High performance parallel systems

Lecture 7 – Computer Networks

Kenneth Skovhede, NBI, 2020-12-08

A layered approach

OSI Model

Image from: https://commons.wikimedia.org/wiki/File:UDP_encapsulation.svg

Image trom: https://commons.wikimedia.org/wiki/File:Osi-model-jb.svg

Ethernet – From Coax to present day

Drawing by Robert M. Metcalfe in 1976

Sharing a cable

https://www.youtube.com/watch?v=ajh1eZUVuCk

DIFS DIFS Backoff[0, 9 Backoff[0, 7] Dara frame Carrier-sense multiple access Channel busy! with collision avoidance SIFS Busy Ack frame CSMA/CA Remaining Backoff Using exponential backoff **Data frame**

Sending a packet over ethernet cable

10101010 10101010 10101010 10101010 10101010 10101010 10101010 10101011

Sending messages on a local network

FROM: ...:AA
TO: ...:CC
Payload:

Connecting ethernet – Switches and Hubs

Ethernet – One protocol fits all (speeds)

Image from: https://networkencyclopedia.com/gigabit-ethernet/

Alternatives to Ethernet: WiFi, 3/4/5G, etc

CSMA/CA

Internet Protocol

Image from: https://www.vecteezy.com/vector-art/376244-seamless-map-of-the-global-network-system

Internet Protocol

Introducing routers and IP addresses

Name: Host 11 111.111.111.011 MAC: FF-FF-FF-FF-11 Name: Host 21 222.222.221 FF-FF-FF-FF-21 Name: Router 1, Interface 1 111.111.111.001 FF-FF-FF-FF-A1 Link 1 111.111.111.012 Link 6 FF-FF-FF-FF-12 Subnet mask: 255.255.0.0 Link 5 Link 4 Link 2

Name: Router 1, Interface 2

222,222,222,001

FF-FF-FF-FF-A2

Switch 2

Link 7

Name: Host 22

222.222.222.022

FF-FF-FF-FF-22

Subnet mask: 255.255.255.0

Name: Host 12

Name: Host 13

111.111.111.013 FF-FF-FF-FF-13

Link 3

Switch 1

Routing with subnets

Routing as seen from a host

Name: Host 11 111.111.111.011 MAC: FF-FF-FF-FF-11

Name: Host 13 111.111.111.013 MAC: FF-FF-FF-FF-13

Own IP: 111.111.111.011 111.111.111.011

Target IP: 111.111.111.012 222.222.222.022

Subnet mask: 255.255.255.0 255.255.255.0

Own masked: 111.111.111.0 111.111.111.0

Target masked: 222.222.222.0 111.111.111.0

> Other subnet Own subnet

Special IP addresses

CIDR block	Subnet mask	Comment
10.0.0.0/8	255.0.0.0	Private network
127.0.0.0/8	255.0.0.0	Local host - 127.0.0.1
172.16.0.0/12	255.240.0.0	Private network
192.168.0.0/16	255.255.0.0	Private network

Try it yourself – IP addresses

A host has IP 192.168.0.2 and subnet mask 255.255.255.240. For each of these target IPs figure out if it sends to the router:

- 192.168.0.12
- 192.168.0.63
- 192.168.1.03

How many hosts can be in a subnet with these ranges:

- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/16
- 255.0.0.0

What is the smallest IP and largest IP in these ranges:

- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/16
- 88.5.6.7 subnet mask 255.0.0.0

Try it yourself – IP addresses

A host has IP 192.168.0.2 and subnet mask 255.255.255.240. For each of these target IPs figure out if it sends to the router:

- Local 192.168.0.12
- 192.168.0.63 Router
- 192.168.**1**.03 Router

How many hosts can be in a subnet with these ranges:

- $2^{(32-8)} = 16.777.216 (-2)$ 10.0.0.D/B
- $2^{(32-12)} = 1.048.576 (-2)$ 172.16.0.0/12
- $2^{(32-16)} = 65.536 (-2)$ 192.168.0.0/16
- $2^{24} = 16.777.216 (-2)$ 255.0.0.0

What is the smallest IP and largest IP in these ranges:

- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/16
- 88.5.6.7 subnet mask 255.0.0.0

$$\begin{array}{rcl}
240 & = & 0b1111 & 0000 \\
2 & = & 0b0000 & 0010
\end{array}$$

$$\begin{array}{rcl}
12 & = & 0b0000 & 1100 \\
63 & = & 0b0011 & 1111 \\
3 & = & 0b0000 & 0011
\end{array}$$

DHCP – Dynamic setup

Response contains:

- IP Address
- Subnet mask
- Gateway IP
- DNS hosts
- Network parameters

Name: Host 13 IP: 111.111.111.013 MAC: FF-FF-FF-FF-13

Image from: DOI: <u>10.1016/j.cose.2013.03.004</u>

Routing an IP package

Drops packages on overload May split (fragment) packages

Routing from a router perspective

B = 2.0.0.0/24

C = 3.0.0.0/24

D = others

Routing from a router perspective

1.0.0.0/24 = A 2.0.0.0/24 = B 3.0.0.0/24 = C 2.2.3.0/8 = C D = others

 0000
 0001
 0000
 0000
 0000
 0000
 0000
 0000

 0000
 0010
 0000
 0000
 0000
 0000
 0000
 0000
 0000

 0000
 0011
 0000
 0010
 0000
 0011
 0000
 0000

Longest matching prefix rule

Allows dynamic updating of the routes

Packets in a sequence may use different routes

IPv6 arriving soon?

IPv4	IPv6
32 bits address, $2^{32} \sim = 4*10^6$	128 bits address, $2^{128} \sim = 3.4*10^{32}$
Dotted decimal: 123.456.789.012	Hex: 0123:4567:89ab:cdef:0123:4567:89ab:cdef
Allows fragmentation	Does not allow fragmentation
Allows QoS	Allows QoS

IPv4 cannot address IPv6 host

• Proposed fixed with NAT-like router translating, e.g. 1.1.1.1 => 1:1:1:1:0:0:0:0

IPv4 can be tunneled inside IPv6

Transport layer – TCP and UDP

Mostly using TCP, sometimes UDP and rarely others

UDP segments

UDP segment header consist of 4 fields each 2 bytes (16 bits)

- Source port
- Destination port
- Length in bytes (excluding header)
- Checksum

Data bytes follow

```
FROM:
         FF:FF:FF:FF:FF:11
                                       Link address
TO:
         FF:FF:FF:FF:A1
Payload:
 From: 111.111.111.011
                                       -Host address
       222.222.222.022
 To:
  Src port: 1234
                                       Process address
  Dst port: 5678
  Data .....
```


TCP – Internet workhorse

Described in RFC 675 in 1974 by Vinton Cerf & others

- Uses ports like in UDP
- Has guarantees for delivery
- Supports out-of-order delivery

Intermingled with IP specification to form TCP/IP

TCP – Starting out

TCP – Handling package loss

TCP – Send & Receive Windows

TCP - Send Window

TCP – Receive Window

Triple ACK for same SEQ would indicate single missing package

TCP - Flow & Congestion Control

Related concepts, but different goals and implementations

Flow control

Avoid sending data that receiver cannot store

- Receiver sends buffer space indication with ACK
- Sender throttles based on projected buffer space
- When buffer space is 0, sender waits for space
 - After a timeout it sends one segment to test

Congestion control

Avoid clogging the network

- Receiver is not actively involved
- Sender measures network events
 - can use package loss (Tahoe)
 - or use ACK delay (Vegas)
- Sender throttles based on estimated network congestion

TCP header

FROM: FF:FF:FF:FF:F11 TO: FF:FF:FF:FF:A1 Payload: From: 111.111.111.011 To: 222.222.222.022 Src port: 1234 Dst port: 5678 Data

Transmission Control Protocol (TCP) Header 20-60 bytes

DNS – domain names

You can consider DNS a phone book for machines

Domain servers return host information, e.g www.diku.dk = 130.226.237.

DNS – a lookup process

I need the IP for www.diku.dk

Heavily cached, TTL No built-in security Response has more than IP

- A record: IP address
- AAA record: IPv6 address
- MX record: email server
- ...

Applications on the network

Custom protocol

