18.01 PRACTICE FINAL, FALL 2003

Problem 1 Find the following definite integral using integration by parts.

$$\int_0^{\frac{\pi}{2}} x \sin(x) dx.$$

Solution Let u = x, $dv = \sin(x)dx$. The du = dx, $v = -\cos(x)$. So $\int u dv = uv - \int v du$, i.e.,

$$\int_0^{\frac{\pi}{2}} x \sin(x) dx = (-x \cos(x)|_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos(x) dx = (-\frac{\pi}{2} \cdot 0 + 0 \cdot 1) + (\sin(x)|_0^{\frac{\pi}{2}} = 0 + (1 - 0) = 1.$$

Problem 2 Find the following antiderivative using integration by parts.

$$\int x \sin^{-1}(x) dx.$$

Solution First substitute $x = \sin(\theta)$, $dx = \cos(\theta)d\theta$. Then the integral becomes,

$$\int \theta \sin(\theta) \cos(\theta) d\theta.$$

Of course $\sin(\theta)\cos(\theta) = \frac{1}{2}\sin(2\theta)$. Thus we need to compute

$$\int \frac{1}{2} \theta \sin(2\theta) d\theta.$$

Set $u = \frac{1}{2}\theta$, $dv = \sin(2\theta)d\theta$. Then $du = \frac{1}{2}d\theta$ and $v = -\frac{1}{2}\cos(2\theta)$. So $\int u dv = uv - \int v du$, i.e.,

$$\begin{array}{l} \int \frac{1}{2}\theta \sin(2\theta)d\theta = -\frac{1}{4}\theta \cos(2\theta) + \frac{1}{4}\int \cos(2\theta)d\theta = \\ -\frac{1}{4}\theta \cos(2\theta) + \frac{1}{8}\sin(2\theta) + C. \end{array}$$

Using trigonometric formulas, this equals,

$$-\frac{1}{4}\theta(1 - 2\sin^2(\theta)) + \frac{1}{4}\sin(\theta)\sqrt{1 - \sin^2(\theta)} + C.$$

Back-substituting, $\sin(\theta) = x$, gives the final answer.

$$-\frac{1}{4}(1-2x^2)\sin^{-1}(x) + \frac{1}{4}x\sqrt{1-x^2} + C.$$

Problem 3 Use L'Hospital's rule to compute the following limits.

- (a) $\lim_{x \to 0} \frac{a^x b^x}{x}$, 0 < a < b. (b) $\lim_{x \to 1} \frac{4x^3 5x + 1}{\ln x}$.

Solution (a). As x approaches 0, both the numerator and denominator approach 0. The corresponding derivatives are,

$$\frac{d}{dx}(a^x - b^x) = \ln(a)a^x - \ln(b)b^x, \quad \frac{d}{dx}(x) = 1.$$

Therefore, by L'Hospital's rule,

$$\lim_{x \to 0} \frac{a^x - b^x}{x} = \lim_{x \to 0} \frac{\ln(a)a^x - \ln(b)b^x}{1} = \ln(a) - \ln(b).$$

Date: Fall 2003.

(b). As x approaches 1, the numerator approaches 4-5+1=0, and the denominator approaches ln(1)=0. The corresponding derivatives are,

$$\frac{d}{dx}(4x^3 - 5x + 1) = 12x^2 - 5, \quad \frac{d}{dx}\ln(x) = \frac{1}{x}.$$

Therefore, by L'Hospital's rule,

$$\lim_{x \to 1} \frac{4x^3 - 5x + 1}{\ln(x)} = \lim_{x \to 1} \frac{12x^2 - 5}{\frac{1}{x}} = \frac{12 - 5}{1} = 7.$$

Problem 4 Determine whether the following improper integral converges or diverges.

$$\int_{1}^{\infty} e^{-x^2} dx.$$

(Hint: Compare with another function.)

Solution Because the integrand is nonnegative, the integral converges if and only if it is bounded. Therefore the comparison test applies. For x > 1, $x^2 > x$. Therefore $-x^2 < -x$ and $0 \le e^{-x^2} < e^{-x}$. Integrating,

$$\int_{1}^{\infty} e^{-x} dx = \left(-e^{-x} \right|_{1}^{\infty} = (0 + e^{-1}) = e^{-1} < \infty.$$

Therefore, also $\int_{1}^{\infty} e^{-x^2} dx$ converges (and is bounded above by e^{-1}).

Problem 5 You wish to design a trash can that consists of a base that is a disk of radius r, cylindrical walls of height h and radius r, and the top consists of a hemispherical dome of radius r (there is no disk between the top of the walls and the bottom of the dome; the dome rests on the top of the walls). The surface area of the can is a fixed constant A. What ratio of h to r will give the maximum volume for the can? You may use the fact that the surface area of a hemisphere of radius r is $2\pi r^2$, and the volume of a hemisphere is $\frac{2}{3}\pi r^3$.

Solution The area of the base is πr^2 . The area of the sides are $2\pi rh$. The area of the dome is $2\pi r^2$. Therefore we have the equation,

$$A = \pi r^2 + 2\pi rh + 2\pi r^2 = \pi r(3r + 2h).$$

It follows that $h = \frac{A}{2\pi r} - \frac{3r}{2}$. The volume of the cylindrical portion of the can is the area of the base times the height, i.e., $\pi r^2 h$. The area of the dome of the can is $\frac{2}{3}\pi r^3$. Therefore the total volume of the can is,

$$V(r) = \pi r^2 \left(\frac{A}{2\pi r} - \frac{3r}{2} \right) + \frac{2}{3}\pi r^3 = \frac{Ar}{2} - \frac{5\pi r^3}{6}.$$

The endpoints for r are r=0 and $r=\sqrt{\frac{A}{3\pi}}$. The critical points for r occur when,

$$\frac{dV}{dr} = \frac{A}{2} - \frac{5\pi r^2}{2} = 0,$$

i.e., $A = 5\pi r^2$. Since $A = 3\pi r^2 + 2\pi rh$, we conclude that $2\pi rh = A - 3\pi r^2 = 2\pi r^2$. Cancelling, we have that h = r. This is contained in the interval for r, moreover geometric reasoning (or the first derivative test) shows this is a maximum for V. Therefore the maximum volume is obtained when h = r.

Problem 6 A point on the unit circle in the xy-plane moves counterclockwise at a fixed rate of $1\frac{\text{radian}}{\text{second}}$. At the moment when the angle of the point is $\theta = \frac{\pi}{4}$, what is the rate of change of the distance from the particle to the y-axis?

Solution The coordinates of the point are $(\cos(\theta), \sin(\theta))$. The distance from the y-axis is the absolute value of the x-coordinate. Since the point is in the 1st quadrant, this is just $x = \cos(\theta)$. Therefore the rate of change of the distance is,

$$\frac{dx}{dt} = \frac{dx}{d\theta} \cdot \frac{d\theta}{dt} = -\sin(\theta) \cdot 1 \frac{\text{radian}}{\text{second}} = -\frac{1}{\sqrt{2}} \frac{\text{radian}}{\text{second}}.$$

Problem 7 Compute the following integral using a trigonometric substitution. Don't forget to back-substitute.

$$\int \frac{x^2}{\sqrt{1-x^2}} dx.$$

Hint: Recall the half-angle formulas, $\cos^2(\theta) = \frac{1}{2}(1 + \cos(2\theta)), \sin^2(\theta) = \frac{1}{2}(1 - \cos(2\theta)).$

Solution This integral calls for a trigonometric substitution, $x = \sin(\theta)$, $dx = \cos(\theta)d\theta$. The integral becomes,

$$\int \frac{\sin^2(\theta)}{\cos(\theta)} \cos(\theta) d\theta = \int \sin^2(\theta) d\theta.$$

By the half-angle formulas, this is

$$\int \frac{1}{2} (1 - \cos(2\theta)) d\theta = \frac{1}{2} (\theta - \frac{1}{2} \sin(2\theta)) + C.$$

Using the double-angle formula, $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$, and back-substituting $\sin(\theta) = x$ yields,

$$\frac{1}{2}\sin^{-1}(x) - \frac{1}{2}x\sqrt{1 - x^2} + C.$$

Problem 8 Compute the volume of the solid of revolution obtained by rotating about the x-axis the region in the 1st quadrant of the xy-plane bounded by the axes and the curve $x^4 + r^2y^2 = r^4$.

Solution The curve intersects the y-axis when $r^2y^2 = r^4$, i.e. y = r. The curve intersects the x-axis when $x^4 = r^4$, i.e. x = r. So the endpoints of the curve are (0, r) and (r, 0). Using the disk method, the volume of the solid is,

$$\int_{x=0}^{x=r} \pi y^2 dx.$$

Since $y^2 = r^2 - \frac{x^4}{r^2}$, the volume is,

$$V = \int_{x=0}^{x=r} \pi r^2 - \frac{\pi x^4}{r^2} dx = \left(\pi r^2 x - \frac{\pi x^5}{5r^2} \right)_0^r.$$

This evaluates to $\pi r^3 - \frac{1}{5}\pi r^3 = \frac{4}{5}\pi r^3$.

Problem 9 Compute the area of the surface of revolution obtained by rotating about the y-axis the portion of the lemniscate $r^2 = 2a^2\cos(2\theta)$ in the 1st quadrant, i.e., $0 \le \theta \le \frac{\pi}{4}$.

Solution The polar equation for arclength is $ds^2 = dr^2 + r^2 d\theta^2$, which is equivalent to $r^2 ds^2 = r^2 dr^2 + r^4 d\theta^2$. By implicit differentiation,

$$2rdr = -4a^2\sin(2\theta)d\theta, \quad r^2dr^2 = 4a^4\sin^2(2\theta)d\theta^2.$$

Therefore,

$$r^{2}ds^{2} = r^{2}dr^{2} + r^{4}d\theta^{2} = 4a^{4}\sin^{2}(2\theta)d\theta^{2} + 4a^{4}\cos^{2}(2\theta)d\theta^{2} = 4a^{4}d\theta^{2}.$$

So $ds = \frac{2a^2}{r}d\theta$.

The area of the surface of revolution is given by,

$$\int 2\pi x ds = \int_{\theta=0}^{\theta=\frac{\pi}{4}} 2\pi r \cos(\theta) \frac{2a^2}{r} d\theta = \int_{0}^{\frac{\pi}{4}} 4\pi a^2 \cos(\theta) d\theta = \left(4\pi a^2 \sin(\theta)\right)_{0}^{\frac{\pi}{4}}.$$

Therefore the surface area is $\frac{4\pi}{\sqrt{2}}a^2$.

Problem 10 Compute the area of the lune that is the region in the 1^{st} and 3^{rd} quadrants contained inside the circle with polar equation $r = 2a\cos(\theta)$ and outside the circle with polar equation r = a.

Solution Setting $2a\cos(\theta)$ equal to a, the points of intersection occur when $2\cos(\theta)=1$, i.e. $\theta=-\frac{\pi}{3}$ and $\theta=+\frac{\pi}{3}$. So the lune is the region between the two graphs for $-\frac{\pi}{3}\leq\theta\leq\frac{\pi}{3}$. The outer curve is $r_o=2a\cos(\theta)$ and the inner curve is $r_i=a$. The formula for the area between two polar curves is

Area =
$$\int \frac{1}{2} (r_o^2 - r_i^2) d\theta.$$

In this case, the area is,

$$\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{1}{2} (4a^2 \cos^2(\theta) - a^2) d\theta = a^2 \int_0^{\frac{\pi}{3}} (4\cos^2(\theta) - 1) d\theta.$$

To evaluate this, use the half-angle formula, $\cos^2(\theta) = \frac{1}{2}(1 + \cos(2\theta))$. The integral becomes,

$$a^{2} \int_{0}^{\frac{\pi}{3}} (2 + 2\cos(2\theta) - 1)d\theta = a^{2} (\theta + \sin(2\theta))_{0}^{\frac{\pi}{3}}.$$

Therefore the area is $a^2(\frac{\pi}{3} + \frac{\sqrt{3}}{2})$, i.e. $\frac{2\pi + 3\sqrt{3}}{6}a^2$.

Problem 11 Find the equation of every tangent line to the hyperbola C with equation $y^2 - x^2 = 1$, that contains the point $(0, \frac{1}{2})$.

Solution By implicit differentiation.

$$2y\frac{dy}{dx} - 2x = 0, \quad \frac{dy}{dx} = \frac{x}{y}.$$

Therefore, the slope of the tangent line to C at (x_0, y_0) is $\frac{x_0}{y_0}$. So the equation of the tangent line to $C \text{ at } (x_0, y_0) \text{ is,}$

$$(y-y_0) = \frac{x_0}{y_0}(x-x_0).$$

If the tangent line contains the point $(0, \frac{1}{2})$, then (x_0, y_0) satisfies the equation,

$$(\frac{1}{2} - y_0) = \frac{x_0}{y_0}(0 - x_0), \quad \frac{y_0}{2} - y_0^2 = -x_0^2.$$

Of course also $y_0^2 - x_{0_-}^2 = 1$, therefore $\frac{y_0}{2} = y_0^2 - x_0^2 = 1$. So $y_0 = 2$. The two solutions of x_0 are $x_0 = \sqrt{3}$ and $x_0 = -\sqrt{3}$. The equations of the corresponding tangent lines are,

$$\begin{cases} (y-2) &= \frac{\sqrt{3}}{2}(x-\sqrt{3}), \\ (y-2) &= -\frac{\sqrt{3}}{2}(x+\sqrt{3}). \end{cases}$$

Problem 12 Compute each of the following integrals.

- (a) $\int \sec^3(\theta) \tan(\theta) d\theta$.
- (a) $\int \frac{x-1}{x(x+1)^2} dx$. (b) $\int \frac{x-1}{x(x+1)^2} dx$. (c) $\int \frac{2x-1}{2x^2-2x+3} dx$.
- (d) $\int \sqrt{e^{3x}} dx$.

Solution (a). Substituting $u = \sec(\theta)$, $du = \sec(\theta)\tan(\theta)d\theta$, the integral becomes,

$$\int u^2 du = \frac{1}{3}u^3 + C = \frac{1}{3}\sec^3(\theta) + C.$$

(b). This is a proper rational function. Use a partial fractions expansion,

$$\frac{x-1}{x(x+1)^2} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{(x+1)^2}.$$

By the Heaviside cover-up method, A=-1 and $C=\frac{-2}{-1}=2$. This only leaves B to compute. Plug in x=1 to get,

$$0 = \frac{-1}{1} + \frac{B}{2} + \frac{2}{2^2} = \frac{B}{2} - \frac{1}{2}, \quad B = 1.$$

So the partial fraction decomposition is,

$$\frac{x-1}{x(x+1)^2} = \frac{-1}{x} + \frac{1}{x+1} + \frac{2}{(x+1)^2}.$$

Thus the antiderivative is,

$$\int \frac{-1}{x} + \frac{1}{x+1} + \frac{2}{(x+1)^2} dx = -\ln(x) + \ln(x+1) - \frac{2}{(x+1)} + C'.$$

(c). The derivative of the denominator is 4x - 2. This is twice the numerator. Substituting $u = 2x^2 - 2x + 3$, du = (4x - 2)dx, the integral becomes,

$$\int \frac{1}{u} \left(\frac{1}{2} du \right) = \frac{1}{2} \ln(u) + C = \frac{1}{2} \ln(2x^2 - 2x + 3) + C.$$

(d). Of course $\sqrt{e^{3x}}=e^{\frac{3}{2}x}.$ Therefore the antiderivative is,

$$\int e^{\frac{3}{2}x} dx = \frac{2}{3}e^{\frac{3}{2}x} + C.$$