随机事件与概率

公式名称	公式表达式
德摩根公式	$\overline{A \cup B} = \overline{A} \cap \overline{B} , \overline{A \cap B} = \overline{A} \cup \overline{B}$
古典概型	$P(A) = \frac{m}{n} = A$ 包含的基本事件数 基本事件总数
几何概型	$P(A) = \frac{\mu(A)}{\mu(\Omega)}$, 其中 μ 为几何度量(长度、面积、体积)
求逆公式	$P(\overline{A}) = 1 - P(A)$
加法公式	P(A∪B)=P(A)+P(B)-P(AB) 当P(AB)=0时,P(A∪B)=P(A)+P(B)
减法公式	$P(A-B)=P(A)-P(AB)$, $B \subset A \bowtie P(A-B)=P(A)-P(B)$
条件概率公式	$P(B A) = \frac{P(AB)}{P(A)}$
乘法公式	P(AB) = P(A)P(B A) P(AB) = P(B)P(A B)
全概率公式	$P(B) = \sum_{i=1}^{n} P(A_i)P(B A_i)$
贝叶斯公式 (逆概率公式)	$P(A_j B) = \frac{P(A_j)P(B A_j)}{\sum_{i=1}^{\infty} P(A_j)P(B A_i)}$
两件事件 相互独立	$P(AB) = P(A)P(B)$; $P(B A) = P(B)$; $P(B A) = P(B \overline{A})$;

二、随机变量及其分布

1、分布函数性质

$$F(x) = P(X \le x) \qquad P(a < X \le b) = F(b) - F(a)$$

2、离散型随机变量

分布名称	分布律
0-1 分布 B(1, p)	$P(X = k) = p^{k} (1 - p)^{1 - k}, k = 0,1$
二项分布 B(n, p)	$P(X = k) = C_n^k p^k (1-p)^{n-k}, k = 0,1,\dots,n$
泊松分布 P(λ)	$P(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0,1,2,\dots$

3、续型随机变量

分布名称	密度函数	分布函数
均匀分布 <i>U(a,b)</i>	$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & \blacksquare \end{cases}$	$F(x) = \begin{cases} 0, x < a \\ \frac{x-a}{b-a}, a \le x < b \\ 1, x \ge b \end{cases}$

分布名称		密度函数		分布函数	
指数分布 $E(\lambda)$ $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$		$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$			
正态分布 N(μ,σ²)		$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $-\infty < x < +\infty$		$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$	
标准正态 分布 N(0,1)		$\varphi(\mathbf{x}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{\mathbf{x}^2}{2}}$ $-\infty < \mathbf{x} < +\infty$		$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^{2}} dt$	

三、多维随机变量及其分布

1、离散型二维随机变量边缘分布

$$p_{i.} = P(X = x_i) = \sum_{j} P(X = x_i, Y = y_j) = \sum_{j} p_{ij}$$

$$p_{.j} = P(Y = y_j) = \sum_{i} P(X = x_i, Y = y_j) = \sum_{i} p_{ij}$$

2、离散型二维随机变量条件分布
$$p_{i|j} = P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{P_{ij}}, i = 1,2 \cdots$$

$$p_{j|i} = P(Y = y_j | X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(X = x_i)} = \frac{p_{ij}}{P_{i\cdot}}, j = 1, 2 \cdots$$

3、连续型二维随机变量
$$(X,Y)$$
的分布函数 $F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$

4、连续型二维随机变量边缘分布函数与边缘密度函数

分布函数:
$$F_X(x) = \int_{-\infty}^x \int_{-\infty}^{+\infty} f(u,v) dv du$$
 密度函数: $f_X(x) = \int_{-\infty}^{+\infty} f(x,v) dv$

$$F_Y(y) = \int_{-\infty}^{y} \int_{-\infty}^{+\infty} f(u, v) du dv \qquad f_Y(y) = \int_{-\infty}^{+\infty} f(u, y) du$$

5、二维随机变量的条件分布

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_{Y}(x)}, -\infty < y < +\infty$$
 $f_{X|Y}(x|y) = \frac{f(x,y)}{f_{Y}(y)}, -\infty < x < +\infty$

6、X、Y 相互独立
$$\Leftrightarrow$$
 $F(x,y) = F_X(x)F_Y(y) \Leftrightarrow f(x,y) = f_X(x)f_Y(y)$

四、随机变量的数字特征

1、数学期望

离散型:
$$E(X) = \sum_{k=1}^{+\infty} x_k p_k$$
, 连续型: $E(X) = \int_{-\infty}^{+\infty} x f(x) dx$

- 2、数学期望的性质
- (1) E(C) = C, C为常数 E[E(X)] = E(X) E(CX) = CE(X)
- (2) $E(X \pm Y) = E(X) \pm E(Y)$ $E(aX \pm b) = aE(X) \pm b$
- (3)若 X、Y 相互独立则: E(XY) = E(X)E(Y)
- 3、方差: $D(X) = E[(X E(X))^2] = E(X^2) E^2(X)$
- 4、方差的性质
- (1) D(C) = 0 D[D(X)] = 0 $D(aX \pm b) = a^2D(X)$
- (2) $D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X, Y)$
- (3)若 X、Y 相互独立则: $D(X \pm Y) = D(X) + D(Y)$
- 5、协方差: Cov(X,Y) = E(XY) E(X)E(Y), X、Y相互独立时: Cov(X,Y) = 0
- 6、相关系数: $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$, X、Y相互独立时: $\rho_{XY} = 0$ (X,Y 不相关)
- 7、协方差和相关系数的性质
- (1) Cov(X, X) = D(X) Cov(X, Y) = Cov(Y, X)
- (2) $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$ Cov(aX + c, bY + d) = abCov(X, Y)
- 8、常见随机变量分布的期望和方差

分布	数学期望	方差
0-1 分布 b(1, p)	p	p(1-p)
二项分布 <i>b</i> (<i>n</i> , <i>p</i>)	пр	np(1-p)
泊松分布 <i>P</i> (λ)	λ	λ
均匀分布 <i>U(a,b)</i>	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
正态分布		
$N(\mu, \sigma^2)$	μ	σ^2
指数分布 <i>e</i> (λ)	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

五、大数定律与中心极限定理

1、切比雪夫不等式

若
$$E(X) = \mu, D(X) = \sigma^2$$
,对于任意 $\varepsilon > 0$ 有 $P\{|X - E(X)| \ge \varepsilon\} \le \frac{D(X)}{\varepsilon^2}$

$$||\mathbf{y}|| \mathbf{P}\{|\mathbf{X} - \mathbf{E}(\mathbf{X})| < \varepsilon\} \ge 1 - \frac{\mathbf{D}(\mathbf{X})}{\varepsilon^2}$$

2、大数定律: 若 $X_1 \cdots X_n$ 相互独立, $E(X_i) = \mu_i, D(X_i) = \sigma_i^2 \perp \sigma_i^2 \leq C$

则:
$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \xrightarrow{P} \frac{1}{n}\sum_{i=1}^{n}E(X_{i}), (n \to \infty)$$
 (切比雪夫)

$$\overline{X}_1 \cdots X_n$$
相互独立同分布,且 $E(X_i) = \mu$,则: $\frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P} \mu$ (辛钦)

- 3、中心极限定理
- (1)独立同分布的中心极限定理:均值为 μ ,方差为 $\sigma^2>0$ 的独立同分布时,当n充分大时

有:
$$Y_n = \frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n}\sigma} \xrightarrow{\sim} N(0,1)$$

(2)拉普拉斯定理: 随机变量 $X \sim B(n, p)$ 则对任意 x 有:

$$\lim_{x \to +\infty} P\{\frac{X - np}{\sqrt{np(1 - p)}} \le x\} = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt = \Phi(x)$$

(3)近似计算:

$$P(a \le \sum_{k=1}^{n} X_k \le b) = P(\frac{a - n\mu}{\sqrt{n}\sigma} \le \frac{\sum_{k=1}^{n} X_k - n\mu}{\sqrt{n}\sigma} \le \frac{b - n\mu}{\sqrt{n}\sigma}) \approx \Phi(\frac{b - n\mu}{\sqrt{n}\sigma}) - \Phi(\frac{a - n\mu}{\sqrt{n}\sigma})$$

六、数理统计的基本概念

1、总体和样本

总体 X 的分布函数 F(x) 样本 $(X_1, X_2 \cdots X_n)$ 的联合分布为 $F(x_1, x_2 \cdots x_n) = \prod_{l=1}^n F(x_k)$

2、统计量

(1)样本均值:
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 (2)样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i^2 - n\overline{X}^2)$

(3)样本标准差:
$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$
 (4)样本 k 阶距: $A_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k, k = 1,2\cdots$

(5)样本
$$k$$
阶中心距: $B_k = M_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^k, k = 2,3\cdots$

- 3、三大抽样分布
- $(1)\chi^2$ 分布:设随机变量 $X_1,X_2\cdots X_n$ 相互独立,且都服从标准正态分布N(0,1),则随机变

量
$$\chi^2 = X_1^2 + X_2^2 + \cdots + X_n^2$$
 所服从的分布称为自由度为 n 的 χ^2 分布,记为 $\chi^2 \sim \chi^2(n)$

性质: ①
$$E[\chi^2(n)] = n$$
, $D[\chi^2(n)] = 2n$ ②设 $X \sim \chi^2(m)$, $Y \sim \chi^2(n)$ 且相互独立,则

$$X + Y \sim \chi^2(m+n)$$

(2)t分布: 设随机变量 $X \sim N(0,1), Y \sim \chi^2(n)$, 且 X 与 Y 独立,则随机变量: $T = \frac{X}{\sqrt{Y/n}}$ 所服

从的分布称为自由度的 n 的 t 分布,记为 $T \sim t(n)$

性质: ①
$$E[t(n)] = 0, D[t(n)] = \frac{n}{n-2}, (n > 2)$$
 ② $\lim_{n \to \infty} t(n) = N(0,1) = \frac{1}{\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$

(3) F 分布: 设随机变量 $U \sim \chi^2(n_1), V \sim \chi^2(n_2)$, 且U = V 独立,则随机变量

$$F(n_1,n_2) = \frac{U/n_1}{V/n_2}$$
所服从的分布称为自由度 (n_1,n_2) 的 F 分布,

记为
$$F \sim F(n_1, n_2)$$
,性质:设 $X \sim F(n_1, n_2)$,则 $\frac{1}{X} \sim F(n_2, n_1)$

七、参数估计

- 1. 参数估计
- (1) 定义: 用 $\hat{\theta}(X_1, X_2, \cdots X_n)$ 估计总体参数 θ ,称 $\hat{\theta}(X_1, X_2, \cdots X_n)$ 为 θ 的估计量,相应的 $\hat{\theta}(X_1, X_2, \cdots, X_n)$ 为总体 θ 的估计值。
- (2) 当总体是正态分布时, 未知参数的矩估计值=未知参数的极大似然估计值
- 2. 点估计中的矩估计法: (总体矩=样本矩)

样本均值:
$$\overline{X} = E(X) = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 或 $\overline{X} = E(X) = \int_{-\infty}^{+\infty} x f(x, \theta) dx$

求法步骤: 设总体 X 的分布中包含有未知参数 $\theta_1, \theta_2, \cdots, \theta_k$, 它的前 k 阶原点矩

$$\mu_i = E(X^i)(i=1,2,\cdots,k)$$
 中包含了未知参数 $\theta_1,\theta_2,\cdots,\theta_k$,即

$$\mu_i = g_i(\theta_1, \theta_2, \dots, \theta_k)$$
 $(i = 1, 2, \dots, k)$ 。又设 x_1, x_2, \dots, x_n 为总体 X 的 n 个样本值,用样本

矩 $A_i = \frac{1}{n} \sum_{j=1}^n X_j^i (i=1,2,\cdots,k)$ 代替 μ_i ,在所建立的方程组中解出的 k 个未知参数即为参数

 $\theta_1, \theta_2, \cdots, \theta_k$ 的矩估计量 $\hat{\theta_1}, \hat{\theta_2}, \cdots, \hat{\theta_k}$

3. 点估计中的极大似然估计

极大似然估计法: $X_1, X_2, \cdots X_n$ 取自 X 的样本,设 $X \sim f(x, \theta)$ 或 $X \sim P(x, \theta)$,求法步骤:

①似然函数:
$$L(\theta) = \prod_{i=1}^{n} f(x_i, \theta) [或 \prod_{i=1}^{n} P_i(\theta)]$$

②取对数:
$$\ln L(\theta) = \sum_{i=1}^{n} \ln f(x_i, \theta)$$
 或 $\ln L(\theta) = \sum_{i=1}^{n} \ln p_i(\theta)$

③解方程:
$$\frac{\partial \ln L}{\partial \theta_1} = 0, \dots, \frac{\partial \ln L}{\partial \theta_k} = 0$$
, 解得:
$$\begin{cases} \hat{\theta_1} = \hat{\theta_1}(x_1, x_2, \dots, x_n) \\ \dots \\ \hat{\theta_k} = \hat{\theta_k}(x_1, x_2, \dots, x_n) \end{cases}$$

4. 估计量的评价标准

	₹ H 1 N I	D1 14 - 1-
	无偏	设 $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ 为未知参数 θ 的估计量。若 $E(\hat{\theta}) = \theta$,则称 $\hat{\theta}$ 为
	性	heta的无偏估计量。
估计 量的	有效	
评价 性 标准	无偏估计量。若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。	
	一致	设 $\overset{\wedge}{ heta}_n$ 是 $ heta$ 的一串估计量,如果对于任意的正数 $arepsilon$,都有
性		$\lim_{n\to\infty} P(\hat{\theta}_n - \theta > \varepsilon) = 0, \text{则称}\hat{\theta}_n \text{为} \theta \text{的一致估计量(或相合估计量)。}$

5. 单正态总体参数的置信区间

条件	估计 参数	枢轴量	枢轴量 分布	置信水平为1-α的置信区间
----	----------	-----	-----------	---------------

已知 σ^2	μ	$Z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$	N(0,1)	$\left(\frac{-}{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \frac{-}{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right)$	
未知 σ^2	μ	$T = \frac{\overline{x} - \mu}{S / \sqrt{n}}$	t(n-1)	$\left(\overline{x} - t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}}, \overline{x} + t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}}\right)$	
'	假设检 验	$\chi^2 = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma} \right)^2$	$\chi^2(n)$	$\left(\frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{\alpha/2}^{2}(n)}, \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{1-\alpha/2}^{2}(n)}\right)$	
未知			$\frac{\mathbb{Z}^{2}(n-1)}{\chi^{2}(n-1)}$	其概率就是显著性水平	
思想	α,通常	我们取 α =0. 05, 有时	也取 0.01 或 (). 10 .	
基本步骤	$$ 4. 田仟平徂 X_1, X_2, \dots, X_n I 昇 I 昇 I 里 L 徂 I , I				
	$ K > \lambda($	或 $K > \lambda$) 时拒绝 K ,	否则认为接受	Н ₀ 。	
	当				
两类错误	当 \mathcal{H} 为真时,而样本值却落入了接受域,按照我们规定的检验法则,应当接受 \mathcal{H} 。这时,我们把客观上 \mathcal{H} 不成立判为 \mathcal{H} 成立(即接受了不真实 的假设),称这种错误为"取伪错误"或第二类错误,记 \mathcal{H} 为犯此类错错误 误的概率,即: $ P\{ \mathcal{H} \mid \mathcal{H} \mid \mathcal{H} \} = \mathcal{H} . $				
	两类错 误的关 系				

2. 单正态总体均值和方差的假设检验

条件	原假设	检验统计量	统计量 分布	拒绝域
	$H_0: \mu = \mu_0$			$\mid z \mid > z_{\alpha/2}$
已知 σ^2	$H_0: \mu \leq \mu_0$	$Z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$	N(0,1)	$z > z_{\alpha}$

	$H_0: \mu \ge \mu_0$			$z < -z_{\alpha}$
	$H_0: \mu = \mu_0$	$T = \frac{\overline{x} - \mu_0}{S / \sqrt{n}}$	t(n-1)	$ t > t_{\alpha/2} (n-1)$
未知 σ^2	$H_0: \mu \leq \mu_0$			$t > t_{\alpha}(n-1)$
	$H_0: \mu \geq \mu_0$			$t < -t_{\alpha}(n-1)$
	$H_0: \sigma^2 = \sigma^2$			$\chi^2 < \chi^2_{1-\alpha/2}(n-1) $
未知 μ	H_0 .0 -0	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\chi^2(n-1)$	$\chi^2 > \chi^2_{\alpha/2}(n-1)$
	$H_0: \sigma^2 \leq \sigma_0^2$			$\chi^2 > \chi_\alpha^2(n-1)$
	$H_0: \sigma^2 \ge \sigma_0^2$			$\chi^2 < \chi_{1-\alpha}^2 \ (n-1)$
已知 <i>µ</i>	$H_0: \sigma^2 = \sigma^2$		$\chi^2(n)$	$\chi^2 < \chi^2_{1-\alpha/2}(n)$ 或
	110.0 -0	$\chi^2 = \frac{\sum_{i=1}^n (X_i - \mu)^2}{\sigma_0^2}$		$\chi^2 > \chi^2_{\alpha/2}(n)$
(少见)	$H_0: \sigma^2 \leq \sigma_0^2$			$\chi^2 > \chi_\alpha^2(n)$
	$H_0: \sigma^2 \ge \sigma_0^2$			$\chi^2 < \chi_{1-\alpha}^2 (n)$