9. (实验 5) (exercise9.m)

(1) 模型如下:

x(k)表示年龄为 k 的种群数量

$$x_1 = \sum_{k=1}^{n} b_k x_k$$

$$s_k x_k - x_{k+1} = h_k \quad (k = 2, 3, \dots n - 1)$$

$$A = \begin{pmatrix} (b_1 - 1) & b_2 & \cdots & b_{n-1} & b_n \\ s1 & -1 & 0 & 0 \\ \vdots & s2 & \ddots & 0 & \vdots \\ 0 & 0 & & -1 & 0 \\ 0 & 0 & \cdots & s_{n-1} & -1 \end{pmatrix}$$
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
$$b = \begin{pmatrix} 0 \\ h_1 \\ \vdots \\ h_{n-1} \end{pmatrix}$$

(2) exercise9.m 文件, 解得:

$$x = \begin{pmatrix} 8481 \\ 2892 \\ 1335 \\ 601 \\ 141 \end{pmatrix}$$

(3)

解得:

$$x = \begin{pmatrix} 10981 \\ 3892 \\ 1835 \\ 601 \\ -259 \end{pmatrix}$$

不符合实际情况

经分析实验,增大 s3, s4 才能达到目标

比如 s3=s4=0.8 时, 结果为

$$x = \begin{pmatrix} 9562 \\ 3325 \\ 1495 \\ 696 \\ 57 \end{pmatrix}$$

6. (实验 6) (exercise6.m azeofun.m)

(1) 实现思路

根据课件中的 azeofunc.m 函数和 fsolve 函数求解非线性方程组

为了尽可能得到所有的解,初始条件分为四类(四种组分、三种组分、两种组分、一种组分),共 15 种情况

(2)实验结果分析:

实验结果如下表:

初值	解				
X0	X1/ 1.0e-	X2	X3	X4	Т
	08				
[0.25,0.25,0.25,72]	0.0342	0.5858	0.4142	-0.0000	71.9657
[1/3,0,1/3,72]	0.0000	-0.0000	1.0000	-0.0000	82.5567
[1/3,1/3,0,72]	-0.0000	0.8029	-0.1136	0.3106	77.6948
[1/3,1/3,1/3,72]	-0.0050	0.5858	0.4142	-0.0000	71.9656
[0,1/3,1/3,72]	-0.0001	0.5858	0.4142	-0.0000	71.9657
[1/2,0,0,72]	-0.4148	0.5858	0.4142	-0.0000	71.9657
[0,1/2,0,72]	-0.0003	0.5858	0.4142	0.0000	71.9657
[1/2,1/2,0,72]	-0.0002	0.7803	0.0000	0.2197	76.9613
[1/2,0,1/2,72]	-0.0000	0.0000	1.0000	-0.0000	82.5567
[0,1/2,1/2,72]	0	0.5858	0.4142	0.0000	71.9657
[0,0,1/2,72]	0.0000	0.0000	1.0000	-0.0000	82.5567
[0,1,0,72]	0.0371	0.7803	0.0000	0.2197	76.9613
[0,0,1,72]	-0.0000	0.0000	1.0000	-0.0000	82.5567
[0,0,0,72]	0.0000	-0.0000	1.0000	-0.0000	82.5567
[1,0,0,72]	-0.0000	0.5858	0.4142	-0.0000	71.9657

去除非法结果(结果小于零)后,有两个结果(黑体),分别为

X1/ 1.0e-08	X2	X3	X4	Т
0	0.5858	0.4142	0.0000	71.9657
0.0371	0.7803	0.0000	0.2197	76.9613

- 8. (实验 6) (exercise8.m iter.m chaos.m)
- (1) 实验思路

经过多次实验,确定c的范围[-1.5,-0.7],步长为0.005 迭代序列长度为160,画图时前80个点被舍弃

(2) 实验结果

(在计算分叉点时将步长设置为 0.001)

第一个分叉点: -1.079 第二个分叉点: -0.948 第三个分叉点: -0.907 第四个分叉点: -0.898

$$\frac{b_2 - b_1}{b_3 - b_2} = 3.20$$

$$\frac{b_3 - b_2}{b_4 - b_3} = 4.56$$

可以看出分叉点的极限趋势符合费根鲍姆常数揭示的规律