Part 1 In this part, you are asked to work with the Markov Chain Monte Carlo algorithm, in particular the Metropolis-Hastings algorithm. The aim is to simulate random numbers for the distribution with probability density function given below

$$f(x) = \frac{1}{2} \exp\left(-|x|\right),\,$$

where x takes values in the real line and |x| denotes the absolute value of x. More specifically, you are asked to generate x_0, x_1, \ldots, x_N values and store them using the following version of the Metropolis-Hastings algorithm (also known as random walk Metropolis) that consists of the steps below:

Random walk Metropolis

Step 1 Set up an initial value x_0 as well as a positive integer N and a positive real number s. Step 2 Repeat the following procedure for $i=1,\ldots,N$:

- Simulate a random number x_* from the Normal distribution with mean x_{i-1} and standard deviation s.
- · Compute the ratio

$$r(x_*, x_{i-1}) = \frac{f(x_*)}{f(x_{i-1})}.$$

- Generate a random number u from the uniform distribution between 0 and 1.
- If $u < r(x_*, x_{i-1})$, set $x_i = x_*$, else set $x_i = x_{i-1}$.
- (a) Apply the random walk Metropolis algorithm using N=10000 and s=1. Use the generated samples $(x_1,\ldots x_N)$ to construct a histogram and a kernel density plot in the same figure. Note that these provide estimates of f(x). Overlay a graph of f(x) on this figure to visualise the quality of these estimates. Also, report the sample mean and standard deviation of the generated samples (Note: these are also known as the Monte Carlo estimates of the mean and standard deviation respectively).

Practical tip: To avoid numerical errors, it is better to use the equivalent criterion $\log u < \log r(x_*, x_{i-1}) = \log f(x_*) - \log f(x_{i-1})$ instead of $u < r(x_*, x_{i-1})$.

- (b) The operations in part 1(a) are based on the assumption that the algorithm has converged. One of the most widely used convergence diagnostics is the so-called \widehat{R} value. In order to obtain a valued of this diagnostic, you need to apply the procedure below:
 - Generate more than one sequence of x_0,\ldots,x_N , potentially using different initial values x_0 . Denote each of these sequences, also known as chains, by $(x_0^{(j)},x_1^{(j)},\ldots,x_N^{(j)})$ for $j=1,2,\ldots,J$.
 - Define and compute M_i as the sample mean of chain j as

$$M_j = \frac{1}{N} \sum_{i=1}^{N} x_i^{(j)}.$$

and V_j as the within sample variance of chain j as

$$V_j = \frac{1}{N} \sum_{i=1}^{N} (x_i^{(j)} - M_j)^2.$$

ullet Define and compute the overall within sample variance W as

$$W = \frac{1}{J} \sum_{j=1}^{J} V_j$$

• Define and compute the overall sample mean M as

$$M = \frac{1}{J} \sum_{j=1}^{J} M_j,$$

and the between sample variance \boldsymbol{B} as

$$B = \frac{1}{J} \sum_{j=1}^{J} (M_j - M)^2$$

• Compute the \widehat{R} value as

$$\widehat{R} = \sqrt{\frac{B + W}{W}}$$

In general, values of \widehat{R} close to 1 indicate convergence, and it is usually desired for \widehat{R} to be lower than 1.05. Calculate the \widehat{R} for the random walk Metropolis algorithm with N=2000, s=0.001 and J=4. Keeping N and J fixed, provide a plot of the values of \widehat{R} over a grid of s values in the interval between s=0.001 and s=0.001.