Econometrics March 5, 2023

Topic 12: Non-convex Learning

by Sai Zhang

Key points:

Disclaimer: The note is built on Prof. Jinchi Lv's lectures of the course at USC, DSO 607, High-Dimensional Statistics and Big Data Problems.

12.1 L0 Penalized Likelihood

Consider the model selection problem of choosing a parameter vector $\boldsymbol{\theta}$ that maximizes the penalized likelihood

$$\mathcal{L}_n(\boldsymbol{\theta}) - \lambda \|\boldsymbol{\theta}\|_0 \tag{12.1}$$

where the L_0 -norm $\|c\|_0$ denotes the **the number of nonzero components**, and $\lambda \ge 0$ is still the regularization parameter.

The L_0 -penalized likelihood method is equivalent to **the best subset selection**

- given $\|\theta_0\|_0 = m$, the solution to Problem 12.1 is the **best subset** that has the **largest** maximum likelihood among all subsets of size m
- then, choose the model size m among the p size-m best subsets $(1 \le m \le p)$ by maximizing 12.1

hence it's a combinatorial problem, computationally complex.

 L_0 -Penalized Empirical Risk Minimization More generally, consider a unified approach of L_0 -penalized empirical risk minimization for variable selection:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^p} \left\{ \hat{R}(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_0 \right\}$$
 (12.2)

where $\hat{R}(\theta)$ is the empirical risk function, which could be of different forms

- **negative log-likelihood loss**: equivalent t L₀-penalized likelihood
- squared error (quadratic) loss: L_0 -penalized least squares
- selection via **RSS** (residual sum of squares): for the adjusted R^2

$$R_{\text{adj}}^2 = 1 - \frac{n-1}{n-d} \frac{RSS_d}{TSS}$$

it's clear that $\max R_{\mathrm{adj}}^2 \Leftrightarrow \min \log \left(\frac{RSS_d}{n-d}\right)$, and since $\frac{RSS_d}{n} \simeq \sigma^2$, then

$$n\log\frac{RSS_d}{n-d}\simeq\frac{RSS_d}{\sigma^2}+d+n(\log\sigma^2-1)$$

which shows that adjusted R^2 method is approximately equivalent to 12.2 with $\lambda = 1/2$

- generalized corss-validation (GCV), corss-validation (CV)
- <u>risk inflation factor (RIC)</u>: use $\lambda = \log p$, adjusting for the inflation of prediction risk caused by searching \overline{p} variables¹
- <u>AIC</u> $(\lambda = 1)$, <u>BIC</u> $(\lambda = \frac{\log n}{2})$

12.1.1 Properties of L0-Regularization Methods

risk bounds for model selection (Barron et al., 1999): for a family of models $\{S_m : m \in \mathcal{M}_p\}$, The penalty term generally takes the form of

$$\frac{\kappa L_m D_m}{n}$$

where

- κ : a positive constant
- $D_m = |S_m|$: the model dimension, account for the difficulty to estimate <u>within</u> the model S_m
- $L_m \ge 1$: a weight that satisfies: $\sum_{m \in \mathcal{M}_p} \exp(-L_m D_m) \le 1$, accounting for the noise due to <u>the size</u> of the list of models

hence, in the linear model, the L_0 -regularized estimator $\hat{\beta}$ satisfies that

$$\mathbb{E}\left[n^{-1}\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta}_0\|_2^2\right] \leq C\inf_{m \in \mathcal{M}_v} \left\{\min_{\boldsymbol{\beta} \in \text{model } S_m} \left[n^{-1}\|\mathbf{X}\boldsymbol{\beta} - \mathbf{X}\boldsymbol{\beta}_0\|_2^2\right] + \frac{\kappa L_m D_m}{n}\right\}$$

where *the tradeoff*: approximation error $n^{-1} \| \mathbf{X} \hat{\boldsymbol{\beta}} - \mathbf{X} \boldsymbol{\beta}_0 \|_2^2$, and the cost of searching $\frac{\kappa L_m D_m}{n}$

computational complexity L_0 –regularization methods are appealing w.r.t. risk properties, but in high-dimensional settings, the computation is infeasible (combinatorial), and discontinuous, non-convex penalty function $\lambda \|\boldsymbol{\beta}\|_0$

12.1.2 Generalizations of L0-Regularization Methods

Consider continuous or convex relaxation of the L_0 -regularization method

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \hat{R}(\boldsymbol{\beta}) + \sum_{j=1}^p p_{\lambda} \left(|\beta_j| \right) \right\}$$
 (12.3)

where, as in Problem 12.2

- $\hat{R}(\beta)$: the empirical risk function
- $p_{\lambda}(t), t \ge 0$: the nonnegative penalty function indexed by the regularization parameter $\lambda \ge 0$ with $p_{\lambda}(0) = 0$

$$\max_{1 \le j \le p} |Z_i| \simeq \sqrt{2 \log p}$$

for
$$(Z_1, \dots, Z_p)' \sim \mathcal{N}(0, \mathbf{I}_p)$$

 $^{^{1}}$ The log p is, once again, from the fact that for Gaussian random variables

Choices of penalty function In general, the choices of penalty function can be up for the researchers to decide. Fan and Li (2001) proposed 3 criteria for penalty function selection

- Sparsity: sets small estimated coefficients to 0, for variable selection and reduction of model complexity
- **Approximate unbiasedness**: nearly unbiased, especially when the true coefficient β_i is large
- Continuity: continuous in data to reduce instability in model selection

References

Andrew Barron, Birgé Lucien, and Massart Pascal. Risk bounds for model selection via penalization. *Probability theory and related fields*, 113(3):301–413, 1999.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle properties. *Journal of the American statistical Association*, 96(456):1348–1360, 2001.