SE328:Topology

Hyosang Kang¹

 1 Division of Mathematics School of Interdisciplinary Studies DGIST

Week 06

Let X, Y be a metric space with metric topology. A function $f: X \to Y$ is continuous if and only if for every $\varepsilon > 0$, there exists $\delta > 0$ such that

$$f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x))$$

for every $x \in X$.

Definition

We say a sequence x_n in a topological space **converges** to $x_{\infty} \in X$ if every open neighborhood U of x_{∞} contains all but finitely many elements from the sequence. In such case, we denote

$$x_n \to x_\infty$$
.

Lemma

Let X be a topological space. If a sequence x_n in a subset $A \subset X$ converges to $x_\infty \in X$, then $x_\infty \in A$. The converse is true if X is a metric space.

Proof.

Suppose $x_{\infty} \notin A$, then there exists $\varepsilon > 0$ such that

$$B_{\varepsilon}(x_{\infty}) \cap A = \emptyset$$

This contradicts to $x_n \to x_\infty$.

Conversely, assume that X is a metric space and $x_{\infty} \in A$. For each $n = 1, 2, \dots$, Choose a point x_n satisfying

$$x_n \in B_{1/n}(x_\infty)$$
.

Then $x_n \to x_\infty$.

If a function $f: X \to Y$ is continuous then for every convergent sequence $x_n \to x_\infty$,

$$f(x_n) \to f(x_\infty)$$
.

The converse holds if X is a metric space.

Proof.

Suppose that the function f is continuous. Let U be an open neighborhood of $f(x_{\infty})$. Then $f^{-1}(U)$ is open and contains x_{∞} . Thus there exists $\varepsilon > 0$ such that

$$B_{\varepsilon}(x_{\infty}) \subset f^{-1}(U).$$

Since $B_{\varepsilon}(x_{\infty})$ contains all but finitely many x_n 's, so does U for $y_n = f(x_n)$.

Conversely, assume that $f(x_n) \to f(x_\infty)$ for any convergent sequence $x_n \to x_\infty$. We only need to show $f(\overline{U}) \subset \overline{f(U)}$, which follows from the lemma.

Definition

The collection C of pairs $(\{x_n\}_{n=0}^{\infty}, x_{\infty})$ is called **convergence** class of sequences if it satisfies the following conditions: if $(\{x_n\}_{n=0}^{\infty}, x_{\infty}) \in C$, let us denote

$$\lim_{n\to\infty} x_n \stackrel{\mathcal{C}}{=} x_{\infty}, \text{ or simply } x_n \stackrel{\mathcal{C}}{\to} x_{\infty}$$

- 1. If $x_n = x_\infty$ for all $n = 0, 1, \dots$, then $x_n \stackrel{\mathcal{C}}{\to} x_\infty$.
- 2. If $x_n \to x_\infty$, then for every subsequence x_{n_i} satisfies $x_{n_i} \xrightarrow{\mathcal{C}} x_\infty$.
- 3. If $x_n \not\to x_\infty$, then there is a subsequence x_{n_i} such that no further subsequence converges to x_∞ .
- 4. If $x_{n,m}$ is a double sequence such that for each $n = 0, 1, \dots$, the sequence $x_{n,m} \xrightarrow{\mathcal{C}} x_{\infty,m}$ and $x_{\infty,m} \xrightarrow{\mathcal{C}} x_{\infty,\infty}$. Then for any increasing map $i: \mathbf{N} \to \mathbf{N}$,

Definition

Given a convergence class C of sequence in X, the **closure** operator $\bar{}$ is defined by

$$\overline{A} = \{ x_{\infty} \in X \mid x_n \stackrel{\mathcal{C}}{\to} x_{\infty}, x_n \in A \}.$$

Proposition

Given a set X and a closure operator $\overline{\ }$, there is a unique topology on X such that the closure of a subset $A \subset X$ is \overline{A} .

Proof.

It is clear that the topology exists because we can define a collection of closed sets:

$$\mathcal{T}_{closed} = \{ A \subset X \mid A = \overline{A} \}.$$

This is the minimal topology among all topologies admitting the closure operator.

Let X be a topological space defined by a convergence class of sequence C. Then for every pair $(\{x_n\}_{n=0}^{\infty}, x_{\infty}) \in C$, the sequence x_n converges to x_{∞} in the topology of X.

Proof.

Suppose $x_n \not\to x_\infty$. Let U be an open neighborhood of x_∞ such that there is an infinite subsequence x'_n which are not contained in U. Then $x'_n \to x_\infty$, thus $x_\infty \in X \setminus U$, which is a contradiction.

Let X and Y be topological spaces defined by a convergence class of sequences. A function $f: X \to Y$ is continuous if and only if $f(x_n) \to f(x_\infty)$ for any $x_n \to x_\infty$.

Remark

One may observe the proposition does not assume that X is a metric space.

- ▶ We do not need X to be a metric space to prove the converse of the proposition. It only requires that there is a basis \mathcal{B} of X such that for each $x \in X$ there are countably many elements in \mathcal{B} . This is called the **first countability** axiom.
- ➤ The topology generated by the convergence class of sequence already satisfies the first countability axiom, because every sequence is countable.

Remark

The description of a topology is simpler in terms of convergence class of sequence. For example, let

$$\mathbf{S}^2 = \{(x, y, z) \in \mathbf{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

and define a map

$$f: \mathbf{S}^2 \to \mathbf{R}^2 \cup \{\infty\}$$

 $(x, y, z) \mapsto \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$

where $f(0,0,1) = \infty$. Let us give a subspace topology on $\mathbf{S}^2 \subset \mathbf{R}^3$ and define a topology on $\mathbf{R}^2 \cup \{\infty\}$ as follows: $U \subset \mathbf{R}^2 \cup \{\infty\}$ is open if $f^{-1}(U)$ is open in \mathbf{S}^2 . The description of open subsets of \mathbf{R}^2 is complicate. However, the convergence class of sequence \mathcal{C} consists of all convergent sequence $x_n \to x_\infty$ in \mathbf{R}^2 together with any unbounded sequence x_n which converges to ∞ .