Evaluation on Ground Velocity Vector Field Formulations

Unified Path Following Guidance for hybrid VTOLs

Junwoo Hwang

Goal of this Presentation

Evaluate the newly proposed Ground velocity VF generation methods against the pre-existing unicyclic motion based VF algorithm.

Thus, this will conclude the first step of the thesis: Finalizing ground velocity VF.

Existing solution: Unicyclic Path Following Guidance

Pros

- Optimized for Fixed Wing guidance
- Provides simple geometric 'look ahead angle' based ground bearing reference point

Cons

- Bearing setpoint doesn't make sense when vehicle has 0 airspeed
- Unicyclic path following behavior
 (constant airspeed = nominal airspeed)

Now what about Multirotors? And Hybrid VTOLs?

Current control algorithm for hybrid VTOLs

What happens when we try existing unicyclic Path Following controller on Multirotor?

Limitation of the unicyclic path following algorithm

What do we do when we want to go **slower** on the path?

- Unicyclic Path Following assumes that vehicle maintains the 'nominal airspeed', so it can never stop.
- Reducing nominal airspeed produces weird artifacts

What about going faster?

 We can set nominal airspeed to a higher value, but it alters the definition of 'cruise speed' (energy optimal speed)

Path following graphical overview

Quick note on Vector Field path following guidance

PF Algorithm must do 2 things:

 Define a ground velocity / course (direction of travel) vector field around the path

2. Formulate stable control strategy to follow the vector field

The Challenge: Formulate a new Vector Field that can handle different speed on path!

"Unicyclic" Path Following Algorithm breakdown

Newly proposed Formulation: "Hybrid Unicyclic"

Analysis on satisfying 'speed on path' requirement

	Path velocity < Nominal airspeed	Path velocity > Nominal airspeed
Original	Ground velocity on path: Nominal airspeed	Ground velocity on path: Nominal airspeed
Proposed	Ground velocity on path: Path velocity	Ground velocity on path: Path velocity

Case study: Zero speed on path

Case study: Low speed on path

Case study: High speed on path

How about using maximum acceleration?

Maximum Acceleration Formulation

Case study: Low speed on path

Case study: High speed on path

How about Jerk limited trajectory?

TODO

Simulation Results

Multicopter: High speed on Path

Note: Simulated environment is a <u>point-mass</u> multicopter model with only Velocity <u>feedback</u> control with P-controller.

Dotted lines show ground-truth reference velocity curves

Multicopter: Low speed on Path

Dotted lines show ground-truth reference velocity curves

