$$y^{1} = \begin{bmatrix} -X_{1}^{T} \\ -X_{2}^{T} \\ -X_{N}^{T} \end{bmatrix} \begin{bmatrix} V_{1} \\ V_{2} \end{bmatrix}$$

$$V_{1} = \begin{bmatrix} -X_{1}^{T} \\ -X_{N}^{T} \\ -X_{N}^{T} \end{bmatrix}$$

$$V_{2} = \begin{bmatrix} V_{2} \\ V_{2} \\ -X_{N}^{T} \end{bmatrix}$$

$$V_{3} = \begin{bmatrix} V_{3} \\ V_{2} \\ V_{3} \\ -X_{N}^{T} \end{bmatrix}$$

In the BIPLOT I have only a PRINCIPAL COMPONENTS, for example y^1 and y^2 . The coordinates of factors in the $\langle y^1,y^2\rangle$ space are the components of the EIGENVECTORS $N_1,...,N_d$ associated to y^1 and y^2 :

Jo the generic Festure $x^{\frac{1}{2}} = y^{\frac{1}{2}} N_{\frac{1}{2}} + y^{\frac{1}{2}} N_{\frac{1}{2}} \longrightarrow \text{LINEAR COMBINATION of } y^{\frac{1}{2}} y^{\frac{1}{2}} \text{ using components of } N_{1} \text{ and } N_{2}$ | N₂₁ N₂₂ | coordinates of component of N₁ associated to the on weights
| N₂₁ N₂₂ | resture $x^{\frac{1}{2}}$ in original feature $x^{\frac{1}{2}}$ the space $(y^{\frac{1}{2}}, y^{\frac{1}{2}})$ the space $(y^{\frac{1}{2}}, y^{\frac{1}{2}})$

Supposing 2 Sestures x^{Λ} , $x^{B} \in \mathbb{R}^{n}$, to draw the projection line corresponding to the first principal direction, we need only 2 point projected: $\begin{bmatrix} x^{\Lambda} & x^{B} \\ x^{\Lambda} & x^{B} \end{bmatrix} = \begin{bmatrix} x^{\Lambda} & x^{B} \\ x^{\Lambda} & x^{B} \end{bmatrix} \longrightarrow P_{1} = (x^{\Lambda}, x^{B}, x^{\Lambda}) \longrightarrow P_{1} = (N_{1} + P_{1})N$ $P_{2} = (x^{\Lambda}, x^{B}, x^{B}) \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix}$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix}$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N^{B} \end{bmatrix} \longrightarrow P_{2} = (N_{1} + P_{2})N$ $N = \begin{bmatrix} N^{\Lambda} \\ N$