

Mathematical Expectation.

6.1. Mathematical Expectation. Let X be a random variable (r.v.) with p.d.f. (p.m.f.) f(x). Then its mathematical expectation, denoted by E(X) is \cdot given by:

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx, \text{ (for continuous } r.v. \text{)}$$
$$= \sum_{-\infty}^{\infty} x f(x), \text{ (for discrete } r.v. \text{)}$$

provided the righthand integral or series is absolutely convergent, i.e.,

$$\int_{-\infty} |xf(x)| dx = \int_{-\infty} |x| f(x) dx < \infty$$
or
$$\sum_{-\infty} |xf(x)| = \sum_{x} |x| f(x) < \infty$$

Theorem 6:1. If X and Y are random variables then

$$E(X+Y)=E(X)+E(Y),$$

provided all the expectations exist.

Theorem 6·1(a). The mathematical expectation of the sum of n random variables is equal to the sum of their expectations, provided all the expectations exist.

Symbolically, if $X_1, X_2, ..., X_n$ are random variables then

$$E(X_1 + X_2 + ... + X_n) = E(X_1) + E(X_2) + ... + E(X_n)$$
 ...(6.13)

$$E\left(\begin{array}{c}\sum_{i=1}^{n}X_{i}\end{array}\right)=\sum_{i=1}^{n}E\left(X_{i}\right),\qquad ...(6\cdot13a)$$

if all the expectations exist.

Theorem 6.2. If X and Y are independent random variables, then $E(X|Y) = E(X) \cdot E(Y)$

Theorem 6.2(a). The mathematical expectation of the product of a number of independent random variables is equal to the product of their expectations. Symbolically, if $X_1, X_2, ..., X_n$ are n independent random variables, then

$$E(X_1 X_2 ... X_n) = E(X_1) E(X_2) ... E(X_n)$$
i.e.,
$$E\left(\prod_{i=1}^n X_i\right) = \prod_{i=1}^n E(X_i)$$
provided all the expectations exist.

...(6.16)

Theorem 6.3. If X is a random variable and 'a' is constant, then

(i)
$$E[a\Psi(X)] = a E[\Psi(X)]$$

(ii) $E[\Psi(X) + a] = E[\Psi(X)] + a$, where $\Psi(X)$, a function of X, is a r.v. and all the expectations exist.

Theroem 6.4. If X is a random variable and a and b are constants, then $E(aX + b) = a E(X) + b \qquad ...(6.22)$ provided all the expectations exist.

If
$$b = 0$$
, then we get
$$E'(aX) = a \cdot E(X)$$
Taking $a = 1$, $b = -\overline{X} = -E(X)$, we get
$$E(X - \overline{X}) = 0$$

6.5. Expectation of a Linear Combination of Random Variables

Let $X_1, X_2, ..., X_n$ be any n random variables and if $a_1, a_2, ..., a_n$ are any n constants, then

$$E\left(\sum_{i=1}^{n} a_{i} X_{i}\right) = \sum_{i=1}^{n} a_{i} E\left(X_{i}\right)$$
 ...(6.25)

provided all the expectations exist.

Theorem 6.5 (a). If $X \ge 0$ then $E(X) \ge 0$.

Theorem 6.5 (b). Let X and Y be two random variables such that $Y \le X$ then $E(Y) \le E(X)$, provided the expectations exist.

Theorem 6.6. $|E(X)| \le E|X|$, provided the expectations exist.

Theorem 6.8. If X is a random variable, then $V(aX + b) = a^2 V(X)$, where a and b are constants.

Example 6.1. Let X be a random variable with the following probability distribution:

$$x$$
 : -3 6 9
 $P_r(X = x)$: $1/6$ $1/2$ $1/3$

Find E(X) and $E(X^2)$ and using the laws of expectation, evaluate $E(2X+1)^2$.

Solution.
$$E(X) = \sum x \cdot p(x)$$

$$= (-3) \times \frac{1}{6} + 6 \times \frac{1}{2} + 9 \times \frac{1}{3} = \frac{11}{2}$$

$$E(X^2) = \sum x^2 p(x)$$

$$= 9 \times \frac{1}{4} + 36 \times \frac{1}{2} + 81 \times \frac{1}{3} = \frac{93}{2}$$

$$E (2X+1)^2 = E [4X^2 + 4X + 1] = 4E (X^2) + 4E (X) + 1$$
$$= 4 \times \frac{93}{2} + 4 \times \frac{11}{2} + 1 = 209$$

Example 6.2. (a) Find the expectation of the number on a die when thrown.

(b) Two unbiased dice are thrown. Find the expected values of the sum of numbers of points on them.

Solution. (a) Let X be the random variable representing the number on a die when thrown. Then X can take any one of the values 1,2,3,..., 6 each with equal probability $\frac{1}{6}$. Hence

is

$$E(X) = \frac{1}{6} \times 1 + \frac{1}{6} \times 2 + \frac{1}{6} \times 3 + \dots + \frac{1}{6} \times 6$$

$$= \frac{1}{6} (1 + 2 + 3 + \dots + 6) = \frac{1}{6} \times \frac{6 \times 7}{2} = \frac{7}{2} \qquad \dots (*)$$

(b) The probability function of X (the sum of numbers obtained on two dice),

Value of X: x	2	3	4	5	6	7	 11	12
Probability	1/36	2/36	3/36	4/36	5/36	6/36	 2/36	1/36

$$E(X) = \sum_{i} p_{i} x_{i}$$

$$= 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + 4 \times \frac{3}{36} + 5 \times \frac{4}{36} + 6 \times \frac{5}{36} + 7 \times \frac{6}{36}$$

$$+ 8 \times \frac{5}{36} + 9 \times \frac{4}{36} + 10 \times \frac{3}{36} + 11 \times \frac{2}{36} + 12 \times \frac{1}{36}$$

$$= \frac{1}{36} (2 + 6 + 12 + 20 + 30 + 42 + 40 + 36 + 30 + 22 + 12)$$

$$= \frac{1}{36} \times 252 = 7$$

Aliter. Let X_i be the number obtained on the *i*th dice (i = 1, 2) when thrown. Then the sum of the number of points on two dice is given by

$$S = X_1 + X_2$$

$$\Rightarrow E(S) = E(X_1) + F(X_2) = \frac{7}{2} + \frac{7}{2} = 7$$
[On using (*)]

Example 6.5. A coin is tossed until a head appears. What is the expectation of the number of tosses required?

Solution. Let X denote the number of tosses required to get the first head. Then X can materialise in the following ways:

$$E(X) = \sum_{x=1}^{\infty} x p(x)$$

Event	x	Probability p (x)				
Н	1	1/2				
TH	2	$1/2 \times 1/2 = 1/4$				
TTĤ	3	$1/2 \times 1/2 \times 1/2 = 1/8$				
:	:	· :				
•	! . •,	•				

...(*)

$$= 1 \times \frac{1}{2} + 2 \times \frac{1}{4} + 3 \times \frac{1}{8} + 4 \times \frac{1}{16} + \dots$$

This is an arithmetic-geometric series with ratio of GP being r = 1/2.

Let
$$S = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + 4 \cdot \frac{1}{16} + \dots$$

Then $\frac{1}{2}S = \frac{1}{4} + 2 \cdot \frac{1}{8} + 3 \cdot \frac{1}{16} + \dots$
 $\therefore (1 - \frac{1}{2})S = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$
 $\Rightarrow \frac{1}{2}S = \frac{1/2}{1 - (1/2)} = 1$

[Since the sum of an infinite G.P. with first term a and common ratio r (< 1) is a/(1-r)]

$$\Rightarrow$$
 $S = 2$

Hence, substituting in (*), we get

$$E(X) = 2$$

Example 6.6. What is the expectation of the number of failures preceding the first success in an infinite series of independent trials with constant probability p of success in each trial?

Solution. Let the random variable X, denote the number of failures preceding the first success. Then X can take the values $0, 1, 2, ..., \infty$. We have

 $p(x) = P(X = x) = P[x \text{ failures precede the first success }] = q^x p$ where q = 1 - p is the probability of failure in a trial. Then by def.

$$E(X) = \sum_{x=0}^{\infty} x p(x) = \sum_{x=0}^{\infty} x \cdot q^{x} p = pq \sum_{x=1}^{\infty} x q^{x-1}$$
$$= pq \left[1 + 2q + 3q^{2} + 4q^{3} + \dots \right]$$

Now $1 + 2q + 3q^2 + 4q^3 + \dots$ is an infinite arithmetic-geometric series.

Let
$$S = 1 + 2q + 3q^2 + 4q^3 + ...$$

 $qS = q + 2q^2 + 3q^3 + ...$

$$\therefore (1-q)S = 1+q+q^2+q^3+\dots = \frac{1}{1-q}$$

$$\Rightarrow \qquad S = \frac{1}{(1-q)^2}$$

$$1 + 2q + 3q^2 + 4q^3 + \dots = \frac{1}{(1-q)^2}$$

Hence
$$E(\dot{X}) = \frac{pq}{(1-q)^2} = \frac{pq}{p^2} = \frac{q}{p}$$

. . .

Example 6.8. Let variate X have the distribution

$$P(X=0) = P(X=2) = p$$
; $P(X=1) = 1 - 2p$, for $0 \le p \le \frac{1}{2}$.

For what p is the Var (X) a maximum?

Solution. Here the r.v. X takes the values 0, 1 and 2 with respective probabilities p, 1-2p and p, $0 \le p \le \frac{1}{2}$.

$$E(X) = 0 \times p + 1 \times (1 - 2p) + 2 \times p = 1$$

$$E(X^{2}) = 0 \times p + 1^{2} \times (1 - 2p) + 2^{2} \times p = 1 + 2p$$

$$Var(X) = E(X^{2}) - [E(X)]^{2} = 2p ; 0 \le p \le \frac{1}{2}$$
Obviously Var(X) is maximum when $p = \frac{1}{2}$, and
$$[Var(X)]_{max} = 2 \times \frac{1}{2} = 1$$

