$$e(x) = x^{3}$$

$$g(x) = x^{3} + x + 1$$

$$= x^{2} + x + 1$$

$$= x^{2} + x + 1$$

$$= x^{2} + x + 1$$

$$= x^{3} + x + 1$$

$$= x^{3}$$

Every Boarst

$$e = [0 \cdots 0 | ?? \cdots ? | 0 \cdots 0]_{|X|}$$
 $e(x) = [*X^{i+l-1} + ?*X^{i+l-2} + \cdots + ?*X^{i+l} + *X^{i}]$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$
 $= X^{i} (X^{l-1} + ? ? ? ! 0 \cdots 0]_{|X|}$

undetectable error bursts of L =>
$$(n-l+1) \neq 2$$

{

 $(l-1)-(n-k)-1 \neq 2$

*

 $(l-1)-(n-k)-1 \neq 3$

*

$$FHE(L) = \frac{(n-1/41) + 2}{(n-1/41) + 2^{L/2}}$$

$$= \frac{1}{2^{n-k}}$$

Eq.
$$g(x) = x^{3} + x + 1$$
 $k = 4$ $n = 7$

Fue $(1 = 6) = ? = \frac{1}{2^{n-k}} = \frac{1}{8} = \frac{4}{2 \cdot 2^{1-2}} = \frac{4}{32}$

L= 6: $e(x) = \chi^{2}(\chi^{5} + ??? + 1)$ $i = 0,1$

= $g(x) \cdot c(x) = (\chi^{3} + x + 1) \cdot c(x)$

=) $c(x) = \chi^{2}(\chi^{2} + ?x^{2} + 1)$ =) $total \# c(x) : 2 \cdot 2^{1} = 4$

i=0, ?=0 =) $\chi^{0}(\chi^{2} + 1) = \chi^{2} + 1$ =) $g(x) \cdot c(x)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{2} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1) \cdot (x^{3} + 1)$

= $(x^{3} + x + 1$

$$-(L-1)-(h-k) > 0 \qquad \text{If long}^{11}$$

$$-(L-1)-(h-k) < 0 \qquad \text{If short}^{11}$$

$$-(L-1)-(n-k) < 0 \qquad \text{If short}^{11}$$

$$= (L-1)-(n-k) < 0 \qquad \text{If special}^{11}$$

$$= (L-1)-(n-k) = 0 \qquad \text{If special}^{11}$$

$$= (L$$

Error Detection Capabilities

- For Error Bursts of Length L:
 - ▶ For error burst starting at bit location i and ending at bit location (i + L 1)
 - $e(x) = x^{i+l-1} + ... + x^i = x^i d(x)$ where $d(x) = x^{l-1} + ... + 1$

- - L < (n k + 1)
 - -g(x) cannot divide d(x) because deg(d(x)) < deg(g(x))
 - Can detect all such error bursts
 - L = (n k + 1)
 - d(x) is divisible by g(x) if and only if d(x) = g(x)
 - Fraction of such error bursts that are undetectable is (½)^(n-k-1)
 - L > (n k + 1)
 - Fraction of such error bursts that are undetectable is $(\frac{1}{2})^{(n-k)}$

Overall
$$FUE = \frac{2^{k}-1}{2^{n}-1} < \frac{1}{2^{n-k}}$$

E.g. $n-k = 32$ $FUE < \frac{1}{2^{32}} \approx 2.33 * 10^{-10}$

Given
$$g(x)$$
, $deg(g(x)) = n-k$

- (1) # registers = N-K
- coefficients of glx)
 how to connect, feed back

Eg.
$$g(x) = y^3 + x + 1$$

1 0 1 1
33 32 31 9.

- 3) Input from left
- After 1 clock ticks, check bits in registers

