Harold's Calculus Notes Cheat Sheet

17 November 2017

AP Calculus

Limits **Definition of Limit** Let *f* be a function defined on an open f(x)interval containing c and let L be a real number. The statement: $\lim_{x \to a} f(x) = L$ (2) then f(x) is within this interval. means that for each $\epsilon > 0$ there exists a $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$ Tip: Direct substitution: Plug in f(a) and see if (1) If x is within this interval, it provides a legal answer. If so then L =go to (2). f(a). $\lim_{x \to a^{-}} f(x) = L$ $\lim_{x \to a^{+}} f(x) = L$ The Existence of a Limit The limit of f(x) as x approaches a is L if and only if: Prove that $f(x) = x^2 - 1$ is a continuous function. |f(x) - f(c)|= $|(x^2 - 1) - (c^2 - 1)|$ **Definition of Continuity** $= |x^2 - 1 - c^2 + 1|$ $= |x^2 - c^2|$ A function **f is continuous** at c if for = |(x+c)(x-c)|every $\varepsilon > 0$ there exists a $\delta > 0$ such that = |(x+c)| |(x-c)| $|x-c| < \delta$ and $|f(x)-f(c)| < \varepsilon$. Since $|(x+c)| \le |2c|$ $|f(x) - f(c)| \le |2c||(x - c)| < \varepsilon$ Tip: Rearrange |f(x) - f(c)| to have So given $\varepsilon > 0$, we can **choose** $\delta = \left| \frac{1}{2c} \right| \varepsilon > 0$ in the |(x-c)| as a factor. Since $|x-c| < \delta$ we can find an equation that relates both δ Definition of Continuity. So substituting the chosen δ and ε together. for |(x-c)| we get: $|f(x) - f(c)| \le |2c| \left(\left| \frac{1}{2c} \right| \varepsilon \right) = \varepsilon$ Since both conditions are met, f(x) is continuous. **Two Special Trig Limits** $\lim_{x\to 0} \frac{\sin x}{x} = 1$

 $\lim_{x\to 0}\frac{1-\cos x}{x}=0$

Derivatives	(See Larson's 1-pager of common derivatives)
Definition of a Derivative of a Function Slope Function	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ $f'(x), f^{(n)}(x), \frac{dy}{dx}, y', \frac{d}{dx}[f(x)], D_x[y]$ $\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$
Notation for Derivatives	$f'(x), f^{(n)}(x), \frac{dy}{dx}, y', \frac{d}{dx}[f(x)], D_x[y]$
0. The Chain Rule	$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$ $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$ $\frac{d}{dx}[cf(x)] = cf'(x)$ $\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$ $\frac{d}{dx}[fg] = fg' + gf'$
1. The Constant Multiple Rule	$\frac{d}{dx}[cf(x)] = cf'(x)$
2. The Sum and Difference Rule	$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$
3. The Product Rule	$\frac{d}{dx}[fg] = fg' + gf'$
4. The Quotient Rule	$\frac{d}{dx} \left[\frac{f}{g} \right] = \frac{gf' - fg'}{g^2}$ $\frac{d}{dx} [c] = 0$ $\frac{d}{dx} [x^n] = nx^{n-1}$
5. The Constant Rule	$\frac{d}{dx}[c] = 0$
6a. The Power Rule	$\frac{d}{dx}[x^n] = nx^{n-1}$
6b. The General Power Rule	$\frac{d}{dx}[u^n] = nu^{n-1} u' \text{ where } u = u(x)$
7. The Power Rule for x	$\frac{d}{dx}[u^n] = nu^{n-1} u' \text{ where } u = u(x)$ $\frac{d}{dx}[x] = 1 \text{ (think } x = x^1 \text{ and } x^0 = 1)$
8. Absolute Value	
9. Natural Logorithm	$\frac{d}{dx}[x] = \frac{x}{ x }$ $\frac{d}{dx}[\ln x] = \frac{1}{x}$
10. Natural Exponential	$\frac{d}{dx}[e^x] = e^x$
11. Logorithm	$\frac{d}{dx}[\log_a x] = \frac{1}{(\ln a) x}$
12. Exponential	$\frac{d}{dx}[a^x] = (\ln a) a^x$
13. Sine	$\frac{d}{dx}[\sin(x)] = \cos(x)$
14. Cosine	$\frac{d}{dx}[\cos(x)] = -\sin(x)$
15. Tangent	$\frac{d}{dx}[tan(x)] = sec^2(x)$
16. Cotangent	$\frac{d}{dx}[cot(x)] = -csc^2(x)$
17. Secant	$\frac{d}{dx}[a^x] = (\ln a) a^x$ $\frac{d}{dx}[sin(x)] = cos(x)$ $\frac{d}{dx}[cos(x)] = -sin(x)$ $\frac{d}{dx}[tan(x)] = sec^2(x)$ $\frac{d}{dx}[cot(x)] = -csc^2(x)$ $\frac{d}{dx}[sec(x)] = sec(x) tan(x)$

Derivatives	(See Larson's 1-pager of common derivatives)
18. Cosecant	$\frac{d}{dx}[csc(x)] = -csc(x)cot(x)$
19. Arcsine	$\frac{d}{dx}[\sin^{-1}(x)] = \frac{1}{\sqrt{1-x^2}}$
20. Arccosine	$\frac{d}{dx}[\cos^{-1}(x)] = \frac{-1}{\sqrt{1-x^2}}$
21. Arctangent	$\frac{d}{dx}[\tan^{-1}(x)] = \frac{1}{1+x^2}$
22. Arccotangent	$\frac{d}{dx}[\cot^{-1}(x)] = \frac{-1}{1+x^2}$
23. Arcsecant	$\frac{d}{dx}[\sec^{-1}(x)] = \frac{1}{ x \sqrt{x^2 - 1}}$
24. Arccosecant	$\frac{d}{dx}[\csc(x)] = -\csc(x)\cot(x)$ $\frac{d}{dx}[\sin^{-1}(x)] = \frac{1}{\sqrt{1 - x^2}}$ $\frac{d}{dx}[\cos^{-1}(x)] = \frac{-1}{\sqrt{1 - x^2}}$ $\frac{d}{dx}[\tan^{-1}(x)] = \frac{1}{1 + x^2}$ $\frac{d}{dx}[\cot^{-1}(x)] = \frac{-1}{1 + x^2}$ $\frac{d}{dx}[\sec^{-1}(x)] = \frac{1}{ x \sqrt{x^2 - 1}}$ $\frac{d}{dx}[\csc^{-1}(x)] = \frac{-1}{ x \sqrt{x^2 - 1}}$
25. Hyperbolic Sine $\left(\frac{e^x - e^{-x}}{2}\right)$	$\frac{d}{dx}[\sinh(x)] = \cosh(x)$ $\frac{d}{dx}[\cosh(x)] = \sinh(x)$ $\frac{d}{dx}[\tanh(x)] = \operatorname{sech}^{2}(x)$ $\frac{d}{dx}[\coth(x)] = -\operatorname{csch}^{2}(x)$
26. Hyperbolic Cosine $\left(\frac{e^x + e^{-x}}{2}\right)$	$\frac{d}{dx}[cosh(x)] = sinh(x)$
27. Hyperbolic Tangent	$\frac{d}{dx}[tanh(x)] = sech^2(x)$
28. Hyperbolic Cotangent	$\frac{d}{dx}[coth(x)] = -csch^2(x)$
29. Hyperbolic Secant	$\frac{d}{dx}[sech(x)] = -sech(x) tanh(x)$
30. Hyperbolic Cosecant	$\frac{d}{dx}[csch(x)] = -csch(x)coth(x)$
31. Hyperbolic Arcsine	$\frac{d}{dx}[\sinh^{-1}(x)] = \frac{1}{\sqrt{x^2 + 1}}$
32. Hyperbolic Arccosine	$\frac{d}{dx}[\operatorname{sech}(x)] = -\operatorname{sech}(x) \tanh(x)$ $\frac{d}{dx}[\operatorname{csch}(x)] = -\operatorname{csch}(x) \coth(x)$ $\frac{d}{dx}[\sinh^{-1}(x)] = \frac{1}{\sqrt{x^2 + 1}}$ $\frac{d}{dx}[\cosh^{-1}(x)] = \frac{1}{\sqrt{x^2 - 1}}$ $\frac{d}{dx}[\tanh^{-1}(x)] = \frac{1}{\sqrt{x^2 - 1}}$
33. Hyperbolic Arctangent	$\frac{dx}{dx} [\tanh^{-1}(x)] = \frac{1}{1 - x^2}$ $\frac{d}{dx} [\coth^{-1}(x)] = \frac{1}{1 - x^2}$ $\frac{d}{dx} [\coth^{-1}(x)] = \frac{-1}{1 - x^2}$
34. Hyperbolic Arccotangent	$\frac{d}{dx}[\coth^{-1}(x)] = \frac{1}{1 - x^2}$
35. Hyperbolic Arcsecant	$\frac{d}{dx}[\operatorname{sech}^{-1}(x)] = \frac{-1}{x\sqrt{1-x^2}}$
36. Hyperbolic Arccosecant	$\frac{d}{dx}[\operatorname{sech}^{-1}(x)] = \frac{-1}{x\sqrt{1-x^2}}$ $\frac{d}{dx}[\operatorname{csch}^{-1}(x)] = \frac{-1}{ x \sqrt{1+x^2}}$
Position Function	$s(t) = \frac{1}{2}gt^2 + v_0t + s_0$
Velocity Function	$v(t) = s'(t) = gt + v_0$
Acceleration Function	a(t) = v'(t) = s''(t)
Jerk Function	$j(t) = a'(t) = v''(t) = s^{(3)}(t)$

Analyzing the Graph of a Function	(See Harold's Illegals and Graphing Rationals Cheat Sheet)
x-Intercepts (Zeros or Roots)	f(x)=0
y-Intercept	f(0) = y
Domain	Valid x values
Range	Valid y values
Continuity	No division by 0, no negative square roots or logs
Vertical Asymptotes (VA)	x = division by 0 or undefined
Horizontal Asymptotes (HA)	$\lim_{x \to \infty^{-}} f(x) \to y \text{ and } \lim_{x \to \infty^{+}} f(x) \to y$
Infinite Limits at Infinity	$\lim_{x \to \infty^{-}} f(x) \to \infty$ and $\lim_{x \to \infty^{+}} f(x) \to \infty$
Differentiability	Limit from both directions arrives at the same slope
Relative Extrema	Create a table with <i>domains</i> , $f(x)$, $f'(x)$, and $f''(x)$
Congavity	If $f''(x) \to +$, then cup up U
Concavity	If $f''(x) \rightarrow -$, then cup down \cap
Points of Inflection	f''(x) = 0 (concavity changes)

Graphing with Derivatives	
Test for Increasing and Decreasing Functions	 If f'(x) > 0, then f is increasing (slope up) If f'(x) < 0, then f is decreasing (slope down) If f'(x) = 0, then f is constant (zero slope) →
The First Derivative Test	 If f'(x) changes from - to + at c, then f has a relative minimum at (c, f(c)) If f'(x) changes from + to - at c, then f has a relative maximum at (c, f(c)) If f'(x), is + c + or - c -, then f(c) is neither
The Second Deriviative Test Let $f'(c)$ =0, and $f''(x)$ exists, then	1. If $f''(x) > 0$, then f has a relative minimum at $(c, f(c))$ 2. If $f''(x) < 0$, then f has a relative maximum at $(c, f(c))$ 3. If $f'(x) = 0$, then the test fails (See 1^{st} derivative test)
Test for Concavity	1. If $f''(x) > 0$ for all x , then the graph is concave up \bigcup 2. If $f''(x) < 0$ for all x , then the graph is concave down \bigcap
Points of Inflection Change in concavity	If $(c, f(c))$ is a point of inflection of f , then either 1. $f''(c) = 0$ or 2. f'' does not exist at $x = c$.

Tangent Lines	
Genreal Form	ax + by + c = 0
Slope-Intercept Form	y = mx + b
Point-Slope Form	$y - y_0 = m(x - x_0)$
Calculus Form	y = f'(c)(x - c) + f(c)
Slope	$m = \frac{rise}{run} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{dy}{dx} = f'(x)$

Differentiation (Differentials	
Differentiation & Differentials	
Rolle's Theorem f is continuous on the closed interval [a,b], and f is differentiable on the open interval (a,b).	If $f(a) = f(b)$, then there exists at least one number c in (a,b) such that $f'(c) = 0$.
Mean Value Theorem If f meets the conditions of Rolle's Theorem, then	$f'(c) = \frac{f(b) - f(a)}{b - a}$ $f(b) = f(a) + (b - a)f'(c)$ Find 'c'.
Intermediate Value Therem f is a continuous function with an interval, [a, b], as its domain.	If f takes values f(a) and f(b) at each end of the interval, then it also takes any value between f(a) and f(b) at some point within the interval.
Calculating Differentials Tanget line approximation	$f(x + \Delta x) \approx f(x) + dy = f(x) + f'(x) dx$ Example: $\sqrt[4]{82} \rightarrow f(x) = \sqrt[4]{x}, f(x + \Delta x) = f(81 + 1)$
Newton's Method Finds zeros of f , or finds c if $f(c) = 0$.	Example: $\sqrt[4]{82} \to f(x) = \sqrt[4]{x}, f(x + \Delta x) = f(81 + 1)$ $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ Example: $\sqrt[4]{82} \to f(x) = x^4 - 82 = 0, x_n = 3$
Related Rates $\frac{dy}{dt} = ? $ $\frac{dy}{dt} = 2$ $\frac{dx}{dt} = 2$	Steps to solve: 1. Identify the known variables and rates of change. $ \left(x = 15 m; y = 20 m; x' = 2 \frac{m}{s}; y' = ?\right) $ 2. Construct an equation relating these quantities. $ \left(x^2 + y^2 = r^2\right) $ 3. Differentiate both sides of the equation. $ \left(2xx' + 2yy' = 0\right) $ 4. Solve for the desired rate of change. $ \left(y' = -\frac{x}{y}x'\right) $ 5. Substitute the known rates of change and quantities into the equation. $ \left(y' = -\frac{15}{20} \cdot 2 = \frac{3}{2} \frac{m}{s}\right) $
L'Hôpital's Rule	$If \lim_{x \to c} f(x) = \lim_{x \to c} \frac{P(x)}{Q(x)} = \left\{ \frac{0}{0}, \frac{\infty}{\infty}, 0 \bullet \infty, 1^{\infty}, 0^{0}, \infty^{0}, \infty - \infty \right\}, but not \{0^{\infty}\},$ $then \lim_{x \to c} \frac{P(x)}{Q(x)} = \lim_{x \to c} \frac{P'(x)}{Q'(x)} = \lim_{x \to c} \frac{P''(x)}{Q''(x)} = \cdots$

Integration	(See Harold's Fundamental Theorem of Calculus Cheat Sheet)
Basic Integration Rules Integration is the "inverse" of differentiation, and vice versa.	$\int f'(x) dx = f(x) + C$ $\frac{d}{dx} \int f(x) dx = f(x)$
f(x) = 0	$\int 0 dx = C$
$f(x) = k = kx^0$	$\int k dx = kx + C$
1. The Constant Multiple Rule	$\int k f(x) dx = k \int f(x) dx$
2. The Sum and Difference Rule	$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$
The Power Rule $f(x) = kx^n$	$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$ $\int x^n dx = \frac{x^{n+1}}{n+1} + C, where n \neq -1$ $If n = -1, then \int x^{-1} dx = \ln x + C$
The General Power Rule	If $u = g(x)$, and $u' = \frac{d}{dx}g(x)$ then $\int u^n u' dx = \frac{u^{n+1}}{n+1} + C$, where $n \neq -1$
Reimann Sum	$\sum_{i=1}^{n} f(c_i) \Delta x_i, \text{where } x_{i-1} \le c_i \le x_i$
Definition of a Definite Integral Area under curve	$\ \Delta\ = \Delta x = \frac{b-a}{n}$ $\lim_{\ \Delta\ \to 0} \sum_{i=1}^{n} f(c_i) \Delta x_i = \int_a^b f(x) dx$ $\int_a^b f(x) dx = -\int_b^a f(x) dx$ $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$
Swap Bounds	$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$
Additive Interval Property	$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$
The Fundamental Theorem of Calculus	$\int_{a}^{b} f(x) dx = F(b) - F(a)$
The Second Fundamental Theorem of Calculus	$\int_{a}^{b} f(x) dx = F(b) - F(a)$ $\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$ $\frac{d}{dx} \int_{a}^{g(x)} f(t) dt = f(g(x))g'(x)$ $\frac{d}{dx} \int_{g(x)}^{h(x)} f(t) dt = f(h(x))h'(x) - f(g(x))g'(x)$
Mean Value Theorem for Integrals	$\int_{a}^{b} f(x) dx = f(c)(b-a) \text{ Find 'c'}.$
The Average Value for a Function	$\int_{a}^{b} f(x) dx = f(c)(b - a) \text{ Find 'c'}.$ $\frac{1}{b - a} \int_{a}^{b} f(x) dx$

Integration Methods	
1. Memorized	See Larson's 1-pager of common integrals
2. U-Substitution	ſ
	$\int f(g(x))g'(x)dx = F(g(x)) + C$
	Set $u = g(x)$, then $du = g'(x) dx$
	$\int f(u) du = F(u) + C$
	$u = \underline{\qquad} du = \underline{\qquad} dx$
	$u = \underline{\qquad} du = \underline{\qquad} dx$ $\int u dv = uv - \int v du$
	$\begin{array}{ccc} u = \underline{\hspace{1cm}} & v = \underline{\hspace{1cm}} \\ du = \underline{\hspace{1cm}} & dv = \underline{\hspace{1cm}} \end{array}$
	Pick 'u' using the LIATED Rule:
3. Integration by Parts	L – Logarithmic: $\ln x$, $\log_b x$, etc.
or integration by raras	I - Inverse Trig.: $\tan^{-1} x$, $\sec^{-1} x$, etc .
	A – Algebraic : x^2 , $3x^{60}$, etc.
	T - Trigonometric : $\sin x$, $\tan x$, etc.
	E - Exponential : e^x , 19^x , etc.
	D – Derivative of: $\frac{dy}{dx}$
	$\int \frac{P(x)}{O(x)} dx$
	3 4 (2)
	where $P(x)$ and $Q(x)$ are polynomials
4. Partial Fractions	Case 1: If degree of $P(x) \ge Q(x)$
	then do long division first
	Case 2: If degree of $P(x) < Q(x)$
	then do partial fraction expansion
	$\int \sqrt{a^2-x^2} \ dx$
5a. Trig Substitution for $\sqrt{a^2 - x^2}$	Substitution: $x = a \sin \theta$
	Identity: $1 - \sin^2 \theta = \cos^2 \theta$
	$\int \sqrt{x^2 - a^2} \ dx$
5b. Trig Substitution for $\sqrt{x^2 - a^2}$	Substitution: $x = a \sec \theta$
	Identity: $sec^2 \theta - 1 = tan^2 \theta$
	$\int \sqrt{u^2 + u^2} du$
5c. Trig Substitution for $\sqrt{x^2 + a^2}$	$\int \sqrt{x^2 + a^2} \ dx$
Sc. Trig substitution for $\sqrt{x} + a$	Substitution: $x = a \tan \theta$
6. Table of Integrals	Identity: $tan^2 \theta + 1 = sec^2 \theta$ CRC Standard Mathematical Tables book
	TI-Nspire CX CAS Graphing Calculator
7. Computer Algebra Systems (CAS)	TI –Nspire CAS iPad app
8. Numerical Methods	Riemann Sum, Midpoint Rule, Trapezoidal Rule, Simpson's
	Rule, TI-84 Google of mathematics. Shows steps. Free.
9. WolframAlpha	www.wolframalpha.com

Partial Fractions	(See Harold's Partial Fractions Cheat Sheet)
Condition	$f(x) = \frac{P(x)}{Q(x)}$ where $P(x)$ and $Q(x)$ are polynomials and degree of $P(x) < Q(x)$
	If degree of $P(x) \ge Q(x)$ then do long division first $P(x)$
Example Expansion	$= \frac{A}{(ax+b)(cx+d)^2(ex^2+fx+g)} = \frac{A}{(ax+b)} + \frac{B}{(cx+d)} + \frac{C}{(cx+d)^2} + \frac{Dx+E}{(ex^2+fx+g)}$
Typical Solution	$\int \frac{a}{x+b} dx = a \ln x+b + C$

Sequences & Series	(See Harold's Series Cheat Sheet)
Sequence	$\lim_{n\to\infty} a_n = L \text{ (Limit)}$ Example: $(a_n, a_{n+1}, a_{n+2},)$
	$S = \lim_{n \to \infty} \frac{a(1 - r^n)}{1 - r} = \frac{a}{1 - r}$
Geometric Series	only if $ r < 1$ where r is the radius of convergence
	and $(-r,r)$ is the interval of convergence

Convergence Tests	(See Harold's Series Convergence Tests Cheat Sheet)
Series Convergence Tests	 Divergence or nth Term Geometric Series P-Series Alternating Series Integral Ratio Root Built Comparison Telescoping

Taylor Series	(See Harold's Taylor Series Cheat Sheet)
Taylor Series	$f(x) = P_n(x) + R_n(x)$ $= \sum_{n=0}^{+\infty} \frac{f^{(n)}(c)}{n!} (x - c)^n + \frac{f^{(n+1)}(x^*)}{(n+1)!} (x - c)^{n+1}$ where $x \le x^* \le c$ (worst case scenario x^*) and $\lim_{x \to +\infty} R_n(x) = 0$