1

projectmaths

15

5

Logarithmic and Exponential Functions

- 16 5 What is the derivative of $\ln(\cos x)$?
 - (A) $-\sec x$
- (B) $-\tan x$
- (C) $\sec x$
- (D) tan x
- 1

2

- 16 Which expression is equivalent to $4 + \log_2 x$? 10
 - (A) $\log_2(2x)$

(ii)

- (B) $\log_2 (16 + x)$
- (C) $4\log_2(2x)$
- (D) $\log_2(16x)$
- Differentiate $y = xe^{3x}$. 16 12 (i) d
 - Hence find the exact value of $\int_{2}^{2} e^{3x} (3 + 9x) dx$.

Using the trapezoidal rule with 4 subintervals, which expression gives the

Solution 1

Solution

Solution

- Write $\log 2 + \log 4 + \log 8 + ... + \log 512$ in the form of $a \log b$ where a and b are 16
- **Solution**
- е integers greater than 1.
- **Solution**

- approximate area under the curve $y = xe^x$ between x = 1 and x = 3?
- (A) $\frac{1}{4}$ (e¹+6e^{1.5}+4e²+10e^{2.5}+3e³) (B) $\frac{1}{4}$ (e¹+3e^{1.5}+4e²+5e^{2.5}+3e³)
- (C) $\frac{1}{2}(e^1+6e^{1.5}+4e^2+10e^{2.5}+3e^3)$ (D) $\frac{1}{2}(e^1+3e^{1.5}+4e^2+5e^{2.5}+3e^3)$
- The diagram shows the graph of $y = e^x(1 + x)$. 15 8

Solution

1

How many solutions are there to the equation $e^{x}(1+x)=1-x^{2}$?

- (A) 0
- (B) 1
- (C) 2
- (D) 3

15 The diagram shows the area under the curve

$$y = \frac{2}{x}$$
 from $x = 1$ to $x = d$. What value of d makes the shaded area equal to 2?

- (A) e
- (B) e + 1
- (C) 2e
- (D) e^{3}

Differentiate $(e^x + x)^5$. 15 11

Solution 2

Differentiate $y = (x + 4) \ln x$. 11 15 f

Solution 2

11 15

Solution

Find $\int \frac{x}{x^2-3} dx$.

Solution

- A bowl is formed by rotating the curve $y = 8 \log_e(x 1)$ 15
 - about the y-axis for $0 \le y \le 6$.

Find the volume of the bowl. Give your answer correct to 1 decimal place.

Not to scale

- 14 What is the solution to the equation $log_2(x - 1) = 8$? 1 **Solution** (B) 17 (D) 257 (A) 4(C) 65
- 14 Which expression is equal to $\int e^{2x} dx$?

Solution 1

- (A) $e^{2x} + c$

- (B) $2e^{2x} + c$ (C) $\frac{e^{2x}}{2} + c$ (D) $\frac{e^{2x+1}}{2x+1} + c$
- 14 Find the coordinates of the stationary point on the graph $y = e^x - ex$ and determine its nature. а

Solution 3

Solution

- The line y = mx is a tangent to the curve $y = e^{2x}$ at a point P. 14 **15**
 - Sketch the line and the curve on one diagram. C

1 3

Find the coordinates of P. (ii) Find the value of m. (iii)

1

13 What is the solution of $5^x = 4$? 1 Solution

- (A) $x = \frac{\log_e 4}{5}$ (B) $x = \frac{4}{\log_e 5}$ (C) $x = \frac{\log_e 4}{\log_e 5}$ (D) $x = \log_e \left(\frac{4}{5}\right)$
- Evaluate In 3 correct to three significant figures. 13

Solution 1

13 Differentiate x^2e^x . 11 d

Solution 2

13 11 Find $\int e^{4x+1} dx$.

Solution 2

13 11 Evaluate $\int_{0}^{1} \frac{x^2}{x^3 + 1} dx$.

Solution 3

Let $a = e^x$. 12

d

Solution

- (A) e^{2x}
- (B) e^{x^2}

Which expression is equal to $\log_e(a^2)$?

- (C) 2x
- (D) x^2

Differentiate $(3 + e^{2x})^5$. 12 11

Solution 2

12 12 Differentiate with respect to *x*: **Solution**

(i)

12

b

Find
$$\int \frac{4x}{x^2 + 6} dx$$
.

Solution

11 Differentiate ln(5x + 2) with respect to x.

Solution

11 2d Find the derivative of $y = x^2 e^x$ with respect to x. **Solution**

Evaluate $\int_{0}^{e^3} \frac{5}{x} dx$. 11 4b

Solution

2

10 Find the gradient of the tangent to the curve $y = \ln(3x)$ at the point where x = 2.

Solution

10 2d Find $\int \frac{x}{4+x^2} dx$. (ii)

Solution 2

Sketch the curve $y = \ln x$. 10 3b (i)

Solution

Use the trapezoidal rule with three function values to find an (ii) approximation to $\int \ln x \, dx$.

1 2

(iii) State whether the approximation found in (ii) is greater than or less than the 1 exact value of $\int \ln x \, dx$. Justify your answer.

10 4b

The curves $y = e^{2x}$ and $y = e^{-x}$ intersect at the point (0, 1) as shown in the diagram.

Solution 3

Find the exact area enclosed by the curves and the line x = 2.

10

Let $f(x) = 1 + e^x$. Show that $f(x) \times f(-x) = f(x) + f(-x)$.

Solution

2

Solution

10

The diagram shows the curve $y = \frac{1}{x}$,

for x > 0.

The area under the curve between x = a and x = 1 is A_1 . The area under the curve between x = 1 and x = b is A_2 . The area A_1 and A_2 are each equal to 1 square unit.

Find the values of a and b.

09 Solve the equation $\ln x = 2$. Give your answer correct to four decimal places.

Solution 2

Differentiate with respect to x: (ii) $(e^x + 1)^2$. 09 2a

Solution 2

08 2a Differentiate with respect to x: $x^2 \log_e x$

Solution 2

2c 08

Solution

Solve $\log_e x - \frac{3}{\log_e x} = 2$. 08 7a

Solution

Solution

08 10 In the diagram, the shaded region is bounded by $y = \log_e(x - 2)$,

the x-axis and the line x = 7. Find the exact value of the area of

the shaded region.

07

(i)

Differentiate with respect to x: $\frac{2x}{e^x + 1}$.

Solution 2

Solve the following equation for x: $2e^{2x} - e^x = 0$. 07 6a

Solution

Evaluate $e^{-0.5}$ correct to three decimal places. 06 1a

Solution

06 2b Find $\int 1 + e^{7x} dx$

Solution

Evaluate $\int_{0}^{3} \frac{8x}{1+x^2} dx$.

3

2

06 Use Simpson's rule with three function values to find an approximation to the value **Solution**

of $\int (\log_e x)^3 dx$. Give your answer correct to three decimal places.

05 **2c**

 $\frac{1}{\text{Find } \int \frac{6x^2}{x^3 + 1} dx}$ (i)

Solution 2

	Mathematics Higher School Certificate Examinations by Topics compiled by projectmaths.com.au		page 5	
05	2d	Find the equation of the tangent to $y = \log_e x$ at the point $(e, 1)$.	2	Solution
05	5a	Use the change of base formula to evaluate log ₃ 7, correct to two decimal places.	2	Solution
05	5c	Find the coordinates of the point P on the curve $y = 2e^x + 3x$ at which the tangent to the curve is parallel to the line $y = 5x - 3$.	3	Solution