Network Security

Daniel Zappala

CS 360 Internet Programming Brigham Young University

Network Security

Attacks

- intruder can overhear, modify, insert, or delete messages
- packet sniffing
 - overhear packets sent on the link
 - particularly useful on wireless links
- IP spoofing
 - nothing prevents a host from sending a packet with any IP address
- man-in-the-middle
 - insert a malicious node into the conversation between two hosts
 - can sniff, inject, modify, or delete packets

Denial of Service

- denial of service attack: render a computer unusable by legitimate users
 - vulnerability attack: send crafted messages to stop a service or crash a host
 - bandwidth flooding: send so many packets that the network at a server gets clogged
 - connection flooding: establish a large number of TCP connections at a server
- DDoS: distributed DoS, much harder to detect and defend against

Critical Infrastructure is Vulnerable

- DNS: bandwidth flooding attack
 - flood the DNS root servers with pings
 - carried out Oct 21, 2002 using a botnet
 - many root servers screened out the traffic
 - caching eliminates much of the danger
- other possible DNS attacks
 - flood TLD servers with gueries
 - send bogus DNS replies
 - DNS poisoning: send bogus replies to a DNS server
 - send a lot of queries to a server using a spoofed source IP address (reflection attack)

Your Servers are Vulernable

- port scanning: determine which ports are open on a host
- check open ports in case a server with a known security flaw is running
 - e.g. Microsoft SQL Server on port 1434 vulnerable to buffer overflow, exploited by the Slammer worm in 2003-2004
- many port scanners available, e.g. nmap

How Did the Internet Get This way?

- The Design Philosophy of the DARPA Internet Protocols, David Clark, Proceedings of ACM SIGCOMM 1988, pp. 106–114.
 - primary goal: interoperability among existing networks
 - secondary goals: fault tolerance, multiple transport protocols, minimum assumptions about network capabilities
 - additional goals: distributed management, cost effective, low effort for host attachment, accountability
- no mention of security: assumed that network participants were trustworthy

Firewalls and Intrusion Detection

Firewalls

- provide a gateway where traffic is checked before entering or exiting an organization
- only authorized traffic is allowed to pass

Packet Filter

action	source address	dest address	protocol	source port	dest port	flag bit
uciioii	2001CE UUUIE33	uesi uuuless	protocol	source porr	uesi pori	ilug bii
allow	222.22/16	outside of 222.22/16	TCP	> 1023	80	any
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK
allow	222.22/16	outside of 222.22/16	UDP	> 1023	53	-
allow	outside of 222.22/16	222.22/16	UDP	53	> 1023	-
deny	all	all	all	all	all	all

- based on source and destination addresses, protocol type, source and destination ports, TCP flags, ICMP message type
- first two rules allow internal users to surf the web
- second two rules allow DNS traffic to enter and leave the network

Stateful Packet Filter

- traditional packet filter: examine each packet individually
- stateful packet filter: track TCP connections
 - ensures that packets allowed by the filter must be part of an active connection
 - prevents an attacker from injecting malformed packets that happen to meet a filter rule

Intrusion Detection Systems

- protect a network from attacks
 - a general Intrusion Detection System examines packet contents for attack signatures and generates appropriate alerts
 - an Intrusion Prevention System will also filter out the suspicious traffic
- can detect network mapping, port scans, TCP stack scans, DoS bandwidth flooding attacks, worms, viruses, OS vulnerability attacks, application vulnerability attacks

IDS Types

signature-based system

- maintains a database of attack signatures, including standard filter fields and strings found in the packet payload
- crafted by people who investigate attacks, after they have been observed on the Internet
- must compare every incoming packet to the list of signatures requires very high-speed processing
- snort: open source, comes with a large signature database that is constantly maintained

anomaly-based system

- observes traffic and examines patterns
- anomalies, such as a burst of ICMP traffic or a large number of incoming or outgoing connections trigger a response
- very challenging to distinguish between normal traffic and unusual traffic

Security Properties

- confidentiality
 - only the sender and receiver should be able to understand the contents of the message
 - may also want more general confidentiality obscure the fact that you are talking with someone and the pattern
- integrity
 - ensure that communication is not altered in transit
- authentication
 - confirm the identity of the other party
- operational security/availability
 - ensure that services are not disrupted

Confidentiality

Confidentiality

- commonly use three characters:
 - Alice and Bob: want to be able to communicate securely with each other
 - Trudy: would like to attack using man-in-the-middle techniques
- use cryptography to achieve confidentiality
 - messages sent over a public channel
 - plaintext: the message Alice wants to share with Bob
 - ciphertext: the encrypted form of the plaintext
 - K_A a key used by Alice to encrypt or decrypt

Cryptography

- symmetric key cryptography
 - Alice and Bob share a secret key
 - encrypt and decrypt messages with the same key
- public key cryptography
 - Alice and Bob each assigned a public key and a private key
 - encrypt a message in the other's public key
 - private key decrypts the message

Symmetric Key Encryption

work Security Firewalls and IDS Confidentiality Integrity Authentication

Block Cipher

- used in PGP, SSL, IPsec
- divide message into blocks of k bits
- map each block of plaintext to ciphertext
 - plaintext: 010110001111
 - ciphertext: 101000111001
- 2^3 possible inputs, 8! = 40,320 permutations
- typically use blocks of 64 bits or larger

input	output	input	output
000	110	100	011
001	111	101	010
010	101	110	000
011	100	111	001

Implementation of a Block Cipher

- keeping a full table of 2⁶⁴ mappings is infeasible
- instead use a function to simulate randomly permuted tables
 - break 64-bit blocks into 8-bit blocks
 - process by an 8-bit table and reassemble
 - scramble the order of the bits
 - loop for n rounds to make each input bit affect most of the output bits

Block Cipher Details

- Advanced Encryption Standard (AES): 128-bit blocks, 128-, 192-, or 256-bit key
 - key length determines table mappings and permutations
- brute-force attacks
 - cycle through all keys: 2^n possible keys for a key length n
 - old DES standard (64-bit blocks, 56-bit key) cracked in 6.4 days using \$10,000 of hardware, March 2007
 - a system that can crack DES in one second would take 149 trillion years to crack AES

Cipher Block Chaining

encrypt a series of blocks

Cipher Block Chaining (CBC) mode encryption

Public Key Cryptography

Public Key Encryption

- symmetric key encryption requires two parties to share a secret
 - must somehow share the secret
 - meet in person, talk on phone
- public-key encryption
 - communicate securely without sharing a private key
 - can also be used for authentication and digital signatures

Example

- 1 Alice fetches Bob's public key, K_B^+
- 2 Alice encrypts and sends her message, $K_B^+(m)$, using a well-known encryption technique
- 3 Bob decrypts with private key, $K_B^-(K_B^+(m))$

Issues

- chosen-plaintext attack
 - choose some text, encrypt with Bob's public key, try to learn the private key
 - must choose keys so that this is hard
- key generation
 - RSA, DSA, Diffie-Hellman
 - security often based on the fact that there are no known algorithms for quickly factoring a number n into two primes
- expensive
 - relatively expensive compared to symmetric key encryption (several orders of magnitude slower)
 - generally use public key encryption to exchange a symmetric key

Integrity

Cryptographic Hash Function

- takes an input, m, and computes a fixed-size string (hash)
- hash function chosen so that it is computationally infeasible to:
 - reverse the hash and recreate the original message
 - find two messages that hash to the same value

Example

SHA224("The quick brown fox jumps over the lazy dog") 0x 730e109bd7a8a32b1cb9d9a09aa2325d2430587ddbc0c38bad911525 SHA224("The quick brown fox jumps over the lazy dog.") 0x 619cba8e8e05826e9b8c519c0a5c68f4fb653e8a3d8aa04bb2c8cd4c

Choosing a Hash Function

- MD5: 128 bit hash, security is severely compromised Wikipedia
- SHA-1: 160-bit hash, more secure but recently discovered weakness
 - most efficient attack in 2012 cost 2.77M to break a single hash value
- SHA-2: 224, 256, 384, or 512 bits
 - similar to SHA-1 but attacks not yet extended to SHA-2
- SHA-3: 224, 256, 384, or 512 bits
 - · completely different algorithm
 - in the process of being standardized by NIST
 - ▶ Wikipedia

Data Integrity

- easy to provide data integrity without authentication
 - 1 Alice creates hash H(m)
 - 2 Alice sends (m, H(m)) to Bob
 - 3 Bob receives (m, h) and checks if H(m) = h
- Bob can't be sure the message came from Alice
- useful anyway
 - checking that you downloaded an unmodified version of a file
 - assumes that the MD5 hasn't been modified

Data Integrity and Authentication

- Alice and Bob share a secret, the authentication key
 - **1** Alice calculates H(s + H(s + m)), the message authentication code
 - 2 Alice sends Bob (*m*, *HMAC*)
 - 3 Bob receives (m, HMAC) and checks if HMAC = H(s + H(s + m))
- anyone who shares the key can generate an authenticated message

Key:

s = Shared secret

Security Firewalls and IDS Confidentiality Integrity Authentication PKI Ap

Digital Signatures

 want to be able to verify the owner or creator of a document, or signify agreement with the document's content

- properties
 - verifiability: can prove it was signed by a person
 - non-repudiation: can prove that only that person could have signed it
 - integrity: signature fails if document modified

•
$$K_B^+(K_B^-(m)) = m$$

Simplifying Computation

 typically sign a hash of the message instead of the full message (more efficient)

Verifying a Signature

Authentication

Authentication

- prove your identity to someone over the network
 - message authentication verifies only that the message came from a particular person
 - subject to a replay attack
- authenticate first, then exchange messages
- Alice asks Bob to encrypt a message in his private key
 - if it decrypts properly, Alice knows she must be talking to Bob
 - Alice must be sure she really has Bob's public key

Public Key Exchange

 must be sure to get the public key associated with a given person or organization

Public Key Infrastructure

- typically performed by a Certificate Authority (CA)
 - verifies that an entity (person, computer) is who it says it is verification procedure is left to the CA
 - creates a certificate that contains the public key and a unique identifier for the entity (e.g. email address, IP address)
 - signs the certificate
- distribute public key of CAs in browser or operating system

Applications

PGP

PGP: Secure Email

- goals
 - confidentiality
 - message integrity
 - sender authentication
 - receiver authentication

Email Confidentiality

Alice sends e-mail message m

Bob receives e-mail message m

- Alice
 - encrypts message with a symmetric key
 - encrypts session key with Bob's public key
 - sends Bob the encrypted message and session key
- Bob
 - decrypts session key using private key
 - uses session key to decrypt message

Email Integrity and Sender Authentication

Alice sends e-mail message m

Bob receives e-mail message m

- Alice
 - creates a message digest with a hash function
 - signs the digest with her private key
 - sends unencrypted message and digest to Bob
- Bob
 - checks digest using Alice's public key, hash of message
 - reads the message

Confidentiality, Integrity, Sender Authentication

- Alice sends signed digest and message, encrypted with shared symmetric key, plus shared key encrypted in Bob's public key
- Bob reverses the process

PGP

- design is basically the same as previous figure
- can use different hash functions, encryption algorithms
- simplifies creation of public and private key pairs, signed by a web of trust

```
----BEGIN PGP SIGNED MESSAGE----
Hash:
       SHA1
Bob:
Can I see you tonight?
Passionately yours, Alice
----BEGIN PGP SIGNATURE----
Version: PGP for Personal Privacy 5.0
Charset: noconv
yhHJRHhGJGhgg/12EpJ+lo8gE4vB3mqJhFEvZP9t6n7G6m5Gw2
----END PGP SIGNATURE----
----BEGIN PGP MESSAGE----
Version: PGP for Personal Privacy 5.0
u2R4d+/jKmn8Bc5+hgDsqAewsDfrGdszX68liKm5F6Gc4sDfcXyt
RfdS10juHgbcfDssWe7/K=lKhnMikLo0+1/BvcX4t==Ujk9PbcD4
Thdf2awQfqHbnmKlok8iy6qThlp
----END PGP MESSAGE
```

TLS

TLS

- provides confidentiality, data integrity, authentication for TCP connections
 - used to secure nearly all e-commerce sites, signified by https
- goals
 - confidentiality protect credit card information, order privacy
 - data integrity ensure order is not modified
 - server authentication ensure user is shopping at the right site
- provides an interface between the application and TCP

TLS Basics

- establish connection, get signed public key from Alice, then send Alice a master secret
- use master secret to generate
 - *E_B*: encryption key for data from Bob to Alice
 - M_B: MAC key for data from Bob to Alice
 - E_A : encryption key for data from Alice to Bob
 - M_A : MAC key for data from Alice to Bob