#### **INDIAN INSTITUTE OF TECHNOLOGY ROORKEE**

## Data Mining for Business Intelligence (IBM 312)

Sumit Kumar Yadav

Department of Management Studies

February 7, 2023



Recap  $\chi_1, \chi_{2,--}$ ,  $\chi_{so} \left( \overline{\chi}, \delta^2 \right)$   $\sim \text{Numel}(\mu, \sigma^2)$ 

Central Limit Theorem
Confidence Interval for the case of Mean

#### **Errors in the Process of Estimation**

- Sampling Error Because we are only considering a subset of population, the point estimate is rarely exactly correct. Unavoidable error, but we can estimate the error and hence have some control over it
- Non-sampling Error If there is bias in the observations, or sampling wasn't done properly. Can't be dealt with mathematically. Should be avoided

#### **Central Limit Theorem**

#### **Theorem**

If the sample size is large, for WITH REPLACEMENT and independent sampling, the sample mean  $\overline{X}$  is approximately normal with

- 1.  $mean = \mu$
- 2. variance =  $\frac{\sigma^2}{n}$

What is meant by large n? Typically,  $n \ge 30$ 

#### **Comments about Central Limit Theorem**

- 1. Don't use CLT when population size is not too large compared with sample size, CLT is approximate result
- 2. If sample size is large and population size is also much larger as compared to population, one can use CLT even when the sampling scheme is Without Replacement

### **Example of Confidence Interval**

A survey asked 500 randomly selected students, "the average time spent in physical exercise daily". Sample mean was 20 minutes, and standard deviation of the sample was 5 minutes. Construct a 95% confidence interval of the population mean of time spent in physical exercise daily.



- □ Sometimes, one is interested in estimating population proportion
- What is the proportion of IBM312 students who like statistics?
- One can attempt the answer to this using sampling



### **Sample Proportion**

☐ Can we make use of results from sample mean?

### **Sample Proportion**

$$E\left(\frac{\hat{\beta}(1-\hat{\beta})}{\kappa}\right) \neq \frac{\beta(1-\beta)}{\kappa}$$

- Can we make use of results from sample mean?
- ☐ If the  $i^{th}$  respondent says YES, model it as  $X_i = 1$
- ☐ If the  $i^{th}$  respondent says NO, model it as  $X_i = 0$
- $\square$  Denote by  $n_{YES}$  and  $n_{NO}$  are the responses in the sample of size n
- $\square$  Denote by  $N_{YES}$  and  $N_{NO}$  are the actual values in the population of size N

## **Sampling Proportion**



- $\Box$  We denote the estimate by  $\hat{p}$
- $\square$  The population proportion is denoted by p

 $\Box$   $E(\hat{p}) = p$ . Do we need to prove this??

$$Arr Var(\hat{p}) = \frac{p(1-p)}{n}$$
. Why??

- $\square$  Is p known?
- State CLT for sample proportion
- $\square$  Additional conditions  $np \ge 10$  and  $n(1-p) \ge 10$





- $\square$  We denote the estimate by  $\hat{p}$
- $\square$  The population proportion is denoted by p
- $\square$  What kind of random variable is  $n_{YES}$ ?
- $\square$   $n_{YES}$  is Binomial random variable with waranteters p and n
- Hence  $PE(\hat{p}) = P(\hat{p}) = P(\hat{p}) = \frac{E(D)(P)}{D}$
- $\square$  Also,  $Var(\hat{p}) = Var\left(\frac{n_{YES}}{n}\right) = \frac{Var(n_{YES})}{n^2} = \frac{p(1-p)}{n}$
- ☐ But, we don't know p
- $\square$  To provide an unbiased estimator of  $Var(\hat{p})$

- lacksquare We denote the estimate by  $\hat{p}$
- $\square$  The population proportion is denoted by p
- $\hat{p} = \frac{n_{YES}}{n}$
- $\square$   $n_{YES}$  is Binomial random variable with parameters p and n
- $\square$  Hence,  $E(\hat{p}) = E\left(\frac{n_{YES}}{n}\right) = \frac{E(n_{YES})}{n} = p$
- $\square$  Also,  $Var(\hat{p}) = Var\left(\frac{n_{YES}}{n}\right) = \frac{Var(n_{YES})}{n^2} = \frac{p(1-p)}{n}$
- ☐ But, we don't know p
- $\square$  To provide an unbiased estimator of  $Var(\hat{p})$

- lacksquare We denote the estimate by  $\hat{p}$
- ☐ The population proportion is denoted by *p*
- $\mathbf{p} = \frac{n_{YES}}{n}$
- $\square$   $n_{YES}$  is Binomial random variable with parameters p and n
- □ Hence,  $E(\hat{p}) = E\left(\frac{n_{YES}}{n}\right) = \frac{E(n_{YES})}{n} = p$
- □ Also,  $Var(\hat{p}) = Var\left(\frac{n_{YES}}{n}\right) = \frac{Var(n_{YES})}{n^2} = \frac{p(1-p)}{n}$
- But, we don't know p
- $\square$  To provide an unbiased estimator of  $Var(\hat{p})$

- $\Box$  We denote the estimate by  $\hat{p}$
- ☐ The population proportion is denoted by *p*
- $\mathbf{p} = \frac{n_{YES}}{n}$
- $\square$   $n_{YES}$  is Binomial random variable with parameters p and n
- □ Hence,  $E(\hat{p}) = E\left(\frac{n_{YES}}{n}\right) = \frac{E(n_{YES})}{n} = p$
- □ Also,  $Var(\hat{p}) = Var\left(\frac{n_{YES}}{n}\right) = \frac{Var(n_{YES})}{n^2} = \frac{p(1-p)}{n}$
- But, we don't know p
- $\Box$  To provide an unbiased estimator of  $Var(\hat{p})$

#### **Confidence Interval Discussions**

- □ Can you also do similar calculations and make a confidence interval for Population proportion? (Hint - Use CLT and our remark that sample proportion can be given a similar treatment as sample mean)
- Khan Academy Video https://www.youtube.com/watch?v=bGALoCckICI
- Which is bigger 99% confidence interval or 95% confidence interval?

## Summary of results for 100(1- $\alpha$ )% C.I.

| n         | $\sigma^2$    | C.I. Type         | Symmetric C.I.                                                                                                                                          |
|-----------|---------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Large 2×1 | known<br>96XS | Approximate < 2 0 | $\left(\overline{X} - \frac{Z_{\frac{\alpha}{2}}^{\alpha}\sigma}{\sqrt{n}}, \overline{X} + \frac{Z_{\frac{\alpha}{2}}^{\alpha}\sigma}{\sqrt{n}}\right)$ |
| Large     | unknown       | Approximate       | $\left(\overline{X} - \frac{Z_{\frac{\alpha}{2}}S}{\sqrt{n}}, \overline{X} + \frac{Z_{\frac{\alpha}{2}}S}{\sqrt{n}}\right)$                             |

**Table:** C.I. for population mean  $\mu$ , s is sample standard deviation

|       | 77          |                                                                                                                                                    |
|-------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| n     | C.I. Type   | Symmetric C.I.                                                                                                                                     |
| Large | Approximate | $\left(\hat{p}-z_{\frac{\alpha}{2}}\sqrt{\frac{\hat{p}(1-\hat{p})}{n-1}},\hat{p}+z_{\frac{\alpha}{2}}\sqrt{\frac{\hat{p}(1-\hat{p})}{n-1}}\right)$ |

**Table:** C.I. for population proportion p,  $\hat{p}$  is sample proportion

## **Sample Size Determination**

- A survey asked 500 randomly selected students, "the average time spent in physical exercise daily". Sample mean was 20 minutes, and standard deviation of the sample was 5 minutes. Construct a 95% confidence interval of the population mean of time spent in physical exercise daily.
- We want to repeat this study, how many students should you survey so that the 99% confidence interval's width is no more than 2 minutes?