Lösungsvorschläge zur Klausur zur Vorlesung Grundbegriffe der Informatik 1. September 2011

Kla nu							
					1		
Name:							
Vorname:							
MatrNr.:							
Aufgabe	1	2	3	4	5	6	7
max. Punkte	5	5	6	7	5	6	8
tats. Punkte							
Gesamtpunktzahl:					Note:		

Aufgabe 1 (1,5+1+1+1,5=5 Punkte)

1. Gegeben sei die formale Sprache $L_1 = (\{a,b\}^* \cdot \{c\})^*$. Geben Sie alle Wörter der Länge 2 in L_1 an.

Lösung: {ac, bc, cc}

2. Geben Sie eine Menge L₂ von Wörtern an, so dass gilt:

$$L_2 \cdot L_2 = \{aa, aba, aab, abab\}$$

Lösung: $L_2 = \{a, ab\}$

3. Gegeben sei die kontextfreie Grammatik $G_3 = (\{S, X, Y, Z\}, \{a, b, d, e, f\}, S, P)$ mit folgender Produktionenmenge

$$\mathsf{P} = \{ \hspace{0.1in} \mathsf{S} o \mathsf{a} \mathsf{S} \hspace{0.1in} | \hspace{0.1in} \mathsf{Sb} \hspace{0.1in} | \hspace{0.1in} \epsilon \hspace{0.1in} | \hspace{0.1in} X, \ X o \mathsf{d} \mathsf{Z} \hspace{0.1in} | \hspace{0.1in} \mathsf{Ye} \hspace{0.1in} | \hspace{0.1in} \mathsf{fY}, \ Y o \epsilon, \ Z o \mathsf{d} \mathsf{X} \ \}$$

Geben Sie einen regulären Ausdruck an, der genau L(G₃) beschreibt.

Lösungsvorschlag: a*(dd)*(e|f)b* | a*b*

4. Es seien $R, S, T \subseteq M \times M$ binäre Relationen auf einer Menge M. Beweisen oder widerlegen Sie (durch Angabe eines Gegenbeispiels):

$$R \circ S \cap R \circ T \subseteq R \circ (S \cap T)$$

Lösungsvorschlag: Die angegebene Teilmengenbeziehung lässt sich zum Beispiel widerlegen, wenn der Schnitt $S \cap T$ leer ist, $R \circ S \cap R \circ T$ aber nicht.

Gegenbeispiel: $M = \{1, 2, 3\}$

$$R = \{(1,3); (2,3)\}, S = \{(1,1)\}, T = \{(1,2)\}$$

$$R \circ S \cap R \circ T = \{(1,3)\} \cap \{(1,3)\} \neq \emptyset$$

Aufgabe 2 (3+1+1=5 Punkte)

In dieser Aufgabe geht es um ungerichtete Graphen ohne Schlingen.

1. Zeichnen Sie alle paarweise nichtisomorphen ungerichteten schlingenfreien Graphen mit genau 5 Knoten und genau 5 Kanten, die einen Weg besitzen, in dem alle Knoten vorkommen.

Suchen Sie sich einen Ihrer Graphen aus und geben Sie für ihn die Wegematrix an.

Lösungsvorschlag:

2. Zeichnen Sie alle paarweise nichtisomorphen ungerichteten schlingenfreien Graphen mit genau 6 Knoten, die alle Grad 1 haben.

Lösungsvorschlag:

3. Wieviele ungerichtete schlingenfreie Graphen mit Knotenmenge $V = \{0, 1, 2, 3, 4, 5\}$ gibt es, bei denen alle Knoten Grad 1 haben?

Lösung: 15

Erklärung: (in der Klausur nicht erforderlich) Da jeder Knoten Grad 1 besitzt, führt zu jedem Knoten genau eine Kante. Bei der gegebenen festen Knotenmenge stehen für die Kante von Knoten 0 aus 5 Möglichkeiten zur Auswahl. Für die Kante vom kleinsten dann noch nicht verbundenen Knoten verbleiben 3 Möglichkeiten und für die letzte Kante bleibt nur eine Möglichkeit übrig.

Insgesamt gibt es also $5 \cdot 3 \cdot 1 = 15$ solcher Graphen.

Achtung: Bei den ersten beiden Teilaufgaben gibt es bei Angabe mehrerer isomorpher Graphen Punktabzug. (Aber man kann auf keine Teilaufgabe weniger als 0 Punkte bekommen.)

Name: Matr.-Nr.:

Aufgabe 3 (1+1+4=6 Punkte)

Eine Funktion $T(n): \mathbb{N}_0 \to \mathbb{N}_0$ sei rekursiv wie folgt definiert:

- T(0) = 2
- T(1) = 3
- Für alle $n \in \mathbb{N}_0 \setminus \{0, 1\}$ sei:

$$T(n) = 3 \cdot T(n-1) - 2 \cdot T(n-2)$$

1. Geben Sie die Funktionswerte T(n) für $n \in \{2, 3, 4, 5, 6\}$ an.

Lösung:

$$T(2) = 5, T(3) = 9, T(4) = 17, T(5) = 33, T(6) = 65$$

2. Geben Sie eine geschlossene Formel F(n) (d. h. einen arithmetischen Ausdruck) für T(n) an.

Lösung:

$$F(n) = 2^n + 1$$

3. Beweisen Sie durch Induktion, dass für alle $n \in \mathbb{N}_0$ gilt: F(n) = T(n).

Lösungsvorschlag:

Induktionsanfang:
$$n = 0$$
: $F(0) = 2^0 + 1 = 1 + 1 = 2 = T(0)$
 $n = 1$: $F(1) = 2^1 + 1 = 3 = T(1)$

Induktionsannahme: Für ein beliebiges, aber festes $n\in\mathbb{N}_0$ gilt:

$$T(n+1) = F(n+1) = 2^{n+1} + 1$$
 und $T(n) = F(n) = 2^n + 1$

Induktionsschluss: zu zeigen: F(n+2) = T(n+2)

$$T(n+2) = 3 \cdot T(n+1) - 2 \cdot T(n)$$

$$= 3 \cdot F(n+1) - 2 \cdot F(n)$$

$$= 3 \cdot (2^{n+1} + 1) - 2 \cdot (2^n + 1)$$

$$= 3 \cdot 2^{n+1} + 3 - 2 \cdot 2^n - 2$$

$$= 3 \cdot 2^{n+1} - 2 \cdot 2^n + 1$$

$$= 3 \cdot 2^{n+1} - 2^{n+1} + 1$$

$$= 2 \cdot 2^{n+1} + 1$$

$$= 2^{n+2} + 1 = F(n+2)$$

Aufgabe 4 (4+1+2=7 Punkte)

In dieser Aufgabe geht es um Huffman-Codierungen.

1. Gegeben sei das Alphabet $A = \{a, b, c, d, e, f, g\}$ und ein Wort $w \in A^*$ in dem die Symbole mit folgenden Häufigkeiten vorkommen:

a	b	С	d	е	f	g
11	3	11	24	8	7	36

(a) Zeichnen Sie den Huffman-Baum.

Lösungsvorschlag:

(b) Geben Sie die Huffman-Codierung des Wortes bad an.

Lösung:

$$h(bad) = 0000 010 10$$

2. Für $k \geq 1$ sei ein Alphabet $A = \{a_0, a_1, \ldots, a_k\}$ mit k+1 Symbolen gegeben und ein Text, in dem jedes Symbol a_i mit Häufigkeit 2^i vorkommt für $0 \leq i \leq k$.

Geben Sie die Huffman-Codierungen aller Symbole $\mathfrak{a}_{\mathfrak{i}}$ an.

Lösungsvorschlag:

$$h(\alpha_i) = \begin{cases} 0^k & \text{falls } i = 0\\ 0^{k-i} 1 & \text{sonst} \end{cases}$$

6

Name:

Matr.-Nr.:

Aufgabe 5 (1+2+2=5 Punkte)

Es sei A ein nichtleeres Alphabet.

Für $x \in A$ und $w \in A^*$ sei $N_x(w)$ die Anzahl der Vorkommen des Zeichens x im Wort w.

Wir definieren auf A^* eine binäre Relation \sqsubseteq wie folgt:

$$w_1 \sqsubseteq w_2$$
 genau dann, wenn $\forall x \in A : N_x(w_1) \le N_x(w_2)$

1. Besitzt die Relation \sqsubseteq ein kleinstes Element?

Wenn ja: Geben Sie das kleinste Element an. Wenn nein: Beweisen Sie, dass es keines gibt.

Lösungsvorschlag:

Ja, es gibt ein kleinstes Element: ε

2. Besitzt die Relation ⊑ ein größtes Element?

Wenn ja: Geben Sie das größte Element an.

Wenn nein: Beweisen Sie, dass es keines gibt.

Lösungsvorschlag:

Nein, es gibt kein größtes Element.

Angenommen w ist das größte Element. Dann lässt sich $v = x \cdot w$ bilden, wobei $x \in A$ irgendein Symbol ist. Dann ist natürlich $w \neq v$ aber $w \sqsubseteq v$. Also kann w kein größtes Element sein.

3. Zeigen Sie, dass die Relation \sqsubseteq nicht antisymmetrisch ist, wenn A mindestens zwei Symbole enthält.

Lösungsvorschlag:

Sei
$$A = \{a, b\}$$

$$w_1 = ab, w_2 = ba$$

Dann ist $w_1 \sqsubseteq w_2 \land w_2 \sqsubseteq w_1$. Jedoch ist $w_1 \neq w_2$, also die Relation \sqsubseteq auch nicht antisymmetrisch.

Aufgabe 6 (1+3+2=6 Punkte)

Die Sprache $L \subseteq \{0,1\}^*$ sei definiert als die Menge aller Wörter w, die die Binärzahldarstellung einer durch 3 teilbaren Zahl sind.

1. Geben Sie alle Wörter aus Lan, deren Länge höchstens 3 ist.

Lösung:

$$\varepsilon$$
,0,00,11,000,011,110

Anmerkung: Nach unserer Definition ist $Num_2(\varepsilon) = 0$. Das Fehlen von ε gibt jedoch keinen Punktabzug.

2. Geben Sie einen endlichen Akzeptor an, der L erkennt.

Lösungsvorschlag:

3. Es sei L' die Menge aller Wörter aus L (!), die Länge 1 haben oder mit dem Symbol 1 beginnen.

Geben Sie einen endlichen Akzeptor an, der L' erkennt.

Lösungsvorschlag:

Hinweis: Es muss sich um vollständige deterministische endliche Akzeptoren handeln wie sie in der Vorlesung definiert wurden.

Name: Matr.-Nr.:

Aufgabe 7 (3+2+1+1+1=8 Punkte)

Gegeben sei die folgende Turingmaschine T:

- Zustandsmenge ist $Z = \{s, a_1, a_2, a_3, b_1, b_2, b_3, r\}$.
- Anfangszustand ist s.
- Bandalphabet ist $X = \{\Box, a, b\}$.
- Die Arbeitsweise ist durch folgendes Diagramm festgelegt:

Die Turingmaschine wird im folgenden benutzt für Bandbeschriftungen, bei denen zu Beginn der Berechnung auf dem Band ein Wort $w \in \{a, b\}^+$ steht, das von Blanksymbolen umgeben ist.

Der Kopf der Turingmaschine stehe anfangs auf dem ersten Symbol des Eingabewortes.

- 1. Geben Sie für die Eingabe aaabbb folgende Konfigurationen an:
 - die Anfangskonfiguration;
 - die Endkonfiguration;
 - jede Konfiguration, die in einem Zeitschritt vorliegt, nachdem die Turingmaschine vom Zustand r in den Zustand s gewechselt hat.

Lösung:

Anfangskonfiguration: (s)aaabbb

Zwischenkonfigurationen:

- (s)aababb
- (s)abaabb

(s)ababab

Endkonfiguration: $ababab(b_1)$

- 2. Zu Beginn stehe auf dem Band ein Wort der Form a^kb^m mit $k \ge 1$ und $m \ge 0$. Welches Wort steht am Ende (wenn die Turingmaschine gehalten hat) auf dem Band, wenn
 - (a) $k \le m$ ist?

Lösung:

$$(ab)^k \cdot b^{m-k}$$

(b) k > m ist?

Lösung:

$$(ab)^m \cdot a^{k-m}$$

3. Für welche Eingabewörter hält die Turingmaschine in Zustand a₁ an?

Lösungsvorschlag:

Die Turingmaschine hält in a_1 für alle $w \in \{a,b\}^+$ mit einer der beiden Eigenschaften:

- falls w mit a beginnt: $N_a(w) = N_b(w) + 1$
- falls w mit b beginnt: $N_a(w) = N_b(w)$
- 4. Geben Sie eine Funktion f(n) an, so dass die Laufzeit der Turingmaschine für Eingaben der Form $(ab)^n$ in $\Theta(f(n))$ liegt.

Lösungsvorschlag:

$$f(n) = n$$

5. Geben Sie eine Funktion g(n) an, so dass die Laufzeit der Turingmaschine für Eingaben der Form a^nb^n in $\Theta(g(n))$ liegt.

Lösungsvorschlag:

$$g(\mathfrak{n})=\mathfrak{n}^3$$