Einführung in die Computergrafik

Matthias B. Hullin
Institut für Informatik II, Universität Bonn

Signalverarbeitung

Signale

Wir befassen uns mit physikalischen Messgrößen (z.B. Licht), mit denen wir eine gewisse Information verbinden => Signal.

Zum Beispiel: ein 2D-Bild

• I(x,y)

Variablen: Position / Koordinaten [m]

Wert: "Menge an Licht",

z.B. "Irradianz" $\left[1\frac{W}{m^2}\right]$

Abtastung und Rekonstruktion

Von der realen (oder virtuellen) Welt auf unseren Bildschirm

Dies passiert ständig! Unsere Augen tun das Gleiche (und das Gehirn rekonstruiert)

UNIVERSITÄT

Abtastung (sampling)

Schauen wir uns eine 1D-Funktion an

t (könnte auch x sein)

- Zeichne Messwerte in regelmäßigen Abständen auf => periodischer Prozess
- Def. Frequenz ν : Maß, wie oft etwas passiert pro Zeiteinheit, Distanzeinheit, ...

$$[\nu_t] = \frac{1}{[t]} = \frac{1}{s} = 1 \text{ Hz}$$
 (Zeitfrequenz)

$$[\nu_{\chi}] = \frac{1}{[\chi]} = \frac{1}{m}$$
 (Ortsfrequenz)

Abtasttheorem

Abtastfrequenz: wie oft zeichnen wir einen Messwert auf?

z.B.

Audio-CD: $\nu_{\rm CD} = 44\ 100\ {\rm Hz}$

Scannerauflösung: $v_{\text{scan}} = 600 \text{ dpi} = \frac{600}{25.4 \text{ mm}}$

Abtasttheorem (Nyquist/Shannon):

Abtastung mit Rate/Frequenz ν_S kann Signalfrequenzen bis höchstens $\nu_N = \nu_S/2$ wiedergeben ("Nyquistfrequenz" / Nyquistlimit)

Aliasing

• Frequenzen oberhalb von ν_N sind nicht mehr eindeutig darstellbar

 Aliasing: verschiedene Frequenzen erzeugen die gleichen Messwerte

Welche Frequenzen sind enthalten?

Fourier (1822): "Jede Menge"

Jedes periodische Signal kann als unendliche Reihe von Sinus- und Cosinustermen (genannt **Fourierreihe**) dargestellt werden.

Alle Sinus- und Cosinusfunktionen, die "in die Periode passen":

$$f(t) = \sum_{k=0}^{\infty} \alpha_k \cos(\nu_k 2\pi t) + \sum_{k=1}^{\infty} \beta_k \sin(\nu_k 2\pi t)$$

mit Frequenzen $v_k = \text{ganzzahlige Vielfache von } \frac{1}{T}$: $v_k = \frac{k}{T}$

 \Leftrightarrow Periode $T = \text{ganzzahliges Vielfaches von } T_k = \frac{1}{\nu_k}$

Fourierreihe

Def. Winkelfrequenz (angular frequency):

$$\omega = 2\pi\nu \Rightarrow f(\omega t)$$
 ist 1-periodisch

Wie erhalten wir α_k , β_k ?

Multipliziere mit $cos(v_l 2\pi t)$ und integriere:

$$\int_{0}^{T} f(t) \cos(\nu_{l} 2\pi t) dt$$

$$= \sum_{k=0}^{\infty} \alpha_{k} \underbrace{\int_{0}^{T} \cos(\nu_{k} 2\pi t) \cos(\nu_{l} 2\pi t) dt}_{=T/2} + \sum_{k=1}^{\infty} \beta_{k} \underbrace{\int_{0}^{T} \sin(\nu_{k} 2\pi t) \cos(\nu_{l} 2\pi t) dt}_{=0}$$

$$= \alpha_{l} \cdot T/2$$
warum?

Fourieranalyse und -synthese

$$\alpha_k = \frac{2}{T} \int_0^T f(t) \cos \frac{2\pi kt}{T} dt$$
$$\beta_k = \frac{2}{T} \int_0^T f(t) \sin \frac{2\pi kt}{T} dt$$

"Fourier-Analyse"

$$f(t) = \frac{\alpha_0}{2} + \sum_{k=1}^{\infty} \alpha_k \cos \frac{2\pi kt}{T} + \sum_{k=1}^{\infty} \beta_k \sin \frac{2\pi kt}{T}$$

"Fourier-Synthese"

Exkursion: Orthogonale Funktionen

Wann sind zwei **Vektoren** orthogonal?

Wenn ihr **inneres Produkt** 0 ist (Skalarprodukt/dot product)

$$x = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, y = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} \Rightarrow x \cdot y = \sum_{i=1}^{n} \bar{x}_i y = -2 + 1 + 1 = 0$$

Paarweise multiplizieren, dann aufaddieren

Exkursion: Orthogonale Funktionen

Zwei **Funktionen** f, g heißen orthogonal auf dem Intervall [a, b] genau wenn \longrightarrow Komplex konjugiert

$$\langle f, g \rangle_a^b = \int_a^b \overline{f(t)} g(t) dt = 0$$

Punktweise multiplizieren, dann aufintegrieren

Beispiel 1: $\sin(\cdot)$, $\cos(\cdot)$ auf Intervall $[0,2\pi]$

Beweis:

$$\int_{0}^{2\pi} \sin(t) \cos(t) dt$$

$$= \int_{0}^{2\pi} \frac{1}{2} \sin(2t) dt$$

$$= -\frac{1}{4} \cos(2t) \Big|_{0}^{2\pi}$$

$$= -\frac{1}{4} \cdot (1 - 1) = 0$$

(1) Verwende trigonomische Identität $\sin a \cos b = \frac{\sin(a+b) + \sin(a-b)}{2}$

Exkursion: Orthogonale Funktionen

- Beispiel 2: $\sin(\cdot)$, $\sin(2 \cdot)$ sind orthogonal auf $[0,2\pi]$
- Beweis durch Untersuchung von Symmetrien:

Das Integral über diese beiden Teilstücke (ungeachtet seines genauen Wertes) ist betragsgleich, mit umgekehrten Vorzeichen.

Was bleibt zu tun?

- 1. sin, cos loswerden mit Eulerformel
- 2. Diskrete Signale
- 3. Nichtperiodische Signale

Komplexe Fourierreihe

Euler-Formel:

$$e^{\pm ix} = \cos x \pm i \sin x$$

$$\Rightarrow \cos x = \frac{e^{ix} + e^{-ix}}{2}, \qquad \sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

• Hiermit sind übrigens auch definiert: $e^{x \in \mathbb{C}}$, $\sin(x \in \mathbb{C})$, ...

Verwende diese Identitäten, um Fourierreihe umzuschreiben:

$$f(t) = \sum_{k=0}^{\infty} \alpha_k \cos \frac{2\pi kt}{T} + \sum_{k=1}^{\infty} \beta_k \sin \frac{2\pi kt}{T}$$
$$= \sum_{k=-\infty}^{\infty} c_k e^{i\frac{2\pi kt}{T}} \text{ mit komplexen Koeffizienten}$$

"Primal domain"
"Time domain"
"Spatial domain"

$$c_k = \frac{1}{T} \int_0^T f(t)e^{-i\frac{2\pi kt}{T}} dt$$

"Fourier domain"
"Frequency domain"

Fourier auf diskreten Repräsentationen

$$x = (x_0, \dots, x_{n-1}) \in \mathbb{C}^n$$

 $\Rightarrow \hat{x} = (\hat{x}_0, \dots, \hat{x}_{n-1}) \in \mathbb{C}^n$ diskret fouriertransformierter Vektor

$$\hat{x}_k = \sum_{l=0}^{n-1} x_l e^{-\frac{2\pi i k l}{n}}$$
 (DFT)

$$x_k = \frac{1}{n} \sum_{l=0}^{n-1} \hat{x}_l e^{\frac{2\pi i k l}{n}}$$
 (iDFT)

Diskrete Fouriertransformation

• Betrachte DFT, iDFT als quadratische Matrizen!

Bestandsaufnahme

$$f(t) = \sum_{k=-\infty}^{\infty} c_k e^{i\frac{2\pi kt}{T}}$$

"Primal domain" "Time domain" "Spatial domain"

$$x_k = \frac{1}{n} \sum_{l=0}^{n-1} \hat{x}_l e^{\frac{2\pi i k l}{n}}$$

$$c_k = \frac{1}{T} \int_0^T f(t)e^{-i\frac{2\pi kt}{T}} dt$$
 "Fourier domain" "Frequency dom."

"Fourier domain"

$$\hat{x}_k = \sum_{l=0}^{n-1} x_l e^{-\frac{2\pi i k l}{n}}$$

(kontinuierlich, periodisch)

(diskret)

https://commons.wikimedia.org/wiki/File:Fourier_transform_time_and_frequency_domains.gif

Was bleibt zu tun?

- 1. sin, cos loswerden mit Eulerformel
- 2. Diskrete Signale
- 3. Nichtperiodische Signale

Von periodischen zu nichtperiodischen Funktionen

$$f_{(T)}(t) = \sum_{k=-\infty}^{+\infty} c_k e^{\frac{2\pi i k t}{T}} \quad \text{mit} \quad c_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-\frac{2\pi i k t}{T}} dt$$

Lassen wir $T \to \infty$ gehen:

$$\lim_{T \to \infty} f_{(T)}(t) = \lim_{T \to \infty} \sum_{k = -\infty}^{+\infty} \left(\frac{1}{T} \int_{-T/2}^{T/2} f(\tilde{t}) e^{-\frac{2\pi i k \tilde{t}}{T}} d\tilde{t} \right) e^{\frac{2\pi i k t}{T}}$$

$$= \lim_{T \to \infty} \sum_{k = -\infty}^{+\infty} \left(\frac{1}{T} \int_{-T/2}^{T/2} f(\tilde{t}) e^{-\frac{2\pi i k}{T} (\tilde{t} - t)} d\tilde{t} \right)$$

$$= \lim_{T \to \infty} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(\tilde{t}) \sum_{k = -\infty}^{+\infty} e^{-\frac{2\pi i k}{T} (\tilde{t} - t)} \frac{1}{T} d\tilde{t}$$

$$= \int_{-\infty}^{+\infty} f(\tilde{t}) \int_{-\infty}^{+\infty} e^{-2\pi i \nu (\tilde{t} - t)} d\nu d\tilde{t}$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(\tilde{t}) e^{-2\pi i \nu \tilde{t}} d\tilde{t} e^{2\pi i \nu t} d\nu$$

$$= \tilde{f}(\nu)$$

Fourier-Paare

•
$$F(v) = \int_{-\infty}^{+\infty} f(t)e^{-2\pi i v t} dt$$

• $f(t) = \int_{-\infty}^{+\infty} F(v)e^{2\pi i v t} dv$

Frequenzraum

Zeitraum

Prominente Fourier-Paare:

1

$$\sum_{n=-\infty}^{\infty} \delta(t - nT)$$

rect(t)

$$e^{-\alpha t^2}$$

$$F(\nu)$$

$$\delta(\nu)$$

$$^{1}/_{T}\sum_{k=-\infty}^{\infty}\delta(\nu-k/_{T})$$

$$\sin(\nu)/\nu$$

$$\sqrt{\pi/\alpha} e^{-(\pi\nu)^2/\alpha}$$

Konstante - Diracpuls

Kamm (comb/shah)

Rechteck - sinc

Gaußfunktion

Eigenschaften der Fouriertransformation

Primal domain	Fourier domain	Name
$\alpha f + \beta g$	$\alpha \hat{f} + \beta \hat{g}$	Linearität
$(f * g)(x)$ $(f \cdot g)(x)$	$(\hat{f} \cdot \hat{g})(\nu)$ $(\hat{f} * \hat{g})(\nu)$	Faltungssatz (convolution theorem)
$f(\alpha x)$	$^{1}/_{ \alpha }\hat{f}(^{ u}/_{lpha})$	Skalierung
f(x,y)	$\mathcal{F}_{\mathcal{Y}}ig(\mathcal{F}_{\mathcal{X}}(f)ig)$	Separierbarkeit (1)
f(x)g(y)	$\hat{f}(\nu_x)\hat{g}(\nu_y)$	Separierbarkeit (2)
$d^n f(x) / dx^n$	$(2\pi i \nu)^n \hat{f}(\nu)$	Ableitungen

Wenn hier "+" steht: "Kreuzkorrelation"

$$(f * g)(t) = \int_{-\infty}^{+\infty} f(\tilde{t})g(t - \tilde{t})d\tilde{t}$$
$$= \int_{-\infty}^{+\infty} f(t - \tilde{t})g(\tilde{t})d\tilde{t}$$

Faltung "schmiert" eine Funktion mit der anderen aus. Beispiele:

(Faltung mit Gaussfunktion glättet Kanten)

(Faltung mit Deltafunktionen erzeugt Kopien)

Faltung auf Vektoren

 Faltung funktioniert analog auf Vektoren. Sie kann dann als Matrix-Vektor-Multiplikation ausgedrückt werden:

$$f = (f_1, ..., f_n)^{\mathsf{T}}, g = (g_1, ..., g_m)^{\mathsf{T}}$$

 $(f * g)_i = \sum_j f_j g_{i-j+1} = A_g f$

Jeder Eintrag in f erzeugt eine verschobene + skalierte Kopie von g

Abtastung und Rekonstruktion

Nyquist/Shannon Abtasttheorem: Wenn ein Signal mit mindestens der doppelten maximalen darin enthaltenen Frequenz abgetastet wird, überlappen diese Kopien nicht und das Signal kann perfekt rekonstruiert werden.

Abtastung und Rekonstruktion

Verbleibende Aufgaben

- 1. Angenommen, das Signal ist bandbegrenzt. Wie rekonstruieren wir es?
 - Multipliziere mit Rechteckfenster im Fourierraum

 ⇔ falte mit sinc im Zeitraum

 Problem: sinc hat unendlichen Träger – benötige unendlich viele Stützstellen zur Rekonstruktion eines einzigen Funktionswerts

Rekonstruktionsfilter und ihre Frequenzspektren

Time domain Fourier

"Nearest Neighbor" (rect)

Lineare Interpolation (rect * rect)

Kubisch (Mitchell-Netravali), Gauß, Lanczos, ...,

Abtastung und Rekonstruktion

- 2. Wie begrenzen wir die Bandbreite eines Signals?
 - Falte mit Tiefpassfilter vor Abtastung (z.B. elektrisch, optisch)

Abtastung und Rekonstruktion

Von der realen (oder virtuellen) Welt auf unseren Bildschirm

Prä-Aliasing ↔ **Post-Aliasing**

