

On rapporte le plan affine au repère $\left(o, \overrightarrow{i}, \overrightarrow{j}\right)$. On considère le segment $\mathcal{M}_0 = [oa]$, où $a\left(0,1\right)$.

1. Lemmes techniques

- (a) Ecrire une fonction homothetie(k) qui à partir du réel k non nul, renvoie la matrice projective H de l'homothétie de centre o et de rapport k.
- (b) Ecrire une fonction rotation (alpha) qui à partir de la mesure alpha considérée comme un réel ou un symbolique, renvoie la matrice projective R de la rotation de centre o et d'angle alpha.
- (c) Ecrire une fonction translation(a) qui à partir du point a (connu par ses coordonnées dans le repère proposé, renvoie la matrice projective T de la translation de vecteur \overrightarrow{oa} .

2. Construction d'une fractale

(a) Principe

On considère l'ensemble de transformations du plan $G=\{g_0,g_1,g_2\}$ où $g_0=id,\,g_1=t\circ r_1\circ h$ et $g_2=t\circ r_2\circ h$

- $\bullet \ t$ désigne la translation décrite ci-dessus ;
- \bullet h désigne l'homothétie décrite ci-dessus ;
- r_1, r_2 désignent respectivement les rotations décrites ci-dessus d'angles respectifs alpha et -alpha.

On construit alors:

$$\mathcal{M}_1 = \bigcup_{i=0}^2 g_i \left(\mathcal{M}_0 \right)$$

$$\mathcal{M}_2 = \bigcup_{i=0}^2 g_i\left(\mathcal{M}_1\right)$$

- (b) Ecrire une fonction $fract2(\mathcal{M}_0)$ qui génère l'image fractale $I_{\mathcal{M}_0}$ décrite ci-dessus.
- (c) Réutiliser la fonction précédente pour générer une image $I_{\mathcal{M}'_0}$ issue d'un motif de base différent.

(d) Prolongements éventuels

Proposer une version en trois dimensions du b) précédent.