

Revisão 02

Exercícios

1. Assinale a alternativa que contém as respectivas geometrias e polaridades das espécies química abaixo.

$$SO_2$$
; SO_3 ; H_2O e H_2Be

- a) SO_2 : angular e polar; SO_3 : piramidal e polar; H_2O : angular e polar e H_2Be : linear e apolar.
- **b)** SO₂: angular e polar; SO₃: trigonal plana e apolar; H₂O: angular e polar e H₂Be: angular e polar.
- c) SO₂: angular e polar; SO₃: trigonal plana e apolar; H₂O: angular e polar e H₂Be: linear e apolar.
- d) SO_2 : linear e apolar; SO_3 : piramidal e polar; H_2O : linear e apolar e H_2Be : angular e polar.
- e) SO_2 : angular e apolar; SO_3 : piramidal e polar; H_2O : angular e apolar e H_2Be : angular e polar.
- 2. A chuva ácida é um fenômeno químico resultante do contato entre o vapor de água existente no ar, o dióxido de enxofre e os óxidos de nitrogênio. O enxofre é liberado, principalmente, por veículos movidos a combustível fóssil; os óxidos de nitrogênio, por fertilizantes. Ambos reagem com o vapor de água, originando, respectivamente, os ácidos sulfuroso, sulfídrico, sulfúrico e nítrico.

Assinale a opção que apresenta, respectivamente a fórmula desses ácidos

- H_2SO_3 , H_2S , H_2SO_4 , HNO_3 .
- **b)** $H_2SO_3, H_2SO_4, H_2S, HNO_2.$
- c) HSO₄, HS, H₂SO₄, HNO₃.
- d) HNO₃, H₂SO₄, H₂S, H₂SO₃.
- e) H₂S, H₂SO₄, H₂SO₃, HNO₃.

3. A sibutramina, cuja estrutura está representada, é um fármaco indicado para o tratamento da obesidade e seu uso deve estar associado a uma dieta e exercícios físicos.

Com base nessa estrutura, pode-se afirmar que a sibutramina:

- é uma base de Lewis, porque possui um átomo de nitrogênio que pode doar um par de elétrons para ácidos.
- b) é um ácido de Brönsted-Lowry, porque possui um átomo de nitrogênio terciário.
- **c)** é um ácido de Lewis, porque possui um átomo de nitrogênio capaz de receber um par de elétrons de um ácido.
- d) é um ácido de Arrhenius, porque possui um átomo de nitrogênio capaz de doar próton.
- e) é uma base de Lewis, porque possui um átomo de nitrogênio que pode receber um par de elétrons de um ácido.
- **4.** O bicarbonato de sódio é usado em dois tipos diferentes de extintores: o extintor de espuma química e o extintor de pó químico seco. No primeiro, o bicarbonato de sódio reage com o ácido sulfúrico que, em contato, produzem a espuma e CO₂ conforme a reação não balanceada abaixo.

$$\mathsf{NaHCO_3} + \mathsf{H_2SO_4} \rightarrow \mathsf{Na_2SO_4} + \mathsf{H_2O} + \mathsf{CO_2}$$

É correto afirmar que, após o balanceamento, os valores dos coeficientes estequiométricos da esquerda para a direita são, respectivamente,

- **a)** 2, 1, 1, 1 e 2.
- **b)** 1, 1, 1, 2 e 1.
- **c)** 1, 1, 1, 1 e 1.
- **d)** 2, 2, 2, 2 e 2.
- **e)** 2, 1, 1, 2 e 2.

5. Os combustíveis de origem fóssil, como o petróleo e o gás natural, geram um sério problema ambiental, devido à liberação de dióxido de carbono durante o processo de combustão. O quadro apresenta as massas molares e as reações de combustão não balanceadas de diferentes combustíveis.

Combustível	Massa molar (g/mol)	Reação de combustão (não balanceada)
Metano	16	$CH_{4(g)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$
Acetileno	26	$C_2H_{2(g)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$
Etano	30	$C_2H_{6(g)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$
Propano	44	$C_3H_{8(g)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$
Butano	58	$C_4H_{10(g)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$

Considerando a combustão completa de 58 g de cada um dos combustíveis listados no quadro, a substância que emite mais CO_2 é o

- a) etano.
- b) butano.
- c) metano.
- d) propano.
- e) acetileno.

Gabarito

1. C

Teremos:

angular e polar

triangular e apolar ou trigonal plana e apolar

$$\mu = 0$$
H—Be—H

angular e polar

linear e apolar

2. A

 H_2SO_3 : ácido sulfuroso H_2S : ácido sulfídrico H_2SO_4 : ácido sulfúrico HNO_3 : ácido nítrico

3. A

A sibutramina é uma base de Lewis, pois possui um átomo de nitrogênio que pode compartilhar um par de elétrons para ácidos:

sibutramina

4. E

 $2NaHCO_3 + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O + 2CO_2$

Coeficientes estequiométricos após o balanceamento: 2:1:1:2:2.

5. E

$$\begin{split} & n_{C_2H_6} = \frac{58 \text{ g}}{30 \text{ g} \cdot \text{mol}^{-1}} = \text{1,93 mol} \\ & C_2H_{6(g)} + \frac{7}{2} \text{ O}_{2(g)} \rightarrow 2 \text{ CO}_{2(g)} + 3 \text{ H}_2\text{O}_{(g)} \\ & 1 \text{ mol} - - - 2 \text{ mol} \\ & \text{1,93 mol} - - - \boxed{3,87 \text{ mol}} \end{split}$$

$$\begin{split} & \text{n}_{\text{C}_3\text{H}_8} = \frac{58 \text{ g}}{44 \text{ g} \cdot \text{mol}^{-1}} = \text{1,32 mol} \\ & \text{C}_3\text{H}_{8(g)} + 5 \text{ O}_{2(g)} \rightarrow 3 \text{ CO}_{2(g)} + 4 \text{ H}_2\text{O}_{(g)} \\ & \text{1 mol} - - - 3 \text{ mol} \\ & \text{1,32 mol} - - - \boxed{3,96 \text{ mol}} \end{split}$$

$$\begin{split} &n_{C_4 H_{10}} = \frac{58 \text{ g}}{58 \text{ g} \cdot \text{mol}^{-1}} = 1 \text{ mol} \\ &C_4 H_{10(g)} + {}^{13}\!\!/_{\!2} O_{2(g)} \to 4 \text{ CO}_{2(g)} + 5 \text{ H}_2 O_{(g)} \\ &1 \text{ mol} \qquad \qquad \boxed{4 \text{ mol}} \end{split}$$

Conclusão: o acetileno (C₂H₂) emite mais CO₂.