Statistic Machine Learning

Information Measure Entropy

Lecture Notes 8: Information Measure Entropy

Professor: Zhihua Zhang

Scribe:

8 Information Measure and Entropy

8.1 Discrete Cases

Definition 8.1 Given discrete random variable X, the entropy $\mathbb{H}(X)$ of X is defined by $\mathbb{H}(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$

- $\log e = 1$,
- $0 \log 0 = \lim_{a \to 0^+} a \log a = 0.$

Lemma 8.1 For any discrete random variable X, $\mathbb{H}(X) \geq 0$.

Proof: Since $0 \le p(x) \le 1$, we have $p(x) \log p(x) \le 0$. So $\mathbb{H}(x) \ge 0$ holds.

Example 8.1 Given the random variable X with p.m.f that $p(x) = \begin{cases} 1 & with & probability & p \\ 0 & with & probability & 1-p \end{cases}$ Then, $\mathbb{H}(x) = -p \log p - (1-p) \log (1-p)$.

8.2 Joint Entropy and Conditional Entropy

Definition 8.2 The entropy $\mathbb{H}(X,Y)$ of (X,Y) is defined by

$$\mathbb{H}(X,Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x,y) = -\mathbb{E} \left[\log p(x,y) \right].$$

Definition 8.3 If $(X,Y) \sim p(x,y)$, then the conditional entropy

$$\begin{split} \mathbb{H}(Y|X) &= \sum_{x \in \mathcal{X}} p(x) \mathbb{H}(Y|X = x) \\ &= -\sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y|x) \log p(y|x) \\ &= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(y|x) \\ &= -\mathbb{E}\left[\log p(y|x)\right] \end{split}$$

Theorem 8.1 (The Chain Rule) $\mathbb{H}(X,Y) = \mathbb{H}(X) + \mathbb{H}(Y|X)$

Proof: Using $\log p(x,y) = \log p(x) + \log p(y|x)$, we compute the expectation in both sides about (X,Y).

Corollary 8.1 $\mathbb{H}(X,Y|Z) = \mathbb{H}(X|Z) + \mathbb{H}(Y|X,Z)$.

8.3 Relative Entropy and Mutual Information

Definition 8.4 The relative entropy or KullbackLeibler Divergence(KLD) between p.m.f p(x) and q(x) is defined as follows:

$$D(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = \mathbb{E}_p \left[\log \frac{p(x)}{q(x)} \right]$$

.

- $\bullet \ 0\log\tfrac{0}{q} = 0,$
- $a \log \frac{a}{0} = \infty$,
- $\bullet \ 0\log\tfrac{0}{0} = 0.$

Definition 8.5 Given two variable X and Y with p.m.f p(x,y) and the marginal p.m.f are p(x) and p(y). The mutual information $\mathbb{I}(X,Y)$ is

$$\mathbb{I}(X,Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \log \frac{p(x,y)}{p(x)p(y)} p(x,y)$$
$$= D(p(x,y)||p(x)p(y))$$

Generally the Kullback Leibler Divergence is not symmetric. But we can build $D'(p||q) = \frac{1}{2}D(p||q) + \frac{1}{2}D(q||p)$ to make the KLD symmetric.

Example 8.2 Let $\mathcal{X} = \{0, 1\}$, p(x) and q(x) are p.m.f. let p(X = 0) = 1 - r, p(X = 1) = r, q(X = 0) = 1 - s, q(X = 1) = s, Then

$$D(p||q) = (1 - r) \log \frac{1 - r}{1 - s} + r \log \frac{r}{s}$$
$$D(q||p) = (1 - s) \log \frac{1 - s}{1 - r} + s \log \frac{s}{r}$$

Theorem 8.2 (Mutual Information and Entropy)

$$\begin{split} \mathbb{I}(X,Y) &= \mathbb{I}(Y,X) \\ \mathbb{I}(X,X) &= \mathbb{H}(X) \\ \mathbb{I}(X,Y) &= \mathbb{H}(X) - \mathbb{H}(X|Y) \\ &= \mathbb{H}(Y) - \mathbb{H}(Y|X) \\ &= \mathbb{H}(X) + \mathbb{H}(Y) - \mathbb{H}(X,Y) \end{split}$$

Definition 8.6 The conditional mutual information of random variable X and Y given Z is

$$\mathbb{I}(X,Y|Z) = \mathbb{H}(X|Z) - \mathbb{H}(X|Y,Z)$$

Definition 8.7 The conditional relative entropy D(p(y|x)||q(y|x)) is

$$D(p(y|x)||q(y|x)) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(y|x) \log \frac{p(y|x)}{q(y|x)}$$

.

Theorem 8.3 Let p(x) and q(x) with $x \in \mathcal{X}$ be two p.m.f. Then $D(p||q) \geq 0$ with the equality if and only if p(x) = q(x), for all $x \in \mathcal{X}$

Lemma 8.2 Let $\sum a_i$ and $\sum b_i$ be convergent sequence of non-negative numbers. Then the following hold:

- $\sum a_i \log \frac{b_i}{a_i} + \sum (a_i b_i) \le 0$ or $\sum a_i \log \frac{a_i}{b_i} + \sum (b_i a_i) \ge 0$.
- If $\sum a_i \ge \sum b_i$, then $\sum a_i \log \frac{b_i}{a_i} \le 0$ with equality iff $a_i = b_i$.
- Further more, if $a_i \leq 1$ and $b_i \leq 1$ for all i, then $2 \sum a_i \log \frac{a_i}{b_i} \geq \sum a_i (a_i b_i)^2$

Proof : Considering the taylor expansion of $\log x$ at x=1, we have $\log x=(x-1)-\frac{(x-1)^2}{2}\frac{1}{\theta^2}$, where θ is between 1 and x. Hence, $\log \frac{b_i}{a_i}=(\frac{b_i}{a_i}-1)-\frac{1}{2\theta_i^2}(\frac{b_i}{a_i}-1)^2$, then $a_i\log \frac{b_i}{a_i}=(b_i-a_i)-\frac{a_i^3}{2a_i^2\theta_i^2}(\frac{b_i}{a_i}-1)^2$. So $\sum a_i\log \frac{b_i}{a_i}=\sum (b_i-a_i)-\sum \frac{a_i^3}{2a_i^2\theta_i^2}(\frac{b_i}{a_i}-1)^2$. Notice that $\theta_i\in \left[1,\frac{b_i}{a_i}\right]$, we have $a_i\theta_i\in [a_i,b_i]$, hence $\sum \frac{a_i^3}{2a_i^2\theta_i^2}(\frac{b_i}{a_i}-1)^2\geq 0$. So $\sum a_i\log \frac{b_i}{a_i}+\sum (a_i-b_i)\leq 0$. And the equality holds when $\frac{a_i}{b_i}=1$. Further more, $\sum \frac{a_i^3}{2a_i^2\theta_i^2}(\frac{b_i}{a_i}-1)^2\leq \sum \frac{a_i}{2}(a_i-b_i)^2$, accordingly we obtain $2\sum a_i\log \frac{a_i}{b_i}\geq \sum a_i(a_i-b_i)^2$.

Lemma 8.3 Let $\sum a_i$ and $\sum b_i$ be convergent sequences. Then

$$\sum a_i \log \frac{a_i}{b_i} \ge (\sum a_i) \log \frac{\sum a_i}{\sum b_i}$$

Proof: $\frac{\sum a_i \log \frac{b_i}{a_i}}{\sum a_i} \leq \log \sum \frac{a_i}{\sum a_i} \frac{b_i}{a_i} = \log \frac{\sum b_i}{\sum a_i}$. Both sides multiplies -1, we have $\sum a_i \log \frac{a_i}{b_i} \geq (\sum a_i) \log \frac{\sum a_i}{\sum b_i}$. The equality holds when $\frac{a_i}{b_i}$ are the same for all i, that is $\frac{a_i}{b_i}$ are constant.

Theorem 8.4 $\mathbb{H}(X) \leq \log |\mathcal{X}|$, where $|\mathcal{X}|$ denotes the number of elements in the range of X with equality iff X has a uniform distribution over \mathcal{X} .

Proof Suppose p(x) and q(x) are p.m.f of random variable X, the KullbackLeibler Divergence(KLD) between p and g are

$$D(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} \ge 0$$

Alternatively, $-\sum_{x \in \mathcal{X}} p(x) \log p(x) + \sum_{x \in \mathcal{X}} p(x) \log q(x) \le 0$, that is $\mathbb{H}(X) \le -\sum_{x \in \mathcal{X}} p(x) \log q(x)$. Let $q(x) = \frac{1}{|\mathcal{X}|}$, we have $\mathbb{H}(X) \le \log |\mathcal{X}|$, which complete the proof.

Theorem 8.5 (Condition Reduces Entropy)

$$\mathbb{H}(X|Y) \le \mathbb{H}(X)$$

with the equality iff X and Y are independent.

Definition 8.8 (Differential Entropy)

$$\mathbb{H}(X) = -\int_{S} f(x) \log f(x) dx$$

, where S is the support set of random variable X(if f(x) exists) and f(x) is p.d.f of X.

Example 8.3 Suppose random variable X is uniformly distributed on (0, a). Then $\mathbb{H}(X) = -\int_0^a \frac{1}{a} \log \frac{1}{a} dx = \log a$. $\mathbb{H}(X) \leq 0$, when $0 \leq a \leq 1$.

Similarly, suppose the p.d.f of X_1, X_2, \dots, X_n is $f(x_1, x_2, \dots, x_n)$, then

$$\mathbb{H}(x_1, x_2, \cdots, x_n) = -\int f(x_1, x_2, \cdots, x_n) \log f(x_1, x_2, \cdots, x_n) dx_1 dx_2 \cdots dx_n$$

 $\mathbb{H}(X|Y) = -\int f(x,y)\log f(x|y)dxdy$

Example 8.4 Let $X = (X_1, \dots, X_n)$ is gaussian distribution, that is, $X \sim N(\mu, \Sigma)$.

$$\mathbb{H}(X) = -\int f_X(x)(-\frac{n}{2}\log 2\pi - \frac{1}{2}\log |\Sigma| - \frac{1}{2}(X - \mu)^{\mathbf{T}}\Sigma^{-1}(X - \mu))dX$$

$$= \frac{1}{2}(n\log 2\pi + \log |\Sigma| + \int f_X(x)\operatorname{tr}((X - \mu)^{\mathbf{T}}\Sigma^{-1}(X - \mu))dX)$$

$$= \frac{1}{2}(n\log 2\pi + \log |\Sigma| + \int f_X(x)\operatorname{tr}(\Sigma^{-1}(X - \mu)(X - \mu)^{\mathbf{T}})dX)$$

$$= \frac{1}{2}(n\log 2\pi + \log |\Sigma| + \operatorname{tr}(\Sigma^{-1}\int f_X(x)(X - \mu)(X - \mu)^{\mathbf{T}}dX))$$

$$= \frac{1}{2}(n\log 2\pi + \log |\Sigma| + \operatorname{tr}(\Sigma^{-1}\Sigma))$$

$$= \frac{1}{2}(n\log 2\pi + \log |\Sigma| + n)$$

Definition 8.9 Suppose $X \sim f(X)$ and $Y \sim g(X)$, then

$$D(f||g) = \int f(X) \log \frac{f(X)}{g(X)} dX$$

Note that D(f||g) is finite only if the support of f is contained in the support of g.

Definition 8.10 (Mutual Information)

$$\mathbb{I}(X,Y) = \int f(x,y) \log \frac{f(x,y)}{f(x)f(y)} dxdy = D(f(x,y)||f(x)f(y))$$
$$\mathbb{I}(X,Y) = \mathbb{H}(X) - \mathbb{H}(X|Y) = \mathbb{H}(Y) - \mathbb{H}(Y|X)$$

Theorem 8.6

$$D(f||g) \ge 0$$

with the equality iff f = g at almost everywhere.

Proof: $\int f(x) \log \frac{g(x)}{f(x)} dx \le \log \int f(x) \frac{g(x)}{f(x)} dx = \log \int g(x) dx = 0$, So $\int f(x) \log \frac{f(x)}{g(x)} dx \ge 0$, which complete the proof.

Corollary 8.2

- $\mathbb{I}(X,Y) \geq 0$, with the equality iff X and Y are independent.
- $\mathbb{H}(X|Y) \leq \mathbb{H}(X)$, with the equality iff X and Y are independent.

Theorem 8.7 The chain rule for differential entropy

$$\mathbb{H}(X_1,\dots,X_n) = \sum_{i=1}^n \mathbb{H}(X_i|X_1,\dots,X_{i-1})$$

Corollary 8.3

$$\mathbb{H}(X_1,\cdots,X_n) \le \sum_{i=1}^n \mathbb{H}(X_i)$$

Example 8.5 Suppose $\Sigma \in \mathbf{S}_{++}^n$, where $\Sigma = [\sigma_{ij}]$ then

$$\det \Sigma \le \prod_{i=1}^n \sigma_{ii}$$

Proof : Suppose $X = (X_1, \dots, X_n) \sim N(0, \Sigma)$, so $X_i \sim N(0, \sigma_{ii})$. $\mathbb{H}(X_1, \dots, X_n) = \frac{1}{2}(n \log 2\pi + \log \det \Sigma + n)$, $\mathbb{H}(X_i) = \frac{1}{2}(\log 2\pi + \log \sigma_{ii} + 1)$. Since $\mathbb{H}(X_1, \dots, X_n) \leq \sum_{i=1}^n \mathbb{H}(X_i)$, we have $\frac{1}{2}(n \log 2\pi + \log \det \Sigma + n) \leq \frac{n}{2} \log 2\pi + \frac{1}{2} \sum_{i=1}^n \log \sigma_{ii} + \frac{n}{2}$, thus $\log \det \Sigma \leq \sum_{i=1}^n \log \sigma_{ii}$. So $\det \Sigma \leq \prod_{i=1}^n \sigma_{ii}$ holds.

Theorem 8.8

$$\mathbb{H}(\alpha X + c) = \mathbb{H}(X) + \log|\alpha|$$

, where $\alpha \geq 0$

Proof: Let $Y = \alpha X + c$, then $f_Y(y) = \frac{1}{|\alpha|} f_X(\frac{Y-c}{\alpha})$

$$\mathbb{H}(\alpha X + c) = -\int f_Y(y) \log f_Y(y) dy$$

$$= -\int \frac{1}{|\alpha|} f_X(\frac{Y - c}{\alpha}) (\log \frac{1}{|\alpha|} + \log f_X(\frac{Y - c}{\alpha})) dy$$

$$= -\int f_X(X) (\log \frac{1}{|\alpha|} + \log f_X(X)) dx$$

$$= \mathbb{H}(X) + \log |\alpha|$$

Corollary 8.4 Suppose A is nonsingular, then $\mathbb{H}(AX) = \mathbb{H}(X) + \log |A|$.

Theorem 8.9 Let $X \in \mathbb{R}^m$ have zero mean and covariance $\Sigma = \mathbb{E}[XX^T]$, then

$$\mathbb{H}(X) \le \frac{1}{2}\log((2\pi)^n|\Sigma|) + \frac{n}{2}$$

Proof: Suppose g(X) is p.d.f of X, we also let $f(X) = N \sim (0, \Sigma)$.

$$0 \le D(g||f)$$

$$= \int g \log \frac{g}{f}$$

$$= \int g \log g - \int g \log f$$

$$= -\mathbb{H}(X) - \int g \log f$$

Hence

$$\mathbb{H}(X) \le -\int g \log f$$

$$= -\int g(x)(-\frac{n}{2}\log 2\pi - \frac{1}{2}\log |\Sigma| - \frac{1}{2}(X - \mu)^{\mathbf{T}}\Sigma^{-1}(X - \mu))dX$$

$$= \frac{1}{2}(n\log 2\pi + \log |\Sigma| + \operatorname{tr}(\Sigma^{-1}\int g(x)(X - \mu)(X - \mu)^{\mathbf{T}}dX))$$

$$= \frac{1}{2}\log((2\pi)^{n}|\Sigma|) + \frac{n}{2}$$

8.4 The Exponential Family

Consider the p.d.f p(x) which satisfies the k (independent) constraints,

$$\int_{\mathcal{X}} h_i(x)p(x)dx = m_i < \infty, \quad i = 1, \dots, k$$

, where m_1, \dots, m_k are specified constants. We want to find certain p.d.f p(x) that is closest to f(x). That is,

$$\min_{p} \int p(x) \log \frac{p(x)}{f(x)} dx \quad \text{s.t.} \quad \int_{\mathcal{X}} h_i(x) p(x) dx = m_i < \infty, \quad i = 1, \dots, k, and \int p(x) dx = 1.$$

This is an optimization problem with the object function

$$F(p) = \int p(x) \log \frac{p(x)}{f(x)} dx + \sum_{i=1}^{k} \theta_i \left(\int_{\mathcal{X}} h_i(x) p(x) dx - m_i \right) + c \left(\int_{\mathcal{X}} p(x) dx - 1 \right)$$

, where $\theta_i, i=1,\cdots,k$ and c are lagrange multipliers. Besides, f(x) is known.

Theorem 8.10 The function defined above is minimized by

$$p(x) = E_{f_k}(X|f, g, \vec{h}, \vec{\phi}, \vec{\theta}, \vec{c})$$
$$= \frac{1}{g(\theta)} f(x) \exp(\sum_{i=1}^k \theta_i h_i(x)),$$

where $c_i = 1$, and $\vec{\phi} = \vec{\theta} = (\theta_1, \dots, \theta_k)$.

Proof:

$$dF(p) = \lim_{\alpha \to 0} \int p(x + \alpha \tau(x)) \log \frac{p(x + \alpha \tau(x))}{f(x)} dx - \lim_{\alpha \to 0} \int p(x) \log \frac{p(x)}{f(x)} dx$$

$$+ \sum_{i=1}^{k} \theta_i (\int h_i(x)(p(x) + \alpha \tau(x) - p(x)) dx) + c(\int p(x) + \alpha \tau(x) - p(x) dx)$$

$$= \lim_{\alpha \to 0} (\int p(x) \log(1 + \alpha \frac{\tau(x)}{p(x)}) dx + \alpha \sum_{i=1}^{k} \int \theta_i h_i(x) \tau(x) dx + \alpha c \int \tau(x) dx)$$

So

$$\frac{dF(p)}{dp} = \int p(x) \lim_{\alpha \to 0} \frac{\log(1 + \alpha \frac{\tau(x)}{p(x)})}{\alpha} dx + \int \tau(x) \log \frac{p(x)}{f(x)} dx + \sum_{i=1}^{k} \int \theta_i h_i(x) \tau(x) dx + c \int \tau(x) dx$$

$$= (c+1)(\int \tau(x) dx) + \int \tau(x) \log \frac{p(x)}{f(x)} dx + \sum_{i=1}^{k} \int \theta_i h_i(x) \tau(x) dx$$

For any small $\tau(x)$, $\frac{dF(p)}{dp} = 0$. Thus

$$c + 1 + \log \frac{p(x)}{f(x)} + \sum_{i=1}^{k} \theta_i h_i(x) = 0$$

, which means $p(x) = \frac{1}{g(\theta)} f(x) \exp(\sum_{i=1}^k \theta_i h_i(x))$, where $g(\theta) = \int_{x \in \mathcal{X}} f(x) \exp(\sum_{i=1}^k \theta_i h_i(x)) dx$.