

Olimpiada Națională de Matematică Etapa Națională, Brașov, 2 aprilie 2013

SOLUŢII ŞI BAREME ORIENTATIVE – CLASA a XI-a

Problema 1. Fie A o matrice neinversabilă de ordin n cu elemente reale, $n \geq 2$, și fie A^* adjuncta matricei A. Arătați că $\operatorname{tr}(A^*) \neq -1$ dacă și numai dacă matricea $I_n + A^*$ este inversabilă.

numai daca matricea $I_n + A^*$ este inversabila.
Soluţie. Deoarece matricea A este neinversabilă, avem $\operatorname{rang}(A) \leq n-1$. Distingem cazurile: i . $\operatorname{rang}(A) \leq n-2$. Atunci $A^* = O_n$ şi echivalenţa este evidentă.
$ii. \operatorname{rang}(A) = n - 1$. Atunci $AA^* = O_n$ şi, din inegalitatea lui Sylvester, $0 \ge \operatorname{rang}(A) + \operatorname{rang}(A^*) - n$, de unde $\operatorname{rang}(A^*) \le 1$.
Atunci există o matrice linie $L \in \mathcal{M}_{n,1}(\mathbb{R})$ şi o matrice coloană $C \in \mathcal{M}_{1,n}(\mathbb{R})$ astfel încât $A = CL$. Observăm că $LC = (a) \in \mathcal{M}_1(\mathbb{R})$, cu $a = \operatorname{tr}(A^*)$ şi $(A^*)^2 = CLCL = C(a)L = aA^*$.
Notăm $B=I_n+A^*$. Atunci $(B-I_n)^2=a(B-I_n)$ se scrie $B((a+2)I_n-B)=(a+1)I_n$, de unde rezultă că $a\neq -1$ implică B inversabilă.
în plus, dacă B este inversabilă dar $a=-1$, atunci $B(I_n-B)=O_n$ atrage $B=I_n$ și apoi $A^*=O_n$. Atunci $-1=\operatorname{tr}(A^*)=0$, fals.
Problema 2. Fie m şi n numere naturale, m , $n \geq 2$. Considerăm matricele $A_1, A_2, \ldots, A_m \in \mathcal{M}_n(\mathbb{R})$, nu toate nilpotente. Demonstrați că există un număr întreg $k > 0$ astfel încât $A_1^k + A_2^k + \cdots + A_m^k \neq O_n$.
Soluție. Notăm cu $\lambda_{i1}, \lambda_{i2}, \dots, \lambda_{in}$ valorile proprii ale matricei A_i , $i = 1, 2, \dots, m$. Presupunem prin absurd că $A_1^k + A_2^k + \dots + A_m^k = O_n$, oricare ar fi $k \geq 1$. Atunci tr $(A_1^k) + \text{tr } (A_2^k) + \dots + \text{tr } (A_m^k) = 0$,
de unde $\sum_{j=1}^{m} \sum_{i=1}^{n} \lambda_{ij}^{k} = 0.$
Din relațiile lui Newton, egalitățile $\sum_{ij}\lambda_{ij}^k=0,\ k\geq 1,$ implică $\lambda_{ij}=0,$
V
oricare ar fi $i = 1, 2,, m, j = 1, 2,, n$

Atunci $A_i^n = O_n, i = 1, 2,, m,$	contradicție.
	1n

Problema 3. O funcție $f:(0,\infty)\to (0,\infty)$ se numește contractibilă dacă, pentru orice numere $x,y\in (0,\infty)$, avem $\lim_{n\to\infty}(f^n(x)-f^n(y))=0$, unde $f^n=f\circ f\circ\cdots\circ f$.

- a) Considerăm $f:(0,\infty)\to (0,\infty)$ o funcție contractibilă, continuă, cu proprietatea că are un punct fix, adică există $x_0\in (0,\infty)$ astfel încât $f(x_0)=x_0$. Arătați că f(x)>x, oricare ar fi $x\in (0,x_0)$ și f(x)< x, oricare ar fi $x\in (x_0,\infty)$.
- b) Arătați că funcția $f:(0,\infty)\to (0,\infty)$ dată prin f(x)=x+1/x este contractibilă, dar nu are puncte fixe.

Soluţie. a) Presupunem prin reducere la absurd că f ar admite ar admite un al doilea punct fix $x_1 \in (0, \infty) \setminus \{x_0\}$. Atunci $\lim_{n \to \infty} (f^n(x_0) - f^n(x_1)) = x_0 - x_1 \neq 0$, contradicţie. În acest caz, din continuitatea lui f (proprietatea Darboux) deducem f(x) < x, $\forall x \in (0, x_0)$ sau f(x) > x, $\forall x \in (0, x_0)$.

In primul caz obţinem inductiv că $0 < f^{n+1}(x) < f^n(x) < x$, oricare ar fi $n \in \mathbb{N}^*$ şi $x \in (0, x_0)$. Deducem că şirul $a_n = (f^n(x))_{n \ge 1}$ converge; fie a limita sa. Dacă a > 0, atunci din $a_{n+1} = f(a_n)$ rezultă a = f(a), fals.

a limita sa. Dacă a > 0, atunci din $a_{n+1} = f(a_n)$ rezultă a = f(a), fals. Atunci a = 0, de unde rezultă $\lim_{n \to \infty} (f^n(x_0) - f^n(x)) = x_0 \neq 0, \ \forall \ x \in (0, x_0)$, contradicție. Rămâne f(x) > x, oricare ar fi $x \in (0, x_0)$.

......1p

Analog, f(x) > x, $\forall x \in (x_0, \infty)$ sau f(x) < x, $\forall x \in (x_0, \infty)$. În prima situație deducem inductiv că $f^{n+1}(x) > f^n(x) > x$, oricare ar fi $n \in \mathbb{N}^*$, de unde rezultă $\lim_{n \to \infty} f^n(x) = \infty$ și apoi $\lim_{n \to \infty} (f^n(x) - f^n(x_0)) = \infty$, $\forall x \in (x_0, \infty)$, contradicție. Ca urmare, f(x) < x, oricare ar fi $x \in (x_0, \infty)$.

......1p

b) Fie $x,y \in (0,\infty)$. Putem presupune f(x) < f(y). Notăm $x_n = f^n(x)$, $n \in \mathbb{N}^*$, respectiv $y_n = f^n(y)$, $n \in \mathbb{N}^*$. Avem $2 \le x_n < y_n$, n > 1, deoarece f este strict crescătoare pe $[1,\infty)$. Demonstrăm prin inducție proprietatea $y_n < y_1 + 2\sqrt{n}, \ n \in \mathbb{N}^*$. Proprietatea este verificată pentru n = 1. Presupunem $y_n < y_1 + 2\sqrt{n}$, pentru un număr natural nenul n. Atunci, din monotonia funcției f, obținem:

$$y_{n+1} = f(y_n) < f(y_1 + 2\sqrt{n}) = y_1 + 2\sqrt{n} + \frac{1}{y_1 + 2\sqrt{n}} <$$

$$< y_1 + 2\sqrt{n} + \frac{1}{2\sqrt{n}} < y_1 + 2\sqrt{n+1}.$$

Rezultă $2 \le x_n < y_n < y_1 + 2\sqrt{n} < 3\sqrt{n}, \forall n \in \mathbb{N}, n > y_1^2$. Din

inegalitatea	clasică	1	- r <	e^{-x}	$\forall r$	$\subset \mathbb{R}$	deducem:
megamatea	Clasica	1	$-\iota$	С,	$\vee \mathcal{L}$	$\subset \Pi Z^{\bullet}$	ucuucem.

$0 < y_{n+1} - x_{n+1} = f(y_n)$	$f(x_n) - f(x_n) = (y_n - y_n) - f(x_n) - f($	$(x_n)\left(1-\frac{1}{x_ny_n}\right) <$
$<(y_n-x_n)$	$\left(1 - \frac{1}{9n}\right) < (y_n -$	$x_n)e^{-\frac{1}{9n}},$

pentru	n	\geq	p	:=	$[y_1^2]$	+	1.
--------	---	--------	---	----	-----------	---	----

Obţinem $0 < y_n - x_n < (y_p - x_p)e^{-\frac{1}{9}\sum_{k=p}^{n-1}\frac{1}{k}}, \ \forall \ n > p.$

Cum $\lim_{n\to\infty}\sum_{k=p}^{n-1}\frac{1}{k}=\infty$, găsim $\lim_{n\to\infty}e^{-\frac{1}{9}\sum_{k=p}^{n-1}\frac{1}{k}}=0$, de unde rezultă că $\lim_{n\to\infty}(f^n(y)-f^n(x))=0$. Rezultă că funcția f este contractibilă, evident fără puncte fixe.

Problema 4. a) Fie $f:[0,\infty)\to[0,\infty)$ o funcție derivabilă și convexă. Arătați că dacă $f(x) \leq x$, oricare ar fi $x \geq 0$, atunci $f'(x) \leq 1$, oricare ar fi $x \ge 0$.

- b) Determinați funcțiile $f:[0,\infty)\to[0,\infty)$ derivabile și convexe care au proprietatea că f(0) = 0 și $f'(x) \cdot f(f(x)) = x$, oricare ar fi $x \ge 0$.
- **Soluție.** a) Presupunem contrariul. Există $a \ge 0$ cu f'(a) > 1, deci, cum $\lim_{x\searrow a} \frac{f(x)-f(a)}{x-a} > 1$, există b > a cu $\frac{f(b)-f(a)}{b-a} > 1$.

Pentru orice x>b, din convexitatea funcției f rezultă $\frac{f(x)-f(b)}{x-b}\geq$ $\frac{f(b)-f(a)}{b-a} = m > 1.$

......1p Atunci $f(x) \geq mx - mb + f(b)$, de unde f(x) > x pentru x suficient de mare. Contradictie.

......1p

b) Vom demonstra că f(x) = x, oricare ar fi $x \ge 0$. Cum f'(x) = $\frac{x}{f(f(x))} > 0$, oricare ar fi x > 0, deducem că f este strict crescătoare. Cum f este convexă și derivabilă, rezultă că f' este crescătoare.

Presupunem prin absurd că există f(a) < a. Atunci f(f(a)) < f(a) < a, deci f'(a) > 1. Conform primului punct deducem că există b > a cu f(b) = b. Atunci f(f(b)) = b și apoi f'(b) = 1 < f'(a), în contradicție cu monotonia funcției f'.

......2p Rămâne $f(x) \ge x$, oricare ar fi $x \ge 0$. Atunci $f(f(x)) \ge f(x) \ge x$, de

unde $f'(x) \leq 1$, oricare ar fi $x \geq 0$. Aplicând teorema lui Lagrange avem $f(x) - f(0) = xf'(c_x) \le x$, oricare

ar fi x > 0, de unde f(x) = x. $2 \mathrm{p}$