MOUVEMENT ET INTERACTION

Décrire un mouvement

Activité 1 : Vecteurs position, vitesse et accélération

L'étude des mouvements s'appelle la cinématique. Le mouvement d'un point M d'un système, par rapport à un référentiel donné, peut être décrit à l'aide de trois outils vectoriels :

- le vecteur position $\overrightarrow{\textit{oM}}$ (t) qui indique la position de M par rapport à l'origine O d'un repère donné à une date t ;
- le vecteur vitesse \vec{V} (t) qui indique la direction, le sens et la vitesse de déplacement de M à une date t ;
- le vecteur accélération \vec{a} (t) qui indique le changement de mouvement de M à une date t : changement de vitesse et/ou changement de direction.

Quelles relations existe-t-il entre ces trois vecteurs?

PREREQUIS

Document 1 : Vocabulaire de la cinématique

- Le **système** est l'objet dont on étudie le mouvement. Il est assimilable à un **point matériel M** lorsque ses dimensions sont faibles par rapport à son déplacement.
- Le **référentiel** est un objet de référence, immobile, par rapport auquel le système se déplace. Par défaut, il s'agit du **référentiel terrestre.**
- La trajectoire est la courbe formée dans l'espace par les positions successives du système.
- La position du système à un instant donné est définie à l'aide d'un **repère d'espace** (d'origine O) **muni d'une horloge** (un chronomètre).

Document 2 : Calcul d'une valeur approchée de la vitesse instantanée et tracé du vecteur vitesse \vec{V}

Connaissant les positions successives d'un point M, prises à intervalles de temps égaux (chronophotographie), la valeur approchée de la vitesse de M lorsqu'il passe par la position M_i (à la date t_i) est donnée par la vitesse moyenne de M entre les positions M_{i-1} et M_{i+1}:

$$V(t_i) \approx \frac{M_{i-1}M_{i+1}}{t_{i-1}-t_{i+1}}$$

Le vecteur vitesse \vec{V} (t_i) de M est :

- de direction tangente à la trajectoire au point M_i,
- orienté dans le sens du mouvement,
- de norme égale à V(t_i).

Trajectoire $\overrightarrow{V}(t_i)$ M_{i+1} M_{i-1} La direction de $\overrightarrow{V}(t_i)$ est voisine de celle du vecteur déplacement $\overline{M_{i-1}M_{i+1}}$.

On représente $\vec{V}(t_i)$ après avoir choisi une échelle pour la vitesse : 1 cm pour x m.s⁻¹.

Document 3 : Notation de la dérivée utilisée en physique

- Pour une fonction $x \mapsto f(x)$ dont la fonction dérivée est notée f', la valeur du **coefficient directeur de la tangente** à la courbe représentative de f en A d'abscisse x = a est égale à f'(a).
- En physique, la **dérivée de f**, fonction de la variable x, est notée $\frac{df}{dx}$ au lieu de f'.
- Lorsqu'une grandeur physique G (distance, vitesse, masse, énergie ...) varie au cours du temps t, la dérivée de cette grandeur par rapport au temps est notée $\frac{dG}{dt}$.

1. ANALYSE D'UN MOUVEMENT RECTILIGNE

1.1. De la position à la vitesse

Le schéma ci-dessus présente les positions successives de la voiture de course au cours du temps. La durée entre deux positions successives est de 1,0 s. À l'origine des dates $t_0 = 0$ s, la voiture est à l'arrêt. À la date $t_5 = 5.0$ s, la voiture occupe la position d'abscisse $x_5 = 125$ m.

- a) Identifier le système et le référentiel du mouvement étudié. Quelle est la nature de la trajectoire du système assimilé au point M ?
- **b)** Reporter les positions M_1 à M_5 du point M sur l'axe (OX) ci-dessous, à l'échelle 1/1000, à partir du point M_0 coïncidant avec l'origine O de cet axe.

c) A l'aide du document 2, calculer la valeur approchée de la vitesse de M aux dates suivantes.

Date t (s)	1,0	2,0	3,0	4,0
V (m.s ⁻¹)				

d) Tracer sur (OX) les vecteurs vitesse de M pour les positions M₁ à M₄ à l'échelle 1 cm pour 10 m.s⁻¹.

On donne les modélisations de l'évolution de la position et de la vitesse de M au cours du temps.

Les mesures de position de la voiture permettent de modéliser l'évolution de celle-ci par l'équation :

 $x(t) = \alpha \cdot t^2$

Les mesures de vitesse aux points M_1 , M_2 , M_3 et M_4 permettent de modéliser son évolution par l'équation :

$$v(t) = 2 \alpha \cdot t$$

e) Vérifier que les modélisations sont en accord avec les données fournie et déterminer la valeur de α .

f) En comparant les deux expressions ci-dessus, quelle relation mathématique existe-t-il entre les grandeurs x(t) et v(t) ? Exprimer cette relation en utilisant la notation présentée dans le **document 3**.

1.2. Du vecteur position au vecteur vitesse

On choisit un vecteur unitaire \vec{i} pour orienter l'axe (OX). Dans le repère (O, \vec{i}), donner l'expression littérale :

- du vecteur position $\overrightarrow{\textit{OM}}$ (t) = - du vecteur vitesse : $\overrightarrow{\textit{V}}$ (t) = =

DEFINITION DU VECTEUR VITESSE

Le vecteur vitesse $\overrightarrow{V}(t)$ est la **dérivée par rapport au temps** du vecteur position $\overrightarrow{OM}(t)$: $\overrightarrow{V}(t) = \frac{d\overrightarrow{OM}}{dt}(t)$

Cette notation signifie que les coordonnées du vecteur vitesse dans le repère choisi sont égales aux dérivées par rapport au temps des coordonnées du vecteur position.

1.3. Du vecteur vitesse au vecteur accélération

Dans le cas d'un mouvement rectiligne, il n'y a pas de changement de direction : seule la vitesse peut changer.

Le vecteur accélération à un instant donné t_i est estimé par : $\vec{a}(t_i) \approx \frac{\vec{V}(t_{i+1}) - \vec{V}(t_{i-1})}{t_{i+1} - t_{i-1}}$, ce qui signifie que :

- \vec{a} à la même direction et le même sens que la variation du vecteur vitesse $\vec{V}(t_{i+1}) \vec{V}(t_{i-1})$
- la valeur de l'accélération du système à la date t_i où il passe par la position M_i est approchée par l'accélération moyenne de M entre les deux positions M_{i-1} et M_{i+1} : $a(t_i) \approx \frac{|V(t_{i+1}) V(t_{i-1})|}{t_{i+1} t_{i-1}}$
- a) Calculer la valeur approchée de l'accélération de M aux dates t_2 = 2,0 s et t_3 = 3,0 s, en précisant l'unité.
- **b)** Tracer ci-dessous en M_3 la variation de vecteur vitesse $\vec{v}(t_4) \vec{v}(t_2)$ puis $\vec{a}(t_3)$ en utilisant l'échelle 1 cm pour 5 m.s⁻². Construire de même $\vec{a}(t_4)$ en M_4 .

DEFINITION DU VECTEUR ACCELERATION

Le vecteur accélération $\vec{a}(t)$ est la **dérivée par rapport au temps** du vecteur vitesse $\vec{V}(t)$: $\vec{a}(t) = \frac{d\vec{V}}{dt}(t)$

Cette notation signifie que les coordonnées du vecteur accélération dans le repère choisi sont égales aux dérivées par rapport au temps des coordonnées du vecteur vitesse.

- c) Donner l'expression du vecteur accélération de M dans le repère $(O, \vec{\iota})$ puis montrer qu'elle en accord avec le tracé précédent.
- d) Le mouvement étudié est rectiligne <u>uniformément accéléré</u>. Préciser la signification de l'expression soulignée et tracer le vecteur accélération en M_4 .

2. ETUDE EXPERIMENTALE D'UNE CHUTE LIBRE VERTICALE

- → TSPC2_2021 → Cinématique PUIS l'ouvrir avec Atelier scientifique.
- ② Placer l'origine du repère pour qu'elle coïncide avec la position initiale du centre B de la balle puis étalonner l'image sachant que la hauteur du tableau est **1,15 m** (hauteur ramenée dans le plan de chute de la balle donc en avant du tableau).
- 3 Orienter l'axe vertical (OY) vers le bas.
- Démarrer l'acquisition et pointer les positions successives du centre B de la balle.

A la fin de l'acquisition, afficher les courbes x(t) et y(t).

2.1. Equation horaire de la position

- a) Tracer le repère vertical (OY) sur la chronophotographie ci-contre.
- b) Quelle durée sépare deux positions de B?
- c) Modéliser la courbe y(t) et noter la relation numérique entre y et t appelée équation horaire de la coordonnée verticale du vecteur position \overrightarrow{OB} .

2.2. Equation horaire de la vitesse

- a) Utiliser le tableur (et le document 2) pour faire calculer la valeur approchée Vy de la vitesse verticale du centre de la balle puis afficher la courbe Vy(t).
- **b)** A partir des résultats obtenus, tracer sur la chronophotographie les vecteurs vitesse du centre de la balle en B_6 (6^{eme} image) et B_{10} en choisissant une échelle adaptée.

Echelle de représentation de la vitesse :

- c) Modéliser la courbe Vy(t) et noter la relation numérique proposée appelée équation horaire de la coordonnée verticale du vecteur vitesse \vec{V} .
- **d)** Déterminer l'expression de Vy(t) à partir de celle de y(t) en utilisant la définition du **1.2**. Ce résultat est-il cohérent avec la modélisation précédente ? Justifier la réponse.

2.3. Equation horaire de l'accélération

- a) Déterminer l'expression ay(t) de la coordonnée verticale du vecteur accélération à partir de celle de Vy(t) en utilisant la définition du 1.3.
- **b)** A partir des résultats obtenus, tracer sur la chronophotographie les vecteurs accélération du centre de la balle en B₆ et B₁₀ en choisissant une échelle adaptée.

Echelle de représentation de l'accélération :

c) Quelle est la nature de ce mouvement ?

Etude d'un mouvement circulaire.

Un pendule simple, constitué d'un objet pouvant être considéré comme ponctuel suspendu à un fil inextensible de longueur L, est écartée de sa position d'équilibre initiale puis lâché : il effectue alors des oscillations autour de cette position.

La chronophotographie du mouvement réalisée à l'aide d'une vidéo avec une fréquence de 20 images par seconde est donnée ci-contre.

Un traitement dans l' »Atelier Scientifique » permet après pointage d'obtenir la trajectoire de la masse suspendue au bout du fil donnée dans le document 3 de l'annexe

- 1) Tracer la trajectoire du mouvement et numéroter les points de M_0 à M_{14} en partant de la gauche.
- 2) Montrer à l'aide du document 3 que le mouvement de la masse suspendue est circulaire non uniforme.
- 3) Identifier sur le document 3 le point de la trajectoire où la vitesse est maximale et les points où la vitesse est minimale.
- 4) Calculer une valeur approchée de la vitesse de la masse suspendue aux points M_5 et M_{10} .
- 5) Représenter les vecteurs vitesse \overrightarrow{V}_5 et \overrightarrow{V}_{10} en prenant comme échelle 1 cm pour 1 m.s⁻¹.

Dans le cas d'un mouvement circulaire, le vecteur accélération peut se décomposer suivant deux vecteurs unitaires d'une base orthonormée directe locale appelé repère de

Frénet : (M, \vec{t}, \vec{n})

- 6) Calculer la valeur de l'accélération normale $a_{n,5}$ au point M5 définie par la relation : $a_{n,i} = \frac{V_i^2}{r_i}$
- 7) Calculer une valeur approchée de l'accélération tangentielle $a_{t,5}$ donnée par la relation :

$$a_{t,i} = \frac{dv}{dt} \simeq \frac{\Delta V_i}{\Delta t} = \frac{v_{i+1} - v_{i-1}}{t_{i+1} - t_{i-1}}$$

- 8) Représenter les vecteurs $\vec{a}_{n,5}$ et $\vec{a}_{t,5}$ au point M_5 puis construire le vecteur $\vec{a}_5 = \vec{a}_{t,5} + \vec{a}_{n,5}$ en choisissant comme échelle 1 cm pour 1 m.s⁻².
- 9) Quelle particularité présente le vecteur accélération dans le cas d'un mouvement circulaire non uniforme ?

Document 3 : Trajectoire du centre d'inertie de la masse suspendue

