PROJET ALGORITHMES STOCHASTIQUES

Quantiles et superquantiles

Auteurs:
Jules Gagnaire
Issa Mahamat
Hani Atef Abdullah Mohamed
Alix Tronch

Table des matières

1	Notions de quantile, superquantile et de perte de moyenne			2	
				xte et définitions	2
				aples de calculs de quantiles, superquantiles et pertes de moyenne	3
		1.2.1	Loi exponentielle	3	
		1.2.2	Loi de Paréto	4	
		1.2.3	Loi de Burr	6	
2	2 Comportement asymptotique des estimateurs			8	
3	Illustration en Python de la convergence presque sûre et de la normalité asymptotique			9	

1 Notions de quantile, superquantile et de perte de moyenne

1.1 Contexte et définitions

Dans tout ce texte X est une variable aléatoire réelle à densité de probabilité f strictement positive. On note F sa fonction de répartition qui est continue et strictement croissante.

Définition 1.1. Soit $\alpha \in]0,1[$. On appelle *quantile d'ordre* α de X l'unique élément θ_{α} tel que $F(\theta_{\alpha}) = \alpha$.

Définition 1.2. Soit $\alpha \in]0,1[$. On appelle superquantile de niveau α de X la quantité :

$$\vartheta_{\alpha} = \mathbb{E}[X|X \ge \theta_{\alpha}].$$

Proposition 1.3. Si ϑ_{α} est le superquantile de X d'ordre α alors :

$$\vartheta_{\alpha} = \frac{\mathbb{E}\left[X\mathbb{1}_{\{X \geq \theta_{\alpha}\}}\right]}{1 - \alpha}.$$

Démonstration. En effet, on a :

$$\begin{split} \vartheta_{\alpha} &= \mathbb{E}[X|X \geq \theta_{\alpha}] \\ &= \frac{\mathbb{E}\left[X\mathbb{1}_{\{X \geq \theta_{\alpha}\}}\right]}{\mathbb{P}\left(X \geq \theta_{\alpha}\right)} \\ &= \frac{\mathbb{E}\left[X\mathbb{1}_{\{X \geq \theta_{\alpha}\}}\right]}{1 - \alpha}. \end{split}$$

Définition 1.4. Soit $\alpha \in]0,1[$. On appelle la perte de moyenne de niveau α de X la quantité :

$$\tau_{\alpha} = \frac{1}{\alpha} \mathbb{E} \left[X \mathbb{1}_{\{X \le \theta_{\alpha}\}} \right].$$

Proposition 1.5. Si τ_{α} est la perte de moyenne de niveau α de X alors :

$$\tau_{\alpha} = \frac{1}{\alpha} (\mathbb{E}[X] - (1 - \alpha)\vartheta_{\alpha}).$$

Démonstration. En effet,

$$\mathbb{E}\left[X\right] - \mathbb{E}\left[X\mathbb{1}_{\left\{X \geq \theta_{\alpha}\right\}}\right] = (1 - \alpha)\vartheta_{\alpha}$$

ainsi

$$\begin{split} \tau_{\alpha} &= \frac{1}{\alpha} \left(\mathbb{E} \left[X \right] - \mathbb{E} \left[X \mathbb{1}_{\{X \geq \theta_{\alpha}\}} \right] \right) \\ &= \frac{1}{\alpha} (\mathbb{E} \left[X \right] - (1 - \alpha) \vartheta_{\alpha}). \end{split}$$

Les valeurs du superquantile et de la perte de moyenne sont plus intéressantes que la valeur du quantile puisque ces statistiques donnent des informations sur la queue de distribution.

Proposition 1.6. Soit $\alpha \in]0,1[$. Si θ_{α} est le quantile de X d'ordre α et ϑ_{α} est le superquantile de X d'ordre α alors $\vartheta_{\alpha} \geq \theta_{\alpha}$.

Démonstration. On a :

$$\begin{split} \mathbb{E}\left[X\mathbb{1}_{\{X\geq\theta_{\alpha}\}}\right] &\geq \mathbb{E}\left[\theta_{\alpha}\mathbb{1}_{\{X\geq\theta_{\alpha}\}}\right] \\ &= \theta_{\alpha}\mathbb{E}\left[\mathbb{1}_{\{X\geq\theta_{\alpha}\}}\right] \\ &= \theta_{\alpha}\mathbb{P}\left(X\geq\theta_{\alpha}\right) \\ &= \theta_{\alpha}(1-\alpha) \end{split}$$

On a alors le résultat en divisant par $1 - \alpha$ (qui est différent de 0 car $\alpha \in]0,1[$).

1.2 Exemples de calculs de quantiles, superquantiles et pertes de moyenne

1.2.1 Loi exponentielle

Dans cette partie on suppose que $X \sim \mathcal{E}(\lambda)$ où $\lambda > 0$.

On rappelle que la fonction de densité de probabilité de X est donnée par :

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \ge 0\\ 0 & \text{sinon} \end{cases}$$

la fonction de répartition est donnée par :

$$F(x) = P(X \le x) = \begin{cases} 0 & \text{si } x < 0\\ 1 - e^{-\lambda x} & \text{si } x \ge 0 \end{cases}$$

enfin son espérance est :

$$\mathbb{E}[X] = \frac{1}{\lambda}.$$

Cherchons le quantile d'ordre α , on doit alors résoudre :

$$F(\theta_{\alpha}) = \alpha.$$

Puisque $\alpha > 0$, on a :

$$1 - e^{-\lambda \theta_{\alpha}} = \alpha.$$

D'où:

$$e^{-\lambda\theta_{\alpha}} = 1 - \alpha$$

En passant au logarithme (on peut car $1 - \alpha > 0$), on a :

$$-\lambda\theta_{\alpha} = \ln(1-\alpha).$$

Finalement:

$$\theta_{\alpha} = -\frac{1}{\lambda} \ln(1 - \alpha).$$

Pour le superquantile de niveau α , on doit calculer (pour ensuite utiliser la proposition 1.3) :

$$\mathbb{E}\left[X\mathbb{1}_{\{X\geq\theta_{\alpha}\}}\right] = \int_{\theta_{\alpha}}^{\infty} x\lambda e^{-\lambda x} dx.$$

Par intégration par partie on a :

$$\begin{split} \int_{\theta_{\alpha}}^{\infty} x \lambda e^{-\lambda x} \, dx &= \left[-x e^{-\lambda x} \right]_{\theta_{\alpha}}^{\infty} - \int_{\theta_{\alpha}}^{\infty} \left(-e^{-\lambda x} \right) dx \\ &= 0 - \left(-\theta_{\alpha} e^{-\lambda \theta_{\alpha}} \right) + \left[-\frac{1}{\lambda} e^{-\lambda x} \right]_{\theta_{\alpha}}^{\infty} \\ &= \theta_{\alpha} e^{-\lambda \theta_{\alpha}} + \frac{1}{\lambda} e^{-\lambda \theta_{\alpha}} \\ &= e^{-\lambda \theta_{\alpha}} \left(\theta_{\alpha} + \frac{1}{\lambda} \right). \end{split}$$

Donc en remplacant θ_{α} par sa valeur on a :

$$\begin{split} e^{-\lambda\theta_{\alpha}}\left(\theta_{\alpha} + \frac{1}{\lambda}\right) &= e^{-\lambda\left(-\frac{1}{\lambda}\ln(1-\alpha)\right)}\left(-\frac{1}{\lambda}\ln(1-\alpha) + \frac{1}{\lambda}\right) \\ &= (1-\alpha)\left(-\frac{1}{\lambda}\ln(1-\alpha) + \frac{1}{\lambda}\right) \\ &= \frac{1-\alpha}{\lambda}\left(1-\ln(1-\alpha)\right). \end{split}$$

Finalement:

$$\mathbb{E}\left[X\mathbb{1}_{\{X\geq\theta_{\alpha}\}}\right] = \frac{1-\alpha}{\lambda}\left(1-\ln(1-\alpha)\right).$$

Ainsi en utilisant la proposition 1.3 on a :

$$\vartheta_{\alpha} = \frac{1}{\lambda} \left(1 - \ln(1 - \alpha) \right).$$

Enfin pour la **perte de moyenne de niveau** α on va utiliser la proposition 1.5. Puisqu'on connait $\mathbb{E}[X] = \frac{1}{\lambda}$ et comme on vient de calculer ϑ_{α} on a :

$$\tau_{\alpha} = \frac{1}{\alpha} \left(\frac{1}{\lambda} - (1 - \alpha) \frac{1}{\lambda} \left(1 - \ln(1 - \alpha) \right) \right)$$
$$= \frac{1}{\lambda \alpha} \left(1 - (1 - \alpha) \left(1 - \ln(1 - \alpha) \right) \right).$$

Récapitulons tout cela en une proposition :

Proposition 1.7. Si $X \sim \mathcal{E}(\lambda)$ où $\lambda > 0$, alors :

$$-\theta_{\alpha} = -\frac{1}{\lambda} \ln(1 - \alpha)$$

$$-\theta_{\alpha} = \frac{1}{\lambda} (1 - \ln(1 - \alpha))$$

$$-\tau_{\alpha} = \frac{1}{\lambda \alpha} \left(1 - (1 - \alpha) (1 - \ln(1 - \alpha)) \right)$$

1.2.2 Loi de Paréto

Dans cette partie on suppose que $X \sim \mathcal{P}(a, b)$ où a > 1 et b > 0.

On rappelle que la fonction de densité de probabilité de X suivant une loi de Pareto de paramètres a et b est donnée par :

$$f(x) = \begin{cases} \frac{ab^a}{x^{a+1}} & \text{si } x \ge b\\ 0 & \text{sinon} \end{cases}$$

La fonction de répartition est donnée par :

$$F(x) = P(X \le x) = \begin{cases} 0 & \text{si } x < b \\ 1 - \left(\frac{b}{x}\right)^a & \text{si } x \ge b \end{cases}$$

Enfin, son espérance est :

$$\mathbb{E}[X] = \frac{ab}{a-1}.$$

Cherchons le quantile d'ordre α , on doit alors résoudre :

$$F(\theta_{\alpha}) = \alpha.$$

Puisque $\alpha > 0$, on a :

$$1 - \left(\frac{b}{\theta_{\alpha}}\right)^{a} = \alpha.$$

D'où:

$$\left(\frac{b}{\theta_{\alpha}}\right)^{a} = 1 - \alpha.$$

En prenant la puissance $-\frac{1}{a}$ des deux côtés, on obtient :

$$\theta_{\alpha} = b(1 - \alpha)^{-1/a}.$$

Pour le superquantile de niveau α , on doit calculer (pour ensuite utiliser la proposition 1.3):

$$\mathbb{E}\left[X\mathbb{1}_{\{X\geq\theta_{\alpha}\}}\right]=\int_{\theta_{\alpha}}^{\infty}x\frac{ab^{a}}{x^{a+1}}\,dx.$$

Ce qui donne, puisque a > 1:

$$\int_{\theta_{\alpha}}^{\infty} \frac{1}{x^a} \, dx = \frac{\theta_{\alpha}^{1-a}}{a-1}.$$

En remplaçant $\theta_{\alpha} = b(1-\alpha)^{-1/a}$, nous obtenons :

$$\mathbb{E}\left[X\mathbb{1}_{\{X\geq\theta_{\alpha}\}}\right] = \frac{ab}{a-1}(1-\alpha)^{\frac{1-a}{a}}.$$

Ainsi, le superquantile est :

$$\vartheta_{\alpha} = \frac{1}{1-\alpha} \cdot \frac{ab}{a-1} (1-\alpha)^{\frac{1-a}{a}} = \frac{ab}{a-1} (1-\alpha)^{-1/a}.$$

Enfin, pour la **perte de moyenne de niveau** α , on va utiliser la proposition 1.5. Puisqu'on connaît $\mathbb{E}[X] = \frac{ab}{a-1}$ et comme on vient de calculer ϑ_{α} , on a :

$$\tau_{\alpha} = \frac{1}{\alpha} \left(\frac{ab}{a-1} - (1-\alpha) \frac{ab}{a-1} (1-\alpha)^{-1/a} \right).$$

En factorisant $\frac{ab}{a-1}$, on obtient :

$$\tau_{\alpha} = \frac{ab}{\alpha(a-1)} \left(1 - (1-\alpha)^{1-\frac{1}{a}} \right).$$

Récapitulons tout cela dans une proposition :

Proposition 1.8. Si $X \sim \mathcal{P}(a, b)$ où a > 1 et b > 0, alors :

-
$$\theta_{\alpha} = b(1-\alpha)^{-1/a}$$

$$-\vartheta_{\alpha} = \frac{ab}{a-1}(1-\alpha)^{-1/a}$$

-
$$\tau_{\alpha} = \frac{ab}{\alpha(a-1)} \left(1 - (1-\alpha)^{1-\frac{1}{a}} \right)$$

1.2.3 Loi de Burr

Dans cette partie on suppose que $X \sim \text{Burr}(a, b)$ où a > 0 et b > 0.

On rappelle que la fonction de densité de probabilité de X est donnée par :

$$f(x) = \frac{abx^{b-1}}{(1+x^b)^{a+1}} \mathbb{1}_{\{x>0\}}.$$

La fonction de répartition est donnée par :

$$F(x) = 1 - (1 + x^b)^{-a} \mathbb{1}_{\{x > 0\}}.$$

Cherchons le quantile d'ordre α , on doit alors résoudre :

$$F(\theta_{\alpha}) = \alpha.$$

C'est à dire,

$$\left(1 + \theta_{\alpha}^{b}\right)^{-a} = 1 - \alpha.$$

Ce qui est équivalent à :

$$1 + \theta_{\alpha}^{b} = (1 - \alpha)^{-1/a}$$
.

On obtient :

$$\theta_{\alpha}^{b} = (1 - \alpha)^{-1/a} - 1.$$

Finalement:

$$\theta_{\alpha} = \left((1 - \alpha)^{-1/a} - 1 \right)^{1/b}.$$

Pour le superquantile de niveau α , on va avoir besoin de la fonction β d'Euler et de sa version tronquée. Faisons alors quelques rappels :

Définition 1.9. On appele fonction β d'Euler la fonction définie pour x, y > 0 par

$$\beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt.$$

Remarque. Il est clair que cette intégrale est bien définie.

Proposition 1.10. La fonction bêta $\beta(x,y)$ peut également être définie par :

$$\beta(x,y) = \int_0^\infty \frac{t^{y-1}}{(1+t)^{x+y}} dt.$$

Démonstration. Il suffit d'effectuer le changement de variable $t = \frac{1}{1+s}$ dans la défintion de β .

Définition 1.11. On définie la fonction β_z tronquée en 0 < z < 1 pour x, y > 0

$$\beta_z(x,y) = \int_0^z t^{x-1} (1-t)^{y-1} dt.$$

Proposition 1.12. La fonction bêta tronquée $\beta_z(x,y)$ peut également être définie par :

$$\beta_z(x,y) = \int_{\frac{1}{z}-1}^{\infty} \frac{t^{y-1}}{(1+t)^{x+y}} dt.$$

Démonstration. Il suffit d'effectuer le changement de variable $t = \frac{1}{1+s}$ dans la défintion de β_z .

On a maintenant tous les outils pour donner une expression du **superquantile de niveau** α . On va commmencer par calculer $\mathbb{E}\left[X\mathbb{1}_{\{X>\theta_{\alpha}\}}\right]$ et ensuite utiliser la proposition 1.3 :

$$\mathbb{E}\left[X\mathbb{1}_{\{X\geq\theta_{\alpha}\}}\right]=ab\int_{\theta_{\alpha}}^{+\infty}x\frac{x^{b-1}}{\left(1+x^{b}\right)^{a+1}}\,dx.$$

En faisant le changement de variable $x^b = s$ on a :

$$\mathbb{E}\left[X\mathbb{1}_{\{X \ge \theta_{\alpha}\}}\right] = ab \int_{\theta_{a}^{\frac{1}{b}}}^{+\infty} \frac{s}{(1+s)^{a+1}} s^{\frac{1}{b}-1} ds$$
$$= a \int_{\theta_{a}^{\frac{1}{b}}}^{+\infty} \frac{s^{\frac{1}{b}}}{(1+s)^{a+1}} ds$$

On trouve alors que

$$\mathbb{E}\left[X\mathbb{1}_{\{X\geq\theta_{\alpha}\}}\right]=a\beta_{\frac{1}{1+\theta_{b}^{\frac{1}{b}}}}\left(a-\frac{1}{b},1+\frac{1}{b}\right).$$

Finalement le superquantile de niveau α vaut

$$\vartheta_{\alpha} = \frac{1}{1-\alpha} a\beta_{\frac{1}{1+\theta^{\frac{1}{b}}}} \left(a - \frac{1}{b}, 1 + \frac{1}{b} \right)$$

d'après la proposition 1.3. Remarquons qu'en prennant $\theta_{\alpha}=0$ on en déduit l'esperance d'une loi de Burr :

Proposition 1.13. L'espérance d'une loi de Burr(a, b) où a > 0, b > 0 est donnée par :

$$a\beta\left(a-\frac{1}{b},1+\frac{1}{b}\right).$$

Enfin pour la **perte de moyenne de niveau** α , on va utiliser la proposition 1.5. Puisqu'on connait $\mathbb{E}[X]$ et comme on vient de calculer ϑ_{α} on a :

$$\tau_{\alpha} = \frac{1}{\alpha} \left(a\beta \left(a - \frac{1}{b}, 1 + \frac{1}{b} \right) - a\beta_{\frac{1}{1 + \theta_{\alpha}^{\frac{1}{b}}}} \left(a - \frac{1}{b}, 1 + \frac{1}{b} \right) \right)$$

Récapitulons tout cela en une proposition :

Proposition 1.14. Si $X \sim \text{Burr}(a, b)$ où $\lambda > 0$, alors :

$$-\theta_{\alpha} = ((1-\alpha)^{-1/a} - 1)^{1/b}$$

$$-\theta_{\alpha} = \theta_{\alpha} = \frac{a}{1-\alpha}\beta_{\frac{1}{1+\theta_{\alpha}^{\frac{1}{b}}}} \left(a - \frac{1}{b}, 1 + \frac{1}{b}\right)$$

$$-\tau_{\alpha} = \frac{1}{\alpha} \left(a\beta \left(a - \frac{1}{b}, 1 + \frac{1}{b}\right) - a\beta_{\frac{1}{1+\theta_{\alpha}^{\frac{1}{b}}}} \left(a - \frac{1}{b}, 1 + \frac{1}{b}\right)\right).$$

Comportement asymptotique des estimateurs $\mathbf{2}$

On peut également chercher à estimer ces statistiques, prenons un n-échantillon (X_1, \ldots, X_n) de même loi que X. Soit $(X_{(1)}, \ldots, X_{(n)})$ l'échantillon ordonné, de sorte que $X_{(1)} = \min(X_1, \ldots, X_n)$ et $X_{(n)} = \max(X_1, \dots, X_n)$. Une première idée est d'estimer $\theta_{\alpha}, \vartheta_{\alpha}$ et τ_{α} par :

$$\bar{\theta}_n = X_{([n\alpha]+1)}, \quad \bar{\vartheta}_n = \frac{1}{(1-\alpha)n} \sum_{k=[n\alpha]+1}^n X_{(k)}, \quad \bar{\tau}_n = \frac{1}{\alpha} \left(\bar{X}_n - (1-\alpha)\bar{\vartheta}_n \right)$$

Une autre idée est d'utiliser un algorithme stochastique de type Robbins-Monro pour estimer récursivement $\theta_{\alpha}, \vartheta_{\alpha}$ et τ_{α} par :

$$\begin{cases} \widehat{\theta_{n+1}} = \widehat{\theta_n} - a_n \left(\mathbb{1}_{\{X_{n+1} \leq \widehat{\theta_n}\}} - \alpha \right), \\ \widehat{\vartheta_{n+1}} = \widehat{\vartheta_n} + b_n \left(\frac{X_{n+1}}{1-\alpha} \mathbb{1}_{\{X_{n+1} \leq \widehat{\theta_n}\}} - \widehat{\vartheta_n} \right), \\ \widehat{\tau_{n+1}} = \widehat{\tau_n} + b_n \left(\frac{X_{n+1}}{\alpha} \mathbb{1}_{\{X_{n+1} \leq \widehat{\theta_n}\}} - \widehat{\tau_n} + c_n \left(X_{n+1} - \overline{X_n} \right) \right) \end{cases}$$

où les valeurs initiales $\widehat{\theta}_0$, $\widehat{\vartheta}_0$ et $\widehat{\tau}_0$ sont arbitrairement choisies et les pas (a_n) et (b_n) sont deux suites déterministes, positives et décroissantes vers zéro, satisfaisant les conditions classiques du théorème de Robbins-Monro, tandis que la suite (c_n) est à déterminer.

Rappelons le théorème de Robbins Monroe (issu de [1] aux p.122 – 123) :

Théorème 2.1. Robbins-Monro

Soient $\alpha \in \mathbb{R}$, x^* inconnue tel que $h(x^*) = \alpha$, où h est continue telle que pour tout $x \in \mathbb{R}$ et $x \neq x^*$,

$$(x - x^*)(h(x) - \alpha) < 0.$$

Considérons une suite de variables aléatoires (X_n) où X_0 est arbitraire et

$$X_{n+1} = X_n + \gamma_n (Y_{n+1} - \alpha),$$

avec Y_{n+1} une variable aléatoire telle que $\mathbb{E}[Y_{n+1} \mid \mathcal{F}_n] = h(X_n)$. Pour $n \geq 0$, on pose $g(X_n) = \mathbb{E}[Y_{n+1}^2 \mid \mathcal{F}_n]$. S'il existe a > 0 tel que pour tout $x \in \mathbb{R}$, on a :

$$q(x) < a(1+x^2),$$

Alors (X_n) converge presque sûrement vers x^* .

Enfin, si de plus h est C^2 , g continue au voisinage de x^* , et s'il existe p > 2 tel que :

$$\sup_{n>0} \mathbb{E}\left[|Y_{n+1} - h(X_n)|^p \mid \mathcal{F}_n\right] < +\infty \quad \text{p.s.},$$

Alors en notant $q = -h'(x^*)$ et $\sigma^2 = g^2(x^*) - \alpha^2$, on a :

1. Si $q > \frac{1}{2}$, on a:

$$\sqrt{n}(X_n - x^*) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\sigma^2}{2q - 1}\right).$$

2. Si $q = \frac{1}{2}$, on a:

$$\sqrt{\frac{n}{\log(n)}}(X_n - x^*) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^2).$$

3. Si $0 < q < \frac{1}{2}$, on a :

$$n^q(X_n - x^*) \xrightarrow{\mathcal{L}} Z,$$

où Z est une variable aléatoire finie p.s.

L'algorithme Robbins-Monro pour estimer le quantile θ_{α} est défini par :

$$\widehat{\theta}_{n+1} = \widehat{\theta}_n - a_n \left(\mathbb{1}_{\{X_{n+1} \le \widehat{\theta}_n\}} - \alpha \right),$$

où (a_n) est une suite de pas déterministes, positifs et décroissants vers zéro.

La fonction $h(X_n)$ est donnée par $h(X_n) = \mathbb{E}[Y_{n+1} \mid \mathcal{F}_n]$, où $Y_{n+1} = -\mathbb{1}_{\{X_{n+1} \leq \widehat{\theta}_n\}}$.

Or X_{n+1} est indépendant de \mathcal{F}_n donc $\mathbb{E}[Y_{n+1} \mid \mathcal{F}_n] = -F(\widehat{\theta}_n)$. Ainsi $h(\theta) = -F(\theta)$ où F est la fonction de répartition de X avec $F(\theta_\alpha) = \alpha$.

Puique la densité est strictement positive, la fonction de répartition $F(\theta)$ est strictement croissante. Cela signifie que :

- Si $\theta > \theta_{\alpha}$, alors $F(\theta) > \alpha$,
- Si $\theta < \theta_{\alpha}$, alors $F(\theta) < \alpha$.

Ainsi, pour tout $\theta \neq \theta_{\alpha}$, on a :

$$(\theta - \theta_{\alpha})(F(\theta) - \alpha) < 0.$$

Le choix $(a_n) = \left(\frac{1}{n}\right)$ satisfait les conditions suivantes :

$$\sum_{n=1}^{\infty} a_n = \infty \quad \text{et} \quad \sum_{n=1}^{\infty} a_n^2 < \infty.$$

Pour tout $n \geq 0$, on a $g(X_{n+1}) = \mathbb{E}[Y_{n+1}^2 \mid \mathcal{F}_n] = F(\widehat{\theta}_n)$. Ainsi g satisfait l'inégalité suivante : $g(x) \leq (1+x^2)$.

Toutes les conditions étant vérifiées, on a la convergence presque sûre de l'estimateur $\widehat{\theta}_n$ vers θ_{α} :

$$\lim_{n \to \infty} \widehat{\theta}_n = \theta_\alpha \quad \text{p.s.}$$

De plus , en choisissant $f(\theta_a) > 0.5$, on a $q = -h'(\theta_a) = f(\theta_a) > 0.5$ et $g(\theta_a) - \alpha^2 = \alpha - \alpha^2 = \alpha(1-\alpha)$. D'après le théorème de Robbins-Monro, on a la normalité asymptotique suivant :

$$\sqrt{n}(\widehat{\theta_n} - \theta_a) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\alpha(1-\alpha)}{2f(\theta_a) - 1}\right)$$

D'après [2] si on choisit convenablement les suites (a_n) et (b_n) , on peut montrer les convergences presques sûres $\widehat{\vartheta}_n \longrightarrow \vartheta_\alpha$ et $\widehat{\tau}_n \longrightarrow \tau_\alpha$ ainsi que les normalités asymptotiques

$$\sqrt{n}\left(\widehat{\vartheta}_n - \vartheta_\alpha\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \sigma_\alpha^2\right) \text{ et } \sqrt{n}\left(\widehat{\tau}_n - \tau_\alpha\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, s_\alpha^2\right)$$

où les variances

$$\sigma_{\alpha}^2 = \frac{1}{(1-\alpha)^2} \operatorname{Var} \left((X - \theta_{\alpha}) \, \mathbb{1}_{\{X \ge \theta_{\alpha}\}} \right) \text{ et } s_{\alpha}^2 = \frac{1}{(\alpha)^2} \operatorname{Var} \left((X - \theta_{\alpha}) \, \mathbb{1}_{\{X \le \theta_{\alpha}\}} \right).$$

3 Illustration en Python de la convergence presque sûre et de la normalité asymptotique

(Voir le fichier code python.ipynb joint en mail).

Références

- [1] B. Bercu, D. Chafaï, Modélisation stochastique et simulation. Dunod, 2007.
- [2] B. Bercu, M. Costa, S. Gadat, Stochastic approximation algorithms for superquantiles estimation, Electronic Journal of Probability, 26, article 84, pp. 1-29, 2021.