1. 다양한 성능 실험

- train에 age_gender_info를 포함 / 단지 별 평균 / drop_duplicate / baseline
 - 123.2816326531
- 나이대를 10으로 누어서 위와 동일하게 적용
 - 116.8657142857
- standardscaler 적용하여 스케일 맞춰보기
 - 116.7528571429 (0.1 정도 낮아짐.)

2. 고안한 3가지 전처리 방안들의 조합 성능 검증

- [1] Train에서 '공급유형'이 장기전세, 공공분양, 공공임대(5년)인 example을 Drop
- [2] 각 단지코드 내에 '임대건물구분'
 - '아파트'만 존재하면 1로,
 - '상가'와 '아파트'가 모두 존재하면 0으로 매핑
- [3] '자격유형'별 평균임대료 feature를 추가

구분	Neg mae
 [1] 적용	-150.1562
[2] 적용	-150.4797
[3] 적용	-149.6817
[1]&[2] 적용	-149.6715
[1]&[3] 적용	-148.1634
[2]&[3] 적용	-150.0975
모두 적용	-149.8280

[베이스라인 모델 LB 성능]

모두 적용 (LB) -> 121.0857 / [1]&[3] 적용 (LB) -> 122.0808

3. 'age_gender_info' 추가하기(ver 3(모두 적용 ver.)에 추가)

 기억
 1gender
 2nd
 2gender
 3rd
 3gender

 경상북도
 50
 0
 40
 0
 60
 0

 경상남도
 60
 0
 50
 0
 40
 0
 0

위와 같이 지역별로 상위 3개 그룹의 정보를 Train에 지역에 맞춰서 대입

[베이스라인 모델 LB 성능]

age_gender_info 추가 (LB) -> 199.2286

4. 더 나은 성능의 Model 찾기

[test 후보 및 각 성능(neg mae)]

- RandomForest (Baseline): -129.66053879429143

- RandomForest (GridSearch): -129.66053879429143

- XGBoost: -134.52866928479915

- Lightgbm: -128.65809393573224

- Ridge: **-130.7595200519923**

- Lasso : -128.2108916930039

[automl LB 성능]

- automl 110.9089242269

[lasso 모델 LB 성능]

- 전처리 ver 4 (age_gender_info)를 적용

Lasso_with_version_4 (LB) -> 111.2101