Devoir à la maison n° 14

À rendre le 14 mars

Le but de ce problème est de démontrer la formule de Stirling (James Stirling, mathématicien écossais 1692 - 1770), qui donne un équivalent de n! quand n tend vers $+\infty$.

Cette formule est à la fois géométrique, arithmétique et analytique, de par la présence dans son expression de π , n! et e, respectivement.

Partie I

1) Calculer pour tout $n \in \mathbb{N}^*$ l'intégrale $I_n = \int_1^n \ln(t) dt$.

On étudie dans la suite un encadrement de I_n à l'aide de considérations géométriques.

À cet effet on désigne par k un entier naturel non nul et on considère dans le plan rapporté à un repère orthonormal direct :

- la courbe représentative $\mathscr C$ de la fonction ln;
- le segment Γ_k dont les extrémités sont les points de \mathscr{C} d'abscisses k et k+1;
- la tangente T_k à \mathscr{C} au point d'abscisse k;
- la tangente T_{k+1} à \mathscr{C} au point d'abscisse k+1.

Tous ces différents objets sont représentés sur la figure suivante.

- 2) a) On considère les fonctions f et g de \mathbb{R} dans \mathbb{R} dont les graphes sont T_k et T_{k+1} . Montrer que pour tout $x \in \left[k, k + \frac{1}{2}\right]$, $\ln x \leqslant f(x)$.
 - **b)** De même, montrer que pour tout $x \in \left[k + \frac{1}{2}, k + 1\right]$, $\ln x \leqslant g(x)$.
 - c) Que peut-on dire de la position de T_k par rapport à \mathscr{C} pour les points d'abscisse comprise entre k et $k+\frac{1}{2}$? De la position de T_{k+1} par rapport à \mathscr{C} pour les points d'abscisse comprise entre $k+\frac{1}{2}$ et k+1? Justifier en utilisant les questions précédentes et non pas la figure, qui est peut-être fausse.

- 3) Montrer que Γ_k se situe sous \mathscr{C} pour les points d'abscisse comprise entre k et k+1.
- 4) a) La figure précédente fait intervenir trois trapèzes, encadrant la courbe \mathscr{C} . En utilisant l'aire de ces trapèzes et l'aire sous la courbe \mathscr{C} , montrer l'encadrement :

$$\frac{1}{2}(\ln k + \ln(k+1)) \leqslant \int_{k}^{k+1} \ln t \, \mathrm{d}t \leqslant \frac{1}{2}(\ln k + \ln(k+1)) + \frac{1}{8} \left(\frac{1}{k} - \frac{1}{k+1}\right).$$

b) En déduire que pour tout entier $n \in \mathbb{N}^*$,

$$\ln(n!) - \frac{1}{2}\ln(n) \leqslant I_n \leqslant \ln(n!) - \frac{1}{2}\ln(n) + \frac{1}{8}\left(1 - \frac{1}{n}\right).$$

- 5) On considère la suite $u_n = \ln(n!) \frac{1}{2}\ln(n)$.
 - a) Montrer que la suite $(I_n u_n)_{n \in \mathbb{N}}$ est croissante et majorée par $\frac{1}{8}$. Par conséquent cette suite converge vers une limite que nous noterons L.
 - **b)** Déduire des questions précédentes que $\frac{n^n\sqrt{n}}{\mathrm{e}^n n!} \xrightarrow[n \to +\infty]{} \mathrm{e}^{L-1}$, et enfin que $n! \sim \frac{n^n}{\mathrm{e}^n}\sqrt{n} \, \mathrm{e}^{1-L}$.

Partie II

Le but de cette partie est de calculer la valeur de $K=\mathrm{e}^{\,L-1}$ afin d'en déduire la formule de Stirling.

On pose à cet effet pour tout entier naturel $n: w_n = \int_0^{\frac{\pi}{2}} \sin^n(t) dt$.

6) a) À l'aide d'une intégration par parties, montrer que pour tout $n \in \mathbb{N}$,

$$w_{n+2} = (n+1) \int_0^{\frac{\pi}{2}} \sin^n(t) \cos^2(t) dt.$$

- **b)** En déduire, pour tout $n \in \mathbb{N}$, une relation entre w_{n+2} et w_n .
- c) Calculer w_0 .
- **d)** Montrer que pour tout $n \in \mathbb{N}$, $w_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \times \frac{\pi}{2}$.
- 7) On se propose de déterminer un équivalent de w_n quand n tend vers $+\infty$, c'est-à-dire une suite v_n telle que $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ soient équivalentes.
 - a) Établir l'égalité $w_{n+2} \leqslant w_{n+1} \leqslant w_n$.
 - **b)** En déduire que w_n et w_{n+1} sont deux suites équivalentes, i.e. $w_n \sim w_{n+1}$.
 - c) Établir que $((n+1)w_{n+1}w_n)$ est constante : que vaut cette constante ?
 - d) Donner un équivalent de w_n .
- 8) Avec les deux questions 6) et 7), montrer que $\frac{(2n)!}{2^{2n}(n!)^2}\sqrt{n\pi} \xrightarrow[n \to +\infty]{} 1$.
- 9) Déterminer la valeur de K avec ce résultat et de la formule établie à la fin de la partie I : $n! \sim K \frac{n^n}{e^n} \sqrt{n}$.
- 10) En déduire enfin un équivalent de n! quand n tend vers $+\infty$ (formule de Stirling).