Introduction to Computer Graphics

K. Jünemann
Department Informations- und Elektrotechnik
HAW Hamburg

What's it about?

- Create 3D scenes
- Simulate how objects move
- Mathematical background

Programming environment: Webbrowser

- ▶ Platform independent, websites easy to distribute
- Modern browser are general, highly optimized computing platforms: audio/video, parallel computing, 3D graphics (WebGL), etc.
- Drawback / Opportunity: new language Javascript
- Alternatives: OpenGL, DirectX, Java3D

Javascript

- Javascript is the language of the internet
 - HMTL + CSS + Javascript: Very popular framework
 - It used to be an easy little language
 - A lot of development recently
- Similar to languages you know:
 - syntax like C
 - dynamic typing like in Matlab
 - object oriented like Java
- New features
 - functional programming
 - prototype based object orientation
- Runs on
 - all web browsers
 - standalone, e.g. node.js
 - (Microcontrollers: Espruino, Tessel)

Working environment

Ideally: work on your own laptop

Required software:

- A WebGL-capable browser, e.g.
 - Firefox
 - ► Chrome
- An editor of your choice
 - Most popular: Visual Studio Code (Freely-licensed version: VSCodium)
 - Old school but powerful: Emacs, Vim
 - ► Many more: Notepad++, Komodo Edit, Atom, Brackets, Eclipse, Netbeans, Aptana Studio, etc.
- Useful tools:
 - node.js (Javascript engine)
 - eslint (Syntax checker)
 - git (Source code management)
 - Python (for running a web server)

More details on course contents

- 1. Introduction
- 2. Review of vectors and matrices
- 3. Introduction to Javascript
- 4. Getting started with WebGL and three.js
- 5. Geometries and coordinate systems
- 6. Moving things around
- 7. Linear maps and transformation matrices
- 8. Affine maps and homogeneous coordinates
- 9. Camera models and the view pipeline
- 10. Light and material
- 11. Shading and the fragment pipeline
- 12. Textures

Organization

- ► EMIL-Key: *CG_WS2023_JNM*
- Lecture material: https://github.com/kjuen/CG23
- ▶ 12 chapters, 10 lecture sessions (roughly one chaper each week)
 - Problem sheets for mathematical parts
- ▶ 4 graded programming assignments throughout the course
- Lecture format:
 - Ordinary lectures, room needs to be discussed
 - Lecture material also available in video format.
 - Labs: no groups, work on your own at home
 - ► No mandatory presence at HAW
 - ► Teams session to provide support

Examination scheme: Portfolio

- Written exam at end of semester: 50% of overall grade
- ► All assignments are *graded*: 50% of overall grade
 - ▶ assignment 1: 5%
 - ► assignment 2: 10%
 - ▶ assignment 3: 20%
 - assignment 4: 15%
- Pre-examination credit: pass first 3 assignments with at least 5 points
- You have to write the code on your own!
- If you drop out of the course after lab 1 it is a failed attempt!

Schedule of the lecture

week	lecture no	Content
41	1	Intro and Chapter 2
42	2	Chapter 3
43	3	Chapter 4 and 5 (part 1)
45	4	Chapter 5 (part 2) and 6
46	_	Lab 1
47	5	Chapter 7
48	6	Chapter 8
49	_	Lab 2
50	7	Chapter 9
51	8	Chapter 10, Lab 3
54	9	Chapter 11
55	10	Chapter 12
56	_	Lab 4 and exam preparation

Looking for a Bachelor Thesis?

- Topic: Machine Learning with Deep Neural Networks
- Application Domain: Femtosecond Laser Physics
 - Cooperation with research group at DESY: https://www.kai-hamburg.org

- Prerequisites:
 - no prior knowledge in machine learning required
 - a bit of 'Signals and Systems' knowledge is useful