Synthèse Multi-objectifs dans les Processus Décisionnels de Markov

Florent Delgrange

Mab2 Sciences Informatiques

Année académique 2017-2018

Vérification formelle et synthèse de stratégie : motivations

Vérification et synthèse

- Systèmes réactifs dans des environnements stochastiques
 - → exemples: protocoles de communication, réseaux de capteurs, voitures autonomes, etc.
- Vérification de l'exactitude du comportement de tels systèmes
- Synthèse de stratégies satisfaisant des objectifs dans de tels systèmes
 - → Décisif!
 - absence de bugs
 - sécurité

Vérification formelle et synthèse de stratégie : motivations

Vérification formelle

- Le testing démontre la présence de bugs, mais pas leur absence!
- Les algorithmes de model-checking permettent d'automatiquement vérifier formellement des propriétés dans un système

Contexte

Synthèse de stratégie

 Construire la stratégie satisfaisant un problème dans le système

Contexte

But du mémoire

- Synthèse de stratégies satisfaisant des problèmes mono-objectifs de plus court chemin stochastique
- Synthèse de stratégies satisfaisant simultanément plusieurs objectifs en milieu stochastique
- Étudier PRCTL, une logique permettant d'exprimer des propriétés pour les modèles probabilistes ainsi que ses algorithmes de model-checking
- Apporter une contribution à Storm
 - Model-checker probabiliste en développement
 - Implémente des algorithmes récents de model-checking multi-objectif
 - Étude de l'outil (algorithmes, articles, etc.)

- Système stochastique
- permet de modéliser à la fois des situations probabilistes et non-déterministes (i.e., nécessitant des prises de décision)
- peut être enrichi avec une fonction de poids, permettant de pondérer le coût de chaque décision

- S est un ensemble fini d'états et A est un ensemble fini d'actions,
 - $\rightarrow \forall s \in S$, $A(s) \subseteq A$ est l'ensemble des actions activées de s,

- S est un ensemble fini d'états et A est un ensemble fini d'actions,
 - $\rightarrow \forall s \in S$, $A(s) \subseteq A$ est l'ensemble des actions activées de s,
- $\Delta: S \times A \times S \rightarrow [0, 1] \cap \mathbb{Q}$ est une fonction probabiliste de transition,

- S est un ensemble fini d'états et A est un ensemble fini d'actions,
 - $\rightarrow \forall s \in S, \ A(s) \subseteq A \text{ est l'ensemble des } actions activées de S,$
- $\Delta: S \times A \times S \rightarrow [0, 1] \cap \mathbb{Q}$ est une fonction probabiliste de transition,

- S est un ensemble fini d'états et A est un ensemble fini d'actions,
 - $\rightarrow \forall s \in S$, $A(s) \subseteq A$ est l'ensemble des actions activées de s,
- $\Delta: S \times A \times S \rightarrow [0, 1] \cap \mathbb{Q}$ est une fonction probabiliste de transition,
- $W: A \rightarrow \mathbb{N}_0$ est une fonction de pondération,

Définition

- S est un ensemble fini d'états et A est un ensemble fini d'actions,
 - $\rightarrow \forall s \in S, A(s) \subseteq A$ est l'ensemble des actions activées de s,
- $\Delta: S \times A \times S \rightarrow [0, 1] \cap \mathbb{Q}$ est une fonction probabiliste de transition,
- $w: A \to \mathbb{N}_0$ est une fonction de pondération,
- AP est un ensemble de propositions atomiques et L: S → AP est une fonction de labelling ou d'étiquetage d'états
 - → utilisé pour la vérification du modèle par model-checking

•
$$S = \{s, t, u\}$$

•
$$A = \{\alpha, \beta, \gamma\}$$

•
$$L(t) = \{goal\}$$

•
$$A(s) = \{\beta\}, A(t) = \{\gamma\},$$

 $A(u) = \{\alpha, \beta\}$

•
$$w(\alpha) = 5$$
, $w(\beta) = 3$, $w(\gamma) = 2$

•
$$\Delta(s_0, \beta, s_1) = \Delta(s_0, \beta, s_2) = \frac{1}{2}$$

Chemin: $\pi = S_0 \xrightarrow{\alpha_1} S_1 \xrightarrow{\alpha_2} S_2 \xrightarrow{\alpha_3} \dots$ où $\Delta(S_i, \alpha_{i+1}, S_{i+1}) > 0, \forall i \in \mathbb{N}$

Exemple

•
$$S = \{s, t, u\}$$

•
$$A = \{\alpha, \beta, \gamma\}$$

•
$$L(t) = \{goal\}$$

•
$$A(s) = \{\beta\}, A(t) = \{\gamma\},$$

 $A(u) = \{\alpha, \beta\}$

•
$$w(\alpha) = 5$$
, $w(\beta) = 3$, $w(\gamma) = 2$

•
$$\Delta(s_0, \beta, s_1) = \Delta(s_0, \beta, s_2) = \frac{1}{2}$$

Chemin: $\pi = S \xrightarrow{\beta} t \xrightarrow{\gamma} S \xrightarrow{\beta} (u \xrightarrow{\alpha})^{\omega} \in Paths(s)$

Stratégies

Une stratégie σ choisit à chaque étape une action activée $\alpha \in A(s)$ de l'état courant s

- → résout le non-déterminisme
- → une stratégie peut utiliser...
 - de la mémoire (finie) : choisit les actions en fonction d'une quantité d'informations finie récoltée dans le passé
 - de l'aléatoire : choisit l'action selon une distribution de probabilité sur A(s)
- → les stratégies les plus simples sont les stratégies *pures* (i.e., sans aléatoire) et sans mémoire $\leadsto \sigma : S \to A$

Chaîne de Markov induite par stratégie

Une fois que la stratégie contrôle les décisions du MDP, ce dernier a un comportement purement stochastique

- → Une chaîne de Markov est induite par la stratégie
 - On peut mesurer la probabilité des évènements $E \subseteq Paths(s)$ dans la chaîne de Markov induite par toute stratégie $\sigma \leadsto \mathbb{P}_s^{\sigma}(E)$

$$- \lozenge T = \{ \pi = s_0 s_1 s_2 \cdots \in Paths(\mathcal{M}) \mid \exists n \in \mathbb{N}, s_n \in T \}$$

- \longrightarrow atteindre T, où $T \subseteq S$ est un sous-ensemble d'états cibles
 - $-?\exists \sigma, \mathbb{P}_{\varsigma}^{\sigma}(\lozenge\{t\})=1$

Problèmes de décisions

Existe-t-il une stratégie σ qui satisfait ...

Problèmes mono-objectifs

- SR : une haute probabilité d'accessibilité stochastique
- SSP-E: une bonne espérance du coût pour atteindre la cible
- SSP-P: une accessibilité à la cible avec un coût limité sous une haute probabilité
- SP-G: une garantie d'une borne en terme de coût pour atteindre la cible

Synthèse 0000000000

Problèmes multi-objectifs

- SSP-WE: une bonne espérance du coût pour atteindre la cible sous une garantie de pire cas
- MOSR: plusieurs problèmes SR simultanément
- SSP-PQ: plusieurs problèmes SSP-P simultanément

Problèmes de décisions

Existe-t-il une stratégie σ qui satisfait ...

Problèmes mono-objectifs

- SR : une haute probabilité d'accessibilité stochastique
- SSP-E: une bonne espérance du coût pour atteindre la cible
- SSP-P: une accessibilité à la cible avec un coût limité sous une haute probabilité
- SP-G : une garantie d'une borne en terme de coût pour atteindre la cible

Problèmes multi-objectifs

- SSP-WE: une bonne espérance du coût pour atteindre la cible sous une garantie de pire cas
- MOSR : plusieurs problèmes SR simultanément
- SSP-PQ: plusieurs problèmes SSP-P simultanément

Introduction

Problème multi-objectif: exemple

Communication entre noeuds dans un réseau de capteurs

- Un obstacle sépare n₀ et n₂
- Communication directe n₀ → n₂
 - plus rapide que de passer par un noeud intermédiaire
 - risque de corruption des paquets envoyés (bruit)
- Communication indirecte: n₀ → n₁ → n₂
 - plus lent (n₁ doit attendre la confirmation de réception du paquet par n₂ et n₀ doit attendre la confirmation de n₁)
 - risque de corruption de paquet négligeable

Introduction

Problème multi-objectif: exemple

Communication entre noeuds dans un réseau de capteurs

Problème multi-objectif: exemple

Communication entre noeuds dans un réseau de capteurs

Somme tronquée

- Les problèmes de décision présentés concernent le problème de plus court chemin stochastique
- Calculer le coût des chemins somme tronquée :

- soit
$$T \subseteq S$$
 un ensemble d'états cibles, et $\pi = s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \cdots \in Paths(\mathcal{M})$

$$\mathsf{TS}^{\mathsf{T}}(\pi) = \begin{cases} \sum_{i=1}^{n} w(\alpha_i) & \text{si } S_n \text{ est la première visite de } T, \\ +\infty & \text{si } T \text{ n'est jamais atteint dans } \pi \end{cases}$$

SSP-E

Plus court chemin stochastique

SSP-E: Bonne espérance de coût pour atteindre la cible

- $\mathbb{E}[X] = \sum_{i} x_i \cdot \mathbb{P}(X = x_i)$
 - moyenne pondérée par les probabilités
- $\mathbb{E}_{c}^{\sigma}(\mathsf{TS}^{\mathsf{T}})$: coût moyen attendu pour atteindre T depuis S

?
$$\exists \sigma, \ \mathbb{E}_s^{\sigma}(\mathsf{TS}^T) \leq \ell$$

SSP-E : Bonne espérance de coût pour atteindre la cible

- $\mathbb{E}[X] = \sum_{i} x_i \cdot \mathbb{P}(X = x_i)$
 - moyenne pondérée par les probabilités
- $\mathbb{E}_{c}^{\sigma}(\mathsf{TS}^{\mathsf{T}})$: coût moyen attendu pour atteindre T depuis S

?
$$\exists \sigma, \ \mathbb{E}_s^{\sigma}(\mathsf{TS}^T) \leq \ell$$

Synthèse

000000

- Peut être résolu par programmation linéaire en temps polynomial en la taille du modèle
- Requiert une stratégie pure et sans mémoire

SSP-E: Bonne espérance de coût pour atteindre la cible

$$?\exists \sigma, \ \mathbb{E}_s^{\sigma}(\mathsf{TS}^{\mathsf{sommeil}}) \leq 6$$

SSP-E: Bonne espérance de coût pour atteindre la cible

$$?\exists \sigma, \ \mathbb{E}_s^{\sigma}(\mathsf{TS}^{\mathsf{sommeil}}) \leq 6$$

Synthèse

SSP-E: Bonne espérance de coût pour atteindre la cible

$$?\exists \sigma, \ \mathbb{E}_s^{\sigma}(\mathsf{TS}^{\mathsf{sommeil}}) \leq 6$$

Synthèse 00000000000

•
$$\mathbb{E}_{s_0}^{\sigma}(\mathsf{TS}^{\mathsf{sommeil}}) = 8$$

•
$$\mathbb{E}_{S_0}^{\sigma}(\mathsf{TS}^{\mathsf{sommeil}}) = 4.57$$

SSP-E : Bonne espérance de coût pour atteindre la cible

$$?\exists \sigma, \ \mathbb{E}_s^{\sigma}(\mathsf{TS}^{\mathsf{sommeil}}) \leq 6$$

•
$$\mathbb{E}_{s_0}^{\sigma}(\mathsf{TS}^{\mathsf{sommeil}}) = 8 > 6$$

•
$$\mathbb{E}_{s_0}^{\sigma}(\mathsf{TS}^{\mathsf{sommeil}}) = 4.57 \le 6$$

SSP-WE: worst case expectation

 SSP-WE: assurer une garantie en terme de coût pour atteindre la cible tout en ayant une bonne espérance pour atteindre la cible

$$?\exists \sigma, \ \forall \pi \in Paths^{\sigma}(s), \ \mathsf{TS}^{T}(\pi) \leq \ell_{1} \ \land \ \mathbb{E}_{s}^{\sigma}(\mathsf{TS}^{T}) \leq \ell_{2}$$

- Complexité en temps pseudo-polynomiale en l₁
- Requiert une stratégie à mémoire finie

- Assurer un duty cycle de 12 ms
- Bonne espérance pour atteindre sommeil en respectant ce duty cycle?

- 1. Déplier \mathcal{M} jusque ℓ_1 depuis S
 - \rightarrow jusque 12 depuis s_0 (actif)

- 1. **Déplier** \mathcal{M} jusque ℓ_1 depuis S
 - \rightarrow jusque 12 depuis s_0 (actif)

SSP-WE

Bonne espérance sous un pire cas

- 1. Déplier $\mathcal M$ jusque ℓ_1 depuis $\mathcal S$
 - \rightarrow jusque 12 depuis s_0 (actif)

Bonne espérance sous un pire cas Algorithme

- 1. **Déplier** \mathcal{M} jusque ℓ_1 depuis S
 - \rightarrow jusque 12 depuis s_0 (actif)

- 1. Déplier $\mathcal M$ jusque ℓ_1 depuis $\mathcal S$
 - \rightarrow jusque 12 depuis s_0 (actif)

SSP-WE

Bonne espérance sous un pire cas

Algorithme

1. Déplier \mathcal{M} jusque $\ell_1 \implies \text{temps pseudo-polynomial en } \ell_1$

? $\exists \sigma$, $\forall \pi \in Paths^{\sigma}(s)$, $\mathsf{TS}^{\mathsf{sommeil}}(\pi) \leq 12 \land \mathbb{E}^{\sigma}_{s_0}(\mathsf{TS}^{\mathsf{sommeil}}) \leq 6$

SSP-WE

Bonne espérance sous un pire cas

Algorithme

2. Calculer l'ensemblde des actions safe \mathbb{A} de \mathcal{M}_{ℓ_1}

?
$$\exists \sigma$$
, $\forall \pi \in Paths^{\sigma}(s)$, $\mathsf{TS}^{\mathsf{sommeil}}(\pi) \leq 12 \land \mathbb{E}^{\sigma}_{s_0}(\mathsf{TS}^{\mathsf{sommeil}}) \leq 6$

Algorithme

3. Limiter le dépliage \mathcal{M}_{ℓ_1} aux actions safe de $\mathbb{A} \leadsto \mathcal{M}_{\ell_1}^{\mathbb{A}}$

•••?
$$\exists \sigma^*$$
, $\mathbb{E}^{\sigma*}_{(s_0,0)}(\mathsf{TS}^{\{(s_3,v)\,|\,v\leq 12\}})\leq 6$

Algorithme

4. Résoudre le problème de bonne espérance jusqu'aux cibles dans $\mathcal{M}^{\mathbb{A}}_{\bullet}$

$$\longrightarrow \mathbb{E}_{(s_0,0)}^{\sigma^*}(\mathsf{TS}^{\{(s_3,v)\,|\,v\leq 12\}}) = \frac{7}{8} \cdot 4 + \frac{1}{8} \cdot 12 = 5$$

Algorithme

$$\forall \pi \in Paths^{\sigma}(s), TS^{\text{sommeil}}(\pi) \leq 12 \land \mathbb{E}^{\sigma}_{s_0}(TS^{\text{sommeil}}) \leq 6$$

 σ^* sans mémoire dans $\mathcal{M}_{12}^{\mathbb{A}}$

 σ à mémoire finie dans ${\cal M}$

• Stratégie optimale σ : tester une fois un envoi direct et passer par le noeud n_1 si l'envoi direct est un échec.

Résultats

Problème	Temps	Stratégie	
		type	mémoire
SR (accessibilité)	$P(\mathcal{M})$	pure	sans mémoire
SSP-E (bon coût moyen attendu)	P (ℳ)	pure	sans mémoire
SSP-P (requête percentile)	$P(\mathcal{M}) \cdot P_{ps}(\ell)$	pure	$P_{ps}(\ell)$
SP-G (garantie de coût)	$P(\mathcal{M})$	pure	sans mémoire
SSP-WE (garantie + bonne espérance)	$P(\mathcal{M}) \cdot P_{ps}(\ell)$	pure	$P_{ps}(\ell)$
MOSR			
(accessibilité multiple	$P(\mathcal{M})$	randomisée	sans mémoire
+ états cibles absorbants)			
MOSR (accessibilité multiple)	$P(\mathcal{M}) \cdot E(\mathcal{Q})$	randomisée	E(Q)
SSP-PQ			
(Multiple requêtes percentiles	$P(\mathcal{M}) \cdot P_{ps}(\ell_{max})$	randomisée	$P_{ps}(\ell)$
sur une seule dimension)			
SSP-PQ			
(Multiples requêtes percentiles	$P(\mathcal{M}) \cdot E(\mathcal{Q})$	randomisée	$E(\mathcal{Q})$
sur multiple dimensions)			

Table – P: polynomial – P_{ps} : pseudo-polynomial – E: exponential

Perspectives

- Problème d'explosion de l'espace d'état : abstraction du système en utilisant les jeux stochastiques, exploration de l'espace d'état par machine learning
- Stratégies compréhensibles : stratégies "moins optimales" mais sans aléatoire
- Pas de dépliage
- Autres fonctions de coût : mean-payoff, discounted sum, etc.
- → Implémentation de nouveaux algorithmes dans Storm