Wiederholung

Eine Abbildung $f: x \rightarrow y$

- ist injektiv wenn gilt: für $\overline{\text{alle } a, b} \in X \text{ mit } f(a) = f(b) \text{ ist } a = b$
- ist surjektiv wenn für jedes $y \in Y$ ein $a \in X$ existiert mit f(a) = y

Sei $D \subseteq \mathbb{R}$ Teilmenge. Eine Funktion auf D ist eine Abbildung $f: D \to \mathbb{R}$

Monotone Funktionen

Bemerkung:

Eine Funktion $(a_n)_{n\geq 0}$ reeler Zahlen ist eine Abbildung $a:\mathbb{N}_0\to\Re$ d.h. eine Funktion auf \mathbb{N}_0

0.1 Definition

Sei $D \subseteq \mathbb{R}$. Eine Funktion $f: D \to \mathbb{R}$ heißt:

- 1. monoton wachsend wenn gilt: Für alle $a, b \in D$ mit a < b ist immer $f(a) \le f(b)$
- 2. streng monoton wachsend: $a < b \Rightarrow f(a) < f(b)$
- 3. monoton fallend: $a < b \Rightarrow f(a) \ge f(b)$
- 4. streng monoton fallend: $a < b \Rightarrow f(a) > f(b)$

Bemerkung:

Jede streng monotone Funktion f ist injektiv

Beweis:

Zeige: $a \neq b \Rightarrow f(a) \neq f(b)$

Wenn $a \neq b$ dann a < b oder b < a

Wenn f streng monoton wachsend: Folgt f(a) < f(b) oder f(b) < f(a) also $f(a) \neq f(b)$ Wenn f streng monoton fällt: es folgt f(a) > f(b) oder f(b) > f(a) also $f(a) \neq f(b)$

0.2 Beispiel

- 1. $f: \mathbb{R}_{\geq 0} \to \mathbb{R}, \ x \mapsto x^k =: f(x) \text{ mit } k \geq 1$ f ist streng monoton wachsend/steigend
- 2. $h: \mathbb{R} \to \mathbb{R}, h(x) = [x]$

h ist monoton wachsend, aber nicht streng monoton.

Monoton wachsend: $x < y \Rightarrow [x] < [y]$

$$x < y \not\Rightarrow [x] < [y]$$

z. B.:
$$1, 2 < 1, 3, [1, 2] = 1 = [1, 3]$$

3. Exponentialfunktion

$$exp: \mathbb{R} \to \mathbb{R}, exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$
Ist streng monoton weeksend

Ist streng monoton wachsend.

Beweis:

a)
$$exp(0) = 1 + \frac{0}{1!} + \frac{0}{2!} + \dots = 1$$

b) Sei
$$a > 0$$

 $exp(a) == 1 + \frac{a}{1!} + \frac{a}{2!} + ... > 1$

c) Sei
$$a > 0exp(-a) \cdot exp(a) = exp(-a+a) = exp(0) = 1$$

$$\Rightarrow exp(-a) = \frac{1}{exp(a)} \Rightarrow 0 < exp(a) < 1$$

$$exp(b) > 0 \text{ für alle } b \in \mathbb{R}$$

d) Sei
$$a>b$$

$$exp(a)=exp(a-b+b)=exp(a-b)\cdot exp(b)>\exp(b)\Rightarrow \exp(b)\Rightarrow \exp(b)$$

1 Stetigkeit

Idee: Eine Funktion ohne sprünge heißt stetig

1.1 Definition

Sei $D \subseteq \mathbb{R}, f: D \rightarrow \mathbb{R}$ eine Funktion

- 1. f heißt stetig in $x \in D$ wenn gilt: Für jedes $\varepsilon > 0$ gibt es ein $\delta > 0$ so dass für jedes $y \in D$ mit $|x - y| < \delta$ gilt $|f(x) - f(y)| < \varepsilon$
- 2. f heißt stetig wenn f in jedem $x \in D$ stetig ist

1.2 Beispiel

- 1. Die Funktion $id: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x$ ist stetig
- 2. Die Funktion $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ ist stetig.

Beweis:

Sei $x, y \in \mathbb{R}$ y = x + k.

$$f(y) - f(x) = (x+h)^2 - x^2 = x^2 + 2xh + h^2 - x^2 = 2xh + h^2$$

Wähle jedenfalls $\delta \leq 1$. Wenn $|h| = |x - y| > \delta$ dann |h| < 1

$$|f(y) - f(x)| = |2xh + h^2| \le |2x| \cdot |h| + |h|^2 < |2x| \cdot |h| + |h| = (|2x| + 1) \cdot |h|$$

Gegeben sei
$$\varepsilon > 0$$

Wähle $\delta = \min\left\{1, \frac{\varepsilon}{|2x|+1}\right\}$
Wenn $|x-y| < \delta$ dann

$$|f(x)-f(y)|<(2|x|+1)\cdot |h|<(2|x|+1)\cdot \frac{\varepsilon}{2|x|+1}=\varepsilon$$

Also f stetig in x

3.
$$g := \mathbb{R} \to \mathbb{R}, \ g(x) := \{x\}$$

g ist stetig an $x \Leftrightarrow x \notin \mathbb{Z}$

Beweis g nicht stetig an $x \in \mathbb{Z}$::

Zeige: es gibt ein
$$\varepsilon>0$$
 so dass kein $\delta>0$ existiert mit: $|x-y|>\delta \Rightarrow |g(x)-g(y)|<\varepsilon$ z.B. $\varepsilon=1$ Sei $\delta>0$. $y=x-\frac{\delta}{2}$ $|x-y|=\frac{\delta}{2}<\delta$ aber $g(y)=\{x-\frac{\delta}{2}\}=x-1$ (weil $x\in\mathbb{Z}$)
$$|g(x)-g(y)|=|x-(x-1)|=1\not<\varepsilon$$

1.3 Satz

Die Exponentialfunktion $exp: \mathbb{R} \to \mathbb{R}$ ist stetig.

Beweis:

Verwende nur:

- Funktionalgleichung: $exp(x+y) = exp(x) \cdot exp(y)$
- exp ist streng monoton wachsend
- $\exp(0) = 1$

Behauptung

Für jedes $\epsilon > 0$ gibt es ein $n \in \mathbb{N}$ mit $exp(\frac{1}{n}) < 1 + \epsilon$

Angenommen, $exp(\frac{1}{n}) \ge 1 + \epsilon$

Dann
$$exp(1) = \frac{1}{n} + \dots \frac{1}{n}$$

$$= exp(\frac{1}{n}) + \dots + exp(\frac{1}{n}) = exp(\frac{1}{n})^n$$
$$\geq (1 + \epsilon)^n \geq 1 + n\epsilon$$

 $exp(1) \ge 1 + n\epsilon$

$$n \leq \frac{exp(1)-1}{\epsilon}$$

Das gilt nur für endliche viele $n \in \mathbb{N}$

Rarr Beh.

Zeige: exp ist stetig an 0. Gegeben sei $\epsilon > 0, OE$? $\epsilon < 1$

 $\overline{\text{W\"a}}$ hle $n \in \mathbb{N}$ mit $exp(\frac{1}{n}) < 1 + \epsilon$

$$Rarrexp(-\frac{1}{n}) = exp(\frac{1}{n})^{-1} < \frac{1}{1+\epsilon} = \frac{1-\epsilon}{(1+\epsilon)(1-\epsilon)} = \frac{1-\epsilon}{1-\epsilon^2} > 1-\epsilon$$

Sei $\delta \frac{1}{n}$

Sei
$$y \in \mathbb{R}, |0 - y| < \delta = \frac{1}{n}$$

$$|y| < \frac{1}{n} d.h$$

 $|y| < \frac{1}{n} \text{ d.h.}$ $-\frac{1}{n} < y < \frac{1}{n}$ exp streng monoton wachsend.

$$Rarr1 - \epsilon < exp(-\frac{1}{n}) < \exp(y) < exp(\frac{1}{n}) < 1 + \epsilon$$

 $Rarr|exp(y) - exp(0)| < \epsilon$ Also exp stetig in 0

Zeige: exp ist eine stetig in $x \in \mathbb{R}$. Gegeben sei $\epsilon >$

Sei y = x + h, $|h| < \delta$ (δ noch zu wählen)

$$|exp(y) - exp(x)| = |exp(x+h) - exp(x)| = |exp(x) \cdot exp(h) - exp(x)| = exp(x) \cdot exo(h) - 1$$

 $|exp(y) - exp(x)| < \epsilon$

$$\Leftrightarrow exp(x) \cdot |exp(h) - 1| < \epsilon \Leftrightarrow exp(h) - 1 < \frac{\epsilon}{exp(x)} = \epsilon'$$

Weil exp stetig in 0 ist gibt es ein $\delta > 0$ mit $|h| < \delta \Rightarrow |exp(h) - 1| < \frac{\epsilon}{exp(x)}$ Rarr exp ist stetig in x

1.4 Satz (Folgenstetigkeit)

Sei $D \subseteq \mathbb{R}, x \in D, f : D \to \mathbb{R}$ Funktion f ist genau dann stetig in x wenn gilt:

• Für jede Folge $(x_n)_{n\geq 0}$ mit $x_n\in D,\ x_n\to x$ für $n\to\infty$ gilt auch $f(x_n)\to f(x)$ für $n\to\infty$

1.5 Satz

Sei $D \subseteq \mathbb{R}, \ f, g : D \rightarrow \mathbb{R}$ in $x \in D$

Dann gilt:

- $f + g : D \rightarrow \mathbb{R}$ stetig in x
- $f \cdot g : D \rightarrow \mathbb{R}$ stetig in x
- Wenn $g(x) \neq 0$ für alle $x' \in D$

Dann ist $\frac{1}{f}: D \rightarrow \mathbb{R}$ stetig in x.

Beweis mit Folgenstetigkeit:

$$\begin{array}{l} \mathrm{Sei}\ x_n \to x\ \mathrm{für}\ n \to \infty \\ \mathrm{mit}\ x_n \in D \\ f,g\ \mathrm{stetig}\ Rarr f(x_n) \to f(x) \\ g(x_n) \to g(x) \\ \Rightarrow f(x_n) + g(x_n) \to f(x) + g(x) \qquad f(x_n) \cdot g(x_n) \to f(x) \cdot g(x) \\ \mathrm{Wenn}\ \mathrm{also}\ f(x) \neq 0 \\ f(x_n)^{-1} \to f(x)^{-1} \\ \Rightarrow f + g, f) \cdot g, \frac{1}{f}\ \mathrm{stetig}\ \mathrm{in}\ \mathrm{x} \end{array}$$