Test Plan

Remotely Operated Underwater Vehicle

Version 1.2

Author: Alaa Saeed Date: December 13, 2017

Status

Reviewed	Marcus Homelius	2017-12-08
Approved	Jonas Linder	2017-12-08

Course name: Automatic Control Project Course E-mail:

Project group: ROV2017

Course code: ${\tt TSRT10}$

Project: Remotely Operated Underwater Vehicle tsrt10rov2017@gmail.com

Document responsible: Alaa Saeed

Author's E-mail: alasa 433@student.liu.seDocument name:

 ${\bf TestPlan.pdf}$

Project Identity

Group E-mail: tsrt10rov2017@gmail.com

Homepage: http://www.isy.liu.se/edu/projekt/tsrt10/2017/rov/

Orderer: Jonas Linder, Linköping University

Phone: +46 13 28 28 04 **E-mail:** jonas.linder@liu.se

Customer: Rikard Hagman, Combine Control Systems AB

Phone: $+46\ 72\ 964\ 70\ 59$

E-mail: rikard.hagman@combine.se

Course Responsible: Daniel Axehill, Linköping University

Phone: +46 13 28 40 42 **E-mail:** daniel@isy.liu.se

Project Manager: Amanda Andersson

Phone: +46 76 843 40 79

E-mail: amaan181@student.liu.se

Advisors: Kristoffer Bergman, Linköping University

Phone: +46 73 847 31 51

E-mail: kristoffer.bergman@liu.se

Group Members

Name	Responsibility	Phone	E-mail
			(@student.liu.se)
Amanda Andersson	Project manager	+46 76 843 40 79	amaan181
Marcus Homelius	Documentation	+46 70 245 90 96	marho949
George Jajji	Design	+46 70 790 16 17	geoja551
Martin Johannesson	Hardware	+46 76 949 79 69	marjo790
Mattias Mucherie	Information	+46 76 238 53 06	matmu715
Fredrik Nilsson	Software	+46 73 575 49 11	freni169
Anton Nordlöf	Modelling & Sim-	+46 76 145 04 90	antno848
	ulation		
Alaa Saeed	Tests	+46 76 207 57 86	alasa433

Document History

Version	Date	Changes made	Sign	Reviewer(s)
0.1	2017-09-27	First draft.	MH	MH
0.2	2017-09-29	First revision.	MH	MH
0.3	2017-10-06	Second revision.	MH, AS	MH, AS
0.4	2017-10-10	Third revision.	MH, AS	MH, AS
0.5	2017-10-12	Fourth revision.	MH, AS	MH, AS
1.0	2017-10-16	First version	AS	AS
1.1	2017-11-30	Moved test 29 from Simulation	AA	AA
		to GUI test and changed some		
		test numbers.		
1.2	2017-12-08	Changed some sensor fusion	FN	MH
		tests that shall now be per-		
		formed in simulation instead of		
		in a pool.		

Course code: Project: Remotely Operated Underwater Vehicle E-mail: ${\bf Document\ responsible:}$ Author's E-mail: Document name:

tsrt10 rov 2017@gmail.comAlaa Saeed alasa433@student.liu.se

Contents

1	Introduction	2
2	General System and Interface Tests	2
3	Design Tests	4
4	Graphical User Interface Tests	6
5	Control System Tests	7
6	Sensor Fusion Tests	10
7	Modelling Tests	12
8	Simulation Tests	13
9	Hardware Tests	15
10	Pathfinder Tests	16
11	Security Tests	16
12	Fulfillment of Other Requirements	17

Notations

 ${f DOF}$ Degrees of Freedom

 ${\bf GUI}$ Graphical User Interface

 ${\bf HIL}$ Hardware In the Loop

 \mathbf{LCS} Local Coordinate System

 \mathbf{PCS} Pool Coordinate System

 ${f ROS}$ Robot Operating System

 ${\bf ROV}$ Remotely Operated Underwater Vehicle

 ${\bf SIL}$ Software In the Loop

1 Introduction

In this document, all tests that will be performed during the project will be described. The tests shall be designed in such a way that it is easy to see if a requirement has been fulfilled. All non-trivial requirements in the requirement specification [1] shall be covered in the tests. Table 1 shows the format that the tests will be presented in. The first column is the number of the test. The second column described what requirements that are being tested. Then there is a detailed description of the test in the third column. The fourth column specifies how long time the test requires in hours. The fifth column contains the resources that are needed to perform the test. The sixth column states who is responsible for the test. In the last column, the week that the test will be performed is specified.

Table 1: An example of a test table.

Test	Req. Test description	Time	Resources	Respons.	Week
nr.	nr.				

2 General System and Interface Tests

Table 2 contains tests that shall verify the requirements on the general system and the interface between the different modules.

Table 2: Tests on the general system and the interface between modules.

Test	Req.	Test description	Time	Resources	Respons.	Week
nr.	nr.					
1	1	Verify that ROS is used as the	0.25	Up-to-date	FN	47
		main framework for software		source		
		and communication with the		code.		
		ROV by inspecting the code.				
2	7, 8	Log ROS messages during a	0.25	ROV,	FN	47
		run. Inspect those messages to		worksta-		
		verify that the GUI exchanges		tion.		
		data with other modules by				
		subscribing and publishing to				
		ROS topics.				
3	21,	Log ROS messages during a	0.25	ROV,	FN	47
	22,	run. Inspect those messages		worksta-		
	23	to verify that the control mod-		tion.		
		ule exchanges data with other				
		modules by subscribing and				
		publishing to ROS topics.				
4	49,	Log ROS messages during a	0.25	ROV,	FN	47
	50	run. Inspect those messages		worksta-		
		to verify that the sensor fusion		tion.		
		module exchanges data with				
		other modules by subscribing				
		and publishing to ROS topics.				

Course name: Automatic Control Project Course E-mail: tsrt10rov2017@gmail.com
Project group: ROV2017 Document responsible: Alaa Saeed

Course code: TSPT10 Author's F-mail: alass433@gtudent linese

Course code: TSRT10 Author's E-mail: alasa433@student.liu.se Project: Remotely Operated Underwater Vehicle Document name: TestPlan.pdf

5	97, 99	Log ROS messages during a run. Inspect those messages to verify that the I/O-module exchanges data with other modules by subscribing and publishing to ROS topics.	0.25	ROV, worksta- tion.	FN	47
6	104, 105, 106, 107	Log ROS messages during a run. Inspect those messages to verify that the pathfinder module exchanges data with other modules by subscribing and publishing to ROS topics.	0.25	ROV, worksta- tion.	FN	47
7	2	The output logs shall be inspected after a run to verify that there exists functionality to log raw sensor data, reference signals, control signals and state estimates.	0.5	ROV, worksta- tion.	MM	44
8	3, 4	Use the XBOX-controller and test if the correct thruster is responding to the used button by plotting reference and control signals from the logged data.	0.5	ROV, XBOX- controller, worksta- tion.	AS	44
9	92, 93, 94, 95, 96, 98	Log ROS messages from the I/O-module during a run. Inspect those messages to verify that the sensors can communicate with the I/O module.	0.5	ROV, worksta- tion.	МН	44

Alaa Saeed alasa433@student.liu.se TestPlan.pdf

Design Tests 3

Table 3 lists the tests that shall verify all the design requirements on the different modules.

Table 3: Tests on the design requirements.

Test	Req.	Test description	Time	Resources	Respons.	Week
nr.	nr.					
10	17, 18, 19, 20	Verify that all code is version controlled and that all code is written and commented in English by inspecting the code. Also verify that all C++ source code written for ROS fulfills the ROS coding standard and that all other C++ code fulfills Google's coding standard by inspecting the code.	2	Up-to-date source code.	FN	47
11	24	Verify that it exists a controller for control of the linear and an- gular velocity by inspecting the code.	0.5	Up-to-date source code.	GJ	46
12	25	Verify that it exists a controller for control of the attitude and position by inspecting the code.	0.5	Up-to-date source code.	GJ	46
13	26	Verify that it exists a controller for following a reference trajectory by inspecting the code.	0.5	Up-to-date source code.	GJ	46
14	51	Log ROS messages from the sensor fusion module, the pathfinder module and the control module during a run. Inspect those messages to verify that the sensor fusion module runs on the Raspberry Pi.	0.5	ROV, worksta- tion.	МН	47
15	64	Verify that a mathematical model exists that describes the dynamic of the ROV by inspecting the model.	0.5	Up-to-date model.	MJ	44
16	71	Verify that there exists a GUI for the simulator by inspecting the code.	0.5	Up-to-date source code.	AN	46
17	78	Verify that the simulator has been built in Matlab/Simulink by inspecting the simulator environment.	0.25	Up-to-date source code.	AN	46

Course name: Project group: Course code:

Project:

Automatic Control Project Course

ROV2017 TSRT10

Remotely Operated Underwater Vehicle

E-mail:

Document responsible: Author's E-mail: Document name:

tsrt10 rov 2017@gmail.com

Alaa Saeed alasa 433@student.liu.se

 ${\bf TestPlan.pdf}$

		1				
18	81	Run a simulation and tilt the	0.5	Up-to-date	AN	46
		ROV close to -90° and 90° . In-		source		
		spect the position estimation		code.		
		to verify that the known envi-				
		ronment has been modelled in				
		the simulator with non visible				
		bottom and surface.				
19	82	Verify that the the sensors	0.5	Up-to-date	AN	46
		on the ROV have been im-		source		
		plemented in the simulator by		code.		
		running a simulation and in-				
		specting the output from the				
		sensor module.				
20	79	Start a simulation and then	0.5	Up-to-date	AN	46
		change some parameters in the		source		
		model while still using the		code.		
		same control signals and ver-				
		ify that the simulator produces				
		different state estimates by in-				
		specting the logged data.				
21	80	Run a simulation while using	0.5	Up-to-date	AN	46
		the mathematical model and		source		
		check that the simulator is run-		code.		
		ning without any error mes-				
		sages.				

4 Graphical User Interface Tests

Table 4 lists the tests on the functionality requirements regarding the GUI.

Table 4: Tests on the functionality requirements regarding the GUI.

Test	Req.	Test description	Time	Resources	Respons.	Week
nr.	nr.					
22	9	Use a script to input refer-	0.5	Workstation.	AA	44
		ences in angles, angular veloc-				
		ities, position and linear veloc-				
		ity and verify that the same				
		references are shown in the				
		GUI by inspecting the GUI.				
23	10	Verify that it exists functional-	0.5	ROV,	AA	44
		ity in the GUI to present state		worksta-		
		estimates, references, control		tion.		
		signals and active operating				
		mode by inspecting the GUI.				
		Document by taking screen-				
		shots of the GUI.				
24	11	Verify that the functionality in	0.5	Workstation.	MM	46
		the GUI to present a graphical				
		representation of the reference				
		trajectory exists by inspecting				
		the GUI. Document by taking				
25	10	screen-shots of the GUI.	^ -	DOM		
25	12,	Specify the start and end	0.5	ROV,	AA	44
	106	points for the pathfinder mod-		worksta-		
		ule in the GUI. Log ROS mes-		tion.		
		sages from the pathfinder mod-				
		ule and inspect those messages				
		to verify that the path that is returned from the pathfinder				
		module has the same coordi-				
		nates for start and end points.				
26	13,	Verify that it exists function-	0.5	ROV,	MM	46
20	14	ality in the GUI to present a	0.0	worksta-	IVIIVI	40
	1-1	graphical representation of the		tion.		
		map, the ROV's position esti-		uioii.		
		mate and the ROV's attitude				
		estimate by inspecting the GUI				
		and comparing it to the esti-				
		mates from the sensor fusion				
		module.				
	ļ			l		

 ${
m TSRT10}$ Remotely Operated Underwater Vehicle

E-mail: Document responsible: Author's E-mail: Document name: tsrt10rov2017@gmail.com Alaa Saeed

or's E-mail: alasa433@student.liu.se nent name: TestPlan.pdf

27	15	Switch mode and make the control module send a message containing its current mode. Verify that it's the same that is shown in the GUI. Document by inspecting the logged data and by taking screen-shots of the GUI.	0.5	ROV, worksta- tion.	MM	45
28	16	Run a simulation and send new parameters from the GUI to the control module and the sensor fusion module while still using the same control signals. Verify that different state estimates are produced by inspecting the logged data.	0.5	ROV, worksta- tion.	AA	45
29	72	Log the times that states are estimated from the sensor fusion module and the times that the position and attitude are updated in the GUI and compare them to verify that the delay is no greater than 100 ms.	0.5	Up-to-date source code.	MM	47

5 Control System Tests

Table 5 lists the tests on the functionality and performance requirements regarding the control system.

Table 5: Tests on the functionality and performance requirements regarding the control system.

Test	Req.	Test description	Time	Resources	Respons.	Week
nr.	nr.					
30	5	The ROV will be given a reference trajectory and it shall be able to follow this trajectory. References and estimated states will be logged and compared to verify that the maximum deviation is no greater than 0.1 meters in position, 1 degree in attitude and 0.05 m/s in linear velocity.	0.5	Up-to-date source code.	GJ, AS	46

Course name: Project group: Course code:

Project:

Automatic Control Project Course

ROV2017 TSRT10

Remotely Operated Underwater Vehicle

E-mail:

Document responsible:
Author's E-mail:
Document name:

tsrt10 rov 2017@gmail.com

Alaa Saeed

alasa 433@student.liu.se

31	6	To verify that the hover mode works as expected a test shall be performed where the ROV is moved from its position and rotated by hand when hover mode is activated. The ROV should then return to the same position and attitude as before. Reference signals, estimated states and control signals will be plotted.	0.5	Up-to-date source code.	GJ	45
32	27, 31, 32, 33, 34, 35	Perform a step in roll from 0° to 30° and inspect the plots with respect to stationary error, rise time, overshoot, settling time and disturbance in the other two rotational degrees of freedom to verify the performance.	1	Up-to-date source code.	GJ, AS	45
33	27, 31, 32, 33, 34, 35	Perform a step in pitch from 0° to 30° and inspect the plots with respect to stationary error, rise time, overshoot, settling time and disturbance in the other two rotational degrees of freedom to verify the performance.	1	Up-to-date source code.	GJ, AS	45
34	27, 31, 32, 33, 34, 35	Perform a step in yaw from 0° to 30° and inspect the plots with respect to stationary error, rise time, overshoot, settling time and disturbance in the other two rotational degrees of freedom to verify the performance.	1	Up-to-date source code.	GJ, AS	45
35	28, 36, 37, 38, 39	Perform a step in roll angular velocity from 0 rad/s to 0.5 rad/s and inspect the plots with respect to stationary error, rise time, overshoot and settling time to verify the angular velocity performance about the roll axis.	1	Up-to-date source code.	GJ, AS	45
36	28, 36, 37, 38, 39	Perform a step in pitch angular velocity from 0 rad/s to 0.5 rad/s and inspect the plots with respect to stationary error, rise time, overshoot and settling time to verify the angular velocity performance about the pitch axis.	1	Up-to-date source code.	GJ, AS	45

Course name: Project group: Course code: Project: Automatic Control Project Course ${
m ROV}2017$

TSRT10 Remotely Operated Underwater Vehicle

E-mail: Document responsible: Author's E-mail: Document name: tsrt10rov2017@gmail.com Alaa Saeed alasa433@student.liu.se

37	28, 36, 37, 38, 39	Perform a step in yaw angular velocity from 0 rad/s to 0.5 rad/s and inspect the plots with respect to stationary error, rise time, overshoot and settling time to verify the angular velocity performance about the yaw axis.	1	Up-to-date source code.	GJ, AS	45
38	30, 40, 41, 42, 43	Perform a step in the ROV's position in the PCS x-axis by 1 m and inspect the plots with respect to stationary error, rise time, overshoot and settling time to verify the performance.	1	Up-to-date source code.	GJ, AS	45
39	30, 40, 41, 42, 43	Perform a step in the ROV's position in the PCS y-axis by 1 m and inspect the plots with respect to stationary error, rise time, overshoot and settling time to verify the performance.	1	Up-to-date source code.	GJ, AS	45
40	30, 40, 41, 42, 43	Perform a step in the ROV's position in the PCS z-axis by 1 m and inspect the plots with respect to stationary error, rise time, overshoot and settling time to verify the performance.	1	Up-to-date source code.	GJ, AS	45
41	29, 44, 45, 46, 47, 48	Perform a step in the LCS x-axis velocity from 0 m/s to 0.2 m/s and inspect the plots with respect to stationary error, rise time, overshoot, settling time, disturbance in pitch and roll angle and disturbance in rotational (degrees of freedom) velocities to verify the performance.	1	Up-to-date source code.	GJ, AS	45
42	29, 44, 45, 46, 47, 48	Perform a step in the LCS y-axis velocity from 0 m/s to 0.2 m/s and inspect the plots with respect to stationary error, rise time, overshoot, settling time, disturbance in pitch and roll angle and disturbance in rotational (degrees of freedom) velocities to verify the performance.	1	Up-to-date source code.	GJ, AS	45

43	29,	Perform a step in the LCS z -	1	Up-to-date	GJ, AS	45
	44,	axis velocity from 0 m/s to 0.2		source		
	45,	m/s and inspect the plots with		code.		
	46,	respect to stationary error, rise				
	47,	time, overshoot, settling time,				
	48	disturbance in pitch and roll				
		angle and disturbance in ro-				
		tational (degrees of freedom)				
		velocities to verify the perfor-				
		mance.				

6 Sensor Fusion Tests

Table 6 lists the tests on the functionality and performance requirements regarding the sensor fusion.

Table 6: Tests on the functionality and performance requirements regarding the sensor fusion.

Test	Req.	Test description	Time	Resources	Respons.	Week
nr.	nr.					
44	52, 56	Initialize the ROV with a deviation of 0.6 meters from its simulated position and verify that the ROV is able to estimate its position, after it has been moved around for 30 seconds during a simulation, by inspecting the logged data and comparing to the simulated position.	1	Up-to-date source code.	MH, FN	45
45	53, 57	Initialize the ROV with a deviation of 15° in each of the three angles and verify that the ROV is able to estimate its attitude, after it has been moved around for 30 seconds during a simulation, by inspecting the logged data and comparing to the simulated attitude.	1	Up-to-date source code.	MH, FN	45
46	52, 58	Verify that the estimation of the ROV's position is maintained within 0.3 meters of the true position when this limit has been reached by moving the ROV around during a simulation and comparing the estimated position with the simulated position.	1	Up-to-date source code.	MH, FN	45

Course name: Project group: Course code:

Project:

Automatic Control Project Course

ROV2017

TSRT10 Remotely Operated Underwater Vehicle

E-mail:

Document responsible:
Author's E-mail:
Document name:

tsrt10rov2017@gmail.com Alaa Saeed

alasa433@student.liu.se

47	52, 59	Let the position and attitude initially be unknown in the sensor fusion module and move the ROV around in the pool with an XBOX-controller. Then stop the ROV after 1 minute and compare the estimated states to the true position and attitude. By filming with a camera, marking the pool with tape into a grid and using the fact that the size of the ROV is known, the ROV's true position and attitude can be measured afterwards.	1	ROV, work- station, pool, cam- era, tape, XBOX- controller.	MH, FN	45
48	54, 60	Validation of the estimates of linear velocities shall be performed by running the ROV in 0.15-0.40 m/s over 2-3 meters with an XBOX-controller. By filming with a camera and measuring the size of the tiles in the pool, the elapsed time and the distance can be measured. Then the measured mean velocity will be calculated and compared to the estimated velocity from the sensor fusion module to verify that the error is no greater than 0.1 m/s.	1	ROV, worksta- tion, pool, camera, XBOX- controller.	MH, FN	45
49	55, 61	Validation of the estimate of angular velocity in yaw angle shall be performed by letting the ROV complete 1 turn about the z-axis with an average speed between $35^{\circ}/s$ and $45^{\circ}/s$ during a simulation. Then the simulated angular velocity will be compared to the estimated angular velocity from the sensor fusion module to verify that the error is no greater than $5^{\circ}/s$.	1	Up-to-date source code.	MH, FN	45

50	55, 61	Validation of the estimate of angular velocity in roll and pitch angle shall be performed by letting the ROV rotate from -30° to 30° with an average speed between 60°/s and 80°/s during a simulation. Then the simulated angular velocity will be compared to the estimated angular velocity from the sensor fusion module to verify that the error is no greater than 8°/s.	1	Up-to-date source code.	MH, FN	45
51	53, 62	Validation of the estimates of the attitude shall be performed by rotating the ROV to around 50° about each axis during a simulation. The estimates from the sensor fusion model will be compared to the simulated attitude to verify that the error is no greater than 1° in each angle.	1	Up-to-date source code	MH, FN	44
52	63	To verify that the sensor fusion module is able to produce state estimates with a maximum delay of 4 ms, the times that the ROV produces state estimates will be logged and inspected.	0.5	ROV, worksta- tion.	MH, FN	44

7 Modelling Tests

Table 7 lists the tests on the functionality and performance requirements regarding modelling.

Table 7: Tests on the functionality and performance requirements regarding modelling.

Test	$\mathbf{Req}.$	Test description	Time	Resources	Respons.	\mathbf{Week}
nr.	nr.					
53	66, 68, 69	Validate the model in each of the angular DOF's by collecting validation data when the ROV is excited one DOF at a time. Then verify that the validation data fits the data from relevant sensors to at least 85 %.	1	ROV, worksta- tion, pool.	AS	46

 $\begin{array}{ll} \mbox{Course code:} & \mbox{TSRT10} \\ \mbox{Project:} & \mbox{Remotely Operated Underwater Vehicle} \end{array}$

 $\begin{array}{ll} \hbox{E-mail:} & \hbox{tsrt10rov2017@gmail.com} \\ \hbox{Document responsible:} & \hbox{Alaa Saeed} \end{array}$

Author's E-mail: alasa433@student.liu.se Document name: TestPlan.pdf

54	65,	Validate the model in each of	1	ROV,	AS	46
	67,	the linear DOF's by collecting		worksta-		
	70	validation data when the ROV		tion, pool.		
		is excited one DOF at a time.				
		Then verify that the validation				
		data fits the data from relevant				
		sensors to at least 85% .				

Simulation Tests 8

Table 8 lists the tests on the functionality and performance requirements regarding simulation.

Table 8: Tests on the functionality and performance requirements regarding simulation.

Test	Req.	Test description	Time	Resources	Respons.	Week
nr.	nr.					
55	73	Specify the initial state of the ROV. Then start a simulation and inspect the simulator to verify that the initial state is the same that was specified.	0.5	Up-to-date source code.	AN	46
56	74, 75, 76, 77	Verify that the GUI for the simulator shows angular velocities, linear velocities, attitude and a 3D visualization of the ROV by inspecting the GUI.	0.5	Up-to-date source code.	AN	46
57	83, 91	Use an XBOX-controller to control the ROV in a pool for one minute and log the reference signals. Validate the SIL simulator by sending those reference signals to the simulator and comparing the output from the simulator to the estimated states from the sensor fusion module to verify that it fits to at least 85 %.	0.5	ROV, XBOX- controller, worksta- tion, pool.	MJ	46
58	84, 91	Use an XBOX-controller to control the ROV in a pool for one minute and log the reference signals. Validate the HIL simulator by sending those reference signals to the simulator and comparing the output from the simulator to the estimated states from the sensor fusion module to verify that it fits to at least 85 %.	0.5	ROV, XBOX- controller, worksta- tion, pool.	MJ	46

Course name: Automatic Control Project Course ROV2017 Project group:

Course code: ${\tt TSRT10}$ Project:

Remotely Operated Underwater Vehicle

E-mail: Document responsible: Author's E-mail:

tsrt10 rov 2017@gmail.comAlaa Saeed alasa 433@student.liu.se

Document name: ${\bf TestPlan.pdf}$

59	85	Validate that it exists functionality to choose whether or not to use the sensor fusion module in HIL mode by running a HIL simulation and inspecting the simulator environment when switching between using the sensor fusion module and not using it.	0.5	Up-to-date source code.	AN	46
60	86	Send a new parameter setting as user input to the simulator while running a simulation and log the time that the parameter is sent and the time that the parameter is changed in the simulator to verify that the delay is no greater than 100 ms.	0.5	Up-to-date source code.	AN	46
61	87	To verify that the simulator environment is able to log data from simulation runs, the simulator shall be run and the output logs shall be inspected and documented.	0.5	Up-to-date source code.	AN	47
62	88	Run the ROV in a pool for 1 minute by using an XBOX-controller and log the data. Then use the same control signals and sensor measurements in the simulator and compare the simulated state estimates to the logged state estimates to verify that the simulator environment is able to import log data from real world measurements.	0.5	ROV, worksta- tion, pool, XBOX- controller.	AN	47
63	89	Run a SIL simulation and inspect the control signals to verify that it is possible to simulate control signals without running the control module on the ROV.	0.5	Up-to-date source code.	AN	46
64	90	Run a SIL simulation and inspect the state estimates to verify that it is possible to simulate state estimates without running the sensor fusion module on the ROV.	0.5	Up-to-date source code.	AN	46

alasa 433@student.liu.se

9 Hardware Tests

Table 9 lists the tests on the functionality requirements regarding the hardware.

Table 9: Tests on the functionality requirements regarding the hardware.

Test	Req.	Test description	Time	Resources	Respons.	Week
nr.	nr.					
65	100	To verify that the ROV is wa-	0.5	ROV,	MJ	46
		terproof to a depth of 3.8 me-		worksta-		
		ters, a test will be performed		tion, pool.		
		where the ROV is sent to the				
		bottom of a 4 meters deep				
		pool. The ROV will then be				
		inspected for water leaks. The				
		depth will be plotted from the				
		logged data for documentation.				
66	101	To verify that it is possible	0.5	ROV,	MJ	46
		to replace the battery of the		timer.		
		ROV in less than 30 minutes,				
		a test will be performed where				
		the battery is replaced and the				
		elapsed time is measured.				
67	102	Remove the acrylic tube to ver-	0.5	ROV.	MJ	46
		ify that it is possible to phys-				
		ical access the hardware that				
		contains the control- and I/O-				
		module of the ROV.				

Project:

TSRT10 Remotely Operated Underwater Vehicle E-mail: Document responsible: Author's E-mail: Document name: tsrt10rov2017@gmail.com Alaa Saeed

alasa433@student.liu.se TestPlan.pdf

10 Pathfinder Tests

Table 10 lists the tests on the functionality requirements regarding the pathfinder.

Table 10: Tests on the functionality requirements regarding the pathfinder.

Test	Req.	Test description	Time	Resources	Respons.	Week
nr.	nr.					
68	108, 110	Send start and end coordinates from the GUI to the pathfinder module and verify that the ROV moves from the start coordinates to the end coordinates in the pool without colliding with any virtual obstacles or walls by plotting the	0.5	ROV, worksta- tion, pool.	MM	45
69	109, 110	ROV's path in the pool. Send coordinates for 4 locations from the GUI to the pathfinder module and verify that the ROV moves through those 4 locations in the pool without colliding with any virtual obstacles or walls by plotting the ROV's path in the pool.	0.5	ROV, worksta- tion, pool.	MM	45

11 Security Tests

In Table 11, the tests on the security requirements of the system are listed. These tests shall be performed in a small pool before the major part of the testing is performed on the ROV. This is to ensure that the ROV behaves according to the security requirements during development.

Table 11: Tests on the security requirements of the system.

Test	Req.	Test description	Time	Resources	Respons.	Week
nr.	nr.					
70	115	Set the ROV in horizontal motion in a pool and detach the ethernet cable from the workstation. The ROV should then stop its motion when it detects that the connection has been lost. Verify this by inspecting the logged data.	0.5	ROV, worksta- tion, pool, camera.	AA	43

 $\begin{array}{ll} \mbox{Course name:} & \mbox{Automatic Control Project Course} \\ \mbox{Project group:} & \mbox{ROV2017} \end{array}$

Course code: TSRT10
Project: Remotely Operated Underwater Vehicle

E-mail: Document responsible: Author's E-mail: Document name: tsrt10rov2017@gmail.com Alaa Saeed

or's E-mail: alasa433@student.liu.se ment name: TestPlan.pdf

Fulfillment of Other Requirements **12**

In the requirement specification [1], the possibilities to upgrade-, economy- and delivery requirements are trivial to verify. Therefore, no tests will be planned for those requirements. Security requirement 116 is also trivial and is already fulfilled so there is no need to plan a test for that requirement either. Another requirement that is trivial is requirement 103 since it can be verified by simply looking at the ROV.

Course name: Project group: Course code:

Project:

Automatic Control Project Course **ROV2017** TSRT10Remotely Operated Underwater Vehicle E-mail: Document responsible: Author's E-mail: Document name:

tsrt10 rov 2017@gmail.comAlaa Saeed alasa 433@student.liu.se

18

References

 $[1] \ \ Marcus \ Homelius. \ \textit{Requirement Specification, Remotely Operated Underwater Vehicle}.$

Course name: Project group: Course code:

ROV2017 ${\tt TSRT10}$ Project:

Remotely Operated Underwater Vehicle

Automatic Control Project Course

E-mail:

Document responsible: Author's E-mail: Document name:

tsrt10 rov 2017@gmail.com

Alaa Saeed alasa 433@student.liu.se

 ${\bf TestPlan.pdf}$