PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation $\hat{6}$:

C07F 5/06, C08F 10/00

(11) Internationale Veröffentlichungsnummer: WO 99/06414

(43) Internationales Veröffentlichungsdatum:

11. Februar 1999 (11.02.99)

(21) Internationales Aktenzeichen:

PCT/EP98/04628

A1

(22) Internationales Anmeldedatum:

23. Juli 1998 (23.07.98)

(81) Bestimmungsstaaten: BR, CA, CN, JP, KR, NO, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI,

(30) Prioritätsdaten: 197 33 017.7

31. Juli 1997 (31.07.97)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): TARGOR GMBH [DE/DE]; Rheinstrasse 4 G, D-55116 Mainz (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): BOHNEN, Hans [DE/DE]; Danziger Strasse 10, D-65527 Niedernhausen (DE).

(74) Anwalt: ACKERMANN, Joachim; Hoechst Research & Technology Deutschland GmbH & Co. KG, Patent- und Lizenzabteilung, Gebäude K 801, D-65926 Frankfurt am Main (DE).

Veröffentlicht

Mit internationalem Recherchenbericht.

FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Title: COMPOUNDS CONTAINING BORON AND ALUMINIUM

(54) Bezeichnung: BOR UND ALUMINIUM ENTHALTENDE VERBINDUNGEN.

(57) Abstract

The invention relates to a chemical compound of formula (A) which can be used as a catalyst constituent for olefin polymerisation.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft eine chemische Verbindung der Formel (A). Die Verbindung kann als Katalysatorkomponente zur Olefinpolymerisation eingesetzt werden.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neusceland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Beschreibung

BOR UND ALUMINIUM ENTHALTENDE VERBINDUNGEN

Die vorliegende Erfindung betrifft eine chemische Verbindung, die in Kombination mit einem Metallocen ein Katalysatorsystem bilden kann, welches vorteilhaft zur Polymerisation von Olefinen eingesetzt werden kann. Hierbei kann auf die Verwendung von Aluminiumoxan wie Methylaluminiumoxan (MAO) als Cokatalysator verzichtet werden und dennoch hohe Katalysatoraktivität erzielt werden.

10

15

20

25

Die Rolle von kationischen Komplexen bei der Ziegler-Natta-Polymerisation mit Metallocenen ist allgemein anerkannt (H. H. Brintzinger, D. Fischer, R. Mülhaupt, R. Rieger, R. Waymouth, Angew. Chem. 1995, 107, 1255 - 1283).

MAO als bislang wirksamster Co-Katalysator hat den Nachteil in hohem Überschuß eingesetzt zu werden, was zu einem hohen Aluminiumanteil im Polymer führt. Die Darstellung kationischer Alkylkomplexe eröffnet den Weg MAO freier Katalysatoren mit vergleichbarer Aktivität, wobei der Co-Katalysator nahezu stöchiometrisch eingesetzt werden kann.

Die Synthese von "Kationen-ähnlichen" Metallocen-Polymerisationskatalysatoren, wird im J. Am. Chem. Soc. 1991, 113, 3623 beschrieben. Darin erfolgt die Alkylabstraktion von einer Metallocenalkylverbindung mittels Trispentafluorphenylboran. In EP 427 697 wird dieses Syntheseprinzip und ein entsprechendes Katalysatorsystem, bestehend aus einer neutralen Metallocenspezies (z. B. Cp_2ZrMe_2), einer Lewis-Säure (z. B. $B(C_eF_5)_3$) und Aluminiumalkylen beansprucht. Ein Verfahren zur Herstellung von Salzen der allgemeinen Form LMX* XA nach dem oben beschriebenen Prinzip wird in EP 520 732 beansprucht.

Nachteile bekannter alternativer Co-Katalysatorsysteme sind ihre hohe

Empfindlichkeit gegenüber Katalysatorgiften und das Problem des "leaching" bei der Trägerung der Katalysatorsysteme.

Die Aufgabe der vorliegenden Erfindung bestand darin eine chemische Verbindung zur Verfügung stellen, welche die Nachteile des Standes der Technik vermeidet und trotzdem hohe Polymerisationsaktivitäten ermöglicht.

2

Die vorliegende Erfindung betrifft somit eine neue chemische Verbindung, sowie ein Verfahren zur Herstellung dieser chemischen Verbindung. Ferner betrifft sie ein Katalysatorsystem enthaltend mindestens ein Metallocen und mindestens eine erfindungsgemäße chemische Verbindung als Co-Katalysator. Das Katalysatorsystem kann zudem zusätzlich weitere Organometallkomponente enthalten und auf einem Trägermaterial fixiert sein. Ferner wird ein Verfahren zur Herstellung von Polyolefinen beschrieben.

Die Aufgabe wird gelöst, durch eine chemische Verbindung der Formel A,

$$\begin{bmatrix} R^{a} \\ | \\ | \\ | \\ | \\ R_{2}^{1}B \longrightarrow X \longrightarrow AI \longrightarrow R^{b} \end{bmatrix}$$

15

20

25

5

10

worin R¹ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine borfreie C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{10} -Alkoxy, C_6 - C_{20} -Aryl, C_6 - C_{20} -Halogenaryl, C_6 - C_{20} -Aryloxy, C_7 - C_{40} -Arylalkyl oder C_7 - C_{40} -Halogenarylalkyl, C_7 - C_{40} -Alkylaryl, C_7 - C_{40} -Halogenalkylaryl sind oder R¹ kann eine $OSiR_3$ ³-Gruppe sein, worin R³ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{10} -Alkoxy, C_6 - C_{20} -Aryl, C_6 - C_{20} -Halogenaryl, C_6 - C_{20} -Aryloxy, C_7 - C_{40} -Arylalkyl, C_7 - C_{40} -Halogenarylalky, C_7 - C_{40} -Alkylaryl, C_7 - C_{40} -Halogenalkylaryl sind oder R¹ kann eine $CH(SiR^4_3)_2$ -Gruppe sein, worin R⁴ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C_1 - C_{40} -

kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{10} -Alkoxy,

 C_6-C_{20} -Aryl, C_6-C_{20} -Halogenaryl, C_6-C_{20} -Aryloxy, C_7-C_{40} -Arylalky, C_7-C_{40} -Halogenarylalkyl, C_7-C_{40} -Alkylaryl, C_7-C_{40} -Halogenalkylaryl sein,

X ist gleich oder verschieden ein Element der Gruppe VIa des Periodensystems der Elemente oder eine NR-Gruppe, mit R gleich Wasserstoff oder C_1 - C_{20} -Kohlenwasserstoffrest wie C_1 - C_{20} -Alkyl oder C_1 - C_{20} -Aryl, R^a und R^b können gleich oder verschieden sein und sind ein Wasserstoffatorn, ein Halogenatom, eine borfreie C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl,

 $C_{1}-C_{20}-\text{Halogenalkyl},\ C_{1}-C_{10}-\text{Alkoxy},\ C_{6}-C_{20}-\text{Aryl},\ C_{6}-C_{20}-\text{Halogenaryl},\ C_{6}-C_{20}-\text{Aryloxy},\ C_{7}-C_{40}-\text{Arylalky},\ C_{7}-C_{40}-\text{Halogenarylalky},\ C_{7}-C_{40}-\text{Alkylaryl},\ C_{7}-C_{40}-\text{Halogenalkylaryl sind oder }R^{1}\text{ kann eine OSiR}_{3}^{3}-\text{Gruppe sein, worin }R^{3}\text{ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine }C_{1}-C_{40}-\text{kohlenwasserstoffhaltige Gruppe wie }C_{1}-C_{20}-\text{Alkyl},\ C_{1}-C_{20}-\text{Halogenalkyl},\ C_{1}-C_{10}-\text{Halogenalkyl},\ C_{1}-C_{10}$

 $\label{eq:continuous} Alkoxy,\ C_6-C_{20}-Aryl,\ C_6-C_{20}-Halogenaryl,\ C_6-C_{20}-Aryloxy,\ C_7-C_{40}-Arylalkyl,\ C_7-C_{40}-Halogenarylalkyl,\ C_7-C_{40}-Alkylaryl,\ C_7-C_{40}-Halogenalkylaryl\ sind\ .$

Außerdem können Ra und Rb eine borhaltige Gruppe wie zum Beispiel -X-BR21 sein, worin X ein Element der Gruppe Vla des Periodensystems der Elemente oder eine NR-Gruppe ist, mit R gleich Wasserstoff oder C₁-C₂₀-Kohlenwasserstoffrest wie C₁-20 C₂₀-Alkyl oder C₁-C₂₀-Aryl, und R¹ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine borfreie C₁-C₄₀-kohlenwasserstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl, C₁-C₁₀-Alkoxy, C₆-C₂₀-Aryl, C₆-C₂₀-Halogenaryl, C₆-C₂₀-Aryloxy, C₇-C₄₀-Arylalkyl, C₇-C₄₀-Halogenarylalkyl, C₇-C₄₀-Alkylaryl, C₇-C₄₀-Halogenalkylaryl sind oder R¹ kann eine OSiR₃³-Gruppe sein, worin 25 R³ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₄₀-kohlenwasserstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl, C₁-C₁₀-Alkoxy, C₈-C₂₀-Aryl, C₈-C₂₀-Halogenaryl, C₈-C₂₀-Aryloxy, C₇-C₄₀-Arylalkyl, C₇-C₄₀-Halogenarylalkyl, C7-C40-Alkylaryl, C7-C40-Halogenalkylaryl sind oder R1 kann eine CH(SiR43)2-Gruppe sein, worin R4 gleich oder verschieden sind und ein 30 Wasserstoffatom, ein Halogenatom, eine C₁-C₄₀-kohlenwasserstoffhaltige Gruppe

15

20

4

wie C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{10} -Alkoxy, C_6 - C_{20} -Aryl, C_6 - C_{20} -Halogenaryl, C_6 - C_{20} -Aryloxy, C_7 - C_{40} -Arylalky, C_7 - C_{40} -Halogenarylalkyl, C_7 - C_{40} -Alkylaryl, C_7 - C_{40} -Halogenalkylaryl sein,

und k ist eine ganze Zahl von 1 bis 100.

Die erfindungsgemäße Verbindung der Formel A kann durch Säure-Base Wechselwirkungen Dimere, Trimere oder höhere Oligomere bilden, wobei k eine natürliche Zahl von 1 bis 100 sein kann.

Bevorzugte chemische Verbindungen der Formel A entsprechen den allgemeinen Formeln I, II und III:

$$\left[R_{2}^{1}B - X - AIR_{2}^{2} \right]_{k}$$

I

$$\left[R_{2}^{1}B - X - AIR^{2} - X - BR_{2}^{1} \right]_{k}$$

$$\left[\left(R_2^1 B - X - \frac{1}{3} A I \right)_k$$

Ш

worin R¹ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine borfreie C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{10} -Alkoxy, C_8 - C_{20} -Aryl, C_8 - C_{20} -Halogenaryl, C_8 - C_{20} -Aryloxy, C_7 - C_{40} -Arylalkyl, C_7 - C_{40} -Halogenarylalkyl, C_7 - C_{40} -Alkylaryl, C_7 - C_{40} -Halogenalkylaryl sind oder R¹ kann eine OSiR₃³-Gruppe sein, worin R³ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe

wie C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl, C₁-C₁₀-Alkoxy, C₆-C₂₀-Aryl, C₆-C₂₀-Halogenaryl, C₆-C₂₀-Aryloxy, C₇-C₄₀-Arylalkyl, C₇-C₄₀-Halogenarylalkyl, C₇-C₄₀-Alkylaryl, C₇-C₄₀-Halogenalkylaryl sind oder R1 kann eine CH(SiR43)2-Gruppe sein, worin R4 gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₄₀kohlenwasserstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl, C₁-C₁₀-5 Alkoxy, C₆-C₂₀-Aryl, C₆-C₂₀-Halogenaryl, C₆-C₂₀-Aryloxy, C₇-C₄₀-Arylalky, C₇-C₄₀-Halogenarylalky, C₇-C₄₀-Alkylaryl, C₇-C₄₀-Halogenalkylaryl sein. R² sind gleich oder verschieden Wasserstoffatom, ein Halogenatom, eine borfreie C₁- C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{10} -Alkoxy, C_6 - C_{20} -Aryl, C_6 - C_{20} -Halogenaryl, C_6 - C_{20} -Aryloxy, C_7 - C_{40} -Arylalky, C_7 - C_{40} -10 Halogenarylalky, C₇-C₄₀-Alkylaryl, C₇-C₄₀-Halogenalkylaryl oder R² kann eine OSiR₃³-Gruppe sein, worin R³ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₄₀-kohlenwasserstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl, C₁-C₁₀-Alkoxy, C₆-C₂₀-Aryl, C₆-C₂₀-Halogenaryl, C₆-C₂₀-Aryloxy, C₇-C₄₀-Arylalkyl, C₇-C₄₀-Halogenarylalkyl, C₇-C₄₀-Alkylaryl, C₇-C₄₀-Halogenalkylaryl sind. 15 X ist gleich oder verschieden ein Element der Gruppe VIa des Periodensystems der Elemente oder eine NR-Gruppe, worin R ein Wasserstoffatom oder ein C₁-C₂₀-Kohlenwasserstoffrest wie C₁-C₂₀-Alkyl oder C₁-C₂₀-Aryl ist,

Die erfindungsgemäßen Verbindungen der Formeln I - III können durch Säure-Base 20 Wechselwirkungen untereinander Dimere, Trimere oder höhere Oligomere bilden, wobei k eine ganze Zahl von 1 bis 100 sein kann.

Insbesondere bevorzugt sind Verbindungen I - III, in denen X ein Sauerstoffatom oder eine NH-Gruppe ist. R1 ist bevorzugt ein borfreier C1-C40-Kohlenwasserstoffrest, der mit Halogen wie Fluor, Chlor, Brom oder lod halogeniert bevorzugt perhalogeniert sein kann, insbesondere eine halogenierte, bevorzugt perhalogenierte C₁-C₃₀-Alkylgruppe wie Trifluormethyl-, Pentachlorethyl-, Heptafluorisopropyl oder Monofluorisobutyl oder eine halogenierte, bevorzugt perhalogenierte C_e-C₃₀-Arylgruppe wie 30 Pentafluorphenyl-, Heptachlornaphtyl-, Heptafluornaphthyl-, Heptafluortolyl-, 3,5-

bis(trifluormethyl)phenyl-, 2,4,6-tris(trifluormethyl)phenyl oder 4- (trifluormethyl)phenyl. Ebenfalls bevorzugt für R¹ sind Reste wie Phenyl-, Mehtyl-, Ethyl-, Isopropyl-, Butyl-, Tolyl- oder 2,3-Dimethyl-phenyl. Besonders bevorzugt sind die Reste Pentafluorphenyl-, Phenyl-, 3,5-bis(trifluormethyl)phenyl- und 4-Methyl-phenyl.

 R^2 ist bevorzugt ein Wasserstoffatom oder ein borfreier C_1 - C_{40} -Kohlenwasserstoffrest, der mit Halogen wie Fluor, Chlor, Brom oder lod halogeniert bevorzugt perhalogeniert sein kann, insbesondere eine halogenierte, bevorzugt perhalogenierte C_1 - C_{30} -Alkylgruppe wie Trifluormethyl-, Pentachlorethyl-,

Heptafluorisopropyl oder Monofluorisobutyl oder eine halogenierte, bevorzugt perhalogenierte C₈-C₃₀-Arylgruppe wie Pentafluor-phenyl-, Heptachlornaphtyl-, Heptafluornaphthyl-, Heptafluortolyl-, 3,5-bis(trifluormehtyl)phenyl-, 2,4,6-tris(trifluormethyl)phenyl oder 4-(trifluormethyl)phenyl. Ebenfalls bevorzugt für R² sind Reste wie Phenyl-, Methyl-, Ethyl-, Propyl-, Isopropyl-, Butyl-, Tolyl- 4-Methyl-phenyl, oder 2,3-Dimethyl-phenyl.

Besonders bevorzugt sind die Reste R² Pentafluorphenyl-, Phenyl-, 3,5-bis(trifluormethyl)phenyl- und 4-Methyl-phenyl, Methyl, Ethyl-, Isopropyl-, Butyl- oder Propyl-.

k ist bevorzugt eine ganze Zahl von 1 bis 10, besonders bevorzugt 1, 2, 3 oder 4.

20

15

5

10

Verbindungen der Formel A sind erhältlich durch Umsetzung von Hydroxy-organoborinen der Formel IV oder Diorganoborinsäureanhydriden der Formel V mit Organoaluminiumverbindungen der Formel VI,

$$R_2^1B \longrightarrow XR^6$$
IV
 $R_2^1B \longrightarrow X \longrightarrow BR_2^1$

10

15

20

25

7

$$\begin{bmatrix} R^2 \\ A \\ R^2 \end{bmatrix}_n$$

VI

worin R^6 ein Wasserstoffatom oder eine borfreie C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_6 - C_{20} -Aryl, C_7 - C_{40} -Arylalky, C_7 - C_{40} -Alkylaryl sein kann und worin R^1 gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{10} -Alkoxy, C_6 - C_{20} -Aryl, C_6 - C_{20} -Halogenaryl, C_6 - C_{20} -Aryloxy, C_7 - C_4 -Arylalky, C_7 - C_{40} -Halogenarylalkyl, C_7 - C_{40} -Alkylaryl, C_7 - C_{40} -Halogenalkylaryl sind oder R^1 kann eine $OSiR_3^3$ -Gruppe sein, worin R^3 gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{10} -Alkoxy, C_6 - C_{20} -Aryl, C_6 - C_{20} -Halogenaryl, C_6 - C_{20} -Aryloxy, C_7 - C_{40} -Alkylaryl, C_7 - C_{40} -Halogenarylalkyl, C_7 - C_{40} -Halogenarylalkyl, C_7 - C_{40} -Halogenalkylaryl sind, oder R^1 kann eine $CH(SiR^4_3)_2$ -Gruppe sein, worin R^4 gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{40} -Alogenalkyl, C_1 - C_{40} -Arylalkyl, C_1 - C_{40} -Alogenalkyl, C_1 - C_{40} -

 R^1 sind gleich oder verschieden und bevorzugt ein borfreier C_1 - C_{40} -Kohlenwasserstoffrest, der mit Halogen wie Fluor, Chlor, Brom oder Iod halogeniert bevorzugt perhalogeniert sein kann, insbesondere eine halogenierte, insbesondere perhalogenierte C_1 - C_{30} -Alkylgruppe wie Trifluormethyl-, Pentachlorethyl-, Heptafluorisopropyl oder Monofluorisobutyl oder eine halogenierte, insbesondere perhalogenierte C_8 - C_{30} -Arylgruppe wie Pentafluorphenyl-, Heptachlornaphtyl-, Heptafluornaphthyl-, Heptafluortolyl-, 3,5-bis(trifluormethyl)phenyl-, 2,4,6-tris(trifluormethyl)phenyl oder 4-(trifluormethyl)phenyl. Ebenfalls bevorzugt für R^1 sind

20

Reste wie Phenyl-, Biphenyl-, Naphthyl, Anisyl-, Mehtyl-, Ethyl-, Isopropyl-, Butyl-, Tolyl- oder 2,3-Dimethyl-phenyl.

 R^2 sind gleich oder verschieden ein Wasserstoffatom, ein Halogenatom, eine borfreie C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{10} -Alkoxy, C_6 - C_{20} -Aryl, C_6 - C_{20} -Halogenaryl, C_6 - C_{20} -Aryloxy, C_7 - C_{40} -Arylalky, C_7 - C_{40} -Halogenalkylaryl oder R^2 kann eine R^2 -Alkylaryl, R^3 - R^2 -Aryloxylaryl oder R^3 -Alkylaryl od

Gruppe sein, worin R³ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{10} -Alkoxy, C_6 - C_{20} -Aryl, C_6 - C_{20} -Halogenaryl, C_6 - C_{20} -Aryloxy, C_7 - C_{40} -

Arylalkyl, C₇-C₄₀-Halogenarylalkyl, C₇-C₄₀-Alkylaryl, C₇-C₄₀-Halogenalkylaryl sind. R² ist bevorzugt ein Wasserstoffatom, ein Halogenatom oder ein borfreier C₁-C₄₀-Kohlenwasserstoffrest, der mit Halogen wie Fluor, Chlor, Brom oder lod halogeniert bevorzugt perhalogeniert sein kann, insbesondere eine halogenierte, insbesondere perhalogenierte C₁-C₃₀-Alkylgruppe wie Trifluormethyl-,

Pentachlorethyl-, Heptafluorisopropyl oder Monofluorisobutyl oder eine halogenierte, insbesondere perhalogenierte C₆-C₃₀-Arylgruppe wie Pentafluorphenyl-, Heptafluornaphtyl-, Heptafluornaphtyl-, Heptafluortolyl-, 3,5-bis(trifluormehtyl)phenyl-, 2,4,6-tris(trifluormethyl)phenyl oder 4- (trifluormethyl)phenyl. Ebenfalls bevorzugt für R² sind Reste wie Phenyl-, Mehtyl-,

Ethyl-, Isopropyl-, Butyl-, Tolyl- oder 2,3-Dimethyl-phenyl.

X ist gleich verschieden ein Element der Gruppe VIa des Periodensystems der Elemente oder eine NR-Gruppe, worin R ein Wasserstoffatom oder eine C₁-C₂₀-Kohlenwasserstoffrest wie C₁-C₂₀-Alkyl oder C₁-C₂₀-Aryl ist, und n ist eine ganze Zahl von 1 bis 10. Bevorzugt ist n gleich 1, 2, 3 oder 4.

Bevorzugt sind Verbindungen in denen X ein Sauerstoff-Atom oder eine NH-Gruppe ist.

Beispiele für Verbindungen der Formel IV und V sind:

Di(pentafluorphenyl)borinsäure
Di(phenyl)borinsäure

Di(o-tolyl)borinsäure

Di(m-tolyl)borinsäure

Di(p-tolyl)borinsäure

Di(p-anisyl)borinsäure

5 Di(p-biphenyl)borinsäure

Di(p-chlorphenyl)borinsäure

 $Di(\alpha$ -naphthyl)borinsäure

Di(ethyl)borinsäure

Di(butyl)borinsäure

10 Di(methyl)borinsäure

Di(isopropyl)borinsäure

Di(propyl)borinsäure

Di(isobutyl)borinsäure

Di(butyl)borinsäure

15 Di(vinyl)borinsäure

Dibis(trimethylsilyl)methylborinsäure

Di(p-fluor-phenyl)borinsäure

Di(p-brom-phenyl)borinsäure

Di(mesityl)borinsäure

20 Di(cyclohexyl)borinsäure

Tert-butyl-phenyl-borinsäure

Di(2-vinyl-phenyl)borinsäure

Methyl-phenyl-borinsäure

Ethyl-phenyl-borinsäure

1-Naphthyl-phenyl-borinsäure

Di(cyclopentyl)borinsäure

Di(ethyl)borinsäure-anhydrid

Di(propyl)borinsäure-anhydrid

Di(isiopropyl)borinsäure-anhydrid

30 Di(butyl)borinsäure-anhydrid

Di(isobutyl)borinsäure-anhydrid

Di(sec-butyl)borinsäure-anhydrid

Di(allyl)borinsäure-anhydrid

Di(methyl)borinsäure-anhydrid

Di(phenyl)borinsäure-anhydrid

5 Di(pentafluorphenyl)borinsäure-anhydrid

Di(p-tolyl)borinsäure-anhydrid

Di(1-naphthyl)borinsäure-anhydrid

Di(mesityl)borinsäure-anhydrid

Di(methyl-phenyl)borinsäure-anhydrid

Di(3,5-bis-trifluormethyl-phenyl)borinsäure-anhydrid

Diphenylboranylamin

Dimethylboranylamin

Dibutylboranylamin

Diethylboranylamin

15 Ethylmethylboranylamin

Diisopropylboranylamin

Diisopropylboranylamin

Di-p-tolylboranylamin

Dimesitylboranylamin

20 Di-1-naphthylboranylamin

Aminodibis(trimethylsilyl)methylboran

Beispiele für Verbindungen der Formel VI sind:

Trimethylaluminium

25 Triethylaluminium

Triisopropylaluminium

Trihexylaluminium

Trioctylaluminium

Tri-n-butylaluminium

30 Tri-n-propylaluminium

Triisoprenaluminium

10

Dimethylaluminiummonochlorid
Diethylaluminiummonochlorid
Diisobutylaluminiummonochlorid
Methylaluminiumsesquichlorid
Ethylaluminiumsesquichlorid
Dimethylaluminiumhydrid
Diethylaluminiumhydrid
Diisopropylaluminiumhydrid
Dimethylaluminium(trimethylsiloxid)
Dimethylaluminium(triethylsiloxid)
Phenylalan
Pentafluorphenylalan

o-Tolylalan

Zur Herstellung der cokatalytisch wirkenden Organoboraluminiumverbindung der 15 Formel A können eine oder mehrere Verbindungen der Formeln IV und V mit einer oder mehreren Verbindungen der Formel VI, in jedem beliebigen stöchiometrischen Verhältnis, umgesetzt. Bevorzugt ist die Menge von 2 bis 6 Äquivalenten einer Verbindung der Formel IV oder V mit einem Äquivalent der Formel VI. Besonders bevorzugt ist die Menge von 2 bis 2.5 Äquivalenten einer Verbindung der Formeln IV 20 und V mit einem Äguivalent der Formel VI. Die Umsetzung erfolgt in einem aliphatischen oder aromatischen Lösemittel wie Toluol, Heptan, Tetrahydrofuran oder Diethylether. Es können auch Lösemittelgemische eingesetzt werden. Die cokatalytisch wirkende Organoboraluminiumverbindungen der Formel A kann isoliert werden oder ohne 25 Isolierung in Lösung weiter umgesetzt werden. Unter dem Begriff Lösung bzw. Lösemittel werden auch Suspensionen bzw. Suspensionsmittel verstanden, d. h. die in dem erfindungsgemäßen Verfahren eingesetzten Edukte wie auch die erhaltenen Produkte können zum Teil oder vollständig gelöst sein oder auch zum Teil oder vollständig suspendiert vorliegen. 30

Beispiele zur näheren Erläuterung für die erfindungsgemäße chemische Verbindung der Formel A sind:

10

15

13

Die erfindungsgemäße chemische Verbindung der Formel A kann zusammen mit einer Übergangsmetallverbindung als Katalysatorsystem z. B. zur Olefinpolymerisation verwendet werden. Als Übergangsmetallverbindung werden Metallocenverbindungen eingesetzt. Dies können z. B. verbrückte oder unverbrückte Biscyclopentadienylkomplexe sein, wie sie z. B. in EP 129 368, EP 561 479, EP 545 304 und EP 576 970 beschrieben sind, Monocyclopentadienylkomplexe, wie verbrückte Amidocyclopentadienylkomplexe, die z.B in EP 416 815 beschrieben sind, mehrkernige Cyclopentadienylkomplexe wie in EP 632 063 beschrieben, π -Ligand substituierte Tetrahydropentalene wie in EP 659 758 beschrieben oder π -Ligand substituierte Tetrahydroindene wie in EP 661 300 beschrieben.

14

Bevorzugte Metallocenverbindungen sind unverbrückte oder verbrückte Verbindungen der Formel VII,

worin

R'

15

20

10 M¹ ein Metall der III., IV., V. oder VI. Nebengruppe des Periodensystems der Elemente ist, insbesondere Ti, Zr oder Hf,

gleich oder verschieden sind und ein Wasserstoffatom oder $SiR_3^{3'}$ sind, worin $R^{3'}$ gleich oder verschieden ein Wasserstoffatom oder eine C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{10} -Fluoralkyl, C_1 - C_{10} -Alkoxy, C_6 - C_{20} -Aryl, C_6 - C_{10} -Fluoraryl, C_6 - C_{10} -Aryloxy, C_2 - C_{10} -Alkenyl, C_7 - C_{40} -Arylalkyl, C_7 - C_{40} -Alkylaryl oder C_8 - C_{40} -Arylalkenyl sind, oder R^l sind eine C_1 - C_{30} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{25} -Alkyl, z. B. Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C_2 - C_{25} -Alkenyl, C_3 - C_{15} -Alkylalkenyl, C_6 - C_{24} -Aryl, C_5 - C_{24} -Heteroaryl wie Pyridyl, Furyl oder Chinolyl, C_7 - C_{30} -Arylalkyl, C_7 - C_{30} -Alkylaryl, fluorhaltiges C_1 - C_{25} -Alkyl, fluorhaltiges C_6 - C_{24} -Aryl, fluorhaltiges C_7 - C_{30} -Alkylaryl oder C_1 - C_{12} -Alkoxy ist, oder zwei oder mehrere Reste R' können so miteinander verbunden sein, daß die Reste R' und die sie verbindenden Atome des Cyclopentadienylringes ein C_4 - C_{24} -Ringsystem bilden, welches seinerseits substituiert sein kann,

gleich oder verschieden sind und ein Wasserstoffatom oder $SiR_3^{3'}$ sind, worin $R^{3'}$ gleich oder verschieden ein Wasserstoffatom oder eine C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{10} -Fluoralkyl, C_1 - C_{10} -

10

15

20

15

Alkoxy, C_8 - C_{14} -Aryl, C_8 - C_{10} -Fluoraryl, C_8 - C_{10} -Aryloxy, C_2 - C_{10} -Alkenyl, C_7 - C_{40} -Arylalkyl, C_7 - C_{40} -Alkylaryl oder C_8 - C_{40} -Arylalkenyl sind, oder R" sind eine C_1 - C_{30} - kohlenwasserstoffhaltige Gruppe wie C_1 - C_{25} -Alkyl, z. B. Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C_2 - C_{25} -Alkenyl, C_3 - C_{15} -Alkylalkenyl, C_6 - C_{24} -Aryl, C_5 - C_{24} -Heteroaryl, z. B. Pyridyl, Furyl oder Chinolyl, C_7 - C_{30} -Arylalkyl, C_7 - C_{30} -Alkylaryl, fluorhaltiges C_1 - C_{25} -Alkyl, fluorhaltiges C_6 - C_{24} -Aryl, fluorhaltiges C_7 - C_{30} -Arylalkyl, fluorhaltiges C_7 - C_{30} -Alkylaryl oder C_1 - C_{12} -Alkoxy ist, oder zwei oder mehrere Reste R" können so miteinander verbunden sein, daß die Reste R" und die sie verbindenden Atome des Cyclopentadienylringes ein C_4 - C_{24} -Ringsystem bilden, welches seinerseits substituiert sein kann,

- gleich 5 für v = 0, und I gleich 4 für v = 1 ist,
- m gleich 5 für v = 0, und m gleich 4 für v = 1 ist,
- gleich oder verschieden sein können und ein Wasserstoffatom, ein Halogenatom eine C₁-C₁₀ Alkyl-Gruppe, eine C₇-C₄₀ Arylgruppe, oder OR⁶, SR⁶, OSiR₃⁶, SiR₃⁶, PR₂⁶ oder NR₂⁶ bedeuten, worin R⁶ ein Halogenatom, eine C₁-C₁₀ Alkylgruppe, eine halogenierte C₁-C₁₀ Alkylgruppe, eine C₆-C₂₀ Arylgruppe oder eine halogenierte C₆-C₂₀ Arylgruppe sind, oder L¹ sind eine Toluolsulfonyl-, Trifluoracetyl-, Trifluoracetoxyl-, Trifluormethansulfonyl-, Nonafluorbutansulfonyl- oder 2,2,2-Trifluorethansulfonyl-Gruppe,
- o eine ganze Zahl von 1 bis 4, bevorzugt 2 ist,
- Z ein verbrückendes Strukturelement zwischen den beiden Cyclopentadienylringen bezeichnet und v ist 0 oder 1.
- Beispiele für Z sind Gruppen M²R⁵R⁵, worin M² Kohlenstoff, Silizium, Germanium oder Zinn ist und R⁵ und R⁵ gleich oder verschieden eine C₁-C₂₀-kohlenwasserstoffhaltige Gruppe wie C₁-C₁₀-Alkyl, C₀-C₁₄-Aryl oder Trimethylsilyl bedeuten. Bevorzugt ist Z gleich CH₂, CH₂CH₂, CH(CH₃)CH₂, CH(C₄H₆)C(CH₃)₂, C(CH₃)₂Si, (CH₃)₂Si, (CH₃)₂Sn, (C₀H₅)₂Si, (C₀H₅)₂Si, (C₀H₅)₂Ce, (C₀H₅)₂Sn, (CH₂)₄Si, CH₂Si(CH₃)₂, o-C₀H₄ oder 2,2´-(C₀H₄)₂. Z kann auch mit einem

10

15

20

25

30

16

oder mehreren Resten R' und/oder R" ein mono- oder polycyclisches Ringsystem bilden.

Bevorzugt sind chirale verbrückte Metallocenverbindungen der Formel VII, insbesondere solche in denen v gleich 1 ist und einer oder beide Cyclopentadienylringe so substituiert sind, daß sie einen Indenylring darstellen. Der Indenylring ist bevorzugt substituiert, insbesondere in 2-, 4-, 2,4,5-, 2,4,6-, 2,4,7 oder 2,4,5,6-Stellung, mit C₁-C₂₀-kohlenstoffhaltigen Gruppen, wie C₁-C₁₀-Alkyl oder C₅-C₂₀-Aryl, wobei auch zwei oder mehrere Substituenten des Indenylrings zusammen ein Ringsystem bilden können.

Chirale verbrückte Metallocenverbindungen der Formel (VII) können als reine racemische oder reine meso Verbindungen eingesetzt werden. Es können aber auch Gemische aus einer racemischen Verbindung und einer meso Verbindung verwendet werden.

Beispiele für Metallocenverbindungen sind:
Dimethylsilandiylbis(indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(4-naphthyl-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-benzo-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4-t-butyl-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4-ethyl-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4-ethyl-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-acenaphth-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2,4-dimethyl-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-ethyl-4-ethyl-indenyl)zirkoniumdichlorid

dichlorozirconium

30

17

Dimethylsilandiylbis(2-ethyl-4-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4,5 diisopropyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2,4,6-trimethyl-indenyl)zirkoniumdichlorid 5 Dimethylsilandiylbis(2,5,6-trimethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-5-t-butyl-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid 10 Methyl(phenyl)silandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-4,5-(methylbenzo)-indenyl)zirkoniumdi-chlorid Methyl(phenyl)silandiylbis(2-methyl-4,5-(tetramethylbenzo)-indenyl)zirkonium-15 dichlorid Methyl(phenyl)silandiylbis(2-methyl-4--acenaphth-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdichlorid 1,2-Ethandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid 20 1.4-Butandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid 1,2-Ethandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid 1,4-Butandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid 1,4-Butandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid 1,2-Ethandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid 25 1,2-Ethandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdichlorid 1,2-Ethandiylbis(2-methyl-indenyl)zirkoniumdichlorid 1,4-Butandiylbis(2-methyl-indenyl)zirkoniumdichlorid [4-(η⁵-Cyclopentadienyl)-4,6,6-trimethyl-(η⁵-4,5-tetrahydropentalen)]-

- $[4-(\eta^5-3'-Trimethylsilyl-cyclopentadienyl)-4,6,6-trimethyl-(\eta^5-4,5-tetrahydropentalen)]-dichlorozirconium \\ [4-(\eta^5-3'-Isopropyl-cyclopentadienyl)-4,6,6-trimethyl-(\eta^5-4,5-tetrahydropentalen)]-$
- [4-(η⁵-3'-Isopropyl-cyclopentadienyl)-4,6,6-trimethyl-(η⁵-4,5-tetrahydropentalen)]-dichlorozirconium
- $[4-(\eta^5-\text{Cyclopentadienyl})-4,7,7-\text{trimethyl-}(\eta^5-4,5,6,7-\text{tetrahydroindenyl})]-\text{dichlorotitan}\\ [4-(\eta^5-\text{Cyclopentadienyl})-4,7,7-\text{trimethyl-}(\eta^5-4,5,6,7-\text{tetrahydroindenyl})]-\text{dichloro-}\\ \text{zirkonium}\\ [4-(\eta^5-\text{Cyclopentadienyl})-4,7,7-\text{trimethyl-}(\eta^5-4,5,6,7-\text{tetrahydroindenyl})]-$
 - [4- $(\eta^5$ -Cyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-dichlorohafnium
- 10 [4-(η⁵-3'-tert.Butyl-cyclopentadienyl)-4,7,7-trimethyl-(η⁵-4,5,6,7-tetrahydroindenyl)]-
 - 4- $(\eta^5$ -3'-Isopropylcyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-dichlorotitan
 - 4- $(\eta^5$ -3'-Methylcyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-dichlorotitan
 - 4- $(\eta^5$ -3'-Trimethylsilyl-cyclopentadienyl)-2-trimethylsilyl-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-dichlorotitan
 - 4- $(\eta^5$ -3'-tert.Butyl-cyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-dichlorozirkonium
- (Tertbutylamido)-(tetramethyl-η⁵-cyclopentadienyl)-dimethylsilyl-dichlorotitan (Tertbutylamido)-(tetramethyl-η⁵-cyclopentadienyl)-1,2-ethandiyl-dichlorotitan-dichlorotitan
 - $\label{eq:continuous} \ensuremath{\text{(Methylamido)-(tetramethyl-η^5-cyclopentadienyl)-dimethylsilyl-dichlorotitan }} \\ (\text{Methylamido)-(tetramethyl-η^5-cyclopentadienyl)-1,2-ethandiyl-dichlorotitan }} \\$
- (Tertbutylamido)-(2,4-dimethyl-2,4-pentadien-1-yl)-dimethylsilyl-dichlorotitan Bis-(cyclopentadienyl)-zirkoniumdichlorid
 - Bis-(n-butylcyclopentadienyl)-zirkoniumdichlorid
 - Bis-(1,3-dimethylcyclopentadienyl)-zirkoniumdichlorid
 - Tetrachloro-[1-[bis(η⁵-1H-inden-1-yliden)methylsilyl]-3-η⁵-cyclopenta-2,4-dien-1-
- $_{30}$ yliden)-3- η^{5} -9H-fluoren-9-yliden)butan]di-zirkonium

Tetrachloro-[2-[bis(η^5 -2-methyl-1H-inden-1-yliden)methoxysilyl]-5-(η^5 -2,3,4,5-tetramethylcyclopenta-2,4-dien-1-yliden)-5-(η^5 -9H-fluoren-9-yliden)hexan]dizirkonium

Tetrachloro-[1-[bis(η⁵-1H-inden-1-yliden)methylsilyl]-6-(η⁵-cyclopenta-2,4-dien-1-yliden)-6-(η⁵-9H-fluoren-9-yliden)-3-oxaheptan]di-zirkonium

Dimethylsilandiylbis(indenyl)zirkoniumdimethyl

Dimethylsilandiylbis(4-naphthyl-indenyl)zirkoniumdimethyl

Dimethylsilandiylbis(2-methyl-benzo-indenyl)zirkoniumdimethyl

Dimethylsilandiylbis(2-methyl-indenyl)zirkoniumdimethyl

- Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-t-butyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdimethyl
- Dimethylsilandiylbis(2-methyl-4-ethyl-indenyl)zirkoniumdimethyl
 Dimethylsilandiylbis(2-methyl-4-acenaphth-indenyl)zirkoniumdimethyl
 Dimethylsilandiylbis(2,4-dimethyl-indenyl)zirkoniumdimethyl
 Dimethylsilandiylbis(2-ethyl-indenyl)zirkoniumdimethyl
 Dimethylsilandiylbis(2-ethyl-4-ethyl-indenyl)zirkoniumdimethyl
- Dimethylsilandiylbis(2-ethyl-4-phenyl-indenyl)zirkoniumdimethyl
 Dimethylsilandiybis(2-methyl-4,5-benzo-indenyl)zirkoniumdimethyl
 Dimethylsilandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdimethyl
 Dimethylsilandiylbis(2-methyl-4,5 diisopropyl-indenyl)zirkoniumdimethyl
 Dimethylsilandiylbis(2,4,6-trimethyl-indenyl)zirkoniumdimethyl
- Dimethylsilandiylbis(2,5,6-trimethyl-indenyl)zirkoniumdimethyl
 Dimethylsilandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdimethyl
 Dimethylsilandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdimethyl
 Dimethylsilandiylbis(2-methyl-5-t-butyl-indenyl)zirkoniumdimethyl
 Methyl(phenyl)silandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdimethyl

 Methyl(phenyl)silandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdimethyl

Methyl(phenyl)silandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdimethyl

Methyl(phenyl)silandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdimethyl Methyl(phenyl)silandiylbis(2-methyl-4,5-(methylbenzo)-indenyl)zirkoniumdi-methyl Methyl(phenyl)silandiylbis(2-methyl-4,5-(tetramethylbenzo)-indenyl)zirkoniumdimethyl

- Methyl(phenyl)silandiylbis(2-methyl-4-acenaphth-indenyl)zirkoniumdimethyl
 Methyl(phenyl)silandiylbis(2-methyl-indenyl)zirkoniumdimethyl
 Methyl(phenyl)silandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdimethyl
 - 1,2-Ethandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdimethyl
 - 1,4-Butandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdimethyl
- 1,2-Ethandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdimethyl
 - 1,4-Butandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdimethyl
 - 1,4-Butandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdimethyl
 - 1,2-Ethandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdimethyl
 - 1,2-Ethandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdimethyl
- 1,2-Ethandiylbis(2-methyl-indenyl)zirkoniumdimethyl
 - 1,4-Butandiylbis(2-methyl-indenyl)zirkoniumdimethyl
 - [4- $(\eta^5$ -Cyclopentadienyl)-4,6,6-trimethyl- $(\eta^5$ -4,5-tetrahydropentalen)]-dimethylzirconium
 - [4- $(\eta^5$ -3'-Trimethylsilyl-cyclopentadienyl)-4,6,6-trimethyl- $(\eta^5$ -4,5-tetrahydropentalen)]-dimethylzirconium
 - [4-(η⁵-3´-Isopropyl-cyclopentadienyl)-4,6,6-trimethyl-(η⁵-4,5-tetrahydropentalen)]-dimethylzirconium
 - $[4-(\eta^5-Cyclopentadienyl)-4,7,7-trimethyl-(\eta^5-4,5,6,7-tetrahydroindenyl)]-dimethyltitan\\ [4-(\eta^5-Cyclopentadienyl)-4,7,7-trimethyl-(\eta^5-4,5,6,7-tetrahydroindenyl)]-$
- 25 dimethylzirkonium

- [4-(η⁵-Cyclopentadienyl)-4,7,7-trimethyl-(η⁵-4,5,6,7-tetrahydroindenyl)]-dimethylhafnium
- [4- $(\eta^5$ -3'-tert.Butyl-cyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-dimethyltitan
- 4- $(\eta^5$ -3'-Isopropylcyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-dimethyltitan

Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafnuimdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandichlorid Dimethylsilandiylbis(2-methyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid 5 Dimethylsilandiylbis(2-methyl-4-(4´-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid 10 Dimethylsilandiylbis(2-ethyl-4-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid 15 Dimethylsilandiylbis(2-ethyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-pentyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid 20 Dimethylsilandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid 25 Dimethylsilandiylbis(2-n-propyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4´-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid 30 Dimethylsilandiylbis(2-n-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid

10

15

20

25

30

Dimethylsilandiylbis(2-n-butyl-4-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)indenyl)zirkoniumbis(dimethylamid) Dimethylsilandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdibenzyl Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdimethyl Dimethylgermandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylgermandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdichlorid Dimethylgermandiylbis(2-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandichlorid Dimethylgermandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-ethyl-4-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-n-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid

Ethylidenbis(2-n-butyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandichlorid Ethylidenbis(2-hexyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdibenzyl Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdibenzyl Ethylidenbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandibenzyl Ethylidenbis(2-methyl-4-(4´-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid 5 Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdimethyl Ethylidenbis(2-n-propyl-4--phenyl)-indenyl)titandimethyl Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumbis(dimethylamid) Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumbis(dimethylamid) Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)titanbis(dimethylamid) 10 Methylethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Methylethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdichlorid Phenylphosphandiyl(2-ethyl-4-(4´-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Phenylphosphandiyl(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl) zirkoniumdichlorid Phenylphosphandiyl(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl) zirkoniumdichlorid 15 Dimethylsilandiyl(indenyl)zirkoniumdichlorid Dimethylsilandiyl(4-naphthyl-indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-benzo-indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid 20 Dimethylsilandiyl(2-methyl-4-(1-naphthyl)-indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-(2-naphthyl)-indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-acenaphthyl-indenyl)zirkoniumdichlorid

25

30

Zur Herstellung des erfindungsgemäßen Katalysatorsystems kann eine oder mehrere Verbindungen der Formeln A mit einer Metallocenverbindung, z. B. der Formel VII, in jedem beliebigen stöchiometrischen Verhältnis umgesetzt werden. Hierzu kann optional noch zusätzlich eine oder mehrere Verbindungen der Formel VI in jedem beliebigen stöchiometrischen Verhältnis gegeben werden.

10

15

20

25

Bei der Herstellung des erfindungsgemäßen Katalysatorsystems wird bevorzugt ein Mol-Verhältnis AI: M¹ zwischen den Verbindungen der Formeln A und der Formel VII von 0.01 bis 100 000 eingesetzt. Bevorzugt wird dabei ein Mol-Verhältnis von 0.1 bis 1000, ganz besonders bevorzugt wird ein Mol-Verhältnis von 1 bis 100 eingesetzt. Hierzu kann eine Verbindung der Formel VI in einem Mol-Verhältnis AI: M¹ von 0.01 bis 10000 zusätzlich zugegeben werden. Bevorzugt wird ein Mol-Verhältnis von 1 bis 1000 sinnesetzt.

bis 100 eingesetzt. Die Verbindungen können in jeder möglichen Reihenfolge miteinander in Kontakt gebracht werden. Eine mögliche Verfahrensweise ist, daß eine Organoübergangsmetallverbindung der Formel VII in einem aliphatischen oder aromatischen Lösemittel gelöst bzw. suspendiert wird. Im Anschluß daran wird eine Organoboraluminiumverbindung der Formeln A entweder in Substanz oder in gelöster bzw. in suspendierter Form zugegeben. Die Reaktionszeit liegt zwischen 1 Minute und 24 Stunden, wobei eine Reaktionszeit zwischen 5 Minuten und 120 Minuten bevorzugt wird. Die Reaktionstemperatur liegt zwischen -10 °C und + 200 °C, wobei eine Temperatur zwischen 0 °C und 50 °C bevorzugt wird. Danach wird eine Verbindung der Formel VI in gelöster bzw. in suspendierter Form zugegeben. Die Reaktionszeit liegt zwischen 1 Minute und 24 Stunden, wobei eine Reaktionszeit zwischen 5 Minuten und 120 Minuten bevorzugt wird. Die Reaktionstemperatur liegt zwischen -10 °C und + 200 °C, wobei eine Temperatur zwischen 0 °C und 50 °C bevorzugt wird. Die einzelnen Komponenten können auch nacheinander, in einer beliebigen Reihenfolge, in den Polymerisationskessel eingegeben werden, oder eine oder mehrere Verbindungen der Formel IV und V reagieren in einem Lösemittel mit einer oder mehreren Verbindungen der Formel VI zu einer oder mehreren Verbindungen der Formeln A. Diese werden in den Polymerisationskessel eingegeben und anschließend wird eine oder mehrere verbindungen der Formel VI zudosiert.

Die erfindungsgemäßen Katalysatorsysteme können ungeträgert oder auch geträgert zur Polymerisation eingesetzt werden. Bevorzugt enthält der Träger

mindestens ein anorganisches Oxid, wie Siliziumoxid, Aluminiumoxid, Zeolithe, MgO, ZrO₂, TiO₂, B₂O₃, CaO, ZnO, ThO₂, Na₂CO₃, K₂CO₃, CaCO₃, MgCO₃, Na₂SO₄, Al₂(SO₄)₃, BaSO₄, KNO₃, Mg(NO₃)₂, Al(NO₃)₃, Na₂O, K₂O, oder Li₂O, insbesondere Siliziumoxid und/oder Aluminiumoxid. Der Träger kann auch mindestens ein Polymer enthalten, z. B. ein Homo- oder Copolymer,ein vernetztes Polymer oder Polymerblends. Beispiele für Polymere sind Polyethylen, Polypropylen, Polybuten, Polystyrol, mit Divinylbenzol vernetztes Polystyrol, Polyvinylchlorid, Acryl-Butadien-Styrol-Copolymer, Polyamid, Polymethacrylat, Polycarbonat, Polyester, Polyacetal oder Polyvinylalkohol.

Der Träger kann eine spezifische Oberfläche im Bereich von 10 bis 1000 m²/g, bevorzugt von 150 bis 500 m²/g aufweisen. Die mittlere Partikelgröße des Trägers kann 1 bis 500 μ m, bevorzugt 5 bis 350 μ m, besonders bevorzugt 10 bis 200 μ m betragen.

Bevorzugt ist der Träger porös mit einem Porenvolumen des Trägers von 0,5 bis 4,0 ml/g, bevorzugt 1,0 bis 3,5 ml/g. Ein poröser Träger weist einen gewissen Anteil an Hohlräumen (Porenvolumen) auf. Die Form der Poren ist meist unregelmäßig, häufig sphärisch ausgebildet. Die Poren können durch kleine Porenöffnungen miteinander verbunden sein. Der Porendurchmesser beträgt vorzugsweise etwa 2 bis 50 nm. Die Partikelform des porösen Trägers kann irregulär oder sphärisch sein und kann durch mechanische, chemischer oder thermische Nachbehandlung eingstellt werden. Die Teilchengröße des Trägers kann z. B. durch kryogene Mahlung und/oder Siebung beliebig eingestellt werden.

Das Trägermaterial kann zudem mit einer Verbindung der Formel VI vorbehandelt sein. Die Verbindung der Formel VI kann dabei dieselbe sein, welche zur Herstellung des Katalysatorsystems verwendet wird, kann aber auch davon verschieden sein. Außerdem kann das Trägermaterial auch mit anderen chemischen Verbindungen wie z. B. Trimethylchlorsilan, Tetrachlorsilan, Aminen wie Phenyldimethylamin, Pyridin, Mercaptanen wie Mercaptopropylmethyldimethoxysilan, Benzylchlorid, Phenylmethylchlorid oder Tosylaten vorbehandelt sein.

10

15

20

26

Das erfindungsgemäße Katalysatorsystem kann in jeder möglichen Kombination mit dem Träger in Kontakt gebracht werden.

Eine Variante ist, daß das Katalysatorsystem in Lösung hergestellt wird und anschließend mit dem Träger umgesetzt wird. Dazu wird eine Organometallverbindung z.B. der Formel VII in einem aliphatischen oder aromatischen Lösemittel wie Toluol, Heptan, Tetrahydrofuran oder Diethylether vorgelegt. Anschließend wird eine oder mehrere Verbindungen der Formeln A entweder in Substanz oder in gelöster Form zugegeben. Die Reaktionszeit liegt zwischen 1 Minute und 24 Stunden, wobei eine Reaktionszeit zwischen 5 Minuten und 120 Minuten bevorzugt wird. Die Reaktionstemperatur liegt zwischen -10 °C und + 200 °C, wobei eine Temperatur zwischen 0 °C und 50 °C bevorzugt wird. Danach erfolgt die Zugabe einer Organoaluminiumverbindung der Formel VI entweder in Substanz oder in gelöster bzw. suspendierter Form zu dem Träger. Auch hier liegt die Reaktionszeit zwischen 1 Minute und 24 Stunden, wobei eine Reaktionszeit zwischen 5 Minuten und 120 Minuten bevorzugt wird. Die Reaktionstemperatur liegt zwischen -10 °C und + 200 °C, wobei eine Temperatur zwischen 0 °C und 50 °C bevorzugt wird. Alle Edukte können in jedem beliebigen, stöchiometrischen Verhältnis eingesetzt werden. Bevorzugt wird ein Mol-Verhältnis AI: M¹ zwischen den Verbindungen der Formeln A und der Formel VII von 0.1 bis 1000, ganz besonders bevorzugt wird ein Mol-Verhältnis von 1 bis 100 eingesetzt. Hierzu kann eine Verbindung der Formel bevorzugt in einem Mol-Verhältnis von 0.1 bis 1000, ganz besonders bevorzugt in einem Mol-Verhältnis von 1 bis 100 eingesetzt. Das geträgerte Katalysatorsystem kann direkt zur Polymerisation eingesetzt werden. Es kann aber auch nach Entfernen des Lösemittels resuspendiert zur Polymerisation eingesetzt werden.

Zudem wird ein Verfahren zur Herstellung eines Olefinpolymers in Gegenwart des erfindungsgemäßen Katalysatorsystems beschrieben. Die Polymerisation kann eine Homo- oder eine Copolymerisation sein.

10

15

20

25

30

27

Bevorzugt werden Olefine der Formel R^a-CH=CH-R^a polymerisiert, worin R^a und R^a gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine Alkoxy-, Hydroxy-, Alkylhydroxy-, Aldehyd, Carbonsäure- oder Carbonsäureestergruppe oder einen gesättigten oder ungesättigten Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, insbesondere 1 bis 10 C-Atomen bedeuten, der mit einer Alkoxy-, Hydroxy-, Alkylhydroxy-, Aldehyd-, Carbonsäure- oder Carbonsäureestergruppe substituiert sein kann, oder R^a und R^b mit den sie verbindenden Atomen einen oder mehrere Ringe bilden. Beispiele für solche Olefine sind 1-Olefine wie Ethylen, Propylen, 1-Buten, 1-Hexen, 4-Methyl-1-penten, 1-Octen, Styrol, cyclische Olefine wie Norbornen, Vinylnorbornen, Tetracyclododecen, Ethylidennorbornen, Diene wie 1,3-Butadien oder 1,4-Hexadien, Biscyclopentadien oder Methacrylsäuremethylester.

Insbesondere werden Propylen oder Ethylen homopolymerisiert, Ethylen mit einem oder mehreren C_3 - C_{20} -1-Olefinen, insbesondere Propylen, und /oder einem oder mehreren C_4 - C_{20} -Diene, insbesondere 1,3-Butadien, copolymerisiert oder Norbornen und Ethylen copolymerisiert.

Die Polymerisation wird bevorzugt bei einer Temperatur von - 60 bis 300 °C, besonders bevorzugt 30 bis 250 °C, durchgeführt. Der Druck beträgt 0,5 bis 2500 bar, bevorzugt 2 bis 1500 bar. Die Polymerisation kann kontinuierlich oder diskontinuierlich, ein- oder mehrstufig, in Lösung, in Suspension, in der Gasphase oder in einem überkritischem Medium durchgeführt werden.

Das geträgerte Katalysatorsystem kann als Pulver oder noch Lösemittel behaftet wieder resuspendiert und als Suspension in einem inerten Suspensionsmittel in das Polymerisationssystem eindosiert werden.

Mit Hilfe des erfindungsgemäßen Katalysatorsystems kann eine Vorpolymerisation erfolgen. Zur Vorpolymerisation wird bevorzugt das (oder eines der) in der Polymerisation eingesetzte(n) Olefin(e) verwendet.

20

25

30

Zur Herstellung von Olefinpolymeren mit breiter Molekulargewichtsverteilung werden bevorzugt Katalysatorsysteme verwendet, die zwei oder mehr verschiedene Übergangsmetallverbindungen, z. B. Metallocene enthalten.

Zur Entfernung von im Olefin vorhandenen Katalysatorgiften ist eine Reinigung mit einem Aluminiumalkyl, beispielsweise Trimethylaluminium, Triethylaluminium oder Triisobutylaluminium vorteilhaft. Diese Reinigung kann sowohl im Polymerisationssystem selbst erfolgen oder das Olefin wird vor der Zugabe in das Polymerisationssystem mit der Al-Verbindung in Kontakt gebracht und anschließend wieder getrennt.

Als Molmassenregler und/oder zur Steigerung der Aktivität wird, falls erforderlich, Wasserstoff zugegeben. Der Gesamtdruck im Polymerisationssystem beträgt 0,5 bis 2500 bar, bevorzugt 2 bis 1500 bar.

Dabei wird die erfindungsgemäße Verbindung in einer Konzentration, bezogen auf das Übergangsmetall von bevorzugt 10⁻³ bis 10⁻⁸, vorzugsweise 10⁻⁴ bis 10⁻⁷ mol Übergangsmetall pro dm³ Lösemittel bzw. pro dm³ Reaktorvolumen angewendet.

Geeignete Lösemittel zur Darstellung sowohl der erfindungsgemäßen geträgerten chemischen Verbindung als auch des erfindungsgemäßen Katalysatorsystems sind aliphatische oder aromatische Lösemittel, wie beispielsweise Hexan oder Toluol, etherische Lösemittel, wie beispielsweise Tetrahydrofuran oder Diethylether oder halogenierte Kohlenwasserstoffe, wie beispielsweise Methylenchlorid oder halogenierte aromatische Kohlenwasserstoffe wie beispielsweise o-Dichlorbenzol.

Vor Zugabe des Katalysatorsystems enthaltend mindestens eine erfindungsgemäße geträgerte chemische Verbindung, und mindestens eine Übergangsmetallverbindung (wie ein Metallocen) kann zusätzlich eine andere Alkylaluminiumverbindung wie beispielsweise Trimethylaluminium, Triethylaluminium, Triisobutylaluminium,

Trioctylaluminium oder Isoprenylaluminium zur Inertisierung des Polymerisationssystems (beispielsweise zur Abtrennung vorhandener

20

25

Katalysatorgifte im Olefin) in den Reaktor gegeben werden. Diese wird in einer Konzentration von 100 bis 0,01 mmol Al pro kg Reaktorinhalt dem Polymerisationssystem zugesetzt. Bevorzugt werden Triisobutylaluminium und Triethylaluminium in einer Konzentration von 10 bis 01 mmol Al pro kg Reaktorinhalt eingesetzt, dadurch kann bei der Synthese eines geträgerten Katalysatorsystems das molare Al/M-Verhältnis klein gewählt werden.

Die nachfolgenden Beispiele dienen zur näheren Erläuterung der Erfindung

- Allgemeine Angaben: Herstellung und Handhabung der Verbindungen erfolgten unter Ausschulß von Luft und Feuchtigkeit unter Argonschutz (Schlenk-Technik). Alle benötigten Lösemittel wurden vor Gebrauch durch mehrstündiges Sieden übeer geeignete Trockenmittel und anschließende Destillation unter Argon absolutiert.
- Die Herstellung der Bis(pentafluorphenyl)borinsäure (R. D. Chambers et al., J. Chem. Soc., 1965, 3933) und der Bis(phenyl)borinsäure (G. E. Coates, J. G. Livingstone, J. Chem. Soc. 1961, 4909) erfolgte nach Literaturvorschriften.
 - 1. Beispiel: Synthese von Di[bis(pentafluorphenylboroxy)]methylalan
 - 5 ml Trimethylaluminium (2M in Toluol, 10 mmol) werden in 45 ml Toluol vorgelegt. Bei 40 °C werden zu dieser Lösung 6.92 Bis(pentafluorphenyl)borinsäure (20 mmol) in 50 ml Toluol über 15 Minuten zugetropft. Es wird 1 Stunde bei 40 °C gerührt und anschließend eine weitere Stunde bei Raumtemperatur. Die leicht trübe, hellgelbe Lösung wird über eine G4-Fritte filtriert. Es resultiert eine klare, hellgelbe Lösung (0.1 M bezogen auf Al) von Bis(pentafluorphenylboroxy)methylalan in Toluol.
 - 2. Beispiel: Synthese von Di[bis(pentafluorphenylboroxy)]methylalan
- 5 ml Trimethylaluminium (2M in Toluol, 10 mmol) werden in 45 ml Toluol vorgelegt.

 Bei 40 °C werden zu dieser Lösung 3.32 Bis(phenyl)borinsäure (20 mmol) in 50 ml

10

15

20

25

30

Toluol über 15 Minuten zugetropft. Es wird 1 Stunde bei - 40 °C gerührt und anschließend eine weitere Stunde bei Raumtemperatur. Die leicht trübe, hellgelbe Lösung wird über eine G4-Fritte filtriert . Es resultiert eine klare, hellgelbe Lösung (0.1 M bezogen auf Al) von Bis(phenylboroxy)methyllalan in Toluol.

3. Beispiel: Synthese von Di[bis(pentafluorphenylboroxy)]isopropylalan

10 ml Triisopropylaluminium (1M in Toluol, 10 mmol) werden in 50 ml Toluol vorgelegt. Bei - 40 °C werden zu dieser Lösung 6.92 g Bis(pentafluorphenyl)-borinsäure (20 mmol) in 50 ml Toluol über 15 Minuten zugetropft. Es wird 1 Stunde bei - 40 °C gerührt und anschließend eine weitere Stunde bei Raumtemperatur. Die klare Lösung (0.1 M bezogen auf Al) von Bis(pentafluorphenylboroxy)-triisopropylalan kann direkt zur Polymerisation eingesetzt werden.

4. Beispiel: Synthese von Di[bis(pentafluorphenylboroxy)]isoprobylalan

10 ml Triisopropylaluminium (1M in Toluol, 10 mmol) werden in 50 ml Toluol vorgelegt. Bei - 40 °C werden zu dieser Lösung 3.32 Bis(phenyl)borinsäure (20 mmol) in 50 ml Toluol über 15 Minuten zugetropft. Es wird 1 Stunde bei - 40 °C gerührt und anschließend eine weitere Stunde bei Raumtemperatur. Die klare Lösung (0.1 M bezogen auf Al) von Bis(phenylboroxy)triisopropylalan kann direkt zur Polymerisation eingesetzt werden.

5. Beispiel: Herstellung des Katalysatorsystems

Zu einer Lösung von 53 mg (90 µmol) Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-zirkoniumdimethyl in 10.75 ml Toluol werden 9 ml der im Beispiel 1 hergestellten Stammlösung an Co-Katalysator zugegeben. Anschließend werden 0.25 ml Trimethylaluminium (2M in Toluol) zugespritzt und danach wird 1 Stunde bei Raumtemperatur nachgerührt. Zum Einschleusen in das Polymerisationssystem werden 0.5 ml der hergestellten Stammlösung eingesetzt.

6. Beispiel: Polymerisation

Ein 300 ml Polymerisationsautoklav (Parr 4560) wird unter Argonatmosphäre mit 150 ml Heptan befüllt. Anschließend werden 1.1 ml TIBA (20% ig) zudosiert und 20 Minuten bei 20 °C gerührt. Danach wird der Reaktor auf 50 °C aufgeheizt und 0.5 ml der unter Beispiel 5 hergestellten Katalysatorlösung werden eingespritzt. Anschließend wird ein Ethylendruck von 10 bar aufgepreßt und es wird eine Stunde bei gleichbleibenden Ethylendruck polymerisiert. Es resultieren 10.6 g Polyethylen-Pulver. Die Katalysatoraktivität betrug 8.08 kg PE/g Metallocen x h.

10

15

5

7. Beispiel: Herstellung des Katalysatorsystems

Zu einer Lösung von 100 mg (0,229 mmol) Dimethylsilandiylbis(2-methylindenyl)-zirkoniumdimehtyl in 25 ml Toluol und 22.9 ml der im Beispiel 1 hergestellten Stammlösung an Co-Katalysator werden portionsweise 10 g SiO₂ (MS 3030, Fa. PQ, getrocknet bei 600 °C im Argonstrom) zugegeben. Man läßt eine Stunde bei Raumtemperatur rühren und entfernt dann das Lösemittel im Ölpumpenvakuum bis zur Gewichtskonstanz. Zum Einschleusen in das Polymerisationssystem werden 1 g des geträgerten Katalysators in 30 ml Exxol resuspendiert.

20

25

30

8. Beispiel: Polymerisation

Parallel dazu wird ein trockener 16-dm3-Reaktor zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 10 dm3 flüssigem Propylen befüllt. Dann wurden 0.5 cm³ einer 20%igen Triisobutylaluminiumlösung in Varsol mit 30 cm³ Exxol verdünnt in den Reaktor gegeben und der Ansatz bei 30 °C 15 Minuten gerührt. Anschließend wurde die Katalysator-Suspension in den Reaktor gegeben. Das Reaktionsgemisch wurde auf die Polymerisationstemperatur von 60 °C aufgeheizt (4 °C/min) und das Polymerisationssystem 1 h durch Kühlung bei 60 °C gehalten. Gestoppt wurde die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wurde im Vakuumtrockenschrank getrocknet. Es resultieren

1,7 kg Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an Innenwand oder Rührer. Die Katalysatoraktivität betrug 174 kg PP/g Metallocen x h.

10

15

20

25

33

Patentansprüche:

1. Chemische Verbindung der Formel A

worin R¹ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine borfreie C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{10} -Alkoxy, C_6 - C_{20} -Aryl, C_6 - C_{20} -Halogenaryl, C_6 - C_{20} -Aryloxy, C_7 - C_{40} -Arylalkyl oder C_7 - C_{40} -Halogenarylalkyl, C_7 - C_{40} -Alkylaryl, C_7 - C_{40} -Halogenalkylaryl sind oder R¹ kann eine $OSiR_3$ ³-Gruppe sein, worin R³ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{10} -Alkoxy, C_6 - C_{20} -Aryl, C_6 - C_{20} -Halogenaryl, C_7 - C_{40} -Arylalkyl, C_7 - C_{40} -Halogenarylalky, C_7 - C_{40} -Alkylaryl, C_7 - C_{40} -Halogenalkylaryl sind oder R¹ kann eine $CH(SiR^4_3)_2$ -Gruppe sein, worin R⁴ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{10} -Alkoxy,

C₆-C₂₀-Aryl, C₆-C₂₀-Halogenaryl, C₆-C₂₀-Aryloxy, C₇-C₄₀-Arylalky, C₇-C₄₀-Halogenarylalkyl, C₇-C₄₀-Alkylaryl, C₇-C₄₀-Halogenalkylaryl sein,

X ist gleich oder verschieden ein Element der Gruppe VIa des Periodensystems der Elemente oder eine NR-Gruppe, mit R gleich Wasserstoff oder C₁-C₂₀-Kohlenwasserstoffrest wie C₁-C₂₀-Alkyl oder C₁-C₂₀-Aryl,

R³ und R⁵ köppen gleich oder verschieden sein und sind ein Wasserstoffatom, ein

 R^a und R^b können gleich oder verschieden sein und sind ein Wasserstoffatom, ein Halogenatom, eine borfreie C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{10} -Alkoxy, C_8 - C_{20} -Aryl, C_6 - C_{20} -Halogenaryl, C_6 - C_{20} -Aryloxy, C_7 - C_4 0-Arylalky, C_7 - C_4 0-Halogenarylalky, C_7 - C_4 0-Alkylaryl,

10

15

20

C₇-C₄₀-Halogenalkylaryl sind oder R¹ kann eine OSiR₃³-Gruppe sein, worin R³ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₄₀kohlenwasserstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl, C₁-C₁₀-Alkoxy, C_6 - C_{20} -Aryl, C_6 - C_{20} -Halogenaryl, C_6 - C_{20} -Aryloxy, C_7 - C_{40} -Arylalkyl, C_7 - C_{40} -Halogenarylalkyl, C_7 - C_{40} -Alkylaryl, C_7 - C_{40} -Halogenalkylaryl sind,

außerdem können R^a und R^b eine borhaltige Gruppe wie zum Beispiel -X-B R_i^1 sein, worin X ein Element der Gruppe VIa des Periodensystems der Elemente oder eine NR-Gruppe ist, mit R gleich Wasserstoff oder C₁-C₂₀-Kohlenwasserstoffrest wie C₁-C₂₀-Alkyl oder C₁-C₂₀-Aryl, und R¹ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine borfreie C₁-C₄₀-kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{10} -Alkoxy, C_6 - C_{20} -Aryl, C_6 -Halogenaryl, C₈-C₂₀-Aryloxy, C₇-C₄₀-Arylalkyl, C_7 - C_{40} -Halogenarylalkyl, C_7 - C_{40} -Alkylaryl, C_7 - C_{40} -Halogenalkylaryl sind oder R^1 kann

eine OSiR₃³-Gruppe sein, worin R³ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₄₀-kohlenwasserstoffhaltige Gruppe wie

 $C_1-C_{20}-Alkyl,\ C_1-C_{20}-Halogenalkyl,\ C_1-C_{10}-Alkoxy,\ C_8-C_{20}-Aryl,\ C_8-C_{20}-Halogenaryl,\ C_{6}-C_{6}-Aryl,\ C_{10}-Alkyl,\ C_{10}-Alkyl$ C₂₀-Aryloxy, C₇-C₄₀-Arylalkyl, C₇-C₄₀-Halogenarylalkyl, C₇-C₄₀-Alkylaryl, C₇-C₄₀-Halogenalkylaryl sind oder R1 kann eine CH(SiR43)2-Gruppe sein, worin R4 gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₄₀kohlenwasserstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl, C₁-C₁₀-Alkoxy, C_8 - C_{20} -Aryl, C_6 - C_{20} -Halogenaryl, C_8 - C_{20} -Aryloxy, C_7 - C_{40} -Arylalky, C_7 - C_{40} -Arylalky, C_7 - C_{40} -Aryloxy, C_7 - C_{40} -Arylalky, C_7 - C_{40} -Aryloxy, C_7 - C_{40} -CHalogenarylalkyl, C7-C40-Alkylaryl, C7-C40-Halogenalkylaryl sein,

und k ist eine ganze Zahl von 1 bis 100. 25

> Verfahren zur Herstellung einer chemischen Verbindung der Formel A gemäß 2. Anspruch 1, worin mindestens eine Verbindung der Formel IV oder V mit einer Verbindung der Formel VI umgesetzt wird

$$R_z^1B \longrightarrow XR^6$$
IV
 $R_z^1B \longrightarrow X \longrightarrow BR_z^1$

$$\begin{bmatrix} R^2 \\ AI \\ R^2 \end{bmatrix}_{R}$$

VI

5

10

15

20

worin R⁶ ein Wasserstoffatom oder eine borfreie C₁-C₄₀-kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_6 - C_{20} -Aryl, C_7 - C_{40} -Arylalky, C_7 - C_{40} -Alkylaryl sein kann und worin R¹ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₄₀-kohlenwasserstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl, $C_{1}-C_{10}-Alkoxy,\ C_{6}-C_{20}-Aryl,\ C_{6}-C_{20}-Haiogenaryl,\ C_{6}-C_{20}-Aryloxy,\ C_{7}-C_{40}-Arylalky,\ C_{7}-C_$ C_{40} -Halogenarylalkyl, C_7 - C_{40} -Alkylaryl, C_7 - C_{40} -Halogenalkylaryl sind oder R^1 kann eine OSiR₃³-Gruppe sein, worin R³ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie $C_1-C_{20}-Alkyl,\ C_1-C_{20}-Halogenalkyl,\ C_1-C_{10}-Alkoxy,\ C_6-C_{20}-Aryl,\ C_6-C_{20}-Halogenaryl,\ C_{6-C_{20}}-Aryl,\ C_{6-C_{20}}-Ary$ C_{20} -Aryloxy, C_7 - C_{40} -Arylalkyl, C_7 - C_{40} -Halogenarylalky, C_7 - C_{40} -Alkylaryl, C_7 - C_{40} -Halogenalkylaryl sind, oder R¹ kann eine CH(SiR⁴₃)₂-Gruppe sein, worin R⁴ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₄₀kohlenwasserstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl, C₁-C₁₀-Alkoxy, $C_6-C_{20}-Aryl,\ C_6-C_{20}-Halogenaryl,\ C_6-C_{20}-Aryloxy,\ C_7-C_{40}-Arylalkyl,\ C_7-C_{40}-Arylalkyl,\ C_{7}-C_{40}-Arylalkyl,\ C_{8}-C$

Halogenarylalkyl, C₇-C₄₀-Alkylaryl, C₇-C₄₀-Halogenalkylaryl sind,

 R^1 sind gleich oder verschieden und bevorzugt ein borfreier C_1 - C_{40} -Kohlenwasserstoffrest, der mit Halogen wie Fluor, Chlor, Brom oder Iod halogeniert bevorzugt perhalogeniert sein kann, insbesondere eine halogenierte, insbesondere perhalogenierte C_1 - C_{30} -Alkylgruppe wie Trifluormethyl-, Pentachlorethyl-,

- Heptafluorisopropyl oder Monofluorisobutyl oder eine halogenierte, insbesondere perhalogenierte C₆-C₃₀-Arylgruppe wie Pentafluorphenyl-, Heptachlornaphtyl-, Heptafluornaphthyl-, Heptafluortolyl-, 3,5-bis(trifluormehtyl)phenyl-, 2,4,6-tris(trifluormethyl)phenyl oder 4-(trifluormethyl)phenyl. Ebenfalls bevorzugt für R¹ sind Reste wie Phenyl-, Biphenyl-, Naphthyl, Anisyl-, Mehtyl-, Ethyl-, Isopropyl-, Butyl-,
- Tolyl- oder 2,3-Dimethyl-phenyl,

 R² sind gleich oder verschieden ein Wasserstoffatom, ein Halogenatom, eine borfreie

 C₁-C₄₀-kohlenwasserstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl,

 C₁-C₁₀-Alkoxy, C₆-C₂₀-Aryl, C₆-C₂₀-Halogenaryl, C₆-C₂₀-Aryloxy, Cȝ-C₄₀-Arylalky,

 Cȝ-C₄₀-Halogenarylalkyl, Cȝ-C₄₀-Alkylaryl, Cȝ-C₄₀-Halogenalkylaryl oder R² kann eine

 OSiR₃³-Gruppe sein, worin R³ gleich oder verschieden sind und ein Wasserstoffatom,

 ein Halogenatom, eine C₁-C₄₀-kohlenwasserstoffhaltige Gruppe wie
 - ein Halogenatom, eine C_1 - C_{40} -kohlenwasserstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{10} -Alkoxy, C_6 - C_{20} -Aryl, C_6 - C_{20} -Halogenaryl, C_7 - C_{40} -Alkyl, C_7 - C_{40} -Alkylaryl, C_7 - C_{40} -Halogenalkylaryl sind,
- R² ist bevorzugt ein Wasserstoffatom, ein Halogenatom oder ein borfreier C₁-C₄₀-Kohlenwasserstoffrest, der mit Halogen wie Fluor, Chlor, Brom oder lod halogeniert bevorzugt perhalogeniert sein kann, insbesondere eine halogenierte, insbesondere perhalogenierte C₁-C₃₀-Alkylgruppe wie Trifluormethyl-, Pentachlorethyl-, Heptafluorisopropyl oder Monofluorisobutyl oder eine halogenierte,
- insbesondere perhalogenierte C₆-C₃₀-Arylgruppe wie Pentafluorphenyl-,
 Heptachlornaphtyl-, Heptafluornaphthyl-, Heptafluortolyl-, 3,5-bis(trifluormehtyl)phenyl-, 2,4,6-tris(trifluormethyl)phenyl oder 4-(trifluormethyl)phenyl. Ebenfalls
 bevorzugt für R² sind Reste wie Phenyl-, Mehtyl-, Ethyl-, Isopropyl-, Butyl-, Tolyloder 2,3-Dimethyl-phenyl,
- X ist gleich verschieden ein Element der Gruppe VIa des Periodensystems der Elemente oder eine NR-Gruppe, worin R ein Wasserstoffatom oder eine

 C_1 - C_{20} -Kohlenwasserstoffrest wie C_1 - C_{20} -Alkyl oder C_1 - C_{20} -Aryl ist, und n ist eine ganze Zahl von 1 bis 10.

- 3. Katalysatorsystem, enthaltend
- a) mindestens eine chemische Verbindung der Formel A gemäß Anspruch 1 und
- b) mindestens eine Übergangsmetallverbindung.
 - 4. Katalysatorsystem erhältlich durch Kontaktieren
 - a) mindestens einer chemischen Verbindung der Formel A gemäß Anspruch 1 und
- 10 b) mindestens einer Übergangsmetallverbindung.
 - 5. Katalysatorsystem gemäß Anspruch 3 oder 4 zusätzlich enthaltend einen Träger.
- 15 6. Verfahren zur Herstellung eines Polyolefins in Gegenwart eines Katalysatorsystems gemäß einem oder mehreren der Ansprüche 3 bis 5.
 - 7. Verwendung eines Katalysatorsystems gemäß einem oder mehreren der Ansprüche 3 bis 5 zur Olefinpolymerisation.

I. rational Application No PCT/EP 98/04628

A. CLASSII	FICATION OF SUBJECT MATTER C07F5/06 C08F10/00		
	33, 12, 33		
According to	International Patent Classification (IPC) or to both national classification	tion and IPC	
B. FIELOS			
Minimum do	cumentation searched (classification system followed by classification	n symbols)	
IPC 6	C07F C08F		
Documentat	ion searched other than minimum documentation to the extent that su	ich documents are included in the fields se	arched
Electronic d	ata base consulted during the international search (name of data bas	e and, where practical, search terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category '	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.
Х	EP 0 601 830 A (MITSUBISHI PETROC	HEMICAL	1-7
	COMPANY LIMITED) 15 June 1994		
	see the whole document		
X	WO 95 14024 A (IDEMITSU KOSAN CO.	ו מדו	1-7
^	26 May 1995	, 210.7	• '
	see the whole document		
		,	
		·/	
		·	
			<u> </u>
X Furt	ther documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
' Special ca	ategories of cited documents:	"T" later document published after the inte	mational filing date
	ent defining the general state of the art which is not	or priority date and not in conflict with cited to understand the principle or th	the application but
	dered to be of particular relevance document but published on or after the international	invention "X" document of particular relevance; the o	
filing	date	cannot be considered novel or cannot involve an inventive step when the do	be considered to
which	ent which may throw doubts on priority claim(s) or , is cited to establish the publication date of another ,n or other special reason (as specified)	"Y" document of particular relevance; the o	laimed invention
"O" docum	nent referring to an oral disclosure, use, exhibition or	cannot be considered to involve an in document is combined with one or me	ore other such docu-
"P" docum	means ent published prior to the international filing date but	ments, such combination being obvio in the art.	
later	than the priority date claimed	*8" document member of the same patent	
Date of the	actual completion of the international search	Date of mailing of the international se	arch report
1	17 November 1998	08/12/1998	
Name and	mailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk		
	Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,	Rinkel, L	

Ir ational Application No PCT/EP 98/04628

	· · · · · · · · · · · · · · · · · · ·	PC1/EP 98/			
	C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of gocument, with indication, where appropriate, of the relevant passages Relevant to claim No.				
Category	Challott of document. With indication, where depropriates of the 1980 and 1980				
Х	CHEMICAL ABSTRACTS, vol. 108, no. 15, 11 April 1988 Columbus, Ohio, US; abstract no. 132039, SYNORADZKI, LUDWIK ET AL: "Preparation of boron-aluminum oxides" XP002084605 see abstract see page X & PL 130 177 A (POLITECHNIKA WARSZAWSKA, POL.)	·	1		
X	SYNORADZKI, LUDWIK ET AL: "Reaction of diethylhydroxyborane with trialkylaluminum" J. ORGANOMET. CHEM. (1985), 284(1), 1-4 CODEN: JORCAI;ISSN: 0022-328X,1985, XP002084603 see the whole document		1		
X	ANTON, KLAUS ET AL: "Chemistry of boron. 134. Adducts of (dimethylamino)boranes with aluminum and gallium halides" CHEM. BER. (1984), 117(3), 863-74 CODEN: CHBEAM; ISSN: 0009-2940, 1984, XP002084604 see the whole document		1		
X	CHEMICAL ABSTRACTS, vol. 126, no. 14, 7 April 1997 Columbus, Ohio, US; abstract no. 186532, NAKANAGA, KENJI ET AL: "Olefin polymerization catalysts for manufacture of polyolefins with narrow molecular weight and broad composition distributions" XP002084606 see abstract & JP 09 012618 A (IDEMITSU KOSAN CO, JAPAN)		1-7		

Ir ational Application No PCT/EP 98/04628

Information on patent family members

Patent document cited in search report	t	Publication date		atent family member(s)	Publication date
EP 601830	A	15-06-1994	JP JP US US	6172438 A 6172439 A 5449650 A 5648440 A	21-06-1994 21-06-1994 12-09-1995 15-07-1997
WO 9514024	Α	26-05-1995	NONE		

li ationales Aktenzeichen PCT/EP 98/04628

Α.	KLASSI	FIZIERUNG DES	ANMELDUNGSGEGE!	ISTANDES
	PK 6	C07F5/0	C08F107	'00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK \;\; 6 \quad C07F \quad C08F$

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiele fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 0 601 830 A (MITSUBISHI PETROCHEMICAL COMPANY LIMITED) 15. Juni 1994 siehe das ganze Dokument	1-7
X	WO 95 14024 A (IDEMITSU KOSAN CO., LTD.) 26. Mai 1995 siehe das ganze Dokument/	1-7

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie
 Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusenen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "U" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhalt erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen be zieht "Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist 	kann nicht als auf erfinderischer Täligkeit beruhend beirachtet werden, wenn die Veröffentlichung mit einer oder mehreen anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist 3. Veröffentlichung, die Mitglied derselben Patentfamilie ist
Datum des Abschlusses der internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
17. November 1998	08/12/1998
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2	Bevollmächtigter Bediensteter
NL - 2280 MV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Rinkel, L

PCT/EP 98/04628

C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie ·	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	CHEMICAL ABSTRACTS, vol. 108, no. 15, 11. April 1988 Columbus, Ohio, US; abstract no. 132039, SYNORADZKI, LUDWIK ET AL: "Preparation of boron-aluminum oxides" XP002084605 siehe Zusammenfassung siehe Seite X & PL 130 177 A (POLITECHNIKA WARSZAWSKA, POL.)	1
X	SYNORADZKI, LUDWIK ET AL: "Reaction of diethylhydroxyborane with trialkylaluminum" J. ORGANOMET. CHEM. (1985), 284(1), 1-4 CODEN: JORCAI;ISSN: 0022-328X,1985, XP002084603 siehe das ganze Dokument	1
X	ANTON, KLAUS ET AL: "Chemistry of boron. 134. Adducts of (dimethylamino)boranes with aluminum and gallium halides" CHEM. BER. (1984), 117(3), 863-74 CODEN: CHBEAM; ISSN: 0009-2940, 1984, XP002084604 siehe das ganze Dokument	1
X	CHEMICAL ABSTRACTS, vol. 126, no. 14, 7. April 1997 Columbus, Ohio, US; abstract no. 186532, NAKANAGA, KENJI ET AL: "Olefin polymerization catalysts for manufacture of polyolefins with narrow molecular weight and broad composition distributions" XP002084606 siehe Zusammenfassung & JP 09 012618 A (IDEMITSU KOSAN CO, JAPAN)	1-7

PCT/EP 98/04628

lm Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 601830	A	15-06-1994	JP JP US US	6172438 A 6172439 A 5449650 A 5648440 A	21-06-1994 21-06-1994 12-09-1995 15-07-1997
WO 9514024	Α	26-05-1995	KEIN	E	