AE410: Aerospace Structural Dynamics

Fall 2019, Final Project *

Name Student 1:	RED ID Student 1:
Name Student 2:	RED ID Student 2:
Name Student 3:	RED ID Student 3:
Name Student 4:	RED ID Student 4:
Name Student 5:	RED ID Student 5:
\mathbf{Pledge}	
We have not obtained/used any help nor provided anyone such hel	p in completing this exam.
Signed (student 1):	Date:
Signed (student 2):	Date:
Signed (student 3):	Date:
Signed (student 4):	Date:
Signed (student 5):	Date:

Part # 1

Consider the **unswept** wing (defined here as **model # 1**) whose wing box structure is shown in Figure 1. In addition, consider the **swept** wing (defined here as **model # 2**) whose wing box structure is shown in Figure 2. Finally, consider the **swept** wing (defined here as **model # 3**) whose wing box structure is shown in Figure 3.

For all the models # 1, # 2, and # 3, the wing-box structure is symmetric. The top and bottom skins have a constant thickness of $2.5 \, mm$. The wing structure has **three spars**, one each at the leading edge, center and trailing edge of the wing-box. The shear webs of the spars have a constant thickness along the

^{*}Due Date: December 12th (5:00PM).