

moore mic to mealy mic for binary nos. Q- Design residue mod 3 / moore m/c then convert it to mealy MIC. @ def moore nic is a type of DFA where OIP symbol is generated for every ilp symbol. and there is no dead state. 2) $\stackrel{\text{let}}{\Rightarrow}$ $m = (Q \ge d \triangle \lambda q_0)$ is moore m/c. for residue mod 3 for binary numbers. A 000 001 2 1000 90 = 90 Equivalent mealy m/c-(3) $\lambda'(9,0) = \lambda(\delta(9,0))$ $\lambda'(q_0,0) = \lambda(\beta(q_0,0))$ $= \lambda(q_0) = 0$ a /2 0 x(0) 1 x(1) MI= (01 21 01 1/901) Q = 9 90 9, 925 Z'= 40,1} A'= 10,1,24 8'. + λ' as per diagram 90 = 90

Design mealy machine that scans string of o's and is. It string ends with "oo" ole=A "II" then ole is B. otherwise ole is c.

Jefn mealy machine is a type of DFA where for every ill as a type of DFA where

Mealy machine is a type of DFA where for every ill symbol output symbol is generate there is no outp final state. It is a machine $M = (Q, \Xi, \Delta, d, \lambda, q_0)$ $\Delta = output$ althabet Q = set of states. $\Sigma = involut$ althabet

90= Initial state. d: axz→a l: axz→A

 $M = (Q \ \Xi \ \Delta \ \delta \ \lambda \ q_e)$ $Q = \int_0^1 q_0, q_1, q_2, q_3, q_4 \ E = \int_0^1 q_0, q_1, q_2, q_3, q_$

3 Equivalent moore machine - (add states)

Q \2	0	1	λ	(
$\rightarrow 9_0$	[9,0]	[93,c]	1 or 6	$\rightarrow (90/6)$
L9, c)	L92A]	[93, 0]	C	
[92 A]	192 A]	[93 6]	4	G[94B]/B) (92/A)20
[93 c]	[9, 6]	[94 B]	C	1
L94 B)	[9,07	[948]	В	[193 c)/c

Scanned by CamScanner