Topology Exercise Sheet 1

October 26, 2021

NAMEN, MATRIKELNUMMER

Excercise 1

1.

Let $X := \{0, 1\}$. For a topology \mathcal{I} it holds that $\mathcal{I} \subset \mathcal{P}(X) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$. Since $\bigcup \emptyset = \emptyset$ and $\bigcap \emptyset = X$, $\{\emptyset, X\} \subset \mathcal{I}$ leaving only three possibilities.

- $\mathcal{I} = \{X, \emptyset\}$ is a topology because
 - $-X \cup \emptyset = X \in \mathcal{I}$
 - $-X \cap \emptyset = \emptyset \in \mathcal{I}.$
- $\mathcal{I} = \{X, \{0\}, \emptyset\}$ is a topology because
 - $-\ X \cup \emptyset = X \in \mathcal{I}$
 - $-X \cup \{0\} = X \in \mathcal{I}$
 - $\{0\} \cup \emptyset = \{0\} \in \mathcal{I}$
 - $-X\cap\emptyset=\emptyset\in\mathcal{I}$
 - $-X \cap \{0\} = \{0\} \in \mathcal{I}$
 - $\{0\} \cap \emptyset = \emptyset \in \mathcal{I}.$
- $\mathcal{I} = \{X, \{1\}, \emptyset\}$ is a topology because it is the second case with 0 replaced by 1.
- $\mathcal{I} = \{X, \{1\}, \{0\}, \emptyset\}$ is the discrete topology.

2.

If a topology \mathcal{I} is metrizable, there exists a metric d with $d(0,1)=:b\neq 0$, because otherwise $d(0,1)=0 \implies 0=1$ which is a contradiction. Then $B_{\frac{b}{2}}(0)=\{0\},\ B_{\frac{b}{2}}(1)=\{1\},\ B_{2b}(0)=B_{2b}(1)=\{0,\ 1\}$ are open sets in the topology \mathcal{I} . Then

- $\mathcal{I} = \{X, \emptyset\}$ is not metrizable because $B_{\frac{b}{2}}(0) = \{0\} \notin \mathcal{I}$
- $\mathcal{I}=\{X,\ \{0\},\ \emptyset\}$ is not metrizable because $B_{\frac{b}{2}}(1)=\{1\}\notin\mathcal{I}$
- $\mathcal{I}=\{X,\ \{1\},\ \emptyset\}$ is not metrizable because $B_{\frac{b}{2}}(0)=\{0\}\notin\mathcal{I}$
- $\mathcal{I} = \{X, \{1\}, \{0\}, \emptyset\}$ is metrizable because for every $U \in \mathcal{I}$ and every $x \in U$ there exists the ball $B := B_{\frac{b}{2}}(x) = \{x\}$ satisfying $B \subset U$. Thus if U is in \mathcal{I} , it is also in the induced topology \mathcal{I}_d . And if $U \in \mathcal{I}_d$, $U \in \mathcal{I} = \mathcal{P}(X)$.

Excercise 2

Let $U_i = \mathbb{V}(F_i)^c$ be open sets with $F_i \subset \mathbb{C}[z_1, \ldots, z_n]$ for $i \in \mathcal{J}$. Then

$$\bigcup_{i \in \mathcal{I}} U_i = \bigcup_{i \in \mathcal{I}} \mathbb{V}(F_i)^c = \left(\bigcap_{i \in \mathcal{I}} \mathbb{V}(F_i)\right)^c = \left(\mathbb{V}\left(\bigcup_{i \in \mathcal{I}} F_i\right)\right)^c$$

because

$$x \in \bigcap_{i \in \mathcal{J}} \mathbb{V}(F_i) \Leftrightarrow f(x) = 0 \ \forall f \in F_i \ \forall i \in \mathcal{J}$$

 $\Leftrightarrow f(x) = 0 \ \forall f \in \bigcup_{i \in \mathcal{J}} F_i.$

Thus $\bigcup_{i\in\mathcal{J}}U_i=\mathbb{V}(F_i)^c$ is open. Let $U_i=\mathbb{V}(F_i)^c$ be open sets with $F_i\subset\mathbb{C}\left[z_1,\ldots,\,z_n\right]$ for $i\in\mathcal{J}:=\{1,\ldots,\,M\}$. Let

$$G:=\left\{ \Pi_{i=1}^{M}p_{i}\mid p_{i}\in F_{i}\right\} \subset\mathbb{C}\left[z_{1},\,\ldots,\,z_{n}\right].$$

Then

$$\bigcap_{i=1}^{M} U_i = \bigcap_{i=1}^{M} \mathbb{V}(F_i)^c = \left(\bigcup_{i=1}^{M} \mathbb{V}(F_i)\right)^c$$

and

$$x \in \bigcup_{i=1}^{M} \mathbb{V}(F_i) \Leftrightarrow \exists i \in \mathcal{J} : x \in \mathbb{V}(F_i)$$
$$\Leftrightarrow \exists i \in \mathcal{J} : \forall f \in F_i : f(x) = 0$$
$$\Leftrightarrow \forall p = p_1 \cdots p_i \cdots p_m \in G : p(x) = 0$$

where the last equivalence holds because if $p_i(x) = 0$ for all $p_i \in F_i$, then p(x) = 0 for all $p = p_1 \cdots p_i \cdots p_m \in G$; and if for every $i \in \mathcal{J}$ there exists

 $f_i \in F_i$ with $f_i(x) \neq 0$ then $p(x) = f_1(x) \cdots f_M(x) \neq 0$. Thus $x \in \bigcup_{i=1}^M \mathbb{V}(F_i) \Leftrightarrow \emptyset$ $p \in G: p(x) = 0 \Leftrightarrow x \in \mathbb{V}(G)$. Then

$$\bigcap_{i=1}^{M} U_i = \left(\bigcup_{i=1}^{M} \mathbb{V}(F_i)\right)^c = (\mathbb{V}(G))^c$$

is an open set. Hence the Zariski topology is a topology.

2.

Let $U = \mathbb{V}(F)^c$. It is to show that there exists $B \subset \mathcal{B}$ with $U = \bigcup B$. Let $B := {\mathbb{V}(f) \mid f \in F}$. Then

$$x \in \bigcup B \Leftrightarrow \exists \ f \in F: \ x \in \mathbb{V}(f)^c$$

$$\Leftrightarrow \exists \ f \in F: f(x) \neq 0$$

$$\Leftrightarrow x \notin \mathbb{V}(F) \Leftrightarrow x \in \mathbb{V}(F)^c = U$$

and hence $U = \bigcup B$.

Excercise 3

1.

Let $\mathcal{I} \subset \mathcal{P}(V)$ be the topology induced by $\|.\|$ and \mathcal{I}' the topology induced by $\|.\|'$. Let $U \in \mathcal{I}$ be open and $x \in U$. Because $\{B_{\epsilon}^{\|.\|}(y) \mid y \in V, \, \epsilon > 0\}$ is a basis of \mathcal{I} , there exists $\epsilon > 0$ with $B_{\epsilon}^{\|.\|}(x) \subset U$. Then $B_{A_{\epsilon}}^{\|.\|'}(x) \subset B_{\epsilon}^{\|.\|}(x)$, because for all $y \in B_{A_{\epsilon}}^{\|.\|'}(x)$

$$||y - x|| \le \frac{1}{A} ||y - x||' < \frac{1}{A} (A\epsilon) = \epsilon.$$

Hence for all $x \in U$ exists $\delta = A\epsilon > 0$ such that $B_{\delta}^{\|\cdot\|'}(x) = B_{A\epsilon}^{\|\cdot\|'}(x) \subset B_{\epsilon}^{\|\cdot\|}(x) \subset U$ and thus $U \in \mathcal{I}'$.

If $U \in \mathcal{I}'$ and $x \in U$, since $\{B_{\epsilon}^{\|\cdot\|'}(y) \mid y \in V, \epsilon > 0\}$ is a basis of I', there exists $\epsilon > 0$ with $B_{\epsilon}^{\|\cdot\|'}(x) \subset U$. Then $B_{\epsilon}^{\|\cdot\|}(x) \subset B_{\epsilon}^{\|\cdot\|'}(x)$, because for all $y \in B_{\epsilon}^{\|\cdot\|}(x)$

$$||y - x||' \le B||y - x|| < B\frac{\epsilon}{B} = \epsilon.$$

Hence for all $x \in U$ exists $\delta = \frac{\epsilon}{B} > 0$ such that $B_{\delta}^{\|\cdot\|}(x) = B_{\frac{\epsilon}{B}}^{\|\cdot\|}(x) \subset B_{\epsilon}^{\|\cdot\|'}(x) \subset U$ and thus $U \in \mathcal{I}$.

2.

It is known from Analysis I, that $||x||_{\infty} := \max_{i \in \{1, ..., n\}} |x_i|$ defines a norm on \mathbb{R}^n . Let $1 \leq p < \infty$, then for every $x \in V$ there exists $m \in \{1, ..., n\}$ with $||x||_{\infty} = |x_m|$ and

$$||x||_{\infty} = |x_m| = (|x_m|^p)^{\frac{1}{p}} \le \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} = ||x||_p$$
$$\le (n|x_m|^p)^{\frac{1}{p}} = n^{\frac{1}{p}}|x_m| = n^{\frac{1}{p}}||x||_{\infty}$$
$$\Rightarrow ||x||_{\infty} \le ||x||_p \le n^{\frac{1}{p}}||x||_{\infty}.$$

From this already follows that all p-norms are equivalent because if $1 \le p, q < \infty$, then

$$||x||_{p} \leq n^{\frac{1}{p}} ||x||_{\infty} \leq n^{\frac{1}{p}} ||x||_{q} \leq n^{\frac{1}{p} + \frac{1}{q}} ||x||_{\infty} \leq n^{\frac{1}{p} + \frac{1}{q}} ||x||_{q}.$$

$$\implies ||x||_{p} \leq n^{\frac{1}{p}} ||x||_{q} \leq n^{\frac{1}{p} + \frac{1}{q}} ||x||_{q}$$

$$\implies n^{\frac{-1}{p}} ||x||_{p} \leq ||x||_{q} \leq n^{\frac{1}{q}} ||x||_{q}.$$

3.

Set $f_n(x) := x^n$, then $f_n \in C^1([0, 1], \mathbb{R})$ for all $n \in \mathbb{N}$. Then

$$||f_n||_0 = \max_{x \in [0, 1]} |f_n(x)| = \max_{x \in [0, 1]} x^n = 1$$

for all $n \in \mathbb{N}$ and

$$||f_n||_1 = ||f_n||_0 + ||f_n'||_0 = 1 + \max_{x \in [0, 1]} |nx^{n-1}| = 1 + n \max_{x \in [0, 1]} |x^{n-1}| = 1 + n.$$

for all $n \in \mathbb{N}$. If $\|.\|_0$ and $\|.\|_1$ were equivalent, there would exist A > 0 with

$$||f_n||_1 \le A||f_n||_0.$$

for all $n \in \mathbb{N}$. Then

$$\infty = \lim_{n \to \infty} 1 + n = \lim_{n \to \infty} ||f_n||_1 \le \lim_{n \to \infty} A ||f_n||_0 = \lim_{n \to \infty} A = A.$$

This is a contradiction and hence the two given norms are not equivalent.

Excercise 4

1.

Let $\mathcal{B} \subset \mathcal{T}$. It is to show that $\bigcup \mathcal{B} \in \mathcal{T}$.

• If $\mathcal{B} = \emptyset$, then $\bigcup \mathcal{B} = \emptyset \in \mathcal{T}$.

• Next consider the case that $\mathcal{B} \neq \emptyset$ and $\mathbb{R} \notin \mathcal{B}$ and $\emptyset \notin \mathcal{B}$. Then there exists a set $B \neq \emptyset$ such that $\mathcal{B} = \{(-\infty, x) \mid x \in B\}$. Set

$$S := \sup_{x \in B} x \in \mathbb{R} \cup \{\infty\}.$$

Then there exists a sequence $(x_n)_{n\in\mathbb{N}}\in\mathcal{B}^{\mathbb{N}}$ such that $\lim_{n\to\infty}x_n=S$.

$$y \in \bigcup \mathcal{B} \Leftrightarrow y \in \bigcup_{x \in B} (-\infty, x) \Leftrightarrow y < x \text{ for a } x \in B \Leftrightarrow y \in (-\infty, S),$$

because if y < x for a $x \in \mathcal{B}$, then $y < \sup_{x \in B} = S$. And if $y < \sup_{x \in B} = S$, then y < x for a $x \in \mathcal{B}$. Then $\bigcup \mathcal{B} = (-\infty, S) \in \mathcal{T}$.

- Next consider the case that $\mathbb{R} \in \mathcal{B}$. Then $\bigcup \mathcal{B} = \mathbb{R} \in \mathcal{T}$.
- Next consider the case that $\emptyset \in \mathcal{B}$ and $\mathbb{R} \notin \mathcal{B}$. Then $\bigcup \mathcal{B} = \bigcup (\mathcal{B} \setminus \{\emptyset\}) \in \mathcal{T}$ according to cases 1 or 2.

Let $\mathcal{B} \subset \mathcal{T}$ be finite. It is to show that $\bigcap \mathcal{B} \in \mathcal{T}$.

- If $\mathcal{B} = \emptyset$, then $\bigcap \mathcal{B} = \mathbb{R}$.
- Next consider the case that $\mathcal{B} \neq \emptyset$ and $\mathbb{R} \notin \mathcal{B}$ and $\emptyset \notin \mathcal{B}$. Then there exists a set $B \neq \emptyset$ such that $\mathcal{B} = \{(-\infty, x) \mid x \in B\}$. Set

$$S := \inf_{x \in B} x \in \mathbb{B}$$

because \mathcal{B} is finite. Then

$$y \in \bigcap \mathcal{B} \Leftrightarrow y \in \bigcap_{x \in B} (-\infty, x) \Leftrightarrow y < x \text{ for all } x \in B \Leftrightarrow y \in (-\infty, S),$$

because if y < x for all $x \in \mathcal{B}$, then $y < S \in \mathcal{B}$. And if y < S, then $y < S \le x$ for all $x \in \mathcal{B}$. Then $\bigcap \mathcal{B} = (-\infty, S) \in \mathcal{T}$.

- Next consider the case that $\emptyset \in \mathcal{B}$. Then $\bigcap \mathcal{B} = \emptyset \in \mathcal{T}$.
- Next consider the case that $\mathbb{R} \in \mathcal{B}$ and $\emptyset \notin \mathcal{B}$. Then $\bigcap \mathcal{B} = \bigcap (\mathcal{B} \setminus \{\mathbb{R}\}) \in \mathcal{T}$ according to cases 1 or 2.

2.

$$\overline{(0, 1)} = \bigcap \{C \supset (0, 1) \mid C^c = (-\infty, x), x \in \mathbb{R}\}
= \bigcap \{C \supset (0, 1) \mid C = [x, \infty), x \in \mathbb{R}\}
= \bigcap \{C \supset (0, 1) \mid C = [x, \infty), x \le 0\}
= \bigcap \{[x, \infty) \mid x \le 0\}
= [0, \infty)$$

$$[0, 1]^{\circ} = \bigcup \{ A \subset [0, 1] \mid A = (-\infty, x), x \in \mathbb{R} \}$$

= \emptyset

because for all $(-\infty, x) \in \mathcal{T} \min\{x, 0\} - 1 \in (\infty, x) \setminus [0, 1]$.

Excercise 5

1.

not open:

If X is open, there exists ϵ such that $B_{\epsilon}(-1) \subset X$ because $-1 \in X$ and because $\{B_{\delta}(y) \mid \delta > 0, y \in \mathbb{R}\}\$ is a Basis of the euclidean Topology on \mathbb{R} . Let $x_n :=$ $-1 - \frac{\sqrt{2}}{n} \in \mathbb{R} \setminus \mathbb{Q}$ for every $n \in \mathbb{N}$. Then $x_n \notin \mathbb{R} \setminus X$. Since $\lim_{n \to \infty} x_n = -1$, there exists an $n \in \mathbb{N}$ such that $x_n \in B_{\epsilon}(-1) \subset X$. This is a contradiction to $x_n \notin X$. Hence X is not open.

not closed:

If X is closed, X^c is open and there exists $\epsilon>0$ such that $B_{\epsilon}(\frac{5}{2})\subset X^c$. Let $x_n:=\frac{5}{2}-\frac{1}{n+100}\in (4-\frac{1}{2},4+\frac{1}{2})\subset X$ for all $n\in\mathbb{N}$. Then $\lim_{n\to\infty}x_n=\frac{5}{2}$. Then there exists $n \in \mathbb{N}$ such that $x_n \in B_{\epsilon}(\frac{5}{2}) \subset X^c$. This is a contradiction to $x_n \notin X^c$. Hence X is not closed.

2.

Claim: $X^{\circ} = \bigcup_{n \in \mathbb{N}} (2n - \frac{1}{n}, 2n + \frac{1}{n}) := U$.

Proof:

For all $n \in \mathbb{N}$ $(2n - \frac{1}{n}, 2n + \frac{1}{n})$ is open. Then U is open as a union of open sets. Since $U \subset X, U \subset X^{\circ}$.

Show that $X^{\circ} \subset U$:

Assume there exists $x \in X^{\circ} \setminus U \subset X \setminus U$. Then $x \in \mathbb{Q} \cap ((-\infty, 1] \cup [3, \pi))$ and there exists $\frac{1}{2} > \epsilon > 0$ such that $B_{\epsilon}(x) \subset X^{\circ} \subset X$ because X° is open.

• If $x \in \mathbb{Q} \cap [3, \pi)$, then for $y := x + \lfloor 2\epsilon \rfloor (\pi - x) \in \mathbb{R} \setminus \mathbb{Q}$

$$|y-x| = |x + \lfloor 2\epsilon \rfloor (\pi - x) - x| = \lfloor 2\epsilon \rfloor (\pi - x) < \lfloor 2\epsilon \rfloor \frac{1}{2} < \frac{2\epsilon}{2} = \epsilon.$$

Then $y \in B_{\epsilon}(x) \subset X$ but $y \notin X$ because

$$(x - \pi) < 0 \text{ and } (1 - 2\epsilon) > 0$$

$$\Rightarrow (x - \pi)(1 - 2\epsilon) < 0$$

$$\Rightarrow (1 - 2\epsilon)x + (2\epsilon - 1)\pi < 0$$

$$\Rightarrow x + 2\epsilon(\pi - x) - \pi < 0$$

$$\Rightarrow y < \pi$$

$$\Rightarrow y \in [3, \pi) \setminus \mathbb{Q}.$$

This is a contradiction and hence

• $x \in \mathbb{Q} \cap (-\infty, 1]$. Then for $y := x - \frac{\lfloor \epsilon \rfloor}{\sqrt{2}} \in \mathbb{R} \setminus \mathbb{Q}$

$$|y-x| = \left|x - \frac{\lfloor \epsilon \rfloor}{\sqrt{2}} - x\right| < \left|\frac{\epsilon}{\sqrt{2}}\right| < \epsilon.$$

Then $y \in B_{\epsilon}(x) \subset X$ but $y \notin X$ because $y < x \le 1 \implies y \in (-\infty, 1) \setminus \mathbb{Q}$. This is a contradiction and hence $X^{\circ} \subset U$.

Claim: Set of all cluster points S is $\bigcup_{n\in\mathbb{N},\,n\geq 1}[2n-\frac{1}{n},2n+\frac{1}{n}]\cup\mathbb{R}_{\leq\pi}=:V$ Proof: It is

$$\overline{X} = \bigcup_{n \in \mathbb{N}, \, n \ge 1} \overline{(2n - \frac{1}{n}, 2n + \frac{1}{n})} \cup \overline{\{x \in \mathbb{Q} \mid x < \pi\}}.$$

Where $\overline{(2n-\frac{1}{n},2n+\frac{1}{n})}=[2n-\frac{1}{n},2n+\frac{1}{n}]$ for every $n\in\mathbb{N}$ because $[2n-\frac{1}{n},2n+\frac{1}{n}]$ is closed (because $[2n-\frac{1}{n},2n+\frac{1}{n}]^c=(-\infty,2n-\frac{1}{n})\cup(2n+\frac{1}{n},\infty)$ is open as a union of open sets) and if $(2n-\frac{1}{n},2n+\frac{1}{n})\subset U\subsetneq[2n-\frac{1}{n},2n+\frac{1}{n}]$ for a closed U, then $2n-\frac{1}{n}\notin U$ or $2n+\frac{1}{n}\notin U$.

- If $2n+\frac{1}{n}\notin U$ then there exists $\frac{1}{n}>\epsilon>0$ such that $B_{\epsilon}(2n+\frac{1}{n})\subset U^c$ because U^c is open. Then for $x_m:=2n+\frac{1}{n}-\frac{1}{m}\in(2n-\frac{1}{n},2n+\frac{1}{n})\subset U$ $\lim_{m\to\infty}x_m=2n+\frac{1}{n}$. Then there exists $m\in\mathbb{N}$ such that $x_m\in(B_{\epsilon}(2n+\frac{1}{n})\cap U)\subset(U^c\cap U)$. This is a contradiction.
- If $2n \frac{1}{n} \notin U$ then there exists $\frac{1}{n} > \epsilon > 0$ such that $B_{\epsilon}(2n \frac{1}{n}) \subset U^c$ because U^c is open. Then for $x_m := 2n \frac{1}{n} + \frac{1}{m} \in (2n \frac{1}{n}, 2n + \frac{1}{n}) \subset U$ $\lim_{m \to \infty} x_m = 2n \frac{1}{n}$. Then there exists $m \in \mathbb{N}$ such that $x_m \in (B_{\epsilon}(2n \frac{1}{n}) \cap U) \subset (U^c \cap U)$. This is a contradiction.

Then
$$\overline{(2n-\frac{1}{n},\,2n+\frac{1}{n})} = \bigcap \{U \supset (2n-\frac{1}{n},\,2n+\frac{1}{n}) \mid U \text{ closed}\} = [2n-\frac{1}{n},\,2n+\frac{1}{n}].$$

And $\overline{\{x \in \mathbb{Q} \mid x < \pi\}} = \{x \in \mathbb{R} \mid x \leq \pi\}$ because $\{x \in \mathbb{R} \mid x \leq \pi\}$ is closed because (π, ∞) is open. And if $\{x \in \mathbb{Q} \mid x < \pi\} \subset U \subsetneq \{x \in \mathbb{R} \mid x \leq \pi\}$ for

a closed U, then there exists $x \in \{x \in \mathbb{R} \mid x \leq \pi\} \setminus U$ and $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subset U^c \subset \{x \in \mathbb{Q} \mid x < \pi\}^c$ because U^c is open.

Furthermore $(x - \epsilon, x - \frac{\epsilon}{2}) \subset (-\infty, \pi)$ because $x - \frac{\epsilon}{2} < x \le \pi$. According to Analysis I there exists $q \in \mathbb{Q}$ in every open interval, hence there exists $q \in \mathbb{Q}$ with $q \in (x - \epsilon, x - \frac{\epsilon}{2})$. Then q satisfies

- $q \in (x \epsilon, x \frac{\epsilon}{2}) \subset (x \epsilon, x + \epsilon) \subset \{x \in \mathbb{Q} \mid x < \pi\}^c$, impying that either $q \in \mathbb{R} \setminus \mathbb{Q}$ or $q > \pi$.
- And $q \in (x \epsilon, x \frac{\epsilon}{2}) \implies q < \pi \text{ and } q \in \mathbb{Q}.$

This is a contradiction and hence such U does not exist. Thus

$$\overline{\{x \in \mathbb{Q} \mid x < \pi\}} = \bigcap \{U \supset \{x \in \mathbb{Q} \mid x < \pi\} | U \text{ closed } \} = \{x \in \mathbb{R} \mid x \le \pi\}.$$

Thus $\overline{X} = \bigcup_{n \in \mathbb{N}, \, n \geq 1} [2n - \frac{1}{n}, 2n + \frac{1}{n}] \cup \{x \in \mathbb{R} \mid x \leq \pi\} = V.$

In order to proof $V = \overline{X} = S$, it is sufficient to show, that $X \subset S$ because due to $\overline{X} = X \cup S$, $\overline{X} = S$ follows immediately.

Let $x \in X$, and $B_{\epsilon}(x)$ be given, show that $X \cap (B_{\epsilon}(x) \setminus \{x\}) \neq \emptyset$

- If $x \in (2n-\frac{1}{n},\ 2n+\frac{1}{n})$ for $n \in \mathbb{N}$, there exists $y \in (\max\{2n-\frac{1}{n},\ x-\epsilon\},x) \subset ((2n-\frac{1}{n},\ 2n+\frac{1}{n})\cap(x-\epsilon,\ x+\epsilon)\setminus\{x\}) \subset (X\cap(x-\epsilon,\ x+\epsilon)\setminus\{x\})$. Thus $X\cap(B_{\epsilon}(x)\setminus\{x\})\neq\emptyset$.
- if $x \in \mathbb{Q}_{<\pi}$, then $x \frac{\epsilon}{2} < x \le \pi$ and $(x \epsilon, x \frac{\epsilon}{2}) \cap \mathbb{Q}_{<\pi} \setminus \{x\} = (x \epsilon, x \frac{\epsilon}{2}) \cap \mathbb{Q} \ne \emptyset$ because every interval contains a rational number according to Analysis I. Thus $X \cap (B_{\epsilon}(x) \setminus \{x\}) \ne \emptyset$.

Hence $V = \overline{X} = S$.

Determine set of all boundary points B

It is $B = \overline{X^c} \cap \overline{X}$ and

$$\overline{X^c} = (X^\circ)^c = \mathbb{R} \setminus \bigcup_{i=1}^{\infty} (2n - \frac{1}{n}, \ 2n + \frac{1}{n})$$

$$\overline{X} = \bigcup_{i=1}^{\infty} [2n - \frac{1}{n}, \ 2n + \frac{1}{n}] \cup \mathbb{R}_{\leq \pi}.$$

Hence

$$\begin{split} \overline{X^c} \cap \overline{X} &= \mathbb{R} \setminus \bigcup_{i=1}^{\infty} (2n - \frac{1}{n}, \ 2n + \frac{1}{n}) \cap \left(\bigcup_{i=1}^{\infty} [2n - \frac{1}{n}, \ 2n + \frac{1}{n}] \cup \mathbb{R}_{\leq \pi} \right) \\ &= \mathbb{R} \cap \bigcap_{i=1}^{\infty} (2n - \frac{1}{n}, \ 2n + \frac{1}{n})^c \cap \left(\bigcup_{i=1}^{\infty} [2n - \frac{1}{n}, \ 2n + \frac{1}{n}] \cup \mathbb{R}_{\leq \pi} \right) \\ &= \left(\bigcap_{i=1}^{\infty} (2n - \frac{1}{n}, \ 2n + \frac{1}{n})^c \cap \bigcup_{i=1}^{\infty} [2n - \frac{1}{n}, \ 2n + \frac{1}{n}] \right) \cup \left(\bigcap_{i=1}^{\infty} (2n - \frac{1}{n}, \ 2n + \frac{1}{n})^c \cap \mathbb{R}_{\leq \pi} \right) \\ &= \left(\bigcup_{i=1}^{\infty} [2n - \frac{1}{n}, \ 2n + \frac{1}{n}] \setminus (2n - \frac{1}{n}, \ 2n + \frac{1}{n}) \right) \cup \left(\mathbb{R}_{\leq \pi} \setminus (1, \ 3) \right) \\ &= \bigcup_{i=1}^{\infty} \{2n - \frac{1}{n}, \ 2n + \frac{1}{n}\} \cup (-\infty, \ 1) \cup (3, \ \pi] \\ &= \bigcup_{i=2}^{\infty} \{2n - \frac{1}{n}, \ 2n + \frac{1}{n}\} \cup (-\infty, \ 1] \cup [3, \ \pi] \end{split}$$