Kapitel 1 - Das einfache lineare Regressionsmodell

Einfaches lineares Regressionsmodell

Das einfache lineare Regressionsmodell hat die Form

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, \dots, n$$

für ein festes numerisches x_i und $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$. Beachte, dass per Definition gilt $Y_i | x_i \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$

Kleinste Quadrate (KQ) Schätzer

Wir schätzen die Parameter (β_0,β_1) durch

$$(\hat{\beta}_0, \hat{\beta}_1) = \underset{(\beta_0, \beta_1)}{\operatorname{arg min}} \sum_{i=1}^n (Y_i - (\beta_0 + \beta_1 x_i))^2$$

und nennen $(\hat{\beta}_0, \hat{\beta}_1)$ den KQ-Schätzer von (β_0, β_1) und $\hat{\varepsilon}_i := Y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$ die Residuen.

Existenz und Berechnung vom KQ Schätzer

Der KQ-Schätzer existiert und ist eindeutig, falls $\sum_{i=1}^{n} (x_i - \overline{x})^2 \neq 0$. Dieser lässt sich berechnen als

$$\hat{\beta}_1 = \frac{s_{xY}}{S_x^2} = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})(Y_i - \overline{Y})}{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2}$$

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{x}$$

$\ddot{\mathbf{U}}\mathbf{berschrift}$