Rapport

DIOP_Ousseynou

2023-05-07

Question 1-2-3-4

```
knitr::opts_chunk$set(echo=TRUE, error=FALSE, warning=FALSE, message=TRUE)
CA<- "C:\\Users\\dell\\Desktop\\ENSAE\\ISEP2\\Semestre_2\\Programmation R\\Devoir\\Traitement"
df_Diop<- read.csv2(paste0(CA,"\\df_Diop.csv"))
head(df_Diop)</pre>
```

```
moy salaire nombre_pas jour_absent
                                                       nom genre
## 1 22 17.09545
                    99130
                                  840
                                               12 Floriane Homme
## 2 41 16.60973
                   147254
                                 1370
                                                     Chloé Femme
     29 14.14334
                    86367
                                1314
                                                9
                                                    Hélène Femme
## 4 42 15.35980
                                                3
                    94743
                                 1321
                                                    Pierre Homme
## 5 22 18.86301
                    74952
                                1916
                                               16
                                                       Lou Femme
## 6 21 16.50604 111850
                                1312
                                                9
                                                    Benoit Homme
            niveau_etude lettre_preferee voyage_etude
##
## 1 diplôme d'ingénieur
## 2
                                        Е
                doctorat
                                                   non
## 3
                                        G
                     bac
                                                   non
                                        G
## 4
                   bac+3
                                                   oui
## 5
                     CAP
                                        F
                                                   non
## 6
                     CAP
                                        Α
                                                   non
```

tail(df_Diop)

##		age	moy	salaire	nombre_pa	as jour	_absent	nom	genre	
##	94	23	15.38383	119071	174	16	9	Nolwenn	Femme	
##	95	33	14.91305	181854	115	53	2	Mathieu	Femme	
##	96	19	14.88698	78926	198	36	24	Audrey	Homme	
##	97	40	17.01717	88122	157	71	5	Audrey	Femme	
##	98	43	15.17188	107176	120)2	18	Pauline	Femme	
##	99	18	17.57527	181972	126	3 9	14	Olivier	Homme	
##				voyage_etude						
##	94	dip	Lôme d'éco	F	oui					
##	95				bac+2		F		non	
##	96				CAP		M		non	
##	97				CAP		F	oui		
##	98				bac+5		D		oui	
##	99		master	rprofess	sionnel		M		oui	

```
View(df_Diop)
```

Question 5

```
knitr::opts_chunk$set(echo=TRUE, error=FALSE, warning=FALSE, message=TRUE)
d.var.quant <- function(baseD, var){</pre>
 library(ggplot2)
  # Calcul des tendances centrales
 moy <- mean(baseD[[var]])</pre>
  med <- median(baseD[[var]])</pre>
  et <- sd(baseD[[var]])</pre>
  # Affichage des tendances centrales
  cat("Tendances centrales:\n")
  cat(paste0("Moyenne: ", round(moy, 2), "\n"))
  cat(paste0("Médiane: ", med, "\n"))
  cat(paste0("Écart-type: ", round(et, 2), "\n"))
  # Graphiques
  hist(baseD[[var]], main = pasteO("Histogramme de la variable ", var), xlab = var)
  boxplot(baseD[[var]], main = pasteO("Boxplot de la variable ", var), ylab = var)
  # Intervalle de confiance
  conf_int <- t.test(baseD[[var]], conf.level = 0.95)$conf.int</pre>
  cat(paste0("Intervalle de confiance à 95%: [", round(conf_int[1], 2), ", ", round(conf_int[2], 2),
 print(hist)
 print(boxplot)
```

age

```
d.var.quant(df_Diop,"age")

## Tendances centrales:
## Moyenne: 31.24

## Médiane: 31
## Écart-type: 9.58
```

Histogramme de la variable age

Boxplot de la variable age

```
20 25 30 35 40 45
```

```
## Intervalle de confiance à 95%: [29.33, 33.15]
## function (x, ...)
## UseMethod("hist")
## <bytecode: 0x0000019a319062b8>
## <environment: namespace:graphics>
## function (x, ...)
## UseMethod("boxplot")
## <bytecode: 0x0000019a3194f068>
## <environment: namespace:graphics>
```

moy

```
d.var.quant(df_Diop,"moy")
```

Tendances centrales:

Moyenne: 15.33

Médiane: 15.5939283370972

Écart-type: 2.3

Histogramme de la variable moy

Boxplot de la variable moy

```
## Intervalle de confiance à 95%: [14.87, 15.79]
## function (x, ...)
## UseMethod("hist")
## <bytecode: 0x0000019a319062b8>
## <environment: namespace:graphics>
## function (x, ...)
## UseMethod("boxplot")
## <bytecode: 0x0000019a3194f068>
## <environment: namespace:graphics>
```

salaire

```
d.var.quant(df_Diop,"salaire")
```

```
## Tendances centrales:
## Moyenne: 130739.49
## Médiane: 126951
## Écart-type: 36989.52
```

Histogramme de la variable salaire

Boxplot de la variable salaire

```
## Intervalle de confiance à 95%: [123362.06, 138116.93]
## function (x, ...)
## UseMethod("hist")
## <bytecode: 0x0000019a319062b8>
## <environment: namespace:graphics>
## function (x, ...)
## UseMethod("boxplot")
## <bytecode: 0x0000019a3194f068>
## <environment: namespace:graphics>
nombre_pas
```

```
## Tendances centrales:
## Moyenne: 1114.02
```

Médiane: 1187 ## Écart-type: 513.87

d.var.quant(df_Diop,"nombre_pas")

Histogramme de la variable nombre_pas

Boxplot de la variable nombre_pas

```
500 1000 1500 2000
```

```
## function (x, ...)
## UseMethod("hist")
## <bytecode: 0x0000019a319062b8>
## <environment: namespace:graphics>
## function (x, ...)
## UseMethod("boxplot")
## <bytecode: 0x0000019a3194f068>
## <environment: namespace:graphics>

jour_absent

d.var.quant(df_Diop,"jour_absent")
```

Intervalle de confiance à 95%: [1011.53, 1216.51]

Tendances centrales:
Moyenne: 14.26
Médiane: 14
Écart-type: 8.65

Histogramme de la variable jour_absent

Boxplot de la variable jour_absent


```
## Intervalle de confiance à 95%: [12.54, 15.99]
## function (x, ...)
## UseMethod("hist")
## <bytecode: 0x0000019a319062b8>
## <environment: namespace:graphics>
## function (x, ...)
## UseMethod("boxplot")
## <bytecode: 0x0000019a3194f068>
## <environment: namespace:graphics>
```

d.var.quali

```
knitr::opts_chunk$set(echo=TRUE, error=FALSE, warning=FALSE, message=TRUE)
d.var.quali <- function(var){
    # Création d'un tableau de fréquences
    freq_table <- table(var)
    # Calcul des proportions
    prop_table <- prop.table(freq_table)
    # Affichage du tableau de fréquences et des proportions
    cat("Tableau de fréquences :\n")
    print(freq_table)
    cat("\nTableau des proportions :\n")
    print(prop_table)
    # Création d'un graphique en barres</pre>
```

```
barplot(freq_table, main="Distribution de la variable", xlab="Valeurs", ylab="Fréquences", col=rainbo
# Création d'un diagramme en secteurs
pie(freq_table, main="Répartition de la variable", col=rainbow(length(freq_table)))
}
```

Genre

```
genre<-df_Diop$genre
d.var.quali(genre)

## Tableau de fréquences :
## var
## Femme Homme
## 57 42

##
## Tableau des proportions :
## var
## Femme Homme
## 0.5757576 0.4242424</pre>
```

Distribution de la variable

Répartition de la variable

niveau_etude

```
niveau_etude<-df_Diop$niveau_etude
d.var.quali(niveau_etude)</pre>
```

```
## Tableau de fréquences :
## var
##
                            bac
                                                        bac+1
                              9
##
##
                          bac+2
                                                        bac+3
                              5
##
                                                            8
##
                          bac+4
                                                        bac+5
##
                                                            12
##
                            BEP
                                                       brevet
##
                              5
##
                            CAP
                                      diplôme d'architecture
##
                                         diplôme d'ingénieur
##
   diplôme d'école de commerce
##
##
                       doctorat
                                     licence professionnelle
##
##
          master professionnel
##
##
```

	Tableau des proportions :	
##	var	
##	bac	bac+1
##	0.09090909	0.05050505
##	bac+2	bac+3
##	0.05050505	0.08080808
##	bac+4	bac+5
##	0.04040404	0.12121212
##	BEP	brevet
##	0.05050505	0.02020202
##	CAP	diplôme d'architecture
##	0.06060606	0.05050505
##	diplôme d'école de commerce	diplôme d'ingénieur
##	0.06060606	0.11111111
##	doctorat	licence professionnelle
##	0.09090909	0.08080808
##	master professionnel	
##	0.04040404	

Distribution de la variable

Répartition de la variable

lettre_preferee

```
lettre_preferee<-df_Diop$lettre_preferee
d.var.quali(lettre_preferee)</pre>
```

```
## Tableau de fréquences :
## var
## A B C D E F G H I J K L M N O
## 4 6 6 5 6 9 7 9 6 4 6 6 9 7 9
##
## Tableau des proportions :
##
                                  С
                                              D
                                                         Ε
## 0.04040404 0.06060606 0.06060606 0.05050505 0.06060606 0.09090909 0.07070707
                       Ι
                                   J
                                                         L
## 0.09090909 0.06060606 0.04040404 0.06060606 0.06060606 0.09090909 0.07070707
##
## 0.09090909
```

Distribution de la variable

Répartition de la variable

${\bf voyage_etude}$

```
voyage_etude<-df_Diop$voyage_etude
d.var.quali(voyage_etude)</pre>
```

```
## Tableau de fréquences :
## var
## non oui
## 55 44
##
## Tableau des proportions :
## var
## non oui
## 0.5555556 0.4444444
```

Distribution de la variable

Répartition de la variable

Question 6

variables quantitatives

Comme les variables "moy" et "salaire" dans la base de données "df_Diop" sont toutes les deux quantitatives, nous pouvons examiner leur relation à l'aide d'un graphique de dispersion et d'un coefficient de corrélation.

Tout d'abord, nous allons tracer le graphique de dispersion à l'aide de la fonction "plot" de R :

plot(df_Diop\$moy, df_Diop\$salaire, main="Relation entre le Moy et le Salaire", xlab="Moy", ylab="Salaire"

Relation entre le Moy et le Salaire

Ensuite, nous allons calculer le coefficient de corrélation entre les deux variables à l'aide de la fonction "cor" de ${\bf R}$:

```
cor(df_Diop$moy, df_Diop$salaire)
```

[1] 0.001833772

Le coefficient de corrélation est de 0.001833772, ce qui suggère qu'il n'y a pas de relation entre les deux variables.

passons la la rg

```
model <- lm(salaire ~ moy, data=df_Diop)
summary(model)</pre>
```

```
##
## Call:
   lm(formula = salaire ~ moy, data = df_Diop)
##
##
   Residuals:
##
              1Q Median
                             3Q
      Min
                                    Max
   -55892 -30965
                   -3815
                          29613
                                  69019
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
```

plot(df_Diop\$moy, df_Diop\$salaire, main="Relation entre le Moy et le Salaire", xlab="Moy", ylab="Salair
abline(model, col="red")

Relation entre le Moy et le Salaire

Variables qualitatives

nous souhaitons décrire la liaison entre le genre et le niveau d'étude dans la base de données df_Diop. Nous pouvons donc créer un tableau de contingence qui présente le nombre d'individus en fonction de leur genre et de leur niveau d'étude.

```
table(df_Diop$genre, df_Diop$niveau_etude)
```

```
##
            bac bac+1 bac+2 bac+3 bac+4 bac+5 BEP brevet CAP diplôme d'architecture
##
##
     Femme
              5
                     2
                                   3
                                         4
                                                8
                                                    3
                                                            2
                                                                 3
                     3
                            1
                                  5
                                         0
                                                4
                                                    2
                                                            0
                                                                 3
                                                                                           3
##
     Homme
```

```
##
           diplôme d'école de commerce diplôme d'ingénieur doctorat
##
##
     Femme
                                       4
##
     Homme
                                       2
                                                             4
                                                                      5
##
##
           licence professionnelle master professionnel
##
     Femme
                                   3
     Homme
##
```

avec grapgique:

```
ggplot(df_Diop, aes(x=genre, fill=niveau_etude)) +
  geom_bar(position="dodge") +
  ggtitle("Répartition des niveaux d'étude en fonction du genre") +
  xlab("Genre") +
  ylab("Nombre d'individus") +
  scale_fill_discrete(name="Niveau d'étude")
```

Répartition des niveaux d'étude en fonction du genre

liason entre genre et salaire

Tout d'abord, nous pouvons créer une table de contingence pour visualiser la distribution des salaires en fonction du genre .

table(df_Diop\$genre, df_Diop\$salaire)

##																
##		74952	75332	76279	77142	7740	02 7785	1 789	26	79107	79282	79591	843	882	8596	31
##	Femme	1	0	1	()	0	0	0	1	0	0		0		1
##	Homme	0	1	0	1		1	1	1	0	1	1		1		0
##																
##										94901			976		9840	
##	Femme	1	1	1	(1	1	0	0	0	1		1		1
##	Homme	0	0	0	1		0	0	1	1	1	0		0		0
##		00400	400455	1000		 4	404500	10001			105105		70		00	
##	Б									104668				1074		
##	Femme		1		1	0	0		1	1	C		1		1	
## ##	Homme	1	0		0		1 1		0		1		0		0	
##		100700	10080	2 1119	250 11	E303	119627	1100	71	121705	12101	3 1000	าดร	122	356	
##	Femme	109193		1	0	1	110027		1	121703		0	1	122	0	
##	Homme			0	1	0	(0	1		1	0		1	
##					_	ŭ	·		·	_		_	·		_	
##		123240	12398	2 1250)12 12	6447	126621	1269	51	127203	12914	9 1300	083	130	627	
##	Femme	1		1	1	1	()	1	1		0	0		1	
##	Homme	C)	0	0	0	1		0	0		1	1		0	
##																
##		131563	13347	4 1338	318 13	4154	134672	1350	14	137991	13858	5 1408	316	140	324	
##	Femme	1		1	0	1	1		1	1		0	0		1	
##	Homme	C)	0	1	0	()	0	0		1	1		0	
##																
##	Б									154500				158		
##	Femme	1		1 0	1	0	(0	0		0	1		1	
## ##	Homme	C	,	U	0	1	1	•	1	1		1	0		0	
##		162577	16377	5 1648	242 16	5221	165625	1670	00	169153	17014	9 172	348	173	027	
##	Femme	102011		0	0	0	100020		1	103100		1	1	175	1	
##	Homme	1		1	1	1	1		0	0		0	0		0	
##																
##		178070	18185	4 1819	972 18	3992	185300	1905	57	191753	19311	0 1934	187	194	486	
##	Femme	1		1	0	0	()	1	1		1	1		0	
##	Homme	C)	0	1	1	1		0	0		0	0		1	
##																
##				6 1983			199741									
##	Femme	1		1	0	0	1									
##	Homme	C)	0	1	1	()								

utilisons un test d'indépendance du Chi-squared pour déterminer s'il existe une association significative entre le genre et le salaire :

chisq.test(df_Diop\$genre, df_Diop\$salaire)

```
##
## Pearson's Chi-squared test
##
## data: df_Diop$genre and df_Diop$salaire
## X-squared = 99, df = 98, p-value = 0.4527
```

Pour explorer la relation linéaire entre le genre et le salaire, nous pouvons tracer un diagramme de dispersion:

```
library(ggplot2)
ggplot(df_Diop, aes(x = genre, y = salaire)) +
  geom_point(color = "steelblue") +
  ggtitle("Relation entre le genre et le salaire") +
  xlab("Genre") +
  ylab("Salaire")
```

Relation entre le genre et le salaire

