ACTL2102 Week 2 - Discrete Markov Chains II

Tadhg Xu-Glassop 2025T3

Some final definitions

Definition (Recurrent)

A state of a Markov chain is said to be recurrent if we will *eventually* transition back to that state.

Definition (Positive Recurrent)

A state of a Markov chain is said to be positive recurrent if it is recurrent and the expected time to return to the state is finite.

Definition (Transient)

A state of a Markov chain is said to be transient if it is possible we never return back to that state.

Some more final definitions

Definition (Period)

The period of state i, denoted d(i), is the GCD of all $n \ge 1$ for which $P_{ii}^n > 0$.

Intuitively, the period is the GCD of the lengths of the paths we can take to return to state *i*.

Some more final definitions

Definition (Period)

The period of state i, denoted d(i), is the GCD of all $n \ge 1$ for which $P_{ii}^n > 0$.

Intuitively, the period is the GCD of the lengths of the paths we can take to return to state *i*.

Definition (Periodic & Aperiodic)

If d(i) > 1, then state i is *periodic* with period d(i). If d(i) = 1, then state i is said to be *aperiodic*.

Some more final definitions

Definition (Period)

The period of state i, denoted d(i), is the GCD of all $n \ge 1$ for which $P_{ii}^n > 0$.

Intuitively, the period is the GCD of the lengths of the paths we can take to return to state i.

Definition (Periodic & Aperiodic)

If d(i) > 1, then state i is *periodic* with period d(i). If d(i) = 1, then state i is said to be *aperiodic*.

Definition (Ergodic)

A chain is said to be ergodic if it is aperiodic and positive recurrent.

Limiting Probabilities

We are now interested in the long-term behaviour of Markov chains.

Definition (Limiting Probability)

The limiting probability of a state j from state i is $\lim_{n\to\infty} P_{ij}^n$.

Interpreting this, it is the long-run proportion of time we will spend in state j given we are currently in state i.

Issues with Limiting Probabilities

For some chains, the limiting probabilities are dependent on the initial state i.

For example, consider

$$\mathbf{P} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Clearly, $\lim_{n\to\infty} P_{ij}^n = 1$ if i = j and 0 if $i \neq j$.

Issues with Limiting Probabilities

For some chains, the limiting probabilities are dependent on the initial state i.

For example, consider

$$\mathbf{P} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Clearly, $\lim_{n\to\infty} P_{ij}^n = 1$ if i = j and 0 if $i \neq j$.

But, let's say we start in state 1 with probability p and state 2 with probability 1-p. Then, what is the long-run proportion of time we will spend in state 1?

Stationary Probabilities

Theorem

For an irreducible (one class; all states communicate), ergodic (aperiodic, positive recurrent) Markov chain, the limiting probabilities $\lim_{n\to\infty} P_{ij}^n$ exist and are independent of i.

So, the process "forgets" where we started in the long run, and the probability we are in a state becomes the same.

Example:

$$\begin{pmatrix} 0.2 & 0.8 & 0 & 0 \\ 0 & 0.1 & 0.3 & 0.6 \\ 1 & 0 & 0 & 0 \\ 0 & 0.5 & 0.5 & 0 \end{pmatrix}^{\infty} =$$

Stationary Probabilities

Theorem

For an irreducible (one class; all states communicate), ergodic (aperiodic, positive recurrent) Markov chain, the limiting probabilities $\lim_{n\to\infty} P_{ij}^n$ exist and are independent of i.

So, the process "forgets" where we started in the long run, and the probability we are in a state becomes the same.

Example:

$$\begin{pmatrix} 0.2 & 0.8 & 0 & 0 \\ 0 & 0.1 & 0.3 & 0.6 \\ 1 & 0 & 0 & 0 \\ 0 & 0.5 & 0.5 & 0 \end{pmatrix}^{\infty} = \begin{pmatrix} 0.254 & 0.339 & 0.203 & 0.203 \\ 0.254 & 0.339 & 0.203 & 0.203 \\ 0.254 & 0.339 & 0.203 & 0.203 \\ 0.254 & 0.339 & 0.203 & 0.203 \end{pmatrix}.$$

Stationary Probabilities (cont.)

Given an irreducible ergodic Markov chain with transition matrix \mathbf{P} , let $\pi_j = \lim_{n \to \infty} P_{ij}^n$, and $\pi = \begin{pmatrix} \pi_1 & \pi_2 & \dots & \pi_k \end{pmatrix}$. Then,

$$\pi = \pi P$$
.

So, we can find the limiting probabilities by solving the above under the constraint $\sum_{i=1}^{k} \pi_k = 1$.

Stationary Probabilities (cont.)

Given an irreducible ergodic Markov chain with transition matrix \mathbf{P} , let $\pi_j = \lim_{n \to \infty} P_{ij}^n$, and $\boldsymbol{\pi} = \begin{pmatrix} \pi_1 & \pi_2 & \dots & \pi_k \end{pmatrix}$. Then,

$$\pi = \pi P$$
.

So, we can find the limiting probabilities by solving the above under the constraint $\sum_{i=1}^{k} \pi_k = 1$.

If the initial state is chosen such that $\mathbb{P}(X_0 = i) = \pi_i$, then $\mathbb{P}(X_n = i) = \pi_i \quad \forall n \geq 1$.

 \rightarrow This is why we also call these limiting probabilities stationary probabilities.

Mean Transitions to Return

Proposition (Mean time between visits to state j)

Let m_j be the expected number of transitions until a Markov chain returns to state j, given it is currently in state j. Then, given they exist and are unique,

$$m_j = \frac{1}{\pi_j}$$

This is because (for large n; in the long run), $\mathbb{P}(X_n = i) = \pi_i$, so the distribution of number of transitions to reenter state i is a geometric distribution with parameter π_i .