Digital System Design

Combinational Circuit design and Simulation Using Gate

Objectives

Topics introduced in this chapter:

- Draw a timing diagram for a combinational circuit with gate delays.
- Define static 0-and 1-hazards and dynamic hazard. Given a combinational circuit, find all of the static 0-and 1-hazards. For each hazard, specify the order in which the gate outputs must switch in order for the hazard to actually produce a false output.
- Given switching function, realize it using a two-level circuit which is free of static and dynamic hazards (for single input variable changes).
- Design a multiple-output NAND or NOR circuit using gates with limited fan-in.
- Explain the operation of a logic simulator that uses four-valued logic.
- Test and debug a logic circuit design using a simulator.

Example: Realize $f(a,b,c,d) = \sum m(0,3,4,5,8,9,10,14,15)$ using 3-input NOR gate

$$f' = a'b'c'd + ab'cd + abc' + a'bc + a'cd'$$

$$f' = b'd(a'c') + a'c(b+d') + abc'$$

$$f = [b+d'+(a+c)(a'+c')][a+c'+b'd][a'+b'+c']$$

Example: Realize the functions given in Figure 8-2, using only 2-input NAND gates and inverters.

If we minimize each function separately, the result is

$$f_1 = b'c' + ab' + a'b$$

 $f_2 = b'c' + bc + a'b$
 $f_3 = a'b'c + ab + bc'$

Figure 8-2

Figure 8-3: Realization of Figure 8-2

$$f_{1} = b'(\underline{a'+c'}) + \underline{a'b}$$

$$f_{2} = b(a'+c) + \underline{b'c'}$$

$$f_{3} = a'b'c + b(\underline{a+c'})$$

$$a'b'c = a'(b'c) = a'(b+c')'$$

8.3 Gate Delays and Timing Diagrams

Propagation Delay in an Inverter

- Output of logic gates take some time to change value (propagation delay)
- ④ The propagation delay may be different for input 0

 ↑ 1, and 1

 ↑ 0

8.3 Gate Delays and Timing Diagrams

Ex: Timing Diagram for AND-NOR Circuit

8.3 Gate Delays and Timing Diagrams

Timing Diagram for Circuit with Delay

- The input X consists of two pulses:
- 4 The first of which is 2 microseconds (2x10-6 second) wide and the second is 3 microseconds wide.

- Static 1-hazard: a circuit output may momentarily go to 0 when it should remain a constant 1.
- Static 0-hazard: a circuit output may momentarily go to 1 when it should remain a constant 0.
- Dynamic hazard: output change 3 or more time
 s when the output changes from 0 to 1 (1to 0)

Example (1/2)

- 4 Example of 1-hazard: (Fig. 8-8)
 - 1. A = C = 1
 - 2. After B changes to 0, both B and B' are 0 until the propagation delay is elapsed.

Example (2/2)

4 Check hazard from K-map: No loops cover b oth minterms ABC and AB'C.

Detection of a 1-Hazard

13

(a) Circuit with a static 1-hazard

Hazard in 2-level AND-OR network

- 1. Write down SOP form.
- 2. Plot each term on map and loop it.
- 3. If any two adjacent 1's are not covered by the same loop, a 1-hazard exists. For an n-variable map, this transition occurs when one variable changes and the other (n-1) variables are held constant.
- 4. Solution: Insensitive to change of B: AC keeps on 1 when B changes.

14

Example (1/3)

- 2. Delay: Invert: 3ns AND/OR: 5ns

Example (2/3)

(c) Timing diagram illustrating 0-hazard of (a)

Example (3/3)

M Add 3 addition loops

Detection of a Static 0-Hazard

$$F = (A + C)(A' + D')(B' + C' + D)$$

(a) Circuit with a static 0-hazard

(b) Karnaugh map for circuit of (a)

(c) Timing diagram illustrating 0-hazard of (a)

Karnaugh Map Removing Hazards

$$F = (A+C)(A'+D')(B'+C'+D)(C+D')(A+B'+D)(A'+B'+C')$$

Simulation of Logic Gates

- 4 Logic circuits are verified by
 - Actually build them Computer simulation
 - 1) Computations are performed stage-by-st age (From input)
 - 2) Evaluations are performed every time inputs schange.
 - X: value of gate input is unknown Z: open circuit or high-impedance (hi-Z)

8.5 Simulation and Testing of Logic Circuit

(a) Simulation screen showing switches

(b) Simulation screen with missing gate input

Four-valued logic values:

0,1,X(unknow), Z(hi-Z)

8.5 Simulation and Testing of Logic Circuit

And and OR Functions for Four-Valued Simulation

X	0	1	X	Z	
0	0	0 1 X X	0	0	
1	0	1	X	X	
X	0	X	X	X	
Z	0	X	X	X	
	l				

+	0	1	X	Z
0	0 1 X X	1	1	1
1	1	1	1	1
X Z	X	1	X	X
Z	X	1	X	X
	I			

AND Gate OR Gate

8.5 Simulation and Testing of Logic Circuit

Logic Circuit with Incorrect Output

Example: F = AB(CD'+CD') + A'B'(C+D)

Possible Errors in Your Designs

- 4 In simulations:
 - 4 Incorrect design
 - Gates connected wrong
 - Wrong input signals to the circuits
- 4 In actual circuits
 - Defective gates
 - Defective connecting wires