

Model Development Phase Template

Date	20 JUNE 2024
Team ID	739723
Project Title	Rain fall prediction using ml
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

Initial model training involved preprocessing data and using algorithms like Random Forest. Validation included cross-validation and hyperparameter tuning. Evaluation showed an accuracy of 85%, with precision and recall metrics indicating good performance.

Initial Model Training Code:

```
[ ] XGBoost = xgboost.XGBRFClassifier()
   Rand_forest = sklearn.ensemble. RandomForestClassifier()
   svm = sklearn.svm.SVC()
   Dtree = sklearn.tree. DecisionTreeClassifier()
   GBM = sklearn.ensemble.GradientBoostingClassifier()
   log = sklearn.linear_model.LogisticRegression()

| XGBoost.fit(x_train,y_train)
   Rand_forest.fit(x_train,y_train)
   svm.fit(x_train,y_train)
   Dtree.fit(x_train,y_train)
   GBM.fit(x_train,y_train)
   log.fit(x_train,y_train)
```



```
p1 = XGBoost.predict(x_train)
    p2 = Rand_forest.predict(x_train)
    p3 = svm.predict(x_train)
    p4 = Dtree.predict(x_train)
    p5 = GBM.predict(x_train)
    p6 = log.predict(x_train)

[ ] from sklearn import metrics

[ ] print("xgboost:",metrics.accuracy_score(y_train,p1))
    print("rand_forestt:",metrics.accuracy_score(y_train,p1))
    print("svm:",metrics.accuracy_score(y_train,p1))
    print("Dtree:",metrics.accuracy_score(y_train,p1))
    print("GBM:",metrics.accuracy_score(y_train,p1))
    print("log:",metrics.accuracy_score(y_train,p1))
    print("log:",metrics.accuracy_score(y_train,p1))
```


		F1 Scor e	
Model	Classification Report		Confusion Matrix

Random Forest	-	81%	-
101051			
Model Val	idation and Evaluation Report:		
Decision	-	79%	-
Tree			
KNN	-	64%	-
Gradient	-	78%	-
Boosting		7070	