Math 3501 - Probability and Statistics I

1.4 - Independent Events

Independent Events

Two events \underline{A} and \underline{B} are independent if the occurrence of one of them does not affect the probability of the occurrence of the other.

Definition

Events A and B are independent if and only if

$$P(A \cap B) = P(A)P(B)$$

Otherwise, A and B are called dependent events.

Properties:

1) the definition always holds if P(A) = 0 or P(B) = 0.

2) If A and B are independent, then so are the following pairs of events:

1 event with zero probability are always independent.

2 If A and B are independent, then so are the following pairs of events:

1 event with zero probability are always independent.

2 If A and B are independent, then so are the following pairs of events:

2) If \underline{A} and \underline{B} are independent, then so are the following pairs of events:

Mutually independent events

Definition

Events A, B, and C are mutually independent if and only if the following two conditions hold:

(a) A, B, and C are pairwise independent; that is,

$$P(A \cap B) = P(A)P(B)$$
, $P(A \cap C) = P(A)P(C)$, $P(B \cap C) = P(B)P(C)$

$$(b) P(A \cap B \cap C) = P(A)P(B)P(C)$$

Note: If there is no possibility of misunderstanding, the term "independent" is often used without the modifier "mutually" when several events are considered.

Remark

The definition of mutual independence can be extended to four or more events by requiring that each pair, triple, quartet, and so on, satisfy similar properties.

Namely, the events A_1, A_2, \ldots, A_n are said to be independent if, for every subset $A_{1'}, A_{2'}, \ldots, A_{r'}$, with $r \leq n$, of these events, one has

$$P(A_{1'} \cap A_{2'} \cap ... \cap A_{r'}) = P(A_{1'}) P(A_{2'}) \cdots P(A_{r'})$$

Finally, we define an infinite set of events to be independent if every finite subset of those events is independent.

Sequences of independent trials

We will often consider random experiments consisting of a sequence of \underline{n} trials that are mutually independent:

If the outcomes of distinct trials have no mutual influence, then events associated with a distinct trials may be assumed to be independent:

Specifically, if the event A_i is associated with the *i*th trial, $i=1,2,\ldots,n$, then

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1) P(A_2) \cdots P(A_n)$$

Example

Suppose that on five consecutive days an "instant winner" lottery ticket is purchased and the probability of winning is 1/5 on each day.

Assuming independent trials, find the probability of purchasing:

- winning tickets on the first two days and loosing tickets on the other days
- 6) winning tickets on the first and last day and loosing tickets on the other days
- () exactly two winning tickets in the five days

Define events:

$$A_i$$
: "punchasing a winning troket on day i", $i = 1, 2, 3, 4, 5$
 VL me told:

 $A_1, A_2, ..., A_5$ me mutually independent (independent twish)

 $P(A_i) = \frac{1}{5}$ for $i = 1, 2, ..., 5$
 $P(A_1) = \frac{1}{5}$ for $i = 1, 2, ..., 5$
 $P(A_2) \cdot P(A_3) \cdot P(A_4) \cdot P(A_5)$
 $P(A_1) \cdot P(A_5) \cdot P$

b)
$$P(A_1 \cap \overline{A_2} \cap \overline{A_3} \cap \overline{A_4} \cap A_5) = P(A_1) \cdot P(\overline{A_2}) \cdot P(\overline{A_3}) \cdot P(\overline{A_5})$$

 $= \frac{1}{5} \cdot \frac{4}{5} \cdot \frac{4}{5} \cdot \frac{4}{5} \cdot \frac{1}{5} = (\frac{1}{5})^2 \cdot (\frac{4}{5})^3$
independence

C) Many ways we can buy exactly 2 winning hickets in 5 fives { ₩ ₩ └ └ └ / ← itm h) ₩ └ └ └ ₩ ← itm b each of Ken orders her Represervent B: Lw L L Coke optim the dome probability B: "purchasing exactly
evinning trackets out of 5 " $\left(\left(\frac{1}{5}\right)^2, \left(\frac{4}{5}\right)^3\right)$ i - - i mar optens $P\left(B\right) = \left(\frac{5}{2}\right)\left(\frac{1}{5}\right)^{2} \cdot \left(\frac{4}{5}\right)^{3} \leftarrow$ in how many on stand ways can we rearrage 2 ws and 3 Ls? $\frac{3!}{2!3!} = \binom{5}{2} = \binom{5}{3}$ "related with bimomial distribution" # et destingai dable permutatus!

Math 3501 - Probability and Statistics I

1.5 - Bayes' Theorem

Partition

Let the events B_1, B_2, \dots, B_m form a partition of the sample space S, that is:

- 1) B_1, B_2, \ldots, B_m are mutually exclusive: $B_i \cap B_j = \emptyset$ whenever $i \neq j$
- 2) B_1, B_2, \dots, B_m are exhaustive: $S = B_1 \cup B_2 \cup \dots \cup B_m$
- 3) the events B_1, B_2, \ldots, B_m are all nonempty

Suppose also that all elements of the partition B_1, B_2, \ldots, B_m are such that

$$P(B_i) > 0$$
 $i = 1, ..., m$.

 $B_{1,j}, ..., B_{nn}$ are $N \in \mathbb{Z}$ just money by, they have possible by

Then, any event A may be written as the union of m mutually exclusive events:

Proposition (Law of total probability)

Let $B_1, B_2, ..., B_m$ be a partition of the sample space S with the property that $P(B_i) > 0$ for each i = 1, ..., m.

Then, for any event A, we have
$$P(A) = \sum_{i=1}^{m} P(B_i \cap A) = \sum_{i=1}^{m} P(B_i) P(A \mid B_i) .$$

Theorem (Bayes' Theorem)

Let $B_1, B_2, ..., B_m$ be a partition of the sample space S with the property that $P(B_i) > 0$ for each i = 1, ..., m.

For any event A such that P(A) > 0, we have

$$P(B_k \mid A) = \frac{P(B_k) P(A \mid B_k)}{\sum_{i=1}^{m} P(B_i) P(A \mid B_i)}, \qquad k = 1, 2, ..., m.$$

Notes: For k = 1, 2, ..., m:

- $P(B_k)$ are often called the *prior probabilities* of the events B_k
- $P(B_k \mid A)$ are often called the *posterior probabilities* of the events B_k

Proof:
$$P(B_k | A) = P(B_k \cap A) = \frac{P(B_k \cap A)}{P(A)} = \frac{P(B_k \cap A)}{\sum_{i=1}^{m} P(B_i) P(A|B_i)}$$

law of total probablity

Example

A laboratory blood test is 95 percent effective in detecting a certain disease when it is, in fact, present.

However, the test also yields "false positive" results for 1 percent of the healthy persons tested, that is, if a healthy person is tested, then, with probability 0.01, the test result is positive.

If 0.5 percent of the population actually has the disease, what is the probability that a person has the disease given that the test result is positive?

Partition:
$$B_1$$
: "having disease" B_2 : "not having disease" $B_2 = \overline{B_1}$

A: "Tool result in positive"

Asked: $P(B_1|A) = ??$

Fig. 2 of the exclusive in the exclusive i

$$P(B_{1}|A) = P(B_{1}\cap A) = P(B_{1}) \cdot P(A|B_{1}) = \frac{P(B_{1}) \cdot P(A|B_{1})}{P(A)} = \frac{(0.005)(0.95)}{(0.005)(0.95) + (0.995)(0.01)} = \frac{P(A)}{P(A)} = \frac{P(A \cap B_{1}) \cdot P(A \cap B_{2})}{P(A \cap B_{1}) + P(A \cap B_{2})} = \frac{P(A \cap B_{1}) \cdot P(A \cap B_{2})}{P(A \cap B_{1}) + P(B_{2}) \cdot P(A \cap B_{2})} = \frac{P(B_{1}) \cdot P(A \cap B_{2})}{P(A \cap B_{2}) + P(B_{2}) \cdot P(A \cap B_{2})} = \frac{P(B_{1}) \cdot P(A \cap B_{2})}{P(A \cap B_{2}) + P(B_{2}) \cdot P(A \cap B_{2})} = \frac{P(B_{1}) \cdot P(A \cap B_{2})}{P(A \cap B_{2}) + P(B_{2}) \cdot P(A \cap B_{2})} = \frac{P(B_{1}) \cdot P(A \cap B_{2})}{P(A \cap B_{2}) + P(B_{2}) \cdot P(A \cap B_{2})} = \frac{P(B_{1}) \cdot P(A \cap B_{2})}{P(A \cap B_{2}) + P(B_{2}) \cdot P(A \cap B_{2})} = \frac{P(B_{1}) \cdot P(A \cap B_{2})}{P(A \cap B_{2}) + P(B_{2}) \cdot P(A \cap B_{2})} = \frac{P(B_{1}) \cdot P(A \cap B_{2})}{P(A \cap B_{2}) + P(B_{2}) \cdot P(A \cap B_{2})} = \frac{P(B_{1}) \cdot P(A \cap B_{2})}{P(A \cap B_{2}) + P(B_{2}) \cdot P(A \cap B_{2})} = \frac{P(B_{1}) \cdot P(A \cap B_{2})}{P(A \cap B_{2}) + P(B_{2}) \cdot P(A \cap B_{2})} = \frac{P(B_{1}) \cdot P(A \cap B_{2})}{P(A \cap B_{2}) + P(B_{2}) \cdot P(A \cap B_{2})} = \frac{P(B_{1}) \cdot P(A \cap B_{2})}{P(A \cap B_{2}) + P(B_{2}) \cdot P(A \cap B_{2})} = \frac{P(B_{1}) \cdot P(A \cap B_{2})}{P(A \cap B_{2}) + P(B_{2}) \cdot P(A \cap B_{2})} = \frac{P(B_{1}) \cdot P(A \cap B_{2})}{P(A \cap B_{2}) + P(B_{2}) \cdot P(A \cap B_{2})} = \frac{P(B_{1}) \cdot P(A \cap B_{2})}{P(A \cap B_{2}) + P(B_{2}) \cdot P(A \cap B_{2})} = \frac{P(B_{1}) \cdot P(A \cap B_{2})}{P(A \cap B_{2}) + P(B_{2}) \cdot P(A \cap B_{2})} = \frac{P(B_{1}) \cdot P(B_{1}) \cdot P(B_{2})}{P(A \cap B_{2}) + P(B_{2}) \cdot P(A \cap B_{2})} = \frac{P(B_{1}) \cdot P(B_{1}) \cdot P(B_{2}) \cdot P(A \cap B_{2})}{P(B_{1}) \cdot P(B_{2}) \cdot P(B_{1}) \cdot P(B_{2})} = \frac{P(B_{1}) \cdot P(B_{1}) \cdot P(B_{2})}{P(B_{1}) \cdot P(B_{2}) \cdot P(B_{2})} = \frac{P(B_{1}) \cdot P(B_{1}) \cdot P(B_{2})}{P(B_{1}) \cdot P(B_{2}) \cdot P(B_{2})} = \frac{P(B_{1}) \cdot P(B_{2}) \cdot P(B_{2})}{P(B_{1}) \cdot P(B_{2})} = \frac{P(B_{1}) \cdot P(B_{2}) \cdot P(B_{2})}{P(B_{1}) \cdot P(B_{2})} = \frac{P(B_{1}) \cdot P(B_{2})}{P(B_{2})} = \frac{P(B_{1}) \cdot P(B_{2})}{P(B_{2})} = \frac{P($$

Example

In a certain factory, machines I, II, and III all produce springs of the same length.

Of their production, machines I, II, and III respectively produce 2%, 1% and 3% defective springs.

Of the total production of springs in the factory, machine I produces 35%, machine II produces 25%, and machine III produces 40%.

If one spring is selected at random from the total springs produced in a day:

- find the probability that it is defective
- knowing that the selected spring is defective, find the probability that it was produced by machine III

$$B_i$$
: event "spring in produced by machine i" $i=1,2,3$ ($I,\overline{II},\overline{II}$)

 $A:$ event "spring in defective"

 B_1,B_2,B_3 are multially exclusive and exchange in $P(B_1)=0.37$
 $P(B_2)=6.27$
 $P(B_3)=0.40$

We doo know that $P(A|B_1)=0.02$
 $P(A|B_2)=0.01$
 $P(A|B_3)=0.03$

Assum 3
$$P(A) = P((A \cap B_1) \cup (A \cap B_2) \cup (A \cap B_3)) = P((A \cap B_1) + P((A \cap B_2) + P((A \cap B_2)))$$

$$= P(B_1) \cdot P(A \mid B_1) + P(B_2) \cdot P(A \mid B_2) + P(B_3) \cdot P(A \mid B_3)$$

$$= (0.37) (0.02) + (0.27) (0.01) + (0.4) (0.03)$$

$$\approx \cdots$$

$$P(A) = P(B_3 \cap A) = P(B_3 \cap A) = \frac{P(B_3) \cdot P(A \mid B_3)}{P(A)} = \frac{(0.4) \cdot (0.03)}{(0.35)(0.02) + (0.25)(0.01) \cdot (0.1) \cdot (0.1)} \cdot (0.1) \cdot (0.1)$$