Rob 501 - Mathematics for Robotics Recitation #5

Abhishek Venkataraman (Courtesy: Wubing Qin)

Oct 9, 2018

1 Norms

- 1. Let $(\mathcal{X}, \mathbb{C})$ be a vector space. A function $||\cdot|| : \mathcal{X} \to \mathbb{R}$ is a <u>norm</u> if:
 - (Non-negative): $\forall x \in \mathcal{X}, ||x|| \ge 0$ and $||x|| = 0 \Leftrightarrow x = 0$.
 - (Triangular inequality): $\forall x, y \in \mathcal{X}, ||x+y|| \le ||x|| + ||y||$.
 - (Scalability): $\forall \alpha \in \mathbb{C}, \ \forall x \in \mathcal{X}, \ ||\alpha x|| = |\alpha| \ ||x||.$

And, $(\mathcal{X}, \mathbb{C}, ||\cdot||)$ is called a normed space.

Ex:

(a) In
$$(\mathbb{R}^n, \mathbb{R})$$
, prove $||x||_1 = \sum_{i=1}^n |x_i|$ and $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$ are norms.

- (b) In $(\mathbb{R}^2, \mathbb{R})$, plot the results of $||x||_1 = 1$, $||x||_2 = 1$, $||x||_{\infty} = 1$ on the x_1x_2 plane. Then think about $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$, $p \ge 1$.
- (c) In $(\mathbb{R}^2, \mathbb{R})$, given a symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$ and define $f(x) = (x^{\top}Ax)^{1/2}$. Is it a norm?

(d) Suppose $(\mathbb{R}^n, \mathbb{R}, ||\cdot||_V)$ is a normed space with some kind of norm $||\cdot||_V$ defined. In $(\mathbb{R}^{n\times n}, \mathbb{R})$, define $f_V(A) = \sup_{\substack{x\in\mathbb{R}^n\\x\neq 0}} \frac{||Ax||_V}{||x||_V}$. Is it a norm? Try to calculate $f_2(A)$.

2 Inner product

- 1. Let $(\mathcal{X}, \mathbb{C})$ be a vector space. A function $\langle \cdot, \cdot \rangle \colon \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ is an inner product if:
 - (Hermitian symmetry): $\forall x, y \in \mathbb{C}, \langle x, y \rangle = \overline{\langle y, x \rangle}$.
 - (Linear in the first argument): $\forall \alpha_1, \alpha_2 \in \mathbb{C}, x_1, x_2, y \in \mathcal{X}, \langle \alpha_1 x_1 + \alpha_2 x_2, y \rangle = \alpha_1 \langle x_1, y \rangle + \alpha_2 \langle x_2, y \rangle$.
 - (Non-negative): $\forall x \in \mathcal{X}, \langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$.

And, $(\mathcal{X}, \mathbb{C}, \langle \cdot, \cdot \rangle)$ is called an inner product space.

2. Let $(\mathcal{X}, \mathbb{C}, \langle \cdot, \cdot \rangle)$ be an inner product space. Given two vectors $x, y \in \mathcal{X}$, x is <u>orthogonal</u> to y if $\langle x, y \rangle = 0$.

Ex:

- (a) In $(\mathbb{C}^n, \mathbb{C})$, define $\langle x, y \rangle = x^{\top} \bar{y}$.
- (b) In $(\mathbb{R}^n, \mathbb{R})$, define $\langle x, y \rangle = x^{\top} y$.
- (c) $\mathcal{X} = \{q(x) \mid \text{polynomials in } x \text{ with real coefficients of order } n, n \leq 3, x \in \mathbb{R}\}, \mathcal{F} = \mathbb{R}.$
 - (i) Define $\langle f, g \rangle := \int_{-1}^{1} f(x)g(x) dx$. Is it an inner product?
 - (ii) Given a set of vectors $\{1, x, x^2, x^3\}$, calculate their products defined in (i).
 - (iii) Given another set of vectors $\left\{1, x, \frac{1}{2}(3x^2 1), \frac{1}{2}(5x^3 3x)\right\}$, calculate their products defined in (i).

- (d) $\mathcal{X} = \{f \mid f : \mathbb{R} \to \mathbb{R}, f(x+T) = f(x), T \text{ is a given constant}\}, \mathcal{F} = \mathbb{R}.$
 - (i) Define $\langle f, g \rangle := \frac{1}{T} \int_0^T f(x)g(x) dx$. Is it an inner product?
 - (ii) Given a set of vectors $\{1, \sin(\frac{2\pi}{T}x), \cos(\frac{2\pi}{T}x), \sin(\frac{4\pi}{T}x), \sin(\frac{4\pi}{T}x)\}$, calculate their products defined in (i).

3 Gram Schmidt process

- 1. In an inner product space $(\mathcal{X}, \mathcal{F}, \langle \cdot \rangle)$, given $x, y \in \mathcal{X}$. $\underline{x \text{ is orthogonal to } y}$ if $\langle x, y \rangle = 0$, denoted as $x \perp y$.
- 2. A set S is orthogonal if $\forall (x, y \in S, x \neq y), x \perp y$.
- 3. A set S is <u>orthonormal</u> if S is orthogonal and $\forall x \in S, ||x|| = 1$.
- 4. In a finite dimensional vector space, any set of linear independent vectors can be completed to a basis.
- 5. In an inner product space $(\mathcal{X}, \mathcal{F}, <\cdot>)$, given $S \subset \mathcal{X}$ a subset, the orthogonal complement of S is

$$S^{\perp} := \{ x \in \mathcal{X} \mid \langle x, y \rangle = 0, \, \forall y \in S \}.$$

6. In an inner product space $(\mathcal{X}, \mathcal{F}, <\cdot>)$, given a set of linear independent vectors $Y = \{y^1, y^2, \ldots, y^n\}$. There exists an orthogonal set $V = \{v^1, v^2, \ldots, v^n\}$ such that span $\{V\} = \text{span}\{Y\}$. V can be obtained by

$$k = 1,$$
 $v^1 = y^1,$
$$k \ge 2,$$
 $v^k = y^k - \sum_{i=1}^{k-1} \frac{\langle y^k, v^i \rangle}{\langle v^i, v^i \rangle} v^i.$

- 7. Ex:
 - In $(\mathbb{R}^3, \mathbb{R})$, demonstrate how Gram Schmidt process works.

• In $(\mathbb{R}^3, \mathbb{R})$, given a set $Y = \left\{ y^1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ y^2 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \right\}$ and $\langle x, y \rangle = x^\top y$, find an orthogonal set V such that span $\{V\} = \operatorname{span}\{Y\}$. Complete set V to a basis. What if you are asked to complete set V to an orthogonal basis.

• $\mathcal{X} = \{q(x) \mid \text{polynomials in } x \text{ with real coefficients of order } n, n \leq 3, x \in \mathbb{R}\}, \mathcal{F} = \mathbb{R}.$ The inner product is defined as $< f, g > := \int_{-1}^{1} f(x)g(x) \, \mathrm{d}x$. Given a set of vectors $\{1, x, x^2\}$, apply Gram Schmidt process to find an orthogonal set V, and then find V^{\perp} .

4 Projection theorem

1. Projection Theorem: $(\mathcal{X}, \mathbb{R}, <\cdot, \cdot>)$ is a **finite dimensional inner product space**, and $M \subset \mathcal{X}$ is a subspace of \mathcal{X} . Then $\forall x \in \mathcal{X}$, there exists a unique $\hat{x} \in M$ such that $\|x - \hat{x}\| = \inf_{y \in M} \|x - y\|$. Moreover, \hat{x} is characterized by $(x - \hat{x}) \perp M$.

2. Normal equation:

In a finite dimensional inner product space $(\mathcal{X}, \mathbb{R}, <\cdot>)$, $M = \operatorname{span}\{y^1, y^2, \dots, y^k\}$ is a subspace of \mathcal{X} where $\{y^1, y^2, \dots, y^k\}$ is a linear independent set. We need to find $\hat{x} = \arg\min_{m \in M} \|x - m\|$.

Suppose \hat{x} takes the form

$$\hat{x} = \alpha_1 y^1 + \alpha_2 y^2 + \dots + \alpha_k y^k,$$

then the coordinates of \hat{x} expressed in the basis $\{y^1,\,y^2,\,\ldots,\,y^k\}$, i.e., $\alpha=\begin{bmatrix}\alpha_1\\\vdots\\\alpha_k\end{bmatrix}$ is given by the normal

equation

$$\begin{bmatrix} \langle y^1, y^1 \rangle & \cdots & \langle y^k, y^1 \rangle \\ \vdots & \ddots & \vdots \\ \langle y^1, y^k \rangle & \cdots & \langle y^k, y^k \rangle \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{bmatrix} = \begin{bmatrix} \langle x, y^1 \rangle \\ \vdots \\ \langle x, y^k \rangle \end{bmatrix}$$

- 3. A function $P: \mathcal{X} \to M$ is an orthogonal projection operator if $P(x) = \arg\min_{m \in M} \|x m\|$.
- 4. Ex:
 - In $(\mathbb{R}^{2\times 2}, \mathbb{R})$, the inner product is defined as $< A, B> = \operatorname{trace}(A^{\top}QB)$, where $Q = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$, and $M = \operatorname{span}\left\{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\right\}$. Given $x = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, find $\hat{x} = \arg\min_{y \in M} \|x y\|$.

• $\mathcal{X} = \{f \mid f : \mathbb{R} \to \mathbb{R}\}, \ \mathcal{F} = \mathbb{R}$. Define inner product $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt$. $M = \text{span}\{1, t, t^2\}, x = e^t, \text{ find } \hat{x} = \arg\min_{y \in M} \|x - y\|$.

• In $(\mathbb{R}^n, \mathbb{R})$ with inner product defined in the standard way, i.e., $< x, y >= x^\top y$. $M = \mathrm{span}\left\{v^1, v^2, \ldots, v^k\right\}$, $k \leq n$. Find the matrix representation of the othogonal projector that projects $x \in \mathcal{X}$ onto $\hat{x} \in M$. Use the standard basis $E = \{e^1, e^2, \ldots, e^n\}$ for $(\mathbb{R}^n, \mathbb{R})$, and basis $V = \{v^1, v^2, \ldots, v^k\}$ for subspace M. What if we also express the projection \hat{x} in standard basis $E = \{e^1, e^2, \ldots, e^n\}$? What if V is an orthonormal set?