mean particle size with time for pH = 1, $[Zn]_o = 0.05 \text{ M}$ and a) $[TAA]_o/[Zn] = 8$, $T = 60^{\circ}\text{C}$. b) $[TAA]_o/[Zn] = 4$, $T = 70^{\circ}\text{C}$ c) $[TAA]_o/[Zn]_o = 8$, $T = 70^{\circ}\text{C}$.
- Figure 4. Scanning electron micrographs of particles obtained with experimental parameters being pH = 2, T = 70°C, [Zn]_o 0.05 M and [TAA]_o/[Zn]_o = 8. a) 5, b) 10, c) 15, d) 40 mins. after precipitation started.
- Figure 5. Scanning electron micrograph of ZnS particles obtained under the conditions pH = 2, T = 80°C, [Zn]_o = 0.05 M and [TAA]_o/[Zn]_o = 4.
- Figure 6. Scanning electron micrographs of ZnS particles obtained when pH = 2, T = 80°C, [Zn]_o = 0.05 and a) [TAA]_o/[Zn]_o = 8, b) [TAA]_o/[Zn]_o = 16.
- Figure 7. Transmission electron micrograph of sample given in Figure 4b and selected area diffraction pattern of the particles.
- Figure 8. Schematic diagram of mechanism of particle formation and growth for a case yielding a bimodal size distribution.

Figure 2 Celikkaya/Akinc

Figure 3 Celikkaya/Akinc

THE STATE OF THE PROPERTY SECRECASES SECRETARY SECRETARY

Figure 5 Celikkaya/Akinc

Figure 6 Celikkaya/Akinc

The second is the second of th

Figure 7 Celikkaya/Akinc

Mr. R. Rice . W. R. Grace Company . 7379 Rouce 32 2 Columbia, MD 21044 Hr. D. Roy Coors Porcelain Company Golden, CO 80401		WORCS, WR14 3PS England Dr. R. W. Schwartz Code 3854 Naval Weapons Center China Lake, CA 93555	. Dr. A. Stacy 2 Chemistry Department Univ. of Calif., Berkeley Berkeley, CA 94720 Dr. I. G. Talmy, Gode R31 Naval Surface WeaponsCtr	White Oak Laboratory Sliver Spring, MD 20903 Hr. W. Tropf Applied Physics Lab Johns Hopkins Road Laurel, MD 20810 Dr. R. Tustison Raytheon Co.Research Div 131 Spring Street Lexington, MA 02173	Dr. W. White Materials Research Lab Pennsylvania State Univ. University Park,PA 16802 Dr. A. Wold Chemistry Department Brown University Providence, RI 02912
Ceramics Dr. G. Messing Hr. R. Rice Materials Research Dept. W. R. Grace Company Pennsylvania State Univ. 7379 Rouce 32 University Park, PA 16802 Columbia, MD 21044 Dr. Harry Noreen Hr. D. Roy Rockwell International Coors Porcelain Com Anaheim, CA 92803	Dr. P. E. D. Morgan Rockwell Science Genter P.O. Box 1085 Thousand Oaks, CA 91360 Dr. S. Musikant General Electric Co P. O. Box 855 Philadelphia, PA 19101	Mr. P. Ormsby U.S. Army Missile Cad. Redscone Arsenal Huntsville, AL 35807 Dr. C. Panteno	Materials Schence Lab Pennsylvania State Univ. Dr. A. Stacy University Park,PA 16802 Chemistry Department University Park,PA 16802 Chemistry Department Univ. of Calif.,Berk Dr. Dale Perty U.S. Army Missile Cmd. Redstone Arsenal Huntsville, AL 35807 Naval Surface Weapon		Ithaca, NY 14853 Dr. W. Rhodes GTE Laboratories 40 Sylvan Road Walthan, MA 02134
Optical Dr. R. A. Heinecke StandardTelecommunication Laboratories, Ltd London Road Harlow, Essex CN17 9NA England Dr. T. A. Hewston Code 3854 Naval Weapons Center		College of Engineering Nucers University P.O. Box 909 Piscataway, NJ 08854 Dr. P. Klocek Dr. P. Klocek	P. U. BOX 600/246 Dallas, TX 75266 Dr. D. N. Lewis Code 6360 Naval Research Lab Washington, DC 20375		Columbus, OH 43201 Dr. R. Messier Pennsylvania State Univ. Materials Research Lab University Park,PA 16802
Dr. Mufit Akinc Mat'ls SciencedEng.Dept Iowa State University 110 Engineering Annex Ames, IA 50011 Dr. H. E. Bennett Code 38101 Naval Weupons Center China Lake. CA 9355	Dr. C. Blackmon Code C33 Naval Surface WeaponsCtr Dahlgren, VA 22448 Dr. S. Block Sroup Leader Structural Chemistry	Varional Bureau of Standards Jaithersburg, MD 20899 Tr. J. Burdett Themistry Department Injuristry October	Ji. J. A. Cox loneywell Systems and Research lept. HW 65-2600 i660 Technology Drive linneapolis, NN 55418	it. B. Dunn laterials Science and Engineering Department iniv. of California, LA .os Angeles, CA 90024 r. G. Geoffroy hemisty Department ennsylvania State Univ. niversity Park, PA 16802	r. A. Harker ock-uell International .0. Box 1085 U49 Camino Dos Rios housand Oaks, CA 91360 r. D. C. Harris 3de 3854 aval Weapons Center 11na Lake, CA 93555
DISTRIBUTION LIST and Summary Reports Organization Copies	Naval Wenpons Center China Lake, CA 9355 ATTN: Code 385 Defense Advanced Research Projects Agency Haterials Science Office 1400 Wilson Bouleward ATTN: S. Wax	Army Research Office P.O. Box 12211 Triangle Park, NC 27709 ATTN: Metallurgy & Ceramics Program	ο.	Army Materials and Mechanics Research Center Waterrown, HA 02172 ATTN: Dr. R. N. Katz ATTN: Dr. R. N. Katz AIr Force Office of Scientific Research/NE Building 410 Building 410 Building 410 ATTN: Electronics & Materials Science ATTN: Electronics & Materials	Directorate Office of Naval Technology 800 N. Quincy Street Arlington, VA 22217 ATTN: Code 0712
BASIC DIST Technical and Organization Code	Defense Documentation Center Cameron Station Alexandria, VA 22314 Office of Naval Research 800 N. Quincy Street Arlington, VA 22217 ATTN: Code 1131	Code 1113 Naval Air Development Center Code 606 Warminster, PA 18974 ATTN: Dr. J. DeLuccia	Commanding Officer Naval Surface Weapons Center 10901 New Hampshire Ave. 44hire Oak Laboratory 51lver Spring, MD 20910 ATTN: Hr. W. Hessick Code K22	Air Force Materials Laboratory Uright-Patterson AFB Upyton, OH 45433 ATTN: Dr. N. Tallan Naval Air Systems Command Code 911A Idli Jeff Davis Highway Arlington, VA 22202 ATTN: Dr. L. Sloter	Defense Merals and Ceramic Information Center Battelle Memorial Institute 505 King Avenue Columbus, OH 43201

WALLES SESSESS ASSESSED RECORDED DESCRIPTION DESCRIPTION