O samonastavujúcom sa regulátore, časť druhá

Obsah

1	Metóda rozmiestňovania pólov	1
1.1	Rovnica URO	1
1.2	Polynóm T	3
1.2.1	Alternatívy spôsob určenia polynómu T	4
1.3	Súhrn pre tento prípad	4
2	Rýchlostný algoritmus metódy rozmiestňovania pólov	5
3	Cvičenie tretie	6
4	Otázky a úlohy	6

Zákon riadenia (štruktúra riadenia) samonastavujúceho sa regulátora v uvažovanom konkrétnom príklade je v tvare

$$R(z^{-1})u(k) = T(z^{-1})r(k) - S(z^{-1})y(k)$$
(1a)

$$u(k) = \frac{T(z^{-1})}{R(z^{-1})}r(k) - \frac{S(z^{-1})}{R(z^{-1})}y(k)$$
(1b)

kde R, S a T sú polynómy v tvare

$$R(z^{-1}) = 1 + r_1 z^{-1} + r_2 z^{-2} + \ldots + r_{n_r} z^{-n_r}$$
(2a)

$$S(z^{-1}) = s_0 + s_1 z^{-1} + s_2 z^{-2} + \dots + s_{n_s} z^{-n_s}$$
(2b)

$$T(z^{-1}) = t_0 + t_1 z^{-1} + t_2 z^{-2} + \dots + t_{n_t} z^{-n_t}$$
 (2c)

Ako už bolo uvedené, koeficienty polynómov sú parametrami regulátora. Počet parametrov regulátora závisí od stupňa jednotlivých polynómov. Pre uvažovaný konkrétny príklad sú stupne polynómov nasledovné: $n_r = 1$, $n_s = 1$ a $n_t = 0$. Potom počet parametrov regulátora je $n_r + n_s + 1 + n_t + 1$. Teda 1 + 1 + 1 + 0 + 1 = 4. Zákon riadenia je možné zapísať aj v tvare diferenčnej rovnice:

$$u(k) = -r_1 u(k-1) - s_0 y(k) - s_1 y(k-1) + t_0 r(k)$$
(3)

1 Metóda rozmiestňovania pólov

Uvažujme zákon riadenia v tvare (1), ktorého parametre budeme počítať pomocou metódy rozmiestňovania pólov. Najprv odvodíme rovnicu uzavretého obvodu (URO).

1.1 Rovnica URO

Model riadeného systému je

$$A(z^{-1})y(k) = B(z^{-1})u(k)$$
(4)

Dosadením (1) do (4) máme

$$A(z^{-1})y(k) = B(z^{-1})\left(\frac{T(z^{-1})}{R(z^{-1})}r(k) - \frac{S(z^{-1})}{R(z^{-1})}y(k)\right)$$
 (5)

Úpravou

$$Ay(k) = \frac{BT}{R}r(k) - \frac{BS}{R}y(k)$$
 (6a)

$$RAy(k) = BTr(k) - BSy(k)$$
(6b)

$$(RA + BS) y(k) = BTr(k)$$
(6c)

$$y(k) = \frac{BT}{(AR + BS)}r(k) \tag{6d}$$

$$\frac{y(k)}{r(k)} = \frac{BT}{(AR + BS)} \tag{6e}$$

Charakteristický polynóm uzavretého regulačného obvodu je:

$$A(z^{-1})R(z^{-1}) + B(z^{-1})S(z^{-1})$$
(7)

Nech želaný polynóm je

$$P(z^{-1}) = 1 + p_1 z^{-1} + p_2 z^{-2} + \dots + p_{n_p} z^{-n_p}$$
(8)

potom diofantická rovnica, z ktorej sa vypočítajú koeficienty polynómov R a S je

$$A(z^{-1})R(z^{-1}) + B(z^{-1})S(z^{-1}) = P(z^{-1})$$
(9)

V tomto prípade máme

$$A = 1 + a_1 z^{-1} + a_2 z^{-2} (10a)$$

$$B = b_1 z^{-1} + b_2 z^{-2} (10b)$$

$$R = 1 + r_1 z^{-1} (10c)$$

$$S = s_0 + s_1 z^{-1} (10d)$$

a nech želaný polynóm pre tento prípad je

$$P = 1 + p_1 z^{-1} + p_2 z^{-2} (11)$$

Diofantická rovnica pre tento prípad

$$(1 + a_1 z^{-1} + a_2 z^{-2}) (1 + r_1 z^{-1}) + (b_1 z^{-1} + b_2 z^{-2}) (s_0 + s_1 z^{-1})$$

$$= 1 + p_1 z^{-1} + p_2 z^{-2}$$
(12)

Roznásobením

$$1 + r_1 z^{-1} + a_1 z^{-1} + a_1 r_1 z^{-2} + a_2 z^{-2} + a_2 r_1 z^{-3}$$

$$+ b_1 s_0 z^{-1} + b_1 s_1 z^{-2} + b_2 s_0 z^{-2} + b_2 s_1 z^{-3}$$

$$= 1 + p_1 z^{-1} + p_2 z^{-2}$$
(13)

Na ľavej strane ponecháme členy, v ktorých sa nachádzajú neznáme koeficienty polynómov zo zákona adaptácie a ostatné členy presunieme na pravú stranu

$$r_1 z^{-1} + a_1 r_1 z^{-2} + a_2 r_1 z^{-3} + b_1 s_0 z^{-1} + b_1 s_1 z^{-2} + b_2 s_0 z^{-2} + b_2 s_1 z^{-3}$$

$$= 1 + p_1 z^{-1} + p_2 z^{-2} - 1 - a_1 z^{-1} - a_2 z^{-2}$$
(14)

Po úprave

$$(r_1 + b_1 s_0) z^{-1} + (a_1 r_1 + b_1 s_1 + b_2 s_0) z^{-2} + (a_2 r_1 + b_2 s_1) z^{-3}$$

= $(p_1 - a_1) z^{-1} + (p_2 - a_2) z^{-2}$ (15)

Porovnaním koeficientov pri rovnakých mocninách získame rovnice

$$r_1 + b_1 s_0 = p_1 - a_1 \tag{16a}$$

$$a_1r_1 + b_2s_0 + b_1s_1 = p_2 - a_2 \tag{16b}$$

$$a_2r_1 + b_2s_1 = 0 (16c)$$

V maticovom zápise:

$$\begin{bmatrix} 1 & b_1 & 0 \\ a_1 & b_2 & b_1 \\ a_2 & 0 & b_2 \end{bmatrix} \begin{bmatrix} r_1 \\ s_0 \\ s_1 \end{bmatrix} = \begin{bmatrix} p_1 - a_1 \\ p_2 - a_2 \\ 0 \end{bmatrix}$$
 (17)

Maticový zápis vyplývajúci z diofantickej rovnice v prípade, keď stupne polynómov $R,\ S$ a P sú všeobecné, je v tvare

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & b_{1} & 0 & 0 & \cdots & 0 \\ a_{1} & 1 & 0 & \cdots & 0 & b_{2} & b_{1} & 0 & \cdots & 0 \\ a_{2} & a_{1} & 1 & \cdots & 0 & b_{3} & b_{2} & b_{1} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n_{a}} & \vdots & \vdots & \cdots & 1 & b_{n_{b}} & \vdots & \vdots & \cdots & b_{1} \\ 0 & \ddots & \vdots & \cdots & a_{1} & 0 & \ddots & \vdots & \cdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & a_{n_{a}} & 0 & 0 & 0 & \cdots & b_{n_{b}} \end{bmatrix} \begin{bmatrix} r_{1} \\ r_{2} \\ r_{2} \\ \vdots \\ r_{n_{r}} \\ s_{0} \\ \vdots \\ s_{n_{s}} \end{bmatrix} = \begin{bmatrix} p_{1} - a_{1} \\ p_{2} - a_{2} \\ \vdots \\ 0 \\ \vdots \\ s_{n_{s}} \end{bmatrix}$$

$$(18)$$

Takáto sústava rovníc bude mať riešenie ak

$$n_r = n_b - 1 \tag{19a}$$

$$n_s = n_a - 1 \tag{19b}$$

1.2 Polynóm T

Zatiaľ sme vypočítali koeficienty polynómov R a S. Otázkou ostáva, ako určiť polynóm T. Je potrebné určiť jeho stupeň a vypočítať koeficienty. V úvode sme "zvolili", že stupeň polynómu T je $n_t = 0$. Teda jediným koeficientom bude t_0 . Ukážme teraz, že jednou z možností, ako určiť polynóm T, je žiadať nulovú regulačnú odchýlku v ustálenom stave. Dostaneme tak polynóm T práve nultého stupňa a aj výpočet koeficientu t_0 .

Keďže charakteristická rovnica URO je rovnaká ako želaný polynóm P, je možné písať rovnicu uzavretého obvodu v tvare

$$y(k) = \frac{BT}{P}r(k) \tag{20}$$

Aby platilo

$$y(\infty) = r(\infty) \tag{21}$$

musí byť

$$BT = P (22a)$$

$$T = \frac{P}{B} \tag{22b}$$

A keďže "donekonečna" je v diskrétnej doméne "dojednotky", teda z=1, potom

$$T = \frac{P(1)}{B(1)} \tag{23}$$

čo v tomto prípade znamená

$$T(z^{-1}) = \frac{1 + p_1 + p_2}{b_1 + b_2} = t_0 \tag{24}$$

1.2.1 Alternatívy spôsob určenia polynómu T

Alternatíva 1

Ďalší spôsob ako určiť koeficienty polynómu T je nasledovný. Nájdeme obraz referenčného signálu tak, že jeho časovú formu pretransformujeme pomocou Z-transformácie. Totiž v mnohých prípadoch je možné dopredu určiť časový priebeh referenčného signálu a navyše sa referenčný signál skladá zo skokov, rámp a podobných, pomocou Z-transformácie, ľahko transformovateľných signálov. Obraz referenčného signálu je

$$\left\{ r(t) \right\}_q = \frac{F\left(q^{-1}\right)}{G\left(q^{-1}\right)} \tag{25}$$

Tento obraz použijeme vo vzťahu pre regulačnú odchýlku:

$$e = r - y = r - \frac{BT}{P}r = \frac{F}{G} - \frac{BT}{P}\frac{F}{G} = \frac{F(P - BT)}{GP} = \frac{FN}{P} \tag{26}$$

kde sme označili

$$\frac{P - BT}{G} = N \tag{27}$$

Z tohto označenia môžeme písať diofantickú rovnicu, ktorá doplní (9), a vznikne tak sústava.

$$GN + BT = P (28)$$

Z tejto rovnice sa dá určiť aj polynóm vyššieho ako nultého stupňa.

Alternatíva 2

Ďalší spôsob ako určiť koeficienty polynómu T je takýto: ak bude polynóm T obrátenou hodnotou polynómu B, teda T=1/B, zaistí sa tak nie len nulová regulačná odchýlka v ustálenom stave, ale aj to, že polynóm B nebude mať žiadny vplyv na dynamiku URO. Dynamika URO bude daná len želaným charakteristickým polynómom P, takto:

$$y(t) = \frac{1}{P}r(t) \tag{29}$$

Zákon riadenia potom môžeme uvažovať v tvare

$$Ru(t) = \frac{1}{R}r(t) - Sy(t) \quad \Rightarrow \quad r = BRu + BSy$$
 (30)

Ale ak $B=q^{-D}\tilde{B}$, tak aby sme mohli napísať predchádzajúcu rovnicu musíme dať q^{-D} na druhú stranu k r. Teda:

$$rq^D = \tilde{B}Ru + \tilde{B}Sy \tag{31}$$

Ak potom vyjadríme akčný zásah, je zrejmé, že bude závisieť od budúcich hodnôt referenčného signálu $u(t) = r(t+D) - \ldots$ Toto však nemusí byť prekážkou, pretože v mnohých prípadoch je referenčný signál dopredu známy.

1.3 Súhrn pre tento prípad

Zhrňme výpočty potrebné pre určenie parametrov regulátora pre tento prípad.

Hodnoty parametrov modelu a_1 , a_2 , b_1 a b_2 sú po identifikácii (v danej perióde vzorkovania) známe a prirodzene sú známe aj hodnoty koeficientov želaného polynómu P. Hodnoty parametrov regulátora získame riešením

$$\begin{bmatrix} 1 & b_1 & 0 \\ a_1 & b_2 & b_1 \\ a_2 & 0 & b_2 \end{bmatrix} \begin{bmatrix} r_1 \\ s_0 \\ s_1 \end{bmatrix} = \begin{bmatrix} p_1 - a_1 \\ p_2 - a_2 \\ 0 \end{bmatrix}$$
(32)

a

$$t_0 = \frac{1 + p_1 + p_2}{b_1 + b_2} \tag{33}$$

2 Rýchlostný algoritmus metódy rozmiestňovania pólov

Keďže ide o rýchlostný algoritmus, je potrebné vyjadriť prírastok akčnej veličiny:

$$\Delta u(t) = u(t) - u(t-1) = (1 - q^{-1})u(t)$$
(34)

$$u(t) = \frac{\Delta u(t)}{(1 - q^{-1})} \tag{35}$$

Riadený systém a jeho ARX model (s nulovým šumom):

$$Ay(t) = Bu(t) \tag{36}$$

do ktorého dosadíme u(t) a upravíme...

$$Ay(t) = B \frac{\Delta u(t)}{(1 - q^{-1})} \tag{37a}$$

$$(1 - q^{-1})Ay(t) = B\Delta u(t) \tag{37b}$$

Zákon riadenia uvažujeme v tvare:

$$\Delta u(t) = \frac{S}{R}(r(t) - y(t)) \tag{38}$$

Rovnica URO potom bude mat tvar

$$(1 - q^{-1})Ay(t) = B\Delta u(t) \tag{39a}$$

$$(1 - q^{-1})Ay(t) = B\frac{S}{R}(r(t) - y(t))$$
(39b)

$$(1 - q^{-1})ARy(t) = BS(r(t) - y(t))$$
(39c)

$$(1 - q^{-1})ARy(t) = BSr(t) - BSy(t)$$
(39d)

$$((1 - q^{-1})AR + BS)y(t) = BSr(t)$$
(39e)

$$y(t) = \frac{BS}{(1 - q^{-1})AR + BS}r(t)$$
 (39f)

Takže charakteristický polynóm je

$$P = (1 - q^{-1}) AR + BS (40)$$

Ale ved potom

$$BS = P - (1 - q^{-1}) AR (41)$$

a tak rovnica URO:

$$y(t) = \frac{P - (1 - q^{-1})AR}{P}r(t)$$
 (42a)

$$y(t) = \left(\frac{P}{P} - \frac{(1 - q^{-1})AR}{P}\right)r(t)$$
 (42b)

$$y(t) = r(t) - \frac{(1 - q^{-1})AR}{P}r(t)$$
 (42c)

Ak sa teraz opýtame aká bude regulačná odchýlka v ustálenom stave t.j. $y(\infty)$, $r(\infty)$ a čo je najdôležitejšie q=1 potom:

$$y(\infty) = r(\infty) - \frac{(1-1)AR}{P}r(\infty)$$

$$y(\infty) = r(\infty)$$
(43)

Teda regulačná odchýlka v ustálenom stave bude nulová (pretože sa zhodujú hodnoty referenčného signálu a výstupnej veličiny).

3 Cvičenie tretie

1. Zrealizujte (v simulačnom prostredí) samonastavujúci sa regulátor tak ako to predpokladá uvažovaný konkrétny príklad.

Nech želaným charakteristickým polynómom (pre uvažovaný konkrétny príklad) je $P(z^{-1})=1+p_1z^{-1}+p_2z^{-2}$ pričom $p_1=-1,6$ a $p_2=0,64$, teda dvojnásobný koreň $z_{1,2}=0,8$.

Alternatívne, nech v želanom charakteristickom je $p_1=-0,8$ a $p_2=0,16$, teda dvojnásobný koreň $z_{1,2}=0,4$.

Pozn: pre uvažovaný príklad sa odporúča perióda vzorkovania $T_{vz} = 0,1$ [s].

4 Otázky a úlohy

- 1. Modelom riadeného systému je ARX model. Zákon riadenia má tvar $R(z^{-1})u(k)=T(z^{-1})r(k)-S(z^{-1})y(k)$. Nájdite charakteristický polynóm URO.
- 2. Modelom riadeného systému je ARX model. Zákon riadenia má tvar $u(k) = \Delta u(k)/(1-z^{-1}),$ kde

$$\Delta u(k) = \frac{S(z^{-1})}{R(z^{-1})} (r(k) - y(k))$$

Nájdite charakteristický polynóm URO.

- 3. Stručne vysvetlite výpočet parametrov regulátora metódou pole-placement.
- 4. Vysvetlite podstatu metód návrhu polynómu $T(z^{-1})$ pri STR.