Задача 1

Доказать или опровергнуть утверждение: Если $f \in \mathcal{L}^1$ мы можем его поменять на множестве $N \in \mathcal{N}_\mu$, так что $\widetilde{f} \in \mathcal{L}^1$ и $\int f d\mu = \int \widetilde{f} d\mu$

Доказательство:

- 1. Пусть $f \in \mathcal{L}^1$
- 2. Пусть $\widetilde{f}=f$ почти всюду. Это означает, что $\mu\left\{f\neq\widetilde{f}\right\}\subset N\in\mathcal{N}_{\mu}$
- 3. Заметим, что $\int f d\mu = \int_N f d\mu + \int_{N^c} f d\mu = \int_N \widetilde{f} d\mu + \int_{N^c} \widetilde{f} d\mu = \int \widetilde{f} d\mu$
- 4. Поскольку $\int_{N^c} f d\mu = \int_{N^c} \widetilde{f} d\mu$ и из теоремы 11.2 (ii) следует, что $\int_N \widetilde{f} d\mu = 0$ и $\int_{N^c} f d\mu = 0$. Таким образом $\int f d\mu = \int \widetilde{f} d\mu$.
- 5. Из (4) следует, что если $f \in \mathcal{L}^1$, то и $\widetilde{f} \in \mathcal{L}^1$

Задача 2

Каждое счетное множество λ - нуль множество. Показать на канторовом множестве, что обратное не верно. Что произойдет, если мы заменим λ^1 на λ^2

Figure 1:

Конструкция множества Кантора

- 1. Рассмотрим множество Кантора. Множество Кантора строится путем разбиения каждого отрезка на две трети на каждой итерации
- 2. Можно заметить, что $\lambda^1\left(C_n\right)=(2/3)^n$. Где C_n множество на шаге $n\in\mathbb{N}$. Более того $\lim_{n\to\infty}\lambda^1\left(C_n\right)=\lim_{n\to\infty}\left(2/3\right)^n=0$. Следовательно $C_\infty\in\mathcal{N}_\mu$ и по определению предела при $n\to\infty$ $(n\in\mathbb{N})$. Поскольку контр пример обратному утверждению найден, следовательно обратное утверждение не верно.
- 3. Если по одномерному множеству Кантора мы попытаемся взять меру Лебега λ^2 , то по определению меры Лебега λ^2 ($C_n \times (0,0]$) = $(b_1 a_1)(b_2 a_2) = 0 \ \forall n \in \mathbb{N}$

Задача 3

Доказать, что $\forall \alpha, c > 0$ следующие утверждения верны:

- 1. $\mu\{|u| \geq c\} \leq \frac{1}{c} \int |u| d\mu$
- 2. $\mu\{|u| > c\} \le \frac{1}{c^p} \int |u|^p d\mu \ \forall p : 0$
- 3. $\mu\{|u|\geq c\}\leq \frac{1}{\phi(c)}\int\phi\left(|u|\right)d\mu\ \forall\phi:\mathbb{R}^+\to\mathbb{R}^+$ неубывающей
- 4. $\mu\{|u| \ge \alpha \int u d\mu\} \le \frac{1}{\alpha} \ u \ge 0$
- 5. $\mu\left\{|u| < c\right\} \leq \frac{1}{\psi(c)} \int \psi\left(|u|\right) d\mu \ \forall \psi: \mathbb{R}^+ \to \mathbb{R}^+$ невозрастающей

Доказательство 1:

- 1. Из свойства 9.8 (i) и положительной гомогенности $\mu\left\{|u|\geq c\right\}=\int\mathbbm{1}_{\{|u|\geq c\}}d\mu=\frac{1}{c}\int c\mathbbm{1}_{\{|u|\geq c\}}d\mu$
- 2. Поскольку $|u| \geq c$, следовательно $\frac{1}{c} \int c \mathbb{1}_{\{|u| \geq c\}} d\mu \leq \frac{1}{c} \int |u| \mathbb{1}_{\{|u| \geq c\}} d\mu \leq \frac{1}{c} \int |u| d\mu$
- 3. Таким образом $\mu\{|u| \ge c\} \le \frac{1}{c} \int |u| \, d\mu$

Доказательство 2:

- 1. Заметим, что $\mu\{|u|>c\} \le \mu\{|u|\ge c\}$. Тогда $\mu\{|u|>c\} \le \frac{1}{c^p}\int c^p \mathbb{1}_{\{|u|\ge c\}} d\mu$
- 2. Поскольку p,c>0 и $|u|^p\geq c\implies |u|^p\geq c^p$, то $\frac{1}{c^p}\int c^p\mathbb{1}_{\{|u|\geq c\}}d\mu\leq \frac{1}{c^p}\int |u|^p\,\mathbb{1}_{\{|u|\geq c\}}d\mu\implies \mu\{|u|>c\}\leq \frac{1}{c^p}\int |u|^p\,d\mu$

Доказательство 3:

- 1. $\mu\{|u| \ge c\} = \frac{1}{\phi(c)} \int \phi(c) \, \mathbb{1}_{\{|u| \ge c\}} d\mu$
- 2. Поскольку $|u| \geq c$ и $\forall x, y \in \mathbb{R}$ (x > y) ϕ $(x) \geq \phi$ (y), следовательно ϕ $(|u|) \geq \phi$ (c) и $\frac{1}{\phi(c)} \int \phi$ (c) 11 $\{|u| \geq c\}$ $d\mu \leq \frac{1}{\phi(c)} \int \phi$ (|u|) 11 $\{|u| \geq c\}$ $d\mu \leq \frac{1}{\phi(c)} \int \phi$ (|u|) $d\mu \Rightarrow \mu$ $\{|u| \geq c\} \leq \frac{1}{\phi(c)} \int \phi$ (|u|) $d\mu$

Доказательство 4:

- 1. $\mu\{|u| \ge \alpha \int u d\mu\} = \frac{1}{\alpha} \int \alpha \mathbb{1}_{\{|u| \ge \alpha \int u d\mu\}} d\mu \ \alpha > 0$
- 2. Поскольку $|u| \geq \alpha \int u d\mu$, следовательно $\frac{|u|}{\int u d\mu} \geq \alpha$ и $\frac{1}{\alpha} \int \alpha \mathbb{1}_{\{|u| \geq \alpha \int u d\mu\}} d\mu \leq \frac{1}{\alpha} \int \frac{|u|}{\int u d\mu} \mathbb{1}_{\{|u| \geq \alpha \int u d\mu\}} d\mu \leq \frac{1}{\alpha} \int \frac{|u|}{\int u d\mu} d\mu = \frac{1}{\alpha}$
- 3. Поэтому выполнено равенство в 3

Доказательство 5:

- 1. $\mu\left\{\left|u\right| < c\right\} \le \frac{1}{\psi(c)} \int \psi\left(c\right) \mathbbm{1}_{\left\{\left|u\right| < c\right\}} d\mu$
- 2. Поскольку |u| < c и $\forall x,y \in \mathbb{R}$ (x>y) ψ $(x) \leq \psi$ (y), следовательно ψ $(|u|) \geq \phi$ (c) и $\frac{1}{\psi(c)} \int \psi$ (c) $\mathbb{1}_{\{|u| < c\}} d\mu \leq \frac{1}{\psi(c)} \int \psi$ (|u|) $\mathbb{1}_{\{|u| < c\}} d\mu \leq \frac{1}{\psi(c)} \int \psi$ (|u|) $d\mu \Longrightarrow \mu$ $\{|u| > c\} \leq \frac{1}{\psi(c)} \int \psi$ (|u|) $d\mu$

Показать, что $\mathbb{P}\left\{|\xi-\mathbb{E}\left(\xi\right)|\geq \alpha\sqrt{\mathbb{V}\left(\xi\right)}\right\}\leq \frac{1}{\alpha^{2}}$, где $(\Omega,\mathcal{A},\mathbb{P})$ - вероятностное пространство. ξ - случайная величина. $\mathbb{E}\left(\xi\right)=\int \xi d\mathbb{P}$ - ожидание $\mathbb{V}\left(\xi\right)=\int \left(\xi-\mathbb{E}\left(\xi\right)\right)^{2}d\mathbb{P}$ - дисперсия **Доказательство:**

- 1. Пусть $(\Omega, \mathcal{A}, \mathbb{P})$ вероятностное пространство $\xi: \Omega \to \mathbb{R}$ случайная величина
- 2. Рассмотрим $\mathbb{P}\left\{\left|\xi-\mathbb{E}\left(\xi\right)\right|\geq \alpha\sqrt{\mathbb{V}\left(\xi\right)}\right\}=\frac{1}{\alpha^{2}}\int\alpha^{2}\mathbb{1}_{\left\{\left|\xi-\mathbb{E}\left(\xi\right)\right|\geq\alpha\sqrt{\mathbb{V}\left(\xi\right)}\right\}}d\mathbb{P}$
- 3. Поскольку $|\xi \mathbb{E}(\xi)| \ge \alpha \sqrt{\mathbb{V}(\xi)} \implies \alpha^2 \le \frac{|\xi \mathbb{E}(\xi)|^2}{\mathbb{V}(\xi)}$, следовательно $\frac{1}{\alpha^2} \int \alpha^2 \mathbb{1}_{\left\{|\xi \mathbb{E}(\xi)| \ge \alpha \sqrt{\mathbb{V}(\xi)}\right\}} d\mathbb{P} \le \frac{1}{\alpha^2} \int \frac{|\xi \mathbb{E}(\xi)|^2}{\mathbb{V}(\xi)} \mathbb{1}_{\left\{|\xi \mathbb{E}(\xi)| \ge \alpha \sqrt{\mathbb{V}(\xi)}\right\}} d\mathbb{P}$
- 4. Используя определение дисперсии $\frac{1}{\alpha^2}\int \frac{|\xi-\mathbb{E}(\xi)|^2}{\int (\xi-\mathbb{E}(\xi))^2 d\mathbb{P}} \mathbb{1}_{\left\{|\xi-\mathbb{E}(\xi)|\geq \alpha\sqrt{\mathbb{V}(\xi)}\right\}} d\mathbb{P} \leq \frac{1}{\alpha^2}\int \frac{(\xi-\mathbb{E}(\xi))^2}{\int (\xi-\mathbb{E}(\xi))^2 d\mathbb{P}} d\mathbb{P}.$ Заметим, что мы делим два одинаковых интеграла, поэтому $\mathbb{P}\left\{|\xi-\mathbb{E}(\xi)|\geq \alpha\sqrt{\mathbb{V}(\xi)}\right\}\leq \frac{1}{\alpha^2}$
- 5. Ч.Т.Д.

Задача № 4

Показать, что если $\int |u|^p d\mu < \infty, \ 0 < p < \infty$ то |u| определена на $\mathbb R$ почти всюду. Выполняется ли это для $\int \arctan(u) d\mu < \infty$

Доказательство:

- 1. Пусть $N = \{ |u| = \infty \} = \{ |u|^p = \infty \}$, где 0
- 2. Заметим, что $N = \bigcap_{n \in \mathbb{N}} \{|u|^p \ge n\}$ и такая последовательность множеств непрерывна снизу
- 3. По свойству 4.3 (vii) $\mu\left(N\right)=\mu\left(\bigcap_{n\in\mathbb{N}}\left\{\left|u\right|^{p}\geq n\right\}\right)=\lim_{n\to\infty}\mu\left\{\left|u\right|^{p}\geq n\right\}$
- 4. Мы уже показали в задаче 2, что $\lim_{n\to\infty}\mu\left\{\left|u\right|^p\geq n\right\}\leq \lim_{n\to\infty}\frac{1}{n}\int\left|u\right|^pd\mu=0$
- 5. Таким образом, мы показали, что $|u|^p$ определена на $\mathbb R$ почти всюду. Из (1) следует, что, если $|u|^p$ определена почти на $\mathbb R$, то и |u| определена почти всюду на $\mathbb R$.
- 6. Ч.Т.Д

Задача № 5

Пусть $\left(X,\overline{\mathcal{A}},\overline{\mu}\right)$ - дополнение к (X,\mathcal{A},μ)

• Показать, что для любой $f^* \in \mathcal{E}^+\left(\overline{\mathcal{A}}\right)$ существует $f,g \in \mathcal{E}^+\left(\mathcal{A}\right)$ где $f \leq f^* \leq g$ и $\mu\left(f \neq g\right) = 0$ также как и $\int f d\mu = \int f^* d\mu = \int g d\mu$

Доказательство:

- 1. Пусть $(X, \overline{\mathcal{A}}, \overline{\mu})$ дополнение к (X, \mathcal{A}, μ)
- 2. Пусть $f^* \in \mathcal{E}^+(\mathcal{A})$
- 3. Из 4.15 (v) известно, что $\overline{A} = \{A^* \subset X : \exists A, B \in A, A \subset A^* \subset B, \mu(B-A) = 0\}$.
- 4. Полагая, что $f=A^*$ и используя (3) положим, что A=f, B=g и $f, g\in \mathcal{E}^+(\mathcal{A})$ так что $\mu\left(B-A\right)=0.$

- 5. Из монотонности и (3) следует, что $f \le f^* \le g$
- 6. Поскольку мера разности функций равна 0 (из 4) следовательно мера множества на котором функции отличаются тоже равна 0. То есть $\mu(f \neq g) = 0$.
- 7. Таким образом по определению 11.1 f = g почти всюду.
- 8. Поскольку $\mathcal{E}^+(\mathcal{A}) \subset \mathcal{M}^+_{\mathbb{R}}(\mathcal{A})$, то комбинируя с (7) из следствия 11.3 (ii) $\int f d\mu = \int g d\mu$
- 9. Используя монотонность интеграла видим, что $\int f d\mu = \int f^* d\mu = \int g d\mu$
- 10. Ч.Т.Д.
 - Показать, что $u^*: X \to \mathbb{R}$ $\overline{\mathcal{A}}$ измерима, тогда и только тогда, когда существуют \mathcal{A} -измеримые функции $u, w: X \to \mathbb{R}$ такие что $u \le u^* \le w$ и u = w почти всюду.

Доказательство:

- 1. Пусть $(X, \overline{\mathcal{A}}, \overline{\mu})$ дополнение к (X, \mathcal{A}, μ)
- 2. С одной стороны.
 - (a) Пусть $u^*:X o\mathbb{R}$ $\overline{\mathcal{A}}$ измерима
 - (b) По определению $\overline{\mathcal{A}} = \{A^* \subset X : \exists A, B \in \mathcal{A}, A \subset A^* \subset B, \mu(B-A) = 0\}$. Полагая, что $A^* = \{u^* > \alpha\}$ из указанного определения представим $A = \{u > \alpha\}$ и $B = \{w > \alpha\}$ $\mu(B-A) = 0$
 - (c) Из условия монотонности в (b) $A \subset A^* \subset B \Longrightarrow u \le u^* \le w$
 - (d) Если $\mu(B-A) = \mu(\{u < \alpha\} \cap \{w > \alpha\}) = \mu(\{x \in X : u(x) < \alpha < w(x)\}) = 0$
 - (e) Из (2.c) и (2.d) то u = w почти всюду
- 3. С другой стороны
- 4. Пусть $u, w: X \to \mathbb{R}$ \mathcal{A} -измеримые функции такие что $u \le u^* \le w$ и u = w почти всюду
- 5. Пусто

Задача № 6

Пусть (X, \mathcal{A}, μ) - пространство с конечной мерой. Пусть $E \subset X \mu^*(E) := \inf \{ \mu(A) : A \in \mathcal{A}, E \subset A \}$ и $\mu_*(E) := \sup \{ \mu(A) : A \in \mathcal{A}, A \subset E \}$

• Показать, что $\mu_*(E) \le \mu^*(E)$

Доказательство:

- 1. Пусть E произвольно. Положим $\forall A, B \in \mathcal{A} : B \subset E \subset A$. Из монотонности меры следует, что $\mu(B) \leq \mu(A)$. Поскольку это выполнено для всех $A, B \in \mathcal{A}$ то и $\mu_*(E) \leq \mu^*(E)$
- Показать, что $\mu_*(E) + \mu^*(E^c) = \mu(X)$

Доказательство:

1. По определению $\mu_*(E) := \sup \{ \mu(A) : A \in \mathcal{A}, A \subset E \}$

- 2. Поскольку $A \in \mathcal{A}_X \implies A = X \cap A = X A^C \implies sup\left\{\mu\left(A\right) : A \in \mathcal{A}, A \subset E\right\} = sup\left\{\mu\left(X A^C\right) : A \in \mathcal{A}, A \subset E\right\}$
- 3. Поскольку $A^C \subset X$, и $A \subset E \Longleftrightarrow E^C \subset A^C$ то из монотонности меры: $sup\left\{\mu\left(X-A^C\right): A \in \mathcal{A}, A \subset E\right\} = sup\left\{\mu\left(X\right) \mu\left(A^C\right): A^C \in \mathcal{A}, E^C \subset A^C\right\}$
- 4. Заметим, что супремум не зависит от единицы: $sup\left\{\mu\left(X\right) \mu\left(A^{C}\right) : A \in \mathcal{A}, E^{C} \subset A^{C}\right\} = \mu\left(X\right) + sup\left\{-\mu\left(A^{C}\right) : A^{C} \in \mathcal{A}, E^{C} \subset A^{C}\right\}$
- 5. Известно, что $sup\left(-A\right)=-inf\left(A\right)$, поэтому $\mu\left(X\right)+sup\left\{-\mu\left(A^{C}\right):A\in\mathcal{A},E^{C}\subset A^{C}\right\}=\mu\left(X\right)-inf\left\{\mu\left(A^{C}\right):A^{C}\in\mathcal{A},E^{C}\subset A^{C}\right\}$
- 6. Таким образом $\mu_*(E) = \mu(X) \mu^*(E^C) \implies \mu_*(E) + \mu^*(E^C) = \mu(X)$
- 7. Ч.Т.Д
- Показать, что $\mu^* (E \cup F) < \mu^* (E) + \mu^* (F)$

Доказательство:

- 1. По определению $\mu^*(E) = \inf \{ \mu(A) : A \in \mathcal{A}, E \subset A \}$ и $\mu^*(F) = \inf \{ \mu(B) : B \in \mathcal{A}, F \subset B \}$
- 2. Тогда $\mu^*(E) + \mu^*(F) = \inf \{ \mu(A) : A \in \mathcal{A}, E \subset A \} + \inf \{ \mu(B) : B \in \mathcal{A}, F \subset B \}$
- 3. Кроме того $\mu^{*}(E) + \mu^{*}(F) = \inf \{ \mu(A) + \mu(B) : A, B \in A, E \subset A, F \subset B \}$
- 4. Из субаддитивности μ $(A \cup B) \le \mu$ $(A) + \mu$ (B) \inf $\{\mu$ $(A \cup B) : A, B \in \mathcal{A}, E \subset A, F \subset B\} \le \mu^*$ $(E) + \mu^*$ (F)
- 5. Поскольку сигма алгебра закнута относительно дополнения и $E \subset A, F \subset B \implies E \cup F \subset A \cup B$, то $inf\{\mu(A \cup B) : A, B \in \mathcal{A}, E \subset A, F \subset B\} = inf\{\mu(A \cup B) : A \cup B \in \mathcal{A}, E \cup F \subset A \cup B\}$. Это в свою очеред, по определению $\mu^*(E \cup F)$
- 6. Таким образом из (4) и (5) $\mu^* (E \cup F) \le \mu^* (E) + \mu^* (F)$
- 7. Ч.Т.Д.
- Показать, что $\mu_*(E) + \mu_*(F) \le \mu_*(E \sqcup F)$

Доказательство:

- 1. Пусто
- $\forall E \subset X \; \exists E_*, E^* \in \mathcal{A} : \mu(E_*) = \mu_*(E) \; \text{и} \; \mu(E^*) = \mu^*(E)$

Доказательство:

- 1. Рассмотрим последовательность множеств $(E_n)_{n\in\mathbb{N}}\subset\mathcal{A}$ такую, что $\forall n\in\mathbb{N}, A_n\subset A_{n+1}$ и $A_n\uparrow E_*$ что в свою очередь дает $\mu(A_n)\uparrow\mu(E_*)$
- 2. Положим, что $|\mu_*(E) \mu(A_n)| \leq \frac{1}{n}$. Тогда $\lim_{n \to \infty} |\mu_*(E) \mu(A_n)| \leq \frac{1}{n} \iff |\mu_*(E) \mu(E_*)| \leq 0 \implies 0 \leq \mu_*(E) \mu(E_*) \leq 0 \implies \mu_*(E) = \mu(E_*)$

- 3. Рассмотрим последовательность множеств $(E_n)_{n\in\mathbb{N}}\subset\mathcal{A}$ такую, что $\forall n\in\mathbb{N}, A_n\supset A_{n+1}$ и $A_n\downarrow E^*$ что в свою очередь дает $\mu\left(A_n\right)\downarrow\mu\left(E^*\right)$
- 4. Положим, что $|\mu^*(E) \mu(A_n)| \leq \frac{1}{n}$. Тогда $\lim_{n \to \infty} |\mu^*(E) \mu(A_n)| \leq \frac{1}{n} \iff |\mu^*(E) \mu(E^*)| \leq 0 \implies 0 \leq \mu^*(E) \mu(E^*) \leq 0 \implies \mu^*(E) = \mu(E^*)$
- 5. Ч.Т.Д.

Задача № 7

Пусть (X, \mathcal{A}, μ) - измеримое пространство. Положим, $u \in \mathcal{M}(\mathcal{A})$ и u = w почти всюду. Когда можно говорить, что $w \in \mathcal{M}(\mathcal{A})$

Решение:

- 1. Пусть (X, \mathcal{A}, μ) измеримое пространство.
- 2. Положим, $u \in \mathcal{M}(\mathcal{A})$ и u = w почти всюду. Это означает, что $N = \{x \in X : w(x) \neq u(w)\} \in \mathcal{N}_{\mu}$
- 3. Мы можем представить $w(x) = \mathbb{1}_{N}(x) w(x) + \mathbb{1}_{N^{C}}(x) w(x)$
- 4. Поскольку $u \in \mathcal{M}(\mathcal{A})$ и $u(x) = \mathbb{1}_{N^C}(x) w(x)$, то $\mathbb{1}_{N^C}(x) w(x) \in \mathcal{M}(\mathcal{A})$.
- 5. Поскольку w^{-1} измерима $\forall B \in \mathcal{B}(\mathbb{R}) \ N \subset w^{-1}(B) \in \mathcal{A}$. Заметим, что вообще говоря $N \notin \mathcal{A}$. Тогда, необходимо дополнить \mathcal{A} до $\overline{\mathcal{A}}$ (дополнение нуль множествами) так, чтобы $N \in \overline{\mathcal{A}}$
- 6. Таким образом, если $N\in\mathcal{N}_{\mu}$, то мы можем говорить, что $w\in\mathcal{M}\left(\mathcal{A}\right)$

Задача № 8

Показать, что u - непрерывна почти всюду и u почти всюду равна всюду непрерывной функции на примере $u=\mathbb{1}_{\mathbb{Q}}(x)$ и $u=\mathbb{1}_{[0,\infty)}(x)$

Решение:

- 1. Рассмотрим $u = \mathbb{1}_{\mathbb{Q}}(x)$.
- 2. Мы называем $f: \mathbb{R}^m \to \mathbb{R}^n$ непрерывной в точке $x \in \mathbb{R}^m$ если $\forall \epsilon > 0 \ \exists \delta = \delta \ (\epsilon, x) : |x y| < \delta \Rightarrow |f \ (x) f \ (y)| < \epsilon$
- 3. Мы называем множество $S\subset X$ плотным на X тогда и только тогда, когда $\forall \epsilon>0$ и $x\in X$ $\exists s\in S: |x-s|<\epsilon$
- 4. Известен тот факт, что \mathbb{Q} плотно на \mathbb{R} . Отсюда следует, что для $\forall x \in \mathbb{R} \ \exists \epsilon > 0, \delta = \delta \left(\epsilon, x \right) : |x y| < \delta \Rightarrow |f \left(x \right) f \left(y \right)| \not< \epsilon$. Таким образом $\forall x \in \mathbb{R} \ u = \mathbb{1}_{\mathbb{Q}} \left(x \right)$ не является непрерывной.
- 5. Таким образом $\mathbb{1}_{\mathbb{Q}}(x)$ не является непрерывной почти всюду, но при этом почти всюду равна непрерывной константной функции $\mathbb{1}_{\mathbb{R}}(x)$
- 6. Рассмотрим $u=\mathbb{1}_{[0,\infty)}\left(x\right)$. Это ступенчатая функция. Множество при котором $\left\{x\in\mathbb{R}:\mathbb{1}_{[0,\infty)}\left(x\right)=\mathbb{1}_{\mathbb{R}}\left(x\right)\right\}=\left(-\infty,0\right]\notin\mathcal{N}_{u}$
- 7. Однако $\{x \in \mathbb{R} : \mathbb{1}_{[0,\infty)}(x)$ непрерывна $\} = \{0\} \in \mathcal{N}_{\mu}$. Следовательно такая функция непрерывна почти всюду

- 8. Таким образом $u = \mathbb{1}_{[0,\infty)}(x)$ непрерывна почти всюду, но не почти всюду равна непрерывной $\mathbb{1}_{\mathbb{R}}(x)$. Множество при котором выполнено равенство не имеет меры 0.
- 9. Ч.Т.Д.

Задача № 10

Сконструируйте пример, который показывает, что при $u, w \in \mathcal{M}^+(\mathcal{B}) \ \forall B \in \mathcal{B}$ равенство $\int_B u d\mu = \int_B w d\mu$ не обязательно имплицирует за собой равенство u = w почти всюду

Решение:

- 1. Пусть $u, w \in \mathcal{M}^+(\mathcal{B})$ и $\forall B \in \mathcal{B}$ выполнено равенство $\int_B u d\mu = \int_B w d\mu$
- 2. Положим $\mu = \lambda^1 m$ мера, определенная на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, такая что $m = \mathbb{1}_{\{|x| \le 1\}} + \infty \mathbb{1}_{\{|x| > 1\}}$. Мы договариваемся что $\pm \infty \cdot 0 = 0$
- 3. Пусть $u \equiv 1$ и $w = \mathbb{1}_{\{|x| < 1\}} + 2\mathbb{1}_{\{|x| > 1\}}$
- 4. Заметим, что при $B=\{|x|>1\}$ μ $(u\neq w)=\infty$, при этом $\forall B\in\mathcal{B}\left(\mathbb{R}\right)$ $\int_{B}ud\mu=\int_{B}wd\mu$
- 5. Ч.Т.Д.

Задача № 11

Показать следующее продолжение следствия 11.7. Пусть $\mathcal{C} \subset \mathcal{P}(X)$ замкнутный относительно пересечения, генератор сигма алгебры \mathcal{A} , который содержит последовательность $C_n \uparrow X$, такой что $\mu(C_n) < \infty$. Для всех $u, w \in \mathcal{L}^1(\mu) \ \forall C \in \mathcal{C}, \int_C u d\mu = \int_C w d\mu \iff u = w$ почти всюду.

Доказательство:

- 1. Пусть $\mathcal{C} \subset \mathcal{P}(X)$ замкнутный относительно пересечения, генератор сигма алгебры \mathcal{A} .
- 2. Пусть $(C_n)_{n\in I}\subset \mathcal{C}$, $C_n\uparrow X$, так что $\mu(C_n)<\infty$.
- 3. С одной стороны предположим, что $u, w \in \mathcal{L}^1(\mu)$. Пусть $C \in \mathcal{C}$ произвольно и $\int_C u d\mu = \int_C w d\mu$
 - (a) Из определения 10.1 $\forall C \in \mathcal{C}, \int_C u d\mu \int_C w d\mu = \int_C u^+ d\mu \int_C u^- d\mu \int_C w^+ d\mu + \int_C w^- d\mu \Longrightarrow \int_C u^\pm d\mu = \int_C w^\mp d\mu$
 - (b) Пусть $\nu_1: C \to \int_C u^+ d\mu \int_C w^- d\mu$, $\nu_1: C \to \int_C u^- d\mu \int_C w^+ d\mu$ некоторые меры, определенные на \mathcal{C} . Заметим, что на \mathcal{C} они совпадают. Следовательно, по теореме 5.7 такая мера единственным образом продолжается на \mathcal{A} : $\nu_1=\nu_2=\nu$
 - (c) Заметим, что $\mathcal{A} \subset \mathcal{A}$ и $u^{\pm}, w^{\mp} \in \mathcal{M}^+(\mathcal{A})$ из определения интеграла для положительных функций. Тогда из следствия $11.7\ u=w$ почти всюду.
- 4. С другой стороны, пусть $u, w \in \mathcal{L}^1(\mu)$, и u = w почти всюду. Тогда из следствия $11.3 \int u d\mu = \int w d\mu \implies \int_C u d\mu = \int_C w d\mu$
- 5. Ч.Т.Д.