МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики

Направление подготовки: «Прикладная математика и информатика» Профиль подготовки: «Вычислительные методы и суперкомпьютерные технологии»

Отчет по лабораторной работе

на тему «Блочное LU-разложение квадратной матрицы»

Выполнил:

студент группы $3823M1\Pi M$ вм Бекетов Е.В.

Проверил:

д.т.н., доц., зав.каф. МОСТ Баркалов К.А.

Оглавление

1	Введение	3			
2	Постановка задачи	4			
3	Теоретическая часть 3.1 Описание метода	5			
	3.2 Вычислительная трудоемкость	5 6			
4	Практическая часть	7 7			
	4.1 Эксперименты	7 8			
5	Заключение	9			
6	Литература				
7	Приложение А – Код последовательного алгоритма	11			
8	Приложение Б – Код последовательного блочного алгоритма	12			
9	Приложение В – Код параллельного блочного алгоритма	15			

1. Введение

Решение систем линейных алгебраических уравнений (СЛАУ) является важной и популярной среди инженеров задачей. С решением СЛАУ связаны многие матричные операции: вычисление определителя, обращение матрицы, нахождение собственных чисел и собственных векторов, и др.

На текущий момент известно 2 подхода, каждый из которых имеет достаточное количество методом:

- 1. Прямой подход, который ищет точное решение системы, где наиболее известны методы Гаусса, LU-разложение и разложение Холецкого.
- 2. Итерационный подход, который ищет решение за счет приближения с каждой итерацией, где наиболее известны методы Гаусса-Зейделя и Якоби.

В данной работе будет рассмотрено блочное LU-разложение.

2. Постановка задачи

Условие:

Реализовать блочное LU-разложение для квадратной матрицы, используя технологию OpenMP, то есть представить матрицу A в виде произведения двух матриц: A=LU, где L — нижняя треугольная матрица, а U — верхняя треугольная матрица.

Требования:

Программа на языке C++ должна реализовывать функцию со следующим заголовком: void LU Decomposition(double * A, double * L, double * U, int n);

Формат входа:

Функция получает в аргументах следующие переменные:

 ${\bf A}$ — указатель на массив, в котором по строкам хранится матрица ${\bf A}$ размера $n\times n$ — размерность матрицы

Формат выхода:

 ${\rm L}$ – указатель на массив, в котором по строкам необходимо записать матрицу ${\rm L}$ размера $n\times n$

U — указатель на массив, в котором по строкам необходимо записать матрицу U размера $n \times n$

Ответ считается корректным, если

$$\frac{||LU - A||_2}{||A||_2} < 0.01$$

Ограничения на размер задачи: Размерность матрицы $n \le 3000$

3. Теоретическая часть

3.1. Описание метода

LU-разложение — это представление матрицы A в виде A = LU, где L — нижнетреугольная матрица с единичной диагональю, а U — верхнетреугольная матрица. LU-разложение является модификацией метода Гаусса. LU-разложение возможно только когда матрица A обратима, а все главные миноры не вырождены.

Недостатком стандартного алгоритма LU-разложения является не эффективное использование кэш-памяти. Так как при достаточно больших размерах матрицы во время арифметических операций часто приходится обращаться к элементам, не лежащим вблизи в памяти, что как раз так и является не эффективны. В то время как правильное использование кэша может существенно (в десятки раз) повысить быстродействие вычислений.

Самый главный для LU-разложения способ – это укрупнение вычислительных операций, приводящее к последовательной обработке некоторых прямоугольных блоков матрицы A.

LU-разложение можно организовать так, что матричные операции (реализация которых допускает эффективное использование кэш-памяти) станут основными. Для этого представим матрицу A в следующем блочном виде:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

где блоки A_{11} размера $r \times r$, A_{12} размера $r \times (n-r)$, A_{21} размера $(n-r) \times r$, A_{22} размера $(n-r) \times (n-r)$. Аналогично и с L и U:

$$L = \begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} U = \begin{bmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix}$$

где блоки $L_{11},\,U_{11}$ размера $r\times r,\,L_{22},\,U_{11}$ размера $(n-r)\times (n-r),\,L_{21}$ размера $r\times (n-r),\,U_{12}$ размера $(n-r)\times r.$ Перемножим:

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} \times \begin{bmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix} = \begin{bmatrix} L_{11}U_{11} & L_{11}U_{12} \\ L_{21}U_{11} & L_{21}U_{12} + L_{22}U_{22} \end{bmatrix}$$

Теперь блоки L_{11} и U_{11} можно найти, применив метод Гаусса, а затем, решая треугольные системы с несколькими правыми частями будут найдены L_{21} и L_{12} . Далее находим редуцированную матрицы \hat{A}_{22} :

$$\hat{A}_{22} = A_{22} - L_{21}U_{12} = L_{21}U_{12} + L_{22}U_{22} - L_{21}U_{12} = L_{22}U_{22}$$

LU-разложение редуцированной матрицы \hat{A}_{22} совпадает с искомыми блоками L_{22} , U_{22} , и для нее можно применить тот же алгоритм, то есть у нас будет рекурсия.

Так как блочная реализация будет состоять из большого количества циклов, то удобно будет использовать принципы параллелизма конкретно к ним.

3.2. Вычислительная трудоемкость

Приведенная блочная схема требует порядка $\frac{2}{3}n^3$ операций. Оценим долю матричных операций. Пусть размер матрицы кратен размеру блока: n=rN, где N – размер блока. Операции, не являющиеся матричными, при разложении на L и U требуют так

же $\frac{2}{3}n^3$ операций и тогда в процессе блочного разложения потребуется решить N систем. В итоге долю матричных операций можно оценить следующим образом:

$$1 - \frac{\frac{2}{3}r^3N}{\frac{2}{3}n^3} = 1 - \frac{r^3N}{n^3} = 1 - \frac{r^3N}{r^3N^3} = 1 - \frac{1}{N^2}$$

3.3. Подтверждение корректности

Для подтверждения корректности разложения, был написан метод, который считает модуль разности LU и A, и если он меньше 0.01 то алгоритм работает корректно, иначе сообщает о его не корректности. Ниже представлена его реализация:

```
#define scalar(row, col) ((col) + (row) * size)
void Check_correct(double* A, double* L, double* U, int size) {
    for (int i = 0; i < size; ++i) {
        for (int j = 0; j < size; ++j)
        {
            double sum = 0;
            for (int k = 0; k < size; ++k)
                sum += L[scalar(i, k)] * U[scalar(k, j)];
            if (abs(A[scalar(i, j)] - sum) <= 0.01) {</pre>
                continue;
            }
            else {
                std::cout << "no correct" << "\n";
            }
        }
    std::cout << "correct!" << "\n";
```

4. Практическая часть

Для проведения дальнейших численных экспериментов были написаны 3 версии алгоритма: последовательный, последовательный блочный, параллельный блочный. Код каждой приведен в конце отчета в приложениях.

Эксперименты проводились с использованием следующей конфигурации:

	Процессор	8 ядерный AMD Ryzen 7 5800HS (2.8 GHz)
	Память, кэш	32 GB, L1 – 32 Kb, L2 – 512 Kb, L3 – 16 Mb
(Эперационная система	Windows 10 x64
	Среда разработки	Visual Studio 2022
	Библиотеки	OpenMP
	Компилятор	Intel oneAPI DPC++/C++ Compiler (2024.0.2)

4.1. Эксперименты

Проведем серию экспериментов для выявления оптимального числа потоков и размера блока для матриц размера 1000, 2000, 3000, 4000.

4.1.1. Последовательный алгоритм

Сделаем замеры «написанного в лоб» алгоритма Рис. 1.

Последовательный алгоритм				
Размер матрицы	1000	2000	3000	4000
Время				
последовательного	0,089	1,749	6,998	16,786
алгоритма				

Рис. 1: Время работы последовательного алгоритма в секундах.

Очевидная ситуация, время работы растет пропорционально размеру задачи, посмотрим теперь, что будет при блочной реализации алгоритма Рис. 2

Последовательный алгоритм от размера блока				
Daamon 6 gova	Размер матрицы			
Размер блока	1000	2000	3000	4000
100	0,225	1,997	6,2	15,764
200	0,236	2,129	6,617	17,282
500	0,202	1,966	6,521	15,818
1000	0,085	1,818	6,485	16,779

Рис. 2: Время работы последовательного блочного алгоритма в секундах.

Из таблицы можно сделать однозначный вывод, что размер блока равный 200, самый худший, однако блоки размера 1000 и 100 самые лучшие. Дальнейшие результаты для параллельного алгоритма я проводил с размером блока равным 1000, так как для малой матрицы он дает наибольшую разность с самым худшим размером.

4.1.2. Параллельный алгоритм

Сделаем замеры алгоритма при блоке равным 1000 и числе потоков равному 1 Рис. 3.

Параллельный алгоритм от числа потоков				
Писло потоков	Размер матрицы			
Число потоков	1000	2000	3000	4000
1	0,097	1,772	6,321	16,28
2	0,056	1,019	3,358	8,87
3	0,041	0,726	2,526	6,318
4	0,03	0,58	2,042	5,174

Рис. 3: Время работы параллельного алгоритма в секундах.

Видно, что наименьшее время достигается при 4 потоках, что не удивительно. Посмотрим, на ускорение алгоритма в сравнении с использованием одного потока Рис. 4

Ускорение параллельного алгоритма от числа потоков				
Писло потоков	Размер матрицы			
Число потоков	1000	2000	3000	4000
1	1	1	1	1
2	1,732143	1,73896	1,88237	1,8354
3	2,365854	2,440771	2,502375	2,576765
4	3,233333	3,055172	3,095495	3,146502

Рис. 4: Ускорение параллельного алгоритма.

В целом на Рис. 3 и Рис. 4 видно, что параллельный алгоритм работает исправно, не наблюдается никаких аномалий, по типу свехрлинейного ускорения, а значит алгоритм написан правильно.

5. Заключение

 ${\rm B}$ данной лабораторной работе был изучен алгоритм блочного разложения квадратной матрицы — LU-разложение.

Было показано, что в отличии от стандартного, «написанного в лоб», разложения, блочный параллельный алгоритм показывает результаты по времени лучше, за счет эффективного использования кэш-памяти и принципа разделения вычислений на несколько потоков, получившиеся результаты совпадают с теоретическими предположениями, что говорит о правильности алгоритма.

6. Литература

- 1. Баркалов К.А. Образовательный комплекс «Параллельные численные методы». Н.Новгород, Изд-во ННГУ 2011.
 - 2. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989.
- 3. Белов С.А., Золотых Н.Ю. Численные методы линейной алгебры. Н.Новгород, Изд-во ННГУ, 2005.
- 4. Вербицкий В.В., Реут В.В. Введение в численные методы алгебры: учебное пособие / В.В. Вербицкий, В.В. Реут. Одесса: Одесский национальный университет имени И.И. Мечникова, 2015.

7. Приложение А – Код последовательного алгоритма

```
void LU_Decomposition(double* A, double* L, double* U, int n)
{
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++)
            U[n * i + j] = A[n * i + j];
        }
    for (int i = 0; i < n; i++) {
        L[i * n + i] = 1;
        for (int k = i + 1; k < n; k++) {
            double mu = U[k * n + i] / U[n * i + i];
            for (int j = i; j < n; j++) {
                U[k * n + j] = mu * U[i * n + j];
            L[k * n + i] = mu;
            L[i * n + k] = 0;
        }
    for (int i = 1; i < n; i++) {
        for (int j = 0; j < i; j++) {
            U[i * n + j] = 0;
        }
    }
}
```

8. Приложение Б – Код последовательного блочного алгоритма

```
void LU_Decomposition(double* A, double* L, double* U, int n, int r) {
    if (n \le r) \{
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < n; ++j) {
                U[n * i + j] = A[n * i + j];
            }
        }
        for (int i = 0; i < n; ++i) {
            L[i * n + i] = 1;
            for (int k = i + 1; k < n; ++k) {
                double mu = U[k * n + i] / U[n * i + i];
                for (int j = i; j < n; ++j) {
                    U[k * n + j] = mu * U[i * n + j];
                }
                L[k * n + i] = mu;
                L[i * n + k] = 0;
            }
        for (int i = 1; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                U[i * n + j] = 0;
            }
        }
    } else {
        int l = n - r;
        double* A11 = new double[r * r];
        double* A12 = new double[r * 1];
        double* A21 = new double[r * 1];
        for (int i = 0; i < r; ++i) {
            for (int j = 0; j < r; ++j) {
                A11[i * r + j] = A[i * n + j];
            }
        }
        for (int i = 0; i < r; ++i) {
            for (int j = 0; j < 1; ++j) {
                A12[i * l + j] = A[i * n + j + r];
            }
        }
        for (int i = 0; i < 1; ++i) {
            for (int j = 0; j < r; ++j) {
                A21[i * r + j] = A[(i + r) * n + j];
            }
        }
        double* L11 = new double[r * r];
        double* U11 = new double[r * r];
        LU_Decomposition(A11, L11, U11, r, r);
```

```
delete[] A11;
double* L21 = new double[r * 1];
double* U12 = new double[r * 1];
for (int iter = 0; iter < 1; ++iter) {</pre>
    for (int i = 0; i < r; ++i) {
        L21[r * iter + i] = A21[r * iter + i];
        for (int j = 0; j < i; ++j) {
            L21[r * iter + i] -= U11[r * j + i] * L21[r * iter + j];
        L21[r * iter + i] /= U11[r * i + i];
    }
}
for (int iter = 0; iter < 1; ++iter) {</pre>
    for (int i = 0; i < r; ++i) {
        U12[1 * i + iter] = A12[1 * i + iter];
        for (int j = 0; j < i; ++j) {
            U12[1 * i + iter] = L11[r * i + j] * U12[1 * j + iter];
        U12[1 * i + iter] /= L11[r * i + i];
    }
}
delete[] A12;
delete[] A21;
for (int i = 0; i < r; ++i) {
    for (int j = 0; j < r; ++j) {
        L[i * n + j] = L11[i * r + j];
        U[i * n + j] = U11[i * r + j];
    }
}
delete[] L11;
delete[] U11;
double* A22 = new double[1 * 1];
double* L22 = new double[1 * 1];
double* U22 = new double[1 * 1];
for (int i = 0; i < 1; ++i) {
    for (int j = 0; j < 1; ++j) {
        A22[i * 1 + j] = A[(i + r) * n + j + r];
        for (int k = 0; k < r; ++k) {
            A22[i * l + j] = L21[i * r + k] * U12[k * l + j];
        }
    }
}
LU_Decomposition(A22, L22, U22, 1, r);
delete[] A22;
for (int i = 0; i < r; ++i) {
    for (int j = 0; j < 1; ++j) {
        L[i * n + j + r] = 0;
        U[i * n + j + r] = U12[i * l + j];
    }
```

```
}
        for (int i = 0; i < 1; ++i) {
            for (int j = 0; j < r; ++j) {
                L[(i + r) * n + j] = L21[i * r + j];
                U[(i + r) * n + j] = 0;
            }
        }
        for (int i = 0; i < 1; ++i) {
            for (int j = 0; j < 1; ++j) {
                L[(i + r) * n + j + r] = L22[i * 1 + j];
                U[(i + r) * n + j + r] = U22[i * 1 + j];
            }
        }
        delete[] L21;
        delete[] L22;
        delete[] U12;
        delete[] U22;
    }
}
```

9. Приложение B – Код параллельного блочного алгоритма

```
void LU_Decomposition(double* A, double* L, double* U, int n, int r) {
    const int num_thread = 16;
    const int r = 1500;
    if (n \le r) \{
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < n; ++j) {
                U[n * i + j] = A[n * i + j];
        }
        for (int i = 0; i < n; ++i) {
            L[i * n + i] = 1;
#pragma omp parallel for num_threads(num_thread)
            for (int k = i + 1; k < n; ++k) {
                double mu = U[k * n + i] / U[n * i + i];
                for (int j = i; j < n; ++j) {
                    U[k * n + j] = mu * U[i * n + j];
                }
                L[k * n + i] = mu;
                L[i * n + k] = 0;
            }
        }
        for (int i = 1; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                U[i * n + j] = 0;
            }
        }
    } else {
        int l = n - r;
        double* A11 = new double[r * r];
        double* A12 = new double[r * 1];
        double* A21 = new double[r * 1];
#pragma omp parallel for num_threads(num_thread)
        for (int i = 0; i < r; ++i) {
            for (int j = 0; j < r; ++j) {
                A11[i * r + j] = A[i * n + j];
            }
        }
#pragma omp parallel for num_threads(num_thread)
        for (int i = 0; i < r; ++i) {
            for (int j = 0; j < 1; ++j) {
                A12[i * l + j] = A[i * n + j + r];
            }
#pragma omp parallel for num_threads(num_thread)
        for (int i = 0; i < 1; ++i) {
            for (int j = 0; j < r; ++j) {
```

```
A21[i * r + j] = A[(i + r) * n + j];
            }
        }
        double* L11 = new double[r * r];
        double* U11 = new double[r * r];
        LU_Decomposition(A11, L11, U11, r, r, num_thread);
        delete[] A11;
        double* L21 = new double[r * 1];
        double* U12 = new double[r * 1];
#pragma omp parallel for num_threads(num_thread)
        for (int iter = 0; iter < 1; ++iter) {</pre>
            for (int i = 0; i < r; ++i) {
                L21[r * iter + i] = A21[r * iter + i];
                for (int j = 0; j < i; ++j) {
                    L21[r * iter + i] = U11[r * j + i] * L21[r * iter + j];
                L21[r * iter + i] /= U11[r * i + i];
            }
        }
#pragma omp parallel for num_threads(num_thread)
        for (int iter = 0; iter < 1; ++iter) {</pre>
            for (int i = 0; i < r; ++i) {
                U12[1 * i + iter] = A12[1 * i + iter];
                for (int j = 0; j < i; ++j) {
                    U12[1 * i + iter] = L11[r * i + j] * U12[1 * j + iter];
                U12[1 * i + iter] /= L11[r * i + i];
            }
        }
        delete[] A12;
        delete[] A21;
#pragma omp parallel for num_threads(num_thread)
        for (int i = 0; i < r; ++i) {
            for (int j = 0; j < r; ++j) {
                L[i * n + j] = L11[i * r + j];
                U[i * n + j] = U11[i * r + j];
            }
        }
        delete[] L11;
        delete[] U11;
        double* A22 = new double[1 * 1];
        double* L22 = new double[1 * 1];
        double* U22 = new double[1 * 1];
#pragma omp parallel for num_threads(num_thread)
        for (int i = 0; i < 1; ++i) {
            for (int j = 0; j < 1; ++j) {
                A22[i * 1 + j] = A[(i + r) * n + j + r];
                for (int k = 0; k < r; ++k) {
```

```
A22[i * l + j] = L21[i * r + k] * U12[k * l + j];
                }
            }
        }
        LU_Decomposition(A22, L22, U22, 1, r, num_thread);
        delete[] A22;
#pragma omp parallel for num_threads(num_thread)
        for (int i = 0; i < r; ++i) {
            for (int j = 0; j < 1; ++j) {
                L[i * n + j + r] = 0;
                U[i * n + j + r] = U12[i * 1 + j];
            }
        }
#pragma omp parallel for num_threads(num_thread)
        for (int i = 0; i < 1; ++i) {
            for (int j = 0; j < r; ++j) {
                L[(i + r) * n + j] = L21[i * r + j];
                U[(i + r) * n + j] = 0;
            }
#pragma omp parallel for num_threads(num_thread)
        for (int i = 0; i < 1; ++i) {
            for (int j = 0; j < 1; ++j) {
                L[(i + r) * n + j + r] = L22[i * 1 + j];
                U[(i + r) * n + j + r] = U22[i * 1 + j];
            }
        }
        delete[] L21;
        delete[] L22;
        delete[] U12;
        delete[] U22;
    }
}
```