APPENDIX

A. Network Architecture and Training Procedure

In this section, we elaborate more on our network architectures and training procedures. The algorithm for generation state and observation predictions is presented in Algorithm 1. The general algorithm for encoding and decoding both image and time-series data is presented in Algorithms 2-5. The temporal downsample block follows the implementation of WaveNet [1] (i.e. gated, dilated, causal convolutions). However, as there is no temporal order to the latent code, temporal upsampling is handled simply by 1D convolution and upsampling along the time dimension. We present the full list of neural network architectures in Tables I-VI. We present our training hyperparameters in Table VIII. Since we evaluate multiple different loss types, we add an additional column denoting which experiments used which hyperparameters (with 'R' standing for reconstruction and 'C' for contrastive).

B. T-SNE figures For Dynamical Variation Experiment

The full set of t-SNE figures and clusters from our motivational experiment are provided in Figures B and 2, respectively. The hyperparameters for the experiment are provided in Table IX.

REFERENCES

- Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.
- [2] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and Alexander Smola. Deep sets. arXiv preprint arXiv:1703.06114, 2017.
- [3] Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. *Neural computation*, 14(8):1771–1800, 2002.
- [4] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Fig. 1. The t-SNE visualizations for all five velocity bins.

Algorithm 1: Latent Model Forward Pass

```
Input: Modality set M, initial state x_0, initial observations \{o_0^m, \forall m \in M\}, action sequence a_{1:T}, modality prediction
          set \tilde{M}. Encoders e_{\psi}^m, \forall m \in M, Decoders d_{\psi}^m, \forall m \tilde{M}, latent model f_{\theta}(z, a), action encoder g_{\psi}(a), state decoder
          d_{\psi}^{state}
Output: State predictions \tilde{x_{1:T}}, observation predictions \{o_{1:t}^m, \forall m \in M\}
for m \in M do
    p^m(z) \leftarrow e_{\psi}^m(o_0^m)
                                                                       \triangleleft Encode each observation into \mathcal{Z}
end
z_0 = \operatorname{aggregate}(\{p^m(z), \forall m \in M\})
                                                               \triangleleft Use Deepsets [2] or Product of Experts [3] to get single z
for t \in 1:T do
    a_{t-1} = g_{\psi}(at - 1)
                                                                                    z_t = f_{\theta}(z, a_{t-1})

⊲ Predict next latent state

    x_t = d_{\psi}^{state}(z_t)

⊲ Decode state

     for m \in \tilde{M} do
         o_{t+1}^m = d_{\psi}(z_t)

    □ Decode observation

     end
  end
 return x_{1:T}, \{o_{1:t}^m, \forall m \in M\}
```

Algorithm 2: Upsample Block

Input: Image input x, upsample factor s, convolution kernel K, activation function fOutput: Upsampled image output \tilde{x} $x \leftarrow \text{linear interpolate}(x,s)$ $x \leftarrow x * K$ $x \leftarrow f(x)$ return x

Algorithm 5: CNN Decoder

Input: Latent vector z, upsample blocks U_{ψ} , MLP f_{θ} Output: Image reconstruction \tilde{X} $x \leftarrow f_{\theta}(x)$ $x \leftarrow \text{pad_front } (x,2) \qquad \triangleleft x \in \{1 \times 1 \times |x|\}$ for u_{ψ} in U do $| x \leftarrow u_{\psi}(x) | \qquad \triangleleft \text{using Algorithm 2}$ end
return x

Algorithm 3: Downsample Block

Input: Image input x, downsample factor s, convolution kernel K, activation function fOutput: Downsampled image output \tilde{x} $x \leftarrow x * K$ $x \leftarrow f(x)$ $x \leftarrow \text{linear interpolate}(x, s)$

Layer	Input Dim	Output Dim	Kernel Size	Activation	
Downsample 1	$3 \times 128 \times 128$	$4 \times 64 \times 64$	3×3	ReLU	
Downsample 2	$4 \times 64 \times 64$	$8 \times 32 \times 32$	3×3	ReLU	
Downsample 3	$8 \times 32 \times 32$	$16 \times 16 \times 16$	3×3	ReLU	
Downsample 4	$16 \times 16 \times 16$	$32 \times 8 \times 8$	3×3	ReLU	
Flatten	$32 \times 8 \times 8$	2048	-	-	
MLP	2048	$2 \times \mathcal{Z} $	-	Tanh	
Gaussian	$2 \times \mathcal{Z} $	$\mathcal{N} \in \mathcal{Z}$	-	-	
ΤΔΡΙΕΙ					

VISUAL CNN ENCODER ARCHITECTURE

Algorithm 4: CNN Encoder

return $\mathcal{N}(\mu, \sigma)$

Layer	Input Dim	Output Dim	Kernel Size	Activation	
Downsample 1	$\{1,3\} \times 64 \times 64$	$4 \times 32 \times 32$	3×3	ReLU	
Downsample 2	$4 \times 32 \times 32$	$8 \times 16 \times 16$	3×3	ReLU	
Downsample 3	$8 \times 16 \times 16$	$16 \times 8 \times 8$	3×3	ReLU	
Downsample 4	$16 \times 8 \times 8$	$32 \times 4 \times 4$	3×3	ReLU	
Flatten	$32 \times 4 \times 4$	512	-	-	
MLP	512	$2 \times \mathcal{Z} $	-	Tanh	
Gaussian	$2 \times \mathcal{Z} $	$\mathcal{N} \in \mathcal{Z}$	-	-	
TABLE II					

LOCAL MAP CNN ENCODER ARCHITECTURE

Layer	Input Dim	Output Dim	Kernel Size	Kernel Dilation	Activation
Downsample 1	$\{4,9\} \times 20$	$\{4,9\} \times 20$	2	2	[1]
Downsample 2	$\{4, 9\} \times 20$	$\{4,9\} \times 20$	2	4	[1]
Downsample 3	$\{4, 9\} \times 20$	$\{4,9\} \times 20$	2	8	[1]
Downsample 4	$\{4, 9\} \times 20$	$\{4,9\} \times 20$	2	16	[1]
Flatten	$\{4, 9\} \times 20$	{80, 180}	-	-	-
MLP	{80, 180}	$2 \times \mathcal{Z} $	-	-	Tanh
Gaussian	$2 \times \mathcal{Z} $	$\mathcal{N}\in\mathcal{Z}$	-	-	
TABLE III					

TEMPORAL CNN ENCODER ARCHITECTURE

Layer	Input Dim	Output Dim	Kernel Size	Activation	
MLP	$ \mathcal{Z} $	128	-	Tanh	
Unflatten	128	$128 \times 1 \times 1$	-	-	
Upsample 1	$128 \times 1 \times 1$	$32 \times 4 \times 4$	3×3	ReLU	
Upsample 2	$32 \times 4 \times 4$	$16 \times 8 \times 8$	3×3	ReLU	
Upsample 3	$16 \times 8 \times 8$	$8 \times 16 \times 16$	3×3	ReLU	
Upsample 4	$8 \times 16 \times 16$	$4 \times 32 \times 32$	3×3	ReLU	
Upsample 5	$4 \times 32 \times 32$	$3 \times 128 \times 128$	3×3	ReLU	
TABLE IV					

VISUAL CNN DECODER ARCHITECTURE

Layer	Input Dim	Output Dim	Kernel Size	Activation
MLP	$ \mathcal{Z} $	128	-	Tanh
Unflatten	128	$128 \times 1 \times 1$	-	-
Upsample 1	$128 \times 1 \times 1$	$32 \times 4 \times 4$	3×3	ReLU
Upsample 2	$32 \times 4 \times 4$	$16 \times 8 \times 8$	3×3	ReLU
Upsample 3	$16 \times 8 \times 8$	$8 \times 16 \times 16$	3×3	ReLU
Upsample 4	$8 \times 16 \times 16$	$4 \times 32 \times 32$	3×3	ReLU
Upsample 5	$4 \times 32 \times 32$	$3 \times 64 \times 64$	3×3	ReLU
TABLE V				

LOCAL MAP CNN DECODER ARCHITECTURE

Layer	Input Dim	Output Dim	Kernel Size	Activation
Unflatten	$ \mathcal{Z} $	$1 \times \mathcal{Z} $	-	-
Upsample 1	$1 \times \mathcal{Z} $	2×64	2	Tanh
Upsample 1	2×64	4×32	2	Tanh
Upsample 1	4×32	8×16	2	Tanh
Upsample 1	8×16	16×8	2	Tanh
Upsample 1	16×8	$20 \times \{4, 9\}$	2	Tanh
	•	TADIEVI	'	

TEMPORAL CNN DECODER ARCHITECTURE

Layer	Input Dim	Output Dim	Activation
Action Encode 1	2	16	Tanh
Action Encode 2	2	16	Tanh
GRU	(128, 23)	128, 128	-
State Decode 1	128	128	Tanh
State Decode 2	128	$\mathcal{N} \in \mathbb{R}^7$	-

TABLE VII

LATENT MODEL ARCHITECTURE

Hyperparameter	Value	Experiment		
Optimizer	Adam [4]	All		
Learning Rate	1e - 3	All		
Epochs	5000	All		
Batch Size	64	All		
Gradient Steps Per Epoch	10	All		
Gradient Norm Clip	100.0	All		
Train Timesteps	20	All		
RGB Image Loss Scale	100	R		
RGB Map Loss Scale	100	R		
Heightmap Loss Scale	1	R		
IMU Loss Scale	0.1	R		
Wheel RPM Loss Scale	0.1	R		
Contrastive Scale	10.0	C		
EMA $ au$	0.05	C		
TABLË VIII				

TRAINING HYPERPARAMETERS

Hyperparameter	Value
# Subsequences	10000
Sequence length	10
# Clusters	10
# Velocity Bins	5
Clustering Distance Metric	Euclidean
TABLE IX	!

MOTIVATIONAL EXPERIMENT HYPERPARAMETERS

Fig. 2. The cluster centroids for the motivational experiment