CONSTRUCTING EFFICIENT SIMULATED MOMENTS USING TEMPORAL CONVOLUTIONAL NETWORKS

JONATHAN CHASSOT AND MICHAEL CREEL

DEEP LEARNING FOR SOLVING AND ESTIMATING DYNAMIC MODELS (DSE2023CH)

August 24, 2023

OUR CONTRIBUTION

- Propose a method to estimate model parameters leveraging <u>deep learning</u>
- Allow for inference using <u>well-established econometric methods</u>
- Provide an <u>exactly identifying</u> and <u>informative</u> set of statistics for simulationbased inference
- Achieve performance equal to or better than maximum likelihood for small and moderate sample sizes for several DGPs

MOTIVATING EXAMPLE

- Parameter estimation for a complex data-generating process (DGP)
- Failure of traditional estimation methods (ML, GMM)

MOTIVATING EXAMPLE

- Parameter estimation for a complex data-generating process (DGP)
 - Presence of latent variables
 - High-dimensional integrals
 - **...**
- Failure of traditional estimation methods (ML, GMM)
 - Intractable likelihood
 - Computational constraints
 - No closed-form theoretical moments

→ Use simulation-based inference methods

METHODOLOGY

SIMULATION-BASED INFERENCE

- Method of Simulated Moments (McFadden, 1989)
- Approximate Bayesian Computation (Rubin, 1984)
- Indirect Inference (Gouriéroux, Monfort & Renault, 1993; Smith, 1993)
- Bayesian Limited Information Estimation (Kwan, 1999; Kim, 2002; Chernozhukov & Hong, 2003)

Match sample statistics with statistics obtained through simulation

METHOD OF SIMULATED MOMENTS

- Use <u>simulated moment conditions</u> instead of theoretical ones
- Match data moments and simulated moments

$$\hat{ heta}_{ ext{MSM}} = rgmin_{ heta \in \Theta} \ \left(T^{-1} \sum_{t=1}^T m(x_t, heta)^ op
ight) W_T \left(T^{-1} \sum_{t=1}^T m(x_t, heta)
ight),$$

where W_T is a weighting matrix and

$$m(x_t, heta) = f(x_t) - rac{1}{S} \sum_{s=1}^S f(ilde{x}_t(heta))$$

with S the number of simulations and $\tilde{x}_t(\theta)$ the data simulated at parameter θ .

METHOD OF SIMULATED MOMENTS

• ...but how do we choose $f(\cdot)$ in

$$m(x_t, heta) = f(x_t) - rac{1}{S} \sum_{s=1}^S f(ilde{x}_t(heta))$$

OPTIMAL MOMENT CONDITIONS

- Choosing optimal moment conditions is difficult
- Overidentification leads to high asymptotic efficiency but also to <u>high bias</u>
 <u>and/or variance</u> in finite samples (Donald, Imbens & Newey, 2009)

OPTIMAL MOMENT CONDITIONS

- Choosing optimal moment conditions is difficult
- Overidentification leads to high asymptotic efficiency but also to <u>high bias</u>
 <u>and/or variance</u> in finite samples (Donald, Imbens & Newey, 2009)

Theory:

 Gallant & Tauchen (1996) show that the optimal choice of moment conditions corresponds to the <u>score function</u> (equivalent to MLE)

OPTIMAL MOMENT CONDITIONS

- Choosing optimal moment conditions is difficult
- Overidentification leads to high asymptotic efficiency but also to <u>high bias</u> and/or variance in finite samples (Donald, Imbens & Newey, 2009)

Theory:

 Gallant & Tauchen (1996) show that the optimal choice of moment conditions corresponds to the <u>score function</u> (equivalent to MLE)

Practice:

- Moment selection criteria and algorithms (e.g., Donald, Imbens & Newey, 2009; Cheng & Liao, 2015; DiTraglia, 2016)
- Our work is related to this category

OPTIMAL MOMENT CONDITIONS

Goal:

• Given a data set $\{x_t \mid x_t \in \mathbb{R}^k\}_{t=1}^T$, generated by our DGP under true parameter value θ_0 , we would like to find $f(x_t) \approx \theta_0$

OPTIMAL MOMENT CONDITIONS

Goal:

• Given a data set $\{x_t \mid x_t \in \mathbb{R}^k\}_{t=1}^T$, generated by our DGP under true parameter value θ_0 , we would like to find $f(x_t) \approx \theta_0$

Idea:

• Generate samples $\{\tilde{x}_t(\theta) \mid \tilde{x}_t(\theta) \in \mathbb{R}^k\}$ with $\theta \in \Theta$ and use deep learning to infer $f(\cdot)$, a mapping from data to parameters

NEURAL NETWORKS

- Long Short-Term Memory Networks (LSTM)
- Temporal Convolutional Networks (TCN)

NEURAL NETWORKS

- Long Short-Term Memory Networks (LSTM)
 - Hochreiter & Schmidhuber (1997)
 - Dominated sequence modelling pre-Transformers (Vaswani et al., 2017)
 - Difficulties in modeling long-term dependencies
 - Serve as a <u>baseline</u> deep learning model in this work
- Temporal Convolutional Networks (TCN)
 - Introduced as WaveNet (van den Oord et al., 2016)
 - Fully parallelizable
 - Flexible receptive field size
 - Serve as the <u>main model</u> in this work

BENCHMARK RESULTS

RESULTS FOR SIMPLE DGPS

- Benchmark our TCNs and LSTMs against MLE for 3 data-generating processes (MA(2), Logit, GARCH(1,1)) where the <u>likelihood is tractable</u>
- Sample sizes 100, 200, 400, and 800
- Comparison across 5'000 test samples for each setting
- <u>Conjecture:</u> if the neural networks do well, they will also perform well when the MLE is not available

JUMP-DIFFUSION PROCESS

JUMP-DIFFUSION STOCHASTIC VOLATILITY

$$dp_t = \mu \, dt + \sqrt{\exp h_t} \, dW_{1t} + J_t \, dN_t \ dh_t = \kappa (lpha - h_t) + \sigma \, dW_{2t}$$

JUMP-DIFFUSION STOCHASTIC VOLATILITY

$$dp_t = \mu \, dt + \sqrt{\exp h_t} \, dW_{1t} + J_t \, dN_t \ dh_t = \kappa (lpha - h_t) + \sigma \, dW_{2t}$$

- p_t : logarithmic price
 - μ : average drift in price
 - $lacksquare J_t$: jump size ($J_t=a\lambda_1\sqrt{\exp h_t}$) with $\mathbb{P}[a=1]=\mathbb{P}[a=-1]=rac{1}{2}$
 - $lacksquare N_t$: Poisson process with jump intensity λ_0
- h_t : logarithmic volatility
 - κ : speed of mean-reversion
 - α : long-term mean volatility
 - σ : volatility of the volatility
- W_{1t}, W_{2t} : correlated Brownian motions with correlation ho

JUMP-DIFFUSION STOCHASTIC VOLATILITY

Parameters:

- 1. μ : average drift in price
- 2. κ : speed of mean-reversion
- 3. α : long-term mean volatility
- 4. σ : volatility of the volatility
- 5. ho: correlation between W_{1t} and W_{2t}
- 6. λ_0 : jump intensity
- 7. λ_1 : jump magnitude
- 8. au: the volatility of a measurement error $N(0, au^2)$ added to the observed price

Observables:

- 1. logarithmic returns
- 2. realized volatility
- 3. bipower variation

CONCLUSION

CONCLUSION

- Best case scenario for deep learning
- Once the network is trained, inference is as fast as matrix multiplication
- Limited only in the cost of simulation
- Promising results on three simple DGPs and one moderately complex DGP
- Easy to implement
 - Full Julia package under development (already functional): https://github.com/JLDC/DeepSimulatedMoments.jl

