Stochastic Gradient Descent

Data Sets:
gd_lr.csv
cs2m_scaled.csv

Old is Gold!

12	10	107	1200	11449	128400	
13	11	107	1250	11449	133750	
14	12	110	1220	12100	134200	
15	SUM =	1221	13060	124581	1335420	
16						

$$SS_{xy} = \sum xy - \frac{(\sum x)(\sum y)}{n}$$

$$SS_{xy} = 1335420 - \frac{1221*13060}{12} = 6565$$

$$SS_{xx} = \sum x^2 - \frac{(\sum x)^2}{n} = 124581 - \frac{(1221)^2}{12} = \frac{344.25}{12}$$
This is called Regression Coefficient
$$b_1 = \frac{SS_{xy}}{SS_{xx}} = \frac{6565}{344.25} = \frac{19.07}{12}$$

$$b_0 = \frac{\sum y}{n} - b_1 \frac{\sum x}{n} = \frac{13060}{12} - \frac{19.07}{12} \frac{1221}{12} = -852.08$$

Estimate of Constant

12	10	107	1200	11449	128400				
13	11	107	1250	11449	133750				
14	12	110	1220	12100	134200				
15	SUM =	1221	13060	124581	1335420				
16									
SS_{xy}	, = 1335	$y - \frac{(\sum x)(n)}{n}$ $420 - \frac{1222}{n}$ $2 - \frac{(\sum x)^2}{n}$	$\frac{1*13060}{12} = 6$	$1 - \frac{(1221)}{12}$	$\frac{1)^2}{} = \frac{344.25}{}$ is is called	1		This is called Regression Coefficient	
					ercept	$b_1 =$	$\frac{SS_{xy}}{SS_{xx}} =$	= \frac{6565}{344.25} = 1	9. 07
				$\mathbf{b_0} = \frac{\sum_{i=1}^{n} \mathbf{b_0}}{n}$	$\frac{y}{x} - b_1 \frac{\sum x}{n} =$	$=\frac{13060}{12}$	19.07	$\frac{1221}{12} = -852$	2.08

$$y_{predicted} = \mathbf{a} + bx_i$$

$$S = \sum_{i=1}^{n} (y_i - (\mathbf{a} + bx_i))^2$$

By opening the bracket, signs will change

$$S = \sum_{i=1}^{n} (y_i - \mathbf{a} - bx_i)^2$$

Find 1st partial derivative of S with respect to a

$$\frac{\partial}{\partial \mathbf{a}} = 0 = \frac{\partial}{\partial \mathbf{a}} \left[\sum_{i=1}^{n} (y_i - \mathbf{a} - bx_i)^2 \right]$$

Applying chain rule, derivative of x^n with respect to x is $= nx^{n-1}$

$$0 = \sum_{i=1}^{n} \left[2(y_i - \mathbf{a} - bx_i) \times \frac{\partial}{\partial \mathbf{a}} (y_i - \mathbf{a} - bx_i) \right]$$

Estimate of Constant

We bring 2 left side, $\frac{0}{2}$ is again 0

$$0 = \sum_{i=1}^{n} \left[(y_i - \mathbf{a} - bx_i) \times \frac{\partial}{\partial \mathbf{a}} (y_i - \mathbf{a} - bx_i) \right]$$

$$0 = \sum_{i=1}^{n} \left[(y_i - \mathbf{a} - bx_i) \times \frac{\partial}{\partial \mathbf{a}} y_i - \frac{\partial}{\partial \mathbf{a}} \mathbf{a} - \frac{\partial}{\partial \mathbf{a}} bx_i \right]$$

$$0 = \sum_{i=1}^{n} [(y_i - a - bx_i) \times 0 - 1 - 0]$$

$$0 = \sum_{i=1}^{n} [(y_i - \mathbf{a} - bx_i) \times -\mathbf{1}]$$

We bring -1 left side, $\frac{0}{-1}$ is again 0

$$0 = \sum_{i=1}^{n} [(y_i - \mathbf{a} - bx_i)]$$

Estimate of Constant

12	10	107	1200	11449	128400	
13	11	107	1250	11449	133750	
14	12	110	1220	12100	134200	
15	SUM =	1221	13060	124581	1335420	
16						

$$SS_{xy} = \sum xy - \frac{(\sum x)(\sum y)}{n}$$

$$SS_{xy} = 1335420 - \frac{1221 * 13060}{12} = 6565$$

$$SS_{xx} = \sum x^2 - \frac{(\sum x)^2}{n} = 124581 - \frac{(1221)^2}{12} = \frac{344.25}{12}$$
This is called Regression Coefficient
$$b_1 = \frac{SS_{xy}}{SS_{xx}} = \frac{6565}{344.25} = \frac{19.07}{12}$$

$$b_0 = \frac{\sum y}{x} - b_1 \frac{\sum x}{x} = \frac{13060}{12} - \frac{19.07}{12} = -852.08$$

Taking summation inside the bracket

$$0 = \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} a - b \sum_{i=1}^{n} x_i$$

Summation of a, n times is na

$$0 = \sum_{i=1}^{n} y_i - n\mathbf{a} - b \sum_{i=1}^{n} x_i$$

Bringing - na left side

$$n\mathbf{a} = \sum_{i=1}^{n} y_i - b \sum_{i=1}^{n} x_i$$

$$\mathbf{a} = \frac{\sum_{i=1}^{n} y_i - b \sum_{i=1}^{n} x_i}{n}$$

$$a = \frac{\sum_{i=1}^{n} y_i}{n} - \frac{b}{n} \frac{\sum_{i=1}^{n} x_i}{n}$$

Gradient Descent

Gradient Descent: Data and Model

	x1	x2	У
1	4	1	2
2	2	8	-14
3	1	0	1
4	3	2	-1
5	1	4	-7
6	6	7	-8

Data and Model

	x1	x2	у
1	4	1	2
2	2	8	-14
3	1	0	1
4	3	2	-1
5	1	4	-7
6	6	7	-8

Batch, initial weights, Loss Function, Learning Rate, Partial Differentiation

$$b' = b - \eta \frac{\partial L}{\partial b}$$

Eqn. 2.2.2A: Stochastic gradient descent update for b

Step 3: Adjust the weights with the gradients to reach the optimal values where SSE is minimized

Weight Updation

Updated weight
$$a_{n+1} = old \ weight \ (a_n) - \frac{1}{1} \frac{\partial}{\partial a} SSE$$

First update in a

Updated weight
$$a_{n+1} = 0.45 - 0.01 \times 3.30 = 0.417 = 0.42$$

Updated weight
$$b_{n+1} = old \ weight \ (b_n) - \frac{b}{b} SSE$$

First update in **b**

Updated weight
$$b_1 = 0.75 - 0.01 \times 1.55 = 0.7345 = 0.73$$

To start with

Δ	Α	В	С	D	Е	F	G	Н	1
								del	del
								SSE/del(a)	SSE/del(b)
1	a =	0.45	b=	0.75				=-(Y-YP)	=-(Y-YP)X
2		Sq Ft	Price\$	X	Υ	YP	(1/2)SSE		
3		1100	199000	0.00	0.00	0.45	0.10125	0.45	0.00
4		1400	245000	0.22	0.22	0.62	0.077368	0.39	0.09
5		1425	319000	0.24	0.58	0.63	0.001154	0.05	0.01
6		1550	240000	0.33	0.20	0.70	0.125486	0.50	0.17
7		1600	312000	0.37	0.55	0.73	0.016062	0.18	0.07
8		1700	279000	0.44	0.39	0.78	0.078006	0.39	0.18
9		1700	310000	0.44	0.54	0.78	0.02989	0.24	0.11
10		1875	308000	0.57	0.53	0.88	0.061751	0.35	0.20
11		2350	405000	0.93	1.00	1.14	0.010432	0.14	0.13
12		2450	324000	1.00	0.61	1.20	0.175945	0.59	0.59
13	MIN	1100	199000	0	0	Total SSE=	0.677345	3.30	1.55
14	MAX	2450	405000	1	1			Values for fi	rst epoch
15	RANGE	1350	206000	1	1			a_1	0.4169984
16								b_1	0.7345474

1st epoch

	Α	В	С	D	E	F	G	Н	I
								del	
									del SSE/del(b)
1	a =	0.42	b=	0.73				=-(Y-YP)	=-(Y-YP)X
2		Sq Ft	Price\$	X	Υ	YP	(1/2)SSE		
3		1100	199000	0.00	0.00	0.42	0.0882	0.42	0.00
4		1400	245000	0.22	0.22	0.58	0.019345	0.36	0.08
5		1425	319000	0.24	0.58	0.60	8.73E-05	0.01	0.00
6		1550	240000	0.33	0.20	0.66	0.107789	0.46	0.15
7		1600	312000	0.37	0.55	0.69	0.010057	0.14	0.05
8		1700	279000	0.44	0.39	0.74	0.063402	0.36	0.16
9		1700	310000	0.44	0.54	0.74	0.021138	0.21	0.09
10		1875	308000	0.57	0.53	0.84	0.048034	0.31	0.18
11		2350	405000	0.93	1.00	1.10	0.004601	0.10	0.09
12		2450	324000	1.00	0.61	1.15	0.147535	0.54	0.54
13	MIN	1100	199000	0	0	Total SSE=	0.510189	2.91	1.35
14	MAX	2450	405000	1	1			Values for	second epoch
15	RANGE	1350	206000	1	1			a_2	0.390909493
16								b_2	0.716501579
17	SSE								
18	Org	1st epoch							
19	0.677	0.51							
20	Reduction	0.167							
21	Redcn%	24.66765							

2nd epoch

	Α	В	С	D	Е	F	G	Н	1
								del	del
									SSE/del(b)
1	a =	0.39		0.72				=-(Y-YP)	=-(Y-YP)X
2		Sq Ft	Price\$	X	Y	YP	(1/2)SSE		
3		1100	199000	0.00	0.00	0.39	0.07605	0.39	0.00
4		1400	245000	0.22	0.22	0.55	0.013894	0.33	0.07
5		1425	319000	0.24	0.58	0.56	0.000184	-0.02	0.00
6		1550	240000	0.33	0.20	0.63	0.092868	0.43	0.14
7		1600	312000	0.37	0.55	0.66	0.005845	0.11	0.04
8		1700	279000	0.44	0.39	0.71	0.05173	0.32	0.14
9		1700	310000	0.44	0.54	0.71	0.014649	0.17	0.08
10		1875	308000	0.57	0.53	0.80	0.037595	0.27	0.16
11		2350	405000	0.93	1.00	1.06	0.001606	0.06	0.05
12		2450	324000	1.00	0.61	1.11	0.126607	0.50	0.50
13	MIN	1100	199000	0	0	Total SSE=	0.421027	2.56	1.18
14	MAX	2450	405000	1	1			Values for	third epoch
15	RANGE	1350	206000	1	1			a_3	0.364365
16								b_3	0.708162
17	SSE								
18	Org	1st epoch	2nd epoch						
19	0.677	0.51	0.42						
20	Reduction	0.167	0.09						
21	Redcn%	24.66765	17.64706						

3rd epoch

	Α	В	С	D	Е	F	G	Н	I
								del	del
									SSE/del(b) =-
1	a =	0.36		0.71				=-(Y-YP)	(Y-YP)X
2		Sq Ft	Price\$	X	Υ	YP	(1/2)SSE		
3		1100	199000	0.00	0.00	0.36	0.0648	0.36	0.00
4		1400	245000	0.22	0.22	0.52	0.009343	0.29	0.07
5		1425	319000	0.24	0.58	0.53	0.001331	-0.05	-0.01
6		1550	240000	0.33	0.20	0.60	0.079058	0.40	0.13
7		1600	312000	0.37	0.55	0.62	0.002769	0.07	0.03
8		1700	279000	0.44	0.39	0.68	0.041244	0.29	0.13
9		1700	310000	0.44	0.54	0.68	0.009346	0.14	0.06
10		1875	308000	0.57	0.53	0.77	0.028433	0.24	0.14
11		2350	405000	0.93	1.00	1.02	0.000152	0.02	0.02
12		2450	324000	1.00	0.61	1.07	0.107279	0.46	0.46
13	MIN	1100	199000	0	0	Total SSE=	0.343755	2.22	1.02
14	MAX	2450	405000	1	1			Values for	fourth epoch
15	RANGE	1350	206000	1	1			a_4	0.3378206
16								b_4	0.69982243
17	SSE								
18	Org	1st epoch	2nd epoch	3rd epoch					
19	0.677	0.51	0.42	0.34					
20	Reduction	0.167	0.09	0.08					
21	Redcn%	24.66765	17.64706	19.04762					

\angle	Α	В	С	D	Е	F	G	Н	1	
									del SSE/del(b)	
1	a =	0.34		0.7				=-(Y-YP)	=-(Y-YP)X	
2		Sq Ft	Price\$	X	Y	YP	(1/2)SSE			
3		1100	199000	0.00	0.00	0.34	0.0578	0.34	0.00	
4		1400	245000	0.22	0.22	0.50	0.006809	0.27	0.06	
5		1425	319000	0.24	0.58	0.51	0.002738	-0.07	-0.02	
6		1550	240000	0.33	0.20	0.57	0.070052	0.37	0.12	
7		1600	312000	0.37	0.55	0.60	0.001286	0.05	0.02	
8		1700	279000	0.44	0.39	0.65	0.034522	0.26	0.12	
9		1700	310000	0.44	0.54	0.65	0.006303	0.11	0.05	
10		1875	308000	0.57	0.53	0.74	0.022626	0.21	0.12	
11		2350	405000	0.93	1.00	0.99	7.02E-05	-0.01	-0.01	
12		2450	324000	1.00	0.61	1.04	0.093833	0.43	0.43	
13	MIN	1100	199000	0	0	Total SSE=	0.29604	1.97	0.90	
14	MAX	2450	405000	1	1			Values for	fifth epoch	
15	RANGE	1350	206000	1	1			a_5	0.320276	
16								b_5	0.691027	
17	SSE									
18	Org	1st epoch	2nd epoch	3rd epoch	4th epoch					
19	0.677	0.51	0.42	0.34	0.3					
20	Reduction	0.167	0.09	0.08	0.04					
21	Redcn%	24.66765	17.64706	19.04762	11.76471					

\square	Α	В	С	D	E	F	G	Н	1
								del	del
								SSE/del(a)	
1	a =	0.32		0.69				=-(Y-YP)	=-(Y-YP)X
2		Sq Ft	Price\$	X	Y	YP	(1/2)SSE		
3		1100	199000	0.00	0.00	0.32	0.0512	0.32	0.00
4		1400	245000	0.22	0.22	0.47	0.004675	0.25	0.06
5		1425	319000	0.24	0.58	0.49	0.004648	-0.10	-0.02
6		1550	240000	0.33	0.20	0.55	0.06159	0.35	0.12
7		1600	312000	0.37	0.55	0.58	0.000365	0.03	0.01
8		1700	279000	0.44	0.39	0.63	0.028398	0.24	0.11
9		1700	310000	0.44	0.54	0.63	0.003857	0.09	0.04
10		1875	308000	0.57	0.53	0.72	0.017482	0.19	0.11
11		2350	405000	0.93	1.00	0.96	0.000845	-0.04	-0.04
12		2450	324000	1.00	0.61	1.01	0.081287	0.40	0.40
13	MIN	1100	199000	0	0	Total SSE=	0.254346	1.73	0.78
14	MAX	2450	405000	1	1			Values for	sixth epoch
15	RANGE	1350	206000	1	1			a_6	0.302732
16								b_6	0.682232
17	SSE								
18	Org	1st epoch	2nd epoch	3rd epoch	4th epoch	5th epoch			
19	0.677	0.51	0.42	0.34	0.3	0.25			
20	Reduction	0.167	0.09	0.08	0.04	0.05			
21	Redcn%	24.66765	17.64706	19.04762	11.76471	16.66667			

	Α	В	С	D	Е	F	G	Н	1
									del
								del	SSE/del(b
								SSE/del(a)) =-(Y-
1	a =	0.3	b=	0.68				=-(Y-YP)	YP)X
2		Sq Ft	Price\$	Χ	Y	YP	(1/2)SSE		
3		1100	199000	0.00	0.00	0.30	0.045	0.30	0.00
4		1400	245000	0.22	0.22	0.45	0.002941	0.23	0.05
5		1425	319000	0.24	0.58	0.46	0.007059	-0.12	-0.03
6		1550	240000	0.33	0.20	0.53	0.053673	0.33	0.11
7		1600	312000	0.37	0.55	0.55	5.47E-06	0.00	0.00
8		1700	279000	0.44	0.39	0.60	0.022871	0.21	0.10
9		1700	310000	0.44	0.54	0.60	0.002009	0.06	0.03
10		1875	308000	0.57	0.53	0.69	0.013	0.16	0.09
11		2350	405000	0.93	1.00	0.93	0.002476	-0.07	-0.07
12		2450	324000	1.00	0.61	0.98	0.069641	0.37	0.37
13	MIN	1100	199000	0	0	Total SSE=	0.218675	1.48	0.66
14	MAX	2450	405000	1	1			Values for	7th epoch
15	RANGE	1350	206000	1	1			a_7	0.285187
16								b_7	0.673437
17	SSE								
18	Org	1st epoch	2nd epoch	3rd epoch	4th epoch	5th epoch	6th epoch		
19	0.677	0.51	0.42	0.34	0.3	0.25	0.22		
20	Reduction	0.167	0.09	0.08	0.04	0.05	0.03		
21	Redcn%	24.66765	17.64706	19.04762	11.76471	16.66667	12		

	Α	В	С	D	Е	F	G	Н	1
									del
								del	SSE/del(b
								SSE/del(a)) =-(Y-
1	a =	0.285	b=	0.67				=-(Y-YP)	YP)X
2		Sq Ft	Price\$	X	Y	YP	(1/2)SSE		
3		1100	199000	0.00	0.00	0.29	0.040613	0.29	0.00
4		1400	245000	0.22	0.22	0.43	0.001903	0.21	0.05
5		1425	319000	0.24	0.58	0.45	0.009279	-0.14	-0.03
6		1550	240000	0.33	0.20	0.51	0.047835	0.31	0.10
7		1600	312000	0.37	0.55	0.53	0.000119	-0.02	-0.01
8		1700	279000	0.44	0.39	0.58	0.018901	0.19	0.09
9		1700	310000	0.44	0.54	0.58	0.000965	0.04	0.02
10		1875	308000	0.57	0.53	0.67	0.009871	0.14	0.08
11		2350	405000	0.93	1.00	0.91	0.004477	-0.09	-0.09
12		2450	324000	1.00	0.61	0.96	0.060623	0.35	0.35
13	MIN	1100	199000	0	0	Total SSE=	0.194586	1.29	0.56
14	MAX	2450	405000	1	1			Values for	8th epoch
15	RANGE	1350	206000	1	1			a_8	0.272143
16								b_8	0.664414
17	SSE								
18	Org	1st epoch	2nd epoch	3rd epoch	4th epoch	5th epoch	6th epoch	7th epoch	
19	0.677	0.51	0.42	0.34	0.3	0.25	0.22	0.19	
20	Reduction	0.167	0.09	0.08	0.04	0.05	0.03	0.03	
21	Redcn%	24.66765	17.64706	19.04762	11.76471	16.66667	12	13.63636	

Learning Rate vs Error

Lets do it in Python

```
In [1]: import numpy as np
   ...: import pandas as pd
   ...: import matplotlib.pyplot as plt
   ...: plt.rcParams['figure.figsize'] = (12.0, 9.0)
   ...: data = pd.read_csv("C:/Users/Dr Vinod/Desktop/GDescent_S_ Regression/gd_lr.csv")
   . . . :
   ...: # Preprocessing Input data
   ...: X = data.iloc[:, 0]
   ...: Y = data.iloc[:, 1]
   ...: plt.scatter(X, Y)
   ...: plt.show()
```

1st Epoch

```
In [2]: b = 0.75
  ...: a = 0.45
   ...: L = 0.01 # The Learning Rate
   ...: epochs = 1 # The number of iterations to perform gradient descent
   . . . :
   ...: for i in range(epochs):
       Y_pred = b*X + a # The current predicted value of Y
   ...: D_b = -sum(X * (Y - Y_pred)) # Derivative wrt b
   ...: D_a = -sum(Y - Y_pred) # Derivative wrt a
   ...: b = b - L * D_b # Update b
   ...: a = a - L * D_a # Update a
   . . . :
   . . . :
In [3]: print (b, a)
0.734688 0.41715
```

1 st enoch

1 st epoch		A	В	C	U	E	F	G	Н	l I
Toolboom									4-1	
									del	-1-1 CCE /-1-1/1-1
										del SSE/del(b)
	1	a =	0.42		0.73			_	=-(Y-YP)	=-(Y-YP)X
[2]: b = 0.75 : a = 0.45			Sq Ft	Price\$	X	Y	YP	(1/2)SSE		
: L = 0.45			1100	199000	0.00	0.00	0.42	0.0882	0.42	0.00
<pre>: epochs = 1 # The number of iterations to perform gr:</pre>	radient a	lescent	1400	245000	0.22	0.22	0.58	0.019345	0.36	0.08
: for i in range(epochs):	<i>5</i> 14		1425	319000	0.24	0.58	0.60	8.73E-05	0.01	0.00
<pre>: Y_pred = b*X + a # The current predicted value: D_b = -sum(X * (Y - Y_pred)) # Derivative wrt</pre>			1550	240000	0.33	0.20	0.66	0.107789	0.46	0.15
<pre>: D_a = -sum(Y - Y_pred) # Derivative wrt a: b = b - L * D_b # Update b</pre>			1600	312000	0.37	0.55	0.69	0.010057	0.14	0.05
: a = a - L * D_a # Update a			1700	279000	0.44	0.39	0.74	0.063402	0.36	0.16
:			1700	310000	0.44	0.54	0.74	0.021138	0.21	0.09
n [3]: print (b, a)			1875	308000	0.57	0.53	0.84	0.048034	0.31	0.18
734688 0.41715			2350	405000	0.93	1.00	1.10	0.004601	0.10	0.09
	12		2450	324000	1.00	0.61	1.15	0.147535	0.54	0.54
	13	MIN	1100	199000	0	0	Total SSE=	0.510189	2.91	1.35
	14	MAX	2450	405000	1	1			Values for	second epoch
	15	RANGE	1350	206000	1	1			a_2	0.390909493
	16								b_2	0.716501579
	17	SSE								
	18	Org	1st epoch							
The state of the s	19	0.677	0.51							
	20	Reduction	0.167							

24.66765

21 Redcn%

2 nd epoch		Α	В	С	D	E	F	G	Н	1
2 epoch										
	1	a =	0.39	b=	0.72				=-(Y-YP)	=-(Y-YP)X
In [2]: b = 0.75			Sq Ft	Price\$	X	Y	YP	(1/2)SSE		
: a = 0.45 : L = 0.01 # The Learning Rate			1100	199000	0.00	0.00	0.39	0.07605	0.39	0.00
: epochs = 2 # The number of iterations to perform gradien	desc	cent	1400	245000	0.22	0.22	0.55	0.013894	0.33	0.07
: for i in range(epochs):			1425	319000	0.24	0.58	0.56	0.000184	-0.02	0.00
<pre>: Y_pred = b*X + a # The current predicted value of Y: D_b = -sum(X * (Y - Y_pred)) # Derivative wrt b</pre>			1550	240000	0.33	0.20	0.63	0.092868	0.43	0.14
: D_a = -sum(Y - Y_pred) # Derivative wrt a: b = b - L * D_b # Update b			1600	312000	0.37	0.55	0.66	0.005845	0.11	0.04
: a = a - L * D_a # Update a			1700	279000	0.44	0.39	0.71	0.05173	0.32	0.14
:			1700	310000	0.44	0.54	0.71	0.014649	0.17	0.08
In [3]: print (b, a)			1875	308000	0.57	0.53	0.80	0.037595	0.27	0.16
0.721315847856 0.3882801648			2350	405000	0.93	1.00	1.06	0.001606	0.06	0.05
	12		2450	324000	1.00	0.61	1.11	0.126607	0.50	0.50
	13	MIN	1100	199000	0	0	Total SSE=	0.421027	2.56	1.18
	14	MAX	2450	405000	1	1			Values for	third epoch
	15	RANGE	1350	206000	1	1			a_3	0.364365
	16								b_3	0.708162
	17	SSE								
	18	Org	1st epoch	2nd epoch						
	19	0.677	0.51	-						
	20	Reduction								
	21	Redcn%		17.64706						

3rd epoch

In [4]: b = 0.75...: a = 0.45

In [5]: print (b, a)

ard anach	4	Α	В	С	D	Е	F	G	Н	1
3 rd epoch	1	a =	0.36	b=	0.71				del SSE/del(a) =-(Y-YP)	del SSE/del(b) =- (Y-YP)X
	2	_		Price\$	X	Υ	YP	(1/2)SSE	()	(1.11)
n [4]: b = 0.75			1100	199000	0.00	0.00	0.36	0.0648	0.36	0.00
: a = 0.45 : L = 0.01 # The Learning Rate			1400	245000	0.22	0.22	0.52	0.009343	0.29	0.07
: epochs = 3 # The number of iterations to perform gradient:	desc	ent	1425	319000	0.24	0.58	0.53	0.001331	-0.05	-0.01
<pre>: for i in range(epochs):</pre>			1550	240000	0.33	0.20	0.60	0.079058	0.40	0.13
: Y_pred = b*X + a # The current predicted value of Y: D_b = -sum(X * (Y - Y_pred)) # Derivative wrt b			1600	312000	0.37	0.55	0.62	0.002769	0.07	0.03
<pre>: D_a = -sum(Y - Y_pred) # Derivative wrt a: b = b - L * D_b # Update b</pre>			1700	279000	0.44	0.39	0.68	0.041244	0.29	0.13
: a = a - L * D_a <i># Update a</i> :			1700	310000	0.44	0.54	0.68	0.009346	0.14	0.06
			1875	308000	0.57	0.53	0.77	0.028433	0.24	0.14
n [5]: print (b, a)			2350	405000	0.93	1.00	1.02	0.000152	0.02	0.02
. <mark>709</mark> 6460298220735	16		2450	324000	1.00	0.61	1.07	0.107279	0.46	0.46
		MIN	1100	199000	0	0	Total SSE=	0.343755	2.22	1.02
	14	MAX	2450	405000	1	1			Values for	fourth epoch
	15	RANGE	1350	206000	1	1			a_4	0.3378206

		2550	103000	0.55	1.00	1.02	0.000132	0.02	0.02
12		2450	324000	1.00	0.61	1.07	0.107279	0.46	0.46
13	MIN	1100	199000	0	0	Total SSE=	0.343755	2.22	1.02
14	MAX	2450	405000	1	1			Values for	fourth epoch
15	RANGE	1350	206000	1	1			a_4	0.3378206
16								b_4	0.69982243
17	SSE								
18	Org	1st epoch	2nd epoch	3rd epoch					
19	0.677	0.51	0.42	0.34					
20	Reduction	0.167	0.09	0.08					
21	Redcn%	24.66765	17.64706	19.04762					

		4
<pre>[6]: b = 0.75: a = 0.45: L = 0.01 # The learning Rate: epochs = 4 # The number of iterations to perform gradie: for i in range(epochs):</pre>		descen
[7]: print (b, a) <mark>994</mark> 700567398835 0. <mark>34<mark>05</mark>960381906817</mark>		
	13	MIN

1	a = 0.34		b=	0.7				del SSE/del(a) =-(Y-YP)	del SSE/del(b) =-(Y-YP)X	
			Price\$	X	Y	YP	(1/2)SSE	(,	(
		1100			0.00	0.34	0.0578	0.34	0.00	
ent c	descent	1400	245000	0.22	0.22	0.50	0.006809	0.27	0.06	
		1425	319000	0.24	0.58	0.51	0.002738	-0.07	-0.02	
Y		1550	240000	0.33	0.20	0.57	0.070052	0.37	0.12	
		1600	312000	0.37	0.55	0.60	0.001286	0.05	0.02	
		1700	279000	0.44	0.39	0.65	0.034522	0.26	0.12	
		1700	310000	0.44	0.54	0.65	0.006303	0.11	0.05	
		1875	308000	0.57	0.53	0.74	0.022626	0.21	0.12	
		2350	405000	0.93	1.00	0.99	7.02E-05	-0.01	-0.01	
		2450	324000	1.00	0.61	1.04	0.093833	0.43	0.43	
13	MIN	1100	199000	0	0	Total SSE=	0.29604	1.97	0.90	
14	MAX	2450	405000	1	1			Values for	fifth epoch	
15	RANGE	1350	206000	1	1			a_5	0.320276	
16								b_5	0.691027	
17	SSE									
18	Org	1st epoch	2nd epoch	3rd epoch	4th epoch					
19	0.677	0.51	0.42	0.34	0.3					
20	Reduction	0.167	0.09	0.08	0.04					
21	Redcn%	24.66765	17.64706	19.04762	11.76471					
		-								

G

	A B		С	D	Е	F	G	Н	1			
									del	del		
								SSE/del(a)	SSE/del(b)			
1	a = 0.32		= 0.32	b=	0.69				=-(Y-YP)	=-(Y-YP)X		
2			Sq Ft	Price\$	X	Υ	YP	(1/2)SSE				
			1100	199000	0.00	0.00	0.32	0.0512	0.32	0.00		

In [8]: b = 0.75	
: a = 0.45	
: L = 0.01 _# The Learning Rate	
: epochs = 5 # The number of iterations to perform gradient descen	ıτ
:	
: for i in range(epochs):	
: Y_pred = b*X + a # The current predicted value of Y	
: D_b = -sum(X * (Y - Y_pred)) # Derivative wrt b	
: D_a = -sum(Y - Y_pred) # Derivative wrt a	
: b = b - L * D_b # Update b	
: a = a - L * D_a # Update a	
:	
:	
In [9]: print (b, a)	
0. <mark>6906</mark> 049175842288 0. <mark>320</mark> 9804937956228	

	Sq Ft	Price\$	X	Y	YP	(1/2)SSE		
	1100	199000	0.00	0.00	0.32	0.0512	0.32	0.00
t	1400	245000	0.22	0.22	0.47	0.004675	0.25	0.06
	1425	319000	0.24	0.58	0.49	0.004648	-0.10	-0.02
	1550	240000	0.33	0.20	0.55	0.06159	0.35	0.12
	1600	312000	0.37	0.55	0.58	0.000365	0.03	0.01
	1700	279000	0.44	0.39	0.63	0.028398	0.24	0.11
	1700	310000	0.44	0.54	0.63	0.003857	0.09	0.04
	1875	308000	0.57	0.53	0.72	0.017482	0.19	0.11
	2350	405000	0.93	1.00	0.96	0.000845	-0.04	-0.04
	2450	324000	1.00	0.61	1.01	0.081287	0.40	0.40
	1100	199000	0	0	Total SSE=	0.254346	1.73	0.78
							_	

		2450	324000	1.00	0.01	1.01	0.081287	0.40	0.40
13	MIN	1100	199000	0	0	Total SSE=	0.254346	1.73	0.78
14	MAX	2450	405000	1	1			Values for	sixth epoch
15	RANGE	1350	206000	1	1			a_6	0.302732
16								b_6	0.682232
17	SSE								
18	Org	1st epoch	2nd epoch	3rd epoch	4th epoch	5th epoch			
19	0.677	0.51	0.42	0.34	0.3	0.25			
20	Reduction	0.167	0.09	0.08	0.04	0.05			
21	Redcn%	24.66765	17.64706	19.04762	11.76471	16.66667			

	Α	В	С	D	Е	F	G	Н	1
									del
								del	SSE/del(b
								SSE/del(a)) =-(Y-
1	a = 0.3		b=	0.68				=-(Y-YP)	YP)X
		Sq Ft	Price\$	X	Y	YP	(1/2)SSE		
	1100		199000	0.00	0.00	0.30	0.045	0.30	0.00

0.22

0.58

0.20

0.55

0.39

0.54

0.53

0.45

0.46

0.53

0.55

0.60

0.60

0.69

0.002941

0.007059

0.053673

5.47E-06

0.022871

0.002009

0.013

0.23

-0.12

0.33

0.00

0.21

0.06

0.16

0.05

-0.03

0.11

0.00

0.10

0.03

0.09

In [10]: b = 0.75
: a = 0.45
: L = 0.01 # The learning Rate
: epochs = 6 # The number of iterations to perform gradient descent
: for i in range(epochs):
: Y_pred = b*X + a # The current predicted value of Y
: D_b = -sum(X * (Y - Y_pred)) # Derivative wrt b
: D_a = -sum(Y - Y_pred) # Derivative wrt a
: b = b - L * D_b # <i>Update b</i>
: a = a - L * D_a # <i>Update a</i>
:
:
In [11]: print (b, a)
0. <mark>6828</mark> 899663397007 0. <mark>3037</mark> 2898115773656
IZ

1400

1425 1550

1600 1700

1700

1875

245000

319000

240000

312000

279000

310000

308000

0.22

0.24

0.33

0.37

0.44

0.44

0.57

			_	_	_	_	_	_		
7 th epoch									اماما	del
, cpoch									del SSE/del(a)	SSE/del(b) =-(Y-
	1	a =	0.285	b=	0.67				=-(Y-YP)	YP)X
	2		Sq Ft	Price\$	X	Υ	YP	(1/2)SSE	()	
In [12]: b = 0.75 : a = 0.45			1100		0.00	0.00	0.29	0.040613	0.29	0.00
: L = 0.01 # The Learning Rate: epochs = 7 # The number of iterations to perform grad	ient	descent	1400	245000	0.22	0.22	0.43	0.001903	0.21	0.05
			1425	319000	0.24	0.58	0.45	0.009279	-0.14	-0.03
: for i in range(epochs):: Y_pred = b*X + a # The current predicted value o	fΥ		1550	240000	0.33	0.20	0.51	0.047835	0.31	0.10
<pre>: D_b = -sum(X * (Y - Y_pred)) # Derivative wrt b: D_a = -sum(Y - Y_pred) # Derivative wrt a</pre>			1600	312000	0.37	0.55	0.53	0.000119	-0.02	-0.01
: b = b - L * D_b # <i>Update b</i> : a = a - L * D a # <i>Update a</i>			1700	279000	0.44	0.39	0.58	0.018901	0.19	0.09
			1700	310000	0.44	0.54	0.58	0.000965	0.04	0.02
:			1875	308000	0.57	0.53	0.67	0.009871	0.14	0.08
In [13]: print (b, a) 0.6761841892609822 0.2885528785701405			2350	405000	0.93	1.00	0.91	0.004477	-0.09	-0.09
	12		2450	324000	1.00	0.61	0.96	0.060623	0.35	0.35
	13	MIN	1100	199000	0	0	Total SSE=	0.194586	1.29	0.56
		MAX	2450	405000	1	1			Values for	8th epoch
16 17 SSE 18 Org 19 0		RANGE	1350	206000	1	1			a_8	0.272143
									b_8	0.664414
		SSE								
			-	2nd epoch						
		0.677					0.25	0.22		
		Reduction		0.09	0.08	0.04	0.05	0.03		
	21	Redcn%	24.66765	17.64706	19.04762	11.76471	16.66667	12	13.63636	

1000 epochs

```
In [14]: b = 0.75
   ...: a = 0.45
    ...: L = 0.01 # The Learning Rate
    ...: epochs = 1000 # The number of iterations to perform gradient descent
    ...: for i in range(epochs):
    ...: Y_pred = b*X + a # The current predicted value of Y
    ...: D_b = -sum(X * (Y - Y_pred)) # Derivative wrt b
    ...: D_a = -sum(Y - Y_pred) # Derivative wrt a
    ...: b = b - L * D_b # Update b
    ...: a = a - L * D_a # Update a
    . . . :
In [15]: print (b, a)
0.7040491329592683 0.14236404582620468
```


Regression	Statistics					
Multiple R	0.785391					
R Square	0.616839					
Adjusted R	0.568943					
Standard E	0.181505					
Observatio	10					
ANOVA						
	df	SS	MS	F	ignificance	F
Regressior	1	0.424282	0.424282	12.87893	0.007098	
Residual	8	0.263551	0.032944			
Total	9	0.687833				
(Coefficients	andard Erro	t Stat	P-value	Lower 95%	Upper 95%
Intercept	0.142096	0.10594	1.341286	0.216657	-0.1022	0.386393
X	0.701462	0.195463	3.588722	0.007098	0.250724	1.1522

https://engmrk.com/gradient-descent-with-momentum/

How does it work?

Consider an example where we are trying to optimize a cost function which has contours like below and the red dot denotes the position of the local optima (minimum).

We start gradient descent from point 'A' and after one iteration of gradient descent we may end up at point 'B', the other side of the ellipse. Then another step of gradient descent may end up at point 'C'. With each iteration of gradient descent, we move towards the local optima with up and down oscillations. If we use larger learning rate then the vertical oscillation will have higher magnitude. So, this vertical oscillation slows down our gradient descent and prevents us from using a much larger learning rate.

Momentum

By using the exponentially weighted average values of dW and db, we tend to average out the oscillations in the vertical direction closer to zero as they are in both directions (positive and negative). Whereas, on the horizontal direction, all the derivatives are pointing to the right of the horizontal direction, so the average in the horizontal direction will still be pretty big. It allows our algorithm to take more straight forwards path towards local optima and damp out vertical oscillations. Due to this reason, the algorithm will end up at local optima with a few iterations.

How to Implement?

During backward propagation, we use dW and db to update our parameters W and b as follows:

In momentum, instead of using dW and db independently for each epoch, we take the exponentially weighted averages of dW and db.

$$V_{dW} = \beta \times V_{dW} + (1 - \beta) \times dW$$

$$V_{db} = \beta \times V_{db} + (1 - \beta) \times db$$

Where beta ' β ' is another hyperparameter called momentum and ranges from 0 to 1. It sets the weight between the average of previous values and the current value to calculate the new weighted average.

After calculating exponentially weighted averages, we will update our parameters.

b = b - learning rate *
$$V_{db}$$

Momentum

	Α	В	С	D	Е	F	G	Н	1
								del	del
								SSE/del(a)	SSE/del(b)
1	a =	0.45	b= 0.75					=-(Y-YP)	=-(Y-YP)X
2		Sq Ft	Price\$	X	Y	YP	(1/2)SSE		
3		1100	199000	0.00	0.00	0.45	0.10125	0.45	0.00
4		1400	245000	0.22	0.22	0.62	0.077368	0.39	0.09
5		1425	319000	0.24	0.58	0.63	0.001154	0.05	0.01
6		1550	240000	0.33	0.20	0.70	0.125486	0.50	0.17
7		1600	312000	0.37	0.55	0.73	0.016062	0.18	0.07
8		1700	279000	0.44	0.39	0.78	0.078006	0.39	0.18
9		1700	310000	0.44	0.54	0.78	0.02989	0.24	0.11
10		1875	308000	0.57	0.53	0.88	0.061751	0.35	0.20
11		2350	405000	0.93	1.00	1.14	0.010432	0.14	0.13
12		2450	324000	1.00	0.61	1.20	0.175945	0.59	0.59
13	MIN	1100	199000	0	0	Total SSE=	0.677345	3.30	1.55
14	MAX	2450	405000	1	1			Values for fi	rst epoch
15	RANGE	1350	206000	1	1			a_1	0.4169984
16								b_1	0.7345474

1st epoch with Momentum

2nd epoch with Momentum

3rd epoch with Momentum

Comparison in 'a' {with & without Momentum}

\angle	Α	В	С
1		a learningrng	a with momentum
2	0	0.45	
3	1	0.42	0.42
4	2	0.39	0.39
5	3	0.36	0.36

Comparison in 'b' {with & without Momentum}

Е	F	G
	b learning	b with momentum
0	0.75	
1	0.73	0.73
2	0.72	0.71
3	0.71	0.696

Comparison in 'SSE' {with & without Momentum}

1	J	K
	SSE learning	SSE with momentum
0	0.677	
1	0.5102	0.5102
2	0.421	0.4101
3	0.4101	0.3307

Logistic Regression

Scaled Data

```
# Jesus is my Saviour!
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
#______scales liblinear
# for comparing coef with SAG

cs2m_s = pd.read_csv("C:/Users/Dr Vinod/Desktop/DataSets1/cs2m_scaled.csv")
cs2m_s.info()
X = cs2m_s[['BP', 'Chlstrl', 'Age', 'Prgnt', 'AnxtyLH']]
y = cs2m_s[['DrugR']]
```


Liblinear solver

```
In [2]: Xarray = X.to_numpy() # names of column disappear
    ...: yarray = y.to_numpy() # column index is 0
    ...: logReg_lib = LogisticRegression(solver = 'liblinear') # does not need scaling
    ...:
    ...: m_lib = logReg_lib.fit(Xarray, yarray)
    ...: m_lib
    ...: m_lib.coef_
C:\Anaconda3\lib\site-packages\sklearn\utils\validation.py:744: DataConversionWarning: A
column-vector y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
    y = column_or_ld(y, warn=True)
Out[2]: array([[-0.1254064 , 0.30684335, 1.05031561, 1.31559269, 0.75919166]])
```


Stochastic Gradient Descent

```
In [3]: logReg = LogisticRegression(solver = 'sag') # needs scaling
    ...: m_sag = logReg.fit(Xarray, yarray)
    ...: m_sag
    ...: m_sag.coef_
C:\Anaconda3\lib\site-packages\sklearn\utils\validation.py:744: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
    y = column_or_1d(y, warn=True)
Out[3]: array([[-0.12295492, 0.31155158, 1.05367286, 1.3234296 , 0.76182748]])
```

```
In [2]: Xarray = X.to_numpy() # names of column disappear
    ...: yarray = y.to_numpy() # column index is 0
    ...: logReg_lib = LogisticRegression(solver = 'liblinear') # does not need scaling
    ...:
    ...: m_lib = logReg_lib.fit(Xarray, yarray)
    ...: m_lib
    ...: m_lib.coef_
C:\Anaconda3\lib\site-packages\sklearn\utils\validation.py:744: DataConversionWarning: A
column-vector y was passed when a 1d array was expected. Please change the shape of y to
(n_samples, ), for example using ravel().
    y = column_or_1d(y, warn=True)
Out[2]: array([[-0.1254064 , 0.30684335, 1.05031561, 1.31559269, 0.75919166]])
```

+2teach is +2touch lives 4 ever