10.4

Una spira quadrata di lato b=9 cm, massa m=5 g e resistenza $R=10^{-3}$ Ω , si muove con velocità costante $v_0=5$ $\frac{m}{s}$ lungo l'asse z. All'istante t=0 il suo lato anteriore comincia ad entrare nella regione $x\geq 0$ in cui esiste campo magnetico \vec{B} , ortogonale al piano della spira, dipendente da x secondo la legge $B(x)=\alpha x$ con $\alpha=2$ $\frac{T}{m}$.

Calcolare la forza F(x) che agisce sulla spira, la velocità v(x) della spira e in particolare v(x = b), la carica q che circola nella spira.

Formule utilizzate

Soluzione punto a

Il campo elettromotore: $\vec{E}_i = \frac{F}{q} = \vec{v} \wedge \vec{B}$ Che produce una f.e.m. $\varepsilon_i = \int \vec{E}_i d\vec{s} = vb\alpha x$ $i = \frac{\varepsilon_i}{R} = \frac{vb\alpha x}{R}$ in verso antiorario. $F(x) = ibB = b^2\alpha^2x^2\frac{v}{R}$ opposta al moto. $m\frac{dv}{dt} = -\frac{b^2\alpha^2}{R}x^2v$ $dv = -\frac{b^2\alpha^2}{mR}x^2dx$ $\int_{v_0}^{v(x)} dv = -\frac{b^2\alpha^2}{mR} \int_0^x x^2dx$ $v(x) = v_0 - \frac{b^2\alpha^2}{3mR}x^3 = 5 - 2160x^3\frac{m}{s}$ $v(x = b) = 5 - 2160 * 0.09^3 = 3.43\frac{m}{s}$ Usando la legge di Felici: $q = \frac{\Phi_1 - \Phi_2}{R} = \frac{1}{R}b\int_0^b \alpha x dx = \frac{\alpha b^3}{2R} = 0.73$ C

Soluzione punto b