

Data Models and Mathematical Foundations

Pooja T S

Computer Applications

Data Models and Mathematical Foundations

Relational vs Non-relational Models

Pooja T S

Computer Applications

PES

Relational vs Non-relational Models

Figure: Understanding two major database paradigms

PES

Data Models

- A data model is a way of organizing and structuring data
- Determines how data is stored, accessed, and managed
- Two broad categories:
 - Relational (SQL)
 - Non-relational (NoSQL)
- ► A Database model defines the logical design and structure of a database

Database and its Applications Relational Model - Overview

- Based on tables (relations) → rows (tuples) & columns (attributes)
- Uses schema with predefined rules.
- Uses SQL (Structured Query Language)
- Focus on relationships between data entities
- Example: Student-Course enrollment database.
- ► Database Systems: PostgreSQL, MySQL.

Database and its Applications Key Features of Relational Model

- Structure: Organized into tables with rows and columns.
- Integrity: Enforces primary keys, foreign keys, and constraints.
- Consistency: ACID compliance (Atomicity, Consistency, Isolation, Durability)
- Querying: Rich SQL operations (joins, subqueries, aggregations).
- Best for transactional systems

Database and its Applications When to Use Relational Models?

- Applications requiring strong consistency.
- Structured data with predefined schema.
- Complex queries and transactions.
- Examples: Banking, ERP systems.

Database and its Applications Advantages of Relational Models

- Structured and well-defined schema.
- Supports complex queries and joins.
- Strong consistency guarantees (ACID).
- Seasoned ecosystem with many tools.

Non-relational Model - Overview

- Not table-based → flexible structures (key-value, document, graph, column)
- Often called NoSQL databases
- Querying via APIs or specific query languages.
- Schema-less or dynamic schema
- Example: MongoDB storing JSON documents

Database and its Applications Key Features of Non-relational Model

- Schema flexibility: Supports documents, key-value pairs, graphs.
- Schema-less: Data structures can vary across records.
- ► Horizontal scalability → handles Big Data
- High availability & performance
- Best for real-time, large-scale, unstructured data or semi-strucured data

Database and its Applications Types of Non-relational Models

- **Key-Value Stores** → Redis, DynamoDB
- **Document Stores** → MongoDB, CouchDB
- **Column-oriented** → Cassandra, HBase
- **Graph Databases** → Neo4i, ArangoDB

Database and its Applications When to Use Non-relational Models?

- Applications needing flexibility and rapid iteration.
- Large-scale, high-velocity data.
- Semi-structured or unstructured data.
- Examples: Social media, IoT, recommendation engines.

Database and its Applications Advantages of Non-relational Models

- Flexible and schema-less.
- High scalability for big data.
- Optimized for distributed environments.
- Faster development cycles.

Database and its Applications Relational vs Non-relational Models

Figure: Tabular (Relational) vs JSON (Non-relational) Data Representation

Relational vs Non-relational Models

Aspect	Relational (SQL)	Non-relational (NoSQL)
Data Structure	Tables with rows	Key-Value, Document,
	and columns	Graph, etc.
Schema	Fixed, predefined	Flexible schema
	schema	
Query Language	SQL	Varies (JSON queries,
		APIs)
Transactions	ACID (Atomicity,	BASE (Basically Available,
	Consistency, Isola-	Soft state, Eventual con-
	tion, Durability)	sistency)
Best Use Case	Banking, ERP sys-	Social Media, IoT, Big Data
	tems	

PES UNIVERSITY

Activity: Database Match-up

- Instructions:
 - You will see a list of applications and database models.
 - Match each application with the correct database type (Relational or Non-relational).
 - Justify your choice in 1-2 sentences.
- Applications List:
 - Banking system
 - Instagram feed
 - E-commerce product catalog
 - ERP/CRM system
 - IoT sensor data stream
 - Social media chat app

Database and its Applications Expected Matches

- ▶ Banking system → Relational (ACID, transactions)
- Instagram feed → Non-relational (flexibility, scalability)
- E-commerce catalog → Non-relational (document store, product metadata)
- ERP/CRM → Relational (structured, schema-based)
- IoT sensor data → Non-relational (high velocity, real-time)
- ► Chat app → Non-relational (scalable, unstructured messages)

Thank You

Pooja T S
Assistant Professor
Department of Computer Applications
poojats@pes.edu

080-26721983 Extn: 233