Facial Analyzer for Rhinoplasty (Option 9)

Priscilla Carbo
Marvin Cazeau
Jared Curtis
Maree Kelly
Alessandra Oo

Table of Contents

- Last Semester
- Goals for this Semester
- Database
- FaceGen
- Digitized Rhinoplasty
- Facial Clusters
- Blender Modeling
- Room for Improvements

Last Semester

- Suggesting changes to patient's nose
 - Based on similarly structured faces
- Create clusters of patients
 - Based on K-Nearest-Neighbors algorithm
- Fit patients to clusters
 - Based on appearance using a Convolutional Neural Network
- Adding to our database using scanned faces
 - Implementing Bellus3D software

Goals for this Semester

- Create a consistent method of synthetic face creation to fill database
 - This would provide better facial groupings as it has more faces to compare and analyze
- Generate more accurate facial clusters
 - This code would take all the faces from the database and group them based on how similar they are to each other as well as other variables
- Plotting facial landmarks automatically

Database: Scanned faces

- 96 scanned faces using Bellus3D (iOS application, discontinued)
- 114 3D faces generated by FaceGen Modeller with 2D images
- Together we have 210 faces

FaceGen

- Main purpose for this software was to grow our database
 - We previously used Bellus3D app for this
- Researched various machine learning algorithms to create 3D models for dataset
 - o GANs?
- Constraints with FaceGen:
 - A 3 JPGs are required
 - 2 profile and 1 front face

Database: Digitized Rhinoplasty

- We used Digitized Rhinoplasty web application to point the landmarks manually on each 3D faces.
- We are using 45 of the most significant landmarks.
 - 14 of the most commonly occurring landmarks in studies that have the highest relation to facial structure.
 - 31 landmarks that affect the nose structure.

	Francisco de la la constant	F
Facial Landmark	Frequency in Important Measurements	Frequency of Studies in Literature
Alar Base Junction/Alar Crease - left/right (ac)	3	9
Alar Rim's Highest Point - left/right (armax)	1	0
Alare/Alar Flare - left/right (al)	1	8
Cheilion - left/right (ch)	0	19
Columellar Break Point (cb)	4	0
Columellar Rim - left/right (cmin)	1	0
Crista Philtri - left/right (cph)	0	4
Endocanthion/Medial Canthus - left/right (en)	2	15
Exocanthion/Lateral Canthus - left/right (ex)	1	22
Glabella (g)	4	2
Labiale Inferius (li)	0	12
Labiale Superius (Is)	3	12
Lateral helix of ear - left/right (la)	1	0
Maxillofrontale - left/right (ma)	1	0
Menton/Gnathion (me)	2	4
Nasal Parenthesis - left/right (np)	1	0
Nasion/Radix (n)	6	15
Pogonion (pg)	0	6
Pronasale/Tip (prn)	9	24
Pupil - left/right (p)	0	4
Stomion (sto)	1	7
Subalare - left/right (sbal)	1	3
Sublabiale/Mentolabial Sulcus (sl)	0	4
Subnasale (sn), Subnasale - left/right	7	13
Supratip Break Point (s)	1	0
Tip Defining Point - left/right (td)	2	0
Tragion - left/right (t)	0	1
Trichion (tr)	2	0
Zygion - left/right (zy)	1	1
Table 1: Escial landmarks usage frequency in mos	auramanta impartant for rhin	and a section of the section

Table 1: Facial landmarks usage frequency in measurements important for rhinoplasty and facial landmarks studied in the literature for detection based on their geometric properties on 3D face scans.

Digitized Rhinoplasty Web Application Demo

Clustering

- Goal is to provide a patient with other faces that share similar facial structures
- Previously used a K nearest neighbors algorithm
 - However, we wanted fewer, more optimized groupings
- Provide a patient with multiple different clusters they can be fit into
 - Adds more options and variety of faces to choose from

Clustering

- 6 new clustering algorithms:
 - Kmeans
 - Affinity Propagation
 - BIRCH Clustering
 - Agglomerative Clustering
 - Spectral Clustering
 - Gaussian Mixture Model

Blender Modeling

- Upload 3D object of patient's face
- Plot patient's original facial landmarks
- Plot patient's altered facial landmarks
 - Generated based on similarly structured faces
- Allow a user to sculpt the patient's 3D face
 - Make changes directly to the 3D model in order to provide a more optimally structured nose

Blender Demo

Room for Improvements

- Generate new nose landmarks for patient
 - Based on patients with similar facial structures
- Create an easy to use interface
 - Consolidate multiple python files into one coherent program
- Plot landmarks automatically
 - Use ML learning to plot facial landmarks
- Write code to generate 3D scan of patient's face

Questions?

Thank you.

__

__

Table 1: Preferences of Five Participants

Participant	Tax Rate	Fee	Interest Rate	Quantity Limit	Price Limit
Alice	3	4	3	2	1
Bob	4	3	5	1	1
Cary	3	5	3	3	3
Doug	2	1	3	3	2
Edna	1	1	3	2	3

Table 2: Similarity Matrix

Participant	Alice	Bob	Cary	Doug	Edna
Alice	-22	-7	-6	-12	-17
Bob	-7	-22	-17	-17	-22
Cary	-6	-17	-22	-18	-21
Doug	-12	-17	-18	-22	-3
Edna	-17	-22	-21	-3	-22

Table 3: Responsibility Matrix

Participant	Alice	Bob	Cary	Doug	Edna
Alice	-16	-1	1	-6	-11
Bob	10	-15	-10	-10	-15
Cary	11	-11	-16	-12	-15
Doug	-9	-14	-15	-19	9
Edna	-14	-19	-18	14	-19

Table 4: Availability Matrix

Participant	Alice	Bob	Cary	Doug	Edna
Alice	21	-15	-16	-5	-10
Bob	-5	0	-15	-5	-10
Cary	-6	-15	1	-5	-10
Doug	0	-15	-15	14	-19
Edna	0	-15	-15	-19	9

Table 5: Criterion Matrix

Participant	Alice	Bob	Cary	Doug	Edna
Alice	5	-16	-15	-11	-21
Bob	5	-15	-25	-15	-25
Cary	5	-26	-15	-17	-25
Doug	-9	-29	-30	-5	-10
Edna	-14	-34	-33	-5	-10

_

Gaussian Mixture Model

- Begin with random Gaussian parameters for each Gaussian
 - Mean
 - Covariance
 - Weight
- Repeat expectation and maximization steps until convergence
 - Expectation Step
 - Compute $p(zi = k \mid xi, \theta)$. In other words, does sample *i* look like it came from cluster k?
 - Maximization Step
 - Update the Gaussian parameters (θ) to fit points assigned to them.

Gaussian Mixture Model

