1. Resumo

O movimento de um corpo em um meio viscoso é influenciado pela ação de uma força viscosa, F_V , proporcional à velocidade, v. No caso de esferas, assumindo velocidades baixas e um fluido homogêneo e infinito em todas as direções, chega-se a uma força de atrito dada pela lei de Stokes: $F_V = 6\pi\eta rv$, onde r é o raio da esfera e η o coeficiente de viscosidade do meio. Se uma esfera de densidade maior que a de um líquido for solta na superfície do mesmo, no instante inicial a velocidade é zero, mas a força resultante acelera a esfera de forma que sua velocidade vai aumentando. Pode-se verificar que a velocidade aumenta não-uniformemente com o tempo e atinge um valor limite, que ocorre quando a força resultante for nula. As três forças que atuam sobre a esfera estão representadas na Fig. 1 e são, além da força viscosa, o peso da esfera, P, e o empuxo, E. Igualando a resultante dessas três forças a zero, obtém-se a velocidade limite, v_L :

$$v_L = \frac{2}{9} \frac{\rho - \rho'}{\eta} g r^2,$$

onde ρ e ρ' são as densidades da esfera e a densidade do meio, respectivamente, e g é a aceleração da gravidade. A figura abaixo mostra esquematizado as forças que atuam na esfera de aço durante um dado momento de sua trajetória ao longo do tubo de vidro contendo mistura de glicerina e água:

Figura 1: Forças que atuam numa esfera num meio viscoso.

No experimento dado, como as paredes do tubo de vidro são finitas, logo elas exerceram algum efeito sobre a esfera de aço, alterando a sua velocidade limite, fazendo com que ela não seja exatamente a velocidade da equação v_L dada, então a equação com a correção dessa nova situação é dada da seguinte forma:

$$k \cdot v_L' = \frac{2}{9} \frac{\rho - \rho'}{\eta} gr^2,$$

onde

$$k = (1+2, 4 \cdot \frac{r}{R})(1+3, 3 \cdot \frac{r}{H})$$

é decorrente do efeito de Ladenburgh, sendo R e H, respectivamente, o raio do tubo e a altura total do fluído no tubo. Portanto, temos que multiplicar a velocidade limite da esfera no tubo, v'_L , por k, para se obter a velocidade limite prevista pela equação de v_L .

2. Procedimentos e incertezas

Para esse experimento utilizamos os seguintes aparatos: tubo de vidro com mistura de glicerina e água, suporte com marcas graduadas, conjunto de esferas, trena, paquímetro, micrômetro, cronômetro e termômetro de aço.

Tabela 1: incertezas dos equipamentos

Equipamento	Incerteza	Função Probabilidade	Tipo
Micrômetro	0,002 mm	Triangular	В
Trena	0,0204 cm	Triangular	В
Termômetro	0,0204 ºC	Triangular	В
Paquímetro	0,0102 mm	Triangular	В
Cronômetro	0,0003 s	Retangular	В

Nesse experimento fizemos uma atribuição de números as esferas com o intuito de identificação das mesmas ficando da seguinte forma: a esfera com diâmetro de 2,49 mm é (1), a esfera com diâmetro de 2,99 mm é (2), a esfera com diâmetro de 3,49 mm é (3) e a esfera com diâmetro de 3,95 mm é (4) - todos estes com o micrômetro. Medimos também, com uma trena, a altura da coluna da mistura de glicerina e água, obtendo a medida de 38 cm. Concomitante a isso, foi realizada a medição da temperatura, com um termômetro analógico, dessa mistura, obtendo-se 27°C - medida feita no início e ao longo de intervalos de tempo espaçados. O procedimento experimental ficou definido pelo nosso grupo da seguinte maneira: dividimos as medições realizadas com as esferas em 4 grupos e para cada grupo foram realizadas 6 medidas do cronômetro (duas para cada membro do grupo, evitando a intensificação de erros considerados sistemáticos).

Tabela 2: valores no tubo de glicerina

Tubo de Glicerina	Valor	Incerteza	
Altura H (cm)	38	0,0204	
Diâmetro D (mm)	55	0,0102	
Altura de Queda (cm)	14	0,0204	
Temperatura (ºC)	27	0,0204	

OBS: Durante a realização do experimento notamos a presença de uma película de água na superfície do líquido contendo a mistura de glicerina e água e isso foi devido a dissociação da água com a glicerina com o decorrer do tempo, logo as esferas foram soltas logo embaixo dessa película de água (recomendação do roteiro caso ocorresse esse fato).

Nota: Em conjunto com a realização desse experimento, fizemos gravações através de um smartphone na resolução de 1920x1080p 60fps com o objetivo de analisar no *Tracker* os dados coletados pelo nosso grupo para que possamos embasar nossas conclusões. Foram ao todo 24 vídeos gravados.

3. Resultados

Durante o experimento, foram feitas seis medidas de tempo de queda para cada esfera (duas por integrante), com o tamanho do percurso mantido constante ao longo de todo o experimento ($h=140+/-0,2~\mathrm{mm}$). Com isso, calculou-se a média dos tempos e suas respectivas incertezas combinadas, a fim de obter a velocidade-terminal média de cada lançamento.

Tabela 3: Velocidade terminal em função do raio de esfera.

Número de ordem de medida	Tempo de queda médio (s)	Velocidade terminal (mm / s)	Raio da esfera (mm)	Fator de Ladenburgh
1	3,5 +/- 0,1	40 +/- 1	1,245 +/- 0,001	1,2742 +/- 0,0002
2	2,53 +/- 0,03	55,3 +/- 0,7	1,495 +/- 0,001	1,3333 +/- 0,0003
3	1,96 +/- 0,02	71,3 +/- 0,6	1,745 +/- 0,001	1,3936 +/- 0,0003
4	1,52 +/- 0,02	92 +/- 1	1,975 +/- 0,001	1,4502 +/- 0,0003

Com os raios das esferas, as velocidades-terminal e o fatores de Ladenburgh, podemos fazer a regressão linear e montar o gráfico linearizado com o software SciDAVis. A equação $v'_L = \frac{2}{9} \frac{\rho - \rho'}{\eta} g \cdot \frac{r^2}{k}$ pode ser linearizada tomando a seguinte relação: $v'_L \longrightarrow y; \frac{2}{9} \frac{\rho - \rho'}{\eta} g \longrightarrow a$ e; $\frac{r^2}{k} \longrightarrow x$ que representa uma equação de uma reta do tipo $y = a \cdot x$, teoricamente centrada na origem.

Figura 2: Gráfico com as incertezas.

• Assim, achamos o coeficiente angular (a) sendo, $a = (34 + / - 1)mm^{-1} \cdot s^{-1}$. Logo obtemos o valor, $\eta = (428 + / - 13)mPa \cdot s$, para o coeficiente de viscosidade. Com o valor do coeficiente de viscosidade, com a temperatura do experimento $27^{\circ}C$ e com auxílio da tabela dada pelo moodle, podemos descobrir o percentual de água na mistura. O valor obtido experimentalmente inclui um valor tabelado, $420mPa \cdot s$, para a temperatura de 27.5 °C. Logo podemos deduzir que o percentual de água como 3.11% e de glicerina, aproximadamente, 96.89% - sem fazer a interpolação, visto que o valor encontrado reside nas imediações do tabelado. Se fizermos um gráfico sem barra de incerteza obteríamos um coeficiente angular muito semelhante.

OBS: Fizemos a análise da velocidade limite no Tracker. Os valores deram, estatisticamente, bem próximos dos medidos com cronômetro. Como exemplo, as velocidades de queda da esfera 2 deram, na média, $54mm \cdot s^{-1}$.

Anexos

· Calcula de caepiciente de viscasidade (7): $\alpha = \frac{2}{9} \left[\frac{(p-p')}{\eta} \right] g$ a = caeficiente angular = 39, ±11 s.mm n=2[(P-P)]q=2.662.980 = 4,24. g. 2 = 0,424 Kg.s = 525 m By