Kristallographie

Johannes Hahn

Andrea Hanke

18. Mai 2019

1 Gruppentheorie

2 Kristalle

2.1 Definition (Kristalle):

Ein Kristall (auch Kristallgitter) ist eine Punktmenge $\Lambda \subseteq \mathbb{R}^3$ (gedacht als die Menge aller Atome im Kristall), die ...

- a.) ... Translationssymmetrie hat, d.h. es gibt Vektoren $t_1, t_2, t_3 \in \mathbb{R}^3$ in drei unabhängige Richtungen, sodass immer, wenn $x \in \Lambda$ ein Punkt im Kristall ist, $x + k_1t_1 + k_2t_2 + k_3t_3$ auch ein Punkt im Kristall ist für alle ganzen Zahlen $k_1, k_2, k_3 \in \mathbb{Z}$.
- b.) ... aus isolierten Punkten besteht, d.h. es gibt einen Mindestabstand $\delta > 0$, sodass sich keine zwei Punkte $x, y \in \Lambda$ näher als δ kommen: $x \neq y \implies ||x y|| \geq \delta$.
- 2.2: Insbesondere bedeutet dass, dass es nur abzählbar viele Punkte im Gitter gibt.

2.3 Definition:

Die Symmetriegruppe eines Kristallgitters Λ ist die Gruppe aller starren (=abstandserhaltenden) Bewegungen, die das Gitter in sich selbst abbilden:

$$\operatorname{Aut}(\Lambda) := \left\{ s \in \operatorname{Isom}(\mathbb{R}^3) \mid s(\Lambda) = \Lambda \right\}$$

Nach Definition enthält $\operatorname{Aut}(\Lambda)$ mindestens die drei Translationen $x \mapsto x + t_i$. Die Menge aller Translationen, die Λ in sich selbst abbilden, sind eine Untergruppe von $\operatorname{Aut}(\Lambda)$.

2.4: Weil die Punkte in Λ einen Mindestabstand haben, ist die Translationsuntergruppe diskret, d.h. sie enthält eine Basis: Drei Translationen $\tau_1, \tau_2, \tau_3 \in \operatorname{Aut}(\Lambda)$, sodass sich jede beliebige Translation $\tau \in \operatorname{Aut}(\Lambda)$ auf eindeutige Weise als $\tau_1^{k_1} \circ \tau_2^{k_2} \circ \tau_3^{k_3}$ mit $k_1, k_2, k_3 \in \mathbb{Z}$ schreiben lässt.

Die Translationsuntergruppe ist also zur Gruppe ($\mathbb{Z}^3,+$) isomorph.

2.5 Beispiel:

Umgekehrt: Wenn $v_1, v_2, v_3 \in \mathbb{R}^3$ drei beliebige, linear unabhängige Vektoren sind, dann ist $\Lambda := \mathbb{Z}v_1 + \mathbb{Z}v_2 + \mathbb{Z}v_3 = \{k_1v_1 + k_2v_2 + k_3v_3 \mid k_1, k_2, k_3 \in \mathbb{Z}\}$ ein Gitter, dessen Translationsuntergruppe die drei Translationen $\tau_i := x \mapsto x + v_i$ als (eine mögliche von vielen) Basis hat.

2.6 Definition:

Es sei Λ ein Kristallgitter und T die Gruppe aller Translationen, die Λ invariant lassen. Eine Basiszelle von Λ ist ein Paar (Z,A) bestehend aus einem (konvexer, kompakter) Polyeder $Z \subseteq \mathbb{R}^3$ und einer Punktmenge $M \subseteq Z$, sodass

- a.) ... die Translate von M ganz Λ überdecken, d.h. $\Lambda = \bigcup_{t \in T} t(M)$.
- b.) ... die Translate von Z ganz \mathbb{R}^3 überdecken, d.h. $\mathbb{R}^3 = \bigcup_{t \in T} t(Z)$.
- c.) ... die Translate von Z im wesentlichen disjunkt sind, d.h. $Z \cap t(Z)$ ist leer oder höchstens eine Seitenfläche, Kante oder Eckpunkt des Polyeders, wenn $t \in T \setminus \{id\}$ ist.

Die Menge M nennt man Motiv des Kristallgitters.

Eine Basiszelle, in der Z das kleinstmöglichen Volumen hat, heißt elementare Basiszelle des Gitters.

2.7: Da Z kompakt ist und die Punkte in Λ einen Mindestabstand haben, muss $M=Z\cap \Lambda$ endlich sein.

2.8 Satz: