Bayesian Model Selection

Václav Šmídl

March 5, 2018

Model selection

- ▶ Model = Likelihood & Prior.
- Posterior is

$$p(\theta|d) = \frac{p(d|\theta)p(\theta)}{p(d)}$$

where $p(d|\theta)$ and $p(\theta)$ is given by ???

Model selection

- ► Model = Likelihood & Prior.
- Posterior is

$$p(\theta|d) = \frac{p(d|\theta)p(\theta)}{p(d)}$$

where $p(d|\theta)$ and $p(\theta)$ is given by ???

- ▶ In general, we can not prove that the model is the best.
- ▶ We can formulate several candidates and compare them.

Example

Example

Cross-validation

- ▶ Split the data into **training** and **testing** set.
- ▶ Fit model parameters on the training set.
- Evaluate model error on the test set.

Cross-validation

- ▶ Split the data into **training** and **testing** set.
- ▶ Fit model parameters on the training set.
- ▶ Evaluate model error on the test set.

Cross-validation

- ▶ Split the data into **training** and **testing** set.
- ▶ Fit model parameters on the training set.
- Evaluate model error on the test set.

- Sensitive to sampling,
- May be problematic for hierarchical models.

Bayesian Model selection

▶ Assume a fixed set of available models $M \in \{M_1, M_2, \dots M_m\}$

$$M_i: p_i(d|\theta_i)p_i(\theta_i)$$

Compute the probability that the data were generated from each model:

$$p(M = M_i|d) \propto p(d|M_i)p(M_i)$$

Bayesian Model selection

▶ Assume a fixed set of available models $M \in \{M_1, M_2, ..., M_m\}$

$$M_i: p_i(d|\theta_i)p_i(\theta_i)$$

Compute the probability that the data were generated from each model:

$$p(M = M_i|d) \propto p(d|M_i)p(M_i)$$

= $p(M_i) \int p(d|\theta_i, M_i)p(\theta_i)d\theta$,

Bayesian Model selection

▶ Assume a fixed set of available models $M \in \{M_1, M_2, ..., M_m\}$

$$M_i: p_i(d|\theta_i)p_i(\theta_i)$$

Compute the probability that the data were generated from each model:

$$p(M = M_i|d) \propto p(d|M_i)p(M_i)$$

= $p(M_i) \int p(d|\theta_i, M_i)p(\theta_i)d\theta$,

- ▶ Marginal likelihood (evidence) p(d|M) is the normalizing constant of the Bayes rule.
- ▶ Can be either readily available (Laplace) or hard to find (Gibbs).

Bayes factor

► Comparison of two models (hypotheses):

$$K = \frac{p(d|M_1)}{p(d|M_2)} = \frac{\int p(\theta_1|M_1)p(d|\theta_1, M_1) d\theta_1}{\int p(\theta_2|M_2)p(d|\theta_2, M_2) d\theta_2} = \frac{p(M_1|d)}{p(M_2|d)} \frac{p(M_2)}{p(M_1)}.$$

Typically assumed that $p(M_1) = p(M_2)$.

Bayes factor

► Comparison of two models (hypotheses):

$$K = \frac{p(d|M_1)}{p(d|M_2)} = \frac{\int p(\theta_1|M_1)p(d|\theta_1, M_1) d\theta_1}{\int p(\theta_2|M_2)p(d|\theta_2, M_2) d\theta_2} = \frac{p(M_1|d)}{p(M_2|d)} \frac{p(M_2)}{p(M_1)}.$$

Typically assumed that $p(M_1) = p(M_2)$.

Interpretation

K	Strength of evidence	
1 to 3	not worth more than a bare mention	
3 to 20	positive	
20 to 150	strong	
>150	very strong	

▶ Often reported only as: $\log p(M_i|d)$

Challenge: toy example

Noisy observation:

$$M_1: d = m + e,$$

 $M_2: d = e,$

where:

$$p(d_i) = \mathcal{N}(m, \omega^{-1}),$$

 $p(m|\omega) = \mathcal{N}(0, \tau\omega),$
 $p(\omega) = G(\alpha, \beta).$

- ▶ d = 2, $\alpha = 1$, $\beta = 1$
- ► *K*=?
- ▶ $p(M_1)=?$

Challenge: toy example

Bayesian information criterion (BIC) or Schwarz criterion (also SBC) [Schwarz, 1978]:

$$-2 \cdot \ln p(d|M) \approx \text{BIC} = -2 \cdot \ln \hat{L} + k \cdot (\ln(n) - \ln(2\pi)).$$
$$\hat{L} = p(d|\hat{\theta}),$$

where $\hat{\theta}$ is maximum likelihood estimate of parameter θ , n is the number of data, k is the number of parameters.

Penalization of model complexity

Bayesian information criterion (BIC) or Schwarz criterion (also SBC) [Schwarz, 1978]:

$$-2 \cdot \ln p(d|M) \approx \text{BIC} = -2 \cdot \ln \hat{L} + k \cdot (\ln(n) - \ln(2\pi)).$$
$$\hat{L} = p(d|\hat{\theta}),$$

where $\hat{\theta}$ is maximum likelihood estimate of parameter θ , n is the number of data, k is the number of parameters.

Penalization of model complexity

Akaike information criterion (AIC) [Akaike, 1974] asymptotic of cross-validation, goodness of fit versus model simplicity:

$$AIC = -2 \cdot \ln \hat{L} + k \cdot 2.$$

Bayesian information criterion (BIC) or Schwarz criterion (also SBC) [Schwarz, 1978]:

$$-2 \cdot \ln p(d|M) \approx \text{BIC} = -2 \cdot \ln \hat{L} + k \cdot (\ln(n) - \ln(2\pi)).$$
$$\hat{L} = p(d|\hat{\theta}),$$

where $\hat{\theta}$ is maximum likelihood estimate of parameter θ , n is the number of data, k is the number of parameters.

Penalization of model complexity

Akaike information criterion (AIC) [Akaike, 1974] asymptotic of cross-validation, goodness of fit versus model simplicity:

$$AIC = -2 \cdot \ln \hat{L} + k \cdot 2.$$

WAIC, DIC,

not asymptotics

Laplace approximation

Laplace approximation (derived without normalization):

$$\begin{split} p(\theta|d) &\approx \mathcal{N}(\hat{\theta}, \Sigma), \\ \hat{\theta} &= \arg\max p(\theta, d), \\ \Sigma &= (-\nabla\nabla\log p(\hat{\theta}))^{-1} \end{split}$$

Evidence (normalization constant) [Kass, Raftery, 1995]:

$$p(d) = (2\pi)^{d/2} |\Sigma|^{1/2} p(d|\hat{\theta}) p(\hat{\theta})$$

Often used with large datasets.

Variational Bayes

Original Variational Bayes derived without normalization.

$$p(\theta_1, \theta_2) \approx q(\theta_1)q(\theta_2)$$

Considering joint model $p(d|\theta_1, M_1)$ and $p(d|\theta_2, M_2)$ we can not split $q(M)q(\theta_2)$.

Considering q(Z|M)q(M), the solution is [Bishop, 2006]:

$$q(M|d) \propto p(M) \exp(\mathcal{L}_M)$$

 $\mathcal{L}_M = KL(q(\theta|M)||p(d,\theta|M))$

where $q(\theta|M)$ are results of the standard Variational Bayes for each model.

Toy: Variational Bayes

General rule: $q(x_1|\theta_1) \propto \exp\left(E_{qx(1)}\left[\log p(x_1,x_2)\right]\right)$ Toy (with constant c)

$$\log p(m, \omega, d) = \frac{1}{2} \log \omega - \frac{1}{2} \omega (d - m)^2$$
$$\frac{1}{2} \log \omega - \frac{1}{2} \tau \omega m^2 + (\alpha - 1) \log \omega - \beta \omega + c$$

Toy: Variational Bayes

General rule: $q(x_1|\theta_1) \propto \exp\left(E_{q\times(1)}\left[\log p(x_1,x_2)\right]\right)$ Toy (with constant c)

$$\log p(m, \omega, d) = \frac{1}{2} \log \omega - \frac{1}{2} \omega (d - m)^{2}$$
$$\frac{1}{2} \log \omega - \frac{1}{2} \tau \omega m^{2} + (\alpha - 1) \log \omega - \beta \omega + c$$

Factor $q(\omega|d)$:

$$\log q(\omega|d) \propto E_{q(m)} \left[\alpha \log \omega - \frac{1}{2} \omega \left((d-m)^2 + \tau m^2 + \beta \right) \right]$$

Toy: Variational Bayes

General rule: $q(x_1|\theta_1) \propto \exp\left(E_{qx(1)}\left[\log p(x_1,x_2)\right]\right)$ Toy (with constant c)

$$\log p(m, \omega, d) = \frac{1}{2} \log \omega - \frac{1}{2} \omega (d - m)^{2}$$
$$\frac{1}{2} \log \omega - \frac{1}{2} \tau \omega m^{2} + (\alpha - 1) \log \omega - \beta \omega + c$$

Factor $q(\omega|d)$:

$$\log q(\omega|d) \propto E_{q(m)} \left[\alpha \log \omega - \frac{1}{2} \omega \left((d-m)^2 + \tau m^2 + \beta \right) \right]$$

Log-likelihood $q(d|M) = \mathcal{L}_M$:

$$\begin{split} \mathcal{L}_{M} &= E_{q(\omega)q(m)} \left[\alpha \log \omega - \frac{1}{2} \omega \left((d-m)^{2} + \tau m^{2} + \beta \right) + c \right] \\ &= \alpha \left\langle \log \omega \right\rangle - \frac{1}{2} \left\langle \omega \right\rangle \left\langle (d-m)^{2} + \tau m^{2} + \beta \right\rangle + c \end{split}$$

where $\langle \log \omega \rangle$ needs to be computed for the first time!

Monte Carlo methods

Approximation of a distribution by "Dirac train"

$$p(x) \approx \frac{1}{N} \sum_{i=1}^{N} \delta(x - x^{(i)}).$$

Approximation of moments, cumulative density. We seek integral

$$p(d|M) = \int p(d|\theta, M)p(\theta|M)d\theta,$$

which can be solved by sampling from $p(\theta|M)$.

Monte Carlo methods

Approximation of a distribution by "Dirac train"

$$p(x) \approx \frac{1}{N} \sum_{i=1}^{N} \delta(x - x^{(i)}).$$

Approximation of moments, cumulative density. We seek integral

$$p(d|M) = \int p(d|\theta, M)p(\theta|M)d\theta,$$

which can be solved by sampling from $p(\theta|M)$. Inefficient, numerically unstable.

- ▶ Importance sampling [Perrakis, Ntzoufras, and Tsionas, 2014],
- Gibbs sampler [Chib, 1995] using

$$\ln (p(d|M)) = \ln (p(d|M,\theta)) + \ln (p(\theta)) - \ln (p(\theta|d)),$$

evaluated point-wise.

Searching of the model space

Consider a set of models with m binary options, forming a space of 2^m hypothesis.

- ▶ Marginal likelihood for each hypotheses can be evaluated
- How to efficiently find the best?

Searching of the model space

Consider a set of models with m binary options, forming a space of 2^m hypothesis.

- ▶ Marginal likelihood for each hypotheses can be evaluated
- ▶ How to efficiently find the best?
- Combinatorial optimization
 - Genetic algorithms,
 - Simulated annealing,
- Can we use some information about the search space? The evaluations are not completely independent.

MCMC approximation

▶ Is it possible to treat *M* as a "normal" random variable?

MCMC approximation

- ▶ Is it possible to treat *M* as a "normal" random variable?
- ► In general MCMC, we need to define a transition kernel from which we sample *x** and accept/reject it
- \blacktriangleright With different M, dimension of x is changing

MCMC approximation

- ▶ Is it possible to treat *M* as a "normal" random variable?
- ▶ In general MCMC, we need to define a transition kernel from which we sample *x** and accept/reject it
- \blacktriangleright With different M, dimension of x is changing

Reversible jump MCMC standard sample x is complemented by vector of random numbers u such that couples (x,u) and (x',u') can be reversibly mapped. MH is then extended [Green, Hastie, 2009]

$$\alpha(x,x') = \min \left\{ 1, \frac{\pi(x')j(x')g'(u')}{\pi(x)j(x)g(u)} \left| \frac{\partial(\theta'_{k'},u')}{\partial(\theta_k,u)} \right| \right\},\,$$

exploring space of hypothesis (not necessarily finite).

Model selection

- Evidence or marginal likelihood is an important quantity for model selection,
- Provides an alternative to cross-validation
- In machine learning, many benchmark data sets are compared using log-likelihood

Model	$\log p(x) \geq$
NF (k=80) [Rezende et al., 2015]	-85.1
PixelRNN [Oord et al., 2016]	-79.2
AVB [Mescheder et al., 2016]	-79.5
ASVAE [Pu et al., 2017]	-81.14
GAN [Goodfellow et al., 2014]	-114.25 [†]
WGAN-GP [Ishaan Gulrajani, 2017]	-79.92 [†]
DCGAN [Radford et al., 2016]	-79.47 [†]
sVAE (ours)	-80.42 [†]
sVAE-r (ours)	-79.26 [†]