Ch 4: Models for stationary time series

- ► So far, we learned about stochastic processes and their mean/autocovariance/autocorrelation functions, and discussed stationary MA and AR processes.
- ▶ Now, we will get into a bit more detail on the AR and MA processes, to then combine them into ARMA processes and discuss the properties of such processes.
- Big picture:
 - Recap of our goal in time series analysis: Given an observed time series, that is typically not deterministic but contains a random component, find out what time series process(es) could have resulted in the observed time series; use a stochastic process as a model for the time series of interest, to capture its autocovariance structure.
 - ▶ If the random component is stationary, then we can use autoregressive moving-average (ARMA) processes as discussed in this chapter to represent that component. This is a powerful approach because for a large class of autocovariance functions (ACVFs), it is possible to find an ARMA process with an ACVF that closely approximates the ACVF of the stochastic process being modeled.

Ch 4: Models for stationary time series

- ▶ In this chapter, we assume that the process of interest has mean zero (no deterministic trend) and is stationary. We will discuss how to model deterministic trends and non-stationary processes in later chapters.
- ► Topics in Ch 4-Part II:
 - Stationarity of an AR(p) process
 - General linear process
 - Causality and invertibility
 - ARMA process
- Relevant material in Ch 4: all except for calculations related to stationarity of AR(2) process (mid p.71 - 75)

Stationarity of AR(p) process

- Let's find out when an AR(p) process is stationary.
- We will define the
 - stationarity condition for an AR(p) process, based on
 - ► AR(p) characteristic function and equation

and examine what that condition implies for the coefficient of an AR(1) process.

Some definitions

An autoregressive process of order p, denoted by AR(p), is defined as:

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_p Y_{t-p} + e_t,$$

where the ϕ 's are unknown parameters and $e_t \sim WN(0, \sigma_e^2)$.

 The corresponding AR characteristic polynomial (function) is defined as

$$\phi(x) = 1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_p x^p,$$

and the AR characteristic equation is defined as

$$\phi(x) = 1 - \phi_1 x - \phi_2 x^2 - \ldots - \phi_p x^p = 0.$$

- Q: What is the characteristic equation for an AR(1) process with $Y_t = \phi Y_{t-1} + e_t$?
- ightharpoonup z is called a root for the AR characteristic equation if $\phi(z)=0$.
 - Q: What is the root for the characteristic equation for an AR(1) process?

When is an AR(p) process stationary?

- ▶ The AR(p) process, with e_t be independent of $Y_{t-1}, Y_{t-2}, Y_{t-3}, \ldots$, is stationary if and only if the roots of characteristic equation exceed 1 in absolute value (modulus).
- ▶ In other words, the AR(p) process is stationary if the roots z_i (for i = 1 up to p) of AR characteristic equation

$$\phi(x) = 1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_p x^p = 0$$

satisfy $|z_i| > 1$.

- ▶ We'll focus on understanding the condition and show that if the stationarity condition is satisfied for an AR(1) process, the process is indeed stationary.
- ▶ The proof is outside the class material (see reference material).
- Assume that e_t does not depend on Y_{t-1}, Y_{t-2}, \ldots unless otherwise stated.

Stationarity for the AR(1) process

- AR(1): $Y_t = \phi Y_{t-1} + e_t$.
- ► AR(1) characteristic equation is defined as

$$\phi(x)=1-\phi x=0.$$

- ▶ The root is given by $z_1 = 1/\phi$.
- Q: When is an AR(1) process stationary?
- We can show that the AR(1) process with $|\phi| < 1$ is indeed stationary, by writing this process as a general linear process.

General linear processes

▶ Definition: A general linear process $\{Y_t\}$ is a process that can be represented as a weighted linear combination of present and past white noise terms:

$$Y_t = \psi_0 e_t + \psi_1 e_{t-1} + \psi_2 e_{t-2} + \dots,$$

with $\sum_{j=1}^{\infty} \psi_j^2 < \infty$ and $\psi_0 = 1$.

- We can write any AR(p) process, that satisfies the stationary condition, as a general linear process.
- Example: AR(1) with $|\phi| < 1$:
 - ▶ The general linear process $Y_t = \sum_{j=0}^{\infty} \psi_j e_{t-j}$ with $\psi_j = \phi^j$ satisfies the AR(1) equation $Y_t = \phi Y_{t-1} + e_t$ (show this!).
 - Note that $\sum_{j=1}^{\infty} \psi_j^2 = \sum_{j=1}^{\infty} (\phi^j)^2 < \infty$ (remember that $\sum_{j=0}^{\infty} a^j = \frac{1}{1-a}$ if |a| < 1).
 - For Given the general linear process representation for the AR(1) with $|\phi| < 1$, we can derive the mean and autocovariance function and find that they do not depend on t (we get the same expressions as discussed in Ch4-partl), thus that the process is stationary (see book, p.55-56).

Summary: Stationarity of an AR(p) process

▶ An autoregressive process of order p, denoted by AR(p), with

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_p Y_{t-p} + e_t,$$

and e_t be independent of $Y_{t-1}, Y_{t-2}, Y_{t-3}, \ldots$, is stationary if and only if the roots z_i (for i = 1 up to p) of AR characteristic equation

$$\phi(x) = 1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_p x^p = 0$$

satisfy $|z_i| > 1$.

▶ A stationary AR(p) process can be written as a general linear process.

Causality

- For the AR(1) process with $Y_t = \phi Y_{t-1} + e_t$, what happens when $|\phi| = 1$ or $|\phi| > 1$?
- ▶ When $\phi = \pm 1$,
- ▶ When $|\phi| > 1$, e.g. $\phi = 3$ (exercise 4.16):
 - An equivalent process is given by $Y_t = -\sum_{j=1}^{\infty} (1/\phi)^j e_{t+j}$ (show by substitution).
 - This process is stationary: the mean and ACVF do not depend on time t.
- ▶ However, we do not consider AR(1) processes with $|\phi| > 1$ because Y_t depends on future e_t 's or equivalently, e_t depends on past Y_t 's.
- ▶ Instead, we focus on *causal* processes, where e_t is independent of Y_{t-1}, Y_{t-2}, \ldots
- ▶ General summary for AR(p) processes with root z_i :
 - if $|z_i| = 1$, the AR(p) process will NOT be stationary,
 - if $|z_i| > 1$, the AR(p) process will be stationary and causal,
 - if $|z_i| < 1$, the AR(p) process will be stationary but NOT causal.

We focus on stationary causal processes.

A similar yet different issue for MA processes

► The autocorrelation function for the MA(1) process $Y_t = e_t - \theta e_{t-1}$ is given by:

$$\rho_k = \left\{ \begin{array}{ll} 1 & \text{for } k = 0, \\ \frac{-\theta}{1+\theta^2} & \text{for } k = 1, \\ 0 & \text{otherwise,} \end{array} \right.$$

- ▶ What is ρ_1 for $\theta = 3$; what is ρ_1 for $\theta = 1/3$?
- ▶ This could lead to problems when fitting an MA(1) process to data: if the true but unknown process is MA(1) with $\theta = 1/3$, we can end up with an estimate for θ around 1/3 OR around 3.
 - ⇒ Without restrictions on the MA-parameters, we do not have a 1-to-1 correspondence between an MA-model specification and an MA-autocorrelation function.
- ➤ To avoid problems, we will impose some restrictions on the MA-parameters and focus on *invertible* processes only.

Invertibility

► An MA(q) process

$$Y_t = e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2} - \ldots - \theta_q e_{t-q},$$

is called invertible if we can write as an "AR(∞) process":

$$Y_t = e_t + \pi_1 Y_{t-1} + \pi_2 Y_{t-2} + \dots$$

- ► An MA(q) process is invertible if and only if the roots of the MA characteristic equation exceed one in modulus.
 - (unsurprisingly) the MA characteristic equation is given by:

$$\theta(x) = 1 - \theta_1 x - \theta_2 x^2 - \ldots - \theta_q x^q.$$

- ▶ When is the MA(1) process invertible? (relate back to example on previous slide!)
- We will only consider the "more sensible class" of invertible MA(q) models.

ARMA(p,q) processes

- Let's combine the MA(q) and AR(p) process!
- ▶ A mixed autoregressive moving average process $\{Y_t\}$ of orders p and q, denoted by ARMA(p, q), is defined as:

$$Y_{t} = \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + e_{t} -\theta_{1}e_{t-1} - \theta_{2}e_{t-2} - \dots - \theta_{q}e_{t-q},$$

with $e_t \sim WN(0, \sigma_e^2)$.

- Example ARMA(1,1): $Y_t = \phi Y_{t-1} + e_t \theta e_{t-1}$.
- What are the mean and autocovariance function of the ARMA(1,1) process if it is stationary, with $E(Y_t) = 0$ and e_t independent of Y_{t-1}, Y_{t-2}, \ldots ?

ARMA(1,1) autocovariance function

As before, multiply by Y_{t-k} and take expectations at both sides to find that

$$\begin{aligned} \gamma_0 &= \phi \gamma_1 + [1 - \theta (\phi - \theta)] \sigma_e^2 \\ \gamma_1 &= \phi \gamma_0 - \theta \sigma_e^2 \\ \gamma_k &= \phi \gamma_{k-1} \quad \text{for } k \geq 2 \end{aligned} \right\}$$

- ▶ How did γ_k depend on γ_{k-1} for the AR(1) process for k = 1, 2, ...?
- ▶ To find the ACFV and ACF, use equations for γ_0 and γ_1 to obtain γ_0 , and then γ_k and ρ_k :

$$\gamma_0 = \frac{(1 - 2\phi\theta + \theta^2)}{1 - \phi^2} \sigma_e^2$$

$$\rho_k = \frac{(1 - \theta \phi)(\phi - \theta)}{1 - 2\theta \phi + \theta^2} \phi^{k - 1} \quad \text{for } k \ge 1$$

Finding the autocovariance function for a stationary ARMA(p, q) process

The approach is not new (multiply by Y_t and take expectations) but solving this can become a bit of work and needs the general linear process representation.... Use software!

Thus the autocovariance must satisfy

$$\begin{split} \gamma_{k} &= E(Y_{t+k}Y_{t}) = E\left[\left(\sum_{j=1}^{p} \phi_{j}Y_{t+k-j} - \sum_{j=0}^{q} \theta_{j}e_{t+k-j}\right)Y_{t}\right] \\ &= \sum_{j=1}^{p} \phi_{j}\gamma_{k-j} - \sigma_{e}^{2} \sum_{j=k}^{q} \theta_{j}\psi_{j-k} \end{split} \tag{4.C.3}$$

where $\theta_0=-1$ and the last sum is absent if k>q. Setting $k=0,\,1,\,...,\,p$ and using $\gamma_{-k}=\gamma_k$ leads to p+1 linear equations in $\gamma_0,\,\gamma_1,\,...,\,\gamma_p$.

$$\gamma_{0} = \phi_{1}\gamma_{1} + \phi_{2}\gamma_{2} + \dots + \phi_{p}\gamma_{p} - \sigma_{e}^{2}(\theta_{0} + \theta_{1}\psi_{1} + \dots + \theta_{q}\psi_{q})$$

$$\gamma_{1} = \phi_{1}\gamma_{0} + \phi_{2}\gamma_{1} + \dots + \phi_{p}\gamma_{p-1} - \sigma_{e}^{2}(\theta_{1} + \theta_{2}\psi_{1} + \dots + \theta_{q}\psi_{q-1})$$

$$\vdots$$

$$\gamma_{p} = \phi_{1}\gamma_{p-1} + \phi_{2}\gamma_{p-2} + \dots + \phi_{p}\gamma_{0} - \sigma_{e}^{2}(\theta_{p} + \theta_{p+1}\psi_{1} + \dots + \theta_{q}\psi_{q-p})$$

$$\text{where } \theta_{i} = 0 \text{ if } i > q.$$

$$(4.C.4)$$

Stationarity and the general linear process

- ▶ The ARMA(p, q) process, with e_t be independent of $Y_{t-1}, Y_{t-2}, Y_{t-3}, \ldots$, is (causal and) stationary if and only if the roots of the AR characteristic equation exceed 1 in absolute value (modulus).
 - same as for AR(p)!
- ▶ If the ARMA process is stationary, we can write it as a linear process $Y_t = \sum_{j=0}^{\infty} \psi_j e_{t-j}$, and find the ψ 's by equating the coefficients of the e_{t-j} 's, e.g. $\psi_0 = 1$, $\psi_1 = -\theta_1 + \phi_1$, etc, because

$$Y_{t} = \sum_{j=0}^{\infty} \psi_{j} e_{t-j} = \psi_{0} e_{t} + \psi_{1} e_{t-1} + \psi_{2} e_{t-2} + \dots,$$

$$= e_{t} + \phi_{1} Y_{t-1} + \phi_{2} Y_{t-2} + \dots + \phi_{p} Y_{t-p}$$

$$-\theta_{1} e_{t-1} - \theta_{2} e_{t-2} - \dots - \theta_{q} e_{t-q},$$

$$= e_{t} + \phi_{1} (e_{t-1} + \phi_{1} Y_{t-2} + \phi_{2} Y_{t-3} + \dots + \phi_{p} Y_{t-p-1}$$

$$-\theta_{1} e_{t-2} - \theta_{2} e_{t-3} - \dots - \theta_{q} e_{t-q-1}) + \phi_{2} Y_{t-2} + \dots$$

$$+\phi_{p} Y_{t-p} - \theta_{1} e_{t-1} - \theta_{2} e_{t-2} - \dots - \theta_{q} e_{t-q},$$

Invertibility

▶ The ARMA(p,q) process is called invertible if we can write as an "AR(∞) process":

$$Y_t = e_t + \pi_1 Y_{t-1} + \pi_2 Y_{t-2} + \dots$$

▶ An ARMA(p, q) process is invertible if and only if the roots of the MA characteristic equation exceed one in modulus, with the MA characteristic equation is given by:

$$\theta(x) = 1 - \theta_1 x - \theta_2 x^2 - \ldots - \theta_q x^q.$$

- ▶ Same as for MA(q)!
- ▶ We will only consider invertible ARMA(p, q) models.

Summary

- In Ch 4, we learned about a family of time series models, which are ARMA(p, q) processes.
- ► From now on, when referring to an ARMA(p,q) process, we will assume that it is causal, stationary and invertible unless otherwise stated.
- ▶ Next: non-stationary time series models!