$V_{\rm bb(AZ)}$

 $V_{\rm bb(on)}$

one

40

4.8

21

43

5.0 ... 24

two parallel

20

7.3

21

٧

٧

 $\mathsf{m}\Omega$

Α

Α

Smart Two Channel Highside Power Switch

Features

- Overload protection
- Current limitation
- Short-circuit protection
- Thermal shutdown
- Overvoltage protection (including load dump)
- Reverse battery protection¹⁾
- Undervoltage and overvoltage shutdown with auto-restart and hysteresis
- Open drain diagnostic output
- Open load detection in ON-state
- CMOS compatible input
- Loss of ground and loss of V_{bb} protection
- Electrostatic discharge (ESD) protection

Application

- $^{\bullet}$ μC compatible power switch with diagnostic feedback for 12 V DC grounded loads
- Most suitable for resistive and lamp loads
- Replaces electromechanical relays, fuses and discrete circuits

General Description

N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS® technology. Fully protected by embedded protection functions.

Product Summary

Overvoltage Protection

active channels:

 R_{ON}

I_{L(NOM)}

I_{L(SCr)}

Operating voltage

On-state resistance

Nominal load current

Current limitation

Pin Definitions and Functions

Pin	Symbol	Function
1,10,	V_{bb}	Positive power supply voltage. Design the
11,12,		wiring for the simultaneous max. short circuit
15,16,		currents from channel 1 to 2 and also for low
19,20		thermal resistance
3	IN1	Input 1,2, activates channel 1,2 in case of
7	IN2	logic high signal
17,18	OUT1	Output 1,2, protected high-side power output
13,14	OUT2	of channel 1,2. Design the wiring for the max.
		short circuit current
4	ST1	Diagnostic feedback 1,2 of channel 1,2,
8	ST2	open drain, low on failure
2	GND1	Ground 1 of chip 1 (channel 1)
6	GND2	Ground 2 of chip 2 (channel 2)
5,9	N.C.	Not Connected
6	GND2	Ground 2 of chip 2 (channel 2)

Pin configuration (top view)

V_{bb}	1	•	20	О	V_{bb}
GND1	2		19	9	V_{bb}
IN1	3		18	8	OUT1
ST1	4		1	7	OUT1
N.C.	5		10	6	V_{bb}
GND2	6		1	5	V_{bb}
IN2	7		14	4	OUT2
ST2	8		13	3	OUT2
N.C.	9		12	2	V_{bb}
V_{bb}	10		1	1	V_{bb}

Semiconductor Group

With external current limit (e.g. resistor R_{GND} =150 Ω) in GND connection, resistor in series with ST connection, reverse load current limited by connected load.

Block diagram

Two Channels; Open Load detection in on state;

Leadframe connected to pin 1, 10, 11, 12, 15, 16, 19, 20

Maximum Ratings at $T_j = 25$ °C unless otherwise specified

Parameter	Symbol	Values	Unit
Supply voltage (overvoltage protection see page 4)	$V_{ m bb}$	43	V
Supply voltage for full short circuit protection $T_{j,\text{start}} = -40 \dots +150^{\circ}\text{C}$	$V_{ m bb}$	24	V

Maximum Ratings at $T_j = 25$ °C unless otherwise specified

Parameter	Symbol	Values	Unit	
Load current (Short-circuit current, see page	je 5)	I _L	self-limited	Α
Load dump protection ²⁾ $V_{\text{LoadDump}} = U_{\text{A}} + V_{\text{S}}$ $R_{\text{I}^{3)}} = 2 \Omega$, $t_{\text{d}} = 200 \text{ ms}$; IN = low or high, each channel loaded with $R_{\text{L}} = 2.8 \Omega$,	$V_{Loaddump}^{4)}$	60	V	
Operating temperature range		Tj	-40+150	°C
Storage temperature range		$T_{ m stg}$	-55+150	
Power dissipation (DC) ⁵⁾	$T_{\rm a} = 25^{\circ}{\rm C}$:	P_{tot}	3.8	W
(all channels active)	$T_{\rm a} = 85^{\circ}{\rm C}$:		2.0	
Electrostatic discharge capability (ESD) (Human Body Model)		V _{ESD}	1.0	kV
Input voltage (DC)		V _{IN}	-10 +16	V
Current through input pin (DC)		I _{IN}	±2.0	mA
Current through status pin (DC)	I ST	±5.0		
see internal circuit diagram page 8				

Thermal Characteristics

Parameter and Conditions	Symbol	Values			Unit	
			min	typ	max	
Thermal resistance						
junction - soldering point ^{5),6)}	each channel:	R_{thjs}			11	K/W
junction - ambient ⁵⁾	one channel active:	R _{thja}		40		
	all channels active:			33		

Electrical Characteristics

Parameter and Conditions, each of the two channels	Symbol		Values	;	Unit
at T _j = 25 °C, V _{bb} = 12 V unless otherwise specified		min	typ	max	

Load Switching Capabilities and Characteristics

On-state resista	nce (V _{bb} to OUT)					
$I_L = 2 A$	each channel,	$T_{\rm j} = 25^{\circ}{\rm C}$:	R_{ON}	 36	40	mΩ
		$T_{\rm j} = 150^{\circ}{\rm C}$:		67	75	
	two parallel channels,	<i>T</i> _j = 25°C:		18	20	

Supply voltages higher than $V_{bb(AZ)}$ require an external current limit for the GND and status pins, e.g. with a 150 Ω resistor in the GND connection and a 15 k Ω resistor in series with the status pin. A resistor for input protection is integrated.

 $R_{\rm I}$ = internal resistance of the load dump test pulse generator

 $^{^{4)}}$ $V_{Load\ dump}$ is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839

Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70μm thick) copper area for V_{bb} connection. PCB is vertical without blown air. See page 14

Soldering point: upper side of solder edge of device pin 15. See page 14

Parameter and Conditions	s, each of the two channels	Symbol	Values			Unit
at T _j = 25 °C, V_{bb} = 12 V unless of	otherwise specified		min	typ	max	
Nominal load current	one channel active:	I _{L(NOM)}	4.4	4.8		Α
two p	arallel channels active:		6.7	7.3		
Device on PCB ⁵⁾ , $T_a = 85^\circ$	C, <i>T</i> _j ≤ 150°C					
Output current while GND oup; $V_{bb} = 30 \text{ V}$, $V_{IN} = 0$, see		I _{L(GNDhigh)}			10	mA
Turn-on time ⁷⁾	IN	<i>t</i> on	80	180	350	μs
Turn-off time	IN	$t_{ m off}$	80	250	450	
$R_{\rm L} = 12 \Omega, T_{\rm j} = -40+150^{\circ}$						
Slew rate on 7)		d V/dt _{on}	0.1		1	V/µs
10 to 30% V_{OUT} , $R_{L} = 12 \Omega$	$T_{\rm j}$ =-40+150°C:					
Slew rate off ⁷⁾ 70 to 40% V_{OUT} , $R_L = 12 \Omega$,	-d V/dt _{off}	0.1		1	V/μs
Operating Parameters						
Operating voltage ⁸⁾	$T_i = -40 + 150$ °C:	$V_{ m bb(on)}$	5.0		24	V

Operating voltage ⁸⁾	$T_{\rm j}$ =-40+150°C:	$V_{ m bb(on)}$	5.0		24	V
Undervoltage shutdown	$T_{\rm j}$ =-40+150°C:	$V_{ m bb(under)}$	3.5		5.0	V
Undervoltage restart	<i>T</i> _j =-40+25°C:	V _{bb(u rst)}			5.0	V
	$T_{\rm j} = +150^{\circ}{\rm C}$:				7.0	
Undervoltage restart of charge page 13	oump T _j =-40+150°C:	V _{bb(ucp)}		5.6	7.0	V
Undervoltage hysteresis $\Delta V_{\text{bb(under)}} = V_{\text{bb(u rst)}} - V_{\text{bb(under)}}$		$\Delta V_{ m bb(under)}$		0.2		V
Overvoltage shutdown	$T_{\rm j}$ =-40+150°C:	$V_{ m bb(over)}$	24		34	V
Overvoltage restart	$T_{\rm j}$ =-40+150°C:	V _{bb(o rst)}	23			V
Overvoltage hysteresis	$T_{\rm j}$ =-40+150°C:	$\Delta V_{ m bb(over)}$		0.5		V
Overvoltage protection ⁹⁾	<i>T</i> _j =-40+150°C:	$V_{\rm bb(AZ)}$	42	47		V
$I_{bb} = 40 \text{ mA}$						
Standby current, all channels off	$T_{\rm j}$ =25°C:	I _{bb(off)}		16	40	μΑ
$V_{IN} = 0$	$T_{\rm j}$ =150°C:			24	50	
Leakage output current (include	d in I _{bb(off)})	I _{L(off)}			20	μΑ
Vin = 0						
Operating current ¹⁰⁾ , $V_{IN} = 5V$, 7	j =-40+150°C	_				
$I_{\text{GND}} = I_{\text{GND1}} + I_{\text{GND2}},$	one channel on:	<i>I</i> _{GND}		1.8 3.6	4 8	mA
	two channels on:			3.0	0	

⁷⁾ See timing diagram on page 11.

⁸⁾ At supply voltage increase up to $V_{bb} = 5.6 \text{ V}$ typ without charge pump, $V_{OUT} \approx V_{bb} - 2 \text{ V}$

⁹⁾ see also $V_{ON(CL)}$ in circuit diagram on page 8.

¹⁰⁾ Add I_{ST} , if $I_{ST} > 0$

Parameter and Conditions, each of the two channels	Symbol		Values	;	Unit
at T _j = 25 °C, V_{bb} = 12 V unless otherwise specified		min	typ	max	
Protection Functions					
Initial peak short circuit current limit, (see timing diagrams, page 11)					
each channel, T_j =-40°C:	I _{L(SCp)}	52	65	75	Α
τ _j =25°C:		42	53	63	
$T_{\rm j}$ =+150°C:		23	31	43	
two parallel channels	twice	the curre	nt of one	channel	
Repetitive short circuit current limit,					
$T_{\rm j} = T_{\rm jt}$ each channel	I _{L(SCr)}		21		Α
two parallel channels			21		
(see timing diagrams, page 11)					
Initial short circuit shutdown time $T_{j,start} = -40$ °C:	t _{off(SC)}		3		ms
$T_{\rm j,start} = 25^{\circ}\rm C$:			2.5		
(see page 10 and timing diagrams on page 11)					
Thermal overload trip temperature	T_{jt}	150			°C
Thermal hysteresis	$\Delta T_{\rm jt}$		10		K
Reverse Battery	1	T		1	
Reverse battery voltage 11)	$-V_{ m bb}$			32	V
Drain-source diode voltage ($V_{out} > V_{bb}$) $I_L = -4.8 \text{ A}, T_j = +150^{\circ}\text{C}$	-V _{ON}		600		mV
Diagnostic Characteristics					
Open load detection current, (on-condition)					
each channel, $T_i = -40$ °C:	I _{L (OL)}	100		1200	mΑ
$T_{\rm i} = 25^{\circ}{\rm C}$:	(-)	100		1000	
$T_{\rm i} = +150$ °C:		100		1000	
two parallel channels	twice	the curre	nt of one	channel	
Open load detection voltage ¹²) $T_i = -40+150$ °C:	V _{OUT(OL)}	2	3	4	V
Internal output pull down (OUT to GND), $V_{OUT} = 5 V$ $T_j = -40+150$ °C:	R _O	4	10	30	kΩ

_

Requires a 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 3 and circuit page 8).

¹²⁾ External pull up resistor required for open load detection in off state.

Parameter and Conditions, each of the two channels	Symbol		Values	;	Unit
at T _j = 25 °C, V_{bb} = 12 V unless otherwise specified		min	typ	max	
Input and Status Feedback ¹³⁾					
Input resistance (see circuit page 8)	R _I	2.5	3.5	6	kΩ
Input turn-on threshold voltage $T_j = -40+150$ °C:	$V_{IN(T+)}$	1.7		3.3	V
Input turn-off threshold voltage $T_j = -40+150$ °C:	V _{IN(T-)}	1.5			V
Input threshold hysteresis	$\Delta V_{\text{IN(T)}}$		0.5		V
Off state input current $V_{IN} = 0.4 \text{ V}$: $T_i = -40+150$ °C:	I _{IN(off)}	1		50	μΑ
On state input current $V_{IN} = 5 \text{ V}$: $T_j = -40+150$ °C:	I _{IN(on)}	20	50	90	μΑ
Delay time for status with open load after switch off (see timing diagrams, page 12), $T_i = -40+150$ °C:	t _{d(ST OL4)}	100	520	1000	μs
Status invalid after positive input slope	$t_{\sf d(ST)}$		250	600	μs
(open load) $T_i = -40+150$ °C:	,				
Status output (open drain)					
Zener limit voltage $T_j = -40+150$ °C, $I_{ST} = +1.6$ mA:	$V_{\rm ST(high)}$	5.4	6.1		V
ST low voltage $T_{j} = -40 + 25$ °C, $I_{ST} = +1.6$ mA:	$V_{\rm ST(low)}$			0.4	
$T_{\rm j}$ = +150°C, $I_{\rm ST}$ = +1.6 mA:				0.6	

 $^{^{\}rm 13)}\,$ If ground resistors ${\rm R}_{\rm GND}$ are used, add the voltage drop across these resistors.

Truth Table

Channel 1	Input 1	Output 1	Status 1
Channel 2	Input 2	Output 2	Status 2
	level	level	BTS 733L1
Normal	L	L	Н
operation	Н	Н	Н
Open load	L	Z	H (L ¹⁴⁾)
	Н	Н	Ĺ
Short circuit	L	Н	L ¹⁵)
to V _{bb}	Н	Н	H (L ¹⁶⁾)
Overtem-	L	L	Н
perature	Н	L	L
Under-	L	L	Н
voltage	Н	L	Н
Overvoltage	L	L	Н
	Н	L	Н

L = "Low" Level

X = don't care

Z = high impedance, potential depends on external circuit

H = "High" Level Status signal valid after the time delay shown in the timing diagrams

Parallel switching of channel 1 and 2 is easily possible by connecting the inputs and outputs in parallel. The status outputs ST1 and ST2 have to be configured as a 'Wired OR' function with a single pull-up resistor.

Terms

Leadframe (V_{bb}) is connected to pin 1,10,11,12,15,16,19,20

External R_{GND} optional; two resistors R_{GND1}, R_{GND2} = 150 Ω or a single resistor R_{GND} = 75 Ω for reverse battery protection up to the max. operating voltage.

¹⁴⁾ With external resistor between output and Vbb

An external short of output to V_{bb} in the off state causes an internal current from output to ground. If R_{GND} is used, an offset voltage at the GND and ST pins will occur and the $V_{ST low}$ signal may be errorious.

¹⁶⁾ Low resistance to $V_{\rm bb}$ may be detected by no-load-detection

SIEMENS

Input circuit (ESD protection), IN1 or IN2

ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

Status output, ST1 or ST2

ESD-Zener diode: 6.1 V typ., max 5.0 mA; $R_{ST(ON)}$ < 375 Ω at 1.6 mA, ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

overvoltage output clamp, OUT1 or OUT2

 V_{ON} clamped to $V_{ON(CL)} = 47 \text{ V typ.}$

Overvoltage protection of logic part GND1 or GND2

 $V_{Z1} = 6.1 \text{ V typ.}, V_{Z2} = 47 \text{ V typ.}, R_{I} = 3.5 \text{ k}\Omega \text{ typ.}, R_{GND} = 150 \Omega, R_{ST} = 15 \text{ k}\Omega \text{ nominal.}$

Reverse battery protection

 $R_{GND} = 150 \Omega$, $R_{I} = 3.5 k\Omega$ typ,

Temperature protection is not active during inverse current operation.

SIEMENS

Open-load detection, OUT1 or OUT2

ON-state diagnostic condition:

 $V_{\text{ON}} < R_{\text{ON}} \cdot I_{L(\text{OL})}$; IN high

OFF-state diagnostic condition:

 $V_{OUT} > 3 \text{ V typ.}$; IN low

GND disconnect

In case of IN = high is $V_{OUT} \approx V_{IN} - V_{IN}(T_+)$. Due to $V_{GND} > 0$, no $V_{ST} = low$ signal available.

GND disconnect with GND pull up

If VGND > VIN - VIN(T+) device stays off Due to VGND > 0, no VST = low signal available.

T_j [°C]

SIEMENS

Typ. on-state resistance

 $R_{ON} = f(V_{bb}, T_i)$; $I_L = 2 \text{ A}$, $I_N = \text{high}$

RON [mOhm]

Typ. open load detection current

 $I_{L(OL)} = f(V_{bb}, T_j); \text{ IN = high}$

Typ. standby current

 $I_{bb(off)} = f(T_j)$; $V_{bb} = 9...24 \text{ V}$, IN1,2 = low

Typ. initial short circuit shutdown time

 $t_{off(SC)} = f(T_{j,start}); V_{bb} = 12 V$

toff(SC) [msec]

Timing diagrams

Both channels are symmetric and consequently the diagrams are valid for channel 1 and channel 2

Figure 1a: V_{bb} turn on:

Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition:

Figure 2b: Switching a lamp:

The initial peak current should be limited by the lamp and not by the initial short circuit current $I_{L(SCp)}=53$ A typ. of the device.

Figure 3a: Turn on into short circuit: shut down by overtemperature, restart by cooling

Heating up of the chip may require several milliseconds, depending on external conditions ($t_{off(SC)}$ vs. $T_{i,start}$ see page 10)

Figure 3b: Turn on into short circuit: shut down by overtemperature, restart by cooling (two parallel switched channels 1 and 2)

SIEMENS

ST1 and ST2 have to be configured as a 'Wired OR' function ST1/2 with a single pull-up resistor.

Figure 4a: Overtemperature: Reset if $T_j < T_{jt}$

Figure 5a: Open load: detection in ON-state, turn on/off to open load

The status delay $td(ST\ OL4)$ is for differentiation between the failure modes "open load in ON-state" and "overtemperature"; $td(ST\ OL4)$ only appears after turn off to open load.

Figure 5b: Open load: detection in ON-state, open load occurs in on-state

SIEMENS

Figure 5c: Open load: detection in ON- and OFF-state (with REXT), turn on/off to open load

Figure 6a: Undervoltage:

Figure 6b: Undervoltage restart of charge pump

IN = high, normal load conditions. Charge pump starts at $V_{bb(ucp)}$ = 5.6 V typ.

Figure 7a: Overvoltage:

Package and Ordering Code

Standard P-DSO-20-9

Ordering Code

BTS733L1 Q67060-S7008-A2

Definition of soldering point with temperature T_s : upper side of solder edge of device pin 15.

Printed circuit board (FR4, 1.5mm thick, one layer 70 μ m, 6cm² active heatsink area) as a reference for max. power dissipation P_{tot}, nominal load current I_{L(NOM)} and thermal resistance R_{thja}

