Mathematics Homework Sheet 2

Authors: Abdullah Oguz Topcuoglu & Ahmed Waleed Ahmed Badawy Shora

Problem 1

(a)

 Z_5 :

\oplus	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3
\times	0	1	2	3	4
× 0	0	1 0	0	3	0
0	0	0	0	0	0
0	0	0	0 2	0 3	0 4
0 1 2	0 0 0	0 1 2	0 2 4	0 3 1	0 4 3

 Z_7 :

\oplus	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5
×	0	1	2	3	4	5	6
× 0	0	1	2	3	0	5	6
0							
0	0	0	0	0	0	0	0
0 1 2 3	0	0	0 2	0	0 4	0 5	0 6
0 1 2	0 0 0	0 1 2	0 2 4	0 3 6	0 4 1	0 5 3	0 6 5
0 1 2 3 4 5	0 0 0 0	0 1 2 3	0 2 4 6	0 3 6 2	0 4 1 5	0 5 3 1	0 6 5 4
0 1 2 3 4	0 0 0 0 0	0 1 2 3 4	0 2 4 6 1	0 3 6 2 5	0 4 1 5 2	0 5 3 1 6	0 6 5 4 3

(b)

 Z_4 :

 (Z_4, \oplus, \times) is not a field because [2] does not have a multiplicative inverse.

Problem 2

(a)

Let $f: Z_n \to Z_n$ be:

$$f([i]) = [i] + [m], \qquad [m] \in Z_n$$

We want to show that f is a bijection.

• Injective: Suppose $f([i_1]) = f([i_2])$:

$$[i_1] + [m] = [i_2] + [m]$$

Thus,

$$[i_1] = [i_2]$$

Thus, f is injective.

• Surjective: Let $[j] \in \mathbb{Z}_n$. We want to show that there exists an [x] such that f([x]) = [j]:

$$f([j-m]) = [j-m] + [m] = [j]$$

Thus, f is surjective.

Thus, f is a bijection.

(b)

 $[i] \rightarrow [i] + [1]$: (01234567)

 $[i] \rightarrow [i] + [2]$: (0246)(1357) $[i] \rightarrow [i] + [3]$: (03614725)

 $[i] \rightarrow [i] + [4]$: (04)(15)(26)(37)

Problem 3

(a)

Let $f: \mathbb{Z}_p \setminus \{[0]\} \to \mathbb{Z}_p \setminus \{[0]\}$ be:

$$f([i]) = [m].[i], \qquad [m] \in \mathbb{Z}_p \setminus \{[0]\}$$

We want to show that f is a bijection.

• Injective: Suppose $f([i_1]) = f([i_2])$:

$$[m].[i_1] = [m].[i_2]$$

Thus,

$$[i_1] = [i_2]$$

Thus, f is injective.

• Surjective: Let $[j] \in \mathbb{Z}_p \setminus \{[0]\}$. We want to show that there exists an [x] such that f([x]) = [j]:

$$f([j.m^{-1}]) = [j.m^{-1}].[m] = [j]$$

Thus, f is surjective.

Thus, f is a bijection.

(b)

 $[i] \rightarrow [6].[i]: (0)(16)(25)(34)$ $[i] \rightarrow [2].[i]: (0)(124)(365)$

Problem 4

Let I be an arbitrary interval. We will show that I and \mathbb{R} have the same cardinality by constructing a bijection between them.

Problem 5

(a)

Let $(p,n), (q,m) \in N_0 \times N_0$. We want to show that \sim is an equivalence relation on $N_0 \times N_0$:

• **Reflexive:** We want to show that $(p, n) \sim (p, n)$:

$$p+n=p+n$$

Thus, \sim is reflexive.

• **Symmetric:** We want to show that if $(p,n) \sim (q,m)$, then $(q,m) \sim (p,n)$:

$$p + m = q + n$$

Thus,

$$q + n = p + m$$

Thus, \sim is symmetric.

• **Transitive:** We want to show that if $(p,n) \sim (q,m)$ and $(q,m) \sim (r,s)$, then $(p,n) \sim (r,s)$:

$$p + m = q + n$$

and

$$q + s = r + m$$

Thus,

$$p + s = r + n$$

Thus, \sim is transitive.

Thus, \sim is an equivalence relation on $N_0 \times N_0$.

(b)

Let $k \in N_0$. We want to show that $(p, n) \sim (k + p, k + n)$:

$$p + (k+n) = (k+p) + n$$

Thus, $(p, n) \sim (k + p, k + n)$.

(c)

Let [(k,0)] be the equivalence class of (k,0). We want to find an equivalence class -[(k,0)] such that

$$-[(k,0)] + [(k,0)] = [(0,0)]$$

Define -[(k,0)] as [(0,k)]. Then,

$$[(0,k)] + [(k,0)] = [(0+k,k+0)] = [(k,k)] = [(0,0)]$$

Thus, we have

$$-[(k,0)] + [(k,0)] = [(0,0)]$$

Thus, -[(k,0)] is the equivalence class with the property that -[(k,0)]+[(k,0)] = [(0,0)].