МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (МОСКОВСКИЙ ПОЛИТЕХ)

Факультет информационных технологий Кафедра «Инфокогнитивные технологии»

ОТЧЕТ ПО ПРАКТИКЕ №2.2

Вариант №4

Направление подготовки 09.03.03 «Прикладная информатика» Профиль «Корпоративные информационные системы» Дисциплина «Дискретная математика»

Выполнил:

студентка группы 201-361

Саблина Анна Викторовна

Проверил:

Муханов Сергей Александрович

```
32 Janue 8
   Для функции, заданной в венторном вире, постройте
  полином ниегальных тремя разнени способани (метором
   неопределённых когр., преобразованием САНР, с исполь-
  30Banuem Tregronamura): fa 10110000
- Метор неопререненных козорорициентов
   X, X2 X3 f(x, x2, x5)
                     f(x1, x2, x3) = a0+a1x1+a2xs+a5x5+a2x1x2+a15x1x3+a63 x2x5+
   000
   001
                     f(6,0,0) = a0 = 1
   010
                     f(0,0,1) = a0+a5 = 0 => 1+as=0 => as=1
   011
                     f(0,1,0)=a0+a2=1=7 a2=0
   100
                     f(0,1,1)=00+02+03+023=1=7 a23=1
   101
                     f(1.0,0) = a0+a= 0 => a=1
   1 1 0
                     f(1,01) = a0+a1+a3+a13 = 0 mais = 1
              0
                     f(1,1,0)= ao+a+ a2+a2 = 0 => a1220
                     f(1,1,1)= a0+ a+ a2+ a3+ a12+ a13+ a23+ a123 = 0 =7
                            =71+1+0+1+0+1+1+0123=0=7
                            a123 = 1
  f (x1, x2, x3) = 1 + x1+ x5 + x1x5 + x2x3 + x1x2x3
-> METGE TREGTONEHURD NOCKONA
  X1 K2 K3 F(X1, K2, K3)
                    TPEYPONGRUE Mackage Charachers
  0 0 0
                   [1]0110000
                                              1
  001
              0
                    [1]101000
                                              X3
                       011100
                                              X2
  011
                      [170010
                                             X2X3
             0
                       (17011
                                             Kı
  101
             0
                         [1]10
                                             K, K3
   110
             0
                            0 1
                                             KI X2
             0
                            [1]
                                         V XXXXXX
  f(x1, x2, X3) = 1 + X3 + X2 X3 + K1 + X1 X3 + X1 X2 X3
```

																			3 <u>a</u>	The second second		
_	-	-	-	χι, χ2,	(x3)	f	KIX	2, X5) =	= K1	K2X	(3 V	KIK	xz.	/ KIX	6x3	2			ANA	59	IN EBI	00
0	0	0		1				1) (K2												UKOA		
0	0	1		0		- 1		+1)x														
0	1	0		7				2+ X									X2)+		x' 2'	v (x'	401	KI
0	7	1		7				X2X3												(y+		
1	0	0		0													1×2×3			+ x		
1	0	1		0																		
1	1	0		0													. 1					
1	1	1		0																		
																					-	
						-																- Andrew
																						- Andrews
		. !																				
																			3.0	anu	e 11	7
																			C	a n		ŕ
																			Aok	24,6		
																			_	+ K+		
																			~ 4-		τ,	-
																			f(x.	. 2) _ x	, ,
																		- 22	+ 4			
																			-	+2)		-
								177													1 5 5 5 1	7
		7																		72 +		
																		-	the property of the second			
																		-		-		-
																			+	and the same		was a proper
										H		17							+	-	1	Married Street
																		-	+		-	to division
																			+			
																		1	EX	454	X +	The Post
																				-		-
										THE PERSON NAMED IN	-									LL		

```
Basnue 9
 Аля бульвой функции найвить превозванищий ЕЕ
  nonunom tuesankung: x'z'v(x'y v xy')z
  x'z' v (x'y v xy')2 = x'z' v x'yz v xy'z = (x+1)(2+1) + (x+1)42+
  + x (y+1) = = (x2+x+2+1)+ (xy2+y2)+ (xy2+x2) =
  = 1 + X + Z + YZ
  Basanue 10
 Доканите, что одна из функций двойственна другой:
  xy2+x+1, xy2+xy+x2+y2+y+2
 f(x,4,2) = x48+x4+x2+45+4+5 = fx=(x45+x4+x4+x5+45+
  + 4+2') = (x+1)(4+1)(2+1)+ (x+1)(4+1)+(x+1)(2+1)+
  + (4+1)(2+1)+ (4+1)+ (2+1)+12
  z xy2 + xy + x2 + x + y2 + y + 2 + 1 +
        XY + X +
                       y+ 1+
              XZ + X +
                           2+1+
                  yz+y+ 2+ 1+
                        4 +
                            2+1+
                               1 . 2
1 = xy2+x+1, 4, T. a.
```

2 X3