Algebra Lineare e Geometria Analitica Ingegneria dell'Automazione Industriale

Ayman Marpicati

A.A. 2022/2023

Indice

capitolo 1	Nozioni premimari	1 agilia 2
1.1	Relazioni su un insieme	2
1.2	Strutture algebriche	2
1.3	Matrici	3
Capitolo 2	Spazi vettoriali	Pagina 5
2.1	Generalità	5
2.2	Sottospazi di uno spazio vettoriale	5
2.3	Indipendenza e dipendenza lineare	6
2.4	Sistemi di generatori di uno spazio vettoriale	8
2.5	Basi e dimensione	8
2.6	Intersezione e somma di sottospazi	12
Capitolo 3	Sistemi lineari	Pagina 15
3.1	Determinante di una matrice quadrata	15
3.2	Matrici invertibili	16
3.3	Dipendenza lineare e determinanti	16

Capitolo 1

Nozioni preliminari

1.1 Relazioni su un insieme

Definizione 1.1.1: Relazione su un insieme

Una **relazione** su un insieme A è un qualunque sottoinsieme di \mathcal{R} del prodotto cartesiano $A \times A$. Una relazione \mathcal{R} su un insieme A si dice:

- riflessiva se, per ogni $a \in A$, $a\mathcal{R}a$;
- simmetrica se, per ogni $a, b \in A$, $a\mathcal{R}b$ allora a = b;
- antisimmetrica se, per ogni $a, b \in A$, $aRb \in bRa$ allora a = b;
- transitiva se, per ogni $a, b, c \in A$, $aRb \in bRc$ allora aRc;

Definizione 1.1.2: Relazione d'ordine totale

Una relazione d'ordine \mathcal{R} su un insieme A si dice **relazione d'ordine** se è riflessiva, antisimmetrica e transitiva. Se inoltre, gli elementi di A sono a due a due confrontabili, cioè, per ogni $a, b \in A$, risulta $a\mathcal{R}b$ oppure $b\mathcal{R}a$, la relazione \mathcal{R} si dice **relazione d'ordine totale**.

1.2 Strutture algebriche

Definizione 1.2.1: Gruppo

Sia (G, \star) un insieme con un'operazione \star . La struttura (G, \star) si dice **gruppo** se:

- l'operazione ★ è associativa;
- esiste in G l'elemento neutro;
- \bullet ogni elemento di $g \in G$ è simmetrizzabile.

Se l'operazione \star soddisfa anche la proprietà commutativa, il gruppo si dice abeliano.

Definizione 1.2.2: Campo

Sia A un insieme sul quale sono definite due operazioni che indichiamo con i simboli "+" e "·" e che chiamiamo somma e prodotto rispettivamente. La struttura $(A, +, \cdot)$ è un **campo** se sussistono le condizioni seguenti:

- (A, +) è un gruppo abeliano il cui elemento neutro è indicato con 0;
- $(A\setminus\{0\},\cdot)$ è un gruppo abeliano con elemento neutro $e\neq 0$;
- \bullet valgono le proprietà distributive (sinistra e destra) del prodotto rispetto alla somma, cioè per ogni $a,b,c\in A$

$$a \cdot (b + c) = a \cdot b + a \cdot c$$
; $(a + b) \cdot c = a \cdot c + b \cdot c$

1.3 Matrici

Definizione 1.3.1: Matrice

Dato un campo K si dice **matrice** di tipo $m \times n$ su K una tabella del tipo:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

avente m righe ed n colonne, i cui elementi a_{ii} sono elementi di K.

Definizione 1.3.2: Matrice quadrata

Una matrice di tipo $n \times n$ è detta **matrice quadrata** di ordine n. Queste vengono indicate con $M_n(K)$.

Definizione 1.3.3: Prodotto righe per colonne

Date le matrici $A=(a_{ih})\in K^{m,n}(K)$ con $i\in I_m, h\in I_n$ e $B=(b_{hj})\in K^{n,p}$ con $h\in I_n, j\in I_p$, si dice **prodotto righe per colonne** di A per B la matrice

$$A \cdot B = (c_{ij}) \text{ con } i \in I_m, j \in I_p$$
 ove

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{h \in I_n} a_{ih}b_{hj}$$

Esempio 1.3.1

Prendiamo per esempio le due matrici:

$$A = \begin{pmatrix} -3 & 0 & 2 \\ -4 & 7 & 1 \end{pmatrix} \quad B = \begin{pmatrix} -5 & -1 & 2 \\ 0 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}$$

Il loro prodotto è

$$\begin{pmatrix} -3\cdot (-5) + 0\cdot 0 + 2\cdot 1 & -3\cdot (-1) + 0\cdot 1 + 2\cdot 1 & -3\cdot 2 + 0\cdot (-2) + 2\cdot 3 \\ -4\cdot (-5) + 7\cdot 0 + 1\cdot 1 & -4\cdot (-1) + 7\cdot 1 + 1\cdot 1 & -4\cdot 2 + 7\cdot (-2) + 1\cdot 3 \end{pmatrix}$$

Quindi

$$A \cdot B = \begin{pmatrix} 17 & 5 & 0 \\ 21 & 12 & -19 \end{pmatrix}$$

Definizione 1.3.4: Matrice identica

L'elemento neutro delle matrici quadrate di ordine n è la matrice identica, cioè la matrice:

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Definizione 1.3.5: Trasposta di una matrice

Sia $A=(a_{ij})$ una matrice di $K^{m,n}$. Si dice **trasposta** di A la matrice $K^{n,m}$ ottenuta scambiando tra loro le righe con le colonne, cioè ${}^tA=(b_{ji})$ ove $b_{ji}=a_{ij}$ per ogni $i\in I_n$ e $j\in I_m$.

Capitolo 2

Spazi vettoriali

2.1 Generalità

Definizione 2.1.1: Spazio vettoriale

Siano K un campo e V un insieme. Si dice che V è uno **spazio vettoriale** sul campo K, se sono definite due operazioni: un'operazione interna binaria su V, detta somma, $+: V \times V \to V$ e un'operazione estrema detta prodotto esterno o prodotto per scalari, $\cdot: K \times V \to V$, tali che

- (V, +) sia un gruppo abeliano;
- ullet il prodotto esterno \cdot soddisfi le seguenti proprietà:
 - $-(h \cdot k) \cdot v = h \cdot (k \cdot v) \quad \forall h, k \in K \quad e \quad \forall v \in V$
 - $-(h+k)\cdot v = h\cdot v + k\cdot v \quad \forall h, k \in K \quad e \quad \forall v \in V$
 - $-h \cdot (v+w) = h \cdot v + h \cdot w \quad \forall h, k \in K \quad e \quad \forall v, w \in V$
 - $-1 \cdot v = v \quad \forall v \in V$

Gli elementi dell'insieme V sono detti **vettori**, gli elementi del campo K sono chiamati **scalari**. L'elemento neutro di (V, +) è detto **vettor nullo** e indicato $\underline{0}$ per distinguerlo da 0, zero del campo K. L'opposto di ogni vettore \mathbf{v} viene indicato con $-\mathbf{v}$.

Teorema 2.1.1

Sia V uno spazio vettoriale sul campo K, siano $k \in K$ e $v \in V$. Allora

$$kv = 0 \iff k = 0 \text{ oppure } v = 0$$

Dimostrazione: Se k = 0

$$0v = (0+0)v = 0v + 0v$$

e sommando -0v ad ambo i membri si ottiene appunto $\underline{0} = 0v$. Se è $v = \underline{0}$, si procede nel modo analogo. Viceversa, se $kv = \underline{0}$ e $k \neq 0$ dimostriamo che $v = \underline{0}$. Dato che $k \neq 0$, esiste l'inverso $k^{-1} \in K$ e, moltiplicando ambo i membri della precedente uguaglianza per k^{-1} si ottiene $k^{-1}(kv) = k^{-1}\underline{0}$ che, per quanto dimostrato in precedenza dà il $\underline{0}$. Dato che $k^{-1}(kv) = (k^{-1}k)v = 1v = v$, per la proprietà 4, si ha v = 0.

2.2 Sottospazi di uno spazio vettoriale

Definizione 2.2.1: Sottospazio vettoriale

Sia $\emptyset \neq U \subseteq V$, diremo che U è **sottospazio vettoriale** di V se è esso stesso uno spazio vettoriale rispetto alla restrizione delle stesse operazioni.

Proposizione 2.2.1 Primo criterio di riconoscimento

Sia V(K) uno spazio vettoriale e sia $\emptyset \neq U \subseteq V$ un suo sottoinsieme. Il sottoinsieme U è uno spazio vettoriale di V se, e soltanto se, sono verificate le seguenti condizioni:

- 1. $\forall u, u' \in U \quad u + u' \in U$
- 2. $\forall k \in K, \forall u \in U \quad ku \in U$

Proposizione 2.2.2 Secondo criterio di riconoscimento

Sia V(K) uno spazio vettoriale sul campo K e sia $\emptyset \neq U \subseteq V$, U è sottospazio di V(K) se e soltanto se

$$hv_1 + kv_2 \in U \quad \forall v_1, v_2 \in U \quad e \quad h, k \in K$$

2.3 Indipendenza e dipendenza lineare

Definizione 2.3.1: Combinazione lineare

Siano $v_1, v_2, ..., v_n \in V(K)$ si dice combinazione lineare di vettori $v_1, v_2, ..., v_n$ ogni vettore v:

$$v = k_1 \cdot v_1 + k_2 \cdot v_2 + \dots + k_n \cdot v_n \quad \text{con } k_1, k_2, \dots, k_n \in K$$

Definizione 2.3.2: Sistema di vettori libero

Sia V(K) e sia A un sistema di vettori di V(K), $A = [v_1, v_2, ..., v_n]$, allora A si dice **libero** se l'unica combinazione lineare di vettori di A che dà il vettore nullo è a coefficienti tutti nulli

$$0 = k_1 \cdot v_1 + k_2 \cdot v_2 + \dots + k_n \cdot v_n \implies k_1 = k_2 = \dots = k_n = 0$$

Se A è libero i suoi vettori si dicono **linearmente indipendenti**.

Definizione 2.3.3: Sistema di vettori legato

Sia V(K) e sia A un sistema di vettori di V(K), $A = [v_1, v_2, ..., v_n]$, allora A si dice **legato** se **non** è libero. Quindi:

$$\exists k_1, k_2, ..., k_n \text{ non tutti nulli}: 0 = k_1 \cdot v_1 + k_2 \cdot v_2 + ... + k_n \cdot v_n$$

Se A è legato i suoi vettori si dicono linearmente dipendenti.

Qui di seguito daremo delle proposizioni riguardo ai sistemi liberi e legati:

Proposizione 2.3.1

Sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori di V(K). Se $\underline{0}$ appartiene ad A, il sistema A è legato.

Dimostrazione: Sia $\underline{0} \in A$, senza perdita di generalità, possiamo supporre che $\underline{0} = v_1$ quindi:

$$1 \cdot v_1 + 0 \cdot v_2 + \dots + 0 \cdot v_n = 1 \cdot 0 + 0 = 0 \implies A$$
è legato

⊜

Proposizione 2.3.2

Sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori di V(K). Se in A appaiono due vettori proporzionali allora A è legato.

Dimostrazione: Senza perdita di generalità possiamo supporre che $v_1 = kv_2$ e quindi:

$$1v_1 + kv_2 + 0v_3 + ... + 0v_n = v_1 - kv_2 + 0 = 0 \implies A$$
è legato

☺

Proposizione 2.3.3

Sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori di V(K). A è legato se e solo se almeno uno dei vettori si può riscrivere come combinazione lineare degli altri.

 $Dimostrazione: \implies$: Per ipotesi A è legato e quindi:

$$\underline{0} = k_1 v_1 + k_2 v_2 + \dots + k_n v_n \text{ con almeno un } k_i = 0$$

Senza perdita di generalità supponiamo che $k_1 \neq 0$

$$-k_1 v_1 = k_2 v_2 + \dots + k_n v_n \qquad v_1 = \frac{1}{k_1} (-k_2 v_2 - \dots - k_n v_n)$$
$$v_1 = -\frac{k_2}{k_1} v_2 - \frac{k_3}{k_1} v_3 - \dots - \frac{k_n}{k_1} v_n$$

e quindi v_1 è combinazione lineare di $v_1, ..., v_n$.

← : Per ipotesi uno dei vettori di A è combinazione lineare degli altri e senza perdita di generalità:

$$v_1 = k_2 v_2 + k_3 v_3 + \dots + k_n v_n$$
 $0 = -1v_1 + k_2 v_2 + \dots + k_n v_n$

siccome $-1 \neq 0$ A è legato.

⊜

Proposizione 2.3.4

Sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori di V(K) e sia $u \in V(K)$. Se $A \cup \{u\}$ è legato, allora u è combinazione lineare dei vettori di A.

Dimostrazione: Per ipotesi $A \cup \{u\}$ è legato, cioè:

$$\exists k_1, k_2, ..., k_n, b \in K$$
 non tutti nulli : $0 = k_1 v_1 + k_2 v_2 + ... + k_n v_n + bu$

sia per assurdo b = 0

$$\underline{0} = k_1 v_1 + k_2 v_2 + ... + k_n v_n \text{ con } k_1 \neq 0 \implies A \text{ è legato, assurdo!} \implies b \neq 0$$

$$-bu = k_1v_1 + k_2v_2 + \dots + k_nv_n \quad u = -\frac{k_1}{h}v_1 - \frac{k_2}{h}v_2 - \dots - \frac{k_n}{h}v_n$$

 $\implies u$ è combinazione lineare dei vettori $v_1,v_2,...,v_n$

⊜

Proposizione 2.3.5

Sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori di V(K) e sia $B \supseteq A$ sistema di vettori di V(K). Se A è legato allora anche B è legato.

Dimostrazione:

$$\exists k_1, k_2, ..., k_n \in K$$
 non tutti nulli : $0 = k_1 v_1 + k_2 v_2 + ... + k_n v_n$

Se $B = [v_1, v_2, ..., v_n, w_1, w_2, ..., w_m]$ allora

$$0 = k_1 v_1 + k_2 v_2 + \dots + k_n v_n + 0 w_1 + 0 w_2 + \dots + 0 w_m$$

 \implies B è legato.

Proposizione 2.3.6

Sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori di V(K) e sia $B \subseteq A$ sistema di vettori di V(K), se A è libero, allora B è libero.

Dimostrazione: Sia, per assurdo, B legato, allora per la proposizione precedente anche A è legato. **Assurdo!** Quindi B è libero.

2.4 Sistemi di generatori di uno spazio vettoriale

Definizione 2.4.1: Sistema di generatori

Sia A sistema di vettori di V(K). A si dice sistema di generatori di V(K) se ogni $v \in V(K)$ si può scrivener come combinazione lineare di un numero finito di vettori di A.

Definizione 2.4.2: Copertura lineare

Sia A un sistema di vettori di V(K) si dice copertura (o chiusura) lineare di A l'insieme $\mathcal{L}(A)$ di tutte le combinazioni lineari di sottoinsiemi finiti di A.

N.B.

Dato A sistema di vettori di V(K)

- 1. $\mathcal{L}(A)$ è il più piccolo sottospazio di V(K) che contiene A
- 2. $\mathcal{L}(A) \leq V(K)$
- 3. $\mathcal{L}(\mathcal{L}(A)) = \mathcal{L}(A)$

Ogni spazio vettoriale ammette un sistema di generatori e:

- se V(K) ammette un sistema di generatori finito $\implies V(K)$ si dice finitamente generato.
- se ogni sistema di generatori di V(K) ha cardinalità infinita $\implies V(K)$ non è finitamente generato.

2.5 Basi e dimensione

Lemma 2.5.1

Sia $S = [v_1, v_2, ..., v_n]$ un sistema di generatori per uno spazio vettoriale V(K), e sia $v \in S$ combinazione lineare degli altri vettori (linearmente dipendente dagli altri) $\Longrightarrow S \setminus \{v\}$ è sistema di generatori per V(K)

Dimostrazione: Sia, senza perdere di generalità, v_1 combinazione lineare di $v_2, v_3, ..., v_n$

$$v_1 = k_2 v_2 + k_3 v_3 + \dots + k_n v_n$$

sia $v \in V(K)$

$$v = h_1 v_1 + h_2 v_2 + \dots + h_n v_n = h_1 (k_2 v_2 + \dots + k_n v_n) + h_2 v_2 + \dots + h_n v_n$$

$$v = \underbrace{(h_1 k_2 + h_2)}_{\in K} v_2 + \dots + \underbrace{(h_1 k_n + h_n)}_{\in K} v_n \in \mathcal{L}([v_2, v_3, \dots, v_n]) = \mathcal{L}(S \setminus \{v_1\})$$

(2)

 $\implies S \setminus \{v_1\}$ è un sistema di generatori.

Teorema 2.5.1

Sia V(K) uno spazio vettoriale finitamente generato, non banale $(V(K) \neq \{\underline{0}\})$, allora esso ammette un sistema libero di generatori.

Dimostrazione: sia $A = [v_1, v_2, ..., v_n]$ un sistema di generatori per V(K), abbiamo due possibilità:

- 1. A è libero ⇒ A è un sistema di generatori libero;
- 2. A è legato $\implies \exists v \in A$ combinazione lineare degli altri, senza perdita di generalità possiamo porre $v = v_1 \implies A \setminus \{v_1\} = A_1$ è sistema di generatori.

Se ci troviamo nel secondo caso possiamo reiterare il procedimento e trovare $A_2 \to A_3 \to ...$ finché non arriviamo ad un sistema libero di generatori.

Osserviamo che A contiene almeno un $v \in A$: $v \neq \underline{0}$, questo perché $A_n = [0]$ e $v_n \neq \underline{0}$ perché $A \neq \{\underline{0}\}$ \Longrightarrow A_n è necessariamente libero.

Definizione 2.5.1: Base

Sia $S = (v_1, v_2, ..., v_n)$ sequenza libera di vettori di V(K). S è detta base se e solo se S è una sequenza libera di generatori.

Definizione 2.5.2: Base canonica di \mathbb{R}^n

((1,0,0,...,0)(0,1,0,...,0),...,(0,0,0,...,1))è una base canonica per \mathbb{R}^n .

Lemma 2.5.2 Lemma di Steinitz

Sia V(K) uno spazio vettoriale finitamente generato. Sia $B = [v_1, v_2, ..., v_n]$ sistema di generatori e $A = [u_1, u_2, ..., u_m]$ sistema libero. Allora la cardinalità di A sarà sempre minore o uguale a quella del sistema di generatori. $(m \le n)$

Dimostrazione: Sia per assurdo m > n, poiché B genera V(K) u_1 si scrive come:

$$u_1 = k_1 v_1 + k_2 v_2 + \dots + k_n v_n$$

Essendo A libero $u_1 \neq \underline{0} \implies k_1, k_2, ..., k_n$ non sono tutti nulli \implies senza perdita di generalità $k_1 \neq 0$

$$-k_1v_1 = -u_1 + k_2v_2 + \dots + k_nv_n \qquad v_1 = \frac{1}{k_1}(u_1 - k_2v_2 - \dots - k_nv_n)$$

$$\implies v_1 \in \mathcal{L}([u_1, v_2, v_3, \dots, v_n])$$

B è sistema di generatori, $B \cup \{u_1\}$ è sistema di generatori, di conseguenza $(B \cup \{u_1\} \setminus \{v_1\}) = B_1 = [u_1, v_2, ..., v_n]$ è ancora sistema di generatori per V(K).

Allo stesso modo posso riscrivere

$$u_2 = \alpha u_1 + h_2 v_2 + h_3 v_3 + ... + h_n v_n \quad \text{con } \alpha, h_2, h_3, ..., h_n \in K$$

Se avessimo $h_2 = h_3 = \dots = h_n = 0$ $u_2 = \alpha$ ma ciò non può succedere perché A è libero $\implies \exists h_i \neq 0$ e senza perdita di generalità supporremo $h_2 \neq 0$ quindi:

$$-h_2v_2 = \alpha u_1 - u_2 + h_3v_3 + \dots + h_nv_n \qquad v_2 = \frac{1}{h_2}(-\alpha u_1 + u_2 - h_3v_3 - \dots - h_nv_n)$$

 v_2 è linearmente dipendente da $B_2 = [u_1, u_2, v_3, ..., v_n]$ e B_2 , per lo stesso motivo di B_1 è ancora sistema di generatori.

Ora immaginiamoci di reiterare il procedimento n volte fino a trovare un sistema $B_n = [u_1, u_2, ..., u_n]$. Siccome avevamo supposto che m > n essendo B_n sistema di generatori dovremo essere in grado di scrivere anche u_{n+1} come combinazione lineare dei vettori di B_n , cioè:

$$u_{n+1} \in \mathcal{L}(B_n)$$
 $u_{n+1} = \alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_n u_n$

⊜

questo comporta che A sia legato, ma questo è assurdo! $\implies m \le n$.

Teorema 2.5.2

Sia V(K) uno spazio vettoriale finitamente generato, e siano B_1 e B_2 due sue basi le loro cardinalità sono uguali:

$$B_1 = (v_1, v_2, ..., v_n)$$
 $B_2 = (u_1, u_2, ..., u_n)$ $m = n$

Dimostrazione: Per dimostrarlo è sufficiente applicare il lemma di Steinitz

- B_1 sistema di generatori, B_2 sistema libero $\implies n \ge m$;
- B_2 sistema di generatori, B_1 sistema libero $\implies m \ge n$.

 $m \ge n e n \ge m \iff n = m.$

(

Definizione 2.5.3: Dimensione

Dato uno spazio vettoriale finitamente generato, non banale, chiamiamo **dimensione** di V la cardinalità di una qualsiasi delle sue basi. Inoltre se $V = \{0\}$ poniamo la dim(V) = 0

Qui di seguito enunciamo una serie di conseguenze del lemma di Steinitz.

Proposizione 2.5.1

Sia $V_n(K)$ uno spazio vettoriale di dimensione n su K e sia $S = [v_1, v_2, ..., v_n]$ un sistema di generatori. Allora S è libero.

Dimostrazione: Sia $B = [w_1, w_2, ..., w_n]$ una base di $V_n(K)$. Sia per assurdo S legato. Senza perdita di generalità $v_1 = k_2v_2 + k_3v_3 + ... + k_nv_n$. Allora $S' = S \setminus \{v_1\}$ è ancora sistema di generatori. $|S'| = n - 1 \ge |B|$ perché B è libero per il lemma di Steinitz. **Assurdo!**. Quindi S è libero.

Proposizione 2.5.2

Sia V(K) uno spazio vettoriale di dimensione n sul campo K. Sia $S = [v_1, v_2, ..., v_n]$ un sistema libero. Allora S è anche un sistema di generatori.

Dimostrazione: Sia $B = [w_1, w_2, ..., w_n]$ una base di V(K), supponiamo per assurdo che S non generi.

$$\implies \exists v \in V \text{ con } v \neq \underline{0}$$

 $S' = S \cup \{u\}$ è ancora libero, supponiamo per assurdo che non lo sia:

$$\sin \underline{0} = k_1 v_1 + k_2 v_2 + \dots + k_n v_n + \alpha v \text{ con } \alpha \neq 0$$

altrimenti avremmo: $\underline{0} = k_1 v_1 + k_2 v_2 + ... + k_n v_n$

$$v = \frac{1}{\alpha}(-k_1v_1 - k_2v_2 - \dots - k_nv_n) \in \mathcal{L}(S)$$

 $\implies v \in \mathcal{L}(S)$ assurdo! Contro l'ipotesi che $v \notin \mathcal{L}(S) \implies S'$ è libero.

$$\underbrace{|S'| = n+1}_{\text{sistema libero}} \leq \underbrace{|B| = n}_{\text{sequenza di generatori}} \rightarrow \text{ per il lemma di Steinitz}$$

Assurdo! \implies S è un sistema di generatori.

@

Proposizione 2.5.3

m vettori in $V_n(K)$ con m > n sono sempre linearmente dipendenti.

Dimostrazione: Siano per assurdo $[v_1, v_2, ..., v_m]$, m vettori linearmente indipendenti con m > n. Sia B una base di $V_n(K)$. $m = |S = [v_1, v_2, ..., v_m]| \le |B| = n$ per il lemma di Steinitz. Ma per ipotesi m > n, assurdo!

Proposizione 2.5.4

m vettori in $V_n(K)$ con $m < n \implies$ non possono generare.

Dimostrazione: siano $v_1, v_2, ..., v_m$ per assurdo m vettori che generano $V_n(K)$ con m < n allora:

$$m=|S=[v_1,v_2,...,v_n]|\geq |B|=n \ \ {\rm con} \ \ m\geq n \ \ \ {\rm per}$$
il lemma di Steinitz

⊜

☺

Assurdo! Va contro all'ipotesi.

Teorema 2.5.3 Teorema di caratterizzazione delle basi

Sia $B = (v_1, v_2, ..., v_n)$ una sequenza di vettori di V(K). B è una base se e solo se ogni vettore di V si può scrivere in maniera univoca come combinazione lineare dei vettori di B.

$$\forall v \in V, \exists ! \ v = k_1 v_1 + k_2 v_2 + ... + k_n v_n \quad k_i \in K$$

Dimostrazione: \implies sia B una base di V. Per ogni v si ha che $v \in \mathcal{L}(B)$ perché B è una sequenza di generatori. Supponiamo per assurdo che esista $v \in V$:

$$v = v = k_1 v_1 + k_2 v_2 + \dots + k_n v_n = h_1 v_1 + h_2 v_2 + \dots + h_n v_n$$
 con almeno un $k_i \neq h_i$

$$(k_1 - h_1)v_1 + (k_2 - h_2)v_2 + \dots + (k_n - h_n)v_n = 0$$

B è una sequenza libera, quindi $(k_i - h_i) = 0 \implies k_i = h_i$ perché l'unica combinazione lineare che dà il vettore nullo è quella a coefficienti tutti nulli. Ma avevamo supposto che $k_i \neq h_i \implies \mathbf{assurdo!} \implies \exists !$ la combinazione lineare dei vettori di B che dà v ($\forall v \in V$).

 \iff per ipotesi $\forall v \in V \exists !$ combinazione lineare dei vettori di B che dà v. B è una sequenza di generatori, cioè $\forall v \in V \implies v \in \mathcal{L}(B)$. Supponiamo per assurdo che B sia legato $\implies \exists k_i \in K$ non nullo:

$$0 = k_1 v_1 + k_2 v_2 + \dots + k_n v_n \quad 0 = 0 v_1 + 0 v_2 + \dots + 0 v_n$$

quindi esistono almeno due combinazioni lineari di B che danno $\underline{0}$. Dato che $\underline{0} \in V$ per ipotesi esiste un unica combinazione lineare dei vettori di B che dà $\underline{0}$. **Assurdo!** Quindi B è una sequenza libera e B è una base per V.

Definizione 2.5.4: Componenti di un vettore rispetto ad una base

Sia $B=(v_1,v_2,...,v_n)$ una base di $V_n(K)$ e sia $v\in V$. Chiameremo componenti di v rispetto alla base B la sequenza $(k_1,k_2,...,k_n)$:

$$v = k_1 v_1 + k_2 v_2 + \dots + k_n v_n$$

Proposizione 2.5.5

Sia $V_n(K)$ uno spazio vettoriale di dimensione n sul campo K, allora $V_n(K)$ ammette almeno un sottospazio di dimensione $m \ \forall 0 \leq m \leq n$.

Dimostrazione: sia $B = (v_1, v_2, ..., v_n)$ una base di $V_n(K)$ e sia $0 \le m \le n$, ci sono due possibilità:

- 1. $m = 0 \implies \{\underline{0}\}$ è il sottospazio voluto;
- 2. $0 < m \le n$ e quindi $S = (v_1, v_2, ..., v_m)$

 $\mathcal{L}(S)$ ha dimensione *m* perché *S* è libero $(S \subseteq B)$ e genera, per definizione $\mathcal{L}(S)$.

Proposizione 2.5.6

Siano $U, W \leq V_n(K)$ e sia $U \leq W$, allora:

- 1. $\dim(U) \leq \dim(W)$
- 2. $U = W \iff \dim(U) = \dim(W)$

Dimostrazione: Dimostriamo i due punti:

1. Sia B base per U e B' base per W, se per assurdo

$$\underline{\dim(U) = |B|} > \underline{\dim(W) = |B'|}$$
sequenza libera di W genera W

contro il lemma di Steinitz.

 $2. \implies \text{è banale};$

 \iff sia per assurdo U < W e sia B base di U, allora

$$|B| = \dim(U) = \dim(W)$$

(2)

quindi B è una base anche per $W \implies \mathcal{L}(B) = W \implies W = U$ Assurdo!

Teorema 2.5.4 Teorema del completamento ad una base

Sia $V_n(K)$ uno spazio vettoriale di dimensione n e sia $A = (v_1, v_2, ..., v_p)$, ove $p \le n$, una sequenza libera di vettori in $V_n(K)$. Allora, in una qualunque base di B di $V_n(K)$, esiste una sequenza B' di vettori, tale che $A \cup B'$ è una base di $V_n(K)$.

2.6 Intersezione e somma di sottospazi

Proposizione 2.6.1

Sia $V_n(K)$ uno spazio vettoriale di dimensione n sul campo K e siano $U, V \leq V \implies U \cap W$ è sottospazio di V.

Dimostrazione: Richiamo il secondo criterio di riconoscimento dei sottospazi. $U \cap W$ è un sottospazio di $V \iff$ è sottoinsieme non vuoto di V:

$$\forall v_1, v_2 \in U \cap W, \ \forall k_1, k_2 \in K, \ k_1v_1 + k_2v_2 \in U \cap W$$

 $U \cap W$ è sottoinsieme non vuoto di V, perché $U \subseteq V$, $W \subseteq V$ e $\underline{0} \in U \cap W$. Siano ora $v_1, v_2 \in U \cap W$ e $k_1, k_2 \in K$, osserviamo per il secondo criterio di riconoscimento che $k_1v_1 + k_2v_2 \in U$ e per lo stesso motivo $k_1v_1 + k_2v_2 \in W$ $\implies k_1v_1 + k_2v_2 \in U \cap W \implies U \cap W$ è un sottospazio vettoriale.

N.B.

Sotto le stesse ipotesi della proposizione precedente abbiamo che $U \cup W$ non è un sottospazio a meno che $U \subseteq W$ oppure $W \subseteq U$.

Definizione 2.6.1: Spazio di somma

Dati $U \in W \le V$ spazio vettoriale di dimensione n su K definiamo lo **spazio di somma** come:

$$U + W := \{u + w \mid u \in U \ e \ w \in W\}$$

Proposizione 2.6.2

Dati U e $W \leq V$ spazio vettoriale di dimensione n su K abbiamo che: $U + W \leq V$

Dimostrazione: Osserviamo che $U+W\subseteq V$ perché dato $u\in U$ e $w\in W$, $u\in V$ e $w\in V$ \Longrightarrow $u+w\in V$, il quale non è vuoto perché $0\in U+W$. Siano $v_1,v_2\in U+W$ e siano $k_1,k_2\in K$

$$k_{1} \cdot \underbrace{v_{1}}_{=u_{1}+w_{1}} + k_{2} \cdot \underbrace{v_{2}}_{=u_{2}+w_{2}} = k_{1}(u_{1}+w_{1}) + k_{2}(u_{2}+w_{2}) = \underbrace{(k_{1}u_{1}+k_{1}w_{1})}_{u_{3} \in U \text{ per il } 2^{\circ} \text{ criterio}} + \underbrace{(k_{2}u_{2}+k_{2}w_{2})}_{w_{3} \in W \text{ per il } 2^{\circ} \text{ criterio}}$$

$$\implies u_{3}+w_{3} \in U+W \implies \text{per il } 2^{\circ} \text{ criterio } U+W \leq V$$

(2)

Proposizione 2.6.3

Siano $U, W \leq V_n(K)$ allora U + W è il più piccolo sottospazio di V che cotiene $U \cup W$; equivalentemente

$$\mathcal{L}(U \cup W) = U + W$$

Definizione 2.6.2: Somma diretta

Dati $U, W \leq V_n(K)$ diremo che U + W è somma diretta se $\forall v \in U + W$ può essere scritto come unico modo come u + w. Equivalentemente

$$\forall v \in U + W \quad \exists! \ u \in U \ e \ w \in W : \quad v = u + w$$

Se U+W è una somma diretta allora la indicheremo con $U\oplus W$.

Proposizione 2.6.4

Siano $U, W \leq V_n(K)$ allora $U \oplus W \iff U \cap W = \{0\}.$

Dimostrazione: ⇒ Siano U, W in somma diretta e sia, per assurdo: $x \in U \cap W$ con $x \neq \underline{0}$. Sia v = u + w con $u \in U$ e $w \in W$. Consideriamo

$$v + x - x = v \implies v = u + w + x - x = \underbrace{u + x}_{\in U} + \underbrace{w - x}_{\in W} = u_1 + w_1$$

u = u + x e w = w - x poiché la somma è diretta $\implies x = \underline{0} \implies \mathbf{Assurdo!} \implies U \cap W = \{\underline{0}\}$

 \iff Siano $U, W: U \cap W = \{0\}$ e supponiamo per assurdo che esista $v \in U + W$:

$$v = u_1 + w_1$$
 e $v = u_2 + w_2$ con $u_1, u_2 \in U$ e $w_1, w_2 \in W$ e $(u_1, w_1) \neq (u_2, w_2)$
$$u_1 + w_1 = u_2 + w_2$$
 $v_2 = \underbrace{u_1 - u_2}_{\in U} = \underbrace{w_2 - w_1}_{\in W} \in U \cap W$
$$\implies u_1 - u_2 = \underbrace{0}_{} e \quad w_2 - w_1 = \underbrace{0}_{} = \underbrace{w_1 - w_2}_{} = \underbrace{0}_{} = \underbrace{w_2 - w_1}_{} = \underbrace{0}_{} = \underbrace{0}_{$$

che è assurdo! Questo perché avevamo supposto che v avesse due scritture distinte come somma i elementi di U e W.

$$\implies \exists ! \ (u_1, w_1) : \quad u, \in U \quad e \quad w_1 \in W : \quad v = u_1 + w_1 \ e \ U \oplus W$$

⊜

Corollario 2.6.1

Siano $U, W \le V_n(K)$ allora $V = U \oplus W \iff U + W = V \ e \ U \cap W = \{0\}.$

N.B.

Siano $U, W \leq V_n(K)$ e sia B_1 una base di V e B_2 una base di $W \implies B_1 \cup B_2$ è sequenza di generatori per lo spazio U + W. In generale l'unione di due basi, non è a sua volta una base per U + W.

Proposizione 2.6.5

Siano $U, M \leq V_n(K) : U \oplus W$ e sia A una sequenza libera di vettori di U e B una sequenza libera di vettori di U. Allora $A \cup B$ è una sequenza libera di vettori della $U \oplus W$.

Dimostrazione: Siano $A = (u_1, u_2, ..., u_k)$ e $B = (w_1, w_2, ..., w_h)$ e supponiamo per assurdo che $a_1, a_2, ..., a_k \in K$ e $b_1, b_2, ..., b_h \in K$, quindi per assurdo sia legata la combinazione lineare:

 $\underline{0} = a_1 u_1 + a_2 u_2 + \dots + a_k u_k + b_1 w_1 + b_2 w_2 + \dots + b_h w_h$ non tutti nulli

$$\underbrace{-(a_1u_1 + a_2u_2 + \dots + a_ku_k)}_{\in U} = \underbrace{b_1w_1 + b_2w_2 + \dots + b_hw_h}_{\in W}$$

$$\implies \underline{0} = b_1 w_1 + b_2 w_2 + \dots + b_h w_h \quad e \quad \underline{0} = a_1 u_1 + a_2 u_2 + \dots + a_k w_k$$

ma A e B sono sequenze libere quindi $a_1=a_2=\ldots=a_k=0$ e $b_1=b_2=\ldots=b_h=0$

$$\implies \nexists a_1, a_2, ..., a_k, b_1, b_2, ..., b_h$$
 non tutti nulli:

$$0 = a_1u_1 + a_2u_2 + ... + a_ku_k + b_1w_1 + b_2w_2 + ... + b_hw_h \implies Assurdo!$$

(2)

 $\implies A \cup B$ è una sequenza libera.

Corollario 2.6.2

Siano $U, W \in V_n(K) : U \oplus W$ e siano B_U e B_W basi di U e $W \implies B_U \cup B_W$ è una base per $U \oplus W$.

Proposizione 2.6.6 Formula di Grassmann

Dati $U, W \leq V_n(K)$ abbiamo che:

$$\dim(U+W) + \dim(U\cap W) = \dim(U) + \dim(W)$$

Definizione 2.6.3: Complemento diretto

Sia $W \leq V_n(K)$ si dice **complemento diretto** di W in V uno spazio $U \leq V: U \oplus W = V$.

N.B.

Un complemento diretto di W in V esiste sempre e si trova estendendo una base di W a una base di V. In generale questo non è unico.

Capitolo 3

Sistemi lineari

3.1 Determinante di una matrice quadrata

Definizione 3.1.1: Determinante

Sia $A = (a_{ij})$ una matrice quadrata, di ordine n, a elementi in un campo K. Si dice **determinante** di A, e si scrive |A| oppure $\det(A)$, l'elemento di K definito ricorsivamente come segue:

1. se
$$n = 1$$
 $A = (a_{11})$ $\det(A) = |A| = a_{11}$

2. se
$$n > 1$$
 $A = a_{ij}$ $\det(A) = (-1)^{1+1}a_{11} \det A_{11} + (-1)^{1+2}a_{12} \det A_{12} + \dots + (-1)^{1+n}a_{1n} \det A_{1n}$

Se
$$A=\begin{pmatrix} a_{11}&a_{12}\\a_{21}&a_{22} \end{pmatrix}$$
, il suo determinante è $|A|=a_{11}a_{22}-a_{12}a_{21}$

Mentre se

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Allora la il determinante di A è

$$|A| = a_{11}a_{22}a_{33} + a_{13}a_{21}a_{32} + a_{12}a_{23}a_{31} - a_{13}a_{22}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

Definizione 3.1.2: Complemento algebrico

Sia $A = (a_{ij})$ una matrice quadrata di ordine n, a elementi in campo K. Si dice **complemento algebrico** dell'elemento a_{hk} , e si indica Γ_{hk} , il determinante della matrice quadrata di ordine n-1, ottenuta da A sopprimendo la h-esima riga e la k-esima colonna, preso con il segno $(-1)^{h+k}$.

Teorema 3.1.1 Primo teorema di Laplace

Data la matrice quadrata di ordine n, la somma dei prodotti degli elementi di una sua riga (o colonna), per i rispettivi complementi algebrici, è il determinante di A.

Pertanto, la formula per il calcolo del determinante di $A = (a_{ij})$ rispetto alla a i-esima riga è

$$|A| = \sum_{j=1}^{n} a_{ij} \Gamma_{ij}$$
 $\forall i = 1, 2, ..., n$

rispetto alla j-esima colonna è

$$|A| = \sum_{i=1}^{n} a_{ij} \Gamma_{ij}$$
 $\forall j = 1, 2, ..., n$

Teorema 3.1.2 Secondo teorema di Laplace

Sia A una matrice quadrata di ordine n. La somma dei prodotti degli elementi di una sua riga (o colonna) per i complementi algebrici degli elementi di un'altra riga (o colonna) vale zero. Quindi

$$A \in M_n(K) \implies \begin{cases} a_{i1}\Gamma_{j1} + a_{i2}\Gamma_{j2} + \dots + a_{in}\Gamma_{jn} = 0 & i \neq j \\ a_{1i}\Gamma_{1j} + a_{2i}\Gamma_{2j} + \dots + a_{ni}\Gamma_{nj} = 0 & i \neq j \end{cases}$$

Teorema 3.1.3 Teorema di Binet

Date due matrici quadrate di ordine n, A e B, il determinante della matrice prodotto $A \cdot B$ è uguale al prodotto dei determinanti di A e B, cioè

$$|A \cdot B| = |A||B|$$

3.2 Matrici invertibili

Definizione 3.2.1: Matrice invertibile

Una matrice quadrata, di ordine n, si dice **invertibile** quando esiste una matrice B, quadrata e dello stesso ordine, tale che $A \cdot B = B \cdot A = I_n$, dove I_n è la matrice identica di ordine n. La matrice B si dice **inversa** di A e si indica A^{-1} .

Teorema 3.2.1

Sia $A \in M_n(K)$; allora A è invertibile $\iff |A| \neq 0$ e in tal caso

$$A_{-1} = \frac{1}{|A|} {}^t A_a$$

dove A_a si chiama **matrice aggiunta** di A ed è la matrice ottenuta da A sostituendo ogni elemento con il suo complemento algebrico Γ .

3.3 Dipendenza lineare e determinanti

Definizione 3.3.1: Minore

Sia $A \in K^{m,n}$. Si chiama **minore di ordine** p estratto da A, con $p \in \mathbb{N}$, $p \neq 0$, $p \leq \min\{m,n\}$, una matrice quadrata di ordine p ottenuta cancellando m-p righe e n-p colonna da A.

Definizione 3.3.2: Rango

Si chiama **rango** di $A \in K^{m,n}$ (e si indica con $\rho(A)$) l'ordine massimo di un minore estraibile da A con det $\neq 0$.

N.B.

- 1. $\rho(A) = 0 \iff A = 0$
- 2. $A \neq 0$ $1 \leq \rho(A) \leq \min\{m, n\}$
- 3. $\rho(A) = p$ se e solo se:
 - (a) esiste un minore di A di ordine p con det $\neq 0$;
 - (b) tutti i minori di ordine maggiori di p hanno determinante nullo.