Analiza Danych Eksperymentalnych

Sprawozdanie - Laboratorium 2

Regresja liniowa, kwartet Anscombe'a

Michał Kordasz 241289 Łukasz Śmierzchała 222276

31 października 2021

Termin zajęć: Środa 11:15 TN Data laboratorium: 20 października 2021 Prowadzący: Dr inż. Krzysztof Halawa

Spis treści

1	Dane	3
2	Obliczenia wartości średniej, wariancji i współczynnika korelacji Pearsona 2.1 Excel	3
3	Modele liniowe serii danych 3.1 Excel	4 4
4	Wnioski	4

Tabela 1: Dane

I		II		III		IV	
\mathbf{X}	У	\mathbf{X}	У	\mathbf{X}	У	\mathbf{x}	У
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.1	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.1	4	5.39	19	12.5
12	10.84	12	9.13	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89

Tabela 2: Wartości Statystyczne

	I	II	III	IV
Pearson:	0.816	0.816	0.816	0.817
Wariancja:	3.752	3.752	3.748	3.748
Średnia:	7.501	7.501	7.500	7.501

1 Dane

Do przeprowadzenia ćwiczenia wykorzystane zostały 4 serie danych, określane także jako kwarter Anscombe'a. Dane przedstawione zostały w tabeli 1.

2 Obliczenia wartości średniej, wariancji i współczynnika korelacji Pearsona

Wykonano podstawą analizę danych poprzez obliczenie średniej wartości, wariancji i współczynnika korelacji Pearsona dla każdej z serii danych.

Wyniki zaprezentowano w tabeli 2

2.1 Excel

Średnia wartość obliczono przy pomocy funkcji AVERAGE.

Wariancję obliczono przy pomocy funkcji VAR.P.

Współczynnik korelacji Pearsona obliczono przy pomocy funkcji PEARSON.

2.2 Python

Wartość średnią oraz wariancję obliczono przy pomocy biblioteki numpy korzystając z funkcji mean oraz var. Współczynnik korelacji Pearsona obliczono przy pomocy biblioteki scipy korzystając z funkcji stats.pearsonr.

Tabela 3: Współczynniki funkcji liniowej

3 Modele liniowe serii danych

Dla każdej z serii danych zdefiniowano model liniowy w postaci

$$y = \beta_1 x + \beta_0$$

Współczynniki β_1 oraz β_0 zostały wyznaczone korzystając z metody najmniejszych kwadratów. Wartości współczynnik zostały przedstawione w tabeli 3.

Wykresy danych oraz funkcji liniowych zostały przedstawione na rys. 1.

3.1 Excel

Współczynniki zostały wyznaczone z wykorzystaniem funkcji SLOPE.

3.2 Python

Współczynniki zostały wyznaczone przy pomocy biblioteki *scipy* korzystając z funkcji *li-nalg.lstsq*.

4 Wnioski

Zarówno wartości statystyczne (średnia, wariancja, współczynnika korelacji Pearsona) oraz modele liniowe dla wszystkich czterech zestawów danych, są w przybliżeniu identyczne. Mimo to, graficzne reprezentacje obrazują jak bardzo różnych są charakterystyki danych. Wartości statystyczne i modele nie zawsze są wystarczające do precyzyjnego opisania danych, a graficzna reprezentacja danych nie powinna być pomijana podczas ich analizy.

Rysunek 1: Modele Liniowe