Wirtschaftsinformatik II – Stuckenschmidt/Meilicke

Modellieren mit Prädikatenlogik

PRÄDIKATENLOGIK ÜBERSETZEN UND MODELLIEREN

Willkommen in der Wumpus Welt

Es gibt genau einen Wumpus und der bewegt sich nicht

Der Wumpus erzeugt Gestank (Stench) auf den Nachbarfeldern 4

3

2

Eine Fallgrube (PIT) erzeugt einen Luftzug auf den Nachbarfeldern

Lauf' durch das Labyrinth,
Weich' dem Wumpus aus
Fall' in keine Grube
Und finde das Gold!

Willkommen in der Wumpus Welt

Es gibt genau einen Wumpus und der bewegt sich nicht

- Worüber wollen wir etwas sagen?
 - Was sind die Individuenkonstanten, die in unseren Formeln auftauchen?
 - Worüber wollen wir in unseren Formeln quantifizieren?
- Es bieten sich die einzelnen Felder an:

4	f14	f24	f34	f44
3	f13	f23	f33	f43
2	f12	f22	f32	f42
1	f11	f21	f31	f41
	1	2	3	4

- Was wollen/müssen wir sagen? Welche Prädikate?
 - Auf einem Feld x ist der Wumpus $\Leftrightarrow wumpus(x)$
 - Auf einem Feld x ist eine Fallgrube $\Leftrightarrow pit(x)$
 - Auf einem Feld x herrscht Gestank \Leftrightarrow stench(x)
 - Auf einem Feld x weht ein Luftzug $\Leftrightarrow breeze(x)$
 - Zwei Felder x und y sind benachbart $\Leftrightarrow neighbor(x, y)$
- Die Signatur Σ , die wir verwenden, um die Wumpuswelt zu beschreiben, sieht so aus
 - Individuenkonstanten: f11, f12, f13, ...
 - Prädikatskonstanten: wumpus, pit, stench, breeze, neighbor

- Welche Formeln gehören in die Knowledgebase KB?
 - Die trivialen Nachbarschaftsrelationen
 - $neighbor(f11, f12) \land neighbor(f11, f21) \land neighbor(f12, f13) \land neighbor(f12, f22) \land \dots$
 - Die allgemeinen Regeln der Wumpuswelt
 - $\forall xy \ (neighbor(x,y) \land wumpus(x) \rightarrow stench(y))$
 - $\forall xy (neighbor(x, y) \land pit(x) \rightarrow breeze(y))$
 - Eventuell: $\forall xy \ (neighbor(x,y) \rightarrow neighbor(y,x))$
 - Beobachtungen
 - $\neg stench(f11) \land \neg breeze(f11)$
 - $stench(f12) \land \neg breeze(f12)$
 - $\neg stench(f21) \land breeze(f21)$

Exkurs: Zahlen

- Setzt man das zweistellige Prädikat = als gegeben voraus, dann kann man Zahlenangaben modellieren
 - Prädikatenlogik mit Identität
- Es gibt mindestens ein F
 - $-\exists x F(x)$
- Es gibt genau ein F

$$- \exists x (F(x) \land \forall y (F(y) \rightarrow x = y))$$

Alternativ:

$$\exists^{=1}$$
 oder $\exists!$

- Es gibt mindesten zwei F
 - $\exists xy (F(x) \land F(y) \land \neg(x = y))$
- Es gibt höchsten zwei F
 - $\ \forall x \ \forall y \ \forall z \ (F(x) \land F(y) \land F(z) \rightarrow x = y \ \lor y = z \ \lor x = z)$

- Sind die bisher aufgestellten Regeln ausreichend?
 - Die allgemeinen Regeln der Wumpuswelt
 - $\forall xy \ (neighbor(x,y) \land wumpus(x) \rightarrow stench(y))$
 - $\forall xy \ (neighbor(x,y) \land pit(x) \rightarrow breeze(y))$
 - $\exists x (wumpus(x) \land \forall y (wumpus(y) \rightarrow x = y))$
 - Eventuell: $\forall xy \ (neighbor(x,y) \rightarrow neighbor(y,x))$
 - Beobachtungen
 - $\neg stench(f11) \land \neg breeze(f11)$
 - $stench(f12) \land \neg breeze(f12)$
 - $\neg stench(f21) \land breeze(f21)$
 - Gilt folgendes?
 - $KB \models \neg wumpus(f22) \land \neg pit(f22)$
 - KB = wumpus(f13)

 Die folgenden Formeln verbieten alle Interpretationen, in denen auf dem mittleren Feld ein Wumpus oder eine Falle ist

- $\forall xy \ (neighbor(x,y) \land wumpus(x) \rightarrow stench(y))$
- $\forall xy (neighbor(x, y) \land pit(x) \rightarrow breeze(y))$

- D.h. $KB = \neg wumpus(f22)$
- D.h. $KB \models \neg pit(f22)$

W		
S	?	
	В	?

- $\forall xy (neighbor(x, y) \land wumpus(x) \rightarrow stench(y))$
- $\forall xy \ (neighbor(x,y) \land pit(x) \rightarrow breeze(y))$

 Hierüber können wir nichts schließen, es gibt Modelle, in denen dort ein Wumpus ist, und Modelle, in denen dies nicht der Fall ist

- D.h. $KB \not\models wumpus(f13)$
- D.h. $KB \not\models \neg wumpus(f13)$

Korrektheit und Vollständigkeit

- Ziele beim Modellieren
 - Korrektheit: Stelle die "Welt" so dar, wie sie tatsächlich ist (und behaupte nicht zuviel)
 - Im Wumpus Kontext: Erlaube keine falschen Schlußfolgerungen
 - Vollständigkeit: Spezifiziere alles was notwendig ist, um die relevanten Aspekte "Welt"
 - Im Wumpus Kontext: Modelliere genug um alle relevanten Schlußfolgerungen zu erlauben
- Beispiel "Rollen von Benutzern und deren Rechte":
 - Nicht korrekt: Ein Benutzer erhält Rechte, die er nicht haben darf
 - Nicht vollständig: Der Zugriff auf Resourcen wird verweigert, obwohl ein Nutzer einer Gruppe mit den entsprechenden Rechten angehört

Offene Fragen

- Welche Formeln muss man hinzufügen, um den Wumpus identifizieren zu können?
 - Bereits in der KB: $\forall xy \ (neighbor(x,y) \land wumpus(x) \rightarrow stench(y))$
 - Muss noch dazu: $\forall x \left(stench(x) \rightarrow \exists y \left(neighbor(x, y) \land wumpus(y) \right) \right)$
- Das Wumpus Beispiel kann man auch mittels Aussagenlogik formulieren, um zu denselben Inferenzen zu gelangen
 - Ja, wenn die Anzahl der Felder vorab bekannt ist
 - Es müssen alle möglichen Einsetzungen in Formeln mit Quantoren explizit aufgelistet werden
 - Allquantor => Konjunktion
 - Existenzquantor => Disjunktion

Zwischenfazit und Ausblick

- Wichtige Begriffe, insbesondere
 - Interpretation und Modell
 - Äuivalenzumformungen
 - Logische Folgerung
 - Modellieren der Wumpus Welt
- Weitere Hinweise zum Modellieren
 - Identifizieren/klassifizieren der bedeutungstragenden Bestandteile
 - Ignorieren der "nahezu" bedeutungslosen Bestandteile
 - Fehler/Verständnis von Junktoren
 - Typische Muster/Kombinationen von Quantoren und Junktoren
 - Modellieren statt Übersetzen

Individuenkonstanten und Terme

- Individuenkonstanten
 - Eigennamen
 - Personalpronomina
- Beispiel: <u>Apple</u> ist ein börsennotiertes Unternehmen, das [...]. <u>Das Unternehmen</u> zeichnet sich durch ...
- Terme
 - Bestimmter Artikel
 - Genitivkonstruktionen
 - Eigennamen
 - Wird etwas einzelnes bezeichnet?
- Beispiel: <u>Der Vater von Hans</u> ist der [...].

Zuschreibung von Prädikaten

- Prädikate
 - Kann man Mengen mit dem Ausdruck assoziieren?
 - Pluralformen (gibt auch Ausnahmen)
 - Adjektive
- Zuschreibung von Prädikaten
 - Ist, sind, ...
 - Achtung: Nicht verwechseln mit dem "ist", das Identität ausdrückt
 - Verben
- Beispiel: Alle <u>Menschen</u> sind sterblich. <u>Der Mensch</u> ist ein <u>sterbliches Wesen</u>. <u>Die Konkurrenten von</u> Apple sind <u>börsennotierte</u> <u>Unternehmen</u>. Heiner Stuckenschmidt <u>lehrt</u> Wifo II.

Quantoren

- Existenzquantor
 - Es gibt, manche, einige, es existiert, etwas, ...
- Allquantor
 - Alle, jeder, diejenigen, ...
- Tauchen gerne in Verbindung mir Relativsätzen auf
- Beispiel: <u>Es gibt</u> unteilbare Zahlen. <u>Jeder</u> Mensch hat eine Mutter. <u>Diejenigen</u>, die über 30 sind, haben ihre Kindheit hinter sich.

Logische Bedeutung?

- Eher keine logische Bedeutung
 - Obwohl Hans zu spät kommt, wird er nicht bestraft.
 - Er kommt zu spät. <u>Dennoch</u> wird er nicht bestraft.
- Probabilistische Bedeutung
 - In der Regel sind Apple-Produkte in weiß erhältlich.
 - Selten kommt Hans zu spät
 - In 80% der Fälle verläuft die Operation ohne Komplikationen
- Logische Bedeutung
 - Andi isst etwas, wenn er Hunger hat $(hungry \rightarrow eating)$
 - Andi isst <u>nur</u> etwas, wenn er Hunger hat (eating → hungry)

Quantoren: Typische Muster

- Allquantor taucht oft mit Subjunktion (wenn, dann) auf
 - Alle Menschen sind sterblich
 - $\forall x (human(x) \rightarrow mortal(x))$
- Existenzquantor taucht oft mit Konjunktion (und) auf
 - Es gibt kluge Informatiker
 - $-\exists x (clever(x) \land computerscientist(x))$
- Kombinationen von beidem:
 - Für alle ... existiert ein ... $\forall x$... $\exists x$...
 - Zu jedem ... gibt es ein ... $\forall x$... $\exists x$...
 - Es gibt ein ... so dass alle ... $\exists x$... $\forall x$...

Atypische (oft falsche) Verwendung

- Allquantor taucht oft mit Subjunktion auf
 - Alle Menschen sind sterblich
 - $\forall x (human(x) \rightarrow mortal(x))$
 - $\forall x (human(x) \land mortal(x))$
 - Alles was es gibt ist ein Mensch und ist sterblich.
 - Anders formuliert: Es gibt nur sterbliche Menschen und sonst nichts
- Existenzquantor taucht oft mit Konjunktion auf
 - Es gibt kluge Informatiker
 - $-\exists x (clever(x) \land computerscientist(x))$
 - $-\exists x (clever(x) \rightarrow computerscientist(x))$
 - Ist wahr, wenn es eine Person gibt, die nicht clever ist, oder wenn es einen Informatiker gibt

Junktoren: Subjunktion

- Subjunktion: $\alpha \rightarrow \beta$
 - Wenn Joker ein Pferd ist, dann ist Joker kein Hund
 - Falls Joker ein Pferd ist, dann ist Joker kein Hund
 - Joker ist kein Hund, wenn Joker ein Pferd ist
- Wichtig:

$$-I(\alpha \rightarrow \beta) = w$$
, wenn $I(\alpha) = f$

$$-I(\alpha \rightarrow \beta) = w$$
, wenn $I(\beta) = w$

Daher ist beispielweise diese Formel eine Tautologie

$$-(\alpha \land \neg \alpha) \rightarrow \beta$$

Junktoren: Bisubjunktion

- Bisubjunktion: $\alpha \leftrightarrow \beta$
 - Genau dann wenn eine Zahl ungerade ist, ist diese Zahl nicht gerade
 - Dann und nur dann wenn eine Zahl ungerade ist, ist diese Zahl nicht gerade
 - Im englischer Fachsprache: "iff" statt "if"
- Semantik:
 - $-I(\alpha \leftrightarrow \beta) = w$, wenn $I(\alpha) = I(\beta)$
 - Ausschließendes Oder ist das logische Gegenteil
 - $I(\alpha \leftrightarrow \beta) = I(\neg(\alpha XOR \beta))$
- Wird in der Regel für Definitionen verwendet:
 - $\forall x (jungeselle(x) \leftrightarrow (male(x) \land \neg \exists y \ married(x, y)))$

Junktoren: Disjunktion

• Disjunktion: $\alpha \vee \beta$ (vs. $\alpha XOR \beta$)

α	β	α∨β
f	f	f
f	W	w
W	f	w
W	W	w

α	β	α XOR β
f	f	f
f	W	w
W	f	w
W	W	f

- Hans liebt Julia oder Sarah oder beide
- Hans liebt Julia oder Sarah (nur eine von beiden?)
- Entweder steigt die Google-Aktie, oder die Micorsoft-Aktien fallen
- "oder" kann ausschließend oder einschließend gemeint sein
- "entweder oder" verweist eindeutig auf das ausschließende Oder.

Junktoren: Konjunktion

- Konjunktion: $\alpha \land \beta$
 - Black Beauty ist ein Pferd und Lassie ist ein Hund.
 - Black Beauty ist ein Pferd. Lassie ist ein Hund.
 - Black Beauty ist ein Pferd, Lassie ist ein Hund, und Fido ist ein Vogel.
 - Abkürzend:
 - Black Beauty und Joker sind Pferde
 - Achtung, keine Konjunktion:
 - Black Beauty und Joker sind Freunde
 - Google und IBM sind Konkurrenten
 - Hans und Anna sind verheiratet

Übersetzen vs. Modellieren

Übersetzen

- Versuche den logischen Gehalt eines natursprachlichen Satzes möglichst sinngemäß in einer logischen Formel auszudrücken
- Ist nicht immer eindeutig, ein Satz kann auf verschiedene Weise interpretiert werden
- Keine T\u00e4tigkeit eines Wirtschaftsinformatiker
 - Gute Übung um Sprache zu verstehen und richtig zu gebrauchen
 - Grundelemente des Modellierens
- Modellieren: Ein partielle Problembeschreibung ist gegeben
 - Unvollständigkeit erkennen und auflösen
 - Inkonsistenzen in der Beschreibung aufdecken
 - Wesentliche/relevante Aspekte in ihren logischen Beziehungen erfassen
 - Unwichtiges ignorieren
 - Verschiedene Modellierungen gegeneinander abwägen

Übersetzen vs. Modellieren

- Beispiel: Eine als Webanwendung implementierte
 Tauschbörse mit Diskussionsforum, die nach verschiedenen
 Hobbys geordnet ist
 - Ausschreibung eines Auftrags
 - Telefonate und Emails um genaueres herauszubekommen
 - Persönliches Treffen mit
 - Manager: Vorführen eines ähnlichen Systems und Hinweise auf Unterschiede
 - IT-Abteilung: Hardware, bestehende Systemlandschaft

Übersetzen vs. Modellieren

- Beispiel: Eine als Webanwendung implementierte
 Tauschbörse mit Diskussionsforum, die nach verschiedenen
 Hobbys geordnet ist
 - Man spezifiziert demographischen Angaben, Hobbies, Interessen und Keywords
 - Benutzerspezifische Tauschangebote werden angezeigt und man kann tauschen oder über eine künstliche Währung kaufen
 - Um benutzerspezifische Tauschangebote anzuzeigen, muss ein Recommender-System integriert sein
 - Künstliche Währung kann auch mit echter Währung gekauft werden
 - **—** ...

Logische Darstellung

- Einige Formeln, mit denen man die Domäne beschreiben könnte:
 - $\forall x \ y \ (hasInterest(x, y) \rightarrow (User(x) \land Hobby(y)))$
 - Wenn jemand an etwas interessiert ist, dann handelt es sich um einen Benutzer und das woran der Benutzer interessiert ist, ist ein Hobby
 - $\forall x (User(x) \rightarrow \exists y \ hasInterest(x, y))$
 - Jeder Benutzer ist an irgendetwas interessiert (stellt sicher, dass man bei Eingabe des Profils mindestens ein Hobby auswählen muss)
 - $\forall x (Sports(x) \rightarrow Hobby(x))$
 - Sport ist eine Hobby-Kategorie
 - $\forall x (Hiking(x) \rightarrow Hobby(x))$
 - Wandern ist eine Hobby-Kategorie

Darstellung in UML

Eine partielle UML Darstellung könnte so aussehen:

Zusammenfassung

- Syntax
 - Welche Bausteine gibt es und wie kann man diese zusammensetzen
- Semantik
 - Wie ergibt sich die Bedeutung eines komplexen Ausdrucks aus Bestandteilen
 - Was ist eine Interpretation, was ein Modell
 - Äquivalenz, Erfüllbarkeit, Tautologie, Kontradiktion
 - Was heisst es, dass eine Formel aus einer anderen folgt
- Typische Modellierungs/Übersetzungmuster
 - Modellieren vs. Übersetzen

