第四章 自然数

4.1

- (1) 满足归纳集定义,是归纳集。
- (2) Ø 不在集合中,此集不是归纳集。
- (3) 集合中最后一个元素 Ø⁺⁺⁺⁺⁺⁺⁺ 的后继不在集合中,此集不是归纳集。
- (4) 若 $a = \emptyset$,则是归纳集。否则, \emptyset 不在集合中,此集不是归纳集。

4.2

- (1) $2 \cup 3 = 3$;
- (2) $2 \cap 3 = 2$;
- (3) $\cup 5 = 4$;
- (4) $\cap 6 = 0$;
- (5) $\cup \cup 7 = 5$;

4.3

证明:用数学归纳法证明。

设 $S'=\{n\mid n\in\mathbb{N}\land n\neq 0\land\exists m(m\in\mathbb{N}\land n=m^+)\}$,再设 $S=S'\cup\{0\}$ 。下面证明 S 是 \mathbb{N} 的归纳子集。

- (1) 由 S 的定义有: $\emptyset = 0 \in S$ 。
- (2) 假设 $n \in S$ (从而由 S 定义有 $n \in \mathbb{N}$),则由 \mathbb{N} 的定义知, $n^+ \in \mathbb{N}$,又由 $n \in n \cup \{n\} = n^+$ 知, $n^+ \neq 0$ 。最后由 $n^+ \in R$ 的后继知, $\exists m (m \in \mathbb{N} \land n = m^+)$ 。因此有 $n^+ \in S' \subset S$ 。

于是,S 是 \mathbb{N} 的归纳子集,因而 $S = \mathbb{N}$ 。而 $S' = S - \{0\}$,故有,任意非 0 自然数都是某个自然数的后继。

4.4

证明:用数学归纳法证明。

设 $S = \{n \mid \forall m \in \mathbb{N} (m \in m + n^+)\}$ 。

- (1) $0 \in S$ 。这是因为: $\forall m \in \mathbb{N}, m \in m \cup \{m\} = m^+ = (m+0)^+ = m+0^+$ 。
- (2) 设 $n \in S$, 则 $\forall m \in \mathbb{N}, m \in m + n^+ \subseteq (m + n^+) \cup \{(m + n^+)\} = (m + n^+)^+ = (A_m(n^+))^+ = A_m(n^{++}) = m + (n^+)^+$ 。即有, $n^+ \in S$ 。所以, $S = \mathbb{N}$ 。

4.5

证明: 若 A 为传递集,则:

 $\forall x$,

 $x \in A^+$

 $\iff x \in A \cup \{A\}$ (后继函数定义)