Chapitre 11-Comparaison de fonctions et développements limités

1 Comparaison de fonctions

1.1 Notion de voisinage

Définition 1 (Voisinage)

Soit I un intervalle de \mathbb{R} et f une fonction définie sur I. On considère a un élément de I ou une borne de I (a peut être un réel, $+\infty$ ou $-\infty$).

- Si $a \in \mathbb{R}$, on appelle **voisinage** (**fermé**) **de** a tout intervalle de la forme [a-r,a+r] où r > 0.
- Si $a = +\infty$, on appelle **voisinage** (**fermé**) **de** a tout intervalle de la forme [A, $+\infty$ [où A > 0.
- Si $a = -\infty$, on appelle **voisinage** (**fermé**) **de** a tout intervalle de la forme $]-\infty$, B] où B < 0.

On dit qu'une propriété relative à f est vraie au voisinage de a s'il existe un voisinage V de a tel que la propriété est vraie sur $I \cap V$.

Exemple 1

1	La fonction	$f: \mathbb{R} \to \mathbb{R}$ définie	nar
1.	La ioncuon	$I:\mathbb{R}\to\mathbb{R}$ aenme	раг

$$\forall x \in \mathbb{R}, \quad f(x) = -x^2 + 1$$

est positive au voisinage de 0 :

2. La fonction $f : \mathbb{R} \to \mathbb{R}$ définie par

$$\forall x \in \mathbb{R}, \quad f(x) = -x^2 + 1$$

est négative au voisinage de $+\infty$:

1.2 Relation de négligeabilité

Définition 2 (Négligeabilité)

Soient f et g deux fonctions définies sur un intervalle I de \mathbb{R} . On considère a un élément de I ou une borne de I (a peut être un réel, $+\infty$ ou $-\infty$).

On dit que f est **négligeable** devant g au voisinage de a s'il existe un voisinage V de a et une fonction $c:V \to \mathbb{R}$ tels que :

$$\forall x \in I \cap V$$
, $f(x) = \epsilon(x)g(x)$ et $\lim_{x \to a} \epsilon(x) = 0$.

On notera $f(x) = \underset{x \to a}{o} (g(x))$.

Remarque 1

- 1. Contrairement aux suites, on ne peut pas omettre le « $x \rightarrow a$ » sous le petit o! En effet la relation de négligeabilité entre deux fonctions peut radicalement changer selon le point au voisinage duquel on travaille (voir exemple ci-dessous).
- 2. \triangle La notation « petit o » (appelé notation de Landau) est un abus d'écriture : $\underset{x \to a}{o}(g(x))$ ne désigne pas une fonction particulière mais toute fonction possédant la propriété d'être négligeable devant g au voisinage de

1

1. Montrons: $x = o(x^2)$.

2. Montrons: $x^2 = o(x)$.

Exemple 3

1. Montrons: $x^2 - 1 = o_{x \to 1}(1)$.

2. Plus généralement $f(x) = \underset{x \to a}{o}(1)$ si et seulement si

_	

Remarque 2

L'assertion $\lim_{x \to a} f(x) = \ell \in \mathbb{R}$ est équivalente à l'assertion $f(x) = \ell + \underset{x \to a}{o} (1)$.

Test 1 (Voir la solution.)

Que signifie « $f(x) = o_{x \to a}(0)$ »?

Test 2 (Voir la solution.)

Soit f et g les fonctions définies sur \mathbb{R}_+^* par :

$$\forall x \in \mathbb{R}_+^*, \quad f(x) = \frac{1}{x} \quad et \quad g(x) = \frac{1}{\sqrt{x}}.$$

1. Comparer f et g au voisinage de 0.

2. Comparer f et g au voisinage $de + \infty$.

Proposition 1 (Caractérisation)

Soient f et g deux fonctions définies sur un intervalle I de \mathbb{R} . On considère a un élément de I ou une borne de I (a peut être un réel, $+\infty$ ou $-\infty$). Si g ne s'annule pas sur un voisinage de a (sauf éventuellement en a) alors

$$f(x) = \underset{x \to a}{o}(g(x)) \Longleftrightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = 0.$$

Dans chaque cas déterminons si l'une des deux fonctions est négligeable devant l'autre.

1. Les fonctions f et g définies sur $\mathbb{R} \setminus \{2\}$ par $f(x) = x^3$ et $g(x) = \frac{1}{x-2}$.

• $En + \infty$:

• En 1:

2. Les fonctions f et g définies sur \mathbb{R} par $f(x) = e^x$ et g(x) = x en 0.

Test 3 (Voir la solution.)

Dans chaque cas déterminer si l'une des deux fonctions est négligeable devant l'autre.

- 1. Les fonctions f et g définies sur \mathbb{R} par $f(x) = x^3$ et $g(x) = x^2 + 2x 1$ en $-\infty$ puis en 0.
- 2. Les fonctions f et g définies sur $]0, +\infty[$ par $f(x) = e^{\frac{1}{x}}$ et $g(x) = \ln(x)$ en 0^+ .

Plus généralement, les croissances comparées se traduisent en terme de négligeabilité par la proposition suivante.

Proposition 2 (Croissances comparées)

- 1. **En** $+\infty$:
 - (a) pour tout b > a > 0 on a:

•
$$x^a = \underset{x \to +\infty}{o}(x^b)$$

• $e^{ax} = \underset{x \to +\infty}{o}(e^{bx})$

$$e^{ax} = \underset{x \to +\infty}{o} (e^{bx})$$

•
$$\frac{1}{x^b} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^a} \right)$$
•
$$e^{-bx} = \mathop{o}_{x \to +\infty} (e^{-ax})$$

•
$$e^{-bx} = \underset{x \to +\infty}{o} (e^{-ax})$$

(b) pour tout a > 0 et tout b > 0 on a :

•
$$\ln(x)^a = \underset{x \to +\infty}{o}(x^b)$$

•
$$\frac{1}{x^b} = \underset{x \to +\infty}{o} \left(\frac{1}{\ln(x)^a} \right)$$

•
$$x^a = \underset{x \to +\infty}{o} (e^{bx}).$$

- 2. **En** 0^+ :
 - (a) pour tout b > a > 0 on a:

$$\bullet \ \ x^b = \mathop{o}_{x \to 0^+}(x^a)$$

$$\bullet \ \frac{1}{x^a} = \mathop{o}_{x \to 0^+} \left(\frac{1}{x^b} \right)$$

(b) pour tout a > 0 et tout b > 0 on a :

•
$$x^a = \underset{x \to 0^+}{o} \left(\frac{1}{\ln(x)^b} \right)$$

•
$$\ln(x)^b = \underset{x \to 0^+}{o} \left(\frac{1}{x^a}\right)$$
.

1. Comparer en $+\infty$ les fonctions f et g définies sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \quad f(x) = x^5 + x + 1 \quad \text{et} \quad g(x) = e^x + 3x^2 + 5.$$

2. Comparer en 0^+ les fonctions f et g définies sur $]0,+\infty[$ par :

$$\forall x \in]0, +\infty[, f(x) = \frac{1}{x^2} + \frac{1}{x} \text{ et } g(x) = \frac{1}{\ln x}.$$

Test 4 (Voir la solution.)

On considère les fonctions f et g définies sur $]0, +\infty[$ par

$$\forall x \in]0, +\infty[, f(x) = \frac{1}{x^2} + \frac{1}{x} + \frac{1}{3^x} et g(x) = \frac{1}{e^x} + \frac{1}{2^x} + \frac{1}{\ln x}.$$

Comparer f et g au voisinage $de + \infty$.

Proposition 3 (Opérations sur les *o*)

Soient f, g et h trois fonctions définies sur un intervalle I de \mathbb{R} et $(\lambda, \mu) \in \mathbb{R}^2$. On considère a un élément de I ou une borne de I (a peut être un réel, $+\infty$ ou $-\infty$).

- 1. (*Transitivité*) Si $f(x) = \underset{x \to a}{o}(g(x))$ et $g(x) = \underset{x \to a}{o}(h(x))$ alors $f(x) = \underset{x \to a}{o}(h(x))$.
- 2. (Combinaison linéaire) Si $f(x) = \underset{x \to a}{o}(h(x))$ et $g(x) = \underset{x \to a}{o}(h(x))$ alors $\lambda f(x) + \mu g(x) = \underset{x \to a}{o}(h(x))$.
- 3. (Multiplication par un réel **non nul**) Si $\lambda \neq 0$ et $f(x) = \underset{x \to a}{o} (g(x))$ alors $f(x) = \underset{x \to a}{o} (\lambda g(x))$.
- 4. (Produit) Si $f(x) = \underset{x \to a}{o} (g(x))$ alors $f(x)h(x) = \underset{x \to a}{o} (g(x)h(x))$.

Remarque 3

1. En général, on ne garde pas les constantes multiplicatives à l'intérieur du o grâce au troisième point. Par exemple, si $f(x) = \underset{x \to a}{o}(2x)$ alors $f(x) = \underset{x \to a}{o}(\frac{1}{2}2x) = \underset{x \to a}{o}(x)$.

De même, si $f(x) = \underset{x \to a}{o}(2)$ alors $f(x) = \underset{x \to a}{o}(1)$.

2. <u>∧</u>Attention : d'après le point 2, on a

$$f(x) = \underset{x \to a}{o}(h(x))$$
 et $g(x) = \underset{x \to a}{o}(h(x)) \Rightarrow f(x) + g(x) = \underset{x \to a}{o}(h(x)).$

Mais il ne faut pas confondre avec

$$f(x) = o(h(x))$$
 et $f(x) = o(g(x)) \Rightarrow f(x) = o(h(x) + g(x))$

qui est FAUX (voir le test 5)!

- 3. Attention : pour utiliser les opérations de la propriété ci-dessus, il faut manipuler des petits o au voisinage d'un même point!
- 4. En cas de doutes, il est conseillé de revenir à la définition ou à la caractérisation pour s'assurer que l'opération que l'on souhaite effectuer est licite.

Démonstration: Soient f, g et h trois fonctions définies sur un intervalle I de \mathbb{R} et $(\lambda, \mu) \in \mathbb{R}^2$. On considère a un élément de I ou une borne de I (a peut être un réel, $+\infty$ ou $-\infty$). **Pour simplifier, on suppose que les fonctions ne s'annulent pas au voisinage de** a (sauf éventuellement en a).

Test 5 (Voir la solution.)

- 1. Montrer: $x = o(x^2 + 1)$ et $x = o(-x^2 + 1)$.
- 2. A-t-on: $x = \underset{x \to +\infty}{o} (x^2 + 1 + (-x^2 + 1))$?

1.3 Relation d'équivalence

Définition 3

Soient f et g deux fonctions définies sur un intervalle I de \mathbb{R} . On considère a un élément de I ou une borne de I (a peut être un réel, $+\infty$ ou $-\infty$).

On dit que f est **équivalente** à g au voisinage de a s'il existe un voisinage V de a et une fonction $\epsilon: V \to \mathbb{R}$ tels que :

$$\forall x \in V \cap I \quad f(x) = \varepsilon(x)g(x) \quad \text{et} \quad \lim_{x \to a} \varepsilon(x) = 1.$$

On notera $f(x) \underset{x \to a}{\sim} g(x)$.

Exemple 6

Tout comme « $f(x) = \underset{x \to a}{o}(0)$ », « $f(x) \underset{x \to a}{\sim} 0$ » signifie que f est nulle au voisinage de a. Ce sont deux notations à ne jamais écrire!

Exemple 7

- 1. On $a: x^2 + 1 \sim x^2$.
- 2. En revanche, $x^2 + 1$ n'est pas équivalent à x^2 au voisinage de 0.

Proposition 4 (Caractérisation)

Soient f et g deux fonctions définies sur un intervalle I de \mathbb{R} . On considère a un élément de I ou une borne de I (a peut être un réel, $+\infty$ ou $-\infty$).

On a:

$$f(x) \underset{x \to a}{\sim} g(x) \Longleftrightarrow f(x) = g(x) + \underset{x \to a}{o} (g(x)).$$

En pratique, si g ne s'annule pas au voisinage de a (sauf éventuellement en a) alors

$$f(x) \underset{x \to a}{\sim} g(x) \iff \lim_{x \to a} \frac{f(x)}{g(x)} = 1.$$

Exemple 8

Soit f la fonction définie sur $]0, +\infty[$ par

$$\forall x \in]0, +\infty[, \quad f(x) = x - \ln(x).$$

1. Montrons: $f(x) \underset{x \to +\infty}{\sim} x$.

2.	Montrons: $f(x)$	~	$-\ln(x)$.

Soit f la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) = e^x + x^3 + 2x^2 + 1.$$

1. Montrons: $f(x) \sim e^x$.

2. Montrons: $f(x) \sim 2$.

3. Montrons: $f(x) \sim x^3$.

Test 6 (Voir la solution.)

1. Montrer: $\frac{x^2+1}{x^5} \sim \frac{1}{x^5}$.

2. Montrer: $\frac{x^2+1}{x^5} \sim \frac{1}{x \to +\infty} \frac{1}{x^3}$.

Proposition 5 (Opérations sur les équivalents)

Soient f, g, h et e quatre fonctions définies sur un intervalle I de \mathbb{R} , $(\lambda, \mu) \in \mathbb{R}^2$ et $k \in \mathbb{N}$. On considère a un élément de I ou une borne de I (a peut être un réel, $+\infty$ ou $-\infty$).

1. (Symétrie) Si $f(x) \underset{x \to a}{\sim} g(x)$ alors $g(x) \underset{x \to a}{\sim} f(x)$.

2. $(Transitivit\hat{e})$ Si $f(x) \underset{x \to a}{\sim} g(x)$ et $g(x) \underset{x \to a}{\sim} h(x)$ alors $f(x) \underset{x \to a}{\sim} h(x)$.

3. (*Produit*) Si $f(x) \underset{x \to a}{\sim} g(x)$ et $h(x) \underset{x \to a}{\sim} e(x)$ alors $f(x)h(x) \underset{x \to a}{\sim} g(x)e(x)$.

4. (*Inverse*) Si $f(x) \underset{x \to a}{\sim} g(x)$, que f et g ne s'annulent pas au voisinage de a (sauf éventuellement en a) alors $\frac{1}{f(x)} \underset{x \to a}{\sim} \frac{1}{g(x)}$.

5. (*Puissance*) Si $f(x) \underset{x \to a}{\sim} g(x)$ alors $f(x)^k \underset{x \to a}{\sim} g(x)^k$.

6. (*Valeur absolue*) Si $f(x) \underset{x \to a}{\sim} g(x)$ alors $|f(x)| \underset{x \to a}{\sim} |g(x)|$.

Remarque 4

- 1. Un cas particulier du point 3 en prenant e = h donne : $si f(x) \sim g(x)$ alors $f(x)h(x) \sim g(x)h(x)$.
- 2. Les points 3 et 4 signifient que la relation d'équivalence est compatible avec le produit et l'inverse.
- 3. La relation d'équivalence n'est pas compatible avec l'addition : on n'additionne jamais des équivalents!
- 4. Les points 5 et 6 signifient que la relation d'équivalence est compatible avec la composition à gauche par une fonction puissance ou la fonction valeur absolue.
- 5. La relation d'équivalence n'est pas compatible avec la composition en général : par exemple, on ne passe jamais au logarithme ou à l'exponentielle dans les équivalents!
- 6. En cas de doutes, il est conseillé de revenir à la définition ou à la caractérisation pour s'assurer que l'opération que l'on souhaite effectuer est licite.

7

Test 7 (Incompatibilité avec l'addition, voir la solution.)

On considère les fonctions f et g définies sur $]0, +\infty[$ par :

$$\forall x > 0$$
 $f(x) = x + \sqrt{x}$ et $g(x) = x + \ln(x)$.

1. Montrer: $f(x) \underset{x \to +\infty}{\sim} g(x)$.

2. A-t-on: $f(x) - x \sim_{x \to +\infty} g(x) - x$?

Test 8 (Incompatibilité avec la composition, voir la solution.)

On considère les fonctions f et g définies sur $]0, +\infty[$ par :

$$\forall x \in \mathbb{R}$$
 $f(x) = x + 1$ et $g(x) = x$.

1. Montrer: $f(x) \underset{x \to +\infty}{\sim} g(x)$.

2. A-t-on: $e^{f(x)} \underset{x \to +\infty}{\sim} e^{g(x)}$?

Proposition 6 (Équivalents usuels)

1. On a les équivalents suivants au voisinage de 0 :

$$\ln(1+x) \underset{x\to 0}{\sim} x$$
 ; $e^x - 1 \underset{x\to 0}{\sim} x$; $(1+x)^a - 1 \underset{x\to 0}{\sim} ax \ (a \in \mathbb{R}^*)$.

2. Soient n > p et $(a_p, a_{p+1}, ..., a_n) \in \mathbb{R}^{n-p+1}$ avec $a_n \neq 0$ et $a_p \neq 0$.

• En $+\infty$ et $-\infty$:

$$a_p x^p + \dots + a_{n-1} x^{n-1} + a_n x^n \underset{x \to +\infty}{\sim} a_n x^n.$$

• En 0:

$$a_p x^p + \dots + a_{n-1} x^{n-1} + a_n x^n \underset{x \to 0}{\sim} a_p x^p.$$

Exemple 10

Soit f la fonction définie sur $]0,+\infty[$ *par :*

$$\forall x \in]0, +\infty[, \quad f(x) = \frac{x^2 + 3x^3 + x^4}{x^3 + 6x^5}.$$

1. Déterminons un équivalent de f en $+\infty$.

2. Déterminons un équivalent de f en 0.

Proposition 7 (Limite et équivalent)

Soient f et g deux fonctions définies sur un intervalle I de \mathbb{R} . On considère a un élément de I ou une borne de I (a peut être un réel, $+\infty$ ou $-\infty$).

- 1. Si $f(x) \underset{x \to a}{\sim} g(x)$ et si f admet une limite $\ell \in \mathbb{R} \cup \{\pm \infty\}$ quand x tend vers a alors g admet pour limite ℓ quand x tend vers a.
- 2. Si f admet une limite **finie et non nulle** ℓ quand x tend vers a alors $f(x) \underset{x \to a}{\sim} \ell$.

Exemple 11

Dé	Déterminons $\lim_{x \to +\infty} x \ln\left(1 + \frac{1}{x}\right)$.				

Méthode 1

Pour déterminer un équivalent simple d'une fonction au voisinage d'un point a, on utilise les mêmes méthodes que pour les suites :

- 1. on peut procéder de manière directe : souvent de la même manière que pour lever une forme indéterminée (factorisation par le terme dominant au voisinage de *a*, multiplication par la quantité conjuguée...);
- 2. on peut parfois déterminer un équivalent à l'aide d'un encadrement par deux fonctions équivalentes entre elles;
- 3. on peut utiliser les équivalents usuels et les opérations sur les équivalents.

Exemple 12

éterminer un équivalent simple des fonctions suivantes.	
1. La fonction f_1 définie sur \mathbb{R}_+^* par : $\forall x \in \mathbb{R}_+^*$, $f_1(x) = \ln(x) + e^x$ en 0^+ .	

2. La fonction f_2 définie $\sup \mathbb{R}_+^* par : \forall x \in \mathbb{R}_+^*$, $f_2(x) = \ln\left(1 + \frac{1}{x}\right) en 0^+$.

Test 9 (voir la solution.)

Déterminer un équivalent simple des fonctions suivantes aux points donnés.

- 1. La fonction f_1 définie sur $\mathbb{R}\setminus\{-1\}$ par : $\forall x \in \mathbb{R}\setminus\{-1\}$, $f_1(x) = \frac{2x^2+1}{1+x}$ en 0 et en $-\infty$.
- 2. La fonction f_2 définie sur \mathbb{R}_+ par : $\forall x \in \mathbb{R}_+$, $f_2(x) = e^{\sqrt{x+1} \sqrt{x} 1} 1$ en 0^+ et en 1.

2 Développements limités

2.1 Développement limité d'ordre 0

Définition 4 (Développement limité d'ordre 0)

Soit f une fonction définie sur un intervalle I et $x_0 \in I$.

On dit que f possède un développement limité à l'ordre 0 en x_0 s'il existe un réel a_0 tel que :

$$f(x) = a_0 + o_{x \to x_0}(1).$$

Remarque 5

Une fonction f définie au voisinage de x_0 possède un développement limité à l'ordre 0 au voisinage de x_0 si et seulement si f est continue en x_0 . Dans ce cas, $a_0 = f(x_0)$ (en particulier, le développement limité à l'ordre 0 est unique).

Notation 1

On écrira souvent « f admet un $DL_0(x_0)$ » pour dire « f possède un développement limité à l'ordre 0 au voisinage de x_0 »

2.2 Développement limité d'ordre 1

Définition 5 (Développement limité d'ordre 1)

Soit *f* une fonction définie sur un intervalle I et $x_0 \in I$.

On dit que f possède **un développement limité à l'ordre** 1 **en** x_0 s'il existe deux réels a_0 et a_1 tels que :

$$f(x) = a_0 + a_1(x - x_0) + \underset{x \to x_0}{o}((x - x_0)).$$

Notation 2

On écrira souvent « f admet un $DL_1(x_0)$ » pour dire « f possède un développement limité à l'ordre 1 au voisinage de x_0 »

Remarque 6	
	un $DL_1(x_0)$ alors f admet un $DL_0(x_0)$. En effet :
Si j admet	an DEI(x0) arons f aumet an DE0(x0). En ener.
Rappel(s) 1 (De	érivabilité d'une fonction en un point)
Soit f une f	fonction définie sur un intervalle I et $x_0 \in I$.
On dit que	f est dérivable en x_0 si $\frac{f(x)-f(x_0)}{x-x_0}$ admet une limite finie quand x tend vers x_0 . Cette limite est alors
notée $f'(x_0)$) : c 'est le nombre dérivée de f en x_0 .
Soit f une f	Conction définie sur un intervalle I et $x_0 \in I$.
► Supposo	ns que f est dérivable en x_0 .
1. Dét	erminons un $\mathrm{DL}_0(x_0)$ de $\frac{f(x)-f(x_0)}{x-x_0}$.
2. On	en déduit un $\mathrm{DL}_1(x_0)$ de f .
► Réciproq	quement, supposons que f admet un DL à l'ordre 1 en x_0 : il existe a_0 et a_1 deux réels tels que
	$f(x) = a_0 + a_1(x - x_0) + \underset{x \to x_0}{o}((x - x_0)).$
1. Dét	verminons a_0 .
1. Det	

2. Mo	ontrons que f est dérivable en x_0 et déterminer a_1 .
On vient de m	ontrer la proposition suivante :
Proposi	ition 8
Soit f 111	ne fonction définie sur un intervalle I et $x_0 \in I$. Alors f admet un développement limité à l'ordre 1
	tet seulement si f est dérivable en x_0 .
Domonaus 7	
Remarque 7	uit montré plus que cela : on a montré qu'en cas d'existence, le développement limité à l'ordre 1 est
	que ses coefficients sont donnés par
	$a_0 = f(x_0)$ et $a_1 = f'(x_0)$.
	$a_0 = f(x_0)$ et $a_1 = f(x_0)$.
Evenuelo 12	
Exemple 13	
	oisinage de 0, on obtient par exemple :
(a)	$e^x =$
(b)	$\ln\left(1+x\right) =$
(b)	
(c)	$\sqrt{1+x} =$
2. Déte	erminons un $DL_1(2)$ de la fonction f définie par : $\forall x \in \mathbb{R}$, $f(x) = x^2 + e^x - 1$.
	· · · · · · · · · · · · · · · · · · ·

2.3 Développement limité d'ordre 2

Définition 6 (Développement limité d'ordre 2)

Soit f une fonction définie sur un intervalle I et $x_0 \in I$.

On dit que f possède un développement limité à l'ordre 2 en x_0 s'il existe trois réels a_0 , a_1 et a_2 tels que

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \underset{x \to x_0}{o} ((x - x_0)^2).$$

Notation 3

On écrira souvent « f admet un $DL_2(x_0)$ » pour dire « f possède un développement limité à l'ordre 2 au voisinage de x_0 »

Définition 7 (Partie régulière d'un DL)

Soit $n \in [0, 2]$.

Soit f une fonction définie sur un intervalle I admettant le DL d'ordre n suivant au voisinage de $x_0 \in I$:

$$f(x) = \sum_{k=0}^{n} a_k (x - x_0)^k + \underset{x \to x_0}{o} ((x - x_0)^n).$$

Le polynôme $\sum_{k=0}^n a_k (x-x_0)^k$ est appelé la **partie régulière** du DL et $\sum_{x\to x_0}^n ((x-x_0)^n)$ le **reste** du DL.

Remarque 8

1. Si f admet un $DL_2(x_0)$ alors f admet un $DL_1(x_0)$ (donc aussi un $DL_0(x_0)$). En effet :

- 2. En particulier, on vient de voir que $(x x_0)^2 = o((x x_0))$: un \overline{DL} d'ordre 2 précise le comportement de f au voisinage de x_0 par rapport au DL d'ordre 1 :
 - la partie régulière du DL d'ordre 1 donne une approximation affine de f au voisinage de x₀;
 - la partie régulière du DL d'ordre 2 donne une approximation quadratique de f au voisinage de x₀.

Proposition 9

Soit $n \in [0, 2]$.

Soit f une fonction définie sur un intervalle I et $x_0 \in I$. Si f admet un DL d'ordre n au voisinage de x_0 alors la partie régulière est unique.

Théorème 1 (Formule de Taylor-Young)

Soit f une fonction définie sur un intervalle I et $x_0 \in I$. Si f est de classe C^2 au voisinage de x_0 alors f admet un DL d'ordre 2 en x_0 donné par :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \underset{x \to x_0}{o}((x - x_0)^2).$$

13

Remarque 9

Attention, contrairement à ce qui se passe pour les DL d'ordre 1, posséder un DL d'ordre 2 en x_0 n'implique pas d'être deux fois dérivable en x_0 .

On en déduit les DL usuels suivants :

Proposition 10 (DL usuels en 0)

Soit $a \in \mathbb{R}$.

1.
$$e^x = 1 + x + \frac{x^2}{2} + o_1(x^2)$$
.

2.
$$\ln(1+x) = x - \frac{x^2}{2} + \underset{x \to 0}{o}(x^2)$$
.

3.
$$(1+x)^a = 1 + ax + \frac{a(a-1)}{2}x^2 + o_{x\to 0}(x^2)$$
.

Méthode 2 (Déterminer le DL d'une fonction)

On peut procéder de différentes façons pour déterminer le DL d'une fonction f au voisinage d'un point x_0 :

- 1. si f est de classe C^2 au voisinage de x_0 , on peut utiliser la formule de Taylor-Young;
- 2. si l'expression de f fait intervenir des fonctions dont on connaît le DL, on peut utiliser les règles suivantes de calcul avec les o, **valables uniquement en** 0 :

(a)
$$o_{x\to 0}(x^n) + o_{x\to 0}(x^n) = o_{x\to 0}(x^n)$$
 et $o_{x\to 0}(x^n) - o_{x\to 0}(x^n) = o_{x\to 0}(x^n)$ (cf prop 3.2);

(b)
$$x^m \times \underset{x \to 0}{o}(x^n) = \underset{x \to 0}{o}(x^{n+m}) \text{ et } \underset{x \to 0}{o}(x^m) \times \underset{x \to 0}{o}(x^n) = \underset{x \to 0}{o}(x^{n+m}) \text{ (cf prop 3.4)};$$

(c)
$$\sin m < n \text{ alors } o(x^m) + o(x^n) = o(x^m) \text{ (cf prop 2 et 3)}.$$

Exemple 14

Déterminer le DL d'ordre 2 au voisinage de 0 de la fonction f définie sur] -1, $+\infty$ [par

$$\forall x \in]-1, +\infty[, \quad f(x) = e^{-2x}\sqrt{1+x}.$$

1. Déterminer le DL d'ordre 2 au voisinage de 0 de la fonction f définie sur] -1, $+\infty$ [par

$$\forall x \in]-1, +\infty[, \quad f(x) = \ln(1+x) - x.$$

2. Déterminer le DL d'ordre 2 au voisinage de 0 de la fonction f définie sur] -1, $+\infty$ [par

$$\forall x \in]-1, +\infty[, \quad f(x) = x\sqrt{1+x}.$$

Test 10 (voir la solution.)

1. Déterminer le DL à l'ordre 2 au voisinage de 0 de la fonction g définie sur $]-1,+\infty[$ par

$$\forall x \in]-1,+\infty[, \quad g(x)=\frac{1}{1+x}.$$

2. En déduire le DL à l'ordre 2 au voisinage de 0 de la fonction h définie sur] -1, $+\infty$ [par

$$\forall x \in]-1,+\infty[, \quad h(x) = \frac{e^x}{1+x}.$$

3 Applications

3.1 Application à l'étude locale de fonction

▶ Lever une indétermination pour des calculs de limites.

Méthode 3

Lorsqu'on ne connaît pas d'équivalent ou qu'on est tenté de sommer des équivalents (**chose formellement interdite**), il est souvent judicieux d'utiliser un développement limité.

Exemple 16

Déterminons $\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\ln(1+x)}\right)$.

Test 11 (voir la solution.)

On note $f : \mathbb{R} \to \mathbb{R}$ l'application définie par :

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} \frac{x}{e^x - 1} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0. \end{cases}$$

- 1. Montrer que f est dérivable en 0 et calculer f'(0).
- 2. Justifier que f est dérivable sur \mathbb{R} et que f' est continue en 0.
- ▶ Position locale d'une courbe par rapport à une tangente.

Théorème 2

Soient I un intervalle et $x_0 \in I$. Soit f une fonction définie sur I et admettant le DL d'ordre 2 suivant au voisinage de x_0 :

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \underset{x \to x_0}{o}((x - x_0)^2).$$

Alors:

- 1. f est continue en x_0 et $a_0 = f(x_0)$,
- 2. f est dérivable en x_0 et $a_1 = f'(x_0)$,
- 3. l'équation réduite de la tangente à la courbe représentative de f au point d'abscisse x_0 est

$$y = a_0 + a_1(x - x_0),$$

4. si $a_2 > 0$, la courbe représentative de f est localement au-dessus de sa tangente au point d'abscisse x_0 et si $a_2 < 0$ la courbe représentative de f est localement en-dessous de sa tangente au point d'abscisse x_0 .

Remarque 10

Si $a_2 = 0$, on ne peut rien conclure sur la position relative de la courbe représentative de f par rapport à sa tangente au point d'abscisse x_0 .

Remarque 11 (Cas particulier important)

Si $a_1 = 0$, c'est-à-dire $f'(x_0) = 0$, la tangente est horizontale. Donc :

•	si $a_2 > 0$, la courbe représentative de f est localement au-dessus de sa tangente au point d'abscisse x_0 donc
	x_0 est un minimum local;

• si $a_2 < 0$, la courbe représentative de f est localement en-dessous de sa tangente au point d'abscisse x_0 donc x_0 est un maximum local.

Exemp	le	17

Soit f la fonction définie $\sup -1, +\infty[$ par $\forall x \in]-1, +\infty[, \quad f(x) = e^{-2x}\sqrt{1+x}.$ Étudions la position locale de la courbe de f par rapport à sa tangente en 0.

Test 12 (voir la solution.)

Soit f la fonction définie sur] -1, $+\infty$ [par

$$\forall x \in]-1,+\infty[, \quad f(x) = x\sqrt{1+x}+1.$$

Étudier la position locale de la courbe de f par rapport à sa tangente en 0.

3.2 Application à l'étude de séries

Méthode 4

Lorsque le terme général d'une série est trop compliqué pour en déterminer un équivalent facilement, on peut utiliser un DL en $\frac{1}{n}$.

Exemple 18

4 Objectifs

- 1. Connaître la définition de négligeabilité et sa caractérisation.
- 2. Connaître la définition d'équivalence et sa caractérisation.
- 3. Savoir montrer que deux fonctions sont équivalentes ou que l'une est négligeable devant l'autre au voisinage d'un point à l'aide de la définition ou de la caractérisation.
- 4. Connaître par coeur les croissances comparées en terme de petits *o* et les équivalents usuels.
- 5. Savoir manipuler les opérations avec les petits o et les équivalents pour déterminer une limite.
- 6. Savoir déterminer un équivalent par encadrement ou de manière directe.
- 7. Connaître les DL usuels.
- 8. Savoir déterminer un DL à l'ordre 1 ou 2 de fonctions simples en utilisant la formule de Taylor-Young ou en manipulant les DL usuels.
- 9. Savoir utiliser les DL pour lever des indéterminations, étudier localement une fonction.