

"Measure the most you can and show the least you can"

- Danique Roefs

Table of Content What will We Learn Today?

- 1. Why Data Visualization?
- 2. Simple Data Visualization Using Pandas

Why Data Visualization?

You're analyzing petabyte of datas

You want to implement the best algorithm or method

We can say data are ...

- 1. Source of truth
- 2. Exist everywhere
- 3. Usually abstract (unstructured)
- 4. Need a medium to reveal the "mystery in their mind"

Data Visualization are ..

- 1. The graphic representation of data
- How we can deliver a message to our audience in the best way possible.
- 3. The combination of science and art

Why is it important?

Amplifies your messaging

Provides clearer understanding

Aids decision analysis

The goals is for ...

1. Exploratory

to uncover a relationship in the data to analyze data

2. Explanatory

to communicate a relationship in the data to present data

It can shows different perspective!

Check the table on the right. What do you think about the data?

I		11		III		IV	
X	У	X	У	X	У	X	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Mean & Variance

$$\mu X = 9.0$$
, $\sigma X = 11$
 $\mu Y = 7.5$, $\sigma Y = 4.125$

Linear Regression

$$Y = 0.5X + 3$$

 $R^2 = 0.67$

It can shows different perspective!

Datasets from the same statistics can be vastly different and prevent wrong actionables

Effective Visualization Must choose the right fit for the data

- 1. Define the purpose of the visualization
- 2. Define important metrics you want to show
- 3. Choose the right representation

Visualize Proportion

Convey difference/similarity of parts in a whole

Stacked Bar Graph

E.g. "Proportion of transactions per store"

Treemap

E.g. "Proportion of transactions per area"

Pie Chart

E.g. "Proportion of transactions per gender customer"

Visualize Comparison

Convey difference/similarity between categories

E.g. "Number of user per segment"

E.g. "Number of purchase happened per product"

Visualize Over Time Data

Convey changes/trends in a time period

E.g. "# of transacting users per month"

E.g. "# of transacting users in each store per month"

E.g. "# of transacting users in each products per month"

Scan for more Visualization!

Simple Visualization Using Pandas

Download the Data Here

Link: https://www.kaggle.com/zynicide/wine-reviews

Data Set Name: winemag-data-130k-v2.csv

Size: 52.91 MB

Link: https://www.kaggle.com/gpreda/iris-dataset

Data Set Name: iris.csv

Size: 4.35 kB

Thank YOU

