```
In [8]: import os
                  import pandas as pd
                  import numpy as np
                  import matplotlib.pyplot as plt
                  import seaborn as sns
                  import statsmodels.api as sm
                  from sklearn.linear model import Ridge, Lasso
                  from sklearn.model_selection import train_test_split
                  from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_s
                  from statsmodels.stats.outliers_influence import variance_inflation_factor
                  # Load the dataset
                  os.chdir("/Users/ayeshasiddiqha/Downloads")
                  df = pd.read csv('jamboree admission.csv')
                  # Step 1: Exploratory Data Analysis (EDA)
                  # Checking the basic structure of the data
                  print(df.info())
                  print(df.describe())
                  # Dropping the Serial No. column as it is not relevant
                  df = df.drop(columns=['Serial No.'])
                  # Checking for missing values
                  print(df.isnull().sum())
                  # Step 1.1: Univariate Analysis - Distribution Plots for Continuous Varia
                  continuous_vars = ['GRE Score', 'TOEFL Score', 'University Rating',
                                                            'SOP', 'CGPA', 'Chance of Admit ']
                  for var in continuous vars:
                          plt.figure(figsize=(8, 6))
                          sns.histplot(df[var], kde=True)
                          plt.title(f'Distribution of {var}')
                          plt.show()
                  # Step 1.2: Bivariate Analysis - Correlation Matrix
                  corr_matrix = df.corr()
                  plt.figure(figsize=(10, 8))
                  sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f', linewidt
                  plt.title('Correlation Matrix')
                  plt.show()
                  # Step 2: Data Preprocessing
                  # 2.1: Duplicate value check
                  print(f'Duplicate rows: {df.duplicated().sum()}')
                  # 2.2: Missing value treatment (Impute with median for continuous variabl
                  df = df.fillna(df.median())
                  # 2.3: Outlier treatment - Checking outliers using IQR
                  Q1 = df[continuous_vars].quantile(0.25)
                  Q3 = df[continuous_vars].quantile(0.75)
                  IQR = Q3 - Q1
                  outlier_condition = ((df[continuous_vars] < (Q1 - 1.5 * IQR)) | (df[continuous_vars] < (Q1 - 1.5 * IQR)) | (d
```

12/12/2024 12:06

```
df[outlier condition] = np.nan
df = df.fillna(df.median())
# 2.4: Feature Engineering — Standardization (Scaling continuous variable
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
df[['GRE Score', 'TOEFL Score', 'University Rating',
    'SOP', 'CGPA']] = scaler.fit_transform(df[['GRE Score', 'TOEFL Score'
                                                     'University Rating',
                                                     'SOP', 'CGPA']])
# Step 3: Model Building - Linear Regression
# Separate features and target variable
X = df.drop(columns=['Chance of Admit '])
y = df['Chance of Admit']
# Adding a constant to the model (for intercept)
X = sm.add constant(X)
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
# Linear Regression model
model = sm.OLS(y_train, X_train).fit()
print(model.summary())
# Step 4: Testing Assumptions of Linear Regression
# 4.1: Multicollinearity check (VIF)
vif_data = pd.DataFrame()
vif_data['Variable'] = X_train.columns
vif_data['VIF'] = [variance_inflation_factor(X_train.values, i) for i in
# Drop columns with VIF > 5
vif_data = vif_data[vif_data['VIF'] < 5]</pre>
print(vif data)
# 4.2: Mean of residuals
residuals = y_train - model.fittedvalues
print(f'Mean of Residuals: {np.mean(residuals)}')
# 4.3: Linearity of variables (Residual Plot)
plt.scatter(model.fittedvalues, residuals)
plt.axhline(y=0, color='r', linestyle='--')
plt.title('Residuals vs Fitted Values')
plt.xlabel('Fitted Values')
plt.ylabel('Residuals')
plt.show()
# 4.4: Homoscedasticity (Constant Variance of Errors)
sns.scatterplot(x=model.fittedvalues, y=residuals)
plt.axhline(y=0, color='r', linestyle='--')
plt.title('Homoscedasticity Check')
plt.xlabel('Fitted Values')
plt.ylabel('Residuals')
plt.show()
# 4.5: Normality of Residuals (Histogram & Q-Q Plot)
sns.histplot(residuals, kde=True)
```

```
plt.title('Residuals Distribution')
plt.show()
import scipy.stats as stats
stats.probplot(residuals, dist="norm", plot=plt)
plt.title('Q-Q Plot for Normality Check')
plt.show()
# Step 5: Model Performance Evaluation
y_pred = model.predict(X_test)
# Metrics
mae = mean_absolute_error(y_test, y_pred)
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
r2 = r2_score(y_test, y_pred)
adj_r2 = 1 - (1 - r2) * (len(y_test) - 1) / (len(y_test) - X_test.shape[1]
print(f'Mean Absolute Error (MAE): {mae}')
print(f'Root Mean Squared Error (RMSE): {rmse}')
print(f'R2 Score: {r2}')
print(f'Adjusted R2 Score: {adj_r2}')
# Step 6: Ridge and Lasso Regression
# Ridge Regression
ridge = Ridge(alpha=1.0)
ridge.fit(X_train, y_train)
ridge_pred = ridge.predict(X_test)
# Lasso Regression
lasso = Lasso(alpha=0.1)
lasso.fit(X_train, y_train)
lasso_pred = lasso.predict(X_test)
# Evaluate Ridge and Lasso models
ridge_mae = mean_absolute_error(y_test, ridge_pred)
ridge_rmse = np.sqrt(mean_squared_error(y_test, ridge_pred))
ridge_r2 = r2_score(y_test, ridge_pred)
lasso_mae = mean_absolute_error(y_test, lasso_pred)
lasso_rmse = np.sqrt(mean_squared_error(y_test, lasso_pred))
lasso_r2 = r2_score(y_test, lasso_pred)
print("Ridge Regression Performance:")
print(f'MAE: {ridge_mae}, RMSE: {ridge_rmse}, R2: {ridge_r2}')
print("Lasso Regression Performance:")
print(f'MAE: {lasso_mae}, RMSE: {lasso_rmse}, R2: {lasso_r2}')
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype		
0	Serial No.	500 non-null	int64		
1	GRE Score	500 non-null	int64		
2	TOEFL Score	500 non-null	int64		
3	University Rating	500 non-null	int64		
4	SOP	500 non-null	float64		
5	LOR	500 non-null	float64		
6	CGPA	500 non-null	float64		
7	Research	500 non-null	int64		
8	Chance of Admit	500 non-null	float64		
d_{1}					

dtypes: float64(4), int64(5)

memory usage: 35.3 KB

None

	Serial No.	GRE Score	TOEFL Score	University Rating	S0P
\					
count	500.000000	500.000000	500.000000	500.000000	500.000000
mean	250.500000	316.472000	107.192000	3.114000	3.374000
std	144.481833	11.295148	6.081868	1.143512	0.991004
min	1.000000	290.000000	92.000000	1.000000	1.000000
25%	125.750000	308.000000	103.000000	2.000000	2.500000
50%	250.500000	317.000000	107.000000	3.000000	3.500000
75%	375.250000	325.000000	112.000000	4.000000	4.000000
max	500.000000	340.000000	120.000000	5.000000	5.000000

	LOR	CGPA	Research	Chance of Admit
count	500.00000	500.000000	500.000000	500.00000
mean	3.48400	8.576440	0.560000	0.72174
std	0.92545	0.604813	0.496884	0.14114
min	1.00000	6.800000	0.000000	0.34000
25%	3.00000	8.127500	0.000000	0.63000
50%	3.50000	8.560000	1.000000	0.72000
75%	4.00000	9.040000	1.000000	0.82000
max	5.00000	9.920000	1.000000	0.97000
CDE C		•		

GRE Score 0 TOEFL Score 0 University Rating 0 S0P 0 L0R 0 CGPA 0 Research 0 Chance of Admit dtype: int64

Duplicate rows: 0

OLS Regression Results

=======================================	========	=======	========	========	========
==== Dep. Variable:	Chance of	Admit	R-squared:		
0.813					
Model: 0.810		0LS	Adj. R-squar	red:	
Method:	Least Squares		F-statistic:		2
43.3		•	. 5 (4 (15 (10)		
Date:	Thu, 12 Dec 2024 12:03:39		<pre>Prob (F-statistic): Log-Likelihood:</pre>		2.07e
-138 Time:					56
0.67	_	2103133	Log Line	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	30
No. Observations: 105.		400	AIC:		-1
Df Residuals:		392	BIC:		-1
073.					
Df Model:		7			
Covariance Type:					
========					
	coef	std err	t	P> t	[0.025
0.975]					
const	0.6598	0.017	39.357	0.000	0.627
0.693	0 0054	0 007	2 024	0.000	0.012
GRE Score 0.038	0.0251	0.007	3.821	0.000	0.012
TOEFL Score	0.0155	0.006	2.698	0.007	0.004
0.027					
University Rating	0.0023	0.005	0.484	0.628	-0.007
0.012 SOP	0.0070	0.005	1.387	0.166	-0.003
0.017	0.0070	01003	11507	0.100	0.003
LOR	0.0150	0.005	3.253	0.001	0.006
0.024	0.0676	0 007	10 252	0.000	0.055
CGPA 0.080	0.0676	0.007	10.353	0.000	0.055
Research	0.0231	0.007	3.099	0.002	0.008
0.038					
=======================================	=======	=======	========		=======
==== Omn i hs :		72 507	Dumbin Water		
Omnibus: 1.974		72.597	Durbin-Watso	on:	
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	18
0.042			•		
Skew:		-0.895	Prob(JB):		8.02
e-40 Kurtosis:		5.756	Cond. No.		
22.2		J:/JU	CONG. NO.		
=======================================	=======	=======			
====					

Notes:

 $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

Variable VIF
1 GRE Score 4.489983

```
2 TOEFL Score 3.664298
3 University Rating 2.572110
4 SOP 2.785764
5 LOR 1.977698
6 CGPA 4.654540
7 Research 1.518065
Mean of Residuals: 3.5735303605122226e-16
```

Residuals vs Fitted Values

Residuals Distribution

Q-Q Plot for Normality Check

Mean Absolute Error (MAE): 0.04181871751792343 Root Mean Squared Error (RMSE): 0.06044901917513528

R2 Score: 0.821316189768417

Adjusted R2 Score: 0.8056077229348713

Ridge Regression Performance:

MAE: 0.04183775276281172, RMSE: 0.06046868388638309, R2: 0.821199915356903

4

Lasso Regression Performance:

MAE: 0.10078324542875508, RMSE: 0.1255411111457596, R2: 0.2293119517011262

8

In []: