Hodina 12. januára 2024

Program:

- 1. Domáca úloha (z minula)
- 2. Niekoľko príkladov na zahriatie a pozdvihnutie mysli: matice
- 3. Poznámky k maticiam: row reduction, násobenie maticou, lineárna regresia
- 4. Domáca úloha (nová)
- 5. Program na budúci týždeň

0. Úvod

Tento text a texty k nasledujúcim cvičeniam budú vyložené - ako pdf - v Github repozitári https://g ithub.com/PKvasnick/Erik. Odporúčam Github Desktop (na Windows) pre uloženie a synchronizáciu repozitára.

Videohovor Používame SpeakApp, link postnem vždy pred hodinou, *je možné, že sa bude týždeň od týždňa líšiť*.

1. Domáca úloha

Príklad 1

Dokážte, že v trojuholníku ABC leží priesečník osi uhla β (pri vrchole B) a osi strany b (oproti vrcholu B) na kružnici opísanej trojuholníku.

Riešenie

Tento bod sa v českej a slovenskej matematickej literatúre označuje ako Švrčkov bod, a pravdaže každý trojuholník má tri takéto body.

Poďme si najskôr ozrejmiť, ako môžeme dokázať, že dva body sú totožné. V našom prípade vieme, že ľubovoľný body X ležiaci na osi strany BC tvorí s bodmi BC rovnoramenný trojuholník. Preto na dôkaz tvrdenia potrebujeme dokázať, že priesečník osi uhla $\alpha=\angle BAC$ s opísanou kružnicou vytvára rovnoramenný trojuholník BCD. Potom musí bodom D prechádzať aj os strany BC.

Vlastný dôkaz: Uhol $\angle BAD$ a uhol $\angle BCD$ sú obvodové uhly, prislúchajúce tetive BD a sú teda rovnaké a rovné $\alpha/2$, pretože AD je os uhla $\alpha \equiv \angle BAC$. Podobne platí $\angle DCB = \angle CAD = \alpha/2$. Trojuholník CBD je teda rovnoramenný a os strany BC musí predchádzať vrcholom D. Tým je tvrdenie dokázané.

Príklad 2

Vezmime ľubovoľný bod P vnútri rovnostranného trojuholníka. Dokážte že súčet jeho vzdialeností od strán trojuholníka je rovný výške trojuholníka (teda je pre všetky body vnútri trojuholníka rovnaký).

Riešenie

Toto tvrdenie sa nazýva Vivianiho veta a dôkaz je ľahký:

Jediné, čo treba, je vypočítať dvoma spôsobmi obsah trojuholníka:

$$S_{ABC} = rac{1}{2} c v_c = rac{1}{2} c v_{AB} + rac{1}{2} a v_{BC} + rac{1}{2} b v_{AC}$$

a pretože máme rovnostranný trojuholník a a=b=c, musí platiť

$$v_c = v_{AB} + v_{BC} + v_{AC}$$

Takto možno kresliť grafy vlastností ternárnych zmesí, pre ktoré molárne zlomky zložiek dávajú spolu 1 a takto vieme prirodzene nakresliť závislosť od 3 viazaných parametrov nakresliť do trojuholníka.

Hoa, hoa, ale tu sa vzdialenosti merajú inak! Ako vieme, že aj pre takéto vzdialenosti platí Vivianiho veta?

Odpoveď: vzidalenosti sa líšia od kolmých vzdialeností o konštantný faktor $1/\cos 60^\circ$. Ich obrovská výhoda je, že ich vieme jednoducho zostrojiť.

Zovšeobecnenie Platí niečo podobné pre všeobecný trojuholník?

Niekoľko príkladov na zahriatie a povznesenie mysle

Matice: Redukcia po riadkoch (row reduction)

Pokračujeme z minula:

Problém 3

Továreň vyrába osobné autá, nákladné autá a autobusy. Tri hlavné suroviny, ktoré používa, sú oceľ, sklo a plasty. Nasledujúca tabuľka obsahuje množstvo surovín, potrebných na jednotlivé výrobky, vo vhodných jednotkách:

	Osobné auto	Nákladné auto	Autobus
Oceľ	1	4	6

	Osobné auto	Nákladné auto	Autobus
Sklo	2	3	20
Plast	3	5	15

Denne sa v priemere spotrebuje 48 jednotiek ocele, 113 jednotiek skla a 111 jednotiek plastov. Koľko osobných áut, nákladných áut a autobusov sa priemerne denne vyrobí?

Riešenie Označme c,t,b priemerný počet denne vyrobených osobných áut, nákladných áut a autobusov (cars, trucks, busses). Tabuľka spotreby materiálov pre jednotlivé výrobky nám dáva sústavu lineárnych rovníc pre c,t,b:

$$\begin{pmatrix} 1 & 4 & 6 \\ 2 & 3 & 20 \\ 3 & 5 & 15 \end{pmatrix} \cdot \begin{pmatrix} c \\ t \\ b \end{pmatrix} = \begin{pmatrix} 48 \\ 113 \\ 111 \end{pmatrix}$$

a riešime zase zostrojením augmentovanej matice a jej uvedením do RREF tvaru:

$$\begin{pmatrix}
1 & 4 & 6 & | & 48 \\
2 & 3 & 20 & | & 113 \\
3 & 5 & 15 & | & 111
\end{pmatrix}
\xrightarrow{R_2 - = 2R_1}
\begin{pmatrix}
1 & 4 & 6 & | & 48 \\
0 & -5 & 8 & | & 17 \\
3 & 5 & 15 & | & 111
\end{pmatrix}
\xrightarrow{R_3 - = 3R_1}
\begin{pmatrix}
1 & 4 & 6 & | & 48 \\
0 & -5 & 8 & | & 17 \\
0 & -7 & -3 & | & -33
\end{pmatrix}$$

$$\xrightarrow{R_3 = 5R_3 - 7R_2}
\begin{pmatrix}
1 & 4 & 6 & | & 48 \\
0 & -5 & 8 & | & 17 \\
0 & 0 & -71 & | & -284
\end{pmatrix}
\xrightarrow{R_3 / = -71}
\begin{pmatrix}
1 & 4 & 6 & | & 48 \\
0 & -5 & 8 & | & 17 \\
0 & 0 & 1 & | & 4
\end{pmatrix}$$

$$\xrightarrow{R_2 - = 8R_3}
\begin{pmatrix}
1 & 4 & 6 & | & 48 \\
0 & -5 & 0 & | & -15 \\
0 & 0 & 1 & | & 4
\end{pmatrix}
\xrightarrow{R_2 / = -5}
\begin{pmatrix}
1 & 4 & 6 & | & 48 \\
0 & 1 & 0 & | & 3 \\
0 & 0 & 1 & | & 4
\end{pmatrix}
\xrightarrow{R_1 - = 4R_2 + 6R_3}
\begin{pmatrix}
1 & 0 & 0 & | & 12 \\
0 & 1 & 0 & | & 3 \\
0 & 0 & 1 & | & 4
\end{pmatrix}$$

V priemere sa teda vyrobí 12 osobných, 3 nákladné automobily a 4 autobusy.

Poznámka V tomto prípade sme mali šťastie a vyhli sme sa zásadnému problému takýchto úloh: ako zabezpečiť, aby sme dostali $c,t,b\geq 0$? Typicky sa takáto úloha rieši tak, že hľadáme projekciu riešenia lineárneho systému do podpriestoru $c,t,b\geq 0$ - najbližší vektor k vektoru riešenia, ktorý už leží v požadovanom podpriestore.

Matice et al.

1. Prečo funguje redukcia po riadkoch?

Ekvivalentné úpravy: ľubovoľný riadok alebo stĺpec matice môžeme nahradiť lineárnou kombináciou všetkých riadkov či stĺpcov.

Čo robíme, keď robíme ekvivalentné úpravy matice?

Riešili sme minulý týždeň takéto veci:

$$\begin{pmatrix} 1 & 1 & 1 & 3 \\ 4 & 2 & 1 & -1 \\ 9 & 3 & 1 & 5 \end{pmatrix} \xrightarrow{R_2 - = 4R_1} \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & -2 & -3 & -13 \\ 9 & 3 & 1 & 5 \end{pmatrix} \to \dots$$

Aká matica by previedla pôvodnú maticu vľavo na maticu vpravo? Nechávame prvý a tretí riadok nezmenený, teda tá matica bude mať na diagonále v pozícíách 1 a 3 jednotky, a v 1. a 3. riadku budú okrem toho samé nuly. Na druhom riadku chceme $(-4)\cdot$ prvý riadok + $1\cdot$ druhý riadok, takže výsledok bude vyzerať nejako takto:

$$\begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 & 3 \\ 4 & 2 & 1 & -1 \\ 9 & 3 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & -2 & -3 & -13 \\ 9 & 3 & 1 & 5 \end{pmatrix}$$

Úplne podobne to je s ostatnými úpravami: všetky ekvivalentné úpravy môžeme chápať ako násobenie nejakou maticou.

Čo je augmentovaná matica?

Môžeme si predstaviť, že maticovú rovnicu $\mathbf{A}\mathbf{x}=\mathbf{b}$ rozpíšeme po stĺpcoch ako

$$egin{pmatrix} a_{1,1} \ a_{2,1} \ a_{3,1} \end{pmatrix} x_1 + egin{pmatrix} a_{2,1} \ a_{2,2} \ a_{3,2} \end{pmatrix} x_2 + egin{pmatrix} a_{1,3} \ a_{2,3} \ a_{3,3} \end{pmatrix} x_3 - egin{pmatrix} b_1 \ b_2 \ b_3 \end{pmatrix} = egin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & b_1 \ a_{2,1} & a_{2,2} & a_{2,3} & b_2 \ a_{3,1} & a_{3,2} & a_{3,3} & b_3 \end{pmatrix} \cdot egin{pmatrix} x_1 \ x_2 \ x_3 \ -1 \end{pmatrix} = 0$$

Ak rovnosť vpravo násobíme maticou s nenulovým determinantom, jej platnosť sa nezmení: bude platiť práve vtedy, ako \mathbf{x} je riešením sústavy.

Čo všetky tie operácie, ktoré robíme pri uvádzaní matice do RREF?

Pri uvádzaní matice do diagonálneho tvaru násobíme obe strany sústavy $\mathbf{A}\mathbf{x} = \mathbf{b}$ postupne maticami $\mathbf{T}_1, \mathbf{T}_2, \ldots$, ktoré zodpovedajú jednotlivým operáciám s riadkami:

$$\mathbf{T_1T_2}\cdots \mathbf{Ax} = \mathbf{T_1T_2}\cdots \mathbf{b}$$

Cieľom je uviesť ${\bf A}$ do diagonálneho tvaru. Teda ${\bf T_1T_2\cdots A}={\bf I}$ a to znamená, že ${\bf T_1T_2\cdots = A^{-1}}$ a teda dostávame ${\bf x}={\bf A^{-1}b}$. Inak povedané, riadkovými úpravami vlastne vytvárame inverznú maticu.

Na tomto princípe je založené počítanie inverznej matice pomocou riadkových úprav, kedy augmentovaná matica obsahuje naľavo $\bf A$ a vpravo jednotkovú maticu, a riadkovými úpravami sa snažíme dosiahnuť naľavo jednotkovú maticu, ako pri riešení sústavy rovníc. Potom matica vpravo je i $\bf A^{-1}$.

Príklad:

$$egin{pmatrix} \left(egin{array}{c|c|c} a & b & 1 & 0 \ c & d & 0 & 1 \end{pmatrix} & rac{R_2
ightarrow aR_2 - cR_1}{
ightarrow} \left(egin{array}{c|c|c} a & b & 1 & 0 \ 0 & ad - bc & -c & a \end{pmatrix} \ & rac{R_1
ightarrow (ad - bc)aR_1 - bR_2}{
ightarrow} \left(egin{array}{c|c|c} (ad - bc)a & 0 & ad - bc & -c & a \end{array}
ight) \ & rac{R_1
ightarrow R_1 / a(ad - bc), R_2
ightarrow R_2 / (ad - bc)}{
ightarrow} \left(egin{array}{c|c|c} 1 & 0 & rac{d}{ad - bc} & rac{-b}{ad - bc} \\ 0 & 1 & rac{-c}{ad - bc} & rac{a}{ad - bc} \end{array}
ight) \end{array}$$

a teda

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{D} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, \quad D = ad - bc$$

2. Determinanty

Príklad

Máme v rovine 3 body $A=[x_1,y_1], B=[x_2,y_2], C=[x_3,y_3]$. Obsah trojuholníka ABC je

$$\pmrac{1}{2}egin{array}{cccc} x_1 & x_2 & x_3 \ y_1 & y_2 & y_3 \ 1 & 1 & 1 \ \end{array}$$

kde \pm vyjadruje neistotu ohľadne znamienka, ktoré závisí od toho, ako si označíme body trojuholníka.

To vyzerá ako nejaká projektívna geometria, máme tam afínne súradnice bodov. Z 3D predstavy ľahko pochopíme aj to, ako tento vzťah funguje.

Tento vzťah je zároveň aj dobrý test kolinearity bodov A,B,C.

Výpočet 1

Zhora doprava -zdola doprava

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \rightarrow \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \xrightarrow{a \quad b} \begin{vmatrix} a & b \\ d & e \\ g & h \end{vmatrix} = (aei + bfg + cdh) - (gec + hfa + idb)$$

Príklad

$$\begin{vmatrix} 5 & -1 & 3 \\ 7 & 2 & 4 \\ 6 & 0 & 1 \end{vmatrix} \rightarrow \begin{vmatrix} 5 & -1 & 3 & 5 & -1 \\ 7 & 2 & 4 & 7 & 2 \\ 6 & 0 & 1 & 6 & 0 \end{vmatrix}$$

$$\rightarrow [5 \cdot 2 \cdot 1 + (-1) \cdot 4 \cdot 6 + 3 \cdot 7 \cdot 0] - [6 \cdot 2 \cdot 3 + 0 \cdot 4 \cdot 5 + 1 \cdot 7 \cdot (-1)] = (10 - 24) - (36 - 7) = -14 - 29 = -43$$

Príklad

$$\begin{vmatrix}
-2 & 5 & -1 \\
0 & 1 & 3 \\
4 & 0 & 6
\end{vmatrix} (52)$$

Výpočet 2

Rozvoj podľa riadku alebo stlpca:

$$\begin{vmatrix} 5 & -1 & 3 \\ 7 & 2 & 4 \\ 6 & 0 & 1 \end{vmatrix} = 5 \cdot \begin{vmatrix} 2 & 4 \\ 0 & 1 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 7 & 4 \\ 6 & 1 \end{vmatrix} + 3 \cdot \begin{vmatrix} 7 & 2 \\ 6 & 0 \end{vmatrix}$$
$$= 5 \cdot 2 + 1 \cdot (-17) + 3 \cdot (-12) = -43$$

Formálne:

$$\det A = \sum_j a_{i,j} C_{i,j} = \sum_j a_{i,j} (-1)^{i+j} M_{i,j}$$

kde $M_{i,j}$ je minor pre prvok $a_{i,j}$, teda determinant matice s vynechaným i-tym riadkom a j-tym stĺpcom.

Výpočet 3

Predchádzajúce spôsoby sa hodia pre malé matice (pre veľké nemáme ani skratku z 1. výpočtu) a okrem toho takto počítať determinanty je numericky veľmi neefektívne -je tam fakt veľa násobení a odčítajú sa tam hlava-nehlava potenciálne veľké čísla, a to je pre počítanie v plávajúcej čiarke zhubné.

Metóda rozvoja podľa kofaktorov či minorov by bola zvlášt atraktívna, ak by sme mali v matici veľa núl. Napríklad ak by matica bola dolná trojuholníková, potrebovali by sme iba vynásobiť diagonálne prvky, a podobne to je aj pri hornej trojuholníkovej matici:

$$\begin{vmatrix} a & 0 & 0 & 0 \\ b & c & 0 & 0 \\ d & e & f & 0 \\ g & h & i & j \end{vmatrix} = acfj, \quad \begin{vmatrix} a & b & c & d \\ 0 & e & f & g \\ 0 & 0 & h & i \\ 0 & 0 & 0 & j \end{vmatrix} = = aehj$$

Niečo také sme už robilii, a stálo by za to mať takú možnosť pri výpočte determinantov. Musíme sa preto pozrieť, aký vplyv majú riadkové a stĺpcové operácie na determinant matice.

Základné tvrdenie

$$|\mathbf{A} \cdot \mathbf{B}| = |\mathbf{A}| \cdot |\mathbf{B}|$$

Príklad

Majme maticu

$$A = \left| egin{array}{cc} 1 & 2 \ 3 & 4 \end{array}
ight|$$

Operácia výmeny riadkov:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}$$

a tak máme

$$\left|\begin{array}{cc|c} 1 & 2 \\ 3 & 4 \end{array}\right| = -2 = \frac{1}{\left|\begin{array}{cc|c} 0 & 1 \\ 1 & 0 \end{array}\right|} \cdot \left|\begin{array}{cc|c} 3 & 4 \\ 1 & 2 \end{array}\right| = \frac{1}{-1} \cdot 2$$

Vo všeobecnosti výmena riadkov matice vedie k determinantu s hodnotou

$$(-1)^{celkový\ poč\ et\ vý\ mien\ susedný\ ch\ riadkov}$$

Tu máme jednu výmenu susedných riadkov, takže násobíme (-1).

Podobne operácia zámeny riadka lineárnou kombináciou ostatných:

$$egin{pmatrix} 1 & 2 \ 3 & 4 \end{pmatrix} \xrightarrow{R_2 o R_2 - 3R_1} egin{pmatrix} 1 & 2 \ 0 & -2 \end{pmatrix} = egin{pmatrix} 1 & 0 \ -3 & 1 \end{pmatrix} \cdot egin{pmatrix} 1 & 2 \ 3 & 4 \end{pmatrix}$$

a teda

$$\left|\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right| = \frac{1}{\left|\begin{array}{cc} 1 & 0 \\ -3 & 1 \end{array}\right|} \cdot \left|\begin{array}{cc} 1 & 2 \\ 0 & -2 \end{array}\right| = \frac{1}{1} \cdot (-2) = -2$$

Môže to vyzerať ako zložité - zjednodušujeme počítanie determinantu tak, že počítame hromadu ďalších determinantov. Už sme si ale ukázali, ako upraviť znamienko pri výmene riadkov, a ak odčítame násobky riadkov zhora nadol alebo zhora nadol, budú všetky takéto operácie dávať determinanty dolných (resp. horných) trojuholníkových matíc a budú mať hodnotu 1.

Príklad

Vypočítajte determinant

$$D = egin{array}{cccccc} 3 & 1 & 4 & 10 \ 2 & -1 & 6 & 3 \ 0 & 5 & 3 & -2 \ 1 & 0 & 1 & 5 \ \end{array}$$

Riešenie

Budem písať aj príslušné determinanty, zodpovedajúce riadkovým operáciám.

1. Štvrtý riadok má na začiatku 1, tak ho presunieme nahor. Sú to tri výmeny susedných riadkov, takže

$$D = - egin{bmatrix} 1 & 0 & 1 & 5 \ 3 & 1 & 4 & 10 \ 2 & -1 & 6 & 3 \ 0 & 5 & 3 & -2 \ \end{bmatrix}$$

pretože príslušný determinant matice, posúvajúcej štvrtý riadok nahor, je

$$\begin{vmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{vmatrix} = -1$$

2. Odčítame trojnásobok prvého riadku matice od 2. riadku:

$$D = - egin{bmatrix} 1 & 0 & 1 & 5 \ 0 & 1 & 1 & -5 \ 2 & -1 & 6 & 3 \ 0 & 5 & 3 & -2 \ \end{bmatrix}$$

Nemáme žiadny korekčný faktor, pretože determinant matice príslušnej operácie je

$$\left|\begin{array}{cccc} 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right| = 1$$

3. Odpočítame dvojnásobok prvého riadku od tretieho riadku:

$$D = - egin{bmatrix} 1 & 0 & 1 & 5 \ 0 & 1 & 1 & -5 \ 0 & -1 & 4 & -7 \ 0 & 5 & 3 & -2 \ \end{pmatrix}$$

Opäť nemáme žiadny korekčný faktor, pretože determinant matice príslušnej operácie je

$$\left|\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right| = 1$$

4. Pripočítame k tretiemu riadku druhý:

$$D = - egin{bmatrix} 1 & 0 & 1 & 5 \ 0 & 1 & 1 & -5 \ 0 & 0 & 5 & -12 \ 0 & 5 & 3 & -2 \ \end{pmatrix}$$

a determinant zodpovedajúci príslušnej operácie je

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 1$$

5. Odpočítame 5-násobok 2. riadku od 4. riadku:

$$D = - egin{bmatrix} 1 & 0 & 1 & 5 \ 0 & 1 & 1 & -5 \ 0 & 0 & 5 & -12 \ 0 & 0 & -2 & 23 \ \end{pmatrix}$$

a determinant od tejto operácie je zase

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -5 & 0 & 1 \end{vmatrix} = 1$$

6. Vydelíme 3. riadok piatimi:

$$D=-5 \cdot egin{bmatrix} 1 & 0 & 1 & 5 \ 0 & 1 & 1 & -5 \ 0 & 0 & 1 & -12/5 \ 0 & 0 & -2 & 23 \ \end{pmatrix}$$

pretože determinant od tejto operácie je

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/5 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 1/5$$

7. Pripočítame dvojnásobok tretieho riadku ku štvrtému:

$$D = -5 \cdot \begin{vmatrix} 1 & 0 & 1 & 5 \\ 0 & 1 & 1 & -5 \\ 0 & 0 & 1 & -12/5 \\ 0 & 0 & 0 & 91/5 \end{vmatrix} = -5 \cdot \frac{91}{5} = -91$$

3. Čo robí násobenie maticou?

Môžeme vziať nejakú plochu v rovine, vziať niekoľko vektorov, ktoré v nej končia, transformovať ich pomocou matice a pozrieť sa, v akej oblasti sa nachádzajú. Napríklad si môžeme vziať maticu

$$\mathbf{A} = egin{pmatrix} 1 & -1 \ 1/2 & 1 \end{pmatrix}$$

a pozrieť sa, čo sa stane s jednotkovým štvorcom:

Zväčšenie plochy je dané *determinantom* matice, teda červený rovnobežník má plochu 1.5-krát väčšiu ako modrý, ako ľahko vidieť z obrázku. Táto vlastnosť je veľmi všeobecná, nezávisí od polohy v priestore ani od tvaru východiskovej oblasti.

Dokážeme pre náš prípad:

Strany štvorca sa transformujú na strany rovnobežníka takto:

$$ec{a'} \equiv ec{AB'} = egin{pmatrix} 1 & -1 \ 1/2 & 1 \end{pmatrix} \cdot egin{pmatrix} 1 \ 0 \end{pmatrix} = egin{pmatrix} 1 \ 1/2 \end{pmatrix}, \ ec{b'} \equiv ec{AD'} = egin{pmatrix} 1 & -1 \ 1/2 & 1 \end{pmatrix} \cdot egin{pmatrix} 0 \ 1 \end{pmatrix} = egin{pmatrix} -1 \ 1 \end{pmatrix}$$

Plochu červeného rovnobežníka ľahko vypočítame ako vektorový súčin, teda

$$ec{a'} imesec{b'}\equiv \left|egin{array}{ccc} ec{i} & ec{j} & ec{k} \ 1 & 1/2 & 0 \ -1 & 1 & 0 \end{array}
ight|=ec{k}\det{f A}$$

Determinant je zvláštna funkcia:

- je to lineárna funkcia N vektorových argumentov
- je antisymetrická vo všetkých dvojiciach argumentov teda vzájomná výmena dvoch argumentov zmení znamienko determinantu.

Dá sa ukázať, že taká funkcie je (až na konštantný faktor) jediná.

Stopa

Stopa matice (alebo iného operátora) $\bf A$ je lineárny člen rozvoja determinantu $|1+\epsilon {\bf A}|$ podľa ϵ .

Príklad:

$$|1+\epsilon {f A}| \equiv \left|egin{array}{cc} 1+\epsilon & -\epsilon \ 1/2 \cdot \epsilon & 1+\epsilon \end{array}
ight| = 1+2\epsilon + O(\epsilon^2)$$

takže stopa matice A je 2, a ľahko vidno, že to je súčet diagonálnych prvkov. Napriek tomu, že vyzerá triviálne, stopa je veľmi dôležitá veličina.

Lineárna regresia

V prípade lineárnej regresie máme preurčenú sústavu lineárnych rovníc:

$$egin{pmatrix} x_1^2 & x_1 & 1 \ x_2^2 & x_2 & 1 \ x_3^2 & x_3 & 1 \ & \dots & & \ x_n^2 & x_n & 1 \end{pmatrix} \cdot egin{pmatrix} a_2 \ a_1 \ a_0 \end{pmatrix} = egin{pmatrix} y_1 \ y_2 \ y_3 \ \dots \ y_n \end{pmatrix} \quad ext{resp.} \quad \mathbf{F}eta = \mathbf{Y}$$

Používame štandardné označenie ${f F}$ pre maticu faktorov, ktorej členy závisia od hodnôt x_i , a maticu parametrov β . Rovnica dáva zmysel, iba ak nadbytočné dáta sú zbytočné a hovoria to isté. Ak hovoria niečo iné, úloha nemá riešenie. Môžeme sa ale pozrieť na úlohu tak, že chceme nájsť takú krivku, definovanú parametrami a_i , pre ktorú je súčet štvorcov odchýlok hodnôt y najmenší, teda

$$\hat{eta} = \operatorname{argmin} \left[(\mathbf{Y} - \mathbf{F} eta)^T (\mathbf{Y} - \mathbf{F} eta)
ight]$$

Riešenie si vyžaduje trošku zložitejšie derivovanie, ale vyzerá takto:

$$(\mathbf{F}^{\mathrm{T}}\mathbf{F})\beta = \mathbf{F}^{\mathrm{T}}\mathbf{Y}$$
 : $\beta = (\mathbf{F}^{\mathrm{T}}\mathbf{F})^{-1}\mathbf{F}^{\mathrm{T}}\mathbf{Y}$

V skutočnosti ale neformulejeme problém ako minimalizáciu skalárneho súčinu, ale ako minimalizáciu stopy:

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin} \, \operatorname{Tr} \left[(\mathbf{Y} - \mathbf{F} \boldsymbol{\beta}) (\mathbf{Y} - \mathbf{F} \boldsymbol{\beta})^T \right]$$

Stopa matice Tr je súčet jej diagonálnych prvkov. Toto je všeobecnejší výraz, ktorý funguje v širšej škále prípadov, a jeho minimalizácia podľa β je určitým spôsobom ľahšia.

Domáca úloha (nová)

- 1. Dokážte, že v ľubovoľnom trojuholníku platí $\tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \cdot \tan \beta \cdot \tan \gamma$.
- 2. Máme v rovine bod S, kružnicu k a priamku p. Zostrojte štvorec ABCD tak, že S je priesečník jeho uhlopriečok, A leží na k a B leží na p.

5. Program na budúci týždeň

Ešte lineárna algebra: eigen...