Christian Wilms

Computer Vision Group Universität Hamburg

Sommersemester 2018

17. Mai 2018

- Projektaufgabe
- 2 Klassifikation Machine Learning Perspective
- 3 Neuronale Netze
- 4 Keras
- 5 Literatur

• im zweiten Teil des Praktikums wird es eine größere Aufgabe geben

• die Bearbeitung ist in Teams (4 Studis) vorgesehen

Aufgabenstellung

- Ihr sollt Bilder klassifizieren!
- Domäne ist völlig offen
- zwei Varianten
 - klassischer Ansatz (Merkmale selber wählen)
 - Deep Learning basiert
- es dürfen nur Methoden genutzt werden, die auch verstanden wurden
- im Praktikumsbericht wird die Lösung der Aufgabe beschrieben und evaluiert

Beispieldomänen

- Spielkarten zu Farben zuordnen
- Logos klassifizieren
- Fische den Arten zuordnen
- Landnutzung aus Google Earth-Bildern
- Haribo-Figuren den Tüten zuordnen
- Münzen den Ländern zuordnen
- Verkehrsschilder klassifizieren
- Lego-Figuren zu Themen klassifizieren
- Gemälde einem Maler zuordnen (Painter by Numbers @ kaggle.com)
- ...

0000

31. Mai

• Diskussion der Ideen mit den Kleingruppen

7. Juni

- Präsentation der Idee
- 5-10 Minuten Vortrag (eine Person)

12. Juli

- Abschlusspräsentation der Ergebnisse
- 10-15 Minuten Vortrag (eine/zwei Personen)

Daten sammeln

Datensätze aus dem Internet

- durchs Internet geistern tausende von Datensätzen
- es gibt allgemeine Datensätze zur Klassifikation wie CIFAR-10 oder welche zu speziellen Problemen wie etwa Klassifikation von Verkehrsschildern
- eine von vielen (unvollständigen) Übersichten bietet: Yet Another Computer Vision Index To Datasets (YACVID)
- die Bilder in Datensätzen liegen teilweise in ganz unterschiedlichen Formaten vor

Datensätze selber machen

- Fotos mit einer Kamera
- Bilder aus dem Internet, etwa von Flickr oder Google Earth

Übersicht

- Projektaufgabe
- Machine Learning Perspective

- Mittelwert
- Standardabweichung
- Histogramme
- Seitenverhältnis
- HOG
- . . .

- Nearest Neighbour Klassifikator
- k-Nearest Neighbour Klassifikator

- es werden n Merkmale berechnet
- die Bilder liegen in einem *n*-dimensionalen Raum (hier: 2D)
- Wie werden die beiden Klassen gut voneinander getrennt?
- wir brauchen eine Grenze zwischen den Klassen

Literatur

Klassifikator - Nearest Neighbour

- wir kennen schon den 1NN-Klassifikator
- hier wird implizit eine Entscheidungsgrenze (Decision Boundary) erstellt
- Nachteile: Speicher, Geschwindigkeit, Probleme mit Ausreißern

- wir kennen schon den 1NN-Klassifikator
- hier wird implizit eine Entscheidungsgrenze (Decision Boundary) erstellt
- Nachteile: Speicher, Geschwindigkeit, Probleme mit Ausreißern

Neuronale Netze

Klassifikator - Nearest Neighbour

Projektaufgabe

- wir kennen schon den 1NN-Klassifikator
- hier wird implizit eine Entscheidungsgrenze (Decision Boundary) erstellt
- Nachteile: Speicher, Geschwindigkeit,
 Probleme mit Ausreißern

Wir brauchen etwas Robusteres!

- Funktion für die Entscheidungsgrenze finden
- hier linear: $y = f(\vec{x}) = \vec{w}^T \vec{x} + b = w_1 \cdot x_1 + w_2 \cdot x_2 + b$
- \vec{x} ist der Deskriptor oder das Bild
- w ist ein Vektor von Gewichten (w₁ und w₂)
- b ist ein Gewicht als Skalar
- y gibt mit dem Vorzeichen die Klassenzugehörigkeit an
- die eigentliche Grenze liegt bei y = 0

Wie können wir \vec{w} und b optimal bestimmen?

- Funktion für die Entscheidungsgrenze finden
- hier linear: $y = f(\vec{x}) = \vec{w}^T \vec{x} + b = w_1 \cdot x_1 + w_2 \cdot x_2 + b$
- \vec{x} ist der Deskriptor oder das Bild
- w ist ein Vektor von Gewichten (w₁ und w₂)
- b ist ein Gewicht als Skalar
- y gibt mit dem Vorzeichen die Klassenzugehörigkeit an
- die eigentliche Grenze liegt bei y = 0

Neuronale Netze

Klassifikator - Entscheidungsgrenze bewerten

Wir brauchen ein mathematisches Kriterium, das die Güte der Entscheidungsgrenze ermittelt \rightarrow Loss-Funktion.

Wir brauchen ein mathematisches Kriterium, das die Güte der Entscheidungsgrenze ermittelt \rightarrow Loss-Funktion.

Projektaufgabe

Loss-Funktion

- bewertet die Entscheidungsgrenze
- berechnet gegeben eine Entscheidungsgrenze wie viele falsche Klassifikationen in der Trainingsmenge gemacht werden und wie falsch sie sind
- es gibt viele verschiedene
 Loss-Funktionen

Entscheidungsgrenze optimieren - I

Wie kann nun, gegeben eine Loss-Funktion, die beste Entscheidungsgrenze gefunden werden? Woran können wir überhaupt drehen?

Woran wir drehen können:

Gewichte \vec{w} , b

Die beste Entscheidungsgrenze minimiert die Loss-Funktion L.

Prinzip

- nach jedem Trainings-Bild/Deskriptor können wir das Ergebnis prüfen
- ist das Ergebnis der Klassifikation falsch, erhalten wir einen Loss > 0
- wir können dann \vec{w} und b anpassen \rightarrow Aber wie?

Entscheidungsgrenze optimieren - II

Ein Durchgehen aller möglichen Parameterkombinationen ist schnell nicht mehr möglich.

Optimierungsproblem

- mit beliebigen/zufälligen Werten für \vec{w} und \vec{b} starten
- 2 ein Trainings-Bild/Deskriptor klassifizieren
- war die Klassifikation richtig, zurück zu 1
- **1** Loss I des Bildes/Deskriptors berechnen über Loss-Funktion L
- $oldsymbol{\circ}$ partielle Ableitungen der Loss-Funktion bezüglich der Parameter bilden ightarrow Gradient
- \vec{w} und \vec{b} mit Hilfe des Gradienten aktualisieren
- zurück zu 1

Gradietenabstieg - I

- Parameterraum hier
 2-dimensional
- die Fläche visualisiert den jeweiligen Loss für verschiedene Parameterkombinationen
- man kennt nur einzelne Punkte
- die Täler sind die interessanten Stellen

- gegeben eine Startkombination lässt sich der Gradient der Loss-Funktion an dieser Stelle berechnen (part. Ableitungen)
- entlang des Gradienten können wir nun absteigen
- nach einigen Iterationen gelangen wir zu einem lokalen Minimum
- die Lösung ist nicht unbedingt optimal

Gradietenabstieg - Beispiel

Gegeben:

- Entscheidungsgrenze der Form $y = f(\vec{x}) = \vec{w}^T \vec{x} + b = w_1 \cdot x_1 + w_2 \cdot x_2 + b$
- Gewichte \vec{w}^{alt} bestehend aus w_1^{alt} und w_2^{alt} sowie b^{alt}
- ullet ein Deskriptor $ec{x}$ bestehend aus x_1 und x_2 mit Label $t \in \{-1,1\}$
- ein Loss-Funktion $(y-t)^2$, falls $sgn(t) \neq sgn(y)$

Vorgehen:

- Ist $sgn(t) \neq sgn(y)$, also die Klassifikation mit den aktuellen Gewichten falsch? Ja!
- partielle Ableitungen bilden
- Gewichte aktualisieren

$$L(y) = (y - t)^{2}$$

$$L = (w_{1} \cdot x_{1} + w_{2} \cdot x_{2} + b - t)^{2}$$

$$\frac{\partial L}{\partial w_{1}} = 2 \cdot (w_{1} \cdot x_{1} + w_{2} \cdot x_{2} + b - t) \cdot x_{1}$$

$$\frac{\partial L}{\partial w_{2}} = 2 \cdot (w_{1} \cdot x_{1} + w_{2} \cdot x_{2} + b - t) \cdot x_{2}$$

$$\frac{\partial L}{\partial b} = 2 \cdot (w_{1} \cdot x_{1} + w_{2} \cdot x_{2} + b - t)$$

$$w_1^{neu} = w_1^{alt} - \alpha \frac{\partial L}{\partial w_1}$$
 $w_2^{neu} = w_2^{alt} - \alpha \frac{\partial L}{\partial w_2}$
 $b^{neu} = b^{alt} - \alpha \frac{\partial L}{\partial b}$

- die alten Gewichte werden entlang der partiellen Ableitungen (Teile des Gradienten) verschoben
- $oldsymbol{lpha}$ ist die learning rate und bestimmt wie stark der Einfluss sein soll

Der Fehler wird so zurückpropagiert zu den Gewichten \rightarrow Backpropagation.

Übersicht

- Projektaufgabe
- Neuronale Netze

Wie lassen sich komplexere Entscheidungsgrenzen entwickeln?

Lösungen

- komplexere Entscheidungsfunktionen wählen
- einfach Entscheidungsfunktionen (hier Neuronen) kombinieren
 (+ plus ein paar Tricks)

Neuronale Netze

Basis-Prinzip

- abgeleitet von der Funktionsweise eines Gehirn
- Neuronen (Perzeptron) bekommen viele Eingaben, die gewichtet und addiert werden
- das Ergebnis dieser Gewichtung ist die Ausgabe
- die Neuronen sind in Netzwerken mit verschiedenen Schichten angeordnet
- Entscheidungsgrenze wird durch die Gewichte an allen Neuronen bestimmt → VIELE Gewichte
- am Ende wird ein neues Bild/Deskriptor eingegeben und das Netz gibt ein Label als Antwort

Ein Neuronales Netz kann für die Klassifikation von 2-Klassen-Probleme oder auch *n*-Klassen-Problem genutzt werden.

fully connected layer - jeder mit jedem verbunden

Input repräsentieren die Merkmale als Deskriptor oder die Pixel

Hidden kombinieren die Eingaben zu Merkmalskombinationen Output fassen die obersten Merkmale zu einem Ergebnis pro

Klasse zusammen

Input

Noch immer ist die Ausgabe eine lineare Kombination der Eingabe → Entscheidungsgrenze linear!

Ein Neuron - nicht-linear

Input

Projektaufgabe

Durch die Anwendung einer nicht-linearen **Aktivierungsfunktion** auf die Summe, entsteht eine nicht-lineare Entscheidungsgrenze!

Wie kann das Netz jetzt trainiert werden?

Training von Neuronalen Netzen

Das Training verläuft im Prinzip wie vorher im einfachen Fall gezeigt.

Initialisierung der Parameter mit zufälligen Werten.

- 1 Teil der Trainingsmenge auswählen (Batch)
- 2 Batch durch das Netzwerk schicken
- 3 Loss / über das gesamte Batch berechnen
- partielle Abl. der Loss-Funktion *L* bestimmen
- $\ensuremath{\mathfrak{g}}$ alle Gewichte entspr. der partiellen Abl. updaten \to ganz viel Kettenregel

Üblicherweise werden die Trainingsdaten mehrfach durch das Netz geschickt, ein Durchgang wird dabei Epoche genannt.

Übersicht

- Projektaufgabe
- 2 Klassifikation Machine Learning Perspective
- 3 Neuronale Netze
- 4 Keras
- 5 Literatur

Technische Voraussetzungen

- je tiefer das Netz, umso länger dauert alles
- kleine Netze kann man auf der CPU rechnen
- ullet große Netze muss man auf der GPU rechnen o nächste Woche

Bibliotheken

Projektaufgabe

Tensorflow Bibliothek für Deep Learning mit Python, die recht viel Spielraum für eigene Veränderungen lässt

Keras High-Level Bibliothek, die u.a. auf Tensorflow aufsetzt und die Benutzung tlw. stark vereinfacht

- Deskriptoren erzeugen (Array mit Shape: Anz. Bilder×Anz. Merkmale) dazu ein 1D-Array mit den Labeln
- es wird ein Model-Objekt definiert
- diesem werden alle Layer durch Methodenaufrufe hinzugefügt (wie einer Liste)
- Layer sind wiederum selbst Objekte
- dem Model wird ein Solver-Objekt übergeben, das die Informationen zur Backpropagation enthält
- das Model-Objekt hat eigene Methoden zum Kompilieren, Trainieren und Evaluieren

model = Sequential()

Flatten-Layer (Abrollen)

Ist der Input je Bild (bspw. der Deskriptor) nicht schon ein 1D-Array, muss dieser zunächst abgerollt werden.

FC-Layer (Dense)

- 128 Neuronen befinden sich in diesem Layer
- als Aktivierungsfunktion wurde die ReLU-Funktion gesetzt
- als Name wurde fc1 gewählt

Dem ersten Layer muss stets die input_shape der Daten gegeben werden! Dies ist hier die Shape des Deskriptors pro Bild bspw. (2) für MW und STD.

Layer in Keras

Flatten-Layer (Abrollen)

Flatten() Ist der Input je Bild (bspw. der Deskriptor) nicht schon ein 1D-Array, muss dieser zunächst abgerollt werden.

FC-Layer (Dense)

- 128 Neuronen befinden sich in diesem Layer
- als Aktivierungsfunktion wurde die ReLU-Funktion gesetzt
- als Name wurde fc1 gewählt

Dem ersten Layer muss stets die input_shape der Daten gegeben werden! Dies ist hier die Shape des Deskriptors pro Bild bspw. (2) für MW und STD.

Flatten-Layer (Abrollen)

Ist der Input je Bild (bspw. der Deskriptor) nicht schon ein 1D-Array, muss dieser zunächst abgerollt werden.

FC-Layer (Dense)

Dense(128, activation='relu', name='fc1')

- 128 Neuronen befinden sich in diesem Layer
- als Aktivierungsfunktion wurde die ReLU-Funktion gesetzt
- als Name wurde fc1 gewählt

Dem ersten Layer muss stets die input_shape der Daten gegeben werden! Dies ist hier die Shape des Deskriptors pro Bild bspw. (2) für MW und STD.

categorical_crossentropy eine Loss-Funktion für Klassifikation

- SGD Stochastic Gradient Descent, Annäherungsverfahren zur Gradientenbestimmung
- 1r Learning Rate, Schrittgröße beim Gradientenabstieg metrics berechne die Accuracy

```
X_train Deskriptoren als Array bspw. mit Shape (Anz. Bilder × Anz. Merkmale)
```

Y_train Label hier als Array mit Shape (Anz. Bilder \times Anz. Label) und einer 1 je Zeile

batch_size Größe eines Batches (Trainingsbilder für die zusammen der Loss berechnet wird)

nb_epoch Anzahl der Epochen (Durchläufe durchs Trainingsset)

verbose Konsolenausgabe einschalten

Y_train = np_utils.to_categorical(trLabels, 3)

$$\begin{pmatrix} 2 \\ 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

trLabels

Y_train

- Die Klassen von trLabels müssen fortlaufend von 0 sein.
- In jeder Zeile von Y_train steht genau eine 1.
- Die Zeilen von Y_train entsprechen je einem Trainingsbild.
- Die Spalten von Y_train entsprechen je einer Klasse.

```
score = model.evaluate(X_test, Y_test, verbose=1)
```

X_test Bilder

Projektaufgabe

Y_test Label hier als Array mit Shape (Anz. Bilder, Anz. Label) und einer 1 je Zeile

verbose Konsolenausgabe einschalten

score Tupel aus Loss und Accuracy

Keras keras.io

Dokumentation zu Keras

Stanford Lecture on Deep Learning cs231n.github.io/ sehr gute Vorlesung zum Thema mit viel Material

Deep Learning Book DAS Deep Learning Buch mit sehr viel Inhalt: Deep learning: Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press, 2016

Übersicht

- Projektaufgabe
- 2 Klassifikation Machine Learning Perspective
- 3 Neuronale Netze
- 4 Keras
- 5 Literatur

Fachtermini: Deutsch - Englisch

Projektaufgabe

Nächster-Nachbar-Klassifikator - nearest neighbour classifier Entscheidungsgrenze - decision boundary Gradientenabstieg - gradient descent partielle Ableitungen - partial derivative (Künstliches) Neuronales Netz - (artificial) neural network oder multi-layer perceptron Neuron - neuron oder perceptron

- Erklärung: A Complete Guide to K-Nearest-Neighbors with Applications in Python and R ☑
- Erklärung/Beispiel: scikit-learn 1.6.2. Nearest Neighbors Classification ♂
- [GW]: Kapitel 12.5 Neural Networks and Deep Learning
 - The Perceptron (Anm.: Der preceptron algorithm to learn a decision boundary ist eine Vereinfachung der in den Folien behandelten Backpropagation, indem als Loss-Funktion nur y t genutzt wird. Dann muss allerdings das Voreziechen des Updates selbst bestimmt werden, s. Gl. 12-40 und 12-41 in [GW].
- Erklärung: What the Hell is Perceptron? ☐
 Anmerkung: Wir haben die Step Function in unserem
 Perzeptron weggelassen, um die Ableitungen zu vereinfachen.

Neuronale Netze

- [GW]: Kapitel 12.5 Neural Networks and Deep Learning
 - Multilayer Feedforward Neural Networks
 - Forward Pass Through a Feedforward Neural Network
- Visualisierung: Tinker With a Neural Network ♂

- [GW]: Kapitel 12.5 Neural Networks and Deep Learning
 - Using Backpropagation to Train Deep Neural Networks
- Visualisierung: Tinker With a Neural Network □
- Vertiefung: A Friendly Introduction to Cross-Entropy Loss ☑

Gradientenabstieg

Projektaufgabe

 Erklärung/Beispiel: Machine Learning Crash Course -Reducing Lossc³

- Erklärung/Beispiel: Keras Getting started with the Keras Sequential model ♂ Anmerkung: Bei den Beispielen nur bis MLP for binary classification, als Optimierer wurde dort rmsprop statt SGD benutzt.
- Erklärung/Beispiel: Keras: Deep Learning for humans mit Getting started: 30 seconds to Keras
- Erklärung/Beispiel: Develop Your First Neural Network in Python With Keras Step-By-Step ♂ Anmerkung: Dort wurde der Optimierer Adam genutzt und als Aktivierungsfunktion im letzten Layer binary_crossentropy, da es nur zwei Klassen gibt.

[GW], R. Gonzalez und R. Woods Digital Image Processing 4th ed., Pearson, 2018. Bib-Katalog ♂