Министерство науки и высшего образования Российской Федерации

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 2 по дисциплине «Анализ Алгоритмов»

Тема Алгоритмы умножения матриц

Студент Пермякова Е. Д.

Группа ИУ7-52Б

Преподаватели Строганов Д. В., Волкова Л. Л

СОДЕРЖАНИЕ

ВВЕДЕНИЕ						
1	Ана	алитическая часть	5			
		Стандартный алгоритм умножения матриц				
	1.2	Алгоритм Винограда	5			
2	Кон	нструкторская часть	7			
	2.1	Описание алгоритмов	7			
3	Tex	нологическая часть	14			
	3.1	Средства реализации	14			
	3.2	Реализация алгоритмов	14			
	3.3	Модель вычислений	16			
	3.4	Трудоемкость алгоритмов	16			
		3.4.1 Стандартный алгоритм умножения матриц	16			
		3.4.2 Алгоритм Винограда	17			
		3.4.3 Оптимизированный алгоритм Винограда	18			
	3.5	Классы эквивалентности тестирования	19			
	3.6	Функциональные тесты	19			
4	Исс	еледовательская часть	21			
	4.1	Технические характеристики	21			
	4.2	Время выполнения алгоритмов	21			
	4.3	Вывод	24			
3 A	АКЛ	ЮЧЕНИЕ	25			
Cl	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ					

ВВЕДЕНИЕ

Целью работы является выполнение оценки ресурсной эффективности алгоритмов умножения матриц и их реализации.

Задачи:

- 1) Описать математическую основу стандартного алгоритма и алгоритма Винограда умножения матриц;
- 2) Описать модель вычислений;
- 3) Разобрать алгоритм умножения матриц стандартный, Винограда, оптимизированный согласно варианту алгоритм Винограда;
- 4) Выполнить оценку трудоемкости разработанных алгоритмов либо их реализации;
- 5) Реализовать разработанные алгоритмы в програмном обеспечении с 2 режимами работы одиночного расчета и массированного замера процессорного времени выполнения реализации каждого алгоритма;
- 6) Выполнить замеры процессорного времени выполнения реализации разработанных алгоритмов в зависимости от варьируемого размера матриц;
- 7) Выполнить сравнительный анализ рассчитанных трудоемкости и результатов замера процессорного времени выполнения реализации трех алгоритмов с учетом лучшего и худшего случаев по трудоемкости;

1 Аналитическая часть

В данной работе будут рассмотрены алгоритмы умножения матриц: стандартный и Винограда.

1.1 Стандартный алгоритм умножения матриц

Пусть даны две матрицы Пусть даны две матрицы A и B размерности $l \times m$ и $m \times n$ соответственно:

$$A_{lm} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l1} & a_{l2} & \dots & a_{lm} \end{pmatrix}, \quad B_{mn} = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}, \quad (1.1)$$

тогда матрица C размерностю $l \times n$

$$C_{ln} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{l1} & c_{l2} & \dots & c_{ln} \end{pmatrix}, \tag{1.2}$$

где

$$c_{ij} = \sum_{r=1}^{m} a_{ir} b_{rj} \quad (i = \overline{1, l}; j = \overline{1, n})$$

$$(1.3)$$

будет называться произведением матриц A и B.

Операция умножения двух матриц выполнима только в том случае, если число столбцов в первом сомножителе равно числу строк во втором.

1.2 Алгоритм Винограда

Ключевая идея алгоритма Винограда – снизить долю операций умножения, заменив их операциями сложения, которые являются более эффек-

тивными по времени.

Пусть есть два вектора $V = (v_1, v_2, v_3, v_4)$ и $W = (w_1, w_2, w_3, w_4)$. Их скалярное произведение равно (1.4):

$$V \cdot W = v_1 w_1 + v_2 w_2 + v_3 w_3 + v_4 w_4 \tag{1.4}$$

что эквивалентно (1.5):

$$V \cdot W = (v_1 + w_2)(v_2 + w_1) + (v_3 + w_4)(v_4 + w_3) - - v_1 v_2 - v_3 v_4 - w_1 w_2 - w_3 w_4.$$
(1.5)

Выражения $-v_1v_2-v_3v_4$ и $-w_1w_2-w_3w_4$ можно вычислить заранее и использовать повторно при умножении строки V матрицы A на все столбцы W матрицы B.

Это позволит выполнить меньшее количество операций умножения: 2 умножения и 5 сложений, вместо 4 умножений и 4 сложений. Но при нечетном значении размера матрицы нужно дополнительно добавить произведения крайних элементов соответствующих строк и столбцов.

Операция сложения выполняется быстрее, поэтому на практике алгоритм должен работать быстрее обычного алгоритма перемножения матриц.

Вывод

В данном разделе были теоретически разобраны два алгоритмы умножения матриц: стандартного и Винограда.

2 Конструкторская часть

В этом разделе будут представленѕ схемы алгоритмов умножения матриц: стандартного, Винограда и оптимизированного алгоритма Винограда.

2.1 Описание алгоритмов

На рисунках 2.1-2.5 представлены схемы алгоритмов перемножения матриц.

Рисунок 2.1 — Схема стандартного алгоритма умножения матриц

Рисунок 2.2 — Схема алгоритма Винограда

Рисунок 2.3 — Схема алгоритма Винограда

Рисунок 2.4 — Схема оптимизированного алгоритма Винограда

Рисунок 2.5 — Схема оптимизированного алгоритма Винограда

Вывод

В данном разделе были представлены схемы алгоритмов умножения матриц: стандартного, Винограда и оптимизированного алгоритма Винограда.

3 Технологическая часть

В данном разделе будут приведены средства реализации, листинг кода, функциональные тесты, модель вычислений и трудоемкость алгоритмов.

3.1 Средства реализации

В данной работе для реализации был выбран язык программирования Python [1], так как он удовлетворяет требованиям лабраторной работы: поддерживает динамические структуры данных, такие как массивы и имеет библиотеку Matplotlib [2] для построения графиков.

3.2 Реализация алгоритмов

В листингах 3.1-3.3 представлены реализации алгоритмов поиска элемента в массиве.

Листинг 3.1 – Стандартный алгоритм умножения матриц

```
def standard_matrix_mul(mat1, rows1, cols1, mat2,
    rows2, cols2, res):
    for i in range(rows1):
        for j in range(cols2):
        res[i][j] = 0
        for k in range(cols1):
        res[i][j] += mat1[i][k] * mat2[k][j]
```

Листинг 3.2 – Алгоритм Винограда

Листинг 3.3 – Оптимизированный алгоритм Винограда

```
def new vinograd matrix mul(mat1, rows1, cols1, mat2,
  rows2, cols2, res):
    help mat1 = [0] * rows1
    help mat2 = [0] * cols2
    for i in range(rows1):
        for j in range (1, cols1, 2):
            help mat1[i] = mat1[i][j-1] * mat1[i][j]
    for i in range(cols2):
        for j in range(1, cols1, 2):
            help mat2[i] = mat2[j-1][i] * mat2[j][i]
    for i in range(rows1):
        for j in range(cols2):
            res[i][j] = help mat1[i] + help mat2[j]
            for k in range (1, cols1, 2):
                res[i][j] += (mat1[i][k - 1] + mat2[k][j])
                   * (mat1[i][k] + mat2[k - 1][j])
            if cols1 \% 2 != 0:
                res[i][j] += mat1[i][-1] * mat2[-1][j]
```

3.3 Модель вычислений

Для вычисления трудоемкости алгоритмов была введена модель вычислений:

1) Операции из списка (3.1) имеют трудоемкость 1:

$$=,+,-,+=,-=,==,!=,<,<=,>,>=,[],<<,>>,and,or$$
 (3.1)

2) Операции из списка (3.2) имеют трудоемкость 2:

$$*,/,//,\%, *=,/=,//=, *=$$
 (3.2)

3) Пусть трудоемкость условного перехода = 0, тогда трудоемкость условного оператора вида if условие then $6\pi o k1$ else $6\pi o k2$ paccuutibaetcs, как (3.3):

$$f_{if} = f_{\text{условия}} + \begin{cases} min(f_1, f_2), & \text{л. с. (лучший случай),} \\ max(f_1, f_2), & \text{х. с. (худший случай).} \end{cases}$$
 (3.3)

4) Трудоемкость цикла с N шагами рассчитывается, как (3.4);

$$f_{for} = f_{
m uhuuuanu3auuu} + f_{
m cpaвнения} + N(f_{
m uhkpementa} + f_{
m cpaвнения} + f_{
m tena}) \ \ (3.4)$$

5) трудоемкость вызова функции равна 0.

3.4 Трудоемкость алгоритмов

Трудоемкость реализованных алгоритмов умножения матриц:

3.4.1 Стандартный алгоритм умножения матриц

Для стандартного алгоритма умножения матриц размером $M \times N$ и $N \times Q$ трудоемкость состоит из:

— внешнего цикла по $i \in [1..M]$, трудоемкость которого: $f = 2 + M \cdot (2+f)$;

- цикла по $j \in [1..Q]$, трудоемкость которого: $f = 2 + Q \cdot (2 + f)$;
- инициализации элемента результирующей матрицы в строке i и столбце j нулем: f=3;
- цикла по $k \in [1..N]$, трудоемкость которого: f = 2 + 14N.

Поскольку трудоемкость стандартного алгоритма равна трудоемкости внешнего цикла, то:

$$f_{standard} = 2 + M \cdot (4 + Q \cdot (2 + 3 + 2 + N(2 + 12)));$$
 (3.5)

$$f_{standard} = 14MNQ + 7MQ + 4M + 2 \approx 14MNQ;$$
 (3.6)

3.4.2 Алгоритм Винограда

Для алгоритма Винограда трудоемкость состоит из:

— Заполнения вспомагательного массива a_tmp, трудоемкость которого (3.7):

$$f_{a_tmp} = 2 + M(2 + 4 + \frac{N}{2}(4 + 4 + 11)) = \frac{19}{2}MN + 6M + 2;$$
 (3.7)

— Заполнения вспомагательного массива b_tmp, трудоемкость которого (3.8):

$$f_{b_tmp} = 2 + Q(2 + 4 + \frac{N}{2}(4 + 4 + 11)) = \frac{19}{2}QN + 6Q + 2;$$
 (3.8)

— Цикла заполнения результирующей матрицы, трудоемкость которого (3.10):

$$f_c = 2 + M(2 + 2 + Q(2 + 7 + 4 + \frac{N}{2}(4 + 6 + 22)));$$
 (3.9)

$$f_c = \frac{32}{2}MNQ + 13MQ + 4M + 2; (3.10)$$

— Дополнительного цикла в случае если N не четная, трудоемкость

которого (3.12):

$$f_{last} = 3+$$

$$+\begin{cases} 0, & \text{л. c.,} \\ 2+M(2+2+Q(2+11)), & \text{х. c. при N } \% \ 2 == 1 \end{cases}$$
 (3.11)

$$f_{last} = 3 + \begin{cases} 0, & \text{л. c.,} \\ 13MQ + 4M + 2, & \text{х. c. при N } \% \ 2 == 1 \end{cases}$$
 (3.12)

Тогда трудоемкость алгоритма Винограда составит (3.14):

$$f_{vin} = f_{a_tmp} + f_{b_tmp} + f_c + f_{last}$$
 (3.13)

$$f_{vin} = 16MNQ + \frac{19}{2}QN + \frac{19}{2}MN + \\ + 10M + 6Q + 13MQ + 6 + \\ + \begin{cases} 0, & \text{л. c.,} \\ 13MQ + 4M + 2, & \text{х. c. при N } \% \ 2 == 1 \end{cases}$$
 (3.14)

3.4.3 Оптимизированный алгоритм Винограда

Оптимизация заключается в:

- инкремент счётчика наиболее вложенного цикла на 2;
- объединение III и IV частей алгоритма Винограда;
- введение декремента при вычислении вспомогательных массивов;
 Тогда трудоемкость оптимизированного алгоритма Винограда состоит из:
 - Заполнения массива а_tmp (3.15):

$$f_{a_tmp} = 2 + M(2 + 2 + \frac{N}{2}(2+9)) = \frac{11}{2}MN + 4M + 2$$
 (3.15)

— Заполнения массива b_tmp (3.16):

$$f_{b_tmp} = 2 + Q(2 + 2 + \frac{N}{2}(2 + 9)) = \frac{11}{2}QN + 4M + 2$$
 (3.16)

— Цикла заполнения результирующей матрицы с учетом случая когда N нечетная, трудоемкость которого (3.18):

$$f_c = 2 + M(2 + 2 + Q(2 + 6 + 2 + \frac{N}{2}(2 + 20) + 4) + 3 + \begin{cases} 0, & \text{л. c.,} \\ 12, & \text{х. c. при N } \% \ 2 == 1 \end{cases});$$
(3.17)

$$f_c = 11MNQ + 13MQ + 4M + 2 +$$

$$+ MQ \begin{cases} 0, & \text{л. c.,} \\ 12, & \text{х. c. при N } \% \ 2 == 1 \end{cases}$$
(3.18)

Тогда трудоемкость оптимизированного алгоритма Винограда составит (3.19):

$$f_{new_vin} = 11MNQ + 13MQ + \frac{11}{2}QN + \frac{11}{2}MN + 12M + 6 + MQ \begin{cases} 0, & \text{л. c.,} \\ 12, & \text{х. c. при N } \% \ 2 == 1 \end{cases}$$
(3.19)

3.5 Классы эквивалентности тестирования

Для тестирования были выделены следующие классы тестирования:

- 1) Пустые матрицы;
- 2) Матрицы размером 1х1;
- 3) Матрицы размером 3х2 и 2х3;
- 4) Матрицы размером 3х3 и 3х3;

3.6 Функциональные тесты

В таблице 3.1 приведены функциональные тесты для алгоритмов умножения матриц.

Все тесты пройдены успешно.

Таблица 3.1 — Функциональные тесты

Матрица 1	Матрица 2	Ожидаемый результат
(1)	(2)	(2)
$\begin{pmatrix} 2 & 3 \\ 4 & 5 \\ 6 & 7 \end{pmatrix}$	$ \begin{pmatrix} 10 & 11 & 12 \\ 20 & 21 & 23 \end{pmatrix} $	$ \begin{pmatrix} 80 & 85 & 93 \\ 140 & 149 & 163 \\ 200 & 213 & 233 \end{pmatrix} $
$ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$

Вывод

Были представлены средства реализации, листинг кода, функциональные тесты, модель вычислений и трудоемкость алгоритмов.

По результатам вычисления трудоемкости алгоритмов оптимизированный алгоритм Винограда должен работать быстрее остальных, а неоптимизированный алгоритм Винограда медленнее. ($f_{new_vin} < f_{std} < f_{vin}$, 11MNQ < 14MNQ < 16MNQ)

4 Исследовательская часть

Цель исследования – сравнительный анализ реализованных алгоритмов по трудоемкости.

4.1 Технические характеристики

- Операционная система Майкрософт Windows 11 Домашняя для одного языка; Версия 10.0.22631; Сборка 22631;
- Установленная оперативная память (RAM) 16,0 ГБ;
- Процессор AMD Ryzen 7 5800H with Radeon Graphics, 3201 МГц, ядер: 8, логических процессоров: 16;
- Микроконтроллер STM32F303 [3];

4.2 Время выполнения алгоритмов

Замеры времени работы алгоритмов проводились на плате и для этого использовалась функция ticks_ms(...) из библиотеки time на MicroPython [4].

Замеры проводились для четных размеров матриц от 2 до 40 по 10 раз на различных входных матрицах. А также — для нечетных размеров матриц от 3 до 39 по 10 раз на различных входных данных.

Были полученны графики зависимости времени работы плгоритма от размеров квадратных матриц 4.1-4.2 для алгоритмов умножения матриц.

Рисунок 4.1 — Сравнение времени работы алгоритмов умножения матриц нечетного размера

Рисунок 4.2 — Сравнение времени работы алгоритмов матриц четного размера

Рисунок 4.3 — Сравнение времени работы алгоритмов умножения матриц нечетного размера для разных реализаций алгоритма винограда

Рисунок 4.4 — Сравнение времени работы алгоритмов матриц четного размера для разных реализаций алгоритма винограда

4.3 Вывод

Из проведённых замеров можно сделать следующие выводы:

- Оптимизированный алгоритм Винограда демонстрирует наилучшие результаты по времени работы на всех тестовых данных, как в расчитанной ранее формула, так и на практике;
- Как и ожидалось умножение матрицы нечетного размера требует больше времени;
- На практике стандартный алгоритм умножения матриц работает медленнее, чем неоптимизированный алгоритм Винограда, это можно объяснять оптимизацией компилятора или неточность введенной модели вычислений.

ЗАКЛЮЧЕНИЕ

В ходе лабораторной работы была выполнена поставленная цель, которая заключалась в выполнении оценки ресурсной эффективности алгоритмов умножения матриц и их реализации.

Были выполнены следующие задачи:

- 1) Описать математическую основу стандартного алгоритма и алгоритма Винограда умножения матриц;
- 2) Описать модель вычислений;
- 3) Разобрать алгоритм умножения матриц стандартный, Винограда, оптимизированный согласно варианту алгоритм Винограда;
- 4) Выполнить оценку трудоемкости разработанных алгоритмов либо их реализации;
- 5) Реализовать разработанные алгоритмы в програмном обеспечении с 2 режимами работы одиночного расчета и массированного замера процессорного времени выполнения реализации каждого алгоритма;
- 6) Выполнить замеры процессорного времени выполнения реализации разработанных алгоритмов в зависимости от варьируемого размера матриц;
- 7) Выполнить сравнительный анализ рассчитанных трудоемкости и результатов замера процессорного времени выполнения реализации трех алгоритмов с учетом лучшего и худшего случаев по трудоемкости; Основываясь на проведенном исследовании можно сделать следующие

выводы.

- Оптимизированный алгоритм Винограда демонстрирует наилучшие результаты по времени работы на всех тестовых данных, как в расчитанной ранее формула, так и на практике;
- Как и ожидалось умножение матрицы нечетного размера требует больше времени;
- На практике стандартный алгоритм умножения матриц работает медленнее, чем неоптимизированный алгоритм Винограда, это можно объяснять оптимизацией компилятора или неточность введенной модели вычислений;

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Welcome to Python [Электронный ресурс]. Режим доступа: https://www.python.org. (дата обращения: 30.09.2024).
- 2. Matplotlib 3.9.2 documentation [Электронный ресурс]. Режим доступа: https://matplotlib.org/stable/index.html. (дата обращения: 30.09.2024).
- 3. ST Nucleo F767ZI NuttX latest documentation [Электронный ресурс]. Режим доступа: https://nuttx.apache.org/docs/latest/platforms/arm/stm32f7/boards/nucleo-f767/index.html. (дата обращения: 6.10.2024).
- 4. time time related functions MicroPython latest documentation [Электронный ресурс]. Режим доступа: https://docs.micropython.org/en/latest/library/time.html. (дата обращения: 6.10.2024).