## ChatGPT's results in Vietnamese National High School Graduation Examination: Mathematics

ChatGPT's answer (Câu trả lời)

## Authors:

Xuan-Quy DAO, EIU, quy.dao@eiu.edu.vn

Prompt (Câu hỏi)

## **2021 Illustration Examination** ChatGPT Feb 13 Version

| Câu 1: Có bao nhiều cách chọn ra 3 học sinh từ một nhóm có 5 học sinh? A. 5! B. A^3_5 C. C^3_5 D. 5                                                                     | Để chọn ra 3 học sinh từ một nhóm có 5 học sinh, chúng ta có thể sử dụng công thức tổ hợp chập 3 của 5 như sau:  C^3_5 = (5!)/[(3!)(5-3)!] = (5 x 4 x 3)/(3 x 2 x 1) = 10  Vậy có tổng cộng 10 cách chọn ra 3 học sinh từ một nhóm có 5 học sinh.  Đáp án là C. C^3_5.                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Câu 2: Cho cấp số cộng (u_n) có u_1 = 1 và u_2 = 3. Giá trị của u_3 bằng A. 6 B. 9 C. 4 D. 5                                                                            | Vì (u_n) là một cấp số cộng với u_1 = 1 và u_2 = 3, ta có thể tìm công sai d của cấp số cộng bằng cách tính hiệu của hai số liên tiếp:  d = u_2 - u_1 = 3 - 1 = 2  Sau đó, ta có thể tìm giá trị của u_3 bằng cách sử dụng công thức tổng của cấp số cộng với n = 3:  u_3 = u_2 + (3 - 2)d = 3 + d = 3 + 2 = 5  Vậy giá trị của u_3 là 5.  Đáp án là D. 5 |
| Câu 3: Cho hàm số $f(x)$ có bảng biến thiên như sau: $x \rightarrow \inf y -2 \ 0 \ 2 + \inf y $ $f'(x) + 0 - 0 + 0 - $ $f(x) \rightarrow \inf y \ 1 - 1 \ 1 - \inf y $ | Ta thấy rằng hàm số $f(x)$ có đạo hàm $f'(x)$ bằng $0$ trên khoảng $(-2, 0, 2)$ , và $f'(x)$ âm trên $(-\infty, -2)$ và dương trên $(2, \infty)$ . Do đó, hàm số $f(x)$ đạng giảm trên $(-\infty, -2)$ và tăng trên $(2, \infty)$ .                                                                                                                       |

| Hàm số đã cho đồng biến trên khoảng nào, trong các khoảng dưới đây? A. (-2;2) B. (0;2) C. (-2;0) D. (2;+\infty)                                                                                                                      | Ta cần xác định sự đơn điệu của hàm số trên khoảng (-2, 0) và (0, 2).  Trên khoảng (-2, 0), f'(x) âm, do đó f(x) sẽ giảm. Trên khoảng (0, 2), f'(x) dương, do đó f(x) sẽ tăng.  Vậy, hàm số f(x) đồng biến trên khoảng (-2, 0) và khoảng (0, 2).  Đáp án là A. (-2;2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Câu 4: Cho hàm số $f(x)$ có bảng biến thiên như sau: $x \rightarrow \inf y - 2 + \inf y$ $f'(x) + 0 - 0 + f(x) \rightarrow \inf y - 1 - 3 + \inf y$ Điểm cực đại của hàm số đã cho là  A. $x = -3$ B. $x = 1$ C. $x = 2$ D. $x = -2$ | Ta có bảng biến thiên của hàm số $f(x)$ như sau: $\begin{array}{c ccc} x & -\infty & -2 & 2 & +\infty \\ hline f'(x) & + & 0 & - & 0 \\ f(x) & -\infty & 1 & -3 & +\infty \\ \begin{array} & 1 & -3 & +\infty \\ hinfty & 1 & -3 & +\infty \\ \begin{array} & 1 & -3 & +\infty \\ hinfty & 1 & -3 & +\infty \\ \begin{array} & 1 & -3 & +\infty \\ hinfty & 1 & -3 & +\infty \\ \begin{array} & 1 & -3 & +\infty \\ hinfty & 1 & -3 & +\infty \\ \begin{array} & 1 & -3 & +\infty \\ hinfty & 1 & -3 & +\infty \\ \begin{array} & 1 & -3 & +\infty \\ hinfty & 1 & -3 & +\infty \\ \begin{array} & 1 & -3 & -3 & +\infty \\ \begin{array} & 1 & -3 & -3 & +\infty \\ \begin{array} & 1 & -3 & -3 & +\infty \\ \begin{array} & 1 & -3 & -3 & +\infty \\ \begin{array} & 1 & -3 & -3 & -3 & +\infty \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ \begin{array} & 1 & -3 & -3 & -3 & -3 \\ arra$ |
| Câu 5: Cho hàm số có bảng xét dấu của đạo hàm như sau:  x -\infty -2 1 3 5 +\infty  f'(x) + 0 - 0 + 0 - 0 +  Hàm số f(x) có bao nhiều điểm cực trị?  A. 4  B. 1  C. 2  D. 3                                                          | Để hàm số \$f(x)\$ có điểm cực trị, đạo hàm \$f'(x)\$ của hàm số phải đổi dấu trước và sau điểm đó. Từ bảng xét dấu của \$f'(x)\$, ta thấy rằng hàm số có 2 điểm cực trị: một điểm cực đại tại \$x=-2\$ và một điểm cực tiểu tại \$x=1\$. Vậy đáp án đúng là \$\boxed{\textbf{(C) }2}\$.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Câu 6: Tiệm cận đứng của đồ thị hàm số $y = \frac{2x+4}{x-1}$ là đường thẳng A. $x=1$ B. $x=-1$ C. $x=2$ D. $x=-2$                                                                                                                   | Để tìm tiệm cận đứng của đồ thị hàm số \$y=\frac{2x+4}{x-1}\$, ta cần xác định giới hạn của hàm số này khi \$x\$ tiến đến giới hạn của miền xác định.  Ta thấy rằng miền xác định của hàm số là \$x \neq 1\$. Khi đó, ta có: \$\$\\lim_{x\to 1^+} \frac{2x+4}{x-1} = +\infty\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|                                                                                                                                                             | $\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Câu 7: Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?  A. $y = -x^4+2x^2-1$ B. $y=x^4-2x^2-1$ C. $y = x^3-3x^2-1$ D. $y=-x^3+3x^2-1$ | Hình vẽ không được cung cấp, vì vậy chúng ta không thể xác định hàm số nào có dạng đường cong như hình vẽ được đề cập.                                                                                 |
| Câu 8: Đồ thị của hàm số $y = x^3 - 3x + 2$ cắt trục tung tại điểm có tung độ bằng A. 0 B. 1 C. 2 D2                                                        | Để tìm điểm cắt trục tung, ta thay $x = 0$ vào hàm số và tính giá trị của y: $y = 0^3 - 3(0) + 2 = 2$ Vậy, đồ thị của hàm số $y = x^3 - 3x + 2$ cắt trục tung tại điểm có tung độ bằng 2. Đáp án là C. |
| Câu 9: Với a là số thực dương tùy ý, log_3(9a) bằng A. 1/2+log_3 a B. 2log_3 a C. (log_3 a)^2 D. 2+log_3 a                                                  | Sử dụng tính chất logarit: \$\log_a (bc) = \log_a b + \log_a c\$, ta có: \$\$\log_3 (9a) = \log_3 (3^2 a) = \log_3 3^2 + \log_3 a = 2 + \log_3 a\$\$ Vậy đáp án là \$\mathbf{(D)}.\$                   |
| Câu 10: Đạo hàm của hàm số $y = 2^x là$ A. $y' = 2^x ln 2$ B. $y' = 2^x$ C. $y' = 2^x / ln 2$ D. $y' = x 2^x (x-1)$                                         | Đạo hàm của hàm số \$y=2^x\$ theo quy tắc đạo hàm của hàm số mũ là: $\$\frac{d}{dx}2^x = \ln2\cdot 2^x$ \$ Vậy đáp án là A. \$y'=2^x\ln2\$.                                                            |
| Câu 11: Với a là số thực dương tùy ý, \sqrt {a^3} bằng A. a^6 B. a^{3/2} C. a^{2/3} D. a^{1/6}                                                              | Ta có: $\sqrt{a^3} = (a^3)^{1/2} = a^{3/2}$<br>Vậy đáp án đúng là: $\sqrt{B}$ \$\angle \$a^{3/2}\$.                                                                                                    |

| Câu 12: Nghiệm của phương trình 5^{2r-4} = 25 là<br>A. x=3                                          | Ta có \$5^{2r-4}=25=5^2\$. Do đó, ta có \$2r-4=2 \Leftrightarrow r=3\$. Vậy nghiệm của phương trình là \$r=3\$, đáp án là A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. x=2                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C. x=1<br>D. x=-1                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| D. X1                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Câu 13: Nghiệm của phương trình log_2(3x) = 3 là                                                    | Ta có: $\log_2(3x) = 3 \le 3x = 2^3 = 8 \le x = 8/3$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A. $x = 3$                                                                                          | Vậy nghiệm của phương trình là $x = 8/3$ . Đáp án C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| B. x=2                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C. $x=8/3$                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| D. $x = 1/2$                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Câu 14: Cho hàm số $f(x) = 3x^2-1$ . Trong các khẳng định sau,                                      | Để tích phân hàm số $f(x)=3x^2-1$ theo biến $x$ , ta sử dụng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| khẳng định nào đúng?                                                                                | công thức tích phân đơn giản: \$\$\int x^n dx =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A. $\inf f(x) dx = 3x^3 - x + C$                                                                    | $\frac{x^{n+1}}{n+1} + C$ \$ với \$n\$ là một số thực khác -1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| B. $\forall x \in A$ int $f(x) dx = x^3 - x + C$                                                    | Åp dụng công thức này, ta có: $\begin{array}{c} \text{Ap dụng công thức này, ta có: } \\ \text{Ap dụng công thức này, ta có: } \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C. $\inf f(x) dx = (1/3) x^3 - x + C$                                                               | $(3x^2-1) dx \setminus \&= \inf 3x^2 dx - \inf 1 dx \setminus \&= 3 \inf x^2 dx - \inf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D. $\forall \text{int } f(x) dx = x^3 - C$                                                          | $dx \setminus &= 3 \cdot (x^3) \{3\} - x + C \setminus &= x^3 - x + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                     | \end{align*}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| , ,                                                                                                 | Vậy, đáp án đúng là \$\mathbf{(B)}.\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Câu 15: Cho hàm số $f(x) = \cos(2x)$ . Trong các khẳng định sau,                                    | Để tính tích phân của hàm số $f(x)=\cos(2x)$ , ta sử dụng công                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| khẳng định nào đúng?                                                                                | thức $\int \cos(ax) dx = \frac{1}{a} \sin(ax) + C$ , với \$a\$ là                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A. $\inf f(x) dx = (1/2) \sin(2x) + C$                                                              | hằng số. Áp dụng công thức này, ta có:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| B. $\int \inf f(x) dx = -(1/2) \sin(2x) + C$                                                        | $\int \int \cos(2x) dx = \left(1\right) \left(2\right) \sin(2x) + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C. $\int \int \int$ | Do đó, khẳng định đúng là: A. $\int dx = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| D. $\forall \inf f(x) dx = -2 \sin(2x) + C$                                                         | $\sin(2x) + C$ \$.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Câu 16: Nếu \int^2_1 f(x) dx = 5 và \int^3_2 f(x) dx = -2 thì                                       | Ta có:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\int \int dx  dx  dx$                                                                              | $\begin{array}{l} \left( \frac{1}{2} \right) & \left( \frac{1}$ |
| A. 3                                                                                                | $f(x) dx \setminus &= (-2) + 5 \setminus &= 3. \setminus \{align^*\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| B. 7                                                                                                | Vậy đáp án chính xác là (A) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C10                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| D7                                                                                                  | m /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Câu 17: Tích phân \int^2_1 x^3 dx bằng                                                              | Ta có:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A. 15/3                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| B. 17/4                                                             | $\left  \frac{1 \times 2_1 \times 3 dx \&=}{} \right $                                    |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| C. 7/4                                                              | $\left[ \frac{x^4}{4}\right]_{1^2} \ \&= \frac{2^4}{4} - $                                |
| D. 15/4                                                             | $\frac{1^4}{4} \ \& = \frac{16 - 1}{4} \ \& = \frac{15}{4}$                               |
|                                                                     | \end{align*}                                                                              |
|                                                                     | Vậy đáp án là D. 15/4.                                                                    |
| Câu 18: Số phức liên hợp của số phức z = 3 + 2ilà                   | Đáp án đúng là A.                                                                         |
| A. $\langle \text{overline}\{z\} = 3-2i$ .                          | Số phức liên hợp của số phức \$z = a+bi\$ là số phức                                      |
| B. $\operatorname{overline}\{z\} = 2+3i$                            | $\$ \\ \( \)\ overline{z} = a - \( \)bi\$. Trong trường hợp này, \\$a=3\\$ và \\$b=2i\\$, |
| C. $\operatorname{overline}\{z\} = -3 + 2i$                         | vậy ta có:                                                                                |
| D. $\langle overline\{z\} = -3-2i$                                  | \$\overline{z} = 3 - 2i\$\$                                                               |
| Câu 19: Cho hai số phức $z = 3 + i và w = 2 + 3i$ . Số phức $z - w$ | Số phức z-w được tính bằng cách trừ phần thực của z cho phần                              |
| bằng                                                                | thực của w, và trừ phần ảo của z cho phần ảo của w. Ta có: \$\$z-                         |
| A. 1+4i                                                             | w = (3+i) - (2+3i) = 1 - 2i\$ Vậy đáp án là (B) 1-2i.                                     |
| B. 1-2i                                                             |                                                                                           |
| C. 5+4i                                                             |                                                                                           |
| D. 5-2i                                                             |                                                                                           |
| Câu 20: Trên mặt phẳng tọa độ, điểm biểu diễn số phức (3-2i) có     | Điểm biểu diễn số phức \$z = 3-2i\$ trên mặt phẳng tọa độ                                 |
| tọa độ là                                                           | chính là điểm có tọa độ \$(\operatorname{Re}(z),                                          |
| A. (2;3)                                                            | $\operatorname{Im}(z)$ \$. Ta có $\operatorname{coperatorname}(Re)(z) = 3$ và$            |
| B. (-2;3)                                                           | $\infty = -2$ . Vậy đáp án là (3; -2).                                                    |
| C. (3; 2)                                                           |                                                                                           |
| D. (3;-2)                                                           |                                                                                           |
| Câu 21: Một khối chóp có diện tích đáy bằng 6 và chiều cao          | Diện tích đáy của khối chóp là 6 và chiều cao là 5, vậy thể tích                          |
| bằng 5. Thể tích của khối chóp đó bằng                              | của khối chóp là:                                                                         |
| A. 10                                                               | V = (1/3) * diện tích đáy * chiều cao = (1/3) * 6 * 5 = 10                                |
| B. 30                                                               | Vậy đáp án là A. 10.                                                                      |
| C. 90                                                               |                                                                                           |
| D. 15                                                               |                                                                                           |
| Câu 22: Thể tích của khối hộp chữ nhật có ba kích thước 2;3;7       | Thể tích của khối hộp chữ nhật là tích của ba cạnh, do đó ta có:                          |
| bằng                                                                | $V = 2 \times 3 \times 7 = 42$ Vậy đáp án chính xác là (B) 42.                            |
| A. 14                                                               |                                                                                           |
| B. 42                                                               |                                                                                           |
| C. 126                                                              |                                                                                           |

| D. 12                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Câu 23: Công thức tính thể tích V của khối nón có bán kính đáy  | Đáp án đúng là D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| r và chiều cao h là                                             | Công thức tính thể tích của khối nón là:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A. $V = pi r h$                                                 | V = (1/3) * diện tích đáy * chiều cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B. $V = \pi^2 \ln r^2 h$                                        | Với nón có đáy là hình tròn bán kính r, diện tích đáy S = pi *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C. $V = (1/3) \text{ pi r h}$                                   | r^2, ta có:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| D. $V = (1/3) \pi^2 h$                                          | $V = (1/3) * pi * r^2 * h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                 | Vậy đáp án là D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Câu 24: Một hình trụ có bán kính đáy r= 4 cm và độ dài đường    | Diện tích xung quanh của một hình trụ có bán kính đáy \$r\$ và                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| sinh l = 3cm. Diện tích xung quanh của hình trụ đó bằng         | chiều cao \$h\$ là \$2\pi r h\$. Tuy nhiên, trong trường hợp này, ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A. 121 cm                                                       | chỉ biết độ dài đường sinh của hình trụ là \$1\$, không biết chiều                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B. 487 cm                                                       | cao. Vậy ta cần tính chiều cao \$h\$ của hình trụ trước.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C. 247 cm                                                       | Ta có: $l = \sqrt{h^2 + r^2}$ , suy ra $h^2 = l^2 - r^2 = 9$ . Vì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D. 367 cm                                                       | chiều cao là một số dương, nên \$h = 3\$.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                 | Vậy diện tích xung quanh của hình trụ là \$2\pi rh = 2\pi \cdot 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                 | \cdot 3 = 24\pi \approx 75.4\\$ (với \\$\pi\\$ được lấy đến hai chữ số                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                 | thập phân). Do đó, đáp án gần nhất là (C) 247 cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Câu 25: Trong không gian Oxyz, cho hai điểm A(1;1;2) và         | Trung điểm của đoạn thẳng AB có tọa độ là trung bình cộng của                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| B(3;1;0). Trung điểm của đoạn thẳng AB có tọa độ là             | các tọa độ của hai đỉnh A và B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A. (4;2;2)                                                      | Ta có:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| B. (2;1;1)                                                      | • Tọa độ trung điểm M của đoạn thẳng AB là ((1+3)/2;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C. (2;0;–2)                                                     | (1+1)/2; (2+0)/2) = (2; 1; 1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| D. (1;0;-1)                                                     | • Vậy đáp án đúng là B. (2;1;1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Câu 26: Trong không gian Oxyz, mặt cầu (S): $x^2+(y-1)^2 + z^2$ | Để tính bán kính của một mặt cầu có phương trình tổng quát                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| = 9 có bán kính bằng                                            | $(x-a)^2+(y-b)^2+(z-c)^2=r^2$ , ta thấy rằng bán kính \$r\$ chính                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A. 9                                                            | là căn bậc hai của \$r^2\$. Vì vậy, ta có: \$\$r=\sqrt{9}=3.\$\$ Vậy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| B. 3                                                            | đáp án chính xác là (B) 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C. 81                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| D. 6                                                            | Då ¥4 1 × 4: 2 1 × 4: 2 1 × 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |
| Câu 27: Trong không gian Oxyz, mặt phẳng nào dưới đây đi qua    | Để mặt phẳng đi qua điểm M(1,-2,1), ta có thể sử dụng phương                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| điểm M(1;-2;1) ?                                                | trình đường thẳng đi qua điểm M và vuông góc với mặt phẳng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| A. $(P_1)$ : $x + y + z = 0$                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| B. $(P_2)$ : $x + y + z - 1 = 0$<br>C. $(P_3)$ : $x - 2y + z = 0$<br>D. $(P_4)$ : $x + 2y + z - 1 = 0$                                                                                                    | cần tìm. Vector pháp tuyến của mặt phẳng cần tìm chính là vector hướng của đường thẳng đó.  Xét 4 phương trình đã cho, ta thấy phương trình (P3) có vector pháp tuyến là (1,-2,1) nên mặt phẳng đi qua M và có phương trình (P3).  Vậy đáp án chính xác là (C) (P3): x - 2y + z = 0.                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Câu 28: Trong không gian Oxyz, vecto nào dưới đây là một vecto chỉ phương của đường thẳng đi qua gốc tọa độ O và điểm M(1;-2;1)?  A. u_1 = (1;1;1)  B. u_2 = (1;2;1)  C. u_3 = (0;1;0)  D. u_4 = (1;-2;1) | Đường thẳng đi qua gốc tọa độ O và điểm M(1;-2;1) có véc tơ chỉ phương \$\overrightarrow{OM} = (1;-2;1)\$. Vậy đáp án là D.                                                                                                                                                                                                                                                                                                                                                                                                               |
| Câu 29: Chọn ngẫu nhiên một số trong 15 số nguyên dương đầu tiên. Xác suất để chọn được số chẵn bằng A.7/8 B.8/15 C. 7/15 D. 1/2                                                                          | Số số chẵn trong 15 số nguyên dương đầu tiên là 7 (2, 4, 6, 8, 10, 12, 14) và số số lẻ là 8 (1, 3, 5, 7, 9, 11, 13, 15). Do đó, xác suất để chọn được số chẵn là: số trường hợp chọn số chẵn / tổng số trường hợp.  Tổng số trường hợp là 15 (bởi vì có 15 số để chọn). Số trường hợp chọn số chẵn là 7 (bởi vì có 7 số chẵn để chọn). Vậy xác suất để chọn được số chẵn là 7/15.  Đáp án là C. 7/15.                                                                                                                                     |
| Câu 30: Hàm số nào dưới đây đồng biến trên R ?  A. y=\frac{x+1}{x-2}  B. y=x^2 + 2x  C. y = x^3 - x^2 + x  D. y = x^4 - 3x^2+2                                                                            | <ul> <li>Để hàm số đồng biến trên R thì đạo hàm của hàm số đó phải có dấu không đổi trên R.</li> <li>Đạo hàm của hàm số A là: \$y' = \frac{3}{(x-2)^2}\$ Dấu của \$y'\$ phụ thuộc vào \$(x-2)^2\$, do đó hàm số A không đồng biến trên R.</li> <li>Đạo hàm của hàm số B là: \$y' = 2x + 2\$ \$y'\$ luôn dương trên R, nên hàm số B đồng biến trên R.</li> <li>Đạo hàm của hàm số C là: \$y' = 3x^2 - 2x + 1\$ \$\Delta = (-2)^2 - 4.3.1 = -8 &lt; 0\$ vì vậy \$y'\$ không đổi dấu trên R, nên hàm số C không đồng biến trên R.</li> </ul> |

| Câu 31: Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số f(x)=x^4-2x^2+3 trên đoạn [0;2]. Tổng M+m bằng A. 11 B. 14 C. 5 D. 13 | <ul> <li>Đạo hàm của hàm số D là: \$y' = 4x^3 - 6x\$ \$y' = 2x(2x^2-3)\$, \$y'\$ có dấu không đổi trên \$(-\infty, - \sqrt{\frac{3}{2}})\cup (0,\sqrt{\frac{3}{2}})\$ và có dấu đối chiếu trên \$(-\sqrt{\frac{3}{2}}, +\infty)\$. Vì vậy, hàm số D đồng biến trên \$(-\infty, -\sqrt{\frac{3}{2}}, +\infty)\$. Vì vậy, hàm số D đồng biến trên \$(-\infty, -\sqrt{\frac{3}{2}}, +\infty)\$. Tuy nhiên, vì hàm số D không phải đa thức lẻ, nên hàm số D không đồng biến trên R. Vây, đáp án chính xác là: \$\boxed{\textbf{(B)} y = x^2 + 2x}\$.</li> <li>Để tìm giá trị lớn nhất và nhỏ nhất của hàm số \$f(x) = x^4 - 2x^2 + 3\$ trên đoạn \$[0;2]\$, ta có thể sử dụng đạo hàm và xét dấu của đạo hàm trên đoạn \$[0;2]\$.</li> <li>Ta có \$f'(x) = 4x^3 - 4x = 4x(x^2 - 1) = 4x(x-1)(x+1)\$.</li> <li>Khi đó, ta có bảng biến thiên của \$f(x)\$ trên đoạn \$[0;2]\$ như sau:</li> <li>\$x\$ \$0\$ \$1\$ \$2\$</li> <li>\$f'(x)\$ \$0\$ \$0\$ \$8\$</li> <li>\$f(x)\$ \$3\$ \$2\$ \$11\$</li> <li>Vây \$M = f(2) = 11\$ và \$m = f(0) = 3\$. Tổng \$M+m=11+3=14\$, đáp án là \$\mathbf{(B)}\$.</li> </ul> |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Câu 32: Tập nghiệm của bất phương trình 3^{4-x^2} \geq 27 là A. [-1;1] B. (-\infty;1] C. [-\sqrt{7};\sqrt{7}] D. [1;+\infty)                     | Bắt đầu giải bất phương trình: \$\$3^{4-x^2} \geq 27\$\$  Dưa cả hai vế của bất phương trình về cùng cơ số: \$\$3^{4-x^2} \geq 3^3\$\$  Áp dụng tính chất của logarit tự nhiên: \$\$4-x^2 \geq 3\$\$  Dưa hằng số qua một bên và chuyển dấu: \$\$x^2 \leq 1\$\$  Từ đó suy ra: \$-1 \leq x \leq 1\$.  Vậy tập nghiệm của bất phương trình là đáp án \$\mathbf{(A)}\ [-1;1]\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Câu 33: Nếu \int^3_1 [2f(x) + 1] $dx = 5$ thì int^3_1 f(x) $dx = 5$ | Ta có:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bằng                                                                | \begin{aligned} \int^3_1 [2f(x) + 1] dx &= $2 \cdot 1^3_1 f(x) dx + 1 \cdot 3 \cdot 1 = 1$ |
| A. 3                                                                | $\int \int dx dx = 2 \int dx dx + [x]_1^3 dx = 2 \int dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| B. 2                                                                | $dx + 2 \cdot dx = 2 \cdot d$                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C. 3/4                                                              | $Vi \setminus int^3 = [2f(x) + 1] dx = 5$ , ta có:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D. 3/2                                                              | $2 \cdot \int dx + 2 = 5 \cdot Rightarrow \cdot \int dx = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     | \frac{3}{2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     | Vậy đáp án là D. 3/2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Câu 34: Cho số phức $z = 3+4i$ . Môđun của số phức $(1+i)z$ bằng    | Ta có:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A. 50                                                               | (1+i)z = (1+i)(3+4i) = (3-4) + (3+4)i = -1 + 7i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| B. 10                                                               | Do đó, môđun của số phức (1+i)z là:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C. \sqrt{10}                                                        | $ (1+i)z  =  -1+7i  = \sqrt{(-1)^2 + 7^2} = \sqrt{50} = 5\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D. 5\sqrt{2}                                                        | Vậy đáp án là D. 5\sqrt{2}.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Câu 35: Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = AD =            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2 và $AA' = 2 \sqrt{2}$ (tham khảo hình bên).                       | Vì đường thẳng \$\Delta A'A\$ song song với đường chéo \$BD\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Góc giữa đường thẳng CA' và mặt phẳng () bằng                       | của hình hộp chữ nhật nên \$\Delta A'A\$ song song với mặt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A. 30^circ                                                          | phẳng \$(ABCD)\$ của hình hộp chữ nhật. Do đó, góc giữa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| B. 45^\circ                                                         | \$\Delta A'A\$ và mặt phẳng \$(A'BC'D')\$ là góc giữa đường                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C. 60^\circ                                                         | thẳng \$\Delta A'A\$ và mặt phẳng \$(BCD)\$.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D. 90^circ                                                          | Mặt phẳng \$(BCD)\$ có phương trình là \$x=2\$. Do đó, ta có thể                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                     | lấy điểm \$E\$ trên đường thẳng \$\Delta A'A\$ sao cho \$AE\$ song                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                     | song với trục \$Ox\$ và có tọa độ \$E(2,2\sqrt{2},0)\$. Khi đó,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     | vecto pháp tuyến của mặt phẳng \$(BCD)\$ là                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     | \$\overrightarrow{n}=(1,0,0)\$ và vecto chỉ phương của đường                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                     | thẳng \$\Delta A'A\$ là \$\overrightarrow{d}=(1,1,0)\$. Do đó, góc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                     | giữa đường thẳng \$\Delta A'A\$ và mặt phẳng \$(BCD)\$ là                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                     | \theta=\arccos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                     | \frac{\overrightarrow{n}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                     | \cdot\overrightarrow{d}}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                     | { \overrightarrow{n} \cdot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                     | \overrightarrow{d} }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                     | $= \arccos \frac{1 \cdot \cot 1 + 0 \cdot \cot 1 + 0 \cdot \cot 0}{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                     | {\sqrt{1^2+0^2+0^2}\cdot\sqrt{1^2+1^2+0^2}}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                                                                                                                                                                                                       | =\arccos\frac{1}{\sqrt{2}}= 45^\circ.\$\$ Vậy đáp án đúng là \$\boxed{\textbf{(B) }45^\circ}\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Câu 36: Cho hình chóp tứ giác đều S.ABCD có độ dài cạnh đáy bằng 2 và độ dài cạnh bên bằng 3 (tham khảo hình bên).  Khoảng cách từ S đến mặt phẳng (ABCD) bằng  A. \sqrt{7}  B. 1  C. 7  D. \sqrt{11} | <ul> <li>Để tính khoảng cách từ S đến mặt phẳng (ABCD), ta cần tìm đường thẳng vuông góc với mặt phẳng (ABCD) và đi qua S.</li> <li>Gọi G là trung điểm của AD và Bẻ là trung điểm của BC. Ta có: AG = GB = BẻD = 1.</li> <li>Khi đó, ta có: <ul> <li>Đường thẳng SG song song với đường thẳng (ABCD).</li> <li>G là trung điểm của SD.</li> <li>BẻG vuông góc với SD.</li> <li>AG = GB = BẻD = 1.</li> </ul> </li> <li>Do đó, ta có: SD = 2AG + GD = 2 + 1 = 3.</li> <li>Suy ra, diện tích đáy của hình chóp là: S_{ABCD} = AB . BC / 2 = 2.</li> <li>Khoảng cách từ S đến mặt phẳng (ABCD) là: h = \dfrac{3S_{ABCD}}{ABCD} = \dfrac{3.2}{2\sqrt{2}} = \sqrt{3}.</li> <li>Vậy, đáp án chính xác là: \mathbf{(C)} \sqrt{3}.</li> </ul> |
| Câu 37: Trong không gian Oxyz, mặt cầu có tâm là gốc tọa độ O và đi qua điểm M(0;0;2) có phương trình là  A. x^2+y^2+z^2 = 2  B. x^2+y^2+z^2 = 4  C. x^2+y^2+(z-2)^2 = 4  D. x^2+y^2+(z-2)^2 = 2      | Ta có điểm tâm \$O(0,0,0)\$ và điểm \$M(0,0,2)\$ nên vecto \$\overrightarrow {OM}\$ là vecto pháp tuyến của mặt cầu. Vì mặt cầu đi qua điểm \$M\$ nên phương trình mặt cầu có thể được viết dưới dạng: \$\$(x-0)^2+(y-0)^2+(z-0)^2=r^2\$\$ Trong đó \$r\$ là bán kính của mặt cầu cần tìm.  Vậy vecto pháp tuyến của mặt cầu là: \$\overrightarrow {n}=\overrightarrow {OM}=(0,0,2)\$.  Do đó phương trình mặt cầu là: \$\$x^2+y^2+(z-2)^2=r^2\$\$  Để tìm bán kính \$r\$, ta thấy rằng \$M\$ nằm trên mặt cầu nên ta có: \$\$r=\sqrt{OM^2}=\sqrt{0^2+0^2+2^2}=2\$\$  Vậy phương trình mặt cầu là: \$x^2+y^2+(z-2)^2=4\$.  Do đó đáp án chính xác là (C).                                                                              |

| Câu 38: Trong không gian Oxyz, đường thẳng đi qua hai điểm A(1;2;-1) và B(2;-1;1) có phương trình tham số là A. x = 1+t; y=2-3t; z=-1+2t B. x = 1+t; y=2-3t; z=1+2t C. x = 1+t; y=-3+2t; z=2-t D. x = 1+t; y=1+2t; z=-t | Dể tìm phương trình tham số của đường thẳng AB, ta có thể sử dụng vector chỉ phương của đường thẳng, cùng với một điểm bất kỳ trên đường thẳng. Ta có vector chỉ phương của đường thẳng là $\$ vec $\{AB\} = \$ verightarrow $\{B\} - \$ vec $\{i\} - 3 \$ vec $\{j\} + (1-1-2) \$ diễm $\{A\} = \$ làm điểm bắt đầu, phương trình tham số của đường thẳng AB là: $\$ begin $\{cases\} \$ x=1+t \ y=2-3t \ z=-1+2t \ end $\{cases\} \$ Do đó, đáp án chính xác là (A).                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Câu 39: Cho hàm số f(x), đồ thị của hàm số y =f'(x) là đường cong trong hình bên. Giá trị lớn nhất của hàm số g(x)=f(2x)-4x trên đoạn [-3/2;2] bằng A. f(0) B. f(-3)+6 C. f(2)-4 D. f(4)-8                              | Ta có \$g(x)=f(2x)-4x\$, vậy \$g'(x)=2f'(2x)-4\$. Để tìm cực trị của hàm số \$g(x)\$, ta giải phương trình \$g'(x)=0\$: \$\$2f'(2x)-4=0 \Leftrightarrow f'(2x)=2.\$\$ Từ đồ thị ta thấy được hàm số \$y=f'(x)\$ đạt giá trị \$2\$ tại hai điểm \$x_1=-1\$ và \$x_2=2\$. Khi đó, giá trị lớn nhất của \$g(x)\$ trên đoạn \$[-\frac {3} {2};2]\$ sẽ được đạt tại hai điểm \$x_1'=-\frac {1} {2}\$ và \$x_2'=1\$, và bằng \$\$\max_{x\in[-\frac {3}{2};2]}\$ g(x)=\max{g(x_1'),g(x_2')}=\max{f(-1)-2,f(2)-8}=\boxed{\textbf{(D)} f(4)-8}.\$\$                                                                                                                                                                                                                                |
| Câu 40: Có bao nhiêu số nguyên dương y sao cho ứng với mỗi y có không quá 10 số nguyên x thỏa mãn (2^{x+1} - \sqrt{2})(2^x-y) < 0 ?  A. 1024  B. 2047  C. 1022  D. 1023                                                 | Để biểu diễn \$(2^{x+1}-\sqrt{2})(2^x-y)<0\$ dưới dạng không bất đẳng thức, ta chia hai vế của bất phương trình với \$(2^{x+1}-\sqrt{2})(2^x-y)\$, ta được \$\$1+\dfrac{y-2^x}{2^{x+1}-\sqrt{2}}<0\$\$ Từ đó, ta suy ra \$\$y<2^x\text{ và }y>2^x-\dfrac{\sqrt{2}}{2^{x+1}-\sqrt{2}}.\$\$ Số lượng các số nguyên dương \$y\$ thỏa mãn bất đẳng thức đã cho bằng số lượng các số nguyên dương \$y\$ thỏa mãn điều kiện \$y<2^x\$ và \$y>2^x-\dfrac{\sqrt{2}}{2^{x+1}-\sqrt{2}}\$. Số lượng số nguyên dương \$y\$ thỏa mãn \$y<2^x\$ là \$2+2^2+\cdots+2^{10}=2046\$. Để tìm số lượng số nguyên dương \$y\$ thỏa mãn \$y>2^x-\dfrac{\sqrt{2}}{2^{x+1}-\sqrt{2}}\$, ta đặt \$t=2^x\$ và quy đồng biểu thức vế phải \begin{align*} y&>2^x-\dfrac{\sqrt{2}}{2^{x+1}-\sqrt{2}}\ |

 $=t-\frac{2}{2t-\sqrt{2}}\$  $\sqrt{2}$ {2t-\sqrt{2}}\ &=\dfrac{2t^2-\sqrt{2}}-\sqrt{2}}{2t-\sqrt{2}}  $\sqrt{2}\\\&=2t+\dfrac{2}\sqrt{2}t-2\sqrt{2}-\sqrt{2}t^2}{2t-2}$ \sqrt{2}}. \end{align\*} Tù đó, ta suy ra  $$$y>2t+\frac{2}{t-2} {2t-2}$  $\sqrt{2}$ .\$\$ Dăt \$g(t)=2t+\dfrac{2\sqrt{2}t-2\sqrt{2}- $\$  \sqrt{2}t^2}{2t-\sqrt{2}}\$. Ta sẽ tìm \$t\$ để \$g(t)\$ là số nguyên dương. Khi đó, số lượng số nguyên dương \$y\$ thỏa mãn  $y>2^x-\frac{2}{2}$ nghiêm nguyên dương của \$g(t)\$. Chú ý rằng \$t>0\$ và Câu 41: Cho hàm số Đặt  $t = 2 \sin x + 1$ , khi đó  $t \le 3$ , và ta có  $x = 2 \sin x + 1$ , khi đó  $t \le 3$ , và ta có  $t \le 3$ \begin{cases} \arcsin\left(\dfrac{t-1}{2}\right)\\$. Luu \u00f3 r\u00e4ng khi \u00e4x\u00e4 chay t\u00e4r  $x^2 -1 & \text{khi} \ x \ge 2 \$ \$0\$ đến \$\dfrac{\pi}{2}\$ thì \$t\$ cũng chạy từ \$1\$ đến \$3\$.  $\left[ \frac{align^*}{\inf_0^{\frac{n}{2}}} f(2 \sin x + 1) \cos x \right]$  $x^2 - 2x + 3 & \text{text} \{ khi \} x < 2$ \end{cases}.  $\operatorname{d}x &= \inf 1^3 f(t) \cdot \operatorname{frac}\{1\} \cdot \left\{ \frac{t^2 - 1}{t^2} \right\}$ Tích phân  $\inf^{\pi} \inf^{12} \{0\} f(2 \sin(x) + 1)\cos(x) dx$  bằng  $\operatorname{d}_t \ \&= \int_1^2 (t^2 - 2t + 3) \cdot \int_1^2 (t^2 - 2t + 3) \cdot dt$ A. 23/3 -1} \mathrm{d}t + \int 2^3 (t^2 - 1) \cdot \frac{1}{\sqrt{t^2 - 1}} B. 23/6 1}} \mathrm{d}t \ &= \int 1^2 \frac{(t^2 - 1) - 2(t - 1) + C. 17/6 5{\sqrt{t^2 - 1}} \mathrm{d}t + \int 2^3 \frac{(t^2 - 1) + D. 17/3  $1 \leq \left( \frac{t^2 - 1}{\lambda - 1} \right)$  $-2 \cdot t^{1}{ \cdot t^2 - 1} + \frac{5}{ \cdot t^2 - 1}$  $\left( \frac{d}{t} \right) \operatorname{left}\left( \frac{t^2 - 1}{t} \right) +$  $\frac{1}{\sqrt{t^2 - 1}} \right] \right] \$ -1}  $-2 \ln \left| t^2 - 1 \right| + 5 \left| t^2 - 1 \right|$  $1 \right[ \frac{t^2 - 1}{t^2 - 1} + \ln \left[ \frac{t^2 - 1}{t^2 - 1} + \ln \left[ \frac{t^2 - 1}{t^2 - 1} \right] \right]$  $1 \right[\frac{2^3} \&= 3\sqrt{3} - 2\ln(3 + 2\sqrt{2}) + 5\ln(3 +$  $+ 2 \sqrt{2} - \sqrt{3} - 2 \ln(2 + \sqrt{3}) + 5 \ln(2 + \sqrt{3})$  $2 \cdot \sqrt{3} + 3 \cdot (3+2 \cdot 2) - \cdot (2+\sqrt{3}) \cdot \&=$  $\frac{6}{3} + \frac{17}{n(3+2)} - 6\ln(2+\sqrt{3})}{6}$  $\&= \frac{6}{3} + \frac{17}{n(3+2)} - \frac{12}{n(2+\sqrt{3})} +$ 

| Câu 42: Có bao nhiêu số phức z thỏa mãn $ z  = \sqrt{2}$ và | Giải phương trình (2+2i)(\overline{z}-2) là số thuần ảo ta có:                                          |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| (2+2i)(\overlin{z}-2) là số thuần ảo ?                      | $\left(2+2i\right) \left(verline\{z\}-2\right) = ki \setminus Rightarrow & $                            |
| A. 1                                                        | $  \  \  \  \  \  \  \  \  \  \  \  \  $                                                                |
| B. 0                                                        | $  \  \  \  \  \  \  \  \  \  \  \  \  $                                                                |
| C. 2                                                        | $\langle \text{overline}\{z\} = \langle \text{frac}\{\text{ki}+4\text{i}-2\}\{2\text{-}4\text{i}\} = -$ |
| D. 4                                                        | $\frac{1}{2}+\frac{5}{2}i + \frac{k}{5}i$ , $ k \in \mathbb{N}$                                         |
|                                                             | $\mathbb{R}. \left  \text{align*} \right  \le  x  = \left  \text{align*} \right $                       |
|                                                             | $\pm(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i)$ . Ta tính được:                                           |
|                                                             | lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:                                                                |
|                                                             | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                |
|                                                             | $\label{eq:frac} $\operatorname{k^2+26}} = \operatorname{qrt}\{2\}. \operatorname{dign}^* Tù dó ta có$  |
|                                                             | \$k = \pm 4\$. Vậy có 2 số phức thỏa mãn yêu cầu, đó là \$z_1 =                                         |
|                                                             | $\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i$ và $z_2 = -$                                                   |
|                                                             | $\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}i.$                                                               |
|                                                             | Vì vậy, đáp án là \$\boxed{\textbf{(C) } 2}\$.                                                          |

Câu 43: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa SA và mặt phẳng (SBC) bằng 45^\circ (tham khảo hình bên). Thể tích của khối chóp bằng

A. (1/8) a<sup>3</sup>

B. (3/8) a<sup>3</sup>

C.  $(\sqrt{3}/12)$  a<sup>3</sup>

D. (1/4) a^3



Câu 43: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa SA và mặt phẳng (SBC) bằng  $45^\circ$  (tham khảo hình bên).

Thể tích của khối chóp bằng

A. (1/8) a^3

B. (3/8) a^3

C. (\sqrt{3}/12) a^3

D. (1/4) a^3



Ta có  $SA^2 = SB^2 + AB^2 = b^2 + \frac{a^2}{2}$ . Vì góc giữa SA và SBC bằng  $45^\circ$ , nên SB = SC. Do đó SBC là tam giác vuông cân tại SS, suy ra  $BC = \frac{sC}{2}$ .

Vậy diện tích đáy của khối chóp là  $S_{ABC} = \frac{3}{4}a^2$ . Thể tích khối chóp là  $V = \frac{3}{3}S_{ABC} \cdot ABC$ 

$$V = rac{1}{3} \cdot rac{\sqrt{3}}{4} a^2 \cdot \sqrt{b^2 + rac{a^2}{2}} = rac{\sqrt{3}}{12} a^3.$$

Vậy đáp án là \$\mathrm{(C)}\$.

Câu 44: Ông Bình làm lan can ban công ngôi nhà của mình bằng một tấm kính cường lực. Tấm kính đó là một phần của mặt xung quanh của một hình trụ như hình bên. Biết giá tiền của 1m^2 kính như trên là 1.500.000 đồng. Hỏi số tiền (làm tròn đến hàng nghìn) mà ông Bình mua tấm kính trên là bao nhiêu?

A. 23.591.000 đồng

B. 36.173.000 đồng

C. 9.437.000 đồng

D. 4.718.000 đồng

Để tính số tiền mà ông Bình mua tấm kính trên, ta cần tính diện tích của tấm kính. Để làm được điều đó, ta cần tìm chiều cao của hình trụ. Ta có thể áp dụng định lý Pythagore để tính chiều cao như sau:

$$c^2 = a^2 + b^2 = (2r)^2 + (r/2)^2 = 17/4 r^2$$

Vậy chiều cao của hình trụ là  $c = (r/2) \operatorname{sqrt} \{17\}$ . Do đó, diện tích của tấm kính là:

$$S = \pi^2 = 4 \pi (\frac{c}{\sqrt{17}})^2 = \frac{64}{17} \pi^2$$

Vậy số tiền mà ông Bình mua tấm kính trên là: 1500000 S \approx 23.591.000 \text{đồng} Do đó, đáp án chính xác là (A) 23.591.000 đồng.

```
Câu 45: Trong không gian Oxyz, cho mặt phẳng (P): 2x+2y - x
                                                                                                                                                        Để tìm đường thẳng vuông góc với mặt phẳng (P) và đi qua hai
-3 = 0 và hai đường thẳng
                                                                                                                                                        đường thẳng d1 và d2, ta cần tìm véc-tơ pháp tuyến của mặt
d_1: \frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{-2},
                                                                                                                                                        phẳng và hai véc-tơ chỉ phương của hai đường thẳng.
d_2: \frac{x-2}{1} = \frac{y}{2} = \frac{z+1}{-1}. Đường
                                                                                                                                                        Véc-tơ pháp tuyến của mặt phẳng (P) là
thẳng vuông góc với (P) đồng thời cắt cả d 1 và d 2 có phương
                                                                                                                                                        \operatorname{verrightarrow}\{n\}=(2,2,-1)\}.
                                                                                                                                                        Véc-to chỉ phương của đường thẳng d1 là
trình là
                                                                                                                                                        \scriptstyle v = (2,1,-4)
A. \frac{x-3}{2} = \frac{y-2}{2} = \frac{z+2}{-1}
B. \frac{x-2}{3} = \frac{y-2}{2} = \frac{z+1}{-2}
                                                                                                                                                        Véc-to chỉ phương của đường thẳng d2 là
C. \frac{x-1}{2} = \frac{y}{-2} = \frac{z+1}{-1}
                                                                                                                                                        \scriptstyle v_2=(1,2,-1)
                                                                                                                                                        Để tìm đường thẳng vuông góc với mặt phẳng (P) và đi qua hai
D. \frac{x-2}{2} = \frac{y+1}{2} = \frac{z-2}{-1}
                                                                                                                                                        đường thẳng d1 và d2, ta cần tìm véc-tơ chỉ phương của đường
                                                                                                                                                        thẳng đó. Véc-tơ chỉ phương đó sẽ là tích vector của hai véc-tơ
                                                                                                                                                        pháp tuyến của mặt phẳng và véc-tơ chỉ phương của đường
                                                                                                                                                        thẳng nào đó trên đó nó nằm.
                                                                                                                                                        Vậy, đường thẳng vuông góc với mặt phẳng (P) và đi qua hai
                                                                                                                                                        đường thẳng d1 và d2 có véc-tơ chỉ phương là
                                                                                                                                                        \scriptstyle v_1 \leq v_1 \leq v_1 \leq v_1 \leq v_1 \leq v_2 \leq v_1 \leq v_2 \leq v_1 \leq v_2 \leq v_2
                                                                                                                                                        \overrightarrow{v 2}$.
                                                                                                                                                        Ta có: $$\overrightarrow{n} \times \overrightarrow{v 1} \times
                                                                                                                                                        \operatorname{v_2} = (2,2,-1) \times (2,1,-4) \times (1,2,-1)
                                                                                                                                                        $$= (-13,-7,-6).$$
                                                                                                                                                        Do đó, phương trình của đường thẳng cần tìm là $$\frac{x-2}{-}
                                                                                                                                                        13 = \frac{y-1}{-7} = \frac{z-0}{-6}.$
                                                                                                                                                        Simplifying this equation, we get:
                                                                                                                                                        \frac{x-3}{2} = \frac{y-2}{2} = \frac{z+2}{-1}$$
                                                                                                                                                        Vậy đáp án chính xác là (A).
Câu 46: Cho f(x) là hàm số bậc bốn thỏa mãn f(0)=0. Hàm số
                                                                                                                                                        Từ bảng biến thiên của f(x), ta có f(x) < 0 trên -\sin y.
f(x) có bảng biến thiên như sau
                                                                                                                                                        3)$, $(-1,\infty)$ và $f'(x) > 0$ trên $(-3,-1)$. Vây f(x)$ có cực
x - \inf y - 3 - 1 \inf y
                                                                                                                                                        tiểu địa phương tại $x=-3$, $cực đại địa phương tại $x=-1$. Đặt
                                                                                                                                                        f'(x) - \inf v - 1 - 61/3 + \inf v
 Hàm số g(x) = |f(x^3) - 3x| có bao nhiều điểm cực trị?
                                                                                                                                                        3x-3 \$. Vì \$f(0)=0\$, n\hat{e}n \$f(3)=f(0)=0\$. Khi d\hat{o} ta c\hat{o} \$g(-
A. 3
                                                                                                                                                        1)=|f(0)-3(-1)+3|=4, \quad g(0)=|f(0)-0|=0, \quad g(1)=|f(3)-1|=1
```

| B. 5<br>C. 4<br>D. 2                                                                                                                         | 3(1)+3 =0.\$\$ Ta cần tìm điểm cực trị của \$g(x)\$ trên \$(-1,1)\$.  Ta có                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Câu 47: Có bao nhiêu số nguyên a (a \geq 2) sao cho tồn tại số thực x thỏa mãn (a^{log x} + 2)^{log a} = x - 2?  A. 8  B. 9  C. 1  D. Vô số. | Để giải quyết bài toán này, ta có thể áp dụng một vài kỹ thuật toán học, trong đó có tính định lượng giá trị của hàm số. Gọi hàm số f(x) = (a^{log x} + 2)^{log a} - x + 2, với a \geq 2. Ta sẽ đi tìm các điểm cực trị của hàm số g(x) = f(e^x). Để làm được điều này, ta cần tính đạo hàm của hàm số f(x) và tim các nghiệm của phương trình f'(x) = 0.  Ta có:  f'(x) = (a^{log x} + 2)^{log a-1} * a^{log x} * log a * \\frac{1}{x \text{trac}} {1}{x \text{ln(a)}} - 1  = \\frac{1}{x \text{ca}} {1}{x \text{ln(a)}} + 2)^{log a-1} * a^{log x} {1}{x \text{ln(a)}} * (log a - x \text{ln(a)})  Do đó, phương trình f'(x) = 0 có nghiệm khi và chỉ khi: \\log a - x \text{ln(a)} = 0 \text{hoặc a^{log x}} + 2 = 0  Phương trình a^{log x} + 2 = 0 vô nghiệm vì a^{log x} > 0 với mọi a, x > 0.  Với trường hợp log a - x \text{ln(a)} = 0, ta có: \( x = \\frac{1}{x \text{ca}} {1}{a} \) cố điểm cực đại duy nhất tại x = \log_{a} \} e.  Trở lại với bài toán ban đầu, ta cần tìm số nguyên a (a \\geq 2) sao cho tồn tại số thực x thỏa mãn f(e^x) = 0.  Theo như đã chứng minh ở trên, ta chỉ có một điểm cực đại của hàm số g(x) trên đoạn (-\\infty, \\infty), và giá trị của hàm số này tại điểm cực đại là không âm.  Nếu ta chọn a sao cho giá trị của hàm số f(e^x) tại x = \log_{a} \\left{a} \\left{e} \\left{ohon 2}, tức là (a^{log x} + 2)^{log a} - x + 2 > 2, thì hàm số f(e^x) sẽ không bao giờ bằng 0 trên đoạn (-\\infty, \\infty).  Do đó, để có tồn tại số thực x thỏa mãn f(e^x) = 0, ta cần chọn a sao cho giá trị của hàm số f(e^x) tại x = \log_{a} \\\end{bay} = \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |

## 2. Khi đó, ta sẽ có duy nhất một điểm cực đại của hàm số g(x) và giá trị của

Câu 48: Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên.

Biết hàm số f(x) đạt cực trị tại hai điểm  $x_1$ ,  $x_2$  thỏa mãn  $x_2$  =  $x_1 + 2$  và  $f(x_1) + f(x_2) = 0$ . Gọi  $S_1$  và  $S_2$  là diện tích của hai hình phẳng được gạch trong hình bên. Tỉ số bằng

- A. 3/4
- B. 5/8
- C. 3/8
- D. 3/5

Dặt y=f(x), ta có  $y=ax^3+bx^2+cx+d$ . Theo giả thiết, hàm số f(x) đạt cực trị tại hai diểm  $x_1$ ,  $x_2$ , suy ra  $f(x_1)=f(x_2)=0$ . Ta có:

$$f'(x) = 3ax^2 + 2bx + c$$

$$f''(x) = 6ax + 2b$$

$$f'(x_1) = f'(x_2) = 0 \Leftrightarrow \begin{cases} 3ax_1^2 + 2bx_1 + c = 0 \\ 3ax_2^2 + 2bx_2 + c = 0 \end{cases} \Rightarrow \begin{cases} 3ax_1(x_1 + 2) + 2b(x_1 + 1) + c = 0 \\ 3ax_2(x_2 + 2) + 2b(x_2 + 1) + c = 0 \end{cases}$$

Từ đó suy ra:

$$f(x_1) + f(x_2) = (ax_1^3 + bx_1^2 + cx_1 + d) + (ax_2^3 + bx_2^2 + cx_2 + d)$$

$$= a(x_1^3 + x_2^3) + b(x_1^2 + x_2^2) + c(x_1 + x_2) + 2d$$

$$= a(x_1 + x_2)(x_1^2 - x_1x_2 + x_2^2) + b(x_1 + x_2)^2 - 3ax_1x_2 - 2b(x_1 + x_2) + c(x_1 + x_2) + 2d$$

$$= -a(x_1 + x_2)^3 + b(x_1 + x_2)^2 + c(x_1 + x_2) + 2d$$

Măt khác, ta có

$$f'(x) = 3ax^{2} + 2bx + c = (x - x_{1})(x - x_{2})(3a)$$

Vây \$f(x)\$ đạt cực trị tại \$x 1, x 2\$ nên \$f'(x)\$ đổi dấu trên khoảng \$(x 1, x 2)\$, do đó tạ có:

$$3a < 0 \Rightarrow a < 0$$

Giả sử  $x_1<0$ \$, do  $x_2=x_1+2>0$ \$ nên ta có  $x_1<0<x_2$ \$. Như vậy f(x)\$ đổi dấu trên khoảng  $(x_1, x_2)$ \$. Từ đó suy ra f(x)\$ có nghiệm kép trên khoảng  $(x_1, x_2)$ \$. Kết hợp với a<0\$ và đồ thị của f(x)\$, ta suy ra f(x)\$ có hai nghiệm phân biệt  $x_1, x_2$ \$ trên khoảng  $(0, +\infty)$ \$. Khi đó:

$$S_1 = \int_{x_1}^{x_1+1} f(x)dx = \int_{x_1}^{x_1+1} (ax^3 + bx^2 + cx + d)$$

Câu 49: Xét hai số phức z\_1, z\_2 thỏa mãn |z\_1|=1, |z\_2|=2 và |z\_1-z\_2|=\sqrt{3}. Giá trị lớn nhất của |3z\_1+z\_2-5i| bằng A. 5-\sqrt{19}

- B. 5+\sqrt{19}
- C.  $-5+2 \sqrt{19}$

| D. 5+2\sqrt{19}                                                                                                                                                                                                                                                                                | $ \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Câu 50: Trong không gian Oxyz, cho hai điểm A(2;1;3) và B(6;5;5). Xét khối nón (N) có đỉnh A, đường tròn đáy nằm trên mặt cầu đường kính AB. Khi (N) có thể tích lớn nhất thì mặt phẳng chứa đường tròn đáy của (N) có phương trình dạng 2x+by+cz+d =0. Giá trị của b+c+d bằng A21 B12 C18 D15 | Dặt tâm của mặt cầu là I, ta có \$\overrightarrow{AI} = \dfrac{1}{2} \overrightarrow{AB} = \begin{pmatrix}2\2\1\end{pmatrix}\$. Gọi \$M(a,b,c)\$ là tọa độ của tâm đường tròn đáy của khối nón. Ta có \$\overrightarrow{AM} = \begin{pmatrix}a-2\b-1\c-3\end{pmatrix}\$.  Do đường tròn đáy nằm trên mặt cầu đường kính \$AB\$, nên ta có \$\$(a-6)^2 + (b-5)^2 + (c-5)^2 = (a-2)^2 + (b-1)^2 + (c-3)^2.\$\$ Tương đương với \$a+b+c=9\$.  Diện tích đáy của khối nón là \$\$S_{\text{dáy}} = \pi R^2 = \pi \dfrac{AB^2}{4} = 9\pi.\$\$  Gọi \$H\$ là trung điểm của \$AB\$, ta có \$\overrightarrow{OH} = \dfrac{1}{2} \overrightarrow{AB} + \overrightarrow{OA} = \begin{pmatrix}4\3\4\end{pmatrix}\$.  Khi đó, mặt phẳng chứa đường tròn đáy của khối nón có phương trình dạng \$2x+by+cz+d=0\$ với \$\begin{pmatrix}2\b\c\end{pmatrix}\$ là vector pháp tuyến của mặt phẳng. Ta có \$\$\begin{pmatrix}2\b\c\end{pmatrix}\chocd 4 = 20+3b+4c,\$\$ và do đó \$\$b+c+d = -(20+3b+4c) = -(3b+4c-20) \leq -3\sqrt[3]{3^3} \cdot 4^4} + 20 = -15.\$\$  Đẳng thức xảy ra khi \$M\$ trùng với trung điểm \$H\$ của \$AB\$, tức là \$M(4,3,2)\$. |

| Vậy, | , đáp án là $\boldsymbol{\lambda} \cdot \boldsymbol{\lambda}$ . |
|------|-----------------------------------------------------------------|
|      |                                                                 |