Robotic Makeup Application System

Alejandro Varela Dillon Naidu Jason Ramsarran Jason Calle Vincent Xu Alex Wong

Department of Mechanical Engineering
The City College of New York

Requirements

- Collaborative
- Responds and interacts with the user
- LCD display and buttons
- Motion sensor

Trade study: Robotic arms

Universal Robots UR3

uArm Swift Pro

Braccio

Trade study: Robotic arms

Given scores of 0-3 (higher is better)

Weight	3	3	3	2	2	2	2	2
Robotic Arm	Affordability	On-board software	User- friendly	Degrees of Freedom	Repeatability	Expandability	Appearance	Compactness
uArm Swift Pro	2	3	3	2	3	3	3	3
Universal Robots UR3	0	3	3	3	3	2	3	0
Braccio	3	1	2	3	1	1	2	2
Weighted score:	uArm Swift Pro	Universal Robots UR3	Braccio					
	41	40	36					

Face Dimension Statistics

Cranial Width

Facial Width

Facial Length

Average Male - 150 mm

Average Male - 135 mm

Average Male - 203 mm

Average Female - 145 mm Average Female - 130 mm

Average Female - 190 mm

Specifications			
	uArm Swift Pro		
Weight	2.2kg		
Degrees of Freedom	4		
Repeatability	0.2mm		
Max. Payload	500g		
Working Range	50mm ~ 320mm		
Max. Speed	100mm/s		
Connector	Micro USB		
Wireless	Bluetooth 4.0		
Input Voltage	DC 12V		
Power Adapter	Input:100 ~ 240V 50/60Hz; Output: 12V5A 60W		

Extensions

Trade study: Microcontroller

Given scores of 1-3 (higher is better)

Weight	2	2	1	1
Type of Microcontroller	I/O performance	CPU Intensive Performance	Web Support and Example Projects	Compatibility with robotic arm
Raspberry Pi	1	2	3	2
Arduino	3	2	3	3
Weighted score	Raspberry Pi	Arduino		
	11	16		

Arduino Mega 2560

- 54 digital I/O pins
- 16 analog inputs
- large space for sketches in Arduino IDE

Hardware Pictures

uArm Arduino Controller

- Plays collaborative role
- Receives information from all components
- Programming flexibility

OpenMV Cam

uArm Swift Pro with extended port to connect with sensor

OpenMv Cam with uArm Swift Pro

Example of face detection:

Trade study: Sensors

Given scores of 1-3 (higher is better)

Weight	3	1	2	3
Type of Sensor	Programming ease	Depth sensing	Image tracking	Affordability
OpenMV Cam H7	3	1	3	2
Intel RealSense	3	3	3	2
Pixy 2	2	1	2	2
Weighted score	OpenMV Cam H7	Pixy camera	Intel RealSense	
	22	17	24	

Intel RealSense Depth Camera

Intel RealSense Depth Camera

OCCLUSION SHADOWS

Computer Vision

- Active Stereo IR Camera
 - a. Computes 3-D locations corresponding to matching pairs of image points using triangulation
 - b. Crucial for depth features

Ultrasonic Sensor

- non-contact distance measurement module with a detection range of 3 cm to 4 m.
- Measure the distance between the robotic arm to the user.
- Plays a collaborative role.
- Compatible with the uArm Swift Pro.

System Schematic

Modeling

The CAD file for the uArm Swift Pro was obtained from the manufacturer.

We plan to mount the robotic arm on a platform to raise its height, then secure sensors on openings in the platform.

The camera and sensor will be mounted at eye-level with the user sitting upright at ~1 ft away.

Modeling

RIGHT

Modeling

Modeling

Part notation

Landmark Tracking

The person's face can be located using Facial Landmarks.

This can be done in real-time, as seen in examples of an autonomous feeding robot.

Currently we've been able to capture Landmark data for pictures, but will continue working on using this for live videos.

Our progress on Landmark Tracking

- track landmarks in real-time using Python and various external libraries
- Tracking starts when a person steps into frame, and stops when a person steps out a frame.
- Points stored as (x,y) coordinate
- Depth from Intel camera provides (x,y,z) point, and the camera can be programmed to move to points.

Further Steps

When setting the position of the uArm swift pro, it uses an arbitrary coordinate system which differs from the one derived by the sensors.

Since we don't yet have the robotic arm, we're not yet sure how easily it will be to translate our sensors' coordinates to the coordinates that can be interpreted by the uArm swift pro.

Once we get the arm, we'll be able to conduct tests on how the robot moves based on given inputs, and use that to determine how it should move based coordinates found from the sensors.

- 1. Budget
- 2. Manufacturing
- 3. Statistics
- 4. Testing

References

Face statistics - https://www.facebase.org/facial_norms/summary/#palpfislength_r