

Peter Shor

Kvantni algoritmi

Vir: http://www-math.mit.edu/~shor/

Kvantni register

100 kvantnih bitov lahko hrani več klasičnih bitov informacij kot je atomov v vidnem vesolju!

Kvantni register in funkcije

Pripravi Razvij Izmeri

Kvantni register in funkcije

Pripravi Razvij Izmeri

Kvantno računalništvo

Kvantno stanje z n kvantnimi biti potrebuje 2^n kompleksnih števil za opis stanja:

$$\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$$

Cilj kvantnega računalništva je izkoristiti to superpozicijo eksponentno mnogo stanj v izračunih in s tem algoritme, ki imajo eksponentno časovno zahtevnost izračunati v polinomskem času.

Ideja: Amplitude verjetnosti moramo nastaviti tako, da bodo poti, ki vodijo do nepravilnih odgovorov interferirale destruktivno in se s tem izničile, poti, ki vodijo do pravilnih odgovorov pa bodo interferirale konstruktivno.

Kvantna vrata: Controlled-U

 vrata nad dvema kvantnima bitoma, ki uporabijo unitarno operacijo (matriko) U nad drugim kvantnim bitom, a samo če je prvi, kontrolni (prvi) kvantni bit postavljen na 1.

postavljen na 1.
$$Controlled - U = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & u_{11} & u_{12} \\ 0 & 0 & u_{21} & u_{22} \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{bmatrix} \begin{vmatrix} 000 \\ |01\rangle \\ |11\rangle \end{bmatrix}$$
baza prostora kontrolni bit drugi bit

kontrolni kv. bit postavljen na 0

kontrolni kv. bit postavljen na 1

Unitarne transformacije

 Za katerokoli Boolovo funkcijo f: {0,1}ⁿ→{0,1} obstaja unitarna transformacija kvantnega stanja

$$|x\rangle|0\rangle \rightarrow |x\rangle|f(x)\rangle$$

Toda večino funkcij f ne moremo implementirati
učinkovito. Zato nas trenutno zanimajo le tiste funkcije f,
ki jih lahko sestavimo iz relativno majhnega števila
kvantnih vrat (glede na velikost vhodih podatkov n).

Unitarne transformacije in kvantni registri

- Namesto vhodnega (kontrolnega) in izhodnega (drugega) kv. bita lahko imamo celotne kvantne registre.
- Če je vhodni register v superpoziciji več bitnih zaporedij (bitnih nizov) a, je izhodni register v superpoziciji (kvantni entangulaciji) vrednosti f(a) (po ena vrednost f(a) za vsako vhodno vrednost a).

Deutsch-ov algoritem

Črna škatla izračuna eno izmed štirih možnih enobitnih funkcij:

Konstantna funkciji:

$$\begin{cases} f(0)=0 \\ f(1)=0 \end{cases} ali \begin{cases} f(0)=1 \\ f(1)=1 \end{cases}$$

Uravnoteženi funkciji:

$$f(0)=0 f(1)=1$$
 ali $f(0)=1 f(1)=0$

Radi bi vedeli, ali je naša črna škatla konstantna ali uravnotežena. To lahko vedno ugotovimo z dvema izračunoma: f(0) in f(1).

Ali lahko to ugotovimo z enim samim izračunom?

• skonstruirajmo funkcijo: $|x\rangle|y\rangle \rightarrow |x\rangle|f(x) \oplus y\rangle$

• če **f(0)=f(1)=0**, potem

$$\circ |0\rangle|0\rangle \rightarrow |0\rangle|0\rangle$$

$$0 |0\rangle |1\rangle \rightarrow |0\rangle |1\rangle$$

$$\circ |1\rangle|0\rangle \rightarrow |1\rangle|0\rangle$$

$$\circ |1\rangle|1\rangle \rightarrow |1\rangle|1\rangle$$

$$U_f = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{c} \text{baza prostora} \\ |00\rangle \\ |01\rangle \\ |10\rangle \\ |11\rangle \end{array}$$

• če **f(0)=f(1)=1**, potem

$$\circ |0\rangle|0\rangle \rightarrow |0\rangle|1\rangle$$

$$0 |0\rangle |1\rangle \rightarrow |0\rangle |0\rangle$$

$$\circ |1\rangle|0\rangle \rightarrow |1\rangle|1\rangle$$

$$\circ |1\rangle|1\rangle \rightarrow |1\rangle|0\rangle$$

$$U_f = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{array}{c} |00\rangle \\ |01\rangle \\ |10\rangle \\ |11\rangle \end{array}$$

vir: http://web.stanford.edu/~rsasaki/AP227/chap5.pdf

skonstruirajmo funkcijo: $|x\rangle|y\rangle \rightarrow |x\rangle|f(x) \oplus y\rangle$

• če f(0)=0, f(1)=1, potem

$$\circ |0\rangle|0\rangle \rightarrow |0\rangle|0\rangle$$

$$0 |0\rangle |1\rangle \rightarrow |0\rangle |1\rangle$$

$$\circ |1\rangle|0\rangle \rightarrow |1\rangle|1\rangle$$

$$\circ |1\rangle|1\rangle \rightarrow |1\rangle|0\rangle$$

$$J_f = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$U_f = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{array}{c} \text{baza prostora} \\ |00\rangle \\ |01\rangle \\ |10\rangle \\ |11\rangle \end{array}$$

če f(0)=1, f(1)=0, potem

$$\circ |0\rangle|0\rangle \rightarrow |0\rangle|1\rangle$$

$$0 |0\rangle |1\rangle \rightarrow |0\rangle |0\rangle$$

$$0 |1\rangle|0\rangle \rightarrow |1\rangle|0\rangle$$

$$\circ |1\rangle|1\rangle \rightarrow |1\rangle|1\rangle$$

$$U_f = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Deutsch-ov algoritem

$$\mathbf{H} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

 Odgovor z eno samo evalvacijo funkcije f dobimo s pomočjo naslednjega kvantnega algoritma:

 Po prvih Hadamardovih vratih je stanje obeh kv. bitov (če izpustimo normalizacijo s √2) [1]:

$$(|0\rangle + |1\rangle) (|0\rangle - |1\rangle)$$

[1] A. Ekert, P. Hayden H. Inamori: Basic concepts in quantum computation, 2008

- Po prvih Hadamardovih vratih **H** je stanje: $(|0\rangle + |1\rangle)(|0\rangle |1\rangle)$
- če f(0)=f(1)=0, potem

$$U_{f} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} +1 \\ -1 \\ |10\rangle \\ = \begin{bmatrix} +1 \\ -1 \\ +1 \\ -1 \end{bmatrix} \rightarrow (|0\rangle + |1\rangle) (|0\rangle - |1\rangle)$$

in po drugih vratih **H** imamo $\mathbf{H}x = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} \begin{vmatrix} 1 \\ 1 \end{vmatrix} = \begin{vmatrix} 2 \\ 0 \end{vmatrix} = |0\rangle$

če f(0)=f(1)=1, potem

$$U_f = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} +1 & |00\rangle \\ -1 & |01\rangle \\ +1 & |10\rangle \end{bmatrix} = \begin{bmatrix} -1 \\ +1 \\ -1 \\ +1 \end{bmatrix} \Rightarrow \underbrace{(-|0\rangle - |1\rangle)(|0\rangle - |1\rangle)}_{|\mathbf{x}\rangle}$$

in po drugih vratih **H** imamo $\mathbf{H}x = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = \begin{vmatrix} -1 \\ 0 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$

Tenzorski produkt

$$(\alpha | 0 \rangle + \beta | 1 \rangle) \otimes (\gamma | 0 \rangle + \delta | 1 \rangle) = \alpha \gamma | 0 0 \rangle + \alpha \delta | 0 1 \rangle + \beta \gamma | 1 0 \rangle + \beta \delta | 1 1 \rangle$$

faktorizacija

ZGLEDI:

$$(1|0\rangle+1|1\rangle)(1|0\rangle-1|1\rangle) = 1|00\rangle+-1|01\rangle+ 1|10\rangle+-1|11\rangle$$

 $(-1|0\rangle-1|1\rangle)(1|0\rangle-1|1\rangle) = __|00\rangle+_|01\rangle+ __|10\rangle+ __|11\rangle$

- Po prvih Hadamardovih vratih **H** je stanje: $(|0\rangle + |1\rangle)(|0\rangle |1\rangle)$
- če f(0)=0, f(1)=1, potem

$$U_f = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} +1 \\ -1 \\ |10\rangle \\ +1 & |10\rangle \\ -1 & |11\rangle \end{bmatrix} = \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix} \Rightarrow (\mid 0\rangle - \mid 1\rangle) (\mid 0\rangle - \mid 1\rangle)$$

in po drugih vratih **H** imamo $\mathbf{H}x = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} = |1\rangle$

• če f(0)=1, f(1)=0, potem

$$U_f = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} +1 \\ -1 \\ +1 \\ -1 \end{bmatrix} \begin{vmatrix} 100 \\ 100 \end{vmatrix} = \begin{bmatrix} -1 \\ +1 \\ +1 \\ -1 \end{bmatrix} \Rightarrow \underbrace{(-|0\rangle + |1\rangle)(|0\rangle - |1\rangle)}_{|x\rangle}$$

in po drugih vratih **H** imamo $\mathbf{H}x = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & +1 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \end{bmatrix} = |1\rangle$

Deutsch-ov algoritem (krajše) $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

$$|0\rangle \qquad \qquad H \qquad \qquad H \qquad \qquad meritev$$

$$\frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle \qquad \qquad f \qquad \qquad \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$

• po evalvaciji funkcije *f*, sta stanji [1]:

$$|x\rangle (|0\rangle - |1\rangle) \stackrel{f}{\mapsto} (-1)^{f(x)} |x\rangle (|0\rangle - |1\rangle) = [(-1)^{f(0)} |0\rangle + (-1)^{f(1)} |1\rangle] (|0\rangle - |1\rangle)$$

torej je prvi kv. bit(|x)) v stanju

$$\pm (|0\rangle + |1\rangle)$$
, če $f(0) = f(1)$
 $\pm (|0\rangle - |1\rangle)$, če $f(0) \neq f(1)$

[1] A. Ekert, P. Hayden H. Inamori: Basic concepts in quantum computation, 2008

Deutsch-ov algoritem (krajše) $H = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}$

$$\mathbf{H} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

- Po drugih Hadamardovih vratih je stanje prvega kv. bita [1]:
 - $|\mathbf{0}\rangle$ če je f konstantna
 - $|1\rangle$ če je f uravnotežena.

Shor-ov algoritem

Vir: http://www-math.mit.edu/~shor/

Shor-ov algoritem faktorizacije

Shor-ov kvantni algoritem za faktorizacijo velikih celih števil je daleč najbolj vpliven in slaven med vsemi kvantnimi algoritmi (1994).

Zaradi njega je močno poskočilo zanimanje in finančno vlaganje v razvoj kvantnih računalnikov saj omogoča učinkovito dekripcijo asimteričnih kodirnikov (RSA in diskretnih logaritmov).

Miljarde evrov so zaščitene s kriptografijo (vsi bančni sistemi, nepremičninski trgi, borze itd.)

Peter Shor je pokazal, kako lahko faktoriziramo velika števila v polinomskem času, za kar je na klasičnem računalniku potreben eksponenten čas. Shorov algoritem lahko faktorizira 2^N krat hitreje, kjer je N bitna velikost ključa.

Aritmetika po modulu: modularni inverz

- Celo število a ≥ 2 je praštevilo, če je deljivo samo z 1 in z a
- Največji skupni delitelj d=gcd(a,b) je največje celo število d, ki deli celi števili a in b.
- Celi števili a in b sta tuji števili če gdc(a,b) = 1;
- Za tuji celi števili a in n vedno obstaja unikatno število d ∈ {0,
 ..., n − 1} tako da velja

 $ad = 1 \mod n$

Število **d** imenujemo inverz števila **a** po modulu **n** in ga označimo z **a**⁻¹

Shor-ov algoritem: klasičen del

- 1. Izberi naključno število a < N
- 2. izračunaj gcd(a, N).
- 3. Če $d=\gcd(a, N) \neq 1$, potem je d iskani netrivialni faktor N, torej smo končali.
- 4. V nasprotnem primeru uporabimo kvantno rutino za iskanje periode r funkcije:

$$f(x) = a^x \bmod N$$

r je red števila a v $(\mathbb{Z}_N)^{\times}$, torej najmanjše celo število, za katerega velja f(x+r)=f(x)

- 5. Če je *r* liho število, se vrni na korak 1.
- 6. Če $a^{r/2} \equiv -1 \pmod{N}$, se vrni na korak 1.
- 7. $gcd(a^{r/2} \pm 1, N)$ je netrivialni faktor N, torej smo končali.

Shor-ov algoritem: primer

Poskusimo faktorizirati število N = 15. Izberimo a = 8 (8 in 15 sta tuji števili).

Torej imamo $f_{15}(x) = 8^x \mod 15$

Za x = 0, 1, 2, ... imamo ciklični vzorec

$$f_{15}(0) = 1$$
, $f_{15}(1) = 8$, $f_{15}(2) = 4$, $f_{15}(3) = 2$, $f_{15}(4) = 1$, $f_{15}(5) = 8$, $f_{15}(6) = 4$, ...

Vidimo, da je vzorec res cikličen 1,8,4,2,1,8,4,2,1,8,4,2... s periodo r = 4.

Izračunamo d= $gcd(a^{r/2}-1, N) = gcd(63, 15) = 3$. Drugi faktor (5) lahko najdemo z deljenjem (N/d).

Poskusimo faktorizirati še število N = 85. Izberimo a=31 (31 in 85 sta tuji števili). Torej imamo $f_{85}(x) = 31^x \mod 85$, ki za izbrane x=0,1,2,... tvori ciklični vzorec 1, 31, 26, 41, 81, 46, 66, 6, 16, 71, 76, 61, 21, 56, 36,11, 1, 31,... Perioda r=16 in $d=\gcd(a^{r/2}-1, N)=5$.

Preizkusite še sami razne vrednosti *N* in *a* in se prepričajte, da postopek res deluje.

Srce Shor-ovega algoritma je iskanje periode r s pomočjo kvantne funkcije. Ko najdemo r, je faktorizacija N preprosta.

Shor-ov algoritem: dokaz klasičnega dela

Po definiciji periode r imamo $f(r) = a^r \mod N = 1$. Torej N deli a^r -1. Po koraku 5 imamo takšen a, da je $\gcd(a, N) = 1$ in r sodo število.

Definirajmo $b = a^{r/2} \mod N$. Torej je b kvadratni koren števila 1 po $\mod N$. Velja $b \neq 1$, saj je po definiciji perioda funkcije f(x) enaka r in ne r/2. Korak 6 zagotavlja tudi $b \neq -1$.

Trdimo, da je d = gcd(b-1,N) netrivialen faktor števila N (torej $d \neq 1$ in $d \neq N$).

- 1. Ker velja d < b-1 < N, velja tudi $d \neq N$
- 2. Če bi veljalo d = gcd(b-1,N)=1, potem bi po Bezoutovi enakosti (poimenovani po francoskem matematiku Étiennu Bézoutu) obstajala takšni celi števili u in v, da bi veljalo

$$(b-1)u+Nv = 1$$

Ko pomnožimo obe strani zgornje enačbe z (b+1), dobimo:

$$(b^2-1)u+N(b+1)v=b+1$$

Ker N deli b^2 - $1=a^r$ -1, bi moral glede na zgornjo enačbo N deliti tudi (b+1), torej bi veljalo $b \mod N = -1$, kar je v nasprotju s korakom 6.

Torej je d = gcd(b-1,N) res netrivialen faktor števila N.

Opomba: Zgornji dokaz temelji na predpostavki, da obstaja takšno število b= $a^{r/2} \mod N$, da $b \neq -1$ in $b \neq 1$. Obstoj takšnega števila b zagotavlja Teorem kitajskih ostankov, saj je N=pq sestavljeno iz praštevil.

Opis: Algoritem poišče periodo funkcije $f(x) = a^x \mod N$, kjer je a poljubno število, ki je N tuje (gdc(a, N)=1), N pa je sestavljeno število: N=pq, kjer sta p in q praštevili.

Potrebna strojna oprema:

- vhodni kvantni register takšne velikosti Q, da je vanj možno hraniti število N^2 .
- izhodni kvantni register takšne velikosti P, da je vanj možno hraniti število N.
- Fourierova kvantna vrata
- Hadamardova kvantna vrata
- kvantno vezje, ki implementira funkcijo $f(x) = a^x \mod N$ (za vsak a in za vsak N potrebujemo posebno vezje).

Slika: vezje kvantnega dela Shorovega algoritma z vhodnim registrom velikosti 12 qubitov in izhodnim registrom velikosti 9 qubitov.

Koraki algoritma:

1. INICIALIZACIJA:

- vhodni kvantni register je v stanju 0
- izhodni kvantni register v stanju 0

2. SUPERPOZICIJA VHODNEGA REGISTRA:

 preko Hadamardove transformacije ali pa kvantne Fourierove transformacije postavimo vhodni kvantni register v popolno superpozicijo vseh možnih stanj:

$$\sum_{x} \frac{1}{Q} |x\rangle$$

izhodni kvantni register je še vedno v stanju 0

3. APLICIRANJE KVANTNE FUNKCIJE f(x):

- vhodni kvantni register je še vedno v stanju $\sum_{x} \frac{1}{Q} |x\rangle$
- izhodni kvantni register je v stanju $f\left(\sum_{x}\frac{1}{Q}|x\rangle\right)=\frac{1}{Q}\sum_{x}f(|x\rangle)$. Ker ima funkcija periodo r, zavzame samo r različnih vrednosti. Vse so enakovredno zastopane v izhodnem registru.

MERITEV IZHODNEGA REGISTRA:

- izhodni kvantni register kolapsira v eno samo opazovano vrednost $y_0 = f(x_0)$ (eno izmed tistih, ki so bile prej v superpoziciji izhodnega registra).
- vhodni register posledično kolapsira v superpozicijo vseh tistih vhodov x_r , za katere velja $y_0 = f(x_r)$. Ker je f(x) periodična funkcija s periodo r, lahko to superpozicijo vhodnega registra zapišemo kot:

$$\frac{1}{Q}\sum_{b}|x_0+b\cdot r\rangle$$

kjer je b celo število, ki teče od 0 dokler x_0+rb ne preseže velikosti vhodnega registra Q.

5. INVERZNA KVANTNA FOURIEROVO TRANSFORMACIJA VHODNEGA REGISTRA:

- vhodni kvantni register transformiramo z inverzno kvantno Fourierovo transformacijo, ki tvori superpozicijo vseh možnih števil v vhodnem registru.
- **DEFINICIJA:** Kvantna Fourierova transformacija splošno superpozicijo $\sum\limits_{x=0}^{Q}lpha_x|x
 angle$ vhodnega

registra pretvori v novo superpozicijo $\frac{1}{\sqrt{Q}}\sum_{z=0}^{Q}\sum_{x=0}^{Q}\alpha_{x}e^{\frac{i2\pi zx}{Q}}|z\rangle$, torej

$$\begin{array}{ccc} \frac{Q}{\sum\limits_{x=0}^{Q}}\alpha_{x}|x\rangle & \underset{QFT}{\longrightarrow} & \frac{1}{\sqrt{Q}}\sum\limits_{z=0}^{Q}\sum\limits_{x=0}^{Q}\alpha_{x}e^{\frac{i2\pi zx}{Q}}|z\rangle \end{array}$$

po tej operaciji je v našem primeru vhodni kvantni register torej v stanju

$$\frac{1}{Q}\sum_{z}\sum_{b}e^{\frac{i2\pi z(x_0+b\cdot r)}{Q}}|z\rangle$$

saj so bila prej v vhodnem registru samo števila $x = x_0 + rb$ (vsa ostala so imela amplitudo verjetnosti $\alpha_r = 0$).

– izhodni register še vedno vsebuje eno samo vrednost $y_0 = f(x_0)$

MERITEV VHODNEGA REGISTRA:

izmerimo vhodni register. Velja

$$\frac{1}{Q}\sum_{z}\sum_{b}e^{\frac{i2\pi z(x_0+b\cdot r)}{Q}}|z\rangle = \frac{1}{Q}\sum_{z}e^{\frac{i2\pi zx_0}{Q}}\sum_{b}e^{\frac{i2\pi zbr}{Q}}|z\rangle$$

amplitude verjetnosti vseh tistih števil z, za katere velja, da $\frac{zr}{Q}$ ni blizu pozitivnemu celemu številu, bodo v vsoti preko b-ja tvorile 2D enotske vektorje vseh možnih orientacij:

zato se bodo v vsoti preko b-ja izničile in bo njihova vsota enaka ali vsaj blizu 0 (zaradi končnosti vsote, ki izvira iz končnosti vhodnega kvantnega registra ni rečeno, da bo čisto enaka 0).

Amplitude verjetnosti vseh tistih števil z, za katere velja, da je $\frac{zr}{Q}$ zelo blizu pozitivnemu celemu številu (idealno $\frac{zr}{Q}$ = celo število c), pa bodo v vsoti preko b-ja tvorila konstruktivno superpozicijo, zato se bo njihova verjetnost precej ojačala:

Torej je veliko verjetneje, da bomo ob meritvi v vhodnem registru izmerili takšno število z_0 , da bo veljalo $\frac{z_0r}{Q}=c$, kjer je c celo število.

OCENITEV PERIODE r:

- Z veliko verjetnostjo torej velja $\frac{z_0}{Q} = \frac{c}{r}$ in ker mora biti perioda r manjša od N, velja tudi r < N. Pri tem sta c in r celi števili.
- s pomočjo verižnih ulomkov najdemo takšen približek $\frac{c}{r} \approx \frac{z_0}{Q}$, da velja r < N. Običajno dobimo več kandidatov za r in preveriti moramo, kateri med njimi izpolnjuje pogoj f(x) = f(x+r).
- če nismo uspešni ponovimo celoten kvantni del Shorovega algoritma

Aritmetika po modulu N & Kvantna vezja

 V kvantnem registru velikosti N je vsota po modulu 2^N ena izmed najbolj splošnih unitarnih operacij (xor je vsota po modulu 2):

```
x \in \{0, 1\}^n and a \in \{0, 1\}^n
|x\rangle \rightarrow | (x + a) \mod 2^n\rangle
```

- Shor je uporabil algoritem zaporednega kvadriranja za implementacijo funkcije $f(x)=a^x \mod N$
- Implementacija kvantnega vezja za funkcijo f(x) je precej bolj kompleksna od DFT in zahteva tudi več kvantnih vrat (specifično vezje za vsako izbrano osnovo a)

Shor-ov algoritem: nekaj lastnosti

1. Shor-ov algoritem je nedeterminističen (*probabilistic*). Ne najde vedno netrivialnega faktorja števila N (trivialna faktorja števila 21, na primer, sta 1 in 21, 7 in 3 pa sta netrivialna faktorja).

Na primer, fakorizirajmo število 15 z x = 14. Potem se bodo v izhodnem registru vrstila naslednja zaporedja funkcije f(x):

Perioda r = 2, torej sta edina faktorja števila 15, ki jih vrne Shorov algoritem gcd(14-1, 15) = 1, in gcd(14+1, 15) = 15, torej trivialna faktorja števila 15.

- 2. Kvantno vezje Shorovega algoritma je specifično za vsak N in naključno vrednost a v funkciji $f(x) = a^x \mod N$
- 3. Časovna zahtevnost Shorovega algoritma je $O((log N)^3)$
- 4. Peter Shor je leta 1999 za svoj algoritem in njegov pridonos k teoretičnemu računalništvu prejel <u>Gödelovo nagrado</u>.

Grover-jev kvantni algoritem

Kvantno iskanje po podatkovni bazi.

Najde element v podatkovni bazi v $O(\sqrt{n})$ poizvedbah.

Kakršenkoli klasičen algoritem, determinističen ali ne, potrebuje v povprečju O(n) poizvedb!

Grover-jev kvantni algoritem

1. Postavi kvantni register v stanje superpozicije vseh indeksov:

$$|\omega\rangle = \frac{1}{\sqrt{Q}} \sum_{x=0}^{Q-1} 1 |x\rangle$$

2. S pomočjo označevalne funkcije f(x) spremenimo predznak amplitude verjetnosti indeksa iskanega elementa. Predznake amplitud verjetnosti indeksov ostalih elementov pustimo nespremenjene.

$$\alpha_x |x\rangle \to -\alpha_x |x\rangle$$
, če $f(x) = 1$, $\alpha_x |x\rangle \to \alpha_x |x\rangle$, če $f(x) = 0$.

3. Izračunamo inverz amplitud verjetnosti vseh indeksov okoli njihove povprečne vrednosti $\bar{\alpha}$:

$$\forall x: \ \alpha_x = \ 2 \cdot \bar{\alpha} - \alpha_x \qquad \quad \bar{\alpha} = \frac{1}{o} \sum_{x=0}^{Q-1} \alpha_x$$

Koraka 2 in 3 ponovimo $\frac{\pi}{4}\sqrt{\frac{Q}{k}}$ –krat, kjer je k število elementov v bazi, ki so enaki iskanemu elementu. Omenjeno število iteracij je dokazano optimalno in ga ni priporočljivo preseči.

Zgled: Dana je baza šestnajstih skritih gesel. V njej želimo poiskati geslo, ki dešifrira niz zakodiranih znakov. Elementom baze dodelimo indekse od 0 do 15. Predpostavimo, da naš zakodirani niz znakov dešifrira samo geslo, ki je v bazi shranjeno v elementu z indeksom 4. Imamo torej naslednjo označevalno funkcijo:

$$f(x) = \begin{cases} 1, & ko \ x = 4 \\ 0, & druga\check{c}e \end{cases}.$$

Indekse elementov shranimo v kvantni register z *N*=4 biti. V prvem koraku Groverjevega algoritma postavimo kvantni register v naslednjo superpozicijo stanj:

$$|\omega\rangle = \frac{1}{\sqrt{16}} \sum_{x=0}^{15} 1 |x\rangle$$

Nato iterativno izvajamo drugi in tretji korak Groverjevega algoritma.

Ker je
$$\frac{\pi}{4}\sqrt{(\frac{Q}{k})} = \frac{\pi}{4}\sqrt{(\frac{16}{1})} = \pi = 3,14$$
, po tretji iteraciji opravimo meritev.

Slika 1: Amplitude verjetnosti in verjetnost meritve posameznega indeksa elementa v bazi po prvi iteraciji drugega in tretjega koraka Groverjevega algoritma.

Slika 2: Amplitude verjetnosti in verjetnost meritve posameznega indeksa elementa v bazi po drugi iteraciji drugega in tretjega koraka Groverjevega algoritma.

Slika 3: Amplitude verjetnosti in verjetnost meritve posameznega indeksa elementa v bazi po tretji iteraciji drugega in tretjega koraka Groverjevega algoritma.

Razredi kvantne računske kompleksnosti

- BQP (Bounded-Error Quantum Polynomial-Time) je razred odločitvenih problemov rešljivih v polinomskem času na kvantnem računalniku, pri čemer je verjetnost napake manjša ali enaka 1/3.
- Analogno z razredom BPP ("bounded error probabilistic polinimial time") je izbira mejne verjetnosti 1/3 samo stvar dogovora. Algoritem lahko izvedemo poljubno mnogokrat in izberemo najpogostejši odgovor. Na ta način se lahko verjetnost pravilnega odgovora dvignemo poljubno blizu 1 (Chernoff-ova zgornja meja - Chernoff bound).

Razredi računske kompleksnosti

