Data Set Augmentation

Sargur N. Srihari srihari@buffalo.edu

Regularization Strategies

- 1. Parameter Norm Penalties
- Norm Penalties as Constrained Optimization
- 3. Regularization and Underconstrained Problems
- 4. Data Set Augmentation
- 5. Noise Robustness
- 6. Semi-supervised learning
- 7. Multi-task learning

- 8. Early Stopping
- 6. Parameter tying and parameter sharing
- 7. Sparse representations
- 8. Bagging and other ensemble methods
- 9. Dropout
- 10. Adversarial training
- 11. Tangent methods

Topics in Data Augmentation

- 1. More data is better
- 2. Augmentation for classification
- 3. Caution in data augmentation
- 4. Injecting noise
- 5. Benchmarking using augmentation
- 6. Ex: Heart disease diagnosis using deep learning

More data is better

- Best way to make a ML model to generalize better is to train it on more data
- In practice amount of data is limited
- Get around the problem by creating synthesized data
- For some ML tasks it is straightforward to synthesize data

Augmentation for classification

- Data augmentation is easiest for classification
 - Classifier takes high-dimensional input \boldsymbol{x} and summarizes it with a single category identity y
 - Main task of classifier is to be invariant to a wide variety of transformations
- Generate new samples (x,y) just by transforming inputs
- Approach not easily generalized to other problems
 - For density estimation problem
 - it is not possible generate new data without solving density estimation

Effective for Object Recognition

- Data set augmentation very effective for the classification problem of object recognition
- Images are high-dimensional and include a variety of variations, may easily simulated
- Translating the images a few pixels can greatly improve performance
 - Even when designed to be invariant using convolution and pooling
- Rotating and scaling are also effective

Caution in Data Augmentation

- Not apply transformation that would change the class
- OCR example: 'b' vs 'd' and '6' vs '9'
 - Horizontal flips and 180 degree rotations are not appropriate ways
- Some transformations are not easy to perform
 - Out of plane rotation cannot be implemented as a simple geometric operation on pixels

Injecting noise

- Injecting noise into the input of a neural network can be seen as data augmentation
- Neural networks are not robust to noise
- To improve robustness, train them with random noise applied to their inputs
 - Part of some unsupervised learning, such as denoising autoencoder
- Noise can also be applied to hidden units
- Dropout, a powerful regularization strategy, can be viewed as constructing new inputs by multiplying by noise

Benchmarking using augmentation

- Hand-designed data set augmentation can dramatically improve performance
- When comparing ML algorithms A and B, same data set augmentation should be used for both
 - If A performs poorly with no dataset augmentation and B performs well with synthetic transformations of the input, reason may be the data set rather than algorithm
- Adding Gaussian noise is considered part of ML while cropping input images is not

Ex: Image segmentation for heart disease

- To determine *ejection fraction*: which measures of how well a heart is functioning
 - After relaxing to its *diastole* so as to fully fill with blood, what percentage is pumped out upon contracting to its *systole?*
 - This metric relies on segmenting right ventricles (RVs) in cardiac magnetic resonance images (MRIs)

https://blog.insightdatascience.com/heart-disease-diagnosis-with-deep-learning-c2d92c27e730

Problem Description

- Develop system to segment RV in cardiac MRI
 - Currently handled by classical image processing
- RV has irregularly shaped thin walls: inner and outer walls (endocardium and epicardium)
 - Manually drawn contours shown:

RV segmentation is difficult

- Left ventricle segmentation is easier
 - LV is a thick-walled circle
 - Kaggle 2016 competition
- Right ventricle segmentation is harder
 - Complex crescent shape
 - Easy and hard cases

Task: determine whether each pixel is part of RV or not

Need for Data augmentation

- Dataset: 243 physician-segmented images of 16 patients.
 - 3697 additional unlabeled images, useful for unsupervised or semi-supervised techniques
 - Generalization to unseen images would be hopeless!
 - Typical situation in medical settings where labeled data is expensive.

Transformed data

Goal: prevent network from memorizing just the training examples, and force it to learn that the RV is a solid, crescent-shaped object in a variety of orientations.

Apply transformations on the fly so the network sees new random transformations during each epoch.

Peformance Evaluation

- Training: 20% of images as validation set
 - RV challenge: separate test set of another 514 MRI images derived from a separate set of 32 patients
- Performance metric
 - The model will output a mask X delineating what it thinks is the RV, and the dice coefficient compares it to the mask Y produced by a physician via:

$$dice(X, Y) = \frac{2X \cap Y}{X + Y}$$

Metric is (twice) the ratio of the intersection over the sum of areas.

It is 0 for disjoint areas, and 1 for perfect agreement.

E.g., model performance is written as $0.82\ (0.23)$, where the parentheses contain the standard deviation.

Deep Learning

Deep Learning Architecture

U-net architecture

- Train network with only 30 images using augmentation and pixel-wise reweighting
- It consists of a contracting path, which collapse image into high level features,
- Uses the feature information to construct a pixel-wise segmentation mask.
- Copy and concatenate connections pass information from early feature maps to later portions of the network tasked with constructing the segmentation mask.

Implementation

- Implemented in Keras
 - Code available in Github
 - https://github.com/chuckyee/cardiac-segmentation
- Baseline is fully convolutional network (FCN)
- Endocardium and epicardium performance

Method	Train	Val	Test	Params
Human	_	_	0.90 (0.10)	_
FCN (Tran 2017)	_	_	0.86 (0.20)	~11M
U-net	0.93 (0.07)	0.86 (0.17)	0.77 (0.30)	1.9M
Dilated u-net	0.94 (0.05)	0.90 (0.14)	0.88 (0.18)	3.7M
Dilated densenet	0.94 (0.04)	0.89 (0.15)	0.85 (0.20)	0.19M

Method	Train	Val	Test	Params
Human	_	_	0.90 (0.10)	_
FCN (Tran 2017)	_	_	0.84 (0.21)	~11M
U-net	0.91 (0.06)	0.82 (0.23)	0.79 (0.28)	1.9M
Dilated u-net	0.92 (0.08)	0.85 (0.19)	0.84 (0.21)	3.7M
Dilated densenet	0.91 (0.10)	0.87 (0.15)	0.83 (0.22)	0.19M

Acknowledgemnts

- 1. Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press 2016
- 2. Yee, C-H., "Heart Disease Diagnosis with Deep Learning: State-of-the-art results with 60x fewer parameters" https://blog.insightdatascience.com/heart-disease-diagnosis-with-deep-learning-c2d92c27e730