Testing with one real parameter

Outline

- 1) One-sided tests in general
- 2) Two-sided tests
- 3) UMP unbinsed tests

One-sided tests in general

Ho:
$$\theta \leq \theta_0$$
 us $H_1: \Theta > \theta_0$ called one-sided hypothesis

If a large, could prioritize
$$\theta_1 = \theta_0 + \epsilon_5$$
 & to

log
$$LR(x) = log \frac{\rho_{0,+\epsilon}(x)}{\rho_{0,(x)}} \approx \epsilon \cdot \hat{L}(\theta_{0,+\epsilon}(x))$$

$$\Rightarrow$$
 Use score at Θ_o $\mathcal{L}(\theta_o; X)$ as test state

$$\phi(x) = 19i(0:x) = 0$$

Need to check
$$\beta_{\phi}(0) \leq \alpha$$
 for $\theta \leq \theta_{o}$

$$\Theta_{i} = \Theta_{i}$$
: $|O_{i}(P_{i}(x)/P_{i}(x))| = \sum_{i=1}^{n} |X_{i} - \Theta_{i}| - |X_{i} - \Theta_{i}|$

$$T(x) = \begin{cases}
\theta_0 - \theta_1 & x \leq \theta_0 \\
2x - \theta_0 - \theta_1 & \theta_0 \leq x \leq \theta_1 \\
\theta_1 - \theta_0 & x \geq \theta_1
\end{cases}$$

$$\frac{S_{core}}{\int_{c}^{c} \frac{1}{\sqrt{2\pi}} \left(\frac{\partial}{\partial s} \right) ds} = \frac{d}{d\theta} \left[\frac{1}{\sqrt{2\pi}} - |X_i - \theta| \right]_{\theta = \theta_0}$$

$$= \frac{2}{\sqrt{2\pi}} \left[\frac{1}{\sqrt{2\pi}} + \frac{1}{\sqrt{2\pi}} - \frac{1}{\sqrt{2\pi}} \right]_{\theta = \theta_0}$$

Equivalent:
$$S(x) = \sum_{i=1}^{n} 18x_i \ge 0.3$$
 Sign test

Stochastically incr.

Def A real-valued statistic T(x) is stochastically increasing in Θ if $P_{\Theta}(T(x) \le t)$ is non-incr. in θ , $\forall t$

If $\phi(x)$ rejects for large T(x): $\phi(x) = 1\{T(x) > c\} + \gamma 1\{T(x) = c\}$

and T(X) is stochastically increasing in Θ , $E_{\Theta}(X) = (1-\gamma)P_{\Theta}(T>c) + \gamma P_{\Theta}(T>c) - N_{in}\Theta$

 E_{x} X_{i} iid $p(x-\theta)$ (location family) T(x) = sample near, median, sign statistic

Ex X: $\frac{11d}{6} \rho(x_0)$ (scale family) T(x) = $\sum x_i^2$ or median ($1x_1,...,1x_n1$)

Two-sided Alternatives

Sety:
$$\beta = \int_{0}^{\infty} \Theta \in \Theta \subseteq \mathbb{R}^{3}$$
, $\Theta \in \Theta^{\circ}$
Test $H_{o}: \Theta = \Theta_{o}$ vs. $H_{i}: \Theta \neq \Theta_{o}$
(Can be generalized naturally to $H_{o}: \Theta \in [0, 0, 0, 1]$)

Two-tailed test rejects when T(X) is "extreme"

$$\phi(x) = \begin{cases} 1 & T(x) < c_1 \\ 0 & T(x) \in (c_1, c_2) \\ \gamma_i & T(x) = c_i \end{cases}$$

Two ways to reject. How to balance?

For symmetric distributions like N(0,1),
natural choice is to equalize "lobes" of rej. region

$$\phi_2(x) = 1\{|x-\theta_0| > 2\alpha/2\}$$
 for $H_0: \theta = \theta_0$

For asymmetric dists, or interval null Hi: Ø ([0,,0]),
more complicated

Equal-tailed & unbiased tests

Valid if
$$\alpha_1 + \alpha_2 = \alpha$$
 (α_1 is "free paremeter")

$$E_X \quad X \sim E_X \rho(0)$$
, test $H_0: \theta = 1$

Solve for cutoffs:
$$\frac{\alpha}{2} = P_1(x \le c_1) = 1 - e^{-c_1} \Rightarrow c_1 = -\log(1-\frac{\pi}{2})$$

$$1 - \frac{\alpha}{2} = 1 - e^{-c_2} \Rightarrow c_2 = -\log(\frac{\alpha}{2})$$

Unbiased tests

Def
$$\phi(x)$$
 is unbiased if $\inf_{\Theta \in \Theta} F_{\Theta} \phi(x) \ge d$

$$\beta \phi(\theta_0) = \alpha$$
 (2 equations, "2" unknowns) $\frac{d\beta}{d\theta}(\theta_0) = 0$

$$\beta_{\phi}(\Theta)$$
 Θ
 Θ
 Θ

$$X \sim e^{2^{T(x)}-A(2)}h(x)$$
 (MLR in T(X))

Assume T(X) continuous, solve

$$O = \frac{d\beta_{\delta}}{d\gamma}(\gamma_{\delta}) = Cov_{\delta}(\phi(T), T)$$

=
$$\mathbb{E}_{\eta_0}[(\phi(\tau)-\alpha)T(x)]$$

Theorem Assume $X \sim e^{\Theta T(X) - A(2)} h(x)$ $H_0: |\theta - \theta_0| \le \delta$ vs $H_1: |\theta - \theta_0| > \delta$, $\delta \ge 0$ Let ϕ^* be test that rejects for extreme T(X), with $c_1, c_2, \gamma_1, \gamma_2$ chosen so:

(i) $\mathcal{B}_{\phi^*}(\theta + \delta) = \mathcal{B}_{\phi^*}(\theta - \delta) = \alpha$

(i) $\beta_{\phi*}(\theta+\delta) = \beta_{\phi*}(\theta-\delta) = \alpha$ and, if $\delta=0$ (point null)

(ii) $0 = \beta_{\phi*}(\theta_0) = \mathbb{E}_{\theta}[(T-\mathbb{E}_{\delta}T)\phi(x)]$

Then of is UMPU

Proof: Assume who
$$\Theta_0 = 0$$

($\delta = 0$):

Want to solve

Maximize $\int \rho \rho dM$

S.t. $\int \rho \rho dM = 0$

Lagrange form:

Max $\int \rho \left(\rho_0 - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dM$

= $\int \phi \left(\frac{\rho_0}{\rho_0} - \lambda_1 - \lambda_2 (T - E_0 T)\right) dN$

= $\int \phi \left(\frac{\rho_0}{\rho_0} - \lambda_1 - \lambda_2 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$
 $\partial P \left(P - \lambda_1 \rho_0 - \lambda_2 \rho_0 (T - E_0 T)\right) dP$

Suppose \$,\$* satisfy constraints,

\$\phi \text{maximizes Lagrangien for \$\lambda_1, \$\lambda_2\$

$$\beta_{\beta}(0,) = \beta_{\beta}(0,) + \lambda_{1}(\beta_{\delta}(0) - \alpha) + \lambda_{2} \beta_{\delta}(0) + \lambda_{1}(\beta_{\delta}(0) - \alpha) + \lambda_{2} \beta_{\delta}(0) + \lambda_{1}(\beta_{\delta}(0) - \alpha) + \lambda_{2} \beta_{\delta}(0) + \lambda_{2} \beta_{\delta}(0) + \lambda_{2} \beta_{\delta}(0)$$

$$= \beta_{\delta}(0,)$$

$$(5>0) \max \int \phi \rho_0 d\mu$$
s.t.
$$\int \phi \rho_5 d\mu = \int \phi \rho_{-5} d\mu = \chi$$

Lagrangian:

$$\int \phi \left(\rho_{0} - \lambda_{1} \rho_{3} - \lambda_{2} \rho_{-3} \right) d\mu$$

$$= \int \phi \left(\varsigma_{e}^{0,T} - \varsigma_{2}^{\delta T} - \varsigma_{3}^{-\delta T} \right) d\rho$$

$$= \int \phi \left(\varsigma_{e}^{0,T} - \varsigma_{2}^{\delta T} - \varsigma_{3}^{-\delta T} \right) d\rho$$

$$\theta_{1} > \delta$$
:

Reject for $c_{1}e^{(\theta_{1}-\delta)T(x)}$ -25T(x)

$$e^{(\theta_{1}-\delta)T}$$

$$c_{2}+c_{3}e^{(\theta_{1}-\delta)T}$$

$$c_{3}+c_{4}e^{(\theta_{1}-\delta)T}$$

$$c_{4}+c_{5}e^{(\theta_{1}-\delta)T}$$

Rest of proof same as 5=0