

Республиканская физическая олимпиада (III этап) 2006 год Теоретический тур

<u>9 класс.</u>

Задача 1. «Графопостроитель»

Для изготовления качественных чертежей используется графопостроитель, принципиальная схема которого показана на Рис. 1: пишущее перо 1 закреплено в каретке, которая может двигаться над листом бумаги по направляющим рейкам в двух взаимно перпендикулярных направлениях. Управляющее устройство (компьютер) задает закон изменения скоростей каретки в этих направлениях $(v_x(t), v_y(t))$.

1.1 На Рис. 2 приведены графики зависимостей скоростей от времени (такой периодический закон движения действует в течении достаточно длительного промежутка времени, скажем порядка 1 минуты). В момент включения перо находится в начале координат. Изобразите рисунок, который получится на бумаге после окончания работы построителя.

- **1.2** Из-за сбоя в работе устройства, сигнал, управляющий скоростью каретки вдоль оси Y, начал поступать на $\Delta t = 1,0$ c раньше, чем предусмотрено законом, изображенном на рис. 2. Какой рисунок на бумаге получится в этом случае?
- **1.3** После исправления выявленной ошибки сигналы начали поступать как изображено на рис.2. Но при этом период сигнала, управляющий движением вдоль оси X, оказался в $\eta=1,5$ раз больше предусмотренного. Какой рисунок получится на бумаге в этом случае?
- **1.4** Постройте графики зависимостей скоростей каретки от времени $(v_x(t), v_y(t))$, чтобы графопостроитель построил чертеж, показанный на Рис. 3.

Задача 2. «Металлы тоже кипят!»

Таблицы физических характеристик различных веществ содержат много полезной информация. Значения этих характеристик, на первый взгляд, кажутся случайными и хаотичными. Однако, среди них имеются определенные закономерности (хотя и приближенные). В данной задаче вам требуется исследовать связь между температурой кипения и удельной теплотой испарения.

Часть 1. Кипение металлов.

В Таблице 1 приведены значения атомных масс A, температуры кипения $t_{\kappa un}$ и удельной теплоты испарения L (при температуре кипения) для ряда металлов.

Таблица 1.

Металл	Символ	Атомная масса А	Температура кипения, t , ${}^{\circ}C$	Удельная теплота испарения, $L, \frac{M \cancel{Д} \cancel{ж}}{\cancel{\kappa} \cancel{\epsilon}}$
Алюминий			2056	
	Al	27,0		10,8
Вольфрам	W	183,9	5910	4,96
Железо	Fe	55,8	3200	6,09
Золото	Au	197,2	2966	?
Калий	K	39,1	760	2,05
Магний	Mg	24,3	1107	5,26
Медь	Cu	63,54	2600	4,8
Олово	Sn	118,7	2270	2,28
Платина	Pt	195,1	4530	2,41
Ртуть	Hg	200,6	356	0,29
Свинец	Pb	207,2	1725	0,86
Серебро	Ag	107,9	2163	2,36
Цинк	Zn	65,4	913	1,76

1.1 Качественно объясните, по каким физическим причинам может существовать связь между температурой кипения и теплотой испарения. Каков должен быть характер этой зависимости?