Topological sorting using DFS

Depth-First Search

- When one vertex is a descendant of another in the forest that was constructed by DFS?
 - Parenthesis Theorem
 - White-path Theorem

Parenthesis Theorem

- Theorem (Parenthesis theorem):
 - For all u, v, exactly one of the following holds:

u.d < u.f < v.d < v.f or v.d < v.f < u.d < u.f and neither of u and v is a descendant of the other.

- 2. u.d < v.d < v.f < u.f and v is a descendant of u.
- v.d < u.d < u.f < v.f and u is a descendant of v.
- So u.d < v.d < u.f < v.f cannot happen.
- Like parentheses:
 - OK:()[]([])[()]
 - Not OK: ([)][(])

- Corollary (Nesting of descendants' intervals):
 - v is a proper descendant of u if and only if u.d < v.d < v.f < u.f.

White-path Theorem

- Theorem (White-path theorem):
 - v is a descendant of u if and only if at time u.d,
 there is a path u ¬¬¬¬ v consisting of only white
 vertices (except for u, which was just colored gray)

Classification of edges in directed graph

Tree edge:

- In the constructed forest.
- Found by exploring (u, v).

• Back edge:

(u, v), where u is a descendant of v.

Forward edge:

(u, v), where v is a descendant of u, but not a tree edge.

Cross edge:

- any other edge.
- Can go between vertices in same tree or in different trees.

Classification of Edges

- Edge (u, v) can be classified by the color of v when the edge is first explored:
 - WHITE indicates a tree edge
 - GRAY indicates a back edge
 - BLACK indicates a forward or cross edge.
 - (u, v) is a forward edge if u.d < v.d
 - (u, v) is a **cross edge** if u.d > v.d.

Detection of Cycles

Lemma:

 A directed graph G is acyclic if and only if a DFS of G yields no back edges.

Proof:

- Back edge ⇒ Cycle
 - Suppose there is a back edge (u, v)
 - Then v is ancestor of u in the constructed forest
 - Therefore, there is a path v → u, so v → u → v is a cycle

Detection of Cycles

- Cycle => back edge.
 - Suppose G contains cycle C.
 - Let v be the first vertex discovered in C, and let (u, v) be the preceding edge in C.
 - At time v.d, vertices of C form a white path v --> u
 - since v is the first vertex discovered in c.
 - By white-path theorem, u is descendant of v in depth-first forest.
 - Therefore, (u, v) is a back edge.

Topological Sort

 Directed acyclic graph (DAG) is a directed graph with no cycles

 Topological sort of a DAG: a linear ordering of vertices such that if (u, v) ∈ E, then u appears somewhere before v.

Topological Sort

topologicalSort (G) // Assume G is a DAG Complexity: O(V + E)

Call DFS(G) to compute finishing times v.f for all $v \in V$ as each vertex is finished, insert it onto the front of a linked list **return** the linked list of vertices

Topological Sort

- Correctness:
 - Just need to show if $(u, v) \in E$, then v.f < u.f.
- When we explore (u, v), what are the colors of u and v?
 - u is gray.
 - v can't be gray.
 - Because then (u, v) is a back edge, but G is a dag.
 - If v is white.
 - By parenthesis theorem, u.d < v.d < v.f < u.f.
 - If v is black.
 - Then v is already finished, but u doesn't, therefore, v.f < u.f.