Symbolic Music Similarity Presentation

Ali Bektas Paul Kröger

February 3, 2020

Überblick

- 1. Grundlegendes
- 2. A Section Name To Say "Different Approaches"
- 3. MIREX: Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 MIREX 2005
- 3.4 Urbano MelodyShape
- 4. Bibliographie

Darstellung von Noten

- Melodie: "singbare, in sich geschlossene Folge von Tönen" [1]
- Harmonie: "wohltönender Zusammenklang mehrerer Töne oder Akkorde" [2]
- Schlüssel: "dient in der Musiknotation dazu, im Notensystem festzulegen, welche Tonhöhe die fünf Notenlinien repräsentieren." [3]

Figure: Source: [3]

Darstellung von Noten

Im Grunde genommen , ermöglicht die herkömmliche Methode von Notendarstellung , Informationen über Rhytmus , Tonlage , Gefühl beim Spielen , vortragsbetreffliche Elemente zu übermitteln.

Figure: Source: IMLSP Archive

Darstellung von Noten

"Representing music as a weighted point set in a two-dimensional space has a tradition of many centuries. Since approximately the 10th century, one popular way of writing music has been to use a set of notes (points) in a two-dimensional space, with time and pitch as coordinates." [6]

Ein Graphbasierter Ansatz

"A Measure of Melodic Similarity Based on a Graph Representation of the Music Structure" [7] von Nicola Orio und Antonio Rodá.

Ein Graphbasierter Ansatz

- Der Inhalt wird schrittweise vereinfacht.
- Dazu sind die **Gewichte** der einzelnen Noten von Bedeutung.
 - die unterliegende harmonische Funktion (harmonic weight)
 - die metrische Position (metric weight)
 - die Differenz der Tonlagen zwischen dem Ton und dem Grundton(melodic weight)

Ein Graphbasierter Ansatz

Figure: Funktionen der Noten im Skala [9]

Ein auf Graphen beruhender Ansatz

- Der Inhalt wird schrittweise vereinfacht.
- Dazu sind die **Gewichte** der einzelnen Noten von Bedeutung.
 - die unterliegende harmonische Funktion (harmonic weight)
 - die metrische Position (metric weight)
 - die Differenz der Tonlagen zwischen dem Ton und dem Grundton(melodic weight)

Ein mathematischer Ansatz

"Algorithms for Computing Geometric Measures of Melodic Similarity" [8] von Greg Aloupis, Thomas Fevens, Stefan Langerman, Tomomi Matsui, Antonio Mesa, Yurai Nunez, David Rappaport, and Godfried Toussaint

Ein mathematischer Ansatz

- Melodien werden als Polygonalketten dargestellt
- Tonlänge wird durch Länge der waagerechten Kanten modelliert
- Intervalle werden durch Länge der senkrechten Kanten modelliert

Insert Title

- Ein Wettbewerb und Plattform für Interessierte
- Es gibt verschiedene Kategorien
 - Real-time Audio to Score Alignment (a.k.a Score Following)
 - Discovery of Repeated Themes and Sections
 - Audio Melody Extraction
 - Symbolic Melodic Similarity
 - ...
- Gegeben ein Ziel , treten verschiedene Algorithmen gegeneinander zum Wettkampf an. Derjenige, der die besten Ergebnisse hat , gewinnt.
- Nun eine Frage:Wie kann man Algorithmen miteinander vergleichen?
- Es kommt nicht auf die Laufzeit oder Speicherbedarf an , sondern auf die Qualität der Ergebnisse.
- Welche Messmethoden gibt es , um die Qualität von solcen Ergebnissen zu beurteilen?

Overall	AP1	AP2	AU1	AU2	AU3	GAR1	GAR2	FHAR
ADR	0.031	0.024	0.666	0.698	0.706	0.712	0.739	0.730
NRGB	0.028	0.027	0.601	0.590	0.616	0.617	0.683	0.666
AP	0.017	0.023	0.525	0.477	0.500	0.508	0.545	0.545
PND	0.044	0.056	0.527	0.495	0.515	0.494	0.588	0.557
Fine	0.292	0.281	0.532	0.528	0.532	0.586	0.581	0.540
Psum	0.234	0.190	0.522	0.524	0.527	0.589	0.580	0.517
WCsum	0.179	0.146	0.470	0.480	0.486	0.537	0.526	0.470
SDsum	0.152	0.123	0.444	0.458	0.465	0.511	0.498	0.447
Greater0	0.397	0.323	0.677	0.653	0.650	0.743	0.743	0.657
Greater1	0.070	0.057	0.367	0.393	0.403	0.433	0.417	0.377

Figure: Source: [5]

				_					
O	verall	AP1	AP2	AU1	AU2	AU3	GAR1	GAR2	FHAR
	ADR	0.031	0.024	0.666	0.698	0.706	0.712	0.739	0.730
	NRGB	0.028	0.027	0.601	0.590	0.616	0.617	0.683	0.666
	AP	<mark>0</mark> .017	0.023	0.525	0.477	0.500	0.508	0.545	0.545
	PND	0.044	0.056	0.527	0.495	0.515	0.494	0.588	0.557
	Fine	0.292	0.281	0.532	0.528	0.532	0.586	0.581	0.540
	Psum	0.234	0.190	0.522	0.524	0.527	0.589	0.580	0.517
۷	VCsum	0.179	0.146	0.470	0.480	0.486	0.537	0.526	0.470
	SDsum	0.152	0.123	0.444	0.458	0.465	0.511	0.498	0.447
G	reater0	0.397	0.323	0.677	0.653	0.650	0.743	0.743	0.657
G	reater1	0.070	0.057	0.367	0.393	0.403	0.433	0.417	0.377

Inhaltsübersicht

- 1. Grundlegendes
- 2. A Section Name To Say "Different Approaches"
- 3. MIREX: Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 MIREX 2005
- 3.4 Urbano MelodyShape
- 4. Bibliographie

Ground Truth

- Experten werden befragt, Stücke aus der RISM A/II Sammlung nach deren Ähnlichkeiten zu einer Anfrage zu beurteilen.
- Die Sammlungen sind groß deswegen sind einige Techniken zur Eliminierung unrelevanter Elementen vorzunehmen , wie z.B
 - Nach der Differenz zwischen dem tiefsten und höchsten Ton.
 - Nach dem Verhältnis der kürzesten Note zu der längsten.
 - usw.
- Nicht für alle Stücke werden dieselben Elimierungsverfahren vorgenommen. Die Aspekte, durch die sich ein Stück auszeichnet sind beizubehalten. Das ist wiederum für die Experten zu entscheiden.

Ground Truth I

Figure: Abbildung: Ergebnisse der Befragung [6]

Ground Truth II

Ground Truth III

Overall	A	P1	AP2	AU1	AU2	AU3	GAR1	GAR2	FHAR
ADR	0.0	31	0.024	0.666	0.698	0.706	0.712	0.739	0.730
NRGB	0.0	28	0.027	0.601	0.590	0.616	0.617	0.683	0.666
AP	0.0)17	0.023	0.525	0.477	0.500	0.508	0.545	0.545
PND	0.0)44	0.056	0.527	0.495	0.515	0.494	0.588	0.557
Fine	0.2	292	0.281	0.532	0.528	0.532	0.586	0.581	0.540
Psum	0.	234	0.190	0.522	0.524	0.527	0.589	0.580	0.517
WCsum	0.	79	0.146	0.470	0.480	0.486	0.537	0.526	0.470
SDsum	0.1	52	0.123	0.444	0.458	0.465	0.511	0.498	0.447
Greater0	0.	97	0.323	0.677	0.653	0.650	0.743	0.743	0.657
Greater1	9.0	70	0.057	0.367	0.393	0.403	0.433	0.417	0.377

LAverage Dynamic Recall

Inhaltsübersicht

- 1. Grundlegendes
- A Section Name To Say "Different Approaches"
- 3. MIREX: Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 MIREX 2005
- 3.4 Urbano MelodyShape
- 4. Bibliographie

MIREX : Algorithmen treten gegeneinander an

L Average Dynamic Recall

Beispiel: Average Dynamic Recall - ADR

Pos.	encountered	relevant	#found	recall
1	2	1, 2	1	1
2	2, 3	1, 2	1	0.5
3	2, 3, 1	1, 2, 3, 4, 5	3	1
4	2, 3, 1, 5	1, 2, 3, 4, 5	4	1
5	2, 3, 1, 5, 7	1, 2, 3, 4, 5	4	8.0

Figure: Abbildung: ADR Berechnung [6]

Inhaltsübersicht

- 1. Grundlegendes
- A Section Name To Say "Different Approaches"
- 3. MIREX : Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 MIREX 2005
- 3.4 Urbano MelodyShape
- 4. Bibliographie

└MIREX 2005

"Melody Retrieval using the Implication/Realization Model" [11] Maarten Grachten, Josep Lluis Arcos and Ramon Lopez de Mantaras

- Ein auf Kognitivwissenschaften basierendes Modell : Implication/Realization Model.
- Dies besagt , dass man nach seinen Erfahrungen (sowohl kulturellen , als auch angeborenen) Erwartungen hat , wie ein Musikstück weitergeht.
- Wir beschäftigen uns hier mit den angeborenen Aspekten.
- I/R Modell besagt: Wir sind dazu geneigt, Elemente nach Konzepten zu gruppieren. Diese Konzepten sind denen der Gestalttheorie ähnlich
 - Proximity : Werden zwei Elemente gleich wahrgenommen?
 - Similarity : Haben zwei Elemente Ähnlichkeiten?

- PRD : kleines Intervall in eine Richtung impliziert noch ein Intervall in dieselbe Richtung
- PID : kleines Intervall impliziert ein kleines Intervall.
- Nach diesen Prinzipien ist ein Alphabet von Strukturen definiert.
- Mithilfe von Edit Distance wird die Ahnlichkeit festgestellt.

MIREX 2005 I

$$w(s_i, \emptyset) = \alpha_d \cdot Size(s_i)$$

 $w(\emptyset, s_j) = \alpha_i \cdot Size(s_j)$

$$w(s_i, s_j) = \alpha_r \cdot \begin{pmatrix} \beta \cdot |LabelDiff(s_i, s_j)| + \\ \gamma \cdot |Size(s_i) - Size(s_j)| + \\ \delta \cdot |Dir(s_i) - Dir(s_j)| + \\ \epsilon \cdot |Overlap(s_i) - Overlap(s_j)| \end{pmatrix}$$

$$LabelDiff(s_i, s_j) = \begin{cases} 0 & Label(s_i) = Label(s_j) \\ \zeta & Label(s_i) = -Label(s_j) \\ 1 & otherwise \end{cases}$$

MIREX 2005 II

parameter	operation/attribute	value
α_i	insertion	0.064
α_d	deletion	0.131
α_r	replacement	1.000
β	labels	0.587
γ	size	0.095
δ	direction	0.343
ϵ	overlap	0.112
ζ	retrospective counterparts	0.801

"Combining Multilevel and Multifeature Representation to Compute Melodic Similarity" [12] Nicola Orio

- N-gram
- Jede Wahl von N hat Vor- und Nachteile. Um diese zu beseitigen wird Multilevel Segmentation eingesetzt.

Fank	Participant	Average Dynamic Fecal	Normalized Recall at Group Boundaries	Average precision (non- interpolated)	Precision at N documents (N is number of relevant document)
,	Gradrian, Aroos & Müntanas D	65.98%	55.24N	\$1.72%	44,30%
,	ON, N. D	66,96%	1331%	C.Wi.	39.80%
0	Suyote & Ultdenbogent D	54.181	\$1.20%	40.42%	41.22%
	Typie, Wering E. Velikamp 🖰	87.09%	48.17%	35.64%	33.40%
	Lamatrön, Mikkis Miskisen B. Udeceen (PS) D	55.00%	40.50%	41.40%	29.10%
	Lamström, Mikkis, Milkinen S. Ulekonen (OP) D	54.27%	47,00%	20.21%	96,00%
,	Priorior & Müllemsiehen D	51.61%	45.10%	33.92%	80.71%

Inhaltsübersicht

- 1. Grundlegendes
- 2. A Section Name To Say "Different Approaches"
- 3. MIREX: Algorithmen treten gegeneinander an
- 3.1 Ground Truth
- 3.2 Average Dynamic Recall
- 3.3 MIREX 2005
- 3.4 Urbano MelodyShape
- 4. Bibliographie

Urbano MelodyShap

"MelodyShape at MIREX 2014 Symbolic Melodic Similarity" [10] von Julian Urbano

Urbano MelodyShape

- Töne werden als Punkt auf Pitch-Time plane dargestellt.
- Darstellung als Funktion durch Interpolation mithile von Splines.

Urbano MelodyShape

Needlemann - Wunsch Algorithmus

$$D = \begin{pmatrix} - & A & G & T & C \\ - & 0 & -1 & -2 & -3 & -4 \\ A & -1 & 0 & 0 & 0 & 0 \\ C & -2 & 0 & 0 & 0 & 0 \\ G & -3 & 0 & 0 & 0 & 0 \\ T & -4 & 0 & 0 & 0 & 0 \\ C & -5 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad D = \begin{pmatrix} 0 & -1 & -2 & -3 & -4 \\ -1 & 1 & 0 & -1 & -2 \\ -2 & 0 & 0 & -1 & 0 \\ -3 & -1 & 1 & 0 & -1 \\ -4 & -2 & 0 & 2 & 1 \\ -5 & -3 & -1 & 1 & 3 \end{pmatrix}$$

$$D = \begin{pmatrix} 0 & -1 & -2 & -3 & -4 \\ -1 & 1 & 0 & -1 & -2 \\ -2 & 0 & 0 & -1 & 0 \\ -3 & -1 & 1 & 0 & -1 \\ -4 & -2 & 0 & 2 & 1 \\ -5 & -3 & -1 & 1 & 3 \end{pmatrix}$$

ShapeH

Insertion : s(-, n) = -(1 - f(n))

Deletion:

$$s(n,-)=-(1-f(n))$$

Match: s(n,n)=1-f(n)

└ Urbano MelodyShape

Time

- Insertion : $s(-, n) = -diff_p(n, \Theta(n)) \lambda k_t * diff_t(n, \Theta(n))$
- Deletion: $s(n, -) = -diff_n(n, \Theta(n)) \lambda k_t * diff_t(n, \Theta(n))$
- Match: $2\mu_p + 2\lambda k_t \mu_t = 2\mu_p (1 + k_t)$
- Substitution $s(n, m) = -diff_p(n, m) \lambda k_t * diff_t(n, m)$

Bibliographie I

- [1] Duden: Melodie: Rechtschreibung, Bedeutung, Definition, Herkunft https://www.duden.de/rechtschreibung/Melodie.
- [2] Duden: Harmonie: Rechtschreibung, Bedeutung, Definition, Herkunft https://www.duden.de/rechtschreibung/Harmonie.
- [3] "Notenschlüssel." Wikipedia, Wikimedia Foundation, 11 Dec. 2019, de.wikipedia.org/wiki/Notenschlüssel.
- [4] MIREX,Symbolic Melodic Similarity 2005,https://www.music-ir.org/mirex/wiki/2005:Symbolic_Melodic.
- [5] MIREX,Symbolic Melodic Similarity Results 2007, https://www.musicir.org/mirex/wiki/2007:Symbolic_Melodic_Similarity_Results.

Bibliographie II

- [6] Typke, Rainer. (2007). Music Retrieval based on Melodic Similarity.
- [7] Orio, N., and A. Rodá. 2009. "A Measure of Melodic Similarity Based on a Graph Representation of the Music Structure." In Proceedings of the International Conference for Music Information Retrieval, pp. 543–548.
- [8] Greg Aloupis, Thomas Fevens, Stefan Langerman, Tomomi Matsui, Antonio Mesa, Yurai Nunez, David Rappaport, and Godfried Toussaint, "Algorithms for Computing Geometric Measures of Melodic Similarity" Computer Music Journal, Vol.30, No. 3 (Autumn, 2006), pp. 67-76

Bibliographie III

- [9] Tonal Degrees [Online]. [Accessed 30 Jan 2020]. Available from : http://www.piano-play-it.com/musical-scales.html
- [10] J. Urbano. MelodyShape at MIREX 2014 Symbolic Melodic Similarity. Technical report, Music Information Retrieval Evaluation eXchange, 2014
- [11] Grachten, Maarten & Arcos, Josep Lluís & Mántaras, Ramon. (2020). Melody Retrieval using the Implication/Realization Model.
- [12] Orio, Nicola. "Combining Multilevel and Multifeature Representation to Compute Melodic Similarity." (2005).