Learning objectives:

- 1. Rolle's theorem.
- 2. The Mean value theorem.
- 3. Applications.

Rolle's Theorem

Let f be a function that satisfies the following three conditions:

- 1. f is continuous on the closed interval [a, b].
- 2. f is differentiable on the open interval (a, b).
- 3. f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0.

_continuously and smoothly. **Example 1**. An object is moving in a straight line along the x-axis. Suppose the

object was at position x = 3 at t = 0 and at t = 2. Show that at some instant between t = 0 and t = 2, the object was at rest.

t=0 to for which 8(0) = 8(0) = 3

P(t) = g'(t), 8 is continuous and differentiable on [0,2] >> There is some 0< C<2

Example 2. Prove that the equation $x^3 + x - 1$ has exactly one real root.

such that S(c) =0 Intermediate value theorem f(x)= x3+x-1 $f(x) = 3x^2 + 1 \gg 1$ f(0) = 03 + 0 - 1 = -1 $f(i) = i^3 + 1 - 1 = 1$

And f is continuous. D is between f(0)=-1 and f(1)=1

So , by intermediate value theorem, there must be number c blw o and (0 < (< |) so that f(c) = 0

 \Rightarrow $\chi^3 + \chi - 1 = 0$ has at least one solution. Or f has at least One real root.

Suppose there are two roots: C and & Assume C \(\pm\). $\Rightarrow f(c) = f(d) = 0$

By Rolle's theorem we must have some number a between C and d Such that $f'(\alpha) = 0 \rightarrow \text{Not Possible because } f'(\alpha) \geq 1$.

Theorem

holls

The Mean Value Theorem

Let f be a function that satisfies the following two conditions:

- 1. f is continuous on the closed interval [a, b].

2.
$$f$$
 is differentiable on the open interval (a,b) .

Then there is a number c in (a,b) such that

 $f'(c) = \frac{f(b) - f(a)}{b-a}$, velocity, and where $f(c) = f(c) = f(c)$

$$f(b) - f(a) = f'(c)(b - a)$$
.
not change in y Not change in χ

Example 3. Let $f(x) = x^3 - x$, a = 0, b = 2. Check/illustrate that the mean value theorem holds.

$$f'(c) = 3c^2 - 1 \Rightarrow 3c^2 - 1 = 3 \Rightarrow 3c^2 = 4 \Rightarrow c^2 = \frac{4}{3} \Rightarrow c = \frac{4}{3}$$

Example 4. Suppose f(0) = -3 and $f'(x) \le 5$ for all values of x. How large can 0 < 0 < 2f(2) possibly be?

By the Mean value Theorem (MVT), we have
$$\frac{f(a) - f(o)}{a - o} = f'(c) \leq 5$$

$$\Rightarrow \frac{f(2)-(-3)}{2} \leq 5$$

$$\Rightarrow f(a) + 3 \le 10$$

$$\Rightarrow$$
 f(a) \leq T

Example 5. If f'(x) = 0 for all x in an interval (a, b), then show that f is constant on (a, b).

Example 6. If f'(x) = g'(x) for all x in an interval (a, b), then show that f(x) = g(x) + c for some constant c whenever a < x < b.

Let
$$h(x) = f(x) - g(x)$$

$$\Rightarrow h'(x) = f'(x) - g'(x)$$

$$= 0 \quad \text{for } a < x < b$$

From Example 59 we have h(x) = C for some constant C when 0 < x < b

$$\Rightarrow f(x) - g(x) = c \Rightarrow f(x) = g(x) + c$$

APPLY MUT on [0,2]

Example 7. Does there exist a function f such that f(0) = -1, f(2) = 4 and $f'(x) \le 2$ for all x?

$$\frac{f(a) - f(b)}{2 - b} = f'(c) \text{ for some } b < c < 2$$

$$\frac{H - (-i)}{2} = f'(c) \Rightarrow f'(c) = \frac{5}{2} \Rightarrow f'(c) = 2.5 \text{ for at least}$$

$$\text{One } c.$$
But we have $f'(a) \le 2 \Rightarrow f'(a)$ (annot be 2.5

This is a Contradiction.
$$\Rightarrow \text{ Such an } f \text{ cannot exist.}$$

Example 8. Two runners start a race at the same time and finish in a tie. Prove that at some time during the race they have the same speed.

Velocity
$$\Rightarrow$$
 $\mathcal{V}_1(t)$, $\mathcal{V}_2(t)$. Let displacement functions be $8_1(t), 8_1(t)$
Start at time $t=a$ and end at time $t=b$
Let $8(t) = 8_1(t) - 8_2(t)$
At $t=a$, $8_1(a) = 8_2(a)$ $= 8_1(a) = 0$, $8(a) = 0$, $8(b) = 0$
At $t=b$, $8_1(b) = 8_2(b)$ $= 0$ $= 8(a) = 0$, $8(b) = 0$
 $= \frac{8(b) - 8(a)}{b - a} = \frac{b - 0}{b - a} = 0 = 8(a)$
By MVT , there must be some instant c between a and b such that $s(c) = 0 \Rightarrow s_1(c) - s_2(c) = 0 \Rightarrow s_1(c) - s_2(c) = 0$