PCO

Distance matrix

Distance matrix

Ath	Bar	Nur
	Ath	Ath Bar

Linear distance matrix (km)

	Ath	Bar	Nur
Ath	0	1880	1012
Bar	1880	0	1134
Nur	1012	1134	0

Road distance matrix (km)

	Ath	Bar	Nur	
Ath	0	3084	1443	
Bar	3084	0	2171	
Nur	1443	2171	0	

Road distance matrix

(max hours – leaving on a Monday at 08:00)

	Ath	Bar	Nur
Ath	0	38	26
Bar	37	0	18
Nur	27	17	0

Metric distances?

	km	km	h
Is positive? (and null)			
Is symmetric? d(A,B) = d(B,C)			
No shortcuts! (triangle inequality) $d(A,B) + d(B,C) \ge d(A,C)$			