The interpolating polynomial can also be defined in Maple using the *CurveFitting* package and the call *PolynomialInterpolation*.

The next step is to calculate a remainder term or bound for the error involved in approximating a function by an interpolating polynomial.

Theorem 3.3 Suppose x_0, x_1, \ldots, x_n are distinct numbers in the interval [a, b] and $f \in C^{n+1}[a, b]$. Then, for each x in [a, b], a number $\xi(x)$ (generally unknown) between x_0, x_1, \ldots, x_n , and hence in (a, b), exists with

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x - x_0)(x - x_1) \cdots (x - x_n), \tag{3.3}$$

where P(x) is the interpolating polynomial given in Eq. (3.1).

There are other ways that the error term for the Lagrange polynomial can be expressed, but this is the most useful form and the one that most closely agrees with the standard Taylor polynomial error form.

Proof Note first that if $x = x_k$, for any k = 0, 1, ..., n, then $f(x_k) = P(x_k)$, and choosing $\xi(x_k)$ arbitrarily in (a, b) yields Eq. (3.3).

If $x \neq x_k$, for all k = 0, 1, ..., n, define the function g for t in [a, b] by

$$g(t) = f(t) - P(t) - [f(x) - P(x)] \frac{(t - x_0)(t - x_1) \cdots (t - x_n)}{(x - x_0)(x - x_1) \cdots (x - x_n)}$$
$$= f(t) - P(t) - [f(x) - P(x)] \prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)}.$$

Since $f \in C^{n+1}[a,b]$, and $P \in C^{\infty}[a,b]$, it follows that $g \in C^{n+1}[a,b]$. For $t = x_k$, we have

$$g(x_k) = f(x_k) - P(x_k) - [f(x) - P(x)] \prod_{i=0}^{n} \frac{(x_k - x_i)}{(x - x_i)} = 0 - [f(x) - P(x)] \cdot 0 = 0.$$

Moreover,

$$g(x) = f(x) - P(x) - [f(x) - P(x)] \prod_{i=0}^{n} \frac{(x - x_i)}{(x - x_i)} = f(x) - P(x) - [f(x) - P(x)] = 0.$$

Thus $g \in C^{n+1}[a,b]$, and g is zero at the n+2 distinct numbers x,x_0,x_1,\ldots,x_n . By Generalized Rolle's Theorem 1.10, there exists a number ξ in (a,b) for which $g^{(n+1)}(\xi) = 0$. So

$$0 = g^{(n+1)}(\xi) = f^{(n+1)}(\xi) - P^{(n+1)}(\xi) - [f(x) - P(x)] \frac{d^{n+1}}{dt^{n+1}} \left[\prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)} \right]_{t=\xi}.$$
 (3.4)

However P(x) is a polynomial of degree at most n, so the (n+1)st derivative, $P^{(n+1)}(x)$, is identically zero. Also, $\prod_{i=0}^{n} [(t-x_i)/(x-x_i)]$ is a polynomial of degree (n+1), so

$$\prod_{i=0}^{n} \frac{(t-x_i)}{(x-x_i)} = \left[\frac{1}{\prod_{i=0}^{n} (x-x_i)}\right] t^{n+1} + \text{(lower-degree terms in } t\text{)},$$

and

$$\frac{d^{n+1}}{dt^{n+1}} \prod_{i=0}^{n} \frac{(t-x_i)}{(x-x_i)} = \frac{(n+1)!}{\prod_{i=0}^{n} (x-x_i)}.$$

Equation (3.4) now becomes

$$0 = f^{(n+1)}(\xi) - 0 - [f(x) - P(x)] \frac{(n+1)!}{\prod_{i=0}^{n} (x - x_i)},$$

and, upon solving for f(x), we have

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} (x - x_i).$$

The error formula in Theorem 3.3 is an important theoretical result because Lagrange polynomials are used extensively for deriving numerical differentiation and integration methods. Error bounds for these techniques are obtained from the Lagrange error formula.

Note that the error form for the Lagrange polynomial is quite similar to that for the Taylor polynomial. The nth Taylor polynomial about x_0 concentrates all the known information at x_0 and has an error term of the form

$$\frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)^{n+1}.$$

The Lagrange polynomial of degree n uses information at the distinct numbers x_0, x_1, \ldots, x_n and, in place of $(x - x_0)^n$, its error formula uses a product of the n + 1 terms $(x - x_0)$, $(x - x_1), \ldots, (x - x_n)$:

$$\frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n).$$

Example 3 In Example 2 we found the second Lagrange polynomial for f(x) = 1/x on [2, 4] using the nodes $x_0 = 2$, $x_1 = 2.75$, and $x_2 = 4$. Determine the error form for this polynomial, and the maximum error when the polynomial is used to approximate f(x) for $x \in [2, 4]$.

Solution Because $f(x) = x^{-1}$, we have

$$f'(x) = -x^{-2}$$
, $f''(x) = 2x^{-3}$, and $f'''(x) = -6x^{-4}$.

As a consequence, the second Lagrange polynomial has the error form

$$\frac{f'''(\xi(x))}{3!}(x-x_0)(x-x_1)(x-x_2) = -(\xi(x))^{-4}(x-2)(x-2.75)(x-4), \quad \text{for } \xi(x) \text{ in } (2,4).$$

The maximum value of $(\xi(x))^{-4}$ on the interval is $2^{-4} = 1/16$. We now need to determine the maximum value on this interval of the absolute value of the polynomial

$$g(x) = (x - 2)(x - 2.75)(x - 4) = x^3 - \frac{35}{4}x^2 + \frac{49}{2}x - 22.$$

Because

$$D_x\left(x^3 - \frac{35}{4}x^2 + \frac{49}{2}x - 22\right) = 3x^2 - \frac{35}{2}x + \frac{49}{2} = \frac{1}{2}(3x - 7)(2x - 7),$$

the critical points occur at

$$x = \frac{7}{3}$$
, with $g\left(\frac{7}{3}\right) = \frac{25}{108}$, and $x = \frac{7}{2}$, with $g\left(\frac{7}{2}\right) = -\frac{9}{16}$.

Hence, the maximum error is

$$\frac{f'''(\xi(x))}{3!}|(x-x_0)(x-x_1)(x-x_2)| \le \frac{1}{16\cdot 6} \left| -\frac{9}{16} \right| = \frac{3}{512} \approx 0.00586.$$