School of Mathematical Sciences

APP MTH 3022 - Optimal Functions and Nanomechanics III

Tutorial 4 (Week 8)

- 1. Assuming an interaction potential of the form $\Phi(\rho) = -A\rho^{-6} + B\rho^{-12}$, calculate an analytic expression for the interaction of
 - (a) A point $P = (0, 0, \delta)$ and a line ℓ_1 collinear with the x-axis, $-\infty < x < \infty$, assuming a uniform line density of η_1 .
 - (b) The line ℓ_1 from part (a) and a second line ℓ_2 given by $(t\cos\theta, t\sin\theta, \delta)$ where θ and δ are fixed and the line is parameterised by the variable $-\infty < t < \infty$, assuming a line density of η_2 for ℓ_2
 - (c) What is the interaction between ℓ_1 and ℓ_2 in the case of $\theta = \pi/2$?
 - (d) What is the interaction between ℓ_1 and ℓ_2 in the case of $\theta = \pi$?
- 2. A toroidal surface \mathcal{T} may be specified parametrically by its position vector given by

$$r(\theta, \phi) = ((R + r\cos\theta)\cos\phi, (R + r\cos\theta)\sin\phi, r\sin\theta),$$

where r is the radius of the tube and R is the distance from the centre of the torus to the centre of the tube, and $-\pi < \theta \leqslant \pi, -\pi < \phi \leqslant \pi$.

- (a) Calculate the tangent vector in the θ -direction.
- (b) Calculate the tangent vector in the ϕ -direction.
- (c) Using your answers from parts (a) and (b) determine the scalar area element dA for \mathcal{T} .
- (d) Hence derive an expression for the surface area of \mathcal{T} .
- 3. (a) ★ Employing the Lennard-Jones potential and the continuum approximation, derive an explicit expression for the interaction between a nanotorus defined by the surface T from Q2 and an atom located at the origin.
 - (b) \star Using your expression from part (a), compute the numerical value of the interaction energy assuming a nanotorus with r=5 Å and R=15 Å, and a surface density of $\eta=0.3812$ atoms·Å⁻² using values of A=17.4 eV·Å⁶ and $B=29\,000$ eV·Å¹².
 - (c) \star Using the values of parameters from part (b) but allowing R to take on any positive value R > r, compute the value of R that leads to a global minimum in the interaction energy for the atom-nanotorus system.
- 4. Use Ritz's method to find an approximate solution to minimize the

$$J\{y\} = \int_0^{2\pi} (y'^2 + \lambda^2 y^2) dx,$$

where y(0) = 1 and $y(2\pi) = 1$ and λ is a positive integer. Use the trial functions

$$\phi_0 = 1, \quad \phi_n(x) = \sin[(n - 1/2)x].$$

and so

$$y_N = \phi_0 + \sum_{n=1}^{N} c_n \phi_n(x).$$

Compare your solution to one found directly from the Euler-Lagrange equations.