Design ES and EAS Sliding-Stem Control Valves

Design ES and EAS general-purpose control valves (figures 1, 2, and 3) are used for throttling or on-off control of a wide variety of liquids and gases. Both valve designs have single ports, unbalanced valve plugs, and cage guiding.

In both designs, metal-to-metal seating is standard for all general applications over a wide range of pressure drops and temperatures. Metal-to-PTFE seating is optional for more stringent shutoff requirements.

Unless otherwise noted, all NACE references are to NACE MR0175-2002.

The easy-e® Valve Family

Design ES and EAS valves are part of the versatile easy-e family of Fisher® industrial control valves. easy-e valves share the following characteristics.

- Multiple trim material choices
- Trim temperature capability with standard metal seats to 427°C (800°F)
 - Flexible graphite gaskets
- Interchangeable, restricted-capacity trims and full-flow trims to match variable process flow demands
- Trim part interchangeability that permits reconfiguring the valve to a different design variation
- Different cage/plug styles provide particular flow characteristics for highly-specialized applications. The standard cage comes in three different flow characteristics:
 - quick-opening
 - linear
 - equal percentage

Figure 1. Design ES Control Valve with Type 657 Actuator

Contents

Features	2
ENVIRO-SEAL® and HIGH-SEAL™	
Packing Systems	3
Class VI Shutoff Capabilities	
Tables	
Class VI Tables	3
Available Constructions	
Typical Combinations of	
Metal Trim Parts	5
Valve Body/Trim Temperature	
Capabilities	7
Bonnet Selection Guidelines	7
Maximum Flow Coefficients	9
Materials and Temperature Limits for	
All Other Parts	10
Metal Trim Part Materials for	
Compatibility with NACE MR0175-2002	
(Sour Service) Specifications,	
Environmental Restrictions Apply,	
Refer to Standard	11
Bolting Materials and Temperature Limits	
for Bolting Compliance with	
NACE MR0175-2002	13
Port Diameters, Valve Plug Travel, and	
Stem and Yoke Boss Diameters	
	15
Coefficients	18
Specifications	30
ENVIRO-SEAL Packing System	
Specifications	32

- Whisper Trim® I cages (figure 2) that attenuate aerodynamic noise in gaseous service are available for all sizes except the 8-inch Design ES valve.
- Optional constructions provide material compatibility with NACE MR0175-2002.
- 316 stainless steel packing box parts are standard (including packing flange, studs, and nuts).

Features

• Compliance with the Clean Air Act— Optional ENVIRO-SEAL packing systems (figure 4) provide an improved stem seal to help prevent the loss of process fluid. The ENVIRO-SEAL packing systems feature PTFE, Graphite ULF, or Duplex packing with live-loading for reduced packing maintenance.

- Valve Plug Stability— Rugged cage guiding provides increased valve plug stability, which reduces vibration and mechanical noise.
- Economy
 Streamlined flow passages
 provide higher efficiency and greater capacities per
 initial investment.
- Cost-Effective Operation— Increased wear resistance of the standard hardened stainless steel trim means longer-lasting service. Also, trim inventory costs are cut because dimensional standardization permits use of most standard easy-e trim parts.
- Easy Maintenance— The valve can stay in the pipeline during removal of trim parts for inspection or maintenance.
- Long-Lasting Shutoff Capability with PTFE Seating— Controlled compression of optional seat construction protects PTFE disk between metal disk seat and disk retainer (figure 2). The flowstream contacts only the edge of the disk during normal operation.
- Compliance with European Standards— Valves are available with dimensions specified by EN/DIN standards. See figure 8 and the note in figure 9.
- Sour Service Capability— Materials are available for applications handling sour fluids and gases. These materials comply with the requirements of NACE MR0175-2002.

Note

Neither Emerson®, Emerson Process Management™, Fisher, nor any of their affiliated entities assumes responsibility for the selection, use and maintenance of any product. Responsibility for the selection, use, and maintenance of any product remains with the purchaser and end-user.

Table 1. Class VI Shutoff Availability

Type	Port Size, Inches	Seat	Minimum Seat Load
ES	≤7	Metal	300 lbs/lineal inch

Table 2. Class VI Trim Materials

TYPE	CAGE/SEAT RING VALVE PLUG SEAT RING		CEAT DINC	TRIM TEMPER	RATURE LIMIT
ITPE	RETAINER	VALVE PLUG	SEAT HING	°C	°F
ES	S31600 (316 SST) / ENC	S31600/CoCr-A (alloy 6) seat w/ radiused seat (special design)	S31600 w/ wide beveled seat (special design)	Not a limiting factor	Not a limiting factor

ENVIRO-SEAL®, HIGH-SEAL™ Packing Systems

ENVIRO-SEAL and HIGH-SEAL packing systems offer excellent sealing capabilities. They easily install in your existing valves or can be purchased with new valves. These systems may help prevent the loss of process fluid. The long operational life and reliability of these systems also helps to reduce your maintenance costs and downtime.

For applications requiring compliance with environmental protection regulations, the unique Fisher ENVIRO-SEAL packing system (figure 4) and a unique ENVIRO-SEAL bellows seal system (figure 5) are offered. The patented emission control packing system helps to keep emission concentrations below the EPA 100 ppm requirement.

For an excellent stem seal in applications that are not environmentally-sensitive, the Fisher

HIGH-SEAL Graphite ULF packing system is offered. The HIGH-SEAL packing system provides excellent sealing at pressure/temperature ratings beyond ENVIRO-SEAL limits.

ENVIRO-SEAL packing systems, available with PTFE, Graphite ULF, or Duplex packing, and the HIGH-SEAL packing systems, Graphite ULF and graphite composite, feature live-loading and unique packing-ring arrangements for long-term, consistent sealing performance.

Class VI Shutoff Capabilities

Design ES valves with metal seat constructions can provide ANSI/FCI Class VI shutoff capabilities. See tables 1 and 2.

51.1:ES August 2006

Table 3. Available Valve Body Constructions

			BODY MATERIAL AND END CONNECTION STYLE ⁽¹⁾											
DEGION	VALVE	Carb	on Steel, Allo	oy Steel, or S	(Cast Iron Valve	Body							
DESIGN	SIZE, INCHES	Screwed	RF or RTJ Flanged			Butt-	Socket	0	Class 125	Class 250				
			Class 150	Class 300	Class 600	welding	Weld	Screwed	FF Flanged	RF Flanged				
	0.5 or 0.75	Х					Х	X						
ES	1, 1.5, or 2	X	X	X	X	X	Х	X	X	X				
E3	1.25	X						X						
	2.5, 3, 4, 6, or 8		X	X	X	Х			X	X				
EAS	1 or 2		Х	Х	Х	Х								
EAS	3, 4, or 6		X	X	X	Х								
	able Construction. nnection style abbreviation	s: FF - Flat Face	d, RF - Raised Fa	ace, RTJ - Ring 1	ype Joint.									

Figure 2. Design ES Sectional

Table 4. Typical Combinations of Metal Trim Parts⁽¹⁾ for all Valves Except Those for NACE Specification and Whisper Trim[®] III Cages

Trim Designation	Valve Plug	Cage	Seat Ring for Standard Metal-Seat Construction	Optional Liner (Metal-Seat Design EAS Body Only)	Disk Seat and Retainer for Optional PTFE-Seat Construction
(standard for metal-seat Designs ES and EAS in all body materials except CF8M)	S41600 HT	CB7Cu-1 HT	S41600 HT or CA15 HT ⁽¹⁾ (410 stainless steel)	S41600 HT	
3	S31600 with seat and guide hard faced with CoCr-A hardfacing alloy	R30006 (alloy 6) R30006 (alloy 6)			
4	S31600	CB7Cu-1 HT	S31600	S31600	S31600
27	S31600 with seat and guide hard faced with CoCr-A hardfacing alloy S31600 with	CF8M with electroless	R30006 (alloy 6)		
28	seat hard faced with CoCr-A hardfacing alloy	nickel coating (ENC)			
29 (standard for CF8M bodies in all designs regardless of seat construction)	S31600	CF8M with electroless nickel coating (ENC)	S31600	S31600	S31600
37	S31600 with seat and guide hard faced with CoCr-A hardfacing alloy	CB7Cu-1 HT	R30006 (alloy 6)		
57 (standard for PTFE-seat constructions in all designs and body materials except CF8M)	S41600 alloy HT	CB7Cu-1 HT			S31600
1. CA15 is used for 6- and 8-inch full-size	and restricted-trim valves.				

Figure 3. Design EAS Sectional

Table 5. Body/Trim Temperature Capabilities for Metal Trim Parts Only

BODY/BONNET MATERIAL (ALSO FOR BOTTOM	MATERIAL (ALSO TRIM FOR BOTTOM DESIGNATION VALVE SIZE AND			MATERIAL TEMPERATURE CAPABILITY					
FLANGE IF	DESIGNATION		°(C	٥١	F			
USED)			Min	Max	Min	Max			
Cast iron	1, 3, 27, 29, 37, or 57	All	-29	232	-20	450			
	1, 37, or 57	All	-29	427	-20	800			
WCC steel	29	All	-29	316	-20	600			
	54	All	-29	260	-20	500			
	27	All	-198 ⁽¹⁾	343	-325 ⁽¹⁾	650			
CF8M (316 SST)	28	All	-198 ⁽¹⁾	149	-325 ⁽¹⁾	300			
	29	All	-198 ⁽¹⁾	316	-325 ⁽¹⁾	600			
	1	All	-29	343	-20	650			
1.00 -11	4	All	-46	210	-50	410			
LCC steel	29	All	-46	316	-50	600			
	37	All	-46	343	-50	650			
	1, 37, or 57	All	-29	427	-20	800			
	3	All	-29	566	-20	1050			
WC9 chrome moly steel	0.7	Sizes through 3 inches all designs; 8 inch ES	-29	343	-20	650			
Inoly Steel	27	4 or 6 inch ES and EAS	-29	343	-20	650			
	29	All	-29	316	-20	600			
1. May be used down	to -254°C (-425°F) if manufactu	ring process includes Charpy impact test.	•						

Table 6. Bonnet Selection Guidelines

BONNET STYLE	PACKING MATERIAL	IN-BODY PROCESS TEM	IPERATURE LIMITS ⁽¹⁾
BONNETSTILE	PACKING MATERIAL	°C	°F
Plain: Standard for all valves through	PTFE V-ring	-18 to 232	0 to 450
6-inch with 2-13/16 yoke boss diameter Standard for 6-inch and	PTFE/Composition	-18 to 232	0 to 450
8-inch valves in cast iron and WCC steel bonnet material with 3-9/16 yoke boss diameter	Graphite ribbon/filament	-18 to maximum shown in table 8	0 to maximum shown in table 8
Style 1 Cast Extension:	PTFE V-ring	40.4- 407	50.4000
■Standard for 8-inch valves in S31600	PTFE/Composition	46 to 427	-50 to 800
bonnet material with 3-9/16 yoke boss diameter	Graphite ribbon/filament	-46 to maximum shown in table 8	-50 to maximum shown in table 8
Style 2 Cast Extension: ■Optional for 2-inch through	PTFE V-ring	-101 to 427	-150 to 800
4-inch valve sizes with 2-13/16 inch yoke boss diameter ■Optional for 6-inch and 8-inch valves	PTFE/Composition	7 -101 to 427	-150 to 800
with 3-9/16 yoke boss diameter. Not available for 8-inch valve in S31600 bonnet material	Graphite ribbon/filament	-101 to maximum shown in table 8	-150 to maximum shown in table 8
ENVIRO-SEAL bellows seal bonnet	PTFE	For exceptional stem sealing capabilities. See Bulletin 59.1:070, ENVIRO-SEAL Bellows Seal	For exceptional stem sealing capabilities. See Bulletin 59.1:070, ENVIRO-SEAL
LIVVII 10-SEAL Deliuws Seal Dulifiet	Graphite ULF	Bonnets, for pressure/temperature ratings.	Bellows Seal Bonnets, for pressure/temperature ratings.

^{1.} These in-body process temperatures assume an outside, ambient temperature of 21°C (70°F) and no insulation on the bonnet. When using any packing at low process temperatures, a cast extension bonnet may have to be used to prevent packing damage which could result from the formation of valve stem frost. Material selection for trim and other components will also be limiting factors.

Figure 4. ENVIRO-SEAL® and HIGH-SEAL™ Packing Systems

Table 7. Maximum Flow Coefficients for Full-Sized Trim with Equal Percentage Cage and Normal Flow Direction(1)

Valve Design	Valve Size, Inches	C _v at Max Valve Plug Travel
	0.5	6.53 ⁽²⁾
ES	0.75	14.2 ⁽²⁾
	1, 1.25	17.4
	1.5	33.4
	2	56.2
	2.5	82.7
	3	121
	4	203
	6	357
	8	808
	1	19.0
	2	47.2
EAS (flow down)	3	148
	4	156
	6	328

Except where indicated. Flow coefficients for linear and quick-opening cages normally are somewhat greater.
 Quick-opening cage.

Figure 5. ENVIRO-SEAL® Bellows Seal Bonnet

Table 8. Materials and Temperature Limits for All Other Parts

	PART			MATER	RIAL TEMPERA	TURE CAPAE	BILITIES	
			MATERIAL	C	C		°F	
				Minimum	Maximum	Minimum	Maximum	
	Cast iron body	Cap screws	Steel SAE Grade 5	-29	232	-20	450	
	WCC or WC9	Studs	Steel SA-193-B7		10=(1)		222(1)	
	body	Nuts	Steel SA-194-2H	- 29	427 ⁽¹⁾	-20	800 ⁽¹⁾	
		Studs	Steel SA-193-B7 (std)		(1)		(1)	
		Nuts	Steel SA-194-2H (std)	-48	427 ⁽¹⁾	- 55	800 ⁽¹⁾	
		Studs	304 stainless steel SA-320-B8					
Body-to-bonnet bolting. See		Nuts	304 stainless steel SA-194-8	-198	38	-325	100	
table 10 for NACE	316 stainless steel (CF8M)	Studs	316 stainless steel SA-193-B8M (strain-hardened)	-198 ⁽²⁾	427 ⁽¹⁾	-325 ⁽²⁾	800 ⁽¹⁾	
bolting materials	(Of OWI)	Nuts	316 stainless steel SA-194-8M	7				
and temperatures		Studs	316 stainless steel SA-194-B8M (annealed)	-198 ⁽²⁾	These materials	-325 ⁽²⁾	These materials	
		Nuts	316 stainless steel SA-194-8M		not limiting factors		not limiting factors	
		Studs	Steel SA-193-B7	1	(1)		(4)	
	LCC body	Nuts	Steel SA-194-2H	-46	343 ⁽¹⁾	-50	650 ⁽¹⁾	
		Studs	Steel SA-193-B16		(1)		(4)	
	WC9 body	Nuts	Steel SA-194-7	-29	566 ⁽¹⁾	-20	1050 ⁽¹⁾	
Optional disk			PTFE	-73	204	-100	400	
Valve plug stem			316 stainless steel	100(0)	1	22=(0)		
Pin (Design ES o	r EAS valve only)		316 stainless steel	-198 ⁽²⁾	593	-325 ⁽²⁾	1100	
			17-4PH stainless steel	-101	316	-150	600	
Load ring	(8-inch Design ES valve only)		N06600	-254	593	-425	1100	
	Lo vaive only)		N05500 Nickel Alloy	-240	260	-400	500	
	1		Cast iron	-73	232	-100	450	
Restricted trim adaptors			WCC steel	-29	427	-20	800	
adaptors			316 stainless steel	-198 ⁽²⁾	593	-325 ⁽²⁾	1100	
Seat ring,			Flexible Graphite (standard)	-198	593 ⁽³⁾	-325	1100 ⁽³⁾	
bonnet, and cage gaskets			PTFE-coated N04400 Nickel Alloy	-73	149	-100	300	
Spiral wound			N06600 Nickel Alloy 600/graphite (Flexible Graphite) standard	-198	593 ⁽³⁾	-325	1100 ⁽³⁾	
gaskets			N04400 Nickel Alloy/composition	-73	232	-100	450	
			316 stainless steel	TI	nese materials n	ot limiting fact	ors	
Shim			N04400 Nickel Alloy	Ti	nese materials n	ot limiting fact	ors	
			PTFE V-ring	-40	232	-40	450	
	(temperatures shown are	See table 6	PTFE/composition	-73	232	-100	450	
Packing	material	for proper bonnet	Graphite ribbon/filament	-198	538 ⁽⁴⁾	-325	1000 ⁽⁴⁾	
	temperature capabilities)	selection	Graphite ribbon for high-temperature oxidizing service	371	649	700	1200	
Packing flange st standard bonnet	uds, and nuts whe	n used with	316 stainless steel	-198 ⁽²⁾	593	-325 ⁽²⁾	1100	
Packing follower V-ring packing) o arrangements)	and packing spring r lantern ring (other	(single PTFE r packing	316 stainless steel	-198 ⁽²⁾	593	-325 ⁽²⁾	1100	
Packing box ring			316 stainless steel	-198 ⁽²⁾	593	-325 ⁽²⁾	1100	
Extension	Trims 1 & 4		416 stainless steel	-29	427	-20	800	
bonnet bushing	Other trims		316 stainless steel	-198 ⁽²⁾	593	-325 ⁽²⁾	1100	

Lubricated nuts are standard.
 May be used down to -254°C (-425°F) if manufacturing process includes Charpy impact test.
 S. Except 427°C (800°F) on oxidizing service.
 Except 371°C (700°F) on oxidizing service.

Table 9. Metal Trim Part Materials for Compatibility with NACE MR0175-2002 (Sour Service) Specifications, Environmental Restrictions Apply, Refer to Standard

Trim Designation	Valve Plug	Cage	Seat Ring for Standard Metal Seat Construction	Optional Liner for Metal Seat (EAS only)	Disk Seat and Retainer for Optional PTFE-Seat Construction	Valve Stem, Packing Follower, Lantern Ring, Packing Box Ring, and Pin	Load Ring ⁽¹⁾
85	S31600	S31600 with electroless nickel coating (ENC)	S31600	S31600			
85C ⁽²⁾	S31600	S31600 with electroless nickel coating (ENC)			S31600		
86	S31600 with seat hard faced with CoCr-A hard facing alloy	S31600 with electroless nickel coating (ENC)	R30006 (alloy 6)			Valve stem is S20910 All other parts	N05500
87	S31600 with seat and guide hard faced with CoCr-A hard facing alloy	S31600 with electroless nickel coating (ENC)	R30006 (alloy 6)			are S31600	
87C ⁽²⁾	S31600 with seat and guide hard faced with CoCr-A hard facing alloy	S31600 with electroless nickel coating (ENC)			S31600		

^{2. 85}C and 87C are trims for PTFE-seat construction.

FOR STANDARD METAL SEATING WITH CLASS 600 (1) 316 STAINLESS STEEL (CF8M) BODY

NOTE:

1 DO NOT EXCEED THE MAXIMUM PRESSURE AND TEMPERATURE FOR THE CLASS RATING
OF THE BODY MATERIAL USED, EVEN THOUGH THE TRIMS SHOWN MAY HAVE HIGHER CAPABILITIES.

C0575-3/IL

Figure 6. Typical Trim Used for NACE MR0175-2002, (Sour Service)

Table 10. Bolting Materials and Temperature Limits for Bolting Compliance with NACE MR0175-2002

		TEMPERATURE CAPAB						
	BOLTING MATERIAL	0	С	°F				
		Min	Max	Min	Max			
	NACE MR0175-2002 (non-expos	ed bolting) (Standard)		•				
Studs	Steel SA-193-B7	40(2)	407	- 55 ⁽²⁾	000			
Nuts	Steel SA-194-2H	_48(z)	427		800			
Require			erials are Used					
Studs	Steel SA-193-B7M	40(2)	407	EE(2)	900			
Nuts	Steel SA-194-2HM	-48\ - /	427	-55(-)	800			
	Nuts Requires Studs	NACE MR0175-2002 (non-exposed Studs Steel SA-193-B7 Nuts Steel SA-194-2H NACE MR0175-2002 (exposed Requires Derating of Valve ⁽¹⁾ When These Bod Studs Steel SA-193-B7M	BOLTING MATERIAL Min	BOLTING MATERIAL °C Min Max	Min Max Min			

Table 11. Port Diameters, Valve Plug Travel, and Stem and Yoke Boss Diameters

	VALVE SIZE, INCHES			_	PORT PLUG DIAMETER TRAVEL			STEM AND YOKE BOSS DIAMETERS							
Desi	gn ES	Desig	ın EAS					Standard					Optional		
Full-Sized	Restricted- Capacity	Full-Sized	Restricted- Capacity					St	em	Yol	ce Boss	St	em	Yok	e Boss
Trim	Trim	Trim	Trim	mm	Inch	mm	Inch	mm	Inch	mm	Inch	mm	Inch	mm	Inch
1 or 1.25	1.5	1	2	33.3	1.3125	19	0.75	9.5	3/8	54	2-1/8	12.7	1/2	71	2-13/16
	2			33.3	1.3125	19	0.75	12.7	1/2	71	2-13/16				
1.5		2		47.6	1.875	19	0.75	9.5	3/8	54	2-1/8	12.7	1/2	71	2-13/16
	2.5		3	47.6	1.875	19	0.75	12.7	1/2	71	2-13/16				
2	3		4	58.7	2.3125	29	1.125	12.7	1/2	71	2-13/16	19.1	3/4	90	3-9/16
2.5	4	3	6	73.0	2.875	38	1.5	12.7	1/2	71	2-13/16	19.1	3/4	90	3-9/16
3		4		87.3	3.4375	38	1.5	12.7	1/2	71	2-13/16	19.1	3/4	90	3-9/16
4				444.4	4.075			40.7	4.0	-,	0.40/40	19.1	3/4	90	3-9/16
4		6		111.1	4.375	51	2	12.7	1/2	71	2-13/16	25.4	1	127	5
6				177.8	7	51	2					25.4	1		
0				000.0		51	2	19.1	3/4	90	3-9/16	or	or	127	5
8				203.2	8	76	3	1				31.8	1-1/4		

August 2006

FOR STANDARD METAL SEATING WITH CLASS 250B CLAST IRON BODY

FOR STANDARD METAL SEATING WITH CLASS 600 (1) WC9 CHROME MOLY STEEL BODY

FOR OPTIONAL PTFE SEATING WITH ALL BODY MATERIALS ①

FOR STANDARD METAL SEATING WITH CLASS 600 (1) WCC OR LCC STEEL BODY

FOR STANDARD METAL SEATING WITH CLASS 600 🗇 316 STAINLESS STEEL (CF8M) BODY

CLASS RATING OF THE BODY MATERIAL USED. EVEN THOUGH THE TRIMS SHOWN MAY HAVE HIGHER CAPABILITIES.

2 BE ESPECIALLY CAREFUL TO SPECIFY SERVICE TEMPERATURE IF TRIMS

3, 4, OR 37 ARE SELECTED, AS DIFFERENT THERMAL EXPANSION RATES RE-QUIRE SPECIAL PLUG CLEARANCES, ALSO, USE TRIM 37 INSTEAD OF TRIM 4 FOR NONLUBRICATING FLUIDS SUCH AS SUPERHEATED STEAM OR DRY GASES BETWEEN 149 AND 316 $^{\circ}$ C (300 AND 600 $^{\circ}$ F). $\boxed{3}$ TRIMS 4 AND 29 CAN BE USED TO PRESSURE DROP SHOWN ONLY WITH

CLEAN, DRY GAS. FOR OTHER THAN CLEAN, DRY GAS, TRIMS 4 AND 29 CAN BE USED ONLY UP TO 21 BAR (300 PSI).

4 USE TRIM 27 INSTEAD OF TRIM 29 FOR NONLUBRICATING FLUIDS SUCH AS SUPERHEATED STEAM OR DRY GASES BETWEEN 149 AND 316°C (300 AND

Figure 7. Typical Trim Use for All Valve Bodies Except Those for NACE Specifications

Table 12. Design ES Dimensions

VALVE					Α					G(MAX)
SIZE, INCHES	Scrd or SW	125 FF or 150 RF	150 RTJ	250 RF or 300 RF	300 RTJ	BW or 600 RF	600 RTJ	DIN PN 16-40 ⁽¹⁾	DIN PN 63-100 ⁽¹⁾	Design ES
					mm					
0.5, 0.75	165									54
1	210	184	197	197	210	210	210	160	230	56
1.25	229									56
1.5	251	222	235	235	248	251	251	200	260	71
2	286	254	267	267	282	286	289	230	300	78
2.5		276	292	292	308	311	314	290	340	90
3		298	311	317	333	337	340	310	380	97
4		353	365	368	384	394	397	350	430	129
6		451	464	473	489	508	511	480	550	162
8		543	556	568	584	610	613	600	650	191
				Ir	ches					
0.5, 0.75	6.50									2.12
1	8.25	7.25	7.75	7.75	8.25	8.25	8.25			2.38
1.25	9.00									2.38
1.5	9.88	8.75	9.25	9.25	9.75	9.88	9.88			2.81
2	11.25	10.00	10.50	10.50	11.12	11.25	11.38	See	See	3.06
2.5		10.88	11.38	11.50	12.12	12.25	12.38	mm above	mm above	3.56
3		11.75	12.25	12.50	13.12	13.25	13.38	above	above	3.81
4		13.88	14.38	14.50	15.12	15.50	15.62			5.06
6		17.75	18.25	18.62	19.25	20.00	20.12			6.38
8		21.38	21.88	22.38	23.00	24.00	24.12			7.50

^{1.} Valves which meet DIN flange standards and have DIN face-to-face dimensions are available only from Europe. Valves which meet DIN flange standards but not DIN face-to-face standards are available in the US. Consult your Emerson Process Management sales office.

AR4967-A 10A7397-B B1534-1 / IL

Figure 8. Design ES Dimensions (also see tables 12, 13, and 14)

Table 13. Design ES Dimensions

VALVE		D FOR PLA	IN BONNET	
SIZE,		Desi	gn ES	
INCHES		Stem D	Diameter	
		n	nm	
	9.5	12.7	19.1	25.4 or 31.8
0.5, 0.75, 1, 1.25	127	149		
1.5	124	146		
2		165	162	
2.5		187	184	
3		191	187	
4		221	217	238
6			251	270
8			375(1)	426
		Inc	hes	•
	3/8	1/2	3/4	1 or 1-1/4
0.5, 0.75, 1, 1.25	5.00	5.88		
1.5	4.88	5.75		
2		6.50	6.38	
2.5		7.38	7.25	
3		7.50	7.38	
4		8.69	8.56	9.38
6			9.88	10.62
8			14.75 ⁽¹⁾	16.75
Available only in cast i	ron or WCC steel for the	ne stem diameter with pla	ain bonnet.	•

Table 14. Design ES Dimensions

		D FOI	R EXTENSION	ON AND ENVIRO	-SEAL BEL	LOWS SEAL	BONNETS	(DESIGN ES	ONLY)	
VALVE		Style 1	Ext. Bonne	et	Sty	le 2 Ext. Bor	nnet		NVIRO-SEA	
SIZE, INCHES		Sten	n Diameter		S	tem Diamete	er	S	tem Diamet	er
INCHES					mr	n				
	9.5	12.7	19.1	25.4 or 31.8	9.5	12.7	19.1	9.5	12.7	19.1
0.5, 0.75, 1, 1.25	213	251			303	319		321		
1.5	210	248			300	316		317		
2		267				465			384	
2.5		289	272			492				
3		292	297			495	487		518	518
4		322	327	370		526	518		541	
6			357	402			543			573
8			421	450			621			
					Inch	ies				
	3/8	1/2	3/4	1 or 1-1/4	3/8	1/2	3/4	3/8	1/2	3/4
0.5, 0.75, 1, 1.25	8.38	9.88			11.94	12.56		12.62		
1.5	8.25	9.75			11.81	12.44		12.50		
2		10.50				18.31			15.12	
2.5		11.38	10.69			19.38				
3		11.50	11.69			19.50	19.19		20.38	20.38
4		12.69	12.88	14.56		20.69	20.38		21.31	
6			14.06	15.81			21.38			22.56
8			16.56	17.75			24.44			

Table 15. Design EAS Dimensions

				AA		
VALVE	Class	s 150	Clas	s 300	Class 600)
SIZE,	RF	RTJ	RF	RTJ	BW, SW, or RF	RTJ
				mm		
1	92	98	98	105	105	105
2	127	133	133	141	143	144
3	149	156	159	167	168	170
4	176	183	184	197	197	198
6	225	232	237	244	254	256
				Inches		
1	3.62	3.88	3.88	4.12	4.12	4.12
2	5.00	5.25	5.25	5.56	5.62	5.69
3	5.88	6.12	6.25	6.56	6.62	6.69
4	6.94	7.19	7.25	7.56	7.75	7.81
6	8.88	9.12	9.31	9.62	10.00	10.06

Figure 9. Design EAS Dimensions (also see tables 15 and 16)

Table 16. Design EAS Dimensions

							DD						
VALVE		Pla	in Bonnet	1	Style 1 I	Extension	Bonnet	Style 2 l	Extension	Bonnet		IVIRO-SE ws Seal B	
SIZE, INCHES						Stem	Diameter						
INOTILO							mm						
	9.5	12.7	19.1	25.4 or 31.8	9.5	12.7	19.1	9.5	12.7	19.1	9.5	12.7	19.1
1	111	133			197	235		291	305			•	•
2	98	121			184	223		278	291		Cont	act vour no	oroot
3		149	146			251	256		454			act your ne son sales	
4		140	137			241	246		445	437	Emer	son sales	onice
6		144	141	187		246	251		449	441			
						In	ches						
	3/8	1/2	3/4	1 or 1-1/4	3/8	1/2	3/4	3/8	1/2	3/4	3/8	1/2	3/4
1	4.38	5.25			7.75	9.25		11.44	12.00				
2	3.88	4.75			7.25	8.75		10.94	11.44		Cont	act vour no	oroot
3		5.88	5.75			9.88	10.06		17.88			act your ne son sales	
4		5.50	5.38			9.50	9.69		17.50	17.19	Emer	son sales	UIIICE
6		5.69	5.56	7.38		9.69	9.88		17.69	17.38			

Coefficients

Table 17. Design ES, Class 125 to 600, Quick Opening Cage

					Up										(Charact	eristic
	Port D	iameter	-	ximum ravel				Val	ve Opei	ning—F	ercent	of Tota	l Travel				
Valve Size, Inches	mm	Inches	mm ⁽¹⁾	Inches ⁽¹⁾	Flow Coeffi- cient	Coeffs. for 6 mm (0.25 in.) Travel ⁽²⁾	10	20	30	40	50	60	70	80	90	100	F _L ⁽³⁾
					C _v	6.27	4.00	5.63	6.22	6.35	6.44	6.48	6.52	6.53	6.53	6.53	0.88
0.5	33.3	1.3125	19	0.75	K _v	5.42	3.46	4.87	5.38	5.49	5.57	5.61	5.64	5.65	5.65	5.65	
					X _T	0.665	0.681	0.711	0.653	0.651	0.640	0.632	0.624	0.622	0.622	0.622	
					C _v	12.3	4.94	8.80	11.8	13.1	13.8	14.1	14.2	14.2	14.2	14.2	0.83
0.75	33.3	1.3125	19	0.75	K _v	10.6	4.27	7.61	10.2	11.3	11.9	12.2	12.3	12.3	12.3	12.3	
					X _T	0.593	0.576	0.688	0.605	0.571	0.552	0.539	0.534	0.534	0.534	0.534	
					C _v	16.3	5.24	10.0	15.0	18.4	20.3	21.0	21.1	21.3	21.4	21.4	0.89
1 & 1.25	33.3	1.3125	19	0.75	K _v	14.1	4.53	8.65	13.0	15.9	17.6	18.2	18.3	18.4	18.5	18.5	
					X _T	0.661	0.540	0.664	0.656	0.660	0.641	0.650	0.663	0.654	0.648	0.650	
					C _v	24.4	7.60	15.1	22.3	28.2	33.4	37.0	38.0	38.0	38.0	38.0	0.94
	47.6	1.875	19	0.75	K _v	21.1	6.57	13.1	19.3	24.4	28.9	32.0	32.9	32.9	32.9	32.9	
					X _T	0.645	0.577	0.613	0.639	0.684	0.703	0.713	0.743	0.777	0.789	0.789	
1.5					C _v	18.0	4.83	10.4	16.2	21.4	25.6	28.2	29.8	30.2	30.3	30.4	0.94
	33.3 (4)	1.3125 (4)	19	0.75	K _V	15.6	4.18	9.00	14.0	18.5	22.1	24.4	25.8	26.1	26.2	26.3	
	(-)	(-,			X _T	0.605	0.611	0.607	0.588	0.598	0.610	0.651	0.666	0.699	0.708	0.717	
					C _v	35.3	14.3	31.1	48.6	59.3	65.2	67.2	67.2	67.2	67.2	67.2	0.93
	58.7	2.3125	29	1.125	K _V	30.5	12.4	26.9	42.0	51.3	56.4	58.1	58.1	58.1	58.1	58.1	
					X _T	0.607	0.633	0.627	0.619	0.732	0.758	0.771	0.797	0.810	0.810	0.810	
2					C _v	18.6	5.12	10.5	16.7	22.2	26.9	30.9	33.9	36.3	38.1	39.4	0.91
	33.3	1.3125 (4)	19	0.75	K _V	16.1	4.43	9.08	14.4	19.2	23.3	26.7	29.3	31.4	33.0	34.1	
	(4)	(4)			X _T	0.560	0.588	0.617	0.565	0.571	0.640	0.722	0.796	0.826	0.785	0.734	
					C _v	35.3	21.8	42.0	66.6	83.8	91.1	93.1	93.1	93.1	93.1	93.1	0.91
	73.0	2.875	38	1.5	K _V	30.5	18.9	36.3	57.6	72.5	78.8	80.5	80.5	80.5	80.5	80.5	
					X _T	0.675	0.659	0.684	0.720	0.790	0.795	0.827	0.848	0.868	0.868	0.868	
2.5					C _v	26.1	7.40	15.5	23.3	31.4	39.8	48.4	56.1	61.7	62.3	69.2	0.95
	47.6	1.875	19	0.75	K _V	22.6	6.40	13.4	20.2	27.2	34.4	41.9	48.5	53.4	53.9	59.9	
	(4)	(4)			X _T	0.609	0.636	0.599	0.612	0.619	0.692	0.747	0.824	0.859	0.842		
+					C _v	37.4	23.3	45.5	78.3	106	120	130	136	143	146	150	0.87
	87.3	34375	38	1.5	K _V	32.4	20.2	39.4	67.7	91.7	104	112	118	124	126	130	
	2	3.0.0			XT	0.590	0.585	0.592	0.602	0.685	0.740	0.726	0.737	0.731	0.733	0.720	
3					C _v	36.3	14.7	32.4	51.2	68.8	83.1	94.3	103	108	112	115	0.91
	58.7	2.3125	29	1.125		31.4	12.7	28.0	44.3	59.5	71.9	81.6	89.1	93.4	96.9	99.5	
	(4)	(4)	-		X _T	0.564	0.609	0.565	0.565	0.593	0.679	0.729	0.751	0.774	0.785	0.752	

-continued-

Table 17. Design ES, Class 125 to 600, Quick Opening Cage (continued)

V-l	Port D	iameter		ximum ravel	E1			Val	ve Ope	ning—F	ercent	of Tota	l Travel				
Valve Size, Inches	mm	Inches	mm ⁽¹⁾	Inches ⁽¹⁾	Flow Coeffi- cient	Coeffs. for 6 mm (0.25 in.) Travel ⁽²⁾	10	20	30	40	50	60	70	80	90	100	F _L ⁽³⁾
					C_{v}	46.3	39.0	77.3	132	174	198	215	225	230	234	235	0.89
	111.1	4.375	51	2	K_{V}	40.0	33.7	66.9	114	151	171	186	195	199	202	203	
4					X _T	0.647	0.642	0.691	0.714	0.763	0.768	0.763	0.769	0.775	0.783	0.780	
4	73.0	2.875			Cv	41.2	26.9	47.2	76.4	108	135	156	169	178	181	183	0.88
	(4)	(4)	38	1.5	K_{V}	35.6	23.3	40.8	66.1	93.4	117	135	146	154	157	158	
					X_{T}	0.613	0.524	0.683	0.669	0.664	0.688	0.741	0.783	0.763	0.752	0.736	
					C _v	102	89.9	162	255	322	365	395	418	436	455	469	0.82
	177.8	7	51	2	K_{V}	88.2	77.8	140	221	279	316	342	362	377	394	406	
6					X _T	0.642	0.572	0.612	0.601	0.652	0.664	0.677	0.681	0.701	0.698	0.700	
	111.1	4.375			C _v	66.1	49.8	108	164	217	255	274	282	290	291	302	0.90
	(4)	(4)	51	2	K_{V}	57.2	43.1	93.4	142	188	221	237	244	251	252	261	
					X_{T}	0.667	0.711	0.630	0.619	0.650	0.724	0.814	0.883	0.883	0.909	0.860	
					C _v	122	94.4	205	323	441	539	622	677	720	759	787	0.85
	203.2	8	51	2	K_{V}	106	81.7	177	279	381	466	538	586	623	657	681	
8					X _T	0.616	0.683	0.607	0.575	0.603	0.682	0.726	0.772	0.809	0.814	0.814	
					C _v	122	156	337	490	612	700	759	796	827	844	875	0.85
	203.2	8	76	3	K_{v}	106	135	292	424	529	606	657	689	715	730	757	
					X _T	0.616	0.520	0.561	0.654	0.757	0.804	0.814	0.818	0.801	0.810	0.774	

^{1.} When using Type 655-EC as a control valve for on-off service, the maximum travel for sizing purposes is 19 mm (0.75 inch), 2. When sizing self-operated regulators, use coefficients listed for 6 mm (0.25 inch) travel.

3. At 100% travel.

4. Restricted trim

Table 18. Design ES, Class 125 to 600, Linear Cage

Linea	ar -	Flow	Up												Charac	Linear teristic
Valve Size,	Port D	iameter		timum avel	Flow Coeffi-			Val	ve Open	ing—Pe	rcent of	Total Tra	vel			F _L ⁽¹⁾
Inches	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100	
					C _v	2.27	4.12	6.23	8.54	11.0	13.4	15.8	17.8	19.3	20.1	0.89
1 & 1.25	33.3	1.3125	19	0.75	K_{v}	1.96	3.56	5.39	7.39	9.52	11.6	13.7	15.4	16.7	17.4	
					X _T	0.691	0.691	0.690	0.696	0.696	0.708	0.709	0.705	0.702	0.690	
					C_{v}	3.56	7.01	11.1	15.1	19.0	22.9	26.7	30.0	33.1	34.9	0.92
	47.6	1.875	19	0.75	K_{v}	3.08	6.06	9.60	13.1	16.4	19.8	23.1	25.9	28.6	30.2	
1.5					X _T	0.628	0.582	0.604	0.647	0.683	0.699	0.715	0.737	0.741	0.764	
1.5	00.0	4 0405			C_{v}	2.42	4.30	6.40	8.77	11.5	14.6	17.8	21.1	24.3	26.9	0.95
	33.3	1.3125	19	0.75	K_{v}	2.09	3.72	5.54	7.59	9.95	12.6	15.4	18.3	21.0	23.3	
					X _T	0.648	0.682	0.712	0.693	0.664	0.678	0.701	0.732	0.756	0.799	
					C_{v}	8.49	17.1	25.9	35.3	44.4	52.9	59.2	62.0	63.9	65.3	0.91
	58.7	2.3125	29	1.125	K_{v}	7.34	14.8	22.4	30.5	38.4	45.8	51.2	53.6	55.3	56.5	
2					X_{T}	0.618	0.635	0.689	0.710	0.723	0.732	0.742	0.759	0.761	0.762	
2	00.0	1 0105			C _v	2.22	4.11	6.06	8.25	11.0	14.3	18.0	21.8	26.0	30.9	0.91
	33.3	1.3125	19	0.75	K_{v}	1.92	3.56	5.24	7.14	9.52	12.4	15.6	18.9	22.5	26.7	
					X_{T}	0.725	0.694	0.729	0.746	0.688	0.675	0.667	0.686	0.711	0.722	
					C _v	10.4	22.2	34.9	47.1	58.2	66.6	73.7	79.3	84.4	86.5	0.93
	73.0	2.875	38	1.5	K_{v}	9.00	19.2	30.2	40.7	50.3	57.6	63.8	68.6	73.0	74.8	
2.5					X _T	0.672	0.727	0.739	0.776	0.783	0.832	0.858	0.877	0.854	0.866	
2.5	47.0	4 075			C_{v}	3.50	6.85	10.8	14.8	18.9	23.3	28.2	34.1	41.1	48.6	0.93
	47.6 (3)	1.875 (3)	19	0.75	K_{v}	3.03	5.93	9.34	12.8	16.3	20.2	24.4	29.5	35.6	42.0	
					X_{T}	0.617	0.627	0.679	0.716	0.740	0.752	0.783	0.774	0.778	0.783	
					C_{v}	15.3	34.3	52.8	71.4	87.8	101	112	121	129	135	0.89
	87.3	3.4375	38	1.5	K_{v}	13.2	29.7	45.7	61.8	75.9	87.4	96.9	105	112	117	
3					X_{T}	0.607	0.631	0.663	0.694	0.720	0.742	0.762	0.786	0.771	0.751	
3	F0 7	0.0105			C _v	6.39	13.0	20.7	29.1	38.2	47.9	58.0	68.4	79.3	88.8	0.91
	58.7 (3)	2.3125	29	1.125	K _v	5.53	11.2	17.9	25.2	33.0	41.4	50.2	59.2	68.6	76.8	
					X _T	0.662	0.677	0.704	0.677	0.648	0.646	0.643	0.658	0.714	0.742	

-continued-

Table 18. Design ES, Class 125 to 600, Linear Cage (continued)

Valve Size,	Port D	iameter	-	ravel	Flow Coeffi-			Val	ve Open	ing—Pe	rcent of	Total Tra	vel			F _L ⁽¹⁾
Inches	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100	_
					C _v	23.7	46.4	72.9	98.2	122	145	165	183	199	212	0.89
	111.1	4.375	51	2	K_{v}	20.5	40.1	63.1	84.9	106	125	143	158	172	183	
4					X _T	0.553	0.619	0.644	0.680	0.713	0.737	0.743	0.823	0.816	0.791	
4	70.0	0.075			C _v	10.6	22.5	35.0	47.5	60.2	73.1	88.0	103	120	139	0.93
	73.0	2.875 (3)	38	1.5	K _v	9.17	19.5	30.3	41.1	52.1	63.2	76.1	89.1	104	120	
	, ,	, ,			X _T	0.613	0.671	0.698	0.718	0.718	0.731	0.722	0.751	0.769	0.780	
					C_{v}	55.0	118	180	235	280	312	341	368	390	417	0.81
	177.8	7	51	2	K_{v}	47.6	102	156	203	242	270	295	318	337	361	
6					X _T	0.597	0.683	0.701	0.687	0.767	0.791	0.787	0.792	0.794	0.745	
0		4.075			C _v	15.7	35.8	60.2	86.2	115	146	179	215	247	271	0.89
	111.1	4.375 (3)	51	2	K_{v}	13.6	31.0	52.1	74.6	99.5	126	180	186	214	234	
	, ,	, ,			X _T	0.678	0.668	0.676	0.683	0.668	0.645	0.668	0.695	0.759	0.817	
					C _v	66.6	147	221	292	375	450	522	592	652	701	0.84
8(2)	203.2	8	51	2	K_{v}	57.6	127	191	253	324	389	452	512	564	606	
					X _T	0.758	0.588	0.597	0.637	0.640	0.676	0.702	0.720	0.738	0.757	
					C_{v}	100	213	330	451	553	648	719	773	809	836	0.85
8	203.2	8	76	3	K_{v}	86.5	184	285	390	478	561	622	669	700	723	
					X _T	0.616	0.624	0.669	0.691	0.738	0.747	0.762	0.780	0.787	0.799	

^{1.} At 100% travel.
2. If coefficients listed above for the 8 inch linear cage with 51 mm (2 inch) travel are not sufficient for your application, consider using the quick opening cage. The 8 inch quick opening cage with 51 mm (2 inch) travel has approximately a linear characteristic.
3. Restricted trim.

Table 19. Design ES, Class 125 to 600, Equal Percentage Cage

Equa	al Pe	ercer	ıtag	e - F	low U	р								Eq	ual Perc Charac	
Valve Size,	Port D	Diameter		imum avel	Flow Coeffi-			Va	lve Open	ing—Pe	rcent of	Total Tra	vel			F _L ⁽¹⁾
Inches	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100	1 -
					C _v	0.783	1.29	1.86	2.71	4.18	6.44	9.54	13.1	15.7	17.4	0.95
1 & 1.25	33.3	1.3125	19	0.75	K _V	0.677	1.12	1.61	2.34	3.62	5.57	8.25	11.3	13.6	15.1	
					X _T	0.754	0.794	0.763	0.670	0.652	0.621	0.630	0.677	0.718	0.721	
					C_{v}	1.54	2.52	3.57	4.94	7.41	11.6	17.2	23.5	28.7	33.4	0.94
	47.6	1.875	19	0.75	K_{V}	1.33	2.18	3.09	4.27	6.41	10.0	14.9	20.3	24.8	28.9	
					X _T	0.674	0.670	0.694	0.731	0.706	0.681	0.698	0.692	0.789	0.793	
1.5					C _v	0.882	1.35	1.89	2.52	3.68	5.52	8.13	12.0	16.6	21.0	0.96
	33.3	1.3125	19	0.75	K_{V}	0.763	1.17	1.63	2.18	3.18	4.77	7.03	10.4	14.4	18.2	
	, ,	` ′			X _T	0.858	0.845	0.867	0.810	0.833	0.755	0.776	0.766	0.766	0.766	
					C _v	1.74	3.15	4.72	6.91	10.6	16.3	25.0	36.7	47.8	56.2	0.92
	58.7	2.3125	29	1.125	K_{v}	1.51	2.72	4.08	5.98	9.17	14.1	21.6	31.7	41.3	48.6	
					X _T	0.863	0.848	0.849	0.805	0.782	0.778	0.792	0.772	0.847	0.848	
2					C _v	0.849	1.34	1.83	2.39	3.43	5.12	7.49	11.2	15.8	20.8	0.91
	33.3	1.3125 (2)	19	0.75	K_{V}	0.734	1.16	1.58	2.07	2.97	4.43	6.48	9.69	13.7	18.0	
	. ,	` ′			X _T	0.844	0.778	0.803	0.767	0.791	0.764	0.764	0.764	0.755	0.728	
					C _v	4.05	7.19	10.6	14.5	21.2	31.6	45.5	64.2	77.7	82.7	0.93
	73.0	2.875	38	1.5	K_{V}	3.50	6.22	9.17	12.5	18.3	27.3	39.4	55.5	67.2	71.5	
0.5					X _T	0.747	0.768	0.745	0.779	0.764	0.744	0.783	0.802	0.841	0.878	
2.5					C_{v}	1.43	2.37	3.34	4.76	7.25	11.3	17.3	24.2	31.8	40.3	0.95
	47.6 (2)	1.875 (2)	19	0.75	K_{V}	1.24	2.05	2.89	4.12	6.27	9.77	15.0	20.9	27.5	34.9	
	. ,	` ′			X _T	0.664	0.721	0.741	0.765	0.679	0.681	0.678	0.681	0.748	0.744	
					C _v	4.05	6.84	10.0	15.0	23.8	37.8	59.0	87.1	110	121	0.89
	87.3	3.4375	38	1.5	K_{V}	3.50	5.92	8.65	13.0	20.6	32.7	51.0	75.3	95.2	105	
0					X _T	0.768	0.757	0.761	0.757	0.758	0.571	0.754	0.756	0.758	0.757	
3		0.0405			C _v	2.74	3.44	4.86	6.95	10.6	16.5	25.0	37.7	52.7	67.5	094
	58.7 (2)	2.3125	29	1.125	K_{V}	2.37	2.98	4.20	6.01	9.17	14.3	21.6	32.6	45.6	58.4	
	. ,	` ′			X _T	0.753	0.748	0.756	0.783	0.786	0.741	0.736	0.732	0.737	0.738	
					C _v	6.56	11.4	17.3	27.0	42.2	66.4	103	146	184	203	0.91
	111.1	4.375	51	2	K_{V}	5.67	9.86	15.0	23.4	36.5	57.4	89.1	126	159	176	
4					X _T	0.722	0.717	0.739	0.772	0.738	0.718	0.718	0.736	0.792	0.822	
4	70.0	0.075			C _v	3.96	7.14	10.6	14.5	21.1	31.7	48.0	69.7	95.6	121	0.94
	73.0 (2)	2.875 (2)	38	1.5	K_{V}	3.43	6.18	9.17	12.5	18.3	27.4	41.5	60.3	82.7	105	
	'	'			X _T	0.792	0.803	0.770	0.767	0.760	0.725	0.703	0.717	0.763	0.764	

-continued-

Table 19. Design ES, Class 125 to 600, Equal Percentage Cage (continued)

Valve Size,	Port D	iameter	-	timum avel	Flow Coeffi-			Val	ve Open	ing—Pe	rcent of	Total Tra	vel			F _L ⁽¹⁾
Inches	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100	
					C _v	13.2	24.6	41.1	62.5	97.1	155	223	286	326	357	0.86
	177.8	7	51	2	K _v	11.4	21.3	35.6	54.1	84.0	134	193	247	282	309	
•					X _T	0.723	0.737	0.767	0.846	0.803	0.781	0.808	0.826	0.847	0.816	
6					C _v	4.96	9.02	14.0	24.2	39.4	60.8	94.6	144	199	233	0.91
	111.1	4.375 (2)	51	2	K _v	4.29	7.80	12.1	20.9	34.1	52.6	81.8	125	172	202	
	, ,	, ,			X _T	0.842	0.792	0.778	0.709	0.723	0.739	0.729	0.706	0.719	0.806	
					C _v	18.8	33.6	53.6	79.8	114	168	242	345	467	570	0.85
	203.2	8	51	2	K _v	16.3	29.1	46.4	69.0	98.6	145	209	298	404	493	
					X _T	0.874	0.865	0.769	0.748	0.731	0.697	0.712	0.707	0.697	0.694	
8					C _v	25.9	53.3	97.8	178	299	461	618	727	768	808	0.85
	203.2	8	76	3	K _v	22.4	46.1	84.6	154	259	399	535	629	664	699	
					X _T	0.825	0.728	0.681	0.616	0.678	0.716	0.735	0.793	0.825	0.827	
1. At 100° 2. Restric																

Table 20. Design ES, Class 125 to 600, Whisper Trim® I Cage, Flow Up through the Port

Whis	per	Trim	ı											Charae	Linear cteristic
Valve Size, ⁽¹⁾	Port D	iameter		rimum ravel	Flow Coeffi-			V	alve Ope	ning—Pe	rcent of T	otal Trave	el		
Inches	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100
					C _v	3.16	6.97	11.8	15.1	16.5	17.2	17.3	17.4	17.4	18.4
1 & 1.25	33.3	1.3125	19	0.75	K _v	2.73	6.03	10.2	13.1	14.3	14.9	15.0	15.1	15.1	15.9
					X _T	0.828	0.747	0.553	0.570	0.645	0.667	0.686	0.694	0.709	0.678
					C_{V}	3.42	8.78	14.6	22.2	27.7	31.6	34.0	35.1	36.0	37.2
	47.6	1.875	19	0.75	K _v	2.96	7.59	12.6	19.2	24.0	27.3	29.4	30.4	31.1	32.2
1 5					X _T	0.635	0.649	0.594	0.455	0.457	0.504	0.563	0.625	0.648	0.640
1.5	00.0	4 0405			C_{V}	2.84	6.74	11.3	17.4	22.1	25.6	27.7	28.7	29.1	29.3
	33.3	1.3125 (2)	19	0.75	K _v	2.46	5.83	9.77	15.1	19.1	22.1	24.0	24.8	25.2	25.3
	, ,	. ,			X _T	0.669	0.709	0.563	0.424	0.401	0.428	0.487	0.569	0.661	0.711
					C_{V}	8.27	21.8	35.3	47.3	55.1	60.2	63.2	65.3	66.8	67.8
	58.7	2.3125	29	1.125	K_{v}	7.15	18.9	30.5	40.9	47.7	52.1	54.7	56.5	57.8	58.6
2					X _T	0.647	0.411	0.347	0.352	0.409	0.499	0.577	0.622	0.647	0.656
2	00.0	4 0405			C_{v}	3.62	7.07	12.2	18.4	23.3	27.6	31.1	34.0	35.8	37.0
	33.3	1.3125	19	0.75	K_{v}	3.13	6.12	10.6	15.9	20.2	23.9	26.9	29.4	31.0	32.0
	, ,	, ,			X _T	0.620	0.769	0.559	0.420	0.390	0.396	0.408	0.440	0.475	0.494
					C _v	12.8	33.9	55.0	70.6	80.0	85.4	88.5	90.3	91.1	91.7
	73.0	2.875	38	1.5	K_{V}	11.1	29.3	47.6	61.1	69.2	73.9	76.6	78.1	78.8	79.3
2.5					X_{T}	0.766	0.476	0.377	0.388	0.460	0.540	0.590	0.631	0.660	0.669
2.5	47.6	1.875			C_{v}	3.07	8.65	15.3	23.4	31.2	36.8	43.4	48.3	52.1	55.8
	(2)	(2)	19	0.75	K_{V}	2.66	7.48	13.2	20.2	27.0	31.8	37.5	41.8	45.1	48.3
					X_T	0.766	0.766	0.613	0.450	0.384	0.389	0.380	0.399	0.420	0.428
					C _v	11.1	36.0	60.3	81.9	99.6	111	119	124	128	131
	87.3	3.4375	38	1.5	K_{v}	9.60	31.1	52.2	70.8	86.2	96.0	103	107	111	113
3					X_T	0.766	0.649	0.451	0.415	0.416	0.469	0.522	0.566	0.595	0.603
0	58.7	0.0105			C _v	6.63	18.1	30.8	43.4	56.1	67.1	77.8	87.2	95.9	102
	(2)	2.3125 (2)	29	1.125	K_{v}	5.73	15.7	26.6	37.5	48.5	58.0	67.3	75.4	83.0	88.2
					X_{T}	0.766	0.662	0.483	0.424	0.395	0.387	0.385	0.387	0.395	0.397
					C _v	25.1	56.5	85.6	111	128	139	147	151	208	211
	111.1	4.375	51	2	K_{v}	21.7	48.9	74.0	96.0	111	120	127	131	180	183
4					X_T	1.222	0.807	0.683	0.680	0.786	0.909	1.017	1.109	0.635	0.645
7	73.0	2.875			C _v	12.8	33.9	56.6	76.4	96.3	114	130	143	156	164
	(2)	(2)	38	1.5	K_{V}	11.1	29.3	49.0	66.1	83.3	98.6	112	124	135	142
					X_{T}	0.766	0.471	0.350	0.332	0.317	0.325	0.331	0.349	0.361	0.377
					C _v	54.1	114	174	231	281	319	349	369	387	401
6	177.8	7	51	2	K _v	46.8	98.6	151	200	243	276	302	319	335	347
					X _T	0.407	0.453	0.409	0.367	0.383	0.419	0.450	0.487	0.514	0.532
					C_{v}	84.6	229	360	462	531	607	660	695	712	735
			76	3	K_{V}	73.2	198	311	400	459	525	571	601	616	636
8	203.2	8			X _T	0.729	0.409	0.346	0.354	0.410	0.451	0.507	0.560	0.602	0.633
J	200.2				C_{v}	132	318	464	566	641	693	724	742	760	773
			29	4	K_{v}	114	275	401	490	554	599	626	642	657	669
					X_T	0.499	0.358	0.371	0.422	0.482	0.542	0.604	0.659	0.682	0.675
1. 6-inch	E-body w	ith restricte	d Whispe	er Trim not a	vailable. Use	EW body w	here this trin	is desired.			· · · · ·	· · · · ·			-

Table 21. Design ES, Class 125 to 600, Whisper Trim® III Cage, Flow Up through the Port

Whis	sper	Trim	ı III											С	haracte	Linear ristic ⁽¹⁾		
Valve Size, ⁽²⁾	Port Diameter		Maximum Travel		Flow Coeffi-	Valve Opening—Percent of Total Travel												
Inches	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100	1		
	•	•				•	А3	Δ P/P ₁ ≤	0.6				•	•	•	•		
	400 5	E 075	76		C _v	4.67 ⁽⁴⁾	74.0	111	147	183	219	254	288	322	353	0.563		
6	6 136.5 5	5.375		3	K _v	4.04	64.0	96.0	127	158	189	220	249	279	305			
							В3	$\Delta P/P_1 \leq 0$.75									
		5.375	76	3	C _v	4.67 ⁽⁴⁾	41.3	61.7	82.3	103	123	144	164	184	203	0.563		
6	136.5		76		K _v	4.04	35.7	53.4	71.2	89.1	106	125	142	159	176			
							C3 .	$\Delta P/P_1 \leq 0$.85									
	400.5	E 07E	70		C _v	4.67 ⁽⁴⁾	28.0	41.3	55.3	69.3	83.0	97.0	110	124	138	0.563		
6	136.5	5.375	76	3	K _v	4.04	24.2	35.7	47.8	59.9	71.8	83.9	95.2	107	119			
							D3 .	∆P/P ₁ ≤0	.99						•	•		
6	100 E	5.375	76	3	C _v	4.67 ⁽⁴⁾	6.67	9.50	19.9	31.4	46.0	61.0	75.7	89.7	104	0.563		
6 136.5	130.5	5.3/5	76	3	K_{v}	4.04	5.77	8.22	17.2	27.2	39.8	52.8	65.5	77.6	90.0			

^{1.} Level D exhibits an equal percentage characteristic for the first 38 mm (1.5 inches) of travel, then linear characteristic.
2. 6-inch E-body with restricted Whisper Trim not available. Use EW body where this trim is desired.
3. This column lists XT factors for Whisper Trim III cages at 100% travel.
4. This coefficient is minimum rather than 10% open. Valves should not be required to throttle at less than the specified minimum coefficient for an extended period of time. Erosion damage to the valve may result.

Table 22. Design EAS, Quick Opening Cage, Flow Up

Quick Opening Characteristic																		
Valve Size,	Port D	iameter	Maximum Travel ⁽¹⁾		Flow Coeffi-	Coeffs.	Valve Opening—Percent of Total Travel											
Inches	mm	Inches	mm	Inches	cient	(0.25 in) Travel ⁽²⁾	10	20	30	40	50	60	70	80	90	100	-	
					C _v	15.6	4.90	9.94	14.3	17.9	20.5	22.3	23.3	23.6	23.8	23.9	0.90	
1	33.3	1.3125	19	0.75	K _v	13.5	4.24	8.60	12.4	15.5	17.7	19.3	20.2	20.4	20.6	20.7		
				X _T	0.719	0.726	0.736	0.722	0.709	0.670	0.646	0.625	0.614	0.607	0.604			
					C _v	29.2	7.90	16.4	25.8	35.9	44.8	53.3	59.9	64.2	67.2	69.9	0.81	
	47.6	1.875	19	0.75	K _V	25.3	6.83	14.2	22.3	31.1	38.8	46.1	51.8	55.5	58.1	60.5		
2					X _T	0.648	0.601	0.631	0.645	0.641	0.646	0.628	0.622	0.631	0.622	0.602		
2	00.0	1 2125	19		C _v	16.7	5.43	10.2	15.1	20.3	26.1	31.4	35.2	37.5	39.2	40.5	0.87	
	33.3	1.3125 (4)		0.75	K_{V}	14.4	4.70	8.82	13.1	17.6	22.6	27.2	30.4	32.4	33.9	35.0		
`,				X _T	0.632	0.591	0.631	0.632	0.621	0.638	0.673	0.739	0.786	0.763	0.726			
					C_{v}	38.8	24.5	47.3	79.1	106	125	139	154	168	177	184	0.90	
	73.0	2.875	38	1.5	K _v	33.6	21.2	40.9	68.4	91.7	108	120	133	145	153	159		
3					X _T	0.638	0.630	0.637	0.619	0.693	0.729	0.705	0.641	0.596	0.569	0.563		
3	47.0	4.075			C_{v}	29.7	7.34	15.9	26.8	36.4	45.3	53.7	60.7	66.6	71.8	76.5	0.97	
	47.6 (4)	1.875 (4)	19	0.75	K_{V}	25.7	6.35	13.8	23.2	31.5	39.2	46.5	52.5	57.6	62.1	66.2		
		, ,			X _T	0.568	0.598	0.594	0.561	0.571	0.623	0.664	0.713	0.778	0.820	0.819		
		3.4375		1.5	C _v	37.5	23.8	46.3	79.6	116	150	176	197	217	233	245	0.79	
	87.3		38		$K_{\!\scriptscriptstyle V}$	32.4	20.6	40.0	68.9	100	130	152	170	188	202	212		
4					X_{T}	0.608	0.594	0.604	0.621	0.646	0.632	0.619	0.613	0.605	0.593	0.590		
4	F0.7	0.0405			C _v	31.5	14.2	28.4	45.2	63.2	80.6	96.1	109	119	129	135	0.81	
	58.7 (4)	2.3125	29	1.125	$K_{\!\scriptscriptstyle V}$	27.2	12.3	24.6	39.1	54.7	69.7	83.1	94.3	103	112	117		
					X _T	0.624	0.622	0.623	0.617	0.626	0.665	0.706	0.740	0.771	0.666	0.625		
					C _v	51.1	40.0	84.3	138	194	246	293	340	378	403	409	0.78	
	111.1	4.375	51	2	$K_{\!\scriptscriptstyle V}$	44.2	34.6	72.9	119	168	213	253	294	327	349	354		
6					X _T	0.582	0.581	0.585	0.587	0.584	0.582	0.583	0.585	0.578	0.582	0.584		
U	70.0	0.075			C_{v}	36.5	21.3	45.3	71.4	98.9	123	142	159	175	186	192	0.81	
	73.0 (4)	2.875 (4)	38	1.5	$K_{\!\scriptscriptstyle V}$	31.6	18.4	39.2	61.8	85.5	106	123	138	151	161	166		
4 10/1	-i T	055 540			X _T	0.721	0.720	0.722	0.718	0.717	0.718	0.723	0.718	0.715	0.731	0.719		

When using Type 655-EAS as a control valve for on-off service, the maximum travel for sizing purposes is 19 mm (0.75 in.).
 When sizing self-operated regulators, use coefficients listed for 6 mm (0.25 in.) travel.
 At 100% travel.
 Restricted trim.

Table 23. Design EAS, Linear Cage, Flow Up

Linea	ır					Т								(Charact	Linea		
Valve Size,	Port D	Diameter	Maximum Travel		Flow Coeffi-	Valve Opening—Percent of Total Travel												
Inches	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100] -		
					C _v	3.97	6.17	8.40	10.7	12.9	15.3	17.9	20.3	22.3	24.2	0.92		
1	33.3	1.3125	19	0.75	K _v	3.43	5.34	7.27	9.26	11.2	13.2	15.5	17.6	19.3	20.9			
					X _T	0.712	0.697	0.699	0.704	0.734	0.730	0.693	0.644	0.609	0.577			
47.6 2 33.3 (2)					C _v	5.20	6.97	11.0	15.2	19.6	24.5	30.3	36.7	42.8	49.1	0.85		
	47.6	1.875	19	0.75	K _v	4.50	6.03	9.52	13.1	17.0	21.2	26.2	31.7	37.0	42.5			
				X _T	0.584	0.600	0.618	0.660	0.658	0.664	0.669	0.679	0.698	0.697				
	00.0	1 0105			C _v	2.45	4.35	6.44	8.80	11.8	15.4	19.4	23.6	28.1	32.7	0.89		
		1.3125 (2)	19	0.75	$K_{\!\scriptscriptstyle V}$	2.11	3.76	5.57	7.61	10.2	13.3	16.8	20.4	24.3	28.3			
	. ,				X _T	0.723	0.723	0.749	0.736	0.690	0.651	0.642	0.655	0.688	0.720			
3 47.					C _v	10.5	22.9	35.5	48.7	61.8	76.3	91.3	109	129	149	0.85		
	73.0	2.875	38	1.5	K _v	9.08	19.8	30.7	42.1	53.5	66.0	79.0	94.3	112	129			
					X _T	0.651	0.649	0.691	0.692	0.701	0.698	0.702	0.686	0.666	0.646			
	47.0	4.075		0.75	C _v	3.62	6.94	10.7	14.9	19.0	23.9	28.9	34.9	42.4	51.0	0.92		
	47.6 (2)	1.875 (2)	19		K _v	3.13	6.00	9.26	12.9	16.4	20.7	25.0	30.2	36.7	44.1			
	, ,	, ,			X _T	0.506	0.634	0.723	0.673	0.723	0.704	0.722	0.739	0.721	0.703			
			38	1.5	C_{v}	12.9	28.6	45.5	67.8	88.4	108	129	151	174	196	0.8		
	87.3	3.4375			K_{v}	11.2	24.7	39.4	58.6	76.5	93.4	112	131	151	170			
4					X _T	0.616	0.648	0.661	0.676	0.687	0.698	0.688	0.672	0.661	0.656			
4		0.0405		1.125	C _v	6.84	13.9	22.1	31.2	40.9	51.3	62.0	73.2	84.8	95.0	0.87		
	58.7 (2)	2.3125 (2)	29		$K_{\!\scriptscriptstyle V}$	5.92	12.0	19.1	27.0	35.4	44.4	53.6	63.3	73.4	82.2			
	.,				X _T	0.647	0.661	0.688	0.655	0.631	0.623	0.625	0.644	0.696	0.723			
					C _v	26.1	52.3	78.3	105	132	164	200	247	303	361	0.81		
	111.1	4.375	51	2	K _v	22.6	45.2	67.7	90.8	114	142	173	214	262	312			
e					X _T	0.631	0.684	0.727	0.718	0.720	0.690	0.683	0.670	0.647	0.623			
6	70.6	0.075			C _v	10.5	22.7	35.1	48.0	60.8	74.7	89.6	107	128	150	0.90		
	73.0 (2)	2.875 (2)	38	1.5	K _v	9.08	19.6	30.4	41.5	52.6	64.6	77.5	92.6	111	130			
) /	l `´			X _T	0.675	0.708	0.731	0.757	0.767	0.769	0.772	0.772	0.772	0.771			

Table 24. Design EAS, Equal Percentage Cage, Flow Up

Equa	l Pei	rcenta	age												al Perce Charact			
Valve Size,	Port Diameter		Maximum Travel		Flow Coeffi-	Valve Opening—Percent of Total Travel												
Inches	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100 F _L			
				0.75	C _v	1.29	1.87	2.59	3.85	5.59	8.46	12.5	16.9	20.9	23.5	0.82		
1	33.3	1.3125	19		K _v	1.12	1.62	2.24	3.33	4.84	7.32	10.8	14.6	18.1	20.3			
					X _T	0.812	0.771	0.674	0.702	0.730	0.714	0.723	0.669	0.633	0.579			
					C_{v}	1.41	2.41	3.43	4.86	7.26	11.3	17.3	24.5	32.6	40.8	0.91		
	47.6	1.875	19	0.75	K_{V}	1.22	2.09	2.97	4.20	6.28	9.78	15.0	21.2	28.2	35.3			
					X _T	0.724	0.736	0.727	0.738	0.723	0.714	0.646	0.680	0.673	0.725			
	00.0	1.3125 (2)	19	0.75	C _v	0.850	1.35	1.87	2.42	3.64	5.54	8.22	11.9	16.6	21.8	0.95		
	33.3				K_{V}	0.735	1.17	1.62	2.09	3.15	4.79	7.11	10.3	14.4	18.9			
					X _T	0.858	0.827	0.846	0.800	0.810	0.675	0.644	0.696	0.727	0.760			
3			38	1.5	C _v	4.16	6.90	10.4	14.7	21.2	32.6	49.3	73.3	101	128	0.85		
	73.0	2.875			K_{v}	3.60	5.97	9.00	12.7	18.3	28.2	42.6	63.4	87.4	111			
					X _T	0.718	0.867	0.770	0.743	0.766	0.712	0.683	0.687	0.671	0.670			
	47.0	4.075			C_{v}	1.48	2.44	3.47	4.87	7.31	10.9	16.7	24.5	33.0	41.3	0.91		
	47.6 (2)	1.875 (2)	19	0.75	K_{V}	1.28	2.11	3.00	4.21	6.32	9.43	14.4	21.2	28.5	35.7			
	, ,	, ,			X _T	0.713	0.737	0.747	0.780	0.749	0.744	0.733	0.704	0.720	0.749			
		3.4375	38	1.5	C _v	3.63	6.33	9.32	13.9	21.0	32.9	52.5	81.7	115	148	0.84		
	87.3				K_{V}	3.14	5.48	8.06	12.0	18.2	28.5	45.4	70.7	99.5	128			
4					X _T	0.839	0.776	0.784	0.799	0.793	0.699	0.776	0.724	0.697	0.691			
4				1.125	C_{v}	1.94	3.36	4.81	6.76	10.7	16.4	25.0	36.8	51.4	67.6	0.91		
	58.7 (2)	2.3125 (2)	29		K_{V}	1.68	2.91	4.16	5.85	9.26	14.2	21.6	31.8	44.5	58.5			
	` ,	, ,			X _T	0.693	0.694	0.692	0.794	0.792	0.724	0.694	0.676	0.692	0.692			
					C _v	5.21	10.3	16.9	28.0	45.6	73.5	121	184	251	310	0.84		
	111.1	4.375	51	2	K _v	4.51	8.91	14.6	24.2	39.4	63.6	105	159	217	268			
e					X _T	0.968	0.846	0.801	0.794	0.769	0.770	0.728	0.712	0.687	0.690			
6	70.6	0.075			C _v	4.12	7.27	10.5	14.6	21.4	32.1	47.9	71.3	97.0	126	0.90		
	73.0 (2)	2.875 (2)	38	1.5	K _v	3.56	6.29	9.08	12.6	18.5	27.8	41.4	61.7	83.9	109			
	(-)	(4)		-	X _T	0.728	0.763	0.772	0.790	0.778	0.774	0.778	0.750	0.777	0.776			

Table 25. Design EAS, Whisper Trim® I Cage, Flow Up

Whis	oer T	rim I												Charac	Linear teristic			
Valve	Port D	iameter	Maximum Travel		Flow	Valve Opening—Percent of Total Travel												
Size, Inches	mm	Inches	mm	Inches	Coeffi- cient	10	20	30	40	50	60	70	80	90	100			
					C _v	2.30	5.62	8.95	12.5	15.6	17.6	20.7	22.8	24.5	25.5			
1	33.3	1.3125	19	0.75	K _v	1.99	4.86	7.74	10.8	13.5	15.2	17.9	19.7	21.2	22.1			
					X _T	0.351	0.377	0.395	0.423	0.419	0.448	0.448	0.467	0.484	0.498			
				0.75	C _v	4.77	10.6	18.8	26.9	33.2	39.2	44.0	48.8	52.9	56.1			
2	47.6	1.875	19		K _V	4.13	9.17	16.3	23.3	28.7	33.9	38.1	42.2	45.8	48.5			
					X _T	0.794	0.635	0.409	0.341	0.335	0.339	0.363	0.372	0.383	0.384			
				1.5	C _v	12.8	33.9	56.6	76.4	96.3	114	130	143	156	164			
3	73.0	2.875	38		K _v	11.1	29.3	49.0	66.1	83.3	98.6	112	124	135	142			
					X _T	0.638	0.471	0.350	0.332	0.317	0.326	0.331	0.349	0.361	0.377			
			38	1.5	C _v	19.2	49.3	77.6	105	130	153	175	193	209	223			
4	87.3	3.4375			K _v	16.6	42.6	67.1	90.8	112	132	151	167	181	193			
					X _T	0.478	0.402	0.371	0.324	0.317	0.336	0.348	0.364	0.385	0.394			
				2	C _v	31.7	77.5	123	173	214	242	286	313	341	352			
6	111.1	4.375	51		K _V	27.4	67.0	106	150	185	209	247	271	295	304			
					X _T	0.292	0.318	0.350	0.318	0.320	0.347	0.347	0.377	0.377	0.389			

Specifications

Available Configurations

Design ES: Single-port, globe-style control valve with cage guiding, unbalanced valve plug, and push-down-to-close valve plug action (figures 1 and 2).

Design EAS: Angle version of Design ES control valve, used to facilitate piping or in applications where a self-draining valve is desired (figure 3).

Valve Sizes

See table 3

End Connection Styles⁽¹⁾⁽²⁾

Cast Iron Valves.

Flanged: Design ES, 1- through 8-inch, including 1.5 and 2.5 inch (except 1.25 inch), Class ■ 125 flat-face or ■ 250 raised-face flanges per ASME B16.1

Screwed: Design ES, 0.5 through 2-inch,

consistent with ASME B16.4 Steel and Stainless Steel Valves.

Flanged: Class ■ 150, 300, or 600 raised-face

(RF) or ring-type joint (RTJ) flanges per **ASME B16.5**

Screwed or Socket Welding: 0.5 through 2-inch, consistent with ASME B16.11

Buttwelding: 1- through 8-inch (except 1.25 inch).

Schedules 40 or 80 consistent with

ASME B16.25

Maximum Inlet Pressures and Temperatures⁽¹⁾⁽²⁾

As listed below, unless limited by maximum pressure drop or material temperature capabilities Cast Iron Valves.

Flanged: Consistent with Class 125B or 250B per **ASME B16.1**

Screwed: Consistent with flanged Class 250 per **ASME B16.4**

Steel and Stainless Steel Valves.

Flanged: Consistent with Class 150, 300, and 600⁽³⁾ per ASME B16.34

Screwed or Welding: Consistent with flanged Class 600⁽³⁾ per ASME B16.34

Maximum Pressure Drop⁽²⁾

Same as maximum inlet pressure for specific construction defined above, except where further limited as shown in figures 6 and 7.

Valves for NACE MR0175-2002: See figure 6

Shutoff Classifications per ANSI/FCI 70-2 and IEC 60534-4

Metal Seating: Class IV is standard. Class V is

optional

PTFE Composition Seating: Class VI

Construction Materials

Body, Bonnet, and Bonnet Spacer or Bottom Flange, if used: ■ Cast iron (except Design EAS), ■ WCC carbon steel, ■ 316 stainless steel,

■ LCC carbon steel, ■ WC9 chrome moly steel, or other materials upon request

Valve Plug, Cage, and Metal Seating Parts:

See table 4.

All Other Parts: See table 8

Material Temperature Capabilities⁽²⁾

Body/Trim Combinations: See tables 4 and 5. Those For NACE Specification: See tables 9

and 10.

All Other Parts: See table 8

Flow Characteristics

Standard Cages: ■ Quick-opening, ■ linear, or

equal percentage Whisper Trim: Linear

Flow Directions

Design ES.

Standard Cage: Normally up Whisper Trim Cages: Always up

Design EAS.

Standard Cage: Without liner, flow up or down:

with liner, normally down

Whisper Trim Cages: Always up

Flow Coefficients and Noise Level Prediction

See table 7 and Fisher Catalog 12

Port Diameters and Maximum Valve Plug Travels

See table 11

- continued -

Specifications (continued)

Yoke Boss and Stem Diameters

See table 11

Typical Bonnet Styles

- Plain or extension. See figures 8 and 9 for standard dimensions. See table 6 for selection guidelines
- ENVIRO-SEAL bellows seal bonnet. See figure 5 for view of ENVIRO-SEAL bellows seal bonnet. Also, see Bulletin 59.1:070, ENVIRO-SEAL Bellows Seal Bonnets, for further information

Packing Arrangements

Standard Material: Single PTFE V-ring ENVIRO-SEAL Packing: See figure 4. ENVIRO-SEAL Packing Systems in vacuum service: Standard ENVIRO-SEAL packing systems can be used in vacuum service with packing rings in standard orientation. Do not reverse the ENVIRO-SEAL PTFE packing rings. Also see Bulletin 59.1:061, ENVIRO-SEAL Packing Systems for Sliding-Stem Valves, for more information.

Approximate Weights

1 and 1.25 Inch Sizes: 14 kg (30 lb)

1.5 Inch Size: 20 kg (45 lb) 2 Inch Size: 39 kg (85 lb) **2.5 Inch Size:** 45 kg (100 lb) **3 Inch Size:** 57 kg (125 lb) 4 Inch Size: 77 kg (170 lb) 6 Inch Size: 159 kg (350 lb) 8 Inch Size: 408 kg (900 lb)

Additional Options

- Lubricator, lubricator/isolating valve, ■ drilled and tapped connection in extension bonnet for leakoff service, ■ body drain plug, ■ style 3 fabricated extension bonnet made on order to a specific length for cryogenic service. and ■ Whisper Trim III cage for 6 inch Design ES body
- DIN (or other) ratings and end connections can usually be supplied; consult your Emerson Process Management sales office.
 The pressure/temperature limits in this bulletin, and any applicable standard limitations should not be exceeded.
 Certain bonnet bolting material selections may require a Class 600 easy-e valve assembly to be derated. Contact your Emerson Process Management sales office for more information

ENVIRO-SEAL Packing System Specifications

Applicable Stem Diameters

■ 9.5 mm (3/8 inches), ■ 12.7 (1/2), ■ 19.1 (3/4),

■ 25.4 (1), and ■ 31.8 (1-1/4) diameter valve

Maximum Pressure/Temperature Limits⁽¹⁾

To Meet the EPA Fugitive Emission Standard of 100 PPM⁽²⁾.

For ENVIRO-SEAL PTFE and ENVIRO-SEAL Duplex packing systems: full Class 300 up to 232°C (450°F)

For ENVIRO-SEAL Graphite packing: 104 bar (1500 psig) at 316°C (600°F)

Construction Materials

PTFE Packing Systems:.

Packing Ring and Lower Wiper: PTFE V-ring(3) Male and Female Adaptor Rings: Carbon-filled PTFE V-ring

Graphite ULF Packing Systems: Graphite rings **Duplex Packing Systems:**.

Male and Female Adaptor Rings: Carbon-filled

PTFE V-ring

Guide Bushings: Carbon graphite Packing Rings: Graphite composite

Packing Washer: PTFE

Anti-Extrusion Washer: Filled PTFE (not required for graphite or duplex packing)

Lantern Ring: S31600 (316 stainless steel) (not

required for graphite packing) Packing Box Flange: S31600

Spring: ■ 17-7PH stainless steel or ■ N06600

Packing Follower: S31600 lined with

carbon-filled PTFE

Packing Box Studs: Strain-hardened 316

stainless steel

Packing Box Nuts: 316 stainless steel SA194

Grade 8M

ENVIRO-SEAL, HIGH-SEAL, easy-e, Whisper Trim, and Fisher are marks owned by Fisher Controls International LLC, a member of the Emerson Process Management business division of Emerson Electric Co. Emerson Process Management, Emerson, and the Emerson logo are trademarks and service marks of Emerson Electric Co. All other marks are the property of their respective owners.

This product may be covered by one or more of the following patents: 5,129,625; 5,131,666; 5,056,757; 5,230,498; and 5,299,812 or under pending

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. We reserve the right to modify or improve the designs or specifications of such products at any time without notice.

Neither Emerson, Emerson Process Management, Fisher, nor any of their affiliated entities assumes responsibility for the selection, use and maintenance of any product. Responsibility for the selection, use and maintenance of any product remains with the purchaser and end-user.

Emerson Process Management

Fisher

Marshalltown, Iowa 50158 USA Cernay 68700 France Sao Paulo 05424 Brazil Singapore 128461

www.Fisher.com

^{1.} Refer to the valve specifications in this bulletin for pressure/temperature limits of valve parts. Do not exceed the pressure/temperature rating of the valve. Do not exceed any applicable code

^{1.} Here to the valve specifications in this bulletin to pressure temperature limits of valve parts. Do not exceed the pressure temperature rating of the valve. Do not exceed any applicable or standard limitation.

2. The Environmental Protection Agency (EPA) has set a limit of 100 parts per million (ppm) for fugitive emissions from a valve in selected VOC (Volatile Organic Compound) services.

3. In vacuum service, it is not necessary to reverse the ENVIRO-SEAL PTFE packing rings.