

Final 11/06/2021

2do cuatrimestre 2021 Álgebra I

Integrante	LU	Correo electrónico
Yago Pajariño	546/21	ypajarino@dc.uba.ar

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (++54+11) 4576-3300

http://www.exactas.uba.ar

${\rm \acute{I}ndice}$

L.	Fina	al $11/06/2021$	2
	1.1.	Ejercicio 3	2
	1.2.	Ejercicio 4	
		1.2.A. Pregunta i	;
		1.2.B. Pregunta ii	4
	1.3.	Ejercicio 5	4
		1.3.A. Pregunta i	4
		1.3.B. Pregunta ii	

1. Final 11/06/2021

1.1. Ejercicio 3

Se que 442 = 2.13.17

Luego,

$$(4n^{49} + n + 33:442) = 221 \iff (4n^{49} + n + 33:2.13.17) = 13.17$$

$$\iff \begin{cases} 13|4n^{49} + n + 33\\ 17|4n^{49} + n + 33\\ 2 \cancel{4}4n^{49} + n + 33 \end{cases}$$

Ahora busco los n que cumplan cada una de las ecuaciones.

Caso 13

$$13|4n^{49} + n + 33 \iff 4n^{49} + n + 33 \equiv 0(13)$$

$$\iff 4n^{49} + n \equiv 6(13)$$

Ahora separo en casos: $13|n \vee 13|/n$

Caso 13|n

$$13|n \implies 4n^{49} + n \equiv 0 + 0 \not\equiv 6(13)$$

Luego $n \not\equiv 0(13)$

Caso 13 n

13
$$\not | n \implies 4n^{49} + n \equiv 6(13)$$

 $\iff 4n^{r_{12}(49)} + n \equiv 6(13)$
 $\iff 4n + n \equiv 6(13)$
 $\iff 5n \equiv 6(13)$
 $\iff (-5)5n \equiv (-5)6(13)$
 $\iff -25n \equiv -30(13)$
 $\iff n \equiv 9(13)$

Luego $n \equiv 9(13)$

Caso 17

$$17|4n^{49} + n + 33 \iff 4n^{49} + n + 33 \equiv 0(17)$$

 $\iff 4n^{49} + n \equiv 1(17)$

De nuevo tengo dos casos 17|n y $17 \ / n$

Caso 17|n

$$17|n \implies 4n^{49} + n \equiv 1(17) \iff 0 + 0 \equiv 1(17)$$

Luego $n \not\equiv 0(17)$

Caso 17 /n

17
$$\not | n \implies 4n^{49} + n \equiv 1(17)$$

 $\iff 4n^{r_{16}(49)} + n \equiv 1(17)$
 $\iff 4n + n \equiv 1(17)$
 $\iff 7.5n \equiv 7.1(17)$
 $\iff 35n \equiv 7(17)$
 $\iff n \equiv 7(17)$

Luego $n \equiv 7(17)$

Caso 2

$$2 / 4n^{49} + n + 33 \iff 4n^{49} + n + 33 \not\equiv 0(2)$$
$$\iff \begin{cases} n \equiv 0(2) \implies 0 + 0 + 33 \equiv 1 \not\equiv 0(2) \\ n \equiv 1(2) \implies 4 + 1 + 33 \equiv 0(2) \end{cases}$$

Luego $n \equiv 0(2)$

Entonces juntando todo lo hayado,
$$S = \begin{cases} n \equiv 9(13) \\ n \equiv 3(17) \\ n \equiv 0(2) \end{cases}$$

Por el Teorema Chino del Resto se que existe una única solución mod 442, que es lo que busco.

Separo S en tres sistemas:

$$S_0 = \begin{cases} n \equiv 9(13) \\ n \equiv 0(17) \end{cases} S_1 = \begin{cases} n \equiv 0(13) \\ n \equiv 3(17) \end{cases} S_2 = \begin{cases} n \equiv 0(13) \\ n \equiv 0(17) \\ n \equiv 0(2) \end{cases}$$

Busco soluciones a cada sistema.

$$S_0 = \begin{cases} n \equiv 9(13) \\ n \equiv 0(34) \end{cases} \implies n = 34k \implies 34k \equiv 9(13) \iff k \equiv 8(13)$$

Luego $x_0 = 8.34 = 272$

$$S_1 = \begin{cases} n \equiv 3(17) \\ n \equiv 0(26) \end{cases} \implies n = 26k \implies 26k \equiv 3(17) \iff k \equiv 6(17)$$

Luego $x_1 = 6.26 = 156$

$$S_2 = \begin{cases} n \equiv 0(2) \\ n \equiv 0(17.13) \end{cases}$$

Luego $x_2 = 0$

Entonces
$$x = x_0 + x_1 + x_2 = 272 + 156 + 0 = 428$$

Por lo tanto,
$$n \equiv 428(442) \implies r_{442}(n) = 428$$

1.2. Ejercicio 4

Sea $n \in \mathbb{N}$ fijo, se define R una relación en $\mathbb{C} - \{0\}$ tal que

$$zRw \iff \text{existe } \alpha \in G_n \text{ tal que } z = \alpha w$$
 (1)

1.2.A. Pregunta i

Probar que es de equivalencia. Voy a probar cada propiedad por separado.

Reflexividad

Por definición de reflexividad, R es reflexiva $\iff \forall k \in \mathbb{C} - \{0\} : kRk$

Por (1), $kRk \iff \text{existe } \alpha \in G_n \text{ tal que } k = \alpha k$

Pero $\forall n \in \mathbb{N}, 1 \in G_n$ pues $(1)^n = 1$, luego k = k y por lo tanto R es reflexiva.

Simetría

Por definición de simetría, R es simétrica $\iff \forall (k,j) \in (\mathbb{C} - \{0\})^2 : kRj \implies jRk$

Por (1), $kRj \iff \text{existe } \alpha \in G_n \text{ tal que } k = \alpha j$

Y quiero probar $jRk \iff \text{existe } \alpha \in G_n \text{ tal que } j = \alpha k$

Por lo tanto,

$$k = \alpha j; \alpha \in G_n$$

$$\implies j = \beta \alpha j \iff \beta \alpha = 1$$

Pero dado que $\alpha \in G_n \iff \alpha^{-1} \in G_n \text{ y } \alpha \cdot \alpha^{-1} = 1$

Por lo tanto $\beta = \alpha^{-1} \implies j = \alpha^{-1}k$

Luego R es simétrica

Transitividad

Por definición de transitividad, R es transitiva $\iff \forall (j,k,l) \in (\mathbb{C}-\{0\})^3: (jRk \land kRl) \implies jRl$

Por (1),

 $jRk \iff \exists \alpha \in G_n : j = \alpha k$

 $kRl \iff \exists \alpha \in G_n : k = \alpha l$

 $jRl \iff \exists \alpha \in G_n : j = \alpha l$

Luego $jk = \alpha k\beta l \iff j = \alpha\beta l$

Entonces que da demostrar que $\alpha\beta\in G_n,$ pero se que $\alpha^n=1$ y $\beta^n=1$

Por lo tanto, $(\alpha\beta)^n = \alpha^n\beta^n = 1 \implies \alpha\beta \in G_n$

Luego R es transitiva.

1.2.B. Pregunta ii

$$z=3+5i \ {\rm y} \ n=4$$

Busco el conjunto de los $w \in \mathbb{C} - \{0\} : zRw$

Por (1),
$$zRw \iff \exists \alpha \in G_4/3 + 5i = \alpha \cdot w$$

Pero $\alpha \in G_4 \iff \alpha \in \{\pm 1, \pm i\}$

Luego,

- $\alpha = 1 \implies w = 3 + 5i$
- $\alpha = -1 \implies w = -3 5i$
- $\alpha = i \implies w = 5 3i$
- \bullet $\alpha = -i \implies w = -5 + 3i$

Luego $\overline{3+5i} = \{3+5i, -3-5i, 5+3i, -5+3i\}$

1.3. Ejercicio 5

1.3.A. Pregunta i

Factorización sabiendo que una de las raíces es cúbica de la unidad.

$$\alpha \in G_3 \iff \alpha \in \{1, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, -\frac{1}{2} - \frac{\sqrt{3}}{2}i\}$$

Dado que
$$P(1) \neq 0 \implies (x - (-\frac{1}{2} + \frac{\sqrt{3}}{2}i))(x - (-\frac{1}{2} - \frac{\sqrt{3}}{2}i))|P(1)|$$

Luego,
$$(x - (-\frac{1}{2} + \frac{\sqrt{3}}{2}i))(x - (-\frac{1}{2} - \frac{\sqrt{3}}{2}i))|P \iff (x^2 + x + 1)|P$$

Usando el algoritmo de división, $f = (x^2 + x + 1)(x^4 - 4x^2 + 4)$

Defino
$$g = x^4 - 4x^2 + 4$$

Cambio de variable $y = x^2$

Luego
$$g' = y^2 - 4y + 4 \implies g' = (y - 2)^2$$

Por lo tanto,
$$(x-\sqrt{2})(x+\sqrt{2})|g\iff (x^2-2)|g$$

Usando el algoritmo de división, $g = (x^2 - 2)(x^2 - 2)$

Por lo tanto, juntando todo lo encontrado.

•
$$f = (x - (-\frac{1}{2} + \frac{\sqrt{3}}{2}i))(x - (-\frac{1}{2} - \frac{\sqrt{3}}{2}i))(x - \sqrt{2})^2(x + \sqrt{2})^2$$
 es la factorización en $\mathbb{C}[x]$

$${\color{blue} \bullet} \ f = (x^2 + x + 1)(x - \sqrt{2})^2(x + \sqrt{2})^2$$
es la factorización en $\mathbb{R}[x]$

•
$$f = (x^2 + x + 1)(x^2 - 2)^2$$
 es la factorización en $\mathbb{Q}[x]$

1.3.B. Pregunta ii

•
$$mult(-\frac{1}{2} + \frac{\sqrt{3}}{2}i, f) = 1$$

•
$$mult(-\frac{1}{2} - \frac{\sqrt{3}}{2}i, f) = 1$$

$$mult(x + \sqrt{2}, f) = 2$$

$$- mult(x - \sqrt{2}, f) = 2$$