4. Кинематика вращательного движения твердого тела. Угловая скорость и угловое ускорение.

При вращении ТТ вокруг неподвижной оси расстояние между двумя любыми его точками не изменяется, а траекториями движения всех точек являются окружности.

Это позволяет свести изучение вращения ТТ вокруг неподвижной оси к изучению движения данной точки этого тела по окружности.

Положение MT на окружности, по которой она движется, однозначно определяется с помощью угла поворота.

Угол поворота ϕ — угол между радиусвектором \vec{R} точки, проведенным из центра окружности (т. O_1), и выбранным направлением (осью Ox).

В СИ
$$[\phi] = рад.$$

 $\Delta \varphi$ $\vec{\omega}$

y

 $\varphi(t+\Delta t)$

Угловое перемещение $\overline{\Delta \phi}$ — псевдовектор, модуль которого равен модулю разности углов поворота МТ конечного и начального положения: $\left| \overline{\Delta \phi} \right| = \left| \phi(t + \Delta t) - \phi(t) \right|,$

а направление связано с направлением вращения МТ *правилом правой руки*: если четыре пальца правой руки согнуть по направлению вращения МТ, то отогнутый большой палец укажет направление вектора $\overrightarrow{\Delta \phi}$.

Ве́кторы, направление которых определяется направлением вращения, называются псевдовекторами (или аксиальными).

Угловая скорость $\vec{\omega}$ — псевдовектор, характеризующий быстроту и направление вращения, равный:

$$\vec{\omega} = \lim_{\Delta t \to 0} \frac{\overrightarrow{\Delta \phi}}{\Delta t} = \frac{d\vec{\phi}}{dt}.$$
(1.25)
$$\vec{B} \text{ СИ } [\omega] = \text{рад/c} = \text{c}^{-1}.$$

Если МТ равномерно движется по окружности (ω = const), тогда модуль ее угловой скорости связан с частотой ν и периодом T следующим образом:

 $\omega = 2\pi v = \frac{2\pi}{T}.$

B СИ $[v] = \Gamma$ ц, [T] = c.

Угловое ускорение $\vec{\beta}$ (или $\vec{\epsilon}$) — псевдовектор, характеризующий изменение угловой скорости со временем и равный:

$$\vec{\beta} = \frac{d\vec{\omega}}{dt}.$$
 (1.26)

В СИ $[\beta] = paд/c^2$.

 $\vec{\beta} \uparrow \uparrow \vec{\omega}$, если $|\vec{\omega}|$ со временем \uparrow ;

 $\vec{\beta} \uparrow \downarrow \vec{\omega}$, если $|\vec{\omega}|$ со временем \downarrow .